

Outline

- In this module, the students will learn the following
 - Understand the working and control of stepper and servo motors
 - Control speed and direction of stepper motor using AVRs
 - Control position of servo motor using AVRs

Types of Motors

Types & Characteristics of Stepper Motor

- Types of Stepper Motor
- <u>Unipolar Stepper Motors</u>
 - Needs 0/+ signals to control the motor
- Bipolar Stepper Motor
 - Needs -/+ signals to control the motor

Types of Stepper Motor (based on construction)

- 1. Permanent magnet
- 2. Variable reluctance
- 3. Hybrid

- The following elements characterize a given stepper motor:
- Voltage
 - Stepper motors usually have a voltage rating.
- Resistance
 - Resistance-per-winding is another characteristic of a stepper motor. Affect the motor's torque curve and maximum operating speed.
- Degrees per step
 - Common degree/step numbers include: 0.72, 1.8, 3.6, 7.5, 15, and even 90. Degrees per step is often referred to as the *resolution* of the motor.

Unipolar & Bipolar Stepper Motors

Types of Stepper Motor (based on construction)

- 1. Permanent magnet
- 2. Variable reluctance
- 3. Hybrid

Unipolar Stepper Motors

Clockwise Rotation -	Index	1a	1b	2a	2b
	1	1	0	0	1
	2	1	1	0	0
	3	0	1	1	0
	4	0	0	1	1
	5	1	0	0	1
	6	1	1	0	0
	7	0	1	1	0
	8	0	0	1	1

Alternate Full Step Sequence (Provides more torque)

Index	1a	1b	2a	2b
1	1	0	0	0
2	1	1	0	0
3	0	1	0	0
4	0	1	1	0
5	0	0	1	0
6	0	0	1	1
7	0	0	0	1
8	1	0	0	1
9	1	0	0	0
10	1	1	0	0
11	0	1	0	0
12	0	1	1	0
13	0	0	1	0
14	0	0	1	1
15	0	0	0	1
16	1	0	0	1
	1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 1 2 1 3 0 4 0 5 0 6 0 7 0 8 1 1 1 0 1 1 1 1 0 1 2 0 1 3 0 1 4 0 1 1 5 0	1 1 0 2 1 1 3 0 1 4 0 1 5 0 0 6 0 0 7 0 0 8 1 0 9 1 0 10 1 1 11 0 1 12 0 1 13 0 0 14 0 0 15 0 0	1 1 0 0 2 1 1 0 3 0 1 0 4 0 1 1 5 0 0 1 6 0 0 1 7 0 0 0 8 1 0 0 9 1 0 0 10 1 1 0 11 0 1 0 12 0 1 1 13 0 0 1 14 0 0 1

Half Step Sequence

For direction change, simply switch the sequence

These are cyclic codes

Unipolar Stepper Motor

Model: 35BY48B06 - Unipolar Stepper Motor **Specifications:**

5 VDC

7.5deg. step angle, 48 teeths

Phase resistance: 10 Ohms

Current: 500 mA

controller (Arduino digital pins)

Stepper Motor (FS) using ULN2003

```
#define F CPU 1600000UL/* Define CPU Frequency 16MHz */
#include <avr/io.h>/* Include AVR std. library file */
#include <util/delay.h>/* Include delay header file */
int main(void)
                                                Too small or too large will damage the motor
int period;
DDRD = 0x0F;/* Make PORTD lower pins as output */
period = 100;/* Set period in between two steps */
  while (1)
  /* Rotate Stepper Motor Anticlockwise with Full step sequence */
  PORTD = 0x09;
                                               Too small -> switching faster -
  delay ms(period);
                                               Motor vibrates and heats up.
  PORTD = 0x03;
  delay ms(period);
  PORTD = 0x06;
                                               Too large -> switch slower -
  delay ms(period);
  PORTD = 0 \times 0 C;
                                               Motor heats up.
   delay ms(period);
```

To Switch Directions: -> Switch Sequence

Stepper Motor (HS) using ULN2003

```
while (1)
/* Rotate Stepper Motor clockwise with Half step sequence */
PORTD = 0x09;
_delay_ms(period);
PORTD = 0x08;
_delay_ms(period);
PORTD = 0 \times 0 C;
_delay_ms(period);
PORTD = 0x04;
_delay_ms(period);
PORTD = 0x06;
_delay_ms(period);
PORTD = 0x02;
_delay_ms(period);
PORTD = 0 \times 03;
_delay_ms(period);
PORTD = 0x01;
_delay_ms(period);
```


