Lecture 5: Neural Networks

Assignment 2

- Use SGD to train linear classifiers and fully-connected networks
- After today, can do full assignment
- If you have a hard time computing derivatives, wait for next lecture on backprop
- Due Friday January 28, 11:59pm ET

Late Enrolls

Anyone who enrolled today can have until Friday 2/4 for to turn in A1 and A2 without using late days or penalties

(But please email us / post on Piazza to confirm if you are using this extension)

Where we are:

- 1. Use **Linear Models** for image classification problems
- 2. Use **Loss Functions** to express preferences over different choices of weights
- 3. Use **Regularization** to prevent overfitting to training data
- Use Stochastic Gradient
 Descent to minimize our loss functions and train the model

$$s = f(x; W) = Wx$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Softmax $\sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$

```
v = 0
for t in range(num_steps):
   dw = compute_gradient(w)
   v = rho * v + dw
   w -= learning_rate * v
```


Problem: Linear Classifiers aren't that powerful

Geometric Viewpoint

Visual Viewpoint

One template per class: Can't recognize different modes of a class

Original space

Image Features: Color Histogram

rog image is in the public domai

- Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Lowe, "Object recognition from local scale-invariant features", ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

- Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Weak edges

Strong diagonal edges

Edges in all directions

 Compute edge direction / strength at each pixel

2. Divide image into 8x8 regions

 Within each region compute a histogram of edge directions weighted by edge strength Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

- Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Weak edges

Strong diagonal edges

Edges in all directions

Captures texture and position, robust to small image changes

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Justin Johnson Lecture 5 - 14 January 24, 2022

Image Features: Bag of Words (Data-Driven!)

Fei-Fei and Perona, "A bayesian hierarchical model for learning natural scene categories", CVPR 2005

<u>Car image</u> is <u>CCO 1.0</u> public domain

Image Features: Bag of Words (Data-Driven!)

Image Features

Example: Winner of 2011 ImageNet challenge

Low-level feature extraction ≈ 10k patches per image

SIFT: 128-dim
 color: 96-dim

reduced to 64-dim with PCA

FV extraction and compression:

- compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

F. Perronnin, J. Sánchez, "Compressed Fisher vectors for LSVRC", PASCAL VOC / ImageNet workshop, ICCV, 2011.

Image Features

Image Features vs Neural Networks

Justin Johnson Lecture 5 - 20 January 24, 2022

training

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^{\wedge}C$

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{D \times C}$, $b \in \mathbb{R}^{C}$

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^{\wedge}C$

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{D \times C}$, $b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x) = W_2 \max(0, W_1 x + b_1) + b2$

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^{\wedge}C$

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{D \times C}$, $b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x) = W_2 \max(0, W_1 x + b_1) + b2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}$, $b_1 \in \mathbb{R}^H$, $W_2 \in \mathbb{R}^{C \times H}$, $b_2 \in \mathbb{R}^C$

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^{\wedge}C$

Before: Linear Classifier: f(x) = Wx + bLearnable parameters: $W \in \mathbb{R}^{D \times C}$, $b \in \mathbb{R}^C$

Feature Extraction
Linear Classifier

Now: Two-Layer Neural Network: $f(x) = W_2 \max(0, W_1 x + b_1) + b_2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}$, $b_1 \in \mathbb{R}^H$, $W_2 \in \mathbb{R}^{C \times H}$, $b_2 \in \mathbb{R}^C$

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^{\wedge}C$

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{D \times C}$, $b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x) = W_2 \max(0, W_1 x + b_1) + b2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}$, $b_1 \in \mathbb{R}^H$, $W_2 \in \mathbb{R}^{C \times H}$, $b_2 \in \mathbb{R}^C$

Or Three-Layer Neural Network:

$$f(x) = W_3 \max(0, W_2 \max(0, W_1 x + b_1) + b_2) + b_3$$

Before: Linear classifier

$$f(x) = Wx + b$$

Now: 2-layer Neural Network $f(x) = W_2 \max(0, W_1 x + b_1) + b_2$

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Before: Linear classifier

$$f(x) = Wx + b$$

Now: 2-layer Neural Network
$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

Element (i, j) of W₁ gives the effect on h_i from x_i

Element (i, j) of W₂ gives the effect on s_i from h_i

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Before: Linear classifier

$$f(x) = Wx + b$$

Now: 2-layer Neural Network
$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

Element (i, j) of W₁ gives the effect on h_i from x_i

> All elements of x affect all elements of h

Fully-connected neural network Also "Multi-Layer Perceptron" (MLP)

Element (i, j) of W₂ gives the effect on s_i from h_i

> All elements of h affect all elements of s

Linear classifier: One template per class

(Before) Linear score function:

(Now) 2-layer Neural Network

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Justin Johnson Lecture 5 - 29 January 24, 2022

Neural net: first layer is bank of templates; Second layer recombines templates

(Before) Linear score function:

(Now) 2-layer Neural Network

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

Justin Johnson Lecture 5 - 30 January 24, 2022

Can use different templates to cover multiple modes of a class!

(Before) Linear score function:

(Now) 2-layer Neural Network

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Justin Johnson Lecture 5 - 31 January 24, 2022

"Distributed representation": Most templates not interpretable!

(Before) Linear score function:

(Now) 2-layer Neural Network

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

Justin Johnson Lecture 5 - 32 January 24, 2022

Deep Neural Networks

 $s = W_6 \max(0, W_5 \max(0, W_4 \max(0, W_3 \max(0, W_2 \max(0, W_1 x)))))$

Justin Johnson Lecture 5 - 33 January 24, 2022

Activation Functions

2-layer Neural Network

The function $ReLU(z) = \max(0, z)$ is called "Rectified Linear Unit"

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Justin Johnson Lecture 5 - 34 January 24, 2022

Activation Functions

2-layer Neural Network

The function $ReLU(z) = \max(0, z)$ is called "Rectified Linear Unit"

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Q: What happens if we build a neural network with no activation function?

$$f(x) = W_2(W_1x + b_1) + b_2$$

Activation Functions

2-layer Neural Network

The function $ReLU(z) = \max(0, z)$ is called "Rectified Linear Unit"

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Q: What happens if we build a neural network with no activation function?

$$f(x) = W_2(W_1x + b_1) + b_2$$

= $(W_1W_2)x + (W_2b_1 + b_2)$

A: We end up with a linear classifier!

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.2x, x)$

tanh

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

Softplus

$$\log(1 + \exp(x))$$

ReLU

 $\max(0, x)$

ELU

$$f(x) = \begin{cases} x, & x > 0 \\ \alpha(\exp(x) - 1), & x \le 0 \end{cases}$$

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

ReLU

 $\max(0,x)$

ReLU is a good default choice for most problems

Leaky ReLU

 $\max(0.2x, x)$

Softplus

$$\log(1 + \exp(x))$$

ELU

$$f(x) = \begin{cases} x, & x > 0 \\ \alpha(\exp(x) - 1), & x \le 0 \end{cases}$$


```
import numpy as np
    from numpy.random import randn
    N, Din, H, Dout = 64, 1000, 100, 10
    x, y = randn(N, Din), randn(N, Dout)
    w1, w2 = randn(Din, H), randn(H, Dout)
    for t in range(10000):
      h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
      y_pred = h.dot(w2)
      loss = np.square(y_pred - y).sum()
10
      dy_pred = 2.0 * (y_pred - y)
11
12
      dw2 = h.T.dot(dy_pred)
      dh = dy_pred.dot(w2.T)
13
      dw1 = x.T.dot(dh * h * (1 - h))
14
15
      w1 -= 1e-4 * dw1
      w2 -= 1e-4 * dw2
16
```

Initialize weights and data


```
import numpy as np
    from numpy.random import randn
    N, Din, H, Dout = 64, 1000, 100, 10
    x, y = randn(N, Din), randn(N, Dout)
    w1, w2 = randn(Din, H), randn(H, Dout)
    for t in range(10000):
      h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
      y_pred = h.dot(w2)
       loss = np.square(y_pred - y).sum()
10
      dy_pred = 2.0 * (y_pred - y)
11
      dw2 = h.T.dot(dy_pred)
12
      dh = dy_pred.dot(w2.T)
13
      dw1 = x.T.dot(dh * h * (1 - h))
14
15
      w1 -= 1e-4 * dw1
      w2 -= 1e-4 * dw2
16
```



```
Initialize weights and data
```

Compute loss (sigmoid activation, - L2 loss)

```
import numpy as np
    from numpy.random import randn
    N, Din, H, Dout = 64, 1000, 100, 10
    x, y = randn(N, Din), randn(N, Dout)
    w1, w2 = randn(Din, H), randn(H, Dout)
    for t in range(10000):
      h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
      y_pred = h.dot(w2)
       loss = np.square(y_pred - y).sum()
      dy_pred = 2.0 * (y_pred - y)
      dw2 = h.T.dot(dy_pred)
12
      dh = dy_pred.dot(w2.T)
13
      dw1 = x.T.dot(dh * h * (1 - h))
14
      w1 -= 1e-4 * dw1
15
      w2 -= 1e-4 * dw2
16
```

```
input layer hidden layer
```

```
Initialize weights
and data
Compute loss
(sigmoid activation,
L2 loss)
         Compute
         gradients
                          15
```

```
import numpy as np
    from numpy.random import randn
    N, Din, H, Dout = 64, 1000, 100, 10
    x, y = randn(N, Din), randn(N, Dout)
    w1, w2 = randn(Din, H), randn(H, Dout)
    for t in range(10000):
      h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
      y_pred = h.dot(w2)
      loss = np.square(y_pred - y).sum()
      dy_pred = 2.0 * (y_pred - y)
      dw2 = h.T.dot(dy_pred)
      dh = dy_pred.dot(w2.T)
      dw1 = x.T.dot(dh * h * (1 - h))
      w1 -= 1e-4 * dw1
      w2 -= 1e-4 * dw2
16
```



```
from numpy.random import randn
                         N, Din, H, Dout = 64, 1000, 100, 10
Initialize weights
                         x, y = randn(N, Din), randn(N, Dout)
and data
                         w1, w2 = randn(Din, H), randn(H, Dout)
                         for t in range(10000):
                           h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
Compute loss
                           y_pred = h.dot(w2)
(sigmoid activation,
L2 loss)
                           loss = np.square(y_pred - y).sum()
                           dy_pred = 2.0 * (y_pred - y)
                           dw2 = h.T.dot(dy_pred)
       Compute
       gradients
                           dh = dy_pred.dot(w2.T)
                           dw1 = x.T.dot(dh * h * (1 - h))
                           w1 -= 1e-4 * dw1
          SGD
          step
                           w2 -= 1e-4 * dw2
```

import numpy as np

This image by Fotis Bobolas is licensed under CC-BY 2.0

Our brains are made of Neurons

<u>Neuron image</u> by Felipe Perucho is licensed under <u>CC-BY 3.0</u>

Biological Neurons: Complex connectivity patterns

This image is CCO Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

Biological Neurons: Complex connectivity patterns

This image is CCO Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", ICCV 2019

Be very careful with brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex nonlinear dynamical system
- Abstracting a neuron by "firing rate" isn't enough; temporal sequences of activations matter too (spiking neural networks)

[Dendritic Computation. London and Hausser]

Consider a linear transform: h = WxWhere x, h are both 2-dimensional

Justin Johnson Lecture 5 - 53 January 24, 2022

Consider a linear transform: h = WxWhere x, h are both 2-dimensional

Justin Johnson Lecture 5 - 54 January 24, 2022

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 55 January 24, 2022

Points not linearly separable in original space

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 56 January 24, 2022

Points not linearly separable in original space Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Justin Johnson January 24, 2022 Lecture 5 - 57

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx)Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 58 January 24, 2022

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 59 January 24, 2022

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 60 January 24, 2022

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 61 January 24, 2022

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 62 January 24, 2022

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx)Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 63 January 24, 2022

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx)Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 64 January 24, 2022

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx)Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 65 January 24, 2022

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Justin Johnson Lecture 5 - 66 January 24, 2022

Setting the number of layers and their sizes

More hidden units = more capacity

Justin Johnson Lecture 5 - 67 January 24, 2022

Don't regularize with size; instead use stronger L2

$$\lambda = 0.001$$

$$\lambda = 0.01$$
 $\lambda = 0.1$

(Web demo with ConvNetJS:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

Justin Johnson Lecture 5 - 68 January 24, 2022

A neural network with one hidden layer can approximate any function f: R^N -> R^M with arbitrary precision*

*Many technical conditions: Only holds on compact subsets of R^N; function must be continuous; need to define "arbitrary precision"; etc

Example: Approximating a function f: R -> R with a two-layer ReLU network

Example: Approximating a function f: R -> R with a two-layer ReLU network

Example: Approximating a function f: R -> R with a two-layer ReLU network

Example: Approximating a function f: R -> R with a two-layer ReLU network

First layer weights: w (3,1) Second layer weights: u (1,3) First layer bias: b (3,) First layer bias: p (1,)

```
h1 = max(0, w1 * x + b1)

h2 = max(0, w2 * x + b2)

h3 = max(0, w3 * x + b3)

y = u1 * max(0, w1 * x + b1)

+ u2 * max(0, w2 * x + b2)

+ u3 * max(0, w3 * x + b3)

+ u3 * max(0, w3 * x + b3)

+ u3 * max(0, w3 * x + b3)
```

Output is a sum of shifted, scaled ReLUs:

Example: Approximating a function f: R -> R with a two-layer ReLU network

First layer bias: b (3,1) Second layer weights: u (1,3) First layer bias: p (1,)

$$h1 = max(0, w1 * x + b1)$$

 $h2 = max(0, w2 * x + b2)$
 $h3 = max(0, w3 * x + b3)$
 $y = u1 * max(0, w2 * x + b2)$
 $+ u2 * max(0, w2 * x + b2)$
 $+ u3 * max(0, w3 * x + b3)$
 $+ u3 * max(0, w3 * x + b3)$
 $+ u3 * max(0, w3 * x + b3)$

Output is a sum of shifted, scaled ReLUs:

Flip left / right based on sign of w_i

y = u1 * h1 + u2 * h2 + u3 * h3 + p

Example: Approximating a function f: R -> R with a two-layer ReLU network

+ p

y = u1 * h1 + u2 * h2 + u3 * h3 + p

Example: Approximating a function f: R -> R with a two-layer ReLU network

+ p

Approximate functions with bumps!

Example: Approximating a function f: R -> R with a two-layer ReLU network

$$h1 = max(0, w1 * x + b1)$$

 $h2 = max(0, w2 * x + b2)$
 $h3 = max(0, w3 * x + b3)$
 $y = u1 * max(0, w2 * x + b2)$
 $+ u2 * max(0, w2 * x + b2)$
 $+ u3 * max(0, w3 * x + b3)$
 $+ u3 * max(0, w3 * x + b3)$
 $+ u3 * max(0, w3 * x + b3)$

What about...

- Gaps between bumps?
- Other nonlinearities?
- Higher-dimensional functions?

See Nielsen, Chapter 4

Example: Approximating a function f: R -> R with a two-layer ReLU network

Reality check: Networks don't really learn bumps!


```
h1 = max(0, w1 * x + b1)

h2 = max(0, w2 * x + b2)

h3 = max(0, w3 * x + b3)

y = u1 * max(0, w2 * x + b2)

+ u2 * max(0, w2 * x + b2)

+ u3 * max(0, w3 * x + b3)

y = u1 * h1 + u2 * h2 + u3 * h3 + p
```


Approximate functions with bumps!

Example: Approximating a function f: R -> R with a two-layer ReLU network

Universal approximation tells us:

Neural nets can represent any function

Universal approximation DOES NOT tell us:

- Whether we can actually learn any function with SGD
- How much data we need to learn a function

Remember: kNN is also a universal approximator!

Reality check: Networks don't really learn bumps!

Extra topic (Won't be on HW / Exam)

A function
$$f: X \subseteq \mathbb{R}^N \to \mathbb{R}$$
 is **convex** if for all $x_1, x_2 \in X, t \in [0, 1]$,
$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

A function
$$f:X\subseteq\mathbb{R}^N\to\mathbb{R}$$
 is **convex** if for all $x_1,x_2\in X,t\in[0,1]$,
$$f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$$

Example: $f(x) = x^2$ is convex:

Justin Johnson Lecture 4 - 88 January 24, 2022

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$,

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

Example: $f(x) = x^2$ is convex:

Justin Johnson Lecture 4 - 89 January 24, 2022

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0, 1]$,

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

Example: $f(x) = x^2$ is convex:

Justin Johnson Lecture 4 - 90 January 24, 2022

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0, 1]$,

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

Example: $f(x) = \cos(x)$ is <u>not convex</u>:

A function
$$f:X\subseteq\mathbb{R}^N\to\mathbb{R}$$
 is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

^{*}Many technical details! See e.g. IOE 661 / MATH 663

A function
$$f:X\subseteq\mathbb{R}^N\to\mathbb{R}$$
 is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

A function
$$f:X\subseteq\mathbb{R}^N\to\mathbb{R}$$
 is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

Linear classifiers optimize a convex function!

$$s = f(x; W) = Wx$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_{j}e^{s_j}})$$
 Softmax

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM

$$L=rac{1}{N}\sum_{i=1}^{N}L_i+R(W)$$

R(W) = L2 or L1 regularization

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

^{*}Many technical details! See e.g. IOE 661 / MATH 663

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

A function
$$f:X\subseteq\mathbb{R}^N\to\mathbb{R}$$
 is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

Most neural networks need nonconvex optimization

- Few or no guarantees about convergence
- Empirically it seems to work anyway
- Active area of research

Feature transform + Linear classifier allows nonlinear decision boundaries

Neural Networks as learnable feature transforms

Justin Johnson Lecture 5 - 100 January 24, 2022

From linear classifiers to fully-connected networks

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

Linear classifier: One template per class

Neural networks: Many reusable templates

From linear classifiers to fully-connected networks

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

Neural networks loosely inspired by biological neurons but be careful with analogies

From linear classifiers to fully-connected networks

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

Space Warping

Universal Approximation

Nonconvex

Problem: How to compute gradients?

$$s = W_2 \max(0, W_1 x + b_1) + b_2$$

Nonlinear score function

$$L_i = \sum_{i \neq v_i} \max(0, s_j - s_{y_i} + 1)$$

Per-element data loss

$$R(W) = \sum_{k} W_k^2$$

L2 Regularization

$$L(W_1, W_2, b_1, b_2) = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$$
 Total loss

If we can compute $\frac{\partial L}{\partial W_1}$, $\frac{\partial L}{\partial W_2}$, $\frac{\partial L}{\partial b_1}$, $\frac{\partial L}{\partial b_2}$ then we can optimize with SGD

Next time: Backpropagation