ЛР №10 «Линейно-квадратичные радости»

Отчет

Студент Кирилл Лалаянц R33352 336700 Вариант - 11

Преподаватель Пашенко А.В.

Факультет Систем Управления и Робототехники

ИТМО

Содержание

1	Вводные данные							
	1.1	Цель	работы	1				
		1.1.1	Программная реализация	1				
2	Осн	овная і	часть	2				
	2.1	2.1 Задание 1. LQR						
		2.1.1	Теория	2				
		2.1.2	Результаты	2				
	2.2	2.2 Задание 2. LQR vs LMI						
		2.2.1	Теория	6				
		2.2.2	Результаты	6				
	2.3	3 Задание 3. Исследование LQE (фильтра Калмана)						
		2.3.1	Теория	9				
		2.3.2	Результаты	9				
	2.4	ше 4. Синтез LQG	13					
		2.4.1	Теория	13				
		2.4.2	Результаты	13				
3	Зак	лючени	пе	14				
	3.1	Выволы						

1 Вводные данные

1.1 Цель работы

В этой работе пройдет изучение LQR, LQE, LGC.

1.1.1 Программная реализация

С исходным кодом можно ознакомиться в репозитории на Github.

2 Основная часть

$$A = \begin{bmatrix} -6.00 & 19.00 & 10.00 & -13.00 \\ 0.00 & -9.00 & 0.00 & 6.00 \\ -4.00 & 8.00 & 6.00 & -7.00 \\ 0.00 & -15.00 & 0.00 & 9.00 \end{bmatrix}; B = \begin{bmatrix} 4.00 & 0.00 \\ 2.00 & 0.00 \\ 6.00 & 0.00 \\ 4.00 & 0.00 \end{bmatrix};$$

$$C = \begin{bmatrix} -3.00 & 9.00 & 3.00 & -6.00 \\ 0.00 & -2.00 & 0.00 & 1.00 \end{bmatrix}; D = \begin{bmatrix} 0.00 & 0.00 \\ 0.00 & 2.00 \end{bmatrix}$$

2.1 Задание 1. LQR

2.1.1 Теория

В этом задании выводится регулятор заданной степени устойчивости для системы:

$$\begin{cases} \text{Объект управления: } \dot{x} = Ax + Bu \\ \text{Регулятор: } u = -Kx \end{cases} \rightarrow \dot{x} = Ax - BKx = (A - BK)x$$

LQR позволяет оптимизировать критерий качества:

$$J = \int_0^\infty (x^T Q x + u^T R u) dt$$

Выбор сотношения матриц Q и R позволяет управлять временем сходимости и величиной подаваего управления: чем больше $\frac{Q}{R}$, тем больше управление и быстрее сходимость.

К получается решением следующих уравнений:

$$\begin{cases} A^T P + PA + Q - PBR^{-1}B^T P = 0\\ K = -R^{-1}B^T P \end{cases}$$

Теоретический минимум критерия качества:

$$J_{min} = x_0^T P x_0$$

2.1.2 Результаты

На рис. 1 - 2 видно, что чем больше $\frac{Q}{R}$, тем больше управление и быстрее сходимость.

$$Q = 0.1; R = 10.0; K_0 = \begin{bmatrix} -0.24 & 0.97 & 0.51 & -0.60 \\ 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$
$$spec(A - BK_0) = \begin{bmatrix} -0.53 + 2.10j & -0.53 + -2.10j & -0.27 + 2.93j & -0.27 + -2.93j \end{bmatrix}$$

$$Q = 1.0; R = 1.0; K_1 = \begin{bmatrix} -1.20 & 10.88 & 3.57 & -6.80 \\ 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

$$spec(A - BK_1) = \begin{bmatrix} -0.29 + 2.68j & -0.29 + -2.68j & -3.90 + 0.00j & -6.70 + 0.00j \end{bmatrix}$$

$$Q = 10.0; R = 0.1; K_2 = \begin{bmatrix} -6.23 & 99.18 & 27.80 & -62.96 \\ 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

$$spec(A - BK_2) = \begin{bmatrix} -84.73 + 0.00j & -0.29 + 2.67j & -0.29 + -2.67j & -3.03 + 0.00j \end{bmatrix}$$

В таблице 1 видно, что критерии качества практически совпали с теортическими.

Q		R	J_{theory}	J_{real}
0.	1	10	6.2	6.2
1		1	24.5	24.51
10)	0.1	208.25	208.39

Таблица 1: Критерии качества

Рис. 1: Результаты моделирования состояний для разных значений Q и R.

Рис. 2: Результаты моделирования управления для разных значений Q и R.

2.2 Задание 2. LQR vs LMI.

2.2.1 Теория

В этом задании будет сравнение LQR с LMI $\alpha=0$.

2.2.2 Результаты

Как видно, LQR действительно сходится чуть дольше, но зато имеет управления напорядок меньше.

$$spec(A+BK_{LMI}) = \begin{bmatrix} -161.92 + 0.00j & -0.29 + 2.63j & -0.29 + -2.63j & -2.31 + 0.00j \end{bmatrix}$$
$$spec(A-BK_{LQR}) = \begin{bmatrix} -0.29 + 2.68j & -0.29 + -2.68j & -3.90 + 0.00j & -6.70 + 0.00j \end{bmatrix}$$

Несмотря на $\alpha = 0$, у LMI все равно почему-то появился сильно отрицательный корень, который и вызывает всплеск управления.

J_{theory}	J_{LQR}	J_{LMI}
24.5	24.52	212.4

Таблица 2: Критерии качества

Рис. 3: Результаты моделирования состояний системы.

Рис. 4: Результаты моделирования состояний системы.

2.3 Задание 3. Исследование LQE (фильтра Калмана)

2.3.1 Теория

Объект управления:
$$\begin{cases} \dot{x} = Ax + Bu + f, \ f - \text{внешнее возмущение} \\ y = Cx + \xi, \ \xi - \text{помеха измерений} \end{cases}$$

Матрицы Q и R обозначают, насколько сильно мы оцениваем влиянию f и ξ . L получается решением следующих уравнений:

$$\begin{cases} AP + PA^{T} + Q - PC^{T}R^{-1}CP = 0 \\ K = -PC^{T}R^{-1} \end{cases}$$

2.3.2 Результаты

Разные шумы для одного наблюдателя

$$Q = 1; R = 1; L = \begin{bmatrix} -12.29 & -0.54 \\ 3.19 & -1.35 \\ -7.98 & 0.26 \\ 4.65 & -1.33 \end{bmatrix}$$

На графиках ниже видно, что наблюдатели отрабатывают как надо.

Рис. 5: Сумма ошибок.

Рис. 6: Сумма ошибок.

Рис. 7: Сумма ошибок.

Разные наблюдатели для одного шума

$$Q = 1; R = 10; L = \begin{bmatrix} -1.33 & -0.08 \\ 0.09 & -0.22 \\ -0.89 & 0.08 \\ 0.04 & -0.22 \end{bmatrix}$$

$$Q = 10; R = 1; L = \begin{bmatrix} -108.11 & -27.74 \\ 31.97 & -10.01 \\ -72.07 & -17.20 \\ 46.43 & -6.82 \end{bmatrix}$$

$$Q = 1; R = 1; L = \begin{bmatrix} -12.29 & -0.54 \\ 3.19 & -1.35 \\ -7.98 & 0.26 \\ 4.65 & -1.33 \end{bmatrix}$$

На графиках ниже видно, что наблюдатели отрабатывают как надо. Действительно, матрицы Q и R, совпадающие с дисперсией шума, дают лучший наблюдатель.

Рис. 8: Сумма ошибок.

Рис. 9: Сумма ошибок.

Рис. 10: Сумма ошибок.

2.4 Задание 4. Синтез LQG

2.4.1 Теория

В этом задании выводится наблюдатель регулятор для системы:

$$\begin{cases} \dot{x} = Ax + BK\hat{x} + f \\ y = Cx + DK\hat{x} + \xi \\ \dot{\hat{x}} = A\hat{x} + BK\hat{x} + L(\hat{y} - y) \\ \hat{y} = C\hat{x} + DK\hat{x} \\ \hat{x} = x - e \end{cases} \rightarrow \begin{cases} \begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = A_{new} \begin{bmatrix} x \\ e \end{bmatrix} + B_{new} \begin{bmatrix} f \\ \xi \end{bmatrix} \\ A_{new} = \begin{bmatrix} A + BK & -BK \\ 0 & A + LC \end{bmatrix} \\ B_{new} = \begin{bmatrix} I & 0 \\ I & L \end{bmatrix} \in R^{2n \times (n+m)} \end{cases}$$

2.4.2 Результаты

$$Q = 1; R = 1; L = \begin{bmatrix} -12.29 & -0.54 \\ 3.19 & -1.35 \\ -7.98 & 0.26 \\ 4.65 & -1.33 \end{bmatrix}$$

$$spec(A + LC) = \begin{bmatrix} -11.04 + 0.j - 0.54 + 2.97j - 0.54 - 2.97j - 3.03 + 0.j \end{bmatrix}$$

$$Q = 1; R = 1; K = \begin{bmatrix} 1.20 & -10.88 & -3.57 & 6.80 \\ -0.00 & -0.00 & -0.00 \end{bmatrix}$$

$$spec(A + BK) = \begin{bmatrix} -0.29 + 2.68j & -0.29 + -2.68j & -3.90 + 0.00j & -6.70 + 0.00j \end{bmatrix}$$

По результат (рис. 11) явно видно, что все сработало как надо.

Рис. 11: Результаты моделирования.

3 Заключение

В этой работе были изучены LQR, LQE, LGC.

3.1 Выводы

- 1. чем больше $\frac{Q}{R}$ у LQR, тем больше управление и быстрее сходимость.
- 2. LQR лучше, чем LMI, по критерию оптимальности.
- 3. удачная оценка шумов обеспечивает лучшую сходимость LQE.

4. LQG круто работает.