PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-301034

(43)Date of publication of application: 28.10.1994

(51)Int.CI.

水

G02F 1/1335

G02B 5/02

G09F 13/04

(21)Application number: 05-094002

(71)Applicant

(22)Date of filing:

21.04.1993

05 27824

(71)Applicant : RIYOOSAN:KK

(72)Inventor: NAGAMINE AKIMA

(30)Priority

Priority number: 04110938

Priority date: 30.04.1992

17.02.1993

Priority country: JP

17.02.1993

JP

(54) BACK LIGHT DEVICE AND ASSEMBLING METHOD THEREFOR

(57)Abstract:

PURPOSE: To provide a device which is simplified in constitution, is reduced in size and thickness, is good in durability and is improved in luminance by providing the device with projecting pins (reference points) to be engaged with the holes of a light diffusion plate to position this light diffusion plate and fluorescent lamps. CONSTITUTION: The positioning hole parts XH, YH to be engaged with the positioning pins XP and YP mounted on lamp fixing plates 20a, 20b are formed in the lateral central positions of the light diffusion plate 60. Consequently, the fluorescent lamps are mounted with the positioning pins as a reference, dot pattern parts DPa to DPf formed on the light diffusion plate 60 are mounted with the fixing plates 20a, 20b for fixing the fluorescent lamps as a reference and the dot patterns are printed with the positioning analog as a reference and, therefore, the dot patterns are disposed opposite exactly to the positions of the fluorescent lamps. The positioning is executed with the exact positional relation

between the fluorescent lamps and the dot patterns in this device and, therefore, the uniformity of light diffusion, i.e., the uniformity of the luminance on the diffusion plate is obtd.

LEGAL STATUS

[Date of request for examination]

21.04.1993

[Date of sending the examiner's decision of

22.07.1997

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

(19)日本国特許庁(JP)

(12)公開特許公報 (A) (11)特許出願公開番号

特開平6-301034

(43)公開日 平成6年(1994)10月28日

G 0 2 B 5	識別 /1335 53 /02 /04		庁内整理番号 7408-2 K 9224-2 K 8621-5 G		FI.	技術表示箇所
審査	丘請求 有	請求功	質の数16	OL		(全12頁)
(21)出願番号 特願平5-94002				(71)出願人	000139090	
(22)出願日	平成5年(1993)4月21日				(72)発明者	株式会社リョーサン 東京都千代田区東神田2丁目5番15号 長峰 昭馬
(31)優先権主張番号 特願平4-110938 (32)優先日 平4(1992)4月30日					東京都千代田区東神田2丁目5番15号 株式 会社リョーサン内	
(33)優先権主張国 (31)優先権主張番号 (32)優先日 (33)優先権主張国	日本 (JP) 824 月17日			(74)代理人	弁理士 鈴江 武彦
			,			

(54)【発明の名称】バックライト装置及びその組立て方法

(57)【要約】

【目的】装置全体の構成を簡素化して小型、薄型化にで きるとともに、耐久性も良く信頼性が高く、輝度を向上 するにも有効な装置を得る。

【構成】透明アクリル板において、光拡散層と光透過性 のドットバターンによる光量均一化層を設け光拡散板6 0を利用した構造である。

ト装置において、

1

【特許請求の範囲】

【請求項1】 薄い略角皿型のハウジング内に複数本の 直管状の蛍光ランプを配置し、前記ハウジングの内面に は反射膜が設けられており、前記ハウジングを閉じるべくアクリル性の光透過性光拡散板を配置したバックライト装置において、

前記蛍光ランプ群の両端側には、それぞれ各蛍光ランプの端をそれぞれ係合できる係合穴を有したランプ固定板が配置され、このランプ固定板は、前記ハウジングにフック及びネジ等により固定され、かつ前記ランプ固定板 10の上側端面には、前記光拡散板の穴に係合して、前記光拡散板と前記蛍光ランプとの位置決めを行うための突出ピン(基準点)が設けられていることを特徴とするバックライト装置。

【請求項2】 薄い略角皿型のハウジング内に複数本の 直管状の蛍光ランプを配置し、前記ハウジングの内面に は反射膜が設けられており、前記ハウジングを閉じるペ くアクリル性の光透過性光拡散板を配置したバックライ ト装置において、

