Lista 4

Número 4.12. En R² se considera la colección B de todos los subconjuntos

V(a,b)= { (x,y) ∈ 12 1 × ≤ a, y ≤ b}

Demostrar que 3 es efectivamente base de una topología y estudiar sus propiedades de separación.

Para comprobar que Bes base de una topología hay que ver que:

i) X = UB y ii) Vx eB, NB2 con B, B2 es]BxeB con xeB & B, NB2

Lo primero es inmediato porque dudo (xo, yo) ERZ = X entonces (xo, yo) eV(xo, yo)

Iveyo $(x_0, y_0) \in \bigcup_{a,b \in \mathbb{R}} V(a,b) = \bigcup_{B \in \beta} B$

Para lo segundo, nos damos cuenta de que V(a, bi) NV(az, bz) =

= $\{(x,y) \in \mathbb{R}^2 \mid x \leq \alpha_1, x \leq \alpha_2, y \leq b_1, y \leq b_2 \} = \{(x,y) \in \mathbb{R}^2 \mid x \leq \min\{\alpha_1, \alpha_2\}, y \leq \min\{b_1, b_2\}\} =$

] Bx = V(min{a, a23, min{b, b2}) tol que xEBx y Bx c B11B2.

Los conceptos de separación que tenemos son que un espacio sea To, T1 x T2 Un espacio topológico (X, C) es T2 s: tx, y ex, x x y, 3Ux, ux enternos disjuntos de x ey. Un espacio topológico (X, C) es T1 s: tx, y ex, x x y, 3Ux entenno dex al yve no pertenece y.

Un esparcio topológio (x, t) es To si Yx, y ex, x ≠ y, (3Ux entorrode x any y ellx
3Ux entorrode y conx y Ux)

Nótese que en esta topología todo punto tiene un entorno abierto mínimo.

En efecto, dado (xo, yo) el R² V(xo, yo) es enlonno abierto ele (xo, yo) y

si U= U V(a,b) es entorno de (xo, yo) entonces

aca
be B

V(xo, yo) CU.

Si $(x_1,y_1) \in V(x_0,y_0)$ entences $X_1 \leq x_0$, $y_1 \leq y_0$. Como $(x_0,y_0) \in U$ $\exists a_0 \in A y$ $\exists b_0 \in B$ talque $(x_0,y_0) \in V(a_0,b_0)$ y por lante $x_0 \leq a_0$ of $y_0 \leq b_0$ luego $X_1 \leq a_0$, $y_1 \leq b_0 \iff (x_1,y_1) \in V(a_0,b_0) \subset \bigcup V(a_0,b)$.

Con esta observación es fácil ver que este espació no es T2, no es T2 y sí es To

No es T2 porque dudo (xo, yo) + (xi, yi), si ll'xi, yi) y ll'xi, yil son entornos (que podemos suponer abientos) de los puntos, entonces

(x,y,o)∈V(x0,y0) ⊂ U(x,y0)

y (x1,y1)∈V(x1,y1) ⊂ U(x1,y1)

(omo $V(x_0, y_0) \cap V(x_1, y_1) = V(min\{x_0, x_1\}, min\{y_0, y_1\}) \neq \emptyset$ | $V(x_0, y_0) \cap U^{(x_1, y_1)} \neq \emptyset$.

No es Γ_1 porque dudo $(x_0, y_0) \neq (x_1, y_1)$ con $x_1 < x_0 \in y_1 < y_0$ entonces $(x_1, y_1) \in \mathcal{U}^{(x_0, y_0)}$ para todo entorno $\mathcal{U}^{(x_0, y_0)}$ de (x_0, y_0) . En efecto, $(x_1, y_1) \in \mathcal{V}(x_0, y_0)$ porque $x_1 \le x_0 \in \mathcal{Y}_1 \le y_0$ y $\mathcal{V}(x_0, y_0) \subset \mathcal{U}^{(x_0, y_0)}$.

Si es To porque dudo (xo, yo) \(\times \), yi) entonces distinguimos los casos:

• \(\times = \times \) (Podemos suponer yo \(\times \)) Entonces \(V(\times \), yo) es entorno de (\times \), yo) \(\times \) (\times \)

• \(\times \) \(\times \)

Número 4.14.- Sen d'una distancia en un conjunto X y sen Td la topología correspondiente. Demostrar que dos corra dos disjuntos de X tienen entornos disjuntos.

En el ejercicio 2.1. vimos que dado un conjunto A en un espacio métrico (x,d) en el que se de fine la topología Td de manera habitual entonces la funcion:

$$\times \longrightarrow \mathbb{R}$$

 $\times \longmapsto d(x,A) = \inf \{d(x,a)\}$ es continue.
 $a \in A$

Podemos definir entonces la función

$$f: X \longrightarrow IR$$

 $\times \longmapsto f(x) = \frac{d(x, F_1)}{d(x, F_2) + d(x, F_2)}$ donde $F_1 y F_2$ son los

cerrados que buscamos separar.

Por la continuidad de d(x,A) $\forall Ac \times$ se tiene que f es continua, por ser cociente de funciones continuas donde el denominador no se anula. Esto es así porque el denominador solo se anula si $d(x,F_1)=d(x,F_2)=0$. Por ser F_1 y F_2 cerrados, entonces $d(x,F_i)=0 \implies x \in F_i$ para i=1,2. Si $d(x,F_i)=d(x,F_i)=0$ entones $x \in F_1 \cap F_2$ pero estos dos conjuntos son disjuntos luego conclumos que el denominador no se anula y f es continua.

Es evidente que $f(F_1) = \{0\}$ y $f(E) = \{1\}$. Por ser f continua. $U = f'(1-\infty, 1/2)$ es abierlo y $V = f'(1/2, \infty)$ tumbién. Además, son disjuntos y $F_1 \subset U$ y $F_2 \subset V$. Hemos en contrado dos entornos (abierlos) de F_1 y F_2 que son disjuntos luego el resultado queda probado.