INGÉNIERIE ET IA

LE MLOPS EN SANTÉ

14/02/2025

ANTOINE RICHARD, INGÉNIEUR DE RECHERCHE, CICLY, HCL - LYON SUD

www.chu-lyon.fr

INTRODUCTION

CONTEXTE ET DÉFINITIONS

UN LABYRINTHE DE DÉFINITIONS 1

« Ensemble de théories et de techniques mises en œuvre en vue de réaliser des machines capables de simuler l'intelligence humaine » ^{2 3}

- N'englobe pas tous les sous-domaines de l'IA (ex. intelligence collective, algorithmes bio-inspirés, ingénierie de la connaissance, etc.) ⁴
- L'intelligence humaine a des spécificités que l'on ne souhaite pas reproduire (ex. biais cognitifs) ⁵ ⁶
- 1. Rehak, R. (2021) « The Language Labyrinth: Constructive Critique on the Terminology Used in the Al Discourse»
- 2. Larousse Intelligence Artificielle
- 3. Robert Intelligence Artificielle
- 4. Gao and Ding (2022) « The research landscape on the artificial intelligence: a bibliometric analysis of recent 20 years »
- 5. <u>Haselton M., Nettle D. and Andrews P. W. (2015) « The Evolution of Cognitive Bias »</u>
- 6. O'Sullivan E. and Schofield S. (2018) « Cognitive Bias in Clinical Medicine »

QU'EST-CE « L'INTELLIGENCE » ?

UN PROBLÈME DE DÉFINITION

En français ¹:

- Faculté de connaître, de comprendre; qualité de l'esprit qui comprend et s'adapte facilement
- L'ensemble des fonctions mentales ayant pour objet la connaissance rationnelle
- L'intelligence de qqch.: acte ou capacité de comprendre (qqch.)

En anglais²:

- The ability to understand and learn well, and to form judgments and opinions based on reason.
 - <=> "Intelligence" en français
- A government department or other group that gathers information about other countries or enemies, or the information that is gathered.
 - <=> "Renseignement" en français

^{1. &}lt;a href="https://dictionnaire.lerobert.com/definition/intelligence">https://dictionnaire.lerobert.com/definition/intelligence

^{2.} https://dictionary.cambridge.org/dictionary/english/intelligence

HCL

L'IA EN INFORMATIQUE

ALGORITHMES, IA, MACHINE LEARNING, ET DEEP LEARNING

Algorithmes:

Méthodes mathématiques pour formaliser un processus, utilisés en informatique pour créer des logiciels

Intelligence Artificielle (IA):

Sous-domaine de l'informatique dédié à l'élaboration de compétences « intelligentes » dans des logiciels¹

Machine Learning (ML):

Sous-domaine de l'IA consacré à la création d'algorithmes capable « d'apprendre » comment effectuer une tâche à partir de données²

Deep Learning (DL):

Sous-domaine du ML consacré à l'étude et aux développement de réseaux de neurones artificiels multi-couches³

- 1. Gao and Ding (2022) The research landscape on the artificial intelligence: a bibliometric analysis of recent 20 years
- 2. Mahesh (2020) Machine Learning Algorithms: a review
- 3. Dong, Wang and Abbas (2021) A Survey on Deep Learning and its Applications

UN VASTE DOMAINE DE RECHERCHE 1

LA REPRÉSENTATION DES CONNAISSANCES 1

- 1. Kendal S. and Creen M. (2007) « An introduction to knowledge engineering
- 2. <u>Decker et al.</u> (2000) Framework for the semantic web: an RDF tutorial
- 3. L. A. Zadeh (1977) Fuzzy Logic
- . <u>Jackson (1986)</u>: Introduction to expert systems
- 5. Chowdhary (2020) Natural Language Processing

LES SYSTÈMES MULTI-AGENTS (SMA/MAS) 1

Objets connectés (IoT/WoT/AmI) ²

Robotique en « essaim » ^{3 4}

Simulations (foules, épidémies, cellules, etc.) ⁵

Objets connectés (IoT/WoT/AmI) ²

Robotique en « essaim » ^{3 4}

Simulations (foules, épidémies, cellules, etc.) ⁵

Objets connectés (IoT/WoT/AmI) ²

Robotique en « essaim » ^{3 4}

<u>Virus</u>

<u>Tumor</u>

^{2.} Darshan and Anandakumar (2015) - A comprehensive review on usage of Internet of Things (IoT) in healthcare system

