目录

•		
1	分析学复习题	1
2		5 5
3	FK 3.1 素元与不可约元	66
4	模 4.1 图追踪法	6
5	域 5.1 尺规作图	
1	分析学复习题	

1 有度量空间 $(X_1, d_1), \dots, (X_n, d_n)$,在 $X = \prod_{i=1}^n X_i$ 上定义度量 $\rho_1, \rho_2 : \forall x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in X$,

$$\rho_1(x,y) = \sqrt{\sum_{i=1}^n d_i(x_i, y_i)^2}, \rho_2(x,y) = \sum_{i=1}^n d_i(x_i, y_i)$$

证明 ρ_1, ρ_2 诱导的度量拓扑相同.

证明. 仅需证明度量等价, 注意到

$$\rho_1(x,y) = \frac{1}{\sqrt{n}} \sqrt{\left(\sum_{i=1}^n d_i(x_i, y_i)^2\right) \left(\sum_{i=1}^n 1^2\right)} \ge \frac{1}{\sqrt{n}} \sum_{i=1}^n d_i(x_i, y_i) = \frac{\rho_2(x, y)}{\sqrt{n}}$$

以及由 $d_i(x_i, y_i) \leq \rho_2(x, y)$ 知 $\rho_1(x, y) \leq \sqrt{n}\rho_2(x, y)$, 故得证.

2 度量空间 $(X, \rho), x \in X, \emptyset \neq A \subset X$, 证明 $(1)f = \rho(\cdot, A)$ 一致连续. $(2)\overline{A} = \{x \in X | \rho(x, A) = 0\}$.

证明. (1) 由 inf 性质知 $\forall x_1, x_2 \in X \forall a \in A, \rho(x_1, A) \leq \rho(x_1, a) \leq \rho(x_1, x_2) + \rho(x_2, a)$, 从而 $\rho(x_1, A) - \rho(x_2, a) \leq \rho(x_1, x_2)$, 两端取 inf 即得 $\rho(x_1, A) - \rho(x_2, A) \leq \rho(x_1, x_2)$. 由 x_1, x_2 任意知 $|f(x_1) - f(x_2)| \leq \rho(x_1, x_2)$, 故 f Lipschitz 连续, 从而一致连续.

 $(2) \forall x \in \overline{A} \forall \varepsilon > 0 \exists y \in A, \rho(x,y) < \varepsilon$, 故取 inf 即可. 另一方面, 可以取收敛列来写 (取 $\varepsilon = 1/n$ 可取到 $a_n \in A$ 趋于 $a \in \overline{A}$), 也可以注意到 $A \subset \{x \in X | \rho(x,A) = 0\} = f^{-1}(0)$, 而后者是闭集, 故 $\overline{A} \subset \{x \in X | \rho(x,A) = 0\}$.

3 度量空间 (X, ρ) 完备 \iff 任意 X 中点列 $\{x_n\}_{n=1}^{\infty}$,若有 $\forall n \geq 1, \rho(x_n, x_{n+1}) \leq 2^{-n}$ 则点列收敛.

证明. \Longrightarrow : 注意到 $\rho(x_m,x_n) \leq 2^{1-m} (m \leq n)$ 故 $\{x_n\}_{n=1}^{\infty}$ 是 Cauchy 列, 由完备知收敛.

 \iff : 任取 X 中 Cauchy 列 $\{y_n\}_{n=1}^{\infty}$,对于 $\forall k \in \mathbb{N}$ 取 $\varepsilon_k = 2^{-k} \exists N_k > N_{k-1} \forall m, n \geq N_k, \rho(y_m, y_n) < 2^{-k}$,从而可取子列 $\{y_{N_i}\}_{i=1}^{\infty}$,由题设知收敛,而 Cauchy 列有收敛子列即自身收敛,故得证.

