ETHzürich HS2021 Robin Sieber.

 $\alpha y'' + b y' + c y = f \rightarrow y = y_h + y_p$ χ : ch. Polynom $\alpha \lambda^2 + b \lambda + c = 0 \rightarrow \lambda_{4/2} = \frac{-b \pm \sqrt{\delta^2 + 4ac}}{2a}$ $\lambda_{A} \neq \lambda_{2} \in \mathbb{R}^{:} y = C_{A} e^{\lambda_{1}t} + C_{2} e^{\lambda_{2}t}; \lambda_{A} = \lambda_{2} \in \mathbb{R}^{:} y = (C_{A} + C_{2} \cdot t) e^{\lambda t}$ $\lambda_{n,2} = \infty \pm i\omega : \gamma = e^{\omega t} \left(C_n \sin(\omega t) + C_2 \cos(\omega t) \right)$

 $\underline{y_e}: f \rightarrow A_{rsad} : Ce^{\alpha t} \rightarrow Ae^{\alpha t}; C\overset{sin}{cos}(bt) \rightarrow A_{cos}(bt) + B_{sin}(bt); \Sigma_{cix^i} \rightarrow \Sigma_{A_ix^i};$ C sin (bt) eat - (Asin (bt)+Bcos(bt))eat

Classification

Linear: Linear in all derivatives, Coeff's may depend on x,y,...

Quasi-linear: Linear w.r.t. the highest order derivative Homogeneous: Every term that doesn't depend on u is equal to zero

Vector space of solutions / superposition principle: Let um and um be the solutions of the PDE L[u] = 0 and up of L[u] = f(x).

Then $\alpha u_{h_1} + \beta u_{h_2} + u_p$ solves $\lfloor u \rfloor = f(x)$ too.

Do not add multiple particular solutions.

Well-posedness: 1) Existence 2) Uniqueness 3) Stability in 10 / 13c

Strong solutions: all derivatives exist and are continuous.

Gradient $\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial x}, ...)^T \in \mathbb{R}^n$ Laplace - Operator $\Delta u = \nabla^2 u = \sum u_{x_i x_i} \in \mathbb{R}$

Cauchy problem PDE coupled with a set of init conditions

Method of Characteristics (quasilinear)

 $\alpha(x_1y_1u)u_x + b(x_1y_1u)u_y = c(x_1y_1u) u(x_0(s), y_0(s)) = u_0(s)$ Λ . $\alpha = x_{L}(t,s)$, $b = y_{L}(t,s)$, $c = \widetilde{u}(t,s)$, $\Gamma(s) = (x_{o}(s), y_{o}(s), u_{o}(s)) \rightarrow \widetilde{u}(s,t)$ 2. Find t(x,y), s(x,y) and solve $u(x,y) = \tilde{u}(t(x,y), s(x,y))$

Unique solution in neighbourhood of initial curve => transversality cond. $\int = \det \begin{bmatrix} x_{+} & y_{+} \\ x_{s} & y_{s} \end{bmatrix} = \det \begin{bmatrix} a(o,s) & b(o,s) \\ \frac{d}{ds} \times (o,s) & \frac{d}{ds} y(o,s) \end{bmatrix} \neq 0$ "init curve not tangential to characteristics" Tolon4 forget

Conservation laws & shock waves

 $(u_y + c(u)u_x = u_y + \frac{3}{3x}F(u) = 0)$ (F'=c) c>0: flow left-right $S = b^2 - ac$ (local property) u(x,0) = h(x) (x Raum, y Zeit)

 $MoC: x_t = c(u), y_t = 1, \widetilde{u}_t = 0, x(0,s) = s, y(0,s) = 0, \widetilde{u}(0,s) = h(s)$

u const along, characteristical Characteristics: $y(s,t) = t, x(s,t) = s + c(h(s)) \cdot t$ Implicit solution: u(x,y) = h(x - c(u(x,y))y)

Nach critical time ye entweder nur noch schwache oder keine Lösung wehr. integral formulation: $\int_{x_0}^{x_2} u(x,y_4) - u(x,y_6) dx = -\int_{y_6}^{y_7} F(u(x_4,y)) - F(u(x_6,y))$

