1. Using equations of stresses around a cylindrical cavity, calculate near-wellbore effective radial σ_{rr} and hoop $\sigma_{\theta\theta}$ stresses for a vertical well 8in diameter in the directions of S_{hmin} (4500 psi – acting E-W) and S_{Hmax} (6000 psi) up to 3ft of distance considering that Pp=3200psi and

Instructor: DNE

- a. Pw=3200 psi.
- b. $P_W = 4000 \text{ psi.}$

The result should be presented as plots of stresses $(\sigma_{rr}, \sigma_{\theta\theta})$ as a function of distance from the center of the wellbore.

2. Effect of overpressure:

Consider the problem solved in class (<u>Wellbore</u>: vertical; <u>Site</u>: onshore, 7000 ft of depth, S_{hmin} = 4,300 psi, S_{Hmax} = 6,300 psi; <u>Rock properties</u>: UCS = 3,500 psi, μ =0.6, T_s = 800 psi).

- a. Calculate wellbore pressure and corresponding mud weight for (i) w_{B0} =70°, (ii) w_{B0} ~0° (P_{Wshear}), and (iii) for inducing tensile fractures (P_b) for λ_p = 0.52 and λ_p = 0.60. Compare with λ_p = 0.44 solved in class. How does the drilling mud window change with overpressure?
- Assume horizontal stress directions near Dallas-Forth Worth region.
 What would the azimuth of breakouts and drilling induced fractures
 be? http://dc-app3-14.gfz-potsdam.de/pub/stress_data/stress_data_frame.html

3. Effect of stress anisotropy (differential stress):

Consider the following problem, <u>Wellbore</u>: vertical; <u>Site</u>: onshore, 2 km of depth, λ_p = 0.44, σ_{hmin} = 0.4 σ_{V} ; <u>Rock properties</u>: UCS = 7 MPa, q=3.9, T_s = 2 MPa. Calculate wellbore pressure and corresponding mud weight for (i) w_{B0}=45°, (ii) w_{B0}~0°, and (iii) for inducing tensile fractures for

- a. $\sigma_{Hmax} = 0.6 \, \sigma_{V}$.
- b. $\sigma_{Hmax} = 0.8 \, \sigma_{V}$.
- c. $\sigma_{\text{Hmax}} = 1.0 \, \sigma_{\text{V}}$.
- d. How does the drilling mud window change with $\sigma_{Hmax}/\sigma_{Hmin}$?

4. Offshore:

Consider the same formation as above but in offshore conditions, <u>Wellbore</u>: vertical; <u>Site</u>: offshore, 2 km of <u>total</u> depth, 500 m of water, hydrostatic pore pressure, $\sigma_{hmin} = 0.4 \, \sigma_V$, $\sigma_{Hmax} = 0.8 \, \sigma_V$; <u>Rock properties</u>: UCS = 7 MPa, q=3.9, $T_s = 2$ MPa. Calculate wellbore pressure and corresponding mud weight for (i) $v_{BO}=45^\circ$, (ii) $v_{BO}=45^\circ$, and (iii) for inducing tensile fractures.

5. Horizontal wells:

Evaluate wellbore stability for <u>horizontal</u> wells that you will need to exploit in a gas reservoir subjected to a strike-slip stress environment.

- a. Draw cross-sections of wellbores drilled parallel to Shmin and Shmax, identify involved stresses, and clearly mark expected positions of tensile fractures and wellbore breakouts.
- b. The horizontal wells lie at about 8000ft depth where it is estimated that S_{hmin} =50MPa, S_{Hmax} =70MPa and λ_p =0.6. The unconfined compressive strength of the rock is 8500psi, μ =1.0, and T_s =0 psi is a good estimate for tensile strength, given the large density of natural fractures. Determine the mechanical stability limits on wellbore pressure for both horizontal well directions considered.
- c. Determine mud density window appropriate for these wells (keep in mind potential lost circulation).
- d. Which one appears to have a wider mud window? Justify