DENSITY EFFECT FOR THE IONIZATION LOSS OF CHARGED PARTICLES IN VARIOUS SUBSTANCES

R. M. STERNHEIMER

Department of Physics, Brookhaven National Laboratory Upton, New York 11973

and

M. J. BERGER and S. M. SELTZER Center for Radiation Research National Bureau of Standards Washington, D. C. 20234

The density-effect correction $\delta(\beta)$ for the ionization energy loss of charged particles has been evaluated as a function of the particle velocity for a total of 278 substances, including 98 cases of elements of the periodic table (12 gases and 86 condensed materials, including liquid hydrogen and graphite of three different densities) and 180 chemical compounds and substances of biological interest (13 gases and 167 liquid or solid substances). In the calculations, up-to-date values of the mean excitation potential I and of the atomic absorption edges $h\nu_i$ were employed as input data for the general equations for $\delta(\beta)$ previously derived by Sternheimer.

CONTENTS

INTRODUCTION	262							
Numerical Evaluation of the Density Effect								
Fitting Formula								
Determination of the Parameters in the Fitting Formula	264							
EXPLANATION OF TABLES								
EXAMPLE OF THE USE OF TABLES I AND II								
TABLES								
I. Density Effect Parameters for Elemental Substances	269							
II. Density Effect Parameters for Compounds and Mixtures	270							

INTRODUCTION

The density-effect correction δ for the ionization loss of charged particles¹⁻¹² has been evaluated previously for a large number of substances.⁵⁻¹² The last previous extensive effort in this direction was made in the paper by Sternheimer et al.,¹² in which the density effect was evaluated for a total of 72 substances (34 metallic elements, 26 compounds, 11 gases, and liquid hydrogen). In Ref. 12, the basic equations of Sternheimer (Refs. 3 and 5) were used in order to evaluate the density effect, employing up-to-date values of the mean excitation potential¹³⁻¹⁴ I and of the atomic absorption edges¹⁵ hv_i .

The density-effect correction has also been evaluated previously in the course of stopping-power calculations for electrons by Pages et al. 16 and for protons by Janni. 17 These authors used the method of Sternheimer 3,5 and input data with values different from those employed in Ref. 12 and in the present work. In Refs. 16 and 17, the density-effect correction was included in the tabulated stopping powers, but the correction itself was not explicitly tabulated except for a few elements.

In the present work, the results of Ref. 12 have been extended to a total of 278 substances, including 98 cases of elements of the periodic table (12 gases and 86 condensed materials including liquid hydrogen and graphite of three different densities) and 180 chemical compounds and substances of biological interest (13 gases and 167 liquid or solid compounds). The essential advance of the present calculations over those previously carried out in Refs. 5–12 consists in the development and implementation of a computer algorithm which carries out in a single operation the numerical evaluation of the density effect and the fitting of the numerical results by an

approximation formula. The method used is briefly indicated in this paper, and further details can be found in a Brookhaven National Laboratory Report, ¹⁸ as well as in a National Bureau of Standards Report. ¹⁹

Numerical Evaluation of the Density Effect

The calculations of $\delta(\beta)$ are based on the following equations, derived by Sternheimer^{3,5} in 1945 and 1952:

$$\delta(\beta) = \sum_{i=1}^{n} f_i \ln \left[(l_i^2 + l^2)/l_i^2 \right] - l^2 (1 - \beta^2), \tag{1}$$

where $\beta = v/c$ is the particle velocity divided by the velocity of light, and l is the solution of the equation,

$$\frac{1}{\beta^2} - 1 = \sum_{i=1}^n \frac{f_i}{\bar{\nu}_i^2 + l^2},\tag{2}$$

where n is the number of dispersion oscillators required to describe the atoms of the medium and the f_i are the corresponding oscillator strengths. In Eq. (2), $\bar{\nu}_i$ is defined by

$$\bar{\nu_i} = \nu_i \rho / \nu_{\rm p},\tag{3}$$

where $h\nu_i$ is the absorption edge for the *i*th oscillator of the dispersion model. The quantity $h\nu_p$ is the plasma energy of the electrons of the substance considered as free electrons, and is given by²⁰

$$h\nu_{\rm p} = 28.816(\rho_0 Z/A)^{1/2} \,\text{eV},$$
 (4)

where ρ_0 is the density of the medium (in g/cm³), Z is the atomic number, and A is the atomic weight. In the case of a compound or molecular gas, Z/A is to be replaced

by the ratio of the total number of electrons to the effective molecular weight or the sum of atomic weights of the constituent atoms: $\Sigma Z_i/\Sigma A_i$. As in Ref. 12, a separate dispersion oscillator is used for each subshell of the atom considered, e.g., K, L_I, L_{II}, and L_{III} for neon. The quantity ρ in Eq. (3) is the adjustment factor which was introduced by Sternheimer⁵ in 1952 and which is designed to give agreement of the oscillator energies $h\nu_i\rho$ (or rather $h\nu_p l_i$) with the observed mean excitation potential *I*. Specifically, in Eq. (1), the constants l_i are defined by

$$l_i = [\bar{\nu}_i^2 + (2/3) f_i]^{1/2} \quad \text{for} \quad \bar{\nu}_i > 0$$
 (5)

$$l_n = f_n^{1/2} \qquad \text{for} \quad \bar{\nu_n} = 0$$

In Eq. (5), the factor 2/3 takes into account the Lorentz-Lorenz correction [see Ref. 5, Eqs. (48)–(52)] in the expression for the polarizability $\alpha(\nu)$; note that this factor does not enter for the case of conduction electrons for which $l_n = f_n^{1/2}$, as given above.

The mean excitation potential I of the medium is given by

$$\ln I = \sum_{i} f_{i} \ln (h \nu_{p} l_{i}). \tag{7}$$

By making use of Eq. (3) for $\bar{\nu}_i$, we obtain the following expression, which is used to determine the value of the Sternheimer adjustment factor ρ :

$$\ln I = \sum_{i=1}^{n-1} f_i \ln \left[(h\nu_i \rho)^2 + (2/3) f_i (h\nu_p)^2 \right]^{1/2} + f_n \ln (h\nu_p f_n^{1/2}).$$
(8)

For a conductor, f_n is taken as n_c/Z , where n_c is the effective number of conduction electrons per atom of the substance. Note that for a compound (insulator) or for a gas, $n_c = 0$, the sum in Eq. (8) extends from i = 1 to n, and the last term on the right-hand side of Eq. (8) is not present. The values of ρ thus determined from the experimental values of I and hv_i generally lie in the range 1.5-2.5. Physically the meaning of ρ is that it takes into account the fact that for the excitations of an inner shell with absorption edge hv_i , the contribution of the excitation (ionization) to continuum states involves energies which are larger than hv_i . A very approximate estimate of ρ was made in Ref. 12 [Eq. (11)], with the result that ρ is of the order of $e^{1/2} = 1.649$.

In Eqs. (1), (2), and (5)-(8), f_i is the oscillator strength for the *i*th oscillator, which was taken as n_i/Z for the inner (nonconduction) electrons; here n_i is the number of electrons for the subshell considered, e.g., $n_i = 4$ for the L_{III} subshell. In the case of a metal, n_c was taken to be the lowest chemical valence of the element

considered.* The values of the absorption edges $h\nu_i$ for the various subshells of all elements were obtained from the compilation of Carlson.¹⁵ The values of I were obtained from two recent papers of Berger and Seltzer.^{13,14}

In Fig. 1, we have plotted the values of the Sternheimer adjustment factor ρ as a function of Z. The solid curve has been drawn through the ρ values for metals as obtained by means of Eq. (8). The ρ values for the 12 gases are shown separately as crosses. It can be seen that except for the four gases O_2 , N_2 , F, and Ne, the crosses lie very close to the curve determined by the ρ values for condensed substances. The most striking feature of the curve of Fig. 1 is the existence of successive maxima and minima as a function of Z. The maxima and minima reflect the existence of similar features in the curve of I/Z vs Z, as presented in Refs. 12 and 14, but in the present case, i.e., for ρ , these fluctuations are much more pronounced. They can be related to the electronic shell

Fig. 1. Values of the Sternheimer adjustment factor ρ [see Eqs. (3) and (8)] as a function of the atomic number Z. A smooth curve is drawn through the values of ρ for the case of metals. The crosses pertain to the values of ρ for the 12 gases. The successive maxima and minima of ρ are correlated with the atomic shell structure [see the discussion in the text following Eq. (8)].

