

NOT FOR PUBLIC RELEASE

RTL8367S-CG

LAYER 2 MANAGED 5+2-PORT 10/100/1000M SWITCH CONTROLLER

DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. Pre-0.941 23 Feb 2016

Track ID: xxxx-xxxx-xx

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211 Fax: +886-3-577-6047 www.realtek.com

COPYRIGHT

© 2015 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document 'as is', without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the hardware and software engineer's general information on the Realtek RTL8367S IC.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

REVISION HISTORY

Revision	Release Date	Summary	
Pre-0.9	2015/08/06	Preliminary release.	
Pre-0.91	2015/08/18	1. Revised Section 6. Pin Assignments	
		2. Revised Section 6.2. Pin Assignments Table	
		3. Revised Section 7.3. General Purpose Interfaces	
		4. Revised Section 7.5. Configuration Strapping Pins	
		5. Revised Section 7.6. Management	
		6. Revised Section 7.7. Miscellaneous Pins	
Pre-0.92	Pre-0.92 2015/11/18 1. Revised Section 6. Pin Assignments		
		2. Revised Section 6.2. Pin Assignments Table	
		3. Revised Section 7.3. General Purpose Interfaces	
		4. Revised Section 7.5. Configuration Strapping Pins	
		5. Revised Section 7.6. Management Interface Pins	
		6. Revised Section 7.7. Miscellaneous Pins	
		7. Revised Section 9.19. LED Indicators	
		8. Revised Section 12.2. Recommended Operating Range	
		9. Add Section 12.5.7. HSGMII Characteristics	
		10. Add Section 12.5.8. SGMII Characteristics	

Revision	Release Date	Summary	
Pre-0.93	2015/12/30	1. Revised Section 12.2. Recommended Operating Range	
		2. Revised Section 12.3.1. Assembly Description	
		3. Revised Section 12.3.2. Material Properties	
		4. Revised Section 12.3.3. Simulation Conditions	
		5. Revised Section 12.3.4. Thermal Performance of LQFP-128 on PCB Under Still	
		Air Convection	
		6. Delete Section 12.3.5. Thermal Performance of LQFP-128 on PCB Under Forced	
		Convection	
Pre-0.94	2016/01/11	1. Revised Section 12.5.2. EEPROM SMI Slave Mode Timing Characteristics	
Pre-0.941	2016/02/23	1. Revised Table 10	
		2. Revised Table 12	
		. Revised package type as LQFP-128 or LQFP 128-pin	
		. Revised Section 7.4. LED Pins	
		5. Revised Section 12.3.1. Assembly Description	

Table of Contents

2. FEATURES	1.	GEN	NERAL DESCRIPTION	1
4. APPLICATION EXAMPLES 5. 4.1. 5-PORT 1000BASE-T SWITCH 5. 4.2. 5-PORT 1000BASE-T ROUTER WITH SGMII/HSGMII AND/OR MIJ/RGMII 6. 5. BLOCK DIAGRAM. 7. 6. PIN ASSIGNMENTS 8. 6.1. PACKAGE IDENTIFICATION. 8. 6.2. PIN ASSIGNMENTS TABLE. 9. 7. PIN DESCRIPTIONS 12 7.1. MEDIA DEPENDENT INTERFACE PINS. 12 7.2. HIGH SPEED SERIAL INTERFACE PINS. 13 7.3. GENERAL PURPOSE INTERFACES 13 7.3.1. MGMIP PINS. 16 7.4. LED PINS. 16 7.5. CONFIGURATION STRAPPING PINS 18 7.6. MANAGEMENT INTERFACE PINS. 19 7.7. MISCELLANDOUS PINS 21 7.8. TEST PINS. 22 7.9. POWER AND GND PINS. 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW. 24 8.1. MDI INTERFACE PINCTION. 24 8.2. 1000BASE-T RECEIVE FUNCTION. 25 8.5. 100BASE-T RECEIVE FUNCTION. 25 8.6. 10BASE-T RECEIVE FUNCTION. 25 8.7. 10BASE-T RECEIVE FUNCTION. 26 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26	2.	. FEA	ATURES	3
4. APPLICATION EXAMPLES 5. 4.1. 5-PORT 1000BASE-T SWITCH 5. 4.2. 5-PORT 1000BASE-T ROUTER WITH SGMII/HSGMII AND/OR MIJ/RGMII 6. 5. BLOCK DIAGRAM. 7. 6. PIN ASSIGNMENTS 8. 6.1. PACKAGE IDENTIFICATION. 8. 6.2. PIN ASSIGNMENTS TABLE. 9. 7. PIN DESCRIPTIONS 12 7.1. MEDIA DEPENDENT INTERFACE PINS. 12 7.2. HIGH SPEED SERIAL INTERFACE PINS. 13 7.3. GENERAL PURPOSE INTERFACES 13 7.3.1. MGMIP PINS. 16 7.4. LED PINS. 16 7.5. CONFIGURATION STRAPPING PINS 18 7.6. MANAGEMENT INTERFACE PINS. 19 7.7. MISCELLANDOUS PINS 21 7.8. TEST PINS. 22 7.9. POWER AND GND PINS. 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW. 24 8.1. MDI INTERFACE PINCTION. 24 8.2. 1000BASE-T RECEIVE FUNCTION. 25 8.5. 100BASE-T RECEIVE FUNCTION. 25 8.6. 10BASE-T RECEIVE FUNCTION. 25 8.7. 10BASE-T RECEIVE FUNCTION. 26 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26	3.	SYS	TEM APPLICATIONS	5
4.1. 5-PORT 1000BASE-T SWITCH 4.2. 5-PORT 1000BASE-T ROUTER WITH SGMII/HSGMII AND/OR MIL/RGMII 5. BLOCK DIAGRAM				
4.2. 5-PORT 1000BASE-T ROUTER WITH SGMII/HSGMII AND/OR MII/RGMII 6.6 5. BLOCK DIAGRAM	4.			
5. BLOCK DIAGRAM 7 6. PIN ASSIGNMENTS 8 6.1. PACKAGE IDENTIFICATION 8 6.2. PIN ASSIGNMENTS TABLE 9 7. PIN DESCRIPTIONS 12 7.1. MEDIA DEPENDENT INTERFACE PINS 12 7.2. HIGH SPEED SERIAL INTERFACE PINS 13 7.3. GENERAL PURPOSE INTERFACES 13 7.3.1. RGMIL PINS 15 7.3.2. MIL PINS 16 7.5. CONFIGURATION STRAPPING PINS 19 7.5. CONFIGURATION STRAPPING PINS 19 7.6. MANAGEMENT INTERFACE PINS 21 7.7. MISCELLANEOUS PINS 21 7.8. TEST PINS 23 7.9. POWER AND GND PINS 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-T TRANSMIT FUNCTION 24 8.3. 1000BASE-T TRANSMIT FUNCTION 24 8.4. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-TX RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLA				
6. PIN ASSIGNMENTS		4.2.	5-PORT 1000BASE-T ROUTER WITH SGMII/HSGMII AND/OR MII/RGMII	6
6.1. PACKAGE IDENTIFICATION 6.2. PIN ASSIGNMENTS TABLE	5.	BLC	OCK DIAGRAM	7
6.2. PIN ASSIGNMENTS TABLE. 99 7. PIN DESCRIPTIONS. 12 7.1. MEDIA DEPENDENT INTERFACE PINS. 12 7.2. HIGH SPEED SERIAL INTERFACE PINS. 13 7.3. GENERAL PURPOSE INTERFACES. 13 7.3.1. RGMII PINS. 15 7.3.2. MII PINS. 16 7.4. LED PINS. 18 7.5. CONFIGURATION STRAPPING PINS. 19 7.5.1. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF) 20 7.6. MANAGEMENT INTERFACE PINS. 21 7.7. MISCELLANSOUS PINS. 21 7.8. TEST PINS. 23 7.9. POWER AND GND PINS. 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW. 24 8.1. MDI INTERFACE 8.2. 1000BASE-T TRANSMIT FUNCTION 24 8.3. 1000BASE-T TRANSMIT FUNCTION 24 8.4. 100BASE-T TRECEIVE FUNCTION 24 8.5. 100BASE-T TRECEIVE FUNCTION 25 8.6. 10BASE-T TRECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 9. GENERAL FUNCTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.1.1. Hardware Reset 27 9.1.1. Hardware Reset 27 9.1.1. Hardware Reset 27 9.2. IEEE 802.3X FULL DUPLEX FLOW CONTROL 28 9. 3.1. Back-Pressiver Mode 28 9. 4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6. ILLEGAL FRAME FILTERING 29	6.	PIN	ASSIGNMENTS	8
6.2. PIN ASSIGNMENTS TABLE. 99 7. PIN DESCRIPTIONS. 12 7.1. MEDIA DEPENDENT INTERFACE PINS. 12 7.2. HIGH SPEED SERIAL INTERFACE PINS. 13 7.3. GENERAL PURPOSE INTERFACES. 13 7.3.1. RGMII PINS. 15 7.3.2. MII PINS. 16 7.4. LED PINS. 18 7.5. CONFIGURATION STRAPPING PINS. 19 7.5.1. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF) 20 7.6. MANAGEMENT INTERFACE PINS. 21 7.7. MISCELLANSOUS PINS. 21 7.8. TEST PINS. 23 7.9. POWER AND GND PINS. 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW. 24 8.1. MDI INTERFACE 8.2. 1000BASE-T TRANSMIT FUNCTION 24 8.3. 1000BASE-T TRANSMIT FUNCTION 24 8.4. 100BASE-T TRECEIVE FUNCTION 24 8.5. 100BASE-T TRECEIVE FUNCTION 25 8.6. 10BASE-T TRECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 9. GENERAL FUNCTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.1.1. Hardware Reset 27 9.1.1. Hardware Reset 27 9.1.1. Hardware Reset 27 9.2. IEEE 802.3X FULL DUPLEX FLOW CONTROL 28 9. 3.1. Back-Pressiver Mode 28 9. 4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6. ILLEGAL FRAME FILTERING 29		6.1.	PACKAGE IDENTIFICATION	8
7.1. MEDIA DEPENDENT INTERFACE PINS 12 7.2. HIGG SPEED SERIAL INTERFACE PINS 13 7.3. GENERAL PURPOSE INTERFACES 13 7.3.1. ROMIP PINS 15 7.3.2. MIP PINS 16 7.4. LED PINS 18 7.5. CONFIGURATION STRAPPING PINS 19 7.5. CONFIGURATION STRAPPING PINS 19 7.6. MANAGEMENT INTERFACE PINS 20 7.7. MINCELLANDOUS PINS 21 7.8. TEST PINS 23 7.9. POWER AND GND PINS 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-T RECEIVE FUNCTION 24 8.3. 1000BASE-T RECEIVE FUNCTION 24 8.5. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. Auto-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 8.11. Hardware Reset 27 9.12. Software Reset 27 9.1. RESET 27 9.1. Hard DUPLEX FLOW CONTR				
7.1. MEDIA DEPENDENT INTERFACE PINS 12 7.2. HIGG SPEED SERIAL INTERFACE PINS 13 7.3. GENERAL PURPOSE INTERFACES 13 7.3.1. ROMIP PINS 15 7.3.2. MIP PINS 16 7.4. LED PINS 18 7.5. CONFIGURATION STRAPPING PINS 19 7.5. CONFIGURATION STRAPPING PINS 19 7.6. MANAGEMENT INTERFACE PINS 20 7.7. MINCELLANDOUS PINS 21 7.8. TEST PINS 23 7.9. POWER AND GND PINS 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-T RECEIVE FUNCTION 24 8.3. 1000BASE-T RECEIVE FUNCTION 24 8.5. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. Auto-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 8.11. Hardware Reset 27 9.12. Software Reset 27 9.1. RESET 27 9.1. Hard DUPLEX FLOW CONTR	7	PIN	DESCRIPTIONS	12
7.2. HIGH SPEED SERIAL INTERFACE PINS 13 7.3. GENERAL PURPOSE INTERFACES 13 7.3.1. RGMII Pins 15 7.3.2. MII Pins 16 7.4. LED PINS 18 7.5. CONFIGURATION STRAPPING PINS 19 7.5.1. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF) 20 7.6. MANAGEMENT INTERFACE PINS 21 7.7. MINCELLANGEOUS PINS 21 7.8. TEST PINS 23 7.9. POWER AND GND PINS 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-TA REASINIT FUNCTION 24 8.3. 1000BASE-TA REASINIT FUNCTION 24 8.4. 100BASE-TA RECEIVE FUNCTION 24 8.5. 100BASE-TA RECEIVE FUNCTION 25 8.6. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 9.1. RESET 27 9.1. Hardware Reset 27 9.2. IEEE 802.3x FULL DUPLEX FLOW CONTROL 27<	•			
7.3. General Purpose Interfaces 13 7.3.1. RGMII Pins 15 7.4. LED PINS 16 7.5. Configuration Strapping Pins 18 7.5. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF) 20 7.6. Management Interface Pins 21 7.7. MISCELLAREOUS PINS 21 7.8. Test Pins 23 7.9. Power and GND Pins 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI Interface 24 8.2. 1000Base-T Transmit Function 24 8.3. 100Base-TR RECEIVE FUNCTION 24 8.4. 100Base-TX RAT RANSMIT FUNCTION 24 8.5. 100Base-T RECEIVE FUNCTION 25 8.6. 10Base-T Receive Function 25 8.7. 10Base-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 8.10. POLARITY CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. Hardware Reset 27 9.1. Hardware Reset 27				
7.3.1. RGMII Pins. 15 7.3.2. MII Pins. 16 7.4. LED PINS. 18 7.5. Configuration Strapping Pins. 19 7.5.1. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF) 20 7.6. MANAGEMENT INTERFACE PINS. 21 7.7. MISCELLANEOUS PINS 21 7.8. TEST PINS 23 7.9. POWER AND GND PINS. 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW. 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-T RECEIVE FUNCTION 24 8.3. 1000BASE-T RECEIVE FUNCTION 24 8.4. 100BASE-TX RECEIVE FUNCTION 24 8.5. 10BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION. 26 8.10. POLARITY CORRECTION. 26 9. GENERAL FUNCTION DESCRIPTION 26 9.1. RESET 27 9.1.1 Hardware Reset 27 9.1.2 Software Reset 27 9.1.3 Back-Pressure Mode 28				
7.3.2 MII Pins. 16 7.4. LED PINS 18 7.5. CONFIGURATION STRAPPING PINS 19 7.5.1. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF) 20 7.6. MANAGEMENT INTERFACE PINS 21 7.7. MISCELLANEOUS PINS 21 7.8. TEST PINS 23 7.9. POWER AND GND PINS 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI INTERFACE 24 8.2. 1000B ASE-T TRANSMIT FUNCTION 24 8.3. 1000B ASE-T RECEIVE FUNCTION 24 8.4. 100B ASE-TX RECEIVE FUNCTION 24 8.5. 10B ASE-TX RECEIVE FUNCTION 24 8.6. 10B ASE-T RECEIVE FUNCTION 25 8.7. 10B ASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION AND AUTO CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1 Hardware Reset 27 9.1.2 Software Reset 27 9.3.1 Back-Pressure Mode 28 9.4. SEARCH AND LEARNING 29				
7.4. LED PINS. 18 7.5. CONFIGURATION STRAPPING PINS. 19 7.6. MANAGEMENT INTERFACE PINS. 21 7.7. MISCELL ANEOUS PINS. 21 7.8. TEST PINS. 23 7.9. POWER AND GND PINS. 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW. 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-T TRANSMIT FUNCTION 24 8.3. 1000BASE-T RECEIVE FUNCTION 24 8.4. 100BASE-TX RECEIVE FUNCTION 24 8.5. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-TX RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION AND AUTO CORRECTION 26 9.1. RESET 27 9.1.1. Hardware Reset 27 9.2. IEEE 802.3X FULL DUPLEX FLOW CONTROL 27 <td></td> <td></td> <td></td> <td></td>				
7.5. Configuration Strapping Pins 19 7.5.I. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF). 20 7.6. MANAGEMENT INTERFACE PINS. 21 7.7. MISCELLANEOUS PINS. 21 7.8. TEST PINS. 23 7.9. POWER AND GND PINS. 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW. 24 8.1. MDI INTERFACE. 24 8.2. 1000BASE-T TRANSMIT FUNCTION 24 8.3. 1000BASE-T RECEIVE FUNCTION 24 8.4. 100BASE-TX RECEIVE FUNCTION 24 8.5. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T TRANSMIT FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION. 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION. 27 9.1. RESET 27 9.1.1 Hardware Reset 27 9.1.2 Software Reset 27 9.2. IEEE 802.3x Full DUPLEX FLOW CONTROL 27 9.3. HALF DUPLEX FLOW CONTROL 28 9.4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL<				
7.5.1. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF) 26 7.6. MANAGEMENT INTERFACE PINS 21 7.7. MISCELLANEOUS PINS 23 7.8. TEST PINS 23 7.9. POWER AND GND PINS 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-T RECEIVE FUNCTION 24 8.3. 1000BASE-TRANSMIT FUNCTION 24 8.4. 100BASE-TX RECEIVE FUNCTION 24 8.5. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1 Hardware Reset 27 9.1.2 Software Reset 27 9.3.1 Back-Pressure Mode 28 9.4 SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6 ILLEGAL FRAME FILTERING 29 <td></td> <td></td> <td></td> <td></td>				
7.7. MISCELLANEOUS PINS 21 7.8. TEST PINS 23 7.9. POWER AND GND PINS 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-T TRANSMIT FUNCTION 24 8.3. 1000BASE-TRECEIVE FUNCTION 24 8.4. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T TRANSMIT FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.2. IEEE 80.2 3x FUIL DUPLEX FLOW CONTROL 28 9.3.1. Back-Pressure Mode 28 9.4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6. ILL		7.5.1		
7.8. TEST PINS 23 7.9. POWER AND GND PINS 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-T TRANSMIT FUNCTION 24 8.3. 1000BASE-TR RECEIVE FUNCTION 24 8.4. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1 Hardware Reset 27 9.2. IEEE 802.3x FULL DUPLEX FLOW CONTROL 27 9.3. Half DUPLEX FLOW CONTROL 28 9.3.1 Back-Pressure Mode 28 9.4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6. ILLEGAL FRAME FILTERING 29		7.6.	MANAGEMENT INTERFACE PINS	21
7.9. POWER AND GND PINS 23 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-T TRANSMIT FUNCTION 24 8.3. 1000BASE-T RECEIVE FUNCTION 24 8.4. 100BASE-TX TRANSMIT FUNCTION 24 8.5. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.2. IEEE 802.3x FULL DUPLEX FLOW CONTROL 27 9.3. HALF DUPLEX FLOW CONTROL 28 9.3.1. Back-Pressure Mode 28 9.4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6. ILLEGAL FRAME FILTERING 29		7.7.		
8. PHYSICAL LAYER FUNCTIONAL OVERVIEW 24 8.1. MDI INTERFACE 24 8.2. 1000BASE-T RANSMIT FUNCTION 24 8.3. 1000BASE-TR CECIVE FUNCTION 24 8.4. 100BASE-TX TRANSMIT FUNCTION 24 8.5. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. SEARCH AND LEARNING 28 9.5. SVL AND IVL/SVL 29 9.6. Illegal Frame Filtering 29				
8.1. MDI Interface 24 8.2. 1000Base-T Transmit Function 24 8.3. 1000Base-T Receive Function 24 8.4. 100Base-TX Transmit Function 24 8.5. 100Base-TX Receive Function 25 8.6. 10Base-T Receive Function 25 8.7. 10Base-T Receive Function 25 8.8. Auto-Negotilation for UTP 25 8.9. Crossover Detection and Auto Correction 26 8.10. Polarity Correction 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. Reset 27 9.1.1. Hardware Reset 27 9.1.2 Software Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29		7.9.	POWER AND GND PINS	23
8.2. 1000BASE-T TRANSMIT FUNCTION 24 8.3. 1000BASE-T RECEIVE FUNCTION 24 8.4. 100BASE-TX TRANSMIT FUNCTION 25 8.5. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.2. IEEE 802.3x FULL DUPLEX FLOW CONTROL 27 9.3. Half Duplex Flow CONTROL 28 9.3.1. Back-Pressure Mode 28 9.4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6. ILLEGAL FRAME FILTERING 29	8.	PHY	YSICAL LAYER FUNCTIONAL OVERVIEW	24
8.3. 1000BASE-T RECEIVE FUNCTION 24 8.4. 100BASE-TX TRANSMIT FUNCTION 25 8.5. 100BASE-T RECEIVE FUNCTION 25 8.6. 10BASE-T RECEIVE FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.2. IEEE 802.3x FULL DUPLEX FLOW CONTROL 27 9.3. HALF DUPLEX FLOW CONTROL 28 9.3.1. Back-Pressure Mode 28 9.4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6. ILLEGAL FRAME FILTERING 29		8.1.	MDI Interface	24
8.4. 100BASE-TX TRANSMIT FUNCTION. 24 8.5. 100BASE-TX RECEIVE FUNCTION. 25 8.6. 10BASE-T RANSMIT FUNCTION. 25 8.7. 10BASE-T RECEIVE FUNCTION. 25 8.8. AUTO-NEGOTIATION FOR UTP. 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION. 26 8.10. POLARITY CORRECTION. 26 9. GENERAL FUNCTION DESCRIPTION. 27 9.1. RESET. 27 9.1.1. Hardware Reset. 27 9.1.2. Software Reset. 27 9.2. IEEE 802.3x Full Duplex Flow Control. 27 9.3. Half Duplex Flow Control. 28 9.3. Half Duplex Flow Control. 28 9.4. Search and Learning. 29 9.5. SVL and IVL/SVL. 29 9.6. Illegal Frame Filtering. 29		8.2.	1000BASE-T TRANSMIT FUNCTION	24
8.5. 100BASE-TX RECEIVE FUNCTION 25 8.6. 10BASE-T TRANSMIT FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6. Illegal Frame Filtering 29		8.3.	1000Base-T Receive Function	24
8.6. 10BASE-T TRANSMIT FUNCTION 25 8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.2. IEEE 802.3X FULL DUPLEX FLOW CONTROL 27 9.3. HALF DUPLEX FLOW CONTROL 28 9.3.1. Back-Pressure Mode 28 9.4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6. Illegal Frame Filtering 29		8.4.		
8.7. 10BASE-T RECEIVE FUNCTION 25 8.8. AUTO-NEGOTIATION FOR UTP 25 8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29				
8.8. Auto-Negotiation for UTP 25 8.9. Crossover Detection and Auto Correction 26 8.10. Polarity Correction 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. Reset 27 9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29				
8.9. CROSSOVER DETECTION AND AUTO CORRECTION 26 8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29				
8.10. POLARITY CORRECTION 26 9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29				
9. GENERAL FUNCTION DESCRIPTION 27 9.1. RESET 27 9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29				
9.1. RESET 27 9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29	•			
9.1.1. Hardware Reset 27 9.1.2. Software Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29	9.	GEN	NERAL FUNCTION DESCRIPTION	27
9.1.2. Software Reset 27 9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29				
9.2. IEEE 802.3x Full Duplex Flow Control 27 9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29		/	110.00,000,000	
9.3. Half Duplex Flow Control 28 9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29				
9.3.1. Back-Pressure Mode 28 9.4. Search and Learning 29 9.5. SVL and IVL/SVL 29 9.6. Illegal Frame Filtering 29				
9.4. SEARCH AND LEARNING 29 9.5. SVL AND IVL/SVL 29 9.6. ILLEGAL FRAME FILTERING 29				
9.5. SVL AND IVL/SVL				
9.6. Illegal Frame Filtering				
				-

