Ad-Soyad : Email : No : İmza :

Final sınavı (01.06.2010, süre: 90 dk)

(D)

## 0112622 - Elektronik Devreler

|    |    |    | COTICICI |    |    |        |
|----|----|----|----------|----|----|--------|
| S1 | S2 | S3 | S4       | S5 | S6 | Toplam |
|    |    |    |          |    |    |        |

- S1. Aşağıdaki ifadelerin doğru ya da yanlış olduklarını yandaki parantez içinde D ya da Y şeklinde belirtiniz. (15)
  - a. Termistor sıcaklığı elektriğe dönüştürür.
  - b. FET in giriş direnci BJT ye göre daha düşüktür. (Y)
  - c. BJT nin gerilim kazancı FET e göre daha yüksektir. (D)
  - d. CMOS lojik kapılar, TTL ye göre daha fazla güç harcarlar.(Y)
  - e. Ideal OPAMP in kazancı sonsuzdur. (D)
- S2. Şekil S2 de verilen devrede  $V_0$  çıkışını hesaplayınız. (15)



$$\frac{V_{-}-2}{150} + \frac{V_{-}-v_{0}}{300} = 0 \implies \frac{2V_{-}-4}{300} + \frac{V_{-}-v_{0}}{300} = 0 \implies v_{0} = 3V_{-}-4$$

$$V_{+} = \frac{10 \times 1}{10 + 10} = 0.5 \text{ V} \qquad V_{-} = V_{+}$$

$$v_0 = 3V_- - 4 = 3 \times 0.5 - 4 = -2.5 \text{ V}$$

S3. Şekil S3 de verilen devrede  $A_v$  = -10 ve  $r_e$  = 3.8  $\Omega$  olarak verildiğine göre;  $R_E$  ve  $R_B$  dirençlerini bulunuz. ( $Z_b$  =  $\beta R_E$  olduğunu varsayın) (20)



$$A_{v} = -\frac{\beta R_{C}}{Z_{b}} = -\frac{\beta R_{C}}{\beta R_{E}} = -\frac{R_{C}}{R_{E}} = -10 \quad \Rightarrow \quad R_{E} = \frac{R_{C}}{10} = \frac{8.2 \text{ k}\Omega}{10} = 0.82 \text{ k}\Omega$$

$$I_{E} = \frac{26 \text{ mV}}{r_{e}} = \frac{26 \text{ mV}}{3.8 \Omega} = 6.842 \text{ mA}$$

$$V_{E} = I_{E}R_{E} = 6.842 \text{ mA} \times 0.82 \text{ k}\Omega = 5.61 \text{ V}$$

$$V_B = V_E + V_{BE} = 5.61 \text{ V} + 0.7 \text{ V} = 6.31 \text{ V}$$

$$I_B = \frac{I_E}{\beta + 1} = \frac{6.842 \text{ mA}}{121} = 56.55 \,\mu\text{A}$$

$$R_B = \frac{V_{R_B}}{I_B} = \frac{V_{CC} - V_B}{I_B} = \frac{20 \text{ V} - 6.31 \text{ V}}{56.55 \,\mu\text{A}} = 242.09 \text{ k}\Omega$$

Hatırlatma: 
$$A_{v} = -\beta R_{C} / Z_{b}$$
  $I_{E} = 26 \text{ mV} / r_{e}$   $slope = 1/r_{D}$   $y_{os} = 1/r_{d}$   $A_{v} = -g_{m}(r_{d} \parallel R_{D})$   $I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}}\right)^{2}$   $g_{m} = \frac{2I_{DSS}}{|V_{c}|} \left[1 - \frac{V_{GS}}{V_{C}}\right]^{2}$ 

