Question 5

Motoaki Takahashi

October 21, 2021

We want to show the following statement.

Statement 1. Every game with finitely many players and finitely many actions has at least one Nash equilibrium in which none of the players use weakly dominated strategies.

Proof. Consider any such game G_0 :

- $N = \{1, \dots, n\}$: the set of players,
- A_i : the set of actions for $i \in N$,
- $u_i^0: \times_{i=1}^n A_i \to R$: *i*'s payoff function.

Let C_i be the set of weakly dominated strategies for any $i \in N$. Let $B_i \equiv A_i \setminus C_i$ for any $i \in N$.

Then consider a "reduced" game G_1 such that

- $N = \{1, \dots, n\}$: the set of players,
- B_i : the set of actions for $i \in N$,
- $u_i^1: \times_{i-1}^n B_i \to R$: *i*'s payoff function,

where $u_i^1(b_i, b_{-i}) \equiv u_i^0(b_i, b_{-i})$ for any $b_i \in B_i$ and $b_{-i} \in \times_{j \neq i} B_j$. By Nash's theorem, there exists a Nash equilibrium $(\sigma_i)_{i=1}^n$ for G_i , where $\sigma_i \in \Delta(B_i)$ and $\Delta(B_i)$ denotes the set of probability distributions on B_i .

We reinterpret (or abuse) $(\sigma_i)_{i=1}^n$ such that σ_i is now a probability distribution on A_i , but still assigns positive probability masses only on elements in B_i , for any $i \in N$.

We argue that $(\sigma_i)_{i=1}^n$ is a Nash equilibrium in the original game G_0 .

I show this by the way of contradiction. Suppose, to the contrary, that player j has a profitable deviation from σ_j shifting a probability weight $\delta \in (0,1]$ from b_j to c_j for some $b_j \in B_j$ and $c_j \in C_j$. Since c_j is weakly dominated, by Statement 2, there exists a mixed

strategy $\hat{\sigma}_j$ such that $\hat{\sigma}_j$ puts positive weights only on elements in B_j , and $\hat{\sigma}_j$ weakly dominates c_j . Therefore, shifting δ from b_j to $\hat{\sigma}_j$ is also a profitable deviation. But, then σ_j would not be a best response against σ_{-j} in the reduced game G_1 , which contradicts the hypothesis that $(\sigma_i)_{i=1}^n$ is a Nash equilibrium in G_1 .

Notations of the set of actions A_j , the set of weakly dominated strategies C_j , and $B_j \equiv A_j \setminus B_j$ carry over to the next statement.

Statement 2. Let $c_j \in C_j$. Then there exists a mixed strategy $\hat{\sigma}_j$ such that

- 1. $\hat{\sigma}_i$ assigns positive probability masses only on elements in B_i ,
- 2. $\hat{\sigma}_j$ weakly dominates c_j .