MA323 - Monte Carlo Simulation

Lab - 1

NAVEEN KUMAR A G 210123075

1. Generate the sequence of numbers x_i for a=6, b=0, m=11, and x_0 ranging from 0 to 10. Also, generate the sequence of numbers x_i for a=3, b=0, m=11, and x_0 ranging from 0 to 10. Observe the sequence of numbers generated and observe the repetition of values. Tabulate these for each group of values. How many distinct values appear before repetitions? Which, in your opinion, are the best choices and why?

i) $a = 6, b = 0, m = 11, and x_0 ranging from 0 to 10$

Observations for 11 samples:

	0	1	2	3	4	5	6	7	8	9	10
i/x_0											
0	0	1	2	3	4	5	6	7	8	9	10
1	0	6	1	7	2	8	3	9	4	10	5
2	0	3	6	9	1	4	7	10	2	5	8
3	0	7	3	10	6	2	9	5	1	8	4
4	0	9	7	5	3	1	10	8	6	4	2
5	0	10	9	8	7	6	5	4	3	2	1
6	0	5	10	4	9	3	8	2	7	1	6
7	0	8	5	2	10	7	4	1	9	6	3
8	0	4	8	1	5	9	2	6	10	3	7
9	0	2	4	6	8	10	1	3	5	7	9
10	0	1	2	3	4	5	6	7	8	9	10
11	0	6	1	7	2	8	3	9	4	10	5

Number of distinct values before repetition:

	0	1	2	3	4	5	6	7	8	9	10
repetitions/x_0											
) 1	10	10	10	10	10	10	10	10	10	10

Observation: Only 1 distinct value appears before repeating itself when x_0 equals 0. But, for x_0 values from 1 to 10, 10 distinct values from 1 to 10 appear before the sequence repeats itself. It should be noted that the period length equals the maximum possible period length i.e. m - 1.

ii)
$$a = 3$$
, $b = 0$, $m = 11$, and x_0 ranging from 0 to 10

Observations for 11 samples:

	0	1	2	3	4	5	6	7	8	9	10
i/x_0											
0	0	1	2	3	4	5	6	7	8	9	10
1	0	3	6	9	1	4	7	10	2	5	8
2	0	9	7	5	3	1	10	8	6	4	2
3	0	5	10	4	9	3	8	2	7	1	6
4	0	4	8	1	5	9	2	6	10	3	7
5	0	1	2	3	4	5	6	7	8	9	10
6	0	3	6	9	1	4	7	10	2	5	8
7	0	9	7	5	3	1	10	8	6	4	2
8	0	5	10	4	9	3	8	2	7	1	6
9	0	4	8	1	5	9	2	6	10	3	7
10	0	1	2	3	4	5	6	7	8	9	10
11	0	3	6	9	1	4	7	10	2	5	8

Number of distinct values before repetition:

Observation: Only 1 distinct value appears before repeating itself when x_0 equals 0. But, for x_0 values from 1 to 10, 5 distinct values appear before the sequence repeats itself. It should be noted that the period length is less than the maximum possible period length i.e. m-1.

Inference: Part (i) has period length 10 which is maximum for the given value of m, while part (ii) has period length 5 which is lesser than the maximum achievable period length 10 for the given value of m. Part (i) is preferred over part (ii) as there will be an increase in the randomness with more numbers. **Hence part (i) i.e. a** = 6, b = 0, m = 11 with x_0 from 1 to 10 will be the best choice.

2. Generate a sequence u_i , $i=1,2,\ldots,10000$ with m=244944, a=1597,51749 (choosing x_0 as per your choice). Then group the values in the ranges [0,0.05), [0.05,0.10), [0.10,0.15), \ldots , [0.95,1) and observe their frequencies (i.e., the number of values falling in each group). For 5 different x_0 values, tabulate the frequencies in each case, draw the bar diagrams for these data and put in your observations.

Observations for $x_0 = \{1000, 2000, 3000, 4000, 5000\}$

			a = 15	97		a = 51749						
	1000	2000	3000	4000	5000	1000	2000	3000	4000	5000		
range/x_0												
[0.0, 0.05)	495	494	492	494	493	496	488	555	491	495		
[0.05, 0.1)	494	499	495	493	506	494	497	431	510	493		
[0.1, 0.15)	503	504	494	513	492	496	494	495	493	491		
[0.15, 0.2)	493	496	492	496	496	496	497	556	519	515		
[0.2, 0.25)	504	505	495	505	507	515	495	494	494	497		
[0.25, 0.3)	496	490	495	492	495	514	498	431	490	495		
[0.3, 0.35)	505	510	534	510	509	511	517	556	513	512		
[0.35, 0.4)	492	493	493	493	496	492	496	557	497	494		
[0.4, 0.45)	508	507	492	510	506	491	516	371	495	518		
[0.45, 0.5)	492	491	493	489	498	498	516	556	493	496		
[0.5, 0.55)	498	493	493	508	508	489	513	554	497	491		
[0.55, 0.6)	506	510	497	492	491	497	515	370	492	509		
[0.6, 0.65)	492	493	495	497	494	497	490	557	493	492		
[0.65, 0.7)	510	507	535	507	512	517	513	555	513	519		
[0.7, 0.75)	494	494	494	493	491	517	493	431	496	495		
[0.75, 0.8)	507	510	493	510	509	514	491	492	495	491		
[0.8, 0.85)	495	494	495	492	490	492	489	557	512	513		
[0.85, 0.9)	512	510	494	510	506	492	495	495	494	497		
[0.9, 0.95)	496	495	492	492	495	493	490	432	518	495		
[0.95, 1.0)	508	505	537	504	506	489	497	555	495	492		

Observation: The generated numbers are uniformly distributed between 0 and 1. Frequency distribution of the generated numbers for different seed values x_0 in the same interval length for both values of a is similar. Therefore, the random number generator follows a uniform distribution.

3. Generate a sequence u_i , i = 1, 2, ..., 10000 with a = 1229, b = 1, m = 2048. Plot in a two-dimensional graph the points (u_{i-1}, u_i) , i.e., the points (u_1, u_2) , (u_2, u_3) , (u_3, u_4) , . . .

Scatterplot for (u_{i-1}, u_i) for $x_0 = 1000$:

Observation: There are 5 parallel lines initiating from different y-coordinates in this scatterplot. There is an outlier at x = 1.0. This plot is a spectral test for evaluating the performance of random number generators. The further apart these lines are, worse the generator is.