S4. a.Şekildeki diyot devresinde **diyot modeli 1** kullanıldığında devreden
geçen toplam akımı bulunuz. (7)





$$I = \frac{3 \text{ V} - 0.7 \text{ V}}{2 \text{ k}\Omega \| 2 \text{ k}\Omega} = \frac{2.3 \text{ V}}{1 \text{ k}\Omega} = 2.3 \text{ mA}$$

b. Aynı diyot devresinde **diyot modeli 2** kullanıldığında **V**<sub>out</sub> gerilimini bulunuz. (8)

$$slope = \frac{1}{r_D} \implies r_D = \frac{1}{slope} = \frac{1}{50 \times 10^{-3}} = \frac{10^3}{50} = \frac{100}{5} = 20 \Omega$$

$$I = \frac{3 \text{ V} - 0.7 \text{ V}}{(2||2) \times 10^3 \Omega + 20 \Omega} = \frac{2.3 \text{ V}}{1020 \Omega} = 0.00225 \text{ A} = 2.25 \text{ mA}$$

$$V_{out} = I \times (2||2) \times 10^3 \Omega = 2.25 \times 10^{-3} \times 1 \times 10^3 = 2.25 \text{ V}$$

S5. Şekil S5 de verilen devrede  $I_{DSS}$  = 6 mA,  $V_P$  = -6 V,  $V_{GSQ}$  = 0 V ve  $y_{os}$  = 40  $\mu$ S olarak verildiğine göre;  $Z_i$ ,  $Z_o$ , ve  $A_v$  değerlerini bulunuz. (20)

$$g_{m} = \frac{2I_{DSS}}{|V_{P}|} \left( 1 - \frac{V_{GS}}{V_{P}} \right) = \frac{2 \times 6 \text{ mA}}{|-6|} \left( 1 - \frac{0 \text{ V}}{-6 \text{ V}} \right) = \frac{2 \times 6 \text{ mA}}{6 \text{ V}} = 2 \text{ mS}$$

$$r_{d} = \frac{1}{y_{os}} = \frac{1}{40 \text{ \mu S}} = \frac{10^{6}}{40 \text{ S}} = \frac{1000 \times 10^{3}}{40 \text{ S}} = 25 \times 10^{3} \Omega = 25 \text{ k}\Omega$$

$$Z_{i} = 1 \text{ M}\Omega$$

$$Z_{o} = r_{d} \parallel R_{D} = \frac{r_{d} \times R_{D}}{r_{d} + R_{D}} = \frac{25 \text{ k}\Omega \times 2 \text{ k}\Omega}{(25 \text{ k}\Omega + 2 \text{ k}\Omega)} \approx 1.852 \text{ k}\Omega$$



S6.

 a. Yandaki devrede diyot ve tranzistörlerin ideal olduğunu varsayarak devrenin nasıl çalıştığını yandaki tabloyu doldurarak açıklayınız. (10)

 $A_v = -g_m Z_o = -2 \text{ mS} \times 1.852 \text{ k}\Omega \cong -3.7$ 

| Α               | В               | $D_A$ | D <sub>B</sub> | $D_Y$ | $T_X$ | Χ        |
|-----------------|-----------------|-------|----------------|-------|-------|----------|
| 0               | 0               | on    | on             | off   | off   | $V_{CC}$ |
| 0               | $V_{CC}$        | on    | off            | off   | off   | $V_{CC}$ |
| $V_{CC}$        | 0               | off   | on             | off   | off   | $V_{CC}$ |
| V <sub>CC</sub> | V <sub>CC</sub> | off   | off            | on    | on    | 0        |



A ve/veya B '0' a bağlandığında  $D_A$  ve/veya  $D_B$  iletimde,  $D_Y$  ve  $T_X$  kesimde olur. Bu durumda X çıkışı  $V_{CC}$  olur. A ve B ' $V_{CC}$ ' ye bağlandığında  $D_A$  ve  $D_B$  kesimde,  $D_Y$  ve  $T_X$  iletimde olur. Bu durumda X çıkışı '0' olur.

b. Bu devre ne iş yapar? (5)

Bu bir NAND kapısıdır.