

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12N 15/12, C07K 14/47, 16/18, 19/00, C12N 15/62, A61K 38/17, 39/395, 48/00, C12N 5/08, G01N 33/574, C12Q 1/68		A2	(11) International Publication Number: WO 00/61753 (43) International Publication Date: 19 October 2000 (19.10.00)
(21) International Application Number: PCT/US00/09312			
(22) International Filing Date: 7 April 2000 (07.04.00)			
(30) Priority Data: 09/289,198 9 April 1999 (09.04.99) US 09/429,755 28 October 1999 (28.10.99) US 09/534,825 23 March 2000 (23.03.00) US			
(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).			
(72) Inventors: FRUDAKIS, Tony, N.; 7937 Broadmoor Pines Boulevard, Sarasota, FL 34243 (US). SMITH, John, M.; 208 – 116th Place S.E., Everett, WA 98208 (US). REED, Steven, G.; 2843 – 122nd Place N.E., Bellevue, WA 98005 (US). MISHER, Lynda, E.; 6251 53rd Avenue N.E., Seattle, WA 98115 (US). RETTER, Marc, W.; 33402 N.E. 43rd Place, Carnation, WA 98014 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US).			
(74) Agents: POTTER, Jane, E., R.; Seed Intellectual Property Law Group PLLC, Suite 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 (US) et al.			

(54) Title: COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER

cDNA PREPARED FROM
NORMAL BREAST TISSUE
FROM THE SAME PATIENT

cDNA PREPARED
FROM BREAST TUMOR

(57) Abstract

Compositions and methods for the detection and therapy of breast cancer are disclosed. The compounds provided include nucleotide sequences that are preferentially expressed in breast tumor tissue, as well as polypeptides encoded by such nucleotide sequences. Vaccines and pharmaceutical compositions comprising such compounds are also provided and may be used, for example, for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of antibodies, which are useful for diagnosing and monitoring the progression of breast cancer in a patient.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER

TECHNICAL FIELD

The present invention relates generally to the detection and therapy of breast cancer. The invention is more specifically related to nucleotide sequences that are preferentially expressed in breast tumor tissue and to polypeptides encoded by such nucleotide sequences. The nucleotide sequences and polypeptides may be used in vaccines and pharmaceutical compositions for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of compounds, such as antibodies, useful for diagnosing and monitoring the progression of breast cancer in a patient.

BACKGROUND OF THE INVENTION

Breast cancer is a significant health problem for women in the United States and throughout the world. Although advances have been made in detection and treatment of the disease, breast cancer remains the second leading cause of cancer-related deaths in women, affecting more than 180,000 women in the United States each year. For women in North America, the life-time odds of getting breast cancer are now one in eight.

No vaccine or other universally successful method for the prevention or treatment of breast cancer is currently available. Management of the disease currently relies on a combination of early diagnosis (through routine breast screening procedures) and aggressive treatment, which may include one or more of a variety of treatments such as surgery, radiotherapy, chemotherapy and hormone therapy. The course of treatment for a particular breast cancer is often selected based on a variety of prognostic parameters, including an analysis of specific tumor markers. See, e.g., Porter-Jordan and Lippman, *Breast Cancer* 8:73-100 (1994). However, the use of established markers often leads to a result that is difficult to interpret, and the high mortality observed in

breast cancer patients indicates that improvements are needed in the treatment, diagnosis and prevention of the disease.

Accordingly, there is a need in the art for improved methods for therapy and diagnosis of breast cancer. The present invention fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

Briefly stated, the subject invention provides compositions and methods for the diagnosis and therapy of breast cancer. In one aspect, isolated polynucleotides are provided, comprising (a) a nucleotide sequence preferentially expressed in breast cancer tissue, relative to normal tissue; (b) a variant of such a sequence, as defined below; or (c) a nucleotide sequence encoding an epitope of a polypeptide encoded by at least one of the above sequences. In one embodiment, the isolated polynucleotide comprises a human endogenous retroviral sequence recited in SEQ ID NO:1. In other embodiments, the isolated polynucleotide comprises a sequence recited in any one of SEQ ID NO: 3-15 26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317.

In related embodiments, the isolated polynucleotide encodes an epitope of
20 a polypeptide, wherein the polypeptide is encoded by a nucleotide sequence that: (a)
hybridizes to a sequence recited in any one of SEQ ID NO: 1, 3-26, 28-77, 142, 143,
146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218,
219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276,
278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 under stringent
25 conditions; and (b) is at least 80% identical to a sequence recited in any one of SEQ ID
NO: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204,
206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266,
268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314,
316 and 317.

In another embodiment, the present invention provides an isolated polynucleotide encoding an epitope of a polypeptide, the polypeptide being encoded by:

(a) a nucleotide sequence transcribed from the sequence of SEQ ID NO: 141; or (b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, 5 deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained. Isolated DNA and RNA molecules comprising a nucleotide sequence complementary to a polynucleotide as described above are also provided.

10 In related aspects, the present invention provides recombinant expression vectors comprising a polynucleotide as described above and host cells transformed or transfected with such expression vectors.

15 In further aspects, polypeptides comprising an amino acid sequence encoded by a polynucleotide as described above, and monoclonal antibodies that bind to such polypeptides are provided. In certain embodiments, the inventive polypeptides comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 299, 300, 304-306, 308 and 315, and variants thereof as defined below.

20 In yet another aspect, methods are provided for determining the presence of breast cancer in a patient. In one embodiment, the method comprises detecting, within a biological sample, a polypeptide as described above. In another embodiment, the method comprises detecting, within a biological sample, an RNA molecule encoding a polypeptide as described above. In yet another embodiment, the method comprises (a) intradermally injecting a patient with a polypeptide as described above; and (b) detecting 25 an immune response on the patient's skin and therefrom detecting the presence of breast cancer in the patient. In further embodiments, the present invention provides methods for determining the presence of breast cancer in a patient as described above wherein the polypeptide is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and 30 sequences that hybridize thereto under stringent conditions.

In a related aspect, diagnostic kits useful in the determination of breast cancer are provided. The diagnostic kits generally comprise either one or more monoclonal antibodies as described above, or one or more monoclonal antibodies that bind to a polypeptide encoded by a nucleotide sequence selected from the group consisting of sequences provided in SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 and 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and a detection reagent.

Diagnostic kits are also provided that comprise a first polymerase chain reaction primer and a second polymerase chain reaction primer, at least one of the primers being specific for a polynucleotide described herein. In one embodiment, at least one of the primers comprises at least about 10 contiguous nucleotides of a polynucleotide as described above, or a polynucleotide encoding a polypeptide encoded by a sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.

Within another related aspect, the diagnostic kit comprises at least one oligonucleotide probe, the probe being specific for a polynucleotide described herein. In one embodiment, the probe comprises at least about 15 contiguous nucleotides of a polynucleotide as described above, or a polynucleotide selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.

In another related aspect, the present invention provides methods for monitoring the progression of breast cancer in a patient. In one embodiment, the method comprises: (a) detecting an amount, in a biological sample, of a polypeptide as described above at a first point in time; (b) repeating step (a) at a subsequent point in time; and (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient. In another embodiment, the method comprises (a) detecting an amount, within a biological sample, of an RNA molecule encoding a polypeptide as described above at a first point in time; (b) repeating

step (a) at a subsequent point in time; and (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient. In yet other embodiments, the present invention provides methods for monitoring the progression of breast cancer in a patient as described above wherein the 5 polypeptide is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.

In still other aspects, pharmaceutical compositions, which comprise a 10 polypeptide as described above in combination with a physiologically acceptable carrier, and vaccines, which comprise a polypeptide as described above in combination with an immunostimulant or adjuvant, are provided. In yet other aspects, the present invention provides pharmaceutical compositions and vaccines comprising a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 15 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 and 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.

In related aspects, the present invention provides methods for inhibiting 20 the development of breast cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as described above.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

25 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the differential display PCR products, separated by gel electrophoresis, obtained from cDNA prepared from normal breast tissue (lanes 1 and 2) and from cDNA prepared from breast tumor tissue from the same patient (lanes 3 and 4). The arrow indicates the band corresponding to B18Ag1.

Figure 2 is a northern blot comparing the level of B18Ag1 mRNA in breast tumor tissue (lane 1) with the level in normal breast tissue.

Figure 3 shows the level of B18Ag1 mRNA in breast tumor tissue compared to that in various normal and non-breast tumor tissues as determined by RNase 5 protection assays.

Figure 4 is a genomic clone map showing the location of additional retroviral sequences obtained from ends of XbaI restriction digests (provided in SEQ ID NO:3 - SEQ ID NO:10) relative to B18Ag1.

Figures 5A and 5B show the sequencing strategy, genomic organization 10 and predicted open reading frame for the retroviral element containing B18Ag1.

Figure 6 shows the nucleotide sequence of the representative breast tumor-specific cDNA B18Ag1.

Figure 7 shows the nucleotide sequence of the representative breast tumor-specific cDNA B17Ag1.

Figure 8 shows the nucleotide sequence of the representative breast 15 tumor-specific cDNA B17Ag2.

Figure 9 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag2a.

Figure 10 shows the nucleotide sequence of the representative breast 20 tumor-specific cDNA B13Ag1b.

Figure 11 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag1a.

Figure 12 shows the nucleotide sequence of the representative breast tumor-specific cDNA B11Ag1.

Figure 13 shows the nucleotide sequence of the representative breast 25 tumor-specific cDNA B3CA3c.

Figure 14 shows the nucleotide sequence of the representative breast tumor-specific cDNA B9CG1.

Figure 15 shows the nucleotide sequence of the representative breast 30 tumor-specific cDNA B9CG3.

Figure 16 shows the nucleotide sequence of the representative breast tumor-specific cDNA B2CA2.

Figure 17 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA1.

5 Figure 18 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA2.

Figure 19 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA3.

10 Figure 20 shows the nucleotide sequence of the representative breast tumor-specific cDNA B4CA1.

Figure 21A depicts RT-PCR analysis of breast tumor genes in breast tumor tissues (lanes 1-8) and normal breast tissues (lanes 9-13) and H₂O (lane 14).

15 Figure 21B depicts RT-PCR analysis of breast tumor genes in prostate tumors (lane 1, 2), colon tumors (lane 3), lung tumor (lane 4), normal prostate (lane 5), normal colon (lane 6), normal kidney (lane 7), normal liver (lane 8), normal lung (lane 9), normal ovary (lanes 10, 18), normal pancreases (lanes 11, 12), normal skeletal muscle (lane 13), normal skin (lane 14), normal stomach (lane 15), normal testes (lane 16), normal small intestine (lane 17), HBL-100 (lane 19), MCF-12A (lane 20), breast tumors (lanes 21-23), H₂O (lane 24), and colon tumor (lane 25).

20 Figure 22 shows the recognition of a B11Ag1 peptide (referred to as B11-8) by an anti-B11-8 CTL line.

Figure 23 shows the recognition of a cell line transduced with the antigen B11Ag1 by the B11-8 specific clone A1.

25 Figure 24 shows recognition of a lung adenocarcinoma line (LT-140-22) and a breast adenocarcinoma line (CAMA-1) by the B11-8 specific clone A1.

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the diagnosis, monitoring and therapy of breast cancer. The compositions described herein include polypeptides, polynucleotides and antibodies.

Polypeptides of the present invention generally comprise at least a portion of a protein that is expressed at a greater level in human breast tumor tissue than in normal breast tissue (*i.e.*, the level of RNA encoding the polypeptide is at least 2-fold higher in tumor tissue). Such polypeptides are referred to herein as breast tumor-specific polypeptides, 5 and cDNA molecules encoding such polypeptides are referred to as breast tumor-specific cDNAs. Polynucleotides of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of a polypeptide as described above, or that is complementary to such a sequence. Antibodies are generally immune system proteins, or fragments thereof, that are capable of binding to a portion of a polypeptide as 10 described above. Antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies.

Polypeptides within the scope of this invention include, but are not limited to, polypeptides (and epitopes thereof) encoded by a human endogenous retroviral sequence, such as the sequence designated B18Ag1 (Figure 5 and SEQ ID NO:1). Also within the scope of the present invention are polypeptides encoded by other sequences within the retroviral genome containing B18Ag1 (SEQ ID NO: 141). Such sequences include, but are not limited to, the sequences recited in SEQ ID NO:3 - SEQ 20 ID NO:10. B18Ag1 has homology to the *gag* p30 gene of the endogenous human retroviral element S71, as described in Werner et al., *Virology* 174:225-238 (1990) and also shows homology to about thirty other retroviral *gag* genes. As discussed in more detail below, the present invention also includes a number of additional breast tumor-specific polypeptides, such as those encoded by the nucleotide sequences recited in SEQ 25 ID NO: 11-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317.

As used herein, the term "polypeptide" encompasses amino acid chains of 30 any length, including full length proteins containing the sequences recited herein. A

polypeptide comprising an epitope of a protein containing a sequence as described herein may consist entirely of the epitope, or may contain additional sequences. The additional sequences may be derived from the native protein or may be heterologous, and such sequences may (but need not) possess immunogenic or antigenic properties.

5 An "epitope," as used herein is a portion of a polypeptide that is recognized (*i.e.*, specifically bound) by a B-cell and/or T-cell surface antigen receptor. Epitopes may generally be identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides derived
10 from the native polypeptide for the ability to react with antigen-specific antisera and/or T-cell lines or clones. An epitope of a polypeptide is a portion that reacts with such antisera and/or T-cells at a level that is similar to the reactivity of the full length polypeptide (*e.g.*, in an ELISA and/or T-cell reactivity assay). Such screens may generally be performed using methods well known to those of ordinary skill in the art,
15 such as those described in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. B-cell and T-cell epitopes may also be predicted via computer analysis. Polypeptides comprising an epitope of a polypeptide that is preferentially expressed in a tumor tissue (with or without additional amino acid sequence) are within the scope of the present invention.

20 The term "polynucleotide(s)," as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains
25 introns and corresponds to a DNA molecule in a generally one-to-one manner. An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes
30 all such operable anti-sense fragments.

The compositions and methods of the present invention also encompass variants of the above polypeptides and polynucleotides.

A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained. In a preferred embodiment, variant polypeptides differ from an identified sequence by substitution, deletion or addition of five amino acids or fewer. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity (determined as described below) to the identified polypeptides.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A nucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or

additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (*DNA*, 2:183, 1983). Nucleotide variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity (determined as described below) to the recited sequence.

The breast tumor antigens provided by the present invention include variants that are encoded by DNA sequences which are substantially homologous to one or more of the DNA sequences specifically recited herein. "Substantial homology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

Two nucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment

schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins – Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) 5 Unified Approach to Alignment and Phylogenies pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) Fast and sensitive multiple sequence alignments on a microcomputer *CABIOS* 5:151-153; Myers, E.W. and Muller W. (1988) Optimal alignments in linear space *CABIOS* 4:11-17; Robinson, E.D. (1971) *Comb. Theor* 11:105; Santou, N. Nes, M. (1987) The 10 neighbor joining method. A new method for reconstructing phylogenetic trees *Mol. Biol. Evol.* 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy – the Principles and Practice of Numerical Taxonomy*, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Rapid similarity searches of nucleic acid and protein data banks *Proc. Natl. Acad. Sci. USA* 80:726-730.

15 Preferably, the “percentage of sequence identity” is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e. gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences 20 (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the 25 results by 100 to yield the percentage of sequence identity. In general, polynucleotides encoding all or a portion of the polypeptides described herein may be prepared using any of several techniques. For example, cDNA molecules encoding such polypeptides may be cloned on the basis of the breast tumor-specific expression of the corresponding mRNAs, using differential display PCR. This technique compares the amplified 30 products from RNA template prepared from normal and breast tumor tissue. cDNA may

be prepared by reverse transcription of RNA using a (dT)₁₂AG primer. Following amplification of the cDNA using a random primer, a band corresponding to an amplified product specific to the tumor RNA may be cut out from a silver stained gel and subcloned into a suitable vector (e.g., the T-vector, Novagen, Madison, WI).
5 Polynucleotides encoding all or a portion of the breast tumor-specific polypeptides disclosed herein may be amplified from cDNA prepared as described above using the random primers shown in SEQ ID NO.:87-125.

Alternatively, a polynucleotide encoding a polypeptide as described herein (or a portion thereof) may be amplified from human genomic DNA, or from breast 10 tumor cDNA, via polymerase chain reaction. For this approach, B18Ag1 sequence-specific primers may be designed based on the sequence provided in SEQ ID NO:1, and may be purchased or synthesized. One suitable primer pair for amplification from breast tumor cDNA is (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO:126) and (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO:127). An amplified portion of 15 B18Ag1 may then be used to isolate the full length gene from a human genomic DNA library or from a breast tumor cDNA library, using well known techniques, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1989). Other sequences within the retroviral genome of which B18Ag1 is a part may be similarly prepared by screening 20 human genomic libraries using B18Ag1-specific sequences as probes. Nucleotides translated into protein from the retroviral genome shown in SEQ ID NO: 141 may then be determined by cloning the corresponding cDNAs, predicting the open reading frames and cloning the appropriate cDNAs into a vector containing a viral promoter, such as T7. The resulting constructs can be employed in a translation reaction, using techniques 25 known to those of skill in the art, to identify nucleotide sequences which result in expressed protein. Similarly, primers specific for the remaining breast tumor-specific polypeptides described herein may be designed based on the nucleotide sequences provided in SEQ ID NO:11-86, 142-298, 301-303, 307, 313, 314, 316 and 317.

Recombinant polypeptides encoded by the DNA sequences described 30 above may be readily prepared from the DNA sequences. For example, supernatants

from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps 5 can be employed to further purify a recombinant polypeptide.

In general, any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide that 10 encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line such as COS or CHO.

Such techniques may also be used to prepare polypeptides comprising epitopes or variants of the native polypeptides. For example, variants of a native 15 polypeptide may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis, and sections of the DNA sequence may be removed to permit preparation of truncated polypeptides. Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to 20 those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, *J. Am. Chem. Soc.* 85:2149-2146 (1963). Equipment for automated synthesis of polypeptides is commercially available from suppliers such as 25 Perkin Elmer/Applied BioSystems Division, Foster City, CA, and may be operated according to the manufacturer's instructions.

In specific embodiments, polypeptides of the present invention encompass amino acid sequences encoded by a polynucleotide having a sequence recited in any one of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 30 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255,

257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307,
313, 314, 316 and 317, and variants of such polypeptides. Polypeptides within the scope
of the present invention also include polypeptides (and epitopes thereof) encoded by
DNA sequences that hybridize to a sequence recited in any one of SEQ ID NO:1, 3-26,
5 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-
214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-
273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317
under stringent conditions, wherein the DNA sequences are at least 80% identical in
overall sequence to a recited sequence and wherein RNA corresponding to the nucleotide
10 sequence is expressed at a greater level in human breast tumor tissue than in normal
breast tissue. As used herein, "stringent conditions" refers to prewashing in a solution of
6X SSC, 0.2% SDS; hybridizing at 65°C, 6X SSC, 0.2% SDS overnight; followed by
two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65°C and two washes of 30
minutes each in 0.2 X SSC, 0.1% SDS at 65°C. Polynucleotides according to the present
15 invention include molecules that encode any of the above polypeptides.

In another aspect of the present invention, antibodies are provided. Such
antibodies may be prepared by any of a variety of techniques known to those of ordinary
skill in the art. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold
Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the
20 polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats,
rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the
immunogen without modification. Alternatively, particularly for relatively short
polypeptides, a superior immune response may be elicited if the polypeptide is joined to
a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The
25 immunogen is injected into the animal host, preferably according to a predetermined
schedule incorporating one or more booster immunizations, and the animals are bled
periodically. Polyclonal antibodies specific for the polypeptide may then be purified
from such antisera by, for example, affinity chromatography using the polypeptide
coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, *Eur. J. Immunol.* 6:511-519 (1976), and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (*i.e.*, reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Antibodies may be used, for example, in methods for detecting breast cancer in a patient. Such methods involve using an antibody to detect the presence or absence of a breast tumor-specific polypeptide as described herein in a suitable biological sample. As used herein, suitable biological samples include tumor or normal tissue biopsy, mastectomy, blood, lymph node, serum or urine samples, or other tissue, homogenate, or extract thereof obtained from a patient.

There are a variety of assay formats known to those of ordinary skill in the art for using an antibody to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. For example, the assay may be performed in a Western blot format, wherein a protein preparation from the biological sample is submitted to gel electrophoresis, transferred to a suitable membrane and allowed to react with the antibody. The presence of the antibody on the membrane may then be detected using a suitable detection reagent, as described below.

In another embodiment, the assay involves the use of antibody immobilized on a solid support to bind to the polypeptide and remove it from the remainder of the sample. The bound polypeptide may then be detected using a second antibody or reagent that contains a reporter group. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized antibody after incubation of the antibody with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the antibody is indicative of the reactivity of the sample with the immobilized antibody, and as a result, indicative of the concentration of polypeptide in the sample.

The solid support may be any material known to those of ordinary skill in the art to which the antibody may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose filter or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

The antibody may be immobilized on the solid support using a variety of techniques known to those in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a

well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the antibody, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter 5 plate (such as polystyrene or polyvinylchloride) with an amount of antibody ranging from about 10 ng to about 1 μ g, and preferably about 100-200 ng, is sufficient to immobilize an adequate amount of polypeptide.

Covalent attachment of antibody to a solid support may also generally be achieved by first reacting the support with a bifunctional reagent that will react with both 10 the support and a functional group, such as a hydroxyl or amino group, on the antibody. For example, the antibody may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook (1991) at A12-A13).

15 In certain embodiments, the assay for detection of polypeptide in a sample is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the biological sample, such that the polypeptide within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from 20 the immobilized polypeptide-antibody complexes and a second antibody (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as 25 described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered 30 saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation

time) is that period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with breast cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will 5 recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, 10 which contains a reporter group, may then be added to the solid support. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of antibody to reporter group may be achieved using standard methods known to those of ordinary skill in the art.

15 The second antibody is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound second antibody is then removed and bound second antibody is detected using the reporter group. The method employed 20 for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter 25 groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of breast cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value established from non-tumor 30 tissue. In one preferred embodiment, the cut-off value is the average mean signal

obtained when the immobilized antibody is incubated with samples from patients without breast cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value may be considered positive for breast cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, p. 106-7 (Little Brown and Co., 1985). Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (*i.e.*, sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot 5 that is the closest to the upper left-hand corner (*i.e.*, the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the 10 false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is 15 considered positive for breast cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, the polypeptide within the sample bind to the immobilized 20 antibody as the sample passes through the membrane. A second, labeled antibody then binds to the antibody-polypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample 25 migrates along the membrane through a region containing second antibody and to the area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of breast cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, 30 the amount of antibody immobilized on the membrane is selected to generate a visually

discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1 µg, and more preferably from about 50 ng to about 1 µg. Such tests can typically be performed with a very small amount of biological sample.

The presence or absence of breast cancer in a patient may also be determined by evaluating the level of mRNA encoding a breast tumor-specific polypeptide as described herein within the biological sample (e.g., a biopsy, mastectomy and/or blood sample from a patient) relative to a predetermined cut-off value. Such an evaluation may be achieved using any of a variety of methods known to those of ordinary skill in the art such as, for example, *in situ* hybridization and amplification by polymerase chain reaction.

For example, polymerase chain reaction may be used to amplify sequences from cDNA prepared from RNA that is isolated from one of the above biological samples. Sequence-specific primers for use in such amplification may be designed based on the sequences provided in any one of SEQ ID NO: 1, 11-86, 142-298 301-303, 307, 313, 314, 316 and 317, and may be purchased or synthesized. In the case of B18Ag1, as noted herein, one suitable primer pair is B18Ag1-2 (5'ATG GCT ATT 20 TTC GGG GGC TGA CA) (SEQ ID NO:126) and B18Ag1-3 (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO:127). The PCR reaction products may then be separated by gel electrophoresis and visualized according to methods well known to those of ordinary skill in the art. Amplification is typically performed on samples obtained from matched pairs of tissue (tumor and non-tumor tissue from the same individual) or from unmatched pairs of tissue (tumor and non-tumor tissue from different individuals). The amplification reaction is preferably performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the tumor sample as compared to the same dilution of the non-tumor sample is considered positive.

As used herein, the term "primer/probe specific for a polynucleotide" means an oligonucleotide sequence that has at least about 80% identity, preferably at least about 90% and more preferably at least about 95%, identity to the polynucleotide in question, or an oligonucleotide sequence that is anti-sense to a sequence that has at least 5 about 80% identity, preferably at least about 90% and more preferably at least about 95%, identity to the polynucleotide in question. Primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the polymerase chain reaction primers comprise at least about 10 contiguous nucleotides of a polynucleotide that encodes one of 10 the polypeptides disclosed herein or that is anti-sense to a sequence that encodes one of the polypeptides disclosed herein. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a polynucleotide that encodes one of the polypeptides disclosed herein or that is anti-sense to a sequence that encodes one of the polypeptides disclosed herein. Techniques for both 15 PCR based assays and *in situ* hybridization assays are well known in the art.

Conventional RT-PCR protocols using agarose and ethidium bromide staining, while important in defining gene specificity, do not lend themselves to diagnostic kit development because of the time and effort required in making them quantitative (i.e., construction of saturation and/or titration curves), and their sample 20 throughput. This problem is overcome by the development of procedures such as real time RT-PCR which allows for assays to be performed in single tubes, and in turn can be modified for use in 96 well plate formats. Instrumentation to perform such methodologies are available from Perkin Elmer/Applied Biosystems Division. Alternatively, other high throughput assays using labeled probes (e.g., digoxigenin) in 25 combination with labeled (e.g., enzyme fluorescent, radioactive) antibodies to such probes can also be used in the development of 96 well plate assays.

In yet another method for determining the presence or absence of breast cancer in a patient, one or more of the breast tumor-specific polypeptides described may be used in a skin test. As used herein, a "skin test" is any assay performed directly on a 30 patient in which a delayed-type hypersensitivity (DTH) reaction (such as swelling,

reddening or dermatitis) is measured following intradermal injection of one or more polypeptides as described above. Such injection may be achieved using any suitable device sufficient to contact the polypeptide or polypeptides with dermal cells of the patient, such as a tuberculin syringe or 1 mL syringe. Preferably, the reaction is measured at least 48 hours after injection, more preferably 48-72 hours.

The DTH reaction is a cell-mediated immune response, which is greater in patients that have been exposed previously to a test antigen (*i.e.*, an immunogenic portion of a polypeptide employed, or a variant thereof). The response may be measured visually, using a ruler. In general, a response that is greater than about 0.5 cm in diameter, preferably greater than about 5.0 cm in diameter, is a positive response, indicative of breast cancer.

The breast tumor-specific polypeptides described herein are preferably formulated, for use in a skin test, as pharmaceutical compositions containing at least one polypeptide and a physiologically acceptable carrier, such as water, saline, alcohol, or a buffer. Such compositions typically contain one or more of the above polypeptides in an amount ranging from about 1 μ g to 100 μ g, preferably from about 10 μ g to 50 μ g in a volume of 0.1 mL. Preferably, the carrier employed in such pharmaceutical compositions is a saline solution with appropriate preservatives, such as phenol and/or Tween 80TM.

In other aspects of the present invention, the progression and/or response to treatment of a breast cancer may be monitored by performing any of the above assays over a period of time, and evaluating the change in the level of the response (*i.e.*, the amount of polypeptide or mRNA detected or, in the case of a skin test, the extent of the immune response detected). For example, the assays may be performed every month to every other month for a period of 1 to 2 years. In general, breast cancer is progressing in those patients in whom the level of the response increases over time. In contrast, breast cancer is not progressing when the signal detected either remains constant or decreases with time.

In further aspects of the present invention, the compounds described herein may be used for the immunotherapy of breast cancer. In these aspects, the

compounds (which may be polypeptides, antibodies or polynucleotides) are preferably incorporated into pharmaceutical compositions or vaccines. Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more such compounds in combination with an immunostimulant, such as an adjuvant or a liposome (into which the compound is incorporated). An immunostimulant may be any substance that enhances or potentiates an immune response (antibody and/or cell-mediated) to an exogenous antigen. Examples of immunostimulants include adjuvants, biodegradable microspheres (e.g., polylactic galactide) and liposomes (into which the compound is incorporated; *see e.g.*, Fullerton, U.S. Patent No. 4,235,877). Vaccine preparation is generally described in, for example, M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other tumor antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.

Alternatively, a vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated *in situ*. In such vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., *Science* 259:1745-1749 (1993), and reviewed by

Cohen, *Science* 259:1691-1692 (1993). The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

While any suitable carrier known to those of ordinary skill in the art may 5 be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, 10 glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention.

Any of a variety of immunostimulants may be employed in the vaccines 15 of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis* derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, 20 Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quill A. Cytokines, such as GM-CSF or interleukin-2, -7, or 25 -12, may also be used as adjuvants.

Within the vaccines provided herein, the adjuvant composition is 30 preferably designed to induce an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN- γ , TNF α , IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the

induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of 5 Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, *Ann. Rev. Immunol.* 7:145-173, 1989.

Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-10 acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Corixa Corporation (Seattle, WA; *see* US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555 15 and WO 99/33488. Immunostimulatory DNA sequences are also described, for example, by Sato et al., *Science* 273:352, 1996. Another preferred adjuvant is a saponin, preferably QS21 (Aquila Biopharmaceuticals Inc., Framingham, MA), which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as 20 the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprise an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210.

25 Other preferred adjuvants include Montanide ISA 720 (Seppic, France), SAF (Chiron, California, United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (*e.g.*, SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Ribi ImmunoChem Research Inc., Hamilton, MT), RC-529 (Ribi ImmunoChem Research Inc., Hamilton, MT) and Aminoalkyl glucosaminide 4-phosphates (AGPs).

Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immunostimulant and a suitable carrier or excipient. The compositions described herein may be administered as part of a sustained release formulation (*i.e.*, a formulation such as a capsule, sponge or gel (composed of 5 polysaccharides, for example) that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology (*see, e.g.*, Coombes et al., *Vaccine* 14:1429-1438, 1996) and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or 10 antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane.

Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. Such carriers include microparticles of poly(lactide-co-glycolide), as 15 well as polyacrylate, latex, starch, cellulose and dextran. Other delayed-release carriers include supramolecular biovectors, which comprise a non-liquid hydrophilic core (*e.g.*, a cross-linked polysaccharide or oligosaccharide) and, optionally, an external layer comprising an amphiphilic compound, such as a phospholipid (*see e.g.*, U.S. Patent No. 5,151,254 and PCT applications WO 94/20078, WO/94/23701 and WO 96/06638). The 20 amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific 25 immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects *per se* 30 and/or to be immunologically compatible with the receiver (*i.e.*, matched HLA

haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, *Nature* 392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (see Timmerman and Levy, *Ann. Rev. Med.* 50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate *in situ*, with marked cytoplasmic processes (dendrites) visible *in vitro*), their ability to take up, process and present antigens with high efficiency and their ability to activate naïve T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells *in vivo* or *ex vivo*, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al., *Nature Med.* 4:594-600, 1998).

Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated *ex vivo* by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNF α to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNF α , CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.

Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible

intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fc γ receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).

APCs may generally be transfected with a polynucleotide encoding a polypeptide of the present invention (or portion or other variant thereof) such that the polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place *ex vivo*, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs *in vivo*. *In vivo* and *ex vivo* transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., *Immunology and cell Biology* 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.

Vaccines and pharmaceutical compositions may be presented in unit-dose or multi-dose containers, such as sealed ampoules or vials. Such containers are preferably hermetically sealed to preserve sterility of the formulation until use. In general, formulations may be stored as suspensions, solutions or emulsions in oily or aqueous vehicles. Alternatively, a vaccine or pharmaceutical composition may be stored in a freeze-dried condition requiring only the addition of a sterile liquid carrier

immediately prior to use.

The above pharmaceutical compositions and vaccines may be used, for example, for the therapy of breast cancer in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may or may not be afflicted 5 with breast cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of breast cancer or to treat a patient afflicted with breast cancer. In a preferred embodiment, the compounds are administered either prior to or following surgical removal of primary tumors and/or treatment by administration of radiotherapy and conventional chemotherapeutic drugs. To prevent or 10 slow the development of breast cancer, a pharmaceutical composition or vaccine comprising one or more polypeptides as described herein may be administered to a patient. Alternatively, naked DNA or plasmid or viral vector encoding the polypeptide may be administered. For treating a patient with breast cancer, the pharmaceutical composition or vaccine may comprise one or more polypeptides, antibodies or 15 polynucleotides complementary to DNA encoding a polypeptide as described herein (e.g., antisense RNA or antisense deoxyribonucleotide oligonucleotides).

Routes and frequency of administration, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or 20 subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 10 doses may be administered for a 52-week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti- 25 tumor immune response. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells *in vitro*. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated 30 patients as compared to non-vaccinated patients. In general, for pharmaceutical

compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 100 µg to 5 mg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

5 Polypeptides disclosed herein may also be employed in adoptive immunotherapy for the treatment of cancer. Adoptive immunotherapy may be broadly classified into either active or passive immunotherapy. In active immunotherapy, treatment relies on the *in vivo* stimulation of the endogenous host immune system to react against tumors with the administration of immune response-modifying agents (for
10 example, tumor vaccines, bacterial adjuvants, and/or cytokines).

In passive immunotherapy, treatment involves the delivery of biologic reagents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T lymphocytes (for
15 example, CD8+ cytotoxic T-lymphocyte, CD4+ T-helper, tumor-infiltrating lymphocytes), killer cells (Natural Killer cells, lymphokine-activated killer cells), B cells, or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens. The polypeptides disclosed herein may also be used to generate antibodies or anti-idiotypic antibodies (as in U.S. Patent No. 4,918,164), for passive
20 immunotherapy.

The predominant method of procuring adequate numbers of T-cells for adoptive immunotherapy is to grow immune T-cells *in vitro*. Culture conditions for expanding single antigen-specific T-cells to several billion in number with retention of antigen recognition *in vivo* are well known in the art. These *in vitro* culture conditions
25 typically utilize intermittent stimulation with antigen, often in the presence of cytokines, such as IL-2, and non-dividing feeder cells. As noted above, the immunoreactive polypeptides described herein may be used to rapidly expand antigen-specific T cell cultures in order to generate sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage or B-cells, may be pulsed with
30 immunoreactive polypeptides or transfected with a polynucleotide sequence(s), using

standard techniques well known in the art. For cultured T-cells to be effective in therapy, the cultured T-cells must be able to grow and distribute widely and to survive long term *in vivo*. Studies have demonstrated that cultured T-cells can be induced to grow *in vivo* and to survive long term in substantial numbers by repeated stimulation 5 with antigen supplemented with IL-2 (see, for example, Cheever et al. *Ibid*).

The polypeptides disclosed herein may also be employed to generate and/or isolate tumor-reactive T-cells, which can then be administered to the patient. In one technique, antigen-specific T-cell lines may be generated by *in vivo* immunization with short peptides corresponding to immunogenic portions of the disclosed 10 polypeptides. The resulting antigen specific CD8+ CTL clones may be isolated from the patient, expanded using standard tissue culture techniques, and returned to the patient.

Alternatively, peptides corresponding to immunogenic portions of the polypeptides may be employed to generate tumor reactive T cell subsets by selective *in vitro* stimulation and expansion of autologous T cells to provide antigen-specific T cells 15 which may be subsequently transferred to the patient as described, for example, by Chang et al. (*Crit. Rev. Oncol. Hematol.*, 22(3), 213, 1996).

In another embodiment, syngeneic or autologous dendritic cells may be pulsed with peptides corresponding to at least an immunogenic portion of a polypeptide disclosed herein. The resulting antigen-specific dendritic cells may either be transferred 20 into a patient, or employed to stimulate T cells to provide antigen-specific T cells which may, in turn, be administered to a patient. The use of peptide-pulsed dendritic cells to generate antigen-specific T cells and the subsequent use of such antigen-specific T cells to eradicate tumors in a murine model has been demonstrated by Cheever et al. ("Therapy With Cultured T Cells: Principles Revisited," *Immunological Reviews*, 25 157:177, 1997).

Additionally vectors expressing the disclosed polynucleotides may be introduced into stem cells taken from the patient and clonally propagated *in vitro* for autologous transplant back into the same patient. In one embodiment, cells of the immune system, such as T cells, may be isolated from the peripheral blood of a patient, using a 30 commercially available cell separation system, such as CellPro Incorporated's (Bothell,

WA) CEPRATE™ system (see U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). The separated cells are stimulated with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigen-specific T cells. The population of tumor antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.

The following Examples are offered by way of illustration and not by way of limitation.

10

EXAMPLES

15

PREPARATION OF BREAST TUMOR-SPECIFIC cDNAs USING DIFFERENTIAL DISPLAY RT-PCR

This Example illustrates the preparation of cDNA molecules encoding breast tumor-specific polypeptides using a differential display screen.

A. Preparation of B18Ag1 cDNA and Characterization of mRNA Expression

20 Tissue samples were prepared from breast tumor and normal tissue of a patient with breast cancer that was confirmed by pathology after removal from the patient. Normal RNA and tumor RNA was extracted from the samples and mRNA was isolated and converted into cDNA using a (dT)₁₂AG (SEQ ID NO:130) anchored 3' primer. Differential display PCR was then executed using a randomly chosen primer 25 (CTTCAACCTC) (SEQ ID NO:103). Amplification conditions were standard buffer containing 1.5 mM MgCl₂, 20 pmol of primer, 500 pmol dNTP, and 1 unit of *Taq* DNA polymerase (Perkin-Elmer, Branchburg, NJ). Forty cycles of amplification were performed using 94°C denaturation for 30 seconds, 42°C annealing for 1 minute, and 72° C extension for 30 seconds. An RNA fingerprint containing 76 amplified products was

obtained. Although the RNA fingerprint of breast tumor tissue was over 98% identical to that of the normal breast tissue, a band was repeatedly observed to be specific to the RNA fingerprint pattern of the tumor. This band was cut out of a silver stained gel, subcloned into the T-vector (Novagen, Madison, WI) and sequenced.

5 The sequence of the cDNA, referred to as B18Ag1, is provided in SEQ ID NO:1. A database search of GENBANK and EMBL revealed that the B18Ag1 fragment initially cloned is 77% identical to the endogenous human retroviral element S71, which is a truncated retroviral element homologous to the Simian Sarcoma Virus (SSV). S71 contains an incomplete *gag* gene, a portion of the *pol* gene and an LTR-like structure at
10 the 3' terminus (see Werner et al., *Virology* 174:225-238 (1990)). B18Ag1 is also 64% identical to SSV in the region corresponding to the P30 (*gag*) locus. B18Ag1 contains three separate and incomplete reading frames covering a region which shares considerable homology to a wide variety of *gag* proteins of retroviruses which infect mammals. In addition, the homology to S71 is not just within the *gag* gene, but spans
15 several kb of sequence including an LTR.

B18Ag1-specific PCR primers were synthesized using computer analysis guidelines. RT-PCR amplification (94°C, 30 seconds; 60°C → 42°C, 30 seconds; 72°C, 30 seconds for 40 cycles) confirmed that B18Ag1 represents an actual mRNA sequence present at relatively high levels in the patient's breast tumor tissue. The primers used in
20 amplification were B18Ag1-1 (CTG CCT GAG CCA CAA ATG) (SEQ ID NO:128) and B18Ag1-4 (CCG GAG GAG GAA GCT AGA GGA ATA) (SEQ ID NO:129) at a 3.5 mM magnesium concentration and a pH of 8.5, and B18Ag1-2 (ATG GCT ATT TTC GGG GCC TGA CA) (SEQ ID NO:126) and B18Ag1-3 (CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO:127) at 2 mM magnesium at pH 9.5. The same experiments
25 showed exceedingly low to nonexistent levels of expression in this patient's normal breast tissue (see Figure 1). RT-PCR experiments were then used to show that B18Ag1 mRNA is present in nine other breast tumor samples (from Brazilian and American patients) but absent in, or at exceedingly low levels in, the normal breast tissue corresponding to each cancer patient. RT-PCR analysis has also shown that the B18Ag1
30 transcript is not present in various normal tissues (including lymph node, myocardium

and liver) and present at relatively low levels in PBMC and lung tissue. The presence of B18Ag1 mRNA in breast tumor samples, and its absence from normal breast tissue, has been confirmed by Northern blot analysis, as shown in Figure 2.

The differential expression of B18Ag1 in breast tumor tissue was also confirmed by RNase protection assays. Figure 3 shows the level of B18Ag1 mRNA in various tissue types as determined in four different RNase protection assays. Lanes 1-12 represent various normal breast tissue samples, lanes 13-25 represent various breast tumor samples; lanes 26-27 represent normal prostate samples; lanes 28-29 represent prostate tumor samples; lanes 30-32 represent colon tumor samples; lane 33 represents normal aorta; lane 34 represents normal small intestine; lane 35 represents normal skin, lane 36 represents normal lymph node; lane 37 represents normal ovary; lane 38 represents normal liver; lane 39 represents normal skeletal muscle; lane 40 represents a first normal stomach sample, lane 41 represents a second normal stomach sample; lane 42 represents a normal lung; lane 43 represents normal kidney; and lane 44 represents normal pancreas. Interexperimental comparison was facilitated by including a positive control RNA of known β -actin message abundance in each assay and normalizing the results of the different assays with respect to this positive control.

RT-PCR and Southern Blot analysis has shown the B18Ag1 locus to be present in human genomic DNA as a single copy endogenous retroviral element. A genomic clone of approximately 12-18 kb was isolated using the initial B18Ag1 sequence as a probe. Four additional subclones were also isolated by XbaI digestion. Additional retroviral sequences obtained from the ends of the XbaI digests of these clones (located as shown in Figure 4) are shown as SEQ ID NO:3 - SEQ ID NO:10, where SEQ ID NO:3 shows the location of the sequence labeled 10 in Figure 4, SEQ ID NO:4 shows the location of the sequence labeled 11-29, SEQ ID NO:5 shows the location of the sequence labeled 3, SEQ ID NO:6 shows the location of the sequence labeled 6, SEQ ID NO:7 shows the location of the sequence labeled 12, SEQ ID NO:8 shows the location of the sequence labeled 13, SEQ ID NO:9 shows the location of the sequence labeled 14 and SEQ ID NO:10 shows the location of the sequence labeled 11-22.

Subsequent studies demonstrated that the 12-18 kb genomic clone contains a retroviral element of about 7.75 kb, as shown in Figures 5A and 5B. The sequence of this retroviral element is shown in SEQ ID NO: 141. The numbered line at the top of Figure 5A represents the sense strand sequence of the retroviral genomic clone.

5 The box below this line shows the position of selected restriction sites. The arrows depict the different overlapping clones used to sequence the retroviral element. The direction of the arrow shows whether the single-pass subclone sequence corresponded to the sense or anti-sense strand. Figure 5B is a schematic diagram of the retroviral element containing B18Ag1 depicting the organization of viral genes within the element. The

10 open boxes correspond to predicted reading frames, starting with a methionine, found throughout the element. Each of the six likely reading frames is shown, as indicated to the left of the boxes, with frames 1-3 corresponding to those found on the sense strand.

15

Using the cDNA of SEQ ID NO:1 as a probe, a longer cDNA was obtained (SEQ ID NO:227) which contains minor nucleotide differences (less than 1%) compared to the genomic sequence shown in SEQ ID NO:141.

B. Preparation of cDNA Molecules Encoding Other Breast Tumor-Specific Polypeptides

Normal RNA and tumor RNA was prepared and mRNA was isolated and converted into cDNA using a (dT)₁₂AG anchored 3' primer, as described above.

20 Differential display PCR was then executed using the randomly chosen primers of SEQ ID NO: 87-125. Amplification conditions were as noted above, and bands observed to be specific to the RNA fingerprint pattern of the tumor were cut out of a silver stained gel, subcloned into either the T-vector (Novagen, Madison, WI) or the pCRII vector (Invitrogen, San Diego, CA) and sequenced. The sequences are provided in SEQ ID NO:11 - SEQ ID NO:86. Of the 79 sequences isolated, 67 were found to be novel (SEQ ID NO:11-26 and 28-77) (*see also* Figures 6-20).

25

An extended DNA sequence (SEQ ID NO: 290) for the antigen B15Ag1 (originally identified partial sequence provided in SEQ ID NO: 27) was obtained in further studies. Comparison of the sequence of SEQ ID NO: 290 with those in the gene bank as described above, revealed homology to the known human β -A activin gene.

