Measuring Public Perception of Apple and Google on Twitter with Machine Learning

Project Overview

✓ Objective

To analyze how people feel about Apple and Google products on Twitter and transform public opinions into actionable business insights.

✓ Key Question

How do customers perceive Apple and Google based on what they share online?

✓ Method

We used Machine Learning models to classify tweets as **positive**, **negative**, or **neutral** and extract trends in public sentiment.

Business Context & Data

- Public sentiment directly impacts brand reputation, sales, and customer loyalty. Understanding emotions expressed on social media helps companies to:
- Detect issues early (e.g., product complaints, bugs),
- Identify what customers love,
- Improve marketing and communication strategies.
- ✓ Source: Twitter posts mentioning Apple or Google
- Features: tweet text, brand, sentiment label
- Size: about 9000 of tweets labeled as positive, negative or neutral

Why Predict Sentiment?

Transform public conversations on Twitter into actionable insights for Apple and Google.

Key Reasons:

Monitor Brand Health:

Track real-time public opinion to detect shifts in perception early.

Improve Products & Services:

Identify recurring issues and prioritize product updates based on customer feedback.

Optimize Marketing Strategies:

Highlight what customers love and address negative perceptions with targeted campaigns.

✓ Support Data-Driven Decisions:

Provide marketing, product, and CX teams with measurable KPIs derived from unstructured social media data.

Model Results — Sentiment Prediction

✓ Multiclass Classification (Positive / Neutral / Negative):

Model	Accuracy	Macro F1	Key Insights
Logistic Regression	66.1%	0.58	Balanced across sentiments
Random Forest	67.7%	0.52	Highest accuracy, weaker on minority classes
SVM	65.8%	0.58	Best trade-off between precision and recall
XGBoost	68.1%	0.48	Highest accuracy but struggles with imbalance

arphi Insights:

- •Neutral sentiment dominates and is easiest to predict.
- •Positive and negative tweets are harder due to imbalance.
- •SVM and Logistic Regression provide the most consistent performance.

Binary Classification (Positive vs. Negative)

Model	Accuracy	Macro F1	Key Insights
Logistic Regression	82.9%	0.73	Best class balance
Random Forest	86.9%	0.65	Highest accuracy overall
SVM	82.4%	0.72	Consistent and reliable
XGBoost	86.2%	0.65	Strong but slightly less balanced

⊘ Insights:

- •Performance improved significantly after removing the neutral class.
- •Logistic Regression is the most balanced model.
- •Random Forest and XGBoost achieve top accuracy but favor the majority class.

Key Findings — What the Data Reveals

- •Neutral sentiment is the most common.
- Positive opinions dominate but negatives highlight key issues.
- •Negative feedback reveals improvement opportunities.
- •ML models effectively track public opinion trends.
- •Text features are the strongest predictors.

Business Recommandations

✓ Enhance Product Features

Fix issues often mentioned in negative tweets.

Improve features that impact customer satisfaction.

✓ Optimize Marketing Campaigns

Highlight features users love. Use sentiment insights for targeted campaigns.

✓ Support Strategic Decisions
Include sentiment KPIs in product planning.

Next Steps

✓ Handle Class Imbalance

✓ Build Real-Time Sentiment Dashboard

✓ Explore Advanced NLP Models (e.g., BERT)

✓ Continuously Retrain with New Data

Thank You

Contact

For more information, feel free to reach out:

in LinkedIn: Micka Louis

Email: mickalouis25@gmail.com

WhatsApp: +509 4615 3943

Github: https://github.com/Micka-Louis/ds-project-phase-4.git