Theorem 1. If $\mathcal{G} = (G, \mathcal{L})$ is the minimizing right resolving presentation of an irreducible sofic shift X and X is and N-step shift of finite type, then $X_G \cong X_G$.

Proof. Let x, y be walks in X_G . If $\mathcal{L}_{\infty}(x) = \mathcal{L}_{\infty}(y)$, then for any i, the paths $x_{[i-n,i-1]}$ and $y_{[i-n,i-1]}$ present the same word. Because that word is of length N, the word is synchronizing for \mathcal{G} (from 3.4.17), so those paths end at the same vertex. Since $\mathcal{L}(x_{[i]}) = \mathcal{L}(y_{[i]})$, \mathcal{G} is right resolving, and $x_{[i-n,i-1]}$ and $y_{[i-n,i-1]}$ end at the same vertex, then $x_{[i]} = y_{[i]}$ and hence x = y, so \mathcal{L}_{∞} is injective. By definition, \mathcal{L}_{∞} is surjective. Therefore, \mathcal{L}_{∞} is bijective and a conjugacy from X_G to $X_{\mathcal{G}}$.