4 完备度量空间 (X,ρ) 上有 $T:X\to X,\exists N\in\mathbb{N}^*\exists\alpha\in(0,1),\rho(T^Nx,T^Ny)\leq\alpha\rho(x,y)\forall x,y\in X$, 其中 $T^N=\underbrace{T\circ T\circ\cdots\circ T}_{N^{t_*}}$, 证明 T 有唯一不动点.

证明. 由不动点定理知 T^N 有唯一不动点 x_0 ,而 $T^NTx_0 = T^{N+1}x_0 = TT^Nx_0 = Tx_0$,故 Tx_0 也为 T^N 不动点, $Tx_0 = x_0$,故 x_0 是 T 不动点. 若 T 有其他不动点 x' 则 T^N 也有不动点 x',与唯一矛盾,从而 T 有唯一不动点.

5 度量空间 (X, ρ) 内有开集 U 和非空紧集 $A \subset U$, 证明 $\exists \delta > 0 \forall x \in A, B(x, \delta) \subset U$.

证明. 由 U 开知 $\forall x \in A \exists \delta_x > 0, B(x, \delta_x) \subset U$,从而 $\left\{B\left(x, \frac{\delta_x}{2}\right)\right\}_{x \in A}$ 是 A 的开覆盖,其中有有限子覆盖 $\left\{B\left(x_i, \frac{\delta_i}{2}\right)\right\}_{i=1}^n$,取 $\delta = \min_{1 \leq i \leq n} \frac{\delta_i}{2}$,从而 $\forall x \in A \forall y \in B(x, \delta) \exists x_i, \rho(y, x_i) \leq \rho(y, x) + \rho(x, x_i) < \delta + \frac{\delta_i}{2} \leq \delta_i$,故 $y \in B(x_i, \delta_i) \subset U$.

6 实线性赋范空间 X 上有线性泛函 $f: X \to \mathbb{R}$, 证明 f 连续 $\iff N(f) = \{x \in X | f(x) = 0\}$ 是闭集.

证明. \Longrightarrow :由于 {0} 是闭集且 f 连续,故 $N(f) = f^{-1}(\{0\})$ 是闭集.

7 域 \mathbb{K} 上线性赋范空间 $(X,\|\cdot\|)$ 中有有限维真线性子空间 $M\subsetneq X$. 证明 $\exists y\in X,\|y\|=1$ 且 $\forall x\in M,\|y-x\|\geq 1$.

证明. 任取 $y_0 \in X$, 令 $d = d(y_0, M)$, 由 inf 性质可取 $\forall n \geq 1 \exists x_n \in M, d \leq \|y_0 - x_n\| \leq d + \frac{1}{n}, \|x_n\| \leq \|x_n - y_0\| + \|y_0\| \leq \|y_0\| + d + 1$, 故 $\{x_n\}$ 是 M 中有界序列,由 M 有限维知 $\overline{B_M}(0, \|y_0\| + d + 1)$ 是紧集,从而其中点列 $\{x_n\}$ 有收敛子列 $\{x_{n_k}\}$ 收敛于 x_0 , 从而 $d \leq \|y_0 - x_0\| = \lim_{k \to \infty} \|y_0 - x_{n_k}\| \leq d$, $\|y_0 - x_0\| = d$, 故可取 $y = \frac{y_0 - x_0}{\|y_0 - x_0\|}$, $\|y\| = 1$, 从而 $\forall x \in M, \|y - x\| = \left\|\frac{y_0 - x_0}{d} - x\right\| = \frac{\|y_0 - (x_0 + dx)\|}{d} \geq \frac{d}{d} = 1$, 从而得证.

8 在 $X = C^1([0,1],\mathbb{R})$ 上定义范数 $||f||_{C^1} = \max\{||f||_{\infty}, ||f'||_{\infty}\}$, 证明 $(X, ||\cdot||_{C^1})$ 构成实 Banach 空间.

证明. 取 X 中的 Cauchy 列 $\{f_n\}_{n=1}^{\infty}$,即 $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall m, n \geq N, \|f_m - f_n\|_{C^1} < \varepsilon$,而由 $\|f\|_{\infty} \leq \|f\|_{C^1}, \|f'\|_{\infty} \leq \|f\|_{C^1}$ 知, f_n, f'_n 在 $(C[0,1], \|\cdot\|_{\infty})$ 中是 Cauchy 列,而 [0,1] 紧从而该空间完备,Cauchy 列收敛,而函数列在范数 $\|\cdot\|_{\infty}$ 下收敛等价于一致收敛。记 $f_n \to f, f'_n \to g$,则有

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(f'_n(0) + \int_0^x f'_n(t) dt \right) = g(0) + \int_0^x \lim_{n \to \infty} f'_n(t) dt = g(0) + \int_0^x g(t) dt$$

从而 f' = g, $||f_n - f||_{C^1} = \max\{||f_n - f||_{\infty}, ||f'_n - g||_{\infty}\} \to 0, \{f_n\}_{n=1}^{\infty}$ 收敛, 故 X 是 Banach 空间.

9 域 $\mathbb K$ 上线性赋范空间 $(X,\|\cdot\|)$ 中有以 θ 为内点的真凸子集 E, 其产生 Minkowski 泛函 P. 证明 $(1)E^\circ=\{x\in X|P(x)<1\}.(2)\overline{E^\circ}=\overline{E}.$

证明. (1) \subset : $\forall x \in E^{\circ} \exists \delta > 0, B(x, \delta) \subset E$, 故由 $\left\| \left(1 + \frac{\delta}{2 \|x\|} \right) x - x \right\| = \frac{\delta}{2} < \delta$ 知 $\left(1 + \frac{\delta}{2 \|x\|} \right) x \in B(x, \delta) \subset E$, 从而 $P(x) \leq \left(1 + \frac{\delta}{2 \|x\|} \right)^{-1} < 1$. \supset : 若 P(x) < 1 则有 $\lambda \in [P(x), 1), x/\lambda \in E$. 由 0 是 E 内点知 $\exists \delta > 0, B(0, \delta) \subset E$, 故 $\forall y \in B(0, \delta), \lambda \cdot (x/\lambda) + (1 - \lambda)y = x + (1 - \lambda)y \in E$, 即 $B(x, (1 - \lambda)\delta) \subset E, x \in E^{\circ}$.

(2) 由 $E^{\circ} \subset E$ 知 $\overline{E^{\circ}} \subset \overline{E}$, 仅需证 $E \subset \overline{E^{\circ}}$. 由 0 是内点知 $\exists \delta > 0, B(0, \delta) \subset E$, 故 $\forall x \in E \forall y \in B(0, \delta) \forall \lambda \in [0, 1), \lambda x + (1 - \lambda)y \in E$, 故 $B(\lambda x, (1 - \lambda)\delta) \subset E, \lambda x \in E^{\circ}, x = \lim_{\lambda \to 1^{-}} \lambda x \in \overline{E^{\circ}}$.

10 \mathbb{R}^n 内 Lebesgue 可测子集 $\Omega, m(\Omega) < \infty, 1 \leq p_1 < p_2 < \infty$, 证明 $L^{p_2}(\Omega) \subset L^{p_1}(\Omega)$ 且

$$||f||_{p_1} \le [m(\Omega)]^{\frac{1}{p_1} - \frac{1}{p_2}} ||f||_{p_2}, \forall f \in L^{p_2}(\Omega).$$

证明. 由 Hölder 不等式知

$$\begin{split} \forall f \in L^{p_2}(\Omega), \|f\|_{p_1} &= \|f \cdot 1\|_{p_1} \le \|f\|_{p_2} \|1\|_r \qquad \sharp \dot{\overline{\tau}} \frac{1}{r} = \frac{1}{p_1} - \frac{1}{p_2} \\ &= \|f\|_{p_2} \left(\int_{\Omega} 1^r \mathrm{d}m \right)^{1/r} = \|f\|_{p_2} \, m(\Omega)^{\frac{1}{p_1} - \frac{1}{p_2}} \end{split}$$

从而不等式得证, 且右端有限, 故左端有限, 即 $f \in L^{p_1}(\Omega), L^{p_2}(\Omega) \subset L^{p_1}(\Omega)$.

11 域 \mathbb{K} 上的 Hilbert 空间 H 中有可数规范正交集合 $\{e_n\}_{n=1}^{\infty}$, 证明 Bessel 不等式 $\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \le ||x||^2$, $\forall x \in H$.

证明. 从 $\{e_n\}_{n=1}^{\infty}$ 中取有限集 $\{e_i\}_{i\in I}$, 则有

$$0 \le \left\| x - \sum_{i \in I} \left\langle x, e_i \right\rangle e_i \right\|^2 = \left\langle x - \sum_{i \in I} \left\langle x, e_i \right\rangle e_i, x - \sum_{i \in I} \left\langle x, e_i \right\rangle e_i \right\rangle = \left\| x \right\|^2 - 2 \sum_{i \in I} \left| \left\langle x, e_i \right\rangle \right|^2 + \sum_{i, j \in I} \left\langle x, e_i \right\rangle \left\langle e_i, e_j \right\rangle$$
$$= \left\| x \right\|^2 - 2 \sum_{i \in I} \left| \left\langle x, e_i \right\rangle \right|^2 + \sum_{i \in I} \left| \left\langle x, e_i \right\rangle \right|^2 = \left\| x \right\|^2 - \sum_{i \in I} \left| \left\langle x, e_i \right\rangle \right|^2$$

从而
$$\|x\|^2 \ge \sum_{i \in I} |\langle x, e_i \rangle|^2$$
,因此 $\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2$ 收敛且仍有 $\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \le \|x\|^2$.

12 非零实线性赋范空间 X 中有点列 $\{x_n\}_{n=1}^{\infty}$, $x_0 \in X - \{\theta\}$. (1) 证明 $\exists f \in X^*$, $f(x_0) = \|x_0\|$, $\|f\| = 1$. (2) 若 $\{x_n\}_{n=1}^{\infty}$ 在 X* 中弱收敛, 证明其弱极限唯一.

证明. (1) 取 X 的线性子空间 $X_0 = \mathrm{span}(x_0)$,定义线性泛函 $f_0: X_0 \to \mathbb{R}, \lambda x_0 \mapsto \lambda \|x_0\|$,则 $f_0(x_0) = \|x_0\|$, $\|f_0\| = x_0\|$ $\sup_{\lambda \neq 0} \frac{|\lambda ||x_0||}{\|\lambda x_0\|} = 1, \text{ 从而由 Hahn-Banach 定理知 } \exists f \in X^*, f|_{X_0} = f_0, f(x_0) = f_0(x_0) = \|x_0\|, \|f\| = \|f_0\| = 1.$

- (2) 若 $x_n \stackrel{w}{\to} y_1$ 且 $x_n \stackrel{w}{\to} y_2$, 则 $\forall f \in X^*, f(y_1) = \lim_{n \to \infty} f(x_n) = f(y_2), f(y_1 y_2) = 0$. 若 $y_1 y_2 \neq 0$, 则 $\exists f \in X^*, f(y_1 - y_2) = ||y_1 - y_2|| = 0$, 矛盾, 故 $y_1 = y_2$
- 13 Hilbert 空间 H 中有非零闭线性子空间 $Y,P:H\to Y$ 是正交投影算子. 证明 $(1)Y^{\perp\perp}=Y.(2)||P||=1$.

证明. (1) 一方面 $y \in Y, y \perp Y^{\perp}$, 故 $y \in Y^{\perp \perp}, Y \subset Y^{\perp \perp}$. 另一方面考虑 Y 上的正交分解 $X = Y \oplus Y^{\perp}$, 则 $\forall x \in Y \oplus Y^{\perp}$

$$Y^{\perp\perp}, x = Px + Qx, Px \in Y \subset Y^{\perp\perp}, Qx \in Y^{\perp}. \text{ fi } Qx = x - Px \in Y^{\perp\perp}, \text{ 从而 } Qx = 0, x = Px \in Y, Y^{\perp\perp} \subset Y.$$

$$(2) \text{ 由 } \forall y \in Y - \{\theta\}, Py = y \text{ 知 } \|P\| \ge \frac{\|Py\|}{\|y\|} = 1, \text{ 另一方面 } \|P\| = \sup_{x \neq 0} \frac{\|Px\|}{\|x\|} = \sup_{x \neq 0} \frac{\|Px\|}{\sqrt{\|Px\|^2 + \|x - Px\|^2}} \le 1,$$
从而 $\|P\| = 1$.

14 X,Y 分别是域 \mathbb{K} 上的 Banach 空间和线性赋范空间, $T \in \mathcal{L}(X,Y)$. 若 $\exists M > 0 \forall x \in X, \|Tx\| \geq M \|x\|$. 证明 $R(T) = \{Tx | x \in X\}$ 是 Y 的闭线性子空间.

证明. 取 $\forall x \in \ker T, 0 = \|Tx\| \ge M \|x\|$ 知 x = 0, T 是单射,故 $T : X \to R(T)$ 是双射,其有逆映射 $T^{-1} : R(T) \to X$,其是线性映射,且 $\forall y \in R(T) \exists ! x \in X, Tx = y, \|T^{-1}\| = \sup_{y \in R(T) - \{0\}} \frac{\|T^{-1}y\|}{\|y\|} = \sup_{y \in R(T) - \{0\}} \frac{\|x\|}{\|Tx\|} \le M$,故 T^{-1} 是连续线 性映射, 从而 $R(T) = T(X) = (T^{-1})^{-1}(X)$ 是闭集, 显然 R(T) 是线性子空间, 故得证.

15 用闭图像定理证明 Banach 逆算子定理.

闭图像定理: 对于 Banach 空间 X,Y 之间的线性映射 $T \in \mathcal{L}(X,Y)$, T 连续 $\iff T$ 是闭线性算子, 即 $G(T) = \{(x,Tx) \in X \times Y | x \in X\}$ 是 $X \times Y$ 中闭集.

Banach 逆算子定理: Banach 空间 X,Y 之间的双射连续线性映射 $T:X\to Y$ 的逆映射 $T^{-1}:Y\to X$ 是连续线性映射.

证明.考虑双射连续线性映射 $T: X \to Y$,其逆映射 T^{-1} 同样是线性映射,由闭图像定理知 T^{-1} 连续 $\iff G(T^{-1}) = \{(y,T^{-1}y) \in Y \times X | y \in Y\}$ 是闭集.考虑 $G(T^{-1})$ 中收敛列 $\{(y_n,T^{-1}y_n)\}_{n=1}^{\infty}, (y_n,T^{-1}y_n) \to (y_0,x_0) \in Y \times X,$ 即 $y_n \to y_0, T^{-1}y_n \to x_0$,由 T 连续知 $Tx_0 = T\left(\lim_{n \to \infty} T^{-1}y_n\right) = \lim_{n \to \infty} TT^{-1}y_n = y_0$,故 $(y_0,x_0) = (y_0,T^{-1}y_0) \in G(T^{-1})$,即 $G(T^{-1})$ 闭,得证.

真题 2 线性赋范空间 X 中有紧集 A 与闭集 B, 证明 A+B 是闭集.

真题 5 Ω 是 \mathbb{R}^n 中 Lebesgue 可测集.(1) 任取 $1 \leq p < q < \infty$, 证明 $L^{\infty}(\Omega) \cap L^p(\Omega) \subset L^q(\Omega)$.

