

AGENDA

Overview	Page 00
■ Frame Transformation	Page 00
 Coarse flow and Fine flow estimation 	Page 00
Backward and Forward flow field	Page 00
 Down-sampling and Up-sampling 	Page 00
 Decoder – Tag and Encoder 	Page 00
Fusion	Page 00

LEVEL PYRAMID DIAGRAM

OVERVIEW

The UMF_CORE is designed in order to sequentially support optical flow estimation on different resolution levels

FRAME TRANSFORMATION

Frame transformation (FT) contains two identical blocks: FT_P is dedicated to process the previous image frame, and FT_C is dedicated to process the current image

Feature: Smooth filtering of gray images

FRAME TRANSFORMATION

A Gaussian Filter is a low-pass filter used for reducing noise (high-frequency components) and blurring regions of an image.

FRAME TRANSFORMATION

A Gaussian Filter is a low-pass filter used for reducing noise (high-frequency components) and blurring regions of an image.

Original Smooth

THE GAUSSIAN FILTER

A 3x3 kernel filter with programmable coefficients is applied to the input gray image data

gray value 15

The input image consists of maximum 16 bits per pixel. In case of 12 bits/pixel, the 4 MSBs are unused. The programmable values of the filter coefficients PRE_SMC0-8 are 0, 1, 2, 4 and 8

Recommended coefficients values are [0 0 0 0 1 0 0 0 0]: no smoothing 3x3 kernel filter: [1 2 1 2 4 2 1 2 1] : Gaussian filter [1 1 1 1 1 1 1 1 1]: Box filter

COARSE FLOW ESTIMATION – FINE FLOW ESTIMATION

[SRL,SRR,SRU,SRD,Vshift] = [64,64,31,31,0]

Grid alignment

Seach range

BACKWARD & FORWARD FLOW FIELD

Backward flow field

Forward flow field

DOWN-SAMPLING AND UP-SAMPLING

The Gaussian Pyramid:

A representation in multiple scales

The goal is to define a representation in which image information at different scales is explicitly available

DOWN-SAMPLING AND UP-SAMPLING

Down-sampling and Up-sampling in DOF use the Gaussian pyramid method

Down-sampling

Take every 2nd pixel from I for g₁

	2		4		6
7	8	9	10	11	12
	14		16		18
19	20	21	22	23	24
	26		28		30
31	32	33	34	35	36

1	3	5
13	15	17
25	27	29

DOWN-SAMPLING AND UP-SAMPLING

Down-sampling and Up-sampling in DOF use the Gaussian pyramid method

Up-sampling

1	1	3	3	5	5
1	1	3	3	5	5
13	13	15	15	17	17
13	13	15	15	17	17
25	25	27	27	29	29
25	25	27	27	29	29

DECODER – TAG (PCD + PLO) - ENCODER

Input data formats

Elita p	D' C. L.	Description .		
Field	Bit field	Description		
name				
		age input format		
gii	15:0	grey scale pixel. If < 16 bit, then right aligned.		
Backward /	Forward flow in			
u	31:22	horizontal motion component (format: sint10)		
V	21:12	vertical motion component (format: sint10)		
FLE	11:10	floEncoding information		
		Gives the number of less significant bits of u and v used for sub-pixel data. Note		
		that the same encoding applies to both <i>u</i> and <i>v</i> .		
		0 : 4 bit for sub-pixel, format: SQ5.4, range (-32+31.9375), accuracy: ε ≤ 1/32		
		1: 3 bit for sub-pixel, format: SQ6.3, range (-64+63.875), accuracy: ε ≤ 1/16		
		2: 2 bit for sub-pixel, format: SQ7.2, range (-128+127.75), accuracy: ε ≤ 1/8		
		3: 1 bit for sub-pixel, format: SQ8.1, range (-256+255.5), accuracy: ε ≤ 1/4		
-	9:3	Reserved		
PCD	2	pyraConfirmed information		
		The output result (originating from level <i>pyraLevelOrigin</i>) is confirmed by the next		
		level (pyraLevelOrigin+1)		
		0: conflicting result or no result on next level		
		1: confirmed result (best case)		
PLO	1:0	pyraLevelOrigin information		
		Index of the pyramid level (if any) where this flow vector was computed (highest		
		resolution = smallest number wins)		
		0: invalid (no flow result)		
		1: originates from pyramid level 1 (best case)		
		2: originates from pyramid level 2 (medium resolution)		
		3: originates from pyramid level 3 (lowest resolution)		

Output data formats

Field name	Bit field	Description	
Backward fl	low / forward Fl	ow / PS flow output format	
u	31:22	horizontal motion component (sint10)	
V	21:12	vertical motion component (sint10)	
FLE	11 :10	flowEncoding information Gives the number of less significant bits of u and v used for sub-pixel data. Note that the same encoding applies to both u and v 0: 4 bit for sub-pixel, format: SQ5.4, range: (-32+31.9375), accuracy: ε ≤ 1/32 1: 3 bit for sub-pixel, format: SQ6.3, range: (-64+63.875), accuracy: ε ≤ 1/16 2: 2 bit for sub-pixel, format: SQ7.2, range: (-128+127.75), accuracy: ε ≤ 1/8 3: 1 bit for sub-pixel, format: SQ8.1, range: (-256+255.5), accuracy: ε ≤ 1/4	
-	9:3	Reserved	
PCD	2	 pyraConfirmed information The output result (originating from level pyraLevelOrigin) is confirmed by the next level (pyraLevelOrigin+1) conflicting result or no result on next level confirmed result (best case) 	
PLO	1:0	pyraLevelOrigin information Index of the pyramid level (if any) where this flow vector was computed (highest resolution = smallest number wins) 0: invalid (no flow result) 1: originates from pyramid level 1 (best case) 2: originates from pyramid level 2 (medium resolution) 3: originates from pyramid level 3 (lowest resolution)	

- Decoder: The FUSION Decoder module decompresses, 10 bits each for U and V components, 2 bits for the flow encoding (FLE), 2 bits for pyramid level (PLO) and 1 bits for quality measure (PCD) by the Low Priority. The decompressed values are derived depending on the value of FLE by shifting both values by FLE bits to the left, the two FLE bits are then removed from the output.
- Encoder: the pixel data is encoded back to the 32-bit compressed format used at the Path A input interface.

FUSION

The FUSION module gets 2 flow-field estimate frames, and combines them into one resulting flowfield estimate frame, according to pixel based criteria, i.e., the output value is based locally only on the respective input values, not on their surrounding estimate values

Page 15

Evolution of the different variances

Decentralized Kalman filter

KALMAN FILTER

x	state variable	n x 1 column vector	Output
Р	state covariance matrix	n x n matrix	Output
z	measurement	m x 1 column vector	Input
А	state transition matrix	n x n matrix	System Model
Н	state-to-measurement matrix	m x n matrix	System Model
R	measurement covariance matrix	m x m matrix	Input
Q	process noise covariance matrix	n x n matrix	System Model
K	Kalman Gain	n x m	Internal

DENSE OPTICAL FLOW OUTPUT

Flow field horizontal

Flow field vertical

Real world scenario

Single component flow fields

Red: negative component values with the brightness referring to the magnitude of the component

Green: positive component values with the brightness referring to the magnitude of the component

DENSE FLOW MAP RESULT

Level maps(PLO)

- black flow vector is invalid, no result exists
- white flow vector from L3
- light gray flow vector from L2
- dark gray flow vector from L1

Confirmation maps(PCD)

- black flow vector is invalid (after fusion)
- yellow flow vector at Ln is valid but not at Ln+1 or vector at Ln does not correspond to vector at Ln+1
- green flow vector at Ln and Ln+1 are valid and correspond to each other

SUMMARY

Optical flow and fusion

No dedicated L1 flow field buffer, with L1 to L2 downscaling

Separate buffers, no L1 to L2 downscaling

DATA FLOW

WHY NEED DENSE LEVEL?

✓ Vehicle control in sensitive scene

✓ Become a very attractive sensing technique for obtaining 3D information

✓ 3D information keep criteria targeted 130km/h

COMPARE DENSE TO SPARSE

Sparse

LK

Farneback

Renesas (TVL1 base)

Dense

DENSE MAP

IP	Target	Criteria
Dense-Optical- Flow	2Mpix 16ms	0-130Km/h High speed pilot
Dense-Stereo	2Mpix 33ms	0-130Km/h High speed pilot

Simulation result

DENSE MAP SIMULATION DEMONSTRATION

HEADLINE

SUBLINE