```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings('ignore')
```

```
In [2]: df = pd.read_csv("D:\Datasets\kaggle_Titanic_train.csv")
  test = pd.read_csv("D:\Datasets\kaggle_Titanic_test.csv")
```

```
In [3]: print(df.shape)
print(test.shape)
```

(891, 12) (418, 11)

In [4]: df.head()

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										•

In [5]: test.head()

Out[5]:		Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Em
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
	4											

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
			· · · · · · · · · · · · · · · · · · ·

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

```
In [7]: test.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 418 entries, 0 to 417
        Data columns (total 11 columns):
             Column
                         Non-Null Count Dtype
                         -----
         0
            PassengerId 418 non-null
                                        int64
                         418 non-null
                                        int64
         1
            Pclass
         2
            Name
                         418 non-null object
         3
            Sex
                         418 non-null object
         4
                        332 non-null float64
            Age
         5
                        418 non-null int64
            SibSp
         6
            Parch
                         418 non-null int64
         7
                        418 non-null object
            Ticket
         8
            Fare
                        417 non-null
                                        float64
         9
            Cabin
                         91 non-null
                                        object
         10 Embarked
                        418 non-null
                                        object
        dtypes: float64(2), int64(4), object(5)
        memory usage: 36.1+ KB
In [8]: |df.columns
Out[8]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
               'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
             dtype='object')
In [9]: |test.columns
Out[9]: Index(['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch',
               'Ticket', 'Fare', 'Cabin', 'Embarked'],
              dtype='object')
```

Data Understanding

- · Passengerld : Unique Passengerld
- Survived : Passenger survived Yes(1) or No(0)
- Pclass: Passenger class (1st=1,2nd=2,3rd=3)
- · Name: Passenger Name
- Sex : Male/Female
- Age : Passenger Age
- SibSp: # of siblings / spouses aboard the Titanic
- Parch: # of parents / children aboard the Titanic
- · Ticket: Passenger ticket number
- · Fare: Passenger fare
- Cabin : Passenger Cabin number
- · Embarked : Port of Embarkation

```
In [10]: df['PassengerId'].nunique()
Out[10]: 891
```

```
In [11]: df['Survived'].value_counts()
Out[11]: 0
               549
               342
         Name: Survived, dtype: int64
In [12]: |df['Pclass'].value_counts()
Out[12]: 3
              491
         1
               216
               184
         Name: Pclass, dtype: int64
In [13]: df['Name'].nunique()
Out[13]: 891
In [14]: |df['Sex'].value_counts()
Out[14]: male
                    577
         female
                    314
         Name: Sex, dtype: int64
In [15]: df['SibSp'].value_counts()
Out[15]: 0
               608
               209
         2
                28
         4
                18
         3
                16
         8
                 7
         5
                 5
         Name: SibSp, dtype: int64
In [16]: df['Parch'].value_counts()
Out[16]: 0
               678
               118
         1
         2
                80
         5
                 5
                 5
         3
         4
                 4
                 1
         Name: Parch, dtype: int64
In [17]: | df['Embarked'].value_counts()
Out[17]: S
               644
         C
               168
                77
         Name: Embarked, dtype: int64
```

```
In [18]: continous=['PassengerId', 'Age', 'Fare']
    discrete_categorical=['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked']
    discrete_count=['Survived', 'Pclass', 'SibSp', 'Parch']
```

Exploratory Data Analysis(EDA)

In [19]: df[continous].describe()

Out[19]:

	Passengerld	Age	Fare
count	891.000000	714.000000	891.000000
mean	446.000000	29.699118	32.204208
std	257.353842	14.526497	49.693429
min	1.000000	0.420000	0.000000
25%	223.500000	20.125000	7.910400
50%	446.000000	28.000000	14.454200
75%	668.500000	38.000000	31.000000
max	891.000000	80.000000	512.329200

```
In [20]: plt.rcParams['figure.figsize']=(10,8)

plt.subplot(1,3,1)
sns.histplot(df['PassengerId'],kde=True)

plt.subplot(1,3,2)
sns.histplot(df['Age'],kde=True)

plt.subplot(1,3,3)
sns.histplot(df['Fare'],kde=True)

plt.suptitle('Univariate Analysis on Numerical columns')
plt.show()
```

Univariate Analysis on Numerical coluumns

In [21]: df[continous].corr()

_			
m	11+	1 ') 1	
v	uч	41	

	Passengerld	Age	Fare
Passengerld	1.000000	0.036847	0.012658
Age	0.036847	1.000000	0.096067
Fare	0.012658	0.096067	1 000000

