1、实验名称及目的

无人机电机转速 PWM 控制实验: 通过 RflySim 平台提供的 SendRCPwms 函数接口实现控制无人机电机 PWM 值。

2、实验原理

利用平台提供的 SendRCPwms 函数接口对无人机电机的 PWM 控制, 首先打开 MAVLi nk 以监控 CopterSim 数据并实时更新。然后设置 PWM 值,接着开启 RCOverride 模式, 开始发送 RC pwms 值,然后进行无人机的解锁进行控制, 最后, 发送指令让飞控退出 Offboa rd 模式, 并且停止监听 MAVLink 数据。

3、实验效果

运行实验 python 程序后,可以观察到无人机以全局位置原地以一定转速向上飞行 60s。

4、文件目录

文件夹/文件名称	说明	
PX4RcCtrlAPITest.bat	启动仿真配置文件	
PX4RcCtrlAPITest.py	实现功能主文件	
PX4MavCtrlV4.py	程序运行接口文件	

5、运行环境

序号	软件要求	硬件要求	
11, 4	人们安 本	名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版及以上		
3	Visual Studio Code		

① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

以管理员方式运行 PX4RcCtrlAPITest.bat, 启动 SITL 软件在环仿真。将会启动 1 个 Q GC 地面站, 1 个 CopterSim 软件且其软件下侧日志栏必须打印出 GPS 3D fixed & EKF initia lization finished 字样代表初始化完成,并且 RflySim3D 软件内有 1 架无人机。如下图所示:

Step 2:

用 VScode 打开到本实验路径文件夹,运行 PX4RcCtrlAPITest.py 程序,启动仿真。并且按 T键开启或关闭飞机轨迹记录功能 ,T+数字*开启/更改轨迹粗细为*号。可以观察 Rfl ySim3D 中的飞机的电机原地以一定转速向上飞行 60s,如下图所示:

7、参考文献

[1]. 无

8、常见问题

Q1: 无

A1: 无