30

- Further studies led to the isolation of the full-length cDNA sequence for the antigen B21GT2 (also referred to as B311D; originally identified partial cDNA sequence provided in SEQ ID NO: 56). The full-length sequence is provided in SEQ ID NO: 307, with the corresponding amino acid sequence being provided in SEQ ID NO: 308.
- 5 Further studies led to the isolation of a splice variant of B311D. The B311D clone of SEQ ID NO: 316 was sequenced and a Xhol/NotI fragment from this clone was gel purified and 32P-cDTP labeled by random priming for use as a probe for further screening to obtain additional B311D gene sequence. Two fractions of a human breast tumor cDNA bacterial library were screened using standard techniques. One of the 10 clones isolated in this manner yielded additional sequence which includes a poly A+ tail. The determined cDNA sequence of this clone (referred to as B311D_BT1_1A) is provided in SEQ ID NO: 317. The sequences of SEQ ID NO: 316 and 317 were found to share identity over a 464 bp region, with the sequences diverging near the poly A+ sequence of SEQ ID NO: 317.
- 15 Subsequent studies identified an additional 146 sequences (SEQ ID NOS:142-289), of which 115 appeared to be novel (SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291). To the best of the inventors' knowledge none of the previously 20 identified sequences have heretofore been shown to be expressed at a greater level in human breast tumor tissue than in normal breast tissue.
- In further studies, several different splice forms of the antigen B11Ag1 (also referred to as B305D) were isolated, with each of the various splice forms containing slightly different versions of the B11Ag1 coding frame. Splice junction 25 sequences define individual exons which, in various patterns and arrangements, make up the various splice forms. Primers were designed to examine the expression pattern of each of the exons using RT-PCR as described below. Each exon was found to show the same expression pattern as the original B11Ag1 clone, with expression being breast tumor-, normal prostate- and normal testis-specific. The determined cDNA sequences 30 for the isolated protein coding exons are provided in SEQ ID NO: 292-298, respectively.

The predicted amino acid sequences corresponding to the sequences of SEQ ID NO: 292 and 298 are provided in SEQ ID NO: 299 and 300. Additional studies using rapid amplification of cDNA ends (RACE), a 5' specific primer to one of the splice forms of B11Ag1 provided above and a breast adenocarcinoma, led to the isolation of three additional, related, splice forms referred to as isoforms B11C-15, B11C-8 and B11C-9,16. The determined cDNA sequences for these isoforms are provided in SEQ ID NO: 301-303, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 304-306.

In subsequent studies on B305D isoform A (cDNA sequence provided in SEQ ID NO: 292), the cDNA sequence (provided in SEQ ID NO: 313) was found to contain an additional guanine residue at position 884, leading to a frameshift in the open reading frame. The determined DNA sequence of this ORF is provided in SEQ ID NO: 314. This frameshift generates a protein sequence (provided in SEQ ID NO: 315) of 293 amino acids that contains the C-terminal domain common to the other isoforms of B305D but that differs in the N-terminal region.

EXAMPLE 2

PREPARATION OF B18Ag1 DNA FROM HUMAN GENOMIC DNA

This Example illustrates the preparation of B18Ag1 DNA by amplification from human genomic DNA.

B18Ag1 DNA may be prepared from 250 ng human genomic DNA using 20 pmol of B18Ag1 specific primers, 500 pmol dNTPS and 1 unit of *Taq* DNA polymerase (Perkin Elmer, Branchburg, NJ) using the following amplification parameters: 94°C for 30 seconds denaturing, 30 seconds 60°C to 42°C touchdown annealing in 2°C increments every two cycles and 72°C extension for 30 seconds. The last increment (a 42°C annealing temperature) should cycle 25 times. Primers were selected using computer analysis. Primers synthesized were B18Ag1-1, B18Ag1-2, B18Ag1-3, and B18Ag1-4. Primer pairs that may be used are 1+3, 1+4, 2+3, and 2+4.

Following gel electrophoresis, the band corresponding to B18Ag1 DNA may be excised and cloned into a suitable vector.

EXAMPLE 3

5

PREPARATION OF B18AG1 DNA FROM BREAST TUMOR cDNA

This Example illustrates the preparation of B18Ag1 DNA by amplification from human breast tumor cDNA.

First strand cDNA is synthesized from RNA prepared from human breast 10 tumor tissue in a reaction mixture containing 500 ng poly A+ RNA, 200 pmol of the primer (T)₁₂AG (*i.e.*, TTT TTT TTT TTT AG) (SEQ ID NO: 130), 1X first strand reverse transcriptase buffer, 6.7 mM DTT, 500 mmol dNTPs, and 1 unit AMV or MMLV reverse transcriptase (from any supplier, such as Gibco-BRL (Grand Island, NY)) in a final volume of 30 μ l. After first strand synthesis, the cDNA is diluted approximately 25 15 fold and 1 μ l is used for amplification as described in Example 2. While some primer pairs can result in a heterogeneous population of transcripts, the primers B18Ag1-2 (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO: 126) and B18Ag1-3 (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO: 127) yield a single 151 bp amplification product.

20

EXAMPLE 4

IDENTIFICATION OF B-CELL AND T-CELL EPITOPES OF B18AG1

This Example illustrates the identification of B18Ag1 epitopes.

25 The B18Ag1 sequence can be screened using a variety of computer algorithms. To determine B-cell epitopes, the sequence can be screened for hydrophobicity and hydrophilicity values using the method of Hopp, *Prog. Clin. Biol. Res.* 172B:367-77 (1985) or, alternatively, Cease et al., *J. Exp. Med.* 164:1779-84 (1986) or Spouge et al., *J. Immunol.* 138:204-12 (1987). Additional Class II MHC (antibody or 30 B-cell) epitopes can be predicted using programs such as AMPHI (*e.g.*, Margalit et al., *J.*

Immunol. 138:2213 (1987)) or the methods of Rothbard and Taylor (e.g., *EMBO J.* 7:93 (1988)).

Once peptides (15-20 amino acids long) are identified using these techniques, individual peptides can be synthesized using automated peptide synthesis equipment (available from manufacturers such as Perkin Elmer/Applied Biosystems Division, Foster City, CA) and techniques such as Merrifield synthesis. Following synthesis, the peptides can be used to screen sera harvested from either normal or breast cancer patients to determine whether patients with breast cancer possess antibodies reactive with the peptides. Presence of such antibodies in breast cancer patient would confirm the immunogenicity of the specific B-cell epitope in question. The peptides can also be tested for their ability to generate a serologic or humoral immune in animals (mice, rats, rabbits, chimps etc.) following immunization *in vivo*. Generation of a peptide-specific antiserum following such immunization further confirms the immunogenicity of the specific B-cell epitope in question.

To identify T-cell epitopes, the B18Ag1 sequence can be screened using different computer algorithms which are useful in identifying 8-10 amino acid motifs within the B18Ag1 sequence which are capable of binding to HLA Class I MHC molecules. (see, e.g., Rammensee et al., *Immunogenetics* 41:178-228 (1995)). Following synthesis such peptides can be tested for their ability to bind to class I MHC using standard binding assays (e.g., Sette et al., *J. Immunol.* 153:5586-92 (1994)) and more importantly can be tested for their ability to generate antigen reactive cytotoxic T-cells following *in vitro* stimulation of patient or normal peripheral mononuclear cells using, for example, the methods of Bakker et al., *Cancer Res.* 55:5330-34 (1995); Visseren et al., *J. Immunol.* 154:3991-98 (1995); Kawakami et al., *J. Immunol.* 154:3961-68 (1995); and Kast et al., *J. Immunol.* 152:3904-12 (1994). Successful *in vitro* generation of T-cells capable of killing autologous (bearing the same Class I MHC molecules) tumor cells following *in vitro* peptide stimulation further confirms the immunogenicity of the B18Ag1 antigen. Furthermore, such peptides may be used to generate murine peptide and B18Ag1 reactive cytotoxic T-cells following *in vivo* immunization in mice rendered

transgenic for expression of a particular human MHC Class I haplotype (Vitiello et al., *J. Exp. Med.* 173:1007-15 (1991).

A representative list of predicted B18Ag1 B-cell and T-cell epitopes, broken down according to predicted HLA Class I MHC binding antigen, is shown below:

5

Predicted Th Motifs (B-cell epitopes) (SEQ ID NOS.: 131-133)

SSGGRTFDDFHYLLVGI
QGAAQKPINLSKXIEVVQGHDE
SPGVFLEHLQEAYRIYTPFDLSA

10

Predicted HLA A2.1 Motifs (T-cell epitopes) (SEQ ID NOS.: 134-140)

YLLVGIQGA
GAAQKPINL
NLSKXIEVV
EVVQGHDES
HLQEAYRIY
NLAFVAQAA
FVAQAAPDS

20

EXAMPLE 5

IDENTIFICATION OF T-CELL EPITOPES OF B11AG1

This Example illustrates the identification of B11Ag1 (also referred to as B305D) epitopes. Four peptides, referred to as B11-8, B11-1, B11-5 and B11-12 (SEQ ID NO: 309-312, respectfully) were derived from the B11Ag1 gene.

25

Human CD8 T cells were primed *in vitro* to the peptide B11-8 using dendritic cells according to the protocol of Van Tsai et al. (*Critical Reviews in Immunology* 18:65-75, 1998). The resulting CD8 T cell cultures were tested for their ability to recognize the B11-8 peptide or a negative control peptide, presented by the B-LCL line, JY. Briefly, T cells were incubated with autologous monocytes in the presence of 10 ug/ml peptide, 10 ng/ml IL-7 and 10 ug/ml IL-2, and assayed for their ability to

30

specifically lyse target cells in a standard 51-Cr release assay. As shown in Fig. 22, the bulk culture line demonstrated strong recognition of the B11-8 peptide with weaker recognition of the peptide B11-1.

A clone from this CTL line was isolated following rapid expansion using 5 the monoclonal antibody OKT3 and human IL-2. As shown in Fig. 23, this clone (referred to as A1), in addition to being able to recognize specific peptide, recognized JY LCL transduced with the B11Ag1 gene. This data demonstrates that B11-8 is a naturally processed epitope of the B11Ag1 gene. In addition these T cells were further found to recognize and lyse, in an HLA-A2 restricted manner, an established tumor cell line 10 naturally expressing B11Ag1 (Fig. 24). The T cells strongly recognize a lung adenocarcinoma (LT-140-22) naturally expressing B11Ag1 transduced with HLA-A2, as well as an A2+ breast carcinoma (CAMA-1) transduced with B11Ag1, but not untransduced lines or another negative tumor line (SW620).

These data clearly demonstrate that these human T cells recognize not 15 only B11-specific peptides but also transduced cells, as well as naturally expressing tumor lines.

CTL lines raised against the antigens B11-5 and B11-12, using the procedures described above, were found to recognize corresponding peptide-coated targets.

Example 6

CHARACTERIZATION OF BREAST TUMOR GENES DISCOVERED BY
DIFFERENTIAL DISPLAY PCR

5 The specificity and sensitivity of the breast tumor genes discovered by differential display PCR were determined using RT-PCR. This procedure enabled the rapid evaluation of breast tumor gene mRNA expression semiquantitatively without using large amounts of RNA. Using gene specific primers, mRNA expression levels in a variety of tissues were examined, including 8 breast tumors, 5 normal breasts, 2 prostate
10 tumors, 2 colon tumors, 1 lung tumor, and 14 other normal adult human tissues, including normal prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach and testes.

To ensure the semiquantitative nature of the RT-PCR, β -actin was used as internal control for each of the tissues examined. Serial dilutions of the first strand
15 cDNAs were prepared and RT-PCR assays performed using β -actin specific primers. A dilution was then selected that enabled the linear range amplification of β -actin template, and which was sensitive enough to reflect the difference in the initial copy number. Using this condition, the β -actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and
20 by assuring a negative result when using first strand cDNA that was prepared without adding reverse transcriptase.

Using gene specific primers, the mRNA expression levels were determined in a variety of tissues. To date, 38 genes have been successfully examined by RT-PCR, five of which exhibit good specificity and sensitivity for breast tumors
25 (B15AG-1, B31GA1b, B38GA2a, B11A1a and B18AG1a). Figures 21A and 21B depict the results for three of these genes: B15AG-1 (SEQ ID NO:27), B31GA1b (SEQ ID NO:148) and B38GA2a (SEQ ID NO. 157). Table I summarizes the expression level of all the genes tested in normal breast tissue and breast tumors, and also in other tissues.

44
TABLE I

Percentage of Breast Cancer Antigens that are Expressed in Various Tissues

5	Breast Tissues	Over-expressed in Breast Tumors	84%
		Equally Expressed in Normals and Tumor	16%
10		Over-expressed in Breast Tumors but not in any Normal Tissues	9%
15	Other Tissues	Over-expressed in Breast Tumors but Expressed in Some Normal Tissues	30%
		Over-expressed in Breast Tumors but Equally Expressed in All Other Tissues	61%
20		From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.	

CLAIMS

1. An isolated polypeptide, comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
- (a) sequences recited in SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317;
- (b) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and
- (c) complements of sequences of (a) or (b).
2. An isolated polypeptide according to claim 1, wherein the polypeptide comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences.
3. An isolated polypeptide comprising a sequence recited in any one of SEQ ID NOs: 299, 300, 304-306, 308 and 315.
4. An isolated polynucleotide encoding at least 15 amino acid

residues of a protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with antigen-specific antisera is not substantially diminished, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing sequences.

10

5. An isolated polynucleotide encoding a protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing sequences.

6. An isolated polynucleotide, comprising a sequence recited in any one of SEQ ID Nos: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317.

25

7. An isolated polynucleotide, comprising a sequence that hybridizes to a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions.

8. An isolated polynucleotide complementary to a polynucleotide according to any one of claims 4-7.

9. An expression vector, comprising a polynucleotide according to
5 any one of claims claim 4-8.

10. A host cell transformed or transfected with an expression vector according to claim 9.

10 11. An isolated antibody, or antigen-binding fragment thereof, that specifically binds to a protein that comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 15 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences.

12. A fusion protein, comprising at least one polypeptide according to claim 1.

20 13. A fusion protein according to claim 12, wherein the fusion protein comprises an expression enhancer that increases expression of the fusion protein in a host cell transfected with a polynucleotide encoding the fusion protein.

25 14. A fusion protein according to claim 12, wherein the fusion protein comprises a T helper epitope that is not present within the polypeptide of claim 1.

30 15. A fusion protein according to claim 12, wherein the fusion protein comprises an affinity tag.

16. An isolated polynucleotide encoding a fusion protein according to claim 12.

17. A pharmaceutical composition, comprising a physiologically acceptable carrier and at least one component selected from the group consisting of:

- (a) a polypeptide according to claim 1;
- (b) a polynucleotide according to claim 4;
- (c) an antibody according to claim 11;
- (d) a fusion protein according to claim 12; and
- (e) a polynucleotide according to claim 16.

18. A vaccine comprising an immunostimulant and at least one component selected from the group consisting of:

- (a) a polypeptide according to claim 1;
- (b) a polynucleotide according to claim 4;
- (c) an antibody according to claim 11;
- (d) a fusion protein according to claim 12; and
- (e) a polynucleotide according to claim 16.

19. A vaccine according to claim 18, wherein the immunostimulant is an adjuvant.

20. A vaccine according to any claim 18, wherein the immunostimulant induces a predominantly Type I response.

25

21. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a pharmaceutical composition according to claim 17.

30 22. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a vaccine according to

claim 18.

23. A pharmaceutical composition comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with a 5 pharmaceutically acceptable carrier or excipient.

24. A pharmaceutical composition according to claim 23, wherein the antigen presenting cell is a dendritic cell or a macrophage.

10 25. A vaccine comprising an antigen-presenting cell that expresses a polypeptide comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

- (a) sequences recited in SEQ ID NOS: 1, 3-26, 28-86, 142-253, 255-15 298, 301-303, 307, 313, 314, 316 and 317;
 - (b) sequences that hybridize to a sequence recited in any one of SEQ ID NOS: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and
 - (c) complements of sequences of (i) or (ii);
- 20 in combination with an immunostimulant.

26. A vaccine according to claim 25, wherein the immunostimulant is an adjuvant.

25 27. A vaccine according to claim 25, wherein the immunostimulant induces a predominantly Type I response.

28. A vaccine according to claim 25, wherein the antigen-presenting cell is a dendritic cell.

30

29. A method for inhibiting the development of a cancer in a patient,

comprising administering to a patient an effective amount of an antigen-presenting cell that expresses a polypeptide comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

- 5 (a) sequences recited in SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317;
 - (b) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and
 - 10 (c) complements of sequences encoded by a polynucleotide recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317;
- and thereby inhibiting the development of a cancer in the patient.

15 30. A method according to claim 29, wherein the antigen-presenting cell is a dendritic cell.

31. A method according to any one of claims 21, 22 and 29, wherein the cancer is breast cancer.

20 32. A method for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

- 25 (i) polynucleotides recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317; and
 - (ii) complements of the foregoing polynucleotides;
- wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the antigen from the sample.

30 33. A method according to claim 32, wherein the biological sample is

blood or a fraction thereof.

34. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated according to the
5 method of claim 32.

35. A method for stimulating and/or expanding T cells specific for a protein, comprising contacting T cells with at least one component selected from the group consisting of:

10 (a) polypeptides comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(i) sequences recited in SEQ ID NOS: 1, 3-26, 28-86, 142-
253, 255-298, 301-303, 307, 313, 314, 316 and 317;

15 (ii) sequences that hybridize to a sequence recited in any one of SEQ ID NOS: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and

(iii) complements of sequences of (i) or (ii);

(b) polynucleotides encoding a polypeptide of (a); and

20 (c) antigen presenting cells that express a polypeptide of (a); under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells.

36. An isolated T cell population, comprising T cells prepared
25 according to the method of claim 35.

37. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population according to claim 36.

30

38. A method for inhibiting the development of a cancer in a patient,

comprising the steps of:

(a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with at least one component selected from the group consisting of:

5 (i) polypeptides comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(1) sequences recited in SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317;

10 (2) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and

(3) complements of sequences of (1) or (2);

15 (ii) polynucleotides encoding a polypeptide of (i); and
(iii) antigen presenting cells that expresses a polypeptide of (i);

such that T cells proliferate; and

(b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient.

20

39. A method for inhibiting the development of a cancer in a patient, comprising the steps of:

(a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with at least one component selected from the group consisting of:

25 (i) polypeptides comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(1) sequences recited in SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317;

30 (2) sequences that hybridize to a sequence recited in

any one of SEQ ID NOS: _ 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and

(3) complements of sequences of (1) or (2);

(ii) polynucleotides encoding a polypeptide of (i); and

5 (iii) antigen presenting cells that express a polypeptide

of (i);

such that T cells proliferate;

(b) cloning at least one proliferated cell to provide cloned T cells;

and

10 (c) administering to the patient an effective amount of the cloned T cells, and thereby inhibiting the development of a cancer in the patient.

40. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:

15 (a) contacting a biological sample obtained from a patient with a binding agent that binds to a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOS: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences;

20 (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and

(c) comparing the amount of polypeptide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

25 41. A method according to claim 40, wherein the binding agent is an antibody.

42. A method according to claim 43, wherein the antibody is a monoclonal antibody.

30

43. A method according to claim 40, wherein the cancer is breast

cancer.

44. A method for monitoring the progression of a cancer in a patient, comprising the steps of:

5 (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOS: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences;

10 (b) detecting in the sample an amount of polypeptide that binds to the binding agent;

(c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and

15 (d) comparing the amount of polypeptide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

45. A method according to claim 44, wherein the binding agent is an antibody.

20

46. A method according to claim 45, wherein the antibody is a monoclonal antibody.

25 47. A method according to claim 44, wherein the cancer is a breast cancer.

48. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:

30 (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence

recited in any one of SEQ ID NO: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences;

(b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and

5 (c) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

49. A method according to claim 48, wherein the amount of
10 polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.

50. A method according to claim 48, wherein the amount of
15 polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.

51. A method for monitoring the progression of a cancer in a patient, comprising the steps of:

20 (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NO: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences;

25 (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide;

(c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and

30 (d) comparing the amount of polynucleotide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

52. A method according to claim 51, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.

5 53. A method according to claim 51, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.

10 54. A diagnostic kit, comprising:
(a) one or more antibodies according to claim 11; and
(b) a detection reagent comprising a reporter group.

15 55. A kit according to claim 54, wherein the antibodies are immobilized on a solid support.

56. A kit according to claim 54, wherein the detection reagent comprises an anti-immunoglobulin, protein G, protein A or lectin.

20 57. A kit according to claim 54, wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.

25 58. An oligonucleotide comprising 10 to 40 contiguous nucleotides that hybridize under moderately stringent conditions to a polynucleotide that encodes a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOS: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 or a 30 complement of any of the foregoing polynucleotides.

59. A oligonucleotide according to claim 58, wherein the oligonucleotide comprises 10-40 contiguous nucleotides recited in any one of SEQ ID Nos: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 5 316 and 317.

60. A diagnostic kit, comprising:
(a) an oligonucleotide according to claim 59; and
10 (b) a diagnostic reagent for use in a polymerase chain reaction or
hybridization assay.

1/25

Fig. 1
SUBSTITUTE SHEET (RULE 26)

2/25

Fig. 2

3/25

Fig. 3

SUBSTITUTE SHEET (RULE 26)

4/25

Fig. 4

SUBSTITUTE SHEET (RULE 26)

5 / 25

Fig. 5A

Fig. 5B

6/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B18Ag1

TTA GAG ACC CAA TTG GGA CCT AAT TGG GAC CCA AAT TTC TCA AGT GGA	48
Leu Glu Thr Gln Leu Gly Pro Asn Trp Asp Pro Asn Phe Ser Ser Gly	
1 5 10 15	
GGG AGA ACT TTT GAC GAT TTC CAC CGG TAT CTC CTC GTG GGT ATT CAG	96
Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val Gly Ile Gln	
20 25 30	
GGA GCT GCC CAG AAA CCT ATA AAC TTG TCT AAG GCG ATT GAA GTC GTC	144
Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Ala Ile Glu Val Val	
35 40 45	
CAG GGG CAT GAT GAG TCA CCA GGA GTG TTT TTA GAG CAC CTC CAG GAG	192
Gln Gly His Asp Glu Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu	
50 55 60	
GCT TAT CGG ATT TAC ACC CCT TTT GAC CTG GCA GCC CCC GAA AAT AGC	240
Ala Tyr Arg Ile Tyr Thr Pro Phe Asp Leu Ala Ala Pro Glu Asn Ser	
65 70 75 80	
CAT GCT CTT AAT TTG GCA TTT GTG GCT CAG GCA GCC CCA GAT AGT AAA	288
His Ala Leu Asn Leu Ala Phe Val Ala Gln Ala Ala Pro Asp Ser Lys	
85 90 95	
AGG AAA CTC CAA AAA CTA GAG GGA TTT TGC TGG AAT GAA TAC CAG TCA	336
Arg Lys Leu Gln Lys Leu Glu Gly Phe Cys Trp Asn Glu Tyr Gln Ser	
100 105 110	
GCT TTT AGA GAT AGC CTA AAA GGT TTT	363
Ala Phe Arg Asp Ser Leu Lys Gly Phe	
115 120	

Fig. 6

7/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B17Ag1

GC TGGGCACAGT GGCTCATACC TGTAATCCTG ACCGTTCAAG AGGCTCAGGT	60
CG CTTGAGCCCA AGATTCAAG ACTAGTCTGG GTAACATAGT GAGACCCTAT	120
AA AAATAAAAAA ATGAGCCTGG TGTAGTGGCA CACACCAGCT GAGGAGGGAG	180
CT AGGAGA	196

Fig. 7

SUBSTITUTE SHEET (RULE 26)

8/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B17Ag2

GC TTGGGGGCTC TGACTAGAAA TTCAAGGAAC CTGGGATTCA AGTCCAAC TG	60
AC TTACACTGTG GNCTCCAATA AACTGCTTCT TTCCCTATTCC CTCTCTATTA	120
AA GGAAAACGAT GTCTGTGTAT AGCCAAGTCA GNTATCCTAA AAGGAGATAC	180
AT TAAATATCAG AATGTAAAAC CTGGGAACCA GGTTCCCAGC CTGGGATTAA	240
CA AGAAGACTGA ACAGTACTAC TGTGAAAAGC CCGAAGNGGC AATATGTTCA	300
TT GAAGGATGGC TGGGAGAATG AATGCTCTGT CCCCCAGTCC CAAGCTCACT	360
CT CCTTTATAGC CTAGGAGA	388

Fig. 8

SUBSTITUTE SHEET (RULE 26)

9/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B13Ag2a

GC CTATAATCAT GTTTCTCATT ATTTTCACAT TTTATTAACC AATTTCTGTT	60
AA AATATGAGGG AAATATATGA AACAGGGAGG CAATGTTCAg ATAATTGATC	120
TG ATTCTACAT CAGATGCTCT TTCCTTCCT GTTTATTCC TTTTATTTC	180
GG TCGAATGTAA TAGCTTGTT TCAAGAGAGA GTTTGGCAG TTTCTGTAGC	240
CT GCTCATGTCT CCAGGCATCT ATTTGCACTT TAGGAGGTGT CGTGGGAGAC	300
CT ATTTTTCCA TATTGGGCA ACTACTA	337

Fig. 9

10/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B13Ag1b

GC CATACTAGTGC CTTTCCATT ATTAAACCCC CACCTGAACG GCATAAACTG	60
GC TGGTGTAAAA TACTGTAAAC AATAAGGAGA CTTTGCTCTT CATTAAACC	120
AT TTCATATTTT ACGCTCGAGG GTTTTACCG GTTCCTTTT ACACTCCTTA	180
TT TAAGTCGTTT GGAACAAGAT ATTTTTCTT TCCTGGCAGC TTTAACATT	240
TT TGTGTCTGGG GGACTGCTGG TCACTGTTTC TCACAGTTGC AAATCAAGGC	300
CC AAGAAAAAAA AATTTTTTG TTTTATTGA AACTGGACCG GATAAACGGT	360
CG GCTGCTGTAT ATAGTTTAA ATGGTTTATT GCACCTCCTT AAGTTGCACT	420
GG GGGGNNTTTG NATAGAAAGT NTTTANTCAC ANAGTCACAG GGACTTTNT	480
NA CTGAGCTAAA AAGGGCTGNT TTTCGGGTGG GGGCAGATGA AGGCTCACAG	540
TC TCTTAGAGGG GGGAACTNCT A	571

Fig. 10

11/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B13Ag1a

TA ATAACTTAAA TATATTGAGC TCACCCACTG GGGTGATAAG ACAATAGATA	60
TT TCCAAAAAGC ATAAAACCAA AGTATCATAAC CAAACCAAAT TCATACTGCT	120
CC GCACTGAAAC TTCACCTTCT AACTGTCTAC CTAACCAAAT TCTACCCCTTC	180
GG TGCCTGCTCA CTACTCTTTT TTTTTTTTTT TTTNTTTGG AGATGGAGTC	240
CA GCCCAGGGGT GGAGTACAAT GGCACAAACCT CAGCTCACTG NAACCTCCGC	300
TT CATGAGATTC TCCTGNTTCA GCCTTCCCAG TAGCTGGGAC TACAGGTGTG	360
TG CCTGGNTAAT CTTTTTNGT TTTNGGGTAG AGATGGGGGT TTTACATGTT	420
TG GTNTCGAACT CCTGACCTCA AGTGATCCAC CCACCTCAGG CTCCCCAAAGT	480
TA CAGACATGAG CCACTGNGCC CAGNCCTGGT GCATGCTCAC TTCTCTAGGC	540
	548

Fig. 11

12/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B11Ag1

TG CACATGCAGA ATATTCTATC GGTACTTCAG CTATTACTCA TTTTGATGGC	60
AG CCTATCCTCA AGATGAGTAT TTAGAAAGAA TTGATTTAGC GATAGACCAA	120
GC ACTCTGACTA CACGAAATTG TTCAGATGTG ATGGATTTAT GACAGTTGAT	180
GA GATTATTAAG TGATTATTT AAAGGGAATC CATTAATTCC AGAATATCTT	240
TC AAGATGATAT AGAAATAGAA CAGAAAGAGA CTACAAATGA AGATGTATCA	300
TA TTGAAGAGCC TATAGTAGAA AATGAATTAG CTGCATTTAT TAGCCTTACA	360
TT TTCCTGATGA ATCTTATATT CAGCCATCGA CATAGCATT A CCTGATGGGC	420
GA ATAATAGAAA CTGGGTGCGG GGCTATTGAT GAATTCATCC NCAGTAAATT	480
AC AAAATATAAC TCGATTGCAT TTGGATGATG GAATACTAAA TCTGGCAAAA	540
GG AGCTACTAGT AACCTCTCTT TTTGAGATGC AAAATTTCT TTTAGGGTTT	600
CT ACTTTACGGA TATTGGAGCA TAACGGGA	638

Fig. 12

13/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA3c

ACTGATGGAT GTCGCCGGAG GCGAGGGGCC TTATCTGATG CTCGGCTGCC TGTTCGTGAT	60
GTGCGCGGCG ATTGGGCTGT TTATCTAAA CACCGCCACG GCGGTGCTGA TGGCGCCTAT	120
TGCCTTAGCG GCGGCGAAGT CAATGGGCGT CTCACCCAT CCTTTGCCA TGGTGGTGGC	180
GATGGCGGCT TCGGGGGCGT TTATGACCCC GGTCTCCTCG CCGGTTAACCA CCCTGGTGC	240
TGGCCCTGGC AAGTACTCAT TTAGCGATT TGTCAAAATA GGCGTG	286

Fig. 13

14/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B9CG1

AG CAGCCCCCTTC TTCTCAATT CATCTGTCAC TACCCCTGGTG TAGTATCTCA	60
CA TTTTTATAGC CTCCCTCCCTG GTCTGTCTTT TGATTTCT GCCTGTAATC	120
AC ATAAC TGCAA GTAAACATT CTAAAGTGTG GTTATGCTCA TGTCACTCCT	180
AA ATAGTTCCA TTACCGTCTT AATAAAATTC GGATTTGTTTC TTNCTATTN	240
CA CCTATGACCG AA	262

Fig. 14

15/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B9CG3

AG CAAAGCCAGT GGTTTGAGCT CTCTACTGTG TAAACTCCTA AACCAAGGCC	60
TA AATGGTGGCA GGATTTTAT TATAAACATG TACCCATGCA AATTCCTAT	120
GA TATATTCTTC TACATTTAAA CAATAAAAAT AATCTATTT TAAAAGCCTA	180
AG TTAGGTAAGA GTGTTAATG AGAGGGTATA AGGTATAAAT CACCAGTCAA	240
TG CCTATGACCG A	261

Fig. 15

SUBSTITUTE SHEET (RULE 26)

16/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B2CA2

GG GCATGGACGC AGACGCCCTGA CGTTGGCTG AAAATCTTTC ATTGATTCGT	60
AT AGGAAAATTC CCAAAGAGGG AATGTCCTGT TGCTGCCAG TTTTTNTGTT	120
GG ANAAGGCAAN GAGCTCTTCA GACTATTGGN ATTNTCGTTC GGTCTTCTGC	180
CG NCTTGCNANG ATCTTCAT	208

Fig. 16

17/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA1

GG GCATGGACGC AGACGCCCTGA CGTTGGCTG AAAATCTTTC ATTGATTCGT	60
AT AGGAAAATTC CCAAAGAGGG AATGTCCTGT TGCTGCCAG TTTTTNTGTT	120
GG ANAAGGCAAN GAGCTCTTCA GACTATTGGN ATTNTCGTTC GGTCTTCTGC	180
CG NCTTGCNANG ATCTTCAT	208

Fig. 17

18/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA2

GG GCATGGACGC AGACGCCCTGA CGTTTGGCTG AAAATCTTTC ATTGATTCTG	60
AT AGGAAAATTC CCAAAGAGGG AATGTCCTGT TGCTCGCCAG TTTTTNTGTT	120
GG ANAAGGCAAN GAGCTCTTCA GACTATTGGN ATTNTCGTTC GGTCTTCTGC	180
CG NCTTGCNANG ATCTTCAT	208

Fig. 18

SUBSTITUTE SHEET (RULE 26)

19/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA3

AG GGAGCAAGGA GAAGGCATGG AGAGGCTCAN GCTGGTCCTG GCCTACGACT	60
CT GTCGCCGGGG ATGGTGGAGA ACTGAAGCGG GACCTCCTCG AGGTCCCTCG	120
TC NCCGTCCAGG AGGAGGGTCT TTCCGTGGTC TNGGAGGGAGC GGGGGGAGAA	180
TC ATGGTCNACA TCCC	204

Fig. 19

20/25

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B4CA1

TC AGGAGCGGGT AGAGTGGCAC CATTGAGGGG ATATTCAAAA ATATTATTTT	60
TG ATAGTTGCTG AGTTTTCTT TGACCCATGA GTTATATTGG AGTTTATTTT	120
CC AATCGCATGG ACATGTTAGA CTTATTTCT GTTAATGATT NCTATTTTA	180
GA TTTGAGAAAT TGGTTNTTAT TATATCAATT TTTGGTATT GTTGAGTTG	240
GC TTAGTATGTG ACCA	264

Fig. 20

21/25

Fig. 21A

22/25

Fig. 21B

23/25

Fig. 22

24/25

Fig. 23

25/25

Recognition of Tumor Cell Lines by Clone A1

Fig. 24
SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

<110> Corixa Corporation

<120> COMPOSITIONS AND METHODS FOR THE
TREATMENT AND DIAGNOSIS OF BREAST CANCER

<130> 210121.41926PC

<140> PCT

<141> 2000-04-07

<160> 317

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 363

<212> DNA

<213> Homo sapien

<400> 1

ttagagaccc	aattgggacc	taattggac	ccaaatttct	caagtggagg	gagaactttt	60
gacgattcc	accggtatct	cctcggggt	attcagggag	ctgcccagaa	acctataaac	120
ttgtctaagg	cgattgaagt	cgtccagggg	catgatgaat	caccaggagt	gttttttagag	180
cacccctccagg	aggcttatcq	gatttacacc	ccttttgacc	tggcagcccc	cgaaaatagc	240
catgctctta	atttggcatt	tgtggctcag	gcagccccag	atagtaaaag	gaaactccaa	300
aaactagagg	gattttgctg	gaatgaatac	cagtcagctt	ttagagatag	cctaaaaggt	360
ttt						363

<210> 2

<211> 121

<212> PRT

<213> Homo sapien

<400> 2

```

Leu Glu Thr Gln Leu Gly Pro Asn Trp Asp Pro Asn Phe Ser Ser Gly
   1           5           10          15
Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val Gly Ile Gln
   20          25          30
Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Ala Ile Glu Val Val
   35          40          45
Gln Gly His Asp Glu Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu
   50          55          60
Ala Tyr Arg Ile Tyr Thr Pro Phe Asp Leu Ala Ala Pro Glu Asn Ser
   65          70          75          80
His Ala Leu Asn Leu Ala Phe Val Ala Gln Ala Ala Pro Asp Ser Lys
   85          90          95
Arg Lys Leu Gln Lys Leu Glu Gly Phe Cys Trp Asn Glu Tyr Gln Ser
  100         105         110
Ala Phe Arg Asp Ser Leu Lys Gly Phe
  115         120

```

<210> 3

<211> 1080
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(1080)
 <223> n = A,T,C or G

<400> 3

tcttagaatac	ttcatacccc	gaactcttgg	gaaaacttta	atcagtcacc	tacagtctac	60
caccatTTA	ggaggagcaa	agctaccta	gtccctccgg	agccgttttta	agatccccca	120
tcttcaaaGC	ctaacagatc	aagcagctct	ccggTgcaca	acctgcGCC	aggtaaatgc	180
caaaaaaggT	cctaaaccca	gccaggCCA	ccgtctccaa	gaaaactcac	caggagaaaa	240
gtggggaaatt	gactttacag	aagtaaaaacc	acaccgggt	gggtacaaat	accttctagt	300
actggtagac	accttcttg	gatggactga	agcatttgct	accaaaaaacg	aaactgtcaa	360
tatggtagtt	aagttttac	tcaatgaaat	catccctcg	cgtgggctgc	ctgttgccat	420
agggtctgtat	aatggAACGG	ccttgcctt	gtctatagtt	taatcagtca	gtaaggcgTT	480
aaacattcaa	tggaagctcc	attgtgccta	tcgaccCAGA	gctctgggca	agtagAACGc	540
atgaactgca	ccctaaaaaa	acactcttac	aaaattaatc	ttaaaaacccg	gtgttaattg	600
tgttagtctc	cttcccttag	ccctacttag	agttaggtg	caccCttac	tgggctgggt	660
tcttacctt	ttgaaatcat	nttnnngaag	gggctgccta	tcttnncta	actaaaaan	720
gcccatttgg	caaaaatttc	ncaactaatt	tntacgtnc	tacgtctccc	caacaggtan	780
aaaaatctnc	tgcCCTTTC	aagaaccat	cccatccatt	cctnaacaaa	aggcctgcn	840
ttcttcccc	agtttaactnt	ttttnttaa	aattccaaa	aaangaacccn	cctgctggaa	900
aaacncccc	ctccaanccc	cggccnaagn	ggaaggTTCC	cttgaatccc	nccccncna	960
angggccgga	accnTTAAAN	tngttccnng	gggtnnngcc	taaaagnccn	atTTggtaaa	1020
cctanaaaatt	ttttcttttN	taaaaaccac	nnttnnntt	ttcttaaaca	aaaccctntt	1080

<210> 4
 <211> 1087
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(1087)
 <223> n = A,T,C or G

<400> 4

tcttagagctg	cgcctggatc	ccggcacagt	gaggagacct	gaagaccaga	gaaaacacag	60
caagtaggcc	ctttaaacta	ctcacctgt	ttgtcttcta	atttatttctg	ttttatTTG	120
tttccatcat	ttaagggggt	taaaatcatc	ttgttcagac	ctcagcatat	aaaatgaccc	180
atctgttagac	ctcaggctcc	aaccatacc	caagagtgt	ctggTTTGT	ttaaattact	240
gccaggTTTC	agctgcagat	atccctggaa	ggaatattcc	agattccctg	agtagTTCC	300
aggttaaaat	cctatagct	tcttctgttt	tgaggaagag	tccctgtcag	agaaaaacat	360
gattttggat	tttaacttt	aatgtttgt	aaacgctata	aaaaaaattt	tctacCCCTA	420
gctttaaagt	actgttagt	agaaattaaa	attccttcag	gaggattaaa	ctgcatttc	480
agttacccta	attccaaatg	tttgggtggt	tagaatctc	ttaatgttc	ttgaagaagt	540
gttttatatt	ttcccatcna	gataaattct	ctcncncctt	nntttntnt	ctnnnttttt	600
aaaacggant	cttgctccgt	tgtccangct	gggaattttt	tttggccaa	tctccgctnc	660
cttgcanaaa	tnctgcntcc	caaaattacc	nccttttcc	cacccCacc	ccnnnggaatt	720
acctggaaatt	anaggcccc	ncccccccc	cggctaattt	gttttgttt	ttagtaaaaa	780
acgggTTTC	tgttttagtt	aggatggccc	anntctgacc	ccntnatcnt	ccccctcngc	840
cctcnaatnt	tnggnntang	gcttaccccc	cccnngnngt	tttcctccat	tnaaatttcc	900

tntggantct tgaatnnccgg gtttccctt tttaaacnat ttttttttn nnnccccan	960
ttttncctcc cccnntnta angggggtt cccaancgg gtccncccccc angtccccaa	1020
ttttctccc cccccctttt ctttcttnc cccaaaantc ctatctttc ctnnaaatat	1080
cnantnt	1087

<210> 5
<211> 1010
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(1010)
<223> n = A,T,C or G

<400> 5

tctagaccaa gaaatgggag gatttagag tgactgatga tttctctatc atctgcagtt	60
agtaaacatt ctccacagt tatgcaaaaa gtaacaaaac cactgcagat gacaacact	120
aggtaacaca catactatct cccaaatacc taccacaaag ctcacaatt ttaaactgtt	180
aggatcactg gctctaataca ccatgacatg aggtcaccac caaaccatca agcgctaaac	240
agacagaatg tttccactcc tgatccactg tgtggaaaga agcaccgaac ttacccactg	300
gggggcctgc ntcanaanaa aagccatgc cccgggtnt nccttnaac cggaacgaat	360
naaccacca tccccacanc tcctctgttc ntgggcctg catcttgtgg cctcncntnc	420
tttnggggan acntgggaa ggtacccat ttcnntgacc ccncnananaa accccngtgg	480
cccttgccc tgattcncnt gggcttttc tctttccct tttgggttg ttaaattccc	540
aatgtccccn gaaccctctc cnntctgccc aaaacctacc taaattnctc nctangnntt	600
ttcttgggtgt tnctttcaa aggtnacctt ncctgttcan ncccnacnaa aatttttcc	660
ntatnntggn cccnnaaaaa nnnatcnnc cnaattgccc gaattggtn ggttttcct	720
nctggggaa accctttaaa ttccccctt ggccggcccc cctttttcc ccccttnga	780
aggcagggngg ttcttcccgta acttccaatt ncaacagecn tgcccatgn tgaaaccctt	840
ttcctaaaat taaaaatan ccgtttnngg nnggccttcc tccctcceng gnnggnngng	900
aaantcctta cccnnaaaaa gggtgcttag ccccnngtcc caactcccccc ngaaaaatn	960
aacctttcn aaaaaaggaa tataanttn ccactccttcc gttcttcc	1010

<210> 6
<211> 950
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(950)
<223> n = A,T,C or G

<400> 6

tctagagctc gcggccgcga gctctaatac gactcaatat agggcgtcga ctgcgtctca	60
gctcaactgca atctctgccc ccggggcat gcgattctcc tgccctcagcc ttccaagtag	120
ctgggattac aggctgtcaa caccacaccc ggctaatttt gtatTTTaa tagagatggg	180
gtttccctt gttggccann atggctcna accccgtacc tcnnngtgc tcccccccn	240
nganctcnna ctgtggga tnnccgnnnn nnccctcccn ncncnnnnnn ncncnntccn	300
tnntccttnc tcnnnnnnnn cnntcnntcc nncttcncc cnntnttnt cnncnccnn	360
cnncncnccn ncccnccnn tcnntcnccn tntccnnccn nnctcnccnn cnncnntnn	420
ccnntacntc nttnncnnnt ccntcttntn cctcnccnnt cnctncncnt tntcttccn	480
ntnnnnnnct ccnnnnntct ctnccnnccn tncctcnntn ncncncccc ncctcnccn	540
ctnnttttnn cnncnnntcc ntncntten nnctcnccn cnntcnccn nncntnttcc	600

ccncennttc	cttncncntr	nnntntcnnn	cncntcnntc	ntttntcct	nnntcccnnc	660
tcnnttcncc	cnnntccncc	ccccnccnt	ctctcnccc	nntnnntntn	nnncntccncc	720
tntcnenttc	ntcnntncnt	tntcnntcn	nncnntncnc	tncntntnt	ctnnntcncc	780
tncntntcn	cncntcntr	ctntctcctn	tntcctccc	ctcnccntct	cncntccncc	840
ccnntntntn	tnncnccnnt	nctnnncnnc	cncntttcn	tctctnctnn	nnntnnccctc	900
nnccnntncc	ctnnntncnct	nctnntacn	tnctnctcn	tcttccttcc		950
<210>	7					
<211>	1086					
<212>	DNA					
<213>	Homo sapien					
<220>						
<221>	misc_feature					
<222>	(1)...(1086)					
<223>	n = A,T,C or G					
<400>	7					
tctagagctc	gcggccgcga	gctcaattaa	ccctcactaa	aggagatcg	ctcgatcaga	60
ctgttactgt	gtctatgttag	aaagaagttag	acataagaga	ttccattttg	ttctgtacta	120
agaaaaattc	ttctgcctg	agatgtgtt	aatctgtaac	cctaggccca	accctgtgct	180
cacagagaca	tgtgtgtgt	tgactcaagg	ttcaatggat	ttagggctat	gctttgttaa	240
aaaagtgcct	gaagataata	tgcttgttaa	aagtcatcac	cattctctaa	tctcaagttac	300
ccagggacac	aatacactgc	ggaaggccgc	agggacctct	gtcttaggaaa	gccaggtatt	360
gtccaagatt	tctccccatg	tgatagcctg	agatatggcc	tcatggaaag	gttaagacct	420
gactgtcccc	cagcccgaca	tcccccagcc	cgacatcccc	cagcccgaca	cccgaaaagg	480
gtctgtctg	aggaagatta	ntaaaagagg	aaggctctt	gcattgaagt	aagaagaagg	540
ctctgtctcc	tgctcgtccc	tggcaataa	aatgtcttgg	tgttaaacc	aatgttatgt	600
tctacttact	gagaataga	gaaaacatcc	ttagggctgg	aggtgagaca	ccctggcgcc	660
atactgctct	ttaatgcacg	agatgtttgt	ntaattgcca	tccagggcca	ncccccttcc	720
ttaactttt	atganacaaa	aactttgttc	nctttcctg	cgaacctctc	cccctattan	780
cctattggcc	tgcccatccc	ctccccaaan	ggtaaaaana	tgtcntaaa	tncgagggaa	840
tccaaaacnt	tttcccggt	gtcccccttc	caaccccg	cetgggcccnn	tttcctcccc	900
aaacntgtccc	ggntccttcn	ttcccncccc	cttccngan	aaaaaacc	gtntganggn	960
ccccctcaa	attataac	ttccnaaaca	aannggttcn	aaggtggttt	gnttccgggt	1020
cggctggcct	tgaggtcccc	cctncacccc	aatttggaa	ccngttttt	ttattgccc	1080
ntcccc						1086
<210>	8					
<211>	1177					
<212>	DNA					
<213>	Homo sapien					
<220>						
<221>	misc_feature					
<222>	(1)...(1177)					
<223>	n = A,T,C or G					
<400>	8					
nccntttaga	tgttgacaan	ntaaaacaagc	ngctcaggca	gctgaaaaaaaa	gccactgata	60
aagcatcctg	gagttatcaga	gtttactgtt	agatcaggct	catttgactt	cccctcccac	120
atggtgttta	aatccagcta	cactacttcc	tgactcaa	tccactattc	ctgttcatga	180
ctgtcaggaa	ctgttgaaa	ctactgaaac	tggccgacct	gatcttcaaa	atgtgcccct	240
agggaaaggtg	gatgccac	tgttcacaga	cagtaccncc	ttcctcgaga	agggactacg	300
agggggccgt	gcanctgtta	ccaggagac	tnatgtgttg	tgggctcagg	ctttaccanc	360

aaacacctca ncncnnaagg ctgaattgat cgcctcaact caggctctcg gatgggttaa	420
gggatattaa cgtaaacact gacagcaggt acgccttgc tactgtcat gtacgtggag	480
ccatctacca ggagcgtgg ctactcaact ggcaggtggc tgnatccac tgtaaangga	540
catcaaagg aaaacnngc tggcccgt ggtaaccana aanctgatcn ncagctcnaa	600
gatgctgtgt tgactttcac tcncnctct taaaacttgct gcccacantc tccttccca	660
accagatctg cctgacaatc cccatactca aaaaaaaaaan aanactggcc csgaaccnca	720
accaataaaa acggggangg tngtnganc nnctgaccc aaaaataatg gatcccccg	780
gctgcaggaa ttcaattcan ctttatcnat acccccaacn ngnggggggg ggccngtncc	840
catnccct ntattnattc tttnnccccc ccccggtnt ctttttnaa ctcgtaaag	900
ggaaaacctg ncttaccaan ttatcnctg gaccntcccc ttccnccgtt gnntanaaaa	960
aaaagccnc antcccntcc naaatttgca cngaaaggna aggaatttaa cctttatTTT	1020
ttnntcctt anttgcnnn cccctttta cccaggcgaa cngccatcnt ttaanaaaaa	1080
aanagaang ttatTTTC cttngaacca tcccaatana aancacccgc ngggaaacgg	1140
gngnaggc cnctcaccce cttntgtng gnngnnc	1177

