Data Analytics Lesson Plan Spring 6th Semester, 2022-23

School of Computer Engineering, KIIT Deemed to be University

(Institute of Eminence)

Course Details

Program(s)	Academic Session, Semester	Subject Name	Subject Code	Credit
B.Tech [CSE, IT, CSCE, CSSE]	Spring 2022-23 (December-May) 6th Sem	Data Analytics	IT-3006	3

Course Committee Faculties

	10		
Course Code :	: IT 3032 Course Name : Data Analytics	s (Cr: 3)	
Dr. Sarita Tripathy (C)	sarita.tripathyfcs@kiit.ac.in	9437696333	
Dr. Mainak Bandyopadhyay	mainak.bandyopadhyayfcs@kiit.ac.i n	8009387402	
Dr.Siddharth Swarup Rautaray	siddharthfcs@kiit.ac.in	8763999449	
Dr. Manjusha Pandey	manjushafcs@kiit.ac.in	8763999448	
Dr. Rajat Kumar Behera	rajatkumar.beherafcs@kiit.ac.in	9886072882	
Dr. Satarupa Mohanty	satarupafcs@kiit.ac.in	9124941515	
Dr. Hrudaya Kumar Tripathy	hktripathyfcs@kiit.ac.in	9437432185	
Dr. Minakhi Rout	minakhi.routfcs@kiit.ac.in	9861108580	
Mr. Ajay Anand	ajay.anandfcs@kiit.ac.in	9178181981	
Dr. Ambika Prasad Mishra	ambikaprasad.mishra@gmail.com	9692144071	
Dr. Soumya Ranjan Mishra	soumyaranjan.mishrafcs@kiit.ac.in	8096177170	
Mrs. Jayanti Dansana	jayantifcs@kiit.ac.in	9438509667	
Dr. Arup Abhinna Acharya	aacharyafcs@kiit.ac.in	9861058079	
Dr. Jagannath Singh	jagannath.singhfcs@kiit.ac.in	9861085883	

Course Outcomes

Prerequisite: DBMS

	At the end of the course, the students will be able to:
CO1	Make use of data science concepts to handle the big data. [L3]
CO2	Examine the statistical concepts for finding relationships among variables and estimate the data samplings [L4, L5]
CO3	Select the data analytics techniques & models for both data prediction and performance analysis. [L5, L6]
CO4	Develop rules using frequent itemsets and association mining. [L6]
CO5	Solve real-time problems using classification and clustering techniques. [L6]
CO6	Apply the mining techniques for data streams. [L3]

Syllabus

Module	Title	Contents	Hours
1.	Introduction to Data Science	Introduction to Data, Data Science, Challenges of Traditional Systems, Evolution of Analytic Scalability, Types of Computing (Distributed, Parallel, Grid), Data Analytics Lifecycle, Introduction to Big Data (Characteristics) and Hadoop (Hadoop Ecosystem, MapReduce, Hbase, Pig, Hive, Sqoop, NOSQL), Visualizations.	8
2.	Statistical Concepts	Data Exploration: Distribution of a single variable, Basic Concepts (populations and samples, data sets, variables, and observations, types of data), Descriptive measures for categorical variables, descriptive measures for numerical variables, Outliers and Missing values, Finding relationships among variables: Categorical variables, Numerical variables, Categorical variables and a Numerical variable. Sampling and distributions: Terminology, Estimation, Confidence Interval estimation, Sampling distributions, Confidence interval, Hypothesis testing, Chi-square test for independence.	9
3.	Data Analytics	IIntroduction, Types of Data Analytics, Importance of Data Analytics, Data Analytics Applications, Regression Modelling Techniques: Linear Regression, Multiple Linear Regression, Non Linear Regression, Logistic Regression, Time Series Analysis, Performance analysis (RMSE, MAPE).	8

Syllabus(contd.)

			_
Module	Title	Contents	Hours
4.	Frequent Itemsets and Association	Introduction to Frequent Itemsets, Market-Basket Model, Algorithm for Finding Frequent, Itemsets, Association Rule Mining, Apriori Algorithm and Correlations.	5
5.	Classification & Clustering	Introduction to classification and clustering, Distance-Based Algorithms: K Nearest Neighbour (KNN), Decision Tree-Based Algorithms: Decision Tree (ID3 Algorithm), Support Vector Machines (Linear), Naves Bayes. Overview of Clustering Techniques, Hierarchical Clustering, Partitioning Methods, K- Means Algorithm.	6
6.	Data Streams	Introduction to Mining Data Streams, Data Stream Management Systems, Data Stream Mining, Examples of Data Stream Applications, Stream Queries, Issues in Data Stream Query, Processing, Sampling in Data Streams, Filtering Streams, Counting Distinct Elements in a Stream, Estimating Moments.	6

Books

Text Book:

Data Analytics, Radha Shankarmani, M. Vijayalaxmi, Wiley India Private Limited, ISBN: 9788126560639.

Reference Books:

- Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data by EMC Education Services (Editor), Wiley, 2014
- Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with advanced analystics, John Wiley & sons, 2012.
- Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, 2007 Pete Warden, Big
- Data Glossary, O'Reilly, 2011.
- Jiawei Han, MichelineKamber "Data Mining Concepts and Techniques", Second Edition, Elsevier, Reprinted 2008.
- Stephan Kudyba, Thomas H. Davenport, Big Data, Mining, and Analytics, Components of Strategic Decision Making, CRC Press, Taylor & Francis Group. 2014
- Big Data, Black Book, DT Editorial Services, Dreamtech Press, 2015

Lesson Plan

Modules	Lecture Days	Topics/Coverage
4. Instrumenting to Date	1st to 3rd	Introduction to Data, Data Science, Challenges of Traditional Systems, Evolution of Analytic Scalability, Types of Computing (Distributed, Parallel, Grid),
1. Introduction to Data Science	4th to 7th	Data Analytics Lifecycle, Introduction to Big Data (Characteristics) and Hadoop (Hadoop Ecosystem, MapReduce, Hbase, Pig, Hive, Sqoop, NOSQL), Visualizations.
	8th	Module 1 Activities
2.Statistical Concepts	10th - 12th	Data Exploration: Distribution of a single variable, Basic Concepts (populations and samples, data sets, variables, and observations, types of data), Descriptive measures for categorical variables, descriptive measures for numerical variables, Outliers and Missing values
	13th to 15th	Finding relationships among variables: Categorical variables, Numerical variables, Categorical variables and a Numerical variable.
	16th to 18th	Sampling and distributions: Terminology, Estimation, Confidence Interval estimation, Sampling distributions, Confidence interval, Hypothesis testing, Chi-square test for independence.
	19th	Module 2 Activities

Lesson Plan

Modules	Lecture Days	Topics/Coverage		
	20th to 21th	Introduction, Types of Data Analytics, Importance of Data Analytics, Data Analytics Applications		
3. Data Analytics	22th 24th	Regression Modelling Techniques: Linear Regression, Multiple Linear Regression, Non Linear Regression.		
o. Data Analytics		MID SEMESTER		
	25 th -27th	Logistic Regression, Time Series Analysis, Performance analysis (RMSE, MAPE).		
	28th	Module 3 Activities		
4. Frequent Itemsets and Association	29th to 31st	Introduction to Frequent Itemsets, Market-Basket Model, Algorithm for Finding Frequent Itemsets,		
	32nd to 33rd	Association Rule Mining, Apriori Algorithm and Correlations.		
	34th	Module 4 Activities		

Lesson Plan(contd.)

5. Classification & Clustering	35th to 37th	Introduction to classification and clustering, Distance-Based Algorithms: K Nearest Neighbour (KNN), Decision Tree-Based Algorithms: Decision Tree (ID3 Algorithm),
	38th to 40th	Support Vector Machines (Linear), Naves Bayes. Overview of Clustering Techniques, Hierarchical Clustering, Partitioning Methods, K-Means Algorithm.
	41st	Module 5 Activities
6.Data Streams	42nd to 44th	Introduction to Mining Data Streams, Data Stream Management Systems, Data Stream Mining, Examples of Data Stream Applications, Stream Queries, Issues in Data Stream Query, Processing
	45th to 47th	Sampling in Data Streams, Filtering Streams, Counting Distinct Elements in a Stream, Estimating Moments.
	48th	Module 6 Activities

Activities

Group formation (For this Semester)

 In the beginning of session, students may be divided into groups (8 to 10 members)

Real world project prototypes

- Right after the group formation, Students will be asked to participate in prototype projects in different domains in real world.
- After every module, they will be preparing the relevant and necessary diagrams/documents/ code/algorithm/test plan as required as part of activity deliverables.

Focus areas have been identified as

- Real world problem identification & solution approach.
- Analyzing the probable solution.
- Critical thinking
- Creation of design
- Interactivity Focus
- Reflection

- Activities have been identified in every module.
- Different focus areas have been identified as applicable across all modules.

Evaluation Scheme

EX	MARKS	
End Semester		50
Internal Mid Semester		20
	Activities	30
Total		100