지도학습: 회귀분석

홍익 대학교 Hyun-Sun Ryu

머신러닝의 종류

머신러닝의 종류

온도	판매량
20	40
21	42
22	44

나이	생존
12	0
35	Х
69	0

(Categorical Data)

분류 ^{이중분류} classification

지도학습

- 과거의 데이터로부터 학습해서 결과를 예측하는 데 주로 사용
- 제시된 데이터를 보면 온도와 아이스크림 판매량은 원인과 결과로 맺어짐.
- 우리가 예측하고 싶은 데이터는 4월 6일의 아이스크림 판매량
- 과거의 데이터(4월 1일~4월 5일)를 활용하여 온도가 25도라고 예측된 4월 6일의 아이스 크림 판매량을 예측

날짜	온도	아이스크림 판매량	
2021. 4. 1.	20	60	
2021. 4. 2.	21	63	
2021. 4. 3.	22	66	〉 과거의 데이터
2021. 4. 4.	23	69	_1 0 -1
2021. 4. 5.	24	72	\mathcal{V}
2021. 4. 6.	25		알고싶은
			┈ 데이터

지도학습

- 알고 싶은 데이터를 추측하기 위해서는 머신러닝의 지도학습이 이용
- 단 종속변수가 **양적 데이터**나 **범주형 데이터**의 형태를 가져야 함.
- 지도학습을 위해서는 충분히 많은 데이터가 필요
- 데이터는 원인이 되는 독립변수와 결과가 되는 종속변수의 구조로 이루어져 함.
- 머신러닝 지도학습을 통해 데이터를 기반으로 모델을 생성
- 예시에 따르면 판매량=(온도)×3이라는 모델을 생성. 제시된 예시는 수가 적지만 생필품 예측, 농산물 예측 등 큰 데이터를 기반으로 했을때 사람이 계산을 통해 예측하는 것은 불가능
- 따라서 컴퓨터를 활용해 이를 예측하는 것이 매우 중요함

■ Data 파일: 판매량 데이터.xlsx

- 데이터 Column별 type과 role을 설정
- type은 날짜의 경우 datetime, 온도는 numeric, 판매량은 numeric, 요일은 text
- 온도에 따른 판매량을 알기위함 이므로 판매량은 target, 온도는 feature로
 설정

- 날짜의 경우 target에 영향을 주는 요 인은 아니지만 날짜별 파악을 하면 좋기 때문에 참고할 사항인 meta로 설정
- 요일의 경우 target에 영향을 주지 않을 뿐더러 굳이 필요없는 내용이므로 skip

- Data table 추가
- 판매량은 회색 음영, meta데이터는 노란색 음영, 요일은 빠진것을 확인

- 기존 데이터와 Linear Regression 위젯을 연결한다는 것은 Linear Regression이라는 학습 방법으로 파일의 데이터를 학습하여 모델을 만드는 것
- 기존 데이터에 따르면 y=3x라는 모델을 만들어내는 것

- 예측하고 싶은 데이터를 추가 하도록 합니다. 파일 위젯을 불러와 데이터를 업로드
- 예측하고 싶은 데이터의 type
 과 role을 설정합니다. 이 데
 이터에는 판매량(target)이 없
 는 것 확인

? 🗎 | 🗗 7

Reload

위젯	설명	입력	출력
	입력 데이터 세트에 대한 모델의 예측값을	Data	Predictors, Predictions,
Predictions	표시한다.		Evaluation results

- Predictions 위젯은 데이터 세트와 하나 이상의 예측 변수(알고리즘이 아닌 예측 모델)를 수신하여 데이터와 예측을 출력
- Predictions 위젯은 예측 모델의 확률과 최종 결정을 보여줌.

