## **Machine Learning Using Tensorflow**

#### Week 9:

### **Autoencoder and one-shot learning**

Shu-Ting Pi, PhD UC Davis



### What is autoencoder?



### **Sparse autoencoder**



The lantern variable will become very "sparse"

#### **CNN** autoencoder



### Seq2Seq autoencoder



Figure 1: Standard Sequence to Sequence Model.



#### Word2Vec



# **Clustering of MNIST**



Autoenoder works much better than PCA, so what is autoencoder?

# Signal denoising



#### Variation autoencoder



Fact: the latent vector is generated by an input in autoencoder Question: How can we aviod this issue

\* loss = (diff of input and output image) + (KL div of laten vector and normal dist)

### VAE is also a generative model







# What is one-shot learning?



Does human need thousands or million images to recognize them?

### Real life application

### One-shot learning



Learning from one example to recognize the person again

### **Equivalence Network**

# Learning a "similarity" function

 $\rightarrow$  d(img1,img2) = degree of difference between images

If 
$$d(img1,img2) \le \tau$$









### **Equivalence Network**



# A few-shot learning

