Clase 17

September 21, 2022

Transformaciones Lineales

Ahora estudiaremos ciertas aplicaciones entre dos espacios vectoriales cualesquiera. Tales resultados tienen importantes aplicaciones en física, ingeniería y en matemáticas propiamente.

Definition 1 Sean V, W dos \mathbb{F} -espacios vectoriales y sea $T: V \to W$ una función. Diremos que T es una transformación lineal de V en W si cumple:

- 1. $T(u+v) = T(u) + T(v), \forall u, v \in V;$
- 2. $T(cu) = cT(u), \forall u \in V \ y \ \forall c \in \mathbb{F}.$

En el caso donde W=V la trasnformación lineal T se denomina operador lineal sobre V.

Example 2 $T: \mathbb{R}^2 \to \mathbb{R}^3$ (como \mathbb{R} -espacios vectoriales) dada por

$$T(u,v) = (u + 2v, -v, 3u)$$

Pues en efecto: si $(x,y),(w,z) \in \mathbb{R}^2$ entonces

$$T[(x,y) + (w,z)] = T(x+w,y+z)$$

$$= (x+w+2(y+z), -(y+z), 3(x+w))$$

$$= (x+w+2y+2z, -y-z, 3x+3w)$$

$$= (x+2y, -y, 3x) + (w+2z, -z, 3w)$$

$$= T(x,y) + T(w,z),$$

además si $c \in \mathbb{R}$,

$$T[c(x,y)] = T[(cx,cy)]$$

$$= (cx + 2cy, -cy, 3cx)$$

$$= (c(x + 2y), c(-y), c(3x))$$

$$= c(x + 2y, -y, 3x)$$

$$= cT[(x,y)].$$

Example 3 Si $A = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 3 & -1 \end{bmatrix}$ es una matriz $\mathbb{R}^{2\times 3}$ entonces ésta define una trasnformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ como sigue: si $u \in \mathbb{R}^3$,

$$Tu = Au$$

es decir la multiplicación, a izquierda, de A por el vector u: (supongamos u=(x,y,z))

$$T(x,y,z) = A \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{ccc} 1 & -2 & 0 \\ 0 & 3 & -1 \end{array} \right] \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{c} x-2y \\ 3y-z \end{array} \right].$$

En notación explícita podemos escribir

$$T(x, y, z) = (x - 2y, 3y - z).$$

Example 4 Si V,W son dos \mathbb{F} -espacios vectoriales cualesquiera, entonces sencillamente podemos definir la transformación lineal nula:

$$T(v) = 0.$$

O sea a todo v lo mandamos al vector nulo de W. Es lineal ya que en efecto, $si\ u,v\in V$,

$$T(u+v) = 0$$

por definición. Pero también T(u)=0=T(v) nuevamente por definición. Y luego

$$T(u) + T(v) = 0 + 0 = 0 = T(u + v).$$

Además si $c \in \mathbb{F}$,

$$T(cu) = 0$$

por definición. Pero también T(u) = 0 por definición y luego

$$cT(u) = c.0 = 0 = T(cu).$$

Example 5 Sea V un \mathbb{R} -espacio vectorial de dimensión n. Sea $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ una base ordenada (fija) para V. Para cualquier $v \in V$ consideremos sus coordenadas en la base dada:

$$[v]_{\mathcal{B}} = \begin{bmatrix} k_1 \\ k_2 \\ \dots \\ k_n \end{bmatrix}$$

(recordemos que esto quería decir que $v=k_1\mathbf{v}_1+k_2\mathbf{v}_2+...+k_n\mathbf{v}_n.$) Esto define una trasnformación lineal

$$T:V\to\mathbb{R}^n$$

dada por

$$T(v) = [v]_{\mathcal{B}}.$$

Más adelante veremos que ésta última trasnformación es un isomorfismo (trasnformación lineal biyectiva) y por ende podemos "identificar" al espacio V con \mathbb{R}^n . En otras palabras, podemos calcular todo en coordenadas para obtener información de V.

Example 6 Sea P_3 es \mathbb{R} -espacio vectorial de los polinomios de grado menor o igual que 3. Y P_4 análogamente de los polinomios de grado menor o igual que 4. Entonces definimos una transformación lineal $T: P_3 \to P_4$ como sigue: Para $p \in P_3$

$$T(p) = xp$$

Por ejemplo si $p = 3x^3 - 2x + 5 \in P_3$ entonces $T(p) = x(3x^3 - 2x + 5) = 3x^4 - 2x^2 + 5x \in P_4$.

Es lineal ya que: $si\ p(x), q(x) \in P_3$

$$T(p(x) + q(x)) = x(p(x) + q(x))$$

 $(*) = xp(x) + xq(x)$
 $= T(p(x)) + T(q(x))$

(*) si bien esta operación no está contemplada en el espacio vectorial P_3 , sabemos que podemos multiplicar y distribuir polinomios.

Además si $c \in \mathbb{R}$,

$$T(cp(x)) = x(cp(x))$$
$$= c(xp(x))$$
$$= cT(p(x)).$$

Algunas propiedades...

Remark 7 Si $T: V \to W$ es una transformación lineal entonces conserva las combinaciones lineales. Por ejemplo si $a, b \in \mathbb{F}$ y $u, v \in V$,

$$T(au + bv) = T(au) + T(bv)$$

= $aT(u) + bT(v)$.

Es decir que si teníamos una combinación lineal de los vectores $u, v \in V$ (au + bv), al aplicar T pasamos a tener una combinación lineal (con los mismos escalares) de los vectores $T(u), T(v) \in W$.

Más aún, esto siempre vale para cualquier combinación lineal finita:

$$T(a_1v_1 + ... + a_nv_n) = a_1T(v_1) + ... + a_nT(v_n).$$

O en notación compacta:

$$T\left(\sum_{k=1}^{n} a_k v_k\right) = \sum_{k=1}^{n} a_k T(v_k).$$

Theorem 8 Si $T: V \to W$ es una transformación lineal entre los \mathbb{F} -espacios vectoriales V, W, entonces

- 1. $T(\mathbf{0}) = \mathbf{0}$.
- 2. $T(-v) = -T(v) \ \forall v \in V$.
- 3. T(v w) = T(v) T(w).

Proof. (1) Tomamos cualquier $v \in V$. Por el Teorema 10 (Clase 13) sabemos que $0v = \mathbf{0}$. Luego

$$T(\mathbf{0}) = T(0v)$$

- (1) = 0T(v)
- (2) = 0
- (1) T es lineal, saca el escalar afuera. (2) nuevamente el Teorema 10 (clase 13) ya que estamos multiplicando el escalar 0 por el vector $T(v) \in W$.
- (2) Nuevamente por el Teorema 10 (clase 13) se tiene que -v=(-1)v. Entonces por la linealidad de T,

$$T(-v) = T((-1)v) = (-1)T(v) = -T(v)$$

no olvidar que T(v) es un vector del \mathbb{F} -espacio vectorial W.

(3) Sencillamente sale por la linealidad de T y el hecho -w = (-1)w:

$$T(v - w) = T(v + (-1)w)$$

$$= T(v) + T((-1)w)$$

$$= T(v) + (-1)T(w)$$

$$= T(v) - T(w).$$

Determinación de una transformación lineal a partir de vectores de una base

Sea $T:V\to W$ una trasnformación lineal. Sea $\mathcal{B}=\{v_1,...,v_n\}$ una base para V. Entonces sabemos que cualquier vector $v\in V$ se puede expresar como combinación lineal de los elemento de dicha base:

$$v = k_1 v_1 + \dots + k_n v_n$$

Luego si aplicamos T y tenemos en cuenta su linealidad:

$$T(v) = T(k_1v_1 + ... + k_nv_n)$$

= $k_1T(v_1) + ... + k_nT(v_n)$

podemos ver que el vector $T(v) \in W$ es combinación lineal de los vectores $T(v_1), ..., T(v_n)$ con los mismos escalares que v.

Los vectores $T(v_1),...,T(v_n)$ NO NECESARIAMENTE forman una base para W.

Problem 9 Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ una transformación lineal definida como sigue: Si $\mathcal{B} = \{(1,1,1), (1,1,0), (1,0,0)\}$ es una base para \mathbb{R}^3 entonces

$$T(1,1,1) = (1,0)$$

 $T(1,1,0) = (2,-1)$
 $T(1,0,0) = (4,3)$

Example 10 Dar una fórmula explícita para T(x, y, z).

