- Introdução
 - Motivação Biológica
 - Um Breve Histórico
- 2 Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

- Introdução
 - Motivação Biológica
 - Um Breve Histórico
- 2 Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

- Introdução
 - Motivação Biológica
 - Um Breve Histórico
- 2 Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

- Introdução
 - Motivação Biológica
 - Um Breve Histórico
- 2 Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

- sistema paralelo e distribuído.
- composto por unidades de processamento simples
- unidades calculam funções matemáticas.

- sistema paralelo e distribuído.
- composto por unidades de processamento simples.
- unidades calculam funções matemáticas.

- sistema paralelo e distribuído.
- composto por unidades de processamento simples.
- unidades calculam funções matemáticas.

- unidades dispostas em uma ou mais camadas.
- interligadas por um grande número de conexões.
- conexões geralmente unidirecionais.

- unidades dispostas em uma ou mais camadas.
- interligadas por um grande número de conexões.
- conexões geralmente unidirecionais.

- unidades dispostas em uma ou mais camadas.
- interligadas por um grande número de conexões.
- conexões geralmente unidirecionais.

- pesos associados às conexões.
- pesos armazenam o conhecimento representado.
- pesos ponderam a entrada recebida por cada neurônio.

- pesos associados às conexões.
- pesos armazenam o conhecimento representado.
- pesos ponderam a entrada recebida por cada neurônio.

- pesos associados às conexões.
- pesos armazenam o conhecimento representado.
- pesos ponderam a entrada recebida por cada neurônio.

inspirada no cérebro humano.

- 1 Introdução
 - Motivação Biológica
 - Um Breve Histórico
- 2 Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- 3 RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

O Neurônio Biológico

- aproximadamente 10¹¹ neurônios.
- cada neurônio conectado a 10⁴ outros, em média.
- 10⁻³s é a ordem de tempo de chaveamento mais rápido.
- 10⁻¹s para reconhecimento da mãe.

- $10^{-10}s$ computador.
- centenas ou milhares de unidades.
- complexidades não modeladas.

- aproximadamente 10¹¹ neurônios.
- cada neurônio conectado a 10⁴ outros, em média.
- 10⁻³s é a ordem de tempo de chaveamento mais rápido.
- 10⁻¹s para reconhecimento da mãe.

- $10^{-10}s$ computador.
- centenas ou milhares de unidades.
- complexidades não modeladas.

- aproximadamente 10¹¹ neurônios.
- cada neurônio conectado a 10⁴ outros, em média.
- 10⁻³s é a ordem de tempo de chaveamento mais rápido.
- 10⁻¹s para reconhecimento da mãe.

- $10^{-10}s$ computador.
- centenas ou milhares de unidades.
- complexidades não modeladas.

- aproximadamente 10¹¹ neurônios.
- cada neurônio conectado a 10⁴ outros, em média.
- 10⁻³s é a ordem de tempo de chaveamento mais rápido.
- 10⁻¹s para reconhecimento da mãe.

- $10^{-10}s$ computador.
- centenas ou milhares de unidades.
- complexidades não modeladas.

- aproximadamente 10¹¹ neurônios.
- cada neurônio conectado a 10⁴ outros, em média.
- 10⁻³s é a ordem de tempo de chaveamento mais rápido.
- 10⁻¹s para reconhecimento da mãe.

- $10^{-10}s$ computador.
- centenas ou milhares de unidades.
- complexidades não modeladas.

- Introdução
 - Motivação Biológica
 - Um Breve Histórico
- 2 Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

- 1943 McCulloch e Pitts estabelecem as bases da neurocomputação, com modelos matemáticos.
- 1949 Hebb traduz matematicamente a sinapse dos neurônios biológicos.
- 1951 Minski constrói o primeiro neurocomputador com capacidade de aprendizado (ajustava automaticamente os pesos entre as sinapses).
- 1958 Rosemblatt concebe o "perceptron", uma rede neural usada no reconhecimento de caracteres

