1 Графики

Нормальное распределение:

Равномерное распределение:

2 Критерии Колмогорова и Смирнова

Нормальное распределение:

\mathbf{n}	Критерий Колмогорова	Критерий Смирнова
10^{4}	1.014	0.272
10^{6}	0.867	0.101

Равномерное распределение:

	n	Критерий Колмогорова	Критерий Смирнова
1	10^{4}	1.195	0.313
1	10^{6}	0.529	0.022

Значения Критерия Колмогорова во всех случаях < 1.36, следовательно, гипотеза согласуется с эксперементальными данными Колмогрова-Смирнова

Значения Критерия Смиронова во всех случаях < 0.46, следовательно, гипотеза согласуется с эксперементальными данными Мизеса-Смирнова

3 Ошибки I рода

3.1 Нормальное распределение

$$n = 10^4, m = 10^2$$
:

γ	Критерий Колмогорова	Критерий Смирнова
0.900	0.090	0.090
0.950	0.040	0.050
0.990	0.010	0.000

$$n = 10^6, m = 10^2$$
:

γ	Критерий Колмогорова	Критерий Смирнова
0.900	0.090	0.090
0.950	0.080	0.070
0.990	0.010	0.010

3.2 Равномерное распределение

$$n = 10^4, m = 10^2$$
:

γ	Критерий Колмогорова	Критерий Смирнова
0.900	0.090	0.120
0.950	0.100	0.040
0.990	0.000	0.000

$$n = 10^6, m = 10^2$$
:

γ	Критерий Колмогорова	Критерий Смирнова
0.900	0.090	0.100
0.950	0.020	0.030
0.990	0.010	0.020

4 Ошибки II рода

4.1 Нормальное распределение

$$n = 10^4, m = 10^2$$
:

γ	Критерий Колмогорова	Критерий Смирнова
0.900	0.370	0.340
0.950	0.670	0.570
0.990	0.870	0.870

$$n = 10^6, m = 10^2$$
:

γ	Критерий Колмогорова	Критерий Смирнова
0.900	0.000	0.000
0.950	0.000	0.000
0.990	0.000	0.000

4.2 Равномерное распределение

$$n = 10^4, m = 10^2$$
:

γ	Критерий Колмогорова	Критерий Смирнова
0.900	0.000	0.000
0.950	0.000	0.010
0.990	0.000	0.090

$$n = 10^6, m = 10^2$$
:

γ	Критерий Колмогорова	Критерий Смирнова
0.900	0.000	0.000
0.950	0.000	0.000
0.990	0.000	0.000

5 Выводы

- Функция распределения лежит в доверительной полосе.
- Для нормального и равномерного распределения гипотеза выполяется полученные значения критериев Колмогорова и Смирнова меньше значений квантилей соответственно.
- \bullet Вероятность ошибки I рода стремится к $1-\gamma$
- ullet Вероятность ошибки II рода стремится к 0 при увеличении n