

TESTING & STANDARDIZATION PANEL SESSION: SPEC PROPOSAL FOR NANOCRYSTALLINE CMC

José Gató

August 2023

NANOCRYSTALLINE IS THE MATERIAL FOR FUTURE ELECTRIFICATION

Nanocrystalline material vs Ferrite

CONTENT CANNOT BE USED WITHOUT PERMISSION

Material	Nanocrystalline (VITROPERM®)	Ferrite	
Material base	~ 70% Fe	MnZn (NiZn)	
Coercivity H _c [A/m]	<3	560 (2000)	
Losses P _{Fe,ty p.} [W/kg] 100 kHz, 300mT, 100°C	6090 (VP500) 4050 (VP550HF)		
Saturation flux density	> 1.2 (room temp.)	< 0.48 (room temp.)	
B _s [T]	ca. 1.1 (120°C)	ca. 0.3 (120°C)	
Initial permeability µ _i	2000200 000	1010 000 (20000)	
Saturation magnetostriction λ_{s}	10 ⁻⁷ 10 ⁻⁸	10 ⁻⁶ 2×10 ⁻⁵	
Max. operating temp. T _{op}	plastic case 130°C* < 100°C (120°C)		
Curie temperature [°C]	> 600 150200		

WHAT'S NECESSARY IN A CMC?

How much attenuation of noise is needed? Required impedance

- Over what frequency bandwidth is the noise?
 Required frequency range
- How much current must it handle?
 Required current handling

- ❖ I Z I and L measurement in a normal Impedance Analyzer provides the basic information to calculate permeability, power losses, etc.
- ❖ Proposed range to measure is 100Hz thru 100MHz (ferrites can't effectively function as CMC above 2MHz without significant limitations in size, DC tolerance, temperature dependence, etc.).

FREQUENCY DEPENDENCY OF PERMEABILITY

CONTENT CANNOT BE USED WITHOUT PERMISSION

COMPLEX IMPEDANCE IN A CHOKE

Choke: |Z| - equivalent circuit - μ ', μ "

CONTENT CANNOT BE USED WITHOUT PERMISSION

SPEC RECOMMENDATION (PART 1)

VAC recommendation is to measure IZI (complex impedance) and L (inductance) between 100Hz and 100 MHz

CONTENT CANNOT BE USED WITHOUT PERMISSION

- 1. $L(10 \text{ kHz}) \rightarrow \text{comparison with ferrite}$
- 2. L (100 kHz) \rightarrow real focus for the application
- 3. **IZI** (f) \rightarrow insertion loss can be calculated

4. Ls (Leakage inductance) → interesting to understand the DM attenuation (usually better in ferrites)

5. I_{unbal} (DC, 10kHz, 100kHz)

Betriebsdaten/Charakteristische Daten (Typische Werte):

Operational data/characteristic data (typical values):

	f=10kHz	f=100kHz	DC
L [mH]	16,9	3,6	
Z [Ω]	1300	4000	
I unbal. [mA]	22	45	19

 L_s / L_{leak} = 16 μH and f = 100 kHz (Eine Wicklung kurzgeschlossen / one winding shorted)

Bemessungsisolationsspannung / rated insulation voltage:

$$I_N = 2 \times 13.5 A$$

m ≈ 54 g

Umgebungstemperatur / ambient temperature:

 $T_a = -40^{\circ}C...+70^{\circ}C$

Lagertemperatur / storage temperature:

 $T_{st} = -40^{\circ}C...+85^{\circ}C$

Extracted from an existing VAC datasheet

SPEC RECOMMENDATION (PART 2)

 The graph L vs DC current bias must be as rectangular as possible (optimized performance). This graph helps calculate permeability:

CONTENT CANNOT BE USED WITHOUT PERMISSION

With

L=Inductance

N=Number of turns

I_{Fe}=Iron path length

A_{Fe}=Iron cross section

you get:
$$\mu' = \frac{l_{Fe}}{\mu_o \cdot A_{Fe}} \cdot \frac{L}{N^2}$$

Maximum common mode current can be calculated from 70% of value at (Idc = 0)

SPEC RECOMMENDATION (PART 3)

Further recommendations to specify a superior solution...

➤ Include a tighter tolerance +/- 6%:

- For core weight
- ❖ For A_{fe}
- The purpose is to reduce the scattering of the filling factor and tight the inductance range.
- An excellent CMC should be able to reach higher DC tolerances for the same amount of material.
- The narrower the temperature dependency of the magnetic characteristics, the better performance the CMC will show across the temperature range. Interesting hint for the designer to make a good selection.