^{3. &}lt;u>Dorigo et al.</u> (2013) - Swarmanoid: a novel concept for the study of heterogeneous robotic swarm

^{4.} Fouloscopie – Le grand tournois de robotique collective

^{5.} Varenne and Silberstein (2013) - Modéliser & simuler (tome 1)

ALGORITHMES « BIO-INSPIRÉS » 1

Colonies d'insectes « sociaux » 2

Algorithmes génétiques ³

« Vie artificielle» 4 5

- 1. Fan X., Sayers W., Zhang S. et al. « Review and Classification of Bio-inspired Algorithms and Their Applications »
- 2. Dorigo and Stützle (2018) Ant Colony Optimization: Overview and Recent Advances
- 3. <u>Katoch, Chauhan and Kumar (2021)</u> A review on genetic algorithm: past, present, and future
- 4. Sarkar (2000) A brief history of cellular automata
- 5. <u>ScienceEtonnante « LENIA: Une nouvelle forme de vie mathématique »</u>

Game of Life

APPRENTISSAGE MACHINE (ML) 1 2 3

^{2.} Shailaja, Seetharamulu and Jabbar (2018) - Machine Learning in Healthcare: A Review

^{3.} Dhillon and Singh (2019) - Machine Learning in Healthcare Data Analysis: A Survey

APPRENTISSAGE MACHINE

S

EXEMPLE

Objectif: $F: X \mapsto Y$

х0	x1	У
1.98	107	27.29
1.52	60	25.97
1.56	49	20.13
1.96	143	37.22
1.82	74	22.34
1.67	64	22.95
1.91	55	15.08
• • •		
1.86	98	28.32

Modèle

Inférence

$$\approx \frac{\chi_1}{\chi_0^2}$$
 (IMC)

$$y=21.22$$

Autres

. . .

APPRENTISSAGE MACHINE

- 1. LeCun, Bengio and Hinton (2015) Deep Learning
- 2. Esteva et al. (2019) A guide to deep learning in healthcare
- 3. Scarselli and Tsoi (1998) Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New Results
- 4. Pour aller plus loin: Formation Fidle au Deep Learning

LE DEEP LEARNING EN SANTÉ

POURQUOI? COMMENT? 1

Raisons²:

- Des hôpitaux largement informatisés
- De large bases de données disponibles
- Des modèles pouvant:
 - Compléter l'avis des médecins ³
 - Éviter des tests invasifs pour les patients

Néanmoins:

- Des données sensibles
- Risque d'atteinte à la vie privée
- Besoin de puissance de calculs
- Risque d'impact négatif sur les parcours de soins

Détection de tumeurs de peau⁴

Détection de rétinopathies diabétiques⁵

^{1.} Yu K., Beam A., and Kohane I. (2018) – « Artificial Intelligence in Healthcare »

^{2. &}lt;u>Davenport T. and Kalakota R. (2019) – « The Potential for Artificial Intelligence in Healthcare »</u>

^{3.} Haenssle H.A., Winkler J.K., Fink C. et al (2021) – « Skin lesions of face and scalp – Classification by a market-approved convolutional neural network in comparison with 64 dermatologists »

^{4.} Choudhary P., Singhai J., and Yadav J.S. (2022) – « Skin lesion detection based on deep neural network »

Senapati A., Tripathy H.K., Sharma V. et al. (2024) – « Artificial intelligence for diabetic retinopathy detection: a systematic review »

DÉVELOPPER ET INDUSTRIALISER DU ML

PRINCIPES DE BASE DU MLOPS

LE DEVOPS ET L'INTÉGRATION CONTINUE (CI/CD)

PRINCIPES DE BASE 12

^{1.} Humble J., and Farley D. (2010) – « Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation »

^{2. &}lt;u>Leite L., Rocha C., Kon F. et al. (2019) – « A Survey of DevOps Concepts and Challenges »</u>

