Canonical Transformation

Dr. Yogesh Sonvane

Assistant Professor
Department of Applied Physics
Sardar Vallabhbhai National Institute of Technology,
Surat

Two Points of View

- Canonical Transformation allows one system to be described by multiple sets of coordinates/momenta
 - Same physical system is expressed in different phase spaces

■ This is the static view — The system itself is unaffected

Is there a dynamic view?

Dynamics View of CT

- A system evolves with time $q(t_0), p(t_0) \Longrightarrow q(t), p(t)$
 - At any moment, q and p satisfy Hamilton's equations
 - The time-evolution must be a Canonical Transformation!

- Static View = Coordinate system is changing
- Dynamic View = Physical system is moving

Canonical Transformation

■ Goal: To find transformations

$$Q_i = Q_i(q_1, ..., q_n, p_1, ..., p_n, t)$$
 $P_i = P_i(q_1, ..., q_n, p_1, ..., p_n, t)$

that satisfy Hamilton's equation of motion

$$\dot{q}_i = \frac{\partial H}{dp_i} \quad \dot{p}_i = -\frac{\partial H}{dq_i} \quad \Longrightarrow \quad \dot{Q}_i = \frac{\partial K}{dP_i} \quad \dot{P}_i = -\frac{\partial K}{dQ_i}$$

- *K* is the transformed Hamiltonian K = K(Q, P, t)
- Hamilton's principle requires

$$\delta \int_{t_1}^{t_2} (p_i \dot{q}_i - H(q, p, t)) dt = 0 \quad \text{and} \quad \delta \int_{t_1}^{t_2} (P_i \dot{Q}_i - K(Q, P, t)) dt = 0$$

General Transformation

$$\delta \int_{t_1}^{t_2} (p_i \dot{q}_i - H(q, p, t)) dt = 0 \text{ and } \delta \int_{t_1}^{t_2} (P_i \dot{Q}_i - K(Q, P, t)) dt = 0$$

- Two types of transformations are possible
 - $P_i\dot{Q}_i K = \lambda(p_i\dot{q}_i H)$ Scale transformation
 - $P_i\dot{Q}_i K + \frac{dF}{dt} = p_i\dot{q}_i H$ Canonical transformation
 - Both satisfy Hamilton's principle
- Combined, we find

$$P_{i}\dot{Q}_{i} - K + \frac{dF}{dt} = \lambda(p_{i}\dot{q}_{i} - H)$$
 Extended Canonical transformation

Scale Transformation

 We can always change the scale of (or unit we use to measure) coordinates and momenta

$$P_i = v p_i \qquad Q_i = \mu q_i$$

■ To satisfy Hamilton's principle, we can define

$$K(P,Q,t) = \mu \nu H(p,q,t)$$

- This is trivial
- We now concentrate on Canonical transformations

Canonical Transformation

$$P_i\dot{Q}_i - K + \frac{dF}{dt} = p_i\dot{q}_i - H$$

Hamilton's principle

$$\delta \int_{t_1}^{t_2} \left(P_i \dot{Q}_i - K \right) dt = \delta \int_{t_1}^{t_2} \left(p_i \dot{q}_i - H - \frac{dF}{dt} \right) dt = -\delta \left[F \right]_{t_1}^{t_2} = 0$$

- Satisfied if $\delta p = \delta q = \delta P = \delta Q = 0$ at t_1 and t_2
- **F** can be any function of p_i , q_i , P_i , Q_i and t
 - It defines a canonical transformation
 - Call it the generating function of the transformation

Simple Example

$$P_i \dot{Q}_i - K + \frac{dF}{dt} = p_i \dot{q}_i - H$$

- Try a generating function: $F = q_i P_i Q_i P_i$
 - \blacksquare Canonical transformation generated by F is

$$P_{i}\dot{Q}_{i} - K + \frac{dF}{dt} = -K + (q_{i} - Q_{i})\dot{P}_{i} + P_{i}\dot{q}_{i} = p_{i}\dot{q}_{i} - H$$

- $Q_i = q_i$ $P_i = p_i$ Identity transformation K = H
- OK, that was too simple
 - Let's push this one step further...

$$P_i \dot{Q}_i - K + \frac{dF}{dt} = p_i \dot{q}_i - H$$

- Let's try this one: $F = f_i(q_1, ..., q_n, t)P_i Q_iP_i$
 - f_i are arbitrary functions of $q_1...q_n$ and t

$$P_{i}\dot{Q}_{i} - K + \frac{dF}{dt} = -K + (f_{i} - Q_{i})\dot{P}_{i} + P_{i}\frac{\partial f_{i}}{\partial q_{j}}\dot{q}_{j} + \frac{\partial f_{i}}{\partial t}P_{i} = p_{i}\dot{q}_{i} - H$$

 $Q_i = f_i(q_1, ..., q_n, t)$ All "point transformations" of generalized coordinates are covered

$$p_i = \frac{cf_j}{\partial q_i} P_j$$
Must invert these *n* equations to get P_i

$$K = H + \frac{\partial f_i}{\partial t} P_i$$

We can do all what we could do before

Arbitrarity

- Generating function $F \rightarrow$ a canonical transformation
 - Opposite mapping is not unique
 - \blacksquare There are many possible Fs for each transformation
 - \blacksquare e.g. add an arbitrary function of time g(t) to F

$$P_i\dot{Q}_i - K + \frac{dF}{dt} \rightarrow P_i\dot{Q}_i - K + \frac{dF}{dt} + \frac{dg(t)}{dt}$$
 Does not affect the action integral

$$\longrightarrow K + \frac{dg(t)}{dt}$$
 Just modifies the Hamiltonian without affecting physics

- F is arbitrary up to any function of time only
 - So is the Hamiltonian

Finding the Generator

- Let's look for a generating function
 - Suppose K(Q, P, t) = H(q, p, t) for simplicity

$$\frac{dF}{dt} = p_i \dot{q}_i - P_i \dot{Q}_i$$

Easiest way to satisfy this would be

$$F = F(q, Q) \quad \frac{\partial F}{\partial q_i} = p_i \quad \frac{\partial F}{\partial Q_i} = -P_i$$

Trivial example: $F(q,Q) = q_i Q_i$

$$p_i = Q_i$$
 $P_i = -q_i$ In the Hamiltonian formalism,

In the Hamiltonian formalism, you can freely swap the coordinates and the momenta

Type -1 Generator

$$P_{i}\dot{Q}_{i} - K + \frac{dF}{dt} = p_{i}\dot{q}_{i} - H$$

- F = F(q,Q) is not very general
 - It does not allow *t*-dependent transformation
 - Fix this by extending to $F = F_1(q, Q, t)$ Call it Type-1

$$p_i = \frac{\partial F_1(q, Q, t)}{\partial q_i}$$

$$p_i = \frac{\partial F_1(q, Q, t)}{\partial q_i} \quad P_i = -\frac{\partial F_1(q, Q, t)}{\partial Q_i}$$

