Scientific Software Engineer Exercise

Joshua Minien

Solution outline

- 1. Data Science project structure
- 2. Data files
- 3. Forecaster's reference book programme built in Python3
- 4. Further ideas

Data science project structure

data ! forecasters_reference_book_config.yaml initial_data.csv K lookup.csv test data.csv outputs forecasters reference book.log initial_outputs.csv test_outputs.csv ✓ STC. forecasters_reference_book.py MetOffice_SSE_interview_information_and... README.md

Data files

- 1. Configuration
- 2. K value lookup data sheet
- 3. Data to be processed for forecasting

Configuration

```
method_data:
    k_lookup_file_path: "../data/K_lookup.csv"

data:
    data_file_path: "../data/initial_data.csv"

outputs:
    decimal_place_precision: 2
    output_filename: "initial_outputs.csv"
    output_directory: "../outputs/"
```

K value lookup data sheet

```
wind speed min. (knots), wind speed max. (knots), cloud cover min. (oktas), cloud cover max.
0,12,0,2,-2.2
0,12,6,8,0
13,25,2,4,0
13,25,6,8,1.1
26,38,0,2,-0.6
26,38,2,4,0
39,51,0,2,1.1
39,51,2,4,1.7
```

Data to be processed for forecasting

```
Temp. noon (celcius), Temp. dew point noon (celius), wind speed (knots), cloud cover (oktas), location, date 22.4, 10.9, 14.56, 3.9, A, 1 18.6, 12.56, 3.4, 6, B, 1 26, 8.5, 0, 0.0, B, 2 13.2, 9.4, 12.5, 4.1, C, 2
```

Forecaster's reference book programme

- 1. For simplicity I have only added INFO level logging
- 2. Imported modules: numpy, pandas, yaml
- 3. YAML file imports for configuration
- 4. K value imported from .csv file as a pandas DataFrame with correct data types
- 5. Process data imported from .csv file as a pandas DataFrame with correct data types
- 6. Uses numpy arrays to efficiently find the relevant K values for data
- 7. Lambda function on imported data DataFrame to evaluate the minimum temperature at 12 pm
- 8. Write appended DataFrame to an output .csv file

Code demo

Forecaster's reference book programme- Test output

Date	Location	Midday Temperatu re (°C)	Midday Dew Point (°C)	Wind (Kn)	Cloud (oktas)	Forecasted Minimum Temperatu re (°C)
1	А	22.4	10.9	14.56	3.9	11.81
1	В	18.6	12.65	3.4	6	10.97
2	В	26	8.5	0	0.0	9.43
2	С	13.2	9.4	12.5	4.1	6.38

Further ideas

- 1. Add unit tests for programme such that it could be used in a CI/CD pipeline
- 2. If in a large code base:
 - a. Write function for the computation that uses numpy arrays
 - b. Write function to a module
 - c. Import module where relevant in the code base
- 3. Implement more robust logging and error handling for team coding and use a VCS
- 4. Code uses vectorisation ready for larger data inputs
- 5. We do not have raw data to compare; if available import these data to conduct a statistical test for testing accuracy of historical method
- 6. Development team for the work, assuming automations are in place:
 - a. Scientist requesting code
 - b. Developer
 - c. Code reviewer