પ્રશ્ન 1(અ) [3 ગુણ]

નીચેની terms ની વ્યાખ્યા આપો: (1) Artificial Intelligence (2) Expert System.

જવાબ:

Term	વ્યાખ્યા
Artificial	Al એ computer science ની એક શાખા છે જે એવા machines બનાવે છે જે સામાન્ય રીતે માનવ બુદ્ધિની
Intelligence	જરૂર પડતા કાર્યો કરી શકે છે, જેમ કે learning, reasoning અને problem-solving.
Expert	Expert system એ એક computer program છે જે knowledge અને inference rules નો ઉપયોગ
System	કરીને એવી problems solve કરે છે જેમાં સામાન્ય રીતે ચોક્કસ ક્ષેત્રમાં માનવ expertise ની જરૂર પડે છે.

- Al ની વિશેષતાઓ: Learning, reasoning, perception

મેમરી ટ્રીક: "Al શીખે છે, Expert સલાહ આપે છે"

પ્રશ્ન 1(બ) [4 ગુણ]

Biological Neural Network અને Artificial Neural Network ની સરખામણી કરો.

જવાબ:

પાસું	Biological Neural Network	Artificial Neural Network
Processing	Parallel processing	Sequential/parallel processing
ઝડપ	ધીમી (milliseconds)	ઝડપી (nanoseconds)
શીખવું	સતત શીખવું	Batch/online learning
Storage	વિતરિત storage	કેન્દ્રિય storage

- **Biological**: જટિલ, fault-tolerant, સ્વ-સુધારણા કરે છે
- Artificial: સરળ, ચોક્કસ, programmable

મેમરી ટ્રીક: "Bio જટિલ છે, AI સરળ છે"

પ્રશ્ન 1(ક) [7 ગુણ]

AI ના પ્રકારો તેની applications સાથે સમજાવો.

Al નો પ્રકાર	વર્ણન	Applications
Narrow Al	ચોક્કસ કાર્યો માટે design કરેલ Al	Voice assistants, recommendation systems
General Al	માનવ સ્તરની intelligence વાળી Al	હજુ સુધી પ્રાપ્ત નથી
Super Al	માનવ intelligence કરતાં વધારે Al	સૈદ્ધાંતિક વિભાવના

- **હાલનું focus**: Narrow Al આજના applications પર પ્રભુત્વ ધરાવે છે
- **લવિષ્યનું લક્ષ્ય**: General AI ને સુરક્ષિત રીતે પ્રાપ્ત કરવું

મેમરી ટ્રીક: "હવે Narrow, લક્ષ્ય General, Super ડરામણી"

પ્રશ્ન 1(ક) અથવા [7 ગુણ]

Al ethics અને limitations સમજાવો.

જવાબ:

Ethics નું પાસું	વર્ણન
Privacy	વ્યક્તિગત data અને user information ની સુરક્ષા
Bias	વિવિધ જૂથોમાં નિષ્પક્ષતા સુનિશ્ચિત કરવી
Transparency	AI નિર્ણયોને સમજાવી શકાય તેવા બનાવવા
Accountability	Al actions માટે જવાબદારી નક્કી કરવી

મર્યાદાઓ:

- Data dependency: મોટા, ગુણવત્તાવાળા datasets ની જરૂર
- Computational power: નોંધપાત્ર processing resources ની જરૂર
- **Creativity નો અભાવ**: ખરેખર મૌલિક concepts બનાવી શકતી નથી

મેમરી ટ્રીક: "Privacy, Bias, Transparency, Accountability"

પ્રશ્ન 2(અ) [3 ગુણ]

નીચેની terms ની વ્યાખ્યા આપો: (1) Well posed Learning Problem (2) Machine Learning.

જવાબ:

Term	વ્યાખ્યા
Well posed Learning Problem	એક learning problem જેમાં સ્પષ્ટ રીતે વ્યાખ્યાયિત task (T), performance measure (P), અને experience (E) હોય જ્યાં experience સાથે performance સુધરે છે.
Machine Learning	Al નો એક ભાગ જે computers ને experience થી આપોઆપ શીખવા અને સુધારવા માટે સક્ષમ બનાવે છે, સ્પષ્ટ રીતે program કર્યા વગર.

