Københavns Universitet Introduktion til diskret matematik og algoritmer -Problem set 3

Victor Vangkilde Jørgensen - kft410 kft410@alumni.ku.dk

 $March\ 1,\ 2025$

Contents

1	Question 1	3
	1.a	3
	1.b	3
2	Question 2	3
3	Question 3	3
4	Question 4	4
	4.a	4
	4.b	4
	4.c	4
5	Question 5	4

- 1 Recall that a standard deck of cards has 52 cards partitioned into four suits (hearts, spades, clubs, and diamonds) with 13 ranks each (2-10 plus jack, queen, king, and ace). In this problem, we assume that you are dealt 5 cards from a perfectly shuffled deck of cards.
- 1.a What is the probability that you get a flush, i.e., 5 cards of the same suit but not all in sequence with respect to rank? (Because five cards of the same suit in sequential rank would be a straight flush.)
- 1.b What is the probability that you get a straight, i.e., 5 cards of sequential rank but not all of the same suit? (Because if the latter condition also held, we would again have a straight flush.)
- 2 Prove mathematically that among all numbers on the form 11...100...0, i.e., numbers consisting of m ones followed by n zeros for some $m, n \in N^+$ (sometimes notation like 1^m0^n is used to describe text strings constructed in such a way), there is some number that is divisible by 2025. Hint: Look at all numbers $1^m = 11...1$ and consider what their remainders can be modulo 2025.
- 3 Let $a \in R^+$ be any positive real number. Show that for any integer $n \geq 2$ there is a rational number $\frac{c}{d}, c, d \in \mathbb{Z}, d \leq n$, that approximates a to within error $\frac{1}{dn}$, ie., $|a \frac{c}{d}| \leq \frac{1}{dn}$. Hint: Consider the numbers $a, 2a, \ldots, n \cdot a$ and show that one of these numbers is at distance at most $\frac{1}{n}$ from some integer.
- 4 In this problem we focus on relations. Suppose that $A = \{e_0, e_1, \ldots, e_5\}$ is a set of 6 elements and consider the relation R on A represented by the matrix

$$M_R = \begin{pmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

(where element e_i corresponds to the row and column i+1).

- 4.a Let us write S to denote the symmetric closure of the relation R. What is the matrix representation of S? Can you explain in words what the relation S is by describing how it can be interpreted?
- 4.b Now let T be the transitive closure of the relation S. What is the matrix representation of T? Can you explain in words what the relation T is by describing how it can be interpreted?
- 4.c Suppose that we instead let T' be the transitive closure of the relation R, and then let S' be the symmetric closure of T'. Are S' and T the same relation? If they are not the same, show some way in which they differ. If they are the same, is it true that S' and T constructed in this way from some relation R on a set A will always be the same? Please make sure to motivate your answers clearly.

5