9.8.	BROADCAST/MULTICAST/UNKNOWN DA STORM CONTROL	31
9.9.	PORT SECURITY FUNCTION	31
9.10.	MIB Counters	31
9.11.	PORT MIRRORING	31
9.12.	VLAN FUNCTION	32
9.12	2.1. Port-Based VLAN	32
9.12	2.2. IEEE 802.1Q Tag-Based VLAN	
9.12	2.3. Protocol-Based VLAN	
9.12	2.4. Port VID	33
9.13.	QoS Function	
9.1.	3.1. Input Bandwidth Control	
9.1.	3.2. Priority Assignment	
9.1.	3.3. Priority Queue Scheduling	
9.1.	3.4. IEEE 802.1p/Q and DSCP Remarking	
9.1.	3.5. ACL-Based Priority	35
9.14.	IGMP & MLD SNOOPING FUNCTION	
9.15.	IEEE 802.1x Function.	
9.13	5.1. Port-Based Access Control	
	5.2. Authorized Port-Based Access Control	
	5.3. Port-Based Access Control Direction	
9.13	5.4. MAC-Based Access Control	
	5.5. MAC-Based Access Control Direction	
	5.6. Optional Unauthorized Behavior	
	5.7. Guest VLAN	38
9.16.	IEEE 802.1D FUNCTIONEMBEDDED 8051	38
9.17.	EMBEDDED 8051	38
9.18.	REALTEK CABLE TEST (RTCT)	
9.19.	LED INDICATORS	
9.20.	GREEN ETHERNET	
	20.1. Link-On and Cable Length Power Saving	
	20.2. Link-Down Power Saving	
9.21.	IEEE 802.3AZ ENERGY EFFICIENT ETHERNET (EEE) FUNCTION	
9.22.	INTERRUPT PIN FOR EXTERNAL CPU	41
10.	INTERFACE DESCRIPTIONS	42
10.1.	EEPROM SMI HOST TO EEPROM	
10.2.	EEPROM SMI SLAVE FOR EXTERNAL CPU	
10.3.	GENERAL PURPOSE INTERFACE	
	3.1. Extension Ports RGMII Mode Interface (1Gbps)	
10.3	3.2. Extension Ports MII MAC/PHY Mode Interface (10/100Mbps)	45
11. I	REGISTER DESCRIPTIONS	48
11.1.	PCS REGISTER (PHY 0~4)	18
11.1.	REGISTER 0: CONTROL	
11.2.	REGISTER 1: STATUS	
11.3.	REGISTER 1: STATUS REGISTER 2: PHY IDENTIFIER 1	
11.4.	REGISTER 2: PHY IDENTIFIER 1 REGISTER 3: PHY IDENTIFIER 2	
11.6.	REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT	
11.0.	REGISTER 5: AUTO-NEGOTIATION ADVERTISEMENT	
11.7.	REGISTER 6: AUTO-NEGOTIATION EXPANSION	
11.8.	REGISTER 7: AUTO-NEGOTIATION PAGE TRANSMIT REGISTER	
11.10.		
11.10.		
11.11.		
11.12.		
11.13.	. The second sec	

12.	ELEC'	TRICAL CHARACTERISTICS	56
12.1.	ABS	SOLUTE MAXIMUM RATINGS	56
12.2.	REC	COMMENDED OPERATING RANGE	56
12.3.	THE	RMAL CHARACTERISTICS	57
12	.3.1.	Assembly Description	57
12	.3.2.	Material Properties	57
12	.3.3.	Simulation Conditions	
12	.3.4.	Thermal Performance of LQFP-128 on PCB Under Still Air Convection	58
12.4.	DC (CHARACTERISTICS	59
12.5.	AC (CHARACTERISTICS	
12	.5.1.	EEPROM SMI Host Mode Timing Characteristics	60
12	.5.2.	EEPROM SMI Slave Mode Timing Characteristics	61
12	.5.3.	MDIO Slave Mode Timing Characteristics	
12	.5.4.	MII MAC Mode Timing	63
12	.5.5.	MII PHY Mode TimingRGMII Timing Characteristics	64
12	.5.6.	RGMII Timing Characteristics	65
12	.5.7.	HSGMII Characteristics	67
12	.5.8.	SGMII Characteristics	69
12.6.	Pow	VER AND RESET CHARACTERISTICS	71
13.	MECH	HANICAL DIMENSIONS	72
14.		RING INFORMATION	
	ORDE		

List of Tables

TABLE 1. PIN ASSIGNMENTS TABLE	9
TABLE 2. MEDIA DEPENDENT INTERFACE PINS	12
TABLE 3. GENERAL PURPOSE INTERFACES PINS	
TABLE 4. EXTENSION GMAC2 RGMII PINS	
TABLE 5. EXTENSION GMAC2 MII PINS (MII MAC MODE OR MII PHY MODE)	16
TABLE 6. LED PINS	
TABLE 7. CONFIGURATION STRAPPING PINS	
TABLE 8. CONFIGURATION STRAPPING PINS (DISAUTOLOAD, DIS_8051, AND EN_SPIF)	
TABLE 9. MANAGEMENT INTERFACE PINS	
TABLE 10. MISCELLANEOUS PINS	
TABLE 11. TEST PINS	
TABLE 12. POWER AND GND PINS.	
TABLE 13. MEDIA DEPENDENT INTERFACE PIN MAPPING	
TABLE 14. RESERVED MULTICAST ADDRESS CONFIGURATION TABLE	
TABLE 15. IPv4/IPv6 Multicast Routing Protocols.	
TABLE 16. LED DEFINITIONS	
TABLE 17. RTL8367S EXTENSION PORT 2 PIN DEFINITIONS	
TABLE 18. EXTENSION GMAC2 RGMII PINS.	
TABLE 19. EXTENSION GMAC2 MII PINS	
TABLE 20. PCS REGISTER (PHY 0~4).	
TABLE 21. REGISTER 0: CONTROL	
TABLE 22. REGISTER 1: STATUS.	
TABLE 23. REGISTER 1: STATUS. TABLE 23. REGISTER 2: PHY IDENTIFIER 1	
TABLE 24. REGISTER 3: PHY IDENTIFIER 2	51
TABLE 25. REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT	
TABLE 26. REGISTER 5: AUTO-NEGOTIATION ADVERTISEMENT	
TABLE 27. REGISTER 6: AUTO-NEGOTIATION EXPANSION	
TABLE 28. REGISTER 7: AUTO-NEGOTIATION PAGE TRANSMIT REGISTER	
TABLE 29. REGISTER 7: AUTO-NEGOTIATION I AGE TRANSMIT REGISTER	
TABLE 30. REGISTER 9: 1000BASE-T CONTROL REGISTER	
TABLE 31. REGISTER 10: 1000BASE-T CONTROL REGISTER	
TABLE 31. REGISTER 10. 1000DASE-1 STATUS REGISTER TABLE 32. REGISTER 15: EXTENDED STATUS	
TABLE 32. REGISTER 13. EXTENDED STATUS TABLE 33. ABSOLUTE MAXIMUM RATINGS	
TABLE 34. RECOMMENDED OPERATING RANGE	
TABLE 35. ASSEMBLY DESCRIPTION	
TABLE 35. ASSEMBLY DESCRIPTION	
TABLE 37. SIMULATION CONDITIONS	
TABLE 37. SIMULATION CONDITIONS TABLE 38. THERMAL PERFORMANCE OF LQFP-128 ON PCB UNDER STILL AIR CONVECTION	
TABLE 39. DC CHARACTERISTICS	
TABLE 40. EEPROM SMI HOST MODE TIMING CHARACTERISTICS	
TABLE 41. EEPROM SMI SLAVE MODE TIMING CHARACTERISTICS	
TABLE 42. MDIO TIMING CHARACTERISTICS AND REQUIREMENT	
TABLE 43. MII MAC MODE TIMING	
TABLE 44. MII PHY MODE TIMING CHARACTERISTICS.	
TABLE 45. RGMII TIMING CHARACTERISTICS	
TABLE 45. RGIVIII TIMING CHARACTERISTICS	
TABLE 47. HSGMII DIFFERENTIAL TRANSMITTER CHARACTERISTICS	
TABLE 48. SGMII DIFFERENTIAL TRANSMITTER CHARACTERISTICS.	
TABLE 49. SGMII DIFFERENTIAL RECEIVER CHARACTERISTICS	
TABLE 50. POWER AND RESET CHARACTERISTICS	
TABLE 51. ORDERING INFORMATION	

Realtek CONFIDENTIAL

List of Figures

FIGURE 1.	5-PORT 1000BASE-T SWITCH	5
FIGURE 2.	5-PORT 1000BASE-T ROUTER WITH SGMII/HSGMII AND/OR MII/RGMII	6
FIGURE 3.	BLOCK DIAGRAM	7
FIGURE 4.	PIN ASSIGNMENTS (LQFP-128)	8
FIGURE 5.	CONCEPTUAL EXAMPLE OF POLARITY CORRECTION	26
FIGURE 6.	PROTOCOL-BASED VLAN FRAME FORMAT AND FLOW CHART	33
FIGURE 7.	RTL8367S MAX-MIN SCHEDULING DIAGRAM	35
FIGURE 8.	PULL-UP AND PULL-DOWN OF LED PINS FOR SINGLE-COLOR LED.	40
FIGURE 9.	PULL-UP AND PULL-DOWN OF LED PINS FOR BI-COLOR LED.	40
FIGURE 10	. SMI START AND STOP COMMAND	42
FIGURE 11	. EEPROM SMI HOST TO EEPROM	42
	. EEPROM SMI HOST MODE FRAME	
	. EEPROM SMI WRITE COMMAND FOR SLAVE MODE	
FIGURE 14	. EEPROM SMI READ COMMAND FOR SLAVE MODE	43
	. RGMII Mode Interface Signal Diagram	
FIGURE 16	. SIGNAL DIAGRAM OF MII PHY MODE INTERFACE (100MBPS)	46
	. SIGNAL DIAGRAM OF MII MAC MODE INTERFACE (100MBPS)	
	. EEPROM SMI HOST MODE TIMING CHARACTERISTICS	
	. SCK/SDA Power on Timing	
	. EEPROM AUTO-LOAD TIMING	
	. EEPROM SMI SLAVE MODE TIMING CHARACTERISTICS	
	. MDIO Sourced by Master	
	. MDIO Sourced by RTL8367S (Slave)	
	. MII MAC MODE CLOCK TO DATA OUTPUT DELAY TIMING	
	. MII MAC MODE INPUT TIMING	
	. MII PHY MODE OUTPUT TIMING	
	. MII PHY MODE CLOCK OUTPUT TO DATA INPUT DELAY TIMING	
	. RGMII OUTPUT TIMING CHARACTERISTICS (RGX_TXCLK_DELAY=0)	
	. RGMII OUTPUT TIMING CHARACTERISTICS (RGX_TXCLK_DELAY=2NS)	
	. RGMII INPUT TIMING CHARACTERISTICS (RGX_RXCLK_DELAY=0)	
	. RGMII INPUT TIMING CHARACTERISTICS (RGX_RXCLK_DELAY=2NS)	
	. HSGMII Differential Transmitter Eye Diagram	
FIGURE 33	. HSGMII DIFFERENTIAL RECEIVER EYE DIAGRAM	68
	. SGMII DIFFERENTIAL TRANSMITTER EYE DIAGRAM	
	. SGMII DIFFERENTIAL RECEIVER EYE DIAGRAM	
FIGURE 36	. POWER AND RESET CHARACTERISTICS	71

1. General Description

The RTL8367S-CG is a LQFP-128, high-performance 5+2-port 10/100/1000M Ethernet switch featuring a low-power integrated 5-Port Giga-PHY that supports 1000Base-T, 100Base-TX, and 10Base-T.

For specific applications, the RTL8367S supports one extra interface that could be configured as RGMII/MII interfaces. The RTL8367S also supports one Ser-Des interface that could be configured as SGMII/HSGMII interfaces. The RTL8367S integrates all the functions of a high-speed switch system; including SRAM for packet buffering, non-blocking switch fabric, and internal register management into a single CMOS device. Only a 25MHz crystal is required; an optional EEPROM is offered for internal register configuration.

The embedded packet storage SRAM in the RTL8367S features superior memory management technology to efficiently utilize memory space. The RTL8367S integrates a 2K-entry look-up table with a 4-way XOR Hashing algorithm for address searching and learning. The table provides read/write access from the EEPROM Serial Management Interface (SMI), Media Independent Interface Management (MIIM), or SPI Interface. Each of the table entries can be configured as a static entry. The entry aging time is between 200 and 400 seconds. Eight Filtering Databases are used to provide Independent VLAN Learning and Shared VLAN Learning (IVL/SVL) functions.

The Extension GMAC1 of the RTL8367S implements a SGMII/HSMII interfaces and Extension GMAC2 of the RTL8367S implements a RGMII/MII interfaces. These interfaces could be connected to an external PHY, MAC, CPU, or RISC for specific applications. In router applications, the RTL8367S supports Port VID (PVID) for each port to insert a PVID in the VLAN tag on egress. When using this function, VID information carried in the VLAN tag will be changed to PVID.

Note: The RTL8367S Extra Interface (Extension GMAC2) supports:

Media Independent Interface (MII)

Reduced Gigabit Media Independent Interface (RGMII)

The RTL8367S supports standard 802.3x flow control frames for full duplex, and optional backpressure for half duplex. It determines when to invoke the flow control mechanism by checking the availability of system resources, including the packet buffers and transmitting queues. The RTL8367S supports broadcast/multicast output dropping, and will forward broadcast/multicast packets to non-blocked ports only. For IP multicast applications, the RTL8367S supports IPv4 IGMPv1/v2/v3 and IPv6 MLDv1/v2 snooping.

In order to support flexible traffic classification, the RTL8367S supports 96-entry ACL rule check and multiple actions options. Each port can optionally enable or disable the ACL rule check function. The ACL rule key can be based on packet physical port, Layer2, Layer3, and Layer4 information. When an ACL rule matches, the action taken is configurable to Drop/Permit/Redirect/Mirror, change priority value in 802.1q/Q tag, force output tag format and rate policing. The rate policing mechanism supports from 8Kbps to 1Gbps (in 8Kbps steps).

In Bridge operation the RTL8367S supports 16 sets of port configurations: disable, block, learning, and forwarding for Spanning Tree Protocol and Multiple Spanning Tree Protocol. To meet security and management application requirements, the RTL8367S supports IEEE 802.1x Port-based/MAC-based Access Control. For those ports that do not pass IEEE 802.1x authentication, the RTL8367S provides a Port-based/MAC-based Guest VLAN function for them to access limited network resources. A 1-set Port

Mirroring function is configured to mirror traffic (RX, TX, or both) appearing on one of the switch's ports. Support is provided on each port for multiple RFC MIB Counters, for easy debug and diagnostics.

To improve real-time or multimedia networking applications, the RTL8367S supports eight priority assignments for each received packet. These are based on (1) Port-based priority; (2) 802.1p/Q VLAN tag priority; (3) DSCP field in IPv4/IPv6 header; and (4) ACL-assigned priority. Each output port supports a weighted ratio of eight priority queues to fit bandwidth requirements in different applications. The input bandwidth control function helps limit per-port traffic utilization. There is one leaky bucket for average packet rate control for each queue of all ports. Queue scheduling algorithm can use Strict Priority (SP) or Weighted Fair Queue (WFQ) or mixed.

The RTL8367S provides a 4K-entry VLAN table for 802.1Q port-based, tag-based, and protocol-based VLAN operation to separate logical connectivity from physical connectivity. The RTL8367S supports four Protocol-based VLAN configurations that can optionally select EtherType, LLC, and RFC1042 as the search key. Each port may be set to any topology via EEPROM upon reset, or EEPROM SMI Slave after reset.

In router applications, the router may want to know the input port of the incoming packet. The RTL8367S supports an option to insert a VLAN tag with VID=Port VID (PVID) on each egress port. The RTL8367S also provides an option to admit VLAN tagged packet with a specific PVID only. If this function is enabled, the RTL8367S will drop all non-tagged packets and packets with an incorrect PVID.

CONFIDE

2. Features

- Single-chip 5+2-port 10/100/1000M non-blocking switch architecture
- Embedded 5-Port 10/100/1000Base-T PHY
- Each port supports full duplex 10/100/1000M connectivity (half duplex only supported in 10/100M mode)
- Extra Interface (Extension GMAC1)
 Supports High Speed Serial Interface (Extension GMAC1)
 - ◆ SGMII (1.25GHz) Interface
 - ♦ High SGMII (3.125GHz) Interface
- Extra Interface (Extension GMAC2) supports
 - ◆ Media Independent Interface (MII)
 - ◆ Reduced 10/100/1000M Media Independent Interface (RGMII)
- Full-duplex and half-duplex operation with IEEE 802.3x flow control and backpressure
- Supports 9216-byte jumbo packet length forwarding at wire speed
- Realtek Cable Test (RTCT) function
- Supports 96-entry ACL Rules
 - ◆ Search keys support physical port, Layer2, Layer3, and Layer4 information
 - Actions include mirror, redirect, dropping, priority adjustment, traffic policing, CVLAN decision, and SVLAN assignment GPIO control, force output tag format, interrupt and logging counter
 - ◆ Supports five types of user defined ACL rule format for 96 ACL rules
 - Optional per-port enable/disable of ACL function

- ◆ Optional setting of per-port action to take when ACL mismatch
- Supports IEEE 802.1Q VLAN
 - ◆ Supports 4K VLANs and 32 Extra Enhanced VLANs
 - Supports Un-tag definition in each VLAN
 - Supports VLAN policing and VLAN forwarding decision
 - Port-based, Tag-based, and Protocol-based VLAN
 - ◆ Up to 4 Protocol-based VLAN entries
 - Per-port and per-VLAN egress VLAN tagging and un-tagging
- Supports IVL, SVL, and IVL/SVL
 - ◆ 2K-entry MAC address table with 4-way hash algorithm
 - ◆ Up to 2K-entry L2/L3 Filtering Database
 - ◆ Per-port MAC learning limitation
 - ◆ System base MAC learning limitation
- Supports Spanning Tree Port Behavior configuration
 - ◆ IEEE 802.1w Rapid Spanning Tree
 - ◆ IEEE 802.1s Multiple Spanning Tree with up to 16 Spanning Tree instances
- Supports IEEE 802.1x Access Control Protocol
 - ◆ Port-Based Access Control
 - ◆ MAC-Based Access Control
 - ◆ Guest VLAN
- Supports Auto protection from Denial-of-Service attacks
- Supports H/W IGMP/MLD Snooping

- ◆ IGMPv1/v2/v3 and MLD v1/v2
- ◆ Supports Fast Leave
- ◆ Static router port configuration
- ◆ Dynamic router port learning and aging
- Supports Quality of Service (QoS)
 - ◆ Supports per port Input Bandwidth Control
 - ◆ Traffic classification based on IEEE 802.1p/Q priority definition, physical Port, IP DSCP field, ACL definition, VLAN based priority, MAC based priority and SVLAN based priority
 - ♦ Eight Priority Queues per port
 - ◆ Per queue flow control
 - ♦ Min-Max Scheduling
 - ◆ Strict Priority and Weighted Fair Queue (WFQ) to provide minimum bandwidth
 - ◆ One leaky bucket to constrain the average packet rate of each queue
- Supports rate limiting (32 shared meters, with 8kbps granulation or packets per second configuration)
- Supports RFC MIB Counter
 - ◆ MIB-II (RFC 1213)
 - ◆ Ethernet-Like MIB (RFC 3635)
 - ◆ Interface Group MIB (RFC 2863)
 - ◆ RMON (RFC 2819)
 - ◆ Bridge MIB (RFC 1493)
 - ◆ Bridge MIB Extension (RFC 2674)
- Supports Stacking VLAN and Port Isolation with eight Enhanced Filtering Databases
- Supports IEEE 802.1ad Stacking VLAN
 - ◆ Supports 64 SVLANs
 - ◆ Supports 32 L2/IPv4 Multicast mappings to SVLAN

- ◆ Supports MAC-based 1:N VLAN
- Supports two IEEE 802.3ad Link aggregation port groups
- Supports Port Mirror function for one monitor port for multiple mirroring ports
- Supports OAM and EEE LLDP (Energy Efficient Ethernet Link Layer Discovery Protocol
- Supports Loop Detection
- Security Filtering
 - ♦ Disable learning for each port
 - ◆ Disable learning-table aging for each port
 - ◆ Drop unknown DA for each port
- Broadcast/Multicast/Unknown DA storm control protects system from attack by hackers
- Supports IEEE 802.3az Energy Efficient Ethernet (EEE)
- Supports Realtek Green Ethernet features
 - ◆ Link-On Cable Length Power Saving
 - ◆ Link-Down Power Saving
- Supports one interrupt output to external CPU for notification
- Each port supports 3 LED outputs
- Management Interface Supports
 - ◆ EEPROM SMI Slave interface
 - ◆ Media Independent Interface Management (MIIM)
 - ◆ SPI Slave Interface
- Supports 32K-byte EEPROM space for configuration
- Integrated 8051 microprocessor.
- 25MHz crystal or 3.3V OSC input

■ LQFP 128-pin package

3. System Applications

- 5-Port 1000Base-T Switch
- 5-Port 1000Base-T Router with SGMII/HSGMII and/or MII/RGMII

4. Application Examples

4.1. 5-Port 1000Base-T Switch

Figure 1. 5-Port 1000Base-T Switch

4.2. 5-Port 1000Base-T Router with SGMII/HSGMII and/or MII/RGMII

Figure 2. 5-Port 1000Base-T Router with SGMII/HSGMII and/or MII/RGMII

Note: Extra Interface (Extension GMAC1) in SGMII/HSGMII Mode and/or (Extension GMAC2) in MII/RGMII Mode.

5. Block Diagram

Figure 3. Block Diagram

6. Pin Assignments

Figure 4. Pin Assignments (LQFP-128)

6.1. Package Identification

Green package is indicated by the 'G' in GXXX (Figure 4).

6.2. Pin Assignments Table

Upon Reset: Defined as a short time after the end of a hardware reset.

After Reset: Defined as the time after the specified 'Upon Reset' time.

I: Input Pin AI: Analog Input Pin

O: Output Pin AO: Analog Output Pin

I/O: Bi-Directional Input/Output Pin

AI/O: Analog Bi-Directional Input/Output Pin

P: Digital Power Pin AP: Analog Power Pin

G: Digital Ground Pin AG: Analog Ground Pin

I_{PU}: Input Pin With Pull-Up Resistor; O_{PU}: Output Pin With Pull-Up Resistor;

(Typical Value = 75K Ohm) (Typical Value = 75K Ohm)

I_{PD}: Input Pin With Pull-Down Resistor; O_{PD}: Output Pin With Pull-Down Resistor;

(Typical Value = 75K Ohm) (Typical Value = 75K Ohm)

Is: Input Pin With Schmitt Trigger

Table 1. Pin Assignments Table

Name	Pin No.	Type
GND	1	G
P3MDIAP	2	AI/O
P3MDIAN	3	AI/O
P3MDIBP	4	AI/O
P3MDIBN	5	AI/O
AVDDL	6	AP
P3MDICP	7	AI/O
P3MDICN	8	AI/O
P3MDIDP	9	AI/O
P3MDIDN	10	AI/O
AVDDH	11	AP
AGND	12	AG
MDIREF	13	AO
AVDDL	14	AP
RTT1	15	AO
RTT2	16	AO
AVDDH	17	AP
GND	18	G
GPIO57/INTERRUPT	19	I/O _{PD}
DVDDL	20	P

Name	Pin No.	Type
AVDDH	21	AP
P4MDIAP	22	AI/O
P4MDIAN	23	AI/O
GND	24	G
P4MDIBP	25	AI/O
P4MDIBN	26	AI/O
AVDDL	27	AP
P4MDICP	28	AI/O
P4MDICN	29	AI/O
P4MDIDP	30	AI/O
P4MDIDN	31	AI/O
GND	32	G
AVDDH	33	AP
SGND	34	AG
HSON	35	AO
HSOP	36	AO
SVDDL	37	AP
HSIP	38	AI
HSIN	39	AI
SGND	40	AG

Name	Pin No.	Type
SVDDH	41	AP
DVDDIO_2	42	P
GND	43	G
GND	44	G
GPIO01/RG2_TXD3/M2M_TXD3/	45	I/O
M2P_RXD3/UART_RX		
GPIO02/RG2_TXD2/M2M_TXD2/ M2P_RXD2/UART_TX	46	I/O
GPIO03/RG2_TXD1/M2M_TXD1/ M2P_RXD1	47	I/O
GPIO04/RG2_TXD0/M2M_TXD0/ M2P_RXD0/SPIF_CLK	48	I/O
GPIO05/RG2_TXCTL/M2M_TXE N/M2P_RXDV/SPIF_D0	49	I/O
GPIO06/RG2_TXCLK/M2M_TXC LK/M2P_RXCLK	50	I/O
GPIO07/RG2_RXCLK/M2M_RXC LK/M2P_TXCLK	51	I/O
GPIO08/RG2_RXCTL/M2M_RXD V/M2P_TXEN	52	I/O
GPIO09/RG2_RXD0/M2M_RXD0/ M2P_TXD0/SPIF_D1	53	I/O
GPIO10/RG2_RXD1/M2M_RXD1/ M2P_TXD1/SPIF_CS	54	I/O
GPIO11/RG2_RXD2/M2M_RXD2/ M2P_TXD2	55	I/O
GPIO12/RG2_RXD3/M2M_RXD3/ M2P_TXD3	56	I/O
GND	57	G
DVDDL	58	P
DVDDIO 2	59	P
EN SWR	60	AI
GND_SWR	61	AG
GND SWR	62	AG
LX	63	AO
LX	64	AO
HV_SWR	65	AP
HV_SWR	66	AP
DVDDIO	67	P
GND	68	G
DVDDL	69	P
GP O39/LAN4LED0/	70	I/O _{PU}
EEPROM_MOD		10
GPIO40/LAN4LED1	71	I/O _{PU}
GPIO41/LAN3LED1	72	I/O _{PU}
GP O42/EN_PWRLIGHT	73	I/O _{PU}

Name	Pin No.	Type
GP O43/LAN3LED0/EN_SPIF	74	I/O _{PU}
GP O44/LAN2LED0/DIS_8051	75	I/O _{PU}
GP O45/DISAUTOLOAD	76	I/O _{PU}
GPIO46/LAN2LED1	77	I/O _{PU}
GPIO49/LAN1LED1	78	I/O _{PU}
GP O50/LAN1LED0/EN_PHY	79	I/O _{PU}
GP O51/LAN0LED1/LED_DA	80	I/O _{PU}
GP O52/LAN0LED0/LED_CK/	81	I/O _{PU}
SMI_SEL		
AVDDH	82	AP
XTALO	83	AO
XTALI	84	AI
GND	85	G
nRESET	86	I_{PU}
GPIO54/SCK/MDC/EN_EEE	87	I/O
GPIO55/SDA/MDIO	88	I/O
GND	89	G
AVDDH	90	AP
POMDIAP	91	AI/O
POMDIAN	92	AI/O
POMDIBP	93	AI/O
POMDIBN	94	AI/O
AVDDL	95	AP
GND	96	G
POMDICP	97	AI/O
POMDICN	98	AI/O
GND	99	G
POMDIDP	100	AI/O
POMDIDN	101	AI/O
AVDDH	102	AP
P1MDIAP	103	AI/O
P1MDIAN	104	AI/O
GND	105	G
P1MDIBP	106	AI/O
P1MDIBN	107	AI/O
AVDDL	108	AP
P1MDICP	109	AI/O
P1MDICN	110	AI/O
GND	111	G
P1MDIDP	112	AI/O
P1MDIDN	113	AI/O
PLLVDDL	114	AP
PLLGND	115	AG
AVDDH	116	AP

Name	P	in No.	Type
P2MDIAP		117	AI/O
P2MDIAN		118	AI/O
GND		119	G
P2MDIBP		120	AI/O
P2MDIBN		121	AI/O
AVDDL		122	AP

Name	Pin No.	Type
P2MDICP	123	AI/O
P2MDICN	124	AI/O
GND	125	G
P2MDIDP	126	AI/O
P2MDIDN	127	AI/O
AVDDH	128	AP

RealteK RealteK CONFIDENTIAL

7. Pin Descriptions

7.1. Media Dependent Interface Pins

Table 2. Media Dependent Interface Pins

Table 2.			abic 2.	Media Dependent Interface Pins		
Pin Name	Pin No.	Туре	Drive (mA)	Description		
P0MDIAP/N	91	AI/O	10	Port 0 Media Dependent Interface A~D.		
	92			For 1000Base-T operation, differential data from the media is transmitted		
P0MDIBP/N	93			and received on all four pairs. For 100Base-TX and 10Base-T operation,		
	94			only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs		
P0MDICP/N	97			MDIAP/N and MDIBP/N.		
	98					
P0MDIDP/N	100			Each of the differential pairs has an internal 100-ohm termination resistor.		
	101					
P1MDIAP/N	103	AI/O	_10	Port 1 Media Dependent Interface A~D.		
	104			For 1000Base-T operation, differential data from the media is transmitted		
P1MDIBP/N	106			and received on all four pairs. For 100Base-TX and 10Base-T operation,		
	107			only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs		
P1MDICP/N	109			MDIAP/N and MDIBP/N.		
	110					
P1MDIDP/N	112			Each of the differential pairs has an internal 100-ohm termination resistor.		
	113					
P2MDIAP/N	117	AI/O	10	Port 2 Media Dependent Interface A~D.		
	118			For 1000Base-T operation, differential data from the media is transmitted		
P2MDIBP/N	120			and received on all four pairs. For 100Base-TX and 10Base-T operation,		
	121			only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs		
P2MDICP/N	123			MDIAP/N and MDIBP/N.		
	124					
P2MDIDP/N	126			Each of the differential pairs has an internal 100-ohm termination resistor.		
	127					
P3MDIAP/N	2	AI/O	10	Port 3 Media Dependent Interface A~D.		
	3			For 1000Base-T operation, differential data from the media is transmitted		
P3MDIBP/N	4			and received on all four pairs. For 100Base-TX and 10Base-T operation,		
	5			only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs		
P3MDICP/N	7			MDIAP/N and MDIBP/N.		
	8					
P3MDIDP/N	9			Each of the differential pairs has an internal 100-ohm termination resistor.		
	10					
P4MDIAP/N	22	AI/O	10	Port 4 Media Dependent Interface A~D.		
	23			For 1000Base-T operation, differential data from the media is transmitted		
P4MDIBP/N	25			and received on all four pairs. For 100Base-TX and 10Base-T operation,		
	26			only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs		
P4MDICP/N	28			MDIAP/N and MDIBP/N.		
	29					
P4MDIDP/N	30			Each of the differential pairs has an internal 100-ohm termination resistor.		
	31					

7.2. High Speed Serial Interface Pins

Pin Name	Pin No.	Туре	Drive (mA)	Description	
HSOP/N	36 35	AO	10	High Speed Serial Output Pins: 1.25GHz/3.125GHz Differential serial interface to transmit data. Keep floating when unused.	
HSIP/N	38 39	AI	10	High Speed Serial Input Pins: 1.25GHz/3.125GHz Differential serial interface to receive data. Keep floating when unused.	

7.3. General Purpose Interfaces

The RTL8367S supports multi-function General Purpose Interfaces that can be configured as MII/RGMII mode for extension GMAC interfaces. The RTL8367S supports one digital extension interfaces (Extension GMAC2) for connecting with an external PHY, MAC, or CPU in specific applications. This extension interface supports RGMII, MII MAC mode, or MII PHY mode via register configuration.

Table 3. General Purpose Interfaces Pins

Pin No.	GPIO	RGMII	MII MAC Mode	MII PHY Mode	Other function	Configuration Strapping
19	GPIO57				INTERRUPT	
45	GPIO01	RG2_TXD3	M2M_TXD3	M2P_RXD3	UART_RX	
46	GPIO02	RG2_TXD2	M2M_TXD2	M2P_RXD2	UART_TX	
47	GPIO03	RG2_TXD1	M2M_TXD1	M2P_RXD1		
48	GPIO04	RG2_TXD0	M2M_TXD0	M2P_RXD0	SPIF_CLK	
49	GPIO05	RG2_TXCTL	M2M_TXEN	M2P_RXDV	SPIF_D0	
50	GPIO06	RG2_TXCLK	M2M_TXCLK	M2P_RXCLK		
51	GPIO07	RG2_RXCLK	M2M_RXCLK	M2P_TXCLK		
52	GPIO08	RG2_RXCTL	M2M_RXDV	M2P_TXEN		
53	GPIO09	RG2_RXD0	M2M_RXD0	M2P_TXD0	SPIF_D1	
54	GPIO10	RG2_RXD1	M2M_RXD1	M2P_TXD1	SPIF_CS	
55	GPIO11	RG2_RXD2	M2M_RXD2	M2P_TXD2		
56	GPIO12	RG2_RXD3	M2M_RXD3	M2P_TXD3		
70	GP O39				LAN4LED0	EEPROM_MOD
71	GPIO40				LAN4LED1	
72	GPIO41				LAN3LED1	
73	GP O42					EN_PWRLIGHT
74	GP O43				LAN3LED0	EN_SPIF
75	GP O44				LAN2LED0	DIS_8051
76	GP O45					DISAUTOLOAD
77	GPIO46				LAN2LED1	
78	GPIO49				LAN1LED1	
79	GP O50				LAN1LED0	EN_PHY
80	GP O51				LAN0LED1/ LED_DA	
81	GP O52				LAN0LED0/ LED_CK	SMI_SEL

Pin No.	GPIO	RGMII	MII MAC Mode	MII PHY Mode	Other function	Configuration Strapping
87	GPIO54				SCK/ MDC	EN_EEE
88	GPIO55				SDA/ MDIO	

Realtek CONFIDENTIAL

7.3.1. RGMII Pins

The Extension GMAC2 of the RTL8367S supports RGMII interface to connect with an external MAC or PHY device when register configuration is set to RGMII mode interface.

