Controlo Automático - Projecto

Bloqueio Neuromuscular em Anestesia

Daniela Silva Diogo Cordeiro Hugo Sales Tiago Ferrero

2020

Introdução

Este trabalho tem como objetivo estudar o comportamento da administração de *rocurinium bromide* a uma amostra de pacientes [1]. Esta apresentação contém uma breve explicação sobre o que foi feito em cada um dos exercícios, que se encontra mais pormenorizado no relatório. Para fins desta análise recorremos ao *Matlab*.

O comportamento do rocurinium bromide é dado pela seguinte função de transferência [2]:

$$G(s) = \frac{40 \,\alpha^3}{s^3 + 15 \,\alpha \,s^2 + 54 \,\alpha^2 \,s + 40 \,\alpha^3}$$

Exercício 1.a)

Table 1: Amostra de pacientes

α	γ
0.0219	1.2746
0.0528	2.5362
0.0352	1.5503
0.0293	1.4728
0.0308	1.9499
0.0330	2.4823
0.0282	1.2615
0.0295	1.2390
0.0329	2.5669
0.0394	2.0425

Exercício 1.b)

Exercício 1.c)

Exercício 2.a)

Aplicando o critério de Routh-Hurwitz, obtemos:

Daqui, facilmente vemos que os valores da primeira coluna têm todos o mesmo sinal se $15\alpha>0$, $\frac{154\alpha^2}{3}>0$ e $\frac{40\alpha^3}{3}>0$. Assim, temos que $\alpha>0$.

Exercício 2.b)

Exercício 2.c)

O ganho estático obtido foi 5.318.

Exercício 2.d)

Exercício 2.e) e 2.f)

Os polos dominantes são -4α e α

O comportamento é semelhante ao da função de transferência exata, apenas com magnitude diferente. Este modelo aproximado não tem o desempenho pretendido, já que muito poucos pacientes chegam a atingir o nível de NBM de referência com a administração do bólus inicial com o valor dado.

Exercício 3.a)

Representação matricial do modelo de espaço de estados obtido:

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -40\alpha^3 & -54\alpha^2 & -15\alpha \end{bmatrix} x + \begin{bmatrix} B \\ 0 \\ 0 \\ 40\alpha^3 \end{bmatrix} u$$
 (1)

$$y = \begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ D \end{bmatrix} u$$
 (2)

Exercício 3.b)

Pelo teste de Kalman, conclui-se que o sistema é controlável. Como os pólos do sistema se localizam todos no semiplano esquerdo do plano complexo, então o sistema é estável

Exercício 3.c)

Representação de R(t) ao bólus inicial, para o paciente médio

Exercício 4.a)

Exercício 4.b)

Co(t) com feedback, aplicando um bólus inicial e infusão contínua

Exercício 4.c)

Exercício 4.d)

$$M^{-T} = (M^{-1})^{T} = \begin{bmatrix} 1 & -15 \alpha & -54 \alpha^{3} + 225 \alpha^{2} \\ 0 & 1 & -15 \alpha \\ 0 & 0 & 1 \end{bmatrix}$$
 (3)

$$C^{-1}(A,B) = \begin{bmatrix} 103/(80\,\alpha) & 3/(8\,\alpha^2) & 1/(40\,\alpha^3) \\ 3/(8\,\alpha^2) & 1/(40\,\alpha^3) & 0 \\ 1/(40\,\alpha^3) & 0 & 0 \end{bmatrix}$$
(4)

$$\therefore K = (\alpha - a) M^{-T} C^{-1}$$
 (5)

Exercício 4.e)

Conclusão

Neste trabalho foram realizados quatro exercícios com recurso a métodos computacionais e a uma análise analítica manual. Agora, temos uma melhor compreensão prática dos conhecimentos adquiridos nesta disciplina bem como o seu alcance. Acreditamos assim que os objetivos foram alcançados.

Referências

- [1] ROC REAL.mat
- [2] Silva, J, Mendonça, T and Rocha, P., Pole placement based on model identification for automatic delivery of Rocuronium. 2019 IEEE International Conference on Systems, Man, and Cybernetics, Bari, October 2019.