COMP 360 - Fall 2015 - Assignment 4

Due: 6:00 pm Nov 24th.

General rules: In solving these questions you may collaborate with other students but each student has to write his/her own solution. There are in total 110 points, but your grade will be considered out of 100. You should drop your solutions in the assignment drop-off box located in the Trottier Building.

- 1. (10 Points) Show that the following problem is in PSPACE:
 - Input: A CNF ϕ .
 - Output: The number of the truth assignments that satisfy ϕ .

Solution: One can generate all the possible 2^n truth assignments, one by one (reusing the memory). Each such truth assignment takes n space. We will also have a variable A that is equal to the number of truth assignments satisfying the formula found so far. Every time that a new truth assignment is generated, we check whether it satisfies the formula or not, and then update the variable A accordingly. Note that A takes only $\log 2^n = n$ bits of memory. Hence in total the required space is going to be O(n).

2. (10 Points) Given a set P of n points on the plane, consider the problem of finding the smallest circle containing all the points in P. Show that the following is a 2-factor approximation algorithm for this problem. Pick a point x in P, and set r to be the distance of the farthest point in P from x. Output the circle centered at x with radius r.

Solution: First we show that all the points will be in the circle outputted by algorithm: If y is the point farthest from x, then r = d(x, y). If there's a point p outside the circle, then d(p, x) > r = d(x, y) which cannot be because y is the farthest point from x.

Now we show that this is a 2-factor approximation: Suppose x' and r' are the center and radius of the optimal solution. Since x and y are inside the circle we have $d(x,c) \geq r'$ and $d(y,c) \geq r'$ so $d(x,c) + d(y,c) \geq 2r'$. From the triangle inequality we have $d(x,c) + d(y,c) \geq d(x,y) = r$ from combining these two we have $2r' \geq r$.

- 3. (10 Points) Consider the following optimization version of the Subset-Sum problem: Given positive integers $\{w_1, \ldots, w_n\}$ and a positive integer m. We want to find a set $S \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in S} w_i \leq m$ and is maximized. Show that the following is a $\frac{1}{2}$ -factor approximation algorithm:
 - Set $S := \emptyset$.
 - Sort the numbers such that $w_1 \geq w_2 \geq \ldots \geq w_n$.
 - For i = 1, ..., n:
 - if it is possible add i to S without violating $\sum_{i \in S} w_i \leq m$, then add i to S.

Solution: This follows just by definition of algorithm. Suppose $W^* \leq m$ is the optimal solution and the algorithm picked $w_1 \geq w_2 \geq \cdots \geq w_k$ and stopped. We show that $\sum_{i=1}^k w_i \geq W^*/2$. Suppose otherwise, then $w_{k+1} \leq w_k < W^*/2$ and hence $\sum_{i=1}^{k+1} w_i < W^* \leq m$, which shows that the algorithm should not have stopped after adding w_k , a contradiction.

- 4. Consider the MAX-SAT problem: Given a CNF formula ϕ on variables x_1, \ldots, x_n , find a truth assignment to the variables that maximizes the total number of satisfied clauses.
 - (a) (10 Points) Show that the following is a $\frac{1}{2}$ -factor approximation algorithm for MAX-SAT (meaning that: the output of the algorithm is always at least half of the optimum): Let σ_{true} be the truth assignment that assigns True to every variable, and σ_{false} be the truth assignment that assigns False to every variable. Compute the number of clauses satisfied by σ_{true} and σ_{false} , and output the better assignment.
 - (b) (5 Points) Give a tight example: An input instance where this algorithm performs as bad as the $\frac{1}{2}$ factor.

Solution: (a) holds because every clause in CNF is satisfied either with σ_{true} or with σ_{false} . Indeed, if a clause is not satisfiable with all the variables being true, it means that all the variables in this clause are with \neg , but then the clause would have been satisfiable with σ_{false} . As for (b), suppose n=2k and we have the following CNF- $(x_1\&x_2\&\dots\&x_k\&\neg x_{k+1}\&\neg x_{k+2}\dots\&\neg x_{2k}$, then clearly all clauses are satisfiable when $x_1=x_2=\dots x_k=T$ and $x_{k+1}=x_{k+2}=\dots x_{2k}=F$, however both σ_{true} and σ_{false} assignments will satisfy only half of the clauses.

- 5. (10 Points) Problem 10 of Chapter 11: Suppose you are given an $n \times n$ grid graph G. Associated with each node v is an integer weight $w(v) \geq 0$. You may assume that all the weights are distinct. Your goal is to choose an independent set S of nodes of the grid, so that the sum of the weights of the nodes in S is as large as possible. (The sum of the weights of the nodes in S will be called its total weight.) Consider the following greedy algorithm for this problem.
 - Start with $S := \emptyset$.
 - While some node remains in G:
 - Pick a node v of maximum weight.
 - Add v to S.
 - Delete v and its neighbors from G
 - Endwhile.

Show that this algorithm returns an independent set of total weight at least $\frac{1}{4}$ times the maximum total weight of any independent set in the grid graph G.

Solution: Since for every node v picked we remove the neighbors, the algorithm will not output any connected nodes thus the algorithm gives an independent set. Suppose that we pick a node v at some point in the algorithm. Let v_1, \ldots, v_4 be its neighbours. Note that none of v_1, \ldots, v_4 have been picked at this point (otherwise v would have been deleted). Since v has the maximum weight among the remaining vertices, we have weight(v) \geq weight(v) for $i = 1 \ldots 4$. So

$$4 \times \text{weight}(v) \ge \sum_{i=1}^{4} \text{weight}(v_i).$$

If the optimal algorithm doesn't choose v and chooses a subset (or all four) of the neighbors instead, then it could be at most 4 times better.

- 6. Consider a directed bipartite graph G = (V, E). We want to eliminate all the directed cycles of length 4 by removing a smallest possible set of <u>vertices</u>.
 - (a) (5 points) Let C_4 denote the set of all cycles of length 4 in the graph. Show that the following integer program models the problem:

Solution: For each vertex v, we have a variable x_v . These variables are 0/1 valued. The meaning of $x_v = 1$ is that we remove vertex v from the graph. The meaning of $x_v = 0$ is that we keep vertex v. Let OPT denote the optimum value for the original problem. Let OPT_{ip} denote the optimum value for the integer program. Let x^* be an optimum solution of the integer program. By the inequality constraint, the integer program will pick at least one vertex from each 4-cycle. Thus removing the vertices corresponding to $x^* = 1$ will remove all the 4-cycles. Therefore we have OPT \leq OPT_{ip}. On the other hand, take a minimum set of vertices whose removal kills all the 4-cycles. Setting $x_v = 1$ for these vertices clearly produces a feasible solution for the integer program. Therefore OPT_{ip} \leq OPT.

(b) (5 points) Why does the optimal solution to the following relaxation provides a lower bound for the optimal answer to the above integer linear program? In other words why it is not necessary to have the constraints $x_u \leq 1$ in the relaxation?

$$\begin{array}{ll}
\min & \sum_{v \in V} x_v \\
\text{s.t.} & \sum_{u \in C} x_u \ge 1 \\
& x_u > 0 & \forall u \in V
\end{array}$$

Solution: We claim that in any optimum solution x^* , $x_u^* \leq 1$ for all u. Suppose there exists some u such that $x_u^* > 1$. Round down the value of this variable to 1. Note that all the inequality constraints will still be satisfied. So we still have a feasible solution. On the other hand, the optimum value will go down, which is a contradiction.

(c) (10 points) Give a simple 4-factor approximation algorithm for the problem based on rounding the solution to the above linear program.

Solution: As before, let x^* be the optimum solution. The rounding is as follows. If $x_u^* \geq 1/4$, set $x_u^* = 1$, otherwise set $x_u^* = 0$. First let's check that we get a feasible solution to our problem. In each inequality constraint, it must be the case that at least one of the variables has value $\geq 1/4$. Thus in our rounded solution, we pick at least one vertex from each 4-cycle. So we kill all the 4-cycles as required. Let OPT* be the optimum for the linear program, let OPT be the optimum for the original problem and let A be the value obtained by rounding the optimum of the linear program. Clearly OPT* \leq OPT. Also, by our rounding scheme, we have $A \leq 4$ OPT*. Thus, $A \leq 4$ OPT, i.e. our solution is within a factor 4 of the optimum.

