Half Adder-

- Half Adder is a combinational logic circuit.
- It is used for the purpose of adding two single bit numbers.
- It contains 2 inputs and 2 outputs (sum and carry).

Half Adder Designing-

Half adder is designed in the following steps-

Step-01:

Identify the input and output variables-

- Input variables = A, B (either 0 or 1)
- Output variables = S, C where S = Sum and C = Carry

Step-02:

Draw the truth table-

Inputs		Outputs	
Α	В	C (Carry)	S (Sum)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Truth Table

Step-03:

Draw K-maps using the above truth table and determine the simplified Boolean expressions-

Step-04:

Draw the logic diagram.

The implementation of half adder using 1 XOR gate and 1 AND gate is as shown below-

Half Adder Logic Diagram

Limitation of Half Adder-

- Half adders have no scope of adding the carry bit resulting from the addition of previous bits.
- This is a major drawback of half adders.
- This is because real time scenarios involve adding the multiple number of bits which can not be accomplished using half adders.

To overcome this drawback, Full Adder comes into play.

Full Adder-

- Full Adder is a combinational logic circuit.
- It is used for the purpose of adding two single bit numbers with a carry.
- Thus, full adder has the ability to perform the addition of three bits.
- Full adder contains 3 inputs and 2 outputs (sum and carry) as shown-

Full Adder Designing-

Full adder is designed in the following steps-

Step-01:

Identify the input and output variables-

- Input variables = A, B, C_{in} (either 0 or 1)
- Output variables = S, C_{out} where S = Sum and C_{out} = Carry

Step-02:

Draw the truth table-

Inputs		Outputs		
Α	В	Cin	Cout (Carry)	S (Sum)
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Truth Table

Step-03:

Draw K-maps using the above truth table and determine the simplified Boolean expressions-

For S:

For C_{in}:

Step-04:

Draw the logic diagram.

The implementation of full adder using 1 XOR gate, 3 AND gates and 1 OR gate is as shown below-

Full Adder Logic Diagram