Controlled ITS & Causalimpact

Control Units

So far...

Interrupted Time Series

- Suitable when we have long time series, no control units
- Try to predict future **counterfactual** Y_t^0 from past (pre-intervention) data Y_{t-s}^0 from the treated unit

Synthetic Control

- Suitable when we have many control units
- Try to predict **counterfactual** Y_t^0 for the treated unit using (a weighted average) of data from other untreated units $C_{j,t}^0$

So far...

Interrupted Time Series

- Suitable when we have long time series, no control units
- Try to predict future **counterfactual** Y_t^0 from past (pre-intervention) data Y_{t-s}^0 from the treated unit

Synthetic Control

- Suitable when we have many control units
- Try to predict **counterfactual** Y_{t+1}^0 for the treated unit using (a weighted average) of data from other untreated units $C_{j,t+1}^0$

Interrupted Time Series

Time	Y_t	A_t	Y_t^0	Y_t^1	
1	7	0	7	NA	
2	9	0	9	NA	
3	6	0	6	N.4	Fit a forecasting Model
4	5	0	5	NA	$\widehat{Y}_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \cdots \beta * Time$
5	6	0	6	NA	
6	2	1	$\widehat{Y_6^0}$	2	recasts
7	3	1	$\widehat{Y_7^0}$	3	Make forecasts
8	1	1	$\widehat{Y_8^0}$	1	
					$\widehat{CE}_t = Y_t^1 - \widehat{Y_t^0}$
\overline{T}	2	1	$\widehat{Y_T^0}$	2	

So far...

Interrupted Time Series

- Suitable when we have long time series, no control units
- Try to predict future **counterfactual** Y_t^0 from past (pre-intervention) data Y_{t-s}^0 from the treated unit

Synthetic Control

- Suitable when we have **many** control units
- Try to predict **counterfactual** Y_t^0 for the treated unit using (a weighted average) of data from other untreated units $C_{j,t}^0$

Synthetic Control

Time	Y_t	A_t	Y_t^0	Y_t^1	C_{1t}^0	C_{2t}^0		C_{jt}^0	
1	7	0	7	NA	2	9		6	
2	9	0	9	NA	6	9	•••	8	
3	6	0	6	NA	4	3		5	
4	5	0	5	NA	2	1	•••	4	
5	6	0	6	NA	1	2		7	
6	2	1	$\widehat{Y_6^0}$	2	3	6		7	
7	3	1	$\widehat{Y_7^0}$	3	2	5		6	
8	1	1	$\widehat{Y_8^0}$	1_	4	6		5	
•••								4	
T	2	1	$\widehat{Y_T^0}$	2	3	4		6	

Estimate Weights

$$Y_{t} = \sum_{j=1}^{J} \widehat{w_{j}} C_{jt} \qquad t < T_{0}$$

$$\widehat{Y_{t}^{0}} = \sum_{j=1}^{J} \widehat{w_{j}} C_{jt} \qquad t > T_{0}$$

Impute counterfactual

$$\widehat{CE}_t = Y_t^1 - \widehat{Y_t^0}$$

This Lecture

Methods which combine interrupted time series and (synthetic) control analysis

Try to predict future counterfactual Y_t^0 directly from:

- Pre-intervention data Y_{t-s}^0 from the treated unit

AND

- Post-intervention data from **one or more** other **untreated units** C_i^0

Two parts:

- 1. Controlled Interrupted Time Series (CITS); suitable with relatively few control/covariate time series
- 2. (Synthetic) CITS with the CausalImpact package; many control time series

Control Units

An extension of Interrupted Time Series when we have access to one or more **control time series**

Typically observations of the same process, for a different unit, which is **correlated with** (i.e. predictive of) the **target time series**, but which **does not experience the intervention**

Similar criteria as the synthetic control and DiD method "control" units

Basic Idea:

Build a time series / forecasting model, but include control time series as contemporaneous (same-time-moment) predictors

Time	Y_t	A_t	Y_t^0	Y_t^1	C_{1t}
1	7	0	7	NA	2
2	9	0	9	NA	6
3	6	0	6	NA	4
4	5	0	5	NA	2
5	6	0	6	NA	1
6	2	1	NA	2	3
7	3	1	NA	3	2
8	1	1	NA	1	4
	•••				•••
\overline{T}	2	1	NA	2	3

Time	Y_t	A_t	Y_t^0	Y_t^1	C_{1t}
1	7	0	7	NA	2
2	9	0	9	NA	6
3	6	0	6	NA	4
4	5	0	5	NA	2
5	6	0	6	NA	1
6	2	1	NA	2	3
7	3	1	NA	3	2
8	1	1	NA	1	4
	•••				•••
T	2	1	NA	2	3

Fit a forecasting model C as time-varying predictor

$$\widehat{Y}_t = f(Y_{t-1}, Y_{t-2}, \dots Y_{t-s}) + \alpha * C_{1t}$$

Time	Y_t	A_t	Y_t^0	Y_t^1	C_{1t}
1	7	0	7	NA	2
2	9	0	9	NA	6
3	6	0	6	NA	4
4	5	0	5	NA	2
5	6	0	6	NA	1
6	2	1	$\widehat{Y_6^0}$	2	3
7	3	1	$\widehat{Y_7^0}$	3	2
8	1	1	$\widehat{Y_8^0}$	1	4
	•••				
\overline{T}	2	1	$\widehat{Y_T^0}$	2	3

Fit a forecasting model C as time-varying predictor

$$\widehat{Y}_t = f(Y_{t-1}, Y_{t-2}, \dots Y_{t-s}) + \alpha * C_{1t}$$

$$\widehat{Y_t^0} = f(Y_{t-1}, Y_{t-2}, \dots Y_{t-s}) + \alpha * C_{1t}$$

Impute counterfactual


```
prop99_ts <-
    prop99_cigonly |>
    select(cigsale_California, cigsale_Utah, cigsale_Illinois) |>
    mutate(years = 1970:2000) |>
    as_tsibble(index = "years")

# divide into pre and post-intervention, as a time
prop99_pre <- prop99_ts[1:19,]
prop99_post <- prop99_ts[20:31,]

# fit data
fit_arima <- prop99_pre |>
    model(
        timeseries = ARIMA(cigsale_California), # no regression!
    regression = ARIMA(cigsale_California ~ cigsale_Utah + cigsale_Illinois)
    )
```

Key Assumptions

This method inherits the key assumptions of ITS and Synthetic Control

Do you remember what they are?

- **1. No interference:** California receiving treatment does not effect the potential outcome value of Utah
- 2. Choose an appropriate time series model
- **3. Stability / Stationarity:** Some form of "model invariance" over time (i.e. changes are attributable only to the intervention)

But what if we have many control time series? **AND** a long time-series pre treatment?

- Many potential states who did not have a law change
- Many different "products" that did not receive a new type of advertisement

Same basic principles apply, however, you may need to be clever:

- allow a general enough model to capture complex dependencies,
- try to avoid overfitting by keeping the end model simple

Causalimpact

Control Units

Causalimpact

CausalImpact is an R and python packaged developed by Google Performs what could be described as "Synthetic Controlled Interrupted Time Series"

Basic Idea:

- Exactly the same principles as Controlled ITS
- The model has a time-forward forecasting part and a "control unit" regression part
- Behind-the-scenes uses **Bayesian estimation** to build the forecasting model
- A subset of units are included in the control unit part, with different weights; similar to a synthetic control analysis (but differing in many other details)
- CausalImpact package takes care of model building + selection behind the scenes (!)

Causalimpact in action

```
# using only cigarette sales from other states as potential covariates
pre_idx <- c(1, 19) # the first 18 years (1970 - 1988) are pre-intervention
post_idx <- c(20, 31) # the years after that (1989 - 2000)

impact_cigsale <- CausalImpact(
   data = prop99_cigonly,
   pre.period = pre_idx,
   post.period = post_idx
)

# then, plot the causal impact model
plot(impact_cigsale)</pre>
```


Observed

Predicted (counterfactual)

Observed

Predicted (counterfactual)

Causal Effect estimate at each t

Sum of causal effect estimates at all previous time points

Behind the scenes

CausalImpact uses Bayesian Estimation

- Bayesian structural time-series models (bsts package in R)
- Control units are "chosen" by using spike-and-slab priors
- Bayes means it's easy to get **uncertainty** (confidence intervals) around estimates of the Causal Effect, and other interesting metrics related to that

Behind the scenes

Beware: Bayesian estimation requires the user to specify many *priors*

- Controls things like model complexity and which part of the model (forecasting vs control units) will be dominant
- These choices are hidden from the user with **defaults**.
 - This is nice when you want to get something running, but in practice you will need to investigate how sensitive your conclusions are to this!
- In general: the package hides many model specification and selection choices from you. Good for usability, bad for critical evaluation

Practical: fpp3, causalimpact

Work in your groups! Take a break from 16:15 to 16:30

Break