Sprawozdanie

Obliczenia naukowe 2019 – lista 1 Tomasz Janik, WPPT INF, sem. 5

1. Wstęp

Jest to sprawozdanie, w którym zaprezentowane są rozwiązania zadań z pierwszej listy z kursu Obliczenia naukowe oraz wnioski jakie zostały z nich wyciagnięte. Zadania zostały rozwiązane z pomocą programów napisanych w języku Julia.

2. Rozwiązania zadań

2.1. Zadanie 1

2.1.1. Epsilon maszynowy

2.1.1.1. Opis problemu i rozwiązanie

Na początku naszym zadaniem było iteracyjne wyznaczenie epsilonu maszynowego. Dla arytmetyk Float16, Float32, Float64. W tym celu została napisana funkcja macheps(), która sprawdza zadany warunek episilonu dla kolejnych wartości, startując od 1, a następnie dzieląc wartość przez 2.

2.1.1.2. Wyniki i wnioski

Poniżej w tabeli przedstawiono wyniki zadania oraz wartości prawidłowe.

Arytmetyka	Float16	Float32	Float64
macheps()	0.000977	1.1920929e-7	2.220446049250313e-16
eps(type)	0.000977	1.1920929e-7	2.220446049250313e-16
float.h	-	1.192093e-7	2.220446e-16

Jak można zauważyć funkcja prawidłowo wyznaczyła epsilon maszynowy. Owa liczba jest też podwojoną precyzją danej arytmetyki.

2.1.2. Eta

2.1.2.1. Opis problemu i rozwiązanie

Następnie należało znaleźć liczbę eta dla tych samych arytmetyk. W tym celu została napisana funkcja eta(), która sprawdza zadany warunek eta dla kolejnych wartości, startując od 1, a następnie dzieląc wartość przez 2.

2.1.2.2. Wyniki i wnioski

Poniżej w tabeli przedstawiono wyniki zadania oraz wartości prawidłowe.

Arytmetyka	Float16	Float32	Float64
eta()	6.0e-8	1.0e-45	5.0e-324
nextFloat(0.0)	6.0e-8	1.0e-45	5.0e-324
MIN _{sub}	5.96e-8	1.4e-45	4.9e-324

Jak można zauważyć funkcja prawidłowo wyznaczyła liczbę eta. Liczba ta jest maszynową reprezentacją MIN_{sub} = $2^{-(t-1)}2^{\text{Cmin}}$.

2.1.3. Floatmin

Poniżej w tabeli znajduje się porównanie liczby floatmin() z wartością MIN_{nor} dla danych arytmetyk

Arytmetyka	Float32	Float64
floatmin(type)	1.1754944e-38	2.2250738585072014e-308
MIN _{nor}	1.2e-38	2.2e-308

Można zauważyć, że funkcja floatmin() zwraca najmniejszą liczbę normalną w danej arytmetyce, czyli MIN_{nor} .

2.1.4. Floatmax

2.1.4.1. Opis problemu i rozwiązanie

Na koniec należało znaleźć największą liczbę w danej arytmetyce. W tym celu została napisana funkcja max(), która wyznacza iteracyjnie maksymalną część całkowitą, a następnie część dziesiętną.

2.1.4.2. Wyniki i wnioski

Poniżej w tabeli znajdują się wyniki działania programu zestawione z prawidłowymi wartościami.

Aryt	metyka		Float16		Float32		Float64		
Max	·()		6.55e4		3.4028235e38		1.797693	134862315	7e308
float	tmax(type)		6.55e4		3.4028235e38		1.797693	134862315	7e308
MAX	(z wykładu		-		3.4e38		1.8e308		
Jak	można	zau	ıważyć	funkcja	prawidłowo	wyzna	ıczvła	liczbe	MAX.

2.2. Zadanie 2

2.2.1. Opis problemu i rozwiązanie

W tym zadaniu należało poprawność twierdzenia Kahana o sposobie wyliczania epsilonu maszynowego. Stwierdził, że epsilon maszynowy można otrzymać obliczając wyrażenie $3(\frac{4}{3}-1)-1$ w arytmetyce zmiennopozycyjnej. W tym celu została napisana funkcja kahan(), która oblicza to wyrażenie w 3 arytmetykach, Float16, Float32 oraz Float64.

2.2.2. Wyniki i wnioski

Poniżej w tabeli znajdują się wyniki działania programu zestawione z prawidłowymi wartościami.

Arytmetyka	Float16	Float32	Float64
kahan()	-0.000977	1.1920929e-7	-2.220446049250313e-16
eps(type)	0.000977	1.1920929e-7	2.220446049250313e-16

Jak widać w tabeli, dla typów Float16 oraz Float64 uzyskaliśmy wartości ujemne. Stąd można wywnioskować, że twierdzenie Kahana jest poprawne, jeśli popatrzymy na wartość bezwzględną otrzymanego wyniku.

2.3. Zadanie 3

2.3.1. Opis problemu i rozwiązanie

W tym zadaniu należało sprawdzić równomierność rozmieszczenia liczb w przedziale [1,2], a następnie w przedziałach [0.5, 1] i [2,4] w arytmetyce Float64. Na początku należy sprawdzić czy w przedziale [1,2] liczby są oddalone o $\delta=2^{-52}$. Możemy to zrobić wyświetlając kilka kolejnych liczb w postaci bitowej, przy użyciu funkcji bitstring(), zwiększając je o δ . Możemy zacząć od początków przedziałów, zatem kolejno od 1, $\frac{1}{2}$, oraz 2.

2.3.2. Wyniki

Poniżej w tabeli znajduje się pierwsze kilka liczb od początku przedziału oddalone od siebie o $\delta=2^{-52}$.

1	$\frac{1}{2}$	2
001111111111000000000	0011111111110000000000	0100000000000000000
001111111111000000001	0011111111110000000010	0100000000000000000
001111111111000000010	0011111111110000000100	0100000000000000001
001111111111000000011	0011111111110000000110	0100000000000000010
001111111111000000100	0011111111110000001000	0100000000000000010
001111111111000000101	0011111111110000001010	0100000000000000010
001111111111000000110	0011111111110000001100	0100000000000000011
001111111111000000111	0011111111110000001110	0100000000000000100
001111111111000001000	0011111111110000010000	0100000000000000100
	001111111111000000001 0011111111111000000010 0011111111	0011111111111000000000 0011111111111000000000 0011111111111100000001 0011111111111000000010 0011111111111100000011 001111111111100000010 00111111111111000000100 00111111111100000100 0011111111111000000101 00111111111100000100 00111111111111000000110 00111111111100000110 00111111111111000000111 00111111111100000110

Jak widać w pierwszej kolumnie tabeli otrzymujemy kolejne liczby maszynowe, zatem krok ten jest w rzeczywistości odległością między dwoma kolejnymi liczbami.

W kolejnej kolumnie widać, że przeskakujemy od razu co 2 liczby, zatem wnioskujemy, że krok jest w tym przedziale 2 razy mniejszy i równy 2^{-53} .

W ostatniej kolumnie natomiast widać, że potrzebujemy 2 kroków, aby otrzymać kolejną liczbę, zatem krok w tym przedziale wynosi $2*2^{-52}=2^{-51}$.

Wynika to z tego, gdyż z każdą kolejną potęgą dwójki zmienia się cecha liczby, lecz mantysa zawsze musi być z przedziału [1,2), zatem ogólny wzór na rozkład liczb w zdanym przedziale [a,b] wynosi:

$$\delta = 2^{-52 + \lfloor \log_2 a \rfloor}$$

gdzie a jest początkiem przedziału, a $b \le 2^{\lfloor \log_2 a \rfloor + 1}$.

2.4. **Zadanie** 4

2.4.1. Opis problemu i rozwiązanie

W zadaniu należało znaleźć liczbę z przedziału [1,2], która nie spełnia równania $x * \frac{1}{x} = 1$ w arytmetyce Float64. Następnie należało znaleźć najmniejszą taką liczbę. W tym celu zostały napisane funkcje, które sprawdzają równanie dla kolejnych liczb startując w pierwszym przypadku od 1, a w drugim od floatmin(Float64).

2.4.2. Wyniki i wnioski

Wynik działania tego programu znajduje się w poniższej tabeli.

Przedział	Wynik
[1,2]	1.00000057228997
$(0,\infty)$	2.2250738585072014e-308

Obecny błąd obliczeń wynika z tego, że odwrotność liczb jest zaokrąglana, a następnie to zaokrąglenie przenosi się na błąd wyniku całego wyrażenia.

2.5. Zadanie 5

2.5.1. Opis problemu i rozwiązanie

W tym zadaniu należało obliczyć iloczyn skalarny dwóch zadanych wektorów 4 metodami, a następnie sprawdzić z rzeczywistym wynikiem. W tym celu zostały napisane funkcje liczące tymi metodami w arytmetyce Float32, a następnie we Float64.

2.5.2. Wyniki i wnioski

W poniżej tabeli zaprezentowane zostały wyniki obliczeń funkcji.

Metoda	Float32	Float64
a ("w przód")	-0.4999443	1.0251881368296672e-10
b ("w tył")	-0.4543457	-1.5643308870494366e-10
С	-0.5	0.0
d	-0.5	0.0
Wartość rzeczywista	-	$1.00657107000000 \cdot 10^{-11}$

Jak można zauważyć żadna z metod nie pozwoliła na dokładne policzenie wyniku. Można z tego wywnioskować, że zadanie jest źle uwarunkowane i przez mnożenie liczb znacznie oddalonych od siebie, a następnie ich dodawanie, generuje błędy zaokrągleń, które się nawarstwiają, co z kolei prowadzi do błędnego wyniku.

