Universal Serial Bus Type-CTM Port Controller Interface Specification

Revision 1.0, Version 1.2 November 2016

Copyright © 2015, USB 3.0 Promoter Group: Hewlett-Packard Company, Intel Corporation, Microsoft Corporation, Renesas, STMicroelectronics, and Texas Instruments All rights reserved.

LIMITED COPYRIGHT LICENSE: The USB 3.0 Promoters grant a conditional copyright license under the copyrights embodied in the USB Type-C Cable and Connector Specification to use and reproduce the Specification for the sole purpose of, and solely to the extent necessary for, evaluating whether to implement the Specification in products that would comply with the specification. Without limiting the foregoing, use of the Specification for the purpose of filing or modifying any patent application to target the Specification or USB compliant products is not authorized. Except for this express copyright license, no other rights or licenses are granted, including without limitation any patent licenses. In order to obtain any additional intellectual property licenses or licensing commitments associated with the Specification a party must execute the USB 3.0 Adopters Agreement. NOTE: By using the Specification, you accept these license terms on your own behalf and, in the case where you are doing this as an employee, on behalf of your employer.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. THE PROVISION OF THIS SPECIFICATION TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

All implementation examples and reference designs contained within this Specification are included as part of the limited patent license for those companies that execute the USB 3.0 Adopters Agreement.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

CONTENTS

Spe	ecifica	tion Wo	rk Group Chairs / Specification Editors	7					
Spe	ecifica	tion Wo	rk Group Contributors	7					
Re	vision	, Versio	n History	9					
1	Intro	duction	1	10					
	1.1	Purpo	se	10					
	1.2	-							
	1.3	•	d Documents						
	1.4	Conve	ntions	11					
		1.4.1	Precedence	11					
		1.4.2	Keywords	11					
		1.4.3	Numbering	12					
	1.5	Terms	and Abbreviations	12					
2	Over	view		13					
	2.1	Introd	uction	13					
	2.2	USB T	ype-C Port Controller (TCPC) Interface	13					
3	Туре	e-C Port	Controller Requirements	14					
	3.1	Port P	ower Control for VBUS and VCONN	14					
	3.2	USB C	C Logic	14					
	3.3	USB-P	D Message Delivery	14					
	3.4	Debug Accessory Detection1							
	3.5	State I	Diagram Introduction	16					
	3.6	TCPC	Protocol Layer State Operation	16					
	3.7	USB T	ype-C Port Controller Requirements for Source, Sink, and DRP	20					
		3.7.1	Source Requirements	23					
		3.7.2	Sink Requirements:	24					
		3.7.3	Sink with Accessory Support	25					
		3.7.4	DRP Requirements	26					
	3.8	Watch	dog Timer Requirements (Optional Normative)	27					
		3.8.1	Watchdog Timer Function	27					
4	USB	Type-C	Port Controller Interface	28					
	4.1	Regist	er Map	29					
	4.2	TCPC :	SMBus Optional Normative Requirements	31					
	4.3	Writin	g and Reading TCPC Registers	31					
		4.3.1	Writing Single Byte Registers	31					
		4.3.2	Reading Single Byte Registers	32					
		4.3.3	Writing Multiple-Byte Registers	32					
		4.3.4	Reading Multiple-Byte Registers						
		4.3.5	Writing the TRANSMIT_BUFFER						
		4.3.6	Reading the RECEIVE_BUFFER						
	4.4	Regist	er Definition						
		4.4.1	Identification Registers	35					

		4.4.2	ALERT Register (Required)	37	
		4.4.3	Mask Registers	39	
		4.4.4	CONFIGURE STANDARD OUTPUT (Optional Normative)	42	
		4.4.5	Control and Configuration Registers	43	
		4.4.6	Status Registers	50	
		4.4.7	COMMAND (Required)	55	
		4.4.8	Capability Registers	58	
		4.4.9	MESSAGE_HEADER_INFO (Required)	62	
		4.4.10	RECEIVE_DETECT (Required)	62	
		4.4.11	RECEIVE_BUFFER (Required)	63	
		4.4.12	TRANSMIT (Required)	65	
		4.4.13	TRANSMIT_BUFFER (Required)	66	
		4.4.14	VBUS_VOLTAGE (Optional Normative)	67	
		4.4.15	Voltage Thresholds	68	
		4.4.16	VENDOR_DEFINED Registers	70	
	4.5	STAND	ARD IO SIGNALS	71	
		4.5.1	STANDARD INPUT SIGNALS (Optional Normative)	71	
		4.5.2	STANDARD OUTPUT SIGNALS (Optional Normative except	71	
	1.0	TCDC C	Alert#)		
	4.6		Connection State Diagrams and Flows		
	4.7	4.7.1	nmunication Operational Model		
		4.7.1	Transmitting an SOP* Message		
			Transmitting a Hard Reset Message		
		4.7.3	Receiving an SOP* message		
		4.7.4	Receiving a Hard Reset message		
	4.0	4.7.5	Receiving a Cable Reset message		
	4.8		Management		
		4.8.1	I2C Interface		
		4.8.2	PD Messaging		
		4.8.3	CC Status Reporting		
		4.8.4	VBUS Reporting		
	4.0	4.8.5	Fault Status Reporting		
	4.9		'iming Constraints		
	4.10		ysical Interface Specifications		
A	Infor	mative '	TCPM State Diagrams	89	
			FIGURES		
			pe-C Port Manager to USB Type-C Port Controller Interface		
_			nterfaceof States		
_			rot states		
			e Diagram Implemented in TCPC		
Fig	ure 3-5	. Hard R	eset Transmission State Diagram implemented in the TCPC		18
			g Consecutive Registers with or without the SMBUS Protocol		
rıgı	ure 4-2	keadinį	g Consecutive Registers with or without the SMBus Protocol		32

Figure 4-3. Writing a 2-Byte Register with or without the SMBus Protocol	32
Figure 4-4. Reading a 2-Byte Register with or without the SMBus Protocol	
Figure 4-5. Writing the TRANSMIT_BUFFER with or without the SMBus Protocol	
Figure 4-6. Reading the RECEIVE_BUFFER with or without the SMBus Protocol	
Figure 4-7. Automatic VBUS Sink Discharge by the TCPC after a Disconnect	49
Figure 4-8. Transition from vSafe5V to High Voltage	
Figure 4-9. Transition from High Voltage to vSafe5V	
Figure 4-10. TCPC Power-On State Diagram	
Figure 4-11. TCPC State Diagram before a Connection	
Figure 4-12. TCPC State Diagram after a Connection	
Figure 4-13. TCPC Debug Accessory State Diagram	
Figure 4-14. TCPC Sink Debug Accessory Orientation State Diagram	
Figure 4-15 TCPC Source Debug Accessory Orientation State Diagram	
Figure 4-16. DRP Initialization and Connection Detection	
Figure 4-17. Source Disconnect	
Figure 4-18. Sink Disconnect	
Figure 4-19. Rx State Diagram Implemented in TCPM	
Figure 4-20. Tx State Diagram Implemented in TCPM	
Figure 4-21. Hard Reset State Diagram Implemented in TCPM	
· ·	
TABLES	
Table 3-1. Required Device_Capability_1 Support Based on Power Role	
Table 3-2. Required Device_Capability_2_Support Based on Power Role	
Table 3-3. Source Requirements	
Table 3-4. Sink Requirements	
Table 3-5. Sink with Accessory Support Requirements	
Table 3-6. DRP Requirements	
Table 4-1. Register Map	
Table 4-2. VENDOR_ID Register Definition	
Table 4-3. PRODUCT_ID Register Definition	
Table 4-4. DEVICE_ID Register Definition	
Table 4-5. USBTYPEC_REV Register Definition (Required)	
Table 4-6. USBPD_REV_VER Register Description	
Table 4-7. PD_INTERFACE_REV Register Description	
Table 4-8. ALERT Register Definition	
Table 4-9. ALERT_MASK Register Definition	
Table 4-10. POWER_STATUS_MASK Register Definition	
Table 4-11. FAULT_STATUS_MASK Register Definition	
Table 4-12. CONFIG_STANDARD_OUTPUT Register Definition	42
Table 4-13. TCPC_Control Register Definition	43
Table 4-14. ROLE_CONTROL Register Definition	
Table 4-15. Power on Default Conditions	
Table 4-16. FAULT_CONTROL Register Definition	46
Table 4-17. POWER_CONTROL Register Definition	46
Table 4-18. Discharge Timing Parameters	48
Table 4-19. Debounce requirements	50
Table 4-20. CC_STATUS Register Definition	
Table 4-21. POWER_STATUS Register Definition	
Table 4-22. FAULT_STATUS Register Definition	53
Table 4-23. COMMAND Register Definition	
Table 4-24. DEVICE_CAPABILITIES_1 Register Definition	
Table 4-25. DEVICE_CAPABILITIES_2 Register Definition	
Table 4-26 STANDARD INDIT CAPARILITIES Register Definition	60

Table 4-27. STANDARD_OUTPUT_CAPABILITIES Register Definition	61
Table 4-28. MESSAGE_HEADER_INFO Register Definition	62
Table 4-29. RECEIVE_DETECT Register Definition	62
Table 4-30. RECEIVE BYTE COUNT Definition	63
Table 4-31. RX_BUF_FRAME_TYPE DefinitionTable 4-32. RX_BUF_HEADER Definition	63
Table 4-32. RX_BUF_HEADER Definition	64
Table 4-33. RX_BUFFER_DATA_OBJECTS Definition	64
Table 4-34. TRANSMIT Register Definition	65
Table 4-35. TRANSMIT_BYTE_COUNT Definition	66
Table 4-36. TX_BUF_HEADER Definition	66
Table 4-37. TX_BUFFER_DATA_OBJECTS Definition	66
Table 4-38. VBUS_VOLTAGE Register Definition	
Table 4-39. VBUS_SINK_DISCONNECT_THRESHOLD Register Description	68
Table 4-40. VBUS_STOP_DISCHARGE_THRESHOLD Register Description	68
Table 4-41. VBUS_VOLTAGE_ALARM_HI_CFG Register Description	69
Table 4-42. VBUS_VOLTAGE_ALARM_LO_CFG Register Description	69
Table 4-43. Standard Input Signals	71
Table 4-44. Standard Output Signals	71
Table 4-44. Standard Output Signals	86
Table 4-46. I2C Static Characteristics	87
Table 4-47. I2C Dynamic Characteristics	87

Specification Work Group Chairs / Specification Editors

Intel Corporation (USB 3.0 Promoter company) Christine Krause – Subgroup WG co-chair, Specification Co-author Chee Lim Nge – Subgroup WG co-chair, Specification Co-author

Specification Work Group Contributors

Advanced Micro Devices	Will Harris Jason Hawken	Joseph Scanlon Peter Teng	Ken Xue
Analogix Semiconductor, Inc.	Greg Stewart		
Apple	Sree Anantharaman William Ferry Arulchandran Paramasivam	Reese Schreiber David Sekowski Sascha Tietz	Hsiao-Ping Jennifer Tsai
Cadence Design Systems, Inc.	Jacek Duda Pawel Eichler	Wojciech Kloska	Michal Staworko
Canova Tech	Matteo Casalin	Davide Ghedin	Nicola Scantamburlo
Cypress Semiconductor	Anup Nayak Jagadeesan Raj	Subu Sankaran Ganesh Subramaniam	
Dell Inc.	Mohammed hijazi Marcin Nowak	Siddhartha Reddy Merle Wood	
DisplayLink (UK) Ltd.	Pete Burgers Dan Ellis	Kevin Jacobs Richard Petrie	Jason Young
Ellisys	Mario Pasquali	Chuck Trefts	
Etron Technology, Inc.	Shihmin Hsu	Chien-Cheng Kuo	
Fresco Logic Inc.	Tim Barilovits	Dean Sysnow	Christopher Meyers
	Bob McVay	Jeffrey Yang	
Google Inc.	Alec Berg Jim Guerin Mark Hayter	Sameer Nanda Vincent Palatin David Schneider	Scott Collyer
Granite River Labs	Mike Engbretson		
Hewlett Packard Inc	Roger Benson	Robin Catell	
Indie Semiconductor	Robert Heaton		
Intel Corporation	Basavaraj Astekar Tim McKee Henrik Leegaard	Abdul Ismail Brad Saunders Karthi Vadivelu	Vijaykumar Kadgi Sanjeev Jahagirdar
Keysight Technologies Inc.	Jit Lim		
Lattice Semiconductor Corp	Young Il Kim	Thomas Watzka	
MCCI Corporation	Josh Averyt	Sherri Russo	Chris Yokum
Microchip Technology Inc.	Josh Averyt John Sisto	Mark Bohm Richard Wahler	Shannon Cash Neil Winchester

Microsoft Corporation	Randy Aull Vivek Gupta Teemu Helenius Ismo Manninen Tatu Tomppo	Michelle Bergeron David Hargrove Kai Inha Rahul Ramadas Andrew Yang	Anthony Chen Robbie Harris Jayson Kastens Nathan Sherman
MQP Electronics Ltd.	Sten Carlsen	Pat Crowe	
Nuvoton Technology Corp	Victor Flachs Nimrod Peled	Levi Tomer	Amit Maoz
NXP Semiconductors	Ken Jaramillo Abhijeet Kulkarni Rod Whitby	Anand Kannan Krishnan TN	Vijendra Kuroodi Bart Vertenten
ON Semiconductor	Adrien Gambino	Oscar Frietas	Nikhilesh Kamath
	Christian Klein	Bryan McCoy	Andrw Yoo
Parade Technologies, Inc.	Jian Chen Craig Wiley	Paul Xu Alan Yuen	
Qualcomm, Inc	Amit Gupta	Will Kun	George Paparrizos
Realtek Semiconductor Corp.	Charlie Hsu Ray Lee	Ryan Lin Terry Lin	Ray Lin Changhung Wu
Renesas Electronics Corp.	Bob Dunstan	Phillip Leung	Kiichi Muto
	Hajime Nozaki		
Richtek Technology Corporation	Kenny Chan HM Chang Patrick Change Bryan Huang	Spice Huang Chunan Kuo Tony Lai	Scott Wu Alex Yang Ming-Shih Yu
Ricoh Company Ltd.	Yasuyuki Hayashi Tatsuya Irisawa	Satoshi Oie Yuuji Tsutsui	
ROHM Co., Ltd.	Kris Bahar Ruben Balbuena	Nobutaka Itakura Yoshinori Ohwaki	Takashi Sato
STMicroelectronics	Jérôme Bach Nathalie Ballot Michel Bazin Filipo Bonaccorso	Christophe Cochard Cedric Force Jessey Guilbot Christophe Lorin	Meriem Mersel Federico Musarra Richard O'Connor Legrand Pascal
Synopsys, Inc.	Zongyao Wen		
Texas Instruments	Felipe Balbi	Mike Campbell	Deric Waters
VIA Technologies, Inc.	Jay Tseng	Fong-Jim Wang	

Revision, Version History

Revision	Version	Date	Description
1.0	1.2	Nov 28, 2016	Update Release Reprint release including incorporation of all approved ECNs as of the revision date plus editorial clean-up.
1.0	1.1	July 2016	Update Release Reprint release including incorporation of all approved ECNs as of the revision date plus editorial clean-up.
1.0	1.0	October 15, 2015	Initial Release

1 Introduction

With the continued success of USB Power Delivery, there exists a need to define a common interface from a USB Type- C^{TM} Port Manager to a Simple USB Type- C^{TM} Port Controller. This specification defines this interface.

Figure 1-1 shows the interconnection between the USB Type-C Port Manager, TCPM, and three USB Type-C Port Controllers, TCPCs. One TCPM may be used to drive multiple TCPCs subject to the timing constraints defined in the <u>USB PD</u> Specification. The connection between the TCPM and the TCPC is defined as the USB Type-C Port Controller Interface, TCPCI.

Figure 1-1. USB Type-C Port Manager to USB Type-C Port Controller Interface

1.1 Purpose

The USB Type-C Port Controller Interface, TCPCI, is the interface between a USB Type-C Port Manager and a USB Type-C Port Controller. This specification standardizes the communication between the USB Type-C Port Manager (TCPM) and the USB Type-C Port Controller (TCPC) while meeting the <u>USB Type-C</u> Power Delivery requirements.

The goal of the USB Type-C Port Controller Interface (TCPCI) is to provide a defined interface between a TCPC and a TCPM in order to standardize and simplify USB Type-C Port Manager implementations.

The TCPC is a functional block which encapsulates VBUS and VCONN power controls, $\underline{\textit{USB Type-}}$ CC logic, and the $\underline{\textit{USB PD}}$ BMC physical layer and protocol layer other than the message creation.

1.2 Scope

This specification is intended as a supplement to <u>USB 3.1, USB Type-C</u>, and <u>USB PD</u> specifications. It addresses only the elements required to implement and support the <u>USB Type-C</u> Port Controller.

Normative information is provided to allow interoperability of components designed to this specification. Informative information, when provided, may illustrate possible design implementations.

1.3 Related Documents

USB 3.1 Universal Serial Bus Revision 3.1 Specification

This includes the entire document release package.

http://www.usb.org/developers/docs

USB PD USB Power Delivery Specification, Revision 2.0, V1.2 March 25, 2016

http://www.usb.org/developers/docs

USB USB Type-C Connector Specification, Revision 1.2, March 25, 2016

Type-C http://www.usb.org/developers/docs

1.4 Conventions

1.4.1 Precedence

If there is a conflict between text, figures, and tables, the precedence shall be tables, figures, and then text.

1.4.2 Keywords

The following keywords differentiate between the levels of requirements and options.

1.4.2.1 Informative

Informative is a keyword that describes information within this specification that intends to discuss and clarify requirements and features as opposed to mandating them.

1.4.2.2 May

May is a keyword that indicates a choice with no implied preference.

1.4.2.3 N/A

N/A is a keyword that indicates a field or value is not applicable and has no defined value and shall not be checked or used by the recipient.

1.4.2.4 Normative

Normative is a keyword that describes features mandated by this specification.

1.4.2.5 Optional

Optional is a keyword that describes features not mandated by this specification. However, if an optional feature is implemented, the feature shall be implemented as defined by this specification (optional normative).

