# ZALANDO

Real Discount Rate

## Zalando API

### Data Cleaning

| sku                                                  | object  |  |
|------------------------------------------------------|---------|--|
| brand_name                                           | object  |  |
| flags                                                | object  |  |
| is_premium                                           | bool    |  |
| media                                                | object  |  |
| name                                                 | object  |  |
| <pre>price.has_different_original_prices</pre>       | bool    |  |
| price.has_different_prices                           | bool    |  |
| <pre>price.has_different_promotional_prices</pre>    | bool    |  |
| <pre>price.has_discount_on_selected_sizes_only</pre> | bool    |  |
| price.original                                       | float64 |  |
| price.promotional                                    | float64 |  |
| product_group                                        | object  |  |
| sizes                                                | object  |  |
| discountRate                                         | object  |  |
| almost                                               | bool    |  |
| disc_value                                           | float64 |  |
| true_discount                                        | float64 |  |
| name1                                                | object  |  |
| color                                                | object  |  |
| category                                             | object  |  |
| new_category                                         | object  |  |
| new_color                                            | object  |  |
|                                                      |         |  |

| sku                     | object  |
|-------------------------|---------|
| is_premium              | int64   |
| price.original          | float64 |
| discountRate            | object  |
| almost                  | int64   |
| true_discount           | float64 |
| tracking_discount       | int64   |
| sponsored               | int64   |
| 10_extra                | int64   |
| discount_flag           | int64   |
| HOTDROP                 | int64   |
| tracking_sustainable    | int64   |
| new_category_baskets    | uint8   |
| new_category_chaussures | uint8   |
| new_category_jean       | uint8   |
| new_category_pantalon   | uint8   |
| new_category_pyjama     | uint8   |
| new_category_robe       | uint8   |
| new_category_sandal     | uint8   |
| new_category_shirt      | uint8   |
| new_category_short      | uint8   |
| new_category_sweatshirt | uint8   |
|                         |         |

| new_category_t-shirt               | uint8 |
|------------------------------------|-------|
| new_category_veste                 | uint8 |
| product_group_beach_wear           | uint8 |
| product_group_clothing             | uint8 |
| product_group_equipment            | uint8 |
| <pre>product_group_nightwear</pre> | uint8 |
| product_group_shoe                 | uint8 |
| product_group_underwear            | uint8 |
| new_color_black                    | uint8 |
| new_color_blue                     | uint8 |
| new_color_green                    | uint8 |
| new_color_grey                     | uint8 |
| new_color_navy                     | uint8 |
| new_color_pink                     | uint8 |
| new_color_red                      | uint8 |
| new_color_rose                     | uint8 |
| new_color_white                    | uint8 |
| new_color_yellow                   | uint8 |
|                                    |       |

## **Discount Rate Distribution**



## Discount Rate Mean





## Correlations



zalando.discount\_flag.corr(zalando.true\_discount)

0.996483009158388

Drop the most significant columns

Choosing the number of clusters

```
model=KMeans()
visualizer=KElbowVisualizer(model,k=(1,12))
visualizer.fit(X)
visualizer.poof();
                Distortion Score Elbow for KMeans Clustering
   16000
                              -- elbowatk = 5, score = 7396.855
   14000
                                                              0.25
   12000
   10000
                                                              0.20 월
    8000
                                                              0.15
    6000
    4000
               2
                         4
                                            8
                                                     10
```

#### 1 - Original Data

```
kmeans=KMeans(5)
df_cluster=kmeans.fit(X)
df cluster.cluster centers
df ml1=df.copy()
df_ml1['clusters']=df_cluster.labels_
df ml1.clusters.value counts()
     7850
     3009
     2833
     2528
     1911
Name: clusters, dtype: int64
```

#### 2 - Min Max Scaler

```
scaler = MinMaxScaler()
X sc = scaler.fit transform(X)
X_{sc} = pd.DataFrame(X_{sc})
df cluster2=kmeans.fit(X sc)
df_cluster2.cluster_centers_
df ml2=df.copy()
df ml2['clusters']=df cluster2.labels
df ml2.clusters.value counts()
     8534
     3353
     2903
     1874
     1467
Name: clusters, dtype: int64
```

#### 3 - PCA & Min Max

```
df_cluster3=kmeans.fit(pca_df)

df_ml3=df.copy()

df_ml3['clusters']=df_cluster3.labels_

df_ml3.clusters.value_counts()

0    7850
2    3009
3    2833
1    2528
4    1911
Name: clusters, dtype: int64
```

#### 4 - PCA & Original Data

```
df_cluster4=kmeans.fit(pca_df2)

df_ml4=df.copy()

df_ml4['clusters']=df_cluster4.labels_
```

#### Silhouette Score / Davies Bouldin Score

|            | Original Data | MinMaxScaler | PCA         | PCA + MinMax |
|------------|---------------|--------------|-------------|--------------|
| 3 Clusters | 0.38 / 1.26   | 0.38 / 1.26  | 0.45 / 1.10 | 0.43 / 1.14  |
| 4 Clusters | 0.42 / 1.19   | 0.43 / 1.21  | 0.50 / 0.96 | 0.51 / 0.95  |
| 5 Clusters | 0.47 / 1.45   | 0.46 / 1.28  | 0.58 / 0.79 | 0.57 / 0.77  |
| 6 Clusters | 0.52 / 0.97   | 0.51 / 0.94  | 0.63 / 0.72 | 0.62 / 0.74  |

## Machine Learning - Splitting Data

Train on "full discount rates" & testing on the "almost"

- OLS,
- Linear Regression,
- Ridge,
- Lasso,
- ElasticNet

```
X=df[df.almost==0].drop(['almost','discount_flag'],axis=1)
X_2=df[df.almost==1].drop(['almost','discount_flag'],axis=1)
y=df.discount_flag[df.almost==0]
y_2=df.discount_flag[df.almost==1]
```

## Machine Learning - Comparing Models

Worse model: OLS

pred1 = result1.predict(X1) comp1=pd.DataFrame(pred1\*\*4,y 2).reset index() comp1['diff']=comp.discount flag-comp[0] comp1.describe() discount flag diff 0 1190.000000 977.000000 1190.000000 count 32.332773 30.985592 3.149192 mean 11.400877 std 3.230710 11.133983 -30.041441 5.000000 21.234697 min 25% 25.000000 29.358460 -4.980805 50% 30.000000 30.326204 1.840535 75% 40.000000 34.342806 9.763058 72.000000 38.369490 44.351838 max

Best model : Ridge \*\*(1/4)

