Howard Math 274, HW# 3,

Spring 2022; Instructor: Sam Hopkins; Due: Friday, April 22nd

1. A plane partition is an infinite 2D-array $\pi = (\pi_{i,j})_{i=1,2,\dots}^{j=1,2,\dots}$ of nonnegative integers $\pi_{i,j} \in \mathbb{N}$ such that only finitely many entries are nonzero and the entries are weakly decreasing along rows and down columns in the sense that $\pi_{i,j} \geq \pi_{i',j'}$ if $i \leq i'$ and $j \leq j'$. The size $|\pi|$ of π is the sum of the entries: $|\pi| := \sum_{i,j>1} \pi_{i,j}$. Prove that

$$\sum_{\pi \text{ a plane partition}} q^{|\pi|} = \prod_{i \ge 1} \frac{1}{(1 - q^i)^i}.$$
 (1)

Hint: recall we proved the following product formula for reverse plane partitions of shape λ :

$$\sum_{\pi \in \text{RPP}(\lambda)} q^{|\pi|} = \prod_{u \in \lambda} \frac{1}{1 - q^{h(u)}} \tag{2}$$

where h(u) is the hook length of the box u. Observe that a 180° rotation of a reverse plane partition of shape $\lambda = n \times n = (\overbrace{n, n, \dots, n})$ is the same as a plane partition whose nonzero entries fit in the upper-left $n \times n$ square. Then deduce (1) from (2) by taking the limit $n \to \infty$.

- 2. Recall that a linear extension of a (finite) poset P is a list p_1, \ldots, p_n of all its elements (each appearing once) where $p_i \leq p_j$ implies $i \leq j$. $\mathcal{L}(P)$ denotes the set of linear extensions of P.
 - (a) Among posets P with n elements, which has the greatest number $\#\mathcal{L}(P)$ of linear extensions? Which has the least?
 - (b) The dual P^* of a poset P is the poset with the same elements but the reverse order: $p \leq_P q \Leftrightarrow q \leq_{P^*} p$. Prove that $\#\mathcal{L}(P) = \#\mathcal{L}(P^*)$.
 - (c) The *(disjoint) union* $P \cup Q$ of two posets P and Q is the poset whose elements are the elements in the union of the two sets, where the order within P and within Q is the same, but all $p \in P$ are incomparable to all $q \in Q$. Give a formula for $\#\mathcal{L}(P \cup Q)$ in terms of $\#\mathcal{L}(P)$, $\#\mathcal{L}(Q)$, and n = #P and m = #Q.
- 3. Recall that f^{λ} denotes the number of Standard Young Tableaux of shape λ . Give a simple formula for f^{λ} in the case of a *hook* shaped partition $\lambda = (k, 1, 1, \dots, 1)$ for $1 \le k \le n$.
- 4. We used the Robinson-Schensted algorithm to prove that $\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!$, the number of permutations in the symmetric group S_n . Prove that $\sum_{\lambda \vdash n} f^{\lambda} = \#\{\sigma \in S_n \colon \sigma = \sigma^{-1}\}$, the number of *involutions* in S_n . **Hint**: use a symmetry property of RS(K) we discussed.
- 5. For $\sigma \in S_n$, let $\operatorname{lis}(\sigma)$ (resp., $\operatorname{dds}(\sigma)$) denote the length of the longest increasing (resp., decreasing) subsequence in σ . The Erdős-Szekeres theorem says $\max(\operatorname{lis}(\sigma), \operatorname{lds}(\sigma)) \geq \sqrt{n}$ for permutations $\sigma \in S_n$. Describe a permutation maximizing $\min(\operatorname{lis}(\sigma), \operatorname{lds}(\sigma))$ among $\sigma \in S_n$.