Dissimilarités entre jeux de données

Listings

15 février 2017

1 Méta-attributs généraux des jeux de données

Table 1 – Méta-attributs simples des jeux de données

Méta-attribut	Description	$\delta^{\emptyset}(x)$
DefaultAccuracy	The predictive accuracy obtained by predicting the majority class.	0
Dimensionality	Number of attributes divided by the number of instances.	0
MajorityClassPercentage	Percentage of rows with the class with the most assigned index.	x - 1
MajorityClassSize	The number of instances that have the majority class.	0
MinorityClassPercentage	Percentage of rows with the class with the least assigned index.	x - 1
MinorityClassSize	The number of instances that have the minority class.	0
NumberOfBinaryFeatures	Count of binary attributes.	0
NumberOfClasses	The number of classes in the class attribute.	0
NumberOfFeatures	Number of attributes (columns) of the dataset.	0
NumberOfInstances	Number of instances (rows) of the dataset.	0
${\bf Number Of Instances With Missing Values}$	Number of instances with at least one value missing.	0
NumberOfMissingValues	Number of missing values in the dataset.	0
NumberOfNumericFeatures	Count of categorical attributes.	0
NumberOfSymbolicFeatures	Count of nominal attributes.	0
PercentageOfBinaryFeatures	Percentage of binary attributes.	0
${\bf Percentage Of Instances With Missing Values}$	Percentage of instances with missing values.	x - 1
PercentageOfMissingValues	Percentage of missing values.	x - 1
PercentageOfNumericFeatures	Percentage of numerical attributes.	0
PercentageOfSymbolicFeatures	Percentage of nominal attributes.	0

Table 2 – Méta-attributs généraux décrivant les attributs numériques

Méta-attribut	Description	$\delta^{\emptyset}(x)$
MeanMeansOfNumericAtts	Mean of means among numeric attributes.	0
${\bf Mean Std Dev Of Numeric Atts}$	Mean standard deviation of numeric attributes.	x
${\bf Mean Kurtos is Of Numeric Atts}$	Mean kurtosis among numeric attributes.	x + 1, 2
${\it Mean Skewness Of Numeric Atts}$	Mean skewness among numeric attributes.	x
MinMeansOfNumericAtts	Min of means among numeric attributes.	0
${\bf MinStdDevOfNumericAtts}$	Min standard deviation of numeric attributes.	x
${\bf MinKurtosis Of Numeric Atts}$	Min kurtosis among numeric attributes.	x + 1, 2
${\bf MinSkewnessOf Numeric Atts}$	Min skewness among numeric attributes.	x
${\bf MaxMeansOf Numeric Atts}$	Max of means among numeric attributes.	0
${\bf MaxStdDevOfNumericAtts}$	Max standard deviation of numeric attributes.	x
${\bf MaxKurtosis Of Numeric Atts}$	Max kurtosis among numeric attributes.	x + 1, 2
${\bf MaxSkewnessOfNumericAtts}$	Max skewness among numeric attributes.	x
${\bf Quartile 1 Means Of Numeric Atts}$	First quartile of means among numeric attributes.	0
${\bf Quartile 1Std Dev Of Numeric Atts}$	First quartile of standard deviation of numeric attributes.	x
${\bf Quartile 1 Kurtos is Of Numeric Atts}$	First quartile of kurtosis among numeric attributes.	x + 1, 2
${\bf Quartile 1 Skewness Of Numeric Atts}$	First quartile of skewness among numeric attributes.	x
${\bf Quartile 2 Means Of Numeric Atts}$	Second quartile of means among numeric attributes.	0
${\bf Quartile 2Std Dev Of Numeric Atts}$	Second quartile of standard deviation of numeric attributes.	x
${\bf Quartile 2 Kurtos is Of Numeric Atts}$	Second quartile of kurtosis among numeric attributes.	x + 1, 2
${\bf Quartile 2 Skewness Of Numeric Atts}$	Second quartile of skewness among numeric attributes.	x
${\bf Quartile 3 Means Of Numeric Atts}$	Third quartile of means among numeric attributes.	0
${\bf Quartile 3Std Dev Of Numeric Atts}$	Third quartile of standard deviation of numeric attributes.	x
${\bf Quartile 3 Kurtos is Of Numeric Atts}$	Third quartile of kurtosis among numeric attributes.	x + 1, 2
${\bf Quartile 3 Skewness Of Numeric Atts}$	Third quartile of skewness among numeric attributes.	x

Table 3 – Méta-attributs généraux décrivant les attributs nominaux

Méta-attribut	Description	$\delta^{\emptyset}(x)$
ClassEntropy	Entropy of the target attribute.	0
${\bf Equivalent Number Of Atts}$	An estimate of the amount of useful attributes.	0
NoiseToSignalRatio	An estimate of the amount of non-useful information in the attributes regarding the class.	0
${\bf Mean Attribute Entropy}$	Mean of entropy among attributes.	x
Mean Mutual Information	Mean of mutual information between the nominal attributes and the target attribute.	x
${\bf Min Attribute Entropy}$	Min of entropy among attributes.	x
${\bf Min Mutual Information}$	Min of mutual information between the nominal attributes and the target attribute.	x
${\bf MaxAttributeEntropy}$	Max of entropy among attributes.	x
${\bf MaxMutual Information}$	Max of mutual information between the nominal attributes and the target attribute.	x
Quartile1AttributeEntropy	First quartile of entropy among attributes.	x
${\bf Quartile 1 Mutual Information}$	First quartile of mutual information between the nominal attributes and the target attribute.	x
Quartile2AttributeEntropy	Second quartile of entropy among attributes.	x
Quartile2MutualInformation	Second quartile of mutual information between the nominal attributes and the target attribute.	x
Quartile3AttributeEntropy	Third quartile of entropy among attributes.	x
Quartile3MutualInformation	Third quartile of mutual information between the nominal attributes and the target attribute.	x
${\bf Max Nominal Att Distinct Values}$	The maximum number of distinct values among attributes of the nominal type.	x
${\bf Min Nominal Att Distinct Values}$	The minimal number of distinct values among attributes of the nominal type.	x
Mean Nominal Att Distinct Values	Mean of number of distinct values among the attributes of the nominal type.	x
StdvNominal Att Distinct Values	Standard deviation of the number of distinct values among nominal attributes.	x

Table 4 – "Aire sous la courbe" des landmarkers

Méta-attribut	Description	$\delta^{\emptyset}(x)$
DecisionStumpAUC	Area Under ROC achieved by the landmarker weka.classifiers.trees.DecisionStump	x - 0, 5
J48AUC	Area Under ROC achieved by the landmarker weka.classifiers.trees.J48	x - 0, 5
JRipAUC	Area Under ROC achieved by the landmarker weka.classifiers.rules.Jrip	x - 0, 5
kNN_3NAUC	Area Under ROC achieved by the landmarker weka.classifiers.lazy.IBk -K 3	x - 0, 5
${\bf Naive Bayes AUC}$	Area Under ROC achieved by the landmarker weka.classifiers.bayes.NaiveBayes	x - 0, 5
NBTreeAUC	Area Under ROC achieved by the landmarker weka.classifiers.trees.NBTree	x - 0, 5
${\bf Random Tree Depth 3 AUC}$	Area Under ROC achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3	x - 0, 5
REPTreeDepth3AUC	Area Under ROC achieved by the landmarker weka.classifiers.trees.REPTree -L 3	x - 0, 5
${\bf Simple Logistic AUC}$	Area Under ROC achieved by the landmarker weka.classifiers.functions.SimpleLogistic	x - 0, 5

Table 5 – Taux d'erreur des landmarkers

Méta-attribut	Description	$\delta^{\emptyset}(x)$
DecisionStumpErrRate	Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump	x - 1
J48ErrRate	Error rate achieved by the landmarker weka.classifiers.trees.J48	x-1
JRipErrRate	Error rate achieved by the landmarker weka.classifiers.rules.Jrip	x-1
kNN_3NErrRate	Error rate achieved by the landmarker weka.classifiers.lazy.IBk -K 3	x-1
${\bf Naive Bayes Err Rate}$	Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes	x-1
${\bf NBTreeErrRate}$	Error rate achieved by the landmarker weka.classifiers.trees.NBTree	x-1
Random Tree Depth 3 Err Rate	Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3	x-1
REPTreeDepth 3 ErrRate	Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3	x-1
Simple Logistic ErrRate	Error rate achieved by the landmarker weka.classifiers.functions.SimpleLogistic	x - 1

Table 6 – Kappa de Cohen des landmarkers

Méta-attribut	Description	$\delta^{\emptyset}(x)$
DecisionStumpKappa	Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump	x
J48Kappa	Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48	x
JRipKappa	Kappa coefficient achieved by the landmarker weka.classifiers.rules.Jrip	x
kNN_3NKappa	Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -K 3	x
NaiveBayesKappa	Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes	x
NBTreeKappa	Kappa coefficient achieved by the landmarker weka.classifiers.trees.NBTree	x
Random Tree Depth 3 Kappa	Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3	x
REPTreeDepth3Kappa	Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3	x
${\bf Simple Logistic Kappa}$	Kappa coefficient achieved by the landmarker weka.classifiers.functions.SimpleLogistic	x

2 Méta-attributs des attributs

Table 7 – Méta-attributs simples des attributs

Méta-attribut	Description	$\delta^{\emptyset}(x)$
ValuesCount	Number of values.	x - 1
NonMissingValuesCount	Number of non missing values.	x
MissingValuesCount	Number of missing values.	0
Distinct	Number of distinct values.	x - 1
AverageClassCount	Average count of occurrences among different classes.	0
Entropy	Entropy of the values.	x - 1
MostFequentClassCount	Count of the most probable class.	0
LeastFequentClassCount	Count of the least probable class.	0
ModeClassCount	Mode of the number of distinct values.	0
MedianClassCount	Median of the number of distinct values.	0
Pears on Correllation Coefficient	Pearson Correlation Coefficient of the values with the target attribute.	x
${\bf Spearman Correlation Coefficient}$	Spearman Correlation Coeeficient of the values with the target attribute.	x
CovarianceWithTarget	Covariance of the values with the target attribute.	x

Table 8 – Méta-attributs spécifiques aux attributs nominaux

Méta-attribut	Description	$\delta^{\emptyset}(x)$
UniformDiscrete	Result of Pearson's chi-squared test for discrete uniform distribution.	x - 1
${\bf Chi Square Uniform Distribution}$	Statistic value for the Pearson's chi-squared test.	x
RationOfDistinguishing CategoriesByKolmogorov SmirnoffSlashChiSquare	Ratio of attribute values that after sub-setting the dataset to that attribute value leads to different distribution of the target as indicated by the Kolmogorov-Smirnoff test.	0
RationOfDistinguishing CategoriesByUtest	Ratio of attribute values that after sub-setting the dataset to that attribute value leads to different distribution of the target as indicated by the Mann-Whitney U-test.	0

Table 9 – Méta-attributs spécifiques aux attributs numériques

Méta-attribut	Description	$\delta^{\emptyset}(x)$
IsUniform	Whether statistical test did or not reject that the attribute values corresponds to a uniform distribution.	x-1
IntegersOnly	Whether attribute values are only integers.	0
Min	Minimal value of the attribute values.	0
Max	Maximal value of the attribute values.	0
Kurtosis	Kurtosis of the values.	x + 1, 2
Mean	Mean of the values.	0
Skewness	Skewness of the values.	x
StandardDeviation	Standard deviation of the values.	x
Variance	Variance of the values.	x
Mode	Mode of the values.	0
Median	Median of the values.	0
ValueRange	Difference between maximum and minimum of the values.	x
LowerOuterFence	Lower outer fence of the values.	0
HigherOuterFence	Higher outer fence of the values.	0
LowerQuartile	Lower quartile of the values.	0
HigherQuartile	Higher quartile of the values.	0
HigherConfidence	Higher confidence interval of the values.	0
LowerConfidence	Lower confidence interval of the values.	0
PositiveCount	Number of positive values.	x
${\bf Negative Count}$	Number of negative values.	x

Table 10 – Méta-attributs normalisés selon le nombre d'instances

Méta-attribut	Description	$\delta^{\emptyset}(x)$
MissingValues	1 if count of missing values is greater than 0, 0 otherwise.	x-1
${\bf Average Percentage Of Class}$	Percentage of the occurrences among classes.	x-1
PercentageOfMissing	Percentage of missing values in the attribute.	x-1
PercentageOfNonMissing	Percentage of non missing values in the attribute.	x
${\bf Percentage Of Most Frequent Class}$	Percentage of the most frequent class.	x-1
${\bf Percentage Of Least Frequent Class}$	Percentage of the least frequent class.	x-1
${\bf Mode Class Percentage}$	Percentage of mode of class count calculated as ModeFrequentClassCount / ValuesCount.	x-1
MedianClassPercentage	Percentage of median of class count calculated as MedianFrequentClassCount / ValuesCount.	x-1

Table 11 – Méta-attributs normalisés spécifiques aux attributs numériques

Méta-attribut	Description	$\delta^{\emptyset}(x)$
PositivePercentage	Percentage of positive values.	x
NegativePercentage	Percentage of negative values.	x
HasPositiveValues	1 if attribute has at least one positive value, 0 otherwise.	x
HasNegativeValues	1 if attribute has at least one negative value, 0 otherwise.	x

3 Algorithmes de la baseline

Table 12 – Algorithmes d'apprentissage traditionnels de la $\it baseline$

Implémentation Weka	Description
GaussianProcesses	Gaussian Processes for regression. See [?].
LinearRegression	Linear regression for prediction. Uses the Akaike criterion for model selection, and is able to deal with weighted instances. See [?].
RBFRegressor	Radial basis function networks, trained in a fully supervised manner by minimizing squared error with the BFGS method. See [?].
\mathbf{SMOreg}	Sequential minimal optimization algorithm for training a support vector regression model. See [?].
RandomForest	Ensemble of decision trees outputting the mean prediction of the individual trees. See [?].
KStar	Instance-based classifier where the class of a test instance is based upon the class of those training instances similar to it, as determined by an entropy-based distance function. See [?].
M5Rules	Generates a decision list for regression problems using separate-and-conquer. Builds a model tree using M5 In each iteration and makes the best leaf into a rule. See [?].

4 Meta-Dataset

 $\ensuremath{\mathsf{TABLE}}$ 13 – Chaines de traitement weka employés comme classifieurs dans les expériences comparatives

A1DE AdaBoostM1_DecisionStump Bagging_REPTree BayesNet_K2 BFTree ConjunctiveRule Dagging_DecisionStump DecisionStump DecisionTable_BestFirst END_ND_J48 FT FURIA Grading_ZeroR HoeffdingTree HyperPipes IB1 IBk J48 J48graft JRip KStar LADTree LibLINEAR LibSVM	LMT Logistic LogitBoost_DecisionStump LWL_DecisionStump MultiBoostAB_DecisionStump NaiveBayes NBTree OLM OneR PART RacedIncrementalLogitBoost_DecisionStump RandomForest RandomSubSpace_REPTree RandomTree RBFClassifier REPTree Ridor RotationForest_PrincipalComponents_J48 SimpleCart SimpleLogistic SMO_PolyKernel SMO_RBFKernel VFI ZeroR
--	--

Table 14 – Jeux de données OpenML utilisés dans les expériences comparatives

diggle_table_a2 delta_elevators chatfield_4 house_16H cal_housing houses fric1_500_10 boston_corrected

anneal
anneal
kr-vs-kp
labor
audiology
autos
breast-cancer
mfeat-fourier
breast-w
mfeat-karhunen
mfeat-morphological
car
mfeat-zernike
cmc
cmc mfeat-zernike
cme
mushroom
nusery
optdigits
optdigits
credit-a
page-blocks
credit-g
pendigits
postoperative-patient-data
dermatology
segment postoperative-patient-dati dermatology segment diabetes ecoli sonar glass soybean sybean spambase tae heart-c tic-tac-toe heart-lattolog veoreticle vote ionosphere waveform-5000 iris BNG(cmc,nominal,55296) electricity primary-tumor BNG(cmc,nominal,55296)
electricity
primary-tumor
solar-flare
solar-flare
adult
yeast
satimage
abalone
braziltourism
eucalyptus
BNG(breast-w)
meta_al
meta_ensembles
meta_ensembles
meta_instanceincremental
lung-cancer
wine
hypothyroid meta_instanceincremental lung-cancer wine thyroid the should should be a sick monks-problems-1 monks-problems-2 monks-problems-2 monks-problems-3 SPECT SPECTF grub-damage pasture squast-instored white-clover aids JapaneseVowels ipums_la_97-small analcatdata_boxing2 prnn_crabs analcatdata_boxing1 analcatda analcatdata_creditscore prnn_synth analcatdata_cyyoung8092 schizo confidence analcatdata_dmft profb lupus analcatdata_germangss prnn_viruses biomed