前記透明アクリル板に光拡散層を塗布または印刷し、さらに前記蛍光ランプに対向した面に、前記蛍光ランプに近い位置は大きく密になり離れるにしたがって小さく粗になるようなパターンで、光拡散インキを印刷または塗布し、反射率約40~70%で透過率が約55~25%の拡散層としたことを特徴とするバックライト装置。

【請求項3】 前記光拡散インキとしては、透明材に光 拡散材を用いてインキ化したものであり、光透過率80 ~90%、光拡散性55~80%としていることを特徴 とする請求項2記載のバックライト装置。

【請求項4】 薄い略角皿型のハウジング内に複数本の 直管状の蛍光ランプを配置し、前記ハウジングの内面に は反射膜が設けられており、前記ハウジングを閉じるペ くアクリル性の光透過性光拡散板を配置したバックライ ト装置において、

前記透明アクリル板の前記蛍光ランプに対向した面に、 光拡散層を塗布または印刷し、前記蛍光ランプに近い面 には、光源に近い位置から遠ざかるにしたがってレンズ 集光効果が薄れるような凸レンズ状のレンズパターン層 を形成したことを特徴とするバックライト装置。

【請求項5】 薄い略角皿型のハウジング内に複数本の 直管状の蛍光ランプを配置し、前記ハウジングの内面に は反射膜が設けられており、前記ハウジングを閉じるべくアクリル性の光透過性光拡散板を配置したバックライト装置において、

前記透明アクリル板の前記蛍光ランプに対向した面の反対の面に、光拡散層を塗布または印刷し、前記蛍光ランプに近い面には、光源に近い位置から遠ざかるにしたがってレンズ集光効果が強くなるような凸レンズ状のレンズパターン層を形成したことを特徴とするバックライト装置。

【請求項6】 薄い略角皿型のハウジング内に複数本の 直管状の蛍光ランブを配置し、前記ハウジングの内面に は反射膜が設けられており、前記ハウジングを閉じるペ くアクリル性の光透過性光拡散板を配置したバックライ

前記透明アクリル板の前記蛍光ランプにに対向した面またはその反対の面に、光源に近い位置から遠ざかるにしたがってレンズ集光効果が強くなるような凸レンズ状のレンズパターン層を形成し、このレンズパターン層の上面に光拡散層を塗布または印刷形成したことを特徴とするバックライト装置。

【請求項7】 前記ランプ固定板の係合穴は、U字形の切り欠き部で形成され、これに蛍光ランプの端部を保持したゴム等の弾性材によるブッシュを装着する構造であることを特徴とする請求項1記載のバックライト装置。

【請求項8】 両端が口金電極であるランプと、

前記ランプの両端部にそれぞれランプ軸と略直交する方向に配置されるランプ固定板と、

前記ランプの両側のそれぞれの一部を保持した弾性を有 するブッシュと、

前記ランプ固定板の一方のエッジから切り込むように開設され、前記ランプを保持したブッシュが装着されるブッシュ保持部と、

前記ランプ固定板の側面に取付けられ、前記ランプの前記口金電極を保持するクリップソケットを実装し、かつ前記ランプに接続されるバラストコンデンサを実装しており、前記クリップソケットは、前記ランプを保持したブッシュが前記ブッシュ保持部に装着されたときに、前記ランプの口金電極を受けて保持するように設けられているプリント基板とを具備したことを特徴とするバックライト装置。

【請求項9】 前記プリント基板は、そのエッジに突出片を有し、この突出片が前記ランプ固定板に形成されたスリットに挿入されることにより取付けられることを特徴とする請求項8記載のバックライト装置。

【請求項10】 前記ランプは複数であって、当該ランプの一方側に設けられる前記プリント基板は、それぞれのランプに対応した前記クリップソケット有し、各クリップソケットは、基板に施された共通の配線に接続され、この配線に電源接続用のリード線が半田付けされていることを特徴とする請求項8記載のバックライト装

【請求項11】 前記ブッシュ保持部はU字形であり、前記ブッシュは、その外形が前記U字形に合致し、また前記ランプが挿通する穴を有し、この穴に湾曲部分から V字形に切り込まれたランプ装着口が連続している構成であることを特徴とする請求項8記載のバックライト装置。

【請求項12】 前記ランプの下側に配置される反射板 50 は、前記ランプ固定板の下面とシャーシとにより挟まれ

て保持されていることを特徴とする請求項8記載のバックライト装置。

【請求項13】 インバータ電源の一方の出力端子が冷陰極線管の一方の電極に接続され、前記インバータ電源の他方の出力端子がバラストコンデンサを介して前記冷陰極線管の他方の電極に接続されたバックライト装置において、

前記冷陰極線管に沿って前記インバータ電源のアース電位と接続される補助電極を配置したことを特徴とするバックライト装置。

【請求項14】 並列に配列された複数本の蛍光ランプ と

前記蛍光ランプの両端部にそれぞれ管軸と略直交する方向に配置されるランプ固定板と、

前記蛍光ランプの両側のそれぞれの一部を前記ランプ固 定板に保持させるランプ保持手段と、

前記複数本の蛍光ランプに間隔をおいて配置された平板状の反射板と、

前記反射板に併設するように配置され、前記蛍光ランプ の電源のアース電位が与えられる平板状の補助電極板と 20 を具備したことを特徴とするバックライト装置。

【請求項15】 前記補助電極板は、ハウジングの底部を形成していることを特徴とする請求項14記載のバックライト装置。

【請求項16】 両端が口金電極である複数のランプを 用意する工程と、

前記ランプの両端部にそれぞれランプ軸と略直交する方向に第1、第2のランプ固定板を配置する工程と、

前記ランプの両側のそれぞれの一部を弾性を有するブッシュにより保持する工程と、

前記ランプの前記口金電極を保持するクリップソケット を実装し、かつ前記ランプに接続されるバラストコンデ ンサを実装したプリント基板を前記ランプ固定板の側面 に取付ける工程と、

前記ランプ固定板の一方のエッジから切り込むように開設されたブッシュ保持部に、前記ランプを保持したブッシュを装着すると同時に、前記クリップソケットに対して、前記ランプの口金電極を装着する工程とを具備したことを特徴とするバックライト装置の組立て方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、液晶ディスプレイバネル、表示パネル等の照明具として用いられるバックライト装置及びその組立て方法に関する。

[0002]

【従来の技術】液晶ディスプレイパネルのバックライト 装置として、例えば特開平1-241590号公報に開 示されたものがある。バックライト装置としては、エッ ジ方式と、直下型のものがある。

【0003】エッジ方式は、アクリルの導光板の裏面に 50

市松模様に乱反射マーク(光拡散層)を形成し、かつ反射板を積層している。また導光板の表面には、光を拡散する拡散板を設けている。そして、直管状の蛍光ランプが導光板のエッジに沿って配置されている。蛍光ランプから出た光は、導光板のエッジから内部に導かれ、裏面の光拡散層で反射して表面の拡散板にて拡散され出てい

くようになっている。また、光拡散層の間から裏面側へ 向かった光は、反射板で反射されて表面側へ向かうよう になっている。

10 【0004】直下型のものは、ハウジングに複数の直管 状の蛍光ランプを並列に配置し、このハウジングの開口 を閉じるように光を拡散する拡散板を設けている。この 場合、拡散板と蛍光ランプの間には、さらに射出される 光を均一化するために、アルミのドットバターンを蒸着 したフィルム (ライティングカーテン)を配置してい る。蛍光ランプから出た光は、ハウジングの内面に設け られた反射板で反射されて、拡散板方向へ向かうことに なる。この場合、蛍光ランプの真上と、蛍光ランプの側 部の上とでは光の強度が違う。そこで、ライティングカ ーテンにより、光の通過量を制御し均一化しようとして る。

[0005]

【発明が解決しようとする課題】まず、従来の装置によると、部品数、組み立て工数が多く、コストアップになっている。さらにフィルムは温度変動により、伸縮性があり、蛍光ランプと反射パターンとの位置対応がずれ、光の均一性を損なうことがある。また反射パターンはアルミの蒸着等により形成されているために剥離が生じたり、製造工程において大掛かりな装置が必要である。

30 【0006】さらにまた、従来のバックライト装置によ ると、蛍光ランプ(冷陰極線管)をランプ固定板に取付 ける場合、ランプ固定板に、穴を設けこれに差し込む作 業を行っている。このために組立て作業に手間がかかり コストが高くなっている。また蛍光ランプはリード線を 有するタイプであるために、接続作業性に劣り、安全 性、信頼性に劣るという問題がある。即ち、リード線タ イブのものは、電源接続ケーブルとリード線を接続する 場合、互いにからげて半田付けをするか、またはカシメ 接続具を用いて接続している。このために、線同志の半 田付けを行うと作業性が悪い、半田付けの熱によりスロ ーリークの原因となる、ケーブルを完全に固定できない ために振動等によりリード線の根元に機械的ストレスが 加わり、断線の原因となる、半田付けした部分が安定し て固定されていないので絶縁チューブを被せる工程が必 要である。また、カシメ接続具は圧着するときにリード 線の根元に機械的ストレスが加わることがあり、断線、 接触不良等を生じやすいし、作業性も良くない等の問題 がある。

[0007]

【課題を解決するための手段】そこでこの発明は、装置

る。

全体の構成を簡素化して小型、薄型化にできるとともに、耐久性も良く信頼性が高く、輝度を向上するにも有効なパックライト装置を提供することを目的とする。この目的を達成するために、薄い略角皿型のハウジング内に複数本の直管状の蛍光ランプを配置し、前記ハウジングの内面には反射膜が設けられており、前記ハウジングを閉じるペくアクリル性の光透過性光拡散板を配置したパックライト装置において、前記透明アクリル板に光拡散層を設け、前記蛍光ランプに対向した面に、前記蛍光ランプに近い位置は密になり離れるにしたがって粗になり、光拡散インキによる反射率約40~70%で透過率が約55~25%の拡散層を設けたものである。また、光拡散層として透明材に光拡散材を用いてインキ化したものであり、光透過率80~90%、光拡散性55~80%としたものを用いるものである。

【0008】さらにこの発明は、装置全体の部品構成を 簡素化して、組立て作業性、耐久性も良く信頼性が高 く、コスト低減にも有効なバックライト装置を提供する ことを目的とする。この目的を達成するために、両端が 口金電極であるランプと、前記ランプの両端部にそれぞ 20 **れランプ軸と略直交する方向に配置されるランプ固定板** と、前記ランプの両側のそれぞれの一部を保持した弾性 を有するブッシュと、前記ランプ固定板の一方のエッジ から切り込むように開設され、前記ランプを保持したブ ッシュが装着されるブッシュ保持部と、前記ランプ固定 板の側面に取付けられ、前記ランプの前記口金電極を保 持するクリップソケットを実装し、かつ前記ランプに接 続されるパラストコンデンサを実装しており、前記クリ ップソケットは、前記ランプを保持したブッシュが前記 ブッシュ保持部に装着されたときに、前記ランプの口金 30 電極を受けて保持するように設けられているプリント基 板とを備える。

[0009]

【作用】上記の手段により、光拡散板一枚により、従来の技術の機能を奏することができ、組み立て部品点数も少なく、作業効率が良くなる。また、光拡散板に対して光拡散インキによる印刷または塗布により得られているために、従来のフィルムに比べて温度に強く機能上の信頼性も得られる。

【0010】また上記の手段により、ランプとブッシュを組立てておき、ブッシュ保持部にブッシュを装着すれば、自動的にプリント基板のクリップソケットにランプの口金電極が接続される。そしてブリント基板の配線及びバラストコンデンサを通じてランプを電源に接続することができるようになり、組立て作業が容易であり、かつ自動的に電気的接続も得られることになる。

[0011]

【実施例】以下、この発明の実施例を図面を参照して説明する。図1はこの発明の一実施例である。10は、アルミ板により形成されたハウジングであり、薄い略角皿 50

固定板20a、20b(20bは図示せず)が配置され

【0012】ランプ固定板20aは、両端が、先の翼片12a、12bに合致するようにテーバに形成されている。このランプ固定板20aは、高反射プラスチック(反射率98%)により成型されている。さらに、ハウジング10の底部に接するエッジ側には、複数のランプを固定するための、切り欠きまたは穴状の取り付け部a,b,c,d,e,fが形成されている。実施例では6本の蛍光ランプ40a、40b、40c,40d,40e,40fの端部、つまり取り付け部a~fに対応した箇所には

【0013】ハウジング10の内面側には、反射板50(厚み0.2㎜、材料RF188)が配置される。この反射板50上に並列に蛍光ランプ40 $a\sim40f$ が配置されることになる。図1では、片側の構造を示しているが、他方の側も同様に構成されている。図2に示すように、ランプ固定板20a、20bを配置する部分には、ねじ穴 $X1\sim X5$ 、 $Y1\sim Y5$ が形成されており、これに対応してランプ固定板20a、20bにもねじを締め付けるための穴が形成されている。

