Mains Test-series - 2018. Test-10, paper-II, Answerkey. 1(0) A function f: IR > IR is defined by f(0)=0 and f(x) = 0, if x 18 irrational = 1/9, if a = 1/9, where pEZ, QEN and gcd(1,9)=1. show that I is not differentiable at 0. $\frac{80\text{ fr}}{2}$: $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{f(x)}{x}$ Let $\phi(x) = \frac{f(x)}{x}$. Let {xn} be a sequence of vational points converging to o where xn = h, nen They lim of (an) = lim n. = 1 Let { Yn} be a sequence of irrational points converging to 0. $\lim_{n\to\infty} \Phi\{y_n\} = \lim_{n\to\infty} \frac{f(y_n)}{y_n} = 0$ Since f(yn) = 0 -for all nEN otherefore lim \$(2) does not exist, gince for two sequences [xn] and [yn] both Converging to 0, the sequences {\phi(\times)} and {\phi(\text{y})}.

Converge to two different limits. Hence fis not differentiable ato.

1(b) Use cauchy integral formula to evaluate
$$\int \frac{e^{32}}{(2+1)^4} d^2 + \text{lohere } C \text{ is the Circle } [24=2].$$

301'10: comparing the given integral with
$$\int \frac{f(2)}{(2-2)^{11}} d^2,$$

we get
$$f(2) = e^{32}, \quad 2=-1$$

Since $f(2)$ is analytic in $|2|=2$
and $2_0=-1$ is a point inside $|2|=2$

$$\text{and } 2_0=-1 \text{ is a point inside } |2|=2$$

$$\text{we apply Cauchy integral formula}$$

$$\int \frac{d^2}{(2-2)^4} = \frac{3\pi}{n!} f^3(2_0) - \text{(i)}$$

Now $f(2) = e^{32}$

$$\Rightarrow f'(2) = 3e^{32} \Rightarrow f'(-1) = 3e^{-3} \quad \text{(i) } 2_0=-1$$

$$\Rightarrow f''(2) = 2^{32} \Rightarrow f''(-1) = 9^{23}$$

$$\Rightarrow f'''(2) = 2^{32} \Rightarrow f'''(-1) = 9^{23}$$

$$\Rightarrow f'''(2) = 2^{32} \Rightarrow f'''(-1) = 9^{23}$$

$$\Rightarrow f'''(-1) = 9^{23}$$

construction Company has to more four large chanes from old construction site to new construction site. The distance in kilometers between the old and new locations are as given in the ordyting table. The at Q3 cannot be used at N2 but all the cranes can work equally well at any of the other new Lites . Determine a plan for moving the crans that will minimise the total distance involved in the more 20 30 35.

201

110

cannot be assigned to N2 Replace corresponding value in table to cry large value

	N,	142	N3	Ny	
01	15	20	13	40	
02	38	42	15	20	
Dz	25	00	30	18	_
O3	18	30	40	35	1

Substracting smallest number of each sow with

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60, 9999197625, 011-45629987 BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.
REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

	Ni	N.	Ns	Ny
01	2	7	D	27
02	23	27	D	5
03	7	0	12	0
04	0	12	.22	17

Colomn value with the correpady

Column values

Nz. Ny

0 27

	N.	N ₂	N ₃	Ny
01	2	0	0	27
02	23	20	0	1
03.	7	00	12	回
04	10/	5	2.2	17
		. 63	1	1

Assigning, $O_1 \rightarrow N_2$ $O_2 \rightarrow N_3$ $O_3 \rightarrow N_4$ $O_4 \rightarrow N_1$ minimist the total distance involved

in moving the examps.

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625,011-45629987
BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.
REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's
Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

2(a) Let G be a group and H.K be two normal subgroups of G. If G is an internal direct product of Hand K then, in G= HXK, iii, G/H = K, and G/K=H. Sol'n: (i) Suppose that G is an internal direct product of the normal subgroups H and K. Then G=HK and HNK= {e}. Hence for every 96G, there are unique elements att and bek suchthat g=ab. so we can define of: G -> HxK by f(9) = (a,b) when g=ab, a CH, b CK. Let g, = a,b, and g, = a2b2 be two elements of G, where a, a, EA and b, b, EB. Now 9,9= a, b, a, b2 = a, a, b, b2. Hence f (9,92) = (a,a2,b,b2) = (a,b1) (a2,b2) = f(9,)f(92). This shows that f is a homomorphism. Since for every 966, there are unique elements a EH and bek such that 9 = ab, it follows that f is an injective function. Again, if (a,b) EHXK, then 9 = abeG and hence f(9) = (a,b). combining all these we find that f is an isomorphism and so Q= HXK (ii) Since for each 966, these are unique elements act, bek, the function 4: G -> H defined by 4(9) = 4(ab) = a, for all g = ab ∈ G can be shown to be an epimorphism. Hence by the first isomorphism theorem GI Kery 2H. Now, Kery = {9 = 6 / 419 = e} = { g = abeg | aeH, bek and 4(9)=e}

= { g = abe G | aeH, bek and a = e} = {g=ebeG1 | bek}=K The GIKEH. Similarly, we can show that GIHEK. 2(b) > Let a function of be continuous on an open bounded interval (a,b). Then fis uniformly continuous on (a,b) if and only if him f(x) and him f(x) both exist-finitely. gol'n: Let I be continuous on an open bounded interval (a,b) and let him f(a) and lim f(a) both exist finitely Let us define a function g on [a,b] by g(x)=f(x), for all $x \in (a_1b)$ and $g(a) = \lim_{x \to a+} f(x), g(b) = \lim_{x \to b-} f(x).$ g is continuous on (a,b), Since f is continuous on (a,b). g(a) = lim f(x) (by definition) = lim g(x) and g(6) = lim f(x) (by definition) = lim g(x). i. g is right continuous at a and left continuous at b and consequently, g is continuous on [a, b] (By Twan: Let I = [a,b] be a closed and bounded internal and a-function f: I > 18 be continuous on I. Then f is uniformly continuous on I] - gis uniformly continuous on [a, b] By Thedeur: Let I be an interval & affection of ! I > IR be conformly Continuous on I Then fis continuous on I], 9 is uniformly confinuous on (a, b). Since 9=f on (a,b), it follows that f is uniformly continuous on (a,b).

Conversely, let f be uniformly continuous on (a,b). we prove that both the limits lim f(a) and dim f(x) exist finitely. 2-16-Let {an} be a sequence in (a, b) converging to a. Eans is a couchy sequence in (a,b). Since They

f is uniformly continuous on (a,b), the sequence $\{f(x_n)\}$ is a cauchy sequence in \mathbb{R} and therefore it is convergent. Let $\lim_{n\to\infty} f(x_n) = 1$.

Let {yn} be another sequence in (a,b) converging to a. Then the sequence {xn-yn} is a sequence in (a,b) converging to 0.

Let <>0. Since of is uniformly continuous on (a,b),
these exists a positive & such that for any
two points 2,, x, E(a,b)

 $|x_1-x_2|<5\Rightarrow |f(x_1)-f(x_2)|<\frac{\epsilon}{2}$

Since [2n-yn] is a sequence in (a,b) converging to 0, there exists a natural number k such that [2n-yn] < 5-for all n>k.

:. |f(xn)-f(yn) | < 6/2 for all n > k.

If(yn)-l| ≤ |f(yn)-f(an)|+ |f(an)-l|< € for all n>k. This proves that lim f(yn)=1.

Thus for every sequence $\{x_n\}$ in (a_1b) Converging to a, the sequence $\{f(x_n)\}$ (onverges to the limit l. This implies $\lim_{x\to a+} f(x)=l$.

In a similar manner it can be proved that lim f(2) exists finitely.

Assume that the zeroes of the demoninator are simple. Show that the zeroes of the demoninator are simple. Show that the sum of sesidues of
$$f(z)$$
 at its poles is equal to $\frac{2n-1}{bn}$.

Sol's: Let $f(z) = \frac{a_0}{b_0 + b_1 z}$, where $b, \pm 0$.

$$= \frac{a_0}{b_1 \left[\frac{b_0}{b_1} + 2\right]}$$

$$2 = \frac{b_0}{b_1}$$
 is a pole of order 1 i.e. Simple tole.

The residue at $2 = -bo/b_1$ is
$$= \frac{a_0}{b_1 \left[\frac{b_0}{b_1} + 2\right]}$$
Now let us assume that $f(z) = \frac{a_0 + a_1 z}{b_0 + b_1 z + b_2 z}$

$$= \frac{a_0}{b_1 \left[\frac{b_0}{b_1} + 2\right]}$$
Now since a_1 is a return roots of $z^2 + \frac{b_1}{b_2} z + \frac{b_0}{b_2}$

$$z^2 + \frac{b_1}{b_2} z + \frac{b_0}{b_2} = (2-a)(2-\beta)$$
Residue at $z = a$ is $z = a$ if $z = a$ if $z = a$ in $z = a$.

Residue at
$$2 = \beta$$
 is $= \text{if} (2 - \beta) \frac{\alpha_0 + \alpha_1 2}{b_2 (2 - \alpha)(2 - \beta)}$

$$= \frac{\alpha_0 + \alpha_1 \beta}{b_2 (\beta - \alpha)}$$

$$= -\frac{\alpha_0 + \alpha_1 \beta}{b_2 (\alpha - \beta)}$$

$$\vdots$$
Sum of the residues of $f(2) = \frac{\alpha_0 + \alpha_1 2}{b_2 (2^2 + \frac{b_1}{b_2} 2 + \frac{\alpha_0}{b_0})}$

$$= \frac{1}{b_2} \left[\frac{\alpha_0 + \alpha_1 \alpha}{\alpha - \beta} - \frac{\alpha_0 + \alpha_1 \beta}{\alpha - \beta} \right]$$

$$= \frac{1}{b_2} \left[\frac{\alpha_1 (\alpha - \beta)}{\alpha - \beta} \right] = \frac{\alpha_1}{b_2}$$
Let $f(2) = \frac{\alpha_0 + \alpha_1 2 + \alpha_2 2^2}{b_0 + b_1 2 + b_2 2^2 + b_3 2^3}$

$$= \frac{\alpha_0 + \alpha_1 2 + \alpha_2 2^2}{b_3 [(2 - \alpha)(2 - \beta)(2 - \gamma)]}$$
Where $\alpha_1 \beta_1 \gamma$ are the simple poles.

Residue at $2 = \alpha$ is dt $(2 - \alpha)$ $\frac{\alpha_0 + \alpha_1 2 + \alpha_2 2^2}{b_3 (2 - \alpha)(2 - \beta)(2 - \gamma)}$
Residue at $2 = \beta$ is dt $(2 - \beta)$ $\frac{\alpha_0 + \alpha_1 2 + \alpha_2 2^2}{b_3 (2 - \alpha)(2 - \beta)(2 - \gamma)}$
Residue at $2 = \beta$ is $\frac{\alpha_0}{\alpha_0} = \frac{\alpha_0 + \alpha_1 2 + \alpha_2 2^2}{a_0 + \alpha_1 \alpha_1 2 + \alpha_2 2^2}$
Residue at $2 = \beta$ is $\frac{\alpha_0}{\alpha_0} = \frac{\alpha_0 + \alpha_1 \alpha_1 2 + \alpha_2 \alpha_2}{a_0 + \alpha_1 \alpha_1 2 + \alpha_2 2^2}$

$$= \frac{a_0 + a_1 \beta + a_2 \beta^2}{b_3 (\beta - \alpha) (\beta - Y)}$$

$$Revidue at 2 = Y is = \frac{1}{2} Y \left(\frac{2 - Y}{2}\right) \frac{a_0 + a_1 2 + a_2 2^2}{b_3 (2 - \alpha) (2 - \beta) (2 - Y)}$$

$$= \frac{a_0 + a_1 Y + a_2 Y^2}{b_3 (Y - \alpha) (Y - \beta)}$$

$$\therefore Sum of + Le sidues of $f(2)$ at its poles $\alpha_1 \beta_1 Y$

$$= \frac{1}{b_3} \left[\frac{a_0 + a_1 \alpha + a_2 \alpha^2}{(\alpha - \beta) (\alpha - Y)} + \frac{a_0 + a_1 \beta + a_2 \beta^2}{(\beta - \alpha) (\beta - Y)} + \frac{a_0 + a_1 Y + a_2 Y^2}{(\alpha - \beta) (\beta - Y)} + \frac{a_0 + a_1 \beta + a_2 \beta^2}{(\alpha - \beta) (\beta - Y)} + \frac{a_0 + a_1 \gamma + a_2 Y^2}{(\alpha - Y)} \right]$$

$$= \frac{1}{b_3} \left[\frac{a_0 + a_1 \alpha + a_2 \alpha^2}{(\alpha - \beta) (\alpha - Y)} + \frac{a_0 + a_1 \beta + a_2 \beta^2}{(\alpha - \beta) (\beta - Y)} + \frac{a_0 + a_1 \gamma + a_2 \gamma^2}{(\alpha - Y)} \right]$$

$$= \frac{1}{b_3} \left[\frac{a_0(0) + a_1(0) + a_2 (\alpha^2 (\beta - Y) - \beta^2 (\alpha - Y) + \gamma^2 (\alpha - \beta)}{(\alpha - \beta) (\beta - Y) (\alpha - Y)} \right]$$

$$= \frac{1}{b_3} \left[\frac{a_0(0) + a_1(0) + a_2 (\alpha^2 (\beta - Y) - \beta^2 (\alpha - Y) + \gamma^2 (\alpha - \beta)}{(\alpha - \beta) (\beta - Y) (\alpha - Y)} \right]$$

$$= \frac{1}{b_3} \left[\frac{a_0(0) + a_1(0) + a_2 (\alpha^2 (\beta - Y) - \beta^2 (\alpha - Y) + \gamma^2 (\alpha - \beta)}{(\alpha - \beta) (\beta - Y) (\alpha - Y)} \right]$$

$$= \frac{1}{b_3} \left[\frac{a_0(0) + a_1(0) + a_2 (\alpha^2 (\beta - Y) - \beta^2 (\alpha - Y) + \gamma^2 (\alpha - \beta)}{(\alpha - \beta) (\beta - Y) (\alpha - Y)} \right]$$

$$= \frac{1}{b_3} \left[\frac{a_0 + a_1 \alpha + a_2 \alpha^2 + \cdots + \alpha_{n-1} \beta^2 + \alpha^2 \beta$$$$

4(b) Let
$$f(x)$$
, $(x \in (-\pi, \pi))$ be defined by $f(x) = \sin[x]$.

Is continuous on $(-\pi, \pi)$? If it is Continuous, then is it differentiable on $(-\pi, \pi)$?

Sol'n: Given that $f(x) = \sin[x]$, $x \in (-\pi, \pi)$

i.e. $f(x) = \begin{cases} \sin(-x) & \text{if } x \in (-\pi, \pi) \\ \sin x & \text{if } x \in (0, \pi) \end{cases}$

Clearly $f(x)$ is continuous and differentiable over each Subinterval. The only docuble point is the breaking point $x = 0$.

At $x = 0$, $f(x) = 0$

NOW LHL: It $f(x) = \sin(-x) = 0$

RHL: It $f(x) = \sin(-x) = 0$

RHL: It $f(x) = \sin(-x) = 0$

RHL: $f(x) = \sin(-x) = 0$

RHL: $f(x) = \cos(-x) = 0$

RHL: $f(x) = \cos(-x) = 0$
 $f(x) = \cos(-x) = 0$

$$= \frac{1}{\alpha \to 0^{-}} \frac{-\sin x}{x} = -1$$

$$\therefore \text{ if } (0) \neq \text{Rf'}(0)$$

$$\therefore \text{ f(x) is not differentiable at } x=0$$
Hence f is Continuous on $(-\pi,\pi)$
Also f is differentiable on $(-\pi,\pi)$ except at $x=0$.

Hence f is differentiable on $(-\pi,\pi)$ except at $x=0$.

When (a) $|2| < 1$ (b) $|1 < |2| < \sqrt{2}$ (c) $|2| > \sqrt{2}$.

Sol he Let $f(2) = \frac{1}{(2^2+1)(2^2+2)}$

Resolving $f(2)$ into Partial fractions,

We obtain
$$f(2) = \frac{1}{(2^2+1)(2^2+2)} = \frac{1}{2^2+1} - \frac{1}{2^2+2}$$

(i) For $|2| < 1$, $|2| > 1$

$$= (1+2^2)^{-1} - \frac{1}{2}(1+\frac{2^2}{2})$$

$$= (1+2^2)^{-1} - \frac{1}{2}(1+\frac{2^2}{2})$$

$$= (1+2^2)^{-1} - \frac{1}{2}(1+\frac{2^2}{2})$$

INSTITUTE FOR IAS/IFOS/CSIR/GATE EXAMINATIONS

MATHEMATICS by K. Venkanna

$$= \left(1 - \frac{2}{4} + \frac{1}{4} - \frac{2}{6} + \dots\right) - \frac{1}{2} \left(1 - \frac{2}{2} + \frac{2}{1} - \frac{2}{1} - \dots\right)$$

$$= \left(1 - \frac{2}{4} + \frac{1}{4} - \frac{2}{6} + \dots\right) - \frac{1}{2} \left(1 - \frac{2}{4} + \frac{2}{1} - \frac{2}{1} - \dots\right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \left(1 - \frac{1}{2^{n+1}}\right) \frac{2^{2n}}{2^{n+1}}$$

$$= \sum_{n=0}^{\infty} (-1)^n \left(1 - \frac{1}{2^{n+1}}\right) \frac{2^{2n}}{2^{n+1}}$$

(ii) for
$$1<12<52$$

$$\frac{1}{2^{2}+1} - \frac{1}{2^{2}+2} = \frac{1}{2^{2}} (1+\frac{1}{2^{2}})^{-1} \frac{1}{2} (1+\frac{1}{2^{2}})^{-1} = \frac{1}{2^{2}} (1+\frac{1}{2^{2}})^{-1} \frac{1}{2} (1+\frac{1}{2^{2}})^{-1} = \frac{1}{2^{2}} (1+\frac{1}{2^{2}})^{-1} \frac{1}{2} (1+\frac{1}{2^{2}})^{-1} = \frac{1}{2^{2}} (1-\frac{1}{2^{2}}+\frac{1}{2^{2}}+\cdots)$$

$$= \frac{1}{2^{2}} (1-\frac{1}{2^{2}}+\frac{1}{2^{2}}+\cdots)$$

$$= \frac{1}{2^{2}} (2^{2}+\frac{1}{2^{2}}+\cdots)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^{2n+2}} + \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^{n+1}}$$

$$(ii) | 12| > \sqrt{2} \implies | 12| > 1$$

$$\frac{1}{|2|} < 1 \text{ and } \frac{1}{|2|} < 1$$

$$\frac{1}{2} = \frac{1}{2^{1}(1+\frac{1}{2}v)} - \frac{1}{2^{1}} \left(1+\frac{2}{2}v\right)^{-1}$$

$$= \frac{1}{2^{1}} \left(1+\frac{1}{2}v\right)^{-1} - \frac{1}{2^{1}} \left(1+\frac{2}{2}v\right)^{-1}$$

$$= \frac{1}{2^{n}} \sum_{n=0}^{\infty} \frac{1}{2^{2n}} - \frac{1}{2^{2n}} \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{2^{2n}}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{2^{2n}}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{2^{2n}}$$

INSTITUTE FOR IAS/JFOS/CSIR/GATE EXAMPNATIONS

MATHEMATICS by K. Venkanna

400 1 f(2) is a regular function 2 prove that

$$\frac{\partial^{2} + \partial^{2} + \partial^{2}}{\partial x^{2}} = \frac{1}{12} | x = 4$$

MATHEMATICS by K. Venkanna

· Solve the following LPP by Simples Metrod Maximize 2 = 37,+972 subject to 2+47,58 m +2 m 54 2, 2- 7,0. Solz. The objective function of the given LPP is of manininguition type and RHI of all constraints are 70. Now we write the given ippour the Standard form. MARX = 34+92+ 05,70 suggest to 2+4x2+5 = 8 21 + 12x + +52 = 4 2 12, 2x 12 PO 9, 12 are slack variables Now the initial basic fearible solution letting a = 2, = 0 (non-snew) 11=8, Si=4. Chasicy "The initial basic-featible dolution is (0,0,8,4) for much 2=0.

C	i	3		U	0		
n	navis	24	×,_		52		-
() () ()	S ₁	1	14	11.	0	8	2
0	\$2	1	(2)	0	1	4	2
Z	= Econi	1 0	0	0	0	0	C)
	j = G-5j	3	9	0	0	180	19
-	3	dus-	1	THE STATE		10	at the
-m-v	n the al	sove +	able.	we o	prerve		
-10 m							
100000	. 100		~ '.	2 2c 9+ n	sto	the	bash
100	basic	variable	2 72	inters (sto	the en	bash Lots +
100	the all basic	variable	in sa	tio by	isto 2	the for	bash bots t
016	basic the	minimu	im ra	tio M	2	for	bots +
016	basic the	minimu	im ra	tio M	2	for	bots +
ion Lin	basic cethe	variasu minimu leu 5	ion or	tio the	2 rete	for a tie	bots to
ion Lin	basic le the	variasu minimu leu 5	ion or	tio the	2 rete	for a tie	bots to
nov gin lad be	basic ce the c vertab variable	variasu minimu les s q to le	im oa and s	tio Ps the basi	2 ne te 1 1. Ul	for a tie	bots to
nov sin lad be	basic ce the c vertab variable	variasu minimu les s q to le	im oa and s	tio Ps the basi	2 ne te 1 1. Ul	for a tie	bots to
non Lin lad lad le	basic vertue variable variable ication s	variasus minimus les 59 to les	in ra and s ave te emist	tio for the there e basis ence	2 ne te o y . (1)	for a tie	both to
non gin lad be	basic vertue variable variable ication s	variasus minimus les 59 to les	in ra and s ave te emist	tio for the there e basis ence	2 ne te o y . (1)	for a tie	both to
non gin lad the the	basic vertue variable ication =	variable minimum les square to	and some termist	tio for the savinence	2 ne th 1. Il of mats	for a tie	both to
non sin lad te vd	basic vertue variable ication =	variable minimum les square to	and some termist	tio for the savinence	2 ne th 1. Il of mats	for a tie	both to
non sin lad te vd	basic rethe retial ration s returne	variable minimules 59 to le for the follows of the	and some termist	tio Pr the basi ence ence	2 ne to 1 1. Il of mats these	for a tie	both to form
non sin lad the ndu when irr	basic rethe retial ration s returne	variable minimules 59 to le for the follows of the	and some termist	tio Pr the basi ence ence	2 ne to 1 1. Il of mats these	for a tie	both to form
non sin lad the nd cire	basic vertue variable ication = t column tue ties capanding	ravinsus minimus les 59 to les f two	and or and or and of the contract of the contr	tio for the basis ence with dring of the	of mats	for a tie	both to form
non sin lad the nd cire	basic vertue variable ication = t column tue ties capanding	ravinsus minimus les 59 to les f two	and or and or and of the contract of the contr	tio for the basis ence with dring of the	of mats	for a tie	both to form
lacker and are	basic vertue variable valiable ication of tolumi tue ties exponding	ravinsus minimus les 59 to les f two	and or an	tio Pr the basis ence unit ding of the	2 ne to 1 s. JI of mats these key	for a tie in by	both to
lacker and are	basic vertue variable valiable ication of tolumi tue ties exponding	ravinsus minimus les 59 to les f two	and or an	tio Pr the basis ence unit ding of the	2 ne to 1 s. JI of mats these key	for a tie in by	both to
lacker and are	basic vertue variable ication = t column tue ties capanding	ravinsus minimus les 59 to les f two	and or an	tio Pr the basis ence unit ding of the	2 ne to 1 s. JI of mats these key	for a tie in by	both to

