

Nicosia Haspolat via mersin 10

Project		Job Ref.			
Calc. by Asst. Prof. Dr.	Shihab Ibrahim (Sheet no./rev.			
Section S	Date 09-Jun-25	Chk'd by	Date	App'd by	Date

RC STAIR DESIGN

In accordance with ACI318-19(22)

Design summary

Overall design status PASS
Overall design utilization 0.804

Description	Unit	Provided	Required	Utilization	Result
Bottom long reinf mid span	mm ²	887	360	0.406	PASS
Top long reinf upper land.	mm ²	887	374	0.421	PASS
Top long reinf lower land.	mm ²	887	374	0.421	PASS
Bottom trans reinf mid span	mm²/m	845	360	0.426	PASS
Top trans reinf upper land.	mm²/m	845	360	0.426	PASS
Top trans reinf lower land.	mm²/m	845	360	0.426	PASS
Shear resist. at up support	kN	66.5	32.3	0.486	PASS
Shear resist. at low support	kN	66.5	32.3	0.486	PASS
Minimum thickness of waist	mm	200	161	0.804	PASS

Stair geometry

 $\begin{array}{lll} \text{Number of risers} & & N_{\text{steps}} = 10 \\ \text{Going} & & G = 300 \text{ mm} \\ \text{Rise} & & R = 175 \text{ mm} \\ \text{Waist} & & h_{\text{waist}} = 200 \text{ mm} \\ \text{Breadth} & & b = 1000 \text{ mm} \end{array}$

 $\label{eq:Length of the tread span} L_{mid} = (N_{steps} - 1) \times G = \textbf{2700} \text{ mm}$ Overall height of stairs $h_{stairs} = N_{steps} \times R = \textbf{1750} \text{ mm}$ Angle of stairs $\alpha_{stairs} = \text{atan } (R \ / G) = \textbf{30.26} \ ^{\circ}$

Upper landing - Interior support

 $\label{eq:Lup} \text{Length of the upper landing} \qquad \qquad \text{Lup} = 1000 \text{ mm}$ $\text{Depth of the upper landing} \qquad \qquad \text{hup} = 200 \text{ mm}$

Nicosia Haspolat via mersin 10

Project		Job Ref.	Job Ref.		
Calc. by Asst. Prof	. Dr. Shihab Ibrahin	Sheet no./rev.	Sheet no./rev.		
Section	Date	Chk'd by	Date	App'd by	Date

Width of the supporting element $w_{up} = 200 \text{ mm}$

Lower landing - Interior support

Span details

Overall length $L_{total} = L_{low} + L_{mid} + L_{up} = \textbf{4700} \text{ mm}$ Clear distance between the supports faces $L_n = L_{total} - w_{up} - w_{low} = \textbf{4300} \text{ mm}$

Distance between support centers $L_{span} = L_{total} - (w_{up} + w_{low}) / 2 = 4500 \text{ mm}$

Concrete details

 $\begin{tabular}{lll} Compressive strength of concrete & f'c = 21 MPa \\ Density of reinforced concrete & w_c = 23 kN/m^3 \\ Concrete type & Normal weight \\ \end{tabular}$

Modulus of elasticity of concrete (cl.19.2.2.1) $E = (w_c \ / \ g_{acc})^{1.5} \times 0.043 (m^3/kg)^{1.5} \times (f'_c \times 1 MPa)^{0.5} = \textbf{22381} \ MPa$

Strength reduction factor for shear $\phi_s = 0.75$

Reinforcement details

Yield strength of reinforcement $f_y = 420 \text{ MPa}$

Compression-controlled strain limit (cl.21.2.2.1) $\varepsilon_{ty} = f_y / E_s = 0.00210$

Nominal cover to reinforcement

Cover to reinforcement cnom = 25 mm

Loading details

Self weight slab $F_{self,slab} = h_{waist} / cos(\alpha_{stairs}) \times (w_c) \times b = 5.3 \text{ kN/m}$

Self weight steps $F_{\text{self,steps}} = R / 2 \times (w_c) \times b = \textbf{2.0 kN/m}$ Average self weight $F_{\text{self,steps}} = F_{\text{self,staps}} + F_{\text{self,steps}} = \textbf{7.3 kN/m}$

