KAIST AI

Hypergraph Motifs: Concepts, Algorithms, and Discoveries

Geon Lee

Jihoon Ko

Kijung Shin

Hypergraphs are Everywhere

- Hypergraphs consist of nodes and hyperedges.
- Each hyperedge is a subset of any number of nodes.

Collaborations of Researchers

Co-purchases of Items

Joint Interactions of Proteins

Our Questions

Q1 What are structural design principles of real-world hypergraphs?

Our Questions (cont.)

Q2 How can we compare local structures of hypergraphs of different sizes?

Our Questions (cont.)

Q3 How can we identify domains which hypergraphs are from?

Roadmap

- Hypergraph Motif
- Proposed Method: MoCHy
- Experimental Results
- Conclusions

Hypergraph Motifs: Definition

- Hypergraph motifs (h-motifs) describe connectivity patterns of three connected hyperedges.
- H-motifs describe the connectivity pattern of hyperedges e_i , e_j , and e_k by the emptiness of seven subsets.

(1)
$$e_i \backslash e_j \backslash e_k$$

(2)
$$e_j \backslash e_k \backslash e_i$$

(3)
$$e_k \backslash e_i \backslash e_j$$

(4)
$$e_i \cap e_j \backslash e_k$$

(5)
$$e_i \cap e_k \backslash e_i$$

(6)
$$e_k \cap e_i \backslash e_i$$

$$(7) e_i \cap e_j \cap e_k$$

Hypergraph Motifs: Definition (cont.)

- While there can exist 2^7 h-motifs, 26 h-motifs remain once we exclude:
 - 1. symmetric ones
 - 2. those with duplicated hyperedges
 - 3. those cannot be obtained from connected hyperedges.

Open h-motifs contain two non-adjacent hyperedges. Others are closed h-motifs.

Hypergraph Motifs: Example

• Hypergraph motifs (h-motifs) describe connectivity patterns of three connected hyperedges.

Hypergraph Motifs: Properties

Exhaustive

H-motifs capture connectivity patterns of **all possible** three connected hyperedges.

Unique

Connectivity pattern of any three connected hyperedges is captured by **at most one** h-motif.

Size Independent

H-motifs capture connectivity patterns independently of the sizes of hyperedges.

Hypergraph Motifs: Properties

Question:

Why are **non-pairwise relations** considered?

Answer:

Non-pairwise relations play a key role in capturing the local structural patterns of real-world hypergraphs.

 $\{e_1, e_2, e_4\}$ and $\{e_1, e_3, e_4\}$ have same pairwise relations, while their connectivity patterns are distinguished by h-motifs.

Characteristic Profiles

Question:

How can we summarize structural properties of hypergraphs?

Answer:

We compute a compact vector of **normalized significance of every h-motif**.

Characteristic Profiles (cont.)

Significance of h-motifs

$$\Delta_t \coloneqq \frac{M[t] - M_{rand}[t]}{M[t] + M_{rand}[t] + \epsilon}$$
 # of instances of h-motif t # of instances of h-motif t

• Characteristic Profiles (CPs)

$$CP_t := \frac{\Delta_t}{\sqrt{\sum_{t=1}^{26} \Delta_t^2}}$$

in the given hypergraph in randomized hypergraphs

Roadmap

- Hypergraph Motif
- Proposed Method: MoCHy
- Experimental Results
- Conclusions

MoCHy: Motif Counting in Hypergraphs

- Given a hypergraph, how can we count the instances of each h-motif?
- We present MoCHy (Motif Counting in Hypergraphs), a family of parallel algorithms for counting the instances of h-motifs.

MoCHy: Hypergraph Projection

- Every version of MoCHy builds the projected graph $\bar{G}=(E,\Lambda,\omega)$ of the input hypergraph G=(V,E).
- To find the neighbors of each hyperedge e_i , find hyperedge e_j that contains any node $v \in e_i$.

MoCHy-E: Exact Counting

- Enumerate all three connected hyperedges in the hypergraph.
- Increment the count of h-motif corresponding to each instance.

Definition

 $h(\{e_i, e_j, e_k\})$: h-motif corresponding to an instance $\{e_i, e_j, e_k\}$

M[t]: count of h-motif t's instances

MoCHy-E: Exact Counting

Question:

How to compute $h(\lbrace e_i, e_j, e_k \rbrace)$?

