

OOO «Сербалаб» Лицензия ЛО-78-01-007244 Адрес г.Санкт-Петербург, Большой пр. ВО д.90, к.2, лит «3» 8 (812) 602-93-38 Info-cerbalab.ru Cerbalab.ru

Молекулярно-генетическое тестирование по профилю «Женское здоровье»

Ф.И.О. пациента:	Результат анализа №:

Дата рождения пациента: Дата выдачи:

Пол: Направляющее учреждение:

Результаты генетического тестирования

Ген	Кодируемый белок	RS	Полиморфизм	Результат
	Метаболизм стероидных	гормонов	ı	L
CYP19A1	цитохром 19А1 (ароматаза)	A>G Intron1	A/G	
ESR 1	рецептор эстрогена	rs2234693	T>C Intron variant	C/C
ESR2	рецептор эстрогена	rs4986938	C>T 3 prime UTR variant	C/T
FSHR	рецептор фолликул-стимулирующего гормона	rs6166	T>C Ser680Asn	T/T
PRG	рецептор прогестерона	rs1042838	c.2721	C/A
AR	рецептор к андрогенам		(CAG)n	20R/22R
CYP17A1	цитохром 17А1	rs743572	A>G c34	G/G
CYP21	21-гидроксилаза		A/C>G c.655 2spl	A/A
CYP21	21-гидроксилаза		C>T c.2578 P453S	C/C
CYP21	21-гидроксилаза		C>T c.89 P30L	C/C
CYP21	21-гидроксилаза		del30kb exon3	N/N
CYP21	21-гидроксилаза		G>T c.1683 V281L	T/G
CYP21	21-гидроксилаза		T>A1380 I236N	T/T
CYP21	21-гидроксилаза		T>A1383 V237E	T/T
CYP21	21-гидроксилаза		T>A999 172N	T/T
CYP21	21-гидроксилаза		C>T c.2108 R356W	C/C
CYP21	21-гидроксилаза		->insT c.1762 L306insT	N/N
CYP21	21-гидроксилаза		C>T c.1994 Q318X	C/C
	Репарация ДНК	•		
BLM	RecQ геликаза	rs20038914	C>T c.517	N/N
BRCA1	Breast Cancer Assosiated	rs76171189	->insC c.5382	N/N
BRCA1	Breast Cancer Assosiated		delA c.4154	N/N
BRCA1	Breast Cancer Assosiated		del5 c.3819	N/N
BRCA1	Breast Cancer Assosiated		del4 c.3875	N/N

BRCA1	Breast Cancer Assosiated rs28897672 C>G c.61			
BRCA1	Breast Cancer Assosiated rs77944974 delAG c.185			
BRCA1	Breast Cancer Assosiated		delA c.2080	N/N
BRCA1/2	Breast Cancer Assosiated		exon	N/N
BRCA2	BRCA2 Breast Cancer Assosiated del4 c.1528			
BRCA2	CA2 Breast Cancer Assosiated delT c.6174			
BRCA2	Breast Cancer Assosiated del4 c.9318			
	Регуляция клеточного ц	,икла		
CHEK	checkpoint kinase 2 delC1100		delC1100	N/N
Иммунный ответ				
TNF-a	фактор некроза опухолей альфа	rs1800629	G>A c308	G/A
CTLA4	Т-лимфоцит-ассоциированной серинэстеразы		49 A>G	

Общая информация

Стероидные гормоны — одни из главных химических веществ, отвечающих за рост организма и половые функции. Так же они регулируют нормальную работу соединительной ткани и обмен кальция.

В результате исследования профиля по генам этого блока можно прогнозировать вероятность развития некоторых видов рака, уменьшение плотности и прочности костей в менопаузе, а так же предсказать способность к оплодотворению у мужчин и женщин.

Исследование рекомендуется при наличии онкозаболеваний, остеопороза, бесплодия, заболеваний соединительной ткани у пациента или ближайших родственников.

Суммарный отчет по результатам молекулярно-генетического анализа

Генетический риск	Пониженный	Средний	Повышенный	Высокий	
Наследственный фактор (моногенная патология)					
Рак молочной железы и яичников		V			
Врожденная дисфункция коры	V				
надпочечников					
Предрасположенн	ость (мультифа	кторная пато	(килоло		
Рак молочной железы и яичников (на		V			
фоне приема КОК и ГЗТ)					
Гормонозависимые новообразования		V			
(на фоне приема КОК и ГЗТ)					
Аутоиммунный гипотиреоидит			V		
Состояния, связанные с нарушением метаболизма стероидных гормонов					
Гиперандрогения			V		
СПКЯ	_	V			
Акне			V		
Андрогенновая алопеция			V		

Описанные признаки (заболевания) относятся к многофакторным состояниям. Выявленные генетические маркеры не являются диагностическими критериями каких-либо заболеваний. Заключение дано на основании проанализированных генетических маркеров. Другие генетические и не генетические факторы могут влиять на риск оцененных признаков.

