DAFTAR ISI

DAFTAR ISI	i
BAB 1. PENDAHULUAN	.1
1.1 Latar Belakang	1
1.2 Luaran Kegiatan	.2
1.3 Manfaat Kegiatan	.2
BAB 2. TINJAUAN PUSTAKA	.3
BAB 3. TAHAP PELAKSANAAN	.5
3.1 Perencanaan dan Perancangan	.5
3.2 Purwarupa	5
3.3 Pemilihan Bahan	5
3.4 Pembuatan Alat	6
3.5 Pengujian dan Evaluasi	6
3.6 Publikasi dan Promosi	6
BAB 4. ANGGARAN BIAYA DAN JADWAL KEGIATAN	7
4.1 Rencana Anggaran Biaya	7
4.2 Jadwal Kegiatan	.7
DAFTAR PUSTAKA	9
LAMPIRAN	10
Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping	10
Lampiran 2. Justifikasi Anggatan Kegiatan	19
Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	21
Lampiran 4. Surat Pernyataan Ketua Pelaksana	23
Lampiran 5. Gambaran Teknologi Yang Akan Dikembangkan	24

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Indonesia dikenal sebagai negara agraris dengan sebagian besar penduduknya bekerja pada bidang pertanian. Adanya perubahan iklim dan cuaca pada akhirakhir ini menjadi kendala oleh para petani sejak tahap penanaman hingga pasca panen. Pengeringan hasil panen pertanian merupakan salah satu masalah utama kegiatan pasca panen yang sering dihadapi oleh petani tradisional untuk hasil panen yang memerlukan perlakuan pengeringan seperti padi, lada, cengkeh dan lainnya.

Padi setelah dipanen secara umum mempunyai kadar air cukup tinggi sekitar 20-23% basis basah pada musim kering dan pada musim hujan sekitar 24-27% basis basah (Purwadaria, 1995). Pada tingkat kadar air tersebut padi tidak aman disimpan karena sangat mudah terserang jamur atau mudah rusak. Sehingga agar aman disimpan dalam jangka waktu lama atau sebelum dipasarkan, padi perlu dikeringkan hingga kadar air sekitar 14% basis basah (Badan Standarisasi Nasional, 2008).

Pengeringan adalah salah satu cara pengawetan. Sering dilihat di pedesaan, makanan yang tersebar di tanah seperti gandum, kismis, ara atau aprikot, dikeringkan dengan menggunakan sinar matahari. Namun, metode ini memiliki banyak kelemahan. Itu tergantung pada kondisi iklim, dan membutuhkan sebuah yang permukaan besar juga paparan sinar matahari yang cukup lama dan, khususnya, sinar ultraviolet. Hal ini meningkatkan kerusakan pada produk kering. Selanjutnya, metode ini tidak memungkinkan untuk pengeringan dalam jumlah besar (Azzedine *et al.*, 2002).

Karena itu kami membuat suatu alat yang dapat mengatasi permasalahan tersebut agar waktu pengeringan relatif pendek dan menghasilkan suatu produk atau bahan yang lebih baik, alat itu disebut dengan *Solar Dryer* 4.0: Pengering Cerdas Solusi Penjemuran Padi pada Musim Penghujan.

Agar waktu pengeringan relatif lebih pendek dan kualitas hasil pengeringan lebih baik, proses pengeringan dilakukan menggunakan teknologi rekayasa surya sebagai hasil perbaikan dari cara pengeringan alami dan tradisional. Pengering Surya (*Solar Dryer*) merupakan cara pengeringan menggunakan kolektor yang memanfaatkan radiasi energi matahari dengan lebih maksimal. Digunakannya rak bertingkat pada pengering surya jenis pemanasan langsung bertujuan memaksimalkan pemanfaatan udara panas dan memaksimalkan pemakaian ruang pengering, sehingga alat pengering menjadi lebih kompak dan efisien dalam penerimaan udara panas. Pemanfaatan udara panas pada rak bertingkat lebih merata dan menyentuh keseluruhan bahan dan produk yang akan dikeringkan (Azridjal *et al.*, 2004).

Teknologi *solar dryer* sangat bermanfaat untuk pengeringan hasil-hasil panen karena teknologi ini memanfaatkan radiasi energi benda hitam dari sinar

matahari dalam proses pengeringannya dengan cara mengkonversi sinar matahari menjadi energi panas yang dilakukan dengan menggunakan suatu alat pengumpul panas. Penggunaan pemanas juga ikut serta dalam pengeringan jika hilangnya panas matahari ketika hujan maupun malam. Jadi, alat ini akan tetap mengeringkan padi walaupun tidak ada cahaya matahari selama energi listrik dalam baterai yang diisi dengan listrik dari panel surya masih tersedia.

