Teoria di Galois 1 - Tutorato I

Alfonso Pesiri

Giovedì 8 Marzo 2007

Esercizio 1. In ciascuno dei seguenti casi, determinare, l'inverso degli elementi assegnati nel campo assegnato:

a.
$$\mathbb{Q}(\alpha)$$
 con $\alpha^3 - 5\alpha - 1 = 0$;

$$\alpha + 1$$
 $\alpha^2 + \alpha + 1$ $2 + \alpha;$

b.
$$\mathbb{Q}(\lambda)$$
 con $\lambda^3 - 2\lambda - 2 = 0$;

$$20\lambda \qquad \qquad \lambda + 3 \qquad \qquad \lambda^5$$

c.
$$\mathbb{Q}(\xi)$$
 con $\xi^2 + \xi + 1 = 0$:

$$a + b\xi$$
 $a, b \in \mathbb{Q}, ab \neq 0;$

d.
$$\mathbb{F}_{13}(\zeta)$$
 con $\zeta^4 + \zeta^3 + \zeta^2 + \zeta + 1 = 0$,

$$\zeta^t \quad t \in \mathbb{N}.$$

Esercizio 2. Determinare il polinomio minimo di μ su F in ciascuno dei seguenti casi:

a.
$$E=\mathbb{Q}(\sqrt{5}), \ F=\mathbb{Q}$$

$$\mu=\frac{1+\sqrt{5}}{4-3\sqrt{5}};$$

b.
$$E=\mathbb{Q}(\tau)$$
 con $\tau^3=3\tau+2,\ F=\mathbb{Q}$
$$\mu=2\tau^2-\tau+2;$$

c.
$$E = \mathbb{F}_7(\rho) \text{ con } \rho^3 = \rho + 2, \ F = \mathbb{F}_7$$
 $\mu = 1 + \rho.$

Esercizio 3. Dire quali dei seguenti insiemi sono campi e quali no giustificando la risposta:

a.
$$\mathbb{Q}[x]/(x^5+1)$$
;

b.
$$\mathbb{F}_5[x]/(x^2+1)$$
;

c.
$$\mathbb{Z}[x]/(x^3 + x + 1)$$
;

d.
$$\mathbb{Q}(\sqrt{3})[x]/(x^2-3)$$
.

Esercizio 4. In ciascuno dei seguenti casi calcolare [E:F]:

a.
$$E = \mathbb{Q}(2^{1/2}, 2^{1/3}), F = \mathbb{Q};$$

b.
$$E = \mathbb{Q}(\zeta_n), F = \mathbb{Q}(\cos(\frac{2\pi}{n}));$$

c.
$$E = \mathbb{Q}(\sqrt{5}, \zeta)$$
 dove $\zeta^3 + \zeta - 1 = 0$, $F = \mathbb{Q}$;

d.
$$E = \mathbb{F}_3[\sqrt{-1}], \quad F = \mathbb{F}_3;$$

e.
$$E = \mathbb{F}_5[\sqrt{-1}], \quad F = \mathbb{F}_5;$$

f.
$$E = \mathbb{F}_{31}[\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{15}, \sqrt{10}]; F = \mathbb{F}_{31}(\sqrt{10});$$

g.
$$E = \mathbb{Q}(\zeta_p, 2^{\frac{1}{p}}); \quad F = \mathbb{Q}(2^{\frac{1}{p}});$$

h.
$$E = \mathbb{Q}(\zeta_p, 2^{\frac{1}{p}}); \quad F = \mathbb{Q}(\zeta_p).$$

Esercizio 5. Dimostrare (o dimostrare che sono sbagliate) le uguaglianze dei seguenti campi:

a.
$$\mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{6}) = \mathbb{Q}(3\sqrt{2} - \sqrt{5} + 5\sqrt{3});$$

b.
$$\mathbb{Q}(\sqrt{a^2-4b}) = \mathbb{Q}(\sigma)$$
 dove $\sigma^2 + a\sigma + b = 0, a, b \in \mathbb{Q}$;

c.
$$\mathbb{Q}(\sqrt{-3}, \sqrt{3}) \cap \mathbb{Q}(\sqrt{6}, \sqrt{-6}) = \mathbb{Q}(i);$$

d.
$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$$

Esercizio 6. In ciascuno dei seguenti casi, determinare la dimensione del campo di spezzamento del polinomio sul campo assegnato F:

a.
$$f(x) = x^3$$
 $F = \mathbb{Q}$;

b.
$$f(x) = (x^2 - 3)(x^2 - 27)(x^2 - 12)$$
 $F = \mathbb{Q}(3^{\frac{1}{3}});$

c.
$$f(x) = x^8 - 4$$
 $F = \mathbb{Q}$;

d.
$$f(x) = x^h - 3$$
 $F = \mathbb{Q}(e^{\frac{2\pi i}{h}});$

f.
$$f(x) = x^3 + 30x + 1$$
 $F = \mathbb{Q}$;

g.
$$f(x) = x^{15} + 3x^5 + 1$$
 $F = \mathbb{F}_5$;

$$h. f(x) = x^p - 2 F = \mathbb{Q};$$

i.
$$f(x) = x^{10} + x + 1$$
 $F = \mathbb{F}_2$.

Esercizio 7. In ciascuno dei seguenti numeri algebrici, si calcoli il polinomio minimo

a.
$$e^{\frac{2\pi i}{31}}$$
; b. $\cos \frac{\pi}{9}$; c. $\cos \frac{2\pi}{7}$;

d.
$$\cos \frac{2\pi}{5}$$
; e. $\cos \frac{\pi}{5}$; f. $\sin \frac{2\pi}{5}$.

Esercizio 8. Descrivere gli F- omomorfismi di E in in ciascuno dei seguenti casi:

a.
$$E = \mathbb{Q}(e^{\frac{\pi i}{8}})$$
 $F = \mathbb{Q}(e^{\frac{\pi i}{2}});$

b.
$$E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$$
 $F = \mathbb{Q}(\sqrt{6});$

c.
$$E = \mathbb{Q}(\zeta_7)$$
 $F = \mathbb{Q}(\cos \frac{2\pi}{7});$

d.
$$E = \mathbb{Q}(\sqrt{3} + 1)$$
 $F = \mathbb{Q}(\sqrt{3});$

e.
$$E = \mathbb{Q}(\zeta_3, 2^{\frac{1}{3}})$$
 $F = \mathbb{Q}.$

Esercizio 9. Si mostri che $\mathbb{Q}(\sqrt{-7}) \subseteq \mathbb{Q}(\zeta_7)$.

Suggerimento: Considerare il numero $\zeta_7 + \zeta_7^2 - \zeta_7^3 + \zeta_7^4 - \zeta_7^5 + \zeta_7^6$.

Esercizio 10. Mostrare che se n divide m, allora $\mathbb{Q}(\zeta_n) \subset \mathbb{Q}(\zeta_m)$.

Esercizio 11. Dimostrare che se $q \in \mathbb{Q}$, allora $\cos(q\pi)$ è un numero algebrico. Calcolare anche la dimensione

$$[\mathbb{Q}(\cos(q\pi)):\mathbb{Q}]$$
.

Si può dire la stessa cosa di $\sin(q\pi)$?

Suggerimento: Utilizzare (senza mostrarlo) il fatto che $[\mathbb{Q}(\zeta_m):\mathbb{Q}]=\varphi(m)$.

Esercizio 12. Ricordando che se $f \in F[x]$ è un polinomio irriducibile e charF = p, allora il campo di spezzamento di f ha grado ∂f , trovare il campo di spezzamento di $f(x) = x^{10} + x + 1 \in \mathbb{F}_2[x]$.