SEQUENCE LISTING

<110>	Bednarik et al.				
<120>	Human Hypoxanthine-(Guanine) Phosphoribosyl Transferase-2				
<130>	PF138P1C1				
<150> <151>	US 08/461,031 1995-06-05				
<150> <151>	PCT/US94/11914 1994-10-19				
<160>	11				
<170>	PatentIn version 3.1				
<210> <211> <212> <213> <223>	1 1386 DNA Homo sapiens				
<221> <222> <223>	CDS (626)(1264)				
<400> gatttt	1 ttgt gatatettet teggggggg ggggaaeeta ttgtataaae gecaaeeaae	60			
cggccct	tttt ttgggtacct ggccatttta cttggcccat tttggtaaaa tgttcctttc	120			
cctgcgt	ttaa teeeetgat teettgtggg ataaceegta tteeeeeet tagagtgaat	180			
ttgaaaa	accc tttcgcccgg aaggggaccg accgagccca gcgattcatg gagcgaggaa	240			
agcggg	aaga gegeecaata eecaageege etetegeegg egegttgtge gatteattaa	300			
tacagc	tgcc acgacaggtt tcccgactgg aaagcggtca gtgagcgcaa cacaattaat	360			
gtgagti	tage teacteatta ggeaceceag getttacaet ttatgettee ggetegtatg	420			
ttgtgtg	ggaa ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac	480			
gtccaa	gctc gaaattaacc ctcactaaag ggaacaaaaa ctggagctcc accgcggtgg	540			
cggccg	ctct agaactagtg gatccccgg gctccaggaa ttcgccacga ccgggaggac	600			
cgaggag	ggcg ccagactacg ggcga atg gcg acc cgc agc cct ggc gtc gtg Met Ala Thr Arg Ser Pro Gly Val Val 1 5	652			
	g gat gat tgg cca ggg tat gac ttg aat tta ttc acg tac cca t Asp Asp Trp Pro Gly Tyr Asp Leu Asn Leu Phe Thr Tyr Pro 15 20 25	700			

cag cac tat tat gga gac ttg gag tat gtc ctc atc cct cat ggt atc Gln His Tyr Tyr Gly Asp Leu Glu Tyr Val Leu Ile Pro His Gly Ile 30 35 40	748
att gtg gac aga att gag cgg ctg gcc aag gat att atg aaa gac ata Ile Val Asp Arg Ile Glu Arg Leu Ala Lys Asp Ile Met Lys Asp Ile 45 50 55	796
gga tat agt gac atc atg gtc ctg tgt gtg ctt aaa ggg ggg tac aaa Gly Tyr Ser Asp Ile Met Val Leu Cys Val Leu Lys Gly Gly Tyr Lys 60 65 70	844
ttc tgt gct gat ctc gta gaa cac ctt aag aac atc agc cga aat tca Phe Cys Ala Asp Leu Val Glu His Leu Lys Asn Ile Ser Arg Asn Ser 75 80 85	892
gat cgg ttt gtc tca atg aag gtt gat ttc atc aga cta aaa agt tac Asp Arg Phe Val Ser Met Lys Val Asp Phe Ile Arg Leu Lys Ser Tyr 90 95 100 105	940
agg aat gac cag tcc atg ggt gag atg cag ata atc gga ggc ggt gat Arg Asn Asp Gln Ser Met Gly Glu Met Gln Ile Ile Gly Gly Gly Asp 110 115 120	988
ctt tca acg ctg gct gga aag aat ttt ctc att gtt gag gat gtt gtc Leu Ser Thr Leu Ala Gly Lys Asn Phe Leu Ile Val Glu Asp Val Val 125 130 135	1036
gga act ggg agg acc atg aaa gca cta ctc agc aat ata gag aaa tac Gly Thr Gly Arg Thr Met Lys Ala Leu Leu Ser Asn Ile Glu Lys Tyr 140 145 150	1084
aag ccc aac atg att aag gta gcc agt ttg ttg gtg aag aga aca tcc Lys Pro Asn Met Ile Lys Val Ala Ser Leu Leu Val Lys Arg Thr Ser 155 160 165	1132
aga agt gac ggc ttt aga cct gac tat gct gga ttt gag att cca cac Arg Ser Asp Gly Phe Arg Pro Asp Tyr Ala Gly Phe Glu Ile Pro His 170 175 180 185	1180
tta ttt gtg gtg gga tat gcc tta gat tac aat gaa tac ttc aga gat Leu Phe Val Val Gly Tyr Ala Leu Asp Tyr Asn Glu Tyr Phe Arg Asp 190 195 200	1228
ctg aat cac ata tgc gtc atc aat gag cac ggg taa aggaaaatat Leu Asn His Ile Cys Val Ile Asn Glu His Gly 205 210	1274
cgagtettaa agacatgaat teteaceaet aaaggeeeea gataggatea tttttaegee	1334
tgtcttgggg agccagttgc aagttgggcc cccccggatc ttcatcagga gg	1386