ゴムキャップが装着されている。

0 【0014】図3には、ランプ固定板20aを代表して 示している。ランプ固定板20aには、固定用の穴X1 $1\sim X15$ が設けられるとともに、上面側の左右中点に は、位置決めピンを取り付けるための穴X16も形成さ れている。他方のランプ固定板20bも同様である。

【0015】上記した反射板50、蛍光ランプ40a~40f、ランプ固定板20a、20bが組み立てられると、蛍光ランブ群の上が開口したハウジングとなる。そこでこのハウジングの開口を閉じるように、光拡散板60が配置される。

【0016】図4には、ランプ固定板のさらに他の実施例を示している。同図(A)は図3のものと同じであるが、同図(B)と(C)のものは、穴状の取り付け部a,b,c,d,e,fが分割された例であり、ランプを挟み込むことができるようになっている。また同図(B)のものは、ゴム等のブッシュでランプを保持するようにし、ランプ固定板にはU字形の切り欠き部を形成し、これにランプ端部を保持したブッシュを押し込むようになっている。また同図(D)のものは、完全な分割型ではなく、ヒンジ部を有するように構成されている。なお図3と同一部分には同一符号を付している。

【0017】図5は、光拡散板60を詳しく示してい る。光拡散板60は、透明のアクリル板の一方の面(例 えば上側の面)に光拡散層が均一な層で形成されてい る。この光拡散層は、印刷あるいは塗布により形成さ れ、光を均一に拡散する。

【0018】さらに、蛍光ランプが直下に存在する位置 (領域) には図面の都合上斜線を付して示している。破 線で囲む円の部分は、斜線部の一部を拡大して示してい る。この光拡散板60の光拡散層(光拡散層が下側の面 に設けられている場合)には、印刷または塗布により、 光拡散インキによる反射率約40~70%で透過率が約 55~25%の光制御層のドットバターンを設けてい る。このドットは、拡大図に示すように、蛍光ランプの 軸上に対応する位置から遠ざかるに連れて面積が小さく なるようにパターン化されている。拡大図の矢印Aが蛍 光ランプの軸上に位置する部分であり、この軸上のドッ トの面積が最も大きい。この光拡散インキによると、反 射率約40~70%で透過率が約55~25%であり、 光のロスは2~5%である。これにより、光源に近い部 分の光の透過率が低く、遠ざかるに吊れて透過率が高く 20 なり、全体平面としては、均一化した光が放出される。 【0019】さらに光拡散板60の左右中心位置には、 ランプ固定板20a、20bに取り付けられた位置決め ピンXPとYPに係合する位置決め穴部XH、YHが形 成されている。この結果、蛍光ランプを固定する固定板 20 a、20 bを基準にして、光拡散板60に形成され ているドットパターン部DPa~DPfを、位置決めビ ンを基準に蛍光ランプが取り付けられ、また、位置決め アナログを基準にドットパターンが印刷されるため正確 に蛍光ランプの位置に対応させて対向させることができ

【0020】蛍光ランプとドットパターンの位置関係が 正確に所定の関係にないと、光の拡散が不均一になる が、この装置では正確な位置決めができるので光拡散の 均一、つまり拡散板面上の輝度の均一性を得ることがで きる。また、位置決め手段があるために、組み立て作業 時においても容易に正確な位置決めが可能である。

【0021】なおこの発明におけるドットパターンの単 位ドットの形状は任意である。またストライプタイプの パターンであっても良い。光拡散インキとしては、中空 洞ガラスバブルを高分子樹脂バインダーでインキ化して スクリーン印刷及び塗布し、光透過性光拡散層を形成 し、硼珪酸ガラスの中空洞ガラスバブルは高光透過性と 中空洞構造により光透過で光屈折し高拡散性を有するよ うにしたものがある。また有機蛍光誘導発光体を高分子 樹脂バインダーにてインキ化したものでも良い。さらに 透明光硬化樹脂インキを用いても良い。さらに透明導電 性ITO (酸化インジウム、酸化スズ) 分散型インキを 用いても良い。これらによると、光透過率80~90

