The Title of Your Report

John G Deere[†] and Budy F. Jones[‡]
EEE4120F
University of Cape Town
South Africa
[†]DRXJOH042 [‡]JNSBUD099

Abstract—The abstract should be a one or two paragraph summary of your paper. It is meant to sell your paper to interested buyers.

I. Introduction

If you are new to LATEX, I would suggest reading [1]. If you want to use Microsoft Word (or one of its many clones), you can download the official IEEE conference template from [2]. The TA and tutors can provide LATEX support. Use Word at your own risk.

The introduction is where you set the scene. Here you reference other, related work, as well as a summary relating to how you improve upon said work [3]. In the sense of the practical reports, the introduction will summarise the experiment the practical is all about.

As a general rule of thumb, keep the introduction to the first column of the first page and don't put any sub-sections into it, but do so with care – obviously if you cannot set the scene and introduce the issue in such a limited space it is better to have a clearer, rather than too short and unclear, introduction.

Remember that, for bibliography citations to work, you have to include running BibTeX in the compile chain. My TeXstudio [4] compile chain for "Build & View" is

```
txs:///bibtex | txs:///pdflatex |
txs:///bibtex | txs:///pdflatex |
txs:///view-pdf-internal
```

General guide to an excellent introduction:

- Put your work in context and set the scene appropriately (most important!).
- Around 80 to 90% of your references are typically cited in the introduction, background and literature review of your paper (engineering papers often don't have an explicit literature review section).
- The four key pieces of the introduction:
 - 1) The subject/topic;
 - 2) Past work done in the area (related to your focus) and what is lacking;
 - 3) The novelty / benefit of your contribution (i.e. preferably emphasising that it contributes new insights and knowledge);

4) The plan ahead for the remainder of the paper¹.

A. Drafting Markup

When the template is in draft mode, you can use various helper macros, as illustrated below:

When compiled with \Draftfalse, the content of these macros are removed from the output, except something that needs to be rephrased.

II. METHODOLOGY

In this section you should describe the method of pursuing your investigation or experiment.

A. Hardware

Include detail such as the hardware used. It's generally a good idea to include a block diagram at this point, such as the one presented in Fig. 1. This figure was drawn in InkScape [5]. When you want to import an InkScape figure (SVG format) into LATEX, simply save it to PDF (use the drawing extents as the media box area) and include the figure.

B. Implementation

Also mention the implementation source code:

```
# You can include inline Matlab / Octave code
x = linspace(0, 2*pi, 1000);
y = sin(x);
plot(x, y); grid on;
```

Or you could turn it into a float: see listing 1. Floats are tables, figures and listings that appear at a different place than in the source code. This template is set up to put floats at the top of the next column, as prescribed by the IEEE article specification.

Only list what is relevant. Don't give too much detail - just enough to show what you've done. This template supports the following languages:

- Matlab (Octave)
- GLSL
- OpenCL
- Verilog
- VHDL
- TCL

¹a caveat to this: some authors and reviewers sometimes don't like the 'plan ahead', which is usually just a paragraph. They may think it redundant and wasting space, which may be valid for a short paper but the 'plan ahead' often improves the readability and provides an effective bridge towards the rest of the paper.

Fig. 1. Test setup used to test the implementation [6].

```
__kernel void Multiply(
__global float* A, // Global input buffer
__global float* B, // Global input buffer
__global float* Y, // Global output buffer
const int N // Global output buffer
const int i = get_global_id(0); // 1st dimension index
const int j = get_global_id(1); // 2nd dimension index

// Private variables
int k;
float f = 0.0;

// Kernel body
for(k = 0; k < N; k++) f += A[i*N + k] * B[k*N + j];
Y[i*N + j] = f;
}
```

Listing 1. OpenCL kernel to perform matrix multiplication

- Python
- C++ (use the name 'Cpp')

C. Experiment Procedure

Furthermore, include detail relating to the experiment itself: what did you do, in what order was this done, why was this done, etc. What are you trying to prove / disprove? You can include hypotheses, such as presented in Hypothesis H0 below.

Hypothesis H0:

All scientific papers contain hypotheses. An hypothesis is generally not longer than a single paragraph, but the command does support multiple paragraphs if required.

III. RESULTS

The results section is for presenting and discussing your findings. You can split it into subsections if the experiment has multiple sections or stages.

A. Figures

Include good quality graphs (see Fig. 2). These were produced by the Octave code presented in listings 2 and 3. You can play around with the PaperSize and PaperPosition variables to change the aspect ratio. An easy way to obtain more space on a paper is to use wide, flat figures, such as Fig. 3.

