University of Toronto Faculty of Arts and Science

MAT224H1F Linear Algebra II

Final Examination December 2010

S. Uppal

Duration: 3 hours

Last Name:	
Given Name:	
Student Number:	

No calculators or other aids are allowed.

FOR MARKER USE ONLY		
Question	Mark	
1	/10	
2	/10	
3	/10	
4	/10	
5	/10	
6	/10	
7	/5	
TOTAL	/65	

[10] 1. Let $W_1 = \{A \in \mathbb{R}_{2\times 2} \mid A = A^T\}$ and let $W_2 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z = 0\}$. Show that W_1 and W_2 are isomorphic and find an isomorphism $T: W_1 \to W_2$

EXTRA PAGE FOR QUESTION 1 - please do not remove.

[10] **2.** Let $W = span\{(i,0,1)\}$ in \mathbb{C}^3 . Find an orthonormal basis for W^{\perp} .

EXTRA PAGE FOR QUESTION 2 - please do not remove.

[10] 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator defined by T(x,y) = (x+y, -x+y). Show that T is normal and find the spectral decomposition of T

EXTRA PAGE FOR QUESTION 3 - please do not remove.

[10] 4. Let V be an inner product space and let $y, z \in V$. Define $T: V \to V$ by

$$T(x) = \langle x, y \rangle z$$

for all $x \in V$.

- (a) Show that T is a linear operator.
- **(b)** Find $T^*(x)$.

 $[10]\,$ 5. Verify the Cayley-Hamilton theorem for

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}.$$

[10] **6.** Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator that has the matrix

$$A = \begin{pmatrix} -5 & 3 & 1 \\ -4 & 2 & 1 \\ -4 & 3 & 0 \end{pmatrix}$$

realtive to the standard basis of \mathbb{R}^3 . Find a basis of \mathbb{R}^3 such that the matrix of T relative to this basis is block triangular, and find the matrix of T relative to this basis.

EXTRA PAGE FOR QUESTION 6 - please do not remove.

[5] 7. Let W be a subspace of an inner product space V and let $T: V \to V$ be a linear operator. Prove that if W is T-invariant, then W^{\perp} is T^* -invariant.