

A Guided Exploration through Signal Acquisition and Processing ø with...

Presentation Agenda

- A. A Brief Intro about Physiological Signals
- B. biosignalsplux
- C. OpenSignals
- D. Additional Resources (Signal Samples)
- E. biosignalsnotebooks

Y

3

♂ Electromyographic Signal (EMG)

Characteristics

Partial Random Nature

(Due to the motor unit firing process)

Frequency Range: [25; 500] Hz

Voluntary Origin

(Neuronal impulse transmission through motor neurons connected to muscles)

Applications **Analysis of Maximum Voluntary Contraction** Fatigue Monitoring Diagnosis of Neuromuscular Disorders Interactive Gamming

♂ Electrodermal Activity (EDA)

Characteristics

- **♂** Electrodermal Activity (EDA)
 - Applications

pluy wearable body sensing platform EEG ECG ACC

biosignalsplux Hub

4 Analog Channels/Inputs

— 4 Additional Analog Channels/Inputs

— Power Button

Reference/Ground Port [Digital Channel]

Digital Port [Sync Functionality]

Acquisition Parameters:

ADC configurable resolution between 8 and 16 bits sampling rates up to 4000 Hz

Electromyography (EMG)

Electrodermal Activity (EDA)

Electrocardiography (ECG)

biosignalsplux Sensors

Electroencephalography (EEG)

Accelerometer (ACC)

Respiration (PZT)

Force Sensor (FSR)

biosignalsplux Sensors

biosignalsplux Sync

Multi Sync Splitter

biosignalsplux - Options

biosignalsplux Explorer

The package includes:

- of 1 x Bluetooth dongle
- of 1 x Portable and rugged storage case with foam cushioning to house all the parts

biosignalsplux - Options

biosignalsplux Researcher

The package includes:

- of 24 x Pre−gelled electrodes

- 8 h Personalised technical support
- Xtra Care 1 year service and maintenance agreement

biosignalsplux - Options

biosignalsplux Professional

The package includes:

- Xtra Care 2 years service and maintenance agreement
- 1x Fast USB data transfer cable

biosignalsplux API List

Signal Samples

Description

Through Python language, some signal processing tasks ① are illustrated following a step by step methodology supported by Jupyter Notebook ② environment. This interactive experience can be complemented and developed with the biosignalsnotebooks ③ Python package, which synthesises the described processing functionalities in different modules and their functions.

Jupyter Notebook

"Project Jupyter exists to develop open-source software, open-standards, and services for interactive computing across dozens of programming languages"

Highlights

Used by

Purposes

Extension of OpenSignals

Open Contribution to the User

Facilitates Learning

Notebook Categories

Data Acquisition

o Indicate

d Archive

Load

o Open

♂ Read

o Convert

Visualise

o Draw

of Interpret

o Zoom

Signal Processing

Pre-Process

♂ Smooth

o Normalise €

o Denoise

ර Filter

Detect

of Recognise €

o Segment €

o Annotate

♂ Compute

o Generate €

o Vectorise o Optimise of the other of the

o Model

Train

o Tune o Train o Decide

Machine Learning

Classify

Understand

♂ Analyse

o Imitate

o Compare €

of Characterise €

ط Explain

o Interact

o Validate o Report

Notebook Example

Demonstration

"Hands On" Challenge

d Determine the maximum, minimum and average duration of the muscular activation periods, after acquiring EMG data!

biosignalsplux

User Contributions

Created by

Lisbon Office

Phone +351 211 956 542 Fax +351 211 956 546 Av. 5 de Outubro, 70 - 2° 1050-059 Lisboa

