

Universidad Autónoma de Nuevo León Facultad de Ciencias Físico Matemáticas Investigación de Operaciones Actividad 8 Laboratorio de Álgebra Lineal

Nombre: Dayla Marely Carrizales Ortega

Matrícula: 1952471

Maestra: Luis Ángel Gutiérrez Rodríguez

Grupo: 032

15 de febrero del 2025

4.1 Repaso de sistemas de ecuaciones lineales

1. Resuelva el siguiente sistema de ecuaciones usando eliminación de Gauss-Jordan:

$$\begin{cases} 3x - y + 2z = 7 \\ -2x + 4y + z = -3 \\ 5x + 2y - 3z = 10 \end{cases}$$

$$\begin{bmatrix} 3 & -1 & 2 & 7 \\ -2 & 4 & 1 & -3 \\ 5 & 2 & -3 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -1 & 2 & 7 \\ 1 & -2 & -\frac{1}{2} & \frac{3}{2} \\ 5 & 2 & -3 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -1 & 2 & 7 \ -2 & 4 & 1 & -3 \ 5 & 2 & -3 & 10 \end{bmatrix} \qquad \begin{bmatrix} 3 & -1 & 2 & 7 \ 1 & -2 & -\frac{1}{2} & \frac{3}{2} \ 5 & 2 & -3 & 10 \end{bmatrix} \qquad \begin{bmatrix} 0 & 5 & \frac{7}{2} & \frac{5}{2} \ 1 & -2 & -\frac{1}{2} & \frac{3}{2} \ 0 & 12 & -\frac{1}{2} & \frac{5}{2} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & \frac{7}{2} & | \frac{5}{2} \\ 1 & -2 & -\frac{1}{2} & | \frac{3}{2} \\ 0 & 1 & -\frac{1}{24} & | \frac{5}{24} \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & \frac{89}{24} & | \frac{35}{24} \\ 1 & 0 & -\frac{7}{12} & | \frac{23}{12} \\ 0 & 1 & -\frac{1}{24} & | \frac{5}{24} \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 1 & | \frac{35}{89} \\ 1 & 0 & -\frac{7}{12} & | \frac{23}{12} \\ 0 & 1 & -\frac{1}{24} & | \frac{5}{24} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & \frac{89}{24} & \frac{35}{24} \\ 1 & 0 & -\frac{7}{12} & \frac{23}{12} \\ 0 & 1 & -\frac{1}{24} & \frac{5}{24} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -\frac{7}{12} \\ 0 & 1 & -\frac{1}{24} \\ \frac{5}{24} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \frac{\frac{35}{89}}{\frac{191}{89}} \qquad \qquad \therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{191}{89} \\ \frac{20}{89} \\ \frac{35}{89} \end{bmatrix}$$

$$\therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{191}{89} \\ \frac{20}{89} \\ \frac{35}{89} \end{bmatrix}$$

2. Determine todas las soluciones del siguiente sistema homogéneo:

$$x + y - z = 0$$

$$2x - y + 3z = 0$$

$$-x + 4y + 2z = 0$$

4.2 Matrices, determinantes y rango

3. Encuentre la inversa de la matriz si existe:

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 0 & -2 \\ 3 & 4 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & 3 & 1 & 0 & 0 \\ 1 & 0 & -2 & 0 & 1 & 0 \\ 3 & 4 & 1 & 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & -1 & 7 & 1 & -2 & 0 \\ 1 & 0 & -2 & 0 & 1 & 0 \\ 0 & 4 & 7 & 0 & -3 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & -7 & -1 & 2 & 0 \\ 1 & 0 & -2 & 0 & 1 & 0 \\ 0 & 0 & 35 & 4 & -11 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \frac{8}{35} & \frac{13}{35} & \frac{2}{35} \\ -\frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \\ \frac{4}{35} & -\frac{11}{35} & \frac{1}{35} \end{bmatrix} \qquad \therefore A^{-1} = \begin{bmatrix} \frac{8}{35} & \frac{13}{35} & \frac{2}{35} \\ \frac{1}{35} & \frac{1}{35} & \frac{1}{35} \\ \frac{4}{35} & -\frac{11}{35} & \frac{1}{35} \end{bmatrix}$$

4. Determine si la siguiente matriz es ortogonal:

$$B = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \qquad B^T = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Es ortogonal si: $B^T \cdot B = I$

$$B^{T} \cdot B = \begin{bmatrix} \frac{\sqrt{2}}{2} * \left(\frac{\sqrt{2}}{2}\right) - \frac{\sqrt{2}}{2} * \left(-\frac{\sqrt{2}}{2}\right) & \frac{\sqrt{2}}{2} * \left(\frac{\sqrt{2}}{2}\right) - \frac{\sqrt{2}}{2} * \left(\frac{\sqrt{2}}{2}\right) \\ \frac{\sqrt{2}}{2} * \left(\frac{\sqrt{2}}{2}\right) + \frac{\sqrt{2}}{2} * \left(-\frac{\sqrt{2}}{2}\right) & \frac{\sqrt{2}}{2} * \left(\frac{\sqrt{2}}{2}\right) + \frac{\sqrt{2}}{2} * \left(\frac{\sqrt{2}}{2}\right) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $B^T \cdot B = I$ la matriz es ortogonal

4.3 Propiedades de matrices relevantes para programación lineal

5. Explique la importancia de las matrices en la optimización lineal y resuelva un problema de transporte con matrices.

Las matrices son de suma importancia para la optimización lineal porque con ella podemos representar la función objetivo y restricciones, esto hace que se facilite la resolución del problema.

Ejemplo del problema de transporte

Datos

Costos Oferta Demanda
$$C = \begin{bmatrix} 500 & 750 & 300 & 450 \\ 650 & 800 & 400 & 600 \\ 400 & 700 & 500 & 550 \end{bmatrix}$$
 $S = \begin{bmatrix} 12 & 17 & 11 \end{bmatrix}$ $D = \begin{bmatrix} 10 & 10 & 10 \end{bmatrix}$

Función Objetivo

$$Z = 500x_{11} + 750x_{12} + 300x_{13} + 450x_{14} + 650x_{21} + 800x_{22} + 400x_{23} + 600x_{24} + 400x_{31} + 700x_{32} + 500x_{33} + 550x_{34} + 500x_{31} + 700x_{32} + 500x_{33} + 500x_{34} + 600x_{34} +$$

Restricciones

$$x_{11} + x_{12} + x_{13} + x_{14} = 12$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 17$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 11$$

$$x_{11} + x_{21} + x_{31} = 10$$

$$x_{12} + x_{22} + x_{32} = 10$$

$$x_{13} + x_{23} + x_{33} = 10$$

$$x_{14} + x_{24} + x_{34} = 10$$

	$V_1 = 500$		$V_2 = 750$		$V_3 = 300$		$V_4 = 450$		
$U_1 = 0$		500		750		300		450	12
	10		2		50		-50		
$U_2 = 50$		650		800		400		600	17
	-100		8		9		-150		
$U_3 = 150$		400		700		500		550	11
	250		200		1		10		
'	10		10		10		10		

	$V_1 = 500$		$V_2 = 750$		$V_3 = 350$		$V_4 = 650$	
$U_1 = 0$		500		750		300		450
	9		3		50		200	
$U_2 = 50$		650		800		400		600
	-100		7		10		100	
$U_3 = -100$		400		700		500		550
	1		-50		-250		10	

	$V_1 = 300$		$V_2 = 750$		$V_3 = 350$		$V_4 = 450$	
$U_1=0$		500		750		300		450
	-200		3		50		9	
$U_2 = 50$		650		800		400		600

	-300		7		10		-100	
$U_3 = 100$		400		700		500		550
	10		150		-50		1	

$$V_1 = 450$$
 $V_2 = 750$
 $V_3 = 350$
 $V_4 = 450$
 $U_1 = 0$
 500
 750
 300
 450
 -50
 2
 50
 10
 $U_2 = 50$
 650
 800
 400
 600
 10
 1
 -200
 -150
 $U_3 = -50$
 10
 10
 10
 10

	$V_1 = 400$		$V_2 = 700$		$V_3 = 300$		$V_4 = 450$	
$U_1 = 0$		500		750		300		450
	-100		-50		2		10	
$U_2 = 100$		650		800		400		600
	-150		9		8		-50	
$U_3 = 0$		400		700		500		550
	10		1		-250		-100	

Soluciones

$$x_{13} = 2$$
 $x_{14} = 10$ $x_{22} = 9$ $x_{23} = 8$ $x_{31} = 10$ $x_{32} = 1$

Valor de la función objetivo

$$z = 20,200$$

6. Determine el rango de la siguiente matriz y explique su significado en un contexto de programación lineal:

$$C = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 3 & 6 & 9 & 12 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

: El rango de la matriz C es 1 porque solo hay una fila linealmente independiente

4.4 Problemas adicionales

7. Encuentre la factorización LU de la siguiente matriz:

$$D = \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix}$$

Para encontrar las matrices LU, sabemos que

$$D = L \cdot U$$

$$L = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix} (1) \qquad U = \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix} (2)$$

Multiplicando L por U e igualamos a D

$$L \cdot U = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix}$$

$$L \cdot U = \begin{bmatrix} u_{11} & u_{12} \\ l_{21}u_{11} & l_{21} + u_{22} \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix}$$

Se forma un sistema de ecuaciones

$$u_{11} = 4$$

$$u_{12} = 3$$

$$l_{21}u_{11} = 6$$

$$l_{21} + u_{22} = 3$$

Resolviendo las ecuaciones resultantes del paso anterior

$$u_{11} = 4$$
 $u_{12} = 3$ $l_{21} = 1.5$ $u_{22} = -1.5$

Sustituimos los valores correspondientes en (1) y (2)

$$L = \begin{bmatrix} 1 & 0 \\ 1.5 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}$$

Por lo tanto, las matrices LU son:

$$L = \begin{bmatrix} 1 & 0 \\ 1.5 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}$$

8. Resuelva el siguiente sistema mediante factorización LU:

$$\begin{cases} x + 2y + z = 6 \\ 2x + 3y + 3z = 14 \\ y + 4z = 8 \end{cases}$$

Las matrices del sistema de ecuaciones son:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ 0 & 1 & 4 \end{bmatrix} \qquad x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad b = \begin{bmatrix} 6 \\ 14 \\ 8 \end{bmatrix}$$

Hacemos el procedimiento para encontrar las matrices L y U, sabiendo que se encuentra de la siguiente manera:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$L \cdot U = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

Se forma un sistema de ecuaciones, las soluciones son:

$$u_{11} = 1$$
 $u_{12} = 2$ $u_{13} = 1$ $l_{21} = 2$ $l_{31} = 0$ $u_{22} = -1$ $u_{23} = 2$ $l_{32} = -1$

Las matrices L y U, son:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

Resolvemos $L \cdot y = b$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \\ 8 \end{bmatrix}$$

Resultando en un sistema de ecuaciones

$$y_1 = 6$$

$$2y_1 + y_2 - 14$$

$$2y_1 + y_2 = 14 \rightarrow 2(6) + y_2 = 14 \rightarrow y_2 = 2$$

$$-y_2 + y_3 = 8 \rightarrow -2 + y_3 = 8 \rightarrow y_3 = 10$$

Ahora resolvemos $U \cdot x = y$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 10 \end{bmatrix}$$

Resultando también en un sistema de ecuaciones

$$x + 2y + z = 6$$
 (1)

$$-y + 2z = 2$$
 (2)

$$3z = 10 \rightarrow z = \frac{10}{3} (3)$$

Sustituyendo z en (2)

$$-y + 2\left(\frac{10}{3}\right) = 2$$

$$\Rightarrow -y + \frac{20}{3} = 2 \Rightarrow -y = 2 - \frac{20}{3} \Rightarrow y = \frac{14}{3}$$

Sustituimos en (1), $y = \frac{14}{3}$ y $z = \frac{10}{3}$

$$x + \frac{38}{3} = 6 \Rightarrow x = 6 - \frac{38}{3} = \frac{18}{3} - \frac{38}{3} = -\frac{20}{3}$$

$$\therefore x = -\frac{20}{3}, y = \frac{14}{3} \text{ y } z = \frac{10}{3}$$

9. Determine si la matriz siguiente es diagonalizable y justifique su respuesta:

$$E = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

Encontrando los valores propios de la matriz E

$$E - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 0 & 1 - \lambda \end{bmatrix}$$

Calculamos el determinante

$$\det(E - \lambda) = (1 - \lambda)(1 - \lambda) - (0 \cdot 2) = (1 - \lambda)^2$$

Igualando a 0

$$(1-\lambda)^2=0$$

$$1 - \lambda = 0$$

$$\lambda = 1$$

Sustituyendo el valor de λ en la matriz $E - \lambda I$

$$E - I = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$$

Resolviendo (E - I)v = 0

$$\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

El vector de valores propios que resultaron del paso anterior que formo un sistema de ecuaciones es: $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Por lo tanto, la matriz E no es diagonalizable, ya que solo tiene un valor propio $\lambda=1$ y no tiene suficientes vectores propios linealmente independientes para llenar un espacio de dimensión 2