- Linear Regession을 활용해 모델을 생성했고 이에 따라 예측하고 싶은 새로운 데이터가 있음.
- 이를 예측하기 위해서는 Predictions위젯이 필요.
- 왼쪽 Evaluate 메뉴에서
 Predictions 위젯을 클릭하거나
 드래그&드랍

- Predictions 위젯은 두 가지가 필요
- 첫째, Linear Regression 모델이 필요
- 둘째, 예측하고 싶은 데이터가 필요
- 셋째, 이 두가지를 연결

■ 예측한 내용을 확인하기 위해 Predictions위젯을 더블클릭

- 결과를 시각적으로 확인하기 위해서 Scatter Plot위젯을 추가
- x축에는 온도를 설정하고 y축에는 Linear Regression값을 설정하여 분포를 확인

회귀분석(Regression)

머신러닝의 종류

회귀분석

- 회귀(Regression)란 말은 다시 돌아간다는 뜻으로, 평균으로 돌아간다는 뜻
- 통계학에서 사용하는 자료 분석 방법 중 하나
- 주어진 자료들이 특정한 경향성을 띠고 있다는 아이디어로부터 출발
- 여러 자료들 간의 관계성을 수학적으로 추정하고 이를 설명
- 어떤 변수들이 한 변수의 원인이 되는지 분석하는 방법
- 원인으로 작용하는 변수를 독립변수(X)라고 하며, **결과**로 나타나는 변수를 **종속변수(Y)**
- 일반적으로 '통계의 꽃'이라고 불림.

머신러닝의 종류

온도	판매량
20	40
21	42
22	44

나이	생존
12	0
35	Х
69	0

(Categorical Data)

분류 classification

회귀분석

단순회귀분석, 다중회귀분석

- 단순회귀분석은 원인이 되는 변수가 1개일 때 임. 즉 X1만 원인의 결과로 Y가 나타남.
- 다중회귀분석은 원인이 되는 변수가 2개 이상일 때 임. 즉 X1, X2, X3 등 다양한 원인
 의 결과로 Y가 나타나는 것임

단순, 선형회귀분석

- X축은 제동시점에서의 속도
- Y축은 제동시점부터 자동차가 완전히 멈출 때 까지의 거리
- 다수의 실험을 통한 결과값을 점으로 찍어 산점도(Scatter plot)로 나타냄.

단순, 선형회귀분석

- 모든 점을 동시에 지나는 직선은 존재하지 않음.
- 하지만 변수 간의 관계를 잘 나타낼 수 있는
 직선은 존재
- 실제 값과 예측한 값의 차이가 작은 직선이 분석을 잘 한 직선
- 이 직선을 찾기 위해서 우리는 최소제곱법을
 활용

최소제곱법(Method of least squares)

- 임의의 점을 예시로 들어보자 : 직선식을 f(x)=ax+b라고 가정
- 파란색 선을 따라가보면 실제값은 40이며 예측값은 f(5)
- 값의 차이에 절댓값을 씌움 (예: |40-f(5)|)
- 절댓값을 씌운 값을 '**잔차(residual**)'
- 모든 데이터의 잔차를 구해서 그 값이 가장
 작은 직선이 정확하게 예측한 직선
- 잔차의 합이 최소인 직선을 구함 → 최소제곱법

최소제곱법(Method of least squares)

최소제곱법(Method of least squares)

- 단순히 절댓값만 씌워져 있는 경우 (편)미분을
 적용하기 어려움
- 따라서 잔차의 합이 최소인 것을 구하지 않고잔차의 제곱의 합이 최소인 직선을 구하는 것 ■이 편리
- 이를 최소제곱법
- $(|40-f(x_1)|)^2 + (|40-f(x_2)|)^2 + ... + ...$

- 단순히 절댓값만 씌워져 있는 경우 (편)미분을 적용하기 어려움
- 따라서 잔차의 합이 최소인 것을 구하지 않고 잔차의 제곱의 합이 최소인 직선을 구하는 것 이 편리
- 이를 최소제곱법
- $(|40-f(x_1)|)^2 + (|40-f(x_2)|)^2 + \dots + \dots$

단순, 선형회귀분석

- 회귀식 y=ax+b 의 장점
- 1) 변수간의 인과관계를 정확하게 수학적으로 표현
- 2) 예측 가능성.

