Square duct heat flow example: Examples 1.5 p. 28, 1.8 p. 44, and 1.11 p. 52

Cross-section of a 20 cm by 20 cm duct made of concrete walls 20 cm thick is shown in Figure. The inside surface of the duct is maintained at a temperature of 300 °C due to hot gases flowing from a furnace. On the outside the duct is exposed to air with an ambient temperature of 20 °C. The heat conduction coefficient of concrete is $1.4 \, W/m$. °C. The average convection heat transfer coefficient on the outside of the duct is $27 \, W/m$. °C.

Global equations at start of the element assembly process

Equations for element 1

$$k_x = 1.4$$
 $k_y = 1.4$ $Q = 0$

Nodal coordinates

$$x_1 = 0.$$
 $x_2 = 0.2$ $x_3 = 0.1$
 $y_1 = 0.$ $y_2 = 0.$ $y_3 = 0.1$

Using these values we get

$$\begin{aligned} b_1 &= -0.1 & b_2 &= 0.1 & b_3 &= 0. \\ c_1 &= -0.1 & c_2 &= -0.1 & c_3 &= 0.2 \\ f_1 &= 0.02 & f_2 &= 0. & f_3 &= 0. \end{aligned}$$

Element area, A = 0.01

Substituting these values we get

$$\mathbf{k}_{k} = \begin{pmatrix} 0.7 & 0. & -0.7 \\ 0. & 0.7 & -0.7 \\ -0.7 & -0.7 & 1.4 \end{pmatrix} \qquad \mathbf{r}_{Q} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Complete element equations

$$\begin{pmatrix} 0.7 & 0. & -0.7 \\ 0. & 0.7 & -0.7 \\ -0.7 & -0.7 & 1.4 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The element contributes to {1, 2, 5} global degrees of freedom.

Locations for element contributions to a global vector: $\begin{pmatrix} 1\\2\\5 \end{pmatrix}$

and to a global matrix:
$$\begin{bmatrix} [1,1] & [1,2] & [1,5] \\ [2,1] & [2,2] & [2,5] \\ [5,1] & [5,2] & [5,5] \end{bmatrix}$$

Adding element equations into appropriate locations we have

Equations for element 2

$$k_x = 1.4$$
 $k_y = 1.4$ $Q = 0$

Nodal coordinates

Element node	Global node number	X	y
1	2	0.2	0.
2	3	0.2	0.3
3	5	0.1	0.1
0.2	0.1		

$$x_1 = 0.2$$
 $x_2 = 0.2$ $x_3 = 0.1$
 $y_1 = 0.$ $y_2 = 0.3$ $y_3 = 0.1$

Using these values we get

$$b_1 = 0.2$$
 $b_2 = 0.1$ $b_3 = -0.3$ $c_1 = -0.1$ $c_2 = 0.1$ $c_3 = 0.$ $f_1 = -0.01$ $f_2 = -0.02$ $f_3 = 0.06$

Element area, A = 0.015

Substituting these values we get

$$\mathbf{k}_{k} = \begin{pmatrix} 1.16667 & 0.233333 & -1.4 \\ 0.233333 & 0.466667 & -0.7 \\ -1.4 & -0.7 & 2.1 \end{pmatrix} \qquad \mathbf{r}_{Q} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Convection on side 1 (nodes $\{2, 3\}$) with h = 27 and $T_{\infty} = 20$

End nodal coordinates: ($\{0.2, 0.\}$ $\{0.2, 0.3\}$) giving side length, L = 0.3

Using these values we get

$$\mathbf{k}_{h} = \begin{pmatrix} 2.7 & 1.35 & 0 \\ 1.35 & 2.7 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{r}_{h} = \begin{pmatrix} 81. \\ 81. \\ 0 \end{pmatrix}$$

Complete element equations

$$\begin{pmatrix} 3.86667 & 1.58333 & -1.4 \\ 1.58333 & 3.16667 & -0.7 \\ -1.4 & -0.7 & 2.1 \end{pmatrix} \begin{pmatrix} T_2 \\ T_3 \\ T_5 \end{pmatrix} = \begin{pmatrix} 81. \\ 81. \\ 0 \end{pmatrix}$$

The element contributes to {2, 3, 5} global degrees of freedom.

Locations for element contributions to a global vector: $\begin{pmatrix} 2\\3\\5 \end{pmatrix}$

and to a global matrix:
$$\begin{bmatrix} [2,2] & [2,3] & [2,5] \\ [3,2] & [3,3] & [3,5] \\ [5,2] & [5,3] & [5,5] \end{bmatrix}$$

Adding element equations into appropriate locations we have

$$\begin{pmatrix} 0.7 & 0 & 0 & 0 & -0.7 \\ 0 & 4.56667 & 1.58333 & 0 & -2.1 \\ 0 & 1.58333 & 3.16667 & 0 & -0.7 \\ 0 & 0 & 0 & 0 & 0 \\ -0.7 & -2.1 & -0.7 & 0 & 3.5 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 81. \\ 81. \\ 0 \\ 0 \end{pmatrix}$$

Equations for element 3

$$k_x=1.4 \hspace{1cm} k_y=1.4 \hspace{1cm} Q=0 \\$$

Nodal coordinates

Using these values we get

$$b_1 = 0.$$
 $b_2 = -0.2$ $b_3 = 0.2$ $c_1 = 0.1$ $c_2 = 0.1$ $c_3 = -0.2$ $f_1 = -0.01$ $f_2 = 0.01$ $f_3 = 0.02$

Element area, A = 0.01

Substituting these values we get

$$\mathbf{k}_{k} = \begin{pmatrix} 0.35 & 0.35 & -0.7 \\ 0.35 & 1.75 & -2.1 \\ -0.7 & -2.1 & 2.8 \end{pmatrix} \qquad \mathbf{r}_{Q} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Complete element equations

$$\begin{pmatrix} 0.35 & 0.35 & -0.7 \\ 0.35 & 1.75 & -2.1 \\ -0.7 & -2.1 & 2.8 \end{pmatrix} \begin{pmatrix} T_3 \\ T_4 \\ T_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The element contributes to {3, 4, 5} global degrees of freedom.

Locations for element contributions to a global vector: $\begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$

and to a global matrix:
$$\begin{bmatrix} [3,3] & [3,4] & [3,5] \\ [4,3] & [4,4] & [4,5] \\ [5,3] & [5,4] & [5,5] \end{pmatrix}$$

Adding element equations into appropriate locations we have

$$\begin{pmatrix} 0.7 & 0 & 0 & 0 & -0.7 \\ 0 & 4.56667 & 1.58333 & 0 & -2.1 \\ 0 & 1.58333 & 3.51667 & 0.35 & -1.4 \\ 0 & 0 & 0.35 & 1.75 & -2.1 \\ -0.7 & -2.1 & -1.4 & -2.1 & 6.3 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 81. \\ 81. \\ 0 \\ 0 \end{pmatrix}$$

Equations for element 4

$$k_x = 1.4$$
 $k_y = 1.4$ $Q = 0$

Nodal coordinates

Element n	ode (Global node number	X	у
1		1	0.	0.
2		5	0.1	0.1
3		4	0.	0.1
0	0.1	0		

$$x_1 = 0.$$
 $x_2 = 0.1$ $x_3 = 0.$ $y_1 = 0.$ $y_2 = 0.1$ $y_3 = 0.1$

Using these values we get

$$b_1 = 0.$$
 $b_2 = 0.1$ $b_3 = -0.1$ $c_1 = -0.1$ $c_2 = 0.$ $c_3 = 0.1$ $f_1 = 0.01$ $f_2 = 0.$ $f_3 = 0.$

Element area, A = 0.005

Substituting these values we get

$$\mathbf{k}_{k} = \begin{pmatrix} 0.7 & 0. & -0.7 \\ 0. & 0.7 & -0.7 \\ -0.7 & -0.7 & 1.4 \end{pmatrix} \qquad \mathbf{r}_{Q} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Complete element equations

$$\begin{pmatrix} 0.7 & 0. & -0.7 \\ 0. & 0.7 & -0.7 \\ -0.7 & -0.7 & 1.4 \end{pmatrix} \begin{pmatrix} T_1 \\ T_5 \\ T_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The element contributes to {1, 5, 4} global degrees of freedom.