In [22]: sns.heatmap(df[continous].corr(),annot=True)
 plt.show()


```
In [23]: plt.subplot(1,3,1)
    sns.boxplot(df['PassengerId'])

plt.subplot(1,3,2)
    sns.boxplot(df['Age'])

plt.subplot(1,3,3)
    sns.boxplot(df['Fare'])

plt.suptitle('Outliers in the Data')
    plt.show()
```

Outliers in the Data

In [24]: df[continous].skew()

Out[24]: PassengerId 0.000000 Age 0.389108 Fare 4.787317

dtype: float64

In [25]: sns.histplot(df['Fare'],kde=True)
 plt.show()

In [26]: df[discrete_categorical].describe()

Out[26]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Braund, Mr. Owen Harris	male	347082	B96 B98	S
freq	1	577	7	4	644

In [27]: df[discrete_count].describe()

Out[27]:

	Survived	Pclass	SibSp	Parch
count	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	0.523008	0.381594
std	0.486592	0.836071	1.102743	0.806057
min	0.000000	1.000000	0.000000	0.000000
25%	0.000000	2.000000	0.000000	0.000000
50%	0.000000	3.000000	0.000000	0.000000
75%	1.000000	3.000000	1.000000	0.000000
max	1.000000	3.000000	8.000000	6.000000

```
In [28]: sns.countplot(x=df['Survived'])
plt.show()
```



```
In [29]: custom_palette = ['#FF6347', '#4682B4', '#3CB371']
    sns.displot(x='Age', hue='Survived', data=df,kde=True,palette=custom_palett
    plt.show()
```



```
In [30]: import matplotlib.pyplot as plt

# Assuming df is your DataFrame
sex_counts = df['Sex'].value_counts()
sex_labels = df['Sex'].unique()

# Create the explode list with the same length as the number of unique valu
explode = [0.02] * len(sex_labels)

plt.pie(x=sex_counts, labels=sex_labels, autopct='%0.1f%%', explode=explode
plt.legend()
plt.show()
```



```
In [31]: sns.countplot(x=df['Pclass'])
plt.show()
```



```
In [32]: sns.countplot(x=df['SibSp'])
plt.show()
```



```
In [33]: sns.countplot(x=df['Parch'])
plt.show()
```


In [34]: sns.countplot(x='Survived', hue='Pclass', data=df,palette='viridis')
plt.show()


```
In [35]: sns.countplot(x='Embarked', hue='Survived', data=df,palette='viridis')
plt.show()
```


Data prepration

Missing Value Treatments on Train data

```
In [36]:
         #checking no.of missing values
          df.isnull().sum()
Out[36]: PassengerId
                           0
                           0
          Survived
          Pclass
                           0
          Name
                           0
          Sex
                           0
                         177
          Age
          SibSp
                           0
          Parch
                           0
                           0
          Ticket
          Fare
                           0
          Cabin
                         687
          Embarked
                           2
          dtype: int64
```

```
In [37]:
          #checking percentage of missing values
           df.isnull().sum()/len(df)*100
Out[37]: PassengerId
                             0.000000
           Survived
                             0.000000
           Pclass
                             0.000000
          Name
                             0.000000
           Sex
                             0.000000
                            19.865320
           Age
           SibSp
                             0.000000
           Parch
                             0.000000
           Ticket
                             0.000000
           Fare
                             0.000000
           Cabin
                            77.104377
           Embarked
                             0.224467
           dtype: float64
In [38]:
          df.drop(columns=['Cabin'],inplace=True)
In [39]:
          df.head()
Out[39]:
              Passengerld Survived Pclass
                                               Name
                                                        Sex
                                                            Age SibSp Parch
                                                                                   Ticket
                                                                                             Fare
                                              Braund,
           0
                                 0
                        1
                                                                                A/5 21171
                                                                                           7.2500
                                            Mr. Owen
                                                       male 22.0
                                                                      1
                                               Harris
                                            Cumings,
                                            Mrs. John
                                              Bradley
                        2
                                                                      1
                                                                                PC 17599 71.2833
           1
                                 1
                                                      female 38.0
                                            (Florence
                                               Briggs
                                                Th...
                                            Heikkinen,
                                                                                STON/O2.
           2
                        3
                                         3
                                                                      0
                                                                                           7.9250
                                                Miss.
                                                      female 26.0
                                                                                 3101282
                                                Laina
                                             Futrelle,
                                                Mrs.
                                             Jacques
           3
                        4
                                 1
                                                      female 35.0
                                                                      1
                                                                             0
                                                                                  113803 53.1000
                                               Heath
                                             (Lily May
                                                Peel)
                                            Allen, Mr.
                        5
                                              William
                                                       male 35.0
                                                                             0
                                                                                  373450
                                                                                           8.0500
                                               Henry
In [40]:
          df['Embarked'].value_counts()
Out[40]:
          S
                644
           C
                168
                 77
           Q
           Name: Embarked, dtype: int64
In [41]:
          df['Embarked'].fillna('S',inplace=True)
```

df['Age'].fillna(df['Age'].mean(),inplace=True)

In [42]:

```
In [43]: | df.isnull().sum()
Out[43]: PassengerId
          Survived
                         0
          Pclass
                         0
         Name
                         0
          Sex
                         0
          Age
                         0
          SibSp
                         0
                         0
          Parch
         Ticket
                         0
          Fare
                         0
          Embarked
                         0
          dtype: int64
          Missing Value Treatments on Test data
In [44]: #checking no.of missing values
         test.isnull().sum()
Out[44]: PassengerId
          Pclass
                           0
          Name
                           0
          Sex
                           0
          Age
                          86
                           0
          SibSp
          Parch
                           0
          Ticket
                           0
          Fare
                           1
         Cabin
                         327
          Embarked
          dtype: int64
In [45]: #checking percentage of missing values
         test.isnull().sum()/len(df)*100
Out[45]: PassengerId
                          0.000000
          Pclass
                          0.000000
          Name
                          0.000000
          Sex
                          0.000000
          Age
                          9.652076
          SibSp
                          0.000000
          Parch
                          0.000000
                          0.000000
          Ticket
          Fare
                          0.112233
          Cabin
                         36.700337
          Embarked
                          0.000000
          dtype: float64
In [46]: | test['Fare'].fillna(test['Fare'].mean(),inplace=True)
In [47]: | test.drop(columns=['Cabin'],inplace=True)
```

```
In [48]: test['Age'].fillna(test['Age'].mean(),inplace=True)
In [49]: test.isnull().sum()
Out[49]: PassengerId
         Pclass
                         0
         Name
                         0
         Sex
                         0
                         0
         Age
         SibSp
                         0
         Parch
                         0
         Ticket
                         0
         Fare
                         0
         Embarked
         dtype: int64
In [50]: test[continous].skew()
Out[50]: PassengerId
                         0.000000
                         0.512711
         Age
                         3.691600
         Fare
         dtype: float64
```

outlier treatment on Train data

```
In [51]: # Calculate the first and third quartiles
         Q1 = np.percentile(df['Fare'], 25)
         Q3 = np.percentile(df['Fare'], 75)
         # Calculate the interquartile range (IQR)
         IQR = Q3 - Q1
         # Define the lower and upper bounds for outliers
         outlier_low = Q1 - 1.5 * IQR
         outlier high = Q3 + 1.5 * IQR
         # Filter out the outliers
         df = df[(df['Fare'] > outlier_low) & (df['Fare'] < outlier_high)]</pre>
In [52]: df[continous].skew()
Out[52]: PassengerId
                        -0.007285
                         0.435012
         Age
         Fare
                         1.430672
```

dtype: float64

```
In [53]: import numpy as np
import pandas as pd
from scipy.stats import boxcox

# Assuming df is your DataFrame and continuous is the List of continuous co
continuous = ['PassengerId', 'Age', 'Fare']

# Apply Log1p transformation to columns with skewness > 1
df[continuous] = df[continuous].apply(lambda x: np.log1p(x) if x.skew() > 1

# Apply sqrt transformation to columns with 0.5 < skewness <= 1
df[continuous] = df[continuous].apply(lambda x: np.sqrt(x) if 0.5 < x.skew(
# Apply Box-Cox transformation to remaining columns with positive values
df[continuous] = df[continuous].apply(lambda x: boxcox(x + 1)[0] if x.skew()</pre>
```

```
In [54]: df[continous].skew()
```

Out[54]: PassengerId -0.291521 Age 0.070739 Fare 0.100643 dtype: float64

outlier treatment on Test data

```
In [55]: # Calculate the first and third quartiles
   Q1 = np.percentile(test['Fare'], 25)
   Q3 = np.percentile(test['Fare'], 75)

# Calculate the interquartile range (IQR)
   IQR = Q3 - Q1

# Define the lower and upper bounds for outliers
   outlier_low = Q1 - 1.5 * IQR
   outlier_high = Q3 + 1.5 * IQR

# Filter out the outliers
   test = test[(test['Fare'] > outlier_low) & (test['Fare'] < outlier_high)]</pre>
```

```
In [56]: test[continous].skew()
```

Out[56]: PassengerId 0.026021 Age 0.316123 Fare 1.578135

dtype: float64

```
In [57]: import numpy as np
import pandas as pd
from scipy.stats import boxcox

# Assuming test is your DataFrame and continuous is the list of continuous
continuous = ['PassengerId','Age','Fare']

# Apply log1p transformation to columns with skewness > 1
test[continuous] = test[continuous].apply(lambda x: np.log1p(x) if x.skew()

# Apply sqrt transformation to columns with 0.5 < skewness <= 1
test[continuous] = test[continuous].apply(lambda x: np.sqrt(x) if 0.5 < x.s

# Apply Box-Cox transformation to remaining columns with positive values
test[continuous] = test[continuous].apply(lambda x: boxcox(x + 1)[0] if x.s</pre>
```

