DAGS, I-Maps, Factorization, d-Separation, Minimal I-Maps, Bayesian Networks

Slides by Nir Friedman

Probability Distributions

- Let $X_1,...,X_n$ be random variables
- Let P be a joint distribution over $X_1,...,X_n$

If the variables are binary, then we need $O(2^n)$ parameters to describe P

Can we do better?

◆ Key idea: use properties of independence

Independent Random Variables

- Two variables X and Y are independent if
 - P(X = x | Y = y) = P(X = x) for all values x,y
 - That is, learning the values of Y does not change prediction of X

- If X and Y are independent then
 - P(X,Y) = P(X|Y)P(Y) = P(X)P(Y)
- In general, if $X_1,...,X_n$ are independent, then
 - $P(X_1,...,X_n) = P(X_1)...P(X_n)$
 - Requires O(n) narameters

Conditional Independence

- Unfortunately, most of random variables of interest are not independent of each other
- A more suitable notion is that of conditional independence
- Two variables X and Y are conditionally independent given Z if
 - P(X = x | Y = y, Z = z) = P(X = x | Z = z) for all values x, y, z
 - That is, learning the values of Y does not change prediction of X once we know the value of Z
 - notation: Ind(X; Y | Z)

Example: Family trees

Noisy stochastic process:

Example: Pedigree

 A node represents an individual's genotype

Modeling assumptions:

Ancestors can effect descendants' genotype only by passing genetic materials through intermediate generations

Markov Assumption

 We now make this independence assumption more precise for directed acyclic graphs (DAGs)

 Each random variable X, is independent of its nondescendents, given its parents Pa(X)

Formally,Ind(X; NonDesc(X) | Pa(X))

Markov Assumption Example

- In this example:
 - Ind(E; B)
 - Ind(B; E, R)
 - Ind(R; A, B, C | E)
 - Ind(A; R | B,E)
 - Ind(C; B, E, R | A)

I-Maps

 ◆ A DAG G is an I-Map of a distribution P if the all Markov assumptions implied by G are satisfied by P (Assuming G and P both use the same set of random variables)

Examples:

X	У	P(x,y)
0	О	0.25
0	1	0.25
1	O	0.25
1	1	0.25

X	У	P(x,y)
0	O	0.2
0	1	0.3
1	О	0.4
1	1	0.1

Factorization

◆ Given that G is an I-Map of P, can we simplify the representation of P?

Example:

- Since Ind(X;Y), we have that P(X|Y) = P(X)
- Applying the chain rule

$$P(X,Y) = P(X|Y) P(Y) = P(X) P(Y)$$

 \bullet Thus we have a simpler representation of P(X|Y)

Factorization Theorem

Thm: if *G* is an I-Map of *P*, then

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Pa(X_i))$$

Proof:

- By chain rule: $P(X_1,...,X_n) = \prod_i P(X_i \mid X_1,...,X_{i-1})$
- wlog. $X_1,...,X_n$ is an ordering consistent with G
- From assumption: $Pa(X_i) \subseteq \{X_{1,} K, X_{i-1}\}$ $\{X_{1,} K, X_{i-1}\} - Pa(X_i) \subseteq NonDesc(X_i)$
- Since G is an I-Map, $Ind(X_i; NonDesc(X_i)| Pa(X_i))$ $Ind(X_i; \{X_1, X_{i-1}\} - Pa(X_i)| Pa(X_i))$
- Hence,
- We conclude, $P(X_i | X_1,...,X_{i-1}) = P(X_i | Pa(X_i))$

Factorization Example

P(C,A,R,E,B) = P(B)P(E|B)P(R|E,B)P(A|R,B,E)P(C|A,R,B,E) versus P(C,A,R,E,B) = P(B) P(E) P(R|E) P(A|B,E) P(C|A)

Consequences

◆ We can write P in terms of "local" conditional probabilities

If G is sparse,

- that is, $|Pa(X_i)| < k$,
- ⇒ each conditional probability can be specified compactly
 - e.g. for binary variables, these require $O(2^k)$ params.
- ⇒ representation of P is compact
 - linear in number of variables

Conditional Independencies

- ◆ Let Markov(G) be the set of Markov Independencies implied by G
- The decomposition theorem shows

G is an I-Map of
$$P \Rightarrow P(X_1,...,X_n) = \prod_i P(X_i \mid Pa_i)$$

υ We can also show the opposite:

Thm: $P(X_1,...,X_n) = \prod_{i} P(X_i \mid Pa_i) \implies G \text{ is an I-Map of } P$

Proof (Outline)

Example:

$$P(Z \mid X, Y) = \frac{P(X, Y, Z)}{P(X, Y)} = \frac{P(X)P(Y \mid X)P(Z \mid X)}{P(X)P(Y \mid X)}$$
$$= P(Z \mid X)$$

Implied Independencies

- Does a graph G imply additional independencies as a consequence of Markov(G)
- We can define a logic of independence statements
- We already seen some axioms:
 - $Ind(X; Y | Z) \Rightarrow Ind(Y; X | Z)$
 - $\lambda \operatorname{Ind}(X; Y_1, Y_2 \mid Z) \Rightarrow \operatorname{Ind}(X; Y_1 \mid Z)$

We can continue this list...

d-seperation

◆ A procedure d-sep(X; Y | Z, G) that given a DAG
 G, and sets X, Y, and Z returns either yes or no

◆ Goal:

d-sep(X; $Y \mid Z$, G) = yes iff Ind(X;Y|Z) follows from Markov(G)

Paths

 Intuition: dependency must "flow" along paths in the graph

A path is a sequence of neighboring variables

Examples:

$$\bullet R \leftarrow E \rightarrow A \leftarrow B$$

$$v \in C \leftarrow A \leftarrow E \rightarrow R$$

Paths blockage

- We want to know when a path is
 - active -- creates dependency between end nodes
 - blocked -- cannot create dependency end nodes
- We want to classify situations in which paths are active given the evidence.

