Predict House Price

By Using Linear Regression

Xingliang Shu

OUTLINE

- 1. Business problem
- 2. Dataset
 - a. Description
 - b. Cleaning
 - c. Feature Selection
- 3. Regression Model
 - a. Cut Features
 - b. Interpretation
 - c. Result
- 4. Next

Business Problem

	Features	Parameters
0	SQFT	0.666
1	CLASS	0.271
2	GARAGECAPA	0.039
3	PATIONUMBE	0.033
4	p_Cat	0.004
5	QUALITY	0.121
6	LAT	0.483
7	LON	0.325
8	W0	26.428

Dataset (Description)

- 52,918 samples
- 49 features

Dataset (Cleaning)

- Original samples: 52,918
- Duplicated samples: 16,038
- Remove sale price < 1k
- Cut off extreme samples
- Total removed: 16,416
- Remain: 36,502

Feature Selection

Dataset Split

- 70% train
- 30% test

Regression Model

- Optimal selected feature (afte regression)
- log(SQFT), log(SalePrice)

Regression Model (Interpretation)

	Features	Parameters
0	SQFT	0.666
1	CLASS	0.271
2	GARAGECAPA	0.039
3	PATIONUMBE	0.033
4	p_Cat	0.004
5	QUALITY	0.121
6	LAT	0.483
7	LON	0.325
8	W0	26.428

Regression Model (Result)

Sale price = exp[parameters.dot(features)]

• R square: 0.725

• Accuracy: 80%

Summary

- Capture 80% house price
- Next
 - 1. Better feature selection
 - 2. Better models

Q & A

Appendix (Transform Function for Normality)

Appendix (Target vs Prediction)

Appendix (Residual Plot)