Answer:

Check the emptiness of seven sets by computing the cardinalities of each set $(O(\min(|e_i|, |e_i|, |e_k|)))$.

$$(1) \quad |e_i \backslash e_j \backslash e_k| = |e_i| - |e_i \cap e_j| - |e_k \cap e_i| + |e_i \cap e_j \cap e_j|$$

$$(2) \quad |e_j \setminus e_k \setminus e_i| = |e_j| - |e_i \cap e_j| - |e_j \cap e_k| + |e_i \cap e_j \cap e_j|$$

$$(3) \quad |e_k \setminus e_i \setminus e_j| = |e_k| - |e_k \cap e_i| - |e_j \cap e_k| + |e_i \cap e_j \cap e_j|$$

$$(4) \quad |e_i \cap e_j \setminus e_k| = |e_i \cap e_j| - |e_i \cap e_j \cap e_j|$$

$$(5) \quad |e_i \cap e_k \setminus e_i| = |e_i \cap e_k| - |e_i \cap e_i \cap e_i|$$

(6)
$$|e_k \cap e_i \setminus e_j| = |e_k \cap e_i| - |e_i \cap e_j \cap e_j|$$

(7)
$$|e_i \backslash e_j \backslash e_k|$$

MoCHy-A: Hyperedge Sampling

- Sample s hyperedges from the hyperedge set E uniformly at random.
- For each sampled hyperedge e_s , count the number of instances of each h-motif t that contains e_s .
- Rescale the total approximate counts based on the sample size.

MoCHy-A⁺: Hyperwedge Sampling

- Sample r hyperwedges from the hyperwedge set Λ uniformly at random.
- For each sampled hyperwedge $\Lambda_{ij} = \{e_i, e_j\}$, count the number of instances of each h-motif t that contains Λ_{ij} .
- Rescale the total approximate counts based on the sample size.

Roadmap

- Hypergraph Motif
- Proposed Method: MoCHy
- Experimental Results
- Conclusions

Experimental Settings

• 11 real-world hypergraphs from 5 different domains

All versions of MoCHy implemented using C++ and OpenMP.

EXP1. Comparison with Random

 Real-world and random hypergraphs have distinct distributions of hmotif instances.

