Tubular Data Science Coding Test

answered by Tiecheng Zhou

Note: I'm analyzing the first 60,000 lines from animals_comments.csv, \sim 25,000 users, in order to speed-up my model-fit. The codes should work with the whole dataset.

Step1: Identify Cat And Dog Owners

My code: step1.py

Description:

This code is to identify cat/dog owner based on whether or not the keywords (string) "dog", "pup", "cat", "kitten" are mentioned in the user's comment. If these keywords are mentioned in a comment, this comment will be regarded as an evidence that supports the user being a cat/dog owner.

Results:

This step will produce a "dog_owner" tag and "cat_owner" tag for each userid.

Step2: Build And Evaluate Classifiers

My code: step2.py

Description:

This code is to build cat_owner_classifier, and dog_owner_classifier. I'm using "LogisticRegression" for classification (binary classification, i.e. a user is either being a cat owner or not).

Featue: "all-the-comments", which is a combination of all the comments that a user has made. It will be tokenized using "RegexTokenizer" and transformed using "CountVectorizer".

Label: cat_owner_tag or dog_owner_tag from step1_output.

Cross validation: I'm using brute-force hyperparameter optimizing:

$$J(w) = \sum (y - f_w(x)^2 + \alpha(\lambda ||w||_1) + (1 - \alpha)(\frac{\lambda}{2} ||w||_2^2)$$

with $\alpha \in \{0.0, 0.5, 1.0\}$ and $\lambda \in \{0.0, 0.5, 1.0\}$. The best-model for dog classifier has $\{\alpha = 0.5, \lambda = 0.0\}$, while it has $\{\alpha = 0.0, \lambda = 0.0\}$ for cat-classifier.

The performances of the classifiers are measured by two ways: (1) from "BinaryClassificationEvaluator", and (2) from true-positive-rate (TPR) and true-negative-rate (TNR). The best-classifiers are saved for later use.

Results:

The dog owner classifier has better performance in terms based on the evaluator.

Performance	Dog_owner_classifier	Cat_owner_classifier
evaluator	0.949505	0.754067
TPR	0.116031	0.599631
TNP	0.998182	0.956761

Step3: Classify All The Users

My code: step3.py

Description:

This code is to estimate all the users who are cat/dog owners (I used 25,000 users). The pipeline and model is read from step2 output.

Fraction: The fraction is calculated as the count of cat/dog owners predicted by the mode divided by the total number of users.

Results:

Here I calculate the fraction from the classifier (model from step2), and compare it with that from direct string search (step1). %step2 is smaller than %step1, which is consistent with the small TPR value above.

	Dog-owner users	Cat-owner users
%users_by_step2	2.515 %	7.337 %
%users_by_step1	8.296 %	6.962 %

Step4: Extract Insights About Cat And Dog Owners

My code: step4.py

Description:

I'm selecting keywords with highest coefficients in the model. Based on the "LogisticRegression", i.e. the logistic function: $y = f_w(x) = \frac{1}{1 + e^{-b - w^T x}}$, it can be seen that a big weight-coefficient w will make the corresponding x more important to the prediction of y. When "countVectorizer" is used in my model, all the x are positive or zero, therefore the larger w is, the more important x is. Thus, I read the coefficients from the model, find the largest one (or ones) and get the corresponding keyword (it is saved to a log file: log.step4), which are listed below.

Results:

For dog-owners, the keyword "frapupccino" is important in their comments, i.e. dog-owners may like frapupccino.

	Dog_owner_classifier		Cat_owner_classifier		
	Coefficient	keywords	Coefficient	keywords	
Most- important	1.575189	"frapupccino"	311.9308	"hampster", "amazons", "fahaka", "mist", "cories", "codepasses", "aquaclear20", "sanding", "501", "notificationstarts", "stratum", "antifungal", "aq20", "hairgrass",	
Compare	0.358228	"dog"	41.17992	"cat"	
	0.431717	"pup"	67.55490	"kitten"	

Step5: Identify Creators With Cat And Dog Owners In The Audience

My code: step5.py

Description:

I'm using the prediction of cat/dog owners from step3, and combine it with the dataset. Then I group by the "creator_name", and collect the number_of_users, number_of_cat_owner_users, number_of_dog_owner_users, and the associated fractions. I save these as csv files in step5_xx folders.

Results:

There are many creators that has the highest percentage of cat/dog owners, when there is only 1 audience (here I only list three, the actual list can be folder in the folders)

Top 3 creators that has the most dog_owner audience

Creator_name	N_{dog_owner}	N_{cat_owner}	N _{audience}	f _{dog_owner}	f_{cat_owner}
"The Dodo"	170	198	1577	0.1078	0.1256
"Brave Wilderness"	110	395	6678	0.0164	0.0591
"Hope For Paws –	93	96	935	0.0994	0.1027
Official Rescue					
Channel"					

Top 3 creators that has the highest percentage of dog_owner audience

			<u> </u>		
Creator_name	N_{dog_owner}	N_{cat_owner}	N _{audience}	f_{dog_owner}	f_{cat_owner}
"Ashley Siemon"	1	0	1	1.00	0.00
"Ty The Dog Guy"	1	0	1	1.00	0.00
"Pams Dog	1	1	1	1.00	0.00
Academy"					

Top 3 creators that has the most cat owner audience

Creator_name	N_{dog_owner}	N_{cat_owner}	N _{audience}	f_{dog_owner}	f_{cat_owner}
"Brave Wilderness"	110	395	6678	0.01647	0.05915
"Robin Seplut"	33	222	433	0.07621	0.51270
"The Dodo"	170	198	1577	0.1078	0.1256

Top 3 creators that has the highest percentage of cat_owner audience

Creator_name	N_{dog_owner}	N_{cat_owner}	N _{audience}	f _{dog_owner}	f_{cat_owner}
"D.J. Russ teh Chuck	0	1	1	0.00	1.00
E Cheese Thingy"					
"ADGVibe"	0	1	1	0.00	1.00
"Robert Giroux"	0	1	1	0.00	1.00