-Preliminary-

HN4827128G-25,-HN4827128G-30, HN4827128G-45

16384-Word x 8-bit UV Erasable and Programmable Read Only Memory

The HN4827128 is a 16384 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.

FEATURES

 Single Power Supply 	+5V ± 5%
• Simple Programming	Program Voltage: +21V DC
	Program with One 50ms Pulse
• Canala	No Clocks Possized

- High Performance Programming Available
- Compatible with INTEL 27128

BLOCK DIAGRAM

PIN ARRANGEMENT

MODE SELECTION

Pins	CE	ŌĒ	PGM	V_{PP}	V_{cc}	Outputs
MODE	(20)	(22)	(27)	(1)	(28)	(11~13, 15~19)
Read	VIL	V_{IL}	V_{IH}	V _{cc}	Vcc	Dout
Stand by	V_{tH}	×	×	Vcc	V_{cc}	High Z
Program	V, L	×	V _{IL}	V_{PP}	Vcc	Din
Program Verify	VIL	V _{IL}	V_{IH}	V_{PP}	Vcc	Dout
Program Inhibit	VIH	×	×	V_{PP}	V_{cc}	High Z

Note) The specifications of this device are subject to change without notice.

Please contact your nearest Hitachi's Sales Dept, regarding specifications

■ PROGRAMMING OPERATION

• DC PROGRAMMING CHARACTERISTICS ($Ta=25^{\circ}C\pm5^{\circ}C$, $V_{cc}=5V\pm5\%$, $V_{PP}=21V\pm0.5V$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Leakage Current	I_{LI}	V _{IN} -5.25V	_		10	μА
Output Low Voltage During Verify	Vol	I _{OL} = 2.1mA	_	_	0.45	V
Output High Voltage During Verify	Von	$I_{OH} = -400 \mu A$	2.4			V
Vcc Current (Active)	Iccz		_		100	mA
Input Low Level	VIL		-0.1	14.114	0.8	V
Input High Level	V_{lH}		2.0		$V_{cc}+1$	V
V _{PP} Supply Current	I_{PP}	$\overline{CE} - \overline{PGM} - V_{IL}$		_	30	mA

• AC PROGRAMMING CHARACTERISTICS ($Ta=25^{\circ}C\pm5^{\circ}C$, $V_{cc}=5V\pm5\%$, $V_{PP}=21V\pm0.5V$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Address Setup Time	tas		2	_		μs
OE Setup Time	t oes		2	_		μs
Data Setup Time	t _{DS}		2	_	_	μs
Address Hold Time	t _{AH}		0		_	μs
Data Hold Time	t DH		2	_	T	μs
OE to Output Float Delay	t _{DF}	1	0		130	ns
V _{PP} Setup Time	t vs		2			μs
PGM Pulse Width During Programming	t _{PW}		45	50	55	ms
CE Setup Time	tces		2		-	μs
Data Valid from OE	t _{OE}			-	150	ns

Note: t_{DF} defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

• SWITCHING CHARACTERISTICS

Test Condition

Input Pulse Level:

0.8V to 2.2V

Input Rise and Fall Time:

 \leq 20 ns

Reference Level for Measuring Timing: Input; 1V and 2V

Output; 0.8V and 2V

● ERASE

Erasure of HN4827128 is performed by exposure to ultraviolet light of 2537Å and all the output data are changed to "1" after this erasure procedure. The minimum integrated dose (i.e. UV intensity x exposure time) for erasure is 15 W·sec/cm².

BABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit
Operating Temperature Range	T _{opr}	0 to +70	*c
Storage Temperature Range	Tele	-65 to +125	.c
All Input and Output Voltages*	V _{INt} V _{est}	-0.3 to +7	V
V _{PP} Voltage*	V_{PP}	-0.3 to $+26.5$	V
Vcc Voltage*	V _{cc}	-0.3 to +7	v

^{*} with respect to GND

■ READ OPERATION

• DC AND OPERATING CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5V\pm5\%$, $V_{PP}=V_{cc}\pm0.6V$)

Parameter	Symbol	Test Conditions	min	typ	max	Unit
Input Leakage Current	I_{LI}	$V_{CC} = 5.25 \text{V}, V_{IN} = 5.25 \text{V}$			10	μΑ
Output Leakage Current	ILO	$V_{CC} = 5.25 \text{V}, V_{out} = 5.25 \text{V}/0.4 \text{V}$	_		10	μA
V _{PP} Current	I_{PP1}	$V_{PP} = V_{CC} + 0.6V$	-		5	mA
Vcc Current (Standby)	I _{cc1}	$\overline{CE} - V_{IH}$	_	_	35	mA
Vcc Current (Active)	I _{CC2}	$\overline{\text{CE}} - \overline{\text{OE}} - V_{IL}$	_	60	100	mA
Input Low Voltage	VIL		-0.1	_	0.8	v
Input High Voltage	V_{lH}		2.0	_	$V_{cc}+1$	V
Output Low Voltage	Vot.	$I_{OL}=2.1\text{mA}$		_	0.45	v
Output High Voltage	V_{OH}	$I_{OH} = -400 \mu A$	2.4	_	_	v

• AC CHARACTERISTICS (Ta=0 to 70°C, $V_{cc}=5V\pm5\%$, $V_{PP}=V_{cc}\pm0.6V$)

Parameter	Symbol	Test Condition	HN4827128G-25		HN4827128G-30		HN4827128G-45		
rarameter	Symbol	Test Condition	min	max	min	max	min	max	Unit
Address to Output Delay	t ACC	$\overline{CE} - \overline{OE} - V_{IL}$	6.1	250	_	300	_	450	ns
CE to Output Delay	t _{CE}	$\overline{OE} - V_{IL}$		250		300	_	450	ns
OE to Output Delay	t oe	$\overline{CE} = V_{IL}$		100		120	_	150	ns
OE High to Output Float	t _{DF}	$\overline{CE} = V_{IL}$	0	85	0	105	0	130	ns
Address to Output Hold	tон	$\overline{CE} = \overline{OE} = V_{IL}$	0	-	0		0	_	ns

^{*} t_{DF} defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels,

• SWITCHING CHARACTERISTICS

Test Condition

Input Pulse Levels:

0.8V to 2.2V

Input Rise and Fall Time:

≤ 20 ns

Output Load:

1 TTL Gate + 100 pF

Reference Level for Measuring Timing: Inputs; 1V and 2V

Outputs; 0.8V and 2.0V

CAPACITANCE ($Ta = 25^{\circ}C$, f = 1 MHz)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Capacitance	C.,	V., - 0 V		4	6	pF
Output Capacitance	Cout	$V_{out} = 0 \text{ V}$	_	8	12	pF

HIGH PERFORMANCE PROGRAMMING

This device can be applied the High Performance Programming algorithm shown in following flow chart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

High Performance Programming Flowchart

• AC PROGRAMMING CHARACTERISTICS ($Ta=25^{\circ}\text{C}\pm5^{\circ}\text{C}$, $V_{cc}=6\text{V}\pm0.25\text{V}$, $V_{PP}=21\text{V}\pm0.5\text{V}$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Address Setup Time	t _{AS}		2	_	_	μs
OE Setup Time	t oes		2	_	_	μs
Data Setup Time	t _{DS}		2			μs
Address Hold Time	t _{AH}		0	_		μs
Data Hold Time	t _{DH}		2		_	μs
OE to Output Float Delay*	t _{DF}		0	_	130	ns
V _{PP} Setup Time	t ves		2	_	_	μs
Vcc Setup Time	t vcs		2	-	_	μs
PGM Pulse Width during Initial Program	t pw		0.95	1.0	1.05	ms
PGM Pulse Width during Over Program**	t opw		3.8	_	63	ms
CE Setup Time	tces		2	-	_	μs
Data Valid from OE	t _{OE}		_	_	150	ns

^{*} top defines the time at which the output achieves the open circuit conditions and is not referenced to output voltage levels.

• SWITCHING CHARACTERISTICS

Test Condition

Input Pulse Level:

0.8V to 2.2V

Input Rise and Fall Time:

< 20 ns

Reference Level for Measuring Timing: Input; 1V and 2V

Output; 0.8V and 2V

^{**} topw is defined as mentioned in flow chart.