<210> 2 <211> 212 <212> PRT <213> Homo sapier	ns								
<400> 2									
Met Ala Thr Arg Se	er Pro Gly Val Va	l Ile Met Asp As	sp Trp Pro Gly						
1 5		10	15						
Tyr Asp Leu Asn Le	eu Phe Thr Tyr Pro	o Gln His Tyr Ty	or Gly Asp Leu						
20	25		30						
Glu Tyr Val Leu II	le Pro His Gly Ile	e Ile Val Asp Ar							
35	40	45							
Leu Ala Lys Asp II	le Met Lys Asp Ile	e Gly Tyr Ser As	sp Ile Met Val						
50	55	60							
Leu Cys Val Leu Ly	ys Gly Gly Tyr Ly:	s Phe Cys Ala As	sp Leu Val Glu						
65	70	75	80						
His Leu Lys Asn II	-	r Asp Arg Phe Va 90	al Ser Met Lys 95						
Val Asp Phe Ile An	rg Leu Lys Ser Tyr 10!	-	n Ser Met Gly 110						
Glu Met Gln Ile Il	le Gly Gly Gly Asp 120	D Leu Ser Thr Le 12							
Asn Phe Leu Ile Va	al Glu Asp Val Va 135	l Gly Thr Gly Ar 140	g Thr Met Lys						
Ala Leu Leu Ser As	sn Ile Glu Lys Ty	r Lys Pro Asn Me	et Ile Lys Val						
145	150	155	160						
Ala Ser Leu Leu Va	al Lys Arg Thr Se:	r Arg Ser Asp Gl	y Phe Arg Pro						
	65	170	175						
Asp Tyr Ala Gly Ph	he Glu Ile Pro His		al Gly Tyr Ala						

185 190

Leu Asp Tyr Asn Glu Tyr Phe Arg Asp Leu Asn His Ile Cys Val Ile
195 200 205

<210>	3	
	37	
<212>		
<213>	Artificial Sequence	
<220>		
	Primer for PCR	
<400>	3	
	atgg cgacccgcag ccctggcgtc gtgatta	3 .
3		
<210>	4	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<2223>	Primer for PCR	
<400>	4	_
catcaat	gag cacgggtaaa g	2 *
<210>		
<211>	5	
<212>		
	Artificial Sequence	
	elliotal ocquence	
<220>		
<223>	Primer for PCR	
< 400>	5	_
gatcgga	agac tacgggcgaa tggc	24
<210>	6	
<211>	27	
<212>		
	Artificial Sequence	
<220>	D. Joseph Francisco	
<223>	Primer for PCR	
<400>	6	0.0
caygtgo	catc aatgagcacg ggtaaag	21
~210×	7	
<210>	7	
<211> <212>	218 PRT	
<213>	Homo sapiens	
/	neme express	

