1.2 Gates

- Inverter - Not Gate: output1 if input is 0, vice versa

Logic gate

- AND Gate: output 1 if both gates' inputs are 1

- NOR Gate: output 1 if either or both of the gate's inputs is 1

- pMOS conducts when input is 0
- nMOPS does NOT conduct when input is 0

Inputs	0	1
pMOS	1	Not conduct
nMOS	Not conduct	0

1.3 Boolean Algebra and Equations

- Consider an event as a variable, and conduct logic operators to see what the result is
- Example
 - Input a: ...
 - Input b: ...
 - Output c: ...
 - Indicate whether some equations match the human logic
- Boolean Equation
 - Boolean variable on the **left** = a boolean expression on the **right**
 - Shorthand

-

a AND b	ab	abutment
a OR b	a + b	addition
NOT(a)	a'	complement

Boolean functions

- A relation of inputs' values to an output's values
- Y = ab (y = a AND b)
- Note
 - output y is 1 if both inputs are 0's; otherwise, y is 0
 - Also if both inputs are 1's, y is 1
 - This is not a function
 - A function defines exactly one output value for unique input values
 - Output y is 1 if both inputs are 0's
 - This is not a function
 - A function must include all input possibilities (do not know what y should be for other input values like 0, 1)

1.4 Digital Circuit simulator

- Instantiating: adding an item to a circuit, such item is called an **instance**
- Exporting transfers the current circuit diagram into text
- Importing a circuit diagram using the text exported before

1.5 Timing Diagrams

- Def: graphically shows a circuit's output values for given input values that change over time
- Each signal name is listed on the left
- Time proceeds to the right

1 a ______ y

1.6 Equations to/from circuits

- Design: converting a behavior to a circuit
- W = (a + b)cd'
- Example
 - Airbags deployed
 - Airbags can harm kids, and aren't needed for non-human objects. Thus, cars have sensors to help detect whether an airbag should be enabled by a large enough human being seated.
 - In one car, a seat back sensor detects a heartbeat (h = 1). A seat bottom sensor indicates if over 60 pounds is detected (w = 1). A switch can be used to manually

disable the airbags (d = 1). An output e indicates that the airbag is enabled (e = 1).

- A designer specifies the system as: e = hwd' (heartbeat detected, and enabled if weight over 60, and not manually disabled).
- Analysis: converting a circuit to behavior
- **Combinational circuit (logic)**: a circuit whose output value is determined solely by the present combination of input values
 - Example
 - If one or more people are in the room, turn on the light
 - If the weight in an elevator exceeds 1500 pounds, sound an alarm
 - Turn the faucet on while motion is detected
- **Sequential circuit**: a circuit whose output value may depend on the **past** sequence of input values
 - Example
 - If the sleep mode button is pressed and released, turn the phone ringer off until the sleep mode button is pressed again
 - If the garage door button is pressed, turn motor on until garage door is fully opened

1.7 Basic circuit drawing conventions

Convention	Illustration
Crossing wires only connect at filled circle.	Not a y = ac connected b z = bc Connected c
Inverter often drawn as circle at gate input.	$a \longrightarrow y = ab'$ $b \longrightarrow y = ab'$
One output wire splitting is OK. Multiple input wires connecting is not.	a Not OK b
Input labels are sometimes duplicated to simplify a drawing.	y = ab $y = ab$ $z = ac$ $z = ac$
Gate inputs are not labeled (other components may be).	g _ x d z y

_

Wires connected	*	True
Wires connected		False
Gate output	j	jk'
Wiring is OK	а b У	False
Wiring is OK	a s b t	True
Label y is normally used	ay z	False

1.8 Basic properties of Boolean algebra

Property	Name	Description
a(b+c) = ab + ac	Distributive (for AND)	Same as multiplication in regular algebra
a + a' = 1	Complement	Clearly one of a, a' must be 1 1 + 0 = 1 0 + 1 = 1
a · 1 = a	Identity	Result of a · 1 is always a's value $0 \cdot 1 = 0$ $1 \cdot 1 = 1$

- Example

- Sound alarm if person up and button pressed, or person up and button not pressed

- Inputs
 - u: person up from bed
 - n: nurse call button pressed
- Outputs
 - s: sound alarm
- Simplification
 - s = un + un'
 - s = u(n + n') distributive - s = u(1) complement
 - s = u identity

Property	Name	Description
ab = ba	Commutative (for AND)	Same as multiplication for regular algebra
a + b = b + a	Commutative (for OR)	Same as addition for regular algebra
a + 1 = 1	Null elements	OR only needs one 1 to evaluate to 1 a = 0 0 + 1 = 1 a = 1 1 + 1 = 1
a + a = a aa = a	Idempotent	0 + 0 = 0 $1 + 1 = 10 \cdot 0 = 0 1 \cdot 1 = 1$

(e + 1)(e'f + fe' + d')	Original expression	
	Start with the original expression	
(1)(e'f + fe' + d')	Null elements	
	(a + 1) = (1)	
e'f + fe' + d'	Identity	
	(1) () =	
e'f + e'f + d'	Commutative (for AND)	
	ab = ba (so fe' = e'f)	
e'f + d'	Idempotent	
	a + a = a	

- Summary

Property	Name	Description
a(b + c) = ab + ac a + (bc) = (a + b)(a + c)	Distributive (AND) Distributive (OR)	(AND) Same as multiplication in regular algebra (OR) Not at all like regular algebra
ab = ba a + b = b + a	Commutative	Variable order does not matter. Good practice is to sort variables alphabetically.
(ab)c = a(bc) (a+b)+c = a+(b+c)	Associative	Same as regular algebra
aa' = 0 a + a' = 1	Complement (AND) Complement (OR)	(AND) Clearly one of a, a' must be $0 1 \cdot 0 = 0 \cdot 1 = 0$ (OR) Clearly one of a, a' must be $1 1 + 0 = 0 + 1 = 1$
a · 1 = a a + 0 = a	Identity (AND) Identity (OR)	(AND) Result of a \cdot 1 is always a's value $0 \cdot 1 = 0$ $1 \cdot 1 = 1$ (OR) Result of a $+$ 0 is always a's value $0 + 0 = 0$ $1 + 0 = 1$
a · 0 = 0 a + 1 = 1	Null elements	Result doesn't depend on the value of a.
a · a = a a + a = a	Idempotent	Duplicate values can be removed.
(a')' = a	Involution	(0')' = (1)' = 0 (1')' = (0)' = 1
(ab)' = a' + b' (a + b)' = a'b'	DeMorgan's Law	Discussed in another section

1.9 Sum-of-products form

- Product term: an ANDing of one or more variables

- Sum of products form consists only of an ORing of product terms

- Example: ab'c + ab

- Note

- A single product is still considered a sum of products

- a(b + c) (ANDed) is **not** considered as a sum of product, but ab + ac is

- Converting sum of products to a circuit
 - AND gates followed by OR gates
 - Before creating a circuit, convert to sum of products form

1.10 Binary and counting

- Literally teaching you how to count in binary

1.11 Sum-of-miniterms form

- Canonical form: standard equation form for a function
- Sum of mini terms: canonical form of a Boolean equation where the right side expression is a sum of products with each product a unique miniterm
- Miniterm: a product term having only **one** literal for **every function variable**
- Literal: variable appearance, in true or complemented form
- Transforming to sum of miniterms
 - For any missing variable v, create miniterm by multiplying (v + v')
 - Then remove redundant miniterms
 - Example
 - Y = a(b + bc')
 - Y = ab + abc'
 - Y = ab(c + c') + abc'
 - Y = abc + abc' + abc'
 - Y = abc + abc'
- Determine if two equations represent the same function by checking if they have the same sum of miniterm form

1.12 Truth tables

- Converting a truth table to an equation

- Only care about the rows with output value of 1
- Such conversion is trivial, need no much thought and tradeoffs
- Capturing behavior as a truth table
 - When inputs are too many, it is better to try to capture through equation
 - The functionality of equation is the same as using a truth table, in terms of capturing the behavoir

1.13 Top-down design + Examples

- Design process:
 - 1. Capture: the task of precisely describing a circuit's desired behavior
 - 2. Convert (implement): the task of translating captured behavior into a circuit, possibly involving simplification
 - More specific
 - Capture as truth table
 - Convert truth table as equation
 - Convert equation to circuit
 - Use the circuit
- Triple modular redundancy TODO

1.14 Why digital design

- Embedded system
 - a computing system embedded within another device like an automobile, an electronic book reader or music player, a robot, a medical device, a home security system, and much more
 - embedded systems often use various combinations of microprocessors and custom digital circuits.

1.15 Multiple outputs

- Many combinational circuits have multiple outputs for the same inputs