

Sarah C. S. Calais Hassan C. David Rodrigo O. V. Miranda

Compêndio de equações de biomassa para florestas do Brasil

Créditos à foto da capa: Serviço Florestal Brasileiro André Dib

Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil)

Calais, Sarah C. S.

Compêndio de equações de biomassa para florestas do Brasil [livro eletrônico] / Sarah C. S. Calais, Hassan C. David, Rodrigo O. V. Miranda. -- 1. ed. -- Monte Carmelo, MG: Ed. dos Autores, 2022. PDF.

Bibliografia. ISBN 978-65-00-55520-2

- 1. Biomassa 2. Desenvolvimento sustentável
- 3. Engenharia florestal 4. Florestas Brasil
- I. David, Hassan C. II. Miranda, Rodrigo O. V. III. Título.

22-133917 CDD-634.92

Índices para catálogo sistemático:

1. Inventário florestal : Engenharia florestal 634.92

Aline Graziele Benitez - Bibliotecária - CRB-1/3129

Sarah Cristinne Soares Calais

Estudante de Engenharia Florestal pela Universidade de Brasília

Hassan Camil David

Doutor em Engenharia Florestal Professor Adjunto C da Universidade Federal Rural da Amazônia Agente do Serviço Florestal Brasileiro

Rodrigo Otávio Veiga de Miranda

Doutor em Engenharia Florestal Professor Adjunto C da Universidade Federal de Uberlândia

Dedicamos esta obra à comunidade florestal brasileira

SUMÁRIO

GLOSSÁRIO	1
PREFÁCIO	
INTRODUÇÃO	
FLORESTAS NATURAIS	
(Equações a nível de árvore individual)	6
Campinarana	7
Floresta Estacional Decidual (FED)	8
Floresta Estacional Semidecidual (FES)	10
Floresta Ombrófila Aberta (FOA)	12
Floresta Ombrófila Densa (FOD)	13
Floresta Ombrófila Mista (FOM)	18
Savana (Cerrado)	21
Savana Estépica (Caatinga)	23
Outros: Ecótono, Formação pioneira etc.	27
(Equações a nível de povoamento)	31
Campinarana, Florestas Estacional e Ombrófila, e Savana	32
FLORESTAS PLANTADAS	33
(Equações a nível de árvore individual)	33
Espécies exóticas	34
Espécies nativas	37
REFERÊNCIAS	41

GLOSSÁRIO

VARIÁVEIS E UNIDADES

---- nível de árvore individual ----

(Essas equações resultam em biomassa em kg)

cap: circunferência na altura do peito, em cm

cas: circunferência na altura do solo, em cm

d*: diâmetro na altura do peito, em cm

hf: altura do fuste da árvore, em m

ht: altura total da árvore, em m

*Variações estão apresentadas no rodapé das tabelas

---- nível de povoamento ----

(Essas equações resultam em biomassa em Mg ha⁻¹)

BA: área basal, em m² ha-1

N: número de árvores ha-1

EXPRESSÕES MATEMÁTICAS

exp: exponencial de Euler

log: logaritmo na base natural

log10: logaritmo na base 10

ESTATÍSTICAS DE AVALIAÇÃO DE MODELOS

R2: coeficiente de determinação

R2aj: coeficiente de determinação ajustado

Syx: erro padrão da estimativa

PREFÁCIO

Equações compiladas. Este compêndio contempla 663 equações de biomassa, sendo 496 para florestas naturais e 167 para florestas plantadas. As equações para florestas naturais estão disponíveis para a árvore individual (492) e para o povoamento (4). As equações para florestas plantadas são todas para a árvore individual.

As equações apresentam variáveis de saída para quatro compartimentos, sendo:

- Biomassa arbórea acima do solo, incluindo 'tronco + galhos'
- Biomassa arbórea acima do solo, incluindo 'tronco + galhos + folhas'
- Biomassa arbórea abaixo do solo, que inclui raízes (com diferentes dimensões)
- Biomassa arbórea total, incluindo compartimentos acima + abaixo do solo

Tipologias (definição pelo IBGE) e espécies florestais. Dentre as 496 equações para florestas naturais:

- 285 equações são para um mix de espécies arbóreas
- 206 equações são específicas por espécie ou por gênero
- 1 equação é para um mix de espécies de palmeiras
- 4 equações são específicas por tipologia florestal, sendo elas 'Campinarana', 'Floresta estacional', 'Floresta ombrófila' e 'Savana' (Cerrado brasileiro).

Dentre as 167 equações para florestas plantadas:

- 26 equações são específicas para espécies de pinus
- 23 equações são específicas para espécies de acácia
- 14 equações são específicas para espécies de bambu
- 8 equações são específicas para Araucaria angustifolia
- 4 equações são específicas para espécies de eucalipto
- 92 equações são específicas para outras espécies

Precauções dos usuários. Recomenda-se que os usuários se atentem às seguintes precauções:

- Pelo fato de este compêndio ser fruto de um esforço muito repetitivo e mecânico, sempre que se fizer necessário, o usuário deve conferir as equações selecionadas na fonte original, para garantir que a especificação e coeficientes das equações foram corretamente digitados.
- Sempre que possível, é recomendável que o usuário adote duas ou mais equações e despreze aquelas que geram valores incompatíveis ou de equações inapropriadas à espécie em questão.
- 3) Sempre que possível, o usuário deve optar por equações desenvolvidas com uma base de dados com número de observações igual ou acima de 30.
- 4) Sempre que possível, o usuário deve preferir equações cuja amplitude diamétrica dos dados de ajuste inclua o diâmetro das árvores em que a equação será aplicada. O intervalo diamétrico da base de dados de ajuste é informado nas tabelas deste compêndio, sempre quando informado na fonte de pesquisa.

- 5) Recomenda-se que o usuário busque equações com a maior especificidade possível. Isso inclui a busca por equações para o mesmo bioma e/ou tipologia florestal e/ou estado da área de estudo do usuário.
- 6) Quando o usuário encontrar mais de uma equação apropriada, é interessante o uso de um valor médio entre as estimativas destas equações.

Precauções tomadas pelos autores. As equações deste compêndio foram tabuladas apenas após uma conferência automatizada (por meio de um algoritmo escrito em linguagem de programação R). Tal conferência consistiu em usar as equações tabuladas para estimar a biomassa de árvores com diâmetros dentro do intervalo diamétrico apresentado nos trabalhos onde as equações foram consultadas. Quando a variável resposta (biomassa) apresentou valores destoantes ou não seguiu um comportamento biológico da biomassa arbórea, os autores foram consultados para que conferissem a equação publicada. Algumas equações foram publicadas com erros, sendo retificadas pelos autores. Nesses casos, a retificação está informada no rodapé das tabelas. Aos autores que não responderam ao contato, as equações (cerca de 200) foram eliminadas do banco de dados.

Instruções de uso do compêndio. As equações variam quanto (i) ao tipo de floresta (natural, plantada), (ii) ao nível de resposta (árvore individual ou povoamento), (iii) à especificidade (espécie, gênero, tipologia ou mix de espécies, i.e., sem especificidade) e (iv) ao compartimento da árvore (biomassa de troncos, galhos, folhas, raízes e total). Para encontrar a equação de acordo com a necessidade, os usuários devem seguir as seguintes instruções:

- Para encontrar o (i) tipo de floresta e (ii) nível de resposta desejados, dirigir-se ao sumário do compêndio.
- Para encontrar a (iii) especificidade desejada, dirigir-se à primeira coluna das tabelas e ao cabeçalho da página.
- Para encontrar o (iv) compartimento da árvore, dirigir-se à quarta coluna das tabelas.

Informações adicionais como bioma e estado da área de coleta dos dados usados no ajuste da equação, bem como o intervalo diamétrico dos dados, também estão apresentados nas tabelas deste compêndio.

INTRODUÇÃO

Estudos com biomassa florestal têm sido conduzidos com diferentes finalidades, cujo direcionamento varia conforme uma série de fatores e necessidade. Biomassa é uma variável indicadora da produtividade de um local mediante diferentes condições edafoclimáticas; é uma variável útil na quantificação da ciclagem de nutrientes, sobretudo na mudança ocorrida em uma área após a exploração; quantificação de material combustível e sua associação com o potencial de ocorrência de incêndios em uma floresta.

Pesquisas em biomassa objetivam a quantificação de material e potencial energético de diferentes espécies ou materiais genéticos, principalmente àqueles voltados à produção de carvão vegetal. Também, pesquisas em biomassa representam a base de informação para pesquisas de sequestro de carbono, assim como para a predição de mudanças do clima e a base do cálculo de créditos de carbono.

Mesmo para resultados mais amplos, as principais metodologias para obtenção de estimativas de biomassa em áreas florestais estão associadas ao inventário florestal. Essas metodologias de quantificação da biomassa florestal podem ser agrupadas em métodos diretos e métodos indiretos. Os métodos diretos abordam as metodologias voltadas à obtenção de determinações dos valores de biomassa, compreendo em sua maioria o abate de árvores. Estes métodos são conhecidos como métodos destrutivos, justamente pela necessidade da derrubada das árvores e medição ou pesagem dos componentes de interesse, desde o fuste principal aos galhos, folhas, frutos e raízes.

Em contrapartida, os métodos indiretos são responsáveis pela geração de estimativas de biomassa sem a necessidade do abate de árvores. Essa categoria envolve a utilização de fatores ou modelos estatísticos para o fornecimento das estimativas de biomassa. Comparativamente, a utilização dos métodos indiretos é mais prática e rápida, uma vez que não envolve as etapas necessárias dos métodos diretos, as quais compreendem, em suma, a seleção representativa de árvores de uma floresta; a medição de variáveis dendrométricas; abate de árvores; pesagem de componentes de árvores; e envio de subamostras para o laboratório.

A partir destas determinações de biomassa e medição de variáveis dendrométricas, relações estatísticas são estabelecidas permitindo o desenvolvimento de equações para a estimativa de biomassa para as demais árvores da floresta. Contudo, os métodos diretos nem sempre podem ser conduzidos, seja por limitação de recursos humanos, materiais, custos, tempo ou por impedimentos legais. Nestas situações, a utilização de equações de biomassa previamente definidas e corretamente selecionadas se torna uma opção viável, conforme vantagens mencionadas.

Em geral, essas equações são relações alométricas entre biomassa e variáveis biofísicas da árvore, como o diâmetro, altura e volume. Ou, ainda, relações com a área basal ou número de árvores, quando as estimativas são para o povoamento. A observância de alguns aspectos é essencial para gerar equações de biomassa. Dentre esses, tem-se o número de árvores utilizadas no desenvolvimento da equação; a amplitude de variação das variáveis dendrométricas utilizadas nos modelos; representatividade da amostra em relação à população; espécie, material genético ou tipologia florestal; idade, espaçamento e tratos silviculturais em florestas

plantadas; análise dos parâmetros estatísticos de avaliação de tendências e erros preditivos da equação; e amplitude das estimativas geradas pela equação.

A busca por equações apropriadas para determinada espécie, ou tipologia, ou outras condições específicas é um trabalho exaustivo. Isso requer dispêndio de tempo na busca por publicações em periódicos especializados. Havendo necessidade de pesquisas desta natureza, a compilação de equações em um único local promove a otimização deste processo de busca, que se torna mais ampla, com consequente redução do tempo, favorecendo a averiguação de equações de diferentes fontes e a sua correta seleção.

FLORESTAS NATURAIS (Equações a nível de árvore individual)

Campinarana

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Amazônia	AM	Abaixo (raízes)	Fresco	5,0	-	0,94	6,5%	exp(-3,268+2,428*log(d))	Woortmann et al. (2018)
Várias	Amazônia	AM	Abaixo (raízes)	Fresco	5,0	-	0,94	6,3%	exp(-2,988+2,528*log(d)+0,192*log(ht))	Woortmann et al. (2018)
Várias	Amazônia	AM	Abaixo (raízes)	Fresco	10,0	-	0,89	6,1%	exp(-3,471+2,499*log(d))	Woortmann et al. (2018)
Várias	Amazônia	AM	Abaixo (raízes)	Fresco	10,0	-	0,89	6,2%	exp(-3,587+2,466*log(d)+0,071*log(ht))	Woortmann et al. (2018)
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Fresco	5,0	-	0,98	4,3%	exp(-1,553+2,567*log(d))	Woortmann et al. (2018)
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Fresco	5,0	-	0,98	4,3%	exp(-2,246+2,319*log(d)+0,476*log(ht))	Woortmann et al. (2018)
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Fresco	10,0	-	0,96	4,5%	exp(-1,523+2,557*log(d))	Woortmann et al. (2018)
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Fresco	10,0	-	0,96	4,4%	exp(-2,250+2,350*log(d)+0,446*log(ht))	Woortmann et al. (2018)
Várias	Amazônia	AM	Total (abaixo+acima)	Fresco	5,0	-	0,98	4,5%	exp(-1,373+2,546*log(d))	Woortmann et al. (2018)
Várias	Amazônia	AM	Total (abaixo+acima)	Fresco	5,0	-	0,98	4,4%	exp(-1,938+2,344*log(d)+0,388*log(ht))	Woortmann et al. (2018)
Várias	Amazônia	AM	Total (abaixo+acima)	Fresco	10,0	-	0,96	4,4%	exp(-1,374+2,546*log(d))	Woortmann et al. (2018)
Várias	Amazônia	AM	Total (abaixo+acima)	Fresco	10,0	-	0,96	4,4%	exp(-2,001+2,368*log(d)+0,385*log(ht))	Woortmann et al. (2018)
Várias	Amazônia	RR	Acima (tronco+galhos+folhas)	Seco	1,6	15,0	0,93	30,6%	exp(-3,9041+0,4658*log(cas^2*ht)+0,0458*(log(cas^2*ht)^2))	Barbosa e Ferreira (2004)1
Várias	Amazônia	RR	Acima (tronco+galhos+folhas)	Seco	1,6	15,0	0,93	30,4%	exp(-5,0170+0,8707*log((cas^2)*ht)+0,0309*cas)	Barbosa e Ferreira (2004)1
Várias	Amazônia	RR	Acima (tronco+galhos+folhas)	Seco	1,6	15,0	0,93	30,9%	exp(-5,4920+1,0141*log((cas^2)*ht))	Barbosa e Ferreira (2004) ¹
Várias	Amazônia	RR	Acima (tronco+galhos+folhas)	Seco	1,6	15,0	0,89	33,2%	-0,3789+0,0054*((cas^2)*ht)	Barbosa e Ferreira (2004) ¹

¹ cas - circunferência na altura do solo

Floresta Estacional Decidual (FED)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	91,84	42,8%	14,305-4,104*d+0,406*(d^2)	Oliveira et al. (2019)
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	92,55	42,7%	exp(-3,684+2,692*log(d)+1,6366*(1/d))	Oliveira et al. (2019)
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	91,92	42,6%	0,550+0,041*((d^2)*ht)	Oliveira et al. (2019)
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	93,53	44,9%	exp(-3,086+2,027*log(d)+0,852*log(ht))	Oliveira et al. (2019)
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	92,25	41,7%	3,135+0,0985*(d^2)+0,029*((d^2)*ht)-2,2380*ht	Oliveira et al. (2019)
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	93,58	46,1%	exp(-3,078+0,976*log((d^2)*ht))	Oliveira et al. (2019)
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	92,34	41,4%	-1,176-2,9743*(d)+0,2670*(d^2)- 0,2671*(d*ht)+0,0196*((d^2)*ht)+5,7833*(ht)	Oliveira et al. (2019)
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	93,32	41,5%	(d^2)/1,032+17,503*(1/ht)	Oliveira et al. (2019)
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	91,92	42,6%	((d^2)*ht)/(25,443-0,037*d)	Oliveira et al. (2019)
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	92,19	41,9%		Oliveira et al. (2019)
Várias	Cerrado	BA	Acima (tronco+galhos+folhas)	Seco	3,5	35,0	92,63	40,6%	0,044*(d^2,287)*(ht^0,461)	Oliveira et al. (2019)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Fresco		65,0	97,57		-12,262204+0,076572*((d^2)*ht)	Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Fresco	5,0	65,0	98,50	33,7%	(d^2)*(-0,361026+0,106658*ht)	Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Fresco	5,0	65,0	97,47	43,5%	0,075648*(d^2)*ht	Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Fresco	5,0	65,0	98,49	34,0%	0,030309*(d^1,989540)*(ht^1,382197)	Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Fresco		65,0	97,50		0,058864*(((d^2)*ht)^1,025326)	Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Fresco	5.0	65,0	97,64	42,3%	((d^2)*ht)/(11,549165+0,039451*d)	Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)		5,0	65,0	86,98	99,3%		Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Seco	5,0	65,0	96,22		0,002997*(d^1,770156)*(ht^2,309705)	Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Seco	5,0	65,0	85,94	99,1%		Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Seco	5,0	65,0	94,68	75,3%	(d^2)*(-0,561393+0,082749*ht)	Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Seco	5,0	65,0	86,88	99,3%	0,030087*(d^2)*ht	Rocha (2011)
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Seco	5,0	65,0	87,63	96,4%	0,087741*(((d^2)*ht)^0,891162)	Rocha (2011)
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	98,48	12,3%	exp(- 10,1966777197+2,4240650757*log(d)+0,5413156008*log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	88,42	49,4%	exp(- 10,5940591011+1,602721969*log(d)+1,5878967963*log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Mata Atlântica	PR	Acima (tronco+galhos)	Seco	5,3	82,0	-	-	(0,028726*d^1,675713*ht^1,165411)+(0,003816*(d^2*ht)^1,121684)	Trautenmüller et al. (2021)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	5,3	82,0	-	-	(0,028726*d^1,675713*ht^1,165411)+(0,003816*(d^2*ht)^1,121684)+ (0,014257*(d^2*ht)^0,671907)	Trautenmüller et al. (2021)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	3,2	55,0	0,98	8,0%	10^(-0,882390231+2,409594057*log10(d))	Vogel et al. (2006)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,96	29,1%	1054,19-98,860*d+3,216*(d^2)+0,067*(d*(ht^2))-0,073*((d^2)*ht)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,81	55,0%	-1191,98+64,263*d	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,1	79,3	0,96	40,5%	126,964-18,780*d+1,043*(d^2)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,97	27,5%	-137,231+0,092*(d^2)+0,064*((d^2)*ht)-0,137*(d*(ht^2))+2,677*(ht^2)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,94	37,3%	-160,733+0,813*(d^2)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,94	35,8%	17,240+0,032*((d^2)*ht)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	79,3	0,97	41,0%	-196,649-6,764*d+0,954*(d^2)- 1,872*(d*ht)+0,017*((d^2)*ht)+41,967*ht	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,66	48,2%	-2,308+0,119*(d^2)+0,022*((d^2)*ht)-0,004*(d*(ht^2))+0,114*(ht^2)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,94		203,223-14,019*ht+0,050*(d^2)+0,032*((d^2)*ht)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,97	27,9%	-246,08-18,187*d+1,336*(d^2)- 2,404*(d*ht)+0,011*((d^2)*ht)+66,471*ht	Trautenmüller (2015)

¹ peso seco inclui apenas galhos >=3cm.

