Chapitre 1 : Étude de suites

Suites définies par une relation de récurrence

Soit f une fonction définie sur un intervalle I à valeurs réelles. On s'intéresse aux suites définies par la relation de récurrence

$$\begin{cases} u_0 \in \mathbf{I} \\ u_{n+1} = f(u_n) \end{cases}$$

Dans les sujets de concours, l'étude est toujours guidée et suit à peu près toujours le même plan :

- 1. Étudier la fonction f (faire son tableau de variation).
- 2. Vérifier que la suite est bien définie.
 - → Cela signifie vérifier que tous les termes de la suite peuvent être calculés ou, plus précisément que pour tout $n \in \mathbb{N}$, u_n appartient bien à l'ensemble de définition de f.

	_
Exemple	1

La suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 = -\frac{1}{2}$ et $u_{n+1} = 1 + \frac{1}{u_n}$ est-elle bien définie?

 \hookrightarrow En général, pour montrer que $(u_n)_{n\in\mathbb{N}}$ est bien définie, on procède par récurrence.

Remarque 1

- (a) Si J est un intervalle inclus dans l'ensemble de définition de f tel que $f(J) \subset J$ et $u_0 \in J$ alors on montre par récurrence que $\forall n \in \mathbb{N}$, $u_n \in J$. Un tel intervalle est appelé un intervalle **stable par** f.
- (b) En général dans les concours, l'intervalle stable vous est donné et on vous demande de vérifier que tous les termes de la suites sont dedans (par récurrence).

Exemple 2

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0 = 1$ et

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n}.$$

(a) Montrons par récurrence la propriété suivante : « pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n > 0$ ».

(b)	Dans l'hérédité, on a utilisé le fait que si $u_n > 0$ alors
Test 1 (Voir la	solution.)
	$t_{\rm EN}$ la suite définie par $u_0=\frac{1}{2}$ et
	-
	$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2 - u_n}.$
(a)	Montrer que la fonction f définie sur [0,1] par :
	$\forall x \in [0,1], \ f(x) = \frac{x}{2-x}$
	est strictement croissante.
(b)	En déduire que, $\forall n \in \mathbb{N}$, u_n est bien défini et $0 < u_n < 1$.
	Que peut-on dire de l'intervalle]0,1[?
Étudier la mo	notonie de $(u_n)_{n\in\mathbb{N}}$
valle stab	1 : si f est croissante sur un intervalle J qui contient tous les termes de la suite $(u_n)_{n\in\mathbb{N}}$ (un interble contenant u_0 par exemple), on montre par récurrence que $(u_n)_{n\in\mathbb{N}}$ est monotone : si $u_0 < u_1$ roissante et si $u_1 < u_0$ elle est décroissante.
Exemple 3	
	$_{\mathbb{N}}$ la suite définie par $u_0=\frac{1}{2}$ et
	$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2 - u_n}.$
On note f	
On note j	la fonction définie sur [0,1] par :
	$\forall x \in [0,1], \ f(x) = \frac{x}{2-x}.$
D'anrès le	test 1, f est strictement croissante et pour tout $n \in \mathbb{N}$, u_n est défini et $u_n \in]0,1[$.
	que $(u_n)_{n\in\mathbb{N}}$ est décroissante et pour tout $n\in\mathbb{N}$, u_n est defini et $u_n\in\mathbb{N}$, \mathbb{I} .
	par récurrence la propriété suivante : « pour tout $n \in \mathbb{N}$, $u_{n+1} < u_n$ ».
Remarque 2	

Quand f est décroissante, la suie $(u_n)_{n\in\mathbb{N}}$ n'est pas monotone en général! Cependant on peut montrer que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones de sens de variation contraires (Hors-programme).

	ar que $\forall x \in]0,1[,\ f(x)-x<0.$ $\text{uire que la suite } (u_n)_{n\in\mathbb{N}} \text{ est décroissante.}$
(b) En dédu	uire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
(b) En dédu	uire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
(b) En dédu	uire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
(b) En dédu	uire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
(b) En dédu	uire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
(b) En dédu	uire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
(b) En dédu	uire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
Étudier la convergence	e
Lituator in convergence	
Définition 1 (Poi	int fixe d'une application)
Call f. E. E.	e application d'un ensemble E dans lui-même et soit $\ell \in E$. On dit que ℓ est un point

 \hookrightarrow *Méthode 2*: étudier le signe de $g: x \mapsto f(x) - x$ permet de trouver la monotonie de $(u_n)_{n \in \mathbb{N}}$ car $u_{n+1} - u_n =$

Théorème 1

Soit f une fonction définie sur un intervalle I, à valeurs réelles et on considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence

$$\begin{cases}
 u_0 \in I \\
 u_{n+1} = f(u_n)
\end{cases}$$

Si $(u_n)_{n\in\mathbb{N}}$ converge vers un réel $\ell\in I$ et si f est continue en ℓ alors ℓ est un point fixe de f. En particulier, si f est continue sur I et que $(u_n)_{n\in\mathbb{N}}$ converge vers un réel $\ell\in I$, ℓ est nécessairement un point fixe de f.