Yx6< x,0< y6< y4 every classical solution is also a weak solution Shockwave (Rankine-Hugoniot): $\sigma'(y) = \frac{F(u^*) - F(u^*)}{u^* - u^*} \Rightarrow x = \sigma(y)$ ist shockwave

Entropy condition: Weak sol. nichol unique \rightarrow welche macht phys. Sinn? $c(u^4) < \sigma' < c(u^4)$ (Charakteristiken in Stoss rein, nicht raus) (sol. that satisfies cond. is unique)

Tips for checking weak solutions: must be p.w. continuous

slope of shockwave (σ') = slope of discontinuity

MoC tips

 $X_t = x \implies \frac{dx}{dt} = x \iff \int \frac{dx}{x} = \int dt \implies x = e^t \cdot \alpha(s)$ $\tilde{u}_{t} = 2\tilde{u} \implies \tilde{u} = e^{2t} \cdot \gamma(s)$

or maybe add up $W = x + y + \widetilde{u} = \cdots$

 $yu_x + uu_y = x$ => $w = w_t$ + use init curve for more information about w> if w=0 > x+y+ \(= 0 <> \(\vec{v} = -x - y \)

2nd order PDEs aux+2buxy+cuyy+dux+euy+fu=9

· S<0: elliptic Laplace/Poisson uxx + ux = 0

· S = 0: parabolic Heat u+ - kun = 0

· 8>0: hyperbolic Wave ut - c2ux =0

```
Wave equation u<sub>tt</sub> - c2 u<sub>xx</sub> = 0
                                                         (x,t) \in \mathbb{R} \times (0,\infty)
                                                         C= Wave speed
 U(x,0)=f(x)
                                            conditions
  L4(x,0) = g(x)
 u(0,t) = u(L,t) = 0 Dirichlet
                                             boundary
[u_{x}(0,t)=u_{x}(L,t)=0] van Neumann
decompose u in 2 waves: u(x,y) = F(x-ct) + F(x+ct)
S = x + ct, \eta = x - ct \Rightarrow w(S, \eta) = u(x(S, \eta), y(S, \eta)) = F(S) + G(\eta)
Characteristics: x+ct = \kappa, x-ct = \beta (\alpha, \beta \in \mathbb{R}).
u is constant on the charact. Lines, singularities propagate along
d'Alembert u(x,t) = \frac{f(x+ct) + f(x-ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds
Domain of dependence
 ·sol. in (xo,to) depends on f(x-cto)
and f(xo+cto) and g in [xo-cto, xo+cto]
Region of influence
                                                  \a=x+ct
· All points satisfying x-ct < b, x+ct > a
are dependent on the init conditions in [a,b].
Symmetry: f,g,F odd, => u odd, periodic
```

Houndary condition?

Yes: d'Alembert or Superposition

Yes: Can use symmetry to eliminate boundary conditions?

Yes: Extend problem with suitable f,g, then homog. d'Alembert.

No: Separation of variables

Inhomogeneous wave equation $u_{t+}-c^2u_{xx}=F(x,t)$ • d'Alembert: $u(x,t)=\frac{f(x+ct)+f(x-ct)}{2}+\frac{1}{2c}\int_{x-ct}^{x+ct}g(s)\,ds+\frac{1}{2c}\int_{0}^{t}\int_{x-c(t-T)}^{x+c(t-T)}F(s,r)\,ds\,dr$ • Superposition: Find v(x,t) s.t. $v_{t+}-c^2v_{xx}=F(x,t)$. Define w=u-v $\begin{cases} w_{t+}-c^2w_{xx}=O \\ w(x,0)=f(x,0)-v(x,0) \end{cases} \Rightarrow u=w+v$ $w_{t+}(x,0)=g(x,0)-v_{t+}(x,0) \qquad \text{Good to use if } F \text{ only}$

Heat equation $u_t - ku_{xx} = 0$ $(x,t) \in [0,L] \times [0,\infty[$ u(x,0) = f(x) } initial condition $\begin{cases} u(0,t) = u(L,t) = 0 & \text{Dirichlet} \\ u_x(0,t) = u_x(L,t) = 0 & \text{Van Neumann} \end{cases}$ condition or mixed

Dirichlet problem has a unique solution

• falls F(x,t) = the oder anders einfache Runktion, dann besser partikuläre Losung finder.

