Data structure and algorithms lab

SORTING II

Lecturers: Cao Tuan Dung dungct@soict.hust.edu.vn
Dept of Software Engineering
Hanoi University of Science and Technology

Topics of this week

- Advanced Sorting Algorithm
 - Quick sort
 - Merge sort
 - Recursive processing
- Exercises

Quicksort Algorithm

Given an array of *n* elements (e.g., integers):

- If array only contains one element, return
- Else
 - pick one element to use as pivot.
 - ¬ Partition elements into two sub-arrays:
 - Elements less than or equal to pivot
 - Elements greater than pivot
 - Quicksort two sub-arrays
 - Return results

Example

 We are given array of n integers to sort:

40 20 10 80 60 50 7 30 100
--

Quick Sort (Hoare)

```
    Given (R<sub>0</sub>, R<sub>1</sub>, ..., R<sub>n-1</sub>)
        K<sub>i</sub>: pivot key
        if K<sub>i</sub> is placed in S(i),
        then K<sub>j</sub> ≤ K<sub>s(i)</sub> for j < S(i),
              K<sub>j</sub> ≥ K<sub>s(i)</sub> for j > S(i).
    R<sub>0</sub>, ..., R<sub>S(i)-1</sub>, R<sub>S(i)</sub>, R<sub>S(i)+1</sub>, ..., R<sub>S(n-1)</sub>
```

Partitioning Array

- Given a pivot, partition the elements of the array such that the resulting array consists of:
- 1. One sub-array that contains elements>= pivot
- 2. Another sub-array that contains elements < pivot
- The sub-arrays are stored in the original data array.
- Partitioning loops through, swapping elements below/above pivot.

Partition Result

	7	20	10	30	40	50	60	80	100	
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	
- data[nivot]							- t - F.			
<= data[pivot]						> data[pivot]				

Recursion: Quicksort Subarrays

Example for Quick Sort

			T	7	1	•	•				
R0	R1	R2	R3	R4	R5	R6	R 7	R8	R9	left	right
{ 26	5	37	1	61	11	59	15	48	19}	O	9
{ 11	5	19	1	15}	26	{ 59	61	48	37}	0	4
{ 1	5}	11	{19	15}	26	{ 59	61	48	37}	O	1
1	5	11	15	19	26	{ 59	61	48	37	3	4
1	\5	11	15	19	26	{ 48	37}	59 {	61}	6	9
1	5	11	15	19	26	37	48	59 {	61}	6	7
1	5	11	15	19	26	37	48	59	61	9	9
1	5	11	15	19	26	37	48	59	61		

Quick Sort

```
int pivot, i, j;
  element temp;
  if (left < right) {</pre>
    i = left; j = right+1;
   pivot = list[left].key;
   do {
      do i++; while (list[i].key < pivot);</pre>
      do j--; while (list[j].key > pivot);
      if (i < j) SWAP(list[i], list[j], temp)</pre>
    } while (i < j);</pre>
    SWAP(list[left], list[j], temp);
    quicksort(list, left, j-1);
    quicksort(list, j+1, right);
```

Exercise 11-1: Quick sort

- We assume that you make a mobile phone's address book.
- At the very least, you should declare the structure that can store "name", "phone number" and "e-mail address". And, you should declare the array that can store about 100 data that have this structure.
- You write a program that reads about 10 data from an input file to the array and writes the data to an output file after sorting in ascending order for name.
- You must use Quick sort for sorting.

Exercise 11-2

- Initiate an array of n random integers. n is entered by user.
- Sort the array with the insertion sort
- And using quicksort
- Compare the execution time of two algorithms.
- Run the program with various values of n to view the effect.

Exercise 11-3 Combination of quick sort and insertion sort

- When a program sorts a little number of the data, a program using insertion sort is faster than a program using quick sort and so on. So, a program sorts efficiently, if a program changes sorting algorithms by the number of data.
- You write a function that selects sorting algorithms – If number of the data is more than x numbers, the function selects quick sort. If not so, it selects insertion sort.
- Note: get the number "x" as the program argument.
- Read the text file that has more than 100 characters, sort the first 100 characters, and show the result by standard output.

Merge Sort

- Problem: Given n elements, sort elements into non-decreasing order
- Apply divide-and-conquer to sorting problem
 - If n=1 terminate (every one-element list is already sorted)
 - If n>1, partition elements into two sub-arrays;
 sort each; combine into a single sorted array

Algorithm

```
MergeSort (E[ 0 .. N])
 if N < threshold
     InsertionSort ( E[0..N] )
 else
     copy E[0.. N/2] to U[0.. N/2]
     copy E[N/2 .. N] to V[0 .. N-N/2]
     MergeSort(U[0 .. N/2])
     MergeSort(V[0 .. N-N/2])
     Merge( U[0 .. N/2], V[0 .. N-N/2}, E[0
```

Merge Sort: Example

Process of merge

Merge algorithm

```
Merge (U[0..m], V[0..n], E[0..n+m])
 i = 0 , j = 0
 k = 0
 while k < n+m
    if U[i] < V [j]
         E[k] = U[i] , i++
    else
         E[k] = V[j] , j++
    k++
```

Exercise: 11-3 Merge sort

- We assume that you make a mobile phone's address book.
- At the very least, you should declare the structure that can store "name", "phone number" and "e-mail address". And, you should declare the singly-linked list that can store about 100 data that have this structure.
- You write a program that reads about 10 data from an input file to the list and writes the data to an output file after sorting in ascending order for name.
- You must use Merge sort for sorting.

Exercise: Recursive Processing

- Write a recursive algorithm for dealing a deck of cards. The parameters should be (i) the deck of undealt cards, and (ii) the person who is to receive the next card. Assume:
 - the players are seated around a table;
 - dealing begins with the player to the dealer's left;
 - each dealing step involves dealing one card to a player, then the dealer's attention moves to the next player to the left; and
 - dealing continues until no cards are left in the deck.

Hint

```
function dealCards (deck, person)
{
   if (deck is empty)
     return;
   deal top card from deck to person;
   dealCards (rest of deck, personLeftOf(person));
}
```

Exercise: Recursive Processing

• Write a recursive function void recurTriangle (int n, char ch) which prints out an upsidedown triangle. The parameter ch is the character to be used for drawing the triangle, and n is the number of characters on the first row. For example, if n is 7 and ch is '+', then the output of the function should be:

```
+++++
+++++
+++++
++++
++++
+++
```

```
void recurTriangle(int n, char ch)
int i;
  if(n > 0)
      for(i = 0; i < n; i++) printf("%c", ch);
      printf("\n");
      recurTriangle(n-1, ch);
```

Exercise 11-4: String sorting

 Write a program that sorts strings with quick sort by alphabetical order based on the following instructions.

I. Compare the character strings

 Write the function "preceding()" to search which of two character strings comes before by alphabetical order.

int preceding(char *first, char *second)

- A return value is by alphabetical order
 - Case that the character string of the argument "first" is before the character string of the argument "second": 1
 - Case that the character string of the argument "first" is equal to the character string of the argument "second":
 - Case that the character string of the argument "first" is after the character string of the argument "second": -1

II. Input the character string from the file

 Write the function "setup_nameList()" to read the name of more than 2 persons and less than 25 persons from the file and set them to the array "nameList[]" of a character string (in fact, the array of the pointer to the character string)

```
int setup_nameList(char *namelist[], char
*filename)
```

III. Implement Quicksort

 Write the function "qsort_name()" to sort the character string of the array "namelist[]" by alphabetical order with quick sort using the function you made ever.

Homework

- Write a quicksort function to sort a singly linked list. Add this function to the linked list library.
- Hint: You should have a function
 - for getting the Nth element in the linked list
 - Swapping two nodes in listed

Improve Quicksort

- Change the Pivot Selection strategy:
 - random element
 - median of three strategy
 - The median-of-three choice: take the first, the last and the middle element.
 - Choose the median of these three elements.
 - Example:
 - 8, 3, 25, 6, 10, 17, 1, 2, 18, 5
 - The first element is 8, the middle 10, the last 5. The median of [8, 10, 5] is **8**

Homework: Merge sort

- Return to the file split merge homework (with data in phone.dat)
- Read data from two splited files to arrays. Carry out mergesort and display the result on the screen.
- Write the sorted data to phone.dat.