Live load factor $\gamma_{L} = 1.60$

Design load $F_{\text{total}} = \gamma_D \times (F_{\text{self,aver}} + F_{\text{fin}} \times b) + \gamma_L \times F_L \times b = 15.0 \text{ kN/m}$

Midspan design

Bending moment coefficient α mid = **0.042**

Factored bending moment at section $M_{\text{U}} = abs(\alpha_{\text{mid}}) \times F_{\text{total}} \times L_{\text{n}^2} = \textbf{11.59} \text{ kNm}$

Effective depth to tension reinforcement $d = h_{waist} - c_{nom} - \phi / 2 = 168.7 \text{ mm}$

Tension reinforcement provided 7 x 12.7 mm ϕ bars Area of tension reinforcement provided As,prov = **887** mm²

Gross area of section $A_g = b \times h_{waist} = \textbf{200000} \text{ mm}^2$ Minimum area of reinforcement (cl.7.6.1.1) $A_{s,min} = 0.0018 \times A_g = \textbf{360} \text{ mm}^2$

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Stress block depth factor (cl.22.2.2.4.3) $\beta_1 = \min(\max(0.85 - 0.05 \times (f'_c - 28MPa) / 7 MPa, 0.65), 0.85) = \textbf{0.85}$

Depth of equivalent rectangular stress block $a = A_{s,prov} \times f_y / (0.85 \times f'_c \times b) = 21 \text{ mm}$

Depth to neutral axis $c = a / \beta_1 = 25 \text{ mm}$

Net tensile strain in extreme tension fibers $\epsilon_t = 0.003 \times (d - c) / max(c, 0.1 mm) = 0.01761$

Nicosia Haspolat via mersin 10

Project		Job Ref.			
Calc. by Asst. Prof. Dr.	Shihab Ibrahim	Sheet no./rev.			
Section S	Date 09-Jun-25	Chk'd by	Date	App'd by	Date

Net tensile strain in tension controlled zone

Strength reduction factor (cl.21.2.1) $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = \mathbf{0.90}$

Nominal moment strength $M_n = A_{s,prov} \times f_y \times (d - a / 2) = 58.9 \text{ kNm}$

Design moment strength $\phi M_n = M_n \times \phi_f = \textbf{53.0 kNm}$

PASS - Required moment strength is less than design moment strength

Area of transverse reinforcement required $A_{s,req,t} = 0.0018 \times h_{waist} = \textbf{360} \text{ mm}^2/\text{m}$

Transverse reinforcement provided 13 mm ∮ bars @ 150 mm c/c

Area of transverse reinforcement provided $A_{s,prov,t} = 845 \text{ mm}^2/\text{m}$

PASS - Area of transverse reinforcement provided is greater than minimum area required

Flexural cracking

Steel stress (cl.24.3.2) $f_s = 2 \times f_y / 3 = 280 \text{ N/mm}^2$

Max allowable spacing (cl.7.7.2.4 and T.24.3.2) $s_{max} = min(3 \times h_{weist}, 18in, 380mm \times (280MPa / f_s) - 2.5 \times c_{nom}, 300mm \times (280MPa / f_s) - 2.5 \times c_{nom}, 3$

 $(280MPa / f_s)) = 300 mm$

Actual tensile bar spacing provided s = 156.2 mm

PASS - spacing of longitudinal reinforcement less than maximum allowable

Minimum spacing

Actual clear spacing $s_{clear} = (b - 2 \times c_{nom} - \phi \times N) / (N - 1) = 144 \text{ mm}$

Min allowable spacing (cl.25.2.1) $s_{min} = max(25mm, \phi) = 25 mm$

PASS - clear spacing of reinforcement greater than minimum allowable

Control of deflections (Section 24.2)

Concrete density factor $K_w = 1.00$

Reinforcement yield strength factor $K_f = 0.4 + f_y / 700 \text{ MPa} = \textbf{1.00}$ Minimum thickness of beam (Table 7.3.1.1) $h_{min} = L_{span} / 28 \times K_w \times K_f = \textbf{161} \text{ mm}$

PASS - Thickness of waist exceeds minimum depth of slab required

Upper landing support design

Bending moment coefficient $\alpha_{up} = -0.083$

Factored bending moment at section $M_u = abs(\alpha_{up}) \times F_{total} \times L_{n^2} = \textbf{23.18} \text{ kNm}$