- 1943 McCulloch e Pitts estabelecem as bases da neurocomputação, com modelos matemáticos.
- 1949 Hebb traduz matematicamente a sinapse dos neurônios biológicos.
- 1951 Minski constrói o primeiro neurocomputador com capacidade de aprendizado (ajustava automaticamente os pesos entre as sinapses).
- 1958 Rosemblatt concebe o "perceptron", uma rede neural usada no reconhecimento de caracteres

- 1943 McCulloch e Pitts estabelecem as bases da neurocomputação, com modelos matemáticos.
- 1949 Hebb traduz matematicamente a sinapse dos neurônios biológicos.
- 1951 Minski constrói o primeiro neurocomputador com capacidade de aprendizado (ajustava automaticamente os pesos entre as sinapses).
- 1958 Rosemblatt concebe o "perceptron", uma rede neural usada no reconhecimento de caracteres

- 1943 McCulloch e Pitts estabelecem as bases da neurocomputação, com modelos matemáticos.
- 1949 Hebb traduz matematicamente a sinapse dos neurônios biológicos.
- 1951 Minski constrói o primeiro neurocomputador com capacidade de aprendizado (ajustava automaticamente os pesos entre as sinapses).
- 1958 Rosemblatt concebe o "perceptron", uma rede neural usada no reconhecimento de caracteres.

continuação

1960 Widrow e Hoff sugerem a regra delta.

- 1969 Minsky e Papert chamam a atenção para tarefas que o perceptron não consegue executar.
- 1974 Werbos lança bases para o algoritmo backpropagation.
- 1982 Hopfield publica artigo que promove parte da retomada das pesquisas na área.
- 1986 Rumelhart, Hinton e Williams introduzem o backpropagation.

- 1960 Widrow e Hoff sugerem a regra delta.
- 1969 Minsky e Papert chamam a atenção para tarefas que o perceptron não consegue executar.
- 1974 Werbos lança bases para o algoritmo backpropagation.
- 1982 Hopfield publica artigo que promove parte da retomada das pesquisas na área.
- 1986 Rumelhart, Hinton e Williams introduzem o backpropagation.

- 1960 Widrow e Hoff sugerem a regra delta.
- 1969 Minsky e Papert chamam a atenção para tarefas que o perceptron não consegue executar.
- 1974 Werbos lança bases para o algoritmo backpropagation.
- 1982 Hopfield publica artigo que promove parte da retomada das pesquisas na área.
- 1986 Rumelhart, Hinton e Williams introduzem o backpropagation.

- 1960 Widrow e Hoff sugerem a regra delta.
- 1969 Minsky e Papert chamam a atenção para tarefas que o perceptron não consegue executar.
- 1974 Werbos lança bases para o algoritmo backpropagation.
- 1982 Hopfield publica artigo que promove parte da retomada das pesquisas na área.
- 1986 Rumelhart, Hinton e Williams introduzem o backpropagation.

- 1960 Widrow e Hoff sugerem a regra delta.
- 1969 Minsky e Papert chamam a atenção para tarefas que o perceptron não consegue executar.
- 1974 Werbos lança bases para o algoritmo backpropagation.
- 1982 Hopfield publica artigo que promove parte da retomada das pesquisas na área.
- 1986 Rumelhart, Hinton e Williams introduzem o backpropagation.

- 1 Introdução
 - Motivação Biológica
 - Um Breve Histórico
- Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- 3 RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

- Sinais são apresentados à entrada.
- Cada sinal é multiplicado por um número (peso).
- É feita a soma ponderada que produz um nível de atividade.
- Se este nível de atividade exceder um limite, a unidade produz uma determinada resposta de saída.

- Sinais são apresentados à entrada.
- Cada sinal é multiplicado por um número (peso).
- E feita a soma ponderada que produz um nível de atividade.
- Se este nível de atividade exceder um limite, a unidade produz uma determinada resposta de saída.

- Sinais são apresentados à entrada.
- Cada sinal é multiplicado por um número (peso).
- É feita a soma ponderada que produz um nível de atividade.
- Se este nível de atividade exceder um limite, a unidade produz uma determinada resposta de saída.

- Sinais são apresentados à entrada.
- Cada sinal é multiplicado por um número (peso).
- É feita a soma ponderada que produz um nível de atividade.
- Se este nível de atividade exceder um limite, a unidade produz uma determinada resposta de saída.

Neurônio Artificial

$$\vec{x} = [a_1, a_2, \dots, a_n]$$

Uma dupla ordenada $U = (\vec{w}, g)$ vetor de pesos

$$\vec{w} = [w_1, w_2, \dots, w_n]$$

função de ativação

$$g: \mapsto \mathbb{R}$$

$$<\vec{w},\vec{x}>=w_1a_1+w_2a_2+\cdots+w_na_n$$

Conteúdo

- 1 Introdução
 - Motivação Biológica
 - Um Breve Histórico
- 2 Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

Funções de Ativação - Neurônio Linear

$$g: \mathbb{R} \mapsto \mathbb{R}$$

$$g(\langle \vec{w}, \vec{x} \rangle) = w_1 a_1 + w_2 a_2 + \cdots + w_n a_n$$

$$g(\langle \vec{w}, \vec{x} \rangle) = \langle \vec{w}, \vec{x} \rangle$$

$$g: \mathbb{R} \mapsto \{1,0\}$$

$$g(<\vec{w}, \vec{x}>) = \begin{cases} 1, & \text{se} \quad w_1 a_1 + w_2 a_2 + \dots + w_n a_n \ge \theta \\ 0, & \text{se} \quad w_1 a_1 + w_2 a_2 + \dots + w_n a_n < \theta \end{cases}$$

$$w_1 a_1 + w_2 a_2 + \cdots + w_n a_n \ge \theta$$

$$-\theta + w_1 a_1 + w_2 a_2 + \cdots + w_n a_n \ge 0$$

$$(-\theta).1 + w_1a_1 + w_2a_2 + \cdots + w_na_n \ge 0$$

$$w_0 a_0 + w_1 a_1 + w_2 a_2 + \cdots + w_n a_n \ge 0$$

$$w_0 = -\theta$$
 $a_0 = 1$

$$w_1 a_1 + w_2 a_2 + \cdots + w_n a_n \ge \theta$$

$$-\theta + w_1a_1 + w_2a_2 + \cdots + w_na_n \ge 0$$

$$(-\theta).1 + w_1a_1 + w_2a_2 + \cdots + w_na_n \ge 0$$

$$w_0 a_0 + w_1 a_1 + w_2 a_2 + \cdots + w_n a_n \ge 0$$

$$w_0 = -\theta$$
 $a_0 = 1$

$$w_1a_1+w_2a_2+\cdots+w_na_n\geq\theta$$

$$-\theta + w_1 a_1 + w_2 a_2 + \cdots + w_n a_n \ge 0$$

$$(-\theta).1 + w_1a_1 + w_2a_2 + \cdots + w_na_n \ge 0$$

$$w_0 a_0 + w_1 a_1 + w_2 a_2 + \cdots + w_n a_n \ge 0$$

$$w_0 = -\theta$$
 $a_0 = 1$

$$w_1a_1+w_2a_2+\cdots+w_na_n\geq\theta$$

$$-\theta + w_1a_1 + w_2a_2 + \cdots + w_na_n \ge 0$$

$$(-\theta).1 + w_1a_1 + w_2a_2 + \cdots + w_na_n \ge 0$$

$$w_0 a_0 + w_1 a_1 + w_2 a_2 + \cdots + w_n a_n \ge 0$$

$$w_0 = -\theta$$
 $a_0 = 1$

Funções de Ativação

continuação

$$w_1a_1 + w_2a_2 + \cdots + w_na_n \ge \theta$$

$$-\theta + w_1a_1 + w_2a_2 + \cdots + w_na_n \ge 0$$

$$(-\theta).1 + w_1a_1 + w_2a_2 + \cdots + w_na_n \ge 0$$

$$w_0a_0 + w_1a_1 + w_2a_2 + \cdots + w_na_n \ge 0$$

$$w_0 = -\theta$$
 $a_0 = 1$

Função de Ativação

$$w_0 = -\theta$$
 $a_0 = 1$
 $\vec{x} = [a_0, a_1, a_2, \dots, a_n]$
 $\vec{w} = [w_0, w_1, w_2, \dots, a_n]$

$$g: \mathbb{R} \mapsto \{1,0\}$$

$$g(<\vec{w},\vec{x}>) = \left\{ \begin{array}{ll} 1, & \text{se} & w_0 a_0 + w_1 a_1 + w_2 a_2 + \dots + w_n a_n \geq 0 \\ \\ 0, & \text{se} & w_0 a_0 + w_1 a_1 + w_2 a_2 + \dots + w_n a_n < 0 \end{array} \right.$$

