Geometry Examinations of Governorates 2012

Cairo

1/

Sharabia Educational Zone - Talale El Mostakabel Exp. Lang. School

Answer the following questions:

1 Choose the correct answer:

- - a) 1
- b) 2

c) 3

- d) nothing
- 2) In a trinagle ABC: If AC = BC and m (\angle C) = 80°, then m (\angle A) =
 - a) 80°
- b) 50°

- c) 100°
- d) 40°
- 3) \triangle XYZ, m (\angle X) = 60°, m (\angle Y) = 40°, then XZZY
 - a) <
- b) >

c) =

- d) nothing
- 4) If \overline{XE} is a median in \triangle XYZ, M is the point of interesction of its medians, then $EM = \dots XE$
 - a) $\frac{1}{2}$
- b) 2

- c) $\frac{1}{3}$
- d) $\frac{2}{3}$
- 5) \triangle ABC if m (\angle A) = 30° and m (\angle B) = 90°, then AC =
 - a) $\frac{1}{2}$ BC
- b) 2 BC
- c) 2 AB
- d) BC

2 Complete the following:

- 1) The two base angles in an isosceles triangle are
- 2) The bisector of the vertex angle of an isosceles triangle the base and is to it.
- 3) The sum of the lengths of any two sides in a triangle is the length of the third side.
- 4) If ABC is a right-angled triangle at B, AB = 6 cm, BC = 8 cm, if \overline{BD} is a median of triangle ABC, then $BD = \dots$ cm.
- 5) In triangle ABC, if BC > AB, then m (\angle A) m (\angle C)

3 In the opposite figure:

 \overline{BE} , \overline{CD} , are medians in Δ ABC,

MB = 6 cm., MC = 8 cm.,

BC = 12 cm.,

Find: The perimeter of Δ MDE

4 (a) In the opposite figure:

$$AB = BC = AC = DC$$

Prove that: m (\angle BAD) = 90°

(b) In the opposite figure:

ABCD is a quadrilateral in which: AD = DC,

BC > AB

Prove that: $m (\angle BAD) > m (\angle BAD)$

5 (a) In the opposite figure:

 $m (\angle B) = 90^{\circ}, m (\angle C) = 30^{\circ}, \overline{BD}$ is a median, AB = 4 cm, D

(b) In the opposite figure:

$$E \in \overrightarrow{BA}$$
, $\overrightarrow{AD} // \overrightarrow{BC}$,

$$m (\angle DAE) = 70^{\circ},$$

$$m (\angle DAC) = 40^{\circ},$$

Prove that: AC > AB

Cairo

El-Nozha Educational Zone - El-Sayeda Khadiga Language School

Answer the following questions:

1 Choose the correct answer:

- 1) In \triangle ABC: m (\angle B) = 80°, m (\angle C) = 50°, then BCAB
 - a) >
- b) <

c) =

- d) =
- 2) The lenghts 6 cm, 7cm and can be lengths of the sides of a triangle.
 - a) 15 cm
- b) 13 cm
- c) 18 cm
- d) 11 cm
- 3) In ABC if m (\angle A) = 30° and m (\angle B) = 90° then AC =
 - a) $\frac{1}{2}$ BC
- b) 2 BC
- c) 2 AB
- d) BC
- 4) The point of intersection of the medians of the triangle divides each of them with ratio from the vertex.
 - a) 1:2
- b) 3:1
- c) 1:3
- d) 2:1
- 5) In \triangle ABC, m (\angle A) = 50° and m (\angle B) = 100° then
 - a) AB > AC
- b) AC > AB
- c) BC > AC
- d) AB = BC

2 Complete:

- 1) The measure of exterior angle of the equilateral $\Delta = \dots$ °
- 2) If \triangle ABC = \triangle XYZ, then AC \equiv
- 3) The longest side in a right-angled triangle is
- 4) The perpendicular bisector of a line segment is called
- 5) The bisector of the vertex angle of an isosceles triangle is

m (\angle ACB) = 30° and \overline{DE} , is a median of ADC.

If AB = 3 cm, find with proof the length to \overline{DE} .

ABCD is a paralledogram, CA = CBand m (/ACB) = 50°.

Find with proof m (/D)

4 (a) In the opposite Fig.: E and D are the midpoints

of \overline{AC} , and \overline{CB} . If AD = 4.5 cm and BM = 4 cm

Find the length of \overline{MD} and \overline{BE}

in which AD > AB and BC = CD

Prove that: m(/ABC) > m(/ADC).

5 In the opposite Fig.

 $\overline{AC} > \overline{AB}, \overline{DE} // \overline{BC}$ Prove that AE > AD

El-Zeitoun Directorate

1 Choose the correct answer:

- - a) 3
- b) 1

c) 2

d) 4

- 2) The medians of the triangle interest at
 - b) two points
- c) 3 points
- d) 4 points
- 3) The sum of lengths of any two sides in any triangle the length of the third side.
 - a) is less than
- b) is greater than
- c) equals
- d) otherwise
- 4) In the parallelogram, the two diagonals are

a) one point

a) equal in length

b) perpendicular

c) bisecting each other

- d) parallel
- $a) \equiv$
 - b) 上
- c) <

d) >

2 Complete the following statements:

- 1) The longest side in the right-angled triangle is
- 2) The point of intersection of the medians of the traingle divides each of them with the ratio from the base.

- 4) The perpendicular bisector of a line sement is called

5) In the parallelogram, each two opposite sieds are

3 a) In the opposit figure:

 \overline{BE} , and \overline{CD} are two medians in \triangle ABC, MB = 6 cm, MC = 8 cm and CB = 12 cm. Find the perimeter of \triangle EMD

(b) In the opposite Figure:

$$CD = CA = AB, \in C BD$$

and $m (\angle ACD) = 130^{\circ}$
Find by proof $m (\angle BAD)$

ABCD is a quadrilateral in which AB = 4 cm, BC = 5 cm, CD = 8 cm and AD = 7 cm

Prove that: $m (\angle BAD) > m (\angle BCD)$

5 In the opposite figure:

m (
$$\angle$$
ABC) = m (\angle ADC) = 90°
m (\angle ACB) = 30° and
 \overline{DE} is a median of \triangle ADC
if AB = 3cm,
Find the length of \overline{DE}

Cairo

Abdeen Educational Zone - Mohamed Fared E.L.S

1 Complete each of the following:

- a) The longest side in the right-angled triangle is
- b) If the lenghts of two sides in the isosceles triangle are 3 cm and 8 cm, then the length of the third side = cm.
- c) The length of the side opposite to the angle whose measure = 30 in the right-angled triangle equals
- d) in \triangle XYZ: if m (\angle X) > m (\angle Y) > m (\angle Z) then> XZ >
- e) The point of intersection of the medians of a triangle divides each median by the ratio from the base.

2 Choose the correct answer:

- - a) 1
- b) 2

c) 3

- d) zero
- 2) In \triangle ABC: If m (\angle A) = 75°, m (\angle C) = 50°, then ACAB
 - a) >
- b) =

c) ≤

d) <

- 3) The sum of lengths of any two sides in the triangle the length of the third side.
 - a) >
- b) ≥

c) ≤

- 4) \overline{AD} is a median of \triangle ABC where M is the point of inter section of its median. then $AM = \dots AD$

- c) $\frac{1}{2}$
- d) 2

- 5) If \overline{AD} is a median of $\triangle ABC$, then
 - a) AB = BC
- b) BD = DC
- c) AD + BC
- d) A B = A C

3 a) In the opposite figure:

 \overline{BE} and \overline{CD} are two medians in $\triangle ABC$.

M E = 2 cm, M D = 4 cm and D E = 5 cm

Find: the perimeter of Δ M B C

A B C is a right-angled triangle at B,

D is the midpoint of \overline{AC} , m (/C) = 30° and AB = 6cm

Find the length of \overline{AC} and \overline{BD}

$$AB = AD$$
,

$$BC = CD$$

Prove that $/ ABC \equiv / ADC$

(b) in the opposite figure:

 $\overline{AD} // \overline{BC}$, (/BAC) = 70°

and m (\angle DAC) = 35°

prove that: AC > BC

5 a) In the opposite figure:

ABC is a triagle in which

AC > AB, $\overline{DE} // \overline{BC}$

prove that: AE > AD

(b) In the opposite figure:

 \triangle ABC is a right-angled triangle at B,

 \overline{AE} and \overline{BD} are medians if AC = 12 cm.

Calculate the length of each \overline{BD} and \overline{MD} .

6 cm

1 Choose the correct answer:

- - a) 1

b) 2

c) 4

- d) zero
- 2) The lengths 9 cm, 4 cm and may be the lengths of isosceles triangle.
 - a) 3 cm
- b) 4 cm
- c) 5 cm
- d) 9 cm
- 3) In triangle the sum of the lengths of two sides the length of the third side.
 - a) >

b) <

c) =

- d) ≤
- 4) \triangle ABC in which m (\angle A) = 40° and m (\angle B) = 70°, then AB......AC.
 - a) >

b) =

 $c) \equiv$

- d) <
- 5) The measure of the exterior angle of an equallateral triangle
 - a) 30°

- b) 120°
- c) 60°
- d) 90°

2 Complete each of the following:

- a) The point of intersection of the medins of a triangle divides each median in the ratio from the vertex.
- 2) In the right- angled triangle, the longest side in it is called
- 3) In the right-angled triangle, the opposite side to angle with measure equals 30° = the length of the hypotenuse.
- 4) In an isosceles triangle, if any angle has a measure of 60°, the triangle is

3 (a) In the opposite figure:

ABC is a right-angled triangle at B,

D is the midpoint of \overline{AC} , m (/A) = 30°,

BC = 5 cm. Find: the length of \overline{BD} .

(b) in the opposite Figure:

 $D \in \overline{BC}$, $E \in \overline{BC}$, $\overline{AB} / / \overline{FD}$

and \overline{AC} , \overline{FE} , if AB = AC. prove that:

FDE is an isosceles triangle.

4 (a) In the opposite figure:

 \triangle ABC in which D and E midpoint of \overline{AC} , \overline{BC}

$$\overline{AE} \cap \overline{BD} = \{M\}$$

AB = 12cm, AE = 9cm, BM = 8cm

Calculate the perimeter of Δ DME

(b) \triangle XYZ in which XY = 8 cm, YZ= 10 cm and ZX = 7cm. Ordere the measures of its angles ascendingly.

5 In the opposite figure:

ABC is a triangle in which, BC > AB

 $D \in \overline{BC}$ such that AD = BD.

Prove that: $(\angle BAC)$ is an obtuse angle.

Cairo 6

Al Salam Education Zone - Anwer Alsadat EXp. Lang. School

1 Choose the correct answer:

1	Number of axes of s	ummetry of an ec	milateral triano	le is
1	Nullibel of axes of s	viiiiiieu v oi aii ec	junaterai urang	16 18

a) 0

b) 1

c) 2

d) 3

2) An isosceles triangle, one of its base angles has masure 50°, then the measure of the vertex angle =

a) 50°

- b) 60°
- c) 70°
- d) 80°

3) \overline{AD} is an median of triangle ABC, and M is the point of intersection of the medians, then AM =AD.

a) $\frac{1}{3}$

- b) $\frac{2}{3}$
- c) $\frac{1}{2}$
- d) $\frac{1}{4}$

4) If the lengths of two sides of a triangle are 4 cm and 8 cm., then the length of the third side =cm.

a) 3

b) 4

c) 8

d) 12

5) In a triangle ABC: if m (\angle A) = 80°, m (\angle C) = 60°, then ABBC.

a) >

b) <

c) =

d) ≥

2 Complete:

1) If XYZ is a right-angled triangle at Y, then the longest side is

2) The sum of measures of any two consecutive angles in the parallelogram =

3) The straight line perpendicular to the midpoint of a line semgment is called

4) The bisectors of the vertex angle an isoseles triangle and

5) The measure of the exterior angle of the equilateral triangle =

3 a) In the opposite figure:

ABC is a right-angled triangle at B, m (\angle ACB) = 30°

, AB = 5 cm. Point E bisects \overline{AC} if DE = 5 cm

, then prove that m (\angle ADC) = 90°

 \overline{BC} , XY = 5 cm, $\overline{XC} \cap \overline{AY} = \{M\}$ where:

CM = 8 cm, Ym = 3 cm. Find with proof

the lenght of : 1) \overline{AM}

 $2) \overline{MX}$

3) AC

4 a) In the opposite figure:

ABC is a triangle in which AC = BC, \overrightarrow{AD} // \overrightarrow{BC} , m (\angle DAC) = 30°. Find the measures of the angles in \triangle ABC

(b) In the opposite figure:

$$\overrightarrow{AD}$$
 // \overrightarrow{BC} , m ($\angle BAC$) = 80°, m ($\angle DAC$) = 30°
Prove thath: BC > AB

5 In the opposite figure:

ABCD is a quadrilateral in which AB = AD = 5cm, BC = 2 cm, DC = 4 cm Prove that: m(/ABC) > m(/ADC)

Cairo 7

Ain Shams Administration - Helmiat Al Zaiton - Helmiat Al Zaiton Extinguished Exp. School

1 Complete the following:

- 2) The base angles of the isosceles triangle are
- 3) In a triangle, the smallest angle in measure is opposite to
- 4) The medians of a triangle are
- 5) If the angles of a triangle are congruent, then the triangle is

2 Choose the correct answer:

- 2) In the \triangle ABC if XY = YZ, m(\angle Z) = 50° then the m(\angle X) =

 $(50^{\circ}, 80^{\circ}, 130^{\circ}, 100^{\circ})$

- 3) \triangle ABC if right-angle triangle at B, if m (\angle A) = 30°, BC = 10 cm, then AC= (5 cm, 10 cm, 20 cm, 15 cm)
- 4) The measure of exterior angle of an equilateral triangle =

 $(30^{\circ}, 60^{\circ}, 120^{\circ}, 90^{\circ})$

3 (a) In the opposite figure:

ABC is a triangle in which \overline{BD} bisects \angle ABC and intersects, \overline{AC} at D, \overline{DE} // \overline{CB} \overline{DE} // \overline{AB} = {E}

Prove that BE = ED

(b) In the opposite figure:

XYZL is quadrilateral in which

$$XY = ZL = ZX = XY$$
, m ($\angle ZXL$) = 90°

find the m (/XLZ), m (/LXY)

$$\overline{AD}$$
 // \overline{BC} , m ($\angle D$) = 90°, m ($\angle B$) = 60°,
m ($\angle DAC$) = 45°

First: Prove that. AC \(\subseteq BC \)

Second: Prove that Δ DAC is an isosceles triangle.

5 (a) In the opposite figure:

$$AB = AC, DC > DB$$

Prove that: $m (\angle ABD) > m (\angle ACD)$

(b) In the opposite figure:

$$\overline{DE} // \overline{BC}$$
, $AD = AE$

Prove that: AB = AC.

Giza 8

Giza Governorate - Omrania zone - El-Sadat E.L.S

1 Choose the correct answer from those between parentheses:

- 1) If \overline{AD} is a median of \triangle ABC and M is the point of intersection of the medians then AM =AD. $(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}, \frac{1}{4})$
- 2) If \triangle ABC, m (A) = 80°, m(C°) = 70° then ABBC.

$$(>,<,\equiv,\geqslant)$$

- 3) If the lengths of two sides of triangle are 3,7 then the length of 3^{rd} side is (3, 4, 8, 10)
 - 🕞 http://www.twitter.com/aladwaa الله المارية الماري

4) \triangle ABC, m (/A) = 30° m (/B) = 90° then AC =

 $(\frac{1}{2}BC, 2BC, 2AB, BC)$

5) In the isosceles triangle if one of its base angle of measure 40° then its vertx angle is of (40°,80°,100°,60°)

2 Complete the following:

- 1) The measure of the exterior angle of the equilateral triangle is°
- 2) The longest side in the right angled triangle is
- 3) The number of symmetrical axis in the equilateral triangle is
- 4) The bisector of the vertex angle of an isosceles triangle bisects the base and is
- 5) The medians of triangle are

3 In the opposite figure:

D midpoint of \overline{BE} , H is a midpoint

of
$$\overline{AB}$$
, $\overline{AD} \cap \overline{CH} = \{M\}$

AD = 9 cm

AC = 12 cm, CM = 10 cm, find perimeter of \triangle MDH

4 (a) In the opposite figure:

ABCD is quadrilateral

AB = 4 cm

BC = 5 cm

CD = 8 cm

AD = 7 cm

Prove that: m(/BAD) > m(/BCD).

(b) m (/B) = 90° m (/ACB) = 30° .

AB = DH, H is midpoint of \overline{AC}

Prove that m (\angle ADC) = 90°.

5 (a) In the opposite figure:

 \overline{ED} // \overline{BC} and \overline{BE} bisects / ABC

Prove that: Λ DBE is an isosceles Λ

$$AC = AD, m (/DAB) = 30^{\circ}m (/B) = 50^{\circ}$$

Find m (/DAC)

1 Choose the correct answer from the given ones:

- 1) The area of rhombus whose diagon is lengths 6 cm, $8 \text{cm} = \dots \text{cm}^2$
 - a) 48

b) 24

c) 14

- 2) In \triangle ABC, if $(AC)^2 = (AB)^2 + (BC)^2$, then \angle B is angle.
 - a) right
- b) obtuse
- c) acute
- d) straight
- 3) 1) The number of axes of summetry in the equilateral traingle =
 - a) 1

b) 2

- d) nothing
- 4) If the area of a parallelogrm is 35 cm² and its height is 5 cm, then the length of the corresponding base iscm.
 - a) 5

b) 7

c) 9

- d) 20
- 5) A square with perimeter 16 cm/ then its area = \dots cm²

- b) 40
- c) 16

d) 20

2 Complete each of the following:

- 2) The two triangles are similar if the correspoding are proportional.
- 3) If the lenghts of two parallel bases in a trapezium are 8 cm and 10 cm and its height is 6 cm then its area = \dots cm²
- 4) In the opposite figure:
 - \triangle ABC is right angled at A and $\overline{AD} \perp \overline{BC}$ then
 - $(AB)^2 = \times ...$

5) Two triangles which have the same base and the vertices opposite this base on a straight line parallel to the base

3 (a) In the opposite figure:

$$AB = BC = AC = DC$$

Prove that: m (/ BAD) = 90°

ABCD is a quadrilateral in which: AD = DC,

BC > AB

Prove that: m (/ BAD) > m (/ BAD)

 $F \in \overline{DA}$ if the area of the parallelogram

$$ABCD = 40 \text{ cm}^2$$

Find area of Δ FBC

(b) In the opposite figure:

$$\overline{AD} // \overline{BC}$$
, $\overline{AC} \cap \overline{DB} = \{M\}$

Prove that

The area of \triangle AMB = the area of \triangle DMC

5 In the opposite figure:

$$m (\angle B) = 90^{\circ}$$
, $AB = 9cm$

$$BC = 12 \text{ cm}, CD = 17 \text{ cm}$$

And AD = 8 cm

- 1) Find the length of \overline{AC}
- 2) Prove that: $m (/DAC) = 90^{\circ}$

Giza

Dokki Directorate - Gamal Abd El-Nasser Exp.L.S.

1 Choose the correct answer from the given ones:

- - a) zero
- b) 1

c) 2

- d) 3
- 2) In a parallelogram ABCD if m (/A) = 70°, then m (/B)=
 - a) 70°

- b) 90°
- c) 110°
- d) 20°
- 3) \triangle ABC: if m (\angle A) = 30°, m (\angle B) = 90°, then BC =
 - a) $\frac{1}{2}$ AB
- b) $\frac{1}{2}$ AC
- c) 2AB
- d) 2AC
- 4) Each of the base angles of the isosceles triangle is angle.
 - a) acute
- b) right
- c) obtuse
- d) striaght

- 5) \triangle ABC : m (/B) = 70°, m (/C) = 30° then
 - a) BC > AB
- b) AB > BC c) AC > BC d) AB > AC

2 Complete:

- 1) The perpendicular to a line segment from its mid-point is called for that line segment.
- 2) The median of an isosceles triangle drawn from the vertex bisects
- 3) \triangle ABC, if AB = 5 cm and BC = 7 cm, then AC \in].....
- 4) The longest side in the right angled triangle is
- 5) \triangle ABC: m (/B) = 40°, m (/C) = 80° then the number of axes of symmetry of \triangle ABC =

3 A- In the opposite figure:

 \triangle ABC, in which m (/B) = m (/C)

Find: The perimeter of \triangle ABC.

B- In the opposite figure:

$$M (\angle DBC) = 120^{\circ}$$

, $m (\angle ECB) = 140^{\circ}$

Prove that CB > AB

4 In the opposite figure:

$$AB = AC, \overline{BE} // \overline{AB}$$

, $\overline{DF} // \overline{AC}$

Prove that DE = DF

5 A- In the opposite figure:

$$\triangle$$
 ABC in which: m (\angle B) = 90°
, m (\angle C) = 30°, D is the mid-point of \overline{AC}
, AC = 10cm. **Find** the perimeter of \triangle ABD
Prove that m (\angle B) > m (\angle C)

B- In the opposite figure:

Perimeter of
$$\angle$$
ADC > perimeter of ADB
, BD = DC
Prove that m (\angle B) > m (\angle C)

Alexandria

Mid Educational Zone - El Orwa Exp.school for Boys

1 Complete the following:

- a)The vertex angle bisector in the isosceles triangle
- b) \overline{AD} is a median of Δ ABC , M is the point of concurrence, then AM:AD = :
- c) Any point on the axis of symmetry of a line segment is at two equal distances from.....
- d) In any triangle: The sum of the lengths of any two sides is the length of the third side.
- e) ABCD is a parallelogram, m (\angle A) = (3x + 4)°, m (\angle B) = 5x°, then m (\angle C) =°

2 Choose the correct answer from the given ones:

 b) Triangle ABC in which AB> AC, then m (\angle B) m (\angle C) [>,<, \geqslant ,=]

c) An isosceles triangle the lengths of two sides: 4 cm and 8 cm, then the length of the third side iscm. (3, 4, 13, 8)

d) \triangle ABC, AB = AC, m (\angle B) = (2x + 13)°, m (\angle C) = (3x - 17)°, then m (\angle A) =° (34°,43°,73°,30°)

e) \triangle ABC : if m (\angle A) = 30°, m (\angle B) = 90°, then BC =

$$(\frac{1}{2}AB, \frac{1}{2}AC, 2AB, 2AC)$$

3 A- In the opposite figure \overrightarrow{DA} // \overrightarrow{BC} , AC = BC, m ($\angle DAC$) = 50°

Find: m (/ABC).

B- ABCD is a quadrilateral in which, AB = 6 cm. BC = 4 cm, CD = 8 cm, DA = 7cm

Prove that: $m (\angle ABC) > m (\angle ADC)$.

4 In the opposite figure E, F are the midpoints of \overline{AB} , \overline{AC}

in \triangle ABC, $\overline{AD} \perp \overline{BC}$, AB = 10 cm, BC = 8cm, AC = 7cm.

Find: the perimeter of triangle DEF

5 a) In the opposite figure $\overline{AB} \cap \overline{CD} = \{M\}, \overline{AC} \perp \overline{CD}, \overline{BD} \perp \overline{CD},$

Prove that AB>CD

b) In the opposite figure \overline{BD} is the median of the right angled triangled ABC, AC = 6cm, m (\angle C) = 30°

Prove that \triangle ABD is an equilateral triangle and find its perimeter.

1 Complete:

- 1) In any triangle the greatest angle in measure is opposite to
- 2) The number of axes of symmetry in the isosceles triangle =
- 3) The intersection point of the medians of a triangle divides each other from direction of the base in the ratio
- 4) The medians of an isosceles triangle from the vertex angle

2 Choose the correct answer:

- 1) \triangle ABC if m (/B) = 70°, m (/C) = 60° then BCAB
 - a) <

b) >

c) ≤

- d) ≥
- 2) The sum of lengths of any two sides in a triangle is the length of the third side.
 - a) <

b) >

c) ≤

- d) ≥
- 3) In the right-angled triangle, the length of the median from the vertex of the right angle = the length of the hypotenuse.
 - a) $\frac{1}{3}$

- b) $\frac{1}{2}$
- c) $\frac{1}{4}$

- d) 2
- 4) In \triangle ABC: if AD = 9 cm is a median and M is the point of concurrency, then DM =cm.
 - a) 6

b) 3

- c) 4.5
- d) 4
- 5) In \triangle ABC is the right-angled triangle at B m (\angle A) = 30° and BC = 4 cm then AC =cm.
 - a) 4

b) 8

c) 2

- d) 12
- **3** In the opposite figure: \triangle ABC, AC = 8 cm, m (\angle BAC) = 60°,

m (\angle ABC) = 90°, D is the midpoint of \overline{AC} .

Find: the perimeter of \triangle ABD

4 Complete:

- a) The base angles of the isosceles triangle are
- b) In the opposite figure: ABC is a triangle in which AB = AC , $\overline{XY}/\!/\overline{BC}$

Prove that AXY is an isosceles triangle.

5 Complete:

a) In a triangle, if two sides have unequal lengths,

.....

b) In the opposite figure \overline{AD} // \overline{BC} ,

$$m (\angle BAC) = 80^{\circ}, m (\angle CAD) = 32^{\circ}$$

Prove that:

BC > AB

Gharbia

13

Samanoud Educational Directorate

Answer the following questions:

Choose the corre	ect answer	from	the	given	ones:

- 1) Number of axes of symmetry of the equilateral triangle =
 - a) 1

b) 2

c) 3

- d) 4
- 2) The base angles of the isosceles triangle are
 - a) congruent
- b) alternate
- c) corresponding
- d)

supplementary

- 3) The length of the side opposite to the angle whose measure is 30° in the right-angled triangle = the length of the hypotenuse .
 - a) quarter
- b) half
- c) third
- d) twice
- - a) \overline{AB}

- b) BC
- $c)\overline{AC}$

d) \overline{XY}

5) In the triangle ABC, if BC = 9 cm = 7 cm, then

 $m (\angle C) \dots m (\angle A)$

a) =

b) ≥

c) >

d) <

2 Complete each of the following:

- a) The medians of any triangle intersect at
- b) Any point on the axis of the line segment is from its terminals.
- c) The length of the median from the vertex of the right angle in the right-angled in the right-angled triangle equals
- d) In any triangle, if two angles are unequal in measure, then the greater angle is opposite to
- e) The measure of the exterior angle of the equilateral triangle =°

3 In the opposite figure:

AC = 8 cm, D is mid of \overline{AC} , m ($\angle C$) = 30° and m ($\angle B$) = 90°.

Find the perimeter of the triangle ABD.

4 a) ABC is a triangle in which m ($\angle A$) = 50° and m ($\angle C$) = 80°.

Prove that the triangle ABC is an isosceles triangle.

$$\overline{BA} \perp \overline{CD}, \overline{BC} / / \overline{DE}$$

AB = AC. Find m ($\angle CDE$).

5 a) In the opposite figure:

E is mid of \overline{AB} . D is mid of \overline{BC} , $\overline{AD} \cap \overline{CE} = \{M\}$

MC = 5 cm. and MD = 2 cm.

Find the length of each of \overline{AD} and \overline{ME}

b) In the opposite figure:

$$AB = 7 \text{ cm}$$
, $BC = 8 \text{ cm}$.

AD = 5cm. and DC = 3 cm.

Prove that: $m (\angle ADC) > m (\angle ABC)$

Dakahlia

14

Dakahlia Educational Directorate

1 Complete:

- 1) The bisector of vertex angle of isosceles triangle is
- 2) In \triangle XYZ: if m (\angle X) = 75°, m (\angle y) = 25° then the longest side in length is
- 3) If the point $D \in$ the axis of symmetry of \overline{BC} .

Then DB =

4) If ABC is a right angled triangle at B, and AB = $\frac{1}{2}$ AC

Then m $(\angle A) = \dots^{\circ}$

5) XYZ is a triangle, if XY = 3 cm, YZ = 5 cm

then $XZ \in].....[$

2 Choose:

- 1) The number of axes of symmetry in the equilateral triangle =
 - a) 2

b) 1

c) 0

- d) 3
- 2) In \triangle ABC: If AB = AC, m (/C) = 50° then m (/A) =
 - a) 80°

- b) 40°
- c) 100°
- d) 50°
- 3) The point of concurrence of the medians of the triangle divides each median in the ratio of from the vertex.
 - a) 1:3
- b) 3 · 1
- c) 1:2
- d) 2:1
- 4) In \triangle ABC: If BC > AB, Then m (\angle A) m (\angle C)
 - a) =

b) <

- c) >
- 5) ABCD is a parallelogram, AB = 3 cm. BC = 5 cm, Then its perimeter =cm
 - a) 8

- b) 16
- c) 15

3 a) In the opposite figure:

ABC is a triangle, $m (\angle B) = m (\angle C)$

Find the perimeter of the triangle ABC.

b) In the opposite figure:

$$LX = LZ, YZ > YX$$

Prove that: $m (\angle YXL) > m (\angle YZL)$

- **4** a) ABC is a triangle in which AB = $\frac{1}{2}$ BC = 3.5 cm, and AC = 8 cm, Order the measure of its angles ascendingly.
 - b) In the opposite figure:

$$AB = AC$$
, $m (\angle ABC) = 55$

$$m (\angle ACD) = 25 \text{ and } D \in \overrightarrow{BA}$$

Prove that: AB > AD

5 In the figure:

ABC is a triangle in which

$$AB = AC$$
, $BX = CY$

If m (
$$\angle$$
B) = 50°, m (\angle CAY) = 30°

Prove that: 1) AYX is isosceles Δ

2) Find m (∠AXY)

1 Complete:

- a) The point of intersection o the medians in a triangle divides each median by the ratio from the base.
- b) The bisector of the vertex angle of an isosceles triangle is to the base and

$$\triangle$$
 ABC, m (\angle B) = 90°, m (\angle C) = 30°
if AC = 10 cm .Then AB =cm

- d) The longest side in the right-angled triangle is
- e) The measure of the exterior angle of equilateral triangle =°

