$2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Karthik Inbasekar

National Strings Meeting 2015 IISER Mohali 09 Dec 2015

$2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Based on

K.I, S.Jain, S.Mazumdar, S.Minwalla, V.Umesh,
 S.Yokoyama: Arxiv 1505.06571, JHEP 1510 (2015) 176

Related earlier work

S.Jain, M.Mandlik, S.Minwalla, T.Takimi, S.Wadia,
 S.Yokoyama: Arxiv 1404.6373, JHEP 1504 (2015) 129

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Jnitarity

Pole structui

Plan of the talk

Introduction

Background

Scattering in CS matter theories

Delta function and modified crossing

Our work

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Theory

Exact propagator in large N limit

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering

S matrix in (singlet) S channel

Unitarity

Pole structure

Summary

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Background

Scattering in CS matter theories Delta function and modified crossing Our work

Supersymmetry and the S matrix

of all orders S matrix

Jnitarity

ole structu

Background

- Lots of activity in U(N) CS + fundamental matter.
- Motivations: AdS/CFT, Vasiliev duality, limit of ABJ.
- Solvability: The theory is solvable in large N limit.
- 2+1 d bosonization:

$$U(N_B)$$
 CS (κ_B) + fundamental Wilson-Fisher boson (m_B)

$$\Leftarrow$$
 dual \Rightarrow

$$U(N_F)$$
 CS (κ_F) +fundamental fermion (m_F)

 Evidence: Spectrum of single trace operators, thermal partition functions, three point functions, $2 \rightarrow 2 S$ matrices match under duality.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Background

Conjectured Duality for susy matter CS

ullet Jain, Minwalla, Yokoyama conjectured that $\mathcal{N}=1,2$ supersymmetric matter coupled Chern-Simons theories are self dual

$$Theory(\lambda', w', m') \iff Theory(\lambda, w, m)$$

• under the map

$$\lambda' = \lambda - \text{Sgn}(\lambda) , \ w' = \frac{3 - w}{1 + w} \quad m'_0 = \frac{-2m_0}{1 + w}$$
 $N' = |\kappa| - N + 1 , \ \kappa' = -\kappa$

with a pole mass

$$m = \frac{2m_0}{2 + (-1 + w)\lambda \operatorname{Sgn}(m)}$$

• m' = -m under duality and $\lambda m(m_0, w) \ge 0$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Background

Scattering in CS natter theories Delta function and nodified crossing Dur work

Supersymmetry and the S matrix

of all orders S matrix

Unitarity

Pole structure

Scattering in CS matter theories

- The statement of duality is actually a statement of bosonization of fermions.
- Bosonic and fermionic S matrices related by duality is equivalent to a bosonization map.
- Such a mapping is possible in 2+1 dimensions: Dirac equation uniquely determines the polarization spinors as a function of the momentum.
- In large N limit, only planar diagrams contribute.
 Possible to get exact results as a function of 't Hooft coupling λ.
- It has been shown that the S matrices for 2 → 2 processes in the CS+bosonic theory map to the CS+fermionic theory under duality.

[Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama]

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction
Background
Scattering in CS
matter theories

Supersymmetry and the S matrix

f all orders S natrix

Initarity

ole structure

Scattering in CS matter theories: Peculiarities

- Scattering results consistent with duality.
- In singlet channel (particle-Antiparticle) S matrices obtained from naive crossing symmetry rules are inconsistent with unitarity and have incorrect non-relativistic limit.
- Consistency with unitarity requires
 - Delta function term at forward scattering.
 - Modified crossing symmetry rules.
- Conjecture: Singlet channel S matrices have the form

$$S = 8\pi\sqrt{s}\cos(\pi\lambda)\delta(\theta) + i\frac{\sin(\pi\lambda)}{\pi\lambda}T^{S;\text{naive}}(s,\theta)$$

• $\mathcal{T}^{S;\text{naive}}$ is the matrix obtained from naive analytic continuation of particle-particle scattering.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction
Background
Scattering in CS
matter theories
Delta function and
modified crossing

Supersymmetry and the S matrix

Exact computation of all orders S

Unitarity

ole structure

mmary

Nature of the conjecture: Delta function and modified crossing rules

$$\mathcal{S} = 8\pi\sqrt{s}\cos(\pi\lambda)\delta(\theta) + i\frac{\sin(\pi\lambda)}{\pi\lambda}\mathcal{T}^{S;\mathrm{naive}}(s,\theta)$$

- ullet The conjectured S matrix has a non-analytic $\delta(heta)$ piece.
- delta function is already known to be necessary to unitarize non-relativistic Aharanov-Bohm scattering [Ruijsenaars; Bak,Jackiw,Pi].
- $cos(\pi \lambda)$ is due to the interference of the Aharonov-Bohm phases of the wave packets.
- modified crossing factor $\frac{\sin(\pi\lambda)}{\pi\lambda}$ is the expectation value of circular wilson loop on S^3 in pure Chern-Simons theory [Witten].

2
ightarrow 2 scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction
Background
Scattering in CS
matter theories
Delta function and
modified crossing

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Jnitarity |

ole structur

Unitarity and anyonic behavior in Singlet Channel

• Unitarity $i(T^{\dagger} - T) = TT^{\dagger}$: non-trivial only for singlet channel in the large N limit.

$$T_{Asym} \sim T_{Sym} \sim T_{Adj} \sim O\left(\frac{1}{N}\right) \; , \; T_{sing} \sim O(1)$$

• The anyonic phase operator $\nu_m = \frac{C_2(R_1) + C_2(R_2) - C_2(R_m)}{2\kappa}$

$$u_{\mathsf{Asym}} \sim
u_{\mathsf{Sym}} \sim
u_{\mathsf{Adj}} \sim O\left(\frac{1}{\mathsf{N}}\right) \;,
u_{\mathsf{Sing}} \sim O(\lambda)$$

- symmetric/antisymmetric channels and adjoint channel are effectively non-anyonic in large N.
- Particle-Antiparticle scattering in the singlet channel is effectively anyonic - usual crossing rules fail unitarity.
- Remedy: delta function and modified crossing rules.

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

Introduction
Background
Scattering in CS
matter theories
Delta function and
modified crossing

Supersymmetry and the S matrix

of all orders S matrix

Unitarity

Pole structure

Universality and tests

 delta function and modified crossing rules - appear to be universal

- Tests:
 - Unitarity of the S matrix
 - Bose-Fermi duality
 - Non-relativistic limit gives Aharanov-Bohm
- All the tests have been explicitly verified for
 - U(N) Chern-Simons coupled to fundamental bosons
 - \bullet U(N) Chern-Simons coupled to fundamental fermions
 - $\mathcal{N}=1,2$ Supersymmetric $\mathit{U(N)}$ Chern-Simons matter theories
- Further investigations ongoing for $\mathcal{N}=3,4,5,6$ susy CS matter theories [K.I, S.Jain, S.Minwalla, S.Yokoyama]

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction
Background
Scattering in CS
matter theories
Delta function and
modified crossing

Supersymmetry and the S matrix

exact computation of all orders S matrix

Unitarity

ole structure

ımmary

Our work

- ullet Test the conjecture in the most general renormalizable supersymmetric $\mathcal{N}=1$ Chern-Simons matter theory.
- Superspace manifest supersymmetry
- Work in large N only planar diagrams .
- Compute off-shell four point correlator, take on-shell limit and extract the S matrix.
- Provide evidence for duality and subject the conjecture to stringent unitarity test.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Our work

Background Scattering in CS matter theories Delta function and modified crossing

Supersymmetry

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Unitarity

ole structur

Main results

- Results in perfect agreement with duality.
- Unitarity requires the delta function at forward scattering and crossing symmetry rules modified by exactly the same way as conjectured in [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama]
- Substantial evidence for universality of the conjecture.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Background
Scattering in CS
matter theories
Delta function and
modified crossing

Our work

Supersymmetry and the S matrix

Exact computation of all orders S

Jnitarity

Pole structur

Bonus results

- Results of $\mathcal{N}=2$ theory obtained at special value of quartic scalar coupling.
- Non-renormalization of pole mass and vertex for $\mathcal{N}=2$ theory good things happen with more susy .
- $\mathcal{N}=1$ S matrix has interesting pole structure, with vanishing pole mass on a self-dual codimension one surface in the space of couplings.

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

Introduction

Background Scattering in CS matter theories Delta function and modified crossing

Our work

Supersymmetry and the S matrix

Exact computation of all orders S

Jnitarity

Pole structure

Supersymmetry and the S matrix

Introduction

Background

Scattering in CS matter theories

Delta function and modified crossing

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Theory

Exact propagator in large N limit

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering

S matrix in (singlet) S channe

Unitarity

Pole structure

Summary

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

 $\begin{array}{c} \text{Supersymmetry} \\ \text{and the S matrix} \end{array}$

Exact computation of all orders S matrix

Unitarity

'ole structure

Supersymmetric scattering

- ullet 2 ightarrow 2 scattering amplitude: transition between free incoming and free outgoing onshell particles.
- Initial and final states of Φ_i are effectively subject to free equations of motion

$$(D^2+m)\,\Phi=0$$

- find an onshell representation Q^{on} that satisfies susy algebra.
- Ward identity for S matrix in onshell superspace

$$\sum_{i=1}^{4} Q_{i}^{on} (S(\mathbf{p}_{1}, \theta_{1}, \mathbf{p}_{2}, \theta_{2}, \mathbf{p}_{3}, \theta_{3}, \mathbf{p}_{4}, \theta_{4})) = 0$$

• solution to this ward identity relates different processes.

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

Introductio

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Unitarity

Pole structure

ımmary

S matrix in onshell superspace

• S matrix solution (in-states: p_1, p_2 , out-states p_3, p_4) is determined in terms of two functions S_B and S_F of momenta, couplings and mass.

$$\begin{split} & S(\mathbf{p}_{1},\theta_{1},\mathbf{p}_{2},\theta_{2},\mathbf{p}_{3},\theta_{3},\mathbf{p}_{4},\theta_{4}) = \mathcal{S}_{B} + \mathcal{S}_{F} \; \theta_{1}\theta_{2}\theta_{3}\theta_{4} + \\ & \left(\frac{1}{2}\mathcal{C}_{12}\mathcal{S}_{B} - \frac{1}{2}\mathcal{C}_{34}^{*}\mathcal{S}_{F}\right) \; \theta_{1}\theta_{2} + \left(\frac{1}{2}\mathcal{C}_{13}\mathcal{S}_{B} - \frac{1}{2}\mathcal{C}_{24}^{*}\mathcal{S}_{F}\right) \; \theta_{1}\theta_{3} \\ & + \left(\frac{1}{2}\mathcal{C}_{14}\mathcal{S}_{B} + \frac{1}{2}\mathcal{C}_{23}^{*}\mathcal{S}_{F}\right) \; \theta_{1}\theta_{4} + \left(\frac{1}{2}\mathcal{C}_{23}\mathcal{S}_{B} + \frac{1}{2}\mathcal{C}_{14}^{*}\mathcal{S}_{F}\right) \; \theta_{2}\theta_{3} \\ & + \left(\frac{1}{2}\mathcal{C}_{24}\mathcal{S}_{B} - \frac{1}{2}\mathcal{C}_{13}^{*}\mathcal{S}_{F}\right) \; \theta_{2}\theta_{4} + \left(\frac{1}{2}\mathcal{C}_{34}\mathcal{S}_{B} - \frac{1}{2}\mathcal{C}_{12}^{*}\mathcal{S}_{F}\right) \; \theta_{3}\theta_{4} \end{split}$$

- No θ term: four boson scattering, four θ term : four fermion scattering.
- All other processes (two boson to two fermion etc) determined completely in terms of the two independent functions S_B and S_F .

S matrix in onshell superspace

$$\frac{1}{2}C_{12} = -\frac{1}{4m}v^{*}(\mathbf{p}_{1})v^{*}(\mathbf{p}_{2}) \quad \frac{1}{2}C_{23} = -\frac{1}{4m}v^{*}(\mathbf{p}_{2})u^{*}(\mathbf{p}_{3})
\frac{1}{2}C_{13} = -\frac{1}{4m}v^{*}(\mathbf{p}_{1})u^{*}(\mathbf{p}_{3}) \quad \frac{1}{2}C_{24} = -\frac{1}{4m}v^{*}(\mathbf{p}_{2})u^{*}(\mathbf{p}_{4})
\frac{1}{2}C_{14} = -\frac{1}{4m}v^{*}(\mathbf{p}_{1})u^{*}(\mathbf{p}_{4}) \quad \frac{1}{2}C_{34} = -\frac{1}{4m}u^{*}(\mathbf{p}_{3})u^{*}(\mathbf{p}_{4})
\frac{1}{2}C_{12}^{*} = \frac{1}{4m}v(\mathbf{p}_{1})v(\mathbf{p}_{2}) \quad \frac{1}{2}C_{23}^{*} = \frac{1}{4m}v(\mathbf{p}_{2})u(\mathbf{p}_{3})
\frac{1}{2}C_{13}^{*} = \frac{1}{4m}v(\mathbf{p}_{1})u(\mathbf{p}_{3}) \quad \frac{1}{2}C_{24}^{*} = \frac{1}{4m}v(\mathbf{p}_{2})u(\mathbf{p}_{4})$$

 $\frac{1}{2}C_{14}^* = \frac{1}{4m}v(\mathbf{p}_1)u(\mathbf{p}_4) \qquad \frac{1}{2}C_{34}^* = \frac{1}{4m}u(\mathbf{p}_3)u(\mathbf{p}_4)$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Initarity

ole structure

ımmary

Exact computation of all orders S matrix

Introduction

Background

Scattering in CS matter theories

Delta function and modified crossing

Our work

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Theory

Exact propagator in large N limit

Exact four point correlator in large N limit *S* matrix in non-anyonic channels of scattering

S matrix in (singlet) S channel

Unitarity

Pole structure

Summary

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduct

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Exact propagat large N limit

Exact four point correlator in large limit

S matrix in non-anyonic channels of scattering

S matrix in (si channel

Initarity

Theory

• General renormalizable $\mathcal{N}=1$ theory coupled to single fundamental matter multiplet Φ

$$\begin{split} \mathcal{S}_{\mathcal{N}=1} &= -\int d^3x d^2\theta \left[\frac{\kappa}{2\pi} \operatorname{Tr} \bigg(-\frac{1}{4} D_\alpha \Gamma^\beta D_\beta \Gamma^\alpha \right. \\ & \left. -\frac{1}{6} D^\alpha \Gamma^\beta \{ \Gamma_\alpha, \Gamma_\beta \} - \frac{1}{24} \{ \Gamma^\alpha, \Gamma^\beta \} \{ \Gamma_\alpha, \Gamma_\beta \} \bigg) \right. \\ & \left. -\frac{1}{2} (D^\alpha \bar{\Phi} + i \bar{\Phi} \Gamma^\alpha) (D_\alpha \Phi - i \Gamma_\alpha \Phi) \right. \\ & \left. + m_0 \bar{\Phi} \Phi + \frac{\pi w}{\kappa} (\bar{\Phi} \Phi)^2 \right] \end{split}$$

 $\Phi = \phi + \theta \psi - \theta^2 F$, $\bar{\Phi} = \bar{\phi} + \theta \bar{\psi} - \theta^2 \bar{F}$. $\Gamma^{\alpha} = \chi^{\alpha} - \theta^{\alpha} B + i \theta^{\beta} A_{\beta}^{\alpha} - \theta^{2} (2\lambda^{\alpha} - i \partial^{\alpha\beta} \chi_{\beta}) .$

• Φ : complex superfield, Γ_{α} : real superfield

• Integer parameters
$$N, \kappa$$
, matter coupling constant w ,

't Hooft coupling $\lambda = \frac{N}{\kappa}$.

Supersymmetric light cone gauge

Supersymmetric generalisation of light cone gauge

$$\Gamma_-=0 \Rightarrow A_-=A_1+iA_2=0$$

Gauge self interactions vanish

$$S = -\int d^3x d^2\theta \left[-\frac{\kappa}{8\pi} Tr(\Gamma^- i\partial_{--}\Gamma^-) - \frac{1}{2} D^\alpha \bar{\Phi} D_\alpha \Phi \right.$$
$$\left. -\frac{i}{2} \Gamma^- (\bar{\Phi} D_- \Phi - D_- \bar{\Phi} \Phi) \right.$$
$$\left. + m_0 \bar{\Phi} \Phi + \frac{\pi w}{\kappa} (\bar{\Phi} \Phi)^2 \right]$$

 Susy light cone gauge maintains manifest supersymmetry. $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Theory

Exact propagator in large N limit Exact four point correlator in large N

S matrix in non-anyonic channels of scattering

channel

Summany

Strategy for computing S matrix

- Use off-shell supersymmetry to constrain the structure of two point and four-point functions in superspace.
- Use these structures to set up a Dyson-Schwinger series for exact propagator and exact off-shell four point function.
- work only with diagrams that contribute to leading order in the large N limit.
- read off S matrices from off-shell four point function by taking on-shell limits.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Theory

Exact four point correlator in large N limit S matrix in

non-anyonic channels of scattering

S matrix in (singlet) S

Jnitarity

Pole structure

Exact propagator in large N limit

• Integral equation for self-energy

$$\Sigma(p,\theta_{1},\theta_{2}) = 2\pi\lambda w \int \frac{d^{3}r}{(2\pi)^{3}} \delta^{2}(\theta_{1} - \theta_{2}) P(r,\theta_{1},\theta_{2})$$

$$-2\pi\lambda \int \frac{d^{3}r}{(2\pi)^{3}} D_{-}^{\theta_{2},-p} D_{-}^{\theta_{1},p} \left(\frac{\delta^{2}(\theta_{1} - \theta_{2})}{(p-r)_{--}} P(r,\theta_{1},\theta_{2}) \right)$$

$$+2\pi\lambda \int \frac{d^{3}r}{(2\pi)^{3}} \frac{\delta^{2}(\theta_{1} - \theta_{2})}{(p-r)_{--}} D_{-}^{\theta_{1},r} D_{-}^{\theta_{2},-r} P(r,\theta_{1},\theta_{2})$$

Exact propagator in large N limit

Solution to exact propagator is extremely simple

$$P(p,\theta_1,\theta_2) = \frac{D^2 - m}{p^2 + m^2} \delta^2(\theta_1 - \theta_2)$$

- Same structure as the bare propagator with m_0 replaced by m .
- *m* is the pole mass

$$m = \frac{2m_0}{2 + (-1 + w)\lambda \operatorname{Sgn}(m)}$$

is duality invariant, agrees with the pole mass computed by Jain, Minwalla, Yokoyama

• Bonus: In the $\mathcal{N}=2$ limit (w=1), no mass renormalization for $\mathcal{N}=2$ theory !

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Exact propagator in large N limit

limit S matrix in non-anyonic channels

of scattering
S matrix in (singlet) S
channel

Unitarity

Pole structure

An integral equation for the four point function

Figure: The diagrams in the first line pictorially represents the Schwinger-Dyson equation for offshell four point function. The second line represents the tree level contributions from the gauge superfield interaction and the quartic interactions.

An integral equation for the four point function

• Schematically the integral equations are of the form

$$V(\theta_i, p_i) = V_0(\theta_i, p_i) + \int \frac{d^3r}{(2\pi)^3} d^2\theta_j' V_0(\theta_i, \theta_j', p_i, r)$$

$$P(\theta_j', p_i + r) P(\theta_j', r) V(\theta_j', \theta_i, p_i)$$

- solved integral equations exactly in large N limit for arbitrary values of the t'Hooft coupling λ and determined the offshell four point function in the kinematic regime $q_+=0$.
- Onshell limit directly gives the S matrix for T (adjoint), U_d (symm) and U_e (Asymm) channels of scattering (q_μ is momentum transfer).
- Impossible to extract S (singlet) channel S matrix since q_{μ} is center of mass energy (cannot be spacelike).

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry

Exact computation of all orders S

Theory
Exact propagator in large N limit
Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering S matrix in (singlet) S

Unitarit

Pole structure

ımmarv

S matrix in T , U_d , U_e channels of scattering

• S matrix: onshell limit of off-shell four point correlator

$$\mathcal{T}_B = rac{4i\pi}{\kappa} \epsilon_{\mu
u
ho} rac{q^{\mu}(p-k)^{
u}(p+k)^{
ho}}{(p-k)^2} + J_B(q,\lambda) \; , \ \mathcal{T}_F = rac{4i\pi}{\kappa} \epsilon_{\mu
u
ho} rac{q^{\mu}(p-k)^{
u}(p+k)^{
ho}}{(p-k)^2} + J_F(q,\lambda) \; , \ .$$

$$J_B(q,\lambda) = \frac{4\pi q}{\kappa} \frac{N_1 N_2 + M_1}{D_1 D_2} ,$$

 $J_F(q,\lambda) = \frac{4\pi q}{\kappa} \frac{N_1 N_2 + M_2}{D_1 D_2} ,$

2
ightarrow 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

heory

Exact propagator in large N limit
Exact four point

correlator in large

S matrix in non-anyonic channels of scattering

S matrix in (singlet) channel

Unitarity

Pole structure

S matrix in T , U_d , U_e channels of scattering

$$\begin{split} N_1 &= \left(\left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} (w - 1)(2m + iq) + (w - 1)(2m - iq) \right) , \\ N_2 &= \left(\left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} (q(w + 3) + 2im(w - 1)) + (q(w + 3) - 2im(w - 1)) \right) , \\ M_1 &= -8mq((w + 3)(w - 1) - 4w) \left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} , \\ M_2 &= -8mq(1 + w)^2 \left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} , \\ D_1 &= \left(i \left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} (w - 1)(2m + iq) - 2im(w - 1) + q(w + 3) \right) , \\ D_2 &= \left(\left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} (-q(w + 3) - 2im(w - 1)) + (w - 1)(q + 2im) \right) . \end{split}$$

Bonus: S matrix in T , U_d , U_e channels for $\mathcal{N}=2$ theory

• Remarkable simplification in the $\mathcal{N}=2$ limit (w=1)

$$\begin{split} \mathcal{T}_{B}^{\mathcal{N}=2} &= \frac{4i\pi}{\kappa} \epsilon_{\mu\nu\rho} \frac{q^{\mu}(p-k)^{\nu}(p+k)^{\rho}}{(p-k)^{2}} - \frac{8\pi m}{\kappa} \; , \\ \mathcal{T}_{F}^{\mathcal{N}=2} &= \frac{4i\pi}{\kappa} \epsilon_{\mu\nu\rho} \frac{q^{\mu}(p-k)^{\nu}(p+k)^{\rho}}{(p-k)^{2}} + \frac{8\pi m}{\kappa} \end{split}$$

 All orders S matrix is just tree level - no loop corrections - non renormalization. $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S

Theory

Exact propagator in large N limit
Exact four point

S matrix in non-anyonic channels

of scattering
S matrix in (singlet)

Initarity

Pole structure

Duality invariance of $\mathcal{N}=1$ and $\mathcal{N}=2$ S matrices

Under the duality transformation

$$w' = \frac{3-w}{w+1}, \lambda' = \lambda - \operatorname{sgn}(\lambda), m' = -m, \kappa' = -\kappa$$

$$J_B(q, \kappa', \lambda', w', m') = -J_F(q, \kappa, \lambda, w, m) ,$$

$$J_F(q, \kappa', \lambda', w', m') = -J_B(q, \kappa, \lambda, w, m) .$$

- Duality maps the purely bosonic and purely fermionic *S* matrices into one another upto overall phase.
- Concrete evidence for duality.
- Supersymmetric ward identity guarantees the duality invariance of all other processes.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S

neory act propagat

large N limit
Exact four point
correlator in large N

non-anyonic channels of scattering S matrix in (singlet) S

hannel

Unitarit

S matrix in

Pole structure

S matrix in (singlet) S channel

- We cannot extract the S channel S matrix directly because of kinematic restriction $q_+ = 0$.
- Usual rules of crossing symmetry in quantum field theory predict particle - anti particle scattering from particle particle scattering or vice-versa
- Naive analytic continuation gives a non-unitary S matrix in the S channel as observed in earlier work.
- Any analytic continuation cannot produce the non-analytic delta function piece required for unitarization.
- Remedy: Modify crossing symmetry rules as conjectured in [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama]

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Exact propagator in arge N limit Exact four point correlator in large N imit S matrix in

of scattering
S matrix in (singlet) S
channel

Unitarity

Pole structure

Conjectured S matrix in S channel $\mathcal{N}=1$ theory

ullet Conjectured S matrix for the $\mathcal{N}=1$ theory in center of mass frame

$$S_B^S(s,\theta) = 8\pi\sqrt{s}\cos(\pi\lambda)\delta(\theta) + i\frac{\sin(\pi\lambda)}{\pi\lambda} \left(4\pi i\lambda\sqrt{s}\cot(\theta/2) + J_B(\sqrt{s},\lambda)\right) ,$$

$$S_F^S(s,\theta) = 8\pi\sqrt{s}\cos(\pi\lambda)\delta(\theta) + i\frac{\sin(\pi\lambda)}{\pi\lambda} \left(4\pi i\lambda\sqrt{s}\cot(\theta/2) + J_F(\sqrt{s},\lambda)\right) .$$

$$J_B(\sqrt{s},\lambda) = -4\pi i\lambda\sqrt{s} \frac{N_1N_2 + M_1}{D_1D_2} \; ,$$

 $J_F(\sqrt{s},\lambda) = -4\pi i\lambda\sqrt{s} \frac{N_1N_2 + M_2}{D_1D_2}$

Conjectured S matrix in S channel $\mathcal{N}=1$ theory

$$\begin{split} N_1 &= \left((w-1)(2m+\sqrt{s}) + (w-1)(2m-\sqrt{s})e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|} \right)^{\lambda} \right) \;, \\ N_2 &= \left((-i\sqrt{s}(w+3)+2im(w-1)) + (-i\sqrt{s}(w+3)-2im(w-1))e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|} \right)^{\lambda} \right) \;, \\ M_1 &= 8mi\sqrt{s}((w+3)(w-1)-4w)e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|} \right)^{\lambda} \;, \\ M_2 &= 8mi\sqrt{s}(1+w)^2e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|} \right)^{\lambda} \;, \\ D_1 &= \left(i(w-1)(2m+\sqrt{s}) - (2im(w-1)+i\sqrt{s}(w+3))e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|} \right)^{\lambda} \right) \;, \end{split}$$

$$D_2 = \left((\sqrt{s}(w+3) - 2im(w-1)) + (w-1)(-i\sqrt{s} + 2im)e^{i\pi\lambda} \left(\frac{\sqrt{s} + 2|m|}{\sqrt{s} - 2|m|} \right)^{\lambda} \right)$$

Straightforward non-relativistic limit of the $\mathcal{N}=1$ S matrix

• Non-rel limit: $\sqrt{s} \to 2m$ with all other parameters held fixed.

$$\mathcal{T}_{B}^{S}(s,\theta) = -8\pi i \sqrt{s} (\cos(\pi\lambda) - 1)\delta(\theta) + 4\sqrt{s} \sin(\pi\lambda) (i\cot(\theta/2) - 1) ,$$

$$\mathcal{T}_{F}^{S}(s,\theta) = -8\pi i \sqrt{s} (\cos(\pi\lambda) - 1)\delta(\theta) + 4\sqrt{s} \sin(\pi\lambda) (i\cot(\theta/2) + 1) .$$

- conjectured S channel S matrix has simple non-relativistic limit leading to known Aharonov-Bohm result.
- Surprisingly this result is also same as the $\mathcal{N}=2$ S channel S matrix.
- Presumably supersymmetry enhancement in non-relativistic limit.

Unitarity

Introduction

Background

Scattering in CS matter theories

Delta function and modified crossing

Our work

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Theory

Exact propagator in large N limit

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering

S matrix in (singlet) S channe

Unitarity

Pole structure

Summary

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Unitarity

Pole structure

Unitarity equations for T, U_d and U_e channels

- Writing $S_B = I + iT_B$, $S_F = I + iT_f$
- The S matrices in the T, U_d and U_e channels are all O(1/N) unitarity equation is linear

$$\begin{split} \mathcal{T}_{B}(\textbf{p}_{1},\textbf{p}_{2},\textbf{p}_{3},\textbf{p}_{4}) &= \mathcal{T}_{B}^{*}(\textbf{p}_{3},\textbf{p}_{4},\textbf{p}_{1},\textbf{p}_{2}) \;, \\ \mathcal{T}_{F}(\textbf{p}_{1},\textbf{p}_{2},\textbf{p}_{3},\textbf{p}_{4}) &= \mathcal{T}_{F}^{*}(\textbf{p}_{3},\textbf{p}_{4},\textbf{p}_{1},\textbf{p}_{2}) \end{split}$$

- Linearity: No branch cuts in the physical domain of scattering in these channels.
- Explicitly checked that unitarity conditions are obeyed using

$$J_{\mathcal{B}}(q,\lambda) = J_{\mathcal{B}}^*(-q,\lambda) \ . \ J_{\mathcal{F}}(q,\lambda) = J_{\mathcal{F}}^*(-q,\lambda)$$

• The S matrix in the S channel is O(1) - the unitarity conditions are non-linear

Unitarity equations in the S channel

• Consider the general structure $(T(\theta) = i \cot(\theta/2))$.

$$\mathcal{T}_B^S = H_B T(\theta) + W_B - i W_2 \delta(\theta) \; , \; \mathcal{T}_F^S = H_F T(\theta) + W_F - i W_2 \delta(\theta) \; , \label{eq:TB}$$

• first unitarity equation

$$\begin{split} H_B - H_B^* &= \frac{1}{8\pi\sqrt{s}} (W_2 H_B^* - H_B W_2^*) , \\ W_2 + W_2^* &= -\frac{1}{8\pi\sqrt{s}} (W_2 W_2^* + 4\pi^2 H_B H_B^*) , \\ W_B - W_B^* &= \frac{1}{8\pi\sqrt{s}} (W_2 W_B^* - W_2^* W_B) - \frac{i}{4\sqrt{s}} (H_B H_B^* - W_B W_B^*) - \frac{iY}{4\sqrt{s}} (W_B - W_F) (W_B^* - W_F^*) \end{split}$$

Second unitarity equation

$$\begin{split} H_F - H_F^* &= \frac{1}{8\pi\sqrt{s}} (W_2 H_F^* - H_F W_2^*) , \\ W_2 + W_2^* &= -\frac{1}{8\pi\sqrt{s}} (W_2 W_2^* + 4\pi^2 H_F H_F^*) , \\ W_F - W_F^* &= \frac{1}{8\pi\sqrt{s}} (W_2 W_F^* - W_2^* W_F) - \frac{i}{4\sqrt{s}} (H_F H_F^* - W_F W_F^*) - \frac{iY}{4\sqrt{s}} (W_B - W_F) (W_B^* - W_F^*) \end{split}$$

Unitarity equation in the S channel

• Unitarity equations are verified using

$$H_B = H_F = 4\sqrt{s}\sin(\pi\lambda), \ W_2 = 8\pi\sqrt{s}(\cos(\pi\lambda)-1), \ T(\theta) = i\cot(\theta/2)$$

$$W_B = J_B(\sqrt{s},\lambda) \frac{\sin(\pi\lambda)}{\pi\lambda} \; ,$$
 $W_F = J_F(\sqrt{s},\lambda) \frac{\sin(\pi\lambda)}{\pi\lambda} \; .$

• Algebraic-miracle: Non-linear unitarity equations obeyed

by very complicated functions.

- unitarity is an extremely sensitive test ¹ .
- Important to note that the crossing symmetry rules have to be modified exactly as conjectured in [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama], else the unitarity test fails.

¹Tagline: one sign is doom

Unitarity in the S channel - $\mathcal{N}=2$ case

- The $\mathcal{N}=2$ T matrix is tree level exact in T,U channels.
- Naive crossing symmetry would imply the same for S channel, unitarity equation $i(T^{\dagger} T) = TT^{\dagger}$ would never be obeyed (LHS would be zero).
- modified crossing rules resolve this puzzle:

$$\mathcal{T}_{B}^{S;\mathcal{N}=2}(s,\theta) = -8\pi i \sqrt{s} (\cos(\pi\lambda) - 1)\delta(\theta) + \sin(\pi\lambda) (4i\sqrt{s}\cot(\theta/2) - 8m) ,$$

$$\mathcal{T}_{F}^{S;\mathcal{N}=2}(s,\theta) = -8\pi i \sqrt{s} (\cos(\pi\lambda) - 1)\delta(\theta) + \sin(\pi\lambda) (4i\sqrt{s}\cot(\theta/2) + 8m).$$

• Non-analytic piece makes \mathcal{T}_B , \mathcal{T}_F not Hermitian, both LHS and RHS are non-zero and non-linear unitarity equation is obeyed.

Pole structure of the S matrix

Introduction

Background

Scattering in CS matter theories

Delta function and modified crossing

Our work

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Theory

Exact propagator in large N limit

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering

S matrix in (singlet) S channe

Unitarity

Pole structure

Summary

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Jnitarity

Pole structure

Pole structure of the singlet channel S matrix

- Both bosonic and fermionic S matrices have a pole at threshold ($s=4m^2$) for $w\leq -1$. For $w\leq -1+\epsilon$ the pole is close to threshold.
- As w is decreased further and as it hits a critical value w = w_c the pole becomes massless!

$$w=w_c(\lambda)=1-rac{2}{|\lambda|}$$

- As w is further decreased and as $w \to -\infty$ the pole approaches threshold once again.
- To summarize, a one parameter tuning of the superpotential interaction parameter w sufficient to produce massless bound states in a massive theory.
- w can be scaled to w_c possible decoupled QFT description of light states.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

nitarity

Pole structure

Summary

Introduction

Background

Scattering in CS matter theories

Delta function and modified crossing

Our work

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Theory

Exact propagator in large N limit

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering

5 matrix in (singlet) 5 channe

Unitarity

Pole structure

Summary

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Unitarity

Pole structure

Summary

- Computations and conjectures for the all orders $2 \to 2$ S matrix in the general renormalizable $\mathcal{N}=1$ Chern-Simons matter theory with a single fundamental matter multiplet.
- Used supersymmetric ward identity to derive conditions and constraints on off-shell correlators, on-shell S matrices and derive unitarity conditions.
- Computed exact offshell four point correlators in the large N limit in kinematic regime $q_+ = 0$.
- Obtained S matrices by taking onshell limit of offshell four point correlator.
- Conjectured S matrix in the singlet channel.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

nitarity

ole structure

Summary

- Results are consistent with duality.
- Results are consistent with unitarity if and only if we assume that the usual results of crossing symmetry are modified in precisely the manner proposed in [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama].
- Non-relativistic limit of the S matrix reproduces the known Aharonov-Bohm result.
- The S channel S matrix has an interesting analytic structure. In a certain range of superpotential parameters the S matrix has a bound state pole.
- A one parameter tuning of superpotential parameters can be used to set the pole mass to zero.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Initarity

Pole structure

Open questions

- $\mathcal{N}=2$ S matrices are tree level exact in non-anyonic channels and depend on λ very simple way in the anyonic channel can it reproduced from general principles and $\mathcal{N}=2$ supersymmetry?
- Generalisation to higher supersymmetry mass deformed $\mathcal{N}=3,4,5$, and mass deformed $\mathcal{N}=6$ ABJ theory in progress [K.I, S.Jain, S.Minwalla, S. Yokoyama]
- Four point correlator: useful in computation of 2,3,4 point functions of gauge invariant currents explicit computation in $\mathcal{N}=2$ theory?, possible $\mathcal{N}=2$ generalisation of Maldacena-Zhiboedov solutions in progress [K.I, S.Jain, P.Nayak]
- decoupled gapless sector: effective field theory for the massless bound states of the S matrix.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introductio

Supersymmetry and the S matrix

Exact computation of all orders S matrix

nitarity

Pole structure

Open questions

- Rigorous proof of delta function and modified crossing rules, generalisation to finite N and κ .
- From perturbative pov modified crossing rules could be related to IR divergences.
- IR divergences can be summed up and exponentiated [Grammer, Yennie; Bern, Dickson, Smirnov]
- Modified crossing factor $\frac{\sin(\pi\lambda)}{\pi\lambda}$ is identical to the expectation value of circular wilson loop in pure Chern-Simons theory on S^3 .
- To explore: Path integral derivation of Witten's result, crossing and fusion rules in RCFT's.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

exact computation of all orders S matrix

nitarity

Pole structur

Thank You!

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Unitarity

Pole structure

Modified crossing - A heuristic explanation

• attach Wilson lines to make correlator gauge invariant.

$$\frac{T_{U_d}W_{U_d} \to T_SW_S}{\frac{W_{U_d}}{W_S}} = \frac{\oint \text{ with 2 circular Wilson lines}}{\oint \text{ with 1 circular Wilson line}} = \frac{\sin(\pi\lambda)}{\pi\lambda} \quad \text{[Witten]}$$

CS matter theories: Preliminaries

- Non-Abelian U(N) gauge theories in 2+1 dimensions are rich.
- Yang-Mills + Chern-Simons action

$$\frac{i\kappa}{4\pi} \int \operatorname{Tr}\left(AdA + \frac{2}{3}A^3\right) - \frac{1}{4g_{YM}^2} \int d^3x \operatorname{Tr} F_{\mu\nu}^2$$

- Describes massive gluons with mass $\propto \kappa g_{YM}^2$.
- Low energies: pure Chern-Simons theory, topological.
- Chern-Simons gauge theory coupled to matter gives rise to interesting dynamics.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

CS matter theories: Preliminaries

 Equations of motion for abelian theory with scalar matter of unit charge

$$\kappa \varepsilon^{\mu\nu\rho} F_{\nu\rho} = 2\pi J^{\mu}$$

- Chern-Simons interaction ties $\frac{1}{\kappa}$ units of flux to the charged scalar.
- Aharonov-Bohm effect: Exchange of two unit charge particles result in a phase $\frac{\pi}{\kappa}$.
- Chern-Simons gauge field interacting with matter turns them into anyons with anyonic phase $\pi\nu = \frac{\pi}{\kappa}$.
- non-abelian case: for eg exchange of U(N) matter quanta R_1 and R_2 gives a phase operator $(R_1 \times R_2 = \sum_m R_m)$

$$u_m = \frac{T_{R_1}.T_{R_2}}{\kappa} = \frac{C_2(R_1) + C_2(R_2) - C_2(R_m)}{2\kappa}$$

2 → 2 scattering in supersymmetric matter Chern-Simons

theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S

nitarity

Scattering kinematics

- $2 \rightarrow 2$ scattering.
- Particles : fundamental (F) of U(N), antiparticles : antifundamental (AF) of U(N).
- particle particle scattering

$$F \otimes F = \text{symmetric } (U_d) \oplus \text{antisymmetric } (U_e)$$

particle - antiparticle scattering

$$F \otimes AF = Adjoint (T) \oplus Singlet (S)$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

nitarity

Pole structure

Level rank duality in CS matter theory

• $U(N_B)$ Chern-Simons theory coupled to fundamental boson [Giombi, Minwalla, Prakash, Trivedi, Wadia]

$$S = \int d^3x igg(i \epsilon^{\mu
u
ho} rac{\kappa_B}{4\pi} Tr(A_\mu \partial_
u A_
ho - rac{2i}{3} A_\mu A_
u A_
ho)
onumber \ D_\mu ar{\phi} D^\mu \phi + \sigma ar{\phi} \phi + N_B rac{m_B^2}{b_4} \sigma - N_B rac{\sigma^2}{2b_4} igg)$$

Wilson-Fisher limit

$$b_4
ightarrow \infty \; , \; m_B
ightarrow \infty \; , \; 4\pi rac{m_B^2}{b_4} = {\it fixed}$$

• $U(N_F)$ Chern-Simons theory coupled to fundamental fermion

$$S = \int d^3x igg(i \epsilon^{\mu
u
ho} rac{\kappa_F}{4\pi} Tr(A_\mu \partial_
u A_
ho - rac{2i}{3} A_\mu A_
u A_
ho)
onumber \ + ar{\psi} \gamma^\mu D_\mu \psi + m_F ar{\psi} \psi igg)$$

2 → 2 scattering in supersymmetric matter Chern-Simons

ntroduction

Supersymmetry and the S matrix

theories at large N

Exact computation of all orders S matrix

nitarity

Pole structure

Level rank duality in CS matter theory

Statement of duality

 $U(N_B)$ CS+ Fundamental boson at Wilson-Fisher boson

$$\Leftarrow$$
 dual \Rightarrow

 $U(N_F)$ CS+fundamental fermion

under the duality map

$$\kappa_F = -\kappa_B$$
 $N_F = |\kappa_B| - N_B$
 $\lambda_B = \lambda_F - sgn(\lambda_F)$
 $m_F = -m_B^{cri}\lambda_B$

with condition

$$\lambda_F m_F > 0$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Initarity

ole structure

Evidence for duality

 Spectrum of single trace operators and three point functions on both sides match.

```
[Giombi, Minwalla, Prakash, Trivedi, Wadia],
[Aharony, Gur-Ari, Yacoby], [Maldacena, Zhiboedov]
```

• Thermal partition functions on both sides match. [Jain, Trivedi, Wadia, Yokoyama] , [Aharony, Giombi, Gur-Ari, Maldacena, Yacoby], [Takimi]

- Duality follows from a deformation of Giveon-Kutasov duality in supersymmetric theory. [Jain, Minwalla, Yokovama], [Gur-Ari, Yacoby]
- Most recent: $2 \rightarrow 2$ S matrices in C.S+bosonic and C.S+fermionic theories map to one another.

 $2 \rightarrow 2$ scattering in supersymmetric Chern-Simons theories at large N

Supersymmetric scattering

- 2 → 2 scattering amplitude: transition between free incoming and free outgoing onshell particles.
- Initial and final states of Φ_i are effectively subject to free equations of motion

$$(D^2+m)\,\Phi=0$$

Solution

$$\Phi(x,\theta) = \int \frac{d^2p}{\sqrt{2p^0}(2\pi)^2} \left[\left(a(\mathbf{p})(1+m\theta^2) + \theta^{\alpha} u_{\alpha}(\mathbf{p})\alpha(\mathbf{p}) \right) e^{ip.x} + \left(a^{c\dagger}(\mathbf{p})(1+m\theta^2) + \theta^{\alpha} v_{\alpha}(\mathbf{p})\alpha^{c\dagger}(\mathbf{p}) \right) e^{-ip.x} \right]$$

• action of off-shell supersymmetry operator on onshell superfields $[Q_{\alpha}^{off}, \Phi] = Q_{\alpha}^{off} \Phi = i \left(\frac{\partial}{\partial \theta^{\alpha}} - i \theta^{\beta} \partial_{\beta \alpha} \right) \Phi$

$$-iQ_{\alpha}^{on} = u_{\alpha}(\mathbf{p}_{i})\left(\alpha\partial_{a} + \alpha^{c}\partial_{a^{c}}\right) + u_{\alpha}^{*}(\mathbf{p}_{i})\left(a\partial_{\alpha} + a^{c}\partial_{\alpha^{c}}\right) \\ - v_{\alpha}^{*}(\mathbf{p}_{i})\left(a^{\dagger}\partial_{\alpha^{\dagger}} + (a^{c})^{\dagger}\partial_{(\alpha^{c})^{\dagger}}\right)v_{\alpha}(\mathbf{p}_{i})\left(\alpha^{\dagger}\partial_{a^{\dagger}} + (\alpha^{c})^{\dagger}\partial_{(a^{c})^{\dagger}}\right)$$

Onshell superspace

• Introduce creation and annihilation operator superfields

$$A_i(\mathbf{p}) = a_i(\mathbf{p}) + \alpha_i(\mathbf{p})\theta_i ,$$

$$A_i^{\dagger}(\mathbf{p}) = a_i^{\dagger}(\mathbf{p}) + \theta_i \alpha_i^{\dagger}(\mathbf{p}) .$$

Action of supersymmetry operator

$$[Q_{\alpha}^{on}, A_{i}(\mathbf{p}_{i}, \theta_{i})] = Q_{\alpha}^{1} A_{i}(\mathbf{p}_{i}, \theta_{i})$$

$$[Q_{\alpha}^{on}, A_{i}^{\dagger}(\mathbf{p}_{i}, \theta_{i})] = Q_{\alpha}^{2} A_{i}^{\dagger}(\mathbf{p}_{i}, \theta_{i})$$

$$Q_{\beta}^{1} = i \left(-u_{\beta}(\mathbf{p}) \overrightarrow{\frac{\partial}{\partial \theta}} - v_{\beta}(\mathbf{p})\theta\right)$$

$$Q_{\beta}^{2} = i \left(v_{\beta}(\mathbf{p}) \overrightarrow{\frac{\partial}{\partial \theta}} - u_{\beta}(\mathbf{p})\theta\right).$$

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Jnitarity

Pole structure

Supersymmetry and dual supersymmetry

Action of bose-fermi duality

$$a^D = \alpha$$
, $\alpha^D = a$ $m^D = -m$

• dual supersymmetry operator has the form

$$(Q^{D})_{\beta}^{1} = i \left(-u_{\beta}(\mathbf{p}, -m) \frac{\overrightarrow{\partial}}{\partial \theta} - v_{\beta}(\mathbf{p}, -m)\theta \right) ,$$

$$(Q^{D})_{\beta}^{2} = i \left(v_{\beta}(\mathbf{p}, -m) \frac{\overrightarrow{\partial}}{\partial \theta} - u_{\beta}(\mathbf{p}, -m)\theta \right)$$

• using u(m,p) = -v(-m,p), v(m,p) = -u(-m,p) and $\theta \leftrightarrow \frac{\partial}{\partial \theta}$

$$(Q^D)^1 \propto Q^1$$
, $(Q^D)^2 \propto Q^2$

- Quantities invariant under usual supersymmetry also invariant under dual supersymmetry.
- Onshell supersymmetry commutes with duality

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

nitarity

Pole structure

Supersymmetry and dual supersymmetry

 \bullet bose-fermi duality $\phi \rightarrow \psi^D \ , \psi \rightarrow \phi^D \ , Q \rightarrow Q^D.$

• Onshell supersymmetry commutes with duality.

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Jnitarity

Pole structi

S matrix in onshell superspace

• 2 \to 2 *S* matrix: $p_1 + p_2 \to p_3 + p_4$

$$S(\mathbf{p}_{1}, \theta_{1}, \mathbf{p}_{2}, \theta_{2}, \mathbf{p}_{3}, \theta_{3}, \mathbf{p}_{4}, \theta_{4}) \sqrt{(2p_{1}^{0})(2p_{2}^{0})(2p_{3}^{0})(2p_{4}^{0})} = \langle 0|A_{4}(\mathbf{p}_{4}, \theta_{4})A_{3}(\mathbf{p}_{3}, \theta_{3})UA_{2}^{\dagger}(\mathbf{p}_{2}, \theta_{2})A_{1}^{\dagger}(\mathbf{p}_{1}, \theta_{1})|0\rangle$$

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

troduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Jnitarity

ole structure

Summary

Supersymmetric ward identity for the S matrix

$$\begin{split} \left(\overrightarrow{Q}_{\alpha}^{1}(\mathbf{p}_{1},\theta_{1}) + \overrightarrow{Q}_{\alpha}^{1}(\mathbf{p}_{2},\theta_{2}) \\ + \overrightarrow{Q}_{\alpha}^{2}(\mathbf{p}_{3},\theta_{3}) + \overrightarrow{Q}_{\alpha}^{2}(\mathbf{p}_{4},\theta_{4})\right) S(\mathbf{p}_{1},\theta_{1},\mathbf{p}_{2},\theta_{2},\mathbf{p}_{3},\theta_{3},\mathbf{p}_{4},\theta_{4}) = 0 \end{split}$$

On onshell supersymmetry for $\mathcal{N}=2$ S matrix

- The $\mathcal{N}=2$ S matrix is already $\mathcal{N}=1$ supersymmetric.
- ullet obeys additional constraint from ${\cal N}=2$ supersymmetry.
- Action of off-shell Q_{α} , \bar{Q}_{α} on on-shell chiral/anti-chiral superfields determines action of on-shell $\mathcal{N}=2$ supersymmetry.
- ullet conditions for on-shell $\mathcal{N}=2$ susy of S matrix

$$\left(\sum_{i=1}^{4} Q_{\alpha}^{i}(\mathbf{p}_{i}, \theta_{i}) + \bar{Q}_{\alpha}^{i}(\mathbf{p}_{i}, \theta_{i})\right) S(\mathbf{p}_{i}, \theta_{i}) = 0$$

$$\left(\sum_{i=1}^{4} Q_{\alpha}^{i}(\mathbf{p}_{i}, \theta_{i}) - \bar{Q}_{\alpha}^{i}(\mathbf{p}_{i}, \theta_{i})\right) S(\mathbf{p}_{i}, \theta_{i}) = 0$$

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

nitarity

Pole structure

On onshell supersymmetry for $\mathcal{N}=2$ S matrix

ullet Additional constraint relates the functions \mathcal{S}_B and \mathcal{S}_F

$$S_B (C_{13}u_{\alpha}(\mathbf{p}_3) + C_{14}u_{\alpha}(\mathbf{p}_4) + C_{12}v_{\alpha}(\mathbf{p}_2) + v_{\alpha}^*(\mathbf{p}_1))$$

= $S_F (C_{24}^*u_{\alpha}(\mathbf{p}_3) - C_{23}^*u_{\alpha}(\mathbf{p}_4) + C_{34}^*v_{\alpha}(\mathbf{p}_2))$

• $\mathcal{N}=2$ S matrix is completely specified by one function.

