Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA 'TULLIO LEVI-CIVITA' CORSO DI LAUREA IN INFORMATICA

Sviluppo di una piattaforma di video streaming per l'assistenza remota tramite dispositivi wearable

Tesi di laurea triennale

Relatore

Prof. Tullio Vardanega

Laureando Filippo Berto

Anno Accademico 2016–2017

Indice

1	L'az	'azienda												6					
	1.1	Prodotti e servizi									6								
	1.2	1.2 Come lavora							6										
		1.2.1 Modello	di sviluppo																6
		1.2.2 Progetti	importanti																8
		1.2.3 Premi e o	ertificazioni																8
	1.3	Tecnologie utiliza	zate dall'azio	enda															8
		1.3.1 Rackspac	e																9
		1.3.2 Firebase																	9
		1.3.3 Java																	9
		1.3.4 Git e Bit	bucket																10
		1.3.5 G Suite																	10
		1.3.6 WordPres	ss																11
	1.4	Corsa all'innovaz	zione																11
\mathbf{G}	lossa	rio																	12

Elenco delle figure

1.1	Logo di Vision Lab Apps	6
1.2	Ciclo di vita di Scrum	7
1.3	Logo di VisionHealthCare	8
1.4	Logo di Unicredit Start Lab	8
1.5	Logo di Rackspace	9
1.6	Logo di Firebase	9
1.7	Logo di Java	9
1.8	Logo di Git	10
1.9	Logo di Bitbucket	10
1.10	Logo di G Suite	10
1.11	Logo di WordPress	l 1

Elenco delle tabelle

1 L'azienda

VA VISION LAB APPS

Figura 1.1: Logo di Vision Lab Apps

Vision Lab Apps Srl. è una startup nata a New York nel 2011, con sede operativa a Torri di Quartesolo (VI), impegnata nello sviluppo di tecnologie di *Ubiquitous computing* per i settori sanitario, manifatturiero e della sicurezza.

1.1 Prodotti e servizi

I prodotti principali di Vision Lab Apps sono software personalizzati, siti web e contenuti video. L'azienda, inoltre, offre un servizio pubblicitario per le nuove aziende: costruisce il *brand* del cliente, pone le fondamenta della sua rete di clienti e si occupa di consulenze e di *SEO*.

Con il crescere del team e l'acquisizione di nuovo personale più specializzato, Vision Lab Apps si sta espandendo sempre più verso servizi cloud per le aziende e software per dispositivi wearable e IoT; questi sono i primi approcci al modello di Ubiquitous computing e permettono ai loro utenti una maggiore integrazione con la rete di informazioni e sensori che li circondano nella vita quotidiana. L'azienda sta sviluppando particolarmente il campo dei visori per realtà aumentata come supporto alle attività lavorative, promettendo grandi innovazioni nel settore manifatturiero.

1.2 Come lavora

1.2.1 Modello di sviluppo

Vision Lab Apps lavora con il modello di sviluppo *Agile* di tipo *Scrum*. Questo modello pone una minore rigidità sulla documentazione e sulle formalità del prodotto, permettendo modifiche in corso d'opera e una collaborazione più rilassata tra cliente e fornitore.

Scrum definisce uno sprint come l'unità di misura dello sviluppo di un progetto, un periodo di tempo di lunghezza fissata generalmente tra una settimana e quattro settimane. Le attività necessarie per l'avanzamento del progetto sono organizzate nel backlog del prodotto. Per ogni sprint il team pianifica quali task dovranno essere svolti e a chi andrà assegnato ciascuno di essi, definiendo così il backlog dello sprint.

Ogni giorno il team si ritrova con una breve riunione, detta "daily scrum", per controllare lo stato dei task e degli obiettivi. I meeting giornalieri permettono al project manager di avere misure dello stato del progetto con più frequenza, rispetto ad altri modelli di sviluppo, così da intervenire più rapidamente alla necessità di correzioni.

Un vantaggio del modello *Scrum*, e più in generale dei modelli agili, è quello di poter vedere il risultato del proprio lavoro più in fretta rispetto ai metodi tradizionali: i *daily scrum* servono anche ad incentivare gli sviluppatori e a fornire loro una sensazione di progresso, che, invece, viene persa

Figura 1.2: Ciclo di vita di Scrum

se i tempi tra un aggiornamento e l'altro si dilatano.

Un ulteriore punto di forza di *Scrum* è il legame di cooperazione che si forma tra il fornitore e il cliente: questo si sente parte del team ed è più propenso a offrire e a ricevere opinioni costruttive, con minori impuntamenti e più soddisfazione per entrambe le parti.

Trattandosi di un modello Agile la documentazione è molto più ridotta rispetto ai metodi tradizionali; nasce il concetto di user story, un documento che descrive le richieste del cliente e le decisioni prese assieme a quest'ultimo sul progetto durante incontro faccia a faccia. I vantaggio principale di questo tipo di documentazione è la snellezza dei documenti, sia quando devono essere consultati, sia quando devono essere scritti: avere una visione chiara di ciò che il cliente vuole può essere difficile se è necessario scorrere decine di pagine di verbali per ottenere tali informazioni; così, al contrario, è sufficiente controllare le ultime decisioni prese.

Il coordinamento del lavoro viene gestito tramite fogli di calcolo con funzioni automatiche, condivisi all'interno del team. Per ogni task è segnalato il livello di avanzamento, che deve essere aggiornato da colui a cui è stato assegnato, riportando il tempo impiegato ed eventuali note.

Gli stati in cui un task si può trovare sono i seguenti:

• Analysis: il task richiede analisi

• Pending: il task è definito ed è in attesa di essere svolto

• Blocked: il task è bloccato a causa delle sue dipendenze

• Development: il task è in svolgimento

• **Testing**: il prodotto è in fase di test

• Reworking: lo sviluppo è fallito e sta venendo rieseguito

• Refactoring: il codice prodotto è in fase di pulizia

• Completed: lo sviluppo è completato

• Confirmed: il task è stato validato

Il sistema di tracking del tempo impegnato da ciascun task aiuta il project manager a valutare lo stato del progetto, confrontandolo con le stime fatte a preventivo.

1.2.2 Progetti importanti

Figura 1.3: Logo di VisionHealthCare

VisionHealthCare VisionHealthCare è un software prodotto da Vision Lab Apps in collaborazione con Dedalus Spa¹, società leader nazionale nel software clinico sanitario. L'applicazione, legata a OrmaWeb, suite applicativa web di Dedalus Spa, sfrutta gli occhiali per la realtà aumentata di Google, i Google Glass, per automatizzare e semplificare ogni fase del percorso chirurgico, dalla lista d'attesa alla gestione del blocco operatorio, fino alla produzione del registro operatorio e la redazione della cartella anestesiologica pre e intraoperatoria. L'applicazione permette a chi indossa gli occhiali di registrare, durante l'operazione, note vocali correlate da video e foto, utili alla documentazione dell'operazione e utilizzabili poi anche per attività di insegnamento o di ricerca.

1.2.3 Premi e certificazioni

Figura 1.4: Logo di Unicredit Start Lab

Unicredit Start Lab Vision Lab Apps ha partecipato alla competizione tra startup Unicredit Start Lab² 2017, durante la quale le aziende partecipanti hanno proposto i propri progetti innovativi nei campi "Digital", "Clean Tech" e "Innovative Made in Italy". L'azienda si è classificata tra i 10 finalisti e ottenendo un periodo di incubazione e accelerazione da parte di Unicredit a partire da Settembre 2017.

1.3 Tecnologie utilizzate dall'azienda

L'azienda fa uso di un gran numero di tecnologie durante le proprie attività; di seguito analizzerò le più utilizzate.

¹Sito web Dedalus Spa: www.dedalus.eu

²Sito web Unicredit Start Lab: www.unicreditstartlab.eu

1.3.1 Rackspace

Figura 1.5: Logo di Rackspace

Rackspace è un cloud provider che offre servizi di managed cloud computing, basati su Virtual Private Server (VPS) e altri servizi cloud, come Amazon Web Services (AWS), Microsoft Azure e OpenStack. Questo tipo di servizio permette di gestire facilmente servizi cloud utilizzati, mantenendo il pieno controllo di costi e infrastrutture, senza la necessità di conoscere a fondo ogni componente utilizzato. Vision Lab Apps usa Rackspace come hosting provider nel caso di progetti complessi, quando è necessaria una completa gestione delle risorse.

1.3.2 Firebase

Figura 1.6: Logo di Firebase

Firebase è una piattaforma di sviluppo per applicazioni Web e mobile, parte di Google Cloud Platform; fornisce servizi di scambio di messaggi e basi di dati in tempo reale, spazio di archiviazione, sistemi di autenticazione, web hosting e test automatici per applicazioni Android. La piattaforma fornisce anche un servizio di analisi e profilazione degli utenti e l'integrazione con il sistema di annunci pubblicitari di Google, AdMob. Vision Lab Apps utilizza Firebase quando necessita della creazione di un ambiente di sviluppo completo, veloce e facile da manutenere.

1.3.3 Java

Figura 1.7: Logo di Java

Java è un linguaggio di programmazione ad alto livello orientato agli oggetti pensato per essere il più possibile indipendente dalla piattaforma sulla quale viene eseguito. Java supera questo ostacolo utilizzano una macchina virtuale, la JVM, che permette di astrarre il sistema sottostante.

Il vantaggio di Java sui linguaggi compilati tradizionali è proprio quello di poter essere eseguito su una qualsiasi piattaforma, a patto che esista una JVM per questa. Tra le tecnologie utilizzate da Vision Lab Apps troviamo Android, fortemente basato su Java, e utilizzato per la creazione di applicazioni per dispositivi mobile. Molti dei progetti passati dell'azienda sono legati ad applicazioni Android, ma Vision Lab Apps utilizza Java anche nel caso di servizi web ad alto parallelismo.

1.3.4 Git e Bitbucket

Figura 1.8: Logo di Git

Figura 1.9: Logo di Bitbucket

Vision Lab Apps utilizza Git come CVS per il versionamento del codice: Git è in grado di gestire progetti anche molto complessi in modo efficiente. Il suo sistema completamente distribuito permette a due persone di lavorare contemporaneamente sullo stesso file, senza necessità di una connessione di rete, e di conservare copie sicure del prodotto in luoghi separati, pur garantendone la consistenza

Per facilitare la gestione del codice e automatizzare alcune attività, l'azienda ha scelto di utilizzare Bitbucket come hoster per le proprie repository. Bitbucket integra il servizio di pipeline, che permette di eseguire degli script in ambienti virtualizzati basati su Docker; in questo modo sono stati automatizzati i test di unità e integrazione e i controlli della quality assurance. È possibile utilizzare questo sistema anche per automatizzare le attività di deployment, come nella strategia del continuous deployment.

1.3.5 G Suite

Figura 1.10: Logo di G Suite

G Suite, la suite per l'ufficio di Google, offre una gestione completa di mail commerciali, editor di testo, fogli di calcolo, calendario e archivio di dati. Vision Lab Apps usa questo servizio per le proprie attività, soprattutto per il vantaggio di poter accedere ai dati salvati anche in mobilità, con la massima comodità.

1.3.6 WordPress

Figura 1.11: Logo di WordPress

WordPress è una piattaforma editoriale personale; nato per gestire semplici blog, viene utilizzato come piattaforma di sviluppo di siti molto più complessi, sfruttando il sistema a plugin su cui e basato. L'utilizzo di WordPress come base di un sito permette di iniziare a lavorare con un framework riutilizzabile, stabile e aggiornato che gestisce i contenuti e i dati del sito, permettendo allo sviluppatore di concentrarsi sulla loro presentazione all'utente. Vision Lab Apps sfrutta WordPress come framework dei propri siti anche per rendere la modifica dei contenuti semplice al proprio cliente.

1.4 Corsa all'innovazione

Vision Lab Apps è da sempre alla continua ricerca di nuove tecnologie da conoscere ed integrare nei propri prodotti, anche in campi sperimentali, come i dispositivi wearable, IoT e la realtà aumentata. Proprio questi ultimi hanno dato origine ad alcuni dei progetti più all'avanguardia dell'azienda e l'hanno spinta all'acquisizione di personale dedito alla sperimentazione di nuove soluzioni.

Un'ulteriore necessità di innovazione deriva dal settore nel quale Vision Lab Apps si propone: il mercato è in rapida crescita e questo impone un continuo aggiornamento delle conoscenze e delle tecniche per mantenere i propri prodotti validi e restare al passo con i competitor.

Testimonianza di questo continuo aggiornamento è la migrazione verso uno sviluppo cloud based di molti dei prodotti dell'azienda, che ha portato ad una riduzione dei costi di manutenzione e ad un maggiore controllo sulla disponibilità dei servizi.

La proposta di nuove tecnologie è libera all'interno dell'azienda e, se ritenute utili per progetti futuri, viene predisposto un piccolo progetto di prova. In questo modo si possono avere dati concreti sui vantaggi e gli svantaggi che possono offrire.

Glossario

- AWS Amazon Web Services (AWS) è una collezione di servizi di cloud computing on demand offerta da Amazon. 8
- CVS É detto Concurrent Versioning System (CVS) un software che implementa un sistema di controllo di versione. Il sistema mantiene organizzati i cambiamenti fatti ad un certo numero di file e permette a molti sviluppatori di collaborare accedendo alle stesse risorse. 9
- **loT** Per Internet of Things (IoT) ci si riferisce all'estensione di Internet agli oggetti comuni, che diventano intelligenti e comunicano dati su se stessi e sul mondo che li circonda e allo stesso tempo accedere ad informazioni altrove nella rete. 6, 10, 12
- **SEO** Si definisce Search Engine Optimization (SEO) l'attività di ottimizzazione dei contenuti di una pagina web per l'indicizzazione da parte dei motori di ricerca. 6
- **Ubiquitous computing** L'ubiquitous computing è un nuovo modello di interfaccia uomo macchina, secondo il quale ogni persona, nelle sue azioni quotidiane, può entrare in contatto con un enorme numero di dispositivi elettronici, più o meno specializzati, che comunicano tra loro e possono collaborare ad uno scopo. Si differenzia dal precedente modello uomo-macchina per la completa integrazione dell'elaborazione delle informazioni all'interno del singolo dispositivo, senza dipendere da un nodo computazionale esterno. . 6
- **VPS** Un Virtual Private Server (VPS) è un'istanza di un sistema che viene eseguito in un ambiente virtuale. 8
- Wearable Si dice wearable un dispositivo elettronico indossabile on impiantabile. In generale questi dispositivi offrono delle funzionalità di notifica legate agli smartphone oppure contengono sensori per la rilevazione di attività fisica e sono un esempio di dispositivo IoT. 6, 10

Bibliografia