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987
BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.
REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's
Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

	IMA	I I I LIVI/	AIIDD	oy K.	ARIIK	dillid	-
0	ĵ	3	9	0	0		
es	Rasis 1	24	2/2	2,	52	ь	
0	12	-1	0	1	-2	0	
9	N2	1/2	ı	D	1/2	2	.3
程。	= Schai	1 %	9	0	9/2	16	
Cj	= q'-2j	-1/2	0	0	-9/2	·	9
λ.	0. 8	2 01-	ther 2	ero	0 7 0	egiption Ci-	e GSO)
7/3	ALL O	11 001	imna	tue !	alsove to	ale gives	the
10-		balic	fearible	sol	ution.		
op.	41	potén	ral so	ونهرا	17	$\alpha_1 = 0$ $\alpha_2 = 2$	
	Ju	9,	- 1	Elli.		2=2	
			and	mani	mize Z	. Elf	
		-80	o	=			
		501					
	U	/A					
	TITUS						
189	9,						

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987
BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.
REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R. K'S-Kancham's
Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

DESCRIPTION OF THE PROPERTY AND ASSESSED OF THE PROPERTY OF TH

```
5(a) | Solve (0+10-1) (D+10-3) (D+10')2= e +19 sin(22+7)
         1017. C.F = ex q (4-1) +e3 p(4-2) + p3 (4-2)
                                of $ , $3 being arbitrary functions
                 (D+D-1)(D+D-1)(D+D)
                                                                   Sintoney
                       (D+170+1-1)(D+1+0+1-3)(D+10+1)
                    \frac{(D+D+2)(D^{2}+2DD+D^{2}-1)}{(D+D+2)(D+D+2)(D+D+D^{2}-1)}
Sin(2x+4)
\frac{1}{(D+D+2)(D+D+2)(D+D+D^{2}-1)}
               = en+y.1
             = e^{n+4} \frac{1}{(n+n+2)} \frac{1}{-10} \sin(2n+4)
= -e^{n+4} \frac{0+n^2-2}{(n+n^2)^2-4} \sin(2n+4)
              = -e^2+7 (D+0'-2) - 1 sin(2n+y)
               = - e2+4 (D+12) 1 Su122+8)
                = -\frac{e^{2+4\gamma}}{10} \cdot \frac{1}{(-13)} (0+0-1) \sin(2x+4)
                 = 1 22 2x+y 2(05(2x+y) + (05 (2x+y) - 2 Sin (2x+y)
             .. The solution is given by
           2 = e^{2} \phi_{1} (y-x) + e^{3x} \phi_{2}(y-x) + \phi_{3}(y-x) + \frac{1}{(30)} [3(0)(2x+y) - 28in(2x+y)]
```

S(b) Reduce $a \frac{\partial^2 x}{\partial a^2} + \frac{\partial^2 x}{\partial y^2} = x^2(2>0)$ to camporical form. sol": Rewriting the given equation, we get 28+12-25=0,2>0 -- (1) comparing (with Rry Ss+Tt +f(x, y, 2, P, 2) =0 here R=x, S=0, T=1 so that SURT = -491 (0, showing that 0) is elliptic. The 2- quadratic equation RAT+SA+T=0 Reduces to xxx+1=0 \$ y= -7. ie, 7= is als The corresponding characteristic. equations are given by dy + ix = 0 and dy - ix = 0 Sertegrating, we ger y+2: 2 = c, and y-2:x = c2 Choose u=y+2ix2 and v=y-21x2 = x-iB = x+iB ... where $\alpha = y$ and $\beta = 2x^2 - 2$ are non new Endependeur variables. NOW, P2 32 - 32 30 + 32 30 = 2 36 36 - 0 9 = 22 = 32 24 + 32 21 = 32 - 0

$$\delta = \frac{\partial^2}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial \pm}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial x^2} \right) = \frac{\partial}{\partial x} \left(\frac{\partial \pm}{\partial x^2} \right) = \frac{\partial}{\partial x^2} \left(\frac{\partial \pm}{\partial x^2} \right) = \frac{\partial$$

5(C) the observed values of a function are respectively 168, 120, 72 and 63 at the four positions 3,7,9 and 10 of the independent variable what is the best estimate for the value of the function at the position 6.

MATHEMATICS by K. Venkanna

MATHEMATICS by K. Venkanna

0 ABC ABC ABC

Write AND terms when y=1. These terms have each input variable in either non-inverted inverted form; These terms are thown it that talle,

the output expression it

Y = ABC+ ABC + ABC .

Simplify the exportsion.

Y = ABC+ ABC+ ABC+ABC

= ARC+ARC + ABC+ARC + ARC+ARC

= BCP A+A) + ACCR+B) + AB(E+e)

= BC+AC+AB

the logic circuit using 4 NAND gales be g

12

5(e) In an incompressible fluid the vorticity at every point is constant in magnitude and direction; Prove that the components of velocity u, v, w are the solutions of Laplace equation.

9 = 21 + vj + wk

Vorticity is constant in magnitude and direction.

=> & , n , & are constant.

 $\Rightarrow \frac{1}{2} \left(\frac{\partial \omega}{\partial y} - \frac{\partial v}{\partial z} \right) = \frac{1}{2} = \text{const.}, \frac{1}{2} \left(\frac{\partial \omega}{\partial x} - \frac{\partial u}{\partial z} \right) = \eta = \text{const.}$ $\frac{1}{2}\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial x}\right) = \zeta = canst.$

 $\frac{\partial \omega}{\partial y} - \frac{\partial v}{\partial z} = const. \quad \boxed{0} \quad \frac{\partial \omega}{\partial z} - \frac{\partial u}{\partial z} = const. \quad \boxed{0}$

1/2 - du = Constant -. - 3

Differentiation of @ and ® w.r.t & and y gives

 $\frac{3\pi}{3\pi} = \frac{9395}{9\pi} , \frac{34}{9\pi} = \frac{9395}{95}$

Equation of continuity is

 $\frac{\partial y}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial w}{\partial z} = 0$

observe that

 $\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y \partial x} + \frac{\partial^2 w}{\partial z \partial x}$

 $=\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial w}{\partial z}\right)=\frac{\partial}{\partial x}(0)=0$

.. Vu = 0. Similarly we can prove V'v=0, vw=0

It means that components of velocity are solutions

of laplaces equation.

6(a) Find a surface satisfying 8-25+t=6 and touching the hyperbolic paraboloid 2=xy along its section by the plane y=x.

for Pe-whiting the given equation. $\frac{9^{\frac{1}{2}}}{31^{2}} - 9\frac{3^{\frac{1}{2}}}{313^{\frac{1}{2}}} + \frac{3^{\frac{1}{2}}}{37^{\frac{1}{2}}} = 6$ $\Rightarrow (D-D')^{\frac{1}{2}} Z = 6$ $\Rightarrow (D-D')^{\frac{1}{2}} Z = 6$ $\therefore (f = \phi(y+x) + x\phi(y+x)), \text{ arbitrary functions.}$ $\Rightarrow q, \phi_{2} \text{ being arbitrary functions.}$

NOW P.I = $\frac{1}{(D-D)^2} = \frac{1}{D^*} \left(1 - \frac{D'}{D}\right)^2 = \frac{1}{D^*} \left[1 + \frac{2D'}{D} + \dots\right] (6)$ = $\frac{1}{D^*} \left[6\right] = 32^n$.

: General solution of O is 2= CF+PS.

lince the Required Eurface () toucher the given surface 2 = 2y (3) and 2 along the dection y = x, the values of 1' and 2 for the two surfaces must be equal for any point on the plane y = x. (4) pand q from (3), whose equality the values of pand q from (3), whose equality the values of pand q from (3), whose equality the values of pand q from (3), whose equality the values of pand q from (3), whose equality the values of pand q from (3).

Subtracting (from (and using (be get \$1(21) = -62 = -3(29) which gives \$2(4+2) = -3(4+2) =

from \$, \$2 (4+1) = -3. Then (6) secomes

MATHEMATICS by K. Venkanna-

6(b) Find the differential equation of the set of all right circular cones whose ares corneide with * -anis. sor of the general equation of the set of all right circular comes whose ares coincide with z-axis. having semi- vertical angles and the vester at (0.0,0) it given by x+y= (2-c) tand. (1) in which both constants or and co are arbitrary Differentiating @ partially wir x & y 27=2(2-c)(22) tan x and 24 = 2(2-c)(35) tan'a. Multipling equations of and (3) ny = y(2-1) 3t tand and my = x(+-1) = tand. => y(2-1) 32 faid = x(2-5) 32 faid - y 22 - 2 22 differential equation.

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987 BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9. REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K.'S-Kancham's Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

6(0) write down and integral's completely the equations for the Characteristics of 1+22) 2= px. Explassing x, 4, 2 and p interms of \$, where 9 = tan \$ and defermine the integral surface which passes through: - parabola 2=22, 4=0 Ell. Given that (149)2 spx. - Het f(2,4, ±, P, 8) = (1+9)2-pm -0 we are to find the integral surface of o which passes through paralola viest, yes whose parametric equations are $\chi=\lambda$, $\xi=\delta$, $z=\frac{\lambda}{2}$. Let the initial values . 2, 4, 2, 10 % of x. y. & p. 9 be taken as 20=f(A)=A, すっこか(A)=0, ものよう(A)=至 To find po and 90%. we have f(A) = 10 f(A) + 20 f2(A) 2 = Po (1) + 90 (0) → Po = 2.

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987 BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9. REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

MATHEMATICS by K. Venkanna

1: 7. = 7, yo =0, 20 = 2/2, 90 = 1. The charact entitie cauations of @ we da = fi = -n @) dy = fg = 222 de = pfp+9-19 = p = p(-1/+9 (222) $= -2 - 29^{2} + 229^{2} \left(pn = (1+9^{2})^{2} \right)$ $= -2 \left(1-9^{2} \right) - 4$ dp = -fn-pf2 = p-p(1+9) = -192 dg = -fy-9 fz = 0-9 C1+97) = -9 (1+97) - since 9 = tand and 90=1 ⇒ (\$ = 11/4. from to de = see od d.

from to tank See od d.

- tank See od d.

- tank See of d. =) db = (cotortano) do.

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987
BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.
REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R. K'S-Kancham's
Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987 BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9. REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

NOW, divide @ by 6 de = 19 - 149 - 149 - 149 -- de = temp seef de tong de =1 Logp = logseed + logs Po=G sec \$.

Using Ential value

Po=G sec \$6

→ $\lambda = G$ 12 of C3 = 7/12 ·228: = -22 -9(1+22) = 1+92 -2 grand de (from Ding) = - 22 sinze see of do Jdy = 7 (012\$ + Cq. yo = 2 cos2\$ + C4 0 = 2 (0) = Cy =) Cy = 0. y = 2 cos20 - 12

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987
BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.
REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R. K'S-Kancham's
Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987 BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9. REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

function y(x,t).

A string of length 1 is initially at rest in life equilibrium position and motion is started by giving each of its points a velocity v given by v = kx if $0 < x \le 1/2$ and v = k(1-x) if $v \le x \le 1/2$ and the displacement function v = k(x,t).

function y(x, t) is the solution of
the wave equation

$$\frac{\partial \dot{y}}{\partial x^2} = \frac{1}{1} \frac{\partial \dot{y}}{\partial y} - 0$$

Subject to boundary conditions $y(0,t) = y(1,t) = 0 \quad \forall \, t \not > 0 \quad -2$

and the given initial conditions,

Pritial displacement = y(x,0) = f(x) = 0

and Printial velocity $= \left(\frac{34}{9t}\right)_{t=0} = 9(x) = \begin{cases} kx & 0 \le x \le 1/2 \\ k(1-x) & 1/2 \le x \le 1/2 \end{cases}$

Suppose That the solution of the form y(x,t) = X(x) T(t) - B

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987
BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.
REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K.'S-Kancham's
Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No. 09652351152, 9652661152

