OSRF - ROS / Gazebo updates

Louise Poubel November 2015 Santiago

Overview

- ROS
 - What is ROS
 - Where are we now?
 - Example communication
 - Where do we want to go?
- Gazebo
 - Overview
 - Latest features
 - Latest projects

actuate

- motors
- hydraulic joints
- turn on lights
- start recording a video
- ...

- cameras
- LIDARs
- sonars
- microphones
- encoders
- pressure sensors
- ...

- motors
- hydraulic joints
- turn on lights
- start recording a video
- ...

- cameras
- LIDARs
- sonars
- microphones
- encoders
- pressure sensors
- ...

- computer vision
- signal processing
- motion planning
- SLAM
- ...

- motors
- hydraulic joints
- turn on lights
- start recording a video
- ...

- cameras -
- **LIDARs**
- sonars
- microphones
- encoders
- pressure sensors

- computer vision
- signal processing
- motion planning
- **SLAM**

- motors
- hydraulic joints
- turn on lights
- start recording a video

ROS Overview

Libraries and tools for programming robots

Used in labs, classrooms and companies around the world

ROS Statistics

Metrics as of July 2015 ():

- Unique IPs downloading ROS debs: ~45,000/month
- Academic papers citing original paper: 1843
- Robot models officially supported: >101
- wiki.ros.org pageviews: ~37,000/day

Longest distance a ROS robot has traveled from Earth: 435 km

http://wiki.ros.org/Metrics

Where are we now?

- Maturity
- Robustness
- Community
- Openness
- Interoperability
- Modularity
- Federated development model
- Richness

Where is ROS used?

NASA: Robonaut 2

Rethink Robotics: Baxter

• ROS-Industrial: (de)palletizing

RightHand Robotics: ReFlex Hand

Boston Dynamics: ATLAS

PAL Robotics: REEM-C

• HERE: 3D mapping cars

Google ATAP: Project Tango

Blue River: Precision Farming

Savioke: SaviOne

Fetch Robotics: Fetch

... and many more!

How did we get here?

Enabling reuse

Ease of use

Flexibility

Scalability

RGB image

Where do we want to go?

"bare-metal" micro controllers

support multi-robot systems involving unreliable networks etc.

(better integration with) real-time control

reduce the gap between prototyping and final products

Data Distribution Service (DDS)

- Proven industry standard
- Configurable quality of service to handle many networking situations
- Real-time capable
- Master-less discovery
- Multiple implementations (~12)

How is ROS 2 different?

- DDS (Data Distribution Service) as middleware
- Real time capable
- Embedded
- Linux, Mac and Windows
- Modern API
- C++11, Python 3
- Minimal dependencies
- Easier to work with multiple nodes in one process
- More dynamic run-time features like topic remapping and aliasing
- And much more!

Get involved!

http://ros.org
http://answers.ros.org

But...

But...

Gazebo

Gazebo

Goal

Best possible substitute for physical robot

Use cases

- Prototyping of robot components and control
- Software testing and verification
- Competitions

Gazebo 6 statistics

Birth Fall 2002

Downloads 1k/month

Lines of code 266k

Lines of comments 89k

Test function coverage 47.9%

Test branch coverage 39.1%

Tests 901

Contributors 60+

Gazebo architecture

Physics engines

Sensors

- camera
 - stereo camera
 - o wide angle camera
 - depth camera
- IMU
- GPS
- altimeter
- magnetometer
- force/torque
- sonar
- ...

Graphical User Interface (GUI)

Control models

Apply forces to joints and links
PID position and velocity
Mouse & text placement

Visualizations

Contacts

Joints

CoM, inertia

Frames

Orthogonal view

Graphical User Interface (GUI)

Building Editor

Model Editor

Simulation in the cloud

CloudSim

GzWeb

HAPTIX

MENTOR2

Electrical connections

Import laser-cutter files

Get involved!

http://gazebosim.org
http://answers.gazebosim.org

Thank you!

Questions?