- (3) 若 $f \in \bigcap_{1 \le p \le \infty} L^p(\Omega)$ 且 $\exists C > 0 \forall p \in [1, \infty), \|f\| \le C$, 证明 $f \in L^\infty(\Omega)$.

2 群

2.1 群作用与 Sylow 定理

类数公式 群 G 作用在集合 S 上有 $|S| = |Z| + \sum_{a \in A} [G:G_a]$, 其中 $Z = \{x \in S | \forall g \in G, g \cdot x = x\}$ 是稳定点集合, G_a 是 a 的稳定子,A 是轨道非平凡元素. 考虑群 G 共轭作用于自身,则有类公式 $|G| = |C(G)| + \sum_{G \in A} [G:C_G(a)]$.

关于 *p*-群的引理 若 G 是 p-群,则由 $p|[G:G_a]||G|$ 知 $|Z|\equiv |S| \bmod p$, 对于共轭作用即 $|C(G)|\equiv 0 \bmod p$. 而 $e\in C(G), |C(G)|\geq 1$, 故 $|C(G)|\geq p$, 即 p-群中心非平凡.

若有限 G 有 p-子群 H, 则考虑 H 在左陪集 $G/_{1}H = \{gH|g \in G\}$ 上的左平移作用, 其稳定点

$$Z = \{gH | \forall h \in H, g^{-1}hg \in H\} = \{gH | g \in N_G(H)\} = N_G(H)/H$$

故 $[N_G(H):H]=|Z|\equiv |G/_lH|=[G:H] \mod p$. 从而若 $p|[G:H] 则 p|[N_G(H):H]\geq 1, N_G(H)\geq H$.

Cauchy **定理** G 是有限群,|G| 有素因子 p, 则 G 中总有 p 阶元.

证明 (James McKay). 考虑 $S = \{(a_1, \dots, a_p) | a_i \in G, a_1 \dots a_p = e\}$, 由 a_p 由前元素唯一决定,故 $|S| = |G|^{p-1} \equiv 0 \mod p$. 令 \mathbb{Z}/p 循环作用于 S 上,即 $m \cdot (a_1, \dots, a_p) = (a_{m+1}, \dots, a_p, a_1, \dots, a_m) \in S$ (容易验证 ab = e 则 ba = e),显然该作用的稳定点 $Z = \{(a, \dots, a) | a \in G\}$,且有 $|Z| \equiv |S| \equiv 0 \mod p$,而 $e \in Z$, $|Z| \ge 1$,故有 $a \ne e$, $a^p = e$.

Sylow 第一定理 G 为有限群, 则对 |G| 的任意素因子 p, G 总含 Sylow p-子群.G 中的 Sylow p-子群 P 即 P < G 为 p-群且 p 与 [G:P] 互素, 即 G 中的极大 p-子群. 换言之, $|G| = p^r m$, $|P| = p^r$, $\gcd(p,m) = 1$.

定理的等价 (由 p-群性质) 描述为:G 为 $p^n m$ 阶群 (p 为素数且与 m 互素), 则对 $k \in [n]$ 总有 p^k 阶子群, 且该子群是某个 p^{k+1} 阶子群的正规子群.

证明. 首先由 Cauchy 定理,G 中总含 p 阶子群. 下对 k 归纳证明: 若 H 是 G 的 p^k 阶子群 (k < n),则 $0 \equiv [G:H] \equiv [N_G(H):H] \bmod p$,后项非 0 故 $N_G(H) \neq H$,且 $N_G(H)/H$ 也含 p 阶子群,记为 H_1/H ,从而 $H \triangleright H_1$, $|H_1| = |H| |H_1/H| = p^{k+1}$.

Sylow 第二定理 P 是有限群 G 中的 Sylow p-子群,H < G 是 p-子群, 则 H 在 P 的某个共轭中, 即 $H < gPg^{-1}$. 特别的,G 的 Sylow p-子群间互相共轭.

