עבודה 2: אלגוריתמים חמדניים ו- MST

תאריך הגשה: 26 באפריל, 12:00 בצהריים.

יש להגיש את העבודה לתיבת הדואר של הקורס (תאים מספר 96,95 בקומת כניסה של בניין 37) ובנוסף גם במערכת ההגשה.

מתרגלת אחראית: פנינה נסים

<u>הערות:</u>

- א. כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות:
 - 1) תיאור מילולי של האלגוריתם.
 - 2) הוכחת נכונות.
 - .3 ניתוח זמן ריצה
 - ב. פתרון יש לרשום בדף התשובות הנלווה לעבודה.
 - ג. אלגוריתם עם זמן ריצה אקספוננציאלי לא יתקבל.
 - ד. בכל שימוש במשפט שהוכח בכיתה יש לצטט את המשפט באופן מדויק.

שאלה 1

(נתונים: (i = 1, ..., n) לכל משימה (i = 1, ..., n) נתונים: $A = \{1, ..., n\}$ נתונים:

- (completion time) c_i משך זמן הביצוע שלה
 - (deadline) d_i זמן היעד לסיום הביצוע •

<u>פתרון חוקיי</u> סדר ביצוע המשימות, כך שלא מתבצעות שתי משימות במקביל. כלומר, מתחילים לבצע משימה מיד לאחר סיום ביצוע המשימה הקודמת.

 $\{1,\ldots,n\}$ של המשימות $S=(i_1,i_2,\ldots,i_n)$ פורמלית פתרון חוקי הוא פרמוטציה

עבור משימה i נסמן ב $j \leq n-1$ את זמן תחילת ביצוע המשימה, אזי לכל i מתקיים i

$$.s_{i_1} = 0 - 1, s_{i_{j+1}} = s_{i_j} + c_{i_j}$$

היות להיות ונגדיר אותו $l(i_j)$ - ב i_j משימה בביצוע משימה $S=(i_1,i_2,...,i_n)$ ונגדיר אותו להיות ההפרש בין זמן סיום המשימה בפועל לפי הפתרון לבין זמן היעד לסיום המשימה.

$$.l(i_j) = \max\{0, s_{i_j} + c_{i_j} - d_{i_j}\}$$
 כלומר,

נסמן את איחור הפתרון S ב - l(S) ונגדיר אותו להיות האיחור המקסימלי מבין איחורי כל המשימות בפתרון. כלומר, $l(S) = \max_{1 \leq j \leq n} l(i_j)$

פלט: פתרון חוקי עם איחור מינימלי.

<u>:דוגמא</u>

עבור הקלט

$$c_1 = 2$$
, $d_1 = 3$
 $c_2 = 4$, $d_2 = 8$
 $c_3 = 3$, $d_3 = 5$
 $c_4 = 1$, $d_4 = 2$

S = (4,1,3,2) פתרון חוקי עם איחור מינימלי

$$l(1) = \max\{0, 1 + 2 - 3\} = 0$$

$$l(2) = \max\{0.6 + 4 - 8\} = 2$$

$$l(3) = \max\{0, 3 + 3 - 5\} = 1$$

$$l(4) = \max\{0, 0 + 1 - 2\} = 0$$

האיחור של הפתרון הנ"ל הוא 2.

:סעיף א

הראו כי האלגוריתם החמדן הבא <u>נכשל</u> בפתרון הבעיה:

:אתחול

 $M \leftarrow A \bullet$

הפרמוטציה שבונה החמדן $\mathcal{S} \leftarrow \langle \ \rangle$ •

צעד: כל עוד $\emptyset \neq M$ בצע

עם משך זמן ביצוע קצר ביותר i פעילות M -1. הורד מ

S בסידור בסידור כפעילות אחרונה בסידור 2.

S סיום: החזר את

:סעיף ב

:הוכיחו את הטענה הבאה

יהא S סידור (פתרון) בו קיימות שתי פעילויות <u>רצופות</u> i_1,i_2 כך שהפעילות המאוחרת בסידור (i_2) בעלת זמן יעד S לסיום הביצוע מוקדם או שווה לזמן היעד לסיום הביצוע של הפעילות המוקדמת בסידור (i_1) . כלומר, ב- S מתקיים $d_{i2} \leq d_{i1}$

אזי אפשר להחליף בינהן (ולהשאיר את שאר הפעילויות בסידור S כמו שהן) ולקבל פיתרון S^* עם איחור לא גדול יותר.

:סעיף ג

תארו אלגוריתם <u>חמדו</u> לבעיה הנתונה. הוכיחו את נכונותו, וממשו ונתחו את זמן הריצה.

שאלה 2

<u>בעיית מציאת עץ פורש v-עלה</u>

. פונקציית המשקל על קשתות הגרף $w:E \to \mathbb{R}$ פונקציית המשקל על קשתות הגרף קשיר, לא מכוון וממושקל, G=(V,E) פונקציית קשיר, לא מכוון ניבגרף בגרף. נתון כי בגרף עריים עפ"ם של $v\in V$

. עבור עץ פורש G של G וקודקוד $v \in V$ נסמן ב $v \in T$ עץ פורש של $v \in T$ שלה. •

פלט: עץ פורש T_v של G במשקל מינימום (אנו מחפשים עץ פורש בעלות מינימאלית מבין כל העצים בהם σ הקודקוד v הוא עלה).

נתון האלגוריתם הבא הפותר את בעיית מציאת עץ פורש ∨-עלה:

עלה-v Kruskal אלגוריתם

:אתחול

- v שכן של u -ש כך (v,u) בחר קשת e=(v,u) בחר קשת e=(v,u) בחר קשת -
 - $B = \{e\}$
 - $F \leftarrow E$
 - v את כל הקשתות שמכילות את הקודקוד F- הסר מ

|B| < |V| - 1 בצע: כל עוד

- e ,הסר מ- F קשת קלה ביותר
- $B \leftarrow B \cup \{e\}$ אם e לא סוגרת מעגל עם הקשתות e בצע (2

(V,B) סיום: החזר

:סעיף א

i-iאת קבוצת הקשתות שבחר החמדן בסיום השלב ה- B_i

באינדוקציה את הטענה הנשמרת הבאה:

 B_i בסיום השלב ה- בריצת האלגוריתם קיים עץ פורש $T_{oldsymbol{v}}$ של G במשקל מינימום המכיל את קבוצת בסיום בי

. שימו לב כי מקרה הבסיס בו $B_0 = \{e\}$, i=0 בו סריוויאלי ודורש

:סעיף ב

נסחו את משפט הנכונות של האלגוריתם והוכיחו אותו על סמך נכונות הטענה מסעיף א.

שאלה 3

יהא G=(V,E) גרף קשיר, לא מכוון וממושקל. תהי \mathbb{R}^+ פונקציית המשקל על קשתות הגרף. G אינם עצים G שאינם על העצים הפורשים של G שאינם עצים G להיות עץ פורש של G שמשקלו מינימלי מבין כל העצים הפורשים של G שאינם עצים פורשים מינימליים.

:סעיף א

ציירו במשבצת הריקה בדף התשובות 2 – MST של הגרף הנתון.

:סעיף ב

 $.w(T_2)>w(T_1)$ - עץ פורש של G כך ש $T_2=(V,E_2)$ יהא $T_3=(V,E_1)$ עץ פורש מינימלי של פורש מינימלי של פורי $e_1\in E_1\setminus E_2$ עץ פורש של בו יש קשת בוסיף אותה ל T_1 היא תסגור מעגל בו יש קשת פוסיף פורי פוסיף אותה ל $e_1\in E_1\setminus E_2$ יש קשת בוסיף אותה ל $e_1\in E_1\setminus E_2$ יש קשת בוסיף אותה ל $e_2\in E_1\setminus E_2$ יש קשת בוסיף אותה לפוסיף אותה לפוסיף אותה לפוסיף אותה לפוסיף פורש היש קשת בוסיף אותה לפוסיף אותה לפוס

:סעיף ג

יהא $T_1=(V,E_1)$ עץ פורש מינימלי של גרף G עבורו קיים Z עבורו קיים $T_1=(V,E_1)$ יהא $T_1=(V,E_1)$ עץ פורש מינימלי של גרף $T_2=(V,E_2)$, כך ש $T_1=T_2$ נבדלים זה מזה בקשת אחת בדיוק. כלומר הוכיחו כי קיים $T_1=T_2=T_2$. בדיוק. כלומר $T_2=T_1=T_2=T_2$.

:סעיף ד

תארו אלגוריתם יעיל ככל האפשר אשר בהינתן גרף G מחזיר MST של G אם קיים, אחרת מחזיר "לא קיים". השתמשו בסעיפים הקודמים לצורך הוכחת נכונותו. יש לנתח זמן ריצה.

שאלה 4

<u>בעיית עץ פורש עם קודקודים ממושקלים</u>

.רף קשיר, לא מכוון וממושקל, $W:V \to \mathbb{R}^+$ פונקציית המשקל על **קודקודי הגרף**. גרף קשיר, לא מכוון וממושקל,

:הגדרות

- עבור עץ פורש T של G וקודקוד $v \in V$ נסמן ב σ עבור עץ פורש T
 - $\sum_{v \in V} d_T(v) \cdot w(v)$ עבור עץ פורש T של G עבור עץ פורש T

.עם עלות מינימלית G של פורש T פורש G

<u>:דוגמא</u>

עלות העץ הפורש המסומן באדום בציור היא:

$$\sum_{v \in V} d_T(v) \cdot w(v) = 3 \cdot 1 + 1 \cdot 5 + 1 \cdot 3 + 3 \cdot 2 + 1 \cdot 4 + 1 \cdot 3 = 24$$

זהו עץ פורש עם עלות מינימלית מבין כל העצים הפורשים של הגרף הנתון.

תארו אלגוריתם יעיל ככל האפשר לפתרון בעיית עץ פורש עם קודקודים ממושקלים. רמז: השתמשו באחת מהטכניקות שכבר נלמדו בקורס.