Servo Motors

- Can be positioned from 0-180° (usually)*
- Internal feedback circuitry & gearing takes care of the hard stuff
- Easy three-wire PWM 5V interface
- PWM freq is 50 Hz (i.e. every 20 millisecs)
- Pulse width ranges from 1 to 2 millisecs
 - 1 millisec = full anticlockwise position
 - 2 millisec = full clockwise position

Servo Control

- PWM freq is 50 Hz (i.e. every 20 millisecs)
- Pulse width ranges from 1 to 2 millisecs
 - 1 millisec = full anti-clockwise position
 - 2 millisec = full clockwise position

Servo Movement

Servo motor is supplied with a PWM period of specific period Most Servos will work in 50Hz (20 ms period)

0 degrees

180 degrees

1000 usecs 1ms

1500 usecs 1.5 ms

2000 usecs 2 ms

Pulse width determines the position
If a pulse width of 1.2 ms is given the servo points to 45 deg.

Servos

- EX1: Futaba 3003 servos rotating between 0 and 180 degrees.
 - 0.388ms = 0 degree.
 - 1.264ms = 90 degrees. (neutral position)
 - 2.14ms = 180 degrees.
- Generating Period
 - The CPU frequency is 16MHz
 - Pre-scalar as 64
 - Timer frequency = 16MHz/64 = 250khz (4uS period).
 - Setup Timer Mode as Mode 14.
 - FAST PWM Mode
 - TOP Value = ICR1
 - Most servo motor will work well on 50 Hz of PWM frequency; this mean the PWM signal should have a period of 20ms.

Servos

Timer1 PWM

- $f_{pwm} = f_{ocs} / N(TOP+1)$
- $f_{pwm} = 50 = 16M/64*(TOP+1)$
- TOP = 4999
- ICR1A=4999 = PWM period of 20ms (50 Hz).

Position Control

- Servo Angle 0 degrees = pulse width of 0.388ms (388uS) OCR1A = 388us/4us = 97
- Servo Angle 90 degrees = pulse width of 1.264ms (1264uS) OCR1A = 1264us/4us = 316
- Servo Angle 180 degrees = pulse width of 2.140ms (2140uS) OCR1A = 2140us/4us = 535

Servo Code

```
void main()
 //Configure TIMER1
 TCCR1A|=(1<<COM1A1)|(1<<COM1B1)|(1<<WGM11); //NON Inverted PWM
 //PRESCALER=64 MODE 14(FAST PWM)
 TCCR1B = (1 < WGM13) | (1 < WGM12) | (1 < CS11) | (1 < CS10);
 ICR1=4999; //fPWM=50Hz (Period = 20ms Standard).
 DDRB|=(1<<PB1); //PWM Pins as Out
while(1)
   OCR1A=97; //0 degree
   Wait();
   OCR1A=316; //90 degree
   Wait();
   OCR1A=425; //135 degree
   Wait();
   OCR1A=535; //180 degree
   Wait();
```


SG90 9G Micro Servo Motor

• EX2: SG90 9G Micro Servo Motor - rotating between 0 and 180

while()

else {

if(OCR1A >499) {

delay ms(5000);

OCR1A = 250 + 25;

delay ms(1000);

OCR1A = 250;

degrees.

- 1ms = 0 degree.
- 1.5ms = 90 degrees. (neutral position)
- 2.0ms = 180 degrees.
- PWM Period:
 - $f_{pwm} = f_{ocs} / N(TOP+1)$
 - $f_{pwm} = 50 = 16M/64*(TOP+1)$
 - TOP = 4999
 - ICR1A=4999 = PWM period of 20ms (50 Hz).
- Position Control
 - Servo Angle 0 degrees = pulse width of 1ms; OCR1A = 1000us/4us = 250
 - Servo Angle 90 degrees = pulse width of 1.5ms; OCR1A = 1500us/4us = 375
 - Servo Angle 180 degrees = pulse width of 2.0ms; OCR1A = 2000us/4us = 500

Summary

- On completion of this module, the student should be able to
 - Control speed and direction of stepper motor using AVRs
 - Control position of servo motor using AVRs