Интерпретация генетических вариантов Рак молочной железы

Самым частым онкологическим заболеванием, диагностируемым у женщин, является рак молочной железы. Рак яичников является основной причиной смертельных исходов вследствие бессимптомного течения заболевания на ранних стадиях. Существуют мутации в генах BRCA1 и BRCA2, наличие которых повышает риск развития рака молочной железы и рака яичников.

В мире ежегодно регистрируется более 1 млн. случаев рака молочной железы (РМЖ), а в РФ более 50 тыс. Летальность на 1-м году после установления диагноза составляет почти 13%. Эффективность лечения выше при выявлении на ранних стадиях заболевания, поэтому своевременная диагностика может привести к снижению числа неблагоприятных исходов.

Примерно 5-10% всех случаев РМЖ и рака яичников являются наследственными и их развитие может быть связано с мутациями в гене BRCA1

BRCA1- ассоциированный рак молочной железы характеризуется более высокой степенью злокачественности, чем спорадический и чаще приводит к развитию эстроген- и прогестеронотрицательных опухолей, но также характеризуются более выраженным положительным ответом на проводимое лечение.

Патологические полиморфизмы в гене BRCA1 повышают также риск развития рака яичников, желудка, толстой кишки, эндометрия, поджелудочной железы, мочевого пузыря, опухолей головы и шеи, желчевыводящих путей, а также возникновения меланомы

Дополнительными факторами риска развития РМЖ являются:

- Курение
- -частое употребление алкоголя
- ранее менархе и позднее наступление менопаузы
- бесплодие, поздние роды
- пролиферативные заболевания молочной железы
- ионизирующее облучение
- наличие первичного рака яичников, эндометрия или толстой кишки
- мутации генов фолатного цикла.

Заключение

У обследуемой по данным генетического исследования риск РМЖ и яичников семейной формы не выявлено.

Существуют другие гены, которые могу вызывать наследственный РМЖ и яичников: PALB2, ATM, BRIP1, TP53, PTEN, STK11, CDH1, NBN, BARD1, MLH1, MRE11, MSH2, MSH6, MUTYH, PMS1, PMS2, RAD50, RAD51C

Интерпретация генетических вариантов $B\Delta KH$

Врождённая гиперплазия надпочечников (ВГН) представляет собой группу наследственных аутосомно-рецессивных заболеваний, которые характеризуются нарушением работы ферментов, ответственных за метаболизм кортизола и/или альдостерона. Примерно в 90% случаев ВГН вызывается генетическими аберрациями в гене СҮР21А2, что приводит к снижению активности фермента гидроксилазы-21. Изменение активности данного фермента приводит к нарушению синтеза 11-дезоксикортизола из 17-гидроксипрогестерона, что, в свою очередь, ведет к дефициту кортизола и альдостерона, повышению уровня АКТГ, гиперплазии коры надпочечников и усилению секреции надпочечниковых андрогенов. Так, при гомозиготных или компаундных гетерозиготных делециях и конверсиях гена СҮР21А2, а также при небольшой делеции 8 нуклеотидов и точечных мутациях 113 bp, I236N, V237E, M239K, I172N, F306+T, I2G,Q318X активность фермента гидроксилазы-21 значительно снижается. При данных типах аберраций развивается простая вирилизирующая или сольтеряющая форма ВГН. Однако было показано, что в гетерозиготном состоянии данные аберрации также могут приводить к развитию неклассической формы ВГН.

Неклассическая форма врождённой гиперплазии надпочечников (НВГН), вызванная мутациями гена СҮР21А2, представляет собой частое наследственное аутосомно-рецессивное заболевание с распространенностью, достигающей 1:200. При данном заболевании наблюдается увеличенная продукция андрогеновых гормонов, что объясняет некоторые клинические проявления заболевания. При НВГН уровень активности фермента гидроксилазы-21 составляет 20-50%, что объясняет отсутствие тяжелых эндокринологических нарушений у пациентов данной группы, которые характерны для классических форм ВГН. Мутации Р453S, R356W, V281L и P30L чаще всего вызывают НВГН.

Для пациентов с НВГН характерна значительная вариабельность клинических проявлений: в молодом возрасте может наблюдаться преждевременное половое созревание, акне, усиленный рост; во взрослом возрасте проявления могут включать в себя у мужчин олигоспермию и бесплодие, у женщин – аменорею, олигоменорею, ановуляцию, синдром поликистозных яичников, гирсутизм, акне и бесплодие. Рекомендуется проводить исследование при бесплодии у мужчин и женщин, акне, нарушении овуляционного цикла и менструаций.

Заключение

Проведено исследование ДНК на наличие наиболее частых мутаций в гене CYP21A2 (V237E, P30L, P453S, R356W, L306insT, Q318X, I2spl, I172N, V281L, V281L, I236N, del30kb). Выявлена гетерозиготная мутация V281L, которая связанна с неклассической формой ВДКН со слабовыраженными проявлениями или с отсутствием клинических проявлений.

Интерпретация генетических вариантов Риск гиперандрогении

Гиперандрогения - патология эндокринной системы у женщин с распространенностью 10-20%, которая связана с избыточным эффектом андрогенов - мужских половых гормонов, которые в норме вырабатываются у женщин в небольшом количестве. Гиперандрогения может возникать как при повышении уровня андрогенов в крови (гиперандрогенемии), так и при нормальном уровне андрогенов вследствие повышения активности рецептора к андрогенам. У пациенток с гиперандрогенным состоянием могут возникать косметические проблемы (акне, себорея, алопеция, гирсутизм), репродуктивные нарушения (ановуляция и бесплодие, СПКЯ) и эндокринные расстройства, в таких случаях возможно лечение препаратами, содержащими антиандрогены.

Ген АR кодирует рецептор к андрогенам - мужским половым гормонам. Связываясь с андрогенами, рецептор участвует в регуляции формирования плода, полового развития, роста волос и полового поведения. Мутация заключается в количестве повторов определенного сочетания нуклеотидов САС (цитозин-аденин-гуанин) в участке генома. 22 таких повтора считаются нормой, снижение количества повторов связано с повышенной активностью рецептора. Возрастание количества повторов приводит к снижению активности рецептора. Чем выше количество повторов САС (цитозин-аденин-гуанин) в участке генома, тем меньшей активностью обладают рецепторы к андрогенам. Повышенная активность рецептора связана с риском признаков гиперандрогении без увеличения уровня андрогенов в крови и риском нарушения овуляции у женщин, а также риском алопеции, как у мужчин, так и у женщин.

Генетическая предрасположенность к гиперандрогении:

Коэффициент генетического риска (% людей с таким К)

Заключение

Среднепопуляционный риск гиперандрогении

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
	22R/26R	Рецептор к андрогенам,	Норма. Исключен один из основных
		обуславливает эффекты	факторов риска повышенной
		андрогенов.	чувствительности тканей к андрогенам,
AR(CAG)n			которая сопровождаться клиническими
			признаками гиперандрогенемии при
			нормальном уровне андрогенов
	G/A	Ароматаза — фермент,	Наиболее частый вариант.
CYP19A1		превращающий андрогены в	Transoned racibly bapyari.
rs2470152		эстрогены. Полиморфизм	
132470102		rs2470152 ассоциирован с	
		уровнем эстрадиола (Е2) и	
		соотношением Е2/Т	
		(эстрадиол/тестостерон).	
	A/A	Ген кодирует 17-альфа-	Популяционный вариант.
CYP17A1	',''	гидроксилаза — фермент,	
rs743572		который участвует в обмене	
		мужских и женских половых	
		гормонов в организме	
		человека	

Интерпретация генетических вариантов Риск СПКЯ

Синдром поликистозных яичников (СПКЯ, известный также как синдром Штейна—Левенталя) – это гормональное заболевание женской половой системы, при котором на яичниках формируется множество кистозных образований. СПКЯ в гинекологии считается одним из самых распространенных заболеваний органов малого таза, приводящих к бесплодию. Поликистоз яичника появляется на фоне гормональных нарушений в организме женщины.

Болезнь развивается по следующей схеме:

- мужской гормон андроген продуцируется в чрезмерном количестве;
- женские гормоны прогестерон и эстроген вырабатываются в недостаточном количестве;
- начинается конфликт между эндокринной системой и яичниками;
- сформированная яйцеклетка не в состоянии выйти из фолликула;

поверхность яичника покрывается мелкими кистами.

Причин возникновения патологического процесса множество. Чаще всего заболеванию подвержены женщины, которые входят в группу риска по гормональным нарушениям: СПКЯ был или есть у ближайших родственников по женской линии.

Патологии органов малого таза способны передаваться по наследству; имеются заболевания эндокринной системы; наличие эндометриоза или миомы матки; перенесенные или действующие инфекционные заболевания.

Генетическая предрасположенность к СПКЯ:

Коэффициент генетического риска (% людей с таким К)

Заключение

Среднепопуляционный риск гиперандрогении

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
AR(CAG)n	22R/26R	Рецептор к андрогенам, обуславливает эффекты андрогенов.	Норма. Исключен один из основных факторов риска повышенной чувствительности тканей к андрогенам, которая сопровождаться клиническими признаками гиперандрогенемии при нормальном уровне андрогенов
CYP17A1 Rs743572	A/A	Ген кодирует 17-альфа- гидроксилаза — фермент, который участвует в обмене мужских и женских половых гормонов в организме человека	Популяционный вариант.
LHCGR rs12470652	C/C	Рецептор к РГЛГ	Риск СПКЯ увеличен в 3 раза

Интерпретация генетических вариантов Риск нарушения синтеза стероидных гормонов

Синтез и инактивация стероидных гормонов осуществляется большим количеством ферментов, кодируемых определенными генами. Слаженная работа ферментов и адекватная активность рецепторов к гормонам обеспечивает нормальный «гормональный фон».

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
CYP19A1 rs2470152	A/G	Ароматаза, обеспечивает последние стадии синтеза женских половых гормонов.	При наличии аллеля А активность ароматазы снижается, что приводит к недостаточному синтезу женских половых гормонов, как в женском, так и в мужском организме. Это увеличивает риск развития гормонозависимых заболеваний.
ESR 1 rs 2234693	C/C	Рецептор к эстрогенам первого типа.	Риск остеопороза ниже.
ESR2 rs 4986938	C/C	Рецептор к эстрогенам второго типа.	Повышенный риск гормонозависимых новообразований на фоне длительного приема ГЗТ. Дезорганизация соединительной ткани, путем нарушение управления процессами ремоделирования соединительной ткани. Изменение количества рецепторов приводит к нарушению действия женских половых в организме.
FSHR rs6166	T/T	Рецептор к ФСГ	Ответ на стимуляцию лучше. В среднем ниже базальный уровень ФСГ, выше уровень эстрадиола перед овуляцией, больше зрелых яйцеклеток при симуляции, выше риск СГЯ
PRG rs1042838	C/C	Рецептор прогестерона	Популяционный вариант. Не выявлено фактора риска рака эндометрия. Не выявлено фактора мигренеподобных головных болей у женщин

Риск аутоиммунного тиреоидита. Болезнь Грейвса

Болезнь Грейвса - это аутоиммунное заболевание, при котором происходит увеличение щитовидной железы и активная чрезмерная выработка гормонов щитовидной железы.

Наиболее характерными симптомами данного заболевания являются:

- экзофтальм (пучеглазие);
- резкое снижение массы тела на фоне повышенного аппетита;
- быстрая утомляемость;
- повышенная потливость, частое ощущение жара;
- тремор пальцев;
- нестабильная работа ЦНС (раздражительность, агрессия, плаксивость, склонность к депрессиям);
- аритмия, тахикардия.

Генетическая предрасположенность

Коэффициент генетического риска (% людей с таким К)

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
CTL4 Rs231775	A/G	кодирует иммуноглобулин CD152, который блокирует активацию Т-клеток, связываясь с рецепторами его антагониста (CD28) и определяет толерантность иммунной системы.	Увеличен риск аутоиммуного териоидита в 1,5
TNFa Rs1800629	A/G	Фактор некроза опухоли-а, провоспалительный цитокин. Полиморфная замена G-308A промотора гена TNFа приводит к усилению воспалительного ответа и риску тромбообразования. Генотип -308 АА является фактором риска развития бронхиальной астмы, болезни Крона, неспецифического язвенного колита.	Увеличен риск аутоиммуного териоидита

Выводы:

Негативный эффект генов

- риск гиперандрогении
- повышен риск постменапаузального остеопороза

Среднепопуляционный риск

- не выявлено мутаций связанных с раком молочной железы и яичников

Рекомендации:

- 1. Консультация лечащего врача
- 2. Биохимическое исследование на женский гормональный профиль
- 3. Остеоденситометрия
- 4. Биохимический анализ: Са, Mg, P, ЩФ, кальцитонин
- 5. Консультация гинеколога-эндокринолога.

Анализ проводили:

Биолог:

Врач-генетик

Рук. Лаб. Службы:

