Notes: (1) These questions require thought, but do not require long answers. Please be as concise as possible. (2) For problems that require programming, please include in your submission a copy of your code (with comments) and any figures that you are asked to plot and submit your code and figures electronically to BLS before the due date.

Logistic regression: Consider the objective function in logistic regression problem:

$$l(\theta) = \sum_{i=1}^{m} (y_i \log \sigma(\theta^T x_i) + (1 - y_i) \log(1 - \sigma(\theta^T x_i))),$$

where $\sigma(z) = (1 + e^{-z})^{-1}$ is the logistic function. Derive the gradient and Hessian matrix of $l(\theta)$.

- (a) On the BLS system, the files q1x.dat and q1y.dat contain the inputs $(x_i \in R^2)$ and outputs $(y_i \in \{0,1\})$ respectively for a binary classification problem, with one training example per row.
- (b) Implement the gradient descent method for optimizing $l(\theta)$, and apply it to fit a logistic regression model to the data. Initialize gradient descent method with $\theta = 0$ (the vector of all zeros). What are the coefficients θ resulting from your fit? (Remember to include the intercept term.)
- (c) Implement Newton's method to maximize $l(\theta)$, and compare the overall running time and number of iterations needed to converge to the same precision.
- (d) Plot the training data (your axes should correspond to the two coordinates of the inputs, and you should use a different symbol for each point plotted to indicate whether that example had label 1 or 0). Also plot on the same figure the decision boundary fit by logistic regression. (i.e., this should be a straight line showing the boundary separating the region where $\sigma(\theta^T x) > 0.5$ from where $\sigma(\theta^T x) < 0.5$.)