

TD 3 - Séquence 1 : Électronique

Correction

Amplificateur linéaire intégré

Montages simples

Exercice 1 : Montage dérivateur

Il n'y a qu'une rétroaction négative, donc l'ALI fonctionne probablement en régime linéaire. La présence du condensateur incite à travailler en complexes. Les deux tensions intéressantes s et e sont aux extrémités des branches, on utilise donc la loi des nœuds en termes de potentiel à l'entrée ⊖ de l'ALI :

$$\frac{\underline{E} - \underline{V}_{-}}{1/\mathrm{j}C\omega} + \frac{\underline{S} - \underline{V}_{-}}{R} = 0.$$

Comme le fonctionnement est linéaire, alors $V_- = V_+ = 0$ donc

$$\mathrm{j} C\omega \, \underline{E} + \frac{\underline{S}}{R} = 0$$
 d'où $\underline{\underline{S} = -\mathrm{j} RC\omega \, \underline{E}}$,

ce qui donne dans le domaine temporel

$$s = -RC\frac{\mathrm{d}e}{\mathrm{d}t}.$$

Exercice 2 : Montage sommateur

De Montage simple à ALI;

De Régime linéaire.

La seule rétroaction est négative, on peut donc supposer que l'ALI fonctionne en régime linéaire.

D'après la loi des nœuds en termes de potentiel, en notant i_1 et i_2 les courants dans les branches d'entrée soumises à v_1 et v_2 ,

$$i_1 + i_2 = 0$$
 soit $\frac{v_1 - v_+}{R} + \frac{v_2 - v_+}{R} = 0$ d'où $v_+ = \frac{v_1 + v_2}{2}$.

Notons v_{-} le potentiel de l'entrée inverseuse, égal à la tension aux bornes de la résistance représentée verticalement. Les deux résistances de la branche du bas sont parcourues par le même courant, donc

$$\frac{v_{-}}{v_{\rm s}} = \frac{R}{R+R} \qquad \text{soit} \qquad v_{\rm s} = 2v_{-} \,.$$

Enfin, comme l'ALI fonctionne de régime linéaire alors $v_+ = v_-$ d'où

$$v_{\rm s} = v_1 + v_2 \,.$$

Le point important de l'exercice est le choix de la méthode pour exprimer les potentiels. Sur la branche du haut, l'entrée intéressante \oplus est à une extrémité de la branche d'où le choix de la loi des nœuds, alors que sur la branche du bas l'entrée intéressante \ominus est au centre de la branche, d'où l'intérêt du

Exercice 3 : Intégrateur différentiel

🛡 1 | 💥 2

▷ Montage simple à ALI;▷ Régime linéaire.

La seule rétroaction est négative, on peut donc supposer le régime linéaire. En notation complexe, la loi des nœuds à l'entrée ⊖ donne

$$\frac{\underline{E_1} - \underline{V_-}}{R} + \frac{\underline{S} - \underline{V_-}}{1/\mathrm{j}C\omega} = 0$$

Un pont diviseur de tension dans la branche du bas donne

$$\frac{\underline{V_+}}{\underline{E_2}} = \frac{1/\mathrm{j}C\omega}{R + 1/\mathrm{j}C\omega} = \frac{1}{1 + \mathrm{j}RC\omega}$$

Or en fonctionnement linéaire on a

$$\underline{V_{-}} = \underline{V_{+}} = \frac{1}{1 + \mathrm{i}RC\omega}\underline{E_{2}}.$$

En fusionnant les deux équations,

$$\frac{\underline{E_1}}{R} - \frac{1}{R(1+\mathrm{j}RC\omega)}\underline{E_2} + \mathrm{j}C\omega\underline{S} - \frac{\mathrm{j}C\omega}{1+\mathrm{j}RC\omega}\underline{E_2} = 0$$

soit

$$\frac{\underline{E_1}}{\mathrm{j}RC\omega} - \frac{1}{\mathrm{j}RC\omega(1+\mathrm{j}RC\omega)}\underline{E_2} + \underline{S} - \frac{1}{1+\mathrm{j}RC\omega}\underline{E_2} = 0$$