^{*} An alternative prescription would be to use as the effective number of conduction electrons the number of electrons participating in plasma excitations in metals. The latter number can be deduced from optical data and from measured electron energy-loss spectra. Effective numbers of plasma electrons have been deduced from the experimental literature by Raether²¹ for 27 metals and by Isaacson²² for 47 metals; see also Mann and Brandt²³ and Ziegler et al.²⁴ We have made some numerical tests, and have found, for example, that the use of the results of Raether or Isaacson would change the density-effect correction such that the electron stopping power in gold would differ by less than 0.3% and that in copper by less than 0.25%, compared to the values obtained when the number of conduction electrons is deduced from the lowest valence state.

structure of the atoms considered. Thus, the maxima at Z = 11, Z = 30, Z = 47, and Z = 70, correspond approximately to the filling of the $2p^6$, $3d^{10}$, $4d^{10}$, and $4f^{14}$ shells, respectively. In addition, the pronounced shoulder in the neighborhood of Z = 80 can be correlated with the completion of the $5d^{10}$ shell in this region of the periodic table.

On the other hand, the minima of ρ at $Z \cong 20$, Z = 39, Z = 57, and Z = 89 correspond approximately to the filling of the ns^2 shell in the alkaline earths Ca (Z = 20), Sr (Z = 38), Ba (Z = 56), and Ra (Z = 88), respectively. Note that these alkaline earths correspond to the closing of the successive supershells²⁵ of the periodic table, where a supershell is defined as the set of all shells nl with the same value of the quantum number k = n + l. Thus both the curves I/Z vs Z and ρ vs Z give additional support to the k ordering of atomic structure.²⁶

Fitting Formula

Using the procedures described above, numerical values of $\delta(\beta)$ were calculated for each material at many points on a logarithmically spaced energy grid. The energy variable used was T/m_0c^2 , where T is the kinetic energy and m_0c^2 is the particle rest energy. The grid values were chosen to be $T_{(i)}/m_0c^2 = 100,000, 80,000, 60,000, 50,000, 40,000, 30,000, 20,000, 15,000, 10,000, and so on, down to <math>T_{(i)}/m_0c^2 = 0.01$. The numerical values of δ were fitted to the formula proposed by Sternheimer⁵ in 1952, namely,

$$\delta(X) = 4.6052X + a(X_1 - X)^m + C$$

$$(X_0 < X < X_1), \tag{9}$$

$$\delta(X) = 4.6052X + C \quad (X > X_1), \tag{10}$$

where

$$X = \log (p/m_0 c) = \log (\beta \gamma)$$

$$= 1/2 \log [(T/m_0 c^2)(T/m_0 c^2 + 2)],$$
(11)

with p the momentum of the incident particle and $\gamma = (1 - \beta^2)^{-1/2}$. X_0 is the value of X below which $\delta(X)$ is zero for the case of an insulator or gas, and the value of X below which $\delta(X)$ for a metal (conductor) is small, i.e., $\delta(X) \leq 0.14$. X_1 is the value of X above which $\delta(X)$ has essentially attained its asymptotic form. In Eqs. (9) and (10), a and m are adjustable parameters which will be determined below, and C is given by

$$C = -2 \ln (I/h\nu_{\rm p}) - 1,$$
 (12)

where I is the mean excitation potential of the substance for use in the Bethe-Bloch stopping-power formula.^{27,28}

Determination of the Parameters in the Fitting Formula

The experience of Sternheimer⁵⁻¹⁰ in fitting $\delta(\beta)$ indicates that X_1 of Eq. (9) can be taken as any value of X for which the deviation $\delta_1(X)$ from its asymptotic value [Eq. (10)] is of the order of 0.01, and in particular does not exceed 0.015.

Nonconductors

We first consider the case of nonconducting materials for which $\delta(\beta) = 0$ at low velocities $\beta < \beta_0$, where β_0 is the velocity for which $l^2 = 0$ according to Eq. (2). We then have $X_0 = \log (\beta_0 \gamma_0)$, where $\gamma_0 = (1 - \beta_0^2)^{-1/2}$. Thus,

$$\delta(X) = 0 \quad (X < X_0).$$
 (13)

The remaining parameters X_1 , a, and m in Eqs. (9) and (10) were determined by requiring that the fitted $\delta(X)$ values differ by at most 0.015 from the computed grid values in the asymptotic region of Eq. (10), and that, in the intermediate region of Eq. (9), the maximum difference Δ_{max} between fitted and computed values be minimized. Values of these parameters and of Δ_{max} are given in Tables I and II.

Conductors

For metallic conductors $\delta(\beta)$ does not vanish for arbitrarily small velocities, as already discussed by Sternheimer in Ref. 7. The basic reason is that for substances with conduction electrons, Eq. (2) contains a term with $\bar{\nu}_n = 0$, and this leads to the result that $l^2 > 0$ for any nonvanishing β^2 . Therefore, a suitable value of X_0 must be chosen for which $\delta(X_0)$ is small, but not zero. X_0 cannot be made too small algebraically (e.g., very negative), since this would spoil the overall fit to Eq. (9) at larger values of X. It has been our general experience in obtaining the fits published in Ref. 12 that X_0 must generally be chosen such that $\delta(X_0)$ is close to 0.1 in all cases (see Table I of Ref. 12). In view of this observation the fits to Eq. (9) were made with an additional choice of five values of X_0 , such that the calculated values of $\delta(X_0)$ were 0.06, 0.08, 0.10, 0.12, and 0.14, respectively. Again, the fit that gives the smallest value of Δ_{max} was chosen. For metals we have found that the density effect δ for X below X_0 can be approximated satisfactorily by the formula

$$\delta(X) = \delta(X_0) \times 10^{2(X - X_0)}, \quad X \le X_0.$$
 (14)

The error in δ incurred by the use of Eq. (14) is always smaller than the uncertainty Δ_{max} for the fit above X_0 .

We note that for some of the 72 substances considered by us in Ref. 12, even though the same values of the mean excitation potential I were used, the new values of a and m are nevertheless appreciably different. For example, for borosilicate glass (Pyrex) we have a = 0.2988

and m=2.805 in the fit of Ref. 12 (with $X_0=0.1479$, $X_1=2.5$) and we have a=0.08270 and m=3.5224 (with $X_0=0.1479$, $X_1=2.9933$) in the present fit. For gold, we found a=0.1533 and m=2.881 (with $X_0=0.0966$, $\delta(X_0)=0.0912$; $X_1=3.5$) in Ref. 12, and a=0.09756 and m=3.1101 (with $X_0=0.2021$, $\delta(X_0)=0.14$; $X_1=3.6979$) in the present work. Even though the parameters a and m are individually quite sensitive to the choices of X_0 , X_1 , $\delta_1(X_1)$ (and $\delta_0(X_0)$ in the case of metals), the variations of a and m are correlated so that the fitted values $\delta_{\rm fit}$ are quite similar.

The compositions for the various substances, in particular for the organic compounds and the biological substances, are not listed in Table II. For those compositions, the reader is referred to the recent paper of Seltzer and Berger.¹³

Acknowledgments

The work carried out at Brookhaven National Laboratory (R.M.S.) was supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH00016. The work carried out at the National Bureau of Standards (M.J.B. and S.M.S.) was supported by the NBS Office of Standard Reference Data, by the Department of Energy (Office of Health and Environmental Research), and by the Office of Naval Research.

References

- 1. E. Fermi, Phys. Rev. 57, 485 (1940)
- 2. G. C. Wick, Nuovo Cimento 1, 302 (1943)
- 3. R. M. Sternheimer, Thesis, Univ. of Chicago (1946)
- 4. O. Halpern and H. Hall, Phys. Rev. 73, 477 (1948)
- 5. R. M. Sternheimer, Phys. Rev. 88, 851 (1952)
- 6. R. M. Sternheimer, Phys. Rev. **91**, 256 (1953); **93**, 351 (1954); **93**, 1434 (1954)
- 7. R. M. Sternheimer, Phys. Rev. 103, 511 (1956)
- 8. R. M. Sternheimer, Phys. Rev. 145, 247 (1966)
- 9. R. M. Sternheimer, Phys. Rev. 164, 349 (1967)
- 10. R. M. Sternheimer and R. F. Peierls, Phys. Rev. B 3, 3681 (1971)
- 11. R. M. Sternheimer, Phys. Rev. B 24, 6288 (1981)
- 12. R. M. Sternheimer, S. M. Seltzer, and M. J. Berger, Phys. Rev. B 26, 6067 (1982); erratum, B 27, 6971 (1983) (The erratum corrects the composition for "A-150 Plastic".)

- S. M. Seltzer and M. J. Berger, Int. J. Appl. Radiat. Isot. 33, 1189 (1982)
- M. J. Berger and S. M. Seltzer, "Stopping Powers and Ranges of Electrons and Positrons" (2nd ed.), National Bureau of Standards Report No. NBSIR 82-2550A (1983)
- 15. T. A. Carlson, *Photoelectron and Auger Spectroscopy* (Plenum Press, New York, 1975), Appendix 1
- 16. L. Pages, E. Bertel, H. Jaffre, and L. Sklavenitis, ATOMIC DATA 4, 1 (1972)
- 17. J. F. Janni, ATOMIC DATA AND NUCLEAR DATA TABLES 27, 147 (1982)
- R. M. Sternheimer, M. J. Berger, and S. M. Seltzer, Brookhaven National Laboratory Report BNL-33571 (August 1983)
- R. M. Sternheimer, M. J. Berger, and S. M. Seltzer, National Bureau of Standards Report NBSIR 83-2785 (1983)
- 20. U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963)
- 21. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, Berlin/ Heidelberg/New York, 1980)
- 22. D. J. Isaacson. "Positron Trappings of Defects in Solids," Ph.D. Dissertation, New York University (1981)
- 23. A. Mann and W. Brandt, Phys. Rev. B 24, 4999 (1981)
- J. F. Ziegler, J. P. Biersack, and U. Littmark, "Proceedings of U. S.-Japan Seminar on Charged Particle Penetration Phenomena," Oak Ridge National Laboratory Report CONF-820131 (1982), p. 88
- 25. R. M. Sternheimer, Phys. Rev. A 15, 1817 (1977)
- 26. R. M. Sternheimer, Trans. N. Y. Acad. Sci., Ser. II **40**, 190 (1980)
- 27. H. A. Bethe, Ann. Phys. (Leipzig) 5, 325 (1930)
- 28. F. Bloch, Z. Phys. 81, 363 (1933)
- 29. ICRU Report 10b, Physical Aspects of Irradiation. Recommendations of the International Commission on Radiological Units and Measurements, National Bureau of Standards Handbook 85 (1964)
- 30. International Commission on Radiological Protection, Report of the Task Group on Reference Man (Pergamon Press, New York, 1975)

EXPLANATION OF TABLES

TABLE I. Density Effect Parameters for Elemental Substances

TABLE II. Density Effect Parameters for Compounds and Mixtures

The parameters used are defined as follows:

- Z Atomic number
- Z/A Ratio of atomic number to atomic weight
- I Mean excitation energy (in eV)
- ρ_0 Density (in g/cm³)
- $h\nu_p$ Plasma energy (in eV) [Eq. (4)]
- ρ Sternheimer adjustment factor for the atomic excitation energies [Eqs. (3) and (8)]
- -C Eq. (12)

 $\begin{bmatrix} X_0 \\ X_1 \\ m \\ a \end{bmatrix}$

 $\begin{bmatrix} X_1 \\ m \end{bmatrix}$ Parameters in fitting formulas [Eqs. (9), (10), and (14)]

 δ_0 Density-effect value $\delta(X_0)$ used as fitting parameter in Eq. (14)

 $\Delta_{\rm max}$ Upper bound for the error inherent in the fitting procedure. The absolute value of the difference between the fitted and the numerical value of δ is at all energies smaller than $\Delta_{\rm max}$.

The composition of the compounds and mixtures in Table II, in terms of fractions by weight of the atomic constituents, can be found in Seltzer and Berger.¹³ The designation (ICRU) indicates tissue compositions adopted by the International Commission on Radiation Units and Measurements,²⁹ and the designation (ICRP) indicates tissue compositions adopted by the International Commission on Radiological Protection.³⁰

Note added in proof

In Table II, the entries given for lanthanum oxysulfide are slightly in error. The corrected values for La₂O₂S are as follows: Z/A = 0.42706, I = 421.2 eV, $\rho_0 = 5.86$ g/cm³, $h\nu_p = 45.586$ eV, $\rho = 1.719$, -C = 5.4470, $X_0 = -0.0906$, $X_1 = 3.2664$, a = 0.21501, m = 2.7298, $\Delta_{max} = 0.054$.

EXAMPLE OF THE USE OF TABLES I AND II

The density-effect correction δ is to be used in the Bethe stopping-power formula

$$-\frac{1}{\rho_0}\frac{dE}{dx} = \frac{0.153536}{\beta^2}\frac{Z}{A}\left\{F(\beta) - 2\ln I - 2\frac{C_{K,L}}{Z} - \delta\right\}.$$
 (15)

In this expression, $-(1/\rho_0)(dE/dx)$ is the mean energy loss per unit pathlength, in MeV/(g cm⁻²). The term $2C_{K,L}/Z$ is the shell correction, which is generally negligible at energies at which the density-effect correction δ is significant. For heavy charged particles (muons, pions, protons. . . .)

$$F(\beta) = 2 \ln \frac{2m_0 c^2 \beta^2}{1 - \beta^2},$$
 (16)

and for electrons

$$F(\beta) = \ln\left[\frac{m_0 c^2 T \beta^2}{2(1 - \beta^2)}\right] - \left[2(1 - \beta^2)^{1/2} - 1 + \beta^2\right] \times \ln 2 + 1 - \beta^2 + (1/8)[1 - (1 - \beta^2)^{1/2}]. \quad (17)$$

As an example we consider the case of aluminum. We find $X_0 = 0.1708$, $X_1 = 3.0127$, $\delta(X_0) = 0.12$, $\delta_1(X_1) = 0.0015$, a = 0.08024, m = 3.6345, C = -4.2395. As a result, from Eqs. (9), (10), and (14), $\delta(X)$ is given by

$$\delta(X) = 0.12[10^{2(X-0.1708)}] \qquad (X < 0.1708)$$

$$\delta(X) = 4.6052X + 0.08024(3.0127 - X)^{3.6345} - 4.2395$$

$$(0.1708) < X < 3.0127)$$

$$\delta(X) = 4.6052X - 4.2395, \qquad (X > 3.0127)$$

with X given by Eq. (11).

We note that $X_0 = 0.1708$ corresponds to a momentum p/m_0c = $10^{0.1708} = 1.482$, or a kinetic energy (in units m_0c^2) $T/m_0c^2 = 0.788$, and $X_1 = 3.0127$, $p/m_0c = 1029.67$ or $T/m_0c^2 = 1028.68$.

To illustrate the importance of the density effect correction at high (relativistic) energies for both condensed substances and gases, we have tabulated in the auxiliary tables, Tables A and B the percentage reduction Δ of the collision stopping power due to the density effect for electrons (Table A) and for protons (Table B) in the five media: graphite, H_2O (liquid), gold, air, and xenon. Specifically, we have given the values of Δ defined as

$$\Delta = -100(S - S_0)/S_0, \tag{18}$$

where S_0 is the stopping power without density-effect correction and S is the stopping power with the density-effect correction δ in Eq. (15).

TABLE A
Percentage Reduction of the Collision Stopping Power for Electrons Due to the Density Effect

T (MeV)	Graphite, $\rho_0 = 1.70 \text{ g/cm}^3$	H_2O (liquid), $\rho_0 = 1.0 \text{ g/cm}^3$	$\rho_0 = 19.32 \text{ g/cm}^3$	Air $\rho_0 = 1.205 \times 10^{-3} \text{ g/cm}^3$	$\rho_0 = 5.485 \times 10^{-3} \text{ g/cm}$			
1000	30.2	29.3	27.4	11.8	8.3			
500	28.2	27.2	25.0	9.3	6.0			
200	25.2	24.1	21.5	5.0	3.4			
100	22.6	21.5	18.7	3.4	1.8			
50	19.7	18.6	15.7	1.0	0.7			
20	15.6	14.6	11.9	0.0	0.0			
10	12.6	11.5	9.1					
5	9.7	8.2	6.5					
2	6.1	3.9	3.6					
1	3.7	1.2	2.1					
0.5	1.9	0.0	1.2					
0.2	0.6		0.5					
0.1	0.3		0.2					

TABLE B
Percentage Reduction of the Collision Stopping Power for Protons Due to the Density Effect

T (MeV)	Graphite $\rho_0 = 1.70 \text{ g/cm}^3$	H_2O (liquid) $\rho_0 = 1.0 \text{ g/cm}^3$	$\rho_0 = 19.32 \text{ g/cm}^3$	Air $\rho_0 = 1.205 \times 10^{-3} \text{ g/cm}^3$	$\rho_0 = 5.485 \times 10^{-3} \text{ g/cm}^3$
100,000	17.4	16.5	13.7	1.1	0.7
50,000	14.9	14.0	11.3	0.0	0.1
20,000	11.5	10.6	8.2		0.0
10,000	9.1	7.8	6.0		
5,000	6.6	4.8	4.0		
2,000	3.6	1.4	2.0		
1,000	1.9	0.0	1.1		
500	0.8		0.6		
200	0.3		0.1		
100	0.1		0.0		

