Билеты по матанализу за второй семестр

Содержание

1	Функции ограниченной вариации. Свойства. Замена переменной. Примеры.	3
2	Естественная параметризация. Гладкие пути. Длина гладкого пути.	3
3	Движение по окружности. Единственность простого вращения.	5
4	Построения простого вращения. Тригонометрические функции. Свойства. Формула Эйлера.	5
5	Дифференцируемость отображений между евклидовыми про странствами. Свойства. Примеры.	6
6	Отделимость линейных отображений от нуля. Норма в пространстве линейных отображений.	7
7	Дифференцирование суммы, произведения, частного.	8
8	Дифференцирование суперпозиции функций.	8
9	Частные производные. Связь частных производных с дифференцируемостью. Производная по направлению.	8
10	Лемма о билипшицевости.	9
11	Теорема об обратном отображении.	9
12	Матрица Якоби. Градиент.	9
13	Дифференцирование обратного отображения.	10
14	Теорема о равенстве смешанных производных.	10
15	Формула Тейлора с остатком в форме Пеано.	11

16	Формула Тейлора с остатком в интегральной форме.	12	
17	Необходимое условие экстремума функции многих переменных.	12	
18	Знак квадратичной формы. Достаточные условия экстремума функции многих переменных.	13	
19	Касательные вектора. Касательная плоскость.	14	
20	Теорема о неявной функции для двух переменных.	14	
21	Теорема о неявной функции для произвольного числа переменных.	15	
22	Теорема о неявной функции для систем уравнений. Примеры.	17	
23	Полярные и сферические координаты. Параметризации поверхностей.	17	
24	Задача условного экстремума. Необходимое условие условного экстремума.	17	
25	Функции Лагранжа. Достаточное условие условного экстремума. Примеры.	17	
26	Теорема о перестановке пределов. Общий вид теоремы Стокс Зайделя.	<mark>a-</mark> 17	
27	Голоморфные функции. Примеры. Общий вид дифференциала голоморфной функции.	17	
28	Степенные ряды. Радиус сходимости степенного ряда.	17	
29	Голоморфность суммы степенного ряда.	17	
30	Теорема Стоуна-Вейерштрасса. Лемма об аппроксимации x	17	
31	Теорема Стоуна-Вейерштрасса. Завершение докзательства.	17	
32	Теорема о неподвижной точке. Приложение к дифференци- альным уравнениям.	17	
33	Топология в пространстве $C \cap (R)$. Метризуемость.	17	
Ук	казатель	19	

Функции ограниченной вариации. Свойства. Замена переменной. Примеры.

Определение 1. Вариация функции $f: \mathbb{R} \to \mathbb{R}^m$

$$V_f([a,b]) = \sup_{\substack{x_0 \le x_1 \le \dots \le x_n \\ x_0 = a, x_n = b}} \sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)|$$

Примечание 1. Свойства вариации

- $f: \mathbb{R} \to \mathbb{R}$, f монотонна $\Rightarrow V_f([a,b]) = |f(a) f(b)|$
- $V_f([a,b]) = 0 \Leftrightarrow f$ константо на [a,b]
- $V_{f+q} \leq V_f + V_q$
- V_f аддитивна по промежутку: $a \le b \le c: V_f([a,c]) = V_f([a,b]) + V_f([b,c])$

Примечание 2. Будем говорить, что f имеет ограниченную вариацию на [a,b], если V_f конечна на [a,b]

Утверждение 1. Для $f: \mathbb{R} \to \mathbb{R}$ следующие утверждения эквивалентны

- 1. f имеет ограниченную вариацию на [a, b]
- 2. $f = f_1 f_2$, для каких-то f_1, f_2 неубывающих на [a, b]

Доказательство. "1 \rightarrow 2": рассмотрим $\phi(x) = V_f([a,x]) \Rightarrow \phi \nearrow f = \phi - (\phi - f)$, пусть $h = \phi - f$. $h \nearrow \Leftrightarrow$ при $x \le y$: $h(x) \le h(y) \Leftrightarrow \phi(x) - f(x) \le \phi(y) - f(y) \Leftrightarrow f(y) - f(x) \le \phi(y) - \phi(x) = V_f([x,y])$ "2 \rightarrow 1": $V_{f_1 - f_2}[a,b] \le V_{f_1}[a,b] + V_{-f_2}[a,b] = |f_1(a) - f_1(b)| + |f_2(a) - f_2(b)|$

Утверждение 2. (Замена переменной в вариации) Пусть $g:[a,b] \to [c,d]$ непрерывная биекция, тогда $V_f[c,d] = V_{f \circ g}[a,b]$

Доказательство. g монотонна, будем считать, что возрастает. Любому набору x_0, x_1, \ldots, x_n из определения вариации V_f найдутся соответсвующие y_0, y_1, \ldots, y_n , удовлетворяющие условию $g(y_k) = x_k$ и подходящие для подстановки в определение $V_{f \circ g}$, т.к. $y_k \nearrow \Leftrightarrow g(y_k) \nearrow$. Тогда $V_f[c,d] \le V_{f \circ g}[a,b]$, но с другой стороны $V_f[c,d] \ge V_{f \circ g}[a,b]$, т.к. можно подставлять $x_k := g(y_k)$ в определение первой вариации.

2 Естественная параметризация. Гладкие пути. Длина гладкого пути.

Определение 2. Множество в \mathbb{R}^n называют кривой, если оно является образом некоторой непрерывной функции $f:(a,b)\to\mathbb{R}^n$. Дуга кривой (или же путь) - подмножество кривой $f:[c,d]\to\mathbb{R}^n$.

Определение 3. Длина дуги кривой (пути) $f:[a,b] \to \mathbb{R}^n$ это $V_f([a,b])$.

Примечание 3. Если длина пути конечна, то путь называется спрямляемым, иначе - неспрямляемым.

Определение 4. Естественная параметризация кривой - параметризация длиной её дуги, отсчитываемой от фиксированной точки.

Примечание 4. Естественная параметризация - параметризация, которая "равномерна по времени, т.е. за одинаковый промежуток времени проходим одинаковое расстояние".

Естественная параметризация спрямляемого пути

 $\phi:[a,b] \to [0,\beta], \phi(x) = V_f([a,x]),$ если ϕ строго возрастает (путь "без остановок", $f \not\equiv const$ ни на каком интервале), то ϕ - биекция и $\exists \psi:[0,\beta] \to [a,b], \psi = \phi^{-1}, V_f([a,b]) = \phi(b) - \phi(a)$ $V_{f \circ \psi}([c,d]) = V_f([\psi(c),\psi(d)]) = \phi(\psi(d)) - \phi(\psi(c)) = d-c$

Определение 5. Гладкий путь - образ гладкой $f:[a,b] \to \mathbb{R}^n$ (т.е. $f=(f_1,...,f_n)$, причём все f_k непрерывно дифференцируемы).

 $\it Hanomunahue\ 1.\ \Phi$ ормула Лагранжа, $f:[a,b]\to \mathbb{R}$ дифференцируема $\Rightarrow \exists \xi\in (a,b):$

$$f'(\xi) = \frac{f(a) - f(b)}{a - b}$$

Утверждение 3. Длина гладкого пути $f=(f_1,...,f_n)$ равна $\int_a^b \sqrt{\sum_{m=1}^n (f_m'(x))^2} dx$

Доказательство. Рассмотрим $V_f([a,b]) = \sup_{x_0=a,\dots,x_N=b} \sum_{k=0}^{N-1} |f(x_{k+1}) - f(x)|$ и

воспользуемся формулой Лагранжа $\sum\limits_{k=0}^{N-1}\sqrt{\sum\limits_{m=1}^{n}(f_m(x_{k+1})-f_m(x_k))^2}=$

$$\sum_{k=0}^{N-1}(x_{k+1}-x_k)\sqrt{\sum_{m=1}^n(f_m'(\xi_{m,k}))^2}=(V),\ \xi_{m,k}\in(x_k,x_{k+1}),(f_m')^2$$
 равномерно

непрерывна на $[x_k,x_{k+1}]$, значит для любого $\varepsilon>0$ существует достаточно малое разбиение [a,b] такое, что $(f'_m)^2(\xi_{m,k})\leq \min_{[x_k,x_{k+1}]}(f'_m)^2+\varepsilon^2$. Тогда

$$(I) \le (V) \le \underbrace{\sum_{k=0}^{N-1} (x_{k+1} - x_k) \sqrt{\sum_{m=1}^{n} \min_{[x_k, x_{k+1}]} (f'_m)^2}}_{(I)} + \varepsilon \sqrt{n} \cdot \underbrace{\underbrace{(b-a)}_{\sum_{k=0}^{N-1} (x_{k+1} - x_k)}}_{\sum_{k=0}^{N-1} (x_{k+1} - x_k)}$$

Левая и правая части стремятся к интегралу из условия (при стремлении мелкости к нулю), тогда по теореме о двух миллиционерах туда же стремится и (V). \Box

Естественная параметризация гладкого пути

$$\phi(x) = V_f([a, x]) = \int_a^x |f'(t)| dt = \int_a^x \sqrt{\sum_{k=1}^n (f'_k(t))^2} dt$$

Параметризация всё также по длине дуги $\psi = \phi^{-1}$ Утверждение 4. $|(f(\psi(x)))'| = 1$

Доказательство.
$$\phi'(x) = |f'(x)|, \psi'(x) = \frac{1}{\phi'(\psi(x))} = \frac{1}{|f'(\psi(x))|}$$
 $|(f(\psi(x)))'| = |f'(\psi(x)) \cdot \psi'(x)| = 1$

3 Движение по окружности. Единственность простого вращения.

Единичная окружность описывается уравнением $x^2 + y^2 = 1$. Хотим обойти её с единичной скоростью, начиная с точки (1,0).

Комплексные обозначения: рассмотрим биекцию \mathbb{R}^2 с \mathbb{C} по правилу: $(x,y) \leftrightarrow (x+iy)$. Тогда путь можно рассматривать как отображение из \mathbb{R} в \mathbb{C} .

Определение 6. Простое вращение по окружности это отображение $\Gamma: \mathbb{R} \to \pi = \{z \in \mathbb{C} \big| |z| = 1\} = \{z \in \mathbb{C} \big| x, y \in \mathbb{R}, x^2 + y^2 = 1, z = x + iy\},$

- $\Gamma \in C^1$ (гладкая)
- $\Gamma(0) = 1, \Gamma'(0) = i$
- $|\Gamma'(t)| = 1$ для любого t

Лемма 1. $\Gamma'(t) \equiv i\Gamma(t)$

Доказательство.
$$\Gamma(\underline{t}) \in \pi \Rightarrow |\underline{\Gamma}(\underline{t})| = \Gamma(t)\overline{\Gamma(t)} = 1$$
 $\Rightarrow (\Gamma(t)\overline{\Gamma(t)})' = \Gamma'(t)\overline{\Gamma(t)} + \Gamma(t)\underline{\Gamma'(t)} = 0$ $\Rightarrow 2\Re(\Gamma'(t)\overline{\Gamma(t)}) = 0, |\Gamma'(t)| = |\overline{\Gamma(t)}| = 1$ и $\Gamma'(0)\overline{\Gamma(0)} = i \Rightarrow \Gamma'(t)\overline{\Gamma(t)} \equiv i$

Утверждение 5. Если Γ существует, то оно единственно.

$$\mathcal{A}$$
оказательство. Пусть Γ_1, Γ_2 - простые вращения, тогда по лемме $(\Gamma_1\overline{\Gamma_2})' = \Gamma_1'\overline{\Gamma_2} + \Gamma_1\overline{\Gamma_2'} = i\Gamma_1\overline{\Gamma_2} + \Gamma_1 \overline{i\Gamma_2} = 0 \Rightarrow \Gamma_1\overline{\Gamma_2} = const, \Gamma_1(0)\overline{\Gamma_2(0)} = 1$ $\Rightarrow \Gamma_1\overline{\Gamma_2} = 1 \Rightarrow \Gamma_1 = \frac{1}{\overline{\Gamma_2}} = \frac{\Gamma_2}{|\Gamma_2|} = \Gamma_2$

4 Построения простого вращения. Тригонометрические функции. Свойства. Формула Эйлера.

Утверждение 6. Простое вращение $\Gamma(t)$ существует.

Доказательство. $\pi=\{z=x+iy\big|x,y\in\mathbb{R},x^2+y^2=1\}$ $-1\leq t\leq 1:x=t,\ y=\sqrt{1-t^2}$ $1\leq t\leq 3:\ x=2-t,\ y=-\sqrt{1-(2-t)^2}$

Покажем, что после естественной параметризации есть гладкость и 'на краях', $f_1'(t)=1, f_2'(t)=-\frac{t}{\sqrt{1-t^2}}$

 $\phi(x)=\int_{-1}^{x}|f'(t)|dt=\int_{-1}^{x}\sqrt{1+\frac{t^{2}}{1-t^{2}}}dt=\int_{-1}^{x}\frac{1}{\sqrt{1-t^{2}}}dt$ этот интеграл сходится, т.к. особенность порядка $\frac{1}{2}$. Пояснение: из первого семестра мы знаем, что $\int_{0}^{1}\frac{dt}{t^{\alpha}}$ сходится $\Leftrightarrow \alpha<1$, а в данном случае достаточно рассмотреть $\int_{0}^{1}\frac{dt}{\sqrt{1-t^{2}}}=\int_{0}^{1}\frac{dt}{\sqrt{1-t}\sqrt{1+t}},$ он сходится, т.к. $\int_{0}^{1}\frac{dt}{\sqrt{1-t}}=\int_{0}^{1}\frac{dt}{\sqrt{t}}$ сходится и можно, например, применить признак Абеля, чтобы домножить аргумент на $\frac{1}{\sqrt{1+t}}.$

5 Дифференцируемость отображений между евклидовыми пространствами. Свойства. Примеры.

Определение 7. Норма на евклидовых пространствах - отображение из \mathbb{R}^n в \mathbb{R}_+ , удовлетворяющее условиям:

- 1. $||x|| = 0 \Leftrightarrow x = 0$
- 2. $||\alpha x|| = |\alpha| \cdot ||x||, \forall \alpha \in \mathbb{R}$
- 3. $||x + y|| \le ||x|| + ||y||$

Примечание 5. Все расстояния мы будем рассматривать с евклидовой нормой (т.е. $d(x,y)=||x-y||=\sqrt{\sum\limits_{k=1}^n(x_k-y_k)^2}$). Такая метрика стандарт-

на. Так как в этом семестре рассматриваемые размерности евлидовых пространств конечные, то с точки зрения сходимостей к нулю мы можем считать разные нормы эквивалентными.

Напоминание 2. Модуль (или длина) евклидова вектора $x = (x_1, x_2, ..., x_n)$:

$$|x| = \sqrt{\sum_{k=1}^{n} x_k^2}$$

Определение 8. $f: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируема в точке a, если существует линейное отображение L, такое что f(x) = f(a) + L(x-a) + o(||x-a||), L называют дифференциалом функции f в точке a. L определяется матрицей A размера $m \times n$, её столбцы - это значения на базисных векторах, A называют производной функции.

 Π римечание 6. Запись f(x) = f(a) + L(x-a) + o(||x-a||) означает, что

$$\forall \varepsilon > 0 \ \exists \delta: \ \ 0 < ||x-a|| < \delta \Rightarrow \frac{|f(x)-f(a)-L(x-a)|}{||x-a||} < \varepsilon$$

Доказательство. Пусть L_1 и L_2 дифференциалы f в точке a, тогда $(L_1-L_2)(x-a)=o(||x-a||)$ при $x\to a$, это возможно только если отображение (L_1-L_2) тождественный нуль.

Пояснение: пусть
$$L(x) = o(||x||), x = (x_1,...,x_n); L(x) = \sum_{k=1}^n L(x_k e_k) =$$

$$\sum\limits_{k=1}^n x_k L(e_k)$$
, где e_k - базисные вектора. Пусть $\exists k: L(e_k)
eq 0 \Rightarrow$ для векторов

вида
$$y=ae_k, a\in\mathbb{R}_{>0}, a\to 0, \ \frac{L(y)}{||y||}=\frac{aL(e_k)}{a||e_k||}=\frac{L(e_k)}{||e_k||}\neq 0,$$
 противоречие.

6 Отделимость линейных отображений от нуля. Норма в пространстве линейных отображений.

Определение 9. Норма линейного отображения L:

$$||L|| = \sup_{||x|| \le 1} ||Lx||$$

Примечание 8. Следующие нормы эквивалентны:

- $||L|| = \sup_{||x|| < 1} ||Lx||$
- $||L|| = \sup_{||x||=1} ||Lx||$
- $||L|| = \sup_{||x|| < 1} ||Lx||$
- $||L|| = \sup_{||x|| \neq 0} \frac{||Lx||}{||x||}$

Утверждение 7. (Линейное отображение липшицево) $L: \mathbb{R}^n \to \mathbb{R}^m$ линейно, значит $\exists A: \ \forall x,y \in \mathbb{R}^n: \ ||Lx - Ly|| \le A||x - y||$

Примечание 9. $||L|| = min\{A \mid \forall x, y \in \mathbb{R}^n : ||Lx - Ly|| \le A||x - y||\}$

- 7 Дифференцирование суммы, произведения, частного.
- 8 Дифференцирование суперпозиции функций.
- 9 Частные производные. Связь частных производных с дифференцируемостью. Производная по направлению.

Определение 10. Частной производной функции f по i-ой координате в точке $A = (a_1, a_2, ..., a_n)$ называют предел:

$$f'_{x_i}(A) = \frac{\delta f}{\delta x_i}(A) = \lim_{x_i \to a_i} \frac{f(a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., a_n) - f(a_1, ..., a_{i-1}, a_i, a_{i+1}, ..., a_n)}{x_i - a_i}$$

Примечание 10. Будем называть функцию гладкой, если все её частные производные непрерывны.

Напоминание 3. Неравенство Коши-Буняковского-Шварца (КБШ):

$$\left(\sum_{k=1}^n x_k y_k\right)^2 \le \left(\sum_{k=1}^n x_k^2\right) \left(\sum_{k=1}^n y_k^2\right)$$

Теорема 1. Если все частные производные $f:\mathbb{R}^n \to \mathbb{R}^m$ непрерывны в некоторой окрестности точки x^0 , то f дифференцируема в x^0 .

Доказательство. Рассмотрим случай m=1. $x^0=(x_1^0,...,x_n^0).$ Применим формулу Лагранжа $f(x)-f(x^0)=f(x_1,...,x_n)-f(x_1^0,...,x_n^0)=$

$$\sum_{k=1}^{n} \left(f(x_1^0, ..., x_{k-1}^0, x_k, x_{k+1}..., x_n) - f(x_1^0, ..., x_{k-1}^0, x_k^0, x_{k+1}..., x_n) \right) =$$

$$\sum_{k=1}^{n} f'_{x_k} \big|_{(x_1^0, \dots, x_{k-1}^0, \xi_k, x_{k+1}, \dots, x_n)} (x_k - x_k^0) \stackrel{?}{=} \sum_{k=1}^{n} f'_{x_k} \big|_{x^0} (x_k - x_k^0) + o(|x - x^0|)$$

$$\Leftrightarrow \sum_{k=1}^{n} (f'_{x_k}|_{t_k} - f'_{x_k}|_{x^0})(x_k - x_k^0) \stackrel{?}{=} o(|x - x^0|), |LHS|$$
 оценивается по нера-

$$\Leftrightarrow \sum_{k=1}^{n} (f'_{x_k}|_{t_k} - f'_{x_k}|_{x^0})(x_k - x_k^0) \stackrel{?}{=} o(|x - x^0|), \text{ |LHS|} \text{ оценивается по неравенству КБШ как } \sqrt{\sum_{k=1}^{n} \left(f'_{x_k}|_{t_k} - f'_{x_k}|_{x^0}\right)^2} \cdot \sqrt{\sum_{k=1}^{n} \left(x_k - x_k^0\right)^2} < \varepsilon \sqrt{n}|x - x^0|$$

при $|x-x_0|<\delta$ (пользуемся непрерывностью f'_{x_k} в окрестности точки x_0 и тем, что $|t_k-x_0|<|x-x_0|$). Для m>1 достаточно представить f в виде $f = (f_1, ..., f_m)$ и рассмотреть каждую f_k отдельно.

Примечание 11. Наличия частных производных в точке недостаточно, чтобы сказать, что функция дифференцируема.

Определение 11. Производной функции f по направлению единичного вектора e в точке x называется предел:

$$\lim_{\substack{t \in \mathbb{R} \\ t \to 0}} \frac{f(x+te) - f(x)}{t}$$

Примечание 12. Частная производная f по k-ой координате это производная по направлению $(\underbrace{0,...,0}_{},1,0,...,0)$.

Примечание 13. Производная $f(x_1, x_2, ..., x_n)$ по направлению $e = (e_1, e_2, ..., e_n)$ выражается через частные производные f.

$$f'_e(x) = \sum_{k=1}^n e_k f'_{x_k}(x)$$

10 Лемма о билипшицевости.

11 Теорема об обратном отображении.

Теорема 2. Пусть $f: G \to \mathbb{R}^n(G-$ открытое в $\mathbb{R}^n)$. У f есть частные непрерывные производные. A - производная f в точке x^0 , причём A невырождена. Тогда в окрестности m. x^0 существует гладкая g, m.ч. g(f(x)) = x и производная g в m. x^0 это A^{-1} .

Утверждение 8. f гладкая в окрестности x^0 , значит она там же липшецева, т.е. $\exists C \ \forall x,y: \ |f(x)-f(y)| < C||x-y||$

Утверждение 9. $Ker(A) = \{0\} \Rightarrow f$ билипшицева, т.е. $\exists C_1, \ C_2 > 0 \ \forall x, y : C_1 ||x - y|| < |f(x) - f(y)| < C_2 ||x - y||$

12 Матрица Якоби. Градиент.

Определение 12. Градиент это вектор, состоящий из частных производных $f:\mathbb{R}^n \to \mathbb{R}$

$$\nabla f = \text{grad } f = \left(\frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta x_2}, ..., \frac{\delta f}{\delta x_n}\right)$$

Примечание 14. Свойства

- Градиент указывает направление вектора, вдоль которого функция имеет наибольшее возрастание
- $df = \sum_{k} \frac{\delta f}{\delta x_k} dx_k = \langle \operatorname{grad} f, dx \rangle$

Определение 13. Матрица Якоби - матрица состоящая из всех частных производных $f: \mathbb{R}^n \to \mathbb{R}^m, f = (f_1, f_2, ..., f_m)$

$$J(x) = \begin{pmatrix} \frac{\delta f_1}{\delta x_1}(x) & \frac{\delta f_1}{\delta x_2}(x) & \dots & \frac{\delta f_1}{\delta x_n}(x) \\ \frac{\delta f_2}{\delta x_1}(x) & \frac{\delta f_2}{\delta x_2}(x) & \dots & \frac{\delta f_2}{\delta x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta f_m}{\delta x_1}(x) & \frac{\delta f_m}{\delta x_2}(x) & \dots & \frac{\delta f_m}{\delta x_n}(x) \end{pmatrix}$$

Примечание 15. Свойства

- Строчки матрицы Якоби градиенты соответствующих функций
- Если все f_k непрерывно дифференцируемы в окрестности a, то матрица Якоби производная f в a, т.е. f(x) = f(a) + J(a)(x-a) + o(|x-a|)
- (Свойство функториальности) Если $\varphi: \mathbb{R}^n \to \mathbb{R}^m, \psi: \mathbb{R}^m \to \mathbb{R}^k$ дифференцируемы, то $J_{\psi \circ \varphi}(x) = J_{\psi}(\varphi(x))J_{\varphi}(x)$

13 Дифференцирование обратного отображения.

14 Теорема о равенстве смешанных производных.

Определение 14. Смешанная производная порядка k определяется индуктивно:

 \overline{b} аза k=1: обыкновенная частная производная $\frac{\delta f}{\delta x_{i_1}}$

Переход $k \to k+1$: возьмём частную производную по i_{k+1} -ой координате в точке A от частной производной порядка k, т.е. от $\frac{\delta^k f}{\delta x_{i_k} \delta x_{i_{k-1}} \dots \delta x_{i_1}}$ (должна быть определена в некоторой окрестности A), если соответствующий предел существует, то его и назовём смешанной частной производной порядка k+1, обозначим так: $\frac{\delta^{k+1} f}{\delta x_{i_k+1} \delta x_{i_k} \dots \delta x_{i_1}}$

Теорема 3. Пусть $f:G\subset\mathbb{R}^2\to\mathbb{R}$ (G открытое), f=f(x,y), смешанные производные $\frac{\delta^2 f}{\delta x \delta y}, \ \frac{\delta^2 f}{\delta y \delta x}$ непрерывны в точке $(x_0,y_0)\in G$ и определены в её окрестности. Тогда $\frac{\delta^2 f}{\delta x \delta y}(x_0,y_0)=\frac{\delta^2 f}{\delta y \delta x}(x_0,y_0)$.

Доказательство. Воспользуемся формулой Лагранжа и вспомогательными функциями.

Примечание 16. Далее используются обозначения $f''_{xy}:=rac{\delta^2 f}{\delta y \delta x}, \, f''_{yx}:=rac{\delta^2 f}{\delta x \delta y}$

$$\begin{split} \phi(\varepsilon_1,\varepsilon_2) &= f(x_0,y_0) + f(x_0 + \varepsilon_1,y_0 + \varepsilon_2) - f(x_0 + \varepsilon_1,y_0) - f(x_0,y_0 + \varepsilon_2) \\ F_1(x) &= f(x,y_0 + \varepsilon_2) - f(x,y_0) \Rightarrow \phi = F_1(x_0 + \varepsilon_1) - F_1(x_0) = \varepsilon_1 F_1'(\xi_1) \\ F_1'(\xi_1) &= f_x'(\xi_1,y_0 + \varepsilon_2) - f_x'(\xi_1,y_0) = \varepsilon_2 f_{xy}''(\xi_1,\xi_2) \Rightarrow \phi = \varepsilon_1 \varepsilon_2 f_{xy}''(\xi_1,\xi_2) \\ F_2(y) &= f(x_0 + \varepsilon_1,y) - f(x_0,y) \Rightarrow \phi = F_2(y_0 + \varepsilon_2) - F_2(y_0) = \varepsilon_2 F_2'(\eta_2) \\ F_2'(\eta_2) &= f_y'(x_0 + \varepsilon_1,\eta_2) - f_y'(x_0,\eta_2) = \varepsilon_1 f_{yx}''(\eta_1,\eta_2) \Rightarrow \phi = \varepsilon_1 \varepsilon_2 f_{yx}''(\eta_1,\eta_2) \\ \phi &= \varepsilon_1 \varepsilon_2 f_{xy}''(\xi_1,\xi_2) = \varepsilon_1 \varepsilon_2 f_{yx}''(\eta_1,\eta_2) \\ \xi_1,\eta_1 \in [x_0,x_0 + \varepsilon_1], \xi_2,\eta_2 \in [y_0,y_0 + \varepsilon_2] \\ \Pi_{\mathrm{DM}}(\varepsilon_1,\varepsilon_2) \to 0 : \frac{\phi}{\varepsilon_1\varepsilon_2} \to f_{xy}''(x_0,y_0) = f_{yx}''(x_0,y_0) & \Box \end{split}$$

Следствие 1. Если частные производные $\frac{\delta^2 f}{\delta x_i \delta x_j}$ и $\frac{\delta^2 f}{\delta x_j \delta x_i}$ непрерывны в точке и определены в её окрестности, то и равны в ней.

15 Формула Тейлора с остатком в форме Пеано.

 $f:\mathbb{R}^n \to \mathbb{R}$. Сведём всё к одномерному случаю, т.к. одномерную формулу Тейлора мы знаем, $x\in\mathbb{R}^n$ - центр разложения в ряд Тейлора, $y\in\mathbb{R}^n, h=y-x$.

[x,y] - отрезок, его можно параметризовать так: $x+t(y-x)=x+th, t\in [0,1]$. $\varphi(t)=f(x+th)$, эту функцию мы можем дифференцировать, т.к. это композиция дифференцируемых функций.

$$\varphi'(t) = \langle \operatorname{grad} f, h \rangle = \sum_{k=1}^{n} \frac{\delta f}{\delta x_k} (x + th) h_k$$

$$\varphi^{(s)}(t) = \sum_{1 \le k_1, \dots, k_s \le n} \frac{\delta^s f}{\delta x_{k_1} \dots \delta x_{k_s}} (x + th) h_{k_1} \dots h_{k_s} = \left(\left(\sum_{k=1}^n \frac{\delta}{\delta x_k} h_k \right)^s f \right) (x + th)$$

(последнее равенство следует воспринимать как удобное обозначение)

$$\varphi(\tau) = \sum_{s=0}^{m} \frac{\varphi^{s}(0)}{s!} \tau^{s} + \underbrace{\frac{\varphi^{(m+1)}(\xi)}{(m+1)!} \tau^{(m+1)}}_{R_{m}(\tau,\varphi)}, \quad \xi \in [0,\tau]$$

$$R_m(\tau,\varphi) = \int_0^\tau \frac{\varphi^{(m+1)}(t)}{m!} (\tau^m - t)^m dt = \int_0^1 \frac{\varphi^{(m+1)}(t\tau)}{m!} \tau^{m+1} (1 - t)^m dt$$

Утверждение 10. Формула Тейлора с остатком в форме Пеано (подставили $\tau = 1, t = 0$)

$$f(y) = \sum_{s=0}^{m} \left(\left(\sum_{k=1}^{n} \frac{\delta}{\delta x_k} h_k \right)^s \frac{f}{s!} \right) (x) + o(|h|^m)$$

16 Формула Тейлора с остатком в интегральной форме.

Утверждение 11. Формула Тейлора с остатком в интегральной форме (см. прошлый билет)

$$f(y) = \sum_{s=0}^{m} \left(\left(\sum_{k=1}^{n} \frac{\delta}{\delta x_k} h_k \right)^s \frac{f}{s!} \right) (x) + \int_0^1 \frac{(-1)^{m+1} (x+th)}{m!} (1-t)^m dt$$

17 Необходимое условие экстремума функции многих переменных.

Теорема 4. (Необходимое условие экстремума) $f:G\subset\mathbb{R}^n\to\mathbb{R}$ (G открытое) гладкая, x^0 - точка локального минимума или максимума. Тогда grad $f\big|_{x^0}=0$

Доказательство. grad
$$f = \left(\frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta x_2}, ..., \frac{\delta f}{\delta x_n}\right)$$
Пусть $\frac{\delta f}{\delta x_k}\Big|_{x^0} \neq 0$, тогда $f(x_1^0, ..., x_{k-1}^0, x_k, x_{k+1}^0, ..., x_n^0) - f(x_1^0, ..., x_n^0) = \underbrace{\frac{\delta f}{\delta x_k}\Big|_{x^0}}_{\neq 0}(x_k - x_k^0) + o(|x_k - x_k^0|) \Rightarrow \to \leftarrow \text{(свелось к одномерному случаю)}$

 $Hanomunanue\ 4.\ Одномерный случай,\ g:\mathbb{R} \to \mathbb{R}$ $g(x)=g(x_0)+g'(x_0)+o(|x-x_0|)$

1. $g'(x_0) > 0$, тогда при достаточно малом $|x - x_0| : 0 < g'(x_0) - \epsilon < \frac{g(x) - g(x_0)}{x - x_0} < g'(x_0) + \epsilon$, в таких окрестностях $g(x) > g(x_0)$ при $x > x_0$, $g(x) < g(x_0)$ при $x < x_0$, значит x_0 - не экстремум.

ных.

2. $g'(x_0) < 0$, тогда при достаточно малом $|x-x_0|: g'(x_0) - \epsilon < \frac{g(x) - g(x_0)}{x - x_0} < g'(x_0) + \epsilon < 0$, в таких окрестностях $g(x) < g(x_0)$ при $x > x_0$, $g(x) > g(x_0)$ при $x < x_0$, значит x_0 - не экстремум.

18 Знак квадратичной формы. Достаточные условия экстремума функции многих перемен-

Определение 15. Квадратичная форма $Q(x), x = (x_1, ..., x_n)$ - это выражение вида $\sum\limits_{1 \leq k,l \leq n} a_{k,l} x_k x_l$, где $a_{k,l}$ - скаляр.

Определение 16. (Знак квадратичной формы) Квадратичная форма $Q(x), x \in \mathbb{R}^n, a_{k,l} \in \mathbb{R}$ положительно (отрицательно) определена, если для всех ненулевых x: Q(x) > 0(Q(x) < 0) и знакопеременна, если может принимать как положительные, так и отрицательные значения.

Теорема 5. (Достаточное условие экстремума) Пусть у $f: \mathbb{R}^n \to \mathbb{R}$ в точке x^0 нулевой градиент и определены все смешанные производные второго порядка. Тогда если квадратичная форма $Q(h) = \sum_{1 \le k, l \le n} \frac{\delta^2 f}{\delta x_k \delta x_l} (x^0) h_k h_l$:

- 1. положительно определена, значит x^0 точка локального минимума.
- 2. отрицательно определена, значит x^0 точка локального максимума.

Доказательство. На замкнутом шаре квадратичная форма достигает своего минимума и максимума, а по формуле Тейлора остаток маленький:

$$f(x) = f(x^0) + \frac{1}{2} \sum_{1 \le k, l \le n} \frac{\delta^2 f}{\delta x_k \delta x_l} (x^0) (x_k - x_k^0) (x_l - x_l^0) + o(|x - x_0|^2)$$

Примечание 17. На лекциях было доказательство через то, что эта сумма представима в виде $\langle A(x-x^0), (x-x^0) \rangle > 0$ (для полож. кв. формы A), а мы знаем про отделимость от нуля, т.е. из положительности следует, что $\exists \varepsilon: \langle A(x-x^0), (x-x^0) \rangle \geq \varepsilon ||x-x^0||^2$

Пояснение: $\langle Ax,x\rangle>0, x\neq 0\Rightarrow (Ax,x)\geq \varepsilon$ при ||x||=1, т.к. функция от х при таких х достигает минимума и максимума, $\Rightarrow (Ax,x)\geq \varepsilon ||x||^2$ (т.к. домножили обе линейные функции на скаляр ||x||, скалярное произведение линейно).

Примечание 18. Квадратичную форму можно привести к симметричному виду $\sum a_{k,l}h_kh_l$, $a_{k,l}=a_{l,k}$, значит её можно привести и к диагольному виду $Q(h)=\sum_{k=1}^n \lambda_k h_k^2$

- Q(h) положительна \Leftrightarrow все $\lambda_k > 0$ $(x^0$ т. мин.)
- Q(h) отрицательна \Leftrightarrow все $\lambda_k < 0$ (x^0 т. макс.)
- Q(h) знакопеременна $\Leftrightarrow \exists k, l : \lambda_k < 0 < \lambda_k \ (x^0 \ не \ т. \ экстр.)$
- иначе требуется дополнительное исследование

Утверждение 12. *Критерий Сильвестра* для симметричной квадратичной формы:

- 1. для положительной определённости квадратичной формы необходимо и достаточно, чтобы угловые миноры её матрицы были положительны.
- 2. Для отрицательной определённости квадратичной формы необходимо и достаточно, чтобы угловые миноры чётного порядка её матрицы были положительны, а нечётного порядка отрицательны.