る。

【0022】さらに、図6には、光拡散板60の他の構 成例の原理を示している。この光拡散板60は、透明ア クリル板601に、例えばシリカ、酸化亜鉛、チタンま たは蛍光体等の調合を行った拡散剤が均一に印刷または 塗布され、拡散層602(厚み0.5µm~100µ m)を構成している。さらに拡散層602の上面には、 ドットパターンとしてレンズ層603が構成されてい る。このレンズ層603は、透明レジスト、あるいは拡 10 散層と同じ材質により形成されている。さらにレンズ部 は、光源に近い部分のレンズが小さく、光源611から 遠くなるにしたがってレンズが大きくなると言うパター ンである。このようにすると、例えば、図のように1つ の光源の光のエネルギーを100%、遠くなるに従い8 0%、50%とすると、遠ざかるに従い集光率が高くな るようにレンズ径を定めるてあるので、隣の光源612 からの利用率も上記のように設定されるから、結局、上 面側では、100%の集光利用率となる。レンズ部は、 光を集光する機能があるために、利用率が極めて良好と なり、レンズにより集光された光は、今度は、拡散層 6 02により均一に拡散されることになる。レンズ層は、 ドットパターンでも良くまた、かまぼこ状に蛍光ランプ に沿ったものでも良い。

8

【0023】上記の実施例では、レンズ層603を透明 アクリル板601の下面側 (光源側) に設けたが、同図 (B) に示すようにレンズ層 6 0 3 を上面側 (光源側と は反対の面)に設けても良い。この場合は、光源61 1、612に近い位置から遠ざかるにしたがってレンズ 集光効果が強くなるような凸レンズ状のレンズ層603 となる。即ち、この実施例は、レンズの光指向性を利用 するもので、凸レンズのおいても厚みの大きいものは、 厚みの薄いものに比べて指向性が強いことを利用して、 光源から遠いものは指向性が強いもの、光源に近いもの は指向性の小さいものにして、光を均一化するようにし ている。製造においては、レンズインキを均一な量でパ ターン印刷すると、インキの表面張力、その量とドット 面積により厚いレンズと薄いレンズが出来上がることに なる。

【0024】さらにこの発明は、透明アクリル板601 40 と光拡散層602とレンズ層603の配置関係は、図7 (A)、(B) に示すように配置しても効果にほとんど 変わりはない。つまり、透明アクリル板601と光拡散 層602によりレンズ層603を挟む形である。なお先 の実施例と同一材質には同じ符号を付している。

【0025】以上説明したようにこの発明によると、装 置全体の構成を簡素化して小型、薄型化にできるととも に、耐久性も良く信頼性が高く、輝度を向上するにも有 効なバックライト装置を得ることができる。

【0026】図8、図9にはさらにこの発明の他の実施 %、光拡散性 $5.5 \sim 8.0$ %の光拡散層を得ることができ 50 例を示している。図8、図9は、分解斜視図を分割して

40

示している。基本構造は、上記の実施例と同じである。 即ち、並列に配置された複数の蛍光ランプ47a~47 fの両端部に、ランプ固定板20a、20bが対向して 平行に配置されている。また、蛍光ランプ40a~40 fの下側には、間隔をおいて反射板50が配置されてい る。先の実施例では、ハウジング11の全体が示されて いないが、ハウジングは、具体的には長方形アルミシャ ーシ151と、このシャーシ151の長辺に対向して配 置されるフレーム111、121と、短辺に対向して配 置されるフレーム131、141で構成されている。フ 10 レーム111、121、131、141は、長手方向を 切断して見た場合、断面U字形であり、合成樹脂により 成型されている。そして、フレーム下部面側とシャーシ 151とはねじにより一体化される。フレーム上面側に は、拡散板60が配置される。これにより、内部空間を 有するハウジングが構成される。

【0027】この実施例では、ランプ固定板と蛍光ランプとの取り付け構造、及び蛍光ランプの電源接続構造に特徴を備えている。以下、図8、図9の各部の部分的構造を別に取出して個々に説明することにする。

【0028】図10(A)は、この実施例で用いられる 蛍光ランプの例と、この蛍光ランプをランプ固定板に取 付けるための構造を原理的に示している。蛍光ランプと しては、リード線タイプの蛍光ランプ47がある。この 蓋で封止した口金タイプの蛍光ランプ47がある。この 実施例では、作業性を考慮して口金471を有した口金 タイプを使用する。リード線タイプの蛍光ランプは、ラ ンプ固定板に取付ける場合、管を保護するために接触部 にゴムスリーブ46を装着しなければならないが、その 作業が繁雑である。この実施例では、ブッシュ70を使 用している。