Penggunaan *solar dryer* ini merupakan jenis teknologi yang sangat mengoptimalkan pemanfaatan sinar matahari dan memaksimalkan pemakaian ruang pengering, sehingga alat ini menjadi alat yang efektif dan efisien dalam penerimaan suhu panas. Pemanfaatan sinar panas yang dilakukan teknologi ini lebih merata dan menyentuh keseluruhan produk atau bahan yang akan dikeringkan.

1.2 Luaran Kegiatan

Beberapa luaran yang ditargetkan dari PKM-KC ini, diantaranya (1) Artikel ilmiah yang dipublikasikan pada jurnal ilmiah nasional, (2) laporan kemajuan, (3) laporan akhir, dan (4) purwarupa desain alat pengering *Solar Dryer* Anti Konflik 4.0 Berbasis *Internet of Things*.

1.3 Manfaat Kegiatan

Penelitian ini diharapkan dari adanya program kreativitas ini adalah dapat membuka dan memperluas wawasan para petani untuk meningkatkan inovasi dalam mengeringkan hasil panen dengan lebih modern, cepat, dan terjangkau.

BAB 2. TINJAUAN PUSTAKA

Solar Dryer adalah alat pengering buatan dengan memanfaatkan energi matahari menggunakan kolektor sebagai penyerap panas yang menjadikan penggunaan energi matahari lebih maksimal dalam proses pengeringan padi yang bertujuan untuk mengurangi kadar air dalam suatu bahan hingga mencapai batas tertentu kandungan air kesetimbangan. Air yang diuapkan tersebut merupakan air bebas dan air terikat yang terdapat pada bahan. Proses penguapan air tersebut membutuhkan energi. Dengan meningkatnya energi dalam wadah pengeringan produk maka terjadi penguapan yang diikuti dengan pengikatan kandungan air pada udara pengering (Hanafi *et al.*, 2017).

Solar Dryer 4.0 ini dirancang dengan menggunakan sistem tertutup yang mana diharapkan akan lebih efektif dalam hal penyusutan kadar air dan efisiensi tingkat pengeringan bahan. Solar Dryer 4.0 dilengkapi dengan exhaust fan yang akan membawa udara panas keluar dari mesin pengering sehingga kandungan air dalam bahan yang dikeringkan dapat mengalami penyusutan.

Dalam penelitian F.K Forson yang merancang alat pengering singkong dengan mengadopsi prinsip *mixed-mode natural convection* di dalam struktur tertutup, ia mendapatkan bahwa kadar air singkong dapat berkurang dari 67% sampai 17% dengan efisiensi pengeringan sebesar 12.5% (Arifianti *et al.*, 2018).

Solar Dryer 4.0 ini nantinya akan digunakan untuk mengeringkan padi hasil panen yang merupakan tahapan dari perlakuan pasca panen. Tujuan pengeringan adalah menghilangkan air, mencegah fermentasi atau pertumbuhan jamur dan memperlambat perubahan kimia pada makanan. Selama pengeringan dua proses terjadi secara simultan yaitu perpindahan panas ke produk dari sumber pemanas dan perpindahan massa uap air dari bagian dalam produk ke permukaan dan dari permukaan ke udara sekitar. Esensi dasar dari pengeringan adalah mengurangi kadar air dari produk agar aman dari kerusakan dalam jangka waktu tertentu, yang biasa diistilahkan dengan periode penyimpanan aman.

Pengeringan gabah oleh petani biasanya dengan cara konvensional yaitu menjemur dengan mengunakan cahaya matahari di lapangan terbuka. Pengeringan dengan cara ini memiliki banyak kerugian diantaranya tergantung pada cuaca sehingga pengeringan memerlukan waktu yang cukup lama dan gabah kurang dijamin kebersihannya. Proses pengeringan gabah menggunakan alat pengering memerlukan energi yang sangat besar karena mengunakan energi listrik dan bahan bakar. Cara yang dapat dilakukan untuk proses pengeringan dengan biaya murah adalah dengan mengunakan energi surya (matahari) (Panggabean *et al.*,. 2017). Maka dari itu, pada kegiatan program kreativitas mahasiswa ini akan dihasilkan sebuah inovasi berupa *Solar Dryer* Anti Konflik 4.0 Berbasis *Internet of Things*: Pengering Cerdas Solusi Penjemuran Padi pada Musim Penghujan yang mana akan membantu dalam petani dalam pengeringan padi sehingga dalam proses

penjemuran padi tidak lagi menggunakan cara konvensional yang sangat memakan waktu.