• Well posed formula: T + P + E = Learning

• ML નો ફાયદો: Data થી આપોઆપ સુધારો

ਮੇਮਰੀ ਟ੍ਰੀs: "Task, Performance, Experience"

પ્રશ્ન 2(બ) [4 ગુણ]

Reinforcement Learning તેમાં ઉપયોગ થતાં terms સાથે સમજાવો.

જવાબ:

Term	વર્ણન
Agent	શીખનાર અથવા નિર્ણય લેનાર
Environment	જે દુનિયામાં agent કામ કરે છે
Action	દરેક state માં agent શું કરી શકે છે
State	Agent ની હાલની સ્થિતિ
Reward	Environment તરફથી feedback

• **शीพयानी प्रिक्रया**: Trial and error approach

• **पक्ष्य**: डुस reward पधारवुं

મેમરી ટ્રીક: "Agent કરે છે, Environment State અને Reward આપે છે"

પ્રશ્ન 2(ક) [7 ગુણ]

Supervised, Unsupervised અને Reinforcement Learning ની સરખામણી કરો.

જવાબ:

પાસું	Supervised	Unsupervised	Reinforcement
Data	Labeled data	Unlabeled data	Interactive data
લક્ષ્ય	Output predict કરવું	Patterns શોધવા	Reward વધારવું
Feedback	તુરંત	કોઈ નહીં	વિલંબિત
ઉદાહરણો	Classification	Clustering	Game playing

• Supervised: શિક્ષક-માર્ગદર્શિત learning

• Unsupervised: સ્વ-શોધ learning

• Reinforcement: Trial-and-error learning

મેમરી ટ્રીક: "Supervised પાસે શિક્ષક, Unsupervised શોધે છે, Reinforcement પ્રયત્ન કરે છે"

પ્રશ્ન 2(અ) અથવા [3 ગુણ]

Reinforcement Learning ના key features લખો.

જવાબ:

Feature	વર્ણન
Trial and Error	પ્રયોગ દ્વારા શીખવું
Delayed Reward	Actions પછી feedback મળે છે
Sequential Decision	Actions ભવિષ્યના states ને અસર કરે છે

- ક્રોઈ supervisor નથી: Agent સ્વતંત્ર રીતે શીખે છે
- Exploration vs Exploitation: નવા actions અજમાવવા અને જાણીતા સારા actions વાપરવા વચ્ચે સંતુલન

મેમરી ટ્રીક: "પ્રયત્ન, વિલંબ, ક્રમ"

પ્રશ્ન 2(બ) અથવા [4 ગુણ]

Reinforcement Learning ના પ્રકારો સમજાવો.

увіз	વર્ણન
Positive RL	વર્તણૂક વધારવા માટે positive stimulus ઉમેરવું
Negative RL	વર્તણૂક વધારવા માટે negative stimulus દૂર કરવું

Learning આધારિત:

• **Model-based**: Agent environment model શીખે છે

• Model-free: Agent સીધો experience થી શીખે છે

મેમરી ટ્રીક: "Positive ઉમેરે, Negative દૂર કરે"

પ્રશ્ન 2(ક) અથવા [7 ગુણ]

Reinforcement Learning implement કરવા માટેના approaches સમજાવો.

જવાબ:

Approach	વર્ણન	ઉદાહરણ
Value-based	States/actions ના value શીખવા	Q-Learning
Policy-based	Policy સીધી શીખવી	Policy Gradient
Model-based	Environment model શીખવું	Dynamic Programming

• **Value-based**: Value functions estimate કરે છે

• **Policy-based**: Policy parameters optimize sè છે

• **Model-based**: Environment model વાપરે છે

મેમરી ટ્રીક: "Value, Policy, Model"

પ્રશ્ન 3(અ) [3 ગુણ]

Activation functions ReLU અને sigmoid વર્ણવો.

જવાબ:

Function	Formula	Range
ReLU	f(x) = max(0, x)	[0, ∞)
Sigmoid	$f(x) = 1/(1 + e^{-(-x)})$	(0, 1)

- ReLU નો ફાયદો: Vanishing gradient problem નથી
- Sigmoid नो इ।यहो: Smooth gradient, probabilistic output

મેમરી ટ્રીક: "ReLU સુધારે છે, Sigmoid દબાવે છે"

પ્રશ્ન 3(બ) [4 ગુણ]

Multi-layer feed forward ANN સમજાવો.

જવાબ:

Component	વર્ણન
Input Layer	Input data receive કરે છે
Hidden Layers	Information process နု ဲ છ် (multiple layers)
Output Layer	Final result બનાવે છે
Connections	ફક્ત forward direction માં

- Information flow: Input થી output સુધી એક દિશામાં
- **કોઈ cycles નથી**: કોઈ feedback connections નથી

મેમરી ટ્રીક: "Input → Hidden → Output (ફક્ત આગળ)"

પ્રશ્ન 3(ક) [7 ગુણ]

ANN નું structure દોરો અને તેના દરેક components ની functionality સમજાવો.

Component	Functionality
Neurons	Processing units જે inputs receive કરે છે અને outputs બનાવે છે
Weights	Neurons વચ્ચેની connection strengths
Bias	Activation function ને shift કરવા માટે વધારાનું parameter
Activation Function	Network માં non-linearity લાવે છે

• Input layer: Input data receive કરે છે અને વિતરિત કરે છે

• **Hidden layers**: Features અને patterns extract કરે છે

• Output layer: Final classification અથવા prediction બનાવે છે

• Connections: Neurons વચ્ચેની weighted links

મેમરી ટ્રીક: "Neurons સાથે Weights, Bias, અને Activation"

પ્રશ્ન 3(અ) અથવા [3 ગુણ]

Backpropagation પર ટૂંક નોંધ લખો.

જવાબ:

પાસું	นย์า
હેતુ	Neural networks માટે training algorithm
પદ્ધતિ	Chain rule સાથે gradient descent
દિશા	પાછળની તરફ error propagation

• પ્રક્રિયા: Network દ્વારા પાછળની તરફ error gradients calculate કરવા

• Update: Error ઘટાડવા માટે weights adjust કરવા

મેમરી ટ્રીક: "પાછળની તરફ Error Propagation"

પ્રશ્ન 3(બ) અથવા [4 ગુણ]

Single-layer feed forward network સમજાવો.

Feature	વર્ણન
Structure	Input layer સીધી output layer સાથે connected
Layers	ફક્ત input અને output layers
મર્યાદાઓ	ફક્ત linearly separable problems solve કરી શકે
ઉદાહરણ	Perceptron

• **ક્ષમતા**: Linear decision boundaries સુધી મર્યાદિત

• **Applications**: સરળ classification tasks

મેમરી ટ્રીક: "Single Layer, Linear મર્યાદાઓ"

પ્રશ્ન 3(ક) અથવા [7 ગુણ]

Recurrent neural network નું architecture દોરો અને સમજાવો.

જવાબ:

Component	Function
Hidden State	પાછલા inputs ની memory રાખે છે
Recurrent Connection	Hidden state થી તે જ તરફ feedback
Sequence Processing	Sequential data handle કરે છે

- **Memory**: પાછલા time steps ની information રાખે છે
- Applications: Language modeling, speech recognition
- ફાયદો: Variable-length sequences process કરી શકે છે

મેમરી ટ્રીક: "Recurrent યાદ રાખે છે, પાછળ Loop કરે છે"

પ્રશ્ન 4(અ) [3 ગુણ]

NLP ની વ્યાખ્યા આપો અને તેના advantages લખો.

જવાબ:

Term	ત્યાખ્યા
NLP	Natural Language Processing - computers ને માનવ ભાષા સમજવા, interpret કરવા અને generate કરવા માટે સક્ષમ બનાવે છે

Advantages:

• **Human-computer interaction**: કુદરતી communication

• **Automation**: આપોઆપ text processing અને analysis

• Accessibility: વિકલાંગ વપરાશકર્તાઓ માટે voice interfaces

મેમરી ટ્રીક: "કુદરતી ભાષા, કુદરતી Interaction"

પ્રશ્ન 4(બ) [4 ગુણ]

NLU અને NLG ની સરખામણી કરો.

