DM 1 Topologie et Calcul Différentiel

Topologie définie par une famille de semi-normes

Matthieu Boyer

3 octobre 2023

Table des matières

T	Exe	ercice 1 : Generalites
	1.1	Question 1
	1.2	Question 2
		1.2.1 Continuité de l'application Somme
		1.2.2 Continuité du produit externe
	1.3	Question 3
	1.4	Question 4
	1.5	Question 5
	1.6	Question 6
2	$\mathbf{E}\mathbf{x}\mathbf{\epsilon}$	ercice 2 : Exemples
	2.1	Question 1
	2.2	Question 2
		2.2.1 Question a
		2.2.2 Question b
	2.3	Question 3
		2.3.1 Question a
		2.3.2 Question b
3	$\mathbf{E}\mathbf{x}\mathbf{\epsilon}$	ercice $3:$ Applications aux distributions tempérées sur $\mathbb R$

1 Exercice 1 : Généralités

1.1 Question 1

On remarque que les $(B(x,B,r))_{x\in E,B\subset A,|B|<+\infty,r>0}$ sont l'équivalent pour une famille de semi-normes des boules ouvertes, on les appellera donc des semies-boules. On va donc montrer que les $(B(x,B,r))_{B\subset A,|B|<+\infty,r>0}$ forment une base de voisinage de x pour chaque x dans E, i.e. que chaque voisinage de x contient au moins une semie-boule centrée en x. On en déduira alors directement que l'ensemble des semies-boules forme une base d'ouverts de $\mathcal T$.

- 1. On a toujours $B(x, B, r) \subset E$ donc E est voisinage de x.
- 2. On a toujours $p_b(x-x)=0$ par homogénéité donc toute semie-boule centrée en x et par extension tout voisinage de x contient x.
- 3. Si on prend une collection $(U_i)_{i\in I}$ de voisinages de x, et si l'un des U_i contient $B(x, B_i, r_i)$, l'union des U_i contient $B(x, B_i, r_i)$ et est donc un voisinage de x.
- 4. Si on prend une semie-boule B(x,B,r) centrée en x qui contient un élément y, en prenant $\tilde{r} = \min_{b \in B} r p_b(x-y), \ B(y,B,\tilde{r}) \subset B(x,B,r)$ donc B(x,B,r) est un voisinage de y.
- 5. Si U_0, U_1 sont deux voisinages de x, qui contiennent les semies-boules $B(x, B_0, r_0)$ et $B(x, B_1, r_1)$, alors $U \cap V$ contient la semie-boule $B(x, B_0 \cup B_1, \min(r_0, r_1))$ donc est un voisinage de x.

On a bien montré que les semies-boules centrées en x forment une base de voisinage de x, donc que les semies-boules de E forment bien une base d'ouvert de la topologie \mathcal{T}

1.2 Question 2

1.2.1 Continuité de l'application Somme

Si on se donne une semie-boule B = B(x+y,B,r) centrée en $x+y \in E$. En prenant pour ouverts autour de x et y les semies-boules $B_x = B(x,B,r/2)$ et $B_y = B(y,B,r/2)$, on a bien, si $(a_0,a_1) \in B_x \times B_y$ pour tout $b \in B$, $p_b(a_0+a_1-(x+y)) \le p_b(a_0-x)+p_b(a_1-y) < r/2+r/2=r$. Donc, l'application somme est bien continue.

1.2.2 Continuité du produit externe

On a toujours, si $(\lambda, \mu) \in \mathbb{R}^2$, et si $(x, y) \in E^2$:

$$\begin{split} p_b(\lambda x - \mu y) &= p_b(\lambda (x - y) + \lambda y - \mu y) \\ &\leq |\lambda| \, p_b(x - y) + |\lambda - \mu| \, p_b(y) & \text{Inégalité Triangulaire sur } p_b \\ &\leq |\mu| \, p_b(x - y) + |\lambda - \mu| \, p_b(y) + |\lambda - \mu| \, p_b(x - y) & \text{Inégalité Triangulaire sur } |\cdot| \end{split}$$

Donc, si on prend x de telle sorte que $p_b(x-y) < \min(1, r/(3\mu))$ et si on prend λ tel que $|\lambda - \mu| < \min(r/3, r/p_b(y))$, on a bien la continuité en (μ, y) du produit externe. On a donc bien la continuité du produit externe sur $\mathbb{R} \times E$

1.3 Question 3

Soit r > 0, on note S la boule ouverte de centre 0 et de rayon r. Si $x \in B(0_E, \{\alpha\}, r)$, on a p(x) < r.

Soit $a \in \Im(p_{\alpha})$, on note cette fois-ci S la boule ouverte de centre a et de rayon r. Si x est un antécédent de a par p_{α} , l'image par p_{α} de $B(x, \{\alpha\}, r)$ est inclue dans S. Donc p_{α} est continue.

1.4 Question 4

- (\Rightarrow) Si \mathcal{T} est séparée, si $x \neq 0_E \in E$, il existe $B \subset A$ finie, r tels que $B(0_E, B, r)$ ne contienne pas x. Autrement dit, il existe $\alpha \in B \subset A$ tel que $p_{\alpha}(x) \geq r > 0$.
- (\Leftarrow) Réciproquement, si la famille $(p_{\alpha})_{\alpha \in A}$ est séparante, soient $x \neq y \in E$. Il existe $\alpha \in A$ tel que $p_{\alpha}(x-y)=r>0$. Alors, les semies-boules $B(x,\alpha,r/3)$ et $B(y,\alpha,r/3)$ sont des voisinages de x et y respectivement et sont disjoints. Donc \mathcal{T} vérifie l'axiome de séparation des espaces séparés de Hausdorff.

1.5 Question 5

- (\Rightarrow) Il suffit de remarquer que : $\forall \alpha \in A, \forall \varepsilon > 0, B(x, \{\alpha\}, \varepsilon)$ est un voisinage de x. Donc à partir d'un certain rang $p_{\alpha}(x_n x) < \varepsilon$ et donc $p_{\alpha}(x_n x) \to 0$.
- (\Leftarrow) Si pour tout $\alpha \in A$, $p_{\alpha}(x_n x) \to 0$, on a à partir d'un certain rang, si $\varepsilon > 0$, si B est une partie finie de A, $x_n \in B(x, B, \varepsilon)$. Donc, comme tout ouvert contient une semie-boule, on a le résultat souhaité.

1.6 Question 6

Tout d'abord, les propriétés i. et ii. équivalentes pour une application linéaire. En effet, si T est continue en 0, si $x_n \to x$, $x - x_n \to 0$ et donc par continuité, $T(x - x_n) \to T(0)$ et donc $T(x_n) \to T(x)$.

Il reste alors à montrer l'équivalence des propriétés i. et iii. :

— $(i. \Rightarrow iii.)$ Supposons T continue. Pour tout $\beta \in B$, il existe un voisinage U de 0_E tel que $\forall x \in U, q_{\beta}(T(x)) \leq 1$. Comme U est ouvert, il existe $\alpha \in A$ tel qu'une semie boule de centre 0_E , de semie-norme p_{α} et de rayon r $(B(0_E, \{\alpha\}, r))$ soit inclue dans U. Mais alors, par homogénéité, $\frac{r}{p_{\alpha}(x)}x \in U$. On a donc :

$$q_{\beta}(T(x)) = \frac{p_{\alpha}(x)}{r} q_{\beta} \left(T\left(\frac{r}{p_{\alpha}(x)}x\right) \right) \le \frac{1}{r} p_{\alpha}(x)$$

— (iii. \Rightarrow i.) T étant linéaire, par hypothèses, si $\beta \in B$: $q_{\beta}(T(x) - T(y)) = q_{\beta}(T(x - y)) \le C \sup_{i \in I} p_i(x - y) =$. Mais alors, puisque ceci est vrai pour tous β , en particulier, si on se donne une semie-boule $B = B(T(x), \beta, r)$ de F, si on a $y \in B(x, I, r/C)$, $T(y) \in B$, et donc T est continue en x. Finalement, T est continue.

2 Exercice 2 : Exemples

2.1 Question 1

Il est clair que d est bien définie et est positive. Par ailleurs, si d(x,y)=0, en particulier pour tout $n\in\mathbb{N}$ $p_n(x-y)=0$ i.e., la famille des p_n étant séparante, x=y, donc d est séparée. De plus, d vérifie l'inégalité triangulaire puisqu'on a, pour tous x,y,z, $\min(p_n(x-y),1)+\min(p_n(z-x),1)\geq \min(p_n(z-y),1)$ en distinguant selon les valeurs de $p_n(x-y)$ (et z-y,z-x) De plus, chacune des semi-normes est continue pour d et une boule ouverte pour d est une intersection d'ensembles de la forme : p_n^{-1} ($[0,r_n[)$). Donc la topologie induite par d est bien $\mathcal T$. Donc E

2.2 Question 2

est métrisable.

2.2.1 Question a.

Par la question 5 de l'exercice 1. :

$$(f_n \to_{n \to +\infty} f) \Leftrightarrow (\forall x \in [0,1], |f(x) - f_n(x)| \to_{n \to +\infty} 0)$$

Les suites convergentes, sont donc les suites convergeant simplement pour la topologie usuelle sur \mathbb{R} .

On a de plus, $\forall f \in E, \forall x \in [0,1], |f(x)| = 0$ si et seulement si, f = 0 sur [0,1]. Donc, la famille p_x est séparante et donc cette topologie est séparée.

2.2.2 Question b.

Cette topologie n'est pas métrisable. En effet, cette topologie ne peut pas être engendrée par une base dénombrable d'ouverts.

2.3 Question 3

2.3.1 Question a.

Par la question 5. de l'exercice 1, $f_n \to f$ si et seulement si $\forall j, p_j(f_n - f) \to 0$, ce qui équivaut bien à dire que f_n converge uniformément sur tout segment équilibré vers f. Mais ceci est équivalent sur \mathbb{R} à la convergence uniforme sur tout compact, puisque tout compact sur \mathbb{R} est borné par une certaine constante M, i.e. inclus dans un certain [-M, M].

2.3.2 Question b.

3 Exercice 3 : Applications aux distributions tempérées sur \mathbb{R}