AOS2- Deep learning

Lecture 04: Introduction to Recurrent Neural Networks

Sylvain Rousseau

Introduction

Sequential data

- Conventional neural networks (MLP, CNN) are good for:
 - Tabular data
 - Image data
- What if data if sequential? (NLP, speech processing, time series,...)

• Collection of examples:
$$\left\{\mathbf{x}_1 = \left(\mathbf{x}_t^{(1)}\right)_{t \in I_1}, \dots, \mathbf{x}_N = \left(\mathbf{x}_t^{(N)}\right)_{t \in I_N}\right\}$$

- Order matters
- Different length
- Different indexing
- Cast as tabular data?
 - Each \mathbf{x}_i as an example in a tabular data? ... but then different number of features!

Recurrent neural networks are specially designed to handle sequential data

Sequential data models

Two different approaches

- Markov chains
 - Model $p(x_{t+1} | x_t, ... x_1)$
 - · Number of inputs varies
 - Autoregressive models: $p(x_{t+1} \mid x_t, \dots x_{t-k+1})$
 - x_{t+1} is independent from x_{t-i+1} with i > k: no long-term dependency
- Latent variable
 - Model x_{t+1} from a summary of past observations h_t

$$p(x_{t+1} \mid h_t)$$
 with
$$\begin{cases} h_t = f(h_{t-1}, x_t; \theta) \\ h_0 = 0 \end{cases}$$

- h_t is a latent variable summarizing past observations x_1, \dots, x_t
- f is recurrent! How to learn θ to fit the data?

Recurrent neural networks

Feed forward vs recurrent neural network

Feed forward neural networks:

- one input **x**
- one output o

Recurrent neural networks:

- one input \mathbf{x}_t at time t
- one output \mathbf{o}_t at time t
- a hidden state \mathbf{h}_t passed to the next iteration

Unrolled RNN

• For a sequence of length $T: \mathbf{x}_1, \dots, \mathbf{x}_T$

- Equivalent to a feed forward neural network once unrolled except that
 - Parameters are shared across layers
 - Structure depends on (length of) input

Computational graph

• Complete computation graph with parameter dependencies

- Parameters are shared across unrolled units
- Gradients receive update from all recurrent layers

General recurrent cell

Forward propagation equations:

$$\begin{cases} \mathbf{h}_{t} = f(\mathbf{h}_{t-1}, \mathbf{x}_{t}; \boldsymbol{\theta}_{f}) \\ \mathbf{o}_{t} = g(\mathbf{h}_{t}; \boldsymbol{\theta}_{q}) \end{cases}$$
 (1)

- f: compute current hidden state
- ullet g: compute current output hidden state
- x_t: input at time t
- \mathbf{h}_{t-1} : hidden state before time t
- o_t: output at time t
- h_t : hidden state after time t
- Parameters: θ_f , θ_g

Loss function and gradient

The loss over the whole sequence can be written

$$\mathcal{L} = \frac{1}{T} \sum_{t=1}^{T} \ell(\mathbf{o}_t, \mathbf{y}_t)$$
 (3)

• For parameters $oldsymbol{ heta}_g$ in function g

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_g} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{\partial \mathbf{o}_t} \frac{\partial \mathbf{o}_t}{\partial \boldsymbol{\theta}_g}$$

only one dependency!

• For parameters θ_f in function f

$$\frac{\partial \mathcal{L}}{\partial \theta_f} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \theta_f}$$

multiple dependencies...

Back propagation for last token

• For last iteration, no extra dependencies

$$\frac{\partial \mathcal{L}}{\partial h_T} = \frac{\partial \mathcal{L}}{\partial o_T} \frac{\partial o_T}{\partial h_T}$$

• Easy from equations (2) and (3)

Back propagation

• If t < T, we have

$$\frac{\partial \mathcal{L}}{\partial \mathbf{h}_{t}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}_{t+1}} \frac{\partial \mathbf{h}_{t+1}}{\partial \mathbf{h}_{t}} + \frac{\partial \mathcal{L}}{\partial \mathbf{o}_{t}} \frac{\partial \mathbf{o}_{t}}{\partial \mathbf{h}_{t}}$$
(4)

- Recurrent relation giving $\frac{\partial \mathcal{L}}{\partial h_t}$ from

$$\frac{\partial \mathcal{L}}{\partial h_{t+1}}$$

Recurrent neural network

 \bullet The output \boldsymbol{o}_t is the hidden state, we choose

$$g(x) = x$$

- *f* is implemented as:
 - a linear transform of \mathbf{x}_t and \mathbf{h}_{t-1}
 - a bias **b**
 - an entrywise non-linearity $\phi=\tanh$

We have

$$\mathbf{h}_t = \mathsf{tanh}\left(\mathcal{W}_i\mathbf{x}_t + \mathcal{W}_h\mathbf{h}_{t-1} + m{b}
ight)$$

• f is parametric with parameters W_i , W_h and \boldsymbol{b} .

