1-й модуль

1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить.

Произведением матриц $A_{n \times p}$ и $B_{p \times k}$ называется матрица C типа $n \times k$, где $c_{ij} = \sum_{l=1}^{p} a_{il} \cdot b_{lj}$. Умножение матриц, вообще говоря, не коммутативно, то есть $A \cdot B$, вообще говоря, $\neq B \cdot A$.

Пример:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad A \cdot B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B \cdot A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

2. Дать определение ступенчатого вида матрицы и канонического вида матрицы.

Матрица M имеет cmynenuamый вид, если номера первых ненулевых элементов всех строк (такие элементы называют ведущими) возрастают, а нулевые строки расположены внизу матрицы.

Матрица M имеет *канонический* вид, если M уже имеет ступенчатый вид, причем все ведущие элементы равны 1 и в любом столбце, содержащем ведущий элемент, выше и ниже него стоят 0.

3. Перечислить элементарные преобразования строк.

Пусть (i) – i-тая строка матрицы A.

Тогда элементарные преобразования:

- 1) $(i) \rightarrow \lambda \cdot (i)$, $\lambda \neq 0$ умножили i-тую строку на число λ
- 2) $(i) \leftrightarrow (j)$ поменяли местами i-тую и j-тую строки(транспозиция строк)
- 3) $(i) \rightarrow (i) + \lambda \cdot (k)$ i-тая строка заменяется на сумму i-той строки и k-той строки \cdot число λ

4. Сформулировать теорему о методе Гаусса (алгоритм приводить не нужно).

Любую конечную матрицу A можно привести элементарными преобразованиями к ступенчатому (каноническому) виду.

5. Дать определения перестановки и подстановки.

Всякое расположение чисел от 1 до n в определенном порядке называют $nepecmanos \kappa o \check{u}$: $\alpha = (\alpha_1, \dots, \alpha_n)$

Подстановка называется отображение: $\sigma = \begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix}$ множества $1, \dots, n$ в себя, которое является биекцией.

7. Выписать общую формулу для вычисления определителя произвольного порядка

 $\det A = \sum_{\sigma \in S_n} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)}$ (сумма по всем подстановкам).

8. Что такое алгебраическое дополнение?

Алгебраическим дополнением элемента a_{ij} называется число $A_{ij} = (-1)^{i+j} \cdot M_{ij}$, где M_{ij} - дополняющий минор элемента a_{ij} .

1

9. Выписать формулы для разложения определителя по строке и столбцу.

Разложение по i-й строке и по j-му столбцу: $\det A = \sum_{j=1}^n a_{ij} \cdot A_{ij} = \sum_{i=1}^n a_{ij} \cdot A_{ij}$

10. Что такое фальшивое разложение?

Когда сумма произведений всех элементов строки матрицы А на алгебраические дополнения к элементам другой строки дают 0.

$$\sum_{j=1}^n a_{ij} \cdot A_{kj} = 0$$
, если $k \neq i$ $\sum_{i=1}^n a_{ij} \cdot A_{ik} = 0$, если $k \neq j$

11. Выписать формулы Крамера для квадратной матрицы произвольного порядка.

Пусть $A\cdot x=b$ — совместная СЛАУ $(det A\neq 0)$, тогда $x_j=\frac{\triangle_j}{\triangle},\ j=\overline{1,n},$ где $\triangle_j=\det(A_1,\ldots,A_{j-1},b\ (j\ \text{место}),A_{j+1},\ldots,A_n)$

12. Дать определение союзной матрицы.

Coюзная матрица — транспонированная матрица из алгебраических дополнений к элементам матрицы A.

13. Дать определение обратной матрицы. Сформулировать критерий ее существования.

Матрица $B \in M_n(\mathbb{R})$ называется обратной к матрице A, если $B \cdot A = E = A \cdot B$. Обозначение A^{-1} .

Матрица $A \in M_n(\mathbb{R})$ имеет обратную (обратима) $\Leftrightarrow \det A \neq 0$ (она невырождена).

14. Выписать формулу для нахождения обратной матрицы.

$$A^{-1} = \frac{1}{\det A} \cdot \tilde{A}$$
, где \tilde{A} — союзная матрица.

15. Дать определение минора.

Минором k-го порядка матрицы A называют определитель матрицы, составленной из элементов, стоящих на пересечениях произвольных k строк и k столбцов.

16. Дать определение базисного минора. Какие строки называются базисными?

Любой отличный от нуля минор, порядок которого равен рангу, называется базисным минором матрицы.

Строки, попавшие в фиксированный базисный минор, называются базисными.

17. Дать определение ранга матрицы.

Рангом матрицы называют наибольший порядок отличного от 0 минора матрицы.

18. Дать определение линейной комбинации строк. Что такое нетривиальная линейная комбинация?

Линейной комбинацией строк a_1, \ldots, a_s называют выражение вида $\lambda_1 \cdot a_1 + \ldots + \lambda_s \cdot a_s$, где $\lambda_1, \ldots, \lambda_s$ – некоторые числа.

Линейная комбинация нетривиальна, если не все коэффициенты $\lambda_i = 0$.

19. Дать определение линейной зависимости строк матрицы.

Строки a_1, \ldots, a_s называют *линейно зависимыми*, если существует их нетривиальная линейная комбинация $\lambda_1 \cdot a_1 + \ldots + \lambda_s \cdot a_s = 0$.

20. Дать определение линейно независимых столбцов матрицы.

Если равенство $\lambda_1 \cdot a_1 + \ldots + \lambda_k \cdot a_k = 0$ возможно только при $\lambda_1 = \lambda_2 = \ldots = \lambda_k = 0$, то говорят, что столбцы a_1, \ldots, a_k линейно независимы (л.н.з.).

21. Сформулировать критерий линейной зависимости.

Строки a_1, \ldots, a_k линейно зависимы \Leftrightarrow хотя бы одна из них является линейной комбинацией остальных.

22. Сформулировать теорему о базисном миноре.

- 1) Базисные строки (столбцы), соответсвующие любому базисному минору M матрицы A л.н.з.
- 2) Строки (столбцы) матрицы A, не входящие в M, являются линейными комбинациями базисных строк (столбцов).

23. Сформулировать теорему о ранге матрицы.

Ранг матрицы равен максимальному числу ее л.н.з. строк (столбцов) или числу ненулевых строк в ступенчатом виде.

24. Сформулировать критерий невырожденности квадратной матрицы.

Рассмотрим матрицу $A \in M_n(\mathbb{R})$. Следующие условия эквивалентны:

- 1) $\det A \neq 0$
- 2) RgA = n
- 3) все строки A л.н.з.

25. Выписать свойства решений однородных и неоднородных СЛАУ.

- 1) Пусть x_1, \ldots, x_s решения однородной СЛАУ $(A \cdot x = 0)$, тогда при любой линейной комбинации:
- $\lambda \cdot x_1 + \ldots + \lambda \cdot x_s$ тоже является решением
- 2) Пусть x_1 решение СЛАУ $(A \cdot x = b)$, а x_2 решение однородной СЛАУ $(A \cdot x = 0)$ с той же матрицей. Тогда $x_1 + x_2$ решение $A \cdot x = b$
- 3) Пусть x_1, x_2 решение СЛАУ $(A \cdot x = b)$. Тогда $x_1 x_2$ решение $A \cdot x = 0$

26. Сформулируйте теорему Кронекера-Капелли.

СЛАУ $A \cdot x = b$ совместна, если RgA = Rg(A|b).

27. Дайте определение фундаментальной системы решений (ФСР) однородной СЛАУ.

ФСР – это множество ЛНЗ векторов, каждый из которых является решением однородной СЛАУ, кроме того, решением также является линейная комбинация данных векторов.

Количество векторов N ФСР рассчитывается по формуле N = n - Rg(A).

28. Сформулируйте критерий существования ненулевого решения однородной системы линейных уравнений с квадратной матрицей.

- 1) Если число уравнений однородной системы меньше числа ее неизвестных, то эта система $(A \cdot x = 0)$ имеет ненулевое решение.
- 2) Если в однородной СЛАУ $(A \cdot x = 0)$ число уравнений равно числу неизвестных, то она имеет ненулевое решение, когда матрица A вырождена, то есть $\det A = 0$.

2-й модуль

1. Сформулируйте теорему о структуре общего решения однородной СЛАУ.

Пусть Φ_1, \dots, Φ_k – Φ CP однородной СЛАУ $A \cdot x = 0$. Тогда любое решение этой СЛАУ можно представить в виде $x = c_1 \cdot \Phi_1 + \dots + c_k \cdot \Phi_k$, где c_1, \dots, c_k - некоторые постоянные.

2. Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений.

Пусть известно частное решение \tilde{x} СЛАУ $A \cdot x = b$. Тогда любое решение этой СЛАУ можно представить в виде $x = \tilde{x} + c_1 \cdot \Phi_1 + \ldots + c_k \cdot \Phi_k$, где Φ_1, \ldots, Φ_k – ФСР соответствующей однородной СЛАУ, а c_1, \ldots, c_k – некоторые постоянные.

3. Что такое алгебраическая и тригонометрическая форма записи комплексного числа?

Пусть $z \in \mathbb{C}$. Тогда:

- z = x + iy aлгебраическая форма записи, где $x, y \in \mathbb{R}$
- $z = r(\cos \varphi + i \sin \varphi) m$ ригонометрическая форма записи, где $r = |z| = \sqrt{x^2 + y^2}$, $\varphi = \arctan \frac{y}{x}$

4. Дайте определение модуля и аргумента комплексного числа. Что такое главное значение аргумента комплексного числа?

Модуль комплексного числа: $r = |z| = \sqrt{x^2 + y^2}$.

Аргумент комплексного числа — угол между положительным направлением вещественной оси и радиус-вектором этой точки: $\phi = Argz = \arg z + 2\pi k, \ k \in \mathbb{Z}$.

Главное значение аргумента – $\arg z \in [0, 2\pi)$ или $\arg z \in (-\pi, \pi]$

5. Сложение, умножение комплексных чисел. Что происходит с аргументами и модулями комплексных чисел при умножении и делении?

Сложение: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$

Умножение: $(x_1, y_1) \cdot (x_2, y_2) = (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1).$

При умножении модули комплексных чисел перемножаются, а аргументы складываются:

$$z_1 \cdot z_2 = r_1 \cdot r_2 \cdot (\cos(\varphi_1 + \varphi_2) + i \cdot \sin(\varphi_1 + \varphi_2))$$

Модуль частного двух комплексных чисел равен частному модулей, а аргумент – разности аргументов делимого и делителя: $\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot (\cos(\varphi_1 - \varphi_2) + i \cdot \sin(\varphi_1 - \varphi_2))$

4

6. Что такое комплексное сопряжение? Как можно делить комплексные числа в алгебраической форме?

Комплексное сопряжение: $\overline{z} = \overline{a + b \cdot i} = a - b \cdot i$

Пусть
$$z_1,z_2\in\mathbb{C}$$
 и $z_2\neq 0$. Тогда: $\dfrac{z_1}{z_2}=\dfrac{z_1\cdot\overline{z_2}}{z_2\cdot\overline{z_2}}=\dfrac{z_1\cdot\overline{z_2}}{|z_2|^2}$

7. Выпишите формулу Муавра.

$$z^n = r^n(\cos n\phi + i\sin n\phi), \ n \in \mathbb{N}$$

8. Как найти комплексные корни n-ой степени из комплексного числа? Сделайте эскиз, на котором отметьте исходное число и все корни из него.

Дано число $w=\rho\cdot(\cos\psi+i\cdot\sin\psi)$ и число $n\in\mathbb{N}$ $\sqrt[n]{w}=\left\{\sqrt[n]{\rho}\cdot\left(\cos\frac{\psi+2\pi k}{n}+i\cdot\sin\frac{\psi+2\pi k}{n}\right),\ k=\overline{0,n-1}\right\}$

9. Сформулируйте основную теорему алгебры. Сформулируйте теорему Безу.

Основная теорема алгебры: у \forall многочлена $f(z) = a_n \cdot z^n + a_{n-1} \cdot z^{n-1} + \ldots + a_0 \cdot z^0, \ a_i \in \mathbb{C}, \ n \in \mathbb{N}, \ a_n \neq 0 \ \exists$ корень $z_0 \in \mathbb{C}$.

Теорема Безу: Остаток от деления многочлена f(x) на x - c равен f(c).

10. Выпишите формулу Эйлера. Выпишите выражения для синуса и косинуса через экспоненту.

Формула Эйлера: $e^{i\phi} = \cos\phi + i \cdot \sin\phi$, $\phi \in \mathbb{R}$

$$\cos \phi = \frac{e^{i\phi} + e^{-i\phi}}{2}$$
 $\sin \phi = \frac{e^{i\phi} - e^{-i\phi}}{2i}$

11. Выпишите формулы Виета для многочлена третьей степени.

Формула: $f(x) = x^3 + b \cdot x^2 + c \cdot x + d$

$$b = -(x_1 + x_2 + x_3)$$

$$c = x_1 \cdot x_2 + x_2 \cdot x_3 + x_1 \cdot x_3$$

$$d = -x_1 \cdot x_2 \cdot x_3$$

12. Какие многочлены называются неприводимыми?

Многочлен называется npusodumыm, если \exists нетривиальное разложение $f = g \cdot h$ и nenpusodumыm в противном случае.

5

13. Сформулируйте утверждение о разложении многочленов на неприводимые множители над комплексными числами.

 \forall многочлен степени n > 1 разлагается в произведение неприводимых многочленов.

Комплексный многочлен степени n разлагается в произведение:

$$P_n(z) = a_n \cdot (z - z_1)^{\alpha_1} \cdot \ldots \cdot (z - z_k)^{\alpha_k}$$
, где сумма кратностей $\alpha_1 + \ldots + \alpha_k = n, z_i \in \mathbb{C}$

14. Дайте определение векторного произведения векторов в трехмерном пространстве.

Вектор \overrightarrow{c} называют векторным произведением векторов \overrightarrow{a} и \overrightarrow{b} , если:

- 1) $|\overrightarrow{c}|$ = $|\overrightarrow{a}|\cdot|\overrightarrow{b}|\cdot\sin\varphi$, где φ угол между \overrightarrow{a} и \overrightarrow{b}
- 2) $\overrightarrow{c} \perp \overrightarrow{a}, \overrightarrow{c} \perp \overrightarrow{b}$
- 3) тройка \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} правая

16. Выпишите формулу для вычисления векторного произведения в координатах, заданных в ортонормированном базисе.

Пусть \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} – правый ортонормированный базис, $\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}$, $\overrightarrow{b} = b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}$. Тогда:

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \overrightarrow{i} (a_y b_z - b_y a_z) + \overrightarrow{j} (a_z b_x - a_x b_z) + \overrightarrow{k} (a_x b_y - a_y b_x)$$

17. Дайте определение смешанного произведения векторов. Как вычислить объем тетраэдра с помощью смешанного произведения?

Смешанным произведением векторов \vec{a} , \vec{b} , \vec{c} называют число ($\vec{a} \times \vec{b}$, \vec{c}).

Объем тетраэдра, построенного на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} равен $V_T = \frac{1}{6} |\langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \rangle|$.

18. Выпишите формулу для вычисления смешанного произведения в координатах, заданных в ортонормированном базисе.

Пусть \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} — правый ортонормированный базис, $\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}$, $\overrightarrow{b} = b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}$, $\overrightarrow{c} = c_x \overrightarrow{i} + c_y \overrightarrow{j} + c_z \overrightarrow{k}$. Тогда:

$$\overrightarrow{c} + b_y \overrightarrow{j} + b_z \overrightarrow{k}$$
, $\overrightarrow{c} = c_x \overrightarrow{i} + c_y \overrightarrow{j} + c_z \overrightarrow{k}$. Тогда:

$$\langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \rangle = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

19. Сформулируйте критерий компланарности трех векторов с помощью смешанного произведения.

Векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} компланарны $\Leftrightarrow \langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \rangle = 0$.

21. Что такое уравнение поверхности и его геометрический образ?

Уравнение F(x,y,z) = 0 называют уравнением поверхности S, если этому уравнению удовлетворяют координаты любой точки, лежащей на поверхности, и не удовлетворяют координаты ни одной точки, не лежащей на поверхности.

6

При этом поверхность S называют геометрическим образом уравнения F(x,y,z) = 0.

22. Сформулируйте теорему о том, что задает любое линейное уравнение на координаты точки в трехмерном пространстве.

Любое уравнение Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 > 0$, определяет в пространстве плоскость.

23. Что такое нормаль к плоскости?

Пусть Ax + By + Cz + D = 0 — уравнение плоскости. Тогда вектор $\overrightarrow{n} = (A, B, C)$ перпендикулярен плоскости и называется нормалью к этой плоскости.

24. Выпишите формулу расстояния от точки до плоскости.

Рассмотрим плоскость
$$L: Ax + By + Cz + D = 0$$
 и точку $M(x_0, y_0, z_0)$. Тогда: $\rho(M, L) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$

25. Общие уравнения прямой. Векторное уравнение прямой. Параметрические и канонические уравнения прямой.

- $\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$ общее уравнение прямой, заданное двумя плоскостями
- Векторное уравнение прямой: $\overrightarrow{r} = \overrightarrow{r_0} + t \overrightarrow{s}$, где $\overrightarrow{r_0}$ радиус-вектор некоторой точки прямой, \overrightarrow{s} направляющий вектор прямой
- Параметрическое уравнение: $\begin{cases} x=tl+x_0\\ y=tm+y_0\,, \text{ где } \overrightarrow{p}(l,m,n) \text{ направляющий вектор прямой, } M_0(x_0,y_0,z_0) \text{точка}\\ z=tn+z_0 \end{cases}$ прямой
- Каноническое уравнение прямой (выразим t из параметрического уравнения): $t = \frac{x x_0}{l} = \frac{y y_0}{m} = \frac{z z_0}{n}$

28. Выпишите формулу для вычисления расстояния между двумя скрещивающимися прямыми.

Рассмотрим скрещивающиеся прямые L_1 и L_2 , где s_1 и s_2 – их направляющие векторы, точки $M_1 \in L_1$, $M_2 \in L_2$. Тогда расстояние вычисляется с помощью высоты в параллепипеде, а высота находится по формуле $V_{\text{пар}} = S_{\text{пар}} \cdot h$:

$$\rho(L_1, L_2) = h = \frac{V_{\text{nap}}}{S_{\text{nap}}} = \frac{\left| \langle \overrightarrow{s_1}, \overrightarrow{s_2}, \overrightarrow{M_1 M_2} \rangle \right|}{\left| \overrightarrow{s_1} \times \overrightarrow{s_2} \right|}$$

29. Какие бинарные операции называются ассоциативными, а какие коммутативными?

Бинарная операция \times называется accoupamuenoŭ, если $\forall a,b,c \in X : a \times (b \times c) = (a \times b) \times c$.

Бинарная операция * называется коммутативной, если $\forall a, b \in X : a * b = b * a$.

30. Дайте определение полугруппы и моноида. Приведите примеры.

Множество с заданной на нем ассоциативной бинарной операцией называется nonyzpynnoй. **Пример:** $(\mathbb{N},+)$.

7

Полугруппа, в которой есть нейтральный элемент, называется *моноидом*. **Пример:** (\mathbb{N}, \cdot) – моноид, e = 1.

31. Сформулируйте определение группы. Приведите пример.

Моноид G, все элементы которого обратимы, называется группой. **Пример:** множество всех невырожденных $(\det A \neq 0)$ матриц $A_{n \times n}$ с операцией матричного умножения.

32. Что такое симметрическая группа? Укажите число элементов в ней.

Cимметрическая cруппа S_n – группа всех перестановок длины n с операцией композиции. В ней n! элементов.

33. Что такое общая линейная и специальная линейная группы?

Общая линейная группа – множество всех невырожденных матриц $A_{n\times n}$ с операцией матричного умножения: $GL_n(\mathbb{R})$.

Специальная линейная группа — $SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) | \det A = 1\}$

34. Сформулируйте определение абелевой группы. Приведите пример.

Группа с коммутативной операцией называется *абелевой*. **Пример:** $(\mathbb{Z}, +)$ – абелева группа.

35. Дайте определение подгруппы. Приведите пример группы и ее подгруппы.

Подмножество $H \subseteq G$ называется подгруппой в группе G, если:

- 1) $e \in H$
- 2) $\forall h_1, h_2 \in H : h_1 \cdot h_2 \in H$
- 3) $\forall h \in H \Rightarrow h^{-1} \in H$

Пример: $SL_n(\mathbb{R}) \subset GL_n(\mathbb{R})$

36. Дайте определение гомоморфизма групп. Приведите пример.

Отображение $f: G \to G'$ группы (G, *) в группу (G', \circ) называется гомоморфизмом, если $\forall a, b \in G$ $f(a * b) = f(a) \circ f(b)$.

Пример: $\ln : \mathbb{R}^* \to \mathbb{R}^+$. Это гомоморфизм, так как $\ln(A \cdot B) = \ln(A) + \ln(B)$.

37. Что такое ядро гомоморфизма групп? Приведите пример.

Ядро гомоморфизма $f: G \to F$ это $Kerf = \{g \in G | f(g) = e_F\}$ $(e_F - \text{нейтральный элелемент в } F)$, т. е. все элементы группы G, которые переходят в нейтральный элемент F группы.

Пример: $f: GL_n(\mathbb{R}) \to \mathbb{R}^*$, где f(A) = det A. А ядро состоит из $SL_n(\mathbb{R})$.

38. Дайте определение изоморфизма групп. Приведите пример.

Изоморфизм – это биективный гомоморфизм.

Пример: $(\mathbb{R},+) \simeq (\mathbb{R}^+,\cdot)$ посредством изоморфизма $f(x) = e^x$.

39. Сформулируйте определение циклической группы. Приведите пример.

Если \forall элемент $g \in G$ имеет вид $g = a^n = a \times a \times \ldots \times a$ (n раз), где $a \in G$, то G - uuклическая группа.

Пример: $(\mathbb{Z}, +)$ – циклическая группа, порожденная 1.

40. Дайте определение порядка элемента

Порядок элемента $a \in G$ — наименьшее натуральное число p такое, что $a^p = e$. Если такого не существует, то говорят, что a — элемент бесконечного порядка.

41. Сформулируйте утверждение о связи порядка элемента, порождающего циклическую группу, с порядком группы.

Пусть G – группа и $g \in G$, тогда $ord(g) = |\langle g \rangle|$.

42. Сколько существует, с точностью до изоморфизма, циклических групп данного порядка?

Существует ровно одна циклическая группа данного порядка с точностью до изоморфизма.

43. Что такое группа диэдра? Что такое знакопеременная группа? Укажите число элементов в них.

 D_n – группа диэдра – группа симметрии правильного n-угольника, число элементов: $|D_n| = 2n$.

 A_n – знакопеременная группа – все четные подстановки длины n, число элементов: $|A_n| = \frac{n!}{2}$.

44. Сформулируйте утверждение о том, какими могут быть подгруппы группы целых чисел по сложению.

 \forall подгруппа в (\mathbb{Z} , +) имеет вид $k\mathbb{Z}$ для некоторых $k \in \mathbb{N} \cup \{0\}$.

45. Дайте определение левого смежного класса по некоторой подгруппе.

Пусть G – группа, $H \subseteq G$ – подгруппа и $g \in G$. Тогда левым смежным классом элемента g по подгруппе H называется множество $gH = \{gh|h \in H\}$.

46. Что такое индекс подгруппы?

 $\mathit{Индексом}$ подгруппы H в группе G называется количество левых смежных классов G по H . Обозначение: $[\mathit{G}:\mathit{H}]$

47. Сформулируйте теорему Лагранжа.

Пусть G – конечная группа и $H \subseteq G$ – подгруппа. Тогда $|G| = |H| \cdot [G:H]$.

48. Сформулируйте две леммы, которые нужны для доказательства теоремы Лагранжа.

Пусть G – группа, $H \subseteq G$ – подгруппа.

Лемма 1: $\forall g_1, g_2 \in G$ либо $g_1H = g_2H$, либо $g_1H \cap g_2H = \emptyset$.

Лемма 2: $|gH| = |H| \ \forall g \in G$, \forall конечной подгруппы H.

3-й модуль

1. Сформулируйте критерий нормальности подгруппы, использующий сопряжение.

Пусть $H \subseteq G$ — подгруппа в группе G. Тогда 3 условия эквивалентны:

- 1) H нормальна
- 2) $\forall g \in G \ gHg^{-1} \subseteq H \ (gHg^{-1} = \{ghg^{-1} | h \in H\})$
- 3) $\forall g \in G \ gHg^{-1} = H$

2. Дайте определение факторгруппы.

Пусть H – нормальная подгруппа группы G. Тогда G/H – множество левых смежных классов по H с операцией умножения: $(g_1H) \cdot (g_2H) = (g_1 \cdot g_2)H$ называется факторгруппой G по H.

3. Что такое естественный гомоморфизм?

Отображение $\varepsilon: G \to G/H$, сопоставляющее каждому элементу $a \in G$ его класс смежности aH, называется естественным гомоморфизмом.

4. Сформулируйте критерий нормальности подгруппы, использующий понятие ядра гомоморфизма.

H — нормальная подгруппа $\Leftrightarrow \exists$ некоторый гомоморфизм f, где H = Kerf

5. Сформулируйте теорему о гомоморфизме групп. Приведите пример.

Пусть $f: G \to F$ — гомоморфизм групп. Тогда группа $Imf = \{a \in F | \exists g \in G, f(g) = a\} (Imf)$ является подгруппой в F) изоморфиа факторгруппе $G/Kerf: G/Kerf \simeq Imf$

Пример: $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$, $f: \mathbb{Z} \to \mathbb{Z}_n$, \forall целому числу сопоставляем его остаток от деления на $n: Kerf = n\mathbb{Z}$.

6. Что такое прямое произведение групп?

Прямое произведение групп $(G,+) \times (D,\star)$ – это группа из всех пар элементов с операцией поэлементного умножения:

$$(g_1, d_1) \times (g_2, d_2) = (g_1 + g_2, d_1 \star d_2)$$

7. Сформулируйте определение автоморфизма и внутреннего автоморфизма.

Автоморфизм – это изоморфизм из G в G. Множество всех автоморфизмов группы G обозначаются Aut(G).

Внутренний автоморфизм – это отображение $I_a: g \mapsto aga^{-1}$. Обозначение: Inn(G).

8. Что такое центр группы? Что можно сказать о его свойствах?

- **1.** Если G абелева, то Z(G) = G.
- **2.** Z(G) является нормальной подгруппой G.

9. Чему изоморфна факторгруппа группы по ее центру?

Для \forall группы G верно: $G/Z(G) \simeq Inn(G)$.

10. Сформулируйте теорему Кэли.

 \forall конечная группа порядка n изоморфна некоторой подгруппе группы S_n .

11. Дайте определение кольца.

Пусть $K \neq \emptyset$ – множество, на котором заданы две бинарные операции " + " и " · ", такие, что:

- 1) (K, +) абелева группа (это аддитивная группа кольца)
- 2) (K,\cdot) полугруппа (это мультипликативная полугруппа кольца)
- 3) Умножение дистрибутивно относительно сложения: $\forall a,b,c \in K : c(a+b) = ca+cb, (a+b)c = ac+bc$ Тогда $(K,+,\cdot)$ кольцо.

12. Что такое коммутативное кольцо? Приведите примеры коммутативного и некоммутативного колец.

Если $\forall x, y \in K : xy = yx$, то кольцо называется коммутативным.

Пример 1: $(\mathbb{Z}, +, \cdot)$ – является коммутативным кольцом.

Пример 2: $(M_n(\mathbb{R}), +, \cdot)$ – полное матричное кольцо над \mathbb{R} – некоммутативное.

13. Дайте определение делителей нуля.

Если $a \cdot b = 0$, при $a \neq 0$, $b \neq 0$ в кольце K, то a называется левым делителем нуля, а b - npasым делителем нуля.

14. Дайте определение целостного кольца. Приведите пример.

Коммутативное кольцо с единицей $(\neq 0)$ и без делителей нуля называется *целостным кольцом*. **Пример:** $(\mathbb{Z}, +, \cdot)$.

15. Сформулируйте критерий целостности для нетривиального коммутативного кольца с единицей.

Нетривиальное коммутативное кольцо с единицей является целостным \Leftrightarrow в нем выполняется закон сокращения, то есть из $a \cdot b = a \cdot c$ при условии $a \neq 0 \Rightarrow b = c \ \forall a,b,c \in K$.

16. Какие элементы кольца называются обратимыми?

Элемент коммутативного кольца a называется обратимым, если $\exists a^{-1}: a \cdot a^{-1} = 1 = a^{-1} \cdot a$.

17. Дайте определение поля. Приведите три примера.

Поле P – это коммутативное кольцо с единицей (≠ 0), в котором каждый элемент $a \neq 0$ обратим. Пример: \mathbb{R} , \mathbb{C} , \mathbb{Q} .

18. Дайте определение подполя. Привести пример пары: поле и его подполе.

 $\Pi o \partial n o n e$ — это подмножество поля, которое само является полем относительно тех же операций. **Пример:** $\mathbb{Q} \subset \mathbb{R}$.

19. Дайте определение характеристики поля. Привести примеры: поля конечной положительной характеристики и поля нулевой характеристики.

Пусть P – поле. Xapakmepucmukoŭ поля P (char P) называется наименьшее $q \in \mathbb{N} : \underbrace{1 + \ldots + 1}_q = 0$. Если такого q не существует, то char P = 0.

Пример: $char\mathbb{R} = 0$. $char\mathbb{Z}_p = p$, где p – простое.

20. Сформулируйте утверждение о том, каким будет простое подполе в зависимости от характеристики.

Пусть P – поле. P_0 – его простое подполе. Тогда:

- 1. Если charP = p > 0, то $P_0 \simeq \mathbb{Z}_p$
- 2. Если charP = 0, то $P_0 \simeq \mathbb{Q}$
- 21. Дайте определение идеала. Что такое главный идеал?

Подмножество I кольца называется udeanom, если:

- 1. Оно является подгруппой по сложению
- 2. $\forall a \in I, \forall r \in K \ r \cdot a$ и $a \cdot r \in I$

Идеал называется главным, если $\exists a \in K : I = \langle a \rangle$.

22. Сформулируйте определение гомоморфизма колец.

$$\varphi: K_1 \to K_2$$
 — гомоморфизм колец, если $\forall a,b \in K_1: \begin{cases} \varphi(a+b) = \varphi(a) \oplus \varphi(b) \\ \varphi(a \cdot b) = \varphi(a) \circ \varphi(b) \end{cases}$

23. Сформулируйте теорему о гомоморфизме колец. Приведите пример.

Пусть $\varphi: K_1 \to K_2$ – гомоморфизм колец. Тогда $K_1/Ker \varphi \simeq Im \varphi$.

Пример: $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n \ \varphi : \mathbb{Z} \to \mathbb{Z}_n, \ \forall$ целому числу сопоставляем его остаток от деления на $n, \ Ker \varphi = n\mathbb{Z}$.

24. Сформулируйте теорему о том, когда факторкольцо кольца многочленов над полем само является полем.

Пусть f(x) неприводимый многочлен. Тогда факторкольцо $P[x]/\langle f(x) \rangle$ является конечным полем.

25. Сформулируйте критерий того, что кольцо вычетов по модулю p является полем.

 \mathbb{Z}_p – поле $\Leftrightarrow p$ – простое.

26. Дайте определение алгебраического элемента над полем.

Элемент $\alpha \in F_1$ называется алгебраическим над подполем F_2 , если $\exists f(x) \neq 0$ (0 как функция), что $f(x) \in F_2[x]$, для которого $f(\alpha) = 0$. (Пример: $f(x) = x^2 - 2$, алгебраический элемент: $\sqrt{2}$)

28. Сформулируйте утверждение о том, что любое конечное поле может быть реализовано как факторкольцо кольца многочленов по некоторому идеалу.

 \forall конечное поле F_{p^n} , где p – простое, можно реализовать в виде $\mathbb{Z}_p[x]/\langle h(x) \rangle$, где h(x) – неприводимый многочлен степени n над \mathbb{Z}_p .

30. Сформулируйте утверждение о том, сколько элементов может быть в конечном поле.

Число элементов в конечном поле является степенью его характеристики: p^n , где p – простое, $n \in \mathbb{N}$.

31. Дайте определение линейного (векторного) пространства.

Пусть F – поле. Пусть V – произвольное множество, на котором заданы две операции: сложение и умножение на число. Множество V называется линейным (векторным) пространством, если $\forall x,y,z\in V, \forall \lambda\mu\in F$ выполнены следующие 8 свойств:

- 1) (x + y) + z = x + (y + z) ассоциативность сложения
- 2) \exists нейтральный элемент по сложению: $\exists 0 \in V : \forall x \in V \ x + 0 = 0 + x = x$
- 3) \exists противоположный элемент по сложению: $\forall x \in V \ \exists (-x) \in V : x + (-x) = 0$
- 4) x + y = y + x коммутативность сложения
- 5) $\forall x \in V$ $1 \cdot x = x$ нейтральность $1 \in F$
- 6) ассоциативность умножения на число: $\mu(\lambda x) = (\mu \lambda)x$
- 7) $(\lambda + \mu)x = \lambda x + \mu x$ дистрибутивность относительно умножения на вектор
- 8) $\lambda(x+y)$ = $\lambda x + \lambda y$ дистрибутивность относительно умножения на число

32. Дайте определение базиса линейного (векторного) пространства.

Базисом линейного пространства V называется система векторов b_1, \dots, b_n , такая, что:

- а) b_1, \ldots, b_n л.н.з.
- б) любой вектор из V представляется в виде линейной комбинации $b_1, \ldots, b_n \ \forall x \in V \ x = x_1b_1 + \ldots + x_nb_n, \ x_i \in F$

33. Что такое размерность пространства?

Максимальное количество л.н.з. векторов в данном линейном пространстве V называется размерностью пространства V. Обозначение dimV.

34. Дайте определение матрицы перехода от старого базиса линейного пространства к новому.

 $\mathit{Mampuųe}$ й $\mathit{nepexoda}$ от базиса A к базису B называется матрица

$$T_{A \to B} = \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{n1} & \dots & t_{nn} \end{pmatrix}$$

где t_{1i},\ldots,t_{ni} – координаты b_i в базисе A.

35. Выпишите формулу для описания изменения координат вектора при изменении базиса.

Пусть есть вектор $x \in V$, а A и B – базисы в V. $x^a = \begin{pmatrix} x_1^a \\ \vdots \\ x_n^a \end{pmatrix}$ – столбец координат вектора x в базисе A,

$$x^b = \begin{pmatrix} x_1^b \\ \vdots \\ x_n^b \end{pmatrix}$$
 — столбец координат вектора x в базисе B . Тогда: $x^b = T_{A \to B}^{-1} \cdot x^a$

36. Дайте определение подпространства в линейном пространстве.

Подмножество W линейного пространства V называется линейным подпространством, если оно само является линейным пространством относительно операций в V.

37. Дайте определения линейной оболочки конечного набора векторов и ранга системы векторов.

Пусть $\vec{a_1}, \dots, \vec{a_k}$ — множество векторов. Тогда множество всех линейных комбинаций векторов данной системы называется линейной оболочкой: $L(\vec{a_1}, \dots, \vec{a_k}) = \{\lambda_1 \vec{a_1} + \dots + \lambda_k \vec{a_k} | \lambda_i \in P\}$

Pангом системы векторов a_1, \ldots, a_k в линейном пространстве называется размерность линейной оболочки этой системы $Rg(a_1, \ldots, a_k) = \dim L(a_1, \ldots a_k)$.

38. Дайте определения суммы и прямой суммы подпространств.

 $H_1 + H_2 = \{x_1 + x_2 | x_1 \in H_1, x_2 \in H_2\}$ называется суммой подпространств H_1 и H_2 .

 H_1+H_2 называется $npsmoй\ cymmoй\ (и\ oбзначается\ H_1\oplus H_2),\ если\ H_1\cap H_2$ = $\{0\},\ {
m тo}\ eсть\ {
m тривиально}.$

39. Сформулируйте утверждение о связи размерности суммы и пересечения подпространств.

Пусть H_1 и H_2 – подпространства. Тогда $\dim(H_1 + H_2) = \dim H_1 + \dim H_2 - \dim(H_1 \cap H_2)$.

40. Дайте определение билинейной формы.

Функцию $b:V\times V o \mathbb{R}$ (V — линейное пространство над $\mathbb{R})$ называют билинейной формой, если

$$\forall x, y, z \in V, \ \forall \alpha, \beta \in \mathbb{R}$$
:

1)
$$b(\alpha x + \beta y, z) = \alpha b(x, z) + \beta b(y, z)$$

2)
$$b(x, \alpha y + \beta z) = \alpha b(x, y) + \beta b(x, z)$$

41. Дайте определение квадратичной формы.

Квадратичной формой называется однородный многочлен второй степени от n переменных с действительными коэффициентами: $Q(x) = \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j, \ a_{ij} \in \mathbb{R}.$

42. Дайте определения положительной и отрицательной определенности квадратичной формы.

Квадратичную форму Q(x) называют:

- положительно определенной, если $\forall x \neq 0 \ Q(x) > 0$
- отрицательно определенной, если $\forall x \neq 0 \ Q(x) < 0$

43. Какую квадратичную форму называют знакопеременной?

Квадратичную форму Q(x) называют знакопеременной, если $\exists x, y \in V \ Q(y) < 0 < Q(x)$.

44. Дайте определения канонического и нормального вида квадратичной формы.

Квадратичную форму $Q(x) = \alpha_1 x_1^2 + \ldots + \alpha_n x_n^2$, $\alpha_i \in \mathbb{R}$ $i = \overline{1, n}$ (то есть не имеющую попарных произведений переменных) называют квадратичной формой *канонического вида*.

Канонический вид называется нормальным, если $\alpha_i \in \{1, -1, 0\}$.

45. Как меняется матрица билинейной формы при замене базиса? Как меняется матрица квадратичной формы при замене базиса?

Пусть U – матрица перехода от базиса e к базису f. Пусть B_e – матрица билинейной формы в базисе e, B_f – матрица билинейной формы в базисе f. Тогда: $B_f = U^T B_e U$

При переходе от базиса e к базису e' линейного пространства V матрица квадратичной формы меняется следующим образом: $A' = S^T A S$, где S – матрица перехода от e к e'.

46. Сформулируйте критерий Сильвестра и его следствие.

Квадратичная форма Q(x) от n переменных $x = (x_1, \dots, x_n)^T$ положительно определена $\Leftrightarrow \Delta_1 > 0, \dots, \Delta_n > 0$ (знаки главных угловых миноров положительны)

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{pmatrix},$$
 где $\begin{cases} \triangle_1 = a_{11} \\ \vdots \\ \triangle_n = \det A \end{cases}$

Следствие: Q(x) отрицательно определена $\Leftrightarrow \Delta_1 < 0, \Delta_2 > 0, \dots, (-1)^n \Delta_n > 0$ (знаки главных угловых миноров чередуются, начиная с минуса).

47. Сформулируйте закон инерции квадратичных форм. Что такое индексы инерции?

Для любых двух канонических видов одной и той квадратичной формы

$$Q_1(y_1,\ldots,y_m) = \lambda_1 y_1^2 + \ldots + \lambda_m y_m^2, \lambda_i \neq 0, i = \overline{1,m}$$

$$Q_2(z_1,\ldots,z_k) = \mu_1 z_1^2 + \ldots + \mu_k z_k^2, \mu_j \neq 0, j = \overline{1,k}$$

15

- 1) m = k = RgA рангу квадратичной формы
- 2) Количество положительных λ_i = количеству положительных μ_j = i_+ положительный индекс инерции.
- 3) Количество отрицательных λ_i = количеству отрицательных μ_j = i_- отрицательный индекс инерции.

48. Дайте определение линейного отображения. Приведите пример.

Отображение $\varphi: V_1 \to V_2$ называется линейным, если:

- 1) $\forall u, v \in V_1, \ \varphi(u+v) = \varphi(u) + \varphi(v)$
- 2) $\forall u \in V_1, \forall \lambda \in F \varphi(\lambda u) = \lambda \varphi(u)$

Пример: Умножение каждого вектора на число $a. \varphi : L \to L$, где $\varphi(l) = a \cdot l.$

49. Дайте определение матрицы линейного отображения.

Mampuųa линейного отображения – это матрица $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$, где по столбцам стоят координаты образов векторов базиса V_1 в базисе V_2 .

50. Выпишите формулу преобразования матрицы линейного отображения при замене базиса. Как выглядит формула в случае линейного оператора?

Пусть φ – линейное отображение из линейного пространства V_1 в линейное пространство V_2 . Пусть $A_{E_1E_2}$ – матрица линейного отображения в паре базисов: E_1 в V_1 и E_2 в V_2 . Пусть T_1 – матрица перехода от E_1 к E_1' , T_2 – матрица перехода от E_2 к E_2' . Тогда:

$$A_{E_1'E_2'} = T_2^{-1} A_{E_1E_2} T_1$$

Формула для линейных операторов:

$$A_{E'} = T^{-1}A_ET$$

4-й модуль

1. Сформулируйте утверждение о связи размерностей ядра и образа линейного отображения.

Пусть $\varphi: V_1 \to V_2$, $dimV_1 = m$, $dimV_2 = n$. Тогда: $dim(Ker\varphi) + dim(Im\varphi) = m$

2. Дайте определения собственного вектора и собственного значения линейного оператора.

Число λ называется собственным числом или собственным значением линейного оператора $\varphi: V \to V$, если существует вектор $v \in V, v \neq 0$, такой, что $\varphi(v) = \lambda v$. При этом v называется собственным вектором, отвечающим за собственное значение λ .

3. Дайте определения характеристического уравнения и характеристического многочлена квадратной матрицы.

Для произвольной квадратной матрицы A определитель $\chi_A(\lambda) = \det(A - \lambda E)$ называют характеристическим многочленом матрицы A, а уравнение $\chi_A(\lambda) = 0$ - характеристическим уравнением.

4. Сформулируйте утверждение о связи характеристического уравнения и спектра линейного оператора.

 λ принадлежит спектру линейного оператора $\Leftrightarrow \lambda$ - корень характеристического уравнения(над алгебраически замкнутым полем).

5. Дайте определение собственного подпространства.

Пусть $A: V \to V$ - линейный оператор, λ - собственное значение A. Тогда множество $V_{\lambda} = \{v \in V | Av = \lambda v\}$ - подпространство в V, называемое собственным подпространством, отвечающим λ .

16

6. Дайте определения алгебраической и геометрической кратности собственного значения. Какое неравенство их связывает?

Алгебраической кратностью λ называется его кратность как корня характеристического уравнения. Размерность подпространтсва V_{λ} ($dimKer(A - \lambda_i E)$) называется геометрической кратностью собственного значения λ . Геометрическая кратность собственного значения не превышает его алгебраической кратности (и всегда ≥ 1).

7. Каким свойством обладают собственные векторы линейного оператора, отвечающие различным собственным значениям.

Пусть $\lambda_1, \ldots, \lambda_k$ - собственные значения линейного оператора $A, \lambda_i \neq \lambda_j$, а v_1, \ldots, v_k - соответствующие собственные векторы. Тогда v_1, \ldots, v_k - линейно независимые.

8. Сформулируйте критерий диагональности матрицы оператора.

Матрица линейного оператора является диагональной в этом базисе \Leftrightarrow все векторы этого базиса являются собственными векторами для A.

9. Сформулируйте критерий диагонализируемости матрицы оператора с использованием понятия геометрической кратности.

Матрицы линейного оператора приводится к диагональному виду \Leftrightarrow геометрическая кратность каждого собственного значения равна его алгебраической кратности

10. Дайте определение жордановой клетки. Сформулируйте теорему о жордановой нормальной форме матрицы оператора.

Жорданова клетка размера $m \times m$, соотвествующая собственному значению λ_i - это матрица вида:

$$J_m(\lambda_i) = \begin{pmatrix} \lambda_i & 1 & \dots & 0 \\ & \ddots & \ddots & \vdots \\ & & \lambda_i & 1 \\ 0 & & & \lambda_i \end{pmatrix}$$

 $\forall A \in Mn(\mathbb{F})$ приводится заменой базиса к ЖНФ над алгебраически замкнутым полем (например \mathbb{C}). Иными словами $\exists C \in Mn(\mathbb{F})$ и $\det C \neq 0$, что $A = CJC^{-1}$, где J - ЖНФ.

11. Выпишите формулу для количества жордановых клеток заданного размера.

 $h_k(\lambda_i) = \rho_{k+1} - 2\rho_k + \rho_{k-1}$ - количество жордановых клеток с λ_i на диагонали размера $k \times k$ ($\rho_i = Rg(A - \lambda_i E)^j$, $\rho_0 = RgE = n$).

12. Сформулируйте теорему Гамильтона-Кэли.

Любая квадратная матрица удовлетворяет своему характеристическому уравнению. То есть, если A – квадратная матрица, а $\chi(\lambda)$ – ее характеристический многочлен, то по теореме: при подстановке матрицы в многочлен вместо λ получаем нулевую матрицу: $\chi(A) = 0$.

17

13. Дайте определение корневого подпространства.

Корневое подпространство: $K_i = Ker(A - \lambda_i E)^{m_i}$, где m_i - алгебраическая кратность λ_i .

14. Дайте определение минимального многочлена линейного оператора.

Минимальным многочленом линейного оператора A называется многочлен $\mu(\lambda)$: $\mu(A) = 0$, где старший коэффициент равен 1 и степень наименьшая.

15. Дайте определение инвариантного подпространства.

Подпространство L векторного пространства V называется uнвариантным для линейного оператора φ , если для $\forall x \in L : \varphi(x) \in L$.

16. Дайте определение евклидова пространства.

Евклидово пространство – это линейное пространство над \mathbb{R} , в котором задано скалярное произведение, то есть \mathbb{E} - это пара (V, g(x, y)), а g(x, y) – это функция от двух векторных аргументов: $\forall x, y \in V, \forall \lambda \in \mathbb{R}$:

- 1) g(x,y) = g(y,x) симметричность
- 2) g(x+y,z) = g(x,z) + g(y,z) } линейность (т. е. это симметрическая билинейная форма) 3) $g(\lambda x,y) = \lambda g(x,y)$
- 4) $g(x,x) \ge 0$ и $g(x,x) = 0 \Leftrightarrow x = 0$ т.е. это положительно определенная квадратичная форма

17. Выпишите неравенство Коши-Буняковского и треугольника.

Неравенсво Коши-Буняковского: $\forall x, y \in \mathbb{E} | (x, y) | \le ||x|| \cdot ||y||$. Неравенсво треугольника: $\forall x, y \in \mathbb{E} ||x + y|| \le ||x|| + ||y||$.

18. Дайте определения ортогонального и ортонормированного базисов.

Если система векторов $V = \{v_1, \dots, v_k\}$ – базис n-мерного евклидова пространства, то:

A – ортогональный базис $\Rightarrow \forall a_i, a_j, i \neq j \Rightarrow (a_i, a_j) = 0$

A – ортонормированный базис \Rightarrow A – ортогональный базис и $\forall i: (a_i, a_i) = 1$

19. Дайте определение матрицы Грама.

$$\Gamma = \begin{pmatrix} (e_1, e_1) & (e_1, e_2) & \cdots & (e_1, e_n) \\ (e_2, e_1) & (e_2, e_2) & \cdots & (e_2, e_n) \\ \vdots & & & & \\ (e_n, e_1) & (e_n, e_2) & \cdots & (e_n, e_n) \end{pmatrix}$$

20. Выпишите формулу для преобразования матрицы Грама при переходе к новому базису.

Матрицы Грама двух базисов \mathbb{E} и \mathbb{E}' связаны соотношением $\Gamma' = U^T \Gamma U$, где U - матрица перехода от \mathbb{E} и \mathbb{E}' .

21. Как меняется определитель матрицы Грама (грамиан) при применении процесса ортогонализации Грамма-шмидта?

Определитель матрицы Грама(грамиан) не меняется при применении процесса ортогонализациии Грама-Шмидта (без нормирования).

22. Сформулируйте критерий линейной зависимости с помощью матрицы Грама.

Система векторов e_1, \ldots, e_n линейно зависима \Leftrightarrow определитель матрицы Грама этой системы равен нулю.

23. Дайте определение ортогонального дополнения.

Пусть $H \subseteq V$. Множество $H^{\perp} = \{x \in V | (x, y) = 0 \ \forall y \in H\}$ называется *ортогональным дополнением* (т. е. это множество векторов из V, ортогональных каждому вектору из H).

24. Дайте определения ортогональной проекции вектора на подпространство и ортогональной составляющей.

Пусть H - линейное подпространство евклидова пространства \mathbb{E} , x - произвольный вектор пространства \mathbb{E} . Если x = h + h', причём $h \in H, h' \in H^{\perp}$, то h называется *ортогональной проекцией* вектора x на подпространство H ($proj_H x$), а h' - optoronaльной составляющей при (ортогональном) проектировании вектора x на подпространство ($ort_H x$).

25. Выпишите формулу для ортогональной проекции вектора на подпространство, заданное как линейная оболочка данного линейно независимого набора векторов.

Пусть $L = \langle a_1, \dots, a_n \rangle$. Тогда $proj_L x = A(A^T A)^{-1} A^T x$, где A - матрица, составленная из столбцов a_1, \dots, a_n .

26. Выпишите формулу для вычисления расстояния с помощью определителей матриц Грама.

Расстояние между точкой $x \in \mathbb{E}$ и линейным многообразием $P = x_0 + L$, где $L = \mathcal{L}(e_1, ..., e_k)$ может быть найдено по формуле:

$$(p(x,P))^2 = \frac{\det G(e_1,\ldots,e_n,x-x_0)}{\det G(e_1,\ldots,e_n)}$$

27. Дайте определение сопряженного оператора в евклидовом пространстве.

Линейный оператор \mathcal{A}^* называется *сопряженным* к линейному оператору \mathcal{A} , если $\forall x, y \in \mathbb{E}$ верно, что $(\mathcal{A}x, y) = (x, \mathcal{A}^*y)$

28. Дайте определение самосопряженного (симметрического) оператора.

Линейный оператор \mathcal{A} называется *самосопряженным* (симметричным), если $\forall x,y \in \mathbb{E}$ верно, что $(\mathcal{A}x,y)=(x,\mathcal{A}y)$, т.е. $\mathcal{A}^*=\mathcal{A}$.

29. Как найти матрицу сопряженного оператора в произвольном базисе?

Пусть $\mathfrak{e} = (e_1, \dots, e_n)$ - базис в \mathbb{E} , Γ - матрица Грама базиса \mathfrak{e} , \mathcal{A} - матрица линейного оператора. Тогда матрица сопряженного линейного оператора выражается как: $\mathcal{A}_e^* = \Gamma^{-1} \mathcal{A}_e^T \Gamma$

30. Каким свойством обладают собственные значения самосопряженного оператора?

Собственные значения самосопряженного оператора являются действительными числами.

31. Что можно сказать про собственные векторы самосопряженного оператора, отвечающие разным собственным значениям?

Собственные векторы самосопряженного линейного оператора, отвечающие различным собственным значениям, ортогональны.

32. Сформулируйте определение ортогональной матрицы.

Матрица $C \in M_n(\mathbb{R})$ называется ортогональной, если $C^TC = E$.

33. Дайте определение ортогонального оператора.

Линейный оператор \mathcal{A} называется *ортогональным*, если $\forall x,y \in \mathbb{E}$ верно, что $(\mathcal{A}x,\mathcal{A}y) = (x,y)$, т.е. оператор сохраняет скалярное произведение, и значит, он сохраняет длины сторон и углы между ними.

34. Сформулируйте критерий ортогональности оператора, использующий его матрицу.

Матрица линейного оператора $\mathcal A$ в ОНБ ортогональна $\Leftrightarrow \mathcal A$ - ортогональный оператор.

35. Каков канонический вид ортогонального оператора? Сформулируйте теорему Эйлера.

Для любого отогонального оператора \mathcal{A} существует ортонормированный базис, в котором матрица оператора имеет следующий блочный диагональный вид:

Теорема Эйлера.

 \forall ортогонального преобразования в \mathbb{R}^3 \exists OHE, в котором его матрица имеет вид:

$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & \pm 1 \end{pmatrix}$$

36. Сформулируйте теорему о существовании для самосопряженного оператора базиса из собственных векторов.

Для всякого самосопряженного оператора \mathcal{A} существует ортонормированный базис из собственных векторов, в котором матрица оператора имеет диагональный вид.

$$\Lambda = diag(\lambda_1, \dots, \lambda_n)$$

 $\lambda_1,\dots,\lambda_n$ - собственные значения оператора \mathcal{A} , повторенные в соответствии с их кратностью.

37. Сформулируйте теорему о приведении квадратичной формы к диагональному виду при помощи ортогональной замены координат.

∀ квадратичную форму ортогональным преобразованием можно привести к каноническому виду.

38. Сформулируйте утверждение о QR-разложении.

Пусть $A \in M_m(\mathbb{R})$ и столбцы A_1, \ldots, A_m л.н.з. Тогда $\exists \ Q$ и R : A = QR, причем Q – ортогональная матрица, R – верхнетреугольная матрица с положительными элементами на главной диагонали.

39. Сформулируйте теорему о сингулярном разложении.

Для любой матрицы $A \in M_{m \times n}(\mathbb{R})$ существуют ортогональные матрицы $V \in M_m(\mathbb{R})$ и $W \in M_n(\mathbb{R})$ и диагональная матрица с сингулярными числами $\Sigma \in M_{m \times n}(\mathbb{R})$, такие что:

$$A = V\Sigma W^T, \text{ где } \Sigma = \left(\begin{array}{c|ccc} \sigma_1 & & & & \\ & \ddots & & 0 \\ & & \sigma_r & & \\ \hline & & 0 & & \\ & & & 0 \end{array} \right), \ \sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$$

40. Сформулируйте утверждение о полярном разложении.

 \forall линейный оператор в евклидовом пространстве представляется в виде A = SU, где S — симметрическая матрица с положительными собственными значениями, а U — ортогональная.

41. Дайте определение сопряженного пространства.

Пространством сопряженным к линейному пространству L называется множество всех линейных форм на нем с операциями сложения и умножения на число:

$$\forall x \in L (f_1 + f_2)(x) = f_1(x) + f_2(x)$$

$$\forall \lambda \in \mathbb{F} (\lambda f)(x) = \lambda f(x)$$

Обозначение: $L^* \subseteq Hor(L, \mathbb{F})$.

42. Выпишите формулу для преобразования координат ковектора при переходе к другому базису.

Пусть L^* - сопряженное пространство. Если записывать координаты элементов по столбцам, то при переходе к другому базису они будут преобразовываться по формуле:

$$[f]_g^{\text{CT}} = T_{e \to g}^T \cdot [f]_e^{\text{CT}}$$

43. Дайте определение взаимных базисов.

Базис $\mathfrak{e} = (e_1, \dots, e_n)$ в линейном пространстве L и базис $\mathfrak{f} = (f_1, \dots, f_n)$ в сопряженном пространстве L^* называют взаимными, если:

$$(e_i, f^j) = \delta_i^j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

44. Дайте определение биортогонального базиса.

Если $L = L^*$, то взаимный к данному базис называется биортогональным.

45. Сформулируйте определение алгебры над полем. Приведите два примера.

Пусть A – векторное пространство над полем \mathbb{F} , снабженное дополнительной операцией умножения: $*: A \times A \to A$ называется алгеброй над полем \mathbb{F} , если выполнены следующие свойства $\forall x, y, z \in A, \ \forall \alpha, \beta \in \mathbb{F}$:

- 1) (x + y) * z = x * z + y * z
- 2) x * (y + z) = x * y + x * z
- 3) $(\alpha x) * (\beta y) = \alpha \beta (x * y)$

Пример 1: Алгебра многочленов F[x], многочлены можно умножить на число, складывать и умножать друг на друга

Пример 2: Матрицы с операцией умножения – ассоциативная алгебра с единицей.

46. Сформулируйте определение тензора. Приведите два примера.

Пусть \mathbb{F} – поле, V – векторное пространство над \mathbb{F} , V^* – сопряженное пространство к V. Тогда \forall полинейное отображение $f:\underbrace{V\times\ldots\times V}_p\times\underbrace{V^*\times\ldots\times V^*}_q\to\mathbb{F}$ называется тензором V типа (p,q) и валентности p+q.

Пример 1: Тензор типа (2, 0) – билинейные формы на V.

Пример 2: Тензор типа (1, 1) – можно интерпретировать как линейный оператор на V.

47. Дайте определение эллипса как геометрического места точек. Выпишите его каноническое уравнение. Что такое эксцентриситет эллипса? В каких пределах он может меняться?

Эллипсом называют геометрическое место точек, сумма расстояний от которых до двух данных точек, называемых фокусами, постоянна. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ – каноническое уравнение эллипса.

 $\varepsilon = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \sqrt{1 - \frac{b^2}{a^2}}$ — эксцентриситет эллипса, где a — большая полуось, а b — малая полуось, может меняться в пределе полуинтервала: [0, 1)

48. Дайте определение гиперболы как геометрического места точек. Выпишите её каноническое уравнение. Что такое эксцентриситет гиперболы? В каких пределах он может меняться?

Гиперболой называют геометрическое место точек, модуль разности расстояний от которых до двух данных точек, называемых фокусами, постоянен. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ – каноническое уравнение гиперболы, где a – действительная полуось, а b – мнимая полуось.

Эксцентриситет гиперболы $\varepsilon = \sqrt{1 + \frac{b^2}{a^2}} > 1$ характеризует угол между асимптотами, меняется в пределе $(1, +\infty)$.

49. Дайте определение параболы как геометрического места точек. Выпишите её каноническое уравнение.

Параболой называют геометрическое место точек плоскости, равноудаленных от данной точки (фокуса) и от данной прямой (директрисы). $y^2 = 2px$ – каноническое уравнение, где p – параметр параболы.

50. Дайте определение цилиндрической поверхности.

Рассмотрим кривую γ , лежащую в некоторой плоскости P, и прямую L, не лежащую в P. Цилиндрической поверхностью называют множество всех прямых, параллельных L и пересекающих γ .

51. Дайте определение линейчатой поверхности. Приведите три примера.

Линейчатой называют поверхность, образованную движением прямой линии.

Примеры: Любой цилиндр является линейчатой поверхностью. Гиперболический параболид. Конус.