CVPR 2018 Review

Object Classification/Detection and Issues on Unlabeled or noisy data

Naver Clova

ML / Dongyoon Han

ML / Sangdoo Yun

Object classification/detection (+segmentation)

Research trend

- Recent classification network architectures (as backbones):
 - ResNet CVPR 2016
 - ResNeXT, DenseNet, PyramidNet, PolyNet, Xception CVPR 2017

- Recent classical detection papers (for performance improvement):
 - Faster-RCNN 2015, SSD –ECCV 2016, R-FCN NIPS 2016,
 - Mask RCNN ICCV 2017, Deformable Convolution Networks, Feature Pyramid Networks – CVPR 2017,
 - Focal Loss for Dense Object Detection ICCV 2017.

Research trend

- Few novel classification network architectures (but very incremental)
 - e.g.) Squeeze-and-Excitation Networks CVPR 2018,
 - E.g.) Deep Layer Aggregation CVPR 2018.
- Classical detection papers are rare:
 - e.g.) Cascade R-CNN CVPR 2018.
- Many sub-tasks under the classical object detection task:
 - Weakly-supervised object detection,
 - Object detection for multi-task learning,
 - Others.

Interesting papers

Weakly-supervised object detection

Weakly-supervised object detection

- Weakly ~~ (total 39 works published at CVPR2018)
- This tasks does not use bounding box annotations for training.
- Interesting paper:
 - Zigzag Learning for Weakly Supervised Object Detection Zhang et al.
 - A proposed measure + curriculum learning-based method:

Figure 2. Architecture of our proposed zigzag detection network. We first estimate the image difficulty with mean Accumulated Energy Scores (mEAS), organizing training images in an easy-to-difficult order. Then we introduce a masking strategy over the last convolutional feature maps of fast RCNN framework, which enhances the generalization ability of the model.

A Powerful Object Detector

- Datasets: Pascal VOC or COCO datasets.
- Interesting papers:
 - MegDet: A Large Mini-Batch Object detector Peng et al
 - Large batch training with Faster-RCNN + Cross-GPU BatchNorm
 - Cascade R-CNN: Delving Into High Quality Object Detection
 - Successively performing bounding box regression and classification

Figure 3. The architectures of different frameworks. "I" is input image, "conv" backbone convolutions, "pool" region-wise feature extraction, "H" network head, "B" bounding box, and "C" classification. "B0" is proposals in all architectures.

- Interesting papers:
 - MaskLab: Instance Segmentation by Refining Object Detection With Semantic and Direction Features – Chen et al (Google Inc)
 - **Box detection** + semantic sementation + direction prediction.
 - Detecting and Recognizing Human-Object Interactions Gkioxari et al (FAIR).
 - Joint learning to **detect people** and objects concerning the task (human, verb, object) triplets, and fusing it (InteractNet).
 - Detect-and-Track: Efficient Pose Estimation in Videos Girdhar et al (CMU).
 - Human detection by 3d-Mask-RCNN and link the detections for video understanding.

- Interesting papers:
 - MaskLab: Instance Segmentation by Refining Object Detection With Semantic and Direction Features – Chen et al (Google Inc)
 - Box detection + semantic sementation + direction prediction.

- Interesting papers:
 - Detecting and Recognizing Human-Object Interactions Gkioxari et al (FAIR).
 - Joint learning to **detect people** and objects concerning the task (human, verb, object) triplets, and fusing it (InteractNet).

- Interesting papers:
 - Detect-and-Track: Efficient Pose Estimation in Videos Girdhar et al (CMU).
 - Human detection by 3d-Mask-RCNN and link the detections for video understanding.

Others

- Interesting papers:
 - Domain Adaptive Faster R-CNN for Object Detection in the Wild
 - Faster R-CNN + two domain adaptation components, on image level and instance level, to reduce the domain discrepancy (for autonomous driving).
 - R-FCN-3000 at 30fps: Decoupling Detection and Classification
 - Decoupled **R-FCN** (+ another classification network) to learn 3000-classes + novel classes.