2 Choose the correct answer:

- a) In a triangle ABC , if AB = AC and m (\angle A) = 40° then m (\angle C) = (40°, 70°, 140°, 50°)
- c) In \triangle ABC: If m (\angle B) = 70°, m (\angle A) = 50° then ABBC (>,<,=, \equiv)
- d) In the \triangle XYZ, if XY > ZX, then m (\angle Y)m (\angle Z) (> , < , = , \equiv)
- e) The number of axes of symmetry of isosceles triangle is

(1,0,3,4)

3 In the opposite figure:

ABC is a triangle in which AB = AC $\overline{XY} // \overline{BC}$, prove that

 Δ AXY is an isosceles triangle

4 a) In the opposite figure:

ABC is atriangle, $E \in \overrightarrow{BA}$ $\overrightarrow{AD} // \overrightarrow{BC}$, $m (/ CAD) = 35^{\circ}$

$$m (\angle DAE) = 75^{\circ}$$

Prove that AC > AB

b) In the opposite figure:

ABCD is a quadrilateral in which AD = DC, BC > ABm(/BAD) > m(/BAD)

5 a) In the opposite figure:

m (
$$\angle$$
ABC) = m (\angle ADC) = 90°
m (\angle ACB) = 30° and
 \overline{DE} is a median of AADC

 \overline{DE} is a median of \triangle ADC,

$$\overline{AB} = 3 \text{ cm}$$

Find, the length of \overline{DE}

b) In the opposite figure:

$$ZY = YM = MZ = ZX$$

 $m (/ZMX) = 50^{\circ}$

Domiette

Damietta Educational Directorate

Choose the correct answer:

a) The number of axis of symmetry of isosceles triangle

b) If the length of two sides of an isosceles triangle 3cm, 7 cm then the length of

- c) In the opposite figure ABC is right angled triangle at B,
- \overline{BD} is median m ($\angle C$) = 30° then A B D is triangle. (equilateral, isosceles, scalene, right angled)
- d) In the opposite figure

C, D
$$\in$$
 $\stackrel{\Longleftrightarrow}{AB}$ if A B > C D then A C B D.

$$(>,<,\equiv,\equiv)$$

e) In the opposite figure $\triangle ABC$, AB = AC

$$m (/A) = 50^{\circ} \text{ then } m (/B) \dots^{\circ}$$

$$(50^{\circ}, 130^{\circ}, 65^{\circ}, 60^{\circ})$$

D

- **2** Complete to form a correct statement:
 - a) The measure of an exterior angle of an equilateral triangle =
 - b) The point of median of triangle divides each median in ratio from base.
 - c) Triangle A B C in which A B = 3cm, B C = 5 cm then A C \in]........................[.
 - d) In a triangle the smallest angle in measure opposite
- 3 In the opposite figure A B C D is parallelogram find in proof.
 - 1) m (/A)
 - 2) Perimeter of the ABCD.
- **4** a) ABC is a triangle in which m (\angle A) = 40°, m (\angle B) = 75° order the lengths of sides of \triangle ABC in ascending order.:

ABC is triangle in which AB = 16cm,

AC = 18cm, BC = 20cm,

E is midpoint \overline{AC} , F is midpoint \overline{AB}

and $\overline{AD} \perp \overline{BC}$ find the perimeter of Δ DEF.

ABCD is quadrialteral in which

$$AB = 6cm$$
, $BC = 4cm$, $CD = 7cm$

DA = 8 cm prove that

 $m (\angle BCD) > m (\angle BAD)$

b) In the opposite figure:

ABC is an isosceles triangle in which BD = EC

 $AB = AC, D \in \overline{BC}, E \in \overline{BC}$ prove that

- 1) \triangle ADE is isosceles,
- $2) \angle ADE = \angle AED$

Port Said

South Educational Directorate

1 Choose the correct answer:

- 1) The point of concurrence of the medians of the triangle divides each median in the ratio of from its base.
 - a) 2:1
- b) 1:2
- c) 2:3
- d) 3 : 2

- 2) In the opposite figure N° =
 - a) 42
- b) 48
- c) 138
- d) 96
- 3) Which of the following groups are valid in drawing a triangle?
 - a) 5 cm, 7 cm, 8 cm
 - b) 4 cm, 9 cm, 3 cm
 - c) 10 cm, 6 cm, 4cm d) 8 cm, 3 cm, 4 cm
- angled triangle equals half the length of the hypotenuse.
 - a) 30
- b) 40
- c) 60
- d) 45
- 5) If the triangle is equilateral, then it is equiangular where each angle of measure ='
 - a) 30
- b) 45
- c) 60
- d) 90

2 Complete:

- 1) In the right-angled triangle, the is the longest side.
- 2) The medians of a triangle intersect in
- 3) If: x>y, z is a positive number then: xz>.....
- 4) The interval which the third side of a triangle belongs to if the lengths of the other two sidies were 6 cm, 9 cm is
- 5) The number of symmetrical axes in the equilater triangle is
- **3** A) In the opposite figure:

ABC is a right- angled triangle is B,

D is a midpoint of \overline{AC} , m (/C) = 30°, AC = 10 cm

Find: 1) the length of \overline{BD}

2) the length of \overline{AB}

b) In the opposite figure:

$$XY = XL$$
, $ZY = ZL$, $LM = YM$

Prove that X, M and Z are on the same straight line

4 A) In the opposite figure:

ABC is a triangle which m(/B) = m(/C)

Find: the perimeter of the triangle.

b) In the opposite figure:

$$\overline{AB} \cap \overline{CD} = \{M\}, \overline{AC} \perp \overline{CD}, \overline{BD} \perp \overline{CD}$$

Prove that: AB > CD

5 In the opposite figure:

$$\overrightarrow{AD}$$
 // \overrightarrow{BC} , m ($\angle BAC$) = 80°, m ($\angle DAC$) = 30°.

Prove that: BC > AB

Ismailia

18

Directorate of Education - Elmanar Language School

① Complete:

- a) The base angles of an isosceles triangle are
- 2) The number of the axes of symmetry in an equilateral triangle is
- 3) In the right-angled triangle the length of the median from the vertex of the right angle equals the length of the hypotenuse.
- 4) In \triangle ABC, if m (\angle A) = 100° then the greatest side length is
- 5) By using the opposite figure AC =cm

2 Choose the correct answer:

- 1) The intersection point of the medians of a triangle divides each of them at the ratio: from the base. (1:2,2:1,1:4,1:3)
- 2) In The isosceles triangle if the measure of one of the two base angles = 50° then the measure of the vertex angle =(50° , 100° , 80° , 130°)
- 3) The length of two sides of an isosceles triangle are 4 cm, 9 cm then the length of the third side =cm (4,8,7,9)
- 4) The measure of the exterior angle of an equilateral triangle =

(60°, 80°, 120°, 130°)

3 In the opposite figure:

ABC is a triangle where

$$AB > AC$$
, $\overline{XY} // \overline{BC}$

Prove that: m(/AYX) > m(/AXY)

4 a) In the opposite figure:

If D is the midpoint of \overline{AB} .

E is the midpoint of \overline{AC}

and
$$\overline{BE} \cap \overline{DC} = \{M\}$$

If DE = 4 cm, DM = 3 cm and ME = 2 cm

Find the perimeter of Δ BMC .

$$\overline{AB} // \overline{DC}$$
, $\overline{AD} \cap \overline{BC} = \{0\}$

and
$$OA = OB$$

Prove that: Δ ODC is an isosceles triangle.

ABC is a right angled triangle at B.

