PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 21. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 22. do 31. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

SOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 21. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (*1 pkt*)

Wartość wyrażenia $W = (-3)^3 \cdot (\sqrt{3})^{-4}$ pomnożono przez 2. Wartość tego wyrażenia:

A. zmniejszyła się o 3 B. zwiększyła się o 3 C. zmniejszyła się o 2 D. zwiększyła się o 2

Zadanie 2. (1 pkt)

Liczba $x = \frac{n+2}{n}$ jest liczbą całkowitą. Liczb naturalnych n spełniających warunki zadania:

 \mathbf{A} . nie ma \mathbf{B} . są dwie \mathbf{C} . są trzy \mathbf{D} . jest nieskończenie wiele

Zadanie 3. (1 pkt)

Suma dwóch liczb niewymiernych:

A. może być liczbą całkowitą
B. nie może być liczba całkowitą
D. nie może być liczbą wymierną

Zadanie 4. (1 pkt)

Funkcja określona wzorem $f(x) = \begin{cases} x + 2 & \text{dla } x \le 0 \\ 1 & \text{dla } x = 1 \\ 0 & \text{dla } x = 2 \end{cases}$

A. rosnąca

B. malejąca

C. malejąca w zbierza (0.1.2)

 \mathbf{C} . malejąca w zbiorze $\{0,1,2\}$ \mathbf{D} . rosnąca w zbiorze $\{-2,-1,0,1\}$

Zadanie 5. (1 pkt)

Punkt $A = (\sqrt{3}, a)$ należy do prostej o równaniu $\sqrt{3} x - 2y + 3\sqrt{3} = 0$. Wynika stąd, że:

A. $a = -2\sqrt{3}$ **B.** $a = 2\sqrt{3}$ **C.** $a = -\frac{3}{2} - \frac{3}{2}\sqrt{3}$ **D.** $a = \frac{3}{2} + \frac{3}{2}\sqrt{3}$

Zadanie 6. (*1 pkt*)

Zbiorem wszystkich rozwiązań równania |x| = -x jest:

 $\mathbf{A}.(0,+\infty)$ $\mathbf{B}.(-\infty,0)$ $\mathbf{C}.\{-1\}$

Zadanie 7. (*1 pkt*)

Jeśli $\sqrt{x^2 - 6x + 9} = 3 - x$, to liczba *x* może być równa: **A.** 8 **B.** 6 **C.** 4 **D.** 2

Zadanie 8. (1 pkt)

Wartość wielomianu $W(x) = x^3 - 3x^2 + 4x$ w punkcie a jest równa 12. Wynika stąd, że: $\mathbf{A} \cdot a = -3$ $\mathbf{B} \cdot a = -2 \lor a = 2$ $\mathbf{C} \cdot a = 2 \lor a = 3$ $\mathbf{D} \cdot a = 3$

Zadanie 9. (*1 pkt*)

Dana jest funkcja f określona wzorem $f(x) = 3^{-x}$. Wykres funkcji g jest symetryczny do wykresu funkcji f względem osi OX. Zatem:

A. $g(x) = -3^{-x}$ **B.** $g(x) = -3^{x}$ **C.** $g(x) = 3^{x}$ **D.** $g(x) = 3^{-x} - 2$

Zadanie 10. (1 *pkt*)

Pierwszy wyraz ciągu arytmetycznego jest równy 8, a różnica wynosi 7. Wyrazem tego ciągu jest liczba:

A.11

B.17

C. 43

D. 56

Zadanie 11. (*1 pkt*)

Dany jest ciąg geometryczny o wyrazie ogólnym $a_n = 2^n$. Liczba wyrazów tego ciągu mniejszych od 32 jest równa:

A. 6

B. 5

C. 4

D. 3

Zadanie 12. (*1 pkt*)

Ciąg (a_n) o wyrazie ogólnym $a_n = \frac{1}{n}$ jest ciągiem:

A. rosnącym

B. malejącym

C. arytmetycznym

D. geometrycznym

Zadanie 13. (*1 pkt*)

Środkiem okregu opisanego na trójkacie jest punkt przecięcia się:

A. dwusiecznych kątów trójkąta

B. symetralnych boków trójkata

C. wysokości trójkąta

D. środkowych trójkąta

Zadanie 14. (*1 pkt*)

Dane są dwa okręgi o środkach S_1, S_2 i promieniach odpowiednio równych r_1, r_2 . Jeśli $|S_1S_2| = 12, r_1 = 20$, $r_2 = 10$, to okręgi:

A. są styczne zewnętrznie

B. sa styczne wewnętrznie

C. nie mają punktów wspólnych

D. mają dwa punkty wspólne

Zadanie 15. (*1 pkt*)

