5. Martingale Processes

Let $(\Omega, \mathfrak{F}, \mathbb{P})$ be a probability space and $\mathfrak{F}=\{\mathfrak{F}_n; n \gg 0\}$ a filtration on (Ω, \mathfrak{F}) . Let $\{M_n; n \gg 1\}$ be a stochastic process adapted to \mathfrak{F} (note: we can consider $\mathfrak{F}_n=\sigma(M_1,...,M_n)$ so that it is automatically adapted).

Definition 1: If $\{M_n; n>1\}$ is adapted to $(\Omega, \exists, \mp, \mathbb{P})$, and $E|M_n|<\infty$ for all n, then we say that:

- . { Mn } is a #-martingale if Mn = E(Mn+1 fn) w.p.1 for all n > 1,
- . [Mn] is a F-submartingale if Mn ≤ E(Mn, 17n) w.p.1 for all n > 1,
- . {Mn} is a \(\pi \)-supermartingale if \(Mn \) \(\in \) (Mn+1 \(\frac{\pi}{n} \) \(\mu \). (Mn+1 \(\frac{\pi}{n} \) \(\mu \).

Example 11: The "gambler" problem is usually stated in terms of his fortune Mn at the time of the n-th game. If the results of consecutive games are ind (he always gambles \$1) the resulting process is a martingale when the game 1s fair:

Mn = Mn-1 + Xm , E(Xn+1 | In) = 0

In = o(X1, X2,.., Xn).

Definition 2: The process $\{\delta M_n\}$, $\delta M_n = M_{n+1} - M_n$, called the martingale difference process. If $E[M_n]^2 < \infty$ then the martingale differences are uncorrelated:

E[&Mn &Mm] = 0 + m + n

Example 12: If y is a F-mbl random variable with ETYl then the random variables

Mn = E(Y 13n)

form a martingale, since $E(M_{n+s} | \exists m) = E(E(Y | \exists m)) = E(Y | \exists m) = E(Y | \exists m) = M_n$. This is called Doob's martingal and it corresponds to a model where information about Y "accumulated" as the number of observations grows.

Example 13: Let $\{Y_n\}$ be a sequence of random variation $(\Omega, \mathfrak{F}, \mathbb{P})$ and form the natural filtration \mathbb{F} with \mathbb{F}_n $\sigma(Y_1, ..., Y_n)$. Write:

$$y_n = (y_n - E(y_n | f_{n-1})) + E(y_n | f_{n-1})$$

= $\delta M_n + E(y_n | f_{n-1})$

The "unpredictable" term in Yn is a martingale difference, where:

$$M_n = \sum_{j=0}^{n} (Y_j - E(Y_j | \exists_{j-1}))$$

is a martingale. Vector-valued martingales are stochastic processes where each component is a martingale.

Proposition 1: Let $\{M_n\}$ be a #-martingale and $q(\cdot)$ a non-decreasing non-negative convex function. Then $\forall n < N \text{ and } \Delta > 0$,

$$\mathbb{P}\left\{ \sup_{n \leq m \leq N} |M_n| \geq \lambda \mid \mathbb{F}_n \right\} \leq \frac{\mathbb{E}\left(\mathbb{Q}(M_N \mid \mathbb{F}_n)\right)}{\mathbb{Q}(\lambda)}$$

Commonly; q(x) = |x|, x2 or exx, x>0.

Proposition 2: Let $\{M_n\}$ be a #-martingale. Then $E\left\{\sup_{n\leq m\leq N}\|M_m\|^2\|_F^2\right\} \leq 4E\left(\|M_n\|^2\|_F^2\right)$

$$\mathbb{P}\left\{\sup_{n\leq m\leq N}\,\mathsf{M}_m\,\, \geq \lambda\,\,\big|\,\, \mathbb{F}_n\right\}\leq\,\,\frac{\mathsf{M}_n}{\lambda}$$

Proposition 3: If $\{M_n\}$ is a martingale and z is a stopping time, then $E M_n \mathbf{1}_{(z \le n)} = E \times_z \mathbf{1}_{(z \le n)} \forall n > 1$.

