Physics-based Visual Characterization of Molecular Interaction Forces

P. Hermosilla^{1,2}, J. Estrada², V. Guallar², T. Ropinski³, A. Vinacua¹, P-P. Vazquez¹

1 – ViVIG (Barcelona)

2 – Barcelona Supercomputing Center (Barcelona)

3 - Visual Computing Group (Ulm)

• Why?

Pere-Pau Vázquez – ViRVIG Group, UPC - pere.pau@cs.upc.edu

- Molecular dynamics simulations
 - Generate data to predict drug behavior
 - Previous to real experimentation
 - Helps understanding molecular interactions
- Limited
 - Time, visualized features...

- Commonly analyzed scenarios
 - Static frames
 - Only atom-atom interaction
- Desired scenarios
 - Residue-based analysis
 - Visual communication
 - Fast interaction & inspection
- We have you covered!

Physics-based Visual Characterization of Molecular Interaction Forces

Goals & requirements

- Realtime visual analysis of interaction energies
 - Full pathway simulation
 - Explorative analysis
 - Individual energies
 - Distance & energy filtering

Goals & requirements

- Example questions to be answered
 - Q1: Which are the most active groups in the interactions between molecules?
 - Q2: Which are the most powerful binding energy components at a certain simulation configuration?
 - Q3: Is the proximity of the drug causing instability in any residue of the protein?
 - Q4: Is the ligand solvation force favoring or rejecting binding?
 - Q5: Which residues (if any) prevent drug delivery?

Outline

- Previous work
- Overview of the application
- Features
- Implementation
- Results & Conclusions

Previous Work

- Limitations of existing software
 - Single visualization
 - Single frame analysis

Maestro

- Not interactive
- Only limited to close-view visualizations/interactions

ASP HIP 48 28 30

CYS 45

CYS 45

PHE 5

TYR 64

CYS 29

ILE 9

REP 19

PHE 101

ALA 23

PLIP

Overview

Pere-Pau Vázquez – ViRVIG Group, UPC - pere.pau@cs.upc.edu

Pere-Pau Vázquez – ViRVIG Group, UPC - pere.pau@cs.upc.edu

Pere-Pau Vázquez – ViRVIG Group, UPC - pere.pau@cs.upc.edu

Pere-Pau Vázquez – ViRVIG Group, UPC - pere.pau@cs.upc.edu

- Visual illustration of energies
- Visual illustration of energies
 - Type, strength & direction
 - Color
 - Cone size
 - Cone orientation

Energy codings

- Visual illustration of energies
 - Type, strength & direction
 - Both in the 3D & 2D views
 - Individually toggle on/off
 - Different rendering modes
 - Provide room for energy coding

- Context
 - Clipping plane
 - Semi-transparent visualization of the molecule
 - Different rendering types (space-filling, ball & sticks, licorice...)
- Selection
 - Residues

- Initial exploration → Energy filtering to under -5kcal/mol
 - [Solves Q1]

Details on demand

- Abstract view
 - Provides details on residues
 - Linked view
 - Coordinated with frame step

Application workflow

- Energy model: $\Delta G_{bind} = E_{VDW} + E_{ele} + \Delta G_{sol}$
 - $E_{VDW} \rightarrow O(n)$
 - $E_{ele} \rightarrow O(n)$
 - $\Delta_{Gsol} \rightarrow O(n^2)$

- Calculation
 - $\Delta_{Gsol} \rightarrow$ Compute shader
 - Each thread computes 16 interactions
 - E_{VDW} and $E_{ele} \rightarrow$ Compute shader
 - Each thread computes the interaction between ligand and atom group
 - More than 20 times per second for molecules up to 18k atoms (GTX 980)

- Filtering:
 - Energy types
 - Distance range [d_{min}, d_{Max}]
 - Energy range $[-\infty$, emin-] $[eMin+, +\infty]$

- Abstract view. Algorithm:
 - Calculate projection plane
 - Determine number of active groups
 - Divide plane around ligand in sectors
 - Project atom groups onto the plane and sort them clockwise
 - Render the groups in the sectors

• All groups are rendered maximizing their projected area (PCA)

- Single conformation analysis
 - Binding energy analysis
 - [Solves Q2]

- Single conformation analysis
 - Hypothesis testing: Palmitate's solvation term, when inside the protein, indicates that, contrary to the hypothesis, it does not favor binding.
 - Note the high energy value color coded in its silhouette
 - Being a fatty molecule, the expected value would be low (grey)

- Trajectory analysis
 - Using the abstract view
 - Evaluates stability
 - [Solves Q2]

- Trajectory analysis
 - Close-view binding energy analysis
 - Identifies strong interactions
 - [Solves Q2]

- Trajectory analysis
 - Filter by distances
 - Distant interactions identification

Evaluation

- Shown to two different experts (protein engineering and computer aided drug design)
 - Very useful
 - Suitable for protein engineering tasks
 - Could be used for enzyme engineering
 - Data presentation
 - "Very intuitive"
 - Semi-transparent context "very interesting"
 - Cones permit easy identification of interaction forces and direction

Conclusions & Future Work

- New visualization application for binding forces analysis
 - Residue-level
- Facilitates gaining understanding on docking simulations
 - Explanations on the interacting residues
- Identifies strong actors
- Identifies distant binding energies

Conclusions & Future Work

- Support full interactive analysis
 - In contrast to Maestro or PLIP
- Show full path
 - Other tools only single steps
- Linked views provides 2D and 3D visualizations at the same time

Physics-based Visual Characterization of Molecular Interaction Forces

P. Hermosilla^{1,2}, J. Estrada², V. Guallar², T. Ropinski³, A. Vinacua¹, P-P. Vazquez¹

1 - ViVIG (Barcelona)

2 - Barcelona Supercomputing Center (Barcelona)

3 – Visual Computing Group (Ulm)

