Open string methods and Gopakumar-Vafa invariants

Andrea Sangiovanni University of Trieste May 25th 2021

Seminar series on String Phenomenology

based on A. Collinucci, AS, R. Valandro [21]
A. Collinucci, M. De Marco, AS, R. Valandro [21]

Context

Punchline:

Get insight and concretely handle computations of physically relevant mathematical objects using string theory techniques

1

 What are the Gopakumar-Vafa topological invariants (a.k.a GV invariants)?

- What are the Gopakumar-Vafa topological invariants (a.k.a GV invariants)?
- Why is it interesting for physicists to count them?

- What are the Gopakumar-Vafa topological invariants (a.k.a GV invariants)?
- Why is it interesting for physicists to count them?
- Idea: find an easy and physics-based way of computing (genus zero) GV invariants for a class of non-toric CY

- What are the Gopakumar-Vafa topological invariants (a.k.a GV invariants)?
- Why is it interesting for physicists to count them?
- Idea: find an easy and physics-based way of computing (genus zero) GV invariants for a class of non-toric CY

Strategy:

- Use M-theory/type IIA duality to reduce the problem to a more familiar setting
- Tachyon condensation formalism to compute open string spectrum
- Open string spectrum ← GV invariants

What are GV invariants?

Topological invariants: properties of an object that are invariant under homeomorphism

Trivial example: genus

For applications in string theory: interested in topological invariants of **Calabi-Yau manifolds**

"Mathematical" definition of GV invariant

Consider:

- ullet a Riemann surface Σ_g of genus g
- ullet a Calabi-Yau threefold X_3 (i.e. 3 complex-dimensional)
- a 2-cycle β inside the CY $(\beta \in H_2(X_3, \mathbb{Z}))$

How many **holomorphic** maps from Σ_g to $\beta \in X_3$?

4

• How many **holomorphic** maps from Σ_g to $\beta \in X_3$?

They are counted by the **Gromov-Witten (GW) invariants**

• How many **holomorphic** maps from Σ_g to $\beta \in X_3$?

They are counted by the **Gromov-Witten (GW) invariants**

GW invariants are related (Gopakumar, Vafa [98]) to the:

GV invariants n^g_{eta}

We are interested in genus 0 GV invariants n^0_{β} (i.e. the Riemann surface is just a sphere)

• Why do physicists care about them?

 $m{n}_{eta}^{m{g}}$ gives the number of BPS states of M2-branes wrapping the curve eta

- n_{deta}^{g} counts bound states of d M2-branes wrapping the eta class
- n_{β}^{0} gives instantonic corrections to the Kähler potential in type II theories (*Gopakumar-Vafa* [98]):

$$K = \underbrace{P(moduli)}_{perturbative} + \underbrace{\sum_{\beta} P'(n_{\beta}^{0}, moduli)}_{instanton\ correction}$$

How to compute the GV invariants?

- For toric CY threefolds there are known techniques: e.g. the topological vertex (Aganagic, Klemm, Marino, Vafa [03])
- For some non-toric cases there are available methods (*Katz* [06], *Donovan, Wemyss* [13], *Toda* [14])

How to compute the GV invariants?

- For toric CY threefolds there are known techniques: e.g. the topological vertex (Aganagic, Klemm, Marino, Vafa [03])
- For some non-toric cases there are available methods (*Katz* [06], *Donovan, Wemyss* [13], *Toda* [14])

We are interested in singular non-toric CY threefolds that arise as one-parameter families of deformations of ADE singularities

 They often admit a C*-fibration (with or without orientifolding) and this will be crucial in tackling the problem of computing their GV invariants

ADE singularities

 ADE surfaces are singular spaces classified in terms of the exceptional divisors pattern in their resolution

Example:

We consider singular threefolds where only 1 \mathbb{P}^1 can be blown up (simple flops)

ADE singularities

 Deforming ADE singularities with terms depending on a single parameter w gives a threefold.

Example:

$$\underbrace{x^2 + y^2 = z^2}_{A_1 ext{singularity}} - \underbrace{w}_{ ext{def}}$$
 family is NOT SINGULAR

Conifold

 Weyl theory dictates how we can choose deformation parameters in order to achieve a singularity and a specific resolution pattern:

$$\underbrace{x^2 + y^2 = z^2}_{A_1 \text{singularity}} - \underbrace{w^2}_{\text{def}} \qquad \text{family is SINGULAR}$$

M-theory/IIA duality

Consider **M-theory** on a singular threefold arising from a one-parameter deformed ADE singularity

The EFT in 5d contains **hypermultiplets** descending from M2-branes wrapped on holomorphic curves (*Witten* [96])

These are the states that we want to count

M-theory/IIA duality

• Write the threefold in the form of a \mathbb{C}^* -fibration:

$$uv = \det T(z, w)$$

$$\mathbb{C}^*$$
-action: $(u, v, z, w) \to (\mu u, \mu^{-1}v, z, w)$

- The S^1 in the \mathbb{C}^* -action is the M-theory circle
- Example (conifold): $x^2 + y^2 = z^2 w^2 \implies uv = z^2 w^2$

• $\det T(z,w)=0$ is the locus where the \mathbb{C}^* -fiber degenerates

M-theory/IIA duality

• Write the threefold in the form of a \mathbb{C}^* -fibration:

$$uv = \det T(z, w)$$

$$\mathbb{C}^*$$
-action: $(u, v, z, w) \to (\mu u, \mu^{-1} v, z, w)$

- The S^1 in the \mathbb{C}^* -action is the M-theory circle
- Example (conifold): $x^2 + y^2 = z^2 w^2 \implies uv = z^2 w^2$

• det T(z,w)=0 is the locus where the \mathbb{C}^* -fiber degenerates

Tachyon condensation

• What is T(z, w)?

Tachyon condensation formalism (*Sen* [99])

- ullet $ilde{E}$ and E are vector bundles on $\overline{D8}$ and D8 respectively
- $\operatorname{coker}(T) = E/\operatorname{Im} T$ is a sheaf localized on the locus $\det T = 0$

Tachyon condensation

• Gauge symmetry of D8 and $\overline{D8}$ acts on the tachyon:

Objective: compute **open string states** in the D6 brane system left over after $D8-\overline{D8}$ partial annihilation

$$\tilde{E} \xrightarrow{T} E$$

$$\downarrow \delta \phi$$

$$\tilde{E} \xrightarrow{T} E$$

The maps $\delta \phi$ are the **open string states**

Tachyon condensation

• $\delta \phi$ must be modded out by gauge equivalences:

In the Lie algebra:

$$\delta\phi \sim \delta\phi + g_{D8} \cdot T + T \cdot g_{\overline{D8}}$$

Half-way recap

Strategy to compute the GV invariants:

- Consider CY threefolds defined as one-parameter families of ADE deformations
- Use M-theory/IIA duality to give a description of the corresponding D6 brane system
- Build the tachyon that describes the D6 brane system
- Compute the fluctuations of the tachyon that correspond to the open string modes
- Identify the open string modes with the GV invariants

Let's see this in concrete examples!

Non-example

Take $T = \mathbb{1}_{n \times n}$: stack of n D8 branes and n $\overline{D8}$ anti-branes

ullet \Longrightarrow $\operatorname{coker}(T)=0$ \Longrightarrow there is total annihilation, i.e. nothing to compute

Reid's pagodas are a natural generalization of the conifold:

 They can be written as deformations of A_{2k-1} singularities fibered over the complex plane w:

$$\underbrace{x^2 + y^2 = z^{2k}}_{A_{2k-1}} - \underbrace{w^2}_{\text{def}} \qquad \text{with } k \in \mathbb{Z}$$

admitting a single \mathbb{P}^1 in the resolution

Reid's pagodas are a natural generalization of the conifold:

 They can be written as deformations of A_{2k-1} singularities fibered over the complex plane w:

$$\underbrace{x^2 + y^2 = z^{2k}}_{A_{2k-1}} - \underbrace{w^2}_{\text{def}} \qquad \text{with } k \in \mathbb{Z}$$

admitting a single \mathbb{P}^1 in the resolution

• Changing variables they can be immediately rearranged as a \mathbb{C}^* -fibration:

$$uv = (z^k + w)(z^k - w)$$

• We must find the tachyon, i.e. a matrix T in the algebra of A_{2k-1} (or one of its subalgebras) such that $\det T = (z^k + w)(z^k - w)$

ullet Consider a stack of 2 D8 and 2 $\overline{D8}$

$$0 \longrightarrow \mathcal{O}^{\oplus 2} \xrightarrow{T} \mathcal{O}^{\oplus 2} \longrightarrow \operatorname{coker}(T) \to 0$$

The minimal tachyon that does the work is:

$$T = \begin{pmatrix} z^k + w & 0 \\ 0 & z^k - w \end{pmatrix} \qquad \det T = (z^k + w)(z^k - w)$$

• To find the open string modes we must consider fluctuations $\delta\phi$ of the tachyon and mod them by gauge equivalences:

$$\delta\phi \sim \delta\phi + g_{D8} \cdot T + T \cdot g_{\overline{D8}}$$

where
$$(g_{D8},g_{\overline{D8}})\in\mathfrak{sl}(2)\oplus\mathfrak{sl}(2)$$

ullet To find the open string modes we must consider fluctuations $\delta\phi$ of the tachyon and mod them by gauge equivalences:

$$\delta \phi \sim \delta \phi + g_{D8} \cdot T + T \cdot g_{\overline{D8}}$$

where $(g_{D8}, g_{\overline{D8}}) \in \mathfrak{sl}(2) \oplus \mathfrak{sl}(2)$

• There is a choice of $g_{D8}, g_{\overline{D8}}$ that preserves the tachyon:

$$g_{D8} = \begin{pmatrix} g & 0 \\ 0 & -g \end{pmatrix} \qquad g_{\overline{D8}} = -g_{D8}$$

This is a $u(1)_{\mathbb{C}} \subset \mathfrak{sl}(2) \oplus \mathfrak{sl}(2)$

• We are then left with:

$$\delta \phi \sim \delta \phi + g_{D8} \cdot T + T \cdot g_{\overline{D8}}$$

where:

$$g_{\overline{D8}} = \left(\begin{array}{cc} \frac{1}{2}g & a_+ \\ a_- & -\frac{1}{2}g \end{array}\right) \qquad g_{D8} = \left(\begin{array}{cc} \frac{1}{2}g & b_+ \\ b_- & -\frac{1}{2}g \end{array}\right)$$

• We are then left with:

$$\delta \phi \sim \delta \phi + g_{D8} \cdot T + T \cdot g_{\overline{D8}}$$

where:

$$g_{\overline{D8}} = \left(\begin{array}{cc} \frac{1}{2}g & a_+ \\ a_- & -\frac{1}{2}g \end{array} \right) \qquad g_{D8} = \left(\begin{array}{cc} \frac{1}{2}g & b_+ \\ b_- & -\frac{1}{2}g \end{array} \right)$$

We get:

$$\delta \phi \sim \underbrace{\left(\begin{array}{cc} \delta \phi_{0} & \delta \phi_{+} \\ \delta \phi_{-} & -\delta \phi_{0} \end{array}\right)}_{\delta \phi} + \underbrace{\left(\begin{array}{cc} g(z^{k} - w) & (a_{+} + b_{+}) z^{k} + (a_{+} - b_{+}) w \\ (a_{-} + b_{-}) z^{k} + (b_{-} - a_{-}) w & -g(z^{k} + w) \end{array}\right)}_{g_{DS} \cdot T + T \cdot g_{\overline{DS}}}$$

We want to understand if there is any localized fluctuation

$$\delta\phi \sim \underbrace{\left(\begin{array}{cc} \delta\phi_0 & \delta\phi_+ \\ \delta\phi_- & -\delta\phi_0 \end{array}\right)}_{\delta\phi} + \underbrace{\left(\begin{array}{cc} g(z^k-w) & (a_++b_+)\,z^k+(a_+-b_+)\,w \\ (a_-+b_-)\,z^k+(b_--a_-)\,w & -g(z^k+w) \end{array}\right)}_{g_{D8}\cdot T+T\cdot g_{\overline{D8}}}$$

- ullet $\delta\phi_0$ is localized on the ideal $\left(z^k\pm w
 ight)\Rightarrow$ not dynamical in 5d
- $\delta\phi_+$ is localized on the locus $\left(z^k,w\right)$ $\Rightarrow \delta\phi_+ \in \mathbb{C}[z,w]/(z^k,w) \cong \mathbb{C}^k \Rightarrow k$ modes
- same for $\delta\phi_-\Rightarrow k$ modes

- We find a total of 2k modes, corresponding to k
 hypermultiplets in 5d
- ullet On the other hand the GV invariants are: $n_eta^{g=0}=n_{[\mathbb{P}^1]}^0=k$ and all the others vanish

- We find a total of 2k modes, corresponding to k
 hypermultiplets in 5d
- ullet On the other hand the GV invariants are: $n_eta^{g=0}=n_{[\mathbb{P}^1]}^0=k$ and all the others vanish

AGREEMENT!

- We find a total of 2k modes, corresponding to k
 hypermultiplets in 5d
- ullet On the other hand the GV invariants are: $n_eta^{g=0}=n_{[\mathbb{P}^1]}^0=k$ and all the others vanish

AGREEMENT!

