Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа: <i>ПИиКТ 1.1</i>	К работе допущен
Студенты: Решетников Сергей 467233 Шкиптан Александр 468105 Булюсин Илья 465303	Работа выполнена
Преподаватель: Сорокина Е.К.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1

«Распределение случайной величины»

1. Цель работы

Исследование распределения случайной величины на примере измерения средней скорости сборки docker-контейнера для первой лабораторной по дисциплине вебпрограммирование.

2. Задачи, решаемые при выполнении работы.

- 1. Провести многократные измерения определенного промежутка времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Случайная величина — средняя скорость сборки приложения.

4. Метод экспериментального исследования.

Многократное повторение опыта и замер его результатов.

5. Рабочие формулы и исходные данные.

• Среднее арифметическое всех результатов измерений:

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N b_i$$

Выборочная дисперсия:

$$D(b) = \frac{1}{N-1} \sum_{i=1}^{N} (b_i - \langle b \rangle_N)^2$$

Выборочное среднеквадратичное отклонение:

$$\sigma_{N} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left(b_{i} - \langle b \rangle_{N} \right)^{2}}$$

• Максимальное значение плотности распределения:

$$\rho_{max} = \frac{1}{\sigma \sqrt{2\pi}}$$

• Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle b \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (b_i - \langle b \rangle_N)^2}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	секундомер	цифровой	0 - 10 c	0,01 c

7. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1 - Результаты прямых измерений

Nº	t_i, c	$t_i - \langle t \rangle_N$, c	$\left(t_{i}-\langle t angle_{N} ight)^{2}$, c^{2}
1	2.41	-0.48	0.23
2	2.56	-0.33	0.11
3	2.90	-0.01	0.00
4	3.07	0.18	0.03
5	2.68	-0.21	0.04
6	2.71	-0.18	0.03
7	2.94	0.05	0.00
8	2.97	0.08	0.01
9	2.88	-0.01	0.00
10	2.93	0.04	0.00
11	2.77	-0.12	0.01
12	2.89	0.00	0.00
13	2.92	0.03	0.00
14	2.82	-0.07	0.00
15	2.93	0.04	0.00
16	2.71	-0.18	0.03
17	2.86	-0.03	0.00
18	2.81	-0.08	0.01
19	2.91	0.02	0.00
20	2.92	0.03	0.00
21	2.97	0.08	0.01
22	2.80	-0.09	0.01
23	2.87	-0.02	0.00
24	2.88	-0.01	0.00
25	2.93	0.04	0.00

26	2.85	-0.04	0.00
27	2.96	0.07	0.00
28	2.80	-0.09	0.01
29	2.94	0.05	0.00
30	2.98	0.09	0.01
31	2.85	-0.04	0.00
32	2.92	0.03	0.00
33	2.79	-0.10	0.01
34	2.82	-0.07	0.00
35	2.96	0.07	0.00
36	3.03	0.14	0.02
37	2.81	-0.08	0.01
38	2.92	0.03	0.00
39	2.82	-0.07	0.00
40	3.07	0.18	0.03
41	3.07	0.18	0.03
42	3.07	0.18	0.03
43	3.07	0.18	0.03
44	2.97	0.08	0.01
45	2.76	-0.13	0.02
46	2.88	-0.01	0.00
47	3.45	0.56	0.31
48	3.27	0.38	0.14
49	2.89	0.00	0.00
50	2.92	0.03	0.00
	$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i \approx 2.89 c$	$\sum_{i=1}^{N} (t_i - \langle t \rangle) \approx 0.15 c$	$\sigma_{N} \approx 0.16 c$ $\rho_{max} \approx 2.53 c^{-1}$

8. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

1.1 Найдём в первом столбце максимальное $t_{\it max}$ и минимальное $t_{\it min}$ значения результатов измерений:

$$t_{max} = 3.45 c$$
$$t_{min} = 2.41 c$$

1.2 Разобьём промежуток $\left[t_{\min},t_{\max}\right]$ на m равных интервалов Δt . Так как $m \approx \sqrt{50} \approx 7$, то: $\Delta t = \frac{t_{\max} - t_{\min}}{m} = \frac{3.45 - 2.41}{7} = 0,13\,c$

$$\Delta t = \frac{t_{max} - t_{min}}{m} = \frac{3.45 - 2.41}{7} = 0.13 \, c$$

Найдём начало и конец каждого интервала и запишем полученные значения в первый столбец Таблица 2.

В общем виде формулы имеют следующий вид:

$$t_{\scriptscriptstyle HAY_i} = t_{\scriptscriptstyle KOH_{i-1}}$$
 $t_{\scriptscriptstyle KOH_i} = t_{\scriptscriptstyle KOH_i} + \Delta d$

Для примера рассчитаем первый интервал:

$$t_{_{HAY}} = 2.41 c$$

 $t_{_{KOH}} = t_{_{HAY}} + \Delta t = 9,1 + 4,7 = 13,8 c$

1.3 Вычислим ΔN – количество результатов измерений, попавших в каждый из интервалов, и занесём эти значение во второй столбец Таблица 2.

Например в первый интервал попадает только одно значение результатов измерений.

1.4 Для каждого из интервалов вычислим опытное значение плотности вероятности и заполним третий столбец Таблица 2.

В общем виде формула принимает вид:

$$\rho_i = \frac{\Delta N_i}{N \Lambda t}$$

Для примера рассчитаем плотность вероятности для первого интервала:

$$\rho_1 = \frac{\Delta N_1}{N \, \Delta t} = \frac{1}{50 \cdot 0.13} = 0.15 \, c^{-1}$$

2. Вычислим выборочное значение среднего арифметического всех измерений:

$$\langle t \rangle_N = \frac{1}{50} \sum_{i=1}^{50} t_i \approx 2.89 c$$

Теперь используя $\langle t \rangle_N$ выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{50 - 1} \sum_{i=1}^{50} (t_i - 2.89)^2} \approx 0.16 c$$

Запишем σ_N и $\langle t \rangle_N$ в подвал Таблица 1.

3. Используя значение $\sigma_{\scriptscriptstyle N}$ вычислим максимальное значение плотности распределения:

$$\rho_{max} = \frac{1}{\sigma_N \sqrt{2\pi}} = \frac{1}{0.16\sqrt{2\pi}} \approx 2.53 c^{-1}$$

И запишем её в подвал Таблица 1.

4. Для каждого интервала вычислим значение ho(t) нормального распределения функции Гаусса и заполним четвёртый столбец Таблица 2.

Для первого интервала получим
$$(t - (t))^2$$

$$\rho(t) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \exp\left(\frac{-(t - \langle t \rangle)^2}{2\sigma^2}\right) = \rho_{max} \exp\left(\frac{-(t - \langle t \rangle)^2}{2\sigma^2}\right) = 2.53 \cdot \exp\left(\frac{-(2.89 - 2.48)^2}{2 \cdot 0.16^2}\right) = 0.08 c^{-1}$$

5. Вычислим границы стандартных интервалов.

Для первого интервала получим:

OT:
$$\langle t \rangle_N - \sigma = 2.89 - 0.16 = 2.73 c$$

До:
$$\langle t \rangle_N$$
+ σ =2.89+0.16=3.05 c

Теперь определим количество результатов измерений, попавших в каждый из интервалов, и вычислим вероятность попадания в каждый из интервалов.

Например, для первого интервала получим $\Delta N = 40$. Получаем:

$$\frac{\Delta N}{N} = \frac{40}{50} \approx 0.8$$

Занесём полученные данные в Таблица 3.

Таблица 2 - Данные для построения гистограммы

Границы интервалов, с	ΔN	$\frac{\Delta N}{N \Delta t}, c^{-1}$	t,c	ρ , c^{-1}
2.41	1	0.15	2.49	0.00
2.54	I	0.15	2.48	0.08

2.54	2	0.31	2.61	0.05
2.67		0.51	2.01	0.05
2.67	15	2.31	2.74	1.58
2.80	13	2.31	2.74	01
2.80	26	4.00	2.87	2.51
2.93		4.00	2.07	۷.۵۱
2.93	3	0.46	3.00	2.01
3.06		0.40	3.00	2.01
3.06	2	0.31	3.13	0.82
3.19		0.51	3.13	0.62
3.19	1	0.15	3.26	0.17
3.32		0.13	3.20	0.17

Таблица 3 - Стандартные доверительные интервалы

	Интер	овал, с	A N	$rac{\Delta N}{N}$	P
	ОТ	до	$-\Delta N$	N	
$\langle t \rangle_N \pm \sigma_N$	2.73	3.05	40	0.80	0.68
$\langle t \rangle_N \pm 2\sigma_N$	2.58	3.21	46	0.92	0.95
$\langle t \rangle_N \pm 3\sigma_N$	2.42	3.37	48	0.96	0.99

9. Расчет погрешностей измерений (для прямых и косвенных измерений).

Рассчитаем среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{50(50-1)} \sum_{i=1}^{50} (t_i - 2.89)^2} \approx 0.02 c$$

Табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha = 0.95$:

$$t_{\alpha,N} = 2.01$$

Рассчитаем доверительный интервал:

$$\Delta_{\langle t \rangle} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 2.01 \cdot 0.02 \approx 0.04 c$$

Определим абсолютную погрешность измерения с учетом доверительного интервала $\Delta_{\scriptscriptstyle (t)}$ и инструментальной погрешности $\Delta_{\scriptscriptstyle ut}$ = 0,01 c :

$$\Delta_t = \sqrt{{\Delta_{\langle t \rangle}}^2 + (\frac{2}{3} \cdot \Delta_{ut})^2} = \sqrt{0.04^2 + (\frac{2}{3} \cdot 0.01)^2} \approx 0.05 c$$

Вычислим относительную погрешность измерения:

$$\varepsilon_t = \frac{\Delta_t}{\langle t \rangle_N} \cdot 100\% = \frac{0.05}{2,89} \cdot 100\% \approx 1.56\%$$

10. Графики (перечень графиков, которые составляют Приложение 2).

Рисунок 1 - График плотности вероятности и гистограмма распределения случайной величины

11. Окончательные результаты.

Среднее арифметическое всех результатов измерений с учетом погрешности: $t = (2.89 \pm 0.05) c$; $\varepsilon_r = 1,56\% \alpha = 0,95$

12. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы было проведено исследование распределения случайной величины - времени сборки docker-контейнера. По результатам 50 измерений были получены следующие результаты:

- 1. Среднее время сборки составило $t = (2.89 \pm 0.05)c$
- 2. Выборочное стандартное отклонение σ_N ≈ 0.16 c
- 3. Относительная погрешность измерения $t = (2.89 \pm 0.05)c$; $\varepsilon_t = 1,56\% \alpha = 0,95$ при доверительной вероятности $\alpha = 0,95$.

Гистограмма экспериментального распределения времени сборки визуально близка к нормальному распределению, что подтверждается сравнением эмпирических и теоретических вероятностей попадания в стандартные интервалы ($\langle t \rangle_N \pm k \, \sigma_N$):

- 1. В интервал $\langle t \rangle_N \pm \sigma_N$ попало 80% измерений при теоретическом значении 68%.
- 2. В интервал $\langle t \rangle_{N} \pm 2 \sigma_{N}$ 92% при теоретическом 95%.
- 3. В интервал $\langle t \rangle_N \pm 3 \sigma_N 96\%$ при теоретическом 99%.

Небольшие отклонения эмпирических данных от теоретических значений могут быть объяснены ограниченным объёмом выборки и влиянием внешних факторов (например, изменение нагрузки на систему в момент отдельных измерений).

Таким образом, можно заключить, что рассмотренная случайная величина подчиняется нормальному закону распределения. Результаты работы могут быть использованы для прогнозирования времени сборки и оптимизации процесса разработки.