Locations for element contributions to a global vector: $\begin{bmatrix} 1\\5\\4 \end{bmatrix}$

and to a global matrix:
$$\begin{bmatrix} [1,1] & [1,5] & [1,4] \\ [5,1] & [5,5] & [5,4] \\ [4,1] & [4,5] & [4,4] \end{bmatrix}$$

Adding element equations into appropriate locations we have

$$\begin{pmatrix} 1.4 & 0 & 0 & -0.7 & -0.7 \\ 0 & 4.56667 & 1.58333 & 0 & -2.1 \\ 0 & 1.58333 & 3.51667 & 0.35 & -1.4 \\ -0.7 & 0 & 0.35 & 3.15 & -2.8 \\ -0.7 & -2.1 & -1.4 & -2.8 & 7. \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 81. \\ 81. \\ 0 \\ 0 \end{pmatrix}$$

Essential boundary conditions

$$\begin{array}{ccc} Node & dof & Value \\ 1 & T_1 & 300 \\ 4 & T_4 & 300 \end{array}$$

Delete equations $\{1, 4\}$.

$$\begin{pmatrix} 0 & 4.56667 & 1.58333 & 0 & -2.1 \\ 0 & 1.58333 & 3.51667 & 0.35 & -1.4 \\ -0.7 & -2.1 & -1.4 & -2.8 & 7. \end{pmatrix} \begin{pmatrix} 300 \\ T_2 \\ T_3 \\ 300 \\ T_5 \end{pmatrix} = \begin{pmatrix} 81. \\ 81. \\ 0 \end{pmatrix}$$

Extract columns {1, 4}.

Multiply each column by its respective known value {300, 300}.

Move all resulting vectors to the rhs.

After adjusting for essential boundary conditions we have

$$\begin{pmatrix} 4.56667 & 1.58333 & -2.1 \\ 1.58333 & 3.51667 & -1.4 \\ -2.1 & -1.4 & 7. \end{pmatrix} \begin{pmatrix} T_2 \\ T_3 \\ T_5 \end{pmatrix} = \begin{pmatrix} 81. \\ -24. \\ 1050. \end{pmatrix}$$

Solving the final system of global equations we get

$$\{T_2 = 93.5466, T_3 = 23.8437, T_5 = 182.833\}$$

Complete table of nodal values

2 93.5466

3 23.8437

4 300

5 182.833

Computation of reactions

Equation numbers of dof with specified values: {1, 4}

Extracting equations {1, 4} from the global system we have

$$\begin{pmatrix} 1.4 & 0 & 0 & -0.7 & -0.7 \\ -0.7 & 0 & 0.35 & 3.15 & -2.8 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \end{pmatrix} = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$

Substituting the nodal values and re-arranging

$$\begin{pmatrix} R_1 \\ R_2 \end{pmatrix} = \begin{pmatrix} 1.4 & 0 & 0 & -0.7 & -0.7 \\ -0.7 & 0 & 0.35 & 3.15 & -2.8 \end{pmatrix} \begin{pmatrix} 300 \\ 93.5466 \\ 23.8437 \\ 300 \\ 182.833 \end{pmatrix}$$

Carrying out computations, the reactions are as follows.

 $\begin{array}{ccc} \text{Label} & \text{dof} & \text{Reaction} \\ R_1 & T_1 & 82.0171 \\ R_2 & T_4 & 231.414 \end{array}$

Sum of Reactions

313.431

Solution for element 1

Nodal coordinates

Ele	ement node	Global node number	X	у
	1	1	0.	0.
	2	2	0.2	0.
	3	5	0.1	0.1
$x_1 = 0.$	$x_2 = 0.2$	$x_3 = 0.1$		
$y_1 = 0.$	$y_2 = 0.$	$y_3 = 0.1$		

Using these values we get

$$\begin{aligned} b_1 &= -0.1 & b_2 &= 0.1 & b_3 &= 0. \\ c_1 &= -0.1 & c_2 &= -0.1 & c_3 &= 0.2 \\ f_1 &= 0.02 & f_2 &= 0. & f_3 &= 0. \end{aligned}$$

Element area, A = 0.01

Substituting these into the formulas for triangle interpolation functions we get

Interpolation functions, $N^{T} = \{-5. x - 5. y + 1., 5. x - 5. y, 10. y\}$

From global solution the temperatures at the element nodes are

(from nodes
$$\{1, 2, 5\}$$
), $d^{T} = \{300, 93.5466, 182.833\}$

Thus the temperature distribution over the element, $T(x,y) = N^{T}d = -1032.27 \text{ x} - 139.406 \text{ y} + 300.$

Differentiating with respect to x and y, $\partial T/\partial x = -1032.27$ and $\partial T/\partial y = -139.406$

Solution for element 2

Nodal coordinates

Elen	nent node	Global node number	X	y
	1	2	0.2	0.
	2	3	0.2	0.3
	3	5	0.1	0.1
$x_1 = 0.2$	$x_2 = 0.2$	$x_3 = 0.1$		
$y_1 = 0.$	$y_2 = 0.3$	$y_3 = 0.1$		

