BJT and BJT Digital Circuits

EE 101

S. Lodha

Reference material: L. Bobrow's Book

PNP and NPN

- $i_E = i_B + i_C$
- Terminal voltages also follow KVL

Biasing Modes

Biasing	Biasing Polarity	Biasing Polarity	
Mode	E-B Junction	C-B Junction	
Saturation Forward Active Forward Inverted Reverse Cutoff Reverse		Forward Reverse Forward Reverse	

- Amplifier in active mode
 - Analog circuits
- Switch in cut-off and saturation regimes
 - Digital circuits

Biasing modes

- Emitter and collector roles are reversed in reverse-active mode
- Forward and reverse $\alpha \rightarrow \alpha_F$ (>0.98) and α_R (<0.5) are quite different
 - Structure is not symmetric \rightarrow P+ / N / P- or N+ / P / N-
- Consequently β_F and β_R are very different too

Ebers-Moll (DC) Model

$$\textit{I}_{E}' = \textit{I}_{ES} \, \left[\exp \left(\frac{\textit{V}_{EB}}{\textit{V}_{T}} \right) - 1 \right], \quad \textit{I}_{C}' = \textit{I}_{CS} \, \left[\exp \left(\frac{\textit{V}_{CB}}{\textit{V}_{T}} \right) - 1 \right]$$

$$I_{C} = \alpha_{F} I_{ES} \left[e^{\left(\frac{V_{EB}}{V_{T}} \right)} - 1 \right] - I_{CS} \left[e^{\left(\frac{V_{CB}}{V_{T}} \right)} - 1 \right]$$

$$I_{E} = I_{ES} \left[e^{\left(\frac{V_{EB}}{V_{T}}\right)} - 1 \right] - \alpha_{R} I_{CS} \left[e^{\left(\frac{V_{CB}}{V_{T}}\right)} - 1 \right]$$

- Similar model for npn
- In saturation, for example, even though D_2 is F.B., $\alpha_F I_E'$ >> I_C' (emitter is heavily doped) and the collector current flows out of collector terminal

Common base PNP in active mode

 $\alpha = \frac{i_C - I_{CO}}{i_E} \approx \frac{i_C}{i_E}$

- Emitter current is mainly due to hole diffusion
- Collector current is due to holes that make it + reverse current
- Ratio of emitter/collector is the "large signal current gain" α
- α is typically 0.95-0.99

Input Characteristics (Common base

- Input characteristics i_E vs v_{EB} (varying v_{CB})
- As v_{CB} increases, base W decreases, dp/dx increases, i_{E} and i_{C} increase for the same v_{EB}
- This effect is also called "base width modulation"

Base width modulation

- Intuitively, as v_{CB} increases (reverse bias)
 - i_E increases (dp/dx increases)
 - i_B decreases (recombination in base decreases)
 - $-\alpha$ increases (less recombination in base)
- Also called the "Early effect" → after J. Early

- Output characteristics i_c vs v_{BC} (varying i_E)
- $i_E=0$, $I_{CBO} \rightarrow CB$ current with emitter open, typically nA (~0)

Different biasing regions

- Right of dashed line: $i_E>0$ (FB), $v_{BC}>-0.5$ (V γ) (RB) \rightarrow Active region
- For $i_F > 0$, $-0.8 < v_{BC} < -0.5$, both FB \rightarrow saturation
- On or below $i_F=0 \rightarrow cutoff$

Common emitter npn

- Active region: Large $V_{BB} \rightarrow V_{BE} > 0 \rightarrow BE$ jn F. B.
- For CB R.B.: $v_{BC}=v_{BE}-v_{CE}< V_{\gamma}$ (V_{γ} cut-in voltage=0.5 V)
 - Therefore, $v_{CE} > v_{BE} V_{\gamma} = 0.7 0.5 = 0.2 \text{ V}$
- v_{CE}>0.2 V ensures reverse bias CB junction

Common emitter npn

• β is the large signal common emitter gain, much larger than α

Input Characteristics (C.E. npn)

• As v_{CE} increases $\rightarrow v_{CB}$ ($v_{CB} = v_{CE} - v_{BE}$) increases $\rightarrow W_B$ decreases $\rightarrow i_B$ decreases (less recombination)

12

Therefore for same v_{BE} you get less i_B

- Active region: i_B>0, v_{CE}>0.2 V
- Saturation: i_B>0, v_{CF}<0.2 V
- Cutoff: $i_B \le 0$. $I_{CEO} \rightarrow i_C$ (= i_E) when base is open ($i_B = 0$)

i_B>0 indicates that BE junction is forward-biased, for CB junction

$$v_{CE} = 10 - (2.7 \times 10^3)i_C = 2.39 \text{ V}$$

 $v_{BC} = v_{BE} - v_{CE} = 0.7 - 2.39 = -1.69 \text{ V} < V_{\gamma} = 0.5 \text{ V}$

 $i_C = \beta i_B = 100(2.82 \times 10^{-5}) = 2.82 mA$

Hence the transistor is indeed operating in the active region.

