Informed Search and Exploration

Berlin Chen

Department of Computer Science & Information Engineering National Taiwan Normal University

Reference:

- 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapter 4
- 2. S. Russell's teaching materials

Introduction

- Informed Search
 - Also called heuristic search
 - Use problem-specific knowledge
 - Search strategy: a node is selected for exploration based on an evaluation function, f(n)
 - · Estimate of desirability

- Evaluation function generally consists of two parts
 - The path cost from the initial state to a node n, g(n) (optional)
 - The estimated cost of the cheapest path from a node n to a goal node, the heuristic function, h(n)
 - If the node *n* is a goal state $\rightarrow h(n) = 0$
 - Can't be computed from the problem definition (need experience)

Heuristics

- Used to describe rules of thumb or advise that are generally effective, but not guaranteed to work in every case
- In the context of search, a heuristic is a function that takes a state as an argument and returns a number that is an estimate of the merit of the state with respect to the goal
- Not all heuristic functions are beneficial
 - Should consider the time spent on evaluating the heuristic function
 - Useful heuristics should be computationally inexpensive

Best-First Search

- Choose the most desirable (seemly-best) node for expansion based on evaluation function
 - Lowest cost/highest probability evaluation
- Implementation
 - Fringe is a priority queue in decreasing order of desirability
- Several kinds of best-first search introduced
 - Greedy best-first search
 - A* search
 - Iterative-Deepening A* search
 - Recursive best-first search
 - Simplified memory-bounded A* search

memory-bounded heuristic search

Map of Romania

Greedy Best-First Search

 Expand the node that appears to be closet to the goal, based on the heuristic function only

$$f(n) = h(n) =$$
estimate of cost from node n to the closest goal

- E.g., the straight-line distance heuristics $\,h_{\rm SLD}\,$ to Bucharest for the route-finding problem
 - $h_{SLD}(In(Arad)) = 366$

 "greedy" – at each search step the algorithm always tries to get close to the goal as it can

Example 2: the 8-puzzle problem

7

Step 2

8

• Example 2: the 8-puzzle problem (cont.)

Figure 11.6 Applying best-first search to the 8-puzzle: (a) initial configuration; (b) final configuration; and (c) states resulting from the first four steps of best-first search. Each state is labeled with its h-value (that is, the Manhattan distance from the state to the final state).

Properties of Greedy Best-First Search

- Prefer to follow a single path all the way to the goal, and will back up when dead end is hit (like DFS)
 - Also have the possibility to go down infinitely
- Is neither optimal nor complete
 - Not complete: could get suck in loops
 - E.g., finding path from Iasi to Fagars

- Time and space complexity
 - Worse case: $O(b^m)$
 - But a good heuristic function could give dramatic improvement

A* Search

Hart, Nilsson, Raphael, 1968

- Pronounced as "A-star search"
- Expand a node by evaluating the path cost to reach itself, g(n), and the estimated path cost from it to the goal, h(n)
 - Evaluation function

$$f(n) = g(n) + h(n)$$

 $g(n) = \text{path cost so far to reach } n$
 $h(n) = \text{estimated path cost to goal from } n$
 $f(n) = \text{estimated total path cost through } n \text{ to goal}$

- Uniform-cost search + greedy best-first search?
- Avoid expanding nodes that are already expansive

- A* is optimal if the heuristic function h(n) never overestimates
 - Or say "if the heuristic function is admissible"
 - E.g. the straight-line-distance heuristics are admissible

$$h(n) \le h^*(n)$$
,
where $h^*(n)$ is the true path cost from n to goal

Finding the shortest-path goal

Example 2: the state-space just represented as a tree

Fringe (sorted)

Fringe Top	Fringe Elements
A(15)	A(15)
C(15)	C(15), B(13), D(7)
G(14)	G(14), B(13), F(9), D(7)
B(13)	B(13), L3(12), F(9), D(7)
L3(12)	L3(12), E(11), F(9), D(7)

Evaluation function of node n: f(n) = g(n) + h(n)

Node	g(n)	<u>h(n)</u>	<u>f(n)</u>
A	0	15	15
В	4	9	13
\mathbf{C}	3	12	15
D	2	5	7
\mathbf{E}	7	4	11
F	7	2	9
\mathbf{G}	11	3	14
L1	9	0	9
L2	8	0	8
L3	12	0	12
L4	5	0	5

Consistency of A* Heuristics

A heuristic h is consistent if

$$h(n) \le c(n, a, n') + h(n')$$
successor of n

- If h is consistent (monotonic)

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$\geq f(n)$$

Finding the shortest-path goal

, where $h(\cdot)$ is the straight-line distance to the nearest goal

– I.e., f(n) is nondecreasing along any path during search

Contours of the Evaluation Functions

Fringe (leaf) nodes expanded in concentric contours

- Uniformed search ($\forall n, h(n) = 0$)
 - Bands circulate around the initial state
- A* search
 - Bands stretch toward the goal and is narrowly focused around the optimal path if more accurate heuristics were used

Contours of the Evaluation Functions (cont.)

- If G is the optimal goal
 - A* search expands all nodes with f(n) < f(G)
 - A* search expands some nodes with f(n)=f(G)
 - A* expands no nodes with f(n) > f(G)

Optimality of A* Search

- A* search is optimal
- Proof
 - Suppose some suboptimal goal G₂ has been generated and is in the fringe (queue)
 - Let n be an unexpanded node on a shortest path to an optimal goal G

$$G \bigcirc$$

$$f(G_2) = g(G_2)$$

$$> g(G)(=g(n) + h^*(n))$$
since G_2 is suboptiomd
$$\ge f(n) (=g(n) + h(n))$$
since G_2 is suboptiomd
$$\ge f(n) (=g(n) + h(n))$$
since G_2 is admissible G_2 is a dmissible G_2 is a dmissible

- A* will never select G_2 for expansion since $f(G_2) > f(n)$

Optimality of A* Search (cont.)

Another proof

- Suppose when algorithm terminates, G_2 is a complete path (a solution) on the top of the fringe and a node n that stands for a partial path presents somewhere on the fringe. There exists a complete path G passing through n, which is not equal to G_2 and is optimal (with the lowest path cost)
 - 1. G is a complete which passes through node n, f(G) >= f(n)
 - 2. Because G_2 is on the top of the fringe, $f(G_2) <= f(n) <= f(G)$
 - 3. Therefore, it makes contrariety !!

A* search optimally efficient

 For any given heuristic function, no other optimal algorithms is guaranteed to expand fewer nodes than A*

Completeness of A* Search

- A* search is complete
 - If every node has a finite branching factor
 - If there are finitely many nodes with $f(n) \le f(G)$
 - Every infinite path has an infinite path cost

Proof:

Because A* adds bands (expands nodes) in order of increasing f, it must eventually reach a band where f is equal to the path to a goal state.

• To Summarize again If G is the optimal goal

 A^* expands all nodes with f(n) < f(G)

 A^* expands smoe nodes with f(n) = f(G)

 A^* expands no nodes with f(n) > f(G)

Complexity of A* Search

- Time complexity: $O(b^d)$
- Space complexity: O(b^d)
 - Keep all nodes in memory
 - Not practical for many large-scale problems

Theorem

 The search space of A* grows exponentially unless the error in the heuristic function grows no faster than the logarithm of the actual path cost

$$|h(n)-h^*(n)| \leq O(\log h^*(n))$$

Memory-bounded Heuristic Search

- Iterative-Deepening A* search
- Recursive best-first search
- Simplified memory-bounded A* search

Iterative Deepening A* Search (IDA*)

- The idea of iterative deepening was adapted to the heuristic search context to reduce memory requirements
- At each iteration, DFS is performed by using the f-cost (g + h) as the cutoff rather than the depth
 - E.g., the smallest f-cost of any node that exceeded the cutoff on the previous iteration

Iterative Deepening A* Search (cont.)

```
function IDA*(problem) returns a solution sequence
            inputs: problem, a problem
            static: f-limit, the current f- Cost limit
                    root, a node
            root \leftarrow MAKE-NODE(INITIAL-STATE[problem])
            f-limit \leftarrow f-Cost(root)
            loop do
                solution, f-limit \leftarrow DFS-Contour(root, f-limit)
Iterations-
                if solution is non-null then return solution
                if f-limit = \infty then return failure; end
         function DFS-Contour(node, f-limit) returns a solution sequence and a new f- Cost limit
            inputs: node, a node
                    f-limit, the current f - COST limit
            static: next-f, the f- Cost limit for the next contour, initially \infty
            if f - Cost[node] > f-limit then return null, f - Cost[node]
            if GOAL-TEST[problem](STATE[node]) then return node, f-limit
            for each node s in SUCCESSORS(node) do
                solution, new-f \leftarrow DFS-Contour(s, f-limit)
                if solution is non-null then return solution, f-limit
                next-f \leftarrow MIN(next-f, new-f); end
            return null, next-f
```

