Invertible Matrix Theorem

Milan Capoor

October 19, 2021

For a given $n \times n$ matrix A:

- 1. A is an invertible matrix
- 2. A is row equivalent to I_n
- 3. A has n pivot positions
- 4. The equation Ax = 0 has only the trivial solution
- 5. The columns of A form a linearly independent set
- 6. The linear transformation $x \mapsto Ax$ is one-to-one
- 7. The equation Ax = b has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$
- 8. The columns of A span \mathbb{R}^n
- 9. The linear transformation $x \mapsto Ax$ maps \mathbb{R}^n onto \mathbb{R}^n
- 10. There is an $n \times n$ matrix C such that CA = I
- 11. There is an $n \times n$ matrix D such that AD = I
- 12. A^T is an invertible matrix
- 13. The columns of A form a basis of \mathbb{R}^n
- 14. Col A = \mathbb{R}^n
- 15. dim Col A = n
- 16. $\operatorname{rank} A = n$
- 17. Nul $A = \{0\}$

- 18. dim Nul A=0
- 19. $\det A \neq 0$
- $20.\ 0$ is not an eigenvalue of A