Чисельні методи в інформатиці Лабораторна робота №4

Грищенко Юрій, ІПС-32, 2020

Для заданої функції f (x) (варіант функції взяти з лабораторної роботи №1) на заданому відрізку згенерувати систему точок на площині

$$\{(x_i, y_i) | x_i = x_0 + ih, y_i = f(x_i), i = \overline{0.n} \}.$$

На основі заданої системи точок побудувати

- 1. Інтерполяційний багаточлен Лагранжа.
- 2. Інтерполяційний багаточлен Н'ютона.
- 3. Побудувати сплайн 3-го степеня дефекту 1.
- 4. Побудувати графіки.
- 5. Згенерувати многочлени в пунктах 1-3 для випадків n = 8 та n = 16.
- 6. Провести порівняння отриманих результатів.

Мій варіант 2, функція 26:

26)
$$e^{-x} + x^2 - 2$$

Нехай функція $f(x) \in C[a,b]$ $i=\overline{0,n}$ причому при $\forall i \neq j \Rightarrow x_i \neq x_j$ $y_i=f\left(x_i\right), x_i \in [a,b]$

 $\Phi(x)$ називається *інтерполюючою* f(x) $\{x_i\}_{i=0}^n$, якщо $\Phi(x_i) = y_i$, $i = \overline{0,n}$

Задача апроксимації (відновлення) функції (має не єдиний розв'язок): Виберемо систему функцій: $\{\varphi_k(x)\}_{k=0}^n$ - лінійно незалежні, $\varphi_k(x) \in C[a,b]$. Побудуємо лінійну комбінацію

$$\varphi(x) = \Phi_n(x) = \sum c_k \varphi_k(x)$$
 (2)

(2) - узагальнений багаточлен.

Задача інтерполяції функції f(x) алгебраїчним ,багаточленом полягає в знаходженні коефіцієнтів c_k , $k=\overline{0,n}$ для яких виконується $f(x_i)=\varphi(x_i)$ $j=\overline{0,n}$

1.
$$\varphi_k(x) = x^k$$
 - алгебраїчна система,

Визначник Вандермонда

$$D(x_1,..,x_n) = \begin{vmatrix} 1 & x_0 & \dots & x_0^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & \dots & x_n^{n-1} \end{vmatrix} = \prod_{0 \le x < m \le n} (x_k - x_m)_{\neq 0}.$$

Інтерполяційний многочлен Лагранжа.

 $\Phi_k^{(n)}(x)$ - поліном n - того степеня — множник Лагранжа.

3 умови $\sum_{k=0}^{n} f(x_k) \Phi_k^{(n)}(x_i) = f(x_i)$ випливає, що множник Лагранжа повинен задовольняти

$$\Phi_{k}^{(n)}(x_{i}) = \delta_{ik} \tag{2}.$$

Так як $L_n(x)$ - многочлен степені n, то його аналітичний вигляд:

$$\Phi_k^{(n)}(x) = A_k(x - x_0)...(x - x_k)(x - x_{k+1})...(x - x_n),$$

де A_k —числовий параметр. знайдемо його з умови $\Phi_k^{(n)}(x) = 1$:

$$A_k = \frac{1}{((x_k - x_0)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n))}.$$

Тоді коефіцієнти $\Phi_k^{(n)}(x)$ шукаємо у вигляді:

Формула множників Лагранжа:

$$\Phi_{k}^{(n)}(x) = \frac{(x - x_0)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)}{(x_k - x_0)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)}$$
(3)

Позначивши

Формула Лагранжа: (інтерполяційний многочлен Лагранжа)

$$L_{n}(x) = \sum_{k=0}^{n} f(x_{k}) \frac{\omega_{n}(x)}{(x - x_{k})\omega_{n}(x_{k})}$$
(4)

Для n=8 отримуємо многочлен з коефіцієнтами [-1.00000000e+00 -9.97916428e-01 1.49980072e+00 -1.69615362e-01 4.19489466e-02 -7.37061434e-03 1.29645057e-03 -2.98789014e-04 3.45188825e-05] Графік:

Максимальне по модулю відхилення від початкової функції для x_1 =-4, x_2 =-3.99, x_3 =-3.98, ... дорівнює 0.026860698229512536

Інтерполяційний многочлен Ньютона.

Розділеною різницею 1- го порядку для функції f(x) називатимемо

$$f(x_i; x_j) = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$

Розділеною різницею 2- го порядку для функції f(x) називатимемо

$$f(x_i; x_j; x_k) = \frac{f(x_i; x_j) - f(x_j; x_k)}{x_i - x_k}$$

Таблиця розділених різниць

$\mathbf{x}_{\mathbf{i}}$	f(x _i)	p.p.1	p.p.2
\mathbf{x}_0	$f(x_0)$	$f(x_0;x_1)$	$f(x_0;x_1;x_2)$
X _n	f(x _n)		

маємо інтерполяційну формулу Ньютона вперед ($x_n \to x_0$):

$$L_n(x) = f(x_0) + f(x_0, x_1)(x - x_0) + \dots + f(x_0, \dots, x_n)(x - x_0) \dots (x - x_{n-1})$$

Для n=8 отримуємо многочлен з коефіцієнтами [-1.00000000e+00 -9.97916428e-01 1.49980072e+00 -1.69615362e-01 4.19489466e-02 -7.37061434e-03 1.29645057e-03 -2.98789014e-04 3.45188825e-05] Графік:

Максимальне по модулю відхилення від початкової функції для x_1 =-4, x_2 =-3.99, x_3 =-3.98, ... дорівнює 0.026860698229434377

Кубічний сплайн дефекту 1.

Функція s(x) називається <u>сплайном</u> степеня m і дефекту k якщо $-s(x) \in \pi_m$ (множина поліномів степеня m) на кожному відрізку $x \in [x_{i-1}, x_i]$, $i = \overline{1, n}$ $-s(x) \in C^{m-k}[a,b]$

$$s(x) = m_{i-1} \frac{(x_i - x)^3}{6h_i} + m_i \frac{(x - x_{i-1})^3}{6h_i} + \left(f_{i-1} - \frac{m_{i-1}h_i^2}{6}\right) \frac{x_i - x}{h_i} + \left(f_i - \frac{m_i h_i^2}{6}\right) \frac{x - x_{i-1}}{h_i}, x \in [x_{i-1}, x_i]$$
 де $h_i = x_i - x_{i-1}$

Значення т отримуємо з СЛАР:

$$\begin{cases} \frac{h_i}{6} \, m_{i-1} + \frac{h_i + h_{i+1}}{3} \, m_i + \frac{h_{i+1}}{6} \, m_{i+1} = \frac{f_{i+1} - f_i}{h_i} - \frac{f_i - f_{i-1}}{h_i} \;, \quad i = \overline{1, N-1} \\ m_0 = m_n = 0 \end{cases}$$

При n=8 отримуємо для 9 відрізків многочлени:

```
[247.1744406
             228.44500224
                           68.9253486
                                         5.74377905] for [-4.0; -3.0]
[-40.2821938 -59.01163215 -26.89352953 -4.90276296] for [-3.0; -2.0]
[-0.44531347 0.74368834 2.98413072 0.07684708] for [-2.0; -1.0]
                         1.32007112 -0.47783945] for [-1.0; 0.0]
[-1.
            -0.92037125
                         1.32007112 -0.03182043] for [0.0; 1.0]
[-1.
            -0.92037125
                         1.46900087 -0.08146368 for [1.0; 2.0]
[-0.95035675 -1.069301
[-2.44282386
             1.16939966
                         0.34965054
                                     0.10509471] for [2.0; 3.0]
                                        -0.4318343 ] for [3.0; 4.0]
[ 12.05425925 -13.32768345
                            5.18201158
```


При більших ($n > \sim 30$) для перших двух методів отримуємо многочлени з дуже великим степенем, і через похибки обчислень коефіцієнти при старших степенях призводять до поганого наближення:

Сплайн, навпаки, для більших п дає краще наближення:

