Assignment 2 And global minimum point and value for function f(0,4) = 12+42+10 Do manual calculations to a fterations Step 18- 2=-1, 4=1, n=0.1, epoches=2 step & 6- Pter =1 step 36- of = 22 = -2 3 = 2 y = 3 step 4:- da =- n of = -2(-0.1) =0.2 $\Delta y = -\eta \frac{df}{dy} = -(0.1)(2) = -0.2$ 8tep 5:- 9=9+19 = -1+0.2=-0.8 9=4+84=1-0.2=0.8 Step 6:- Pter = Pter +1 = 1+1=2 Step 7: " of (2>2) go to step 8 else go to step3 step 3: - df = 20 = 2(-0.8) = -1.6 df = 3y = 2(0.8) = 1.6 Step 4: -. $\Delta a = -0.1(-1.6) = 0.16$ Dy = - 7 24

=-(0-1)(1-6)=-0.16

8tep 5; $9 = 3 + \Delta 9 = -0.8 + 0.16 = -0.64$ $9 = 9 + \Delta 9 = 0.8 - 0.16 = .0.64$ 8tep 6: 9 + 1 = 1 + 1 = 2 + 1 = 38tep 9: 9 + 1 = 1 + 1 = 2 + 1 = 3 3 > 2 90 + 10 = 1 + 1 = 2 + 1 = 3else 90 + 10 = 1 + 1 = 2 + 1 = 3

step 8: a=-0.64 y=0.64 $f(a,y)=a^2+y^2+10$ $=(0.64)^2+(0.64)^2+10$ =0.440.410=10.8

let us consider sample dataset have 1 input 3,0 Assignment - 3 and one off (40) and no. of samples develop a sample regression model using stochastic gradient descent optimiser.

- 1) 9,4, m=1, c=-1, n=0.1, epoches =2, ns=2
- a) it=1
- 3) sample = 1

4)
$$\frac{\partial e}{\partial m} = -(8.4 - (1))(0.2) - (-1))0.2$$

$$= -0.84$$

5)
$$\Delta m = -(0.1)(0.84) = 0.084$$
 $\Delta c = -(0.1)(-4.2)$

20.42

$$C = C + \Delta C$$

= -1 + 0.42 = -0.58

4)
$$\frac{3f}{3m} = -(3.8 - (1.08u)(0.4) + 0.58) 0.4$$

 $= -1.5 + 85$
 $\frac{3f}{3c} = -(8.8 - (1.084)(0.4) + 0.58)$
 $= -3.9964$

5)
$$\Delta m = -(0.1)(-1.5785) = 0.1578$$

 $\Delta C = -(0.1)(-3.9460) = 0.3046$

6)
$$m = m + \Delta m = 1.84 + 0.1578 = 1.2418$$

 $c = c + \Delta c = -0.58 + 0.3946 = -0.1854$

$$\frac{36}{3m} = -(3.4 - (1.2)(0.2) + 0.18))0.2$$

$$= -0.668$$

$$\frac{36}{36} = -(3.4 - (1.2)(0.2) + 0.18$$

$$= -3.34$$

$$= -3.34$$

$$= -(0.1) =$$

6)
$$m = \Delta m + m = 1.24 + 0.066 = 1.3$$

 $c = \Delta c + c = 0.18 + 0.33 = 0.15$

- a) sample = +1
- 8) if (2>2)
 go to step9
 else
 step4

4)
$$\frac{3e}{3m} = -(3.8 - (1.3)(0.4) - 0.15)0.4$$

= -1.25

$$\frac{3e}{3c} = -(3.8 - (1.3)(0.4) - 0.15)$$

$$= -3.13$$

5)
$$\Delta m = -(0.1)(-1.25) = 0.12$$

 $\Delta c = -(0.1)(-3.13) = 0.31$

6)
$$m = m + \Delta m = 1.3 + 0.12 = 1.02$$

 $c = c + \Delta c = 0.15 + 0.31 = 0.46$

-Assignment-5

let as consider a sample dataset have signi and 1 0/p (4) and no. of samples develop a sep mode wing MBGD

Sample(i)
$$2^{0}$$
 9^{0}
1 0.2 39 \rightarrow batch=1
2 0.4 3.8
3 0.6 4.2
4 0.8 4.6 \rightarrow batch=2

