COGS 17 section A02

vestibular, somatosensory, and motor systems

section resources repo

reminders

- no section next week (week 8) or the week after (week 9: memorial day) !!
- midterm II is **this thursday**
 - o same format as last midterm:
 - class time 3:30 4:50 PM
 - one shot; online; open notes
 - range: weeks 4-7
 - keep track of your pace!!!
- reminder: my office hours are wednesdays 10:00 AM 11:00 AM
 - o come over if you have any questions esp since finals are coming up!

vestibular system

movement and balance

shutterstock

AND STREET

sensory mechanism of the vestibular system

vestibular organ = semicircular canals + otolith organs

adjacent to cochlea in the inner ear

semicircular canals (angular acceleration eg. head rotation)

- 3 looped, fluid filled canals arranged in orthogonal planes (XY
- filled with K+ rich endolymph
- hair cells sit in cupula (jelly-like cap) in the ampulla at canal base
 - o crista ampullaris = ridge of hair cell receptors
- mechanism for detecting angular acceleration
 - when head rotates → endolymph in ampulla lags behind (inertia)
 - when head stops moving → endolymph overshoots,
 deforming hair cells → alter NT release

sensory mechanism of the vestibular system

otolith (ear stone) organs (linear acceleration and tilt)

- vestibular sacs: utricle and saccule
 - o utricle: contain hair cells on the floor
 - o saccule: contain hair cells on the wall
- hair cells embedded in gelatinous otolithic membrane
 - otoliths (ear stones): dense calcium carbonate crystals on top of membrane
- mechanism for detecting linear acceleration and head tilts
 - o gravity shifts otolith crystals → force exerted on gel layer bends hair cell cilia
 - direction of cilia bending determines hyperpolarization or depolarization of hair cell → alter NT release

sensory mechanism of the vestibular system

hair cell transduction dynamics

- K+ goes in \rightarrow NT released
- spontaneous firing in absence of input (head is still or in constant velocity)
 - o no rotation: hair cells release a *base rate* of NT
 - hair cell cilia bent to longer side → K+ channels open (depolarization)→ more NT release
 - o hair cell cilia bent to shorter side \rightarrow K+ channels close (hyperpolarization) \rightarrow less NT release

key takeaway: vestibular system only detects *changes* in velocity and orientation, not steady movement!

vestibular pathway

hair cells in semicircular canals and otolith organs

• NT release synapses onto...

vestibular ganglion cells

• axons form part of 8th cranial nerve that then connect to...

vestibular nuclei in the medulla

- main processing center for vestibular information
- generating nausea (motion sickness)
- that project to...
 - spinal cord + brainstem (posture)
 - superior colliculus (visually processing movements)
 - o cranial nerves 3,4,6 (eye muscle movements)

cerebellum

balance control during movement

* higher pathways beyond are less understood – possibly temporal lobe (?)

motion sickness

occurs due to mismatch of sensory information

- visual, motor, and vestibular inputs aren't coordinating with one another
- creates confusion in the brain's integration centers (vestibular nuclei of medulla)
 - o brain expects certain sensory feedback patterns when you move
 - mismatched vestibular info → brain interprets as a sensory disturbance similar to from toxins → induce nausea as protective mechanism

in moving car

- you're not moving but your eyes see environment moving past you
- o vestibular doesn't detect change but eyes are detecting change spinning then stopping
 - after spinning, endolymph continues to move but visual scene is now stable
 - o eyes aren't detecting change but vestibular detects change

somatosensory system

detecting sensory information

somatosensory receptors

free nerve endings: unmyelinated/lightly myelinated, found on skin, mucus membranes, around hair follicles

- thermoreceptors: temperature change
- nociceptors: pain and itch
- follicle receptors: subtle stimuli on skin

mechanoreceptors: various types of touch and proprioception (internal movement)

mechanorecept or	receptive field	adaptation speed	function
meissner's	small	fast	rapid changes eg. slippage
merkel's	small	slow	detail discrimination eg. Braille reading
pacinians	large	fast	large-scale movement eg. limb bending
ruffini	large	slow	sustained stretch or pressure eg. sitting

fast adapting: stimulus onset/offset, not during sustained stimulation

slow adapting: continue firing as long as stimulus is present

Slow Adapting

across fiber coding: selective adaptation in temperature receptors free nerve endings

