Math 252 Exam 3 Review (Problems)

- 1. Using polar coordinates, evaluate $\iint_R (x^2 + y^2)^{3/2} dA$ where R is the region bounded by the circle of radius a centered at the origin.
- 2. a. Show that $\mathbf{F}(x,y) = (3x^2y + 2x)\hat{\imath} + (x^3 + 2y)\hat{\jmath}$ is conservative and find a function f such that $\nabla f = \mathbf{F}$.
 - b. Let **F** be as in part a. and $\mathbf{r}(t) = \langle t^4, t^2 + 1 \rangle$, $0 \le t \le 1$. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{x}$.
- 3. Find the curl and divergence of $\mathbf{F} = \langle xz^2, 2yz, 3xy^2 \rangle$.
- 4. Evaluate $\int_{-1}^{2} \int_{1}^{x} \int_{0}^{x+y} (3x^{2}y) dz \ dy \ dx$.
- 5. Find a conservative vector field **F** that has the potential $f(x, y, z) = 4x^2y 2y^2z^3$;
- 6. For the solid bounded in the first octant by the plane 4x + 2y + z = 12 with density $\delta(x, y, z) = 5x^3$,
 - a. find it's mass.
 - b. set up (but don't solve) the integral to find M_{xz} .
- 7. Find the equation of the tangent plane to the surface given by $x = u^2 + 2v^2$, y = uv and z = 3u v when u = 2 and v = -1.
- 8. Evaluate $\int_{(1,1,1)}^{(2,3,4)} (4xy) dx + (2x^2 + 2yz^3) dy + (3y^2z^2 + 3) dz$.
- 9. The force at a point (x, y, z) in three dimensions is given by $\mathbf{F} = \langle y, z, x \rangle$. Find the work done by \mathbf{F} along the twisted cubic x = t, $y = t^2$ and $z = t^3$ from (0, 0, 0) to (2, 4, 8).
- 10. For the solid bounded by $z = \sqrt{16x^2 + 16y^2}$, $x^2 + y^2 = 16$, and z = 0,
 - a. find its volume.
 - b. find the center of mass if $\delta = \sqrt{x^2 + y^2}$.

- 11. Find the volume of the solid that lies outside the cone $z^2=x^2+y^2$ and inside the sphere $x^2+y^2+z^2=18$
- 12. Find the center of mass of the lamina that has the shape of the region bounded by $y = x^2$ and y = 9 with density $\delta(x, y) = 12x^2y^2$.
- 13. Find the volume of the solid bounded by $z = \sqrt{x^2 + y^2}$ and $x^2 + y^2 + z^2 = 16$.
- 14. Find the surface area of S, the part of the paraboloid $z = x^2 + y^2$ under the plane z = a, a > 0.
- 15. Use polar coordinates to evaluate the integral $\iint_R x \sqrt{x^2 + y^2} dA$ where R si the region bounded by the semicircle $x = \sqrt{36 y^2}$.
- 16. Evaluate $\iint_R \frac{2y+x}{y-2x} dA$ where R is the region bounded by the trapezoid with vertices (-1,0), (-2,0), (0,4), (0,2).
- 17. Use an appropriate change of variables to find $\iint_R \frac{x-y}{2x+3y} dA \text{ where } R \text{ is the region bounded}$ by the lines x-y=-1, x-y=2, 2x+3y=1, and 2x+3y=3.
- 18. Find the curl and divergence of $\mathbf{F} = \langle -3\sin x + \cos y, 6xz^2, 3y + z \rangle$.
- 19. Use Green's theorem to evaluate $\oint_C (6y)dx + (\frac{5}{3}x^3)dy$, where C is the boundary of the first quadrant region bounded by $y = 36 x^2$ and the x-axis.
- 20. Evaluate the line integral $\int_C (xy^2) dx + (4xy^3) dy$ along C: $x = y^2$ from (0,0) to (4,2).
- 21. Find the surface area of the part of the parabaloid $z = f(x, y) = 20 x^2 y^2$ above z = 4.
- 22. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = 2x\hat{\imath} xy\hat{\jmath} + xz\hat{k}$ and S is the surface of the parabaloid $x = y^2 + z^2$ with $x \le 1$ and the disk $y^2 + z^2 = 1$ at x = 1.

- 23. Evaluate $\iint_S (x^2z + y^2z) dS$, where S is the part of the plane z = 4 + x + y that lies inside the cylinder $x^2 + y^2 = 4$.
- 24. Use Stokes' theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x,y,z) = xy\hat{\imath} + yz\hat{\jmath} + xz\hat{k}$ and C is the positively oriented triangle with vertices (3,0,0), (0,2,0), (0,0,6).
- 25. Evaluate $\iint_R (2x+y)e^{(2y-x)}dA$, where R is the rectangle with vertices (2,1), (6,3), (4,7) and (0,5).
- 26. Find the surface area for the surface given by the parametric equations $x=u+v,\ y=uv$ and z=u-v with $u^2+v^2\leq 4$.
- 27. Verify Green's Theorem is true for $\int_C xy^2 dx x^2y dy$, where C consists of the parabola $y = x^2$ from (-1,1) to (1,1) and the line segment from (1,1) to (-1,1). (i.e. evaluate directly and using Green's Theorem)

Math 252 Exam 3 Review (Answers)

- (Math-252 Exam 3 Practice)
 (ANSWER)
- 2. (Math-252 Some Exam 3 Practice) 6
- 3. (Math-252 Quiz 21)
 - Curl: $\langle 6xy 2y, 2xz 3y^2, 0 \rangle$ - Divergence: $z^2 + 2z$
- 4. (Math-252 Exam 3 Practice)
- 5. (Math-252 Quiz 21) $\mathbf{F} = \nabla f = \langle 8xy, 4x^2 4yz^3, -6y^2z^2 \rangle$
- 6. (Math-252 Quiz 18)

(ANSWER)

- a. m = 243
- b. $M_{xz} = \int_0^3 \int_0^{6-2x} \int_0^{12-4x-2y} (5x^3) y \, dz \, dy \, dx$
- 7. (Math-252 Some Exam 3 Practice) -14
- 8. (Math-252 Exam 3 Practice) (ANSWER)
- 9. (Math-252 Exam 3 Practice) (ANSWER)
- 10. (Math-252 Exam 3 Practice)
 - a. (ANSWER)
 - b. (ANSWER)
- 11. (Math-252 Quiz 19) $V = 72\pi$
- 12. (Math-252 Exam 3 Practice)
 (ANSWER)
- 13. (Math-252 Exam 3 Practice) $({\rm ANSWER})$

- (Math-252 Exam 3 Practice)
 (ANSWER)
- 15. (Math-252 Quiz 16) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{6} r \cos \theta \sqrt{r^{2}} r \ dr \ d\theta = 648$
- 16. (Math-252 Exam 3 Practice)
 (ANSWER)
- 17. (Math-252 Some Exam 3 Practice) $\frac{3}{10} \ln 3$
- 18. (Math-252 Exam 3 Practice) (ANSWER)
- (Math-252 Exam 3 Practice)
 (ANSWER)
- 20. (Math-252 Quiz 21) $\int_C (xy^2) dx + (4xy^3) dy = \int_0^2 (6t^5) dt = 64$
- 21. (Math-252 Quiz 17) $S = \frac{\pi}{6} (65^{3/2} 1)$
- 22. (Math-252 Some Exam 3 Practice) 3π
- 23. (Math-252 Some Exam 3 Practice) $32\pi\sqrt{3}$
- 24. (Math-252 Some Exam 3 Practice) -25
- 25. (Math-252 Quiz 20) $\int_{5}^{15} \int_{0}^{10} ue^{v} \left(\frac{5}{25} \right) dv du = 20(e^{10} 1)$
- 26. (Math-252 Some Exam 3 Practice) $\frac{\pi}{3}(12^{3/2}-8)$
- 27. (Math-252 Some Exam 3 Practice) 0 (but what does this mean?)