Capítulo 6 Momentum lineal y colisiones

10 Problemas de selección - página 87 (soluciones en la página 124)

9 Problemas de desarrollo - página 92 (soluciones en la página 125)

Sección 6.A

Problemas de selección

180. Desde un referencial inercial se observa un cuerpo en reposo que luego explota en dos pedazos de masas M_1 y M_2 , y momentos respectivos P_1 y P_2 . Si $M_1 < M_2$ se cumple que

- A) $|P_1| < |P_2|$
- B) $P_1 = +P_2$
- C) $|P_1| > |P_2|$
- D) $P_1 = -P_2$
- E) $|P_1| = |P_2|$ pero $P_1 \neq \pm P_2$

181. Según un observador inercial una partícula de masa M_1 se encuentra en reposo en el origen y otra de masa $M_2 = 2M_1$ se dirige hacia la primera moviéndose por el eje x. Luego de la colisión las componentes y de las velocidades de M_1 y M_2 son v_{1y} y v_{2y} respectivamente. Si no actúan fuerzas externas sobre el sistema de las dos partículas se puede afirmar que

- A) $|v_{1y}| = |v_{2y}|$
- B) $v_{1y} = 2v_{2y}$
- C) $2 |v_{1y}| = |v_{2y}|$
- D) $v_{1y} = v_{2y} = 0$.
- E) $v_{1y} = -2v_{2y}$

182. Un bloque desliza libremente sobre una superficie horizontal y lisa. Un observador fijo en Tierra deja caer verticalmente un trozo de masa que se adhiere al bloque. Luego de la colisión y según el observador

- A) el bloque cambiará la dirección de su movimiento.
- B) el bloque seguirá moviéndose en la misma dirección con menor rapidez.
- C) el bloque seguirá moviéndose en la misma dirección con mayor rapidez.
- D) el bloque no cambiará su rapidez.
- E) no podemos afirmar ninguna de las otras 4 opciones.

183. Un observador inercial ve dos partículas aisladas, de masas $M_1 = 2 \,\mathrm{kg}$ y $M_2 = 4 \,\mathrm{kg}$, y velocidades $v_1 = -3 \,\hat{u}_y$ m/s y $v_2 = +3 \,\hat{u}_x$ m/s respectivamente. Las partículas coliden y quedan unidas siendo v la rapidez del conjunto. El valor de v en m/s es

- A) $\sqrt{5}$
- B) $\sqrt{3}$
- C) 3
- D) 1
- E) $3\sqrt{2}$

184. Una pelota de masa M=2 kg se suelta del reposo a una altura $h_1=5$ m del piso; golpea el piso y rebota hasta una altura $h_2=(5/4)$ m. El impulso que el piso ejerció sobre la pelota en unidades Newton×segundo es

- A) 10 hacia abajo
- B) 10 hacia arriba
- C) 30 hacia abajo
- D) 30 hacia arriba
- E) 75 hacia arriba

185. Un proyectil de masa m incide sobre un bloque de masa M=2m con dirección de 60° por debajo de la horizontal y rapidez v, ver figura. El proyectil se incrusta en el bloque, el cual se encuentra inicialmente en reposo sobre una superficie lisa y horizontal. Sea v' la rapidez del bloque luego de la colisión; se cumple que v'/v es igual a

- A) 1/3
- B) 1
- C) 1/4
- D) 1/2
- E) 1/6

186. La fuerza $\mathbf{F} = \pi \cos(\pi t/9) \hat{\mathbf{x}} - t^2 \hat{\mathbf{y}} + \hat{\mathbf{z}}$ produce un impulso \mathbf{I} entre los tiempos t = 0 y t = 3, todas las unidades están en el Sistema Internacional. Se cumple que

- A) $I = (27\pi/2) \hat{x} 27 \hat{y} + 3 \hat{z}$.
- B) $I = (9\sqrt{3}/2) \hat{x} 9 \hat{y} + 3 \hat{z}$.
- C) $I = (\pi\sqrt{3}/2)\hat{x} 27\hat{y} + 3\hat{z}$.
- D) $I = (9/2)\hat{x} 9\hat{y} + 3\hat{z}$.
- E) ninguna de las expresiones anteriores es correcta.

