WHAT IS CLAIMED IS:

1	1. A substrate processing chamber comprising:
2	a chamber body;
3	a chamber to disposed on the chamber body; and
4	a transformer-coupled plasma generator plate within the substrate
, 5_	processing chamber having a plurality of transformer cores within the transformer-
XX	coupled plasma generator plate and a plurality of through holes forming conduits from
() /	a first side of the transformer-coupled plasma generator plate to a second side of the
8	transformer-coupled plasma generator plate, a first conduit passing through a first
9	transformer core.
1	2. The substrate processing chamber of claim 1 further comprising
2	a second conduit not passing through a transformer core.
1	3. The substrate processing chamber of claim 1 wherein the plasma
2	generator plate is flat.
1	4. The substrate processing chamber of claim 1 further comprising
2	a second transformer core within the transformer-coupled plasma generating plate, a
3	first primary coil being disposed to electro-magnetically couple to the first transformer
4	core and a second primary coil being disposed to electro-magnetically couple to the
5	second transformer core, wherein the first primary coil and the second primary coil are
6	connected to each other in series.
1	5. The substrate processing chamber of claim 1 wherein the toroidal
2	transformer core comprises ferrite material.
1	6. The substrate processing chamber of claim 1 wherein the
2	transformer-coupled plasma generator plate includes a delectric spacer between the
3	first side and the second side, and a remainder of an outer surface of the generator plate
4	comprises an electrical conductor.
1	7. The substrate processing chamber of claim 6 wherein the
2	dielectric spacer is disposed within a conduit through the transformer-coupled generator
3	plate.
	·

1	8. The substrate processing chamber of claim 1 further comprising
2	an alternating-current power supply configured to operate at a frequency of about
3	1 KHz-2 MHz.
1	9. A substrate processing chamber comprising:
2	a chamber body;\
3\	a chamber top disposed on the chamber body;
4	an alternating-current power supply; and
5 ^{*t}	a transformer-coupled plasma generator plate having a plurality of
6	through holes forming conduits from a first side of the transformer-coupled plasma
7	generator plate within the substrate processing chamber to a second side of the
8	transformer-coupled plasma generator plate within the substrate processing chamber, a
9	first portion of the conduits passing through centers of a plurality of toroidal
10	transformer cores within the generator plate and a second portion of the conduits not
11	passing through centers of transformer cores, the generator having a first surface
12	comprising metal, a second surface comprising metal, and a plurality of dielectric
13	spacers disposed between the first surface and the second surface in each of the first
14	portion of the conduits.
1	10. A plasma generator plate comprising:
2	a first side;
3	a second side;
4	a first conduit passing from the first side to the second side through a
5	first transformer core within the plasma generator plate;
6	a second conduit passing from the first side to the second side through a
7	second transformer core.
1	11. The plasma generator plate of claim 10 further comprising a first
2	dielectric spacer in a first secondary current path around the first transformer core.
1	12. A method of processing a substrate in a plasma processing
2	system, the method comprising:
3	providing a substrate to a substrate holder in a processing chamber of the
4	plasma processing system;

5	flowing a plasma precursor into a multi-core transformer-coupled		
6	plasma generator;		
7	generating a plasma from the plasma precursor with the multi-core		
8	transformer coupled plasma generator; and		
9	processing the substrate.		
1	13. The method of claim 12 wherein the multi-core transformer-		
2	coupled plasma generator is within the processing chamber.		
1	14. The method of claim 13 wherein the multi-core transformer-		
2	coupled plasma generator is a generator plate comprising a plurality of transformer		
3	cores within the generator plate and a plurality of through-holes forming conduits from		
4	a first side of the generator plate to a second side of the generator plate.		
1	15. The method of claim 12 wherein plasma formed by the multi-		
2	core transformer-coupled plasma generator is coupled to the processing chamber		
3	through a conduit.		
1	16. The method of claim 15 wherein the multi-core transformer-		
2	coupled plasma generator has a first conduit passing through a first transformer core		
3	and through a second transformer core.		
1	17. The method of claim 15 wherein the multi-core transformer-		
2	coupled plasma generator has a first conduit passing through a first transformer core		
3	and a second conduit passing through a second transformer core.		
1	18. A plasma processing system comprising:		
2	a first substrate support structure configured to hold a first substrate in a		
3	processing chamber;		
4	a second substrate support structure configured to hold a second		
5	substrate in the processing chamber; and		
6	a transformer-coupled plasma generator within the processing chamber		
7	disposed between the first substrate support structure and the second substrate support		
8	structure.		

