

Significant Figures

Scientific measurements are reported so that every digit is certain except the last, which is estimated. All digits of a measured quantity, including the certain one, are called *significant figures*.

	Counting Significant Figures	Examples		
1.	All non-zero digits are always significant.	1.54 (3 sig. figs.) 45 (2 sig. figs.)		
2.	Interior zeros (zeros between nonzero numbers) are significant .	0.025 0 3 (4 sig. figs.) 4 0 2 (3 sig. figs.) 3. 00 674 (6 sig. figs.)		
3.	Leading zeros (zeros at the beginning of a number) are NOT significant.	0.103 (3 sig. figs.) 0.000002 (1 sig. fig.)		
4.	Trailing zeros (zeros at the end of the number): ✓ are significant if and only if there is a decimal point present in the number OR they carry overbars. ✓ are NOT significant otherwise.	1.050 (4 sig. figs.) 1.00 x 10 ³ (3 sig. figs.) 10 (2 sig. figs.) 1000 (1 sig. fig.) 190 (2 sig. figs.)		
5.	Exact numbers have an unlimited number of significant figures.	10 dm = 1m (unlimited sig. figs.)		

Significant Figures in Calculation

ding or subtracting mea ificant figures, the result of decimal places as the ment with the <i>lowest nuplaces.</i>	has the same
2 5 5 . 6 2 d.p.) = 5.7 (2 1 (3 d.p.) 7 9
((2 d.p.) = 5.7 (

Practice Problems

- 1. How many significant figures are in each of the following?
 - a) 3.405
 - b) 0.00289
 - c) 1030
 - d) 7.0040×10^{-3}
 - e) 102.00
 - f) 0.000980
 - g) 9.80
- 2. Perform the following calculations to the correct number of significant figures
 - a) 12.0550 + 9.05
 - b) 257.2 19.789
 - c) $(6.21 \times 10^3) (0.150)$
 - d) $0.0577 \div 0.753$
 - e) 27.5 x 1.82 ÷ 100.04
 - f) $(2.290 \times 10^6) \div (6.7 \times 10^4)$
 - g) $[(28.7 \times 10^5) \div 48.533] + 144.99$
- 3. Round each of the following numbers to three significant figures:
 - a) 342.79513
 - b) 9,845.8749
 - c) 0.000045389
 - d) 2.45555567
 - e) 76.89
 - f) 56.9971

References:

Tro, Chemistry: A Molecular Approach 2nd ed., Pearson Brown/LeMay/Bursten, Chemistry: The Central Science, 12th ed., Pearson

> 1. a) 4; b) 3; c) 3; d) 5; e) 5; f) 3; g) 3 2. a) 21.11; b) 237.4; c) 652; d) 7.66 x 10⁻²; e) 0.500; f) 34; g) 5.93 X 10⁴ 3. a) 343; b) 9850; c) 0.0000454; d) 2.46; e) 76.9; f) 57.0