Cara kerja alat *Solar Dryer* 4.0 ini adalah panas matahari akan diserap oleh *solar collector* yang menerapkan prinsip radiasi benda hitam. Dimana nantinya panas matahari yang diserap ini akan dialirkan menuju *box* pengering yang dilapisi dengan *styrofoam* sebagai isolator sehingga dapat menghalangi udara dari luar yang akan masuk ke dalam *box* pengering dan mempengaruhi suhu di dalam *box* pengering. Atau, dengan cara memberikan panas dengan *heater* dan dialirkan ke dalam *box* pengering dengan listrik dari tenaga surya. Sensor DHT 11 akan mendeteksi suhu yang ada di dalam box pengering. Ketika sensor mendeteksi adanya kenaikan suhu dari suhu normal, maka *exhaust fan* akan secara otomatis hidup dan membuang udara sehingga suhu di dalam *box* pengering menjadi kembali normal.

Alat *Solar Dryer* 4.0 ini dikendalikan dengan teknologi IoT untuk memudahkan dalam pengontrolan secara jarak jauh. Untuk sistem IoT ini menggunakan koneksi ESP8266 yang akan ditampilkan dalam koneksi BLYNK. Mikrokontroller yang digunakan adalah NodeMCU. NodeMCU adalah sebuah platform IoT yang bersifat *open source*. Terdapat beberapa pin I/O sehingga dapat dikembangkan menjadi sebuah aplikasi monitoring maupun *controlling* pada proyek IoT. Untuk memprogram NodeMCU hanya diperlukan ekstensi kabel data USB persis yang digunakan sebagai kabel data dan kabel *charging* smartphone Android. Karena NodeMCU telah me *package* ESP8266 ke dalam sebuah *board* yang kompak dengan berbagai fitur layaknya mikrokontroler + kapabilitas akses terhadap Wifi juga chip komunikasi USB to serial.

BAB 3. TAHAP PELAKSANAAN

3.1 Perencanaan dan Perancangan

Perencanaan dan Perancangan alat adalah hal pertama yang harus dilakukan sebelum pembuatan alat. Alat ini dirancang dengan se-efisien mungkin tetapi dengan biaya seminimal mungkin agar alat ini mudah dijangkau oleh semua orang.

3.2 Purwarupa

Hasil dari Perencanaan dan Perancangan yang dilakukan sebelumnya adalah sebuah Purwarupa dari alat yang akan dibuat. Desain dibuat dengan menggunakan aplikasi SketchUp.

3.3 Pemilihan Bahan

Pemilihan bahan adalah langkah selanjutnya sebelum pembuatan alat. Bahan yang tepat akan meningkatkan efektivitas dari alat secara signifikan. Bahan – bahan yang digunakan pada alat ini antara lain yaitu; Seng (Zn) sebagai Solar Collector, atau pengumpul cahaya matahari sebagai sumber panas utama pada Box Pengering; Styrofoam sebagai isolator pada Box Pengering; Solar Panel sebagai pengubah cahaya matahari menjadi energi listrik dan disimpan di baterai; Charge Control untuk mengatur energi listrik sebelum dialirkan ke baterai; Baterai VRLA sebagai penampung energi listrik yang diubah sebelumnya dari Solar Panel; Heater sebagai sumber panas alternatif yang ditenagai oleh baterai jika panas matahari tidak cukup untuk memanaskan Box Pengering. Exhaust fan untuk mengeluarkan panas jika suhu terlalu tinggi; Sensor DHT11 sebagai sensor yang mendeteksi perubahan suhu dan kelembapan dalam Box Pengering; LCD Display sebagai keluaran dalam bentuk grafis; *NodeMCU* sebagai prosesor dari alat ini; *Push Button* sebagai tombol alternatif jika tombol atau aplikasi mobile sedang bermasalah; PCB sebagai wadah penghubung rangkaian; dan kabel-kabel penghubung untuk menghubungkan komponen-komponen pada prosesor dan alat.

Gambar 3.1 Konsep Solar Dryer Anti Konflik 4.0

3.4 Pembuatan Alat

Proses Pembuatan akan dilakukan di dalam Laboratorium Terpadu Universitas Sumatera Utara dengan menaati protokol kesehatan COVID-19. Dibawah ini adalah diagram balok yang menunjukkan sistem konstruksi dari alat ini. Dimulai dari Sensor suhu dan kelembaban yang dipasang di dalam *Box* Pengering, lalu *Heater* ditaruh di bawah *Box* Pengering, dan *Solar Collector* yang terhubung langsung dengan *Box* Pengering. Sensor, *Heater* dan *Exhaust Fan* ditenagai oleh Listrik yang berasal dari tenaga matahari yang dikonversi menjadi energi listrik dan disimpan ke dalam baterai. Setelah semuanya telah ter-integrasi barulah NodeMCU di program dan dihubungkan ke PC (*Personal Computer*) atau perangkat Mobile.

Gambar 3.2 Diagram Blok Sistem Kerja Solar Dryer Anti Konflik 4.0

3.5 Pengujian dan Evaluasi

Setelah proses pembuatan alat selesai, Pengujian alat perlu dilakukan untuk mengetahui efektivitas dari alat ini. Proses pengujian dilakukan dengan memasukkan 1 kg padi ke dalam *Box* pengering lalu dilihat suhu dan tingkat kelembapannya. Setelah itu diatur suhu maksimal pengeringan dengan tombol yang tersedia. Jika suhu dalam *Box* melebihi dari suhu yang ditentukan sebelumnya, maka *Exhaust Fan* akan bekerja dan membuang panas keluar. Pengguna dapat melihat statistik alat ini melalui perangkat mobile, alat ini juga akan mengirimkan notifikasi ke perangkat pengguna jika Padi telah selesai dikeringkan. Jika panas matahari kurang untuk memanaskan *Box* Pengering maka *Heater* akan bekerja sebagai sumber panas alternatif sehingga proses pengeringan akan lebih cepat daripada proses pengeringan dengan metode tradisional yaitu penjemuran.

3.6 Publikasi dan Promosi

Setelah alat selesai di uji dan di evaluasi, alat telah siap digunakan oleh semua orang. Maka dari itu, langkah selanjutnya adalah memperkenalkan Solar Dryer 4.0 Anti Konflik pada masyarakat untuk pengeringan padi yang lebih cepat

BAB 4. ANGGARAN BIAYA DAN JADWAL KEGIATAN

4.1 Rencana Anggaran Biaya

Pada tabel berikut ini terdapat rekapitulasi rencana anggaran biaya yang disusun sesuai kebutuhan pegadaan alat:

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

	Jenis Pengeluaran	Sumber Dana	Biaya(Rp)
No.			
1.	Bahan Habis Pakai	Belmawa	4.115.000
		Perguruan Tinggi	600.000
2.	Sewa dan Jasa	Belmawa	460.000
		Perguruan Tinggi	150.000
3.	Transport Lokal	Belmawa	1.250.000
		Perguruan Tinggi	100.000
4.	Lain-lain	Belmawa	1.050.000
		Perguruan Tinggi	150.000
		Jumlah	7.875.000
		Belmawa	6.875.000
	Rekap Sumber Dana	Perguruan Tinggi	1.000.000
		Jumlah	7.875.000

4.2 Jadwal Kegiatan

Di bawah ini adalah jadwal kegiatan yang disusun dengan metode *bar chart* sesuai agenda yang dapat dilihat di tabel 4.2:

Tabel 4.2 Jadwal Rencana Kegiatan

						В	ula	n k	e-					Penanggung
No.	Kegiatan			I			I	Ι			I	II		Jawab
		1	2	3	4	1	2	3	4	1	2	3	4	
1.	Proses													- Syaipuddin
	Administrai dan													Muda Pane
	Persiapan													
	Penelitian													
2.	.Pemilihan													- Sherly
	Bahan dan													Syafrina
	Peralatan													- Rayqal
														Aulia
														Alrezka
3.	Proses													- Syaipuddin
	konstruksi Solar													Muda Pane
	Dryer Anti													- Putriana

	m	1				1		
	Konflik 4.0							- Ahmad
	Berbasis							Fadlan
	Internet of							
	Things:							
	Pengering							
	Cerdas Solusi							
	Penjemuran							
	Padi pada							
	Musim							
	Penghujan.							
4.	Analisis							- Sherly
	Performa dari							Syafrina
	Solar Dryer							- Putriana
	Anti Konflik 4.0							
	Berbasis							
	Internet of							
	Things:							
	Pengering							
	Cerdas Solusi							
	Penjemuran							
	Padi pada							
	Musim							
	Penghujan.							
5.	Analisa Data							- Rayqal
								Aulia
								Alrezka
								- Ahmad
								Fadlan
6.	Laporan Akhir							- Rayqal
								Aulia
								Alrezka