et ainsi

$$\underline{S} = -\frac{\underline{E_1}}{\mathrm{j}RC\omega} + \frac{\underline{E_2}}{\mathrm{j}RC\omega} \left(\frac{1}{1+\mathrm{j}RC\omega} + \frac{\mathrm{j}RC\omega}{1+\mathrm{j}RC\omega} \right)$$

ce qui donne au final

$$S = \frac{1}{jRC\omega} \left(\underline{E_2} - \underline{E_1} \right) .$$

On utilise la correspondance habituelle pour passer dans le domaine temporel,

$$s(t) = s(0) + \frac{1}{RC} \int_0^t (e_2 - e_1) dt$$
.

Exercice 4 : ALI avec défauts

oral banque PT |

▷ Modèle du premier ordre;

▷ Modèle de l'ALI idéal.

1 La seule rétroaction étant négative, l'ALI fonctionne probablement en régime linéaire. On a donc

$$\underline{v_{\rm s}} = \underline{A_{\rm d}}\,\underline{\varepsilon} = \underline{A_{\rm d}}\left(\underline{v_{\rm e}} - \underline{v_{\rm s}}\right)$$

ce qui donne

$$(1 + \underline{A_{\rm d}})\underline{v_{\rm s}} = \underline{A_{\rm d}}\,\underline{v_{\rm e}}$$

et ainsi

$$\underline{v_{\rm s}} = \frac{\underline{A_{\rm d}}}{1 + \underline{A_{\rm d}}} \underline{v_{\rm e}} \qquad {\rm soit} \qquad \underline{v_{\rm s}} = \frac{A_0}{1 + A_0 + {\rm j}\omega\tau} \underline{v_{\rm e}} \,.$$

En supposant $A_0 \gg 1$, on peut réécrire le résultat

$$\underline{v_{\rm s}} = \frac{1}{1 + \mathrm{j}\omega\tau/A_0} \underline{v_{\rm e}}$$

Le montage est un suiveur : dans la limite basse fréquence, la tension de sortie est identique à la tension d'entrée, indépendamment des deux résistances $R_{\rm u}$ et $R_{\rm g}$.

2 Le spectre du signal v_e ne contient qu'un seul pic, d'amplitude E, à la pulsation ω .

▷ Expérience 1 : l'amplitude d'entrée est telle que l'ALI sature, ce qui est source d'enrichissement spectral.

- \rightarrow spectre B.
- ⊳ Expérience 2 : la fréquence d'entrée est très élevée, le montage ayant un comportement passe-bas on s'attend à une atténuation.
 - \rightarrow spectre C.
- ▷ Expérience 3 : la fréquence est raisonnable et l'amplitude du signal d'entrée pas trop élevée, l'ALI fonctionne constamment en régime linéaire dans son domaine basses fréquences.
 - \rightarrow spectre A.

Exercice 5: Filtre actif amplificateur

- ▶ Montage simple à ALI;
- ▷ Régime linéaire et de saturation;
- ▷ Filtrage.

Le montage ne compte qu'une seule rétroaction négative, on fait donc l'hypothèse que l'ALI fonctionne en régime linéaire.

- Dans la limite des basses fréquences : Le condensateur équivaut à un interrupteur ouvert, et aucun courant ne peut traverser les résistances. Comme s est la tension aux bornes de R' on en déduit s=0 c'est-à-dire que les basses fréquences sont **coupées**.
- Dans la limite des hautes fréquences : Le condensateur équivaut à un fil, le montage s'apparente alors à un amplificateur inverseur. On en déduit que les hautes fréquences sont **transmises**, et potentiellement amplifiées.
- Conclusion: le filtre est un passe-haut.
- $\boxed{\mathbf{2}}$ L'association R, C a pour impédance équivalente

$$\underline{Z} = R + \frac{1}{iC\omega}$$
.

D'après la loi des nœuds en potentiel appliquée à l'entrée \ominus de l'ALI avec $v_-=v_+=0$,

$$\frac{e-0}{Z} + \frac{s-0}{R'} = 0$$

On en déduit

$$\underline{H} = \frac{s}{e} = -\frac{R'}{\underline{Z}} = -\frac{R'}{R + \frac{1}{\mathrm{j}C\omega}} = \frac{-R'/R}{1 + \frac{1}{\mathrm{j}RC\omega}}$$

On peut ainsi identifier à la forme canonique donnée,

$$\underline{\underline{H}} = \frac{\underline{H_0}}{1 - \mathrm{j}\frac{\omega_{\mathrm{c}}}{\omega}} \quad \text{avec} \quad \begin{cases} \underline{H_0} = -R'/R \\ \omega_{\mathrm{c}} = 1/RC \end{cases}$$

3 La capacité doit valoir

$$C = \frac{1}{R\omega_{\rm c}} = 1 \cdot 10^{-7} \,{\rm F} \,.$$

En haute fréquence, $\underline{H} \sim \underline{H_0}$. Ainsi, si le gain est de 20 dB alors

$$\left| \underline{H_0} \right| = \frac{R'}{R} = 10^{20/20} = 10$$
 d'où $R' = 10 \,\mathrm{k}\Omega$.

4 Dans la limite des hautes fréquences, d'après la question précédente,

$$G_{\mathrm{dB}} = 20 \log \left| \underline{H_0} \right| = 40 \, \mathrm{dB}$$
.

Dans l'limite des basses fréquences,

$$\underline{H} \sim \frac{\underline{H_0}}{-\mathrm{j}\frac{\omega_\mathrm{c}}{\omega}} = \frac{\mathrm{j}\omega\underline{H_0}}{\omega_\mathrm{c}} \qquad \mathrm{soit} \qquad G_\mathrm{dB} = 20\log|\underline{H}| = 20\log\omega + 20\log\frac{\left|\underline{H_0}\right|}{\omega_\mathrm{c}} \,.$$

Figure 1 – Diagramme de Bode.

Comme toujours avec les filtres du premier ordre, les deux asymptotes se coupent en $\omega = \omega_c$. On en déduit le diagramme est représenté figure 1.

5 Le plus simple est de raisonner sur le diagramme de Bode, seul le dernier cas n'est pas évident.

▷ $E_0 = 1 \text{ V}$ et $\omega = 1 \cdot 10^2 \text{ rad} \cdot \text{s}^{-1}$: on calcule (ou on constate sur le diagramme) que $G_{\text{dB}} = -20 \text{ dB}$ donc $|\underline{H}| = 10^{-20/20} = 1/10$, le signal de sortie est donc sinusoïdal d'amplitude $E_0/10 = 0.1 \text{ V}$ et le spectre identique à celui de l'entrée, à l'amplitude près.

 $\triangleright E_0 = 3 \text{ V et } \omega = 1 \cdot 10^2 \text{ rad} \cdot \text{s}^{-1}$: de même, le signal de sortie est sinusoïdal d'amplitude 0,3 V.

 $\triangleright E_0 = 1 \text{ V et } \omega = 1 \cdot 10^5 \text{ rad} \cdot \text{s}^{-1}$: à cette pulsation, $G_{\text{dB}} = 20 \text{ dB donc } |\underline{H}| = 10^{20/20} = 10$, le signal de sortie est donc sinusoïdal d'amplitude $10E_0 = 10 \text{ V}$.

 $\triangleright E_0 = 3\,\mathrm{V}$ et $\omega = 1\cdot 10^5\,\mathrm{rad\cdot s^{-1}}$: en reprenant le raisonnement précédent, le signal de sortie devrait avoir une amplitude de 30 V ... ce qui est impossible, car la tension de sortie doit rester inférieure à la tension de saturation de l'ALI. Le signal de sortie est donc un sinus écrété, qui conserve la valeur de $\pm 15\,\mathrm{V}$ dès que l'ALI est en saturation. Cela se traduit par un enrichissement spectral : outre le fondamental à $1\cdot 10^5\,\mathrm{rad\cdot s^{-1}}$, des harmoniques apparaissent dans le spectre à $2\cdot 10^5\,\mathrm{,}3\cdot 10^5\,\mathrm{,}4\cdot 10^5\,\mathrm{rad\cdot s^{-1}}$ etc. mais prévoir leur amplitude n'est pas simple.

