Factorization Machines

Jakub Pachocki

10-805 class talk

FACTORIZATION MACHINES

 A beautiful cross between Matrix Factorization and SVMs

Introduced by Rendle in 2010

KAGGLE DOMINANCE

#	Δrank	Team Name	the money	Score 2	Entries	Last Submission UTC (Best - Last Submission)
1	_	3 Idiots # ‡ * • guestwalk • mandora • yolicat	(FM)	0.44464	13	Tue, 23 Sep 2014 23:31:16
2	_	Michael Jahrer and Jeon	g-Yoon Lee 🎩 *	0.44527	61	Tue, 23 Sep 2014 23:37:47 (-9.7d)
3		beile ‡ *		0.44610	67	Tue, 23 Sep 2014 23:07:36 (-0.8h)
#	∆rank	Team Name *in the money		S	core 🕝	Entries Last Submission UTC (Best - Last Submission)
1	_	4 Idiots 4 * • guestwalk • Michael Jahrer • yolicat • mandora	(FM)	0.3	791384	273 Mon, 09 Feb 2015 19:37:27 (-43.6h)
2	_	Owen *		0.3	803652	94 Mon, 09 Feb 2015 02:34:23 (-0.5h)
3		🕠 Random Walker 💤 *		0.3	806351	242 Mon, 09 Feb 2015 10:59:10

AD CLASSIFICATION

Clicked?	Country	Day	Ad_type
1	USA	3/3/15	Movie
0	China	1/7/14	Game
1	China	3/3/15	Game

ONE-HOT ENCODING

Clicked?	Country= USA	Country= China	Day= 3/3/15	Day= 1/7/14	Ad_type =Movie	Ad_type =Game
1	1	0	1	0	1	0
0	0	1	0	1	0	1
1	0	Ī	Ī	0	0	1

AD CLASSIFICATION

- Very large feature space
- Very sparse samples

Should we run SGD now?

POLY-2 KERNEL

- Often features are more important in pairs
- e.g. "Country=USA" ^"Day=Thanksgiving"
- Create a new feature for every pair of features
- Feature space: insanely large
- Samples: still sparse

SHARPENING OCCAM'S RAZOR

 We cannot learn a weight for every possible pair of features because of memory constraints

 Even if we could (SVMs?), we might overfit massively

FACTORIZATION MACHINES

- Let w_{i,j} be the weight assigned to feature pair (i,j)
- Key idea: Set $w_{i,j} = \langle v_i, v_j \rangle$
- v_is are vectors in *k*-dimensional space

FACTORIZATION MACHINES

- Let w_{i,j} be the weight assigned to feature pair (i,j)
- Key idea: Set $w_{i,j} = \langle v_i, v_j \rangle$

SVMS MEET FACTORIZATION

- The idea is that weights between different pairs of features are not entirely independent
- Their dependence is described by latent factors

MATRIX FACTORIZATION RECAP

R[i,j] = user i's rating of movie j

MATRIX FACTORIZATION RECAP

R[i,j] = user i's rating of movie j

MATRIX FACTORIZATION RECAP

FMS AND MATRIX FACTORIZATION

Rating?	User=Alice	User=Bob	User=Jane	Movie= Titanic	Movie= Avatar
1	1	0	0	0	1
0	0	1	0	1	0
1	0	0	1	1	0

FMS AND MATRIX FACTORIZATION

Rating?	User=Alice	User=Bob	User=Jane	Movie= Titanic	Movie= Avatar
1	1	0	0	0	1
0	0	1	0	1	0
1	0	0	1	1	0

• **Equivalent!** The latent factors for user and movie feature weights yield the factorization.

FMS AND SVMS

Clicked?	Country= USA	Country= China	Day= 3/3/15	Day= 1/7/14	Ad_type =Movie	Ad_type =Game
1	1	0	1	0	1	0
0	0	1	0	1	0	1
1	0	1	1	0	0	1

FMS AND SVMS

Clicked?	Country= USA	Country= China	Day= 3/3/15	Day= 1/7/14	Ad_type =Movie	Ad_type =Game
1	1	0	1	0	1	0
0	0	1	0	1	0	1
1	0	1	1	0	0	1

What if we set k very large?

FMS AND SVMS

Clicked?	Country= USA	Country= China	Day= 3/3/15	Day= 1/7/14	Ad_type =Movie	Ad_type =Game
1	1	0	1	0	1	0
0	0	1	0	1	0	1
1	0	1	1	0	0	1

• **Equivalent!** For *k* large enough we can express any pairwise interactions between features.

FACTORIZATION MACHINES

Generalize SVMs and Matrix
 Factorization (and many other models)

 Can be learned in linear time using SGD

BONUS: BUT HOW DO I WIN AT KAGGLE?

- (other than months of feature engineering)
- Use knowledge of the original fields the features come from!
- e.g. Country might have a different relationship to Date than to Ad_type

FIELD-AWARE FACTORIZATION MACHINES

- Learn a different set of latent factors for every pair of fields
- Instead of $\langle v_i, v_j \rangle$ we use $\langle v_{i,f(j)}, v_{j,f(i)} \rangle$, where f(i) is the field feature i comes from

MISCELLANEOUS

- Use hash trick!
- ... and regularization

 Generating more features: GBDT, neural nets, etc...

THANK YOU!

Questions?