

1) Espace vectoriel: A = {(x,y,z,E) \in R4, x+y+z+ t=0} Pour A = 0 = (0) veififis x+y+z+t=0

$$u\begin{pmatrix} z \\ y \\ z \end{pmatrix}$$
 $V\begin{pmatrix} z' \\ y' \\ z' \end{pmatrix}$

@ Base:

$$\begin{cases} x + y + 3 + t = 0 \\ x + y + 3 + t = 0 \\ x + y + 3 + t = 0 \end{cases} \begin{cases} x = -y - 3 - t \\ y \end{cases}$$

Le base: $A = nech \left(\begin{pmatrix} -1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right)$

Dimensian 3

$$A^{2} = \begin{pmatrix} -3 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & -3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -3 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & -3 & 1 \\ 1 & 1 & -3 \end{pmatrix} \begin{pmatrix} -1 & -5 & -5 \\ -5 & 11 & -5 \\ -5 & -5 & 11 \end{pmatrix}$$

$$5A = \begin{pmatrix} -15 & 5 & 5 \\ 5 & -16 & 5 \\ 5 & 5 & -15 \end{pmatrix}$$

$$4I = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 11-5 & -5 \\ -5 & 11 & -5 \\ -5 & -8 & 11 \end{pmatrix} + \begin{pmatrix} -15 & 5 & 5 \\ 5 & -15 & 5 \\ 5 & 5 & -8 \end{pmatrix} + \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

.

$$J \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad J = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} =$$

The methode: La puissonce de l'algèbre l'inéaire soit $e_1 = (1/0,0)$ $e_2 = (0/1,0)$ $e_3 = (0/0,1)$ $(e_1 e_2 i e_3)$ est la base camanique de \mathbb{R}^3 $f(e_1) = e_1 + e_2 + e_3 i$ $f(e_2) = Minimum (1/0,0)$ $f(e_3) = Minimum (1/0,0)$

(f(e1) i f(e2) i f(e3)) est une famille génération de Imf. On pent donc en setuaire une base can cette famille est lière, d'ai fa base ((1;0;0) ; (0;1;1)). dim Imff=2 ② I m'est pas bijective can la dimension de $Imf \neq 3$ $\exists x \neq 0$ tel que AX = 0 ex: X = (0; 1, 1)

the second of the second secon

Land of the state of the state