- warm best (WB) receptors: temperatures warmer than skin (~89F/32C)
- cool best (CB) receptors: temperatures cooler than skin
- overlap in temperature sensitivity → both receptors can be active simultaneously
 - o temperature not encoded by any one receptor alone, but by the pattern of activation across multiple receptor types

brain interprets temperature based on relative activity of WB and CB receptors

- physiological zero: 89F (32C): WB = CB (equal firing)
- selective adaptation placing hand in ice water
 - o adapts CB receptors \rightarrow response weakens
 - place hand in neutral water \rightarrow WB > CB
 - brain interprets water warmer than it really is

somatosensory pathways: spinothalamic pathway

- 1. free nerve endings detect pain temperature and itch
- 2. axons enter ipsilateral dorsal root of spinal cord
 - a. synapse on second-order neurons
 - b. reflex circuits
- 3. second-order neurons cross over to contralateral side in spinal cord
- 4. info ascend to contralateral ventral posterior nucleus (VPN) of thalamus
- 5. somatosensory cortex

somatosensory pathways: medial lemniscal pathway

- 1. encapsulated receptors detect touch and proprioception
- 2. axons enter ipsilateral dorsal root of spinal cord
 - a. main axon does NOT synapse as it ascends
- 3. first synapse: ipsilateral medulla
 - a. second order neurons cross over in brainstem
- 4. info ascend and synapse in contralateral VPN
- 5. final projection to somatosensory cortex

somatosensory cortex

both pathways

- first synapse at crossover point (spinal cord or medulla)
- ascend to contralateral VPN
- signals continue to primary somatosensory cortex (S1)
 → S2
 - parietal lobe
- corpus callosum for interhemispheric sharing
 - S2 integrates input from both sides

brown sequard syndrome

damage to only on side of spinal column

- crossover points in somatosensory pathways determine symptom patterns
- different sensory deficits on opposite sides of the body
 - o reduced/loss of touch and position on ipsilateral side
 - medial lemniscal crosses in medulla
 - reduced/loss of temperature and pain perception on contralateral side
 - spinothalamic crosses in spinal cord

somatosensory cortex organization

in postcentral gyrus of parietal lobe

- cortex contains topological maps of the body surface (penfield map or "homunculus)
 - each body part represented in proportion to its *sensory resolution* (not physical size)!
 - o separate maps for touch, proprioception, temperature, pain
- magnification factor
 - o areas with small receptive fields and dense high-acuity receptors are overrepresented in cortex
 - take up disproportionately large portion of map

gate theory

basic pain signal pathway

- nociceptors release substance P in spinal cord → T cells activated → pain signal up to brain
- pain perception depends on whether T cell activity is turned on or off (gate open or closed)

mechanism 1: local touch inhibition → close gate via body feedback

- touch receptors near site of pain send collateral signals to spinal cord
- activate inhibitory interneurons (SG cells)
 - \circ T cells inhibited \rightarrow reduce response to substance P
 - "gate" closes; pain signal reduced/blocked

gate theory

mechanism 2: brainstem inhibition → endorphin pathway

- **periaqueductal gray** (PAG) in midbrain releases endorphins (natural painkillers)
 - o *inhibits* inhibitory cells in raphe → raphe activated → sends excitatory signals to spinal cord
 - SG cells activated to inhibit T cells \rightarrow gate closes

mechanism 3: brain-level inhibition \rightarrow axoaxonal relationships

- substance P-releasing neurons have endorphin receptor sites on axon terminals
 - o releasing endorphins inhibit substance P release via axo-axonal connections (other cells synapse onto these receptors)
 - pain signal reduced before reaching postsynaptic target

movement

yes

muscles

3 muscle types

- **smooth** internal organs (involuntary)
- **cardiac** heart (endogenous rhythm)
- **striate** skeletal and facial (voluntary)
 - o parallel fibers; attached to bones by tendons
 - work in antagonistic pairs
 - flexor (moves bone *toward* body)
 - extensor (moves bone *away*)
 - o neuromuscular junction
 - motor neurons exit ventral root of spinal cord, synapsing directly onto muscle → release
 acetylcholine (ACh)
 - muscle fibers fire *action potentials* (all or nothing)

contractile mechanism

sarcomeres: functional unit of muscle contraction

- each muscle fiber contains chain of repeating
 sarcomeres (basic contractile unit)
 - o components
 - myosin: thick filament with crossbridges; responsible for generating force
 - **actin**: thin, coiled double-stranded filament anchored to the sarcomere

contraction mechanism

- when Ca++ enters muscle cells, sarcomeres are activated
- myosin cross bridges hook into coiled actin
 - cross bridges bend to tighten actin coil → relax and muscle passively stretches back

