Sistemas LTI e convolução

Fabio Irigon Pereira

Sistemas LTI (Linear Time-Invariant)

Possuem ambas as características:

- Linearidade (soma de duas entradas provoca a soma das saídas).
- A mesma entrada gera a mesma saída, independentemente de quando o sistema é usado.

Onde y_1 é a saída para o sinal x_1 e y_2 é a saída para o sinal x_2 .

Sistemas LTI

Sistemas LTI tem uma característica que facilita muito a análise: conceito de **superposição**.

Quebrar o sinal de entrada em componentes mais simples.

Resposta ao impulso

A resposta ao impulso (h[n]) é a saída do sistema para uma entrada igual a um impulso (δ [n]).

Respostas de sistemas com resposta finita.

Quando a resposta ao impulso é finita, podemos calcular a saída a partir da sobreposição de respostas ao impulso deslocadas no tempo e multiplicadas pela amplitude da entrada.

Respostas de sistemas com resposta finita.

Quando a resposta ao impulso é finita, podemos calcular a saída a partir da sobreposição de respostas ao impulso deslocadas no tempo e multiplicadas pela amplitude da entrada.

ex: considere x[n] = [1, -2]

A saída será a soma da saída para a primeira entrada (h[n]) mais a soma da segunda entrada (-2.h[n-1]).

Convolução

Essa operação de soma de saídas deslocadas no tempo é chamada de convolução.

$$(fst g)[n]=\sum_{m=-M}^M f[n-m]g[m].$$

Convolução

Método da tabela: x[n] = [1, 2, 3], h[n] = [-1, 2, 2]

×	1	2	3	
-1	-1	-2	-3	/
2	2	4	6	/
2	2	4	6	

Convolução

Método da tabela: x[n] = [1, 2, 3], h[n] = [-1, 2, 2]

×	1	2	3
-1	-1	-2	-3
2	2	4	6
2	2	4	6

$$y[n] = [-1, -2+2, -3+4+2, 6+4, 6]$$

 $y[n] = [-1, 0, 3, 10, 6]$