Substituting this value of y in O, we have XT" = CX"T. > x" = - = M (Say) > x"-MX=0 and T"-Mc"T=0 using @ , @ gives X(0) T(1)=0 and X(1) T(1)=0 suppose that T(t) \$0 (-) THEO leads :. [x(0)=0] and [x(1)=0] (0) which are boundary conditions we now golve @ under boundary conditions Three cases arise. The solution of @ R XCX) = AX+B case(1): Let 4=0 uting B.C.O, we get A=0, B=0 > X(2)=0 This leads to 120 which doesnot satisfy I.C. so de reject pred 3 and @ Case(2): for MED?, D \$ 0. Then low solution of X(a) = Aedof BEDA vering B.C. B. weger A=0, B=0 > X(m) = 0 doesnother feads to 40 which

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987 BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9. REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

so Reject MEAT. case(3): Let M=-7, 770. The solution of (6) is XCAI = A COSAX + BSINAX using B.c. 8, we get X(0) 20 = A(1) + B(0) => A = 0 X(1)=0 = O+B sinAl =) B= RinAl → simal-0 (:8#0) => NenTI A = n/1 , n=1,33 " p(1) = B sin nux, n=1,2,3, Hence non reero solutions x, (x) of (are given by X (7) = Bn Cin(nTix) from (A) +T"+ 2°27 =0 (.: M=-2) T-MCT=0 whose general colution is THE Ch cospatich + Dn lin (ATTCF) yn(\$) = (x) Tn (4) = Bn Sin (nun.) [Chash TICH) + Dn sin (mtch) = (En cosmitt + finsin nuct) singing From of @ Satisfying

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987 BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9. REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

and Fra Bo Po. Here En = Bn Cn In order to obtain a solution also latisfying (3) and (4), we consider more general solution y(1,t)= 3 4, (x, t) iver y(a, t) = 50 [En Cos nort + for sin nort y(1,0)=0= 5. En cointict San I $f_n = \frac{2}{n\pi c} \int_{-\infty}^{\infty} g(x) \cdot \lim_{n \to \infty} \frac{n\pi x}{\lambda} dx$ = 2 gen show dat & gov strong = at (x) (nii cos nii) -() (

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987
BRANCH OFFCE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.
REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K.'S-Kancham's
Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

$$= \frac{2k}{n\pi c} \left[\frac{-d}{2n\pi} \cos \frac{n\pi}{2} + \frac{d}{4n} \cos \frac{n\pi}{2} \right] + \frac{d}{n\pi c} \sin \frac{n\pi}{2}$$

$$= \frac{4kL}{cn\pi d} \sin \frac{n\pi}{2}$$

$$= \begin{cases} 0 & \text{if } n = 2m \text{ and } m = 1, 7, 3, \dots \\ -(1) \left[c\pi^{2} (2m-1)^{2} \right] & \text{if } n = 2m-1 \text{ and } m = 1, 2, 3, \dots \end{cases}$$

$$= \frac{4kL}{cn^{2}} \left[\cos \frac{n\pi}{2} \right] + \frac{d}{n} \left[$$

 $\frac{f(a)}{of the equation} - Raphion method to determine a root of the equation <math>\cos x - \pi e^{x} = 0$ Correct up to four decimal places. $\frac{g(h)}{of (h)} = \frac{1}{\sin x} - \frac{\pi}{2} e^{x} - \frac{\pi}{2} e^{x}$ $f(a) = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} e^{x} = \frac{1}{100} e^{x} - \frac{1}{100} e^{x}$

Put n=0, the first approximation is $x_1 = x_0 + \frac{\cos x_0 - x_0 e^{x_0}}{\sin x_0 + x_0 e^{x_0} + e^{x_0}} = 1$

 $\alpha_2 = 0.653071$ $\alpha_3 = 0.5313$ $\alpha_4 = 0.5179$ $\alpha_5 = 0.51775$

in a = 0.517 is soot of f(x) Correct upto three decimal places.

Flat convert the following binary numbers to the base (-4:6) (10111011001.101110) to octal (1) (10111011001 10111000), to heradecimel. (ii) 6.101)2 to decime. Sol?: Binary number can be corrected into equivalent of 3 bits starting from LSB and moving towards MSB for wilegen part of the number and then leplacing each group of three bits by its octal representation. for fractional part, the gronging of 3 bits are made from the binary point airer (10111011001100110) (1011001.10110) = 010 111 011 001 . 101 113 = (2731.56). (11) Comilarly, Banary number cause converted into equivalent henadecimel number by making groups of 4 bits. (10111011001.10111000) = (01011101 1001.1011 1000) = (5D9.B8) (ii) (0.101) = 1×2+0×2+1×23 こさせいせき = 0.5+0.125 = 6.625)10

Bonnadas V. A. STITAMSHIAM

The party of the party

The service of the se

9/3/2019

MATHEMATICS IN K. VENKANNA

8(a) A uniform straight and of length sa is freely movable about its centre and a particle of man one third that of the rod is attached by a light inextensible string of length a to one end of the rod; show that one period of principal oscillation is (15 +1) 17 18.

Soin: Let M be the mass of the rod AB of length 2a, Bc the string and M/3 the mass at C.

At time t, Let the rod and the string make angles 02 \$\phi\$ to the vertical respectively.

The middle point o of the rod AB as is

origin, horizontal and vertical lines ox

kor through oas axes. The coordinates

of c are given by

Re = a (Sino+ sino)

Yc = a (cose + cosb)

1. Ve = xe + ye

= a (coso + cosò o) + a ~ (- & u o o - sin o o)?

a [6 + φ + 20φ cos (0-φ)] = a (6 + φ + 20φ)

The System, then

T = K.E of the rod + K.E of the particle at c. = [12M. \$a^20^2 + 12Mu0^2] + 12(13H) 100°

```
= 12 maro+ + 6 mar ( 0 + 0 + 20 p)
                                              ( " Vo=0)
       and W=mg.0
  = 12 Mg. Yc + C = 13 Mga (coso + coso) + C
Lagranges 0-equation is dt (down so dedelo) - 30 do
i.e. d [6 mar (40+20)]-0=1/3 mga (-3100) = 1/3 mgao,
 or 20+0 =- co, (where c= 8/a) _ (::0 is small)
And lagranges & equation is dt ( \frac{\partial T}{\partial \phi} ) - \frac{\partial T}{\partial \phi} = \frac{\partial w}{\partial \phi}
ine: d [1 Ma2 (20+20)] - 0 3 Mga (- cosφ) = 13 Mgaφ
Oc) 8+6 =- co where C=86
                                          (idis small) - 3
Equations D&D pean be written as
 (20 +c) 0 + 000 =0, and D0 + (D+c) 0=0
  Eliminating between these two equations, we get
  [ (D+c) (ZD+c)-D+] 0=0.
(or) (0+3c0+c2)0=0.
        le solution of (3) be given by 0 = A cos (pt+B)
       .. D'o = - pro and D = pto.
   Substituting in (2), we get
   (p4-3cp+c2)0=0 08 p4-3cp2+c2=0. 10+0.
   |x| = \frac{3c \pm \sqrt{(9c^2 - 4c^2)}}{2} = \left(\frac{3 \pm \sqrt{5}}{2}\right)c = \left(\frac{3 \pm \sqrt{5}}{2}\right)\frac{9}{9}
   · one value of principal accellation = 211
     = 20 \int_{3-\sqrt{5}}^{2} \frac{a}{g} = 211 \int_{3-\sqrt{5}}^{2} \frac{2(3+\sqrt{5})}{(3+\sqrt{5})} \frac{a}{g}
```

Test whether the motion specified by $q = \frac{k^2(2j-y_1)}{x^2+y^2}$ (k=const) is a possible motion for an incompressible fluid 2f so, determine the equations of streamlines. Also tell whether the motion is of the potential kind and if it determines the velocity potential. Sein: Here $u = \frac{-k^2y}{x^2+y^2}$, $v = \frac{k^2x}{x^2+y^2}$, w = 0

I. Equation of continuity for incompressible fluid is

But
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = \frac{2k^2xy}{(x^2+y^2)^2} - \frac{2k^2xy}{(x^2+y^2)^2} + 0$$

Hence equation of continuity is sattefied

II. Streamlines are given by

$$\frac{dx}{u} = \frac{dy}{v} = \frac{dx}{0}$$

$$\Rightarrow \frac{dx(x^2+y^2)}{-k^2y} = \frac{(x^2+y^2)dy}{k^2x} = \frac{dz}{0}$$

Heuce striamlines are circles whose Centres lie on 2-anis.

I To test the existence of velocity potential.

$$-d\theta = udx + vdy + wdz$$

$$= -k^{2}y \frac{dx}{x^{2}+y^{2}} + k^{2}x \frac{dy}{x^{2}+y^{2}}$$

$$d\theta = k^{2}\left[\frac{ydx}{x^{2}+y^{2}} - \frac{x}{x^{2}+y^{2}}\right]$$

= K" (Mdx + Ndy), say

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987
BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.
REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's
Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

$$\frac{\partial M}{\partial y} = \frac{1}{\alpha^2 + y^2} + y \left[\frac{-2y}{(\alpha^2 + y^2)^2} \right] = \frac{\alpha^2 \cdot y^2}{(\alpha^2 + y^2)^2}$$

$$\frac{\partial N}{\partial z} = -\left[\frac{(\alpha^2 + y^2) - 2\alpha^2}{(\alpha^2 + y^2)^2} \right] = \frac{\alpha^2 \cdot y^2}{(\alpha^2 + y^2)^2} = \frac{\partial M}{\partial y}$$

Hence Mda+ Ndy is exact. Therefore its adultion given by

$$\theta = \int \frac{k^2y}{x^2+y^2} dx + \int o dy + C = \frac{k^2y}{y} tou^2 \left(\frac{a}{y}\right) + C$$

Hence of exists and is given by

$$\phi = k^2 \tan^2\left(\frac{x}{y}\right) + C$$

8(c) when an infinite liquid contains two parallel equal and opposite vortices at a distaine 26; Prove that the streamlines relative to the vortices are given by the equation $\log \left[\frac{2^{n}+(y-5)^{2}}{2^{n}+(y+5)^{n}}\right] + \frac{y}{b} = c$; the origin being the middle point of the join which is

takey for the axis of y.

sol's: suppose there are two vortices of strengths k,-k at A, Az respectively. Such that origins o is the middle point of A, Az = 2b and A, Az lie along y-axis. Both vortices will along a line parallel to x-axis with velocity.

 $q = \frac{k}{2\pi (A,A_2)} = \frac{k}{2\pi .2b} = \frac{k}{4\pi b}$

The complex potential wat P due to there two

vostices given by

HEAD OFFICE: 25/8, old Rajinder Nagar Market, Delhi-60. 9999197625, 011-45629987 BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9. REGIONAL OFFICE: H. No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 9652661152

$$W = \frac{ki}{2\pi} \log (2-ib) - \frac{ki}{3\pi} \log (2+ib)$$

$$= \frac{ki}{2\pi} \log \left[2+i(y-b) \right] - \frac{ki}{4\pi} \log \left[2+ib \right]$$
Equating imaginary parts from both sides,

$$\varphi = \frac{k}{4\pi} \log \left[2^{x} + (y-b)^{2} \right] - \frac{k}{4\pi} \log \left[2^{x} + (y+b)^{2} \right]$$

$$\Rightarrow \varphi = \frac{k}{4\pi} \log \left[2^{x} + (y-b)^{2} \right] - \frac{k}{4\pi} \log \left[2^{x} + (y+b)^{2} \right]$$
To reduce the vortex system to rest, we superimpose a velocity $\frac{k}{4\pi} = \frac{k}{4\pi} \log \left[2^{x} + (y+b)^{2} \right]$
Then $\frac{k}{4\pi} = \frac{k}{4\pi} \log \left[2^{x} + (y+b)^{2} \right] + \frac{k}{4\pi} \log \left[2^{x} + ($