■ This affects the Hamiltonian

$$\frac{dF}{dt} = \frac{\partial F_1}{\partial q_i} \dot{q}_i + \frac{\partial F_1}{\partial Q_i} \dot{Q}_i + \frac{\partial F_1}{\partial t} = p_i \dot{q}_i - P_i \dot{Q}_i + K - H$$

$$K = H + \frac{\partial F_1}{\partial t}$$

Harmonic Oscillator

Consider a 1-dimensional harmonic oscillator

$$H(q,p) = \frac{p^2}{2m} + \frac{kq^2}{2} = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right) \qquad \omega^2 \equiv \frac{k}{m}$$

- \blacksquare Sum of squares \rightarrow Can we make them sine and cosine?
- Suppose $p = f(P)\cos Q$ $q = \frac{f(P)}{m\omega}\sin Q$

$$K = H = \frac{\{f(P)\}^2}{2m}$$
 \triangleleft \bigcirc is cyclic \rightarrow P is constant

- \blacksquare Trick is to find f(P) so that the transformation is canonical
 - How?

■ Let's try a Type-1 generator

$$F_1(q,Q,t)$$
 $p = \frac{\partial F_1}{\partial q}$ $P = -\frac{\partial F_1}{\partial Q}$

 \blacksquare Express p as a function of q and Q

$$p = f(P)\cos Q$$
 $q = \frac{f(P)}{m\omega}\sin Q$ $\Rightarrow p = m\omega q \cot Q$

■ Integrate with $q \Longrightarrow F_1 = \frac{m\omega q^2}{2} \cot Q$

$$P = -\frac{\partial F_1}{\partial Q} = \frac{m\omega q^2}{2\sin^2 Q}$$

We are getting somewhere

$$p = \frac{\partial F_1}{\partial q} = m\omega q \cot Q \qquad P = -\frac{\partial F_1}{\partial Q} = \frac{m\omega q^2}{2\sin^2 Q}$$

$$P = -\frac{\partial F_1}{\partial Q} = \frac{m\omega q^2}{2\sin^2 Q}$$

- We need to turn H(q, p) into K(Q, P)
- Solve the above equations for q and p

$$q = \sqrt{\frac{2P}{m\omega}} \sin Q \qquad p = \sqrt{2Pm\omega} \cos Q$$

Now work out the Hamiltonian

$$K = H = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right) = \omega P$$

Things don't get much simpler than this...

$$K = \omega P = E$$

Solving the problem is trivial

$$P = \text{const} = \frac{E}{\omega}$$
 $\dot{Q} = \frac{\partial K}{\partial P} = \omega$ $Q = \omega t + \alpha$

$$p = \sqrt{2Pm\omega}\cos Q = \sqrt{2mE}\cos(\omega t + \alpha)$$

$$q = \sqrt{\frac{2P}{m\omega}} \sin Q = \sqrt{\frac{2E}{m\omega^2}} \sin(\omega t + \alpha)$$

Phase Space

 \blacksquare Oscillator moves in the p-q and P-Q phase spaces

Other types of generator

- Type-1 generator $F = F_1(q, Q, t)$ is still not so general
 - Just try to find a generator for $Q_i = q_i$ $P_i = p_i$
- We need generating functions of different set of independent variables
 - In fact, we may have 4 basic types of them

$$F_1(q,Q,t)$$
 $F_2(q,P,t)$ $F_3(p,Q,t)$ $F_4(p,P,t)$

- We can derive them using the now-familiar rule
 - i.e. we can add any dF/dt inside the action integral

■ In the last lecture, I used $F = -q_i p_i$ to convert

$$\delta \int_{t_1}^{t_2} \left(p_i \dot{q}_i - H(q, p, t) \right) dt = 0 \implies \delta \int_{t_1}^{t_2} \left(-\dot{p}_i q_i - H(q, p, t) \right) dt = 0$$

■ Switch the definition of canonical transformations

$$P_{i}\dot{Q}_{i} - K + \frac{dF}{dt} = p_{i}\dot{q}_{i} - H \implies -\dot{P}_{i}Q_{i} - K + \frac{dF}{dt} = p_{i}\dot{q}_{i} - H$$

To satisfy this

$$F = F_2(q, P, t)$$

$$\frac{\partial F_2}{\partial q_i} = p_i$$

$$\frac{\partial F_2}{\partial P_i} = Q_i$$

$$F = F_2(q, P, t) \qquad \frac{\partial F_2}{\partial q_i} = p_i \qquad \frac{\partial F_2}{\partial P_i} = Q_i \qquad K = H + \frac{\partial F_2}{\partial t}$$

If we go back to the original definition of generating

function
$$P_i\dot{Q}_i - K + \frac{dF}{dt} = p_i\dot{q}_i - H$$

$$F = F_2(q, P, t) - Q_i P_i \quad \frac{\partial F_2}{\partial q_i} = p_i \quad \frac{\partial F_2}{\partial P_i} = Q_i \quad K = H + \frac{\partial F_2}{\partial t}$$

Trivial case: $F_2 = q_i P_i$

$$p_i = P_i$$
 $Q_i = q_i$ dentity transformation

We push the same idea to define the other 2 types

Four Basics Generator

Generator	Derivatives	Trivial Case
$F_1(q,Q,t)$	$p_i = \frac{\partial F_1}{\partial q_i} \qquad P_i = -\frac{\partial F_1}{\partial Q_i}$	$F_1 = q_i Q_i \qquad Q_i = p_i $ $P_i = -q_i$
$F_2(q,P,t) - Q_i P_i$	$p_i = \frac{\partial F_2}{\partial q_i} Q_i = \frac{\partial F_2}{\partial P_i}$	$F_2 = q_i P_i \qquad Q_i = q_i $ $P_i = p_i$
$F_3(p,Q,t) + q_i p_i$	$q_{i} = -\frac{\partial F_{3}}{\partial p_{i}} P_{i} = -\frac{\partial F_{3}}{\partial Q_{i}}$	$F_3 = p_i Q_i \qquad Q_i = -q_i $ $P_i = -p_i$
$F_4(p, P, t) + q_i p_i - Q_i P_i$	$q_i = -\frac{\partial F_4}{\partial p_i} Q_i = \frac{\partial F_4}{\partial P_i}$	$F_4 = p_i P_i \qquad Q_i = p_i$ $P_i = -q_i$

