Institute of Public Administration

COMP41530 - Web Services in Cloud Computing

Barry Corish
Associate Lecturer, IPA
Lecture 11

Institute of Public Administration | 57-61 Lansdowne Road | Dublin 4 | Ireland | Ph. +353 1 2403600 | www.ipa.ie

Overview

- Review
- Cloud Computing Overview
- SoA and Cloud Computing
- Security and Cloud Computing

Overview

- Review
- Cloud Computing Overview
- SoA and Cloud Computing
- Security and Cloud Computing

© IPA 3

What is Management of IT Systems?

- To manage effectively, we need to know:
 - What's happening now
 - How is that changing over time
- This allows us to:
 - Resolve problems
 - Improve Service
 - Automatic or manual intervention to fix problems or improve performance

Management of Legacy Systems

- Architecturally Simpler Systems
- Highly staffed / high skill levels
- Generally limited change in infrastructure
- More centralised
- Fewer components
- Generally easier to manage (less flexible)
- Single "view of the world" available
- Generally easier to investigate / resolve problems

© IPA 5

Managing Distributed Systems

- Distributed Computing Systems
- Loose Coupling
- Heterogeneous Computing Systems
 - Implies different Development and Infrastructural teams
- Requires a different approach to Management

Distributed Management Systems

- Software systems that allow us to:
- Monitor
 - Capture and record stats. and events over time
- Track
 - Watch single "units of work" flow through the system
- Control
 - Change and manage the system while live

© IPA

The Traditional Technical Overview

- Traditional Systems Management focused on infrastructure:
 - Networks
 - Processor Load
 - Disk Space
 - Events Logs
 - System Performance

The Business Systems Overview

- Now we need to focus on delivery of business functions to end users
- We need a composite view across many systems – the "Business" view
- We may also add "business performance" metrics.
- A combined "Management Dashboard" view
 - ...rather than a traditional IT Systems View

© IPA

Management of SOA Environments

- Even more complicated than the Distributed Systems management problem
- Resources of System may be entirely outside our control
- No single console any more!
- No single system overview
- Huge number of points of possible failure
- No single "expert" who can trace problem
 - System is too complex and distributed

Enterprise Management Frameworks

- Software Systems
- Designed to manage complex IT Systems
- One or more "Management Servers"
- Trying to centralise and unify:
 - Reporting
 - Logging/recording/analysis
 - Alerting

© IPA 11

EMS Data Collection and Reporting

- External and Agent based monitoring are commonly used together
- Data from two sources are merged to give a single view of the resource
- Data from multiple resources combined together to give:
 - "Infrastructural" view, e.g. all LAN components
 - "Business System" view, e.g. every resource required by the Call Centre

Standard Frameworks

- Simple Network Management Protocol
- Common Information Model

© IPA 13

Typical Metrics for a WebService (1/2)

- Number of requests received
 - ...number of successes
 - ... number of failures
- Performance
 - Avg processing time
 - Max processing time
 - Min processing time
- ...and compound views of these

WebService Service Degradation

- We also care about the relationships between these metrics
- What happens to the system under load?
 - Nothing?
 - Gradual slow down?
 - Sudden tipping point?
 - Crash?

© IPA 15

Management of WebServices

- So, we need to monitor all of:
 - User Experience
 - Infrastructure Monitoring
 - Resource Provisioning
 - Transaction Monitoring
 - SLA Monitoring:
- From these we need to:
 - Record (and allow analysis)
 - Alert (on exception)
 - Fix (manual or automatic?)

Active Management of WebServices

- We need to be able to:
 - Bring them up or down
 - Balance the load between multiple providers
 - Launch, Deprecate, Upgrade versions of a service
- ...all non-disruptively
- Middleware can help:
 - Virtual addressing
 - Load Balancing
 - Failover
 - Best monitoring point?

© IPA 17

Key points (1/2)

- Management is about:
 - Monitoring
 - Tracking
 - Controlling
- You can do SOA without Management
 - ...but you'll miss a lot of the value.
- You can do WebServices without Management
 - ...but it gets very complicated very fast!

Key points (2/2)

- Don't build your own Management framework/infrastructure
 - Buy in one of the many systems already available
 - ... or at least stick to one of the standards.
- Consider the overall Management strategy at the "Plan" phase of SOA
 - Easy to build in from the start
 - Hard to retro-fit later

© IPA 19

Overview

- Overview
- Review
- Cloud Computing Overview
- SoA and Cloud Computing
- Security and Cloud Computing

What is Cloud Computing?

- No real consensus yet
- Sometimes just a marketing buzzword
- Often overlaps with virtualisation.
 - ... often confused with virtualisation!

© IPA 21

Main Agreed Features

- Delivery of computing resources from a shared pool
- Virtualised Resources
- Some or all of: Networks, servers, storage, middleware and applications
- Rapid provisioning
- Easily managed

It's been around a long time!

- Shared computing resources are nothing new
 - Look at legacy systems
 - Mainframes in particular
 - "Open Systems" world is only now catching up
 - Hosted websites
 - Hosted email servers
- ...nothing new here!