<210> 9
<211> 1146
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(1146)
<223> n = A,T,C or G

<400> 9

nccnntnnt gatgttgtct ttttggcctc tctttggata cttccctct cttcagaggt	60
aaaaagggtc aaaaggagct gttgacagtc atcccaggtg ggccaatgtg tccagagtac	120
agactccatc agtgaggta aagctgggg ctttcagag aaggaggat tatgggttt	180
ccaattatac aagtcagaag tagaaagaag ggacataaac caggaagggg gtggagcact	240
catcaccagg agggacttgt gcctctctca gtggtagtag aggggctact tcctcccacc	300
acggttgcaa ccaagagcca atgggtgatg agcctacagg ggacatancc gaggagacat	360
ggatgaccc taagggagta ggctggttt aaggcggtgg gactgggtga gggaaactct	420
cctcttcttc agagagaagc agtacaggc gagctgaacc ggctgaaggt cgaggcgaaa	480
acacggctcg gctcaggaag accttggaaag taaaattatg aatgggtcat gaatggagcc	540
atggaaagggg tgctcctgac caaactcagc cattgatcaa tggtagggaa actgatcagg	600
gaagccggga atttcattaa caacccgcca cacagctga acattgtgag gttcagtgac	660
ccttcaaggg gccactccac tccaactttg gccattctac tttgcnaaat ttccaaaact	720
tccttttta aggccgaatc cntantccct naaaaacnaa aaaaaatctg cnccattct	780
ggaaaaggcc cancccttac caggctggaa gaaatttnc cttttttt ttttgaagg	840
cnttnttaa attgaacctn aattcncccc cccaaaaaaaaa aacccnccng gggggcggat	900
ttccaaaaac naattccctt accaaaaaaac aaaaacccnc cttnttccc ttccnccctn	960
ttcttttaat tagggagaga tnaagcccc caatttccng gnctngatnn gtttcccccc	1020
cccccathtt ccnaaacttt tteccancna ggaancncc ctttttttng gtcngattna	1080
ncaaccttcc aaaccatttt tccnnaaaaa nttgntngg nggaaaaan actnntttt	1140
atagan	1146

<210> 10
<211> 545
<212> DNA
<213> Homo sapien

<400> 10

tttcattggg tacggggcccc ctgcagggtcg acggtatcga taagcttgat atcgaattcc	60
tgcagcccg gggatccact agttctagag tcaggaagaa ccaccaacct tcctgatTTT	120

tattggctct gagttctgag gccagtttc ttcttctgtt gaggatgcgg gattgtcagg	180
cagatctggc tggaaagg agactgtggg cagcaagtt agaggcgtga ctgaaagtca	240
caactgcacatct tgagctgctg aatcagctt ctggttacca cggcaacag ccgtgtttc	300
cttttgatgt ctttacagt ggattacage cacctgtga ggttagtgc ccacgcct	360
ggtagatggc tccacgtaca tgcacagtag caaaggcgta cctgtgtca gtgttaacgt	420
taataatcctt accccatcg agagcctgag tgagggcgat caattcagcc cttttgtct	480
gaggtgtttg ctggtaagc cctgaaccca caacacatct gtctccatgg taacagctgc	540
accgg	545

<210> 11
<211> 196
<212> DNA
<213> Homo sapien

<400> 11	
tctcctaggc tggcacagt ggctcatacc tctaattctg accgtttcag aggctcaggt	60
ggggggatcg cttagccccca agatttcaag actagtctgg gtaacatagt gagaccstat	120
ctctacaaaa aaataaaaaaa atgagcctgg tgttagtggca cacaccagct gaggagggag	180
aatcgagcct aggaga	196

<210> 12
<211> 388
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(388)
<223> n = A,T,C or G

<400> 12	
tctcctaggc ttgggggctc tgactagaaa ttcaaggaac ctgggattca agtccaactg	60
tgacaccaac ttacactgtg gnctccaata aactgctct ttcttattcc ctctctatta	120
aataaaataa gggaaacgat gtctgttat agccaagtca gntatcctaa aaggagatac	180
taagtgacat taaatatcat aatgtaaaac ctgggaacca gttcccagc ctgggattaa	240
actgacagca agaagactga acagactac tggaaaagc ccgaagnngc aatatgtca	300
ctctaccgtt gaaggatggc tgggagaatg aatgctctgt cccccagtc caagctca	360
tactataacct cctttatagc ctaggaga	388

<210> 13
<211> 337
<212> DNA
<213> Homo sapien

<400> 13	
tagtagttgc ctataatcat gtttctcatt atttcacat tttattaacc aatttctgtt	60
taccctgaaa aatatgaggg aaatatatga aacaggagg caatgttcag ataattgtac	120
acaagatatg atttctacat cagatgtct ttcctttctt gtttatttcc tttttatttc	180
ggttgtgggg tcgaatgtaa tagctttgtt tcaagagaga gtttggcag tttctgttagc	240
ttctgacact gctcatgtct ccaggcatct atttgcactt taggaggtgt cgtggagac	300
tgagaggtct atttttcca tatttggca actacta	337

<210> 14
<211> 571
<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(571)

<223> n = A,T,C or G

<400> 14

tagtagttgc catacagtgc ctttccattt attaacccc cacctgaacg gcataaaactg	60
agtgttcagc tgggttttt tactgtaaaac aataaggaga ctggcttctt catttaaacc	120
aaaatcatat ttcatatttt acgctcgagg gtttttaccg gttcctttt acactcccta	180
aaacagtttt taagtcgtt ggaacaagat atttttctt tcctggcagc ttttaacatt	240
atagcaaatt tggctctgg ggactgctgg tcactgttcc tcacagttgc aaatcaaggc	300
attingcaacc aagaaaaaaa aattttttt ttttatttga aactggaccg gataaacggt	360
gtttggagcg gctgctgtat atagtttaa atggtttatt gcacccctt aagttgcact	420
tatgtggggg ggggnntttt natagaaagt nttaantcac anagtcacag ggactttnt	480
cttttggnnna ctgagctaaa aaggctgnt ttcgggtgg gggcagatga aggctcacag	540
gaggccttcc tcttagaggg gggactnct a	571

<210> 15

<211> 548

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(548)

<223> n = A,T,C or G

<400> 15

tatatatattta ataacttaaa tatatttga tcacccactg gggtgataag acaataagata	60
taaaagtatt tccaaaaaagc ataaaaccaa agtatcatac caaaccaaatt tcatactgct	120
tccccccaccc gcactgaaac ttccaccttctt aactgtotac ctaacccaaat tctacccttc	180
aagtctttgg tgcgtgcica ctactctttt tttttttttt tttnttttgg agatggagtc	240
tggctgtgca gcccaggggg ggagtacaat ggcacaaccc cagtcactg naacctccgc	300
ctccccaggtt catgagattc ttccgtttca gccttcccaag tagctggac tacaggtgt	360
catcaccatg cctggntaat cttttttngt ttnggttag agatgggggt tttacatgtt	420
ggccaggntg gtntcgaact cctgacctca agtgcattccac ccacccctcagg ctcccaaagt	480
gctaggatta cagacatgag ccactgngcc cagnccctggt gcatgctcac ttctcttaggc	540
aactacta	548

<210> 16

<211> 638

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(638)

<223> n = A,T,C or G

<400> 16

ttccgttatg cacatgcaga atattctatc ggtacttcag ctattactca ttttgcggc	60
gcaatccgag cctatccca agatgagtagt tttagaaagaa ttgatggc gatagaccaa	120
gctggtaagc actctgacta cacgaaattt gtcagatgtg atggatttat gacagttgt	180

ctttggaga gattattaag tgattatTTT aaaggaaatc cattaattcc agaatatctt	240
ggtttagctc aagatgata agaaataGAA cagaaAGAGA ctacaaATGA agatgtatca	300
ccaactgata ttGAAGAGCC tataGAGAA aatGAATTAG ctgcatttat tagccttaca	360
catagcgatt ttcctgatga atcttatatt cagccatcga catagcatta cctgatggc	420
aaccttacga ataataGAAA ctGGGTGCGG ggctattGAT gaattcatcc ncagtaaatt	480
tggatATNAC aaaatataac tcgattGAT ttggatGATG gaataactaaa tctggcaaaa	540
gtaactttgg agctactagt aacctctt tttgagatgc aaaatTTCT tttagggTTT	600
cttattctct actttacgca tattggagca taacggga	638

<210> 17
<211> 286
<212> DNA
<213> Homo sapien

<400> 17	
actgatggat gtcGCCGAG gcgaggggcc ttatctgatg ctcggctgcc tgttcgtgat	60
gtgcgcggcg attgggctgt ttatctcaa accgcCACG gcggtgctga tggcgcstat	120
tgccttagcg gcccgaagt caatggcgt ctcaccctat ccttttgcCA tggtggtggc	180
gatggcggct tcggcggcgt ttatgacccc ggtctccTG ccggtaaca ccctggtgct	240
tggccctggc aagtactcat ttagcgattt tgtcaaaata ggcgtg	286

<210> 18
<211> 262
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1) ... (262)
<223> n = A,T,C or G

<400> 18	
tcggtcatag cagccccttc ttctcaattt catctgtcac taccctggtg tagtatctca	60
tagccttaca tttttatagc ctcctccctg gtctgtctt tgatTTTcct gcctgtaaTC	120
catatcacac ataactgcaa gtaaacattt ctaaagtgtg gttatgctca tgtcaCTCCT	180
gtgncaagaa atagtttoca ttaccgtctt aataaaattt ggatttgttc tttnctattn	240
tcactttca cctatgacccg aa	262

<210> 19
<211> 261
<212> DNA
<213> Homo sapien

<400> 19	
tcggtcatag caaagccagt ggTTTgagct ctctactgtg taaactccta aaccaaggcc	60
atttatgata aatggggca ggatTTTtat tataaacatg tacccatgca aatttcctat	120
aactctgaga tatattcttc tacattaaa caataaaaat aatctatTTT taaaAGCCTA	180
atttgcgtag ttaggtaaga gtgttaatg agagggtata aggtataaaat caccagtcaa	240
cgtttctctg cctatgacccg a	261

<210> 20
<211> 294
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(294)
<223> n = A,T,C or G

<400> 20
tacaacgagg cgacgtcggt aaaatcgac atgaagccac cgctggctt ttcttcgag 60
cgataggcgc cggccagcca gcggAACGGT tgcccggatg gcaagcgag ccggaggttct 120
tcggactgag tatgaatctt gttgtaaaa tactcgccgc ctgcgttcga cgacgtcgcg 180
tcgaaatctt cganctcctt acgatcgaag tcttcgtggg cgacgatcgc ggtcagttcc 240
ccccaccga aatcatgggt gagccggatg ctgncccgaa agncctcggt tgn 294

<210> 21
<211> 208
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(208)
<223> n = A,T,C or G

<400> 21
ttggtaaagg gcatggacgc agacgcctga cgtttggctg aaaatcttc attgatttgt 60
atcaaatgaat aggaaaattc ccaaagaggg aatgtcctgt tgctcgccag ttttntgtt 120
gttctcatgg anaaggcaan gagctttca gactattggn attntcggtc ggtcttctgc 180
caactagtcg ncttgcnang atcttcat 208

<210> 22
<211> 287
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(287)
<223> n = A,T,C or G

<400> 22
nccnttgagc tgagtgattt agatntgtaa tggttgttaag ggtgattcag gcggattagg 60
gtggcgggtc acccggcagt gggctcccc acaggccagc aggatttggg gcaggtacgg 120
ngtgcgcatac gctcactat atgctatggc aggcgagccg tggaaaggngg atcaggtcac 180
ggcgctggag cttccacgg tccatgnatt gngatggctg ttcttaggcgg ctgttgc当地 240
gcgtgatggc acgctggctg gagcattgtat ttctgggtgcc aagggtgg 287

<210> 23
<211> 204
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(204)
<223> n = A,T,C or G

<400> 23
ttgggttaaag ggagcaagga gaaggcatgg agaggctcan gctggtcctg gcctacgact 60
ggccaaagct gtcgcgggg atggtgaga actgaagcgg gacctcctcg aggtccctccg 120
ncgttacttc nccgtccagg aggagggtct ttccgtggtc tnggaggagc ggggggagaa 180
gatnctcctc atggtnaca tccc 204

<210> 24
<211> 264
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(264)
<223> n = A,T,C or G

<400> 24
tggattggtc aggagcgggt agagtggcac cattgagggg atattcaaaa atattatttt 60
gtcctaaatg atagttgctg agtttttctt tgaccatga gttatattgg agtttatttt 120
ttaacttcc aatcgcatgg acatgttaga cttatttctt gttaatgatt nctatttta 180
ttaaatggta tttgagaaat tggttttat tatatcaatt ttttgttattt gttgagtttg 240
acattatacg ttagtatgtg acca 264

<210> 25
<211> 376
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(376)
<223> n = A,T,C or G

<400> 25
ttacaacgag gggaaactcc gtctctacaa aaattaaaaa attagccagg tgtggtggtg 60
tgcacccgca atcccgacta cttgggaggt tgagacacaa gantcaccta natgtgggag 120
gtcaagggtt catgagtcat gattgtcca ctgcactcca gcctgggtga cagaccgaga 180
ccctgcctca anaganaang aataggaagt tcagaaaten tggntgtgnn gcccagcaat 240
ctgcatctat ncaacccttg caggcaangc tgatgcagcc tangttcaag agctgctgtt 300
tctggaggca gcagttnggg cttccatcca gtatcacggc cacactcgca cnagccatct 360
gtcctccgtn tgnac 376

<210> 26
<211> 372
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(372)
<223> n = A,T,C or G

<400> 26
ttacaacgag gggaaactcc gtctctacaa aaattaaaaa attagccagg tgtggtggtg 60
tgcacccgta atcccgacta cttggcggc tgagacacaa gaaccaccta aatgtgggag 120

ggtcaagggtt gcatgagtca tgatcgcc actgcactcc agcctgggtg acagactgag	180
accctgcctc aaaagaaaaaa gaataggaag ttcagaaacc ctgggtgtgg ngcccagcaa	240
tctgcattta aacaatccct gcaggcaatg ctgatgcagc ctaagttcaa gagctgctgt	300
tctggaggca gnagtaaggg cttccatcca gcatcacgn caacactgca aaagcacctg	360
tcctcggtgg ta	372
<210> 27	
<211> 477	
<212> DNA	
<213> Homo sapien	
<400> 27	
ttctgtccac atctacaagt tttatttatt ttgtgggtt tcagggtgac taagttttc	60
cctacattga aaagagaagt tgctaaaagg tgcacagaa atcattttt taagtgaata	120
tgataaatatg ggtccgtgt taatacact gagacatatt ttttctctgt ttttttagag	180
tcacctctta aagtccaatc ccacaatggt gaaaaaaaaa tagaaagtat ttgttctacc	240
ttaaggaga ctgcaggat ttccttgaa aacggagat ggaatcaatc taaaataaat	300
atgaaattgg ttgttctctt gggataagaa attcccaact cagtgctgt aaattcacct	360
gactttttt gggaaaaaat agtcaaaat gtcaatttg tccataaaaat acatgttact	420
attaaaaagat attaaagac aaattcttc agagctctaa gattgggtgtg gacagaa	477
<210> 28	
<211> 438	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(438)	
<223> n = A,T,C or G	
<400> 28	
tctncaacct cttgantgtc aaaaaccttn taggctatct ctaaaagctg actggattc	60
attccagcaa aatccctcta gttttggag tttccttta ctatctgggg ctgcctgagc	120
cacaaatgcc aaattaagag catggctatt ttcgggggt gacaggtcaa aaggggtgt	180
aatccgataa gcctccttggaa ggtgtctaa aaacactcct ggtgactcat catgcccctg	240
gacgacttca atcgncttag acaagtttat aggtttctgg gcagctccct gaatacccac	300
gaggagatac cggtggaaat cgtcaaaaat ttccttccca ttgagaaat ttgggtccca	360
attaggtccc aattgggtct ctaatcacta ttctcttagc ttccctctcc ggnctattgg	420
ttgatgtgag gttgaaga	438
<210> 29	
<211> 620	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(620)	
<223> n = A,T,C or G	
<400> 29	
aagagggtac cagccccaaag cttgacaac ttccataggg tgtcaagcct gtgggtgcac	60
agaagtcaaa aattgagttt tgggatctc agcctagatt tcagaggata taaagaaaaca	120
cctaacacct agatattcag aaaaaagttt actacaggg a tgaagtttc acggaaaacc	180

tctactagga aagtacagaa gagaaaatgtg gttttggagc ccccaaacag aatcccctct	240
agaacactgc ctaatgaaac tgtgagaaga tggccactgt catccagaca ccagaatgat	300
agacccacca aaaacttatg ccataattgcc tataaaacct acagacactc aatgccagcc	360
ccatgaaaaa aaaactgaga agaagactgt nccctacaat gccaccggag cagaactgcc	420
ccaggccatg gaagcacagc tcttataatca atgtgacctg gatgttgaga catggaatcc	480
nangaaatcn tttaanact tccacggtn aatgactgcc ctattanatt cngaacttan	540
atccnggct gtgacctctt tgcttggcc attccccott tttggaatgg ctntttttt	600
cccatgcctg tncccttta	620

<210> 30
<211> 100
<212> DNA
<213> Homo sapien

<400> 30	
ttacaacgag ggggtcaatg tcataaatgt cacaataaaa caatcttttc tttttttttt	60
ttttttttt tttttttttt tttttttttt tttttttttt	100

<210> 31
<211> 762
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(762)
<223> n = A,T,C or G

<400> 31	
tagtctatgc gccggacaga gcagaattaa attggaagtt gccctccgga ctttctaccc	60
acactcttcc tgaaaagaga aagaaaagag gcaggaaaaga ggttaggatt tcattttcaa	120
gagtcagcta attaggagag cagagtttag acagcagtag gcacccatg atacaacca	180
tggacaaagt ccctgtttag taactgcccag acatgatect getcagggtt tgaaatctct	240
ctgcccataa aagatggaga gcaggagtgc catccacatc aacacgtgtc caagaaagag	300
tctcagggag acaagggtat caaaaaacaa gattcttaat gggaggaaa tcaaaccaaa	360
aaatttagatt tttctctaca tatataat atacagatat ttaacacatt attccagagg	420
tggctccagt ccttgggct tgagagatgg tgaaaacttt tgttccacat taacttctgc	480
tctcaattc tgaagtatat cagaatggga caggcaatgt tttgctccac actggggcac	540
agacccaaat ggttctgtgc ccgaagaaga gaagcccgaa agacatgaag gatgcttaag	600
gggggttggg aaagccaaat tggtantatc tttccctcct gcctgtgtc cngaagtctc	660
cnctgaagga attctaaaaa cccttgtga ggaaatgccc cttaccatg acaantggtc	720
ccattgcctt taggngatg gaaacaccaa ggttttgc cc	762

<210> 32
<211> 276
<212> DNA
<213> Homo sapien

<400> 32	
tagtctatgc gtgttattaac ctcccctccc tcagtaacaa ccaaagggc aggagctgtt	60
attaccaacc ccattttaca gatgcatcaa taatgacaga gaagtgaagt gacttgcgcac	120
cacaaccagt aaattggcag agtcagatgg gatccatgg agtctggctc gcaacttcaa	180
tcaccgaata cccttctaa gaaacgtgtg ctgaatgagt gcatggataa atcagtgtct	240
actcaacatc ttgccttaga tatcccgcat agacta	276

<210> 33
 <211> 477
 <212> DNA
 <213> Homo sapien

<400> 33

tagtagttgc caaatatttg aaaatttacc cagaagtgtat gaaaaacttt ttggaaacaa
 aaacaataa agccaaaagg taaaataaaa atatcttgc actctcgta ttacctatcc 60
 ataactttt caccgtaaagc tctccgttt gtttagtgtag tgtggttata taaaacttt
 tagttattat ttttattca cttttccact agaaaagtcat tattgattt gcacacatgt
 ttagtcatt tcatttttc ttttatagg caaaatttga tgctatgcaa caaaataact 120
 caagcccatt atctttttc cccccaaat ctgaaaattt caggggacag agggaaagtt
 tcccataaa aaattgtaaa tatgttcagt ttatgtttaa aaatgcacaa aacataagaa 180
 aattgtttt acttgagctg ctgattgtaa gcagtttat ctcagggca actacta 240
 300
 360
 420
 477

<210> 34
 <211> 631
 <212> DNA
 <213> Homo sapien

<400> 34

tagtagttgc caattcagat gatcagaaat gctgcttcc tcagcattgt cttgttaaac
 cgcatgccat ttggaacttt ggcagtgaga agccaaaagg aagaggtgaa tgacatatat 60
 atatataatat attcaatgaa agtaaaatgt atatgctcat atacttcta gttatcagaa
 tgtagttaagc tttatgcccatt tgggctgctg catattttaa tcagaagata aaagaaaatc
 tggcatttt tagaatgtga tacatgttt tttaaaactt gttaaatatta ttgcattt 120
 tttctaaagaa ccgaaatgtt cttaaaattt actaaaacag tattgttga ggaagagaaa
 actgtactgt ttgccattat tacagtctgtt caagtgcattt tcaagtccacc cactctctca
 ggcattcattt tccacccat agctttcacac attttgacgg ggaatattgc agcatcctca
 ggcctgacat ctggqaaagg ctcagatcca cctactgctc cttgctcggtt gatttgggg
 aaaatattgt gcctgggttc acttttaagc cacagccctg cctaaaagcc agcagagaac 480
 540
 600
 631

<210> 35
 <211> 578
 <212> DNA
 <213> Homo sapien

<400> 35

tagtagttgc catcccatat tacagaaggc tctgtataca tgacttattt ggaagtgtatc
 tggtttctct ccaaaccat ttatcgtaat ttcaccagtc ttggatcaat cttgggttcc 60
 actgataccca tggaaacctac ttggaggcaga cattgcacag ttttctgtgg taaaaactaa
 aggtttattt gctaagctgt catcttgc ttagtatttt ttttttacag tggggattt
 ctgagattac atttgttat tcattagata ctttggata acttgacact gtcttcttt
 ttgcatttt aattgttatac atcatgttt tgaaacaaga acacattgtt cctcaagtat
 tacataagct tgcttggtaat gcctgggtt gttaaaggact atcttggcc tcaggttcac
 aagaatgggc aaagtgtttc cttatgttct gtatgttca ataaaagatt gccaggggcc
 ggttactgtt gctcgactg taatcccacg accttggaa gctgaggctg gcgatcatg
 tttagggcagg tggcgaaac cagcctgggc aactacta 578

<210> 36
 <211> 583
 <212> DNA
 <213> Homo sapien

<400> 36

tagtagttgc ctgtaatccc agcaactcag	60
gggaggcaga agttgttaatt agcaaagatc	120
agttagattc catctaaaaa acaaaaaaaaa	180
aaaacgtata aacccagcca aaacaaaatg	240
atcattctt taataagcaa gactaatttta	300
ttaatcaaag cagttgaatc ttctgagtttta	360
ttggtgaaaa tacccatgtt gttaatttttt	420
ggttcttact tgggtgaacg tttgatgttc	480
acaggttata aaatgggttaa caaggaaaaat	540
gatgcataaa gaatcttata aactactaaa	600
aataaataaa atataaatgg ataggtgcta	660
tggatggagt ttttgttaa tttaaaatct tgaagtcat	716
ttggatgttc attgggttgc tggtaatttc	783
cattagggaaa aggttatgtt atggggaaac	
tgtttcttcat ctgtaaaaatg ctagtatctc	
agggcaacta cta	

<210> 37

<211> 716

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(716)

<223> n = A,T,C or G

<400> 37

gatctactag tcatntggat tctatccatg gcagcttaagc	60
ctttctgaat ggattctact gctttcttgc totttatcc	120
agacccttat atatgtttat gttcacaggc agggcaatgt	180
ttagtggaaaaa caattctaaa ttttttattt tgcatttca	240
tgctaatttc cgtcacactc cagcaggctt cctggggagaa	300
taaggagaaaa tacagctaaa gacattgtcc ctgtttactt	360
acagcctaat ggtatgcaaa accacttcaa taaagtaaca	420
ggaaaaagtac taaccaggta gaatggacca aaactgat	480
agaaaaatca gaggaagaga ggaacaaata tttactgagt	540
cctagaatgt acaaggctt ttaattacat atttatgtt	600
aggcctgcaa aaaacaggtg agtaatcaac atttgc	660
ccca ttttacatat aaggaaactg aagcttaaat tgaataattt	716
aatgcataaga ttttataatgtt agaccatgtt caggtcccta	
tgttataactt actagctgtt tgaatatgag aaaataattt	
tgttattttc ttggcatcag tattttcatc tgcaaaataa	
agctaaagtt attagcaaa cagtcagcat agtgcctgtt acatagtagg	
tgctccaaac atgattacnc tantatnngg tattanaaaa atccaatata	
ggcntggata aaaccg	

<210> 38

<211> 688

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(688)

<223> n = A,T,C or G

<400> 38

ttctgtccac atatcatccc actttaattt ttaatcagca	60
aaactttcaa tgaaaaatca tccattttaa ccaggatcac	120
accaggaaac tgaagggtta ttttttttta ccttaaaaaaa	180
aaaaaaaaaaa accaaacaaa caaaaacaga ttaacagcaa	240
agagttctaa aaaatttaca tttcttttac aactgtcatt	300
cagagaacaa tagttctaa gtctgttaa tcttggcatt	360
aacagagaaaa cttgatgaan agttgtactt ggaatattgt	420
ggattttttt ttttgtctaa tctcccccta ttgttttgc	480
aacagtaatt taagttgtt tggAACATCC CGTAGTTGA	
agtgtaaaca atgtatagga aggaatataat gataagatga	
tgcacatcat atgcatttaca ttttagggacc ttcacaactt	
catgcactca gaaaacatgc ttgaagagga ggagaggacg	

gcccagggtc accatccagg tgccttgagg acagagaatg cagaagtggc actgttggaa	540
tttagaagac catgtgtgaa tggttcagg cctggatgt ttgccacca gaagtgcctc	600
cgagaaattt cttccatt tggatacag ggtggcttga tgggtacggt gggtgaccca	660
acgaagaaaa tggaaattctg ccctttcc	688
<210> 39	
<211> 585	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(585)	
<223> n = A,T,C or G	
<400> 39	
tagtagttgc cgcnaccta aaantggaa agcatgatgt ctaggaaaca tantaaaata	60
gggtatgcct atgtgctaca gagagatgtt agcattaaa gtgcataat ttatgtattt	120
tgacaaatgc atatncctct ataattccaca actgattacg aagctattac aattaaaaag	180
tttggccggg cgtgggggc ggtggctgac gcctgtatc ccagcactt gggaggccga	240
ggcacgcgga tcacgaggta gggagttcaa gaccatctg gctaacacgg tgaaagtcca	300
tctctactaa aaatacgaaa aaattacccc ggcgtggg gggcgccctg tagtcccagc	360
tactccggag gctgaggcag gagaatggcg tgaacccagg acacggagct tgcatgtgc	420
caacatcagc tcactgcct ccagcctggg ggacagggaa aagantcccg tcctcanaaa	480
agaaaaatac tactnatant ttcnacttta ttttaantta cacagaactn cctttggta	540
cccccttacc attcatctca cccacccctt atagggcacn nctaa	585
<210> 40	
<211> 475	
<212> DNA	
<213> Homo sapien	
<400> 40	
tctgtccaca ccaatcttag aagctctgaa aagaatttgt cttaaatat cttaatag	60
taacatgtat ttatggacc aaattgacat ttctgactgt ttccatccaa aaagtcaggt	120
gaatttcagc acactgagtt gggaaattct tatccagaa gaccaacca ttccatattt	180
attnaagatt gattccatac tccgtttca aggagaatcc ctgcagtctc cttaaaggta	240
gaacaaatac ttcttatttt ttccatcca ttgtgggatt ggactttaag aggtgactct	300
aaaaaaaaacag agaacaata tgtctcgtt gtattaagca cggaccata ttatcatattt	360
cactaaaaaa aatgatttcc tgtcacctt ttggcaactt ctctttcaa tgttagggaaa	420
aacttagtca ccctgaaaac ccacaaaata aataaaactt gtatgttgg acaga	475
<210> 41	
<211> 423	
<212> DNA	
<213> Homo sapien	
<400> 41	
taagagggtt catcggtttaa gaacgtggc acatcttagag cttagagaag tctgggttag	60
aaaaaaaatc taagtattta taagggtata ggttacattt aaaagttaggg ctagctgaca	120
ttatatttagaa agaacacata cggagagata agggcaaagg actaagacca gaggaacact	180
aatattttgt gatcacttcc attcttggta aaaatagtaa cttaatgtt agcttcaagg	240
aagatttttg gccatgatta gttgtaaaa gtttagttctc ttgggtttat attactaatt	300
ttgttttaag atccttggta gtgtttat aaagtcatgt tatacaaac gctctaaaac	360
atgttagcat gttaaatgtc acaatataact taccattgt tttatgttgc tttttttttt	420

cta

423

<210> 42
 <211> 527
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(527)
 <223> n = A,T,C or G

<400> 42

tctccttaggc taatgtgtgt gtttctgtaa aagtaaaaaag ttaaaaatTT taaaaatAGA	60
aaaaagctta tagaataaga atatgaagaa agaaaatatt ttgtacatt tgcaaatGA	120
gtttatgttt taagctaagt gttattacAA aagagccAAA aagttttAA aaattaaaAC	180
gtttgtaaAG ttacagtacc cttatgttaA tttataattG aagaaAGAAA aactttttT	240
tataaatgtA gtgttagccta agcatacagt atttataAAAG tctggcagtG ttcaataATG	300
tccttaggcC tcacattcac tcactgactC acccagagCA acttccagTC ctgtaaGCTC	360
cattcgTggt aagtgcCcta tacaggTGca ccatttattt tacagtattt ttactgtacc	420
ttctctatgt ttccatatac aaataccact ggttactatn gcccnaCagg	480
taattccagt aacacggcct gtatacgtct ggtanCCta gngaaga	527

<210> 43
 <211> 331
 <212> DNA
 <213> Homo sapien

<400> 43

tcttcaacct cgtaggacAA ctctcatatG cctggcact atttttaggt tactaccttG	60
gctgcCCTC tttaagaaaa aaaaaaAGAA ac aaaaaAGAA AC tttccacAA gtttcttC	120
ctctagttgg aaaatttagAG aaatcatgtt tttaattttG ttttatttCA gatcacaAAat	180
tcaaacactt gtaaacatTA agcttctgtt caatcccTG ggaagaggat tcattctgat	240
atttacggTT caaaAGAAgt tgtaatattG tgcttggAAC acagagaACC agttattaAC	300
ttcctactac tattatataAA taaataataAA C	331

<210> 44
 <211> 592
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(592)
 <223> n = A,T,C or G

<400> 44

ggcttagtag ttgccaggca aaatarcgtt gattctcctc aggagccacc cccaacacCC	60
ctgtttgttt ctagacctat acctagactA aagtcccAGC agacCCCTAG aggtgaggTT	120
cagagtgacc cttgaggaga tttgtgtacac tagaaaaAGAA ctgttttgagt tttcttaattt	180
atataAGCAG aaatctggAG aagagtCATA ggaatggATA ttaaggGTG gagataatGG	240
cggaAGGAAT atagagtTGG atcaggcTGG acttatttgat ttGAACCCAC taagttagAGA	300
ttctgctttt gatgttgcAG ctcaggAGt taaaaaAGGT tttaatggTT ctaatagTTT	360
atttgcttgg tttagctgAAA tatggataAA agatggCCCA ctgtgagCAA gctggAAATG	420
cctgatctct ctcagttAA tgttagAGGA gggatccAA agtttaggGA ganttggatG	480

ctggraktgg attggtaact ttgrgaccta cccwtcccag ctggggagggt ccagaagata	540
cacccttgac caacgctttg cgaaaatggat ttgtgatggc ggcaactact aa	592

<210> 45
<211> 567
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(567)
<223> n = A,T,C or G

<400> 45

ggcttagtag ttgccattgc gagtgcttgc tcaacgagcg ttgaacatgg cggattgtct	60
agattcaacg gatttgagtt ttaccagcaa agcgaaccaa gcgcggccca gagaattatg	120
ggttgggtgg ctttgaaaag atggaaatcc tgttaggccta gtcagaaaag ctttcttgca	180
gaacagtgg ttctcgggcg aacgctcatc aagatgcucca ttgaaaaggc tagcgtgtat	240
ttggggagagc ctgatagcgt gtcttctgtat gatgtttgtg cttggacagt gacaaaagat	300
atgcaaagca agtccgaact agacgtcaag cttcgtgagc aaattattgt agactcctac	360
ttatactgtg aggaatgata gccaaagggtg gggactttaa gactaaggtg gtttgtactt	420
gcccggatga tcccaggcag aaagamctga tcgctagttt tatacgggca actactaagc	480
cgaattccag cacactggcg gccgttacta attggatccg anctcggtac cagcttcatg	540
catascttga gttwtctata ntgtcnc	567

<210> 46
<211> 908
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(908)
<223> n = A,T,C or G

<400> 46

gagcgaaaaga cccgagggcag ngnntangng cgangaagcg gagagggcca aaaagcaacc	60
gctttccccg ggggggtgccg attcatthaag gcaggtggag gacaggtttc ccgatgaaag	120
gcggcagggg cgcaagcaat taatgtgagt aggccatca ttagcacccg ggcttaacat	180
ttaagcttcg ggttggtatg tggggaaat tggcggcga taacaatttc acacaggaaa	240
cagctatgac catgattacg ccaagctatt taggtgacat tatagaataa ctcaagttat	300
gcatcaagct tggtaaccgag ttccgatcca ctagtaacgg ccggcagtgt gtgaaattcg	360
gcttagtagt tgccgaccat ggagtgtac ctaggctaga atacctgagy tcctccctag	420
cctcactcac attaaattgt atctttcta cattagatgt cctcagcgcc ttatttctgc	480
tggacwatcg ataaattaat cctgatagga tgatagcagc agattaatta ctgagagttat	540
gttaatgtgt catccctcct atataacgta tttgcatttt aatggagcaa ttctggagat	600
aatccctgaa ggcaaaggaa tgaatcttga gggtgagaaa gccagaatca gtgtccagct	660
gcagttgtgg gagaaggtga tattatgtat gtctcagaag tgacaccata tgggcaacta	720
ctaagcccgaa attccagcac actggcgggc gttactaatg gatccgagct cggtaccaag	780
tttgatgcat agcttgagta tctatagtgt cactaaatag cctggcgta tcatggtcat	840
agctgtttcc tggatggaaat tggatccgc tcccaattcc cccaccata cgagccggaa	900
cataaaatgt	908

<210> 47
<211> 480

<212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(480)
 <223> n = A,T,C or G

<400> 47

tgccaaacaag gaaagttaa aattccccct tgaggattct tggtgatcat caaattcagt	60
gtttttaag gttttttct gtcaaataac tctaactta agccaaacag tatatgaaag	120
cacagataka atattacaca gataaaagag gagttgatct aaagtaraga tagttgggg	180
cttaatttc tgAACCTAG gtctcccat cttcttctgt gctgaggaac ttcttggaaag	240
cggggattct aaagttttt ggaagacagt ttgaaaacca ccATGTTGTT ctcagtagct	300
ttatTTTAA aaagttaggtg aacatttga gagagaaaag ggCTTGGTT agatgaagtc	360
cccccccccc ctTTTTTTT ttttagctga aatagatacc ctatgttnaa rgaarggatt	420
attatTTacc atGCCAYtar scacatgctc tttgatggc nyctccstac cctccttaag	480

<210> 48
 <211> 591
 <212> DNA
 <213> Homo sapien

<400> 48

aaggagggtac cgagtggaat ttccgcTTCA ctAGTCTGGT gtggctagTC ggTTTcGTgg	60
tggccaacat tacGAACCTC caACTCAACC gttCTTggAC gttcaAGCGG gAGTACCGC	120
gaggatggTG gcgtGAATTc tggcTTTCT tTGCCGTGG atcggtAGCC gCCATCATCG	180
gtatgttat caAGATCTC ttTAActAACC CGACCTCTCC gATTTACCTG CCCGAGCCGT	240
ggtttaacga ggggaggggg atccAGTcac gCGAGTACTG gtcccAGATC ttGccatCG	300
tcgtgacaat gcctatcaac ttCGTGTCA ataAGTTGTG gacCTTCCGA acggTGAAGC	360
actCCGaaaa cgtCCGGTGG ctgCTGTGCG gtGACTCCCA aaATCTTGT aacaacaagg	420
taaccGAATC gCGCTAAGGA accCCGGCAT ctCGGGTACT ctGcatATGC gtACCCCTTA	480
agCCGAATTC cAGCACACTG gCGGCCGTTA ctaATTGGAT ccGAACTCCG taACCAAGCC	540
tgatgcgtAA ctTGAGTTAT tCTATAgTGT ccCTAAAATA acCTGGCGTT a	591

<210> 49
 <211> 454
 <212> DNA
 <213> Homo sapien

<400> 49

aaggagggtac ctgcCTTGAAT atttaaatgt ctaAGGAAar tgggAGATGA ttaAGAGTTG	60
gtgtggcyta gtcacaccaa aatgtattta ttacatCCTG CTCCTTCTA gttgACAGGA	120
aagaaAGCTG ctgtggggaa aggAGGGATA aataCTGAAG ggATTTACTA aACAAATGTC	180
catcacAGAG tttcCTTTT ttttttttG agACAGAGTC ttGCTCTGTC ACCCAGGCTG	240
gaatGAAGWG gtatgatCTC agttGAATGC AACCTCTACC tcCTAGGTTC aAGCGATTCT	300
catgcCTCAG CCTCCTGAGC agCTGGGACT atAGGCAGCAT GCTACCATGC CAGGCTAATT	360
tttatATTTT tattAGAGAC ggggtgttgc catgttggcc aggCAGGTCT cgaACTCCTG	420
ggcCTCAGAT gatCTGCCc ACCGTAACCT ctTA	454

<210> 50
 <211> 463
 <212> DNA
 <213> Homo sapien

<400> 50
 aagagggtac caaaaaaaaaaag aaaaaggaaaa aaaagaaaaaa caacttgtat aaggctttct 60
 gctgcataca gctttttttt tttaaataaa tggtgccaaac aaatgtttt gcattcacac 120
 caattgtctgg tttgaaatc gtactttca aaggtatttg tgcatgatcaa tccaatagtg 180
 atgccccgtta gggtttgtgg actgcccacg ttgtctacct tctcatgtag gagccattga 240
 gagactgttt ggacatgcct gtgttcatgt agccgtatgt tccgggggccc gtgtacatca 300
 ttttaccgtg gggggggc tgcattggct gctgggcata tggctgggtg cccatcatgc 360
 ccatctgcat ctgcataggg tattggggcg tttgatccat atagccatga ttgctgtggt 420
 agccactgtt catcattggc tgggacatgc ttttaccctc tta 463

<210> 51
 <211> 399
 <212> DNA
 <213> Homo sapien

<400> 51
 cttcaacctc ccaaagtgct gggattacag gactgagcca ccacgctcag cctaaggcctc 60
 ttttcacta ccctctaagc gatctaccac agtgtatgagg ggctaaagag cagtgcatt 120
 tgattacaat aatggaactt agatttatta attaacaatt tttccttagc atgttggttc 180
 cataattatt aagagtatgg acttacttag aatgagctt tcatttaag aatttcatct 240
 ttgaccttct ctattagtct gagcagttatg acactatacg tattttattt aactaaccta 300
 ctttgagctt ttactttta aaaggctata tacatgaatg tgtattgtca actgtaaagc 360
 cccacagtat ttaattataat catgatgtct ttgaggttg 399

<210> 52
 <211> 392
 <212> DNA
 <213> Homo sapien

<400> 52
 cttcaacctc aatcaacctt ggtaattgtat aaaatcatca cttaactttc tgatataatg 60
 gcaataatta tctgagaaaa aaaagtggtg aaagattaaa cttgcatttc tctcagaatc 120
 ttgaaggata ttgttataat tcaaaagcgg aatcgtatgt atcagccgaa gaaactcact 180
 tagctagaac gttggaccctt tggatctaaag tccctgcctt tccactaacc agctgattgg 240
 ttttgtttaa acctccttaca cgcttggct tggtcgcctc atttgcataaa gtaaaggctg 300
 aataaggaag ataatgaacc gtgtctttt ggtctttt ccatttcattt ctctgatttt 360
 acaaagaggc ctgtattttt ctggtgaggt tg 392

<210> 53
 <211> 179
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(179)
 <223> n = A,T,C or G

<400> 53
 ttccgggtgat gcctcctcag gctacagtga agactggatt acagaaaggt gccagcgaga 60
 tttcagattt ctgtttaaccc ttaaaagaaaa ggagtgcgc ctcaactgtat gtagaaatga 120
 ctatgttgc acntctgact ccgattctag aggactgagt gacctgcan 179

<210> 54
 <211> 112

```

<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(112)
<223> n = A,T,C or G

<400> 54
ttcgggtgat gcctcctca gctacatcat natagaagca aagtagaana atcnngttg      60
tgcatttcc cacanacaaa attcaaatga ntggaagaaa ttgganagt at      112

<210> 55
<211> 225
<212> DNA
<213> Homo sapien

<400> 55
tgagcttccg cttctgacaa ctcaatagat aatcaaagga caacttaac agggattcac      60
aaaggagtat atccaaatgc caataaacat ataaaaagga atttagctc atcatcatca      120
gaagwatgca aattaaaacc ataatgagaa accactatgt cccactagaa tagataaaat      180
cttaaaagac tggtaaaacc aagtgttgt aaggcaagag gagca      225

<210> 56
<211> 175
<212> DNA
<213> Homo sapien

<400> 56
gctcctcttg ctttaccaac acattctcaa aaacctgtta gagtcctaag cattctcctg      60
tttagtattgg gattttaccc ctgtcctata aagatgttat gtacaaaaaa tgaagtggag      120
ggccataaccc tgagggaggg gagggatctc tagtgttgtc agaagcggaa gctca      175

<210> 57
<211> 223
<212> DNA
<213> Homo sapien

<400> 57
agccatttac caccatgga tgaatggatt ttgttaattct agctgttgta ttttgtgaat      60
ttgttaattt tttttttttt ctgtgaaaca catacattgg atatgggagg taaaggagtg      120
tcccagggtgc tcctggtcac tcccttata gccattactg tcttgggtct tgtaactcag      180
gttaggtttt ggtctctttt gtcactgc aaaaaaaaaaaa aaa      223

<210> 58
<211> 211
<212> DNA
<213> Homo sapien

<400> 58
gttcgaaggt gaacgtgttag gtagcggatc tcacaactgg ggaactgtca aagacgaatt      60
aactgacttg gatcaatcaa atgtgactga ggaaacacct gaaggtgaag aacatcatcc      120
agtggcagac actgaaaata aggagaatga agttgaagag gtaaaagagg agggtccaaa      180
agagatgact ttggatgggt gttaaatggc t      211

```

```

<210> 59
<211> 208
<212> DNA
<213> Homo sapien

<400> 59
gctccttgc ccttaccaac tttcacccca tcataccca tgtggccagg tttcgagccc      60
aggctgcaca tcagggact gcctcgcaat acttcatgt ctgtgtgtg actgtatgg
120ctgtacgga tgtgaaagcc acacgtgagg ctgtggtgcg tgccctgaac ctgccccatgt
180
cagtgtatcat tatgggtggg aaatggct                                208

<210> 60
<211> 171
<212> DNA
<213> Homo sapien

<400> 60
agccatttac cacccatact aaattctagt tcaaactcca acttcttcca taaaacatct      60
aaccactgac accagttggc aatagttct tccttctta acctcttaga gtatttatgg
120tcaatgccac acatttctgc aactgaataa agttggtaag gcaagaggag c
171

<210> 61
<211> 134
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(134)
<223> n = A,T,C or G

<400> 61
cgggtgtatgc ctccctcaggc tttggtgtgt ccactcnact cactggcctc ttctccagca      60
actgggtgaan atgtcctcan gaaaancncc acacgcngct caggggtgggg tgggaancat
120canaatcatc nggc
134

<210> 62
<211> 145
<212> DNA
<213> Homo sapien

<400> 62
agagggtaca tatgcaacag tatataaagg aagaagtgc ctgagaggaa cttcatcaag      60
gccatattaat caataagtga tagagtcaag gctcaacccca ggtgtacgg attccaggc
120ccaagctcct tactggtacc ctctt
145

<210> 63
<211> 297
<212> DNA
<213> Homo sapien

<400> 63
tgcactgaga ggaattcaaa gggttatgc caaagaacaa accagtccctc tgcagcctaa      60
ctcattttttt ttggggctgc gaagccatgt agagggcgat caggcagtag atggccctc
120

```

ccacagtcag cgccatggtg gtccggtaaa gcattggc aggcaggcct cgtttcaggt	180
agacgggcac acatcagctt tctggaaaaa cttttgtagc tctggagctt tggtttccc	240
agcataatca tacactgtgg aatcgaggt cagtttagtt ggtaaggcaa gaggagc	297
<210> 64	
<211> 300	
<212> DNA	
<213> Homo sapien	
<400> 64	
gcactgagag gaacttccaa tactatgtt aataggagtg gtgagagagg gcatccttgt	60
cttgcggg tttcaaaagg gaatgcttcc agctttgcc cattcagtat aatattaaag	120
aatgttttac catttctgt cttgcctgtt tttctgtgtt ttgtggc tcttcattct	180
ccattttttag gcctttacat gtaggaata tatttctttt aatgatactt cacctttgg	240
atcttttgtg agactctact catagtgtga taagcactgg gttggtaagg caagaggagc	300
<210> 65	
<211> 203	
<212> DNA	
<213> Homo sapien	
<400> 65	
gctcctcttg ctttaccaac tcacccagta tgtcagcaat tttatcrgct ttacctacga	60
aacagcctgt atccaaacac ttaacacact caccgtaaaa gttcaggcaa caatgcctt	120
ctcatgggtc tctctgctcc agttctgaac ctttctttt tcctagaaca tgcatattarg	180
tcgatagaag ttcctctcag tgc	203
<210> 66	
<211> 344	
<212> DNA	
<213> Homo sapien	
<400> 66	
tacggggacc cctgcattga gaaagcgaga ctcactctga agctgaaatg ctgttgcct	60
tgcagtgctg gtagcaggag ttctgtgtt tggggctaa ggctcctgga tgacccctga	120
catggagaag gcagagttgt gtgccttc tcattggcgtc gtcaaggcat catggactgc	180
cacacacaaa atgcgtttt tattaacgac atgaaattga aggagagaac acaattcact	240
gatgtggctc gtaaccatgg atatggtac atacagaggt gtgattatgt aaaggttaat	300
tccaccacc tcattggaa actgcctca atgcagggtt cccca	344
<210> 67	
<211> 157	
<212> DNA	
<213> Homo sapien	
<400> 67	
gcactgagag gaacttcgtt gggagggttga actggctgtt gaggaggggg aacaacaggg	60
taaccagact gatagccatt ggtatggataa tatgggtgtt gaggaggac actacttata	120
gcagagggtt gtgtatagcc tgaggaggca tcaccccg	157
<210> 68	
<211> 137	
<212> DNA	
<213> Homo sapien	

<400> 68
 gcactgagag gaacttctag aaagtgaaag tctagacata aaataaaata aaaatttaaa 60
 actcaggaga gacagcccag cacggtggt cacgcctgta atcccagaac tttgggagcc 120
 tgaggaggca tcacccg 137

<210> 69
 <211> 137
 <212> DNA
 <213> Homo sapien

<400> 69
 cgggtatgc ctccctcaggc tgtatTTGA agactatcgA ctggacttct tatcaactga 60
 agaatccgtt aaaaatacca gttgtattat ttctacctgt caaaatccat ttcaaATGTT 120
 gaagttcctc tcagtgc 137

<210> 70
 <211> 220
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(220)
 <223> n = A,T,C or G

<400> 70
 agcatgttga gcccagacac gcaatctgaa tgagtgtgca cctcaagtaa atgtctacac 60
 gctgcctggT ctgacatggc acaccatcnc gtggagggca casctctgct cnGcctacwa 120
 cgagggcant ctcatwgaca gttccaccc accaaactgc aagaggctca nnaagtactr 180
 ccagggtmya sggacmasgg tggaytyca ycacwcatct 220

<210> 71
 <211> 353
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(353)
 <223> n = A,T,C or G

<400> 71
 cgtagggTC tctatccact gctaaaccat acacctgggt aaacagggac catttaacat 60
 tcccancata atatgccaag tgacttcaca tgTTTatctt aaagatgtcc aaaacgcaac 120
 tgattttctc ccctaaacct gtgatggTgg gatgattaan cctgagtggT ctacagcaag 180
 ttaagtgcaa ggtgctaaat gaangtgacc tgagatacag catctacaag gcagtacctc 240
 tcaacncagg gcaactttgc ttctcanagg gcatttagca gtgtctgaag taatttctgt 300
 attacaactc acggggcggg gggtaatat ctantggana gnagacccta acg 353

<210> 72
 <211> 343
 <212> DNA
 <213> Homo sapien

<400> 72

gcactgagag gaacttccaa tacyatkac agagtgaaca rgcarccyac agaacaggag	60
aaaatgttyg caatctctcc atctgacaaa aggctaata ccagawtcta awaggaactt	120
aaacaaaattt atgagaaaag aacaracaac ctcawcaaaa agtgggtgaa ggawatgcts	180
aaargaagac atytattcag ccagtaaaca yatgaaaaaa aggctcatsa tcactgawca	240
ttagagaaaat gcaaataaaa accacaatga gataccatct yayrccagtt agaayggta	300
tcattaaaar stcagggaaac aacagatgtt ggacaagggtg tca	343
<210> 73	
<211> 321	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(321)	
<223> n = A,T,C or G	
<400> 73	
gcactgagag gaacttcaga gagagagaga gagttccacc ctgtacttgg ggagagaaac	60
agaaggttag aaagtctttg gttctgaagc agcttctaag atctttcat ttgcttcatt	120
tcaaaagtcc catgctgccaa aagtgccatc ctttgggta ctgtttctg agctccagtg	180
ataactcatt tatacaaggg agataccag aaaaaaagtg agcaaatactt aaaaaggtgg	240
cttgagttca gccttaaata ccatcttcaa atgacacaga gaaagaanga tggtgggtgg	300
gagtggatag agaccctaac g	321
<210> 74	
<211> 321	
<212> DNA	
<213> Homo sapien	
<400> 74	
gcactgagag gaacttcaga gagagagaga gagttccacc ctgtacttgg ggagagaaac	60
agaaggttag aaagtctttg gttctgaagc agcttctaag atctttcat ttgcttcatt	120
tcaaaagtcc catgctgccaa aagtgccatc ctttgggta ctgtttctg agctccagtg	180
ataactcatt tatacaaggg agataccag aaaaaaagtg agcaaatactt aaaaaggtgg	240
cttgagttca gccttaaata ccatcttcaa atgamacaga gaaagaagga tggtgggtgg	300
gagtggatag agaccctaac g	321
<210> 75	
<211> 317	
<212> DNA	
<213> Homo sapien	
<400> 75	
gcactgagag gaacttccac atgcactgag aaatgcattt tcacaaggac tgaagtcgg	60
aactcagttt ctcagttcca atcctgattc aggtgtttac cagctacaca accttaagca	120
agtcagataa ccttagtttc ctcatatgca aaatgagaat gaaaagtact catcgctgaa	180
ttgtttttag gattagaaaa acatctggca tgcagtagaa attcaatttag tattcatttt	240
cattcttcta aattaaacaa ataggatttt tagtggtgaa acttcagaca ccagaaatgg	300
gagtggatag agaccct	317
<210> 76	
<211> 244	
<212> DNA	
<213> Homo sapien	

<400> 76
 cgtagggtc tctatccact cccactactg atcaaactct atttatttaa ttatTTtat 60
 catacttaa gttctggat acacgtgcag catgcgcagg tttgttgcatt aggtatacac 120
 ttgccatggt gtttgctgc acccatcagt ccatcatcta cattaggtat ttctccta 180
 gctatccctc ccctagcccc ttacaccccc aacaggctct agtgtgtgaa gttcctctca 240
 gtgc 244

<210> 77
 <211> 254
 <212> DNA
 <213> Homo sapien

<400> 77
 cgtagggtc tctatccact gaaatctgaa gcacaggagg aagagaagca gtyctagtga 60
 gatggcaagt tcwtttacca cactcttaa catttygtt agtttaacc ttatTTatg 120
 gataataaag gtaatatta ataatgattt attttaaggc attcccraat ttgcataatt 180
 ctccctttgg agataaccctt ttatctccag tgcaagtctg gatcaaagtg atasamagaa 240
 gttcctctca gtgc 254

<210> 78
 <211> 355
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(355)
 <223> n = A,T,C or G

<400> 78
 ttcgatacag gcaaacatga actgcaggag ggtggtgacg atcatgatgt tgccgatgg 60
 ccggatggnc acaaagacgc actggancac gtgcTTacgt cctttgctc tgTTgatggc 120
 cctgagggga cgcaggaccc ttatgaccct cagaatctt acaacgggag atggcactgg 180
 attgantccc antgacacca gagacacccc aaccaccagn atatcantat attgatgtag 240
 ttcctgtaga nggccccctt gtggaggaaa gtcacatnag ttgtcatct tcaacaggat 300
 ctcaacagtt tccgatggct gtgatggca tagtcatant taaccntgtn tcgaa 355

<210> 79
 <211> 406
 <212> DNA
 <213> Homo sapien

<400> 79
 taagagggta ccagcagaaa ggtagtatac atcagatagc atcttatacg agtaatatgc 60
 ctgttatTTg aagtgttaatt gagaaggaaa atTTtagcgt gctcaactgac ctgcctgttag 120
 ccccaagtgc agcttaggatg tgcattctcc agccatcaag agactgagtc aagttgtcc 180
 ttaagtgcaga acagcagact cagctctgac attctgatTC gaatgacact gttcagaat 240
 cggaaatcctg tcgattagac tggacagctt gtggcaagtg aatttgcctg taacaagcca 300
 gatTTTTaa aatttatatt gtaaataatg tttgtgtgtg tttgtgtata tatatatata 360
 tgtacagtta tctaagttaa ttAAAAGTT gtttggTacc ctctta 406

<210> 80
 <211> 327
 <212> DNA

<213> Homo sapien

<400> 80

tttttttttt tttactcggc tcagtcataat ccttttgta gtcactcata ggccagactt	60
agggcttagga ttagtattaa taagagggat gacataacta ttatgtggcag gtttagttgtt	120
tgttagggctc atggtagggg taaaaggagg gcaatttcta gatcaaataa taagaaggta	180
atagctacta agaagaattt tatggagaaa gggacgcggg cgggggatat agggtcgaag	240
ccgcactcgt aagggtgga ttttctatg tagccgttga gttgtggtag tcaaaatgta	300
ataattatta gtagtaagcc taggaga	327

<210> 81

<211> 318

<212> DNA

<213> Homo sapien

<400> 81

tagtctatgc ggttgattcg gcaatccatt atttgcgttga tttgtcatg tggtttgcc	60
attgcattca taatttatta tgcatttatg cttgtatctc ctaagtcatg gtatataatc	120
catgctttt atgtttgtc tgacataaac tcttacatcaga gcccttgcac cacaggatt	180
caataaatat taacacagtc tacatttatt tggtaatat tgcataatctg ctgtactgaa	240
agcacattaa gtaacaaagg caagtggagaa gaatgaaaag cactactcac aacagttatc	300
atgattgcgc atagacta	318

<210> 82

<211> 338

<212> DNA

<213> Homo sapien

<400> 82

tcttcaacct ctactcccac taatagcttt ttgatgactt ctagcaagcc tcgctaacct	60
cgccttaccc cccactattt acctactggg agaactctt gtgttagtta ccacgttctc	120
ctgatcaaattt atcactctcc tacttacagg actcaacata ctagtcacag ccctatactc	180
cctctacata ttaccacaa cacaatgggg ctcactcacc caccacatta acaacataaa	240
accctcatcc acacggagaaa acaccctcat gttcatacac ctatccccca ttctccct	300
atcccctcaac cccgacatca ttaccgggtt ttccctctt	338

<210> 83

<211> 111

<212> DNA

<213> Homo sapien

<400> 83

agccattttac caccatcca caaaaaaaaaa aaaaaaaaaaag aaaaaatataca aggaataaaaa	60
atagactttt aacaaaaagg aacatttgct ggcctgagga ggcacatcaccc g	111

<210> 84

<211> 224

<212> DNA

<213> Homo sapien

<400> 84

tcgggtgatg ctcctcagg ccaagaagat aaagcttcag acccctaaca catttccaaa	60
aaggaagaaa ggagaaaaaa gggcatcatc cccgttccga agggtcaggg aggagggaaat	120
tgaggtggat tcacgagttt cggacaactc ctttgcgttga aagcgaggtt cagccggaga	180
ctggggagag cgagccaatc aggtttgaa gttcctctca gtgc	224

<210> 85
<211> 348
<212> DNA
<213> Homo sapien

<400> 85
gcactgagag gaacttcgtt ggaaacgggt tttttcatg taaggctaga cagaagaatt 60
ctcagtaact tccttgtt gtgtgtt aactcacasa gttgaacgat ccttacaca 120
gaggcagactt gtaacactct twttgtggaa ttgcgaagtg gagatttcag scgctttgaa 180
gttsaaaggta gaaaaggaaa tatcttccta taaaaactag acagaatgat tctcagaaac 240
tcctttgtga tgggtgcgtt caactcacag agttaacct ttcwttcat agaaggcgtt 300
aggaaacact ctgttgtaa agtctgcaag tggatagaga ccctaacg 348

<210> 86
<211> 293
<212> DNA
<213> Homo sapien

<400> 86
gcactgagag gaacttcyyt gtgtgtktg yattcaactc acagagttga asswtsmtt 60
acabagwkca ggcttkcaaa cactctttt gtmgaatyg caagwgkaka tttssrrccrc 120
tttgwggycw wysktmgaaaw mggrwatatc ttcwyatmra amctagacag aaksattctc 180
akaawstyyy ytgtgawgws tgcrttcaac tcacagagkt kaacmwtyct kytsatrgag 240
cagttwgaa actctmttc tttggattct gcaagtggat agagacccta acg 293

<210> 87
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 87
ctcctaggct 10

<210> 88
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 88
agttagttgcc 10

<210> 89
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 89
ttccgttatg c 11

<210> 90
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 90
tggtaaaagg 10

<210> 91
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 91
tcggtcata 10

<210> 92
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 92
tacaacgagg 10

<210> 93
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 93
tggattggc 10

<210> 94
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 94
ctttctaccc 10

<210> 95
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 95
ttttggctcc 10

<210> 96
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 96
ggaaccaatc 10

<210> 97
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 97
tcgatacagg 10

<210> 98
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 98
ggtaactaagg 10

<210> 99
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 99
agtctatgcg 10

<210> 100
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 100
ctatccatgg 10

<210> 101
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 101
tctgtccaca 10

<210> 102
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 102
aagagggtac 10

<210> 103
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 103
cttcaacctc 10

<210> 104
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 104
gctcctcttg ccttaccaac 20

<210> 105
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 105
gtaagtcgag cagtgtgatg 20

<210> 106
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 106
gtaagtcgag cagtctgatg 20

<210> 107
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 107
gacttagtgtt aaagaatgtt 20

<210> 108
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 108
gtaattccgc caaccgtatg 20

<210> 109
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 109
atggttgatc gatagtggaa 20

<210> 110
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 110
acggggaccc ctgcattgag 20

<210> 111
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 111
tattctagac cattcgctac 20

<210> 112
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 112
acataaccac ttttagcggttc 20

<210> 113
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 113
cgggtgatgc ctcctcaggc 20

<210> 114
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 114 20
agcatgttga gcccagacac

<210> 115
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 115 20
gacacccttgt ccagcatctg

<210> 116
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 116 20
tacgctgcaa cactgtggag

<210> 117
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 117 20
cgtagggtc tctatccact

<210> 118
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 118 20
agactgactc atgtccccata

<210> 119
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 119
tcatcgctcg gtgactcaag 20

<210> 120
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 120
caagattcca taggctgacc 20

<210> 121
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 121
acgtactggc cttaagggtc 20

<210> 122
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 122
gacgcttggc cacttgacac 20

<210> 123
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 123
gtatcgacgt agtggtctcc 20

<210> 124
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 124 20
tagtgacatt acgacgctgg

<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 125 20
cgggtgatgc ctccctcaggg

<210> 126
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 126 23
atggctattt tcggggggctg aca

<210> 127
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 127 22
ccggtatctc ctcgtgggta tt

<210> 128
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 128 18
ctgcctgagc cacaaatg

<210> 129
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 129
ccggaggagg aagctagagg aata 24

<210> 130
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 130
ttttttttt tttag 14

<210> 131
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicited Th Motifs (B-cell epitopes)

<400> 131
Ser Ser Gly Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val
1 5 10 15
Gly Ile

<210> 132
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicited Th Motifs (B-cell epitopes)

<221> VARIANT
<222> (1)...(22)
<223> Xaa = Any Amino Acid

<400> 132
Gln Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Xaa Ile Glu Val
1 5 10 15
Val Gln Gly His Asp Glu
20

<210> 133
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicited Th Motifs (B-cell epitopes)

<400> 133
Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu Ala Tyr Arg Ile Tyr
1 5 10 15
Thr Pro Phe Asp Leu Ser Ala
20

<210> 134
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicted HLA A2.1 Motifs (T-cell epitopes)

<400> 134
Tyr Leu Leu Val Gly Ile Gln Gly Ala
1 5

<210> 135
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicted HLA A2.1 Motifs (T-cell epitopes)

<400> 135
Gly Ala Ala Gln Lys Pro Ile Asn Leu
1 5

<210> 136
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicted HLA A2.1 Motifs (T-cell epitopes)

<221> VARIANT
<222> (1)...(9)
<223> Xaa = Any Amino Acid

<400> 136
Asn Leu Ser Lys Xaa Ile Glu Val Val
1 5

<210> 137
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicted HLA A2.1 Motifs (T-cell epitopes)

<400> 137

Glu Val Val Gln Gly His Asp Glu Ser
 1 5

<210> 138
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Predicted HLA A2.1 Motifs (T-cell epitopes)

<400> 138
 His Leu Gln Glu Ala Tyr Arg Ile Tyr
 1 5

<210> 139
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Predicted HLA A2.1 Motifs (T-cell epitopes)

<400> 139
 Asn Leu Ala Phe Val Ala Gln Ala Ala
 1 5

<210> 140
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Predicted HLA A2.1 Motifs (T-cell epitopes)

<400> 140
 Phe Val Ala Gln Ala Ala Pro Asp Ser
 1 5

<210> 141
 <211> 9388
 <212> DNA
 <213> Homo sapien

<400> 141

gctcgccggcc	gcgagctaa	ttaaccctca	ctaaaggtag	tcgactcgat	cagactgtta	60
ctgtgttat	gtagaaagaa	gtagacataa	gagattccat	tttgttctgt	actaagaaaa	120
attcttctgc	cttgagatgc	tgttatctg	taacccttagc	cccaaccctg	tgctcacaga	180
gacatgtgct	gtgttgactc	aaggttcaat	ggatttaggg	ctatgctttg	ttaaaaaaagt	240
gcttgaagat	aatatgcttg	ttaaaaagtca	tcaccattct	ctaatctcaa	gtacccaggg	300
acacaataca	ctgccaagg	ccgcaggagc	ctctgtctag	gaaagccagg	tattgtccaa	360
gatttctccc	catgtgatag	cctgagatat	gcctcatgg	gaagggttaag	acctgactgt	420
cccccagccc	gacatcccc	agcccgacat	cccccagccc	gacacccgaa	aagggtctgt	480
gctgaggagg	attagtaaaa	gaggaaggcc	tctttgcagt	tgaggttaaga	ggaaggcattc	540
tgtctccctgc	tctgtccctgg	gcaatagaat	gtcttggtgt	aaaacccgat	tgtatgttct	600

acttactgag ataggagaaaa acatccttag ggctggaggt gagacacgct ggccgcata	660
ctgtctttta atgcaccgag atgtttgtat aagtgcacat caaggcacag cactttcct	720
taaacttatt tatgacacag agaccttgc tcaacgtttc ctgtgcaccc tctcccccact	780
attaccctat tggcctgcca catccccctc tccgagatgg tagagataat gatcaataaa	840
tactgaggga actcagagac cagtgtccct gtaggtcctc cgtgtctga ggcgggtcc	900
cttgggctca ctttcttc tctatacttt gtctctgtgt ctcttcttt ttcagtctc	960
tcgttccacc tgacgagaaaa tacccacagg tggggagggg caggccaccc cttcaataat	1020
ttactagct gttcgctgac aacaagactg gtgggtcaga aggttgggtc ttgggttca	1080
ccgggtggca ggcattggcc aggtgggagg gtctccagcg cctgggtcaa atctccaaga	1140
aagtgcagga aacagcacca agggtgattt taaattttga ttggcgcgg caggtagcca	1200
ttccagcga aaaatgcgca ggaaagctt tgctgtgtt gtaggcagggt aggccccaaag	1260
cacttcttat tggctaattgt ggagggaaacc tgacatcca ttggctgaaa tctcgtctca	1320
tttgaggctg actgagcgcg ttcccttctt ctgtgttgcc ttggaaacgga ctgtctgcct	1380
agtaacatct gatcacgttt cccattggcc ggcgtttccg gaagccgcctt cccttatttc	1440
cggaaaggctg ggcgaagggtt ggtctgcagg tggcctccag gtgcaagtg ggaagtgtga	1500
gtcctcagtc ttggcttattt cggccacgtg cctgcccggac atgggacgtt ggagggtcag	1560
cagcgtggag ttctggcctt ttgcgttccac ggggtggaaa ttggccatttgc acacggcggg	1620
aactgggact caggctgccc cccggccgtt tctcatccgtt ccacccgact cgtgggcgt	1680
cgcactggcg ctgtatgtat ttccctgaccc ctgacccgtt ttgtctccag attaaaggta	1740
aaaacggggc ttttcagcc cactcgggtt aaacgcctt tgatttctag gcagggtt	1800
tgttgcacgc ctgggaggga gtgacccgca ggttggagttt tattaaaata cattccttgt	1860
ttatgttag tttataataa agcaccctt cctttacaaa atctcaattt tgccagttt	1920
tattattnn tggactgtct ctgataagga cagccagtta aaatggaatt ttgttgttgc	1980
taattaaacc aatttttagt ttgggtgtttt gtcctaatag caacaacttc tcaggcttta	2040
taaaaccata tttcttgggg gaaatttctg tgaaggcac agcgagttt tagggaaattt	2100
ttttaaagga agtaagttcc ttactaaccctt tggactgtttt cttccctt ccttagcttgc	2160
aattgactct cccttagcta agagcccgag atggactcca tcttggctt ttcactggca	2220
gcccccttcc caaggactta actgtttaa gatactgtgg caagctatat ccgcagttcc gaggaattca tccgattgtat	2280
tatgccccaa agcccccggtt ctatcacctt gtaataatct taaagccccctt gcacctggaa	2340
ctattaactt tcctgttaacc atttacccctt ttaacttttt tgcttactttt atttctgtta	2400
aattgttttta actagacccctt ccctccctt tctaaaccaa agtataaaag agatctagc	2460
cccttcttca gagcggagag aattttgagc attagccatc tcttggggc cagctaaata	2520
aatggacttt taatttgc taaagtgtgg cggtttctct aactcgctca ggtacgacat	2580
ttggaggccc cagcggagaaa cgtcacccgg agaaacgtca cccggggcaga gcccggcccg	2640
ctgtgtgtcc cccggaaagg acagccagct ttaggggggg agtgcacccctt gaaaaaaaaa	2700
tttccaggtc cccaaagggtt gaccgtcttc cggaggacag cggatcgact accatgcggg	2760
tgcccaccaa aattccaccc ctgagtcctc aactgctgac cccgggggtca ggttaggtcag	2820
atttgactttt ggttctggca gagggaagcg accctgtatga ggggtccctt ctttgactc	2880
tgcccatttc tctaggatgc tagaggtag agccctgggt ttctgtttaga cgcctctgt	2940
tctctgtctg ggagggaaatg gcccctgaca gggggccatcc cttaggtcag tccacatccc	3000
aggatgtgg gggactgagt cctgggttctt ggcagactgg tctctctctc tctcttttcc	3060
tatctctaat ctcccttgc ttaggtttctt tggagaatct ctggaaaga aaaaagaaaa	3120
actgttataa actctgtgtg aatggtaat gaatggggga ggacaaggcc ttgcgtttgt	3180
cctccagttt gtagctccac ggcgaaagct acggagttca agtggggccctt cacctgcgg	3240
tccgtggcga cctcataagg cttaaaggccat cttaaaggccat agctcgatcc gagccgggg	3300
tttataccgg cctgtcaatg ctaagaggag cccaaatccc ctaaggggga gccggccaggc	3360
gggcacatcgta ctgatcccat cacgggaccc ccccccctt tttgtctaaa aaaaaaaaaa	3420
gaagaaaactg tcataactgt ttacatcccccc tagggtaac tgggtttttt atgtttattt	3480
ttctgttgcgg tggcttattgtt cttgttttagt ggttgcataag gtttgcata gtagacgtc	3540
gatattggcc aagacgtctg ggttggact tctgcataagg ctttagtgc gatttttttt	3600
cacaggaggt taaatttctc atcaatcatt taggctggcc accacagtcc tgcctttct	3660
gccagaagca agtcagggtt tggtaacggga atgagtgtaa aaaaacatttgcctgattgg	3720
gatttctggc accatgatgg ttgttattttatcatttgcatacccccacatccca ggttgcattgg	3780

acctcctcta aactaaactg gtggtgggtt caaaacagcc accctgcaga tttccttgct	3960
cacctcttg gtcattctgt aactttcct gtgcccttaa atagcacact gtgttagggaa	4020
acctaccctc gtactgctt acttcgttta gattctact ctgttccctct gtggctactc	4080
tcccatctta aaaacgatcc aagtggctt tttcctcctc cctgccccct accccacaca	4140
tctcgtttc cagtgcgaca gcaagttcag cgctccagg acttggctct gctctcactc	4200
cttgaaccct taaaagaaaa agctgggtt gagctatting cctttgagtc atggagacac	4260
aaaaggtatt tagggtacag atctagaaga agagagagaa cacctagata caactgaccc	4320
aggagatctc gggctggct ctatgcctcc tcctcaatc ttaaagctac agtcatgtgg	4380
caagtggtat ttagctgtt tggtttctt gctttctg gtcatgttga ttctgttctt	4440
tcgatactcc agccccccag ggagtgagtt tctctgtctg tgctgggtt gatatctatg	4500
ttcaaattttt attaaattgc cttcaaaaaa aaaaaaaaaa gggaaacact tcctccagc	4560
cttgtaaaggg ttggagccct ctccagata tgcgcagaa ttttctctc ggtttctcag	4620
aggattatgg agtccgcctt aaaaaaggca agctctggac actctgcaaa gttagaatggc	4680
caaagtttg agttgagtgg ccccttgaag ggtcaactgaa cctcacaattt gttcaagctg	4740
tgtggcgggt tgtaactgaa actcccgcc tcctgtatca gtttccctac attgtatcaat	4800
ggctgagtt ggtcaggagc accccttcca tggctccact catgcaccat tcataattt	4860
acctccaagg tcctccttag ccagaccgtg tttcgcctc gaccctcagc cggttcagct	4920
cgccctgtac tgcctctctc tgaagaagag gagagtctcc ctcacccagt cccaccgcct	4980
taaaaccagg ctactccctt agggtcatcc catgtctctt cggctatgtc ccctgttaggc	5040
tcatcaccca ttgcctctt gttcaaccg tggctggagg aagtagcccc tctactacca	5100
ctgagagagg cacaagtccc tctgggtat gagtgttca ccccttctt ggttatgtc	5160
ccttcttctt acttctgact tgtataattt gaaaacccat aatccctccct tctctgaaaa	5220
gccccaggtt ttgacctcac tgatggagtc tgtaactctgg acacattggc ccacctggga	5280
tgactgtcaa cagctccctt tgaccctttt cacctctgaa gagagggaaa gtatccaaag	5340
agaggccaaa aagtacaacc tcacatcaac caataggccg gaggaggaag cttagaggaat	5400
agtgattaga gaccaattt ggacctaattt gggacccaaa tttctcaagt ggagggagaa	5460
cttttgcacca ttccaccgg tatctcctcg tggatttca gggagctgct cagaaaccta	5520
taaaactgtc taaggcgact gaagtgcgtcc aggggcatga tgagtccacca ggagtgttt	5580
tagagcacctt ccaggaggct tatacgattt acacccctt tgacctggca gccccggaaa	5640
atagccatgc tcttaatttgc gcatattgtgg ctcaggcagc cccagatagt aaaaggaaac	5700
tccaaaaactt agagggattt tgctggatg aataccagtc agctttttaga gatagcctaa	5760
aaggttttt acagtcaaga ggttggaaaa caaaaacaag cagctcagggc agctggaaaa	5820
agccactgat aaagcatctt ggagtatcag agtttactgt tagatcagcc tcatttact	5880
tccctccca catgggtttt aaatccagct acactacttc ctgactcaaa ctccactatt	5940
cctgttcatg actgtcagga actgttggaa actactgaaa ctggccgacc tgatcttcaa	6000
aatgtgcccc taggaaaggt ggatgccacc gtgttccacag acagtagcag cttcctcgag	6060
aagggactac gaaaggccgg gtcagctgtt accatggaga cagatgtgtt gtgggctcag	6120
gctttaccag caaacacccctc agcacaaaag gctgaatttga tcgcctcac tcaggctctc	6180
cgatggggta aggatattaa cgttaacact gacagcaggt acgccttgc tactgtgcat	6240
gtacgtggag ccatctacca ggagcgtggg ctactcacct cagcaggtgg ctgtaatcca	6300
ctgtaaagga catcaaaaagg aaaacacggc tggccctgtt ggttaccaga aagctgatcc	6360
agcagctcaa gatgcgtgt gactttcagt cacgcctcta aacttgcgtcc ccacagtctc	6420
ctttccacag ccagatctgc ctgacaatcc cgcataactca acagaagaag aaaactggcc	6480
tcagaactca gagcaataaa aaatcaggaa ggttgggttga ttcttcttga ctctagaatc	6540
ttcataccccca gaaacttgg gaaaacttta atcgttacc tacagtctac caccatatta	6600
ggaggagcaaa agctacctca gctccctccgg agccgtttta agatccccca tcttcaaagc	6660
ctaacagatc aagcagctt ccgggtgcaca acctgcggccc agttaaatgc caaaaaaggt	6720
octaaaccca gcccaggcca ccgttccaa gaaaactcac caggagaaaa gtggaaatt	6780
gactttacag aagtaaaaacc acaccggct ggttacaaat accttcttagt actggtagac	6840
accttctctg gatggactga agcatttgc accaaaaacg aaactgtcaa tatggtagtt	6900
aagtttttac tcaatgaaat catccctcgat cgtggctgc ctgttccat agggtctgtat	6960
aatggaccgg ccttcgcctt gtctatagtt tagtcaatc gtaaggcgtt aaacattcaa	7020
tggaaagctcc attgtgccta tcgacccttccag agctctgggc aagtagaaacg catgaactgc	7080
accctaaaaa acactcttac aaaattaatc tttagaaacccg gtgttacattt tgtaagtctc	7140
cttcctttag ccctacttag agtaagtgc accccttactt gggctgggtt cttacctttt	7200

gaaatcatgt atgggagggc gctgcctatc ttgcctaagc taagagatgc ccaattggca	7260
aaaatatcac aaactaattt attacagtac ctacagtctc cccaaacaggt acaagatatc	7320
atccctgccac ttgttcgagg aaccatccc aatccaatc ctgaacagac agggccctgc	7380
cattcattcc cgccaggtga cctgtgttt gtaaaaagt tccagagaga aggactccct	7440
cctgcttga agagacctca caccgtcata acgatgcca cggotctgaa ggtggatggc	7500
atccctgcgt ggattcatca ctccccatc aaaaaggcca acggagccc actagaaaca	7560
tgggtccccca gggctgggtc aggccccta aactgcacc taagttgggt gaagccatta	7620
gattaattct ttttcttaat tttgtaaaac aatgcatacg ttctgtcaaa cttatgtatc	7680
ttaagactca atataacccc cttgtataa ctgaggaatc aatgatttgta ttccccaaaa	7740
acacaagtgg ggaatgttagt gtccaacctg gttttacta accctgttt tagactctcc	7800
ctttcctta atactcagc cttgttcca cctgaattga ctctccctta gctaagagcg	7860
ccagatggac tccatcttgg ctcttcact gcagccgct tcctcaagga cttaaactgt	7920
gcaagctgac tcccagcaca tccaagaatg caattaactg ataagatact gtggcaagct	7980
atatccgcag ttcccaggaa ttcgtccaat tgattacacc caaaagcccc gctgttatca	8040
ccttgtaata atcttaaaggc ccctgcacct ggaactattt acgttctgt aaccatttat	8100
ccttttaact ttttgccta ctttatttct gtaaaaattgt ttaactaga cccccccctct	8160
cctttctaaa ccaaagtata aaagcaaatc tagccccttc ttcaaggccga gagaatttcg	8220
agcgttagcc gtctcttggc caccagctaa ataaacggat tcttcatgtg tctcaaagt	8280
tggcgtttc tctaactcgc tcaggtacga ccgtggtagt atttccccca acgttcttatt	8340
tttagggcac gtatgttagag taactttat gaaagaaaacc agttaaggag gttttggat	8400
ttcctttatc aactgttaata ctggtttga ttattttat atttattttat ttttttgag	8460
aaggagtttc actcttgttgc cccaggttgg agtgcataatgg tgcgatctt gctcaactgca	8520
acttccgcct ccaggttca agcgattctc ctgcctcagc ctcgagagta gctgggattta	8580
taggcatgcg ccaccacacc cagctaattt tgtattttta gtaaagatgg ggtttcttca	8640
tgttggtcaa gtcggcttgg aactccccgc ctgggggtgat ctgcccgcct cggcctccga	8700
aagtgcgtgg attacaggtg tgatccacca caccagccg atttataatgt atataaaatca	8760
cattcctcta accaaaatgt agtgttctt cccatcttga atataggctg tagaccccg	8820
gggtatggga cattgttaac agtgagacca cagcagttt tatgtcatct gacagcatct	8880
ccaaatagcc ttcatggttt tcactgcttc ccaagacaat tccaaataac acttcccagt	8940
gatgacttgc tacttgctat tttacttaa tgggttaagg tggctgttac agacactatt	9000
agtatgtcag gaattacacc aaaatttagt ggctaaaca atcattttat tatgtatgt	9060
gattctcatg gtcaggtcag gatttcagac agggcacaag ggtagccac ttgtctctgt	9120
ctatgatgtc tggcctcagc acaggagact caacagctgg ggtctggac catttggagg	9180
cttggccctt cacatctgtat acctggcttgg ggtatgttggaa agaggggtg agctgagact	9240
gagtgcctat atgtatgtt tccatatggc cttgacttcc ttacagctg gcagcctcag	9300
ggtagtcaga attcttagga ggcacaggc tccagggcag atgctgaggg gtctttatg	9360
aggtagcaca gcaaataccac ccaggatc	9388

<210> 142
 <211> 419
 <212> DNA
 <213> Homo sapien

<400> 142

tgtaagtgcg gcagtgtgat ggaaggaaatg gtctttggag agagcatatc catctcctcc	60
tcactgcctc ctaatgtcat gaggtacact gagcagaatt aaacagggta gtcttaacca	120
cactattttt agctaccttgc tcaagctaat gttaaagaa cacttttgggt ttacacttgt	180
tgggtcatag aagttgtttt ccgcctatcac gcaataagtt tgggtgtat cagaaggagt	240
taccttattgg ttctcgtgtc attcttagt taacttggaa gctgtgtat tttaggttttgc	300
cgtattttt cacttctgtt ctccacttat gaagtgattt tgggtgtcg tgggtgtcg	360
tgcgcgttg ctccggcag ttaacataag caaaataccca acatcacact gctcgactt	419

<210> 143
 <211> 402
 <212> DNA

<213> Homo sapien

<400> 143

tgtaagtgcg	gcagtgtgat	gtccactgca	gtgtgttgct	ggaaacagtt	aatgagcaaa	60
ttgtatacaa	tggctagtagc	attgaccggg	atttggtaa	gctgggtgagt	gttatgactt	120
agcctgttag	actagtctat	gcacatggct	ctggtaact	accgctctct	catttctcca	180
gataaattccc	ccatgcttta	tattctcttc	caaacatact	atcctcatca	ccacatagtt	240
cctttgttaa	tgttttgttc	tagactttcc	ctttctgtt	ttcttattca	aacctataatc	300
tctttgcata	gattgtaaat	tcaaattcccc	tcagggtgca	ggcagttcat	gtaagggagg	360
gaggctagcc	agtgagatct	gcatcacact	gctcgactta	ca		402

<210> 144

<211> 224

<212> DNA

<213> Homo sapien

<400> 144

tcgggtgatg	cctcctcagg	ccaagaagat	aaagcttcag	acccttaaca	catttccaaa	60
aaggaagaaa	ggagaaaaaa	gggcatcatc	cccggtcga	agggtcaggg	aggagggaaat	120
tgaggtggat	tcacgagttt	cggacaactc	cttgcattcc	aagcgaggtg	cagccggaga	180
ctggggagag	cgagccaatc	aggtttgaa	gttcctctca	gtgc		224

<210> 145

<211> 111

<212> DNA

<213> Homo sapien

<400> 145

agccattttac	cacccatcca	aaaaaaaaaa	aaaaaaaaag	aaaaatatca	aggaataaaaa	60
atagactttt	aacaaaaagg	aacatttgc	ggcctgagga	ggcatcaccc	g	111

<210> 146

<211> 585

<212> DNA

<213> Homo sapien

<400> 146

tagcatgttg	agcccagaca	cttgcata	gaggaggaca	gttagaagaa	gaagaaaagt	60
ttttaatgc	tgaaagttac	tataagaaag	cttggctt	ggatgagact	tttaaagatg	120
cagaggatgc	tttgcagaaa	cttcataat	atatgcaggt	gatccttat	ttcctcctag	180
aaattttagt	atattgaaa	taatgccaa	acttaattt	ctcctgagga	aaactattct	240
acattactt	agtaaggcat	tatgaaaagt	ttcttttag	gtatagttt	tcctaattgg	300
gtttgacatt	gtttcatagt	gcctctgtt	ttgtccataa	tcgaaagtaa	agatagctgt	360
gagaaaaacta	ttacctaaat	ttggatgtt	gttttgagaa	atgtccttat	aggagctca	420
cctgggggtt	tttaaattat	tgttgcact	ataattgagc	taattataaa	aaccttttg	480
agacatattt	taaattgtct	tttcctgtaa	tactgtatgt	gatgtttct	catgcatttt	540
cttctgaatt	gggaccattt	ctgctgtg	tgggctcaca	tgcta		585

<210> 147

<211> 579

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (579)
 <223> n = A, T, C or G

<400> 147
 tagcatgttg agccagaca ctgggcagcg ggggtggcca cggcagctcc tgccgagccc 60
 aacgtgttt gtctgtgaag gaccctgacg tcacctgcca ggctaggag gggtaatgt 120
 ggagtgaatg ttccaccgact ttccgaggag tgtgcagaag ccaggtgcaa cttggttgc 180
 ttgtgttcat caccctcaaa gatatgcaca ctgcttcata aataaagcat caactgtcat 240
 ctccagatgg ggaagacttt ttctccaacc agcaggcagg tccccatcca ctcagacacc 300
 agcacgtcca cccctctcggt cagcaccacg tcctccaccc tctgtggta cacgggtgatg 360
 atgtcagcaa agccgttctg cangaccagc tgccccgtgt gctgtgccat ctcactggcc 420
 tccaccgcgt acaccgcgtt aggccgcgca tantgtgcac agaanaaaatg atgatccagt 480
 cccacagccc acgtccaaga ngacttatac cgtagggat tcttattct gcaggatgac 540
 ctgtggatt aattgttcgt gtctggctc aacatgcta 579

<210> 148
 <211> 249
 <212> DNA
 <213> Homo sapien

<400> 148
 tgacaccccttg tccagcatct gcaagccagg aagagagtcc tcaccaagat ccccaccccg 60
 ttggcaccag gatcttggac ttccaatctc cagaactgtg agaaataagt atttgtcgct 120
 aaataaatct ttgtggtttc agatatttag ctatagcaga tcaggctgac taagagaaaac 180
 cccataagag ttacataactc attaatctcc gtctctatcc ccaggtctca gatgctggac 240
 aaggtgtca 249

<210> 149
 <211> 255
 <212> DNA
 <213> Homo sapien

<400> 149
 tgacaccccttg tccagcatct gctattttgt gacttttaa taatagccat tctgactgg 60
 gtgagatggt aactcattgt gggtttggtc tgcatcttc taatgatcag tgatattaag 120
 cttttttaa atatgcttgt tgaccacatg tatatcatct tttgagaagt gtctgttcat 180
 atcctttggc cactttttaa ttttttatac ttgtaaattt gtttaatttc cttacagatg 240
 ctggacaagg tgtca 255

<210> 150
 <211> 318
 <212> DNA
 <213> Homo sapien

<400> 150
 ttacgctgca acactgtgga ggccaagctg ggatcacttc ttcatctaa ctggagagga 60
 gggaaattca agtccagcag aggggtgggtg ggttagacagt ggcactcaga aatgtcagct 120
 ggaccctgt ccccgatacg gcaggacacg aaggctgtgg ctctccaggg ccagctgaag 180
 aacaggacac tgtctccgct gccacaaagc gtcagagact cccatcttg aagcacggcc 240
 ttcttggctc tcctgcactt ccctgttctg ttagagaccc gtttatagac aaggcttctc 300
 cacagtgttg cagcgtaa 318

<210> 151
 <211> 323
 <212> DNA

```

<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(323)
<223> n = A,T,C or G

<400> 151tnacgcngcn acnntgtaga ganggnaagg cttccccac attnccctt
catnanagaa      60
ttattcnacc aagnntgacc natgccntt atgacttaca tgcnnactnc ntaatctgtn      120
tcnngcctta aaagcnnntc cactacatgc ntcancactg tntgtgttnac ntcatnaact      180
gtcngnaata ggggcncata actacagaaa tgcanttcat actgcttcca ntgcacatcng      240
cgtgtggcct tncctactct tcttntattc caagtagcat ctctggantg cttccccact      300
ctccacattt ttgcagcnat aat      323

<210> 152
<211> 311
<212> DNA
<213> Homo sapien

<400> 152
tcaagattcc ataggctgac cagtccaaagg agagttgaaa tcatgaagga gagtctatct      60
ggagagagct gtagtttgaa gggttgcaaa gacttaggat ggagttggtg ggtgtgggta      120
gtctctaagg ttgattttgt tcataaaattt catgccctga atgccttgc tgcctcaccc      180
tggtccaagg cttagtgaac acctaaaagt ctctgttcc ttgtcttcca aacttcttcc      240
gaggatttcc tcaagattgtc tacattcaga tcgaagccag ttggcaaaca agatgcagtc      300
cagagggtca g      311

<210> 153
<211> 332
<212> DNA
<213> Homo sapien

<400> 153
caagattcca taggctgacc aggaggctat tcaagatctc tggcagttga ggaagtctct      60
ttaagaaaat agtttaaaca atttggtaaa atttttctgt cttaacttcat ttctgttagca      120
gttgatatact ggctgtccct tttataatgc agagtggaa ctttccctac catgtttgat      180
aatgttgtc caggctccat tgccaataat gtgttgcctt aatgcctgt ttagttttt      240
aagacggaac tccaccctt gcttggtctt aagtatgtat ggaatgttat gataggacat      300
agtagtagcg gtggtcagcc tatggaatct tg      332

<210> 154
<211> 345
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(345)
<223> n = A,T,C or G

<400> 154
tcaagattcc ataggctgac ctggacagag atctccctggg tctggcccaag gacagcaggc      60
tcaagctcag tggagaaggt ttccatgacc ctcagattcc cccaaacctt ggattgggtg      120
acattqcata tcctcaqaga qqqqaqqqat qtanqtctqq qcttccacaaq qqacctqqta      180

```

ttttaggatc agggtaccgc tggcctgagg cttggatcat tcanagcctg ggggtggaat 240
ggctggcagc ctgtggcccc attgaaatag gctctggggc actccctctg ttccctanttg 300
aacttggta aggaacagga atgtggtcan cctatggaat cttga 345

<210> 155
<211> 295
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(295)
<223> n = A,T,C or G

<400> 155
gacgcttggc cacttgacac attaaacagt tttgcataat cactancatg tatttctagt 60
ttgctgtctg ctgtgatgcc ctgcctgtat tctctggcgt taatgatggc aagcataatc 120
aaacgctgtt ctgttaattc caagtataa ctggcattga ttaaaggcatt atcttcaca 180
actaaactgt tcttcatana acagcccata ttattatcaa attaagagac aatgtattcc 240
aatatcctt anggccaata tatttnatgt cccttaatta agagctactg tccgt 295

<210> 156
<211> 406
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(406)
<223> n = A,T,C or G

<400> 156
gacgcttggc cacttgacac tgcagtggaa aaaccagcat gagccgctgc ccccaaggaa 60
cctcgaagcc cagggcagagg accagccatc ccagcctgca ggtaaagtgt gtcacctgtc 120
aggtgtggctt ggggtgagtg ggtggggaa gtgtgtgtgc aaaggggggtg tnaatgtnta 180
tgcgtgtgag catgagtgtat ggctagtgatg actgcatgtc agggagtgtg aacaagcgtg 240
cggggggtgtg tggcaagtgt cgatgcata tgagaatatg tgtctgtgga tgagtgcatt 300
tgaaaagtctg tgggtgtgc tgggtgtcatg anggtaantt antgactgcg caggatgtgt 360
gagtgtgcat ggaacactca ntgtgtgtgt caagtggccn ancgtc 406

<210> 157
<211> 208
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(208)
<223> n = A,T,C or G

<400> 157
tgacgcttgg ccacttgaca cactaaaggg tgtaactcat cactttcttc tctcctcggt 60
ggcatgtgag tgcatttgcac tcatttgttt ggcagtgact gtaanccana 120
tctgtatgtcat acaccagctt gtaaattgaa taaatgtctc taatactatg tgctcacaat 180
anggtanggg tgaggagaag gggagaga 208

```

<210> 158
<211> 547
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(547)
<223> n = A,T,C or G

<400> 158
cttcaacctc cttcaacctc cttcaacctc ctggattcaa acaatcatcc cacccagac      60
tccttagtag ctgagactac agactcacgc cactacatct ggctaaattt ttgttagagat    120
agggttccat catgttgccc tggctggct ccaaactcctg acctcaagca atgtgccac     180
ctcagcctcc caaagtgcgt ggattacagg cataagccac catgcccagt ccatnnttaa    240
tctttcctac cacattctta ccacacttcc ttttatgttt agatacataa atgcttacca   300
ttatgataca attgcccaca gtattaagac agtaacatgc tgcacaggtt ttagccctag   360
gaacagttagg caataaccaca tagcttaggt gtgtggtaga ctataccatc taggtttagt  420
taagttacac tttatgtgtt ttacacaatg acaaaccat ctaatgatgc atttctcaga   480
atgtatcctt gtcagtaagc tatgtatgtac agggAACACT gcccaaggac acagatattg  540
tacctgt                                547

<210> 159
<211> 203
<212> DNA
<213> Homo sapien

<400> 159
gctcctcttg cttacccaac tcacccagta tgtcagcaat tttatcrgct ttacctacga      60
aacagcctgt atccaaacac ttaacacact cacctgaaaa gttcaggcaa caatcgctt    120
ctcatgggtc tctctgctcc agttctgaac ctttctcttt tcctagaaca tgcatttarg   180
tcgatagaag ttcctctcaag tgc                                203

<210> 160
<211> 402
<212> DNA
<213> Homo sapien

<400> 160
tgtaagtcga gcagtgtgat ggggttggaaaca ggggttggtaag cagtaattgc aaactgtatt  60
taaaacaataa taataatatt tagcattttt agagcacttt atatcttcaa agtacttgca  120
aacattayct aattaaatac cctctctgtat tataatctgg atacaaatgc acttaaactc  180
aggacagggt catgagaraa gtatgcattt gaaagtgggt gctagctatg cttaaaaac  240
ctataacaatg atgggraagt tagagttcag attctgttgg actgtttttg tgcatttcag  300
ttcagcctga tggcagaatt agatcatatc tgcactcgat gactytgctt gataacttat  360
cactaaaatc tgagtgttga tcacatcact gctcgactta ca                                402

<210> 161
<211> 193
<212> DNA
<213> Homo sapien

<400> 161
agcatgttga gcccagacac tgaccaggag aaaaaccaac caatagaaac acgcccagac      60

```

actgaccagg agaaaaacca accaataaaa acaggcccgg acataagaca aataataaaa	120
ttagcggaca aggacatgaa aacagctatt gtaagagccgg atatagttgt gtgtgtctgg	180
gctcaacatg cta	193
<210> 162	
<211> 147	
<212> DNA	
<213> Homo sapien	
<400> 162	
tgttgagccc agacactgac caggagaaaa accaaccaat aaaaacaggc ccggacataa	60
gacaaataat aaaatttagcg gacaaggaca taaaacacgc tattgttaga gcgatatacg	120
tggtgtgtgt ctgggctcaa catgcta	147
<210> 163	
<211> 294	
<212> DNA	
<213> Homo sapien	
<400> 163	
tagcatgtt agcccagaca caaatctttc cttaagcaat aaatcatttc tgcatatgtt	60
tttaaaacca cagctaagcc atgattatttc aaaaggacta ttgttattggg tattttgatt	120
tgggttctta tctccctcac attatcttca tttctatcat tgacctctta tcccagagac	180
tctcaaactt ttatgttata caaatcacat tctgtctcaa aaaatatctc acccacttct	240
cttctgtttc tgcgtgtgt tgcgtgtgt tgcgtgtgt ggctcaacat gcta	294
<210> 164	
<211> 412	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(412)	
<223> n = A,T,C or G	
<400> 164	
cgggattggc tttgagctgc agatgctgcc tgtgaccgca cccggcgtgg aacagaaaagc	60
cacctggctg caagtgcgcc agagccgccc tgactacgtg ctgctgtggg gctggggcgt	120
gatgaactcc accgcccctga aggaagccca ggccacccga taccccccgc acaagatgta	180
cggcgtgtgg tgggccccgtg cggagcccgta tgcgtgtac gtggcgaag ggcggcaaggg	240
ctacaacgcg ctggctctga acggctacgg cacgcagtc aaggtgatcc angacatcct	300
gaaacacgtg cacgacaagg gccagggcac ggggccccaaa gacgaagtgg gctcggtgct	360
gtacacccgc ggcgtatca tccagatgct ggacaaggta tcaatacta at	412
<210> 165	
<211> 361	
<212> DNA	
<213> Homo sapien	
<400> 165	
ttgacacacctt gtccagcatt tcacatctgat gagagcctca gatggctacc actaatggca	60
gaaggccaaag gagaacaggc attgtatggc aagaaaggaa gaaagagaga ggggagaaaag	120
gtgcttagtt ctttcaaca accagttctt gatggactg agagtaagag ctcaaggcca	180
ggtgtgtgtgta ctccaaccag taatcccaac attttaggag gctgaggcag gcagatgtct	240

tgaccccatg agtttgtac cagcctgaac aacatcatga gactccatct ctacaataat	300
tacaaaaatt aatcaggcat tgtggatgc cctgtatcc cagatgctgg acaagggtgc	360
a	361
<210> 166	
<211> 427	
<212> DNA	
<213> Homo sapien	
<400> 166	
twgactgact catgtcccact acacccaact atcttctcca ggtggccagg catgatagaa	60
tctgatcctg acttagggga atattttctt tttaacttccc atcttgattc cctgcccgtg	120
agtttcctgg ttcagggtaa gaaaggagct caggccaaag taatgaacaa atccatcctc	180
acagacgtac agaataagag aacwtggacw tagccagcag aacmcaaktg aaamcagaac	240
mcttamctag gatracaamc mcraratar ktgcycmcmc wtataataga aaccaaactt	300
gtatctaatt aaatatttat ccacygtcag ggcatttagtg gttttgataa atacgctttg	360
gctaggattc ctgaggtagt aatggaaraa caattgcamc gagggtaggg gacatgagtc	420
aktctaa	427
<210> 167	
<211> 500	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(500)	
<223> n = A,T,C or G	
<400> 167	
aacgtcgcat gctccccggcc gccatggccg cgggatagac tgactcatgt cccctaagat	60
agaggagaca cctgcttaggt gtaaggagaa gatggttagg tctacggagg ctccagggtg	120
ggagtagttc cctgctaagg gagggttagac tggtaacct gttcctgctc cggcctccac	180
tatagcagat gcgagcagga gtaggagaga gggaggttaag agtcagaagc ttatgttgc	240
tatgcgggaa aacgcrtat cggggcagc cragtattta gggacantr tagwyartcw	300
agntagcatc caaagcgnng gagttntccc atatggttgg acctgcaggc ggccgcatta	360
gtgatttagca tggagcccc agacacgcgcat agcaacaagg acctaaaactc agatcctgtg	420
ctgattactt aacatgaatt attgtattta tttaacaact ttgagttatg aggcatatta	480
tttagtccat attacctgga	500
<210> 168	
<211> 358	
<212> DNA	
<213> Homo sapien	
<400> 168	
ttcatcgctc ggtgactcaa gcctgtaatc ccagaacttt gggaggccga ggggagcaga	60
tcacctgagg ttgggagttt gagaccagcc tggccaaacat ggtgacaacc cgtctctgct	120
aaaaatacaa aaatttagcca agcatggtgg catgcacttg taatcccagc tactcgggag	180
gctgaggcag gagaatcact tgaggccagg aggcagaggt tgcagtgagg cagaggttga	240
gatcatgcca ctgcactcca gcctggcaa cagagtaaga ctccatctca aaaaaaaaaaa	300
aaaaaaaaaa tgatcagagc cacaataca gaaaaccttg agtcaccgag cgatgaaa	358
<210> 169	
<211> 1265	

<212> DNA
 <213> Homo sapien

<400> 169

ttctgtccac accaatctta gagctctgaa agaatttgc tttaaatatac tttaatagt	60
aacatgtatt ttatggacca aattgacatt ttcgactatt tttcccaaaa aaaagtcagg	120
tgaatttcag cacactgagt tggaaatttc ttatcccaga agwggcacg agcaattca	180
tatttatcta agattgattc catactccgt tttcaaggag aatccctgca gtctccttaa	240
aggtagaaca aatactttt atttttttt caccattgtg ggattggact ttaagaggtg	300
actctaaaaaa aacagagaac aaatatgtct cagttgtatt aagcacggac ccataattatc	360
atattcaactt aaaaaaatgaa ttccctgtgc accttttgc aacttctttt ttcaatgttag	420
ggaaaaaactt agtcaccctg aaaacccaca aaataaataa aacttgtaga tgtggcaga	480
argtttgggg gtggacattt tatgtgttta aattaaaccc tgtatcaactg agaagctgtt	540
gtatgggtca gaaaaatgaa atgcttagaa gctgttca a tctcaagag cagaagcaaa	600
ccacatgtct cagctatatt attattttt ttttatgcat aaagtgaatc atttctctg	660
tattaatttc caaagggttt taccctctat ttaaatgctt tgaaaaacag tgcattgaca	720
atgggttcat atttttctt aaaaagaaaa tataattatg aaagccaaga taatctgaag	780
cctgttttat tttaaaaactt ttatgttct gtgggttcatg ttgtttgtt ttgtttct	840
attttgggg ttttttactt tggttttgc ttgtttgtt ttgttttgc catactacat	900
gcagtttctt taaccaatgt ctgtttggct aatgtat tttatgtt aagttgtt aatgtatgag	960
tgcatttcaa ctatgtcaat gtttcttaa tattttatgt gtatgtt aatgtatgag	1020
tttatttaca atatgtttaa agagataaca gtttcatgtt tttatgtt aatgtatgag	1080
aagttatcta ttctatggc attccagcgg atattttgtt gtttgcggg catgcagtca	1140
atattttgtt aatgtatgtt aatgtatgtt gtttgcggg atattttgtt tggcctttag	1200
ttaaataaaaaa agacctgttt gggatgtaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1260
aaaaaaaaa	1265

<210> 170

<211> 383

<212> DNA

<213> Homo sapien

<400> 170

tgtaagtgcg gcagtgtat gacgatattc ttcttattaa tgggttattt gaacaaatgaa	60
tctgtgatac tgatcctgag ctaggaggcg ctgttgcatt aatgggactt ctgcgtactc	120
taattgtatcc agagaacatg ctggctacaa ctaataaaac cgaaaaaaagt gaatttctaa	180
atttttcttta caaccattgt atgcatttgc tcacagcacc acttttgcatt aatacttcag	240
aagacaaatg tgaaaaggat aatatagtt gatcaaacaa aaacaacaca atttgccttgc	300
ataattatca aacagcacat ctacttgcct taattttaga gttactcaca ttttgcgttgc	360
aacatcacac tgctcgactt aca	383

<210> 171

<211> 383

<212> DNA

<213> Homo sapien

<400> 171

tgggcacctt caatatcgca agttaaaaat aatgttgagt ttattatact tttgacctgt	60
ttagctcaac agggtgaagg catgtaaaga atgtggactt ctgaggaatt ttctttttaaa	120
aagaacataa tgaagtaaca tttaattac tcaaggacta cttttgggtt aagttataa	180
tctagatacc tctactttt gttttgttgc ttgcacatg cacaagacc ttcagcaatt	240
tacagggtaa aatcggtt gtagtggagg tgaaaactgaa atttttttattt attctgtaaa	300
tactataggg aaagaggctg agcttagaaat cttttgggtt ttcatgttgc ttgtgcctt	360
atcatcacac tgctcgactt aca	383

<210> 172
 <211> 699
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(699)
 <223> n = A,T,C or G

<400> 172

tcgggtgatg cctcctcagg cttgtcgta	gtgtacacag agctgctcat	gaagcgacag	60
cggctgcccc tgcacttca gaaccttcc	ctctacactt ttggtgcgct	tctgaatcta	120
ggctctgcatg ctggcggcgg ctctggccca	ggcctcctgg aaagtttctc	aggatgggca	180
gcactcgtgg tgctgagcca ggcactaaat	ggactgctca tgctgctgt	catggagcat	240
ggcagcagca tcacacgcct ctttgtggtg	tcctgctcgc tgggtggcaa	cgccgtgctc	300
tcagcagtcc tgctacggct gcagctcaca	gcccgcctct tcctggccac	attgctcatt	360
ggcctggcca tgccctgtt ctaggcagc	cgctagttccc tgacaacttc	caccctgatt	420
ccggaccctg tagattgggc gccaccacca	gatccccctc ccaggccttc	ctccctctcc	480
catcagcggc cctgtaacaa gtgccttgg	agaaaagctg gagaagtgag	ggcagccagg	540
ttattctctg gaggttgggt gatgaagggg	tacccctagg agatgtgaag	tgtgggtttg	600
gttaagaaaa tgcttaccat cccccccccca	caaccaagtt ntccagact	aaagaattaa	660
ggtaacatca ataccttaggc ctgaggaggc	atcacccga		699

<210> 173
 <211> 701
 <212> DNA
 <213> Homo sapien

<400> 173

tcgggtgatg cctcctcagg ccagatcaa	cttggggttg aaaactgtgc	aaagaaatca	60
atgtcgaga aagaattttt	caaaagaaaa atgcctaata	agtactaatt taataggta	120
cattagcagt ggaagaagaa atgttgat	tttatgtcag ctatttata	atcaccagag	180
tgcttagtt catgtaaagcc atctcgtatt	cattagaaat aagaacaatt	ttattcgtcg	240
gaaagaactt ttcaatttat agcatctta	ttgctcagga ttttaattt	tgataaagaa	300
agctccactt ttggcaggag tagggggcag	ggagagagga ggctccatcc	acaaggacag	360
agacaccagg gccagtaggg tagctggtg	ctggatcagt cacaacggac	tgacttatgc	420
catgagaaga aacaacctcc	aatctcagt tgcttaatac	aacacaagct catttcttgc	480
tcacgttaca tgccttatgt agatcaacag	caggtgactc	agggaccagg gctccatctc	540
catatgagct tccatagtca ccaggacacg	ggctctgaaa	gtgccttcca tgcaggagaca	600
catgcctt ctttcttgc ggcagagcaa	gtcacttatg	gccagaagtc acactgcagg	660
gcagtgccat cctgctgtat	gcctgaggag	gcatcacccg a	701

<210> 174
 <211> 700
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(700)
 <223> n = A,T,C or G

<400> 174

tcgggtgatg cctcctcang cccctaaatc	agagtccagg gtcagagcca	caggagacag	60
----------------------------------	-----------------------	------------	----

ggaaaagacat agatttaac cggccccctt caggagattc tgaggctcag ttcactttgt	120
tgcagttga acagaggcag caaggctagt gtttagggc acggctctcta aagctgcact	180
gcctggatct gcctcccgac tctgccagga accagctgcg tggccttgag ctgctgacac	240
gcagaaagcc ccctgtggac ccagtctcct cgtctgtaaatgaggacag gactcttagga	300
acccttccc ttggtttggc ctcactttca caggctccca tcttgaactc tatctactct	360
tttcctgaaa ccttgtaaaaa gaaaaaaagtgt ctagcctggg caacatggca aaaccctgtc	420
tctacaaaaa atacaaaaat tagttgggtg tggtggcatgt tgcctgtagt cccagccact	480
tgggaggtgc ttaggtggga ggatcacttg agcccccggag gtggaggttg cagtgagcca	540
agatcatgcc actgcactcc agcctgagta atagagtaag actctgtctc aaaaacaaca	600
acaacaacag ttagtgtgcc tctgtttccg gttggatgg ggcaccacat ttatgcacatct	660
ctcagatttgcag cctgaggagg catcaccccgaa	700

<210> 175
<211> 484
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1) ... (484)
<223> n = A,T,C or G

<400> 175	
tatagggcga attggggcccg agttgcattgn tcccgccgc catggccgcg ggattcgggt	60
gatgcctcct caggcttgc tgccacaagc tacttctctg agctcagaaa gtggcccttg	120
atgagggaaa atgtcctact gcactgcgaa tttctcaggccatrttacc tccctgtcct	180
ccttctaaac cagttataaa attcatttca caagtattta ctgattacat gttgtgcca	240
gggactattc tcaggctgaa gaaggtggga ggggaggcgca gAACCTGAGG agccacatgaa	300
gccagcttta tatttcaacc atggctggcc catctgagag catctccca ctctcgccaa	360
cctatcgggg catagcccaag ggatgccccca aggccggccca ggttagatgc gtccctttgg	420
cttgcaggatg atgacataca ctttagctgc tttagctgtg ctggcctgag gaggcatcac	480
ccga	484

<210> 176
<211> 432
<212> DNA
<213> Homo sapien

<400> 176	
tcgggtgatg cctcctcagg gctcaaggga tgagaagtga cttctttctg gagggaccgt	60
tcatgccacc caggatggaaa atgataggg acccaattgg aggacttgct gatatgtttg	120
gacaaatgcc aggttagcgga atggtaactg gtccaggagt tatccaggat agatttcac	180
ccaccatggg acgtcattgt tcaaatcaac tcttcaatgg ccatggggga cacatcatgc	240
ctcccacaca atcgcagttt ggagagatgg gaggcaagtt tatgaaaagc cagggctaa	300
gccagctcta ccataaccag agtcaggacatggc tcttatccca gctgcaagga cagtcgaagg	360
atatgccacc tcggtttct aagaaaggac agcttaatgc agatgagatt agcctgagga	420
ggcatcaccc ga	432

<210> 177
<211> 788
<212> DNA
<213> Homo sapien

<400> 177	
tagcatgttgcagccagaca ctagtagcatt tgtgccaatt tctgggtggaa atggtgacaa	60

catgctggag ccaagtgcta acatgcctt gttcaaggga tggaaagtca cccgtaagga	120
tggcaatgcc agtggAACCA cgctgcttga ggctctggac tgcacCCtac caccaactcg	180
cccaactgac aagcccttgc gcctgcctc ccaggatgtc tacaaaattt gtggatttgg	240
tactgttcct gtggccgag tggagactgg tggctcaaa cccggatgg tggtcacctt	300
tgctccagtc aacgttacaa cggaaGtAAA atctgtcgaa atgcaccatg aagctttgag	360
tgaagctt cctggggaca atgtgggctt caatgtcaag aatgtgtctg tcaaggatgt	420
tcgtcggtgc aacgttgcgt gtgacagcaa aaatgaccca ccaatggaa cagctggctt	480
cactgctcag gtgatttatcc tgaaccatcc aggccaaata agtgcggct atgcccctgt	540
attggattgc cacacggctc acattgcattt caagtttgcgt gagctgaagg aaaagattga	600
tcggcgttct ggtaaaaagg tggaaagatgg ccctaaattt ttgaagtctg gtgatgtgc	660
cattgttgcat atgggtcctg gcaagccat gtgtgttgcgt agcttctcag actatccacc	720
tttgggtcgc tttgtctgttc gtgatatgag acagacagtt gcgggtgggtg tctggctca	780
acatgctca	788

<210> 178

<211> 786

<212> DNA

<213> Homo sapien

<400> 178

tagcatgttg agcccagaca cctgtgtttc tggagctct ggcaGtggcg gattcatagg	60
cacttggct gcactttgaa tgacacactt ggctttatta gattcaactg tttttaaaaa	120
attgttgttc gtttctttt attaaaggaa taatcagaca gatcagacag cataatttt	180
tatTTaatga cagaaaacgtt ggtacattt ttcattGAatg agcttgcatt ctgaagcaag	240
agcctacaaa aggcacttgt tataatgaa agttctgtc ttagaggcca gtactctgga	300
gtttcagAGC agccAGTgat tgTTccAGTC agtGATGCT agttatatag aggaggAGTA	360
cactgtgcac ttttcttaggt gtaAGGGTat gcaactttgg atctttAAat tctgtacaca	420
tacacacttt atatatATGT atgtatgtat gaaaACatGA aattAGTTG tcaaataAtGT	480
gtgtgtttAG tttttAGtG tagtGcaact atttccacat tatttattaa attGatctaa	540
gacacttct ttttgacacc ttGAatatta atgttcaagg gtGcaatgtg tattccttA	600
gattgttaaa gcttaattac tatgatttGT agtaaattaa cttttAAat gtatttgAGC	660
ccttctgtAG tGtcgtAGGG ctcttacagg gtgggAAAGA ttttAatttt ccagttgtca	720
attgaacAGt atggcctcat tatataTTT gatttataGG agtttGtGtc tgggctcaac	780
atgctca	786

<210> 179

<211> 796

<212> DNA

<213> Homo sapien

<400> 179

tagcatgttg agcccagaca ctgggtacaa gaccAGACt gcttccttca tatgtaaaca	60
gctttaaaa agccAGTgaa ctttttaat actttggca ctttcttca caggCAAAGA	120
acacccccat ccggcccttg tttggAGTGC agAGTTGGC tttgggttctt tgccttgcct	180
ggAGTataCT tctaaTTCT tttgtcctgc acaAGCTGAA taccGAGCTA cccACCGCCA	240
cccAGGCCAG GtttccACTC atttattact ttatGTTCT tttccattGC tggTCCACAG	300
aaataAGTT tcctttggag gaatgtgatt atacCCCTT aatttcttcc ttttGTTTT	360
ttttAATATC attggatgtt gtttggcccA gaggAAACTG aatttccacca tcatcttgac	420
tggcaatccc attaccatgc tttttttaaa aaACGtaatt tttcttgct tacattggca	480
gagtagccct tcctggctac tggcttaatg tagtcaCTCA gtttcttagt ggcattAGGC	540
atgagACCTG aAGCACAGAC tGtcttacca cAAAAGGTGA caAGatCTCA aacCTTAGCC	600
aaAGGGCTAT gtcAGGTTtC aatGtataCT gcttctgttC ctGCTCACTG ttctggattt	660
tgtccttctt catccctAGC accagaATTt cccAGtcttcc ctccctacct tcccttGTTT	720
taatttcaat ctatcagcaa aataactttt caaatGTTT aaccGGTATC tccatgtgtc	780
tgggctcaac atgctca	796

```

<210> 180
<211> 488
<212> DNA
<213> Homo sapien

<400> 180
ggatgtgctg caaggcgatt aagttggta acgccagggt tttcccagtc acgacgttgt      60
aaaacgacgg ccagtgaatt gtaatacgcac tcactatagg gcgaaattggg cccgacgtcg    120
catgctcccg gccgccccatgg ccgcgggata gcatgtttag cccagacacc tgcaaggcat    180
ttggagagat tttcacgtt accagcttga tggctttt cagaggaga gacactgagc      240
actcccaagg tggatgtgaa gatttcctct agatagccgg ataagaagac taggaggat    300
gcctagaaaaa tgatttagcat gcaaatttct acctgccatt tcagaactgt gtgtcagccc 360
acattcagct gcttcttgc aactgaaaag agagaggat tgagactttt ctgtatggccg 420
ctctaacatt gtaaacacagt aatctgtgtg tgtgtgggtg tgtgtgtgtg tctgggctca 480
acatgcta                                         488

<210> 181
<211> 317
<212> DNA
<213> Homo sapien

<400> 181
tagcatgttg agcccagaca cggcgacggc acctgatgag tgggggtgatg gcacctgtga      60
aaaggaggaa cgtcatcccc catgatattt gggacccaga tggatgtgaaacca tggctcccg    120
tcaatgcata tttaatccat gatactgctg atttggaaagga cttgaacctg aagtttgtgc 180
tgcagggtta tcgggactat tacctcacgg gtatcaaaaa cttcctgtaaag gacatgtggc 240
ctgtgtgtct agtaaggat gcacatgcag tggccagtgt gcccagggtt tggttgggtgt 300
ctgggctcaa catgcta                                         317

<210> 182
<211> 507
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(507)
<223> n = A,T,C or G

<400> 182
tagcatgttg agcccagaca ctggctgtta gccaaatctt ctctcagctg ctccctgtgg      60
tttgggtgact caggattaca gaggcatctt gtttcagggaa aaaaaaagat tttagctgcc 120
agcagagagc accacataca tttagaatggt aaggactgccc acctccttca agaacaggag 180
tgagggttgtt ggtgaatggg aatggaaagcc tgcattccctt gatgcatttg tgctctctca 240
aatcctgtct tagtcttagg aaagggaaatgt aagtttcaag gacgggttccg aactgctttt 300
tgtgtctggg ctcacatgc tatcccgcgg ccatggccggc cgggagcatg cgacgtcggg 360
cccaatcgc cctatagtga gtcgttattac aattcaactgg ccgtcggtttt acaacgtcg 420
gactggaaa accctggcgt taccctaaatccctt aatcgccctt cagcacatcc ccctttccca 480
gctggcgtaa tancaaaaaaag gccccgca                                         507

<210> 183
<211> 227
<212> DNA
<213> Homo sapien

```

<400> 183
 gat~~tacgct~~ gcaacactgt ggaggttagcc ctggagcaag gcaggcatgg atgcttctgc 60
 aatccccaaa tgagcctgg tatttcagcc aggaatctga gcagagcccc ctctaattgt 120
 agcaatgata agttattctc ttgttcttc aaccttcaa tagccttgag cttccagggg 180
 agtgtcgta atcattacag cctggctcc acagtgtgc agctaa 227

<210> 184
 <211> 225
 <212> DNA
 <213> Homo sapien

<400> 184
 ttacgctgca acactgtgga gcagattaac atcagacttt tctatcaaca tgactgggg 60
 tactaaaaag acaacacaatc aatggcttca aaagtctaag gaataattc gatacttcaa 120
 ctttataaaa cctgacaaaaa ctatcaatca agcataaaga cagatgaaga acatttccag 180
 attttgc~~cca~~ atcagatatt ttacccac agtgttgc~~a~~ cgtaa 225

<210> 185
 <211> 597
 <212> DNA
 <213> Homo sapien

<400> 185
 ggccc~~gacgt~~ c~~gcatgctcc~~ cggccgccc~~at~~ ggccgcggga tt~~cgttaggg~~ tctctatcc~~a~~ 60
 ctgggac~~cca~~ taggctagtc agagtattt~~a~~ gagttgagtt ccttctgct tcccagaatt 120
 tgaaagaaaa ggagt~~gaggt~~ gatagagctg agagatcaga ttgcctctg aagcctgttc 180
 aagatgtatg tgctcagacc ccaccactgg ggcctgtggg tgaggtctg ggc~~atctt~~ 240
 tgaatgaatt~~a~~ g~~t~~gtaagg~~ggg~~ agcactatgc caaggaagg~~gg~~ gaa~~ccatcc~~ tggcactggc 300
 acagggg~~tca~~ ccttatcc~~ag~~ tgctcag~~tgc~~ ttcttgc~~tg~~ ctac~~ctgg~~ ttctctcata 360
 t~~gt~~gagg~~gggc~~ ag~~gt~~taagaag a~~gt~~gccc~~rg~~ t~~gt~~gtgc~~ga~~ gttttaga~~ac~~ atctacc~~gt~~ 420
 a~~ag~~tggggaa gttt~~cacaaa~~ g~~c~~agcag~~ctt~~ t~~gt~~ttt~~gtgt~~ at~~ttt~~cac~~ct~~ tc~~ag~~tt~~gaa~~ 480
 gagg~~aa~~agg~~ct~~ gt~~g~~agat~~gaa~~ t~~gt~~tag~~tt~~ga g~~t~~ggaaa~~aga~~ cggtaag~~ct~~ tagtggat~~ag~~ 540
 agacc~~cta~~ac~~a~~ gaat~~cact~~ag t~~gc~~ggccg~~cc~~ tt~~gc~~cagg~~tc~~ accat~~at~~ggg agag~~ctc~~ 597

<210> 186
 <211> 597
 <212> DNA
 <213> Homo sapien

<400> 186
 ggccc~~gaagt~~ t~~gc~~atg~~ttcc~~ cggccgccc~~at~~ ggccgcggga tt~~cgttaggg~~ tctctatcc~~a~~ 60
 ctac~~ctaaaa~~ aatccccaa~~c~~ atataactga actcctcaca cccaa~~tgg~~a ccaatccatc 120
 a~~cccc~~agagg cctacagatc ctc~~ctt~~gat acataagaaa attccccaa actac~~cta~~ac 180
 tatatcatt~~t~~gcaag~~attt~~ gttt~~accaa~~ at~~ttt~~gat~~gg~~ ccttctgag cttgtc~~agt~~g 240
 tga~~accacta~~ ttac~~gaacga~~ tc~~ggatatta~~ actgccc~~ctc~~ accgtcc~~agg~~ t~~gt~~ag~~ctggc~~ 300
 a~~acat~~caagt g~~cagtaaata~~ t~~tc~~at~~taagt~~ tt~~cacctac~~ taag~~gt~~g~~ctt~~ aaac~~acccta~~ 360
 g~~gg~~gtgc~~cat~~ t~~cggtagcag~~ at~~cttt~~gat tt~~gtttttat~~ ttcccataag g~~gt~~cctgt~~tc~~ 420
 a~~agg~~t~~caatc~~ at~~acatgt~~ tag~~gagcage~~ tagt~~cactat~~ c~~gcatgactt~~ ggagg~~gt~~gat 480
 a~~atagagg~~cc t~~cctttgct~~ t~~taaagaact~~ c~~ttgtccc~~ag c~~ctgtcaa~~ag t~~ggat~~agaga 540
 cc~~cta~~ac~~gaa~~ t~~cactagt~~gc g~~gcc~~cc~~ct~~gc ag~~gt~~cgac~~ca~~ t~~at~~gggag~~ag~~ g~~cc~~ 597

<210> 187
 <211> 324
 <212> DNA

<213> Homo sapien

<400> 187

tcttatccac ttgcaggtaa aatccaatcc tggatatac ttatagtctt	60
ccatatgttag tggtcaaga gactgcagg ccagaaagac tagccgagcc catccatgtc	120
ttccacttaa ccctgcttt ggtaacat ctaacttt ctgttcaagt ttctctgtgt	180
agtttatacg atgagtattt ggawaatgcc ctgaaacctg acatgagatc tggaaacac	240
aaacttactc aataagaatt tctcccatat tttatgtat gaaaaatttc acatgcacag	300
aggagtggat agagacccta acga	324

<210> 188

<211> 178

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(178)

<223> n = A,T,C or G

<400> 188

gcgcggggat tcgggtgat acctcctcat gccaaaatac aacgtnaat ttcacaactt	60
gccttccat ttacgcatt tcaatttgct ctccccattt gttgagtcac aacaaacacc	120
attgcccaga aacatgtatt acctaacatg cacatactt taataactact catccctt	178

<210> 189

<211> 367

<212> DNA

<213> Homo sapien

<400> 189

tgacaccttg tccagcatct gacacagtct tggctcttgg aaaatattgg ataaaatgaaa	60
atgaatttct ttagcaagtg gtataagctg agaatatacg tattcacat cctcattcta	120
agacacattc agtgtccctg aaatttagaat aggacttaca ataagtgtgt tcactttctc	180
aatagctgtt attcaatttgat tggtaggcct taataagtcaa agaaatgaga gggcatgtga	240
aaaaaaagctc aacatcaatc atcatttagaa aacttccatt caaaacccca atgagatacc	300
atctcataacc agtcagaatg gctattatta aaaagtcaaa aaataacaga tgctggacaa	360
ggtgtca	367

<210> 190

<211> 369

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(369)

<223> n = A,T,C or G

<400> 190

gacaccttgc ccagcatctg acaacgctaa cagcctgagg agatctttat ttatctttttt	60
agttttact ctggctaggc agatggtggc taataacatcc atttacccat ttatccattt	120
aattgttcct gcaaggctt tggatagagt attgtccagc actgctctgg aagctaggag	180
catggggatg aacaagatag gctacatctt gttccacag aacttccact ttatctggg	240
aaacagatga tatataacaa tatataaaatg aattcaggtt gtttaagta cgaaaagaat	300

aagaaaacg agtcatgatt tanaatgctg gaaacagggg ctattgctt agatattgaa	360
ggtgcggca	369

<210> 191
<211> 369
<212> DNA
<213> Homo sapien

<400> 191

tgacacccgg tccagcatct gcacaggaa aagaaactat tatcagagt aacaggcaac	60
ctacagaatg ggagaaaatt tttgaatct atccatctga caaaggcta atatccagaa	120
tctacaaaaga acttatacaa atttacaaga aacaaacaaa caaacaactc ctcaaaaagt	180
gggtgaagga tgtgaacaga cacttctaa aagaagacat ttatggggcc aacaaacata	240
tgaaaaaaag ctcatcatca ctggtaacta gataaatgca aatcaaaaacc acaatgagat	300
accatctcat tccagttaga atggcaatca ttaaaaagtc aggaaacaac agatgctgga	360
caaggtgtc	369

<210> 192
<211> 449
<212> DNA
<213> Homo sapien

<400> 192

tgacgcttgg ccacttgaca cttcatctt gcacagaaaa acttcttac agattaatt	60
caagactgg cttagtgacag tcctccagac atttttcat ttgttccata tacgtggaat	120
tttaaaatca tgtttcatca gtttggaaatg atttgggctg ctaatcaaca caattggatc	180
gactgttcta ctaaacaaca ggaaaatgtg tatctggcag cctgtggaga aacactaaac	240
attgattttt cttgcctt tacggactt gttccagcta catgtataac caagttctct	300
ttaagaggag aagatgttga tcttcattt tttctaccag actgccaccc tagtaataat	360
tctttatata tgctggaaa aaatgccat ccaaataaga tgattcatga tactgttatt	420
cctgctgagt gtcaagtggc caagcgtca	449

<210> 193
<211> 372
<212> DNA
<213> Homo sapien

<400> 193

tgacgcttgg ccacttgaca ccagggatgt akcagttgaa tataatcctg caattgtaca	60
tattggcaat tccccatcaa acattctaga aagagacaac caggattgct aggccataaa	120
agctgcaata aataacttgt aattgcgta atcatttcag gccattcaa tccagtttgg	180
ctcagaggtg ctttggctg agagaagagg tgagatataa tgtgtttct tgcaacttct	240
tggagaata actccacaat agtctgagga ctagatacaa acctattgc cattaaagca	300
ccagagtctg ttaattccag tactgataag tggtggagat tagactccag tgtgtcaagt	360
ggccaagcgt ca	372

<210> 194
<211> 309
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(309)
<223> n = A,T,C or G

<400> 194
tgacgcttgg ccacttgaca cttatgtaga atccatcgta ggctgatgca agccctttat 60
ttaggcttag tttgtgggc accttcaata tcacactaga gacaaacgcc acaagatctg 120
cagaaacatt cagttctgan cactcgaatg gcaggataac ttttgtgtt gtaatccttc 180
acatatacaa aaacaaactc tgcantctca cgttacaaaa aaacgtactg ctgtaaaata 240
ttaagaaggg gtaaaaggata ccatctataa caaagtaact tacaactagt gtcaagtggc 300
caagcgtca 309

<210> 195
<211> 312
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(312)
<223> n = A,T,C or G

<400> 195
tgacgcttgg ccacttgaca cccaatctcg cacttcattcc tcccagcacc tgatgaagta 60
ggactgcaac tatccccact tcccagatga ggggaccaan gtacacatta ggaccggat 120
gggagcacag atttgcgtccga tcccagactc caagcactca gcgtaactcc aggacagcgg 180
cttcagata aggtcacaaaa catgaatggc tccgacaacc ggagtcaagtc cgtgtcgagt 240
taaggcaatg gtgacacgga tgcacgtgn acctgtaatg gttcatcgta agtgtcaagt 300
ggccaagcgt ca 312

<210> 196
<211> 288
<212> DNA
<213> Homo sapien

<400> 196
tgtatcgacg tagtggcttc ctcagccatg cagaactgtg actcaattaa acctctttcc 60
tttatgaatt acccaatctc gggtagtgc tttatagtag tgtgagaatg gactaataca 120
agtacatttt acttagtaat aataataaac aaatatattt cattttgtg tatttactac 180
accatatttt ttattgttat tgttagtgc accttctact tattaaaga aataggcccg 240
aggcggccag atcacgaggt caggagatgg agaccactac gtcgatac 288

<210> 197
<211> 289
<212> DNA
<213> Homo sapien

<400> 197
ttgggcaccc tcaatatcat gacaggtgat gtgataacca agaaggctac taagtgatta 60
atgggtgggt aatgtataca gagtaggtac actggacaga gggtaattc atagccaagg 120
caggagaagc agaatggcaa aacatttcat cacactactc aggatagcat gcagttaaa 180
acctataagt agtttatttt tggaatttc cacttaatat tttcagactg caggtacta 240
aactgtggaa cacaagaaca tagataaggg gagaccacta cgtcgatac 289

<210> 198
<211> 288
<212> DNA
<213> Homo sapien

<400> 198
gtatcgacgt agtggctcc caagcagtgg gaagaaaacg tgaaccaatt aaaatgtatc 60
agataccccaa aagaaaaggcg cttgagtaaa gattccaagt gggtcacaat ctcagatctt 120
aaaattcagg ctgtcaaaga gatttgctat gaggttgctc tcaatgactt caggcacagt 180
cggcaggaga ttgaagccct ggccattgtc aagatgaagg agctttgtgc catgtatggc 240
aagaaaagacc ccaatgagcg ggactcctgg agaccactac gtcgatac 288

<210> 199
<211> 1027
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(1027)
<223> n = A,T,C or G

<400> 199
gctttttggg aaaaacncaa ntgggggaaa gggggntnn tngcaagggg ataaaggggg 60
aancccaggg tttccccatt cagggaggtg taaaaagncg gccaggggat tgtaanagga 120
ttcaataata gggggatgg gccnngaagt tgcaagggttc cngccgc当地 tgnccgc当地 180
attttagtgc attacgacgs tggtaataaa gtgggsccaa waaatatttgc tgatgtgatt 240
tttsgaccag tgaacccatt gwacaggacc tcatttc当地 tgagatgrta gccc当地atca 300
gataaaaagrt tagaagtytt tctgcacgat aacagcatca ttaaatggag tggcatcacc 360
aatttcaccc tttgttagcc gataccttcc ccttgaaggc attcaattaa gtgaccaatc 420
gtcatacgag aggggatggc atggggattt atgatgatat caggggtgat accttc当地acag 480
gtgaaaggca tatecttcc tctatactga ataccacaag tacccttttgc accatgtcga 540
ctagcaaatt ttttccat ctgtgtwate cctaacagag cgtaccctta ttttacaaaa 600
tttatccct ccctgattga gagtaccat aacctgatcc acaatgccc当地 tctcgctwgt 660
tctgagaaaa gtgctacagt ctctcttgc atagcgtcta ttgggtgtct ccaatccatc 720
ttcattttc aggcaagggtg aactgttttgc octataataa cmtcatctcc tgatacmega 780
aaccckggaa rctatcaaaccatcatcatc cagcgttckt watgtymcta aatccctatt 840
gcggccgc当地 ctgcaggtaac atatngggaa accccccacc ccttnggagc ntacctgaa 900
ttttccatat gtccc当地aaa ttancntngnc ttanccttgc cmtaaccctnt tccgggtttaa 960
attgtttccg cccccc当地cc cnccttnna accggaaacc ttaattttaa accnggggtt 1020
cctatcc 1027

<210> 200
<211> 207
<212> DNA
<213> Homo sapien

<400> 200
agtgcacatta cgacgctggc catcttgaat cctagggcat gaagttgccca caaagttcag 60
cacttggta agcctgatcc ctctggtttca tcacaaaagaa taggatggga taaagaaaagt 120
ggacacttaa ataagctata aattatatgg tccttgc当地 gcaggagaca actgc当地cagg 180
tatactacca gcgtcgtaat gtcacta 207

<210> 201
<211> 209
<212> DNA
<213> Homo sapien

<400> 201

tggcacctt caatatctat taaaagcaca aatactgaag aacacaccaa gactataat	60
gaggttacat ctggagtccct cgatatatca ggaaaaaatg aagtgaacat tcacagagtt	120
ttacttcattt gggactcaa atgctagaaa agaaaagggt gcccttttc tctggcttcc	180
tggtcctatc cagcgtcgta atgtcacta	209

<210> 202
<211> 349
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(349)
<223> n = A,T,C or G

<400> 202	
ntacgctgca acactgtgga gccactgggtt tttattcccg gcaggttatac cagcaaacag	60
tcactgaaca caccgaagac cgtggatgg taaccgttca cagtaatcgt tccagtcgtc	120
tgcgggaccc cgacgagcgt cactgggtac agaccagatt cagccggaag agaaagcgcc	180
gcagggagag actcgaactc cactccgctg gtgagcagcc ccatgtttc aactcgaagt	240
tcaaacggca ttgggttata taccatcagc tgaacttcac acacatctcc ttgaacccac	300
tggaaatcta ttttcttgtt ccgctttct ccacagtgtt gcagcgtaa	349

<210> 203
<211> 241
<212> DNA
<213> Homo sapien

<400> 203	
tgctcctctt gccttaccaa cccaaagccc actgtgaaat atgaagtgaa tgacaaaatt	60
cagtttcaa cgcaatatacg tatagtttat ctgattctt tgatctccag gacactttaa	120
acaactgcta ccaccaccac caacctaggg atttaggatt ctccacagac cagaaattat	180
ttctcctttt agtttcagge tcctctggga ctccctgttca tcaatgggtg gtaaatggct	240
a	241

<210> 204
<211> 248
<212> DNA
<213> Homo sapien

<400> 204	
tagccattta ccacccatct gcaaaccswg acmwwcargr cywgwackya ggcgatttga	60
agtactggta atgctctgat catgttagtt acataagtgt ggtcagtttca caaaaattca	120
cagaactaaa tactcaatgc tatgtgttca tgtctgtt tatgtgtgtg taatgtttca	180
attaagtttt ttaaaaaaaaa agagatgatt tccaaataag aaagccgtgt tggtaaggca	240
agaggagc	248

<210> 205
<211> 505
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(505)

<223> n = A,T,C or G

<400> 205

tacgctgcaa cactgtggag ccattcatac aggtccctaa ttaaggaaca agtgattatg	60
ctacctttgc acggtaggg taccgcggcc gttaaacatg tgtaactggg caggcggtgc	120
ctctaatact ggtgatgcta gaggtgatgt ttttggtaaa caggcggtgt aagatttgcc	180
gagttccctt tactttttt aaccttcct tatgagcatg cctgtgttgg gttgacagtg	240
ggggtaataa tgacttgtt gttgattgta gatattgggc tgtaattgt cagttcagtg	300
ttttaatctg acgcaggctt atgcggagga gaatgtttc atgttactta tactaacatt	360
agttcttcta tagggtgata gattggtcca attgggtgtg aggagttcag ttatatgttt	420
gggatttttt agtagtgccc tgtagtgcattt gaacgcttca ttaattgggt gctgctttt	480
rgcctactat ggggtgtaaa tggct	505

<210> 206

<211> 179

<212> DNA

<213> Homo sapien

<400> 206

tagactgact catgtcccc accaaagccc atgtaaggag ctgagttctt aaagactgaa	60
gacagactat tctctggaga aaaataaaaat ggaaatttta ctttaaaaaaa aaaaaaaaaatc	120
ggccgggcat ggtagcacac acctgtaatc ccagctacta gggacatga gtcagtcta	179

<210> 207

<211> 176

<212> DNA

<213> Homo sapien

<400> 207

agactgactc atgtcccccta ccccaccttc tgctgtgtg ccgtgttcct aacaggcac	60
agactggtaatc tggtcagtgg cctgggggtt ggggacctct attatatggg atacaatattt	120
aggagttgga attgacacgaa tttagtactt gatgggatata ggggtgtaaa tggcta	176

<210> 208

<211> 196

<212> DNA

<213> Homo sapien

<400> 208

agactgactc atgtcccccta tttaacaggg tctctagtgc tggaaaaaaa aaaaatgctg	60
aacattgcat ataacttata ttgttaaaaa tactgtacaa tgactttatt gcatctgggt	120
agctgttaagg catgaaggat gccaagaagt ttaaggaata tgggtggtaaa atggcttaggg	180
gacatgagtc agtcta	196

<210> 209

<211> 345

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(345)

<223> n = A,T,C or G

<400> 209

gacgcttggc cacttgacac ctttatattt ttaaggattc ttaagtcatt tangtnactt 60
 tgtaagttt tcctgtgcccc ccataagaat gatacgctta aaaattatgc tggggtagca 120
 aagaagatac ttctagctt agaatgtgt aagtatggca ggattcttgc gaggaggggt 180
 gatttagagc aaatttctta ttctccttgc ctcatctgt aatggggat aataatagaa 240
 ctggcttgac aaggttggaa tttagtattac atggtaata catgtaaaat gtttagaatg 300
 gtgcctaagta tcttaggaagt acttggcat ggggtgtaaa tggct 345

<210> 210
 <211> 178
 <212> DNA
 <213> Homo sapien

<400> 210
 gacgcttggc cacttgacac tagagtaggg tttggccaaac ttttctata aaggaccaga 60
 gagtaaatat ttccaggctt gtgggttgtg cagtctct tgcactact cagctctgcc 120
 attgttagcat agaaatcagc catagacagg acagaaatga atgggtggta aatggcta 178

<210> 211
 <211> 454
 <212> DNA
 <213> Homo sapien

<400> 211
 tgggcacctt caatatctat ccagcgcatt taaattcgct ttttcttga taaaaattt 60
 caccacttgc ttttttgc catgtatacc aagtagcagt ggtgtgaggc catgctgtt 120
 ttttattcg atatcagcac cgtataagag cagtgcattt gccattaatt tatcttcatt 180
 gtagacagca tagttagag tggtagatcttcc atactcatct ggaatattt gatcagtgcc 240
 atgttccagc aacattaacg cacattcatc ttccctggcat tgcacggcct ttgtcagagc 300
 ttgcctctt tttttgtcaa ggacattaag ttgacatcg tgcacccagca cgagtttac 360
 tacttctgaa ttcccattgg cagaggccag atgttagagca gtcctttt gcttgcctt 420
 cttgttccaca tcaagtgtcccc tgagcataac gaa 454

<210> 212
 <211> 337
 <212> DNA
 <213> Homo sapien

<400> 212
 tccgttatgc cacccagaaa acctactgga gttacttatt aacatcaagg ctggAACCTA 60
 tttgccttag tcctatctga ttcatgagca catggttatt actgatcgca ttgaaaacat 120
 tgatcacctg gttttttttt ttatcgact gtgtcatgac aagaaactt acaaactgca 180
 acgcagagaa actattaaag gtattcagaa acgtgaagcc agcaattgtt tcgcaattcg 240
 gcattttgaa aacaaattt ccgtggaaac tttatttgc tcttgaacag tcaagaaaa 300
 cattattgag gaaaattaat atcacagcat aacggaa 337

<210> 213
 <211> 715
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(715)
 <223> n = A,T,C or G

<400> 213

tcgggtgatg cctcctcagg catctccat ccatctcttc aagattagct gtc	ccccaaatg	60
ttttcccttc tcttctttac tgataaaattt ggactccttc ttgacactga tgacagctt		120
agtatccttc ttgtcacctt gcagacttta aacataaaaa tactcattgg tttaaaagg		180
aaaaaaagtat acattagcac tattaagctt ggccttggaa cattttctat cttttattaa		240
atgtcggtt gctgaacaga attcattta caatgcagag tgagaaaaaga agggagctat		300
atgcattga gaatgcaagc attgtcaa ataacattta aatgcttct taaagtgagc		360
acatacagaa atacattaag atattagaaa gtgtttgc ttgtgtacta ctaatttaggg		420
aagcacctt tatagttcctt cttctaaaat tgaagtagat tttaaaaacc catgtaattt		480
aattgagctc tcagttcaga ttttaggaga attttaacag ggatttggtt ttgtctaaat		540
tttgtcaatt tnttttagtta atctgtataa ttttataaat gtcaaactgt atttagtccg		600
ttttcatgct gctatgaaag aaatacccan gacagggta tttataaang gaaagangtt		660
aatttgactc ccagttcaca ggcctgagga ngnatcnccc gaaatcctta ttgcgt		715

<210> 214

<211> 345

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (345)

<223> n = A,T,C or G

<400> 214

ggtaangngc atacntcggt gctccggccg ccggagtcgg gggattcggg tgatgcetcc	60
tcaggccccac ttgggcctgc ttttccaaa tggcagctcc tctggacatg ccattccttc	120
tcccacctgc ctgattcttc atatgttggg tgcctgtt tttctgggtc tatttcctga	180
ctgctgttca gctgccactg tcctgcaaag cctgccttt taaatgcctc accattcctt	240
catttggttc ttaaatatgg gaagtgaaag tgccacctga ggcggggcac agtggctcac	300
gcctgtataatccagcactt gggagcctga ggaggcatca cccga	345

<210> 215

<211> 429

<212> DNA

<213> Homo sapien

<400> 215

ggtgatgcct cctcaggcgaa agctcaggga ggacagaaaac ctcccgtgga gcagaaggc	60
aaaagctcgc ttgatcttga ttttcgtac gaatacagac cgtgaaaagcg gggcctcact	120
atccttctga cctttgggt tttaagcagg aggtgtcaga aaagttacca cagggataac	180
tggcttggg cggccaagcg ttcatagcga cgtcgttt tgatccttcg atgtcggttc	240
ttccttatcat tgtgaagcag aattcacca gctgtggatt gttcacccac taatagggaa	300
cgtgagctgg gtttagaccc tcgtgagaca gtttagttt accctactga tgatgtgtkg	360
ttgcccattgtt aatcctgctc agtacgagag gaaccgcagg ttcasacatt tggtgtatgt	420
gcttgccctt	429

<210> 216

<211> 593

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (593)

<223> n = A, T, C or G

<400> 216

tgacacctat	gtcncgcata	tgttacacagt	ttcccacaaat	agccagcctt	tggccaccc	60
tctgtcctga	ggtatacaag	tatatcagga	ggtgtatacc	ttctcttc	ttccccacca	120
aagagaacat	gcaggctctg	gaagctgtct	taggagcctt	tgggctcaga	atttcagagt	180
cttgggtacc	ttggatgtgg	tctggaaagga	gaaacattgg	ctctggataa	ggagttacagc	240
cgaggaggagg	tcacagagcc	ctcagctcaa	gcccctgtgc	cttagtctaa	aagcagctt	300
ggatgaggaa	gcaggttaag	taacatacgt	aagcgtacac	aggtagaaag	tgctggagtt	360
cagaattgca	cagtgtgttag	gagtagtacc	tcaatcaatg	agggcaaattc	aactgaaaaga	420
agaagaccna	ttaatgaatt	gcttangggg	aaggatcaag	gctatcatgg	agatcttct	480
aggaagatta	ttgtttanaa	ttatgaaagg	antagggcag	ggacaggggcc	agaagtanaa	540
qanaacattg	cctatanccc	ttgtcttgc	cccagatgt	ggacaagggtg	tca	593

<210> 217

<211> 335

<212> DNA

<213> Homo sapien

<400> 217

tgacacccatg tccaggcatct gacgtgaaga tgagcagctc agaggagggtg tcctggatt	60
cctggttctg tgggctccgt ggcaatgaat tcttctgtga agtggatgaa gactacatcc	120
aggacaatttaatcttact ggactcaatg agcaggtccc tcactatcga caagctctag	180
acatgatctt ggacctggag cctgatgaag aactggaaaga caaccccaac cagagtgacc	240
tgattgagca ggcagccgag atgctttatg gattgatcca cgcccgctac atccttacca	300
accgtggcat cgccccagatg ctggacaagg tgtca	335

218

<211> 248

<212> DNA

<213> Homo sapien

<400> 218

tacgtactgg tcttgaaggt cttaggtaga gaaaaaatgt gaatatttaa tcaaagacta 60
tgtataaaat gggactgtaa gtacagaggg aagggtggcc cttatcgcca gaagttggta 120
gatgcgtccc cgtcatggaa tggtgtgtca ctgccccaca ttggccgaat tactgaaatt 180
ccgtagaatt agtgc当地 att ctaacgttgc tcatacataa ttatgggtcc atgtttctag 240
tactttta 248

<210> 219

<211> 530

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) . . . (530)

<223> n = A, T, C or G

<400> 219

tgacgcttgg	ccacttgaca	caagtagggg	ataaggacaa	agaccatna	ggtggcctgt	60
cagcctttg	ttactgtgc	ttccctgtca	ccacggcccc	ctctgttaggg	gtgtgctgtg	120
ctctgtggac	attggtgcac	tttcacacat	accattctt	ttctgtttca	cagcagtcc	180
gaggggggag	cacacaggac	taccttgtca	gatgangata	atgatgtctg	gccaaactcac	240
cccccaacct	tctcaactgt	tatangaaga	gccangcta	naaccttcta	tcctgncccc	300

ttgccctatg acctcatccc tgttccatgc cctattctga tttctggtga actttggagc	360
agcctggttt ntccctctca ctccagcctc tctccatacc atggtaggg ggtgtgttc	420
cacncaaang gtcagggtgt tctggggaat cctnananct gccnggagtt tccnangcat	480
tcttaaaaac cttcttqctt aatcanatng tgccactggg ccaaccntcn	530

```
<210> 220  
<211> 531  
<212> DNA  
<213> Homo sapien
```

```

<400> 220
tgacgcttgg ccacttgaca ctaaatagca tcttctaaag gcctgattca gagttgtgga 60
aaattctccc agtgtcaggg attgtcagga acagggctgc tcctgtgctc actttacctg 120
ctgtgtttct gctggaaaag gagggaaagag gaatggctga tttttaccta atgtctccca 180
gtttttcata ttcttccttgg atccctttct ctgacaactg ttcccttttg gtcttcttct 240
tcttgctcag agagcaggtc tctttaaaac tyagaaggga gaatgagcaa atgattaaag 300
aaaacacact tctgaggccc agagatcaaa tatttagttaa atactaaacc gcttgccctgc 360
tgtggtcact ttctcctct ttcatcgatct cttatccctct atccccccacc tattcatatg 420
gcttttatct gccaagttat ccggcccttc atcaaccccttc tcccttagcc tactggggga 480
tatccatctg ggtctgtctc tggtgtattg gtgtcaagtgc gccaagcgtc a 531

```

```
<210> 221  
<211> 530  
<212> DNA  
<213> Homo sapien
```

<400> 221	
attgacgctt ggccacttga caccggcctg cctgcaatac tggggcaagg gccttcactg	60
ctttcctgccc accagctgcc actgcacaca gagatcagaa atgctaccaa ccaagactgt	120
tggtcctcag cctctctgag gagaaagagc agaagcctgg aagtcaagaag agaagctaga	180
tcggctacgg ccttggcagc cagttcccc acctgtggca ataaaagtcgt gcatggctta	240
acaatggggg caccccttga gaaacacatt gttagggaat tcggcgtgtg ttcatcagag	300
catattttaca caaacctcga tagtqcagcc tactatccac tattgtccct acgctgc当地	360
cctgaacagc atgggactgt actgaatact ggaagcagct ggtgatggta cttatttgtg	420
tatctaaaca cagagaaggt acagtaagaa tatggtatca taaacttaca gggaccgcca	480
tcctatatgc agtctgttgt gacccaaaatg tgtcaagtgy ccaagcgtca	530

<210> 222
<211> 578
<212> DNA
<213> Homo sapien

```

<220>
<221> misc_feature
<222> (1)...(578)
<223> n = A,T,C or G

<400> 222
tgtatcgacg tagtggtctc cgggctacta ggccgttgtg tgctggtagt acctggttca 60
ctgaaaggcg catctccctc cccgcgtcgc cctgaagcag ggggaggact tcgcccagcc 120
aaggcagtta tatgagttt agctgcggca cttcgagacc tctgagccca cctccttcag 180
gagccttccc cgattaaga agccagggtt aggattcctt cctccccca agacccacgaa 240
caaaccacca cccccccatat tctggcagcc cataatacatc agaacgaaaac aaaaataaca 300
aataaacnaa accaaaaaaa aaaagagaag gggaaatgtt tatgtctgtc catcctgttg 360
cttagcctq tcaqctccctt naggcaggg accgtgtctt ccgaatggtc tgtgcagcgc 420

```

cgactgcggg aagtatcgga ggaggaagca gagtcagcag aagttaacg gtggcccg	480
cggctttgg gggctgggtgt tgtacttcga gaccgcttc gcttttgc ttagattac	540
gtttgctctt tggagtggga naccactacn tcnataca	578

<210> 223
<211> 578
<212> DNA
<213> Homo sapien

<400> 223	
tgtatcgacg tagtggtctc ctcttgcaaa ggactggctg gtgaatggtt tccctgaatt	60
atggacttac cctaaacata tcttatcatc attaccagtt gcaaaaatatt agaatgtgtt	120
gtcactgttt catttatttc ctagaagggtt agtcttagat atgttacttt aacctgtatg	180
ctgtatgtct ttgaatgcat tttttgtttt cattttgtt tgcccaacct gtcaattata	240
gctgcttagg tctggactgt cctggataaa gctgttaaaa tattcaccag tccagccatc	300
ttacaagcta attaagtcaa ctaaatgcctt cttgttttgc ccagacttgt tatgtcaatc	360
ctcaatttct gggtcattt tgggtgcctt aaatcttagg gtgtacttt cttagcatcc	420
tgtaacatcc atccccaaagc aagcacaact tcacataata ctttccagaa gttcattgct	480
gaagccccc cttcacccag cggagcaact tgattttcta caactccct catcagagcc	540
acaagagttt gggatatgga gaccactacg tcgataca	578

<210> 224
<211> 345
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1) ... (345)
<223> n = A,T,C or G

<400> 224	
tgtatcgacg tantggtctc ccaaggtgct gggattgcag gcatgagcca ccactcccag	60
gtggatcttt ttctttatac ttacttcatt aggtttctgt tattcaagaa gtgtatgggt	120
aaaagtcttt tcaatctaca tggtaaata atgatagccct gggaaataaaa tagaaatttt	180
ttcttcate tttaggttga ataaagaaac agaaaaataa gaacatactg aaaataatct	240
aagtccaac catagaagaa ctgcagaaga aatgaagaaa gtgtatgtga tttagatttt	300
gatattgatt tagaagacac aggaggagac cactacgtcg ataca	345

<210> 225
<211> 347
<212> DNA
<213> Homo sapien

<400> 225

tgtatcgacg tagtggtctc caaactgagg tatgtgtgcc actagcacac aaagccctcc	60
aacaggggacg caggcacagg cagttaaag ggaatctgtt tctaaattaa ttccacattt	120
ctctaagtat tcttcctaa aactgatcaa ggtgtgaagc ctgtgtctt tcccaactcc	180
cctttgacaa cagccttcaa ctaacacaaag aaaaggcatg tctgacactc ttccctgagtc	240
tgactctgat acgttggctt gatgtctaaa gagctccaga acaccaaagg gacaattcag	300
aatgctggtg tataacagac tccaatggag accactacgt cgataca	347

<210> 226
<211> 281
<212> DNA

```

<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(281)
<223> n = A,T,C or G

<400> 226
aggngnggga ntgtatcgac gtagtggct cccaacagtc tgtcattcag tctgcaggtg 60
tcagtgttt ggacaatgag gcaccattgt cacttattga ctccctcagct ctaaatgctg 120
aaattaaatc ttgtcatgac aagtctggaa ttcctgatga ggttttacaa agtattttgg 180
atcaatactc caacaaatca gaaagccaga aagaggatcc tttcaatatt gcagaaccac 240
gagtggattt acacacctca ggagaccact acgtcgatac a 281

<210> 227
<211> 3646
<212> DNA
<213> Homo sapien

<400> 227
ggaaacact tcctcccage cttgttaaggg ttggagccct ctccagtata tgctgcagaa 60
tttttctctc ggtttctcag aggattatgg agtccgcctt aaaaaaggca agctctggac 120
actctgcaaa gtagaatggc caaagttgg agttgagtgg ccccttgaag ggtcaactgaa 180
cctcacaatt gtcaagctg tttttttttt tttttttttt tttttttttt tttttttttt 240
gtttccctac attgatcaat ggctgagttt ggtcaggagc accccttccg tggctccact 300
catgcaccat tcataatttt acetccaagg tcctcctgag ccagaccgtg ttttgcctc 360
gaccctcage cggttcggct cggccctgtac tgcctctctc tgaagaagag gagagtctcc 420
ctcacccagt cccaccgcct taaaaccagc tttttttttt tttttttttt tttttttttt 480
cggttatgtc ccctgttaggc tttttttttt tttttttttt tttttttttt tttttttttt 540
aagttagcccc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 600
cccccttcct ggtttatgtc cttttttctt acttctgact tttttttttt tttttttttt 660
aatcctccct tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 720
acacattggc ccacctggga tttttttttt tttttttttt tttttttttt tttttttttt 780
gagaggggaaa gtatccaaag agaggccaaa aagtacaacc tttttttttt tttttttttt 840
gaggaggaaag tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 900
tttctcaagt ggagggagaa tttttttttt tttttttttt tttttttttt tttttttttt 960
gggagctgct cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1020
cagaaaccta tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1080
tgagtccacca ggtttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1140
tgacctggca gccccccgaaa atagccatgc tttttttttt tttttttttt tttttttttt 1200
cccagatagt aaaaggaaac tttttttttt tttttttttt tttttttttt tttttttttt 1260
agcttttaga gatagcctaa aagtttttg acgtcaaga ggttggaaaaaa cttttttttt 1320
cagctcagggc agctggaaaaaa agccactgat aaagcatcct tttttttttt tttttttttt 1380
tagatcagcc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1440
ctgactcaaa ctccactatt tttttttttt tttttttttt tttttttttt tttttttttt 1500
ctggccgacc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1560
acagtagcag tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1620
cagatgtgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1680
acgccttgc tactgtgcat tttttttttt tttttttttt tttttttttt tttttttttt 1740
cagcagggtgg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1800
ggtaaccaga aagctgattt tttttttttt tttttttttt tttttttttt tttttttttt 1860
aacttgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1920
acagaagaag tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1980
ttcttcctga tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2040
tacagtctac cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2100

```

agatccccca tcttcaaagg ctaacagatc aaggcagctct ccgggtgcaca acctgcgccc 2160
 aggttaatgc caaaaaaggct octaaaccca gcccaggcca ccgtctccaa gaaaactcac 2220
 caggagaaaa gtgggaaatt gactttacag aagtaaaacc acaccggct gggtacaaat 2280
 accttcttagt actggtagac accttctctg gatggactga agcatttgct accaaaaacg 2340
 aaactgtcaa tatggtagtt aagttttac tcaatgaaat catccctcga catgggctgc 2400
 ctgtttgcca tagggctctga taatggaccg gccttcgcct tgtctatagt ttatgtcagtc 2460
 agtaaggcgt taaacattca atggaagctc cattgtgcct atcgacccca gagctctggg 2520
 caagtagaac gcatgaactg caccctaaaa aacactctt caaaattaat cttagaaacc 2580
 ggtgtaaatt gtgttaagtct ctttccttta gccctactta gagtaagggtg cacccttac 2640
 tgggctgggt ttttaccttt tgaaatcatg tatgggagggg tgctgcctat cttgcctaag 2700
 ctaagagatg cccaaattggc aaaaatataca caaactaatt tattacagta cctacagtct 2760
 ccccaacagg tacaagatat catcctgcca cttgttcgag gaacccatcc caatccaatt 2820
 cctgaacaga cagggccctg ccattcattc ccgccagggtg acctgttgg tggtaaaaag 2880
 ttccagagag aaggactccc tcctgcttgg aagagaccc acaccgtcat cacgatgcca 2940
 acggctctga aggtggatgg cattcctgcg tggattcatc actcccgcat caaaaaggcc 3000
 aacagagccc aactagaaac atgggtcccc agggctgggt caggcccctt aaaaactgcac 3060
 ctaagttggg tgaagccatt agattaattc tttttcttaa ttttgtaaaa caatgcata 3120
 cttctgtcaa acttatgtat cttaaagactc aatataaccc ctttgcata actgaggaat 3180
 caatgattt attcccccaa aaacacaagt ggggaatgtt gtgtccaacc tggttttac 3240
 taaccctgtt ttttagactct cccttcctt taatcactca gcttgcattt acctgaattt 3300
 actctccctt agctaagagc gccagatgga ctccatctt gctttcac tggcagccgc 3360
 ttccctaagg acttaacttg tgcaagctga ctcccagcac atccaagaat gcaattaact 3420
 gataagatac tggcaagc tatatccgca gttcccagga attcgtccaa ttgatcacag 3480
 cccctctacc cttagcaac caccaccctg atcagtcagc agccatcagc accgaggcaa 3540
 ggccctccac cagaaaaag attctgactc actgaagact tggatgatca ttagtatttt 3600
 tagcagtaaa gttttttttt cttttcttt cttttttct cgtgcc 3646

<210> 228
<211> 419
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(419)
<223> n = A,T,C or G

<400> 228

taagagggtta caagatctaa gcacagccgt caatgcagaa cacagaacgt agcctggtaa 60
 gtgtgttaag agtggaaatt tttggagtac agagtaaggc acctaaccct agctgggtt 120
 tggtgacggc cccagatggc ttacagaaga aagtgtctg agatgagttt ttaagaatga 180
 ataaggatag acacaagtgaa ggactgactt ggcagtgggt aatgggtgggt ggcaaaaaac 240
 ttcgcatgtt tggaaactgac acgtacagga atgaagaatg agactgtgtg gtgttaatg 300
 agctgcaaat actaattttt tcctgaaagt tttgaagagt taactaaaaa gtattttta 360
 gtaaggaaat aaccctacat ttcagggtta ttgtttgtt anatattgaa ggtgcccaa 419

<210> 229
<211> 148
<212> DNA
<213> Homo sapien

<400> 229

aagagggtac ctgtatgttag ccatgggtggc aatgagagac tgattactac ctgctggaga 60
 ttgtttaagt gagttatat attaaggata aaggagcca ggtttttga ctgttggaga 120
 aggaattac agatattgaa ggtcccaa 148

<210> 230		
<211> 257		
<212> DNA		
<213> Homo sapien		
<400> 230		
taagagggtta cmaaaaaaaaaaa aaaatagaac gaatgagtaa gacctactat ttgatagtac	60	
aacagggtga ctatagtcaa tgataactta attatacatt taacatagag tctaattgga	120	
ttgtttgtaa ctcgaaggat aaatgcttga gaggatggat accccattct ccatgatgt	180	
cattttcac attacatgcc tgtatcaaag catctcatat accctataaaa tatgtacacc	240	
tactatgtac cctctta	257	
<210> 231		
<211> 260		
<212> DNA		
<213> Homo sapien		
<400> 231		
taagagggtta cgggttatttg ctgatggat tttttttct ttcttttct ttggaaaaca	60	
aaatgaaagc cagaacaaaaa ttattgaaca aaagacaggg actaaatctg gagaaatgaa	120	
gtccccctcac ctgactgccca tttcattcta tctgaccctc cagtcttaggt taggagaata	180	
gggggtggag gggattaatc tgatacaggt atattaaag caactctgca tgtgtgccag	240	
aagtccatgg taccctctta	260	
<210> 232		
<211> 596		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1)...(596)		
<223> n = A,T,C or G		
<400> 232		
tgctcccttt gccttaccaa ccacaaatta gaaccataat gagatgtcac ctcataacctg	60	
gtgggattaa cattatttaa aaaatcagaa gtattgacaa ggatgtgaag aaattagaac	120	
atctgtgcac tgggtgggg aatgtaaaaa aggtgtggcc actatggta acagcatgaa	180	
ggttcctcaa aaaaaatttt tttaatcta ctctatgatc gatcttgagg ttgttatgc	240	
aaaagaactg aaatcaggat tttgagaaaa tattcacatt cccacatcca tttctgctt	300	
attcataata ctcaagagat gggaaacaacc taaatgtcca tcccggatg aatggataaa	360	
cacagtgtgg tatatgcata caatgaaata ttatgttgc ttaaaaaaga aaaattctat	420	
cataatactac aacttanatn aaccttgagg acacaatgt nagtggaaata agccacggaa	480	
ggacgaatac tgcattattc ctttatataa agtatactaaa gtggtaaac tcttanagca	540	
naaagtaaaa atgggtgggtt gccanacagt tggtaggcna agaaganaan cctant	596	
<210> 233		
<211> 96		
<212> DNA		
<213> Homo sapien		
<400> 233		
tcttctgaag acctttcgcg actcttaagc tcgtgggtgg taaggcaaga ggagcggtgg	60	
taaggcaaga ggagcggtgg taaggcaaga ggagca	96	

<210> 234
<211> 313
<212> DNA
<213> Homo sapien

<400> 234
tgtaagtgcg gcagttgtat gataaaactt gaatggatca atagttgctt cttatggatg 60
agcaaaagaaa gtatgttctt gtatgttgc ctgcctcg caaaaatgt gtgaacgttg 120
ttgaaaagac aacaaagat tttagatgt acataaattt agaatatgtc ataaacttag 180
aatagtacat aaacttagta cataaataat gcacgaagca ggggcaggcc ttgagagaat 240
tgacttcaat ttggaaagag tatctactgt aggttagatg ctctcaaaca gcatcacact 300
gctcgactta caa 313

<210> 235
<211> 550
<212> DNA
<213> Homo sapien

<400> 235
aacgaggaca gatccttaaa aagaatgttg agtggaaaaaa gtagaaaata agataatctc 60
caaagtccag tagcatttt taaacatttt taaaaataac actgataaaa attttgtaca 120
tttcccaaaa atacatatgg aagcacagca gcatgaatgc ctatgggrrt gaggataggg 180
gttggggat gggatggggta taaagggggaa aataaaaacc agagaggagt cttacacatt 240
tcatgaacca aggagtataa ttatttcaac tatttgttacc wgaagtccag aaagagtgg 300
ggcagaaggg ggagaagagg gcgaagaaac gttttggga gaggggtccc asaagagaga 360
tttgcgcgt gtggcgctac atacgtttt ccaggatgcc ttaagctctg caccctattt 420
ttctcatcac taatattaga ttaaaccctt tgaagacagc gtctgtgggt tctctacttc 480
agtttccct ccgtgttttgc cacacagtag ctgtttaca agggttgaac tgactgaagt 540
gagattattc 550

<210> 236
<211> 325
<212> DNA
<213> Homo sapien

<400> 236
tagactgact catgtccctt accagagtag ctagaattaa tagcacaagc ctctacaccc 60
aggaactcac tattgtatcac ataaatggaa tttattcagc cttaaaaagt ttggaaaggaa 120
attctgacat atgctaaaac atggatgtac cttgaagact ttatgtataag taaaagaagc 180
cagtcataaa agggaaaaata ttgcatttgc ccacttatat gaggtaccta gagtagtcaa 240
tttcataaaaaa acacaaaaata gaatgggtt tgccagggtt tttgaggaaa aggaaatgac 300
aagttagggg acatgagtca gtctt 325

<210> 237
<211> 373
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1) ... (373)
<223> n = A, T, C or G

<400> 237

tagactgact catgtccct atctactcaa cattccact tgaagtctga taggcac	60
agacttatct tgcccaaaag caaactcttt atttcttgc atcctagtct ttat	120
tgctgtctta cccatctcaa aagagtgc aatccacca agtgctgaa acagaaatct	180
aagaaatatac ctgattctt cttttccca tctacttcac ttctaattca tttagtaata	240
atctgttca gaaaacccaaa cacctcatgt tctcactcat aagggggagt tgaacaatga	300
gaacacacag acacagggag gggAACATCA cacaccacgg cccgtcaggg agtangggac	360
atgagtcagt cta	373

<210> 238
<211> 492
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(492)
<223> n = A,T,C or G

<400> 238

tagactgact catgtccct ataatgctcc caggcatcg aaagcatctc aaactggagc	60
tgcacccatg gcagagggtt caggtaaagtc acaaaaagggg tcctaaagaa tttgcctca	120
atatcagagt gattagaaga agtggacaga gctacccaag ttaaacatata gcgagataaa	180
aaaaatatagg cacttgtgaa cacacactac aggagaaaa taaggaacat aatagcatat	240
tgtgctatta tgatgatgaa gaacctctct anaagaaaac ataacccaaag aaacaaagaa	300
aattccgcna aatgttaat gctatagaag aaattaacaa aaacatata tcaatgaatt	360
cagaaaaagtt agcaggtcan aagaaaaacaa atcaaagacc agaataatcc catttttagat	420
tgtcgagtaa actanaacag aaagaatacc actggaaatt gaattcctac gtangggaca	480
tgantcanc ta	492

<210> 239
<211> 482
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(482)
<223> n = A,T,C or G

<400> 239

tggaaagtat ttaatgatgg gcaacttgct gtttacttcc tacatatccc atcatcttct	60
gtatTTTTT aaataacttt ttttggatt tttaaagtaa ccttattctg agaggtaaaca	120
tggattacat acttctaagc cattaggaga ctctatgtta aacccaaagg aaatgttact	180
agatcttcat ttgatcaata ggatgtgata atcatcatct ttctgctcta atggaaaagt	240
actanaaaaca tggaaaccata atcttagatg aacaacgtta gaatttgcac taattctacg	300
gaatttcagt aattcggcaa atgtcgggca gtgacacaac atttcatgac ggggacgcat	360
ctaccaactt ctggcgataa gggccacccct tccctctgta cttacagtcc catttcatac	420
acagtcttg attaaatatt cacattttt ctctacctaa agaccttcaa gaccagtacg	480
ta	482

<210> 240
<211> 519
<212> DNA
<213> Homo sapien

```

<220>
<221> misc_feature
<222> (1)...(519)
<223> n = A,T,C or G

<400> 240
tgtatcgacg tagtgtctc cccatgtat agtctgaaat atagcctcat gggatgagag   60
gctgtcccc agccgcacac ccgtaaaagg tctgtctga ggtggattag taaaagagga 120
aaggcttgca gttgagatag aggaaggca ctgtctctg cctgcccctg ggaactgaat 180
gtctcggtat aaaaccgcgt tgcattttt ttcattctg agataggaga aaaaccaccc 240
tatggcggga ggcgagacat gttggcagca atgctgcctt gttatgcctt actccacaga 300
tgcatttttttggc gagggaaaca taaatctggc ctacgtgcac atccaggcat agtacccccc 360
tttgcattttt attatgcac acgttgcctt gtcacatgt ttgtgtctg accttcctt 420
tattatcacc ctgtctctt accgcattcc ttgtgtctg ataatgaaaa taatatcaat 480
aaaaacttga nggaactcgg agaccactac gtcgataca 519

<210> 241
<211> 771
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(771)
<223> n = A,T,C or G

<400> 241
tgtatcgacg tagtgtctc cactccggcc ttgacggggc tgctatctgc cttccaggcc   60
actgtcacgg cttccgggtta gaagtcaattt atgagacaca ccagtgtggc cttgttggct 120
tgaagctcct cagaggaggg tggaaacaga gtgaccgagg gggcagcctt gggctgaccc 180
aggacggtca gcttggtccc tccgcacaaac acgagagtgc tgctgcctgt atatgagctg 240
cagtaataat cagcctcgcc ctcagcctgg agcccagaga tggtcaggga ggcgtgttg 300
ccanacttgg agccagagaa gcgatttagaa acccctgagg gccgattacc gacccataa 360
atcatgaatt tgggggtttt gcctgggtgc tgggttacc angagacatt attataacca 420
ccaacgtcac tgctggttcc antgcaggaa aaatgggtga tcnaactgtc caagaaaaacc 480
actacgtccca taccaatcca ctaattgcctt gccgcctgca gttcaacca tattggggaa 540
naactccccn ccgcgcgtttt ggattgnat naaccttga aatttttcc tattanttg 600
ccccctaaaa taaaccntt ggcnttaatc cattgggtcc atanctntt tncccggtt 660
ttaaaantt tttatccgc cncccnattt ccccccaac ttccaaaac ccgaaaccnt 720
tnaaattttt tnaaacctg ggggttccc nnaattnnn ttnaanctnc c 771

<210> 242
<211> 167
<212> DNA
<213> Homo sapien

<400> 242
tgggcaccc caatatcggg ctcatcgata acatcacgt gctgatgctg ctgttgcctt   60
tcctctcttag gaacctctgg attttcaat tctttgagga attcatccaa attatctgcc 120
tcctctctt tcctccttt tctaagggtct tctggtaaa gccgtca 167

<210> 243
<211> 338
<212> DNA
<213> Homo sapien

```

<400> 243

ttgggcacct tcaatatcta ctgatctaaa tagtgtggtt tgaggcctct	tgttcctggc	60
taaaaaatcct tggcaagagt caatccac ttacaatag agttaaaaat cttacaatgg		120
atattcttga caaagcttagc atagagacag caatttaca caaggtattt ttcacctgtt		180
taataaacgt gttttccta caccatagg gtgccacaa gggaggagtg cacagttca		240
gaaacaaatt aagatactga agacaacact acttaccatt tcccgtatag ctaaccacca		300
gttcaactgt acatgtatgt tcttatggc aatcaaga		338

<210> 244

<211> 346

<212> DNA

<213> Homo sapien

<400> 244

tttttgctc ccatacagca cactctcatg ggaaatgtct gttctaaggtaa	caaccataa	60
tgcaaaaatc atcaatatac ttgaagatcc ccgtgttaagg tacaatgtat ttaatattat		120
cactgataca attgatccaa taccagtttt agtctggcat tgaatcaaat cactgtttt		180
gttgtataaa aagagaaaata tttagcttat attaagtagc catattgtaa gaaaaaaagat		240
gcttatcttt acatgctaaa atcatgatct gtacattggc gcagtgaata ttactgtaaa		300
agggagaag gaatgaagac gagctaagga tattgaaggt gcccaa		346

<210> 245

<211> 521

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(521)

<223> n = A,T,C or G

<400> 245

accaatccca cacggatact gagggacaag tatatcatcc catttcattcc ctacagcagc		60
aacttcatga ggcaggagtt attagtccca ttttacagaa gaggaaactg agacttaggg		120
agatcaagta atttgcccaag gtcgcacaat tagtgtataga gccagggtttt gaagcgacgt		180
ctgtcttaag ccaatgaccc ctgcagatta tttagagcaac tggctccac aacagtgtaa		240
gcctcttgc anaagcttag gtcgcacaagg gcagagattt ttgtctgttt tgctcattgc		300
tccttccccca ttgcttagag cagggtctgc cacgaancag gttctcaatg catagttatt		360
aatgtatata aagagcaaac atatgttaca gagaacttcc tgtatgttg tcacttacat		420
gaatcacctg tganatgggt atgcttggc cccantttt cagatnaaga tattgaangt		480
gccccaaatca ctanttgcgg gcgcctgcan gtccancata t		521

<210> 246

<211> 482

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(482)

<223> n = A,T,C or G

<400> 246

tggaaccaat ccaaataccca atcaatgata gactggataa agaaaatttg gcacatgttc		60
--	--	----

accatgaaaat actatgcagc cataaaaaaag gatgagttca tatttcgttgc agggacatgg	120
atgaagctgg agaccatcat tctcagcaaa ctaacaaggg aacagaaaac caaacactgc	180
atgttctcac tcttaagtgg gagctgaaca atgagaacac atggacacag ggaggggaac	240
atcacacagt ggggcctgct ggtgggttagg ggtctagggg agggatagca ttaggagaaa	300
tacctaattgt agatgacggg ttgatgggtg cagcaaacc accatgacacg tgtataccct	360
tgtacaacaaac ctgcacatgtc tgcacatgtc ccccagaact taaagtgtta ataaaaaaat	420
taagaaaaaa gttaagtatg tcatacgatac ataaaatattt gtanatattt aaggtgccca	480
aa	482
<210> 247	
<211> 474	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (474)	
<223> n = A,T,C or G	
<400> 247	
ttcgatacag gcacagagta agcagaaaaa tggctgtgg ttaaccaagt gагtacagtt	60
aagtgagaga ggggcagaga agacaaggc atatgcaggg ggtgattata acagggtggtt	120
gtgctggaa gtgagggtac tcggggatga ggaacagtga aaaagtggca aaaagtggta	180
agatcaagtga attgtacttc tccagaattt gatttctgn ggagtcaa atactatccag	240
tttgggtat catangccaa cagttgaggt ataggaggtt gaagtcncag tgggataatt	300
gaggttatga anggttttgtt actgactggt actgacaang tctgggtat gaccatggga	360
atgaatgact gtanaagcgt anaggatgaa actattccac ganaaagggg tccnaaaact	420
aaaaannnaa gnnnnnngggg aatattttt atgtggatat tgaangtgcc caaa	474
<210> 248	
<211> 355	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (355)	
<223> n = A,T,C or G	
<400> 248	
ttcgatacag gcaaacatga actgcaggag ggtgggtacg atcatgatgt tgccgatgg	60
ccggatggnc acgaagacgc actggancac gtgcttacgt ccttttgctc tggatggc	120
cctgagggga cgccaggaccc ttatgaccct cagaatcttca acaacgggag atggcactgg	180
attgantccc antgacacca gagacaccccc aaccaccagn atatcantat attgatgtag	240
ttcctgtaga nggccccctt gtggaggaaa gctccatnag ttggatctct tcaacaggat	300
ctcaacagtt tccgatggct gtgatggca tagtcatant taacntgtn tcgaa	355
<210> 249	
<211> 434	
<212> DNA	
<213> Homo sapien	
<400> 249	
ttggattggc cctccaggag aacaaggggg aaaaggtgac cgagggtcctt ctgaaactca	60
aggatctcca ggagcaaaag gggatggggg aattcctggc cctgctggc ccttaggtcc	120

acctggcct ccaggcttac caggtcctca aggcccaaag ggttaacaaag gctctactgg	180
acccgctggc cagaaaagggt acagtggtct tccagggct cctgggcctc caggtccacc	240
tggtaagtc attcagcctt taccaatctt gtcctccaaa aaaacgagaa gacatactga	300
aggcatcaa gcagatgcag atgataatat tcttgattac tcggatggaa tggaagaaat	360
atttggtcc ctcaattccc tgaaacaaga catcgagcat atgaaatttc caatgggtac	420
tcagaccaat ccaa	434
<210> 250	
<211> 430	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(430)	
<223> n = A,T,C or G	
<400> 250	
tggattggc acatggcaga gacaggattc caaggcagtg agaggaggat acaatgcttc	60
tcactagttt ttattattttt ttttattttt gagatgaagt ctcgctttgt ctccccaggct	120
ggagagcggt ggtgcgatct tggctctctg caaccccccgc ctcaagcaat tctcctgtct	180
tagcctcgcg ggttagatgga attacaggcg cccaccgcca tgcccaacta atttttttgt	240
gtcttcagta gagacagggtt ttcgcccattt tgccgcaggct ggtcttgaac tcctgacctc	300
nagtgtctg ccctcctcggt cctcacaaag tgctggattt acaggcatgg gctgctgcac	360
ccagtcaact tctcaactgt tatggcctta tcaatttcac cacattctat tggccaaaaaa	420
aaaaaaaaan	430
<210> 251	
<211> 329	
<212> DNA	
<213> Homo sapien	
<400> 251	
tggtaactcca ccatyatggg gtcaaccgcc atcctcgccc tcctcctggc tgttctccaa	60
ggagtctgtg ccgaggtgca gctgrtgcag tctggagcag aggtaaaaaa gtccggggag	120
tctctgaaga tctcctgttaa gggctctgga tacaccttta agatctactg gatcgctgg	180
gtgcgcctgt tgcccgggaa aggctctggag tggatggggc tcatcttcc tgatgactct	240
gataccagat acagcccgctc cttccaaggc caggtcacca tctcagtcga taagtccatc	300
agcaccgcct atctgcagtg gagtaccaa	329
<210> 252	
<211> 536	
<212> DNA	
<213> Homo sapien	
<400> 252	
tggtaactcca ctcagcccaa ccttaattaa gaattaagag ggaacctatt actattctcc	60
caggcttcctc tgctctaacc aggcttctgg gacagtatta gaaaaggatg tctcaacaag	120
tatgttagatc ctgtactggc ctaagaagt aaactgagaa tagcataaat cagaccaaac	180
ttaatggtcg ttgagacttg tgcctctggag cagctggat agggaaactt ttggcagca	240
agaggaagaa ctgcctggaa gggggcatca tgtaaaaaat tacaagggga acccacacca	300
ggccccccttc ccagctctca gcctagagta ttagcattc tcaagcttagag actcacaact	360
tccttgcctta gaatgtgcca ccggggggag tccctgtggg tgatgaggct ctcaagagtg	420
agagtggcat cctatcttct gtgtcccac aggacctgg cccgagactt agcaggtgaa	480
gtttctggtc caggcttgc ctttgcactca ctatgtgacc tctggatggag taccaa	536

<210> 253
 <211> 507
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(507)
 <223> n = A,T,C or G

<400> 253

ntgttgcgt cccagtaact cggaaagctg	aggcgggagg atcacctgag	ctcaggaggt	60
tgaggccgca gtgagccgg accacgccc	tacactccag cctggggcat	agagtggagac	120
cctccaagac agaaaagaaa	agaaaggaag ggaaaggaa	aggaaaaagg aaaagggaaa	180
ggaaaaggaa aaggaaaaga	caagacaaaa caagacttga	atttttatctt cctgacttca	240
attttatgtt ctttctacac	cacaattccct ctgttacta	agatgataat ttagaaaccc	300
ctcggtccat tctttacagc	aagcttggaa ttttgtcaag	taattacaat aatagtaaca	360
aatttgataata ttatatgcca	ggtgttttc attcctgctc	tcacttaatt ctcaccactc	420
tgtatataat acaatttgcgt	ccgggtgtgg tggctcatgc	ctgtatccc ggcactttgg	480
gagaccgagg tggcgatgs	gcaacaa		507

<210> 254
 <211> 222
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(222)
 <223> n = A,T,C or G

<400> 254

ttggatttgt cactgtgagg aagccaaatc	ggatccgaga gtcttttct	aaaggccagt	60
actggccaca ctttcttcgt ccgccttcgt	caaagctgaa gacacacaga	gcaaggcgct	120
tctgtttac tccccatagg taactccaaa	ccatagatgg ttagctnccc	tgctcatctt	180
tccacatccc tgctatttagt	tatagtcgtt ggaccaatcc	aa	222

<210> 255
 <211> 463
 <212> DNA
 <213> Homo sapien

<400> 255

tgttgcgtc cataaaatgtt gaaatggaaa	taaacaacat gatgagggag	gattaagttg	60
gggaggggagc acattaagt ggcattgtt	tttgttggaa gaagtgtactt	ttgaacaagg	120
ccttgggtt aagagctgtt gagagtgtcc	cagacagagg ggcacttgg	acaatagacg	180
agatgggaga gggcttggaa ggtgtcgaa	ataggaagga gtttgttctg	gtatgagtct	240
agtgaacaca gagggcgagag gcccgggtgg	gtgcagctgg agagttatgc	agaataacat	300
taggcctgt gggggactgt agactgtcag	caataatcca cagttggat	tttattctaa	360
gagtgtatggg aagccgtgaa aagggggtt	agcaaggagt gaaattatca	gatttacagt	420
gataaaaaata aatttgtctg gctactgggg	aaaaaaaaaaa	aaa	463

<210> 256
 <211> 262

```

<212> DNA
<213> Homo sapien

<400> 256
ttggatttgtt caacacctgctc aactctacyt ttcctccccc ttccataaaaa attaatgaat      60
ccaatacatt aatgcacaaaa cccttgggtt ttatcaatat ttctgttaaa aagtattatc      120
cagaactgga cataataacta cataataata cataacaacc ccttcattctg gatgcaaaca      180
tctattaata tagcttaaga tcactttcac tttacagaag caacatcctg ttgatgttat      240
tttgatgttt ggaccaatcc aa                                         262

<210> 257
<211> 461
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(461)
<223> n = A,T,C or G

<400> 257
gnngnnnnnn nnnaattcg actcngttcc cntggtancc ggtcgacatg gccgcgggat      60
taccgcttgtt nnctgggggt gtatggggga ctatgaccgc tttagctgg ggggtgtatgg      120
gggactatga ccgctttagt mtggkgggt atggggact atgaccgctt gtcgggtgg      180
cgataaaacc gacgcaaggg acgtgatcga agctgcgttc ccgtctttc gcatcggtag      240
ggatcatgga cagcaatatac cgcatcgyc tgaaggcggtt cgaccatcgc gtgctcgatc      300
aggcgaccgg cgacatcgcc gacaccgcac gccgtaccgg cgcgctcatc cgcggtccga      360
tcccgcctcc cacgcgcatc gagaagttca cggtaaccg tggccgcac gtcgacaaga      420
agtgcgcgca gcagttcgag gtgcgtaccc acaagcggtc a                                         461

<210> 258
<211> 332
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(332)
<223> n = A,T,C or G

<400> 258
tgaccgcttg tagctggggg tgtatgggg actacgaccg ctttagctg ggggtgtatg      60
ggggactatg accgcttcta gctgggggt tatggggac tatgaccqct ttagctgg      120
gggtgtatgg ggactaggac cgctttagc tgggggtgtatg tggggacta tgaccgctt      180
tagctggggg tgtatgggg actacgaccg ctttagctg ggggtgtatg ggggactatg      240
accgcttcta nctgggggtg tatggggac tatgaccgct ttagctgcct gggggatgg      300
aggagagttg tggttggggaa aaaaaaaaaa aa                                         332

<210> 259
<211> 291
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature

```

<222> (1) ... (291)
 <223> n = A,T,C or G

<400> 259
 taccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt 60
 gaccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt 120
 gaccgcttgt gaccgcttgt nacnnggggt gtctggggga ctatgannga ntgtnactgg 180
 gggtgtctgg ggnctatga nngantgtna cnnggggtgt ctggggact atganngact 240
 gtgcnnctg gggatcnga ggagantnngt gntagnat ggttngggan a 291

<210> 260
 <211> 238
 <212> DNA
 <213> Homo sapien

<400> 260
 taagagggtta ctggttaaaa tacaggaaat ctgggtaat gagggcagaga accaggatac 60
 tttgaggtca gggatgaaaa ctagaatttt tttctttttt tttgccttag aaacttgctg 120
 ctctgaagag gcccatgtat taattgctt gatccctt ttcttacagc ccttcaagg 180
 gcagagccct ctttatcctg aaggaatctt atccttagct atagtatgtat cccttta 238

<210> 261
 <211> 746
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1) ... (746)
 <223> n = A,T,C or G

<400> 261
 ttgggcacct tcaatatcaa tagctaacat ttattgagt gttatcgat cataaaacac 60
 tgttctaagc ctttaaacgt actaattcat ttaatgctca taatcacttt agaaggtggg 120
 tactagtatt agtctcattt acagatgcaa catgcaggca cagagaggaa aattaacttg 180
 cccaaggtaa cacagctaag aaatagaaaa aatattgaat ctggaaagtt gggcttctgg 240
 gtaacccaca gagtcttcaa tgagcctggg gcctcactca gttgctttt acaaagcgaa 300
 tgagtaacat cacttaattc agttagttagg ccaaattggag gtcagctacg agtttctgct 360
 gttcttgcag tggactgaca gatgtttaca acgtctggcc atcagtwaat ggactgatta 420
 tcattggaw gtgggtgggc tgaatgttgg ccagtgaagt ttattcawgc catattttt 480
 tgtttaggat gactttggc tggctctagg gcaagctctg tctgscacgg aacacagaat 540
 wacacaggga cccccctcaat ttctgggtgt gctagaacca tgaaccactg gttggggaa 600
 caagcggtca aaacctaagt gcccggcgtt ggcagggtcc accatatgg gaaaaactcc 660
 cnacgcgtt ggaatgcctn agctngaatt attctaananag ttgtccncnt aaaattagcc 720
 tggcgtaa tcangggtn naagcc 746

<210> 262
 <211> 588
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1) ... (588)
 <223> n = A,T,C or G

<400> 262

tgaccgcctg tcatctcaca tggggcctcg cacgccttg cctttgttagg aaacctgaca	60
tttgcgtt tcttccttct ctccatccatc ctaatttacg tttgacttgc	120
ttgctgagga ggcaggagct agagactgct gtgagctcat aggggtggga agtttatcct	180
tcaagtcccgg cccactcatc actgccttc accttccctt gaccaggctt acaagtggt	240
tcttcctgc ttcccttgc gaccaacaa gccctgtaa tgagtgtgca tgactctgac	300
agctgtggac tcagggtcct tggctacagc tgccatgtaa aatatctcat ccagttctcg	360
caaattgtta aataaaccac atttcttaga ttccagtacc caaatcatgt cttaacgaac	420
tgctcctcac acccagaagt ggcacaataa ttcttggga attattactt tttttttct	480
ctctntnnnc gnnngnnnng gnnngnccag gaattaccac ntggaaagac ctggccngaa	540
tttattatan aggggagccg attnttttc ctaacacaaa gcgggtca	588

<210> 263

<211> 730

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(730)

<223> n = A,T,C or G

<400> 263

tttttttttt tttggcctga gcaactgaaa ttatgaaatt tccatatact caaaagagta	60
agactgcaaa aagattaaat gtaaaaagttt tcttgcatac agtaatgttt aagataaccta	120
ttanatttat aatggaaaaa ttagggcatt tggatataca agttgaaaat tcaggagtga	180
ggttgggctg gctgggtata tactgaaaac tgcgttacatc cagatgacat cttaaccac	240
aaatctggtt ttattttagc agtgcataatgt gtcactccca caaaagcctt cccaaattggc	300
ctcagcatac acaacaagtc acctccccac agccctctac acataaacaa attccttagt	360
ttagttcagg agggaaatgcg ccctttctt tccgctctag gtgaccgcaa ggcccgatcc	420
tcgtcaccaa gatgttaagg gaagtctgcc aaagaggcat ctgaaaggaa ataaggggaa	480
tgggagtgcg cacaaggaa agccaaggan aaacttttga gacggttct agancctgg	540
catttcacaa caaaactcng gaacaaacct tgcgttacatc atcatttaag cccttcgttt	600
ggannagact ttctgaactg ggccgtgaac ataancctca ttgaatgtct tcacagtctc	660
ccagctgaag gcacaccccttggccagaagg ggaatcttcc aggtcctcaa nacagggttc	720
gcccttgnc	730

<210> 264

<211> 715

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(715)

<223> n = A,T,C or G

<400> 264

tttttttttt tttggccagt atgatagtct ctaccactat attgaagctc ttaggtcatt	60
tacacttaat gtggttatag atgcgttgc gcttacttctt accacccatc tattttccct	120
gtctcttttt tttttttttt ctctttttt cctcccttat ttataatttgc aattttttag	180
gattctatattt tatatagatt tttttttttt ttttttttttgc aatcttttttttgc	240
ttctgtcatt tcaatgtgca ttttttttttgc aatcttttttttgc aatcttttttttgc	300
aacccatcataatgttgc aatcttttttttgc aatcttttttttgc aatcttttttttgc	360

tgtntgtcat atttttcct ttatatatgt tttaaagaca taatagtata tgggagggtt	420
ttgctaaaaa tgtgatcaat attcctcaa ngaaacgtaa aaattcaaaa taaatntctg	480
tttattctca aatnnaccta atattccta ccatntctna tacnttcaa gaatctgaag	540
gcattggttt ttccggctt aagaacctcc tctaaagcac tctaagcaga attaagtctt	600
ctgggagagg aattctccc agctgggcc ttnanngtta ctccnntnang gttaaanttt	660
ggccggaaaa tagaaattcc aagttAACAG gntantttt ntTTTNTTN tcncc	715
<210> 265	
<211> 152	
<212> DNA	
<213> Homo sapien	
<400> 265	
ttttttttt ttcccaaca caaaggcacca ttatcttcc tcacaatttt caacatagtt	60
tgattcccat gaagagggtt tgatttctaa agaaaacatg gctactatac tatcaatcag	120
gtttaaatct tttttttt agacggagtt ta	152
<210> 266	
<211> 193	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(193)	
<223> n = A,T,C or G	
<400> 266	
taaaactccgt ccccttctta atcaatatgg aggctaccca ctccacatta ctttcttttc	60
aagggactgt ttccgttaact gttgtggta ttcacgacca ggcttctaaa cctctaaaaa	120
ctccccaaatt ctggtgccaa cttggacaac atgctttttt tttttttttt ttttttttn	180
gagacggagt tta	193
<210> 267	
<211> 460	
<212> DNA	
<213> Homo sapien	
<400> 267	
tgttgcgate ccttaagcat ggggtctatt aaaaaatgg tggagaagaa aatacctgga	60
atttacgtct tatctttaga gatggaaag accctgatgg aggacgtgga gaacagcttc	120
ttcttgaatg tcaattccca agtaacaaca gtgtgtcagg cacttgctaa ggatcctaaa	180
ttgcagcaag gctacaatgc tatggattc tcccaggag gccaatttct gagggcagtg	240
gctcagagat gcccttcacc tcccatgatc aatctgatct cggttggggg acaacatcaa	300
ggtgtttttt gactccctcg atgcccagga gagagctctc acatctgtga cttcatccga	360
aaaacactga atgctggggc gtactccaaa gttgttcagg aacgcctcgt gcaagccgaa	420
tactggcatg acccataaaaa ggaggatgtg gatcgcaaca	460
<210> 268	
<211> 533	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	

<222> (1)...(533)

<223> n = A,T,C or G

<400> 268

tgttgcgatc cgttgataga atagcgacgt ggtaatgagt gcatggcacg cctccgactt	60
accttcgccc gtggggaccc cgagtacgtc tacggcgctcg tcacttagag taccctctgg	120
acgccccggc gcgttcgatt tacccgaagc gcgagctgca gtgggcttgc gccccccggcc	180
aaattctttg gggggtttaa ggcgcgggg aatttgaggt atctctatca gtatgtagcc	240
aagttggaac agtcgccatt cccgaaatcg ctttcttga atccgcaccc cctccagcat	300
tgcctcattc atcaaacctga aggcaacgcat aagtgacggt tttgttctca gcagctccac	360
tccataacta gcgcgcctga cctcgcttc gtacgcgcca ggtccgtcg tgcgaattcc	420
caactccggg gagttgcgca tttcaagttt cgaaaactgtt cgccctccacn atttggcatg	480
ttcacgcatg acacggaata aactcgctca gtaccggaa tggatcgca aca	533

<210> 269

<211> 50

<212> DNA

<213> Homo sapien

<400> 269

ttttttttt ttgcgcctgaa tttagctacag atcctcctca caagcggtca	50
---	----

<210> 270

<211> 519

<212> DNA

<213> Homo sapien

<400> 270

tgttgcgatc caaataaccc accagcttct tgcacacttc gcagaagcca ccgtcctttg	60
gctgagtcac gtgaacggtc agtgcaagca gccgcgtgcc agagcagagg tgcagcatgc	120
tgcacaccag ctcaggcgctg acctcctcca gcaggatgga caggatggag ctgcgcgtacg	180
tgtccaccac ctccctggcac tctccgaca gggacttcgg cagcttcgag cacattttgt	240
caaagcgctc gaggattttt ttctcagttt tttttttttt aatcagtttgc acatcttct	300
tcaccaggaa ttcacacacc tcacagtaaa catcagactt tgctgggacc tcgtgttct	360
taatgggctc caccagttcc agggcaggga tgacatttcc ggaggccact ttggcgggga	420
ccagagtctg catgggcatac tcttcacact catcacaagaa cccaaaccacg gcacagatct	480
ccttgggttg catgtgcatac atcatctggg atcgcaaca	519

<210> 271

<211> 457

<212> DNA

<213> Homo sapien

<400> 271

ttttttttt ttggggcgcc gaccggacgt gcactcctcc agtagcggt gcacgtcg	60
ccaaatggccc gctatgagga ggtgagcggt tccggcttgc aggagttcca ccggggccgtg	120
gaacagcaca atggcaagac cattttcgcc tactttacgg gttctaagga cgccgggggg	180
aaaagcttgt gccccgactg cgtgcaggct gaaccagtcg tacgagagg gctgaagcac	240
attatgttggat gatgtgtgtt catctactgc caagtaggg aagagcctta ttggaaagat	300
ccaaataatg acttcagaaa aaacttggaa gtaacagcag tgcctacact acttaagtat	360
ggaacacctc aaaaacttgtt agaatctgag tgttttcagg ccaacctggg gaaaaatgtt	420
ttctctgaag attaagattt taggatggca atcaaga	457

<210> 272

<211> 102

<212> DNA
 <213> Homo sapien

<400> 272
 tttttttttt ttggcaaca acctgaatac ctttcaagg ctctggcttg ggctcaagcc 60
 cgcaggggaa atgcaactgg ccaggtcaca gggcaatcaa ga 102

<210> 273
 <211> 455
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(455)
 <223> n = A,T,C or G

<400> 273
 tttttttttt ttggcaatca acaggttaaa gtcttcggcc gaagttaatc tcgtgtttt 60
 ggcaatcaac aggttaagt cttcgccga agttaatctc gtgttttgg caatcaacag 120
 gtttaagtct tcggccgaag ttaatctcg tttttggca atcaacaggt ttaagtcttc 180
 ggccgaagtt aatctcggt ttttggcaat caacagggtt aagtcttcgg ccgaagttaa 240
 tctcggttt ttggcaatca acaggttaaa gtcttcggcc gaagttaatc tcgtgtttt 300
 ggcaatcaag aggttaagt cttcgccga agttaatctc gtgttttgg caatcaacag 360
 gtttaagtct tcggccgaan ttaatctcg tttttggca atcaacaggt ttaantcttc 420
 ggccgaagtt aatctcggt ttttggcaat caana 455

<210> 274
 <211> 461
 <212> DNA
 <213> Homo sapien

<400> 274
 tttttttttt ttggccaata cccttgatga acatcaatgt gaaaatcctc ggtaaaatac 60
 tggcaaacca aatccagcag cacatcaaaa agcttatcca ccatgatcaa gtgggcttca 120
 tccctggat gcaaggctgg ttcaacataa gaaaatcaat aaatgtatc catcacataa 180
 acagaaccaa agacaaaaac cacatgatta tctcaataga tgtagaaaaag gccttgac 240
 aattcaacag cccttcatgc taaacactct taataaaacta gatattgatg gaatgtatct 300
 caaaaataa agagctatcc atgacaaacc cacagccaat atcataactga atgggcaaaag 360
 actggaagca ttcccttga aaactggcac aagacaagga tgccctctct caccgctcct 420
 attcaacata gtattgaaag ttctggccag ggcaatcaag a 461

<210> 275
 <211> 729
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(729)
 <223> n = A,T,C or G

<400> 275
 tttttttttt ttggccaaca ccaagtcttc cacgtgggag gttttattat gttttacaac 60
 catggaaaaca taggaagggtg gctgttacag caaacatttc agatagacga atcggccaag 120

ctccccaaac cccaccccca cagccttca cacacgtctc ccanagattg ttgtccttca	180
cttgcaaatt canggatgtt ggaagtngac atttnnagtn gcnggaaccc catcagtgaa	240
ncantaagca gaantacgt gactttgana nacanctgat gaagaacacn ctacnganaa	300
ccctttctnt cgtgttanga ttcnngtcc ntcaactaatg cggcccccctg cnngtccacc	360
atttgggaga actcccccn cgttggatcc ccccttgagt ntcccattct ngtccccan	420
accngncttg nngncantn cnncctcnca ccntgttcc ctgnngtnaa aatnnngttt	480
nccgcnccc naattcccac ccnaatcaca gcbaancng aaggccttcn naagtgtta	540
angcccnng gtttcctcnt ntantgcag cctaccctcc cnctnnnnt tnccngttgg	600
tgcgcctcg gnncgcctn gttcctctt nnggnnacaa cctngntcnn nngcnctcn	660
nnnctnttcc tnnnactagc tngcctntcc ncncgnggn ncanngcaca ttncncnnac	720
tntgtnncc	729

<210> 276
<211> 339
<212> DNA
<213> Homo sapien

<400> 276	
tgacctgaca tgttagtagat acttaataaaa tatttgtgga atgaatggat gaagtggagt	60
tacagagaaa aatagaaaaag tacaaaattgt tgtcagtgtt ttgaaggaaa attatgatct	120
ttcccaaagt tctgacttca ttctaaagaca gggtagtat ctccatacat aattttactt	180
gctttgaaa atcaaattgag ataatctatt tagattgata atttatttag actggctata	240
aactattaag tgctagcaaa tatacatttt aatctcattt tccaccttcc gtgatatacg	300
tatgttaggtg ttgactttaa tggatgtcag gtcaatccc	339

<210> 277
<211> 664
<212> DNA
<213> Homo sapien

<220>	
<221> misc_feature	
<222> (1)...(664)	
<223> n = A,T,C or G	
<400> 277	
tgacctgaca tccataacaa aatctttctc cattatattc ttctagggga atttcttgaa	60
aagcatccaa aggaaaacaaa tgatggtaag accgtgccaa gtggggagca gacaccaaag	120
taagaccaca gattttacat tcaacaggta gtcacagta cttggcccgca cactgtggc	180
agaaaatagcc tcctaattgtt agccctggct cagtattgcc atccaaatgc gccatgctga	240
aagagggtt tgcattcctgg tcaagatnaag aagcaatggt gtgctgagga aatcccatac	300
gaataagtga gcattcagaa ctttagctag caggaggagg actaagatga tgtgtgagca	360
actctttgtt atggctttca tctaaaataa catggtagt gccaccagtt tcacgagcaa	420
gtacagtgc aacgcgaact tctgcagaca atccaaataac agatactcta attttagctg	480
cctttagggt ctgattaaa tcataaaatat tagatggatc gcaagttgtt agntgctaa	540
aagatgatta gtacttctcg acttgtatgt ccaggcatgt tggatggat tctgccttag	600
ncctgctta gggaaattt taaagaagat ggctctccat gttcanggtc aatcacnaat	660
tgcc	664

<210> 278
<211> 452
<212> DNA
<213> Homo sapien

<220>

```

<221> misc_feature
<222> (1)...(452)
<223> n = A,T,C or G

<400> 278
tgacctgaca ttgaggaaga gcacacacct ctgaaattcc ttaggttcag aagggcattt      60
gacacagagt gggcctctga taattcatga aa[gcattct gaagtcattc agaatggagg      120
ctgcaatctg ctgtgtttt ggggtgcct cactgtgc tcgttatca cacaaaagct      180
gcaatccctc ttcttcact aacatttgc agtatttgc gggatttta ctgcagacat      240
gatacatagc ccatagtgcc cagagtgaa cctctgggtg agagaagttt ccaaggagcg      300
ggaaaaatgt ctgaaagat ctataaggta ccaatgctgt catttacaa cttgaacttg      360
gccaattctg tatgggtgca tgcagatctt ggagaagagt acgcctctgg aagtcacggg      420
atatccaaan ctgtctgtca gatgtcaggta ca                                         452

<210> 279
<211> 274
<212> DNA
<213> Homo sapien

<400> 279
ttttttttt ttcggcaagg caaatttact tctgcaaaag ggtgctgctt gcactttgg      60
ccactgcgag agcacaccaa acaaagttagg yaaggggtt ttatccctaa cgcggttatt      120
ccctggttct gtgtcgtgtc cccattggct ggagtcagac tgccacaatct acactgacc      180
aactgctac tttttaaaat tgaatatgaa taattagta ggaaggggga ggctgtttgt      240
tacggtacaa gacgtgtttt ggcatgtcag gtca                                         274

<210> 280
<211> 272
<212> DNA
<213> Homo sapien

<400> 280
tacctgacat ggagaaataa cttgttagtat tttgcgtgca atggaataact atatgagggt      60
gaaaatgaat gaactagcaa tgcgtgtatc aacatgaata aatccccaaa acataataat      120
gttgaatgga aaaggtgagt ttcaagaagga tatatatgcc ctctaaatcc atttatgtaa      180
acctttaaaaa aactacattha tttatggta taagtccatc cagaaaatat taaaaaacct      240
acatgggatt gataactact gatgtcaggta ca                                         272

<210> 281
<211> 431
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(431)
<223> n = A,T,C or G

<400> 281
ttttttttt ttggccaata gcatgattta aacattggaa aaagtcaaat gagcaatgcg      60
aatttttatg ttctcttggaa taatcaaaag agtaggcaac attgggtcct cattcttggaa      120
tagcattaat cagaaaatat tgcatagcct ctagccctt tagagtaggt gtgctctc      180
aaatatatca tagtcccaca gtttatttca tgtatattt ctgcctgaat cacatagaca      240
tttgaatttg caacgcctga tgtaaatata taaatttta ccaatcagaa acatagcaag      300
aaattcaggg acttggcata yatcaggta tgacagcana tccctgtara aacactgata      360

```

cacactcaca cacgtatgca acgtggagat gtcgcyyttw kkktwywcwm rmrycrwcn	420
aatcacttan n	431
<210> 282	
<211> 98	
<212> DNA	
<213> Homo sapien	
<400> 282	
attcgattcg atgcttgagc ccaggagttc aagactgcag tgagccactg cacttcaggc	60
tggacaacag agcgagtccc tgtgccaaaa aaaaaaaaa	98
<210> 283	
<211> 764	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(764)	
<223> n = A,T,C or G	
<400> 283	
ttttttttt ttcgcaagca cgtgcacttt attgaatgac actgttagaca ggtgtgtggg	60
tataaaactgc tgtatctagg ggcaggacca agggggcagg ggcaaacagcc ccagcgtgca	120
gggccascat tgcacagtgg astgcaaagg ttgcaggcta tggcgggcta ctavtaaccc	180
cgtttttcct gtatttatctg taacataata tggtagactg tcacagagcc gaatwccart	240
hacasgatga atccaawggt caygaggatg cccasaatca gggcccasat sttcaggcac	300
ttggcggtgg gggcatasgc ctgkccccg gtcacgtcsc caaccwtcty cctgtcccta	360
cmcttgawtc cnccncttnn nntncntna tntgcccggc cnccctcctng ngtcaaccng	420
natctgact anctccctcn ccccttntgg antctcncc ttcantaan nttatccctn	480
acnccccct cncccttccc ctncncccn tnatcccnng nccnctatca ntcntrccct	540
cnctntnctn cnнатcgttc cnccnnntaa ctacncttn naчнannct cactnatncc	600
ngnnanttct ttccctccct cccnacgcnn tgcgtgcgcc cgctctngct nnctncgna	660
cccnacttt atttaccttt ncaccctagc nctctacttn acccancenc tectacctcc	720
nggnccaccc nnccctnate nctnctctn tcnntctntt cccc	764
<210> 284	
<211> 157	
<212> DNA	
<213> Homo sapien	
<400> 284	
caagtgtagg cacagtgtatg aaaggctgga gcaaacacaa tctqtgggta attaacgttt	60
atttctcccc ttccaggaac gtcttgcatg gatgatcaaa gatcagctcc tggtcaacat	120
aaataagcta gtttaagata cgttcccccta cacttga	157
<210> 285	
<211> 150	
<212> DNA	
<213> Homo sapien	
<400> 285	
attcgattgt actcagacaa caatatgcta agtggaaagaa gtcagtcaca aaagaccaca	60
tactgtatga cttcatttac attaagtgtc cagaataggc aaatccgtag agacagaaaag	120

tagatgagca gctgcctagg tctgagtaca	150
<210> 286	
<211> 219	
<212> DNA	
<213> Homo sapien	
<400> 286	
attcgatttt ttttttttg gccatgatga aattcttact ccctcagatt ttttgtctgg	60
ataaaatgcaa gtctcaccac cagatgtgaa attacagtaa acttgaagg aatctcctga	120
gcaacccctgg ttaggatcaa tccaatattc accatctggg aagtcaggat ggctgagttg	180
caggtctta caagttcggg ctggatttgt ctgagtaca	219
<210> 287	
<211> 196	
<212> DNA	
<213> Homo sapien	
<400> 287	
attcgattct tgaggctacc aggagctagg agaagaggca tggAACAAAT tttccctcat	60
atccatactc agaaggaacc aaccctgctg acaccttaat ttTAGCTTCT ggctctaga	120
actgtgagag agtacatttc tcttggtta agccaagaga atctgtcttt tggtaCTTTA	180
tatcatagcc tcaaga	196
<210> 288	
<211> 199	
<212> DNA	
<213> Homo sapien	
<400> 288	
attcgatttc agtccAGTCC cagaACCCAC attgtcaatt actactctgt araagattca	60
tttGTTGAAA TTCATTGAGT AAAACATTTA TGATCCCTTA ATATATGCCA ATTACCATGC	120
tagtactga agattcaagt gaccgagatg ctAGCCCTTG GGTCAAGTG ATCCCTCTCC	180
cagagtgcac tggactgaa	199
<210> 289	
<211> 182	
<212> DNA	
<213> Homo sapien	
<400> 289	
attcgattct tgaggctaca AACCTGTACA GTATGTTACT CTACTGAATA CTGTAGGCAA	60
tagtaataca gaagcaagta TCTGTATATG TAAACATTAA AAAGGTACAG TGAACATTCA	120
GTATTATAAT CTTAGGGACC ACCATTATAT ATGTGGTCCA TCATTGGCCA AAAAAAAA	180
aa	182
<210> 290	
<211> 1646	
<212> DNA	
<213> Homo sapien	
<400> 290	
ggcacgagga gaaatgtatac tccatatttt atttgaaact tattccatat tttattggaa	60
tattgagtga ttgggttatac aaacACCCAC aaactttaat ttgttAAAT ttatatggct	120
ttgaaataga agtataagtt gctaccattt tttgataaca ttgaaagata gtattttacc	180

atctttaatc atcttgaaa atacaagtcc tgtgaacaac cactcttca cctagcagca	240
tgaggccaaa agtaaaggct ttaaattata acatatggg ttcttagtag tatgttttt	300
tcttgaact cagtggctct atctaaccctt actatcttct cactttct ctaagactaa	360
actctaggct cttaaaaatc tgcccacacc aatcttagaa gctctgaaaa gaatttgtct	420
ttaaatatct ttaaatagta acatgtattt tatggaccaa attgacattt tcgactattt	480
tttccaaaaa agtcagggtga atttcagcac actgagttgg qaatttctta tcccagaaga	540
ccaaccaatt tcataatttta ttaagattga ttccataactc cgffffcaag gagaatccct	600
gcagtcctt taaaggtaga acaaatactt tctattttt tttcaccatt gtgggattgg	660
actttaagag gtgactctaa aaaaacagag aacaatatg tctcagggtt attaagcacf	720
gaccatattt atcatattca cttaaaaaaaaaa tgatttctg tgacccctt ggcaacttct	780
ctttcaatg tagggaaaaa cttagtcacc ctgaaaaacc aaaaaataaa taaaacttgt	840
agatgtggc agaaggtttgggggtggaca ttgtatgtt ttaaattaaa ccctgtatca	900
ctgagaagct gtgttatggg tcagagaaaa tgaatgcctt gaagctgtt acatcttcaa	960
gagcagaagc aaaccacatg tctcagctat attattattt attttttatg cataaagtga	1020
atcatttctt ctgttataat ttccaaagggttttaccctt tattttatg ctttggaaaaa	1080
cagtgcattt acaatgggtt gatatttttca tttttttttt tttttatgt tctgtgggtt	1140
agataatctt aagcctgtttt tttttttttt tttttatgtt tttttttttt tttttttttt	1200
tttgggtttt totatttttt tttttttttt tttttttttt tttttttttt tttttttttt	1260
kgcataactac atgcagtttctt ttaaccaatg tctgtttggc taatgttattt aagttgttta	1320
atttatatgtt gtgcattttca actatgttca tttttttttt tttttttttt tttttttttt	1380
ctggtaattt tttttttttt tttttttttt aatatgttta aagagataac agtttgcataatgtt	1440
ttttatagca gaagtttattt atttttatgg cattccagcg gatattttgg tttttttttt	1500
gcatgcagtc aatattttgtt acagtttagt gacagtttcc agcaacgcct gatagcttct	1560
ttggccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1620
aaaaaaaaaaaa aaaaaaaaaaaaa aaaaaaaaaaaaa aaaaaaaaaaaaa	1646

<210> 291
 <211> 1851
 <212> DNA
 <213> Homo sapien

<400> 291	
tcatcaccat tgccagcagc ggcaccgtta gtcagggtttt ctgggaatcc cacatgagta	60
cttccgtt cttcattttt cttcaatagc cataaaatctt ctatctctgg ctggctgttt	120
tcacttcctt taagcctttg tgactcttcc tctgtatgtca gctttaagtc ttgttctgga	180
ttgctgtttt cagaagagat ttttacatc tttttttttt tttttttttt tttttttttt	240
caaattacat gatgtatgact agaaacagca tactctctgg ccgtctttcc agatcttgag	300
aagataacatc aacattttgc tcaagtagag ggctgactat acttgcgtat ccacaacata	360
cagcaagtat gagagcaggat cttccatatc tatccagcgc atttttttttctt gttttttttt	420
tgattttttttt tttcaccact tgctgtttt gctcatgtat accaagttagc agtgggtgtga	480
ggccatgctt gttttttgtt tgcataatc caccgtataa gagcagtgtt ttggccattttttttt	540
attttatctt attttagaca gcatagtgtt gatgtttttt tccataactca tctggaaatat	600
ttggatcagt gccatgttttcc agcaacattt acgcacattt atcttcctgg cattgtacgg	660
cctttgtcag agctgtcctt tttttttttt caaggacattt aagtttgcattt cttttttttt	720
gcacgagttt tactacttctt gaattttttt tggcagagggc cagatgttgc gcaatgttctt	780
tttgcgttgc cttttttttt acatccgtttt ccctgagcat gacgttgc gttttttttt	840
ggactttacc ccaccaggca gctctgttgg gcttgcggat atcttcttccca tggacgttgg	900
acctgggatc catgaaggcg ctgtcatgtt agtctccca agcgaccacg ttgcgttgc	960
cgctccccctt cagcaggggc agcagtggca gcaccacttgc cacctttgc tcccaagcgt	1020
cttcacagag gagtcgtttt ggttccaga agtgcggat tttttttttt tttttttttt	1080
gtccatccag ggaggaagaa atgcaggaaa tgaaagatgc atgcacgtat gtataactt	1140
cagccatcaa acttctggac agcagggtcac ttccagcaag gtggagaaag ctgtccaccc	1200
acagaggatg agatccagaaa accacaatat ccatttccaa acaaacactt ttcagccaga	1260
cacaggtact gaaatcatgtt catctgcggc aacatgttgg aaccttccca atcacacatc	1320
aagagatgaa gacactgcac tttttttttt tttttttttt tttttttttt tttttttttt	1380

aatataattt tcctctggag ccatatggat gaactatgaa ggaagaactc cccgaagaag	1440
ccagtgcag agaagccaca ctgaagctct gtcctcagcc atcagcgcca cggacaggar	1500
tgtgtttctt ccccagtgtat gcagcctcaa gttatcccgaa agctgccgca gcacacggtg	1560
gctcctgaga aacaccccgat ctcttccggta ctaacacagg caagtcaata aatgtgataa	1620
tcacataaac agaattaaaa gcaaagtcaac ataagcatct caacagacac agaaaaggca	1680
tttgacaaaa tccagcatcc ttgtatTTT tggtgcagg ttcagaggaa atgcttctaa	1740
ctttccccca ttttagtatta tggtggctgt gggcttgcata taggtggttt ttattactt	1800
aaggatgtc ctttctatgc ctgtttgtc gagggtttta attctcggtc c	1851

<210> 292
<211> 1851
<212> DNA
<213> Homo sapien

<400> 292	
tcatcaccat tgccagcagc ggcacccgtta gtcagggtttt ctggaaatcc cacatgagta	60
cttccgtgtt cttcatttctt cttaaatagc cataaaatctt ctagctctgg ctggctgttt	120
tcacttcctt taagcctttt tgactttcc tctgatgtca gcttaagtgc ttgttctgga	180
ttgctgtttt cagaagagat tttaaacatc tggtttctt tgtagtcaga aagtaactgg	240
caaattacat gatgtgact agaaacagca tactctctgg ccgtcttcc agatcttgag	300
aagatacatc aacatTTTgc tcaagtagag ggctgactat acttgctgtat ccacaacata	360
cagcaagtat gagagcagttt cttccatatac tatccagcgc attaaatTC getttttctt	420
tgattaaaaa tttcaccact tgctgtttt gctcatgtat accaagttagc agtgggtgtga	480
ggccatgctt gtttttgcgt tcgatatacg caccgtataa gaggcgtgt ttggccattta	540
atttatcttc attttagaca gcatatgtat gagggttatt tccataactca tctggaaatat	600
ttggatcagt gccatgttcc agcaacatta acgcacattc attttcctgg cattgtacgg	660
cctttgtcag agctgtcctc ttttgtgtt caaggacatt aagttgacat cgtctgtcca	720
gcacgagttt tactacttctt gaattcccat tggcagaggc cagatgtaga gcagtcctct	780
tttgcgttgc cctttgttc acatccgtgt ccctgagcat gacatgaga tcccttctgg	840
ggactttacc ccaccaggca gctctgttgc gcttgcagg attttccttca tggacgttgt	900
acctggatc catgaaggcg ctgtcatacg ttttgcgttca agcggaccacg ttgtcttgc	960
cgctcccctg cagcaggggca agcagtggca gcaccacttgc caccctttgc tcccaagcgt	1020
tttcacagag gagtcgttgtt ggtctccaga agtgcacccacg ttgtcttgc cgctccccc	1080
gtccatccag ggaggaagaa atgcaggaaa tggaaagatgc atgcacgtat gtatacttct	1140
cagccatcaa acttctggac agcagggtcac ttccagcaag gtggagaaag ctgtccaccc	1200
acagaggatg agatccagaa accacaatat ccattcacaa acaaacaactt ttcaagccaga	1260
cacaggtact gaaatcatgtt catctgcggc aacatggtgg aacctaccca atcacacatc	1320
aagagatgaa gacactgcag tataatgcata caacgtatata ctcttcattcc ataacaaaat	1380
aatataattt tcctctggag ccataatggat gaactatgaa ggaagaactc cccgaagaag	1440
ccagtgcag agaagccaca ctgaagctct gtcctcagcc atcagcgcca cggacaggat	1500
tgtgtttctt ccccagtgtat gcagcctcaa gttatcccgaa agctgccgca gcacacggtg	1560
gctcctgaga aacaccccgat ctcttccggta ctaacacagg caagtcaata aatgtgataa	1620
tcacataaac agaattaaaa gcaaagtcaac ataagcatct caacagacac agaaaaggca	1680
tttgacaaaa tccagcatcc ttgtatTTT tggtgcagg ttcagaggaa atgcttctaa	1740
ctttccccca ttttagtatta tggtggctgt gggcttgcata taggtggttt ttattactt	1800
aaggatgtc ctttctatgc ctgtttgtc gagggtttta attctcggtc c	1851

<210> 293
<211> 668
<212> DNA
<213> Homo sapien

<400> 293	
cttgagcttc caaataygga agactggccc ttacacacgtt caatgttaaa atgaatgcatt	60
ttcagtttt tgaagataaaa attrgtatgtat ctataccctt tttttgatt cgatatcgac	120

accrtataag agcagtgcct tggccattaa ttatcttc attrtagaca gcrttagtgya	180
gagtggatt tcacatactca tctggatat ttggatcagt gccatgtcc agcaacatta	240
acgcacattc atcttcctgg cattgtacgg cctgtcagta ttagacccaa aaacaaatta	300
catacttag gaattcaaaa taacattcca cagcttcac caactagtt tattnaaagg	360
agaaaaactca ttttatgcc atgtattgaa atcaaaccac cctcatgctg atatagttgg	420
ctactgcata cctttatcaag agctgcctc ttttgttgt caaggacatt aagttgacat	480
cgtctgtcca gcaggagtt tactacttct gaattcccat tggcagaggg cagatgtaga	540
gcagtcctat gagagtgaga agactttta ggaaattgtt gtgcacttagc tacagccata	600
gcaatgattc atgttaactgc aaacactgaa tagcctgcta ttactctgcc ttcaaaaaaaaaa	660
aaaaaaaaaa	668

<210> 294
 <211> 1512
 <212> DNA
 <213> Homo sapien

<400> 294	
gggtcgccccca gggggsgcgt gggctttcct cgggtgggtg tgggtttcc ctgggtgggg	60
tgggctgggc trgaatcccc tgctgggtt ggcagggttt ggctgggatt gacttttytc	120
ttcaaacaga ttggaaaccc ggagttacct gctagtttgtt gaaactgggtt ggttagacgcg	180
atctgttggc tactactggc ttctccttggc tggtaaaagc agatgggttgt tgagggttgat	240
tccatgccgg ctgttttttc tggtaagaag ccatttggtc tcaggagcaa gatgggcaag	300
tggtgctgcc gttgtttccc ctgctgcagg gagagcggca agagcaacgt gggcacttct	360
ggagaccacg acgactctgc tatgaagaca ctcaggagca agatgggcaaa gtggtgccgc	420
cactgcttcc cctgctgcag ggggagtggc aagagcaacg tggcgttcc tggagaccac	480
gacgaytctg ctatgaagac actcaggaac aagatggca agtgggtctg ccactgcttc	540
ccctgctgca gggggagcrg caagagcaag gtggcgttcc gggagacta cgatgacagt	600
gccttcatgg agcccaggta ccacgtccgt ggagaagatc tggacaagct ccacagagct	660
gcctgggtgg gtaaaagtccc cagaaaggat ctatcgta tggcgttcc cactgacgtg	720
aacaagaagg acaagcaaaa gaggactgt ctacatctgg cctctgccaa tggaaattca	780
gaagtagtaa aactcstgct ggacagacga tggtaacttta atgtccttga caacaaaaag	840
aggacagctc tggaaaaggc cgtacaatgc caggaagatg aatgtgcgtt aatgttgc	900
gaacatggca ctgatccaaa tattccagat gatgtgaa ataccactt ractaygt	960
rtctayaatg aagataaatt aatggccaaa gcaactgtct tataygggtc tgatatcgaa	1020
tcaaaaaaca aggtatagat ctactaattt tatcttccaa atactgaaat gcattcattt	1080
taacattgac gtgtgttaagg ggcagtcttc cgtatttggc agctcaagca taacttgaat	1140
gaaaatattt tggaaatgacc taattatctm agactttatt taaaatattt ttttttcaaa	1200
agaagcatta gagggtacag ttttttttt taaaatgcac ttctggtaaa tactttttt	1260
gaaaacactg aatttgtaaa aggtataact tactattttt caattttcc ctccctaggat	1320
ttttttcccc taatgaatgt aagatggca aatttgcctt gaaatagggtt ttacatgaaa	1380
actccaaagaa aagttaaaca tggttcagtg aatagagatc ctgctccctt ggcaagttcc	1440
taaaaaacag taatagatac gaggtgatgc ggcgtcagt ggcaagggtt aagatatttc	1500
tgtatctcgcc	1512

<210> 295
 <211> 1853
 <212> DNA
 <213> Homo sapien

<400> 295	
gggtcgccccca gggggsgcgt gggctttcct cgggtgggtg tgggtttcc ctgggtgggg	60
tgggctgggc trgaatcccc tgctgggtt ggcagggttt ggctgggatt gacttttytc	120
ttcaaacaga ttggaaaccc ggagttacct gctagtttgtt gaaactgggtt ggttagacgcg	180
atctgttggc tactactggc ttctccttggc tggtaaaagc agatgggttgt tgagggttgat	240
tccatgccgg ctgttttttc tggtaagaag ccatttggtc tcaggagcaa gatgggcaag	300

tggtgctgcc	gttgttccc	ctgctgcagg	gagagcggca	agagcaacgt	gggcacttct	360
ggagaccacg	acgactctgc	tatgaagaca	ctcaggagca	agatgggcaa	gtggtgcgc	420
cactgttcc	cctgctgcag	ggggagtggc	aagagcaacg	tggcgcttc	tggagaccac	480
gacgayctg	ctatgaagac	actcaggAAC	aagatgggca	agtggtgctg	ccactgttcc	
540ccctgctca	gggggagcrg	caagagcaag	gtgggcgtt	ggggagacta	cgatgacagy	
600						
gccttcatgg	akcccaggt	ccacgtccrt	ggagaagatc	tggacaagct	ccacagagct	660
gcctgggtgg	gtaaagtccc	cagaaaggat	ctcatcgta	tgctcaggga	cackgaygtg	720
aacaagargg	acaagcaaaa	gaggactgct	ctacatctgg	cctctgcca	tgggaattca	780
gaagtagtaa	aactcstgct	ggacagacga	tgtcaactta	atgtcctga	caacaaaaag	840
aggacagctc	tgayaaaggc	cgtacaatgc	caggaagatg	aatgtgcgtt	aatgttgcgt	900
gaacatggca	ctgatccaaa	tattccagat	gagttggaa	ataccactct	rcactaygct	960
rtctayaatg	aagataaaatt	aatggccaaa	gcactgtct	tatayggtc	tgatatcgaa	1020
tcaaaaaaca	agcatggcct	cacaccactg	ytacttgtr	tacatgagca	aaaacagcaa	1080
gtsgtgaard	tttaatyaa	gaaaaaaagcg	aatttaaaat	gcrctggata	gatatggaaag	1140
ractgctctc	atacttgctg	tatgttgcgg	atcagcaagt	atagtcagcc	ytctacttga	1200
gcaaaatrrt	gatgtatctt	ctcaagatct	ggaaagacgg	ccagagagta	tgctgttct	1260
agtcatcata	atgttaatttgc	ccagttactt	tctgactaca	aagaaaaaca	gatgttaaaa	1320
atctcttctg	aaaacagcaa	tccagaacaa	gacttaaagc	tgacatcaga	ggaagagtca	1380
caaaggctta	aaggaagtga	aaacagccag	ccagaggcat	ggaaactttt	aaatttaaac	1440
ttttgttta	atgtttttt	ttttgcctt	aataatatta	gatagtccta	aatgaatwa	1500
cctatgagac	taggcttgc	gaatcaatag	attctttttt	taagaatctt	ttggcttagga	1560
gcgggtgtctc	acgcctgtaa	ttccagcacc	ttgagaggt	gaggtgggca	gatcacgaga	1620
tcaggagatc	gagaccatcc	tggctaacac	ggtgaaaccc	cactctact	aaaaatacaa	1680
aaacttagct	gggtgtgggt	gcgggtgcct	gtagtccctg	ctactcagga	rgctgaggca	1740
ggagaatggc	atgaaccogg	gaggtggagg	ttgcagtgag	ccgagatccg	ccactacact	1800
ccagcctggg	tgacagagca	agactctgtc	tcaaaaaaaaaa	aaaaaaaaaa	aaa	1853