Always remember to include axes text, units and a meaningful caption in your graphs. When typing units, a μ sign has a tail! The letter "u" is not a valid unit prefix. When typing resistor values, use the Ω . Other units include "', "C' and '‰'.

Fig. 2. The correlation coefficient as a function of sample count.

```
function FormatFig(X, Y, File);
set(gcf, 'PaperUnits' , 'inches');
set(gcf, 'PaperOrientation', 'landscape');
set(gcf, 'PaperSize' , [8, 4]);
set(gcf, 'PaperPosition' , [0, 0, 8, 4]);

set(gca, 'FontName', 'Times New Roman');
set(gca, 'Position', [0.1 0.2 0.85 0.75]);

xlabel(["\n" X]);
ylabel([Y "\n\n"]);

setenv("GSC", "GSC"); # Eliminates stupid warning
print(...
[File '.pdf']...
'-dpdf'...
);
end
```

Listing 2. Octave function to format a figure and save it to a high quality PDF graph

```
figure;  # Create a new figure
# Some code to calculate the various variables to plot...
plot(N, r, 'k', 'linewidth', 4); grid on; # Plot the data
xlim([0 360]); # Limit the x range
ylim([-1 i]); # Limit the y range
set(gca, 'xtick', [0 90 180 270 360]); # Set the x labels

FormatFig(... # Call the function with:
    'Phase shift [\circ]',... # The x title
    'Correlation coefficient',... # The y title
    ['r_vs_N;_f=' num2str(f) ';_P=' num2str(P)]... # Format the file name
);
close all; # Close all open figures
```

Listing 3. Example of how to use the FormatFig function

Fig. 3. Oscilloscope measurement showing physical line signals on both ends of a transmission line during master switch-over [6].

B. Tables

Tables are often a convenient means by which to specify lists of parameters. An example table is presented in table I. You can use Tablesgenerator to make your LATEX tables.

C. Pictures and Screen-shots

When you include screen-shots, pdfIATEX supports JPG and PNG file formats. PNG is preferred for screen-shots, as it is a loss-less format. JPG is preferred for photos,

TABLE I My Informative Table

Heading 1	Heading 2	Heading 3
Data	123	321
Data	456	654
Data	789	987

as it results in a smaller file size. It's generally a good idea to resize photos (not screen-shots) to be no more that 300 dpi, in order to reduce file size. For 2-column article format papers, this translates to a maximum width of 1024. Never change the aspect ratio of screen-shots and pictures!

It is highly recommended to make use of the \Figure macro for figures. It puts all the formatting tweaks in one place, so that you don't need to update all the individual figure inclusion points when you want to do a styling update. The file name is used for the LATEX label, such as "Fig. 4".

D. Maths

LATEX has a very sophisticated maths rendering engine, as illustrated by equation 1. When talking about approximate answers, never use ± 54 V, as this implies "positive or negative 54 V". Use ≈ 54 V or ~ 54 V instead.

$$y = \int_0^\infty e^{x^2} \mathrm{dx} \tag{1}$$

IV. CONCLUSION

The conclusion should provide a summary of your findings. Many people only read the introduction and conclusion of a paper. They sometimes scan the tables and figures. If the conclusion hints at interesting findings, only then will they bother to read the whole paper.

You can also include work that you intend to do in future, such as ideas for further improvements, or to make the solution more accessible to the general user-base, etc.

Publishers often charge "overlength article charges" [7], so keep within the page limit. In EEE4120F we will simulate overlength fees by means of a mark reduction at 10% per page. Late submissions will be charged at 10% per day, or part thereof.

References

- [1] T. Oetiker, Η. Partl, I. Hyna, E. Schlegl, "The SoShort Introduction LATEX 2_{ε} , Not to https://tobi.oetiker.ch/lshort/lshort.pdf, Jul. 2015, version
- [2] "IEEE Conference Paper Templates," http://www.ieee.org/ conferences_events/conferences/publishing/templates.html.
- [3] A. Baboon, B. Charles, D. Ester, and F. Generalson, "An Amazing Title," Their Not-so-awesome University, Technical Report, Apr. 1492.
- B. van der Zander, J. Sundermeyer, and T. Hoffmann, "TeXstudio - A LATEX Editor," https://www.texstudio.org/.
- [5] "InkScape Website," http://www.inkscape.org/.

- [6] J. Taylor and J. G. Hoole, "Robust Protocol for Sending Synchronisation Pulse and RS-232 Communication over Single Low Quality Twisted Pair Cable," in Proceeding of ICIT. Taiwan: IEEE, Mar. 2016.
- "Voluntary Page and Overlength Article Charges," http://www.ieee.org/advertisement/2012vpcopc.pdf, 2014.