

IX. Détection de contours IX.1 Généralités

- Méthodes dérivatives
 - Font appel à un calcul de différence entre niveaux de gris sur des pixels voisins
 - Donc :
 - Sensibles aux bruit
 - Prétraitement des images
 - Réduction de bruit : lissage
 - > Perte de précision dans la localisation des zones de contours
 - Compromis entre les 2 objectifs
 - Réduire le bruit
 - Garder une bonne localisation des contours
 - Filtre de détection de contours
 - Combinaison entre
 - lissage pour réduire le bruit et gradients (différences) pour accéder au contraste

GINF41A6 - AGD

IX. Détection de contours IX.3 Dérivées premières et secondes

- Modèle continu
- $g_x(x, y) = \frac{\partial f(x, y)}{\partial x}$
- Image f(x,y)
 - Dérivée première en x :
- $g_y(x, y) = \frac{\partial f(x, y)}{\partial y}$
- Dérivée première en y :Vecteur Gradient :
 - Norme :
- $\vec{\nabla} f(x, y) = \vec{G}(x, y) = \left(\frac{\partial f(x, y)}{\partial x} \quad \frac{\partial f(x, y)}{\partial y}\right)^{-1}$

$$\theta(x, y) = arctg\left(\frac{g_y}{g_x}\right)$$

GINF41A6 - AGD

- Modèle continu
 - Image f(x,y)
 - Vecteur Gradient :
 - Norme : Amplitude du contrasteOrientation : orthogonale au contour
 - Composite C
 - Composante G_x
 - Détection des lignes <u>verticales</u>
 - Composante G_y
 - Détection des lignes <u>horizontales</u>

GINF41A6 - AGD

 $\vec{\nabla} f(x_0, y_0)$

IX. Détection de contours IX.3 Dérivées premières et secondes

- Modèle continu
 - Image f(x,y)
 - Dérivée seconde en x :
 - Dérivée seconde en y :
 - Laplacien :

$$g'_{y}(x, y) = \frac{\partial^{2} f(x, y)}{\partial y^{2}}$$

$$\Delta f(x, y) = \frac{\partial f^{2}(x, y)}{\partial x^{2}} + \frac{\partial f^{2}(x, y)}{\partial y^{2}}$$

GINF41A6 - AGD

- AGD

IX. Détection de contours IX.3 Dérivées premières et secondes

- Modèle continu
 - Image f(x,y)

$$\Delta f(x, y) = \frac{\partial f^{2}(x, y)}{\partial x^{2}} + \frac{\partial f^{2}(x, y)}{\partial y^{2}}$$

- Opérateur Laplacien
 - > Linéaire : une convolution : un exemple de noyau
 - > Opérateur non directionnel

 $K_L = \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

- Opérateur : Norme du Gradient
 - Non linéaire : 2 convolutions, puissance de 2, racine de 2

 $\left| \vec{\nabla} f(x, y) \right| = \sqrt{g_x^2(x, y) + g_y^2(x, y)}$

GINF41A6 - AGD

IX. Détection de contours IX.3 Dérivées premières et secondes

- Calcul de la dérivée d'une image
 - Par définition : calcul local de différences de niveaux de gris entre le pixel courant et ses voisins
 - Fait ressortir le bruit (petites fluctuations non contrôlées) dans l'image f(x,y)
 - Illustration avec un opérateur gradient sur les lignes :
 - Gx =[1 0 -1] (A appliquer convoluer- sur chaque ligne de l'image)

IX. Détection de contours
IX.3 Dérivées premières et secondes

Un zoom sur l'image filtrée par Gx

Résultat de Gx sur un profil ligne
GINF41A6 - AGD

IX. Détection de contours IX.3 Dérivées premières et secondes

- Calcul de la dérivée d'une image
 - Idée : Lissage de l'image pour retirer le bruit puis faire la dérivée
 - Comment combiner « lissage » et « dérivée » qui ont des objectifs opposés ?
 - Le lissage atténue les différences de niveaux de gris entre pixels voisins
 - Le gradient (dérivée première) calcule la différence de niveaux de gris entre les pixels voisins selon une direction donnée
 - Réponse
 - > Faire le lissage dans la direction orthogonale du gradient
 - > Rappel : L'opérateur « Gradient » est un opérateur directionnel

GINF41A6 - AGD

- AGD

13

4

IX. Détection de contours IX.3 Dérivées premières et secondes

- Dérivée d'une image filtrée
 - Image f(x,y),
 - Prétraitement par filtrage (réduction de bruit : lissage)
 - Noyau de convolution de lissage : h(x,y)
 - > Image f(x,y): Image après filtrage Passe-Bas de noyau h(x,y)
 - Gradient en x de l'image filtrée

$$f_t(x, y) = f(x, y) * h(x, y)$$

$$\frac{\partial f_t(x,y)}{\partial x} = \frac{\partial f(x,y) * h(x,y)}{\partial x} = \frac{\partial f(x,y)}{\partial x} * h(x,y) = \frac{\partial h(x,y)}{\partial x} * f(x,y)$$
$$= h_{dx}(x,y) * f(x,y)$$

$$\frac{\partial f_l(x, y)}{\partial y} = \frac{\partial h(x, y)}{\partial y} * f(x, y)$$