જવાબ:

પાસું	NLU (Understanding)	NLG (Generation)
હેતુ	માનવ ભાષા interpret કરવી	માનવ ભાષા generate કરવી
Input	Text/Speech	Structured data
Output	Structured data	Text/Speech
ઉદાહરણો	Sentiment analysis	Text summarization

• **NLU**: Unstructured text ને structured data માં convert કરે છે

• **NLG**: Structured data ને natural text માં convert કરે છે

મેમરી ટ્રીક: "NLU સમજે છે, NLG બનાવે છે"

પ્રશ્ન 4(ક) [7 ગુણ]

Word tokenization અને frequency distribution of words યોગ્ય ઉદાહરણ સાથે સમજાવો.

પ્રક્રિયા	વર્ણન	ઉદાહરણ
Tokenization	Text ને individual words/tokens માં તોડવું	"Hello world" → ["Hello", "world"]
Frequency Distribution	દરેક token ની occurrence count કરવી	{"Hello": 1, "world": 1}

ઉદાહરણ:

```
Text: "The cat sat on the mat"
Tokens: ["The", "cat", "sat", "on", "the", "mat"]
Frequency: {"The": 1, "cat": 1, "sat": 1, "on": 1, "the": 1, "mat": 1}
```

- Case sensitivity: "The" અને "the" અલગ અલગ count થાય છે
- Applications: Text analysis, search engines
- Preprocessing: NLP tasks માટે આવશ્યક step

મેમરી ટ્રીક: "Tokenize પછી Count"

પ્રશ્ન 4(અ) અથવા [3 ગુણ]

NLP ના disadvantages ની યાદી આપો.

જવાબ:

Disadvantage	વર્ણન
Ambiguity	Words/sentences ना multiple meanings
Context dependency	Context સાથે meaning બદલાય છે
Language complexity	Grammar rules ਅਜੇ exceptions

- **સાંસ્કૃતિક variations**: અલગ ભાષાઓ, dialects
- Computational cost: Resource-intensive processing

મેમરી ટ્રીક: "અસ્પષ્ટ, Contextual, જટિલ"

પ્રશ્ન 4(બ) અથવા [4 ગુણ]

NLP માં ambiguities ના પ્રકારો સમજાવો.

જવાબ:

яѕіг	વર્ણન	ઉદાહરણ
Lexical	Word ना multiple meanings	"Bank" (financial/river)
Syntactic	Multiple parse trees possible	"I saw a man with a telescope"
Semantic	Multiple interpretations	"Flying planes can be dangerous"

- **Resolution**: Context analysis, statistical models
- Challenge: NLP systems માં મુખ્ય અવરોધ

મેમરી ટ્રીક: "Lexical words, Syntactic structure, Semantic meaning"

પ્રશ્ન 4(ક) અથવા [7 ગુણ]

Stemming words અને parts of speech(POS) tagging યોગ્ય ઉદાહરણ સાથે સમજાવો.

જવાલ:

પ્રક્રિયા	વર્ણન	ઉદાહરણ
Stemming	Words ને root/stem form માં ઘટાડવા	"running" \rightarrow "run", "flies" \rightarrow "fli"
POS Tagging	Grammatical categories assign કरवा	"The/DT cat/NN runs/VB fast/RB"

Stemming ઉદાહરણ:

```
Original: ["running", "runs", "runner"]
Stemmed: ["run", "run", "runner"]
```

POS Tagging ઉદાહરણ:

```
Sentence: "The quick brown fox jumps"
Tagged: "The/DT quick/JJ brown/JJ fox/NN jumps/VB"
```

- **Stemming નો હેતુ**: Vocabulary size ઘટાડવું, સંબંધિત words ને group કરવા
- POS નો હેતુ: Grammatical structure સમજવું
- Applications: Information retrieval, grammar checking

મેમરી ટ્રીક: "Root સુધી Stem, Grammar પ્રમાણે Tag"

પ્રશ્ન 5(અ) [3 ગુણ]

Word embedding વ્યાખ્યા આપો અને word embedding ની various techniques ની યાદી આપો.

જવાબ:

Term	વ્યાખ્યા
Word Embedding	Words ના dense vector representations જે semantic relationships capture કરે છે

Techniques:

- TF-IDF: Term Frequency-Inverse Document Frequency
- Bag of Words (BoW): સરળ word occurrence counting
- Word2Vec: Neural network-based embeddings

મેમરી ટ્રીક: "TF-IDF counts, BoW bags, Word2Vec vectorizes"

પ્રશ્ન 5(બ) [4 ગુણ]

TF-IDF and BoW માટે Challenges સમજાવો.