证明. 令 H 左乘作用于 G/LP 上,作用不动点集的势 $|Z| \equiv [G:P] \not\equiv 0 \bmod p$,故有作用不动点 $aP, a^{-1}ha \in P(\forall h \in H), H < aPa^{-1}$.

Sylow 第三定理 G 为有限群, $|G|=p^nm$, 其中 p 为素数且与 m 互素, 则 G 中的 Sylow p-子群数量 $N_p|m$ 且 $N_p\equiv 1 \bmod p$.

证明. G 在 $\mathcal{P}(G)$ 上的共轭作用中,任意 Sylow p-子群 P 所在的轨道即 G 中所有 Sylow p-子群构成的集合,而 P 的稳定子为 $N_G(P)$. 故由轨道-稳定子定理知 G 中 Sylow p-子群的数量为 $N_p = [G:N_G(P)]|[G:P] = m$. 而 $m = [G:P] \equiv [N_G(P):P] \mod p$, 因此 $mN_p \equiv m \mod p$, 故由 $m \perp p$ 得 $N_p \equiv 1 \mod p$.

2.2 可解群

G 为可解群: 存在有限长可解列 $G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_n = \{e\}$, G_i/G_{i+1} 为非平凡交换群, 其等价于存在循环列, 即 $G_i/G_{i+1} \cong \mathbb{Z}/p$. 从而所有 p-群均可解.

- 四面体群 $D_4 = \langle a, b | a^4 = b^2 = a^3bab = e \rangle$ 可解: 注意到 Klein 群 $K_4 \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2 \cong \{e, a^2, b, a^2b\} \triangleright D_4$, 从而有可解列 $D_4 \triangleright K \triangleright \{e\}$.
- 对称群 S_3 可解: S_3 ▷ $A_3 = \{(1), (123), (132)\}$ ▷ $\{(1)\}$.

• 对称群 S_4 可解: $S_4 \triangleright A_4 \triangleright \{(1), (12)(34), (13)(24), (14)(23)\} \cong K_4 \triangleright \{e\}$.

3 环

3.1 素元与不可约元

- 素理想 $P \le R : ab \in P \implies a \in P \lor b \in P($ 对理想也成立), 等价于 R/P 是整环.
- 极大理想 $M \leq R$: 不存在含 M 的真理想, 等价于 R/M 是域.
- 极大理想都是素理想, PID 中极大理想 = 非零素理想.2
- $a|b \iff (a) \supset (b)$.
- p 是素元即 $p|ab \implies p|a \vee p|b$, 等价于 (p) 为素理想.
- m 为不可约元即 $m = ab \implies a = 1 \lor b = 1$, 等价于 (m) 为主理想中极大理想.
- 不可约元都是素元, UFD 中素元也是不可约元.

3.2 UFD, PID 和 Euclid 环

UFD 的等价条件 $R \in UFD \iff R$ 中主理想满足升链条件, 且不可约元均为素元.

PID 是 UFD

3.3 中国剩余定理 (CRT)

4 模

- 4.1 图追踪法
- 4.2 有限生成交换群的结构
- 4.3 Jordan 标准型的存在性
- 5 域
- 5.1 尺规作图
- 5.2 有限域的结构与构造

 $^{^{1}}$ 由于 S_n 中轮换 $\sigma = (a_1, \cdots, a_k)$ 的共轭 $\tau \sigma \tau^{-1} = (a_1 \tau^{-1}, \cdots, a_k \tau^{-1})$, 从而 S_n 中置换共轭等价于置换的类 type 相同. 而 S_4 中所有类为 [2, 2] 的置换生成的群即为 K_4 .

⁽a) 是非零素理想, 若有 (a) (b) 则有 $a = bc.b \in (a)$ 则 $(b) = (a); c \in (a)$ 则 $c = da, a = bda, bd = 1 \in (b) = R$.