- The 4 types of generators are almost equivalent
 - It may look as if F_1 is special, but it isn't

$$P_i\dot{Q}_i - K + \frac{dF_1}{dt} = p_i\dot{q}_i - H$$

$$-\dot{P}_{i}Q_{i} - K + \frac{dF_{2}}{dt} = p_{i}\dot{q}_{i} - H$$

$$P_i\dot{Q}_i - K + \frac{dF_3}{dt} = -\dot{p}_iq_i - H$$

$$-\dot{P}_{i}Q_{i}-K+\frac{dF_{4}}{dt}=-\dot{p}_{i}q_{i}-H$$

There is no reason to consider any of these 4 definitions to be more fundamental than the others

We arbitrarily chose the first form (which happens to be the Lagrangian form) to write the generating functions in the table

- Some canonical transformations cannot be generated by all 4 types
 - e.g. identity transf. is generated only by F_2 or F_3
- This does not present a fundamental problem
 - One can always swap coordinate and momentum

$$Q_i = p_i \quad P_i = -q_i$$

One can always change sign by scale transformation

$$Q_i = \pm q_i \quad P_i = \pm p_i$$

■ These transformations make the 4 types practically equivalent

Example

■ 1-dim system with
$$H = \frac{p^2}{2} + \frac{1}{2q^2}$$

- \blacksquare Try P = pq
- Let's use Type-2

$$F = F_2(q, P, t)$$

$$\frac{\partial F_2}{\partial q} = p$$

$$F = F_2(q, P, t) \qquad \frac{\partial F_2}{\partial q} = p \qquad \frac{\partial F_2}{\partial P} = Q$$

- Step 1: Express p with q and $P \implies$
- Step 2: Integrate with q to get

$$F_2 = P \log q$$
 $\leq |assuming q > 0$

- Step 3: Differentiate to get $Q = \log q \implies q = e^Q$
- Now we have a canonical transformation

$$F_2 = P \log q \quad q = e^{\mathcal{Q}} \quad p = \frac{P}{q} = Pe^{-\mathcal{Q}}$$

Now rewrite the Hamiltonian

$$H = \frac{p^2}{2} + \frac{1}{2q^2} = \frac{P^2 + 1}{2}e^{-2Q} = E$$
 constant

Equation of motion: $\dot{P} = (P^2 + 1)e^{-2Q} = 2E$

$$P = 2Et + C$$

$$q = e^{Q} = \sqrt{\frac{P^2 + 1}{2E}} = \sqrt{2Et^2 + 2Ct + \frac{C^2 + 1}{2E}}$$

Summary

Canonical transformations

$$P_i\dot{Q}_i - K + \frac{dF}{dt} = p_i\dot{q}_i - H$$

- Hamiltonian formalism is invariant under canonical + scale transformations
- Generating functions define canonical transformations
- Four basic types of generating functions

$$F_1(q,Q,t)$$
 $F_2(q,P,t)$ $F_3(p,Q,t)$ $F_4(p,P,t)$

- They are all practically equivalent
- Used it to simplify a harmonic oscillator
 - Invariance of phase space area

- Dig deeper into Canonical Transformations
 - Infinitesimal Canonical Transformation
 - Very small changes in q and p
 - Define generator *G* for an ICT
 - Direct Conditions for Canonical Transformation
 - Necessary-and-sufficient conditions for any CT
 - Poisson Bracket
 - Invariant of any Canonical Transformation
 - Connect to Infinitesimal Canonical Transformation

Infinitesimal CT

 \blacksquare Consider a CT in which q, p are changed by small (infinitesimal) amounts

$$Q_i = q_i + \delta q_i \qquad P_i = p_i + \delta p_i$$

Infinitesimal Canonical Transformation (ICT)

- ICT is close to identity transf.
- Generating function should be $F_2(q, P, t) = q_i P_i + \mathcal{E}G(q, P, t)$

Identity CT generator

Look at the generator table
$$p_i = \frac{\partial F_2}{\partial q_i} = P_i + \varepsilon \frac{\partial G}{\partial q_i}$$

$$Q_i = \frac{\partial F_2}{\partial P_i} = q_i + \varepsilon \frac{\partial G}{\partial P_i}$$

$$Q_i = \frac{\partial F_2}{\partial P_i} = q_i + \varepsilon \frac{\partial G}{\partial P_i}$$

$$Q_{i} = \frac{\partial F_{2}}{\partial P_{i}} = q_{i} + \varepsilon \frac{\partial G}{\partial P_{i}}$$

Since
$$\varepsilon$$
 is infinitesimal

$$\delta q_i = \varepsilon \frac{\partial G}{\partial P_i} \approx \varepsilon \frac{\partial G}{\partial p_i}$$

$$\delta q_{i} = \varepsilon \frac{\partial G}{\partial P_{i}} \approx \varepsilon \frac{\partial G}{\partial p_{i}} \quad \delta p_{i} = -\varepsilon \frac{\partial G}{\partial q_{i}} \approx -\varepsilon \frac{\partial G}{\partial Q_{i}}$$

Generator of ICT

■ An ICT is generated by $F_2(q, P, t) = q_i P_i + \varepsilon G(q, P, t)$

$$Q_{i} = q_{i} + \varepsilon \frac{\partial G}{\partial P_{i}} \quad P_{i} = p_{i} - \varepsilon \frac{\partial G}{\partial q_{i}}$$

- G is called (inaccurately) the generator of the ICT
- Since the CT is infinitesimal, G may be expressed in terms of q or Q, p or P, interchangeably
- For example: G = G(q, p, t) $Q_i = q_i + \varepsilon \frac{\partial G}{\partial p_i}$ $P_i = p_i \varepsilon \frac{\partial G}{\partial q_i}$

Hamiltonian

Consider G = H(q, p, t)

$$\delta q_i = \varepsilon \frac{\partial H}{\partial p_i} = \varepsilon \dot{q}_i \quad \delta p_i = -\varepsilon \frac{\partial H}{\partial q_i} = \varepsilon \dot{p}_i$$

■ What does ε look like? \rightarrow Infinitesimal time δt

$$\delta q_i = \dot{q}_i \delta t \qquad \qquad \delta p_i = \dot{p}_i \delta t$$

- Hamiltonian is the generator of infinitesimal time transformation
 - In QM, you learn that Hamiltonian is the operator that represents advance of time

Direct Condition

- Consider a restricted Canonical Transformation
 - Generator has no *t* dependence

$$\frac{\partial F}{\partial t} = 0$$
 \longrightarrow $K(Q, P) = H(q, p)$ is u

Hamiltonian is unchanged

 \bigcirc and P depends only on q and p

$$Q_i = Q_i(q, p)$$
 $P_i = P_i(q, p)$

 $\dot{Q}_{i} = \frac{\partial Q_{i}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial Q_{i}}{\partial p_{j}} \dot{p}_{j} = \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial \dot{H}}{\partial p_{j}} - \frac{\partial Q_{i}}{\partial p_{j}} \frac{\partial \dot{H}}{\partial q_{j}}$

