Recall:

Note. Any two vectors in \mathbb{R}^2 define a parallelogram:

Notation
$$\text{area}(v_1,v_2) = \begin{pmatrix} \text{area of the parallelogram} \\ \text{defined by } v_1 \text{ and } v_2 \end{pmatrix}$$

Theorem

If
$$\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$$
 then

$$area(\textbf{v}_1,\textbf{v}_2) = \begin{vmatrix} det \left[\begin{array}{cc} \textbf{v}_1 & \textbf{v}_2 \end{array} \right] \end{vmatrix}$$

Idea of the proof.

$$\mathbf{v}_1 = \left[\begin{array}{c} a \\ b \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} c \\ d \end{array} \right]$$

We obtain:

area(P) =
$$(a+c) \cdot (b+d) - ab - cd - 2cb$$

= $(ab + ad + ab + cd) - ab - cd - 4cb$
= $ad - cb = |det[a b] = |det[v, v_2]|$

Example.

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

=
$$\left| \det \begin{bmatrix} 2 & 2 \\ 3 & -2 \end{bmatrix} \right| = \left| -4 - 6 \right| = 10$$

Example. Calculate the area of the parallelogram with vertices at the points (2,1), (5,3), (7,1), (4,-1).

Example. Calculate the area of the triangle with vertices at the points (2, 1), (5, 3), (4, -1).

$$V_{1} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \qquad V_{2} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

$$\text{area } (v_{1}, v_{2}) = |\det [v_{1}, v_{2}]|$$

$$= |\det \begin{bmatrix} 3 & 2 \\ 2 & -2 \end{bmatrix}|$$

$$= |-6 - 4| = 10$$

$$\text{area triangle} = \frac{1}{2} \operatorname{area}(v_{1}, v_{2}) = \frac{1}{2} \cdot 10$$

$$= 5$$

Note. In order to compute areas of other polygons, subdivide them into triangles.