187. Un bloque de masa m=2 kg se encuentra en la parte superior de una cuña curva, lisa, de masa M = 6 kg que a su vez se apoya sobre una superficie horizontal y lisa; ambos cuerpos parten del reposo (figura 1). El bloque desliza sobre la cuña y la abandona con una velocidad respecto al piso v = 2 m/s dirigida hacia la derecha (figura 2). La altura h de la cuña es

- A) ninguna de las siguientes
- B) (2/15) m
- C) (4/15) m
- D) (1/5) m
- E) (4/5) m

Figura 2

188. Dos bloques de masas $M_A < M_B$ están unidos entre sí por medio de un resorte comprimido y sin masa. Los bloques, en reposo, se encuentran apoyados sobre una superficie lisa, horizontal y supuesta inercial. Cuando el sistema se deja libre el resorte se expande y se cae al suelo. Sean P_A, P_B, E_{cA} y E_{cB} las magnitudes de los momentos lineales y energías cinéticas de los bloques respecto a la superficie cuando el resorte cae. Entonces

- A) $P_A = P_B$ y $E_{cA} < E_{cB}$
- B) $P_A = P_B$ y $E_{cA} = E_{cB}$
- C) $P_A = P_B \text{ y } E_{cA} > E_{cB}$
- D) $P_A < P_B$ y $E_{cA} < E_{cB}$
- E) $P_A < P_B$ y $E_{cA} = E_{cB}$

189. Una esfera de masa 2M está inicialmente en reposo y suspendida del techo (inercial) por medio de una cuerda. Una bala de masa M se incrusta en la esfera y la colisión dura un tiempo despreciable. Sean E_{ci} y E_{cf} las energías cinéticas totales del sistema bala-esfera en los instantes justo antes y justo después de la colisión respectivamente. Se cumple que

- A) $E_{cf} = E_{ci}/3$
- B) $E_{cf} = 3E_{ci}$
- C) $E_{cf} = E_{ci}/2$
- D) $E_{cf} = 2E_{ci}$
- E) $E_{cf} = E_{ci}$

190. Un proyectil de masa m=10 g tiene velocidad $v=10^3$ i cm/s cuando choca con un bloque de masa M=490 g que está en reposo inicial sobre una superficie lisa y horizontal. La bala penetra 10 cm dentro del bloque. La magnitud de la fuerza de roce promedio entre la bala y el bloque, en g cm/s², es

A) 49×10^4

Nota: Aquí la fuerza promedio es la fuerza constante que realiza el mismo trabajo.

- B) 10^4
- C) 50×10^4
- D) $(50/49) \times 10^4$
- E) 51×10^4

191. El diagrama muestra la colisión de dos partículas sobre una superficie horizontal y lisa. La rapidez de M_1 cambia durante el choque de 20 m/s a 10 m/s. Si $M_1 = 0.2$ kg y el choque dura $10^{-2}s$ entonces la fuerza promedio que M_1 ejerce sobre M_2 durante el choque

A) no está entre las otras opciones

B) es
$$100\sqrt{2}(3\hat{\mu}_x + \hat{\mu}_y)N$$

- C) no se puede calcular sin datos sobre M_2
- D) $300\sqrt{2}$ N hacia la derecha

E) es
$$100\sqrt{2}(\hat{\boldsymbol{\mu}}_x + 3\hat{\boldsymbol{\mu}}_y)N$$

192. Una pelota de masa m se lanza contra una pared. Justo al chocar y justo al rebotar la velocidad de la pelota es de módulo v y, como se muestra en la figura, forma un ángulo α con la normal a la pared. El impulso que la pared le imparte a la pelota es

A)
$$I = -2mv \operatorname{Sen}(\alpha) \hat{\boldsymbol{\mu}}_x$$

B)
$$I = mv(-Cos(\alpha)\hat{\boldsymbol{\mu}}_x + Sen(\alpha)\hat{\boldsymbol{\mu}}_y)$$

