LENGUAJE ENSAMBLADOR

(7°A-ICI)

Mtro. en Ing. Armando Álvarez Fdez. Ago-2024

LENGUAJE ENSAMBLADOR

<u>INTRODUCCIÓN</u>

ALGUNAS MALAS REPUTACIÓNES O <u>IMPRESIONES ERRONEAS</u> QUE LA GENTE TIENE DEL LENGUAJE ENSAMBLADOR:

- > Es difícil de aprender.
- Es duro de leer o entender.
- Es difícil de depurar.
- Es difícil de mantener.
- > Es difícil de escribir.
- Ocupa mucho tiempo el programar.
- Los compiladores mejorados eliminan la necesidad de lenguaje ensamblador.
- Las computadoras actuales son tan rápidas que eliminan la necesidad de usar ensamblador.
- Si quieres más velocidad, mejora el algoritmo, en lugar de usar el ensamblador.

IMPRESIONES ERRONEAS O MALA REPUTACIÓN DEL LENGUAJE ENSAMBLADOR:

- □ Las PC_s de hoy tienen tanta memoria que no es importante utilizar ensamblador.
- ☐ El lenguaje ensamblador no tiene portabilidad.
- ☐ Es un lenguaje imperfecto y con muchas carencias.

LO QUE SI ES CORRECTO SABER DEL LENGUAJE ENSAMBLADOR

USAR ENSAMBLADOR ES...

- □ VELOCIDAD (Los programas se agilizan hasta 5 o 10 veces más rápidos).
- □ ESPACIO REDUCIDO (los programas se hacen mas cortos, Ejem. hasta 50% menos gasto de memoria).
- ☐ CAPACIDAD (se pueden hacer cosas que son difíciles o imposibles en Leng. de alto nivel).

USAR ENSAMBLADOR ES ...

(Tu conocim-de Leng-erisamblader te ayudará a escribir, mejores Programoz aun en Leng-de alto nivel.

Vole la pena aprender Leng. Ensamblador, Una vez que lo hayas aprendido bién, promablemente te asombraras de Usarlo más de lo que habioz pensado.

¿Qué es un CPU (Central Processing Unit) Y cuales sus componentes básicos?

(Unidad Central de Procesamiento ó Microprocesador)

MICROPROCESADOR (CPU)

Dispositivo electrónico, logico secuencial capaz de procesar y ejecutar instrucciones (logicas y aritméticas) codificadas digitalmente.

PARTES QUE LO COMPONEN:

- 1)Unidad lógica aritmética.
- 2)Contador de programa.
- 3)Registros.
- 4) Bus de direcciones.
- 5)Bus de datos.
- 6)Bus de control.
- 7)Unidad de control.

UNIDAD DE CONTROL.- Es la encargada de traer y decodificar las instrucciones así como controlar los demás componentes internos.

ALU (Unidad lógica aritmética).- Es la encargada de realizar las operaciones lógicas y aritméticas de las instrucciones.

REGISTROS.- Memorias temporales de almasenaje de datos y resultados parciales de calculos.

CONTADOR DE PROGRAMA.- Registro en el cual se guarda la dirección de memoria de la instrucción que se está ejecutando, el cual se va incrementando o ajustando cada vez a la dirección nueva correspondiente.

BUS DE DATOS.- Terminales del CPU en donde se indica que dirección de memoria o puerto periférico se está accesando.

BUS DE CONTROL.- Conjunto de terminales mediante las cuales el CPU controlas sus funciones técnicas de operación.

UNIDAD TEMÁTICA I EVOLUCIÓN DE LOS MICROPROCESADORES DE INTEL

UNIDAD TEMÁTICA I

EVOLUCIÓN DE LOS MICROPROCESADORES DE INTEL

INTEL/-fundada en 1968

- Gordon E. Macre, Robert Abyce y Andy Grave
- Se llumb - NM Electronics y luego Integrabel Electronics
- Fué el 1º cpu de Intel - 50 mil Instrucc/seg.

- Un cpu de 4 bits (Bus de datos)
- Con 4096 Espacios de memoria
- Con 45 Instrucción

Fundación de INTEL

Robert Noyce

Gordon Moore

Andy Grove

Intel's early headquarters in Mountain View

Business may look easy from a historical perspective, but it never is. There are always pensive moments where hard decisions must be made . . . decisions that could make or break the company. This shot was taken at SC1.

11

Inicios de Intel

EMPRESA JAPONESA BUSICOM QUE USO EL PRIMER CPU 4004_____

EVOLUCIÓN DE LOS MICROPROCESADORES DE INTEL

El CPU 4040

- Una mejora en velocidad del 4004

- Mantenia los 4bits de ditos y misma Capacid-de direcciónamiento.

1971 EL CPU: 8008

- Una vars. extendida del 4004 a 8 bits - Era algo tento pues se lasaba mucho en la arquitectura

- Con 48 instrucción.

EVOLUCIÓN DE LOS MICROPROCESADORES DE INTEL

1973 FL CPU: 8080 V-El primer CPU moderno diseñado poura 8 bits. V-10 veces más rápido que el 8008 -500,000 Instrucc./seg.

I - Compatible con la lógica TTL

O - Capac-cle direct de 64KB de menorix.

O National Semicond: IMP-8

OTRAS CLAS ENTRAN AL MERC. DE CPUS de 8 BITS · Motorcla = MC6800 · Zilog = Z-8 y lapues 7-80

1977

EL CPU 8085

-Una vers. actualizada del 8080

√-Más veluz que el 8080 √-769,230 Instrua/seg.

V - Con reloj interno y mayor frauncia

1 - Con Controlador interno de sistema.

-8 bits de datos

- Por estor fechar aporeció Zilog 4 su Z-80, con leng de máquina compatible con el 8085.

EVOLUCIÓN DE LOS MICROPROCESADORES DE INTEL

1978 EL CPU 8086/8088.

Y 1979 /- Procesador de 16 BITS

V - 2.5 MIPs (mill de Instr por signalo) t=400ns

V - Capacidad de direccionamiento de 1MB=1024KB

V - Un pequeño cache de 4 a 6 Bytes, clave para su

v - Tenía una mayor cantrolad de rajistres inemas.

Fara mejorar el software.

En 1981 IBM dicide utilizar un 8088 en sus PG XT.

- -- El 8086 y el 8088 ejecutan el mismo conjunto de instrucciones. Internamente son idénticos.
- -- Excepto que exteriormente se diferencian en que el 8086 tiene un bus de datos de 16 bits y el del 8088 es de solo 8 bits, por ello, el 8086 era más rápido.

APENDICES