BÁO CÁO

MILESTONE 1: VENDING MACHINE

NHÓM 9

1. DESIGN

Đoạn code của chương trình:

```
`define STATE_STANDBY
                        2'b00
`define STATE DEPOSIT
                        2'b01
`define STATE DISPENSES 2'b10
`define VALUE PRICE
                      20
`define VALUE NICKEL
`define VALUE DIME
                     10
`define VALUE QUARTER
                       25
`define CHANGE 0 CENT 3'b000
`define CHANGE 5 CENT 3'b001
`define CHANGE 10 CENT 3'b010
`define CHANGE 15 CENT 3'b011
`define CHANGE 20 CENT 3'b100
`define ENABLE
                      1'b1
`define RESET
                      ' 0
module vending machine(
    input logic clk i,
    input logic nickel i,
    input logic dime i,
    input logic quarter i,
    output logic [2:0] change o,
   output logic soda o
);
    logic [1:0] state;
    logic [5:0] money inserted;
    always @(posedge clk_i) begin
        case(state)
            `STATE_STANDBY: begin
```

```
soda o = RESET;
                change_o = `CHANGE_0_CENT;
                if (quarter i) begin
                    money_inserted = money_inserted + `VALUE_QUARTER;
                    state = `STATE DEPOSIT;
                end else if (dime i) begin
                    money inserted = money_inserted + `VALUE_DIME;
                    state = `STATE DEPOSIT;
                end else if (nickel i) begin
                    money inserted = money inserted + `VALUE NICKEL;
                    state = `STATE DEPOSIT;
                end
            end
            `STATE DEPOSIT: begin
                if (money inserted >= `VALUE PRICE) begin
                    case (money inserted)
                        20: change o = `CHANGE O CENT;
                        25: change_o = `CHANGE_5_CENT;
                        30: change o = `CHANGE 10 CENT;
                        35: change o = `CHANGE 15 CENT;
                        40: change o = `CHANGE 20 CENT;
                    endcase
                    soda o = `ENABLE;
                    money inserted = `RESET;
                    state = `STATE STANDBY;
                end else begin
                    if (quarter i) begin
                        money_inserted = money_inserted +
`VALUE_QUARTER;
                    end else if (dime i) begin
                        money inserted = money inserted + `VALUE DIME;
                    end else if (nickel i) begin
                        money inserted = money inserted +
`VALUE NICKEL;
                    end
```

end
end
end
endcase
end
end

2. VERIFICATION

Cách thức thực hiện: Nhận thấy số lượng đồng xu tối đa mà người dung có thể bỏ vào máy là 4 đồng xu, nên nhóm em đã dùng code python tạo ra một matrix (n*4) tất cả các tổ hợp của [nickel, dime, quarter], sau đó lọc bỏ đi các trường hợp không thể xuất hiện (mỗi hang chỉ lấy m cell của matrix sao cho tổng tối thiểu >= 20).

Từ đó, nhóm em tìm được tất cả 15 trường hợp (trong số 3^4=81 trường hợp) cần test (các trường hợp còn lại nằm trong tập con của trường hợp cần test).

Num_tb	Coin1	Coin2	Coin3	Coin4	Change
1	5	5	5	5	000
2	5	5	5	10	001
3	5	5	5	25	100
4	5	5	10		000
5	5	5	25		011
6	5	10	5		000
7	5	10	10		001
8	5	10	25		100
9	5	25			010
10	10	5	5		000
11	10	5	10		001
12	10	5	25		100
13	10	10			000
14	10	25			011
15	25				001

Sau đó, nhóm đã dùng python tạo ra đoạn test như sau (dùng python tạo ra bằng cách ghép các string lại, hình minh hoạ bên dưới ứng với $num_tb=1$)

```
initial begin
   num tc = 1;
   coin_i_tc = 3'b001;
   change_o_tc = 3'b000;
   soda o tc = 1'b0;
   if(change_o != change_o_tc || soda_o != soda_o_tc) begin
       $display("TESTCASE #%d FAILED", num_tc);
        $display("TESTCASE #%d PASSED", num_tc);
   coin_i_tc = 3'b001;
   change o tc = 3'b000;
   soda_o_tc = 1'b0;
   #20;
   if(change_o != change_o_tc || soda_o != soda_o_tc) begin
       $display("TESTCASE #%d FAILED", num_tc);
       $display("TESTCASE #%d PASSED", num_tc);
   coin_i_tc = 3'b001;
   change o tc = 3'b000;
   soda_o_tc = 1'b1;
   if(change_o != change_o_tc || soda_o != soda_o_tc) begin
       $display("TESTCASE #%d FAILED", num_tc);
       $display("TESTCASE #%d PASSED", num tc);
```

Và đây là chương trình testbench:

```
module vending_machine_tb;

// Inputs
logic clk_i;
logic nickel_i;
logic dime_i;
logic quarter_i;

// Outputs
logic [2:0] change_o;
logic soda_o;

// Test case variables
```

```
logic [4:0] num tc;
    logic [2:0] coin_i_tc;
    logic [2:0] change o tc;
    logic soda o tc;
    // Instantiate DUT
    vending machine dut (
       .clk_i(clk_i),
       .nickel_i(nickel_i),
        .dime i(dime i),
        .quarter_i(quarter_i),
        .change o(change o),
        .soda_o(soda_o)
   );
    // Clock generation
   always #10 clk_i = ~clk_i;
   // Input assignment
   always @(posedge clk_i) begin
        {quarter i, dime i, nickel i} <= coin i tc;
    end
initial begin
    //TESTCASE #1
...
    //TESTCASE #15
    $finish;
end
endmodule
```

Sau khi chạy mô phỏng, ta thu được kết quả rằng thiết kế đáp ứng đúng tất cả testcase:

