

ESC201: Introduction to Electronics

MODULE 1: CIRCUIT ANALYSIS

Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

Re-cap

- Why electronics?
- Easily available electrical energy can be controlled precisely with electronics.
- 'Imagination' is the limit!
- Can solve problems in other domains: make them smart!!.

Why ESC201?

Tools for circuit Analysis

- Fundamentals of electrical circuits--3
- Transient Analysis of RLC Circuits--2
- Sinusoidal Steady State Analysis--4

Analog Circuits

- Semiconductors, Diodes, Circuits----3
- ☐ Transistors and Amplifiers---4
 - Operational Amplifier based Analog circuits -4

Digital Circuits

- ☐ Logic gates, Combinational circuits ---4
- ☐ Flip-flops, Sequential Circuit---4
 - Data Converters----3

Charge

Unit of electric charge: Coulomb

1 C = 1 A x 1 s

Common symbols: q or Q

An electronic charge: - 1.6 x 10⁻¹⁹ C

Electron carries negative charge

Proton carries positive charge

Negative charge carriers:

• electrons, negative ions, ...

Positive charge carriers:

• positive ions, holes (absence of electrons), ...

Charles-Augustin de Coulomb (14 June 1736 – 23 August 1806)

Wikipedia

Current

- The time rate of flow of electrical charge
- Unit: **ampere** (A) → which is coulomb per second (C/s)
- Ampere is one of the seven basic SI units
- Popular symbol is i or I

$$i(t) = \frac{dq(t)}{dt}$$

André-Marie Ampère 1775-1836

commons.wikimedia.org

Electrical Current

Flow of electrons through a wire or other electrical conductor gives rise to current

• Electrons are negatively charged particles

10¹⁶ electrons flow per second

How much current flows?

$$i(t) = \frac{dq(t)}{dt}$$

$$I = \frac{Q}{t} = \frac{-1.6 \times 10^{-19} \times 10^{16}}{1} = -1.6 \times 10^{-3} A$$

Electrical Current

Current has a magnitude and a direction

10¹⁶ electrons flow per second Direction of current flow is opposite to direction of electron flow

Large number of electrons has to flow for appreciable current.

Exercise 1: For $q(t) = 2 - 2e^{-100t}$, for t > 0 and q(t) = 0 for t < 0, find i(t).

Sign of current

Direct Current (DC) & Alternating Current (AC)

When current is constant with time, we say that we have direct current, abbreviated as DC.

On the other hand, a current that varies with time, reversing direction periodically, is called alternating current, abbreviated as AC

Voltage

- Voltage difference causes current to flow
- Potential difference for a unit positive charge between two points
 - Work done to move unit positive charge between two points
- Units of Voltage: volt (V)
- Popular symbol: v or V

Alessandro Giuseppe Antonio Anastasio Volta 1745-1827

Voltage Is Relative

• In practice, it is ΔV that matters

- In a circuit (system), we choose a reference
 - Reference is called "ground"

• Rest of the voltages in the circuit are w.r.t. ground

Water Analogy

- Current flow from high voltage to low voltage
- (Potential) energy is consumed in the path
- Higher resistance:
 smaller flow

Voltage Sign

Terminal B is 5 V higher than terminal A

Terminal A is 5 V higher than terminal B

DC and **AC** voltages

$$V_{\scriptscriptstyle +} - V_{\scriptscriptstyle -} = 12V$$

Electrical elements

Electrical Systems are made of Voltage sources, wires and a variety of electrical elements

A Circuit

A path for current to flow

https://www.britannica.com/technology/electric-circuit

Electrical systems with closed current paths are often called electrical circuits

Electric Shocks

Small currents (70–700 mA) can trigger fibrillation in the heart. Larger currents will permanently damage the heart

Electrical Circuit

Analyze circuit

Questions

Compute current given voltage Compute light intensity generated from bulb

How to solve these questions?

Back to Maxwell's Equations

• Should we write Maxwell's equations everytime

 Gainful employment of Maxwell's equations to build interesting systems

- Create an abstraction layer
 - · Avoid dealing with Maxwell's eq

Abstraction

• Example: point mass abstraction

- What is the acceleration? a = F/m
- Ignoring the object's shape, rigidity, temperature
- Point-mass discretization or lumping
- Useful at all levels

Lumped Circuit Abstraction

1.
$$\nabla \cdot \mathbf{D} = \rho_V$$

2.
$$\nabla \cdot \mathbf{B} = 0$$

3.
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$4. \quad \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

V	_
3	1
6	2
9	3
12	4

21

Bulb's behavior

Any electrical element which obeys ohms law can be modeled as a resistor

Can we model an electric bulb as a resistor?

Bulb's behavior

Even though characteristics are non-linear, over a certain range, the bulb can be thought of as a resistor

Resistor

$$v(t) = R \times i(t)$$

Ohm's law

The constant, R, is called the resistance of the component and is measured in units of Ohm (Ω)

Standard Multiples of Ohm

 $M\Omega$ Mega Ohm $(10^6 \Omega)$

 $k\Omega$ Kilo Ohm $(10^3 \Omega)$

Resistor Symbol:

Georg Simon Ohm 1789-1854

Conductance

$$v(t) = R \times i(t)$$

$$i(t) = \frac{v(t)}{R} = G \times v(t)$$

G = 1/R is called conductance and its unit is Siemens (S)

Ernst Werner von Siemens 1816-1892

Resistance Related to Physical Parameters

$$R = \rho \times \frac{L}{A}$$

Resistance is affected by the dimensions and geometry of the resistor as well as the particular material used

 ρ is the resistivity of the material in ohm meters [Ω -m]

- Conductors (Aluminum, Carbon, Copper, Gold)
- Insulators (Glass, Teflon)
- Semiconductors (Silicon)

Short vs Open Circuit

Two special resistor values

$$R = \frac{v}{i}$$

$$G = \frac{i}{v}$$

Short & open circuit

Voltage Source

Current Source

Power

A battery stores energy (measured in Joules)

• Power delivered by the battery = $V \times I$

 Power delivered by battery when current flows out of the positive terminal (discharging)

• Otherwise, battery consumes energy (charging)

Variable Convention

If $V_1 > V_2$ then P is positive and it means that power is being delivered to the electrical element X

If $V_1 < V_2$ then P is negative and it means that power is being extracted from the electrical element X.

X is a source of power!

Associated variables convention

$$P = (V_1 - V_2) \times I$$

= $(12 - 6) \times 1 = 6W$

Power is being delivered to the electrical element X

$$P = ?$$

$$P = (V_1 - V_2) \times I$$

= $(12 - 6) \times -1 = -6W$

Power is supplied by element x instead of dissipation

Spot the battery!

• Given that there is only one battery, which one is it?

A battery is a source of power, so power dissipated is negative

Power dissipated in a resistor

$$v = i \times R$$

$$i = -$$

$$P = v \times i$$

$$P = i^2 \times R$$

$$P = \frac{v^2}{R}$$

Nodes

Node: A point where 2 or more circuit elements are connected.

What is a Loop?

A **loop is formed by tracing a closed path** through circuit elements without passing through any intermediate node more than once

This is not a valid loop!

Circuit Analysis

- Kirchhoff's Laws
- KCL and KVL
- Conservation of Charge and Energy

Gustav Kirchhoff

Kirchoff's Current Law (KCL)

Sum of currents entering a node is equal to sum of currents leaving a node

$$i_1 + i_2 = i_3$$

A direct result of conservation of charge

Kirchhoff's Current Law (KCL)

At any node in a circuit, the sum of all current arriving is 0

$$\sum_{1}^{N} i_{j} = 0$$

KCL: examples

$$i_3 = i_4$$

$$1 + 3 - i_a = 0$$

$$i_a = 4A$$

$$i_a = 4A$$

41

KCL: examples

$$1 + 3 - i_1 = 0$$

$$i_b - 2 + i_1 = 0$$

$$1 + 3 + i_b - 2 = 0$$

$$i_b = -2A$$

KCL: combining nodes

$$1 + 3 + i_c + 4 = 0$$

$$i_c = -8A$$

KCL: generalization

KCL: general form

Series Circuit

Two elements are connected in series if there is no other element connected to the node joining them

A, B and C are in series

The elements have the same current going through them

$$i_a = i_b = i_c$$

Example:

Identify the groups of elements connected in series

A and B are in series

E, F and G are in series

Kirchhoff's Voltage Law (KVL)

The algebraic sum of the voltages equals zero for any closed path (loop) in an electrical circuit.

In applying KVL to a Loop

voltages are added (or subtracted)

depending on their polarities relative to the direction of travel around the loop

48

Conservation of energy!

KVL: example

Loop1:
$$-v_a + v_b + v_c = 0$$

Loop2:
$$-v_c - v_d + v_e = 0$$

49

Loop3:
$$-v_e + v_d - v_b + v_a = 0$$

Parallel Circuits

Two elements are connected in parallel if both ends of one element are connected directly to corresponding ends of the other

A and B are connected in parallel

D, E and F are connected in parallel

The voltage across parallel elements are equal (both magnitude and polarity)

$$v_a = v_b = -v_c$$

Example

Use KVL to find v_c and v_e

$$-3-5+v_c=0 \Rightarrow v_c=8V$$

$$-v_c - (-10) + v_e = 0 \Longrightarrow v_e = -2V$$

Ready to use KCL-KVL?

Tidy circuits are easier to understand