산점도에 나타나 있지 않은 값은 알 수 없 으나 대략적으로 추측 가능

단순, 선형회귀분석

- 오렌지3에서 (독립)변수 → Features
- 오렌지3에서 (종속)변수 → Target
- 주어진 데이터의 feature값으로 target을 예측

- 이를 위해서는 직선형태의 회귀선을 구하는 것이 목적이며 선형회귀식은 y=ax+b 의 형태. a는 기울기, b는 절편
- 회귀식을 구하기 위해 사용되는 방법으로 최소제곱법
- 최소제곱법으로 구해진 직선이 우리가 원하는 최종의 회귀분석의 식임.

비선형회귀분석

- 비선형 회귀분석이란 직선이 아닌 그래프로 두 변수 간의 관계를 분석하는 것임.
- 선형회귀분석에 비해 예측이 어려움

다중회귀분석

 MEDV는 해당 지역의 주택 가격의 중앙값을 나타냄. 값이 클수록 비싼 값의 주택이 많이 있음을 추정

	MEDV	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
1	24.0	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
2	21.6	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
3	34.7	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
4	33.4	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
5	36.2	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	3	222	18.7	396.90	5.33
6	28.7	0.02985	0.0	2.18	0	0.4580	6.430	58.7	6.0622	3	222	18.7	394.12	5.21
7	22.9	0.08829	12.5	7.87	0	0.5240	6.012	66.6	5.5605	5	311	15.2	395.60	12.43
8	27.1	0.14455	12.5	7.87	0	0.5240	6.172	96.1	5.9505	5	311	15.2	396.90	19.15
9	16.5	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2	386.63	29.93
10	18.9	0.17004	12.5	7.87	0	0.5240	6.004	85.9	6.5921	5	311	15.2	386.71	17.10
11	15.0	0.22489	12.5	7.87	0	0.5240	6.377	94.3	6.3467	5	311	15.2	392.52	20.45
12	18.9	0.11747	12.5	7.87	0	0.5240	6.009	82.9	6.2267	5	311	15.2	396.90	13.27
13	21.7	0.09378	12.5	7.87	0	0.5240	5.889	39.0	5.4509	5	311	15.2	390.50	15.71
14	20.4	0.62976	0.0	8.14	0	0.5380	5.949	61.8	4.7075	4	307	21.0	396.90	8.26
15	18.2	0.63796	0.0	8.14	0	0.5380	6.096	84.5	4.4619	4	307	21.0	380.02	10.26
16	19.9	0.62739	0.0	8.14	0	0.5380	5.834	56.5	4.4986	4	307	21.0	395.62	8.47
17	23.1	1.05393	0.0	8.14	0	0.5380	5.935	29.3	4.4986	4	307	21.0	386.85	6.58
18	17.5	0.78420	0.0	8.14	0	0.5380	5.990	81.7	4.2579	4	307	21.0	386.75	14.67
19	20.2	0.80271	0.0	8.14	0	0.5380	5.456	36.6	3.7965	4	307	21.0	288.99	11.69
20	18.2	0.72580	0.0	8.14	0	0.5380	5.727	69.5	3.7965	4	307	21.0	390.95	11.28
21	13.6	1.25179	0.0	8.14	0	0.5380	5.570	98.1	3.7979	4	307	21.0	376.57	21.02
22	19.6	0.85204	0.0	8.14	0	0.5380	5.965	89.2	4.0123	4	307	21.0	392.53	13.83
23	15.2	1.23247	0.0	8.14	0	0.5380	6.142	91.7	3.9769	4	307	21.0	396.90	18.72
24	14.5	0.98843	0.0	8.14	0	0.5380	5.813	100.0	4.0952	4	307	21.0	394.54	19.88
25	15.6	0.75026	0.0	8.14	0	0.5380	5.924	94.1	4.3996	4	307	21.0	394.33	16.30
26	13.9	0.84054	0.0	8.14	0	0.5380	5.599	85.7	4.4546	4	307	21.0	303.42	16.51
27	16.6	0.67191	0.0	8.14	0	0.5380	5.813	90.3	4.6820	4	307	21.0	376.88	14.81
28	14.8	0.95577	0.0	8.14	0	0.5380	6.047	88.8	4.4534	4	307	21.0	306.38	17.28
29	18.4	0.77299	0.0	8.14	0	0.5380	6.495	94.4	4.4547	4	307	21.0	387.94	12.80
30	21.0	1.00245	0.0	8.14	0	0.5380	6.674	87.3	4.2390	4	307	21.0	380.23	11.98
31	12.7	1.13081	0.0	8.14	0	0.5380	5.713	94.1	4.2330	4	307	21.0	360.17	22.60
32	14.5	1.35472	0.0	8.14	0	0.5380	6.072	100.0	4.1750	4	307	21.0	376.73	13.04
33	13.2	1.38799	0.0	8.14	0	0.5380	5.950	82.0	3.9900	4	307	21.0	232.60	27.71
34	13.1	1.15172	0.0	8.14		0.5380	5.701	95.0	3.7872	4	307	21.0	358.77	18.35
35	13.5	1.61282	0.0	8.14	0	0.5380	6.096	96.9	3.7598	4	307	21.0	248.31	20.34
36	18.9	0.06417	0.0	5.96	0	0.4990	5.933	68.2	3.3603	5	279	19.2	396.90	9.68
37	20.0	0.09744	0.0	5.96	0	0.4990	5.841	61.4	3.3779	5	279	19.2	377.56	11.41 8.77
38	21.0	0.08014	0.0	5.96	0	0.4990	5.850	41.5	3.9342	5	279	19.2	396.90	
39	24.7	0.17505	0.0	5.96		0.4990	5.966	30.2	3.8473	5	279	19.2	393.43	10.13
40	30.8	0.02763	75.0	2.95	0	0.4280	6.595	21.8	5.4011	3	252	18.3	395.63	4.32