D.B.C. $X_n = \sin(\frac{n\pi}{L} \times)$ $n = 4_1 2_1 3_1 \dots$ $V.N.B.C. X_n = \cos(\frac{n\pi}{L} \times)$ $n = 0,4,2,3,\dots$ $\lambda_n = (\frac{n\pi}{L})^2$ Using λ_{n_1} we find $T_n = e^{-k(\frac{n\pi}{L})^2 t}$ $(T^1 = -\lambda kT)$ $U(x_1 t) = \sum_{n=A}^{\infty} A_n \sin(\frac{n\pi}{L} \times) e^{-k(\frac{n\pi}{L})^2 t}$ $U(x_1 t) = \frac{4}{2} B_0 + \sum_{n=A}^{\infty} B_n \cos(\frac{n\pi}{L} \times) e^{-k(\frac{n\pi}{L})^2 t}$

Using λ_n , we find $T_n = A_n \cos(\frac{n\pi}{L}ct) + B_n \sin(\frac{n\pi}{L}ct)$ ($T^n = -c\lambda T$) $\frac{U(x,t)}{U(x,t)} = \sum_{n=A}^{\infty} \sin(\frac{n\pi}{L}x) \left(A_n \cos(\frac{n\pi}{L}ct) + B_n \sin(\frac{n\pi}{L}ct)\right)$ $U(x,t) = \frac{A_0 + B_0 t}{2} + \sum_{n=A}^{\infty} \cos(\frac{n\pi}{L}x) \left(A_n \cos(\frac{n\pi}{L}ct) + B_n \sin(\frac{n\pi}{L}ct)\right)$

Use initial conditions to determine coefficients.

If boundary conditions inhomogeneous: Find w that solves inhomog., Subtract it from PDE (v=u-w), solve for v, finally u=v+w

S.O.v. for inhomogeneous equations:

Apply s.o.v. to the homog. PDE using the Ansatz u = X(x)T(t). Find general solution for X, make distinction for λ . Formulate general solution u = xT with basis found in prev. step. Insert in inhomog. PDE and use init. conds. to determine coeffs. $u_{tt} - c^2 u_{xx} = \sum_n T_n u_n - c^2 T_n u_n^n = F(x,t)$ $u_{tt} - k u_{xx} = \sum_n T_n u_n - k u_n^n u_n^n = F(x,t)$

Max. principle for homogeneous heat equation

Let u solve $u_t = k\Delta u$ in Q_T for some k>0. Assume D bounded

Then u achieves its maximum (and minimum) on Q_pQ_T . $\{0\}\times D$ $u'[0,t_0]\times 2D$

Proof: Uniqueness of inhomogeneous ΛD wave equation. Existence given by d'Alembert. Suppose u_{Λ} and u_{2} are solutions. that solve $u_{kl}-c^{2}u_{xx}=F(x_{i}t)$, $u(x_{i}o)=f(x)$, $u_{k}(x_{i}o)=g(x)$, $(x_{i}t)\in \mathbb{R}\times(0,\infty)$ Let $w:=u_{k}-u_{k}$. w solves

 $W_{1}(x,0) = U_{1}(x,0) - U_{2}(x,0) = f(x) - f(x) = 0$ $W_{2}(x,0) = U_{1}(x,0) - U_{2}(x,0) = f(x) - f(x) = 0$ $W_{3}(x,0) = U_{1}(x,0) - U_{2}(x,0) = g(x) - g(x) = 0$

We use d'Alembert's formula to solve this cauchy problem and get w = 0 and thus $u_n = u_2$

Laplace equation $\Delta u = 0$ (\iff u is a harmonic function)

Poisson equation $\triangle U = U_{xx} + U_{yy} = p(x,y) (x,y) \in D \subset \mathbb{R}^2$

