SYSEN 6000: Foundations of Complex Systems

Machine Learning

Nick Kunz [NetID: nhk37] nhk37@cornell.edu

November 18, 2022

Data Set

Given a data set $D_{n\times m}$, where n is the number of observations and m is the number of feature vectors $X_1, X_2, X_3, \ldots, X_m$, with target label Y, where all $X_i, Y \in D_{n\times m}$, and D_{test} is the test sample $D_{1\times m}$, where $Y \notin D_{test}$, the following is:

Employment Status	Credit Rating	Available Credit	Age	Approve Application ?
Unemployed	Excellent	High	Young	No
Unemployed	Fair	High	Young	No
Unemployed	Excellent	High	Middle Age	Yes
Unemployed	Excellent	Medium	Senior	Yes
Employed	Excellent	Low	Senior	Yes
Employed	Fair	Low	Senior	No
Employed	Fair	Low	Middle Age	Yes
Unemployed	Excellent	Medium	Young	No
Employed	Excellent	Low	Young	Yes
Employed	Fair	Medium	Young	Yes
Unemployed	Fair	Medium	Middle Age	Yes
Employed	Excellent	High	Middle Age	Yes
Unemployed	Fair	Medium	Senior	No
Unemployed	Fair	Low	Young	No
Unemployed	Excellent	Medium	Middle Age	Yes
Employed	Fair	Medium	Senior	No
Employed	Excellent	High	Senior	Yes
Employed	Fair	Medium	Senior	No
Employed	Fair	Medium	Middle Age	Yes
Unemployed	Excellent	High	Senior	???

where n = 19, m = 4 and:

 $X_1 =$ Employment Status

 $X_2 = \text{Credit Rating}$

 $X_3 =$ Available Credit

(1)

 $X_4 = Age$

Y = Approve Application?

Implementation

The script for the give data set $D_{n\times m}$ and test sample D_{test} is as follows:

```
var = [
           'Employment Status',
           'Credit Rating',
           'Available Credit',
          'Approve Application'
 8
   ]
10 ## observations
11 obs = [
          ['Unemployed', 'Excellent', 'High', 'Young', 'No'],
          ['Unemployed', 'Fair', 'High', 'Young', 'No'],
['Unemployed', 'Excellent', 'High', 'Middle Age', 'Yes'],
14
          ['Unemployed', 'Excellent', 'Medium', 'Senior', 'Yes'],
          ['Employed', 'Excellent', 'Low', 'Senior', 'Yes'],
          ['Employed', 'Fair', 'Low', 'Senior', 'No'],
['Employed', 'Fair', 'Low', 'Middle Age', 'Yes'],
['Unemployed', 'Excellent', 'Medium', 'Young', 'No'],
['Employed', 'Excellent', 'Low', 'Young', 'Yes'],
17
18
19
20
          ['Employed', 'Fair', 'Medium', 'Young', 'Yes'],
21
          ['Unemployed', 'Fair', 'Medium', 'Middle Age', 'Yes'],
['Employed', 'Excellent', 'High', 'Middle Age', 'Yes'],
['Unemployed', 'Fair', 'Medium', 'Senior', 'No'],
['Unemployed', 'Fair', 'Low', 'Young', 'No'],
23
24
25
          ['Unemployed', 'Excellent', 'Medium', 'Middle Age', 'Yes'],
          ['Employed', 'Fair', 'Medium', 'Senior', 'No'],
['Employed', 'Excellent', 'High', 'Senior', 'Yes'],
['Employed', 'Fair', 'Medium', 'Senior', 'No'],
27
28
29
          ['Employed', 'Fair', 'Medium', 'Middle Age', 'Yes']
30
31 ]
   ## predictions
34 test = ['Unemployed', 'Excellent', 'High', 'Senior']
```

Python 3: Data Set & Test Sample

Decision Tree Classifier

The following is an exhibit of a Decision Tree classifier utilizing Entropy and Information Gain for the given data set $D_{n\times m}$ and D_{test} , where Entropy is computed as:

$$H(X) = -\sum_{j=1}^{c} p_j \log_2(p_j)$$
 (2)

and p_j is the probability of observing class C, which can also be expressed as:

$$H(X) = \sum_{j=1}^{c} \log_2 \left(\frac{1}{p_j}\right) p_j \tag{3}$$

Information Gain is computed as:

$$IG(Y,X) = H(Y) - H(Y|X) \tag{4}$$

Building the Decision Tree classifier utilizing Information Gain occurs in these steps.