ţţ	coauth-DBLP			contact-primary				email-EU			tags-math			threads-math						
h-motif	count (rank)		RD	RC	count (rank)		RD	RC	count (rank)		RD	RC	count (rank)		RD	RC	count (rank)		RD RC	BC.
غ	real	random	IND	INO	real	random	IND	ND NO	real	random	IND	INC	real	random	ואט	INC	real	random		IXC
1	9.6E07 (7)	1.3E09 (4)	3	-0.86	4.8E04 (16)	2.8E07 (5)	11	-1.00	7.5E06 (13)	1.7E08 (7)	6	-0.91	9.0E08 (13)	2.2E11 (6)	7	-0.99	6.4E08 (7)	2.4E11 (4)	3	-0.99
2	7.0E09 (2)	7.2E09 (2)	0	-0.01	1.1E08 (3)	8.6E07 (3)	0	0.12	6.3E08 (2)	8.2E08 (3)	1	-0.13	1.6E12 (2)	1.6E12 (2)	0	0.02	1.1E12 (2)	7.7E11 (2)	0	0.16
3	2.2E06 (17)	6.1E03 (14)	3	0.99	2.8E03 (21)	1.7E05 (16)			1.6E06 (21)	, ,			, ,	1.1E09 (15)	5	-0.99	1.7E05 (20)	1.7E08 (14)	6	-1.00
4	9.6E06 (11)	1.1E05 (12)	1	0.98	8.4E02 (24)	9.2E05 (12)	12		4.3E06 (16)		4			1.6E10 (12)	5	-0.98	3.1E06 (13)	1.2E09 (11)	2	-0.99
5	1.5E08 (6)	1.2E05 (11)	5	1.00	4.6E06 (5)	1.6E06 (11)	6		7.5E07 (7)		6	0.74	7.4E09 (8)	2.5E10 (8)	0			1.7E09 (10)	2	-0.61
6	9.9E08 (3)	1.8E06 (9)	6	1.00	1.3E07 (4)	8.2E06 (7)	3	0.24	3.9E08 (4)	1.9E08 (6)	2	0.34	6.8E11 (3)	3.3E11 (4)	1	0.35	1.4E10 (4)	1.1E10 (8)	4	0.11
7	, ,	0.0E00 (20)		1.00	1.6E04 (17)	2.0E02 (24)	7	0.98	7.5E04 (24)	1.2E02 (25)	1	1.00	8.3E05 (25)	9.1E05 (25)	0		` ,	1.7E04 (24)		-0.32
8	3.9E05 (22)	0.0E00 (20)	2	1.00	4.6E03 (20)	2.6E03 (22)	2	0.27	4.2E06 (17)	2.5E04 (21)	4	0.99	2.0E06 (23)	3.4E07 (22)	1	-0.89	2.2E04 (23)	3.5E05 (21)	2	-0.88
9	2.4E06 (16)	0.0E00 (20)	4	1.00	1.7E05 (12)	4.6E03 (20)	8		1.8E06 (20)	, ,		0.99	1.4E08 (18)	5.4E07 (21)	3			4.5E05 (20)		0.06
10	7.6E06 (13)	7.5E00 (18)	5	1.00	5.7E04 (15)	5.5E04 (17)	2	0.03	2.8E07 (10)	1.7E06 (14)	4		, ,	1.9E09 (14)		-0.45	2.3E06 (15)	9.4E06 (17)	2	-0.61
	8.6E06 (12)	` '		1.00	4.1E05 (11)	2.4E04 (18)	7	0.89	9.0E06 (11)	1.9E05 (19)	8	0.96	3.5E09 (10)	7.4E08 (16)	6	0.65	2.8E06 (14)	3.1E06 (18)	4	-0.05
12	6.4E07 (8)	1.9E02 (16)	8	1.00	1.7E05 (13)	2.7E05 (14)	1	-0.24	8.2E07 (6)	2.4E07 (10)	4	0.55	6.9E10 (6)	2.4E10 (10)	4			6.2E07 (15)		0.14
13	1.6E04 (26)	0.0E00 (20)	6	1.00	5.5E03 (19)	1.6E00 (26)	7	1.00	2.7E04 (26)	0.4E00 (26)	0	1.00	1.1E06 (24)	1.7E04 (26)	2	0.97	1.5E02 (26)	8.6E00 (26)	0	0.89
14	1.4E05 (24)	0.0E00 (20)	4	1.00	6.0E03 (18)	7.1E01 (25)	7	0.98	7.2E05 (22)	3.7E02 (24)	2	1.00	2.8E07 (19)	1.8E06 (24)	5	0.88	3.9E03 (25)	9.3E02 (25)	0	0.61
15	6.5E05 (19)	0.0E00 (20)	1	1.00	1.7E03 (22)	8.6E02 (23)	1	0.34	3.6E06 (19)	5.0E04 (20)	1	0.97	2.9E08 (15)	5.7E07 (20)	5	0.67	2.7E04 (22)	2.0E04 (23)	1	0.16
16	2.0E06 (18)	0.0E00 (20)	2	1.00	1.4E02 (25)	3.2E03 (21)	4	-0.92	6.7E06 (14)	1.7E06 (15)	1	0.60	1.9E09 (11)	5.8E08 (18)	7	0.53	2.4E05 (18)	1.3E05 (22)	4	0.29
17	4.2E05 (21)	2.0E06 (8)	13	-0.65	1.0E03 (23)	6.3E05 (13)	10	-1.00	3.8E04 (25)	8.7E05 (16)	9			5.0E08 (19)	7	-1.00	2.3E05 (19)	9.2E08 (12)	7	-1.00
18	2.6E06 (15)	6.4E07 (7)	8	-0.92	1.2E02 (26)	7.0E06 (8)	18	-1.00	6.0E06 (15)	4.0E07 (8)	7	-0.74	2.5E06 (22)	1.6E10 (13)	9	-1.00	8.3E05 (16)	1.3E10 (7)	9	-1.00
19	3.6E07 (9)	6.7E07 (6)	3	-0.30	2.0E06 (6)	1.2E07 (6)	0	-0.72	8.7E06 (12)	2.9E07 (9)	3	-0.54	9.4E08 (12)	2.4E10 (9)	3	-0.93	3.5E08 (9)	1.8E10 (6)	3	-0.96
20	3.4E08 (5)	2.2E09 (3)	2	-0.73	6.0E05 (10)	1.3E08 (2)	8		2.2E08 (5)	` '	3	-0.69	9.2E09 (7)	7.2E11 (3)	4		` ,	2.4E11 (3)	2	-0.98
21	7.9E08 (4)	5.6E08 (5)	1	0.17	1.7E08 (2)	5.7E07 (4)	2	0.50	5.3E08 (3)	2.3E08 (4)	1	0.39	1.2E11 (5)	2.8E11 (5)	0	-0.40	2.8E10 (3)	8.6E10 (5)	2	-0.51
22	1.7E10 (1)	1.8E10 (1)	0	-0.03	3.1E08 (1)	5.8E08 (1)	0	-0.30	4.9E09 (1)	8.5E09 (1)	0	-0.27	6.6E12 (1)	7.6E12 (1)	0	-0.07	1.1E12 (1)	1.2E12 (1)	0	-0.02
23	2.4E04 (25)	1.5E01 (17)	8	1.00	1.2E05 (14)	5.4E03 (19)	5	0.91	8.8E04 (23)	4.0E03 (23)	0	0.91	2.6E06 (21)	7.9E06 (23)	2			7.8E05 (19)		-0.70
24	4.4E05 (20)	1.4E03 (15)	5	0.99	7.7E05 (9)	1.8E05 (15)	6	0.63	4.2E06 (18)	5.4E05 (18)	0	0.77	2.2E08 (16)	7.2E08 (17)	1	-0.53	7.5E06 (12)	3.1E07 (16)	4	-0.61
25	3.8E06 (14)	4.6E04 (13)	1	0.98	1.7E06 (8)	1.8E06 (10)	2	-0.03	3.2E07 (9)	2.0E07 (11)	2	0.23	6.0E09 (9)	2.0E10 (11)	2	-0.54	8.0E07 (11)	4.2E08 (13)	2	-0.68
26	2.3E07 (10)	4.9E05 (10)	0	0.96	1.8E06 (7)	6.14E06 (9)	2	-0.54	7.5E07 (8)	2.1E08 (5)	3	-0.48	1.3E11 (4)	1.8E11 (7)	3	-0.14	1.2E09 (6)	1.9E09 (9)	3	-0.21

EXP1. Comparison with Random

 Real-world and random hypergraphs have distinct distributions of hmotif instances.

EXP2. Comparison across Domains

The CPs are similar within domains but different across domains.

EXP2. Comparison across Domains (cont.)

• Characteristic profiles (CPs) based on hypergraph motifs (h-motifs) capture local structural patterns more accurately than CPs based on network motifs.

EXP3. Observations and Applications

- Trends in the formation of collaborations are captured by h-motifs.
 - (a) The fractions of the instances of h-motifs 2 and 22 have increased rapidly.
 - (b) The fraction of the instances of open h-motifs increased steadily since 2001.

(a) Fraction of the instances of each h-motif in the coauth-DBLP over time.

(b) Open and closed h-motifs.

EXP3. Observations and Applications (cont.)

- Hyperedge prediction: classify real hyperedges and fake ones.
- H-motifs give informative features.

		HM26	HM7	НС
Logistic Degression	ACC	0.754	0.656	0.636
Logistic Regression	AUC	0.813	0.693	0.691
Random Forest	ACC	0.768	0.741	0.639
Kandom Forest	AUC	0.852	0.779	0.692
Decision Tree	ACC	0.731	0.684	0.613
Decision free	AUC	0.732	0.685	0.616
K Nearast Naighbors	ACC	0.694	0.689	0.640
K-Nearest Neighbors	AUC	0.750	0.743	0.684
MLP Classifier	ACC	0.795	0.762	0.646
IVILY Classifier	AUC	0.875	0.841	0.701

ACC: accuracy, AUC: area under the ROC curve

HM26 ($\in \mathbb{R}^{26}$)

The number of each h-motif's instances that contain each hyperedge.

HM7 ($\in \mathbb{R}^7$)

The seven features with the largest variance among those in HM26.

HC ($\in \mathbb{R}^7$)

The mean, maximum, and minimum degree and the mean, maximum, and minimum number of neighbors of the nodes in each hyperedge and its size.

EXP4. Performance of Counting Algorithms

- MoCHy-A⁺ is up to 25X more accurate than MoCHy-A.
- MoCHy-A⁺ is up to 32.5X faster than MoCHy-E.

EXP4. Performance of Counting Algorithms (cont.)

• CPs obtained by MoCHy-A⁺ are estimated near perfectly even with a smaller number of samples.

EXP4. Performance of Counting Algorithms (cont.)

• Both MoCHy-E and MoCHy-A+ achieve significant speedups with multiple threads.

EXP4. Performance of Counting Algorithms (cont.)

• Memoizing a small fraction of projected graphs leads to significant speedups of MoCHy-A+.

Roadmap

- Hypergraph Motif
- Proposed Method: MoCHy
- Experimental Results
- Conclusions

Conclusions

• We propose hypergraph motifs (h-motifs) for describing the connectivity patterns of hypergraphs.

KAIST AI

Hypergraph Motifs: Concepts, Algorithms, and Discoveries

Geon Lee

Jihoon Ko

Kijung Shin