

Fig. 1

BEST AVAILABLE COPY

Fig. 2

BEST AVAILABLE COPY

Fig. 3

BEST AVAILABLE COPY

Fig. 4

Fig. 5

BEST AVAILABLE COPY

Fig. 6

Eigenschaften		
Nano-Carbon-Fullerene (NCF)		
Morphologie / Modifikation	$sp3=100\% [(111)50/37=2 \text{ theta}] // sp2$	
Kristallform	Kristallit/sphärisch >> C_{240}	
Körnungsbereich, norm.	0,005 - >50 μm	
Cluster-Festigkeit	24,8 - 35,9 N	
Dichte, pykrometrische	3,40 g/cm^3	
Oberfläche, spezifische	120 - 530 m^2/g	
Magnetisierbarkeit, mittlere	$< 4 \times 10^{-8}$ m^3/kg	
Scratch hardness (Mohs Scale)	10 M	
Anteile, flüchtige	< 3 %	
Zeta-Potential	(-)20 - (+)10 mV	
Optische Charakteristika		
Refractive index (Hg green 546,1 nm)	2,5563	
C-line (656,28 nm)	>2,4099	
D-line (589,29 nm)	>2,41726	
F-line (486,13 nm)	>2,43554	
Near cut-off (UV at 226,5 nm)	2,7151	
Brewster Winkel (at D-line)	67,53 grad (°)	
Reflection (normal incidence)	0,17	
Optical transparency (225 nm - 2,5 μm)	> 6,0 μm	
Visible region	400 - 700 nm	
Produktcharakteristika		
Wärmekonduktivität	1300 - 2100 W / mK	
Thermodiffusität	7,0 - 11,0 cm^2/s	
Ausdehnungskoeffizient, linear	$1,1-3,6 \times 10^{-6}$ / K	
Oxidationstemperatur, freie Atmosphäre	350 - 420 °C	
Graphitisierungstemperatur, Vakuum	1100 - 1250 °C	
Physik.-chem./Thermodyn. Charakteristika		
P / Ps(=0,05/0,7)	>>3,3 / 0,65 J / m^2 at	
V(micropore)	0,000294 cm^3/g	
A(micropore)	24,377 cm^2/g	
delta Cs	3000 mJ / mole x g	
Vpor/Dpor	1,8/30 $\text{cm}^3\text{g}^{-1}/\text{nm}$	
d(P/Ps)	<735 J / g	
Vads./d	500/1,5 $\text{cm}^3\text{g}^{-1}/\text{nm}$	

Fig. 7

BEST AVAILABLE COPY

Fig. 8/1

Produktionstechnologie, beispielhaft

Technologisches Fluß-Schema

Nano-Carbon-Fullerenes \leftrightarrow NCF

Objekt	Zeit [h]	Personel	AZ [h]	Objekt	Spezif. f. Bef.	EP [DM]	Kosten	Betriebsmittel / Hilfsmittel	
								benötigen auf mittl. Durchsätze	
A 1.2.1	17.0 / 8.0	2 bzw. 1	17.0 / 6.0	B 1.1	Zuschl.st.		
A 1.2.2 bis A 1.3	2.0	2	2.0	B 1.2.2	Diesel / Spasen	50	0.50		
				B 1.2.3	Verd.mast.	50	20.00		
				B 1.2.4	SSBrd150	50			
					...	50	1.30		
				B 1.2.6	N ₂ (techn)	5	Fl.		31.50

Fig. 8/2

BEST AVAILABLE COPY

Fig. 8/3

Fig. 8/4

BEST AVAILABLE COPY

Fig. 8/5

BEST AVAILABLE COPY

Fig. 8/6

BEST AVAILABLE COPY

Fig. 9

BEST AVAILABLE COPY

Fig. 10

Produktions-Technologie Poly-NCF

Fig. 11

Abriebfestigkeit (Rauhigkeitsmessungen) NCF- modifizierter 2K-PUR-Mattlacke

Basis 2K PUR – Mattlack**nach 30 sec. Politur****NCF- mod. PUR – Mattlack****nach 30 sec. Politur**

Aufnahmen der Oberflächenstruktur (Textur) von normalen und modifizierten Mattlacken vor und nach der Politur mit Diamant-Paste

Fig. 12

Vergleich der Martenshärte von Basis - (Referenz)-Mattlack und NCF-modifiziertem Lack

Scheuerbeständigkeit über Glanzgradbestimmung von Matt-Lacken im Vergleich

BEST AVAILABLE COPY

Fig. 13

Abriebfestigkeit (Taber Abraser Test) und Gleitreibungswerte ausgewählter Lacksysteme

Mikrohärte (HV) und Haftfestigkeit (Kontaktwinkel) von NC-Lacken

BEST AVAILABLE COPY

Fig. 14

Standardversuch zur Bewertung der Poliermittel

BEST AVAILABLE COPY

Fig. 15

Mikrorauigkeit 2,5x: 1,1- 1,2 nm (zum Vergleich Standard- D0,25: 1,3 -1,7 nm)
Mikrorauigkeit 20x: 0,6 - 0,7 nm (zum Vergleich Standard- D0,25: 1,1-1,7 nm)

... AVAILABLE COPY

Fig. 16

BEST AVAILABLE COPY

Fig. 17

„Test der Suspension NCF P 0-0,5/8-EM für die CCP-Politur“**Haupttestkriterien:**

- mittlerer Abtrag
- Abtrag am Rand
- zeitliche Konstanz
- Kratzerstatus
- u.a.

