

Mathematik I

Vorlesung 8 - Vektorräume

Prof. Dr. Sandra Eisenreich

23. Oktober 2023

Hochschule Landshut

8.1 Vektorräume, Unterräume

Motivation und Anwendung in der Informatik

Raum, in dem wir uns bewegen: \mathbb{R}^3 ; dies ist ein **Vektorraum**.

Anwendungen in der Industrie spielen sich in ganz vielen Fällen im \mathbb{R}^3 ab, wo z.B. Koordinaten von Bauteilen erfasst werden, um festzustellen, ob es Qualitätsmängel oder Abweichungen gibt; Roboter bewegen sich im \mathbb{R}^3 , autonome Logistik-Fahrzeuge ebenso,.... 3D-Game-Engines, etc etc.

Quelle: Wikimedia

Quelle: Wikimedia

Definition

Sei K ein Körper. Ein K-Vektorraum V besteht aus einer additiven Gruppe (V, +) (das sind die Vektoren) und einer skalaren Multiplikation:

$$\begin{array}{ll}
\cdot \colon & \mathsf{K} \times \mathsf{V} \to \mathsf{V} \\
& (\lambda, \mathsf{v}) \mapsto \lambda \cdot \mathsf{v},
\end{array}$$

so dass für alle $\lambda, \mu \in K$ und $v, w \in V$ gilt:

$$(V1)$$
 $\lambda \cdot (\mu \cdot v) = (\lambda \mu) \cdot v$

$$(V2)$$
 $1 \cdot v = v$

(V3)
$$\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$$

(V4)
$$(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$$

Bezeichnungen:

 $0 \in K$ ist die 0 im Körper K

 $\vec{0} \in V$ ist das neutrale Element in V. häufig schreibt man auch $\vec{0} = 0$.

Satz (Rechenregeln)

(V5)
$$\lambda \cdot \vec{0} = \vec{0}$$
 für alle $\lambda \in K$

(V6)
$$0 \cdot v = \vec{0}$$
 für alle $v \in V$

$$(V7)$$
 $(-1) \cdot v = -v$

(V5) – (V7) können aus (V1) – (V4) hergeleitet werden.

Beispiel: \mathbb{R}^n

Satz

Für
$$n=1,2,3,\ldots$$
 ist $\mathbb{R}^n:=\{(x_1,\ldots,x_n)\mid x_i\in\mathbb{R}\ \text{für }i=1,\ldots,n\}$ ein \mathbb{R} -Vektorraum, wobei
$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)\ :=\ (x_1+y_1,\ldots,x_n+y_n)$$

$$\lambda\cdot(x_1,\ldots,x_n)\ :=\ (\lambda\cdot x_1,\ldots,\lambda x_n)$$

Man prüft nun leicht nach, dass $(\mathbb{R}^n,+)$ eine Gruppe ist. Das Nullelement ist $\vec{0}=(0,0,\dots,0)$ und die Skalarmultiplikation erfüllt V1-V4. In Zukunft schreiben wir Elemente des

Vektorraums \mathbb{R}^n als **Spaltenvektoren**, d.h. wir schreiben $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ anstatt (x_1, \dots, x_n) .

4

Geometrische Interpretation

- Ein Element $v = (x_1, x_2)$ kann als Punkt im \mathbb{R}^2 mit Koordinaten x_1 und x_2 aufgefasst werden, aber auch als Pfeil (Vektor) vom Ursprung zum Punkt (x_1, x_2) .
- Addition zweier Vektoren ist das Aneinandersetzen der einzelnen Vektoren
- Skalare Multiplikation mit λ entspricht einer Verlängerung/Verkürzung des Vektors ν um Faktor |λ|. Ist λ > 0, dann zeigt λ · ν in die gleiche Richtung wie ν, sonst in die Gegenrichtung.

Beispiel: K^n

Satz

Für n = 1, 2, 3, ... und jeden Körper K ist der Raum $K^n := \{(x_1, ..., x_n) \mid x_i \in K \forall i = 1, ..., n\}$ ein K-Vektorraum, wobei

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) := (x_1 + y_1, \dots, x_n + y_n)$$

$$\lambda \cdot (x_1, \dots, x_n) := (\lambda \cdot x_1, \dots, \lambda x_n) \text{ für } \lambda \in K$$

Beispiele: → Mitschrift.