જવાબ:

પદ્ધતિ	Challenges
TF-IDF	Sparse vectors, કોઈ semantic similarity નથી, high dimensionality
BoW	Order ignore થાય છે, context ખોવાય છે, sparse representation

સામાન્ય સમસ્યાઓ:

• Sparsity: મોટાભાગના vector elements zero છે

• ક્રોઈ semantics નથી: સમાન words ના અલગ vectors

• **High dimensions**: Memory અને computation intensive

મેમરી ટ્રીક: "Sparse, કોઈ Semantics નથી, High Dimensions"

પ્રશ્ન 5(ક) [7 ગુણ]

NLP ની ઉપયોગીતાઓ યોગ્ય ઉદાહરણ સાથે સમજાવો.

જવાબ:

Application	વર્ણન	ઉદાહરણ
Machine Translation	ભાષાઓ વચ્ચે translate કરવું	Google Translate
Sentiment Analysis	Emotional tone નક્કી કરવું	Product review analysis
Question Answering	Text માંથી પ્રશ્નોના જવાબ આપવા	Chatbots, virtual assistants
Spam Detection	અનિચ્છિત emails identify કરવા	Email filters
Spelling Correction	Spelling errors ઠીક કરવા	Text editors ні auto-correct

- **Real-world impact**: Human-computer interaction સુધારે છે
- **Business value**: Text processing tasks automate ອ_ເຂັ ອ່
- **વધતું ક્ષેત્ર**: નવા applications સતત આવતા રહે છે

મેમરી ટ્રીક: "Translate, Sentiment, Question, Spam, Spell"

પ્રશ્ન 5(અ) અથવા [3 ગુણ]

Glove(Global Vector for word representation) ને વર્ણવો.

જવાબ:

પાસું	વર્ણન
હેતુ	Global corpus statistics વાપરીને word vectors બનાવવા
પદ્ધતિ	Global matrix factorization અને local context combine કરે છે
ફાયદો	Global અને local બંને statistical information capture કરે છે

• **Global statistics**: Word co-occurrence information વાપરે છે

• **Pre-trained**: સામાન્ય ઉપયોગ માટે trained vectors ઉપલબ્ધ છે

મેમરી ટ્રીક: "Global Vectors, Local Context"

પ્રશ્ન 5(બ) અથવા [4 ગુણ]

Inverse Document Frequency (IDF) સમજાવો.

જવાબ:

Component	Formula	હેતુ
IDF	log(N/df)	Documents માં word importance measure કરવું
N	Total documents	Corpus size
df	Document frequency	Term containing documents

• **High IDF**: દુર્લંભ words (વધુ informative)

• Low IDF: સામાન્ય words (ઓછા informative)

• **Application**: TF-IDF weighting scheme नो लाग

મેમરી ટ્રીક: "Inverse Document, દુર્લભ મહત્વપૂર્ણ છે"

પ્રશ્ન 5(ક) અથવા [7 ગુણ]

Document માટે TF(Term Frequency) ગણવાનું યોગ્ય ઉદાહરણ સાથે સમજાવો.

પદ્ધતિ	Formula	વર્ણન
Raw TF	f(t,d)	Document માં term ની સરળ count
Normalized TF	f(t,d)/max(f(w,d))	Maximum frequency ผูเข normalized
Log TF	1 + log(f(t,d))	Logarithmic scaling

ઉદાહરણ Document: "The cat sat on the mat. The mat was soft."

Term	Count	Raw TF	Normalized TF	Log TF
"the"	3	3	1.0	1.48
"cat"	1	1	0.33	1.0
"mat"	2	2	0.67	1.30

ગણતરીના પગલાં:

- 1. દરેક term ની occurrence count કરો
- 2. પસંદ કરેલું TF formula લાગુ કરો
- 3. TF-IDF calculation માં વાપરો
- Raw TF: સીધી counting, સરળ પરંતુ મર્યાદિત
- Normalized TF: Document length ના લીધે bias ઘટાડે છે
- Log TF: Frequency differences ને સમાન કરે છે

भेभरी ट्रीड: "Count, Normalize, Log"