Idem pour le gradient en y

GINF41A6 - AGD =
$$h_{dy}(x, y) * f(x, y)$$
 16

IX. Détection de contoursIX.3 Dérivées premières et secondes

- Dérivée d'une image filtrée
 - Image f(x,y) et image f(x,y) après filtrage Passe-Bas
 - Comment combiner lissage et dérivée ?
 - → Gradient en x : lissage en Y et dérivée en X
 - ▶ Noyau : h_{dx}

$$\frac{\partial f_l(x,y)}{\partial x} = \frac{\partial h(x,y)}{\partial x} * f(x,y) = h_{dx}(x,y) * f(x,y)$$

- Gradient en y : lissage en X et dérivée en Y
- Noyau : h_{dy}

$$\frac{\partial f_l(x, y)}{\partial y} = \frac{\partial h(x, y)}{\partial y} * f(x, y) = h_{dy}(x, y) * f(x, y)$$
GINE41A6 - AGD

IX. Détection de contours IX.4 Opérateurs Numériques Opérateurs Gradient Rappel de notations En continu En discret Approximation du gradient en numérique $\frac{\partial I(x,y)}{\partial x} \approx \frac{\Delta I[i,j]}{\Delta j} = I[i,j+1] - I[i,j] \qquad \text{Opérateur non symétrique (ROBERTS)}$ $\frac{\partial I(x,y)}{\partial x} \approx \frac{\Delta I[i,j]}{\Delta j} = \frac{1}{2} \left(I[i,j+1] - I[i,j-1] \right) \qquad \text{Mieux: Opérateur symétrique}$ Noyau de convolution 1D Gradient x Gradient y Gradient y Gradient A Gradient y

- Opérateurs Gradient
- Association lissage + dérivée dans les directions orthogonales
 - Différents noyaux en fonction de cette combinaison
 - Les plus utilisés sur 2 orientations

	Gx	Gy
PREWITT	$\frac{1}{3} \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix}$	$\frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}$
SOBEL	$\frac{1}{4} \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix}$	$ \frac{1}{4} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} $
SCHARR	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} \frac{1}{16} \begin{pmatrix} 3 & 10 & 3\\ 0 & 0 & 0\\ -3 & -10 & -3 \end{pmatrix}$

21

IX. Détection de contours IX.4 Opérateurs Numériques	
 Opérateurs Gradient Association lissage + différence Les noyaux à différences finies les plus utilisés sont des noyaux 3 Détection à une échelle spatiale faible Petites régions spatiales Lissage à une échelle spatiale faible Moyenne sur des petites régions → Lissage du bruit plutôt HF Si plus de réduction de bruit Lissage sur une fenêtre spatiale plus grande Exemple en 1D : [1 4 6 4 1]/16 Si combinaison avec le même opérateur gradient [1 0 -1] Différence d'échelle entre gradient et lissage Pour remédier à cela : approche par filtrage optimal (chap. X)	0 /1 0 -4 5 0 -6 0 -4 0 -1
GINF41A6 - AGD	23

IX. Détection de contours IX.4 Opérateurs Numériques

- Opérateur Gradient multidirectionnel
- 2 stratégies pour le calcul de l'orientation
 - Avec 2 mesures orthogonales de gradient
 - \rightarrow Gradient en x, Gradient en y, calcul de θ

$$I_{x}[i,j] = g_{x} * I[i,j] \qquad I_{y}[i,j] = g_{y} * I[i,j] \qquad \theta[i,j] = arctg\left(\frac{I_{y}[i,j]}{I_{x}[i,j]}\right)$$

- Avec Gradients suivant des directions multiples
 - Gradient à l'orientation θ_k: G_{ak}, k=0 à N_a
 - Orientation: orientation du maximum des gradients Gele
 - Gradient: Valeur maximale entre les gradients Gau

$$|G[i,j]| = \left[Max \left(G_{\theta k}[i,j] \right) \right]$$

$$\theta[i, j] = Arg \left[Max \left(G_{OK}[i, j] \right) \right]$$
GINE41A6 - AGD

IX. Détection de contours IX.4 Opérateurs Numériques

- Opérateur Gradient multidirectionnel
- □ Exemple : Opérateurs de KIRSH
 - 8 orientations notées suivant le codage de Freeman

$$|G[i,j]| = \left[Max \left(G_{\theta k}[i,j] \right) \right]$$

$$\theta[i, j] = Arg \left[Max \left(G_{\theta k} \left[i, j \right] \right) \right]$$

