Optical Flow

Asif Rajput*

*(Thanks to Shree Nayyar and Mubarak Shah)

(source)

Optical Flow

Method to estimate apparent motion of scene points from a sequence of images.

Topics:

- (1) Motion Field and Optical Flow
- (2) Optical Flow Constraint Equation
- (3) Lucas-Kanade Method
- (4) Coarse-to-Fine Flow Estimation

Motion Field

Image velocity of a point that is moving in the scene

Image Point Velocity:
$$\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt}$$
(Motion Field)

Scene Point Velocity: $\mathbf{v}_o = \frac{d\mathbf{r}_o}{dt}$

Image Point Velocity:
$$\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt}$$
(Motion Field)

Image velocity of a point that is moving in the scene

Sensor Pinhole
$$\mathbf{r}_o + \delta \mathbf{r}_o$$
 \mathbf{p}_o Scene Point $\mathbf{v}_i \cdot \delta t$

Perspective projection:
$$\frac{-\iota}{f} = \frac{-\upsilon}{\mathbf{r}_o}$$

Scene Point Velocity: \mathbf{v}_o

Optical Flow (Ideally, Optical Flow = Motion Field)

When is Optical Flow \neq Motion Field?

Motivation

Sparse

Dense

Encoding Scheme

Videos Color Coded Optical Flows

- Applications
 - Motion based segmentation
 - Motion based segmentation
 - Alignment (Global motion compensation)

Structure from Motion(3D shape and Motion)

- · Camcorder video stabilization
- UAV Video Analysis
- Video Compression

Displacement: $(\delta x, \delta y)$

Optical Flow: $(u, v) = \left(\frac{\delta x}{\delta t}, \frac{\delta y}{\delta t}\right)$

Assumption #1:

Brightness of image point remains constant over time

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t)$$

Assumption #2:

Displacement $(\delta x, \delta y)$ and time step δt are small

Taylor Series Expansion

Expand a function as an infinite sum of its derivatives

$$f(x + \delta x) = f(x) + \frac{\partial f}{\partial x} \delta x + \frac{\partial^2 f}{\partial x^2} \frac{\delta x^2}{2!} + \dots + \frac{\partial^n f}{\partial x^n} \frac{\delta x^n}{n!}$$

If δx is small:

$$f(x + \delta x) = f(x) + \frac{\partial f}{\partial x} \delta x + O(\delta x^2)$$
 Almost Zero

For a function of three variables with small $\delta x, \delta y, \delta t$:

$$f(x + \delta x, y + \delta y, t + \delta t) \approx f(x, y, t) + \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial t} \delta y$$

Optical Flow Constraint Equation

Assumption #2:

Displacement $(\delta x, \delta y)$ and time step δt are small

$$I(x+\delta x,y+\delta y,t+\delta t)=I(x,y,t)+\frac{\partial I}{\partial x}\delta x+\frac{\partial I}{\partial y}\delta y+\frac{\partial I}{\partial t}\delta t$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$

Optical Flow Constraint Equation

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t)$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$

Subtract (1) from (2):
$$I_x \delta x + I_y \delta y + I_t \delta t = 0$$

Divide by
$$\delta t$$
 and take limit as $\delta t \to 0$: $I_x \frac{\partial x}{\partial t} + I_y \frac{\partial y}{\partial t} + I_t = 0$

Constraint Equation:
$$I_x u + I_y v + I_t = 0$$
 (u, v): Optical Flow

 $\left(I_x,I_y,I_t\right)$ can be easily computed from two frames

Computing Partial Derivatives I_x , I_y , I_t

 $I_x(k,l,t) =$

Computing Partial Derivatives I_x , I_y , I_t

$$I_x(k,l,t) =$$

 $\frac{1}{4}[I(k+1,l,t)+I(k+1,l,t+1)+I(k+1,l+1,t)+I(k+1,l+1,t+1)]$

Computing Partial Derivatives I_x , I_y , I_t

$$\frac{1}{4}[I(k+1,l,t) + I(k+1,l,t+1) + I(k+1,l+1,t) + I(k+1,l+1,t+1)]$$

$$-\frac{1}{4}[I(k,l,t) + I(k,l,t+1) + I(k,l+1,t) + I(k,l+1,t+1)]$$

 $I_x(k,l,t) =$

Geometric Interpretation

For any point (x, y) in the image, its optical flow (u, v) lies on the line:

$$I_x u + I_y v + I_t = 0$$

Optical Flow can be split into two components.

$$\mathbf{u} = \mathbf{u}_n + \mathbf{u}_p$$

 \mathbf{u}_n : Normal Flow

up: Parallel Flow

Direction of Normal Flow:

Unit vector perpendicular to the constraint line:

$$\widehat{\mathbf{u}}_n = \frac{\left(I_x, I_y\right)}{\left|I_x^2 + I_y^2\right|}$$

Direction of Normal Flow:

Unit vector perpendicular to the constraint line:

$$\widehat{\mathbf{u}}_n = \frac{\left(I_x, I_y\right)}{\sqrt{I_x^2 + I_y^2}}$$

Distance of origin from the constraint line:

$$|\mathbf{u}_n| = \frac{|I_t|}{I_v^2 + I_v^2}$$

$$\mathbf{u}_n = \frac{|I_t|}{\left(I_x^2 + I_y^2\right)} \left(I_x, I_y\right)$$

We cannot determine \mathbf{u}_p , the optical flow component parallel to the constraint line.

Aperture Problem

Constraint Equation:
$$I_x u + I_y v + I_t = 0$$

2 unknowns, 1 equation.

Lucas Kanade Solution

Assumption: For each pixel, assume Motion Field, and hence Optical Flow (u, v), is constant within a small neighborhood W.

That is for all points $(k, l) \in W$:

$$I_x(k,l)u + I_y(k,l)v + I_t(k,l) = 0$$

For all points $(k,l) \in W$: $I_x(k,l)u + I_y(k,l)v + I_t(k,l) = 0$

Let the size of window W be $n \times n$

In matrix form:
$$\begin{bmatrix} I_x(1,1) & I_y(1,1) \\ I_x(k,l) & I_y(k,l) \\ \vdots & \vdots \\ I_x(n,n) & I_y(n,n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} I_t(1,1) \\ I_t(k,l) \\ \vdots \\ I_t(n,n) \end{bmatrix}$$

For all points $(k,l) \in W$: $I_x(k,l)u + I_y(k,l)v + I_t(k,l) = 0$

Let the size of window W be $n \times n$

In matrix form:

$$\begin{bmatrix} I_{x}(1,1) & I_{y}(1,1) \\ I_{x}(k,l) & I_{y}(k,l) \\ \vdots & \vdots \\ I_{x}(n,n) & I_{y}(n,n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} I_{t}(1,1) \\ I_{t}(k,l) \\ \vdots \\ I_{t}(n,n) \end{bmatrix}$$

$$A \qquad \mathbf{u} \qquad B$$
(Known) (Unknown) (Known)
$$n^{2} \times 2 \qquad 2 \times 1 \qquad n^{2} \times 1$$

Solve linear system:
$$A\mathbf{u} = B$$

$$A^T A \mathbf{u} = A^T B \quad \text{(Least-Squares using Pseudo-Inverse)}$$

In matrix form:

$$\begin{bmatrix} \sum_{W} I_{x} I_{x} & \sum_{W} I_{x} I_{y} \\ \sum_{W} I_{x} I_{y} & \sum_{W} I_{y} I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum_{W} I_{x} I_{t} \\ -\sum_{W} I_{y} I_{t} \end{bmatrix}$$
 Indices (k, l) not written for simplicity
$$A^{T}A \qquad \qquad \mathbf{u} \qquad A^{T}B$$
 (Known) (Known) (Known) $2 \times 2 \qquad 2 \times 1 \qquad 2 \times 1$
$$\mathbf{u} = (A^{T}A)^{-1}A^{T}B$$

Fast and Easy to Solve

When Does Optical Flow Estimation Work?

$$A\mathbf{u} = B$$

$$A^T A \mathbf{u} = A^T B$$

- A^TA must be invertible. That is $det(A^TA) \neq 0$
- A^TA must be well-conditioned.

If λ_1 and λ_2 are eigen values of A^TA , then

$$\lambda_1 > \epsilon$$
 and $\lambda_2 > \epsilon$

$$\lambda_1 \geq \lambda_2$$
 but not $\lambda_1 \gg \lambda_2$

Smooth Regions (Bad)

Equations for all pixels in window are more or less the san

Cannot reliably compute flow!

Edges (bad)

Badly conditioned. Prominent gradient in one direction.

Cannot reliably compute flow! Same as Aperture Problem.

Textured Regions (Good)

Well conditioned. Large and diverse gradient magnitudes

Can reliably compute optical flow.

Comments

- Horn-Schunck and Lucas-Kanade optical methods work only for small motion.
- If object moves faster, the brightness changes rapidly,
 - 2x2 or 3x3 masks fail to estimate spatiotemporal derivatives.
- Pyramids can be used to compute large optical flow vectors.

What if we have Large Motion?

What if we have Large Motion?

Taylor Series approximation of

$$I(x + \delta x, y + \delta y, t + \delta t)$$
 is not valid

Our simple linear constraint equation not valid

$$I_x u + I_y v + I_t \neq 0$$

Large Motion: Coarse-to-Fine Estimation

At lowest resolution, motion ≤ 1 pixel

Alternative Approach: Template Matching

Determine Flow using Template Matching

Template Window T

Image I_1 at time t

Search Window S

Image I_2 at time $t + \delta t$

For each template window T in image I_1 , find the corresponding match in image I_2 .

Optical Mouse

Estimating Mouse Movements

Traffic Monitoring

Finding Velocities of Vehicles

(source)