计算物理A作业8

吕遨 PB19030789

1.作业题目

用Monte Carlo方法计算如下定积分,并讨论有效数字位数。

$$(1) \int_0^5 \sqrt{x + 2\sqrt{x}} \, \mathrm{d}x$$

(2)
$$\int_0^{\frac{7}{10}} dx \int_0^{\frac{4}{7}} dy \int_0^{\frac{9}{10}} dz \int_0^2 du \int_0^{\frac{13}{11}} dv (5 - x^2 + y^2 - z^2 + u^3 - v^3)$$

2.算法和主要公式

2.1 Monte Carlo平均值法计算定积分

根据微积分中的平均值定理

$$\int_{a}^{b}f(x)\,\mathrm{d}x=\left(b-a
ight)\left\langle f
ight
angle$$

平均值

$$\langle f
angle = rac{1}{N} \sum_{i=1}^N f(x_i)$$

故有

$$\int_{a}^{b} f(x) \, dx = \frac{(b-a)}{N} \sum_{i=1}^{N} f(x_i)$$

其中 x_i 为区间[a,b]上的均匀随机数。

这种方法也可以推广到高维的多变量积分:

$$\int_{a_1}^{b_1} \mathrm{d}x_1 \int_{a_2}^{b_2} \mathrm{d}x_2 \cdots \int_{a_n}^{b_n} \mathrm{d}x_n f(x_1, x_2, \cdots, x_n) = rac{1}{N} \left[\prod_{j=1}^N (b_j - a_j)
ight] \sum_{i=1}^N f(x_1, x_2, \cdots, x_n)$$

2.2 大数定律与中心极限定理

大数定律指出,如随机量序列 $\{f_i\}$ 有期待值 μ 存在,则

$$\lim_{N o\infty}rac{1}{N}\sum_{i=1}^Nf_i o\mu$$

中心极限定理指出当N为有限值时,有

$$P\left\{\left|rac{\langle f
angle-\mu}{\sigma_f/\sqrt{N}}
ight|$$

其中 $\Phi(eta)$ 是Gauss正态分布。函数标准差 $\sigma_f = \sqrt{\langle f^2
angle - \langle f
angle^2}$

积分值的标准差 $\sigma_s = (b-a) rac{\sigma_f}{\sqrt{N}}$

上式表明 σ_s 随着 $\frac{1}{\sqrt{N}}$ 变化,要达到一定的计算精度,必须以平方的方式增加总样本点数。

2.3 算法和程序说明

程序的基本流程如下:

在mc_integral_1.c中计算第一个单变量积分,在mc_integral_2.c中计算第二个多变量积分。

3.计算结果及分析

3.1 单变量积分结果

用Mathematica软件计算得到该定积分的准确值(15位有效数字) $I_1=11.3179614888953$,程序计算结果如下:

N	Integral Value	Error	$\frac{1}{\sqrt{N}}$
10	10.16842331	1.14953818e+000	3.16227766e-001
10^2	11.45425541	1.36293926e-001	1.00000000e-001
10^3	11.31009229	7.86920035e-003	3.16227766e-002
10^4	11.31283693	5.12456222e-003	1.00000000e-002
10^5	11.32084023	2.87873845e-003	3.16227766e-003
10^{6}	11.31835098	3.89493418e-004	1.00000000e-003
10^{7}	11.31861197	6.50479908e-004	3.16227766e-004
10^{8}	11.31827696	3.15475112e-004	1.00000000e-004

由上可见,随着N的增大,积分误差逐渐接近 $\frac{1}{\sqrt{N}}$ 。整体来看当N增加100倍时误差缩小大约10倍,这符合Monte Carlo方法的预期。

3.2 多变量积分结果

用Mathematica软件计算得到该定积分的准确值(15位有效数字) $I_2=5.32911646773318$,程序计算结果如下:

N	Integral Value	Error	$\frac{1}{\sqrt{N}}$
10	5.46631314	1.37196669e-001	3.16227766e-001
10^2	5.32121474	7.90172418e-003	1.00000000e-001
10^3	5.27780425	5.13122140e-002	3.16227766e-002
10^4	5.40143201	7.23155462e-002	1.00000000e-002
10^5	5.33272249	3.60602410e-003	3.16227766e-003
10^{6}	5.33170736	2.59088757e-003	1.00000000e-003
10^{7}	5.32904296	7.35120956e-005	3.16227766e-004

上述结果与3.1中结果类似,随着N的增大,积分误差逐渐接近 $\frac{1}{\sqrt{N}}$ 。

4.总结

- (1) 用 $Monte\ Carlo$ 方法计算定积分时,点数N较大时结果比较准确。
- (2) 误差量级就是计算值的无效位数,当取点数增大时误差将减小,有效数字的位数会增加。
- (3) 如果想提高计算精度,就需要显著增加取点数N,这必然会导致效率的降低。