The ggplot2 Plotting System - Part 2

Roger D. Peng, Associate Professor of Biostatistics

May 18, 2016

What is ggplot2?

- ► An implementation of the **Grammar of Graphics** by Leland Wilkinson
- Grammar of graphics represents and abstraction of graphics ideas/objects
- ► Think "verb", "noun", "adjective" for graphics
- Allows for a "theory" of graphics on which to build new graphics and graphics objects

Basic Components of a ggplot2 Plot

- A data frame
- aesthetic mappings: how data are mapped to color, size
- geoms: geometric objects like points, lines, shapes.
- facets: for conditional plots.
- stats: statistical transformations like binning, quantiles, smoothing.
- scales: what scale an aesthetic map uses (example: male = red, female = blue).
- coordinate system

Building Plots with ggplot2

- ► When building plots in ggplot2 (rather than using qplot) the "artist's palette" model may be the closest analogy
- ▶ Plots are built up in layers
- Plot the data
- Overlay a summary
- Metadata and annotation

Example: BMI, PM_{2.5}, Asthma

- Mouse Allergen and Asthma Cohort Study
- ▶ Baltimore children (age 5-17)
- Persistent asthma, exacerbation in past year
- ▶ Does BMI (normal vs. overweight) modify the relationship between PM_{2.5} and asthma symptoms?

Basic Plot

```
library(ggplot2)
qplot(logpm25, NocturnalSympt, data = maacs, facets = . ~
    geom = c("point", "smooth"), method = "lm")
```

Building Up in Layers

```
head(maacs)
g <- ggplot(maacs, aes(logpm25, NocturnalSympt))
summary(g)</pre>
```

No Plot Yet!

```
g <- ggplot(maacs, aes(logpm25, NocturnalSympt))
print(g)</pre>
```

First Plot with Point Layer

```
g <- ggplot(maacs, aes(logpm25, NocturnalSympt))
g + geom_point()</pre>
```

Adding More Layers: Smooth

```
g + geom_point() + geom_smooth()
g + geom_point() + geom_smooth(method = "lm")
```

Adding More Layers: Facets

```
g + geom_point() + facet_grid(. ~ bmicat) + geom_smooth(me
```

Annotation

- ► Labels: xlab(), ylab(), labs(), ggtitle()
- Each of the "geom" functions has options to modify
- For things that only make sense globally, use theme()
- Example: theme(legend.position = "none")
- Two standard appearance themes are included
- theme_gray(): The default theme (gray background)
- ▶ theme_bw(): More stark/plain

Modifying Aesthetics

```
g + geom_point(color = "steelblue", size = 4, alpha = 1/2)
g + geom_point(aes(color = bmicat), size = 4, alpha = 1/2)
```

Modifying Labels

```
g + geom_point(aes(color = bmicat)) + labs(title = "MAACS (
    labs(x = expression("log " * PM[2.5]), y = "Nocturnal Syn
```

Customizing the Smooth

```
g + geom_point(aes(color = bmicat), size = 2, alpha = 1/2)
geom_smooth(size = 4, linetype = 3, method = "lm", se = 1
```

Changing the Theme

```
g + geom_point(aes(color = bmicat)) + theme_bw(base_family
```

A Note about Axis Limits

```
testdat <- data.frame(x = 1:100, y = rnorm(100))
testdat[50,2] <- 100 ## Outlier!
plot(testdat$x, testdat$y, type = "l", ylim = c(-3,3))
g <- ggplot(testdat, aes(x = x, y = y))
g + geom_line()</pre>
```

Axis Limits

```
g + geom_line() + ylim(-3, 3)
g + geom_line() + coord_cartesian(ylim = c(-3, 3))
```

More Complex Example

- ► How does the relationship between PM_{2.5} and nocturnal symptoms vary by BMI and NO₂?
- ▶ Unlike our previous BMI variable, NO₂ is continuous
- ► We need to make NO₂ categorical so we can condition on it in the plotting
- Use the cut() function for this

Making NO₂ Tertiles

```
## Calculate the tertiles of the data
cutpoints <- quantile(maacs$logno2_new, seq(0, 1, length =
## Cut the data at the tertiles and create a new factor variances$no2tert <- cut(maacs$logno2_new, cutpoints)
## See the levels of the newly created factor variable
levels(maacs$no2tert)</pre>
```

Final Plot

Code for Final Plot

```
## Setup ggplot with data frame
g <- ggplot(maacs, aes(logpm25, NocturnalSympt))
## Add layers
g + geom_point(alpha = 1/3) +
  facet_wrap(bmicat ~ no2tert, nrow = 2, ncol = 4) +
  geom_smooth(method="lm", se=FALSE, col="steelblue") +
 theme_bw(base_family = "Avenir", base_size = 10) +
  labs(x = expression("log" * PM[2.5])) +
  labs(y = "Nocturnal Symptoms") +
  labs(title = "MAACS Cohort")
```

Summary

- ggplot2 is very powerful and flexible if you learn the "grammar" and the various elements that can be tuned/modified
- Many more types of plots can be made; explore and mess around with the package (references mentioned in Part 1 are useful)