 \bullet All the hypers have the same charge with respect to the U(1) commuting with the tachyon:

$$U(1) \sim \left(\begin{array}{cc} g & 0\\ 0 & -g \end{array}\right)$$

Let's give a taste of a more complicated example: Laufer's flop

• It arises as a deformation of a D_{2k+3} singularity, with equation:

$$x^2 - zy^2 - w(z^{2k+1} - w^2) = 0$$

admitting a single \mathbb{P}^1 in the resolution

Let's give a taste of a more complicated example: Laufer's flop

• It arises as a deformation of a D_{2k+3} singularity, with equation:

$$x^2 - zy^2 - w(z^{2k+1} - w^2) = 0$$

admitting a single \mathbb{P}^1 in the resolution

• In order to realize it in type IIA we must introduce an $O6^-$ plane along with D6 branes, with orientifold action:

$$\xi \longrightarrow -\xi$$
 and $z = \xi^2$

• Then it can be written as a \mathbb{C}^* -fibration, with brane locus:

$$\det T = w\xi^2(w + \xi^{2k+1})(w - \xi^{2k+1})$$

The tachyon is a map in the exact sequence:

$$0 \longrightarrow \mathcal{O}^{\oplus 4} \xrightarrow{T} \mathcal{O}^{\oplus 4} \longrightarrow \operatorname{coker}(T) \to 0$$

and explicitly it reads:

$$T = \begin{pmatrix} 0 & \xi^{2k+1} + w & 0 & 0\\ \xi^{2k+1} - w & 0 & 0 & 0\\ 0 & 0 & \xi & 0\\ 0 & 0 & 0 & w\xi \end{pmatrix}$$

 Due to the orientifold projection the gauge equivalence for the fluctuations of the tachyon is modified (*Collinucci*, *Denef*, *Esole* [08]):

$$\delta\phi \sim \delta\phi + g \cdot T + T \cdot \sigma^* g^t$$

where σ^* is the pull-back of the involution

 Due to the orientifold projection the gauge equivalence for the fluctuations of the tachyon is modified (*Collinucci, Denef, Esole* [08]):

$$\delta\phi \sim \delta\phi + g \cdot T + T \cdot \sigma^* g^t$$

where σ^* is the pull-back of the involution

• There is a U(1) commuting with the tachyon:

Performing the explicit computations we find:

- 2k + 3 hypers of charge 1
- k hypers of charge 2

The GV invariants are (Toda [14]):

- $\bullet \ n^0_{\lceil \mathbb{P}^1 \rceil} = 2k+3$
- $\bullet \ n_{2[\mathbb{P}^1]}^0=k$

Analogous agreeing results for other D_n cases (*Brown, Wemyss* [17])

Non-resolvable singularities

There are ADE fibrations that **do not** admit any Kähler resolution, e.g.:

$$\underbrace{uv = z^3}_{A_2} + \underbrace{w^2}_{\text{def}}$$

What can we say about such cases?

Non-resolvable singularities

There are ADE fibrations that **do not** admit any Kähler resolution, e.g.:

$$\underbrace{uv = z^3}_{A_2} + \underbrace{w^2}_{\text{def}}$$

• What can we say about such cases?

Tachyon:
$$\begin{pmatrix} z & w & 0 \\ 0 & z & w \\ 1 & 0 & z \end{pmatrix} \Rightarrow \mathbf{1}$$
 uncharged hyper

...and so on for many other examples

The moral seems to be: if you can come up with a tachyon describing the D6 brane setup, you can compute open string states, and so genus 0 GV invariants!

Recap

We have seen that the **tachyon** is a multipurpose tool, that allows us to:

- compute open string states between D6 branes (and GV invariants)
- Find the preserved gauge group after tachyon condensation
- Investigate the structure of the Higgs branch of the 5d theory (detecting also discrete groups acting on the moduli space) allowing a check with existing results (*Closset*, *Schafer-Nameki*, Wang [20])
- Detect the **flavour group** of the 5d theories

Conclusions

- There is a physics-based way to compute genus 0 GV invariants for a wide class of non-toric CY
- It applies both in orientifold and non-orientifold D6 branes setups
- It furnishes info also about non-resolvable singularities

Conclusions

- There is a physics-based way to compute genus 0 GV invariants for a wide class of non-toric CY
- It applies both in orientifold and non-orientifold D6 branes setups
- It furnishes info also about non-resolvable singularities

Outlook

- multiple flops singularities
- switching on T-brane entries
- apply to other more involved single-flop and non-resolvable singularities (connecting with existing literature)