CSC2130:

Empirical Research Methods for Computer Scientists

Seminar 3: Basics of Empirical Research

Steve Easterbrook sme@cs.toronto.edu

Barbara Neves barbara@bbneves.com

www.cs.toronto.edu/~sme/CSC2130/

Topics for Today

- Recap from last week
- o Discussion: Is most published research wrong?
- Study Design Planning Checklist
- Elements of research design
 - Units of Analysis
 - Sampling
 - Measurement
 - Validity
 - Reliability

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Planning Checklist

- Identify the research question(s)
- Check the literature
- Identify your philosophical stance
- Identify appropriate theories
- Choose the method(s)
- Design the study
 - Unit of analysis?
 - Target population?
 - Sampling technique?
 - Data collection techniques?
 - Metrics for key variables?
 - Handle confounding factors

- Critically appraise the design for threats to validity
- Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

SC2130: Empirical Research Methods for Computer Scientist

21

What type of question are you asking?

- o Existence:
 - Does X exist?
- Description & Classification
 - What is X like?
 - What are its properties?
 - How can it be categorized?
 - How can we measure it?
 - What are its components?
- Descriptive-Comparative
 - How does X differ from Y?
- Frequency and Distribution
 - How often does X occur?
 - What is an average amount of X?
- Descriptive-Process
 - How does X normally work?
 - By what process does X happen?
 - What are the steps as X evolves?

- Relationship
 - Are X and Y related?
 - Do occurrences of X correlate with occurrences of Y?
- Causality
 - Does X cause Y?
 - Does X prevent Y?
 - What causes X?
 - What effect does X have on Y?
- Causality-Comparative
 - Does X cause more Y than does Z?
 - Is X better at preventing Y than is Z?
 - Does X cause more Y than does Z under one condition but not others?
- o Design
 - What is an effective way to achieve X?
 - How can we improve X?

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Planning Checklist

- Pick a topic
- √ Identify the research question(s)
- ✓ Check the literature
- Identify your philosophical stance
- Identify appropriate theories
- Choose the method(s)
- Design the study
 - Unit of analysis?
 - Target population?
 - Sampling technique?
 - Data collection techniques?
 - Metrics for key variables?
 - Handle confounding factors

- Critically appraise the design for threats to validity
- o Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

C2130: Empirical Research Methods for Computer Scientists

21

Putting the Question in Context **Philosophical Context** Positivist Constructivist Critical theory Eclectic What will you accept as valid truth? How does this relate to the established literature? The Researc **New Paradigms** What new perspectives are **Existing Theories** you bringing to this field? © 2014 Steve Easterbrook CSC2130: Empirical Research Methods for Computer Scientists 24

What will you accept as knowledge?

- Positivist (or "Post-positivist")
 - Knowledge is objective
 - "Causes determine effects/ outcomes"
 - Reductionist: study complex things by breaking down to simpler ones
 - Prefer quantitative approaches
 - Verifying (or Falsifying) theories
- Critical Theorist
 - Research is a political act
 - Knowledge is created to empower groups/individuals
 - Choose what to research based on who it will help
 - Prefer participatory approaches
 - Seeking change in society

Constructivist/Interpretivist

- Knowledge is socially constructed
- Truth is relative to context
- Theoretical terms are open to interpretation
- Prefer qualitative approaches
- Generating "local" theories
- Eclectic/Pragmatist
 - Research is problem-centered
 - "All forms of inquiry are biased"
 - Truth is what works at the time
 - Prefer multiple methods / multiple perspectives
 - seeking practical solutions to problems

© 2014 Steve Easterbrook

SC2130: Empirical Research Methods for Computer Scientists

25

Planning Checklist

- Pick a topic
- √ Identify the research question(s)
- ✓ Check the literature
- Identify your philosophical stance
- Identify appropriate theories
- Choose the method(s)
- Design the study
 - Unit of analysis?
 - Target population?
 - Sampling technique?
 - Data collection techniques?
 - Metrics for key variables?
 - Handle confounding factors

- Critically appraise the design for threats to validity
- Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Identify Appropriate Theories

O Where do theories come from?

© 2014 Steve Easterbroo

CSC2130: Empirical Research Methods for Computer Scientists

26

The Theoretical Lens

- Our Theories impact how we see the world
 - Real-world phenomena too rich and complex
 - Need a way of filtering our observations
 - The theory guides us, whether it is explicitly stated or not
- o In Quantitative Methods:
 - Theoretical lens tells you what variables to measure...
 - ...and which to ignore or control
- o In Qualitative Methods:
 - Theoretical lens usually applied after data is collected
 - ...and used to help with labeling and categorizing the data

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Theories are good for generalization...

Statistical Generalization

- Generalize from sample to population
- Can only be used for quantifiable variables
- Based on random sampling:
 - Test whether results on a sample apply to the whole population
- O Not useful when:
 - You can't characterize the population
 - You can't do random sampling
 - You can't get enough data points

Analytical Generalization

- Generalize from findings to theory
- Applicable to quantitative and qualitative studies
- Compares findings with theory
 - Do the data support/refute the theory?
 - Do they support this theory better than rival theories?
- Supports empirical induction:
 - Evidence builds if subsequent studies also support the theory
- More powerful than stats
 - Doesn't rely on correlations
 - Examines underlying mechanisms

© 2014 Steve Easterbrook

C2130: Empirical Research Methods for Computer Scientist

4

Planning Checklist

- Pick a topic
- Identify the research question(s)
- ✓ Check the literature
- Identify your philosophical stance
- √ Identify appropriate theories
- Choose the method(s)
- Design the study
 - Unit of analysis?
 - Target population?
 - Sampling technique?
 - Data collection techniques?
 - Metrics for key variables?
 - Handle confounding factors

- Critically appraise the design for threats to validity
- Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Choose a Method...

Exploratory

Used to build new theories where we don't have any yet

- E.g. What do CMM level 3 organizations have in common?
- E.g. What are the experiences of developers who have adopted Ruby?

Descriptive

Describes sequence of events and underlying mechanisms

- E.g. How does pair programming actually work?
- E.g. How do software immigrants naturalize?

Causal

Determines whether there are causal relationship between phenomena

- E.g. Does tool X lead to software with fewer defects?
- E.g. Do requirements traceability tools help programmers find information more rapidly?

Explanatory

Adjudicates between competing explanations (theories)

- E.g. Why does software inspection work?
- E.g. Why do people fail to document their requirements?

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

How will you substantiate your claims?

Common "in the lab" Methods

- Controlled Experiments
- Rational Reconstructions
- o Exemplars
- Benchmarks
- Simulations

Common "in the wild" Methods

- Quasi-Experiments
- Case Studies
- Survey Research
- Ethnographies
- Action Research

O Artifact/Archive Analysis ("mining"!)

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Planning Checklist

- Pick a topic
- √ Identify the research question(s)
- ✓ Check the literature
- Identify your philosophical stance
- √ Identify appropriate theories
- Design the study
 - Unit of analysis?
 - Target population?
 - Sampling technique?
 - Data collection techniques?
 - Metrics for key variables?
 - Handle confounding factors

- Critically appraise the design for threats to validity
- o Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Unit of Analysis

Defines what phenomena you will analyze

- Choice depends on the primary research questions
- Choice affects decisions on data collection and analysis
- Hard to change once the study has started (but can be done if there are compelling reasons)
- If possible, use same unit of analysis as previous studies (why?)

Often many choices:

- E.g. for an exploratory study of agile programming:
 - Unit of analysis = individual developer (study focuses on a person's participation in the project)
 - Unit of analysis = a team (study focuses on team activities)
 - Unit of analysis = a decision (study focuses on activities around that decision)
 - Unit of analysis = a process (study examines how user stories are collected and prioritized)
 - ..

© 2014 Steve Easterbroo

CSC2130: Empirical Research Methods for Computer Scientists

30

Examples of Units of Analysis

- For a study of how software immigrants naturalize
 - Individuals?
 - ... or the Development team?
 - ... or the Organization?

For a study of pair programming

- Programming episodes?
- ... or Pairs of programmers?
- ... or the Development team?
- ... or the Organization?

For a study of software evolution

- A Modification report?
- ... or a File?
- ... or a System?
- ... or a Release?
- ... or a Stable release?

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Planning Checklist

- Pick a topic
- √ Identify the research question(s)
- ✓ Check the literature
- Identify your philosophical stance
- √ Identify appropriate theories
- Design the study
 - ✓ Unit of analysis?
 - Target population?
 - Sampling technique?
 - Data collection techniques?
 - Metrics for key variables?
 - Handle confounding factors

- Critically appraise the design for threats to validity
- o Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- o Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

C2130: Empirical Research Methods for Computer Scientists

21

Target Population

- Determines scope of applicability of your results
 - If you don't define the target population...
 - ...nobody will know whether your results apply to anything at all
- From what population are your units of analysis drawn?
 - UoA = "developer using agile programming"
 - Population =
 - All software developers in the world?
 - All developers who use agile methods?
 - All developers in Canadian Software Industry?
 - All developers in Small Companies in Ontario?
 - All students taking SE courses at U of T?
- Choice closely tied to choice of sampling method...

