Notes on "PFA implies $\mathrm{AD}^{L(\mathbb{R})}$ ",

Stefan Mesken

January 12, 2019

1 Quick Reference §1

- 1. κ is a singular, strong limit cardinal such that \square_{κ} fails.
- 2. $A_0 \subseteq \kappa \text{ codes } V_{\kappa}$.
- 3. $\lambda = \kappa^{+\operatorname{Lp}(A_0)}$.
- 4. $cf(\lambda) < \mu < \kappa$ and $\mu^{\omega} = \mu$.
- 5. g is a $Col(\omega, \mu)$ -generic filter.
- 6. Given $U \subseteq \mathbb{R}^g$ and $k < \omega$ a coarse (k, U)-Woodin mouse (witnessed by $S, T, \Sigma, \delta_0, \ldots, \delta_k$) is a countable transitive model of ZFC such that
 - (a) $N \models \delta_0 < \ldots < \delta_k$ are Woodin cardinals,
 - (b) $N \models S, T$ are trees which project to complements after the collapse of δ_k to be countable and
 - (c) there is a $\omega_1 + 1$ -iteration strategy Σ for N such that whenever $i \colon N \to P$ is an iteration map by Σ and P is countable, then $p[i(S)] \subseteq U$ and $p[i(T)] \subseteq \mathbb{R}^g \setminus U$.
- 7. For a norm ϕ : dom $(\phi) \to \text{Ord}$ we let \leq_{ϕ} be the associated prewellorder given by $x \leq_{\phi} y$ iff $\phi(x) \leq \phi(y)$ and similar for $<_{\phi}$.
- 8. For a scale $\vec{\phi}$ we let $\vec{\phi}^*$ be the associated sequence of prewellorderes.
- 9. (W_{α}^*) Let $U \subseteq \mathbb{R}^g$ and suppose there are scales $\vec{\phi}, \vec{\psi}$ on U and $\mathbb{R}^g \setminus U$ such that $\vec{\phi}^*, \vec{\psi}^* \in J_{\alpha}(\mathbb{R}^g)$. Then for all $k < \omega$ and all $x \in \mathbb{R}^g$ there are N, Σ such that

- (a) $x \in N$ and N is a coarse (k, U)-Woodin mouse as witnessed by Σ and
- (b) $\Sigma \upharpoonright HC^{V[g]} \in J_{\alpha}(\mathbb{R}^g).g$
- 10. If W_{α}^* holds, then $J_{\alpha}(\mathbb{R}^g) \models AD$.
- 11. $\mathcal{L}(C)$ is the language of set theory expanded by a constant symbol for each $c \in C$.
- 12. For any Σ_1 -formula $\theta(v)$ we associate $(\theta^k(v) \mid k < \omega)$ such that θ^k is Σ_k and for any $\gamma \in \text{Ord}$ and any $x \in \mathbb{R}$

$$J_{\gamma+1}(\mathbb{R}) \models \theta[x] \iff \exists k < \omega J_{\gamma}(\mathbb{R}) \models \theta^k[x].$$

- 13. Given a $\Sigma_1^{\mathcal{L}(\{\mathbb{R})\}}$ formula $\theta(v)$ and $z \in \mathbb{R}$, a $\langle \theta, z \rangle$ -witness is a ω -sound, $(\omega, \omega_1, \omega_1 + 1)$ -iterable z-mouse \mathcal{N} for which there are $\delta_0, \ldots, \delta_9, S, T$ such that \mathcal{N} models
 - (a) ZFC,
 - (b) $\delta_0 < \delta_1 < \dots, \delta_9$ are Woodin,
 - (c) S, T are trees on some $\omega \times \theta$, $\theta < \delta_9$ which are absolutely complementing in $V^{\text{Col}(\omega,\delta_9)}$ and
 - (d) For some $k < \omega$, p[T] is the $\Sigma_{k+3}^{\mathbb{R}}$ -theory of $J_{\gamma}(\mathbb{R})$ with γ minimal such that $J_{\gamma}(\mathbb{R}) \models \theta^{k}[z]$.
- 14. If there is a $\langle \theta, z \rangle$ -witness, then $L(\mathbb{R}) \models \theta[z]$.
- 15. (W_{α}) If $\theta(v)$ is a Σ_1 -formula, $z \in \mathbb{R}^g$ and $J_{\alpha}(\mathbb{R}^g) \models \theta[z]$, then there is a $\langle \theta, z \rangle$ -witness \mathcal{N} whose iteration strategy Σ satisfies $\Sigma \upharpoonright HC \in J_{\alpha}(\mathbb{R}^g)$.
- 16. If α is a limit ordinal, then $W_{\alpha}^* \implies W_{\alpha}$.
- 17. An ordinal β is critical iff there is some $U \subseteq \mathbb{R}^g$ such that U and $\mathbb{R}^g \setminus U$ admit scales in $J_{\beta+1}(\mathbb{R}^g)$ but U admits no scale in $J_{\beta}(\mathbb{R}^g)$.
- 18. If β is critical, then $\beta + 1$ is critical. If β is a limit of critical ordinals, then β is critical iff $J_{\beta}(\mathbb{R}^g)$ is not admissible.
- 19. Let β be critial. Then one of the following cases holds true:
 - (1) $\beta = \eta + 1$ for some critical η ,
 - (2) β is a limit of critical ordinals and either

- (a) $cf(\beta) = \omega$ or
- (b) The "inadmissible case": $cf(\beta) > \omega$ but $J_{\beta}(\mathbb{R}^g)$ is not admissible.
- (3) The "end-of-gap case": $\alpha = \sup(\{\eta < \beta \mid \eta \text{ is critical}\}) < \beta$ and either
 - (a) $[\alpha, \beta]$ is a Σ_1 gap or
 - (b) $\beta 1$ exists and $[\alpha, \beta 1]$ is a Σ_1 gap.
- 20. A self-justifying system is a countable set $\mathcal{A} \subseteq \mathcal{P}(\mathbb{R})$ which is closed under complements in \mathbb{R} and such that every $A \in \mathcal{A}$ admits a scale $\vec{\psi} = (\psi_i \mid i < \omega)$ such that $\leq_{\phi} \in \mathcal{A}$ for all $i < \omega$. Here we identify $\leq_{\phi} \subseteq \mathbb{R} \times \mathbb{R}$ with its code $\{x \oplus y \mid x \leq_{\psi_i} y\} \subseteq \mathbb{R}$.

1.1 The inadmissible case.

1. κ is a singular strong limit cardinal such that $\kappa^{+\operatorname{Lp}(A)} < \kappa^+$ for all bounded $A \subseteq \kappa^+$ and $\mu = \operatorname{cf}(\kappa^{+\operatorname{Lp}(A_0)})^\omega$ where $A_0 \subseteq \kappa$ codes V_{κ} .