	TP1 Aerotherm - Marin Mrabet	Pt		A B C D	Note	
ı	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	С		0,7	L'organe de réglage c'est le gradateur
2	Quel est le nom de la grandeur réglée ?	1	В		0,375	Laquelle ?
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5	
4	Quelle est la grandeur réglante ?	1	В		0,375	
5	Donner une grandeur perturbatrice.	1	Α		0,5	C'est qui le débile ?
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs,	1	Α		1	
	alimentations, générateurs nécessaires. Faire apparaître les polarités. Etude du procédé					
11.	•	1	Α		1	
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α .		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α		1	
4	En déduire le sens d'action à régler sur le régulateur.	1	Α		1	
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	В		2,25	Je veux voir le nom des signau enregistrés
III.	Etude du régulateur					
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	В		1,125	Y'a des trucs louches
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Α		1,5	
IV.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	В		0,75	Il faut changer l'unité de Ti
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	Χ		0	
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	X		0	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	Χ		0	
			Note	sur : 20	13,1	

TP1: AERO

I. Préparation du travail

1/ Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.

2/ Quel est le nom de la grandeur réglée ?

La grandeur réglée est la température.

3/ Quel est le principe utilisé pour mesurer la grandeur réglée ?

Le principe utilisé pour mesurer la grandeur réglée est la sonde PT100 et une résistance de 100Ohms à 0°C.

4/ Quelle est la grandeur réglante ?

La grandeur réglante est la température de la résistance.

5/ Donner une grandeur perturbatrice.

La grandeur perturbatrice est le débile d'entrée.

6/ Établir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.

II. Étude du procédé

1/ Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.

ENTREE:

TagName	01M01_08		LIN Name	01M01_08	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110m _{Local,}	<=16chars	Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			SiteNo	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	m
			LR_in	4.00	ıт

PID:

TagName	PID		LIN Name	PID	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	9
→PV	0.0	%	LAA	0.0	9
SP	0.0	%	HDA	100.0	90
OP	0.0	%	LDA	100.0	9
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	

SORTIE:

TagName	02P01_08		LIN Name	02P01_08	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
→ OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	
			LR_out	4.00	

TagName	02P02_08		LIN Name	02P02_08	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
→ OP	0.0	%	Channel	2	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	r
			LR_out	4.00	r

2/ Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).

OP	PV	'
	30	30,3
	60	46,5
	90	54,1

3/ En déduire le gain statique du procédé autour du point de fonctionnement.

$$K = delta X / delta Y$$

$$K = 54,1-30,3/90-30$$

$$K = 0.39$$

4/ En déduire le sens d'action à régler sur le régulateur.

Le régulateur est inverse et le procédé direct car quand x augmente, y augment

5/ Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.

$$T0 = 21:39:47 = 0s$$

$$t1 = 21:41:15 = 88s$$

$$t2 = 21:41:37 = 110s$$

$$K = Delta X / Delta Y = 5,2/10 = 0,52$$

$$T = 2.8(t1-t0)-1.8(t2-t0) = 48.4s$$

$$t = 5,5(t2-t1) = 121s$$

$$Kr = 48,8/121 = 0,40$$

III. Étude du régulateur

1/ Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.

D'après le graphique c'est un PID mixte.

Avec kr = 0.40

2/ En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.

PID MIXTE

$$K = 0.52$$

$$Kr = 48,8/121 = 0,40$$

$$A = 0.83/K * (0.4+1/Kr) = 4.63$$

$$Ti = t + 0.4T = 140.52s$$

 $Td = T/Kr+2.5 = 16.82s$

$$Xp = 100/A = 100/4,63 = 21,6 \%$$

TagName	PID2		LIN Name	PID2	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	
PV	50.0	%	LAA	0.0	
SP	50.0	%	HDA	100.0	
OP	95.0	%	LDA	100.0	
SL	50.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	21.6	
Track	0.0	%	TI	99.99	
			TD	16.82	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	01101100	
HL_SP	100.0	%	SelMode	00000000	
LL SP	nn	9%			

IV. Performances et optimisation

1/ Programmer votre régulateur pour assurer le fonctionnement de la régulation.

TagName	PID2		LIN Name	PID2	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	
PV	50.0	%	LAA	0.0	
SP	50.0	%	HDA	100.0	
OP	95.0	%	LDA	100.0	
SL	50.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	21.6	
Track	0.0	%	TI	99.99	
			TD	16.82	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	01101100	
HL_SP	100.0	%	SelMode	00000000	
LL SP	0.0	9%		İ	

2/ Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et l'erreur statique.