

Workflows Combining Simulation and Experiment

Tom Peterka

Mathematics and Computer Science Division

Argonne National Laboratory

SC15 BOF

Characterizing Extreme-Scale Computational and Data-Intensive Workflows 11/17/15

Introduction

- Motivation (physics, chemistry)
 - Experimental design
 - Simulation validation
 - New information
- Motivation (computer science, workflows)
 - Combine in situ w/ post hoc workflows
 - Combine HPC with DAC
 - Better coverage of science workflow by CS workflow
- Science examples
 - LAMMPS MD + synchrotron light source imaging
- Workflow examples
 - Forward problem
 - Reverse problem

Forward Problem Full Workflow

Forward Problem Mini Workflow

Reverse Problem Full Workflow

Reverse Problem Mini Workflow

Food For Thought

- Science workflow challenges
 - Time and space scales
 - http://tpeterka.github.io/maui-project/
- CS workflow challenges
 - Time latency between HPC and DAC parts of the workflow
 - Geographic distance between HPC and DAC
 - Provenance capture, reproducibility
- Mini workflow challenges
 - Synthetic data generation
 - Evaluation
- Other MD (simulation only) workflow examples
 - https://bitbucket.org/tpeterka1/decaf/
 - LAMPPS Decaf Example
 - Gromacs Decaf Example