 $\int u(x,y) = g(x,y)$

(x,y) & OD Dirichlet

 $\partial_n U(x,y) = \overrightarrow{n} \cdot \nabla u = g(x,y) \quad (x,y) \in \partial D \quad \text{Van Neumann}$ $U(x,y) + x \partial_n U(x,y) = g(x,y) \quad (x,y) \in \partial D \quad \text{Mixed}$

Necessary condition for existence of solution

Neumann: $\int_{\partial D} g(x(s), y(s)) ds = \int_{D} P(x,y) dxdy | Dirichlet of boundary$

Boundary splitting

Laplace V.N.B.C: Verify $\int_{\partial D} \partial_n u = 0 = \int_c^d \int_c^d f + \int_a^b k - \int_a^b h \cdot \int_a^d \int_{u_v = h}^{u_v = k} \int_{u_v = h}^{u_v = h} \int_{u_v = h}^{u_v = h}$

 $\textbf{D.B.C}: \textbf{Ensure continuity}: \ f(a,c) = h(a,c) \ , \ h(b,c) = g(b,c), \ g(b,d) = k(b,d), \ k(a,d) = f(a,d)$

If not fulfilled: Use linearity, add harmonic polynomial s.t. coeffs. meet boundary conditions. Solve for $\tilde{u} = u + P_H$.

thomogeneous direction: $(X \text{ for } u_2, Y \text{ for } u_n)$ $\lambda_n = \left(\frac{n \pi}{b-a}\right)^2$

D.B.C.: $Y_n = A_n \sin(\sqrt{\lambda_n} (x-a))$ $Y_n = A_n \sin(\sqrt{\lambda_n} (y-c))$

 $V.N.B.C.: X_n = A_n \cos(\sqrt{\lambda_n} (x-a))$ $Y_n = A_n \cos(\sqrt{\lambda_n} (y-c))$

Other direction:

 $\mathbb{D}.\mathcal{B}.C.: Y_n = C_n \sinh(\sqrt{\lambda_n} (y-c)) + \mathbb{D}_n \sinh(\sqrt{\lambda_n} (y-d))$

 $X_n = C_n \sinh(\sqrt{\lambda_n}(x-a)) + D_n \sinh(\sqrt{\lambda_n}(x-b))$

 $VNB.C: Y_n = C_n \cosh(\sqrt{\lambda_n} (y-c)) + D_n \cosh(\sqrt{\lambda_n} (y-d))$

 $X_n = C_n \cosh(\sqrt{1} \overline{\lambda}_n (x-a)) + D_n \cosh(\sqrt{1} \overline{\lambda}_n (x-b))$

Poisson+Dirichlet have unique solution

Proof on next page

Homogeneous?

No: Find particular solution, subtract from PDE and b.c. → homog. Problem Yes: → Laplace. Domain?

Rectangular: If necessary: boundary splitting 1 to fulfill existence condition Solve in both homogeneous directions, add up solutions

Solve for u! Not for v=u-w or ũ=u-ph

Circular: (Ball I full v section -> summary

Some harmonic functions

a0+ a4x+ a2y+ a3xy+ a4 (x2-y2) | log(x2+y2)+C

Weak max/min principle

Let D be a bounded domain and $u(x,y) \in C^2(D) \cap C(D)$ a harmonic function. U will take its max/min on OD.

maxu = maxu D = DD minu = minu D DD

<u>Proof:</u> Let $u_{\varepsilon}(x_{i}y) = U + \varepsilon(x^{2} + y^{2})$ with $\varepsilon > 0$, u harmonic.

If max ue = u(x0,y0) ED, then Due(x0,y0) & O. However,

 $\Delta U_{\varepsilon}(x_{0},y_{0}) = \Delta U + \Delta \varepsilon (x^{2}+y^{2}) \Big|_{(x_{0},y_{0})} = 4\varepsilon > 0 \Big|_{x_{0}} => \max u_{\varepsilon} \in \partial D$

Mean value theorem

Let u be harmonic in D and $B_R(x_0, y_0) \subseteq D$. Then:

 $U(x_0,y_0) = \frac{1}{2\pi R} \int_{\partial B_r} U(x(s),y(s)) ds = \frac{1}{2\pi} \int_0^{2\pi} u(x_0 + R\cos(\theta),y_0 + R\sin(\theta)) d\theta$ (theorem holds \iff u is a harmonic function.)