Hamilton's equations

$$\dot{P_i} = \frac{\partial P_i}{\partial q_j} \dot{q}_j + \frac{\partial P_i}{\partial p_j} \dot{p}_j = \frac{\partial P_i}{\partial q_j} \frac{\partial H}{\partial p_j} - \frac{\partial P_i}{\partial p_j} \frac{\partial H}{\partial q_j}$$

On the other hand, Hamilton's eqns say

$$\dot{Q}_{i} = \frac{\partial H}{\partial P_{i}} = \frac{\partial H}{\partial q_{j}} \frac{\partial q_{j}}{\partial P_{i}} + \frac{\partial H}{\partial p_{j}} \frac{\partial p_{j}}{\partial P_{i}}$$
 \Leftrightarrow $\dot{Q}_{i} = \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial H}{\partial p_{j}} - \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial H}{\partial q_{j}} - \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial H}{\partial q_{j}} - \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial H}{\partial q_{j}} - \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}}{\partial q_{j}} - \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}}{\partial q_{j}} - \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}}{\partial q_{j}} - \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}}{\partial q_{j}} - \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}}{\partial q_{j}} - \frac{\partial Q_{i}}{\partial q_{j}} \frac{\partial Q_{i}$

$$\dot{P_i} = -\frac{\partial H}{\partial Q_i} = -\frac{\partial H}{\partial q_j} \frac{\partial q_j}{\partial Q_i} - \frac{\partial H}{\partial p_j} \frac{\partial p_j}{\partial Q_i} \iff \dot{P_i} = \frac{\partial P_i}{\partial q_j} \frac{\partial H}{\partial p_j} - \frac{\partial P_i}{\partial p_j} \frac{\partial H}{\partial q_j}$$

for a Canonical Transformation

$$\left(\frac{\partial Q_{i}}{\partial q_{j}}\right)_{q,p} = \left(\frac{\partial p_{j}}{\partial P_{i}}\right)_{Q,P}$$

$$\left(\frac{\partial P_i}{\partial q_j}\right)_{q,p} = -\left(\frac{\partial p_j}{\partial Q_i}\right)_{Q,P}$$

$$\left(\frac{\partial Q_{i}}{\partial p_{j}}\right)_{q,p} = -\left(\frac{\partial q_{j}}{\partial P_{i}}\right)_{Q,P}$$

$$\left(\frac{\partial P_{i}}{\partial p_{j}}\right)_{q,p} = \left(\frac{\partial q_{j}}{\partial Q_{i}}\right)_{Q,p}$$

- Direct Conditions are necessary and sufficient for a time-independent transformation to be canonical
 - You can use them to test a CT
- In fact, this applies to all Canonical Transformations

$$\delta q_i = \varepsilon \frac{\partial G}{\partial P_i} \approx \varepsilon \frac{\partial G}{\partial p_i}$$

$$\delta p_i = -\varepsilon \frac{\partial G}{\partial q_i} \approx -\varepsilon \frac{\partial G}{\partial Q_i}$$

Does an ICT satisfy the DCs?

$$\frac{\partial Q_{i}}{\partial q_{j}} = \frac{\partial (q_{i} + \delta q_{i})}{\partial q_{j}} = \delta_{ij} + \varepsilon \frac{\partial^{2} G}{\partial P_{i} \partial q_{j}}
\frac{\partial P_{i}}{\partial P_{i}} = \frac{\partial (P_{j} - \delta P_{j})}{\partial P_{i}} = \delta_{ij} + \varepsilon \frac{\partial^{2} G}{\partial P_{i} \partial q_{j}}
\frac{\partial Q_{i}}{\partial P_{i}} = \frac{\partial (q_{i} + \delta q_{i})}{\partial p_{j}} = \varepsilon \frac{\partial^{2} G}{\partial P_{i} \partial p_{j}}
\frac{\partial Q_{i}}{\partial P_{i}} = \frac{\partial (Q_{i} - \delta q_{j})}{\partial P_{i}} = -\varepsilon \frac{\partial^{2} G}{\partial P_{i} \partial p_{j}}
\frac{\partial P_{i}}{\partial Q_{i}} = \frac{\partial (P_{i} + \delta P_{i})}{\partial Q_{i}} = -\varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial q_{j}}
\frac{\partial P_{i}}{\partial Q_{i}} = \frac{\partial (P_{i} - \delta P_{j})}{\partial Q_{i}} = \varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial q_{j}}
\frac{\partial P_{i}}{\partial Q_{i}} = \frac{\partial (P_{i} - \delta P_{j})}{\partial Q_{i}} = \varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial q_{j}}
\frac{\partial P_{i}}{\partial Q_{i}} = \frac{\partial (P_{i} - \delta P_{j})}{\partial Q_{i}} = \delta_{ij} - \varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial p_{j}}
\frac{\partial Q_{i}}{\partial Q_{i}} = \frac{\partial (Q_{j} - \delta q_{j})}{\partial Q_{i}} = \delta_{ij} - \varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial p_{j}}$$

$$\frac{\partial Q_{i}}{\partial q_{j}} = \frac{\partial (q_{i} + \delta q_{i})}{\partial q_{j}} = \delta_{ij} + \varepsilon \frac{\partial^{2} G}{\partial P_{i} \partial q_{j}} \qquad \frac{\partial p_{j}}{\partial P_{i}} = \frac{\partial (P_{j} - \delta p_{j})}{\partial P_{i}} = \delta_{ij} + \varepsilon \frac{\partial^{2} G}{\partial P_{i} \partial q_{j}}$$

$$\frac{\partial Q_{i}}{\partial p_{j}} = \frac{\partial (q_{i} + \delta q_{i})}{\partial p_{j}} = \varepsilon \frac{\partial^{2} G}{\partial P_{i} \partial p_{j}} \qquad \frac{\partial q_{j}}{\partial P_{i}} = \frac{\partial (Q_{j} - \delta q_{j})}{\partial P_{i}} = -\varepsilon \frac{\partial^{2} G}{\partial P_{i} \partial p_{j}}$$

$$\frac{\partial P_{i}}{\partial q_{j}} = \frac{\partial (p_{i} + \delta p_{i})}{\partial q_{j}} = -\varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial q_{j}} \qquad \frac{\partial p_{j}}{\partial Q_{i}} = \frac{\partial (P_{j} - \delta p_{j})}{\partial Q_{i}} = \varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial q_{j}}$$

$$\frac{\partial P_{i}}{\partial Q_{i}} = \frac{\partial (p_{i} + \delta p_{i})}{\partial P_{i}} = \delta_{ij} - \varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial p_{i}}$$

$$\frac{\partial Q_{i}}{\partial Q_{i}} = \frac{\partial (Q_{j} - \delta q_{j})}{\partial Q_{i}} = \varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial q_{j}}$$

$$\frac{\partial P_{i}}{\partial Q_{i}} = \frac{\partial (p_{i} + \delta p_{i})}{\partial Q_{i}} = \delta_{ij} - \varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial p_{i}}$$

$$\frac{\partial Q_{i}}{\partial Q_{i}} = \frac{\partial (Q_{j} - \delta q_{j})}{\partial Q_{i}} = \delta_{ij} - \varepsilon \frac{\partial^{2} G}{\partial Q_{i} \partial p_{i}}$$

