Национальный исследовательский университет "Высшая школа экономики"

ОТЧЁТ ПО ПРАКТИКЕ

ИССЛЕДОВАНИЕ ВОЗМОЖНОГО СОКРАЩЕНИЯ ПЕРЕБОРА ПРИ ВЫБОРЕ ПАРАМЕТРОВ p,β ДЛЯ АЛГОРИТМА $A-Ward_{p\beta}$

Студент:

Еремейкин П.А. группа мНоД16_ТМСС

Руководитель:

профессор Миркин Б.Г. Содержание 2

Содержание

1	Основные положения	3
2	Алгоритм $A - Ward_{p\beta}$ 2.1 Постановка задачи. Кластеризация	4
3	Методика эксперимента	5
4	Экспериментальное обеспечение	5
5	Результаты	5
6	Выводы	5

1 Основные положения

Исследование выполняется в рамках развития пакета программ СИК (Система Интеллектуальной Кластеризации), который был разработан в ходе курсового проекта "Алгоритмы интеллектуализации метода k-средних". Этот пакет предназначен для применения современных интеллектуальных методов при решении задач кластеризации.

В состав пакета входят методы иерархического кластер-анализа: метод аномальных кластеров, алгоритмы Ward, A-Ward, $A-Ward_{p\beta}$ а также дивизивные методы.

С технической точки зрения СИК представляет собой набор Python модулей, объединённых в единую программу при помощи графического пользовательского интерфейса.

В рамках данной практики рассматривается проблема выбора параметров для алгоритма $A-Ward_{p\beta}$. Этот алгоритм представляет собой модифицированную версию иерархического алгоритма A-Ward и вводит два параметра: p и β . Оптимальные значения параметров зависят от конкретной задачи и данных, к которым применяется алгоритм. На настоящее время не существует рекомендаций по эффективному выбору этих параметров, а единственный обоснованный метод — перебор всех возможных значений с последующей оценкой результата для каждой пары (p_i, β_i) по эмпирической характеристике. Такой подход требует большого времени вычисления, что во многих случаях делает его неприменимым на практике.

Для решения задачи выбора параметров p, β в условиях ограниченного времени была выдвинута гипотеза о возможном сокращении перебора. Согласно этой гипотезе, результаты выбора оптимальных значений по всем доступным объектам и по сокращённой выборке из этих объектов различаются не существенно. Цель данной работы состоит в экспериментальной проверке приведённой гипотезы, оценке различных стратегий формирования сокращённой выборки, их характеристик относительно качества результата и затрачиваемого времени.

2 Алгоритм $A - Ward_{p\beta}$

2.1 Постановка задачи. Кластеризация

Алгоритм $A - Ward_{p\beta}$ предназначен для решения задачи кластеризации, то есть выделения из таблиц наблюдения множеств (кластеров) таким образом, чтобы сходные объекты попадали в один и тот же кластер, а несходные — в разные кластеры [?].

- 3 Методика эксперимента
- 4 Экспериментальное обеспечение
- 5 Результаты
- 6 Выводы