C)
$$I = 2mv \cos(\alpha) \hat{\boldsymbol{\mu}}_x$$

D)
$$I = 2mv \operatorname{Sen}(\alpha)\hat{\boldsymbol{\mu}}_y$$

E)
$$I = -2mv \cos(\alpha) \hat{\boldsymbol{\mu}}_x$$

Sección 6.B

Problemas de desarrollo

193. Desde cierto sistema de referencia inercial se observa que dos partículas se mueven sobre una mesa lisa con velocidades constantes. Sus masas y velocidades respectivas son $M_1=1$ kg, $M_2=2$ kg, $v_1=(4\hat{x}+3\hat{y})$ m/s y $v_2=-2\hat{x}$ m/s. En cierto instante las partículas coliden entre sí y luego permanecen unidas.

- a. Calcule el vector velocidad del sistema de las dos partículas después de la colisión.
- **b.** Halle el porcentaje de energía cinética perdida durante la colisión.

194. Un cuerpo de masa $m_2 = 2$ kg y rapidez $v_2 = 5$ m/s colide con otro cuerpo en reposo de masa $m_1 = 1$ kg. Los cuerpos se encuentran sobre una superficie horizontal lisa. Como consecuencia del choque m_1 adquiere una velocidad de módulo 2 m/s en una dirección de 60° respecto a la velocidad inicial de m_2 , ver figura.

- **a.** Halle el vector velocidad de m_2 luego de la colisión y el ángulo θ .
- **b.** Halle el impulso I que siente m_2 durante la colisión. Si la misma duró un tiempo $\Delta t = 0.01$ s encuentre la fuerza promedio que m_1 le aplicó a m_2 durante el choque.

195. Un bloque de masa M se encuentra sobre una superficie horizontal lisa y se apoya contra un resorte de constante elástica k que no está deformado. El otro extremo del resorte está sujeto a una pared. Se desea medir la rapidez v de un proyectil de masa m. Para ello se dispara el proyectil a quemarropa contra el bloque, ver figura. El proyectil se incrusta en el bloque penetrando completamente antes que el bloque tenga tiempo de moverse apreciablemente. Luego el resorte comienza a comprimirse siendo x la máxima compresión.

- **a.** Encuentre la rapidez v del proyectil.
- **b.** Cuando el proyectil penetra en el bloque se disipa una energía Q en forma de calor por efecto del roce entre la bala y el bloque. Halle el cociente entre Q y la energía final del sistema.

196. Dos partículas de masas $M_1 = 2$ kg y $M_2 = 5$ kg están atadas a los extremos de dos cuerdas ideales, tensas y de longitud L = 0.8 m cada una, ver figura. Inicialmente las dos partículas están en reposo, la cuerda atada a la #1 está horizontal mientras que la otra coincide con la vertical. Se suelta la partícula #1 y choca con la #2. Luego del choque la partícula #2 alcanza una altura máxima de h = 0.2 m medida desde el punto más bajo de su trayectoria.

- a. Halle la rapidez de la partícula #1 justo antes de la colisión.
- **b.** Halle la rapidez con la cual la partícula #2 inicia su movimiento ascendente.
- c. Halle la velocidad de la partícula #1 justo después de la colisión (indique su módulo y dirección).
- **d.** ¿Es el choque elástico? Justifique su respuesta.

197. Un cañón de masa M es capaz de disparar balas de masa m con una rapidez v relativa al cañón. Suponga que el cañón se coloca sobre una superficie completamente lisa.

Inicialmente el cañón se encuentra en reposo respecto a un observador inercial y luego dispara una bala horizontalmente en la dirección \hat{u}_x , ver figura.

Halle las velocidades v_m y v_M , respecto al observador, que adquieren la bala y el cañón apenas se realiza el disparo.