D is a midpoint of \overline{AC}

$$m (/C) = 30^{\circ}, AB = 7cm$$

Find with proof: 1) length of \overline{AC} . 2) length of \overline{BD}_C

b) In the opposite figure:

ABCD is a quadrilateral in which

$$AB = 8 \text{ cm}$$
, $BC = 6 \text{ cm}$

$$CD = 9 \text{ cm} \text{ and } DA = 10 \text{ cm}$$

Prove that: m(/ABC) > m(/ADC).

Suez

19

Port Tawfeek Educational Directorate

1 Complete:

- 1) \triangle ABC in which AB = 3 cm, BC = 5 cm, then AC \in].....,[
- 2) The two base angles of the isosceles triangle are
- 3) The side opposite to the angle of measure 30° in the right angled triangle equals the hypotenuse.
- 4) The bisector of the vertex angle in an isosceles triangle of
- 5) If the point A lies on the axis of symmetry of \overline{xy} , then:

2 Choose the correct answer:

- 1) In \triangle ABC, If BC > AB, then m (\angle A) m (\angle C)
 - a) >
- b) <
- c) =
- 2) The medians of the triangle intersect at one point ,this point divides each in the ratio from the base.
 - a) 2:1
- b) 1:2
- c) 3:4
- d) 1:1
- 3) In isosceles triangle if one of its angles is 60°, then it has axes of symmetry.
 - a) 1
- b) 2
- c) 3
- d) an infinite
- 4) In \triangle ABC, then AB + AC BC >
 - a) 2
- b) 1
- c) zero
- d) otherwise

5) In the opposite figure:

If
$$D \in \overline{BC}$$
, $\overline{AB} = \overline{BC}$, then $m (\angle B) = \dots$

- a) 36°
- b) 72°

3 In the opposite figure:

ABC is isosceles triangle, AB = AC, $\in \overline{BC}$ Then prove that: AB > AD

4 a) In the opposite figure:

 \overline{AD} // \overline{BC} , m (/DAC) = 30°, m (/BAC) = 80° Then prove that: BC > AB

b) In the opposite figure:

Complete:

- 1) AC= cm
- 2) DE = cm
- **5** a) In the opposite figure:

AB = 5 cm, BC = 7 cm, CD = 9 cm

And AD = 8 cm, then

Prove that: m (/BAD) > m (/BCD)

3 cm

b) In the opposite figure:

$$AB = BC = AC, m (/D) = 40^{\circ}$$

And = DC, then find m (
$$\angle$$
BCD)

Fayoum

20

Fayoum East Directorate - Islamic Language School - Nafessa Elhosray

1 Choose the correct answer:

- 1) The numbers 7, 3 and can be lengths of sides of an isosceles triangle.
 - a) 3
- b) 7
- c) 8

- d) 4
- 2) The number of axes of symmetry of the equilateral triangle is
 - a) 1
- b) 2
- c) 3
- d) zero
- 3) In \triangle ABC: if m (\angle A) = 70°, m (\angle B) = 50°, then ABBC.
 - a) >
- b) <
- c) ≤
- d) =
- 4) In \triangle XYZ: if XY = ZY m (\angle Y) = 80°, then m (\angle X) =
 - a) 80°
- b) 50°
- c) 100°
- d) 40°
- 5) If the length of median drawn from a vertex of triangle equals half the length of the opposite side to this vertex then the vertex angle is
 - a) acute
- b) obtuse
- c) right
- d) reflex

2 Complete:

- 1) The longest side in the right-angled triangle is
- 3) In \triangle ABC: if AB>AC, then m (\angle B) m (\angle C).
- 4) In the right-angled triangle the length of the side opposite to angle with measure 30° equals the length of the hypotenuse.
- 5) The point of intersection of the medians of a triangle divides each median in the ratio from the vertex.
- 3 a) Draw the line segment \overline{AB} with length 7cm. Using a compass and the ruler to draw the axis of symmetry of \overline{AB} . "Don't remove the arcs"
 - b) In the opposite figure:

ABCD is a quadrilateral in which

$$AB = AD$$
, $DC > BC$

Prove that: $m (\angle ABC) > m (\angle ADC)$

4 a) In the opposite figure:

ABC is a right-angled triangle at B, m (\angle C) = 30° D is a midpoint of \overline{AC} , AC = 10 cm.

Find the length of \overline{AB} , \overline{BD}

b) In the opposite figure:

$$\overline{AD}$$
 // \overline{BC} , m ($\angle BAC$) = 80°, m ($\angle BAC$) = 32°

Prove that: BC > AB

5 a) In the opposite figure:

D is the midpoint of \overline{XY} , E is the midpoint of \overline{XZ} ,

$$\overline{\text{YE}} \cap \overline{\text{ZD}} = \{M\}$$
, $\text{YE} = 9 \text{ cm}$, $\text{DM} = 4 \text{ cm}$., $\text{DE} = 6 \text{ cm}$.

Find the perimeter of Δ YMZ.

b) In the opposite figure:

$$\overline{BC} // \overline{XY}, AB = AC$$

Prove that: \triangle AXY is an isosceles triangle.

Beni Suef 21

Nasser Educational Departrment - Nasser Experimental Language School

1 Choose the correct answer:

- 1) If the lengths of two sides in a triangle are 3 cm, 7 cm, then the length of the third side may be
 - a) 3
- b) 4
- c) 6

- d) 10
- 2) The triangle ABC is obtuse-angled triangle at B, then the longest side is
 - a) AB
- b) BC
- c) AC
- d) AD
- 3) In the isosceles triangle if one of its base angles is of measure 40°, then its vertex angles is of measure
 - a) 40°
- b) 80°
- c) 100°
- d) 60°
- 4) The measure of exterior angle in an equilateral triangle
 - a) 60°
- b) 70°
- c) 80°
- d) 120°

5) In a triangle ABC: $m (/B) = 75^{\circ}$, $m (/C) = 50^{\circ}$, then BC AB b) >c) =d) =

2 Complete the following: 1) The points of concurrence of the medians of the triangle divides each median in the ratio from the base.

2) Any point at the axis of the line of symmetry is at two equal distances from

3) The length of side opposite to the angle whose measure = 30° in the rightangled triangle =

4) In the right-angled triangle the length of the median from the vertex of the right angle equal the legnth of the hypotenuse.

5) In triangle ABC, if $m(/A) = 70^{\circ}$, $m(/B) = 30^{\circ}$, then the longest side in length is

3 a) In the opposite figure:

ABCD is a quadrilateral, $m (/B) = m (/D) = 90^{\circ}, m (/ACB) = 30^{\circ},$ E is the midpoint of AC

Prove that: AB = DE

m (
$$\angle$$
BAC) = 70° and m (\angle DAC) = 30°
 \overline{AD} // \overline{BC}

Prove that: AC > CB

ABC is a right-angled triangle at B, \overline{AE} and \overline{BD} are two medians of the triangle intersecting at M if AC = 12cmCalculate the length of each \overline{BD} and \overline{MD}

ABCD is a quadrilateral in which:

AD > AB and BC = CD

Prove that:

M(/ABC) > M(/ADC)

5 a) In the opposite figure:

$$AB = AC = CD = DA$$

$$m (/BAC) = 50^{\circ}$$

Find: m (/ BCD)

b)
$$\triangle$$
 ABC which: m (\angle A) = (5x +2)°, m (\angle B) = (6X - 10)°, m (\angle C) = (X +20)°

Arrange the lengths of the side: of the triangle in an ascending order.

Minia

22

Minia Educational Directorate

1 Complete:

- 2) The base angls in an isosceles triangle are
- 3) If the length of two sides in an isosce les triangle were 3 cm, 7 cm then the length of the third side = cm.
- 4) Triangle ABC in which AB = 3 cm, BC = 5 cm, then AC \in]......

