LAPORAN

THE MOVING-CLUSTER METHOD: M7

Ditujukan untuk memenuhi salah satu tugas mata kuliah AS3202 Fisika Galaksi

oleh:

Fathia Rahmi Izzati	10319034
Tasya Nadzmus Soraya	10319035
Anneke Dian Islamiati	10319037

PROGRAM STUDI ASTRONOMI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI BANDUNG

2022

BAB 1

PENDAHULUAN

A. Latar Belakang

M7 atau Messier 7, yang disebut juga NGC 6475 atau terkadang dikenal sebagai Gugus Ptolemy, adalah sebuah gugus terbuka yang terletak di rasi bintang Scorpius. Bintang-bintang di M7 semuanya terbentuk pada waktu yang hampir bersamaan di awan kosmik besar yang sama (Messier 7: Ptolemy's Cluster, 2015). Bintang-bintang dalam satu gugus terbuka yang sama diasumsikan memiliki sifat yang sama (usia, jarak, kinematika, dan komposisi kimia), yang membuatnya target ideal untuk membantu menyempurnakan model evolusi bintang (Galli dkk, 2017). Sehingga dalam astronomi, masalah penentuan jarak merupakan hal yang penting. Misalnya, jarak diperlukan untuk menentukan dimensi benda langit, sifat fisis bintang, dan gerakan sejatinya (kecepatan spasial). Dalam konteks ini, menentukan jarak ke gugus terbuka juga sangat penting ketika mengkalibrasi skala jarak astronomi. (Galli dkk, 2017)

Salah satu metode yang digunakan untuk menghitung jarak gugus bintang adalah metode *moving cluster* atau terkadang disebut paralaks gerak gugus. Metode ini menggunakan *proper motion* dan kecepatan radial yang dapat diamati untuk menghitung jarak ke masing-masing anggota gugus (Galli dkk., 2012). Metode *moving cluster* disebut juga metode *convergent-point*. Prinsip dasar metode ini adalah asumsi paralelisme di dalam gerak ruang anggota gugus. Dari asumsi dasar ini, dengan deduksi geometris sederhana, terdapat hubungan yang diturunkan antara jarak gugus, yaitu jarak ke pusat gugus atau jarak sebenarnya dari masing-masing bintang, dan *proper motion* yang diamati dan kecepatan radial dari anggota gugus. Metode ini biasanya, meskipun tidak selalu, menempatkan titik konvergen yang sebenarnya di langit. Kemudian jarak sudut di langit, X, dari bintang gugus ke titik konvergen sama dengan sudut benar (Hanson, 1975).

Selain metode *moving cluster*, terdapat beberapa metode lainnya untuk menentukan jarak gugus. Jarak gugus Messier 7 yang diperoleh dari fotometri UBV, Koelbloed (1959), adalah sekitar 240 parsec. Kemudian, Robichon dkk. (1999) mendapatkan jarak gugus M7 yaitu 280 ± 26 pc. Villanova (2009) dengan menggunakan metode *isochrone fitting* mendapatkan jarak gugus M7 yaitu 300 ± 10 pc. Dari beberapa pengukuran yang pernah dilakukan, jarak gugus yang didapat hasilnya berbeda-beda.

Oleh karena itu, kami meninjau kembali M7 dengan metode *moving cluster* dengan data terbaru yaitu dari GAIA DR2 untuk memberikan penentuan jarak, paralaks serta galat yang lebih akurat.

B. Tujuan

Berikut tujuan praktikum ini.

- 1. Menentukan jarak gugus M7
- 2. Menentukan paralaks gugus M7
- 3. Menentukan galat metode moving-cluster dari hasil perhitungan

BAB 2

METODE

A. Langkah Pengambilan Data

Berikut langkah pengambilan data dari software Topcat

1. Pengambilan data gugus M7 dari gaia

Membuka bagian VO|Cone Search Keywords: "gaia dr2" Find Services. Kemudian akan muncul beberapa hasil yang terkait. Pilih ARI-Gaia yang merupakan pilihan terbaik dari semua hasil dengan klik sekali sehingga akan muncul hasil pada bagian Cone URL. Bagian setelahnya yaitu pada Object Name: "M7" Resolve untuk mendapatkan posisi objek tersebut di bagian Langit. Masukkan Radius: "0.3".

