TEORÍA DE LA COMPUTACIÓN ${\it CC342-A}$

Duración: 120 min.

Apellidos y Nombres:....

Está prohibido el uso de equipos móviles mientras dure la prueba.

1. Dado el AFND $N = (S, \mathcal{I}, \delta, \mathcal{F}, s^*)$, donde:

$$S = \{s_0, s_1, s_2, s_3\}$$

 $\mathcal{I} = \{0, 1\}$
 $\mathcal{F} = \{s_3\}$

	0	1
s_0	$\{s_0, s_1, s_3\}$	ϕ
s_1	$\{s_1\}$	$\{s_2\}$
s_2	ϕ	$\{s_1,s_2\}$
s_3	ϕ	$\{s_3\}$

- a) Obtener el AFD que reconozca el mismo lenguaje que N.
- b) Minimice el AFD anterior.
- 2. Sea G la gramática con las siguientes producciones:

$$\begin{array}{c} S \rightarrow BB \mid BC \mid b \\ A \rightarrow AC \mid CA \mid a \\ B \rightarrow BB \mid a \\ C \rightarrow BC \mid CA \mid a \end{array}$$

Convertirla a su forma normal de Greibach.

3. Sea la máquina de Turing M=($\{q_1, q_2, q_3\}, \{a, b\}, \{a, b, b\}, q_1, b, \{q_3\}, \delta$) donde δ está dada por:

$$\delta = \{((q_1, a), (q_1, a, L)), ((q_1, b), (q_1, b, L)), ((q_1, b), (q_2, b, R)), ((q_2, a), (q_3, a, L)), ((q_2, b), (q_3, b, L)), ((q_2, b), (q_3, b, L))\}$$

- a) Ubique sobre la cinta la cadena de entrada w=aababb con la cabeza de l/e apuntando a la tercera a, siendo el estado actual q_1 y grafique las distintas etapas del proceso para la MT. Indique si w es aceptada o no.
- b) Escriba las configuraciones anteriores usando descripciones instantáneas.
- 4. Dado el siguiente PDA $M = (\{s, f\}, \{a, b\}, \{a\}, \Delta, s, \{f\}) \text{ con } \Delta = \{((s, a, \varepsilon), (s, a)), ((s, b, \varepsilon), (s, a)), ((s, a, \varepsilon), (f, \varepsilon)), ((f, a, a), (f, \varepsilon)), ((f, b, a), (f, \varepsilon))\}.$
 - a) De todas las posibles secuencias de transiciones para aba.
 - b) Muestre que $aba, aa, abb \notin L(M)$, pero $baa, bab, baaaa \in L(M)$.
 - c) Describa L(M) en palabras.