GINF41A6 - AGD

IX. Détection de contours IX.4 Opérateurs Numériques

- Opérateurs Dérivée Seconde
- Approximation en numérique
 - Même approche que pour le gradient
 - Mais beaucoup plus sensible aux bruits que le Gradient

$$\frac{\partial^2 I(x, y)}{\partial x^2} = \frac{\partial I_x(x, y)}{\partial x} \approx \left(-I[i, j+1] + 2I[i, j] - I[i, j-1]\right)$$

$$\frac{\partial^2 I(x,y)}{\partial y^2} = \frac{\partial I_y(x,y)}{\partial y} \approx \left(-I[i+1,j] + 2I[i,j] - I[i-1,j]\right)$$

GINF41A6 - AGD

IX. Détection de contours

IX.4 Opérateurs Numériques

- Opérateurs Dérivée Seconde
- Approximation en numérique
 - Novau de convolution 1D
 - Dérivée seconde x
 - Dérivée seconde y Combinaison avec le lissage
 - > Indispensable , car très sensible aux bruits

$$\frac{\partial^2 h(x,y)}{\partial x^2} \quad \frac{1}{4} \begin{pmatrix} -1 & 2 & -1 \\ -2 & 4 & -2 \\ -1 & 2 & -1 \end{pmatrix}$$

$$\frac{\partial^2 h(x,y)}{\partial y^2} \quad \frac{1}{4} \begin{pmatrix} -1 & -2 & -1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

IX. Détection de contours IX.4 Opérateurs Numériques

- Opérateurs Laplacien
- Approximation en numérique
 - Même approche que pour le gradient

$$\Delta I(x, y) = \frac{\partial^2 I(x, y)}{\partial x^2} + \frac{\partial^2 I(x, y)}{\partial x^2}$$

- Noyau de convolution 2D
- Toujours Combinaison avec le lissage

$$K_L = \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad K_L = \frac{1}{8} \begin{bmatrix} 1 & 1 \\ 1 & -8 \\ 1 & 1 \end{bmatrix}$$

 $K_L = \frac{1}{12} \begin{bmatrix} 1 & 2 & 1 \\ 2 & -12 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

GINF41A6 - AGD

29

31

IX. Détection de contours IX.5 Points de contour

- A partir des images de Gradient et/ou de Laplacien
 - Mise en place de techniques de seuillage
 - Double seuillage ou seuillage par hystéresis
 - Obtention de points non structurés
 - Qualité médiocre pour les utiliser tels quels comme contour
 bruités
 - épais
 - Interrompus
 - Pas nécessairement fermés
 - Passage des points détectés aux points de contours
 - Post-traitements plus ou moins complexes
 - Seuillage
 - Autres filtrages
 - Chaînage
 - */*

GINF41A6 - AGD

IX. Détection de contours IX.5 Points de contour

- Points de contour candidats
 - Gradient
 - > Maxima locaux dans la direction du gradient
 - Solution approchée
 - Quantification de la valeur de l'orientation avec par exemple, les masques de KIRSH

$$\theta[i, j] = Arg \left[Max \left(I_{ek} [i, j] \right) \right]$$

 Les points M1 et M2 sont sur la grille, car les orientations possibles sont : 0°, 45°, 90° et 135°

GINF41A6 - AGD

37

IX. Détection de contours IX.5 Points de contour

- Points de contour candidats
 - Gradient
 - > Maxima locaux dans la direction du gradient
 - > Seuillage des maxima significatifs
 - Méthode par seuil à hystérésis = double seuillage
 - · Seuil haut, Seuil bas

 $|Grad(pc)| \ge seuil_haut \rightarrow pc$ pixel courant est point de contour (PC)

|Grad(pc)| < seuil_bas → pc pixel courant n'est pas un point de contour (NPC)

seuil_bas \leq |Grad(pc)| < seuil_haut \rightarrow pc pixel courant est un point de contour possible (PCP)

- Réaffectation des points de contour possible par propagation
 - · Technique de chaînage

GINF41A6 - AGD

38

IX. Détection de contours IX.5 Points de contour

- Points de contour candidats
 - Laplacien
 - Détection du Passage à zéro du Laplacien
 - Masque de voisinage à 4 premiers voisins

v1 v2 pixc v3 v4

lvi : valeur du Laplacien aux points vi

pc pixel courant est point de contour si

Signe(lv2)≠Signe(lv3) et |lv2.lv3|>0 et |lv2-lv3|>seuil

ou

Signe(lv1) #Signe(lv4) et |lv1.lv4| > 0 et |lv1-lv4| > seuil

GINF41A6 - AGD

- AGD 40

