Chapter 01: The Foundation: Logic and Proofs

VO TRAN DUY

Course: Discrete Mathematics - MAD101

Email: duyvt15@fe.edu.vn

Outline

- Subject Requirements
 - Score Evaluation
 - Course Description
- 2 The Foundation: Logic and Proofs
 - Propositional Logic
 - Propositional Equivalences
 - Predicates and Quantifiers
 - Exercises
 - Rules of Inference

Outline

- Subject Requirements
 - Score Evaluation
 - Course Description
- The Foundation: Logic and Proofs
 - Propositional Logic
 - Propositional Equivalences
 - Predicates and Quantifiers
 - Exercises
 - Rules of Inference

Score Evaluation

- Must attend at least 80% of contact hours; otherwise, you are not allowed to take the exam.
- Score structure:
 - ▶ 10% for Attendance
 - ▶ 50% for 5 Progress Tests (PT).
 - ▶ 40% for Final exam (FE) → 50 questions in 60 minutes.
 - Bonus score for weekly homework will be added directly to the PT's with an appropriate rate.
 - To pass this subject, you must have
 - ► Total score ≥ 5
 - ▶ Final Examination ≥ 4 (of 10)
 - Every ongoing assessment score > 0.
- Retake the FE when you do not pass or want to improve your previous result.

Outline

- Subject Requirements
 - Score Evaluation
 - Course Description
- The Foundation: Logic and Proofs
 - Propositional Logic
 - Propositional Equivalences
 - Predicates and Quantifiers
 - Exercises
 - Rules of Inference

Course Description

- Chapter 01 : The Foundations: Logic and Proofs.
- Ohapter 02: Basic Structures: Sets, Function, Sequences, and Sums.
- Chapter 03 : Algorithms.
- Chapter 04 : Number Theory and Cryptography.
- Chapter 05 : Induction and Recursion.
- Ohapter 06: Counting and Advanced Counting Techniques.
- Chapter 07 : Graphs.
- Chapter 08 : Trees.

Outline

- Subject Requirements
 - Score Evaluation
 - Course Description
- 2 The Foundation: Logic and Proofs
 - Propositional Logic
 - Propositional Equivalences
 - Predicates and Quantifiers
 - Exercises
 - Rules of Inference

Rusell's Paradox

Once upon a time, there was a barber who lived in the village of Seville. In that village, all men shave themselves or ask a barber. And this barber declared:

" I only shave the men of the village of Seville who do not shave themselves."

Definition (Proposition)

A **proposition** is a <u>declarative sentence</u> (that is, a sentence that declares a fact) that is either true or false, but not both.

Definition (Proposition)

A **proposition** is a <u>declarative sentence</u> (that is, a sentence that declares a fact) that is <u>either true or false, but not both</u>.

Examples

- VND is the official currency of Vietnam.
- The speed of light in vacuum is a universal physical constant that is exactly equal to 299, 792, 458 metres per second.
- The sun rises in the North and sets in the South.
- The largest whale (and largest mammal, as well as the largest animal known ever to have existed) is the blue whale, a baleen whale (Mysticeti).

Definition (Proposition)

A **proposition** is a <u>declarative sentence</u> (that is, a sentence that declares a fact) that is <u>either true or false</u>, but not both.

Examples

- VND is the official currency of Vietnam.
- The speed of light in vacuum is a universal physical constant that is exactly equal to 299, 792, 458 metres per second.
- The sun rises in the North and sets in the South.
- The largest whale (and largest mammal, as well as the largest animal known ever to have existed) is the blue whale, a baleen whale (Mysticeti).

Counter-examples

- Please stop it, Alex!
- Do you have any idea for decorating the Christmas tree?
- We will hang out with friends at a famous restaurant in town this weekend.

- \hookrightarrow We usually fix the following notations:
 - p, q, r, s, ...: to represent propositions (propositional variables);
 - T or 1: to denote the truth value of a true proposition;
 - **F** or **0**: to denote the truth value of a <u>false proposition</u>.

- \hookrightarrow We usually fix the following notations:
 - p, q, r, s, ...: to represent propositions (propositional variables);
 - T or 1: to denote the truth value of a true proposition;
 - F or 0: to denote the truth value of a false proposition.