【0029】ブッシュ70は、1つ代表して説明するが、弾性材により形成されており、その外形が例えばU字形であり、ランプが挿通する穴71を有し、この穴70に湾曲部分からV字形に切り込まれたランプ装着口72が形成されている。従って、V字のランプ挿入口72にランプの周囲を押付けると、ランプは穴70に容易に嵌まり込むことができる。

【0030】図10(B)はブッシュ70とランプ固定板20a、20bの取付け構造を原理的に示している。なお蛍光ランプ47やブッシュ70は、多数使用されるが(図8、図9の具体的斜視図参照)、符号47、70で代表して示している。さらにランプ固定板20a側の1つを代表して説明する。ランプ固定板20aには、下部のエッジに切り込むように開設され、ブッシュ70を装着できるブッシュ保持部75が形成されている。このブッシュ保持部75は、ブッシュの形状に合致するようにU字形に開設されている。従って、各蛍光ランプに予めブッシュを装着して、ランプ固定板のブッシュ保持部にブッシュを装着すれば、多数を同時に一体に組立てる

ことができる。

【0031】ブッシュ70は、管軸の垂直方向から蛍光ランプ47との組み立てが可能であり、作業性が良く、管保持力も優れたものとなる。スリーブを挿入する方法であると、力の要る作業となり時間がかかり破損等も少なくない。また無理に押し込むことにより管やリード線及びその付けねの部分に機械的なストレスが残ることもあるが、この実施例によるとこのような問題が解消される。

10

【0032】次に、この実施例では、ランプの電源接続 も組立て時に、同時に得られる構成となっている。即 ち、ランプ固定板20a側を代表して説明する。ランプ 固定板20aには、複数のスリット201、202、… が設けられている。このスリット201、202、…に は、プリント基板(中継基板)80aに形成された突出 片81、82を挿入して、ランプ固定板20aに、プリ ント基板80αを合体させて取付けることができる。ス リットと突出片を利用しなくても、各種の取付け手段は あるが、このようにすると部品点数が少なく取付け作業 も簡単であるという利点がある。スリット201、20 2の位置は、プリント基板80aが蛍光ランプの端部の 上側に位置するように、つまりブッシュ保持部の切り欠 き終端側に位置するように定められている。次にプリン ト基板80 aには、各ランプに接続されるバラストコン デンサが実装され、また各ランプの口金471を弾性的 に挟み電気的接続を得るクリップソケット85が実装さ れている。図10 (B) には口金471とクリップソケ ット85の組みを示しているが、他の部分でも同様な関 係になっている。クリップソケット85は、ヒューズ保 持クリップソケットのように作用し、ランプ47の口金 471部を下側から押し付けると容易に口金471部を 保持することができる。

【0033】このような構成によると、まず、プリント 基板80aをランプ固定板20a取付け、次に、蛍光ラ ンプ47とブッシュ70を一体にして、ブッシュ70を ブッシュ保持部75に装着すると、同時にランプの口金 部もクリップソケット85に接続されることになり、組 立て作業が全体的にワンタッチで得られることになる。 蛍光ランプは、それぞれ対応するバラストコンデンサを 介したのち、電源に共通に接続するために印刷配線86 に電気的に接続する。印刷配線86には、プリント基板 80aの端部で、電源リード線102の一端が半田付け されている。

【0034】図11(A)は、上記ランプ固定板20 a、プリント基板80a、蛍光ランプ47等が組立てられた状態を示している。図11(B)は、この実施例における蛍光ランプ47の基本的な電気回路の例を示している。蛍光ランプ47の両端子は、ブリント基板80 a、80bに実装されたクリップソケットにより電気接続される。この場合、プリント基板80aには、バラス

トコンデンサ89がそれぞれの蛍光ランプ47に対応して実装されているが、プリント基板80bには、各蛍光ランプ47の電極を共通接続する配線が設けられていれば良い。バラストコンデンサ89は、複数の蛍光ランプを点灯させる場合、それぞれの管の電気的特性のアンバランスを補正し、安定した動作を確保するために、一本毎に接続されている。

【0035】このように、ブリント基板80aにバラストコンデンサ89を実装しておくことにより、蛍光ランブ47の電極処理作業を簡略化することができる。また、組み立て作業時に、部品の付け忘れ、半田付けミス等が防止される。さらに、電源90の第1、第2端子に対しては、ブリント基板80a、80bの共通配線に接続された2本のリード線101、102を接続すれば良く、周辺の配線が極めて簡素となる。