- **198.** Un joven de masa M está montado sobre un trineo de masa m que desliza sobre un lago congelado y liso. El trineo desliza en dirección i con rapidez v_0 respecto al lago. En cierto momento el joven salta del trineo en dirección j y con rapidez v respecto al trineo.
- **a.** Halle los vectores velocidad del joven y del trineo respecto al lago una vez que el joven abandona el trineo.
- **b.** Calcule la energía cinética ganada o perdida por el sistema joven-trineo durante el salto.
- **199.** La figura muestra una partícula de masa $m_1 = m$ sujeta a una cuerda tensa e ideal de longitud L y un bloque de masa $m_2 = am$ sobre una superficie horizontal. La partícula se suelta del reposo estando la cuerda horizontal; en el punto más bajo de su trayectoria circular la partícula golpea elásticamente el bloque que se encuentra en reposo. Suponga que $a \ge 1$.
- **a.** Halle la velocidad de cada cuerpo justo después de la colisión.
- **b.** Calcule la altura hasta la cual asciende nuevamente la partícula.
- **c.** ¿Qué resultados se obtienen en las partes **a** y **b** en los casos a = 1 y $a \gg 1$?

200. Los bloques de la figura, con masas M_1 y M_2 , están unidos a un resorte ideal (sin masa) de constante elástica k y se apoyan en una superficie horizontal lisa.

En el instante mostrado los bloques están en reposo, el resorte tiene su longitud natural y una bala de masa m se dirige al primer bloque con una velocidad v = vi.

$$\stackrel{m}{\longrightarrow} \stackrel{v}{\longrightarrow} \stackrel{M_1}{\longrightarrow} \stackrel{k}{\longrightarrow} \stackrel{M_2}{\longrightarrow}$$

La bala penetra y se queda en el interior del bloque M_1 ; supondremos que penetra completamente antes que el bloque tenga tiempo de desplazarse apreciablemente. Llamaremos sistema al conjunto formado por los bloques, la bala y el resorte. La energía del sistema es $E = E_c + kx^2/2$ donde E_c es la energía cinética total de los componentes del sistema y x es la compresión o elongación del resorte respecto a su longitud natural.

- a. Halle el momentum lineal del sistema antes y después de la colisión.
- **b.** Determine la velocidad v_{JD} del bloque M_1 y de la bala justo después de la colisión. Halle la energía del sistema E_{JD} justo después de la colisión.
- c. Note que cuando el resorte está completamente comprimido la velocidad relativa entre los bloques es nula. Encuentre la velocidad $v_{\rm compr}$ de los bloques y de la bala cuando el resorte está completamente comprimido.
- **d.** Halle la energía cinética $E_{c,compr}$ del sistema cuando el resorte está completamente comprimido y calcule la máxima compresión del resorte $x_{Máx}$.
- **201.** Desde un acantilado a una altura h=125 m de la playa se lanza horizontalmente un proyectil con rapidez inicial 100 m/s, ver figura. El proyectil tiene una masa M=5 kg y dos segundos después del lanzamiento explota en dos pedazos de masas $M_1=3$ kg y $M_2=2$ kg. Un segundo después de la explosión el pedazo M_1 cae a 200 m de la base del acantilado. Halle la posición del segundo pedazo para ese instante.

202. Dos jóvenes (puntuales) de masas $M_1 = 80 \text{ kg y } M_2 = 60 \text{ kg}$ se encuentran sobre una pista de hielo completamente lisa, unidos por una cuerda tensa ideal y en reposo inicial según un observador inercial. De pronto el joven #2 decide acortar distancia recogiendo cuerda a un ritmo de 0.7 m cada segundo.

Las preguntas que siguen se refieren a la nueva etapa del sistema que se inicia con la acción del joven #2.

- $\mathbf{a.}$ Halle la velocidad \boldsymbol{v} del joven #2 respecto al joven #1.
- **b.** Sean V_1 y V_2 las velocidades de los jóvenes respecto al observador. Escriba la relación que existe entre V_1 , V_2 y v. Luego determine V_1 y V_2 .
- **c.** Pasados 10 segundos ¿cuanto se han acercado los jóvenes? ¿cuanto y en que dirección se ha desplazado cada joven según el observador?
- **d.** Según el observador inercial el sistema de los jóvenes adquirió energía cinética ¿de donde provino esa energía?