Dany jest równoramienny trójkat ABC o kacie przy podstawie AB równym 20°. Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Przez punkty A i O poprowadzono prostą, która przecięła bok BC w punkcie D. Jeśli miara kata ADC jest równa α , to:

 $\mathbf{A} \cdot \boldsymbol{\alpha} = 10^{\circ}$

 $\mathbf{B} \cdot \alpha = 20^{\circ}$

 $\mathbf{C} \cdot \alpha = 30^{\circ}$

D. $\alpha = 40^{\circ}$

Zadanie 16. (1 pkt)

Stosunek boków prostokąta jest równy 1:2. Przekątna prostokąta tworzy z dłuższym bokiem prostokata kat α , taki, że:

 $\mathbf{A.}\cos\alpha = \frac{\sqrt{3}}{3}$

B. $\cos \alpha = \frac{2\sqrt{3}}{3}$ **C.** $\cos \alpha = \frac{\sqrt{5}}{5}$ **D.** $\cos \alpha = \frac{2\sqrt{5}}{5}$

Zadanie 17. (1 pkt)

Nierówność $x^2 + y^2 - 2x + 6y + 10 \le 0$ przedstawia na płaszczyźnie:

A. okrag

B. koło

C. punkt

D. zbiór pusty

Zadanie 18. (*1 pkt*)

Jeżeli objętość sześcianu jest równa $6\sqrt{6}$, to przekątna tego sześcianu jest równa:

A. $3\sqrt{2}$

B. $2\sqrt{3}$

C. $6\sqrt{3}$

D. $6\sqrt{2}$

Zadanie 19. (*1 pkt*)

Przekrój osiowy stożka jest trójkątem równoramiennym o stosunku ramienia do podstawy 3:2. Tworząca stożka tworzy z jego wysokością kąt α , taki, że:

$$\mathbf{A.}\cos\alpha = \frac{2}{3}$$

B.
$$\cos \alpha = \frac{1}{3}$$

$$\mathbf{C.} \sin \alpha = \frac{1}{3} \qquad \qquad \mathbf{D.} \sin \alpha = \frac{2}{3}$$

D.
$$\sin \alpha = \frac{2}{3}$$

Zadanie 20. (1 pkt)

Prawdopodobieństwo, że przy rzucie czterema monetami otrzymamy co najmniej dwa orły, jest równe:

A.
$$\frac{3}{16}$$

B.
$$\frac{6}{16}$$

$$\mathbf{C} \cdot \frac{10}{16}$$

D.
$$\frac{11}{16}$$

Zadanie 21. (1 pkt)

Średnią arytmetyczną liczb 3, 3, 4, 4, 4, 5, 5, 6 jest liczba:

$$C$$
 4 5

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 22. do 31. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 22. (2 *pkt*)

Rozłóż na czynniki wielomian $W(x) = 2x^2 + 7x - 4$.

Zadanie 23. (2 *pkt*)

Odcinek AB jest wysokością trójkąta równobocznego. Oblicz długość boku trójkąta, jeśli wiadomo, że A = (-3, -2), B = (5, 2).

Zadanie 24. (2 *pkt*)

Wykaż, że liczba $a = \sqrt{4^{\log_2 5}}$ jest liczba całkowitą.

Zadanie 25. (2 *pkt*) Rozwiąż równanie $\frac{x+6}{x-2} = \frac{2x+4}{x-2}$.

Zadanie 26. (2 *pkt*)

Punkt P leży wewnątrz prostokąta ABCD. Wykaż, że suma pól trójkątów APD i BPC jest równa sumie pól trójkątów APB i DPC.

Zadanie 27. (2 *pkt*)

Wykaż, że nie istnieje taka liczba rzeczywista x, aby suma tej liczby i jej odwrotności była równa 1.

Zadanie 28. (2 pkt)

Tangens kata nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa prawidłowego czworokatnego jest równy $\frac{2}{3}$. Oblicz tangens nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa.

Zadanie 29. (5 *pkt*)

Dana jest prosta l o równaniu y = 3x - 1 oraz punkt A = (6, 2). Wyznacz punkt B symetryczny do punktu A względem prostej l.

Zadanie 30. (*5 pkt*)

Suma drugiego, czwartego i szóstego wyrazu ciągu arytmetycznego jest równa 42, zaś suma kwadratu wyrazu drugiego i kwadratu wyrazu trzeciego jest równa 185. Wyznacz pierwszy wyraz i różnicę tego ciągu.

Zadanie 31. (5 *pkt*)

Promień okręgu opisanego na podstawie graniastosłupa prawidłowego trójkątnego ma długość $4\sqrt{3}$. Pole powierzchni bocznej jest równe 144.

- a) Oblicz objętość tego graniastosłupa.
- b) Oblicz cosinus kąta między przekątną ściany bocznej i krawędzią podstawy graniastosłupa.

