

MITx: 15.053x Optimization Methods in Business Analytics

Bookmarks

- General Information
- Week 1
- ▶ Week 2
- ▼ Week 3

Lecture

Lecture questions due Sep 27, 2016 at 19:30 IST

Recitation

Problem Set 3

Homework 3 due Sep 27, 2016 at 19:30 IST

Week 3 > Recitation > Practice Problem 2

■ Bookmark

PART A

Consider two non-negative integral variables x_1 and x_2 . Suppose that $x_1 \le 60$ and $x_2 \le 50$. Model the following constraint using an additional binary variable w:

$$x_1 < 30 \text{ or } x_2 \ge 20.$$

Note that the first inequality is strict. Select the correct way of modeling this "OR" constraint using linear and integer constraints. Select the (one) correct answer.

$$egin{aligned} x_1 &\leq 29 - M(1-w) \ x_2 &\geq 20 + Mw \end{aligned}$$

$$egin{aligned} ullet & x_1 \leq 29 + M(1-w) \quad ullet \ & x_2 \geq 20 - Mw \end{aligned}$$

$$egin{aligned} x_1 &\leq 30 - M(1-w) \ x_2 &\geq 20 + Mw \end{aligned}$$

$$egin{aligned} x_1 &\leq 30 + M(1-w) \ x_2 &\geq 20 - Mw \end{aligned}$$

EXPLANATION

Solution

$$egin{aligned} x_1 &\leq 29 + M(1-w) \ x_2 &\geq 20 - Mw \end{aligned}$$

It is often difficult to work with strict inequalities when modeling MIPs (Mixed Integer/Linear Programs). In this case, x_1 is known to be integer valued. We transformed " $x_1 < 30$ " into " $x_1 \le 29$."

PART B

How small can M be in the correct answer for PART A?

31

✓ Answer: 31

31

EXPLANATION

Solution

31

In order to make the constraint $x_1 \leq 29 + M(1-w)$ redundant when w=0, one needs M to be at least 31. In order to make the constraint $x_2 \geq 20-Mw$ be redundant when w=1, we need M to be at least 20.

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