■ Two successive CTs make a CT

$$P_i\dot{Q}_i - K + \frac{dF_1}{dt} = p_i\dot{q}_i - H - Y_i\dot{X}_i - M + \frac{dF_2}{dt} = P_i\dot{Q}_i - K$$

$$Y_i \dot{X}_i - M + \frac{d(F_1 + F_2)}{dt} = p_i \dot{q}_i - K$$
 True for unrestricted CTs

■ Direct Conditions can also be "chained", e.g.,

$$\left(\frac{\partial Q_i}{\partial q_j}\right)_{q,p} = \left(\frac{\partial p_j}{\partial P_i}\right)_{Q,P} \stackrel{\bullet}{\longleftarrow} \left(\frac{\partial X_i}{\partial Q_j}\right)_{Q,P} = \left(\frac{\partial P_j}{\partial Y_i}\right)_{X,Y}$$

$$\left(\frac{\partial X_i}{\partial q_j}\right)_{q,p} = \left(\frac{\partial p_j}{\partial Y_i}\right)_{X,Y}$$
 Easy to prove

Unrestricted CT

■ Now we consider a general, time-dependent CT

$$Q_i = Q_i(q, p, t)$$
 $P_i = P_i(q, p, t)$ $K = H + \frac{\partial F}{\partial t}$

Let's do it in two steps

- First step is *t*-independent \rightarrow Satisfies the DCs
 - We must show that the second step satisfies the DCs

- Concentrate on a time-only CT $Q(t_0), P(t_0) \Longrightarrow Q(t), P(t)$
 - Break $t t_0$ into pieces of infinitesimal time dt

$$Q(t_0), P(t_0) \Rightarrow Q(t_0 + dt), P(t_0 + dt) \Rightarrow Q(t), P(t)$$

- Each step is an ICT → Satisfies Direct Conditions
- "Integrating" gives us what we needed

All Canonical Transformations satisfies the Direct Conditions, and vice versa

The proof worked because a time-only CT is a continuous transformation, parameterized by t

Poisson Bracket

For u and v expressed in terms of q and p

$$[u,v]_{q,p} \equiv \frac{\partial u}{\partial q_i} \frac{\partial v}{\partial p_i} - \frac{\partial u}{\partial p_i} \frac{\partial v}{\partial q_i}$$
Poisson Bracket

- This weird construction has many useful features
- If you know QM, this is analogous to the commutator

$$\frac{1}{i\hbar}[u,v] = \frac{1}{i\hbar}(uv - vu)$$
 for two operators u and v

Let's start with a few basic rules

• For quantities *u*, *v*, *w* and constants *a*, *b*

$$[u,u] = 0$$
 $[u,v] = -[v,u]$

$$[au+bv,w] = a[u,w]+b[v,w]$$

$$[uv, w] = [u, w]v + u[v, w]$$

$$[u,[v,w]]+[v,[w,u]]+[w,[u,v]]=0$$

$$\left[u,v\right]_{q,p} \equiv \frac{\partial u}{\partial q_i} \frac{\partial v}{\partial p_i} - \frac{\partial u}{\partial p_i} \frac{\partial v}{\partial q_i}$$

All easy to prove

Jacobi's Identity

This one is worth trying. See Goldstein if you are lost

 \blacksquare Consider PBs of q and p themselves

$$[q_{j}, q_{k}] = \frac{\partial q_{j}}{\partial q_{i}} \frac{\partial q_{k}}{\partial p_{i}} - \frac{\partial q_{j}}{\partial p_{i}} \frac{\partial q_{k}}{\partial q_{i}} = 0$$

$$[p_{j}, p_{k}] = 0$$

$$[q_{j}, p_{k}] = \frac{\partial q_{j}}{\partial q_{i}} \frac{\partial p_{k}}{\partial p_{i}} - \frac{\partial q_{j}}{\partial p_{i}} \frac{\partial p_{k}}{\partial q_{i}} = \delta_{jk}$$

$$[p_{j}, q_{k}] = -\delta_{jk}$$

- Called the Fundamental Poisson Brackets
- Now we consider a Canonical Transformation

$$q, p \rightarrow Q, P$$

■ What happens to the Fundamental PB?

Fundamentals of PB and CT

$$\begin{split} & [Q_{j},Q_{k}]_{q,p} = \frac{\partial Q_{j}}{\partial q_{i}} \frac{\partial Q_{k}}{\partial p_{i}} - \frac{\partial Q_{j}}{\partial p_{i}} \frac{\partial Q_{k}}{\partial q_{i}} & - \frac{\partial Q_{j}}{\partial q_{i}} \frac{\partial q_{i}}{\partial P_{k}} - \frac{\partial Q_{j}}{\partial p_{i}} \frac{\partial p_{i}}{\partial P_{k}} = -\frac{\partial Q_{j}}{\partial P_{k}} = 0 \\ & [P_{j},P_{k}]_{q,p} = \frac{\partial P_{j}}{\partial q_{i}} \frac{\partial P_{k}}{\partial p_{i}} - \frac{\partial P_{j}}{\partial p_{i}} \frac{\partial P_{k}}{\partial q_{i}} & - \frac{\partial P_{j}}{\partial q_{i}} \frac{\partial q_{i}}{\partial Q_{k}} + \frac{\partial P_{j}}{\partial p_{i}} \frac{\partial p_{i}}{\partial Q_{k}} = \frac{\partial P_{j}}{\partial Q_{k}} = 0 \\ & [Q_{j},P_{k}]_{q,p} = \frac{\partial Q_{j}}{\partial q_{i}} \frac{\partial P_{k}}{\partial p_{i}} - \frac{\partial Q_{j}}{\partial p_{i}} \frac{\partial P_{k}}{\partial q_{i}} & - \frac{\partial Q_{j}}{\partial q_{i}} \frac{\partial q_{i}}{\partial q_{i}} + \frac{\partial Q_{j}}{\partial q_{i}} \frac{\partial p_{i}}{\partial Q_{k}} = \frac{\partial Q_{j}}{\partial Q_{k}} = \delta_{jk} \\ & [P_{j},Q_{k}]_{q,p} = -[Q_{k},P_{j}] = -\delta_{jk} \end{split} \qquad \text{Used Direct Conditions here}$$

■ Fundamental Poisson Brackets are invariant under CT

Poisson Bracket & CT

- What happens to a Poisson Bracket under CT?
 - For a time-independent CT

$$\begin{split} &[u,v]_{\mathcal{Q},P} \equiv \frac{\partial u}{\partial Q_{i}} \frac{\partial v}{\partial P_{i}} - \frac{\partial u}{\partial P_{i}} \frac{\partial v}{\partial Q_{i}} \\ &= \left(\frac{\partial u}{\partial q_{j}} \frac{\partial q_{j}}{\partial Q_{i}} + \frac{\partial u}{\partial p_{j}} \frac{\partial p_{j}}{\partial Q_{i}}\right) \left(\frac{\partial v}{\partial q_{k}} \frac{\partial q_{k}}{\partial P_{i}} + \frac{\partial v}{\partial p_{k}} \frac{\partial p_{k}}{\partial P_{i}}\right) - \left(\frac{\partial u}{\partial q_{j}} \frac{\partial q_{j}}{\partial P_{i}} + \frac{\partial u}{\partial p_{j}} \frac{\partial p_{j}}{\partial P_{i}}\right) \left(\frac{\partial v}{\partial q_{k}} \frac{\partial q_{k}}{\partial Q_{i}} + \frac{\partial v}{\partial p_{k}} \frac{\partial p_{k}}{\partial Q_{i}}\right) \\ &= \frac{\partial u}{\partial q_{j}} \frac{\partial v}{\partial q_{k}} [q_{j}, q_{k}]_{\mathcal{Q},P} + \frac{\partial u}{\partial q_{j}} \frac{\partial v}{\partial p_{k}} [q_{j}, p_{k}]_{\mathcal{Q},P} + \frac{\partial u}{\partial p_{j}} \frac{\partial v}{\partial q_{k}} [p_{j}, q_{k}]_{\mathcal{Q},P} + \frac{\partial u}{\partial p_{j}} \frac{\partial v}{\partial p_{k}} [p_{j}, p_{k}]_{\mathcal{Q},P} \\ &= \frac{\partial u}{\partial q_{j}} \frac{\partial v}{\partial p_{k}} \delta_{jk} - \frac{\partial u}{\partial p_{j}} \frac{\partial v}{\partial q_{k}} \delta_{jk} \\ &= [u, v]_{q,p} \end{split}$$

$$Poisson Brackets are invariant under CT$$

Invariance of Poisson Bracket

- Poisson Brackets are canonical invariants
 - True for any Canonical Transformations
 - Goldstein shows this using "simplectic" approach
- We don't have to specify q, p in each PB

$$[u,v]_{q,p}$$
 \longrightarrow $[u,v]$ good enough

ICT and Poisson Bracket

- Infinitesimal CT can be expressed neatly with a PB
 - For a generator G, $Q_i = q_i + \varepsilon \frac{\partial G}{\partial p_i}$ $P_i = p_i \varepsilon \frac{\partial G}{\partial q_i}$
 - On the other hand

$$\varepsilon[q_i,G] = \varepsilon \left(\frac{\partial q_i}{\partial q_j} \frac{\partial G}{\partial p_j} - \frac{\partial q_i}{\partial p_j} \frac{\partial G}{\partial q_j} \right) = \varepsilon \frac{\partial G}{\partial p_i} = \delta q_i$$

$$\varepsilon[p_i,G] = \varepsilon \left(\frac{\partial p_i}{\partial q_j} \frac{\partial G}{\partial p_j} - \frac{\partial p_i}{\partial p_j} \frac{\partial G}{\partial q_j} \right) = -\varepsilon \frac{\partial G}{\partial q_i} = \delta p_i$$

■ We can generalize further...

■ For an arbitrary function u(q,p,t), the ICT does

$$\begin{split} u & \xrightarrow{ICT} u + \mathcal{S}u = u + \frac{\partial u}{\partial q_i} \, \mathcal{S}q_i + \frac{\partial u}{\partial p_i} \, \mathcal{S}p_i + \frac{\partial u}{\partial t} \, \mathcal{S}t \\ &= u + \frac{\partial u}{\partial q_i} \, \varepsilon \frac{\partial G}{\partial p_i} - \frac{\partial u}{\partial p_i} \, \varepsilon \frac{\partial G}{\partial q_i} + \frac{\partial u}{\partial t} \, \mathcal{S}t \\ &= u + \varepsilon [u, G] + \frac{\partial u}{\partial t} \, \mathcal{S}t \end{split}$$

■ That is $\delta u = \varepsilon[u, G] + \frac{\partial u}{\partial t} \delta t$

Infinitesimal Time Transf.

- Hamiltonian generates infinitesimal time transf.
 - Applying the Poisson Bracket rule

$$\frac{\delta u = \delta t[u, H] + \frac{\partial u}{\partial t} \delta t}{\partial t} \longrightarrow \frac{du}{dt} = [u, H] + \frac{\partial u}{\partial t}$$

- Have you seen this in QM?
- If *u* is a constant of motion, $[u, H] + \frac{\partial u}{\partial t} = 0$

That is,
$$[H, u] = \frac{\partial u}{\partial t}$$
 is a constant of motion

 \blacksquare If *u* does not depend explicitly on time,

$$\frac{du}{dt} = [u, H] + \frac{\partial u}{\partial t} = [u, H]$$

 \blacksquare Try this on q and p

$$\dot{q}_{i} = [q_{i}, H] = \frac{\partial q_{i}}{\partial q_{j}} \frac{\partial H}{\partial p_{j}} - \frac{\partial q_{i}}{\partial p_{j}} \frac{\partial H}{\partial q_{j}} = \frac{\partial H}{\partial p_{i}}$$

$$\dot{p}_{i} = [p_{i}, H] = \frac{\partial p_{i}}{\partial q_{j}} \frac{\partial H}{\partial p_{j}} - \frac{\partial p_{i}}{\partial p_{j}} \frac{\partial H}{\partial q_{j}} = -\frac{\partial H}{\partial q_{i}}$$

$$e d$$

Summary

- Direct Conditions
 - Necessary and sufficient for Canonical Transf.
- Infinitesimal CT
- Poisson Bracket
 - Canonical invariant

$$[u,v] = \frac{\partial u}{\partial q_i} \frac{\partial v}{\partial p_i} - \frac{\partial u}{\partial p_i} \frac{\partial v}{\partial q_i}$$

- Fundamental PB $[q_i, q_j] = [p_i, p_j] = 0$ $[q_i, p_j] = -[p_i, q_j] = \delta_{ij}$
- ICT expressed by $\delta u = \varepsilon[u, G] + \frac{\partial u}{\partial t} \delta t$
- Infinitesimal time transf. generated by Hamiltonian

Infinitesimal Time CT

- Infinitesimal CT $q(t), p(t) \implies q(t+dt), p(t+dt)$
 - We know that the generator = Hamiltonian

$$du = dt[u, H] + \frac{\partial u}{\partial t}dt \implies \dot{q} = [q, H] \quad \dot{p} = [p, H]$$

Hamiltonian is the generator of the system's motion with time

- Integrating it with time should give us the "finite" CT that turns the initial conditions $q(t_0)$, $p(t_0)$ into the configuration q(t), p(t) of the system at arbitrary time
 - That's a new definition of "solving" the problem

Static Vs Dynamics

- Two ways of looking at the same thing
 - System is moving in a fixed phase space
 - Hamilton's equations \rightarrow Integrate to get q(t), p(t)
 - System is fixed and the phase space is transforming
 - ICT given by the PB \rightarrow Integrate to get CT for finite t
- Equations are identical
 - You'll find yourself integrating exactly the same equations

Did we gain anything?

Conservation

Consider an ICT generated by G $\delta u = \varepsilon[u, G] + \frac{\partial u}{\partial t} \delta t$

$$\delta u = \varepsilon[u, G] + \frac{\partial u}{\partial t} \delta t$$

- Suppose *G* is conserved and has no explicit *t*-dependence (G, H) = 0
- How is *H* (without *t*-dependence) changed by the ICT?

$$\frac{\delta H}{\delta t} = \varepsilon [H, G] + \frac{\partial H}{\partial t} \delta t = 0$$
If an ICT does not affect Hamiltonian, its generator is conserved

- A transformation that does not affect H
 - → Symmetry of the system
 - → Generator of the transformation is conserved

- Simplest example:
 - What is the ICT generated by momentum p_i ?

$$\delta q_{j} = \varepsilon[q_{j}, p_{i}] = \varepsilon \delta_{ij} \quad \delta p_{j} = \varepsilon[p_{j}, p_{i}] = 0$$

- That's a shift in q_i by $\varepsilon \rightarrow$ spatial translation
- If Hamiltonian is unchanged by such shift, then $[H, p_i] = 0$
 - \rightarrow Momentum p_i is conserved
- This is not restricted to linear momentum

Angular Momentum

- Let's consider a specific case: Angular momentum
 - Pick x-y-z system with z being the axis of rotation
 - *n* particles' positions given by (x_i, y_i, z_i)
 - Rotate all particles CCW around z axis by $d\theta$

$$x_i' = x_i - y_i d\theta$$
 $y_i' = y_i + x_i d\theta$

Momenta are rotated as well

$$p'_{ix} = p_{ix} - p_{iy}d\theta \qquad p'_{iy} = p_{iy} + p_{ix}d\theta$$

Generator is $G = x_i p_{iv} - y_i p_{ix}$

$$d\theta[x_i, G] = d\theta \frac{\partial G}{\partial p_{ix}} = -y_i d\theta$$

$$d\theta[x_i, G] = d\theta \frac{\partial G}{\partial p_{ix}} = -y_i d\theta \quad d\theta[p_{ix}, G] = -d\theta \frac{\partial G}{\partial x_i} = -p_{iy} d\theta$$

etc.

- The generator $G = x_i p_{iy} y_i p_{ix}$ is obviously $L_z = (\mathbf{r}_i \times \mathbf{p}_i)_z$
 - i.e. the z-component of the total momentum
 - Generator for rotation about an axis given by a unit vector \mathbf{n} should be $G = \mathbf{L} \cdot \mathbf{n}$

■ We now know generators of 3 important ICTs

- Hamiltonian generates displacement in time
- Linear momentum generates displacement in space
- Angular momentum generates rotation in space

Integrating ICT

- I said we can "integrate" ICT to get finite CT
 - How do we integrate $\delta u = \varepsilon[u, G]$?
- First, let's rewrite it as $\frac{du = d\alpha[u, G]}{d\alpha}$ $\Rightarrow \frac{du}{d\alpha} = [u, G]$
 - We want the solution $u(\alpha)$ as a function of α , with the initial condition $u(0) = u_0$
 - Taylor expand $u(\alpha)$ from $\alpha = 0$

$$u(\alpha) = u_0 + \alpha \frac{du}{d\alpha} \Big|_0 + \frac{\alpha^2}{2!} \frac{d^2u}{d\alpha^2} \Big|_0 + \frac{\alpha^3}{3!} \frac{d^3u}{d\alpha^3} \Big|_0 + \cdots$$
This is $[u, G]_0$ What can I do with these?

- Since $\frac{du}{d\alpha} = [u, G]$ is true for any u, we can say $\frac{d}{d\alpha} = [, G]$
 - Now apply this operator repeatedly

$$\frac{d^2u}{d\alpha^2} = \frac{d}{d\alpha}[u,G] = [[u,G],G] \Longrightarrow \frac{d^3u}{d\alpha^3} = [\cdots[[u,G],G],\cdots,G]$$

Going back to the Taylor expansion,

$$u(\alpha) = u_0 + \alpha \frac{du}{d\alpha} \Big|_{0} + \frac{\alpha^2}{2!} \frac{d^2u}{d\alpha^2} \Big|_{0} + \frac{\alpha^3}{3!} \frac{d^3u}{d\alpha^3} \Big|_{0} + \cdots$$

$$= u_0 + \alpha [u, G]_0 + \frac{\alpha^2}{2!} [[u, G], G]_0 + \frac{\alpha^3}{3!} [[[u, G], G], G]_0 + \cdots$$

■ Now we have a formal solution – But does it work?

