

Problème Kpart

Fichier d'entrée stdin Fichier de sortie stdout

Virgil vient de se lancer dans l'étude des propriétés des tableaux de nombres. Ainsi, il définit un K-tableau de la manière suivante. Un tableau A constitué de nombres entiers strictement positifs est un K-tableau si toute séquence contiguë (d'indices consécutifs) de A de taille K peut être partitionnée en deux ensembles disjoints, pas forcément contigus ni de même taille, ayant une même somme. Par exemple, 1,2,1,3 est un 3-tableau, puisque 1,2,1 peut être partitionné en deux ensembles ayant tous deux une somme de 2 (1,1 d'une part et 2 d'autre part), et 2,1,3 peut être partitionné en 2,1 et 3, qui ont tous deux une somme de 3. Ce n'est pas un 2-tableau, car 1,2 ne peut pas être partitionné en deux ensembles de même somme. De même, ce n'est pas un 4-tableau.

On vous donne T tableaux d'entiers strictement positifs. Pour chaque tableau A, Virgil veut savoir quelles sont toutes les valeurs de K pour lesquelles A est un K-tableau.

Données d'entrée

La première ligne contient l'entier T. Les lignes suivantes contiennent la description des T tableaux. Chaque tableau est représenté par deux lignes. La première ligne contient N, la taille du tableau. La seconde ligne contient les éléments du tableau, séparés par des espaces.

Données de sortie

Affichez les réponses pour chaque tableau A dans l'ordre. Pour chaque tableau, n'affichez qu'une seule ligne contenant d'abord le nombre de valeurs de K pour lesquelles le tableau donné est un K-tableau, suivi des valeurs de K pour lesquelles le tableau est un K-tableau, par ordre croissant.

Contraintes

- $1 \le T \le 20$.
- Soit $\sum A$ la somme des valeurs d'un tableau quelconque (et non pas la somme des valeurs de tous les tableaux). Alors $1 \leq \sum A \leq 100\,000$.

#	Points	Contraintes
1	10	$1 \le N \le 30$
2	20	$31 \le N \le 120$
3	70	$121 \le N \le 1000$

Exemples

Fichier d'entrée	Fichier de sortie
2	2 4 6
7	2 3 6
7 3 5 1 3 3 5	
6	
1 2 3 5 8 3	

Explications

Le premier tableau, celui de taille 7, est un 4-tableau et un 6-tableau, puisque toutes les séquences contiguës de taille 4 et 6, respectivement, peuvent être partitionnées en deux ensembles de même somme.

Le second tableau, celui de taille 6, est un 3-tableau et un 6-tableau, puisque toutes les séquences contiguës de taille 3 et de taille 6, respectivement, peuvent être partitionnées en deux ensembles de même somme.