Definition (Negation)

Let p be a proposition. The negation of p, denoted by $\neg p$ (also denoted by \overline{p}), is the statement "It is not the case that p."

The proposition $\neg p$ is read "not p". The truth value of $\neg p$, is the opposite of the truth value of p.

- \hookrightarrow We usually fix the following notations:
 - p, q, r, s, ...: to represent propositions (propositional variables);
 - T or 1: to denote the truth value of a true proposition;
 - F or 0: to denote the truth value of a false proposition.

Definition (Negation)

Let p be a proposition. The negation of p, denoted by $\neg p$ (also denoted by \overline{p}), is the statement "It is not the case that p."

The proposition $\neg p$ is read "not p". The truth value of $\neg p$, is the opposite of the truth value of p.

Examples

Let p: "Earth is an oblate spheroid". Then the negation of p is:

 \overline{p} : Earth is **not** an oblate spheroid.

Definition (Conjunction)

Let p and q be propositions. The conjunction of p and q, denoted by $p \wedge q$, is the proposition "p and q". The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.

Definition (Conjunction)

Let p and q be propositions. The conjunction of p and q, denoted by $p \wedge q$, is the proposition "p and q". The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.

Definition (Disjunction)

Let p and q be propositions. The disjunction of p and q, denoted by $p \lor q$, is the proposition "p or q". The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Definition (Conjunction)

Let p and q be propositions. The conjunction of p and q, denoted by $p \wedge q$, is the proposition "p and q". The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.

Definition (Disjunction)

Let p and q be propositions. The disjunction of p and q, denoted by $p \lor q$, is the proposition "p or q". The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

p	\boldsymbol{q}	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

p	q	$p \lor q$
T	T	T
T	F	T
F	T	T
F	F	F

Figure: The truth table for the conjunction and the disjunction of two propositions.

Definition (Exclusive or)

Let p and q be propositions. The *exclusive* or of p and q, denoted by $p \bigoplus q$ (or p XOR q), is the proposition that is true when exactly one of p and q is true and is false otherwise.

Definition (Exclusive or)

Let p and q be propositions. The *exclusive* or of p and q, denoted by $p \bigoplus q$ (or p XOR q), is the proposition that is true when exactly one of p and q is true and is false otherwise.

 \implies This is a subcase of the disjunction $p \lor q$ of p and q.

Definition (Exclusive or)

Let p and q be propositions. The *exclusive* or of p and q, denoted by $p \bigoplus q$ (or p XOR q), is the proposition that is true when exactly one of p and q is true and is false otherwise.

 \implies This is a subcase of the disjunction $p \lor q$ of p and q.

Definition (Conditional statement)

Let p and q be propositions. The conditional statement $p \to q$ is the proposition "if p, then q". The conditional statement $p \to q$ is false when p is true and q is false, and true otherwise.

Definition (Exclusive or)

Let p and q be propositions. The *exclusive* or of p and q, denoted by $p \bigoplus q$ (or p XOR q), is the proposition that is true when exactly one of p and q is true and is false otherwise.

 \implies This is a subcase of the disjunction $p \lor q$ of p and q.

Definition (Conditional statement)

Let p and q be propositions. The conditional statement $p \to q$ is the proposition "if p, then q". The conditional statement $p \to q$ is false when p is true and q is false, and true otherwise.

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Remarks

- See the ROSEN's book, page 7 for other expression of the conditional statement.
- In the conditional statement $p \to q$, \underline{p} is called the hypothesis (or antecedent or premise) and \underline{q} is called the conclusion (or consequence).
- We say that *p* is a *sufficient* condition for *q*, and *q* is a *necessary* condition for *p*.
- The proposition $q \to p$ is called the *converse* of $p \to q$.
- The proposition $\overline{q} \to \overline{p}$ is called the *contrapositive* of $p \to q$.
- ullet The proposition $\overline{p} o \overline{q}$ is called the *inverse* of p o q.

Definition (Biconditional statement)

Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ is the proposition "p if and only if q". The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise.

Definition (Biconditional statement)

Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ is the proposition "p if and only if q". The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise.

