SVM (Support Vector Machine)

"두 집단을 구분하는 가장 넓은 도로"

하드 마진

- 모든 샘플이 도로 바깥쪽에 위치
- 이상치에 민감

소프트 마진

- 마진오류를 일부 허용
- 과대적합을 방지

하드 마진 Idea 결정 경계와 수직인 어떤 벡터 w 어떤 점에 대한 위치벡터 u

u를 w에 정사영한 벡터가 결정경계를 (넘는다면 / 넘지 않는다면) (positive / negative)로 분류

 $w \cdot u \geq c$ 이면 positive $\Rightarrow w \cdot u + b \geq 0$ 이면 positive "Decision Rule"

목표: 마진을 가장 크게 하는 w와 b 찾기

 $m{w}$: 결정경계의 방향 결정, b: 결정경계의 위치 결정

마진 결정 (도로의 양 끝선)

positive: $w \cdot x_+ + b \ge 1$

negative: $\boldsymbol{w} \cdot \boldsymbol{x} + b \leq -1$

 t_i 정의: I번째 샘플이 positive 일 때 1, negative 일 때 -1

$$t_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) - 1 \ge 0$$

도로의 양 끝에 위치한 <u>서포트 벡터</u>의 경우 $t_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) - 1 = 0$

마진의 너비

 $x_+ - x_-$ 벡터를 w 벡터에 정사영한 벡터의 길이

$$(x_+ - x_-)$$
 • $\dfrac{w}{\parallel w \parallel}$

양 서포트 벡터 x_+ , x_- 에 대해 $t_i(w \cdot x_i + b) - 1 = 0$ 에서

$$(x_{+}-x_{-}) \cdot \frac{w}{\parallel w \parallel} = \frac{1}{\parallel w \parallel} (1-b+1+b) = \frac{2}{\parallel w \parallel}$$

SVM 목표: 마진을 최대화

$$\sim \frac{2}{\parallel \boldsymbol{w} \parallel}$$
 최대화 $\sim \parallel \boldsymbol{w} \parallel$ 최소화 $\sim \frac{1}{2} \parallel \boldsymbol{w} \parallel^2$ 최소화

라그랑주 승수법

$$g_i(x_1,...,x_n)=C_i \ (i=1,...,k)$$
의 제약조건에서 $f(x_1,...,x_n)$ 의 최소 조건

$$\nabla f = \sum_{i} \alpha_{i} \nabla g_{i} \implies \nabla f - \sum_{i} \alpha_{i} \nabla g_{i} = 0$$

$$L = f - \sum_i \alpha_i g_i$$
 일 때, $\nabla L = 0$ 과 동일한 식

$$t_i(\pmb{w} \bullet \pmb{x_i} + b) - 1 = 0$$
 의 제약조건에서 $\frac{1}{2} \parallel \pmb{w} \parallel^2$ 의 최소조건

$$L = \frac{1}{2} \| \boldsymbol{w} \|^2 - \sum_{i} \alpha_i (t_i(\boldsymbol{w} \cdot \boldsymbol{x_i} + b) - 1)$$
 에서

$$\nabla_{\boldsymbol{w}} L = \boldsymbol{w} - \sum_{i} \alpha_{i} t_{i} \boldsymbol{x}_{i} = 0 \qquad \Rightarrow \qquad \boldsymbol{w} = \sum_{i} \alpha_{i} t_{i} \boldsymbol{x}_{i}$$

$$\nabla_b L = -\sum_i \alpha_i t_i = 0 \implies \sum_i \alpha_i t_i = 0$$

두 결과를 *L*에 대입

$$L = \frac{1}{2} (\sum_{i} \alpha_i t_i \mathbf{x_i}) \cdot (\sum_{i} \alpha_i t_i \mathbf{x_i}) - (\sum_{i} \alpha_i t_i \mathbf{x_i}) \cdot (\sum_{i} \alpha_i t_i \mathbf{x_i}) - \sum_{i} \alpha_i t_i b + \sum_{i} \alpha_i t_i \mathbf{x_i})$$

$$L = \sum_{i} \alpha_{i} - \frac{1}{2} \left(\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} t_{i} t_{j} \boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j} \right)$$

$$L = \sum_{i} \alpha_{i} - \frac{1}{2} \left(\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} t_{i} t_{j} x_{i} \cdot x_{j} \right)$$

 α , t는 모두 스칼라, L은 내적 $x_i \cdot x_j$ 와 연관이 있다. t_i , x_i 는 주어진 값, L은 α_i 에 대한 이차식

목적함수 L: QP (Quadratic Programming)

$$L = \sum_{i} \alpha_{i} - \frac{1}{2} (\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} t_{i} t_{j} x_{i} \cdot x_{j})$$
 를 최대화하고,

모든 샘플에 대해 $\hat{\alpha_i} \geq 0$ 이고, $\sum_i \hat{\alpha_i} t_i = 0$ 를 만족하는 $\hat{\alpha}$ 찾기

$\hat{\alpha}$ 를 찾았다면

$$\hat{\boldsymbol{w}} = \sum_{i} \hat{\alpha_i} t_i \boldsymbol{x_i}$$

$$\hat{b} = \frac{1}{n_s} \sum_{\hat{\alpha_i} > 0} (t_i - \hat{\boldsymbol{w}} \cdot \boldsymbol{x_i})$$

"목표: 마진을 가장 크게 하는 w와 b 찾기"

비선형 SVM

도로가 직선으로 결정되지 못하는 경우 샘플들의 공간을 변환 $x
ightarrow \phi(x), \; x_i \cdot x_j
ightarrow \phi(x_i) \cdot \phi(x_j)$

커널 SVM

변환 ϕ 의 계산 없이 바로 $\phi(x_i)$ • $\phi(x_j)$ 를 구하는 커널, 계산복잡도의 이득 $K(x_i,x_j)$ = $\phi(x_i)$ • $\phi(x_j)$

이 경우
$$L = \sum_{i} \alpha_{i} - \frac{1}{2} (\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\mathbf{x}_{i}) \cdot \phi(\mathbf{x}_{j}))$$

$$= \sum_{i} \alpha_{i} - \frac{1}{2} (\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} t_{i} t_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}))$$

파이썬에서

- sklearn.svm의 LinearSVC
- sklearn.svm의 SVC
- sklearn.linear_model의 SGDClassifier

라이브러리	알고리즘	커널 트릭	계산 복잡도
LinearSVC	목적 함수	불가능	$O(m \times n)$
SGDClassifier	확률적 경사하강법	불가능	$O(m \times n)$
SVC	목적 함수	가능	$O(m^2 \times n) \sim O(m^3 \times n)$

참고 자료

- 오헬리앙 제롱, *핸즈온 머신러닝 2판* (한빛미디어, 2020), 205-228, 887-889
- Patrick Winston, "16. Learning: Support Vector Machines" MIT 6.034
 Artificial Intelligence, Fall 2010. last modified JAN 11, 2014,
 https://youtu.be/_PwhiWxHK80