Foundations of Statistical Inference, BS2a Exercises 1: brief solutions

Ex 1. Let X_1, \ldots, X_n be independent Poisson random variables with means $\mathbb{E}(X_i) = \lambda m_i, \ i = 1, \ldots, n$ where $\lambda > 0$ is unknown and m_1, \ldots, m_n are known constants.

- (a) Show that the model defines a canonical exponential family with canonical parameter $\theta = \log \lambda$.
- (b) What is the canonical sufficient statistic? Find its mean and variance.
- (c) Find the MLE $\widehat{\theta}$ of θ .
- (d) Find the Fisher information for θ . What statements can you make about the variance of $\widehat{\theta}$.

Sol Ex1

(a)

$$L(\lambda, \mathbf{x}) = \prod_{1}^{n} e^{-\lambda m_i} (\lambda m_i)^{x_i} / x_i!$$

$$= \exp \left\{ (\log \lambda) \sum_{1}^{n} x_i - \lambda \sum_{1}^{n} m_i + \sum_{1}^{n} x_i \log m_i - \sum_{1}^{n} \log(x_i!) \right\}$$

which is in canonical exponential form with $\theta = \log \lambda$, $B_1(x) = \sum_{i=1}^{n} x_i$

- (b) The canonical (minimal) sufficient statistic is \bar{X} ($n\bar{X}$ is fine as well). $\mathbb{E}[\bar{X}] = \lambda \bar{m}$. $\sum_{1}^{n} X_{i}$ is Poisson $(\lambda \sum_{1}^{n} m_{i})$ so $Var(\bar{X}) = \lambda \bar{m}/n$.
- (c) $\ell(\theta) = \text{const} + \theta \sum_{1}^{n} x_{i} e^{\theta} \sum_{1}^{n} m_{i}$, $\partial \ell / \partial \theta = \sum_{1}^{n} x_{i} e^{\theta} \sum_{1}^{n} m_{i}$, so $\widehat{\theta} = \log[\bar{x}/\bar{m}]$, provided $\bar{x} > 0$. If $\bar{x} = 0$ then $\widehat{\lambda} = 0$, $\widehat{\theta} = -\infty$. As $n \to \infty$ the probability that $\bar{X} = 0$ tends to zero if $\lambda > 0$.
- (d) Fisher information $I_{\theta} = -\mathbb{E}[\partial^2 l/\partial \theta^2] = e^{\theta} \sum_{i=1}^{n} m_i$. The variance of $\widehat{\theta}$ is asymptotic to $I_{\theta}^{-1} = e^{-\theta} / \sum_{i=1}^{n} m_i$. There is a problem with the exact variance being infinite because $\overline{X} = 0$ has positive probability.

Ex 2 A random sample X_1, \ldots, X_n is taken from the Weibull distribution

$$\frac{\beta}{\alpha^{\beta}} x^{\beta - 1} \exp\left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\}, \ x > 0, \alpha > 0, \beta > 0.$$

Assuming that β is known, find a single function of X_1, \ldots, X_n which is sufficient for α . Show that however if α is known there is no single function of X_1, \ldots, X_n which is sufficient for β . Does the Weibull distribution belong to a 2-parameter exponential family?

Solution Ex 2

$$L(\theta; \mathbf{x}) = \alpha^{-n\beta} \exp\{-\alpha^{-\beta} \sum_{i=1}^{n} x_i^{\beta}\} \times \beta^n \prod_{i=1}^{n} x_i^{\beta-1}.$$

Assuming β is known constant, this is exponential form in canonical parameter $-\alpha^{-\beta}$. $n^{-1}\sum_{1}^{n}x_{i}^{\beta}$ is thus a (minimal) sufficient statistic for α if β is known. If α is known we cannot express $\sum_{1}^{n}x_{i}^{\beta}$ as a single function of (x_{1},\ldots,x_{n}) which does not depend on β times a function of β . The Weibull distribution cannot belong to a 2-parameter exponential family, since then there would exist sufficient statistics for α and β .

Ex 3. Let X_1, \ldots, X_n be a random sample from the density

$$f(x;\theta) = e^{-(x-\theta)}, x > \theta$$

- (a) Show that the MLE $\widehat{\theta}$ of θ is the minimum of X_1, \ldots, X_n .
- (b) Show that $\hat{\theta}$ is a sufficient for θ . Is the family a regular exponential family?
- (c) Show that for all $\epsilon > 0$

$$P_{\theta}[|\widehat{\theta} - \theta| > \epsilon] < e^{-n\epsilon},$$

deduce that $\widehat{\theta}$ is consistent in probability and in quadratic mean, but is biased estimator of θ with $\mathbb{E}[\widehat{\theta}] = \theta + 1/n$. Suggest an unbiased and consistent estimator and find its variance.

Solution Ex 3

$$L(\theta; \mathbf{x}) = e^{-\sum_{1}^{n} x_{i} + n\theta} \prod_{i=1}^{n} I[x_{i} > \theta]$$

Note that X_1 is just θ plus a mean 1 exponential r.v.

- (a) $\widehat{\theta} = \min_i X_i$ maximizes $L(\theta, \mathbf{x})$.
- (b)

$$L(\theta; \mathbf{x}) = e^{n\theta} \mathbb{I}_{\min(x_{\epsilon}) > \theta} \times e^{-n\bar{x}}$$

so it factorizes into $f_1(\min(x_i); \theta)h(x)$ and $\min(x_i)$ is sufficient. The family is not an exponential family

(c)

$$P(\widehat{\theta} - \theta > \epsilon) = P(\forall i X_i > \epsilon + \theta) = e^{-n\epsilon}, \ \epsilon > 0$$

and

$$P(\widehat{\theta} - \theta < -\epsilon) = 0$$

Hence for all $\epsilon > 0$

$$\lim_{n} P_{\theta}[|\widehat{\theta} - \theta| > \epsilon] = 0$$

and it is consistent in probability Alternatively, since $\min(X_1, \ldots, X_n)$ is just $\theta + \min(Z_1, \ldots, Z_n) = \theta + \xi$ where the Z are iid exponential(1) variables and ξ is an exponential(n) rv, we have that

$$E[\hat{\theta}] = \theta + 1/n, V(\hat{\theta}) = n^{-2}.$$

We thus have

$$E[(\hat{\theta} - \theta)^2] = 2/n^2 = o(1)$$

it is not unbiased . An unbiased estimator is $\tilde{\theta} = \hat{\theta} - 1/n.$

Ex 4. Let X_1, \ldots, X_n be a random sample from a distribution with density

$$f(x;\theta) = \frac{1}{2}\theta^3 x^2 e^{-\theta x}, \ x > 0.$$

- (a) Rewrite the density in standard exponential form, giving $A(\theta)$, B(X), C(X), $D(\theta)$ explicitly.
- (b) Find a minimal sufficient statistic for θ , T(X). Find the expected value of the statistic.
- (c) Find the maximum likelihood estimator for θ . Is it unbiassed for θ ?
- (d) Show that $\theta^* = (2/n) \sum_{i=1}^n X_i^{-1}$ is an unbiased estimator of θ and find its variance.
- (e) Compute the Fisher information matrix $I_n(\theta)$ of the model and compare the variance of θ^* with $I_n(\theta)$.

Solutions to Ex 4

$$f(x;\theta) = \frac{1}{2}\theta^3 x^2 e^{-\theta x} = \exp\left\{-\theta x + \log(\frac{1}{2}x^2) + 3\log\theta\right\}$$

$$A(\theta) = -\theta, B(x) = x, C(x) = \log(\frac{1}{2}x^2), D(\theta) = 3\log\theta$$

or

$$A(\theta) = -\theta, B(x) = x, \omega(x) = \frac{1}{2}x^2, \psi(\theta) = \theta^3$$

(b)
$$L(\theta; x) \propto \theta^{3n} e^{-\theta \sum x_i} \times \prod x_i^2$$

By the factorization theorem \bar{x} is a minimal sufficient statistic for θ $(K_1(\bar{x},\theta) =$ $\theta^{3n}e^{-n\bar{x}}$ and $K_2(x)=\prod x_i^2$ and the mean is $3/\theta$.

(c) $l(\theta) = 3n \log \theta - \theta \sum_{i=1}^{n} x_i + \text{const}, \ l'(\theta) = 3n/\theta - \sum_{i=1}^{n} x_i \text{ so } \hat{\theta} = 3/\bar{x}.$ Recall: Gamma density with parameters (α, β) is $\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$. If $X \sim$ $\Gamma(a_1,\beta), Y \sim \Gamma(a_2,\beta)$ and independent then $X+Y \sim \Gamma(a_1+a_2,\beta)$. Mean of $\Gamma(\alpha, \beta)$ is α/β .

 $\sum_{i=1}^{n} X_i$ has a Gamma distribution with density

$$\frac{\theta^{3n}}{\Gamma(3n)}x^{3n-1}e^{-\theta x} x > 0$$

SO

$$\mathbb{E}[\widehat{\theta}] = 3n \int_0^\infty \frac{\theta^{3n}}{\Gamma(3n)} x^{3n-2} e^{-\theta x} dx$$
$$= 3n \cdot \frac{\theta^{3n}}{\Gamma(3n)} \cdot \frac{\Gamma(3n-1)}{\theta^{3n-1}}$$
$$= \frac{3n\theta}{3n-1}$$

Thus $\widehat{\theta}$ is a biassed estimate of θ .

(d)

$$\mathbb{E}[X_i^{-1}] = \int_0^1 \frac{1}{2} \theta^3 x e^{-\theta x} dx$$
$$= \frac{1}{2} \theta$$

so $\theta^* = (2/n) \sum_1^n X_i^{-1}$ is an unbiassed estimate of θ . Similarly, from the density, one can show that $\text{Var}(\theta^*) = \theta^2/n$. (e) Fisher's information is $I_{\theta} = -E[\frac{\partial^2}{\partial \theta^2}\ell(\theta)] = 3n/\theta^2 \text{ Var}(\theta^*) = \theta^2/n \geq 0$

 $\theta^2/(3n)$.

Ex 5.

Let X_1, \ldots, X_n be a sample from $N(\mu, \sigma^2)$.

(a) Show that the MLE of σ^2 is

$$\hat{\sigma}^2 = n^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

(b) Show that $\hat{\sigma}^2$ has a smaller mean square error than

$$(n-1)^{-1}\sum_{i=1}^{n}(X_i-\bar{X})^2.$$

(c) For which value of a is the MSE of

$$(n+a)^{-1}\sum_{i=1}^{n}(X_i-\bar{X})^2$$

the smallest. Hint: For (b) and (c) you will need to find $\operatorname{Var}(\chi^2_{n-1})$ which is a special case of the variance of a gamma distribution.

Solution to Ex 5

(a)

$$\ell(\mu, \sigma^2) = \text{const} - \frac{n}{2} \log \sigma^2 - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 / \sigma^2$$

so

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (x_i - \mu)^2$$

and the MLE of μ is \bar{x} , uniformly in σ^2 , so

$$\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

Recap from Part A Statistics

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$\widehat{\sigma}^2 = \frac{n-1}{n} S^2 \sim \frac{\sigma^2}{n} \chi_{n-1}^2$$

 χ_f^2 has a density

$$\frac{1}{\Gamma(f/2)2^{f/2}}x^{f/2-1}e^{-x/2},\;x>0$$

which is a Gamma (f/2,1/2) density with mean $2 \times f/2 = f$ and variance $4 \times f/2 = 2f$.

(b) $\mathbb{E}(\widehat{\sigma}^2) = ((n-1)/n)\sigma^2$, $\operatorname{Bias}(\widehat{\sigma}^2) = -\sigma^2/n$, $\operatorname{Var}(\widehat{\sigma}^2) = (2(n-1)/n^2)\sigma^4$. Thus

$$MSE(\hat{\sigma}^2) = Var(\hat{\sigma}^2) + Bias(\hat{\sigma}^2)^2 = \frac{2n-1}{n^2}\sigma^4$$

Let

$$S^{2} = (n-1)^{-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \sim \frac{\sigma^{2}}{n-1} \chi_{n-1}^{2},$$

then

$$MSE(S^2) = \frac{2(n-1)}{(n-1)^2} \sigma^4 = \frac{2}{n-1} \sigma^4 > MSE(\widehat{\sigma}^2) = \frac{2n-1}{n^2} \sigma^4.$$

(c) Let

$$\sigma^{*2} = (n+a)^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

A similar calculation to (b) shows that

$$MSE(\sigma^{*2}) = \left(\frac{2}{n-1}b^2 + (b-1)^2\right)\sigma^4$$

where b = (n-1)/(n+a). The MSE is minimal when

$$b = \frac{1}{\frac{2}{n-1} + 1}$$
, or $a = 1$

That is the minimal MSE solution is

$$(n+1)^{-1}\sum_{i=1}^{n}(X_i-\bar{X})^2$$

Exo 6. a) Let Y_1, \dots, Y_n be a random sample from a Posson distribution with parameter $\lambda > 0$. One observes only $W_i = \mathbf{1}_{Y_i > 0}$. Compute the likelihood associated with the sample (W_1, \dots, W_n) and the MLE in λ . Show that it is consistent in probability.

b) Let X_1, \ldots, X_n be a random sample from a truncated Poisson distribution with distribution

$$f(x;\lambda) = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \cdot \frac{\lambda^x}{x!}, \ x = 1, 2, \dots$$

For i = 1, ..., n a random variable Z_i is defined by

$$Z_i = X_i$$
 if $X_i \ge 2$ or $Z_i = 0$ if $X_i = 1$

Show that \bar{Z} is an unbiased estimator of λ with efficiency

$$\frac{1 - e^{-\lambda}}{1 - \left(\frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}}\right)^2}.$$

Solution to Ex 6

$$f(x;\lambda) = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \frac{\lambda^x}{x!}, x = 1, 2, \dots$$

The mean of Z is

$$\mathbb{E}[Z] = \sum_{x \ge 2} x \frac{e^{-\lambda}}{1 - e^{-\lambda}} \frac{\lambda^x}{x!} = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \sum_{x \ge 2} \frac{\lambda^x}{(x - 1)!} = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \lambda (e^{\lambda} - 1) = \lambda$$

To obtain the variance consider

$$\mathbb{E}[Z(Z-1)] = \sum_{x \ge 2} x(x-1) \frac{e^{-\lambda}}{1 - e^{-\lambda}} \frac{\lambda^x}{x!} = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \sum_{x \ge 2} \frac{\lambda^x}{(x-2)!} = \frac{\lambda^2}{1 - e^{-\lambda}}$$

Then

$$Var(Z) = \frac{\lambda^2}{1 - e^{-\lambda}} + \lambda - \lambda^2 = \lambda \left[1 + \frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}} \right]$$

The loglikelihood

$$l(\lambda) = -\lambda - \log(1 - e^{-\lambda}) + x \log \lambda - \log x!$$

and

$$\frac{\partial l}{\partial \lambda} = -\frac{1}{1 - e^{-\lambda}} + \frac{x}{\lambda}$$
$$\frac{\partial^2 l}{\partial \lambda^2} = \frac{e^{-\lambda}}{(1 - e^{-\lambda})^2} - \frac{x}{\lambda^2}$$

Fisher information for one observation is

$$i_{\lambda} = -\mathbb{E}\left(\frac{\partial^{2}l}{\partial\lambda^{2}}\right)$$

$$= -\frac{e^{-\lambda}}{(1 - e^{-\lambda})^{2}} + \frac{1}{\lambda^{2}} \left[\frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}} + \lambda\right]$$

$$= \frac{1}{\lambda} \cdot \frac{1}{1 - e^{-\lambda}} \left[1 - \frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}}\right]$$

I have

$$\begin{split} i_{\lambda} &= -\mathbb{E}\left(\frac{\partial^{2}l}{\partial\lambda^{2}}\right) \\ &= -\frac{e^{-\lambda}}{(1 - e^{-\lambda})^{2}} + \frac{\lambda}{\lambda^{2}} \\ &= \frac{1}{\lambda} \cdot \frac{1}{1 - e^{-\lambda}} \left[1 - \frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}}\right] \end{split}$$

Efficiency =
$$\left[I_{\lambda} \operatorname{Var}(\bar{Z})\right]^{-1}$$

 = $\frac{1 - e^{-\lambda}}{1 - \left(\frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}}\right)^{2}}$.

- 7. (a) Break the condition into two parts:
- (*) T(x) = T(y) = t implies $f(x; \theta)/f(y; \theta)$ is not a function of θ ;
- (**) $f(x;\theta)/f(y;\theta)$ not a function of θ implies T(x) = T(y) = t.

Let $f(x;\theta) = g(x|t(x),\theta)h(t|\theta)$ (with no assumption of sufficiency) and suppose T(x) = T(y) = t. If (*) holds then

$$\frac{f(x;\theta)}{f(y;\theta)} = \frac{g(x|t,\theta)}{g(y|t,\theta)} = c(x,y)$$

say, with c independent of θ (factors of h cancel). But then

$$\sum_{x:T(x)=t} g(x|t,\theta) = g(y|t,\theta) \sum_{x:T(x)=t} c(x,y)$$

so

$$g(y|t,\theta) = \left[\sum_{x:T(x)=t} c(x,y)\right]^{-1}$$

which is independent of θ , so T is sufficient for θ in f. If $f(x;\theta)/f(y;\theta)$ does depend on θ when T(x) = T(y) = t then c depends on θ and the same reasoning shows T cannot be sufficient, so condition (*) is necessary for sufficiency. Let U(x) be some sufficient statistic. We must show that T is a function of U, so T is minimal. It is enough to show that U(x) = U(y) implies T(x) = T(y). But U(x) = U(y) = u implies $f(x;\theta)/f(y;\theta)$ is not a function of θ , and then (**) implies T(x) = T(y), so T is minimal sufficient.

(b) The intervals of a Poisson arrival process of rate λ are exponential so $X_i \sim \text{Exp}(\lambda)$ likelihood for i = 1, 2, ..., N. The probability that the final interval between time $Y = \sum_{i=1}^{N} X_i$ and S has no event is the probability that an $\text{Exp}(\lambda)$ random variable exceeds S - Y, that is, $\exp(-\lambda(S - Y))$.

The likelihood for λ given data $X=(x_1,...x_n)$ is therefore

$$L(\theta; x) = \left[\prod_{i=1}^{n} \lambda \exp(-\lambda x_i) \right] \exp(-\lambda (S - Y))$$
$$= \exp(-\lambda S) \lambda^n$$

since $(S-Y)+x_n+...+x_1=S$ and so N is sufficient for λ by the factorization theorem $(L=K_1(x,\theta)K_2(x))$ with $K_1(x,\theta)=L$ and $K_2=1$). It is minimal sufficient by part (a) since, if $x=(x_1,...x_n)$ and $y=y_1,...,y_m$ then $L(x;\lambda)/L(y;\lambda)$ is independent of λ if and only if n=m.