DAFTAR PUSTAKA

- Arifianti, Q., Abidin, M., Nugrahani, E. and Ummatin, K., 2018. rancang Bangun Solar Dryer untuk Meningkatkan Kualitas Refuse Derived Fuels (RDF) sebagai Bahan Bakar Alternatif di Kiln Burner Industri Semen. *Jurnal Rekayasa Mesin*, 9(3), pp.211-220.
- Aziz, Azridjal, 2004, Kaji Eksperimental Pengaruh Perubahan Suhu pada Siklus Sekunder dan Siklus Primer terhadap Performansi Mesin Refrigerasi Hibrid dengan Refrigeran HCR12, Jurnal Saintek (terakreditasi), UNP, Padang
- Hanafi, R., Siregar, K. and Nurba, D., 2017. Modifikasi dan Uji Kinerja Alat Pengering Energi Surya-Hybrid Tipe Rak untuk Pengeringan Ikan Teri. *Rona Teknik Pertanian*, 10(1), pp.10-20.
- Panggabean, T., Neni Triana, A. and Hayati, A., 2017. Kinerja Pengeringan Gabah Menggunakan Alat Pengering Tipe Rak dengan Energi Surya, Biomassa, dan Kombinasi. *Agritech*, 37(2), pp.229.
- Purwadaria, H.K. 1995. Problems and Priorities of Grain Dr 310 ying in Indonesia, in: Grain Drying in 311 Asia. Proceedings of an international Conference held at the 74 FAO Regional Office for 312 Asia and the Pacific, Bangkok, Thailand, ACIAR Proceedings No. 71 (1995), pp. 201–209.
- Badan Standardisasi Nasional. 2008. Standar Nasional Indonesia Beras Giling, SNI 6128:2008. Badan Standardisasi Nasional, Jakarta. 9 hlm.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing

1.1 Biodata Ketua

A. Identitas Diri

1.	Nama Lengkap	Syaipuddin Muda Pane			
2.	Jenis Kelamin	Laki-laki			
3.	Program Studi	S1-Fisika			
4.	NIM	190801009			
5.	Tempat dan Tanggal Lahir	Padang Sidempuan, 21 Juli 2001			
6.	e-mail	muda3332@gmail.com			
7.	Nomor Telepon/Hp	082273287550			

B. Kegiatan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat		
1.	Ikatan Mahasiswa Fisika (IMF)	Anggota	2019 – sekarang di FMIPA USU		
2.	Muslim Scientis Community (MSC)	t Anggota	2019 – sekarang di FMIPA USU		

C. Penghargaan Dalam 10 Tahun Terakhir

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara Harapan 3 English Debate Competition Se- Kabupaten Tapanuli Tengah	PANDAN	2015
2.	-	-	-

Semua data yang tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ditemukan ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 30-03-2022 Ketua Tim,

(Syaipuddin Muda Pane)

1.2 Biodata Anggota 1

A. Identitas Diri

Nama Lengkap	Sherly Syafrina
Jenis Kelamin	Perempuan
Program Studi	S1-Fisika
NIM	190801035
Tempat dan Tanggal Lahir	Medan, 30 April 2001
e-mail	sherlysy30@gmail.com
Nomor Telepon/Hp	083197086035/082173844650
	Jenis Kelamin Program Studi NIM Tempat dan Tanggal Lahir e-mail

B. Kegiatan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	Ikatan Mahasiswa Fisika (IMF)	Anggota	2019 – sekarang di FMIPA USU
2.	Muslim Scientist Community (MSC)	Anggota	2019 – sekarang di FMIPA USU
3.	Pemerintahan Mahasiswa FMIPA USU	Anggota	2019 – sekarang di FMIPA USU

C. Penghargaan Dalam 10 Tahun Terakhir

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara 2 Lomba Cerdas Cermat Agama Islam	Yayasan Pendidikan Harapan	2015
2.	Medali Perunggu Olimpiade Fisika dalam Memperingati Hari Pendidikan Nasional	POSI	2018

Semua data yang tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ditemukan ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 30-03-2022 Anggota Tim,

(Sherly Syafrina)

1.3 Biodata Anggota 2

A. Identitas Diri

1.	Nama Lengkap	Putriana			
2.	Jenis Kelamin	Perempuan			
3.	Program Studi	S1-Fisika			
4.	NIM	190801023			
5.	Tempat dan Tanggal Lahir	Medan, 26 Februari 2001			
6.	e-mail	putriianaa1@gmail.com			
7.	Nomor Telepon/Hp	Hp 087896586602			

B. Kegiatan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	Ikatan Mahasiswa Fisika (IMF)	Anggota	2019 – sekarang di FMIPA USU
2.	Muslim Scientist Community (MSC)	Anggota	2019 – sekarang di FMIPA USU
3.	UKMI Al-Falak FMIPA USU	Anggota	2019 – 2020 di FMIPA USU

C. Penghargaan Dalam 10 Tahun Terakhir

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara 3 Nasyid Modern Tingkat Madrasah	MAN 2 Medan	2016
2.	-	-	-

Semua data yang tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ditemukan ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 30-03-2022 Anggota Tim,

(Putriana)

1.4 Biodata Anggota 3

A. Identitas Diri

1.	Nama Lengkap	Rayqal Aulia Alrezka
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	S1-Fisika
4.	NIM	210801097
5.	Tempat dan Tanggal Lahir	Medan, 06 Juli 2004
6.	e-mail	rayqalaulia@gmail.com
7.	Nomor Telepon/Hp	085834379148