Definition 3: Let $\{M_n\}$ be a #-martingale on $(\Omega, \#, \mathbb{P})$, $\{\#_n; n_{7^{\prime}}\}$ and \forall an adapted stopping time. The stopped

martingale { Mznn } is defined by:

Mann = { Mn if ncz

Mz if nez

and zun = min (n,z).

Proposition 4: If z is an #-adapted stopping time and it is a.s. bounded (uniformly in w), then { Mn/z} is a martingale (sub- or supermartingale) if { Mn} is a martingale (respectively, a sub- or supermartingale).

Theorem 1: Let $\{M_n\}$ be a real-valued submartingable with sup, $E[M_n]<\infty$, on a space $(\Omega, \mathcal{F}, \mathcal{F}, \mathbb{P})$. Then $\{M_n\}$ converges w.p.1, as $n\to\infty$. If $\{M_n\}$ is a supermartingale, $\{M_n\}$ converges w.p.1 as $n\to\infty$ if $E[M_n]<\infty$, where $x^-=\max(0,-x)$.

Definition 4: Let $(\mathfrak{I}, \mathfrak{F}, \mathfrak{P})$ be a probability space with a filtration $\mathfrak{F}_{>}$ { \mathfrak{F}_{t} ; $t \in \mathbb{R}^{+}$ }. A process { M(t); $t \gg 0$ adapted to the fittation \mathfrak{F} is a:

- · martingale if M(s) = E(M(s+t) | Fs) 4t>0
- · submartingale if M(s) & E[M(s+t) 13=) 4 t>0
- · supermartingale if M(s) ≥ E[M(s+t) 17s] +t >0 with probability 1.

Definition: Let X(t) be a continuous time stochastic process on $(\Omega, \Im, \mathbb{P})$ with natural filtration $\mathcal{F} = \{\Im_t; t>0\}$. We say that X is locally Lipschitz continuous w.p.1 if for each T>0 there is a random variable K(T)>0 \Im_{T} -mbl, such that

7. [] |] |] |] |] |] | -20-

|X(t+s) - X(t)| & K(T) s, for all t & t+s & T.

Theorem 2: A continuous time martingale {M(t), tro} whose paths are locally Lipschitz continuous w.p.1 on each bounded interval is a constant w.p.1.

Characterization of a Hartingale

In many of the proofs of convergence of stochastic approximations one uses Theorem 2 to establish continuity of some (limit) processes. In order to do this, it is first necessary to verify that the process in question is a martingale.

Consider a probability space $(\Omega, \forall, \mp, \mp)$ and a "state" process (or "control" process) $\{\vartheta(t); t>0\}$ adapted to the filtration.

Theorem 3: Let $\{Y(t); t>0\}$ be a stochastic proce adapted to the filtration \mathbb{F} , $\sigma(Y(s); s \leq t) \in \mathbb{F}_t \ \forall$ Suppose that for each t, r>0 and for each $p \in \mathbb{N}$ $s:\leq t$ and any bounded and continuous real-valued t $h(\cdot)$:

Eh((S(s); isp)[Y(t+r)-Y(t)]=0then $\{Y(t)\}$ is a \mathbb{F} -martingale.

Proof: To give the idea of the proof, let Y be a rank variable on (Ω, \mathcal{F}) with $E|Y|<\infty$ and suppose that

Eh($\theta(s_i)$; $i \le p$) Y = 0for all p; $s_i \le t$ and any continuous and bounded h Since $0 = Eh(\theta(s_i); i \le p) Y = E\{h(\theta(s_i); i \le p) \times$

 $E(Y|\vartheta(si);i\leq p)$ and we can use $h\equiv 1$, then $E(Y|\vartheta(si);i\leq p)=0$. but from the arbitrariness of p and $si\leq t$, this in turn implies $E(Y|\vartheta(s);s\leq t)=0$. Using Y(t+1)=Y(t) instead of Y for each t, z, Y is Y the desire result.