제07강

포트입출력 및 모듈제어

입출력 개요

입출력 포트

입출력 처리 명령

시간지연 루틴

실습과제

Ref.) Chapter 7

입출력 개요

- : 8비트의 양방향 입출력 포트 4개 지원 (PO, P1, P2, P3)
- : 각 포트 데이터에 대해 비트 처리, 바이트 처리 및 점프명령 등에서 이용 가능
- : 포트들은 내부 램의 SFR 영역의 주소 공간에 사상 (Memory Mapped I/O방식)
- : 메모리로의 전송 명령을 통하여 입력 혹은 출력

입출력 포트

* PO(P0.7,...,P0.0)

: 오픈 드레인 출력 방식의 양방향 입출력 핀으로 구성

: 입출력 포트로 사용될 때는 외부에 풀업 저항 연결하여 사용

: 각 핀마다 8개의 TTL 게이트를 구동할 수 있는 전류 능력

: 실습보드(외부 메모리를 연결)에서 (어드레스의 하위 바이트 신호용(A7,...,A0) 및 데이터 신호(D7,...D0)용으로 사용)

* P1(P1.7,...,P1.0)

: 내부적으로 풀업된 양방향 입출력 핀으로 구성

: 각 핀은 4개의 LS TTL 게이트 구동할 수 있는 전류 능력 제공

: 실습보드에서 (입출력 모듈과의 입출력 용도로 사용)

* P2(P2.7,...,P2.0)

: 내부적으로 풀업된 양방향 입출력 핀으로 구성

: 각 핀은 4개의 LS TTL 게이트 구동할 수 있는 전류 능력 제공

: 실습키트에서

(외부메모리 주소의 상위 바이트 신호(A15,..,A8)로 사용)

* P3(P3.7,...,P3.0)

: 내부적으로 풀업된 양방향 입출력 핀으로 구성

: 4개의 LS TTL 게이트를 구동할 수 있는 전류 능력

: 특수 기늉 제공(실습보드에서)

핀	별 칭	기 능
P3.0	RxD	시리얼 수신 포트
P3.1	TxD	시리얼 송신 포트
P3.2	/INTO	외부 인터럽트 0
P3.3	/INT1	외부 인터럽트 1
P3.4	TO	타이머/카운터 0의 외부 입력
P3.5	T1	타이머/카운터 1의 외부 입력
P3.6	/WR	외부 데이터 메모리 기록 신호
P3.7	/RD	외부 데이터 메모리 판독 신호

* 실습보드에서 입출력 포트의 용도 요약

포트	비트어드레스	용도	비고
PO	P0.7,,P0.0	주소의 하위 바이트용(A7,,A0) 데이터 버스용(D7,,D0)	
P1	P1.7,,P1.0	입출력용	
P2	P2.7,,P2.0	주소의 상위 바이트용(A15,,A8)	
	P3.0	시리얼통신의 RxD	
	P3.1	시리얼통신의 TxD	
Р3	P3.2	외부인터럽트 0용의 INTO	*
PJ	P3.3	외부인터럽트 1용의 INT1	
	P3.4	타이머/카운터 0용의 TO	*
	P3.5	타이머/카운터 1용의 T1	

주)'*': 외부신호용 버튼스위치 연결

입출력 처리

: 메모리 맵 방식의 입출력 지원

: MOV 명령을 이용하여 입출력 효과

* 비트단위 입출력

: C(carry) 비트를 통하여 비트단위 입출력

MOV C,P1.0 ; $C \leftarrow P1.0$, Bit Input

MOV P1.1,C ; P1.1 <- C, Bit Output

입출력 처리(계속)

* 바이트 단위 입출력

: ACC를 통하여 바이트단위 입출력

MOV A,P1 ; $A \leftarrow P1$, Byte Input

MOV P1,A ; P1 <- A, Byte Output

* 입출력 포트에 비트단위 연산

SETB P1.0 ; P1.0 < -1

CLR P1.1 ; P1.1 < -0

시간지연루틴

: 입출력과정에서 시각적으로 결과 확인을 위해 필요

: 일정시간마다 입출력의 발생 유도

: 시스템 클럭 발생원으로 11.0592MHz의 수정발진자 사용(약 12MHz로 간주)