Properties of IDA*

- IDA* is complete and optimal
- Space complexity: $O(bf(G)/\delta) \approx O(bd)$
 - $-\delta$: the smallest step cost
 - f(G): the optimal solution cost
- Time complexity: $O(\alpha b^d)$
 - α : the number of distinct f values smaller than the optimal goal
- Between iterations, IDA* retains only a single number the f -cost
- IDA* has difficulties in implementation when dealing with real-valued cost

Recursive Best-First Search (RBFS)

- Attempt to mimic best-first search but use only linear space
 - Can be implemented as a recursive algorithm
 - Keep track of the f -value of the best alternative path from any ancestor of the current node
 - If the current node exceeds the limit, then the recursion unwinds back to the alternative path
 - As the recursion unwinds, the f-value of each node along the path is replaced with the best f-value of its children

Algorithm

```
function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
         RBFS(problem, Make-Node(Initial-State[problem]), \infty)
     function RBFS(problem, node, f_limit) returns a solution, or failure and a new f-cost limit
         if GOAL-TEST[problem](state) then return node
         successors \leftarrow \text{Expand}(node, problem)
         if successors is empty then return failure, \infty
         for each s in successors do
                                                            Evaluation function made
             f[s] \leftarrow \max(g(s) + h(s), f[node])
                                                            monotonously increasing?
         repeat
             best \leftarrow the lowest f-value node in successors
             if f[best] > f\_limit then return failure, f[best]
A child
             alternative \leftarrow the second-lowest f-value among successors
node
             result, f[best] \leftarrow \mathsf{RBFS}(problem, best, \min(f\_limit, alternative))
             if result \neq failure then return result
```


Properties of RBFS

- RBFS is complete and optimal
- Space complexity: O(bd)
- Time complexity : worse case $O(b^d)$
 - Depend on the heuristics and frequency of "mind change"
 - The same states may be explored many times

Simplified Memory-Bounded A* Search (SMA*)

- Make use of all available memory M to carry out A*
- Expanding the best leaf like A* until memory is full
- When full, drop the worst leaf node (with highest f -value)
 - Like RBFS, backup the value of the forgotten node to its parent if it is the best among the subtree of its parent
 - When all children nodes were deleted/dropped, put the parent node to the fringe again for further expansion

Simplified Memory-Bounded A* Search (cont.)

```
function SMA*(problem) returns a solution sequence
  inputs: problem, a problem
  static: Queue, a queue of nodes ordered by f-cost
  Queue \leftarrow MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
  loop do
      if Queue is empty then return failure
      n \leftarrow deepest least-f-cost node in Queue
      if GOAL-TEST(n) then return success
      s \leftarrow \text{Next-Successor}(n)
      if s is not a goal and is at maximum depth then
          f(s) \leftarrow \infty
      else
          f(s) \leftarrow Max(f(n), g(s)+h(s))
      if all of n's successors have been generated then
          update n's f-cost and those of its ancestors if necessary
      if SUCCESSORS(n) all in memory then remove n from Queue
      if memory is full then
          delete shallowest, highest-f-cost node in Queue
          remove it from its parent's successor list
          insert its parent on Queue if necessary
      insert s on Queue
  end
```

Properties of SMA*

- Is complete if $M \ge d$
- Is optimal if $M \ge d$
- Space complexity: O(M)
- Time complexity : worse case $O(b^d)$

Admissible Heuristics

- Take the 8-puzzle problem for example
 - Two heuristic functions considered here
 - $h_1(n)$: number of misplaced tiles
 - h₂(n): the sum of the distances of the tiles from their goal positions (tiles can move vertically, horizontally), also called Manhattan distance or city block distance

- $h_1(n)$: 8
- $h_2(n)$: 3+1+2+2+3+3+2=18

Admissible Heuristics (cont.)

