Probabilités discrètes

Première 6

1 Loi de probabilité d'une variable aléatoire discrète

Rappel : Une expérience aléatoire est une expérience 1) reproductible 2) dont on ne peut pas prédire le résultat avec certitude a priori. L'exemple typique d'une expérience aléatoire est un lancer de pile ou face ou un lancer de dé.

1.1 Variable aléatoire

Définition 1 Soit E l'ensemble (supposé fini) des issues d'une expérience aléatoire. On appelle variable aléatoire réelle sur E une fonction de E dans \mathbb{R} .

Exemple : Considérons le lancer de deux dés , il y a issues possibles. Ce sont les couples de valeurs (i;j) avec . On considère la variable aléatoire X=i+j. Elle peut prendre valeurs. On peut synthétiser les cas possibles dans le tableau suivant :

Valeur	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

1.2 Loi de probabilité d'une variable aléatoire

Soit E un ensemble fini d'issues d'une expérience aléatoire. On considère X une variable aléatoire discrète pouvant prendre les valeurs $x_1, \ldots x_n$.

Définition 2 Définir la loi de probabilité de X, c'est associer à chacune valeurs x_i un nombre, noté $P(X = x_i)$ tel que

1. pour tout i, $\leq P(X = x_i) \leq$.

2. $P(X = x_1) + P(X = x_2) + ... + P(X = x_n) =$

Le nombre $P(X = x_i)$ s'appelle la que la variable aléatoire X prenne la valeur x_i .

Remarque : Si toutes les issues d'une expérience aléatoire ont la même probabilité d'occurrence, on parle de situation .

1.3 Exemples

Exemple 1 : La variable aléatoire donnant la somme du lancer de deux dés équilibrés suit une loi de probabilité représentée par le tableau suivant :

Issue	2	3	4	5	6	7	8	9	10	11	12
Probabilité											

Exemple 2 : *La loi de Bernoulli* On considère un ensemble binaire d'issues : $\{0;1\}$. La variable aléatoire X prend la valeur 1 avec probabilité p et la valeur 0 avec la probabilité . .

2 Espérance d'une variable aléatoire

Soit E un ensemble fini constituant les issues d'une expérience aléatoire. On considère X une variable aléatoire définie sur E dont la loi de probabilité est donnée ci-dessous.

Issue	x_1	x_2	•••	x_n
Probabilité	p_1	p_2		p_n

Définition 3 L'espérance de la variable aléatoire est le nombre $E(X) = p_1 x_1 + \ldots + p_n x_n$.

Exemples:

- 1. On considère le lancer d'une pièce équilibrée. Soit X la variable aléatoire obtenue en associant à l'obtention d'un pile le nombre 6 et -7 à l'obtention d'un face. Quelle est l'espérance de X?
- 2. On tire une carte au hasard dans un jeu de 32 cartes. On gagne 3 euros si l'on tire un coeur, on perd 1 si on tire un trèfle ou un pique, et l'on ne perd rien si l'on tire un carreau. Quelle est l'espérance du gain du joueur?
- 3. On considère une variable aléatoire de Bernoulli de paramètre *p*. Quelle est son espérance ?

Proposition 1 Soit X une variable aléatoire pouvant prendre n valeurs x_1, \ldots, x_n . Si l'on réalise N fois la variable aléatoire X de manière indépendante et que l'on appelle \overline{x}_N la moyenne des N résultats observés, alors \overline{x}_N se rapproche de E(X) quand N devient grand.

Cette proposition est généralement appelée la loi des grands nombres. Elle nous dit que si l'on réalise un grand nombre

Exemple : Dans le TP nous avions observé que si l'on jouait au jeu de hasard considéré un grand nombre de fois, le gain moyen se rapprochait de l'espérance du gain.

3 Répétition d'expériences aléatoires indépendantes

Pour représenter une succession d'expériences aléatoires indépendantes et identiques on utilise souvent un arbre de probabilités.

FIGURE 1 – Représentation d'une succession de deux lancers de pile ou face d'une pièce équilibrée.

Proposition 2 Dans un arbre de probabilités, (ou arbre pondéré), chaque embranchement représente une possibilité. On reporte sur chaque branche la probabilité correspondante.

Exemple : A l'aide de l'arbre ci-dessus, déterminer la loi puis l'espérance de la variable aléatoire donnant le nombre de "pile" apparus au cours des lancers.