1. What is the energy and momentum of photon of a LASER beam of wavelength 6328 Angstrom? (h= 6.6×10^{-34} JS, C = 3×10^{8} m/s)

A. 3.128 X 10^{-19} J and 1.04 X 10^{-27} kg.m/Sec B. 31.28 X 10^{-19} J and 10.44 X 10^{-27} kg.m/Sec C. 5.65 X 10^{-16} J and 4.454 X 10^{-30} kg.m/Sec D. 55.128 X 10^{-16} J and 4.454 X 10^{-30} kg.m/Sec

1. What is the energy and momentum of photon of a LASER beam of wavelength 6328 Angstrom? (h= 6.6×10^{-34} JS, C = 3×10^{8} m/s)

A. 3.128 X 10^{-19} J and 1.04 X 10^{-27} kg.m/Sec

B. 31.28 X 10^{-19} J and 10.44 X 10^{-27} kg.m/Sec

C. 5.65 X 10^{-16} J and 4.454 X 10^{-30} kg.m/Sec

D.55.128 X 10^{-16} J and 4.454 X 10^{-30} kg.m/Sec

Given
$$\lambda = 6328 \times 10^{-10}$$
 m, $h = 6.63 \times 10^{-34}$ J K sec. and $c = 3 \times 10^8$ m/sec. Formula used $E = hv = \frac{hc}{\lambda}$
$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6.328 \times 10^{-7}} = 1.05 \times 10^{-19} \text{ Joule}$$

$$E = 3.1.23 \text{ Joule}$$
 Momentum $p = \frac{E}{c} = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{6.328 \times 10^{-7}} = 1.05 \times 10^{-27} \text{ kg} \cdot \text{m/sec}$
$$p = 1.05 \text{ kg} \cdot \text{m/sec}.$$

2. What is the energy of a Ruby LASER pulse, if the wavelength of the emitted radiation and the number of Cr^{3+} ions are 6943 Angstrom and 2. 8 X 10^{19} respectively?

A.11.24 J

B.10.69 J

C.7.98 J

D.5.66 J

2. What is the energy of a Ruby LASER pulse, if the wavelength of the emitted radiation and the number of Cr^{3+} ions are 6943 Angstrom and 2.8 X 10^{19} respectively? A.11.24 J

B.10.69 J

C.7.98 J

D.5.66 J

Calculate the energy of laser pulse in a ruby laser for 2.8×10^{19} Cr³⁺ ions. If the laser emits radiation of wavelength 6943Å.

Given:
$$\lambda = 6943 \times 10^{-10} \text{ m}, n = 2.8 \times 10^{19}$$

The energy of a photon, = hv and the total energy due to $n \text{ Cr}^{3+}$ ions is

$$E = nhv = n\frac{hc}{\lambda} = 2.8 \times 10^{19} \cdot \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6.943 \times 10^{-7}}$$

3. A three-level laser emits a light of wavelength of 5500 Å, What will be the ratio of population of upper level (E_2) to the lower energy level (E_1) if the optical pumping mechanism is shut off (Assume T = 300 K)?

A.
$$1.3 \times 10^{-48}$$

B.
$$1.3 \times 10^{-28}$$

C.
$$1.3 \times 10^{-18}$$

D.
$$1.3 \times 10^{-38}$$

3. A three-level laser emits a light of wavelength of 5500 Å, What will be the ratio of population of upper level (E_2) to the lower energy level (E_1) if the optical pumping mechanism is shut off (Assume T =

300 K)?

A. 1.3
$$\dot{X}$$
 10^{-48}

B.
$$1.3 \times 10^{-28}$$

C. 1.3 X
$$10^{-18}$$

D. 1.3
$$\times 10^{-38}$$

Given $\lambda = 5500 \text{ Å}$

Formula used is

$$E_2 - E_1 = hv = \frac{hc}{\lambda}$$

$$= \frac{(6.63 \times 10^{-34} \text{ J/sec}) \times (3 \times 10^8 \text{ m/sec})}{(5.5 \times 10^{-7} \text{ m}) \times (1.6 \times 10^{-19} \text{ J/eV})}$$

$$= 2.26 \text{ eV}$$

and kT can be calculated as

$$kT = (8.62 \times 10^{-5} \text{ eV/K}) \times (300 \text{ K})$$

= 0.0259 eV

The ratio of upper to the lower energy levels i.e.,

$$\frac{E_2}{E_1} = e^{(-E_2 - E_1)/kT} = e^{-2.26/0.0259}$$
$$= e^{-87.3}$$
$$\frac{E_2}{E_1} = 1.3 \times 10^{-38}$$

4. At what temperature the ratio in the previous question (Q: 3) would be 1/2?

A. 57842 K

B. 27854 K

C. 37832 K

D. 47854 K

4. At what temperature the ratio in the previous question (Q: 3) would be 1/2?

A. 57842 K or
$$e^{(E_2 - E_1)/kT} = 2 \text{ or } \frac{E_2 - E_1}{kT} = \log_e^2$$
B. 27854 K or
$$T = \frac{E_2 - E_1}{K \log e^2} = \frac{2.26 \text{ eV}}{\left(8.62 \times 10^{-5} \frac{\text{eV}}{K}\right) \times (0.693)} = 37832.75 \text{ K}$$
C. 37832 K or
$$T = 37832 \text{ K}$$

This temperature is much hotter than the sun.

5. Calculate the power per unit area delivered by a laser pulse of energy 4×10^{-3} Joule, the pulse length in time as 10^{-9} sec and when the pulse is focused on target to a very small spot of radius 1.5×10^{-5} m.

A. $5.7 \times 10^{20} \text{ W} \cdot \text{m}^{-2}$

B. $5.7 \times 10^{15} \text{ W} \cdot \text{m}^{-2}$

C. 5. $7 \times 10^{10} \text{ W} \cdot \text{m}^{-2}$

D. $5.7 \times 10^5 \text{ W} \cdot \text{m}^{-2}$

5. Calculate the power per unit area delivered by a laser pulse of energy $4~X~10^{-3}$ Joule, the pulse length in time as 10^{-9} sec and when the pulse is focused on target to a very small spot of radius $1.5~X~10^{-5}$ m.

A.
$$5.7 \times 10^{20} \text{ W} \cdot \text{m}^{-2}$$

B.
$$5.7 \times 10^{15} \text{ W} \cdot \text{m}^{-2}$$

C. 5.
$$7 \times 10^{10} \text{ W} \cdot \text{m}^{-2}$$

D. 5.
$$7 \times 10^5 \text{ W} \cdot \text{m}^{-2}$$

Given
$$P = 4.0 \times 10^{-3} \text{ J}$$
, $r = 1.5 \times 10^{-5} \text{ m}$

Formula used for power delivered per unit area is given by

$$I = \frac{P}{A}$$
, where $P = \frac{4.0 \times 10^{-3} \text{ J}}{10^{-9} \text{ sec.}}$

$$P = 4.0 \times 10^6 \text{ W}$$

and
$$A = \pi r^2 = 3.14 \times (1.5 \times 10^{-5})^2 = 7.065 \times 10^{-10} \text{ m}^2$$

so
$$I = \frac{P}{A} = \frac{4.0 \times 10^6 \text{ W}}{7.065 \times 10^{-10} \text{ m}^2} = 5.7 \times 10^{15} \text{ W/m}^2$$

or
$$I = 5.7 \times 10^{15} \text{ W/m}^2$$