2 Choose:

1) In triangle ABC, if m \angle A = 70°, m \angle B = 30°, then the longest side in the length is is

 $(\overline{AB}, \overline{BC}, \overline{CA}, \text{not given})$

$$(AB, CB, BD, CD) =$$

3 Line segment AB which its length 6 cm, draw the straight line (L) the symmetry in the figure opposite:

ABC is a triangle, X in a mid-point AB, Y in a mid-point BC,

$$XY = 5 \text{ cm} = \overline{XY} \cap \overline{AY} = \{M\}$$

Where CM = 8 cm, YM = 3 cm

Find: (1) The perimeter of triangle MXY

(2) The perimeter of triangle MAC

 \overline{BD} bisects \angle ABC and intersects \overline{AC} at D.

 $\overline{DE} // \overline{BC}$ wherer $E \in \overline{AB}$

Prove: the triangle EBD is an isosceles triangle

- **5** a) The length of median draw from the vertex of the right angle in a triangle is equal
 - b) Triangle ABC in which AB = 2.7 cm, BC = 8.5 cm, AC = 6 cm, Order the measure of angles of the triangle ascendingly.

Exam (1) geometry:

Complete the following:

- 1 The base angles of the isosceles triangle are
- 2 In \triangle ABC, if $\overline{AB} \perp \overline{BC}$ and $\overline{AB} = \overline{BC}$, then m (\angle A) =
- 3 In \triangle ABC, if AB > AC, then m (\angle C) m (\angle B)
- The triangle whose side lengths are (2×-1) cm., (X + 3) cm., (X + 3) cm. becomes an equilateral triangle when $X = \cdots$ cm.
- 5 In the opposite figure :

Choose the correct answer:

(a) >

- (a) half
- (b) twice
- (c) third
- (d) quarter
- 3 In \triangle ABC , if m (\angle A) = 100° and AB = AC , then m (\angle ABC) =
 - (a) 80°
- (b) 60°
- (c) 40°
- (d) 30°
- The point of intersection of the medians of the triangle divides each of them in the ratio from the base.
 - (a) 1:3
- (b) 3:1
- (c) 1:2
- (d) 2:1
- 5 If \triangle ABD is obtuse-angled at B and C is the midpoint of \overline{BD} , then the longest side is
 - (a) AB
- (b) AC
- (c) AD
- (d) BD
- The triangle whose side lengths are 2 cm., (X + 3) cm. and 5 cm., becomes an isosceles triangle when $X = \cdots$ cm.
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

Question 3:

- [a] In \triangle ABC, if m (\angle A) = (6 X)°, m (\angle B) = (4 X 9)° and m (\angle C) = 3 (\angle \angle), arrange the side lengths of \triangle ABC ascendingly.
- (b) In the opposite figure :

$$m (\angle ABC) = 90^{\circ}, m (\angle C) = 30^{\circ}$$

, AD = DC and AC = 10 cm.

Find: The perimeter of △ ABD

Question 4:

[a] In the opposite figure:

If $\overline{AC} \cap \overline{BD} = \{M\}$

 $\overline{AD} / \overline{BC}$ and $\overline{MB} = \overline{MC}$

, prove that :

Δ MAD is isosceles.

[b] In the opposite figure:

 $m (\angle BAC) = 70^{\circ}, m (\angle B) = 55^{\circ}$

and m (\angle ACD) = 90°

Prove that : AD > AB

Question 5:

[a] In the opposite figure :

ABC is a triangle in which AB = AC

, AE bisects ∠ BAC

Prove that:

1 BE =
$$\frac{1}{2}$$
 BC

2 BD = CD

[b] In the opposite figure :

AB = AC, $m (\angle B) = 2 X + 13^{\circ}$

• m (\angle C) = 3 $X - 17^{\circ}$

Find

The measures of the angles of \triangle ABC

Exam (2) geometry;

Complete the following:

1 The median of an isosceles triangle from the vertex angle bisects and is perpendicular to	
2 The measure of the exterior angle at any vertex of the equilateral triangle is	0
3 The base angles of the isosceles triangle are	
ABC is a triangle in which AB = 4 cm. , BC = 6 cm. , then AC ∈],	[
5 The longest side in the right-angled triangle is	

Choose the correct ans	wer:	HVS	
1 An isosceles trian the third side equa		engths 6 cm. and 1	2 cm., then the length of
(a) 6	(b) 9	(c) 12	(d) 18
$2 \operatorname{In} \Delta XYZ$, if m ($\angle Y$) = 115°, then the	e longest side is	
(a) XY		(b) YZ	
(c) ZX		(d) the median (of the triangle.
3 The lengths 5 cm.	, 4 cm. and	cm, are lengths o	f sides of a triangle.
(a) 8	(b) 9	(c) 12	(d) 10
4 The triangle having	g two angles of meas	ures 74° and 53° i	s ····· triangle.
(a) an isosceles	(b) an equilateral	(c) a scalene	(d) a right-angled
5 The intersection p 1: from		a triangle divides	s each median by the ratio
(a) 1	(b) 2	(c) 3	(d) 4
	riangle have unequal l measure from tha	100	smaller side is opposite to the e other side.
(a) greater	(b) smaller	(c) equal	(d) otherwise

Question 3:

[a] In the opposite figure:

If E is the midpoint of AC and D is the midpoint of BC

- , ED = 5 cm., MD = 3 cm. and BE = 15 cm.
- , find: The perimeter of \triangle AMB
- [b] ABC is a triangle in which : $m (\angle B) = 40^{\circ}$, $m (\angle C) = 80^{\circ}$ Arrange its side lengths ascendingly.

Question 4:

[a] In the opposite figure :

If XY > XL

- , YZ > ZL
- , prove that : $m (\angle XLZ) > m (\angle XYZ)$
- [b] In the opposite figure:

 $m (\angle B) = 90^{\circ}, m (\angle ACB) = 30^{\circ}$

E is the midpoint of \overline{AC} and $\overline{AB} = \overline{DE} = 6$ cm.

Find: 1 The length of AC

2 m (∠ ADC)

Question 5:

[a] In the opposite figure:

 $\overline{AD} // \overline{BC}$, m ($\angle BAC$) = 70°

, m (∠ DAC) = 30°

Prove that : AC > BC

[b] In the opposite figure:

AB = 4 cm., BC = 6 cm.

 $_{5}AC = 7 \text{ cm}$.

Arrange the measures of the angles of the triangle ABC descendingly.

Exam (3) geometry:

Complete the following:

- 1 The length of the side which is opposite to the angle of measure 30° in the right-angled triangle equals the length of the hypotenuse.
- 2 In the right-angled triangle, the longest side is the
- 3 The straight line drawn from the vertex of the isosceles triangle, perpendicular to the base this vertex.
- 4 The measure of the exterior angle of the equilateral triangle equals°
- 5 The number of axes of symmetry of the isosceles triangle is

Choose the correct answer:

- 1 In \triangle ABC, if AB = AC, m (\angle B) = 40°, then m (\angle A) =
 - (a) 70°
- (b) 55°
- (c) 100°
- 2 The point of concurrence of the medians of the triangle divides each median at the ratio from the vertex.
 - (a) 1:2
- (b) 2:1
- (c) 2:3
- (d) 1:3
- 3 In \triangle ABC, if AB = 7 cm., BC = 10 cm., then the length of AC must satisfy which of the following inequalities?
- (a) $3 \le AC \le 17$ (b) 3 < AC < 17 (c) 10 < AC < 20 (d) 14 < AC < 20
- 4 If Δ ABD is obtuse-angled at B and C is the midpoint of BD, then the longest side in Δ ABD is
 - (a) AB
- (b) AC
- (c) AD
- (d) BD
- - (a) AB
- (b) AC
- (c) BC
- (d) otherwise.

