

### Circuitos combinatórios

Sistemas Digitais 2016/2017

Pedro Salgueiro pds@di.uevora.pt

### Circuitos combinatórios



#### Sumário

- Somador
- Comparador
- Descodificador
- Multiplexador
- Desmultiplexador
- Codificador



#### Semi-somador

- Função
  - Somar dois algarismos binários
- Síntese
  - Entradas: 2
  - Saídas: 2
    - Porque pode produzir transporte (carry)
- Expressão algébrica
  - $S = A \oplus B$
  - $C_0 = AB$

#### Tabela de verdade

| Α | В | S | C <sub>o</sub> |
|---|---|---|----------------|
| 0 | 0 | 0 | 0              |
| 0 | 1 | 1 | 0              |
| 1 | 0 | 1 | 0              |
| 1 | 1 | 0 | 1              |

#### - Logigrama





### Somador completo

- Função
  - Somar dois algarismos binários com transporte
- Síntese

• Entradas: 3

• Saídas: 2

- Expressão algébrica

• 
$$S = A \oplus B \oplus C$$

•  $C_0 = AB + C_i(A \oplus B)$ 

#### Tabela de verdade

| Α | В | $C_{i}$ | S | $C_0$ |
|---|---|---------|---|-------|
| 0 | 0 | 0       | 0 | 0     |
| 0 | 0 | 1       | 1 | 0     |
| 0 | 1 | 0       | 1 | 0     |
| 0 | 1 | 1       | 0 | 1     |
| 1 | 0 | 0       | 1 | 0     |
| 1 | 0 | 1       | 0 | 1     |
| 1 | 1 | 0       | 0 | 1     |
| 1 | 1 | 1       | 1 | 1     |

- Logigrama
  - Pode ser construido com 2 semi-somadores e 1 porta OR



## Somador completo

- Logigrama





#### Somador de 4 bits

- Como construir?
  - A partir de 4 somadores completos



- Circuito integrado
  - TTL 7483



#### Somador de 8 bits

- Como construir?
  - Utilizar 2 integrados 7483
    - A: 4 bits menos significativos
    - B: 4 bits mais significativos
  - Ligar o C4 do integrado A ao C0 do integrado B



#### **Subtractor**

- Como construir?
  - A B = A + (-B)
  - Como obter -B?
    - Representação C2: negar B bit a bit e somar 1
- Subtractor 4 bits
  - Utilizar 1 integrado 7483 + 4 NOT





#### Subtractor/Somador

- Como construir?
  - Utilizar um somador completo
  - Entrada OP: indica a operação a realizar
    - 0: soma
    - 1 subtracção
- Somador/subtractor 4 bits
  - Utilizar 1 integrado 7482 + 4 XOR



#### Subtractor/Somador



#### Overflow

- Quando acontece?
  - Sempre que o transporte do último bit(para o exterior) é diferente do transporte do bit anterior
- Como construir?
  - Usar uma porta XOR



### Comparador simples

#### - Função

- Comparar 2 algarismos binários
  - menor, maior, igual

#### - Síntese

• Entradas: 2

• Saídas: 2

#### Tabela de verdade

| Α | В | Х | Υ |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |



### Comparador 1 bits

- Função
  - Comparar 2 bits
- Síntese
  - Entradas: 4
  - Saídas: 2

#### - Tabela de verdade

| X <sub>n+1</sub> | Y <sub>n+1</sub> | Α | В | X <sub>n</sub> | Y <sub>n</sub> |
|------------------|------------------|---|---|----------------|----------------|
| 0                | 0                | 0 | 0 | 0              | 0              |
| 0                | 0                | 0 | 1 | 0              | 1              |
| 0                | 0                | 1 | 0 | 1              | 0              |
| 0                | 0                | 1 | 1 | 0              | 0              |
| 0                | 1                | X | X | 0              | 1              |
| 1                | 0                | X | Χ | 1              | 0              |
| 1                | 1                | X | X | X              | X              |



#### - Mapa de Karnaugh



|                                    | $\mathbf{Y}_{n}$ |    |    |    |  |  |  |  |  |
|------------------------------------|------------------|----|----|----|--|--|--|--|--|
| AB X <sub>n+1</sub> Y <sub>n</sub> | 00               | 01 | 11 | 10 |  |  |  |  |  |
| 00                                 | 0                | 1  | X  | 0  |  |  |  |  |  |
| 01                                 | 1                | 1  | Х  | 0  |  |  |  |  |  |
| 11                                 | 0                | 1  | Х  | 0  |  |  |  |  |  |
| 10                                 | 0                | 1  | X  | 0  |  |  |  |  |  |

#### - Expressão algébrica

- $X_n = X_{n+1} + A \overline{B} \overline{Y_{n+1}}$
- $Y_n = Y_{n+1} + \overline{A} B \overline{X_{n+1}}$



### - Logigrama





- Comparador 4 bits
  - Como construir?
    - A partir de 4 comparadores



- Circuito integrado
  - TTL 7485
    - 3 saídas: A=B, A > B e A < B



#### Descodificador

- Função
  - Identificar as palavras de um código

#### - Síntese

- Entradas: comprimento do código
- Saídas: nº de palavras do código
  - Fica ativa apenas a saída que corresponder à palavra de código presente nas entradas

#### Características

Em cada instante, apenas uma das saídas está ativa



### Exemplos

- Descodificador números binários de n bits
  - Entradas: n
    - São aplicadas as palavras de código binário natural
  - Saídas: 2<sup>n</sup>
    - Apenas fica ativa a saída que corresponde ao CBN presente à entrada
- Descodificador BCD/decimal
  - Entradas: 4
    - São aplicadas as palavras do código BCD
  - Saídas: 10
    - Apenas fica ativa a saída correspondente ao número representado à entrada

#### Descodificador binário



#### Descodificador binário de 3 bits

- Características

• Entradas: 3

• Saídas: 8

- Tabela de verdade

| Α | В | С | S <sub>0</sub> | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> | S <sub>5</sub> | S <sub>6</sub> | S <sub>7</sub> |
|---|---|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 0 | 0 | 0 | 1              | 0              | 0              | 0              | 0              | 0              | 0              | 0              |
| 0 | 0 | 1 | 0              | 1              | 0              | 0              | 0              | 0              | 0              | 0              |
| 0 | 1 | 0 | 0              | 0              | 1              | 0              | 0              | 0              | 0              | 0              |
| 0 | 1 | 1 | 0              | 0              | 0              | 1              | 0              | 0              | 0              | 0              |
| 1 | 0 | 0 | 0              | 0              | 0              | 0              | 1              | 0              | 0              | 0              |
| 1 | 0 | 1 | 0              | 0              | 0              | 0              | 0              | 1              | 0              | 0              |
| 1 | 1 | 0 | 0              | 0              | 0              | 0              | 0              | 0              | 1              | 0              |
| 1 | 1 | 1 | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 1              |

- Logigrama



#### Descodificador binário



### Circuito integrado

- Os CI têm uma entrada Enable
  - Ativada: o descodificador funciona normalmente
  - Desativada: todas as saídas são desativadas
- Descodificador de 2 bits



#### Descodificador binário



### Expansão de descodificadores

- Como construir?
  - Utilizar a entrada Enable do Cl
- Exemplo
  - Construir um descodificador de 4 bits a partir de descodificadores de 2 bits
  - Quantos descodificadores são necessários?
    - 4 para 16 palavras (16 = 4 x 4)
    - 1 para selecionar o descodificador correto

#### - Circuito



#### Outros descodificadores



#### Descodificador BCD/decimal

#### Características

• Entradas: 4

• Saídas: 10

- C

• TTL-7442

#### Tabela de verdade

• As saídas não preenchidas correspondem a '0's

| Α | В  | С    | D | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|----|------|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0  | 0    | 0 | 1 |   |   |   |   |   |   |   |   |   |
| 0 | 0  | 0    | 1 |   | 1 |   |   |   |   |   |   |   |   |
| 0 | 0  | 1    | 0 |   |   | 1 |   |   |   |   |   |   |   |
| 0 | 0  | 1    | 1 |   |   |   | 1 |   |   |   |   |   |   |
| 0 | 1  | 0    | 0 |   |   |   |   | 1 |   |   |   |   |   |
| 0 | 1  | 0    | 1 |   |   |   |   |   | 1 |   |   |   |   |
| 0 | 1  | 1    | 0 |   |   |   |   |   |   | 1 |   |   |   |
| 0 | 1  | 1    | 1 |   |   |   |   |   |   |   | 1 |   |   |
| 1 | 0  | 0    | 0 |   |   |   |   |   |   |   |   | 1 |   |
| 1 | 0  | 0    | 1 |   |   |   |   |   |   |   |   |   | 1 |
|   | ou | tras |   |   |   |   |   |   |   |   |   |   |   |

#### Outros descodificadores



#### Descodificador BCD/7 segmentos

- Display 7 segmentos



- Caracteristicas

• Entradas: 4

• Saídas: 7

- CI

• TTL-7447

• TTL-7448

#### Tabela de verdade

As saídas não preenchidas correspondem a '0's

| Α      | В | С | D | а | b | С | d | е | f | g |
|--------|---|---|---|---|---|---|---|---|---|---|
| 0      | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |   |
| 0      | 0 | 0 | 1 |   | 1 | 1 |   |   |   |   |
| 0      | 0 | 1 | 0 | 1 | 1 |   | 1 | 1 |   | 1 |
| 0      | 0 | 1 | 1 | 1 | 1 | 1 | 1 |   |   | 1 |
| 0      | 1 | 0 | 0 |   | 1 | 1 |   |   | 1 | 1 |
| 0      | 1 | 0 | 1 | 1 |   | 1 | 1 |   | 1 | 1 |
| 0      | 1 | 1 | 0 | 1 |   | 1 | 1 | 1 | 1 | 1 |
| 0      | 1 | 1 | 1 | 1 | 1 | 1 |   |   |   |   |
| 1      | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1      | 0 | 0 | 1 | 1 | 1 | 1 |   |   | 1 | 1 |
| outras |   |   |   |   |   |   |   |   |   |   |

#### Descodificadores e funções lógicas



#### Descodificadores e funções lógicas

- Qualquer função pode ser implementada com um descodificador e uma porta lógica
  - descodificador implementa os mintermos da função
  - porta OR implementa a soma dos mintermos
- Exemplo
  - $F(A,B,C) = \sum m(0,2,3,5,6)$
- Circuito





#### Multiplexador (MUX)

#### - Função

Selecionar uma entrada de acordo com a palavra de controlo/seleção

#### Síntese

- Entradas de dados: N
- Entradas de controlo (S): log N
- Saídas (Y): 1

#### Características

 Para distinguir se na saída está uma palavra da entrada ou não, é necessária uma entrada de Enable

#### - CI

- 16 para 1: TTL 74LS150
- 8 para 1: TTL 74LS151
- 2 x 4 para 1: TTL 74LS153
- 4 x 2 para 1: TTL 74LS157



### Multiplexador (MUX)

- Tabela de verdade

| 1 | 0 | S | EN | Υ |
|---|---|---|----|---|
| Х | X | Х | 0  | 0 |
| X | 0 | 0 | 1  | 0 |
| X | 1 | 0 | 1  | 1 |
| 0 | X | 1 | 1  | 0 |
| 1 | X | 1 | 1  | 1 |

Logigrama



- Símbolo lógico





### Expansão de multiplexadores

- Como construir?
  - Em camadas sucessivas numa estrutura em árvore
- Exemplo
  - Construir um multiplexador de 16 para 1 a partir de multiplexadores de 4 para 1

#### Circuito





#### Multiplexador e expressões lógicas

- Qualquer função pode ser implementada com um multiplexador
- Exemplo

| Α | В   | С   | D | а | b | С | d | е | f | g |
|---|-----|-----|---|---|---|---|---|---|---|---|
| 0 | 0   | 0   | 0 | 1 | 1 | 1 | 1 | 1 | 1 |   |
| 0 | 0   | 0   | 1 |   | 1 | 1 |   |   |   |   |
| 0 | 0   | 1   | 0 | 1 | 1 |   | 1 | 1 |   | 1 |
| 0 | 0   | 1   | 1 | 1 | 1 | 1 | 1 |   |   | 1 |
| 0 | 1   | 0   | 0 |   | 1 | 1 |   |   | 1 | 1 |
| 0 | 1   | 0   | 1 | 1 |   | 1 | 1 |   | 1 | 1 |
| 0 | 1   | 1   | 0 | 1 |   | 1 | 1 | 1 | 1 | 1 |
| 0 | 1   | 1   | 1 | 1 | 1 | 1 |   |   |   |   |
| 1 | 0   | 0   | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0   | 0   | 1 | 1 | 1 | 1 |   |   | 1 | 1 |
|   | out | ras |   |   |   |   |   |   |   |   |



Símbolo lógico



 Saída do segmento a do descodificador BCD/7 segmentos



### Desmultiplexador

- Função
  - De acordo com uma palavra de controlo, coloca numa saída o valor que está à entrada
- Síntese
  - Entradas de dados (D): 1
  - Entradas de controlo (S): log N
  - Saídas: N
- Características
  - Para distinguir se à saída está uma palavra de entrada ou não, é necessária uma entrada Enable
- Cl
  - 2 x 1 de 4: TTL 74LS139



#### **DEMUX 2 saídas**

- Tabela de verdade

| D | S | EN | 0 | 1 |
|---|---|----|---|---|
| Х | Х | 0  | 0 | 0 |
| 0 | 0 | 1  | 0 | 0 |
| 1 | 0 | 1  | 1 | 0 |
| 0 | 1 | 1  | 0 | 0 |
| 1 | 1 | 1  | 0 | 1 |

Logigrama



- Símbolo lógico





### Expansão de desmultiplexadores

- Como construir?
  - Em camadas sucessivas numa estrutura em árvore
- Exemplo
  - Construir um desmultiplexador 1 de 16 a partir de desmultiplexadores 1 de 4

- Circuito





### Desmultiplexador/descodificador

- O desmultiplexador pode ser encarado como um descodificador binário se
  - A entrada de dados for considerada um enable adicional
  - As entradas de controlo forem consideradas as entradas binárias do descodificador



#### Codificador

- Função
  - Codificar as palavras do código
- Síntese
  - Entradas: nº de palavras do código
  - Saídas: comprimento do código
- Características
  - Em cada instante, apenas uma entrada deve estar activa
    - Como não é possível garantir esta restrição, é necessário atribuir prioridades às entradas



### Codificador com prioridade

- Prioridade
  - Tipicamente as entradas com maior peso têm prioridade
- Saídas
  - Para poder distinguir da situação em que está activa a entrada menos prioritária, existe uma saída adicional que indica se alguma entrada está activa



### Codificador com prioridade 4x2

- Tabela de verdade

| 3 | 2 | 1 | 0 | A1 | A0 | Gs |
|---|---|---|---|----|----|----|
| 0 | 0 | 0 | 0 | 0  | 0  | 0  |
| 0 | 0 | 0 | 1 | 0  | 0  | 1  |
| 0 | 0 | 1 | Χ | 0  | 1  | 1  |
| 0 | 1 | Χ | Χ | 1  | 0  | 1  |
| 1 | Χ | Χ | Χ | 1  | 1  | 1  |

Expressão algébrica

• 
$$Gs = 0 + 1 + 2 + 3$$

• 
$$A0 = 1\overline{2} + 3$$

• 
$$A1 = 2 + 3$$

Logigrama



- Símbolo lógico





# Expansão de codificador com prioridade

- Como construir?
  - Utilizar multiplexadores
- Exemplo
  - Construir um codificador com prioridade de 8 entradas a partir de codificadores de 4 entradas

Circuito

