

Optimisation Combinatoire Projet

« Autour du problème d'ordonnancement sur machines parallèles identiques »

INSTANCES

Deux benchmarks d'instances sont évoqués :

- Les instances du problème d'ordonnancement sur 2-machines parallèles identiques avec contraintes de Mold ; nous les appellerons instances A.
- Les instances du problème d'ordonnancement sur 2-machines parallèles identiques avec contraintes de Mold et des intervalles d'indisponibilité; nous les appellerons instances B.

Le code C++ ayant servi à générer ces instances vous sera également fourni (si besoin).

• Différence entre les instances

Il y a quelques différences nécessaires à connaître entre les instances :

Pour les instances A:

- *Le nbre de job* N={50,100,150,200,250,300,400}
- Le nbre de molds $M=\{2, 5, 10, 15, 20\}$
- 6 classes sont considérées variant la durée d'exécution totale du job notée t_j selon les lois uniforme et Binomial.
 - Class 1: $t_i \in U(1, 10)$; Class 2: $t_i \in U(1, 20)$; Class 3: $t_i \in U(1, 50)$.
 - Class 4: $t_i \in B(1, 10)$; Class 5: $t_i \in B(1, 20)$; Class 6: $t_i \in B(1, 50)$.
- Pour chaque nombre de jobs et pour chaque mold et pour chaque classe, on génère 10 instances.
- En tout, on a (7*5*6*10) 2100 instances A.

Une instance de A sera donnée sous cette forme :

20 5 1 10 6 6 6 3 9 2 9 10 2 9 8 6 9 2 10 10 5 5 3 7 1 2 3 4 5 3 3 1 5 5 1 2 5 4 4 2 2 4 4 5

1^{ere} ligne : 20 nbre de jobs 5 nbre de molds 1 classe 1 10 le numéro de l'instance

2^{eme} ligne : la durée d'exécution de chaque job

3^{eme} ligne : mold associé à chaque job

Pour les instances B:

- *Le nbre de job* N={15,30,60,120,240,480,960}

- Le nbre de molds $M=\{2, 5, 10, 15, 20, 30\}$

 6 classes sont considérées variant la durée d'exécution totale du job notée t_j selon les lois uniforme et Binomial.

• Class 1: $t_i \in U(1, 10)$; • Class 2: $t_i \in U(1, 20)$; • Class 3: $t_i \in U(1, 50)$.

• Class 4: $t_i \in B(1, 10)$; • Class 5: $t_i \in B(1, 20)$; • Class 6: $t_i \in B(1, 50)$.

- Pour chaque nombre de jobs et pour chaque mold et pour chaque classe, on génère 10 instances.

- En tout, on a (3*6*10+5*6*10+5*6*6*10) 2280 instances B.

Une instance de B sera donnée sous cette forme :

20 5 1 10 6 6 6 3 9 2 9 10 2 9 8 6 9 2 10 10 5 5 3 7 1 2 3 4 5 3 3 1 5 5 1 2 5 4 4 2 2 4 4 5 5 3 4 7 9

1^{ere} ligne : 20 nbre de jobs 5 nbre de molds 1 classe 1 10 le numéro de l'instance

2^{eme} ligne : la durée d'exécution de chaque job

3^{eme} ligne : mold associé à chaque job

4^{eme} ligne : intervalle d'indisponibilité après chaque utilisation de chaque mold.