Floresta Estacional Decidual (FED)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,58	53,7%	-3,200+0,396*(d^2)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,68	46,7%	3,532+0,035*((d^2)*ht)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,57	54,3%	-34,846+7,423*d	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	79,3	0,95	49,0%	48,751-6,204*ht+0,215*(d^2)+0,025*((d^2)*ht)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,96	29,9%	577,956-42,864*d+1,301*(d^2)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,57	54,3%	-6,0731+0,663*d+0,361*(d^2)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,66	48,2%	-6,100+2,070*d-0,081*(d^2)+0,002*(d*(ht^2))+0,030*((d^2)*ht)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	79,3	0,97	39,9%	-74,934+0,107*(d^2)+0,056*((d^2)*ht)-0,103*(d*(ht^2))+1,793*(ht^2)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,67	47,6%	-8,010+1,596*ht+0,093*(d^2)+0,022*((d^2)*ht)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	79,3	0,96	46,1%	83,764-10,718*d+0,647*(d^2)-0,009*(d*(ht^2))+0,015*((d^2)*ht)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	79,3	0,95	49,4%	9,697+0,033*((d^2)*ht)	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,66	48,4%	93,949-23,795*d+1,408*(d^2)+2,859*(d*ht)-0,131*((d^2)*ht)- 11,045*ht	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,76	48,9%	exp(0,145- 0,162*log(d^2)+0,444*(log(d)^2)+0,508*log(ht)+0,121*(log(ht)^2))	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,83	31,1%		Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,78	36,0%	exp(-1,233+2,194*log(d))	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,70	53,9%	exp(-1,490+2,154*log(d))	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	79,3	0,92	47,2%	exp(-2,006+2,414*log(d))	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,84	47,2%	exp(-2,124+0,869*log((d^2)*ht))	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	15,6	79,3	0,83	50,6%	exp(-2,151+1,698*log(d)+0,927*log(ht))	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,77	46,6%	exp(-2,298+0,852*log((d^2)*ht))	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	14,7	0,77	48,4%	exp(-2,414+1,546*log(d)+1,071*log(ht))	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,1	79,3	0,94	48,7%	exp(-2,864+1,830*log(d)+1,013*log(ht))	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	79,3	0,93	51,3%	exp(-2,900+0,760*log(d^2)+0,056*(log(d)^2)+1,383*log(ht)- 0,075*(log(ht)^2))	Trautenmüller (2015)
Várias	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	5,0	79,3	0,95	44,0%	-32,5607+0,022835*(d^3)+6,063571*ht-0,00044*((d^3)*ht)	Balbinot et al. (2018)

Floresta Estacional Semidecidual (FES)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Anadenanthera colubrina	Mata Atlântica	MG	Acima	Seco	10,0	40,0	95,37	32,0%	exp(-	Scolforo et al. (2008)1
(Vell.) Brenan			(tronco+galhos+folhas)						10,429926397+2,3703560196*log(d)+0,7048908784*log(ht))*1000	
Anadenanthera colubrina	Mata Atlântica	MG	Acima	Seco	10,0	40,0	94,50	28,8%	exp(-	Scolforo et al. (2008)1
(Vell.) Brenan			(tronco+galhos+folhas)						9,341381587+2,27623091*log(d)+0,3954337202*log(ht))*1000	
Guadua chacoensis	Mata Atlântica	PR	Acima	Seco	5,6	14,0	0,87	19,7%	-19,27046+3,15377*ht	Mognon et al. (2014)
(Rojas) Londoño			(tronco+galhos+folhas)							
Guadua chacoensis	Mata Atlântica	PR	Acima	Seco	5,6	14,0	0,83	22,5%	-28,09540+5,90368*d	Mognon et al. (2014)
(Rojas) Londoño			(tronco+galhos+folhas)							
Guadua chacoensis	Mata Atlântica	PR	Acima	Seco	5,6	14,0	0,84	22,4%	-1,70418+0,30633*(d^2)	Mognon et al. (2014)
(Rojas) Londoño			(tronco+galhos+folhas)							
Guadua chacoensis	Mata Atlântica	PR	Acima	Seco	5,6	14,0	0,92	15,8%	6,9623+0,00776*(d*(ht^2))	Mognon et al. (2014)
(Rojas) Londoño			(tronco+galhos+folhas)							
Guadua chacoensis	Mata Atlântica	PR	Acima	Seco	5,6	14,0	0,93	15,0%	-27,53382+2,80989*d+1,91081*ht	Mognon et al. (2014)
(Rojas) Londoño			(tronco+galhos+folhas)							
Guadua chacoensis	Mata Atlântica	PR	Acima	Seco	5,6	14,0	0,86	20,5%	exp(0,62186+0,35049*log(ht^2))	Mognon et al. (2014)
(Rojas) Londoño			(tronco+galhos+folhas)							
Guadua chacoensis	Mata Atlântica	PR	Acima	Seco	5,6	14,0	0,83	22,7%	exp(-1,66543+2,16569*log(d))	Mognon et al. (2014)
(Rojas) Londoño			(tronco+galhos+folhas)							
Guadua chacoensis	Mata Atlântica	PR	Acima	Seco	5,6	14,0	0,83	22,8%	-30,53017+(8,51517*(d^0,5)*log(d))	Mognon et al. (2014)
(Rojas) Londoño			(tronco+galhos+folhas)							
Kielmeyera coriacea	Cerrado	MG	Acima	Seco	5,0	25,0	97,64	12,7%	exp(-	Scolforo et al. (2008)1
Mart. & Zucc.			(tronco+galhos+folhas)						10,454935288+2,1243668209*log(d)+0,4846364811*log(ht))*1000	
Kielmeyera coriacea	Cerrado	MG	Acima	Seco	5,0	25,0	91,00	28,9%	exp(-	Scolforo et al. (2008)1
Mart. & Zucc.			(tronco+galhos+folhas)						11,131420131+2,7809202201*log(d)+0,1607924005*log(ht))*1000	
Kielmeyera 10oriácea	Cerrado	MG	Acima	Seco	5,0	25,0	96,09	21,2%	exp(-	Scolforo et al. (2008)1
Mart. & Zucc.			(tronco+galhos+folhas)						11,2626907253+2,428844827*log(d)+0,8160943744*log(ht))*1000	
Kielmeyera coriacea	Cerrado	MG	Acima	Seco	5,0	25,0	98,11	16,8%	exp(-	Scolforo et al. (2008)1
Mart. & Zucc.			(tronco+galhos+folhas)						11,240733240+2,1478860499*log(d)+1,2256819954*log(ht))*1000	
Kielmeyera coriacea	Cerrado	MG	Acima	Seco	5,0	25,0	93,55	15,4%	exp(-	Scolforo et al. (2008)1
Mart. & Zucc.			(tronco+galhos+folhas)						9,9024961214+1,8386525322*log(d)+0,8826336654*log(ht))*1000	
Kielmeyera coriacea	Cerrado	MG	Acima	Seco	5,0	25,0	91,19	17,1%	exp(-	Scolforo et al. (2008)1
Mart. & Zucc.			(tronco+galhos+folhas)						9,9172024926+1,7980764189*log(d)+0,8570052692*log(ht))*1000	
Kielmeyera coriacea	Cerrado	MG	Acima	Seco	5,0	25,0	95,21	12,4%	exp(-	Scolforo et al. (2008)1
Mart. & Zucc.			(tronco+galhos+folhas)						10,450166419+2,1184324516*log(d)+0,9437181178*log(ht))*1000	
Kielmeyera coriacea	Cerrado	MG	Acima	Seco	5,0	25,0	56,25	31,8%	exp(-	Scolforo et al. (2008)1
Mart. & Zucc.			(tronco+galhos+folhas)						9,5840753965+1,4473363882*log(d)+1,2694519160*log(ht))*1000	
Kielmeyera coriacea	Cerrado	MG	Acima	Seco	5,0	25,0	93,23	19,2%	exp(-	Scolforo et al. (2008)1
Mart. & Zucc.			(tronco+galhos+folhas)						9,4099752305+1,4178739454*log(d)+1,3497746854*log(ht))*1000	
Kielmeyera coriacea	Cerrado	MG	Acima	Seco	5,0	25,0	90,36	24,0%	exp(-10,6053+2,20772*log(d)+0,726309*log(ht))*1000	Scolforo et al. (2008)1
Mart. & Zucc.			(tronco+galhos+folhas)							
Leucaena leucocephala	Mata Atlântica	PR	Total (abaixo+acima)	Seco	1,3	15,0	0,89	-	(7281,6-7207,5*ht-1308,9*hf+4400,7*cap)/1000	Aleixo et al. (2008) ²
(Lam.) de Wit										

¹ peso seco inclui apenas galhos >=3cm ² cap - circunferência a altura do peito

Floresta Estacional Semidecidual (FES)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Leucaena leucocephala (Lam.) de Wit	Mata Atlântica	PR	Total (abaixo+acima)	Seco	1,3	15,0	0,89	-	(6779,1-7965,5*ht+4462,4*cap)/1000	Aleixo et al. (2008) ²
Leucaena leucocephala (Lam.) de Wit	Mata Atlântica	PR	Total (abaixo+acima)	Seco	1,3	15,0	0,82	-	(-29139,1+2832,8*cap)/1000	Aleixo et al. (2008) ²
Leucaena leucocephala (Lam.) de Wit	Mata Atlântica	PR	Total (abaixo+acima)	Seco	1,3	15,0	0,94	-	exp(3,4756+0,22*ht-0,028*hf+1,4425*log(cap))/1000	Aleixo et al. (2008) ²
Leucaena leucocephala (Lam.) de Wit	Mata Atlântica	PR	Total (abaixo+acima)	Seco	1,3	15,0	0,57	-	(-83092,2-1825,5*ht+45613,24*log(cap))/1000	Aleixo et al. (2008) ²
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	96,75	46,3%	exp(- 10,439791707+2,1182873001*log(d)+0,8339834928*log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	95,71	41,7%	exp(- 10,9532786932+2,5464820134*log(d)+0,4667754371*log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	96,71	21,4%	exp(- 9,7244062219+2,2048968123*log(d)+0,5515240994*log(ht))*1000	Scolforo et al. (2008)1
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	96,37	55,2%	exp(- 10,2622957616+2,1516946479*log(d)+0,7265663432*log(ht))*1000	Scolforo et al. (2008)1
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	93,36	67,3%	exp(- 10,4843366195+1,6816091448*log(d)+1,4063159347*log(ht))*1000	Scolforo et al. (2008)1
Várias	Mata Atlântica	MG	Acima (tronco+galhos+folhas)	Seco	-	-	95,63	22,6%	0,0334430*(d^2,3979902)*(hf^0,426536)	Amaro et al. (2013)
Várias	Mata Atlântica	MG	Acima (tronco+galhos+folhas)	Seco	-	-	94,93	24,2%	0,028135*(d^2,306505)*(hf*0,557845)	Amaro et al. (2013)
Várias	Mata Atlântica	SP	Abaixo (raízes)	Seco	5,0	36,0	0,86	15,3%	exp(-2,68610+2,08390*log(d))	Rasera (2019)
Várias	Mata Atlântica	SP	Abaixo (raízes)	Seco	5,0	36,0	0,87	12,3%	exp(-3,79570+1,76660*log(d)+0,82990*log(ht))	Rasera (2019)
Várias	Mata Atlântica	SP	Abaixo (raízes)	Seco	5,0	36,0	0,88	12,2%	exp(-3,84890+0,87380*log((d^2)*ht))	Rasera (2019)
Várias	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,0	15,0	0,87	-	exp(-1,19829+1,98391*log(d))	Lacerda et al. (2009) ³
Várias	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,0	36,0	0,75	56,3%	exp(-1,4309+2,0158*log(d))	Rasera (2019)
Várias	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,0	36,0	0,78	51,1%	exp(-2,6925+0,8610*log((d^2)*ht))	Rasera (2019)
Várias	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,0	36,0	0,78	49,7%	exp(-3,2369+1,5467*log(d)+1,2860*log(ht))	Rasera (2019)

¹ peso seco inclui apenas galhos >=3cm ² cap - circunferência a altura do peito

³ tronco + galhada

Floresta Ombrófila Aberta (FOA)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Guadua weberbaueri Pilg.	Amazônia	AC	Acima (tronco+galhos+folhas)	Seco	3,5	6,2	0,75	-	0,2254*ht+4,969*d-20,171	Torezan e Silveira (2000)
Guadua weberbaueri Pilg.	Amazônia	AC	Acima (tronco+galhos+folhas)	Seco	3,5	6,2	0,81		2,928*(d^3)-37,554*(d^2)+161,23*d-226,54	Torezan e Silveira (2000)
Guadua weberbaueri Pilg.	Amazônia	AC	Acima (tronco+galhos+folhas)	Seco	3,5	6,2	0,73	-	5,4922*d-19,516	Torezan e Silveira (2000)
Guadua weberbaueri Pilg.	Amazônia	AC	Acima (tronco+galhos+folhas)	Seco	3,5	6,2	0,76		0,172*ht+1,18*d-4,478	Torezan e Silveira (2000)
Guadua weberbaueri Pilg.	Amazônia	AC	Acima (tronco+galhos+folhas)	Seco	3,5	6,2	0,68	-	0,2756*exp(0,5122*d)	Torezan e Silveira (2000)
Rhizophora mangle L.	Mata Atlântica	SE	Abaixo (raízes)	Seco	1,0	39,2	0,95	55,5%	exp(3,604243+2,511704*log(d))/1000	Santos et al. (2017)
Rhizophora mangle L.	Mata Atlântica	SE	Abaixo (raízes)	Seco	1,0	39,2	0,96	49,4%	exp(2,939739+0,934209*log(d^2*ht))/1000	Santos et al. (2017)
Rhizophora mangle L.	Mata Atlântica	SE	Acima (tronco+galhos+folhas)	Seco	1,0	39,2	0,99	27,4%	exp(5,360943+2,380682*log(d))/1000	Santos et al. (2017)
Rhizophora mangle L.	Mata Atlântica	SE	Total (abaixo+acima)	Seco	1,0	39,2	0,99	28,1%	exp(5,534244+2,404770*log(d))/1000	Santos et al. (2017)
Várias	Amazônia	RO	Acima (tronco+galhos+folhas)	Seco	10,0	-	0,94	-	0,0326*(d^2)*ht	Brown et al. (1995)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Avicennia schaueriana	Mata Atlântica	RJ	Acima	Seco	0,7	37,3	0,99	18,7%	123,8716*(d^2,5282)/1000	Estrada et al. (2014)
Stapf & Leechm. ex Moldenke			(tronco+galhos+folhas)							· · ·
Avicennia schaueriana	Mata Atlântica	RJ	Acima	Seco	0,7	37,3	0,99	17,4%	68,8881*((d^2)*ht)^0,9397/1000	Estrada et al. (2014)
Stapf & Leechm. ex Moldenke			(tronco+galhos+folhas)							
Avicennia schaueriana Stapf & Leechm. ex Moldenke	Mata Atlântica	RJ	Acima (tronco+galhos+folhas)	Seco	0,7	37,3	0,99	-	exp(4,8017+2,5282*log(d))/1000	Estrada et al. (2014)
Banara guianensis Aubl.	Amazônia	PA	Acima	Seco	10,0	_	0.99	_	exp(-1,90+1,11*log(d^2)+0,05*log(ht))	Uhl et al. (1988) ¹
Dariara guiarierisis Aubi.	Amazoma	-	(tronco+galhos+folhas)	3600	10,0		0,99	-	θΧρ(-1,90+1,11 log(d-2)+0,03 log(iii))	Oni et al. (1900)
Bellucia spp.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,2	26,8	0,97	-	0,1591*(d^2,37)	Nelson et al. (1999)
Bellucia spp.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,2	26,8	0,99	-	exp(-1,8158+2,37*log(d))	Nelson et al. (1999)
Bellucia spp.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,2	26,8	1,00	-	exp(-2,4387+2,0751*log(d)+0,5360*log(ht))	Nelson et al. (1999)
Bellucia spp.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,2	26,8	0,91	-	exp(-5,8514+3,8980*log(ht))	Nelson et al. (1999)
Cecropia glaziovii Snethl.	Mata Atlântica	SC	Acima (tronco+galhos+folhas)	Seco	7,7	33,9	0,98	7,7 kg	295,6/(1+exp(6,1366-0,1161*d-0,1522*ht))	Uller et al. (2021) ²
Cecropia sciadophylla Mart.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	5,1	38,2	0,98	-	exp(-2,5118+2,4257*log(d))	Nelson et al. (1999)
Cecropia spp.	Amazônia	PA	Acima (tronco+galhos+folhas)	Seco	10,0	-	0,98	-	exp(-3,78+0,95*log(d^2)+1,00*log(ht))	Uhl et al. (1988) ¹
Croton matourensis Aubl.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	2,3	25,3	0,99	-	exp(-2,7009+2,5996*log(d))	Nelson et al. (1999)
Croton matourensis Aubl.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	2,3	25,3	0,99	-	exp(-3,4630+2,2885*log(d)+0,5906*log(ht))	Nelson et al. (1999)
Cyathea delgadii Sternb.	Mata Atlântica	SC	Acima (tronco+galhos+folhas)	Seco	6,3	19,5	0,92	3,6 kg	0,1523*d^1,1254*ht^1,0338	Uller et al. (2021)
Euterpe edulis Mart.	Mata Atlântica	SC	Acima (tronco+galhos+folhas)	Seco	3,9	15,8	0,84	7,1 kg	0,0175*d^1,5288*ht^1,66	Uller et al. (2021)
Goupia glabra Aubl.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,5	12,2	0,99	-	exp(-1,7972+2,4206*log(d))	Nelson et al. (1999)
Goupia glabra Aubl.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,5	12,2	1,00	-	exp(-2,4990+2,1283*log(d)+0,5508*log(ht))	Nelson et al. (1999)
Laetia procera (Poepp.) Eichler	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,6	24,8	0,99	-	exp(-2,2244+2,5105*log(d))	Nelson et al. (1999)
Laetia procera (Poepp.) Eichler	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,6	24,8	1,00	-	exp(-2,6385+2,1976*log(d)+0,4565*log(ht))	Nelson et al. (1999)
Solanum crinitum Lam.	Amazônia	PA	Acima (tronco+galhos+folhas)	Seco	10,0	-	1,00	-	exp(-2,95+1,02*log(d^2)+0,83*log(ht))	Uhl et al. (1988) ¹
Solanum rugosum Dunal	Amazônia	PA	Acima (tronco+galhos+folhas)	Seco	10,0	-	0,96	-	exp(-3,06+0,89*log(d^2)+1,11*log(ht))	Uhl et al. (1988) ¹

¹ árvore em pasto abandonado ² d - diâmetro acima da raiz aérea

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,21	34,6%	-13,398+3,672*ht	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,96	7,9%	-25,095+4,858*d	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,90	12,4%	6,506+0,016*d^2*ht	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,96	8,2%	-25,016+4,862*d-0,011*ht	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,93	10,1%	exp(-1,445+1,985*log(d))	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,80	17,3%	exp(1,890+0,022*log(d^2*ht))	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,90	12,6%	1,165+0,267*(d^0,5)*log(d)	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,95	8,3%	-31,539+5,946*d-0,024*(d^2)-0,002*(d^2*ht)	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,96	8,1%	-29,005+5,480*d-0,002*(d^2*ht)	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,93	10,3%	exp(-1,569+1,953*log(d)+0,085*log(ht))	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,88	13,3%	exp(1,729+0,113*log(d^3))	Melo et al. (2014)
(Lam.) DC.										
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,95	8,5%	329,366-125,944*(d)+17,719*(d^2)-	Melo et al. (2014)
(Lam.) DC.									1,043*(d^3)+0,022*(d^4)	
Tabebuia cassinoides	Mata Atlântica	PR	Total (abaixo+acima)	Seco	8,0	15,9	0,90	12,0%	11,399+0,011*(d^3)	Melo et al. (2014)
(Lam.) DC.										
Várias	Amazônia	AC	Acima	Seco	50,4	149,9	0,62	169,6%	exp(-	Romero et al. (2020)
			(tronco+galhos+folhas)						9,16151+1,52337*log(d)+1,35403*log(hf))*1000	
Várias	Amazônia	AC	Acima	Seco	50,4	149,9	-	167,9%	0,0002996*d^1,367517*hf^1,254061*1000	Romero et al. (2020)
			(tronco+galhos+folhas)							
Várias	Amazônia	AM	Acima	Fresco	5,0	-	0,97	-	exp(-1,335+1,551*log(d)+0,415*log(d^2)-	Chambers et al. (2001) ³
			(tronco+galhos+folhas)						0,053*log(d^3))	
Várias	Amazônia	AM	Acima	Seco	5,0	-	0,97	-	exp(-0,370+0,333*log(d)+0,933*log(d)^2-	Chambers et al. (2001) ³
			(tronco+galhos+folhas)						0,122*log(d)^3)	
Várias	Amazônia	AM	Acima	Seco	10,0	-	0,95	-	exp(-4,898+4,512*log(d)-0,319*log(d)^2)	Chambers et al. (2001) ³
			(tronco+galhos+folhas)							
Várias	Amazônia	AM	Acima	Seco	5,0	60,0	0,97	-	exp(0,720-1,042*log(d)+1,467*log(d)^2-	Chambers et al. (2001) ³
			(tronco+galhos+folhas)						0,188*log(d)^3)	,
Várias	Amazônia	AM	Acima	Seco	5,0	20,0	0,92	43 kg	exp(-1,754+2,665*log(d))	Higuchi et al. (1998)
			(tronco+galhos+folhas)							
Várias	Amazônia	AM	Acima	Seco	20,0	120,0	0,90	2035 kg	exp(-0,151+2,170*log(d))	Higuchi et al. (1998)
			(tronco+galhos+folhas)		1				<u> </u>	
Várias	Amazônia	AM	Acima	Seco	5,0	120,0	0,97	1729 kg	exp(-1,497+2,548*log(d))	Higuchi et al. (1998)
			(tronco+galhos+folhas)							,

³ d - diâmetro na altura da base do tronco

1/4===	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Amazônia	AM	Acima	Seco	5,0	20,0	0,95	35 kg	exp(-2,668+2,081*log(d)+0,852*log(ht))	Higuchi et al. (1998)
			(tronco+galhos+folhas)							
Várias	Amazônia	AM	Acima	Seco	20,0	120,0	0,91	1497 kg	exp(-2,088+1,837*log(d)+0,939*log(ht))	Higuchi et al. (1998)
\/ / 	A	A N 4	(tronco+galhos+folhas)	Cara	F 0	400.0	0.00	040 len	2007 (2 CO4 : 2 O20*15 c/d) : 0 000*15 c/b4\)	Llimushi et el (4000)
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	5,0	120,0	0,98	812 kg	exp(-2,694+2,038*log(d)+0,902*log(ht))	Higuchi et al. (1998)
Várias	Amazônia	AM	Acima	Seco	5,0	20,0	0.94	34 kg	0,0056+0,621*((d/100)^2)*ht*1000	Higuchi et al. (1998)
varias	Amazoma	Aivi	(tronco+galhos+folhas)	3600	3,0	20,0	0,94	34 kg	0,0030+0,021 ((d/100)*2) 11t 1000	riiguciii et al. (1996)
Várias	Amazônia	AM	Acima	Seco	20,0	120.0	0,86	1508 kg	0,393+0,473*((d/100)^2)*ht*1000	Higuchi et al. (1998)
Varias	7 tillazoriia	7	(tronco+galhos+folhas)	0000	20,0	120,0	0,00	1000 kg	0,000 10, 110 ((d) 100) 2) 11 1000	riigaarii at aii (1888)
Várias	Amazônia	AM	Acima	Seco	5,0	120,0	0,90	716 kg	0,077+0,492*((d/100)^2)*ht*1000	Higuchi et al. (1998)
			(tronco+galhos+folhas)		-,-	-,-	1,11		.,, . ((** ***)) *************************	3.1 (111,
Várias	Amazônia	AM	Acima	Seco	5,0	20,0	0,94	31 kg	0,0336*(d^2,171)*(ht^1,038)	Higuchi et al. (1998)
			(tronco+galhos+folhas)					•		, ,
Várias	Amazônia	AM	Acima	Seco	20,0	120,0	0,92	1159 kg	0,0009*(d^1,585)*(ht^2,651)	Higuchi et al. (1998)
			(tronco+galhos+folhas)							
Várias	Amazônia	AM	Acima	Seco	5,0	120,0	0,94	540 kg	0,001*(d^1,579)*(ht^2,621)	Higuchi et al. (1998)
			(tronco+galhos+folhas)	_						
Várias	Amazônia	AM	Acima	Seco	1,0	5,0	96,20	-	exp(-1,7689+2,3770*log(d))	Nascimento e Laurance
Mississ	A	0.04	(tronco+galhos+folhas)	0	4.0	00.0	0.00		(4 0000 + 0 4400* (- \)	(2002)
Várias	Amazônia	AM	Acima (transa radhas rfalbas)	Seco	1,2	28,6	0,98	-	exp(-1,9968+2,4128*log(d))	Nelson et al. (1999)
Várias	Amazônia	AM	(tronco+galhos+folhas) Acima	Seco	1,2	28,6	0.99		exp(-2,5202+2,14*log(d)+0,4644*log(ht))	Nelson et al. (1999)
varias	Amazoma	Alvi	(tronco+galhos+folhas)	Seco	1,2	20,0	0,99	-	exp(-2,3202+2,14 log(d)+0,4644 log(fit))	Neison et al. (1999)
Várias	Amazônia	AM	Total (abaixo+acima)	Seco	5,0	124,0	0,96	30,6%	exp(-1,716+2,413*log(d))	Nogueira et al. (2008)
Várias	Amazônia	PA	Acima	Fresco	10,0	138,0	0,87	-	4,06*(d^1,76)	Araújo et al. (1999)
7 4.1.40	7 1110201110		(tronco+galhos+folhas)		. 0,0	.00,0	3,5.		,,,,,,	,a.je et a (1888)
Várias	Amazônia	PA	Acima	Fresco	10,0	138,0	0,88	-	400,32+39,99*d+0,97*(d^2)	Araújo et al. (1999)
			(tronco+galhos+folhas)		,	,	'			, , , ,
Várias	Amazônia	PA	Acima	Fresco	10,0	138,0	0,90	-	318,09+38,12*d+0,03*(d^2)*ht	Araújo et al. (1999)
			(tronco+galhos+folhas)							
Várias	Amazônia	PA	Acima	Fresco	10,0	138,0	0,88	-	175,83+0,79*(d^2)+0,07*(d^2)*ht	Araújo et al. (1999)
			(tronco+galhos+folhas)							
Várias	Amazônia	PA	Acima	Fresco	10,0	138,0	0,82	-	533,26+130,22*d+51*ht	Araújo et al. (1999)
			(tronco+galhos+folhas)	_						
Várias	Amazônia	PA	Acima	Fresco	10,0	138,0	0,92	-	0,026*(d^1,529)*(ht^1,747)	Araújo et al. (1999)
Mississ	A	DA	(tronco+galhos+folhas)		5 0	00.0	0.07	04.50/		11'
Várias	Amazônia	PA	Acima (transa radhaa rfalbaa)	Fresco	5,0	20,0	0,97	24,5%	exp(-	Higuchi et al. (1994)
Várias	Amazônia	PA	(tronco+galhos+folhas) Acima	Erocoo	20,0		0.92	37,3%	2,4768+2,2301*log(d/100)+0,6518*log(ht))*1000	Higuchi et al. (1994)
vailas	AIIIdZUIIId	FA	(tronco+galhos+folhas)	Fresco	20,0] -	0,92	31,3%	exp(- 3,8102+1,4631*log(d/100)+1,8190*log(ht))*1000	i liguotii et al. (1994)
Várias	Amazônia	PA	Acima	Seco	1,0	21,4	0,97	68,0%	0.2237*(d^2,260)	Ducey et al. (2009)
Varias	Amazoma		(tronco+galhos+folhas)	0000	1,0	21,7	0,57	00,070	0,2201 (d 2,200)	2000) Ct al. (2000)
Várias	Amazônia	PA	Acima	Seco	1,0	21,4	0,94	98,0%	0,0985*(d^1,879)*(ht^0,7355)	Ducey et al. (2009)
	,	1	(tronco+galhos+folhas)		',"	,,		10,070	-, (,) (,)	= == 3, 5: 5 (2555)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Amazônia	PA	Acima (tronco+galhos+folhas)	Seco	10,0	-	0,96	-	exp(-2,17+1,02*log(d^2)+0,39*log(ht))	Uhl et al. (1988) ¹
Várias	Amazônia	PA	Acima (tronco+galhos+folhas)	Seco	50,0	-	0,53	2,0%	23182,772-506,494*(d)+3,434*d^2+0,123*(d*hf)- 0,002*d^2*hf	Lima et al. (2019) ⁴
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	97,34	30,8%	exp(-10,9240874854+2,1188422024* log(d)+0,9848179885*log(ht))*1000	Scolforo et al. (2008) ⁵
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	97,81	32,0%	exp(-10,5678122652+2,0679586507* log(d)+0,8722223725*log(ht))*1000	Scolforo et al. (2008) ⁵
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	97,66	35,0%	exp(-10,6409194002+2,1533324963* log(d)+0,8248143766*log(ht))*1000	Scolforo et al. (2008) ⁵
Várias	Mata Atlântica	SC	Acima (tronco+galhos+folhas)	Seco	5,4	56,0	0,86	33,9 kg	25,9310+0,0258*(d^2)*ht	Uller et al. (2019)
Várias	Mata Atlântica	SC	Acima (tronco+galhos+folhas)	Seco	5,4	56,0	0,88	22,3 kg	-48,4365+0,6467*(d^2)	Uller et al. (2019)
Várias	Mata Atlântica	SC	Acima (tronco+galhos+folhas)	Seco	5,4	56,0	0,87	27,3 kg	exp(-2,3702+2,5179*log(d))	Uller et al. (2019)
Várias	Mata Atlântica	SC	Acima (tronco+galhos+folhas)	Seco	5,4	56,0	0,86	30,6 kg	exp(- 3,078059+1,068174*log(d^2)+0,661610*log(ht))	Uller et al. (2019) ⁶
Várias	Mata Atlântica	SC	Acima (tronco+galhos+folhas)	Seco	5,4	56,0	0,86	33,6 kg	exp(-3,4062+0,9774*log((d^2)*ht))	Uller et al. (2019)
Várias	Mata Atlântica	SP	Abaixo (raízes)	Seco	2,0	33,3	-	-	exp(-2,960+1,072*log(d^2))	Nogueira Júnior et al. (2014)
Várias	Mata Atlântica	SP	Abaixo (raízes)	Seco	2,0	33,3	-	-	exp(-3,535+0,832*log((d^2)*ht))	Nogueira Júnior et al. (2014)
Várias	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,4	68,5	0,94	-	exp(-2,245+2,388*log(d))	Colmanetti et al. (2018)
Várias	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	2,0	33,3	-	-	-13,127+0,428*(d^2)	Nogueira Júnior et al. (2014)
Várias	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	2,0	33,3	-	-	exp(-1,890+1,127*log(d^2))	Nogueira Júnior et al. (2014)
Várias	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	2,0	33,3	-	-	exp(-2,541+0,883*log((d^2)*ht))	Nogueira Júnior et al. (2014)
Várias	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	2,1	67,8	0,94	11,3%	exp(-2,052+0,801*log(d^2*ht))	Moreira-Burguer e Delitti (2010) ⁷
Vismia cayennensis (Jacq.) Pers.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,6	21,8	0,99	-	exp(-2,3706+2,5392*log(d))	Nelson et al. (1999)
Vismia cayennensis (Jacq.) Pers.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,6	21,8	0,99	-	exp(-2,4240+2,4855*log(d)+0,0738*log(ht))	Nelson et al. (1999)
Vismia cayennensis (Jacq.) Pers.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,6	21,8	0,99	-	exp(-2,0762+0,4759*log((d^4,6)*ht))	Nelson et al. (1999)
Vismia guianensis (Aubl.) Choisy	Amazônia	PA	Acima (tronco+galhos+folhas)	Seco	10,0	-	1,00	-	exp(-3,54+1,13*log(d^2)+0,77*log(ht))	Uhl et al. (1988) ¹
Vismia japurensis Reichardt	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,5	28,6	0,99	-	exp(-1,7829+2,3651*log(d))	Nelson et al. (1999)
Vismia japurensis Reichardt	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	1,5	28,6	0,99	-	exp(-2,0118+2,2337*log(d)+0,1877*log(ht))	Nelson et al. (1999)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Vismia japurensis Reichardt	Amazônia	AM	Acima	Seco	1,5	28,6	0,99	-	exp(-2,3362+0,4560*log((d^4,6)*ht))	Nelson et al. (1999)
			(tronco+galhos+folhas)							

¹ árvore em pasto abandonado
 ⁴ fórmula redigitada após errata do autor
 ⁵ peso seco inclui apenas galhos >=3cm
 ⁶ eq. 6 da Tabela 6 com errata fornecida pelo autor
 ⁷ floresta baixa de restinga

Floresta Ombrófila Mista (FOM)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Ateleia glazioveana Baill.	Mata Atlântica	RS	Acima (tronco+galhos+folhas)	Seco	2,0	16,7	0,85	31,4%	-5,6260+1,2986*log(d^2*ht)	Fontoura et al. (2017)
Mimosa scabrella Benth.	Mata Atlântica	PR	Abaixo (raízes)	Seco	4,3	23,0	0,96	1,7%	exp(-3,23191+2,881863*log(d)-0,63720*log(ht))	Mello et al. (2012)
Mimosa scabrella Benth.	Mata Atlântica	PR	Total (abaixo+acima)	Seco	4,3	23,0	0,99	0,2%	-0,49361+0,034865*(d^2)*ht	Mello et al. (2012)
Nectandra grandiflora Nees	Mata Atlântica	PR	Abaixo (raízes)	Seco	9,0	35,0	70,76	77,5%	-28,3918+2,62445*d	Barbeiro et al. (2009)
Nectandra grandiflora Nees	Mata Atlântica	PR	Abaixo (raízes)	Seco	9,0	35,0	85,95	53,7%	15,6056-1,9267*d+0,00716883*(d^2)*ht	Barbeiro et al. (2009)
Nectandra grandiflora Nees	Mata Atlântica	PR	Abaixo (raízes)	Seco	9,0	35,0	79,00	65,4%	exp(-4,30406+2,37326*log(d))	Barbeiro et al. (2009)
Nectandra grandiflora Nees	Mata Atlântica	PR	Abaixo (raízes)	Seco	9,0	35,0	80,08	63,9%	exp(-3,8414+3,275*log(d)-0,366626*log(d^2*ht))	Barbeiro et al. (2009)
Nectandra grandiflora Nees	Mata Atlântica	PR	Abaixo (raízes)	Seco	9,0	35,0	96,33	27,4%	exp(-0,395587+0,132527*d+0,0519405*log(d^2*ht))	Barbeiro et al. (2009)
Nectandra grandiflora Nees	Mata Atlântica	PR	Total (abaixo+acima)	Seco	9,0	35,0	86,33	40,7%	-159,96+16,065*d	Barbeiro et al. (2009)
Nectandra grandiflora Nees	Mata Atlântica	PR	Total (abaixo+acima)	Seco	9,0	35,0	97,36	17,9%	46,1634-5,25673*d+0,0335853*(d^2)*ht	Barbeiro et al. (2009)
Nectandra grandiflora Nees	Mata Atlântica	PR	Total (abaixo+acima)	Seco	9,0	35,0	94,58	19,7%	exp(-2,26388+2,38201*log(d))	Barbeiro et al. (2009)
Nectandra grandiflora Nees	Mata Atlântica	PR	Total (abaixo+acima)	Seco	9,0	35,0	95,73	22,7%	exp(-3,10478+0,743088*log(d)+0,666342*log(d^2*ht))	Barbeiro et al. (2009)
Nectandra grandiflora Nees	Mata Atlântica	PR	Total (abaixo+acima)	Seco	9,0	35,0	98,44	13,7%	exp(-2,08721+0,0364642*d+0,71874*log(d^2*ht))	Barbeiro et al. (2009)
Phyllostachys aurea Rivière & C. Rivière.	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	1,4	4,6	0,63	31,3%	(-650,820+77,754*d*10)/1000	Monastier et al. (2015)
Phyllostachys aurea Rivière & C. Rivière.	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	1,4	4,6	0,65	30,2%	(572,612+0,155*((d*10)^2)*ht)/1000	Monastier et al. (2015)
Phyllostachys aurea Rivière & C. Rivière.	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	1,4	4,6	0,60	30,7%	exp(2,188+1,293*log(d*10)+0,393*log(ht))/1000	Monastier et al. (2015)
Phyllostachys aurea Rivière & C. Rivière.	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	1,4	4,6	0,61	31,0%	exp(2,552+1,412*log(d*10))/1000	Monastier et al. (2015)
Pimenta pseudocaryophyllus (Gomes) Landrum	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	6,0	12,0	0,55	30,2%	5,092633+1,830661*d	Girard (2005)
Pimenta pseudocaryophyllus (Gomes) Landrum	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	6,0	12,0	0,58	29,0%	3,423637+0,994122*d+2,130317*hf	Girard (2005)
Pimenta pseudocaryophyllus (Gomes) Landrum	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	6,0	12,0	0,96	8,9%	0,003297+1,730917*d+6,253*hf+0,165655*d^2- 0,03107*(d^2*hf)-0,6033*(d*hf)	Girard (2005)
Pimenta pseudocaryophyllus (Gomes) Landrum	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	6,0	12,0	0,06	44,0%	13,15335+0,019166*((d^2)*hf)	Girard (2005)
Pimenta pseudocaryophyllus (Gomes) Landrum	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	6,0	12,0	0,98	5,7%	0,08562+5,147161*hf+0,364603*(d^2)- 0,08531*((d^2)*hf)	Girard (2005)
Pimenta pseudocaryophyllus (Gomes) Landrum	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	6,0	12,0	0,97	8,2%	hf*(0,077154+5,875792*d-0,37259*(d^2))	Girard (2005)
Várias	Mata Atlântica	PR	Acima (tronco+galhos)	Seco	5,3	82,0	-	-	(0,028726*d^1,675713*ht^1,165411)+(0,003816*(d^2 *ht)^1,121684)	Trautenmüller et al. (2021)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	5,4	105,7	0,95	47,9%	0,317*(d^2) + 0,009*((d^2)*ht)	Ratuchne (2010)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	5,4	105,7	0,95	46,7%	0,340*(d^2)-0,122*(ht^2)+0,008*((d^2)*ht)	Ratuchne (2010)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	5,4	105,7	0,96	47,2%	-3,025*d+0,425*(d^2)+0,006*((d^2)*ht)	Ratuchne (2010)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	5,4	105,7	0,95	46,5%	4,268*d-0,114*(d^2)+0,013*(d^3)-(0,0000722)*(d^4)	Ratuchne (2010)

Floresta Ombrófila Mista (FOM)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,2	85,9	0,98	53,0%	exp(-3,07697+2,57018*log(d))	Ratuchne (2015)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,2	85,9	0,98	52,3%	0,03232*d^2,64923+15,98866*log10(d)	Ratuchne (2015)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,2	85,9	0,98	53,7%	0,06222*exp(-0,29985+0,75178*log(d)+0,42765* log(d^2)+0,32104*log(d^3))	Ratuchne (2015)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,2	85,9	0,98	48,7%	6,47920+0,02244*(d^2)*ht	Ratuchne (2015)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,2	85,9	0,98	48,7%	0,02977+0,02126*ht*(d^2)	Ratuchne (2015)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,2	85,9	0,98	47,8%	-237,79+exp(5,07159+0,03326*d+0,01943*ht)	Ratuchne (2015)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	1,1	7,2	0,80	20,0%	exp(-0,9667+1,9425*log(d)-0,2592*log(ht))	Theodorovicz et al. (2016)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	1,1	7,2	0,84	19,4%	exp(-1,2701+1,7821*log(d))	Theodorovicz et al. (2016)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	1,1	7,2	0,90	23,9%	1,0802+0,0162*((d^2)*ht)	Theodorovicz et al. (2016)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	1,1	7,2	0,94	18,5%	0,1766+0,1996*(d^2)	Theodorovicz et al. (2016)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	5,3	82,0	-	-	(0,028726*d^1,675713*ht^1,165411)+(0,003816*(d^2 *ht)^1,121684)+(0,014257*(d^2*ht)^0,671907)	Trautenmüller et al. (2021)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,91	32,4%	-103,45609+15,09492*d	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,96	21,7%	-11,83006+0,5917*(d^2)	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,96	21,6%	20,035564+0,01914*(d^3)	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,91	32,5%	-93,9256+15,4711*d-1,04188*ht	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,92	31,6%	-84,833+15,7011*d-3,0313*hf	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,96	23,6%	1,72441+0,028227*(d^2)*ht	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,86	40,7%	5,083135+0,043881*(d^2)*hf	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,88	35,5%	exp(-1,88002+2,37745*log(d))	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,88	35,5%	exp(-1,88002+1,18872*log(d^2))	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,88	35,5%	exp(-1,88002+0,79248*log(d^3))	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,93	27,0%	exp(-2,774881+2,20766*log(d)+0,50275*log(ht))	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,96	20,3%	exp(-2,01898+2,33576*log(d)+0,11354*log(hf))	Urbano (2007)

Floresta Ombrófila Mista (FOM)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,93	27,5%	exp(-3,65315+1,01203*log((d^2)*ht))	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	4,0	28,0	0,96	21,0%	exp(-2,78471+0,95763*log((d^2)*hf))	Urbano (2007)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	-	-	0,90	34,4%	13,338-3,764*d+0,527*(d^2)	Zanette et al. (2017)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	-	-	0,23	82,2%	-13,893+3,982*d+0,047*(d^2)	Zanette et al. (2017)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	-	-	0,87	35,0%	47,339-9,593*d+0,746*(d^2)	Zanette et al. (2017)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	-	-	0,64	48,2%	11,977-2,214*d+0,308*(d^2)	Zanette et al. (2017)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	-	-	0,93	61,9%	112,624-14,323*d+0,688*(d^2)	Zanette et al. (2017)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	-	-	0,81	51,4%	-1,371+0,380*d+0,263*(d^2)	Zanette et al. (2017)
Várias	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	-	-	0,93	85,8%	79,443-12,130*d+0,655*(d^2)	Zanette et al. (2017)

Savana (Cerrado)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Anadenanthera colubrina (Vell.) Brenan	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	10,0	40,0	94,99	21,2%	exp(-9,995149073+2,4884117855*log(d)+0,3203838261* log(ht))*1000	Scolforo et al. (2008)1
Anadenanthera colubrina (Vell.) Brenan	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	10,0	40,0	91,93	24,3%	exp(-5,1733249886+2,8278563823*log(d)- 2,0882060533*log(ht))*1000	Scolforo et al. (2008) ¹
Diptychandra aurantiaca Tul.	Pantanal	MS	Acima (tronco+galhos+folhas)	Seco	5,0	35,0	0,99	-	exp(-2,119+2,38*log(d))	Salis et al. (2006)
Eremanthus erythropappus (DC.) MacLeish	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	35,0	98,48	20,7%	exp(-3,6776993+1,0141433*log((d^2)*ht))	Scolforo et al. (2008) ¹
Eremanthus erythropappus (DC.) MacLeish	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	35,0	98,05	23,2%	exp(-3,695112+1,0221402*log((d^2)*ht))	Scolforo et al. (2008) ¹
Eremanthus erythropappus (DC.) MacLeish	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	35,0	98,40	27,6%	exp(-3,513087+1,0109135*log((d^2)*ht))	Scolforo et al. (2008) ¹
Licania minutiflora (Sagot) Fritsch	Pantanal	MS	Acima (tronco+galhos+folhas)	Seco	10,0	36,0	0,91	-	exp(-2,265+2,386*log(d))	Salis et al. (2006)
Magonia pubescens A.StHil.	Pantanal	MS	Acima (tronco+galhos+folhas)	Seco	7,0	35,0	0,99	-	exp(-2,888+2,795*log(d))	Salis et al. (2006)
Protium heptaphyllum (Aubl.) Marchand	Pantanal	MS	Acima (tronco+galhos+folhas)	Seco	8,0	36,0	0,97	-	exp(-2,083+2,536*log(d))	Salis et al. (2006)
Stryphnodendron adstringens (Mart.) Coville	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	25,0	98,89	15,3%	exp(-11,4879612502+2,6267435633*log(d)+0,6604363613* log(ht))*1000	Scolforo et al. (2008) ¹
Stryphnodendron adstringens (Mart.) Coville	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	25,0	98,83	16,4%	exp(-11,5069953299+2,2647527215*log(d)+1,1946244031* log(ht))*1000	Scolforo et al. (2008) ¹
Stryphnodendron adstringens (Mart.) Coville	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	25,0	98,79	11,4%	exp(-11,3752699505+2,2058967302*log(d)+1,1811942644* log(ht))*1000	Scolforo et al. (2008) ¹
Stryphnodendron adstringens (Mart.) Coville	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	25,0	96,14	20,2%	exp(-11,1540582423+2,8732588246*log(d)+0,0690784938* log(ht))*1000	Scolforo et al. (2008) ¹
Stryphnodendron adstringens (Mart.) Coville	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	25,0	98,68	10,8%	exp(-11,3841308978+2,9100586552*log(d)+0,1989771767* log(ht))*1000	Scolforo et al. (2008) ¹
Stryphnodendron adstringens (Mart.) Coville	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	25,0	99,11	13,0%	exp(-10,4209629465+2,2735797216*log(d)+0,5710190938* log(ht))*1000	Scolforo et al. (2008) ¹
Stryphnodendron adstringens (Mart.) Coville	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	25,0	94,63	27,0%	exp(-10,5503679996+2,4360021855*log(d)+0,3995511285* log(ht))*1000	Scolforo et al. (2008) ¹
Stryphnodendron adstringens (Mart.) Coville	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	25,0	91,91	21,4%	exp(-10,1723567144+2,1419819825*log(d)+0,4862440445* log(ht))*1000	Scolforo et al. (2008) ¹
Stryphnodendron adstringens (Mart.) Coville	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	25,0	96,17	17,5%	exp(-10,4633765888+2,4542495475*log(d)+0,1955518745* log(ht))*1000	Scolforo et al. (2008) ¹
Stryphnodendron adstringens (Mart.) Coville	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	25,0	96,48	24,0%	exp(-11,2875746052+2,3822964052*log(d)+0,9086217316* log(ht))*1000	Scolforo et al. (2008) ¹
Terminalia argentea Mart. & Zucc.	Pantanal	MS	Acima (tronco+galhos+folhas)	Seco	6,0	31,0	0,99	-	exp(-1,915+2,409*log(d))	Salis et al. (2006)
Várias	Cerrado	DF	Acima (tronco+galhos)	Seco	5,0	32,3	98,60	26,0%	0,0288*d^2*ht	Rezende et al. (2006) ²
Várias	Cerrado	DF	Acima (tronco+galhos+folhas)		5,6	37,4	-	44,7%	0,0468*(d^1,8294)*(ht^0,9410)	Souza (2020) ³

¹ peso seco inclui apenas galhos >=3cm ² d - diâmetro a 0,3m do solo ³ mata de galeria

Savana (Cerrado)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Cerrado	DF	Acima (tronco+galhos+folhas)	Seco	5,0	39,0	-	51,2%	0,0033*(d^1,4989)*(ht^2,6094)	Souza (2020) ⁴
Várias	Cerrado	DF	Acima (tronco+galhos+folhas)	Seco	5,3	49,0	-	32,6%	0,1061*(d^2,3253)*(ht^0,3352)	Souza (2020) ⁵
Várias	Cerrado	DF	Acima (tronco+galhos+folhas)	Seco	5,0	32,3	-	32,5%	0,0272*(d^2,5825)*(ht^0,5174)	Souza (2020) ⁶
Várias	Cerrado	DF	Acima (tronco+galhos+folhas)	Seco	5,0	49,0	=	60,8%	0,0237*(d^2,3733)*(ht^0,7464)	Souza (2020) ⁷
Várias	Cerrado	DF	Acima (tronco+galhos+folhas)	Seco	5,0	49,0	-	79,7%	0,0049*(d^2,5019)*(ht^1,1310)	Souza (2020) ⁸
Várias	Cerrado	GO	Acima (tronco+galhos+folhas)	Seco	5,0	-	0,69	13,6%	0,21220*(d^2,01655)*(ht^0,18081)	Santana et al. (2021)
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	27,6	0,88	39,4%	exp(-3,9336+2,9171*log(d))	Ribeiro et al. (2011)
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	96,22	34,3%	exp(-10,6778434551+2,4312156091*log(d)+0,6690995709* log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	97,26	48,3%	exp(-10,0494414912+2,3529732141*log(d)+0,4522175499* log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	96,95	44,2%	exp(-10,3446328162+2,4830156359*log(d)+0,4337627498* log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	97,15	63,5%	exp(-10,2250784897+2,0204541469*log(d)+0,9297685811* log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	97,14	55,5%	exp(-10,2276863236+2,4684541946*log(d)+0,4000186998* log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	96,13	56,6%	exp(-10,1024202605+2,4038079403*log(d)+0,479410187* log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	97,07	48,2%	exp(-10,2342711188+2,4593429847*log(d)+0,4107891746* log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	98,73	16,6%	exp(-10,366838857+2,2457934972*log(d)+0,637840619* log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	97,33	38,9%	exp(-11,3710317049+2,433521972*log(d)+0,8433902218* log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	94,19	49,8%	exp(-12,2999911901+2,6961223975*log(d)+0,8094354054* log(ht))*1000	Scolforo et al. (2008) ¹
Várias	Cerrado	TO	Acima (tronco+galhos+folhas)	Seco	5,0	60,0	0,97	28,0%	0,0123307*d^1,79593*ht^1,54701	Miguel et al. (2017)
Várias	Pantanal	MS	Acima (tronco+galhos+folhas)	Seco	6,0	27,0	0,91	-	exp(-2,566+2,533*log(d))	Salis et al. (2006)

¹ peso seco inclui apenas galhos >=3cm ⁴ mata seca

⁵ cerradão

⁶ cerrado sensu stricto

⁷ abrange mata de galeria, mata seca, cerrado sensu stricto e cerradão

⁸ abrange mata de galeria, mata Seca e cerradão

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Anadenanthera colubrina	Caatinga	PE	Acima	Fresco	3,0	26,0	91,99	16,7%	54,92921*((1-exp(-0,178713*d))^2,490494)	Abreu et al. (2016)
(Vell.) Brenan			(tronco+galhos+folhas)							
Anadenanthera colubrina	Caatinga	PE	Acima	Fresco	3,0	26,0	93,45	15,1%	51,63157/(1+16,05867*exp(-0,362138*d))	Abreu et al. (2016)
(Vell.) Brenan			(tronco+galhos+folhas)							
Anadenanthera colubrina	Caatinga	PE	Acima	Seco	1,9	9,5	0,89	20,7%	48,7255*(1-exp(-0,1435*d))^2,4096	Dalla Lana et al. (2018)
(Vell.) Brenan			(tronco+galhos+folhas)							
Anadenanthera colubrina	Caatinga	PE	Acima	Seco	1,9	9,5	0,86	22,9%	1,7527*(d^1,1265)	Dalla Lana et al. (2018)
(Vell.) Brenan	0 11	5-	(tronco+galhos+folhas)					22.22/	4 = 70 (#/ 100) 10 7000	2 11 1 1 (22.12)
Anadenanthera colubrina	Caatinga	PE	Acima	Seco	1,9	9,5	0,86	22,9%	1,7531*(d^2)^0,5632	Dalla Lana et al. (2018)
(Vell.) Brenan	0 "	DE	(tronco+galhos+folhas)		1.0	0.5	0.04	0.4.00/	4.4005*//.140*1.1\40.4000	D. II. I. (2010)
Anadenanthera colubrina	Caatinga	PE	Acima	Seco	1,9	9,5	0,84	24,8%	1,4905*((d^2)*ht)^0,4069	Dalla Lana et al. (2018)
(Vell.) Brenan Anadenanthera colubrina	Dantanal	MS	(tronco+galhos+folhas)	C	0.0	07.0	0.97		70 000 : 44 000*4	De dille (2011)
(Vell.) Brenan	Pantanal	IVIS	Acima (tronco+galhos+folhas)	Seco	6,0	27,0	0,97	-	-76,809+14,899*d	Padilha (2011)
Anadenanthera colubrina	Coatings	PE	Acima	Cooo	2,0	50,0	0,94		0,2482*(d^2,1628)	Sampaio e Silva (2005)
var. cebil (Griseb.) Altschul	Caatinga	PE	(tronco+galhos+folhas)	Seco	2,0	50,0	0,94	-	0,2462 (0.2,1626)	Sampaio e Silva (2005)
Aspidosperma pyrifolium	Caatinga	PE	Acima	Seco	1,9	9,5	0,74	27.0%	0,7271*(d^0,8176)*(ht^0,6229)	Dalla Lana et al. (2018)
Mart. & Zucc.	Caatinga	'	(tronco+galhos+folhas)	3600	1,3	3,5	0,74	21,070	0,7271 (0.0,0170) (111.0,0229)	Dalla Lalla et al. (2010)
Aspidosperma pyrifolium	Caatinga	PE	Acima	Seco	1,9	9.5	0,71	28,3%	1,0110*(d^1,1361)	Dalla Lana et al. (2018)
Mart. & Zucc.	Caatinga	' -	(tronco+galhos+folhas)	0000	1,0	0,0	0,7 1	20,070	1,0110 (4 1,1001)	Dana Lana et al. (2010)
Aspidosperma pyrifolium	Caatinga	PE	Acima	Seco	1,9	9,5	0,71	28,3%	1,0109*(d^2)^0,5681	Dalla Lana et al. (2018)
Mart. & Zucc.	J Gaain iga	• =	(tronco+galhos+folhas)		.,0	0,0	0,7 .	20,070	.,o.oo (a <u>z</u>) <u>0,ooo</u> .	2 4.14 24.14 (20.0)
Aspidosperma pyrifolium	Caatinga	PE	Acima	Seco	1,9	9,5	0.75	26,6%	0,7858*((d^2)*ht)^0,4550	Dalla Lana et al. (2018)
Mart. & Zucc.	3		(tronco+galhos+folhas)		, -	- , -	-, -		, , , , , , , , , , , , , , , , , , , ,	(1 2)
Aspidosperma pyrifolium	Caatinga	PE	Acima	Seco	2,0	50,0	0,85	-	0,3675*(d^1,8355)	Sampaio e Silva (2005)
Mart. & Zucc.			(tronco+galhos+folhas)						,	·
Astronium urundeuva	Caatinga	PE	Acima	Seco	2,0	50,0	0,98	-	0,1397*(d^2,4659)	Sampaio e Silva (2005)
(M. Allemão) Engl.			(tronco+galhos+folhas)							
Bauhinia cheilantha	Caatinga	PE	Acima	Seco	1,9	9,5	0,97	12,1%	0,0699*(d^2,2115)*(ht^0,8155)	Dalla Lana et al. (2018)
(Bong.) Steud.			(tronco+galhos+folhas)							
Bauhinia cheilantha	Caatinga	PE	Acima	Seco	1,9	9,5	0,94	65,1%	exp(-2,7776+2,1672*log(d)+0,9313*log(ht))	Dalla Lana et al. (2018)
(Bong.) Steud.			(tronco+galhos+folhas)							
Bauhinia cheilantha	Caatinga	PE	Acima	Seco	1,9	9,5	0,94	64,4%	exp(-2,8746+1,0523*log((d^2)*ht))	Dalla Lana et al. (2018)
(Bong.) Steud.			(tronco+galhos+folhas)							
Bauhinia cheilantha	Caatinga	PE	Acima	Seco	1,9	9,5	0,94	17,9%	0,1543*(d^2,4831)	Dalla Lana et al. (2018)
(Bong.) Steud.	0 11	5-	(tronco+galhos+folhas)					1= 00/	0.47404/10014/0440	2 11 1 1 (22.12)
Bauhinia cheilantha	Caatinga	PE	Acima	Seco	1,9	9,5	0,94	17,9%	0,1543*(d^2)^1,2416	Dalla Lana et al. (2018)
(Bong.) Steud.	0 "	DE	(tronco+galhos+folhas)		1.0	0.5	0.07	40.50/	0.0500*// [40]*[1)44.0504	D. II. I. (2010)
Bauhinia cheilantha	Caatinga	PE	Acima	Seco	1,9	9,5	0,97	12,5%	0,0568*((d^2)*ht)^1,0531	Dalla Lana et al. (2018)
(Bong.) Steud.	Coatings	CE	(tronco+galhos+folhas)	Cooo			0.05		100/ 2 400 t 0 0270*log40/d02*b#\\	Cohooht et al. (1000)
Bauhinia forficata Link	Caatinga	CE	Acima (transa radhaa radhaa)	Seco	-	-	0,95	-	10^(-2,480+0,9270*log10(d^2*ht))	Schacht et al. (1988)
Cenostigma bracteosum	Caatinga	PE	(tronco+galhos+folhas) Acima	Seco	1,9	9.5	0,83	24.4%	0,6221*(d^1,1061)*(ht^0,6840)	Dalla Lana et al. (2018)
(Tul.) E. Gagnon & G.P. Lewis	Caalinga		(tronco+galhos+folhas)	Seco	1,9	9,5	0,03	24,4%	0,0221 (0°1,1001) (111°0,0040)	Dalla Laria et al. (2018)
Cenostigma bracteosum	Caatinga	PE	Acima	Seco	1,9	9.5	0.85	23,4%	6,6205+0,0341*((d^2)*ht)	Dalla Lana et al. (2018)
	Caatinga	rc		3600	1,9	9,5	0,00	23,470	0,0203+0,0341 ((0°2) 11t)	Dalla Lalla et al. (2016)
Tul.) E. Gagnon & G.P. Lewis			(tronco+galhos+folhas)							

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Cenostigma bracteosum	Caatinga	PE	Acima	Seco	1,9	9,5	0,75	30,1%	0,9765*(d^1,5126)	Dalla Lana et al. (2018)
(Tul.) E. Gagnon & G.P. Lewis	_		(tronco+galhos+folhas)							
Cenostigma bracteosum	Caatinga	PE	Acima	Seco	1,9	9,5	0,75	30,1%	0,9767*(d^2)^0,7563	Dalla Lana et al. (2018)
(Tul.) E. Gagnon & G.P. Lewis			(tronco+galhos+folhas)							
Cenostigma bracteosum	Caatinga	PE	Acima	Seco	1,9	9,5	0,84	24,1%	0,6173*((d^2)*ht)^0,5957	Dalla Lana et al. (2018)
(Tul.) E. Gagnon & G.P. Lewis			(tronco+galhos+folhas)							, ,
Cenostigma pyramidale	Caatinga	CE	Acima	Seco	-	-	0.99	-	0,0626*(d^2)*ht	Schacht et al. (1988)
(Tul.) E. Gagnon & G.P. Lewis			(tronco+galhos+folhas)							, ,
Cenostigma pyramidale	Caatinga	PE	Acima	Seco	2,0	50,0	0,82	-	0,2365*(d^2,1928)	Sampaio e Silva (2005)
(Tul.) E. Gagnon & G.P. Lewis			(tronco+galhos+folhas)							, , ,
Cenostigma pyramidale	Caatinga	PE	Acima	Seco	2,0	19,0	0,68	-	0,3129*(d^1,8838)	Sampaio et al. (2010)
(Tul.) E. Gagnon & G.P. Lewis	J		(tronco+galhos+folhas)		, ,	.,-	,,,,			(12,
Cenostigma pyramidale	Caatinga	PE	Acima	Seco	2,0	19,0	0,69	-	0,0904*(d*(ht^1,3904))	Sampaio et al. (2010)
(Tul.) E. Gagnon & G.P. Lewis	3		(tronco+galhos+folhas)		, -	-,-	, , , ,			, , , , , , , , , , , , , , , , , , , ,
Cereus jamacaru DC.	Caatinga	PE	Acima	Seco	2,0	50,0	0,70	-	0,0010*(d^3,2327)	Sampaio e Silva (2005)
			(tronco+galhos+folhas)		-, -	,-	-,		3,5515 (5.5,555.)	(=)
Cnidoscolus quercifolius Pohl	Caatinga	PE	Acima	Seco	1,9	9,5	0.79	27,2%	3,9444+0,0186*((d^2)*ht)	Dalla Lana et al. (2018)
Conditional questional con-	• Guainiga		(tronco+galhos+folhas)	0000	.,0	0,0	0,. 0		0,0 : : : : 0,0 : 00 ((u =) : ii)	24.14 24.14 (20.15)
Cnidoscolus quercifolius Pohl	Caatinga	PE	Acima	Seco	1,9	9,5	0,72	17,5%	exp(-0,6664+0,5237*log((d^2)*ht))	Dalla Lana et al. (2018)
Criacocolae querenende i cin	Guatingu	-	(tronco+galhos+folhas)	0000	1,0	0,0	0,72	11,070	σκρ(σ,σσσ 11 σ,σ2σ1 1σg((α 2) 111))	Bana Lana ot all (2010)
Cnidoscolus quercifolius Pohl	Caatinga	PE	Acima	Seco	1,9	9,5	0,82	25,5%	0,6064*(d^1,4216)	Dalla Lana et al. (2018)
Criacocciae querenenae i cin	Oddinga	' -	(tronco+galhos+folhas)	0000	1,0	0,0	0,02	20,070	0,0004 (d 1,4210)	Balla Laria et al. (2010)
Cnidoscolus quercifolius Pohl	Caatinga	PE	Acima	Seco	1,9	9,5	0,82	25,5%	0,6064*(d^2)^0,7108	Dalla Lana et al. (2018)
Ornadoscolas que le monas i orn	Caatinga	' -	(tronco+galhos+folhas)	0000	1,5	3,3	0,02	20,070	0,0004 (d 2) 0,7 100	Balla Laria et al. (2010)
Cnidoscolus quercifolius Pohl	Caatinga	PE	Acima	Seco	1,9	9,5	0,82	25,8%	0,4896*((d^2)*ht)^0,5387	Dalla Lana et al. (2018)
Criacocciae querenenae i cin	Oddinga	' -	(tronco+galhos+folhas)	0000	1,0	0,0	0,02	20,070	0,4000 ((d 2) m) 0,0007	Balla Laria et al. (2010)
Coccoloba guaranitica Hassler	Pantanal	MS	Acima	Seco	5,0	24,0	0,99	-	6,717*exp(d*0,139)	Padilha (2011)
Coocoloba gaarariiloa Hassici	T dillaria	IVIC	(tronco+galhos+folhas)	0000	0,0	24,0	0,00		σ, π σκρία σ, τοσή	1 ddiiiid (2011)
Cordia oncocalyx Allemão	Caatinga	CE	Acima	Seco	-	-	0,98	_	8,730+0,0414*((d^2)*ht)	Schacht et al. (1988)
Cordia oricocalyx Allemao	Caatinga	02	(tronco+galhos+folhas)	0000			0,50		0,73010,0414 ((d 2) 11t)	Geriadrit et al. (1900)
Croton heliotropiifolius Kunth	Caatinga	PE	Acima	Seco	1,9	9,5	0,76	19,0%	0,1868*(d^1,2764)*(ht^0,9401)	Dalla Lana et al. (2018)
Crotori neliotropiliolias Rantin	Caatinga	'	(tronco+galhos+folhas)	3600	1,9	3,5	0,70	13,076	0,1000 (d*1,2704) (HE 0,9401)	Dalla Laria et al. (2010)
Croton heliotropiifolius Kunth	Caatinga	PE	Acima	Seco	1,9	9.5	0,71	31,8%	exp(-1,6887+1,2224*log(d)+0,9761*log(ht))	Dalla Lana et al. (2018)
Crotori neliotropiliolias Rantin	Caatiiiga	' -	(tronco+galhos+folhas)	3600	1,5	3,3	0,7 1	31,070	exp(-1,0007+1,2224 log(d)+0,9701 log(lit))	Dalla Laria et al. (2010)
Croton heliotropiifolius Kunth	Caatinga	PE	Acima	Seco	1,9	9,5	0,76	19,2%	0,6522+0,0582*((d^2)*ht)	Dalla Lana et al. (2018)
Crotori neliotropiliolius Kuritri	Caalinga	FE	(tronco+galhos+folhas)	Seco	1,9	9,5	0,76	19,270	0,0322+0,0362 ((d*2) 11t)	Dalla Laria et al. (2016)
Croton heliotropiifolius Kunth	Caatinga	PE	Acima	Seco	1,9	9,5	0,70	32,2%	ovp(1.5519+0.7159*log((d\2)*b+\)	Dalla Lana et al. (2018)
Crotori neliotropiliolius Kuritri	Caalinga	FE	(tronco+galhos+folhas)	Seco	1,9	9,5	0,70	32,270	exp(-1,5518+0,7158*log((d^2)*ht))	Dalla Laria et al. (2016)
Croton heliotropiifolius Kunth	Continue	PE	Acima	Seco	1,9	0.5	0,76	19,1%	0,2219*((d^2)*ht)^0,7065	Dollo Long et al. (2019)
Crotori rieliotropiliolius Kunth	Caatinga	PE		Seco	1,9	9,5	0,76	19,1%	0,2219 ((0.2) 111),70,7005	Dalla Lana et al. (2018)
Croton hemiargyreus Müll.Arg.	Caatinga	CE	(tronco+galhos+folhas) Acima	Seco			0.97		0,886+0,0484*((d^2)*ht)	Schacht et al. (1988)
Crotori nemiargyreus Mull.Arg.	Caalinga	CE	(tronco+galhos+folhas)	Seco	-	-	0,97	-	0,000+0,0404 ((U'\2) III)	Schacht et al. (1900)
Cratan isaahinansis Da:	Continue	PE	(tronco+gainos+roinas) Acima	Cooo	2.0	F0.0	0.04	_	0.3560*/401.9565/	Compain a Cilva (2005)
Croton jacobinensis Baill.	Caatinga	PE		Seco	2,0	50,0	0,84	-	0,3569*(d^1,8565)	Sampaio e Silva (2005)
Creter is set in serie Dell	Captiage	DE	(tronco+galhos+folhas)	C	2.0	12.0	0.00		0.4474*/404.5004\	Compain at al. (2042)
Croton jacobinensis Baill.	Caatinga	PE	Acima (transa realbas realbas)	Seco	2,0	13,0	0,62	-	0,4171*(d^1,5601)	Sampaio et al. (2010)
			(tronco+galhos+folhas)	1						

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Croton jacobinensis Baill.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	13,0	0,67	-	0,0867*(d*(ht^1,2852))	Sampaio et al. (2010)
Dalbergia cearensis Ducke	Caatinga	CE	Acima (tronco+galhos+folhas)	Seco	5,0	20,1	0,67	-	exp(-3,710+1,878*log(d*ht))	Nogueira et al. (2021)
Dalbergia cearensis Ducke	Caatinga	CE	Acima (tronco+galhos+folhas)	Seco	5,0	20,1	0,66	-	exp(-4,135+1,713*log(d)+2,325*log(ht))	Nogueira et al. (2021)
Dalbergia cearensis Ducke	Caatinga	CE	Acima (tronco+galhos+folhas)	Seco	5,0	20,1	0,64	-	exp(-2,763+1,055*log(d^2*ht))	Nogueira et al. (2021)
Dalbergia cearensis Ducke	Caatinga	CE	Acima (tronco+galhos+folhas)	Seco	5,0	20,1	0,57	-	exp(-1,249+2,280*log(d))	Nogueira et al. (2021)
Dalbergia cearensis Ducke	Caatinga	CE	Acima (tronco+galhos+folhas)	Seco	5,0	20,1	0,42	-	exp(-3,676+4,252*log(ht))	Nogueira et al. (2021)
Diplokeleba floribunda N.E.Br.	Pantanal	MS	Acima (tronco+galhos+folhas)	Seco	7,0	27,0	0,98	-	0,306*(d^2,145)	Padilha (2011)
Jatropha mollissima (Pohl) Baill.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	50,0	0,83	-	0,1970*(d^1,8145)	Sampaio e Silva (2005)
Mimosa caesalpiniifolia Benth.	Caatinga	CE	Acima (tronco+galhos+folhas)	Seco	-	-	0,95	-	4,020+0,339*((d^2)*ht)	Schacht et al. (1988)
Mimosa hostilis (Mart.) Benth.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	50,0	0,96	-	0,3127*(d^2,1183)	Sampaio e Silva (2005)
Mimosa ophthalmocentra Mart. ex Benth.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,90	19,8%	6,0137*(d^1,7250)*(ht^-1,338)	Dalla Lana et al. (2018)
Mimosa ophthalmocentra Mart. ex Benth.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,88	9,0%	exp(1,1118+1,7371*log(d)-0,9536*log(ht))	Dalla Lana et al. (2018)
Mimosa ophthalmocentra Mart. ex Benth.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,75	32,0%	43,6748*(1-exp(-0,2103*d))^2,9584	Dalla Lana et al. (2018)
Mimosa ophthalmocentra Mart. ex Benth.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,71	34,2%	2,2018*(d^1,1066)	Dalla Lana et al. (2018)
Mimosa ophthalmocentra Mart. ex Benth.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,71	34,2%	2,2016*(d^2)^0,5533	Dalla Lana et al. (2018)
Mimosa ophthalmocentra Mart. ex Benth.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	24,0	0,81	-	0,4369*(d^1,8493)	Sampaio et al. (2010)
Mimosa ophthalmocentra Mart. ex Benth.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	24,0	0,73	-	0,0893*(d*(ht^1,4322))	Sampaio et al. (2010)
Mimosa tenuiflora (Willd.) Poir.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,89	22,1%	3,0407+0,0458*((d^2)*ht)	Dalla Lana et al. (2018)
Mimosa tenuiflora (Willd.) Poir.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,92	10,6%	exp(-1,6100+0,7850*log((d^2)*ht))	Dalla Lana et al. (2018)
Mimosa tenuiflora (Willd.) Poir.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,94	16,8%	0,5084*(d^1,7121)	Dalla Lana et al. (2018)
Mimosa tenuiflora (Willd.) Poir.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,94	16,8%	0,5084*(d^2)^0,8561	Dalla Lana et al. (2018)
Mimosa tenuiflora (Willd.) Poir.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	34,0	0,70	-	0,3344*(d^1,9648)	Sampaio et al. (2010)
Mimosa tenuiflora (Willd.) Poir.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	34,0	0,64	-	0,4138*(d^1,7718)	Sampaio et al. (2010)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Mimosa tenuiflora (Willd.) Poir.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	34,0	0,69	-	0,0710*(d*(ht^1,5120))	Sampaio et al. (2010)
Mimosa tenuiflora (Willd.) Poir.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	34,0	0,66	-	0,0798*(d*(ht^1,4591))	Sampaio et al. (2010)
Monteverdia rigida (Mart.) Biral	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	50,0	0,95	-	0,3460*(d^2,0231)	Sampaio e Silva (2005)
Phyllostylon rhamnoides (Poiss.) Taub.	Pantanal	MS	Acima (tronco+galhos+folhas)	Seco	6,0	28,0	1,00	-	5,886*exp(d*0,127)	Padilha (2011)
Schinopsis brasiliensis Engl.	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	50,0	0,97	-	0,2274*(d^2,2710)	Sampaio e Silva (2005)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,74	47,6%	0,8905*(d^1,2189)*(ht^0,2333)	Dalla Lana et al. (2018)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,85	23,5%	exp(-1,2884+1,6102*log(d)+0,4343*log(ht))	Dalla Lana et al. (2018)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,84	23,7%	exp(-1,4991+0,7290*log((d^2)*ht))	Dalla Lana et al. (2018)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,74	47,1%	55,8948*(1-exp(-0,1176*d))^2,2982	Dalla Lana et al. (2018)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,73	48,1%	0,9867*(d^1,3692)	Dalla Lana et al. (2018)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,73	48,1%	0,9867*(d^2)^0,6846	Dalla Lana et al. (2018)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	1,9	9,5	0,73	48,4%	0,8471*((d^2)*ht)^0,5034	Dalla Lana et al. (2018)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	30,0	0,95	-	0,0612*(d*ht)^1,5811	Sampaio e Silva (2005)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	30,0	0,92	-	0,1730*(d^2,2950)	Sampaio e Silva (2005)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	30,0	0,82	-	0,2627*(d^1,9010)	Sampaio e Silva (2005)
Várias	Caatinga	PE	Acima (tronco+galhos+folhas)	Seco	2,0	30,0	0,95	-	0,2368*(d^2,2219)	Sampaio e Silva (2005) ¹
Várias	Pantanal	MS	Acima (tronco+galhos+folhas)	Seco	6,0	25,0	0,98	-	0,188*(d^2,266)	Padilha (2011) ²

¹ espécies pequenas ² espécies grandes

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Attalea phalerata	Outro	Outro	Acima	Seco	17,0	50,0	0,86	-	exp(3,2579+1,1249*log(hf+1))	Goodman et al. (2013)
Mart. ex Spreng.			(tronco+galhos+folhas)							
Avicennia schaueriana	Mata Atlântica	PE	Acima	Seco	3,4	10,2	0,78	-	0,2309*(d^2,0685)	Medeiros e Sampaio (2008)
Stapf & Leechm. ex Moldenke			(tronco+galhos+folhas)							
Avicennia schaueriana	Mata Atlântica	PE	Acima	Seco	3,4	10,2	0,84	-	0,1327*((d^2)*ht)^0,8298	Medeiros e Sampaio (2008)
Stapf & Leechm. ex Moldenke			(tronco+galhos+folhas)							
Euterpe precatoria Mart.	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	12,0	19,0	0,97	-	-108,81+13,589*hf	Goodman et al. (2013)
Iriartea deltoidea Ruiz & Pav.	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	6,0	33,0	0,97	-	exp(-3,483+0,94371*log((d^2)*hf))	Goodman et al. (2013)
Laguncularia racemosa (L.) C.F.Gaertn.	Mata Atlântica	PE	Acima (tronco+galhos+folhas)	Seco	2,1	17,8	0,96	-	0,1442*(d^2,325)	Medeiros e Sampaio (2008)
Laguncularia racemosa (L.) C.F.Gaertn.	Mata Atlântica	PE	Acima (tronco+galhos+folhas)	Seco	2,1	17,8	0,97	-	0,1214*((d^2)*ht)^0,8615	Medeiros e Sampaio (2008)
Mauritia flexuosa L.f.	Outro	Outro	Abaixo (raízes)	Seco	19,0	36,0	0,93	-	exp(-0,3688+2,0106*log(hf))	Goodman et al. (2013)
Mauritia flexuosa L.f.	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	19,0	36,0	0,90	-	exp(2,4647+1,3777*log(hf))	Goodman et al. (2013)
Mauritiella aculeata (Kunth) Burret	Outro	Outro	Abaixo (raízes)	Seco	8,0	15,0	0,95	-	exp(1,0945+0,11086*hf)	Goodman et al. (2013)
Oenocarpus bataua Mart.	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	21,0	41,0	0,78	-	exp(4,5496+0,1387*hf)	Goodman et al. (2013)
Palmeiras (várias)	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	-	-	0,89	-	exp(-6,3789-0,877*log(1/d^2)+2,151*log(ht))	Saldarriaga et al. (1988) ¹
Rhizophora mangle L.	Mata Atlântica	PE	Acima (tronco+galhos+folhas)	Seco	2,5	20,7	0,92	-	0,2938*(d^2,384)	Medeiros e Sampaio (2008)
Rhizophora mangle L.	Mata Atlântica	PE	Acima (tronco+galhos+folhas)	Seco	2,5	20,7	0,94	-	0,2752*((d^2)*ht)^0,8529	Medeiros e Sampaio (2008)
Socratea exorrhiza (Mart.) H.Wendl.	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	4,0	24,0	0,98	-	exp(-3,7965+1,0029*log((d^2)*hf))	Goodman et al. (2013)
Várias	Amazônia	AM	Abaixo (raízes)	Seco	5,0	138,0	0,89	15,2%	exp(-3,881+2,406*log(d))	Lima et al. (2012)
Várias	Amazônia	AM	Abaixo (raízes)	Seco	5,0	138,0	0,90	13,7%	exp(-4,494+2,119*log(d)+0,499*log(ht))	Lima et al. (2012)
Várias	Amazônia	AM	Abaixo (raízes)	Seco	5,0	138,0	0,90	12,7%	exp(3,572+0,929*log((d/100)^2*ht))	Lima et al. (2012)
Várias	Amazônia	AM	Abaixo (raízes)	Seco	5,0	138,0	0,74	11,0%	0,320*(d^1,636)	Lima et al. (2012)
Várias	Amazônia	AM	Abaixo (raízes)	Seco	5,0	138,0	0,73	11,0%	0,320*(d^1,636)*(ht^0,000)	Lima et al. (2012)
Várias	Amazônia	AM	Abaixo (raízes)	Seco	5,0	138,0	0,73	11,1%	50,60*((d/100)^2*ht)^0,690	Lima et al. (2012)
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	5,0	138,0	0,94	8,4%	exp(-2,025+2,459*log(d))	Lima et al. (2012)
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	5,0	138,0	0,96	6,6%	exp(-3,372+1,830*log(d)+1,097*log(ht))	Lima et al. (2012)
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	5,0	138,0	0,96	6,6%	exp(5,604+0,957*log((d/100)^2*ht))	Lima et al. (2012)
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	5,0	138,0	0,93	5,6%	0,488*(d^2,083)	Lima et al. (2012)

¹ florestas tropicais úmidas

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	5,0	138,0	0,93	5,6%	0,488*(d^2,083)*(ht^0,000)	Lima et al. (2012)
Várias	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	5,0	138,0	0,92	6,2%	316,7*((d/100)^2*ht)^0,861	Lima et al. (2012)
Várias	Amazônia	AM	Total (abaixo+acima)	Seco	5,0	138,0	0,95	8,9%	exp(-1,868+2,452*log(d))	Lima et al. (2012)
Várias	Amazônia	AM	Total (abaixo+acima)	Seco	5,0	138,0	0,96	6,9%	exp(-3,106+1,874*log(d)+1,008*log(ht))	Lima et al. (2012)
Várias	Amazônia	AM	Total (abaixo+acima)	Seco	5,0	138,0	0,96	7,0%	exp(5,739+0,954*log((d/100)^2*ht))	Lima et al. (2012)
Várias	Amazônia	AM	Total (abaixo+acima)	Seco	5,0	138,0	0,92	5,9%	0,700*(d^2,018)	Lima et al. (2012)
Várias	Amazônia	AM	Total (abaixo+acima)	Seco	5,0	138,0	0,92	5,9%	0,700*(d^2,018)*(ht^0,000)	Lima et al. (2012)
Várias	Amazônia	AM	Total (abaixo+acima)	Seco	5,0	138,0	0,91	6,3%	369,01*((d/100)^2*ht)^0,838	Lima et al. (2012)
Várias	Cerrado	SP	Acima (tronco+galhos+folhas)	Seco	2,5	25,0	0,77	-	207,11*exp(0,977*ht)/1000	Delitti et al. (2006) ²
Várias	Cerrado	SP	Acima (tronco+galhos+folhas)	Seco	2,5	25,0	0,88	-	32,86*d^2,47/1000	Delitti et al. (2006) ²
Várias	Mata Atlântica	PE	Acima (tronco+galhos+folhas)	Seco	2,1	20,7	0,89	-	0,1346*(d^2,525)	Medeiros e Sampaio (2008)
Várias	Mata Atlântica	PE	Acima (tronco+galhos+folhas)	Seco	2,1	20,7	0,90	-	0,1129*((d^2)*ht)^0,9241	Medeiros e Sampaio (2008)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Fresco	5,0	148,0	0,84	-	42,69-12,800*d+1,242*(d^2)	Brown (1997)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Fresco	5,0	148,0	0,97	=	exp(-2,134+2,530*log(d))	Brown (1997)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Fresco	10,0	-	0,83	-	38,49-11,788*d+1,193*(d^2)	Brown e Iverson (1992)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Fresco	10,0	-	0,83	-	1,276+0,034*((d^2)*ht)	Brown e Iverson (1992)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Fresco	5,0	130,0	0,78	-	38,4703-11,7883*d+1,1926*(d^2)	Brown et al. (1989) ³
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Fresco	5,0	130,0	0,97	-	exp(-2,4090+0,9522*log((d^2)*ht))	Brown et al. (1989) ³
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	6,0	40,0	0,80	-	exp(-3,3488+2,7483*log(d))	Goodman et al. (2013)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	6,0	200,0	0,99	-	exp(-1,232+2,178*log(d))	Basuki et al. (2009) ⁴
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	6,0	200,0	0,99	-	exp(-1,813+2,339*log(d))	Basuki et al. (2009) ⁴
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	6,0	200,0	0,98	-	exp(-1,098+2,142*log(d))	Basuki et al. (2009) ⁴
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	6,0	200,0	0,98	-	exp(-2,193+2,371*log(d))	Basuki et al. (2009) ⁴
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	6,0	200,0	0,98	-	exp(-1,498+2,234*log(d))	Basuki et al. (2009) ⁴

² altura do diâmetro não foi informada

 ³ florestas tropicais
 ⁴ florestas tropicais úmidas de terras-baixas – dipterocarpus

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	6,0	200,0	0,96	-	exp(-1,201+2,196*log(d))	Basuki et al. (2009) ⁴
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	0,89	-	exp(-1,996+2,32*log(d))	Brown (1997)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	4,0	112,0	0,92	-	21,297-6,953*d+0,740*(d^2)	Brown (1997)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	10,0	-	0,67	-	34,47-8,068*d+0,659*(d^2)	Brown e Iverson (1992)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	10,0	-	0,97	-	exp(-3,375+0,948*log(d^2*ht))	Brown e Iverson (1992)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	10,0	=	0,92	-	21,297022-6,952649*(d)+0,7403*(d^2)	Brown e Iverson (1992)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	5,0	40,0	0,67	-	34,4703-8,0671*d+0,6589*(d^2)	Brown et al. (1989) ³
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	5,0	130,0	0,90	-	13,2579-4,8945*(d)+0,6713*(d^2)	Brown et al. (1989) ³
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	5,0	130,0	0,90	-	exp(-3,3012+0,9439*log((d^2)*ht))	Brown et al. (1989) ³
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	10,0	140,0	0,97	-	exp(-2,00+2,42*log(d))	Chave et al. (2001)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	1,0	10,0	0,91	-	exp(-1,8967+2,1135*log(d))	Djomo et al. (2010) ⁵
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	1,0	79,0	0,96	-	exp(-2,1079+2,3278*log(d))	Djomo et al. (2010) ⁵
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	1,0	79,0	0,96	-	exp(-3,0788+0,9066*log((d^2)*ht))	Djomo et al. (2010) ⁵
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	4,9	87,7	0,93	38,7%	0,10419*d^2,491453	Huy et al. (2016) ⁶
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	4,9	87,7	0,89	35,8%	25,15789-7,717925*d+0,82106*(d^2)	Huy et al. (2016) ⁶
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	4,9	87,7	0,93	37,1%	15,90167- 4,926814*d+0,59812*(d^2)+0,00409*(d^3)	Huy et al. (2016) ⁶
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	4,9	87,7	0,95	31,6%	266,858*((d/100)^2*ht)^0,972330	Huy et al. (2016) ⁶
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	4,9	87,7	0,94	32,7%	0,05054*(d^2,126979)*(ht^0,64600)	Huy et al. (2016) ⁶
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	1,0	44,1	0,99	-	0,1525*(d^2,34)	Kenzo et al. (2009) ⁷
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	2,0	44,2	0,99	-	0,1083*(((d^2)*ht)^0,80)	Kenzo et al. (2009) ⁷
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	3,0	44,3	0,97	-	0,0558*(ht^2,53)	Kenzo et al. (2009) ⁷