rmftsa_sleepdata sleuth_ex2016 sleuth_ex2015 visualizing_livestock diggle_table_a2 fru.ffly fri.c3_100_25 fri.c3_100_50 rmftsa_ladata veteran abalone pw_Linear pol veteran
abalone
pw.Linear
pw.Linear
pri.c4.1000.25
analcatdata.vineyard
bank8FM
fri.c2.100.5
dplanes
analcatdas.supreme
vice.c1.02.50
baskball
fri.c1.250.50
machine.cpu
ailerons
cpu.small
visualizing.environmental
sleep
fri.c3.250.50
pri.c3.250.50
fri.c3.250.56
fri.c3.250.56
fri.c3.250.56
fri.c3.250.56
auto_price
fri.c2.1000.5
fri.c3.250.56
auto_price
fri.c2.20.25
cervo
analcatdata.wildcat servanda analeatdata_wildcat fri.c3_500_5 pm10 fri.c4_1000_10 puma32H wisconsin fri.c0_1100_5 sleuth.ex1605 autoPrice meta sleuth.ex1605
autoPrice
meta
cpu.act
fric2.100.10
fri.c0.250.10
analcatdata.apnea3
analcatdata.apnea2
fri.c1.500.50
analcatdata.apnea1
fri.c3.100.25
fri.c1.250.50
strikes
quake
fri.c0.250.25
disclosure.x.bias
fri.c0.250.25
ri.c0.250.25
ri. trial 100 10
clusage
diabetes.numeric
fri.c2.500.5
fri.c3.250.10
fri.c3.250.25
disclosure.x.tampered
cpu
fri.c0.100.50
fri.c0.100.50
fri.c0.100.50
pyrim
pbcseq
delta.ailerons
hutsof99.logis
fri.c4.500.50
fri.c3.1000.50
fri.c0.100.10
mushroom
pbc
mushroom
pbc
mushroom
pbc
mushroom
pbc
mushroom
pbc
mushroom
pbc
mushroom pbc rmftsa_ctoarrivals fri_c1_100_25 fri_c3_1000_5 chscase_vine2 chscase_vine1 puma8NH diggle_table_a1

boston_corrected
sensory
disclosure_x_noise
fri_cl_100_5
fri_c2_250_10
autoMpg
fri_c3_250_50
fri_c3_250_50
fri_c3_250_50
fri_c3_250_50
fri_c4_500_25
fri_c4_500_25
fri_c4_500_25
fri_c4_500_25
fri_c1_1000_50
fri_c4_500_25
fri_c0_100_50
fri_c4_500_25
fri_c0_100_50
fri_c4_500_60
fri_c4_500_50
fri_c4

socmob fri.c1.250,10 fri.c3.500.10 fri.c3.500.50 lowbwt fri.c0.500.10 echoMonths kidney visualizing_ethanol arsenic-male-bladder quake arsenic-māle-bladder quake arsenic-female-bladder arsenic-female-lung arsenic-male-lung arsenic-maie-lung
tasziltourism
segment
nursery
postoperative-patient-data
analcatdata_broadwaymult
mfeat-morphological
heart-h
pasture
analcatdata_birthday cars analcatdata_birthday iris analcatdata_birthday
iris
analcatdata_authorship
mfeat-fourier
squash-stored
wine
hayes-roth
kdd_lapaneseVowels
letter
waveform-5000
optdigits
kdd.internet_usage
heart-c
cmc
squash-unstored
squash-unstored
squash-unstored
electric squash-unstored
squash-unstored
car
leaded at a squash-unstored
squashcar kdd.ipums_la_97-small vehicle mfeat-zernike phan_glass phan_glass phan_glass phan_glass lagged audiology hypothyroid kdd.ipums_la_98-small primary-tumor glass lymph white-clover dermatology each additional additional analcatdata_challenger analcatdata_dmft confidence kdd.ipums_la_99-small pendigits mfeat-karhunen page-blocks soybean analcatdata_germangss grub-damage ada_prostic eye_movements kcl-top5 mozilla4 jEdit_4.2_4.3 pc4 mc2 cm1_req mc1 ar1 ar3 ar4 ar5 kc2 ar6 kc3 kc1-binary kc1-binary kc1 pc1 pc2 mw1 jEdit_4.0_4.2 desharnais datatrieve teachingAssistant pc1_req