: 8051 명령 수행을 위한 하나의 머신사이클(1T)은 12클럭 요구 따라서, 1T는 약 1 $\mu S\!ec$ 에 해당

시간지연 서브루틴(계속)

* 지연시간 계산(2장 명령에서 바이트/머신사이클)

```
; 0.25 Sec
DELAY_25:
       MOV R4,#249
                       ; 1T
       MOV R5,#100 ; 1T
LOOP2:
LOOP1:
       NOP
                       : 1T*8
        NOP
        NOP
        NOP
        NOP
        NOP
        NOP
        NOP
        DJNZ R5,LOOP1
                       ; 2T
                       ; 2T
       DJNZ R4,LOOP2
                       : 2T
       RET
1T + (1T + ((8T + 2T) * 100) + 2T) * 249 + 2T
= 249750T = 249750 * 1\mu Sec \cong 0.24975Sec
```

LED 및 버튼 모듈

* LED 모듈 및 버튼 모듈(자작한 것)

: LED는 Low 신호인가시 ON, 버튼은 press시 Low 신호 인가

예제실습

[실습1] LED 점멸(p.190)

: 최하위비트부터 네 개의 LED를 차례로 ON 반복

: P1의 하위니블에 LED(H/L 신호 표시) 모듈 연결

: LED를 ON 위해서는 Low 신호 출력

: LED 점등 간격은 약 1Sec로

```
MOV A,#11111110B ; 출력패턴
8003 74FE
                     10
                            LOOP_M: MOV P1,A
8005 F590
                     11
8007 110F
                     12
                                    CALL DELAY_100
                                    RL A
8009 23
                     13
800A 20E4F8
                                    JB ACC.4,LOOP_M
                     14
                     15
800D 80F4
                     16
                                    SJMP IO_USING_PORT1
                     17
                     18
                                    ; DELAY SUBROUTINES
800F
                     19
                            DELAY_100:
                                    MOV 30H,#4
800F 753004
                     20
8012 1118
                     21
                            LOOP100: ACALL DELAY_25
                     22
8014 D530FB
                                    DJNZ 30H, LOOP100
8017 22
                     23
                                    RET
                     24
8018
                     25
                            DELAY 25:
                                                   ; 0.25SEC
8018 7CF9
                     26
                                    MOV R4,#249 ; 1T
801A 7D64
                     27
                            LOOP2: MOV R5,#100
                                                ; 1T
801C 00
                     28
                            LOOP1: NOP
                                                    ; 1T
801D 00
                     29
                                    NOP
801E 00
                     30
                                    NOP
801F 00
                     31
                                    NOP
```

8020 00	32	NOP	
8021 00	33	NOP	
8022 00	34	NOP	
8023 00	35	NOP	
8024 DDF6	36	DJNZ R5,LOOP1	; 2T
8026 DCF2	37	DJNZ R4,LOOP2	; 2T
8028 22	38	RET	
	39	;	
	40	END	

예제실습(계속)

[실습2] 스위치 상태 입출력(p.191)

: 각 버튼 누를 때마다 대용 위치의 LED를 ON

: P1의 상위니블에 버튼모듈, 하위니블에 LED 모듈 연결

참고) 자작 입출력 모듈의 동작 테스트시 사용함

8005 C4	12	SWAP A	
8006 44F0	13	ORL A,#0F0H	
8008 F590	14	MOV P1,A	; OUT
800A 80F7	15	SJMP LOOP	
	16	;	
	17	END	

예제실습(계속)

[실습3] 신호등 제어(p.192)