Cut-off and saturation

$$i_C = \frac{V_{CC} - v_{CE}}{R_C} = -\frac{1}{R_C} v_{CE} + \frac{V_{CC}}{R_C}$$

Cut-off

- $-i_{R}=0 \rightarrow v_{RF}<0.5 V \rightarrow R.B.$
- $-i_C=i_E=0$, $v_{CE}=V_{CC}$, $v_{BC}=v_{BE}-v_{CE}<0.5-V_{CC} \rightarrow R.B.$

Saturation

- $-i_B>I_{BS}$, $i_C(sat)=V_{CC}-v_{CE}(sat)/R_C \sim V_{CC}/R_C \rightarrow collector current is saturated$
- $v_{CE} = v_{CE} (sat)^{0.2} V, v_{BE} (sat)^{0.8} V$
- v_{BC} = v_{BF} (sat)- v_{CF} (sat)=0.8-0.2=0.6V > 0.5V (V_{v}) → BC is forward biased

Cut-off and saturation

- ON (SAT), $v_{CF}=0.2V$, $i_C=V_{CC}/R_C \rightarrow$ short circuit
- OFF (CUTOFF), $v_{CE}=V_{CC}$, $i_{C}=0 \rightarrow$ open circuit
- Transistor behaves as a switch

Common emitter dc gain

- $h_{FE}=i_C/i_B^{\alpha}$
- For all practical purposes we will assume h_{FE} is constant

Example

Assuming active operation $v_{RE} = 0.7 \text{ V, } i_{C} = 100 i_{R}$

$$i_B = \frac{10 - v_{BE}}{100 \times 10^3} = \frac{10 - 0.7}{100 \times 10^3} = 93 \mu A$$
$$i_C = \beta i_B = 100(9.3 \times 10^{-5}) = 9.3 mA$$

$$v_{CE} = -(2 \times 10^3)i_C + 10 = -8.6V < 0.2V$$

 $v_{BC} = v_{BE} - v_{CE} = 0.7 + 8.6 = 9.3 > V_{\gamma} = 0.5V$

Therefore not in active mode Assume saturation,

$$i_B = \frac{10 - v_{BE(sat)}}{100 \times 10^3} = \frac{10 - 0.8}{100 \times 10^3} = 92 \mu A$$

$$i_C = \frac{10 - v_{CE(sat)}}{2 \times 10^3} = \frac{10 - 0.2}{2 \times 10^3} = 4.9 mA$$

In saturation,
$$i_B \ge \frac{i_C}{h_{FE}} = \frac{4.9 \times 10^{-3}}{100} = 49 \mu A$$

Hence assumption of saturation is correct.

Example: BJT Inverter

low voltage=0.2 V (logic '0') high voltage=5.0 V (logic '1')

For v_i =0.2 V, assume Q is OFF (cutoff) i_B =0, v_{BE} = v_i =0.2 V < 0.5 V, indeed Q is off \rightarrow i_c =0 and v_o =5 V (logic '1')

For v_i =5 V, assume Q is ON (saturation) i_B =0.21 mA, i_c =2.4 mA and v_i =5 V (logic '1')

$$i_B \ge \frac{i_C}{h_{FE}} = \frac{2.4 \times 10^{-3}}{100} = 24 \mu A$$

Hence Q is indeed ON, and $v_0 = 0.2 \text{ V (logic '0')}$

Hence this circuit acts as an "inverter", $\, {\it V}_{o} = \overline{\it V}_{\it in} \,$

Transfer characteristic (v_o vs v_{in})

 $V_{OH} \rightarrow Output Voltage high = 5 V$ $V_{OL} \rightarrow Output Voltage low = 0.2 V$

$$v_o = v_{CE} = 5 - (2 \times 10^3)i_C$$

 $v_{BC} = v_{BE} - v_{CE}$

- For 0.2<v_i<0.5V, Q off
- For $v_i > 0.5$ V, Q enters active region for small i_B and i_C , v_o is ~5 V
 - \rightarrow 0.5 V = V_{IL} (largest input voltage that still results in the same output as low input voltage)
- For increasing v_i, Q enters saturation and v_o=0.2 V
 ⇒V_{IH}= minimum input voltage that results in
 the same output as high input voltage

