A UNIVERSAL BOUND ON THE VARIATIONS OF BOUNDED CONVEX FUNCTIONS

J. KWON

ABSTRACT. Given a convex set C in a real vector space E and two points $x,y\in C$, we investivate which are the possible values for the variation f(y)-f(x), where $f:C\longrightarrow [m,M]$ is a bounded convex function. We then rewrite the bounds in terms of the Funk weak metric, which will imply that a bounded convex function is Lipschitz-continuous with respect to the Thompson and Hilbert metrics. The bounds are also proved to be optimal. We also exhibit the maximal subdifferential of a bounded convex function at a given point $x\in C$.

1. The Variations of Bounded Convex Functions

Let C be a convex set of a real vector space E. Given two points $x, y \in C$, we define the following auxiliary quantity:

$$\tau_C(x, y) = \sup\{t \ge 1 \mid x + t(y - x) \in C\}.$$

Clearly, τ_C takes values in $[1, +\infty]$. Intuitively, it measures how far away x is from the boundary in the direction of y, taking the "distance" xy as unit. Clearly, $\tau_C(x,y) = +\infty$ if and only if $x + \mathbb{R}_+(y-x) \subset C$. Our first result is the following.

Theorem 1.1. Let $m \leq M$ be two real numbers. Let C be a convex set of a real vector space E and $f: C \longrightarrow [m, M]$ a convex function. For every couple of points $(x, y) \in C^2$, f satisfies:

$$-\frac{M-m}{\tau_C(y,x)} \leqslant f(y) - f(x) \leqslant \frac{M-m}{\tau_C(x,y)}.$$

Proof. It is enough to prove the result for functions with values in [0,1], since we can consider $(M-m)^{-1}(f-m)$. Let x,y be two points in C. Let t be such that $1 \le t < \tau_C(x,y)$. By definition of τ_C , and because C is convex, we have $x + t(y - x) \in C$. We can write y as a convex combination of x + t(y - x) and x with coefficients 1/t and (t-1)/t respectively:

$$y = \frac{x + t(y - x) + (t - 1)x}{t}.$$

Date: March 17, 2015.

²⁰¹⁰ Mathematics Subject Classification. 26B25, 52A05.

 $[\]label{thm:convex} \textit{Key words and phrases}. \ \ \text{Convex Functions, Variations, Funk Metric, Thompson Metric, Hilbert Metric.}$

The author is grateful to Pierre-Antoine Corre, Rida Laraki, Sylvain Sorin and Guillaume Vigeral for their very helpful comments.

J. KWON

By convexity of f, we get:

$$f(y) - f(x) \leqslant \frac{f(x + t(y - x)) + (t - 1)f(x)}{t} - f(x)$$
$$\leqslant \frac{f(x + t(y - x)) - f(x)}{t} \leqslant \frac{1}{t},$$

where the last inequality comes from the fact that f has values in [0,1]. By taking the limit as $t \to \tau_C(x,y)$, we get:

$$f(y) - f(x) \leqslant \frac{1}{\tau_C(x, y)}.$$

The lower bound is obtained by exchanging the roles of x and y.

2. The Funk, Thompson and Hilbert Metrics

In this section, we rewrite the result from Theorem 1.1 as a Lipschitz-like property in the framework of convex sets in normed spaces. But $1/\tau_C$ is far from being a distance. We thus consider the Funk, Thompson and Hilbert metrics (which were introduced in [1], [4] and [2] respectively) and establish the link with τ_C .

We restrict our framework to the case where C is an open convex subset of a normed space $(E, \|\cdot\|)$. Let $x, y \in C$. If $\tau_C(x, y) < +\infty$, we can define b(x, y) to be the following point:

$$b(x,y) = x + \tau_C(x,y)(y-x).$$

Note that since C is open, when b(x,y) exists, it is necessarily different from y. This will be necessary to state the following definitions.

Definition 2.1. Let C be an open convex subset of a normed space $(E, \|\cdot\|)$. We define

(i) the Funk weak metric:

$$F_C(x,y) = \begin{cases} \log \frac{\|x - b(x,y)\|}{\|y - b(x,y)\|} & \text{if } \tau_C(x,y) < +\infty \\ 0 & \text{otherwise} \end{cases};$$

(ii) the Thompson pseudometric:

$$T_C(x, y) = \max(F_C(x, y), F_C(y, x));$$

(iii) the Hilbert pseudometric:

$$H_C(x,y) = \frac{1}{2} (F_C(x,y) + F_C(y,x)).$$

REMARK 2.2. Even if we will abusively call them *metrics*, they fail to satisfy the separation axiom in general. The Thompson and the Hilbert metrics are thus *pseudometrics*. Moreover, the Funk metric not being symmetric, it actually is a *weak* metric. The Thompson and the Hilbert metrics are respectively the *max-symmetrization* and *meanvalue-symmetrisation* of the Funk metric. For a detailed presentation of these notions, see e.g. [3].

We now establish the link between $\tau_C(x,y)$ and $F_C(x,y)$.

Proposition 2.3. Let C be an open convex subset of a normed space $(E, \|\cdot\|)$. For every points $x, y \in C$, the following equality holds:

$$F_C(x,y) = -\log\left(1 - \frac{1}{\tau_C(x,y)}\right).$$

Proof. Let $x, y \in C$. If $\tau_C(x, y) = +\infty$, the right-hand side of the above equality is zero, as expected. If $\tau_C(x, y) < +\infty$, $\tau_C(x, y)$ can be expressed with the norm. Since by definition $b(x, y) = x + \tau_C(x, y)(y - x)$, we have

$$\tau_C(x,y) = \frac{\|x - b(x,y)\|}{\|x - y\|} \text{ and } \tau_C(x,y) - 1 = \frac{\|y - b(x,y)\|}{\|x - y\|}.$$

And thus:

$$\frac{\|x - b(x, y)\|}{\|y - b(x, y)\|} = \left(1 - \frac{1}{\tau_C(x, y)}\right)^{-1}.$$

Therefore,

$$F_C(x,y) = -\log\left(1 - \frac{1}{\tau_C(x,y)}\right).$$

By combining Theorem 1.1 and the above proposition, we get the following corollary.

Corollary 2.4. Let C an open convex subset of a normed space $(E, \| \cdot \|)$ and $f: C \longrightarrow [m, M]$ be a convex function. Then, for all $x, y \in C$, the following bounds hold.

(i)
$$-(M-m)\left(1-e^{-F_C(y,x)}\right) \le f(y) - f(x) \le (M-m)\left(1-e^{-F_C(x,y)}\right)$$
.

(ii)
$$|f(y) - f(x)| \le (M - m) \left(1 - e^{-T_C(x,y)}\right)$$
.

(iii)
$$|f(y) - f(x)| \le (M - m) \left(1 - e^{-2H_C(x,y)}\right)$$

Remark 2.5. From (ii), by using the inequality $e^{-s} \ge 1 - s$, we get:

$$|f(x) - f(y)| \le (M - m) \left(1 - e^{-T_C(x,y)}\right)$$
$$\le (M - m)T_C(x,y),$$

and similarly for (iii). Every convex function $f: C \longrightarrow [m, M]$ is thus (M - m)-Lipschitz (resp. 2(M - m)-Lipschitz) with respect to the Thompson metric (resp. the Hilbert metric).

3. Optimality of the Bounds

We show in this section that the bounds obtained in Theorem 1.1 are optimal in the following sense. For a given convex set, and for a given couple a points, there is a function which attains the upper bound (resp. the lower bound). In other words, for $x, y \in C$:

$$\begin{cases} \max_{\substack{f:C \longrightarrow [m,M] \\ f \text{ convex}}} (f(y) - f(x)) = \frac{M - m}{\tau_C(x,y)} \\ \min_{\substack{f:C \longrightarrow [m,M] \\ f \text{ convex}}} (f(y) - f(x)) = -\frac{M - m}{\tau_C(y,x)}. \end{cases}$$

4 J. KWON

In the proof of the following theorem, it will be very convenient to extend the notion of convexity to functions defined on C and taking values in $\mathbb{R} \cup \{-\infty\}$ (and not $\mathbb{R} \cup \{+\infty\}$). Obviously, the result according to which the upper envelope of two convex functions is also a convex function remains true.

Theorem 3.1. Let $m \leq M$ be two real numbers. Let C be a convex set of a real vector space E. For every couple of points $(x,y) \in C^2$, there exists a convex function $f: C \longrightarrow [m,M]$ (resp. $g: C \longrightarrow [m,M]$) such that the upper bound (resp. lower bound) of Theorem 1.1 is attained; in other words:

$$f(y) - f(x) = \frac{M - m}{\tau_C(x, y)}$$
 $\left(resp. \ g(y) - g(x) = -\frac{M - m}{\tau_C(y, x)} \right).$

Proof. Let x and y be two points in C, and let us construct a convex function $f:C\longrightarrow [0,1]$ satisfying the equality. If $\tau_C(x,y)=+\infty$, the bound is zero, and f=0 is adequate. From now on, we assume that $\tau_C(x,y)<+\infty$. The idea of the construction is the following. Let us first consider the line through x and y. We want f to increase from 0 at x to 1 at the boundary in the direction of y, in an affine way; and to be equal to zero in the other direction. Then, we will have to extend f to all C in a convex way. Let $\vec{u}=\tau_C(x,y)(y-x)$. For every $z\in C$, let us define $\sigma(z)=\sup\{t\geqslant 0\,|\,z+t\vec{u}\in C\}$. σ clearly takes values in $[0,+\infty]$. Consider the following function.

$$\begin{array}{cccc} \phi: & C & \longrightarrow & [-\infty,1] \\ & z & \longmapsto & 1-\sigma(z) \end{array}.$$

Let us prove that ϕ is convex. Let z_1 and z_2 be two points in C and $z_3 = \lambda z_1 + (1 - \lambda)z_2$ (with $\lambda \in (0, 1)$) a convex combination. By definition of σ , if we take two real numbers s_1 and s_2 such that $0 \leq s_1 \leq \sigma(z_1)$ and $0 \leq s_2 \leq \sigma(z_2)$, we have:

$$\begin{cases} z_1 + s_1 \vec{u} \in C \\ z_2 + s_2 \vec{u} \in C. \end{cases}$$

And thus, the convex combination of these two points with coefficients λ and $1 - \lambda$ also belongs to C:

$$\lambda(z_1 + s_1\vec{u}) + (1 - \lambda)(z_2 + s_2\vec{u}) \in C.$$

This point can be rewritten with z_3 :

$$z_3 + (\lambda s_1 + (1 - \lambda)s_2) \vec{u} \in C.$$

By definition of $\sigma(z_3)$, we have $\lambda s_1 + (1 - \lambda)s_2 \leq \sigma(z_3)$. This inequality is true for every $s_1 \leq \sigma(z_1)$ and $s_2 \leq z(s_2)$. Consequently:

$$\lambda \sigma(z_1) + (1 - \lambda)\sigma(z_2) \leqslant \sigma(z_3).$$

We can now prove the convexity inequality.

$$\phi(z_3) = 1 - \sigma(z_3) \leqslant 1 - (\lambda \sigma(z_1) + (1 - \lambda)\sigma(z_2))$$

= $\lambda(1 - \sigma(z_1)) + (1 - \lambda)(1 - \sigma(z_2))$
= $\lambda \phi(z_1) + (1 - \lambda)\phi(z_2)$.

We now choose $f = \max(\phi, 0)$. Since $\phi \leq 1$, f takes values in [0, 1]. Let us prove that f satisfies the desired equality. Let us compute f(x) and f(y).

$$\begin{split} \sigma(x) &= \sup \{ t \geqslant 0 \, | \, x + t \vec{u} \in C \} \\ &= \sup \{ t \geqslant 0 \, | \, x + t \tau_C(x, y)(y - x) \in C \} \\ &= \frac{1}{\tau_C(x, y)} \sup \{ t' \geqslant 0 \, | \, x + t'(y - x) \in C \} \\ &= \frac{1}{\tau_C(x, y)} \tau_C(x, y) \\ &= 1. \end{split}$$

Thus $\phi(x) = 1 - \sigma(x) = 0$ and $f(x) = \max(0, 0) = 0$. Similarly, we can prove:

$$\sigma(y) = \frac{\tau_C(x, y) - 1}{\tau_C(x, y)},$$

and thus, $\phi(y) = 1 - \sigma(y) = \tau_C(x, y)^{-1}$ and $f(y) = \max(\tau_C(x, y)^{-1}, 0) = \tau_C(x, y)^{-1}$. We finally get:

$$f(y) - f(x) = \frac{1}{\tau_C(x, y)}.$$

The construction of g is analogous.