1)
$$(x,y)$$
; $m=1$, $c=-1$, $\eta=0.1$, epochs = 2, $bs=2$
2) $nb=ns$

2)
$$nb = ns = \frac{4}{2} = 2$$
3) c_{1} c_{2}

5)
$$\frac{10e}{0m} = \frac{1}{69} \cdot \sum_{i=1}^{69} (4i - mai - c) ai$$

 $= \frac{1}{2} \left[(3.4 - (1)(0.2) + 1) 0.2 \right] + \left[3.8 - 0.4 + i \right] 0.0$
 $= -1.34$

$$\frac{3e}{3c} = -\frac{1}{2} \left[(3 - 4 - 0.241) + (3.8 - 0.4 + 1) \right]$$

$$= -4.3$$

$$= -(0.1)(-4.3) = 0.134$$

7)
$$m=m+\Delta m=1+0.13u=1.13u$$

 $C=C+\Delta C=-1+0.03=-0.57$

$$\frac{7}{3m} = \frac{-1}{2} \left[4.2 - (1.1(0.61) + 0.57) 0.6 + (4.6 - (1.184)(0.8) + 0.57) 0.8 \right]$$

$$= 2.932$$

$$\frac{3\epsilon}{3c} = -\frac{1}{2} \left(4.2 - (1.134)(0.6) + 0.57 \right) + 4.6 - (1.34)(0.8) + 0.57 \right)$$

6)
$$\Delta m = 0.2932$$
 $\Delta C = 0.417$

7)
$$m = 1.13 + 0.293 = 1.42$$

 $C = -0.57 + 0.4 = -0.15$

$$\frac{3t}{3m} = \frac{-1}{2} \left[3.4 - (1.4)(0.2) + 0.5) 0.2 + 3.8 - (1.4)(0.4) + 0.15) 0.4 \right]$$

$$\frac{500}{700} = \frac{-1}{2} \left(3.4 - (1.42)(0.2) + 0.1523 \right) + 0.8 - (1.4)(0.4) + 0.157 \right)$$

- 8) $\Delta m = -0.1(-1.0029) = 0.1002$ $\Delta c = -0.1(-3.3241) = 0.832$
- A) $m + = \Delta m = 1.42 + 0.1002 = 1.5$ $C + = \Delta C = -0.15 + 0.3 = 0.14$
- 8) Bartch +=1,
- 9) if (2>2) go to step 10 else step 7
- $\frac{10)}{5m} = \frac{1}{2} \left(4.2 (1.5(0.6) 0.14) 0.6 + 4.6 (1.5(0.8) 0.14(0.8) \right)$

= -2.21

- B) $\Delta m = -0.1 \times 2.21 = 0.221$ $\Delta C = -0.1 \times -8.15 = 0.815$
- $A = \Delta m = 1.5 + 0.22 = 1.7$ $C = \Delta C = 0.17 + 0.3 = 0.4$
- 8) Batch += 1
- 9) of (Botch > nb) go to step 10 else step 5
- 10) 9t=1
 - (1) It (3>2) 90, step 12
 - (2) print m, C m=1.748 C=0.494

Assignment-7

let consider a sample dataset have one "/p(2°) and (gi) and no of samples a develop a sample linear regression model by BGD

sample!	Xi	140
rear (v	0.2	3.40.8
2	0.4	3.8
3	0.6	4.2
y	0.8	4.6
1-1-200	to all	112:17 -

1)
$$[x,y]$$
; $m=1$, $c=-1$, $\eta=0.1$; epochs = 2, $\eta=2$
a) $it=1$

$$\frac{3)}{5m} = \frac{-1}{n_s} \sum_{i=1}^{n_s} (q_i - m_2 - c) q_i^2$$

$$= \frac{-1}{2} \left[8.4 + (1)(0.2) + (3.8 + (1)(0.4) + (0.4)$$

$$\frac{3e}{3c} = -\frac{1}{2} \left(3.4 - 0.2 + 1 \right) + \left(3.8 - 0.4 + 1 \right) \right)$$

4)
$$\Delta m = -\eta \frac{3e}{\pi m}$$

$$= -0.1x - 1.3u = 0.134$$

$$\Delta C = -\sqrt{\frac{3c}{3c}}$$

5)
$$m + = \Delta m$$

= $1 + 0.134 = 1.13$
 $c + = \Delta c$
= $-0.1x - 4.3 = 0.43$

8)
$$9t+=1$$

9) $8t(2) \times 2$)

90 to steps;

 $3 = \frac{1}{2} \left[3.4 - (1.134)(0.2) + 0.54)(0.2) + 3.8 - (1.134)(0.2) + 0.54$

4)
$$\Delta m = -0.1 \times 1.15 = 0.1157$$

$$\Delta c = -0.1 \times -8.8 = 0.3829$$

= - 3-829

5)
$$m + = \Delta m \Rightarrow 1.134 + 0.1157 = 1.2497$$

 $c + = \Delta c \Rightarrow -0.57 + 0.3829 \Rightarrow -0.187$

f from splead

3.8-(1.134)(0.4)+0.57)0.4)

ma 1+0 (3