Unidade 03 Distâncias

Prof. Ricardo Moraes

Universidade Federal de Santa Catarina

м

O que é Distância?

- Dados dois vértices v e w pertencentes ao grafo G(V,A) denomina-se distância, entre v e w, ao comprimento do menor caminho entre esses dois vértices.
 - □ No caso da não existência desse caminho, considera-se a distância infinita.

Será usado d(v,w) como notação de distância entre os vértices v e w.

Assim, a distância é uma métrica.

м

Conceitos

Excentricidade (afastamento)

□ Denotado por e(v), de um vértice v é a máxima das distâncias d(v,u), isto é, e(v) = max d(v,u).

Raio

□ denotado por r(G) de um grafo G é o min e(v)

Centro

□ de um grafo G é definido pelo conjunto de vértices v tais que e(v) = r(G)

Localização do Centro de Emergência

O interesse é determinar o centro de um grafo de tal modo que o tempo de ida e volta seja mínimo (é o caso da localização de hospitais, polícia, bombeiros, servidores de uma rede, etc);

 Determinar o Centro de emergência do grafo ao lado.

Passos:

- Construir a matriz de distâncias do grafo D(G);
- Determinar o centro de emergência localizando a excentricidade de D(G) + D(G)^T;

Localização do Centro de Emergência (Exemplo 01)

- Onde e_s e e_r é a excentricidade da saída e retorno respectivamente.
 - Dada pela distância máxima do vértice em questão.
- * valores e mínimos.

Localização do Centro de Emergência (Exemplo 01)

 Logo, o centro de emergência é determinado através de D(G) + D(G)^T

		x1	x2	x3	x4	x5	x6
	x1	0	3	4	3	2	1
	x2	1	0	3	2	1	2
	x3	2	1	0	2	1	3
$D(G)^{T} =$	x4	3	2	1	0	2	4
	x5	2	1	2	1	0	3
	x6	3	2	3	2	1	0

Localização do Centro de Emergência (Exemplo 01)

- Logo, o raio de G é 4 (r(G) de um grafo G é o min e(v))
- Centro de emergência de G é formado pelo conjunto {x2, x5}, pois pela definição de centro, temos que o centro de G é definido pelo conjunto de vértices v tais que e(v) = r(G).

Exercício 13

Ache o centro do grafo, onde os custos das arestas são mostrados na mesma.

