HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS ROOM STANDINGS CUSTOM INVOCATION

A. Split the Multiset

time limit per test: 1 second memory limit per test: 512 megabytes

A *multiset* is a set of numbers in which there can be equal elements, and the order of the numbers does not matter. For example, $\{2, 2, 4\}$ is a multiset.

You have a multiset S. Initially, the multiset contains only one positive integer n. That is, $S = \{n\}$. Additionally, there is a given positive integer k.

In one operation, you can select any positive integer u in S and remove one copy of u from S. Then, insert no more than k positive integers into S so that the sum of all inserted integers is equal to u.

Find the minimum number of operations to make S contain n ones.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 1000$). Description of the test cases follows.

The only line of each testcase contains two integers n, k ($1 \le n \le 1000, 2 \le k \le 1000$).

Output

For each testcase, print one integer, which is the required answer.

Example

```
input

4
1 5
5 2
6 3
16 4

output

Copy

0
4
3 3
5
```

Note

For the first test case, initially $S=\{1\}$, already satisfying the requirement. Therefore, we need zero operations.

For the second test case, initially $S=\{5\}$. We can apply the following operations:

- Select u=5 , remove u from S , and insert 2,3 into S . Now, $S=\{2,3\}$.
- Select u=2, remove u from S, and insert 1,1 into S. Now, $S=\{1,1,3\}$.
- Select u=3, remove u from S, and insert 1,2 into S. Now, $S=\{1,1,1,2\}$.
- Select u=2 , remove u from S , and insert 1,1 into S . Now, $S=\{1,1,1,1,1\}$.

Using 4 operations in total, we achieve the goal.

For the third test case, initially $S=\{6\}$. We can apply the following operations:

- Select u=6, remove u from S, and insert 1,2,3 into S. Now, $S=\{1,2,3\}$.
- Select u=2, remove u from S, and insert 1,1 into S. Now, $S=\{1,1,1,3\}$.
- Select u=3, remove u from S, and insert 1,1,1 into S. Now, $S=\{1,1,1,1,1,1\}$.

Using 3 operations in total, we achieve the goal.

For the fourth test case, initially $S=\{16\}$. We can apply the following operations:

- Select u=16 , remove u from S , and insert 4,4,4,4 into S . Now, $S=\{4,4,4,4\}$.
- Repeat for 4 times: select u=4, remove u from S, and insert 1,1,1,1 into S.

Using 5 operations in total, we achieve the goal.

Codeforces Round 958 (Div. 2)

Finished

P

→ Practice?

Want to solve the contest problems after the official contest ends? Just register for practice and you will be able to submit solutions.

Register for practice

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

 \times

- Announcement (en)
- Video Tutorial (en)
- Tutorial #2 (en)

Codeforces (c) Copyright 2010-2024 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: Aug/04/2024 05:55:22^{UTC} (k2).

Desktop version, switch to mobile version.

Privacy Policy

Supported by