Using these values we get

$$\begin{array}{lll} b_1 = 0.2 & b_2 = 0.1 & b_3 = -0.3 \\ \\ c_1 = -0.1 & c_2 = 0.1 & c_3 = 0. \\ \\ f_1 = -0.01 & f_2 = -0.02 & f_3 = 0.06 \end{array}$$

Element area, A = 0.015

Substituting these into the formulas for triangle interpolation functions we get

Interpolation functions,
$$N^{T} = \{6.66667 \text{ x} - 3.33333 \text{ y} - 0.333333 \text{ y} - 0.333333 \text{ x} + 3.33333 \text{ y} - 0.666667, 2. - 10. x\}$$

From global solution the temperatures at the element nodes are

(from nodes
$$\{2, 3, 5\}$$
), $\mathbf{d}^{T} = \{93.5466, 23.8437, 182.833\}$

Thus the temperature distribution over the element, $T(x,y) = N^{T}d = -1125.2 \text{ x} - 232.343 \text{ y} + 318.587$

Differentiating with respect to x and y, $\partial T/\partial x = -1125.2$ and $\partial T/\partial y = -232.343$

Solution for element 3

Nodal coordinates

Elen	nent node	Global node number	X	y
	1	3	0.2	0.3
	2	4	0.	0.1
	3	5	0.1	0.1
$x_1 = 0.2$	$x_2 = 0.$	$x_3 = 0.1$		
$y_1 = 0.3$	$y_2 = 0.1$	$y_3 = 0.1$		

Using these values we get

$$b_1 = 0.$$
 $b_2 = -0.2$ $b_3 = 0.2$ $c_1 = 0.1$ $c_2 = 0.1$ $c_3 = -0.2$ $f_1 = -0.01$ $f_2 = 0.01$ $f_3 = 0.02$

Element area, A = 0.01

Substituting these into the formulas for triangle interpolation functions we get

Interpolation functions,
$$N^{T} = \{5. y - 0.5, -10. x + 5. y + 0.5, 10. x - 10. y + 1.\}$$

From global solution the temperatures at the element nodes are

(from nodes
$$\{3, 4, 5\}$$
), $d^{T} = \{23.8437, 300, 182.833\}$

Thus the temperature distribution over the element, $T(x,y) = N^{T}d = -1171.67 \text{ x} - 209.109 \text{ y} + 320.911$

Differentiating with respect to x and y, $\partial T/\partial x = -1171.67$ and $\partial T/\partial y = -209.109$

Solution for element 4

Nodal coordinates

Ele	ement node	Global node number	X	y
	1	1	0.	0.
	2	5	0.1	0.1
	3	4	0.	0.1
$x_1 = 0.$	$x_2 = 0.1$	$x_3 = 0.$		
$y_1 = 0.$	$y_2 = 0.1$	$y_3 = 0.1$		

Using these values we get

$$b_1 = 0.$$
 $b_2 = 0.1$ $b_3 = -0.1$ $c_1 = -0.1$ $c_2 = 0.$ $c_3 = 0.1$ $f_1 = 0.01$ $f_2 = 0.$ $f_3 = 0.$

Element area, A = 0.005

Substituting these into the formulas for triangle interpolation functions we get

Interpolation functions,
$$N^{T} = \{1. - 10. \text{ y}, 10. \text{ x}, 10. \text{ y} - 10. \text{ x}\}$$

From global solution the temperatures at the element nodes are

(from nodes $\{1, 5, 4\}$), $d^{T} = \{300, 182.833, 300\}$

Thus the temperature distribution over the element, $T(x,y) = N^{T}d = 300. - 1171.67 x$

Differentiating with respect to x and y, $\partial T/\partial x = -1171.67$ and $\partial T/\partial y = 0$

Solution summary

Nodal temperatures

Node	Temperature	
1	300	
2	93.5466	
3	23.8437	
4	300	
5	182.833	

Element solution

$$\begin{array}{ccccc} T(x,y) & \partial T/\partial x & \partial T/\partial y \\ 1 & -1032.27 \ x - 139.406 \ y + 300. & -1032.27 & -139.406 \\ 2 & -1125.2 \ x - 232.343 \ y + 318.587 & -1125.2 & -232.343 \\ 3 & -1171.67 \ x - 209.109 \ y + 320.911 & -1171.67 & -209.109 \\ 4 & 300. -1171.67 \ x & -1171.67 & 0 \end{array}$$