B. Kegiatan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	Ikatan Mahasiswa Fisika (IMF)	Anggota	2019 – sekarang di FMIPA USU
2.	GenRe	Anggota	2018 - sekarang
3.	Ikatan Pelajar Muhammadiyah	Anggota	2015 – sekarang
4.	Pemuda Muhammadiyah	Anggota	2021- sekarang

C. Penghargaan Dalam 10 Tahun Terakhir

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	The Best Motivator Putra Duta GenRe Kota Medan 2019	GenRe	2019
2.	The Best Favorit Putra Duta GenRe Sumatera Utara 2020	GenRe	2020

Semua data yang tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ditemukan ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 30-03-2022 Anggota Tim,

(Rayqal Aulia Alrezka)

1.5 Biodata Anggota 4

A. Identitas Diri

1.	Nama Lengkap	Ahmad Fadlan
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	S1-Fisika
4.	NIM	190801002
5.	Tempat dan Tanggal Lahir	Tanjung Morawa, 10 Juli 2001
6.	e-mail	ahmadfadlanaja101@gmail.com
7.	Nomor Telepon/Hp	083198264880/082173844649

B. Kegiatan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	Ikatan Mahasiswa Fisika (IMF)	Anggota	2019 – sekarang di FMIPA USU
2.	Muslim Scientist Community (MSC)	Anggota	2019 – sekarang di FMIPA USU

C. Penghargaan Dalam 10 Tahun Terakhir

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara 2 Lomba KSM Fisika Se-Kabupaten Deli Serdang	Kemenag	2015
2.	Juara Harapan 1 MTQ Se- Kabupaten Deli Serdang	Kemenag	2018

Semua data yang tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ditemukan ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 30-03-2022 Ketua Tim,

(Ahmad Fadlan)

1.6 Biodata Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap (dengan	Dr. Tulus Ikhsan Nasution, S.Si, M.Sc
1	gelar)	
2	Jenis Kelamin	Laki-laki
3	Program Studi	Fisika S-1
4	NIP/NIDN	197407162008121002/0016077413
5	Tempat dan Tanggal Lahir	Pangkalan Brandan, 16 Juli 1974
6	Alamat <i>E-mail</i>	ikhsan 05@yahoo.com
7	Nomor Telepon/HP	082168283505

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (S1)	Fisika Instrumentasi	Universitas	1994-1999
1			Sumatera Utara	
	Magister	Applied Physics	Universiti	2003-2006
2	(S2)		Kebangsaan	
			Malaysia	
3	Doktor (S3)	Electronic Materials	Universiti	2010-2013
3			Sains Malaysia	

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	sks
1	Sensor		2
2	Power Backup		2
3	Pemerosesan Sinyal		2
4	Sistem Kontrol		2
5	Fisika Mekanika		2
6	Teknologi Semikonduktor		3
7	Termodinamika		3
8	Teknologi Instrumentasi		2

Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Penggunaan Sensor Suhu, Kelembaban Dan Karbon Dioksida (CO2) Sebagai Indikator Tingkat Kematangan Fermentasi Terhadap Pupuk Organik Cair	Penelitian Terapan 2021- Non PNBP USU	2021
2	Pengujian Sifat Kehantaran Termal Dan Sifat Penyerapan Bunyi Bahan Serat Tandan Kosong Kelapa Sawit	Penelitian Dosen Muda/Pemula	2021

		2021-Non PNBP	
		USU	
3	Perbaikan Sifat Fisika dan Nilai Komposisi pada Pelet Ikan Komersil Dengan Penambahan Limbah Sisik Ikan Tetengkek, Eceng Gondok, dan Daun Talas	Penelitian Dosen Muda/Pemula 2020-Non PNBP USU	2020
4	Kolam Ikan Pintar Berbasis Sensor MQ137 dan Media Tanam dari Serat Enceng Gondok - Batu Apung	Penelitian Terapan 2020- Non PNBP USU	2020
5	Alat Pendeteksi Kelembaban Tanah Dengan Metode Pendeteksian Non- Kontak Pada Budidaya Tanaman Jambu Madu Dalam Pot Menggunakan Sensor Film Kitosan	PTUPT-DRPM Kemenristekdikti	2019
6	Sistem Pengontrol pH dan Kadar Amonia Otomatis pada Air Media Budidaya Ikan Lele (Claries) secara Realtime	Penelitian Tesis Magister-DRPM Kemenristekdikti	2019
7	Peningkatan Kekerasan Filter Hidrogen Berbasis Zeolit Alam Pahae Dengan Penambahan Clay	Penelitian Dasar- Non PNBP USU	2018
8	Efektivitas Pemeriksaan Kadar Aseton Napas Menggunakan Sensor Berbasis Kitosan Pada Penderita Diabetes Mellitus	Penelitian Pengembangan Rumah Sakit USU 2018-Non PNBP USU	2018
9	Alat Pendeteksi Kelembaban Tanah Dengan Metode Pendeteksian Non-Kontak Pada Budidaya Tanaman Jambu Madu Dalam Pot Menggunakan Sensor Film Kitosan	PTUPT-DRPM Kemenristekdikti	2018
10	Peningkatan Daya Listrik Panel Uap Air Berbasis Kitosan dengan Penambahan Grafena Oksida	Penelitian Unggulan Universitas-Non PNBP USU	2017
11	Panel Pembangkit Listrik Tenaga Uap air Berbasis Kitosan	PUPT-DRPM Kemenristekdikti	2016

