Training ASMPT

Program session 1

Anton J.M. Montagne

Perscitec BV

April 11, 2021

Program session 1

- Introduction of participants
- Some remarks about the training
- Explanation of the course program (poster)
- SLiCAP
- A short test of basic knowledge
- Next week

Introduction participants

- Anton Montagne
- Chenyan Zhang

Introduction participants

Electronics Design Training Course - Participants

- Singapore: ATS x6
 - 1. Kei Sheng,
 - 2. Wenbin,
 - 3. Woon,
 - 4. Greggy,
 - 5. Dinesh,
 - 6. Victor
- Chengdu: ATC x3
 - 1. Xulong,
 - 2. Mengyang,
 - 3. Changbin

- Hong Kong: ATHK x7
 - 1. Long,
 - 2. Calvin,
 - 3. Adrian,
 - 4. Gary,
 - 5. Edward,
 - 6. CK,
 - 7. Tam

Some remarks about the training: goal, method and execution

- Goal: Combine a short time to market with high-quality designs.
- Method: Hierarchically structured design process based on a solid practical and theoretical base.
- Execution:
 - 1 pm 6pm HK time (7am 12am CET time)
 - Breaks 15 minutes each hour (4x)
 - If possible, participants login personally (own laptop)
 - All participants are encouraged to ask questions or make remarks on the chat or through audio.

Some remarks about the training: program

- Some of you have presented some challenging designs
- Some of you have commented on the initial course program
- I have put it all together in a program I am able to offer
- If things turn out to be:
 - Too simple
 - Too difficult
 - Too much
 - Too little
 - Too fast
 - Too slow
 - Irrelevant
- Opening Please give me feedback so we can adjust the program!

Course material

https://analog-electronics.eu/Homologation/courseWebSite/index.html

- Presentations (PDF)
- Links to YouTube video recordings from TUD lectures
- Owloads:
 - O Posters
 - LTspice schematic files, netlist files and library files
 - SLiCAP scripts
- Xournal white board
- Sessions will be recorded by ASMPT

Poster presentation

SLiCAP

- Deriving and solving design equations
 - Symbolic small-signal (AC) analysis
 - Symbolic noise analysis
 - Symbolic DC and DCvariance analysis
 - Numeric pole-zero analysis
 - Extensive built-in plot capabilities
 - Generates HTML design reports
- SPICE-like netlists as input
- Python script language
- Compatible with Jupyter notebooks
- Uses Maxima CAS

Poll

- Each participant: Please let me know on the chat:
 - You are very sure about the answer
 - You selected the answer you think that was best
 - You don't know how to get the answer
- Polls:
 - Network theory and estimation of poles and zeros, step responses and Bode Plots of networks without feedback.
 - Chapters, 16, 17, 18
 - Noise in circuits Chapter 19
- 4 How to check the answers with SLiCAP

Next Week

- Object Performance Specification, a selection of the following items:
 - Modeling and characterization of the ideal behavior of amplifiers
 - Modeling and characterization of port isolation errors
 - Modeling and characterization of noise in electronic circuits
 - Modeling and characterization of dynamic behavior / Estimation of poles and zeros
 - Modeling and characterization of inaccuracy and nonlinearity
 - 6 Cost factors
 - Environmental conditions
 - Safety and reliability
 - Figure Of Merit
- Modeling and characterization of operational amplifiers
- Guided Exercise: Modeling of individual performance apsects of OpAmps
- Objective in the property of the property o