In [58]: test[continous].skew()

Out[58]: PassengerId -0.026821 Age 0.102480 Fare 0.102564

dtype: float64

In [59]: df.head()

ut[59]:		Passengerld	Survived	Pclass	Name	Sex	Δne	SibSp	Parch	Ticket	
		- docongona	- Gui VII Gui	1 01000			Ago	Оівор	1 41011	TIONOL	
	0	0.894223	0	3	Braund, Mr. Owen Harris	male	15.099941	1	0	A/5 21171	3.0
	2	2.353145	1	3	Heikkinen, Miss. Laina	female	17.424536	0	0	STON/O2. 3101282	3.1
	3	2.996462	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	22.457233	1	0	113803	6.9
	4	3.602789	0	3	Allen, Mr. William Henry	male	22.457233	0	0	373450	3.2
	5	4.179988	0	3	Moran, Mr. James	male	19.522803	0	0	330877	3.2
	4										•

Encoding

```
In [60]: df['Sex'].replace({'female':0,'male':1},inplace=True)
test['Sex'].replace({'female':0,'male':1},inplace=True)
```

Dummy Encoding

```
In [71]: dum = pd.get_dummies(df['Embarked'],drop_first=True)
    df = pd.concat([df,dum],axis='columns')
    df
```

ייר	+ 1	「 7 1	٦.
Ju	ľ	[/1	-] •

_		Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Q	
	0	0.894223	0	3	1	15.099941	1	0	3.047679	S	0	
	2	2.353145	1	3	0	17.424536	0	0	3.191541	S	0	
	3	2.996462	1	1	0	22.457233	1	0	6.966224	S	0	
	4	3.602789	0	3	1	22.457233	0	0	3.217180	S	0	
	5	4.179988	0	3	1	19.522803	0	0	3.298914	Q	1	
	886	169.677207	0	2	1	17.996302	0	0	4.050646	S	0	
	887	169.813249	1	1	0	13.311662	0	0	5.707060	S	0	
	888	169.949246	0	3	0	19.522803	1	2	5.194585	S	0	
	889	170.085199	1	1	1	17.424536	0	0	5.707060	С	0	
	890	170.221106	0	3	1	20.806226	0	0	3.155138	Q	1	

775 rows × 11 columns

•

In [72]: dum = pd.get_dummies(test['Embarked'],drop_first=True)
 test = pd.concat([test,dum],axis='columns')
 test

Out[72]:

	Passengerld	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Q	S
0	98.698430	3	1	26.345771	0	0	1.974408	Q	1	0
1	98.766304	3	0	34.888183	1	0	1.890767	S	0	1
2	98.834148	2	1	44.844549	0	0	2.135350	Q	1	0
3	98.901963	3	1	21.075824	0	0	2.050568	S	0	1
4	98.969747	3	0	17.483278	1	1	2.317223	S	0	1
412	124.546897	3	0	21.786093	0	0	1.969197	S	0	1
413	124.605310	3	1	23.391101	0	0	1.995297	S	0	1
415	124.722083	3	1	29.108457	0	0	1.916905	S	0	1
416	124.780443	3	1	23.391101	0	0	1.995297	S	0	1
417	124.838786	3	1	23.391101	1	1	2.781269	С	0	0

363 rows × 10 columns

In [79]: test.drop(columns=['Embarked'],inplace=True)

In [80]: test.head()

Out[80]:

	Passengerld	Pclass	Sex	Age	SibSp	Parch	Fare	Q	S
0	98.698430	3	1	26.345771	0	0	1.974408	1	0
1	98.766304	3	0	34.888183	1	0	1.890767	0	1
2	98.834148	2	1	44.844549	0	0	2.135350	1	0
3	98.901963	3	1	21.075824	0	0	2.050568	0	1
4	98.969747	3	0	17.483278	1	1	2.317223	0	1

In [82]: df.drop(columns=['Embarked'],inplace=True)

In [83]: df.head()

Out[83]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Q	S
0	0.894223	0	3	1	15.099941	1	0	3.047679	0	1
2	2.353145	1	3	0	17.424536	0	0	3.191541	0	1
3	2.996462	1	1	0	22.457233	1	0	6.966224	0	1
4	3.602789	0	3	1	22.457233	0	0	3.217180	0	1
5	4.179988	0	3	1	19.522803	0	0	3.298914	1	0

X&y