Unfolding $rac{\partial \mathcal{L}}{\partial \mathbf{h}_t}$

Starting from the recurrent relation (4)

$$\begin{split} \frac{\partial \mathcal{L}}{\partial h_{t}} &= \frac{\partial \mathcal{L}}{\partial h_{t+1}} \frac{\partial h_{t+1}}{\partial h_{t}} + \frac{\partial \mathcal{L}}{\partial o_{t}} \frac{\partial o_{t}}{\partial h_{t}} \\ \frac{\partial \mathcal{L}}{\partial h_{t}} &= \left(\frac{\partial \mathcal{L}}{\partial h_{t+2}} \frac{\partial h_{t+2}}{\partial h_{t+1}} + \frac{\partial \mathcal{L}}{\partial o_{t+1}} \frac{\partial o_{t+1}}{\partial h_{t+1}} \right) \frac{\partial h_{t+1}}{\partial h_{t}} + \frac{\partial \mathcal{L}}{\partial o_{t}} \frac{\partial o_{t}}{\partial h_{t}} \\ \frac{\partial \mathcal{L}}{\partial h_{t}} &= \left(\left(\frac{\partial \mathcal{L}}{\partial h_{t+3}} \frac{\partial h_{t+3}}{\partial h_{t+2}} + \frac{\partial \mathcal{L}}{\partial o_{t+2}} \frac{\partial o_{t+2}}{\partial h_{t+2}} \right) \frac{\partial h_{t+2}}{\partial h_{t+1}} + \frac{\partial \mathcal{L}}{\partial o_{t+1}} \frac{\partial o_{t+1}}{\partial h_{t+1}} \right) \frac{\partial h_{t+1}}{\partial h_{t}} + \frac{\partial \mathcal{L}}{\partial o_{t}} \frac{\partial o_{t}}{\partial h_{t}} \\ &\vdots \\ \frac{\partial \mathcal{L}}{\partial h_{t}} &= \sum_{l=1}^{T} \frac{\partial \mathcal{L}}{\partial o_{k}} \frac{\partial o_{k}}{\partial h_{k}} \prod_{l=1}^{k-1} \frac{\partial h_{l+1}}{\partial h_{l}} \end{split}$$

Vanishing gradient/ gradient explosion

• Product of $\mathcal{O}(T)$ factors, parameters in red product only

$$\frac{\partial \mathcal{L}}{\partial \mathbf{h}_{t}} = \sum_{k=t}^{T} \frac{\partial \mathcal{L}}{\partial \mathbf{o}_{k}} \frac{\partial \mathbf{o}_{k}}{\partial \mathbf{h}_{k}} \prod_{i=t}^{k-1} \frac{\partial \mathbf{h}_{i+1}}{\partial \mathbf{h}_{i}}$$

• Let $\mathbf{z}_t = \mathcal{W}_i \mathbf{x}_t + \mathcal{W}_h \mathbf{h}_{t-1} + \mathbf{b}$, from $\mathbf{h}_t = \tanh \left(\mathcal{W}_i \mathbf{x}_t + \mathcal{W}_h \mathbf{h}_{t-1} + \mathbf{b} \right)$ we have

$$rac{\partial \mathbf{h}_{i+1}}{\partial \mathbf{h}_i} = \operatorname{\mathsf{diag}} ig(\operatorname{\mathsf{tanh}}' \left(\mathbf{z}_i
ight) ig) W_h$$

So that we have

$$\begin{split} \left\| \frac{\partial \mathbf{h}_{i+1}}{\partial \mathbf{h}_i} \right\|_2 & \leqslant \left\| \mathsf{diag} \left(\mathsf{tanh'} \left(\mathbf{z}_i \right) \right) \right\|_2 \lambda_{\mathsf{max}} (\mathcal{W}_h) \\ & \leqslant \lambda_{\mathsf{max}} (\mathcal{W}_h) \end{split} \qquad \text{(greatest eigenvalue in magnitude)}$$

Vanishing/exploding gradient

• Vanishing gradient when $\left\|\prod_{i=t}^{k-1} \frac{\partial \mathbf{h}_{i+1}}{\partial \mathbf{h}_i} \right\| \longrightarrow 0$ If $\lambda_{\max}(W_h) < 1$

$$\left\|\prod_{i=t}^{k-1} \frac{\partial \mathbf{h}_{i+1}}{\partial \mathbf{h}_i}\right\| \leqslant \lambda_{\max}(\mathcal{W}_h)^{k-t} \longrightarrow \mathbf{0} \quad \text{as} \quad k-t \longrightarrow +\infty$$

- $\frac{\partial \mathcal{L}}{\partial \mathbf{h}_t}$ is practically independent from \mathbf{x}_k with $k\gg t$
- Slow learning or no learning at all
- Fails to learn long-term dependencies
- Exploding gradient when $\left\|\prod_{i=t}^{k-1} \frac{\partial \mathbf{h}_{i+1}}{\partial \mathbf{h}_i} \right\| \longrightarrow +\infty$

Overflow error: Nans everywhere...

Gradient clipping

$$oldsymbol{g}_{ ext{clipped}} = \min \left(g_{ ext{max}}, \| oldsymbol{g} \|
ight) \cdot rac{oldsymbol{g}}{\| oldsymbol{g} \|}$$

$$m{g}_{ ext{clipped}} = egin{cases} m{g} & ext{if } \|m{g}\| \leqslant g_{ ext{max}} \ g_{ ext{max}} \cdot m{rac{m{g}}{\|m{g}\|}} & ext{otherwise} \end{cases}$$

Gradient clipping: illustrations

Modern recurrent neural networks

- Vanilla RNN shortcomings:
 - RNN suffers from numerical instability
 - Unable to learn long-term dependencies
- Ideas
 - Change the structure of recurrent cell
 - · Introduce regulating gates
- Alternatives
 - Long Short-Term Memory (LSTM), Hochreiter and Schmidhuber 1997
 - Gated Recurrent Unit (GRU), Cho et al. 2014

Key idea

- Given that $\frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_{t-1}}$ is a problem
- Why not adding a regulation mechanism such that $\mathbf{h}_t = \mathbf{h}_{t-1}$?
- Add a gate $\mathbf{u}_t \in (0, 1)$:

$$\mathbf{h}_t = \mathbf{h}_{t-1} + \mathbf{u}_t \cdot \tilde{\mathbf{h}}_t$$

- How to decide when \mathbf{u}_t should be zero?
- · Learn it as well!

$$\mathbf{u}_{t} = \sigma(\mathbf{U}\mathbf{x}_{t} + \mathbf{W}\mathbf{h}_{t-1} + \mathbf{b})$$

Gated Recurrent Unit

Gated Recurrent Unit GRU

Reset gate

$$\mathbf{r}_t = \sigma(\mathbf{U}_r \mathbf{x}_t + \mathbf{W}_r \mathbf{h}_{t-1} + \mathbf{b}_r)$$

· Candidate hidden

$$\tilde{\textbf{h}}_t = \mathsf{tanh}\left(\textbf{\textit{U}}_c\textbf{\textit{x}}_t + \textbf{\textit{W}}_c(\textbf{\textit{r}}_t\odot\textbf{\textit{h}}_{t-1}) + \textbf{\textit{b}}_c\right)$$

• Update gate

$$\begin{split} \mathbf{u}_t &= \sigma(\textit{U}_u \mathbf{x}_t + \textit{W}_u \mathbf{h}_{t-1} + \textit{b}_u) \\ \mathbf{h}_t &= (1 - \mathbf{u}_t) \odot \mathbf{h}_{t-1} + \mathbf{u}_t \odot \tilde{\mathbf{h}}_t \end{split}$$

Reset gate

- Linear transformation of \boldsymbol{h}_{t-1} and \boldsymbol{x}_t followed by a sigmoid

$$\mathbf{r}_t = \sigma(\mathbf{U}_r \mathbf{x}_t + \mathbf{W}_r \mathbf{h}_{t-1} + \mathbf{b}_r)$$

