Vector Equation of a Plane

If a plane has the following properties:

- (a) direction defined by vectors $\mathbf{p}, \mathbf{q} \notin \mathbf{0}$ which are not parallel, and
- (b) containing a known point A with position vector a,

then its vector equation is given by

$$\mathbf{r} = \mathbf{a} + s\mathbf{p} + t\mathbf{q}$$
 where $s, t \in \mathbb{R}$.

Find the vector equation of the plane which is parallel to vectors \mathbf{p} and \mathbf{q} , and passes through point A.

(a)
$$\mathbf{p} = -2\mathbf{i} - 2\mathbf{k}$$
, $\mathbf{q} = -\mathbf{i} - 3\mathbf{k}$, $A: (1,1,1)$.
(b) $\mathbf{p} = \mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$, $\mathbf{q} = -2\mathbf{i} - \mathbf{j} - \mathbf{k}$, $A: (0,1,2)$.

Find the vector equation of the plane which passes through points A, B and C.

(a)
$$A:(1,1,1), B:(1,-3,2), C:(1,0,1)$$

(b)
$$A:(4,-1,2), B:(0,0,3), C:(-1,2,0).$$

Cartesian Equation of a Plane

The Cartesian equation of a plane, i.e.

P(x, y, z) = d can be obtained from the vector equation by first substituting $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and then eliminating all parameters.

Obtain the Cartesian equation from the vector equation.

(a)
$$\mathbf{r} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) + \lambda(-2\mathbf{i} - 2\mathbf{k}) + \mu(-\mathbf{i} - 3\mathbf{k}).$$

(b)
$$\mathbf{r} = (s - 2t)\mathbf{i} + (1 - 3s - t)\mathbf{j} + (2 - 2s - t)\mathbf{k}$$
.

From the examples, the Cartesian equation of a plane parallel to vectors $\mathbf{p} = (p_1 \quad p_2 \quad p_3)$ and $\mathbf{q} = (q_1 \quad q_2 \quad q_3)$ and passing through a point with position vector $\mathbf{a} = (a_1 \quad a_2 \quad a_3)$ is ax + by + cx = d.

The aim of this activity is to investigate the relationship between a, b, c & d with $\mathbf{p}, \mathbf{q} \& \mathbf{a}$. Follow the instruction:

(a) Write down the vector equation of the plane.

Set Induction

(b) From (a), obtain the Cartesian equation of the plane in the form ax + by + cz = d

(c) From (c), show that $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$ where \mathbf{n} is a vector to determine. What is \mathbf{n} ?

Normal Equation of a Plane

A plane can also be defined by a <u>normal AND</u> a known point.

If the plane contains a normal parallel to vector \mathbf{n} and a point with position vector \mathbf{a} , then the vector equation of the plane is $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$.

Find the normal equation and the Cartesian equation of the plane through the point (-2,4,6) with normal parallel to $6\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.

Find the normal equation and the Cartesian equation of the plane through the point (0,0,0) with normal parallel to $2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$. Is point (1,1,-1) on the plane?

Find the normal equation and Cartesian equation of the plane through the point (1,2,3) with normal parallel to $4\mathbf{i} + 5\mathbf{j} + 6\mathbf{k}$. Explain why (-2,1,1) is not in the plane.

State a vector of normal of the following plane, and rewrite the equation in normal form.

(a)
$$x - 2y + z = -1$$
 (b) $x + z = 2$

(c)
$$-3x + y = 0$$
 (d) $3x + 2y + z = 1$

Example.

A plane is parallel to vectors \mathbf{p} and \mathbf{q} and contains point A. Find a vector perpendicular to the plane. Then, find the equation of the plane in vector, normal and cartesian forms.

(a)
$$\mathbf{p} = -\mathbf{i} - \mathbf{j}$$
, $\mathbf{q} = 3\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$, $A : (0, 0, 3)$.

(b)
$$p = i + 2j - k$$
, $q = 3i - j + k$, $A : (2, 0, -3)$.

Find, in vector, normal and Cartesian forms, the equation of the plane that contains the line $\mathbf{r} = \mathbf{i} - \mathbf{k} + \lambda(-\mathbf{i} + \mathbf{j} + \mathbf{k})$ and parallel to the vector $4\mathbf{j} + 6\mathbf{k}$

Example.

A plane contains points *A*, *B* and *C*. Find a vector perpendicular to the plane. Then, find the equation of the plane in vector, normal and Cartesian forms.

(i)
$$A:(0,1,2)$$
, $B:(1,-2,0)$ and $C:(-2,0,1)$.

(ii)
$$A:(1,-1,0)$$
, $B:(0,1,-1)$ and $C:(-1,0,1)$.

Homework

Please attempt all the questions in the following slides.

Questions are to be discussed on the next day of the instruction.

Example.

A plane is parallel to vectors $-\mathbf{i} + \mathbf{j}$ and $\mathbf{j} - \mathbf{k}$ and contains point (1, -1, -3). Find a vector perpendicular to the plane. Then, find the equation of the plane in vector, normal and cartesian forms.

A plane contains line $\mathbf{r} = (3+2\lambda -1-3\lambda 2-\lambda)$ and is parallel to the vector (4-32). Find the equation of the plane in vector, normal and Cartesian forms.

Example.

A plane contains points *A*, *B* and *C*. Find a vector perpendicular to the plane. Then, find the equation of the plane in vector, normal and Cartesian forms.

(i)
$$A:(2,1,0)$$
, $B:(1,-3,0)$ and $C:(4,3,3)$.

(ii)
$$A:(1,0,0), B:(0,0,0)$$
 and $C:(0,1,0)$.

Show that the equation of the plane containing the points with position vectors $a\mathbf{i}$, $b\mathbf{j}$ and $c\mathbf{k}$ is given

by
$$\mathbf{r} \cdot \left(\frac{1}{a}\mathbf{i} + \frac{1}{b}\mathbf{j} + \frac{1}{c}\mathbf{k}\right) = 1.$$

 l_1 : passing through point P(2,1,-1) and direction $\mathbf{i}-\mathbf{j}$.

 l_2 : passing through point Q(5,-2,-1) and direction $\mathbf{j}+2\mathbf{k}$.

- (a) Write down equations for l_1 and l_2 in $\mathbf{r} = \mathbf{a} + \mu \mathbf{b}$.
- (b) Show that Q lies on l_1 .
- (c) Find the acute angle between l_1 and l_2 .
- (d) Find the cartesian equation for the plane containing l_1 and l_2 .