4. The Maximal Subdifferential

In the case of a nonempty convex subset $C \subset \mathbb{R}^n$, and a given point $x_0 \in C$, we wonder what is the maximal subdifferential at x_0 (in the sense of inclusion) for a function $f: C \longrightarrow [m, M]$. We will prove that there is a maximal one, and will express it in terms of the subdifferential of a translation of the Minkowski gauge. For each $x_0 \in C$, we define $g_{C,x_0}: C \longrightarrow [0,1]$ by

$$g_{C,x_0}(x) = \inf \{ \lambda > 0 \mid x - x_0 \in \lambda(C - x_0) \}.$$

This function is obviously well-defined, and can be seen as a Minkowski gauge centered in x_0 and restricted to C. It is well-known fact that the Minkowski gauge is a convex function. So is this one.

Theorem 4.1. Let C be a nonempty convex subset of \mathbb{R}^n and $x \in C$. We have

$$\max_{\substack{f:C \longrightarrow [m,M] \\ f \ convex}} \partial f(x) = (M-m)\partial g_{C,x}(x),$$

where the maximum is understood in the sense of inclusion.

Proof. Let us first relate g_{C,x_0} to τ . Let $x_0, x \in C$. We have

$$g_{C,x_0}(x) = \inf \left\{ \lambda > 0 \, | \, x - x_0 \in \lambda(C - x_0) \right\}$$

$$= \sup \left\{ t > 0 \, | \, x - x_0 \in \frac{1}{t}(C - x_0) \right\}^{-1}$$

$$= \sup \left\{ t > 0 \, | \, x_0 + t(x - x_0) \in C \right\}^{-1}$$

$$= \frac{1}{\tau(x_0, x)}.$$

6 J. KWON

Let us prove the result in the case m=0 and M=1, from which the general case follows immediately. Let $f:C\longrightarrow [0,1]$ be a convex function and $x_0\in C$. Let us show that $\partial f(x_0)\subset \partial g_{C,x_0}(x_0)$. This is true if $\partial f(x_0)$ is empty. Otherwise, let $\zeta\in\partial f(x_0)$. For every $x\in C$, we have

$$\langle \zeta | x - x_0 \rangle \leqslant f(x) - f(x_0) \leqslant \frac{1}{\tau(x_0, x)}$$

= $g_{C, x_0}(x) = g_{C, x_0}(x) - g_{C, x_0}(x_0),$

where we used Theorem 1.1 for the second inequality. If $x \notin C$, the equality also holds, since $g_{C,x_0}(x) = +\infty$. We thus have $\partial f(x_0) \subset \partial g_{C,x_0}(x_0)$. We conclude by saying that g_{C,x_0} is a convex function on C with values in [0,1].

References

- P. Funk, Über geometrien, bei denen die geraden die kürzesten sind, Mathematische Annalen, 101 (1929), pp. 226–237.
- [2] D. HILBERT, Über die gerade linie als kürzeste verbindung zweier punkte, Mathematische Annalen, 46 (1895), pp. 91–96.
- [3] A. Papadopoulos and M. Troyanov, Weak metrics on Euclidean domains, JP Journal of Geometry and Topology, 7 (2007), pp. 23–44.
- [4] A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proceedings of the American Mathematical Society, 14 (1963), pp. 438–443.

Joon Kwon

Institut de mathématiques de Jussieu Équipe combinatoire et optimisation Université Pierre-et-Marie-Curie 4 place Jussieu 75252 Paris cedex 05 – FRANCE

E-MAIL: joon.kwon@ens-lyon.org