Question Number		Scheme		Marks	
1.	(a)	a = 0.25	B1		
		$\frac{2\pi}{\omega} = 2 \Rightarrow \omega = \pi$	B1		
		$-0.125 = 0.25 \cos \omega t$	M1A1		
	(b)	$-0.125 = 0.25 \cos \omega t$ $t = \frac{1}{\pi} \cos^{-1}(-0.5)$ $= \frac{2}{3}$	M1		
		$=\frac{2}{3}$	A1	(6)	
			(6 ma	arks)	
2.	(a)	$(\uparrow) 3mg \cos \alpha^{\circ} = mg$	M1 A1		
		$\alpha = \cos^{-1}\left(\frac{1}{3}\right)$	M1		
		= 70.5	A1	(4)	
	(<i>b</i>)	$(\leftarrow) 3mg \sin \alpha = mr \times 2gk$	M1 A1		
		$l \sin \alpha = r$	B1		
		$l = \frac{3}{2} k$	M1 A1	(5)	
			(9 marks)		
3.	(a)	$2e^{-0.1x} = 2.5a$	M1 A1		
		$2e^{-0.1x} = 2.5a$ $\frac{4}{5}e^{-0.1x} = v\frac{dv}{dx}$	M1		
		$-8e^{-0.1x} = \frac{1}{2}v^{2} (+c)$ $x = 0, v = 2 \implies c = -10$ $v^{2} = 20 - 16e^{-0.1x}$ $16 = 20 - 16e^{-0.1x} \implies e^{-0.1x} = \frac{1}{4}$	A1		
		$x = 0, v = 2 \implies c = -10$	M1		
		$v^2 = 20 - 16e^{-0.1x}$	A1	(6)	
	(<i>b</i>)	$16 = 20 - 16e - 0.1x \implies e^{-0.1x} = \frac{1}{4}$	M1		
		$0.1x = \ln 4$	M1		
		x = 13.9	A1	(3)	
	(c)	Appropriate comment.	B1	(1)	
			(10 mark	ks)	

Question Number			Scheme	Marks
4.	(a)	$\frac{1}{2} \times 0.2 \times 5^2 - \frac{1}{2} \times 0.2 \times 0.$	M1 A1 A1	
			$u^2 = \frac{25}{3}$	M1
			$u = 2.89 \text{ ms}^{-1}$	A1 (5)
	(<i>b</i>)	$\frac{1}{2} \times 0.2 \times 5^2 - \frac{1}{2} \times 0.2 \times x^2 = 0.34125$ $T = \frac{20x}{1.5} = 7.8 \text{ N}$	$4.5^2 = \frac{1}{2} \times \frac{20x^2}{1.5}$	M1 A1
		$x^2 = 0.34125$		M1
		$T = \frac{20x}{1.5} = 7.8 \text{ N}$		M1 A1 (5)
				(10 marks)
5.	(a)	Cone $\frac{1}{3}\pi(2r)^2h$	Cylinder Whole $\pi r^2 h \qquad \frac{1}{3} \pi (2r)^2 h + \pi r^2 h$	M1 A1
		(4)	(3) (7)	
		$\frac{1}{4}h$	$\frac{1}{2}h$ \overline{x}	B1 B1
		$-4 imes rac{1}{4}h$	$+ 3 \times \frac{1}{2}h = 7\bar{x}$	M1 A1
		$\overline{x} = \frac{1}{14}h$		M1 A1 cso (8)
	(<i>b</i>)	$\overline{x} = \frac{1}{14}h$ Use of G above N		M1
			$\tan \alpha = \frac{r}{h - \frac{1}{14}h} = \frac{7}{26}$	M1 A1
		$N \alpha$	$r=rac{1}{4}h$	A1 (4)
				(12 marks)

Question Number		Scheme	Marks
6.	(a)	$mg = \frac{8mge}{4a}$	M1
		$mg = \frac{8mge}{4a}$ $\frac{9}{2}a = AO$ $A ////$ $4a$	A1 (2)
	(<i>b</i>)	$\frac{9}{2}a = AO$ $mg - \frac{8mg}{4a} (e + x) = m \ddot{x}$ $2g$ $4a$ $O - \qquad \downarrow e$ $\downarrow x$	M1 M1 A1
		$x = -\frac{3}{a}x$	M1 A1
		$T = 2\pi \sqrt{\frac{a}{2g}} = \pi \sqrt{\frac{2a}{g}} \qquad (\clubsuit)$	M1 A1 (7)
		$v = d\omega$	M1
		$v = d\omega$ $\frac{1}{2} \sqrt{ga} = d\sqrt{\frac{2g}{a}}$	A1 ft on ω
		$d = \frac{a}{2\sqrt{2}} = a\frac{\sqrt{2}}{4} = 0.35a \text{ (awrt)}$	A1 (3)
	(<i>d</i>)	Partly under gravity, partly SHM	B1 B1 (2)
			(14 marks)
7.	(a)	$\frac{1}{2}mu^2 = mgl(1-\cos\theta)$	M1 A1 A1
		$u=\sqrt{\frac{2}{3}}gl$	A1 (4)
	(<i>b</i>)	$T - mg \cos \theta = \frac{mv^2}{l}$	M1 A1
		$\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mgl(1 - \cos\theta)$	M1 A1
		eliminating v^2 , $T = \frac{mg}{3} (9 \cos \theta - 4)$ (**)	M1, A1 cso (6)
	(c)	$\max T, \ \theta = 0, T_{MAX} = \frac{5mg}{3}$	M1
		$\min T, \cos \theta = \frac{2}{3}, T_{MIN} = \frac{2mg}{3}$	M1 A1
		$\frac{2mg}{3} \le T \le \frac{5mg}{3}$	A1 (4)
			(14 marks)