Rotational Dynamics Worksheet (Dose-II)

1.	A cubical block of side L rest on a rough horizontal surface with
	coefficient of friction 4. A horizonal force F is applied on the block.
	If the coefficient of friction is Sufficiently high so that the block does
	not slide before toppling, what is the minimum force required to
	topple the block? Ans: M9/2
2.	A road of Longth L and mass M is hinged at point
	O'. A Small bullet of mass m hits the rod with MI
	velocity 10. The bullet gets embedded in the rod. N
	Find the angular velocity of the system just after the
	Ans: (N+3m)L.
3.	Two point masses of 0.3 kg and 0.7 kg are fixed at the ends of a
	rod of length 1.4m and of negligible mass. The rod is set rotating about
	an axis passing perpendicular to its length with a uniform angular
	speed. The point on the rod through which the axis Should pass in
	codes that the wood done required for rotation of the rod is minimum is
i.	tocat x distance from 0.3 kg mass. Find x. Ans: x=0.98m
40	A uniform bar of length 6a and mass 8m lies on a Smooth horizontal
	table. Two point masses m and 2m moving in the same horizontal plane
	with speed 212 and 12 respectively, stolke the box 12 C
	and stick to the base after collision. then we have sat 20 1/20
	after the callision
	a) $N_{e} = 0$ b) $w = \frac{3v}{5a}$ e) $w = \frac{N_{e}}{5a}$ d) $E = \frac{3mv^{2}}{5}$

MARS

Linear mass density of a rod depends on the distance from one end as $\lambda_x = (\alpha_x + \beta_x)$. Here $\alpha_x = \beta_x$ are constants. Find the moment of inertia of this rod about an axis passing through A and perpendicular to the rod. Length of the rod is h,

Two points P and Q, diametrically opposite on a disc of radius R have linear velocities 410 and 24 as shown in figure. Find the angular speed

A uniform disc of mass m and radius R is rotated about an axis passing through its Centre and perpendicular to its plane with an angular velocity wo. It is placed on a rough horaizontal plane with the assis of the disc Keeping variticle. Coefficient of friction between the disc and the Sweface is 1. Find:

a) the time when disc stops rotating

b) the angle rotated by the disc before Stobbind

Ans: t= 3woR 449 0 = 3000 R

A uniform dise of mass 20 kg and radius 0.5 m can twen about a smooth axis through its centre and perpendicular to the disc. A constargue is applied to the disc for 38 from rest and the angular relocity at the end of that time is 240 rev/min. Find the magnitude of the for zue. If the too zue is then removed and the disc is brought to rest in t seconds by a constant force of 1011 applied tangentially at a point on the rim of the dise, find t.

Consider a cylinder of mass M and radius R lying on a rough 10 hosúzontal plane. It has a plank lying on its top. A force F is applied on the plank such that the plank moves and causes the eylinder to roll-The plank always remains horizontal. There is no slippling at any point of contact. Calculate the acceleration of the eylinder and the frictional forces at the two contact.

Ams; f12 34 F CO30; f2= 4 F CO30 3M+8m

10. In the fig. Khown a solid sphere of mass 4 kg and radius 0.25 m is placed on a rough swiface. Find:

a) minimum coefficient of friction for pure rolling

If he knin, find linear acceleration of sphere

If $\mu = \frac{\mu_{\min}}{2}$, find linear aeceleration of cylinder.

Hwin = 2/7/3 Ans: a=导Ws