Effective depth to tension reinforcement $d = h_{up} - c_{nom} - \phi / 2 = 168.7 \text{ mm}$

Tension reinforcement provided $7 \times 12.7 \text{ mm} \phi \text{ bars}$ Area of tension reinforcement provided $A_{s,prov} = 887 \text{ mm}^2$

Gross area of section $A_g = b \times h_{up} = \textbf{200000} \text{ mm}^2$ Minimum area of reinforcement (cl.7.6.1.1) $A_{s,min} = 0.0018 \times A_g = \textbf{360} \text{ mm}^2$

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Stress block depth factor (cl.22.2.2.4.3) $\beta_1 = \min(\max(0.85 - 0.05 \times (f'c - 28MPa) / 7 MPa, 0.65), 0.85) = 0.85$

Depth of equivalent rectangular stress block $a = A_{s,prov} \times f_y / (0.85 \times f'_c \times b) = 21 \text{ mm}$

Depth to neutral axis $c = a / \beta_1 = 25 \text{ mm}$

Net tensile strain in extreme tension fibers $\epsilon_t = 0.003 \times (d-c) / \max(c, 0.1 \text{ mm}) = \textbf{0.01761}$

Net tensile strain in tension controlled zone

Strength reduction factor (cl.21.2.1) $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = \textbf{0.90}$

Nominal moment strength $M_n = A_{s,prov} \times f_y \times (d - a / 2) = 58.9 \text{ kNm}$

Design moment strength $\phi M_n = M_n \times \phi_f = 53.0 \text{ kNm}$

PASS - Required moment strength is less than design moment strength

Nicosia Haspolat via mersin 10

Project		Job Ref.			
Calc. by Asst. Prof. Dr.	Shihab Ibrahim (Sheet no./rev.			
Section S	Date 09-Jun-25	Chk'd by	Date	App'd by	Date

Area of transverse reinforcement required $A_{s,req,t} = 0.0018 \times h_{up} = 360 \text{ mm}^2/\text{m}$ Transverse reinforcement provided 13 mm ϕ bars @ 150 mm c/c

Area of transverse reinforcement provided As,prov,t = **845** mm²/m

PASS - Area of transverse reinforcement provided is greater than minimum area required

Flexural cracking

Steel stress (cl.24.3.2) $f_s = 2 \times f_y / 3 = 280 \text{ N/mm}^2$

Max allowable spacing (cl.7.7.2.4 and T.24.3.2) $s_{max} = min(3 \times h_{up}, 18in, 380mm \times (280MPa / f_s) - 2.5 \times c_{nom}, 300m$

 $(280MPa / f_s)) = 300 mm$

Actual tensile bar spacing provided s = 156.2 mm

PASS - spacing of longitudinal reinforcement less than maximum allowable

Minimum spacing

Actual clear spacing $S_{clear} = (b - 2 \times c_{nom} - \phi \times N) / (N - 1) = 144 \text{ mm}$

Min allowable spacing (cl.25.2.1) $s_{min} = max(25mm, \phi) = 25 mm$

PASS - clear spacing of reinforcement greater than minimum allowable

Check for shear based on concrete alone

Shear coefficient $\beta_{up} = 0.5$

Required shear strength $V_u = \beta_{up} \times F_{total} \times L_n = 32.3 \text{ kN}$

Concrete weight modification factor $\lambda = 1.00$

Area of longitudinal steel $A_{st} = A_{s,prov,l,up} = \textbf{1.374 in}^2$ Ratio of longitudinal reinforcement $\rho_w = A_{st} / (b \times d) = \textbf{0.005}$

Size effect factor (cl.22.5.5.1.3) $\lambda_s = \min(\sqrt{2/(1 + 0.004 \times d/1mm)}), 1.0) = 1.00$

Shear strength of concrete (Table 22.5.5.1) $\phi V_c = \phi_s \times \min(0.66 \times \lambda_s \times \lambda \times (\rho_w)^{1/3}, 0.42 \times \lambda) \times \sqrt{\min(f'_c, 70MPa)} \times 1MPa)$

 \times b \times d = **66.5** kN

PASS - Design shear resistance exceeds applied shear

Lower landing support design

Bending moment coefficient $\alpha_{low} = -0.083$

Factored bending moment at section $M_u = abs(\alpha_{low}) \times F_{total} \times L_n^2 = 23.18 \text{ kNm}$