 ³ florestas tropicais
 ⁴ florestas tropicais úmidas de terras-baixas – dipterocarpus
 ⁵ florestas tropicais úmidas de terras-baixas
 ⁶ florestas decíduas de folhosas
 ⁷ floresta tropical

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	7,6	48,1	0,95	-	0,066*(d^2,59)	Ketterings et al. (2001)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	3,8	57,5	0,99	-	10^(-1,247+2,663*log10(d))	Martin et al. (1998)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	8,1	100,0	0,90	39,4%	0,465*(d^2,202)	Overman et al. (1994) ⁸
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	8,1	100,0	0,94	62,8%	1,120*(d^2)	Overman et al. (1994) ⁸
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	8,1	100,0	0,97	25,6%	exp(-1,966+1,242*log(d^2))	Overman et al. (1994) ⁸
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	8,1	100,0	0,97	24,3%	exp(-3,843+1,035*log(d^2*ht))	Overman et al. (1994) ⁸
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	8,1	45,0	0,81	42,8%	0,749*(d^2,011)	Overman et al. (1994) ⁸
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	8,1	45,0	0,93	43,5%	0,780*(d^2)	Overman et al. (1994) ⁸
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	8,1	45,0	0,93	27,5%	exp(-2,059+1,1256*log(d^2))	Overman et al. (1994) ⁸
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	8,1	45,0	0,94	26,3%	exp(-3,555+1,002*log(d^2*ht))	Overman et al. (1994) ⁸
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	-	-	0,57	43,7%	-0,060+0,227*(d^2)+0,002*ht	Sah et al. (2004)
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	1,0	5,0	0,93	=	-0,292+0,369*d-0,087*ht	Saldarriaga et al. (1988) ¹
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	60,0	105,0	0,71	21,0%	exp(0,76+0,00015*d^2)*1000	Segura e Kanninen (2005) ¹
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	60,0	105,0	0,71	21,2%	exp(-7,27+2,07*log(d))*1000	Segura e Kanninen (2005) ¹
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	60,0	105,0	0,66	158,0%	(-7,45+0,17*d)*1000	Segura e Kanninen (2005) ¹
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	60,0	105,0	0,64	162,2%	(-54,13+13,86*log(d))*1000	Segura e Kanninen (2005) ¹
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	60,0	105,0	0,87	14,0%	exp(- 6,93+1,86*log(d)+0,0045*log(d)*ht)*1000	Segura e Kanninen (2005) ¹
Várias	Outro	Outro	Acima (tronco+galhos+folhas)	Seco	4,5	105,0	0,99	=	2,903*10^-2*((d^2)*ht)^0,9813	Yamakura et al. (1986) ⁵

florestas tropicais úmidas florestas tropicais úmidas de terras-baixas florestas ombrófila madura

FLORESTAS NATURAIS

(Equações a nível de povoamento)

Campinarana, Florestas Estacional e Ombrófila, e Savana

Tipologia	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Campinarana	Amazônia	RR	Acima (tronco+galhos+folhas)	Seco	1,5	10,0	-	-	exp(+2,54009 + 1,27946*ln(BA) - 0,26904*ln(N))	David et al. (2022) ¹
Floresta estacional	Amazônia e Mata Atlântica	Vários	Acima (tronco+galhos+folhas)	Seco	5,0	80,0	-	-	exp(+2,35855 + 1,18178*ln(BA) - 0,18365*ln(N))	David et al. (2022)
Floresta ombrófila	Amazônia e Mata Atlântica	Vários	Acima (tronco+galhos+folhas)	Seco	5,0	138,0	-	-	exp(+2,48782 + 1,18620*ln(BA) - 0,16660*ln(N))	David et al. (2022)
Savana	Cerrado	Vários	Acima (tronco+galhos+folhas)	Seco	1,4	31,3	-	-	exp(+3,02331 + 1,44062*ln(BA) - 0,42550*ln(N))	David et al. (2022)

¹ d - diâmetro na altura do solo; BA - área basal na altura do solo

FLORESTAS PLANTADAS

(Equações a nível de árvore individual)

Espécies exóticas

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Acacia mangium Willd.	Amazônia	RR	Abaixo (raízes)	Fresco	8,0	30,0	0,91	2,9%	0,045404*(d^2,388124)	Gomes (2017) ¹
Acacia mangium Willd.	Amazônia	RR	Abaixo (raízes)	Fresco	8,0	30,0	0,91	3,0%	-6,40565-0,44868*(d^2)	Gomes (2017) ¹
Acacia mangium Willd.	Amazônia	RR	Abaixo (raízes)	Fresco	8,0	30,0	0,91	3,0%	-6,40565-0,44868*d+0,18296*(d^2)	Gomes (2017) ¹
Acacia mangium Willd.	Amazônia	RR	Abaixo (raízes)	Fresco	8,0	30,0	0,91	2,9%	0,048504*(d^2,464056)*(hf^-0,11171)	Gomes (2017) ¹
Acacia mangium Willd.	Amazônia	RR	Abaixo (raízes)	Fresco	8,0	30,0	0,85	3,7%	7,312124+0,00858*((d^2)*hf)	Gomes (2017) ¹
Acacia mangium Willd.	Amazônia	RR	Abaixo (raízes)	Fresco	8,0	30,0	0,86	3,7%	0,034423*(((d^2)*hf)^0,860268)	Gomes (2017) ¹
Acacia mangium Willd.	Amazônia	RR	Acima (tronco+galhos+folhas)	Fresco	8,0	30,0	0,96	1,8%	0,365953*(d^2,322782)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Acima (tronco+galhos+folhas)	Fresco	8,0	30,0	0,96	1,9%	-50,9254+1,127341*(d^2)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Acima (tronco+galhos+folhas)	Fresco	8,0	30,0	0,96	1,8%	106,2327-17,5133*d+1,565445*(d^2)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Acima (tronco+galhos+folhas)	Fresco	8,0	30,0	0,96	1,8%	0,356584*(d^2,293789)*(hf^0,042882)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Acima (tronco+galhos+folhas)	Fresco	8,0	30,0	0,92	2,5%	55,75248+0,055382*((d^2)*hf)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Acima (tronco+galhos+folhas)	Fresco	8,0	30,0	0,92	2,6%	0,262875*(((d^2)*hf)^0,843795)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Total (abaixo+acima)	Fresco	8,0	30,0	0,96	1,7%	0,4103*(d^2,3315)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Total (abaixo+acima)	Fresco	8,0	30,0	0,96	1,8%	-60,7206+1,3039*(d^2)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Total (abaixo+acima)	Fresco	8,0	30,0	0,96	1,7%	120,9697-20,9697*d+1,8104*(d^2)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Total (abaixo+acima)	Fresco	8,0	30,0	0,97	1,7%	0,4049*(d^2,3166)*(hf^0,0221)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Total (abaixo+acima)	Fresco	8,0	30,0	0,92	2,6%	63,0646+0,0640*((d^2)*hf)	Gomes (2017)
Acacia mangium Willd.	Amazônia	RR	Total (abaixo+acima)	Fresco	8,0	30,0	0,92	2,6%	0,2968*(((d^2)*hf)^0,8460)	Gomes (2017)
Acacia mearnsii De Wild.	Pampa	RS	Abaixo (raízes)	Seco	5,1	26,0	0,93	25,9%	exp(-2,796042+2,085428*log(d))	Barichello et al. (2005)
Acacia mearnsii De Wild.	Pampa	RS	Abaixo (raízes)	Seco	3,6	19,6	0,97	18,0%	10^(-2,2681+2,282014*log10(d))	Caldeira et al. (2011)
Acacia mearnsii De Wild.	Pampa	RS	Acima (tronco+galhos+folhas)	Seco	5,1	26,0	0,99	10,7%	exp(-1,575087+2,388265*log(d))	Barichello et al. (2005)
Acacia mearnsii De Wild.	Pampa	RS	Acima (tronco+galhos+folhas)	Seco	-	-	0,95	-	exp(-4,6341+1,9310*log(d)+1,4545*log(ht))	Behling et al. (2012)
Acacia mearnsii De Wild.	Pampa	RS	Total (abaixo+acima)	Seco	3,6	19,6	0,99	3,4%	10^(-1,2874+2,80262*log10(d))	Caldeira et al. (2011)
Bambusa oldhamii Munro	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,6	10,3	0,50	21,8%	-11,3316+1,7578*ht	Sanquetta et al. (2015a)
Bambusa oldhamii Munro	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,6	10,3	0,78	14,6%	-13,4200+3,9572*d	Sanquetta et al. (2015a)
Bambusa oldhamii Munro	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,6	10,3	0,78	14,7%	6,1342+0,0109*((d^2)*ht)	Sanquetta et al. (2015a)
Bambusa oldhamii Munro	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,6	10,3	0,77	14,8%	-15,2078+3,4891*d+0,3369*ht	Sanquetta et al. (2015a)
Bambusa oldhamii Munro	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,6	10,3	0,76	23,6%	exp(-0,9677+1,8521*log(d))	Sanquetta et al. (2015a)
Bambusa oldhamii Munro	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,6	10,3	0,77	14,7%	-14,3187+6,0518*sqrt(d)*log(d)	Sanquetta et al. (2015a)

¹ apenas as raízes grossas com diâmetro ≥ 2 mm

Espécies exóticas

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Bambusa oldhamii Munro	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,6	10,3	0,44	23,1%	-14,3187+(6,0518*(d^0,5))*log(d)	Sanquetta et al. (2015a)
Bambusa vulgaris Schrad. ex J.C.Wendl.	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,7	10,0	0,48	24,0%	-8,4429+1,8657*ht	Sanquetta et al. (2015a)
Bambusa vulgaris Schrad. ex J.C.Wendl.	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,7	10,0	0,73	17,4%	-21,7880+5,1622*d	Sanquetta et al. (2015a)
Bambusa vulgaris Schrad. ex J.C.Wendl.	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,7	10,0	0,76	16,5%	4,9887+0,0144*((d^2)*ht)	Sanquetta et al. (2015a)
Bambusa vulgaris Schrad. ex J.C.Wendl.	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,7	10,0	0,74	17,1%	-23,0656+4,2613*d+0,5638*ht	Sanquetta et al. (2015a)
Bambusa vulgaris Schrad. ex J.C.Wendl.	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,7	10,0	0,71	23,6%	exp(-1,6425+2,2003*log(d))	Sanquetta et al. (2015a)
Bambusa vulgaris Schrad. ex J.C.Wendl.	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,7	10,0	0,74	17,0%	exp(-2,0124+0,7204*log((d^2)*ht))	Sanquetta et al. (2015a)
Bambusa vulgaris Schrad. ex J.C.Wendl.	Mata Atlântica	SP	Acima (tronco+galhos+folhas)	Seco	5,7	10,0	0,72	17,5%	-22,3139+7,1274*(d^0,5)*log(d)	Sanquetta et al. (2015a)
Cryptomeria japonica (Thunb. Ex L.f.) D.Don	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	14,7	35,4	0,93	14,7%	-337,67366+24,02437*d	Coutinho et al. (2017)
Cryptomeria japonica (Thunb. Ex L.f.) D.Don	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	14,7	35,4	0,94	13,5%	-408,53074+20,99843*d+6,61730*ht	Coutinho et al. (2017)
Cryptomeria japonica (Thunb. Ex L.f.) D.Don	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	14,7	35,4	0,96	11,1%	5,81707+0,01679*d^2*ht	Coutinho et al. (2017)
Eucalyptus camaldulensis Dehnh.	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	20,0	0,97	14,2%	exp(-9,609445+2,63942*log(d))	Franco (1996)
Eucalyptus camaldulensis Dehnh.	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	5,0	20,0	0,97	11,5%	0,002222- 0,000062*(d^2)+0,00002*(d^2*ht)+0,000001405*(d* ht^2)	Franco (1996)
Eucalyptus grandis W.Hill	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	10,0	18,7	-	6,8%	0,0192*(d^1,8766)*(ht^1,0980)	Ribeiro et al. (2015)
Eucalyptus grandis W.Hill	Cerrado	MG	Acima (tronco+galhos+folhas)	Seco	10,0	18,7	-	6,7%	0,0249*(((d^2)*ht)^0,9679)	Ribeiro et al. (2015)
Pinus caribaea var. hondurensis (Sénécl.) W. H. Barrett & Golfari	Mata Atlântica	BA	Acima (tronco+galhos+folhas)	Seco	5,8	23,8	87,44	29,4%	exp(-2,47+2,51*log(d))	Lima et al. (2016)
Pinus caribaea var. hondurensis (Sénécl.) W. H. Barrett & Golfari	Mata Atlântica	BA	Acima (tronco+galhos+folhas)	Seco	5,8	23,8	88,88	31,3%	exp(5,87-24,05*1/d)	Lima et al. (2016)
Pinus caribaea var. hondurensis (Sénécl.) W. H. Barrett & Golfari	Mata Atlântica	BA	Acima (tronco+galhos+folhas)	Seco	5,8	23,8	80,50	28,9%	11,90-2,85*d+0,47*(d^2)	Lima et al. (2016)
Pinus caribaea var. hondurensis (Sénécl.) W. H. Barrett & Golfari	Mata Atlântica	BA	Acima (tronco+galhos+folhas)	Seco	5,8	23,8	76,34	30,9%	-49,17+8,31*d	Lima et al. (2016)
Pinus caribaea var. hondurensis (Sénécl.) W. H. Barrett & Golfari	Mata Atlântica	BA	Acima (tronco+galhos+folhas)	Seco	5,8	23,8	84,42	25,6%	5,19+0,03*((d^2)*ht)	Lima et al. (2016)
Pinus caribaea var. hondurensis (Sénécl.) W. H. Barrett & Golfari	Mata Atlântica	BA	Acima (tronco+galhos+folhas)	Seco	5,8	23,8	86,94	26,6%	-17,36+0,09*(d^2)+0,02*((d^2)*ht)+2,37*ht	Lima et al. (2016)
Pinus caribaea var. hondurensis (Sénécl.) W. H. Barrett & Golfari	Mata Atlântica	BA	Acima (tronco+galhos+folhas)	Seco	5,8	23,8	90,46	27,5%	exp(-4,02 +1,83*log(d)+1,36*log(ht))	Lima et al. (2016)