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

 \hookrightarrow The precedence of logical operators basically obeys two rules:

• Parentheses from inner to outer.

•

Operator	Precedence
7	1
^ V	2 3
\rightarrow \leftrightarrow	4 5

 \hookrightarrow The precedence of logical operators basically obeys two rules:

• Parentheses from inner to outer.

•

Operator	Precedence
Г	1
^	2
V	3
→	4
↔	5

Examples

(i).
$$p \lor q \to p \land r$$
 means that $(p \lor q) \to (p \land r)$.

(ii).
$$p \wedge \overline{q} \vee q \wedge \overline{p} \to \overline{r}$$
 means that $((p \wedge (\overline{q})) \vee (q \wedge (\overline{p}))) \to (\overline{r})$.

- We can use a bit to represent a truth value: bit 1 for true and bit 0 for false.
- A Boolean variable has value either true or false, and can be represented by a bit.
- By replacing true by 1 and false by 0 in the truth tables of logical operators, we obtain the corresponding tables for bit operations.
- The operators \neg , \wedge , \vee and \oplus are also denoted by NOT, AND, OR and XOR.

- We can use a bit to represent a truth value: bit 1 for true and bit 0 for false.
- A Boolean variable has value either true or false, and can be represented by a bit.
- By replacing true by 1 and false by 0 in the truth tables of logical operators, we obtain the corresponding tables for bit operations.
- The operators \neg, \land, \lor and \oplus are also denoted by NOT, AND, OR and XOR.

Definition (Bit string)

A bit string is a sequence of zero or more bits. The length of this string is the number of bits in the string.

- We can use a bit to represent a truth value: bit 1 for true and bit 0 for false.
- A Boolean variable has value either true or false, and can be represented by a bit.
- By replacing true by 1 and false by 0 in the truth tables of logical operators, we obtain the corresponding tables for bit operations.
- The operators \neg, \land, \lor and \oplus are also denoted by NOT, AND, OR and XOR.

Definition (Bit string)

A bit string is a sequence of zero or more bits. The length of this string is the number of bits in the string.

 \hookrightarrow The bitwise AND, OR and XOR of **two strings of the same length** is the string whose bits are the AND, OR and XOR of the corresponding bits of the two strings.

- We can use a bit to represent a truth value: bit 1 for true and bit 0 for false.
- A Boolean variable has value either true or false, and can be represented by a bit.
- By replacing true by 1 and false by 0 in the truth tables of logical operators, we obtain the corresponding tables for bit operations.
- The operators \neg, \land, \lor and \oplus are also denoted by NOT, AND, OR and XOR.

Definition (Bit string)

A bit string is a sequence of zero or more bits. The length of this string is the number of bits in the string.

 \hookrightarrow The bitwise AND, OR and XOR of **two strings of the same length** is the string whose bits are the AND, OR and XOR of the corresponding bits of the two strings.

Examples

The bitwises AND, OR and XOR of 0110010110 and 1100011101 are

0100010100 (AND); 1110011111 (OR); 1010001011 (XOR).

Outline

- Subject Requirements
 - Score Evaluation
 - Course Description
- 2 The Foundation: Logic and Proofs
 - Propositional Logic
 - Propositional Equivalences
 - Predicates and Quantifiers
 - Exercises
 - Rules of Inference

Definition

- A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a *tautology*.
- A compound proposition that is always false is called a contradiction.
- A compound proposition that is neither a tautology nor a contradiction is called a *contingency*.

Definition

- A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a *tautology*.
- A compound proposition that is always false is called a contradiction.
- A compound proposition that is neither a tautology nor a contradiction is called a *contingency*.

Examples

• It is clear that $p \vee \overline{p}$ and $p \wedge \overline{p}$ are a tautology and a contradiction, respectively while the proposition p itself is a contingency.

Definition

- A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a *tautology*.
- A compound proposition that is always false is called a contradiction.
- A compound proposition that is neither a tautology nor a contradiction is called a *contingency*.

Examples

• It is clear that $p \vee \overline{p}$ and $p \wedge \overline{p}$ are a tautology and a contradiction, respectively while the proposition p itself is a contingency.