: 최하위 LED부터 RED, YELLOW, GREEN 신호등이라 가정

: RED 1초간 ON -> RED 4회 점멸

-> YELLOW .5초간 ON -> GREEN .75초간 ON

: 이를 반복

8003	7590FE	10		MOV P1,#OFEH	;	I	2	ON
8006	1124	11		ACALL DELAY_100				
		12		••				
8008	75F004	13		MOV B,#4	;	I	3L	INK
800B	7590FF	14	LOOP:	MOV P1,#OFFH				
800E	113F	15		ACALL DELAY_25				
8010	7590FE	16		MOV P1,#OFEH				
8013	113F	17		ACALL DELAY_25				
8015	D5F0F3	18		DJNZ B,LOOP				
		19		•				
8018	7590FD	20		MOV P1,#11111101B	;	7	Y	ON
801B	1136	21		ACALL DELAY_50				
		22		•				
801D	7590FB	23		MOV P1,#11111011B	,	(Ĵ	ON
8020	112D	24		ACALL DELAY_75				
		25		;				
8022	80DF	26		SJMP IO_USING_PORT1				
		27		•				
		28		; DELAY SUBROUTINES				
8024		29	DELAY_1	00:				
8024	753004	30		MOV 30H,#4				
8027		31	LOOP100	:				

```
8027 113F
                      32
                                      ACALL DELAY_25
8029 D530FB
                                      DJNZ 30H, LOOP100
                      33
802C 22
                      34
                                      RET
                      35
802D
                      36
                              DELAY 75:
802D 753003
                      37
                                      MOV 30H.#3
                             LOOP75: ACALL DELAY_25
8030 113F
                      38
                                      DJNZ 30H, LOOP75
8032 D530FB
                      39
8035 22
                                      RET
                      40
                      41
8036
                      42
                              DELAY_50:
8036 753002
                      43
                                      MOV 30H,#2
                             LOOP50: ACALL DELAY_25
8039 113F
                      44
803B D530FB
                      45
                                      DJNZ 30H, LOOP50
803E 22
                      46
                                      RET
                      47
                                                       ; 0.25SEC
803F
                      48
                              DELAY_25:
803F 7CF9
                                                       ; 1T
                      49
                                      MOV R4,#249
8041 7D64
                      50
                             LOOP2: MOV R5,#100
                                                      ; 1T
8043 00
                      51
                             LOOP1: NOP
                                                       ; 1T
8044 00
                       52
                                      NOP
8045 00
                       53
                                      NOP
```

8046 00	54	NOP	
8047 00	55	NOP	
8048 00	56	NOP	
8049 00	57	NOP	
804A 00	58	NOP	
804B DDF6	59	DJNZ R5,LOOP1	; 2T
804D DCF2	60	DJNZ R4,LOOP2	; 2T
804F 22	61	RET	
	62	;	
	63	END	

FND 모듈

* Common Anode 타입

: 모듈로의 입력 신호가 High이면, 대용하는 세그먼트 ON

FND 모듈(계속)

* LED의 각 세그먼트와 대유되는 비트 패턴

예) "CPU" 패턴

문자	а	b	С	d	е	f	g	dp	Hexa
'C'	1	0	0	1	1	1	0	0	9CH
'P'	1	1	0	0	1	1	1	0	CEH
'U'	0	1	1	1	1	1	0	0	7CH

예제실습

[실습4] FND 제어

: 'C', 'P', 'U' 패턴을 반복 표시

```
MAPP_01.ASM
                                      P1: FND MODULE
                        5
                              $mod51
8000
                                      ORG 8000H
8000 758140
                                      MOV SP,#40H
                              E_LOOP: MOV DPTR, #PATTERN
8003 908100
8006 75F003
                       10
                                      MOV B,#03H
                              I_LOOP: MOVX A,@DPTR
8009 E0
                      11
800A F590
                      12
                                      MOV P1, A
800C 1115
                      13
                                      CALL DELAY_100
800E 0582
                                      INC DPL
                      14
```

