(LL)RF and EPICS

Michael Davidsaver mdavidsaver@ospreydcs.com

Why DCS?

- Why bother with a Distributed Control System?
- Scope and Scale
 - RF >= LLRF
- Integration / Uniformity

Pieces of an RF System

Circulators, switches, loads Directional couplers ...

Interlocks

Vacuum

Arc detection

The "Slow" Parts

Interlocks!

SCADA

<< 100 Hz

- Personal Safety / Physical access control
 - eg. Door switches
 - Typically high reliability PLC w/ redundant I/O
- Equipment Protection
 - eg. thermal switches
- Cooling
 - Water water everywhere...
 - Sometimes LN₂ and/or He
- Vacuum
 - Pumps, Gauges, RGAs, ...

Insulating vacuum in cavity, wave guide, cavity, ...

Sometimes 2x vendors!
Often "one way" communication with DCS

Recommended Reading
Therac 25 Incident

Leveson (1993) "An Investigation of the Therac-25 Accidents".

The (maybe) Faster Parts

 \sim 1 KHz \rightarrow \sim 1 MHz

- RF chain monitoring
 - Directional Couplers
 - Amplitude (and sometimes phase)
- Arc detection
- Cavity tuner
 - Motor / Piezo. actuator(s)

The Fast Parts

> ~10 MHz

- LLRF
 - ...
- Timing
 - Clock & trigger distribution

What is EPICS

- Experimental Physics and Industrial Control System
- Free and Open Source SW Toolkit to build DCS
- Developed since ~1990
- In use at many facilities large and small
 - Particle, Plasma, Telescopes, ...

EPICS is ...

- Collaboration of many laboratories, companies, and organizations
- Software ecosystem

Drivers for lots of common hardware!

Network protocol(s)

... also uncommon ...

- Conventions
- Your friendly local controls group

Jargon...

- EPICS ...
- PV Process Variable. Addressable unit of data
- CA / PVA Network protocols
- IOC Input/Output Controller

 Most common type of server
- Record Data structure in an IOC Often for each I/O point
- (Record) Field Part of such a data structure

PV is ...

- Process Variable name
 - Address string used by CA and PVA protocols
- Unique within facility (or at least a network)
- •
- Often cryptic
- Hiding among many many others

CA / PVA are ...

- Network protocols
 - Channel Access protocol (designed circa 1980)
 - PV Access protocol (designed circa 2010)
- Get / Put / RPC (pva only)
- Publish / subscribe
 - Data rate driven by IOC / hardware
 - Zero updates → ~0 bandwidth (only periodic keepalive)
- Multiplex
 - eg. 1000 subscriptions over one socket

```
CLI tools
cainfo / pvinfo
caget / pvget
caput / pvput
camonitor / pvmonitor
/ pvcall
```

PVA adds extendable Data types

IOC is ...

- Input / Output Controller
 - An OS process
 - Sometimes the host computer
- Modular / (mostly) dynamic data processing engine
- Interact with "device"s
- CA/PVA Network server
- CA/PVA Network client
 - An IOC can easily talk to other IOCs!

EPICS Logical Components

Osprey DCS

Controls Interfaces *Example*

When to use EPICS

- Integrating hardware from many vendors
 - Leverage existing driver SW
- Large scale (loosely coupled)
- Flexible

When not to use EPICS

- Not a PLC
 - Not a safety system!
- Not an FPGA

Demo