Finding V_{IH} and Noise Margins

For V_{IH}, and Q to be ON

$$i_B = \frac{v_i - 0.8}{20 \times 10^3}, i_C = \frac{5 - 0.2}{2 \times 10^3} = 2.4 \text{ mA}$$

$$i_B \ge \frac{i_C}{h_{FE}} \Longrightarrow \frac{v_i - 0.8}{20 \times 10^3} \ge \frac{2.4 \times 10^{-3}}{100} \Longrightarrow v_i \ge 1.28V$$

Hence, V_{IH}=1.28 V

NOISE MARGINS

- minimum noise (unwanted) voltage at the input of a digital logic gate that causes output to deviate is called the noise margin of the gate
- $NM_L \rightarrow$ minimum voltage noise that can produce an output other than that from a low input= V_{IL} - V_{OL}
- $NM_H \rightarrow$ minimum voltage noise that can produce an output other than that from a high input = V_{OH} - V_{IH}

Diode-Transistor Logic (DTL)

v_1	V_2	v _o (NAND)
0	0	1
0	1	1
1	0	1
1	1	0

Case 1 $(v_1 = v_2 = 0.2 \text{ V})$

Assume D_1 and D_2 are F.B.

 \rightarrow v₃=0.7+0.2=0.9V,

Assume D_3 and D_4 are off.

$$i_2 + i_1 = i_3 = \frac{5 - (0.9)}{5 \times 10^3} = 0.82 \text{ mA}, i_2 = i_3 = 0.41 \text{ n}$$

 $i_B = i_4 = 0$, $v_{BE} = 0V$, $v_3 - v_{BE} = 0.9 < 0.7 + 0.7 = 1.4V$

Hence D_3 and D_4 are indeed off.

Q is off and v_o is 5V.

Case 2/3 (v_1 =0.2V, v_2 =5 V/ v_1 =5V, v_2 =0.2 V)

Assume D_1 is on, D_2 is off $\rightarrow v_3 = 0.7 + 0.2 = 0.9V$,

 $v_3-v_2=0.9-5=-4.1<0.7 V \rightarrow D_2$ is off

Assume D_3 and D_4 are off.

$$i_1 = i_3 = \frac{5 - (0.9)}{5 \times 10^3} = 0.82 \text{ mA} > 0$$

 $i_B=i_4=0$, $v_{BE}=0$ V, $v_3-v_{BE}=0.9<0.7+0.7=1.4$ V Hence D_3 and D_4 are indeed off. Q is off and v_0 is 5V.

v ₁	V_2	v _o (NAND)
0	0	1
0	1	1
1	0	1
1	1	0

Case 4 ($v_1 = v_2 = 5 V$)

Assume D_1 and D_2 are off $\rightarrow i_1=i_2=0$.

Assume D_3 , D_4 , Q are on.

$$v_3 = 0.7 + 0.7 + 0.8 = 2.2V$$

 $5-v_3=-2.8 V \rightarrow D_1$ and D_2 are off

$$i_4 = i_3 = \frac{5 - 2.2}{5 \times 10^3} = 0.56 \text{mA} > 0$$

$$i_B = i_4 - \frac{0.8}{5 \times 10^3} = 0.4 \text{ mA}, i_C = \frac{5 - 0.2}{1 \times 10^3} = 4.8 \text{ mA}$$

$$h_{FE} \ge \frac{i_C}{i_B} = \frac{4.8}{0.4} = 12$$
 \rightarrow Q is on, $v_0 = 0.2V$

DTL: Power Dissipation

 V_1	V_2	v _o (NAND)
 0	0	1
0	1	1 C is off
1	0	1
1	1	$0 \rightarrow Q is or$
		1

Case 1/2/3 (v_1 =0.2V, v_2 =5 V/ v_1 =5V, v_2 =0.2 V/ v_1 = v_2 =0.2 V)

Case 4 (v₁=5V, v₂=5, v₀=0.2 V)

 $P_0=5(i_3+ic)=5(0.56x10^{-3}+4.8x10^{-3})=26.8mW$

Only i_3 is flowing, hence power consumed $P_1=5i_s=5i_3=5(0.82x10^{-3})=4.1mW$

Average power (assuming the gate spends equal time in the 1 and 0 states) = $(P_0+P_1)/2=15.45$ mW

DTL: Fan-out

 Fan-out= number of gates connected to the output of the logic gate

DTL Fan-out

For $v_0 = 5V$, D'_1 will be off, and similarly input diodes of other N-1 gates will be off.

For
$$v_0 = 0.2V$$
, D'_1 will be on with $i'_3 \implies i_C = i_R + Ni_1 = \frac{5 - 0.2}{1 \times 10^3} + N(0.82 \times 10^{-3}) = 4.8 \times 10^{-3} + N(0.82 \times 1$

For Q to be on
$$h_{FE}i_B \ge i_C \Rightarrow 40(0.4 \times 10^{-3}) \ge 4.8 \times 10^{-3} + N(0.82 \times 10^{-3}) \Rightarrow N \le 13.7$$

DTL: Fan-out

- Replacing D₃ by Q₁ can increase fan-out
 - Solve as HW and find out maximum N
 - Why?

TTL: Transistor-Transistor Logic

• Multi-emitter BJT: Faster than DTL

TTL NAND Gate

Forward Active

Reverse Active

Case1/2/3 (
$$v_1$$
=0.2V, v_2 =5 V/ v_1 =5V, v_2 =0.2 V/ v_1 = v_2 =0.2 V)

 Q_1 active $\rightarrow v_{B1} = 0.9V \rightarrow i_{B1} = 0.82mA$

 Q_1 saturation $\rightarrow v_{B1}=1.0V \rightarrow i_{B1}=0.8mA$

Assume Q₂ and Q₃ off.

$$I_{CO2} = -i_{B2} = i_{C1} \rightarrow nA$$
 $h_{FE1} \ge \frac{i_{C1}}{i_{B1}} \Longrightarrow v_{B2} = v_{CE1} + v_1 = 0.2 + 0.2 = 0.4V$

TTL NAND Gate

Reverse Active

Case 4 ($v_1 = v_2 = 5 \text{ V}$)

 $Q_1 \rightarrow B.E.$ is R.B. and B.C. is forward-biased \rightarrow reverse active mode!

 $i_{B2}=i_{B1}+h_{FER}i_{B1}$ turns Q_2 and Q_3 on. $v_{B1}=v_{BC1}+v_{BE1}+v_{BE2}=0.7+0.8+0.8=2.3$ V, $i_{B1}=0.54$ mA

$$i_{C2}$$
=5-(0.2+0.8)/2000=2mA, For Q₂ to be on, $h_{FE2} \ge \frac{i_{C2}}{i_{B2}} \Rightarrow h_{FE2} \ge \frac{2 \times 10^{-3}}{(1+h_{FER})0.54 \times 10^{-3}} = \frac{3.7}{1+h_{FER}}$

 $i_{B3}=i_{B2}+i_{C2}-(0.8/1000)=(0.54+2-0.8)\times10^{-3}=1.74\text{mA},\ i_{C3}=(5-0.2)/1000=4.8\text{mA},$

 $h_{FE3} \ge \frac{i_{C3}}{i_{PS}} \Rightarrow h_{FE3} \ge \frac{4.8 \times 10^{-3}}{1.74 \times 10^{-3}} = 2.76$ Hence, Q₃ is also on and v_o=0.2V.

What determines switching speed?

 ON (SAT) → OFF (CUT OFF) requires time to remove excess minority carriers in the base

Switching speed in TTL circuits

 $v_1=v_2=5V \rightarrow Q_1$ is reverse active, Q_2 and Q_3 are ON $v_{B2}=v_{BE2}+v_{BE3}=0.8+0.8=1.6 \ V$

Say v₁ switches to 0.2 V

$$v_{B1}$$
=0.9 V v_{B1} - v_{B2} =0.9-1.6=-0.7 V \rightarrow R.B. Hence Q_1 is in active mode

$$i_{C1} = h_{FE1}i_{B1} = 0.82 \text{mA} \times 50 \neq -41 \text{mA} = i_{B2}$$

A large base current quickly removes stored charge from Q_2 and Q_3 . Subsequently Q_1 turns ON and Q_2 and Q_3 turn off.

Emitter-Coupled Logic (ECL)- "Non-saturating logic"

- Fastest logic → no saturation, only cut-off and active mode
- See example 7.18 in Bobrow's book for an ECL NOR/OR gate