Table 4. Extension GMAC2 RGMII Pins

Table 4. Extension GMAC2 RGMII Filis					
Pin Name	Pin No.	Type	Drive (mA)	Description	
RG2_TXD3	45	О	-	RG2_TXD[3:0] Extension GMAC2 RGMII Transmit Data Output.	
RG2_TXD2	46			Transmitted data is sent synchronously to RG2_TXCLK.	
RG2_TXD1	47				
RG2_TXD0	48				
RG2_TXCTL	49	0	-	RG2_TXCTL Extension GMAC2 RGMII Transmit Control signal Output. The RG2_TXCTL indicates TX_EN at the rising edge of RG2_TXCLK, and TX_ER at the falling edge of RG2_TXCLK. At the RG2_TXCLK falling edge, RG2_TXCTL= TX_EN (XOR) TX_ER.	
RG2_TXCLK	50	0		RG2_TXCLK Extension GMAC2 RGMII Transmit Clock Output. RG2_TXCLK is 125MHz @ 1Gbps, 25MHz @ 100Mbps, and 2.5MHz @ 10Mbps. Used for RG2_TXD[3:0] and RG2_TXCTL synchronization at RG2_TXCLK on both rising and falling edges.	
RG2_RXCLK	51	I		RG2_RXCLK Extension GMAC2 RGMII Receive Clock Input. RG2_RXCLK is 125MHz @ 1Gbps, 25MHz @ 100Mbps, and 2.5MHz @ 10Mbps. Used for RG2_RXD[3:0] and RG2_RXCTL synchronization at both RG2_RXCLK rising and falling edges. This pin must be pulled low with a 1K ohm resistor when not used.	
RG2_RXCTL	52	I	-	RG2_RXCTL Extension GMAC2 RGMII Receive Control signal input. The RG2_RXCTL indicates RX_DV at the rising of RG2_RXCLK and RX_ER at the falling edge of RG2_RXCLK. At RG2_RXCLK falling edge, RG2_RXCTL= RX_DV (XOR) RX_ER. This pin must be pulled low with a 1K ohm resistor when not used.	
RG2_RXD0	53	I	-	RG2_RXD[3:0] Extension GMAC2 RGMII Receive Data Input.	
RG2_RXD1	54			Received data is received synchronously by RG2_RXCLK.	
RG2_RXD2	55			These pins must be pulled low with a 1K ohm resistor when not used.	
RG2_RXD3	56				

7.3.2. MII Pins

The Extension GMAC2 of the RTL8367S supports MII interface to connect with an external MAC or PHY device when register configuration is set to MII mode interface. This MII interface can be configured as MII MAC mode or MII PHY mode by register.

Table 5. Extension GMAC2 MII Pins (MII MAC Mode or MII PHY Mode)

		Extension GMAC2 MILE FILE (MILMAC Mode of MILE FILE Mode)		
Pin Name	Pin No.	Туре	Drive (mA)	Description
M2M_TXD3/	45	О	-	M2M_TXD[3:0] Extension GMAC2 MII MAC Mode Transmit Data
M2P_RXD3				Output.
M2M_TXD2/	46			Transmitted data is sent synchronously at the rising edge of
M2P_RXD2				M2M_TXCLK.
M2M_TXD1/	47			M2P_RXD[3:0] Extension GMAC2 MII PHY Mode Receive Data
M2P_RXD1				Output.
M2M_TXD0/	48			Received data is received synchronously at the rising edge of
M2P_RXD0				M2P_RXCLK.
M2M_TXEN/	49	0	-	M2M_TXEN Extension GMAC2 MII MAC Mode Transmit Data Enable
M2P_RXDV				Output.
				Transmit enable that is sent synchronously at the rising edge of M2M_TXCLK.
				M2P_RXDV Extension GMAC2 MII PHY Mode Receive Data Valid
				Output.
				Receive Data Valid signal that is sent synchronously at the rising edge of
				M2P_RXCLK.
M2M_TXCLK/	50	I/O	-	M2M_TXCLK Extension GMAC2 MII MAC Mode Transmit Clock
M2P_RXCLK				Input.
				In MII 100Mbps, M2M_TXCLK is 25MHz Clock Input.
				In MII 10Mbps, M2M_TXCLK is 2.5MHz Clock Input.
				Used to synchronize M2M_TXD[3:0] and M2M_TXEN.
				M2P_RXCLK Extension GMAC2 MII PHY Mode Receive Clock
				Output.
				In MII 100Mbps, M2P_RXCLK is 25MHz Clock Output.
				In MII 10Mbps, M2P_RXCLK is 2.5MHz Clock Output.
				Used to synchronize M2P_RXD[3:0] and M2P_RXDV.
				This pin must be pulled low with a 1K ohm resistor when not used.
M2M_RXCLK/	51	I/O	-	M2M_RXCLK Extension GMAC2 MII MAC Mode Receive Clock
M2P_TXCLK				Input.
				In MII 100Mbps, M2M_RXCLK is 25MHz Clock Input.
				In MII 10Mbps, M2M_RXCLK is 2.5MHz Clock Input.
				Used to synchronize M2M_RXD[3:0], M2M_RXDV, and M2M_CRS.
				M2P_TXCLK Extension GMAC2 MII PHY Mode Transmit Clock
				Output.
				In MII 100Mbps, M2P_TXCLK is 25MHz Clock Output.
				In MII 10Mbps, M2P_TXCLK is 2.5MHz Clock Output.
				Used to synchronize M2P_TXD[3:0] and M2P_TXEN.
				This pin must be pulled low with a 1K ohm resistor when not used.

Pin Name	Pin No.	Туре	Drive (mA)	Description
M2M_RXDV/	52	I	-	M2M_RXDV Extension GMAC2 MII MAC Mode Receive Data Valid
M2P_TXEN				Input.
				Receive Data Valid sent synchronously at the rising edge of
				M2M_RXCLK.
				M2P_TXEN Extension GMAC2 MII PHY Mode Transmit Data Enable
				Input.
				Transmit Data Enable is received synchronously at the rising edge of
				M2P_TXCLK.
				This pin must be pulled low with a 1K ohm resistor when not used.
M2M_RXD0/	53	I	-	M2M_RXD[3:0] Extension GMAC2 MII MAC Mode Receive Data
M2P_TXD0				Input.
M2M_RXD1/	54			Received data that is received synchronously at the rising edge of
M2P_TXD1				M2M_RXCLK.
M2M RXD2/	55			M2P_TXD[3:0] Extension GMAC2 MII PHY Mode Transmit Data Input.
M2P TXD2				Transmitted data is received synchronously at the rising edge of
M2M RXD3/	56			M2P_TXCLK.
M2P TXD3				These pins must be pulled low with a 1K ohm resistor when not used.

7.4. LED Pins

The RTL8367S LED Pins can be configured to parallel mode LED or serial mode LED interface via Register configuration. LED0 and LED1 of Port n indicates information that can be defined via register or EEPROM.

In parallel mode LED interface, when the LED pin is pulled low, the LED output polarity will be high active. When the LED pin is pulled high, the LED output polarity will change from high active to low active. See section 9.19 LED Indicators, page 39 for more details.

Table 6. LED Pins

	Table 0. LLD Fills					
Pin Name	Pin No.	Туре	Drive (mA)	Description		
LAN4LED1	71	I/O _{PU}	-	LAN 4 LED 1 Output Signal.		
				LAN4LED1 indicates information is defined by register or EEPROM.		
				See section 9.19 LED Indicators, page 39 for more details.		
LAN4LED0/	70	I/O _{PU}		LAN 4 LED 0 Output Signal.		
EEPROM_MOD				LAN4LED0 indicates information is defined by register or EEPROM.		
				See section 9.19 LED Indicators, page 39 for more details.		
LAN3LED1	72	I/O _{PU}	-	LAN 3 LED 1 Output Signal.		
				LAN3LED1 indicates information is defined by register or EEPROM.		
				See section 9.19 LED Indicators, page 39 for more details.		
LAN3LED0/	74	I/O _{PU}	-	LAN 3 LED 0 Output Signal.		
EN_SPIF				LAN3LED0 indicates information is defined by register or EEPROM.		
				See section 9.19 LED Indicators, page 39 for more details.		
LAN2LED1	77	I/O _{PU}	-	LAN 2 LED 1 Output Signal.		
				LAN2LED1 indicates information is defined by register or EEPROM.		
				See section 9.19 LED Indicators, page 39 for more details.		
LAN2LED0/	75	I/O _{PU}	-	LAN 2 LED 0 Output Signal.		
DIS_8051				LAN2LED0 indicates information is defined by register or EEPROM.		
				See section 9.19 LED Indicators, page 39 for more details.		
LAN1LED1	78	I/O _{PU}	-	LAN 1 LED 1 Output Signal.		
				LAN1LED1 indicates information is defined by register or EEPROM.		
				See section 9.19 LED Indicators, page 39 for more details.		
LAN1LED0/	79	I/O _{PU}	-	LAN 1 LED 0 Output Signal.		
EN_PHY				LAN1LED0 indicates information is defined by register or EEPROM.		
				See section 9.19 LED Indicators, page 39 for more details.		
LAN0LED1/	80	I/O _{PU}	-	LAN 0 LED 1 Output Signal.		
LED_DA				LAN0LED1 indicates information is defined by register or EEPROM.		
				See section 9.19 LED Indicators, page 39 for more details.		
LAN0LED0/	81	I/O _{PU}	-	LAN 0 LED 0 Output Signal.		
LED_CK/				LAN0LED0 indicates information is defined by register or EEPROM.		
SMI_SEL				See section 9.19 LED Indicators, page 39 for more details.		

7.5. Configuration Strapping Pins

Table 7. Configuration Strapping Pins

Pin Name	Pin No.	Type	Description			
EN_SWR	60	AI	Enable Internal Switching Regulator.			
			Pull Up: Enable Internal Switching Regulator			
			Pull Down: Disable Internal Switching Regulator			
			Note: This pin must be pulled high or low via an external 1k ohm resistor when			
			normal operation.			
EEPROM_MOD/	70	I/O_{PU}	EEPROM Mode Selection.			
LAN4LED0			Pull Up: EEPROM 24Cxx Size greater than 16Kbits (24C32~24C256)			
			Pull Down: EEPROM 24Cxx Size less than or equal to 16Kbit (24C02~24C16).			
			Note: This pin must be kept floating, or pulled high or low via an external			
			4.7k ohm resistor upon power on or reset.			
			When this pin is pulled low, the LED output polarity will be high active. When this			
			pin is pulled high, the LED output polarity will change from high active to low			
			active. See section 9.19 LED Indicators, page 39 for more details.			
EN_PWRLIGHT	73	I/O _{PU}	Enable Power on Light.			
			Pull Up: Enable Power on Light			
			Pull Down: Disable Power on Light			
			Note: This pin must be kept floating, or pulled high or low via an external			
			4.7k ohm resistor upon power on or reset.			
			When this pin is pulled low, the LED output polarity will be high active. When this			
			pin is pulled high, the LED output polarity will change from high active to low active. See section 9.19 LED Indicators, page 39 for more details.			
EN_SPIF/	74	I/O _{PU}				
LAN3LED0	14	I/O _{PU}	Pull Up: Enable FLASH interface			
LANSLEDO			Pull Down: Disable FLASH interface			
			Note 1: The strapping pin DISAUTOLOAD, DIS_8051, and EN_SPIF are for			
			power on or reset initial stage configuration. Refer to Table 8 Configuration			
			Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF), page 20 for details.			
			Note 2: This pin must be kept floating, or pulled high or low via an external 4.7k			
			ohm resistor upon power on or reset.			
DIS_8051/	75	I/O _{PU}	Disable Embedded 8051.			
LAN2LED0		10	Pull Up: Disable embedded 8051			
			Pull Down: Enable embedded 8051			
			Note 1: The strapping pin DISAUTOLOAD, DIS_8051, and EN_SPIF are for			
			power on or reset initial stage configuration. Refer to Table 8 Configuration			
			Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF), page 20 for details.			
			Note 2: This pin must be kept floating, or pulled high or low via an external			
			4.7k ohm resistor upon power on or reset.			
			When this pin is pulled low, the LED output polarity will be high active. When this			
			pin is pulled high, the LED output polarity will change from high active to low			
	<u> </u>		active. See section 9.19 LED Indicator, page 39 for more details.			

Pin Name	Pin No.	Type	Description
DISAUTOLOAD	76	I/O _{PU}	Disable EEPROM/FLASH Autoload.
			Pull Up: Disable EEPROM/FLASH autoload
			Pull Down: Enable EEPROM/FLASH autoload
			Note 1: The strapping pin DISAUTOLOAD, DIS_8051, and EN_SPIF are for
			power on or reset initial stage configuration. Refer to Table 8 Configuration
			Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF), page 20 for details.
			Note 2: This pin must be kept floating, or pulled high or low via an external
			4.7k ohm resistor upon power on or reset.
			When this pin is pulled low, the LED output polarity will be high active. When this
			pin is pulled high, the LED output polarity will change from high active to low active. See section 9.19 LED Indicators, page 39 for more details.
EN PHY/	79	I/O	Enable Embedded PHY.
LAN1LED0	19	I/O _{PU}	
LANILEDU			Pull Up: Enable embedded PHY Pull Down: Disable embedded PHY
			Note: This pin must be kept floating, or pulled high or low via an external
			4.7k ohm resistor upon power on or reset.
			When this pin is pulled low, the LED output polarity will be high active. When this
			pin is pulled high, the LED output polarity will change from high active to low
			active. See section 9.19 LED Indicators, page 39 for more details.
SMI_SEL/	81	I/O _{PU}	EEPROM SMI/MII Management Interface Selection.
LED_CK/			Pull Up: EEPROM SMI interface
LAN0LED0			Pull Down: MII Management interface
			Note: This pin must be kept floating, or pulled high or low via an external
			4.7k ohm resistor upon power on or reset.
			When this pin is pulled low, the LED output polarity will be high active. When this
			pin is pulled high, the LED output polarity will change from high active to low
			active. See section 9.19 LED Indicators, page 39 for more details.
EN_EEE/	87	I/O	Enable IEEE 802.3az Energy Efficient Ethernet (EEE).
GPIO54/			Pull Up: Enable Energy Efficient Ethernet (EEE) function
SCK/			Pull Down: Disable Energy Efficient Ethernet (EEE) function
MDC			Note: This pin must be pulled high or low via an external 4.7k ohm resistor upon
	<u> </u>		power on or reset.

7.5.1. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF)

Table 8. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF)

DICALITOLOAD	DIC 9051 EN CDIE		Initial Stage (Power On or Reset) Loading Data		
DISAUTOLOAD	DIS_8051	EN_SPIF	From	То	
	0	0	EEPROM	Embedded 8051 Instruction Memory	
0	U	1	SPI_FLASH	Embedded 8051 Instruction Memory	
	1	Must be 0	EEPROM	Register	
1	Irrelevant	X	Do Nothing	Do Nothing	

7.6. Management Interface Pins

Table 9. Management Interface Pins

Pin Name	Pin No.	Type	Description	
INTERRUPT	19	O_{PD}	Interrupt output when Interrupt even occurs.	
			Active High by pull-down to GND via a 1K resister.	
			Active Low by pull-up to DVDDIO via a 4.7K resister.	
UART_RX	45	I	Universal Asynchronous Receiver Pin.	
UART_TX	46	О	Universal Asynchronous Transmitter Pin.	
SPIF_CLK	48	О	Serial Clock Output (FLASH Interface).	
SPIF_D0	49	I/O	Serial Data I/O 0 (FLASH Interface).	
SPIF_D1	53	I/O	Serial Data I/O 1 (FLASH Interface).	
SPIF_CS	54	О	Chip Selection (FLASH Interface).	
SCK/	87	I/O	EEPROM SMI Interface Clock/MII Management Interface (MMD) Clock	
MDC			(selected via the hardware strapping pin 81, SMI_SEL).	
SDA/	88	I/O	EEPROM SMI Interface Data/MII Management Interface (MMD) Data (selected	
MDIO			via the hardware strapping pin 81, SMI_SEL).	

7.7. Miscellaneous Pins

Table 10. Miscellaneous Pins

Pin Name	Pin No.	Type	Description			
XTALO	83	AO	25MHz Crystal Clock Output Pin.			
ATALO	63	AU	25MHz +/-50ppm tolerance crystal output.			
			When using a crystal, series connect a 150 ohm resistor between XTALO and			
X/T/A I I	0.4	A T	crystal, connect a loading capacitor between crystal pin and ground.			
XTALI	84	AI	25MHz Crystal Clock Input and Feedback Pin.			
			25MHz +/-50ppm tolerance crystal reference or oscillator input.			
			When using a crystal, connect a loading capacitor between crystal pin and			
			ground. When either using an oscillator or driving an external 25MHz clock from another device, XTALO should be kept floating.			
			The maximum XTALI input voltage is 3.3V.			
MDIREF	13	AO	Reference Resistor.			
MDIKEF	15	AO				
DEGE	0.5	•	A 2.49K ohm (1%) resistor must be connected between MDIREF and GND.			
nRESET	86	$ m I_{PU}$	System Reset Input Pin.			
			When low active will reset the RTL8367S.			
LX	63, 64	AO	Internal Switching Regulator LX output. Connect to an inductor 2.2uH and			
			capacitor 10uF to generate 1.1V power.			
GPIO01/	45	I/O	General Purpose Input/Output Interface IO01.			
UART_RX						
GPIO02/	46	I/O	General Purpose Input/Output Interface IO02.			
UART_TX						
GPIO03	47	I/O	General Purpose Input/Output Interface IO03.			
GPIO04/	48	I/O	General Purpose Input/Output Interface IO04.			
SPIF_CLK						
GPIO05/	49	I/O	General Purpose Input/Output Interface IO05.			
SPIF_D0						

Pin Name	Pin No.	Type	Description				
GPIO06	50	I/O	General Purpose Input/Output Interface IO06.				
GPIO07	51	I/O	General Purpose Input/Output Interface IO07.				
GPIO08	52	I/O	General Purpose Input/Output Interface IO08.				
GPIO09/	53	I/O	General Purpose Input/Output Interface IO09.				
SPIF_D1							
GPIO10/	54	I/O	General Purpose Input/Output Interface IO10.				
SPIF_CS							
GPIO11	55	I/O	General Purpose Input/Output Interface IO11.				
GPIO12	56	I/O	General Purpose Input/Output Interface IO12.				
GP O39/	70	I/O _{PU}	General Purpose Output Interface O39.				
LAN4LED0/			General Larpose Output Interface 05%				
EEPROM_MOD							
GPIO40/	71	I/O _{PU}	General Purpose Input/Output Interface IO40.				
LAN4LED1							
GPIO41/	72	I/O _{PU}	General Purpose Input/Output Interface IO41.				
LAN3LED1							
GP O42/	73	I/O _{PU}	General Purpose Output Interface O42.				
EN_PWRLIGHT							
GP O43/	74	I/O _{PU}	General Purpose Output Interface O43.				
LAN3LED0/							
EN_SPIF							
GP O44/	75	I/O _{PU}	General Purpose Output Interface O44.				
LAN2LED0/							
DIS_8051							
GP O45/	76	I/O _{PU}	General Purpose Output Interface O45.				
DISAUTOLOAD							
GPIO46/	77	I/O _{PU}	General Purpose Input/Output Interface IO46.				
LAN2LED1							
GPIO49/	78	I/O _{PU}	General Purpose Input/Output Interface IO49.				
LAN1LED1		7/0					
GP O50/	79	I/O _{PU}	General Purpose Output Interface O50.				
LAN1LED0/ EN_PHY							
GP O51/	80	I/O	General Purpose Output Interface O51.				
LAN0LED1/	80	I/O _{PU}	General Purpose Output Interface O51.				
LED_DA							
GP O52/	81	I/O _{PU}	General Purpose Output Interface O52.				
LAN0LED0/	01	1/ OPU	Goneral Larpose Output Interface 0.52.				
LED_CK/							
SMI_SEL							
GPIO54/	87	I/O	General Purpose Input/Output Interface IO54.				
SCK/							
MDC/							
EN_EEE							
GPIO55/	88	I/O	General Purpose Input/Output Interface IO55.				
SDA/							
MDIO							

Pin Name	Pin No.	Type	Description
GPIO57/	19	I/O _{PD}	General Purpose Input/Output Interface IO57.
INTERRUPT			

7.8. Test Pins

Table 11. Test Pins

Pin Name	Pin No.	Type	Description
RTT1	15	AO	Reserved for Internal Use. Must be left floating.
RTT2	16	AO	Reserved for Internal Use. Must be left floating.

