Written Homework 3

Name(s): Elliot Marshall

3.1.10. Determine if each of the following propositions is true or false. Justify each conclusion.

- b. True. For each integer a, if $a \equiv 2 \mod 8$, then $a^2 \equiv 4 \mod 8$. let $a \in \mathbb{Z}$ and $a \equiv 2 \mod 8$, then $8 \mid a - 2$. Since $n \mid m \to n \mid ml$ for some $n, m, l \in \mathbb{Z}$, then $\exists n \text{ S.T. } n = (a-2)*(a+2) = (a^2-2^2) = (a^2-4) \equiv 4 \mod 8$.
- c. For each integer a, if $a^2 \equiv 4 \mod 8$, then $a \equiv 2 \mod 8$. False. There are a total of 8 cases for a: $a = \{0, 1, 2, 3, 4, 5, 6, 7\}$. The one case that fufills the premis but not the conclusion is when a = 6. $\therefore a^2 = 36 \rightarrow 36 \mod 8 \equiv 4$ but $6 \mod 8 \equiv 6 \not\equiv 2$
- 3.2.10. Is the following proposition true or false? Justify.

For each integer n, n is even if and only if 4 divides n^2 .

True.

First, since integer exponentiation is the equivalent of repetitive multiplication, $n^2 = n * n$. Second, odd numbers square to odd numbers: let x be an odd integer, then by defination, $x = 2k + 1, k \in \mathbb{Z}$. Then:

$$x^{2} = (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1$$

$$= 2j + 1$$

Where $j \in \mathbb{Z}$ since integers are closed under addition and multiplication and therefore x^2 is odd.

If $4 \mid n^2$, then $2 \mid n^2$ since $2 \mid 4$ and $n \mid m \to n \mid ml$ for some $n, m, l \in \mathbb{Z}$

- 3.3.6. Are the following statements true or false? Justify.
 - c. For every pair of real numbers x and y, if x + y is irrational, then x is irrational and y is irrational.
 - d. For every pair of real numbers x and y, if x + y is irrational, then x is irrational or y is irrational.

3.4.7. Is the following proposition true or false? Justify your conclusion with a counterexample or a proof.

For each integer n, if n is odd, then $8|(n^2-1)$.