Exercice 6 : Régulation de température

inspiré écrit Centrale TSI 2018 | Ψ 2 | \aleph 2

▷ Comparateur à hystérésis.

1 Il s'agit d'un pont diviseur de tension,

$$v_1 = \frac{R_0}{R_0 + R(T)} V_0.$$

 $\fbox{2}$ L'ALI ne possède qu'une unique rétroaction positive, il fonctionne donc nécessairement en régime de saturation. La loi des nœuds en potentiel appliqué à la borne \oplus de l'ALI s'écrit

$$\frac{v_{\rm s} - v_{+}}{R_{2}} + \frac{E - v_{+}}{R_{1}} = 0$$
 soit $R_{1} v_{\rm s} + R_{2} E - (R_{1} + R_{2})v_{+} = 0$

et ainsi

$$v_{+} = \frac{R_{1}}{R_{1} + R_{2}}v_{s} + \frac{R_{2}}{R_{1} + R_{2}}E = \frac{R_{1}}{R_{1} + R_{2}}v_{s} + \left(1 - \frac{R_{1}}{R_{1} + R_{2}}\right)E$$

ce qui s'écrit bien

$$v_+ = kv_s + (1-k)E.$$

 $\fbox{\bf 3}$ Supposons l'ALI en saturation haute : on a alors $v_{
m s}=V_{
m sat}.$ Il y reste tant que

$$v_{-} < v_{+}$$
 soit $v_{e} < kV_{\text{sat}} + (1 - k)E$.

Supposons maintenant l'ALI en saturation basse, soit $v_{\rm s}=-V_{\rm sat}.$ Il y reste tant que

$$v_{-} > v_{+}$$
 soit $v_{e} > -kV_{\text{sat}} + (1-k)E$.

En plaçant les tensions de basculement de manière symétrique par rapport à (1-k)E, on en déduit la caractéristique du montage de la figure 2. Il s'agit d'un comparateur à hystérésis inverseur décalé.

Figure 2 - Caractéristique entrée-sortie du montage comparateur à hystérésis décalé.

 $\boxed{\mathbf{5}}$ On souhaite que le comparateur bascule en saturation haute lorsque $T = T_{\rm c} - \Delta T$. Traduit en termes de tension, cela donne

$$v_1(T = T_c - \Delta T) = -kV_{\text{sat}} + (1 - k)E(T_c)$$

soit

$$\alpha + \beta (T_c - \Delta T) = -kV_{\text{sat}} + (1 - k)(a + bT_c)$$

$$\beta T_c + \alpha - \beta \Delta T = (1 - k)bT_c + (1 - k)a - kV_{\text{sat}}$$
 (1)

À l'inverse, la condition d'arrêt du dispositif s'écrit

$$\alpha + \beta(T_{c} + \Delta T) = +kV_{sat} + (1 - k)(a + bT_{c})$$

$$\beta T_{c} + \alpha + \beta \Delta T = (1 - k)bT_{c} + (1 - k)a + kV_{sat}$$
(2)

En prenant la différence (2)–(1), on obtient

$$2\beta \, \Delta T = 2kV_{\rm sat}$$
 soit $k = \frac{\beta \, \Delta T}{V_{\rm sat}}$.

6 On peut alors simplifier les conditions de basculement sous la même forme,

$$\beta T_{c} + \alpha = (1 - k)b T_{c} + (1 - k)a$$
 soit $[(1 - k)b - \beta] T_{c} + [(1 - k)a - \alpha] = 0$,

et comme cette relation doit être vérifiée quelle que soit la température de consigne T_c , on en déduit que les deux coefficients sont nuls, soit

$$a = \frac{\alpha}{1-k}$$
 et $b = \frac{\beta}{1-k}$.

Impédance d'entrée, simulation de dipôles

Exercice 7 : Résistance négative

- ▷ Montage simple à ALI;
 ▷ Impédance d'entrée;
 ▷ Régime linéaire et de saturation.

1 L'ALI compte une rétroaction sur chaque borne, il est donc **impossible** d'anticiper son régime de fonctionnement. $\overline{\mathrm{D'après}}$ la loi des nœuds appliquée à l'entrée \ominus , on a

$$i + \frac{v_{\rm s} - v^{-}}{R} = 0$$
 soit $v^{-} = v_{\rm s} + Ri$.

Par un pont diviseur sur la branche contenant les deux résistances R_1 et R_2 , on trouve

$$v^{+} = \frac{R_1}{R_1 + R_2} v_{\rm s} \,.$$

2 En régime linéaire, $v^+ = v^- = u$, donc

$$u = \frac{R_1}{R_1 + R_2} v_{\rm s}$$
 soit $v_{\rm s} = \frac{R_1 + R_2}{R_1} u$.

En réinjectant dans l'expression de v^- , il vient

$$u\left(1-\frac{R_1+R_2}{R_1}\right)=Ri \qquad \text{soit} \qquad -\frac{R_2}{R_1}u=Ri \qquad \text{d'où} \qquad \boxed{u=-R\frac{R_1}{R_2}i\,.}$$

L'intensité i et la tension u sont orientées en convention récepteur. La « loi de comportement » du montage est donc formellement identique à la loi d'Ohm, mais pour une résistance négative :

$$u = R_{\rm N} i$$
 avec $R_{\rm N} = -R \frac{R_1}{R_2}$.

3 Si l'ALI est en régime linéaire, il y reste sans atteindre la saturation haute tant que

$$v_{\rm s} < V_{\rm sat} \qquad {\rm soit} \qquad \frac{R_1 + R_2}{R_1} u < V_{\rm sat} \qquad {\rm et} \qquad u < \frac{R_1}{R_1 + R_2} V_{\rm sat} \,. \label{eq:vs}$$

En reprenant la relation entre u et i établie en régime linéaire, on en déduit que l'ALI reste en régime linéaire tant que

$$-R\frac{\cancel{R_1}}{R_2}i < \frac{\cancel{R_1}}{R_1 + R_2}V_{\rm sat} \qquad {\rm soit} \qquad \boxed{i > -\frac{R_2}{R_1 + R_2}\frac{V_{\rm sat}}{R} = -I_{\rm basc}} \,.$$

Pour savoir si le montage a un comportement d'hystérésis, il faut calculer l'intensité de basculement du régime de saturation haute vers le régime linéaire. Si l'ALI est en saturation haute, il y reste tant que

$$v^+ > v^-$$
 soit $\frac{R_1}{R_1 + R_2} V_{\text{sat}} > V_{\text{sat}} + Ri$ soit $i < -\frac{R_2}{R_1 + R_2} \frac{V_{\text{sat}}}{R} = -I_{\text{basc}}$.

Le basculement entre régime linéaire et saturation haute a lieu pour le même courant $-I_{\text{basc}}$ quel que soit le sens de bascule, il n'y a donc pas d'hystérésis.

> La relation $u = R_N i$ a été établie en supposant le fonctionnement de l'ALI linéaire, elle ne peut donc PAS être utilisée en régime de saturation. En revanche, les expressions de v^+ et v^- établies question 1 l'ont été sans aucune hypothèse sur le régime de fonctionnement de l'ALI, elles peuvent donc être utilisées aussi bien en régime linéaire qu'en régime de saturation ... à condition bien sûr de remplacer v_s par $\pm V_{\rm sat}$ dans le cas d'un fonctionnement saturé.

4 De même, l'ALI reste en régime linéaire sans atteindre la saturation basse tant que

$$v_{\rm s} > -V_{\rm sat}$$
 soit $\frac{R_1 + R_2}{R_1} u > -V_{\rm sat}$ et $u > -\frac{R_1}{R_1 + R_2} V_{\rm sat}$.

En reprenant la relation de résistance négative, on en déduit que l'ALI reste en régime linéaire tant que

$$-R\frac{R_1}{R_2}i > -\frac{R_1}{R_1 + R_2}V_{\text{sat}}$$
 soit $i < \frac{R_2}{R_1 + R_2}\frac{V_{\text{sat}}}{R} = I_{\text{basc}}$.

Réciproquement, si l'ALI est en saturation basse, il reste dans ce régime de saturation tant que

$$v^{+} < v^{-}$$
 donc $-\frac{R_1}{R_1 + R_2} V_{\text{sat}} < -V_{\text{sat}} + Ri$ soit $i > \frac{R_2}{R_1 + R_2} \frac{V_{\text{sat}}}{R} = I_{\text{basc}}$.

De nouveau, on trouve que le montage ne présente pas d'hystérésis.

5 Voir figure 3. La tension d'entrée de l'ALI au moment du basculement vaut

$$U_{\rm basc} = \frac{R_1}{R_1 + R_2} V_{\rm sat} .$$

D'après la question 1 avec $v^- = u$ et $v_s = V_{\text{sat}}$, en saturation haute, la caractéristique est une droite d'équation

$$u = Ri + V_{\text{sat}}$$
.

De même, dans le domaine correspondant à la saturation basse,

$$u = Ri - V_{\text{sat}}$$
.

On trouve dans les deux cas des droites de même pente R et d'ordonnée à l'origine $\pm V_{\rm sat}$. Enfin, dans le domaine de fonctionnement linéaire, la caractéristique est une droite d'équation

$$u = -R\frac{R_1}{R_2}i$$

dont la pente est indépendante des deux autres.

Figure 3 – Caractéristique du montage à résistance négative.

Exercice 8 : Capacité réglable

- ▶ Montage à plusieurs blocs;
- ▷ Impédance d'entrée;
- ▷ Régime linéaire.

On veut montrer que le montage équivaut à un condensateur : ce n'est donc pas une fonction de transfert qui nous intéresse ici, mais l'impédance d'entrée du montage. Concrètement, on cherche donc à établir une relation entre i et u qui soit celle d'un condensateur, soit

$$u = \frac{1}{\mathrm{i}C\omega}i.$$

On note v_1 et v_2 les tensions de sortie des deux ALI, qui fonctionnent tous les deux en régime linéaire. Le premier ALI est un suiveur donc $v_1 = u$. La LNP à l'entrée \ominus de l'ALI @, combinée avec l'hypothèse de fonctionnement linéaire, donne

$$\frac{v_1-0}{\alpha R}+\frac{v_2-0}{(1-\alpha R)}=0 \qquad \text{d'où} \qquad v_2=\frac{\alpha-1}{\alpha}u\,.$$

Enfin, comme l'ALI 1 est idéal, alors les courants de polarisation sont nuls. Le courant i est donc également celui qui traverse le condensateur. En convention récepteur, on a donc

$$i = jC_0\omega(u - v_2)$$

En remplaçant l'expression de v_2 ,

$$i=\mathrm{j}rac{C_0}{lpha}\omega u$$
 d'où $C=rac{C_0}{lpha}$.

L'intérêt du montage est qu'il est très simple de faire varier α (il suffit de faire tourner le curseur d'un potentiomètre) pour adapter la capacité à la volonté, ce qui est infiniment (et même plus!) plus simple que de changer le condensateur du montage.

D'autres montages plus élaborés

Exercice 9 : Amplificateur différentiel

PT A 2019 | ♥ 2 | № 2

- ▷ Montage à plusieurs blocs;
- Régime linéaire.

1.a Cours Le gain statique d'un ALI est $\mu_0 \sim 2 \cdot 10^5$, son impédance d'entrée vaut $Z_e \sim 10^{12} \Omega$ et son impédance de sortie Z_s est nulle par construction.

1.c Difficile Comme les courants de polarisation d'un ALI idéal sont nuls, les potentiels des entrées \oplus des ALI \oplus et \oplus sont directement égaux aux tensions V_{e1} et V_{e2} car la tension aux bornes des résistances est nulle. Comme les deux ALI fonctionnent en régime linéaire, on a donc

$$v_{1-} = v_{1+} = V_{e1}$$
 et $v_{2-} = v_{2+} = V_{e2}$.

À quoi ces résistances peuvent-elles bien servir? Je ne sais pas! D'ailleurs, elles sont absentes du montage amplificateur d'instrumentation « classique ».

Lorsqu'un montage comporte plusieurs ALI, il faut absolument expliciter les notations sur les potentiels des entrées et sorties : notez v_{1-} et v_{1+} , mais n'utilisez pas v_{+} et v_{-} pour tous les ALI.

La loi des nœuds en potentiel appliquée à l'entrée \ominus de l'ALI \odot donne alors

$$\frac{V_1 - V_{e1}}{R} + \frac{V_{e2} - V_{e1}}{R'} = 0 \qquad \text{d'où} \qquad \frac{V_1}{R} = \left(\frac{1}{R} + \frac{1}{R'}\right) V_{e1} - \frac{V_{e2}}{R'}$$

et ainsi

$$V_1 = \left(1 + \frac{R}{R'}\right) V_{e1} - \frac{R}{R'} V_{e2} .$$

De même, la loi des nœuds en potentiel appliquée à l'entrée \ominus de l'ALI @ donne

$$\frac{V_2 - V_{\rm e2}}{R} + \frac{V_{\rm e1} - V_{\rm e2}}{R'} = 0 \qquad {\rm d'où} \qquad \frac{V_2}{R} = \left(\frac{1}{R} + \frac{1}{R'}\right)V_{\rm e2} - \frac{V_{\rm e1}}{R'}$$

soit

$$V_2 = \left(1 + \frac{R}{R'}\right) V_{e2} - \frac{R}{R'} V_{e1} .$$

Prendre la différence entre ces deux relations donne alors

$$V_2 - V_1 = \left(1 + \frac{R}{R'}\right) V_{e2} - \frac{R}{R'} V_{e1} - \left(1 + \frac{R}{R'}\right) V_{e1} + \frac{R}{R'} V_{e2}$$
$$V_2 - V_1 = \left(1 + 2\frac{R}{R'}\right) V_{e2} - \left(1 + 2\frac{R}{R'}\right) V_{e1}$$

et finalement

$$V_2 - V_1 = \left(1 + 2\frac{R}{R'}\right) \left(V_{e2} - V_{e1}\right).$$

Une autre méthode, plus astucieuse, consiste à remarquer que les trois résistances R, R' et R situées entre les ALI 1 et 2 sont parcourues par le même courant, et forment donc un pont diviseur de tension. L'association est soumise à la tension $V_1 - V_2$ (potentiels aux deux extrémités), et la résistance R' seule à la tension $V_{e1} - V_{e2}$. Par conséquent,

$$\frac{V_{e1} - V_{e2}}{V_1 - V_2} = \frac{R'}{R' + 2R} \,,$$

ce qui conduit immédiatement au résultat.

 $\fbox{\textbf{1.d}}$ La loi des nœuds en potentiel appliquée à l'entrée \oplus de l'ALI @ donne

$$\frac{V_1 - v_{3+}}{\cancel{R}} + \frac{0 - v_{3+}}{\cancel{R}} = 0$$
 soit $v_{3+} = \frac{V_1}{2}$.

De même, la loi des nœuds en potentiel appliquée à l'entrée ⊖ de l'ALI ③ donne

$$\frac{V_2 - v_{3-}}{\cancel{R}} + \frac{V_{\rm s} - v_{3-}}{\cancel{R}} = 0 \qquad {\rm soit} \qquad v_{3-} = \frac{V_{\rm s} + V_2}{2} \,.$$

Comme l'ALI @ fonctionne en régime linéaire, alors $v_{3+} = v_{3-}$, ce qui donne

$$\frac{V_1}{2} = \frac{V_s + V_2}{2}$$
 soit $V_s = V_1 - V_2$

d'où on conclut

$$V_{\rm s} = \left(1 + 2\frac{R}{R'}\right) (V_{\rm e1} - V_{\rm e2}) \,.$$

1.e D'après ce qui précède, on a directement

$$A_{\rm d} = 1 + 2\frac{R}{R'} \simeq 100$$
.

Cours En sortie de l'amplificateur, le signal a une amplitude égale à l'amplitude d'entrée multipliée par A_d , de l'ordre d'une dizaine de millivolts.

