PHY 301 Quantum Mechanics

Chongfeng Ling

2021-2022

Contents

1	Introduction		1
	1.1	Franklin's Oil-Drop Experiment	1
	1.2	From Classical Mechanics to Quantum Mechanics	1
2	Wa	ve Function	1
	2.1	Definition in 1-D Space	1
	2.2	Mean and Variance of the Position	2
	2.3	Probability Density of Position for Classical Object	2
3	The Schrödinger equation		3
	3.1	Normalization	3
	3.2	Linear momentum	4
	3.3	From the Schrödinger equation to the Newton law	4

1 Introduction

Quantum: quantities can vary by discrete amounts.

Mechanics: study of motion.

1.1 Franklin's Oil-Drop Experiment

Spilled a spoonful $(2 \ ml)$ of oil on the surface of a lake and extended to about 2000 m^2 , but not more. This experiment shows the **existent** and **size** of atoms.

$$V = Sh$$

$$h = \frac{V}{S} \sim \frac{2 \times 10^{-6}}{2 \times 10^{3}} \text{ m} \sim 10^{-9} \text{ m}$$

Atomic and molecular scales are nanometric

1.2 From Classical Mechanics to Quantum Mechanics

In classical mechanics, position is a function of time. **Deterministic**.

In quantum mechanics, the position of a particle is a random variable. **Probabilistic**.

2 Wave Function

2.1 Definition in 1-D Space

Definition 2.1 (Wave Function). For a small particle living in a **one-dimensional space**, the wave function Ψ is a complex-valued function of space and time:

$$\Psi: \mathbf{R} \times \mathbf{R} \to \mathbb{C}$$

$$(x,t)\mapsto \Psi(x,t)\in \mathbf{C}$$

Remark 2.1. $|\Psi(x,t)|^2$ is the p.d.f. of finding the particle in position x at time t.

Remark 2.2. $\int_a^b |\Psi(x,t)|^2 dx$ is the c.d.f of finding the particle between position [a,b] at time t.

Remark 2.3. Integration is over space, t is a parameter.

2.2 Mean and Variance of the Position

These two statistics are expressed as integrals over the entire space. They are **deterministic** functions of time. Given wave function Ψ , then we have:

$$\langle x \rangle(t) = \int_{-\infty}^{+\infty} x |\Psi(x,t)|^2 dx$$
$$\langle Var(x) \rangle(t) = \int_{-\infty}^{+\infty} (x - \langle x \rangle(t))^2 |\Psi(x,t)|^2 dx$$
$$[\Psi] = \frac{1}{\sqrt{L}}$$

2.3 Probability Density of Position for Classical Object

example

3 The Schrödinger equation

One dimension's Schrödinger equation for wave wave function Ψ ($x \in \mathbf{R}$ is a space coordinate, t is time, V is a **real-valued potential**) is

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi(x,t) + V(x)\Psi(x,t)$$
(1)

Complex conjugate form is

$$-i\hbar \frac{\partial \Psi^*}{\partial t}(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi^*(x,t) + V(x)\Psi^*(x,t)$$
(2)

Planck constant \hbar is

$$h = \frac{h}{2\pi} \simeq 1.05 \times 10^{-34} \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-1}$$

Assumption 3.1. Ψ and all its derivatives are smooth and go to zero when |x| goes to infinity, faster than any negative power of x.

3.1 Normalization

Due to its definition, the wave function has to be normalized at all time. That is, for all t, we have

$$\int_{-\infty}^{\infty} \Psi^*(x,t)\Psi(x,t)dx = 1$$
(3)

Remark 3.1. Not all solutions of the Schrödinger equation are wave function.

Theorem 3.1. A normalized wave function stays normalized.

Proof. For a normalized wave function at time t = 0:

$$\int_{-\infty}^{\infty} \Psi^*(x,0)\Psi(x,0)dx = 1$$

consider t > 0:

$$\begin{split} &\frac{d}{dt} \left(\int_{-\infty}^{\infty} \Psi^*(x,t) \Psi(x,t) dx \right) \\ &= \int_{-\infty}^{+\infty} \frac{\partial \Psi^*(x,t)}{\partial t} \Psi(x,t) dx + \int_{-\infty}^{+\infty} \Psi^*(x,t) \frac{\partial \Psi(x,t)}{\partial t} dx \\ &= \frac{1}{i\hbar} \int_{-\infty}^{+\infty} \left(+ \frac{\hbar^2}{2m} \frac{\partial^2 \Psi^*(x,t)}{\partial x^2} - V(x) \Psi^*(x,t) \right) \Psi(x,t) dx + \\ &\frac{1}{i\hbar} \int_{-\infty}^{+\infty} \Psi^*(x,t) \left(- \frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x) \Psi(x,t) \right) dx \\ &= \frac{\hbar}{2mi} \left(\left[\Psi \frac{\partial}{\partial x} \Psi^* \right]_{-\infty}^{+\infty} - \int \frac{\partial}{\partial x} \Psi^* \frac{\partial}{\partial x} \Psi dx \right) \\ &- \left[\Psi^* \frac{\partial}{\partial x} \Psi \right]_{-\infty}^{+\infty} + \int \frac{\partial}{\partial x} \Psi \frac{\partial}{\partial x} \Psi^* dx \right) \\ &= 0 \end{split}$$

by Assumption 3.1. Hence, Ψ is normalized at all time.

3.2 Linear momentum

We can not know actual position of a particle, hence we use the expectation of position $\langle x \rangle(t)$ instead.

$$\left| \langle x \rangle(t) = \int_{-\infty}^{+\infty} \Psi^*(x, t) x \Psi(x, t) dx \right| \tag{4}$$

the velocity of a particle is

$$\left| \langle V \rangle = \frac{d\langle x \rangle}{dt} \right| \tag{5}$$

the average linear momentum is

$$\sqrt{\langle p \rangle} = \int_{-\infty}^{+\infty} \Psi^*(x,t) \left(-i\hbar \frac{\partial}{\partial x} \right) \Psi(x,t) dx$$
 (6)

$$Proof.$$
 ...

3.3 From the Schrödinger equation to the Newton law

. . .