Algorithm 1 Decision Tree Classifier

```
Input: D_{n \times m}, D_{test}

Output: class C of D_{test}

1: for each i do

2: compute IG(Y, X_i)

3: end for

4: create node N_i with highest IG

5: if all Y_j \in N_i are the same class C, then

6: return leaf node labeled class C to tree

7: else step 1

8: end if

9: if tree is done, then

10: traverse N_i in tree with X_{j \times m} \in D_{test} until C

11: return leaf node as class C
```

Implementation

The scripts for the Decision Tree classifier are as follows:

```
1 ## libraries
  import math
  import pprint
5 ## feat vect of data
6 def feat_vect(x_y, y_i):
      n = len(x_y)
      return [x_y[i][y_i] for i in range(0, n)]
10
11
13 ## feat subset of data
def feat_subs(x_y, y_i):
15
      n = len(x_y)
16
17
       return [x_y[i][0:y_i] for i in range(0, n)]
18
21 ## count unique vals of feat
def counter(y_j):
23
       ## find unique vals
24
      uni_val = list(
25
           set([j for j in y_j])
26
27
28
      ## count unique vals
      uni_val_cts = dict.fromkeys(
    uni_val, 0
30
31
32
33
34
      n = len(y_j)
      i_j = [None] * n
35
36
      for j in range(0, n):
37
          i_j[j] = y_j[j]
38
```

```
39
40
      for i in i_j:
         uni_val_cts[i] += 1
41
42
       return uni_val_cts
43
44
45
46 ## entropy of feat
47 def entropy(y_j):
48
49
       ## count unique vals
      cts = counter(
50
          y_{-}j = y_{-}j
51
52
53
54
      ## compute probs
      n = len(y_j)
55
56
      prob = [(j / n) for j in cts.values()]
57
58
59
      ## compute entropy
      return sum (
60
61
          [-p * math.log(p, 2) for p in prob]
62
63
64
65 ## info gain of data
def info_gain(x_y, x_i, y_i):
67
68
       ## trgt feat
       y_j = feat_vect(
69
           x_y = x_y,
70
71
           y_i = y_i
72
73
      ## attr feat
74
75
      x_a = feat_vect(
76
          x_y = x_y,
           y_i = x_i
77
78
79
       ## count unique vals
80
81
       cts = counter(
          y_j = x_a
82
83
84
       ## comp entropy
85
86
       entp = entropy(
87
           y_{-}j = y_{-}j
88
89
       ## cond entropy of feat
       entp\_cond = 0
91
92
       for i, uni in enumerate(cts):
93
94
            ## subset data by unique vals in trgt feat
95
           x_y_uni = [j for j in x_y if j[x_i] == uni]
96
            ## attr feat of subset
98
            y_v = feat_vect(
99
               x_y = x_y_uni,
y_i = y_i
100
101
102
```

```
103
104
           ## cond entropy of attr feat
           entp_cond += (cts[uni] / len(x_a)) * entropy(
106
               y_j = y_v
107
108
      ## info gain
109
      return entp - entp_cond
110
112
## decision tree on data
def grow_tree(x_y, y_i, tree = None):
115
       ## feat info gain
116
      m = len(x_y[0]) - 1
118
      info = [None] * m
119
       for i in range(0, m):
120
           info[i] = info_gain(
121
               x_y = x_y,
122
               x_i = i,
123
               y_i = y_i
124
125
126
       ## best feat split
127
      x_i_star = info.index(max(info))
128
129
       x_i_feat = feat_vect(
130
           x_y = x_y,
131
           y_i = x_i_star
132
133
134
135
       x_i_splt = counter(
         y_j = x_i_feat
136
137
138
139
       if tree is None:
           tree = dict()
140
           tree[x_i_star] = dict()
141
142
      else:
143
144
          pass
145
       ## cont feat split
146
147
      n = len(x_y)
148
       for i in x_i_splt:
149
150
           x_y_splt = list()
152
           for j in range(0, n):
               if x_y[j][x_i_star] == i:
153
154
                   x_y_{splt.append}(x_y[j])
156
           y_j = [x_y_splt[k][y_i] for k in range(0, len(x_y_splt))]
157
           y_jfreq = counter(
               y_{-}j = y_{-}j
158
159
160
           ## leaf node
161
           if len(y_j_freq) == 1:
162
               tree[x_i_star][i] = y_j_freq
163
164
           ## recursion
165
   else:
166
```

```
tree[x_i_star][i] = grow_tree(
167
168
                  x_y = x_y_{splt}
                   y_i = y_i
169
170
171
172
       return tree
174
## predict on decision tree dict
def pred_tree(tree, test, verb = False):
177
       k = list(tree.keys())[0]
178
       v = list(tree.values())[0]
179
180
      if isinstance(v, dict) == True:
181
         if verb == True:
182
              print(test[k])
183
184
           return pred_tree(
185
              tree = v[test[k]],
186
              test = test,
187
               verb = verb
188
          )
189
     else:
190
          return k
191
193 ## decision tree
197 )
198
199 ## prediction
200 pred_tree(
tree = tree,
      test = test
202
203 )
```

Python 3: Decision Tree Classifier

```
## view tree
pprint.pprint(tree)
```

Python 3: Decision Tree

Naive Bayes Classifier

The following is an exhibit of a Naive Bayes classifier assuming independence for the given data set $D_{n\times m}$ and D_{test} , where Bayes theorem is computed as:

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)} \tag{5}$$

which assumes independence, such that:

$$P(X_1, X_2, X_3, \dots, X_m | Y) = \prod_{i=1}^m P(X_i | Y)$$
(6)

where X_i and X_j are conditionally independent on Y, such that:

$$\forall i \neq j \tag{7}$$

which implies that a classifier can be expressed as:

$$P(C_k|X) = \frac{P(C_k)P(X|C_k)}{P(X)} = \frac{P(C_k)\prod_{i=1}^{m} P(X_i|C_k)}{P(X)}$$
(8)

where k is a class C, and C can be estimated by:

$$\hat{C} = \operatorname*{argmax}_{k \in K} P(C_k) \prod_{i=1}^{m} P(X_i | Y)$$
(9)

Building the Naive Bayes classifier assuming independence occurs in these steps.

Algorithm 2 Naive Bayes Classifier

```
Input: D_{n \times m}, D_{test}
Output: class C of D_{test}

1: for each k do
2: compute P(C_k)
3: for each i do
4: compute P(X_i|C_k)
5: end for
6: end for
7: return \underset{k \in K}{\operatorname{argmax}} P(C_k) \prod_{i=1}^m P(X_i|C_k)
```

Implementation

The scripts for the Naive Bayes classifier are as follows:

```
## class prob
def class_prob(y_j):

## count unique vals
y_j_cts = counter(
```

```
6
         y_{-}j = y_{-}j
8
9
      y_i_prob = y_j_cts.copy()
10
11
      n = len(y_j)
12
      for i in y_j_cts.keys():
13
           y_i_prob[i] = round(
14
               number = (y_j_cts[i] / n),
15
               ndigits = 3
16
17
18
19
      return y_i_prob
20
21
22 ## conditional prob
def cond_prob(x_y, y_i):
      ## trgt feat
25
26
      y_j = feat_vect(
          x_y = x_y,
27
           y_i = y_i
29
30
      ## count unique vals
31
32
      cts = counter(
33
          y_{-}j = y_{-}j
34
      ## cond prob
36
      n = len(x_y)
37
      m = len(x_y[0]) - 1
38
39
      y_i_splt = list()
40
      x_y_{cond} = cts.copy()
41
42
      for i in cts.keys():
43
           x_y_splt = list()
44
           x_y_cond[i] = dict()
46
          for j in range(0, n):
47
               if x_y[j][y_i] == i:
48
                   x_y_splt.append(x_y[j])
49
50
           n_{splt} = len(x_{y_{splt}})
51
52
53
           for j in range(0, m):
               x_splt_subs = feat_vect(
54
55
                   x_y = x_y_splt,
                   y_i = j
56
57
58
59
               cts_splt_subs = counter(
60
                  y_j = x_splt_subs
61
62
               x_splt_prob = {
63
                   k: round(v / n_splt, 3) for k, v in cts_splt_subs.items()
65
66
               x_y_cond[i].update(x_splt_prob)
67
68
return x_y_cond
```

```
70
71
72 ## posterior prob
73 def post_prob(p_clss, p_cond, test):
 75
      post_prob = p_clss.copy()
 76
 77
       for i in p_clss.keys():
 78
           test\_prob = 1
 79
          for j in test:
               test_prob = test_prob * p_cond[i][j]
 81
 82
           post_prob[i] = round(
 83
              number = p_clss[i] * test_prob,
 84
               ndigits = 3
 86
 87
 88
      return post_prob
 89
91 ## predict on post prob dict
92 def pred_post(p_post):
93
      ## arg max func
94
95
      return max(
96
           p_post,
97
           key = p_post.get
98
100 ## class prob
101 y_j = feat_vect(
    x_y = obs,
102
       y_i = 4
103
104 )
105
106 prob_clss = class_prob(
y_j = y_j
108 )
109
## conditional prob
prob_cond = cond_prob(
x_y = obs,
       y_i = 4
113
114 )
115
116 ## posterior prob
prob_post = post_prob(
p_clss = prob_clss,
119
      p_cond = prob_cond,
       test = test
120
121 )
122
123 ## prediction
124 pred_post(
p_post = prob_post
126 )
```

Python 3: Naive Bayes Classifier

k-Nearest Neighbors Classifier

The following is an exhibit of a k-Nearest Neighbors classifier utilizing Jaccard Similarity for the given data set $D_{n \times m}$ and D_{test} , where the Jaccard Similarity distance metric is computed as:

$$J(A|B) = \frac{|A \cap B|}{|A \cup B|} \tag{10}$$

Building the k-Nearest Neighbors classifier with Jaccard Similarity occurs in these steps. k should be set to an odd number to avoid cases where the number of C in $Y_i \in D_{k \times m}$ are equal.

```
Algorithm 3 k-NN Classifier
```

```
Input: D_{n \times m}, D_{test}
Output: class C of D_{test}

1: set k

2: for each j do

3: compute distance I_j = J(X_{j \times m}|D_{test})

4: end for

5: sort distances I_j in ascending order

6: truncate I_j by k to I_k

7: subset D_{n \times m} to D_{k \times m} indexed by I_k

8: return majority of Y_j \in D_{k \times m} as C
```

Implementation

The scripts for the k-NN classifier are as follows:

```
## jaccard similiarity
  def jaccard(a, b):
       ## intersect
      inter = len(list(set(a).intersection(b)))
      ## union
      n_a, n_b = len(a), len(b)
      union = (n_a + n_b) - inter
9
      ## proportion
11
      return round(
           number = inter / union,
13
           ndigits = 2
14
15
16
17 ## dist matrix on data
  def dist_matrix(x_y, y_i, test = False):
19
      x_i = feat_subs(
20
21
           x_y = x_y,
           y_i = y_i
22
23
24
25
      n = len(x_i)
      dist_mtrx = [None] * n
26
27
28
      if test is False:
29
           for i in range(0, n):
               dist = [None] * n
31
```

```
for j in range(0, n):
33
                    dist[j] = jaccard(
34
                       a = x_i[i],
b = x_i[j]
35
36
37
38
               dist_mtrx[i] = dist
39
40
41
       else:
          for i in range(0, n):
42
               dist_mtrx[i] = jaccard(
                   a = test,
44
45
                    b = x_i[i]
46
47
48
      return dist_mtrx
49
50 ## knn on data
def knn(x_y, y_i, k, test = False):
52
       dist_mtrx = dist_matrix(
53
54
          x_y = x_y,
           y_i = y_i,
test = test
55
56
57
58
59
      ## find near neigh index
60
      n = len(dist_mtrx)
      near_negh = dict()
61
      if test is False:
63
          for i in range(0, n):
64
65
               ## neigh sorted by index
66
               idx = sorted(
67
                    range(len(dist_mtrx[i])),
68
69
                    key = lambda k: dist_mtrx[i][k]
70
71
72
               ## subset near by k
               near_negh[i] = list(
73
74
                   reversed(idx[-k - 1:][:-1])
75
       else:
76
          ## neigh sorted by index
77
           idx = sorted(
78
79
               range(len(dist_mtrx)),
80
               key = lambda k: dist_mtrx[k]
81
82
           ## subset near by k
83
           near_negh = list(
               reversed(idx[-k - 1:][:-1])
85
86
87
      return near_negh
88
90 ## predict on knn test list
91 def knn_pred(x_y, y_i, k, test):
92
       idx_knn = knn(
93
94
          x_y = x_y,
           y_i = y_i,
95
    k = k,
```

```
test = test
97
98
99
       n = len(idx_knn)
100
       x_y_{knn} = [None] * n
101
102
      for i in range(0, n):
103
          x_y_knn[i] = obs[idx_knn[i]]
104
105
       y_j_knn = feat_vect(
106
107
          x_y = x_y_{knn}
           y_i = y_i
108
109
110
     y_j_hat = counter(
111
       y_j = y_j_knn
)
112
113
114
      return max(
115
         y_j_hat,
116
           key = y_j_hat.get
117
118
```

Python 3: k-NN Classifier

Python 3: 1-NN Classifier

```
"Yes"
```

k = 3

```
## prediction
knn_pred(
    x_y = obs,
    y_i = 4,
    k = 3,
    test = test

// test = test
```

Python 3: 3-NN Classifier

Python 3: 5-NN Classifier

"Yes"

7)

Dependency Support Classifiers

The following verifies the previous details of the given classifiers utilizing common dependencies for machine learning to include: pandas and scikit-learn. The outputs of the scripts follow the figures.

Data Set

```
## libraries
2 import pandas as pd
3 from sklearn.preprocessing import OrdinalEncoder
4 from sklearn.preprocessing import MinMaxScaler
6 ## data
7 data = pd.DataFrame(
     data = obs,
9
     columns = var
10 )
11
12 data_pred = pd.DataFrame(
13
     data = [test],
      columns = var[0:4]
14
15 )
16
17 ## pre-process
18 enc = OrdinalEncoder()
19 mms = MinMaxScaler()
21 for i in data.columns:
      data[i] = enc.fit_transform(data[[i]])
24 data = mms.fit_transform(data)
25 data = pd.DataFrame(
     data = data,
      columns = var
27
28 )
29 data_pred = enc.fit_transform(data_pred)
```

Python 3: Pandas Dataframe

Decision Tree Classifier

Python 3: Scikit-Learn Decision Tree Classifier

Naive Bayes Classifier

```
## libraries
2 from sklearn.naive_bayes import CategoricalNB
4 ## train
5 clf = CategoricalNB()
7 clf = clf.fit(
      X = data.drop(['Approve Application'], axis = 1).values,
      y = data['Approve Application']
9
10 )
11
12 ## predict
if int(clf.predict(data_pred)[0]) == 1:
14
     print('Yes')
15 else:
print('No')
```

Python 3: Scikit-Learn Naive Bayes Classifier

"Yes"

k-Nearest Neighbors Classifier

```
k = 1
 1 ## libraries
<sup>2</sup> from sklearn.neighbors import KNeighborsClassifier
4 ## train
5 clf = KNeighborsClassifier(
     n_neighbors = 1,
      metric = 'jaccard'
8)
9
10 clf = clf.fit(
X = data.drop(['Approve Application'], axis = 1).values,
      y = data['Approve Application']
12
13 )
14
15 ## predict
if int(clf.predict(data_pred)[0]) == 1:
print('Yes')
18 else:
print('No')
```

Python 3: Scikit-Learn 1-NN Classifier

```
"Yes"

k=3

## libraries

from sklearn.neighbors import KNeighborsClassifier

## train

clf = KNeighborsClassifier(

n_neighbors = 3,

metric = 'jaccard'

b)

clf = clf.fit(
    X = data.drop(['Approve Application'], axis = 1).values,
```

```
12     y = data['Approve Application']
13 )
14
15 ## predict
16 if int(clf.predict(data_pred)[0]) == 1:
17     print('Yes')
18 else:
19     print('No')
```

Python 3: Scikit-Learn 3-NN Classifier

```
"No"
  k = 5
## libraries
2 from sklearn.neighbors import KNeighborsClassifier
4 ## train
5 clf = KNeighborsClassifier(
     n_neighbors = 5,
     metric = 'jaccard'
8)
10 clf = clf.fit(
X = data.drop(['Approve Application'], axis = 1).values,
12
     y = data['Approve Application']
13 )
14
15 ## predict
if int(clf.predict(data_pred)[0]) == 1:
print('Yes')
18 else:
print('No')
```

Python 3: Scikit-Learn 5-NN Classifier

"Yes"

Support Vector Machines Classifier

Python 3: Scikit-Learn SVM Classifier