TABLE I. Density Effect Parameters for Elemental Substances See page 266 for Explanation of Tables

Material	Z	Z/A	I (ev)	Density, p _o (g/cm ³)	hv _p (eV)	ρ	-C	x o	X ₁	à	m	δ ₀	Δ _{max}
HYDROGEN HYDROGEN, LIQUID HELIUM LITHIUM BERYLLIUM BORON CARBON (GRAPHITE, DENS 2.265)		0.99216 0.99216 0.49967 0.43221 0.44384 0.46254 0.49954	19.2 21.8 41.8 40.0 63.7 76.0 78.0	8.3748E-05 6.0000E-02 1.6632E-04 5.3400E-01 1.8480E+00 2.3700E+00 2.2650E+00	0.263 7.031 0.263 13.844 26.098 30.170 30.652	1.412 1.546 1.700 1.535 1.908 2.320 2.290	9.5835 3.2632 11.1393 3.1221 2.7847 2.8477 2.8680	1.8639 0.4759 2.2017 0.1304 0.0592 0.0305 -0.0178	3.2718 1.9215 3.6122 1.6397 1.6922 1.9688 2.3415	0.14092 0.13483 0.13443 0.95136 0.80392 0.56224 0.26142	5.7273 5.6249 5.8347 2.4993 2.4339 2.4512 2.8697	0.0 0.0 0.0 0.14 0.14 0.15	0.024 0.021 0.024 0.062 0.029 0.024 0.038
CARBON (GRAPHITE, DENS 2.0) CARBON (GRAPHITE, DENS 1.7) MITROGEN OXYGEN FLUORINE NEON SODIUM	6 7 8 9 10	0.49954 0.49954 0.49976 0.50002 0.47372 0.49556 0.47847	78.0 78.0 82.0 95.0 115.0 137.0 149.0	2.0000E+00 1.7000E+00 1.1653E-03 1.3315E-03 1.5803E-03 8.3851E-04 9.7100E-01	28.803 26.555 0.695 0.744 0.788 0.587 19.641	2.376 2.490 1.984 2.314 2.450 2.577 2.648	2.9925 3.1550 10.5400 10.7004 10.9653 11.9041 5.0526	-0.0351 0.0480 1.7378 1.7541 1.8433 2.0735 0.2880	2.4860 2.5387 4.1323 4.3213 4.4096 4.6421 3.1962	0.20240 0.20762 0.15349 0.11778 0.11083 0.08064 0.07772	3.0036 2.9532 3.2125 3.2913 3.2962 3.5771 3.6452	0.10 0.14 0.0 0.0 0.0 0.0	0.038 0.038 0.086 0.101 0.121 0.110 0.098
MAGNESIUM ALUMINUM SILICON PHOSPHORUS SULFUR CHLORINE ARGON	12 13 14 15 16 17 18	0.49373 0.48181 0.49848 0.48428 0.49906 0.47951 0.45059	156.0 166.0 173.0 173.0 180.0 174.0 188.0	1.7400E+00 2.6989E+00 2.3300E+00 2.2000E+00 2.0000E+00 2.9947E-03 1.6620E-03	26.708 32.860 31.055 29.743 28.789 1.092 0.789	2.331 2.180 2.103 2.056 2.131 1.734 1.753	4.5297 4.2395 4.4351 4.5214 4.6659 11.1421 11.9480	0.1499 0.1708 0.2014 0.1696 0.1580 1.5555 1.7635	3.0668 3.0127 2.8715 2.7815 2.7159 4.2994 4.4855	0.08163 0.08024 0.14921 0.23610 0.33992 0.19849 0.19714	3.6166 3.6345 3.2546 2.9158 2.6456 2.9702 2.9618	0.08 0.12 0.14 0.14 0.0	0.073 0.061 0.059 0.057 0.059 0.041 0.037
POTASSIUM CALCIUM SCANDIUM TITANIUM VANADIUM CHROMIUM MANGANESE	19 20 21 22 23 24 25	0.48595 0.49900 0.46712 0.45948 0.45150 0.46157 0.45506	190.0 191.0 216.0 233.0 245.0 257.0 272.0	8.6200E-01 1.5500E+00 2.9890E+00 4.5400E+00 6.1100E+00 7.1800E+00 7.4400E+00	18.650 25.342 34.050 41.619 47.861 52.458 53.022	1.830 1.666 1.826 1.969 2.070 2.181 2.347	5.6423 5.0396 4.6949 4.4450 4.2659 4.1781 4.2702	0.3851 0.3228 0.1640 0.0957 0.0691 0.0340 0.0447	3.1724 3.1191 3.0593 3.0386 3.0322 3.0451 3.1074	0.19827 0.15643 0.15754 0.15662 0.15436 0.15419 0.14973	2.9233 3.0745 3.0517 3.0302 3.0163 2.9896 2.9796	0.10 0.14 0.10 0.12 0.14 0.14	0.035 0.031 0.027 0.025 0.024 0.023
IRON COBALT NICKEL COPPER ZINC GALLIUM GERMANIUM	26 27 28 29 30 31 32	0.46556 0.45815 0.47708 0.45636 0.45886 0.44464 0.44083	286.0 297.0 311.0 322.0 330.0 334.0 350.0	7.8740E+00 8.9000E+00 8.9020E+00 8.9600E+00 7.1330E+00 5.9040E+00 5.3230E+00	55.172 58.188 59.385 58.270 52.132 46.688 44.141	2.504 2.626 2.889 2.956 3.142 2.747 2.461	4.2601 4.3115	-0.0012 -0.0187 -0.0566 -0.0254 0.0049 0.2267 0.3376	3.1531 3.1790 3.1851 3.2792 3.3668 3.5434 3.6096	0.14680 0.14474 0.16496 0.14339 0.14714 0.09440 0.07188	2.9632 2.9502 2.8430 2.9044 2.8652 3.1314 3.3306	0.12 0.12 0.10 0.08 0.08 0.14	0.021 0.019 0.020 0.019 0.019 0.019 0.025
ARSENIC SELENIUM BROMINE KRYPTON RUBIDIUM STRONTIUM YTTRIUM	33 34 35 36 37 38 39	0.44046 0.43060 0.43803 0.42959 0.43291 0.43369 0.43867	347.0 348.0 343.0 352.0 363.0 366.0 379.0	5.7300E+00 4.5000E+00 7.0722E-03 3.4783E-03 1.5320E+00 2.5400E+00 4.4690E+00	45.779 40.112 1.604 1.114 23.467 30.244 40.346	2.219 2.104 1.845 1.770 1.823 1.707	5.0510 5.3210 11.7307 12.5115 6.4776 5.9867 5.4801	0.1767 0.2258 1.5262 1.7158 0.5737 0.4585 0.3608	3.5702 3.6264 4.9899 5.0748 3.7995 3.6778 3.5542	0.06633 0.06568 0.06335 0.07446 0.07261 0.07165 0.07138	3.4176 3.4317 3.4670 3.4051 3.4177 3.4435 3.4585	0.08 0.10 0.0 0.0 0.14 0.14	0.030 0.024 0.022 0.025 0.026 0.026
ZIRCONIUM NIOBIUM MOLYBDENUM TECHNETIUM RUTHENIUM RHODIUM PALLADIUM	40 41 42 43 44 45 46	0.43850 0.44130 0.43777 0.43919 0.43534 0.43729 0.43225	393.0 417.0 424.0 428.0 441.0 449.0 470.0	6.5060E+00 8.5700E+00 1.0220E+01 1.1500E+01 1.2410E+01 1.2410E+01 1.2020E+01	48.671 56.039 60.951 64.760 66.978 67.128 65.683	1.638 1.734 1.658 1.727 1.780 1.804	5.1774 5.0141 4.8793 4.7769 4.7694 4.8008 4.9358	0.2957 0.1785 0.2267 0.0949 0.0599 0.0576 0.0563	3.4890 3.2201 3.2784 3.1253 3.0834 3.1069 3.0555	0.07177 0.13883 0.10525 0.16572 0.19342 0.19205 0.24178	3.4533 3.0930 3.2549 2.9738 2.8707 2.8633 2.7239	0.14 0.14 0.14 0.14 0.14 0.14	0.028 0.036 0.030 0.040 0.046 0.046
SILVER CADMIUM INDIUM TIN ANTIMONY TELLURIUM IODINE	47 48 49 50 51 52 53	0.43572 0.42701 0.42676 0.42127 0.41889 0.40752 0.41764	470.0 469.0 488.0 488.0 487.0 485.0 491.0	1.0500E+01 8.6500E+00 7.3100E+00 7.3100E+00 6.6910E+00 6.2400E+00 4.9300E+00	61.635 55.381 50.896 50.567 48.242 45.952 41.348	1.933 1.895 1.851 1.732 1.645 1.577	5.0630 5.2727 5.5211 5.5340 5.6241 5.7131 5.9488	0.0657 0.1281 0.2406 0.2879 0.3189 0.3296 0.0549	3.1074 3.1667 3.2032 3.2959 3.3489 3.4418 3.2596	0.24585 0.24609 0.23879 0.18689 0.16652 0.13815 0.23766	2.6899 2.6772 2.7144 2.8576 2.9319 3.0354 2.7276	0.14 0.14 0.14 0.14 0.14 0.14	0.052 0.051 0.044 0.037 0.034 0.033
XENON CESTUM BARIUM LANTHAHUM CERIUM PRASEODYMIUM NEODYMIUM	59	0.41130 0.41383 0.40778 0.41035 0.41393 0.41871 0.41597	482.0 488.0 491.0 501.0 523.0 535.0 546.0	5.4854E-03 1.8730E+00 3.5000E+00 6.1540E+00 6.6570E+00 6.7100E+00 6.9000E+00	1.369 25.370 34.425 45.792 47.834 48.301 48.819	1.435 1.462 1.410 1.392 1.461 1.520	12.7281 6.9135 6.3153 5.7850 5.7837 5.8096 5.8290	1.5630 0.5473 0.4190 0.3161 0.2713 0.2333 0.1984	4.7371 3.5914 3.4547 3.3293 3.3432 3.2773 3.3063	0.23314 0.18233 0.18268 0.18591 0.18885 0.23265 0.23530	2.7414 2.8866 2.8906 2.8828 2.8592 2.7331 2.7050		0.043 0.035 0.035 0.036 0.040 0.041
PROMETHIUM SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMIUM	62 63 64 65	0.40900	574.0 580.0 591.0 614.0	7.2200E+00 7.4600E+00 5.2430E+00 7.9004E+00 8.2290E+00 8.5500E+00 8.7950E+00	50.540 42.484 51.672 52.865	1.672 1.749 1.838 1.882 1.993 2.081 2.197	5.8224 5.8597 6.2278 5.8738 5.9045 5.9183 5.9587	0.1888	3.3199 3.3460 3.4633 3.3932 3.4224 3.4474 3.4782	0.24280 0.24698 0.24448 0.25109 0.24453 0.24665 0.24638	2.6674 2.6403 2.6245 2.5977 2.6056 2.5849 2.5726	0.14 0.14 0.14 0.14 0.14 0.14	0.048 0.053 0.060 0.061 0.063 0.061 0.062
ERBIUM THULIUM YTTERBIUM LUTETIUM HAFNIUM TANTALUM TUNGSTEN	68 69 70 71 72 73 74	0.40655 0.40844 0.40453 0.40579 0.40338 0.40343 0.40250	658.0 674.0 684.0 694.0 705.0 718.0 727.0	9.0660E+00 9.3210E+00 6.7300E+00 9.8400E+00 1.3310E+01 1.6654E+01 1.9300E+01	56.225 47.546 57.581 66.770 74.692	2.333 2.505 2.348 2.174	6 3325	0.0648 0.0812 0.1199 0.1560 0.1965 0.2117 0.2167	3.6246 3.5218 3.4337 3.4805	0.24823 0.24889 0.25295 0.24033 0.22918 0.17798 0.15509	2.5573 2.5469 2.5141 2.5643 2.6155 2.7623 2.8447	0.14 0.14 0.14 0.14 0.14 0.14	0.061 0.062 0.071 0.054 0.035 0.030
RHENIUM OSMIUM IRIDIUM PLATINUM GOLD MERCURY THALLIUM	75 76 77 78 79 80 81	0.40278 0.39958 0.40058 0.39984 0.40108 0.39882 0.39631	736.0 746.0 757.0 750.0 790.0 800.0	2.1020E+01 2.2570E+01 2.2420E+01 2.1450E+01 1.9320E+01 1.3546E+01	86.357 84.389 80.215 66.977	1.976 1.947 1.927 1.965 1.926 1.904	5.3445 5.3083 5.3418 5.4732 5.5747 5.9605 6.1365	0.0559 0.0891 0.0819 0.1484 0.2021 0.2756 0.3491	3.4845 3.5414 3.5480 3.6212 3.6979 3.7275 3.8044	0.15184 0.12751 0.12690 0.11128 0.09756 0.11014 0.09455	2.8627 2.9608 2.9658 3.0417 3.1101 3.0519 3.1450	0.10 0.10 0.12 0.14 0.14	0.026 0.023 0.023 0.021 0.020 0.021 0.019
POLONIUM RADON RADIUM ACTINIUM THORIUM	84 88 89 90	0.39575 0.39717 0.40195 0.38736 0.38934 0.39202 0.38787	823.0 823.0 830.0 794.0 826.0 841.0	1.1350E+01 9.7470E+00 9.3200E+00 9.0662E-03 5.0000E+00 1.0070E+01	55.773 1.708 40.205	1.755 1.684 1.637 1.458 1.403 1.380 1.363	6.2018 6.3505 6.4003 13.2839 7.0452 6.3742 6.2473	0.4152 0.4267 1.5368 0.5991	3.8248 3.8293 4.9889 3.9428	0.09359 0.09410 0.09282 0.20798 0.08804 0.08567	3.1608 3.1671 3.1830 2.7409 3.2454 3.2683 3.2610	0.14 0.14 0.14 0.0 0.14 0.14	0.019 0.020 0.020 0.057 0.022 0.023
PROTACTINIUM URANIUM NEPTUNIUM PLUTONIUM AMERICIUM CURIUM BERKELIUM	91 92 93 94 95 96 97	0.39388 0.38651 0.39232 0.39322 0.39085 0.38855 0.39260	878.0 890.0 902.0 921.0 934.0 939.0 952.0	1.5370E+01 1.8950E+01 2.0250E+01 1.9840E+01 1.3670E+01 1.3510E+01	70.901 77.986 81.221 80.486 66.607 66.022 67.557	1.447 1.468 1.519 1.552 1.559	6.0327 5.8694 5.8149 5.8748 6.2813 6.3097 6.2912	0.2260 0.1869 0.1557	3.5079 3.3721 3.3690 3.3981 3.5021 3.5160 3.5186	0.14770 0.19677 0.19741 0.20419 0.20308 0.20257 0.20192	2.9845 2.8171 2.8082 2.7679 2.7615 2.7579 2.7560	0.14 0.14 0.14 0.14 0.14 0.14	0.036 0.043 0.043 0.057 0.056 0.056