• eg:
$$p_1 = p + q$$
, $p_2 = -k - q$, $p_3 = p$, $p_4 = -k$

$$S_B = S_F \frac{-2m(k-p)_- + iq_3(k+p)_-}{2m(k-p)_- + iq_3(k+p)_-}$$
.

- Already $\mathcal{N}=2$ supersymmetry is quite constraining.
- Expect all the component S matrices in higher susy cases to be determined by one function.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

itarity

role structur

Need for a conjecture

• $P_i(p_1) + A^j(p_2) \to P_m(p_3) + A^n(p_4)$

- Work in light-cone gauge in the frame $q_{\pm}=0$.
- full answer can be obtained by covariantizing.

• Adjoint channel (from top) - $q_{\pm} = 0$ is a frame choice,

$$p_1 = p + q$$
, $p_2 = -k - q$, $p_3 = p$, $p_4 = -k$

• Singlet channel (from left), exchange momentum cannot be spacelike!

$$p_1 = p + q$$
, $p_2 = -p$, $p_3 = k + q$, $p_4 = -k$

- Cannot compute singlet channel directly.
- Using usual crossing symmetry gives a non-unitary S matrix for singlet channel.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introducti

and the S matrix

nitarity

Pole structure

• The bare scalar superfield propagator:

$$\langle ar{\Phi}(heta_1,p)\Phi(heta_2,-p')
angle = rac{D_{ heta_1,p}^2-m_0}{p^2+m_0^2}\delta^2(heta_1- heta_2)(2\pi)^3\delta^3(p-p')$$
 supersymmetry and the S matrix

The gauge superfield propagator:

$$\langle \Gamma^{-}(\theta_1, p) \Gamma^{-}(\theta_2, -p') \rangle = -\frac{8\pi}{\kappa} \frac{\delta^2(\theta_1 - \theta_2)}{\rho_{--}} (2\pi)^3 \delta^3(\rho - p')$$

where
$$p_{--} = -(p_1 + ip_2) = -p_{-}$$
.

• Gauge field component propagators have same form as non-susy light cone gauge

$$\langle A_+(p)A_3(-p')\rangle = \frac{4\pi i}{\kappa} \frac{1}{p_-} (2\pi)^3 \delta^3(p-p')$$

Susy constraints on two-point correlator

• Supersymmetric ward identity for two point correlator

$$(\mathit{Q}_{ heta_{1},p}+\mathit{Q}_{ heta_{2},-p})\langlear{\Phi}(heta_{1},p)\Phi(heta_{2},-p)
angle=0$$

Exact propagator solves the ward identity

$$\langle \bar{\Phi}(p,\theta_1)\Phi(-p',\theta_2)\rangle = (2\pi)^3 \delta^3(p-p')P(\theta_1,\theta_2,p)$$

$$P(\theta_1, \theta_2, p) = (C_1(p^{\mu})D_{\theta_1, p}^2 + C_2(p^{\mu}))\delta^2(\theta_1 - \theta_2)$$

eg for bare propagator

$$C_1 = \frac{1}{p^2 + m_0^2} \; , \; C_2 = \frac{m_0}{p^2 + m_0^2}$$

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Unitarity

ole structure

Susy constraints on four-point function

Supersymmetric ward identity for four point function

$$(Q_{\theta_1,p+q} + Q_{\theta_2,-p} + Q_{\theta_3,-k-q} + Q_{\theta_4,k})V(\theta_1,\theta_2,\theta_3,\theta_4,p,k,q) = 0$$

$$\langle \bar{\Phi}((p+q+\frac{1}{4}),\theta_1)\Phi(-p+\frac{1}{4},\theta_2)\Phi(-(k+q)+\frac{1}{4},\theta_3)\bar{\Phi}(k+\frac{1}{4},\theta_4)\rangle$$

$$=(2\pi)^3\delta(I)V(\theta_1,\theta_2,\theta_3,\theta_4,p,k,q)$$

Susy constraints on four-point function

Solution of the ward identity

$$V = \exp\left(\frac{1}{4}X.(p.X_{12}+q.X_{13}+k.X_{43})\right)F(X_{12},X_{13},X_{43},p,q,k)$$

$$X = \sum_{i=1}^{4} \theta_i , \ X_{ij} = \theta_i - \theta_i ,$$

- F is a shift invariant function $\theta_i \to \theta_i + \gamma$.
- V may be taken to be invariant under the Z_2 symmetry

$$\begin{aligned} p \rightarrow k + q, k \rightarrow p + q, q \rightarrow -q , \\ \theta_1 \rightarrow \theta_4, \theta_2 \rightarrow \theta_3, \theta_3 \rightarrow \theta_2, \theta_4 \rightarrow \theta_1 \end{aligned}$$

An integral equation for the four point function

- Most general form of F can be parameterized in terms of 32 bosonic functions of p, k and q.
- leads to 32 coupled integral equations tedious.
- In the kinematic regime $q_{\pm} = 0$ the ansatz

$$V = \exp\left(\frac{1}{4}X.(p.X_{12} + q.X_{13} + k.X_{43})\right)F(X_{12}, X_{13}, X_{43}, p, q, k)$$

$$F = \frac{X_{12}^{+}X_{43}^{+}\left(A(p, k, q)X_{12}^{-}X_{43}^{-}X_{13}^{+}X_{13}^{-} + B(p, k, q)X_{12}^{-}X_{43}^{-}\right)}{+C(p, k, q)X_{12}^{-}X_{13}^{+} + D(p, k, q)X_{13}^{+}X_{43}^{-}}$$

is closed under the multiplication rule induced by the RHS of the integral equation.

Product of *S* matrices

• General multiplication rule for two S matrices

$$S_{1} \star S_{2} \equiv \int d\Gamma S_{1}(\mathbf{p}_{1}, \theta_{1}, \mathbf{p}_{2}, \theta_{2}, \mathbf{k}_{3}, \phi_{1}, \mathbf{k}_{4}, \phi_{2})$$

$$= \exp(\phi_{1}\phi_{3} + \phi_{2}\phi_{4})2k_{1}^{0}(2\pi)^{2}\delta^{(2)}(\mathbf{k}_{3} - \mathbf{k}_{1})2k_{2}^{0}(2\pi)^{2}\delta^{(2)}(\mathbf{k}_{4} - \mathbf{k}_{2})$$

$$S_{2}(\mathbf{k}_{1}, \phi_{3}, \mathbf{k}_{2}, \phi_{4}, \mathbf{p}_{3}, \theta_{3}, \mathbf{p}_{4}, \theta_{4})$$

$$d\Gamma = \frac{d^{2}k_{3}}{2k_{3}^{0}(2\pi)^{2}} \frac{d^{2}k_{4}}{2k_{4}^{0}(2\pi)^{2}} \frac{d^{2}k_{1}}{2k_{3}^{0}(2\pi)^{2}} \frac{d^{2}k_{2}}{2k_{3}^{0}(2\pi)^{2}} d\phi_{1}d\phi_{3}d\phi_{2}d\phi_{4}$$

• supersymmetry invariant Identity operator

$$I(\mathbf{p}_{1}, \theta_{1}, \mathbf{p}_{2}, \theta_{2}, \mathbf{p}_{3}, \theta_{3}, \mathbf{p}_{4}, \theta_{4}) = \exp(\theta_{1}\theta_{3} + \theta_{2}\theta_{4})I(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4})$$
$$I(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}) = 2p_{3}^{0}(2\pi)^{2}\delta^{(2)}(\mathbf{p}_{1} - \mathbf{p}_{3})2p_{4}^{0}(2\pi)^{2}\delta^{(2)}(\mathbf{p}_{2} - \mathbf{p}_{4})$$

Multiplication rule with Identity operator

$$S \star I = I \star S = S$$

 More generally product of two supersymmetric S matrices is supersymmetric.

Unitarity equation

• Define on-shell superfield S^{\dagger} as

$$S^{\dagger}(\mathbf{p}_1, \theta_1, \mathbf{p}_2, \theta_2, \mathbf{p}_3, \theta_3, \mathbf{p}_4, \theta_4) = S^*(\mathbf{p}_3, \theta_3, \mathbf{p}_4, \theta_4, \mathbf{p}_1, \theta_1, \mathbf{p}_2, \theta_2)$$

- Supersymmetric ward identity for S^{\dagger} implies S^{\dagger} is supersymmetric if and only if S is supersymmetric.
- The supersymmetric unitarity equation is

$$(S \star S^{\dagger} - I) = 0$$

- Recall that the superfield expansion for S is completely specified by S_B and S_F .
- Sufficient to check the LHS for no θ and four θ terms.
- Supersymmetric ward identity guarantees the rest of the terms will obey the unitarity equations.

Unitarity equation in center of mass frame

- Writing $S_B = I + iT_B$, $S_F = I + iT_f$
- No theta term:

$$\frac{1}{8\pi\sqrt{s}}\int d\theta \bigg(-Y(s)(\mathcal{T}_B(s,\theta)+4Y(s)\mathcal{T}_f(s,\theta))(\mathcal{T}_B^*(s,-(\alpha-\theta))+4Y(s)\mathcal{T}_f^*(s,-(\alpha-\theta)))$$
$$+\mathcal{T}_B(s,\theta)\mathcal{T}_B^*(s,-(\alpha-\theta))\bigg)=i(\mathcal{T}_B^*(s,-\alpha)-\mathcal{T}_B(s,\alpha))$$

Four theta term:

$$\frac{1}{8\pi\sqrt{s}}\int d\theta \bigg(Y(s)(\mathcal{T}_B(s,\theta)+4Y(s)\mathcal{T}_f(s,\theta))(\mathcal{T}_B^*(s,-(\alpha-\theta))+4Y(s)\mathcal{T}_f^*(s,-(\alpha-\theta)))$$
$$-16Y(s)^2\mathcal{T}_f(s,\theta)\mathcal{T}_f^*(s,-(\alpha-\theta))\bigg)=i4Y(s)(-\mathcal{T}_f(s,\alpha)+\mathcal{T}_f^*(s,-\alpha))$$

$$Y(s) = \frac{-s + 4m^2}{16m^2}$$

Unitarity equations in the S channel

• The S matrix in the S channel is O(1) - the unitarity conditions are non-linear

$$\begin{split} \frac{1}{8\pi\sqrt{s}} \int d\theta \bigg(-Y(s)(\mathcal{T}_B^{S}(s,\theta) - \mathcal{T}_F^{S}(s,\theta))(\mathcal{T}_B^{S*}(s,-(\alpha-\theta)) - \mathcal{T}_F^{S*}(s,-(\alpha-\theta))) \\ +\mathcal{T}_B^{S}(s,\theta)\mathcal{T}_B^{S*}(s,-(\alpha-\theta)) \bigg) &= i(\mathcal{T}_B^{S*}(s,-\alpha) - \mathcal{T}_B^{S}(s,\alpha)) \end{split}$$

$$\begin{split} \frac{1}{8\pi\sqrt{s}} \int d\theta \bigg(Y(s) (\mathcal{T}_B^{\mathcal{S}}(s,\theta) - \mathcal{T}_F^{\mathcal{S}}(s,\theta)) (\mathcal{T}_B^{\mathcal{S}*}(s,-(\alpha-\theta)) - \mathcal{T}_F^{\mathcal{S}*}(s,-(\alpha-\theta))) \\ -\mathcal{T}_F^{\mathcal{S}}(s,\theta) \mathcal{T}_F^{\mathcal{S}*}(s,-(\alpha-\theta)) \bigg) &= i(\mathcal{T}_F^{\mathcal{S}}(s,\alpha) - \mathcal{T}_F^{\mathcal{S}*}(s,-\alpha)) \end{split}$$

- Under duality $\mathcal{T}_B \to \mathcal{T}_F$ and vice versa; both the equations map to one another.
- Unitarity conditions are compatible with duality.

Unitarity equations in the S channel

 In the center of mass frame, the supersymmetric unitarity equations are

$$\begin{split} \frac{1}{8\pi\sqrt{s}} \int d\theta \bigg(-Y(s)(\mathcal{T}_B^S(s,\theta) - \mathcal{T}_F^S(s,\theta))(\mathcal{T}_B^{S*}(s,-(\alpha-\theta)) - \mathcal{T}_F^{S*}(s,-(\alpha-\theta))) \\ + \mathcal{T}_B^S(s,\theta)\mathcal{T}_B^{S*}(s,-(\alpha-\theta)) \bigg) &= i(\mathcal{T}_B^{S*}(s,-\alpha) - \mathcal{T}_B^S(s,\alpha)) \end{split}$$

$$\begin{split} \frac{1}{8\pi\sqrt{s}} \int d\theta \bigg(Y(s) (\mathcal{T}_B^{\mathcal{S}}(s,\theta) - \mathcal{T}_F^{\mathcal{S}}(s,\theta)) (\mathcal{T}_B^{\mathcal{S}*}(s,-(\alpha-\theta)) - \mathcal{T}_F^{\mathcal{S}*}(s,-(\alpha-\theta))) \\ -\mathcal{T}_F^{\mathcal{S}}(s,\theta) \mathcal{T}_F^{\mathcal{S}*}(s,-(\alpha-\theta)) \bigg) &= i(\mathcal{T}_F^{\mathcal{S}}(s,\alpha) - \mathcal{T}_F^{\mathcal{S}*}(s,-\alpha)) \end{split}$$

- Under duality $\mathcal{T}_B \to \mathcal{T}_F$ and vice versa; both the equations map to one another.
- Unitarity conditions are compatible with duality.

Poles of the S matrix

• Both bosonic and fermionic S matrix have a pole at threshold for $w \le -1$. Near $w = -1 - \delta w, y = 1 - \delta y$ the S matrix has the pole structure $(y = \sqrt{s}/2m)$

$$\mathcal{T}_{B} \sim rac{\left(rac{\delta y}{2}
ight)^{|\lambda|}}{\delta w - 2\left(rac{\delta y}{2}
ight)^{|\lambda|}} \; , \; \mathcal{T}_{F} \sim rac{\left(rac{\delta y}{2}
ight)^{1+|\lambda|}}{\delta w - 2\left(rac{\delta y}{2}
ight)^{|\lambda|}}$$

• As w is decreased further and as it hits a critical value $w = w_c$

$$w = w_c(\lambda) = 1 - \frac{2}{|\lambda|}$$

• the pole becomes massless!. Near $w = w_c - \delta w$ and $y = \delta y$ the poles approach zero mass quadratically

$$\mathcal{T}_{B} \sim \mathcal{T}_{F} - rac{64|m|\sin(\pi\lambda)(-1+|\lambda|)}{|\lambda|\left(\delta w^{2}\lambda^{2}-4\delta y^{2}(1-|\lambda|)^{2}
ight)}$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

Poles of the S matrix

• As w is further decreased and as $w \to -\infty$ the pole approaches threshold once again. Near $w = -\frac{1}{\delta w}, y = 1 - \delta y$ the S matrix has the pole structure

$$\mathcal{T}_B \sim rac{\left(rac{\delta y}{2}
ight)^{2-|\lambda|}}{\delta w - rac{1}{2}\left(rac{\delta y}{2}
ight)^{1-|\lambda|}} \; , \; \mathcal{T}_F \sim rac{\left(rac{\delta y}{2}
ight)^{1-|\lambda|}}{\delta w - rac{1}{2}\left(rac{\delta y}{2}
ight)^{1-|\lambda|}}$$

- To summarize, a one parameter tuning of the superpotential interaction parameter w sufficient to produce massless bound states in our massive theory.
- w can be scaled to w_c possible decoupled QFT description of light states.
- Is this a $\mathcal{N}=1$ Wilson-Fischer theory made of single real superfield?

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Supersymmetry and the S matrix

Exact computation of all orders S matrix

D. I. atau atau

Analytic structure of S channel S matrix

- The *S* matrix in the singlet channel has an interesting analytic structure.
- As a function of s (at fixed t), there is the expected two particle branch cut starting at $s = 4m^2$.
- For smaller but positive values of s there exist poles in the S matrix for a range of coupling parameters.
- These poles represent bound states that exist at large but finite N.
- At some critical value of the scalar coupling $w = w_c(\lambda)$ the pole becomes massless!
- To summarize, a one parameter tuning of the superpotential interaction parameter w sufficient to produce massless bound states in a massive theory.

Chern-Simons theories at large N

 $2 \rightarrow 2$ scattering

in supersymmetric

Introduction

Supersymmetr and the S mat

matrix
Unitarity

Pole structure