다중회귀분석

- 다중회귀분석은 종속변수에 영향을 주는 독립변수가 여러 개 작용하는 것을 뜻함.
- 예를 들면, $y=ax_1+bx_2+cx_3+...+...$ 와 같이 여러 개의 x변수가 y의 값에 영향을 주는 것
- 다음장에 제시될 표는 보스톤 지역의 집값을 보여주는 데이터
- 각각의 행 하나는 그 지역 하나를 의미
- 각각의 열은 지역의 특성
- 다양한 열들이 영향을 주며 MEDV, 즉 집값을 결정하게 됨

보스턴시 주택가격 데이터

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

보스턴시 주택가격 데이터

[01] CRIM	자치시(town) 별 1인당 범죄율
[02] ZN	25,000 평방피트를 초과하는 거주지역의 비율
[03] INDUS	비소매상업지역이 점유하고 있는 토지의 비율
[04] CHAS	찰스강에 대한 더미변수(강의 경계에 위치한 경우는 1, 아니면 0)
[05] NOX	10ppm 당 농축 일산화질소
[06] RM	주택 1가구당 평균 방의 개수
[07] AGE	1940년 이전에 건축된 소유주택의 비율
[08] DIS	5개의 보스턴 직업센터까지의 접근성 지수
[09] RAD	방사형 도로까지의 접근성 지수
[10] TAX	10,000 달러 당 재산세율
[11] PTRATIO	자치시(town)별 학생/교사 비율
[12] B	1000(Bk-0.63)^2, 여기서 Bk는 자치시별 흑인의 비율을 말함.
[13] LSTAT	모집단의 하위계층의 비율(%)
[14] CAT.MDEV	MDEV가 \$30,000을 넘는지에 대한 변수 (넘는 경우1, 아닌 경우 0)
[15] MEDV	본인 소유의 주택가격(중앙값) (단위: \$1,000)

질문 있나요?

hsryu13@hongik.ac.kr