MACHINE LEARNING WITH PYTHON

ADVANCED REGRESSION TOPICS

Training Data Set can be written as following:

Sl. No.	x_0	<i>x</i> ₁	•••	x_k	y
1	1	$x_1^{(1)}$	•••	$x_k^{(1)}$	y ⁽¹⁾
2	1	$x_1^{(2)}$	•••	$x_k^{(2)}$	y ⁽²⁾
:	•	:	•••		:
m	1	$x_1^{(m)}$	•••	$x_k^{(m)}$	$y^{(m)}$

- There are total k many features and m many training examples.
- Notice that we have added one extra feature column x_0 with all values 1 in the left.
- The training samples can now be written as $\langle \boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)} \rangle_{i=1}^m$ Where $\boldsymbol{x}^{(i)} = \begin{bmatrix} x_0^{(i)}, x_1^{(i)}, x_2^{(i)}, \dots, x_k^{(i)} \end{bmatrix}^T$ is the vector of dimension k+1.
- Now the equation $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_k x_k$ can be written in vector form as $y = \mathbf{\Theta}^T \mathbf{x}$.
- Where $\mathbf{\Theta} = [\theta_0, \theta_1, \theta_2, ..., \theta_k]^T$ is the vector of parameters of the model. $\mathbf{\Theta}$ is of dimension k+1.

In linear regression we are trying to estimate the model parameter vector from the given set of data. Let the estimated parameter vector be $\widehat{\mathbf{\Theta}}$ and the corresponding predicted values be $\widehat{\mathbf{y}}$. Then in vector-matrix notation:

$$\widehat{\mathbf{y}} = \begin{bmatrix} \widehat{\mathbf{y}}^{(1)} \\ \widehat{\mathbf{y}}^{(2)} \\ \vdots \\ \widehat{\mathbf{y}}^{(m)} \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_k^{(1)} \\ 1 & x_1^{(2)} & \cdots & x_k^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_1^{(m)} & \cdots & x_k^{(m)} \end{bmatrix} \begin{bmatrix} \widehat{\theta}_0 \\ \widehat{\theta}_1 \\ \vdots \\ \widehat{\theta}_k \end{bmatrix} \quad \text{or } \widehat{\mathbf{y}} = \mathbf{X}\widehat{\mathbf{\Theta}} \text{, Where } \mathbf{X} \text{ is the matrix:}$$

x_0	x_1	•••	x_k
1	$x_1^{(1)}$	•••	$x_k^{(1)}$
1	$x_1^{(2)}$	•••	$x_k^{(2)}$
:	:	•••	
1	$x_1^{(m)}$	•••	$x_k^{(m)}$

The mean square error cost function in vector-matrix notation is following: $J(\widehat{\mathbf{\Theta}}) = \frac{1}{2m} \left(X \widehat{\mathbf{\Theta}} - y \right)^T \left(X \widehat{\mathbf{\Theta}} - y \right)$

where $\hat{y} = X\hat{\Theta}$ is the vector of predicted values and y is vector of the actual values.

Simplified cost function is:

$$J(\widehat{\mathbf{\Theta}}) = \frac{1}{2m} \left(X \widehat{\mathbf{\Theta}} - \mathbf{y} \right)^T \left(X \widehat{\mathbf{\Theta}} - \mathbf{y} \right) = \frac{1}{2m} \left(\left(X \widehat{\mathbf{\Theta}} \right)^T - \mathbf{y}^T \right) \left(X \widehat{\mathbf{\Theta}} - \mathbf{y} \right) = \frac{1}{2m} \left(\left(X \widehat{\mathbf{\Theta}} \right)^T X \widehat{\mathbf{\Theta}} - \mathbf{y}^T \left(X \widehat{\mathbf{\Theta}} \right) - \left(X \widehat{\mathbf{\Theta}} \right)^T \mathbf{y} + \mathbf{y}^T \mathbf{y} \right) = \frac{1}{2m} \left(\widehat{\mathbf{\Theta}}^T X^T X \widehat{\mathbf{\Theta}} - 2 \widehat{\mathbf{\Theta}}^T X^T \mathbf{y} + \mathbf{y}^T \mathbf{y} \right)$$

Because $y^T(X\widehat{\Theta})$ and $(X\widehat{\Theta})^T y$ are scalars and $y^T(X\widehat{\Theta}) = (X\widehat{\Theta})^T y = \widehat{\Theta}^T X^T y$

• After differentiating $J(\widehat{\mathbf{\Theta}})$ with respect to $\widehat{\mathbf{\Theta}}$ and setting the derivative to zero:

$$\frac{\partial J(\widehat{\mathbf{\Theta}})}{\partial \widehat{\mathbf{\Theta}}} = \frac{1}{m} (X^T X \widehat{\mathbf{\Theta}} - X^T y) = 0 \quad or \quad X^T X \widehat{\mathbf{\Theta}} = X^T y \quad or$$

$$\widehat{\mathbf{\Theta}} = (X^T X)^{-1} X^T y, assuming X^T X is invertible$$
Normal Equation

• Gradient Descent or Normal Equation which one is preferable?

Though normal equation directly gives solution without iteration like GD, it has many drawbacks. Like, for large dataset computing $(X^TX)^{-1}$ is a costly operation. Moreover, if X^TX is non-invertible we can't use normal equation directly as above.

The workaround in the case when X^TX is non-invertible is to use pseudo-inverse.

Hence, gradient descent is more popular and good choice for solving linear regression problem.

POLYNOMIAL REGRESSION

Consider the following example:

We can fit a straight line through the datapoints of the form

$$y = \theta_0 + \theta_1 x$$

• But we can do better, if we fit second order polynomial of the form:

$$y = \theta_0 + \theta_1 x + \theta_2 x^2$$

• Or if we fit third order polynomial of the form:

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

• In general we can fit a n^{th} order polynomial through the datapoints:

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + ... + \theta_n x^n$$

POLYNOMIAL REGRESSION

- Smaller the value of n, the complexity of the model is less but the model may not fit the dataset appropriately. So we have to choose n accordingly such that we get reasonably good fit with less complexity.
- We can convert the polynomial regression problem into multiple linear regression problem just by assigning:

 $x_1=x, x_2=x^2, x_3=x^3, \dots, x_n=x^n$ and then constructing multiple linear regression model $y=\theta_0+\sum_{i=1}^n\theta_ix_i$

• For more than one predictor variables the polynomial regression becomes more complicated. For two predictor variables x_1 and x_2 the generalized form of second order polynomial is:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2$$

COEFFICIENT OF DETERMINATION

To determine the "goodness" of the fit in a linear regression model we use a quantitative measure. That is "Coefficient of Determination" (R^2) . It is defined as follows.

- Let there are m number of datapoints. $\mathbf{y} = [y_1, y_2, y_3, ..., y_m]^T$ is the vector of the actual values of target variable and $\hat{\mathbf{y}} = [\hat{y}_1, \hat{y}_2, \hat{y}_3, ..., \hat{y}_m]^T$ is the vector of predicted values of the target variable.
- Let, \bar{y} is the mean of the target variable. Then the *Total Sum of Squares (TSS)* is defined as follows:

$$TSS = \sum_{i=1}^{m} (y_i - \bar{y})^2$$

■ TSS is proportional to the variance of the target variable.

COEFFICIENT OF DETERMINATION

We already know the Residual Sum of Squares (RSS)

$$RSS = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

■ Now the *Fraction of Unexplained Variance (FUV)* is defined as:

$$FUV = \frac{RSS}{TSS}$$

• Coefficient of Determination (R^2) also called *Fraction of Explained Variance (FEV)* is defined as:

$$R^2 = 1 - FUV = 1 - \frac{RSS}{TSS}$$

COEFFICIENT OF DETERMINATION

Properties of Coefficient of Determination:

- Coefficient of Determination (R^2) lies between 0 to 1
- Closer the value of R^2 to 1, Regression model fits better to our dataset and can better explain the observed variability of the target variable.
- Smaller value of R^2 implies that the regression model is not that good.
- It can be shown that for bivariate dataset
 - $R^2 = Square \ of \ the \ correlation \ coefficient \ between \ the \ predictor \ and \ target \ variable$