- All entries of \mathbf{r}_t are in [0, 1], can be used as a ratio to reset \mathbf{h}_{h-1}
- \mathbf{r}_t is used to reset \mathbf{h}_{t-1} : $\mathbf{r}_t \odot \mathbf{h}_{t-1}$
- $\mathbf{r}_t \odot \mathbf{h}_{t-1}$ is used instead of \mathbf{h}_{t-1}
 - If $(\mathbf{r}_t)_i = 1$, no change: $(\mathbf{r}_t \odot \mathbf{h}_{t-1})_i = (\mathbf{h}_{t-1})_i$
 - If $(\mathbf{r}_t)_i = 0$, $(\mathbf{r}_t \odot \mathbf{h}_{t-1})_i = 0$

New memory

- · Basic RNN unit except that
 - $\mathbf{r}_t \odot \mathbf{h}_{t-1}$ is used instead of \mathbf{h}_{t-1}

$$ilde{f h}_t = anh \left(extit{\it U}_c {f x}_t + extit{\it W}_c ({f r}_t \odot {f h}_{t-1}) + {m b}_c
ight)$$

Update gate

Update gate

$$\mathbf{u}_t = \sigma(\mathbf{U}_u \mathbf{x}_t + \mathbf{W}_u \mathbf{h}_{t-1} + \mathbf{b}_u)$$

- Same as reset gate with own parameters
- Convex combination of h_{t-1} and \tilde{h}_{t-1} controlled be $u_{\rm f}$

$$h_t = (1-u_t) \odot h_{t-1} + u_t \odot \tilde{h}_t$$

• If
$$(u_t)_i = 1$$
, $(h_t)_i = (\tilde{h}_t)_i$
• If $(u_t)_i = 0$, $(h_t)_i = (h_{t-1})_i$

Summary

• Equations

$$\begin{split} & r_t = \sigma(\textit{U}_r\textbf{x}_t + \textit{W}_r\textbf{h}_{t-1} + \textit{\textbf{b}}_r) \\ & \tilde{\textbf{h}}_t = \text{tanh}\left(\textit{U}_c\textbf{x}_t + \textit{W}_c(\textbf{r}_t\odot\textbf{h}_{t-1}) + \textit{\textbf{b}}_c\right) \\ & \textbf{u}_t = \sigma(\textit{U}_u\textbf{x}_t + \textit{W}_u\textbf{h}_{t-1} + \textit{\textbf{b}}_u\right) \\ & \textbf{h}_t = (1 - \textbf{u}_t)\odot\textbf{h}_{t-1} + \textbf{u}_t\odot\tilde{\textbf{h}}_t \end{split}$$

Behavior

$(\mathbf{u}_t)_i$	Result
1	Regular RNN update
1	Reset hidden
0	Keep hidden
	1 1

Summary

- Input of size d: $x_t \in \mathbb{R}^d$
- Hidden state of size $h: h_t \in \mathbb{R}^h$
- $U_r, U_c, U_u \in \mathbb{R}^{h \times d}$
- $W_r, W_c, W_u \in \mathbb{R}^{h \times h}$
- $\boldsymbol{b}_r, \boldsymbol{b}_c, \boldsymbol{b}_u \in \mathbb{R}^h$
- Number of parameters: 3h(d+h+1)

Long Short-Term Memory (LSTM)

networks

LSTM

- LSTM has 3 gates
- The hidden state is split
 - a cell state c_t
 - a real hidden state \mathbf{h}_t

Forget gate

• Decides what to forget in c_{t-1}

$$\mathbf{f}_{t} = \sigma \Big(\mathbf{U}^{f} \mathbf{x}_{t} + \mathbf{W}^{f} \mathbf{h}_{t-1} + \mathbf{b}^{f} \Big)$$

· Applied to cell state

$$\mathbf{f}_t \odot \mathbf{c}_{t-1}$$

• Parameters: U^f , W^f and b^f

Input gate

• Used to compute the new cell state

$$\mathbf{i}_{t} = \sigma \Big(\mathbf{\mathcal{U}}^{i} \mathbf{x}_{t} + \mathbf{\mathcal{W}}^{i} \mathbf{h}_{t-1} + \mathbf{b}^{i} \Big)$$

• Parameters: U^i , W^i and b^i

New cell state

- · Basic RNN unit
 - $\tilde{\mathbf{c}}_t = \mathsf{tanh}\left(\mathbf{\mathit{U}}^c\mathbf{x}_t + \mathbf{\mathit{W}}^c\mathbf{h}_{t-1} + \mathbf{\mathit{b}}^c\right)$
 - Parameters U^c , W^c and b^c
- New cell state using forget and input gates

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \mathbf{\tilde{c}}_{t}$$

Output gate

· Used to compute new hidden statement

$$\mathbf{g}_{t} = \sigma (\mathbf{U}^{o} \mathbf{x}_{t} + \mathbf{W}^{o} \mathbf{h}_{t-1} + \mathbf{b}^{o})$$

• Parameters: U° , W° and b°

New hidden state

Hidden state controled by the output gate

•
$$\mathsf{h}_\mathsf{t} = \mathsf{g}_\mathsf{t} \odot \mathsf{tanh}\, \mathsf{c}_\mathsf{t}$$

Equations

Gates

$$\begin{aligned} \mathbf{f}_t &= \sigma \Big(\mathbf{U}^f \mathbf{x}_t + \mathbf{W}^f \mathbf{h}_{t-1} + \mathbf{b}^f \Big) \\ \mathbf{i}_t &= \sigma \Big(\mathbf{U}^i \mathbf{x}_t + \mathbf{W}^i \mathbf{h}_{t-1} + \mathbf{b}^i \Big) \\ \mathbf{g}_t &= \sigma \Big(\mathbf{U}^o \mathbf{x}_t + \mathbf{W}^o \mathbf{h}_{t-1} + \mathbf{b}^o \Big) \end{aligned}$$

RNN cell

$$ilde{oldsymbol{c}}_{t} = anh\left(oldsymbol{U}^{c} oldsymbol{x}_{t} + oldsymbol{W}^{c} oldsymbol{\mathsf{h}}_{t-1} + oldsymbol{b}^{c}
ight)$$

Outputs

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$$
 $c_t = c_t \odot c_t$

 $\mathbf{h}_t = \mathbf{g}_t \odot anh \mathbf{c}_t$

Summary

• Equations

$$egin{aligned} & ilde{oldsymbol{c}}_t = \mathsf{tanh}\left(oldsymbol{\mathcal{U}}^c \mathbf{x}_t + oldsymbol{\mathcal{W}}^c \mathbf{h}_{t-1} + oldsymbol{b}^c
ight) \ & oldsymbol{c}_t = \mathbf{f}_t \odot oldsymbol{c}_{t-1} + \mathbf{i}_t \odot oldsymbol{ ilde{c}}_t \ & oldsymbol{h}_t = oldsymbol{o}_t \odot \mathsf{tanh} oldsymbol{c}_t \end{aligned}$$

Behavior

\mathbf{f}_t	\mathbf{i}_t	Result
0	0	Erase the state
0	1	Overwrite the state
1	0	Keep the state
1	1	Add to current state

Summary

- Input of size d: $x_t \in \mathbb{R}^d$
- Hidden state of size h: $h_t \in \mathbb{R}^h$
- $U_f, U_i, U_o, U_c \in \mathbb{R}^{h \times d}$
- $W_f, W_i, W_o, W_c \in \mathbb{R}^{h \times h}$
- $\boldsymbol{b}_f, \boldsymbol{b}_i, \boldsymbol{b}_o, \boldsymbol{b}_c \in \mathbb{R}^h$
- Number of parameters: 4h(d+h+1)

Many-to-one and One-to-many

One-to-many: a vector to a sequence

Image captioning: An image is given a description of it

Many-to-one: a sequence to a class/score

• Sentiment analysis: A sequence is given a label or a score

Many-to-many

Many-to-many: a sequence to another sequence

 Machine translation: a text is translated to another language Many-to-many same length: a sequence to another sequence of same length

Part-of-speech tagging: Each word is given a tag

Bidirectional RNN: motivation

- Influence of one token is exponentially decreasing as move away
- Hard to remember first token of input sequence
- Why not learn on the sequence itself and on its reverse?

Bidirectional RNN

- Two independent RNNs:
 - A regular one (in green)
 - A reversed one (in blue), on the sequence $\mathbf{x}_T, \dots, \mathbf{x}_1$
 - Two hidden state initialization vectors: \overrightarrow{h}_0 and \overleftarrow{h}_0
 - Two hidden states: $\overrightarrow{\mathbf{h}}_{t}$ and $\overleftarrow{\mathbf{h}}_{t}$ for past and future representation

Stacked RNN

• Give hidden state of one RNN as input for another RNN

Stacked bidirectional RNN

• Give hidden state of one RNN as input to respective RNN

References i

- [1] Sepp Hochreiter and Jürgen Schmidhuber. "Long short-term memory". In: Neural computation 9.8 (1997), pp. 1735–1780.
- [2] Kyunghyun Cho et al. "On the properties of neural machine translation: Encoder-decoder approaches". 2014. arXiv: 1409.1259.