# WAGASCI-BabyMIND new Monte Carlo software

Pintaudi Giorgio, PhD Yokohama National University

# **WAGASCI - BabyMIND Monte Carlo history**

- It was developed starting from the INGRID Monte Carlo code
- There were three major problems with the previous version:
  - 1. It was designed only for INGRID
  - 2. Many people contributed to it without any version control
  - 3. The output is taylored towards the **INGRID** cross-section analysis



# Problem 1: it was designed only for INGRID

| INGRID                                                          | WAGASCI-BabyMIND                                                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| No double readout                                               | WallMRD and BabyMIND have <b>double</b> readout                                         |
| Only horizontal, vertical and veto scintillators                | WAGASCI has grid scintillators and YASU tracker has double scintillators (left - right) |
| Many variables are still called ingrid_ <something></something> |                                                                                         |
| position of INGRID modules does not change very often           | Position of WAGASCI detectors changed often and it is much more complex                 |

### **Problem 2: no version control**

- Many people in different period of times contributed to the code
- Without a version control system, it is difficult to understand who is doing what
- Some code that is not used anymore is left there to rot
- Huge chunks of code are commented out for no apparent reason
- Some constants are defined more than once with different values

# **Problem 3: output designed for INGRID analysis**

- Many branches are useful only for INGRID analysis
- Some information useful for WAGASCI-BabyMIND is missing or difficult to read
- Michel electrons are not stored

 Response of electronics and scintillators is fully implemented only for Proton Module

This is the only thing left to do

## **Solution 1: new data format**

| HITS                                               | TRACKS                                               | VERTICES                                                          |
|----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|
| can accomodate double readout                      | tracks can cross many subdetectors                   | can be not only primary vertex, <b>but secondary vertices too</b> |
| It is assumed the detectors are already calibrated | Initial and final information is recorded            | Each spill can contain many events (primary vertices)             |
| is compatible with all WAGASCI subdetectors        | can record primary particles and secondary particles |                                                                   |

More about the new data format later

# **Solution 2: version control system**

- All code is hosted on WAGASCI-BabyMIND
   GitLab
- A proper git branching model is exploited (<u>Vincent Driessen</u> model)
- A **version number** is used to tag all versions (current is v0.1.0)
- Everybody is getting used to git and I see a lot of improvement



# **Solution 3: WAGASCI-BabyMIND analysis**

- Fixed some bugs in the vertex Z position of Proton Module
- Probability of vertex in the front VETO planes was higher than the other planes









# **Solution 3: WAGASCI-BabyMIND analysis**

- Michel electrons are found and recorded
- The decay of the muon into neutrinos and Michel electron must be checked manually (Geant4 does not provide a function like "give me Michel electron")
- All decay products are looked for (muon neutrino, electron neutrino and Michel electron) and checked
- The **invariant mass** of the decay is checked for consistency (up to 5%)



and the relative decay for µ+

Since the invariant mass is determined from quantities which are conserved during a decay, the invariant mass calculated using the energy and momentum of the decay products of a single particle is equal to the mass of the particle that decayed. The mass of a system of particles can be calculated from the general formula:

$$\left(Wc^2\right)^2 = \left(\sum E\right)^2 - \left\|\sum \mathbf{p}c\right\|^2,$$

# **Solution 3: WAGASCI-BabyMIND analysis**

- Response of Proton Module is fully implemented
- Response of WAGASCI scintillator is implemented. Response of WAGASCI electronics is partially implemented
- Response of WallMRD is partially implemented
- Response of BabyMIND is partially implemented

This needs to be done in the near future

# **Other improvements**

- 1. No more CERNLIB dependency (input is ROOT file from NEUT)
- 2. No more path hard-coding
- 3. All constants defined in one place
- 4. All physical variables are expressed in consistent units
  - Length in **mm**
  - Time in **ns**
  - Energy/momentum/mass in MeV
- 5. Configuration can be changed using the CLI and configuration INI file

#### **New data format**

- It contains all the info about hits, vertices, cluster of hits, tracks, beam
- It can be used for any kind of analysis in WAGASCI-BabyMIND
- It comes with a library that makes it easy to access and modify
- It tries to reduce the amount of redundacy



#### **New data format**





doxygen documentation

# New configuration file



# General

gui=false

command=

neutrino-interaction-settings=WagasciDownstream water-settings=WgupInWgdownIn neutrino-flavor-settings=MuonNeutrino

magnetic-field=true

# IO

output-file-path=data/output.root input-file-path=data/input.root

# GEOMETRY
geometry-dir-path=data/geometry

# Log
debug-level=info
log-file-path=data/log/B2MC.log

- Every option can be configured both in the configuration file and CLI
- The CLI has priority over the configuration file
- A default configuration file is created the first time the program is run



# **Backup slides**