1.4.2.6 Reserved

Reserved is a keyword indicating reserved bits, bytes, words, fields, and code values that are set-aside for future standardization. Their use and interpretation may be specified by future extensions to this specification and, unless otherwise stated, shall not be utilized or adapted by vendor implementation. A reserved bit, byte, word, or field shall be set to zero by the sender and shall be ignored by the receiver. Reserved field values shall not be sent by the sender, and if received, shall be ignored by the receiver.

1.4.2.7 Shall

Shall is a keyword indicating a mandatory (normative) requirement. Designers are mandated to implement all such requirements to ensure interoperability with other compliant Devices.

1.4.2.8 Should

Should is a keyword indicating flexibility of choice with a preferred alternative equivalent to the phrase "it is recommended that".

1.4.3 Numbering

Numbers immediately followed by a lowercase "b" (e.g., 01b) are binary values. Numbers immediately followed by an uppercase "B" are byte values. Numbers immediately followed by a lowercase "h" (e.g., 3Ah) are hexadecimal values. Numbers not immediately followed by either a "b", "B", or "h" are decimal values.

1.5 Terms and Abbreviations

Term	Description			
ВМС	Biphase Mark Coding			
LPM	Local Policy Manager			
LPMI	Local Policy Manager Interface			
ОРМ	Operating System Policy Manager			
PPM	Platform Policy Manger			
PPMI	Platform Policy Manager Interface			
ТСРС	USB Type-C Port Controller			
TCPCI	USB Type-C Port Controller Interface			
ТСРМ	USB Type-C Port Manager			
Snk.Rp	Sink CC pin above minimum vRd-Connect, <u>USB Type-C</u>			
Snk.Open	Sin CC pin below maximum vRa, <u>USB Type-C</u>			
Src.Ra	Source CC pin above vOPEN, <u>USB Type-C</u>			
Src.Rd	Source CC pin within the vRd range, <u>USB Type-C</u>			
Src.Open	Source CC pin below maximum vRa			
OCP	Over-current Protection			
OVP	Over-voltage Protection			
vSafe0V	Safe operating voltage at "zero volts" per <u>USB PD</u>			
vSafe5v	Safe operating voltage at 5V per <u>USB PD</u>			

2 Overview

2.1 Introduction

2.2 USB Type-C Port Controller (TCPC) Interface

Figure 2-1. TCPC Interface

The USB Type-C Port Controller Interface, TCPCI, is the interface between a USB Type-C Port Manager and a USB Type-C Port Controller. The goal of the USB Type-C Port Controller Interface (TCPCI) is to provide a defined interface between a TCPC and a TCPM in order to standardize and simplify USB Type-C Port Manager implementations.

The TCPC is a functional block which encapsulates VBUS and VCONN power controls, <u>USB Type-C</u> CC logic, and the <u>USB PD</u> BMC physical layer and protocol layer other than the message creation. The TCPC shall NOT include support for USB PD BFSK.

3 Type-C Port Controller Requirements

This chapter describes the requirements of a USB Type-C Port Controller. The TCPC has three functions:

- <u>USB Type-C</u> Port Power Control for VBUS and VCONN (required)
- <u>USB Type-C</u> CC Control and sensing (required)
- **USB PD** Message delivery (required)
- Standard Inputs and Outputs are defined for simplified external interfacing (optional)

The TCPC uses I2C to communicate with the TCPM. The TCPC is an I2C slave with Alert# signal for requesting attention.

3.1 Port Power Control for VBUS and VCONN

A Source capable TCPC shall provide the registers required to allow the TCPM to control VBUS Sourcing. A Sink capable TCPC shall provide the registers to allow the TCPM to Control VBUS Sinking.

To ensure safety in case the I2C interface fails, a TCPC sourcing VBUS higher than 5V shall autonomously stop sourcing VBUS if the Sink is detached.

The TCPC shall implement a force discharge circuit if it supports sourcing VBUS. A low current bleed discharge may be implemented to discharge VBUS. Force discharge is a larger current discharge used to discharge VBUS to below vSafe0V upon detecting a Disconnect per <u>USB Type-C</u> (exiting the Attached.SRC state).

A TCPC shall include monitoring for the presence of VBUS (VSafe5V, VSafe0V). The TCPC shall implement high and low voltage alarms if it Sinks or Sources voltage greater than VSafe5V.

A Source or DRP TCPC shall include control for VCONN sourcing. A Sink TCPC shall include control for VCONN sourcing if VCONN Swap or Sink w/Accessory is supported. VCONN sourcing shall meet the tVCONNON and tVCONNOFF timing requirement per <u>USB Type-C</u>.

A TCPC shall implement low power states as defined in this specification.

3.2 USB CC Logic

The TCPC shall implement logic for controlling the CC pins on the USB Type-C Connector. The TCPC shall implement a method to control the Port Power Role and to report the state of the CC lines, Rp/Rd control, and CC sense/debounce/interrupt.

3.3 USB-PD Message Delivery

The TCPC shall implement BMC encoding. The TCPC shall NOT include support for <u>USB PD</u> BFSK. The TCPC shall implement the portion of the Protocol layer in the <u>USB PD</u> specification as shown in Figure 3-2, and 3-3. The TCPC is opaque from a <u>USB PD</u> point of view. The TCPC sends and receives messages constructed in the TCPM and places them on the CC connections. The TCPC does not interpret the <u>USB PD</u> messages.

The TCPC shall implement the entire <u>USB PD</u> PHY layer with BMC encoding. The TCPC shall implement a portion of the Protocol Layer Transmit state diagram.

• CRCReceiveTimer (PRL_Tx_wait_for_Phy_Response_state)

- RetryCounter (PRL_Tx_Check_RetryCounter State)
- MessageID is not checked in the TCPC when a non-GoodCRC message is received.
 Retried messages that are received are passed to the TCPM via I2C
- Received GoodCRC must match the transmitted MessageID and SOP type before it is considered valid
- Two things allow the TCPM to track the MessageID even when asynchronous messages are received
 - o If ALERT.ReceiveSOP*MessageStatus is not cleared when the TCPM requests a TRANSMIT then the I2C command is NAK'd or TransmitSOP*MessageDiscarded bit in the ALERT register is asserted.
 - o If a message is received before the TCPC has processed a transmit request, it asserts the TransmitSOP*MessageDiscarded bit in the ALERT register.
- BIST handling shall be as follows: Each incoming BIST message may be passed up to
 the policy engine as is any other incoming <u>USB PD</u> Message, or responded to with a
 GoodCRC without passing to the policy engine. The TCPC shall provide a mechanism
 to allow the policy engine to send a BIST Continuous Carrier Mode 2 message for
 tBistContMode.

3.4 Debug Accessory Detection

The TCPC may implement autonomous detection of the Debug Accessory State (vRd/vRd) per <u>USB Type-C</u>. This allows the TCPC to indicate a vRd/vRd connection without TCPM involvement, and indicates this via the DebugAccessoryConnected# output and POWER_STATUS.DebugAccessoryConnected. The TCPC performs autonomous detection of the Debug Accessory state if TCPC_CONTROL.DebugAccessoryControl=0b.

The TCPM may control entry to the Debug Accessory Detected state by setting TCPC_CONTROL.DebugAccessoryControl=1b.

The behavior in the Debug Accessory state is defined in *USB Type-C* in Appendix B.

3.5 State Diagram Introduction

The TCPC state diagrams defined this specification are Normative and shall define the operation of the TCPC. Note that these state diagrams are not intended to replace a well written and robust design. Figure 3-1 shows an outline of the states defined in the following sections. At the top there is the name of the state. This is followed by "Actions on entry" a list of actions carried out on entering the state and in some states "Actions on exit" a list of actions carried out on exiting the state.

Figure 3-1. Outline of States

Transitions from one state to another are indicated by arrows with the conditions listed on the arrow. Where there are multiple conditions these are connected using either a logical OR "|" or a logical AND "&". The inverse of a condition is shown with a "NOT" in front of the condition. In some cases there are transitions which can occur from any state to a particular state. These are indicated by an arrow which is unconnected to a state at one end, but with the other end (the point) connected to the final state. In some state diagrams it is necessary to enter or exit from states in other diagrams. Figure 3-2 indicates how such references are made. The reference is indicated with a hatched box. The box contains the name of the referenced state.

Figure 3-2. Reference to states

3.6 TCPC Protocol Layer State Operation

This section describes the normative TCPC Protocol layer state operation. The informative TCPM Protocol Layer state operation can be found in Appendix A.

¹ This transition is taken by the PHY when the GoodCRC message has been discarded due to CC being busy and after CC becomes idle again (see USB-PD specification). Two alternate allowable transitions are shown.

Figure 3-3. Rx State Diagram Implemented in TCPC

² Messages do not include Hard Reset or Cable Reset signals or expected GoodCRC messages (GoodCRC messages are only expected after the TCPC PHY has received the tx message and the TCPC Tx state-machine is in the PRL_Tx_Wait_for_PHY_response state).

³ The TCPC may not discard the transmission if the received message is a Ping message.

¹ The CRCReceiveTimer is only started after the PHY has sent the message. If the message is not sent due to a busy channel then the CRCReceiveTimer will not be

Figure 3-4. Tx State Diagram Implemented in TCPC

Figure 3-5. Hard Reset Transmission State Diagram implemented in the TCPC

started (see USB-PD Rev2.0 v1.1 Section 6.5.1).

² This indication is sent by the PHY Layer when a message has been discarded due to V_{BUS} or CC being busy, and after V_{BUS} or CC becomes idle again (see USB-PD Rev2.0 v1.1 Section 5.8). The CRCReceiveTimer is not running in this case since no message has been sent.

3.7 USB Type-C Port Controller Requirements for Source, Sink, and DRP

A TCPC shall implement the DEVICE_CAPABILITES_1 and DEVICE_CAPABILITES_2 registers as defined in Section 4.4.8.1. A TCPC shall support the DEVICE_CAPABILITIES_1 register for the applicable Power Role as defined in Table 3-1. A TCPC shall implement the DEVICE_CAPABILITIES_2 register for the applicable Power Role as defined in Table 3-2.

Table 3-1. Required Device_Capability_1 Support Based on Power Role

						Dev	rice_Cap	abilities	<u>-</u>				
Power	Role	B14 OCP	B13 OVP	B12 Bleed Discharge	B11 Force Discharge	B10 VBUS Alarm Meas	B98 Rp	B75 Roles	B4 SOP'/SOP" DBG	B3 Source VCONN	B2 Sink VBUS	B1 Source HV	B0 Source VBUS
Source	e-only (>5V Vbus)	O ²	O ₃	0	R	R	01b 10b	001b	0	R	0	R	R
Source Defaul	e-only (5V Vbus t)	02	O ₃	0	R	0	00b	001b	0	R	0	0	R
Sink-o	nly (>5V)	0	O_3	0	0	R	00b	010b	0	0	R	0	0
Sink-o	nly (5V Default)	0	O_3	0	0	0	00b	010b	0	0	R	0	0
DRP	Toggling (Source/Sink) (>5V)	02	O ₃	0	R	R	01b 10b	100b 101b 110b	0	R	R	R	R
	Toggling (Source/Sink) (5V Default)	O ²	O ₃	0	R	0	00b	100b 101b 110b	0	R	R	0	R
	Sourcing Device (>5V)	O ²	03	0	R	R	01b 10b	100b 101b 110b	0	R	0	R	R
	Sourcing Device (5V Default)	O ²	O ³	0	R	0	00b	100b 101b 110b	0	R	0	0	R
	Sinking Host (>5V)	0	03	0	0	R	00b	100b 101b 110b	0	0	R	0	0
	Sinking Host (5V Default)	0	03	0	0	0	00b	100b 101b 110b	0	0	R	0	0

Notes:

- 1. R=Required and O=Optional
- 2. Required at the platform level per USB-PD. OCP can be integrated into the TCPC or external to the TCPC. This bit indicates the TCPC supports reporting OCP through FAULT_STATUS register. If OCP is external to the TCPC, the OCP shall be connected to the Standard Input Signal, VBUS External Over Current Fault. If this bit is not set, then OCP event is not visible to TCPC.
- 3. Device_Capabilities_1.VbusOVPReporting (B13) defines if reporting of the OVP event is supported or not. Required now per latest update in USB-PD rev 1.2.

Table 3-2. Required Device_Capability_2_Support Based on Power Role

			Device_Capabilities_2							
Power Ro	ole	B158	B7 Sink	B6 Stop Discharge	B54 VBUS Alarm	B31 Vconn Power	B0 Vconn Over			
			Disconnect Detection	Threshold	V DOS THAT III	V GOAN I GWEI	Current Fault Capable			
Source-or	nly (>5V)		0	R	0	000b or other	0			
Source-or	nly (5V Default)		0	0	0	000b or other	0			
Sink-only	(>5V)		R	0	0	Don't care	0			
Sink-only	(5V Default)		0	0	0	Don't care	0			
DRP	Toggling (Source/Sink) (>5V)		R	R	0	000b or other	0			
	Toggling (Source/Sink) (5V Default)		0	0	0	000b or other	0			
	Sourcing Device (>5V)		0	R	0	000b or other	0			
	Sourcing Device (5V Default)		0	0	0	000b or other	0			
	Sinking Host (>5V)		R	0	0	000b or other	0			
	Sinking Host (5V Default)		0	0	0	000b or other	0			

Notes:

1. R=Required and O=Optional

3.7.1 Source Requirements

A TCPC, which supports Source port operation, is defined as follow:

- 1. A Source TCPC shall provide control of VBUS source path (see Table 4-23. COMMAND Register Definition).
- 2. A Source TCPC may provide over voltage protection and over current protection circuitry for the VBUS source path (see FAULT_STATUS.OCP/OVP and FAULT CONTROL.OCP/OVP).
- 3. A Source TCPC shall provide control of a VCONN switch (see POWER_CONTROL.VCONNPowerSupported and POWER_CONTROL.EnableVconn).
- 4. A Source TCPC may include monitoring for the presence of VCONN (see POWER_STATUS.VCONNPresent).
- 5. A Source TCPC shall support Device_Capabilities_1 and Device_Capabilities_2 register for the Source-only (>5V) or Source-only (5V Default) Power Role as defined in Table 3-1 and Table 3-2.

Table 3-3. Source Requirements

Name	Functionality
	USB-PD
Vconn Swap	Optional
Power Role Swap Support	Optional
USB-PD Support	Optional
CC CONTROL	
CC Detect Status	Required
Port Disable	Required (Rp to zOpen)
Roles Supported	SRC (Rp default, 1.5A, 3A) indicated in DEVICE_CAPABILITIES_1.SourceResistorSupported
	SNK (Rd) Optional
PORT POWER CONTROL	
Power Status	Required
Supply VCONN	Required
Sink VBUS	Optional
Supply VBUS	Required
Dead Battery	Required in DRP (present Rd when no power) Not required for Source only

3.7.2 Sink Requirements:

A TCPC, which supports Sink port operation, is defined as follow:

- 1. A Sink TCPC shall contain CC logic that implements a mechanism to present Rd in a dead battery condition (see Table 4-15. Power on Default Conditions).
- 2. A Sink TCPC may include the monitoring of the presence of VCONN (see POWER_CONTROL.VCONNPowerSupported and POWER_STATUS.VCONNPresent).
- 3. A Sink TCPC shall provide control of VBUS sink path (see COMMAND).
- 4. A Sink TCPC shall provide a mechanism for detecting a Disconnect if it is capable of sinking a voltage greater than vSafe5V (see Section 4.4.15.1).
- 5. A Sink TCPC shall provide a mechanism for detecting vSafe0V.
- 6. A Sink TCPC shall support Device_Capabilities_1 and Device_Capabilities_2 register for the Sink-only (>5V) or Sink-only (5V Default) Power Role as defined in Table 3-1 and Table 3-2.

Table 3-4. Sink Requirements

Name	Functionality
	USB-PD
Vconn Swap	Optional
Power Role Swap Support	Optional
USB-PD Support	Optional
CC CONTROL	
CC Detect Status	Required
Port Disable	Required (Rd to zOpen)
Roles Supported	SNK (Rd) Required
	SRC (Rp default, 1.5A, 3A) Optional
PORT POWER CONTROL	
Power Status	Required
Supply VCONN	Optional, but required if VCONN Swap supported
Sink VBUS	Required
Supply VBUS	Optional
Dead Battery	Required (present Rd when no power)

3.7.3 Sink with Accessory Support

A TCPC, which supports Sink with Accessory Support operation, is defined as follow:

- 1. A Sink TCPC shall contain CC logic that implements a mechanism to present Rd in a dead battery condition (see Table 4-15. Power on Default Conditions).
- 2. A Sink TCPC shall provide control of VCONN source path (see POWER_CONTROL.VCONNPowerSupported and POWER_CONTROL.EnableVCONN).
- 3. A Sink TCPC may include the monitoring of the presence of VCONN (see POWER_STATUS.VCONNPresent).
- 4. A Sink TCPC shall provide control of VBUS sink path (see COMMAND).
- 5. A Sink TCPC shall provide a mechanism for detecting a Disconnect if it is capable of sinking a voltage greater than vSafe5V (see Section 4.4.15.1).
- 6. A Sink TCPC shall provide a mechanism for detecting vSafe0V.
- 7. A Sink TCPC shall support Device_Capabilities_1 and Device_Capabilities_2 register for the Sink-only (>5V) or Sink-only (5V Default) Power Role as defined in Table 3-1 and Table 3-2.

Sink with Accessory support is optional, but if implemented shall follow the table below.

Table 3-5. Sink with Accessory Support Requirements

Name	Functionality		
USB-PD			
Vconn Swap	Required		
Power Role Swap Support	Optional		
USB-PD Support	Required		
CC CONTROL			
CC Detect Status	Required		
Port Disable	Required (Rp to zOpen)		
Roles Supported	SNK (Rd) Required		
	SRC (Rp default) Required		
PORT POWER CONTROL			
Power Status	Required		
Supply Vconn	Required		
Sink VBUS	Required		
Supply VBUS	Optional		
Dead Battery	Required (present Rd when no power)		

3.7.4 DRP Requirements

A TCPC, which supports Dual Role Port operation, is defined as follow:

- 1. A Dual Role TCPC shall contain CC logic to detect the insertion of a Source, Sink, and Audio and debug accessory (see ROLE_CONTROL).
- 2. A Dual Role TCPC shall contain CC logic that implements a mechanism to present Rd in a dead battery condition (see CC_STATUS).
- 3. A Dual Role TCPC shall provide control of VBUS source path (see COMMAND).
- 4. A Dual Role TCPC shall provide control for a Vconn switch (see POWER_CONTROL.VconnPowerSupported and POWER_CONTROL.EnableVconn)
- 5. The TCPC shall include the monitoring of the presence of VCONN (see POWER_STATUS.VCONNPresent).
- 6. A DRP TCPC shall provide a mechanism for detecting a Disconnect if it is capable of sinking a voltage greater the vSafe5V (see Section 4.4.15.1).
- 7. A DRP TCPC shall provide a mechanism for detecting vSafe0V.
- 8. A DRP TCPC shall support Device_Capabilities_1 and Device_Capabilities_2 register for at least the DRP Toggling, Sourcing Device, and Sinking Host at 5V Default Power Roles as defined in Table 3-1 and Table 3-2.

9.

Table 3-6. DRP Requirements

Name	Functionality			
	USB-PD			
VCONN Swap	Optional			
PR Swap Support	Optional			
USB-PD Support	Optional			
CC CONTROL				
CC Detect Status	Required			
Port Disable	Required (Rp to zOpen)			
Roles Supported	SRC (Rp default, 1.5A, 3A) indicated in DEVICE_CAPABILITIES_1.SourceResistorSupported			
	SNK (Rd) Required			
PORT POWER CONTROL				
Power Status	Required			
Supply VCONN	Required			
Sink VBUS	Required			
Supply VBUS	Required			
Dead Battery	Required (present Rd when no power)			

3.8 Watchdog Timer Requirements (Optional Normative)

It is recommended a watchdog timer, which monitors the TCPM-to-TCPC for lack of communication, be implemented by a TCPC if it supports sourcing or sinking voltages greater than vSafe5V. A watchdog timer shall be implemented when PD_INTERFACE_REV register.bcd USB-PD Inter-Block Specification = 0001 0001b and DEVICE_CAPABILITIES_2.WatchdogTimer = 1b.

The watchdog timer functionality shall be enabled whenever TCPC_CONTROL.EnableWatchdogTimer is set to 1b. The watchdog timer shall start when any of the interrupts that are not masked in the Alert register are set or when the Alert# pin is asserted. The watchdog timer is cleared on an I2C access by the TCPM (either read or write). If the ALERT# pin is still asserted after this I2C access, the watchdog timer will reinitialize and start monitoring again until all of the Alerts are cleared or until the ALERT# pin is deasserted.

3.8.1 Watchdog Timer Function

When enabled, the watchdog timer shall start when any unmasked alert bit is set.

An unresponsive TCPM which is unable to clear interrupts within tHVWatchdog, Table 4-45, will cause the watchdog timer to expire. When the watchdog timer expires, the TCPC shall immediately disconnect the CC terminations by setting ROLE_CONTROL bits 3..0 to 1111b, disconnect the Source or Sink paths, discharge VBUS to vSafe0V, and set FAULT_STATUS.I2CInterfaceError.

Any further changes on VBUS need to be initiated by the TCPM when its communication link with the TCPC is restored.

A TCPC shall disable the watchdog timer whenever TCPC_CONTROL.EnableWatchdogTimer is set to 0b.

4 USB Type-C Port Controller Interface

The USB Type-C Port Controller Interface (TCPCI) is a low level interface which handles VBUS and VCONN power connections, CC communication and USB-PD message delivery through a simple register interface. Communication between the TCPC and the USB Type-C Port Manager (TCPM) is over an I2C bus.

The TCPCI uses the I2C protocol with the following behaviors:

- 1. The TCPM is the only master on the I2C bus.
- 2. The TCPC is a slave device on the I2C bus.
- 3. The TCPM designer must meet the I2C bus loading requirements when determining the maximum number of devices on the I2C bus.
- 4. Each USB Type-C port has its own unique I2C slave address. The TCPC may support multiple USB Type-C ports. In case the TCPC supports multiple ports, each USB Type-C port shall have a unique I2C slave address.
- 5. The TCPC shall support Fast-mode (Fm+) bus speed. It may also support other bus speeds.
- 6. The TCPC shall have an open drain output, active low Alert# Pin. This pin is used to indicate a change of state, where Alert# pin is asserted when any Alert Bits are set.
- 7. The TCPCI shall support an I/O voltage range from 1.8V to 3.6V.
- 8. The TCPC as a slave device shall be accessible through I2C communication protocols compliant with "I2C-bus specification and user manual Rev.6" (4th April 2014) http://www.nxp.com/documents/user_manual/UM10204.pdf
- 9. The TCPC should auto-increment the I2C internal register address of the last byte transferred during a read independent of an ACK/NAK from the master.
- 10. The TCPC may implement the SMBus version 3 bus protocol (Section 6.5 of the SMBus Specification, version 3.0 available at http://smbus.org/specs/).
- 11. The TCPC shall allow reads to every register even when defined as Write only. The TCPM should assume the register information returned from a Write only register is not valid.
- 12. The TCPC shall not NAK if the TCPM writes to a register or bit that is not implemented or reserved.

4.1 Register Map

The 16-bit registers are used for notation convenience. Each 16-bit register occupies two contiguous bytes, with its 8 Least Significant bits stored in the first (lower address) byte and its 8 Most Significant bits stored in the second (higher address) byte.

Table 4-1. Register Map

Address	Register Name	Required /Optional?	Туре	Reset Value	Definition
00h01h	VENDOR_ID	Required	R	VD	Table 4-2. VENDOR_ID Register Definition
02h03h	PRODUCT_ID	Required	R	VD	Table 4-3. PRODUCT_ID Register Definition
04h05h	DEVICE_ID	Required	R	VD	Table 4-4. DEVICE_ID Register Definition
06h,,07h	USBTYPEC_REV	Required	R	VD	Table 4-5. USBTYPEC_REV Register Definition
08h09h	USBPD_REV_VER	Required	R	VD	Table 4-6. USBPD_REV_VER Register Description
0Ah0B h	PD_INTERFACE_REV	Required	R	VD	Table 4-7. PD_INTERFACE_REV Register Description
0C0Fh	Reserved	Required			Intentionally Blank
10h11h	ALERT	Required	R/W	0000h	Table 4-8. ALERT Register Definition
12h13h	ALERT_MASK	Required	R/W	0FFFh	Table 4-9. ALERT_MASK Register Definition
14h	POWER_STATUS_MASK	Required	R/W	FFh	Table 4-10. POWER_STATUS_MASK Register Definition
15h	FAULT_STATUS_MASK	Required	R/W	FFh	Table 4-11. FAULT_STATUS_MASK Register Definition
1617h	Reserved	Required			Intentionally Blank
18h	CONFIG_STANDARD_OUTPUT	Optional	R/W	60h	Table 4-12. CONFIG_STANDARD_OUTPUT Register Definition
19h	TCPC_CONTROL	Required	R/W	00h	Table 4-13. TCPC_Control Register Definition
1Ah	ROLE_CONTROL	Required	R/W	Table 4-15	Table 4-14. ROLE_CONTROL Register Definition
1Bh	FAULT_CONTROL	Partial R	R/W	00h	Table 4-16. FAULT_CONTROL Register Definition
1Ch	POWER_CONTROL	Partial R	R/W	60h	Table 4-17. POWER_CONTROL Register Definition
1Dh	CC_STATUS	Required	R		Table 4-20. CC_STATUS Register Definition
1Eh	POWER_ STATUS	Required	R		Table 4-21. POWER_STATUS Register Definition
1Fh	FAULT_STATUS	Required	R/W	80h	Table 4-22. FAULT_STATUS Register Definition
20h22h	Reserved	Required	R		Intentionally Blank
23h	COMMAND	Required	W	00h	Table 4-23. COMMAND Register Definition
24h25h	DEVICE_CAPABILITIES_1	Required	R	VD	Table 4-24. DEVICE_CAPABILITIES_1 Register Definition
26h27h	DEVICE_CAPABILITIES_2	Required	R	VD	Table 4-25. DEVICE_CAPABILITIES_2 Register Definition
28h	STANDARD_INPUT_CAPABILI TIES	Required	R	VD	Table 4-26. STANDARD_INPUT_CAPABILITIES Register Definition
29h	STANDARD_OUTPUT_CAPABI LITIES	Required	R	VD	Table 4-27. STANDARD_OUTPUT_CAPABILITIES Register Definition
2Ah2D h	Reserved	Required	R		Intentionally Blank
2Eh	MESSAGE_HEADER_INFO	Required	R/W	Table 4-15	Table 4-28. MESSAGE_HEADER_INFO Register Definition
2Fh	RECEIVE_DETECT	Required	R/W	00h	Table 4-29. RECEIVE_DETECT Register Definition
			RECEI	VE_BUFFER	
30h	RECEIVE_BYTE_COUNT	Required	R	00h	Number of Bytes in the RECEIVE_BUFFER that are not stale Table 4-30

Address	Register Name	Required /Optional?	Type	Reset Value	Definition
31h	RX_BUF_FRAME_TYPE	Required	R	00h	Type of received frame (with a reference to a description of the register)
32h	RX_BUF_HEADER_BYTE_0	Required	R	00h	Byte 0 (bits 70) of message header
33h	RX_BUF_HEADER_BYTE_1	Required	R	00h	Byte 1 (bits 158) of message header
34h	RX_BUF_OBJ1_BYTE_0	Required	R	00h	Byte 0 (bits 70) of 1st data object
35h	RX_BUF_OBJ1_BYTE_1	Required	R	00h	Byte 1 (bits 158) of 1st data object
36h	RX_BUF_OBJ1_BYTE_2	Required	R	00h	Byte 2 (bits 2316) of 1st data object
37h	RX_BUF_OBJ1_BYTE_3	Required	R	00h	Byte 3 (bits 3124) of 1st data object
38h	RX_BUF_OBJ2_BYTE_0	Required	R	00h	Byte 0 (bits 70) of 2nd data object
	RX_BUF_OBJn_BYTE_m	Required	R	00h	Byte m of nth data object
4Fh	RX_BUF_OBJ7_BYTE_3	Required	R	00h	byte 3 (bits 3124) of 7th data object
50h	TRANSMIT	Required	R/W	00h	Table 4-34. TRANSMIT Register Definition
			TRANSI	MIT_BUFFER	
51h	TRANSMIT_BYTE_COUNT	Required	R/W	00h	The number of bytes the TCPM will write
52h	TX_BUF_HEADER_BYTE_0	Required	R/W	00h	Byte 0 (bits 70) of message header
53h	TX_BUF_HEADER_BYTE_1	Required	R/W	00h	Byte 1 (bits 158) of message header
54h	TX_BUF_OBJ1_BYTE_0	Required	R/W	00h	Byte 0 (bits 70) of 1st data object
	TX_BUF_OBJn_BYTE_m	Required	R/W	00h	Byte m of nth data object
6Fh	TX_BUF_OBJ7_BYTE_3	Required	R/W	00h	byte 3 (bits 3124) of 7th data object
7071h	VBUS_VOLTAGE	Required if greater than vSafe5V	R	00h	Table 4-38. VBUS_VOLTAGE Register Definition
7273h	VBUS_SINK_DISCONNECT_TH RESHOLD	Required Sink >vSaf e5V	R/W	vSafe5V	Table 4-39. VBUS_SINK_DISCONNECT_THRESHOLD Register Description
7475h	VBUS_STOP_DISCHARGE_TH RESHOLD	Required Sink >vSaf e5V	R/W	vSafe0V	Table 4-40. VBUS_STOP_DISCHARGE_THRESHOLD Register Description
7677h	VBUS_VOLTAGE_ALARM_HI_ CFG	Required > vSafe5V	R/W	00h	Table 4-41. VBUS_VOLTAGE_ALARM_HI_CFG Register Description
7879h	VBUS_VOLTAGE_ALARM_LO_ CFG	Required > vSafe5V	R/W	00h	Table 4-42. VBUS_VOLTAGE_ALARM_LO_CFG Register Description
7A7Fh	Reserved	Required			Intentionally Blank
80hFF	Vendor defined bits	Optional		VD	As many as Vendor Defines

Notes:

VD - Vendor Defined

4.2 TCPC SMBus Optional Normative Requirements

Each row of the register map table defines a register. Some TCPC-s implement the SMBus protocol on top of the I2C protocol and some do not. A TCPC that implements the SMBus protocol requires the TCPM to:

- Read/Write only a single register in a given I2C transaction.
- Write the complete register in a single I2C transaction.
- Begin reading a register from its first byte.

A TCPC that does not implement the SMBus protocol does not enforce these requirements.

If the TCPM attempts to write multiple registers in a single I2C transaction, the TCPC may assert ALERT.InterfaceError and ignore the write. If the TCPM attempts to read multiple registers in a single transaction, the TCPC may assert ALERT.InterfaceError and leave the SDA line open so the TCPM reads all 1's in the following bytes. If the TCPM attempts to read a register address that is not the first byte in that register, the TCPC may assert ALERT.InterfaceError and leave the SDA line open so the TCPM reads all 1's.

4.3 Writing and Reading TCPC Registers

4.3.1 Writing Single Byte Registers

To ensure correct behavior with TCPCs that implement SMBus, the TCPC cannot use the I2C short-cut to write consecutive registers in a single operation. The TCPM shall use two transactions to write ROLE_CONTROL and POWER_CONTROL as shown in Figure 4-1.

Figure 4-1. Writing Consecutive Registers with or without the SMBUS Protocol

4.3.2 Reading Single Byte Registers

Figure 4-2 indicates how to read single byte registers with I2C or SMBus protocols.

Figure 4-2. Reading Consecutive Registers with or without the SMBus Protocol

4.3.3 Writing Multiple-Byte Registers

Bytes that are always written at the same time can be grouped into a register so the SMBus protocol has less overhead. The TCPM shall write both bytes in the ALERT register at the same time as depicted in the following Figure 4-3.

Figure 4-3. Writing a 2-Byte Register with or without the SMBus Protocol

4.3.4 Reading Multiple-Byte Registers

Bytes that are always read at the same time can be grouped into a register so the SMBus protocol has less overhead. The TCPM shall read both bytes in the VENDOR_ID register at the same time as depicted in the following Figure 4-4.

Figure 4-4. Reading a 2-Byte Register with or without the SMBus Protocol

4.3.5 Writing the TRANSMIT_BUFFER

Figure 4-5 illustrates how the transmit buffer can be written with or without the SMBus protocol.

Figure 4-5. Writing the TRANSMIT_BUFFER with or without the SMBus Protocol

4.3.6 Reading the RECEIVE_BUFFER

Figure 4-6 illustrates how the receive buffer can be read with or without the SMBus protocol.

Figure 4-6. Reading the RECEIVE_BUFFER with or without the SMBus Protocol

4.4 Register Definition

This section defines the registers for the TCPC.

4.4.1 Identification Registers

4.4.1.1 VENDOR ID (Required)

A Vendor ID, or VID, is used to identify the TCPC vendor. The VID is a unique 16-bit unsigned integer assigned by USB-IF.

Table 4-2. VENDOR_ID Register Definition

Bit(s)	Name	Description
B150	Vendor ID (VID)	A unique 16-bit unsigned integer assigned by the USB-IF to the Vendor.

4.4.1.2 PRODUCT_ID and DEVICE_ID (Required)

The Product ID, or PID, is used to identify the product. The Device ID, bcdDevice, is used to identify the release version of the product. Manufacturers should set the USB Product ID field to a unique value across all USB products from the vendor. The Product ID should identify the product from the vendor and the bcdDevice field should reflect a version number relevant to the release version of the product.

Table 4-3. PRODUCT ID Register Definition

Bit(s)	Name	Description
B150	USB Product ID (PID)	A unique 16-bit unsigned integer assigned uniquely by the Vendor to identify the TCPC.

Table 4-4. DEVICE_ID Register Definition

Bit(s)	Name	Description
B150	bcdDevice	A unique 16-bit unsigned integer assigned by the Vendor to identify the version of the TCPC.

4.4.1.3 USBTYPEC_REV (Required)

This register refers to <u>USB Type-C</u> Cable and Connector Specification Revision, <u>USB Type-C</u> represented by a unique 16-bit unsigned register. The format is packed binary coded decimal.

This specification revision 1.0 aligns with USB Type-C Version 1.2.

Table 4-5. USBTYPEC_REV Register Definition (Required)

Bit(s)	Name	Description
B158	Reserved	Set to 0
B70	<u>USB Type-C</u> Revision	Revision number assigned by USB-IF

4.4.1.4 USBPD_REV_VER (Required)

This register refers to USB-PD Specification Revision and Version, <u>USB PD</u> represented by a unique 16-bit unsigned integer. The format is packed binary coded decimal.

This specification revision 1.0 aligns with USB-PD Revision 2.0 version 1.2.

Table 4-6. USBPD_REV_VER Register Description

Bit(s)	Name	Description
B158	bcdUSBPD Revision	0010 0000 - Revision 2.0
B70	bcdUSBPD Version	0001 0010 - Version 1.2 Etc.

4.4.1.5 USB-Port Controller Interface Specification Revision (Required)

The USB-Port Controller Specification Revision register refers to this Specification Revision and Version represented by a unique 16-bit unsigned integer. The format is packed binary coded decimal.

Table 4-7. PD_INTERFACE_REV Register Description

Bit(s)	Name	Description
B158	bcd USB-PD Inter-Block Specification Revision	0001 0000 – Revision 1.0 (this release)
B70	bcd USB-PD Inter-Block Specification Version	0001 0000 – Version 1.0 (previous release) 0001 0001 – Version 1.1 (previous release) 0001 0010 – Version 1.2 (this release) Etc.

4.4.2 ALERT Register (Required)

This register is set by TCPC and cleared by TCPM.