Strong maximum principle

Let u be harmonic in D and u reaches its max inside D, then u is constant on all D.

<u>Proof:</u> Use mean value thm. (x_0,y_0) is the avg. of all points around a circle centered in (x_0,y_0) . All points must be equal to $U(x_0,y_0)$ since $U(x_0,y_0)$ is the maximum.

Extremum: $\nabla u(x_0, y_0) \stackrel{!}{=} 0$ Hax $\underset{u_{xx}, u_{yy}}{\Delta u(x_0, y_0) \leq 0}$ Min $\underset{u_{xx}, u_{yy}}{\Delta u(x_0, y_0) \leq 0}$

Circular domains

 $x=r\cos\theta$, $y=r\sin\theta$

Laplace: DW = Wrr + 1 Wr + 12 WAB

 $W(r, \Theta) = U(r \cos(\theta), r \sin(\theta))$

B.C. $W(R,\theta) = g(x(R,\theta), y(R,\theta)) = h(\theta)$

Ansatz: $w(r, \theta) = R(r)\Theta(\theta)$

Use s.o.v. and periodicity to get

(Θ(O) = Θ(2π)

 $\Theta'(0) = \Theta'(2\pi)$

• $\Theta_n(\theta) = A_n \cos(n\theta) + B_n \sin(n\theta)$

• $R_n = \begin{cases} C_0 + D_0 \log(r) & n = 0 \\ C_n r^n + D_n r^{-n} & n \neq 0 \end{cases}$ ignore if $(0,0) \in D$ (term undefined)

 $W(r,\theta) = A_0 + B_0 \log(r) + \sum_{n=A}^{\infty} r^n (A_n \cos(n\theta) + B_n \sin(n\theta)) + r^{-n} (C_n \cos(n\theta) + D_n \sin(n\theta))$

Insert boundan conditions to determine coefficients.

Circle D= {0≤ r ≤ R, 0 ≤ θ ≤ 2π}

 $\beta.C.$ $\Theta(0) = \Theta(2\pi), \Theta'(0) = \Theta'(2\pi)$

 $W(R,\theta) = f(\theta)$

Ring $\overline{D} = \{ G \leq C \leq G , 0 \leq \theta \leq 2\pi \}$

B.C. $\Theta(0) = \Theta(2\pi), \Theta'(0) = \Theta'(2\pi)$

 $W(r_{1},\theta) = f(\theta)$, $W(r_{2},\theta) = g(\theta)$

Section (circle) $\overline{D} = \{0 \le r \le R, 0 \le \theta \le \gamma\}$

Dirichlet $\Theta(0) = 0 = \Theta(\chi)$ $W = \sum_{\lambda \neq \lambda} A_{\lambda} \sin(\frac{\alpha \pi}{\lambda} \theta) r^{\frac{2}{3}}$

van Neumann $\Theta'(0) = 0 = \Theta'(\gamma) W = A_0 + \sum_{n \geq 1} A_n \cos(\frac{n\pi}{\gamma}\theta) \cdot \frac{n\pi}{\gamma}$

 $\omega(R,\theta) = \lambda(\theta)$

Section (ring) $\overline{D} = \{ r_i \leqslant r_i \leqslant r_j, 0 \leqslant \theta \leqslant \gamma \}$

 $W(r,\theta) = k(\theta)$, $W(r,\theta) = h(\theta)$

Dirichlet $\Theta(0) = 0 = \Theta(\gamma)$

 $W(r,\theta) = \sum_{n=1}^{\infty} A_n \sin(\frac{n\pi}{8}\theta) r^{\frac{n\pi}{8}} + B_n \sin(\frac{n\pi}{8}) r^{-\frac{n\pi}{8}}$ van Neumann $\Theta'(0) = 0 = \Theta'(\gamma)$