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Planning Checklist

- Pick a topic
- √ Identify the research question(s)
- ✓ Check the literature
- Identify your philosophical stance
- √ Identify appropriate theories
- ✓ Choose the method(s)
- Design the study
 - ✓ Unit of analysis?
 - √ Target population?
 - Sampling technique?
 - Data collection techniques?
 - Metrics for key variables?
 - Handle confounding factors

- Critically appraise the design for threats to validity
- o Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

C2130: Empirical Research Methods for Computer Scientists

21

Sampling Method

O Used to select representative set from a population

- Simple Random Sampling choose every kth element
- Stratified Random Sampling identify strata and sample each
- Clustered Random Sampling choose a representative subpopulation and sample it
- Purposive Sampling choose the parts you think are relevant without worrying about statistical issues (see next slide...)

Sample Size is important

balance between cost of data collection/analysis and required significance

O Process:

- Decide what data should be collected
- Determine the population
- Choose type of sample
- Choose sample size

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Purposive Sampling

- Typical Case
 - Identify typical, normal, average case
- Extreme or Deviant Case
 - E.g outstanding success/notable failures, exotic events, crises.
- o Critical Case
 - if it's true of this one case it's likely to be true of all other cases.
- Intensity
 - Information-rich examples that clearly show the phenomenon (but not extreme)
- Maximum Variation
 - choose a wide range of variation on dimensions of interest
- Homogeneous
 - Instance has little internal variability simplifies analysis

- Snowball or Chain
 - Select cases that should lead to identification of further good cases
- Criterion
 - All cases that meet some criterion
- Confirming or Disconfirming
 - Exceptions, variations on initial cases
- Opportunistic
 - Rare opportunity where access is normally hard/impossible
- Politically Important Cases
 - Attracts attention to the study
- Convenience sampling
 - · Cases that are easy/cheap to study
 - (May reduce credibility)
- o ...Or any combination of the above

© 2014 Steve Easterbrook

C2130: Empirical Research Methods for Computer Scientist

3/

Planning Checklist

- Pick a topic
- Identify the research question(s)
- Identify your philosophical stance
- √ Identify appropriate theories
- Design the study
 - ✓ Unit of analysis?
 - ✓ Target population?
 - ✓ Sampling technique?
 - Data collection techniques?
 - · Metrics for key variables?
 - Handle confounding factors

- Critically appraise the design for threats to validity
- Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Data Collection Techniques

- Direct Techniques
 - Brainstorming / Focus Groups
 - Interviews
 - Questionnaires
 - Conceptual Modeling
 - Work Diaries
 - Think-aloud Sessions
 - Shadowing and Observation
 - Participant Observation

- Indirect Techniques
 - Instrumented Systems
 - Fly on the wall
- Independent Techniques
 - Analysis of work databases
 - Analysis of tool usage logs
 - Documentation Analysis
 - Static and Dynamic Analysis

© 2014 Steve Easterbroo

CSC2130: Empirical Research Methods for Computer Scientists

35

Planning Checklist

- Pick a topic
- √ Identify the research question(s)
- Identify your philosophical stance
- √ Identify appropriate theories
- Design the study
 - ✓ Unit of analysis?
 - √ Target population?
 - √ Sampling technique?
 - ✓ Data collection techniques?
 - Metrics for key variables?
 - Handle confounding factors

- Critically appraise the design for threats to validity
- Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

How will you measure things?

Туре	Meaning	Admissible Operations
Nominal Scale	Unordered classification of objects	=
Ordinal Scale	Ranking of objects into ordered categories	=, <, >
Interval Scale	Differences between points on the scale are meaningful	=, <, >, difference, mean
Ratio Scale	Ratios between points on the scale are meaningful	=, <, >, difference, mean, ratio
Absolute Scale	No units necessary - scale cannot be transformed	=, <, >, difference, mean, ratio

Planning Checklist

- Pick a topic
- Identify the research question(s)
- ✓ Check the literature
- Identify your philosophical stance
- √ Identify appropriate theories
- Design the study
 - ✓ Unit of analysis?
 - √ Target population?
 - ✓ Sampling technique?
 - ✓ Data collection techniques?
 - ✓ Metrics for key variables?
 - Handle confounding factors

- Critically appraise the design for threats to validity
- o Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- o Iterate

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

21

What could go wrong?