<210> 296
<211> 2184
<212> DNA
<213> Homo sapien

<400> 296						
ggcacgagaa	ttaaaacct	cagcaaaaca	ggcatagaag	ggacataacct	taaagtataa	60
aaaaccacct	atgacaagcc	cacagccaa	ataataactaa	atggggaaaa	gttagaagca	120
tttcctctga	gaactgcaac	aataaaataca	aggatgttgg	attttgtcaa	atgcctttc	180
tgtgtctgtt	gagatgttta	tgtacttgc	cttttaattc	tgttatgtg	attatcacat	240
ttattgactt	gcctgttta	gaccggaaga	gctgggtgt	ttctcaggag	ccaccgtgt	300
ctgcggcagc	ttcgggataa	ctttaggctg	catcaactggg	gaagaaaacac	aytcctgtcc	360
gtggcgctga	tggctgagga	cagagttca	gtgtggcttgc	tctgcactg	gcttctcgg	420
ggagttcttc	tttcataatgt	catccatatg	gctccagagg	aaaattatat	tatTTTGTtta	480
tggatgaaga	gtattacgtt	gtcagat	actgcagtgt	cttcatactct	tgatgtgtga	540
ttggtaggt	tccaccatgt	tgccgcagat	gacatgattt	cagtacctgt	gtctggctga	600
aaagttttgc	tttgcataatg	gatattgtgg	tttctggatc	tcatcctctg	tgggtggaca	660
gtttctcca	ccttgcgttgc	agtgcactgc	tgtccagaag	tttgatggct	gaggagtata	720
ccatcgatc	tgcataatc	atttcctgc	tttcttcctc	cctggatgg	cagggggagc	780
ggcaagagca	acgtggcagc	ttctggagac	cacaacact	cctctgtgaa	gacgcttggg	840
agcaagaggt	gcaagtggtg	ctggccactgc	ttccccctgt	gcagggggagc	ggcaagagca	900
acgtggcgc	ttggggagac	tacatgtaca	gccccttcat	ggatcccagg	taccacgtcc	960
atggagaaga	tctggacaag	ctccacagag	ctgcctgttgc	ggtaaaagtc	cccagaaaagg	1020
atctcatgt	catgtctagg	gacacggatg	tgaacaagag	ggacaagcaa	aaggagactg	1080
ctctacatct	ggcctctgc	aatgggatt	cagaagtagt	aaaactcg	ctggacagac	1140
gatgtcaact	taatgtcctt	gacaacaaaa	agaggacagc	tctgacaaag	gccgtacaat	1200
gccaggaaga	tgaatgtgc	ttaatgttgc	tggaacatgg	cactgatcca	aatattccag	1260

atgaggatgg aaataccact ctacactatg ctgtctacaa tgaagataaa ttaatggcca	1320
aagcactgct ctatacggt gctgatatcg aatcaaaaaa caagcatggc ctcacaccac	1380
tgctacttgg tatacatgag caaaaacagc aagtggtaa atttttaatc aagaaaaaag	1440
cgaatttaaa tgcgctggat agatatggaa gaactgctct cataacttgcgt gtatgtgtg	1500
gatcagcaag tatagtcagc cctctacttg agcaaaatgt tgatgtatct tctcaagatc	1560
tggaaagacg gccagagagt atgcttttc tagtcatcat catgtaattt gccagttact	1620
ttctgactac aaagaaaaac agatgtaaa aatctcttct gaaaacagca atccagaaca	1680
agacttaaag ctgacatca aggaagagtc acaaaggctt aaaggaagtg aaaacagcca	1740
gccagaggca tgaaaacttt taaatttaaa cttttgggtt aatgtttttt tttttgcct	1800
taataatatt agatagccc aaatgaaatw acctatgaga cttaggcctt agaatcaata	1860
gattctttt ttaagaatct ttggcttagg agcgggtctt cacgcctgtt attccagcac	1920
cttgagaggc tgagggtggc agatcacgag atcaggagat cgagaccatc ctggctaaca	1980
cggtgaaacc ccacatcttac taaaataca aaaacttagc tgggtgtggt ggcgggtgcc	2040
tgtagcccc gctactcagg argctgaggc aggagaatgg catgaacccg ggaggtggag	2100
gttgcagtga gccgagatcc gccactacac tccagcctgg gtgacagagc aagactctgt	2160
ctcaaaaaaaaaaaaaaaa aaaa	2184

<210> 297
<211> 1855
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(1855)
<223> n = A,T,C or G

<400> 297

tgcacgcac ggccagtgtc tgtgccacgt acactgacgc cccctgagat gtgcacgccc	60
caacgcacg ttgcacgcgc ggcagcggct tggctggctt gtaacggctt gcacgcgcac	120
ggcccccccg cataaccgtc agactggctt gtaacggctt gcacgcgcac gccgcacgc	180
cgtAACGGCT tggctggctt gtaacggctt gcacgtgcac gctgcacgcg cgttaacgc	240
ttggctggca tggccgtc tggcttggtt ttgcattttt tgckggctk ggcgttgky	300
tcttgattt aegcttcctc cttggatkgc cgtttccccc ttggatkgac gtttcyty	360
tgcgttcct ttgctggact tgacctttt tctgctgggt ttggcattcc tttgggttgg	420
gctgggttt ttctccgggg gggktkgccc ttccctgggtt gggcgtggkk cgcggccagg	480
gggcgtgggc ttccccggg tgggtgtggg ttttccctggg gtgggggtggg ctgtgttgg	540
atccccctgc tgggggttggc agggatttac ttttttcttca aaacagattt gaaacccgg	600
gtaacntgct agtttgttggaa actgggttggt agacgcgtc tgctggactt actgttttctc	660
ctggctgtta aaagcagatg gtggctgagg ttgattcaat gccggctgtc tcttctgtga	720
agaagccatt tggcttcagg agcaagatgg gcaagtggc cgccactgtc tccccctgtc	780
cagggggagc ggcaagagca acgtggcact ttctggagac cacaacgact cctctgtgaa	840
gacgcttggg agcaagaggt gcaagtggc ctgcccactc ttccctgtc tgcaggggag	900
cgccaagagc aacgtggkcg cttggggaga ctacgtgtc acgcgttca tggakcccag	960
gtaccacgtc crtggagaag atctggacaa gctccacaga gctgcctgg ggggtaaagt	1020
ccccagaaag gatctcatcg tcacgttcag ggacactgatg gtgaacaaga rggacaagca	1080
aaagaggact gctctacatc tggcccttcac caatggaaat tcagaagtag taaaactctgt	1140
gctggacaga cgatgtcaac ttaatgttct tgacaacaaa aagaggacag ctctgacaaa	1200
ggccgtacaa tgccaggaag atgaatgtgc gtttatgtt ctggaaatcg gcaactgttcc	1260
aaatattcca gatgatgtt gaaataccac tctacactat gctgtctaca atgaagataa	1320
attaatggcc aaagcactgc tcttatacgg tgctgatatc gaatcaaaaa acaaggataa	1380
gatctactaa ttttatcttc aaaatactga aatgcattca ttttaacatt gacgtgtgt	1440
aggccagtc ttccgttattt ggaagctcaa gcataactt aatgaaaata ttttggaaatg	1500
acctaattat ctaagacttt attttaataa ttgttatttt caaagaagca tttagaggta	1560
cagttttttt ttttaatggt cactctgtt aaatactttt gttgaaaaca ctgaatttgt	1620

aaaaggtaat acttactatt tttcaatttt tccctcctag gatTTTTTC ccctaatgaa	1680
tgtaagatgg caaaatttgc cctgaaatag gtttacatg aaaactccaa gaaaaggtaa	1740
acatgttca gtgaatagag atcctgtcc ttggcaagt tcctaaaaaa cagtaataga	1800
tacgagggtga tgccctgtc agtggcaagg ttaagatat ttctgatctc gtgcc	1855

<210> 298
<211> 1059
<212> DNA
<213> Homo sapien

<400> 298	
gcaacgtggg cacttctgga gaccacaacg actcctctgt gaagacgctt gggagcaaga	60
ggtcaagtg gtgctgccc ctgctcccc tgctgcagg gacggcaag agcaacgtgg	120
gcgctgrgg agactmcgt gacagygcct tcatggagcc caggtaccac gtccgtggag	180
aagatctgga caagctccac agagctgccc tggtgggta aagtccccag aaaggatctc	240
atcgtcatgc tcagggacac tgaygtgaac aagarggaca agcaaaaagag gactgctcta	300
catctggcct ctgccaatgg gaattcagaa gtagtaaaaac tcstgctgga cagacgatgt	360
caacttaatg tccttgacaa caaaaagagg acagctctga yaaaggccgt acaatgccag	420
gaagatgaat gtgcgttaat gttgctggaa catggactg atccaaatat tccagatgag	480
tatggaaata ccactctrca ctaygctrcc tayaatgaag ataaattaat ggccaaagca	540
ctgctcttat ayggtgctga tatgaatca aaaaacaagg tatagatcta ctaattttat	600
cttcaaaaata ctgaaatgca ttcattttaa cattgacgtg tgaaggccg agtctccgt	660
atttggaagc tcaaggcataa cttgaatgaa aatattttga aatgacctaa ttatctaaga	720
ctttatTTTA aatatttgtt ttttcaaaga agcatttagag ggtacagttt tttttttta	780
aatgcacttc tggtaaatac tttgttgaa aacactgaat ttgtaaaagg taataacttac	840
tatTTTCAA ttttccctc cttagatttt tttccctaa tgaatgtaaag atggcaaaat	900
ttgcctgaa ataggTTTA catggaaaact ccaagaaaag ttaaacatgt ttcaagtgaat	960
agagatcctg ctcccttggc aagtccctaa aaaacagtaa tagatacggag gtgatgcgcc	1020
tgtcaagtggc aaggTTTAAG atatttctga ttcgtgcc	1059

<210> 299
<211> 329
<212> PRT
<213> Homo sapien

<400> 299			
Met Asp Ile Val Val Ser Gly Ser His Pro Leu Trp Val Asp Ser Phe			
1	5	10	15
Leu His Leu Ala Gly Ser Asp Leu Leu Ser Arg Ser Leu Met Ala Glu			
20	25	30	
Glu Tyr Thr Ile Val His Ala Ser Phe Ile Ser Cys Ile Ser Ser Ser			
35	40	45	
Leu Asp Gly Gln Gly Glu Arg Gln Glu Gln Arg Gly His Phe Trp Arg			
50	55	60	
Pro Gln Arg Leu Leu Cys Glu Asp Ala Trp Glu Gln Glu Val Gln Val			
65	70	75	80
Val Leu Pro Leu Leu Pro Leu Leu Gln Gly Ser Gly Lys Ser Asn Val			
85	90	95	
Val Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr			
100	105	110	
His Val His Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp			
115	120	125	
Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp			
130	135	140	
Val Asn Lys Arg Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser			

145	150	155	160
Ala Asn Gly Asn Ser Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys			
165	170	175	
Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala			
180	185	190	
Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly			
195	200	205	
Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr			
210	215	220	
Ala Val Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Tyr			
225	230	235	240
Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu			
245	250	255	
Leu Gly Ile His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys			
260	265	270	
Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu			
275	280	285	
Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu			
290	295	300	
Glu Gln Asn Val Asp Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu			
305	310	315	320
Ser Met Leu Phe Leu Val Ile Ile Met			
	325		

<210> 300
<211> 148
<212> PRT
<213> Homo sapien

<220>
<221> VARIANT
<222> (1)...(148)
<223> Xaa = Any Amino Acid

<400> 300			
Met Thr Xaa Pro Ser Trp Ser Pro Gly Thr Thr Ser Val Glu Lys Ile			
1	5	10	15
Trp Thr Ser Ser Thr Glu Leu Pro Trp Trp Gly Lys Val Pro Arg Lys			
20	25	30	
Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Xaa Asp Lys			
35	40	45	
Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu			
50	55	60	
Val Val Lys Leu Xaa Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp			
65	70	75	80
Asn Lys Lys Arg Thr Ala Leu Xaa Lys Ala Val Gln Cys Gln Glu Asp			
85	90	95	
Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro			
100	105	110	
Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Xaa Tyr Asn Glu Asp			
115	120	125	
Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser			
130	135	140	
Lys Asn Lys Val			
145			

<210> 301
<211> 1155
<212> DNA
<213> Homo sapien

<400> 301

atgggtggttg	agggttatttc	catgccggct	gcctttctg	tgaagaagcc	atgggtctc	60
aggagcaaga	tggcaagt	gtgtccgt	tgctccct	gctcaggaa	gagcggcaag	120
agcaacgtgg	gcacttctgg	agaccacgac	gactctgta	tgaagacact	caggagcaag	180
atggcaagt	ggtcccca	ctgttcccc	tgctcagg	ggagtggcaa	gagcaacgtg	240
ggcgcttctg	gagaccacga	cgactctgct	atgaagacac	tcaagacaa	gatgggcaag	300
tggtgcgtcc	actgttccc	ctgtcagg	gggagcggca	agagcaaggt	gggcgttgg	360
ggagactacg	atgacagtgc	tttcatggag	cccaggta	acgtccgtgg	agaagatctg	420
gacaagctcc	acagagctgc	ctgggggt	aaagtcccc	gaaaggatct	catcgcatg	480
ctcagggaca	ctgacgtgaa	caagaaggac	aagaaaaa	ggactgctct	acatctggcc	540
tctgccaatg	ggaattcaga	agtagtaaaa	ctctgtctgg	acagacgtg	tcaacttaat	600
gtccttgaca	acaaaaaagag	gacagctctg	ataaaggccg	tacaatgcca	ggaagatgaa	660
tgtcgtaa	tgttgcgtga	acatggact	gatccaaata	ttccagatga	gtatggaaat	720
accactctgc	actacgctat	ctataatgaa	gataaattaa	tggccaaagc	actgcttta	780
tatggtgcgt	atatcgaatc	aaaaaacaag	catggcctca	caccactgtt	acttggtgta	840
catgagcaaa	aacagcaagt	cgtgaaattt	ttaatcaaga	aaaaagcgaa	ttttaatgca	900
ctggatagat	atggaaggac	tgctctcata	cttgcgttat	gttgcggatc	agcaagtata	960
gtcagccttc	tacttgagca	aaatattgt	gtatcttctc	aagatctatc	tggacagacg	1020
gccagagagt	atgctgttcc	tagtcatcat	catgttaattt	gccagttact	ttctgactac	1080
aaagaaaaaac	agatgctaaa	aatctttct	gaaaacagca	atccagaaca	agactaaag	1140
ctgacatcag	aggaagagtc	acaaaggttc	aaaggcagt	aaaatagcca	gccagagaaa	1200
atgtctcaag	aaccagaaat	aaataaggat	ggtgatagag	aggttgaaga	agaaatgaaag	1260

<210> 302
<211> 2000
<212> DNA
<213> Homo sapien

<400> 302

atgggtggttg	agggttatttc	catgccggct	gcctttctg	tgaagaagcc	atgggtctc	60
aggagcaaga	tggcaagt	gtgtccgt	tgctccct	gctcaggaa	gagcggcaag	120
agcaacgtgg	gcacttctgg	agaccacgac	gactctgta	tgaagacact	caggagcaag	180
atggcaagt	ggtcccca	ctgttcccc	tgctcagg	ggagtggcaa	gagcaacgtg	240
ggcgcttctg	gagaccacga	cgactctgct	atgaagacac	tcaagacaa	gatgggcaag	300
tggtgcgtcc	actgttccc	ctgtcagg	gggagcggca	agagcaaggt	gggcgttgg	360
ggagactacg	atgacagtgc	tttcatggag	cccaggta	acgtccgtgg	agaagatctg	420
gacaagctcc	acagagctgc	ctgggggt	aaagtcccc	gaaaggatct	catcgcatg	480
ctcagggaca	ctgacgtgaa	caagaaggac	aagaaaaa	ggactgctct	acatctggcc	540
tctgccaatg	ggaattcaga	agtagtaaaa	ctctgtctgg	acagacgtg	tcaacttaat	600
gtccttgaca	acaaaaaagag	gacagctctg	ataaaggccg	tacaatgcca	ggaagatgaa	660
tgtcgtaa	tgttgcgtga	acatggact	gatccaaata	ttccagatga	gtatggaaat	720
accactctgc	actacgctat	ctataatgaa	gataaattaa	tggccaaagc	actgcttta	780
tatggtgcgt	atatcgaatc	aaaaaacaag	catggcctca	caccactgtt	acttggtgta	840
catgagcaaa	aacagcaagt	cgtgaaattt	ttaatcaaga	aaaaagcgaa	ttttaatgca	900
ctggatagat	atggaaggac	tgctctcata	cttgcgttat	gttgcggatc	agcaagtata	960
gtcagccttc	tacttgagca	aaatattgt	gtatcttctc	aagatctatc	tggacagacg	1020
gccagagagt	atgctgttcc	tagtcatcat	catgttaattt	gccagttact	ttctgactac	1080
aaagaaaaaac	agatgctaaa	aatctttct	gaaaacagca	atccagaaca	agactaaag	1140
ctgacatcag	aggaagagtc	acaaaggttc	aaaggcagt	aaaatagcca	gccagagaaa	1200
atgtctcaag	aaccagaaat	aaataaggat	ggtgatagag	aggttgaaga	agaaatgaaag	1260

aagcatgaaa gtaataatgt gggattacta gaaaacotga ctaatggtgt cactgctggc	1320
aatggtgata atggattaaat tcctcaaagg aagagcagaa cacctgaaaa tcagcaattt	1380
cctgacaacg aaagtgaaga gtatcacaga atttgcgaat tagttctga ctacaaagaa	1440
aaacagatgc caaaatactc ttctgaaaac agcaacccag aacaagactt aaagctqaca	1500
tcagaggaag agtcacaaag gcttgagggc agtggaaatg gccagccaga gctagaaaat	1560
tttatggcta tcgaagaaat gaagaagcac ggaagtactc atgtcggtt cccagaaaac	1620
ctgactaatg gtgccactgc tggcaatggt gatgatggat taattcctcc aaggaagagc	1680
agaacacctg aaagccagca atttcctgac actgagaatg aagagtatca cagtgacgaa	1740
caaaaatgata ctcagaagca attttgtgaa gaacagaaca ctggaatatt acacgatgag	1800
attctgattc atgaagaaaaa gcagatagaa gtgggtgaaa aaatgaattc tgagcttct	1860
cttagtgta agaaagaaaaa agacatctg catgaaaata gtacgttgoy ggaagaaaatt	1920
gccatgctaa gactggagct agacacaatg aaacatcaga gccagctaaa aaaaaaaaaaa	1980
aaaaaaaaaaa aaaaaaaaaaa	2000

<210> 303
<211> 2040
<212> DNA
<213> Homo sapien

<400> 303	
atgggtggttg aggttgattc catgccggct gcctttctg tgaagaagcc atttggtctc	60
aggagcaaga tgggcagaatg gtgtgcggcgt tgcttccccct gctgcagggg gagcggcaag	120
agcaacgtgg gcacttctgg agaccacgac gactctgtt tgaagacact caggagcaag	180
atgggcaagt ggtggcccca ctgtttccccct tgctgcaggg ggagtggcaa gagcaacgtg	240
ggcgcttctg gagaccacga cgactctgtt atgaagacac tcaggaacaa gatggcaag	300
tgggtgtgcc actgcttccc ctgtgcagg gggagcggca agagcaaggt gggcgcttgg	360
ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg	420
gacaagctcc acagagctgc ctgggggtt aaagtccccca gaaaggatct catcgcatg	480
ctcagggaca ctgacgtgaa caagaaggac aagaaaaaaa ggactgtctt acatctggcc	540
tctgccaatg ggaattcaga agtagaaaaa ctctgtctgg acagacgtat tcaacttaat	600
gtccttgaca acaaaaagag gacagctctg ataaaggccg tacaatgcca ggaagatgaa	660
tgtgcgttaa tgggtgttga acatggact gatccaaata ttccagatga gtatggaaat	720
accactctgc actacgctat ctataatgaa gataaattaa tggccaaagc actgcttta	780
tatggtgctg atatcgaaatc aaaaaacaag catggctca caccactgtt acttgggtgt	840
catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca	900
ctggatagat atggaaggac tgctctcata cttgtcttat gttgtggatc agcaagtata	960
gtcagccttc tacttgagca aaatattgtat gtatcttctc aagatctatc tggacagacg	1020
gccagagagt atgctgtttc tagtcatcat catgtatattt gccagttact ttctgactac	1080
aaagaaaaac agatgctaaa aatctttctt gaaaacagca atccagaaca agacttaaag	1140
ctgacatcag aggaagagtc acaaagggtt aaaggcagtg aaaatagccca gccagagaaa	1200
atgtctcaag aaccagaat aaataaggat ggtgatagag aggttgaaga agaaatgaag	1260
aagcatgaaa gtaataatgt gggattacta gaaaacotga ctaatggtgt cactgctggc	1320
aatggtgata atggattaaat tcctcaaagg aagagcagaa cacctgaaaa tcagcaattt	1380
cctgacaacg aaagtgaaga gtatcacaga atttgcgaat tagttctga ctacaaagaa	1440
aaacagatgc caaaatactc ttctgaaaac agcaacccag aacaagactt aaagctgaca	1500
tcagaggaag agtcacaaag gcttgagggc agtggaaatg gccagccaga gaaaagatct	1560
caagaaccag aaataaataa ggatgggtat agagagctag aaaatttat ggctatcgaa	1620
gaaatgaaga agcacggaa tactcatgtc ggatcccag aaaacctgac taatggtgc	1680
actgctggca atggtgatgt tggattatt cttccaaagg agagcagaac acctgaaagc	1740
cagcaatttc ctgacactga gaatgaagag tatcacagt acgaacaaa tgataactcag	1800
aagcaatttt gtgaagaaca gaacactgga atattacacg atgagattct gattcatgaa	1860
gaaaagcaga tagaagtgt tgaaaaatg aattctgagc tttcttttag ttgtaaagaaa	1920
gaaaagaca tcttgcataa aatagtacg ttgcgggaag aaattgcccatt gctaagactg	1980
gagctagaca caatgaaaca tcagagccag ctaaaaaaaaaaa aaaaaaaaaaa	2040

<210> 304
 <211> 384
 <212> PRT
 <213> Homo sapien

<400> 304
 Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys
 1 5 10 15
 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe
 20 25 30
 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp
 35 40 45
 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp
 50 55 60
 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val
 65 70 75 80
 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn
 85 90 95
 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser
 100 105 110
 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe
 115 120 125
 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His
 130 135 140
 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met
 145 150 155 160
 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala
 165 170 175
 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu
 180 185 190
 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr
 195 200 205
 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met
 210 215 220
 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn
 225 230 235 240
 Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys
 245 250 255
 Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly
 260 265 270
 Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val
 275 280 285
 Lys Phe Leu Ile Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr
 290 295 300
 Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile
 305 310 315 320
 Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu
 325 330 335
 Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His Val
 340 345 350
 Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile
 355 360 365
 Ser Ser Glu Asn Ser Asn Pro Glu Asn Val Ser Arg Thr Arg Asn Lys
 370 375 380

<210> 305
 <211> 656
 <212> PRT
 <213> Homo sapien

<400> 305
 Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys
 1 5 10 15
 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe
 20 25 30
 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp
 35 40 45
 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp
 50 55 60
 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val
 65 70 75 80
 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn
 85 90 95
 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser
 100 105 110
 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe
 115 120 125
 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His
 130 135 140
 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met
 145 150 155 160
 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala
 165 170 175
 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu
 180 185 190
 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr
 195 200 205
 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met
 210 215 220
 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn
 225 230 235 240
 Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys
 245 250 255
 Ala Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly
 260 265 270
 Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val
 275 280 285
 Lys Phe Leu Ile Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr
 290 295 300
 Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile
 305 310 315 320
 Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu
 325 330 335
 Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His Val
 340 345 350
 Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile
 355 360 365
 Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu
 370 375 380
 Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys

385	390	395	400
Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu			
405	410	415	
Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn			
420	425	430	
Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro			
435	440	445	
Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu			
450	455	460	
Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu			
465	470	475	480
Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp			
485	490	495	
Leu Lys Leu Thr Ser Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu			
500	505	510	
Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys			
515	520	525	
Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly			
530	535	540	
Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser			
545	550	555	560
Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr			
565	570	575	
His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln			
580	585	590	
Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln			
595	600	605	
Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys			
610	615	620	
Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile			
625	630	635	640
Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu			
645	650	655	

<210> 306
<211> 671
<212> PRT
<213> Homo sapien

<400> 306			
Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys			
1	5	10	15
Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe			
20	25	30	
Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp			
35	40	45	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp			
50	55	60	
Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val			
65	70	75	80
Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn			
85	90	95	
Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser			
100	105	110	
Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Ser Ala Phe			

115	120	125
Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His		
130	135	140
Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met		
145	150	155
Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala		160
165	170	175
Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu		
180	185	190
Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr		
195	200	205
Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met		
210	215	220
Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn		
225	230	235
Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys		240
245	250	255
Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly		
260	265	270
Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val		
275	280	285
Lys Phe Leu Ile Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr		
290	295	300
Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile		
305	310	315
Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu		320
325	330	335
Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val		
340	345	350
Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile		
355	360	365
Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu		
370	375	380
Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys		
385	390	395
Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu		400
405	410	415
Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn		
420	425	430
Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro		
435	440	445
Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu		
450	455	460
Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu		
465	470	475
Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp		480
485	490	495
Leu Lys Leu Thr Ser Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu		
500	505	510
Asn Gly Gln Pro Glu Lys Arg Ser Gln Glu Pro Glu Ile Asn Lys Asp		
515	520	525
Gly Asp Arg Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys Lys		
530	535	540
His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly Ala		
545	550	555
		560

Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg
 565 570 575
 Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His
 580 585 590
 Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn
 595 600 605
 Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile
 610 615 620
 Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys
 625 630 635 640
 Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala
 645 650 655
 Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu
 660 665 670

<210> 307
 <211> 800
 <212> DNA
 <213> Homo sapien

<400> 307

atkagcttcc gcttctgaca acactagaga tccctccccct ccctcagggt atggccctcc	60
acttcatttt tggtacataa catcttataa ggacaggggt aaaatcccaa tactaacagg	120
agaatgctta ggactctaac aggttttgaa gaatgtgttg gtaagggcca ctcaatccaa	180
tttttcttgg tcctccttgc ggtcttaggag gacaggcaag ggtgcagatt ttcaagaatg	240
catcagtaag ggccactaaa tccgacccctc ctcgttccctc cttgtggctc gggagaaaaa	300
ctagtgtttc tggtgctgtg tcagtgagca caactattcc gatcagcagg gtccagggac	360
cactgcagg tcttggcag gggagaaaaac aaaacaaacc aaaaccatgg gcrgtttgt	420
ctttcagatg ggaaacactc aggcatcaac aggctcacct ttgaaatgca tcctaagcca	480
atgggacaaa tttgaccac aaaccctgga aaaagaggtg gtcattttt tttgcactat	540
ggcttggccc caacatttc tctctgtatgg ggaaaaaatgg ccacctgagg gaagtacaga	600
ttacaatact atcctgcagc ttgacccccc ctgtaaaggaggaaggccaaat ggagtgaaat	660
accttatgtc caagtttct tttcattgaa ggagaataca ctatgcaaaag cttgaaattt	720
acatcccaca ggaggaccc tcagcttacc cccatatcct agcctcccta tagctccccct	780
tcctattagt gataaggctc	800

<210> 308
 <211> 102
 <212> PRT
 <213> Homo sapien

<220>
 <221> VARIANT
 <222> (1)...(102)
 <223> Xaa = Any Amino Acid

<400> 308

Met Gly Xaa Phe Val Phe Gln Met Gly Asn Thr Gln Ala Ser Thr Gly	
1 5 10 15	
Ser Pro Leu Lys Cys Ile Leu Ser Gln Trp Asp Lys Phe Asp Pro Gln	
20 25 30	
Thr Leu Glu Lys Glu Val Ala His Phe Phe Cys Thr Met Ala Trp Pro	
35 40 45	
Gln His Ser Leu Ser Asp Gly Glu Lys Trp Pro Pro Glu Gly Ser Thr	
50 55 60	

Asp Tyr Asn Thr Ile Leu Gln Leu Asp Leu Phe Cys Lys Arg Glu Gly
65. 70 75 80
Lys Trp Ser Glu Ile Pro Tyr Val Gln Ala Phe Phe Ser Leu Lys Glu
85 90 95
Asn Thr Leu Cys Lys Ala
100

<210> 309
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 309
Leu Met Ala Glu Glu Tyr Thr Ile Val
1 5

<210> 310
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 310
Lys Leu Met Ala Lys Ala Leu Leu Leu
1 5

<210> 311
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 311
Gly Leu Thr Pro Leu Leu Leu Gly Ile
1 5

<210> 312
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 312
Lys Leu Val Leu Asp Arg Arg Cys Gln Leu
1 5 10

<210> 313
<211> 1852
<212> DNA
<213> Homo sapiens

<400> 313
ggcacagaaa taaaaaccct cagcaaaaca ggcatagaag ggacataacct taaagtaata 60
aaaaccaccc atgacaagcc cacagccaa acataactaa atggggaaaa gttagaagca 120
tttcctctga gaactgcaac aataaaataca aggatgctgg attttgtcaa atgcctttc 180
tgtgtctgtt gagatgctta tgtgactttg ctttaattc tgtttatgtg attatcacat 240
ttattgactt gcctgtgtta gaccgaaaga gctgggggtt ttctcaggag ccaccgtgtg 300
ctgcggcagc ttccggataa cttgaggctg catcaactggg gaagaaaacac aytcctgtcc 360
gtggcgtctga tggctgagga cagagcttca gtgtggcttc tctgcgactg gcttcttcgg 420
ggagttcttc cttcatagtt catccatatg gctccagagg aaaattatat tattttgtta 480
tggatgaaga gtattacgtt gtgcagatat actgcagtgt cttcatctct tgatgtgtga 540
ttgggttaggt tccaccatgt tgcccgagat gacatgattt cagtagctgt gtctggctga 600
aaagtgtttt tttgtgaatg gatattgtgg tttctggatc tcatacctctg tgggtggaca 660
gctttctcca ccttgctgga agtgcacctgc tgcaggaaag tttgatggct gaggagtata 720
ccatcggtca tgcatactttc atttcctgca tttcttcctc cctggatgga cagggggagc 780
ggcaagagca acgtgggcac ttctggagac cacaacgact cctctgtgaa gacgcttggg 840
agcaagaggt gcaagtgggtg ctgccactgc ttcccctgt gcagggggag cggcaagagc 900
aacgtggctcg ctgggggaga ctacgatgac agcgccttca tggatcccag gtaccacgtc 960
catggagaag atctggacaa gctccacaga gctgcctggt gggtaaagt cccccagaaag 1020
gatctcatcg tcatgctcg ggacacggat gtgaacaaga gggacaagca aaagaggact 1080
gctctacatc tggcctctgc caatggaaat tcagaagtag taaaactctgt gctggacaga 1140
cgatgtcaac ttaatgtcct tgacaacaaa aagaggacag ctctgacaaa ggccgtacaa 1200
tgccaggaaag atgaatgtgc gttaatgttg ctggAACatg gcactgtatcc aaatatttcca 1260
gatgagtagt gaaataaccac tctacactat gctgtctaca atgaagataa attaatggcc 1320
aaagcaactgc tcttatacgg tgctgatatc gaatcaaaaa acaagcatgg cctcacacca 1380
ctgctacttg gtatacatga gcaaaaaacag caagtggta aatttttaat caagaaaaaa 1440
gcgaatttaa atgcgtggaa tagatatgga agaactgctc tcataacttgc tttatgtgt 1500
ggatcagcaa gtatagtcag ccctctactt gagcaaaatg ttgatgtatc ttctcaagat 1560
ctggaaagac gcccagagag tatgtgtttt ctatgcatca tcatgtatt tgccagttac 1620
tttctgacta caaagaaaaa cagatgttaa aatctcttc tgaaaacagc aatccagaac 1680
aagacttaaa gctgacatca gaggaagagt cacaagggct taaaggaagt gaaaacagcc 1740
agccagagct agaagattt tggctattga agaagaatga agaacacggg agtactcatg 1800
tgggatcccc agaaaaacctg actaacgggtg ccgctgtgg caatgggtat ga 1852

<210> 314
<211> 879
<212> DNA
<213> Homo sapiens

<400> 314
atgcatcttt catttcctgc atttcttcct ccctggatgg acagggggag cggcaagagc 60
aacgtggca cttctggaga ccacaacgac tcctctgtga agacgcttgg gagcaagagg 120
tgcaagtggt gctgccactg ctcccctgc tgcaggggga gcgcaagag caacgtggc 180
gcttggggag actacgatga cagcgccttc atggatccca ggtaccacgt ccatggagaa 240
gatctggaca agtccacac agtgcctgg tggggtaaag tccccagaaa ggatctcatc 300
gtcatgctca gggacacgga tgtgaacaag agggacaagc aaaagaggac tgctctacat 360
ctggcctctg ccaatggaa ttcagaagta gtaaaactcg tgctggacag acgatgtcaa 420
cttaatgtcc ttgacaacaa aagaggaca gctctgacaa agggcgtaca atgccagggaa 480
gatgaatgtg cgttaatgtt gctggAACatg ggcactgtatc caaatattcc agatgaggtat 540
ggaaatacca ctctacacta tgctgtctac aatgaagata aattaatggc caaagcaactg 600
ctcttatacgg tgctgatatacgg tcaatcaaaaa aacaagcatg gcctcacaccc actgctactt 660

ggtatacatg agcaaaaaca gcaagtggtg aaattttaa tcaagaaaaa agcgaattta 720
aatgcgctgg atagatatgg aagaactgct ctcatacttg ctgtatgtt gggatcagca 780
agtatagtca gccctctact tgagcaaata gttatgttat cttctcaaga tctggaaaga 840
cggccagaga gtatgctgtt tctagtcatac atcatgtaa 879

<210> 315

<211> 293

<212> PRT

<213> Homo sapiens

<400> 315

Met His Leu Ser Phe Pro Ala Phe Leu Pro Pro Trp Met Asp Arg Gly
5 10 15

Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asn Asp Ser Ser
20 25 30

Val Lys Thr Leu Gly Ser Lys Arg Cys Lys Trp Cys Cys His Cys Phe
35 40 45

Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Val Ala Trp Gly Asp
50 55 60

Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr His Val His Gly Glu
65 70 75 80

Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg
85 90 95

Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Arg Asp
100 105 110

Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser
115 120 125

Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys Gln Leu Asn Val Leu
130 135 140

Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala Val Gln Cys Gln Glu
145 150 155 160

Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile
165 170 175

Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Val Tyr Asn Glu
180 185 190

Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu
195 200 205

Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Ile His Glu
210 215 220

Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu
225 230 235 240

Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys
245 250 255

Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu Glu Gln Asn Val Asp
260 265 270

Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu Ser Met Leu Phe Leu
275 280 285

Val Ile Ile Met
290

<210> 316

<211> 584

<212> DNA

<213> Homo sapiens

<400> 316

agttggggcca aattccccctc cccctacagc ttgaagggggataaccaat agcctggggt 60
ttttttgtgg tcctttggag atttccttgc ttattttctt ctgggtgggg gtgatttagag 120
gaggcttatac actaatagga agggggagcta tagggaggctt aggatatggg ggttaagctga 180
gagggtccccc tggggatgt aaatttcaag ctttgcatacg tggattctcc ttcaatgaaa 240
agaaagcttg gacataaggt atttcactcc atttgccttc cctcttacag aaaaggtaaa 300
gctgcaggat agtattgtaa tctgtacttc cctcaggtgg ccatttttcc ccatcagaga 360
gagaatgttg gggccaagcc atagtgcaga aaaaaaaaaatg agccacctct tttccagg 420
tttggggtc aaatttgcctt cattggctt ggatgcatt caaagggtgag cctgttgatg 480
cctgagtggtt tcccatctga aagacaaaaac tgcccatggt tttggtttgg tttgttctc 540
ccccctggcca agaactatca aactcctgag ccaacaacta aaaa 584

<210> 317

<211> 829

<212> DNA

<213> Homo sapiens

<400> 317

atagcttcc gcttctgaca acactagaga tccctccctt ccctcagggt atggccctcc 60
acttcatttt tggcacataa catctttata gcacagggtt aaaatccaa tactaacagg 120
agaatgcttta ggactctaacc aggttttga gaatgtgtg gtaaggccca ctcaatccaa 180
tttttcttgg tcctccttgc ggtctaggag gacaggcaag ggtcagatt ttcaagaatg 240
catcagaatgg gcccactaaa tccgacccttc ctcgttccctt cttgtggctt gggaggaaaa 300
ctagtgttcc tggctgtgtc tcagtgcaca caactattcc gatcagcagg gtccaggag 360
caactgcaggat tcttggccag ggggagaaac aaaacaaaacc aaaacccatgg gcagtttgt 420
ctttcagatgg gaaaacactc aggcatcaac aggctcacct ttgaaatgca tcctaagcc 480
atggggacaaa ttgacccac aaaccttggaa aaaagaggtt gtcattttt tttgcactat 540
ggcttggccc caacattctc tctctgtatgg gaaaaatgg ccacctgagg gaagtacaga 600
ttacaataact atcctgcaggc ttgacccctt ctgtaaaggagggaaatggatgaaat 660
accttatgttc caagctttctt ttcatgttggaa ggagaataaca ctatgcaaag cttgaaatttt 720
acatccacaca ggaggacccctc tcagcttacc cccatatectt agcctccctt tagctccctt 780
tccttattgtt gataaggcttc ctctaatcac cccccccccccag aagaaaataa 829

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 October 2000 (19.10.2000)

PCT

(10) International Publication Number
WO 00/61753 A3

(51) International Patent Classification⁷: C12N 15/12, C07K 14/47, 16/18, 19/00, C12N 15/62, A61K 38/17, 39/395, 48/00, C12N 5/08, G01N 33/574, C12Q 1/68

(21) International Application Number: PCT/US00/09312

(22) International Filing Date: 7 April 2000 (07.04.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/289,198 9 April 1999 (09.04.1999) US
09/429,755 28 October 1999 (28.10.1999) US
09/534,825 23 March 2000 (23.03.2000) US

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: FRUDAKIS, Tony, N.; 7937 Broadmoor Pines Boulevard, Sarasota, FL 34243 (US). SMITH, John, M.; 208 - 116th Place S.E., Everett, WA 98208 (US). REED, Steven, G.; 2843 - 122nd Place N.E., Bellevue, WA 98005 (US). MISHER, Lynda, E.; 6251 53rd Avenue N.E., Seattle, WA 98115 (US). RETTER, Marc, W.; 33402 N.E. 43rd Place, Carnation, WA 98014 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US).

(74) Agents: POTTER, Jane, E., R.; Seed Intellectual Property Law Group PLLC, Suite 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 et al. (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— With international search report.

(88) Date of publication of the international search report: 28 June 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER

cDNA PREPARED FROM
NORMAL BREAST TISSUE
FROM THE SAME PATIENT

cDNA PREPARED
FROM BREAST TUMOR

WO 00/61753 A3

(57) Abstract: Compositions and methods for the detection and therapy of breast cancer are disclosed. The compounds provided include nucleotide sequences that are preferentially expressed in breast tumor tissue, as well as polypeptides encoded by such nucleotide sequences. Vaccines and pharmaceutical compositions comprising such compounds are also provided and may be used, for example, for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of antibodies, which are useful for diagnosing and monitoring the progression of breast cancer in a patient.

INTERNATIONAL SEARCH REPORT

Int. Application No
PCT/US 00/09312

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C12N15/12	C07K14/47	C07K16/18	C07K19/00	C12N15/62
	A61K38/17	A61K39/395	A61K48/00	C12N5/08	G01N33/574
	C12Q1/68				

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C07K A61K G01N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 45328 A (CORIXA CORPORATION) 15 October 1998 (1998-10-15) page 2, line 7 -page 5, line 22 page 7, line 23 -page 24, line 11; examples 1-4 sequence listing SEQ ID N0s:1, 3-10, 227 --- WO 97 25426 A (CORIXA CORPORATION) 17 July 1997 (1997-07-17) page 2, line 8 -page 5, line 11 page 7, line 14 -page 23, line 2; example 1 sequence listing SEQ ID NO:1, 3-10, 227 --- -/--	1,2,4-60
X		1,2,4-60

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

8 August 2000

Date of mailing of the international search report

08.11.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

MONTERO LOPEZ B.

INTERNATIONAL SEARCH REPORT

PCT/US 00/09312

International Application No

PCT/US 00/09312

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 97 25431 A (CORIXA CORPORATION) 17 July 1997 (1997-07-17) page 2, line 3 -page 3, line 25 page 4, line 12 -page 17, line 18; examples 1-4 sequence listing SEQ ID N0s:1, 3-10 -----	1,2,4-10

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely.

Although claims 21, 22, 29-31 34 37-39 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Claims 1, 2, 4-60 Partially.

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: Partially 1, 2, 4-60

Breast cancer related polypeptide B18Ag1, corresponding polynucleotides comprising SEQ ID N0s:1, 3-10, or 227, and derived oligonucleotides; variants thereof, expression vector and host cell comprising the same; antibody and diagnostic kit containing it, fusion protein comprising the polypeptide; pharmaceutical composition and vaccine comprising any of the above and use therefor in the treatment of cancer, and for removing tumor cells from a sample; use of the polypeptides for stimulating and expanding T-cells and use of such T-cells for inhibiting cancer development; use of the polypeptides for determining the presence of cancer or monitoring the progression of cancer in a patient.

2. Claims: Partially 1-60

Idem as subject 1 for Breast cancer related polypeptide and polynucleotide B21GT2 (B311D) comprising SEQ ID N0s:56, 307, 308, 316 or 317.

3. Claims: Partially 1, 2, 4-60

Idem as subject 1 for Breast cancer related polypeptide and polynucleotide B15Ag1 comprising SEQ ID N0s:27 or 290.

4. Claims: Partially 1, 2, 4-60

Idem as subject 1 for Breast cancer related polypeptide and polynucleotide B31GA1b comprising SEQ ID N0s:148.

5. Claims: Partially 1, 2, 4-60

Idem as subject 1 for Breast cancer related polypeptide and polynucleotide B38GA2a comprising SEQ ID N0s:157.

6. Claims: Partially 1-60

Idem as subject 1 for Breast cancer related polypeptide and polynucleotide B11Ag1 (B305D) and its isoform A comprising SEQ ID NO:292-306, or 309-315.

7. Claims: Claims: Partially 1, 2, 4-60,
all as far as applicable

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Breast cancer related polypeptides, corresponding polynucleotides comprising SEQ ID NOS:11-26 (inventions 7-22), 28-55 (inventions 23-50), 57-86 (inventions 51-80), 142-147 (inventions 81-86), 149-156 (inventions 87-94), 158-226 (inventions 95-163), 228-253 (inventions 164-189), or 255-291 (inventions 190-226), and derived oligonucleotides; variants thereof, expression vector and host cell comprising the same; antibody and diagnostic kit containing it, fusion protein comprising the polypeptide; pharmaceutical composition and vaccine comprising any of the above and use therefor in the treatment of cancer, and for removing tumor cells from a sample; use of the polypeptides for stimulating and expanding T-cells and use of such T-cells for inhibiting cancer development; use of the polypeptides for inhibiting or monitoring the progression of cancer in a patient, as far as applicable.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int.	National Application No
	PCT/US 00/09312

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 9845328	A 15-10-1998	AU 6956098 A	EP 0975666 A	NO 994932 A	30-10-1998
		PL 336349 A	ZA 9802968 A		02-02-2000
					07-12-1999
					19-06-2000
					27-10-1998
<hr/>					
WO 9725426	A 17-07-1997	AU 1697497 A	BR 9707125 A	CA 2242340 A	01-08-1997
		CN 1211279 A	EP 0874902 A	NO 983183 A	20-07-1999
					17-07-1997
					17-03-1999
					04-11-1998
					10-09-1998
<hr/>					
WO 9725431	A 17-07-1997	AU 1575697 A			01-08-1997
<hr/>					