- \hookrightarrow Si f est continue, pour déterminer les éventuelles limites (finies), on cherche donc les points fixes de f soit en résolvant l'équation f(x) = x par une méthode directe, soit en étudiant la fonction $x \mapsto f(x) x$ (on pourra penser à utiliser le théorème des valeurs intermédiaires ou de la bijection).
- → À ce stade on ne sait toujours pas si la suite converge.
- → Si on sait que la suite est monotone et majorée/minorée, on peut utiliser le théorème de convergence monotone pour justifier l'existence de la limite. Si f possède plusieurs points fixes, il faut alors identifier lequel est la limite.
- \hookrightarrow Dans certains cas, on peut montrer que $(u_n)_{n\in\mathbb{N}}$ diverge en montrant que f n'a pas de point fixe ou qu'il est impossible que la suite convergence vers les éventuels points fixes identifiés .

3

Exe

mple 5	
On repren	d toujours le même exemple.
(a)	Déterminer les points fixes de f .
(b)	Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et identifier sa limite.

5. Étudier la convergence à l'aide de l'inégalité des accroissements finis : on peut parfois obtenir la convergence de $(u_n)_{n\in\mathbb{N}}$ à l'aide de l'inégalité des accroissements finis :

Théorème 2 (Inégalité des accroissements finis v2)

Soient a < b deux réels et f une fonction continue sur I = [a, b] et dérivable sur a < b. Supposons qu'il existe un réel k tel que $\forall u \in]a, b[, |f'(u)| \leq k$. Alors

$$\forall (x, y) \in \mathbf{I}^2 \quad |f(x) - f(y)| \le k|x - y|.$$

→ Si f vérifie les hypothèses de ce théorème sur un intervalle J contenant tous les termes de la suite et que $\ell \in J$ est un point fixe de f alors :

$$|u_{n+1} - \ell| = |f(u_n) - f(\ell)| \le k|u_n - \ell|.$$

On montre alors par récurrence que

$$\forall n \in \mathbb{N}, |u_n - \ell| \leq k^n |u_0 - \ell|.$$

Si |k| < 1, on en déduit par le théorème d'encadrement que $(u_n)_{n \in \mathbb{N}}$ converge vers ℓ .

Test 2 (Voir la solution.)

Soit f la fonction définie sur $[-1, +\infty[$ par

$$\forall x \in [-1, +\infty[f(x) = \sqrt{x+1}.$$

- (a) Déterminer les points fixes de f. Montrer que f possède un unique point fixe dans [0,2] que l'on notera ℓ .
- (b) Justifier que f est dérivable sur $]-1,+\infty[$ et que $\forall x \in [0,2], |f'(x)| \le \frac{1}{2}.$
- (c) Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par la relation de récurrence

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

i. Montrer que $\forall n \in \mathbb{N}$, u_n est bien défini et $u_n \in [0,2]$.

- ii. Montrer que $\forall n \in \mathbb{N}$, $|u_{n+1} \ell| \leq \frac{1}{2} |u_n \ell|$.
- iii. Montrer que $\forall n \in \mathbb{N}$, $|u_n \ell| \le \left(\frac{1}{2}\right)^n |u_0 \ell| \le \left(\frac{1}{2}\right)^{n-1}$ et en déduire la convergence de la suite.
- i. Écrire une fonction Scilab d'en-tête function u = suite(n) qui, prenant en argument un entier n, renvoie la valeur de un.
 - ii. Écrire un programme Scilab prenant en argument un réel epsilon et renvoyant une valeur approchée de ℓ à epsilon près.

Suites définies implicitement

Cette partie n'est pas officiellement au programme mais les suites définies implicitement font souvent l'objet d'un exercice dans les écrits de concours.

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite définie implicitement lorsque son terme général n'est pas donné sous forme explicite mais comme solution d'une équation. Dans les énoncés, on rencontre en général deux types de suites définies implicitement.