TABLE II. Density Effect Parameters for Compounds and Mixtures See page 266 for Explanation of Tables

Matonaal	Z/A	_	Density a			^	x _o	Y	ā	m	Δ
Material	LIA	I (ev)	Density, po (g/cm ³)	hν _p (eV)	ρ	-0	^0	X ₁	u	""	[∽] max
A-150 TISSUE-EQUIVALENT PLASTIC ACETONE ACETYLENE ADENINE ADDINIE ADIPOSE TISSUE (ICRP)	0.55097 0.53768 0.51803 0.55847	64.2 58.2	1.1270E+00 7.8990E-01 1.0967E-03 1.3500E+00 9.2000E-01	22.667 19.010 0.700 24.098 20.655	1.950 1.976 1.784 1.892 1.987	3.1100 3.4341 9.8419 3.1724 3.2367	0.1329 0.2197 1.6017 0.1295 0.1827	2.6234 2.6928 4.0074 2.4219 2.6530	0.10783 0.11100 0.12167 0.20908 0.10278	3.4442 3.4047 3.4277 3.0271 3.4817	0.048 0.069 0.080 0.052 0.060
AIR, DRY (NEAR SEA LEVEL) ALANINE ALUMINUM OXIDE AMBER AMBOR	0.49919 0.53876 0.49038 0.55178 0.58719	71.9 145.2	1.2048E-03 1.4200E+00 3.9700E+00 1.1000E+00 8.2602E-04	0.707 25.204 40.206 22.450 0.635	2.054 2.074 2.394 1.946 1.814	10.5961 3.0965 3.5682 3.0701 9.8763	1.7418 0.1354 0.0402 0.1335 1.6822	4.2759 2.6336 2.8665 2.5610 4.1158	0.10914 0.11484 0.08500 0.11934 0.08315	3.3994 3.3526 3.5458 3.4098 3.6464	0.090 0.056 0.031 0.053 0.102
ANILINE ANTHRACENE B-100 BONE-EQUIVALENT PLASTIC BAKELITE BARIUM FLUORIDE	0.53689 0.52740 0.52740 0.52792 0.42207	66.2 69.5 85.9 72.4 375.9	1.0235E+00 1.2830E+00 1.4500E+00 1.2500E+00 4.8900E+00	21.361 23.704 25.199 23.408 41.398	1.938 1.954 2.013 2.046 1.727	3.2622 3.1514 3.4528 3.2582 5.4122	0.1618 0.1146 0.1252 0.1471 -0.0098	2.5805 2.5213 3.0420 2.6055 3.3871	0.13134 0.14677 0.05268 0.12713 0.15991	3.3434 3.2831 3.7365 3.3470 2.8867	0.052 0.042 0.043 0.052 0.034
BARIUM SULFATE BENZENE BERYLLIUM OXIDE BISMUTH GERMANIUM OXIDE BLOOD (ICRP)	0.44561 0.53768 0.47978 0.42065 0.54995	93.2 534.1	4.5000E+00 8.7865E-01 3.0100E+00 7.1300E+00 1.0600E+00	40.805 19.806 34.629 49.904 22.001	1.873 1.873 2.296 2.121 2.184		-0.0128 0.1710 0.0241 0.0456 0.2239	3.4069 2.5091 2.5846 3.7816 2.8017	0.11747 0.16519 0.10755 0.09569 0.08492	3.0427 3.2174 3.4927 3.0781 3.5406	0.030 0.052 0.031 0.023 0.088
BONE, COMPACT (ICRU) BONE, CORTICAL (ICRP) BORON CARBIDE BORON OXIDE BRAIN (ICRP)	0.53010 0.52130 0.47058 0.48838 0.55423	106.4 84.7 99.6	1.8500E+00 1.8500E+00 2.5200E+00 1.8120E+00 1.0300E+00	28.536 28.298 31.380 27.107 21.772	2.091 2.118 2.140 2.446 2.162	3.3390 3.6488 2.9859 3.6027 3.4279	0.0944 0.1161 0.0093 0.1843 0.2206	3.0201 3.0919 2.1006 2.7379 2.8021	0.05822 0.06198 0.37087 0.11548 0.08255	3.6419 3.5919 2.8076 3.3832 3.5585	0.042 0.040 0.022 0.053 0.086
BONE, COMPACT (ICRU) BONE, CORTICAL (ICRP) BORON CARBIDE BORON OXIDE BRAIN (ICRP) BUTANE N-BUTYL ALCOHOL C-552 AIR-EQUIVALENT PLASTIC CADMIUM TELLURIDE CADMIUM TUNGSTATE	0.58497 0.56663 0.49969 0.41665 0.42747	539.3 468.3	2.4934E-03 8.0980E-01 1.7600E+00 6.2000E+00 7.9000E+00	1.101 19.520 27.023 46.314 52.954	1.727 1.942 2.128 1.935 2.289	8.5633 3.2425 3.3338 5.9096 5.3594	1.3788 0.1937 0.1510 0.0438 0.0123	3.7524 2.6439 2.7083 3.2836 3.5941	0.10852 0.10081 0.10492 0.24840 0.12861	3.4884 3.5139 3.4344 2.6665 2.9150	0.100 0.065 0.053 0.057 0.027
CALCIUM CARBONATE CALCIUM FLUORIDE CALCIUM SULFATE CALCIUM SULFATE CALCIUM TUNGSTATE	0.49955 0.48670 0.49929 0.49950 0.43761	136.4 166.0 176.1 152.3 395.0	2.8000E+00 3.1800E+00 3.3000E+00 2.9600E+00 6.0620E+00	34.080 35.849 36.988 35.038 46.934	2.141 2.127 1.973 2.179 2.262	3.7738 4.0653 4.1209 3.9388 5.2603	0.0492 0.0676 -0.0172 0.0587 0.0323	3.0549 3.1683 3.0171 3.1229 3.8932	0.08301 0.06942 0.12128 0.07708 0.06210	3.4120 3.5263 3.1936 3.4495 3.2649	0.037 0.044 0.024 0.021 0.021
CARBON DIOXIDE CARBON TETRACHLORIDE CELLULOSE ACETATE, CELLUPHANE CELLULOSE ACETATE BUTYRATE CELLULOSE NITRATE	0.49989 0.48107 0.53040 0.53279 0.51424		1.8421E-03 1.5940E+00 1.4200E+00 1.2000E+00 1.4900E+00	0.874 25.234 25.008 23.041 25.224	2.118 1.742 2.170 2.128 2.252	10.1537 4.7712 3.2647 3.3497 3.4762	1.6294 0.1773 0.1580 0.1794 0.1897	4.1825 2.9165 2.6778 2.6809 2.7253	0.11768 0.19018 0.11151 0.11444 0.11813	3.3227 3.0116 3.3810 3.3738 3.3237	0.091 0.041 0.060 0.056 0.063
CERIC SULFATE DOSIMETER SOLUTION CESIUM FLUORIDE CESIUM IODIDE CHLOROBENZENE CHLOROFORM	0.42132 0.41569 0.51529 0.48585	76.7 440.7 553.1 89.1 156.0	1.0300E+00 4.1150E+00 4.5100E+00 1.1058E+00 1.4832E+00	21.743 37.942 39.455 21.752 24.462	2.205 1.714 1.672 1.889 1.734	3.5212 5.9046 6.2807 3.8201 4.7055	0.2363 0.0084 0.0395 0.1714 0.1786	2.8769 3.3374 3.3353 2.9272 2.9581	0.07666 0.22052 0.25381 0.09856 0.16959	3.5607 2.7280 2.6657 3.3797 3.0627	0.095 0.044 0.067 0.031 0.038
CONCRETE, PORTLAND CYCLOHEXANE 1,2-DICHLOROBENZENE DICHLORODIETHYL ETHER 1,2-DICHLOROETHANE	0.50274 0.57034 0.50339 0.51744 0.50526	135.2 56.4 106.5 103.3 111.9	2.3000E+00 7.7900E-01 1.3048E+00 1.2199E+00 1.2351E+00	30.986 19.207 23.354 22.894 22.764	2.322 1.861 1.862 1.903 1.618	3.9464 3.1544 4.0348 4.0135 4.1849	0.1301 0.1728 0.1587 0.1773 0.1375	3.0466 2.5549 2.8276 3.1586 2.9529	0.07515 0.12035 0.16010 0.06799 0.13383	3.5467 3.4278 3.0836 3.5250 3.1675	0.024 0.057 0.029 0.026 0.030
DIETHYL ETHER N.N-DIMETHYL FORMAMIDE DIMETHYL SULFOXIDE ETHANE ETHYL ALCOHOL		60.0 66.6 98.6 45.4 62.9	7.1378E-01 9.4870E-01 1.1014E+00 1.2532E-03 7.8930E-01	18.326 20.763 22.173 0.789 19.232	1.951 2.005 2.075 1.690 2.013	3.3721 3.3311 3.9844 9.1043 3.3699	0.2231 0.1977 0.2021 1.5107 0.2218	2.6745 2.6686 3.1263 3.8743 2.7052	0.10550 0.11470 0.06619 0.09627 0.09878	3.4586 3.3710 3.5708 3.6095 3.4834	0.070 0.065 0.030 0.097 0.071
ETHYL CELLULOSE ETHYLENE EYE LENS (ICRP) FERRIC OXIDE FERROBORIDE	0.47592 0.46507	50.7 73.3 227.3 261.0	1.1000E+00 5.2000E+00 7.1500E+00	22.594 0.746 22.388 45.331 52.546	2.065 1.733 2.154 2.747 2.726	4.2057	-0.0988	3.1749	0.11077 0.10636 0.09690 0.10478 0.12911	3.0240	0.022
FREON-13	0.44801 0.47866	284.9 126.6	1.8000E+00 9.5000E-01	25.877 19.432	2.195 2.116	3.5183 4.8251 5.7976 4.7483	0.2378 0.3035 0.3406 0.3659	2.8254 3.2659 3.7956 3.2337	0.12959 0.08759 0.07978 0.05144 0.07238	3.4923 3.4626 3.5565 3.5551	0.096 0.025 0.021 0.050
FREON-13B1 FREON-13I1 GADDLINIUM OXYSULFIDE GALLIUM ARSENIDE GEL IN PHOTOGRAPHIC EMULSION	0.45665 0.43897 0.42266 0.44247 0.53973	210.5 293.5 493.3 384.9 74.8	1.5000E+00 1.8000E+00 7.4400E+00 5.3100E+00 1.2914E+00	23.849 25.615 51.099 44.170 24.058	2.233 1.924 2.179 2.652 2.156	5.8774 5.5347 5.3299 3.2687	0.2847 -0.1774 0.1764 0.1709	3.7280 3.4045 3.6420 2.7058		3.1658 2.6300 3.3356 3.4418	0.025 0.056 0.027 0.060
GLASS, BOROSILICATE (PYREX) GLASS, LEAD GLASS, PLATE GLUCOSE GLUTAMINE	0.49707 0.42101 0.49731 0.53489 0.53371	134.0 526.4 145.4 77.2 73.3	2.2300E+00 6.2200E+00 2.4000E+00 1.5400E+00 1.4600E+00	30.339 46.631 31.481 26.153 25.437	2.369 2.085 2.329 2.174 2.077	3.9708 5.8476 4.0602 3.1649 3.1167	0.0614 0.1237 0.1411 0.1347	3.8146 3.0649 2.6700 2.6301	0.08270 0.09544 0.07678 0.10783 0.11931	3.0740 3.5381 3.3946 3.3254	0.022 0.025 0.025 0.061 0.055
GLYCEROL GUANTHE GYPSUM, PLASTER OF PARIS N-HEPTANE N-HEXANE	0.54292 0.51612 0.51113 0.57882 0.58020	72.6 75.0 129.7 54.4 54.0	1.2613E+00 1.5800E+00 2.3200E+00 6.8376E-01 6.6030E-01	23.846 26.022 31.379 18.128 17.836	2.120 1.970 2.187 1.848 1.843	3.2267 3.1171 3.8382 3.1978 3.2156	0.1928 0.1984	2.4296 3.1206 2.5706 2.5757	0.20530 0.06949 0.11255 0.11085	3.0186 3.5134 3.4885 3.5027	
"KAPTON" POLYIMIDE FILM LANTHANUM OXYBROMIDE LANTHANUM OXYSULFIDE LEAD OXIDE LITHIUM AMIDE	0.51264 0.42588 0.42348 0.40323 0.52257	79.6 439.7 456.2 766.7 55.5	1.4200E+00 6.2800E+00 5.8600E+00 9.5300E+00 1.1780E+00	24.586 47.125 45.394 56.488 22.609	1.831 1.681 2.012 1.740	5.4666 5.6151 6.2162 2.7961	0.1509 -0.0350 -0.0934 0.0356 0.0198	3.3288 3.2741 3.5456 2.5152		2.8457 2.7075 2.7299 3.7534	
LITHIUM CARBONATE LITHIUM FUORIDE LITHIUM HYDRIDE LITHIUM IODIDE LITHIUM OXIDE	0.48720 0.46262 0.50321 0.41839 0.46852	87.9 94.0 36.5 485.1 73.6	2.1100E+00 2.6350E+00 8.2000E-01 3.4940E+00 2.0130E+00	29.217 31.815 18.510 34.841 27.984	2.246 2.197 1.482 1.706 2.039	3.2029 3.1667 2.3580 6.2671 2.9340	0.0551 0.0171 -0.0988 0.0892 -0.0511	2.6598 2.7049 1.4515 3.3702 2.5874	0.09936 0.07593 0.90567 0.23274 0.08035	2.5849	0.084

TABLE II. Density Effect Parameters for Compounds and Mixtures See page 266 for Explanation of Tables

Material	Z/A	I	Density.po (g/cm ³)	-	ρ	- C	x _o	X ₁	a	m	Δ _{max}
LITHIUM TETRABORATE LUNG (ICRP) M3 WAX MAGNESIUM CARBONATE MAGNESIUM FLUORIDE	0.48487 0.54965 0.55512 0.49814 0.48153	94.6 75.3 67.9 118.0 134.3	2.4400E+00 1.0500E+00 1.0500E+00 2.9580E+00 3.0000E+00		2.360 2.184 1.975 2.388 2.330	3.2093 3.4708 3.2540 3.4319 3.7105	0.0737 0.2261 0.1523 0.0860 0.1369	2.6502 2.8001 2.7529 2.7997 2.8630	0.11075 0.08588 0.07864 0.09219 0.07934	3.4389 3.5353 3.6412 3.5003 3.6485	0.048 0.089 0.044 0.045 0.085
MAGNESIUM OXIDE MAGNESIUM TETRABORATE MERCURIC IODIDE METHANE METHANE	0.49622 0.49014 0.40933 0.62334 0.56176	143.8 108.3 684.5 41.7 67.6	3.5800E+00 2.5300E+00 6.3600E+00 6.6715E-04 7.9140E-01	38.407 32.089 46.494 0.588 19.214	2.412 2.430 1.892 1.662 2.125	3.6404 3.4328 6.3787 9.5243 3.5160	0.0575 0.1147 0.1040 1.6263 0.2529	2.8580 2.7635 3.4728 3.9716 2.7639	0.08313 0.09703 0.21513 0.09253 0.08970	3.5968 3.4893 2.7264 3.6257 3.5477	0.055 0.044 0.047 0.112 0.080
MIX D WAX MS20 TISSUE SUBSTITUTE MUSCLE, SKELETAL (ICRP) MUSCLE, STRIATED (ICRU) MUSCLE-EQUIV. LIQ., WITH SUCROSE	0.56479 0.53886 0.54938 0.55005 0.54828	60.9 75.1 75.3 74.7 74.3	9.9000E-01 1.0000E+00 1.0400E+00 1.0400E+00 1.1100E+00	21.547 21.153 21.781 21.795 22.480	1.905 2.070 2.185 2.174 2.169	3.0780 3.5341 3.4809 3.4636 3.3910	0.1371 0.1997 0.2282 0.2249 0.2098	2.7145 2.8033 2.7999 2.8032 2.7550	0.07490 0.08294 0.08636 0.08507 0.09481	3.6823 3.6061 3.5330 3.5383 3.4699	0.047 0.053 0.089 0.086 0.080
MUSCLE-EQUIV. LIQ., W/O SUCROSE NAPTHALENE NITROBENZENE NITROUS OXIDE NYLON, DU PONT ELVAMIDE 8062	0.55014 0.53053 0.51986 0.49985 0.55063	68.4 75.8 84.9 64.3	1.0700E+00 1.1450E+00 1.1987E+00 1.8309E-03 1.0800E+00	22.109 22.459 22.747 0.872 22.221	2.173 1.956 2.065 2.059 1.967	3.4216 3.2274 3.4073 10.1575 3.1250	0.2187 0.1374 0.1777 1.6477 0.1503	2.7680 2.5429 2.6630 4.1565 2.6004	0.09143 0.14766 0.12727 0.11992 0.11513	3.4982 3.2654 3.3091 3.3318 3.4044	0.086 0.051 0.051 0.086 0.054
NYLON, TYPE 6 AND TYPE 6/6 NYLON. TYPE 6/10 NYLON. TYPE 11 ("RILSAN") OCTANE, LIQUID PARAFFIN WAX	0.54790 0.55236 0.55649 0.57778 0.57275	63.9 63.2 61.6 54.7 55.9	1.1400E+00 1.1400E+00 1.4250E+00 7.0260E-01 9.3000E-01	22.774 22.866 25.661 18.360 21.031	1.931 1.942 1.902 1.851 1.844	3.0634 3.0333 2.7514 3.1834 2.9551	0.1336 0.1304 0.0678 0.1882 0.1289	2.5834 2.5681 2.4281 2.5664 2.5084	0.11818 0.11852 0.14868 0.11387 0.12087	3.3826 3.3912 3.2576 3.4776 3.4288	0.051 0.050 0.044 0.057 0.052
N-PENTANE PHOTOGRAPHIC EMULSION PLASTIC SCINT. (VINYLTOLUENE) PLUTONIUM DIOXIDE POLYACRYLONITRILE	0.58212 0.45453 0.54141 0.40583 0.52767	53.6 331.0 64.7 746.5 69.6	6.2620E-01 3.8150E+00 1.0320E+00 1.1460E+01 1.1700E+00	17.398 37.946 21.540 62.143 22.642	1.842 2.264 1.929 1.846 1.955	3.2504 5.3319 3.1997 5.9719 3.2459	0.2086 0.1009 0.1464 -0.2311 0.1504	2.5855 3.4866 2.4855 3.5554 2.5159	0.10809 0.12399 0.16101 0.20594 0.16275	3.5265 3.0094 3.2393 2.6522 3.1975	0.064 0.028 0.050 0.111 0.050
POLYCARBONATE (MAKROLON, LEXAN) POLYCHLOROSTYRENE POLYETHYLENE POLYETHYLENE TEREPHTHALATE, MYLAR POLYMETHYL METHACRYLATE (LUCITE)	0.52518 0.57034 0.52037	73.1 81.7 57.4 78.7 74.0	1.2000E+00 1.3000E+00 9.4000E-01 1.4000E+00 1.1900E+00	22.915 23.810 21.099 24.595 23.086	2.060 1.902 1.882 2.144 2.173	3.3201 3.4659 3.0016 3.3262 3.3297	0.1606 0.1238 0.1370 0.1562 0.1824	2.6225 2.9241 2.5177 2.6507 2.6681	0.12860 0.07530 0.12108 0.12679 0.11433	3.3288 3.5441 3.4292 3.3076 3.3836	0.049 0.029 0.051 0.052 0.056
POLYOXYMETHYLENE POLYPROPYLENE POLYSTYRENE POLYTETRAFLUOROETHYLENE (TEFLON) POLYTETRAFLUOROCHLOROETHYLENE	0.48081	77.4 59.2 68.7 99.1 120.7	1.4250E+00 9.0000E-01 1.0600E+00 2.2000E+00 2.1000E+00	25.110 20.457 21.754 29.609 28.955	2.175 1.884 2.027 2.142 2.094	3.2514 3.1252 3.2999 3.4161 3.8551	0.1584 0.1534 0.1647 0.1648 0.1714	2.6838 2.4822 2.5031 2.7404 3.0265	0.10808 0.15045 0.16454 0.10606 0.07727	3.4002 3.2855 3.2224 3.4046 3.5085	0.063 0.055 0.051 0.073 0.035