8010	D5F0F6	15		DJNZ B, I_LOOP		
8013	80EE	16		JMP E_LOOP		
		17		_		
		18		; DELAY SUBROUTI	NF	ES
8015		19	DELAY_10			20
	753004	20		MOV 30H,#4		
		21	I 00D100	·		
	111E		LOOP TOO	ACALL DELAY_25		
801A	D530FB	22		DJNZ 30H, LOOP100)	
801D	22	23		RET		
		24		;		
801E		25	DELAY_25	5:	;	0.25SEC
801E	7CF9	26		MOV R4,#249	;	1T
8020	7D64	27	LOOP2:	MOV R5,#100	;	1T
8022	00	28	LOOP1:	NOP	;	1T
8023	00	29		NOP		
8024	00	30		NOP		
8025	00	31		NOP		
8026	00	32		NOP		
8027	00	33		NOP		
8028	00	34		NOP		
8029	00	35		NOP		
802A	DDF6	36		DJNZ R5,LOOP1	•	2T

802C DCF2 802E 22	37 38 39	DJNZ R4,LOOP2 RET	; 2T
0100		,	
8100	40	ORG 8100H	
8100	41	PATTERN:	
8100 9C	42	DB 9CH	; 'C'
8101 CE	43	DB OCEH	;'P'
8102 7C	44	DB 7CH	;'U'
	45	;	
	46	END	

예제실습(계속)

- * 다음의 내용은 자율적으로 진행
 - 1) 자동형 가로등
 - : 광스위치 모듈, 릴레이모듈 활용
 - : MAPP_02.ASM(p.198)
 - 2) 음스위치 및 멜로디모듈 응용
 - : 음스위치, 멜로디, 앰프, 스피커 모듈 활용
 - : MAPP_03.ASM(p.201)
 - 3) DC모터 제어
 - : DC모터 및 PWM 제어방식
 - : MAPP_04.ASM(p.205)

DC모터 제어

* DC 모터 모듈 (신호단자 P1.4)

DC모터 제어(계속)

* PWM(pulse width modulation, 펄스폭변조)

: 듀티비(duty ratio) = # ON / # in Cycle

예제실습

[실습5] DC 모터 제어

```
MAPP 04.ASM
                        3
                                      P1 : DC MOTOR Module
                                       1 \text{ CYCLE} = 16 \text{ UNITS}
                        5
                        6
                              $mod51
8000
                                       ORG 8000H
8000 758140
                                       MOV SP,#40H
                        8
                        9
8003 780A
                       10
                              LOOP:
                                      MOV RO,#10 ; ON #
8005 7906
                       11
                                      MOV R1,#06
                                                       ; OFF #
                       12
8007 74FF
                       13
                              ON:
                                      MOV A, #OFFH
                                                   ; P1.4
8009 F590
                                      MOV P1,A
                       14
800B 1117
                       15
                                      CALL TIME_UNIT
800D D8F8
                                      DJNZ RO,ON
                       16
```

		17		
800F	C294	18	OFF:	CLR P1.4
8011	1117	19		CALL TIME_UNIT
8013	D9FA	20		DJNZ R1,OFF
		21		
8015	80EC	22		JMP LOOP
		23		
		24		; time unit RTN
8017		25	TIME_UN	IT:
8017	7D01	26		MOV R5,#1H
8019	00	27	LOOP1:	NOP
801A	00	28		NOP
801B	00	29		NOP
801C	00	30		NOP
801D	DDFA	31		DJNZ R5,LOOP1
801F	22	32		RET
		33		;
		34		END

실습과제

[과제1] 스위치 입력값 만큼 점등

: 모든 LED를 점멸하는 프로그램

: 버튼 모듈에서 눌려진 4비트의 수치값만큼 반복 점멸

실습과제(계속)

[과제2] 키에 따라 각기 다른 패턴 출력

: 각 버튼에 따라 다른 동작을 하는 프로그램 작성

: 각 버튼에 따른 LED 모듈의 점등 패턴 및 동작을 각자 정의하여 서브루틴으로 구성

: 시간지연루틴 적절히 정의, 그 지연시간을 계산하여 보일 것

실습과제(계속)

[과제3] FND 모듈 제어

: 자신의 이름 패턴을 정의하고,

이를 연속하여 반복 표시