This register is used to communicate a status change from the TCPC to the TCPM. After an event or condition occurs, the TCPC shall set the corresponding bit in the ALERT register. The TCPC shall keep the bit associated with the ALERT asserted until the TCPM writes a 1 to clear it.

The TCPC indicates an alert status change has occurred by presenting a logical 1 in the corresponding alert bit position in this register and asserting the Alert# pin. The TCPM clears the ALERT bit by writing a logical 1 to the respective ALERT bit position. The TCPM can clear any number of ALERT bits in a single write by setting multiple bits to logical 1 and the rest of the bits in the register to logical 0. The TCPM writing a logical 0 to any ALERT bit has no effect, and therefore does not cause those ALERT bits to be set or cleared. The Alert# pin remains asserted until all ALERT bits are cleared by the TCPM. If the TCPM writes a logical 1 to a bit that is already logical 0, the TCPC shall not change the value of that bit.

Writing a 1 to ALERT.RxBufferOverflow does not clear it unless the TCPM also writes a 1 to ALERT.ReceiveSOP*MessageStatus. The ALERT.RxBufferOverflow is always asserted if the SOP* buffer registers are full, and those registers can only be cleared by writing a 1 to ALERT.ReceiveSOP*MessageStatus.

Table 4-8. ALERT Register Definition

Bit(s)	Name	Description
B15	Vendor Defined Alert	Ob: Cleared 1b: A vendor defined alert has been detected. Defined in the VENDOR_DEFINED registers. Refer to the vendor datasheet for details. This bit can be cleared, regardless of the current status of the alert source.
B1412	Reserved	Shall be set to zero by sender and ignored by receiver
B11	VBUS Sink Disconnect Detected	0b: Cleared 1b: A VBUS Sink Disconnect Threshold crossing has been detected This bit shall only be asserted when POWER_CONTROL.AutoDischargeDisconnect is set
B10	Rx Buffer Overflow	Ob: TCPC Rx buffer is functioning properly 1b: TCPC Rx buffer has overflowed. Future GoodCRC shall not be sent. Writing 1 to this register acknowledges the overflow. The overflow is cleared by writing to ALERT.ReceiveSOP*MessageStatus
В9	Fault	0b: No Fault 1b: A Fault has occurred. Read the FAULT_STATUS register
B8	VBUS Voltage Alarm Lo	0b: Cleared 1b: A low-voltage alarm has occurred
B7	VBUS Voltage Alarm Hi	0b: Cleared 1b: A high-voltage alarm has occurred
B6	Transmit SOP* Message Successful	0b: Cleared, 1b: Reset or SOP* message transmission successful. GoodCRC response received on SOP* message transmission. Transmit SOP* message buffer registers are empty.

Bit(s)	Name	Description
В5	Transmit SOP* Message	0b: Cleared,
	Discarded	1b: Reset or SOP* message transmission not sent due to incoming receive message. Transmit SOP* message buffer registers are empty.
B4	Transmit SOP* Message	0b: Cleared,
	Failed	1b: SOP* message transmission not successful, no GoodCRC response received on SOP* message transmission. Transmit SOP* message buffer registers are empty.
В3	Received Hard Reset	0b: Cleared,
		1b: Received Hard Reset message
В2	Receive SOP* Message Status	0b: Cleared, 1b: RECEIVE_BUFFER register changed. RECEIVE_BYTE_COUNT being set to 0 does not set this bit.
B1	Power Status	0b: Cleared, 1b: Power Status changed
В0	CC Status	0b: Cleared, 1b: CC Status changed

Note: The TCPM is not expected to mask the "Received Hard Reset" alert bit.

4.4.3 Mask Registers

The registers in this section define the masks that may be set for the ALERT registers. A masked register will still indicate in the ALERT register, but shall not set the Alert# pin low. POWER_STATUS_MASK and FAULT_STATUS_MASK registers are nested Alerts. A POWER_STATUS change has to be unmasked in both the POWER_STATUS_MASK and the ALERT.PowerStatusInterruptMask to enable the Alert# pin. A FAULT_STATUS change has to be unmasked in both the FAULT_STATUS_MASK and the ALERT.PowerStatusInterruptMask to enable the Alert# pin.

4.4.3.1 ALERT_MASK (Required)

This is an event interrupt mask. It is masked and unmasked by the TCPM. The ALERT_MASK Register is cleared by the TCPM. The ALERT_MASK Register shall be initialized to 0FFFh upon power on or Hard Reset.

The assertion of Alert# pin is prevented when the corresponding bit in this register is set to zero by the TCPM. Setting any bits in this register has no effect on ALERT registers.

Table 4-9. ALERT_MASK Register Definition

Bit(s)	Name	Description
B15	Vendor Defined Alert	0b: Interrupt masked 1b: Interrupt unmasked
B1412	Reserved	Shall be set to zero by sender and ignored by receiver
B11	VBUS Sink Disconnect Detected	0b: Interrupt masked, 1b: Interrupt unmasked
B10	Rx Buffer Overflow	0b: Interrupt masked, 1b: Interrupt unmasked
В9	Fault	0b: Interrupt masked, 1b: Interrupt unmasked
B8	VBUS Voltage Alarm Lo	0b: Interrupt masked, 1b: Interrupt unmasked
В7	VBUS Voltage Alarm Hi	0b: Interrupt masked, 1b: Interrupt unmasked
В6	Transmit SOP* Message successful Interrupt Mask	0b: Interrupt masked, 1b: Interrupt unmasked
B5	Transmit SOP* Message discarded Interrupt Mask	0b: Interrupt masked, 1b: Interrupt unmasked
B4	Transmit SOP* Message failed Interrupt Mask	0b: Interrupt masked, 1b: Interrupt unmasked
В3	Received Hard Reset Message Status Interrupt Mask	0b: Interrupt masked, 1b: Interrupt unmasked (The Hard Reset should generally not be masked)
B2	Receive SOP* Message Status Interrupt Mask	0b: Interrupt masked, 1b: Interrupt unmasked
B1	Power Status Interrupt Mask	0b: Interrupt masked, 1b: Interrupt unmasked
В0	CC Status Interrupt Mask	0b: Interrupt masked, 1b: Interrupt unmasked

4.4.3.2 POWER_STATUS_MASK (Required)

This is an event interrupt mask. It is masked and unmasked by the TCPM. This register allows individual masking of power events. The POWER_STATUS_MASK Register is cleared by the TCPM. The POWER_STATUS_MASK Register shall be initialized per Table 4-1 upon power on or Hard Reset.

The assertion of Alert# pin is prevented when the corresponding bit is set to zero by the TCPM. ALERT.PowerStatus is asserted if the bit-wise AND of POWER_STATUS and POWER_STATUS_MASK results in any bits that have the value 1.

Table 4-10. POWER_STATUS_MASK Register Definition

Bit(s)	Name		Description
В7	Debug Accessory Connected	0b: Interrupt masked,	1b: Interrupt unmasked
В6	TCPC Initialization Status Mask	0b: Interrupt masked,	1b: Interrupt unmasked
B5	Sourcing High Voltage Status Interrupt Mask	0b: Interrupt masked,	1b: Interrupt unmasked
B4	Sourcing VBUS Status Interrupt Mask	0b: Interrupt masked,	1b: Interrupt unmasked
В3	VBUS Present Detection Status Interrupt Mask	0b: Interrupt masked,	1b: Interrupt unmasked
B2	VBUS Present Status Interrupt Mask	0b: Interrupt masked,	1b: Interrupt unmasked
B1	VCONN Present Status Interrupt Mask	0b: Interrupt masked,	1b: Interrupt unmasked
В0	Sinking VBUS Status Interrupt Mask	0b: Interrupt masked,	1b: Interrupt unmasked

4.4.3.3 FAULT_STATUS_MASK (Required)

This is an event interrupt mask. It is masked and unmasked by the TCPM. This register allows individual masking of fault events. The FAULT_STATUS_MASK Register is cleared by the TCPM. The FAULT_STATUS_MASK Register shall be initialized per Table 4-1 upon power on or Hard Reset.

The assertion of Alert# pin is prevented when the corresponding bit is set to zero by the TCPM. ALERT.FaultStatus is asserted if the bit-wise AND of FAULT_STATUS and FAULT_STATUS_MASK results in any bits that have the value 1.

Over current protection, OCP, can be either integrated or external to the TCPC. An external OCP fault signal may be connected to the STANDARD_INPUT_SIGNALS Vbus external over current fault and the status reported in this register. An internal OCP fault shall be reported in this register if implemented. OCP is defined in a vendor defined manner.

Over voltage protection, OVP, can be either integrated or external to the TCPC. An external OVP fault signal may be connected to the STANDARD_INPUT_SIGNALS Vbus external over voltage fault and the status reported in this register. An internal OVP fault shall be reported in this register if implemented. OVP is defined in a vendor defined manner.

Table 4-11. FAULT_STATUS_MASK Register Definition

Bit(s)	Name	Description
В7	AllRegistersResetToDefault	0b: Interrupt masked, 1b: Interrupt unmasked The condition that generates a FAULT_STATUS.AllRegistersResetToDefault Interrupt also resets this bit; therefore, writing a 0b to this bit will not mask FAULT_STATUS.AllRegistersResetToDefault Interrupt.
В6	Force Off Vbus Interrupt Status Mask	0b: Interrupt masked, 1b: Interrupt unmasked
B5	Auto Discharge Failed Mask	0b: Interrupt masked, 1b: Interrupt unmasked
B4	Force Discharge Failed Mask	0b: Interrupt masked, 1b: Interrupt unmasked
В3	Internal or External OCP Vbus Over Current Protection Fault Interrupt Status Mask	0b: Interrupt masked, 1b: Interrupt unmasked
B2	Internal or External OVP Vbus Over Voltage Protection Fault Interrupt Status Mask	0b: Interrupt masked, 1b: Interrupt unmasked
B1	Vconn Over Current Fault Interrupt Status Mask	0b: Interrupt masked, 1b: Interrupt unmasked
В0	I2C Interface Error Interrupt Status Mask	0b: Interrupt masked, 1b: Interrupt unmasked

4.4.4 CONFIGURE STANDARD OUTPUT (Optional Normative)

This register is required if any Standard Outputs are supported in the STANDARD_OUTPUT_CAPABILITIES register (Section 4.4.8.3). This read/write register is used to configure the Standard Outputs or read the status of the Standard Outputs. The TCPM writes to this register to set the Standard Output Signal defined in Table 4-44. The Standard Outputs shall reset to open-drain per Table 4-1.

Table 4-12. CONFIG_STANDARD_OUTPUT Register Definition

Bit(s)	Name	Туре
В7	High Impedance outputs	0b: Standard output control (default) 1b: Force all outputs to high impedance May be used to save power in Sleep Controlled by the TCPM.
В6	Debug Accessory Connected#	Ob: Debug Accessory Connected# output is driven low. Debug Accessory connected 1b: Debug Accessory Connected# output is driven high. No Debug Accessory connected (default) If TCPC_CONTROL.DebugAccessoryControl = 0, the TCPC shall write to this register and ignore inputs from TCPM If TCPC_CONTROL.DebugAccessoryControl = 1, the TCPC shall take input from the TCPM
B5	Audio Accessory Connected#	0b: Audio Accessory connected 1b: No Audio Accessory connected (default) Controlled by the TCPM
B4	Active Cable Connected	0b: No Active Cable connected (default) 1b: Active Cable connected Controlled by the TCPM
B32	MUX Control	00b: No connection (default) 01b: USB3.1 Connected 10b: DP Alternate Mode – 4 lanes 11b: USB3.1 + Display Port Lanes 0 & 1 Controlled by the TCPM
B1	Connection Present	0b: No Connection (default) 1b: Connection Controlled by the TCPM.
В0	Connector Orientation	0b: Normal (CC1=A5, CC2=B5, TX1=A2/A3, RX1=B10/B11) default 1b: Flipped (CC2=A5, CC1=B5, TX1=B2/B3, RX1=A10/A11) If TCPC_CONTROL.DebugAccessoryControl = 0, the TCPC shall write to this register and ignore inputs from TCPM If TCPC_CONTROL.DebugAccessoryControl = 1, the TCPC shall take input from the TCPM

4.4.5 Control and Configuration Registers

4.4.5.1 TCPC_CONTROL (Required)

The TCPM writes to the TCPC_ CONTROL register to set the Plug Orientation and enable/disable clock stretching.

I2C_Clock_Stretching_Control allows the TCPM to control TCPC clock stretching on the I2C bus. Allowing clock stretching may result in lower power from the TCPC, but degrade throughput. Disabling clock stretching will result in increased I2C bus throughput, but may result in higher TCPC power. The TCPC is not allowed to NAK I2C transfers no matter which clock stretching setting is chosen by the TCPM, unless the TCPM has put it to sleep using COMMAND.I2CIdle.

Table 4-13. TCPC_Control Register Definition

Bit(s)	Name	Description
B76	Reserved	Shall be set to zero by sender and ignored by receiver
B5	Enable Watchdog Timer	0b: Watchdog Monitoring is disabled (default) 1b: Watchdog Monitoring is enabled Enables Watchdog Timer Monitoring according to Section 3.8 Required if DEVICE_CAPABILITIES_2.Watch Dog Timer = 1b
B4	Debug Accessory Control	0b: Controlled by TCPC (power on default) 1b: Controlled by TCPM. The TCPM writes 1b to this register to take over control of asserting the DebugAccessoryConnected#. See Table 4-12. Required (Register is required but output is not required)
B32	I2C Clock Stretching Control	Clock Stretching Control 00b: Disable clock stretching. TCPC shall not perform any clock stretching during I2C transfers. 01b: Reserved 10b: Enable clock stretching. TCPC is allowed limited clock stretching during each I2C Transfer. 11b: Enable clock stretching only if the Alert pin is not asserted. As soon as Alert is asserted, clock stretching is disabled by the TCPC. The TCPC datasheet should contain details as to the power consequences of clock stretching as well as the max duration of clock stretching per I2C transaction. This is only necessary if clock stretching is implemented. The TCPC shall limit total clock stretching as detailed in Section 4.10. This feature is optional. The TCPC is allowed to ignore updates to this bit field if it has not implemented clock stretching. The power on default value is such to disable clock stretching.

Bit(s)	Name	Description
B1	BIST Test Mode	Setting this bit to 1 is intended to be used only when a USB compliance tester is using USB BIST Test Data to test the PHY layer of the TCPC. The TCPM should clear this bit when a detach is detected.
		0: Normal Operation. Incoming messages enabled by RECEIVE_DETECT passed to TCPM via Alert.
		1: BIST Test Mode. Incoming messages enabled by RECEIVE_DETECT result in GoodCRC response but may not be passed to the TCPM via Alert. TCPC may temporarily store incoming messages in the Receive Message Buffer, but this may or may not result in a Receive SOP* Message Status or a Rx Buffer Overflow alert.
		The TCPM can mask or ignore received message alerts when this bit is set to 1 since the TCPC may or may not assert the alert. The TCPM may also treat received messages in this mode in the same way as received messages during normal operation.
В0	Plug Orientation	0b: When Vconn is enabled, apply it to the CC2 pin. Monitor the CC1 pin for BMC communications if PD messaging is enabled.
		1b: When Vconn is enabled, apply it to the CC1 pin. Monitor the CC2 pin for BMC communications if PD messaging is enabled.
		Required

4.4.5.2 ROLE_CONTROL (Required)

The TCPM writes to this register to configure the CC pull up (Rp) or pull down (Rd) resistors.

Table 4-15 defines the power on default for ROLE_CONTROL and MESSAGE_HEADER_INFO.

The TCPM shall write B6 (DRP) = 0b and B3..0 (CC1/CC2) if it wishes to control the Rp/Rd directly instead of having the TCPC perform DRP toggling autonomously. When controlling Rp/Rd directly, the TCPM writes to B3..0 (CC1/CC2) each time it wishes to change the CC1/CC2 values. This would be commonly used for TCPM-TCPC implementing Source or Sink only as well as when a connection has been detected via DRP toggling but the TCPM wishes to attempt Try.Src or Try.Snk scenario.

The TCPM may configure the TCPC to autonomously toggle the Rp/Rd when the TCPM-TCPC is implementing a DRP. When initiating autonomous DRP toggling, the TCPM shall write B6 (DRP) =1b and the starting value of Rp/Rd to B3..0 (CC1/CC2) to indicate DRP autonomous toggling mode to the TCPC. The TCPC shall not start the DRP toggling until subsequently the TCPM writes to the COMMAND register to start the DRP toggling or there is a change in POWER_CONTROL.AutoDischargeDisconnect as in Figure 4-11. It is recommended the TCPM write ROLE_CONTROL.DRP=0 before writing to POWER_CONTROL.AutoDischargeDisconnect and start the DRP toggling using COMMAND.Look4Connection as shown in Figure 4-16, Figure 4-17, and Figure 4-18.

If DRP=1b, the only allowed values for CC1/CC2 are Rp/Rp or Rd/Rd. COMMAND.Look4Connection shall do nothing if CC1/CC2 are not Rp/Rp or Rd/Rd.

When CC1 and CC2 are set to Open and DRP = 0b, the TCPC may power down the PHY and CC Status comparators.

Table 4-14. ROLE_CONTROL Register Definition

Bit(s)	Name	Description
В7	Reserved	Shall be set to zero by sender and ignored by receiver
В6	DRP	0b: No DRP. Bits B30 determine Rp/Rd/Ra or open settings 1b: DRP
		The TCPC shall use the Rp value defined in B54 when a connection is resolved, ie. Upon entry to Potential_Connect_as_Src in Figure 4-11. TCPC State Diagram before a Connection.
		The TCPC toggles CC1 & CC2 after receiving COMMAND.Look4Connection and until a connection is detected. Upon connection, the TCPC shall resolve to either an Rp or Rd and report the CC1/CC2 State in the CC_STATUS register.
		The CC pins shall stay in Potential_Connect_as_Src or Potential_Connect_as_Sink until directed otherwise.
B54	Rp Value	00b: Rp default
		01b: Rp 1.5A
		10b: Rp 3.0A
		11b: Reserved
B32	CC2	00b: Ra
		01b: Rp (Use Rp definition in B54)
		10b: Rd
		11b: Open (Disconnect or don't care)
B10	CC1	00b: Ra
		01b: Rp (Use Rp definition in B54)
		10b: Rd
		11b: Open (Disconnect or don't care)

Table 4-15 defines the power on default for ROLE_CONTROL and MESSAGE_HEADER_INFO.