- Many phenomena might affect your results
- Must be able to distinguish:
 - My results follow clearly from the phenomena I observed
 - My results were caused by phenomena that I failed to observe
- Identify all (likely) confounding variables
- o For each, decide what to do:
 - Selection/Exclusion
 - Balancing
 - Manipulation
 - Ignore (with justification)

© 2014 Steve Easterbroo

CSC2130: Empirical Research Methods for Computer Scientists

38

Planning Checklist

- Pick a topic
- √ Identify the research question(s)
- Identify your philosophical stance
- √ Identify appropriate theories
- Design the study
 - ✓ Unit of analysis?
 - √ Target population?
 - ✓ Sampling technique?
 - ✓ Data collection techniques?
 - ✓ Metrics for key variables?

- Critically appraise the design for threats to validity
- Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Validity vs. Reliability

- O Reliability: Does the study get consistent results?
- O Validity: Does the study get true results?

© 2014 Steve Fasterbrook

CSC2130: Empirical Research Methods for Computer Scientists

33

Validity (positivist view)

- Construct Validity
 - Are we measuring the construct we intended to measure?
 - Did we translate these constructs correctly into observable measures?
 - Did the metrics we use have suitable discriminatory power?
- Internal Validity
 - Do the results really follow from the data?
 - Have we properly eliminated any confounding variables?
- External Validity
 - Are the findings generalizable beyond the immediate study?
 - Do the results support the claims of generalizability?
- Empirical Reliability
 - If the study was repeated, would we get the same results?
 - Did we eliminate all researcher biases?

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Typical Problems

- Construct Validity
 - Using things that are easy to measure instead of the intended concept
 - Wrong scale; insufficient discriminatory power
- Internal Validity
 - Confounding variables: Familiarity and learning;
 - Unmeasured variables: time to complete task, quality of result, etc.
- External Validity
 - Task representativeness: toy problem?
 - Subject representativeness: students for professional developers!
- Theoretical Reliability
 - Researcher bias: subjects know what outcome you prefer

© 2014 Steve Easterbroo

SC2130: Empirical Research Methods for Computer Scientists

43

Construct Validity

- E.g. Hypothesis: "Inspection meetings are unnecessary"
 - Inspection -> Perspective-based reading of requirements docs
 - Meeting -> Inspectors gather together and report their findings
 - Unnecessary -> find fewer total # errors than inspectors working alone
- o But:
 - What's the theory here?
 - E.g. Fagin Inspections:
 - Purpose of inspection is process improvement (not bug fixing!)
 - Many intangible benefits: staff training, morale, knowledge transfer, standard setting,...

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Construct Validity

- Are we measuring what we intend to measure?
 - Akin to the requirements problem: are we building the right system?
 - If we don't get this right, the rest doesn't matter
 - Helps if concepts in the theory have been precisely defined!
- Divide construct validity into three parts:
 - Intentional Validity are we measuring precisely what we intend?
 - . E.g. measuring "expertise" as "years of experience"?
 - Representation Validity do our measurements accurately operationalize the constructs?
 - E.g. is it okay to break "intelligence" down into verbal, spatial & numeric reasoning?
 - Face validity argument "seems okay on the face of it"
 - Content validity argument "measures demonstrated to cover the concept"
 - Observation Validity how good are the measures by themselves?
 - E.g. the short form of a test correlates well with longer form

© 2014 Steve Easterbrook

SC2130: Empirical Research Methods for Computer Scientists

44

More on Observation Validity

- Predictive Validity
 - Observed measure predicts what it should predict and nothing else
 - E.g. check that college aptitude tests do predict success in college
- Criterion Validity
 - Observed measure agrees with an independent standard
 - . Eg, for college aptitude, GPA or successful first year
- Convergent Validity
 - Observed measure correlates with other observable measures for the same construct
 - I.e. our measure gives a new way of distinguishing a particular trait while correlating with similar measures
- Discriminant Validity
 - Observed measure distinguishes between two groups that differ on the trait in question
 - E.g. Measurement of code quality can distinguish "good" code from "bad"

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Internal Validity

- O Can we be sure our results really follow from the data?
 - Have we adequately ruled out rival hypotheses?
- o Have we eliminated confounding variables?
 - Participant variables
 - Researcher variables
 - Stimulus, procedural and situational variables
 - Instrumentation
 - Nuisance variables
- Confounding sources of internal invalidity
 - H: History
 - events happen during the study (eg, study session was interrupted)
 - M: Maturation
 - older/wiser/better between treatments (or during study)
 - I: Instrumentation
 - change due to observation/measurement instruments
 - S: Selection
 - differing nature of participants
 - effects of choosing participants

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

46

External Validity

- Two issues:
 - Results will generalize beyond the specific situations studied
 - E.g. do results on students generalize to professionals?
 - Do the results support the claims of generalizability?
 - . E.g. if the effect size is small, will it be swamped/masked in other settings?
 - E.g. will other (unstudied) phenomena dominate?
- o Two strategies:
 - Provide arguments in favour of generalizability
 - · Replicate the finding in further studies:
 - Literal replication repeat study using the same design
 - Empirical Induction related studies test additional aspects of the theory
- Also: Ecological Validity
 - Does the study set-up approximate real-world conditions?
 - (can achieve external validity without this, but it's hard)

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Reliability

- O Could the study be repeated with the same results?
 - On the same subjects (not a replication!)

o Issues:

- No mistakes were made in conducting the experiment
- Steps taken in data collection and analysis were made explicit
- No biases were introduced by the researchers

O Good practice:

- Carefully document all procedures used in the study
- Prepare a "lab package" of all materials and procedures used
- Conduct the study in such a way that an auditor could follow the documented procedures and arrive at the same results

© 2014 Steve Easterbroo

CSC2130: Empirical Research Methods for Computer Scientists

48

Validity (Constructivist View)

- Repeatability is suspect:
 - Reality is "multiple and constructed", same situation can never recur
 - Researcher objectivity is unattainable
 - E.g. successful replication depends on tacit knowledge
- o Focus instead on "trustworthiness":
 - Credibility of researchers and results
 - Transferability of findings
 - Dependability results are robust across a range of situations
 - Confirmability
- Identify strategies to increase trustworthiness...

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

49

Strategies for constructivists

- Triangulation
 - Different sources of data used to confirm findings
- Member checking
 - Research participants confirm that results make sense from their perspective
- Rich, thick descriptions
 - As much detail as possible on the setting and the data collected
- Clarify bias
 - Be honest about researcher's bias
 - Self-reflection when reporting findings

- Report discrepant information
 - Include data that contradicts findings as well as that which confirms
- Prolonged contact with participants
 - Spend long enough to ensure researcher really understands the situation being studied
- Peer debriefing
 - A colleague critically reviews the study and tests assumptions
- External Auditor
 - Independent expert reviews procedures and findings

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

Validity (Critical theorist's view)

- Validity depends on utility of the knowledge gained
 - Research is intended to challenge perspectives, shift power, etc.
 - Problems tackled are context sensitive...
 - ...repeatability not an issue
- Criteria (e.g. for action research)
 - Problem tackled is authentic
 - Intended change is appropriate and adequate
 - Participants are authentic (real problem owners)
 - Researcher has appropriate level of access to the organization
 - Planned exit point
 - Clear knowledge outcomes for participants

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists

51

Planning Checklist

- Pick a topic
- Identify the research question(s)
- Identify your philosophical stance
- √ Identify appropriate theories
- Design the study
 - ✓ Unit of analysis?
 - √ Target population?
 - √ Sampling technique?
 - ✓ Data collection techniques?
 - ✓ Metrics for key variables?

- ✓ Critically appraise the design for threats to validity

 ✓ Critically appraise the design for threats to validity

 ✓ Critically appraise the design for threats to validity

 ✓ Critically appraise the design for threats to validity

 ✓ Critically appraise the design for threats to validity

 ✓ Critically appraise the design for threats to validity

 ✓ Critically appraise the design for threats to validity

 ✓ Critically appraise the design for threats to validity

 ✓ Critically appraise threats threat threats threat threats thr
- Get IRB approval
 - Informed consent?
 - Benefits outweigh risks?
- Recruit subjects / field sites
- Conduct the study
- Analyze the data
- Write up the results and <u>publish</u> them
- Iterate

© 2014 Steve Easterbrook

CSC2130: Empirical Research Methods for Computer Scientists