

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 1

Durée: 4 heures

Les calculatrices sont autorisées.

* * *

NB : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

* * *

Le sujet est composé de deux exercices et d'un problème indépendants.

EXERCICE 1

Montrer que les deux séries suivantes sont convergentes puis calculer leur somme.

a.
$$\sum_{n\geq 1} \frac{1}{n(n+1)(n+2)}$$
.

b.
$$\sum_{n\geq 1} \frac{2^n}{(n-1)!}$$
.

EXERCICE 2

On considère la fonction f définie sur \mathbb{R} de la façon suivante : f est une fonction périodique de période 2π , f est une fonction paire et pour tout $x \in [0,\pi]$: $f(x) = x^2$.

- a. Déterminer la série de Fourier de la fonction f.
- **b.** En déduire, **avec soin**, les réels : $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$, $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ et $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$.
- c. Déterminer, en énonçant le théorème utilisé, le réel : $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

PROBLEME: Une introduction aux fonctions tests

Dans tout le problème, $\mathbb R$ est muni de sa norme naturelle : la valeur absolue.

Toutes les fonctions considérées seront à valeurs dans $\mathbb R$.

Si h est une fonction de classe C^k , $h^{(k)}$ désigne la dérivée k-ième de h.

Si h est une fonction bornée sur \mathbb{R} , on note $||h||_{\infty} = \sup_{x \in \mathbb{R}} |h(x)|$.

Une fonction définie sur \mathbb{R} est dite **nulle à l'infini** si ses limites en $+\infty$ et en $-\infty$ sont nulles.

Objectifs:

Le **support** d'une fonction f définie sur un intervalle I, noté Supp f, est l'adhérence de l'ensemble des points où elle ne s'annule pas : Supp $f = \{x \in I, f(x) \neq 0\}$.

Une fonction est dite à **support compact** si son support est une partie compacte de \mathbb{R} .

On appellera **fonction test**, une fonction de classe C^{∞} sur \mathbb{R} à support compact.

On note \mathcal{T} l'ensemble des fonctions tests. Il est facile de vérifier que \mathcal{T} est une \mathbb{R} -algèbre.

Le but du sujet est de découvrir des fonctions tests dans la partie I et d'en voir deux utilisations ; pour l'approximation uniforme de fonctions dans la partie II, et pour démontrer un théorème de Whitney à la partie III.

Les parties II et III sont indépendantes et utilisent des résultats de la partie I.

I. Découverte des fonctions tests

1. Soit A une partie de $\mathbb R$. Montrer que A est bornée si et seulement si son adhérence \overline{A} est une partie compacte de $\mathbb R$.

Une fonction f définie sur I est donc à support compact si et seulement si $\{x \in I, f(x) \neq 0\}$ est une partie bornée de \mathbb{R} .

- **2.** Quelques exemples
 - **a.** On note u la fonction paire définie sur \mathbb{R} par $u(x) = 4 x^2$ si $x \in [0,2]$ et u(x) = 0 si x > 2.

Représenter la fonction u et déterminer son support. La fonction u est-elle à support compact? La fonction u est-elle une fonction test?

- **b.** La fonction sinus est-elle une fonction test?
- **3.** Soit *h* la fonction définie sur \mathbb{R} par $h(x) = e^{\frac{-1}{x}}$ si x > 0 et h(x) = 0 si $x \le 0$.
 - **a.** La fonction h est, d'après les théorèmes généraux, de classe C^{∞} sur $]0,+\infty[$. Montrer que pour tout entier naturel k, il existe un polynôme P_k dont on précisera le degré tel que pour tout réel x strictement positif, $h^{(k)}(x) = P_k\left(\frac{1}{x}\right) \mathrm{e}^{\frac{-1}{x}}$. En déduire que h est de classe C^{∞} sur \mathbb{R} .
 - **b.** La fonction h est-elle une fonction test? h est-elle développable en série entière au voisinage de 0?

- **4.** On définit sur \mathbb{R} la fonction φ par $\varphi(x) = h(-(x+1)(x-1))$.
 - a. Déterminer le support de φ puis justifier que c'est une fonction test. Déterminer les variations de φ puis tracer l'allure de sa courbe.
 - **b.** Déterminer une fonction test dont le support est [3,8] puis une fonction test dont le support est $[1,2] \cup [5,6]$.
- 5. Déterminer les limites en $+\infty$ et $-\infty$ d'une fonction définie sur $\mathbb R$ à support compact.
- 6. Construction d'une suite régularisante
 - **a.** Justifier que la fonction φ de la question **4.** est intégrable sur \mathbb{R} et que $\int_{-\infty}^{+\infty} \varphi(t) dt > 0$. En déduire l'expression d'une fonction test φ positive, de support [-1,1], intégrable sur \mathbb{R} et telle que $\int_{-\infty}^{+\infty} \varphi(t) dt = 1$.

