Compressing Multisets with Large Alphabets

Daniel Severo¹²³ James Townsend⁴ Ashish Khisti² Alireza Makhzani²³ Karen Ullrich¹

 1 Meta AI 2 University of Toronto 3 Vector Institute for AI 4 University of Amsterdam

Data Compression Conference, 2022

Outline

- 1. Problem setting
- 2. Motivation
- 3. Background
 Asymmetric Numeral Systems (ANS)
 Bits-back with ANS
 Multiset entropy
- 4. Method
- 5. Experiments
- 6. Conclusion

Problem setting

Given a sequence of i.i.d. symbols $X^n = (X_1, \dots, X_n)$ with entropy

$$H(X^n) = nH(X) = n\mathbb{E}\left[-\log P_X(X)\right]$$

Problem setting

Given a sequence of i.i.d. symbols $X^n = (X_1, \dots, X_n)$ with entropy

$$H(X^n) = nH(X) = n\mathbb{E}\left[-\log P_X(X)\right]$$

we want to losslessly compress the multiset

$$\mathcal{M} = f(X^n) = \{X_1, \dots, X_n\}$$

at rate $H(\mathcal{M}) \leq H(X^n)$.

How to achieve $H(\mathcal{M}) \leq H(X^n)$?

How to achieve $H(\mathcal{M}) \leq H(X^n)$?

– Steinruecken (2016): rate-optimal for any alphabet ${\cal A}$

How to achieve $H(\mathcal{M}) \leq H(X^n)$?

- Steinruecken (2016): rate-optimal for any alphabet ${\cal A}$
 - \bullet Compress frequency count of symbols in $\mathcal M$ (vector in $\mathbb N^{|\mathcal A|})$

How to achieve $H(\mathcal{M}) \leq H(X^n)$?

- Steinruecken (2016): rate-optimal for any alphabet ${\cal A}$
 - ullet Compress frequency count of symbols in $\mathcal M$ (vector in $\mathbb N^{|\mathcal A|}$)
 - Inefficient when $|\mathcal{A}| \gg n$, requires $\mathcal{O}(|\mathcal{A}|)$ steps

How to achieve $H(\mathcal{M}) \leq H(X^n)$?

- Steinruecken (2016): rate-optimal for any alphabet ${\cal A}$
 - ullet Compress frequency count of symbols in $\mathcal M$ (vector in $\mathbb N^{|\mathcal A|}$)
 - Inefficient when $|\mathcal{A}| \gg n$, requires $\mathcal{O}(|\mathcal{A}|)$ steps

- Compress X^n instead: efficient, if X_i are i.i.d.

How to achieve $H(\mathcal{M}) \leq H(X^n)$?

- Steinruecken (2016): rate-optimal for any alphabet ${\cal A}$
 - ullet Compress frequency count of symbols in \mathcal{M} (vector in $\mathbb{N}^{|\mathcal{A}|}$)
 - Inefficient when $|\mathcal{A}| \gg n$, requires $\mathcal{O}(|\mathcal{A}|)$ steps

- Compress X^n instead: efficient, if X_i are i.i.d.
 - Entropy code each X_i with $P_X(X_i)$, requires $\mathcal{O}(n)$ steps

How to achieve $H(\mathcal{M}) \leq H(X^n)$?

- Steinruecken (2016): rate-optimal for any alphabet ${\cal A}$
 - ullet Compress frequency count of symbols in \mathcal{M} (vector in $\mathbb{N}^{|\mathcal{A}|}$)
 - Inefficient when $|\mathcal{A}| \gg n$, requires $\mathcal{O}(|\mathcal{A}|)$ steps

- Compress X^n instead: efficient, if X_i are i.i.d.
 - Entropy code each X_i with $P_X(X_i)$, requires $\mathcal{O}(n)$ steps
 - Sub-optimal, achieves $H(X^n) \ge H(\mathcal{M})$

How to achieve $H(\mathcal{M}) \leq H(X^n)$?