94 C. Di Bartolo

- **203.** Una esfera de masa M cuelga en reposo de un hilo ideal. Debajo de la esfera una bala de masa m se dirige hacia su centro. La bala posee una velocidad v = vj cuando choca con la esfera y luego penetra completamente antes de que la esfera tenga tiempo de comenzar a ascender debido al impacto.
- **a.** Halle la altura máxima h a la cual asciende la esfera (ver figura).
- **b.** Determine el trabajo realizado por la fuerza de roce entre la bala y la esfera.

204. La figura muestra dos bloques de masas $M_1 = 4 \,\mathrm{kg}$ y $M_2 = 1 \,\mathrm{kg}$ que se deslizan sobre una superficie horizontal y lisa. Los bloques se acercan con la misma rapidez $|v_1| = |v_2| = v = 10 \,\mathrm{m/s}$. En su camino se encuentra un resorte sin masa de constante elástica $k = 500 \,\mathrm{N/m}$.

- a. Determine la velocidad de los bloques cuando el resorte alcance su compresión máxima.
- **b.** Determine la compresión máxima que sufre el resorte.
- **c.** Sin hacer las cuentas explique como calcularía las velocidades finales que tienen los bloques cuando abandonan el resorte (cuando este ya no esté comprimido).

Sección 7.K

Momentum lineal y colisiones (Selección)

	182	185
	В	Е
180	183	186
D	A	В
181	184	187
Е	D	С
188	191	
С	В	
189	192	
A	Е	
190		
A		

124 C. Di Bartolo

Sección 7.L

Momentum lineal y colisiones (Desarrollo)

193.

a.

$$oldsymbol{v} = \hat{oldsymbol{y}}$$
 m/s .

b.

$$E_{c,i} = \frac{33}{2} J$$
, $E_{c,f} = \frac{3}{2} J$, Porcentaje $= \frac{E_{c,i} - E_{c,f}}{E_{c,i}} \times 100 = 90.9\%$.

194.

a.

$$v_2 = \frac{1}{2} (9 \,\hat{x} - \sqrt{3} \,\hat{y}) \text{ m/s}, \quad \theta = \arctan(\sqrt{3}/9) \approx 10.89^{\circ}.$$

b.

$$I_2 = -(\hat{x} + \sqrt{3}\,\hat{y}) \text{ Ns}, \quad F_{\text{promedio}} = -(100\,\hat{x} + 100\sqrt{3}\,\hat{y}) \text{ N}.$$

195.

a.

$$v = \sqrt{\frac{m+M}{m^2} kx^2}.$$

b.

$$\frac{Q}{E_f} = \frac{M}{m} \,.$$

196.

a.

$$v_1 = \sqrt{2gL} = 4 \text{ m/s}.$$

b.

$$v_2' = \sqrt{2gh} = 2 \text{ m/s}.$$

c.

 $v_1' = 1 \text{ m/s}$ dirigida hacia la izquierda.

d. El choque no es elástico porque durante la colisión cambia la energía cinética. La energía cinética justo antes de la colisión es $E_c = 16$ J y justo después es $E_c' = 11$ J.

197.

$$\boldsymbol{v}_m = \frac{M}{M+m} \boldsymbol{v} \, \hat{\boldsymbol{u}}_x \,, \quad \boldsymbol{v}_M = -\frac{m}{M+m} \boldsymbol{v} \, \hat{\boldsymbol{u}}_x \,.$$

198.

a.

$$oldsymbol{v}_{ ext{Joven}} = oldsymbol{v}_0 \, oldsymbol{i} + rac{m}{M+m} oldsymbol{v} \, oldsymbol{j} \, , \quad oldsymbol{v}_{ ext{Trineo}} = oldsymbol{v}_0 \, oldsymbol{i} - rac{M}{M+m} oldsymbol{v} \, oldsymbol{j} \, .$$

b.

$$E_{co}=rac{M+m}{2}v_0^2 \quad {
m y} \quad E_{cf}=rac{M+m}{2}v_0^2+rac{Mmv^2}{2(M+m)}$$
 $\Rightarrow \quad \Delta E_c=rac{Mmv^2}{2(M+m)} \quad {
m se} \; {
m gana} \; {
m energia} \; {
m cinética}.$

199. Llamaremos \hat{u}_x al vector unitario que apunta hacia la izquierda.

a.

$$v_1 = -\frac{a-1}{a+1}\sqrt{2gL}\,\hat{u}_x, \quad v_2 = \frac{2}{a+1}\sqrt{2gL}\,\hat{u}_x.$$

b.

$$h = \left(\frac{a-1}{a+1}\right)^2 L.$$

c.

caso
$$a=1$$
: $v_1=0$, $v_2=\sqrt{2gL}\,\hat{\boldsymbol{u}}_x$, $h=0$.
caso $a\gg 1$: $v_1\approx -\sqrt{2gL}\,\hat{\boldsymbol{u}}_x$, $v_2\approx 0$, $h\approx L$.

200.

- a. No hay fuerzas externas al sistema luego $P = P_{\text{Antes}} = P_{\text{Después}} = mv i$.
- **b.** Justo después (JD) del choque M_2 está en reposo, M_1 y m tienen la misma rapidez $v_{\rm JD}$ y como el resorte no está comprimido la energía $E_{\rm JD}$ es sólo cinética. Luego

$$v_{\rm JD} = \frac{P}{m+M_1} = \frac{mv\,i}{m+M_1}\,, \quad E_{\rm JD} = \frac{1}{2}(m+M_1)v_{\rm JD}^2 = \frac{m^2v^2}{2(m+M_1)}\,.$$

c. Cuando el resorte está completamente comprimido los componentes del sistema tienen todos la misma velocidad dada por

$$oldsymbol{v}_{ ext{compr}} = rac{oldsymbol{P}}{m+M_1+M_2} = rac{mv\,oldsymbol{i}}{m+M_1+M_2}\,.$$

d.

$$E_{\text{c,compr}} = \frac{1}{2}(m + M_1 + M_2)v_{\text{comp}}^2 = \frac{m^2v^2}{2(m + M_1 + M_2)}.$$

La energía cinética después de la colisión se conserva $E_{JD} = E_{c,compr} + kx_{Máx}^2/2$, luego

$$x_{\text{Máx}} = \sqrt{\frac{M_2 m^2 v^2}{k(m+M_1)(m+M_1+M_2)}}.$$

201. El pedazo M_2 se encuentra a una altura de 200 m respecto a la playa y a una distancia horizontal del acantilado de 450 m.

202.

a.

$$\boldsymbol{v} = -0.7\,\hat{\boldsymbol{x}}\,\frac{\mathrm{m}}{\mathrm{s}}$$

b.

$$v = V_2 - V_1$$
, $V_1 = \frac{-M_2}{M_1 + M_2} v = 0.3 \,\hat{x} \, \frac{\text{m}}{\text{s}}$, $V_2 = \frac{M_1}{M_1 + M_2} v = -0.4 \,\hat{x} \, \frac{\text{m}}{\text{s}}$.

c. Se han acercado 7 m. El joven #1 se ha desplazado 3 m hacia la derecha y el segundo joven 4m hacia la izquierda.

d. La energía proviene de la energía que gastó el joven #2 para dar el primer tirón a la cuerda, luego no precisa seguir tirando de ella.

203.

a.

$$h = \frac{m^2 v^2}{2g(m+M)^2}.$$

b.

Trabajo realizado por el roce
$$=-\frac{Mmv^2}{2(m+M)}$$
.

204.

a. La velocidad de los bloques es la misma, está dirigida hacia la derecha y su magnitud es

$$V = \frac{M_1 - M_2}{M_1 + M_2} v = 6 \frac{m}{s}.$$

b.

$$x = \sqrt{\frac{1}{k}(M_1 + M_2)(v^2 - V^2)} = 0.8 \text{m}.$$

b. Se trata de un choque elástico. Las ecuaciones que determinan las velocidades finales son la de conservación del momento y la de conservación de la energía cinética.

$$M_1 v_1 + M_2 v_2 = M_1 v_1' + M_2 v_2', \qquad \frac{1}{2} M_1 v_1^2 + \frac{1}{2} M_2 v_2^2 = \frac{1}{2} M_1 (v_1')^2 + \frac{1}{2} M_2 (v_2')^2.$$

C. Di Bartolo