Algorithm 3 ChebychevCoefficients for $f(\pm \hat{A} dt) = e^{\pm i \hat{A} dt}$. **Input:** spectral radius Δ of \hat{A} ; minimum eigenvalue E_{\min} of \hat{A} ; time

step dt**Output:** Array of Chebychev coefficients $[a_0 \dots a_n]$ allowing to ap-

- 1: **procedure** ExpChebyCoeffs(Δ , E_{\min} , dt)
- $\alpha = \frac{1}{2}\Delta dt$ 2:

end for

9: end procedure

return $[a_0, \dots a_n]$

7:

8:

- $a_i = 2J_i(\alpha)$ \triangleright i'th order Bessel-function of first kind 5: if $|a_i| < \text{limit then exit loop with } n = i$ 6:
- 4: **for** $i = 1 : n_{\text{max}} \approx 4 |\alpha|$ **do**
- 3: $a_0 = J_0(\alpha)$ ▷ 0'th order Bessel-function of first kind
- proximate $f(\hat{A} dt)$ to pre-defined precision.