Espécies exóticas

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Pinus caribaea var. hondurensis	Mata Atlântica	BA	Acima	Seco	5,8	23,8	74,47	32,0%	-55,88+12,50*(d^0,5)*log(d)	Lima et al. (2016)
(Sénécl.) W. H. Barrett & Golfari			(tronco+galhos+folhas)							
Pinus caribaea var. hondurensis	Mata Atlântica	BA	Acima	Seco	5,8	23,8	91,28	26,4%	-161,18+14,65*d-0,11*(d^2)-	Lima et al. (2016)
(Sénécl.) W. H. Barrett & Golfari			(tronco+galhos+folhas)						2,99*(d*ht)+0,10*((d^2)*ht)+26,00*ht	
Pinus spp.	Mata Atlântica	PR	Abaixo (raízes)	Seco	3,6	35,9	0,82	29,3%	-9,3709+1,2439*d+0,0122*(d^2)	Schikowski et al. (2013)
Pinus spp.	Mata Atlântica	PR	Abaixo (raízes)	Seco	3,6	35,9	0,82	29,5%	-11,8026+1,5909*d+0,0001*(d^2)*ht	Schikowski et al. (2013)
Pinus spp.	Mata Atlântica	PR	Abaixo (raízes)	Seco	3,6	35,9	0,82	28,9%	-3,0203+0,0729*(d^2)-0,0011*(d^2)*ht	Schikowski et al. (2013)
Pinus spp.	Mata Atlântica	PR	Abaixo (raízes)	Seco	3,6	35,9	0,83	28,3%	-10,2883+0,6824*d+1,3065*ht	Schikowski et al. (2013)
Pinus spp.	Mata Atlântica	PR	Total (abaixo+acima)	Seco	3,6	35,9	0,96	17,7%	109,4775-20,1123*d+1,0041*(d^2)	Schikowski et al. (2013)
Pinus spp.	Mata Atlântica	PR	Total (abaixo+acima)	Seco	3,6	35,9	0,97	15,4%	-12,9265+1,4294*d+0,0185*(d^2)*ht	Schikowski et al. (2013)
Pinus spp.	Mata Atlântica	PR	Total (abaixo+acima)	Seco	3,6	35,9	0,97	15,5%	12,1156-2,5386*d+0,1702*(d^2)+0,0156*(d^2)*ht	Schikowski et al. (2013)
Pinus spp.	Mata Atlântica	PR	Total (abaixo+acima)	Seco	3,6	35,9	0,84	37,2%	-297,2604+15,5684*d+11,5991*ht	Schikowski et al. (2013)
Pinus taeda L.	Mata Atlântica	PR	Abaixo (raízes)	Fresco	-	-	43,64	22,8%	162,0559-9,2412*d+0,2393*(d^2)	Sanquetta et al. (2003)
Pinus taeda L.	Mata Atlântica	PR	Abaixo (raízes)	Fresco	-	-	49,85	21,2%	263,0526-14,4282*d+0,0124*((d^2)*ht)	Sanquetta et al. (2003)
Pinus taeda L.	Mata Atlântica	PR	Abaixo (raízes)	Fresco	-	-	33,54	21,9%	256,8161-13,6711*d-0,0801*(d^2)+0,0151*d^2*ht	Sanquetta et al. (2003)
Pinus taeda L.	Mata Atlântica	PR	Abaixo (raízes)	Fresco	-	-	43,97	22,4%	39,5338-0,1705*(d^2)+0,0106*((d^2)*ht)	Sanquetta et al. (2003)
Pinus taeda L.	Mata Atlântica	PR	Abaixo (raízes)	Fresco	-	-	34,28	24,3%	-40,3714+6,8804*d-1,9488*ht	Sanquetta et al. (2003)
Pinus taeda L.	Mata Atlântica	PR	Abaixo (raízes)	Fresco	-	-	45,47	25,2%	-0,4656+(d^1,0870)+(ht^0,6888)	Sanquetta et al. (2003)
Pinus taeda L.	Mata Atlântica	RS	Abaixo (raízes)	Seco	18,1	50,8	0,98	3,0%	exp(6,334737-73,401781*(d^-1))	Witschoreck (2008)
Pinus taeda L.	Mata Atlântica	RS	Acima	Seco	18,1	50,8	0,98	1,5%	exp(7,854652-63,900403*(d^-1))	Witschoreck (2008)
			(tronco+galhos+folhas)							
Pinus taeda L.	Mata Atlântica	RS	Total (abaixo+acima)	Seco	18,1	50,8	0,98	1,5%	exp(8,051060-65,107266*(d^-1))	Witschoreck (2008)
Platanus x acerifolia	Pampa	RS	Abaixo (raízes)	Seco	-	-	0,81	11,5%	10^(1,841753-9,680439*(d^-1))	Hoppe et al. (2006)
Platanus x acerifolia	Pampa	RS	Total (abaixo+acima)	Seco	-	-	0,95	7,0%	10^(-1,161443+0,913291*log10((d^2)*ht))	Hoppe et al. (2006)
Syzygium cumini (L.) Skeels	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,87	-	-185,219+19,884*d	Robortella (2010)
Syzygium cumini (L.) Skeels	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,87	-	-16,366+0,061*((d^2)*ht)	Robortella (2010)
Syzygium cumini (L.) Skeels	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,87	-	-183,248+19,934*d-0,312*ht	Robortella (2010)
Syzygium cumini (L.) Skeels	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,89	-	0,098*(d^2,569)	Robortella (2010)
Syzygium cumini (L.) Skeels	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,87	-	0,017*(((d^2)*ht)^1,144)	Robortella (2010)
Syzygium cumini (L.) Skeels	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,92	-	exp(-2,450+2,607*log(d))	Robortella (2010)
Syzygium cumini (L.) Skeels	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,90	-	exp(-4,396+01,851*log(d*ht))	Robortella (2010)
Syzygium cumini (L.) Skeels	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,92	-	exp(-2,298+2,575*log(d)+0,105*log(hf/ht))	Robortella (2010)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Anadenanthera peregrina	Mata Atlântica	ES	Acima	Seco	-	-	0,89	24,1%	3,561821+0,044706*(d^2*ht)	Souza (2018) ¹
(L.) Speg.			(tronco+galhos+folhas)							· · ·
Anadenanthera peregrina	Mata Atlântica	ES	Acima	Seco	-	-	0,93	20,4%	396,9-93,24*d+5,715*d^2	Gomes (2022) ²
(L.) Speg. var. peregrina			(tronco+galhos+folhas)							
Anadenanthera peregrina	Mata Atlântica	ES	Acima	Seco	-	-	0,78	18,0%	-108,1+16,47*d	Gomes (2022) ³
(L.) Speg. var. peregrina			(tronco+galhos+folhas)							
Anadenanthera peregrina	Mata Atlântica	ES	Acima	Seco	-	-	0,87	13,9%	-541,7+65,84*d-1,3818*d^2	Gomes (2022) ⁴
(L.) Speg. var. peregrina			(tronco+galhos+folhas)	_						
Aniba rosiodora Ducke	Amazônia	AM	Acima (tronco+galhos+folhas)	Fresco	6,0	18,0	0,78	-	12,71452+0,45218*(d^2)	Krainovic et al. (2017)
Aniba rosiodora Ducke	Amazônia	AM	Acima (tronco+galhos+folhas)	Fresco	6,0	18,0	0,68	-	5,9292+2,1841*d+0,3686*(d^2)	Krainovic et al. (2017)
Aniba rosiodora Ducke	Amazônia	AM	Acima	Fresco	6,0	18,0	0,81		0,31046*(d^1,54806)*(ht^0,78635)	Krainovic et al. (2017)
Alliba losiodora Ducke	Amazoma	Aivi	(tronco+galhos+folhas)	riesco	0,0	10,0	0,01	_	0,31040 (0.1,34800) (110.78033)	Rialilovic et al. (2017)
Aniba rosiodora Ducke	Amazônia	AM	Acima	Fresco	6,0	18,0	0,69	-	1,6607*(d^1,5872)	Krainovic et al. (2017)
, imba reciedera Backe	ATTIGEOTTIC	/	(tronco+galhos+folhas)	110000	0,0	10,0	0,00		1,0007 (4 1,0072)	Transvis stan (2011)
Aniba rosiodora Ducke	Amazônia	AM	Acima (tronco+galhos+folhas)	Fresco	6,0	18,0	0,81	-	0,319*(((d^2)*ht)^0,77631)	Krainovic et al. (2017)
Aniba rosiodora Ducke	Amazônia	AM	Acima	Seco	6,0	18,0	0,62	-	13,08642+0,26283*(d^2)	Krainovic et al. (2017)
			(tronco+galhos+folhas)			10.0				16 1 1 (004=)
Aniba rosiodora Ducke	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	6,0	18,0	0,62	-	8,6451+0,7148*d+0,2354*(d^2)	Krainovic et al. (2017)
Aniba rosiodora Ducke	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	6,0	18,0	0,80	-	0,14867*(d^1,50003)*(ht^0,93917)	Krainovic et al. (2017)
Aniba rosiodora Ducke	Amazônia	AM	Acima	Seco	6,0	18,0	0,63	-	1,12*(d^1,5415)	Krainovic et al. (2017)
Aniba rosiodora Ducke	Amazônia	AM	(tronco+galhos+folhas) Acima	Seco	6,0	18,0	0,80	_	0.17609*(((d^2)*ht)^0.78505)	Krainovic et al. (2017)
Ariiba rosiodora Ducke	Amazonia	AIVI	(tronco+galhos+folhas)	Seco	6,0	10,0	0,80	-	0,17609 (((d^2) 11)70,76505)	Krainovic et al. (2017)
Araucaria angustifolia	Mata Atlântica	PR	Abaixo (raízes)	Seco	20,0	44,0	0,96	3,4%	exp(-5,38290+2,80408*log(d))	Schumacher et al. (2011)
(Bertol.) Kuntze	Wata / tiantioa	' ' '	Abdixo (raizos)	0000	20,0	14,0	0,00	0,470	σκρ(σ,σσ2σστ2,σσ4σσ log(α))	Contamacher et al. (2011)
Araucaria angustifolia (Bertol.) Kuntze	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	14,3	34,4	0,85	21,2%	-263,52+19,7*d	Oliveira et al. (2018)
Araucaria angustifolia	Mata Atlântica	PR	Acima	Seco	14,3	34,4	0,64	32,3%	-559,89+46,87*ht	Oliveira et al. (2018)
(Bertol.) Kuntze	Iviata Atlantica	1 1	(tronco+galhos+folhas)	3600	14,5	34,4	0,04	32,370	-339,09+40,07 111	Olivella et al. (2010)
Araucaria angustifolia	Mata Atlântica	PR	Acima	Seco	14,3	34,4	0.84	21,5%	-298,97+18,45*d+3,97*ht	Oliveira et al. (2018)
(Bertol.) Kuntze	Wata / tiantioa	1 11	(tronco+galhos+folhas)	0000	14,0	0-1,-1	0,04	21,070	250,57 110,40 010,57 110	Gilveila et al. (2010)
Araucaria angustifolia	Mata Atlântica	PR	Acima	Seco	14,3	34,4	0,86	19,6%	10^(-1,01+2,38*log10(d))	Oliveira et al. (2018)
(Bertol.) Kuntze			(tronco+galhos+folhas)		,-	,		,,,,,,	3 3 4 ()	
Araucaria angustifolia	Mata Atlântica	PR	Acima	Seco	14,3	34,4	0,85	20,3%	10^(-1,57+1,95*log10(d)+0,95*log10(ht))	Oliveira et al. (2018)
(Bertol.) Kuntze			(tronco+galhos+folhas)							, ,
Araucaria angustifolia (Bertol.) Kuntze	Mata Atlântica	PR	Acima (tronco+galhos+folhas)	Seco	20,0	44,0	0,97	1,9%	exp(-2,09238+2,41141*log(d))	Schumacher et al. (2011)
¹ idade: 56 meses			, , , , , , , , , , , , , , , , , , , ,	•						
² espaçamento de plantio: 3m	x 3m. Idade: 8.3 and	os								
³ espaçamento de plantio: 4m										
 espaçamento de plantio: 5m 										

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Araucaria angustifolia	Mata Atlântica	PR	Total (abaixo+acima)	Seco	20,0	44,0	0,97	1,7%	exp(-2,12394+2,46033*log(d))	Schumacher et al. (2011)
(Bertol.) Kuntze			,							, ,
Bertholletia excelsa Bonpl.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	6,0	18,0	0,99	16,8%	-16,5976-3,0772*d+0,7192*(d^2)	Lima (2011)
Bertholletia excelsa Bonpl.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	6,0	18,0	0,99	16,5%	-5,0085*d+0,7694*(d^2)	Lima (2011)
Bertholletia excelsa Bonpl.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	6,0	18,0	0,99	14,8%	-1,919725-0,801731*d+0,031371*d^2*ht	Lima (2011)
Bertholletia excelsa Bonpl.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	6,0	18,0	0,99	13,8%	11,247216- 3,801515*d+0,301382*d^2+0,020887*d^2*ht	Lima (2011)
Bertholletia excelsa Bonpl.	Amazônia	AM	Acima (tronco+galhos+folhas)	Seco	6,0	18,0	0,96	29,8%	-185,249+26,312*d-6,091*ht	Lima (2011)
Cedrela odorata L.	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,86	-	-113,5444+12,079*d	Robortella (2010)
Cedrela odorata L.	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,79	-	0,191+0,027*((d^2)*ht)	Robortella (2010)
Cedrela odorata L.	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,87	-	-89,979+12,693*d-3,203*ht	Robortella (2010)
Cedrela odorata L.	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,90	-	0,075*(d^2,475)	Robortella (2010)
Cedrela odorata L.	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,79	-	0,032*(((d^2)*ht)^0,982)	Robortella (2010)
Cedrela odorata L.	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,90	-	exp(-2,294+2,365*log(d))	Robortella (2010)
Cedrela odorata L.	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	23,0	0,85	1-	exp(-4,297+1,673*log(d*ht))	Robortella (2010)
Cedrela odorata L.	Amazônia	MT	Total (abaixo+acima)	Seco	10.0	23,0	0,90	-	exp(-2,19+2,285*log(d)-0,257*log(hf/ht))	Robortella (2010)
Ceiba speciosa (A.StHil.) Ravenna	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	42,0	0,90	-	-26,471+2,745*d	Robortella (2010)
Ceiba speciosa (A.StHil.) Ravenna	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	42,0	0,95	-	10,025+0,006*((d^2)*ht)	Robortella (2010)
Ceiba speciosa (A.StHil.) Ravenna	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	42,0	0,91	-	-33,106+2,422*d+2,229*ht	Robortella (2010)
Ceiba speciosa (A.StHil.) Ravenna	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	42,0	0,92	-	0,135*(d^1,749)	Robortella (2010)
Ceiba speciosa (A.StHil.) Ravenna	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	42,0	0,95	-	0,074*(((d^2)*ht)^0,742)	Robortella (2010)
Ceiba speciosa (A.StHil.) Ravenna	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	42,0	0,97	-	exp(-1,843+1,701*log(d))	Robortella (2010)
Ceiba speciosa (A.StHil.) Ravenna	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	42,0	0,97	-	exp(-1,857+1,071*log(d*ht))	Robortella (2010)
Ceiba speciosa (A.StHil.) Ravenna	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	42,0	0,97	-	exp(-1,840+1,702*log(d)+0,011*log(hf/ht))	Robortella (2010)
Croton floribundus Spreng.	Cerrado	SP	Acima (tronco+galhos+folhas)	Seco	5,0	27,9	0,99	21,0%	exp(-2,7218+2,6172*log(d)-0,2518*log(ht))	Nicodemo et al. (2016)
Croton floribundus Spreng.	Cerrado	SP	Acima (tronco+galhos+folhas)	Seco	5,0	27,9	0,99	21,0%	exp(-2,7652+2,3953*log(d)+0,0076*d)	Nicodemo et al. (2016)
Croton floribundus Spreng.	Cerrado	SP	Acima (tronco+galhos+folhas)	Seco	5,0	27,9	0,98	21,9%	exp(-3,3561+0,9666*log((d^2)*ht))	Nicodemo et al. (2016)
Croton floribundus Spreng.	Cerrado	SP	Acima (tronco+galhos+folhas)	Seco	5,0	27,9	0,98	20,0%	exp(-2,8564+2,4771*log(d))	Nicodemo et al. (2016)
Handroanthus chrysotrichus (Mart. ex DC.) Mattos	Amazônia	MT	Total (abaixo+acima)	Seco	5,0	12,0	0,92	-	-23,873+5,266*d	Robortella (2010)

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Handroanthus chrysotrichus	Amazônia	MT	Total (abaixo+acima)	Seco	5,0	12,0	0,92	-	6,005+0,029*d^2*ht	Robortella (2010)
(Mart. ex DC.) Mattos			, , , , , , , , , , , , , , , , , , ,							, ,
Handroanthus chrysotrichus	Amazônia	MT	Total (abaixo+acima)	Seco	5,0	12,0	0,92	-	-24,096+5,184*d+0,151*ht	Robortella (2010)
(Mart. ex DC.) Mattos			ĺ ,							
Handroanthus chrysotrichus	Amazônia	MT	Total (abaixo+acima)	Seco	5,0	12,0	0,95	-	0,216*(d^2,102)	Robortella (2010)
(Mart. ex DC.) Mattos			, , , , , , , , , , , , , , , , , , ,							, , ,
Handroanthus chrysotrichus	Amazônia	MT	Total (abaixo+acima)	Seco	5,0	12,0	0,92	-	0,217*(d^2*ht)^0,738	Robortella (2010)
(Mart. ex DC.) Mattos										
Handroanthus chrysotrichus	Amazônia	MT	Total (abaixo+acima)	Seco	5,0	12,0	0,96	-	exp(-1,442+2,058*log(d))	Robortella (2010)
(Mart. ex DC.) Mattos										
Handroanthus chrysotrichus	Amazônia	MT	Total (abaixo+acima)	Seco	5,0	12,0	0,88	-	exp(-1,299+1,079*log(d*ht))	Robortella (2010)
(Mart. ex DC.) Mattos										
Handroanthus chrysotrichus	Amazônia	MT	Total (abaixo+acima)	Seco	5,0	12,0	0,98	-	exp(-1,888+2,119*log(d)-0,474*log(hf/ht))	Robortella (2010)
(Mart. ex DC.) Mattos										
Mimosa caesalpiniifolia Benth.	Caatinga	RN	Acima	Fresco	5,2	8,2	0,47	26,3%	10,768942+0,025453*d^2*ht	Lucena et al. (2020)
			(tronco+galhos+folhas)							
Mimosa caesalpiniifolia Benth.	Caatinga	RN	Acima	Fresco	5,2	8,2	0,44	27,2%	4,444731+0,340263*(d*ht)	Lucena et al. (2020)
			(tronco+galhos+folhas)							
Mimosa caesalpiniifolia Benth.	Caatinga	RN	Acima	Fresco	5,2	8,2	0,63	22,3%	7,134411+0,218501*(d^2)	Lucena et al. (2020)
			(tronco+galhos+folhas)							
Mimosa caesalpiniifolia Benth.	Caatinga	RN	Acima	Fresco	5,2	8,2	0,71	13,7%	exp(-0,119429+log(d)*1,527954)	Lucena et al. (2020)
			(tronco+galhos+folhas)							
Mimosa caesalpiniifolia Benth.	Caatinga	RN	Acima	Fresco	5,2	8,2	0,47	28,7%	exp(-1,058530+log(d*ht)*1,051996)	Lucena et al. (2020)
			(tronco+galhos+folhas)							
Mimosa scabrella Benth.	Mata Atlântica	PR	Acima	Seco	3,0	17,1	0,98	17,7%	0,210100*(d^2,249997)	Baggio et al. (1995)
			(tronco+galhos+folhas)							
Mimosa scabrella Benth.	Mata Atlântica	PR	Acima	Seco	3,0	17,1	0,98	18,8%	0,418376*(d^2)	Baggio et al. (1995)
			(tronco+galhos+folhas)							
Mimosa scabrella Benth.	Mata Atlântica	PR	Acima	Seco	3,0	17,1	0,97	22,1%	0,030184*((d^2)*ht)	Baggio et al. (1995)
			(tronco+galhos+folhas)							
Schinus terebinthifolia Raddi	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	15,0	0,63	-	-107,081+15,890*d	Robortella (2010)
Schinus terebinthifolia Raddi	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	15,0	0,58	-	16,523+0,041*((d^2)*ht)	Robortella (2010)
Schinus terebinthifolia Raddi	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	15,0	0,64	-	-115,015+15,590*d+1,027*ht	Robortella (2010)
Schinus terebinthifolia Raddi	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	15,0	0,67	-	0,253*(d^2,324)	Robortella (2010)
Schinus terebinthifolia Raddi	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	15,0	0,58	-	0,160*(((d^2)*ht)^0,847)	Robortella (2010)
Schinus terebinthifolia Raddi	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	15,0	0,59	-	exp(-0,441+1,951*log(d))	Robortella (2010)
Schinus terebinthifolia Raddi	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	15,0	0,42	-	exp(-0,005+0,906*log(d*ht))	Robortella (2010)
Schinus terebinthifolia Raddi	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	15,0	0,60	-	exp(-0,546+2,027*log(d)+0,117*log(hf/ht))	Robortella (2010)
Schinus terebinthifolia Raddi	Mata Atlântica	PR	Acima	Seco	-	-	0,78	25,5%	-0,325050+0,261156*(d^2)	Sanquetta et al. (2015b)
	<u> </u>		(tronco+galhos+folhas)						·	
Schinus terebinthifolia Raddi	Mata Atlântica	PR	Acima	Seco	-	-	0,76	26,0%	1,766874+0,0300107*(d^2)*ht	Sanquetta et al. (2015b)
			(tronco+galhos+folhas)							
Schinus terebinthifolia Raddi	Mata Atlântica	PR	Acima	Seco	-	-	0,75	26,4%	exp(-1,338270+1,976655*log(d))	Sanquetta et al. (2015b)
			(tronco+galhos+folhas)							
Schinus terebinthifolia Raddi	Mata Atlântica	PR	Acima	Seco	-	-	0,76	27,6%	exp(-2,364490+1,862581*log(d)+0,626321*log(ht))	Sanquetta et al. (2015b)
			(tronco+galhos+folhas)							

Espécie	Bioma	Estado	Compartimento	Peso	d mín.	d máx.	R2/R2aj	Syx	Equação	Autor
Schizolobium parahyba	Mata Atlântica	ES	Acima	Seco	-	-	0,81	10,3%	-128,9+5,067*d+7,275*ht	Oliveira (2022) ²
var. amazonicum			(tronco+galhos+folhas)							
Schizolobium parahyba	Mata Atlântica	ES	Acima	Seco	-	-	0,97	6,3%	11,35+0,0139*(d^2*ht)	Oliveira (2022) ³
var. amazonicum			(tronco+galhos+folhas)							
Schizolobium parahyba	Mata Atlântica	ES	Acima	Seco	-	-	0,93	7,2%	-24,82+0,6791*d^2-0,0160*(d^2*ht)	Oliveira (2022) ⁴
var. amazonicum			(tronco+galhos+folhas)							
Schizolobium parahyba	Mata Atlântica	ES	Acima	Seco	-	-	0,94	8,6%	-11,323296+0,313999*d^2+0,001973*d^2*ht	Delarmelina (2019)1
var. amazonicum			(tronco+galhos+folhas)							
Tabebuia aurea (Silva Manso)	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	20,0	0,95	-	-115,094+13,835*d	Robortella (2010)
Benth. & Hook.f. ex S.Moore										
Tabebuia aurea (Silva Manso)	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	20,0	0,94	-	11,258+0,035*((d^2)*ht)	Robortella (2010)
Benth. & Hook.f. ex S.Moore										
Tabebuia aurea (Silva Manso)	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	20,0	0,95	-	-120,35+13,001*d+1,871*ht	Robortella (2010)
Benth. & Hook.f. ex S.Moore										
Tabebuia aurea (Silva Manso)	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	20,0	0,98	-	0,089*(d^2,538)	Robortella (2010)
Benth. & Hook.f. ex S.Moore										
Tabebuia aurea (Silva Manso)	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	20,0	0,95	-	0,121*(((d^2)*ht)^0,858)	Robortella (2010)
Benth. & Hook.f. ex S.Moore										
Tabebuia aurea (Silva Manso)	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	20,0	0,97	-	exp(-2,032+2,397*log(d))	Robortella (2010)
Benth. & Hook.f. ex S.Moore										
Tabebuia aurea (Silva Manso)	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	20,0	0,91	-	exp(-2,409+1,384*log(d*ht))	Robortella (2010)
Benth. & Hook.f. ex S.Moore			·						· ·	
Tabebuia aurea (Silva Manso)	Amazônia	MT	Total (abaixo+acima)	Seco	10,0	20,0	0,97	-	exp(-2,265+2,465*log(d)-0,099*log(hf/ht))	Robortella (2010)
Benth. & Hook.f. ex S.Moore										

¹ idade: 56 meses ² espaçamento de plantio: 3m x 3m. Idade: 8,3 anos ³ espaçamento de plantio: 4m x 4m. Idade: 8,3 anos ⁴ espaçamento de plantio: 5m x 5m. Idade: 8,3 anos

REFERÊNCIAS

- ABREU, J. C. *et al.* Ajuste de modelos matemáticos lineares e não lineares para estimativa de biomassa e nutrientes de *Anadenanthera colubrina* var. cebil no semiárido pernambucano. **Scientia Forestalis**, v. 44, n. 111, p. 739–750, 2016.
- ALEIXO, V. et al. Relações Alométricas para Leucaena leucocephala (Lam.) De Wit. Ciência Florestal, v. 18, n. 3, p. 329–338, 2008.
- AMARO, M. A. *et al.* Estoque volumétrico, de biomassa e de carbono em uma floresta estacional semidecidual em Viçosa, Minas Gerais. **Revista Árvore**, v. 37, n. 5, p. 849–857, 2013.
- ARAÚJO, T. M. *et al.* Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Pará, Brazil. **Forest Ecology e Management**, v. 117, n. 1–3, p. 43–52, 1999.
- BAGGIO, A. J. *et al.* Equações para a estimativa de peso da biomassa aérea de bracatinga (*Mimosa scabrella* Benth.) na idade de corte. **Embrapa Florestas. Boletim de Pesquisa Florestal**, n. 30/31, p. 37–49, 1995.
- BALBINOT, R. *et al.* Modelling of allometric equations for biomass estimate in deciduous forest. **Floresta**, v. 49, n. 1, p. 143–154, 2018.
- BARBEIRO, L. S. S. *et al.* Equações para estimativa da biomassa individual de *Nectandra grandiflora* Ness (canela-amarela). **Floresta**, v. 39, n. 4, p. 833–843, 2009.
- BARBOSA, R. I.; FERREIRA, C. A. C. Biomassa acima do solo de um ecossistema de "campina" em Roraima, norte da Amazônia Brasileira. **Acta Amazonica**, v. 34, n. 4, p. 577–586, 2004.
- BARICHELLO, L. R. *et al.* Quantificação da biomassa de um povoamento de *Acacia mearnsii* De Wild. na região sul do Brasil. **Ciência Florestal**, v. 15, n. 2, p. 129–135, 2005.
- BASUKI, T. M. *et al.* Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. **Forest Ecology e Management**, v. 257, n. 8, p. 1684–1694, 2009.
- BEHLING, A. *et al.* Equações simultâneas para estimativa da biomassa em plantios comerciais de Acácia-Negra. **Enciclopédia Biosfera**, v. 8, n. 15, p. 853–860, 2012.
- BROWN, I. F. *et al.* Uncertainty in the biomass of Amazonian forests: An example from Rondonia, Brazil. **Forest Ecology e Management**, v. 75, p. 175–189, 1995.
- BROWN, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer Estimating Biomass e Biomass Change of Tropical Forests: a Primer. Food & Agriculture Org., 1997.
- BROWN, S. *et al.* Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data. **Forest Science**, v. 35, n. 4, p. 881–902, 1989.
- BROWN, S.; IVERSON, L. R. Biomass estimates for tropical forests. **World Resource Review**, v. 4, n. 3, p. 366–384, 1992.
- CALDEIRA, M. V. W. *et al.* Biomassa de povoamento de *Acacia mearnsii* De Wild., Rio Grande do Sul, Brasil. **Scientia Forestalis**, v. 39, n. 90, p. 133–141, 2011.

