Deep Iterative Surface Normal Estimation

Jan Eric Lenssen Christian Osendorfer Jonathan Masci

CVPR 2020 Oral Talk

Unoriented normal estimation

$$\begin{aligned} \mathbf{n}_i^* &= \arg\min_{\mathbf{n}:|\mathbf{n}|=1} \sum_{j \in \mathcal{N}(i)} \underline{||\mathcal{P}(i)_j \cdot \mathbf{n}||^2} \\ &\qquad \qquad \\ &\qquad \\ &\qquad \qquad \\ &\qquad \\ &\qquad \qquad \qquad \\ \qquad \qquad \qquad \\ \qquad$$

Unoriented normal estimation

$$\begin{aligned} \mathbf{n}_i^* &= \arg\min_{\mathbf{n}:|\mathbf{n}|=1} \sum_{j \in \mathcal{N}(i)} \frac{||\mathcal{P}(i)_j \cdot \mathbf{n}||^2}{|} \\ &\qquad \qquad \qquad \\ &\qquad \\ &\qquad \qquad \\ &\qquad \\ &\qquad \qquad \qquad \\ \qquad \qquad \qquad \\$$

Weighted least squares

$$\mathbf{n}_{i}^{*} = \arg\min_{\mathbf{n}:|\mathbf{n}|=1} \sum_{j \in \mathcal{N}(i)} \frac{w_{i,j}}{|\mathbf{n}|} ||\mathcal{P}(i)_{j} \cdot \mathbf{n}||^{2}$$

Weight for each point in each neighborhood

Unoriented normal estimation

$$\begin{aligned} \mathbf{n}_i^* &= \arg\min_{\mathbf{n}:|\mathbf{n}|=1} \sum_{j \in \mathcal{N}(i)} \frac{||\mathcal{P}(i)_j \cdot \mathbf{n}||^2}{|} \\ &\qquad \qquad \qquad \\ &\qquad \\ &\qquad \qquad \\ &\qquad \\ &\qquad \qquad \\ &\qquad \\ &\qquad \qquad \qquad \\ \qquad \qquad \qquad \\$$

Weighted least squares

$$\mathbf{n}_{i}^{*} = \arg\min_{\mathbf{n}:|\mathbf{n}|=1} \sum_{j \in \mathcal{N}(i)} \underline{w_{i,j}} ||\mathcal{P}(i)_{j} \cdot \mathbf{n}||^{2}$$

Weight for each point in each neighborhood

Examples:

• Iterative re-weighted least squares $w_{i,j}^l = s(\mathbf{r}_{i,j}^{l-1})$

Unoriented normal estimation

$$\begin{aligned} \mathbf{n}_i^* &= \arg\min_{\mathbf{n}:|\mathbf{n}|=1} \sum_{j \in \mathcal{N}(i)} \frac{||\mathcal{P}(i)_j \cdot \mathbf{n}||^2}{|} \\ &\qquad \qquad \qquad \\ &\qquad \\ &\qquad \qquad \\ &\qquad \\ &\qquad \qquad \\ &\qquad \\ &\qquad \qquad \qquad \\ \qquad \qquad \qquad \\$$

Weighted least squares

$$\mathbf{n}_{i}^{*} = \arg\min_{\mathbf{n}:|\mathbf{n}|=1} \sum_{j \in \mathcal{N}(i)} \underline{w_{i,j}} ||\mathcal{P}(i)_{j} \cdot \mathbf{n}||^{2}$$

Weight for each point in each neighborhood

Examples:

• Iterative re-weighted least squares $w_{i,j}^l = s(\mathbf{r}_{i,j}^{l-1})$

Anisotropic Kernel

$$w_{i,j}^l = \psi(\mathbf{p}_j - \mathbf{p}_i)$$

Deep Kernel Re-Weighting

- Robustness to outliers
- Equivariance to rotation
- Recovering sharp details

Deep Kernel Re-Weighting

- Robustness to outliers
- Equivariance to rotation
- Recovering sharp details

$$w_{i,j} = \psi(\mathbf{R}_i(\mathbf{p}_j - \mathbf{p}_i), \underline{\theta_i})$$
Rotation matrix

Latent kernel parameterization

GNN and Training

GNN and Training

GNN Properties:

- Permutation invariance
- Handling of varying neighborhood size
- Locality

Accuracy and Speed

	Ours	Nesti-Net	PCPNet
Number of network parameters	7981	179 M	22 M
Execution time for 100k points	3.57 s	1350 s	470 s
Relative execution time	$1 \times$	$378 \times$	131×

Interpreting the Results

Thank you and enjoy CVPR ©