LE MLOPS

VUE GÉNÉRALE 1

LE PROCESSUS DE PRÉPARATION DES DONNÉES 1

PRÉ-ANALYSES

Bases de Données

х0	x1		хN
198	107	•••	27.29
152	60	•••	25.97
156	49	•••	20.13
196	143	• • •	37.22
182	74	•••	22.34
167	64	• • •	22.95
191	55	•••	15.08
	•••	•••	•••
186	98	•••	28.32

Analyses des données

LE PROCESSUS DE PRÉPARATION DES DONNÉES¹

PRÉ-TRAITEMENTS

х0	x1	•••	xN
198	107	•••	27.29
152	60	• • •	25.97
156	49	•••	20.13
196	143	• • •	37.22
182	74	•••	22.34
167	64	• • •	22.95
191	55	•••	15.08
• • •	•••	•••	
186	98	•••	28.32

х0	x1	у
198	107	27.29
152	60	25.97
156	49	20.13
196	143	37.22
182	74	22.34
167	64	22.95
191	55	15.08
• • •	•••	•••
186	98	28.32

х0	x1	у
1.98	107	27.29
1.52	60	25.97
1.56	49	20.13
1.96	143	37.22
1.82	74	22.34
1.67	64	22.95
1.91	55	15.08
000		
1.86	98	28.32

HCL

LE PROCESSUS DE PRÉPARATION DES DONNÉES¹

ANNOTATION DES DONNÉES²

img	txt	у
810.png	Lorem ipsum	А
17.png	Dolor sit	В
187.png	Amet consectetur	В
88.png	Adipiscing elit	А
22.png	Vestibulum enim	С
738.png	Diam hendrerit	А
361.png	ld est sed	В
•••		•••
42.png	Sollicitudin nulla	С

Grohmann R., and Fernandes Araújo W. (2021) – « Beyond Mechanical Turk: The Work of Brazilians on Global Al Platforms »

ANNOTATION DES DONNÉES

EXEMPLE ¹

Text Classification

Entity	
Nothing selected	
Entities (0)	
No Entities added yet	
Relations (0)	
No Relations added yet	

LE PROCESSUS DE PRÉPARATION DU MODÈLE

Préparation des données

(Ensembles disjoints)

PRÉPARATION DES DONNÉES

CROSS-VALIDATION

Moyenne des performances ± Écart-type

PRÉPARATION DES DONNÉES

BOOTSTRAPPING

LE PROCESSUS DE PRÉPARATION DU MODÈLE

TESTS ET VALIDATION

	Prédiction Positive	Prédiction Négative
Valeur attendue	Vrai Positifs	Faux Négatif
Positive	(TP)	(FN)
Valeur attendue	Faux Positifs	Vrai Négatifs
Négative	(FP)	(TN)

Prédiction	Valeur Attendue
24.89	25.12
22.15	22.10
35.23	31.5
24.12	27.82
32.81	30.22

Calculs de Performances

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

mlflow

LE PROCESSUS DE PRÉPARATION DU MODÈLE

LE PROCESSUS DE DÉPLOIEMENT DU MODÈLE

TESTS ET VALIDATION 1

LE PROCESSUS DE DÉPLOIEMENT DU MODÈLE

INTÉGRATION ET MISE EN PROD

LE PROCESSUS DE DÉPLOIEMENT DU MODÈLE

SURVEILLANCE DU MODÈLE

possibles

LE MLOPS

METTRE EN PLACE LE MLOPS

LES NIVEAUX DE MATURITÉ 1

ADAPTER LE MLOPS À LA SANTÉ

CONTRAINTES ET SOLUTIONS

SYSTÈMES D'INFORMATION HOSPITALIER (SIH) 1

L'INFORMATISATION DES PRATIQUES MÉDICALES

SYSTÈMES D'INFORMATION HOSPITALIER

RAISONS D'ÉCHECS: ÉCARTS CONCEPTION-RÉALITÉ 12

^{1.} Heeks (2006) – Health Information Systems:: Failure, success and improvisation

^{2.} Masiero (2016) – The Origins of Failure: Seeking the Causes of Design-Reality Gaps

LE MLOPS EN SANTÉ

COMMENT L'ADAPTER? 1

Protection de la Vie Privée des patient·e·s

Confiance envers les outils

LA PROTECTION DE LA VIE PRIVÉE

DEUX APPROCHES 12

PVP « stricte »

Suppose un attaquant quasi-omniscient et quasi-omnipotent

Maximiser le temps d'attaque

PVP « relaxée »

Suppose un investigateur honnête mais curieux

Minimiser les risques

- 1. Ahikki et al. (2024) « Entrepôts de Données de Santé et Protection de la Vie Privée: Synthèse de discussions Inter-CHU »
- 2. Images générées avec Stable Diffusion XL 1.0

DONNÉES DE SANTÉ

SÉCURISER LES ACCÈS – ENTREPÔT DE DONNÉES DE SANTÉ (EDS) 1

HCL

SÉCURISER LES ACCÈS

MACHINES VIRTUELLES (VM)

Investigateur Moteur d'Extraction Curieux? Authentification Multi-Plateforme EDS HCL / Tenant de la PLH HDS des HCL Facteur LOG des **Bastion d'administration WALLIX** accès Postes de travail virtuels **Poste Investigateur** LOG des Serveurs TDE accès LOG des Coffre fort numérique (MS **EDS Utilisation des données** accès Investigateur Etude Base coffre fort **Sharepoint)** extraites sur données **Outils statistiques /IA Poste CCT** Base Données Sensibles LOG des LOG des accès Plateforme de recherche requêtes TDE Base Entrepôt (EDS-D2H) Recherche et extraction Données cliniques Base Pseudonymisation de données sur Outils O2 TLS Microsoft SQL Server Cellule Conseil et Technique (CCT)

Echange sécurisé

Cryptage de données

ÉVITER LA RÉ-IDENTIFICATION

ANONYMISATION 1

Individualisation impossible:

Il ne doit pas être possible d'isoler un individu dans un jeu de données

Corrélation impossible:

Il ne doit pas être possible de relier entre eux des ensembles de données distincts concernant un ou plusieurs individus

Inférence impossible:

Il ne doit pas être possible de déduire, de façon quasi certaine, de nouvelles informations sur un ou plusieurs individus

ÉVITER LA RÉ-IDENTIFICATION

PSEUDONYMISATION 123

Définition

"Traitement de données à caractère personnel de telle façon que celles-ci ne puissent plus être attribuées à une personne concernée précise sans avoir recours à des informations supplémentaires"

^{1. &}lt;a href="https://www.cnil.fr/fr/technologies/lanonymisation-de-donnees-personnelles">https://www.cnil.fr/fr/technologies/lanonymisation-de-donnees-personnelles

https://www.cnil.fr/fr/le-g29-publie-un-avis-sur-les-techniques-danonymisation

^{3.} Source image: https://www.guinnessworldrecords.com/news/commercial/2017/10/wheres-wally-4-626-people-dressed-as-waldo-break-a-record-in-japan-498860

IDENTIFIANTS (IN)DIRECTS ET DONNÉES SENSIBLES

DONNÉES NON-STRUCTURÉES

Reconnaissance d'entités nommées via:

- Systèmes de règles (Grouin, 2013)
- Réseaux de neurones (Richard, Talbot et Gimbert, 2023)
- Systèmes mixtes (<u>Tchouka, 2023</u>; <u>Tannier</u>
 et al., 2024)

MASQUAGE DES ÉLÉMENTS IDENTIFIANTS 12

"Mme Anne HONIME, résidant au 3 Avenue Lacassagne à Lyon. Consultation du 21/12/2012"


```
"Anne HONIME",
"Nom/Prénom"
"3 Avenue Lacassagne",
"Voie"
"Lyon",
"Ville"
"21/12/2012",
"Date"
```

Masquage

"Mme <NomPrenom/>, résidant au <Voie/> à <Ville/>, consultation du <Date/>"

^{1.} Richard A., Talbot F. and Gimbert D. (2023) – « Anonymisation de documents médicaux en texte libre et en français via réseaux de neurones »

^{2.} Tannier X., Wajsbürt P., Calliger A., et al. (2023) – « Development and validation of a natural language processing algorithm to pseudonymize documents in the context of a clinical data warehouse »

PROTECTION DES DONNÉES

ALGORITHMES DE RANDOMISATION ET DE GÉNÉRALISATION 1

La « Differential Privacy » ²

Exemple de Généralisation ³

^{1. &}lt;a href="https://www.cnil.fr/fr/le-g29-publie-un-avis-sur-les-techniques-danonymisation">https://www.cnil.fr/fr/le-g29-publie-un-avis-sur-les-techniques-danonymisation

^{2. &}lt;a href="https://ealizadeh.com/blog/abc-of-differential-privacy/">https://ealizadeh.com/blog/abc-of-differential-privacy/

Sweeney (2002) – « k-anonymity: a model for protecting privacy »

MASQUAGE DES DONNÉES AVANT TRAITEMENT

MODÈLES

SEUILS DE VALIDATION

Sensibilité	Spécificité
0.55	0.55
0.98	0.55
0.72	0.98
0.97	0.98
1.0	1.0

Comment déterminer si un modèle est valide?

- Définir un seuil minimum pour chaque métrique
- Dépends de la pré-valence, comme tout test médical
- À définir au cas par cas lors de la mise en place du projet

ANNOTATION

Besoins:

- De personnel soignant (au moins 2 ou 3)
- D'un outil d'annotation adapté
- D'un protocole d'annotation bien établit

MODÈLES

PROCESSUS DE DÉVELOPPEMENT

ENTRAINEMENTS ET INFÉRENCES

BESOIN D'INFRASTRUCTURES DÉDIÉES

Pour les entrainements:

- Fermes de serveurs avec des GPU
- Mutualisation des ressources
- Ordonnancements des calculs

Pour l'inférence:

Développement d'Intégration et Production

- Avec des GPU
- Beaucoup de mémoire pour charger plusieurs modèles en parallèle
- Capacité de traiter plusieurs appels en parallèle

MODÈLES

RISQUES DE FAILLES 1 2

^{2.} Berthelier G., Boutet A., and Richard A. (2023) – « Toward training NLP models to take into account privacy leakages »

MONITORING

INCLURE EFFICACEMENT LES RETOURS UTILISATEURS 1

Besoins:

- Inclure des fonctionnalités de « feedback » dans les interfaces
- Former les soignants à détecter les erreurs des modèles²
- Anticiper la charge de travail nécessaire

- 1. Henry K.E., Kornfield R., Sridharan A., et al. (2022) « Human–machine teaming is key to {AI} adoption: clinicians' experiences with a deployed machine learning system »
- . Tsai T., Fridsma D., and Gatti G. (2003) « Computer Decision Support as a Source of Interpretation Error: The Case of Electrocardiograms »

SYNTHÈSE

INTÉGRATION DU ML DANS UN PROCESSUS ORGANISATIONNEL 1

CONCLUSION

SYNTHÈSE ET PERSPECTIVES

Le MLOps:

- Adapte le DevOps au développement de fonctionnalités ML
- Permet d'industrialiser efficacement ces fonctionnalités
- Doit s'articuler avec un processus de DevOps classique

Le MLOps en Santé:

- Nécessite de mettre en place de protocoles et des environnements sécurisant la vie privée des patients
- Nécessite d'inclure les soignants dans le développement et la surveillance des outils basés sur du ML¹
- Nécessite de former a minima les soignants sur le ML et sur l'utilisation d'outils basé sur du ML
- Nécessite d'inclure le développement d'outils basé sur du ML dans des processus organisationnels plus globaux²

Quid de l'impact sur les patients, les soignants et les parcours de soin ?

- 1. Henry K.E., Kornfield R., Sridharan A., et al. (2022) « Human–machine teaming is key to {AI} adoption: clinicians' experiences with a deployed machine learning system »
- 2. Kim J.Y., Boag W., Gulamali F., et al. (2023) « Organizational Governance of Emerging Technologies: Al Adoption in Healthcare »

MERCI

www.chu-lyon.fr

