

TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones

OSDI'10

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth

Smartphone Privacy?

(http://www.flickr.com/photos/pong/2404940312/)

Monitoring Smartphone Behavior

- There are tens of thousands of smartphone apps that provide both fun and valuable utility.
- General challenge: balance fun and utility with privacy
- Step I: "look inside" of applications to watch how they use privacy sensitive data
 - location
 - phone identifiers
 - microphone
 - camera
 - address book

Challenges

- Goal: Monitor app behavior to determine when privacy sensitive information leaves the phone
- Challenges ...
 - Smartphones are resource constrained
 - Third-party applications are entrusted with several types of privacy sensitive information
 - Context-based privacy information is dynamic and can be difficult to identify even when sent in the clear
 - ▶ Applications can share information

Dynamic Taint Analysis

- Dynamic taint analysis is a technique that tracks information dependencies from an origin
- Conceptual idea:
 - Taint source
 - Taint propagation
 - Taint sink

```
c = taint_source()
...
a = b + c
...
network_send(a)
```

• Limitations: performance and granularity is a trade-off

TaintDroid

- TaintDroid is a system-wide integration of taint tracking into the Android platform
 - Variable tracking throughout Dalvik VM environment
 - Patches state after native method invocation
 - Extends tracking between applications and to storage

TaintDroid is a firmware modification, not an app

VM Variable-level Tracking

- We modified the Dalvik VM interpreter to store and propagate taint tags (a taint bit-vector) on variables.
- Local variables and args: taint tags stored adjacent to variables on the internal execution stack.
 - ▶ 64-bit variables span 32-bit storage
- Class fields: similar to locals, but inside static and instance field heap objects
- Arrays: one taint tag per array to minimize overhead

DEX Propagation Logic

• Data flow: propagate source regs to destination reg

Op Format	Op Semantics	Taint Propagation	Description	
const-op v _A C	$v_A \leftarrow C$	$ au(v_A) \leftarrow \emptyset$	Clear v_A taint	
$move-op \ v_A \ v_B$	$v_A \leftarrow v_B$	$ au(v_A) \leftarrow au(v_B)$	Set v_A taint to v_B taint	
$move ext{-}op ext{-}R \ v_A$	$v_A \leftarrow R$	$\tau(v_A) \leftarrow \tau(R)$	Set v_A taint to return taint	
return-op v_A	$R \leftarrow v_A$	$\tau(R) \leftarrow \tau(v_A)$	Set return taint (Ø if void)	
$move ext{-}op ext{-}E\ v_A$	$v_A \leftarrow E$	$\tau(v_A) \leftarrow \tau(E)$	Set v_A taint to exception taint	
throw-op v_A	$E \leftarrow v_A$	$\tau(E) \leftarrow \tau(v_A)$	Set exception taint	
unary-op v_A v_B	$v_A \leftarrow \otimes v_B$	$\tau(v_A) \leftarrow \tau(v_B)$	Set v_A taint to v_B taint	
binary-op v_A v_B v_C	$v_A \leftarrow v_B \otimes v_C$	$\tau(v_A) \leftarrow \tau(v_B) \cup \tau(v_C)$	Set v_A taint to v_B taint $\cup v_C$ taint	
binary-op v_A v_B	$v_A \leftarrow v_A \otimes v_B$	$\tau(v_A) \leftarrow \tau(v_A) \cup \tau(v_B)$	Update v_A taint with v_B taint	
binary-op $v_A v_B C$	$v_A \leftarrow v_B \otimes C$	$\tau(v_A) \leftarrow \tau(v_B)$	Set v_A taint to v_B taint	
aput-op v_A v_B v_C	$v_B[v_C] \leftarrow v_A$	$\tau(v_B[\cdot]) \leftarrow \tau(v_B[\cdot]) \cup \tau(v_A)$	Update array v_B taint with v_A taint	
aget-op v_A v_B v_C	$v_A \leftarrow v_B[v_C]$	$\tau(v_A) \leftarrow \tau(v_B[\cdot]) \cup \tau(v_C)$	Set v_A taint to array and index taint	
sput-op v_A f_B	$f_B \leftarrow v_A$	$ au(f_B) \leftarrow au(v_A)$	Set field f_B taint to v_A taint	
sget-op v_A f_B	$v_A \leftarrow f_B$	$\tau(v_A) \leftarrow \tau(f_B)$	Set v_A taint to field f_B taint	
iput-op v_A v_B f_C	$v_B(f_C) \leftarrow v_A$	$ au(v_B(f_C)) \leftarrow au(v_A)$	Set field f_C taint to v_A taint	
iget-op $v_A v_B f_C$	$v_A \leftarrow v_B(f_C)$	$\tau(v_A) \leftarrow \tau(v_B(f_C)) \cup \tau(v_B)$	Set v_A taint to field f_C and object reference taint	

DEX Propagation Logic

Data flow: propagate source regs to destination reg

Op Format	Op Semantics	Taint Propagation	Description		
$const-op \ v_A \ C$	$v_A \leftarrow C$	$\tau(v_A) \leftarrow \emptyset$	Clear v_A taint		
$move-op \ v_A \ v_B$	$v_A \leftarrow v_B$	$ au(v_A) \leftarrow au(v_B)$	Set v_A taint to v_B taint		
$move ext{-}op ext{-}R \ v_A$	$v_A \leftarrow R$	$\tau(v_A) \leftarrow \tau(R)$	Set v_A taint to return taint		
return-op v_A	$R \leftarrow v_A$	$\tau(R) \leftarrow \tau(v_A)$	Set return taint (∅ if void)		
$move ext{-}op ext{-}E\ v_A$	$v_A \leftarrow E$	$\tau(v_A) \leftarrow \tau(E)$	Set v_A taint to exception taint		
throw-op v_A	$E \leftarrow v_A$	$ au(E) \leftarrow au(v_A)$	Set exception taint		
unary-op $v_A v_B$	$v_A \leftarrow \otimes v_B$	$ au(v_A) \leftarrow au(v_B)$	Set v_A taint to v_B taint		
binary and a second	<u> </u>		Cat and taint to an exist I am taint		
$rac{binary}{binary}$ $aget-op\ v$	$A v_B v_C$	$v_A \leftarrow v_B[v_C]$	$\tau(v_A) \leftarrow \tau(v_B[\cdot]) \cup \tau(v_C)$		
aput-op $v_A \ v_B \ v_C$	$v_B[v_C] \leftarrow v_A$	$\tau(v_B[\cdot]) \leftarrow \tau(v_B[\cdot]) \cup \tau(v_A)$	Update array v_B taint with v_A taint		
aget-op v_A v_B v_C	$v_A \leftarrow v_B[v_C]$	$\tau(v_A) \leftarrow \tau(v_B[\cdot]) \cup \tau(v_C)$	Set v_A taint to array and index taint		
sput-op v_A f_B	$f_B \leftarrow v_A$	$ au(f_B) \leftarrow au(v_A)$	Set field f_B taint to v_A taint		
sget-op v_A f_B	$v_A \leftarrow f_B$	$\tau(v_A) \leftarrow \tau(f_B)$	Set v_A taint to field f_B taint		
iput-op $v_A \ v_B \ f_C$	$v_B(f_C) \leftarrow v_A$	$\tau(v_B(f_C)) \leftarrow \tau(v_A)$	Set field f_C taint to v_A taint		
$iget-op \ v_A \ v_B \ f_C$	$v_A \leftarrow v_B(f_C)$	$\tau(v_A) \leftarrow \tau(v_B(f_C)) \cup \tau(v_B)$	Set v_A taint to field f_C and object reference taint		

DEX Propagation Logic

Data flow: propagate source regs to destination reg

Op Format	Op Semantics	Taint Propagation	Description		
$const-op \ v_A \ C$	$v_A \leftarrow C$	$ au(v_A) \leftarrow \emptyset$	Clear v_A taint		
$move-op \ v_A \ v_B$	$v_A \leftarrow v_B$	$\tau(v_A) \leftarrow \tau(v_B)$	Set v_A taint to v_B taint		
$move-op-R \ v_A$	$v_A \leftarrow R$	$\tau(v_A) \leftarrow \tau(R)$	Set v_A taint to return taint		
return-op v_A	$R \leftarrow v_A$	$\tau(R) \leftarrow \tau(v_A)$	Set return taint (Ø if void)		
$move ext{-}op ext{-}E\ v_A$	$v_A \leftarrow E$	$\tau(v_A) \leftarrow \tau(E)$	Set v_A taint to exception taint		
throw-op v_A	$E \leftarrow v_A$	$\tau(E) \leftarrow \tau(v_A)$	Set exception taint		
unary-op v_A v_B	$v_A \leftarrow \otimes v_B$	$ au(v_A) \leftarrow au(v_B)$	Set v_A taint to v_B taint		
$egin{array}{c} egin{array}{c} egin{array}{c} eta i \ eta i \ eta i \end{array} egin{array}{c} eta i \ eta i \ eta i \end{array} egin{array}{c} eta i \ eta i \$	$v_B f_C$	$v_A \leftarrow v_B(f_C)$	$ au(v_A) \leftarrow au(v_B(f_C)) \cup au(v_B)$		
aput-op v_A v_B v_C	$v_B[v_C] \leftarrow v_A$	$\tau(v_B[\cdot]) \leftarrow \tau(v_B[\cdot]) \cup \tau(v_A)$	Update array v_B taint with v_A taint		
aget-op v_A v_B v_C	$v_A \leftarrow v_B[v_C]$	$ au(v_A) \leftarrow au(v_B[\cdot]) \cup au(v_C)$	Set v_A taint to array and index taint		
sput-op v_A f_B	$f_B \leftarrow v_A$	$ au(f_B) \leftarrow au(v_A)$	Set field f_B taint to v_A taint		
sget-op v_A f_B	$v_A \leftarrow f_B$	$ au(v_A) \leftarrow au(f_B)$	Set v_A taint to field f_B taint		
iput-op $v_A v_B f_C$	$v_B(f_C) \leftarrow v_A$	$\tau(v_B(f_C)) \leftarrow \tau(v_A)$	Set field f_C taint to v_A taint		
$iget-op \ v_A \ v_B \ f_C$	$v_A \leftarrow v_B(f_C)$	$\tau(v_A) \leftarrow \tau(v_B(f_C)) \cup \tau(v_B)$	Set v_A taint to field f_C and object reference taint		