Gambar 1. Tampilan Cone Search di Topcat

Pilih **OK** lalu akan muncul tabel baru pada bagian control utama topcat yang berisi sekitar 50 000 baris.

Gambar 2. Tampilan Topcat setelah dataset didapat.

Posisi gugus di langit didapat dengan Graphics|Sky Plot.

Gambar 3. Tampilan Sky plot dari data

2. Mengidentifikasi comoving dari gugus

Graphics|Plane Plot dengan X: "pmra" dan Y: "pmdec".

Gambar 4. Tampilan plane plot dari data.

Untuk memilih gugus comoving sebagai Subset baru: Subsets|Draw Subset Region arahkan kursor disekitar gugus \rightarrow |E. Kemudian akan muncul tab New

Subset, isi New Subset Name: "comoving" Add New Subset. Selanjutnya akan keluar tab baru seperti dibawah.

Gambar 5 dan 6. Tampilan proses pembuatan subset comoving.

Untuk melihat daerah masing-masing subsets tinjau Subsets All / comoving.

Gambar 7 dan 8. Tampilan proses pembuatan *subset* comoving (lanjutan) Tinjau pada bagian Views|Row Subsets untuk melihat subsets baru.

Gambar 9. Tampilan row subset comoving.

3. Memeriksa anggota gugus.

Langkah pertama yaitu kembali pada **Graphics**|**Sky Plot.** Kemudian plot gerak diri bintang dengan menggunakan tab **Form,** pilih + **Forms** kemudian pilih **Add Sky Vector.** Masukkan **Delta Longitude: "pmra"** dan **Delta Latitude:** "**pmdec".** Atur panjang vector dengan menggunakan **Unit: "scaled"** kemudian mencoba mengaturnya dengan **Scale.**

Gambar 10. Tampilan sky plot

4. Penentuan Parallax

Untuk mendapatkan parallax, terlebih dahulu plot histogram menggunakan **Graphics**|**Histogram Plot** dengan **X: "parallax".** Ubah subsetsnya hanya untuk comoving dengan **Subsets** kemudian pilih hanya **comoving.** Untuk mendapatkan fit Gaussian: **Form** + **Form Gaussian.** Kemudian diberikan nilai rata-rata parallax dan standar deviasinya. Nilai rata-rata parallax juga bisa dapat tanpa melalui plot, yaitu dibagian **Views**|**Column Statistics.**

Gambar 11 dan 12. Grafik Histogram plot dan Row Statistic dari data comoving.

5. Menyimpan File Data Comoving

Langkah terakhir sebelum mengolah data adalah dengan menyimpan data comoving dalam file ekstensi yang diinginkan. Penyimpanan data dapat dilakukan pada menu awal dan memilih **Row Subset: comoving**

Gambar 13. Tampilan hasil data comoving.

B. Pengolahan Data

Berikut adalah data gugus M7 yang telah diambil menggunakan bantuan Topcat dari katalog Gaia DR2.

Tabel 1. Data RA, deklinasi, paralaks, proper motion dalam RA dan deklinasi

designation	ra	dec	parallax	pmra	pmdec
Gaia DR2 404077553646803 1232	268.752468 9983244	- 34.7970983 9585341	2.04709692 8860395	1.17406093 27126392	0.46087225 79403396

