Circuitos Sequenciais

Autor: Prof. João Ricardo dos S. Rosa UNEMAT, Campus de Sinop

Sumário

1 Circuitos Integrados

- Classificação de Cl's
- 3 Portas Lógicas
- Circuitos Combinacionais

Circuitos Integrados (CI)

Os Cl's são circuitos electrônicos funcionais, constituídos por um conjunto de dispositivos eletrônicos (transístores, resistências, ...)

- Portas lógicas são fabricadas e vendidas como Cl's ou chips
- Cl's s\u00e3o fabricados num mesmo processo, sobre uma subst\u00e3ncia comum semicondutora (sil\u00edcio)
- O CI é um quadrado de silício montados em invólucros retangulares
- plástico ou de cerâmica
- ► (5 a 15 x 20 a 50mm)

Circuitos Integrados (CI)

Placa de Circuito Impresso (PCB)

Classificação de Cl's

- ► SSI (Small Scale Integration)
- Integração em pequena escala, com ≈ 12 portas lógicas em uma pastilha

- ► Portas Individuais e Flip-Flops
 - MSI (Medium Scale Integration)
 - Integração em média escala de 13 a 99 portas ou funções lógicas
 - Somadores, contadores e registradores

- ► LSI (Large Scale Integration)
 - ► Larga escala de 100 a 999 portas ou funções lógicas
 - ROMs, PLA e memórias pequenas
- ► VLSI (Very Large Scale Integration)
 - ► Muito larga escala de 1.000 a 99.999 portas ou funções lógicas
 - Memórias grandes, microprocessadores e sistemas complexos
- ► ULSI (Ultra Large Scale Integration)
 - Ultra larga escala de 100.000 portas ou funções lógicas
 - Memórias grandes, microprocessadores e sistemas complexos
- ► UVLSI (Ultra Very Large Scale Integration)
 - Atualmente não é medido por portas ou funções lógicas (Ex.: Memórias e processadores atuais)

Classificação de Cl's

► Tipos de invólucros

- DIP ou DIL(Dual In Line Packages) contém duas linhas de pinos para fora e com um CI dentro
- LCC(Leaded Chip Carrier) os pinos são encaixados na placa
 - Terminais nos 4 lados para encaixar em soquetes apropriados
 - PLCC (Plastic Leaded Chip Carrier)
- QFP (Quad Flat Pack)
 - Parecido com o LCC, a diferença é que são soldados na PCB

Classificação de Cl's

► Tipos de invólucros

- PGA (Pin Grid Array)
 - Contém pinos para a conexão com a placa em baixo do circuito
- ► BGA (Ball Grid Array)
 - · Bastante utilizado em chipsets
 - Terminais presentes em baixo do circuito, sendo um PGA em miniatura
- LGA (Land Grid Array)
 - Significa que os pinos em um socket LGA são incorporadas ao socket-não para a CPU

Portas Lógicas

Álgebra Booleana

- Na álgebra de boole, há somente dois estados (valores ou símbolos) permitidos
 - ► Estado **0** (zero)
 - ► Estado 1 (um)
- Em geral
 - O estado zera representa não, falso, aparelho desligado, ausência de tensão, chave elétrica desligada, etc
 - O estado um representa sim, verdadeiro, aparelho ligado, presença de tensão, chave ligada, etc

Tipos de portas lógicas

- ► AND (E)
- ► OR (OU)
- ► NOT(Inversora)
- ► NAND (Não E)
- ► NOR (Não OU)
- XOR (Exclusiva)

Função E (AND)

Funcionam da mesma forma que a conjunção E em nossa Língua

- Por exemplo, assuma a convecção no circuito
 - ► Chave aberta = 0; Chave fechada = 1
 - Lâmpada apagada = 0; Lâmpada acessa = 1

Função E (AND)

► Situações possíveis

Tabela Verdade

- A tabela verdade é um mapa onde são colocadas todas as possíveis interpretações (situações), com seus respectivos resultados para uma expressão
- Como visto no exemplo anterior, para 2 variáveis booleanas (A e B) existe 4 interpretações possíveis

Tabela Verdade da Função E (AND)

Α	В	(A.B)
0	0	0
0	1	0
1	0	0
1	1	1

Porta lógica E (AND)

- A porta E é um circuito que executa a função E
- A porta E executa a tabela verdade da função E
 - Portanto, a saída será 1 somente se ambas as entradas forem iguais a 1 (verdadeira); nos demais casos a saída será 0
- ► Representação

Porta lógica E (AND) S = A.B

Porta lógica E (AND)

- É possível entender o conceito de uma porta E para um número qualquer de variáveis de entrada
- Nesse caso, temos uma porta E com N entradas e somente uma saída
- A saída será 1 se somente as N entradas forem iguais a 1; nos demais casos, a saída será 0

Função OU (OR)

- Executa a soma (disjunção) booleana de duas ou mais variáveis binárias
- ► Por exemplo, assuma a convecção no circuito
 - ► Chave aberta = 0; Chave fechada = 1
 - Lâmpada apagada = 0; Lâmpada acessa = 1

Função OU (OR)

Função OU (OR)

► https://www.tinkercad.com/things/ho0i...

Porta Lógica OU(OR) S = A + B

Α	В	S=A+B
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	S=A+B
0	0	0
0	1	1
1	0	1
1	1	1

Função NÃO (NOT)

- Executa o complemento (negação de uma variável binaria)
 - Se a variável estiver em 0, o resultado da função é 1
 - Se a variável estiver em 1, o resultado da função é 0
- Essa função também é chamada de inversora

Função NÃO (NOT)

- Usando as mesmas convecções dos circuitos anteriores, tem se que:
 - Quando a chave é A esta aberta (A=0), passara corrente pela lâmpada e ela acendera (S=1)
 - Quando a chave A esta fechada (A=1) a lâmpada estará em curto circuito e não passara corrente por ela ficando apagada (S=0)

Função NÃO (NOT)

- Para representar a expressão
 - ► S = não A
- Adotaremos a representação
 - S = $n\tilde{a}o \bar{A}$ onde se lê S = $n\tilde{a}o A$
- Notações alternativas
 - ► S = A'
 - ► S = |- A
 - ► S = Ã

Tabela Verdade NÃO (NOT)

► A tabela verdade da função NÃO (NOT)

А	$ar{A}$
0	1
1	0

Porta lógica NAO (NOT) $S = \overline{A}$

Α	S=Ā
0	1
1	0

Α	S=Ā	
0	1	
1	0	

Função NÃO E (NAND)

 Composição da função E com a função NÃO, ou seja, a saída da função E é invertida

- Notações alternativas
 - $ightharpoonup S = \overline{(A.B)}$
 - ► S = (A.B)'
 - ► S= ⊦(A.B)

Tabela Verdade NÃO E (NAND)

► A tabela verdade da função NÃO E (NAND)

Α	В	A.B
0	0	1
0	1	1
1	0	1
1	1	0

Porta lógica NÃO E (NAND) S = $\overline{A.B}$

- A porta NÃO E (NE) é o bloco logico que executa a função NÃO E, ou seja, sua tabela verdade
- Representação

Função NÃO OU (NOR)

 Composição da função OU com a função NÃO, ou seja, a saída da função E é invertida

- Notações alternativas
 - $ightharpoonup S = \overline{(A+B)} = \overline{(A+B)}$
 - ► S = (A+B)'
 - ► S= ⊦(A+B)

Tabela Verdade NÃO OU (D)

► A tabela verdade da função NÃO E (NAND)

Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

Porta lógica NÃO OU (NOR) S = $\overline{A + B}$

- A porta NÃO OU (NOR) é o bloco logico que executa a função NÃO OU, ou seja, sua tabela verdade
- Representação

Função OU Exclusivo (XOR)

- A função OU Exclusivo fornece
 - ► 1 na saída quando as entradas forem diferentes entre si e
 - 0 caso o contrario
 - Notações alternativas
 - S = A ⊕ B
 - ightharpoonup S = \overline{A} . B + A. \overline{B}

Tabela Verdade OU Exclusivo (XOR)

► A tabela verdade da função OU Exclusivo(XOR)

