Finiteness properties of direct products

Peter Mayr & Nik Ruškuc

JKU Linz, Austria University of St Andrews, UK

Louisville, October 5, 2013

Nice Boring Theorem

 $\mathbf{A} \times \mathbf{B}$ satisfies \mathcal{P} iff \mathbf{A} and \mathbf{B} satisfy \mathcal{P} .

Examples for property \mathcal{P} :

being finitely generated, finitely presented, residually finite,...

Example

- 1. **Groups:** $G \times H$ is finitely generated iff G, H are finitely generated (same for finitely presented, residually finite).
- 2. **Semigroups:** $(\mathbb{N}, +)$ is finitely generated but $(\mathbb{N}, +)^2$ is not.

Problem

Which algebras and properties give Nice Boring Theorems?

For semigroups see Robertson, Ruškuc, Wiegold (1998), Gray, Ruškuc, (2009).

1. Finite generation

Lemma (Folklore)

If $\mathbf{A} \times \mathbf{B}$ is finitely generated, then \mathbf{A} , \mathbf{B} are finitely generated.

Proof.

Being finitely generated is inherited by homomorphic images.

Theorem

Let **A**, **B** in an idempotent variety $[t(x,...,x) \approx x \text{ for all terms } t]$. Then **A** × **B** is finitely generated iff **A**, **B** are finitely generated.

Proof.

If X, Y generate \mathbf{A}, \mathbf{B} , then $X \times Y$ generates $\mathbf{A} \times \mathbf{B}$.

Remark

We have a NBT for lattices but not for their expansions:

 $\mathbf{A}:=\langle \mathbb{N}, \max, \min, x+1 \rangle$ is generated by 1, but \mathbf{A}^2 is not finitely generated.

Theorem (Geddes, PhD-thesis)

Let \mathbf{A}, \mathbf{B} in a congruence permutable variety of finite signature $\mathcal{F}.$ Then $\mathbf{A} \times \mathbf{B}$ is finitely generated iff \mathbf{A}, \mathbf{B} are finitely generated.

Remark

Finite signature is necessary.

 $\mathbf{A}:=\langle\mathbb{Z}^{\mathbb{N}},+,-, \text{ all constants}\rangle$ is generated by \emptyset but \mathbf{A}^2 is **not** finitely generated.

Proof, ⇐.

Let X, Y generate \mathbf{A}, \mathbf{B} . Fix $u \in A, v \in B$. Define

$$Z := X \times \{v\} \cup \{u\} \times Y \cup \{(u,v)\} \cup \{(f^{\mathbf{A}}(u,\ldots,u),v) \mid f \in \mathcal{F}\} \cup \{(u,f^{\mathbf{B}}(v,\ldots,v)) \mid f \in \mathcal{F}\}$$

Claim: $\forall a \in A : (a, v) \in \langle Z \rangle$ Have term s over \mathcal{F} and $x_1, \ldots, x_k \in X : s^{\mathbf{A}}(x_1, \ldots, x_k) = a$. Induct on length of s:

- 1. If s is a variable, then $a = x_i$ and $(a, v) \in Z$.
- 2. Assume $s = f(t_1, ..., t_n)$ for $f \in \mathcal{F}$, terms $t_1, ..., t_n$. For $a_i := t_i^{\mathbf{A}}(x_1, ..., x_k)$, we have $(a_i, v) \in \langle Z \rangle$.

$$(f^{\mathbf{A}}(a_1,\ldots,a_n), f^{\mathbf{B}}(v,\ldots,v)) \in \langle Z \rangle$$

$$(u, f^{\mathbf{B}}(v,\ldots,v)) \in Z$$

$$(u, v) \in Z$$

Applying the Mal'cev term in each row yields $(a, v) \in \langle Z \rangle$.

Proof, continued.

For all $a \in A, b \in B$

$$(a, v) \in \langle Z \rangle$$

 $(u, v) \in Z$
 $(u, b) \in \langle Z \rangle$

Applying the Mal'cev term in each row yields $(a, b) \in \langle Z \rangle$. So Z generates $\mathbf{A} \times \mathbf{B}$.

2. Finite presentations

Definition

A in a variety $\mathcal V$ is **finitely presented** if

$$\boldsymbol{\mathsf{A}} \cong \boldsymbol{\mathsf{F}}_{\mathcal{V}}(x_1,\ldots,x_k)/\mathrm{Cg}\left((r_1,s_1),\ldots,(r_n,s_n)\right)$$

for some $k, n \in \mathbb{N}$ and $(r_1, s_1), \ldots, (r_n, s_n) \in \mathbf{F}_{\mathcal{V}}(x_1, \ldots, x_k)^2$. In particular, free algebras over finite sets are finitely presented.

Theorem

Let \mathcal{V} be the variety of loops with signature $(\cdot, \setminus, /, 1)$. Then $\mathbf{F}_{\mathcal{V}}(x) \times \mathbf{F}_{\mathcal{V}}(x)$ is not finitely presented.

Theorem

Let \mathcal{V} be the variety of lattices, $\mathbf{2} := \langle \{0,1\}, \wedge, \vee \rangle$. Then $\mathbf{F}_{\mathcal{V}}(x_1, x_2, x_3) \times \mathbf{2}$ is not finitely presented.

Proof, $\mathbf{A} \in \mathcal{V}$ is not finitely presented.

- 1. Find X finite and an onto homomorphism $h \colon \mathbf{F}_{\mathcal{V}}(X) \to \mathbf{A}$.
- 2. Suppose ker h is generated by some $(r_1, s_1), \ldots, (r_n, s_n)$.
- 3. Find $u, v \in \mathbf{F}_{\mathcal{V}}(X)$ such that h(u) = h(v) in **A** but

$$u \not\equiv v \text{ in } \mathbf{F}_{\mathcal{V}}(X)/\mathrm{Cg}\left((r_1, s_1), \dots, (r_n, s_n)\right).$$

Contradiction.

For the word problem in 3. we use

- for loops: Evans' confluent rewriting systems (1951).
- ▶ for lattices: Dean's solution of the word problem (1964).

3. Residually finite

Definition

A is **residually finite** if for any distinct $a, b \in A$ there exist $\rho \in \operatorname{Con}(\mathbf{A})$ such that A/ρ is finite and $a \not\equiv b \mod \rho$.

Lemma (Folklore)

If $\boldsymbol{A},\boldsymbol{B}$ are residually finite, then $\boldsymbol{A}\times\boldsymbol{B}$ is residually finite.

Proof.

If $\alpha \in \text{Con}(\mathbf{A})$ separates a_1, a_2 , then $\alpha \times 1_B \in \text{Con}(\mathbf{A} \times \mathbf{B})$ separates $(a_1, b_1), (a_2, b_2)$.

The converse holds for example

- if A, B embed into A × B, NBT for algebras with idempotents (groups, monoids, lattices)
- ▶ if Con(A × B) = Con(A) × Con(B).
 NBT for congruence distributive varieties

Theorem

Let **A**, **B** in a congruence modular variety.

Then $\mathbf{A} \times \mathbf{B}$ is residually finite iff \mathbf{A}, \mathbf{B} are residually finite.

Proof, \Rightarrow .

Let $a_1, a_2 \in A$ be distinct, fix $b \in B$.

Have $\rho \in \operatorname{Con}(\mathbf{A} \times \mathbf{B})$ of finite index and $(a_1,b) \not\equiv_{\rho} (a_2,b)$. Show

$$\sigma := \{(u, v) \in A^2 \mid \exists z \in B \colon (u, z) \equiv_{\rho} (v, z)\}$$

- ▶ is a congruence on A,
- has finite index, and
- ▶ separates a_1, a_2

using commutators and a difference term.

Problems

Problem

When is a subdirect product of finitely generated lattices finitely generated?

Problem

Characterize the finitely presented loops, lattices, \dots **A**, **B** such that $\mathbf{A} \times \mathbf{B}$ is finitely presented.

Problem

Is the following decidable:

Given finitely presented semigroups $\mathbf{A} := \langle X \mid R \rangle$, $\mathbf{B} := \langle Y \mid S \rangle$. Is $\mathbf{A} \times \mathbf{B}$ finitely presented?

Problem

Does $\mathbf{A} \times \mathbf{B}$ residually finite imply that \mathbf{A}, \mathbf{B} are residually finite in varieties with difference term?

AAA87 - Workshop on General Algebra

Johannes Kepler University Linz, Austria February 7–9, 2014

Main speakers:

Andrei Bulatov Agata Ciabattoni Clemens Fuchs Marcel Jackson Ross Willard Dmitriy Zhuk

For more information see http://www.jku.at/algebra/