 $W(r,\theta) = A_0 + B_0 \log(r) + \sum_{n=1}^{\infty} A_n \cos(\frac{n\pi}{r}) r^{\frac{n\pi}{\delta^r}} + B_n \sin(\frac{n\pi}{r}\theta) r^{-\frac{n\pi}{\delta^r}}$

Trigonometric identities

cosh(x) = cos(ix)
$\cosh^2(x) - \sinh^2(x) = \Lambda$
$Sinh(acosh(x)) = \sqrt{x^2 + \Lambda}$ $cosh(asinh(x)) = \sqrt{x^2 + \Lambda}$
$\cos^2(x) = \frac{4}{2} \left(\Lambda + \cos(2x) \right)$
n(y)
n(y)
cos ((n+m)t))
- cos ((u-w)f))
sin((n-m)t))
$x) = \sin^2(x) - \sin^2(y)$
$x) = \cos^2(x) - \sin^2(y)$
$\cos(x-\frac{\pi}{2}) = \sin(x)$
$\cos(x \pm \pi) = -\cos(x)$
,

Showing uniqueness of solution to Poisson equation

Sau in D	Let u_{λ} and u_{λ} be solutions.
$ \begin{cases} \Delta u = u & \text{in } D \\ u = f & \text{on } \partial D \end{cases} $	Let $v_a = u_a - u_2$ and $v_2 = -v_a = u_2 - u_a$
1	v; satisfies the eqs. on the left. Assume
$\int \Delta V_i = V_i \text{in } \mathcal{D}$ $V_i = 0$	$V_A > 0$ somewhere in D. Let $(x,y) = \max_{D} V_A$

We have y(x,y) > 0, therefore $\Delta y_{i} \in 0$ which contradicts $\Delta y_{i} = y_{i}$

Hence $v_1 \leqslant 0$. Same reasoning to get $v_2 \leqslant 0 \iff v_1 \gg 0 \implies v_1 = v_2 \equiv 0 \implies u_1 = u_2$

Integrals

part. Integration	[f(x) g'(x) dx	$= \left[f(x)g(x) \right]_{\alpha}^{b} - \int_{\alpha}^{b} f'(x)g(x) dx$	

.C/\\	I 5/310
f(x)	F(x)+C
<u> </u>	log1×1
ex, ax	log1x1 e ^x क्षाबा
Sin(x)	-cos(x)
COS(x)	sin(x)
7 COS ² ×	tan(x)
 Sin²×	- A tan x
1/1-x2	arcsin(x)
$\frac{\sqrt{1 + x_{2}}}{\sqrt{1 + x_{2}}}$	arctan(x)
sinh(x)	cosh(x)
log(x)	x-log(x) - x

$$\left(\frac{\Lambda}{\Lambda}\right)_{i} = \frac{\Lambda_{i}\Lambda - \Lambda_{i}\Lambda}{\Lambda_{i}\Lambda + \Lambda_{i}\Lambda}$$

$$\int_{\partial B_R(0,0)} f(x,y) d\mu = \int_0^R \int_0^{2\pi} f(r\cos\theta, r\sin\theta) r d\theta dr$$

$$\int_{0}^{\pi/2} \sin = \Lambda \quad \int_{0}^{\pi} \sin = 2 \quad \int_{0}^{2\pi} \sin = 0$$

$$\int_{0}^{\pi/2} \sin^{2} = \frac{\pi}{4} \quad \int_{0}^{\pi} \sin^{2} = \frac{\pi}{2} \quad \int_{0}^{2\pi} \sin^{2} = \pi$$

$$\int_{0}^{\pi/2} \cos = \Lambda \quad \int_{0}^{\pi} \cos = 0 \quad \int_{0}^{2\pi} \cos = 0$$

$$\int_{0}^{\pi/2} \cos^{2} = \frac{\pi}{4} \quad \int_{0}^{\pi} \cos^{2} = \frac{\pi}{2} \quad \int_{0}^{2\pi} \cos^{2} = \pi$$

Fourier series

$$f(x) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \left(\alpha_n \cos(\frac{n\pi}{L} x) + b_n \sin(\frac{n\pi}{L} x) \right)$$

$$\alpha_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi}{L} x) dx \qquad b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{m\pi}{L} x) dx$$