

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Batch: A3	Roll No.:16010121051
Experiment / a	assignment / tutorial No
Grade: AA / Al	B / BB / BC / CC / CD /DD
Signature of th	ne Staff In-charge with date

TITLE: To study and implement Restoring method of division

AIM: The basis of algorithm is based on paper and pencil approach and the operation involves repetitive shifting with addition and subtraction. So the main aim is to depict the usual process in the form of an algorithm.

Expected OUTCOME of Experiment: (Mention CO /CO's attained here)

Books/ Journals/ Websites referred:

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, TataMcGraw-Hill.
- **2.** William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- **3**. Dr. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", First Edition, Wiley-India.

Pre Lab/ Prior Concepts:

The Restoring algorithm works with any combination of positive and negative numbers.

Flowchart for Restoring of Division:

Design Steps:

- 1. Start
- 2. Initialize A=0, M=Divisor, Q=Dividend and count=n (no of bits)
- 3. Left shift A, Q
- 4. If MSB of A and M are same
- 5. Then A=A-M
- 6. Else A=A+M
- 7. If MSB of previous A and present A are same
- 8. $Q_0=0$ & store present A
- 9. Else $Q_0=0$ & restore previous A
- 10. Decrement count.
- 11. If count=0 go to 11
- 12. Else go to 3
- 13. STOP

Example:-

A	Q		10
000000	111011	DOTTE THE SE	M = 1.3
000001	11011	shift left	35 A
100001	11011	A C A-M	+
100001	110110	0,0€0	A
400001	110110	ACATM J	A5 30 A
000011	101101	shift refor	Lonne
100011	10110	A CA-M	2nd
100011	101100	Q. E D 000	10101
00001	101100	At At Moore	16000
000111	01100	Shift lett 1	Linas
100111	011001	A-CA-M	3 80 11101
100111	011000	0,00000	11101
000111	011000	AEA+M	100
001110	1100017	swift lett o	01100
101110	11000 1	REA-MI	4 10 1011
101110	110000	Q 6 6 0 00 C	0.1011
001110	(1600 0	A-CA+M	rura
011101	100001	sufflet.	0
111101	100000	ACA-M	۲۰۲۲ با
11/10)	100000	Q. C 0	y the
011101	100000	ACA+M.	C full of
111011	00000	Shift left	n
011011	00000	M-C-A-M	C Th
01/0/1	00000	0,00	5 616.00
			+ f)
4	\checkmark	<i>¥</i>	Y.
22			

12/1	1110	0001	001 1101 11	6 G Page No.
0101	00 000	1101	1110 6660	60 Date: 1 1
00	80			
- EJ.	M = 3	M= 0011	-M=1101	27 7 1 1/4 1 27
-	R = 7	0=011	11 (1)	A The second
	1			
	A	8		11
	0000	0111	/8/16	7 0000
	0000	(11111 + 12) +3:		First aycle.
	0101 +2	1111 M-9-31		1/2/1
			Q. E 0 / C	1500
	1101	M10 MAR 201		lecol
	0000	1/10 (M-11-) A	shift left)	3 a / F
	0001		A & A-MIO	and eyele.
	1110	1100 MIA 3 A	0000	1000
	5001	1100 50 117/112	ACATMO	0.100
	0016		swiftleft)	This d my c/e.
	6000	100 1 00	ACA-MOI 9	THE
	5000	100 11164 34	0071001	c/ cm
	0001	00 1/ A 1/12	shift left	1010
	1110 - 110	001 -A - A	ACA-NO	HM cycle.
	1110	0010	Q.E.O	CORRE
	000 /	0010	ACA+M	<u>.</u>
	1	→	* * *	*
	A	2		
	#			
			15	
			and the second	
			1	
			A.B.	

60 000 000	0000 1000 10	101 0,010	Date:
0 0			
a. M= r m=	0101 1010 - M = 10		
	0101	111000 -11.	3 1
a di	0107	- 1 1 px y	7 7
A	d		
0000	0101		
0000			
1011	101 Shift		C, 1 1 1 1
1011	101		s + 1616 1
0000		60	
0001		CA+M	, for part of
1106		Friett 1	1000
1100		CA-M	n e)
	0100	601	5111
1000		CA+M DOIL	0.171
0010	1001	wiftlest on	i.c.
1101	1601 A	E A-M 37	
11011	1000	2,60	C.C. (d)
Ø516		ACAFM	0000
0101	000	shift left.	V C and
00 00	000	A CA-MICAL	you.
9000	0001	Q E 1 1 1 1 1 1 1	6111
	1 +1 -2 -4	6 15	1 200
	-	4	
		1	*
	4		
	7		

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Implementation:
/*Program for Restoring Division.*/
#include <stdio.h></stdio.h>
#include <conio.h></conio.h>
#include <math.h></math.h>
int $a=0,b=0,c=0,com[5]=\{1,0,0,0,0\},s=0;$
int anum $[5]=\{0\}$,anumcp $[5]=\{0\}$,bnum $[5]=\{0\}$;
$\underline{int\ acomp[5]=\{0\},bcomp[5]=\{0\},rem[5]=\{0\},quo[5]=\{0\},res[5]=\{0\};}$
<pre>void binary(){</pre>
$\underline{a = fabs(a)}$;
b = fabs(b);
<u>int r, r2, i, temp;</u>
$for(i = 0; i < 5; i++){$
r = a % 2;
a = a / 2;
r2 = b % 2;
b = b / 2;
<u>anum[i] = r;</u>

anumcp[i] = r;