7.9. Power and GND Pins

Table 12. Power and GND Pins

Table 12.1 Ower and GND 1 ms							
Pin Name	Pin No.	Type	Description				
DVDDIO	67	P	Digital I/O High Voltage Power for LED, Management Interface, and nRESET.				
DVDDIO_2	42, 59	P	Digital I/O High Voltage Power for Extension Port 2 General Purpose Interface.				
DVDDL	20, 58, 69	P	Digital Low Voltage Power.				
AVDDH	11, 17, 21, 33, 82, 90, 102, 116, 128	AP	Analog High Voltage Power and INTERRUPT.				
SVDDH	41	AP	Ser-Des High Voltage Power.				
HV_SWR	65, 66	AP	Internal Switching Regulator Power, Connect to a bulk capacitor 10uF to GND.				
AVDDL	6, 14, 27, 95, 108, 122	AP	Analog Low Voltage Power.				
SVDDL	37	AP	Ser-Des Low Voltage Power.				
PLLVDDL	114	AP	PLL Low Voltage Power.				
GND	1, 18, 24, 32, 43, 44, 57, 68, 85, 89, 96, 99, 105, 111, 119, 125	G	GND.				
AGND	12	AG	Analog GND.				
SGND	34, 40	AG	Ser-Des GND.				
GND_SWR	61, 62	AG	Internal Switching Regulator GND.				
PLLGND	115	AG	PLL GND.				

8. Physical Layer Functional Overview

8.1. MDI Interface

The RTL8367S embeds five 10/100/1000M Ethernet PHYs in one chip. Each port uses a single common MDI interface to support 1000Base-T, 100Base-TX, and 10Base-T. This interface consists of four signal pairs-A, B, C, and D. Each signal pair consists of two bi-directional pins that can transmit and receive at the same time. The MDI interface has internal termination resistors, and therefore reduces BOM cost and PCB complexity. For 1000Base-T, all four pairs are used in both directions at the same time. For 10/100 links and during auto-negotiation, only pairs A and B are used.

8.2. 1000Base-T Transmit Function

The 1000Base-TX transmit function performs 8B/10B coding, scrambling, and 4D-PAM5 encoding. These code groups are passed through a waveform-shaping filter to minimize EMI effects, and are transmitted onto 4-pair CAT5 cable at 125MBaud/s through a D/A converter.

8.3. 1000Base-T Receive Function

Input signals from the media pass through the sophisticated on-chip hybrid circuit to subtract the transmitted signal from the input signal for effective reduction of near-end echo. The received signal is then processed with state-of-the-art technology, e.g., adaptive equalization, BLW (Baseline Wander) correction, cross-talk cancellation, echo cancellation, timing recovery, error correction, and 4D-PAM5 decoding. The 8-bit-wide data is recovered and is sent to the GMII interface at a clock speed of 125MHz. The RX MAC retrieves the packet data from the internal receive MII/GMII interface and sends it to the packet buffer manager.

8.4. 100Base-TX Transmit Function

The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling, NRZ/NRZI conversion, and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then scrambled as defined by the TP-PMD Stream Cipher function to flatten the power spectrum energy such that EMI effects can be reduced significantly.

The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit stream is driven onto the network media in the form of MLT-3 signaling. The MLT-3 multi-level signaling technology moves the power spectrum energy from high frequency to low frequency, which also reduces EMI emissions.

8.5. 100Base-TX Receive Function

The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits (to compensate for an incoming distorted MLT-3 signal), an MLT-3 to NRZI and NRZI to NRZ converter to convert analog signals to digital bit-stream, and a PLL circuit to clock data bits with minimum bit error rate. A de-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits are followed by the PLL circuit. Finally, the converted parallel data is fed into the MAC.

8.6. 10Base-T Transmit Function

The output 10Base-T waveform is Manchester-encoded before it is driven onto the network media. The internal filter shapes the driven signals to reduce EMI emissions, eliminating the need for an external filter.

8.7. 10Base-T Receive Function

The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit detects the signal level is above squelch level.

8.8. Auto-Negotiation for UTP

The RTL8367S obtains the states of duplex, speed, and flow control ability for each port in UTP mode through the auto-negotiation mechanism defined in the IEEE 802.3 specifications. During auto-negotiation, each port advertises its ability to its link partner and compares its ability with advertisements received from its link partner. By default, the RTL8367S advertises full capabilities (1000Full, 100Full, 10Half) together with flow control ability.

8.9. Crossover Detection and Auto Correction

The RTL8367S automatically determines whether or not it needs to crossover between pairs (see Table 13) so that an external crossover cable is not required. When connecting to another device that does not perform MDI crossover, when necessary, the RTL8367S automatically switches its pin pairs to communicate with the remote device. When connecting to another device that does have MDI crossover capability, an algorithm determines which end performs the crossover function.

The crossover detection and auto correction function can be disabled via register configuration. The pin mapping in MDI and MDI Crossover mode is given below.

rabio for modia popolicont interface i in mapping									
Pairs		MDI		MDI Crossover					
	1000Base-T	100Base-TX	10Base-T	1000Base-T	100Base-TX	10Base-T			
A	A	TX	TX	В	RX	RX			
В	В	RX	RX	A	TX	TX			
C	C	Unused	Unused	D	Unused	Unused			
D	D	Unused	Unused	С	Unused	Unused			

Table 13. Media Dependent Interface Pin Mapping

8.10. Polarity Correction

The RTL8367S automatically corrects polarity errors on the receiver pairs in 1000Base-T and 10Base-T modes. In 100Base-TX mode, the polarity is irrelevant.

In 1000Base-T mode, receive polarity errors are automatically corrected based on the sequence of idle symbols. Once the de-scrambler is locked, the polarity is also locked on all pairs. The polarity becomes unlocked only when the receiver loses lock.

In 10Base-T mode, polarity errors are corrected based on the detection of valid spaced link pulses. The detection begins during the MDI crossover detection phase and locks when the 10Base-T link is up. The polarity becomes unlocked when the link is down.

Figure 5. Conceptual Example of Polarity Correction

9. General Function Description

9.1. Reset

9.1.1. Hardware Reset

In a power-on reset, an internal power-on reset pulse is generated and the RTL8367S will start the reset initialization procedures. These are:

- Determine various default settings via the hardware strap pins at the end of the nRESET signal
- Autoload the configuration from EEPROM if EEPROM is detected
- Complete the embedded SRAM BIST process
- Initialize the packet buffer descriptor allocation
- Initialize the internal registers and prepare them to be accessed by the external CPU

9.1.2. Software Reset

The RTL8367S supports two software resets; a chip reset and a soft reset.

9.1.2.1 CHIP_RESET

When CHIP_RESET is set to 0b1 (write and self-clear), the chip will take the following steps:

- 1. Download configuration from strap pin and EEPROM
- 2. Start embedded SRAM BIST (Built-In Self Test)
- 3. Clear all the Lookup and VLAN tables
- 4. Reset all registers to default values
- 5. Restart the auto-negotiation process

9.1.2.2 SOFT_RESET

When SOFT_RESET is set to 0b1 (write and self-clear), the chip will take the following steps:

- 1. Clear the FIFO and re-start the packet buffer link list
- 2. Restart the auto-negotiation process

9.2. IEEE 802.3x Full Duplex Flow Control

The RTL8367S supports IEEE 802.3x flow control in 10/100/1000M modes. Flow control can be decided in two ways:

- When Auto-Negotiation is enabled, flow control depends on the result of NWay
- When Auto-Negotiation is disabled, flow control depends on register definition

9.3. Half Duplex Flow Control

In half duplex mode, the CSMA/CD media access method is the means by which two or more stations share a common transmission medium. To transmit, a station waits (defers) for a quiet period on the medium (that is, no other station is transmitting) and then sends the intended message in bit-serial form. If the message collides with that of another station, then each transmitting station intentionally transmits for an additional predefined period to ensure propagation of the collision throughout the system. The station remains silent for a random amount of time (backoff) before attempting to transmit again.

When a transmission attempt has terminated due to a collision, it is retried until it is successful. The scheduling of the retransmissions is determined by a controlled randomization process called "Truncated Binary Exponential Backoff". At the end of enforcing a collision (jamming), the switch delays before attempting to retransmit the frame. The delay is an integer multiple of slot time (512 bit times). The number of slot times to delay before the nth retransmission attempt is chosen as a uniformly distributed random integer 'r' in the range:

 $0 \le r \le 2k$

where:

k = min (n, backoffLimit). The backoffLimit for the RTL8367S is 9.

The half duplex back-off algorithm in the RTL8367S does not have the maximum retry count limitation of 16 (as defined in IEEE 802.3). This means packets in the switch will not be dropped if the back-off retry count is over 16.

9.3.1. Back-Pressure Mode

In Back-Pressure mode, the RTL8367S sends a 4-byte jam pattern (data=0xAA) to collide with incoming packets when congestion control is activated. The Jam pattern collides at the fourth byte counted from the preamble. The RTL8367S supports 48PASS1, which receives one packet after 48 consecutive jam collisions (data collisions are not included in the 48). Enable this function to prevent port partition after 63 consecutive collisions (data collisions + consecutive jam collisions).

9.4. Search and Learning

Search

When a packet is received, the RTL8367S uses the destination MAC address, Filtering Identifier (FID) and Enhanced Filtering Identifier (EFID) to search the 2K-entry look-up table. The 48-bit MAC address, 4-bit FID and 3-bit EFID use a hash algorithm, to calculate an 11-bit index value. The RTL8367S uses the index to compare the packet MAC address with the entries (MAC addresses) in the look-up table. This is the 'Address Search'. If the destination MAC address is not found, the switch will broadcast the packet according to VLAN configuration.

Learning

The RTL8367S uses the source MAC address, FID, and EFID of the incoming packet to hash into a 9-bit index. It then compares the source MAC address with the data (MAC addresses) in this index. If there is a match with one of the entries, the RTL8367S will update the entry with new information. If there is no match and the 2K entries are not all occupied by other MAC addresses, the RTL8367S will record the source MAC address and ingress port number into an empty entry. This process is called 'Learning'.

Address aging is used to keep the contents of the address table correct in a dynamic network topology. The look-up engine will update the time stamp information of an entry whenever the corresponding source MAC address appears. An entry will be invalid (aged out) if its time stamp information is not refreshed by the address learning process during the aging time period. The aging time of the RTL8367S is between 200 and 400 seconds (typical is 300 seconds).

9.5. SVL and IVL/SVL

The RTL8367S supports a 16-group Filtering Identifier (FID) for L2 search and learning. In default operation, all VLAN entries belong to the same FID. This is called Shared VLAN Learning (SVL). If VLAN entries are configured to different FIDs, then the same source MAC address with multiple FIDs can be learned into different look-up table entries. This is called Independent VLAN Learning and Shared VLAN Learning (IVL/SVL).

9.6. Illegal Frame Filtering

Illegal frames such as CRC error packets, runt packets (length <64 bytes), and oversize packets (length >maximum length) will be discarded by the RTL8367S. The maximum packet length may be set from 1518 bytes to 16K bytes.

9.7. IEEE 802.3 Reserved Group Addresses Filtering Control

The RTL8367S supports the ability to drop/forward IEEE 802.3 specified reserved group MAC addresses: 01-80-C2-00-00-00 to 01-80-C2-00-00-2F. The default setting enables forwarding of these reserved group MAC address control frames. Frames with group MAC address 01-80-C2-00-00-01 (802.3x Pause) and 01-80-C2-00-00-02 (802.3ad LACP) will always be filtered. Table 14 shows the Reserved Multicast Address (RMA) configuration mode from 01-80-C2-00-00 to 01-80-C2-00-00-2F.

Table 14. Reserved Multicast Address Configuration Table

Assignment	Value
Bridge Group Address	01-80-C2-00-00-00
IEEE Std 802.3, 1988 Edition, Full Duplex PAUSE Operation	01-80-C2-00-00-01
IEEE Std 802.3ad Slow Protocols-Multicast Address	01-80-C2-00-00-02
IEEE Std 802.1X PAE Address	01-80-C2-00-00-03
Provider Bridge Group Address	01-80-C2-00-00-08
Undefined 802.1 Address	01-80-C2-00-00-04 ~
	01-80-C2-00-00-07
	&
	01-80-C2-00-00-09 ~
	01-80-C2-00-00-0C
	&
	01-80-C2-00-00-0F
Provider Bridge MVRP Address	01-80-C2-00-00-0D
IEEE Std 802.1AB Link Layer Discovery Protocol Address	01-80-C2-00-00-0E
All LANs Bridge Management Group Address	01-80-C2-00-00-10
Load Server Generic Address	01-80-C2-00-00-11
Loadable Device Generic Address	01-80-C2-00-00-12
Undefined 802.1 Address	01-80-C2-00-00-13 ~
	01-80-C2-00-00-17
	&
	01-80-C2-00-00-19
	&
	01-80-C2-00-00-1B ~
C ALL CALLY COL	01-80-C2-00-00-1F
Generic Address for All Manager Stations	01-80-C2-00-00-18
Generic Address for All Agent Stations	01-80-C2-00-00-1a
GMRP Address	01-80-C2-00-00-20
GVRP Address	01-80-C2-00-00-21
Undefined GARP Address	01-80-C2-00-00-22
	01-80-C2-00-00-2F
CDP(Cisco Discovery Protocol)	01-00-0C-CC-CC
CSSTP(Cisco Shared Spanning Tree Protocol)	01-00-0C-CC-CC-CD
LLDP	(01:80:c2:00:00:0e or
	01:80:c2:00:00:03 or
	01:80:c2:00:00:00)
	&& ethertype = $0x88CC$

9.8. Broadcast/Multicast/Unknown DA Storm Control

The RTL8367S enables or disables per-port broadcast/multicast/unknown DA storm control by setting registers (default is disabled). After the receiving rate of broadcast/multicast/unknown DA packets exceeds a reference rate (number of Kbps per second or number of packets per second), all other broadcast/multicast/unknown DA packets will be dropped. The reference rate is set via register configuration.

9.9. Port Security Function

The RTL8367S supports three types of security function to prevent malicious attacks:

- Per-port enable/disable SA auto-learning for an ingress packet
- Per-port enable/disable look-up table aging update function for an ingress packet
- Per-port enable/disable drop all unknown DA packets

9.10. MIB Counters

The RTL8367S supports a set of counters to support management functions.

- MIB-II (RFC 1213)
- Ethernet-Like MIB (RFC 3635)
- Interface Group MIB (RFC 2863)
- RMON (RFC 2819)
- Bridge MIB (RFC 1493)
- Bridge MIB Extension (RFC 2674)

9.11. Port Mirroring

The RTL8367S supports one set of port mirroring functions for all ports. The TX, or RX, or both TX/RX packets from multiple mirrored port can be mirrored to one monitor port.

9.12. VLAN Function

The RTL8367S supports 4K VLAN groups. These can be configured as port-based VLANs, IEEE 802.1Q tag-based VLANs, and Protocol-based VLANs. Two ingress-filtering and egress-filtering options provide flexible VLAN configuration:

Ingress Filtering

- The acceptable frame type of the ingress process can be set to 'Admit All', 'Admit only Untagged' or 'Admit only Tagged'
- 'Admit' or 'Discard' frames associated with a VLAN for which that port is not in the member set

Egress Filtering

- 'Forward' or 'Discard' Leaky VLAN frames between different VLAN domains
- 'Forward' or 'Discard' Multicast VLAN frames between different VLAN domains

The VLAN tag can be inserted or removed at the output port. The RTL8367S will insert a Port VID (PVID) for untagged frames, or remove the tag from tagged frames. The RTL8367S also supports a special insert VLAN tag function to separate traffic from the WAN and LAN sides in Router and Gateway applications.

In router applications, the router may want to know which input port this packet came from. The RTL8367S supports Port VID (PVID) for each port and can insert a PVID in the VLAN tag on egress. Using this function, VID information carried in the VLAN tag will be changed to PVID. The RTL8367S also provides an option to admit VLAN tagged packets with a specific PVID only. If this function is enabled, it will drop non-tagged packets and packets with an incorrect PVID.

9.12.1. Port-Based VLAN

This default configuration of the VLAN function can be modified via an attached serial EEPROM or EEPROM SMI Slave interface. The 4K-entry VLAN Table designed into the RTL8367S provides full flexibility for users to configure the input ports to associate with different VLAN groups. Each input port can join with more than one VLAN group.

Port-based VLAN mapping is the simplest implicit mapping rule. Each ingress packet is assigned to a VLAN group based on the input port. It is not necessary to parse and inspect frames in real-time to determine their VLAN association. All the packets received on a given input port will be forwarded to this port's VLAN members.

9.12.2. IEEE 802.1Q Tag-Based VLAN

The RTL8367S supports 4K VLAN entries to perform 802.1Q tag-based VLAN mapping. In 802.1Q VLAN mapping, the RTL8367S uses a 12-bit explicit identifier in the VLAN tag to associate received packets with a VLAN. The RTL8367S compares the explicit identifier in the VLAN tag with the 4K VLAN Table to determine the VLAN association of this packet, and then forwards this packet to the member set of that VLAN. Two VIDs are reserved for special purposes. One of them is all 1's, which is reserved and currently unused. The other is all 0's, which indicates a priority tag. A priority-tagged frame should be treated as an untagged frame.

When '802.1Q tag aware VLAN' is enabled, the RTL8367S performs 802.1Q tag-based VLAN mapping for tagged frames, but still performs port-based VLAN mapping for untagged frames. If '802.1Q tag aware VLAN' is disabled, the RTL8367S performs only port-based VLAN mapping both on non-tagged and tagged frames. The processing flow when '802.1Q tag aware VLAN' is enabled is illustrated below.

Two VLAN ingress filtering functions are supported in registers by the RTL8367S. One is the 'VLAN tag admit control, which provides the ability to receive VLAN-tagged frames only. Untagged or priority tagged (VID=0) frames will be dropped. The other is 'VLAN member set ingress filtering', which will drop frames if the ingress port is not in the member set.

9.12.3. Protocol-Based VLAN

The RTL8367S supports a 4-group Protocol-based VLAN configuration. The packet format can be RFC 1042, LLC, or Ethernet, as shown in Figure 6. There are 4 configuration tables to assign the frame type and corresponding field value. Taking IP packet configuration as an example, the user can configure the frame type to be 'Ethernet', and value to be '0x0800'. Each table will index to one of the entries in the 4K-entry VLAN table. The packet stream will match the protocol type and the value will follow the VLAN member configuration of the indexed entry to forward the packets.

Figure 6. Protocol-Based VLAN Frame Format and Flow Chart

9.12.4. Port VID

In a router application, the router may want to know which input port this packet came from. The RTL8367S supports Port VID (PVID) for each port to insert a PVID in the VLAN tag for untagged or priority tagged packets on egress. When 802.1Q tag-aware VLAN is enabled, VLAN tag admit control is enabled, and non-PVID Discard is enabled at the same time. When these functions are enabled, the RTL8367S will drop non-tagged packets and packets with an incorrect PVID.

9.13. QoS Function

The RTL8367S supports 8 priority queues and input bandwidth control. Packet priority selection can depend on Port-based priority, 802.1p/Q Tag-based priority, IPv4/IPv6 DSCP-based priority, and ACL-based priority. When multiple priorities are enabled in the RTL8367S, the packet's priority will be assigned based on the priority selection table.

Each queue has one leaky bucket for Average Packet Rate. Per-queue in each output port can be set as Strict Priority (SP) or Weighted Fair Queue (WFQ) for packet scheduling algorithm.

9.13.1. Input Bandwidth Control

Input bandwidth control limits the input bandwidth. When input traffic is more than the RX Bandwidth parameter, this port will either send out a 'pause ON' frame, or drop the input packet depending on register setup. Per-port input bandwidth control rates can be set from 8Kbps to 1Gbps (in 8Kbps steps).

9.13.2. Priority Assignment

Priority assignment specifies the priority of a received packet according to various rules. The RTL8367S can recognize the QoS priority information of incoming packets to give a different egress service priority.

The RTL8367S identifies the priority of packets based on several types of QoS priority information:

- Port-based priority
- 802.1p/Q-based priority
- IPv4/IPv6 DSCP-based priority
- ACL-based priority
- VLAN-based priority
- MAC-based priority
- SVLAN-based priority

9.13.3. Priority Queue Scheduling

The RTL8367S supports MAX-MIN packet scheduling.

Packet scheduling offers two modes:

- Average Packet Rate (APR) leaky bucket, which specifies the average rate of one queue
- Weighted Fair Queue (WFQ), which decides which queue is selected in one slot time to guarantee the minimal packet rate of one queue

In addition, each queue of each port can select Strict Priority or WFQ packet scheduling according to packet scheduling mode. Figure 7 shows the RTL8367S packet-scheduling diagram.

Figure 7. RTL8367S MAX-MIN Scheduling Diagram

9.13.4. IEEE 802.1p/Q and DSCP Remarking

The RTL8367S supports the IEEE 802.1p/Q and IP DSCP (Differentiated Services Code Point) remarking function. When packets egress from one of the 8 queues, the packet's 802.1p/Q priority and IP DSCP can optionally be remarked to a configured value. 802.1p/Q priority & IP DSCP value can be remarked based on internal priority or original 802.1p/Q priority & IP DSCP value in packets.

9.13.5. ACL-Based Priority

The RTL8367S supports 96-entry ACL (Access Control List) rules. When a packet is received, its physical port, Layer2, Layer3, and Layer4 information are recorded and compared to ACL entries.

If a received packet matches multiple entries, the entry with the lowest address is valid. If the entry is valid, the action bit and priority bit will be applied.

- If the action bit is 'Drop', the packet will be dropped. If the action bit is 'CPU', the packet will be trapped to the CPU instead of forwarded to non-CPU ports (except where it will be dropped by rules other than the ACL rule)
- If the action bit is 'Permit', ACL rules will override other rules
- If the action bit is 'Mirror', the packet will be forwarded to the mirror port and the L2 lookup result destination port. The mirror port indicates the port configured in the port mirror mechanism
- The priority bit will take effect only if the action bit is 'CPU', 'Permit', and 'Mirror'. The Priority bit is used to determine the packet queue ID according to the priority assignment mechanism

9.14. IGMP & MLD Snooping Function

The RTL8367S supports hardware IGMPv1/v2/v3 and MLDv1/v2 snooping with a maximum of 256 groups (maximum 255 groups per port). These multicast groups are learned and deleted/aged out automatically. For data packets of a known multicast group, the RTL8367S forwards them according to the learned group membership.

The RTL8367S checks group membership every 125 seconds (default). If a specified port of the RTL8367S does not receive a report message after 3 (default) consecutive checks, the port is removed from the multicast group. The 125 second interval and the number of consecutive checks before ageing are user configurable default values.

IPv4 multicast data packets are forwarded per group IP. IPv6 multicast data packets are forwarded per destination MAC. That is, IPv6 multicast groups that share the same destination MAC are treated as the same group. This is called address ambiguity.

Some reserved range IP addresses will always be flooded to all ports. If IGMP or MLD report message requests to join these groups, this request will be ignored silently. These reserved IP addresses could be the following IP addresses and they are configurable.

IPv4: 224.0.0.0 ~ 224.0.0.255

IPv4: 224.0.1.0 ~ 224.0.1.255

IPv4: 239.255.255.0 ~ 239.255.255.255

IPv6: 33:33:00:00:00:00 ~ 33:33:00:00:00:FF (forwarded per destination MAC)

Due to address ambiguity, some IPv6 multicast addresses that are not reserved for network protocols will be flooded, as the corresponding destination MAC address is inside the reserved IP address range (Corresponding MAC address).

The RTL8367S learns the 'Dynamic Router Port' automatically by monitoring Query messages (both IGMP & MLD) and multicast routing protocol packets. Table 15 gives the multicast routing protocols that the RTL8367S recognizes. PIMv1 is confirmed by the IGMP header type and the other multicast routing protocols are recognized by the destination IP in the IP header (in both IPv4 and IPv6).

Table 15. IPv4/IPv6 Multicast Routing Protocols

		<u> </u>
IPv4	IPv6	Multicast Routing Protocol
N/A	N/A	Check IGMP Header Type=0x14 (PIMv1)
224.0.0.13	FF02::D	PIMv2
224.0.0.4	FF02::4	DVMRP
224.0.0.5	FF02::5	MOSPF
224.0.0.6	FF02::6	MOSPF

Users can specify 'Static Router Ports' via API. This forces the ports to act as true router ports. All reports and Leave/Done messages will be forwarded to the specified Static Router ports.

The RTL8367S supports a 'Fast Leave' feature. When enabled, group membership will be removed immediately the RTL8367S receives an IGMPv2 Leave message or MLDv1 Done message. Normally this feature is only enabled when there is only one host.

The IGMP/MLD snooping feature is disabled by default. IGMP & MLD messages will be flooded to all ports without any further processing. This feature can be enabled and configured via API. Contact your Realtek support team for configuration details.

9.15. IEEE 802.1x Function

The RTL8367S supports IEEE 802.1x Port-based/MAC-based Access Control.

- Port-Based Access Control for each port
- Authorized Port-Based Access Control for each port
- Port-Based Access Control Direction for each port
- MAC-Based Access Control for each port
- MAC-Based Access Control Direction
- Optional Unauthorized Behavior
- Guest VLAN

9.15.1. Port-Based Access Control

Each port of the RTL8367S can be set to 802.1x port-based authenticated checking function usage and authorized status. Ports with 802.1X unauthorized status will drop received/transmitted frames.

9.15.2. Authorized Port-Based Access Control

If a dedicated port is set to 802.1x port-based access control, and passes the 802.1x authorization, then its port authorization status can be set to authorized.

9.15.3. Port-Based Access Control Direction

Ports with 802.1X unauthorized status will drop received/transmitted frames only when port authorization direction is 'BOTH'. If the authorization direction of an 802.1X unauthorized port is IN, incoming frames to that port will be dropped, but outgoing frames will be transmitted.

9.15.4. MAC-Based Access Control

MAC-Based Access Control provides authentication for multiple logical ports. Each logical port represents a source MAC address. There are multiple logical ports for a physical port. When a logical port or a MAC address is authenticated, the relevant source MAC address has the authorization to access the network. A frame with a source MAC address that is not authenticated by the 802.1x function will be dropped or trapped to the CPU.

9.15.5. MAC-Based Access Control Direction

Unidirectional and Bi-directional control are two methods used to process frames in 802.1x. As the system cannot predict which port the DA is on, a system-wide MAC-based access control direction setup is provided for determining whether receiving or bi-direction should be authorized.

If MAC-based access control direction is BOTH, then received frames with unauthenticated SA or unauthenticated DA will be dropped. When MAC-based access control direction is IN, only received frames with unauthenticated SA will be dropped.

9.15.6. Optional Unauthorized Behavior

Both in Port-Based Network Access Control and MAC-Based Access Control, a whole system control setup is provided to determine unauthorized frame dropping, trapping to CPU, or tagging as belonging to a Guest VLAN (see the following 'Guest VLAN' section).

9.15.7. Guest VLAN

When the RTL8367S enables the Port-based or MAC-based 802.1x function, and the connected PC does not support the 802.1x function or does not pass the authentication procedure, the RTL8367S will drop all packets from this port.

The RTL8367S also supports one Guest VLAN to allow unauthorized ports or packets to be forwarded to a limited VLAN domain. The user can configure one VLAN ID and member set for these unauthorized packets.

9.16. IEEE 802.1D Function

When using IEEE 802.1D, the RTL8367S supports 16 sets and four status' for each port for CPU implementation 802.1D (STP) and 802.1s (MSTP) function:

- Disabled: The port will not transmit/receive packets, and will not perform learning
- Blocking: The port will only receive BPDU spanning tree protocol packets, but will not transmit any packets, and will not perform learning
- Learning: The port will receive any packet, including BPDU spanning tree protocol packets, and will perform learning, but will only transmit BPDU spanning tree protocol packets
- Forwarding: The port will transmit/receive all packets, and will perform learning

The RTL8367S also supports a per-port transmission/reception enable/disable function. Users can control the port state via register.

9.17. Embedded 8051

An 8051 MCU is embedded in the RTL8367S to support management functions. The 8051 MCU can access all of the registers in the RTL8367S through the internal bus. With the Network Interface Circuit (NIC) acting as the data path, the 8051 MCU connects to the switch core and can transmit frames to or receive frames from the Ethernet network. The features of the 8051 MCU are listed below:

- 256 Bytes fast internal RAM
- On-chip 48K data memory
- On-chip 16K code memory
- Supports code-banking
- 12KBytes NIC buffer
- EEPROM read/write ability

9.18. Realtek Cable Test (RTCT)

The RTL8367S physical layer transceivers use DSP technology to implement the Realtek Cable Test (RTCT) feature. The RTCT function can be used to detect short, open, or impedance mismatch in each differential pair. The RTL8367S also provides LED support to indicate test status and results.

9.19. LED Indicators

The RTL8367S supports parallel LEDs for each port. Each port has two LED indicator pins, LANnLED0 and LANnLED1. Each pin may have different indicator information (defined in Table 16). Refer to section 7.4 LED Pins, page 18 for pin details. Upon reset, the RTL8367S supports chip diagnostics and LED operation test by blinking all LEDs once.

LED Statuses	Description
LED_Off	LED Pin Output Disable.
Dup/Col	Duplex/Collision Indicator. Blinking when collision occurs. Low for full duplex, and high for half duplex mode.
Link/Act	Link, Activity Indicator. Low for link established. Link/Act Blinking when the corresponding port is transmitting or receiving.
Spd1000	1000Mbps Speed Indicator. Low for 1000Mbps.
Spd100	100Mbps Speed Indicator. Low for 100Mbps.
Spd10	10Mbps Speed Indicator. Low for 10Mbps.
Spd1000/Act	1000Mbps Speed/Activity Indicator. Low for 1000Mbps. Blinking when the corresponding port is transmitting or receiving.
Spd100/Act	100Mbps Speed/Activity Indicator. Low for 100Mbps. Blinking when the corresponding port is transmitting or receiving.
Spd10/Act	10Mbps Speed/Activity Indicator. Low for 10Mbps. Blinking when the corresponding port is transmitting or receiving.
Spd100 (10)/Act	10/100Mbps Speed/Activity Indicator. Low for 10/100Mbps. Blinking when the corresponding port is transmitting or receiving.
Act	Activity Indicator. Act blinking when the corresponding port is transmitting or receiving.

Table 16. LED Definitions

The LED pin also supports pin strapping configuration functions. The LANnLED0 and LANnLED1 pins are dual-function pins: input operation for configuration upon reset, and output operation for LED after

reset. When the pin input is pulled high upon reset, the pin output is active low after reset. When the pin input is pulled down upon reset, the pin output is active high after reset. For details refer to Figure 8, page 40, and Figure 9, page 40. Typical values for pull-up/pull-down resistors are $4.7K\Omega$.

The LANnLED1 can be combined with LANnLED0 as a Bi-color LED.

LED LANnLED1 should operate with the same polarity as other Bi-color LED pins. For example:

- LAN0LED1 should be pulled up upon reset if LAN0LED1 is combined with LAN0LED0 as a Bicolor LED, and LAN0LED0 input is pulled high upon reset. In this configuration, the output of these pins is active low after reset
- LAN0LED1 should be pulled down upon reset if LAN0LED1 is combined with LAN0LED0 as a Bicolor LED, and LAN0LED0 input is pulled down upon reset. In this configuration, the output of these pins is active high after reset

Upon reset, the RTL8367S supports chip diagnostics and LED functions by blinking all LEDs once. This function can be disabled by asserting EN_PWRLIGHT to 0b0 (pull down).

Figure 8. Pull-Up and Pull-Down of LED Pins for Single-Color LED

Pull-Up Pull-Down 4.7K **DVDDIO** 4.7K ohm SPD 100 \$PD 1000 ohm 470ohm 470ohm§ **RTL8367S RTL8367S** Green Green Yellow Yellow SPD100 SPD1000 4.7K ohm 4.7K ohm

Figure 9. Pull-Up and Pull-Down of LED Pins for Bi-Color LED

LED Pins Output Active Low

LED Pins Output Active High

9.20. Green Ethernet

9.20.1. Link-On and Cable Length Power Saving

The RTL8367S provides link-on and dynamic detection of cable length and dynamic adjustment of power required for the detected cable length. This feature provides high performance with minimum power consumption.

9.20.2. Link-Down Power Saving

The RTL8367S implements link-down power saving on a per-port basis, greatly cutting power consumption when the network cable is disconnected. After it detects an incoming signal, it wakes up from link-down power saving and operates in normal mode.

9.21. IEEE 802.3az Energy Efficient Ethernet (EEE) Function

The RTL8367S supports IEEE 802.3az Energy Efficient Ethernet ability for 1000Base-T and 100Base-TX in full duplex operation.

The Energy Efficient Ethernet (EEE) optional operational mode combines the IEEE 802.3 Media Access Control (MAC) sub-layer with 100Base-TX and 1000Base-T Physical Layers defined to support operation in Low Power Idle mode. When Low Power Idle mode is enabled, systems on both sides of the link can disable portions of the functionality and save power during periods of low link utilization.

- 1000Base-T PHY: Supports Energy Efficient Ethernet with the optional function of Low Power Idle
- 100Base-TX PHY: Supports Energy Efficient Ethernet with the optional function of Low Power Idle

The RTL8367S MAC uses Low Power Idle signaling to indicate to the PHY, and to the link partner, that a break in the data stream is expected, and components may use this information to enter power saving modes that require additional time to resume normal operation. Similarly, it informs the LPI Client that the link partner has sent such an indication.

9.22. Interrupt Pin for External CPU

The RTL8367S provides one Interrupt output pin to interrupt an external CPU. The polarity of the Interrupt output pin can be configured via register access. In configuration registers, each port has link-up and link-down interrupt flags with mask.

When port link-up or link-down interrupt mask is enabled, the RTL8367S will raise the interrupt signal to alarm the external CPU. The CPU can read the interrupt flag to determine which port has changed to which status.

10. Interface Descriptions

10.1. EEPROM SMI Host to EEPROM

The EEPROM interface of the RTL8367S uses the serial bus EEPROM Serial Management Interface (SMI) to read the EEPROM space up to 256K-bits. When the RTL8367S is powered up, it drives SCK and SDA to read the registers from the EEPROM.

Figure 10. SMI Start and Stop Command

Figure 11. EEPROM SMI Host to EEPROM

Figure 12. EEPROM SMI Host Mode Frame

10.2. EEPROM SMI Slave for External CPU

When EEPROM auto-load is complete, the RTL8367S registers can be accessed via SCK and SDA by an external CPU. The device address of the RTL8367S is 0x4. For the start and end of a write/read command, SCK needs one extra clock before/after the start/stop signals.

Figure 13. EEPROM SMI Write Command for Slave Mode

Figure 14. EEPROM SMI Read Command for Slave Mode

10.3. General Purpose Interface

The RTL8367S supports one digital extension interface. The interface function mux is summarized in d Table 17. The Extension GMAC2 of the RTL8367S supports RGMII, MII MAC mode, or MII PHY mode via register configuration.

Table 17. RTL8367S Extension Port 2 Pin Definitions

Pin No.	Extension Interface	Type	RGMII	MII MAC Mode	MII PHY Mode
45	E2_DO3	О	RG2_TXD3	M2M_TXD3	M2P_RXD3
46	E2_DO2	О	RG2_TXD2	M2M_TXD2	M2P_RXD2
47	E2_DO1	О	RG2_TXD1	M2M_TXD1	M2P_RXD1
48	E2_DO0	О	RG2_TXD0	M2M_TXD0	M2P_RXD0
49	E2_DOEN	О	RG2_TXCTL	M2M_TXEN	M2P_RXDV
50	E2_DOCLK	О	RG2_TXCLK	M2M_TXCLK	M2P_RXCLK
51	E2_DICLK	I	RG2_RXCLK	M2M_RXCLK	M2P_TXCLK
52	E2_DIDV	I	RG2_RXCTL	M2M_RXDV	M2P_TXEN
53	E2_DI0	I	RG2_RXD0	M2M_RXD0	M2P_TXD0
54	E2_DI1	I	RG2_RXD1	M2M_RXD1	M2P_TXD1
55	E2_DI2	I	RG2_RXD2	M2M_RXD2	M2P_TXD2
56	E2_DI3	I	RG2_RXD3	M2M_RXD3	M2P_TXD3
CONFIDENT					

10.3.1. Extension Ports RGMII Mode Interface (1Gbps)

The Extension GMAC2 of the RTL8367S supports RGMII interface to an external CPU. The pin numbers and names are shown in Table 18. Figure 15 shows the signal diagram for Extension GMAC2 in RGMII interface.