Asn Glu His Gly 210

<400> 7

Met Ala Thr Arg Ser Pro Gly Val Val Ile Ser Asp Asp Glu Pro Gly 5

Tyr Asp Leu Asp Leu Phe Cys Ile Pro Asn His Tyr Ala Glu Asp Leu

Glu Arg Val Phe Ile Pro His Gly Leu Ile Met Asp Arg Thr Glu Arg 40

Leu Ala Arg Asp Val Met Lys Glu Met Gly Gly His His Ile Val Ala 55

Leu Cys Val Leu Lys Gly Gly Tyr Lys Phe Phe Ala Asp Leu Leu Asp 70

Tyr Ile Lys Ala Leu Asn Arg Asn Ser Asp Arg Ser Ile Pro Met Thr 90 95

Val Asp Phe Ile Arg Leu Lys Ser Tyr Cys Asn Asp Gln Ser Thr Gly 100 105 110

Asp Ile Lys Val Ile Gly Gly Asp Asp Leu Ser Thr Leu Thr Gly Lys 115 120 125

Asn Val Leu Ile Val Glu Asp Ile Ile Asp Thr Gly Lys Thr Met Gln 130 135 140

Thr Leu Leu Ser Leu Val Arg Gln Tyr Asn Pro Lys Met Val Lys Val 145 150 155 160

Ala Ser Leu Leu Val Lys Arg Thr Pro Arg Ser Val Gly Tyr Lys Pro

Asp Phe Val Gly Phe Glu Ile Pro Asp Lys Phe Val Val Gly Tyr Ala 180 185 190

Leu Asp Tyr Asn Glu Tyr Phe Arg Asp Leu Asn His Val Cys Val Ile 195 200 205

Ser Glu Thr Gly Lys Ala Lys Tyr Lys Ala 210 215

<210> 8

<211> 218 <212> PRT

<213> Cricetulus longicaudatus

<400> 8

Met Ala Thr Arg Ser Pro Ser Val Val Ile Ser Asp Asp Glu Pro Gly
1 10 15

Tyr Asp Leu Asp Leu Phe Cys Ile Pro Asn His Tyr Val Glu Asp Leu 20 25 30

Glu Lys Val Phe Ile Pro His Gly Val Ile Met Asp Arg Thr Glu Arg 35 40 45

Leu Ala Arg Asp Val Met Lys Glu Met Gly Gly His His Ile Val Ala 50 60

Leu Cys Val Leu Lys Gly Gly Tyr Lys Phe Phe Ala Asp Leu Leu Asp 65 70 75 80

Tyr Ile Lys Ala Leu Asn Arg Asn Ser Asp Arg Ser Ile Pro Met Thr \$85\$ 90 95

Val Asp Phe Ile Arg Leu Lys Ser Tyr Cys Asn Asp Gln Ser Thr Gly \$100\$ \$100\$ \$100

Asp Ile Lys Val Ile Gly Gly Asp Asp Leu Ser Thr Leu Thr Gly Lys 115 120 125

Asn Val Leu Ile Val Glu Asp Ile Ile Asp Thr Gly Lys Thr Met Gln 130 135 140

Thr Leu Leu Ser Leu Val Lys Arg Tyr Asn Pro Lys Met Val Lys Val 145 150 155 160

Ala Ser Leu Leu Val Lys Arg Thr Ser Arg Ser Val Gly Tyr Arg Pro \$165\$ \$170\$ \$175\$

Asp Phe Val Gly Phe Glu Ile Pro Asp Lys Phe Val Val Gly Tyr Ala 180 185 190

Leu Asp Tyr Asn Glu Tyr Phe Arg Asp Leu Asn His Ile Cys Val Ile
195 200 205

Ser Glu Thr Gly Lys Ala Lys Tyr Lys Ala 210 215

<210> 9

<211> 231

<212> PRT

<213> Plasmodium falciparum

<400>

Met Pro Ile Pro Asn Asn Pro Gly Ala Gly Glu Asn Ala Phe Asp Pro 1 $$ 5 $$ 10 $$ 15

Val Phe Val Lys Asp Asp Asp Gly Tyr Asp Leu Asp Ser Phe Met Ile 20 25 30

Pro Ala His Tyr Lys Lys Tyr Leu Thr Lys Val Leu Val Pro Asn Gly 35 40 45

Val Ile Lys Asn Arg Ile Glu Lys Leu Ala Tyr Asp Ile Lys Lys Val 50 60

Tyr Asn Asn Glu Glu Phe His Ile Leu Cys Leu Leu Lys Gly Ser Arg 65 70 75 80

Gly Phe Phe Thr Ala Leu Leu Lys His Leu Ser Arg Ile His Asn Tyr 85 90 95

Ser Ala Val Glu Met Ser Lys Pro Leu Phe Gly Glu His Tyr Val Arg 100 105 110

Vāl Lys Ser Tyr Cys Asn Asp Gln Ser Thr Gly Thr Leu Glu Ile Val \$115\$ \$120\$ \$125\$

Ser Glu Asp Leu Ser Cys Leu Lys Gly Lys His Val Leu Ile Val Glu 1.30 135 140

Asp lle lle Asp Thr Gly Lys Thr Leu Val Lys Phe Cys Glu Tyr Leu 145 150 155 160

Lys Lys Phe Glu Ile Lys Thr Val Ala Ile Ala Cys Leu Phe Ile Lys
165 170 175

Arg Thr Pro Leu Trp Asn Gly Phe Lys Ala Asp Phe Val Gly Phe Ser 180 185 190

Ile Pro Asp His Phe Val Val Gly Tyr Ser Leu Asp Tyr Asn Glu Ile 195 200 205

Phe Arg Asp Leu Asp His Cys Cys Leu Val Asn Asp Glu Gly Lys Lys 210 215 220

Lys Tyr Lys Ala Thr Ser Leu 225 230

<210> 10

<211> 210

<212> PRT

<213> Trypanosoma brucei

<400> 10

Met Glu Pro Ala Cys Lys Tyr Asp Phe Ala Thr Ser Val Leu Phe Thr 1 5 10 15

Glu Ala Glu Leu His Thr Arg Met Arg Gly Val Ala Gln Arg Ile Ala 20 25 30

Asp Asp Tyr Ser Asn Cys Asn Leu Lys Pro Leu Glu Asn Pro Leu Val\$35\$ 40 45

Ile Val Ser Val Leu Lys Gly Ser Phe Val Phe Thr Ala Asp Met Val 50 55 60

Arg Ile Leu Gly Asp Phe Gly Val Pro Thr Arg Val Glu Phe Leu Arg 65 70 75 80

Ala Ser Ser Tyr Gly His Asp Thr Lys Ser Cys Gly Arg Val Asp Val 85 90 95

Lys Ala Asp Gly Leu Cys Asp Ile Arg Gly Lys His Val Leu Val Leu 100 \$105

Glu Asp Ile Leu Asp Thr Ala Leu Thr Leu Arg Glu Val Val Asp Ser 115 120 125

Leu Lys Lys Ser Glu Pro Ala Ser Ile Lys Thr Leu Val Ala Ile Asp 130 135 140

Asp Val Pro Asn Val Phe Val Val Gly Tyr Gly Leu Asp Tyr Asp Gln \$165\$ \$170\$ \$175\$

Ser Tyr Arg Glu Val Arg Asp Val Val Ile Leu Lys Pro Ser Val Tyr 180 185 190

Glu Thr Trp Gly Lys Glu Leu Glu Arg Arg Lys Ala Ala Gly Glu Ala 195 200 205

Lys Arg 210

<210> 11

<211> 5

<212> PRT

<213> Homo sapiens

<400> 11

Arg Lys Ile Ser Ser 1 5