

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A}=6.02\cdot 10^{23}\,{\rm mol}^{-1}$ Constante de Faraday, $F=96\,500\,{\rm C\,mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$ Velocidade da luz no vácuo, $c=3\cdot 10^8\,{\rm m\,s^{-1}}$
- Constante dos gases, $R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- Constante de Rydberg, $\mathcal{R} = 1.1 \cdot 10^7 \, \text{m}^{-1}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

- $\sqrt{2} = 1.4$
- $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$
- $\ln 10 = 2.3$

Tabela Periódica

1	6	7	8	11	12	14	16	17	26	30
Н	С	N	0	Na	Mg	Si	S	Cl	Fe	Zn
1,01	12,01	14,01	16,00	22,99	24,31	28,09	32,06	35,45	55,84	65,38

Questão 1

O gráfico a seguir apresenta a taxa de liberação de calor para uma reação química. Ao final da reação é formado 1 mol de produto.

- a. **Determine** o calor liberado até 11 minutos de reação.
- b. **Determine** a quantidade de produto formada até 4 minutos de reação.

A técnica de calorimetria exploratória diferencial pode ser aplicada para determinar a entalpia de desnaturação uma proteína. Uma amostra contendo 1 g da proteína e uma amostra de alumínio são colocadas no equipamento. O alumínio recebe uma taxa constante de calor de forma que sua temperatura varia $1\,\mathrm{K}\,\mathrm{s}^{-1}$. A taxa de calor fornecida à proteína varia de forma que a temperatura da proteína e do alumínio permanecem iguais em todo o processo. O termograma a seguir apresenta a taxa de calor fornecida à proteína em função de sua temperatura.

- a. Classifique a desnaturação como endotérmica ou exotérmica.
- b. Compare a capacidade calorífica da proteína antes e após a desnaturação.
- c. **Estime** a variação de entalpia da desnaturação.

Questão 3

Uma massa de óxido de ferro(II), FeO, é aquecida até 1273 K e, em seguida, exposta a uma mistura gasosa de monóxido de carbono e hidrogênio. O óxido é reduzido ao metal sem qualquer fornecimento adicional de energia. O sistema perde 4,2 kJ de calor para a vizinhança por mol de óxido reduzido.

- a. Apresente as equações balanceadas para as reações químicas do processo.
- b. **Determine** a menor razão possível entre as pressões parciais de monóxido de carbono e hidrogênio para que a reação seja autossustentável.

${\rm Dados\ em\ 1273K}$	FeO(s)	$H_2O(g)$	CO(g)	$CO_2(g)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-265	-250	-112	-394

A ustulação da blenda de zinco é conduzida em 1350 K em um reator do tipo leito fluidizado. Sulfeto de zinco, ZnS, e quantidade estequiométrica de ar são adicionados em fluxo contínuo a 77 °C. Nessa temperatura, a reação libera 460 kJ de calor por mol de sulfeto reduzido, formando óxido de zinco e dióxido de enxofre.

- a. Verifique se a reação é autossustentável em $1350\,\mathrm{K}.$
- b. Determine maior a fração mássica possível da impureza sílica, SiO_2 , na blenda para que a reação seja autossustentável em $1350\,\mathrm{K}$.

${\rm Dados\ em\ 1350K}$	SiO(s)	$\operatorname{ZnS}\left(s\right)$	$O_2(g)$	$N_2(g)$
Capacidade calorífica isobárica, $C_P/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$	80	60	40	30

Questão 5

A temperatura adiabática de chama é a temperatura que resulta de uma combustão completa em pressão constante que ocorre sem qualquer transferência de calor para a vizinhança.

Considere a combustão do octano, C_8H_{18} , em $25\,^{\circ}C$.

- a. Determine a temperatura adiabática de chama da combustão com quantidade estequiométrica de oxigênio.
- b. Determine a temperatura adiabática de chama da combustão com quantidade estequiométrica de ar.
- c. **Determine** a temperatura adiabática de chama da combustão com 300% de excesso de ar.

Dados em 25°C	$C_8H_{18}(l)$	$O_2(g)$	$N_2(g)$	$H_2O(g)$	$CO_2(g)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-250			-242	-394
Capacidade calorífica isobárica, $C_P/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$		30	30	44	45

Questão 6

Uma mistura de metano e ar na proporção 1 : 15, em 25 °C e 1 atm, entra em combustão em um reservatório adiabático, consumindo completamente o metano. O processo ocorre sob pressão constante e os produtos formados permanecem em fase gasosa.

Considere que a capacidade calorífica é constante entre 1700 K e 2000 K.

- a. Determine a fração molar de vapor d'água no reservatório ao final da reação.
- b. **Determine** a temperatura final do sistema.

Dados em $25^{\circ}\mathrm{C}$	$\mathrm{CH}_4(l)$	$O_2(g)$	$N_2(g)$	$\mathrm{H_{2}O}\left(\mathrm{g}\right)$	$\mathrm{CO}_2(\mathrm{g})$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kcal}}{\mathrm{mol}}$	-18			-58	-94
Entalpia padrão, $(H_{1700\mathrm{K}}^{\circ}-H_{298\mathrm{K}}^{\circ})/\frac{\mathrm{kcal}}{\mathrm{mol}}$		11,5	10,9	13,7	17,6
Entalpia padrão, $(H_{2000\mathrm{K}}^{\circ}-H_{298\mathrm{K}}^{\circ})/\frac{\mathrm{kcal}}{\mathrm{mol}}$		14,1	13,4	17,3	21,9

Monóxido de carbono em $473\,\mathrm{K}$ é queimado com 90% de excesso de ar em $773\,\mathrm{K}$ e $1\,\mathrm{atm}$. Os produtos da combustão abandonam a câmara de reação a $1273\,\mathrm{K}$.

- a. Determine o calor liberado por mol de monóxido de carbono formado.
- b. Determine a maior temperatura possível para os produtos de combustão ao final da reação.

Dados em 25 °C	$O_2(g)$	$N_2(g)$	$CO_2(g)$	CO(g)
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$			-394	-112
Capacidade calorífica isobárica, $C_P/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$	30	30	40	30

Questão 8

Um carro comum possui quatro cilindros, que totalizam um volume de $1,6\,\mathrm{L}$ e um consumo de combustível de $9,5\,\mathrm{L}$ por $100\,\mathrm{km}$ quando viaja a $80\,\mathrm{km}\,\mathrm{h}^{-1}$. Cada cilindro sofre 20 ciclos de queima por segundo. O combustível é o octano, $\mathrm{C_8H_{18}}$, com densidade $0,75\,\mathrm{g}\,\mathrm{cm}^{-3}$. O combustível gaseificado e ar são introduzidos a $390\,\mathrm{K}$ no cilindro quando seu volume é máximo, até que a pressão atinja $1\,\mathrm{atm}$. A densidade do Na combustão, 10% do carbono é convertido em monóxido de carbono e o restante em dióxido de carbono. Ao final do ciclo, o cilindro se expande novamente até o volume máximo, sob pressão final de $2\,\mathrm{atm}$.

- a. Determine a vazão de entrada de ar no motor.
- b. Determine a composição dos produtos de combustão.
- c. Determine a temperatura dos produtos de combustão imediatamente após o final da reação.
- d. **Determine** a temperatura de saída dos gases de exaustão.

Dados em 25 °C	$\mathrm{C_8H_{18}(g)}$	$O_2(g)$	$N_2(g)$	$\mathrm{H_{2}O}\left(g\right)$	$CO_2(g)$	CO(g)
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-250			-242	-394	-112
Capacidade calorífica isobárica, $C_P/\frac{\mathrm{J}}{\mathrm{Kmol}}$		30	30	40	40	30

Questão 9

Uma amostra de 18 g de água líquida super-resfriada em $-20\,^{\circ}\mathrm{C}$ sob 1 atm é abruptamente convertida em gelo mantendo a temperatura constante.

- a. Determine a variação de entropia do sistema.
- b. Determine a variação de entropia da vizinhança.
- c. **Determine** a variação de entropia do universo.

Dados em 0 °C	$\mathrm{H}_{2}\mathrm{O}\left(l\right)$	$H_2O(s)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-286	-292
Capacidade calorífica isobárica, $C_P/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$	75	38

Uma amostra de 71 g de cloro, inicialmente a $300\,\mathrm{K}$ e $100\,\mathrm{atm}$ se expande contra uma pressão externa constante de 1 atm até o estado de equilíbrio. Como resultado da expansão, 10% da massa de gás é condensada.

A temperatura de ebulição do cloro líquido é $-35\,^{\circ}\mathrm{C}$ e sua densidade é $1,6\,\mathrm{g\,cm^{-3}}.$

- a. **Determine** a variação de energia interna do sistema.
- b. **Determine** a variação de entropia do sistema.

Dados em -35°C	$\mathrm{Cl}_2(l)$	$Cl_2(g)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-20	
Capacidade calorífica isovolumétrica, $C_V/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$		30