【0036】図11(C)は、上述したプリント基板80a取り付け部、管取り付け部の方向を変えて見た断面図である。プリント基板80aの一方のエッジは、その突出片が、ランプ固定板20aのスリットに挿入されることにより位置決めされるが、他方のエッジは、フレー20ム111の内側に成型されている基板保持部112に係合される。基板保持部112は、プリント基板80aのエッジの上下の面を挟むように形成されている。フレーム111は、その長手方法から断面して見た場合、例えばU字形であり、一方の片には拡散板を取り付けることができ、他方の片にはハウジング(シャーシ)を取り付けることができる(図8、図9参照)。

【0037】上記のような構成によると、ブリント基板80aの印刷配線を、本体内側寄りに引き回すことが容易(予め印刷配線されるから)であり、一層安全規格を確実なものとする。つまり、ブリント基板を用いずに、リード線を引き回したのであれば、リード線の位置が不安定となり、フレーム側に片寄ったりすることがある。すると、高圧がかかっているために安全上問題となることがあるが、この実施例によるとこのような問題はない。

【0038】図12は、この実施例のさらに特徴部である反射板取付け構造を説明するための図である。即ち、この実施例においては、ランプ固定板20a、20bの下部エッジと、シャーシ151により、反射板50を挟40み付けて保持するようになっている。シャーシ151の底板側からランプ固定20a、20bの底面に、例えばねじを締め付けるときに、反射板50を挟みつけるものである。このような構成にすると、反射板50を単独で固定する作業工程を削減でき、組み立て作業効率を向上できるからである。

【0039】図13(A)は、上述した実施例の装置を 断面した状態で示している。反射板50は、シャーシ1 51とランプ固定板20aにより挟まれて固定されてい る。従って、ランプ固定板 2 0 a と反射板 5 0 の取り付け部は、一部をねじ等に締め付けるだけで済む。ここで、上述したシャーシ 1 5 1 は、ランプの輝度を上げてかつ安定動作を得るという電気的な効果を奏する。図 1 3 (B) は、シャーシ 1 5 1 の電気効果を説明するために示した図である。シャーシ 1 5 1 は、電源 9 0 のラインバイパスコンデンサの中点電位 (アース電位) 接続されている。このシャーシ 1 5 1 は、ランプの補助電極として機能し、放電状態を安定化させることになり、結果 10 的には輝度を上げることになる。なおこの装置では、シャーシ 1 5 1 が装置裏面に露出した状態になっている

12

[0040]

【発明の効果】上記したようにこの発明によると、装置全体の構成を簡素化して小型、薄型化にできるとともに、耐久性も良く信頼性が高く、輝度を向上するにも有効なバックライト装置を得ることができる。また、部品点数も少なく、組立て作業性が良く、かつコスト低減を得るバックライト装置を得ることができる。

] 【図面の簡単な説明】

【図1】この発明の一実施例を示す構成説明図。

が、さらに絶縁フレームで覆っても良い。

- 【図2】図1のハウジングを取り出して示す説明図。
- 【図3】図1のランプ固定板を取り出して示す説明図。
- 【図4】ランプ固定板の各種実施例を出す示す説明図。
- 【図5】図1の光拡散板を取り出して示す説明図。
- 【図6】光拡散板の構造例を説明するために示した図。
- 【図7】さらに光拡散板の構造例を説明するために示し た図。
- 【図8】この発明の他の実施例の分解斜視図の一部を示す図。
- 【図9】同じくこの発明の他の実施例の分解斜視図の一部を示す図。
- 【図10】図8、図9の部品結合構造の一部を取り出し て示す図。
- 【図11】同じく図8、図9の部品結合構造の一部を取り出して示す図。
- 【図12】同じく図8、図9の部品結合構造の一部を取り出して示す図。
- 【図13】同じく図8、図9の部品結合構造の一部と電気回路の説明図。

【符号の説明】

10…ハウジング、20a、20b…ランプ固定板、40a~40f、47a~47f、47…蛍光ランプ、50…反射板、60…光拡散板、71…ブッシュ、80a、80b…プリント基板、85…クリップソケット、86…印刷配線、89…バラストコンデンサ、90…電源、101、102…リード線、201、202…スリット、151…シャーシ。

【図12】

.101

【図4】

)

【図5】

(A) 45 471 (A) 46 45 471 (A) 800 200 (C) 151

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.