NOM:

Exercice 1: Montrer que l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 2x & - & y & \\ x & + & y & + & 3z \\ 4x & - & y & + & 2z \end{pmatrix}$ est linéaire, et calculer son noyau.

Exercice 2 : Énoncer la formule de Taylor-Young.

Exercice 4: Soit $n \in \mathbb{N}$ et $\alpha \in \mathbb{R}$. Donner les DL suivants (DL_n(0) pour DL à l'ordre n en 0).

 $\mathrm{DL}_n(0)$ de $\mathrm{e}^{\,x}$:

 $\mathrm{DL}_n(0)$ de $\frac{1}{1+x}$:

 $DL_n(0)$ de ln(1+x):

 $\mathrm{DL}_3(0)$ de $(1+x)^{\alpha}$:

 $DL_5(0) \operatorname{de} \sin(x)$: