CHAPTER 2

A little bit of chemistry

Chapter Outline

- Review of Atomic Structure
- 1. Electrons, protons, neutrons
- 2. Quantum mechanics of atoms (not the scary stuff)
- 3. Electron states, the periodic Table
- Atomic Bonding in Solids
- Bonding energies and forces

Atomic structure

Atoms = nucleus (protons and neutrons) + electrons

The atomic mass (A) = mass of protons + mass of neutrons

atomic number (Z) = # protons

The atomic mass (Ar) = is often used to express atomic weight. The atomic mass is a weighted average of all of the isotopes of that element.

A mole is the amount of matter that has a mass in grams equal to the atomic mass in amu of the atoms.

The number of atoms in a mole is called the Avogadro number Nav = 6.023×10^{23} .

Examples

• Calculate the number of atoms in 1 g of Cu?

Ar (Cu) = 63.54 g/mol

- If there are 3.058×10^{21} atoms present in 1g of gold. Determine the atomic mass of gold.
- Thin gold film (Thickness 50 nm) was sputtered on a smooth Al2O3 substrate. For the total surface area of the gold film (5 cm²) calculate:
- a) Number of gold atoms
- b) Moles of gold per unit of surface area

Calculate the number of atoms in 1 g of Cu?

Ar (Cu)= 63.54 g/mol Nav = 6.023×10^{23} atoms/mol

Examples

• Calculate the number of atoms in 1 g of Cu?

Ar (Cu) = 63.54 g/mol

- If there are 3.058×10^{21} atoms present in 1g of gold. Determine the atomic mass of gold.
- Thin gold film (Thickness 50 nm) was sputtered on a smooth Al2O3 substrate. For the total surface area of the gold film (5 cm²) calculate:
- a) Number of gold atoms
- b) Moles of gold per unit of surface area

If there are 3.058×10^{21} atoms present in 1g of gold. Determine the atomic mass of gold.

Nav = 6.023×10^{23} atoms/mol

Examples

• Calculate the number of atoms in 1 g of Cu?

Ar (Cu) = 63.54 g/mol

- If there are 3.058×10^{21} atoms present in 1g of gold. Determine the atomic mass of gold.
- Thin gold film (Thickness 50 nm) was sputtered on a smooth Al2O3 substrate. For the total surface area of the gold film (5 cm²) calculate:
- a) Number of gold atoms
- b) Moles of gold per unit of surface area

a) Number of gold atoms

Ar (Au)= 196.97 g/mol d (thickness)= 5×10^{-6} cm S (surface area)= 5 cm² ρ (density)=19.302 g/cm³ Nav = 6.023×10^{23} atoms/mol

b) Moles of gold per unit of surface area

n= 1.476 × 10¹⁸ atoms S (surface area)= 5 cm² Nav = 6.023 × 10²³ atoms/mol

Electrons in Atoms

- The electrons form a cloud around the nucleus, of radius of 0.05 2
 nm
- Electrons move not in circular orbits, but in 'fuzzy' orbits.
- Electrons occupy discrete energy levels or shells
- Each e- has a particular energy level wit no more than 2 e- with the same energy (Pauli Exclusion Principle)

Angular Momentum Quantum Number, ℓ	Name of Subshell	Shape					
0	s	Sphere					
1	р	Dumbbell					
2	d	Complex/double dumbbell					
3	f	More complex/ multiple lobes					

Electrons in Atoms

• Quantum #'s

n (Principal number)= position of the e- within the atom (shell) e.g 1, 2, 3, 4.....

I (Azimuthal number)= position of the e-within the shell (Subshell) e. g. s, p, d, f

m_I (Magnetic number)= description of the orbital within the subshell

 m_s (Spin number)= the direction of the ration of the $e^-e.g. +1/2$ or -1/2

Electrons in Atoms

Aufbau Principle

Valence electrons Electrons that occupy the outermost filled shell they are responsible for bonding.

Electrons fill quantum levels in order of increasing energy (only n, I make a significant difference). Following Aufbau principal

PERIODIC TABLE OF ELEMENT

												_					
1 H Hydrogen																	Helium
2	3					2	← Protor	n number				5 B	6	7	8	9	10
Li	Be					He	No. 1						Carbon	N	0	F	Ne
3	Beryllium 9	Helium 4 Name of element Relative atomic mass								Beron 11	12	Nitrogen 14	Oxygen 16	Fluorine 19	Neon 20		
11	12												14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	H
Sodium 23	Magnesium 24											Aluminum 27	Silicon 28	Phosphorus 31	Sulfur 32	Chlorine 35.5	Argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39	Calcium 40	Scandium 45	Titanium 48	Vanadium 51	Chromium 52	Manganese 55	Iron 56	Cobalt 59	Nickel 59	Copper 64	Zinc 65	Gallium 70	Germanium 73	Arsenic 75	Selenium 79	Bromine 80	Krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	48	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Nb	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 86	Strontium 88	Yttrium 89	Zirconium 91	Niobium 93	Niobium 96	Technetium 98	Ruthenium 101	Rhodium 103	Palladium 106	Silver 108	Cadmium 112	Indium 115	Tin 119	Antimony 122	Tellurium 128	Iodine 127	Xenon 131
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
Cesium 133	Barium 137	Lanthanum 139	Hafnium 179	Tantalum 181	Tungsten 184	Rhenium 186	Osmium 190	Iridium 192	Platinum 195	Gold 197	Mercury 201	Thallium 204	Lead 207	Bismuth 209	Polonium 210	Astatine 210	Radon 222
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									
	ID 111			Albert American	F1	17-21	Elizable and a	F1011	1								

Contention

Francium 223

Γ	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	Cerium 140	Prascodymium 141	Neodymin 144	Promethium 147	Samarium 150	Europium 152	Gadolinium 157	Terbium 159	Dysprosium 136	Holmium 165	Erbium 167	Thulium 169	Yuterbium 173	Lutertium 175
Γ	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Thorium 232	Proactinum 231	Uranium 238	Neptunium 237	Plutonium 244	Americium 243	Curium 247	Berkerium 247	Californium 249	Einsteinium 254	Fermium 253	Mendelevevium 256	Nobelium 254	Lawrensium 257

Examples

- Find the electronic distribution Ar and Fe
- Find the valence electrons in Aluminum and Germanium

Find the electronic distribution Ar and Fe

$$Z (Ar) = 18$$

 $Z (Fe) = 26$

Find the valence electrons in Aluminum and Germanium

Atomic bonding

Electronegativity - a measure of how willing atoms are to accept electrons

The repulsion between atoms, the electronic clouds surrounding the atoms starts to overlap.

The origin of the attractive part depends on the particular type of bonding.

Types on Bonding

- Ionic: Strong Coulomb interaction among negative atoms (have an extra electron each) and positive atoms (lost an electron). Example - Na+Cl-
- Covalent: electrons are shared between the molecules, to saturate the valency.
 Example H2
- Metallic: the atoms are ionized, loosing some electrons from the valence band.
 Those electrons form an electron sea, which binds the charged nuclei in place.
- Van der Waals: Secondary, weak bonding

Ionic Bond

- It is always found in compounds composed of both metallic and nonmetallic elements.
- One atom may donate its valence electrons to a different atom, filling the outer energy shell
 of the second atom.
- Both atoms now have an electrical charge and behave as ions. The atom that contributes the electrons is left with a net positive charge and is called a **cation**, while the atom that accepts the electrons acquires a net negative charge and is called an **anion**.
- The oppositely charged ions are then attracted to one another and produce the ionic bond.

Covalent bond

- Found in materials whose atoms have small differences in electronegativity (near one another in the periodic table).
- Formed by sharing of valence electrons among two or more atoms.
- The ions repel each other but are attracted to the electrons that spend most of the time in between the ions. Can be described by orbital overlap

Metallic Bond

- The valence e- are not bound to any particular atom and are free to drift throughout the entire metal.
- They may be thought of as belonging to the metal as a whole ("electron cloud or sea").
- The remaining nonvalence e- and atomic nucle form what are called ion cores, it has net positive charge equal in magnitude to the total valence e- charge

Van der Waals

- Secondary bonds are weak in comparison to primary bonds.
- They are found in most materials, but their effects are often overshadowed by the strength of the primary bonding.
- Formed when an uneven charge distribution occurs, creating what is known as a dipole (the total charge is zero, but there is slightly more positive or negative charge on one end of the atom than on the other).

van der Waals Forces

Examples of bonding in Materials:

Metals: Metallic

Ceramics: Ionic / Covalent

Polymers: Covalent and Secondary

• Semiconductors: Covalent or Covalent / Ionic