$\underline{\qquad \qquad bnum[i] = r2;}$
$if(r2 == 0)\{$
bcomp[i] = 1;
}
$if(r == 0)\{$
acomp[i] =1;
}
}
//part for two's complementing
c = 0;
for $(i = 0; i < 5; i++)$
res[i] = com[i] + bcomp[i] + c;
<u>if(res[i]>=2){</u>
c = 1;
}
else
$\underline{\qquad \qquad c=0;}$
$\underline{\operatorname{res}[i] = \operatorname{res}[i]\%2;}$
_}
$for(i = 4; i >= 0; i){$
bcomp[i] = res[i];

_}
1
void add(int num[]){
<u>int i;</u>
c = 0;
for($i = 0$; $i < 5$; $i++$){
res[i] = rem[i] + num[i] + c;
$if(res[i] \ge 2){$
<u>c = 1;</u>
}
<u>else</u>
c = 0;
res[i] = res[i]%2;
}
$for(i = 4; i \ge 0; i){$
<u>rem[i] = res[i];</u>
<pre>printf("%d",rem[i]);</pre>
}
printf(":");
$for(i = 4; i >= 0; i){$
<pre>printf("%d",anumcp[i]);</pre>

}
1
<pre>void shl(){//for shift left</pre>
int i;
$for(i = 4; i > 0; i){//shift the remainder}$
$\underline{\operatorname{rem}[i] = \operatorname{rem}[i-1];}$
}
$\underline{\operatorname{rem}[0] = \operatorname{anumcp}[4];}$
$for(i = 4; i > 0; i){//shift the remtient}$
<pre>anumcp[i] = anumcp[i-1];</pre>
}
$\underline{\text{anumcp}[0] = 0;}$
<pre>printf("\nSHIFT LEFT: ");//display together</pre>
for($i = 4$; $i >= 0$; $i)$ {
<pre>printf("%d",rem[i]);</pre>
}
<u>printf(":");</u>
$for(i = 4; i >= 0; i){$
<pre>printf("%d",anumcp[i]);</pre>
}
1

<pre>int main(){</pre>
_ ;
int i;
<pre>printf("\t\tRESTORING DIVISION ALGORITHM");</pre>
<pre>printf("\nEnter two numbers to multiply: ");</pre>
<pre>printf("\nBoth must be less than 16");</pre>
//simulating for two numbers each below 16
do{_
<pre>printf("\nEnter Dividened: ");</pre>
scanf("%d",&a);
<pre>printf("Enter Divisor: ");</pre>
scanf("%d",&b);
}while(a>=16 b>=16);
<pre>printf("\nExpected Quotient = %d", a/b);</pre>
<pre>printf("\nExpected Remainder = %d", a%b);</pre>
$if(a*b < 0){$
<u>s = 1;</u>
}

binary();
<pre>printf("\n\nUnsigned Binary Equivalents are: ");</pre>
<u>printf("\nA = ");</u>
$for(i = 4; i >= 0; i){$
<pre>printf("%d",anum[i]);</pre>
}
<pre>printf("\nB = ");</pre>
$for(i = 4; i >= 0; i){$
<pre>printf("%d",bnum[i]);</pre>
}
<pre>printf("\nB'+ 1 = ");</pre>
$for(i = 4; i >= 0; i){$
<pre>printf("%d",bcomp[i]);</pre>
_}
printf("\n\n>");
//division part
<u>shl();</u>
$for(i=0;i<5;i++){}$
<pre>printf("\n>"); //start with subtraction</pre>
<pre>printf("\nSUB B: ");</pre>
add(bcomp);

if(rem[4]==1){//simply add for restoring
<pre>printf("\n>RESTORE");</pre>
<pre>printf("\nADD B: ");</pre>
$\underline{\qquad \qquad \text{anumcp}[0] = 0;}$
add(bnum);
}
else{
$\underline{\qquad} anumcp[0] = 1;$
}
if(i<4)
shl();
}
printf("\n");
<pre>printf("\nSign of the result = %d",s);</pre>
<pre>printf("\nRemainder is = ");</pre>
$for(i = 4; i \ge 0; i){$
<pre>printf("%d",rem[i]);</pre>
}
<pre>printf("\nQuotient is = ");</pre>
for(i = 4; i >= 0; i)

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

<pre>printf("%d",anumcp[i]);</pre>	
}	
getch();	

Output:

}

C:\Academics\SY\COA\restoringdevision.exe

```
RESTORING DIVISION ALGORITHM
Enter two numbers to multiply:
Both must be less than 16
Enter Dividened: 10
Enter Divisor: 3
Expected Quotient = 3
Expected Remainder = 1
Unsigned Binary Equivalents are:
Onsigned Bind
A = 01010
B = 00011
B'+ 1 = 11101
SHIFT LEFT: 00000:10100
SUB B: 11101:10100
SUB B: 11101:10100
-->RESTORE
ADD B: 00000:10100
SHIFT LEFT: 00001:01000
SUB B: 11110:01000
-->RESTORE
ADD B: 00001:01000
SHIFT LEFT: 00010:10000
SUB B: 11111:10000
-->RESTORE
ADD B: 00010:10000
SHIFT LEFT: 00101:00000
SUB B: 00010:00000
SHIFT LEFT: 00100:00010
SUB B: 00001:00010
Sign of the result = 0
Remainder is = 00001
Quotient is = 00011_
```


K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Conclusion:
Booths restoring division was implemented successfully.
Post Lab Descriptive Questions
1. What are the advantages of restoring division over non restoring division?
The advantage of using non - restoring arithmetic over the standard restoring division is that a test subtraction is not required; the sign bit determines whether an addition or subtraction is used. The disadvantage, though, is that an extra bit must be maintained in the partial remainder to keep track of the sign.
Date: Signature of faculty in-charge

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering