Endogenous Financial Networks: Diversification and Intermediation

Felix Corell (EUI)

November 6, 2018

NYU Micro Theory Student Lunch

Outline

Introduction

Related Literature

Model

Unresolved Issues

Conclusion

Introduction

The Paper in a Nutshell

Why do OTC financial networks have core-periphery structure?

- · Contribution: Endogenous weighted, directed networks
 - · Links represent flows of funds, not just binary relationships
- · Method:
 - · Strongly stable equilibria of a network formation game
 - Intuitive structural interpretation of primitives
- · Answer: Diversification and Intermediation
 - Banks want many counterparties \rightarrow spread investment
 - · Cost per link prevents high levels of diversification
 - · Core banks offer peripheral banks a diversified portfolio ...
 - in exchange for intermediation rents.

Motivation

- · Network approaches became popular after financial crisis
- · Representative bank models ignore some problems
 - E.g. contagious defaults
- Network structure matters for financial stability
- · We need a theory of how these networks form
 - Predict endogenous reaction to policy (e.g. bailouts)

Related Literature

Literature Gap

- · Literature mostly takes network structure as given
- · Resilience to shocks, risk-sharing properties, ...
 - Allen and Gale (2000), Eisenberg and Noe (2001), Gai and Kapadia (2010), Elliott et al. (2014), Acemoglu et al. (2015a), Cabrales et al. (2017) ...
- · Endogenous networks: Undirected/-weighted graphs
 - Babus (2016), Di Maggio and Tahbaz-Salehi (2014), Erol (2018), Wang (2018), Babus and Hu (2017), Chang and Zhang (2016)
- Notable exceptions:
 - Farboodi (2017), Acemoglu et al. (2015b)
- This paper combines ...
 - · intermediation à la Farboodi (2017) with a
 - · diversification motive.

Additional Literature

- · Robust empirical finding: Core-periphery networks
 - Bech and Atalay (2010), Hollifield et al. (2016), Craig and Von Peter (2014), in 't Veld and van Lelyveld (2014), ...
- Trading/Bargaining in (non-financial) networks
 - Choi et al. (2017), Condorelli et al. (2016), Goyal and Vega-Redondo (2007),
 Manea (2018) ...
- · Endogenous (non-financial) core-periphery networks
 - Hojman and Szeidl (2008)
- Delegated monitoring
 - · Diamond (1984)

Model

Environment

- Three periods t = 0, 1, 2
- · Set of banks N, risk-neutral, profit-maximizing
- · N partitioned into (ex ante known) subsets \mathbb{I} and \mathbb{D}
- I banks have risky, proprietary investment projects in t=1
- \mathbb{D} banks raise d from depositors in t = 0 ($r_D = 0$ w.l.o.g.)
- In t = 2, projects (CRS) yield i.i.d. per-unit return

$$\begin{cases} R > 1 & \text{with probability} \quad p \\ 0 & \text{with probability} \quad 1 - p \end{cases}$$

Network Formation Game

- In $\mathbf{t} = \mathbf{0}$ banks open credit lines $b_{ij} \geq 0$
 - Feasibility: $\sum_{i\neq i} b_{ij} \leq \sum_{i\neq i} b_{ji} + d \times \mathbb{1}_{i\in\mathbb{D}} \quad \forall i \in \mathbb{N}$
 - · Lending banks pay fixed management utility cost κ per link
 - · Outflowing funds are spread equally across lending links
- · In t = 1 counterparties bargain over interest rates r_{ij}
 - Symmetric Nash bargaining
 - Complete information about bank types and network
- In t = 2 project returns realize, debt is repaid (if possible)
 - Pro-rata repayment of creditors
 - Bankruptcy (utility) cost δ per unit of defaulted *principle*

Timing

Equilibrium Concept: Strong Stability

Credit lines require consent of both contracting parties
 ⇒ Nash equilibria not appropriate

Definition

A deviation from network g to g' by a coalition $S \subseteq N$ is feasible if

- 1. $b_{ij}^{g'} > 0$ and $b_{ij}^{g'} \neq b_{ij}^{g}$ implies $\{i, j\} \subseteq S$, and
- 2. $b_{ij}^g > 0$ and $b_{ij}^{g'} = 0$ implies $\{i, j\} \cap S \neq \emptyset$

A network g is strongly stable if no coalition of banks $S \subseteq N$ has a feasible deviation that makes all banks in S strictly better off.

• Dutta and Mutuswami (1997), Jackson and Van den Nouweland (2005)

Diversification

- \cdot Project returns are i.i.d. \Longrightarrow Scope for diversification
- Example: Compare the following situations ($d=1, \kappa=0$)

• If one \mathbb{I} -bank's repayment is sufficient for \mathbb{D} 's survival $(\frac{1}{2}(1+r) \ge 1)$:

$$\mathbb{E}\pi_{\mathbb{D}} = p^{2}r + 2p(1-p)\left[\frac{1}{2}(1+r) - 1\right] - (1-p)^{2}\delta > pr - (1-p)\delta$$
as long as $\delta > 1$

· Reduce probability of states in which lender defaults

Diversification (ctd.)

- \exists optimal degree of diversification, decreasing in κ
- Principle also applies to I-banks
- · A well-diversified bank is an attractive investment
 - · Low default probability
 - Pay κ only once ("delegated diversification")
- · Rationale for core-periphery networks in equilibrium
 - · Core banks give peripheral banks access to diversification
 - · They emerge not because of fundamental advantage

Unresolved Issues

Problem 1: When is κ paid?

• In simple bilateral relationship ($|\mathbb{D}| = |\mathbb{I}| = 1, d = 1$)

$$\mathbb{E}\pi_1 = pr - (1 - p)\delta - \kappa$$
$$\mathbb{E}\pi_2 = p(R - 1 - r) - (1 - p)\delta$$

· Without deal both earn zero, Nash bargaining yields

$$r = \frac{1}{2} \left(R - 1 + \frac{\kappa}{p} \right)$$

- Trade only happens if $p(R-1) \ge 2(1-p)\delta + \kappa$
- κ only enters bargaining outcome if paid upon agreement
 ⇒ Does not discipline link formation

Problem 2: Competition and Market Power

Solution:

- · Credit lines b_{ii} are earmarked (idle without agreement)
- · Separation of prices and quantities simplifies analysis
- Shuts down t = 1 competition \Rightarrow no market power

Problem 3: Interdependence of Interest Rates

With an intermediary I-bank

$$\mathbb{E}\pi_{0} = pr_{1} - (1 - p)\delta - \kappa$$

$$\mathbb{E}\pi_{1} = p(r_{2} - r_{1}) - (1 - p)\delta - \kappa$$

$$\mathbb{E}\pi_{2} = p(R - 1 - r_{2}) - (1 - p)\delta$$

- Nash bargaining: r_1 depends on r_2 (and vice versa)
- Simultaneous or sequential solution?
- If sequential ⇒ restrict analysis to acyclical networks

⇒ Need help from bargaining literature

Problem 4: Single Peripheral Borrower

Figure 1: The star as a special CP network

- Core I-bank is optimally diversified
- No incentive to deviate for D-banks
- Intermediation rent compensates for management cost 2κ
- How to prevent these deviations?

Conclusion

Summary and Outlook

Key idea

- Diversification motive + intermediation rents = CP network
- · Endogenous, weighted, directed network
- · Strongly stable equilibrium of network formation game

· Limitations

- Integer/divisibility problems
- Equilibrium will probably not be unique
- · Ex ante heterogeneous banks

Next steps

- · Find a way to solve problems 1-4
- · Experiment with ex ante identical banks
- Comparative statics (e.g. size of core/periphery)
- · What happens with anticipated bailouts?

Appendix

References i

- Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2015a). Systemic Risk and Stability in Financial Networks. *The American Economic Review* 105(2), 564–608.
- Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2015b). Systemic Risk in Endogenous Financial Networks. Working Paper.
- Allen, F. and D. Gale (2000). Financial Contagion. *Journal of Political Economy* 108(1), 1–33.
- Babus, A. (2016). The Formation of Financial Networks. *The RAND Journal of Economics* 47(2), 239–272.

References ii

- Babus, A. and T.-W. Hu (2017). Endogenous Intermediation in Over-the-Counter Markets. *Journal of Financial Economics* 125(1), 200–215.
- Bech, M. L. and E. Atalay (2010). The Topology of the Federal Funds Market. *Physica A: Statistical Mechanics and its Applications* 389(22), 5223–5246.
- Cabrales, A., P. Gottardi, and F. Vega-Redondo (2017). Risk Sharing and Contagion in Networks. *The Review of Financial* Studies 30(9), 3086–3127.
- Chang, B. and S. Zhang (2016). Endogenous Market Making and Network Formation. Working Paper.

References iii

- Choi, S., A. Galeotti, and S. Goyal (2017). Trading in Networks: Theory and Experiments. *Journal of the European Economic Association* 15(4), 784–817.
- Condorelli, D., A. Galeotti, and L. Renou (2016). Bilateral Trading in Networks. *The Review of Economic Studies* 84(1), 82–105.
- Craig, B. and G. Von Peter (2014). Interbank Tiering and Money Center Banks. *Journal of Financial Intermediation* 23(3), 322–347.
- Di Maggio, M. and A. Tahbaz-Salehi (2014). Financial Intermediation Networks. *Columbia Business School Research Paper*, 14–40.
- Diamond, D. W. (1984). Financial Intermediation and Delegated Monitoring. *The Review of Economic Studies* 51(3), 393–414.

References iv

- Dutta, B. and S. Mutuswami (1997). Stable Networks. *Journal of Economic Theory 76*(2), 322–344.
- Eisenberg, L. and T. H. Noe (2001). Systemic Risk in Financial Systems. *Management Science* 47(2), 236–249.
- Elliott, M., B. Golub, and M. O. Jackson (2014). Financial Networks and Contagion. *The American Economic Review 104*(10), 3115–3153.
- Erol, S. (2018). Network Hazard and Bailouts. Working Paper.
- Farboodi, M. (2017). Intermediation and Voluntary Exposure to Counterparty Risk. Working Paper.

References v

- Gai, P. and S. Kapadia (2010). Contagion in Financial Networks. In Proceedings of the Royal Society of London A:

 Mathematical, Physical and Engineering Sciences, Volume 466, pp. 2401–2423. The Royal Society.
- Goyal, S. and F. Vega-Redondo (2007). Structural Holes in Social Networks. *Journal of Economic Theory* 137(1), 460–492.
- Hojman, D. A. and A. Szeidl (2008). Core and Periphery in Networks. *Journal of Economic Theory* 139(1), 295–309.
- Hollifield, B., A. Neklyudov, and C. Spatt (2016). Bid-Ask Spreads, Trading Networks and the Pricing of Securitizations. Swiss Finance Institute.

References vi

- in 't Veld, D. and I. van Lelyveld (2014). Finding the Core: Network Structure in Interbank Markets. *Journal of Banking* & *Finance* 49, 27–40.
- Jackson, M. O. and A. Van den Nouweland (2005). Strongly Stable Networks. *Games and Economic Behavior 51*(2), 420–444.
- Manea, M. (2018). Intermediation and Resale in Networks. Journal of Political Economy 126(3).
- Wang, C. (2018). Core-Periphery Trading Networks. *Working Paper*.

This Paper vs. Farboodi (2017)

- Endogenous surplus sharing rule (bargaining)
- · No random allocation of all funds along just one link
 - · Links are not just potential lending relationships
 - · Default probability may depend on multiple projects
- Diversification: No shortest path bargaining