Solution 11 Primero sabemos que cualquier vector $(x, y, z) \in \mathbb{R}^3$ se expresa como combinación lineal de los vectores de la base \mathcal{B} :

(*)
$$(x, y, z) = a(1, 1, 1) + b(1, 1, 0) + c(1, 0, 0)$$

es decir,

$$\begin{cases} x = a + b + c \\ y = a + b \\ z = a \end{cases}$$

Al resolver dicho sistema nos da:

$$a=z,\ b=y-z,\ c=x-y.$$

Luego volviendo a (*) tenemos que

$$(x, y, z) = z(1, 1, 1) + (y - z)(1, 1, 0) + (x - y)(1, 0, 0)$$

Ahora aplicamos T y por su linealidad tenemos que

$$T(x,y,z) = T[z(1,1,1) + (y-z)(1,1,0) + (x-y)(1,0,0)]$$

$$= T[z(1,1,1)] + T[(y-z)(1,1,0)] + T[(x-y)(1,0,0)]$$

$$= z\mathbf{T}(\mathbf{1},\mathbf{1},\mathbf{1}) + (y-z)\mathbf{T}(\mathbf{1},\mathbf{1},\mathbf{0}) + (x-y)\mathbf{T}(\mathbf{1},\mathbf{0},\mathbf{0})$$

$$= z(\mathbf{1},\mathbf{0}) + (y-z)(\mathbf{2},-\mathbf{1}) + (x-y)(\mathbf{4},\mathbf{3})$$

$$= (z,0) + (2y-2z, -y+z) + (4x-4y, 3x-3y)$$

$$= (4x-2y-z, 3x-4y+z)$$

Finalmente obtuvimos la fórmula explícita para T en cualquier (x, y, z):

$$T(x, y, z) = (4x - 2y - z, 3x - 4y + z).$$

Así por ejemplo T(-5, 4, -2) = (-26, -33).

Composición de transformaciones lineales

Definition 12 Sean U, V, W tres \mathbb{F} -espacios vectoriales y sean $T_1 : U \to V$ y $T_2 : V \to W$ dos transformaciones lineales. Se define la composición de T_2 con T_1 , denotada por $T_2 \circ T_1$, como

$$T_2 \circ T_1 : U \to W$$

mediante la fórmula

$$(T_2 \circ T_1)(u) = T_2(T_1(u)).$$

Notemos que $u \in U$ entonces $T_1(u) \in V$. Luego $T_2(T_1(u)) \in W$.

Theorem 13 Sean U, V, W tres \mathbb{F} -espacios vectoriales y sean $T_1: U \to V$ y $T_2: V \to W$ dos transformaciones lineales. Entonces la composición $T_2 \circ T_1$ es también una transformación lineal.

Proof. Sean $u, v \in U$. Entonces

$$[T_2 \circ T_1] (u+v) = T_2(T_1(u+v))$$

$$(1) = T_2(T_1(u) + T_1(v))$$

$$(2) = T_2(T_1(u)) + T_2(T_1(v))$$

$$= [T_2 \circ T_1] (u) + [T_2 \circ T_1] (v)$$

(1) Linealidad de T_1 . (2) Linealidad de T_2 . Además si $c \in \mathbb{F}$ entonces

$$[T_2 \circ T_1] (cu) = T_2(T_1(cu))$$

$$(3) = T_2(cT_1(u))$$

$$(4) = cT_2(T_1(u))$$

$$= c[T_2 \circ T_1] (u)$$

(3) Linealidad de T_1 . (4) Linealidad de T_2 .

Example 14 Consideremos las siguientes transformaciones lineales sobre los \mathbb{R} -espacios vectoriales P_1 , P_2 y P_3 :

$$T: P_1 \rightarrow P_2$$

 $S: P_2 \rightarrow P_3$

dadas explícitamente por

$$T(p) = xp$$

$$S(q) = (2x+4)q$$

Luego la composición $S \circ T : P_1 \to P_3$ esta dada por

$$[S \circ T] (p) = S(T(p))$$

$$= S(xp)$$

$$= (2x+4)xp$$

$$= (2x^2 + 4x)p$$

Por ejemplo si p = 3x - 2 entonces

$$[S \circ T](p) = (2x^{2} + 4x)p$$
$$= (2x^{2} + 4x)(3x - 2)$$
$$= 6x^{3} + 8x^{2} - 8x.$$

Sin embargo vemos que no está definida la composición $T\circ S$. Ya que tendriamos que tomar $p\in P_2$ y entonces

$$[T \circ S](p) = T(S(p))$$
$$= T((2x+4)p)$$

pero si p es de grado 2 entonces el polinomio (2x+4)p podría ser de grado 3 y luego no está definido T en un polinomio de grado 3. Esto nos indica que la composición no es una operación conmutativa necesariamente.