VSY - Integrační voltmetr - dokumentace

Vojtěch Michal

28. listopadu 2021

1 Stanovení hodnot součástek

1.1 Parametry integrátoru

Pro invertující integrátor s operačním zesilovačem a prvky R, C platí závislost výstupního napětí $u_o(t)$ na vstupním $u_i(t)$ daná vztahem

$$u_o(t) = -\frac{1}{C} \int_0^t \frac{u_i(\tau)}{R} d\tau = \frac{-1}{R \cdot C} \int_0^t u_i(t) dt.$$
 (1)

Protože je integrátor po zakončení každé integrační periody vrácen do nuly (kondenzátor C je vybit), lze bez újmy na obecnosti předpokládat nulové počáteční podmínky. Operační zesilovače mají symetrické napájení \pm 5 V a je silně nežádoucí, aby se jejich výstup dostal blízko oblasti saturace. Proto je potřeba volit parametry R, C tak, aby zvolená doba integrace při připojení maximálního vstupního napětí nedosáhla saturace integrátoru.

Pro zvolenou integrační dobu $T_1=40$ ms volím maximální žádoucí napětí $U_{o_{\max}}=3,3$ V, neboť poté bude možné pro případné ladění obvodu použít ADC na dalším nucleu. Dále volíme C=220 nF. Pro vstupní rozsah $u_i\in\langle -2,0\rangle$ V platí

$$3,3 \text{ V} \ge U_{o_{\max}} = -\frac{1}{R \cdot C} \int_0^{T_1} u_{i_{\min}}(\tau) d\tau = \frac{1}{R \cdot C} \cdot T_1 \cdot |u_{i_{\min}}|, \qquad (2)$$

což je rovnice pro jednu neznámou R. Po úpravě

$$R \ge \frac{T_1 \cdot |u_{i_{\min}}|}{U_{o_{\max}} \cdot C}. \tag{3}$$

Pro výše uvedené parametry je to například

$$R \ge \frac{0.04 \text{ s} \cdot 2 \text{ V}}{3.3 \text{ V} \cdot 220 \cdot 10^{-9} \text{ F}} \approx 110 \text{ k}\Omega.$$
 (4)

S použitím $R=200~\mathrm{k}\Omega$ budeme mít dvojnásobnou jistotu, že bude bezpečné na výstup integrátoru připojit ADC.

1.2 Parametry regulátoru

K napěťové referenci TL431 je potřeba doplnit kondenzátor (doporučeno $C_b = 22~\mu\text{F}$) a rezistor R_R , kterým potečou cca 2 mA při napěťovém úbytku 2,5 V. Použitelná hodnota je tedy $R_R = 470~\text{R}$.

2 Struktura aplikace

Mikrokontroler třemi logickými signály S2, S1, S0 (souhrně MUX_SEL) nastavuje multiplexor na vstupu analogového front-endu. Mapování hodnot MUX_SEL na zvolené kanály a jejich význam jsou v tabulce 1. Pro detailnější porozumění významu jednotlivých kanálů konzultujte schéma zapojení. Očekávané mapování signálů na piny Nucleo desky je uvedeno v tabulce 2.

Vstupní signál $\mathbf{MCU_IN}$ je přes ochranný rezistor připojen na výstup komparátoru. Detekováním hran na signálu $\mathbf{MCU_IN}$ lze identifikovat průchody napětí na integrátoru U_{int} nulou. Na mikrokontroleru je signál připojen na timer, jenž zajištuje přesné odměřování času mezi hranami. Pro více informací viz 6

S2	$\mathbf{S1}$	S0	jméno kanálu	význam
0	0	0	U_{in}	neznámé vstupní napětí
0	0	1	GND	hladina nulového potenciálu
0	1	X	U_{ref}	referenční napětí cca 2,51 V, generované obvodem TL431
1	X	X	$U_{ m FB}$	feedback z výstupu komparátoru

Tabulka 1: Mapování hodnot MUX_SEL na vstupní kanály multiplexoru

signál	periferie	pin STM32	pin Arduino konektoru
MCU_IN	TIM2_CH1, timer trigger	PA0	A0
MCU_IN	TIM2_CH3, input compare	PA9	D8
S1	TIM2_CH2, output compare	PA1	A1
S2	GPIO	PC1	A4
$\mathbf{S0}$	GPIO	PC0	A5
${f USART2_TX}$	$\operatorname{USART2}$	PA2	N/A (přes ST-Link do PC)
${f USART2_RX}$	$\operatorname{USART2}$	PA3	N/A (přes ST-Link do PC)

Tabulka 2: Pinout mikrokontroleru

3 Komunikační rozhraní

Zařízení komunikuje po sběrnici USART, nastavení 115200 baud, 8 datových bitů, jeden stop bit, bez parity. V rámci ST-Linku je přítomen USART<->USB převodník, který zajišťuje překlad komunikace pro PC. Všechny příkazy přijímané zařízením nerozlišují velká a malá písmena a jsou dlouhé jeden znak s výjimkou výzvy ke konfiguraci, která je detailně dokumentována v sekci 4 V tabu

4 Konfigurace

5 Nastavení periferií

Všechny vnitřní sběrnice v mikrokontroleru (AHB, APBx) běží na frekvenci 8 MHz.

Pro časování fáze soft start je použita periferie TIM7, konfigurována na one pulse mode; update request source je pouze přetečení vnitřního counteru, aby nebyla vyvolávána planá přerušení. Použitý prescaler je 8 (čítání s mikrosekundovým rozlišením). V auto-reload registru ARR je vždy uložena hodnota délky fáze soft start v mikrosekundách (v základu 800). V periferii i NVIC je povoleno přerušení.

Pro časování integrace je použita periferie TIM2. Jako interní trigger je zvolen neinvertovaný filtrovaný vstup z kanálu 1 (TI1FP1), timer je provozován v gated mode, kdy inkrementování registru CNT je podmíněno vysokou úrovní na interním triggeru (kanál 1 je připojen na signál MCU_IN). V periferii i jádře je povolen požadavek na přerušení od třetí capture/compare jednotky. Capture/compare unit 3 má jako vstup TIM2_CH3, bez použití prescaleru nebo filtrování, vstup je invertován (jednotka citlivá na sestupnou hranu). Capture/compare jednotka 2 je v režimu output compare. V základu vynucuje nízkou úroveň, v době měřicího cyklu je přepnuta na mód PWM2, kdy je výstup v logické nule pro CNT <= CCR2. V CCR2 je zapsána délka doby t1 v mikrosekundách (v základu 40 000).

Komunikace s řídicím počítačem je realizována periferií USART2, baudrate prescaler 69 $\frac{7}{16} = 69.4375$. Skutečný baudrate proto je $\frac{8\cdot10^6}{69.4375} = 115211.52$ bps, relativní chyba 0.01 %. Je povolen vysílač i přijímač, aktivováno přerušení při příjmu znaku. Nastavení 8 datových bitů, 1 stop bit a bez parity je pro použitou periferii základní a není tak potřeba měnit reset value registrů.

Pro určování času běhu aplikace je použita periferie SysTick, jako zdroj hodin je sběrncie AHB bez předděliček; je povoleno přerušení, perioda nastavena na 1 ms.

příkaz	funkce	popis
\mathbf{S}	Start/Stop	Spustí či zastaví měření s aktuálním nastavením
\mathbf{H}	Help	Vypíše seznam rozpoznávaných příkazů
\mathbf{C}	Configure	Vstoupí do konfiguračního módu (viz 4)

kanál	barva	signál
1	žlutá	napětí na integrátoru $U_{\rm int}$
2	zelená	výstup komparátoru
3	oranžová	výstup multiplexoru (aktuálně integrované napětí)

Tabulka 3: Mapování kanálů osciloskopu na signály obvodu pro obrázky 1 a další

6 Detailní popis chování aplikace

Pro snazší vysvětlení chování zařízení jsou připojeny obrázky z osciloskopu připojeného na obvod během testování. Na všech následujících obrázkách je použité stejné mapování kanálů osciloskopu uvedené v tabulce 3. Mezi obrázky se však liší časová základna i měřítko na vertikální ose. Velikost časové základny je na každém obrázku vidět na horním okraji uprostřed. Měřítko na svislé ose je zobrazeno v levém dolním rohu obrázků. Časové průběhy signálů během dvou po sobě jdoucích měřicích cyklů jsou vykresleny na obrázku 1, do kterého byly doplněny i názvy jednotlivých fází měřicího cyklu. Dílčí fáze převodu jsou popsány dále.

V režimu idle je aktivován feedback z komparátoru zpět na vstup integrátoru a výstup integrátoru $U_{\rm int}$ osciluje poblíž nuly s malou amplitudou (pod 1 mV). Oscilují rovněž výstup komparátoru a ve fázi s ním výstup sledovače. Toto chování je vidět na levé straně obrázku 2. Režim idle je zvolen při inicializaci zařízení, mezi měřicími cykly a po skončení měření.

Na základě příkazu ze seriové linky odstartuje převodník proces měření napětí:

- Ze stavu *idle* přejde software do stavu *soft start*.
- Vynucením aktivní (vysoké) úrovně na TIM2_CH2 připojené na $\bf S1$ se připraví mux na připojení referenčního napětí $U_{\rm ref}$.
- Uvedením ${f S2}$ do logické nuly se deaktivuje feedback. Tím se připojí na výstup muxu referenční napětí $U_{\rm ref}.$
- Spustí se TIM7 odpočítávající dobu specifikovanou parametrem soft_start_delay (v základu 800 μs).

Po uplynutí specifikované doby vyvolá TIM7 přerušení. Protože bylo integrováno kladné napětí, výstup integrátoru je nyní pod nulou a tedy ořezaný signál z komparátoru **MCU_IN** je v logické nule. V obsluze přerušení:

- Software přejde ze stavu *soft start* do stavu *measuring*. Ten není dále dělen, protože toto je poslední zásah ze strany jádra; dále bude zbytek měřicího procesu řídit kompletně hardware periferie TIM2.
- Software vygeneruje update TIM2 (vynulování registru CNT, případně aktualizace preloaded CCRx registrů).
- Aktivují se capture/compare jednotky peripferie TIM2.
- TIM2_CH2 se přepne z vynucené aktivní úrovně na PWM2 mód (TIM2_CH2 = 0 pro TIM2_CNT <= TIM2_CCR2). Tím je signál **S1** v nule a multiplexer se přepne z referenčního napětí na neznámé napětí U_{in} .

Přepnutím na neznámé záporné napětí začíná výstupní napětí integrátoru růst. V okamžiku průchodu $U_{\rm int}$ hladinou nulového potenciálu přeběhne signál ${\bf MCU_IN}$ do logické jedničky, což spustí čítač uvnitř TIM2. Timer čeká na uběhnutí předem nastavené doby $T_1=40~{\rm ms}$ v TIM2_CCR2. Po jejich uplynutí nastane compare event, výstup TIM2_CH2 (S1) jde do logické jedničky, čímž se místo neznámého napětí připojí na výstup multiplexoru kladné referenční napětí $U_{\rm ref}$. Začíná se odměřovat doba T_2 proměnlivé délky. Integrováním kladného napětí začně poklesat napětí $U_{\rm int}$, až opět dosáhne hladiny nulového potenciálu. Tehdy nastane sestupná hrana na signálu ${\bf MCU_IN}$, která je detekována input capture jednotkou TIM2_CH3. Nastává capture event, aktuální hodnota TIM2_CNT je uložena to TIM2_CCR3 a jádro dostane požadavek na přerušení. Protože ${\bf MCU_IN}$ je po sestupné hraně v logické nule, TIM2 se v týž okamžik sám deaktivuje.

V obsluze přerušení od TIM2 jsou vyčteny hodnoty registrů TIM2_CCR3 a TIM2_CCR2. Díky nastavení slave mode controlleru tak, aby timer čítal jen a tehdy, když je logický signál $\mathbf{MCU_IN}$ v logické jedničce, tedy výstup komparátoru je na kladném napájení, tedy $U_{\mathrm{int}} > 0$ V, obsahuje registr TIM2_CCR3 přesně dobu mezi vzestupným a sestupným průchodem napětí U_{int} nulou, tedy platí

$$TIM2_CCR3 = T1 + T2. (5)$$

Obrázek 1: Časové průběhy signálů během měření $U_{\rm in}~\approx~U_{\rm FB}$

Obrázek 2: Detail časového průběhu signálů během fáze $soft\ start$

Obrázek 3: Detail časového průběhu signálů během fáze ${\cal T}_1$

Obrázek 4: Detail časového průběhu signálů během fáze ${\cal T}_2$

Neboť hodnota TIM2_CCR2 byla přesně použita pro vygenerování doby T1, jejich odečtením je získána délka doby T2 v cyklech systémových hodin (8 cyklů na mikrosekundu, 125 ns na cyklus). Následně je nastavením signálu ${\bf S2}$ aktivován na multiplexoru feedback. Systém přechází do stavu idle.

Na obrázku 5 je příklad časových průběhů měřicích cyklů v případě, kdy je měřené napětí blízké referenčnímu napětí $U_{\rm ref}$. Pomocí vertikálních kurzorů i časové základny je ukázáno, že doba odintegrovávání T_2 je přibližně rovno době $T_1=40~{\rm ms}$.

Obrázek 5: Měřicí cyklus pro $U_{\rm ref} \approx U_{\rm in}$