Devoir à la maison n°06 : corrigé

SOLUTION 1.

1. On sait de manière générale que

$$(1+u)^{\alpha} = \sum_{u\to 0}^{n} \frac{1}{k!} \left(\prod_{j=0}^{k-1} \alpha - j \right) u^{k} + o(u^{n})$$

Notamment pour $\alpha = -\frac{1}{2}$ et u = -x,

$$(1-x)^{-\frac{1}{2}} = \sum_{k=0}^{n} \frac{1}{k!} \left(\prod_{j=0}^{k-1} -\frac{1}{2} - j \right) (-x)^{k} + o(x^{n})$$

En posant

$$a_k = \frac{1}{k!} (-1)^k \prod_{j=0}^{k-1} \left(-\frac{1}{2} - j \right)$$

on a donc

$$\frac{1}{\sqrt{1-x}} = \sum_{k=0}^{n} \alpha_k x^k + o(x^n)$$

Remarquons maintenant que

$$a_{k} = \frac{1}{k!} \prod_{j=0}^{k-1} \frac{2j+1}{2}$$

$$= \frac{1}{2^{k}k!} \prod_{j=0}^{k-1} (2j+1)$$

$$= \frac{1}{2^{k}k!} \cdot \frac{\prod_{j=1}^{2k} j}{\prod_{j=1}^{k} 2j}$$

$$= \frac{1}{2^{k}k!} \cdot \frac{(2k)!}{2^{k}k!} = \frac{1}{2^{2k}} {2k \choose k}$$

On en déduit bien le résultat voulu.

2. A l'aide la question précédente;

$$\frac{1}{\sqrt{1-x^2}} = \sum_{k=0}^{n} \frac{1}{2^{2k}} {2k \choose k} x^{2k} + o(x^{2n})$$

Puisque arcsin est la primitive sur] -1, 1[de $x \mapsto \frac{1}{\sqrt{1-x^2}}$ s'annulant en 0,

$$\arcsin x = \sum_{k=0}^{n} \frac{1}{2^{2k}(2k+1)} {2k \choose k} x^{2k+1} + o(x^{2n+1})$$

SOLUTION 2.

1. Soit f une solution sur I de l'équation différentielle y' + ay = b. Montrons par récurrence que f est de classe C^n pour tout $n \in \mathbb{N}$.

Tout d'abord, f est dérivable sur I en tant que solution d'une équation différentielle. A fortiori, elle est continue donc de classe \mathcal{C}^0 sur I. Supposons maintenant que f est de classe \mathcal{C}^n sur I pour un certain $n \in \mathbb{N}$. Alors f' = b - af est également de classe \mathcal{C}^n sur I puisque a, b et f le sont. Ainsi f est de classe \mathcal{C}^{n+1} sur I. Par récurrence, f est de classe \mathcal{C}^n sur I pour tout $n \in \mathbb{N}$ donc de classe \mathcal{C}^∞ sur I.

2. Soit f une solution sur I de l'équation différentielle y' + ay = b. Montrons par récurrence que f est de classe C^n pour tout $n \in \mathbb{N}^*$.

Tout d'abord, f est dérivable deux fois sur I en tant que solution d'une équation différentielle. A fortiori, elle est de classe \mathcal{C}^1 sur I. Supposons maintenant que f est de classe \mathcal{C}^n sur I pour un certain $n \in \mathbb{N}^*$. Alors $f'' = c - \alpha f' - bf$ est de classe \mathcal{C}^{n-1} sur I puisque α , b, f et f' le sont. Ainsi f est de classe \mathcal{C}^{n+1} sur I. Par récurrence, f est de classe \mathcal{C}^n sur I pour tout $n \in \mathbb{N}^*$ donc de classe \mathcal{C}^∞ sur I.

SOLUTION 3.

1. Résolvons d'abord l'équation homogène associée :

$$(E_H)$$
 $(1 + x^2)y' = 3xy$

Une primitive de $x\mapsto \frac{3x}{1+x^2}$ est $x\mapsto \frac{3}{2}\ln(1+x^2)$. On en déduit que les solutions de (E_H) sont les fonctions $x\mapsto \lambda\exp\left(\frac{3}{2}\ln(1+x^2)\right)=(1+x^2)^{\frac{3}{2}}$ où $\lambda\in\mathbb{R}$.

Recherchons maintenant une solution particulière de (E) sous forme polynomiale. Soit P une telle solution en supposant qu'elle existe. P est nécessairement non nulle; notons n son degré et a sont coefficient dominant. Le coefficient de X^{n+1} dans $(1+X^2)P'-3XP$ est (n-3)a. Or 1 est un polynôme de degré 0. On en déduit que (n-3)a=0 i.e. n=3. Posons donc $P=aX^3+bX^2+cX+d$. On obtient $(1+X^2)P'-3XP=$

$$-bX^3 + (3\alpha - 2c)X^2 + (2b - 3d)X + c. \text{ On est donc amené à résoudre le système} \begin{cases} -b = 0 \\ 3\alpha - 2c = 0 \\ 2b - 3d = 0 \end{cases}. \text{ On trouve } dC = 1$$

 $a = \frac{2}{3}$, b = 0, c = 1 et d = 0. Ceci signifie que la fonction polynomiale P telle que $P(x) = \frac{2}{3}x^3 + x$ est solution de (E).

On en déduit que les solutions f_{λ} de (E) sont telles que :

$$\forall x \in \mathbb{R}, \, f_{\lambda}(x) = \frac{2}{3}x^3 + x + \lambda(1+x^2)^{\frac{3}{2}} \quad \text{ où } \lambda \in \mathbb{R}$$

2. On a $\frac{2}{3}x^3 + x \sim \frac{2}{3}x^3$ et $(1+x^2)^{\frac{3}{2}} \sim x^3$. Pour que f_{λ} admette une limite finie en $+\infty$ il faut donc nécessairement que $\lambda = -\frac{2}{3}$ (on a donc l'unicité sous réserve d'existence). Posons $g = f_{-\frac{2}{3}}$. Or $(1+x^2)^{\frac{3}{2}} = x^3 \left(1 + \frac{1}{x^2}\right)^{\frac{3}{2}}$ pour $x \ge 0$ et

$$\left(1 + \frac{1}{x^2}\right)^{\frac{3}{2}} = 1 + \frac{3}{2x^2} + o\left(\frac{1}{x^3}\right)$$

On en déduit que g(x) = o(1) i.e. g(x) tend vers 0 en $+\infty$. g est donc l'unique solution de (E) admettant une limite finie en $+\infty$.

3. g est dérivable sur $\mathbb R$ et on trouve $g'(x)=2x^2+1-2x\sqrt{1+x^2}$ pour tout $x\in\mathbb R$. On voit facilement que g'(x)>0 pour $x\leqslant 0$. Supposons maintenant $x\geqslant 0$. Alors

$$g'(x) > 0 \quad \Leftrightarrow \quad 2x^2 + 1 > 2x\sqrt{1 + x^2} \quad \Leftrightarrow \quad (2x^2 + 1)^2 > \left(2x\sqrt{1 + x^2}\right)^2$$

car les membres de l'inégalité sont positifs. Finalement g'(x) > 0 équivaut à 1 > 0, ce qui est toujours vrai. On en déduit que g'(x) > 0 pour tout $x \in \mathbb{R}$.

Remarque. On aurait également pu remarquer que $g'(x) = \left(\sqrt{1+x^2} - x\right)^2$.

- **4.** On a $(1+x^2)^{\frac{3}{2}}$ ~ $-x^3$. On en déduit que g(x) ~ $\frac{4}{3}x^3$. Ainsi $\lim_{x \to -\infty} \frac{g(x)}{x^3} = \frac{4}{3}$.
- **5.** La fonction g est strictement croissante, admet pour limites $-\infty$ en $-\infty$ et 0 en $+\infty$.

