7. Cho dãy số nguyên dương a_n thỏa mãn với mọi n,k ta có a_{n+2k} | a_n+a_{n+k} . Cm rằng dãy số a_n kể từ lúc nào đó sẽ tuần hoàn.

Viết lại thành $a_n \mid a_{n-2k} + a_{n-k}$

Step 1) Ta cm dãy a_n bị chặn:

Step 1.1) Bây h xét số d và giả sử a_{m1} , a_{m2} ,..., a_{mk} là k số nguyên dương liên tiếp trong dãy đều chia hết cho d thì m_1 , m_2 ,..., m_k lập thành cấp số cộng có công sai lẻ.

Nếu m_2 - m_1 chia hết cho 2 thì xét $k=(m_2-m_1)/2$ và $n=m_2$ thì $d \mid a_{(m_2+m_1)/2}$ sẽ tạch vì giữa m_2 và m_1 ko có số nào chia hết cho d.

Nên m_2 - m_1 lẻ và tương tự m_3 - m_2 lẻ. Bây h xét d | $a_{(m3+m1)/2}$ thì giữa m_3 và m_1 chỉ có a_{m2} chia hết cho d nên $(m_3+m_1)=2m_2$

Từ đó tương tự ta có $m_1, m_2, ..., m_k$ lập thành cấp số cộng có công sai lẻ.

Step 1.2) Bây h, nếu dãy ko bị chặn thì xét n thỏa $a_n > max(a_1,a_2,...,a_{n-1})$, và a_n rất lớn, khi này ta có $a_n = a_{n-k} + a_{n-2k} = a_{n-2k} + a_{n-4k}$, khi này $a_{n-k} = a_{n-4k}$

Vậy $a_{n-1}=a_{n-4}$ và $a_{n-2}=a_{n-8}$ và $a_{n-2} \mid a_{n-8}+a_{n-5}$ nên $a_{n-2} \mid a_{n-5}$

Vì $a_{n-1}=a_{n-4}$ nên phải có 1 csc ck+d thỏa n-1 và n-4 cùng thuộc csc này và nếu a_m chia hết cho a_{n-1} KHI VÀ CHΙ KHI m phải thuộc csc trên. Để ý c là 1 hoặc 3.

Bây h gọi r là số NHỏ NHẤT thỏa $a_{n-1} \mid a_r$, nếu r >= [(n-1)/2] + 2 thì ko thể do chọn k thỏa n-1-k=r thì số n-1-2k sẽ nhỏ hơn. Nếu ko thì xét cái csc ck+d ở trên thì vì c là 1 hoặc 3 nên trong 3 số [(n-1)/2] + 2, [(n-1)/2] + 3, [(n-1)/2] + 4 phải có 1 số thuộc csc đó, gs số đó là s, thì xét n-1-k=s thì 0< n-1-2k<10, và vì $a_{n-1} \mid a_{n-1-2k} + a_{n-1-k}$ nên trong 10 số từ a_1 đến a_{10} phải có 1 số chia hết cho a_{n-1} .

Tương tự trong 10 số a_1 đến a_{10} phải có 1 số chia hết cho a_{n-2} . Tuy nhiên a_{n-1} hoặc a_{n-2} phải $> a_n/2$ nên ko thể nào do a_n rất lớn.

Step 2) Vậy dãy a_n bị chặn. Nên ta sẽ cm tính tuần hoàn khi dãy bị chặn thôi.

Step 2.1) Với số nguyên dương M và 1 tập hợp $S=\{N_1,N_2,...,N_t\}$, ta gọi 1 số nguyên dương n là (M,S)-tốt khi và chỉ khi n thuộc 1 trong các cấp số cộng $kM+N_1,kM+N_2,...,kM+N_t$ (tức là số dư của n khi chia cho M là 1 trong t số $N_1,N_2,...,N_t$).

Bây h, ta sẽ cm: với số nguyên dương d sao cho tồn tại vô hạn n thỏa $a_n=d$, thế thì $a_n=d$ khi và chỉ khi tồn tại số nguyên dương M và 1 tập S, thỏa mãn n là số (M,S)-tốt.

Thất vậy theo như trên, xét csc Mk+N thỏa mãn d | an khi và chỉ khi n thuộc csc đó, khi này đặt $a_{kM+N}=$ db $_k$ thì ta có $a_{kM+N+2jM}$ | $a_{kM+N+jM}+a_{kM+N}$ với mọi k và j nên b_{k+2j} | $b_{k+j}+b_k$ với mọi k và j, và tồn tại vô hạn n thỏa $b_n=1$. Để ý nếu tập giá trị khác 1 của dãy b_n là $x_1, x_2,...,x_h$, thì xét h csc là $kZ_1+Y_1, kZ_2+Y_2,...,kZ_h+Y_h$ thỏa mãn x_i | b_n khi và chỉ khi n thuộc csc kZ_i+Y_i với mọi i=1,2,...,h. Đặt $L_1=LCM(Z_1,Z_2,...,Z_h)$ thì dễ thấy, ta có n thuộc 1 trong các cấp số cộng kZ_1+Y_1 , $kZ_2+Y_2,...,kZ_h+Y_h$ khi và chỉ khi tập S_1 n là số (L_1,S_1) -tốt. Vì b_n chỉ có thể =1 hoặc chia hết cho 1 trong các số $x_1, x_2,...,x_h$ nên $b_n=1$ khi và chỉ khi n KHÔNG nằm trong tất cả các cấp số cộng kZ_1+Y_1 , $kZ_2+Y_2,...,kZ_h+Y_h$, khi này ta cũng dễ thấy nếu $b_n=1$ khi và chỉ khi tồn tại tập S_2 thỏa mãn n là (L_1,S_2) -tốt, và từ đó quay lại dãy a_n ta sẽ chọn đc số M và tập S thỏa $a_n=d$ khi và chỉ khi n là số (M,S)-tốt.

Step 2.2) Bây h, nếu tất cả các giá trị có thể có của a_n khi n đủ lớn là $d_1,d_2,...,d_s$ thì với mỗi i, $a_n=d_i$ khi và chỉ khi tồn tại tập T_i và số M_i thỏa mãn n là (M_i,T_i) -tốt. Đặt $L_2=LCM(M_1,M_2,...,M_s)$, với mọi n, xét a_n và a_{n+L2} để ý $a_n=d_i$ thế thì tồn tại e thuộc T_i thỏa $n=e \pmod{M_i}$ khi này $n+L_2$ cũng $=e \pmod{M_i}$ nên $n+L_2$ cũng (M_i,T_i) tốt nên $a_{n+L2}=d_i$ hay $a_n=a_{n+L2}$ với mọi n đủ lớn.