

Scientific Machine Learning

Lecture 2: Curve Fitting and Probability Theory

Dr. Daigo Maruyama

Prof. Dr. Ali Elham

Lecture content

- Polynomial Curve Fitting
- Probability Theory

The lecture of this time basically follows the 1st chapter of the book: Christopher M. Bishop "Pattern Recognition And Machine Learning" Springer-Verlag (2006) The name of this book is shown as "PRML" when it is referred in the slides.

Lecture content

1. Polynomial Curve Fitting

Example: The following data points are given.

Which kind of functions do you want to put on them?

Assumption:

The data points lie on a cubic function.

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 = \sum_{i=0}^{3} w_i x^i$$

Linear model: a linear function of the coefficients w parameters

Error function

$$E(\mathbf{w}) = \sum_{i=1}^{N} \{t_i - y(x_i, \mathbf{w})\}^2$$

Least squares method itself

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w})$$

Visualizing the least square method

$$E(\mathbf{w}) = \sum_{i=1}^{N} \{t_i - y(x_i, \mathbf{w})\}^2$$

various orders M

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{i=0}^{N} w_i x^i$$

sample size: N = 10 (common for all)

x

Higher order models are more flexible but not always better for prediction.

Selection of *M*: **Model selection**

Good prediction = Good generalization

How to evaluate good **generalization** quantitatively?

PRML, p. 7

x

Dr. Daigo Maruyama | Scientific Machine Learning: Lecture 2 | Slide 6

Least squares

PRML, p. 6

Quantitative Insight:

root-mean-square error (RMS error)

$$E_{RMS} = \sqrt{\frac{E(\mathbf{w})}{N}}$$

$$= \sqrt{\frac{1}{N} \sum_{i=1}^{N} \{t_i - y(x, \mathbf{w})\}^2}$$

Generalized by

- deleting the effect of sample size N
- using the same unit as the output

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^*				640042.26
w_6^{\star}				-1061800.52
w_7^*				1042400.18
w_8^{\star}				-557682.99
w_{9}^{\star}				125201.43

PRML, p. 6

$$E_{RMS}^{(Training)} = 0$$
 at $M = 9$

sample size

N = 10

(common for all)

but $E_{RMS}^{(Test)}$ is large.

Degree of freedom of the polynomial function

$$y(x, \mathbf{w}) = \sum_{i=0}^{M} w_i x^i$$

Is equal to N = 10 when M = 9 (0,...,9)

Dr. Daigo Maruyama | Scientific Machine Learning: Lecture 2 | Slide 8

Polynomial Curve Fitting (Regularization)

Concept: constraints on the parameters *w* Regularization

$$\min_{\boldsymbol{w}} E(\boldsymbol{w})$$

s.t.
$$||w||^2 \le \eta$$

The concept is equivalent to minimizing the following modified error function:

$$\min_{\pmb{w}} E(\pmb{w}) \qquad \text{where,} \quad E_{reg}(\pmb{w}) = E(\pmb{w}) + \lambda ||\pmb{w}||^2$$
 regularization term

- λ : A parameter to make a balance between the two terms:
- least square term
- regularization term

$$\|\mathbf{w}\|^2 = \mathbf{w}^{\mathrm{T}}\mathbf{w} = w_0^2 + w_1^2 + \dots + w_M^2$$

Polynomial Curve Fitting (Regularization)

PRML, p. 10

We already know a technique of how to select λ .

	l ln \	$\ln \lambda = -18$	$l_{n} \setminus -0$	
		E-1000000 17:27/5	200000000000000000000000000000000000000	
w_0^{\star}	0.35	0.35	0.13	
w_1^{\star}	232.37	4.74	-0.05	
w_2^{\star}	-5321.83	-0.77	-0.06	
w_2^{\star} w_3^{\star}	48568.31	-31.97	-0.05	
w_4^{\star} w_5^{\star} w_6^{\star}	-231639.30	-3.89	-0.03	
w_5^*	640042.26	55.28	-0.02	
w_6^*	-1061800.52	41.32	-0.01	
w_7^*	1042400.18	-45.95	-0.00	
w_8^{\star}	-557682.99	-91.53	0.00	
w_{9}^{\star}	125201.43	72.68	0.01	
		12772000		PRML, p. 11
WILL				—, - · ·

PRML, p. 11

Dr. Daigo Maruyama | Scientific Machine Learning: Lecture 2 | Slide 10

$$E_{RMS} = \sqrt{\frac{E(\mathbf{w})}{N}}$$

Training: N = 10

Test: *N* is arbitrary

M = 9 for all (the same function)

Dr. Daigo Maruyama | Scientific Machine Learning: Lecture 2 | Slide 11

Lecture content

2. Probability Theory

x: deterministic variable

y: random variable (or stochastic variable)

$$y \sim p(y|x)$$

We pick up one of the observable quantities.

probability of y when x given conditional probability

x can be also a probability.

A case when both *X* and *Y* are (discrete) random variables PRML, p. 16

 $X: \{x_i\}, (i = 1, \dots, 9)$ $Y: \{y_i\}, (i = 1,2)$

Classification in which category

sample size N = 60

histogram

p(Y)

PRML, p. 16

joint probability P(X,Y)

marginal probability

P(Y)

pretend that we did not see X

P(X)pretend that we did not see Y conditional probability P(X|Y=1)

Joint probability contains all the information!

one of the goals in machine learning processes

Probability Theory (Rules of Probability)

joint probability P(X,Y)

marginal probability

$$P(Y) = \sum_{X} P(X, Y)$$
sum rule

marginal distribution itself

$$\sum_{X} \sum_{Y} P(X,Y) = 1$$
$$\sum_{X} P(X,Y=1) = 1$$

$$\sum_{X} P(X, Y = 1) = 1$$

$$P(X, Y = 1) = P(X|Y = 1)P(Y = 1)$$

$$P(X,Y) = P(X|Y)P(Y)$$

product rule

Probability Theory (Rules of Probability)

$$\mathbf{sum rule} \quad P(Y) = \sum_{X} P(X, Y)$$

product rule
$$P(X,Y) = P(X|Y)P(Y)$$
 $P(X,Y) = P(Y|X)P(X)$

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Interpretation is important.

Let us consider time flow / causality

Probability Theory (Introduction of Bayes' Theorem)

$$P(X = "red box") = 0.6$$

 $P(X = "blue box") = 0.4$

- 1. First event *X*: choose one box
- 2. Second event *Y*: choose one piece of fruits

$$P(Y = "orange" | X = "red box") = \frac{6}{8}$$

Then,
$$P(X = "red box"|Y = "orange") = ?$$

	P(X = "red box")	$P(X = "blue\ box")$	1
P(Y = "orange")	$0.6 \times \frac{6}{8} = \frac{9}{20}$	$0.4 \times \frac{1}{4} = \frac{1}{10}$	$\frac{11}{20}$
P(Y = "apple")	$0.6 \times \frac{2}{8} = \frac{3}{20}$	$0.4 \times \frac{3}{4} = \frac{3}{10}$	$\frac{9}{20}$
1	0.6	0.4	1

Obtain joint probability: P(X,Y)

Dr. Daigo Maruyama | Scientific Machine Learning: Lecture 2 | Slide 17

Probability Theory (Introduction of Bayes' Theorem)

$$P(X = "red box") = 0.6$$

 $P(X = "blue box") = 0.4$

Bayes' theorem

$$P(X = "r"|Y = "o") = \frac{P(Y = "o"|X = "r")P(X = "r")}{P(Y = "o")}$$

$$= \frac{P(X = r, Y = "o")}{P(Y = "o")} = \frac{\frac{9}{20}}{\frac{11}{20}} = \frac{9}{11} \quad \text{somehow understandable}$$

time flow / causality: reverse

	P(X = "red box")	$P(X = "blue\ box")$	1
P(Y = "orange")	$0.6 \times \frac{6}{8} = \frac{9}{20}$	$0.4 \times \frac{1}{4} = \frac{1}{10}$	$\frac{11}{20}$
P(Y = "apple")	$0.6 \times \frac{2}{8} = \frac{3}{20}$	$0.4 \times \frac{3}{4} = \frac{3}{10}$	$\frac{9}{20}$
1	0.6	0.4	1

Probability Theory (Rules of Probability)

Extension to continuous variables

sum rule
$$p(y) = \int p(x, y) dx$$

product rule
$$p(x,y) = p(x|y)p(y)$$

Bayes' theorem
$$p(y|x) = \frac{p(x|y)p(x)}{p(x)}$$

$$p(y) = \int p(x,y) dx$$
$$= \int p(y|x)p(x) dx$$

We need to get familiar with this transformation process.

when x and y are **independent**,

$$p(y|x) = p(x)$$

Therefore,

$$p(x,y) = p(x)p(y)$$

Please confirm this by following the rules of probability.

$$p(y|x) = \int p(y|g)p(g|x) dg$$

Probability Theory (Rules of Probability)

 $p(x)\delta x$: a probability

Required two conditions

$$\int_{-\infty}^{\infty} p(x) \mathrm{d}x = 1$$

$$p(x) \ge 0$$

 $p(x) \ge 0$ p(x) can be more than 1.

p(x): probability density function (pdf)

p(x) is not a probability.

P(x): cumulative distribution function (cdf)

$$P(z) = \int_{-\infty}^{z} p(x) \mathrm{d}x$$

Expectation (Mean) μ

$$E[f] = \int f(x)p(x)\mathrm{d}x$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

consider the random variable x itself

$$E[x] = \int x p(x) \mathrm{d}x$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} x_i$$

How to generate such points?

approximated by a finite number N of points

• The points have to be generated according to the probability distribution p(x).

by sum and product rules

$$p(y) = \int p(y|x)p(x)dx$$

Monte Carlo (MC) sampling?

Example: There is a pdf f(p).

$$\int f(p)\mathrm{d}p = 1$$

$$\int f(p)dp = 1$$

$$E[p] = \int p \times f(p)dp = 0.507$$

natural from the definition of pdf meaning: the area under f(p) is 1.

computing the expectation of the pdf f(p)Meaning: the mean value of the variable p

consider random variable x

Variance σ^2

$$var[x] = E[(x - E[x])^2]$$

mean of the gap from the mean value of f(x)

useful property (not used in machine learning techniques)

$$var[x] = E[x^2] - E[x]^2$$

Standard deviation σ

$$std[x] = \sqrt{var[x]}$$

using the same unit as x

Covariance

 $\sigma_{\chi,\gamma}$

(when standard deviation of random variables x and y are σ_x and σ_y , respectively)

$$var[x] = E[(x - E[x])(x - E[x])] \qquad \sigma_x^2$$

$$cov[x, y] = E[(x - E[x])(y - E[y])] \qquad \sigma_{x,y}$$

Correlation: standardization of covariance

$$r_{x,y} = \frac{cov[x,y]}{\sigma_x \sigma_y} \qquad -1 \le r_{x,y} \le 1$$

These indicators (covariance, correlation) do not always causal relationship.

The concept of covariance (correlation) is very important in various method in machine learning techniques.

Representation of a pdf p(x)

Gaussian distribution (as one example currently)

The pdf p(x) is uniquely determined by two parameters, μ and σ .

PRML, p. 25

- Parametric distributions
 - Various distributions such as Gaussian distribution
- Non-parametric distributions
 - Distributions formed by sampling (the MCMC result in the previous slide)

$$p(x|\mu,\sigma) = \mathcal{N}(x|\mu,\sigma^2)$$

We need to get familiar with this expression.

A pdf of x when μ and σ is given.

This rule can be used no matter whether μ and σ are random variables or deterministic variables!

Likelihood function: a probability of data

Data points are assumed to be generated from <u>a</u> distribution (pdf) $p(x) (= p(x|\mu, \sigma))$.

1. <u>Independent</u> and identically distributed (i.i.d.)

$$p(x_1, x_2) = p(x_1)p(x_2) = \prod_{i=1}^{2} p(x_i)$$

2. $p(x_i|\mu,\sigma)$:

the probability when the data point x_i is generated from the distribution $p(x|\mu,\sigma)$.

We can define the probability when all the data points are generated from the distribution $p(x|\mu, \sigma)$, which is $p(\mathbf{X}|\mu, \sigma)$.

a probability of the data X

$$p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\sigma}) = \prod_{i=1}^{N} p(x_i|\boldsymbol{\mu}, \boldsymbol{\sigma})$$

When this probability is regarded as a function of the parameters μ and σ , $p(\mathbf{X}|\mu,\sigma)$ is not a probability anymore.

But useful for estimation of the parameters μ , σ !