- Steinruecken (2016): rate-optimal for any alphabet ${\cal A}$
 - ullet Compress frequency count of symbols in \mathcal{M} (vector in $\mathbb{N}^{|\mathcal{A}|}$)
 - Inefficient when $|\mathcal{A}| \gg n$, requires $\mathcal{O}(|\mathcal{A}|)$ steps

- Compress X^n instead: efficient, if X_i are i.i.d.
 - Entropy code each X_i with $P_X(X_i)$, requires $\mathcal{O}(n)$ steps
 - Sub-optimal, achieves $H(X^n) \ge H(\mathcal{M})$

Would like efficient, rate-optimal method for any A, n.

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode X=x with P_X and CDF F_X ,

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode X=x with P_X and CDF F_X ,

	AC	ANS
statistics	range $[F_X(x), F_X(x) + P_X(x))$	
state	fraction 0.1001	integer 1001

ANS (Duda, 2009) is an alternative to Arithmetic Coding (AC).

To encode X=x with P_X and CDF F_X ,

	AC	ANS
statistics	range $[F_X(x), F_X(x) + P_X(x))$	
state	fraction 0.1001	integer 1001
order	queue-like	stack-like

Key difference: ANS decodes in reverse order

 $\underline{\mathsf{Problem:}} \ \mathsf{Given} \ X = f(Y) \text{, encode } X \ \mathsf{at \ rate} \ R_X = H(X)$

 $\underline{\mathsf{Problem}} \text{: Given } X = f(Y) \text{, encode } X \text{ at rate } R_X = H(X) \text{ using }$

- code for Y at rate H(Y)

Problem: Given X = f(Y), encode X at rate $R_X = H(X)$ using

- code for Y at rate H(Y) and
- code for $Y \mid X$ at rate $H(Y \mid X)$

<u>Problem:</u> Given X = f(Y), encode X at rate $R_X = H(X)$ using

- code for Y at rate H(Y) and
- code for $Y \mid X$ at rate $H(Y \mid X)$

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X_1, \ldots, X_n

<u>Problem:</u> Given X = f(Y), encode X at rate $R_X = H(X)$ using

- code for Y at rate H(Y) and
- code for $Y \mid X$ at rate $H(Y \mid X)$

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X_1, \ldots, X_n Use ANS stack as a random seed to sample $Y_1 \mid X_1, \ldots, Y_n \mid X_n$

<u>Problem:</u> Given X = f(Y), encode X at rate $R_X = H(X)$ using

- code for Y at rate H(Y) and
- code for $Y \mid X$ at rate $H(Y \mid X)$

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X_1,\ldots,X_n Use ANS stack as a random seed to sample $Y_1\,|\,X_1,\ldots,Y_n\,|\,X_n$ Encode Y_1,\ldots,Y_n onto the ANS stack

<u>Problem:</u> Given X = f(Y), encode X at rate $R_X = H(X)$ using

- code for Y at rate H(Y) and
- code for $Y \mid X$ at rate $H(Y \mid X)$

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X_1,\ldots,X_n Use ANS stack as a random seed to sample $Y_1\,|\,X_1,\ldots,Y_n\,|\,X_n$ Encode Y_1,\ldots,Y_n onto the ANS stack

<u>Problem:</u> Given X = f(Y), encode X at rate $R_X = H(X)$ using

- code for Y at rate H(Y) and
- code for $Y \mid X$ at rate $H(Y \mid X)$

BB-ANS (Townsend, 2019) achieves H(X) for i.i.d. X_1,\ldots,X_n Use ANS stack as a random seed to sample $Y_1\,|\,X_1,\ldots,Y_n\,|\,X_n$ Encode Y_1,\ldots,Y_n onto the ANS stack

The full picture

The full picture, with one-time overhead of $+\frac{1}{n}H(Y|X)$

The full picture, with one-time overhead of $+\frac{1}{n}H(Y|X)$

Take-away: BB-ANS gives an operational meaning to the identity

$$H(X) = H(Y) - H(Y | X) = I(X; Y),$$

where X = f(Y).

How does $H(\mathcal{M}) = H(f(X^n))$ relate to $H(X^n)$?

How does $H(\mathcal{M})=H(f(X^n))$ relate to $H(X^n)$?

$$H(X^{n}, \mathcal{M}) = H(\mathcal{M}) + H(X^{n} \mid \mathcal{M})$$
$$= H(X^{n}) + \underbrace{H(\mathcal{M} \mid X^{n})}_{=0}$$

How does $H(\mathcal{M}) = H(f(X^n))$ relate to $H(X^n)$?

$$H(X^{n}, \mathcal{M}) = H(\mathcal{M}) + H(X^{n} \mid \mathcal{M})$$
$$= H(X^{n}) + \underbrace{H(\mathcal{M} \mid X^{n})}_{=0}$$

Multiset entropy

$$H(\mathcal{M}) = H(X^n) - H(X^n \mid \mathcal{M})$$

How does $H(\mathcal{M}) = H(f(X^n))$ relate to $H(X^n)$?

$$H(X^{n}, \mathcal{M}) = H(\mathcal{M}) + H(X^{n} \mid \mathcal{M})$$
$$= H(X^{n}) + \underbrace{H(\mathcal{M} \mid X^{n})}_{=0}$$

Multiset entropy

$$H(\mathcal{M}) = H(X^n) - H(X^n \mid \mathcal{M})$$

 $H(X^n \mid \mathcal{M})$ bits are needed to order symbols in \mathcal{M} to create X^n

Background: Multiset entropy

How does $H(\mathcal{M}) = H(f(X^n))$ relate to $H(X^n)$?

$$H(X^{n}, \mathcal{M}) = H(\mathcal{M}) + H(X^{n} \mid \mathcal{M})$$
$$= H(X^{n}) + \underbrace{H(\mathcal{M} \mid X^{n})}_{=0}$$

Multiset entropy

$$H(\mathcal{M}) = H(X^n) - H(X^n \mid \mathcal{M})$$

 $H(X^n \mid \mathcal{M})$ bits are needed to order symbols in \mathcal{M} to create X^n It is often called the "order information"

Recap: BB-ANS gives an operational meaning to the identity

$$H(X) = H(Y) - H(Y | X) = I(X; Y),$$

where X = f(Y).

Recap: BB-ANS gives an operational meaning to the identity

$$H(X) = H(Y) - H(Y | X) = I(X; Y),$$

where X = f(Y).

Multiset entropy:

$$H(\mathcal{M}) = H(X^n) - H(X^n \mid \mathcal{M}) = I(\mathcal{M}; X^n).$$

Recap: BB-ANS gives an operational meaning to the identity

$$H(X) = H(Y) - H(Y | X) = I(X; Y),$$

where X = f(Y).

Multiset entropy:

$$H(\mathcal{M}) = H(X^n) - H(X^n \mid \mathcal{M}) = I(\mathcal{M}; X^n).$$

Naive method: apply BB-ANS for multiset compression

Recap: BB-ANS gives an operational meaning to the identity

$$H(X) = H(Y) - H(Y | X) = I(X; Y),$$

where X = f(Y).

Multiset entropy:

$$H(\mathcal{M}) = H(X^n) - H(X^n \mid \mathcal{M}) = I(\mathcal{M}; X^n).$$

Naive method: apply BB-ANS for multiset compression

Achieves $H(\mathcal{M})$ on sequence of multisets $\mathcal{M}_1, \mathcal{M}_2, \dots$

Recap: BB-ANS gives an operational meaning to the identity

$$H(X) = H(Y) - H(Y | X) = I(X; Y),$$

where X = f(Y).

Multiset entropy:

$$H(\mathcal{M}) = H(X^n) - H(X^n \mid \mathcal{M}) = I(\mathcal{M}; X^n).$$

Naive method: apply BB-ANS for multiset compression

Achieves $H(\mathcal{M})$ on sequence of multisets $\mathcal{M}_1, \mathcal{M}_2, \dots$

Can we achieve $H(\mathcal{M})$ on a single multiset $\mathcal{M} = f(X^n)$?

Recap: BB-ANS gives an operational meaning to the identity

$$H(X) = H(Y) - H(Y | X) = I(X; Y),$$

where X = f(Y).

Multiset entropy:

$$H(\mathcal{M}) = H(X^n) - H(X^n \mid \mathcal{M}) = I(\mathcal{M}; X^n).$$

Naive method: apply BB-ANS for multiset compression

Achieves $H(\mathcal{M})$ on sequence of multisets $\mathcal{M}_1, \mathcal{M}_2, \dots$

Can we achieve $H(\mathcal{M})$ on a single multiset $\mathcal{M} = f(X^n)$?

In other words, can we compress \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits?

- 1. Decode sample (w.o. replacement) from ${\cal M}$
- 2. Encode sampled element using P_X until $\mathcal M$ is depleted.

Construct order information $H(X^n \mid \mathcal{M})$ iteratively by "sampling without replacement" from \mathcal{M} . Alternate:

 $\{a,b,b\}$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_X until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_X until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_X until \mathcal{M} is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3} + \log \frac{1}{P_X(b)}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_X until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3} + \log \frac{1}{P_X(b)} - \log \frac{1}{1/2}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_X until \mathcal{M} is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3} + \log \frac{1}{P_X(\mathtt{b})} - \log \frac{1}{1/2} + \log \frac{1}{P_X(\mathtt{a})}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_X until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3} + \log \frac{1}{P_X(\mathtt{b})} - \log \frac{1}{1/2} + \log \frac{1}{P_X(\mathtt{a})} - \log \frac{1}{1/1}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_X until \mathcal{M} is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3} + \log \frac{1}{P_X(b)^2} - \log \frac{1}{1/2} + \log \frac{1}{P_X(a)} - \log \frac{1}{1/1}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_X until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon + \log \frac{1}{P_X(\mathtt{b})^2 P_X(\mathtt{a})} - \log \frac{1}{(2/3)(1/2)(1/1)}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_X until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon + \log \frac{1}{P_{X^n}(\mathtt{bab})} - \log \frac{1}{P_{X^n \,|\, \mathcal{M}}(\mathtt{bab} \,|\, \{\mathtt{a},\mathtt{b},\mathtt{b}\})}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_X until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon + \log \frac{1}{P_{\mathcal{M}}(\{\mathtt{a},\mathtt{b},\mathtt{b}\})}$$

Experiments: Synthetic multisets (rate)

Achieves $H(\mathcal{M}) = \mathbb{E}[-\log P_{\mathcal{M}}(\mathcal{M})]$ on single \mathcal{M}

Average complexities

 $\mathcal{O}(\log m)$ to sample from \mathcal{M} , where m=# unique symbols in \mathcal{M}

Average complexities

 $\mathcal{O}(\log m)$ to sample from \mathcal{M} , where m=# unique symbols in \mathcal{M} $\mathcal{O}(p)$ to encode/decode with P_X

Average complexities

 $\mathcal{O}(\log m)$ to sample from \mathcal{M} , where m=# unique symbols in \mathcal{M} $\mathcal{O}(p)$ to encode/decode with P_X

 $\mathcal{O}(np + n\log m)$ total complexity to encode/decode \mathcal{M}

Average complexities

 $\mathcal{O}(\log m)$ to sample from \mathcal{M} , where m=# unique symbols in \mathcal{M} $\mathcal{O}(p)$ to encode/decode with P_X

 $\mathcal{O}(np + n\log m)$ total complexity to encode/decode \mathcal{M}

 ${\sf Encode} + {\sf decode} \ {\sf time} \ {\sf for} \ {\sf fixed} \ m = 512$

Average complexities

 $\mathcal{O}(\log m)$ to sample from \mathcal{M} , where m=# unique symbols in \mathcal{M} $\mathcal{O}(p)$ to encode/decode with P_X

 $\mathcal{O}(np + n \log m)$ total complexity to encode/decode \mathcal{M}

Compute time doesn't scale with |A|, if m is fixed

Experiments: MNIST images with WebP

Symbols X_i can be images, text, or anything else.