RTL8367S Pin No.	Type	Extension Port 2 RGMII
45, 46, 47, 48	О	RG2_TXD[3:0]
49	0	RG2_TXCTL
50	О	RG2_TXCLK
51	I	RG2_RXCLK
52	I	RG2_RXCTL
53, 54, 55, 56	I	RG2_RXD[0:3]

Table 18. Extension GMAC2 RGMII Pins

Figure 15. RGMII Mode Interface Signal Diagram

10.3.2. Extension Ports MII MAC/PHY Mode Interface (10/100Mbps)

The Extension GMAC2 of the RTL8367S supports MII MAC/PHY mode interfaces to an external CPU. The pin numbers and names are shown in Table 19. Figure 16 shows the signal diagram for Extension GMAC2 in MII PHY mode interface, and Figure 17 shows the signal diagram for Extension GMAC2 in MII MAC mode interface.

RTL8367S Pin No.	Type	Extension GMAC 2 MII MAC Mode	Type	Extension GMAC 2 MII PHY Mode
45, 46, 47, 48	O	M2M_TXD[3:0]	O	M2P_RXD[3:0]
49	O	M2M_TXEN	0	M2P_RXDV
50	I	M2M_TXCLK	0	M2P_RXCLK

Table 19. Extension GMAC2 MII Pins

RTL8367S Pin No.	Type	Extension GMAC 2 MII MAC Mode	Type	Extension GMAC 2 MII PHY Mode
51	I	M2M_RXCLK	О	M2P_TXCLK
52	I	M2M_RXDV	I	M2P_TXEN
53, 54, 55, 56	I	M2M_RXD[0:3]	I	M2P_TXD[0:3]

Figure 16. Signal Diagram of MII PHY Mode Interface (100Mbps)

Figure 17. Signal Diagram of MII MAC Mode Interface (100Mbps)

11. Register Descriptions

In this section the following abbreviations are used:

RO: Read Only LH: Latch High until clear

RW: Read/Write SC: Self Clearing

LL: Latch Low until clear

11.1. PCS Register (PHY 0~4)

Table 20. PCS Register (PHY 0~4)

Register	Register Description	Default
0	Control Register	0x1140
1	Status Register	0x7949
2	PHY Identifier 1	0x001C
3	PHY Identifier 2	0xC980
4	Auto-Negotiation Advertisement Register	0x0DE1
5	Auto-Negotiation Link Partner Ability Register	0x0000
6	Auto-Negotiation Expansion Register	0x0004
7	Auto-Negotiation Page Transmit Register	0x2001
8	Auto-Negotiation Link Partner Next Page Register	0x0000
9	1000Base-T Control Register	0x0E00
10	1000Base-T Status Register	0x0000
11~14	Reserved	0x0000
15	Extended Status	0x2000
16~31	ASIC Control Register	-

11.2. Register 0: Control

Table 21. Register 0: Control

Reg.bit	Name	Mode	Description	Default
0.15	Reset	RW/SC	1: PHY reset	0
			0: Normal operation	
			This bit is self-clearing.	
0.14	Loopback (Digital Loopback)	RW	1: Enable loopback. This will loopback TXD to RXD and ignore all activity on the cable media 0: Normal operation This function is usable only when this PHY is operated in 10Base-T full duplex, 100Base-TX full duplex, or 1000Base-T full	0
0.13	Speed Selection[0]	RW	duplex. [0.6, 0.13] Speed Selection[1:0] 11: Reserved 10: 1000Mbps 01: 100Mbps 00: 10Mbps This bit can be set through SMI (Read/Write).	0
0.12	Auto Negotiation Enable	RW	1: Enable auto-negotiation process 0: Disable auto-negotiation process This bit can be set through SMI (Read/Write).	1
0.11	Power Down	RW	1: Power down. All functions will be disabled except SMI function 0: Normal operation	0
0.10	Isolate	RW	1: Electrically isolates the PHY from GMII. The PHY is still able to respond to SMI 0: Normal operation	0
0.9	Restart Auto Negotiation	RW/SC	Restart Auto-Negotiation process Normal operation	0
0.8	Duplex Mode	RW	1: Full duplex operation 0: Half duplex operation This bit can be set through SMI (Read/Write).	1
0.7	Collision Test	RO	1: Collision test enabled 0: Normal operation When set, this bit will cause the COL signal to be asserted in response to the assertion of TXEN within 512-bit times. The COL signal will be de-asserted within 4-bit times in response to the deassertion of TXEN.	0
0.6	Speed Selection[1]	RW	See bit 13	1
0.[5:0]	Reserved	RO	Reserved	000000

11.3. Register 1: Status

Table 22. Register 1: Status

Reg.bit	Name	Mode	Description	Default
1.15	100Base-T4	RO	0: No 100Base-T4 capability	0
			The RTL8367S does not support 100Base-T4 mode and this bit	
			should always be 0.	
1.14	100Base-TX-FD	RO	1: 100Base-TX full duplex capable	1
			0: Not 100Base-TX full duplex capable	
1.13	100Base-TX-HD	RO	1: 100Base-TX half duplex capable	1
			0: Not 100Base-TX half duplex capable	
1.12	10Base-T-FD	RO	1: 10Base-T full duplex capable	1
			0: Not 10Base-T full duplex capable	
1.11	10Base-T-HD	RO	1: 10Base-T half duplex capable	1
			0: Not 10Base-T half duplex capable	
1.10	100Base-T2-FD	RO	0: Not 100Base-T2 full duplex capable	0
			The RTL8367S does not support 100Base-T2 mode and this bit	
			should always be 0.	
1.9	100Base-T2-HD	RO	0: Not 100Base-T2 half duplex capable	0
			The RTL8367S does not support 100Base-T2 mode and this bit	
			should always be 0.	
1.8	Extended Status	RO	1: Extended status information in Register 15	1
			The RTL8367S always supports Extended Status Register.	
1.7	Reserved	RO	Reserved	0
1.6	MF Preamble	RO	The RTL8367S will accept management frames with preamble	1
	Suppression		suppressed.	
1.5	Auto-negotiate	RO	1: Auto-negotiation process completed	0
	Complete		0: Auto-negotiation process not completed	
1.4	Remote Fault	RO/LH	1: Remote fault condition detected	0
			0: No remote fault detected	
			This bit will remain set until it is cleared by reading register 1 via	
			the management interface.	
1.3	Auto-Negotiation	RO	1: Auto-negotiation capable (permanently =1)	1
1.2	Ability	роди	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
1.2	Link Status	RO/LL	1: Link is established. If the link fails, this bit will be 0 until after	0
			reading this bit again 0: Link has failed since previous read	
			If the link fails, this bit will be set to 0 until bit is read.	
1.1	Jabber Detect	RO/LH	1: Jabber detected	0
1.1	Jabbel Detect	KU/LII	0: No Jabber detected	U
			Jabber is supported only in 10Base-T mode.	
1.0	Extended	RO	1: Extended register capable (permanently =1)	1
1.0	Capability	INO.	1. Extended register capable (permanently -1)	1
	Capacinity	l .		l .

11.4. Register 2: PHY Identifier 1

The PHY Identifier Registers #1 and #2 together form a unique identifier for the PHY section of this device. The Identifier consists of a concatenation of the Organizationally Unique Identifier (OUI), the vendor's model number, and the model revision number. A PHY may return a value of zero in each of the 32 bits of the PHY Identifier if desired. The PHY Identifier is intended to support network management.

Table 23. Register 2: PHY Identifier 1

<u></u>					
Reg.bit	Name	Mode	Description	Default	
2.[15:0]	OUI	RO	Composed of the 3 rd to 18 th bits of the Organizationally Unique	0x001C	
			Identifier (OUI), respectively.		

11.5. Register 3: PHY Identifier 2

Table 24. Register 3: PHY Identifier 2

Reg.bit	Name	Mode	Description	Default
3.[15:10]	OUI	RO	Assigned to the 19 th through 24 th bits of the OUI	110010
3.[9:4]	Model Number	RO	Manufacturer's model number	011000
3.[3:0]	Revision Number	RO	Manufacturer's revision number	0000

11.6. Register 4: Auto-Negotiation Advertisement

This register contains the advertisement abilities of this device as they will be transmitted to its Link Partner during Auto-negotiation.

Note: Each time the link ability of the RTL8367S is reconfigured, the auto-negotiation process should be executed to allow the configuration to take effect.

Table 25. Register 4: Auto-Negotiation Advertisement

Reg.bit	Name	Mode	Description	Default
4.15	Next Page	RO	1: Additional next pages exchange desired	0
			0: No additional next pages exchange desired	
4.14	Acknowledge	RO	Permanently=0	0
4.13	Remote Fault	RW	1: Advertises that the RTL8367S has detected a remote fault	0
			0: No remote fault detected	
4.12	Reserved	RO	Reserved	0
4.11	Reserved	RW	Reserved	0
4.10	Pause	RW	1: Advertises that the RTL8367S has flow control capability	1
			0: No flow control capability	
4.9	100Base-T4	RO	1: 100Base-T4 capable	0
			0: Not 100Base-T4 capable (Permanently =0)	
4.8	100Base-TX-FD	RW	1: 100Base-TX full duplex capable	1
			0: Not 100Base-TX full duplex capable	
4.7	100Base-TX	RW	1: 100Base-TX half duplex capable	1
			0: Not 100Base-TX half duplex capable	

Reg.bit	Name	Mode	Description	Default
4.6	10Base-T-FD	RW	1: 10Base-T full duplex capable	1
			0: Not 10Base-T full duplex capable	
4.5	10Base-T	RW	: 10Base-T half duplex capable	
			0: Not 10Base-T half duplex capable	
4.[4:0]	Selector Field	RO	[00001]=IEEE 802.3	00001

Note 1: The setting of Register 4 has no effect unless auto-negotiation is restarted or the link goes down.

11.7. Register 5: Auto-Negotiation Link Partner Ability

This register contains the advertised abilities of the Link Partner as received during Auto-negotiation. The content changes after a successful Auto-negotiation.

Table 26. Register 5: Auto-Negotiation Link Partner Ability

Reg.bit	Name	Mode	Description	Default
5.15	Next Page	RO	Link partner desires Next Page transfer Link partner does not desire Next Page transfer	0
5.14	Acknowledge	RO	1: Link Partner acknowledges reception of Fast Link Pulse (FLP)	0
3.14	Acknowledge	KO	words	U
			0: Not acknowledged by Link Partner	
5.13	Remote Fault	RO	1: Remote Fault indicated by Link Partner	0
3.13	Remote Fault	RO	·	U
5.10	D ₂ 1	DO	0: No remote fault indicated by Link Partner	0
5.12	Reserved	RO	Reserved	0
5.11	Asymmetric Pause	RO	1: Asymmetric Flow control supported by Link Partner	0
			0: No Asymmetric flow control supported by Link Partner	
			When auto-negotiation is enabled, this bit reflects Link Partner	
			ability	
5.10	Pause	RO	1: Flow control supported by Link Partner.	0
			0: No flow control supported by Link Partner	
			When auto-negotiation is enabled, this bit reflects Link Partner	
			ability	
5.9	100Base-T4	RO	1: 100Base-T4 supported by Link Partner	0
			0: 100Base-T4 not supported by Link Partner	
5.8	100Base-TX-FD	RO	1: 100Base-TX full duplex supported by Link Partner	0
			0: 100Base-TX full duplex not supported by Link Partner	
5.7	100Base-TX	RO	1: 100Base-TX half duplex supported by Link Partner	0
			0: 100Base-TX half duplex not supported by Link Partner	
5.6	10Base-T-FD	RO	1: 10Base-T full duplex supported by Link Partner	0
			0: 10Base-T full duplex not supported by Link Partner	
5.5	10Base-T	RO	1: 10Base-T half duplex supported by Link Partner	0
			0: 10Base-T half duplex not supported by Link Partner	_
5.[4:0]	Selector Field	RO	[00001]=IEEE 802.3	00000
5.[5]	20100101 1 1010	110	[[00001] 1222 00210	00000

Note 2: If 1000Base-T is advertised, then the required next pages are automatically transmitted.

11.8. Register 6: Auto-Negotiation Expansion

Table 27. Register 6: Auto-Negotiation Expansion

Reg.bit	Name	Mode	Description	Default
6.[15:5]	Reserved	RO	Ignore on read	0
6.4	Parallel Detection	RO/	1: A fault has been detected via the Parallel Detection function	0
	Fault	LH	0: No fault has been detected via the Parallel Detection function	
6.3	Link Partner Next	RO	1: Link Partner is Next Page able	0
	Page Ability		0: Link Partner is not Next Page able	
6.2	Local Next Page	RO	Not supported. Permanently =0	1
	Ability			
6.1	Page Received	RO/	1: A New Page has been received	0
		LH	0: A New Page has not been received	
6.0	Link Partner Auto-	RO	If Auto-Negotiation is enabled, this bit means:	0
	Negotiation		1: Link Partner is Auto-Negotiation able	
	Ability		0: Link Partner is not Auto-Negotiation able	

11.9. Register 7: Auto-Negotiation Page Transmit Register

Table 28. Register 7: Auto-Negotiation Page Transmit Register

Reg.bit	Name	Mode	Description	Default
7.15	Next Page	RW	1: Link partner desires Next Page transfer	0
			0: Link partner does not desire Next Page transfer	
7.14	Reserved	RO	1: A fault has been detected via the Parallel Detection function	0
			0: No fault has been detected via the Parallel Detection function	
7.13	Message Page	RW	1: Message page	1
			0: No Message page ability	
7.12	Acknowledge 2	RW	1: Local device has the ability to comply with the message	0
			received	
			0: Local device has no ability to comply with the message received	
7.11	Toggle	RO	Toggle bit	0
7.[10:0]	Message/	RW	Content of message/unformatted page	1
	Unformatted Field			

11.10. Register 8: Auto-Negotiation Link Partner Next Page Register

Table 29. Register 8: Auto-Negotiation Link Partner Next Page Register

Reg.bit	Name	Mode	Description	Default
8.15	Next Page	RO	Received Link Code Word Bit 15	0
8.14	Acknowledge	RO	Received Link Code Word Bit 14	0
8.13	Message Page	RO	Received Link Code Word Bit 13	0
8.12	Acknowledge 2	RO	Received Link Code Word Bit 12	0
8.11	Toggle	RO	Received Link Code Word Bit 11	0
8.[10:0]	Message/ Unformatted Field	RO	Received Link Code Word Bit 10:0	0

11.11. Register 9: 1000Base-T Control Register

Table 30. Register 9: 1000Base-T Control Register

Reg.bit	Name	Mode	Description	Default
9.[15:13]	Test Mode	RW	Test Mode Select.	000
			000: Normal mode	
			001: Test mode 1 – Transmit waveform test	
			010: Test mode 2 – Transmit jitter test in MASTER mode	
			011: Test mode 3 – Transmit jitter test in SLAVE mode	
			100: Test mode 4 – Transmitter distortion test	
			101, 110, 111: Reserved	
9.12	MASTER/SLAVE	RW	1: Enable MASTER/SLAVE manual configuration	0
	Manual Configuration Enable		0: Disable MASTER/SLAVE manual configuration	
9.11	MASTER/SLAVE	RW	1: Configure PHY as MASTER during MASTER/SLAVE	1
	Configuration Value		negotiation, only when bit 9.12 is set to logical one	
			0: Configure PHY as SLAVE during MASTER/SLAVE	
			negotiation, only when bit 9.12 is set to logical one	
9.10	Port Type	RW	1: Multi-port device	1
			0: Single-port device	
9.9	1000Base-T Full Duplex	RW	1: Advertise PHY is 1000Base-T full duplex capable	1
			0: Advertise PHY is not 1000Base-T full duplex capable	
9.8	1000Base-T Half Duplex	RW	1: Advertise PHY is 1000Base-T half duplex capable	0
			0: Advertise PHY is not 1000Base-T half duplex capable	
9.[7:0]	Reserved	RW	Reserved	0

11.12. Register 10: 1000Base-T Status Register

Table 31. Register 10: 1000Base-T Status Register

Reg.bit	Name	Mode	Description	Default
10.15	MASTER/SLAVE	RO/LH/	1: MASTER/SLAVE configuration fault detected	0
	Configuration Fault	SC	0: No MASTER/SLAVE configuration fault detected	
10.14	MASTER/SLAVE	RO	1: Local PHY configuration resolved to MASTER	0
	Configuration Resolution		0: Local PHY configuration resolved to SLAVE	
10.13	Local Receiver Status	RO	1: Local receiver OK	0
			0: Local receiver not OK	
10.12	Remote Receiver Status	RO	1: Remote receiver OK	0
			0: Remote receiver not OK	
10.11	Link Partner 1000Base-T	RO	1: Link partner is capable of 1000Base-T full duplex	0
	Full Duplex		0: Link partner is not capable of 1000Base-T full duplex	
10.10	1000Base-T Half Duplex	RO	1: Link partner is capable of 1000Base-T half duplex	0
			0: Link partner is not capable of 1000Base-T half duplex	
10.[9:8]	Reserved	RO	Reserved	0
10.[7:0]	Idle Error Count	RO/SC	Idle Error Counter.	0
			The counter stops automatically when it reaches 0xFF	

11.13. Register 15: Extended Status

Table 32. Register 15: Extended Status

Reg.bit	Name	Mode	Description	Default
15.15	1000Base-X Full Duplex	RO	1: 1000Base-X full duplex capable	0
			0: Not 1000Base-X full duplex capable	
15.14	1000Base-X Half Duplex	RO	1: 1000Base-X half duplex capable	0
			0: Not 1000Base-X half duplex capable	
15.13	1000Base-T Full Duplex	RO	1: 1000Base-T full duplex capable	1
			0: Not 1000Base-T full duplex capable	
15.12	1000Base-T Half Duplex	RO	1: 1000Base-T half duplex capable	0
			0: Not 1000Base-T half duplex capable	
15.[11:0]	Reserved	RO	Reserved	0

12. Electrical Characteristics

12.1. Absolute Maximum Ratings

WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to the device, or device reliability will be affected. All voltages are specified reference to GND unless otherwise specified.