Gaia DR2 404082720915503 6800	268.629753 62755725	- 34.6650721 7906579	3.58331075 85413666	3.70677516 7266647	- 5.05502239 90495615
Gaia DR2 404079463611775 1680	268.342228 3957941	- 35.0394143 93374855	3.55748155 9245846	2.72337621 84218753	- 4.73767154 1787377
Gaia DR2 404077192433068 3648	268.767612 0869886	- 34.9535425 7960389	3.42747393 3396428	3.77462559 6284312	5.08599591 6419059
Gaia DR2 404079371277838 2976	268.412739 7487952	35.0558957 3316859	3.55786666 5262474	2.26844016 5159515	- 5.85851248 5649857
Gaia DR2 404079398328272 2816	268.482951 38946145	35.0408027 4270905	3.69270714 99152713	1.58833616 46815648	5.08570842 9323876
Gaia DR2 404079859186208 3712	268.382893 71531886	- 34.9393368 57214954	4.31111437 4749607	5.08765056 8442342	5.03236333 1919232
Gaia DR2 404081937512934 5408	268.203284 80008124	- 34.6353090 0107743	3.59966280 02499875	3.60450730 61969113	5.75921169 3331162
Gaia DR2 404081934079222 1440	268.231806 5997212	- 34.6450832 759575	3.79568117 0890804	3.94273981 17149206	4.27846827 5311913
Gaia DR2 404156958569604 8640	268.174391 6512261	- 34.6488957 6253607	2.10882190 59160807	- 1.70485133 36707154	2.10972947 84682186

Tabel 2. Data error RA, deklinasi, paralaks, dan proper motion dalam RA

designation	ra_error	dec_error	parallax_erro r	pmra_error
Gaia DR2 40407755364680312 32	0.0541089720 8610319	0.0570476838 0532501	0.0803821686 8571184	0.1118733001 6943044
Gaia DR2 40408272091550368 00	0.0645304903 5554911	0.0593632878 73695915	0.0763098936 7166649	0.1271680175 3992035
Gaia DR2 40407946361177516 80	0.0588814439 2582589	0.0471491278 1745798	0.0608949005 09864236	0.0960700312 7996436
Gaia DR2 40407719243306836 48	0.0579192591 61595335	0.0608701871 161852	0.0697088317 6092038	0.1244308619 647536
Gaia DR2 40407937127783829 76	0.0586335753 7332671	0.0465517950 4722415	0.0633213749 5347251	0.0991635344 4432534

Gaia DR2 40407939832827228 16	0.0502252430 27513335	0.0431556491 9876001	0.0545245370 3710576	0.0989978947 026328
Gaia DR2 40407985918620837 12	0.0571701388 44021876	0.0462062803 1784976	0.0547522889 4748126	0.1100314517 5857873
Gaia DR2 40408193751293454 08	0.0506100545 07595516	0.0436918094 61127856	0.0497072987 4430577	0.0979516759 3889104
Gaia DR2 40408193407922214 40	0.0483493835 0405733	0.0437738592 4032809	0.0527841045 40787656	0.1146462837 9569496
Gaia DR2 40415695856960486 40	0.2662174557 074017	0.2246094036 401512	0.3021601767 105829	0.4810159921 672192

Tabel 3. Data kecepatan radial dan errornya serta data error proper motion dalam deklinasi

designation	pmdec_error	radial_velocity	radial_velocity_err or
Gaia DR2 4040775536468031232	0.0929259208029 9758	- 65.94634930627 493	1.398021344100441 2
Gaia DR2 4040827209155036800	0.0895445088799 7246	- 37.57333555973 847	17.54827227423938 4
Gaia DR2 4040794636117751680	0.0812599196044 1516	- 27.61593310920 1585	9.784866108066296
Gaia DR2 4040771924330683648	0.0969747468126 2916	- 21.18352189511 581	9.214506594376342
Gaia DR2 4040793712778382976	0.0841463199648 5941	- 18.47454267252 2237	3.050337763343618
Gaia DR2 4040793983282722816	0.0833524164244 2241	- 17.74798288415 3913	4.636419978989289
Gaia DR2 4040798591862083712	0.0887755511983 7309	- 13.10212307402 9636	2.894354836907798 5
Gaia DR2 4040819375129345408	0.0777600511289 2563	- 11.74884704667 418	2.675506086487484 7
Gaia DR2 4040819340792221440	0.0937430362403 7507	5.306499926180 726	4.733851534794115