Pour tout entier naturel non nul n, on définit sur \mathbb{R} la fonction ρ_n par $\rho_n(x) = n\rho(nx)$. La suite de fonctions $(\rho_n)_n$ est appelée *suite régularisante*.

b. Pour tout entier naturel non nul n, déterminer le support de ρ_n et calculer $\int_{-\infty}^{+\infty} \rho_n(t) dt$.

II. Approximation uniforme sur $\mathbb R$ par des fonctions de classe C^∞ ou par des fonctions tests

Un théorème de Weierstrass nous dit que toute fonction continue sur un **segment** peut être approchée uniformément par des fonctions polynômes.

Voyons ce qu'il en est si la fonction est continue sur \mathbb{R} tout entier (donc sur un intervalle non borné).

- 7. L'approximation polynomiale ne convient plus
 Soit (P) une suite de fonctions polynômes qui converge
 - Soit $(P_n)_n$ une suite de fonctions polynômes qui converge uniformément sur \mathbb{R} vers une fonction f.
 - **a.** Justifier qu'il existe un entier naturel N tel que pour tout entier naturel n supérieur ou égal à N, on ait pour tout réel x, $|P_n(x) P_N(x)| \le 1$.
 - Que peut-on en déduire quant au degré des fonctions polynômes $P_n P_N$ lorsque $n \ge N$?
 - **b.** Conclure que f est nécessairement une fonction polynôme.

Nous allons toutefois démontrer qu'il est possible d'approcher certaines fonctions uniformément sur $\mathbb R$, non pas par des fonctions polynômes, mais par des fonctions de classe C^∞ , ou par des fonctions tests.

Plus précisément, nous allons démontrer les deux résultats d'approximation suivants :

- (A_1) : toute fonction continue sur $\mathbb R$, nulle à l'infini est limite uniforme sur $\mathbb R$ d'une suite de fonctions continues sur $\mathbb R$ à support compact.
- (A_2) : toute fonction continue sur $\mathbb R$ à support compact, est limite uniforme sur $\mathbb R$ d'une suite de fonctions tests.

L'approximation (A₁) est un résultat préliminaire, qui est démontré à la question 8.

8. Approximation d'une fonction continue nulle à l'infini par une suite de fonctions continues à support compact

Pour tout entier naturel n, on définit sur \mathbb{R} , la fonction paire z_n par $z_n(x) = 1$ si $x \in [0, n[$, $z_n(x) = -x + n + 1$ si $x \in [n, n + 1[$ et $z_n(x) = 0$ si $x \in [n + 1, +\infty[$.

- **a.** Représenter graphiquement la fonction z_n . Déterminer la limite simple de la suite de fonctions (z_n) . La convergence est-elle uniforme sur \mathbb{R} ?
- **b.** Soit g une fonction continue sur \mathbb{R} , nulle à l'infini. Démontrer que la fonction g est bornée sur \mathbb{R} . On peut donc poser pour tout entier naturel n, $\alpha_n = \sup_{|x| \ge n} |g(x)|$.
- **c.** Etudier la monotonie de la suite (α_n) puis déterminer sa limite lorsque n tend vers $+\infty$.
- **d.** Pour tout entier naturel n, on définit la fonction g_n en posant $g_n = g z_n$. Déterminer un réel k tel que pour tout entier naturel n, $\|g_n g\|_{\infty} \le k\alpha_n$.
- e. En déduire le résultat d'approximation (A_1) : toute fonction continue sur $\mathbb R$, nulle à l'infini peut être approchée uniformément sur $\mathbb R$ par une suite de fonctions continues sur $\mathbb R$ à support compact.

Dans les questions 9., 10., et 11., f désigne une fonction continue sur \mathbb{R} et g désigne une fonction continue à support compact. Il existe donc un réel R > 0 tel que $\operatorname{Supp} g \subset [-R, R]$.