Path Blockage

Three cases:

Common cause

Blocked

Active

Path Blockage

Three cases:

- Common cause
- Intermediate cause

Blocked

Active

Path Blockage

Three cases:

- Common cause
- Intermediate cause
- Common Effect

Blocked

Active

Path Blockage -- General Case

A path is active, given evidence **Z**, if

Whenever we have the configuration

B or one of its descendents are in Z

No other nodes in the path are in Z

A path is blocked, given evidence **Z**, if it is not active.

Example

d-sep(R,B) = yes

Example

- d-sep(R,B) = yes
- d-sep(R,B|A) = no

Example

- d-sep(R,B) = yes
- d-sep(R,B|A) = no
- d-sep(R,B|E,A) = yes

d-Separation

- ★ X is d-separated from Y, given Z, if all paths from a node in X to a node in Y are blocked, given Z.
- Checking d-separation can be done efficiently (linear time in number of edges)
 - Bottom-up phase:
 Mark all nodes whose descendents are in Z
 - X to Y phase:
 Traverse (BFS) all edges on paths from X to Y and check if they are blocked

Soundness

Thm:

- ♦ If
 - G is an I-Map of P
 - d-sep(X; Y | Z, G) = yes
- then
 - P satisfies Ind(X; Y | Z)

Informally,

 Any independence reported by d-separation is satisfied by underlying distribution

Completeness

Thm:

- If d-sep(X; $Y \mid Z$, G) = no
- then there is a distribution P such that
 - G is an I-Map of P
 - P does not satisfy Ind(X; Y | Z)

Informally,

- Any independence not reported by d-separation might be violated by the by the underlying distribution
- We cannot determine this by examining the graph structure alone

I-Maps revisited

- ◆ The fact that G is I-Map of P might not be that useful
- For example, complete DAGs
 - A DAG is G is complete is we cannot add an arc without creating a cycle

X2

- These DAGs do not imply any independencies
- Thus, they are I-Maps of any distribution

Minimal I-Maps

A DAG G is a minimal I-Map of P if

- ◆ G is an I-Map of P
- ♦ If $G' \subset G$, then G' is not an I-Map of P

Removing any arc from *G* introduces (conditional) independencies that do not hold in *P*

Minimal I-Map Example

 $\begin{array}{c} X_1 \\ X_2 \\ X_3 \\ X_4 \end{array}$

is a minimal I-Map

◆ Then, these are not I-Maps:

Constructing minimal I-Maps

The factorization theorem suggests an algorithm

- ◆ Fix an ordering X₁,...,X_n
- ◆ For each i,
 - select Pa_i to be a minimal subset of $\{X_1,...,X_{i-1}\}$, such that $Ind(X_i; \{X_1,...,X_{i-1}\} Pa_i \mid Pa_i)$

Clearly, the resulting graph is a minimal I-Map.

Non-uniqueness of minimal I-Map

- Unfortunately, there may be several minimal I-Maps for the same distribution
 - Applying I-Map construction procedure with different orders can lead to different structures

Order: C, R, A, E, B

R A C

Original I-Map

P-Maps

- ◆ A DAG G is P-Map (perfect map) of a distribution P if
 - Ind(X; Y | Z) if and only if
 d-sep(X; Y | Z, G) = yes

Notes:

- A P-Map captures all the independencies in the distribution
- P-Maps are unique, up to DAG equivalence

P-Maps

Unfortunately, some distributions do not have a P-Map

• Example:
$$P(A,B,C) = \begin{cases} \frac{1}{12} & \text{if } A \oplus B \oplus C = 0 \\ \frac{1}{6} & \text{if } A \oplus B \oplus C = 1 \end{cases}$$

A minimal I-Map:

◆ This is not a P-Map since Ind(A;C) but d-sep(A;C) = no

Bayesian Networks

A Bayesian network specifies a probability distribution via two components:

- A DAG G
- A collection of conditional probability distributions $P(X_i|Pa_i)$
- ◆ The joint distribution P is defined by the factorization $P(X_1,...,X_n) = \prod_i P(X_i \mid Pa_i)$
- ◆ Additional requirement: G is a minimal I-Map of P

Summary

- We explored DAGs as a representation of conditional independencies:
 - Markov independencies of a DAG
 - Tight correspondence between Markov(G) and the factorization defined by G
 - d-separation, a sound & complete procedure for computing the consequences of the independencies
 - Notion of minimal I-Map
 - P-Maps
- This theory is the basis of Bayesian networks