- 1. « Soit f une fonction définie sur un intervalle I à valeur dans \mathbb{R} . Montrer que $\forall n \in \mathbb{N}$, l'équation f(x) = n admet une unique solution u_n .»
 - \bullet En général, f est strictement monotone (éventuellement en restriction à un sous-intervalle). Pour justifier l'existence de $(u_n)_{n\in\mathbb{N}}$ on étudie les variations de f et on utilise le théorème de la bijection.
 - Dans ce cas, la bijection réciproque f^{-1} de f (éventuellement en restriction à un sous-intervalle) est monotone de même sens de monotonie que f. Cela permet d'étudier les variations de $(u_n)_{n\in\mathbb{N}}$ car

$$\forall n \in \mathbb{N} \quad u_{n+1} = f^{-1}(n+1) \quad \text{et} \quad u_n = f^{-1}(n).$$

• Pour déterminer la limite, lorsqu'elle existe, on passe à la limite dans l'égalité $u_n = f^{-1}(n)$ ou $f(u_n) = n$

E

Soit f	Fila fonction définie sur \mathbb{R}_+^* par	
	$\forall x \in \mathbb{R}_+^* f(x) = x + \ln(x).$	
	(a) Dresser le tableau de variations de f en précisant les limite en 0 et en $+\infty$.	
	(b) Mantana and another to a SN 1/4 and the first of a second and a second and a second and a second and a second as	
	(b) Montrer que pour tout $n \in \mathbb{N}$, l'équation $f(x) = n$ possède une unique solution que l'on notera u_n .	

(c) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.

	(d)	Déterminer, si elle existe, la limite de $(u_n)_{n\in\mathbb{N}}$.
Re	marque 3	
		situations où la suite est définie par une équation du type $f(x) = n^2$, $f(x) = \frac{1}{n}$,, pas de panique, la este la même! Voir le TD.
		evalle et $(f_n)_{n\in\mathbb{N}}$ une famille de fonctions toutes définies sur I à valeur dans \mathbb{R} . Montrer que $\forall n\in\mathbb{N}$, $(x)=0$ admet une unique solution u_n .
		al, les fonctions f_n sont strictement monotones (éventuellement en restriction à un sous-intervalle). ifier l'existence de $(u_n)_{n\in\mathbb{N}}$ on utilise le théorème de la bijection.
		dier la monotonie de $(u_n)_{n\in\mathbb{N}}$, on compare $f_n(u_{n+1})$ et $f_n(u_n)=0$ (c'est-à-dire qu'on étudie le $f_n(u_{n+1})$) et on utilise la monotonie de f_n .
		aussi utiliser les variations des fonctions f_n pour majorée ou minorée la suite. Par exemple, si a el tel que $f_n(a) \ge 0 = f(u_n)$ et si f_n est croissante alors $a \ge u_n$.
	_	parfois en déduire la convergence de $(u_n)_{n\in\mathbb{N}}$ par un théorème d'encadrement, de convergence le ou en passant à la limite dans l'égalité $f_n(u_n)=0$.
Ex	emple 7	
		$n\geqslant 1$, on définit la fonction f_n sur $\mathbb R$ par $\forall x\in \mathbb R$ $f_n(x)=x^5+nx-1$.
	(a)	Pour tout $n \ge 1$, étudier les variations de f_n .

(b) Montrer que pour tout $n \ge 1$, il existe une unique solution à l'équation $f_n(x) = 0$. On notera cette solution u_n .

(c)	Montre que pour tout $n \ge 1$, on a $0 \le u_n \le \frac{1}{n}$.
(I)	
(a)	En déduire que $(u_n)_{n\geqslant 1}$ converge et préciser sa limite.
(e)	Étudier le signe de $f_n(u_{n+1})$ et en déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

3 Objectifs

- 1. Savoir montrer que les termes d'une suite définie par récurrence sont bien définis, appartiennent à un intervalle donné.
- 2. Savoir exploiter la croissance de f ou le signe de $x \mapsto f(x) x$ pour étudier la monotonie d'une suite définie par récurrence.
- 3. Connaître la définition d'un point fixe et le théorème 1.
- 4. Savoir déterminer les points fixes d'une fonction f en résolvant l'équation f(x) = x ou en étudiant $x \mapsto f(x) x$ (étude de signe, utilisation du théorème de la bijection . . .)
- 5. Savoir étudier la convergence d'une suite définie par récurrence (à l'aide du théorème de convergence monotone, en utilisant les points fixes ou en utilisant l'inégalité des accroissements finis par exemple)
- 6. Savoir justifier l'existence d'une suite définie implicitement avec le théorème de la bijection.
- 7. Savoir exploiter les variations de(s) fonction(s) pour étudier une suite définie implicitement (monotonie, majorant, minorant, éventuellement la limite).