Beispiel: Polynomringe

- Sei K ein Körper, dann ist der **Polynomring** K[x]ein K-Vektorraum. (Man kann Polynome addieren und mit beliebigen Elementen von K durchmultiplizieren).
- Auch die Menge K[x]_{≤d} aller Polynome von Grad d oder weniger ist ein
 K-Vektorraum: Beachte, dass mit p, q ∈ K[x]_{≤d} auch p + q ∈ K[x]_{≤d} und λ · p ∈ K[x]_{≤d}
 für alle λ ∈ K gilt.
- Die Menge M aller Abbildungen $f: \mathbb{Q} \to \mathbb{Q}$ ist ein \mathbb{Q} -Vektorraum:

$$(f+g)(x) \coloneqq f(x) + g(x)$$
$$(\lambda \cdot f)(x) \coloneqq \lambda \cdot f(x)$$

Der Nullvektor in M ist die Abbildung f mit f(x) = 0 für alle x.

Unterräume eine Vektorraums

Definition

Ist V ein K-Vektorraum und $U \subset V$, und U selbst ein K-Vektorraum, so heißt U ein **Unterraum oder Untervektorraum von** V.

Ob eine Teilmenge $U \subset V$ ein Unterraum ist, lässt sich wie folgt feststellen:

Satz

Ist V ein K-Vektorraum, $U \subset V$, dann ist U ein Unterraum von V, wenn gilt:

- (U1) Abgeschlossenheit bzgl. Addition: $u + v \in U$ für alle $u, v \in U$
- (U2) Abgeschlosenheit bzgl. Skalarmultiplikation: $\lambda \cdot u \in U$ für alle $u \in U, \ \lambda \in \mathbb{C}$

Bemerkung: Wegen $0 \cdot u = \vec{0}$ muss jeder Unterraum von V auch den Nullvektor enthalten.

Unterräume von \mathbb{R}^2

Satz

Sei $V = \mathbb{R}^2$ und $U \subset V$ ein Unterraum. Es gibt nur 3 verschiedene Arten von Unterräumen von \mathbb{R}^2 :

- Nullvektor: $U = \{\vec{0}\}$ (der einfachste Vektorraum).
- Geraden durch den Nullpunkt: $U = \{\lambda \cdot u_1 | \lambda \in \mathbb{R}\}$ für ein $u_1 \neq 0$ in \mathbb{R}^2 .
- der ganze Raum $U = \mathbb{R}^2$.

Beachte: Eine Gerade U, die nicht durch den Ursprung geht, ist kein Unterraum. **Beweis.** \rightarrow Mitschrift.

Unterräume von \mathbb{R}^n (z.B. \mathbb{R}^3)

Satz

Es gibt nur (n+1) verschiedene Arten von Unterräumen U von \mathbb{R}^n : Nullvektor $U = \{\vec{0}\}$ und:

- Geraden durch den Nullpunkt: $U = \{\lambda \cdot u_1 | \lambda \in \mathbb{R}\}$ für ein $u_1 \neq 0$ in \mathbb{R}^2 .
- Ebenen, die von zwei nicht-parallelen Vektoren u_1, u_2 aufgespannt weren: $U = \{\lambda_1 \cdot u_1 + \lambda_2 u_2 | \lambda_1, \lambda_2 \in \mathbb{R}\}$ ("Linearkombinationen von u_1, u_2 ")
- dreidimensionale Räume, die von einer Ebene wie oben (mit Vektoren u₁, u₂) und einem zusätzlichen Vektor u₃ aufgespannt werden, der nicht in der Ebene liegt:
 U = {λ₁ · u₁ + λ₂u₂ + λ₃u₃|λ₁, λ₂, λ₃ ∈ ℝ} ("Linearkombinationen von u₁, u₂, u₃")
- etc...