2.6. Zadanie 6

2.6.1. Opis problemu i rozwiązanie

W tym zadaniu należało sprawdzić wyniki obliczeń w arytmetyce Float64 tej samej funkcji, zapisanej w dwóch różnych postaciach. W tym celu napisana została funkcja, która oblicza obie formuły dla zadanych argumentów i wypisuje wyniki.

$$f(x) = \left(\sqrt{x^2 + 1}\right) - 1$$
$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

2.6.2. Wyniki i wnioski

W poniżej tabeli znajdują się wyniki funkcji w wybranych iteracjach.

X	f(x)	g(x)		
8-1	0.0077822185373186414	0.0077822185373187065		
8-2	0.00012206286282867573	0.00012206286282875901		
8-3	1.9073468138230965e-6	1.907346813826566e-6		
8-8	1.7763568394002505e-15	1.7763568394002489e-15		
8-9	0.0	2.7755575615628914e-17		
8 ⁻¹⁷⁸	0.0	1.6e-322		
8 ⁻¹⁷⁹	0.0	0.0		
	0.0	0.0		

Jak łatwo można zauważyć funkcja g(x) oferuje znacznie większą precyzję od funkcji f(x), która to już przy argumencie 8^{-9} daje wynik równy 0,a funkcja g dopiero przy 8^{-179} . Różnica wynika z tego, że w pierwszej postaci odejmujemy od siebie coraz to bliższe sobie liczby, ponieważ wyrażenie pod pierwiastkiem zbliża się do 1 z każdą kolejną iteracją. A jak pokazaliśmy na wykładzie im bliższe od siebie odejmujemy liczby tym większy błąd otrzymamy.

Z tego możemy wywnioskować, że wyniki funkcji g(x) są bardziej wiarygodne.

2.7. **Zadanie** 7

2.7.1. Opis problemu i rozwiązanie

W tym zadaniu należało porównać wyniki obliczania pochodnej obliczanej za pomocą zadanego wzoru z rzeczywistą jej wartością dla funkcji sinx + cos3x. W tym celu została napisana funkcja, która iteracyjnie oblicza kolejne przybliżone wartości pochodnej w punkcie w zależności od h.

2.7.2. Wyniki i wnioski

W poniżej tabeli zaprezentowane są wyniki obliczeń funkcji oraz rzeczywista wartość pochodnej.

h	~f′(1)	f'(1) - ~f'(1)		
2 ⁰	2.0179892252685967	1.9010469435800585		
2-1	1.8704413979316472	1.753499116243109		
2-2	1.1077870952342974	0.9908448135457593		
2 ⁻²⁷	0.11694231629371643	3.460517827846843e-8		
2 ⁻²⁸	0.11694228649139404	4.802855890773117e-9		
2 ⁻²⁹	0.11694222688674927	5.480178888461751e-8		
•••				
2 ⁻⁵⁴	0.0	0.11694228168853815		
f'(1) = 0.11694228168853815				

Jak można zauważyć, zmniejszanie h powoduje poprawę dokładności tylko do pewnego momentu. Od wartości h = 2^{-29} następuje jej spadek. Wynika to prawdopodobnie z konieczności wykonywania działań na bardzo małych liczbach, co prowadzi do zaokrąglania wyników i powiększania się błędu.

W zadaniu należało również sprawdzić, jak zachowują się wartości 1+h. W tabeli zaprezentowane są te wartości.

n (h = 2 ⁻ⁿ)	h	1 + h			
0	1.0	2.0			
1	0.5	1.5			
2	0.25	1.25			
	•••				
16	1.52587890625e-5	1.0000152587890625			
17	7.62939453125e-6	1.0000076293945312			
18	3.814697265625e-6	1.0000038146972656			
27	7.450580596923828e-9	1.000000074505806			
28	3.725290298461914e-9	1.000000037252903			
29	1.862645149230957e-9	1.000000018626451			
51	4.440892098500626e-16	1.000000000000004			
52	2.220446049250313e-16	1.0000000000000000000000000000000000000			
53	1.1102230246251565e-16	1.0			
54	5.551115123125783e-17	1.0			

Tutaj widać kiedy zaczynają się zaokrąglenia, które powodują błędy w obliczeniach pochodnej. Kiedy h staje się wystarczająco małe, przy obliczaniu 1+h dochodzi do zaokrąglenia. Stąd wniosek, że h nie może być zbyt małą liczbą z uwagi na ograniczoną precyzję w arytmetyce.

3. Podsumowanie

Rozwiązania zadań miały na celu ukazać na jakie błędy obliczeniowe możemy natknąć się, kiedy liczby możemy zapisywać tylko z zadaną precyzją, tutaj standard IEEE 754 oraz arytmetyki Float16, Float32 i Float64. Na podstawie otrzymanych wyników można śmiało stwierdzić, że nie poświęcenie wystarczającej uwagi tej kwestii przy tworzeniu algorytmów, może doprowadzić do poważnych błędów.