Table 33. Absolute Maximum Ratings

Parameter	Min	Max	Units
Junction Temperature (Tj)	-	+125	°C
Storage Temperature	-45	+125	°C
DVDDIO, DVDDIO_2, AVDDH, SVDDH. HV_SWR, Supply Referenced to GND, SGND, AGND, and GND_SWR	GND-0.3	+3.63	V
DVDDL, AVDDL, SVDDL, PLLVDDL, Supply Referenced to GND, AGND, SGND, and PLLGND.	GND-0.3	+1.21	V
Digital Input Voltage	GND-0.3	VDDIO+0.3	V

12.2. Recommended Operating Range

Table 34. Recommended Operating Range

Table 64. Recommended Operating Range							
Parameter		Min	Typical	Max	Units		
Ambient Operating Temperatur	re (Ta)	0	-	70	°C		
AVDDH, SVDDH and HV_SW	R Supply Voltage Range	3.135	3.3	3.465	V		
DVDDIO Supply Voltage	3.3V	3.135	3.3	3.465	V		
Range	2.5V	2.375	2.5	2.625	V		
DVDDIO_2 Supply Voltage	3.3V	3.135	3.3	3.465	V		
Range	2.5V	2.375	2.5	2.625	V		
DVDDL, AVDDL, SVDDL, PI	1.045	1.1	1.155	V			

12.3. Thermal Characteristics

12.3.1. Assembly Description

Table 35. Assembly Description

	Tuble 60. Addenibly Description				
	Туре	LQFP-128			
Package	Dimension	14mm×14mm			
	Thickness	1.4mm			
	PCB Dimension	100mm×89mm			
	PCB Thickness	1.6mm			
		2-Layer:			
		- Top layer (1oz): 40% coverage of Cu			
PCB		- Bottom layer (1oz): 95% coverage of Cu			
I CD	Number of Cu Layer-PCB	4-Layer:			
	Number of Cu Layer-FCB	- 1st layer (1oz): 40% coverage of Cu			
		- 2nd layer (1oz): 95% coverage of Cu			
		- 3rd layer (1oz): 95% coverage of Cu			
		- 4th layer (1oz): 95% coverage of Cu			

12.3.2. Material Properties

Table 36. Material Properties

	Item	Thermal Conductivity K (W/m-K)	
	Die	Silicon	149 at 25°C 107 at 125°C
Package	Lead Frame	C7025	172
	Epoxy	CRM-1076W	0.9
	Molding Compound	EME-G631H	0.9
	PCB	Copper	389
	rCb	FR-4	0.3

12.3.3. Simulation Conditions

Table 37. Simulation Conditions

Power Dissipation	1.765W
Test Board (PCB)	2L (2S) / 4L (2S2P)
Control Condition	Air Flow = 0 m/s

12.3.4. Thermal Performance of LQFP-128 on PCB Under Still Air Convection

Table 38. Thermal Performance of LQFP-128 on PCB Under Still Air Convection

	$ heta_{ m JA}$	$\theta_{ m JB}$	$ heta_{ m JC}$	$\Psi_{ m JB}$
2L PCB	50.08	24.52	10.39	21.69
4L PCB	45.01	25.16	10.35	22.33

Note:

 θ_{JA} : Junction to ambient thermal resistance θ_{JB} : Junction to board thermal resistance

 θ_{JC} : Junction to case thermal resistance

 Ψ_{JB} : Junction to bottom surface center of PCB thermal characterization

12.4. DC Characteristics

Table 39. DC Characteristics

Parameter	SYM	Min	Typical	Max	Units
Power Supply Current for RGMII1 DVDDIO_2 (2.5V) (For General Purpose Interface)	I _{DVDDIO_2}	1	31	-	mA
System Idle (All UTP Port Link Do	wn, without Extension P	orts and	LEDs)		
Power Supply Current for VDDH	$I_{\text{DVDDIO}}, I_{\text{AVDDH}}$	1	17	-	mA
Power Supply Current for VDDL	$I_{DVDDL}, I_{AVDDL}, I_{PLLVDDL}$	1	110	-	mA
1000M Active (All UTP Ports Link/A	Ports a	nd LEDs)			
Power Supply Current for VDDH	$I_{\text{DVDDIO}}, I_{\text{AVDDH}}$	-	221	-	mA
Power Supply Current for VDDL	$I_{DVDDL}, I_{AVDDL}, I_{PLLVDDL}$	1	710	-	mA
VDE	0IO=3.3V				
TTL Input High Voltage	V_{ih}	2.0	-	-	V
TTL Input Low Voltage	V_{il}	-	-	0.7	V
Output High Voltage	V _{oh}	2.7	-	-	V
Output Low Voltage	$V_{\rm ol}$	-	-	0.6	V
VDD	OIO=2.5V				
TTL Input High Voltage	V_{ih}	1.7	/	7 -	V
TTL Input Low Voltage	V _{il}	-	- /	0.6	V
Output High Voltage	V_{oh}	2.25	- //	_	V
Output Low Voltage	V_{ol}	-	-	0.4	V

Note: I_{SVDDL} , I_{SVDDH} , and I_{DVDDIO_2} should be added to the total current consumption when the dual extension ports of the RTL8367S are used.

12.5. AC Characteristics

12.5.1. EEPROM SMI Host Mode Timing Characteristics

Figure 19. SCK/SDA Power on Timing

Figure 20. EEPROM Auto-Load Timing

Table 40. EEPROM SMI Host Mode Timing Characteristics	Table 40.	EEPROM	SMI Host	Mode Timin	a Characteristics
---	-----------	---------------	-----------------	-------------------	-------------------

Symbol	Description	Type	Min	Typical	Max	Units
t1	SCK Clock Period	О	9.7	10	ı	μs
t2	SCK High Time	О	4.2	5	-	μs
t3	SCK Low Time	О	4.2	5	=	μs
t4	START Condition Setup Time	О	4.8	5.04	ı	μs
t5	START Condition Hold Time	О	4.8	4.96	-	μs
t6	Data Hold Time	О	2.2	2.52	-	μs
t7	Data Setup Time	О	2.2	2.48	-	μs
t8	STOP Condition Setup Time	О	4.4	5.04	-	μs
t9	SCK/SDA Active from Reset Ready	О	75	78.4	-	ms
t10	8K-Bits EEPROM Auto-Load Time	О	250	278	-	ms
-	SCK Rise Time (10% to 90%)	O	-	320	-	ns
-	SCK Fall Time (90% to 10%)	O	-	320	-	ns
-	Duty Cycle	О	48.86	50	51.14	%

12.5.2. EEPROM SMI Slave Mode Timing Characteristics

Figure 21. EEPROM SMI Slave Mode Timing Characteristics

Table 41. EEPROM SMI Slave Mode Timing Characteristics

Symbol	Description	Type	Min	Typical	Max	Units
t1	SCK High Time	I	0.25	-	-	μs
t2	SCK Low Time	I	0.25	-	-	μs
t3	START Condition Setup Time	I	0.15	-	-	μs
t4	START Condition Hold Time	I	0.15	-	-	μs
t5	Data Hold Time	I	0.15	-	-	μs
t6	Data Setup Time	I	150	-	-	ns
t7	Clock to Data Output Delay	О	-	100	-	ns
t8	STOP Condition Setup Time	I	0.15	-	-	μs

12.5.3. MDIO Slave Mode Timing Characteristics

The RTL8367S supports MDIO (MMD) slave mode. The Master (CPU) can access the Slave (RTL8367S) registers via the MDIO interface. The MDIO is a bi-directional signal that can be sourced by the Master or the Slave. In a write command, the master sources the MDIO signal. In a read command, the slave sources the MDIO signal.

- The timing characteristics t1, t2, and t3 (Table 42) of the Master (the RTL8367S link partner CPU) are provided by the Master when the Master sources the MDIO signal (Write command)
- The timing characteristics t4 (Table 42) of the Slave (RTL8367S) are provided by the RTL8367S when the RTL8367S sources the MDIO signal (Read command)

Figure 22. MDIO Sourced by Master

Figure 23. MDIO Sourced by RTL8367S (Slave)

Table 42. MDIO Timing	Characteristics	and Requirement
-----------------------	-----------------	-----------------

	Table 421 Male Thining Characteriotics and Requirement									
Parameter	SYM	Description/Condition	Type	Min	Typical	Max	Units			
MDC Clock Period	t1	Clock Period	I	125	-	-	ns			
MDIO to MDC Rising Setup Time (Write Data)	t2	Input Setup Time	I	25	1	-	ns			
MDIO to MDC Rising Hold Time (Write Data)	t3	Input Hold Time	I	25	1	-	ns			
MDC to MDIO Delay Time (Read Data)	t4	Clock (Falling Edge) to Data Delay Time	О	0	2.8	40	ns			

12.5.4. MII MAC Mode Timing

Figure 24. MII MAC Mode Clock to Data Output Delay Timing

Figure 25. MII MAC Mode Input Timing

Table 43. MII MAC Mode Timing

Parameter	SYM	Description/Condition	Type	Min	Typical	Max	Units
100Base-TX MxM_TXCLK and	$T_{MM_TX_CYC}$	25MHz Clock Input.	I	-	40	-	ns
MxM_RXCLK Input Cycle Time	$T_{MM_RX_CYC}$						
10Base-T MxM_TXCLK and	$T_{MM_TX_CYC}$	2.5MHz Clock Input.	I	-	400	-	ns
MxM_RXCLK Input Cycle Time	$T_{MM_RX_CYC}$						
MxM_TXCLK to MxM_TXD[3:0]	T_{MM_COD}	-	О	3	5	7	ns
and MxM_TXEN Output Delay Time							
MxM_RXD[3:0], MxM_RXDV, and	$T_{MM_RX_SU}$	-	I	10	-	-	ns
MxM_CRS Input Setup Time							
MxM_RXD[3:0], MxM_RXDV, and	$T_{MM_RX_HO}$	-	I	10	-	-	ns
MxM_CRS Input Hold Time							

12.5.5. MII PHY Mode Timing

Figure 27. MII PHY Mode Clock Output to Data Input Delay Timing

Table 44. MII PHY Mode Timing Characteristics

Parameter	SYM	Description/Condition	Type	Min	Typical	Max	Units
100M MxP_RXCLK and	$T_{MP_RX_CYC}$	25MHz Clock Output.	0	-	40	-	ns
MxP_TXCLK Output Cycle Time	$T_{MP_TX_CYC}$						
10M MxP_RXCLK and	$T_{MP_RX_CYC}$	2.5MHz Clock Output.	О	-	400	-	ns
MxP_TXCLK Output Cycle Time	$T_{MP_TX_CYC}$						
100M MxP_RXD[3:0] and	$T_{MP_RX_SU}$	-	О	14	18	-	ns
MxP_RXDV to MxP_RXCLK							
Output Setup Time							
100M MxP_RXD[3:0] and	$T_{MP_RX_HO}$	-	О	16	19.5	-	ns
MxP_RXDV to MxP_RXCLK							
Output Hold Time							
100M MxP_TXCLK Clock Output to	T_{MP_COD}	-	I	0	-	25	ns
MxP_TXD[3:0] and MxP_TXEN							
Input Delay Time							

12.5.6. RGMII Timing Characteristics

Figure 28. RGMII Output Timing Characteristics (RGx_TXCLK_DELAY=0)

Figure 29. RGMII Output Timing Characteristics (RGx_TXCLK_DELAY=2ns)

Figure 30. RGMII Input Timing Characteristics (RGx_RXCLK_DELAY=0)

Figure 31. RGMII Input Timing Characteristics (RGx_RXCLK_DELAY=2ns)

Table 45. RGMII Timing Characteristics

Parameter	SYM	Description/Condition	Type	Min	Typical	Max	Units
1000M RGx_TXCLKc Output Cycle	T _{TX_CYC}	125MHz Clock Output.	0	7.6	8	8.6	ns
Time		Refer to Figure 28, page 65.					
100M RGx_TXCLK Output Cycle	T _{TX_CYC}	25MHz Clock Output.	О	38	40	42	ns
Time		Refer to Figure 28, page 65.					
10M RGx_TXCLK Output Cycle	T_{TX_CYC}	2.5MHz Clock Output.	О	380	400	420	ns
Time		Refer to Figure 28, page 65.					
RGx_TXD[3:0] and RGx_TXCTL to	T_{skewT}	Disable Output Clock Delay.	O	-500		500	ps
RGx_TXCLK Output Skew		(RGx_TXCLK_DELAY=0).					
		Refer to Figure 28, page 65.					
RGx_TXD[3:0] and RGx_TXCTL to	T_{TX_SU}	Enable Output Clock Delay.	О	1.2		-	ns
RGx_TXCLK Output Setup Time		(RGx_TXCLK_DELAY=1).					
		Refer to Figure 29, page 65.					
RGx_TXD[3:0] and RGx_TXCTL to	T_{TX_HO}	Enable Output Clock Delay.	О	1.2		-	ns
RGx_TXCLK Output Hold Time		(RGx_TXCLK_DELAY=1).					
		Refer to Figure 29, page 65.					
RGx_RXD[3:0] and RGx_RXCTL	T_{RX_SU}	Disable Input Clock Delay.	I	1.0	-	-	ns
to RGx_RXCLK Input Setup Time		(RGx_RXCLK_DELAY=0).					
		Refer to Figure 30, page 65.					
RGx_RXD[3:0] and RGx_RXCTL	T_{RX_HO}	Disable Input Clock Delay.	I	1.0	-	-	ns
to RGx_RXCLK Input Hold Time		(RGx_RXCLK_DELAY=0).					
		Refer to Figure 30, page 65.					
RGx_RXD[3:0] and RGx_RXCTL	T_{skewR}	Enable Input Clock Delay.	I	-600	-	600	ps
to RGx_RXCLK Input Skew		(RGx_RXCLK_DELAY=1).					
		Refer to Figure 31, page 66.					

12.5.7. HSGMII Characteristics

Para	Parameter		Min	Тур	Max	Units	Notes
Unit Interval		UI	319.968	320	320.032	ps	320ps ± 100ppm
Eye Mask		T_X1	-	ı	0.175	UI	-
Eye Mask		T_X2	-	ı	0.39	UI	-
Eye Mask		T_Y1	400	1	-	mV	-
Eye Mask		T_Y2	-	ı	800	mV	-
Output Differential Voltage		V _{TX-DIFFp-p}	500	700	1000	mV	-
Output Jitter	TJ	T _{TX-JITTER}	-	-	0.3	UI	$T_{\text{TX-JITTER-MAX}} = 1 - T_{\text{TX-EYE-MIN}} = 0.30UI$
	DJ		-	-	0.165	UI	
Minimum TX	Eye Width	T _{TX-EYE}	0.65	> -	-	UI	-
Output Rise T	ime	T _{TX-RISE}	0.125	-	-	UI	20% ~ 80%
Output Fall Time		T _{TX-FALL}	0.125	-	-	UI	20% ~ 80%
Differential Resistance		R_{TX}	80	100	120	ohm	
AC Coupling Capacitor		C_{TX}	80	100	120	nF	-
Transmit Leng	gth in PCB	L _{TX}	<u> </u>	-	10	inch	

Figure 32. HSGMII Differential Transmitter Eye Diagram

Parameter	SYM	Min	Тур	Max	Units	Notes
Unit Interval	UI	319.968	320	320.032	ps	320ps ± 100ppm
Eye Mask	R_X1	-	-	0.275	UI	-
Eye Mask	R_X2	-	-	0.4	UI	-
Eye Mask	R_Y1	100		-	mV	
Eye Mask	R_Y2	-	-	800	mV	-
Input Differential Voltage	V _{RX-DIFFp-p}	200	-	1200	mV	-
Minimum RX Eye Width	T_{RX-EYE}	0.4	ı	-	UI	-
Input Jitter Tolerance	T _{RX-JITTER}	-	-	0.6	UI	$T_{RX\text{-JITTER-MAX}} = 1 - T_{RX\text{-EYE-MIN}} =$
						0.6UI
Differential Resistance	R_{RX}	80	100	120	ohm	-

Figure 33. HSGMII Differential Receiver Eye Diagram

12.5.8. SGMII Characteristics

Table 19	SCMII Differen	tial Transmittor	Characteristics
Table 48.	. SGIVIII DITTEREN	tiai i ransmitter	Characteristics

Parameter	Parameter SYM Min Typ Max Units Notes										
Unit Interval	UI	799.92	800	800.08	ps	800ps ± 100ppm					
Eye Mask	T_X1	-	-	0.15	UI	-					
Eye Mask	T_X2	-	-	0.4	UI	-					
Eye Mask	T_Y1	150	-	-	mV	-					
Eye Mask	T_Y2	-	-	400	mV	-					
Output Differential Voltage	V _{TX-DIFFp-p}	300	700	800	mV	-					
Minimum TX Eye Width	T _{TX-EYE}	0.7	-	-	UI	-					
Output Jitter	T _{TX-JITTER}	-	-	0.3	UI	$T_{TX-JITTER-MAX} = 1 - T_{TX-EYE-MIN} = 0.30UI$					
Data dependent jitter		-	70	-	ps						
Output Rise Time	T _{TX-RISE}	100	-	200	ps	20% ~ 80%					
Output Fall Time	T _{TX-FALL}	100	-	200	ps	20% ~ 80%					
Output impedance	R_{TX}	40	-	140	ohm	single-end					
AC Coupling Capacitor	C_{TX}	80	100	120	nF						
Transmit Length in PCB	L_{TX}	_		10	inch						

Figure 34. SGMII Differential Transmitter Eye Diagram

Parameter	SYM	Min	Тур	Max	Units	Notes
Unit Interval	UI	799.92	800	800.08	ps	800ps ± 100ppm
Eye Mask	T_X1	-	-	0.15	UI	-
Eye Mask	T_Y1	100	-	-	mV	-
Eye Mask	T_Y2	-	-	600	mV	-
Input Differential Voltage	$V_{\text{RX-DIFFp-p}}$	200	-	1200	mV	-
Minimum RX Eye Width	$T_{RX ext{-}EYE}$	0.4	-	-	UI	-
Input Jitter Tolerance	$T_{RX ext{-JITTER}}$	-	-	0.6	UI	$T_{RX-JITTER-MAX} = 1 - T_{RX-EYE-MIN} = 0.6UI$
Differential Resistance	R_{RX}	80	100	120	ohm	-

Figure 35. SGMII Differential Receiver Eye Diagram

12.6. Power and Reset Characteristics

Figure 36. Power and Reset Characteristics

Table 50. Power and Reset Characteristics

Table 30. I Owel and Neset Characteristics								
Parameter	SYM	Description/Condition	Type	Min	Typical	Max	Units	
Reset Delay Time	t1	The duration from 'all power steady' to the reset signal released to high	I	10	4	1	ms	
Reset Low Time	t2	The duration of reset signal remaining low time before issuing a reset to the RTL8367S	I	10	-	-	ms	
VDDL Power Rise Settling Time	t3	DVDDL, SVDDL and AVDDL power rise settling time	I	0.5	ı	1	ms	
VDDH Power Rise Settling Time	t4	DVDDIO, DVDDIO_x, SVDDH, and AVDDH power rise settling time	I	0.5	-	-	ms	

13. Mechanical Dimensions

Low Profile Plastic Quad Flat Package 128 Leads 14mm×14mm Outline.

Symbol		Dimension in mm	<u> </u>		Dimension in inch				
	Min	Nom	Max	Min	Nom	Max			
A			1.60		_	0.063			
A_1	0.05	_	0.15	0.002	_	0.006			
A_2	1.35	1.40	1.45	0.053	0.055	0.057			
b	0.13	0.18	0.23	0.005	0.007	0.09			
D/E		16.00BSC		0.630BSC					
D_1/E_1		14.00BSC		0.551BSC					
e		0.40BSC			0.016BSC				
L	0.45	0.60	0.75	0.018 0.024 0.03		0.030			
L1		1.00 REF		0.039 REF					

Note 1: CONTROLLING DIMENSION: MILLIMETER (mm).

Note 2: REFERENCE DOCUMENT: JEDEC MS-026.

14. Ordering Information

Table 51. Ordering Information

Part Number	Package	Status
RTL8367S-CG	LQFP 128-pin 'Green' Package	-

Note: See page 8 for package identification.

Realtek Semiconductor Corp.

Headquarters

No. 2, Innovation Road II, Hsinchu Science Park,

Hsinchu 300, Taiwan, R.O.C.

Tel: 886-3-5780211 Fax: 886-3-5776047

www.realtek.com