Preduciska 5	- podminéwost &
	Z stabilita

<u>Opacko:</u> prace s cisty na PC je nepřesna

-> 0.3 = 2.9 - 91, 1/3, 12, 17, e, --

=> klicova otazla: Kdy lze vypocteným výsledkům vérit?

Krob 1: Vlastnost problému - podminemost

Dekneme, ze problém D: input -> output má podmírenost X>O, pokud

$$\forall \text{ (input, } \forall \mathcal{E} \text{ (perturbaci)}: \frac{\|\mathcal{D}(\text{imput}+\mathcal{E}) - \mathcal{D}(\text{imput})\|}{\|\mathcal{D}(\text{imput})\|} = \mathcal{X} \cdot \frac{\|\text{ input} + \mathcal{E}-\text{ imput}\|}{\|\text{ input}\|} + O(\|\mathcal{E}\|)$$

Slovy: Problém P mai podminénost X, pokud pro malé perturbace vstupuid dat plati, že výstup se změrní mej výše X-krait vice měž je velikost perturbace.

Pozorovám: definice dost připo míná clerivací a opravdu tan «je",

$$\frac{\|\mathcal{D}(\mathsf{input}+\mathcal{E})-\mathcal{D}(\mathsf{input})\|}{\|\mathsf{input}+\mathcal{E}-\mathsf{input}\|} = \chi \cdot \frac{\|\mathcal{D}(\mathsf{input})\|}{\|\mathsf{input}\|} + o(\|\mathcal{E}\|) \qquad \chi = \|\mathcal{D}(\mathsf{input})\| \cdot \frac{\|\mathsf{input}\|}{\|\mathcal{D}(\mathsf{input})\|}$$

Kroz 2: Vlastnost algoritmu - stabilita

Rekneme, Ze algoritmus A: input - output je stabilní (= zpětně stabilní), pokud

Kdy lze výpochům vērit?

$$\frac{\|D(\mathsf{input}) - A(\mathsf{input})\|}{\|P(\mathsf{input})\|} = \frac{\|D(\mathsf{input}) - D(\mathsf{input}_p)\|}{\|D(\mathsf{input})\|} \leq \mathcal{K} \cdot \frac{\|\mathsf{input} - \mathsf{input}_p\|}{\|\mathsf{input}\|} \leq C \cdot \mathcal{K} \cdot \mathcal{E}_{\mathsf{mach}}$$

dûvērujeme pouze stabilnim algoritmim Lze jim verit polud C. K << Emach -> pouzitym pro dobře podminěné problémy

Demo 1: Polymony v monické bázi & jejich koreny

Vezuene si tzv. Wilkinson polynom:

$$P_{\delta}(x) := (x-1) \cdot (x-20) + \delta x'^{9} = x^{20} + (x_{19}+\delta) \cdot x + x_{19} x'^{8} + ... + x_{0}$$

s koreny
$$V_1 = V_1(\delta)$$
, $V_2 = V_2(\delta)$, ..., $V_{20} = V_{20}(\delta)$..., privozené závis, me δ .

$$Pro S = 0$$
: $r_1(0) = 1$, ..., $r_{20} = 20$

Pokud chceme s $P_{8=0}(x)$ počítat v PC, je možné, že některé z koeficientů xi budou nepresné - > 5 použijeme jako simulaci této nepresnosti m> místo α_{19} maine $\alpha_{19}+5$.

Jak velký vliv má malá nepresnost (napr. $\delta = \omega^{-7}$) na $V_1(\delta), ..., V_2(\delta)$? (aka jaká je podmí něnost koření $P_{\delta=0}(x)$ vzhledem k δ ?) => $V_1(\delta)$ => $V_2(\delta)$?

$$\frac{\left|V_{i}(\delta)-V_{i}(0)\right|}{\left|V_{i}(\delta)\right|} = \chi_{i} \delta + o(\delta) \longrightarrow \chi_{i} \approx \left|V_{i}(0)\right| \cdot \frac{d}{d\delta} \left(V_{i}(\delta)\Big|_{\delta=0}\right)$$

--- Zjevně kazdý kořen Γ_i(δ) měrže byť jinak citlivý na změny α_{ια} (a všech ostatních α_i). místo slova podmíněmost (= conditioning) se někdy používa' slovo citlivost (sensitivity).

Otázka tedy je jak veltká je derivace $\frac{d}{d\delta} \left(V_i(\delta) \Big|_{\delta=0} \right)$ pro $i=1,\ldots,20$.

muse by + >>> /

Presuj výpočet más čeled na cviledoh,

kde si odvodine

$$\frac{d}{d\delta} V(\delta) = \frac{-V_i(\delta)}{P_i(v_i(\delta))} = \frac{1}{\delta + i} \frac{19}{(i-j)}$$

velmi malá zněna 5 může výrazně zněnit vzo, ..., vo ... ale nikoliv vy

Demo 2: polynomia'lui interpolace
Maine data která chceme interpolovat -> (xo,fo),, (xn,fn).
Lagrangeova interpolace: Pf(x):= \(\frac{1}{n} \cdot \ell_i \) (x). fi
Co když jsne při měřem udělali dryby a "skutečna" přesna dota fi jsou trochu jina" označíme si (xo,go),, (xn,gn)
jsou trochu jina označíme si (xo,go),, (xn,gn)
presna Lagrangeova interpolace: $P_g(x) := 2$, $L_i(x) \cdot g_i$
chyba pouze v mērem' => $p_f(x)-p_g(x) = \sum_{i=1}^{n} l_i(x) (f_i-g_i)$
$\max P_f^{(x)} - P_g^{(x)} \le \max \sum_{i=1}^{n} \ell_i(x) $ • $\max f_i - g_i $ $\max P_f^{(x)} - P_g^{(x)} \le \max P_i^{(x)} $ $\max P_i^{(x)} - P_g^{(x)} \le \max P_i^{(x)} $ $\max P_i^{(x)} - P_g^{(x)} $
læ najít fig kde $=: (X_0,,X_n)$ = tzv Lebesgueovo konstanta
Bez odvození. Δ_n (ekvidistantní) $\approx 2^{nt}/n \cdot \log(n) \cdot e$ pro $(a_1b) = (-1,1)$. (Chelayshev.) $\approx \frac{2}{n!} \log(n+1)$
$pro(a,b) = (-1,1)$ Chelaysher.) $= \frac{2}{\pi} log(n+1)$
max Pf(x)-Pg(x) xe(a,b) max Pg(x) xe(a,b) Pg(x) -> tolk is jen dalsi
pro Chebyshevovy body pro ekvidistantní body
$n \le 2000$
$n \leq 2000$
us dobre podmíněný problém ms spatně podmíněný problém

Demo 3: Linearm' soustavy rovnic $problem: \begin{cases} -1/10 & 3/10 & 5/10 \\ 1/2 & 3/2 & 5/2 \\ 1/100 & 3/100 & 5/100 & -10^{-13} \end{cases} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4/10 \\ 0/2 \\ 9/100 & -10^{-13} \end{pmatrix}$ -> přesuj výpočet neim da x= [1] Lingebra 1: Kramerovo pravidlo: Xi = det (Ai)

det (A)

kde Ai = veznu matici A & vyměním

kde Ai = (i i-tý sloupee za b • X₁ = ... Kramerovo pravidlo na PC = 0.99991905... • X₂ = ... Kramerovo pravidlo na PC = 0.99977449... • $\chi_3 = \dots$ Kramerovo pravidlo un $PC = 1.00009252\dots$ => Kramero pravidlo: Xxp = m) pokud si de finujeure $b = A \cdot \vec{x}_{100} = \begin{pmatrix} 0.69997... \\ 4.4997... \\ 0.089997... \end{pmatrix}$ pak læ Kramerero pravidlo mimat jako "presný resic" ale pro perturbovaný problém. Tato perturbace je velikosti ~ 10-4 m> Kramerovo parvillo bychan neuazvali stabilini.