Rotation CT

- Let's integrate the ICT for rotation around z
 - Let me forget the particle index i $G = xp_y yp_x$
 - Parameter α is θ in this case
 - Let's see how x changes with θ

$$x(\theta) = x_0 + \theta[x, G]_0 + \frac{\theta^2}{2!} [[x, G], G]_0 + \frac{\theta^3}{3!} [[[x, G], G], G]_0 + \cdots$$

Evaluate the Poisson Brackets

$$[x,G] = -y$$
 $[[x,G],G] = -x$ $[[[x,G],G],G] = y$
 $[[[[x,G],G],G],G] = x$ Repeats after this

■ Where does this lead us?

$$x(\theta) = x_0 + \theta[x, G]_0 + \frac{\theta^2}{2!} [[x, G], G]_0 + \frac{\theta^3}{3!} [[[x, G], G], G]_0 + \cdots$$

$$= x_0 - \theta y_0 - \frac{\theta^2}{2!} x_0 + \frac{\theta^3}{3!} y_0 + \frac{\theta^4}{4!} x_0 - \cdots$$

$$= x_0 \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots \right) - y_0 \left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots \right)$$

$$= x_0 \cos \theta - y_0 \sin \theta$$

Similarly

$$y(\theta) = y_0 + \theta[y, G]_0 + \frac{\theta^2}{2!} [[y, G], G]_0 + \frac{\theta^3}{3!} [[[y, G], G], G]_0 + \cdots$$

= $y_0 \cos \theta + x_0 \sin \theta$

- An object is falling under gravity
 - Hamiltonian is $H = \frac{p^2}{2m} + mgz$

Integrate the time ICT

$$z(t) = z_0 + t[z, H]_0 + \frac{t^2}{2!}[[z, H], H]_0 + \frac{t^3}{3!}[[[z, H], H], H]_0 + \cdots$$

$$[z,H] = \frac{p}{m}$$
 $[[z,H],H] = -g$ $[[[z,H],H],H] = 0$

Infinitesimal Rotation

- ICT for rotation is generated by $G = L \cdot n$
 - We've studied infinitesimal rotation in Lecture 8
 - Infinitesimal rotation of $d\theta$ about **n** moves a vector **r** as

$$d\mathbf{r} = \mathbf{n}d\theta \times \mathbf{r}$$

Compare the two expressions

$$d\mathbf{r} = d\theta[\mathbf{r}, \mathbf{L} \cdot \mathbf{n}] = \mathbf{n}d\theta \times \mathbf{r} \implies [\mathbf{r}, \mathbf{L} \cdot \mathbf{n}] = \mathbf{n} \times \mathbf{r}$$

- Equation $[\mathbf{r}, \mathbf{L} \cdot \mathbf{n}] = \mathbf{n} \times \mathbf{r}$ holds for any \mathbf{r} that rotates together with the system
 - Several useful rules can be derived from this

 $[r,L\cdot n]=n\times r$

- Consider a scalar product **a** · **b** of two vectors
 - Try to rotate it $[\mathbf{a} \cdot \mathbf{b}, \mathbf{L} \cdot \mathbf{n}] = \mathbf{a} \cdot [\mathbf{b}, \mathbf{L} \cdot \mathbf{n}] + \mathbf{b} \cdot [\mathbf{a}, \mathbf{L} \cdot \mathbf{n}]$ $= \mathbf{a} \cdot (\mathbf{n} \times \mathbf{b}) + \mathbf{b} \cdot (\mathbf{n} \times \mathbf{a})$ $= \mathbf{a} \cdot (\mathbf{n} \times \mathbf{b}) + \mathbf{a} \cdot (\mathbf{b} \times \mathbf{n})$ = 0
 - Obvious: scalar product doesn't change by rotation
 - Also obvious: length of any vector is conserved

Angular Momentum

Try with L itself \Rightarrow [L,L·n]=n×L

■ *x-y-z* components are

$$\begin{bmatrix} L_{x}, L_{x} \end{bmatrix} = 0 & [L_{x}, L_{y}] = L_{z} & [L_{x}, L_{z}] = -L_{y} \\ [L_{y}, L_{x}] = -L_{z} & [L_{y}, L_{y}] = 0 & [L_{y}, L_{z}] = L_{x} \\ [L_{z}, L_{x}] = L_{y} & [L_{z}, L_{y}] = -L_{x} & [L_{z}, L_{z}] = 0 \\ \end{bmatrix}$$

These relationships are well-known in QM

■ Imagine two conserved quantities A and B

$$[A,H] = [B,H] = 0$$

How does [A,B] change with time?

$$[[A,B],H] = -[[B,H],A] - [[H,A],B] = 0$$

Jacobi's identity

- Poisson bracket of two conserved quantities is conserved
- Now consider $[L_i, L_j] = \varepsilon_{ijk} L_k$
 - If 2 components of L are conserved, the 3rd component must
 - → Total vector L is conserved

■ Remember the Fundamental Poisson Brackets?

$$[q_i, q_j] = [p_i, p_j] = 0$$
 $[q_i, p_j] = -[p_i, q_j] = \delta_{ij}$

PB of two canonical momenta is 0

- Now we know $[L_i, L_j] = \varepsilon_{ijk} L_k$
- Poisson brackets between L_x , L_y , L_z are non-zero

Only 1 of the 3 components of the angular momentum can be a canonical momentum

- On the other hand, $[L^2, L_i] = 0$ so |L| may be a canonical momentum
- QM: You may measure |L| and, e.g., L_z simultaneously, but not L_x and L_v , etc.

Phase Volume

- Static view: CT moves a point in one phase space to a point in another phase space
- Dynamic view: CT moves a point in one phase space to another point in the same space
- If you consider a set of points, CT moves a volume to anther volume, e.g.

■ Easy to calculate the Jacobian for 1-dimension

$$\frac{dQdP = |\mathbf{M}| \, dqdp}{\partial P |\mathbf{M}| \, dqdp} \text{ where } \mathbf{M} = \begin{bmatrix} \partial Q/\partial q & \partial Q/\partial p \\ \partial P/\partial q & \partial P/\partial p \end{bmatrix}$$

$$\left|\mathbf{M}\right| = \frac{\partial Q}{\partial q} \frac{\partial P}{\partial p} - \frac{\partial P}{\partial q} \frac{\partial Q}{\partial p} = [Q, P] = 1$$

$$dQdP = dqdp$$

- i.e., volume in 1-dim. phase space is invariant
- \blacksquare This is true for *n*-dimensions
 - Goldstein proves it using simplectic approach

Volume in Phase Space is a Canonical Invariant

Dynamic View

- Consider many particles moving independently
 - e.g., ideal gas molecules in a box
 - They obey the same EoM independently
 - Can be represented by multiple points in one phase space

■ They move with time \rightarrow CT

Ideal Gas Dynamics

- Imagine ideal gas in a cylinder with movable piston
 - Each molecule has its own position and momentum → They fill up a certain volume in the phase space
- What happens when we compress it?

Liouville's Theorem

- The phase volume occupied by a group of particles (ensemble in stat. mech.) is conserved
 - Thus the density in phase space remains constant with time
 - Known as Liouville's theorem
 - Theoretical basis of the 2nd law of thermodynamics
- This holds true when there are large enough number of particles so that the distribution may be considered continuous

Thankyou