Modul "Grundlagen der objektorientierten Programmierung mit Java"

Prof. Dr. Cornelia Heinisch

Lernziele

- Sie kennen die Werkzeuge, die Sie benötigen, um
 - Java-Programme zu erstellen,
 - Java-Programme zu **übersetzen**,
 - Java-Programme auszuführen.
- Sie kennen die Begrifflichkeiten Rechner-Plattform, Java-Plattform, JDK und JRE.
- Sie haben Ihr erstes Java-Programm zur Ausführung gebracht.
- Sie kennen den Unterschied zwischen "übersetzten" und "interpretierten" Sprachen.

Agenda

- Werkzeuge für die Programmierung in Java
- Das Programm "Hello, World!"
- Übersetzungskonzepte

10 || 1

Werkzeuge für die Programmierung in Java

Java-Programme schreiben und ausführen

Zum Ausführen und Schreiben von Java-Programmen benötigt man Folgendes:

- einen Editor, um ein Java-Programm einzutippen – bzw. den Java-Quellcode zu erstellen,
- einen Java-Compiler, um den im Editor eingetippten Java-Quellcode in Java-Bytecode zu übersetzen,
- die Java-Klassenbibliothek, welche ausprogrammierte Funktionalitäten zur Verwendung in den eigenen Java-Programmen zur Verfügung stellt,
- einen Java-Interpreter, um den Java-Bytecode auf der jeweiligen Rechner-Plattform auszuführen. Hierzu übersetzt der Java-Interpreter den Java-Bytecode in Maschinencode und bringt diesen direkt zur Ausführung.

Rechner-Plattform und Java-Plattform

Als **Rechner-Plattform** wird hier die Kombination von **Betriebssystem** und zugehöriger **Rechner-Hardware** verstanden.

Zu einer Java-Plattform gehören neben der Programmiersprache Java, Werkzeuge wie der Java-Compiler (javac), die Java Virtuelle Maschine (JVM) – in anderen Worten der Java-Bytecode-Interpreter (java) – für eine Rechner-Plattform und eine umfassende Klassenbibliothek.

10 || 1:

Werkzeuge für die Programmierung in Java

Ausführungen der Java-Plattform

- Java-Plattform wird von Oracle in verschiedenen Ausführungen bereit gestellt:
 - Standard Edition (Java SE),
 - Enterprise Edition (Java EE),
 - Micro Edition (Java ME).
- Ausführungen unterscheiden sich im Wesentlichen durch
 - Art und Umfang der Klassenbibliothek,
 - die bereit gestellten Werkzeuge.
- Hintergrund für unterschiedliche Ausführungen: Einsatz von Java-Programmen auf unterschiedlichen Endgeräten.

Sie benötigen für dieses Modul eine Java-Plattform in der Standard Edition von der Firma Oracle.

Java Development Kit (JDK)

- meist genutzte Java-Plattform für die Entwicklung von Java-Programmen
- wird von der Firma Oracle zur Verfügung gestellt (Open JDK): https://jdk.java.net/20/

Das JDK ist eine Java-Plattform mit einem für die jeweilige Rechner-Plattform spezifischen Java-Bytecode-Interpreter.

Für die Rechner-Plattform entsprechendes Build auswählen.

Java Development Kit (JDK) – Hinweise zur Installation

- Zip-Datei herunterladen
- Entpacken zum Beispiel in Verzeichnis C:\Programme\Java
- Nach dem Entpacken finden Sie dort das Verzeichnis
 - jdk-20
 In diesem Verzeichnis finden sich unter anderem folgende Verzeichnisse:
 - \bin: hier befinden sich die Werkzeuge javac.exe (Java-Compiler) und java.exe (Java-Interpreter)
 - \lib: hier befindet sich auf mehrere Dateien aufgeteilt die Java-Klassenbibliothek

Unterscheidung JRE und JDK

- JRE = Java Runtime Environment
- JRE beinhaltet nur diejenigen Bestandteile eines JDKs, welche zum Ausführen von Java-Programmen benötigt werden.
- damit besteht eine JRF aus
 - einem Bytecode-Interpreter für die jeweilige Rechner-Plattform
 - und der Java-Klassenbibliothek.

Entwicklungsumgebung Eclipse

- ist selbst vollständig in Java geschrieben
- bietet über komfortable grafische Bedienoberfläche einfachen und direkten Zugriff auf alle benötigten Entwicklungswerkzeuge:
 - komfortabler Editor, um Java-Programme einzutippen,
 - Syntax des Programmes wird bereits beim Eintippen überprüft,
 - beim Speichern wird automatisch der Java-Compiler aufgerufen,
 - Bedienelemente, um Java-Programme direkt auszuführen oder zu debuggen.
- Bezugsquelle: http://www.eclipse.org/downloads/
 - Installationsdatei starten (als Administrator ausführen)
 - "Eclipse IDE for Java-Developers" auswählen

Agenda

- Werkzeuge für die Programmierung in Java
- Das Programm "Hello, World!"
- Übersetzungskonzepte

Entwicklungsumgebung Eclipse

- grafische Bedienoberfläche von Eclipse nach Eintippen & Speichern eines Beispielprogrammes
- unterhalb des Editor-Fensters ist nach dem Ausführen die Programmausgabe zu sehen

Agenda

- Werkzeuge für die Programmierung in Java
- Das Programm "Hello, World!"
- Übersetzungskonzepte

Analogie

Programmiersprache C

Quellcode wird in Maschinensprache übersetzt. Für jeden Maschinentyp muss eine ausführbare Datei erstellt werden.

Rein interpretierte Sprachen

Quellcode wird Anweisung für Anweisung in Maschinensprache übersetzt und direkt ausgeführt. Es gibt keine ausführbare Datei!

schreibt

Programmierer

kopiert

Quellcode **Dolmetscher (Interpreter)**

Anw. 1 Anw. 2 Anw. 3

liest übersetzt bringt zur Ausführung

Entwickler-Rechner Plattform A

Dolmetscher(Interpreter) Quellcode

Anw. 1 Anw. 2

Arw. 3

liest übersetzt bringt zur Ausführung

Rechner Plattform B

Maschinensprache A

Anw. 1 Anw. 2

Anw. 3

Maschinensprache B

Anw. 1 Anw. 2 Anw. 3 Anweisung für Anweisung wird direkt ausgeführt

Anweisung für Anweisung wird direkt ausgeführt

Programmiersprache Java

Zweistufiges Übersetzungskonzept

Warum arbeitet Java mit einem Zwischencode?

- Rein interpretierte Sprachen sind langsamer in der Ausführung als rein übersetzte Sprachen. Java geht den Kompromissweg: Großteil der Übersetzungsarbeit ist bereits erledigt. Bytecode (Zwischencode) ist bereits Hardware-nah.
- Bytecode ist kompakter als der ursprüngliche Quellcode. Damit sind die kleinen Bytecode-Dateien effizient über das Internet übertragbar.

In Java

- gibt es damit kein ausführbares Programm.
- die Übersetzung des Bytecodes in Maschinencode erfolgt erst zur Laufzeit

Bytecode kann auf jeder Rechner-Plattform ausgeführt werden, sofern dort ein Dolmetscher (Java-Runtime-Environment) installiert ist.

Typische Compilersprachen und Interpretersprachen

- Rein übersetzte Sprache -> Compilersprache
- Rein interpretierte Sprache -> Interpretersprache
- Interpretersprachen werden auch häufig Skriptsprachen genannt
- Viele Skriptsprachen sind aber keine reinen Interpretersprachen
- Beispiele:

Eine Programmiersprache ist prinzipiell unabhängig vom Übersetzungskonzept. Typischerweise ist C aber eine Compilersprache und Java eine Sprache, die mit Compiler, Bytecode und Interpreter arbeitet.