Motivation Linearkombination, lineare Unabhängigkeit

Auf den letzten Folien haben wir gesehen, dass zwei Dinge für Unterräume wichtig sind: Räume, die aufgespannt werden von unterschiedlich vielen Vektoren (das nennt man den **Span** dieser Vektoren), das heißt dass jeder Vektor v in diesem Unterraum geschrieben werden kann als Summe von Vielfachen dieser Vektoren:

$$v = \lambda_1 \cdot v_1 + \ldots + \lambda_n v_n$$

So etwas nennt man **Linearkombination**. Außerdem haben wir gesehen, dass eine zusätzliche "Dimension" (wir kennen den Begriff offiziel noch nicht, aber bei $\mathbb R$ können wir es uns vorstellen) durch einen zusätzlichen Vektor nur dazukommt, wenn er nicht in dem Raum liegt, der von den bisherigen aufgespannt wird - dass er also nicht geschrieben werden kann als so eine Linearkombination wie oben. Man sagt, so ein Vektor ist **linear unabhängig** von den anderen Vektoren.

Wenn wir also Begriffe wie Dimensionen von Unterräumen betrachten wollen, müssen wir uns mit diesen Begriffen auseinandersetzen.

Linearkombinationen

Wir möchten unsere Ergebnisse in \mathbb{R}^n verallgemeinern:

Satz/Definition

Sei V ein K-Vektorraum, $v_1, \ldots, v_n \in V$. für $\lambda_1, \ldots, \lambda_n \in K$ heißt die Summe

$$\lambda_1 \cdot v_1 + \ldots + \lambda_n \cdot v_n$$

Linearkombination von v_1, \ldots, v_n . Wir bezeichnen die Menge aller Linearkombinationen von $v_1, \ldots v_n$ mit $Span(v_1, \ldots, v_n)$ und schreiben auch:

$$\langle v_1, \ldots, v_n \rangle := Span(v_1, \ldots, v_n) := \{\lambda_1 \cdot v_1 + \ldots + \lambda_n v_n | \lambda_1, \ldots, \lambda_n \in K\}$$

Satz: $\langle v_1, \dots v_n \rangle$ ist ein Unterraum von V.

Beispiel: Eine Gerade in \mathbb{R}^n ist der Span von einen Vektor, eine Ebene in \mathbb{R}^n der Span von zwei Vektoren, etc.

8.2 Lineare Unabhängigkeit,

Basis und Dimension

Lineare Unabhängigkeit eines Vektors von anderen Vektoren

Definition

Sei V ein K-Vektorraum, $v_1, \ldots, v_n \in V$. Dann heißt $v \in V$ linear abhängig von $v_1, \ldots, v_n \in V$, falls

$$v \in \langle v_1, \ldots, v_n \rangle$$

Das ist gleichbedeutend dazu, dass v eine Linearkombination der anderen Vektoren ist, d.h. v ist linear abhängig von v_1, \ldots, v_n genau dann wenn man v schreiben kann als

$$v = \lambda_1 \cdot v_1 + \ldots + \lambda_n v_n$$
 für gewisse $\lambda_1, \ldots, \lambda_n \in K$)

Gilt $v \notin (v_1, \dots, v_n)$, so sagen wir, dass v linear unabhängig von v_1, \dots, v_n ist.

Lineare Unabhängigkeit von Vektoren untereinander

Definition

Sei V ein K-Vektorraum. Die Vektoren $v_1, \ldots, v_n \in V$ heißen **linear abhängig**, falls es ein i gibt mit

$$v_i \in \langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \rangle$$

Ansonsten heißen die Vektoren $v_1, \dots v_n$ linear unabhängig.

Satz

Rechenregel zum Überprüfen von Linearer Abhängigkeit: Die Vektoren $v_1, \dots v_n$ sind genau dann linear unabhängig, falls aus der Gleichung

$$\lambda_1 \cdot v_1 + \ldots + \lambda_n \cdot v_n = \vec{0}$$

folgt, dass

$$\lambda_1 = \ldots = \lambda_n = 0.$$

Gibt es eine Nicht-Null-Lösung, so sind sie linear abhängig. Also: Überprüfen von linearer

Abhängigkeit = Lösen eines Linearen Gleichungssystems!

Basis und Dimension von Vektorräumen

Definition

Eine Teilmenge B des Vektorraums V heißt Basis von V, wenn gilt

(B1)
$$Span(B) = V (d.h. B erzeugt V)$$

(B2) Die Vektoren in B sind alle linear unabhängig.

Beispiele: → Mitschrift

Standardbasis des Kⁿ

Satz/Definition

$$B = \left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\}$$

ist eine Basis von Kⁿ für einen Körper K. Die Basis B heißt **Standardbasis**. Der i-te Vektor

$$e_i := \left(\begin{array}{c} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{array}\right)$$

mit 1 an der i-ten Stelle heißt i-ter Einheitsvektor.

Beispiel R^3 : \rightarrow Mitschrift

Es stellen sich nun folgende Fragen:

- Hat jeder Vektorraum eine Basis?
- Haben zwei verschiedene Basen gleich viele Elemente?

Die Antwort liefert der folgende Satz, den wir hier nicht beweisen:

Satz

Jeder Vektorraum hat eine Basis. Je zwei Basen eines Vektorraums haben gleich viele Elemente.

Definition

Hat eine Vektorraum eine endliche Basis $B = \{b_1, \dots, b_n\}$, dann nennen wir n die **Dimension** von V. Gibt es keine endliche Basis, so ist B unedlichdimensional. Man schreibt $n = \dim V$.

Basisergänzungssatz

Satz (Basisergänzungssatz)

Seien V ein n-dimensionaler Vektorraum, und v_1, \ldots, v_m linear unabhängige Vektoren. Dann kann man v_1, \ldots, v_m mit Vektoren v_{m+1}, \ldots, v_n ergänzen, so dass $B = \{v_1, \ldots, v_n\}$ eine Basis von V ist.

Beweisskizze:

Gilt $\langle v_1, \dots, v_m \rangle \neq V$, dann kann man ein $v_{m+1} \in V \setminus \langle v_1, \dots, v_m \rangle$ finden. Die Vektoren v_1, \dots, v_{m+1} sind dann auch linear unabhängig. Durch analoge Vorgehensweise erhalt man so Vektoren v_{m+1}, \dots, v_n bis schließlich $\langle v_1, \dots, v_n \rangle = V$. Dann ist $B = \{v_1, \dots, v_n\}$ eine Basis.

Motivation - Koordinaten

Wir sagen im \mathbb{R}^3 bei einem Vektor v = (1,2,3), dass er die **Koordinaten** 1,2 und 3 hat. Das ist tatsächlich etwas ungenau. Eigentlich müsste man sagen, er hat die Koordinaten 1,2, und 3 **bezüglich der Standardbasis**, weil

$$v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Andererseits ist eine andere Basis des \mathbb{R}^3 gegeben durch:

$$B = \left\{ b_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, b_3 = \begin{pmatrix} 2 \\ 4 \\ 10 \end{pmatrix} \right\} \text{ und es gilt}$$

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + (-1) \cdot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 2 \\ 4 \\ 10 \end{pmatrix}$$

Dann sind bezüglich dieser Basis die Koordinaten nun 1,-1, und $\frac{1}{2}$.

Motivation - Koordinatendarstellung bezüglich anderer Basen

Bisher haben wir die Darstellung

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

also als Koordinatendarstellung gelesen. Aber wie schreiben wir den Vektor, wenn wir eine andere Basis als die Standardbasis zugrunde liegen haben?

In der Basis B sind die Koordinaten 1,-1, und $\frac{1}{2}$, also sollten wir den Vektor schreiben als

$$\begin{pmatrix} 1 \\ -1 \\ \frac{1}{2} \end{pmatrix}$$

aber das wäre verwirrend... deswegen schreibt man einen Index B mit zum Vektor:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ \frac{1}{2} \end{pmatrix}_{B}$$

Satz/Definition

Sei $B = \{b_1, ..., b_n\}$ eine Basis das K-Vektorraums V. Dann gibt es für jedes $v \in V$ Skalare $\lambda_1, ..., \lambda_n$, so dass

$$v = \lambda_1 \cdot b_1 + \ldots + \lambda_n b_n$$
.

Die Elemente λ_i sind eindeutig bestimmt. Wir nennen $\lambda_1, \ldots, \lambda_n$ die Koordinaten von V bzgl. B und schreiben

$$v = \left(\begin{array}{c} \lambda_1 \\ \vdots \\ \lambda_n \end{array}\right)_B$$