

ULN2001A-ULN2002A ULN2003A-ULN2004A

SEVEN DARLINGTON ARRAYS

- SEVEN DARLINGTONS PER PACKAGE
- OUTPUT CURRENT 500mA PER DRIVER (600mA PEAK)
- OUTPUT VOLTAGE 50V
- INTEGRAL SUPPRESSION DIODES FOR IN-DUCTIVE LOADS
- OUTPUTS CAN BE PARALLELED FOR HIGHER CURRENT
- TTL/CMOS/PMOS/DTL COMPATIBLE INPUTS
- INPUTS PINNED OPPOSITE OUTPUTS TO SIMPLIFY LAYOUT

DESCRIPTION

The ULN2001A, ULN2002A, ULN2003 and ULN2004A are high voltage, high current darlington arrays each containing seven open collector darlington pairs with common emitters. Each channel is rated at 500mA and can withstand peak currents of 600mA. Suppression diodes are included for inductive load driving and the inputs are pinned opposite the outputs to simplify board layout.

The four versions interface to all common logic families:

ULN2001A	General Purpose, DTL, TTL, PMOS, CMOS
ULN2002A	14-25V PMOS
ULN2003A	5V TTL, CMOS
ULN2004A	6-15V CMOS, PMOS

These versatile devices are useful for driving a wide range of loads including solenoids, relays DC motors, LED displays filament lamps, thermal printheads and high power buffers.

The ULN2001A/2002A/2003Aand 2004A are supplied in 16 pin plastic DIP packages with a copper leadframe to reduce thermal resistance. They are available also in small outline package (SO-16) as ULN2001D/2002D/2003D/2004D.

PIN CONNECTION

January 1997 1/8

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	arameter	Value	Unit
Vo	Output Voltage	50	V
V _{in}	Input Voltage (for ULN2002A/D - 2003A/D - 2004A/D)	30	V
Ic	Continuous Collector Current	500	mA
Ι _b	Continuous Base Current	25	mA
T _{amb}	Operating Ambient Temperature Range	- 20 to 85	°C
T _{stg}	Storage Temperature Range	- 55 to 150	°C
Tj	Junction Temperature	150	°C

THERMAL DATA

Symbol	Parameter	DIP16	SO16	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Max.	70	165	°C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
I _{CEX}	Output Leakage Current	V _{CE} = 50V T _{amb} = 70°C, V _{CE} = 50V			50 100	μA μA	1a 1a
					500 500	μA μA	1b 1b
V _{CE(sat)}	Collector-emitter Saturation Voltage	I_{C} = 100mA, I_{B} = 250 μ A I_{C} = 200 mA, I_{B} = 350 μ A I_{C} = 350mA, I_{B} = 500 μ A		0.9 1.1 1.3	1.1 1.3 1.6	V V V	2 2 2
I _{i(on)}	Input Current			0.82 0.93 0.35 1	1.25 1.35 0.5 1.45	mA mA mA mA	3 3 3
I _{i(off)}	Input Current	$T_{amb} = 70^{\circ}C, I_{C} = 500\mu A$	50	65		μΑ	4
V _{i(on)}	Input Voltage	$\begin{tabular}{l} $V_{CE} = 2V$ \\ for $ULN2002A$ \\ $I_{C} = 300mA$ \\ for $ULN2003A$ \\ $I_{C} = 200mA$ \\ $I_{C} = 250mA$ \\ $I_{C} = 300mA$ \\ for $ULN2004A$ \\ $I_{C} = 125mA$ \\ $I_{C} = 200mA$ \\ $I_{C} = 275mA$ \\ $I_{C} = 350mA$ \\ \end{tabular}$			13 2.4 2.7 3 5 6 7 8	V	5
h _{FE}	DC Forward Current Gain	for ULN2001A V _{CE} = 2V, I _C = 350mA	1000				2
C _i	Input Capacitance			15	25	pF	
t _{PLH}	Turn-on Delay Time	0.5 V _i to 0.5 V _o		0.25	1	μs	
t _{PHL}	Turn-off Delay Time	0.5 V _i to 0.5 V _o		0.25	1	μs	
I _R	Clamp Diode Leakage Current	$V_R = 50V$ $T_{amb} = 70^{\circ}C, V_R = 50V$			50 100	μA μA	6 6
V_{F}	Clamp Diode Forward Voltage	I _F = 350mA		1.7	2	V	7

TEST CIRCUITS

Figure 1a.

Figure 1b.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8: Collector Current versus Input Current

Figure 9: Collector Current versus Saturation Voltage

Figure 10: Peak Collector Current versus
Duty Cycle

Figure 11: Peak Collector Current versus
Duty Cycle

DIP16 PACKAGE MECHANICAL DATA

DIM.		mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
ı			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

SO16 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.069
a1	0.1		0.25	0.004		0.009
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1			45 ((typ.)		
D	9.8		10	0.386		0.394
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.016		0.050
М			0.62			0.024
s	8 (max.)					

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

