OSSASSIST

Deepthi Venkitaramanan Rudra Purohit Nitin Kodial Biswajyoti Pal

OssAssist-Release Cycle Prediction

Approach 1

Approach 3

Approach 4

- This system shall be an important tool for planning development cycles and releases.
- We used the GitHub API to obtain data (15GB) corresponding to 'Mozilla' and applied machine learning algorithms on the extracted features and attributes to predict the number of contributors.

Regression- Linear

 Repository Data for current term predicts contributor count for next term:

 Term 1 [Issues count, Comments Count, Pull Request Count, Contributors Count, Issue Comments count, Tags Count, Commits count] ---> Term 2 [Contributors count]

Regression- Multiple Linear

 Maximum Fit based on R square[coefficient of determination] and Mean Squared Error

• For predicting Nth Term contributors count, the attributes of the repositories and contributors count are considered for all N-1 time slices.

Classification based on single term data

- Term 1 [Issues count, Comments Count, Pull Request Count, Contributors Count, Issue Comments count, Tags Count, Commits count] ---> Term 2 [Contributors count]
- However, Term 2 contributors count here is a label(range of no of contributors) split based on Jenks natural split.

Classification based on all time slice data

For predicting Nth Term contributors count, the attributes of the repositories and contributors count are considered for all N-1 time slices.

 However, Term 2 contributors count here is a label(range of no of contributors) split based on Jenks natural split.

Experiments and Results

Regression Techniques	Regression (1 time slice): R2 Score	Regression (n time slices): R2 Score
Linear Regression	0.63	0.72
ElasticNet	0.64	0.74
Lasso	0.64	0.74
Regression Techniques	Regression (1 time slice): Mean Squared Error	Regression (n time slices): Mean Squared Error
Linear Regression	20.31	18.43
ElasticNet	19.67	17.60
Lasso	19.67	17.53

Popular Languages in the Organization

Drill Down for a Repository

Key Technologies & Components

