2015 - WiG1

5. Handlungsschritt (25 Punkte)

Das Lastenheft beinhaltet die Überprüfung und Instandsetzung der vorhandenen USV.

Aktive Netzwerkkomponenten sind mit der im Folgenden beschriebenen USV-Anlage gegen Netzstörungen geschützt.

Datenblatt:

Hinweis: Ein Test ergab, dass die vom Hersteller angegebene Autonomiezeit von 60 Minuten bei maximaler Anschlussleistung nicht mehr gewährleistet ist.

a) Nennen Sie die erforderliche Wartungsarbeit zur Wiederherstellung der angegebenen Autonomiezeit.

2 Punkte

b) Erläutern Sie anhand des folgenden Textes die Begriffe Sekundärelement und Primärelement.

4 Punkte

Secondary batteries (rechargeable batteries) can be discharged and recharged multiple times; the original composition of the electrodes can be restored by reverse current.

Primary batteries (single-use or "disposable") are used once and discarded; the electrode materials are irreversibly changed during discharge. Common examples are the alkaline battery used for flashlights and a multitude of portable devices.

c) Skizzieren Sie die Verschaltung der Akkumulatorenzellen (siehe Datenblatt) in der USV und ermitteln Sie die benötigte Anzahl
der Speicherelemente.

Berücksichtigen Sie in Ihrer Skizze

- die Verschaltung der Akkumulatoren,
- die Anschlussspannung von 48 Volt DC,
- die Bemessungskapazität des Akku-Systems von 70 Ah,
- die Polarität.

 Berechnen Sie den Strom auf der Gleichspannungsseite der USV unter Berücksichtigung des USV-Wirkungsgrades für die maximale Anschlussleistung.

Hinweis: Formeln siehe Seite 9 im Belegsatz

Der Rechenweg ist anzugeben.

6 Punkte

5. Handlungsschritt

Bei
$$\cos \varphi$$
 (phi) 1 => S = P

$$P_{v} = P_{zv} - P_{ab}$$

$$\eta = \frac{P_{ab}}{P_{zv}}; \quad \eta = \eta_{1} \cdot \eta_{2} \qquad [\eta] = 1$$

$$\eta \qquad \text{Wirkungsgrad (Leistungsverhältnis)}$$

$$\text{Gesamtwirkungsgrad}$$

$$\eta_{1r}, \eta_{2} \qquad \text{Einzelwirkungsgrade}$$

$$P_{ab} \qquad \text{abgegebene Leistung}$$

$$P_{zv} \qquad \text{aufgenommene Leistung}$$

$$P_{v} \qquad \text{Verlustleistung}$$

$$S^2 = P^2 + Q_L^2 \Rightarrow S = \sqrt{P^2 + Q_L^2} \quad S = U \cdot I$$

$$\cos \varphi = \frac{P}{S} \Rightarrow P = S \cdot \cos \varphi \quad P = U \cdot I \cdot \cos \varphi$$

$$\sin \varphi = \frac{Q_L}{S} \Rightarrow Q_L = S \cdot \sin \varphi \quad Q_L = U \cdot I \cdot \sin \varphi$$

$$\tan \varphi = \frac{Q_L}{P} \qquad Q_L = V \cdot I \cdot \sin \varphi$$

$$S \quad \text{Scheinleistung} \quad \{S\} = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$P \quad \text{Wirkleistung} \quad \{P\} = W$$

$$Q_L = VA = W$$

$$Q_L$$

Akkumulatoren Accumulators								
Arten								
System	Blei		NiCd1	NIMH ²	Alkali-Mangan	Lithium-loner		
Bemessungsspannung in V je Zelle	2		1,2	1,2	1,5	3,4 bis 3,7		
Energiedichte in Wh/kg	25	1	35	60	70	125		
Selbstentladung in % je Monat	6		15	25 bis 30	0,5	5		
Ladezyklen (Durchschnitt)	1000		1000	800	25	800		
Memoryeffekt	nein	j	a	nein	nein	nein		
Umweltproblematik	ja	j	a ¹	wenig	nein	nein		
Begriffe								
Akkumulator		Elektrochemischer Speicher, der sich wiederholt aufladen lässt.						
Zelle		Kleinste Einheit einer Batterie. Eine Zelle besteht aus der positiven un der negativen Elektrode mit Trennscheidern, Zellengefäß und Elektrolyt						
Batterie		Verbund aus mehreren elektrisch miteinander verbundenen Zellen, die meist in Reihe geschaltet sind.						
Ladung		Einspeisen elektrischer Energie in Akkumulatoren und deren Speicherung als chemische Energie, bis die elektrochemische Umwandlung der aktiven Masse abgeschlossen ist.						
Ladeverlauf		Der zeitliche Verlauf von Spannung und Strom während des Ladens.						
Entladeschlussspannung		Akkumulatorspannung, die beim Entladen nicht unterschritten werden darf.						
Gasungsspannung		Ladespannung, oberhalb der ein Akkumulator Gase zu entwickeln beginnt.						
Kapazitāt		Entnehmbare Elektrizitätsmenge (elektrische Ladung) in Amperestunden (Ah) eines Akkumulators, z. B. K_6 (Bemessungskapazität bei 5-stündigem Entladestrom).						
Ladefaktor		$ \begin{array}{c c} \text{Verhältnis der elektrischen Ladung} \\ \text{beim Laden zur elektrischen Ladung} \\ \text{beim Entladen.} \end{array} \qquad \boxed{ \qquad \qquad \qquad } \\ \zeta = \frac{1}{a} \\ \boxed{ \qquad \qquad } \\ a = \frac{I_L \cdot t_L}{I_E \cdot t_E} $						
a Ladefaktor I _E Entladestrom I _L Ladestrom		K _n Bemessungskapazität für t _L Ladezeit n-stündiges Entladen ξ Ladungsnutzungsgrad t _E Entladezeit						

Quelle: EUROPA "Tabellenbuch Elektrotechnik"