Claims.

1. A chiral catalyst comprising the reaction product of a group 8 transition metal compound a chiral phosphine and a chiral diamine of formula (I)

in which R¹, R², R³ or R⁴ are independently hydrogen, a saturated or unsaturated alkyl, or cycloalkyl group, an aryl group, a urethane or sulphonyl group and R⁵, R⁶, R⁷ or R⁸ are independently hydrogen, a saturated or unsaturated alkyl or cycloalkyl group, or an aryl group, at least one of R¹, R², R³ or R⁴ is hydrogen and A is a linking group comprising one or two substituted or unsubstituted carbon atoms.

- 2. A catalyst according to claim 1 wherein the group 8 metal compound is a compound of ruthenium.
- 3. A catalyst according to claim 1 or claim 2 wherein the chiral phosphine is a chiral bis(phosphine).
- 4. A catalyst according to claim 3 wherein the chiral bis(phosphine) is P-Phos, tol-P-Phos or xyl-P-Phos.
- 5. A catalyst according to any one of claims 1 to 4 wherein R¹, R², R³ and R⁴ are the same or different and are selected from hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl or 4-methylphenyl groups.
- 6. A catalyst according to any one of claims 1 to 4 wherein R¹ and R² are linked or R³ and R⁴ are linked so as to form a 4 to 7-membered ring structure incorporating the nitrogen atom.
- 7. A catalyst according to any one of claims 1 to 6 wherein R⁵, R⁸, R⁷ and R⁸ are the same or different and are selected from hydrogen, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, cyclohexyl or substituted or unsubstituted phenyl or naphthyl groups.
- 8. A catalyst according to any one of claims 1 to 6 wherein one or more of R⁵, R⁶ R⁷ or R⁸ form one or more ring structures with the linking group A.

- 9. A catalyst according to any one of claims 1 to 8 wherein a substituting group on the carbon atom of linking group A is alkyl (C1-C20), alkoxy (C1-C20) or amino or forms one or more ring structures incorporating one or more carbon atoms making up the linking group.
- 10. A catalyst according to any one of claims 1 to 4 wherein the chiral diamine is of formula (II)

$$R^5$$
 R^6 O O R^7 R^8 R^1 R^2 R^3 R^4

wherein B is a linking group comprising one or two substituted or unsubstituted carbon atoms.

- 11. A catalyst according to claim 10 wherein R¹, R², R³, R⁴ are hydrogen, R⁵, R⁶, R⁷ and R⁸ are hydrogen or alkyl groups and B comprises C(CH₃)₂ or (CH₃)(OCH₃)C-C(CH₃(OCH₃).
- 12. A catalyst according to claim 10 or claim 11 wherein the chiral diamine is selected from 3-Aminomethyl-5-6-dimethoxy-5-6-Dimethyl[1,4]-dioxan-2-yl]-methylamine (DioBD) or 2,3-O-isopropylidenebutane 1,4 diamine (DAMTAR).
- 13. A catalyst according to any one of claims 1 to 4 wherein the chiral diamine is of formula (III)

$$R^{5}$$
 R^{7}
 R^{8}
 R^{1}
 R^{2}
 R^{3}
 R^{4}

wherein R' is a protecting group.

- 14. A catalyst according to claim 13 wherein R¹, R² and R⁵ are hydrogen, R³ and R⁴ are hydrogen or alkyl, R⁷ and R⁸ are hydrogen, alkyl or aryl and R' is selected from an alkyl, aryl, carboxylate, amido or sulphonate protecting group.
- 15. A catalyst according to claim 13 or claim 14 wherein the chiral diamine is 4-Amino-2-aminomethylpyrrolidine-1-carboxylic acid *tert*-butyl ester (PyrBD).

16. A catalyst according to any one of claims 1 to 4 wherein the chiral diamine is of formula (IV)

$$R^5$$
 R^6 R^7 R^8 R^1 R^2 R^3 R^4 R^4

- 17. A catalyst according to claim 13 wherein R¹, R², R³, R⁴, R⁶, R⁷ are hydrogen and R⁵ and R⁸ are aryl or substituted aryl groups.
- 18. A catalyst according to claim 16 or claim 17 wherein the chiral diamine is Diphenyl-1,3-propanediamine (Dppn).
- 19. A catalyst according to any one of claims 1 to 4 wherein the chiral diamine is of formula (V).

wherein n = 1 or 2.

- 20. A catalyst according to claim 15 wherein R⁵ and R⁸ are hydrogen.
- 21. The use of catalysts of claims 1 to 20 for the asymmetric hydrogenation of ketones and imines.
- 22. The use of catalysts according to claim 21 for the hydrogenation of alkyl ketones of formula RCOR' in which R and R' are substituted or unsubstituted, saturated or unsaturated C1-C20 alkyl or cycloalkyl which may be linked and form part of a ring structure.

23. A chiral diamine of formula (III)

$$R^5$$
 R^7
 R^8
 R^1
 R^2
(IIII)
 R^3
 R^4

wherein R¹, R², R³ or R⁴ are independently hydrogen, a saturated or unsaturated alkyl, or cycloalkyl group, an aryl group, a urethane or sulphonyl group and R⁵, R⁷ or R⁸ are independently hydrogen, a saturated or unsaturated alkyl or cycloalkyl group, or an aryl group, at least one of R¹, R², R³ or R⁴ is hydrogen and R' is a protecting group.

- 24. A diamine according to claim 23 wherein R¹, R² and R⁵ are hydrogen, R³ and R⁴ are hydrogen or alkyl, R⁷ and R⁸ are hydrogen, alkyl or aryl and R' is selected from an alkyl, aryl, carboxylate, amido or sulphonate protecting group.
- 25. A diamine according to claim 23 or claim 24 wherein the chiral diamine is 4-Amino-2-aminomethylpyrrolidine-1-carboxylic acid *tert*-butyl ester (PyrBD).