Exercice 10 : Filtre de Sallen-Key

oral banque PT | 👽 3 | 💥 3

Dans la limite des hautes fréquences, le condensateur est équivalent à un fil donc $V_{\oplus}=0$. L'ALI étant idéal, $\overline{V_{\ominus}} = V_{\oplus}$ et comme $\underline{S} = V_{\ominus}$ (fil) alors

$$S = 0$$
 (limite THF).

Dans la limite des basses fréquences, le condensateur est équivalent à un interrupteur ouvert. Comme l'ALI est idéal, aucun courant n'entre dans la borne \oplus donc aucun courant ne peut traverser les deux résistances. On a donc $V_{\oplus} = \underline{E}$, d'où on déduit par le même raisonnement que

$$S = E$$
 (limite TBF).

Il s'agit donc d'un filtre passe-bas.

2 Notons A le nœud commun aux deux résistances et au condensateur. La loi des nœuds en termes de potentiel appliquée à l'entrée

de l'ALI donne

$$\frac{0 - V_{\oplus}}{1/\mathrm{i}C_{2}\omega} + \frac{V_{A} - V_{\oplus}}{R} = 0.$$

Comme $V_{\oplus} = V_{\ominus} = \underline{S}$,

$$-\mathrm{j}C_2\omega\,\underline{S} + \frac{V_A - \underline{S}}{R} = 0$$

ou encore

$$V_A = (1 + jRC\omega)\underline{S}. \tag{3}$$

La loi des nœuds en termes de potentiel appliquée maintenant au nœud A donne

$$\frac{\underline{E} - V_A}{R} + \frac{V_{\oplus} - V_A}{R} + \frac{\underline{S} - V_A}{1/\mathrm{j}C\omega} = 0.$$

Comme $V_{\oplus} = V_{\ominus} = \underline{S}$,

$$[\underline{E} - V_A] + [\underline{S} - V_A] + jRC\omega [\underline{S} - V_A] = 0.$$
(4)

En insérant l'équation (3) dans l'équation (4), on obtient

$$[\underline{E} - (1 + jRC\omega)\underline{S}] + [-jRC\omega\underline{S}] + jRC\omega[-jRC\omega\underline{S}] = 0,$$

puis

$$\underline{E} - (1 + 2jRC\omega - R^2C^2\omega^2)\underline{S} = 0$$

ce qui permet finalement d'aboutir à

$$\underline{H} = \frac{\underline{S}}{\underline{E}} = \frac{1}{1 + 2jRC\omega - R^2C^2\omega^2}.$$

La pulsation caractéristique du filtre est $\omega_0 = 1/RC$.

3 Limite très basse fréquence $\omega \ll \omega_0$:

$$\underline{H} \sim \frac{1}{1}$$
 donc $G_{\mathrm{dB}} = 20 \log |\underline{H}| \sim 0$.

Limite très haute fréquence $\omega \gg \omega_0$:

$$\underline{H} \sim \frac{1}{-R^2 C^2 \omega^2}$$
 donc $G_{\rm dB} \sim -20 \log \left(R^2 C^2 \omega^2 \right) = -40 \log \omega - 40 \log RC$,

ce qui donne une asymptote de pente -40 dB/décade. Enfin, en $\omega=\omega_0$ on a

$$\underline{H} = \frac{1}{2i}$$
 soit $G_{dB} = -20 \log 2 = -6 dB$.

On en déduit le diagramme de Bode représenté figure 4.

- 4 Le signal créneau se caractérise par un spectre assez étendu du côté des hautes fréquences.
- \triangleright Si la fréquence f du créneau est nettement inférieure à f_0 , seule la partie très haute fréquence du spectre est filtrée : le signal de sortie a la même allure que le signal d'entrée hormis au niveau des sauts du créneau, où l'influence des hautes fréquences est prépondérante.
- \triangleright Si f est du même ordre que f_0 , alors l'allure du signal est nettement modifiée par le filtre mais l'atténuation n'est que moyennement marquée.
- \triangleright Si $f \gg f_0$, le signal est modifié et très atténué : il est presque complètement coupé.

Figure 4 – Diagramme de Bode du filtre de Sallen-Key.