POLYVINYL ACETATE POLYVINYL ALCOHOL POLYVINYL BUTYRAL POLYVINYL CHLORIDE POLYVINYL CHLORIDE POLYVINYLIDENE CHLORIDE, SARAN	0.53432 0.54480 0.54537 0.51201 0.49513	73.7 69.7 67.2 108.2 134.3	1.1900E+00 1.3000E+00 1.1200E+00 1.3000E+00 1.7000E+00	22.978 24.251 22.521 23.510 26.437	2.116 2.071 2.021 1.840 1.814	3.3309 3.1115 3.1865 4.0532 4.2506	0.1769 0.1401 0.1555 0.1559 0.1314	2.6747 2.6315 2.6186 2.9415 2.9009	0.11442 0.11178 0.11544 0.12438 0.15466	3.3762 3.3893 3.3983 3.2104 3.1020	0.055 0.056 0.054 0.027 0.034
POLYVINYLIDENE FLUORIDE POLYVINYL PYRROLIDONE POTASSIUM IODIDE POTASSIUM OXIDE PROPANE	0.49973 0.53984 0.43373 0.48834 0.58962	88.8 67.7 431.9 189.9 47.1	1.7600E+00 1.2500E+00 3.1300E+00 2.3200E+00 1.8794E-03	27.024 23.671 33.575 30.672 0.959	2.160 1.989 1.784 2.065 1.708	3.3793 3.1017 6.1088 4.6463 8.7878	0.1717 0.1324 0.1044 0.0480 1.4326	2.7375 2.5867 3.3442 3.0110 3.7998	0.10316 0.12504 0.22053 0.16789 0.09916	3.4200 3.3326 2.7558 3.0121 3.5920	0.067 0.051 0.042 0.027 0.093
PROPANE, LIQUID N-PROPYL ALCOHOL PYRIDINE RUBBER, BUTYL RUBBER, NATURAL	0.58962 0.56577 0.53096 0.57034 0.55785	52.0 61.1 66.2 56.5 59.8	4.3000E-01 8.0350E-01 9.8190E-01 9.2000E-01 9.2000E-01	14.509 19.429 20.807 20.873 20.644	1.844 1.972 1.895 1.852	3.5529 3.2915 3.3148 2.9915 3.1272	0.2861 0.2046 0.1670 0.1347 0.1512	2.6568 2.6681 2.5245 2.5154 2.4815	0.10329 0.09644 0.16399 0.12108 0.15058	3.5620 3.5415 3.1977 3.4296 3.2879	0.068 0.070 0.051 0.051 0.053
RUBBER, NEOPRENE SILICON DIOXIDE SILVER BROMIDE SILVER CHLORIDE SILVER CHLORIDE SILVER HALIDES IN PHOTO EMULSION	A 444 CE	486.6	1.2300E+00 2.3200E+00 6.4730E+00 5.5600E+00 6.4700E+00	23.036 31.014 48.448 45.405 48.433	1.874 2.335 2.271 2.096 2.270	3.7911 4.0029 5.6139 5.3437 5.6166	0.1501 0.1385 0.0352 -0.0139 0.0353	2.9461 3.0025 3.2109 3.2022 3.2117	0.08408 0.24582 0.22968	3.5064 2.6820 2.7041	0.018 0.043 0.062
SILVER IODIDE SKIN (ICRP) SODIUM CARBONATE SODIUM IODIDE SODIUM MONOXIDE	0.54932 0.49062 0.42697 0.48404	72.7 125.0 452.0 148.8	6.0100E+00 1.1000E+00 2.5320E+00 3.6670E+00 2.2700E+00	22.400 32.117 36.057 30.205	2.140 2.557 1.857 2.689	3.7178 6.0572 4.1892	0.1287	2.8591	0.25059 0.09459 0.08715 0.12516 0.07501	₹ 56₹₽	0 074
SODIUM NITRATE STILBENE SUCROSE TERPHENYL TESTES (ICRP)	0.49415 0.53260 0.53170 0.52148 0.55108	114.6 67.7 77.5 71.7 75.0	2.2610E+00 9.7070E-01 1.5805E+00 1.2340E+00 1.0400E+00	30.459 20.719 26.416 23.116 21.815	2.456 1.963 2.167 1.976 2.185	3.6502 3.3680 3.1526 3.2639 3.4698	0.1341	2.5142	0.09391 0.16659 0.11301 0.14964 0.08533	3.2168	0.052
THALLIUM CHLORIDE TISSUE. SOFT (ICRU) TISSUE. SOFT (ICRU FOUR-COMP.) TISSUE-EQUIV. GAS (METHANE BASE)	0.40861 0.55121 0.54975 0.54993	690.3 72.3 74.9 61.2	7.0040E+00 1.0000E+00 1.0000E+00 1.0641E-03	25.513 48.749 21.394 21.366 0.697	1.790 1.997 2.144 2.192 1.890	4.6619 6.3009 3.4354 3.5087 9.9500	0.0705 0.2211 0.2377 1.6442	3.5716 2.7799 2.7908 4.1399	0.08926 0.09629 0.09946	2.7690 3.5110 3.4371 3.4708	0.040
TISSUE-EQUIV. GAS (PROPANE BASE) TITANIUM DIOXIDE TOLUENE TRICHLOROETHYLENE TRIETHYL PHOSPHATE	0.55027 0.47572 0.54265 0.48710 0.53800	59.5 179.5 62.5 148.1 81.2	1.8263E-03 4.2600E+00 8.6690E-01 1.4600E+00 1.0700E+00	0.913 41.022 19.764 24.301 21.863	1.856 2.307 1.880 1.789 2.100	9.3529 3.9522 3.3026 4.6148 3.6242	1.5139 -0.0119 0.1722 0.1803 0.2054	3.9916 3.1647 2.5728 2.9140 2.9428	0.09802 0.08569 0.13284 0.18272 0.06922	3.5159 3.3267 3.3558 3.0137 3.6302	0.027 0.052 0.036
TUNGSTEN HEXAFLUORIDE URANIUM DICARBIDE URANIUM MONOCARBIDE URANIUM OXIDE UREA UALINE	0.42976 0.39687 0.39194 0.39996 0.53284	354.4 752.0 862.0 720.6 72.8	2.4000E+00 1.1280E+01 1.3630E+01 1.0960E+01 1.3230E+00	29.265 60.969 66.602 60.332 24.194	2.325 1.703 1.680 1.760 2.022	5.9881 6.0247 6.1210 5.9605 3.2032	0.3020 -0.2191 -0.2524 -0.1938 0.1603	4.2602 3.5208 3.4941 3.5292 2.6525	0.03658 0.21120 0.22972 0.20463 0.11609	3.5134 2.6577 2.6169 2.6711 3.3461	0.055 0.120 0.132 0.098 0.060
VALINE "VITON" FLUOROELASTOMER WATER, LIQUID WATER VAPOR XYLENE	0.54632 0.48585 0.55509 0.55509 0.54631	67.7 98.6 75.0 71.6 61.8	1.2300E+00 1.8000E+00 1.0000E+00 7.5618E-04 8.7000E-01	23.622 26.948 21.469 0.590 19.866	2.024 2.227 2.203 2.175 1.882	3.1059 3.5943 3.5017 10.5962 3.2698	0.1441 0.2106 0.2400 1.7952 0.1695	2.6227 2.7874 2.8004 4.3437 2.5675	0.11386 0.09965 0.09116 0.08101 0.13216	3.3774 3.4556 3.4773 3.5901 3.3564	0.056 0.070 0.097 0.121 0.051