Biology SCI102

Module 4 Biological Response in Context

Adaptation, Reproduction, Control & Stability, Optimized Use of Resources

Adaptations

Adjustment or changes in behavior, physiology, or structure of an organism to become more suited to an environment

Hold breath under the water for up to 5 minutes!

- Mutations
- More production of Carbonic anhydrase slows build up of CO2 in the blood
- Changes in muscle contraction around spleen and responses to low O2 levels

Structural Adaptations

Behavioral Adaptations

Prokaryotes – Masters of Adaptation

Utah's Great Salt Lake can reach a salt concentration of 32% pink color comes from living prokaryotes

Prokaryotes – Masters of Adaptation

Directed Evolution As a Design Technique

Evolutionary principles are used as a design paradigm for hundreds of inventions

Human economies alter evolutionary paths of animals Case of Pink Salmon

Reproduction

Bacteria divide by Binary Fission

Bacterial Gene Transfer

c Bacterial conjugation

Sexual Reproduction

Sexual reproduction is highly complicated and mandates coordinated activities

Stability with Exquisite Control

Control systems are

- Sensors: receptors and transducers
- Actuators
- Controller
- Means to communicate among these elements

Cold Receptor Response

The frequency output of an insect antenna is shown for several stimulus levels — beyond threshold stimulus

Controllers

- Central nervous system : CNS
- Spatial summation of inputs from many of the same type of receptors at different locations around the body
- Loop control: Open Loop and Feed-back Control Loops

Controllers

OPEN FEEDBACK SYSTEM

CLOSED-LOOP FEEDBACK SYSTEM

Hierarchical control of a stepping motion

Redundancy

- Backup Option Necessary in case any of the feed back loop fails
- E.g. Sweating in paraplegic people in-spite of impaired spinal cord
- E.g. Cells have alternate pathways to survive lower amounts of a particular metabolite
- E.g. Adaptability of brain

Immune System – Model of Ultra Redundancy

Kills extracellular pathogens

Kills intracellular pathogens

Listeria bacteria invading intestinal lining

Emotions are Under Control

Optimized Use of Resources

Interplay between cost and benefit

Optimized Use of Resources

Raising and lowering of the body's center of gravity during walking contributes to walking efficiency

Antagonistic control of movements occurs as a result of two or more active muscles pulling in opposite directions. The result is that the movement can be made more precisely than if only one active muscle was involved.

Optimized Use of Resources

Cycling is more energy efficient than walking or running, despite the extra weight of the bicycle, because the body's center of gravity stays at a particular level

Finding Optima – Trial & Error

	Cooperator	Cheater
Cooperator	Reward	Sucker's payoff
Cheater	Temptation to cheat	Punishment

Pay-off Matrix

Optimization in a group