19 Касательные вектора. Касательная плоскость.

Утверждение 13. Есть уравнение z=f(x,y) задающее плоскость и у f есть частные производные в (x_0,y_0) . Тогда $z=f(x_0,y_0)+\frac{\delta f}{\delta x}\big|_{(x_0,y_0)}(x-x_0)+\frac{\delta f}{\delta y}\big|_{(x_0,y_0)}(y-y_0)$ - уравнение касательной плоскости. $\left(\frac{\delta f}{\delta x}\big|_{(x_0,y_0)},\frac{\delta f}{\delta y}\big|_{(x_0,y_0)},-1\right)$ - вектор нормали к кас. плоскости.

20 Теорема о неявной функции для двух переменных.

Теорема 6. $F: G \to \mathbb{R}(G \subset \mathbb{R}^2 - om \kappa pumoe)$

- 1. $F(x_0, y_0) = 0$
- 2. $F \in C^1(G)$
- 3. $F'y(x_0, y_0) \neq 0$

Тогда $\exists I_x,I_y: x_0\in I_x,y_0\in I_y,I_x\times I_y\subset\mathbb{R}^2$ и $f:I_x\times I_y\in\mathbb{R}$ такая, что

$$F(x,y) = 0 \Leftrightarrow y = f(x)$$

$$f \in C^1, f'(x) = -\frac{F'_x(x, f(x))}{F'_y(x, f(x))}$$

Примечание 19. (неформальное рассуждение, почему такая формула) Предположим, что f существует и дифференцируема, F(x, f(x)) = 0 на всей области определения f, продифференцируем левую и правую часть по правилу композиции $F_x'(x, f(x)) + F_y'(x, f(x))f'(x) = 0$.

Доказательство. Существование: пусть функция $g_x(y)=F(x,y)$, будем считать, что в малой окрестности $V_{(x_0,y_0)}: F_y'>0$, тогда g(y) - возрастающая. Тогда $\forall x\in V\exists !y: F(x,y)=0$.

Непрерывность: рассмотрите прямоугольник с разрезами (т.е. $g_x(y)$). Так как F(x,y)=0 образуют замкнутое множество, то из того, что $x\to a$ и $f(x)\not\to f(a)$, следует, что есть второй корень на линии x=a, а у нас корни единственные.

Гладкость: F(x+h,f(x+h)) - F(x,f(x)) = F(x+h,f(x)+(f(x+h)-f(x))) - F(x,f(x)) = (F), при $h \to 0$ можно применять формулу Тейлора для F, получим $(F) = h(F'_x(x,f(x)) + \frac{f(x+h)-f(x)}{h}F'_y(x,f(x))) + o(|h|)$

21 Теорема о неявной функции для произвольного числа переменных.

Теорема 7. $x \in \mathbb{R}^m, y \in \mathbb{R}^n$ $F: G \to \mathbb{R}^n, G \subset \mathbb{R}^{m+n}$

- $F \in C^1(G)$
- $F(x^0, y^0) = 0$
- $F'_{\nu}(x^0, y^0)$ обратима (матрица $n \times n$)

тогда в некоторой окрестности $V_{(x^0,y^0)} \subset G$:

$$F(x,y) = 0 \Leftrightarrow y = f(x), \ f: V_{(x^0,y^0)} \to \mathbb{R}^n$$

$$f'(x) = -(F'_y(x,f(x)))^{-1}F'_x(x,f(x))$$

Доказательство. Докажем индукцией по n.

 $Basa: n = 1 \forall m$ доказано ранее.

 $\Pi e p e x o \theta$: $F = (F_1, F_2, ..., F_n), F_k : \mathbb{R}^{m+n} \to \mathbb{R}$.

Имеем n уравнений вида $F_k = 0$.

Хотим: $y_k = f_n(x_1, x_2, ..., x_m)$, т.е. выразить каждый игрик через иксы. Матрица невырождена, будем считать, что $\frac{\delta F_n}{\delta y_n} \neq 0$.

Тогда $y_n = f^*(x_1, x_2, ..., x_m, y_1, ..., y_{n-1})$ по предположению индукции.

 $\phi_k(x,y_1,...,y_{n-1})=F_k(x,y_1,...,y_{n-1},f^*), 1\leq k\leq n-1 \ (\phi_n=0$ из-за того, как выбрали f^*). $\frac{\delta\phi_k}{\delta y_l}=\frac{\delta F_k}{\delta y_l}+\frac{\delta F_k}{\delta y_n}\frac{\delta f^*}{\delta y_l}$

Вспомним как выглядит невырожденная матрица $F'_{n}(x^{0}, y^{0})$:

$$\begin{pmatrix} \frac{\delta F_1}{\delta y_1} & \frac{\delta F_1}{\delta y_2} & \cdots & \frac{\delta F_1}{\delta y_{n-1}} & \frac{\delta F_1}{\delta y_n} \\ \frac{\delta F_2}{\delta y_1} & \frac{\delta F_2}{\delta y_2} & \cdots & \frac{\delta F_2}{\delta y_{n-1}} & \frac{\delta F_2}{\delta y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta F_{n-1}}{\delta y_1} & \frac{\delta F_{n-1}}{\delta y_2} & \cdots & \frac{\delta F_{n-1}}{\delta y_{n-1}} & \frac{\delta F_{n-1}}{\delta y_n} \\ \frac{\delta F_n}{\delta y_1} & \frac{\delta F_n}{\delta y_2} & \cdots & \frac{\delta F_n}{\delta y_{n-1}} & \frac{\delta F_n}{\delta y_n} \end{pmatrix}$$

Добавим к первым n-1 столбцам последний, домноженный на скаляр, от этого матрица не перестанет быть невырожденной.