Effective depth to tension reinforcement $d = h_{low} - c_{nom} - \phi / 2 = 168.7 \text{ mm}$

Tension reinforcement provided $7 \times 12.7 \text{ mm} \phi \text{ bars}$ Area of tension reinforcement provided $A_{s,prov} = 887 \text{ mm}^2$

Gross area of section $A_g = b \times h_{low} = \textbf{200000} \text{ mm}^2$ Minimum area of reinforcement (cl.7.6.1.1) $A_{s,min} = 0.0018 \times A_g = \textbf{360} \text{ mm}^2$

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Stress block depth factor (cl.22.2.2.4.3) $\beta_1 = \min(\max(0.85 - 0.05 \times (f'_c - 28MPa) / 7 MPa, 0.65), 0.85) = \textbf{0.85}$

Depth of equivalent rectangular stress block $a = A_{s,prov} \times f_y / (0.85 \times f'_c \times b) = 21 \text{ mm}$

Depth to neutral axis $c = a / \beta_1 = 25 \text{ mm}$

Net tensile strain in extreme tension fibers $\epsilon_t = 0.003 \times (d - c) / \max(c, 0.1 \text{ mm}) = 0.01761$

Net tensile strain in tension controlled zone

Strength reduction factor (cl.21.2.1) $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = \textbf{0.90}$

Nominal moment strength $M_n = A_{s,prov} \times f_y \times (d - a / 2) = 58.9 \text{ kNm}$

Design moment strength $\phi M_n = M_n \times \phi_f = 53.0 \text{ kNm}$

PASS - Required moment strength is less than design moment strength

Nicosia Haspolat via mersin 10

Project		Job Ref.			
Calc. by Asst. Prof. Dr. S	Shihab Ibrahim (Sheet no./rev.			
Section S	Date 09-Jun-25	Chk'd by	Date	App'd by	Date

Area of transverse reinforcement required $A_{s,req,t} = 0.0018 \times h_{low} = 360 \text{ mm}^2/\text{m}$ Transverse reinforcement provided 13 mm ϕ bars @ 150 mm c/c

Area of transverse reinforcement provided As,prov,t = **845** mm²/m

PASS - Area of transverse reinforcement provided is greater than minimum area required

Flexural cracking

Steel stress (cl.24.3.2) $f_s = 2 \times f_y / 3 = 280 \text{ N/mm}^2$

Max allowable spacing (cl.7.7.2.4 and T.24.3.2) $s_{max} = min(3 \times h_{low}, 18in, 380mm \times (280MPa / f_s) - 2.5 \times c_{nom}, 300$

(280MPa / fs)) = 300 mm

Actual tensile bar spacing provided s = 156.2 mm

PASS - spacing of longitudinal reinforcement less than maximum allowable

Minimum spacing

Actual clear spacing $s_{clear} = (b - 2 \times c_{nom} - \phi \times N) / (N - 1) = 144 \text{ mm}$

Min allowable spacing (cl.25.2.1) $s_{min} = max(25mm, \phi) = 25 mm$

PASS - clear spacing of reinforcement greater than minimum allowable

Check for shear based on concrete alone

Shear coefficient $\beta_{low} = 0.5$

 $\label{eq:Vu} Required shear strength \qquad \qquad V_u = \beta_{low} \times F_{total} \times L_n = \textbf{32.3 kN}$

Concrete weight modification factor $\lambda = 1.00$

Area of longitudinal steel Ast = As,prov,l,low = **1.374** in²

Ratio of longitudinal reinforcement $\rho_{W} = A_{st} / (b \times d) = \textbf{0.005}$ Size effect factor (cl.22.5.5.1.3) $\lambda_{s} = \min(\sqrt{(2 / (1 + 0.004 \times d / 1mm))}, 1.0) = \textbf{1.00}$

Shear strength of concrete (Table 22.5.5.1) $\phi V_c = \phi_s \times \min(0.66 \times \lambda_s \times \lambda \times (\rho_w)^{1/3}, 0.42 \times \lambda) \times \sqrt{\min(f'_c, 70MPa) \times 1MPa)}$

 \times b \times d = **66.5** kN

PASS - Design shear resistance exceeds applied shear

