Úloha č. 1

a)

Z cvičení víme, že permutace konjugovaná s π bude mít stejnou strukturu cyklů. Je 5! způsobů, jak umístit čísla do těchto dvou cyklů. Jelikož je počáteční prvek cyklu libovolný, máme 3 způsoby pro zápis libovolného tříprvkového cyklu a 2 pro zápis dvouprvkového.

Celkový počet permutací s touto strukturou je tedy $\frac{5!}{3\cdot 2} = 20$.

b)

reflexivita
$$\pi=\pi\cdot\pi\cdot\pi^{-1}$$
 symetrie $\tau=\rho\cdot\pi\cdot\rho^{-1}\implies\pi=\rho^{-1}\cdot\tau\cdot\rho$ tranzitivita $\tau=\rho\cdot\pi\cdot\rho^{-1}\wedge\pi=\gamma\cdot\varphi\cdot\gamma^{-1}\implies\tau=\rho\cdot\gamma\cdot\varphi\cdot\gamma^{-1}\cdot\rho^{-1}=(\rho\cdot\gamma)\cdot\varphi\cdot(\rho\cdot\gamma)^{-1}$

c)

Asociativita

Operace skládání zobrazení je asociativní.

Neutrální prvek

Nechť e je neutrální prvek G. Pro všechna $g, h \in G$ platí

$$(Con_e \circ Con_g)[h] = Con_e(g \cdot h \cdot g^{-1}) \qquad (Con_g \circ Con_e)[h] = Con_g(e \cdot h \cdot e^{-1})$$

$$(Con_e \circ Con_g)[h] = e \cdot g \cdot h \cdot g^{-1} \cdot e \qquad (Con_g \circ Con_e)[h] = g \cdot e \cdot h \cdot e^{-1} \cdot g^{-1}$$

$$(Con_e \circ Con_g)[h] = g \cdot h \cdot g^{-1} \qquad (Con_g \circ Con_e)[h] = g \cdot h \cdot g^{-1}$$

$$(Con_e \circ Con_g) = Con_g \qquad (Con_g \circ Con_e)[h] = g \cdot h \cdot g^{-1}$$

$$(Con_g \circ Con_e)[h] = g \cdot h \cdot g^{-1}$$

$$(Con_g \circ Con_e)[h] = g \cdot h \cdot g^{-1}$$

tudíž Con_e je neutrální prvek Con(G). Jeho jednoznačnost vychází z jednoznačnosti e.

Inverzní prvek

Pro všechna $Con_q \in Con(G), h \in G$:

$$(Con_{g} \circ Con_{g^{-1}})[h] = Con_{g}(g^{-1} \cdot h \cdot g) \qquad (Con_{g^{-1}} \circ Con_{g})[h] = Con_{g^{-1}}(g \cdot h \cdot g^{-1})$$

$$(Con_{g} \circ Con_{g^{-1}})[h] = g \cdot g^{-1} \cdot h \cdot g \cdot g^{-1} \qquad (Con_{g^{-1}} \circ Con_{g})[h] = g^{-1} \cdot g \cdot h \cdot g^{-1} \cdot g$$

$$(Con_{g} \circ Con_{g^{-1}})[h] = e \cdot h \cdot e \qquad (Con_{g^{-1}} \circ Con_{g})[h] = e \cdot h \cdot e$$

$$(Con_{g^{-1}} \circ Con_{g})[h] = e \cdot h \cdot e$$

$$(Con_{g^{-1}} \circ Con_{g})[h] = e \cdot h \cdot e$$

$$(Con_{g^{-1}} \circ Con_{g})[h] = e \cdot h \cdot e$$

$$(Con_{g^{-1}} \circ Con_{g})[h] = e \cdot h \cdot e$$

tudíž $Con_{g^{-1}}$ je inverzním prvkem k Con_g . Jelikož je g^{-1} pro každé g jednoznačné, je i $Con_{g^{-1}}$ jednoznačný inverz.

d)

Vezměme M množinu všech permutací se stejnou strukturou cyklů, např. permutace s jedním tříprvkovým a jedním dvouprvkovým cyklem. Jelikož konjugace nemění strukturu cyklů, pro $m \in M, g \in \mathbb{S}_5$ bude mít $Con_g(m)$ stejnou strukturu jako m, tudíž bude také náležet M. Z toho vyplývá $Con(\mathbb{S}_5)[M] \subseteq M$.

Úloha č. 2

$$\varphi = (1 \ 2 \ 3)(4)(5 \ 6)$$

Je zřejmě vidět, že pro libovolné n je $\varphi^n(4)=4$. Snadno můžeme ukázat, že ve φ^4 je první cyklus stejný jako ve φ . Pro první cyklus tedy stačí počítat mocniny mod 3. Jelikož 2019 mod 3=0, Z prvního cyklu se stane (1)(2)(3). Stejně tak pro třetí cyklus, 2019 mod 2=1, tudíž zůstane stejný. Výsledkem pak je $\varphi^{2019}=(1)(2)(3)(4)(5-6)$.