$$\begin{pmatrix} \frac{\delta F_1}{\delta y_1} + \frac{\delta F_1}{\delta y_n} \frac{\delta f^*}{\delta y_1} & \frac{\delta F_1}{\delta y_2} + \frac{\delta F_1}{\delta y_n} \frac{\delta f^*}{\delta y_2} & \dots & \frac{\delta F_1}{\delta y_{n-1}} + \frac{\delta F_1}{\delta y_n} \frac{\delta f^*}{\delta y_{n-1}} & \frac{\delta F_1}{\delta y_n} \\ \frac{\delta F_2}{\delta y_1} + \frac{\delta F_2}{\delta y_n} \frac{\delta f^*}{\delta y_1} & \frac{\delta F_2}{\delta y_2} + \frac{\delta F_2}{\delta y_2} \frac{\delta f^*}{\delta y_2} & \dots & \frac{\delta F_2}{\delta y_{n-1}} + \frac{\delta F_1}{\delta y_n} \frac{\delta f^*}{\delta y_{n-1}} & \frac{\delta F_2}{\delta y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta F_{n-1}}{\delta y_1} + \frac{\delta F_2}{\delta y_n} \frac{\delta f^*}{\delta y_{n-1}} & \frac{\delta F_{n-1}}{\delta y_2} + \frac{\delta F_{n-1}}{\delta y_2} + \frac{\delta f^*}{\delta y_n} \frac{\delta f^*}{\delta y_2} & \dots & \frac{\delta F_{n-1}}{\delta y_{n-1}} + \frac{\delta F_{n-1}}{\delta y_{n-1}} \frac{\delta f^*}{\delta y_{n-1}} & \frac{\delta F_{n-1}}{\delta y_n} \\ \frac{\delta F_n}{\delta y_1} + \frac{\delta F_n}{\delta y_n} \frac{\delta f^*}{\delta y_1} & \frac{\delta F_n}{\delta y_2} + \frac{\delta F_n}{\delta y_n} \frac{\delta f^*}{\delta y_2} & \dots & \frac{\delta F_{n-1}}{\delta y_{n-1}} + \frac{\delta F_{n-1}}{\delta y_{n-1}} + \frac{\delta F_n}{\delta y_n} \frac{\delta f^*}{\delta y_{n-1}} & \frac{\delta F_{n-1}}{\delta y_n} \\ \frac{\delta F_n}{\delta y_1} & \frac{\delta F_n}{\delta y_2} & \dots & \frac{\delta F_n}{\delta y_n} \frac{\delta F_n}{\delta y_n} & \frac{\delta F_n}{\delta y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta \phi_{n-1}}{\delta y_1} & \frac{\delta \phi_{n-1}}{\delta y_2} & \dots & \frac{\delta \phi_{n-1}}{\delta y_n} & \frac{\delta F_{n-1}}{\delta y_n} & \frac{\delta F_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_1} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_{n-1}}{\delta y_n} & \frac{\delta F_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_1} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta F_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_1} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_n}{\delta y_{n-1}} & \frac{\delta F_{n-1}}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_1} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta F_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_n}{\delta y_{n-1}} & \frac{\delta F_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta F_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_1} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta F_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta F_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta F_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_2} & \dots & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta F_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_n} \\ \frac{\delta \phi_n}{\delta y_n} & \frac{\delta \phi_n}{\delta y_n} & \frac{$$

откуда $det(\phi_y')\frac{\delta F_n}{\delta y_n}\neq 0$, а значит для системы $\{\phi_k\}_{k\leq n-1}=0$ применимо предположение индукции, т.е. $y_k=f_k(x)$ при $k\leq n-1$. В совокупности получаем $y_n=f^*(x,f_1(x),...,f_{n-1}(x))=f_n(x)$, что мы и хотели получить. Итоговая функция: $f(x)=(f_1(x),f_2(x),...,f_n(x))$. Гладкость и искомая производная следуют из того, что мы умеем брать производную по композиции.

- 22 Теорема о неявной функции для систем уравнений. Примеры.
- 23 Полярные и сферические координаты. Параметризации поверхностей.
- 24 Задача условного экстремума. Необходимое условие условного экстремума.
- 25 Функции Лагранжа. Достаточное условие условного экстремума. Примеры.
- 26 Теорема о перестановке пределов. Общий вид теоремы Стокса-Зайделя.
- 27 Голоморфные функции. Примеры. Общий вид дифференциала голоморфной функции.
- 28 Степенные ряды. Радиус сходимости степенного ряда.
- 29 Голоморфность суммы степенного ряда.
- 30 Теорема Стоуна-Вейерштрасса. Лемма об аппроксимации |x|.
- 31 Теорема Стоуна-Вейерштрасса. Завершение докзательства.
- 32 Теорема о неподвижной точке. Приложение к дифференциальным уравнениям.
- 33 Топология в пространстве $C \setminus infty(R)$. Метризуемость.

Примечание 20. Сходимость: будем говорить, что последовательность $\{f_j\}_j \in R \subset C^{\infty}(R)$ сходится к $f \in C^{\infty}(R)$, если для любого компактного множе-

ства $K\subset R$ функции f_j сходятся к f равномерно на K.

Утверждение 14.

$$d(f,g) = \sum_{j,n \ge 0} \frac{||f^{(j)} - g^{(j)}||_{\infty,I_n}}{1 + ||f^{(j)} - g^{(j)}||_{\infty,I_n}}$$

тогда d - метрика.

Утверждение 15. Топология порожденная такой метрикой и топология порожденная такой сходимостью совпадают.

Указатель

	1.0
Гладкий путь 4 Матрица Якоби	10
Гладкость 8 Необходимое условие экстремума	12
Градиент 9 Норма	6
Дифференциал 6 Норма линейного отображения	7
Длина гладкого пути 4 Ограниченная вариация	3
Длина кривой (пути) 4 Производная	6
Достаточное условие экстремума 13 Производная по направлению	9
Замена переменной в вариации 3 Простое вращение	5
Знак квадратичной формы 13 Смешанная производная	10
Квадратичная форма 13 Формула Тейлора	12
Кривая 3 Частная производная	8