1, 1	
÷	
-	
-	
6.0	
*1	
. =:	
-	
:	
1	
ignor.	

1	19. The plasma processing system of claim 18 wherein the
2	transformer-coupled plasma generator includes a toroidal transformer core.
1	20. The plasma processing system of claim 18 wherein the plasma
2	generator comprises a plasma generating plate having a plurality of transformer cores
3	within the plasma generating plate and a plurality of through holes forming conduits
4	from a first side of the plate to a second side of the plate.
1	21. A method of simultaneously processing substrates in a plasma
2	processing system, the method comprising:
3	providing a first wafer and a second wafer to a processing chamber;
4	flowing plasma precursor into the chamber;
5	generating a plasma with a transformer-coupled plasma generator
6	disposed between the first wafer and the second wafer; and
7	simultaneously processing the first wafer and the second wafer.
1	22. A plasma generator comprising:
2	an inlet in fluid communication with;
3	a first conduit passing through
4	a first toroidal transformer core and through
5	a second toroidal transformer core;
6	a second conduit completing a plasma current circuit, in cooperation
7	with the first conduit, around the first toroidal transformer core and around the second
8	toroidal transformer core; and
9	an outlet in fluid communication with the first conduit.
1	23. A plasma generator comprising:
2	an inlet in fluid communication with
3	a first conduit passing through a first transformer core and with
4	a second conduit passing through a second transformer core;
5	a third conduit in fluid communication with the first conduit to complete
6	a first plasma current circuit around the first transformer and in fluid communication
7	with the second conduit to complete a second plasma current circuit around the second
8	transformer; and

9	an outlet in fluid communication with at least the first conduit and the			
10	second conduit.			
1	24. A substrate processing system comprising:			
2	a process chamber with a chamber inlet;			
3	a chamber exhaust; and			
4	a transformer-coupled plasma generator having a first core,			
5	a first conduit passing through the first core,			
6	a second core,			
7	a second conduit passing through the second core, and			
8	a third conduit in fluid communication with the first conduit and			
9	the second conduit to complete a plasma current circuit path through the process			
10	chamber.			
1	25. The substrate processing system of claim 24 wherein the third			
2	conduit is a center conduit completing a first plasma current circuit path around the first			
3	core through the process chamber and the first conduit and completing a second plasma			
4	current circuit path around the second core through the process chamber and the second			
5	conduit.			
1	26. The substrate processing system of claim 24 wherein the first			
2	conduit and the second conduit comprise metal and further comprising a dielectric			
3	spacer in the plasma current circuit path.			
1	27. The substrate processing system of claim 24 further comprising:			
2	a fourth conduit passing through			
3	a third core; and			
4	a fifth conduit passing through			
5	a fourth core.			
1	28. The substrate processing system of claim 24 further comprising:			
2	a first primary coil disposed to couple electro-magnetic energy to the			
3	first core;			
4	a second primary coil disposed to couple electro-magnetic energy to the			
5	second core;			

0	a third primary coil disposed to couple electro-magnetic energy to the
7	third core;
8	a fourth primary coil disposed to couple electro-magnetic energy to the
9	fourth core, wherein the first primary coil, the second primary coil, the third primary
10	coil, and the forth primary coil are coupled to an AC power supply.
1	29. The substrate processing system of claim 28 wherein the first
2	primary coil, the second primary coil, the third primary coil, and the fourth primary coil
3	are connected in series with the AC power supply.
14)	30. The substrate processing system of claim 28 wherein the first
2	primary coil, the second primary coil, the third primary coil, and the fourth primary coil
3	are connected in parallel to the AC power supply.
1	31. A plasma generator comprising:
2	an inlet configured to receive a plasma precursor, the inlet in fluid
3	communication with a first plasma current path and with a second plasma current path;
4	a first conduit passing through
5	a first transformer core;
6	a second conduit passing through
7	a second transformer core, wherein the first conduit is essentially co-
8	linear with the second conduit.
1	32. A plasma generator comprising:
2	an outer shell surrounding a first inner shell housing a first toroidal
3	transformer core; and
4	a second inner shell housing a second toroidal transformer core, wherein
5	the first toroidal transformer core and the second toroidal transformer core are disposed
6	along a common center axis.
1	33. The plasma generator of claim 32 wherein the first inner shell is
2	supported within the outer shell by a web allowing circulation of secondary plasma
3	current around the first inner shell within the outer shell.

1		3 4 .	The plasma generator of claim 33 wherein the web contains an
2	electrical lead connected to a primary coil disposed to couple electro-magnetic energ		
3	to the first toro	ida l tra	insformer core.
1		35.	The plasma generator of claim 32 wherein the first inner shell
2	includes a shap	ed bot	tom portion to provide a circular cross-section to the inner shell.
1		36.	The plasma generator of claim 32 further comprising:
2		an inle	t; and
3		an outl	et, both the inlet and the outlet lying along the common center
4	axis.		
1		37.	An ion implantation system comprising:
2		an ion	source having a toroidal plasma generator, and
3	:	an ion	source aperture aligned essentially along a center line of the
4	toroidal plasma	gener	ator.
1		38.	The ion implantation system of claim 37 further comprising a
2	first extraction	electro	ode disposed to accelerate ions from the ion source toward a
3	second extracti	on elec	etrode.
1		39.	The ion implantation system of claim 37 wherein the toroidal
2	plasma generat	or incl	udes a first core and a second core, the first core and the second
3	core being align	ned ess	sentially along a center line of the toroidal plasma generator.
1		40.	A method of providing ions to an ion implantation system, the
2	method compri	sing:	
3]	provid	ing an ion precursor to a transformer-coupled toroidal plasma
4	generator in an	ion so	urce;
5	;	ionizin	g at least a portion of the ion precursor into ions, the ions having
6	a greater density at a center of the transformer-coupled toroidal plasma generator and		
7	extending along a line through the center of the transformer-coupled toroidal plasma		
8	generator; and		
9		ejectin	g a portion of the ions out of the ion source.

1	41. A plasma torch head comprising:
2	an outer nozzle;
3	an inner nozzle, the inner nozzle including a conduit passing through the
4	inner nozzle from an inlet side toward an outlet,
5	a toroidal transformer core surrounding the conduit; and
6	a bypass providing a return path for a secondary plasma current circuit
7	around the toroidal transformer core.
1	42. The plasma torch head of claim 41 wherein the inner nozzle
2	comprises metal and further including a dielectric spacer in the inner nozzle to prevent
3	an electric path through the inner nozzle around the toroidal transformer core.
1	43. The plasma torch head of claim 41 wherein a first gas is flown
2	through the conduit and a second gas if flown through the bypass, the first gas being
3	different from the second gas.
1	44. The plasma torch head of claim 43 wherein the first gas is
2	oxygen and the second gas is either propane or hydrogen.
1	45. The plasma torch head of claim 41 further comprising a primary
1	
2	coil disposed to couple electro-magnetic energy to the toroidal transformer core
3	wherein the primary coil and the toroidal transformer core are enclosed within the inner nozzle.
4	nozzie.
1	46. A method of cutting material using a plasma torch, the method
2	comprising:
3	flowing a plasma precursor in a conduit through a center of a toroidal
4	transformer core of a plasma generator in an inner nozzle of a plasma torch;
5	forming plasma from the plasma precursor;
6	completing a plasma current secondary circuit around the toroidal
7	transformer core through a bypass; and
8	transporting plasma out an outlet of the plasma torch.
1	47. The method of claim 46 further comprising flowing carrier gas
2	through the bypass.

1	48. The method of claim 46 wherein the forming plasma step
2	includes providing a primary voltage to a primary coil coupling electro-magnetic
3	energy to the toroidal transformer core, the primary voltage being an alternating-curren
4	voltage less than about 115 Volts.
1	49. An ion source for an ion milling apparatus, the ion source
27	comprising:
3	a transformer-coupled toroidal plasma generator (having a primary coil
4	disposed to couple electro-magnetic energy to a toroidal core, the transformer-coupled
5	toroidal plasma generator disposed to provide plasma along a center line of the
6	transformer-coupled toroidal plasma generator toward an accelerator plate.
1	50. The ion source of claim I wherein the transformer-coupled
2	toroidal plasma generator further includes a second toroidal core.
1	51. A method for providing ions to an ion milling apparatus, the
2	method comprising:
3	providing an ion precursor to a transformer-coupled toroidal plasma
4	generator;
5	ionizing at least a portion of the ion precursor to form ions, the ions
6	being concentrated along a center axis of the transformer-coupled toroidal plasma
7	generator; and
8	ejection a portion of the ions toward an accelerator plate.
1	52. The method of claim 51 wherein the ion precursor forms reactive
2	ions.