Devoir à la maison n°15

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 –

Partie I - Intégrales de Wallis

On pose pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$$

- **1.** Calculer I_0 et I_1 .
- 2. En intégrant par parties, trouver une relation de récurrence entre I_n et I_{n+2} .
- **3.** En déduire une expression de I_{2n} et I_{2n+1} pour tout $n \in \mathbb{N}$ à l'aide de factorielles.
- **4.** Vérifier que $(I_n)_{n\geqslant 0}$ est décroissante. En déduire que $\frac{n+1}{n+2}I_n\leqslant I_{n+1}\leqslant I_n$ pour tout $n\in\mathbb{N}$.
- **5.** Démontrer que $I_{n+1} \sim I_n$.
- **6.** Établir que pour tout $n \in \mathbb{N}$, $(n+1)I_{n+1}I_n = \frac{\pi}{2}$.
- 7. En déduire que $I_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

Partie II - Formule de Stirling

On pose pour tout $n \in \mathbb{N}^*$, $u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}$.

- **1.** Pour tout $n \in \mathbb{N}^*$, on pose $v_n = \ln \frac{u_{n+1}}{u_n}$. Montrer que $v_n = \mathcal{O}\left(\frac{1}{n^2}\right)$.
- 2. En déduire que (u_n) converge vers une certaine limite $\ell \in \mathbb{R}_+^*$.
- 3. Montrer que $\ell = \frac{1}{\sqrt{2\pi}}$ et en déduire un équivalent de n!.

Problème 2 —

Partie I -

On note $\mathscr A$ l'ensemble des matrices $\begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{pmatrix}$ avec $a,b,c\in\mathbb R$.

- **1.** Montrer que \mathscr{A} est un \mathbb{R} -espace vectoriel et préciser sa dimension.
- 2. Montrer que \mathcal{A} est un anneau commutatif.
- 3. On pose $M = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$. Justifier que (I_3, M, M^2) est une base de \mathcal{A} .
- **4.** Exprimer M^3 en fonction de I_3 et M.

Partie II -

On définit une suite (u_n) par $u_0=3$, $u_1=0$, $u_2=4$ et par la relation de récurrence : $\forall n\in\mathbb{N}, u_{n+3}=2u_{n+1}-4u_n$.

- **1.** Justifier que pour tout $k \in \mathbb{N}$, il existe des réels a_k , b_k , c_k tels que $\mathbf{M}^k = \begin{pmatrix} a_k & 0 & 0 \\ 0 & b_k & c_k \\ 0 & -c_k & b_k \end{pmatrix}$.
- **2.** Déterminer une relation de récurrence vérifiée par la suite (a_k) et deux relations de récurrence liant les suites (b_k) et (c_k) .
- 3. Pour tout $k \in \mathbb{N}$, on appelle z_k le nombre complexe $z_k = b_k + i c_k$. Exprimer z_{k+1} en fonction de z_k et montrer que $b_k = \text{Re}((1+i)^k)$.
- **4.** Retrouver ce dernier résultat en trouvant une relation de récurrence d'ordre 2 vérifiée par la suite (b_k) .
- 5. Montrer que la suite (u_n) est à valeurs entières.
- **6.** Justifier que pour tout $n \in \mathbb{N}$, $u_n = \operatorname{tr}(M^n)$.
- 7. Soit p un nombre premier. On rappelle que pour $k \in [1, p-1]$, p divise $\binom{p}{k}$ et que pour tout $a \in \mathbb{Z}$, p divise $a^p a$ (petit théorème de Fermat). Montrer que p divise u_p .