© IPA 23

Typical Characteristics of Cloud Computing

- On demand provision
- Network based access
- Geographically independent
- Quick to scale up and down
- Metered use of resources
 - ...often "Pay as you go" model

Basic Delivery Models: IaaS

- Infrastructure as a Service
- Virtualised:
 - Servers
 - Storage
 - Networking
 - ...and other resources
- Build your own systems on top of these

© IPA 25

Basic Delivery Models: PaaS

- Platform as a Service
- Providing the "middle tier" of software:
 - Operating Systems
 - Databases
 - Runtime environments
 - Middleware
 - Utility Services
 - Mail Servers, Mail Filtering, Backups etc.
- Build your environment on top of these
- Available with more-or-less management provided by vendor

Basic Delivery Models: SaaS

- Software as a Service
- "End User" Applications
 - Mail Clients
 - Virtual Desktops
 - "Office" Applications
 - Accounting, Payroll, CRM applications
- Put your data into their systems.
- Available with more-or-less management from vendor

© IPA 27

Cloud Deployment Models

- Public Cloud
 - Best scaling, availability etc.
- Private Cloud
 - This can be very close to plain virtualisation
- Hybrid Cloud
 - Bit of both

Specific problems in the Hybrid Cloud

- All the complexity of internal systems
- Plus complexity of running own "cloud"
- Plus all the concerns of using Public cloud

© IPA 29

Types of Virtualisation: Network

- Building Virtual Private Networks
- Many independent networks running over shared links
- Loads up links as high as possible
 - Can be more cost effective
- Take care of privacy/security etc once at a network level
- Applications can then assume links are secure

Types of Virtualisation: Server

- Partitioning physical servers
- Multiple "guest" servers running on one physical server
- Guest may not be aware that it is virtual!
- Run fewer servers, but run them harder
- Better Return on Investment
 - "Sweating the asset"
- Excellent manageability

© IPA 31

Types of Virtualisation: Server Clustering

- A single virtual service
- Running on multiple physical servers simultaneously
- Resilience and Failover
- Must provide load balancing
- Must build applications to deal with failure of one or more cluster members
 - ...can be much harder than to deal with a single system crash

Types of Virtualisation: Storage

- Large pools of storage
- Shared out to multiple systems
- Storage Area Networks (SANs) are required
- Requires very high bandwidth links.
 - Network latency may become important
- Can be very resilient storage
 - ...but have added additional LAN/WAN risks

© IPA 33

Types of Virtualisation: Application Virtualisation

- The application is running across many virtualised resources
- Can be presented to the user as running "on" their device
 - ...but is actually running elsewhere
 - Thin Client devices
 - Virtualised desktops
- Portability and resilience

System Virtualisation and Management

- Management becomes even more important in a Cloud Based environment
 - More possible points of failure
 - Even harder to trace and resolve problems
 - More providers and vendors involved
 - Less control!
- Must "build in" cloud support when designing systems

© IPA 35

Overview

- Review
- Cloud Computing Overview
- SoA and Cloud Computing
- Security and Cloud Computing

What the Cloud offers for SOA

- SOA Services are generally available for use by third parties
 - Internal or external customers
 - Often, volume of use can't be predicted in advance
 - Website crashes under load
- Cloud Computing offers a solution
 - Rapid deployment/scaling
- Cloud Computing and SOA can be complementary

© IPA 37

SoA must be designed for the Cloud

- The Architecture must be designed with the Cloud in mind.
- Assume:
 - Clustering
 - ...and occasional cluster member failure!
 - Platform independence
 - Location independence

SLAs and the Cloud

- An SLA has been provided to service consumers
- Service cannot be delivered without Cloud resources
- Now dependent on SLA of Cloud provider
- If using Public/Hybrid cloud, essential parts of service provision are beyond your control
 - Public cloud providers SLAs' are generally bulletproof

© IPA 39

Overview

- Review
- Cloud Computing Overview
- SoA and Cloud Computing
- Security and Cloud Computing

Cloud Security: Risks

- Most security risks are increased in a cloud environment
- Broad Risk Categories:
 - Data Isolation Failure
 - Data Protection Failure
 - Lack of Governance
 - Compliance Problems
 - Additional externally exposed interfaces and APIs
 - Loss of control of resources
 - Malicious Individuals

© IPA 41

Cloud Security: IaaS Countermeasures

- Minimise functionality of VM
- Harden image before deployment
- Secure inter-resource communication
- Use application keys and federated identities
- Periodically destroy/recreate resources

Cloud Security: PaaS Countermeasures

- "Data at rest" should be encrypted
- Harden application
- Reduce attackable surface of application
- Assume all communications are insecure

© IPA 43

Cloud Security: SaaS Countermeasures

- Audit in advance of use
- Where possible, encrypt or reduce data before placing in the cloud
- Use vendors with a good reputation
- Ummm...

API Standard Initiatives

- Significant risks of becoming bound to a single cloud vendor
 - APIs, VM Image formats etc. are not generally standardised between vendors
 - "Open Stack" initiative is heading that way...

© IPA 45

Potential Benefits of Cloud Computing

- Cost Reduction/Avoidance/Delay
 - Accounting structures may negate some of that for established companies
- Spend time building business functions, not Servers/Networks etc.
- Dynamic scaling to load
- Fast provisioning of systems to meet new needs

Potential Risks of Cloud Computing

- Cloud service outages
- Communication service outages
- Vendor lock-in
- Lack of compatibility of existing applications
 - "Just do it" approach to moving to cloud it's not always that simple.
- IT policy concerns
- Security, Legal and Compliance risk
- Pay-as-you-go and bandwidth costs can be unpredictable

© IPA 47

SoA can address some of these risks

- Both SoA and Cloud focus on service availability, continuity etc
- Good SoA will ensure platform independence
 - Focus on interfaces of services, not internals
- Modular services and design fit well into Cloud environment
 - Put relevant and suitable parts of the system into the cloud
- Cloud is one of the tools you can use as part of your SoA

Key points

- SoA and Cloud Computing are compatible and complementary
- Management and Governance are key to both
- Architecture, Design and Applications need to be written with the Cloud in mind
- There are more risks in Cloud computing than in conventional computing
 - Particularly if using Public Cloud resources

© IPA 49

Overview

- Review
- Cloud Computing Overview
- SoA and Cloud Computing
- Security and Cloud Computing