Α	В	А⊕В
0	0	0
0	1	1
1	0	1
1	1	0

Porta lógica OU Exclusivo (XOR) S =A⊕B

- A porta NÃO OU (NOR) é o bloco logico que executa a função NÃO OU, ou seja, sua tabela verdade
- ► Representação

Porta lógica OU Exclusivo (XOR)

https://www.tinkercad.com/things/0Sjz8KFSK11

NOU (NOR)

MOD

S=A+B

S=A⊕B

Resumo dos Blocos lógicos Básicos

Nesu	iiilo dos bioco	s logicos b	usicos
Nome	Símbolo Gráfico	Função Algébrica	Tabela Verdade
E (AND)	A S=A.B	S=A.B S=AB	A B S=A.B 0 0 0 0 1 1 0 1 1 1 1
OU (OR)	A S=A+B	S=A+B	A B S=A+B 0 0 0 0 1 1 1 0 1 1 1 1
NÃO (NOT) Inversor	A ◆ S=Ā	S=Ā S=A'	A S=Ā 0 1 1 0

S=A+B

S=A+B

S=(A+B)' S= ¬(A+B) Abra site Logic.ly e ascenda uma lâmpada utilizando um interruptor para as seguintes expressões – AND, OR, NOR, NAND

https://logic.ly/demo/

Exemplo 1

Dada a expressão S = A.B.C realize sua simbologia gráfica e sua tabela verdade ► Simbologia gráfica de S = A.B.C

► Em Sistemas digitais para a definimos o tamanho da tabela verdade de acordo com a expressão lógica utilizamos a expressão 2^x. Ou seja, neste caso temos a expressão composta por A.B.C.

 Sendo assim, nossa tabela será 2³ = 8. Portanto nossa tabela terá o total de 8 linhas (Possibilidades) ► Tabela verdade expressão S = A.B.C

А	В	С	A.B.C
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Atividade

- Realize a simbologia lógica assim como a tabela verdade e indique a saída das seguintes expressões lógicas
 - ► S = A.B.C.D
 - ► S = A+B+C
 - ► S= A⊕B⊕C⊕D
 - ightharpoonup S= $\overline{(A.B.C)}$
 - ightharpoonup S = \bar{A} +B+ \bar{c} +D
 - ightharpoonup S = A \oplus \bar{B} \oplus \bar{C}

► A) Simbologia gráfica AND S = A.B.C.D

► A) Tabela verdade expressão AND S = A.B.C.D

Α	В	С	D	A.B.C.D
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

► B) Simbologia gráfica OR S = A+B+C

B) Tabela verdade expressão OR

		_	
A	В	С	A+B+C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

S = A+B+C

► C) Simbologia gráfica XOR S= A⊕B⊕C⊕D

► C) Tabela verdade expressão XOR $S = A \oplus B \oplus C \oplus D$

Α	В	С	D	$A \oplus B \oplus C \oplus D$
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

► Simbologia gráfica NAND $S = \overline{(A.B.C)}$

$$S = \overline{(A.B.C)}$$

► A) Tabela verdade expressão NAND S = A.B.C

Α	В	С	D	A.B.C.D
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

► A) Simbologia gráfica XOR \bar{A} +B+ \bar{c} +D

► A) Tabela verdade expressão NAND $S = \bar{A} + B + \bar{c} + D$

Α	В	С	D	\bar{A} +B+ \bar{c} +D
1	0	1	0	1
1	0	1	1	1
1	0	0	0	1
1	0	0	1	1
1	1	1	0	1
1	1	1	1	1
1	1	0	0	1
1	1	0	1	1
0	0	1	0	1
0	0	1	1	1
0	0	0	0	1
0	0	0	1	1
0	1	1	0	1
0	1	1	1	1
0	1	0	0	1
0	1	0	1	1

Circuitos Combinacionais

Introdução

Soluciona problemas em que necessitamos de uma resposta, quando acontecerem determinadas situações (entradas)

Para um projeto de circuito combinacional, segue-se alguns passos básicos

Introdução

São aqueles em que a saída depende única e exclusivamente das variáveis de entrada

Introdução

O meio-somador aceita dois dígitos binários em suas entradas e produz dois dígitos binários em suas saídas, um bit de soma e um bit de carry.

0	+	0	=	0
0	+	1	=	1
1	+	0	=	1
1	+	1	=	10

Α	В	Cout	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

 $\Sigma = soma$

 $C_{\text{out}} = \text{carry de saída}$

A e B = variáveis de entrada (operandos)

Somador Completo

- Contém dois bits de entrada e um carry de entrada
- Gera uma saída de soma e um carry de saída
- ► Diferença para o meio-somador é o carry de entrada

Α	В	C_{in}	Cout	Σ			
0	0	0	0	0			
0	0	1	0	1			
0	1	0	0	1			
0	1	1	1	0			
1	0	0	0	1			
1	0	1	1	0			
1	1	0	1	0			
1 1 1 1 1							
C _{in} = carry de entrada, algumas vezes indicado como CI							
$C_{\text{out}} = \text{carry de saída, algumas vezes indicado como } CO$							
$\Sigma = \text{soma}$							
A e B =	variáveis de	e entrada (oper	andos)				

Introdução

O somador completo é utilizado como circuito base para operações com maior quantidade de bits.

Somadores Paralelos de 4 bits

► Tabela-verdade para cada estágio de um somador paralelo de 4 bits

C _{n-1}	A_n	B_n	Σ_n	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- ► Implementado com 4 estágios de somadores completos
- ► Ordem de execução é do LSB p/ o MSB
- A saída de carry de cada somador é conectada à entrada de carry do próximo somador

Meio-Subtrator

Introdução

O meio-subtrator aceita dois dígitos binários em suas entradas e produz dois dígitos binários em suas saídas, um bit de saída e um bit de borrow.

Figura 4.44 - Tabela-verdade e diagrama de blocos do meio subtrator.

- Contém dois bits de entrada e um borrow de entrada
- ► Gera uma saída e um borrow de saída
- Diferença para o meio-subtrator é o borrow de entrada

Figura 4.46 - Tabela-verdade e diagrama de blocos do subtrator completo.

Associação de Subtratores

Codificador

- é um circuito lógico que possibilita a passagem de um código conhecido para um desconhecido
- Aceita um nível ativo em uma de suas entradas representando um dígito (decimal) e o converte em uma saída codificada (binário ou BCD -binary coded decimal).

	CÓDIGO BCD			
DÍGITO DECIMAL	A ₃	A ₂	A ₁	A ₀
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Codificador

Figura 4.8 - Sistema teclado - codificador BCD.

Decodificador

- É um circuito lógico que faz o inverso do codificador
- Detecta a presença de uma combinação específica de bits (código) em suas entradas indicando a presença desse código através de um nível de saída especificado.

DÍGITO DECIMAL	A ₃	CÕDIG A ₂	O BCD A _I	Ao	FUNÇÃO DE DECODIFICAÇÃO
0	0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$
1	0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$
2	0	0	1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$
3	0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$
4	0	1	0	0	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$
5	0	1	0	1	$\overline{A}_3 A_2 \overline{A}_1 A_0$
6	0	1	1	0	$\overline{A}_3 A_2 A_1 \overline{A}_0$
7	0	1	1	1	$\overline{A}_{3}A_{2}A_{1}A_{0}$
8	1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$
9	1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$

Decodificador e Display de 7 Segmentos

Decodificador e Display de 7 Segmentos

Decodificador

Figura 4.11 - Diagrama genérico de um decodificador.

D	С	В	Α	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X

Figura 4.14 - Tabela-verdade do decodificador BCD - 7 segmentos para display catodo comum.

Figura 4.15 - Circuito lógico do decodificador BCD - 7 segmentos para display catodo comum.

Multiplexador (Mux) ou Seletor

- ► É um circuito com 2ⁿ entradas de dados, uma saída e n entradas de controle (seleção)
- é um dispositivo que permite que informações digitais de diversas fontes sejam encaminhadas para uma única linha para serem transmitidas nessa linha para um destino comum

Α	В	Sel	F
0	X	0	0
1	X	0	1
X	0	1	0
X	1	1	1

- ► Realiza a função inversa dos multiplexadores
- ► Uma entrada direcionada a uma de várias saídas

F	Sel	Α	В		
0	0	0	-		
1	0	1	-		
0	1	-	0		
1	1	-	1		

Figura 4.31 - Circuito lógico do DEMUX de quatro canais.