Take the 8-puzzle problem for example

branching factor for 8-puzzle: 2~4

Comparison of IDS and A*

SO	ut	ior
ler	ıgt	h

	Search Cost			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A*(h_2)$	IDS	$A^*(h_1)$	A*(h2)
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	_	1301	211	_	1.45	1.25
18	_	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Figure 4.8 Comparison of the search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A* algorithms with h_1 , h_2 . Data are averaged over 100 instances of the 8-puzzle, for various solution lengths.

100 random problems for each number

$$N+1=1+b^*+(b^*)^2+(b^*)^3+...+(b^*)^d$$

Nodes generated by A*

b*: effective branching factor
Al - Berlin Che

Dominance

- For two heuristic functions h_1 and h_2 (both are admissible), if $h_2(n) \ge h_1(n)$ for all nodes n
 - Then h_2 dominates h_1 and is better for search
 - A* using h_2 will not expand more node than A* using h_1

Inventing Admissible Heuristics

- Relaxed Problems
 - The search heuristics can be achieved from the relaxed versions the original problem
 - Key point: the optimal solution cost to a relaxed problem is an admissible heuristic for the original problem (not greater than the optimal solution cost of the original problem)

- Example 1: the 8-puzzle problem
 - If the rules are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
 - If the rules are relaxed so that a tile can move any adjacent square, then $h_2(n)$ gives the shortest solution

Inventing Admissible Heuristics (cont.)

Example 2: the speech recognition problem

Original Problem (keyword spotting)

Relaxed Problem (used for heuristic calculation)

Note: if the relaxed problem is hard to solve, then the values of the corresponding heuristic will be expansive to obtain

Inventing Admissible Heuristics (cont.)

Composite Heuristics

- Given a collection of admissible heuristics $h_1, h_2, ..., h_m$, none of them dominates any of others

$$h(n) = \max \{h_1(n), h_2(n), ..., h_m(n)\}$$

Subproblem Heuristics

 The cost of the optimal solution of the subproblem is a lower bound on the cost of the complete problem

Inventing Admissible Heuristics (cont.)

Inductive Learning

E.g., the 8-puzzle problem

$x_a(n)$	$x_a(n)$	h'(n)
5	4	14
3	6	11
6	3	16
•	•	•
	<u>.</u>	
2	7	9

 $x_a(n)$: number of misplaced tiles

 $x_b(n)$: number of pairs of adjacent tiles that are adjacent in the goal state

$$h'(n) = C_a \cdot x_a(n) + C_b \cdot x_b(n)$$
 $C_a = ? C_b = ?$
Linear comb

$$C_a = ? C_b = ?$$

Tradeoffs

Iterative Improvement Algorithms

- In many optimization, path to solution is irrelevant
 - E.g., 8-queen, VLSI layout, TSP etc., for finding optimal configuration
 - The goal state itself is the solution
 - The state space is a complete configuration
- In such case, iterative improvement algorithms can be used
 - Start with a complete configuration (represented by a single "current" state)
 - Make modifications to improve the quality

- Example: the *n*-queens problem
 - Put n queens on an nxn board with no queens on the same row, column, or diagonal
 - Move a queen to reduce number of conflicts

- Example: the traveling salesperson problem (TSP)
 - Find the shortest tour visiting all cities exactly one
 - Start with any complete tour, perform pairwise exchanges

- Local search algorithms belongs to iterative improvement algorithms
 - Use a current state and generally move only to the neighbors of that state
 - Properties
 - Use very little memory
 - Applicable to problems with large or infinite state space
- Local search algorithms to be considered
 - Hill-climbing search
 - Simulated annealing
 - Local beam search
 - Genetic algorithms

 Completeness or optimality of the local search algorithms should be considered

Hill-Climbing Search

- "Like climbing Everest in the thick fog with amnesia"
- Choose any successor with a higher value (of objective or heuristic functions) than current state
 - Choose Value[next] ≥ Value[current]

Also called greedy local search

Hill-Climbing Search (cont.)

- Example: the 8-queens problem
 - The heuristic cost function is the number of pairs of queens that are attacking each other

- h=3+4+2+3+2+2+1=17 (calculated from left to right)
- Best successors have h=12
 (when one of queens in Column 2,5,6, and 7 is moved)

Hill-Climbing Search (cont.)

Problems:

- Local maxima: search halts prematurely
- Plateaus: search conducts a random walk
- Ridges: search oscillates with slow progress (resulting in a set of maxima)

Neither complete nor optimal

Solution ?

8-queens stuck in a local minimum

Ridges cause oscillation

Hill-Climbing Search (cont.)

- Several variants
 - Stochastic hill climbing
 - Choose at random from among the uphill moves
 - First-choice hill climbing
 - Generate successors randomly until one that is better than current state is generated
 - A kind of stochastic hill climbing
 - Random-restart hill climbing
 - Conduct a series of hill-climbing searches from randomly generated initial states
 - Stop when goal is found

Simulated Annealing Search

- Combine hill climbing with a random walk to yield both efficiency and completeness
 - Pick a random move at each iteration instead of picking the best move
 - If the move improve the situation → accept!

$$\Delta E = VALUE [next] - VALUE [current]$$

- Otherwise($\Delta E < 0$), have a probability ($e^{\Delta E/T}$) to move to a worse state
 - The probability decreases exponentially as ΔE decreases
 - The probability decreases exponentially as T (temperature) goes down (as time goes by)

Simulated Annealing Search (cont.)

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  local variables: current, a node
                    next, a node
                     T, a "temperature" controlling the probability of downward steps
  current \leftarrow MAKE-NODE(INITIAL-STATE[problem])
  for t \leftarrow 1 to \infty do
      T \leftarrow schedule[t]
      if T = 0 then return current
      next \leftarrow a randomly selected successor of current
      \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
      if \Delta E > 0 then current \leftarrow next
      else current \leftarrow next only with probability e^{\Delta E/T}
```

Be negative here!

Local Beam Search

- Keep track of k states rather than just one
 - Begin with k randomly generated states
 - All successors of the k states are generated at each iteration
 - If any one is a goal → halt!
 - Otherwise, select k best successors from them and continue the iteration
 - Information is passed/exchanged among these k search threads
 - · Compared to the random-restart search
 - Each process run independently

Local Beam Search (cont.)

Problem

- The k states may quickly become concentrated in a small region of the state space
- Like an expensive version of hill climbing

Solution

- A variant version called stochastic beam search
 - Choose a given successor at random with a probability in increasing function of its value
 - Resemble the process of natural selection

Genetic Algorithms (GAs)

- Developed and patterned after biological evolution
- Also regarded as a variant of stochastic beam search
 - Successors are generated from multiple current states
 - A population of potential solutions are maintained
 - States are often described by bit strings (like chromosomes)
 whose interpretation depends on the applications
 - Binary-coded or alphabet
 (11, 6, 9) → (101101101001)
 - Encoding: translate problem-specific knowledge to GA framework
 - Search begins with a population of randomly generated initial states

- The successor states are generated by combining two parent states, rather then by modifying a single state
 - Current population/states are evaluated with a fitness function and selected probabilistically as seeds for producing the next generation
 - Fitness function: the criteria for ranking
 - Recombine parts of the best (most fit) currently known states
 - Generate-and-test beam search

- Three phases of GAs
 - Selection → Crossover → Mutation

Selection

- Determine which parent strings (chromosomes) participate in producing offspring for the next generation
- The selection probability is proportional to the fitness values

$$\Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{P} Fitness(h_j)}$$

Some strings (chromosomes) would be selected more than once

- Two most common (genetic) operators which try to mimic biological evolution are performed at each iteration
 - Crossover
 - Produce new offspring by crossing over the two mated parent strings at randomly (a) chosen crossover point(s) (bit position(s))
 - Selected bits copied from each parent
 - Mutation
 - Often performed after crossover
 - Each (bit) location of the randomly selected offspring is subject to random mutation with a small independent probability
- Applicable problems
 - Function approximation & optimization, circuit layout etc.

Example 1: the 8-queens problem offspring parents 32748 152 32752411 24748552 32748552 24 31% 24752411 24748552 24752411 32752411 23 29% 32252124 32752411 32752124 24415124 26% 20 24415411 24415417 24415124 32543213 14% 11 (a) (b) (c) (d) (e) Initial Population Fitness Function Selection Crossover Mutation Fitness (h_i) number of non attacking $\Pr(h_i) =$ pairs of queens Fitness (h, + 7 5 2 7 4 8 7 4 8 2 Al - Berlin Chen 67

• Example 2: common crossover operators

Example 3: HMM adaptation in Speech Recognition

sequences of HMM mean vectors

$$\begin{array}{l} \boldsymbol{h}_1 = \begin{pmatrix} k_1, k_2, k_3, \dots, k_D \end{pmatrix} & \boldsymbol{s}_1 = \begin{pmatrix} k_1 \cdot i_f + m_1 \cdot (1-i_f), k_2 \cdot i_f + m_2(1-i_f), m_3 \cdot i_f + k_3(1-i_f), \dots, m_3 \cdot i_f + k_D(1-i_f) \end{pmatrix} \\ \boldsymbol{h}_2 = \begin{pmatrix} m_1, m_2, \dots, m_D \end{pmatrix} & \boldsymbol{s}_2 = \begin{pmatrix} m_1 \cdot i_f + k_1 \cdot (1-i_f), m_2 \cdot i_f + k_2(1-i_f), k_3 \cdot i_f + m_3(1-i_f), \dots, k_3 \cdot i_f + m_D(1-i_f) \end{pmatrix} \\ & \text{crossover} \\ & \text{(reproduction)} & \boldsymbol{g}_d \implies \hat{\boldsymbol{g}}_d = \boldsymbol{g}_d + \boldsymbol{\varepsilon} \cdot \boldsymbol{\sigma}_d \\ & \text{mutation} \end{array}$$

```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
  inputs: population, a set of individuals
           FITNESS-FN, a function that measures the fitness of an individual
  repeat
      new\_population \leftarrow empty set
      loop for i from 1 to SIZE(population) do
          x \leftarrow \text{RANDOM-SELECTION}(population, FITNESS-FN)
          y \leftarrow \text{RANDOM-SELECTION}(population, FITNESS-FN)
          child \leftarrow REPRODUCE(x, y)
          if (small random probability) then child \leftarrow MUTATE(child)
          add child to new_population
      population \leftarrow new\_population
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to FITNESS-FN
function REPRODUCE(x, y) returns an individual
  inputs: x, y, parent individuals
  n \leftarrow \text{LENGTH}(x)
  c \leftarrow random number from 1 to n
  return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```

- Main issues
 - Encoding schemes
 - Representation of problem states
 - Size of population
 - Too small → converging too quickly, and vice versa
 - Fitness function
 - The objective function for optimization/maximization
 - Ranking members in a population

Properties of GAs

- GAs conduct a randomized, parallel, hill-climbing search for states that optimize a predefined fitness function
- GAs are based an analogy to biological evolution
- It is not clear whether the appeal of GAs arises from their performance or from their aesthetically pleasing origins in the theory of evolution

Local Search in Continuous Spaces

- Most real-world environments are continuous
 - The successors of a given state could be infinite

Example:

Place three new airports anywhere in Romania, such that the sum of squared distances from each cities to its nearest airport is minimized

Local Search in Continuous Spaces (cont.)

- Two main approach to find the maximum or minimum of the objective function by taking the gradient
 - 1. Set the gradient to be equal to zero (=0) and try to find the closed form solution
 - If it exists → lucky!
 - 2. If no closed form solution exists
 - Perform gradient search!

Local Search in Continuous Spaces (cont.)

Gradient Search

- A hill climbing method
- Search in the space defined by the real numbers
- Guaranteed to find local maximum
- Not Guaranteed to find global maximum

maximization the gradient of objective function
$$\hat{x} = x + \alpha \nabla f(x) = x + \alpha \frac{df(x)}{dx}$$
 minimization
$$\hat{x} = x - \alpha \nabla f(x) = x - \alpha \frac{df(x)}{dx}$$

Online Search

- Offline search mentioned previously
 - Nodes expansion involves simulated rather real actions
 - Easy to expand a node in one part of the search space and then immediately expand a node in another part of the search space

- Online search
 - Expand a node physically occupied
 - The next node expanded (except when backtracking) is the child of previous node expanded
 - Traveling all the way across the tree to expand the next node is costly

Online Search (cont.)

- Algorithms for online search
 - Depth-first search
 - If the actions of agent is reversible (backtracking is allowable)
 - Hill-climbing search
 - However random restarts are prohibitive
 - Random walk
 - Select at random one of the available actions from current state
 - Could take exponentially many steps to find the goal

