Set Covering Problem PIA: Part IV

Operations Research, 032 Team 6: Alan Alejandro Vargas González, 2086183

May, 2025

1 Part IV: Final Results and Presentation

1.1 Final Data Execution

To evaluate the scalability and robustness of the model, I tested with real-world set covering problems:

- rail2536.txt (2536 rows, 1,081,841 columns)
- rail4284.txt (4284 rows, 1,092,610 columns)
- rail4872.txt (4872 rows, 968,672 columns)

Instance	Selected Subsets	Cost	Time (s)
rail2536	80	13697.0	30.18
rail4284	128	5302.0	32.95
rail4872	91	27638.0	33.30

1.2 Result Visualization

Figure 1: Total cost per instance (railway dataset)

Figure 2: Execution time per instance (railway dataset)

1.3 Result Interpretation

- Scalability: The solver remained stable and consistent in datasets with millions of variables.
- Cost Variation: Total cost varied significantly across datasets, highlighting structural

differences in coverage density (e.g., some datasets may have cheap subsets capable of covering a broad set of elements).

• Execution Time: Execution time remained within 30-33 s, showing good performance given the large size of each dataset.

1.4 Model Limitations and Assumptions

- Assumes deterministic and static input: no dynamic data.
- CBC solver was used; performance may vary with alternative solvers such as AMPL or Gurobi.
- No preprocessing was applied (e.g., eliminating redundant variables or rows), and no heuristic shortcuts were implemented.

1.5 Deliverables

- resultados.csv with performance metrics
- instance_cost.png, instance_time.png with visual results