PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-050345

(43)Date of publication of application: 03.03.1988

(51)Int.CI.

C03C 14/00 // C03C 10/08 H05K 1/03

(21)Application number: 61-191889

(71)Applicant: MATSUSHITA ELECTRIC WORKS LTD

(22)Date of filing:

15.08.1986

(72)Inventor: TAKAHASHI HISAMITSU

ISHIHARA MASAYUKI

MAKIO KEIZOU OKA SHOICHI

(54) GLASS CERAMIC SINTERED BODY

(57)Abstract:

PURPOSE: To provide the titled sintered body which has a low dielectric constant, is dense and is adequate for formation of wirings, etc., by a low-resistant metallic material by calcining a mixture composed of glass compsn. powder formed by compounding a nucleation agent such as TiO2 or P2O5 with specific base glass and fillers at a low temp.

CONSTITUTION: The glass compsn. powder (A) having $1W10\mu$ average grain size is obtd. by compounding ≥ 1 kinds of $\leq 5\%$ uncleation agents (b) selected from TiO2, ZrO2, SnO2, P2O5, ZnO, MoO3 and As2O3 with the base glass (a) consisting of 48W63% (by weight, hereafter the same) SiO2, 10W25% Al2O3, 10W25% MgO, and 4W10% B2O3. 70W95% component A and (B) 30W5% fillers which are the nucleation agent selected from α -quartz, fused silica, cristobalite, cordierite, steatite, wollastonite, mullite, alumina, etc., and having the grain size equal to the above-mentioned component and or slightly smaller than said grain size are then compounded and the mixture is calcined at $\leq 1,000\%$ C.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩ 日本国特許庁(JP)

① 特許出願公開

⑫公開特許公報(A)

昭63-50345

@Int.Cl.4

識別記号

广内整理番号

④公開 昭和63年(1988) 3月3日

14/00 10/08 C 03 C C 03 C H 05 K 1/03

6674-4G 6674-4G B-6736-5F

審査請求 未請求 発明の数 1 (全7頁)

◎発明の名称

ガラスセラミツク焼結体

昭61-191889 创特

昭61(1986)8月15日 ②出 顋

光 久 者 楀 砂発 明 髙 原 政 明 者 石 ⑫発 者 槇 砂発 明

行 造 大阪府門真市大字門真1048番地 松下電工株式会社内 大阪府門真市大字門真1048番地 松下電工株式会社内

大阪府門真市大字門真1048番地 松下電工株式会社内 大阪府門真市大字門真1048番地 松下電工株式会社内

眀 者 囧 ②発

昭

大阪府門真市大字門真1048番地

松下電工株式会社 印出 顖 弁理士 松本 武彦 理 砂代

1. 発明の名称

ガラスセラミック焼結体

特許請求の範囲

(1) ガラス組成物粉末とフィラーとの混合物を 焼成して得られるガラスセラミック焼結体であっ て、前記ガラス組成物粉末が、

SiOz が48~63重量%、

Al. O. が10~25重量%、

M g O が 1 0 ~ 2 5 重量%、

B 2 O 3 が 4 ~ 1 0 重量%、

からなる母ガラスに、TiOェ, ZrOェ, Sn O:, P:O、, ZnO, MoO; およびAsュ O 。からなる群より選ばれた少なくとも1つより なる核発生剤が5重量%以下含まれるような組成 であり、ガラス組成物粉末とフィラーとが、

ガラス組成物粉末が70~95重量%、

フィラーが5~30重量%、

の混合割合となっていることを特徴とするガラス セラミック焼結体。

(2) フィラーが、α-石英、溶融シリカ、クリ ストバライト、コーディエライト、ステアタイト フォルステライト、ウォラストナイト、アノニ サイト,セルジアン,ムライトおよびアルミナか らなる群より選ばれた少なくとも1種である特許 請求の範囲第1項記載のガラスセラミック焼結体

(3) 焼成が1000℃以下の温度で行われる特 許請求の範囲第1項または第2項記載のガラスセ ラミック焼結体。

発明の詳細な説明

(技術分野)

この発明は、ガラスの粉末とフィラーの粉末と が混合されてなる混合粉末の成形体を焼成して得 られるガラスセラミック焼結体に関する。

近年、高集積化したLSIや各種の衆子を多数 搭載する多層配線基板では、小型化や高信頼性の 要求が高まるにつれて、セラミック材の多層配線 基板の利用が広がってきている.

> FP03-0199 -cowo-TP

SEARCH REPORT

セラミック多層配線基板は、アルミナを主材に してクリーンシートを形成し、このグリーンシート上に高融点金属(Mo、W等)の導体配線を厚 膜技術により印刷形成する。そのあと、このグリ ーンシートを貼り合わせて積層した多層グリーン シートを約1500~1600での高温非酸化雰 囲気中で焼成して得られる。

この問題を解決するために、高抵抗の高融点金属材料の代わりに、低抵抗金属材料(Au、Ag、Ag-Pd、Cu等)を使って微細化配線を形成することも考えられる。しかしながら、上記の各低抵抗金属材料は融点が1000で付近であり、アルミナを主材料とした場合には基板の焼成温度よりもはるかに低いので、実際に用いることは

ことから、マイグレーション現象が生ずる。そのため、基板としてもっとも重要な特性である絶縁 性の劣化が生じやすいという問題がある。

特公昭59-46900号公報に記載されているがうス粉末焼結体は、上記のイオン伝導性の高い元素を含んでおらず、上記マイグレーションに伴う絶縁性の劣化はないものであると、考えられる・しかしながら、特公昭59-46900号公報のガラス粉末焼結体は、低抵抗金属配線を成形体(グリーンシート)上に印刷しておいて、同時に焼成を行うときに、配線と成形体の収縮をつた。 は焼成を行うときに、配線と成形体の収縮である。 す法特度が良くないなど問題があった。

(発明の目的)

この発明は、このような事情に鑑みて、100 0 で以下の低い温度での焼成で十分緻密化されていて、誘電率も低く、低抵抗金属材料による配線 形成にも適したガラスセラミック焼箱体を提供することを目的とする。

(発明の開示)

できない。

前記の問題を解決するため、ガラス、あるいは、ガラス粉末焼結体(ガラス・セラミックス体) の多層配線基板が開発されている。

この基板に使用されるガラスは、通常、SiO I - A! IO I - M g O 系ガラスであって、その 組成は、SiO I、A! IO 、 M g O を主成分 とし、さらに Z n O、Li IO、Li F、P IO s. 等の核生成剤と、B IO 、 P IO S、Li IO O などのガラス化に寄与して焼結度を高める働き をする金属化合物とが副成分として添加されている。

このようなガラス粉末焼結体の具体例が、特公昭59-22399号公報、特開昭59-17752号公報、特公昭57-6257号公報、および特公昭59-46900号公報などに記載されている。しかし、特公昭59-46900号公報以外の上記公報に記載されているガラス粉末焼結体は、いずれも、組成にNa、K、Li、Pbなどの比較的イオン伝導性の高い元素を含んでいる

前記の目的を達成するため、発明者らは、新しいタイプのガラス(結晶化するガラス)と、フィラーとの組み合わせで焼結体の性能の向上をはかるべく鋭意検討を行った。その結果、つぎのようなことを見出して、この発明を完成させた。

したがって、この発明は、ガラス組成物粉末とフィラーとの混合物を焼成して得られるガラスセラミック焼結体であって、前記ガラス組成物粉末が、

SiOz が 4 8 ~ 6 3 重量%、

Alz O s が 1 0 ~ 2 5 重量%、

M g O が 1 0 ~ 2 5 重量%、

B 2 O 3 が 4 ~ 1 0 重量%、

からなる母ガラスに、TiOz, ZrOz, SnOz, PzOs, ZnO, MoO, およびAszOs からなる群より選ばれた少なくとも1つよりなる核発生剤が5重量%以下含まれる組成であり、ガラス組成物粉末とフィラーとが、

ガラス組成物粉末が70~95重量%、

フィラーが5~30重量%、

の混合割合となっていることを特徴とするガラス セラミック焼結体を要旨とする。

以下に、この発明にかかるガラスセラミック焼 結体を詳しく説明する。

粉末化されるSiOェーAlェOューMgOーBェO:系のガラス組成物が上記組成範囲にあるものであると、好ましくは、850で付近の焼結とむ950で以下の焼成温度で非多孔質の焼結を行うことができる。そして焼結体の主結晶はコーディエライトとなるため、誘電率が低く、溶解温度も1400でで十分できるため、週常の粘土ルツボや溶解炉で十分間にあうので、製造上からも都合がよい。

第1図は低抵抗金属材料配線の温度と収縮率の 関係をあらわすグラフであって、曲線イはAuの収 縮曲線であり、曲線ロはAg-Pd合金(Ag: 80重量%、Pd:20重量%)の収縮曲線であ る。第2図は、ガラス粉末焼結体の温度と収縮率 の関係をあらわすグラフであって、曲線ハは後述

以下の温度で焼成したのでは、得られた焼結体が 未焼結状態となってしまう。

A1. O: の組成割合が25重量%を越えると、焼結できる温度が上昇し、950で以下の焼成温度では十分な焼結が行えない。10重量%を下回ると、コーディエライト結晶が少なくなり、SiO: - MgO系の結晶が多く折出するので、比誘電率が上昇する。

M g O の組成割合が 2 5 重量%を越えると、お そらくは、ケイ酸マグネシウムが折出するためと 思われるが、変形が大きくなり実用性に乏しい。 1 0 重量%を下回ると、、 領密な焼結体となりが たい。

B.O.の組成割合が10重量%を越えると、ガラス相が多く、発泡しやすくなり、焼成可能な温度範囲も狭くなる。また、微域的強度も弱く実用性に乏しくなる。4重量%を下回ると、ガラス粉末の表面層の結晶化が急激に進みすぎるため緻密な焼結体となりがたい。

TiOz, ZrOz, SnOz, P2Os, Z

する実施例 2 におけるガラス粉末成形体の収縮は 線であり、曲線ニは、後述する比較例 3 のガラス 粉末成形体の収縮曲線である。配線の方は、 4 0 0 でですでに収縮が始まっており、実施例 2 の方 は低い温度から収縮がはじまっているため、うま く配線と成形体の収縮を合わせることができる。 比較例 3 の方は、高い温度でないと収縮が始まら ないため、低い焼成温度でうまく収縮を合わせる ことは難しいのである。

この発明に用いられるガラス組成物の組成割合 が上記のように限定されるのは、次の理由による

SiO:の組成割合が63重量%を越えると、上記3成分からなるガラス溶融温度が上昇してしまうばかりか、焼成時の結晶化が習しく、ガラス粉末表面層が急激に結晶化してしまい、焼結をもめるガラス成分(相)が不足して緻密な焼結体とすることができない。48重量%を下回ると、ガラス粉末の結晶化温度が上昇するので、これに伴って必要な焼成温度も上昇し、成形体を950で

n O. M o O 。および A s 。 O 。などの核発生剤は、結晶化を促進するものであるが、これらが、5 重量%を越えると、結晶化が進みすぎるため緻密な焼結体となりがたい。

この発明で用いるフィラーとしては、特に限定するものではないが、α-石英、溶融シリカ. クリストバライト、コーディエライト、ステアタイト、フォルステライト、ウォラストナイト、アノーサイト、セルジアン、ムライト、アルミナから選ばれた少なくとも1種などが挙げられる。

前記フィラーは、焼結体の機械的強度を上昇させるばかりでなく、比誘電率を減少させるなどの働きがある。添加割合は、5重量%~30重量% である。フィラーの添加割合が30重量%を越えると、焼結しにくくなり、1000で以下での焼結ができなくなる。また、焼結体バルク内部にボアーを多くとったようになる。フィラーが5重量%を下回ると、フィラーを添加する狙いである、誘電率の毎上が、無膨張率の調整、熱伝導率の向上などの効果が

辺められなくなる。

上記に挙げられたフィラーのうち、αー石英、溶融シリカ、クリストバライト、コーディエライトなどのグループのものを用いれば、特に、熱膨張率がシリコン並に近い値を有するようになるので、高密度多層基板として有用で、上記以外のグループのものを用いれば、特に、熱伝導率が向上するので、多層基板として有用であるという傾向がある。

フィラーとして、上記比較的イオン伝導性の高い元素をふくんでいないものを用いるようにすると、 焼結体を多層配線基板材料として用いても、マイグレーション現象による絶縁性の劣化が生じるおそれがない。

上記ガラス組成物の粉末は、たとえば、重量% 組成が上記範囲内となるように各成分を配合して 溶融し、この溶融体を結晶を折出させないように 急冷して透明なガラスを得たのち、微粉砕して得 られるが、他の方法によって得るようにしてもよ い。ガラス組成物の粉末の粒度は、特に限定され

有機物を用いた場合には、あらかじめ前焼成を行って有機物を除去したのちに、焼結のための焼成を行うようにするのがよい。なお、前記有機物は特に限定されず、種々のものが用いられる。また、有機物以外のものが用いられたり、何も用いずに成形体を得てもよい。

上記ガラス組成物の粉末とフィラーが混合されている粉末の成形体は、たとえば、グリーンシートまたはこれを複数枚積層したものなどがあるが、これらに限るものではない。

前記成形体を焼成する条件は、特に限定されないが、上述の低抵抗金属材料の融点(1000℃前後)よりも低い温度で焼成を行っても焼粘できるので、その温度で焼成するようにすれば、低抵抗金属材料を印刷などして同時焼成できる。同時焼成でなくてもよい。また、用途は多層配線を板などの配線基板に限定されない。

つぎに、この発明にかかるガラスセラミック焼 結体を実施例に基づいて詳しく説明する。

第1 衷のガラス組成物 G - 1 ~ G - 18(このう

フィラーの粒度も、特に限定はしないが、概ね上記ガラス組成物の粒度と同等か、若干小さいめ に設定するのが好ましい。

上記ガラス組成物とフィラーを混合する方法は 、特に限定されず、温式または乾式のいずれによ っても良い。成形体を得るのに樹脂、溶媒などの

ち、G-1~G-9は実施例のもの、G-10~G-18は比較例のものである)に示す剤合に調合されたSiO。、Al。O。、MgO、およびルラなる原料それぞれをアルミナ質ルのが高原料それぞれをアルミナ質ルの加速を入れて約1500~1550での加熱温を下で溶融した。このようにして得られた溶融液を得でで設下して、ガラス組成物(フリット)を得て中に投下して、ガラス組成物(フリット)を得て中に投下して、ガラス組成物(フリット)を得てポールミル中で充分粉砕して、平均粒径1~10μmのガラス粉末とした。

このガラス粉末に、第2妻の実施例1~20および比較例1~8に示す割合にフィラー粉末とれていた。有機パイングーとして、たともジリレート樹脂、フタルはボナル、キシレン等を加え混壊し、波圧下で脱泡で乗した。そのあと、この混練体を用いてドクのでは、カートとに0.2 mp 厚の返れた。これを依疑した後、フィルムシートからはがし、5mpとなるように打ち抜きしてグリーンシートを作製した。

このグリーンシート複数枚を重ねて金型プレスで成形して成形体としたのち、焼成した。焼成時には、200℃/時間の速度で、それぞれ第3要および第5衷に示した850~1000での温度まで昇温し、この状態を3時間保持したあと、200℃/時間の速度で降温した。

このようにして得た実施例 1 ~ 2 0 および比較例 1 ~ 15 の焼結体について誘電率(比誘電率)および吸水率を測定し、その結果を第 2 表に示した。なお、ガラスフリット作製時の失透(結晶化)の有無、熱膨張率、熱伝導率も併せて示した。比誘電率の測定は、1 M Hz の周波数で行った。吸水率の測定は、JIS C-2141に従って行った。

第1表

	ガラス				溶 解 条	: 件	ガラス								
]	組成物		主 応	3 3				抜	発 4	割			آ جد مد	****	失透の
	No.	SiO ₂	A1:0:	ngO	B 2 O 3	fi0:	Zr0:	\$0a2	P20,	ZnO	no0,	As : Oa	温で度	時間 (Hr)	有無
-37	G - 1	56.1	18.7	18.7	4.7	_	_		1.8		_		1500~1550	3	無
実績に用い	G - 2	53.5	17.9	17.9	8.9	_	0.8						1500~1550	3	無
	G - 3	49.1	22.3	17.9	8.9	1.8							1500~1550	4	無
[U	G - 4	50.0	18.2	22.7	4.55				3.55			_	1500~1550	3	<u> </u>
'n	G - 5	54.5	13.6	22.7	4.6	0.5	0.5		3.6				1500~1550	4	無
るが	C - 6	56.0	23.4	14.0	4.7		0.2	0.5		1.2			1500~1550	3	無
ラス組成物	G - 7	58.9	21.5	12.1	4.7	1.8	<u> </u>		0.5	-		0.5	1500~1550	4	無
趧	G - 8	52.6	21.9	13.2	8.8		0.5		2.0	_	1.0	— I	1500~1550	3	無
100	C - 9	59.8	18.8	10.7	8.9	0.3	_		1.0	0.5		—	1500~1550	3	揺
<u>.</u>	G - 10	52.5	21.84	24.0	0.5	-			1.16	_	-		1500~1550	3	無
比例に用	G - 11	50.6	21.2	24.2	2.0				2.0	İ		_	1500~1550	4	無
	G ~ 12	40.0	25.0	25.0	7.0		1.5	_	1.5	_			1500~1550	3	有
] (c)	G - 13	65.0	10.0	15.2	6.0				2.0		1.2		1500~1550	4	無
られるガ	G-14	50.6	27.2	14.2	5.3			1.5			1.2		1500~1550	4	無
3	G - 15	57.5	8.8	24.0	8.5	_	1.2						1500~155D	3	無
1 %	G - 16	50.6	16.2	26.2	5.0	_		_	2.0		<u> </u>		1500~1550	4	Ħ
ラス組成物	G - 17	60.6	21.2	9.2	6.5	_			2.0	—	0.5		1500~1550	4	無
120	G ~ 18	55.1	16.2	16.2	7.0	0.5	1.5		2.0			1.5	1500~1550	2	無

第 2 表(その1)

Γ			-	<i>*</i>	・ ラスセ	:ラミッ	ク材料	の配合	割合	(政量外	()		ĺ	焼成温度で)	_	1\$	性	
		ガラス組成物			フィラーの推築										吸水率	热膨强率	誘電率	然伝译率 I
Ĺ		No.	量	٨	В	С	D	E	F	G	н	ī	J	(2)	(%)	×10-7/€		- S · T
	1	G - 1	9 0	10	-	-				-				900	0. 2	4 3	5.6	0.002
爽	2	G - 1	9 5		5		_			-			-	850	0.1	4 5	5.7	0.002
	3	G - 1	9 0	7	3		_						-	900	0.3	4.7	5.6	0.003
~	4	G - 2	9 0	3			7			_			_ =	900	0.5	4 8	5.5	0.002
1	5	G - 2	9 0	1	10			_		-	_			900	0	4.5	5.4	0.002
	6	C - 3	8 5	-	10	-	5	_	-	_				950	0	4.5	6.0	0.003
	7	G - 3	9 0	1 0				_	_	_				900	0. 1	4 3	5.8	0.002
	8	G - 4	9 0	-	10	_	_	-	_	_	_			900	0. 4	4 6	6.2	0.003
旌	ø	G - 4	9 5	_	1	_	5		+			_ '	_	850	0. 1	5 0	6.4	0.003
	10	G - 5	9 0	_	_	_	_	_		_		10	_	900	0. 2	5 2	6.7	0.007
	11	G - 5	9 5	_	_	_	_	_	5	_	_			850	0.6	5 0	6.4	0.004
1	12	C - 6	9 0	_	-	_	_		_	<u> </u>		10		900	0. 1	5 3	5.9	0.007
1	13	C - 6	90	_		-	_	5		5				900	0. 2	.5 2	6.0	0.005
64	14	G - 7	9 0	_	_		_	_		_		10		900	0	5 3	5.9	0.008
"	15	G-7	9 0				_	_			5		5	950	0	5 0	5.8	0.005
	16	C - 8	8 5		_	-	_		5	_		10		950	0	5 5	6.2	0.01
	17	G - 8	9 0	_		5	5	_						900	0. 2	4 3	6. 0	0.003
L	18	C - 9	8 5	<u> </u>	_		_	_	_		_	10	5	950	0. 1	5 4	6.3	0.01

※ 喪中、Aはαー石英、Bは溶融シリカ、Cはクリストバライト、Dはコーディエライト、Eはステアタイト、Fはフォルステライト、Gはウォラストナイト、Hはアノーサイト、Iはアルミナ、Jはセルジアンである。

第 2 変(その2)

				#	ラスセ	ラミッ	ク材料	の配合	初合	(重量%	()			蜂		特	性	
	į	ガラス	組成物			7	4	ラ -	- စ	種類	1			焼成温度と	吸水率	热膨强率	誘電率	然伝導率
		No.	盘	A	В	С	Đ	E	F	G	Н	1		(불)	(%)	×10-1/4		(3 · S · E)
惠	19	C - 9	9 0	-	-1			10		_		_		900	0	5 1	6.]	0.007
寒阴	20	C - 9	9 5				_		5	1	-	-	_	850	0. 4	5 3	5.9	0.005
	1	G - 10	9 5	5	_		-	_	_	_	-	-		1000	3. 5	-	-	—
	2	C - 11	9 5	. 5			_	_	_	_	-1	-	_	1000	4. 7	1	-	_
	3	G - 12	9 5	5	_		_	_	_	_	-1	_	_	1000	8. 1	_	_	_
	4	C - 13	9 5	5			_		_	_	_	-	_	1000	1 2. 0	_	_	_
比	5	G - 14	9 5	5	·	_	-	-	·	_	_		_	1000	3 7. 0	_		_
	6	G - 15	9 5	5	-	_			-	_		_		1000	2 1. 0		_	_
	7	C - 16	9 5	5	-					_	_	_		1000	8. 0	-	_	_
較	8	G-17	9 5	5	_		_	_	_	_		-	-	1000	1 1. 0	_	_	_
	9	C - 18	9 5	5	-	_		_	1	_		-	1	1000	1 4. 0			_
	10	C-1	6 8	3 2	_			-		<u> </u>	1		1	1000	1 2 0	_	_	-
61	11	C - 2	6 8	-	_		<u> </u>	_	_	_	1	3 2	1	1000	6. 5		_	
וש	12	C - 5	6.0	<u> </u>	<u> </u>	_	4 0	-	_	_		_	_	1000	8. 2	_		
	13	G - 6	6.8	-	<u> </u>	_	-	_	-	_		3 2	1	1000	2. 3		! –	
	14	G - 1	6 8	3 2	_	_	_	<u> </u>	_	_	_	1	_	1000	4. 3		L =_	_
	15	C - 8	6 8	<u> </u>	_	_	_	3 2	-	_	_	-	_	1000	8. 6	_	-	

※ 妻中、Aはαー石英、Bは溶融シリカ、Cはクリストパライト、Dはコーディエライト、Eはステアタイト、Fはフォルステライト、 Cはウォラストナイト、Hはアノーサイト、Iはアルミナ、Jはセルジアンである。

特開昭63-50345 (7)

第2表にみるように、実施例1~20の焼結体では、比較例1~15の焼結体と比べて、1000以下の焼成温度であるにもかかわらず極めて 報密な焼結状態が達成されている。比誘電率も、 充分に実用性のある小さな値となっている。熱膨 張率、熱伝導率も良好である。

なお、比較例1~15の焼結体は、1100℃以上の温度で焼成しないと、緻密な焼結体とはならなかった。また、比較例1~15の焼結体は鍛密な焼結状態ではないので、比誘電率の値は見掛け上の値(測定値は小さめに出る)で、材料そのものの真の値ではない。このため、比較例では、比誘電率は表示していない。

〔発明の効果〕

この発明のガラスセラミック焼結体は、以上にみるように、上記の組成のガラス組成物の粉末とフィラー粉末とが上記割合で混合されている粉末の成形体を焼成してなるので、緻密でしかも、小さい比誘電率となっているだけでなく、それが1000で以下の焼結温度で達成することができる

・したがって、緑密で低比誘電率であることから、この焼結体は多層配線基板材料に適するものとなり、1000で以下の焼成温度であるため、低抵抗金属材料を印刷するなどして同時に焼成を行い、配線を形成することもできる。

4. 図面の簡単な説明

第1図は低抵抗金属材料配線の温度と収縮率の 関係をあらわすグラフ、第2図はガラス粉末成形 体の温度と収縮率の関係をあらわすグラフである

代理人 弁理士 松 本 武 彦

