CSC 404 - ACTIVITY/PROJECT 8 - NAME:

Problem 1.

a. Describe how Mergesort would sort this list (i.e., draw the nice graph to show how things come together).

7 | 4 | 2 | 1 | 3 | 3 | 7 | 11 | 8 | 6 | 7 | 5 | 3 | 0 | 9 | 12 |

b. Describe how Quicksort would sort this list (Use the 'middle' entry in the list(s) as your pivot)

7 4 2 1 3 3 7 11 8 6 7 5 3 0 9 12

c. Describe how Quicksort would sort this list (Use the first entry in the list(s) as your pivot)

7 4 2 1 3 3 7 11 8 6 7 5 3 0 9 12

d. Implement Mergesort and Quicksort in a language of your choice (be adventurous/have fun). Then test the above lists (as well as some other fun lists).

Problem 2 (Let's...find 4 - Weee!). Suppose someone picks a number x from a set of n numbers. A second person tries to guess the number by successively selecting subsets of the n numbers and asking the first person whether x is in each set. The first person answers either 'yes' or 'no'. We can find x using $\log_2(n)$ queries ($\lceil \log_2(n) \rceil$ if n is not a power of 2) by successively splitting the sets used in each query in half.

The following algorithm, findX, returns the mystery value x of an input list L.

- 1. if len(L) < 2, then return L
- 2. else
 - a. L1 = first half of L
 - b. L2 = second half of L
 - c. If x in L1, then return findX(L1,x)
 - d. else return findX(L2,x)
- 3. return L
- a. Demonstrate this algorithm by finding the '4' in the following lists:

								_																
1	3	7	4	2	0	6	5		8	6	7	5	3	0	9	11	13	17	4	2	15	10	$\overline{12}$	1

b. Implement this algorithm in a language of your choice and run it on the above lists (still looking for the mystery 4). I know, it is a really exciting function with the most exciting output - more about this in the next problem!

Problem 3. Ulam's problem ask for the number of queries required to find x, supposing that the first person is allowed to **lie** exactly once.

a. Option 1: [Ask each Question Twice!] Show that by asking each question twice, given a number x and a set with n elements, and asking one more question when we find the lie. Ulam's problem can be solved in at most $2\log_2(n) + 1$ queries. Demonstrate this process by finding the 4 in the following lists (you may choose when the 'lie' occurs)

4 2 0 6 5 8 6 7 5 3 0 9 11 13 17 4 2 15 10	12 1	10 1	o + r	- CT $-$	2	4	17	13	11	9	0	3	5	7	6	8		5	6	0	2	4	7	3	1	
--	--------	--------	-------	----------	---	---	----	----	----	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	--

b. (Bonus) Option 2: [Divide-and-Conquer!] Show that by dividing the initial set of n elements into four parts, each with n/4 elements, 1/4 of the elements can be eliminated using two queries. [Hint: Use two queries, where each of the queries asks whether the element is in the union of two of the subsets with n/4 elements and where one of the subsets of n/4 elements is used in both queries.] Demonstrate this process by finding the 4 in the following lists (you may choose when the 'lie' occurs)

								_																
	0	_	4	_	_	_	_]		_	_		0	_	_	-1-1	10	4 =	4	_	4 -	10	10	Т
	٠.٠	1 7	1 /1	٠,	1 (1)	6	h		I ×	16	1 7	l 5	ા '∀	()	L CI		117	1 17	1 /1	٠,	1 15	1 1 ()	12	П
I			'±		10									U	J	TT	LIO	1 1 1	-	4	1 10	10	1 14	
				l	_	_	_		_	_	1 '	_	_		_		_			l		1		

c. (Bonus) Is the naive way to solve Ulam's problem by asking each question twice or the divide-and-conquer method more efficient?