

עבודה עם

TensorFlow

סיכום שלבי בניית מודל
 סוגי מודלים והיפר
 פרמטרים המתאימים להם
 callbacks

Build Model model = tf.keras.Sequential ([tf.keras.Input(shape=(3,)), tf.keras.layers.Dense (100,activation="relu"), tf.keras.layers.Dense(1,activation=None)])

```
# Compile Model  
model.compile(
    loss=tf.keras.losses.mae,
    optimizer= tf.keras.optimizers.Adam(learning_rate=0.1),
    metrics = ["mae"]
)
```

Train Model @ history = model.fit(X_train,y_train, epochs=5)

1. הגדרת המודל:

בשלב זה יוגדרו השכבות השונות, גודלן ופונקציות אקטיבציה

2. קומפילציית המודל:

בשלב זה יוגדרו פונקציית העלות, אופן המדידה והאופטימייזר

3. אימון המודל:

בשלב זה ינתנו למודל נתוני האימון וישמרו מדדיו. כמו כן בשלב זה יגדרו מספר הצעדים (איפוקים))

4. הערכת המודל:

המודל ירוץ epoch אחד לפנים ללא חזרה לאחור וביצוע תיקונים (כלומר ללא למידה) ויחזיר עלות ואמצעי מדידה (metric)

5. יצירת תחזית:

משתמשים במודל הסופי כדי לחזות תוצאות, גם בשלב זה המודל לא לומד.

```
#Model Evaluation 
loss, metric = model.evaluate(X_test,y_test)
```

#5 Predicted Price predicted_price = model.predict(new_X_shaped_date)

מידע על המודל (השכבות, הפרמטרים וכו'

model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 4)	12
dense_1 (Dense)	(None, 4)	20
dense_2 (Dense)	(None, 1)	5

Total params: 113 (456.00 B)

Trainable params: 37 (148.00 B)

Non-trainable params: 0 (0.00 B)

Optimizer params: 76 (308.00 B)

ערך אופייני	פרמטר
מס' נויירונים שווה למספר הפיצ'רים (מספר העמודות של (X	שכבת קלט
ML: 1-3 DL : במה שצריך (בד"ב 3-1 לבעיות פשוטות ; 6-5 לבעיות מורכבות)	שכבות נסתרות
הכי נפוץ: ReLU אם יוצר בעיה אפשר להחליף בשכבות דומות כמו למשל LeakyReLU TanH\Sigmoid– במצבי מחזוריות למשל RNN	פונקציות אקטיבציה בשכבות נסתרות
תלוי במספר הפיצ'רים תלוי במורכבות המידע להתחיל במספר גדול יותר בשכבות הראשונות, ואז להקטין בהדרגה.	מס' נוירונים בשכבה
Adam/SGD (ניתן להשתמש גם ב- RMSprop, Adagrad וכו' בהתאם למקרה).	optimizer
	TECHNION Agrieli Continuing Education and External Studies Division

multi label	multi class	binary	רגרסיה	פרמטר
במספר ה labels (כל label הוא סיווג בינארי עצמאי)	כמספר ה classes	1	1	מספר נוירונים בשכבת הפלט
סיגמואיד (לעיתים קיים באופן לא מפורש בפונק' ההפסד)	softmax	סיגמואיד (לעיתים קיים באופן לא מפורש בפונק' ההפסד)	ללא	פונקציית אקטיבציה של שכבת הפלט
cross entropy	Cross Entropy	Binary Cross Entropy אם היה סיגמואיד באקטיבציה של שכבת הפלט או Binary Cross Entropy with Logistic- במקום סגמואיד בשכבת הפלט	MSE – הכי נפוץ MAE – מתאים לערכים עם רעש גבוה Huber – מאזן את שני הנ"ל	loss function
				TECHNION Agrieli Continuing Education and Extèrnal Studies Division

Callbacks

פונקציות מובנות של TensorFlow העוזרות לשלוט בתהליך האימון. לדוגמא:

- EarlyStopping עוצר אימון אם אין שיפור.
- ReduceLROnPlateau מקטין learning rate אם אין שיפור.
- ModelCheckpoint שומר את המודל הכי טוב.
- LearningRateScheduler משנה learning rate.
- CSVLogger שומר תוצאות אימון בקובץ CSV.
- TerminateOnNaN עוצר אימון אם יש NaN עוצר אימון.
- BackupAndRestore שומר התקדמות ומאפשר שחזור אם האימון נקטע.
- History .(נמצא כברירת מחדל). שומר את ההיסטוריה של האימון

Callbacks

:איך משתמשים

יוצרים משתנה ומאתחילם בו את הפרמטרים הדרושים לפי סוג ה callback הנבחר למשל:

```
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience = 5)

callback = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', patience = 3,factor =0.5)
```

callbacks בערך של הפרמטר model.fit מציבים את המשתנה בתוך

אם רוצים אפשר ליצור משתנה שהוא רשימה של כמה callbacks