	Pengujian Sifat-sifat Penginderaan		
	Film Tipis Kitosan Terhadap	Penelitian	
12	Aseton Napas untuk Aplikasi	BPPTN-Non	2016
	sebagai Sensor Diabetes dengan	PNBP USU	
	Sistem Mobile		
	Peralatan Konversi Air Menjadi	PT.PERTAMINA	
	Hidrogen Elektronik untuk		
13	Penghematan Bahan Bakar		2014
	Bioetanol dan Gasoline pada		
	Kendaraan Bermotor Roda Dua		

Pengabdian kepada Masyarakat

No	Judul Pengabdian kepada	Penyandang	Tahun	
NO	Masyarakat	Dana	1 anun	
1	Penerapan Sensor Amoniak untuk Menjaga Kualitas Air Kolam Ikan Pintar	Non PNBP USU	2021	
2	Pengolahan Limbah Sebagai Pupuk Kompos Organik Dengan Menggunakan Komposter Pintar di Desa Sei Ular	Non PNBP USU	2021	
3	Pengembangan Usaha Ternak Sapi Potong dengan Teknologi Pengolahan Pakan di Desa Kebun Kelapa	Non PNBP USU	2021	
4	Pengembangan Unit Pengelolaan Limbah dengan Sistem Manajemen Limbah (SiMaLim) yang memanfaatkan metode Smart Urban Farming dalam mengelola limbah organik di kampus USU.	Non PNBP USU	2020	
5	Alat Penjernih Air Sungai Sebagai Solusi Alternatif Ketersediaan Air Bersih di Desa Sei Siarti Kecamatan Panai Tengah Kabupaten Labuhanbatu	Non PNBP USU	2020	
6	Alat Penjernih Air Yang Diintegrasikan Dengan Pompa Air Tenaga Surya	Non PNBP USU	2018	
7	Alat Pengering Belacan Higienis Tenaga Surya di Desa Pulau Kampai Pangkalan Susu	Non PNBP USU	2018	

8	IbKIK Lampu Hias Pintar Hemat	Non PNBP USU	2017
	Energi		2017
9	IbM Desa Sei Bilah Pangkalan Brandan yang Mengalami Penurunan Produksi Ikan Asin	Non PNBP USU	2017
10	Pelatihan Sistem Otomatisasi Perangkat Elektronik bagi Siswa/I SMA Swasta Teladan Binjai : "Pembuatan Lampu Pintar Hemat Energi"	Mandiri	2017
11	Pelatihan Sistem Otomatisasi Perangkat Elektronik bagi Siswa/I SMA Swasta Darussalam Medan : "Pembuatan Sistem Kendali Otomatis Lampu Menggunakan Frekuensi Gelombang Radio"	Mandiri	2016
12	Rancang Bangun Alat Hitung Jumlah Stok Barang yang Tersimpan di Gudang dalam Rangka Menumbuhkembangkan Minat Siswa/I SMA Terhadap Ilmu Fisika Instrumentasi		2014
13	Penjernihan Air Tanah Menggunakan Alat Penjernih Air Elektronik I Langkah di Kabupaten Aceh Tamiang	Mandiri	2013

Semua data yang tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ditemukan ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 30-03-2022 Dosen Pendamping

(Dr. Tulus Ikhsan Nasution, S.Si., M.Sc.)

