

ECEN 404 Final Presentation Team 70: VFD Motor Controller

> Mackenzie Miller Andrew Nguyen Aidan Rader Ryan Regan TA: Ali Alenezi

Sponsor: John Lusher

Project Overview

- Problem: Traditional motor control systems cannot adjust to varying load demands, resulting in poor energy efficiency, excessive heat generation, and premature component failure
- Solution: Develop a Variable Frequency Drive (VFD) motor control system to adjust frequency and voltage to load demands

Project Overview – Block Diagram

Integrated System Diagram

Mackenzie Miller

- Completed digital isolation PCB design
- Tested and validated digital isolation circuit –
 3.3V in, 5V out
 - 6 PWM signals 3 phases H and L
- Tested and validated relay signal isolation
- PWM output responds to potentiometer
- Completed analog isolation PCB design
 - Voltage, temperature, and current
- Tested analog isolation 1:1 ratio
- Have yet to fully test feedback

PWM input	PWM output
1H – 3.3V	5V
1L – 3.3V	5V
2H – 3.3V	5V
2L – 3.3V	5V
3H- 3.3V	5V
3L – 3.3V	5V

Mackenzie Miller

Challenges/Solutions

Mackenzie Miller

Challenges:

- Lack of knowledge/experience
 - Altium
 - PCB design
 - Proper testing
- Trace Errors
 - Vcc and GND switched on opamps resulted in voltage drop
 - 3.3V not connected to digital isolators

 Getting all components to work at the same time

Solutions:

- Trial and error, asking questions, learned as time went on
- Rerouted and ordered new board/cut traces and blue
 - Fixed some unrouted capacitors
 - Rearranged connectors for convenience
 - Manually switched Vcc and GND with blue wire
- Replaced parts as needed, once trace errors were fixed, this problem lessened

Andrew Nguyen

- Designed and tested 3.3V buck converter
- Designed and tested AC/DC converter
- Verified that the MCU received 3.3V to all the necessary pins
- Successfully flashed firmware onto PCB using Pickit5
- MCU sends relay signal
- Button turns motor on and off
- MCU sends correct PWM signals
- Potentiometer functions properly

PWM output after flashing code

Andrew Nguyen

Load [mA]	V _{out} [V]
0	3.2993
30	3.2952
50	3.2824
72	3.2812
95	3.2601
122	3.2512
153	3.2243

V _{in} [V]	V _{out} [V]
16.0	3.3003
15.5	3.2997
15.0	3.2997
14.5	3.2995

Buck Converter Line Regulation Test

Buck Converter Load Regulation Test

V _{in} [VAC]	V _{out} [VDC]
118 (wall)	15

AC/DC Converter Test

Challenges/Solutions

Andrew Nguyen

Challenges:

Lack of PCB design knowledge

Flashing the firmware onto the MCU

 Making sure the MCU received 3.3V to all the proper pins

Solutions:

- Researched, worked with team and others, lots of trial and error, asked questions
- Ensured the AVDD pin received 3.3V by rerouting board (originally blue wired) and switched to a new Pickit5 since the Pickit4 was faulty
- Rerouted PCB, adjusted trace widths accordingly for ground and the AC/DC converter and buck converter outputs, changed resistors and capacitors

Aidan Rader

15 V_{DC} to Isolated 15 V_{DC} Converter

V _{in} [V]	V _{in,pp} [mV]	V _{out} [V]	V _{out,pp} [mV]
9.1	200	15.1	400
15.1	500	15.0	400
20.9	500	14.9	400
27.0	500	15.3	500
33.0	578	14.9	264
35.8	503	14.9	264

 $3.3 V_{DC}$ to Isolated $5 V_{DC}$ Converter

V _{in} [V]	V _{in,pp} [mV]	V _{out} [V]	V _{out,pp} [mV]
2.8	500	4.9	500
3.2	500	4.8	500
3.3	500	5.3	500
3.6	500	5.7	500

Aidan Rader

- Diagnostic feedback: voltage, current, temperature, in progress

Rectifier & DC Link

Relay

Power Control

Challenges/Solutions

Aidan Rader

Challenges:

- Lack of knowledge over power electronics
- Lack of knowledge on electronic load testing
- Missing and incorrectly routed traces on original board
- High voltage testing fried rectifier and traces

Solutions:

- Conducted research and registered in ECEN 438 (Power Electronics)
- Conducting research and postponing test
- Designed new board and blue-wired remaining trace errors
- Replaced rectifier and blue-wired traces, worked on high voltage testing with Professor, and pushed high voltage testing to the end of the project

Ryan Regan

- Wrote a C language program in MPLAB X IDE to instruct a dsPIC33CK256MP508 microcontroller as part of a Variable
 - Frequency Drive
 - Three phase PWM signals
 - Oscillating duty cycles
 - Sine wave table
 - Potentiometer
 - Timing
 - Relay start/stop button
 - (In progress) Diagnostic feedback signals
- Learned how to solder and desolder to increase team efficiency

Challenges/Solutions

Ryan Regan

Challenges:

Lack of experience working with MPLAB X
 IDE and C code

- Several varying issues with code
 - Frequency range too low

- Issues with integrations
 - Flashing firmware onto Microcontroller PCB
 - Sending PWM signals through Optoelectronics PCB

Solutions:

- Read through user's manual for development board and microcontroller, and watched instructional videos on people programming similar controllers with MPLAB X IDE
- Debugged and learned more about MPLAB's Code Configurator
 - Put PWM function under a timer interrupt so the print statements would not affect frequency
- Helped teammates with finding problematic components between integrations
- Learned how to solder and desolder to increase efficiency

Integrated System Results

- Motor On/Off LED
- Circuit On/Off LED
- Diagnostic Feedback

On/Off Button

PWM Signals

System Design Changes:

- Removed tachometer
- Added computer/monitor for UART console in diagnostic feedback

Current Status:

- Integration and low voltage testing complete except for diagnostic feedback:
 - diagnostic feedback to be completed by 4/22
- Validation ongoing:
 - to be completed by 4/24
- High voltage testing incomplete:
 - to be completed on 4/24