Mux e Demux

UNEMAT

- ► Existe diferença?
- ► Qual(is) a(s) diferença(s)?

Comparador de 2 e 4 bits

- ► Comparam dois valores binários, bit a bit
 - ► Geram uma saída indicando se eles são iguais ou não
 - ▶ Pode indicar nas saídas se A>B(GT), A=B (EQ) ou A<B(LT)</p>
 - As saídas são mutuamente exclusivas, apenas uma delas pode estar ativa

		Tabela funcional					
			GT	EQ	LT		
A ₁ B ₁	A_0	B_0	(A>B)	(A=B)	(A <b< td=""></b<>		
A ₁ >B ₁	X	X	1	0	0		
A ₁ <b<sub>1</b<sub>	X	X	0	0	1		
A ₁ =B ₁	A	$A_0>B_0$		0	0		
A ₁ =B ₁	A	$A_0 < B_0$		0	1		
A ₁ =B ₁	A	$A_0=B_0$		1	0		

Comparador de 4 bits

TABELA-VERDADE

ENTRADAS DE COMPARAÇÃO			ENTRADAS DE CASCATEAMENTO		SAÍDAS				
A ₃ , B ₃	A ₂ , B ₂	A ₁ , B ₁	A ₀ , B ₀	I _{A>B}	I _{A<b< sub=""></b<>}	I _{A=B}	O _{A>B}	O _{A < B}	O _{A=B}
A ₃ >B ₃ A ₃ <b<sub>3 A₃=B₃ A₃=B₃ A₃=B₃ A₃=B₃ A₃=B₃</b<sub>	X X A ₂ >B ₂ A ₂ <b<sub>2 A₂=B₂ A₂=B₂ A₂=B₂ A₂=B₂</b<sub>	X X X X A ₁ >B ₁ A ₁ <b<sub>1 A₁=B₁</b<sub>	X X X X X X A ₀ >B ₀ A ₀ <b<sub>0</b<sub>	X X X X X	X X X X X	X X X X X	H L H L H L H -	L H L H L H L H	
A ₃ =B ₃ A ₃ =B ₃ A ₃ =B ₃ A ₃ =B ₃ A ₃ =B ₃	A ₂ =B ₂ A ₂ =B ₂	A ₁ =B ₁ A ₁ =B ₁ A ₁ =B ₁ A ₁ =B ₁ A ₁ =B ₁	$A_0 = B_0$	A L X L H	L H X L	^ L H L	H L H L	L H L	L L H L

H = Nível de tensão ALTO

L = Nível de tensão BAIXO

X = Irr elevante

- ► Um deslocador de 8 bits contém 8 entradas (D0,...,D7) e 8 saídas (S0,...,S7)
- ► A saída é a entrada deslocada de 1 bit
- ► A linha de controle C determina a direção do deslocamento, 0 para a esquerda e 1 para a direita
- ► Repare nas portas AND que ficam dependentes de C

Unidade Lógica e Aritmética (ULA)

- é uma das 3 principais partes de um processador
- Executa operações lógicas e aritméticas

Obrigado!!

Perguntas ???

- 1 FLOYD, Thomas L. "Sistemas Digitais Fundamentos e Aplicações". Bookman. 2007.
- 2 TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. Sistemas digitais: princípios e aplicações. São Paulo: Pearson Prentice Hall, 2007.
- 3 FERNANDES, E. M. L. "Álgebra de Boole e Circuitos Lógicos Básicos ". Curso de AOC UDESC, 2007. Cap III.
- 4 CASTRO, de F. C. C. "Eletrônica Digital". PUCRS Faculdade de Engenharia Elétrica, 2007. Cap.IV.
- 5 CALVI, C. "Nível da Lógica Digital: Circuitos Lógicos Digitais Básicos". UFES Departamento de Informática. 2006.
- 6 MONTEIRO, Mario A. Introdução à organização de computadores. Rio de Janeiro: LTC, 2010.
- 7 LOURENCO, A, C. CRUZ, E. C. A; FERREIRA, S. R, CHOVERI, J.