Combinatorics Basics

TABLE OF CONTENTS

- 1. Addition and multiplication rule
- 2. Permutation Basics
- 3. Combination basics and properties
- 4. Problems:
 - 4.1. Pascal's Triangle
 - 4.2. Nth column title

Nent contest

- -> Recursion
- -> Malho
- → 00 PS

Given 10 Girls and & 7 Boys. How many different pairs?

Pair → 1 Girl, 1 Boy

Boys	Girls
B_1	G_1
B_2	G_2
B_3	G_3
B_4	$G_{\mathtt{4}}$
B_5	G_5
B_6	G_6
B ₇	G_7
	G_8
	G_9
	G_{10}

Number of ways to reach Agra from Pune via Delhi

Example

Number of ways of reaching Agra from Pune?

Permutations (Avangements)

② Question

Given 3 distinct characters. In how many ways, we can arrange them?

S= "a b c"

$$3*2*1 = 6 \text{ way}.$$

$$a > b > c$$

$$b > c > b$$

$$c > a$$

$$c > a$$

$$c > a$$

② Question

In how many ways, you can arrange 4 distinct characters?

In how many ways n distinct characters can be arranged?

$$\frac{n}{*} \frac{n-1}{*} \frac{n-2}{*} \frac{n-3}{*} \frac{2}{*} \frac{1}{*}$$

Question

Given 5 distinct characters, in how many ways can we arrange

abcde

3 distinct characters? abc de
$$5*4*3 = 60 \text{ mys}$$
.

② Question

4 characters out of N distinct characters?

$$N * (N-1) * (N-2) * (N-3)$$
 $N(N-1)(N-2)(N-3) ways.$

$$\frac{n!}{(n-4)!}$$

Given N distinct characters, in how many ways can we arrange r characters?

$$\frac{n * n-1 * n-2 * n-3 * n-4 * n-5}{n-(r-2)*n-(r-1)}$$

$$n-(r-1) = n-r+1.$$

$$= n * (n-1) * (n-2) * -- * (n-r+1)$$

$$= n * (n-1) * (n-2) * -- * (n-r+1) * (n-r-1) * (n-r-2) -- * 1$$

$$= (n-r) * (n-r-1) * (n-r-2) -- * 1$$

$$=\frac{n!}{(n-r)!}$$

$$n_{p_{x}} = \frac{(n-r)!}{n!}$$

Combinations (Selections)

② Question

Number of ways to arrange the players in 3 slots

Given 4 players
$$\rightarrow$$
 [P₁ P₂ P₃ P₄]

$$\begin{bmatrix}
P_1 P_2 P_3 \\
P_1 P_3 P_2 \\
P_2 P_1 P_3
\end{bmatrix}$$

$$\begin{bmatrix}
P_1 P_2 P_3 P_4 \\
P_1 P_4 P_2 \\
P_2 P_1 P_4
\end{bmatrix}$$

en 4 players
$$\rightarrow$$
 [P₁ P₂ P₃ P₄]
$$6 \begin{cases}
P_1 P_2 P_3 \\
P_1 P_3 P_2 \\
P_2 P_1 P_3 \\
P_2 P_4 P_1 P_4 \\
P_2 P_4 P_1 P_4 \\
P_3 P_4 P_2 P_4 P_1 \\
P_4 P_1 P_2 P_4 P_1 \\
P_4 P_1 P_2 P_4
P_4 P_4 P_4
P_4 P_4 P_4
P_5 P_6
P_6 P_6 P_6 P_6 P_6
P_7 P_8 P_9
P_8 P_9 P_9
P_8 P_8 P_9
P_8 P_9 P_9
P_9 P_9
P_9 P_9 P_9
P_9 P_9 P_9
P_9 P_9 P_9
P_$$

$$(4P_3 = \frac{4!}{(4-3)!} = \frac{4!}{1!} = 24)$$

Nr. of anengements = No. of anengements & No. of selections.

The one selection = No. of anengements of one selection =
$$\frac{24}{6}$$
 = $\frac{24}{6}$.

