

Introduction to Computers

Introduction to Computers First Term (Laboratory)

Ignacio Martín Llorente (Office 334-FDI)

Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid imllorente@ucm.es

Office hours (1st term):

Tu, Th: 11:00-14:00 (send email first)
Other moment: by appointment
e-mail addr: imllorente@ucm.es

Laboratory

- ✓ Lab 1: Building a combinational circuit using logic gates
- ✓ Lab 2: Designing and building a 2-bit binary adder
- ✓ Lab 3: Id. pattern recognizer
- ✓ Lab 4: Id. multifunctional register
- ✓ Lab 5: Id. circuit that emulates the behavior of an elevator control panel

Lab briefcase

Datasheets

Breadboard

How to get the lab material

- ✓ Request a lab account:
 - Info. at Portal FDI: https://www.fdi.ucm.es/Account
 - Directly at: http://informatica.ucm.es/cuenta-labs
- ✓ Request your lab material
 - All the information is also at https://www.fdi.ucm.es/Account
- ✓ Take the material from "Sala de técnicos 2" FDI
- ✓ Check in the lab, out of class time, that all the ICs are OK
 - Broken ICs are changed the first lab session
 - If later, the student must buy all the broken ICs
 - You will not get more wire: please, reuse it
- ✓ Just after Lab #5, all the material is returned
 - Do not return broken components and wires, please

Stores to buy/replace broken ICs

STATE OF THE PARTY OF THE PARTY

✓ Please, provide feedback to keep this list updated:

Diotronic: Calle Juan Bravo 58 (Madrid)

Electrónica Embajadores: Calle Embajadores, 138 (Madrid)

Telkron: Avd. Donostiarra, 13 (Madrid)

Actrón: Calle Maudes, 15 (Madrid)

Array: Calle Juan de Austria, 20. (Madrid)

Digital: Calle Pilar de Zaragoza, 45. (Madrid)

Sonytel: Calle Cartagena, 132. (Madrid)

Sonytel: Calle Maudes, 4 (Madrid)

Sonytel: Calle Bravo Murillo, 82. (Madrid)

Training system

Power

DC power supply

Functions generator (clock)

8 leds (data output)

2-BCD displays (data output)

2 switches (handled clock)

8 switches (data input)

Additional equipment

Wire Stripper

Multimeter

Chip Tester

Equipment to practice at home (optional)

Alligator Clip

Battery

Multimeter

T TO THE PARTY OF THE PARTY OF

Study the lab script

■ Fill the lab notebook

- Show to the professor
 - The lab notebook
 - The circuit working

3-bit Gray			3-bit Binary	
0	000	\longrightarrow	0	000
1	001	\longrightarrow	1	001
2	011	\rightarrow	2	010
3	010	\rightarrow	3	011
4	110	\rightarrow	4	100
5	111	\rightarrow	5	101
6	101	\rightarrow	6	110
7	100	\rightarrow	7	111

	g ₂	g ₁	g o	b ₂	b_1	b _o
0	0	0	0	0	0	0
1	0	0	1	0	0	1
2	0	1	0	0	1	1
3	0	1	1	0	1	0
4	1	0	0	1	1	1
5	1	0	1	1	1	0
6	1	1	0	1	0	0
7	1	1	1	1	0	1

90

Binary Specification

Logic Implementation

Physical Implementation

Building

Test

Debugging

$$b_2 = g_2$$

$$b_1 = g_2 \oplus g_1$$

$$b_0 = (g_2 \oplus g_1) \oplus g_0$$

Components list:

- A: **7486** (GND - 7, +5V - 14)