9. Convolution

- **a.** Justifier que, pour tout réel x, l'application $t \mapsto g(t) f(x-t)$ est intégrable sur \mathbb{R} . On définit alors sur \mathbb{R} la fonction g * f par $(g * f)(x) = \int_{-\infty}^{+\infty} g(t) f(x-t) dt$. On dit que g * f est le *produit de convolution* de g par f.
- **b.** Soit x un réel, montrer que l'application $t \mapsto f(t)g(x-t)$ est intégrable sur $\mathbb R$.

On définit donc sur \mathbb{R} la fonction f * g par $(f * g)(x) = \int_{-\infty}^{+\infty} f(t)g(x-t)dt$. Comparer les fonctions f * g et g * f.

10. Support d'une convolution

- **a.** Dans cette question, on suppose de plus que f est à support compact, il existe donc un réel S > 0 tel que Supp $f \subset [-S, S]$. Si x > R + S, que vaut (f * g)(x)? En déduire que f * g est aussi à support compact.
- **b.** Montrer que si la fonction f n'est pas à support compact, f * g n'est pas nécessairement à support compact.

11. Dérivation d'une convolution

- **a.** Soit a un réel strictement positif. Justifier que pour tout $x \in [-a, a]$, $(f * g)(x) = \int_{a-b}^{a+R} f(t)g(x-t)dt.$
- **b.** Montrer que si g est de plus supposée de classe C^1 , alors f * g est de classe C^1 . Écrire alors (f * g)' à l'aide d'un produit de convolution.

Si on suppose de plus, que g est de classe C^{∞} sur \mathbb{R} , on démontre de la même manière et on l'admettra que f * g est également de classe C^{∞} sur \mathbb{R} .

12. Application à l'approximation

a. Soit *n* un entier naturel non nul, ρ_n désigne la fonction test introduite dans la question **6.**,

montrer que pour tout réel x, $\left| f * \rho_n(x) - f(x) \right| \le \int_{-\frac{1}{n}}^{\frac{1}{n}} \left| f(x-t) - f(x) \right| \rho_n(t) dt$.

- **b.** On suppose de plus que f est uniformément continue sur \mathbb{R} . Montrer avec soin que la suite de fonctions $(f * \rho_n)_{n \ge 1}$ est une suite de fonctions de classe C^{∞} qui converge uniformément sur \mathbb{R} vers f.
- **c.** En déduire le résultat d'approximation (A_2) : toute fonction continue sur $\mathbb R$ à support compact, est limite uniforme sur $\mathbb R$ d'une suite de fonctions tests (on pourra utiliser librement le résultat suivant : une fonction continue sur $\mathbb R$, nulle à l'infini, est uniformément continue sur $\mathbb R$).

<u>Remarque</u>: L'espace des fonctions tests joue un rôle important en analyse, notamment dans la théorie des distributions pour la résolution d'équations aux dérivées partielles.

III. Théorème de Whitney

Le but de cette partie est de démontrer le théorème suivant :

Théorème de Whitney: Si F est une partie fermée de \mathbb{R} , alors il existe une fonction f de classe C^{∞} sur \mathbb{R} telle que F = Z(f) où $Z(f) = \{x \in \mathbb{R}, f(x) = 0\}$.

- 13. Justifier que la réciproque du théorème de Whitney est vraie.
- 14. Une première tentative de preuve ... infructueuse

Soit F une partie fermée de \mathbb{R} .

Pour tout réel x, on note $d(x,F) = \inf_{y \in F} |x-y|$ et d_F l'application définie sur \mathbb{R} par $d_F(x) = d(x,F)$.

Déterminer $Z(d_F)$. Quelle propriété notée (P) devrait vérifier l'application d_F pour que le théorème de Whitney puisse être démontré ?

Représenter graphiquement d_F dans le cas particulier où $F =]-\infty, -1] \cup [1, +\infty[$.

 d_F vérifie-t-elle cette propriété (P) ? Justifier votre réponse.

15. *Utilisation de fonctions tests*

Démontrer le théorème de Whitney dans les cas suivants :

- (i) F est le complémentaire d'un intervalle ouvert a,b.
- (ii) F est le complémentaire de la réunion de deux intervalles ouverts disjoints.
- 16. Démontrer le théorème de Whitney dans le cas général. On utilisera librement le résultat suivant : une partie ouverte Ω de $\mathbb R$, peut s'écrire comme une réunion finie ou dénombrable d'intervalles ouverts disjoints, c'est-à-dire $\Omega = \bigcup_{k \in I}]a_k, b_k[$, où I est une partie de $\mathbb N$.

Fin de l'énoncé