types of spinal reflexes

stretch reflex

- muscle spindles detect passive stretch (e.g. knee tap)
- sends signal to spinal cord \rightarrow directly excites motor neuron
- monosynaptic: sensory neuron \rightarrow motor neuron \rightarrow same muscle contracts

golgi tendon reflex

- golgi tendon organs detect excessive contraction
- activates inhibitory interneurons → motor neuron suppressed
- also engages antagonistic pair (e.g. excites extensor if flexor inhibited)

types of spinal reflexes

pain withdrawal reflex

- nociceptors activate interneurons in spinal cord
- excite flexor motor neurons → rapid withdrawal
- reflex occurs before pain reaches brain

scratch reflex

- oscillator circuit (e.g. rhythmic scratching)
- controlled by central pattern generators in spinal cord, cerebellum
- rate is fixed, persists even without brain input

infant reflexes

- rooting: touch cheek \rightarrow turn & suck
- grasping: touch palm → grip (briefly weight-bearing)
- vestigial from primate ancestors; can reappear in brain damage

motor pathway: corticospinal

for control of voluntary motion on contralateral side of body

- originate in large **pyramidal cells** in motor cortex
- cross over at the pyramids of medulla then project to contralateral spinal cord, synapsing on interneurons or motor neurons in spinal cord
- some fibers first synapse in red nucleus (integrates vestibular + cerebellar input)

function

- fast, myelinated tracts for precise voluntary movement
- especially important for distal limbs, hands, fingers, and facial muscles

corticobulbar tract for facial control

- fibers to face cross in the pons
- synapse on cranial motor neurons (trigeminal nerve)

motor pathway: ventromedial

functions

- controls bilateral, midline body movements
- coordinates neck, shoulders, trunk, and proximal limbs
- involved in posture, balance, and gross motor actions (e.g. walking)
- supports sensory-motor integration, like head-eye coordination

pathway/structure

- composed of multiple sub-pathways from subcortical areas
- many fibers pass through the tectum, vestibular nuclei, and reticular formation
 - most synapse on spinal interneurons
- projections are primarily ipsilateral

cerebellum (little brain)

about 13% of brain mass, but contains ~50 billion neurons (more than rest of brain combined)

- supports rapid, coordinated, and ballistic movements
- creates and manages motor programs (pre-learned, precise movement sequences)
 - o saccades ballistic eye movements (cannot be altered mid-flight)
 - learned behaviors clapping, sports, manual skills
 - o timing tasks movement prediction, auditory intervals, attention shifts
- operates largely without conscious control, using ongoing sensorimotor feedback

cerebellum (little brain)

inputs and outputs

- proprioceptive input from spinal cord & visual and vestibular info via cranial nerves
- cortical input about planned and initiated movements \rightarrow calculates precise muscle output adjustments
- projects to all major motor structures, esp ventrolateral nucleus (VLN) of thalamus
- no direct connection to motor neurons, but modulates motor commands sent to spinal cord

circuitry

- parallel fibers run across rows of **purkinje cells** (like telephone poles)
 - o excitation: purkinje sends inhibitory signals to deep nuclei
 - o communicate to deep nuclei activate motor nuclei in brain
 - timing coded by distance along parallel fibers

basal ganglia: organizes activity in tasks

key structures

- input: caudate nucleus + putamen = **striatum**
 - o from thalamus, tegmentum, cortex
- output: globus pallidus
 - o up motor cortex via thalamus
 - o down red nucleus, cerebellum, spinal cord
- claustrum connects frontal and sensory cortex

functional role

- cycles information in a **re-entrant loop** (cortex—basal ganglia—cortex)
- task-based, learned sequences of behavior
- slow smooth voluntary movements (posture, walking)
- habit formation, motor program selection, automated behavior

clinical links

- parkinson's disease: motor deficits from dopamine loss
- OCD: overactive loops →
 repetitive, unsatisfying behavior
- ADD: disrupted circuits → poor task focus
- connected to amygdala (emotion) and nucleus

motor cortex

primary motor cortex (M1)

- frontal lobe on precentral gyrus; contains motor homunculus (topological map)
- receives input from somatosensory cortex
- no direct muscle connection!! sends commands to motor neurons in brainstem
 & spinal cord

secondary motor cortex – movement planning; connects with visuo-spatial areas of parietal cortex

premotor cortex

- movement preparation
- o part of the mirror cell system responds to seeing own or others' actions
- includes broca's area for speech production
- supplementary cortex
 - o preparing complex or rapid movement sequences

kahoot