- CHAMBERS, J. Q. *et al.* Tree damage, allometric relationships, e above-ground net primary production in central Amazon forest. **Forest Ecology e Management**, v. 152, p. 73–84, 2001.
- CHAVE, J. *et al.* Estimation of biomass in a neotropical forest of French Guiana: Spatial e temporal variability. **Journal of Tropical Ecology**, v. 17, n. 1, p. 79–96, 2001.
- COLMANETTI, M. A. A. *et al.* Aboveground biomass e carbon of the highly diverse Atlantic Forest in Brazil: comparison of alternative individual tree modeling e prediction strategies. **Carbon Management**, v. 9, n. 4, p. 383–397, 2018.
- COUTINHO, V. M. *et al.* Equações tradicionais e simultâneas para biomassa de compartimentos aéreos de *Cryptomeria japonica* (L.F.) D. DON. **Brazilian Journal of Biometrics**, v. 35, n. 1, p. 58–75, 2017.
- DALLA LANA, M. et al. Biomass equations for caatinga species. Nativa, v. 6, n. 5, p. 517, 2018.
- DAVID, H. C. *et al.* The tropical biomass & carbon project—An application for forest biomass e carbon estimates. **Ecological Modelling**, v. 472, 2022.
- DELARMELINA, W. M. **Biomassa e carbono em plantios de** *Schizolobium parahyba* var. **amazonicum sob diferentes espaçamentos em área de pastagem**. Universidade Federal do Espírito Santo, 2019.
- DELITTI, W. B. C. *et al.* G. Biomass e mineralmass estimates in a "cerrado" ecosystem. **Revista Brasil**, v. 29, n. 4, p. 531–540, 2006.
- DJOMO, A. N. *et al.* Allometric equations for biomass estimations in Cameroon e pan moist tropical equations including biomass data from Africa. **Forest Ecology e Management**, v. 260, n. 10, p. 1873–1885, 2010.
- DUCEY, M. J. *et al.* Biomass equations for forest regrowth in the eastern Amazon using randomized branch sampling. **Acta Amazonica**, v. 39, n. 2, p. 349–360, 2009.
- ESTRADA, G. C. D. *et al.* Allometric models for aboveground biomass estimation of the mangrove *Avicennia schaueriana*. **Hydrobiologia**, v. 734, n. 1, p. 171–185, 2014.
- FONTOURA, M. R. et al. Modelos alométricos para estimativa de biomassa em área de regeneração natural de *Ateleia glazioviana* Baill. **Floresta**, v. 47, n. 4, p. 469–478, 2017.
- FRANCO, E. J. Estudo dos métodos estimativos de volume, biomassa e níveis de produtividade para eucalyptus camaldulensis. Universidade Federal de Lavras, 1996.
- GIRARD, E. A. Volume, biomassa e rendimento de óleos essenciais do craveiro (*Pimenta pseudocaryophyllus* (Gomes) Landrum) em floresta ombrófila mista. Universidade Federal do Paraná, 2005.
- GOMES, J. P. Equações de volume e biomassa para plantios de Acacia mangium Willd. em área de savana, em Roraima. Universidade Federal do Amazonas, 2017.
- GOMES, R. Carbono e nutrientes na biomassa e no solo em povoamentos de *Anadenanthera peregrina* (L.) Speg. var. peregrina em diferentes espaçamentos. Universidade Federal do Espírito Santo, 2022.
- GOODMAN, R. C. *et al.* Amazon palm biomass e allometry. **Forest Ecology e Management**, v. 310, p. 994–1004, 15 dez. 2013.
- HIGUCHI, N. et al. Biomassa da parte aérea da vegetação da floresta tropical úmida de terrafirme da Amazônia brasileira. **Acta Amazonica**, v. 28, n. 2, p. 153–166, 1998.

- HIGUCHI, N. *et al.* Aboveground biomass estimate for Amazonian dense tropical moist forests. **Mem. Fac. Agric. Kogoshima Univ.**, v. 30, p. 43–54, 1994.
- HOPPE, J. M. *et al.* Estimativa de biomassa em povoamento de *Platanus x acerifolia* (Aiton) Willd. estabelecido no município de Dom Feliciano, RS. **Ciência Florestal**, v. 16, n. 4, p. 463–471, 2006.
- HUY, B. *et al.* Aboveground biomass equations for evergreen broadleaf forests in South Central Coastal ecoregion of Viet Nam: Selection of eco-regional or pantropical models. **Forest Ecology e Management**, v. 376, p. 276–283, 2016.
- NOGUEIRA JÚNIOR, L. R. *et al.* Equações alométricas para estimativa da biomassa arbórea em plantios mistos com espécies nativas na restauração da Mata Atlântica. **Biota Neotropica**, v. 14, n. 2, p. 9, 2014.
- KENZO, T. *et al.* Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. **Journal of Forest Research**, v. 14, n. 6, p. 365–372, 2009.
- KETTERINGS, Q. M. *et al.* Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. **Forest Ecology e Management**, v. 146, p. 199–209, 2001.
- KRAINOVIC, P. et al. New allometric equations to support sustainable plantation management of rosewood (*Aniba rosaeodora* Ducke) in the central Amazon. **Forests**, v. 8, n. 9, p. 327, 2017.
- LACERDA, J. S. *et al.* Estimativa da biomassa e carbono em áreas restauradas com plantio de essências nativas. **METRVM**, n. 5, p. 23, 2009.
- LIMA, A. J. N. *et al.* Allometric models for estimating above- e below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil. **Forest Ecology e Management**, v. 277, p. 163–172, 2012.
- LIMA, M. C. D. *et al.* Biomass e carbon stock from *Pinus caribaea* var. hondurensis under homogenous stands in southwest Bahia, Brazil. **Ciência Rural**, v. 46, p. 957-962, 2016.
- LIMA, R. M. B. Estimativa da biomassa aérea de castanha-do-Brasil (*Bertholletia excelsa* Humb.e Bonpl.) em plantios homogêneos no estado do Amazonas. **Embrapa Amazônia Ocidental**, n. 1, p. 57–61, 2011.
- LIMA, R. C. *et al.* Equações para estimativa de volume, biomassa e carbono para três espécies nativas da Amazônia, cupiúba (*Goupia glabra* Aubl), angelim vermelho (*Dinizia excelsa* Ducke) e mandioqueira escamosa (*Qualea paraenis* Ducke). **Revista Arquivos Científicos (IMMES)**, v. 2, n. 2, p. 74–82, 2019.
- LUCENA, M. S. *et al.* Estimativas de biomassa aérea e volume lenhoso de Sabiá (*Mimosa caesalpiniifolia* Benth.) em povoamento com 12 anos de idade. **Gaia Scientia**, v. 14, n. 3, p. 108–127, 2020.
- MARTIN, J. G. *et al.* Aboveground biomass e nitrogen allocation of ten deciduous southern Appalachian tree species. **Canadian Journal of Forest Research**, v. 28, n. 11, p. 1648–1659, 1998.
- MEDEIROS, T. C. C.; SAMPAIO, E. V. S. B. Allometry of aboveground biomasses in mangrove species in Itamaracá, Pernambuco, Brazil. **Wetlands Ecology e Management**, v. 16, n. 4, p. 323–330, 2008.
- MELLO, A. A. *et al.* Individual Biomass e Carbon Equations for *Mimosa scabrella* Benth. (Bracatinga) in Southern Brazil. **Silva Fennica**, v. 46, n. 3, p. 333–343, 2012.

- MELO, L. C. *et al.* Estimativa de biomassa e carbono total para árvores de caixeta no Paraná. **Pesquisa Florestal Brasileira**, v. 34, n. 77, p. 21–29, 2014.
- MIGUEL, E. P. *et al.* Floristic, structural, e allometric equations to estimate arboreal volume e biomass in a cerradão site. **Semina:Ciencias Agrarias**, v. 38, n. 4, p. 1691–1702, 2017.
- MOGNON, F. *et al.* Estimativas de biomassa para plantas de bambu do gênero Guadua. **Revista Ceres**, v. 61, n. 6, p. 900–906, 2014.
- MONASTIER, S. H. *et al.* Modelagem da biomassa individual de *Phyllostachys aurea* Carr. ex A.& C. Rivi're. **Enciclopédia Biosfera**, v. 11, n. 21, p. 1290–1297, 2015.
- MOREIRA-BURGER, D.; DELITTI, W. B. C. Modelos preditores da fitomassa aérea da Floresta Baixa de Restinga. **Revista Brasil**, v. 33, n. 1, p. 143–153, 2010.
- NASCIMENTO, H. E. M.; LAURANCE, W. F. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. **Forest Ecology e Management**, v. 168, p. 311–321, 2002.
- NELSON, B. W. *et al.* Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. **Forest Ecology e Management**, v. 117, p. 149–167, 1999.
- NICODEMO, M. L. F. *et al.* Modelos alométricos para estimação de biomassa aérea e alocação de biomassa de capixingui (*Croton floribundus* Spreng.) em um sistema silviagrícola. **Revista Árvore**, v. 40, n. 2, p. 279–288, 2015.
- NOGUEIRA, E. M. *et al.* Estimates of forest biomass in the Brazilian Amazon: New allometric equations e adjustments to biomass from wood-volume inventories. **Forest Ecology e Management**, v. 256, n. 11, p. 1853–1867, 2008.
- NOGUEIRA, F. C. B. *et al.* Allometric equations to estimate aboveground biomass of *Dalbergia cearensis* species in the Brazilian seasonally dry tropical forest. **Forest Ecology e Management**, v. 484, p. 11, 2021.
- OLIVEIRA, C. P. *et al.* Comparison of statistical models for the estimation of tree biomass e for the estimation of carbon stock above the soil in the Cerrado Biome. **Ciência Florestal**, v. 29, n. 1, p. 255–269, 2019.
- OLIVEIRA, F. S. **Biomassa, carbono e nutrientes em povoamento de** *Schizolobium parahyba var. amazonicum em diferentes espaçamentos.* Universidade Federal do Espírito Santo, 2022.
- OLIVEIRA, T. W. G. *et al.* Ajuste simultâneo na predição de biomassa aérea em *Araucaria angustifolia* (Bertol.) Kuntze. **BIOFIX Scientific Journal**, v. 3, n. 1, p. 137, 2018.
- OVERMAN, J. P. M. *et al.* Evaluation of regression models for above-ground biomass determination in Amazon rainforest. **Journal of Tropical Ecology**, v. 10, n. 2, p. 207–218, 1994.
- PADILHA, D. R. C. **Fitossociologia e estimativas da biomassa aérea e de carbono em chaco florestado no Brasil**. Universidade Federal de Mato Grosso do Sul, 2011.
- RASERA, S. Biomassa e carbono no estrato arbóreo em área restaurada de Mata Atlântica. Universidade de São Paulo, 2019.
- RATUCHNE, C. L. **Equações alométricas para a estimativa de biomassa, carbono e nutrientes em uma floresta ombrófila mista**. Universidade Estadual do Centro-Oeste, 2010.
- RATUCHNE, L. C. Biomassa e carbono: equações e dinâmica em fragmentos de floresta ombrófila mista no Paraná. Universidade Federal do Paraná, 2015.

- REZENDE, A. V. *et al.* Comparação de modelos matemáticos para estimativa do volume, biomassa e estoque de carbono da vegetação lenhosa de um cerrado sensu stricto em Brasília, DF. **Scientia Forestalis**, n. 71, p. 65–76, 2006.
- RIBEIRO, S. C. *et al.* Above- e belowground biomass in a Brazilian Cerrado. **Forest Ecology e Management**, v. 262, n. 3, p. 491–499, 2011.
- RIBEIRO, S. C. *et al.* Biomassa acima e abaixo do solo e estimativas de carbono para um plantio clonal de eucalipto no Sudeste do Brasil. **Revista Árvore**, v. 39, n. 2, p. 353–363, 2015.
- ROBORTELLA, H. S. **Equações de biomassa e estoques de carbono de seis espécies em plantios mistos no noroeste do Mato Grosso**. Instituto Nacional de Pesquisas da Amazônia, 2010.
- ROCHA, C. C. C. Estimativa de volume, biomassa e carbono da vegetação lenhosa de floresta estacional no estado de Goiás. Universidade de Brasília, 2011.
- ROMERO, F. M. B. *et al.* Allometric equations for volume, biomass, e carbon in commercial stems harvested in a managed forest in the southwestern amazon: A case study. **Forests**, v. 11, n. 8, p. 874, 2020.
- SAH, J. P. *et al.* Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests. **Forest Ecology e Management**, v. 203, n. 1–3, p. 319–329, 2004.
- SALDARRIAGA, J. G. *et al.* Long-term chronosequence of forest succession in the upper Rio Negro of Colombia e Venezuela. **Journal of Ecology**, v. 76, n. 4, p. 938–958, 1988.
- SALIS, S. M. *et al.* Estimating the aboveground biomass e wood volume of savanna woodlands in Brazil's Pantanal wetlands based on allometric correlations. **Forest Ecology e Management**, v. 228, n. 1–3, p. 61–68, 2006.
- SAMPAIO, E. *et al.* Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil. **Forest Ecology e Management**, v. 259, n. 6, p. 1135–1140, 2010.
- SAMPAIO, E. V. S. B.; SILVA, G. C. Biomass equations for Brazilian semiarid caatinga plants. **Acta Botanica Brasilica**, v. 19, n. 4, p. 935–943, 2005.
- SANQUETTA, C. R. *et al.* Relações individuais de biomassa e conteúdo de carbono em plantações de *Araucaria angustifolia* e *Pinus taeda* no sul estado do Paraná, Brasil. **Revista Acadêmica: ciências agrárias e ambientais**, v. 1, n. 3, p. 33–40, 2003.
- SANQUETTA, C. R. *et al.* Biomassa Individual De *Bambusa oldhamii* Munro E *Bambusa vulgaris* Schrad. Ex J.C. Wendl. **Cerne**, v. 21, n. 1, p. 151–159, 2015a.
- SANQUETTA, M. N. I. *et al.* Equações de biomassa para aroeira-pimenteira (Schinus terebinthifolius RADDI). **Enciclopédia Biosfera**, v. 11, n. 22, p. 3604–3612, 2015b.
- SANTANA, G. M. *et al.* Ajuste independente e simultâneo para estimar biomassa acima do solo no Cerrado, fitofisionomia Parque Cerrado. **Revista em Agronegocio e Meio Ambiente**, v. 14, n. 3, 2021.
- SANTOS, H. V. S. *et al.* Allometric models for estimating the aboveground biomass of the mangrove Rhizophora mangle. **Brazilian Journal of Oceanography**, v. 65, n. 1, p. 44–53, 2017.
- SCHACHT, W. H. *et al.* Above-Ground Production in Cleared e Thinned Stands of Semiarid Tropical Woodland, Brazil. **Forest Ecology e Management**, v. 23, p. 201–214, 1988.

SCHIKOWSKI, A. B. *et al.* Modelagem do crescimento e de biomassa individual de Pinus. **Pesquisa Florestal Brasileira**, v. 33, n. 75, p. 269-278, 2013.

SCHUMACHER, M. V. *et al.* Produção de biomassa no corte raso em plantio de *Araucaria angustifolia* (Bertol.) Kuntze de 27 anos de idade em quedas do Iguaçu, PR. **Ciência Florestal**, v. 21, n. 1, p. 53–62, 2011.

SCOLFORO, J. R. *et al.* Inventário Florestal de Minas Gerais-Equações de Volume, Peso de Matéria Seca e Carbono para Diferentes Fisionomias da Flora Nativa. Editora UFLA, 2008.

SEGURA, M.; KANNINEN, M. Allometric models for tree volume e total aboveground biomass in a tropical humid forest in Costa Rica. **Biotropica**, v. 37, n. 1, p. 2–8, 2005.

SOUZA, P. H. Biomassa e estoque de carbono em povoamento de *Anadenanthera* peregrina (L.) Speg sob diferentes espaçamentos. Universidade do Espírito Santo, 2018.

SOUZA, Y. F. S. **Equações alométricas para estimativas de volume e biomassa em diferentes fitofisionomias do cerrado**. Universidade de Brasília, 2020.

THEODOROVICZ, M. M. *et al.* Estimativa da biomassa de bambus com classificadores baseados em instância e modelos de regressão. **Enciclopédia Biosfera**, v. 13, n. 24, p. 519–528, 2016.

TOREZAN, J. M. D.; SILVEIRA, M. The biomass of bamboo (*Guadua weberbaueri* Pilger) in open forest of the southwestern amazon. **Ecotropica**, v. 6, p. 71–76, 2000.

TRAUTENMÜLLER, J. W. Quantificação e distribuição do estoque de biomassa acima do solo em floresta estacional decidual. Universidade Federal de Santa Maria, 2015.

TRAUTENMÜLLER, J. W. *et al.* Regression estimators for aboveground biomass e its constituent parts of trees in native southern Brazilian forests. **Ecological Indicators**, v. 130, 2021.

UHL, C. *et al.* Abandoned pastures in eastern Amazonia. I. Patterns of Plant Succession. **Journal of Ecology**, v. 76, n. 3, p. 663–681, 1988.

ULLER, H. F. *et al.* Aboveground biomass quantification e tree-level prediction models for the Brazilian subtropical Atlantic Forest. **Southern Forests**, v. 81, n. 3, p. 261–271, 2019.

ULLER, H. F. *et al.* Biomass models for three species with different growth forms e geographic distribution in the Brazilian Atlantic forest. **Canadian Journal of Forest Research**, v. 51, n. 10, p. 1419–1431, 2021.

URBANO, E. Quantificação e estimativa da biomassa aérea e do carbono fixado em árvores de bracatingais da região metropolitana de Curitiba. Universidade Federal do Paraná, 2007.

VOGEL, H. L. M. *et al.* Quantificação da biomassa em uma floresta estacional decidual em Itaara, RS, Brasil. **Ciência Florestal**, v. 16, p. 419-425, 2006.

WITSCHORECK, R. Biomassa e nutrientes no corte raso de um povoamento de *Pinus taeda* L. de 17 anos de idade no município de Cambará do Sul - RS. Universidade Federal de Santa Maria, 2008.

WOORTMANN, C. P. I. B. *et al.* Allometric equations for total, above- e below-ground biomass e carbon of the Amazonian forest type known as campinarana. **Acta Amazonica**, v. 48, n. 2, p. 85–92, 2018.

YAMAKURA, T. *et al.* Aboveground biomass of tropical rain forest stands in Indonesian Borneo. **Vegetatio**, v. 68, n. 2, p. 71–82, 1986.

ZANETTE, V. *et al.* Ajuste de modelos de regressão para a estimativa da biomassa aérea para seis regiões do estado do Paraná. **Enciclopédia Biosfera**, v. 14, n. 26, p. 29–43, 2017.