Comparison of Continuum and Atomistic Models for Chemical Diffusion and Phase Separation

Isaac Viviano

June 26, 2024

Diffusion

Phase Separation

quantified by order parameter

Modeling Approaches

Continuum Model: Differential Equations

Order parameter is a continuous quantity:

$$u \colon \Omega \times (0, \infty) \to [-1, 1], \quad u \in \mathcal{C}^2$$
 (1)

- Order parameter satisfies a single differential equation based on physical laws
- OUTPUT

Atomistic Model: Molecular Dynamics

- Collection of discrete classical particles
- Approximate interparticle forces are used to simulate Hamiltonian dynamics
- Generates trajectory of each particle

Model Type Comparison

Estimating the order parameter from molecular dynamics trajectory

Heat Equation

The heat (or diffusion) equation with initial condition $u_0(x)$ and periodic boundary conditions

$$\begin{cases} \frac{\partial u}{\partial t} = D\nabla^2 u & x \in \Omega, t > 0 \\ u\big|_{x_i=0} = u\big|_{x_i=1} & 1 \le i \le d \\ u_{x_i}\big|_{x_i=0} = u_{x_i}\big|_{x_i=1} & 1 \le i \le d \\ u(x,0) = u_0(x) & x \in \Omega \end{cases}$$
(2)

Allen-Cahn Equation

The Allen-Cahn equation with initial condition $v_0(x)$ and periodic boundary conditions

$$\begin{cases} \frac{\partial v}{\partial t} = \gamma \nabla^2 v - \phi(v) & x \in \Omega, t > 0 \\ v|_{x_i=0} = v|_{x_i=1} & 1 \le i \le d \\ v_{x_i}|_{x_i=0} = v_{x_i}|_{x_i=1} & 1 \le i \le d \\ v(x,0) = v_0(x) & x \in \Omega \end{cases}$$
(3)

Cahn-Hilliard Equation

The Cahn-Hilliard equation with initial condition $c_0(x)$ and periodic boundary conditions

Gradient Flow

Each equation we model can be viewed as the gradient flow of an energy functional F:

$$\frac{\partial u}{\partial t} = -\frac{\partial F}{\partial u} \tag{4}$$

where $F: L^2(\Omega) \to \mathbb{R}$ for (??) and (??). For (??), $F: H^{-1}(\Omega) \to \mathbb{R}$. The energy functionals are

$$F(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 \, \mathrm{d}x \tag{5}$$

for diffusion and

$$F(v) = M \int_{\Omega} \psi(v) + \frac{\gamma}{2} |\nabla v|^2 dx$$
 (6)

for phase separation.

The function ψ (??) is a double-well free energy function:

$$psi(v) = \frac{1}{4}(v^2 - 1)^2 \tag{7}$$

double_well_pot.png

Ideal Gas

Leonard-Jones Potential

- Efficient and accurate model for pairiwise London Dispersion interparticle forces
- Parameters describe equilibrium distance and well depth
- Generally implemented with range cutoff

6-12 Leonard-Jones potential:

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \quad r < r_{c}$$
 (8)

Leonard-Jones Fluid

Difference Equations

Descretization of the domain:

Divide

Stability

Stability conditions

Convergence

Temporary page!

LATEX was unable to guess the total number of pages correctly.

there was some unprocessed data that should have been added

the final page this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page

will go away, because LATEX now knows how many pages to expense.

for this document.