Funções de Ativação

$$g: \mathbb{R} \mapsto \{1, -1\}$$

$$g(<\vec{w},\vec{x}>) = \begin{cases} 1, & \text{se} \quad w_0 a_0 + w_1 a_1 + \dots + w_n a_n \ge 0 \\ -1, & \text{se} \quad w_0 a_0 + w_1 a_1 + \dots + w_n a_n < 0 \end{cases}$$

Função Logística

$$g: \mathbb{R} \longrightarrow [0..1]$$

$$g(<\vec{w},\vec{x}>) = \frac{1}{1 + e^{-\langle \vec{w},\vec{x} \rangle}}$$

Função Logística

Forma mais geral

$$g: \mathbb{R} \longrightarrow [0..1]$$

$$g(r) = \frac{1}{1 + \mathrm{e}^{-r/T}}$$

o parâmetro T oferece curvas suaves a íngremes à medida que seu valor é decrementado.

RNA's MLP e o Algoritmo Backpropagation Algumas Considerações

Função Logística

Valores de T=2, T=3/2, T=1 e T=1/2

Conteúdo

- 1 Introdução
 - Motivação Biológica
 - Um Breve Histórico
- Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- 3 RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

RNA MLP

Perceptron Multicamada

Questão:

Como se dá o processo de aprendizado?

Resposta

- obter valores para os pesos $\vec{w} = [w_0, \dots, w_n]$ dos neurônios...
- satisfazendo determinada condição geralmente a minimização de alguma função de erro.
- A hipótese numa rede neural é um conjunto de vetores de pesos.

Questão:

Como se dá o processo de aprendizado?

Resposta:

- obter valores para os pesos $\vec{w} = [w_0, \dots, w_n]$ dos neurônios...
- satisfazendo determinada condição geralmente a minimização de alguma função de erro.
- A hipótese numa rede neural é um conjunto de vetores de pesos.

Aprendizado de uma rede com um único neurônio

Seja $\mathcal{T} = \left\{ \left(\vec{x}_i, f(\vec{x}_i) \right) \right\}_{i=1}^m$ uma amostra de treinamento e $\vec{w} = [w_1, w_2, \dots, w_n]$ um vetor de pesos.

O erro de treinamento de \vec{w} , relativo a amostra de treinamento \mathcal{T} , é definido pela função

$$E(\vec{w}) = \frac{1}{2} \sum_{\vec{x} \in \mathcal{T}} (f(\vec{x}) - s(\vec{x}))^2$$

onde $f(\vec{x})$ é o valor da função alvo para um exemplo \vec{x} e $s(\vec{x})$ é a saída obtida para um exemplo \vec{x} .

Gradiente

Seja \vec{w} um vetor de pesos e $E(\vec{w})$ uma função erro de treinamento relativa a uma amostra de treinamento \mathcal{T} .

$$\nabla E(\vec{w}) = \nabla E([w_0, w_1, \dots, w_n]) = \left[\frac{\partial E(\vec{w})}{\partial w_0}, \frac{\partial E(\vec{w})}{\partial w_1}, \dots, \frac{\partial E(\vec{w})}{\partial w_n}\right]$$

Regra de treinamento para o gradiente descendente

$$W_i \leftarrow W_i + \Delta W_i$$

sendo

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

onde η é a taxa de aprendizado.

$$w_i = w_i + \eta \sum_{\vec{x} \in \mathcal{T}} (f(\vec{x}) - s(\vec{x})) a_{i\vec{x}}$$

Gradiente Descendente Incremental

$$\Delta w_i = \eta(f(\vec{x}) - s(\vec{x}))a_i$$

onde $f(\vec{x})$ é o valor da função alvo, $s(\vec{x})$ é o valor de saída e a_i o i-ésimo valor de entrada do exemplo considerado.

