```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import warnings
warnings.filterwarnings("ignore")
```

1.数据预处理

1.1 我们首先在原数据集增加一个叫"date"的属性,以格式'%Y-%m-%d'记录日期,并保存为csv文件;然后将数据集中的NA转换为NAN,再去除

```
In []:

pm25_data = pd. read_csv('PRSA_data.csv')
pm25_data.replace('NA', np. nan)
pm25_data = pd. get_dummies(pm25_data)
pm25_data['date'] = pm25_data['year']. astype(str) + '-' + pm25_data['month']. astype(str) + '-' + pm25_data['day']. astype(str)

#以'%Y-%m-%d'记录日期
for i in range(len(pm25_data)):
    pm25_data.loc[i,'date'] = pd. to_datetime(pm25_data.loc[i,'date']). strftime('%Y-%m-%d')
pm25_data.to_csv("pm25_data.csv", index=False)

# 去除NAN
pm25_data_dropna=pm25_data.dropna(axis=0, how='any', inplace=False)
```

1.2 观察pm2.5的分布情况

```
In []: from scipy import stats
    sns. distplot(pm25_data_dropna['pm2.5'], fit=stats.norm)
    print("Skewness: %f" % pm25_data_dropna['pm2.5'].skew())
    print("Kurtosis: %f" % pm25_data_dropna['pm2.5'].kurt())
```

Skewness: 1.802311 Kurtosis: 4.768933

1.3 从图中发现数据严重左偏,所以尝试用对数转换pm2.5,得到一个近似正态分布的数据。 我们首先检查pm2.5有无0值

```
In [ ]: pm25_data_dropna[pm25_data_dropna['pm2.5']==0]
```

Out[]:		No	year	month	day	hour	pm2.5	DEWP	TEMP	PRES	lws	ls	lr	cbwd_NE	$cbwd_NW$	cbwd_SE	cbwd_cv	date
	24034	24035	2012	9	28	10	0.0	-5	20.0	1020.0	139.48	0	0	0	1	0	0	2012-09-28
	24039	24040	2012	9	28	15	0.0	-10	24.0	1017.0	192.68	0	0	0	1	0	0	2012-09-28

我们去除掉pm2.5为0的数据,能够这样做的原因是现实中几乎不可能出现pm2.5为0的情况

```
In [ ]: pm25_data_dropna = pm25_data_dropna.drop(pm25_data_dropna[pm25_data_dropna['pm2.5'] == 0].index).reset_index(drop=True)
```

1.4 检查对数转换后pm2.5的分布与正态分布的相似度

```
pm25_data_dropna['pm2.5_log'] = np. log(pm25_data_dropna['pm2.5'])
sns. distplot(pm25_data_dropna['pm2.5_log'], fit=stats. norm)
print("Skewness: %f" % pm25_data_dropna['pm2.5_log']. skew())
print("Kurtosis: %f" % pm25_data_dropna['pm2.5_log']. kurt())
```

Skewness: -0.356563 Kurtosis: -0.563840

In []: res = stats.probplot(pm25_data_dropna['pm2.5_log'], plot=plt)

从p-p图中可以看出对数转换后的pm2.5近似服从正态分布

1.5 获得训练集和测试集数据

```
In []: # 测试数据日期
test_date=pd. date_range(start='2010-01-07', freq='W-Thu', end='2014-12-25'). strftime('%Y-%m-%d'). tolist()

# 测试数据索引
test_index=[]
for i in range(len(pm25_data_dropna['date'])):
```

```
if pm25_data_dropna.iloc[i,-2] in test_date:
    test_index.append(i)

# 测试集和训练集

test_data=pm25_data_dropna.iloc[test_index,:].reset_index(drop=True)

train_data=pm25_data_dropna.drop(index=pm25_data_dropna.index[test_index]).reset_index(drop=True)
```

2.模型建立

2.1 我们选择用xgboost regressor拟合对数转换后的数据

```
import xgboost as xgb
from sklearn.metrics import mean_squared_error
from sklearn import preprocessing
```

通过不断的调参,我们最终选择 XGBRegressor(learning_rate=0.1, n_estimators=600, max_depth=5)

```
In []:

var=['year', 'month', 'day', 'hour', 'DEWP', 'TEMP', 'PRES', 'Iws', 'Is', 'Ir', 'cbwd_NE', 'cbwd_NW', 'cbwd_SE', 'cbwd_cv'] # feature

X_train = train_data[var]

y_train = train_data['pm2.5_log']

y_test = test_data['pm2.5']

XGB_model=xgb. XGBRegressor(learning_rate=0.1, n_estimators=600, max_depth=5)

XGB_model. fit(X_train, y_train)

y_pred = XGB_model. predict(X_test)

y_pred = np. round(np. exp(y_pred))

#使用min_max月一化

y_pred=preprocessing. minmax_scale(y_pred)

y_test=preprocessing. minmax_scale(y_test)

print("Mean squared error of test data: %.4f" % mean_squared_error(y_pred, y_test))

print("R2 score of test data: %.4f" % XGB_model. score(X_test, test_data['pm2.5_log']))
```

Mean squared error of test data: 0.0084 R2 score of test data: 0.7100

我们在测试集上预测 pm2.5,然后将得到的预测数据做指数变换得到 y_pred;将 y_pred 与真实数据 y_test 作 min_max 归一化,再计算它们的 MSE,我们得到的结果是 0.0084。

该模型的 R2 系数是0.7100

3.特征选择

3.1 通过XGB.feature_importances_选择特征

```
In []: xgb.plot_importance(XGB_model)
```

Out[]. <AxesSubplot:title={'center':'Feature importance'}, xlabel='F score', ylabel='Features'>

从图中我们看出在所有特征中 day 的重要性最高;在气象特征中,DEWP、PRES、lws、TEMP的重要性较高

3.2 通过corrmatrix选择特征

```
In [ ]: X=pm25_data_dropna[['year','month','day','hour','pm2.5','DEWP', 'TEMP', 'PRES', 'Iws', 'Is', 'Ir', 'cbwd_NE', 'cbwd_NE', 'cbwd_SE', 'cbwd_cv']]
In [ ]: corrmatrix = X. corr()
   plt. subplots(figsize=(14, 14))
   sns. heatmap(corrmatrix, vmax=0.8, square=True, annot=True)
   plt. show()
```

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

- -0.8

year -	. 1	-0.0025	-0.0001	0.0002	-0.015	0.0073	0.056	-0.013	-0.068	-0.02	-0.026	0.011	-0.062	0.021	0.038
month -	-0.0025	1	0.0069	-0.00055	-0.024	0.23	0.17	-0.066	0.015	-0.063	0.039	-0.012	0.037	-0.077	0.056
day -	-0.0001	0.0069	1	0.00032	0.083	0.034	0.023	-0.011	-0.0051	-0.037	-9.3e-05	-0.0073	-0.02	0.019	0.0062
hour -	0.0002	-0.00055	0.00032	1	-0.023	-0.022	0.15	-0.042	0.059	-0.0025	-0.0087	-0.065	-0.13	0.21	-0.049
pm2.5 -	-0.015	-0.024	0.083	-0.023	1	0.17	-0.09	-0.047	-0.25	0.019	-0.051	-0.033	-0.21	0.097	0.16
DEWP -	0.0073	0.23	0.034	-0.022	0.17	1	0.82	-0.78	-0.29	-0.035	0.13	-0.038	-0.34	0.28	0.091
TEMP -	0.056	0.17	0.023	0.15	-0.09	0.82	1	-0.83	-0.15	-0.095	0.05	-0.064	-0.27	0.31	-0.0035
PRES -	-0.013	-0.066	-0.011	-0.042	-0.047	-0.78	-0.83	1	0.18	0.071	-0.081	0.065	0.23	-0.25	-0.022
lws -	-0.068	0.015	-0.0051	0.059	-0.25	-0.29	-0.15	0.18	1	0.023	-0.0091	-0.12		-0.079	-0.23
ls -	-0.02	-0.063	-0.037	-0.0025	0.019	-0.035	-0.095	0.071	0.023	1	-0.0098	-0.0084	-0.023	0.041	-0.015
lr -	-0.026	0.039	-9.3e-05	-0.0087	-0.051	0.13	0.05	-0.081	-0.0091	-0.0098	1	0.035	0.035	-0.039	-0.021
cbwd_NE -	0.011	-0.012	-0.0073	-0.065	-0.033	-0.038	-0.064	0.065	-0.12	-0.0084	0.035	1	-0.25	-0.26	-0.19
cbwd_NW -	-0.062	0.037	-0.02	-0.13	-0.21	-0.34	-0.27	0.23	0.36	-0.023	0.035	-0.25	1	-0.51	-0.36
cbwd_SE -	0.021	-0.077	0.019	0.21	0.097	0.28	0.31	-0.25	-0.079	0.041	-0.039	-0.26	-0.51	1	-0.38
cbwd_cv -	0.038	0.056	0.0062	-0.049	0.16	0.091	-0.0035	-0.022	-0.23	-0.015	-0.021	-0.19	-0.36	-0.38	1
	year -	month -	- day	- hour -	pm2.5 -	DEWP -	TEMP -	PRES -	- SWI	<u>s</u>	<u>-</u>	cbwd_NE -	- WN_bwd	cbwd_SE -	- vo_bwd

从图中可以看出DEWP、TEMP、lws、cbwd_NW、cbwd_SE、cbwd_cv与pm2.5的相关性较高

3.3 通过PCA.explained variance ratio 选择特征

```
In [ ]:
          from sklearn. decomposition import PCA
          pca=PCA(). fit (X. drop('pm2.5', axis=1))
          plt. plot (np. cumsum(pca. explained_variance_ratio_))
          plt. xlabel ('number of components')
          plt. ylabel('cumulative explained variance')
          print('the explained varaince ratio is ')
          print(np. cumsum(pca. explained variance ratio ))
         the explained varaince ratio is
         [0.\ 81209615\ 0.\ 93618929\ 0.\ 96136072\ 0.\ 97843113\ 0.\ 9886945\ 0.\ 99497762
          0.99832777 \ 0.99897539 \ 0.99960645 \ 0.99980002 \ 0.99988718 \ 0.99995742
          1.
                      1.
            1.000
            0.975
            0.950
            0.925
            0.900
            0.875
            0.850
            0.825
                                                        10
                                                               12
                                   number of components
```

从图中我们可以看出可以取前3个主成分作为特征,其中第一主成分主要反映了对pm2.5的影响

- [-3.31100204e-04 3.02658550e-03 9.99091104e-01 -1.11871522e-02
- 1.65822401e-02 -1.77541195e-02 3.29017954e-02 5.57886593e-04
- -2.97490127e-03 -1.50471076e-04 -1.46044851e-04 -5.96526140e-04
- 3.81852153e-04 3.60718838e-04]]