Biomimicry of Bacterial Foraging for Distributed Optimization and Control

Kevin M. Passino¹ Presented by: Alexander Van de Kleut²

> ¹The Ohio State University Electrical and Computer Engineering

²University of Waterloo Centre for Theoretical Neuroscience

IEEE Control Systems Magazine, 2002

Table of Contents

About the Author

2 Foraging

3 Biological and Computational Model

About the Author

About the Author

Biomimicry and control KM Passino	of bacterial foraging for distributed optimization	3023
EEE control systems magazine 22 (3), 52-67, 2002		
V Gazi, KM Pa	llysis of swarms ssino ons on automatic control 48 (4), 692-697, 2003	1125
networks JT Spooner, K	tive control using fuzzy systems and neural M Passino ons on Fuzzy Systems 4 (3), 339-359, 1996	728

Foraging

Foraging

- searching for nutrients
- avoiding noxious stimuli (toxins, predators, etc)

Social Foraging

- increases likelihood of finding nutrients
- better detection and protection from noxious stimuli
- gains can offset cost of food competition

How can we view foraging as an Optimization Process?

• We have some parameters θ and a loss function $J(\theta)$ that we want to minimize

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet θ can represent the position of an organism in its environment

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet θ can represent the position of an organism in its environment
- J can represent the concentration of nutrients and noxious stimuli
 - \triangleright smaller values of J = more nutrients, less noxious stimuli
 - \blacktriangleright higher values of J= more noxious stimuli, less nutrients

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet d can represent the position of an organism in its environment
- ullet J can represent the concentration of nutrients and noxious stimuli
 - \triangleright smaller values of J= more nutrients, less noxious stimuli
 - \blacktriangleright higher values of J= more noxious stimuli, less nutrients
- In general, J and θ can be arbitrary
 - $\theta \in \mathbb{R}^p$
 - $J: \mathbb{R}^p \to \mathbb{R}$

• Model organism

- Model organism
 - ► Highly studied

- Model organism
 - ▶ Highly studied
 - ▶ Well-characterized foraging behaviour

- Model organism
 - ▶ Highly studied
 - ▶ Well-characterized foraging behaviour
 - ▶ Probably won't feel bad about simplifying its behaviour

- Model organism
 - ► Highly studied
 - Well-characterized foraging behaviour
 - Probably won't feel bad about simplifying its behaviour
- Social organism

- Model organism
 - ▶ Highly studied
 - Well-characterized foraging behaviour
 - Probably won't feel bad about simplifying its behaviour
- Social organism
 - Secretes signals to attract others nearby

- Model organism
 - ▶ Highly studied
 - Well-characterized foraging behaviour
 - Probably won't feel bad about simplifying its behaviour
- Social organism
 - Secretes signals to attract others nearby
 - ► Encourages "swarming" or "clumping"

E. Coli Behaviour

- Swims using left-handed helical flagella ("propellers")
 - ► Tumble: flagella all rotate clockwise → pull on cell in all directions → random movement
 - Run: flagella all rotate counterclockwise → flagella form a bundle
 → push on cell in one direction → directed movement

E. Coli Behaviour

- If during a tumble E. Coli swims down a nutrient concentration gradient:
 - ▶ Prolongs time spent on a run
 - ▶ Continues moving in the same direction
- Otherwise:
 - ► Tends to switch to a tumble (search for more)
 - ▶ Moves randomly which searching for more nutrient gradients to exploit

Algorithm for a Single Bacterium

```
1: \theta \sim \mathcal{U}^p(\min, \max)
 2: for j \leftarrow 1 \dots N_c do:
         \Delta \sim \mathcal{U}^p(-1,1)
 3:
 4: J_{\text{last}} \leftarrow J(\theta)
           \theta \leftarrow \theta + C \frac{\Delta}{\|\Delta\|}
 5:
              for m \leftarrow 1 \dots N_s do:
 6:
                     if J(\theta) < J_{\text{last}} then:
 7:
                            J_{\text{last}} \leftarrow J(\theta)
 8:
                            \theta \leftarrow \theta + C \frac{\Delta}{\|\Delta\|}
 9:
                     else
10:
                            m \leftarrow N_e
```

11:

Algorithm for a Colony

```
1: for i \leftarrow 1 \dots S do:
       \theta_i \sim \mathcal{U}^p(\min, \max)
  3: for i \leftarrow 1 \dots N_c do:
              for i \leftarrow 1 \dots S do:
 4:
                      \Delta_i \sim \mathcal{U}^p(-1,1)
 5:
                      J_{\text{last}} \leftarrow J(\theta_i)
 6:
                    \theta_i \leftarrow \theta_i + C \frac{\Delta_i}{\|\Delta_i\|}
                     for m \leftarrow 1 \dots N_s do:
 8:
                             if J(\theta_i) < J_{\text{last}} then:
 9:
                                    J_{\text{last}} \leftarrow J(\theta_i)
10:
                                    \theta_i \leftarrow \theta_i + C \frac{\Delta_i}{\|\Delta_i\|}
11:
                             else
12:
                                    m \leftarrow N_{\rm e}
13:
```

E. Coli Swarming

Algorithm for a Colony with Swarming

```
1: for i \leftarrow 1 \dots S do:
       \theta_i \sim \mathcal{U}^p(\min, \max)
 3: for i \leftarrow 1 \dots N_c do:
              for i \leftarrow 1 \dots S do:
 4:
                     \Delta_i \sim \mathcal{U}^p(-1,1)
 5:
                     J_{\text{last}} \leftarrow J(\theta_i) + J_{cc}(\theta_i)
 6:
                    \theta_i \leftarrow \theta_i + C(i) \frac{\Delta_i}{\|\Delta_i\|}
 7:
                     for m \leftarrow 1 \dots N_s do:
 8:
                            if J(\theta_i) < J_{\text{last}} then:
 9:
                                   J_{\text{last}} \leftarrow J(\theta_i) + J_{cc}(\theta_i)
10:
                                   \theta_i \leftarrow \theta_i + C(i) \frac{\Delta_i}{\|\Delta_i\|}
11:
                            else
12:
                                   m \leftarrow N_c
13:
```