SOLUTION 4.

1. a. Puisque f_{λ} est solution de (E), pour tout $x \in \mathbb{R}_{+}^{*}$

$$(1+x^2)f_{\lambda}'(x) + 2xf_{\lambda}(x) = \frac{1}{x}$$

Notamment pour x = 1,

$$2f'_{\lambda}(1) + 2f_{\lambda}(1) = 1$$

et donc $f'_{\lambda}(1) = \frac{1}{2} - \lambda$.

 D_{λ} admet donc pour équation cartésienne

$$y = \left(\frac{1}{2} - \lambda\right)(x - 1) + \lambda$$

b. Une équation de D_{λ} est également

$$y = \frac{1}{2}(x-1) + \lambda(2-x)$$

Ceci permet de constater que toutes les droites D_{λ} passent par le point de coordonnées $\left(2,\frac{1}{2}\right)$.

2. a. L'équation (E) s'écrit également

$$y' + \frac{2x}{1 + x^2} = \frac{1}{x(1 + x^2)}$$

La fonction $x\mapsto \frac{2x}{1+x^2}$ admet pour primitive $x\mapsto \ln(1+x^2)$. Les solutions de l'équation homogène associée sont donc les fonctions $x\mapsto \frac{C}{1+x^2}$ où $C\in\mathbb{R}$.

On utilise la méthode de la variation de la constante pour déterminer une solution particulière de l'équation avec second membre. On cherche donc une solution sous la forme $x \mapsto \frac{C(x)}{1+x^2}$ avec C dérivable sur \mathbb{R}_+^* , ce qui conduit à

$$\forall x \in \mathbb{R}_+^*, \ \frac{C'(x)}{1+x^2} = \frac{1}{x(1+x^2)}$$

ou encore

$$\forall x \in \mathbb{R}_+^*, \ C'(x) = \frac{1}{x}$$

On peut donc choisir $C: x \mapsto \ln x$ ce qui fournit $x \mapsto \frac{\ln x}{1+x^2}$ comme solution particulière. Les solutions de (E) sont donc les fonctions $x \mapsto \frac{\ln x + C}{1+x^2}$ où $C \in \mathbb{R}$.

b. D'après la question précédente, il existe $C \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}_+^*, \ f(x) = \frac{\ln x + C}{1 + x^2}$$

La condition $f_{\lambda}(1)=\lambda$ fournit $C=2\lambda.$ On a donc $f_{\lambda}:x\in\mathbb{R}^*_+\mapsto \frac{\ln x+2\lambda}{1+x^2}.$

3. En raisonnant comme dans la première question, on trouve

$$f'(x_0) = \frac{c(x_0) - \lambda b(x_0)}{a(x_0)}$$

Une équation cartésienne de \mathcal{D}_{λ} est donc

$$y = \frac{c(x_0) - \lambda b(x_0)}{a(x_0)}(x - x_0) + \lambda$$

ou encore

$$a(x_0)(y - \lambda) + (\lambda b(x_0) - c(x_0))(x - x_0) = 0$$

En regroupant les λ , cette dernière équation équivaut à

$$\lambda(b(x_0)(x - x_0) - a(x_0)) + a(x_0)y - c(x_0)(x - x_0) = 0$$

Si $b(x_0) \neq 0$, alors toutes les droites \mathcal{D}_{λ} passent par le point de coordonnées $\left(x_0 + \frac{\alpha(x_0)}{b(x_0)}, \frac{c(x_0)}{b(x_0)}\right)$. Si $b(x_0) = 0$, une équation de \mathcal{D}_{λ} est

$$y = \frac{c(x_0)}{a(x_0)}(x - x_0) + \lambda$$

Les droites \mathcal{D}_{λ} ont toutes le même coefficient directeur et sont donc parallèles.