Alternativa com menor custo computacional.

A função de erro é definida para cada exemplo da seguinte forma:

$$E_{\vec{x}}(\vec{w}) = \frac{1}{2}(f(\vec{x}) - s(\vec{x}))^2$$

onde $f(\vec{x})$ é o valor da função alvo e $s(\vec{x})$ é o valor de saída para o exemplo \vec{x} .

Função erro para rede com mais de um neurônio

a função erro é a soma dos erros sobre todas as unidades de saída da rede:

$$E(\vec{w}) = \frac{1}{2} \sum_{\vec{x} \in \mathcal{T}} \sum_{k \in \text{saidas}} (f_k(\vec{x}) - s_k(\vec{x}))^2$$

onde

- saídas é o conjunto de neurônios cujos valores de saída são os valores de saída da rede
- $f_k(\vec{x})$ e $s_k(\vec{x})$ são o valor alvo e valor de saída associados ao k-ésimo neurônio e exemplo \vec{x} .

Conteúdo

- 1 Introdução
 - Motivação Biológica
 - Um Breve Histórico
- 2 Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

Backpropagation(\mathcal{T} , η , $n_{entrada}$, n_{saida} , n_{oculta})

Cada exemplo de treinamento é um par da forma $(\vec{x}, f(\vec{x}))$, onde

 \vec{x} é o vetor de valores de entrada da rede e $f(\vec{x})$ é o vetor de valores de saída.

 η é a taxa de aprendizado (por exemplo 0,05), $n_{\it entrada}$ é o número de entradas da rede,

 n_{oculta} é o número de neurônios da camada oculta e n_{saida} é o número de neurônios de saída.

A entrada do nodo i no nodo j é denotada por x_{ji} e o peso do neurônio i

no neurônio j é denotado por w_{ji} .

- Criar uma rede acíclica com $n_{entrada}$, n_{oculta} neurônios ocultos e n_{saida} neurônios de saída.
- Inicializar todos os pesos da rede com pequenos números aleatórios (ex., entre -0,05 e 0,05).

- Até que a condição de término seja satisfeita faça
 - para cada $(\vec{x}, f(\vec{x}))$ nos exemplos de treinamento faça
- 1. Entre com a instância \vec{x} na rede e calcule a saída s_u do neurônio u na rede
- 2. Para cada neurônio de saída k, calcule o seu termo de erro δ_k

$$\delta_k \leftarrow s_k (1 - s_k) (f_k - s_k)$$

3. Para cada neurônio oculto o, calcule o seu termo de erro σ_o

$$\delta_o \leftarrow s_o (1 - s_o) \sum_{k \in saidas} w_{ko} \delta_k$$

4. Atualize cada peso w_{ji}

$$W_{jj} \leftarrow W_{jj} + \Delta W_{jj}$$

onde

$$\Delta w_{jj} = \eta \delta_j a_{jj}$$

Algumas Condições de Término

- encerrar após um número máximo de iterações.
- 2 encerrar quando $E(\vec{w})$ for menor que um determinado valor.
- encerrar quando a proporção de classificações corretas numa amostra de teste estiver acima de um determinado valor.

Weight Decay

$$E(\vec{w}) = \frac{1}{2} \sum_{\vec{x} \in \mathcal{T}} \sum_{k \in saidas} (f_k(\vec{x}) - s_k(\vec{x}))^2 + \frac{1}{2} \lambda \|\vec{w}\|^2$$

- para minimizar overfitting.
- formalmente gera vetores de pesos de norma mínima.
- λ dita a taxa de decremento.

Momentum

$$\psi = \alpha(\mathbf{w}_{ii}(t) - \mathbf{w}_{ii}(t-1))$$

- para evitar lentidão.
- para evitar convergência para mínimo local.
- λ dita a taxa de decremento.