Lampiran 2. Justifikasi Anggaran Kegiatan

	Jenis Pengeluaran	Volume	Harga Satuan	Nilai (Rp)
			(Rp)	
1.	Belanja Bahan			
	Seng (Zn)	2 lembar	80.000	160.000
	Solar Panel	1 unit	850.000	850.000
	Heater	1 unit	80.000	80.000
	Exhaust fan	3 unit	150.000	350.000
	Sensor DHT11	3 unit	35.000	105.000
	LCD Display	3 unit	45.000	135.000
	NodeMCU	2 unit	80.000	160.000
	Push Button	10 unit	2.000	20.000
	PCB	10 unit	35.000	350.000
	Baterai VRLA	1 unit	850.000	850.000
	100 Ah			
	Solder Gun	1 unit	150.000	150.000
	Timah Solder	5 unit	25.000	125.000
	Lem Tembak	1 unit	45.000	45.000
	Box Hitam	1 unit	30.000	30.000
	Komponen			
	Panel Besi	10 unit	35.000	350.000
	Besi Penyangga	4 unit	25.000	250.000
	Kabel Jumper dan	3 Paket	35.000	105.000
	komponen			
	elektronik lainnya			
			SUB TOTAL (Rp)	4.115.000
2.	Belanja Sewa			
	Sewa Oven dari	2 bulan	100.000	200.000
	Laboratorium			
	Terpadu			
	Universitas			
	Sumatera Utara			
	Sewa Humidity	2 Bulan	100.000	200.000
	Tester			
	Sewa	2 Bulan	30.000	60.000
	Thermometer			
	,		SUB TOTAL (Rp)	460.000
3.	Perjalanan			
	Lokal			

Biaya Pengiriman	2 kali	150.000	300.000
Komponen (On-			
line)			
Akomodasi	5 orang	70.000	350.000
Perjalanan			
Pengujian Alat			
Biaya	1 kali	200.000	200.000
Pengangkutan			
Sampel Padi			
Biaya	1 kali	400.000	400.000
Pngangkutan Alat			
ke Lokasi			
Pengujian			
		SUB TOTAL (RP)	1.250.000
4. Lain – lain			
Administrasi,	1 Paker	500.000	500.000
Laporan Akhir,			
Seminar			
Jasa Tempa Box	1 kali	150.000	150.000
Pengering			
Kuota Internet	3 bulan	100.000	300.000
Anggota			
Uji Validasi	5 kali	10.000	50.000
Sensor Suhu			
Uji Validasi	5 Kali	10.000	50.000
Sensor			
Kelembaban			
		SUB TOTAL (Rp)	1.050.000
		GRAND TOTAL (Rp)	6.875.000
GRAND TOTAL TERBILAN	IG (ENAM	JUTA DELAPAN RATU	JS TUJUH

PULUH LIMA RIBU RUPIAH)

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No	Nama/NIM	Program	Bidang	giatan dan Pemb Alokasi	Urairan Tugas
110	1 valla, 1 viivi	Studi	Ilmu	Waktu	Cranan rugas
		Staar	IIIIu	(jam/minggu)	
1.	Syaipuddin Muda Pane 190801009	S-1	Fisika	8 8	 Mengkoordinir Pelaksanaan Kegiatan Persiapan Administrasi dan Peralatan Penelitian Konstruksi Solar Dryer 4.0 Anti Konflik Berbasis <i>Internet of</i> Things
2.	Sherly Syafrina 190801035	S-1	Fisika	6	 Desain dan Pembuatan dan Perancangan Sistem Elektronik Pemilihan alat dan bahan yang diperlukan dalam penelitian Pengujian Skala Lapangan dan Lab
3.	Putriana 190801023	S-1	Fisika	6	 Konstruksi Solar Dryer 4.0 berbasis <i>Internet of Things</i> Performa dan analisis Solar Dryer Anti Konflik 4.0 berbasis

					Internet of
4.	Ahmad Fadlan 190801	S-1	Fisika	6	Things - Konstruksi Solar Dryer 4.0 berbasis Internet of Things - Performa dan analisis Solar
					Dryer Anti Konflik 4.0 berbasis Internet of Things - Pengolahan dan analisis data
5.	Rayqal Aulia Alrezka 210801097	S-1	Fisika	6	 Pemilihan alat dan bahan yang diperlukan dalam penelitan Pengolahan dan analisis data Laporan Akhir

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PELAKSANA

Yang bertandatangan di bawah ini:

Nama Ketua Tim	:	Syaipuddin Muda Pane
Nomor Induk Mahasiswa	1:	190801009
Program Studi	1:	S-1 Fisika
Nama Dosen Pendamping	1:	Dr. Tulus Ikhsan Nasution, S.Si., M.Sc.
Perguruan Tinggi	1:	Universitas Sumatera Utara

Dengan ini menyatakan bahwa proposal **PKM-KC** saya dengan judul "Solar Dryer Anti Konflik 4.0 Berbasis Internet of thinngs: Pengering cerdas Solusi Penjemuran Padi pada Musim penghujan" yang diusulkan untuk tahun anggaran 2022 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Medan, 30-03-2022 Yang Menyatakan

(Syaipuddin Muda Pane) NIM, 190801009

Lampiran 5. Gambaran Teknologi yang akan dikembangkan

Alat Pengering Solar Dryer Anti Konflik 4.0 Berbasis Internet of Things: Pengering Cerdas Solusi Penjemuran Padi pada Musim Penghujan. (a) Tampak Depan, (b) Tampak Sampng, (c) Tampak Belakang