Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_şt-nat* Barem de evaluare și de notare

Varianta 3

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\int \sqrt{20} - 2\sqrt{I}$	3р
	$2\sqrt{7} + 2 - 2\sqrt{7} = 2$	2p
2.	f(1) + f(2) + + f(10) = 2(1 + 2 + + 10) - 10 =	3р
	=100	2 p
3.	$4^{x+1} = 4^2$	3p
	$x+1=2 \Rightarrow x=1$	2p
4.	Multiplii lui 7 din mulţimea A sunt 7 şi 14⇒2 cazuri favorabile	2p
	Numărul de elemente ale mulțimii A este $15 \Rightarrow 15$ cazuri posibile	1 p
	$n = \frac{\text{nr. cazuri favorabile}}{2}$	
	$p = {\text{nr. cazuri posibile}} = {15}$	2p
5.	$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = 3\overrightarrow{i}$	3p
	AC=3	2 p
6.	$\sin x = \cos x$	3p
	$x = \frac{\pi}{2}$	
	4	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(2)) = \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix} =$	2p
	$\begin{vmatrix} 2 & 2 & 1 \end{vmatrix}$ = 5	3 p
b)	$A(1) \cdot A(2) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} =$	2p
	$= \begin{pmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{pmatrix} = 5A(1)$	3 p
c)	$\det(A(x)) = \begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{vmatrix} = 2x^3 - 3x^2 + 1$	2p
	$\det(A(x)) = 0 \Leftrightarrow (2x+1)(x-1)^2 = 0 \Leftrightarrow x = -\frac{1}{2} \text{ sau } x = 1$	3 p
2.a)	$f = X^3 - 2X^2 - 2X + 3$	2p 3p
-	f(1) = 1 - 2 - 2 + 3 = 0	Эþ
b)	J (-)	3p
	m=6	2p

•	c) $x_1 + x_2 + x_3 = 2$, $x_1 x_2 + x_2 x_3 + x_3 x_1 = -2$, $x_1 x_2 x_3 = -4$	3p
	$\left(x_1 + x_2 + x_3\right) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = 2 \cdot \frac{-2}{-4} = 1$	2p

SUBIECTUL al III-lea (30 de puncte)

	`	11000)
1.a)	$f'(x) = x' \cdot \ln x + x \cdot (\ln x)' =$	2p
	$= \ln x + x \cdot \frac{1}{x} = \ln x + 1$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x^2} = \lim_{x \to +\infty} \frac{\ln x}{x} =$	2p
	$= \lim_{x \to +\infty} \frac{1}{x} = 0$	3 p
c)	$f''(x) = \frac{1}{x}, x \in (0, +\infty)$	2p
	$f''(x) > 0$ pentru orice $x \in (0, +\infty) \Rightarrow f$ convexă pe intervalul $(0, +\infty)$	3 p
2.a)	$\int_{0}^{1} xf(x)dx = \frac{1}{2} \int_{0}^{1} \frac{(x^{2}+1)'}{x^{2}+1} dx =$	3p
	$= \frac{1}{2}\ln(x^2 + 1) \Big _{0}^{1} = \frac{1}{2}\ln 2$	2p
b)	$\int_{0}^{1} x f'(x) dx = x f(x) \Big _{0}^{1} - \int_{0}^{1} f(x) dx =$	2p
	$= \frac{1}{2} - \arctan \left \frac{1}{0} \right = \frac{1}{2} - \frac{\pi}{4}$	3 p
c)	$V = \pi \int_{0}^{1} h^{2}(x) dx = \pi \int_{0}^{1} (x^{4} + 2x^{2} + 1) dx =$	2p
	$=\pi \left(\frac{x^5}{5} + \frac{2x^3}{3} + x\right) \Big _0^1 = \frac{28\pi}{15}$	3 p