Statistique Descriptive : Corrigé du Devoir surveillé octobre 2014

Enseignante : Mme Héla Ouaili Mallek Durée :1h30

Corrigé de l'exercice 1 :

1.
$$T = \prod_{i=1}^{4} (1 + \tau_i) - 1$$
.

2.
$$\tau = \sqrt[4]{1+T} - 1 = \sqrt[4]{\prod_{i=1}^{4} (1+\tau_i)} - 1$$

3.
$$\tau_{34} = \sqrt{(1+\tau_3)(1+\tau_4)} - 1$$

$$\mathcal{T} = 0 \iff \sqrt[4]{\prod_{i=1}^{4} (1 + \tau_i)} = 1 \iff \prod_{i=1}^{4} (1 + \tau_i) = 1 \iff (1 + \tau_{34})^2 = \frac{1}{(1 + \tau_1)(1 + \tau_2)}$$
$$\iff \tau_{34} = \frac{1}{\sqrt{(1 + \tau_1)(1 + \tau_2)}} - 1$$

Corrigé de l'exercice 2 :

Tableau des calculs préliminaires :

$$\sum n_i c_i = 4291 \times 10^2$$
 et $\sum n_i c_i^2 = 45325 \times 10^4$

1. Amplitude de référence : 100.

Loyer	[500; 700[[700; 900[[900; 1100[[1100; 1200[[1200; 1300[[1300; 1400[
Effectif	13	219	20	46	50	82
f_i	0.030	0.509	0.047	0.107	0.116	0.191
$F\left(e_{i}\right)$	0.030	0.539	0.586	0.693	0.809	1
$\overline{n_i^C}$	6.5	109.5	10	46	50	82

Histogramme:

Logements selon le loyer

- 2. La distribution présente 2 modes. On a donc une première sous-population de logements à loyer "bas" et une seconde à loyers élevés.
- 3. Pour la classe [700; 900], malgré une très forte concentration (effectif moyen par unité d'intervalle égal à $\frac{219}{200} = 1.095$) alors que la concentration la plus élevée parmi les classes restantes de même amplitude est largement en dessous (effectif moyen par unité d'intervalle égal à $\frac{20}{200} = 0.1$), il a été décidé de prendre une amplitude de classe égale à 200. Il aurait été plus judicieux de découper la classe en deux classes d'amplitude 100, permettant ainsi de préserver l'information sans pour autant perdre en termes de synthèse.

4.
$$P[X \le 550] = P[X < 550] = F(550)$$
.

$$F(550) = F(500) + (F(700) - F(500)) * \frac{550 - 500}{700 - 500}$$

$$F(550) = 0.030 * \frac{550 - 500}{700 - 500} = 0.0075$$

Seulement 0.75% des logements sont loués à moins de 550 dinars.

$$P[X \ge 1150] = 1 - F(1150)$$

$$F(1150) = F(1100) + (F(1200) - F(1100)) * \frac{1150 - 1100}{1200 - 1100}$$

$$F(1150) = 0.586 + (0.693 - 0.586) * \frac{1150 - 1100}{1200 - 1100} = 0.6395$$

$$P[X \ge 1150] = 0.360$$

Ainsi 36% des logements ont un loyer supérieur à 1150 dinars.

5. La classe modale est [700; 900[.

$$M_o = 700 + 200 * \frac{109.5 - 6.5}{(109.5 - 6.5) + (109.5 - 10)} = 801.73 \ dinars$$

La classe médiane est [700; 900[.

$$M_e = 700 + 200 * \frac{0.5 - 0.030}{0.539 - 0.030} = 884.68 \ dinars.$$

6. D'après la relation empirique de Pearson, on a

$$\overline{x} \simeq \frac{3M_e - M_o}{2} \Longrightarrow \frac{3*884.68 - 801.73}{2} = 926.16 \ dinars.$$

7.
$$\overline{x} = \frac{1}{n} n_i c_i = \frac{1}{430} * 4291 \times 10^2 = 997.91 \ dinars.$$

La valeur calculée est très différente de celle approximée car la distribution n'est ni unimodale ni peu asymétrique.

8.
$$s_X = \sqrt{\frac{1}{n} \sum n_i c_i^2 - \overline{x}^2} = \sqrt{\frac{1}{430} * 45325 \times 10^4 - (997.91)^2} = 241.34 \text{ dinars.}$$