Native Methods

- Applications execute native methods through the Java Native Interface (JNI)
- TaintDroid uses a combination of heuristics and method profiles to patch VM tracking state
 - Applications are restricted to only invoking native methods in system-provided libraries

IPC and File Propagation

- TaintDroid uses message level tracking for IPC
 - Applications marshall and unmarshall individual data items
- Persistent storage tracked at the file level
 - Single taint tag stored in the file system XATTR

Performance

CaffeineMark 3.0 benchmark

CaffeineMark score roughly corresponds to the number of Java instructions per second.

- Memory overhead: 4.4%
- IPC overhead: 27%
- Macro-benchmark:
 - App load: 3% (2ms)
 - Address book: (< 20 ms)5.5% create, 18% read
 - Phone call: 10% (10ms)
 - Take picture: 29% (0.5s)

Taint Adaptors

- Taint sources and sinks must be carefully integrated into the existing architectural framework.
- Depends on information properties
 - Low-bandwidth sensors: location, accelerometer
 - High-bandwidth sensors: microphone, camera
 - Information databases: address book, SMS storage
 - ▶ Device identifiers: IMEI, IMSI*, ICC-ID, Ph. #
 - Network taint sink

Application Study

 Selected 30 applications with bias on popularity and access to Internet, location, microphone, and camera

applications	#	permissions
The Weather Channel, Cetos, Solitarie, Movies, Babble, Manga Browser	6	
Bump, Wertago, Antivirus, ABC Animals, Traffic Jam, Hearts, Blackjack, Horoscope, 3001 Wisdom Quotes Lite, Yellow Pages, Datelefonbuch, Astrid, BBC News Live Stream, Ringtones	14	
Layer, Knocking, Coupons, Trapster, Spongebot Slide, ProBasketBall	6	
MySpace, Barcode Scanner, ixMAT	3	©
Evernote	I	

Of 105 flagged connections, only 37 clearly legitimate

Findings - Location

- 15 of the 30 applications shared physical location with an ad server (admob.com, ad.qwapi.com, ads.mobclix.com, data.flurry.com)
- Most traffic was plaintext (e.g., AdMob HTTP GET):

```
...\&s = a14a4a93f1e4c68\&..\&t = 062A1CB1D476DE85\\B717D9195A6722A9\&d\%5Bcoord\%5D = 47.6612278900\\00006\%2C - 122.31589477\&...
```

- In no case was sharing obvious to user or in EULA
 - In some cases, periodic and occurred without app use

Findings - Phone Identifiers

- 7 applications sent device (IMEI) and 2 apps sent phone info (Ph. #, IMSI*, ICC-ID) to a remote server without informing the user.
 - One app's EULA indicated the IMEI was sent
 - Another app sent the hash of the IMEI
- Frequency was app-specific, e.g., one app sent phone information every time the phone booted.
- Appeared to be sent to app developers ...

"There have been cases in the past on other mobile platforms where well-intentioned developers are simply over-zealous in their data gathering, without having malicious intent." -- Lookout

Limitations

- Approach limitations:
 - TaintDroid only tracks data flows (i.e., explicit flows).
- Taint source limitations:
 - ▶ IMSI contains country (MCC) and network (MNC) codes
 - File databases must be all one type

Summary

- TaintDroid provides efficient, system-wide, dynamic taint tracking and analysis for Android
- We found 20 of the 30 studied applications to share information in a way that was not expected.
- Source code will be available soon: appanalysis.org
- Future investigations:
 - Provide direct feedback to users
 - Potential for realtime enforcement
 - Integration with expert rating systems

Demo

Demo available at http://appanalysis.org/demo/

TaintDroid running on Nexus One * video produced by Peter Gilbert (gilbert@cs.duke.edu) * special thanks to Gabriel Maganis (maganis@cs.ucdavis.edu) for TaintDroid UI

Questions?

William Enck

Systems and Internet Infrastructure Security (SIIS) Laboratory

Department of Computer Science and Engineering

The Pennsylvania State University

enck@cse.psu.edu

- Additional Team Members
 - Peter Gilbert (Duke University)
 - Byung-Gon Chun (Intel Labs, Berkeley)
 - Landon Cox (Duke University)
 - Jaeyeon Jung (Intel Labs, Seattle)
 - Patrick McDaniel (Penn State University)
 - Anmol Sheth (Intel Labs, Seattle)