O ajuste de pesos do algoritmo *backpropagation* passa então a ser dado por

$$\Delta w_{ii} = \eta \delta_i a_{ii} + \alpha (w_{ii}(t) - w_{ii}(t-1))$$

Mínimo Global

Mínimo Global

Poder Representacional

"Qual o conjunto de funções que podem ser representadas?"

Funções Booleanas

"Toda função booleana pode ser representada exatamente por alguma rede com duas camadas de unidades".

Poder Representacional continuação

"Qual o conjunto de funções que podem ser representadas?"

Funções Contínuas

"Toda função contínua limitada pode ser aproximada com pequeno erro arbitrário por uma rede com duas camadas de unidades" (Cybenko 1989; Hornik et al. 1989).

Poder Representacional continuação

"Qual o conjunto de funções que podem ser representadas?"

Funções Arbitrárias

"Qualquer função pode ser aproximada com uma precisão arbitrária por uma rede com três camadas de unidades" (Cybenko 1988).

Poder Representacional continuação

Pode-se então perceber que...

Redes com arquitetura não extremamente complexa oferecem um espaço de hipótese expressivo.

Contudo...

os vetores de peso obtidos por gradiente descendente a partir dos pesos iniciais podem não incluir todos os vetores de pesos possíveis.

Poder Representacional continuação

Pode-se então perceber que...

Redes com arquitetura não extremamente complexa oferecem um espaço de hipótese expressivo.

Contudo...

os vetores de peso obtidos por gradiente descendente a partir dos pesos iniciais podem não incluir todos os vetores de pesos possíveis.

Conteúdo

- 1 Introdução
 - Motivação Biológica
 - Um Breve Histórico
- Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
 - classificação de fonemas
 - reconhecimento de comandos
- Classificação financeira
 - análise de crédito
 - análise de investimentos
 - previsão e falência de empresas

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
 - classificação de fonemas
 - reconhecimento de comandos
- Classificação financeira
 - análise de crédito
 - análise de investimentos
 - previsão e falência de empresas

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
 - classificação de fonemas
 - reconhecimento de comandos
- Classificação financeira
 - análise de crédito
 - análise de investimentos
 - previsão e falência de empresas

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
- Classificação financeira

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
 - classificação de fonemas
 - reconhecimento de comandos
- Classificação financeira
 - análise de crédito
 - análise de investimentos
 - previsão e falência de empresas

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
 - classificação de fonemas
 - reconhecimento de comandos
- Classificação financeira
 - análise de crédito
 - análise de investimentos
 - previsão e falência de empresas

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
 - classificação de fonemas
 - reconhecimento de comandos
- Classificação financeira
 - análise de crédito
 - análise de investimentos
 - nunciaño o folância de amero
 - previsao e falencia de empresas

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
 - classificação de fonemas
 - reconhecimento de comandos
- Classificação financeira
 - análise de crédito
 - análise de investimentos
 - previsão e falência de empresas

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
 - classificação de fonemas
 - reconhecimento de comandos
- Classificação financeira
 - análise de crédito
 - análise de investimentos
 - previsão e falência de empresas

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
 - classificação de fonemas
 - reconhecimento de comandos
- Classificação financeira
 - análise de crédito
 - análise de investimentos
 - previsão e falência de empresas

- Reconhecimento de imagens
 - classificação de caracteres
 - reconhecimento de assinaturas
 - reconhecimento de faces
- Reconhecimento de sons
 - classificação de fonemas
 - reconhecimento de comandos
- Classificação financeira
 - análise de crédito
 - análise de investimentos
 - previsão e falência de empresas

Exemplos de Aplicações Considerações Finais Resumo Mais Informações

Exemplos de Aplicações continuação

Monitoramento (tráfego aéreo)

Novas aplicações

- Pen PC's (reconhecimento de escrita)
- Brinquedos (comandos como Vá! Pare! lógica fuzzy com redes neurais artificiais)

Exemplos de Aplicações Considerações Finais Resumo Mais Informações

Exemplos de Aplicações continuação

Monitoramento (tráfego aéreo)

Novas aplicações

- Pen PC's (reconhecimento de escrita)
- Brinquedos (comandos como Vá! Pare! lógica fuzzy com redes neurais artificiais)

Exemplos de Aplicações Considerações Finais Resumo Mais Informações

Exemplos de Aplicações continuação

Monitoramento (tráfego aéreo)

Novas aplicações

- Pen PC's (reconhecimento de escrita)
- Brinquedos (comandos como Vá! Pare! lógica fuzzy com redes neurais artificiais)

Conteúdo

- 1 Introdução
 - Motivação Biológica
 - Um Breve Histórico
- Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

Considerações Finais

- Área de Redes Neurais Artificiais é vasta.
- Tem se mostrada atrativa para profissionais de domínios distintos.
- Psicólogos, neurofisiologistas, engenheiros, cientistas da computação etc.
- É interdisciplinar.
- Buscas por novos caminhos, cada um em sua área.

Conteúdo

- 1 Introdução
 - Motivação Biológica
 - Um Breve Histórico
- Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

Resumo

- Motivação inicial biológica.
- Período de agitação, diminuição e retomada na pesquisa.
- Rede Neural: Arquitetura + Algoritmo de Aprendizado.
- RNA's MLP com Backpropagation são bem utilizadas na prática.

Conteúdo

- 1 Introdução
 - Motivação Biológica
 - Um Breve Histórico
- 2 Perceptrons
 - Unidade de McCulloch-Pitts e Neurônio Artificial
 - Funções de Ativação
- RNA's MLP e o Algoritmo Backpropagation
 - Rede Perceptron Multicamada MLP
 - Algoritmo Backpropagation
- 4 Algumas Considerações
 - Exemplos de Aplicações
 - Considerações Finais
 - Resumo
 - Mais Informações

Para Mais Informações

- A. Braga, A. Carvalho e T. Ludermir. Redes Neurais Artificiais: Teoria e Aplicações. LTC, 2000.
 - Redes Neurais Artificiais: Fundamentos e Aplicações. Livraria da Física, 2002.
- T. Mitchell.

 Machine Learning.

 McGraw-Hill, 1997.

Para Mais Informações

- A. Braga, A. Carvalho e T. Ludermir. Redes Neurais Artificiais: Teoria e Aplicações. LTC, 2000.
- Z. Kovács. Redes Neurais Artificiais: Fundamentos e Aplicações. Livraria da Física, 2002.
- T. Mitchell.

 Machine Learning.

 McGraw-Hill, 1997.

Para Mais Informações

A. Braga, A. Carvalho e T. Ludermir. Redes Neurais Artificiais: Teoria e Aplicações. LTC, 2000.

Z. Kovács.

Redes Neurais Artificiais: Fundamentos e Aplicações. Livraria da Física, 2002.

T. Mitchell. Machine Learning. McGraw-Hill, 1997.

Conteúdo do Apêndice

- 5 Apêndice
 - Outros Tipos de RNA's

- Memórias Matriciais
- Redes Self-Organizing
 - SO
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casos
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

- Memórias Matriciais
- Redes Self-Organizing
 - SOM
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casos
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

- Memórias Matriciais
- Redes Self-Organizing
 - SOM
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casoss
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

- Memórias Matriciais
- Redes Self-Organizing
 - SOM
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casoss
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

- Memórias Matriciais
- Redes Self-Organizing
 - SOM
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casos
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

- Memórias Matriciais
- Redes Self-Organizing
 - SOM
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casos
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

- Memórias Matriciais
- Redes Self-Organizing
 - SOM
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casos
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

- Memórias Matriciais
- Redes Self-Organizing
 - SOM
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casos
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

- Memórias Matriciais
- Redes Self-Organizing
 - SOM
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casos
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

- Memórias Matriciais
- Redes Self-Organizing
 - SOM
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casos
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

- Memórias Matriciais
- Redes Self-Organizing
 - SOM
 - ART
- Sistemas Neurais Híbridos
 - RNA's e Algoritmos Genéticos
 - RNA's com Raciocínio Baseado em Casos
- Redes Neurais sem Pesos
- Redes RBF
- Redes Construtivas
- Redes Recorrentes