Definition

The compound propositions p and q are called <u>logically equivalent</u> if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws

$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

Figure: Some logical equivalences.

$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws

$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

Figure: Some logical equivalences.

Exercises: Prove the following claims:

- $p \rightarrow q \equiv \overline{p} \lor q$;
- $(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r);$
- $\overline{p \vee (\overline{p} \wedge q)} \equiv \overline{p} \wedge \overline{q}$.

Outline

- Subject Requirements
 - Score Evaluation
 - Course Description
- 2 The Foundation: Logic and Proofs
 - Propositional Logic
 - Propositional Equivalences
 - Predicates and Quantifiers
 - Exercises
 - Rules of Inference

- Which statements are propositions:
 - 0 3 + 2 = 5
 - X + 2 = 5
 - **3** X + 2 = 5 for any choice of X in $\{1, 2, 3\}$
 - **4** X + 2 = 5 for some X in $\{1, 2, 3\}$

- Which statements are propositions:
 - 0 3 + 2 = 5
 - X + 2 = 5
 - **3** X + 2 = 5 for any choice of X in $\{1, 2, 3\}$
 - X + 2 = 5 for some X in $\{1, 2, 3\}$
 - 1. Yes; 2. No; 3. Yes; 4. Yes

- Which statements are propositions:
 - 3+2=5
 - X + 2 = 5
 - **3** X + 2 = 5 for any choice of X in $\{1, 2, 3\}$
 - **3** X + 2 = 5 for some X in $\{1, 2, 3\}$
 - 1. Yes; 2. No; 3. Yes; 4. Yes
- Let Q(x,y): "x>y" with $x,y\in\mathbb{R}$. Which statements are propositions:
 - Q(x,y)
 - Q(3,4)
 - Q(x,9)

- Which statements are propositions:
 - 3+2=5
 - X + 2 = 5
 - **3** X + 2 = 5 for any choice of X in $\{1, 2, 3\}$
 - **3** X + 2 = 5 for some X in $\{1, 2, 3\}$
 - 1. Yes; 2. No; 3. Yes; 4. Yes
- Let Q(x,y): "x>y" with $x,y\in\mathbb{R}$. Which statements are propositions:
 - Q(x,y)
 - Q(3,4)
 - Q(x,9)
 - 1. No; 2. Yes; 3. No.

- Which statements are propositions:
 - 0 3 + 2 = 5
 - X + 2 = 5
 - **3** X + 2 = 5 for any choice of X in $\{1, 2, 3\}$
 - X + 2 = 5 for some X in $\{1, 2, 3\}$
 - 1. Yes; 2. No; 3. Yes; 4. Yes
- Let Q(x,y): "x>y" with $x,y\in\mathbb{R}$. Which statements are propositions:
 - Q(x,y)
 - Q(3,4)
 - Q(x,9)
 - 1. No; 2. Yes; 3. No.
- \hookrightarrow In general, a statement involving *n* variables x_1, x_2, \ldots, x_n can be denoted by $P(x_1, x_2, \ldots, x_n)$.

Definition (*n*-place Predicate)

A statement of the form $P(x_1, x_2, ..., x_n)$ is the value of the propositional function P (defined on a set U) at the n-tuple $(x_1, x_2, ..., x_n)$ and P is also called an n-place predicate or an n-ary predicate.

Definition (*n*-place Predicate)

A statement of the form $P(x_1, x_2, ..., x_n)$ is the value of the propositional function P (defined on a set U) at the n-tuple $(x_1, x_2, ..., x_n)$ and P is also called an n-place predicate or an n-ary predicate.

- We often denote a predicate by $P(x_1, x_2, ..., x_n)$.
- Note that $P(x_1, x_2, ..., x_n)$ is not a proposition, but $P(x_1^0, x_2^0, ..., x_n^0)$ with $(x_1^0, x_2^0, ..., x_n^0) \in U$, is a proposition with a determined truth value.

Outline

- Subject Requirements
 - Score Evaluation
 - Course Description
- 2 The Foundation: Logic and Proofs
 - Propositional Logic
 - Propositional Equivalences
 - Predicates and Quantifiers
 - Exercises
 - Rules of Inference

Time for practice

<u>Ex1.</u> Use De Morgan's laws to find the negation of each of the following statements:

- a) Lena will take a job in industry or go to graduate school.
- b) Yoshiko knows Java and calculus.
- c) James is young and strong.
- d) Rita will move to Oregon or Washington.

<u>Ex2.</u> Show that each of these conditional statements is a tautology:

- a) $[\overline{p} \land (p \lor q)] \rightarrow q$.
- b) $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$.
- c) $[p \land (p \rightarrow q)] \rightarrow q$.

<u>Ex3.</u> Let P(x) be the statement "The word x contains the letter a." What are these truth values?

- a) P(orange)
- b) P(lemon)
- c) P(true)
- d) P(false).

- → Predicates are preconditions and postconditions of computer programs.
 - Preconditions are statements that describe valid input.
 - Postconditions are statements that the output should satisfy when the program has run.

- → Predicates are preconditions and postconditions of computer programs.
 - Preconditions are statements that describe valid input.
 - Postconditions are statements that the output should satisfy when the program has run.

Examples

Consider the following program, designed to determine the maximum and minimum values of two given variables x and y:

```
If x \ge y then \max := x, \min := y
Otherwise \max := y, \min := x.
```

- → Predicates are preconditions and postconditions of computer programs.
 - Preconditions are statements that describe valid input.
 - Postconditions are statements that the output should satisfy when the program has run.

Examples

Consider the following program, designed to determine the maximum and minimum values of two given variables x and y:

```
If x \ge y then max := x, min := y
Otherwise max := y, min := x.
```

- \hookrightarrow Let $P_1(x,y)$ and $P_2(x,y)$ be the statements "x=a and y=b and $x \ge y$ " and "x=a and y=b and x < y", where a,b are the input values of x and y, respectively $\Longrightarrow P_1(x,y) \oplus P_2(x,y)$ is the precondition.
- \hookrightarrow Let $Q_1(x,y)$ and $Q_2(x,y)$ be the statements "max = a and min = b" and "max = b and min = a" $\Longrightarrow Q_1(x,y) \oplus Q_2(x,y)$ is the postcondition.

Question

Study the following code segment:

If
$$x \ge 2$$
 OR $y < x^2$ then $x := 2y$ If $x < 0$ XOR $y > \min\{\sqrt{|x|}, 0.5\}$ then $x := y$ and $y := -x$.

What are the values of x and y after the codes execute under the following inputs:

- x = 1, y = -1
- x = 6, y = 0.4
- x = 0.08, y = -5
- x = 0, y = 1.

Answer:

• x = -2, y = -1 (after first code) $\longrightarrow x = -1$, y = 2 (after second code)

Question

Study the following code segment:

If
$$x \ge 2$$
 OR $y < x^2$ then $x := 2y$ If $x < 0$ XOR $y > \min\{\sqrt{|x|}, 0.5\}$ then $x := y$ and $y := -x$.

What are the values of x and y after the codes execute under the following inputs:

- x = 1, y = -1
- x = 6, y = 0.4
- x = 0.08, y = -5
- x = 0, y = 1.

Answer:

- x = -2, y = -1 (after first code) $\longrightarrow x = -1$, y = 2 (after second code)
- x = 0.8, y = 0.4 (after first code) $\longrightarrow x = 0.8$, y = 0.4 (after second code)

Question

Study the following code segment:

If
$$x \ge 2$$
 OR $y < x^2$ then $x := 2y$ If $x < 0$ XOR $y > \min\{\sqrt{|x|}, 0.5\}$ then $x := y$ and $y := -x$.

What are the values of x and y after the codes execute under the following inputs:

- x = 1, y = -1
- x = 6, y = 0.4
- x = 0.08, y = -5
- x = 0, y = 1.

Answer:

- x = -2, y = -1 (after first code) $\longrightarrow x = -1$, y = 2 (after second code)
 - x = 0.8, y = 0.4 (after first code) $\longrightarrow x = 0.8$, y = 0.4 (after second code)
- x = -10, y = -5 (after first code) $\longrightarrow x = -5$, y = 10 (after second code)

Question

Study the following code segment:

If
$$x \ge 2$$
 OR $y < x^2$ then $x := 2y$ If $x < 0$ XOR $y > \min\{\sqrt{|x|}, 0.5\}$ then $x := y$ and $y := -x$.

What are the values of x and y after the codes execute under the following inputs:

- x = 1, y = -1
- x = 6, y = 0.4
- x = 0.08, y = -5
- x = 0, y = 1.

Answer:

- x = -2, y = -1 (after first code) $\longrightarrow x = -1$, y = 2 (after second code)
- x = 0.8, y = 0.4 (after first code) $\longrightarrow x = 0.8$, y = 0.4 (after second code)
- x = -10, y = -5 (after first code) $\longrightarrow x = -5$, y = 10 (after second code)
- x = 0, y = 1 (after first code) $\longrightarrow x = 1$, y = 0 (after second code).

 \hookrightarrow Let P(x) be a predicate defined on some domain (of discourse) U. Then there are two ways to form a proposition from P(x):

- The first way is to consider P(x) at some fixed element $x \in U$.
- The second way is to add the **quantifier** in P(x).

- \hookrightarrow Let P(x) be a predicate defined on some domain (of discourse) U. Then there are two ways to form a proposition from P(x):
- The first way is to consider P(x) at some fixed element $x \in U$.
- The second way is to add the **quantifier** in P(x).

Definition

1. The universal quantification $\forall x P(x)$ of P(x) is the statement

"P(x) for all values of $x \in U$."

Here \forall is called the universal quantifier.

2. The existential quantification $\exists x P(x)$ of P(x) is the proposition

"There exists an element $x \in U$ s.t. P(x)."

Here \exists is called the existential quantifier.

3. The uniqueness quantifier $\exists !xP(x)$ of P(x) is the proposition

"There exists a unique $x \in U$ such that P(x) is true."

Here \exists ! is called the uniqueness quantifier.

Example

Suppose that all creatures on earth are considered. Express these statements by using suitable quantifiers:

- "All lions are fierce."
- "Some lions do not drink coffee."
- "Some fierce creatures do not drink coffee."

Example

Suppose that all creatures on earth are considered. Express these statements by using suitable quantifiers:

- "All lions are fierce."
- "Some lions do not drink coffee."
- "Some fierce creatures do not drink coffee."

```
P(x): "x is a lion"
```

$$Q(x)$$
: "x is fierce"

$$R(x)$$
: "x drinks coffee."

Example

Suppose that all creatures on earth are considered. Express these statements by using suitable quantifiers:

- "All lions are fierce."
- "Some lions do not drink coffee."
- "Some fierce creatures do not drink coffee."

```
P(x): "x is a lion"
```

$$Q(x)$$
: "x is fierce"

$$R(x)$$
: "x drinks coffee."

$$\Longrightarrow \forall x (P(x) \to Q(x));$$

Example

Suppose that all creatures on earth are considered. Express these statements by using suitable quantifiers:

- "All lions are fierce."
- "Some lions do not drink coffee."
- "Some fierce creatures do not drink coffee."

```
P(x): "x is a lion"

Q(x): "x is fierce"

R(x): "x drinks coffee."
```

$$\implies \forall x (P(x) \to Q(x)); \qquad \exists x (P(x) \land \overline{R(x)});$$

Example

Suppose that all creatures on earth are considered. Express these statements by using suitable quantifiers:

- "All lions are fierce."
- "Some lions do not drink coffee."
- "Some fierce creatures do not drink coffee."

```
P(x): "x is a lion"

Q(x): "x is fierce"

R(x): "x drinks coffee."
```

$$\Longrightarrow \forall x (P(x) \to Q(x)); \qquad \exists x (P(x) \land \overline{R(x)}); \qquad \exists x (Q(x) \land \overline{R(x)}).$$

Example

Suppose that all creatures on earth are considered. Express these statements by using suitable quantifiers:

- "All lions are fierce."
- "Some lions do not drink coffee."
- "Some fierce creatures do not drink coffee."

```
P(x): "x is a lion"

Q(x): "x is fierce"

R(x): "x drinks coffee."
```

$$\Longrightarrow \forall x (P(x) \to Q(x)); \qquad \exists x (P(x) \land \overline{R(x)}); \qquad \exists x (Q(x) \land \overline{R(x)}).$$

Example

Suppose that all creatures on earth are considered. Express these statements by using suitable quantifiers:

- "All lions are fierce."
- "Some lions do not drink coffee."
- "Some fierce creatures do not drink coffee."

Solution. Set $U = \{\text{all creatures on earth}\}\$ and for any $x \in U$, we define the following predicates:

```
P(x): "x is a lion"

Q(x): "x is fierce"
```

R(x): "x drinks coffee."

$$\Longrightarrow \forall x (P(x) \to Q(x)); \qquad \exists x (P(x) \land \overline{R(x)}); \qquad \exists x (Q(x) \land \overline{R(x)}).$$

• Note that $\exists x (P(x) \to \overline{R(x)})$ and $\exists x (Q(x) \to \overline{R(x)})$ are wrong expressions for the second and the third statements, respectively.

MAD101 - duyvt15@fe.edu.vn

Definition

Nested quantifiers consist of finitely many quantifiers, where one quantifier is within the scope of another.

Definition

Nested quantifiers consist of finitely many quantifiers, where one quantifier is within the scope of another.

"
$$\forall x \in \mathbb{R}, \exists y \in [-1, 1]$$
 such that $\sin x = y$."

Definition

Nested quantifiers consist of finitely many quantifiers, where one quantifier is within the scope of another.

Example

"
$$\forall x \in \mathbb{R}, \exists y \in [-1, 1]$$
 such that $\sin x = y$."

TABLE 1 Quantifications of Two Variables.			
Statement	When True?	When False?	
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.	
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .	
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.	
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .	

Figure: The order of quantifiers.

Negating nested quantifiers

- Move the negation (\neg) to the right.
- Replace ∀ by ∃ and vice versa.

Negating nested quantifiers

- Move the negation (\neg) to the right.
- Replace \forall by \exists and vice versa.

Example

Express the negation of these statements if the domain for all variables consists of al real numbers:

- $\forall x \exists y \ (x = y^3)$
- $\forall m \ \forall n \ \exists p \ (p > \sqrt{m^2 + n^2} \ \lor \ p < (m+n)/2)$
- $\forall x \ (\exists y \ \forall z \ P(x,y,z) \land \exists z \ \forall y \ Q(x,y,z)).$

Negating nested quantifiers

- Move the negation (¬) to the right.
- ullet Replace \forall by \exists and vice versa.

Example

Express the negation of these statements if the domain for all variables consists of al real numbers:

- $\forall x \exists y \ (x = y^3)$
- $\forall m \ \forall n \ \exists p \ (p > \sqrt{m^2 + n^2} \ \lor \ p < (m+n)/2)$
- $\forall x \ (\exists y \ \forall z \ P(x,y,z) \land \exists z \ \forall y \ Q(x,y,z)).$

Solution.

•
$$\exists x \ \forall y \ (x \neq y^3)$$

Negating nested quantifiers

- Move the negation (\neg) to the right.
- ullet Replace \forall by \exists and vice versa.

Example

Express the negation of these statements if the domain for all variables consists of al real numbers:

- $\forall x \exists y \ (x = y^3)$
- $\forall m \ \forall n \ \exists p \ (p > \sqrt{m^2 + n^2} \ \lor \ p < (m+n)/2)$
- $\forall x \ (\exists y \ \forall z \ P(x,y,z) \land \exists z \ \forall y \ Q(x,y,z)).$

Solution.

- $\exists x \ \forall y \ (x \neq y^3)$
- $\exists m \ \exists n \ \forall p \ (p \leq \sqrt{m^2 + n^2} \land p \geq (m+n)/2)$

Negating nested quantifiers

- Move the negation (\neg) to the right.
- ullet Replace \forall by \exists and vice versa.

Example

Express the negation of these statements if the domain for all variables consists of al real numbers:

- $\forall x \exists y \ (x = y^3)$
- $\forall m \ \forall n \ \exists p \ (p > \sqrt{m^2 + n^2} \ \lor \ p < (m+n)/2)$
- $\forall x \ (\exists y \ \forall z \ P(x,y,z) \land \exists z \ \forall y \ Q(x,y,z)).$

Solution.

- $\exists x \ \forall y \ (x \neq y^3)$
- $\exists m \ \exists n \ \forall p \ (p \leq \sqrt{m^2 + n^2} \land p \geq (m+n)/2)$
- $\exists x \ (\forall y \ \exists z \ \overline{P(x,y,z)} \lor \forall z \ \exists y \ \overline{Q(x,y,z)}).$

Outline

- Subject Requirements
 - Score Evaluation
 - Course Description
- 2 The Foundation: Logic and Proofs
 - Propositional Logic
 - Propositional Equivalences
 - Predicates and Quantifiers
 - Exercises
 - Rules of Inference

Rule of Inference	Tautology	Name
$ \frac{p}{p \to q} $ $ \therefore \frac{q}{q} $	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \neg p \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$p \to q$ $\frac{q \to r}{p \to r}$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$p \lor q$ $\neg p$ $\therefore \overline{q}$	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
$ \begin{array}{c} p \\ q \\ \therefore \overline{p \wedge q} \end{array} $	$((p) \land (q)) \to (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore q \lor r$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

Rule	Name
$\frac{\forall x P(x)}{\therefore P(c)}$	Universal Instantiation
$\frac{P(c) \text{ for arbitrary } c}{\therefore \forall x P(x)}$	Universal generalization
	Existential instantiation
$\frac{P(c) \text{ for some element } c}{\therefore \exists x P(x)}$	Existential generalization

Rule	Name
$\frac{\forall x P(x)}{\therefore P(c)}$	Universal Instantiation
$\frac{P(c) \text{ for arbitrary } c}{\therefore \forall x P(x)}$	Universal generalization
	Existential instantiation
$\frac{P(c) \text{ for some element } c}{\therefore \exists x P(x)}$	Existential generalization

- \hookrightarrow **Universal Instantiation:** If $\forall x P(x)$ is true, then P(c) is true for any choice of c in the universe of discourse.
- \hookrightarrow **Universal generalization.** If P(c) is true for any choice of c in the universe of discourse, then $\forall x P(x)$ is true.

 $\underline{\mathsf{Example}}$

Example

- $\bigcirc \quad \mathsf{MAD}(\mathsf{Khang}) \to \mathsf{MAE}(\mathsf{Khang}) \to \mathbf{Universal\ Instantiation}$
- $\qquad \mathsf{MAD} \; (\mathsf{Khang}) \to \mathbf{Premise}$
- MAE(Khang) → Modus Ponens

Therefore, Khang has passed the MAE course.

Exercises

- Let P(x), Q(x), R(x), and S(x) be the statements "x is a duck, ""x is one of my poultry, ""x is an officer, "and "x is willing to waltz, "respectively. Express each of these statements using quantifiers; logical connectives; and P(x), Q(x), R(x), and S(x).
 - No ducks are willing to waltz.
 - No officers ever decline to waltz.
 - All my poultry are ducks.
 - My poultry are not officers.
 - O Does (d) follow from (a), (b), and (c)? If not, is there a correct conclusion?
- ② Let P(x), Q(x), R(x), and S(x) be the statements "x is a baby" "x is logical, "x is able to manage a crocodile, "and "x is despised, "respectively. Suppose that the domain consists of all people. Express each of these statements using quantifiers; logical connectives; and P(x), Q(x), R(x), and S(x).
 - Babies are illogical.
 - Nobody is despised who can manage a crocodile.
 - Illogical persons are despised.
 - Babies cannot manage crocodiles.
 - 1 Does (d) follow from (a), (b), and (c)? If not, is there a correct conclusion?

Exercises

- Express the negation of each of these statements in terms of quantifiers without using the negation symbol.
 - 0 $\forall x (-2 < x < 3).$
 - ① $\exists x \ (0 \le x < 5).$
 - $\forall x \ ((x \ge -2) \lor (x < 10)).$
 - $\exists x \ ((x < 4) \land (x > -4)).$
- Oetermine the truth value of each of these statements if the domain consists of all real numbers.

 - $\exists x \ (x^4 < x^2).$

Thank you for your attention!