Multivariate non-linear continuous-time deterministic models

© Steve Walker July 9, 2014

function of a vector-valued state variable, x. OK, at this point, you should probably be able to guess what's about to happen. Here's a toy example that we use below,

$$\frac{dN}{dt} = aN(1-N)(M-0.5)$$

$$\frac{dM}{dt} = bM(1-M)(N-0.5)$$

Fixed points

 $x\star$ is a fixed point if $f(x\star) = 0$. These can be hard to find. But they are easy for the toy model, which we can state in two conditions: (1) $N\star = M\star$ and (2) $N \star \in \{0, 0.5, 1\}.$

Stability

A fixed point $x \star$ is stable if the real part of the eigenvalues of the Jaccobian at $x\star$ are all less than zero. Unlike the linear case, it is difficult to say much in general about eigenvalues with real part exactly equal to zero. The Jaccobian for the 2×2 case is,

$$\begin{pmatrix} \frac{\partial f_1(x_1, x_2)}{\partial x_1} & \frac{\partial f_1(x_1, x_2)}{\partial x_2} \\ \frac{\partial f_2(x_1, x_2)}{\partial x_1} & \frac{\partial f_2(x_1, x_2)}{\partial x_2} \end{pmatrix}$$

which for the example is,

$$\begin{pmatrix} a(1-2N)(M-0.5) & aN(1-N) \\ bM(1-M) & b(1-2M)(N-0.5) \end{pmatrix}$$

Let's look at each fixed point. For both N=M=0 and N = M = 1,

$$\begin{pmatrix} -a/2 & 0 \\ & -b/2 \end{pmatrix}$$

which gives eigenvalues -a/2 and -b/2. Therefore, the origin is stable if both a and b are positive. Now for N = M = 0.5,

$$\begin{pmatrix} 0 & a/4 \\ b/4 & 0 \end{pmatrix}$$

which gives eigenvalues $\pm 0.25\sqrt{ab}$. If a and b have the same signs, then at least one of these eigenvalues has positive real part, and so the fixed point is not stable. However,

Basic model: $\frac{dx}{dt} = f(x)$, where f is a vector-valued if a and b have different signs, both of these eigenvalues have real parts of zero, and so we need to explore this fixed point using simulations.

Time dependent solution

Use deSolve in R. For the above model,

```
library (deSolve)
# start at difficult FP + perturbation
set.seed(1)
state <-c(N = 0.5, M = 0.5) +
    runif(2,-0.4,0.4)
pars < c (a = -3, b = 3)
times \leftarrow seq(0,20,length=100)
func <- function(Time, State, Pars) {</pre>
    with(as.list(c(State, Pars)), {
        dN < -a*N*(1-N)*(M-0.5)
        dM < -b*M*(1-M)*(N-0.5)
        return(list(c(dN, dM)))
    })
out <- ode (state, times, func, pars)
plot(out, which = "N", las = 1)
```


Cycles!