Introduction to Electrical Engineering Practice

Course Code: EE 113

Department: Electrical Engineering

Instructor Name: B.G. Fernandes

E-mail id: bgf@ee.iitb.ac.in

Diode Rectifier

 π - 2π V_{BA} is +ve (Pot of B > Pot of A)

 $0 - \pi V_{AB}$ is +ve (Pot of A > Pot of B) 20

Diode Bridge Rectifier

Output Voltage across the load is pulsating and therefore the current.

In case the load requires a constant voltage

- ➤ Connect a Capacitor across the load
- \triangleright V_o should remain \approx constant.
- > Therefore 'τ' should be large

Diode Bridge Rectifier with Capacitor filter

Assume $V_c=0$ at t=0; Switch is closed at t=0; D_1-D_4 are ideal.

$$V_{AB} = V_{o} \text{ till } \omega t = \pi/2$$

at $\omega t = \pi/2^{+}$
 $V_{AB} < V_{m} \text{ but}$
 $V_{c} = V_{o} = V_{m}$

Cathode potential of D_1 >Anode potential of D_1 . Diode is Reverse Biased. Source current = 0

Diode Bridge Rectifier with Capacitor filter

Source does not supply power. Capacitor supplies power to the load.

Because ' τ ' is large, V_o gradually falls, this will continue till D_3-D_4 starts conducting, this can happen as and when $V_B > V_X$. It happens at t_1 .

Unregulated DC Power Supply (using Capacitive Filter)

 Bridge rectifier followed by a large value Capacitor connected parallel to a load resistance

$$C \approx \frac{V_{\text{max}}}{2 * R * \Delta V * f}$$

- Ripple voltage and its reduction
 - Keep on increasing the Capacitor value not a good solution
 - Use voltage regulator circuits (Zener regulator or Voltage regulator ICs)

Zener Diode

- Normal diodes operate in forward biased state, but Zener diode is operated in reverse biased state
- It has very sharp V-I characteristic in reversed direction

Ideal zener characteristics

Actual zener characteristics

Zener Diode as a Voltage Regulator

In reverse breakdown range, Zener diode maintains constant voltage across it.

- 1. Zener diode should be reverse biased and R should be chosen such that Iz should be within its rating.
- $2. I_R = I_{load} + I_Z$

Zener Diode as a Voltage Regulator (Design)

- Assuming Zener diode to be ideal, $V_{out} = V_{Zener}$
- Current through R is $I_Z + I_{load}$
- When $I_{load} = 0$ (or R_{load} is open), Zener diode will have maximum current,

•
$$I_{Zmax} = \frac{V_{in} - V_{zener}}{R}$$

- Choose R such that I_{7max} is within the permissible range
- For finite values of R_{load} , load current is, $I_{Load} = \frac{V_{Zener}}{R_{Load}}$

Zener Diode Clipping Circuits

Zener diode clipping circuit 1 and the observed V_{out} waveform

Zener diode clipping circuit 2 and the observed V_{out} waveform

Zener diode clipping circuit 3 and the observed V_{out} waveform

Zener Diode as a Voltage Regulator (Design)

- Used for regulating the output voltage of a DC Power supply against variations in the input voltages.
- Effective when the load currents are fairly small. (in the mA range)
- For high currents, voltage regulator ICs are available
 - e.g.: LM7805 5V regulator; LM7812 12V regulator;
 - LM7905 -5V regulator, LM7912 -12V regulator

Light Emitting Diode (LED)

- When electron jumps from conduction band to valence band, it losses energy
- This energy can appear as heat or light
- In silicon, it appears as heat
- In Gallium Arsenide, lost energy appears as light
- When Gallium Arsenide p-n junction is forward biased, it emits light

Photodiode

- Photodiode is operated in reverse biased state
- Functioning is opposite to that of LED
- I_S, reverse saturation current is a function of incident radiation
- When light is incident on the photodiode (junction), electrons absorb energy and jump to conduction band
- Reverse current through the diode increases

Electric power capacity in India

Total Installed Capacity (31st Oct, 2021)

390.791 GW[†]

Total wind power installations (31st Oct, 2021)

39.990[†], (10.23%)

Cumulative solar installations (31st Oct, 2021)

47.665[†], (12.19%)

National Solar Mission -> 100 GW Solar Capacity by 2022 *

[†] https://cea.nic.in/wp-content/uploads/installed/2021/10/installed_capacity.pdf

[‡] https://mnre.gov.in/solar/current-status/

Diodes vs Solar Cells

- Normal diodes used for rectification are encapsulated in dark epoxy material. Therefore, no light enters the P-N junction.
- Solar cells are also (large area) diodes, but in their case, the junction is intentionally kept bare, (or encapsulated in transparent materials) so that the light enters the P-N junction.
- The light that enters P-N junction of solar cells results in photon-generated current, which is constant for a given light intensity and flows in the opposite direction to that of diode current.
- This current is then passed through the load connected to the solar cell to extract electrical energy from the cell.

Current, Equivalent Circuit, I-V Curves

- Diode Current Equation is: $I = I_S(e^{\frac{qV}{kT}} 1)$
- Considering light generated current in solar cell, it becomes:

I-V Curve is inverted for convenience. So that we don't have to deal with negative currents

$$I = I_L - I_S \left(e^{\frac{qV}{kT}} - 1 \right) - \frac{V - IR_S}{R_{Sh}}$$

Solar cell

For a good quality solar cell, its open-circuit voltage (V_{OC}) and short-circuit current (I_{SC}) are given as follows

$$V_{OC} \approx \frac{nkT}{q} \ln \left(\frac{I_L}{I_S} + 1 \right)$$

$$I_{SC} = I_L$$

Solar Cell Characteristic

Effect of temperature on V-I characteristic

- Effect of illumination intensity on V-I characteristic
- Illumination intensity affects I_{SC}
- Temperature affects V_{OC}

Transistor

Diode: 2 terminal device \rightarrow Uncontrolled Switch \rightarrow Device starts conducting when $V_{AK} > 0.7 \text{ V}$

Transistor: 3 terminal device \rightarrow Controlled Switch \rightarrow Two types.

PNP Transistor

NPN Transistor

$$I_E = I_C + I_B$$

When $V_{BE} < 0.7$; Transistor is off \rightarrow "Cut-off"

In **ON state**, there are TWO modes.

Active:
$$I_C = \beta I_B$$
; where $\beta = h_{FE} = \text{current gain } \rightarrow >>1$

$$V_{CE} = V_{CC} - i_C R_C > V_{CE(Sat)}$$
 $min(V_{CE}) = V_{CE(Sat)} \approx 0.2V$

$$min(V_{CE}) = V_{CE(Sat)} \approx 0.2V$$

Saturation:

$$\mathbf{i}_{C} \neq \beta \mathbf{i}_{B}$$
 ; $\mathbf{i}_{C} = \frac{\mathbf{V}_{CC} - \mathbf{V}_{CE_{C}Sat_{C}}}{\mathbf{R}_{C}}$

Transistor

Conclusions:

- When $V_{BE} < 0.7$; Transistor is off \rightarrow "Cut-off" mode
- In Active region, $I_C = \beta I_B$; $V_{CE} = V_{CC} i_C R_C$ \rightarrow used as an <u>AMPLIFIER</u>
- In **Saturation** region, $i_{c} = \frac{V_{cc} V_{cE_{c}Sat}}{R_{c}}$ \rightarrow used as a **SWITCH**

As a Switch:

- When OFF, voltage across switch = V_s
- When ON, voltage across switch = $0 \approx V_{CE(Sat)}$
- Assumed that resulting i_B saturates the transistor
- V_O = voltage across the transistor (V_{CE}) is the complimentary of the signal applied at the base circuit \rightarrow **INVERTER**

Transistor

