6 5 4 1

1. All resistors 0603 1% 1/8W SMT unless otherwise specified

D

2. All capacitors 0603 10% 50V X7R SMT unless otherwise specified

Power Regulation
Power Regulation.SchDoc

Title				
Size	Number			Revision
В				
Date:	12/03/2023		Sheet of	
File:	C:\Users\\CBU.SchDoc		Drawn By:	
^				4

D

5 4

3

D

D

Assuming 3x AA batteries, 1.3V - 1.6V absolute range, VBATT = 3.9V - 4.8V

BLE requires 3.6V min, highest operating voltage

The output voltage can be set by using a resistor divider as shown in Figure 1 with a range of 1.25 to 10 V. The appropriate resistor divider can be found by solving the equation below. The recommended current through the resistor divider is from 10 μ A to 100 μ A. This can be accomplished by selecting resistors in the $k\Omega$ range. As result, the $I_{adj}*R2$ becomes negligible in the equation and can be ignored.

$$V_{out} = 1.25 * \left(1 + \frac{R1}{R2}\right) + I_{adj} * R2$$
 (eq. 1)

Example: For V_{out} = 2.9 V, can use R_1 = 36 k Ω and R_2 = 27 k Ω .

$$1.25 * \left(1 + \frac{36 \text{ k}\Omega}{27 \text{ k}\Omega}\right) = 2.91 \text{ V}$$
 (eq. 2)

Title Size Revision Number В Date: 12/03/2023 Sheet of File: C:\Users\..\Power Regulation.SchDoc Drawn By: