Topología Algebraica

Abraham Rojas

2023

Índice general

I	(Co)homologias	5
1.	Algunos conceptos topológicos1.1. Homotopías1.2. Complejos simpliciales1.3. Complejos CW	7 7 8 8
2.	Homologías 2.1. Cálculo	9 9 9 9 9 9
3.	Cohomología 3.1. Dualidad de Poincaré	11 11 11
П	Teoría de Homotopía	13
4.	Grupo fundamental 4.1. Cálculos 4.2. Cubrimientos 4.3. Una aplicación en Teoría de Grupos	15 15 15 15
Ш	Más herramientas	17
5 .	Homología de intersección	19
6	Espacios do intersección	21

4 ÍNDICE GENERAL

Parte I (Co)homologías

Algunos conceptos topológicos

El término mapa denota función continua. I denotará el intervalo [0,1]. Términos como retracción, cocientes, serán pensados en la categoria de espacio topológicos.

Dado un mapa $f: X \to Y$, el **cilindro** de f es el cociente de $(X \times I) \coprod Y$, identificando (x,1) con f(x)

1.1. Homotopías

Una **homotopía** entre dos espacio X e Y es una familia de mapas $f_t: X \to Y$ con $t \in I$, tal que $F: X \times I \to Y$ definida por $F(x,t) = f_t(x)$ es continuo. Diremos que f_0 y f_1 son homotópicos, y escribiremos $f_0 \simeq f_1$.

Un **retrato por deformación** de X es un subespacio A es una homotopía entre Id_X y una retracción de X en A.

Una homotopía $f_t: X \to Y$ que se restringe a la identidad en A es una **homotopía** relativa a A.

Un mapa $f: X \to Y$ es una **equivalencia homotópica** si existe otro mapa $g: Y \to X$ tal que $fg \simeq Id$ y $gf \simeq Id$, en este caso, X e Y son **homotópicamente equivalentes** (o tiene el mismo **tipo de homotopía**), denotaremos $X \simeq Y$.

Un espacio con la clase de homotopía de un punto es llamado **contráctil**. Equivalentemente, su mapa identidad es homotópica a un mapa constante (hacia algún punto). Note que un retrato por deformación es una equivalencia homotópica.

Ejemplo 1 1. La cinta de Möbius se retrae por deformación a su círculo interior.

- 2. Consideremos una hoja de papel con dos hoyos, esta se retrae a lo siguiente... pag. 2, por tanto estas figuras son homotópicamente equivalentes, pero no son retratos de deformación entre sí. Esto puede expresarse en función de cilindros.
- 3. Se puede retraer una X gorda en una X fina y luego retraer a un punto. Observe que los caminos pueden cruzarse, a diferencia de los ejemplos anteriores.

Ejercicio 1 Sea $f: X \to Y$ un mapa, M_f se retrae por deformación a Y, lo Cuál generaliza los ejemplos anteriores.

1.2. Complejos simpliciales

1.3. Complejos CW

Ejemplo 2 Construir un toro partir de un cuadrado, y generalizar para un polígono regular de 4q lados paar obtener superficies orientables.

son construido de forma inductiva

- 1. X^0 es un conjunto discreto, sus puntos son las 0—células del complejo.
- 2. Inductivamente, construiremos el n-esqueleto X^n a partir de X^{n-1} , adjuntando n-células e^n_α via mapas $\varphi_\alpha: S^{n-1} \to X^{n-1}$. Esto significa que X^n es el cociente de $X^{n-1} \bigsqcup_\alpha D^n_\alpha$ of X^{n-1} , con las identificaciones $x \sim \varphi_\alpha(x)$ para $x \in \partial D^n_\alpha$. Tenemos que $X^n = X^{n-1} \bigsqcup_\alpha e^n_\alpha$ donde cada e^n_α es un n-disco abierto.
- 3. Podemos parar este proceso luego de $\mathfrak n$ pasos, obteniendo un complejo de **dimensión** $\mathfrak n$, o dejarlo continuar indefinidamente, en cuyo caso X tiene la topología débil: $A \subset X$ es abierto si y solo si $A \cap X^n$ es abierto en X^n para todo $\mathfrak n$.

Ejemplo 3 1. Un **grafo** es un complejo celular de dimensión 1.

- 2. Sⁿ tiene dos células.
- 3. **Espacio proyectivo real de dimensión** n. Existen definiciones equivalentes:
 - a) Conjunto de subespacios lineales de dimensión 1 en \mathcal{R}^{n+1} .
 - b) Cociente de $R^{n+1} \setminus \{0\}$, identificando puntos en una misma recta.
 - c) Cociente de Sⁿ, identificando puntos antípodas.
 - d) Cociente del hemisferio D^n , identificando puntos antípodas en ∂D^n .

Como el cociente de ∂D^n identificando antípodas es $\mathcal{R}P^{n-1}$, tenemos una estructura de complejo celular $\mathbb{R}P^n=e^0\cup e^1\cup\cdots\cup e^n$, donde e^i es una i-célula, $0\leq i\leq n$. Si no detenemos este proceso, obtenemos $\mathbb{R}P^\infty=\bigcup_n\mathbb{R}P^n$

4. El caso complejo es similar, tenemos que $\mathbb{CP}^n = e^0 \cup e^2 \cup \cdots \cup e^{2n}$, y es equivalente al cociente de S^{2n+1} (identificamos no solo antípodas, sino aquellos múltiplos por complejos de norma 1).

Homologías

- 2.1. Cálculo
- 2.2. Aplicaciones clásicas
- 2.2.1. Teorema de De Rham
- 2.2.2. Grado
- 2.3. Axiomas
- 2.4. De los coeficientes

Cohomología

- 3.1. Dualidad de Poincaré
- 3.2. Productos cup y cap

Parte II Teoría de Homotopía

Grupo fundamental

- 4.1. Cálculos
- 4.2. Cubrimientos
- 4.3. Una aplicación en Teoría de Grupos

Parte III Más herramientas

Capítulo 5 Homología de intersección

Capítulo 6 Espacios de intersección