Gaia DR2	0.4094764480278	2.028852263853	2.259815073408702
4041569585696048640	663	956	4

Dari tabel di atas didapat nilai rata-rata asensiorekta adalah 268.438°. Dan nilai rerata deklinasi adalah -34.842° . Untuk mencari jarak diperlukan untuk mengetahui titik konvergen. Maka dari itu, berikut tabel yang berisikan data proper motion asensiorekta dan deklinasi selama dua juta tahun yang akan datang serta titik asensiorekta dan deklinasi yang akan datang.

Tabel 4. Data proper motion dalam RA dan deklinasi dan posisi gugus dalam RA dan deklinasi setelah 2 juta tahun mendatang

designation	pmra_next	pmdec_next	final_ra	final_dec
Gaia DR2 404077553646803123 2	1.9567682211 877324	0.7681204299 00566	270.70923721 951215	- 34.028977965 95285
Gaia DR2 404082720915503680 0	6.1779586121 110786	8.4250373317 4927	274.80771223 96683	- 43.090109510 815054
Gaia DR2 404079463611775168 0	4.5389603640 36459	- 7.8961192363 12296	272.88118875 98306	- 42.935533629 68715
Gaia DR2 404077192433068364 8	6.2910426604 73853	- 8.4766598606 98431	275.05865474 746247	- 43.430202440 302324
Gaia DR2 404079371277838297 6	3.7807336085 991916	9.7641874760 83096	272.19347335 73944	- 44.820083209 251685
Gaia DR2 404079398328272281 6	2.6472269411 359415	- 8.4761807155 39794	271.13017833 05974	- 43.516983458 248845
Gaia DR2 404079859186208371 2	8.4794176140 70568	8.3872722198 65386	276.86231132 93894	- 43.326609077 08034
Gaia DR2 404081937512934540 8	6.0075121769 94853	9.5986861555 51936	274.21079697 70761	- 44.233995156 62937
Gaia DR2 404081934079222144 0	6.5712330195 24868	7.1307804588 53188	274.80303961 92461	- 27.514302817 10431
Gaia DR2 404156958569604864 0	- 2.8414188894 511923	3.5162157974 470305	265.33297276 17749	31.132679965 08904

Setelah didapatkan data final_ra yang merupakan hasil penjumlahan proper motion asensiorekta dalam kurun waktu 2 juta tahun yang akan datang serta proper motion asensiorekta sebelumnya, sedangkan final_dec adalah hasil penjumlahan dari proper motion deklinasi dalam

kurun waktu 2 juta tahun yang akan datang serta proper motion deklinasi sebelumnya, didapatkan plot sebagai berikut.

Gambar 14. Trayektori dari 10 bintang M7

Dari plot didapatkan bahwa data berkumpul pada titik asensiorekta yaitu $268.4^{\circ} \pm 1.25^{\circ}$ dan titik deklinasinya yaitu $-33^{\circ} \pm 1.6^{\circ}$, kedua titik ini disebut dengan titik konvergen. Kemudian dalam perhitungan selanjutnya nilai titik ini diubah dalam bentuk radians. Maka $\alpha_c = 4.684$, $\delta_c = -0.576$, $\Delta\alpha_c = 0.0218$, dan $\Delta\delta_c = 0.02792$. Dari titik konvergen yang didapatkan, akan digunakan untuk mencari nilai θ . Nilai θ akan digunakan untuk menghitung jarak gugus Messier 7. Nilai θ dan jarak(d) gugus dapat dicari dengan menggunakan rumus berikut.

$$\cos \theta = \sin \delta * \sin \delta_C + \cos \delta * \cos \delta_C * \cos(\alpha - \alpha_C)$$
$$d = \frac{v_r \tan \theta}{4.74047\mu}$$

Keterangan:

 δ : deklinasi (radians)

 δ_C :deklinasi titik konvergen (radians)

 α : asensiorekta (radians)

 α_C : asensiorekta titik konvergen (radians)

 v_r : kecepatan radial (km/s)

 μ : proper motion ("/tahun)

Berikut data nilai θ , $\tan \theta$, serta jarak dari masing-masing bintang yang telah didapatkan.

