

1. Resuelve la siguiente sopa de letras con las palabras asociadas a la energía eléctrica (construye una si no tienes la guía).

Palabras	Sopa de letras
Amperios	
Electrón	
Protón	
Neutrón	
Voltios	
Resistencia	
Corriente	
George	
Omega	
Voltaje	
Ohmios	

2. Aplicando la ley de Ohm encuentra los resultados de la siguiente tabla:

Voltaje	Corriente	Resistencia
5v	3 A	
	4 A	3 Ω
15v	15 A	
20v		5 Ω
25v		10 Ω

- 3. En un circuito electrónico pasa una corriente de 2 amperios por una resistencia de 850 Ω ¿Cuál es su voltaje?
- 1. A continuación se presentan diferentes baterías con un voltaje y corriente :

Batería	Voltaje	Corriente mA	I	W
AA	1.5	1000		
Litio	3	1200		
ION	3.7	1800		
Zinc	1.5	800		
Nickel	1.2	1000		

- a. Complete la tabla
- b. Encuentre el resultado de sumar en paralelo 4 baterias de ION
- c. Encuentre el resultado de sumar en serie 5 baterias de Nickel
- d. Diseñe la fuente de voltaje para un circuito que consume 12 voltios y 2000 mA

- 2. Si tenemos un cargador de 4v , una pila de 3v y 5 baterías de 9v y todas comparten la misma corriente ¿cual es el voltaje de salida?
- 3. Usando la fórmula de divisor de voltaje encuentre el voltaje de salida, y usando la ley de Ohm encuentre la corriente del circuito en serie

Se denomina divisor de voltaje donde según las resistencias seleccionadas podemos disminuir el voltaje de salida.

Vin	R1	R2	VOut	I
9v	150Ω	220 Ω		
9v	250ΜΩ	80 kΩ		
5v	470ΜΩ	50 Ω		
5v	210ΚΩ	100 Ω		
5v	900Ω	320 Ω		
9v	150 Ω	50Ω		
9v	320 Ω	250Ω		
9v	50Ω	1,5ΚΩ		
9v	250Ω	150Ω		

4. Encuentre el valor de la corriente de la resistencia 2, asi como el voltaje de la misma.

a. Completa la siguiente tabla:

lin	R1	R2	lOut	Vout
5 A	150Ω	220 Ω		
9 A	250ΜΩ	80 kΩ		
1 A	470ΜΩ	50 Ω		
0.5 A	210ΚΩ	100 Ω		

500 mA	900Ω	320 Ω		
--------	------	-------	--	--

5. Calcular los datos faltantes.

Voltaje	Corriente	Potencia	Resistencia	Corriente
3v	3mA	9mW		
5v	10mA			
9v	350Ma			
10v	50mA			
5v	1,5 A			
		9mW		
	10 A	9mW		
	15 μα	9mW		
	4500 μa	9mW		
20V	50mA			
	1,5 A	9mW		
		9mW		
15v		3W		