

Dipartimento di Ingegneria e Scienza dell'Informazione

Corso di Laurea in Informatica

Appunti di

LINGUAGGI FORMALI E COMPILATORI Prof.ssa Paola Quaglia

Autore Emanuele Nardi Revisore Filippo Frezza

Anno accademico 2017/2018

Introduzione

Il materiale didattico trattato in questo documento si trova nella cartella Google Drive del corso di Informatica $\, \, \Box \, \,$

Indice

1	Pan	noramica					
Incompleto							
2	Gra	rammatiche					
	2.1	Grammatiche generative	3				
		2.1.1 Grammatiche e convenzioni	3				
	2.2	Grammatica libera (da contesto)	4				
	2.3	Parole generate dalla grammatica	4				
	2.4	Derivazione	5				
	2.5	Esercizi	5				
	2.6	Albero di derivazione	8				
	2.7	Unione di linguaggi	9				
	2.8	Concatenazione di linguaggi	10				
	2.9	Pumping Lemma	13				
	2.10	Usi scorretti del <i>Pumping lemma</i>	14				
	2.11	Esercizi	14				
	2.12	Come dimostrare che un linguaggio non è libero	15				
	2.13	Esercizi	16				
	2.14	Intersezione di linguaggi	16				
	2.15	Esercizi	17				
\mathbf{El}	enc	o delle figure					
	1	Albero di derivazione					
	2	Esempio di left-most derivation	8				
	3	Esempio di right-most derivation	8				
	4	Esempio di derivazione di un if-then-else statement	8				
	5	Albero di derivazione	10				
	6	Esempio di grammatica ambigua	11				
	7	Albero di derivazione					
	8	Più passi di derivazione	13				
	9	Albero di derivazione	15				
	10	Albero di derivazione	17				

1 Panoramica

L'obiettivo dell'analisi predittiva è quello di produrre modelli accurati.

 $[\ldots]$

2 Grammatiche

Alcune definizioni:

Alfabeto insieme finito e non vuoto di simboli;

Stringa/parola sequenza finita *o nulla* i simboli dell'alfabeto, ottenuta per giustapposizione di simboli;

Parola vuota viene denotata dal simbolo $\varepsilon \notin Q$;

Lunghezza di una parola è data dal no. di simboli dell'alfabeto che lo compongono ed è \emptyset se la parola è vuota.

2.1 Grammatiche generative

Una grammatica si definisce come un insieme:

$$(1) G = \{V, T, S, P\}$$

Dove:

- V: vocabolario, insieme di simboli, finito e non vuoto. I simboli si divisono a loro volta in simboli terminali e simboli non terminali:
- T: insieme dei *simboli terminali*, tale che $T \subset V$;
- S: simbolo iniziale, $S \in V \setminus T$, dove:
 - $-V \setminus T$ sono l'insieme dei simboli non-terminali;
- P: insieme di produzioni, in generale hanno una forma $\alpha \to \beta$, dove:
 - $-\alpha$ è una stringa non vuota su V contenente almeno un elemento non terminale;
 - $-\beta$ è una stringa su V, oppure è ε .

2.1.1 Grammatiche e convenzioni

Un esempio di grammatica:

$$G_1 = (\underbrace{\{S, a, b\}}_{V}, \underbrace{\{a, b\}}_{T}, S, \underbrace{\{S \longrightarrow aSb, S \longrightarrow \varepsilon\}}_{P})$$

D'ora in avanti utilizzeremo le seguenti **convenzioni**:

- simboli in $V \times T$ (non-terminali) denotati da lettere maiuscole, nella quale si cerca di non utilizzare X ed Y;
- simboli in T (terminali) denotati da lettere minuscole;
- -X,Y denotate da un generico simbolo in V;
- $-\alpha, \beta, \gamma \dots$ denotate da parole su V^{*1} .

 $^{^1 {\}rm Il}$ simbolo * si chiama Kleene star e denota la ripetizione di 0 o più volte di simboli all'interno dell'insieme di cui fanno parte.

2.2 Grammatica libera (da contesto)

Prendiamo un insieme di produzioni definito nel seguente modo:

$${S \longrightarrow aSb, S \longrightarrow A, S \longrightarrow \varepsilon}$$

Lo riscriviamo così:

$$S \longrightarrow aSb$$
$$S \longrightarrow A$$
$$S \longrightarrow \varepsilon$$

O in forma semplificata utilizzando il simbolo di pipe:

$$S \longrightarrow aSb \mid A \mid \varepsilon$$

Banalmente un grammatica è *libera da contesto* se alla sinistra del simbolo di produzione \longrightarrow non sono presenti simboli non-terminali.

Ad esempio una produzione $aS \longrightarrow b$ denota una grammatica non libera da contesto.

Definizione 1 (grammatica libera da contesto). Una grammatica generica è libera da contesto (o libero o context-free) se ogni produzione ha la forma $A \longrightarrow B$ (cioè che contiene un ed un solo simbolo terminale)

Derivazioni destre (sinistre) Nel caso di grammatiche libere si definiscono le derivazioni destre e sinistre (rigthmost derivation/leftmost derivation).

Nel caso rightmost (leftmost) si richiede che ad ogni passo di derivazione $\mu \implies \gamma$ venga rimpiazzato il non-terinale più a destra (sinistra) in μ .

Definizione 2 (grammatica ambigua). G è ambigua se esiste $w \in L(G)$ tale che esistono due derivazioni canoniche distinte, entrambe destre oppure entrambe sinistre.

2.3 Parole generate dalla grammatica

Prendiamo come esempio le produzioni di una grammatica:

$$(2) S \longrightarrow aSb \mid \varepsilon$$

Come posso generare parole dell'alfabeto?

$$S \Longrightarrow \varepsilon$$
 è generata dalla grammatica G

 ε è quindi una delle parole generate da queste grammatica, ma non è l'unica parola che possono generare.

$$S \implies aSb \implies ab$$
 ab è generata dalla grammatica G $S \implies aSb \implies aaSbb \implies aabb$

Continuare è banale. Qual è quindi la linguaggio generato dalla grammatica che ha come produzioni quelle mostrate nell'equazione 2?.

La risposta viene può essere data dall'osservazione del numero crescente di a e di b. La grammatica denotata dalle produzioni in equazione 2 producono quindi il linguaggio:

$$\{a^nb^n \mid n \ge 0\}$$

2.4 Derivazione

Vediamo ora un paio di definizioni formali

Definizione 3 (derivazione in un passo). $\mu \Longrightarrow \gamma$ (un passo generico) (γ deriva in un passo da μ , data la grammatica G) se (è vero che) $\mu = \mu_1 \propto \mu_2 \wedge \alpha \longrightarrow \beta$ è una produzione di $G \wedge \gamma = \mu_1 \beta \mu_2$ (copio il contesto sinistro e poi quello destro)

Definizione 4 (derivazione in più passi). $\mu \xrightarrow{+} \gamma$ (γ deriva in uno o più passi da μ , data la grammatica G) se (è vero che) (esiste una sequenza del tipo) $\mu \Longrightarrow \delta_0 \Longrightarrow \delta_1 \Longrightarrow \ldots \Longrightarrow \gamma$.

Quest'ultima è una definizione generica: non sto dicendo che γ è composta solo da simboli terminali.

$$L(G) = \{ w \mid w \in T^* \land S \xrightarrow{+} w \}$$

2.5 Esercizi

Esercizio

$$S \longrightarrow aAb$$

$$aA \longrightarrow aaAb$$

$$A \longrightarrow \varepsilon$$

Innanzitutto notiamo che questa grammatica non è libera da contesto.

Proviamo a scrivere dei linguaggi e poi troviamo dei controesempi per provare che non sia il linguaggio prodotto da questa grammatica.

$$L_{1}: \{a^{n}b^{m} \mid n \geq 0 \land (m = 0 \lor m = 1)\}$$

$$L_{2}: \{a^{n}b^{m} \mid n > 0 \land m = n - 1\}$$

$$L_{3}: \{a^{n}b^{n} \mid n > 0\}$$

$$L_{4}: \{a^{2n+1}b^{n+1} \mid n \geq 0\}$$

$$L_{5}: \{a^{n}b^{n} \mid n \geq 1\}$$

 L_2 non può essere perché $ab \in L(G) \land \notin L_2$, $aabb \notin L_4$.

Prendiamo in considerazione la grammatica G_2 che il seguente insieme di produzioni

$$S \longrightarrow aSb \mid ab$$

 G_1 e G_2 sono completamente diverse, poiché hanno produzioni diverse, ma il linguaggio generato è lo stesso.

Ricorda. Dato il linguaggio L possono esistere più grammatiche diverse fra loro che generano L.

<u>É indecidibile</u> il linguaggio generato da una grammatica G per G arbitrario.

 \nexists algoritmo che dato G e dato L, dicesse L = L(G) oppure no.

Non può esistere ...

$$G_3 = \{\{S, A, B, a, b\}, \{a, b\}, S, \{\dots\}\}\}$$

$$S \longrightarrow AB$$
 $S \longrightarrow AB$ $A \longrightarrow aA \mid a$ $A \longrightarrow a \mid a$ $B \longrightarrow Bb \mid b$ $B \longrightarrow b$

Prima di tutto notiamo che $A \longrightarrow aA$ produce a^n con $n \ge 1$, e $B \longrightarrow Bb$ produce b^m con $m \ge 1$. Dopodiché notiamo che la grammatica G_3 non è altro che la concatenazione di stringhe.

$$L(G_3) = \{w_4w_5 \mid w_4 \in L(G_4) \land w_5 \in L(G_5)\}$$

dove G_4 e G_5 sono definiti dalle produzioni

$$G_4: A \longrightarrow aA \mid a$$

 $G_5: B \longrightarrow Bb \mid b$

Esercizio

$$S \longrightarrow aSBc \mid abc$$

$$cB \longrightarrow Bc$$

$$bB \longrightarrow bb$$

La grammatica non è libera.

Esercizio

 $G_6: S \longrightarrow aB$ è una grammatica?

É possibile ricostruire la grammatica dalle sue produzioni:

$$(\{S, B, a\}, \{a\}, S, \{S \longrightarrow aB\})$$

Quale linguaggio genera? Nessuno 🗸, vuoto 🗸

$$L(G_6) = \emptyset$$

Esercizio

 $G_7: S \longrightarrow \varepsilon$ è una grammatica?

$$(\{S\}, \emptyset, S, \{S \longrightarrow \varepsilon\})$$

Quale linguaggio genera?

$$L(G_7) = \{\varepsilon\}$$

$$S \longrightarrow \varnothing B \mid 1A$$

$$cB \longrightarrow \varnothing \mid \varnothing S \mid 1AA$$

$$bB \longrightarrow \mid 1S \mid \varnothing BB$$

Il linguaggio che ha come insieme di produzioni quello elencato sopra produce il seguente linguaggio

$$L(G_8) = \{w \mid count(0, w) = count(1, w)\}$$

Questa grammatica produce l'insieme delle parole con le combinazioni di zeri e uni, con lo stesso no. di zeri e di uni. In questo caso l'ordine degli zeri e degli uni non conta.

Esercizio

Definisci G_9 tale che $L(G_2) = \{a^k b^n\}$.

Possono esserci diversi approcci per risolvere il problema, il primo e più semplice è quello di approcciare il problema tramite dividi-et-impera: si scompone quindi un problema complesso in tanti problemi più semplici.

La soluzione è quindi la seguente:

$$S \longrightarrow AB$$

$$A \longrightarrow aA \mid a$$

$$B \longrightarrow bB \mid b$$

Notiamo che il primo passaggio consiste nella trasformazione del simbolo iniziale in simboli non-terminali che a loro volta vengono scomposti in simboli terminali, almeno parzialmente.

Un altro approccio consiste nel produrre una sola stringa a in posizione iniziale.

$$S \longrightarrow aS \mid aB$$
$$A \longrightarrow bB \mid b$$
$$B \longrightarrow B \mid b$$

In modo tale che i coefficienti k ed n siano realmente diversi fra loro, a differenza dell'approccio dividi-et-impera nella quale i coefficienti risultavano in un caso particolare essendo uguali.

Un terzo approccio consiste nell'usa la definizione formale di derivazione.

$$S \longrightarrow ab \mid aS \mid Sb$$

Producendo così $S + a^i S b^i$.

Esercizio

Definisci G_9 tale che $L(G_2) = \{a^k b^n c^{2n}\}.$

In questo caso bisogna far sì che il no. di occorrenze della stringa b sia esattamente il doppio del no. di occorrenze della stringa c.

$$S \longrightarrow AB \mid aB$$
$$A \longrightarrow aA \mid a$$
$$B \longrightarrow bBcc \mid bcc$$

La parole più piccola che è possibile produrre con questa grammatica è abcc dopo il no. di occorrenze di c è il doppio di quello di b.

Definisci G_{10} tale che $L(G_2) = \{a^k b^n d^k\}$.

$$S \longrightarrow AB$$
 2 parametri: $k \text{ ed } n$
$$A \longrightarrow abb$$

$$B \longrightarrow db$$

Nota che la stringa a e la stringa d hanno lo stesso no. di occorrenze.

Ricorda. Sintetico è bello.

Una soluzione alternativa alla precedente potrebbe essere.

$$S \longrightarrow aSdd \longrightarrow aBdd$$

$$B \longrightarrow bB \mid b$$

2.6 Albero di derivazione

$$S \longrightarrow aSb$$

$$S \longrightarrow aSb \implies aabb$$

aabb è la parola generata.

Figura 1: Albero di derivazione

Consideriamo ad esempio la produzione $E \longrightarrow E + E \mid E * E \mid 4$ e la parola 4 + 4 + 4. L'albero di derivazione è il seguente:

Figura 2: Esempio di left-most derivation: è associativa a sinistra come la somma

Mentre se consideriamo la parola 4 + 4 * 4, l'albero di derivazione è il seguente:

Figura 3: Esempio di right-most derivation: è associativa a destra come la moltiplicazione

$$S \longrightarrow \text{ if } b \text{ then } S \mid \text{ if } b \text{ then } S \text{ else } S \mid altro$$

che produce la seguente parola appartenente al linguaggio

w: if b then if b then altro else altro

rappresentiamolo come albero di derivazione:

Figura 4: Esempio di derivazione di un if-then-else statement

w risulta essere ambigua: sono presenti due derivazioni (una left-most ed una right-most) che producono la stessa parola.

$$G = (V, T, S, P)$$

è una grammatica libera se tutte le produzioni sono del tipo $A \longrightarrow B$, dove $B \in V^*$ e A è un simbolo non-terminale.

Un linguaggio L è libero da contesto se esiste una grammatica libera da contesto G tale che L = L(G). Dato L possono esistere più grammatiche distinte che generano L.

In generale, dato un linguaggio L e una grammatica G, non esiste un lagoritmo per dimostrare che L = L(G).

Inoltre **non esiste** un algoritmo per dimostrare che G è ambigua.

2.7 Unione di linguaggi

Lemma 1. La classe dei linguaggi liberi è chiusa rispetto all'unione. Cioè dati generici linguaggi liberi L_1 e L_2 , il linguaggio che contiene tutte e sole le parole $w \in L_1 \cup L_2$ appartiene essa stessa alla classe dei linguaggi liberi.

Se L_1 ed L_2 sono definiti come segue

$$L_1 \text{ libero} \implies \exists G_1 = (V_1, T_1, S_1, P_1) \text{ t.c. } L_1 = L(G_1)$$

 $L_2 \text{ libero} \implies \exists G_2 = (V_2, T_2, S_2, P_2) \text{ t.c. } L_2 = L(G_2)$

allora la loro unione definisce L_3

$$L_3 \longrightarrow G_3 = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, \{S\}, P_1 \cup P_2 \cup \{S \longrightarrow S_1 \mid S_2)$$

dove S è nuovo rispetto a V_1 e a V_2 .

Nota. Tutto questo è vero solo se abbiamo ridenominato i simboli non-terminali di G_1 e G_2 in modo da non avere omonimie.

$$L_1$$
 $S_1 \longrightarrow a$ $(\{S_1, a\}, \{a\}, S_1, \underbrace{S_1 \longrightarrow a}_{P_1})$

$$L_2$$
 $S_2 \longrightarrow b$ $(\{S_2, b\}, \{b\}, S_2, \underbrace{S_2 \longrightarrow b}_{P_2})$

$$L_3 \qquad S \longrightarrow S1 \mid S_2 \qquad (\{S_1, a, S_2, b\}, \{a, b\}, \{S\}, \{S \longrightarrow S_1 \mid S_2, \underbrace{S_1 \longrightarrow a}_{P_1}, \underbrace{S_2 \longrightarrow b}_{P_2}\})$$

2.8 Concatenazione di linguaggi

Lemma 2. concatenazione di linguaggi La classe dei linguaggi liberi è chiusa rispetto alla concatenazione. Cioè se L_1 ed L_2 sono liberi, allora L_3 definito come $\{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$ è un linguaggio libero.

Nota. L'unione delle parole appartenenti alle produzioni di due linguaggi liberi produce un linguaggio libero.

$$G_1 \quad \{aa\} \left\{ \begin{array}{l} S_1 \longrightarrow aA_1 \\ A_1 \longrightarrow a \end{array} \right\}$$

$$G_2 \quad \{bb\} \left\{ \begin{array}{l} S_2 \longrightarrow bA_2 \\ A_2 \longrightarrow b \end{array} \right\}$$

Ricorda. Se ho due modi diversi per derivare aa vuol dire che la grammatica è **ambigua**, non vuol dire che non sia libera.

Ricorda. Per lo stesso linguaggio potremmo trovare una grammatica libera ambigua, ed una grammatica non libera e non ambigua. Come nel caso precedente devo preoccuparmi di ridenominare i simboli non-terminali in modo tale da evitare che ci siano omonimie.

Sia G_2' la grammatica (V_2', T_2, S_2', P_2') , dove V_2', S_2', P_2' sono possibili ridenominazioni dei non terminali per evitare clash con i simboli non terminali di G_1 .

Sia S nuovo tale che $S \notin V_1 \cup V_2'$.

Allora
$$G = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, S, P_1 \cup P_2' \cup \{S \longrightarrow S_1 S_2\})$$

Visto come albero di derivazione

Figura 5: Albero di derivazione

Nota. I simboli non-terminali hanno solo una funzione ausiliaria, poiché guidano le trascrizioni, ma di fatto — alla fine — scompaiono.

Determina se la grammatica è ambigua

$$G_i$$
 $S \longrightarrow aSc \mid aTc \mid T$
 $T \longrightarrow bTa \mid ba$

Ricorda. La prima cosa da fare quando avete una grammatica è capire che linguaggio genera.

$$L_i = \{a^n b^m a^m c^n \mid n \ge 0, m > 0\}$$

Figura 6: Esempio di grammatica ambigua

Nota. Dopo un passaggio di derivazione siamo arrivati alla stessa situazione nei due alberi di derivazione.

La grammatica G è ambigua: esistono cioè due derivazioni differrenti (entrmbi left-most o right-most) che portano alla stessa parola w.

Esercizio con grammatica non libera

$$S \longrightarrow CD$$

$$C \longrightarrow aCA \mid bCB$$

$$AD \longrightarrow aD$$

$$BD \longrightarrow bD$$

$$Aa \longrightarrow aA$$

$$Ab \longrightarrow bA$$

$$Ba \longrightarrow aB$$

$$Bb \longrightarrow bB$$

$$C \longrightarrow \varepsilon$$

$$D \longrightarrow \varepsilon$$

$$L = \{ww \mid w \text{ è una stringa sull'alfabeto } \{a, b\}\} \cup \{\varepsilon\}$$

Nota. Non esiste una grammatica libera che genera lo stesso linguaggio.

Esercizio

Dato la parola

 $\{abab\}$

riuscite a generare una grammatica libera da contesto che produca lo stesso linguaggio?

$$S \longrightarrow abab$$

$$S \longrightarrow aSb \mid \varepsilon$$

$$S \longrightarrow aSa \mid \varepsilon$$

$$S \longrightarrow aSb \mid bAa$$

$$A \longrightarrow aAb$$

$$S \longrightarrow AB$$

$$A \longrightarrow aA \mid aB \mid \varepsilon$$

$$B \longrightarrow bB \mid bA\varepsilon$$

Figura 7: Albero di derivazione

Nota. Non è un linguaggio libero, quindi non esiste una grammatica libera che lo generi. (?)

2.9 Pumping Lemma

Lemma 3 (Pumping lemma per linguaggi liberi). (ipotesi) Sia L un linguaggio libero. (tesi) Allora $\exists p \in \mathbb{N}^+$ (esiste una costante strettamente maggiore di zero) tale che $\forall z \in L : |z| > p$. (per ogni parola appartenente al linguaggio maggiore di quella costante)

$$\exists uvwxy: (z = uvwxy \land esistono \ 5 \ sotto-stringhe \ ordinate \ tali \ che \ valgono \ le \ seguenti \ condizioni \\ |vwx| \leqslant p \land queste \ componenti \ sono \ strettamente \ maggiori \ di \ p \\ |vx| > 0 \land almeno \ una \ delle \ due \ non \ \grave{e} \ \varepsilon \\ \exists i \in \mathbb{N}: uv^iwx^iy \in L) vale \ questa \ condizione$$

Dimostrazione. L è un linguaggio libero.

 \implies esiste una grammatica G in forma normale di Chowsky tale che L = L(G).

Definiamo p come la lunghezza della parola più lunga che può essere derivata usando un albero di derivazione i cui cammini dalla radice sono lunghi al più $|V \subset T|$ (il no. di simboli non-terminali della grammatica).

$$S \longrightarrow aSb \mid ab$$

Figura 8: Più passi di derivazione

$$S \longrightarrow A_1 \longrightarrow A_2 \longrightarrow \ldots \longrightarrow A_k \longrightarrow a$$

Ora dimostriamo che L_1 non sia un linguaggio libero sfruttando la dimostrazione di cui sopra

$$L1 = \{ww \mid w \in a, b^*\}$$
non è libero

Dimostrazione. Supponiamo che L_1 sia libero.

Sia p un no. naturale e positivo qualunque.

Sia $z = a^p b^p a^p b^p$ allora $z \in L_1, |z| > p$

$$z = \underbrace{a, \dots, a}_{p} \underbrace{bb, \dots, b}_{p} \underbrace{a, \dots, a}_{p} \underbrace{b, \dots, b}_{p}$$

Siano uvwxy tali che $z = uvwxy \land |vwx| \land |vx| > 0$.

- ⇒ distinguiamo varie possibilità
 - 1. vwx è composto solo da a in w_1 ;
 - 2. vwx contiene sia a che b in w_1 ;
 - 3. vwx contiene solo b di w_1 ;

- 4. vwx contiene b di w_1 e a di w_2 ;
- **5**. vwx contiene solo a di w_2 ;
- 6. vwx contiene $a \in b \text{ di } w_2$;
- 7. vwx contiene b di w_2 .
- \implies nei casi 1, 3, 5, 7 considero la parola $z' = uv^0wx^0y$
 - 1. $z' = \underline{a}^k b^p a^p b^p \text{ con } k < p, z' \notin L;$
 - **3**. $z' = a^p b^k a^p b^p \text{ con } k < p;$
 - **5**. $z' = a^p b^p \underline{a^k} b^p \operatorname{con} k < p;$
 - 7. $z' = a^p b^p a^p b^k \text{ con } k < p$.
- \implies nei casi 2, 4, 6 considero la parola $z' = uv^0wx^0y$
 - 2. z' ha una delle tre possibili forme:

$$z' = \underline{a^k}b^p a^p b^p \text{ con } k$$

$$z' = a^p \underline{b^k} a^p b^p \text{ con } k$$

$$z' = a^j b^k a^p b^p \text{ con } j, k < p$$

analogo per 4. e 6.

2.10 Usi scorretti del Pumping lemma

Ricorda. Se devo dimostrare la negazione della tesi del p.l. devo dimostrare un asserto che vale $\forall p \in \mathbb{N}^+$.

Consideriamo l'equazione

$$\{ww \mid w \in \{a, b\}^*\}$$

Sia $z = a^p a^p$.

Sia $z = (ab)^p (ab)^p$.

Prendo p = 4

Ricorda. In questa dimostrazione l'unica che si può scegliere è la z, nessun altro parametro può essere scelto.

2.11 Esercizi

Il linguaggio $L_{17} = \{a^nb^nc^m \mid n, m > 0\}$ è libero?

Ricorda. Alla luce delle nostre conoscenze per dimostrare che un linguaggio è libero dobbiamo trovare una grammatica che lo genera, mentre per dimostrare che **non** lo sia dobbiamo usare il pumping lemma per contraddizione.

$$G_1: S \longrightarrow aSb \mid B$$

Pagina 14 di 17

$$B \longrightarrow cB \mid \varepsilon$$

Figura 9: Albero di derivazione

 $acb \notin L_{17}$

$$G_2:$$
 $S \longrightarrow AB$
 $A \longrightarrow aAb \mid \varepsilon$
 $B \longrightarrow Bc \mid \varepsilon$

$$G_3:$$
 $S \longrightarrow AB$
 $A \longrightarrow aAb \mid ab \mid \varepsilon$
 $B \longrightarrow Bc \mid c \mid \varepsilon$

è ambigua perchè non in Chomsky normal form

Ricorda. Non bisogna prendere un'unica istanza di un oggetto dove è definita la quantificazione universale.

Ricorda. Per dire che un linguaggio non è libero usiamo il pumping lemma per contraddizione.

2.12 Come dimostrare che un linguaggio non è libero

Dimostrazione che L_1 non è libero.

- 1. Supponiamo che L_1 sia libero;
- 2. Dimostriamo la negazione della tesi del pumping lemma per L_1 ;
- 3. Concludiamo con la frase "Questo contraddice il pumping lemma, quindi L_1 non è libero".

Ricorda. La negazione della tesi del pumping lemma

$$\forall p \in \mathbb{N}^+ \exists z \in L : |z| > p.$$

Ricorda. tutto ciò che scriviamo nel punto 2 deve essere indipendente dai valori attuali di p, u, v, w, x, y (vuol dire che deve valere per valori arbitrari di p, u, v, w, x, y)

2.13 Esercizi

$$L_1 = \{a^n b^n c^m \mid n, m \ge 0\}$$
 LIBERO

è composto dai linguaggi $\{a^nb^n\mid n\geqslant 0\} \land \{c^m\mid m\geqslant 0\}$. Grammatica non ambigua di L_1

$$G_1:$$
 $S \longrightarrow AB \mid A \mid B \mid \varepsilon$
 $A \longrightarrow aAb \mid ab$
 $B \longrightarrow cB \mid c$

$$L_2 = \{a^m b^n c^n \mid n, m \ge 0\}$$

$$L_3 = \{a^n b^n c^n \mid m \ge 0\}$$
NON LIBERO

Nota. L_3 non è libero per il pumping lemma.

Supponiamo L_3 libero.

Sia $p \in \mathbb{N}^+$. Sia $z = a^p b^p c^p$.

Allora $z \in L_3, |z| > p$.

$$z = \underbrace{aa, \dots a}_{p} \underbrace{bb, \dots b}_{p} \underbrace{cc, \dots c}_{p}$$

Siano uvwxy tali che $z = uvwxy \land |vwx| \le p \land |vx| > 0$ allora distinguiamo i casi:

- 1. vwx è composto solo da a in A;
- 2. vwx è composto sia da a in A che da b in B;
- 3. vwx è composto solo da b in B;
- 4. vwx è composto sia da B in B che da c in C;
- 5. vwx è composto solo da c in C.

$$z' = uv^0wx^0y$$

1.
$$a^k b^p c^p$$
 $k ;$

2.
$$a^k b^j c^p$$
 k

3.
$$a^p b^k c^p$$
 k

$$4. \ a^{p}b^{k}c^{j} \qquad k$$

5.
$$a^p b^p c^k$$
 $k ;$

2.14 Intersezione di linguaggi

Lemma 4 (intersezione). La classe di linguaggi liberi non è chiusa rispetto all'intersezione.

Dimostrazione. L_1 è libero

 L_2 è libero

 L_3 non è libero.

Ricorda. L'intersezione di due linguaggi liberi può essere che non sia un linguaggio libero.

2.15 Esercizi

$$L_4 = \{a^n b^m c^{n+m} \mid n, m > 0\}$$

è equivalente a

$$L_4 = \{a^n b^m c^n c^m \mid n, m > 0\}$$
LIBERO

una grammatica che genera questo linguaggio è il seguente

$$S \longrightarrow \underline{aSc} \mid aBc$$
$$B \longrightarrow \underline{bBc} \mid \underline{bc}$$

che produce il seguente albero di derivazione

Figura 10: Albero di derivazione

Altro giro, altra corsa

$$L_5 = \{a^n b^m c^n d^m \mid n, m > 0\}$$
 NON LIBERO

$$L_6 = \{wcw^R \mid w \in \{a, b\}^+\}$$

 \boldsymbol{w}^R sta per REVERSE di \boldsymbol{w} cio
è la parola uguale a \boldsymbol{w} letta da destra verso sinistra.

$$S \longrightarrow aSb \mid bSa \mid a$$
 NON LIBERO $S \longrightarrow aSa \mid bSb \mid c$ NON LIBERO $S \longrightarrow aSa \mid bSb \mid bcb$ LIBERO