No. of selections = No. of anengements of one selection = $\frac{24}{6}$.

$$n_{C_{\Upsilon}} = \frac{n_{P_{\Upsilon}}}{r!}$$

$$||u^{C^{\lambda}} = \frac{(u-x)|\cdot(x|)}{u|}$$

$$n\rho_r = \frac{n!}{(n-r)!}$$

Properties

1
$${}_{N}C^{0} = \frac{(N-D)! \cdot 0!}{N!} = \frac{N! \cdot 1}{N!} = 1$$

$${}^{2} \quad {}^{N}C_{N} = \frac{n!}{(n-n)! \cdot n!} = \frac{n!}{0! \cdot n!} = \frac{n!}{n!} = 1$$

$${}^{2} \quad {}^{N}C_{N-r} = \frac{n!}{(n-(n-r))! \cdot (n-r)!} = \frac{n!}{o! \cdot n!} = \frac{n!}{n!} = {}^{N}C_{r}$$

$${}^{3} \quad {}^{N}C_{N-r} = \frac{n!}{(n-(n-r))! \cdot (n-r)!} = \frac{n!}{o! \cdot n!} = {}^{N}C_{r}$$

$$n_{c_0} = 1$$
 $n_{c_n} = 1$
 $n_{c_n} = 1$
 $n_{c_n} = 1$

Given N distinct elements, select r distinct elements $^{\eta}C_{\gamma}$

$$RHS = \frac{n-1}{(n-1)!} + \frac{(n-1)!}{(n-1)!} + \frac{1}{(n-1)!} = \frac{(n-1)!}{(n-1)!} + \frac{1}{(n-1)!} + \frac{1}{(n-1)!} = \frac{(n-1)!}{(n-1)!} + \frac{1}{(n-1)!} + \frac{1}{(n-1)!} = \frac{n!}{r!(n-1)!} = \frac{n!}{r!(n-1)!$$

NC2= (N-2) 1.21

Pascal Traingle

Generate the Pascal's traingle for given N

</>Code

Find all nor values upto a certain n

0 (N2) T.C.

In Pascals Tringle (n) {

n(r[n+|][n+|] = {0}}

for (i o 0 fr n) {

n(r[i][o] = |

n(r[i][i] = |

for (j o | bri-|) {

n(r[i][j] = n(r[i-|][j-|] + n(r[i-|][j]) /

n(r[i][j] = (n(r[i-|][j-|] + n(r[i-|][j]) /

// n(r[i][j] = (n(r[i-|][j-|] + n(r[i-|][j]) /

return n(r

b(n2) TC

 $\frac{h_{C_{7}}}{n!} = \frac{m!}{m!} = \frac{m!}{m!$

 $(\frac{10}{5})$ %.7 = 2 $(\frac{10\%7}{5})\%7 = (\frac{3}{5})\%7 =$

Nth Column Title

Find the Nth column title

$$26 \overline{\smash{)}\,76-1=75}$$

$$26 \overline{\smash{)}\,2-1=1}$$

$$0 \longrightarrow 1 \xrightarrow{+'A'} \overline{\,6'}$$

for col Title
$$(n)$$
 {

 $ans = ""$
 $white (n > 0)$ {

 $n = n - 1$
 $ans = (chan)(n ? 26 + 'A') + ans$
 $n = n/26$
 $return ans$
 $T.C. \rightarrow O(log(n))$
 $S.C. \rightarrow O(1)$

</>Code

a
$$\phi(m)$$
 70 m = 1

2f m is Prime, \$ (m) = m-1

 $\int_{\alpha}^{\infty} a^{-1} z m = a^{m-2} z m$

$$\left(\frac{\pi}{a}\right)$$
 % m

$$= (2 + a^{-1})^2 m$$

$$= \left(\chi + \alpha^{m-2}\right) Z m$$

 $a^{m-1} ?. m$ $= (a^{m-2} * a) ? m$ $= (a^{m-1} ?. m) * (a^{-1} ?. m) /. m$ $= a^{m-2} /. m$

1 an nament mis forme.

a 12 m name 2 m of mis forme.

a b(m)-12 m