- (d) (15 points) Let L and R denote the set of the vertices in the two parts of the bipartite graph. (Every edge has one endpoint in L and one endpoint in R). Let x^* denote an optimal solution to the linear program in Part (b). We round x^* in the following way: For every $u \in V$,
 - if $u \in R$ and $x_u^* \ge 1/2$, set $\widehat{x}_u = 1$.
 - if $u \in L$ and $x_u^* > 0$, set $\widehat{x}_u = 1$.
 - Otherwise set $\hat{x}_u = 0$.

Show that \hat{x} is a feasible solution to the integer linear program.

Solution: Observe that each 4-cycle contains two vertices from L and two vertices from R. Consider an inequality constraint of the linear program (so we are considering a fixed 4-cycle). If $x_u^* > 0$ for one of the two vertices in L, \hat{x}_u will be set to 1 and therefore this inequality will be satisfied. On the other hand, if $x_u^* = 0$ for both vertices in L, then it must be the case that $x_v^* \geq 1/2$ for one of the vertices in R. Thus this vertex will be rounded to 1 and the inequality will be satisfied.

(e) (10 points) Consider the dual of the relaxation:

$$\begin{array}{ll} \max & \sum_{C \in \mathcal{C}_4} \ y_C \\ \text{s.t.} & \sum_{C \in \mathcal{C}_4, u \in C} \ y_C \leq 1 \\ & y_C \geq 0 \end{array} \qquad \forall u \in V \\ \forall C \in \mathcal{C}_4$$

and let y^* be an optimal solution to the dual. Use the complementary slackness to prove the following statement: For every $C \in \mathcal{C}_4$ either we have $|\{u : \widehat{x}_u = 1\}| \leq 3$ or $y_C^* = 0$.

Solution: Suppose $|\{u: \widehat{x}_u = 1\}| > 3$. Then all the variables for that cycle must be rounded to 1. For that to happen, it must be that $x_u^* \ge 1/2$ for the vertices in R and $x_u^* > 0$ for the vertices in L. Thus, we must have $\sum_{u \in C} x_u^* > 1$, i.e. the constraint is not tight. By complementary slackness, this means $y_C^* = 0$.

(f) (10 points) Use the complementary slackness and the previous parts to show that our rounding algorithm is a 3-factor approximation algorithm.

Solution: As mentioned before, we have $\sum_{u \in V} x_u^* = \text{OPT}^* \leq \text{OPT}$. Thus, we are done once we show

$$\sum_{u \in V} \widehat{x}_u \le 3 \text{OPT}^*.$$

Note that if $\hat{x}_u = 1$, $x_u^* > 0$. Therefore, by complementary slackness, $\sum_{C \in \mathcal{C}_4, u \in C} y_C^* = 1$. The variables \hat{x}_u are 0/1 valued, so we can write

$$\sum_{u \in V} \widehat{x}_u = \sum_{u \in V} \widehat{x}_u \sum_{C \in \mathcal{C}_4, u \in C} y_C^* = \sum_{u \in V} \sum_{C \in \mathcal{C}_4, u \in C} \widehat{x}_u y_C^*.$$

We now change the order of the sums and get

$$\sum_{u \in V} \sum_{C \in \mathcal{C}_4, u \in C} \widehat{x}_u y_C^* = \sum_{C \in \mathcal{C}_4} \sum_{u \in C} \widehat{x}_u y_C^* = \sum_{C \in \mathcal{C}_4} y_C^* \sum_{u \in C} \widehat{x}_u.$$

From part (e) of the question, we know that if $y_C^* \neq 0$, then $\sum_{u \in C} \hat{x}_u \leq 3$. Therefore the above quantity can be upper bounded by $3\sum_{C \in \mathcal{C}_4} y_C^* = 3\text{OPT}^*$ (the equality follows from duality). Putting things together, we have shown

$$\sum_{u \in V} \widehat{x}_u \le 3\mathrm{OPT}^*$$

as required.