Math 591 Lecture 27

Thomas Cohn

11/4/20

Lie Groups and Their Algebras

Reminder/Review: Given G a Lie group, $\forall g \in G$, the map $L_g : G \to G$ where $L_g(k) = gk$. $X \in \mathfrak{X}(M)$ is left-invariant iff $\forall g \in G, X$ is L_g -related to itself.

Prop: (HW 8 Problem 4) There is a bijective linear correspondence between $\mathfrak{g} = T_e G$, the Lie algebra, and the set of left-invariant fields on G, where $T_e G \ni A \mapsto A^{\sharp} \in \mathfrak{X}(G)$. A^{\sharp} is defined by $\forall g \in G$, $A_g^{\sharp} = (L_g)_{*,e}(A)$. A^{\sharp} is smooth.

Observe: $\forall X,Y \in \mathfrak{X}(G)$ left-invariant, [X,Y] is also left-invariant, because being related by L_g preserves commutators.

Defn: Under this correspondence, we can define the bracket of fields

$$\begin{array}{c} [\,\cdot\,,\,\cdot\,]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g} \\ (A,B) \mapsto [A,B] \stackrel{\mathrm{def}}{=} \left[A^\sharp,B^\sharp\right]_e \end{array}$$

Defn: $(g, [\cdot, \cdot])$ is the Lie algebra of G.

 $[\cdot,\cdot]$ is \mathbb{R} -bilinear and satisfies the Jacobi identity.

The Exponential Map

Notation: $\forall A \in \mathfrak{g}$, let F^A be the flow of A^{\sharp} .

Defn: $\forall A \in \mathfrak{g}$, the exponential map is defined to be $\exp t A \stackrel{\text{def}}{=} F_t^A(e)$.

Prop: Given $A \in \mathfrak{g}$:

- (1) $\exp t A$ is defined $\forall t \in \mathbb{R}$.
- (2) $\exp(t+s) A = (\exp t A) \cdot (\exp s A), \forall s, t \in \mathbb{R}$ (with \cdot being group multiplication).

Proof (2): Assume t + s is small. Then

$$\exp(t+s) A = F_{t+s}^A(e) = F_t^A(F_s^A(e))$$
$$(\exp t A) \cdot (\exp s A) = L_{\exp t A}(\exp s A)$$

So $L_{\exp tA}$ maps integral curves of A^{\sharp} to integral curves of A^{\sharp} , because A^{\sharp} is $L_{\exp tA}$ -related to itself. Thus, the map $s \mapsto L_{\exp tA}(\exp sA)$ is the integral cuve of A^{\sharp} through $\exp tA$, so it must agree with $F_s^A(\exp tA)$. This proves (2) for small s, t. \square

Proof (1): Well, we know $\exists \varepsilon > 0$ s.t. $\exp t A$ is defined for $t \in (-\varepsilon, \varepsilon)$. So we'll make use of the fact that $\exp(t+s) A = (\exp t A) \cdot (\exp s A)$. Note: the right-hand side is defined for $t+s \in (-\varepsilon, \varepsilon)$, so extend the left-hand side to $t+s \in (-2\varepsilon, 2\varepsilon)$. This is somewhat sketchy, but it works. Then, we just have to check that this extension is an integral curve of A^{\sharp} , and it must agree with $\exp(t+s) A$. Now, we have $\exp t A$ defined for $t \in (-2\varepsilon, 2\varepsilon)$. Repeat ad nauseum... \Box

Cor: $(2) \Rightarrow \exp t A, \exp s A \in G$ commute.

Ex: $G = GL(n, \mathbb{R}) \subseteq \mathbb{R}^{n^2}$. $\mathfrak{g} = gl(n, \mathbb{R}) = \mathbb{R}^{n^2}$, the set of $n \times n$ real matrices. Then

$$\exp A = \sum_{n=0}^{\infty} \frac{1}{n!} t^n A^n$$

We need to check that this series converges absolutely (i.e. for some matrix norm). Well, $||AB|| \le ||A|| ||B||$, and $\frac{d}{dt}(\exp t A) = A \exp t A = (\exp t A)A = A^{\sharp}A$.

(Claim: $\forall g \in GL(n,\mathbb{R}), L_g(A) = A^{\sharp}g$. Proof: $L_g : \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$ is linear, so its differential is itself, i.e., $(L_g)_{*,e} = L_g$.)

Defn: $\exp : \mathfrak{g} \to G$ is defined by $\exp(A) \stackrel{\text{def}}{=} \exp(t) A|_{t=1}$.

Prop: $(\exp)_{*,0}: T_0\mathfrak{g} \to \mathfrak{g}$ is the identity map $\mathfrak{g} \to \mathfrak{g}$, so \exp is a local diffeomorphism at $0 \in \mathfrak{g}$.

Proof:

$$(\exp)_{*,0}(A) \stackrel{(1)}{=} \frac{d}{dt} \exp t A \Big|_{t=0} = A_e^{\sharp} = A$$

where (1) holds by using the curve $t \mapsto tA$, in \mathfrak{g} adapted to (0, A). \square

Prop: $\forall A \in \mathfrak{g}, A^{\sharp}$ is complete.

Proof: $\forall g \in G$, $L_q(\exp t A) = g \cdot \exp t A$ is the integral curve of A^{\sharp} starting at g. \square

Subgroups (Part 1)

Defn: A regular (or closed, or embedded) subgroup H of G is a regular submanifold that is also a subgroup. It follows directly that H is a lie group in its own right, and $\mathfrak{h} = T_e H \hookrightarrow \mathfrak{g} = T_e G$.

Prop: \mathfrak{h} is closed under $[\,\cdot\,,\,\cdot\,]$ of \mathfrak{g} . This means, $\forall A,B\in\mathfrak{h},\,\left[A^{\sharp},B^{\sharp}\right]$ is tangent to H, and $\left[A^{\sharp},B^{\sharp}\right]_{e}\in\mathfrak{h}$.