Kriterium	Bewertung	NCF-System	Referenz-Systeme
Abtrag	bis zu 100% höher	800 nm	300 – 600 nm
Abtragsverhalten	Anstieg der Abtragsleistung um 10-20%		
Mikrorauigkeit	bis zu 100% bessere Qual. (s. Grafik)	0,12 - 0,4 nm	1,1 - 1,7 nm
Kratzer	deutlich weniger (s. Bild)		
Ätz- u. Löseverhalten	generell keines		
Verdünnbarkeit	bis 100% ohne Leistungs- u. Qualitätsverlust		
Eintragsverhalten	hohes Adsorptionspotential		
Stabilität der Susp.	chemisch stabil über lange Laufzeit (20 h)		

Fig. 18

Pech : Gug 55/64 Polierzeit : 30min laufen lassen und 20 min wetzen

1. Sauberkeit**2. μ -Rauigkeit**Zu 2. μ -Rauigkeit in nm :

x 2,5

x 40

Mitte :	0.195	0.249
Zone :	0.199	0.257
Rand :	0.264	0.355

3. Abtrag:**4. Bewertung Polierverhalten :**

ist zum ersten mal gelaufen wie gewohnt

	Passepolitur	Polierverhalten	Krustenbildung	
Bewertung:	sehr gut	gut	gut	
Bemerkung:		laufen und wetzen o.k.		Rückseite Passe

Fig. 19

Zu 2. μ -Rauigkeit in nm : x 2,5 x 40 nicht gemessen

Mitte :	0.219	-0.3
Zone :	0.232	-0.3
Rand :	0.256	-0.3

3. Abtrag: 1μ / Std.

4. Bewertung Pollerverhalten :

	Passepolitur	Pollerverhalten	Krustenbildung	
Bewertung:	gut	gut	schwach	
Bemerkung:		schönes gleich- mäßiges ziehen und schnelle weiße Schaumbildung		

Fig. 20

Ergebnisse im Überblick

		Struers	SDS	Propandiol	PEG	PEG 200	PEG 400
Radius 117	erhaben	PV 0.025 Streifen	PV 0.039 Streifen	PV 0.041 Streifen	PV 0.025 Streifen	PV 0.04 Streifen	PV 0.04 Streifen
Passe / Restfehler							
erreicht ja / nein	ja	ja	ja	ja	ja	ja	ja
Sauberkeit							
erreicht ja / nein	ja	ja	ja	ja	ja	ja	ja
Microrauheit	2,5x	0,21-0,26nm	Linse läuft nur	0,257-0,369nm	0,205-0,239nm	0,208-0,233nm	
	40x	-0,25-0,35nm	unter starkem Zug	0,356-0,428nm	0,281-0,339nm	0,273-0,302nm	
erreicht ja / nein		ja	zu Gefährlich	ja/nein	ja	ja	ja
Radius 208							
hohl							
Passe / Restfehler							
erreicht ja / nein	ja	ja	nein	nein	ja	ja	ja
Sauberkeit							
erreicht ja / nein	ja						
Microrauheit	2,5x	~ 0,2-0,3nm		0,144-0,737nm		0,195-0,264nm	
	40x	-0,25-0,35nm		0,614-0,978nm		0,249-0,355nm	
erreicht ja / nein		ja		nein	nein	ja	ja

Fig. 21

Ultra-Präzisions-Polishing (UPP)

Referenzergebnisse mit Poly-NCF-Compounds

Material	R _{max} (nm)	R _{avg} (nm)	Einsatzbereiche
Gd ₃ Ge ₅ O ₁₂ (Gadolinium Germanium Granat (GGG))	2,5	0,5	10' hohe Härte (6,5-7,5), nicht spaltbar Mikrowellentechnik, Magnetblasespeicher
SiC (Siliziumcarbid)	1,5	0,5	8' hohe Härte (9-6) Infrarotheizstäbe, Hochtemp. Transistoren, Ing.-Keramik
Al ₂ O ₃ (Aluminiumoxid / Saphirkristall o. als Keramikadditiv)	2,8	0,6	hohe Härte (8-9), gute Wärmeleigenschaften optische Bauteile, Gleitlager f. Pumpen, Fadenführer
LiNbO ₃ (Lithium-Niobat (Metall))	0,7	0,15	Modular-Kristall für Laser (n Pockeiseffect)
ZrO ₂ (Zirkoniumoxid)	0,7	0,13	7' hohe Härte (7) Keramik, Schleifmittel, Röntgenkontrastmittel, Schneidmesser
Y ₃ Al ₅ O ₁₂ (Yttrium Aluminium Granat (YAG))	5,0	0,9	Lasermaterial
Si (Silizium-Einkristall)	7	2	6' Halbleiterbereich, Wafer
MgF ₂ (Magnesiumfluorid)		0,5	hochbrechende Gläser
Nd:YAG (Neodym)		0,2	Laserstäbe, Kristall zur Lasererzeugung