Tabel 5. Data hasil perhitungan jarak dengan metode *moving-cluster* dan paralaks

designation	θ	tanθ	d	parallax_mc	dpa
Gaia DR2 404077553646803 1232	0.15615555 266533312	0.15743731 753139154	2049.5555 602395016	0.000487910 6570222203	488.49665 392087377
Gaia DR2 404082720915503 6800	0.15408252 967478672	0.15531360 161542995	208.53388 460586268	0.004795383 742503237	279.07152 55762699
Gaia DR2 404079463611775 1680	0.15107740 934378175	0.15223741 733169888	169.37372 861409494	0.005904103 3587825375	281.09773 258023324
Gaia DR2 404077192433068 3648	0.15680037 898450433	0.15809819 40274935	118.67664 241956571	0.008426257 935951972	291.76005 98669055
Gaia DR2 404079371277838 2976	0.15212086 62109549	0.15330522 760911167	97.215109 62052398	0.010286466 824997344	281.06730 636186643
Gaia DR2 404079398328272 2816	0.15305826 51998841	0.15426479 598991494	110.02457 49933248	0.009088878 553365647	270.80403 600998926
Gaia DR2 404079859186208 3712	0.15133450 944961346	0.15250048 635141922	64.488324 21309322	0.015506682 988003083	231.95858 728709342
Gaia DR2 404081937512934 5408	0.14794735 325029126	0.14903633 32343396	57.019959 32738495	0.017537718 57777756	277.80379 87142997
Gaia DR2 404081934079222 1440	0.14837726 792792214	0.14947582 52897232	31.164584 838782417	0.032087704 84744469	263.45732 29356119
Gaia DR2 404156958569604 8640	0.14757137 055902755	0.14865202 079684162	25.113157 57761079	0.039819763 68003732	474.19841 24854754

Berdasarkan tabel 5, diperoleh nilai jarak rata-rata berdasar metode *moving cluster* adalah 293.116 pc dengan nilai paralaks rata-rata adalah 0.0144 detik busur. Sedangkan nilai jarak rata-rata dari paralaks adalah 313.972 pc. Selanjutnya, akan dihitung galat dari praktikum ini. Galat yang dimaksud ialah dalam pengukuran kecepatan radial, θ , serta *proper motion*. Untuk rumus yang digunakan adalah sebagai berikut.

$$\Delta d_v = \frac{1}{4.74047\mu} \Delta v_r$$

$$\Delta d_\theta = \frac{1}{4.74047\mu} (1 + \tan^2 \theta) \Delta \theta$$

$$\Delta d_\mu = \frac{1}{4.74047\mu^2} \Delta \mu$$

$$\Delta \theta = \sqrt{(\Delta \alpha_c)^2 + (\Delta \delta_c)^2}$$

$$\Delta d = \Delta d_v + \Delta d_\theta + \Delta d_\mu$$

$$\Delta \mu^2 = (\Delta \mu_\alpha \cos^2 \delta) \left(\frac{\mu_\delta \cos \delta}{\mu}\right)^2 + (\Delta \mu_\delta)^2 \left(\frac{\mu_\delta}{\mu}\right)^2$$

$$\Delta \mu_\alpha \cos \delta = \sqrt{(\cos \delta \Delta \mu_\alpha)^2 + (-\mu_\alpha \sin \delta)^2 (\Delta \delta^2)}$$

Keterangan:

 Δd_v : galat komponen kecepatan radial dari perhitungan jarak

 Δv_r : galat terhadap kecepatan radial

 Δd_{θ} : galat θ dari perhitungan jarak

 Δd_{μ} : galat μ dari perhitungan jarak

 $\Delta\theta$: galat terhadap θ

 $\Delta \mu^2$: galat terhadap proper motion

 $\Delta\mu_{\alpha}$: galat proper motion dalam arah asensiorekta

Tabel 6. Data nilai galat pengkuran.

designation	Δdv	$\Delta d\theta$	Δμ	Δdμ	Δd
Gaia DR2 404077553646803 1232	275.97837 791028934	7.1688972 346441515	4.835542623 255672e-05	8.93283124 7505694	292.08010 63924392
Gaia DR2 404082720915503 6800	627.07827 59875843	1.2968714 227015021	9.262487801 929311e-05	0.56069132 21289351	628.93583 87324148
Gaia DR2 404079463611775 1680	394.20289 17775935	1.4607404 679799239	8.853657422 15788e-05	0.68119892 37694981	396.34483 11693429
Gaia DR2 404077192433068 3648	326.52185 94717977	1.2871217 791890965	9.985564203 302527e-05	0.59439392 57161768	328.40337 5176703
Gaia DR2 404079371277838 2976	104.70105 091527017	1.2449437 062500424	9.657941420 09838e-05	0.53940154 78255889	106.48539 61693458
Gaia DR2 404079398328272 2816	186.31878 258930956	1.4579602 641672333	9.723878513 693796e-05	0.74440394 37429893	188.52114 679721979
Gaia DR2 404079859186208 3712	93.415719 05841116	1.1703354 410025868	8.237303852 737636e-05	0.40676433 318699307	94.992818 83260073
Gaia DR2 404081937512934 5408	87.125531 30963727	1.1796090 562796786	8.350303485 817236e-05	0.41976155 0025229	88.724901 91594217
Gaia DR2 404081934079222 1440	185.99311 010360486	1.4234314 603597114	9.022259216 140187e-05	0.66023896 25397703	188.07678 052650434

404156958569604 8640	188.17112 3.0159912 0.000413896 13.6042190 204.791 505821765 24549249 7839702082 18096005 530086	
-------------------------	--	--

Berdasarkan tabel 6, diperoleh nilai rerata galat komponen kecepatan radial adalah 246.951, nilai rerata galat komponen θ adalah 2.071 dan nilai rerata galat komponen μ adalah 2.714. sehingga nilai rerata galat pengukuran jarak adalah 251.736.

BAB 3

ANALISIS DAN KESIMPULAN

A. Analisis Data

Tidak semua data dari pengambilan data comoving M7 yang digunakan. Untuk menentukan jarak, dipilih beberapa data bintang sebagai sampel. Kriteria untuk sampel ini adalah data dengan kecepatan radial tidak sama dengan 0 dan memiliki paralaks lebih dari 2 mili detik busur. Nilai ini dipilih karena jika dibandingkan dengan referensi nilai paralaks gugus ini adalah 3,5 mili detik busur sehingga diharap data akan lebih akurat.

Untuk menentukan titik tengah dari Messier 7 akan digunakan data dari ratarata asensiorekta dan deklinasi pada Tabel 1. Untuk rata-rata nilai asensiorekta didapatkan 268.43, sedangkan untuk rata-rata deklinasinya bernilai –34.84 Sehingga, titik tengah Messier 7 akan ditemukan pada asensiorekta 268.43 derajat dan deklinasi –34.84 derajat.

Data dari tabel 1, tabel 2, dan tabel 3 akan menghasilkan grafik pada gambar 14 yang digunakan untuk menentukan titik konvergen. Titik konvergen adalah titik yang digunakan untuk mengetahui posisi gugus sehingga akan didapatkan nilai dari jarak gugus tersebut. Titik konvergen dari grafik didapatkan untuk nilai asensiorektanya sebesar 268.4 derajat dan deklinasinya –33 derajat Sehingga, posisi gugus berada pada asensiorekta 268.4 derajat dan deklinasi –33 derajat.

Setelah penentuan titik konvergen, maka akan didapat nilai jarak. Pada tabel 5, didapatkan nilai jarak rata-rata sebesar 293.11 pc dengan menggunakan metode *moving cluster* dan nilai paralaks rata-ratanya adalah 0.0144 detik busur. Sedangkan nilai jarak dari pengukuran paralaks ke bintang anggota gugus mendapatkan nilai rata-rata yaitu 313.972 pc. Namun, menurut Villanova, dkk (2009), jarak gugus M7 adalah 300 ± 10 pc. Perbedaan ini dikarenakan galat yang didapatkan pada praktikum ini sebesar 251.736 pc.

Galat yang besar disebabkan oleh beberapa faktor salah satunya yaitu metode *moving cluster* sensitif terhadap error sistematis dalam *proper motion*, Metode ini tidak bekerja baik ketika ukuran sudut gugus tidak cukup besar sehingga *proper motion* dari masing-masing bintang gugus tidak beriorientasi ke arah yang sangat berbeda dan dengan demikian tidak mendefinisikan titik konvergen (atau divergen) secara akurat (Binney dkk., 1998). Diketahui dari referensi bahwa radius M7 adalah hanya 25 tahun cahaya yang jika dibandingkan dengan Hyades yaitu 100 tahun cahaya maka ukuran

sudutnya lebih kecil. Selanjutnya, agar metode ini bekerja baik seharusnya gugus harus cukup dekat sehingga proper motion cukup besar untuk diukur secara akurat, sudut A harus sedemikian rupa sehingga gerak ruang memberikan kontribusi yang signifikan untuk kecepatan radial dan tangensial, dan akhirnya, anggota gugus harus dapat diidentifikasi dengan andal sehingga bintang bidang latar depan dan latar belakang dapat dikecualikan (Binney dkk., 1998). Jika dibandingkan dengan Hyades kembali, jarak gugus M7 menurut referensi lebih jauh yaitu 300 pc sedangkan Hyades hanya 46 pc.

B. Kesimpulan

Dari analisis yang telah dilakukan didapatkan jarak gugus M7 yaitu 293.11 pc dengan paralaks sebesar 3.368 dan galat metode *moving-cluster* dari hasil perhitungan yaitu sebesar 251.736 pc.

DAFTAR PUSTAKA

- Binney, J., Michael, M., & Merrifield, M. (1998). *Galactic astronomy*. Princeton University Press.
- Galli, P. A. B., Teixeira, R., Ducourant, C., Bertout, C., & Benevides-Soares, P. 2012, A&A, 538, A23
- Galli, P. A. B., Moraux, E., Bouy, H., Bouvier, J., Olivares, J., & Teixeira, R. (2017). A revised moving cluster distance to the Pleiades open cluster. *Astronomy & Astrophysics*, 598, A48.
- Hanson, R. B. (1975). A study of the motion, membership, and distance of the Hyades cluster. *The Astronomical Journal*, *80*, 379-401.
- Jewsbury, C. P. (1968). Rotational Velocities in NGC 6475 (Messier 7).
- Koelbloed, D., 1959, B.A.N., 14, 265.
- Messier 7: Ptolemy's Cluster. (2015, Februari 11). Diakses 13 Februari 2022 dari Messier Objects: https://www.messier-objects.com/messier-7-ptolemys-cluster/
- Robichon, N., Arenou, F., Mermilliod, J.-C., & Turon, C. 1999, A&A, 345, 471
- Villanova, S., Piotto, G., & Gratton, R. G. 2009, A&A, 499, 755
- Villanova, S., Carraro, G., & Saviane, I. (2009). A spectroscopic study of the open cluster NGC 6475 (M 7)-Chemical abundances from stars in the range Teff= 4500–10 000 K. *Astronomy & Astrophysics*, 504(3), 845-852.