Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization

Tian Liu

Li, Lisha, et al. "Hyperband: A novel bandit-based approach to hyperparameter optimization." The Journal of Machine Learning Research 18.1 (2017): 6765-6816.

Background of Hyperparameter Optimization

- "What is the best hyperparameter configuration?"
- Configuration selection
 - · Brute-force: grid search, random search
 - · Adaptive selection: Bayesian Optimization methods (SMAC,TPE, etc.)
 - · Computational cost increases drastically with more hyperparameters

Grid Search Random Search Adaptive Selection

(https://blog.ml.cmu.edu/2018/12/12/massively-parallel-hyperparameter-optimization/)

· Configuration evaluation

- · Adaptive resource allocation: Successive Halving Algorithm
- Aiming to examine more configurations with limited budget

Hyperband Algorithm

- · Based on randomly sampled hyperparameter configurations
- · Principled early-stopping strategy to allocate resources based on Successive Halving
- · Evaluate order-of-magnitude more configurations than black-box methods
- · General-purpose technique for various machine learning models

Motivations: n vs. B/n Trade-off

- Successive Halving Algorithm requires input of n: number of configs
- Limited resource budget B
 - large n gives small averaging training time $\frac{B}{n}$

Problem

- Amount of resources required to differentiate two configs are unknown
- Large n and small $\frac{B}{n}$, or small n and large $\frac{B}{n}$?

- Considering different trade-offs between n and $\frac{B}{n}$
- Perform grid search over feasible n

Hyperband Algorithm

```
Algorithm 1: Hyperband algorithm for hyperparameter optimization.
    input
                        : R, \eta \text{ (default } \eta = 3)
    initialization: s_{\text{max}} = \lfloor \log_{\eta}(R) \rfloor, B = (s_{\text{max}} + 1)R
 1 for s \in \{s_{\max}, s_{\max} - 1, \dots, 0\} do
2 n = \lceil \frac{B}{R} \frac{\eta^s}{(s+1)} \rceil, r = R\eta^{-s}

// begin SuccessiveHalving with (n,r) inner loop
                                                                                    Outer loop: try different n
       T = get\_hyperparameter\_configuration(n)
                                                                                    Inner loop: SH with fixed n
       for i \in \{0, \ldots, s\} do
             n_i = \lfloor n\eta^{-i} \rfloor
             r_i = r\eta^i
              L = \{ run\_then\_return\_val\_loss(t, r_i) : t \in T \}
             T = top_k(T, L, \lfloor n_i/\eta \rfloor)
 9
10 end
11 return Configuration with the smallest intermediate loss seen so far.
```

- R: max resource can be allocated to a single configuration
 - Time, Data Set Subsampling, Feature Subsampling
 - overhead cost < R ≤ Natural upper bound
- η: discard proportion
 - Results not sensitive to η
 - · Choose 3 or 4 for practical use
- Each inner loop use around B resources, causing total cost of (s_{max} + 1)B

• Example: R = 81 iterations, $\eta = 3$

N	lost	aggr	essiv	e /				_ L	east a	aggre	essive	strate
ex	plor	atory	strat	egy	1100		117		(R	ando	m Sea	arch)
		s =	: 4	s =	3	s =	2	s =	: 1	s =	: 0	
	i	n_i	r_i	n_i	r_i	n_i	r_i	n_i	r_i	n_i	r_i	
	0	81	1	27	3	9	9	6	27	5	81	
	1	27	3	9	9	3	27	2	81			
	2	9	9	3	27	1	81					
	3	3	27	1	81						1	
	4	1	81									
				•								

Figure 3: Performance of individual brackets s and Hyperband.

Experiments with Various Resource Types

Early stop with iterations for DNN

· Data set subsamples

Figure 7: Average test error of the best kernel regularized least square classification model found by each searcher on CIFAR-10. The color coded dashed lines indicate when the last trial of a given searcher finished.

Feature samples

Figure 8: Average test error of the best random features model found by each searcher on CIFAR-10. The test error for HYPERBAND and bracket s = 4 are calculated in every evaluation instead of at the end of a bracket.

Implementation of Hyperband

- Optimizing an ANN for predicting the exit of a bank customer w/ 10,000 customer records (Churn Modelling Data)
- 8,000 for training, 2,000 for testing, R = 81 iterations, $\eta = 3$
- Hyperparameters (HP) to optimize: # of hidden layers ([1,5]), # of nodes for each layer ([2,200])
- Fixed HPs: init='uniform', batch_size='256', optimizer='adam', activation='relu'

RowNumb	Customer	Surname	CreditSco	Geograph	Gender	Age	Tenure	Balance	NumOfPr	HasCrCard	IsActiveN	Estimated	Exited
1	15634602	Hargrave	619	France	Female	42	2	0	1	1	1	101348.9	1
2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	. 0	1	112542.6	C
3	15619304	Onio	502	France	Female	42	8	159660.8	3	1	0	113931.6	1
4	15701354	Boni	699	France	Female	39	1	0	2	0	0	93826.63	0
5	15737888	Mitchell	850	Spain	Female	43	2	125510.8	1	1	1	79084.1	C
6	15574012	Chu	645	Spain	Male	44	8	113755.8	2	1	0	149756.7	1
7	15592531	Bartlett	822	France	Male	50	7	0	2	1	1	10062.8	C
8	15656148	Obinna	376	Germany	Female	29	4	115046.7	4	1	0	119346.9	1
9	15792365	He	501	France	Male	44	4	142051.1	. 2	0	1	74940.5	C
10	15592389	H?	684	France	Male	27	2	134603.9	1	1	1	71725.73	C

Results: best 10 configs

Loss	auc	# of layers	# of nodes for layer 1	# of nodes for layer 2	Total # of Nodes
32.62%	87.45%	2	65	9	74
33.44%	86.88%	2	35	175	210
33.61%	86.47%	1	183		183
33.67%	86.41%	1	200		200
33.70%	86.39%	1	128		128
33.71%	86.36%	1	159		159
33.74%	86.39%	1	121		121
33.75%	86.72%	2	191	51	242
33.75%	86.30%	1	191		191
33.82%	86.25%	1	100		100

Hyperband vs. Random Search

• R = 9 iterations, $\eta = 3$, 2 hyperparameters

• R = 9 iterations, $\eta = 3$, n hyperparameters

- · Problem too simple, performance dominated by iteration number rather than configuration selection
- · When searching hyperparameter number increases, the advantage of Hyperband starts to show up

Current and Future Work

- In small to medium budget, HB outperforms RS and BO. But in large budget, the advantages of HB over RS typically diminishes. BO may converge to global optimum faster than HB
- BOHB = Bayesian Optimization + Hyperband
- · Future work: automatic adaptation of budget to alleviate misspecification by user

(https://www.automl.org/blog_bohb/)

Personal thought: Genetic Algorithm + Hyperband = GAHB ?