Table 4-15. Power on Default Conditions

DEVICE_CAPABILITIES. RolesSupported	ROLE_CONTROL (Default)	MESSAGE_HEADER _INFO (Default)
Source or Sink (000b)	0Ah	02h
Source only (001b)	05h - Not dead battery N/A - Dead battery	0Bh
Sink only (010b)	0Ah	02h
Sink with Accessory (011b)	0Ah	02h
DRP (100b)	0Ah – Dead battery 4Ah – Not dead battery and DebugAccessoryIndicator supported 0Fh – Not dead battery and DebugAccessoryIndicator not supported	02h
Source, Sink, DRP (101b and 110b) Applies to SOP Devices	OAh – Source, Sink, or DRP dead battery 4Ah – Not dead battery and DebugAccessoryIndicator supported OFh – Not dead battery and DebugAccessoryIndicator not supported	02h

4.4.5.3 FAULT_CONTROL (Required)

The TCPM writes to FAULT_CONTROL to enable/disable FAULT circuitry.

Table 4-16. FAULT_CONTROL Register Definition

Bit(s)	Name	Description
B75	Reserved	Shall be set to zero by sender and ignored by receiver
B4	Force Off VBUS (Source or Sink)	0b: Allow STANDARD INPUT SIGNAL Force Off Vbus control (default) 1b: Block STANDARD INPUT SIGNAL Force Off Vbus control This enables or disables the STANDARD INPUT SIGNAL Force Off Vbus (4.5.1) functionality for debug purposes. Required if STANDARD_INPUT_CAPABILITES.ForceOffVbus
В3	VBUS Discharge Fault Detection Timer	0b: VBUS Discharge Fault Detection Timer enabled 1b: VBUS Discharge Fault Detection Timer disabled This enables the timers for both FAULT_STATUTS.AutoDischargeFailed and FAULT_STATUS.ForceDischargeFailed Required
B2	Internal or External OCP VBUS Over Current Protection Fault	0b: Internal and External OCP circuit enabled 1b: Internal and External OCP circuit disabled Required if DEVICE_CAPABILIITES_1.VBUSOCPReporting = 1b
B1	Internal or External OVP VBUS Over Voltage Protection Fault	0b: Internal and External OVP circuit enabled 1b: Internal and External OVP circuit disabled Required if DEVICE_CAPABILIITES_1.VBUSOVPReporting = 1b
В0	VCONN Over Current Fault	0b: Fault detection circuit enabled 1b: Fault detection circuit disabled Required if DEVICE_CAPABILITIES_2.VCONNOvercurrentFaultCapable = 1b

4.4.5.4 POWER_CONTROL (Required)

The timing parameters for the TCPM in conjunction with the TCPC must meet the $\underline{\textit{USB PD}}$ requirements.

The TCPM reads the CC_STATUS, POWER_STATUS and VBUS_VOLTAGE registers to determine the connection state and the orientation of a USB Type-C port.

To source VCONN over one of the CC pins (irrespective of the status of VBUS), all of the following conditions are required:

- The TCPM shall set EnableVconn to logical 1
- The TCPM shall write to TCPC_CONTROL.PlugOrientation to inform TCPC which CC pin (not connected through the cable) is repurposed as VCONN

Table 4-17. POWER_CONTROL Register Definition

Bit(s)	Name	Description
В7	Reserved	Shall be set to zero by sender and ignored by receiver

Bit(s)	Name	Description
В6	VBUS_VOLTAGE Monitor	0b: VBUS_VOLTAGE Monitoring is enabled
		1b: VBUS_VOLTAGE Monitoring is disabled (default)
		Controls only VBUS_VOLTAGE Monitoring. VBUS_VOLTAGE shall report all zeroes if disabled.
		Required if DEVICE_CAPABILITIES_1.VBUSMeasuremen andAlarmCapable = 1b
B5	Disable Voltage Alarms	0b: Voltage Alarms Power status reporting is enabled
		1b: Voltage Alarms Power status reporting is disabled (default)
		Controls VBUS_VOLTAGE_ALARM_HI_CFG and VBUS_VOLTAGE_ALARM_LO_CFG.
		Required if DEVICE_CAPABILITIES_1.VBUSMeasuremen andAlarmCapable = 1b
B4	AutoDischargeDisconnect	Ob: The TCPC shall not automatically discharge VBUS based on VBUS voltage (default)
		1b: The TCPC shall automatically discharge
		Refer to 4.4.5.4.1 and 4.4.5.4.2. Strength of discharge set by tAutoDischarge in Table 4-18
		Setting this bit in a Source TCPC triggers the following actions upon disconnection detection:
		1. Disable sourcing power over VBUS
		2. VBUS discharge
		Sourcing power over VBUS shall be disabled before or at same time as starting VBUS discharge.
		Setting this bit in a Sink TCPC triggers the following action upon disconnection detection:
		1. VBUS discharge
		The TCPC shall automatically disable discharge once the voltage on VBUS is below vSafe0V (max) or VBUS_STOP_DISCHARGE_THRESHOLD. Disconnect detection is defined in Figure 4-13. VBUS_STOP_DISCHARGE_THRESHOLD, if enabled, takes priority over vSafe0V.
		Required
В3	Enable Bleed Discharge	0b: Disable bleed discharge (default)
		1b: Enable bleed discharge of VBUS
		Bleed Discharge is a low current discharge to provide a minimum load current if needed
		10K Ohms or 2mA recommended
		Refer to 4.4.5.4.5
		Required if DEVICE_CAPABILITIES_1.BleedDischarge = 1b
B2	Force Discharge	0b: Disable forced discharge (default)
		1b: Enable forced discharge of VBUS.
		Refer to 4.4.5.4.3
		Required if DEVICE_CAPABILITIES_1.ForceDischarge = 1b
B1	VCONN Power Supported	0b: TCPC delivers at least 1W on VCONN
		1b: TCPC delivers at least the power indicated in
		DEVICE_CAPABILITIES.VconnPowerSupported
		Refer to TCPC datasheet for actual power limit implemented Required
DO.	Enable Veens	
В0	Enable VCONN	0b: Disable VCONN Source (default) 1b: Enable VCONN Source to CC
		Required
		Required

Table 4-18. Discharge Timing Parameters

Name	Description	Min	Max	Units
tAutoDischarge	Time to discharge 100uF and 400 Ohms maximum or 24mA minimum when AutoDischarge is engaged		50	ms
tDisconnectDetect	Time from Disconnect to detection of a Disconnect		6	ms

4.4.5.4.1 Automatic Source Full Discharge by the TCPC after a Disconnect (normative)

When in Attached.SRC state in Figure 4-11 and Figure 4-12, the TCPC shall fully discharge VBUS to vSafe5V (max) within tSafe5V and then to vSafe0V within tSafe0V when a Disconnect occurs. A TCPC in the Attached.SRC state (as shown in Figure 4-11 and Figure 4-12) shall detect a Disconnect if the CCState for the monitored CC pin indicates SRC.Open. The monitored CC pin is specified by TCPC_CONTROL.PlugOrientation.

The TCPC shall discharge Vbus to vSafe0V after a power on reset before applying the Rp.

4.4.5.4.2 Automatic Sink Discharge by the TCPC after a Disconnect (normative)

A TCPC in Attached.SNK state in Figure 4-11 and Figure 4-12 shall use either the POWER_STATUS.VbusPresent transition from 1b to 0b or VBUs falling below VBUS_SINK_DISCONNECT_THRESHOLD, Table 4-39, as a Sink disconnect indicator. The mechanism used shall be defined in DEVICE_CAPABILITIES_2.SinkDisconnect. The Sink TCPC shall detect a cable removal within tDisconnectDetect, Table 4-18, of the Sink disconnect indicator change and enable the automatic discharge circuitry.

Should a TCPM need to know when VBUS discharge is complete, it may set VBUS_VOLTAGE_ALARM_LO_CFG to vSafe0V if DEVICE_CAPABILITIES_2.StopDischargeThreshold=1 or to vSafe0V (max) if DEVICE_CAPABILITIES_2.StopDischargeThreshold=0.

When in Sink mode and POWER_CONTROL.AutoDischargeDisconnect=1, the TCPC shall fully discharge VBUS to vSafe5V (max) within tSafe5V and then to vSafe6V within tSafe6V of the removal of the cable.

When the source is removed, the system load and/or bleed discharge will discharge the sink bulk capacitance cSnkBulkPd. The time required to discharge cSnkBulkPd to below the disconnect detection threshold is tSinkDischargeBleed and depends upon the strength of the bleed discharge and the system load. The time required to discharge the sink bulk capacitance to vSafe5V is tSinkDischargeFull and depends upon the strength of the full discharge and the system load. The total time tSinkDischargeBleed + tSinkDischargeFull shall not exceed tSafe5V (max) to transition to vSafe5V. The total time to reach vSafe0V shall not exceed tSafe0V.

As an example, if:

- the bleed discharge pull down is 8.5kohm,
- the sink bulk capacitance cSnkBulkPd is 100uF,
- there is no system load,
- the initial voltage is 21.5 V (20 V + 5% + vSrcValid).
- and VBUS_SINK_DISCONNECT_THRESHOLD = 16V (0.8*20V)

then tSinkDischargeBleed = 250ms. Once the VBUS_SINK_DISCONNECT_THRESHOLD has been reached, the Sink connects its full discharge resistance of 400 Ohms. The Sink then discharges to vSafe5V in 46us and vSafe0V in 120us. The total time to reach vSafe0V is then tSinkDischargeBleed + tSinkDischargeFull = 250.05ms. The total time to reach vSafe0V is then 250.12ms. Both tSafe5V and tSafe0V can be met.

Figure 4-7. Automatic VBUS Sink Discharge by the TCPC after a Disconnect

4.4.5.4.3 Discharge by the Source TCPC during a Connection (Optional Normative)

While there is a valid Source-to-Sink connection, the TCPC acting as a Source shall discharge VBUS whenever POWER_CONTROL.ForceDischarge=1. The TCPC shall automatically disable discharge once the voltage on VBUS is below the value indicated by VBUS_STOP_DISCHARGE_THRESHOLD. A Source TCPC transitioning from a higher to lower voltage shall disconnect the ForceDischarge in time to meet the <u>USB PD</u> vSrcValid requirement and remove the Force Discharge circuit.

The TCPC shall discharge Vbus to vSafe0V after a power on reset before applying the Rp.

4.4.5.4.4 Discharge by the Sink TCPC during a Connection (Optional Normative)

While there is a valid Source-to-Sink connection, the TCPC acting as a Sink shall reduce its current to less than iSnkSwapStdby within tSnkSwapStby (<u>USB PD</u>) when handling a Power Role Swap or Hard Reset. The TCPM shall write POWER_CONTROL.AutoDischargeDisconnect to 0 or VBUS_SINK_DISCONNECT_THRESHOLD to 0 and COMMAND.DisableSinkVbus to disable the Sink disconnect detection and remove the Sink connection upon reception of or prior to transmitting a Power Role Swap or Hard Reset.

4.4.5.4.5 Bleed Discharge (Optional Normative)

Bleed discharge is enabled and disabled by the TCPM. The Bleed discharge is a low current discharge for providing a minimal load.

4.4.6 Status Registers

These registers indicate the state of the TCPC. These registers are set by the TCPC and read by the TCPM.

The CC_STATUS and POWER_STATUS registers are not latched and are continually updated unless powered off. The FAULT_STATUS register is latched.

4.4.6.1 CC_STATUS (Required)

The TCPC updates this register on a Connect or Disconnect. The TCPC shall update the CC_STATUS register within tSetReg (Table 4-45) of a change in ROLE_CONTROL.DRP or a change on the CC1 or CC2 wires, after debounce.

The TCPM starts the DRP toggling by writing to the COMMAND register.

The TCPM reads this register upon detecting an Alert# and seeing the ALERT.CcStatus=1. The TCPC indicates the Connection status, the Connection result, and the current CC state in this register.

The TCPC shall set CC_STATUS.Looking4Connection = 0b when it has detected a potential connection. The Autonomous DRP toggling details are defined in Figure 4-16 and Section 4.4.7.

The TCPM reads the Looking4Connection to determine if the TCPC is toggling Rp/Rd when operating as a DRP. The TCPM reads the CC_STATUS.ConnectResult to determine if a DRP TCPC is presenting an Rp or Rd. The TCPM shall read the CC1State and CC2State to determine the CC1 and CC2 states.

When reporting the state of the CC lines, the TCPC shall debounce for tTCPCfilter. The TCPC shall perform a minimal debounce and the TCPM must complete the debounce as defined in <u>USB Type-C</u>.

The TCPM as a Source detects a Sink attachment and detachment by reading Cc1State and Cc2State bits. The CC Status monitoring may be disabled per Section 4.8.3.

A TCPM which is using polling rather than Alerts should assume the data in the CC_STATUS register is not valid until at least tCcStatusDelay + tTCPCFilter + tCcTCPCSampleRate (max) (Table 4-45) after the ROLE_CONTROL has been updated. The tCcTCPCSampleRate is the CC sample rate used by the TCPC. The CC sampling method and rate is performed in a vendor specific manner and therefore outside the scope of this specification.

Table 4-19. Debounce requirements

	Min	Max	Units
tTCPCfilter	41	500	μs

1. It is recommended the tTCPCfilter be kept as high as possible to minimize the potential for the TCPM and TCPC to become out of sync when transitioning from Attached.SRC to Unattached.SRC in the USB Type-C State Machine.

Table 4-20. CC_STATUS Register Definition

Bit(s)	Name	Description
B76	Reserved	Shall be set to zero by sender and ignored by receiver
В5	Looking4Connection	0b: TCPC is not actively looking for a connection. A transition from '1' to '0' indicates a potential connection has been found. 1b: TCPC is looking for a connection (toggling as a DRP or looking for a connection as Sink/Source only condition)
B4	ConnectResult	0b: the TCPC is presenting Rp 1b: the TCPC is presenting Rd
B32	CC2 State	If (ROLE_CONTROL.CC2=Rp) or (ConnectResult=0) 00b: SRC.Open (Open, Rp) 01b: SRC.Ra (below maximum vRa) 10b: SRC.Rd (within the vRd range) 11b: reserved
		If (ROLE_CONTROL.CC2=Rd) or (ConnectResult=1) 00b: SNK.Open (Below maximum vRa) 01b: SNK.Default (Above minimum vRd-Connect) 10b: SNK.Power1.5 (Above minimum vRd-Connect) Detects Rp 1.5A 11b: SNK.Power3.0 (Above minimum vRd-Connect) Detects Rp 3.0A
		If ROLE_CONTROL.CC2=Ra, this field is set to 00b If ROLE_CONTROL.CC2=Open, this field is set to 00b
		This field always returns 00b if (Looking4Connection=1) or (POWER_CONTROL.EnableVconn=1 and TCPC_CONTROL.PlugOrientation=0). Otherwise, the returned value depends upon ROLE_CONTROL.CC2.
B10	CC1 State	If (ROLE_CONTROL.CC1 = Rp) or (ConnectResult=0) 00b: SRC.Open (Open, Rp) 01b: SRC.Ra (below maximum vRa) 10b: SRC.Rd (within the vRd range) 11b: reserved
		If (ROLE_CONTROL.CC1 = Rd) or ConnectResult=1) 00b: SNK.Open (Below maximum vRa) 01b: SNK.Default (Above minimum vRd-Connect) 10b: SNK.Power1.5 (Above minimum vRd-Connect) Detects Rp-1.5A 11b: SNK.Power3.0 (Above minimum vRd-Connect) Detects Rp-3.0A
		If ROLE_CONTROL.CC1=Ra, this field is set to 00b If ROLE_CONTROL.CC1=Open, this field is set to 00b
		This field always returns 00b if (Looking4Connection=1) or (POWER_CONTROL.EnableVconn=1 and TCPC_CONTROL.PlugOrientation=1). Otherwise, the returned value depends upon ROLE_CONTROL.CC1.

4.4.6.2 POWER_STATUS (Required)

The TCPM reads this register upon detecting an Alert# and reading the ALERT.PortPowerStatus Register set to 1. The TCPC indicates the current Power Status in this register.

The TCPM operating as a Sink at vSafe5V (with or without a <u>USB PD</u> Contract) shall detect VBUS presence and removal by reading the VBUSPresent bit.

The TCPM shall check the state of the TCPC Initialization Status bit when it starts or resets. The TCPM shall not start normal operation until the TCPC Initialization Status bit is cleared. The TCPC shall set the TCPC Initialization Status bit to zero when initialization or reset is complete and all registers are valid.

Table 4-21. POWER_STATUS Register Definition

Bit(s)	Name	Description
В7	Debug Accessory Connected	0b: No Debug Accessory connected (default)
		1b: Debug Accessory connected
		Reflects the state of the DebugAccessoryConnected# output if supported
		Required (Register is required but output is not required)
В6	TCPC Initialization Status	0b: The TCPC has completed initialization and all registers are valid
		1b: The TCPC is still performing internal initialization and the only registers that are guaranteed to return the correct values are 00h0Fh
		Required
B5	Sourcing High Voltage	0b: vSafe5V
		1b: High Voltage
		This does not control the path, just provides a monitor of the
		status. Assert as long as supplying voltage greater than vSafe5V. Required if voltage higher than vSafe5V can be sourced
	2	
B4	Sourcing VBUS	0b: Sourcing VBUS is disabled 1b: Sourcing VBUS is enabled
		This does not control the path, just provides a monitor of the
		status.
		Required
В3	VBUS Present Detection Enabled	0b: VBUS Present Detection Disabled
		1b: VBUS Present Detection Enabled (default)
		Indicates if the TCPC is monitoring for VBUS Present or if the circuit has been powered off
		Required
B2	VBUS Present	0b: VBUS Disconnected
		1b: VBUS Connected
		The TCPC shall report VBUS present when TCPC detects VBUS rises above 4V. The TCPC shall report VBUS is not present when TCPC detects VBUS falls below 3.5V. The TCPC may report VBUS is not present if VBUS is between 3.5V and 4V.
		Required

Bit(s)	Name	Description
B1	VCONN Present	Ob: VCONN is not present 1b: This bit is asserted when VCONN present CC1 or CC2. Threshold is fixed at 2.4V If POWER_CONTROL.EnableVCONN is disabled VCONN Present should be set to Ob.
В0	Sinking VBUS	Required Ob: Sink is Disconnected (Default and if not supported) 1b: TCPC is sinking VBUS to the system load Required

4.4.6.3 FAULT_STATUS (Required)

The TCPM reads this register upon detecting an Alert# and reading the ALERT. Fault bit set to 1. The TCPC indicates the current fault status in this register.

The TCPC indicates a Fault status change has occurred by presenting a logical 1 in the corresponding bit position in this register, presenting a logical 1 to the ALERT.Fault bit, and asserting the Alert# pin if the corresponding fault bit in FAULT_STATUS_MASK is 1 and ALERT_MASK.Fault is 1. The TCPM clears the FAULT bit by writing a logical 1 to the respective FAULT bit position and then writing a logical 1 to the ALERT.Fault bit after all bits in FAULT_STATUS have been cleared. The TCPM can clear any number of FAULT bits in a single write by setting multiple bits to logical 1 and the rest of the bits in the register to logical 0. The TCPM writing a logical 0 to any FAULT bit has no effect and therefore does not cause those FAULT bits to be set or cleared.

Table 4-22. FAULT_STATUS Register Definition

Bit(s)	Name	Description
В7	AllRegistersResetToDefault	This bit is asserted when the TCPC resets all registers to their default value. This happens at initial power up or if an unexpected power reset occurs.
В6	Force Off VBUS (Source or Sink)	0b: No Fault Detected, no action (default and not supported) 1b: VBUS Source/Sink has been forced off due to external fault The TCPC has disconnected VBUS due to STANDARD_INPUT.ForceOffVbus. Required if STANDARD_INPUT_CAPABILITIES_1.ForceOffVbus = 1b
B5	Auto Discharge Failed	0b: No discharge failure 1b: Discharge commanded by the TCPM failed If POWER_CONTROL.AutoDischargeDisconnect is set, the TCPC shall report discharge fails if VBUS is not below vSafe0V within tSafe0V. Required
B4	Force Discharge Failed	0b: No discharge failure 1b: Discharge commanded by the TCPM failed If POWER_CONTROL.ForceDischarge is set, the TCPC shall report a discharge fails if VBUS is not below vSafe0V within tSafe0V. Required if DEVICE_CAPABILITIES_1.ForceDischarge =1b
В3	Internal or External OCP VBUS Over Current Protection Fault	0b: Not in an over-current protection state 1b: Over-current fault latched Required if DEVICE_CAPABILIITES_1.VBUSOCPReporting = 1b

Bit(s)	Name	Description
B2	Internal or External OVP VBUS Over Voltage Protection Fault	0b: Not in an over-voltage protection state 1b: Over-voltage fault latched. Required if DEVICE_CAPABILIITES_1.VBUSOVPReporting = 1b
B1	VCONN Over Current Fault	0b: No Fault detected 1b: Over current Vconn fault latched Required if DEVICE_CAPABILITIES_2.VconnOvercurrentFaultCapable = 1b
В0	I2C Interface Error	Ob: No Error 1b: I2C error has occurred. A TRANSMIT has been sent with an empty TRANSMIT_BUFFER. May be asserted if a non-zero value has been written to a reserved bit in a register. Required

4.4.7 COMMAND (Required)

The Command is issued by the TCPM. The Command is cleared by the TCPC after being acted upon.

The TCPM shall issue COMMAND.Look4Connection to enable the TCPC to autonomously toggle the Rp/Rd. The initial Rp or Rd for toggling is determined by ROLE_CONTROL.CC1 and ROLE_CONTROL.CC2. If ROLE_CONTROL.CC1 and ROLE_CONTROL.CC2 are not the same value, the COMMAND.Look4Connection shall have no effect.

The TCPM shall issue COMMAND.Look4Connection to enable the TCPC to restart Connection Detection in cases where the role is fixed as Source or Sink, ROLE_CONTROL.DRP = 0b. An example of this is when a potential connection as a Source occurred but was further debounced by the TCPM to find the Sink disconnected. In this case a Source Only or DRP should go back to its Unattached.Src state. This would result in ROLE_CONTROL staying the same.

COMMAND.I2CIdle is used to put the I2C interface into the idle state. When the TCPC receives COMMAND.I2CIdle, the TCPC may generate a bit-level Not Acknowledge signal (a NAK where SDA remains HIGH during the ninth clock pulse) to its own slave address or any I2C commands.

The TCPM may send the COMMAND.WakeI2C as a throw away command to wake the I2C interface. The COMMAND.WakeI2C requires no action by the TCPC other than to wake the I2C device interface in the TCPC.

COMMAND.I2CIdle is decoupled from other Alert status detection mechanisms (such as CC_STATUS, POWER_STATUS, RECEIVE_DETECT, etc). For example, writing COMMAND. I2CIdle has no effect on ALERT.CcStatus, or the CC_STATUS register behavior. CC_STATUS detection may be turned off by writing to the ROLE_CONTROL register, but its behavior is not affected by the COMMAND.I2CIdle.

The TCPM shall issue COMMAND.SourceVbusHighVoltage to enable the TCPC to transition the Vbus source to a higher voltage level. The target voltage level for COMMAND.SourceVbusHighVoltage is set in a vendor defined manner. The TCPM may need to send vendor defined commands before sending COMMAND.SourceVbusHighVoltage. The steps of transitioning to source a higher voltage than vSafev5V over Vbus may be as follow:

Step 0: TCPC supplies vSafe5V over Vbus

Step 1: TCPM issues vendor defined commands to set the target voltage level of COMMAND.SourceVbusHighVoltage

Step 2: TCPM issues COMMAND.SourceVbusHighVoltage

Step 3: TCPC starts the operation of transitioning to the target voltage level. TCPC shall control the voltage transitioning and meet the power supply requirements in the <u>USB PD</u> specification. For TCPC that directly integrates the power switches, the TCPC shall meet the power supply requirements in the USB PD specification when the TCPC transitions VBUS voltage.

If the TCPM has a new target voltage level for COMMAND.SourceVbusHighVoltage, go to Step 1. The TCPM does not have to go back to vSafe5V and then to a different voltage. It may go directly to the new voltage by setting a new voltage level and then issuing the COMMAND.SourceVbusHighVoltage.

Figure 4-8 and Figure 4-9 indicate the flow from vSafe5V to and from high voltage respectively.

Table 4-23. COMMAND Register Definition

Bit(s)	Name	Register Setting	Description
B70	Command	0001 0001b	WakeI2C (no action is taken other than to wake the I2C interface).
		0010 0010b	DisableVbusDetect . Disable Vbus present detection. The TCPC shall ignore this command and assert the FAULT_STATUS.I2CInterfaceError if it has sourcing or sinking power over Vbus enabled.
		0011 0011b	EnableVbusDetect. Enable Vbus present detection.
		0100 0100b	DisableSinkVbus . Disable sinking power over Vbus. This COMMAND does not disable POWER_STATUS.VBUSPresent detection.
			The TCPC shall clear FAULT_STATUS.InternalorExternalOCP and FAULT_STATUS.InternalorExternalOVP.
		0101 0101b	SinkVbus. Enable sinking power over Vbus and enable Vbus present detection. The TCPC shall ignore this command and assert the FAULT_STATUS.I2CInterfaceError if it has sourcing power over Vbus enabled.
		0110 0110b	DisableSourceVbus . Disable sourcing power over Vbus. The TCPC shall stop reporting FAULT_STATUS. Internal or External OCP or OVP Faults. This COMMAND does not disable POWER_STATUS.VBUSPresent detection.
		0111 0111b	SourceVbusDefaultVoltage. Enable sourcing vSafe5V over Vbus and enable Vbus present detection. Source shall transition to vSafe5V if at a high voltage. The TCPC shall ignore this command and assert the FAULT_STATUS.I2CInterfaceError if it has sinking power over Vbus enabled.
		1000 1000b	SourceVbusHighVoltage. Execute sourcing high voltage over Vbus. The TCPC shall ignore this command and assert the FAULT_STATUS.12CInterfaceError if it is currently sinking voltage from Vbus or does not have ability to source voltages higher than vSafe5V. The TCPC shall ignore this command and assert the FAULT_STATUS.12CInterfaceError if not already sourcing vSafe5V.
			The actual voltage to be sourced may be set in a vendor defined manner. The TCPM may need to send vendor defined commands before sending this COMMAND.
		1001 1001b	Look4Connection . Start DRP Toggling if ROLE_CONTROL.DRP=1b. If ROLE_CONTROL.CC1/CC2 = 01b start with Rp, if ROLE_CONTROL.CC1/CC2 = 10b start with Rd.
			If ROLE_CONTROL.CC1/CC2 are not both 01b or 10b, then do not start toggling.
			The TCPM shall issue COMMAND.Look4Connection to enable the TCPC to restart Connection Detection in cases where the ROLE_CONTROL contents will not change. An example of this is when a potential connection as a Source occurred but was further debounced by the TCPM to find the Sink disconnected. In this case a Source Only or DRP should go back to its Unattached.Src state. This would result in ROLE_CONTROL staying the same.
		1010 1010b	RxOneMore . Configure the receiver to automatically clear the RECEIVE_DETECT register after sending the next GoodCRC. This is used to shutdown reception of packets at a known point regardless of packet separation or the depth of the receive FIFO in the TCPC.
		1100 1100b 1101 1101b 1110 1110b	Reserved. No Action
		1111 1111b	I2C Idle

Note: All other values are reserved; shall be ignored by the receiver

Figure 4-8. Transition from vSafe5V to High Voltage

Figure 4-9. Transition from High Voltage to vSafe5V

4.4.8 Capability Registers

This set of registers is used to communicate the capabilities of the TCPC to the TCPM. The TCPM reads these registers.

4.4.8.1 DEVICE_CAPABILITIES (Required)

This register is in the nonvolatile memory of the TCPC. This register describes features supported by the TCPC.

Table 4-24. DEVICE_CAPABILITIES_1 Register Definition

Bit(s)	Name	Description
B15	Reserved	Shall be set to zero by sender and ignored by receiver
B14	VBUS OCP Reporting	0b: VBUS OCP is not reported by the TCPC 1b: VBUS OCP is reported by the TCPC Support for both FAULT_STATUS.InternalorExternalOCP and FAULT_CONTROL. InternalorExternalOCP implemented
B13	VBUS OVP Reporting	Ob: VBUS OVP is not reported by the TCPC 1b: VBUS OVP is reported by the TCPC Support for both FAULT_STATUS.InternalorExternalOVP and FAULT_CONTROL. InternalorExternalOVP implemented
B12	Bleed Discharge	0b: No Bleed Discharge implemented in TCPC 1b: Bleed Discharge is implemented in the TCPC Support for POWER_CONTROL.EnableBleedDischarge implemented
B11	Force Discharge	0b: No Force Discharge implemented in TCPC 1b: Force Discharge is implemented in the TCPC Support for POWER_CONTROL.ForceDischarge, FAULT_STATUS.ForceDischargeFailed, and VBUS_STOP_DISCHARGE_THRESHOLD implemented Support for VBUS_STOP_DISCHARGE_THRESHOLD register implemented when act as Source
B10	VBUS Measurement and Alarm Capable	0b: No VBUS voltage measurement nor VBUS Alarms 1b; VBUS voltage measurement and VBUS Alarms Support for VBUS_VOLTAGE, VBUS_VOLTAGE_ALARM_HI_CFG, VBUS_VOLTAGE_ALARM_LO_CFG implemented
B98	Source Resistor Supported	00b: Rp default only 01b: Rp 1.5A and default 10b: Rp 3.0A, 1.5A, and default 11b: Reserved Rp values which may be configured by the TCPM via the ROLE_CONTROL register
B75	Roles Supported	000b: USB Type-C Port Manager can configure the Port as Source only or Sink only (not DRP) 001b: Source only 010b: Sink only 011b: Sink with accessory support 100b: DRP only 101b: Source, Sink, DRP, Adapter/Cable all supported 110b: Source, Sink, DRP

Bit(s)	Name	Description
B4	SOP'_DBG/SOP"_DBG Support	0b: All SOP* except SOP'_DBG/SOP"_DBG 1b: All SOP* messages are supported Configured in RECEIVE_DETECT and TRANSMIT
В3	Source VCONN	0b: TCPC is not capable of switching VCONN 1b: TCPC is capable of switching VCONN Support for POWER_CONTROL.EnableVCONN and POWER_STATUS.VCONNPresent implemented
В2	Sink VBUS	0b: TCPC is not capable controlling the sink path to the system load 1b: TCPC is capable of controlling the sink path to the system load Support for POWER_STATUS.SinkingVbus, COMMAND.SinkVbus, and COMMAND.DisableSinkVbus implemented
B1	Source High Voltage VBUS	Ob: TCPC is not capable of controlling the source high voltage path to VBUS 1b: TCPC is capable of controlling the source high voltage path to VBUS Support for VBUS_VOLTAGE, POWER_STATUS.SourcingHighVoltage, and COMMAND.SourceVbusHighVoltage implemented NOTE: DEVICE_CAPABILITIES_1.VBUS Measurement and Alarm Capable shall be set to 1b if Source High Voltage VBUS is enabled
В0	Source VBUS	Ob: TCPC is not capable of controlling the source path to VBUS 1b: TCPC is capable of controlling the source path to VBUS Support for POWER_STATUS.SourcingVbus, COMMAND.SourceVbusDefaultVoltage, COMMAND.DisableSourceVbus, COMMAND.EnableVbusDetect and COMMAND.DisableVbusDetect implemented

Table 4-25. DEVICE_CAPABILITIES_2 Register Definition

Bit(s)	Name	Description
B159	Reserved	Shall be set to zero by sender and ignored by receiver
В8	Watchdog Timer	0b: TCPC_CONTROL.Enable Watchdog Timer not implemented 1b: TCPC_CONTROL.Enable Watchdog Timer implemented
В7	Sink Disconnect Detection	0b: VBUS_SINK_DISCONNECT_THRESHOLD not implemented (default: Use POWER_STATUS.VbusPresent=0b to indicate a Sink disconnect) 1b: VBUS_SINK_DISCONNECT_THRESHOLD implemented
В6	Stop Discharge Threshold	0b: VBUS_STOP_DISCHARGE_THRESHOLD not implemented (default) 1b: VBUS_STOP_DISCHARGE_THRESHOLD implemented

Bit(s)	Name	Description
B54	VBUS Voltage Alarm LSB	00: TCPC has 25mV LSB for its voltage alarm and uses all 10 bits in
		VBUS_VOLTAGE_ALARM_HI_CFG and
		VBUS_VOLTAGE_ALARM_LO_CFG.
		01: TCPC has 50mV LSB for its voltage alarm and uses only 9 bits.
		VBUS_VOLTAGE_ALARM_HI_CFG[0] and
		VBUS_VOLTAGE_ALARM_LO_CFG[0] are ignored by TCPC.
		10: TCPC has 100mV LSB for its voltage alarm and uses only 8 bits.
		VBUS_VOLTAGE_ALARM_HI_CFG[1:0] and
		VBUS_VOLTAGE_ALARM_LO_CFG[1:0] are ignored by TCPC.
		11: reserved
		Support for VBUS_VOLTAGE_ALARM_LO_CFG and VBUS_VOLTAGE_ALARM_HI implemented
B31	VCONN Power Supported	000b: 1.0W
		001b: 1.5W
		010b: 2.0W
		011b: 3W
		100b: 4W
		101b: 5W
		110b: 6W
		111b: External
B0	BO VCONN Overcurrent Fault Capable	0b: TCPC is not capable of detecting a V _{conn} fault
		1b: TCPC is capable of detecting a V _{conn} fault
		Support for FAULT_STATUS.VCONNOverCurrentFault and FAULT_CONTROL.VCONNOverCurrentFault implemented

4.4.8.2 STANDARD_INPUT_CAPABILITIES (Required)

This register is in the nonvolatile memory of the TCPC. This register describes the optional normative Standard Inputs and their capability.

Table 4-26. STANDARD_INPUT_CAPABILITIES Register Definition

Bit(s)	Name	Description
B73	Reserved	Shall be set to zero by sender and ignored by receiver
B2	VBUS External Over Voltage Fault	0b: Not present in TCPC 1b: Present in TCPC
B1	VBUS External Over Current Fault	0b: Not present in TCPC 1b: Present in TCPC
В0	Force Off VBUS (Source or Sink)	0b: Not present in TCPC 1b: Present in TCPC

4.4.8.3 STANDARD_OUTPUT_CAPABILITIES (Required)

This register is in the nonvolatile memory of the TCPC. This register describes the optional normative Standard Outputs and their capability. The Standard Outputs are push/pull and referenced to a VDDIO which may be the same or different than the VDD supply voltage for the I2C interface.

Table 4-27. STANDARD_OUTPUT_CAPABILITIES Register Definition

Bit(s)	Name	Description
В7	Reserved	Shall be set to zero
В6	Debug Accessory Indicator	0b: Not present in TCPC 1b: Present in TCPC
B5	VBUS Present Monitor	0b: Not present in TCPC 1b: Present in TCPC
B4	Audio Adapter Accessory Indicator	0b: Not present in TCPC 1b: Present in TCPC
В3	Active Cable Indicator	0b: Not present in TCPC 1b: Present in TCPC
B2	MUX Configuration Control	0b: Not present in TCPC 1b: Present in TCPC
B1	Connection Present	0b: No Connection 1b: Connection Controlled by the TCPM.
В0	Connector Orientation	0b: Not present in TCPC 1b: Present in TCPC

4.4.9 MESSAGE_HEADER_INFO (Required)

The TCPC shall set this register at power on per Table 4-15. The TCPM may overwrite this register after TCPC initialization is complete.

On attach and after implementing the tCCDebounce, the TCPM shall update the MESSAGE_HEADER_INFO Register first before writing to the RECEIVE_DETECT register.

The TCPC reads from this register to generate the Message header for the GoodCRC.

Table 4-28. MESSAGE HEADER INFO Register Definition

Bit(s)	Name	Description
B75	Reserved	Shall be set to zero by sender and ignored by receiver
B4	Cable Plug	0b: Message originated from Source, Sink, or DRP 1b: Message originated from a Cable Plug
В3	Data Role	0b: UFP 1b: DFP
B21	<u>USB PD</u> Specification Revision	00b: Revision 1.0 01b: Revision 2.0 10b - 11b: Reserved
В0	Power Role	0b: Sink 1b: Source

4.4.10 RECEIVE_DETECT (Required)

Set by TCPM, cleared by TCPM (and/or TCPC in some instances).

The TCPM notifies the TCPC of the message type and/or signaling types to be detected. The TCPM should not set any bits in this register until it is able to respond. The TCPC responds to the enabled message type with a GoodCRC if it is a SOP* message, except in the case of a GoodCRC message.

The initial value of RECEIVE_DETECT shall be all zeroes. Registers must be written to be enabled.

On Hard Reset reception, the TCPC shall set the RECEIVE_DETECT bits to zero to disable automatic transmission of GoodCRC. On detection of a Disconnect, the TCPC shall set the RECEIVE_DETECT bits all to zero to disable automatic transmission of GoodCRC. The TCPC shall set the RECEIVE_DETECT bits to zero to disable automatic transmission of GoodCRC when RECEIVE_DETECT.CableReset is set and a Cable Reset is received. The TCPC shall be capable of receiving a CableReset if DEVICE_CAPABILITIES_1.RolesSupported =101, the TCPC may be capable of receiving a CableReset DEVICE_CAPABILITIES_1.RolesSupported != 101.

Refer to Section 4.7.3 for more detail.

Table 4-29. RECEIVE_DETECT Register Definition

Bit(s)	Name	Description
В7	Reserved	Shall be set to zero by sender and ignored by receiver

Bit(s)	Name	Description
В6	Enable Cable Reset	0b: TCPC does not detect Cable Reset signaling (default)
		1b: TCPC detects Cable Reset signaling
B5	Enable Hard Reset	0b: TCPC does not detect Hard Reset signaling (default)
		1b: TCPC detects Hard Reset signaling
B4	Enable SOP_DBG''	0b: TCPC does not detect SOP_DBG" message (default)
	message	1b: TCPC detects SOP_DBG" message
В3	Enable SOP_DBG'	0b: TCPC does not detect SOP_DBG' message (default)
	message	1b: TCPC detects SOP_DBG' message
B2	Enable SOP'' message	0b: TCPC does not detect SOP" message (default)
		1b: TCPC detects SOP'' message
B1	Enable SOP' message	0b: TCPC does not detect SOP' message (default)
		1b: TCPC detects SOP' message
В0	Enable SOP message	0b: TCPC does not detect SOP message (default)
		1b: TCPC detects SOP message

4.4.11 RECEIVE_BUFFER (Required)

This register indicates the status of the received SOP* message buffer in 30h..4Fh registers. This register shall be read by the TCPM when the TCPC indicates a SOP* message was received in the Alert Status registers. The TCPM reads the RECEIVE_BYTE_COUNT to determine the number of bytes in the RX_BUFFER_DATA_OBJECT and the RX_BUF_FRAME_TYPE to determine the type of message.

The TCPM then reads the information in the RX_BUF_HEADER and the RX_BUFFER_DATA_OBJECT. The TCPC shall set the RECEIVE_BYTE_COUNT to 0 after the interrupt has been cleared. See Section 4.7.3, 4.7.4, and 4.7.5 for information on receiving SOP* messages, Hard Reset, and Cable Reset messages respectively.

Upon detection of a Disconnect, the TCPC shall set the RECEIVE_BYTE_COUNT to zero. The TCPM may power down PD messaging per Section 4.8.2.

RECEIVE_BUFFER is read only.

Table 4-30. RECEIVE_BYTE_COUNT Definition

Bit(s)	Name	Description
B70	RECEIVE_BYTE_COUNT	Indicates number of bytes in this register that are not stale. The TCPM should read the first RECEIVE_BYTE_COUNT bytes in this register. This is the number of bytes in the RX_BUFFER_DATA_OBJECTS plus three (for the RX_BUF_FRAME_TYPE and RX_BUF_HEADER).

Table 4-31. RX_BUF_FRAME_TYPE Definition

Bit(s)	Name	Description
B73	Reserved	Shall be set to zero by sender and ignored by receiver

Bit(s)	Name	Description
B20	Received SOP* Message	000b: Received SOP 001b: Received SOP' 010b: Received SOP'' 011b: Received SOP_DBG' 100b: Received SOP_DBG'' 110b: Received Cable Reset
		All others are reserved.

Table 4-32. RX_BUF_HEADER Definition

Bit(s)	Name	Description
B158	RX_BUF_HEADER_BYTE_1	Byte 1 (bits 158) of <u>USB PD</u> message header
B70	RX_BUF_HEADER_BYTE_0	Byte 0 (bits 70) of <u>USB PD</u> message header

Table 4-33. RX_BUFFER_DATA_OBJECTS Definition

Bit(s)	Name	Description
B2238	RX_BUF_OBJn_BYTE_m	Byte m of nth data object
B70	RX_BUF_OBJ1_BYTE_0	Byte 0 (bits 70) of 1st data object

4.4.12 TRANSMIT (Required)

The TCPM writes to this register to transmit a SOP* message where the SOP* message payload is in 51h..6Fh registers. The entire register shall be written at once and then sent. The TCPC shall clear the TRANSMIT register and TRANSMIT_BYTE_COUNT after executing the transmission regardless of success or failure.

If the TCPM writes to TRANSMIT requesting a transmission that is not Hard Reset, not Cable Reset, and not BIST Carrier Mode 2 (i.e. TRANSMIT.SOP*Message > 100b) and TRANSMIT_BYTE_COUNT is less than 2h, the TCPC shall generate a FAULT_STATUS.I2CInterfaceError.

The TCPM shall require no message retry when transmitting a Hard Reset, Cable Reset, or BIST Carrier Mode 2 signaling. The TCPC shall ignore the Retry Counter bits (B5..4) when transmitting a Hard Reset, Cable Reset, or BIST Carrier Mode signaling.

The tCableMessage timer (SOP' and SOP") shall be in the TCPM.

The TCPC is not allowed to NAK this register.

If the TCPM writes a Hard Reset command to this register while a transmission is in progress, a Hard Reset signal shall be sent as soon as possible (interrupting the outgoing message according to the PD specifications, or transmitting it after the GoodCRC reply to previous command has been received or CRCReceiveTimer has expired).

The TCPM shall not write to the TRANSMIT register to request a transmission other than Hard Reset while the TCPC is still processing a previous transmission (i.e. ALERT.TransmitSuccessful, TransmitFailed, or TransmitDiscarded have not yet been asserted since the last write to the TRANSMIT register). The TCPM shall clear the resulting alert from a prior TRANSMIT write before writing to the TRANSMIT register again for anything other than a Hard Reset. If a previous TRANSMIT request has not yet completed when TRANSMIT is written requesting a Hard Reset, the TCPC shall assert the Transmission Discarded bit in the ALERT register.

The TCPM shall not write to the TRANSMIT register to request a transmission other than Hard Reset until it has cleared all received message alerts. If the TCPM writes TRANSMIT when ALERT.ReceivedHardReset = 1 or ALERT.ReceivedSOP* = 1 the TCPC shall discard the transmit request and assert ALERT.TxMessageDiscarded.

The TCPC shall assert one and only one of ALERT.TransmitSuccessful, TransmitFailed, or TransmitDiscarded following a write of the TRANSMIT register when a non-Hard Reset is transmitted. The TCPC shall assert both ALERT.TransmitSuccessful and ALERT.TransmitFailed after it completes the sending of a Hard Reset. The TCPC shall clear the RECEIVE_DETECT and the RECEIVE_BYTE_COUNT register to disable the PD message passing when the TCPM writes the TRANSMIT register requesting a Hard Reset.

Table 4-34. TRANSMIT Register Definition

Bit(s)	Name	Description
B76	Reserved	Shall be set to zero by sender and ignored by receiver
B54	Retry Counter	00b: No message retry is required 01b: Automatically retry message transmission once 10b: Automatically retry message transmission twice 11b: Automatically retry message transmission three times
В3	Reserved	Shall be set to zero by sender, shall be ignored by receiver

Bit(s)	Name	Description
B20	Transmit SOP* message	000b: Transmit SOP
		001b: Transmit SOP'
		010b: Transmit SOP''
		011b: Transmit SOP_DBG'
		100b: Transmit SOP_DBG''
		101b: Transmit Hard Reset
		110b: Transmit Cable Reset
		111b: Transmit BIST Carrier Mode 2 (TCPC shall exit the BIST mode no later than tBISTContMode max)

4.4.13 TRANSMIT_BUFFER (Required)

The TRANSMIT_BUFFER holds the TRANSMIT_BYTE_COUNT, the TX_BUF_HEADER, and the TX_BUFFER_DATA_OBJECTS (SOP* payload).

Table 4-35. TRANSMIT_BYTE_COUNT Definition

Bit(s)	Name	Description
B70	TRANSMIT_BYTE_COUNT	The number of bytes the TCPM will write
		This is the number of bytes in the TX_BUFFER_DATA_OBJECTS plus two (for the TX_BUF_HEADER)

Table 4-36. TX_BUF_HEADER Definition

Bit(s)	Name	Description
B158	TX_BUF_HEADER_BYTE_1	Byte 1 (bits 158) of <u>USB PD</u> message header
B70	TX_BUF_HEADER_BYTE_0	Byte 0 (bits 70) of <u>USB PD</u> message header

Table 4-37. TX_BUFFER_DATA_OBJECTS Definition

Bit(s)	Name	Description
B2238	TX_BUF_OBJn_BYTE_m	Byte m of nth data object
B70	TX_BUF_OBJ1_BYTE_0	Byte 0 (bits 70) of 1st data object

4.4.14 VBUS_VOLTAGE (Optional Normative)

The TCPM may read this register to determine the VBUS voltage measured on the Source or Sink at the <u>USB Type-C</u> Connector. The TCPC shall maintain synchronization between the upper and lower 8 bits of the register.

The implementation of VBUS sampling for VBUS_VOLTAGE reporting in TCPC is vendor specific. The TCPC datasheet should provide TCPM guidance for reading VBUS_VOLTAGE register, such as the averaging of reads and the interval between reads.

Required if voltage greater than vSafe5V is sourced or sinked. This register is required if it is reported as supported in the one of the DEVICE_CAPABILITES registers, Section 4.4.8.1.

Table 4-38. VBUS_VOLTAGE Register Definition

Bit(s)	Name	Description
B1512	Reserved	Shall be set to 0
B1110	Scale Factor	00: VBUS measurement not scaled. 01: VBUS measurement divided by 2 10: VBUS measurement divided by 4 11: reserved
В90	VBUS voltage measurement	10-bit measurement of (VBUS / Scale Factor) TCPM multiplies this value by the scale factor to obtain the voltage measurement. All voltages shall meet +/-2% absolute value or +/-50mV, whichever is greater. The LSB is 25mV.

4.4.15 Voltage Thresholds

4.4.15.1 VBUS _SINK_DISCONNECT_THRESHOLD

This register is required by TCPCs which act as a Sink and are capable of receiving voltages greater than vSafe5V. Implementation of this register shall be defined in DEVICE_CAPABILITIES_2.SinkDisconnectDetection.

This register is optional normative for TCPCs acting as Source only. This register has no action for a Source.

The TCPM writes to this register to set the threshold at which a Sink will start the Auto Discharge if it is in the Attached.SNK state as shown in Figure 4-11 and Figure 4-12.

Refer to the vendor data sheet to determine the trigger type for this threshold (edge triggered or level triggered).

Table 4-39. VBUS_SINK_DISCONNECT_THRESHOLD Register Description

Bit(s)	Name	Description
B1510	Reserved	Shall be set to 0
В90	Voltage trip point	10-bit for voltage threshold with 25mV LSB. (Default vSafe5V) +/- 5% accuracy. A value of B9:0=000h disables this threshold The TCPC may ignore B0 or B1 & B0 depending upon DEVICE_CAPABILITIES_2.VbusVoltageAlarmLsb.

4.4.15.2 VBUS_STOP_DISCHARGE_THRESHOLD

This register is optional normative. It may be supported in one power role and not in the other (example: supported in Source power role and not in Sink power role).

This register is required by TCPCs which act as a Source and support POWER_CONTROL.ForceDischarge. The TCPM writes to this register to set the threshold at which a Source shall stop the forced discharge when POWER_CONTROL.ForceDischarge = 1b. TCPC acting as a Source shall always discharge to vSafe0V upon disconnect, Hard Reset, or Power Role Swap. A Source TCPC which does not support this register shall discharge Vbus to vSafe0V.

This register is optional normative for TCPCs which act as a Sink. This register has no action for a Sink. On a disconnect, a Source TCPC discharges VBUs to vSafe0V as described in Section 4.4.5.4.2. Implementation of this register shall be defined in DEVICE_CAPABILITIES_2.StopDischargeThreshold.

Refer to the vendor data sheet to determine the trigger type for this threshold (edge triggered or level triggered).

Table 4-40. VBUS_STOP_DISCHARGE_THRESHOLD Register Description

Bit(s)	Name	Description
B1510	Reserved	Shall be set to 0
B90	Voltage trip point	10-bit for voltage threshold with 25mV LSB. (Default vSafe0V) +/- 5% accuracy. The TCPC may ignore B0 or B1 & B0 depending upon DEVICE_CAPABILITIES_2.VbusVoltageAlarmLsb.

4.4.15.3 Voltage Alarms (Optional Normative)

These registers are required if it is reported as supported in the one of the DEVICE_CAPABILITES registers, Section 4.4.8.1.

Voltage alarms are required by TCPCs with integrated power FETs which handle voltages higher than vSafe5V.

The TCPM can write to POWER_CONTROL.DisableVoltageAlarms = 1b to disable the voltage alarms. The TCPM writes to this registers to set the high voltage alarm level. The TCPC sets ALERT.VBUSVoltageAlarmHi to 1 when VBUS exceeds the over voltage level.

Refer to the vendor data sheet to determine the trigger type for this alarm (edge triggered or level triggered).

Table 4-41. VBUS_VOLTAGE_ALARM_HI_CFG Register Description

Bit(s)	Name	Description
B1510	Reserved	Shall be set to 0
B90	Voltage trip point	10-bit for voltage threshold with 25mV LSB. +/- 5% accuracy. The TCPC may ignore B0 or B1 & B0 depending upon DEVICE_CAPABILITIES_2.VbusVoltageAlarmLsb.

The TCPM writes to this registers to set the low voltage alarm level. The TCPC sets ALERT.VBUSVoltageAlarmLo to 1 when VBUS drops below the under voltage level.

Table 4-42. VBUS_VOLTAGE_ALARM_LO_CFG Register Description

Bit(s)	Name	Description
B1510	Reserved	Shall be set to 0
B90	Voltage trip point	10-bit for voltage threshold with 25mV LSB. +/- 5% accuracy. The TCPC may ignore B0 or B1 & B0 depending upon DEVICE_CAPABILITIES_2.VbusVoltageAlarmLsb.

4.4.16 VENDOR_DEFINED Registers

The behavior of these registers is exclusively defined by the vendor. There is no defined behavior.

The TCPM should process/write Vendor Specific bits only if it recognizes the device and according to the specifications provided by that vendor.

4.5 STANDARD IO SIGNALS

This section defines the signaling on the Standard Inputs and Outputs.

4.5.1 STANDARD INPUT SIGNALS (Optional Normative)

Support for any of these signals shall be indicated in the STANDARD_INPUT_CAPABILITIES register (Section 4.4.8.2). This section defines the Standard Input signals to the TCPC. The input signals provide updates to the FAULT_STATUS register (Section 4.4.6.3). The TCPC shall set the FAULT_STATUS register based on the input level at the pin.

Table 4-43. Standard Input Signals

Inputs	Туре
VBUS External Over Current Fault	Low: Set STANDARD_INPUT Register to 0. No Over Current Fault High: Set STANDARD_INPUT Register to 1. Over Current Fault present Reported in FAULT_STATUS.InternalExternalOCP
VBUS External Over Voltage Fault	Low: Set STANDARD_INPUT Register to 0. No Over Voltage Fault. High: Set STANDARD_INPUT Register to 1. Over Voltage Fault present. Reported in FAULT_STATUS.InternalExternalOVP
Force Off VBUS (Source or Sink)	Low: Set STANDARD_INPUT Register to 0. Do not force VBUS off. High: Set STANDARD_INPUT Register to 1. Force VBUS Off. Reported in FAULT_STATUS.ForceOffVBUS

4.5.2 STANDARD OUTPUT SIGNALS (Optional Normative except Alert#)

Support for any of these signals shall be indicated in the STANDARD_OUTPUT_CAPABILITIES register (Section 4.4.8.3). This section defines the Standard Output signals from the TCPC. The output signals may or may not be controlled by the TCPM. Behavior is defined in Table 4-44.

Outputs may be Push/Pull or Open Drain. Refer to the TCPC datasheet for definition. Outputs which are Push/Pull are referenced to VDDIO and may be the same or different than the VDD supply voltage for the I2C interface. Outputs where noted are tri-stated on disconnect.

Table 4-44. Standard Output Signals

Output	Туре
Alert#	Low: Alert. The TCPC is indicating an Alert Status change has occurred. The TCPM shall read the ALERT Register to determine what event triggered the Alert. High: No Alert Open Drain
Debug Accessory Connected#	High: No Debug Accessory connected Low: Debug Accessory connected Push/Pull or Open Drain
VBUS Present#	Low: VBUS is present High: VBUS is not present Push/Pull or Open Drain

Output	Туре
Audio Accessory Connected#	High: No Audio Accessory connected Low: Audio Accessory connected Push/Pull or Open Drain
Active Cable Connected	High: Active Cable connected Low: No Active Cable connected Push/Pull or Open Drain
MUX Control 1	Low: No DP Alternate Mode High: DP Alternate Mode Push/Pull or Open Drain
MUX Control 0	Low: No connection or No USB Connection High: USB Connection Push/Pull or Open Drain
Connection Present	Low: No Connection High: Connection Push/Pull or Open Drain
Connector Orientation	Low: Normal (default) High: Flipped Push/Pull or Open Drain

4.6 TCPC Connection State Diagrams and Flows

Refer to section 3.5 for the structure of the state diagram figures.

This section defines the behavior of a TCPC when using the DRP functionality.

Figure 4-10. TCPC Power-On State Diagram

Figure 4-11. TCPC State Diagram before a Connection

Figure 4-12. TCPC State Diagram after a Connection

Figure 4-13. TCPC Debug Accessory State Diagram

Figure 4-14. TCPC Sink Debug Accessory Orientation State Diagram

Figure 4-15 TCPC Source Debug Accessory Orientation State Diagram

Figure 4-16. DRP Initialization and Connection Detection

Figure 4-17. Source Disconnect

Figure 4-18. Sink Disconnect

4.7 PD Communication Operational Model

This section describes the procedures of PD Communication through TCPC.

4.7.1 Transmitting an SOP* Message

The steps for transmitting an SOP* message are as follows:

- Step 1: TCPM writes the content of the message to be transmitted into the TRANSMIT_BUFFER
- Step 2: TCPM writes to TRANSMIT requesting SOP* transmission.
- Step 3: If the TCPM writes to TRANSMIT requesting a transmission that is not Hard Reset, not Cable Reset, and not BIST Carrier Mode 2 (i.e. TRANSMIT.SOP*Message > 100b) and TRANSMIT_BYTE_COUNT is less than 2h, the TCPC shall generate a FAULT_STATUS.I2CInterfaceError.
- Step 4: The outcome of the write reported by the TCPC may be one of three indications after asserting the Alert# pin:
 - o If the TCPC PHY layer successfully transmits the message, the TCPC sets the TransmitSOP*MessageSuccessful bit in the ALERT register.
 - o If the TCPC PHY layer did not get any response after retries, the TCPC sets the TransmitSOP*MessageFailed bit in the ALERT register.
 - o If the transmission was discarded due to an incoming message, the TCPC sets the TransmitSOP*MessageDiscarded bit in the ALERT register.
- Step 5: Before requesting another transmission, the TCPM clears the alert by writing a logical 1 to the asserted bit in the ALERT register.

When transitioning through the steps of transmitting SOP* message, the TCPC may assert ALERT.ReceiveSOP*MessageStatus or ALERT.ReceivedHardReset bit at any time to notify that a message was received.

4.7.2 Transmitting a Hard Reset Message

The steps for transmitting a Hard Reset message are as follows:

- Step 1: The TCPM writes to TRANSMIT to request a Hard Reset transmission,
 - o If a previous TRANSMIT request has not yet completed, the TCPC shall assert the TransmitSOP*MessageDiscarded bit in the ALERT register.
- Step 2: The TCPC asserts both ALERT.TransmitSOP*MessageSuccessful and ALERT.TransmitSOP*MessageFailed regardless of the outcome of the transmission and asserts the Alert# pin.
- Step 3: The TCPC clears the RECEIVE_DETECT and RECEIVE_BYTE_COUNT register to disable the PD message passing.
- Step 4: The TCPM clears the Alert by writing a logical 1 to the asserted bit in the ALERT register. If ALERT.ReceiveSOP*MesageStatus bit is asserted, the TCPM shall also clear the ALERT.ReceiveSOP*MessageStatus bit.
- Step 5: The TCPM writes to the RECEIVE_DETECT register to enable PD message passing.

4.7.3 Receiving an SOP* message

The steps for receiving an SOP* message are as follows:

• Step1: The TCPC asserts the Alert# pin to request attention when it receives a Hard Reset, a Cable Reset, or has sent the GoodCRC in response to an SOP* message from a Port Partner. If an overflow has occurred, the TCPC will have set the ALERT.RxBufferOverflow register, therefore the TCPC will not sent the GoodCRC to other received messages until the TCPM clears the Message Received alert. The TCPM should always clear the Rx Buffer Overflow and Message Received bits at the same time. Otherwise there could be a scenario where the Rx Buffer Overflow bit remains set even though the TCPM has just cleared one of the messages in the buffer.

- Step2: The TCPM reads the ALERT register for notification that a message was received.
- Step3: The TCPM reads the RECEIVE_BUFFER.RECEIVE_BYTE_COUNT and RECEIVE_BUFFER.RX_BUF_FRAME_TYPE. If the TCPC received an SOP* message, the TCPM reads as many bytes in the buffer (i.e. data objects in RX_BUFFER_DATA_OBJECT) as defined in the RECEIVE_BUFFER.RECEIVE_BYTE_COUNT.
- Step 4: The TCPM clears the Alerts:
 - The ALERT.RxBufferOverflow is cleared when the TCPM writes ALERT.ReceiveSOP*MessageStatus as 1 and ALERT.RxBufferOverflow as 1.
 - Writing ALERT.ReceiveSOP*MessageStatus to 1 also clears the receive buffer registers.
- Step5: After the Alert and buffers have been cleared, the TCPC shall put the next received message (if any) into the SOP* message buffer registers. The TCPC shall then update RECEIVE_BUFFER.RECEIVE_BYTE_COUNT and ALERT registers.
- Step6: If Alert# pin is still asserted, return to Step 2.

4.7.4 Receiving a Hard Reset message

The TCPC steps after receiving a Hard Reset message are as follows:

- Step1: The TCPC asserts Alert# pin to request attention when it receives a Hard Reset
- Step2: The TCPC shall set the RECEIVE_DETECT bits to zero to disable automatic transmission of GoodCRC.
- Step 3: The TCPC shall set the RECEIVE_BUFFER.RECEIVE_BYTE_COUNT to zero.

4.7.5 Receiving a Cable Reset message

If the TCPC has enabled reception of Cable Reset in RECEIVE_DETECT.CableReset, the TCPC steps after receiving a Cable Reset message are as follows:

- Step1: The TCPC asserts Alert# pin to request attention when it receives a Cable Reset. The TCPC shall set Alert.ReceiveSOP*MessageStatus when it receives a Cable Reset.
- Step2: The TCPC shall set the RECEIVE_DETECT bits to zero to disable automatic transmission of GoodCRC.
- Step 3: The TCPC shall set the RECEIVE_BUFFER.RECEIVE_BYTE_COUNT to one.

4.8 Power Management

TCPC Interface provides the control needed to enable and disable the functional blocks in the TCPC. The purpose of disabling a functional block is to reduce the power consumption of TCPC.

Setting any bits in the ALERT_MASK register does not disable the functional blocks and has no effect on any registers.

The Alert# remains active unless all blocks are powered down and the only mechanism to wake the TCPC is via the COMMAND.I2CWake.

4.8.1 I2C Interface

TCPM may put the I2C device interface in idle state by issuing COMMAND.I2CIdle. The TCPC may then generate a bit-level Not Acknowledge signal (a NAK where SDA remains HIGH during the ninth clock pulse) to its own slave address or any I2C commands.

The TCPM shall send a throw away I2C command to wake the I2C device interface in the TCPC. The TCPC shall restart its I2C interface as a side effect of seeing its slave address (even though it NAK'd). Subsequent requests sent to the slave address will not be NAK'd.

The steps for the TCPM to wake a TCPC from I2C idle:

- Step1: TCPM sends an I2C command to address the TCPC (or COMMAND.WakeI2C)
- Step2: TCPM starts tWakeI2CFail timer. If tWakeI2CFail timer expires before ALERT# is asserted, TCPM resends an I2C command to readdress the TCPC (or COMMAND.WakeI2C). The TCPC shall wake from I2C idle on the first wake command (in Step1) or the second wake command (in Step2).
- Step3: The TCPC updates the ALERT.PowerStatus bit and then sets the ALERT#. The TCPC does not set any registers in the POWER_STATUS register.
- Step4: The TCPM stops the tWakeI2CFail timer.
- Step5: TCPM reads ALERT.PowerStatus registers to get notification the TCPC has exited I2C idle
- Step5: TCPM writes to clear ALERT registers

When the I2C device interface in the TCPC is in idle state, the TCPC shall assert the Alert# pin within *tWakeI2CFail* upon receiving an I2C command. The TCPM may assume an error in communication when *tWakeI2CFail* expires and retry issuing a throw away command to wake the TCPC.

	Min	Max	Units
tWakeI2CFail		5	ms

4.8.2 PD Messaging

The TCPM may disable PD messaging by setting the RECEIVE_DETECT and RECEIVE_BYTE_COUNT register to all zeroes. Disabling PD messaging does not cause ALERT register to be set or cleared.

4.8.3 CC Status Reporting

The TCPC shall disable CC Status reporting when the TCPM sets ROLE_CONTROL.DRP = 0b (No DRP) and ROLE_CONTROL.CC1 = ROLE_CONTROL.CC2 = 11b (Open). When the CC Status reporting is disabled, the TCPC shall set CC_STATUS register to all zeroes and TCPM shall ignore the values in CC_STATUS register. Disabling the CC Status reporting does not cause ALERT.CcStatus to be set or cleared.

4.8.4 VBUS Reporting

This section describes the operation of disabling Vbus reporting function in the TCPC.

4.8.4.1 Disable VBUS Present Detection

The TCPC shall disable Vbus present detection when TCPM issues COMMAND.DisableVBusPresentDetect. When the VBUS present detection is disabled:

- TCPC shall set POWER_STATUS.VbusPresentDetectionEnabled = 0b
- TCPM shall ignore POWER_STATUS.VBUSPresent bit
- Issuing COMMAND.DisableVBUSDetect does not cause ALERT.PowerStatus to be set or cleared

4.8.4.2 Disable VBUS Voltage Alarm

The TCPC shall disable VBUS alarm reporting when the TCPM sets POWER CONTROL.DisableVoltageAlarms = 1b. When the VBUS alarm reporting is disabled:

Setting POWER_CONTROL.DisableVoltageAlarms = 1b has no effect on POWER_STATUS register.

4.8.4.3 Disable VBUS Monitoring

The TCPC shall disable VBUS monitor reporting when the TCPM sets POWER_CONTROL.VBUS_VOLTAGEMonitor = 1b. When the VBUS_VOLTAGE monitor reporting is disabled:

- The TCPC shall set VBUS_VOLTAGE register to all zeroes and TCPM shall ignore the values in VBUS_VOLTAGE register
- Setting POWER_CONTROL.VBUS_VOLTAGEMonitor = 1b has no effect on POWER STATUS register

4.8.4.4 Disable VBUS Auto Discharge

For a Source, Auto Discharge is enabled/disabled by writing to POWER_CONTROL, AutoDischargeDisconnect.

For a Sink, Auto Discharge is enabled by setting non zero to VBUS_SINK_DISCONNECT_THRESHOLD and set POWER_CONTROL,AutoDischargeDisconnect to one.

For a Sink, Auto Discharge is disabled by either setting all zeros to VBUS_SINK_DISCONNECT_THRESHOLD zero.

4.8.5 Fault Status Reporting

The TCPM may disable individual FAULT_STATUS reporting by setting the appropriate FAULT_CONTROL bit to 1. The TCPM may indicate to the TCPC to power down all the FAULT circuitry by setting FAULT_CONTROL to all 1s.

When the fault status reporting is disabled:

• When a bit in FAULT_CONTROL is set to one, the TCPC shall set the corresponding bit in the FAULT_STATUS register to zero and TCPM shall ignore that bit.

4.9 TCPC Timing Constraints

The TCPC shall comply with the timing constraints defined in Table 4-45.

In a scenario where all ports receive a message with 7 data objects simultaneously, and each port is required to respond with a message containing 7 data objects within tReceiverResponse on each port, the actual value of the timing parameters below affects the number of ports that can be supported. If timing constraints are met, the TCPM may support up to 4 ports with the following assumptions:

- 86 -

- The host operates the I2C at Fscl = 1MHz
- The host requires 5ms or less to enter TCPM task and start servicing PD Messages of the 4 ports

The host requires 1ms or less to respond to a PD Message while servicing upper layer interrupts and maintaining states.

Table 4-4	45. TCP	C Timing	Constraints
-----------	---------	----------	--------------------

Symbol	Parameter	Min	Max	Units
tBuffer2Cc	Time between I2C STOP and first bit of SOP		195	us
tCc2Buffer	Time between last bit of EOP and Rx buffer ready		50	us
tSetReg	Time between status change occurs and status register(s) updated		50	us
tCcStatusDelay	Time between status change occurs and the CC wire stabilizes		200	us
tHVWatchdog	Time from last I2C transaction or ALERT# pin assertion to entering ErrorRecovery	650	5000	ms

4.10 I2C Physical Interface Specifications

The I2C interface shall follow the electrical specifications defined in "I2C-bus specification and user manual Rev.6" (4th April 2014)

http://www.nxp.com/documents/user_manual/UM10204.pdf except for the parameters defined in Table 4-46 and Table 4-47.

The I2C interface shall be compatible with Fast-mode Plus and is defined at a bit rate at 1Mbit/s. The TPCM may choose to run at a slower rate that Fast-mode Plus, but the TCPC must be capable of operating at the Fast-mode Plus rate. The TCPC is allowed limited clock stretching by holding the SCL line low. The TCPC shall not increase the duration of a single-byte read by more than tI2C_SBR. The TCPC shall not increase the duration of a multi-byte read by more than tI2C_SBW. The TCPC shall not increase the duration of a multi-byte write by more than tI2C_MBR. The TCPC shall not increase the duration of a multi-byte write by more than tI2C_MBW. The TCPC enable or disable clock stretching as defined in Section 4.4.5.1.

Each byte on I2C is really 9 bits – 8 data bits followed by ACK/NAK. Write transfers have 2 bits of additional overhead for the start [S]/stop[P] bits. Read transfers also have an additional Repeated Start [Sr] overhead bit (3 total overhead bits), plus they send the i2c address byte twice (once to write the register offset, the 2nd time to send the read command)

The I2C interface shall be implemented with hysteresis and a Schmitt trigger. I2C IOs are open-drain. The I2C interface specifications are defined over a voltage range of 1.7V to 3.3V.

Table 4-46. I2C Static Characteristics

Symbol	Parameter	Conditions	Min	Max	Units
Vdd	I/O Supply Voltage		1.8	3.6	Volts
VIH	HIGH-level input voltage		0.7Vdd	VDD+0.5	Volts
II	Input current each IO Pin	0.1Vdd < Vil or Vih < 0.9Vddmax	-103	+103	uA

Note:

- 1. At 3mA sink current, VDD > 2V
- 2. At 2mA sink current, VDD<= 2V
- 3. If VDD is switched off, IO pins shall not obstruct the SDA and SCL Lines.

Table 4-47. I2C Dynamic Characteristics

Symbol	Parameter	Min	Max	Units
FSCL	SCL Clock Frequency	400	1000	KHz
tsp	Pulse width of spikes that must be suppressed by the input filter		502	ns
tLOW	LOW period of the SCL clock	0.5	-	us
thigh	HIGH period of the SCL clock	0.26	-	us
thd:dat	Data hold time	0	-	us
tsu:DAT	Data set-up time	50	-	ns
tr	Rise time of both SDA and SCL signals	-	120	ns
tF	Fall time of both SDA and SCL signals	20x (VDD/5.5)	120	ns
tBUF	Bus free time between a STOP and START condition	0.5	-	us
Св	Capacitance load for each bus line ³	-	550	pF
tVD:DAT4	Data valid time	-	0.45	us
tVD:ACK ⁵	Data valid acknowledge time	-	0.45	us
ti2c_sbr (1000KHz)	Time for I2C SINGLE BYTE READ	-	50	us
ti2c_sbw (1000KHz)	Time for I2C SINGLE BYTE WRITE	-	40	us
Ti2c_mbr (1000KHz)	Time for I2C Multi BYTE READ	-	50 + 12/byte ⁷	us
Тi2c_мвw (1000KHz)	Time for I2C Multi BYTE WRITE		40 + 12/byte ⁷	us
ti2c_sbr (400KHz) ⁶	Time for I2C SINGLE BYTE READ	-	110	us
ti2c_sbw (400KHz) ⁶	Time for I2C SINGLE BYTE WRITE	-	85	us
Ti2c_mbr (400KHz) ⁶	Time for I2C Multi BYTE READ	-	100 + 35/byte ⁷	us
Ti2c_mbw (400KHz) ⁶	Time for I2C Multi BYTE WRITE		85 + 30/byte ⁷	us

- 1. Necessary to be backwards compatible with Fast-mode.
- 2. Input filters on the SDA and SCL inputs suppress noise spikes of less than 50ns.
- 3. The maximum capacitance allowable may vary from this value depending on the actual operating voltage and frequency of the application.
- 4. Time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).

- 5. Time for acknowledgement signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).
- 6. The TCPC should only run at 400KHz Fscl when the TCPM is servicing only one TCPC.
- 7. The TCPM may disable clock stretching by setting TCPC_CONTROL.I2CClockStretchingControl to 00b. The TCPC is not allowed to Nak I2C transfers no matter which clock stretching setting is chosen by the TCPM, unless the TCPM has put it to sleep using COMMAND.I2CIdle.

A Informative TCPM State Diagrams

This section provides informative TCPM Protocol Layer state diagrams to aid the TCPM designer. The state diagrams are not intended to indicate requirements, but rather to give guidance on the interaction between TCPC and TCPM. The TCPM should follow <u>USB PD</u> if receiving an unexpected GoodCRC.

Figure 4-19. Rx State Diagram Implemented in TCPM

Figure 4-20. Tx State Diagram Implemented in TCPM

Figure 4-21. Hard Reset State Diagram Implemented in TCPM