Experiments: MNIST images with WebP

Symbols X_i can be images, text, or anything else. Lossy codecs like WebP/JPEG can replace encoding with P_X

Experiments: MNIST images with WebP

Symbols X_i can be images, text, or anything else. Lossy codecs like WebP/JPEG can replace encoding with P_X

Method removes all order information $H(X^n | \mathcal{M})$

Symbols X_i can be multisets themselves (as in JSON maps)

Symbols X_i can be multisets themselves (as in JSON maps) This means \mathcal{M} is a multiset of multisets

Symbols X_i can be multisets themselves (as in JSON maps) This means $\mathcal M$ is a multiset of multisets Method naturally extends to this case

Symbols X_i can be multisets themselves (as in JSON maps) This means \mathcal{M} is a multiset of multisets Method naturally extends to this case

Method removes all order information $H(X^n \mid \mathcal{M})$

– Problem: encode $\mathcal{M} = \{X_1, \dots, X_n\}$ at $H(\mathcal{M})$ losslessly

- Problem: encode $\mathcal{M} = \{X_1, \dots, X_n\}$ at $H(\mathcal{M})$ losslessly
- Current methods require at least $\mathcal{O}(|\mathcal{A}|)$ compute

- Problem: encode $\mathcal{M} = \{X_1, \dots, X_n\}$ at $H(\mathcal{M})$ losslessly
- Current methods require at least $\mathcal{O}(|\mathcal{A}|)$ compute
- Our method requires $\mathcal{O}(np + n \log m)$, independent of $|\mathcal{A}|$

- Problem: encode $\mathcal{M} = \{X_1, \dots, X_n\}$ at $H(\mathcal{M})$ losslessly
- Current methods require at least $\mathcal{O}(|\mathcal{A}|)$ compute
- Our method requires $\mathcal{O}(np + n\log m)$, independent of $|\mathcal{A}|$
- It relies on BB-ANS: $H(\mathcal{M}) = H(X^n) H(X^n \mid \mathcal{M})$

- Problem: encode $\mathcal{M} = \{X_1, \dots, X_n\}$ at $H(\mathcal{M})$ losslessly
- Current methods require at least $\mathcal{O}(|\mathcal{A}|)$ compute
- Our method requires $\mathcal{O}(np + n\log m)$, independent of $|\mathcal{A}|$
- It relies on BB-ANS: $H(\mathcal{M}) = H(X^n) H(X^n \mid \mathcal{M})$
- Can compress single \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits

- Problem: encode $\mathcal{M} = \{X_1, \dots, X_n\}$ at $H(\mathcal{M})$ losslessly
- Current methods require at least $\mathcal{O}(|\mathcal{A}|)$ compute
- Our method requires $\mathcal{O}(np + n \log m)$, independent of $|\mathcal{A}|$
- It relies on BB-ANS: $H(\mathcal{M}) = H(X^n) H(X^n \mid \mathcal{M})$
- Can compress single \mathcal{M} to $-\log P_{\mathcal{M}}(\mathcal{M})$ bits
- Symbols can be anything (e.g. images, text, multisets)

Thank you!

Presented by: dsevero.com and j-towns.github.io

<u>Code:</u> github.com/facebookresearch/multiset-compression

Bonus: dynamic multiset data structure

We use something like a Fenwick tree for the multiset.

Bonus: dynamic multiset data structure

We use something like a Fenwick tree for the multiset.

E.g. for $\mathcal{M} = \{a, b, b, c, c, c, d, e\}...$

Bonus: dynamic multiset data structure

We use something like a Fenwick tree for the multiset.

E.g. for $\mathcal{M} = \{\mathtt{a},\mathtt{b},\mathtt{b},\mathtt{c},\mathtt{c},\mathtt{c},\mathtt{d},\mathtt{e}\}...$

Has $O(\log n)$ insertion, deletion and F_X, P_X lookup :-).