Others

- Interesting papers:
 - Domain Adaptive Faster R-CNN for Object Detection in the Wild
 - Faster R-CNN + two domain adaptation components, on image level and instance level, to reduce the domain discrepancy (for autonomous driving).

Others

- Interesting papers:
 - R-FCN-3000 at 30fps: Decoupling Detection and Classification
 - Decoupled **R-FCN** (+ another classification network) to learn 3000-classes + novel classes.

Another interesting paper

Squeeze excitation networks

Figure 1: A Squeeze-and-Excitation block.

SE-ResNet Module

	224×224		320 imes 320 /	
			299×299	
	top-1	top-5	top-1	top-5
	err.	err.	err.	err.
ResNet-152 [10]	23.0	6.7	21.3	5.5
ResNet-200 [11]	21.7	5.8	20.1	4.8
Inception-v3 [44]	-	-	21.2	5.6
Inception-v4 [42]	-	-	20.0	5.0
Inception-ResNet-v2 [42]	-	-	19.9	4.9
ResNeXt-101 (64 \times 4d) [47]	20.4	5.3	19.1	4.4
DenseNet-264 [14]	22.15	6.12	-	-
Attention-92 [46]	_	_	19.5	4.8
Very Deep PolyNet [51] †	_	-	18.71	4.25
PyramidNet-200 [8]	20.1	5.4	19.2	4.7
DPN-131 [5]	19.93	5.12	18.55	4.16
SENet-154	18.68	4.47	17.28	3.79
NASNet-A (6@4032) [55] [†]	-	-	17.3^{\ddagger}	3.8^{\ddagger}
SENet-154 (post-challenge)	-	-	16.88 [‡]	3.58 [‡]

Issues on unlabeled or noisy data

Why is it important?

- Even though there are plenty of labeled data (MS-COCO: 200K)
- Still, there are a huge number of raw data
- Annotating these data is too expensive

- Pseudo Mask Augmented Object Detection (Zhao et al. MS Rearch)
- Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation (Inoue et al., Univ of Tokyo)
- Improving Landmark Localization with Semi-Supervised Learning
- Data Distillation: Towards Omni-Supervised Learning (Honary et al., MILA)
- Towards Human-Machine Cooperation: Self-supervised Sample Mining for Object Detection (Wang et al., SYU & Sensetime)

- Base model is trained with labeled data
- Unlabeled data -> various transform (augmentation)
 - -> Prediction using base model

Ensemble the outputs -> Pseudo ground truth

Base model is trained with labeled data

 Landmark results w/ and w/o transformation augmentation are consistent, then the predicted landmark locations are used as pseudo

ground truth

Pseudo Mask Augmented Object Detection, CVPR 2018

W2F: A Weakly-Supervised to Fully-Supervised <u>Framework for Object Detection, CVPR 2018</u>

Towards Human-Machine Cooperation: Self-supervised Sample Mining for Object Detection, CVPR 2018

Coarse or noisy data annotation

- On the importance of label quality for semantic segmentation (Zlateski et al., MIT)
- Learning from noisy web data with category-level supervision (Niu et al., Rice Univ)
- Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective (Zhang et al., NPU)
- A Generative Adversarial Approach for Zero-Shot Learning From Noisy Texts (Zhu et al., Rutgers Univ)
- Separating Self-Experession and Visual Content in Hashtag Supervision (Veit et al., Cornell Univ & FAIR)

Coarse data annotation

Large number of coarse annotation is better than few fine

On the importance of label quality for semantic segmentation, CVPR 2018

Transfer weights between tasks

- Segmentation and detection annotation: 80 classes
- Only detection annotation: ~3000 classes (no segmentation)
- Train relationship between detection and segmentation tasks. (80 classes)
- Weights for detection is transferred to segmentation task