Question 3:

- [a] XYZ is a triangle in which $m (\angle X) = 60^{\circ}$, $m (\angle Y) = 50^{\circ}$ Order the lengths of the sides of the triangle descendingly.
- [b] In the opposite figure:

ABC is a triangle in which D , E are the midpoints of \overline{AB} , \overline{AC}

$$, FC = 4 \text{ cm}, , FB = 6 \text{ cm}.$$

 $_{9}BC = 8 \text{ cm}.$

Find: The perimeter of \triangle DFE

Question 4:

[a] In the opposite figure:

In \triangle ABC : \overline{BE} , \overline{CD} are two medians, MB = 6 cm.

,BC = 12 cm., MC = 8 cm.

Find: The perimeter of \triangle MDE

[b] In the opposite figure:

 $\overline{AD} // \overline{BC}$, AD = DC

 $m (\angle D) = 100^{\circ} , m (\angle B) = 70^{\circ}$

Prove that : 1 AC > AB

2 Δ ABC is isosceles.

Question 5:

In the opposite figure:

ABC is a triangle, AB = AC, $m (\angle B) = (X + 5)^{\circ}$

 $_{5}$ m (∠ C) = $(2 X - 15)^{\circ}$

Find: $m (\angle A)$ (show all of your work)

[b] In the opposite figure:

N is the point of concurrence of the medians of the triangle XYZ

LZ = 15 cm. YM = 18 cm.

, XY = 20 cm.

Find: The perimeter of the triangle NLY

[c] In the opposite figure :

 $m (\angle ABC) = m (\angle BDE) = 90^{\circ}$

, D is the midpoint of AC

 $m (\angle E) = 30^{\circ} AC = 12 cm.$

Find with proof: The length of BE

Wish you all the best

Alexandria Governorate	First Term 2021-2022	Middle: Two
El-Montaza Educational Zone	Model (B)	Subject: Geometry
Mathematics directing		Time: 2 hours
Q1: Choose-the correct answer	_	
1) If the lengths of two sides in an is		4 cm, then
the length of the third side is		12)
(a. 3, b. 4) 2) \triangle XYZ in which m (< Z) = 70°,	$c. 8$, $d. m (< V) = 60^{\circ}$ then VZ	
	c. = 0, then 12	
3) The sum of the measures of the ac		
	90° , c. 180° ,	
4) △ ABC is a right-angled triangle a		
then BD = cm		
(a.10, b.8	, c. 6 ,	d. 5)
5) If \triangle ABC $\equiv \triangle$ XYZ, then AB =		
■ 10 Part 1	Y , c. YZ , c	i. BC)
6) \triangle ABC, if AB = 6 cm and BC = 9		, [2 45])
(a.]3,15[, b. [3,15]	15] , c.]3 ,15] ,	. d. [3,15[)
Q2 : Complete each of the following		•
1) The bisector of the vertex angle o		the base and
2) The length of any side in a triang	lethe sum of lengths of	the two other sides.
3) The measure of each of two equal		
4) The number of axes of symmetry		
5) If the measure of one angle of an	isosceles triangle is 60, then	the triangle is
Q3: a) Arrange the measures of the	angles of A I MN If I M =	3 cm MN = 5 cm and
$\frac{23:}{\text{LN}} = 7 \text{ cm}$		
DN - 7 Cm	المنحانالنعليمي	Ø ∧A
b) In the opposite figure :	www.exam-eg.com	
ABC is a right-angled triangle a	$t B \cdot m (< C) = 30^{\circ}$	D
AC = 8 cm and D is the midpoin		
Find by proof: The perimeter of	. /	
1	C	В
(بقية الاسئلة في الورقة الثانية)		<u>.</u> ى الامتحان التعليمي

متتدى الامتحان التعليمي

الورقة الثانية

Q4: a) In the opposite figure: $\overline{AD} // \overline{BC}$, m (< BAC) = 90° and m (< DAC) = 30°

Prove that: BC > AB

b) In the opposite figure:

$$AB = AC = AD = DC$$

and m (< BAC) = 80°

Find by proof: m (< BCD)

www.exam-eg.com

Q5: a) In the opposite figure:

A XYZ in which, D is the midpoint of XY

E is the midpoint of \overline{XZ} , YZ = 8 cm

MZ = 6 cm, MY = 5 cm

Find by proof: The perimeter of \triangle MED

b) In the opposite figure:

ABCD is a quadrilateral

in which AB = 4 cm, BC = 5 cm

and CD = 8 cm, AD = 7 cm

Prove that: m (< BAD) > m (< BCD)

	irectorate 'e'ma official langu Mid-y	iage school year Exam (2017/201	Duration: two hour Grade: prep. two 8)
Choose the	correct answer:		
L)The measure		le of an equilateral tria	
a) 60	b) 120°	c) 90°	d) 180
ABC , i	$m(\angle B)+m(\angle C)=9$	00°, then Z.A is	angle.
a) acute	b) right	c)obtuse	d)parallel
3/1/ M is the p	oint of intersection o	of the medians of $\triangle X$	/Z and D is the midpoint
of XZ, then I	MD =		10
a) 3 XM	b) $\frac{1}{3}$ YD	c) 3 YM _ C	△,d) 2 MY
4)The triangle	whose sides length	s are 2cm , (x+3)cm	and 5cm is an isosceles
triangle if x=		e13	432
a) zero	b)1	c)3	d)2
5) 1 6cm , 9cm	nare two sides leng b)[3,15]	gths of a triangle , the c)(3,15(n the third side ∈
	HANTHY COURT	XY, then m(ZZ)	- Andrews
a)=	b) <	c)>	d)twice
	each of the fol		- Optimee
Little straight	line that is perpend		ent from its middle is call
			my tous are le
)=30°, then LN=	
		CO CONTRACTOR SPECIAL CONTRACTOR	
The second secon		··	12.5

Sharkia Edu pirectorate mohab (Geometry) Fakous official Jane school School (First term) 2017 - 2018 Second prep Time: 2 hour 1)Complete a) The longest side in the right angled triangle is b) The axis of symmetry of a line segment is the straight line which At its midpoint c) A ABC = A XYZ then AC = d) if CE the axis of symmetry of a line segment AB then _____ = AC f) The medians of the triangle are ... 2)Choose the correct answer: a) The number of axis of symmetry of the isosceles equal b) The numbers 5,4, can be lengths of a Trungle (1, 2, 3, 0) c) The measure of the exterior angle of the equilateral = (8, 9, 10, d) XYZ is a Δ in which m(\angle Z) = 70 and m(\angle Y) = 60 then YZ \angle _XY (60, 40, 100, 120.) AP If M is point of intersection of the medians of A ABC and D is midpoint of BC, (> , < , = , Twice) 3)a)In the opposite figure; (2AM, 3MD, AM, 4MD) $m(\angle B) = 90^{\circ}, E \text{ is midpoint of } DA$ F is midpoint of DC, m($\angle ACB$)=30 Prove that; AB = EF o)in the opposite figure; AB < AD , BC < CD prove that $m(\angle ABC) > m(\angle ADC)$ 4)a)In the opposite figure $m(\angle A) = 50$, AB = AC, and ABC is an equilateral A Find m(ZABD) b)In the opposite figure AD || BC, m (ZDAC)=500, (ZBAC)=700 Prove that : BC > AC 5) a)In the opposite figure F and N are the midpoints of AB, AC respectively, $BN \cap CF = \{M\}, \text{If } AB = 6 \text{ cm}, AC = 10 \text{ cm}.$ BM = 4 cm, CF = 9 cm , Find the perimeter of the figure AFMN b)In the opposite figure; AB > AC , BD bisects ∠B and CD bisects ∠C Prove that ,BD > DC