Paragraph #	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)
FSR 1	$15 V_{DC}$ to Isolated 15 V_{DC} Conversion	Power converters shall convert 15 V_{DC} to isolated 15 V_{DC} .	Apply 15 V_{DC} input using a DC power supply. Verify 15 V_{DC} output using an oscilloscope.	Tested	Aidan
FSR 1	15 V _{DC} to 3.3 V _{DC} Conversion	Power converters shall convert 15 V_{DC} to 3.3 V_{DC} .	Apply 15 V_{DC} input using a DC power supply. Verify 3.3 V_{DC} output using an oscilloscope.	Tested	Drew
FSR 1	3.3 V _{DC} to Isolated 5 V _{DC} Conversion	Power converters shall convert 3.3 V_{DC} to isolated 5 V_{DC} .	Apply $3.3V_{DC}$ input using a DC power supply. Verify $5V_{DC}$ output using an oscilloscope.	Tested	Aidan
FSR 1	Low Voltage Auxiliary Power	System shall convert 15 V_{DC} to isolated 15 V_{DC} , 3.3 V_{DC} , and isolated 5 V_{DC} .	Apply 15 V_{DC} input using a DC power supply. Verify 15 V_{DC} , 3.3 V_{DC} , and 5 V_{DC} outputs using an oscilloscope.	Tested	Mackenzie, Drew, Aidan
FSR 1	120 V _{AC} to 15 V _{DC} Conversion	Power converters shall convert 120 V_{AC} to isolated 15 $V_{\text{DC}}.$	Apply 120 V_{AC} input using a 120 V_{AC} outlet. Verify 15 V_{DC} output using an oscilloscope.	Tested	Drew
FSR 1	120 V _{AC} Auxiliary Power	System shall convert 120 V_{AC} to 15 V_{DC} , isolated 15 V_{DC} , 3.3 V_{DC} , and isolated 5 V_{DC} .	Apply 120 V_{AC} input using a 120 V_{AC} outlet. Verify 15 V_{DC} , 15 V_{DC} , 3.3 V_{DC} , and 5 V_{DC} outputs using an oscilloscope.	Tested	Mackenzie, Drew, Aidan
FSR 1	208 V _{AC} to 15 V _{DC} Conversion	Power converters shall convert 208 V_{AC} to isolated 15 V_{DC} .	Apply 208 V_{AC} input using a 208 V_{AC} outlet. Verify 15 V_{DC} output using an oscilloscope.	Untested	Drew
FSR 1	208 V _{AC} Auxiliary Power	System shall convert 208 V_{AC} to 15 V_{DC} , isolated 15 V_{DC} , 3.3 V_{DC} , and isolated 5 V_{DC} .	Apply 208 V_{AC} input using a 208 V_{AC} outlet. Verify 15 V_{DC} , 15 V_{DC} , 3.3 V_{DC} , and 5 V_{DC} outputs using an oscilloscope.	Untested	Mackenzie, Drew, Aidan
FSR 2	Relay	Relay shall toggle the motor with the relay signal.	Apply 15 V_{DC} coil voltage, 10 V_{DC} contact voltage, and 5 V_{DC} relay signal using a DC power supply. Verify 10 V_{DC} output using an oscilloscope.	Tested	Aidan
FSR 2	Relay Signal Isolation	Digital to power shall convert the relay signal from 3.3 V_{DC} to 5 $V_{\text{DC}}.$	Apply $5 V_{DC}$ supply voltage, $3.3 V_{DC}$ supply voltage, and $3.3 V_{DC}$ relay signal using a DC power supply. Verify $5 V_{DC}$ output using an oscilloscope.	Tested	Mackenzie
FSR 2	Relay Signal Generation	MCU shall toggle the relay signal to 3.3 $\ensuremath{V_{\text{DC}}}$ with the button signal.	Apply 3.3 V_{DC} supply voltage and 3.3 V_{DC} button signal using a DC power supply. Verify 3.3 V_{DC} output using an oscilloscope.	Tested	Drew, Ryan
FSR 2	Button Signal Generation	Button shall toggle the button signal to 3.3 $\ensuremath{V_{DC}}$ with a button press.	Apply 3.3 V_{DC} supply voltage using a DC power supply and initiate a button press. Verify 3.3 V_{DC} output using an oscilloscope.	Tested	Drew
FSR 2	On/Off Button	System shall toggle the motor between on and off state with a button press.	Apply 15 V_{DC} coil voltage, 10 V_{DC} contact voltage, 5 V_{DC} supply voltage, and 3.3 V_{DC} supply voltage using a DC power supply. Initiate one button press and later a second button press. Verify the motor rotates after the first button press and stops after the second button press using a video.	Tested	All

Paragraph #	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)
FSR 3	120 V _{AC} to 112 V _{DC}	Rectifier shall convert 120 V _{AC} to 112 V _{DC} .	Apply 120 V _{AC} input using a 120 V _{AC} outlet. Verify 112 V _{DC} output using an	Tested	Aidan
	Rectification		oscilloscope.		
FSR 3	208 V _{AC} to 296 V _{DC}	Rectifier shall convert 208 V _{AC} to 296 V _{DC} .	Apply 208 V _{AC} input using a 208 V _{AC} outlet. Verify 296 V _{DC} output using an	Untested	Aidan
	Rectification		oscilloscope.		
FSR 4	Power Control	Power control shall invert three high and three low 5 V _{DC} PWM	Apply $40V_{DC}$ bus voltage and $15V_{DC}$ supply voltage using a DC power supply. Apply	Tested	Aidan
		signals into three modified sine waves.	three high and three low 5 V _{DC} PWM signals at 120° phase shifts using a function		
			generator. Verify three modified sine waves at 120° phase shifts using an		
			oscilloscope.		
FSR 4	PWM Signal Isolation	Digital to power shall convert three high and three low PWM signals	Apply isolated 5 V_{DC} supply voltage and 3.3 V_{DC} supply voltage using a DC power	Tested	Mackenzie
	1	from 3.3 V_{DC} to 5 V_{DC} .	supply. Apply three high and three low 3.3 V _{DC} PWM signals at 120° phase shifts		
	1		using a function generator. Verify three high and three low 5 V _{DC} PWM signals at		
			120° phase shifts using an oscilloscope.		
FSR 4	PWM Signal	MCU shall generate three high and three low 3.3 V_{DC} PWM signals	Apply 3.3 V _{DC} supply voltage and 3.3 V _{DC} speed knob signal using a DC power	Tested	Drew, Ryan
	Generation	with the knob signal.	supply. Verify three high and three low 3.3 V _{DC} PWM signals at 120° phase shifts		
			using an oscilloscope.		
FSR 4	Knob Signal	Rotating potentiometer changes frequency to speed up and slow	Oscilloscope each signal output, spin knob and ensure the motor speed varies as	Tested	Drew, Ryan
	Generation	down motor.	expected.		
FSR 4	Low Voltage PWM	System shall change the motor speed with the knob signal.	Apply 40 V _{DC} bus voltage, 15 V _{DC} supply voltage, isolated 5 V _{DC} supply voltage and	Tested	All
	Control		3.3 V _{DC} supply voltage using a DC power supply. Verify the motor rotates at a		
			different speed after a knob turn using a video.		
FSR 4	112 V _{DC} PWM	System shall change the motor speed with the knob signal.	Apply 112 V_{DC} bus voltage, 15 V_{DC} supply voltage, isolated 5 V_{DC} supply voltage and	Untested	All
	Control		3.3 V _{DC} supply voltage using a DC power supply. Verify the motor rotates at a		
	1		different speed after a knob turn using a video.		
FSR 4	296 V _{DC} PWM	System shall change the motor speed with the knob signal.	Apply 296 V _{DC} bus voltage, 15 V _{DC} supply voltage, isolated 5 V _{DC} supply voltage and	Untested	All
	Control		3.3 V _{DC} supply voltage using a DC power supply. Verify the motor rotates at a		
			different speed after a knob turn using a video.		

Paragraph #	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)		
FSR 5	Motor On/Off Signal Generation	MCU shall toggle the motor on/off LED signal to 3.3 $\mbox{V}_{\mbox{\scriptsize DC}}$ with the button signal.	Directly inject 15V to board and use multimeter at the VDD pins on MCU.	Tested	Drew, Ryan		
FSR 5	Motor On/Off LED	System shall toggle the motor on/off LED between on and off states with the motor on/off signal.	Directly inject 15V to board, then press relay toggle button and ensure the second LED toggles.	Tested	Drew, Ryan		
FSR 6		MCU shall toggle the circuit on/off LED signal to 3.3 $\mbox{V}_{\mbox{\scriptsize DC}}$ when the board receives power.	Directly inject 15V to board and use multimeter at the VDD pins on MCU.	Tested	Drew, Ryan		
FSR 6	Circuit On/Off LED	System shall toggle the circuit on/off LED when the board is connected to power with the circuit on/off signal	Directly inject 15V to board and ensure the first LED turns on.	Tested	Drew, Ryan		
FSR 7	Computer Display	MCU will display diagnostic feedback information to the UART console on a computer running MPLAB X IDE.	Connect system to MPLAB X IDE using a laptop and USB-UART cable. Verify diagnostic print statements are being output to UART console.	Untested	Drew, Ryan		
FSR 7		Diagnostic feedback circuit shall convert the voltage, current, and temperature feedback signals from 60 VDC to 20 VDC.	Apply 15 VDC supply voltage, isolated 15 VDC supply voltage, and three 60 VDC feedback signals using a DC power supply. Verify three 15 VDC outputs using an oscilloscope.	Untested	Mackenzie		
FSR 7	Diagnostic Feedback Signal Generation	Power Control shall generate 60 V _{DC} voltage, current, and temperature feedback signals.	Apply $40 V_{DC}$ bus voltage and $15 V_{DC}$ supply voltage using a DC power supply. Apply three high and three low $5 V_{DC}$ PWM signals at 120° phase shifts using a function generator. Verify three $60 V_{DC}$ outputs using an oscilloscope.	Untested	Aidan		
FSR 7		System shall send the voltage, current, and temperature signals to the computer display.	Each feedback signal will be verified through the UART console output.	Untested	All		

Thank you