VOLTAGE DROP EQUATIONS

Voltage Drop Equations

Voltage Drop =
$$\sqrt{3}$$
 I (R Cos θ + X Sin θ) L
 $3\emptyset$
Voltage Drop = 21 (R Cos θ + X Sin θ) L
 $1\emptyset$

Voltage Drop = in volts (V)

I = Current in amperes

R= Conductive resistance in ohms/ 1000 ft.

X= Conductor inductive reactance in ohms/1000 ft.

L= one way length of circuit (source to load) in thousands of feet (K ft.)

Z = Complex impedance ohms/ 1000 ft. obtain from Tables.

 θ = Phase angle of load

Cos θ = Power Factor: Motors see 6-5, 6-6, .6-.8 is usual see 5-1 to 5-8 for more power factor calculations, also 8-2

Given voltage drop, find wire size

Voltage Drop $3\emptyset = \sqrt{3} I(Z) L$

$$Z = \frac{\text{Voltage Drop}}{\sqrt{3} \text{ I.l.}} = \frac{\text{Vd}}{\sqrt{3} \text{ II.}}$$

Voltage Drop 1 \varnothing = 21 (Z) L

$$Z = \frac{\text{Voltage Drop}}{2 \text{ I L}} = \frac{\text{Vd}}{2 \text{ IL}}$$

Procedure (Example)

- 1. Assume a voltage drop, say 2 %, Base voltage 230V, $1\emptyset$ vd = .02(230)
- 2. Current and distance must be known I= 30A, L= .56K ft. .56Kft.Power factor must be known. P.F. = .85
- 3. Solve for Z:Z = Vd/2 IL= 4.8V/2 (30A) (.5Kft) = $16\Omega/Kft$
- 4. Look up Z in tables at 16Ω / Kft, 85 P.F. Copper direct burial in nonmagnetic conduit. Always use wire with next smaller impedance Z per 1,000 feet than that calculated.

Three Phase Voltage Drop

Three Phase, Direct Burial cover

- 1. $Vd = \sqrt{3} (I) (Z) (L)$
- 2. Given: Voltage 230V, 3 phase, load 5 KW P.F. = 1 heater, L = 480 ft.
- 3. Assume a voltage drop, say 2%, base voltage, 230V. Voltage drop maximum goes next to J
- 4. Solve for Z:

$$Z = \frac{\text{Voltage Drop}}{\sqrt{3} \text{ IL}} = \frac{4.6 \text{ volts}}{\sqrt{3} (21.7 \text{A}) (.48 \text{Kft.})} = .0254 \text{ ohms/ Kft.}$$

Look Z up in Table on voltage drop charts. @ P.F. = 1.0 Copper Direct Burial Table 75 degrees C. Use next smaller Z for wire size. Nonmagnetic Conduit.
 500 MCM = .0270 Ω/Kft. Use 600 MCM because its impedance is less than that calculated.

Power Factor

$$PF = Cos \theta = \underline{KW}$$
 KVA

Given 10 KW, 12 KVA Load, find PF:
$$PF = 10KW = .83$$

12KVA

CONDUCTOR IMPEDANCES

POWER FACTOR

1.00.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 .45 .40 .35

		· · · · · · · · · · · · · · · · · · ·														
	14	3.062	2.932	2.788	2.642	2.494	2.346	2.197	2.047	1.897	1.747	1.596	1.445	1.293	1.142	
	12	1.932	1.858	1.771	1.681	1.590	1.498	1.406	1.313	1.219	1.125	1:031	0.936	0.841	0.746	
	10	1.214	1.176	1.125	1.071	1.016	0.960	0.903	0.846	0.788	0.730	0.672	0.613	0.554	0.495	
Ш	8	0.811	0.793	0.762	0.729	0.694	0.658	0.621	0.584	0.546	0.509	0.470	0.432	0.393	0.354	
N	6	0.510	0.505	0.488	0.469	0.449	0.427	0.405	0.383	0.360	0.337	0.314	0.290	0.266	0.242	
S	4	0.321	0.324	0.316	0.306	0.294	0.282	0.269	0.256	0.243	0.229	0.215	0.200	0.186	0.171	
Ш	3									:			* .			
田田	2	0.202	0.210	0.207	0.202	0.196	0.190	0.183	0.175	0.168	0.159	0.151	0.143	0.134	0.125	
≥	1	0.160	0.169	0.168	0.166	0.162	0.157	0.152	0.147	0.141	0.135	0.129	0.122	0.116	0.109	
1	/0	0.128	0.138	0.138	0.137	0.134	0.131	0.128	0.124	0.120	0.115	0.110	0.105	0.100	0.095	
2	/0	0.102	0.113	0.115	0.114	0.113	0.111	0.109	0.106	0.103	0.100	0.097	0.093	0.089	0.085	
3	/0	0.080	0.092	0.095	0.095	0.095	0.094	0.093	0.091	0:089	0.087	0.085	0.082	0.079	0.076	
4	/0	0.064	0.076	0.079	0.080	0.081	0.080	0.080	0.079	0.078	0.076	0.075	0.073	0.071	0.068	
2	50	0.055	0.067	0.071	0.072	0.073	0.074	0.073	0.073	0.072	0.071	0.070	0.069	0.067	0.065	
3	00	0.046	0.059	0.063	0.065	0.066	0.067	0.067	0.067	0.067	0.066	0.065	0.064	0.063	0.062	
3	50	0.037	0.051	0.055	0.057	0.059	0.060	0.061	0.061	0.061	0.061	0.061	0.060	0.060	0.059	
4	00	0.035	0.049	0.053	0.056	0.057	0.059	0.059	0.060	0.060	0.060	0.060	0.059	0.059	0.058	
5	00	0.029	0.042	0.046	0.049	0.051	0.052	0.053	0.054	0.054	0.055	0.055	0.054	0.054	0.053	
6	00	0.025	0.038	0.043	0.046	0.048	0.049	0.051	0.051	0.052	0.052	0.052	0.052	0.052	0.052	
7	00	•														
7	50	0.021	0.034	0.038	0.041	0.043	0.045	0.046	0.047	0.048	0.049	0.049	0.049	0.049	0.049	

COPPER IN MAGNETIC CONDUIT

CONDUCTOR IMPEDANCES

POWER FACTOR

1.00.95.90.85.80.75.70.65.60.55.50.45.40.35

	14	5.054	4.817	4.571	4.323	4.075	3.825	3.575	3.325	3.074	2.823	2.572	2.321	2.070	1.818	
	12	3.186	3.043	2.890	2.736	2.580	2.424	2.268	2.111	1.954	1.796	1.638	1.481	1.322	1.164	≥
	10	2.000	1.916	1.823	1.727	1.631	1.535	1.437	1.340	1.242	1.144	1.045	0.947	0.848	0.749	<u></u>
IZE	8	1.258	1.211	1.155	1.097	1.038	0.978	0.918	0.857	0.797	0.736	0.674	0.613	0.551	0.489	M
	6	0.847	0.821	0.785	0.747	0.709	0.670	0.630	0.590	0.550	0.510	0.469	0.428	0.387	0.346	ĮΞ
S	4	0.532	0.521	0.500	0.478	0.455	0.432	0.408	0.383	0.359	0.334	0.309	0.284	0.258	0.233	Z
ш	3						: .			,						_
Ä	2	0.335	0.332	0.321	0.308	0.295	0.281	0.267	0.252	0.237	0.222	0.207	0.191	0.176	0.160	Z
≥	1	0.265	0.266	0.259	0.250	0.240	0.230	0.219	0.208	0.197	0.185	0.174	0.162	0.149	0.137	Z
1	/0	0.210	0.212	0.207	0.201	0.193	0.185	0.177	0.169	0.160	0.151	0.142	0.132	0.123	0.113	A
2	0 \\	0.167	0.171	0.168	0.163	0.158	0.152	0.146	0.139	0.133	0.126	0.119	0.111	0.104	0.096	GN
3	3/0	0.133	0.138	0.137	0.134	0.130	0.126	0.121	0.116	0:111	0.106	0.101	0,095	0.089	0.084	E.
4	10	0.106	0.112	0.112	0.110	0.108	0.105	0.102	0.098	0.094	0.090	0.086	0.082	0.078	0.073	1
2	50	0.089	0.097	0.097	0.096	0.094	0.092	0.090	0.087	0.084	0.081	0.078	0.074	0.071	0.067	င
3	00	0.075	0.082	0.083	0.083	0.082	0.081	0.079	0.077	0.075	0.072	0.069	0.067	0.064	0.061	C
3	50	0.064	0.072	0.074	0.074	0.073	0.072	0.071	0.069	0.068	0.066	0.064	0.061	0.059	0.057	NO
4	00	0.056	0.065	0.066	0.067	0.067	0.066	0.065	0.064	0.063	0.061	0.059	0.058	0.056	0.053	D
5	00	0.045	0.054	0.056	0.057	0.058	0.057	0.057	0.056	0.055	0.054	0.053	0.052	0.050	0.049	<u> </u>
6	00	0.038	0.048	0.050	0.051	0.052	0.052	0.052	0.052	0.052	0.051	0.050	0.049	0.048	0.047	-
7	00	0.033	0.043	0.045	0.047	0.048	0.048	0.048	0.048	0.048	0.047	0.047	0.046	0.045	0.044	90
7	750	0.031	0.040	0.043	0.044	0.045	0.046	0.046	0.046	0.046	0.045	0.045	0.044	0.043	0.043	õ

. .\ _ .\ ..

8

ALUMINUM IN NON MAGNETIC CONDUIT 8-6 90

CONDUCTOR IMPEDANCES

POWER FACTOR

1.00.95.90.85.80.75.70.65.60.55.50.45.40.35

	14	5.054	4.814	4.566	4.318	4.068	3.818	3.567	3.317	3.066	2.814	2.563	2.311	2.060	1.808
•	12	3.186	3.039	2.885	2.730	2.574	2.417	2.260	2.102	1.945	1.787	1.629	1.471	1.312	1.154
,	10	2.000	1.913	1.818	1.722	1.625	1.527	1.429	1.331	1.233	1.135	1.036	0.937	0.838	0.739
Ш	8	1.258	1.208	1.150	1.091	1.031	0.971	0.910	0.849	0.788	0.726	0.665	0.603	0.541	0.479
7	6	0.847	0.817	0.780	0.742	0.702	0.663	0.622	0.582	0.541	0.500	0.459	0.418	0.377	0.335
တ	4	0.532	0.517	0.496	0.473	0.449	0.425	0.400	0.376	0.351	0.326	0.300	0.275	0.249	0.223
Ш	3						:						3 t. 4		
R	2	0.335	0.329	0.317	0.304	0.290	0.275	0.260	0.245	0.230	0.215	0.199	0.183	0.167	0.151
>	1	0.265	0.262	0.253	0.243	0.233	0.221	0.210	0.198	0.187	0.174	0.162	0.150	0.138	0.125
1	/0	0.210	0.210	0.203	0.196	0.188	0.179	0.171	0.162	đ.153	0.143	0.134	0.124	0.115	0.105
2	/0	0.167	0.168	0.164	0.159	0.153	0.147	0.140	0.133	0.126	0.119	0.112	0.104	0.097	0.089
3	/0	0.133	0.137	0.135	0.132	0.128	0.124	0.119	0.114	0.109	0.104	0.098	0.092	0.087	0.081
4	/0	0.105	0.109	0.108	0.105	0.102	0.099	0.095	0.091	0.087	0.083	0.079	0.074	0.070	0.065
2	50	0.089	0.094	0.093	0.092	0.089	0.087	0.084	0.081	0.078	0.074	0.071	0.067	0.063	0:060
3	00	0.074	0.080	0.080	0.079	0.077	0.075	0.073	0.071	0.068	0.066	0.063	0.060	0.057	0.054
3	50	0.064	0.068	0.068	0.067	0.065	0.064	.0.062	0.060	0.058	0.055	0.053	0.050	0.048	0.045
4	00	0.056	0.062	0.063	0.063	0.062	0.061	0.060	0.058	0.057	0.055	0.053	0.051	0.049	0.046
5	00	0.045	0.051	0.053	0.053	0.053	0.052	0.051	0.051	0.049	0.048	0.047	0.045	0.044	0.042
6	00	0.038	0.045	0.046	0.047	0.047	0.047	0.047	0.046	0.045	0.044	0.043	0.042	0.041	0.040
7	00	0.033	0.040	0.041	0.042	0.043	0.043	0.043	0.042	0.042	0.041	0.040	0.039	0.038	0.037
7	50	0.030	0.037	0.039	0.040	0.041	0.041	0.041	0.040	0.040	0.039	0.039	0.038	0.037	0.036

(