(S₃) The MLE is the solution of:

$$\frac{JU}{JU}(Z) = 0 \iff \frac{n}{Z} + n \ln(x_m) - \sum \ln(x_i) = 0$$

$$\frac{n}{2} = \sum |n(\pi i) - n|n(\pi m)$$

$$n = \mathcal{I}(\sum In(x_i) - nIn(x_m))$$

$$Z = \frac{n}{\sum |n(\pi i) - n|n(\pi m)}$$

$$L_{x3}$$
.

 $I(L) = -E\left[\frac{J^{2}\ln f(x)}{JL^{2}}\right]$ second derivative

p.d.f of Pareto distribution;
$$f(x) = \frac{\lambda xem}{\lambda+1}$$

$$T(\lambda) = -E\left[-\frac{n}{\lambda^2}\right] = \frac{n}{\lambda^2}$$

Distribution of
$$\mathcal{I}$$

$$\mathcal{I} \sim \mathcal{N}\left(\mathcal{L}, \frac{1}{I_{n}(\mathcal{L})}\right) \iff \mathcal{I} \sim \mathcal{N}\left(\mathcal{L}, \frac{\mathcal{L}^{2}}{n}\right)$$

This means that the MLE \overline{L} of L is asymptotically normally distributed with mean(L) and variance $\binom{L^2}{n}$

Ex4.

$$E(x) = \frac{L Rm}{L-1}$$

The MME is the solution of E(se) = x

$$\frac{2 \times m}{2 - 1} = \frac{\overline{x}}{1}$$

$$d x m = \overline{X}d - \overline{X}$$

$$\frac{\overline{x} = \lambda(\overline{x} - x_m)}{\overline{x} = \lambda(\overline{x} - x_m)} = \lambda = \frac{\overline{x}}{\overline{x} - x_m}$$

Cx.5

A 90% CI is given by:

$$\left(\widetilde{\mathcal{I}} \pm Z_{5\%} \sqrt{\frac{1}{\underline{\mathsf{T}}(\mathcal{I})}}\right)$$

$$T(d) = \frac{n}{d^2}$$

$$\widehat{\mathcal{L}} \sim \mathcal{N}\left(\mathcal{L}, \frac{1}{\mathcal{I}(\mathcal{L})}\right) \iff \widehat{\mathcal{L}} \sim \mathcal{N}\left(\mathcal{L}, \frac{\widehat{\mathcal{L}}^{2}}{n}\right) \longrightarrow ese(\widehat{\mathcal{L}}) = \sqrt{\frac{\widehat{\mathcal{L}}^{2}}{n}} =$$

A	90%	<u>CT</u>	for	1	is	given	by:	
/	+10	46 , ,	2			given	0	
	<u></u>		7/n/					