Chapter 34 Applications linéaires en dimension finie

Exercice 1 (34.0)

Soit
$$f: \mathbb{R}^3 \to \mathbb{R}$$

 $(x, y, z) \mapsto x - y + 2z$

- 1. Montrer que f est linéaire de deux manières différentes.
- **2.** Déterminer $\ker f$ puis donner une base de $\ker f$.
- **3.** Déterminer $\operatorname{Im} f$.

Exercice 2 (34.0)

Soit
$$g: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x - y + 2z, 2x - z)$

- **1.** Justifier que *g* est linéaire.
- 2. Déterminer Im g.
- 3. Déterminer ker g puis donner une base de ker g.

Exercice 3 (34.0)

Soit l'application
$$h: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (x - y + 2z, 2x - z, 4x + 2y - 7z)$

- 1. Déterminer $\ker h$ puis donner une base de $\ker h$.
- **2.** Donner une famille génératrice de $\operatorname{Im} h$; en déduire une base de $\operatorname{Im} h$.

Exercice 4 (34.0)

- 1. L'image d'une famille libre par une application linéaire injective est libre.
- 2. L'image d'une famille liée par tout application linéaire est liée.

Exercice 5 (34.0)

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E. À tout scalaire λ , on associe le sous-ensemble V_{λ} de E défini par

$$V_{\lambda} = \{ x \in E \mid f(x) = \lambda x \}.$$

- **1.** Que peut on dire de V_0 ?
- **2.** Démontrer que, pour tout scalaire λ , V_{λ} est un sous-espace vectoriel de E.
- 3. Démontrer que, pour tous scalaires λ , μ ,

$$\lambda \neq \mu \implies V_\lambda \cap V_\mu = \left\{ \; 0_E \; \right\}.$$

4. Étant données λ et μ deux scalaires distincts, on suppose qu'il existe deux vecteurs non nuls u et v appartenant respectivement à V_{λ} et à V_{μ} . Démontrer que les vecteurs u et v sont linéairement indépendants.

5. Plus généralement, $\lambda_1, \lambda_2, \dots, \lambda_n$ étant n scalaires deux à deux distincts, on suppose qu'il existe n vecteurs non nuls u_1, u_2, \dots, u_n appartenant respectivement à V_1, V_2, \dots, V_n . Démontrer par récurrence que les vecteurs u_1, u_2, \dots, u_n sont linéairement indépendants.

Exercice 6 (34.0)

Soient E un espace vectoriel de dimension 3 et $f \in \mathbf{L}(E)$. On note $f^2 = f \circ f$, $f^3 = f \circ f \circ f$. On suppose que $f^2 \neq 0$ et $f^3 = 0$.

- **1.** Montrer qu'il existe $x_0 \in E$ tel que $f^2(x_0) \neq 0$.
- **2.** Montrer que $(x_0, f(x_0), f^2(x_0))$ est une base de E.
- **3.** Montrer que l'ensemble des endomorphismes qui commutent avec f est un sous-espace vectoriel de L(E) de base (Id_E, f, f^2) .

Exercice 7 (34.0)

Soient E un \mathbb{K} -espace vectoriel, $f \in \mathbf{L}(E)$. On suppose que, pour tout $x \in E$, la famille (x, f(x)) est liée. Démontrer que f est une homothétie.

Exercice 8 (34.0)

Dans l'espace vectoriel $\mathbf{L}(\mathbb{R}^3, \mathbb{R})$ des formes linéaires sur \mathbb{R}^3 , on considère les trois formes linéaires f_1, f_2, f_3 définies par

$$f_1(x, y, z) = -x + y + z$$

$$f_2(x, y, z) = 2x - y - z$$

$$f_3(x, y, z) = x + 2y + z$$

La famille (f_1, f_2, f_3) est-elle libre?

Exercice 9 (34.1)

Soit l'application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ définie par

$$f(1,0,0,0) = (1,-1,0);$$
 $f(0,1,0,0) = (-1,0,1);$ $f(0,0,1,0) = (1,-1,2);$ $f(0,0,0,1) = (0,-2,3).$

- 1. Rappeler brièvement pourquoi ces relations caractérisent f.
- **2.** Déterminer ker f. L'application f est-elle injective?
- **3.** Déterminer Im f. L'application f est-elle surjective? bijective?

Exercice 10 (34.1)

On considère les vecteurs

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix}, \qquad \text{et} \qquad u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

- **1.** Montrer que $\mathcal{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 . Déterminer les coordonnées de u relativement à la base \mathcal{B} et en déduire une expression de u comme combinaison linéaire de v_1, v_2, v_3 .
- **2.** Une application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ vérifie les conditions suivantes

$$f(v_1) = e_1$$
 $f(v_2) = e_2$ $f(v_3) = e_3$

où (e_1, e_2, e_3) est la base canonique de \mathbb{R}^3 . Déterminer f(u).

- 3. Déterminer, si possible, le noyau de f et l'image de f.
- **4.** Donner l'expression analytique de f (c'est-à-dire l'expression de f(x) en fonction de x_1, x_2, x_3).

Exercice 11 (34.1)

On pose $E = \mathbb{R}^3$ et on considère les vecteurs $u_1 = (1, 0, 1), u_2 = (-1, 1, -2), u_3 = (2, 1, 0)$ de E.

- **1.** Démontrer que la famille $\mathfrak{B} = (u_1, u_2, u_3)$ est une base de E.
- 2. Justifier l'existence d'un unique endomorphisme f de E vérifiant

$$f(u_1) = u_1 - u_2,$$
 $f(u_2) = u_3,$ $f(u_3) = u_2 + u_3.$

3. Déterminer l'image par f du vecteur v = (1, -3, 5).

Exercice 12 (34.1)

Montrer que $f: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (z, x - y, y + z)$ est un automorphisme.

Exercice 13 (34.1) *Dual de* $\mathcal{M}_n(\mathbb{K})$

On note $\mathcal{M}_n(\mathbb{K})^* = \mathbf{L}(\mathcal{M}_n(\mathbb{K}), \mathbb{K})$ le dual de $\mathcal{M}_n(\mathbb{K})$. Pour $A \in \mathcal{M}_n(\mathbb{K})$, on définit

$$\begin{array}{cccc} \Psi_A : & \mathcal{M}_n(\mathbb{K}) & \to & \mathbb{K} \\ & M & \mapsto & \mathrm{Tr}(AM) \end{array}.$$

- **1.** Montrer que Ψ_A est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.
- 2. Soit

$$\begin{array}{cccc} \Psi : & \mathcal{M}_n(\mathbb{K}) & \to & \mathcal{M}_n(\mathbb{K})^* \ . \\ & A & \mapsto & \Psi_A \end{array}$$

Montrer que Ψ est un isomorphisme d'espaces vectoriels.

Exercice 14 (34.2)

Déterminer une base du noyau et de l'image de l'application linéaire $T: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + 2x_3 \\ x_1 + x_3 \\ 2x_1 + x_2 + 3x_3 \end{pmatrix}$$

Vérifier la cohérence avec le théorème du rang. L'application T est-elle bijective ?

Exercice 15 (34.2)

Soit $g: \mathbb{R}^3 \to \mathbb{R}^2$ une application linéaire.

- **1.** On suppose que le noyau de g est l'ensemble des vecteurs $x=(x_1,x_2,x_3)^T\in\mathbb{R}^3$ tels que $x_1=x_2=x_3$ et que l'image de g est \mathbb{R}^2 . Cela contredit il le théorème du rang ?
- **2.** On suppose de plus que $g(e_1) = \epsilon_1$, $g(e_2) = \epsilon_2$, où $e = (e_1, e_2, e_3)$ est la base canonique de \mathbb{R}^3 et (ϵ_1, ϵ_2) la base canonique de \mathbb{R}^2 .

Déterminer une matrice A telle que l'application g définie par g(x) = Ax vérifie les conditions précédente. Donner l'expression analytique de g (c'est-à-dire l'expression de g(x) en fonction de x_1, x_2, x_3).

Exercice 16 (34.2)

Soit $e = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 et soit v_1, v_2, v_3, x les vecteurs de \mathbb{R}^3

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}, \qquad \text{et } x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

où x_1,x_2,x_3 sont fixés dans la suite. Soit T l'application linéaire $T:\mathbb{R}^4\to\mathbb{R}^3$ telle que

$$T(e_1) = v_1,$$
 $T(e_2) = v_2,$ $T(e_3) = v_3,$ $T(e_4) = x.$

1. Donner une condition nécessaire et suffisante sur les coefficients de *x* pour que l'application linéaire *T* vérifie la relation

$$rg(T) = \dim \ker(T)$$
.

Dans ce cas, donner une base de Im(T).

2. Donner une condition nécessaire et suffisante sur les coefficients de *x* pour que l'application linéaire *T* vérifie la relation

$$\dim \ker(T) = 1.$$

Dans ce cas, donner une base de ker(T).

Problème 17 (34.2) Un théorème de factorisation, Banque PT 2010

Soient E, F et G trois espaces vectoriels de dimension finie, $u \in L(E, F)$ et $v \in L(E, G)$.

Le but de cette partie est de montrer que

$$\ker(u)\subset\ker(v)\iff\exists w\in\mathbf{L}(F,G),v=w\circ u.$$

1. On suppose qu'il existe $w \in \mathbf{L}(F,G)$ telle que $v = w \circ u$.

Montrer que $ker(u) \subset ker(v)$.

2. On suppose que dim E = n, dim $\ker(u) = n - p$ et dim F = r.

(a) Justifier pourquoi on peut choisir (e_1, e_2, \dots, e_n) base de E de sorte que (e_{p+1}, \dots, e_n) soit une base de $\ker(u)$.

Quelle est alors la dimension de Im(u)?

(b) Pour tout $1 \le i \le p$, on pose $f_i = u(e_i)$. Montrer que la famille $(f_i)_{1 \le i \le p}$ est une base de Im(u).

(c) On complète la famille précédente de sorte que $(f_i)_{1 \le i \le r}$ soit une base de F. On définit alors $w \in \mathbf{L}(F,G)$ par

$$w(f_i) = \begin{cases} v(e_i) & \text{si } 1 \le i \le p, \\ 0 & \text{sinon.} \end{cases}$$

Montrer que, si $\ker(u) \subset \ker(v)$, alors $v = w \circ u$.

Exercice 18 (34.2)

Soient $m, n, p \in \mathbb{N}^*$ et $A \in \mathcal{M}_{n,p}(\mathbb{K})$ une matrice fixée. Calculer, en fonction du rang de A, la dimension du sous-espace vectoriel de $\mathcal{M}_{m,n}(\mathbb{K})$ formé des matrices M telles que MA = 0 (donner deux solutions).

Même question si M est fixée et A varie.

Exercice 19 (34.2)

**

Soient E et F deux K-espaces vectoriels de dimensions finies et $u, v \in L(E, F)$.

1. Montrer que

$$rg(u + v) \le rg(u) + rg(v)$$
.

- 2. En déduire que $|rg(u) rg(v)| \le rg(u + v)$.
- 3. On suppose que E = F, que $u \circ v = 0_{\mathbf{L}(E)}$ et que $(u + v) \in \mathbf{GL}(E)$. Montrer que

$$rg(u + v) = rg(u) + rg(v).$$

Exercice 20 (34.2)

Soit E un K-espace vectoriel de dimension $n, n \in \mathbb{N}$, u et v deux endomorphismes de E tels que

$$E = \operatorname{Im} u + \operatorname{Im} v$$
 et $E = \ker u + \ker v$.

Montrer que ces deux sommes sont directes.

Exercice 21 (34.2)

Soit E un espace vectoriel de dimension finie. Soit $u \in \mathbf{L}(E)$. Montrer qu'il existe un automorphisme a de E et un projecteur p, tel que $u = a \circ p$.

En prenant l'exemple de la dérivation dans $\mathbb{K}[X]$, montrer que ce résultat peut tomber en défaut lorsque E n'est pas de dimension finie.

Exercice 22 (34.2) *Centrale MP 2015*

Soit E un \mathbb{R} -espace vectoriel de dimension $n \geq 2$. Pour $a \in E$, on note \mathcal{F}_a l'ensemble des endomorphisme f de E tels que, pour tout $x \in E$, (x, f(x), a) soit liée.

- **1.** Déterminer \mathcal{F}_a lorsque a = 0 puis lorsque n = 2.
- **2.** Montrer que \mathcal{F}_a est un espace vectoriel pour tout $a \in E$.
- 3. Soit H un espace vectoriel de dimension finie. Caractériser les endomorphismes v de H tels que pour tout $h \in H$, (h, v(h)) soit liée.
- **4.** Déterminer la dimension de \mathcal{F}_a .

Exercice 23 (34.2)

Soit E un \mathbb{K} -espace vectoriel de dimension finie n.

- 1. Soient $H_i = \ker \phi_i$, $1 \le i \le 3$, trois hyperplans de E, discuter selon le rang de (ϕ_1, ϕ_2, ϕ_3) la dimension de $H_1 \cap H_2 \cap H_3$. Interpréter géométriquement ce résultat en dimension 3.
- **2.** Si H_1, \ldots, H_p sont p hyperplans de E, montrer que

$$\dim(H_1 \cap \cdots \cap H_p) \ge n - p$$
.

Exercice 24 (34.2)

Soient $n \ge 2$ et

$$\begin{array}{cccc} f: & \mathbb{R}_n[X] & \to & \mathbb{R}_2[X] \\ & P & \mapsto & XP(1) + (X^2 - 4)P(0) \end{array}$$

Montrer que f est linéaire et déterminer ker f et $\operatorname{Im} f$ ainsi que leurs dimensions.

Exercice 25 (34.2)

Soient $n \in \mathbb{N}$ et

$$\phi: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$$

$$P \mapsto (P(0), P(1), \dots, P(n))$$

Montrer que ϕ est un isomorphisme.

Exercice 26 (34.2)

On définit l'application

$$\begin{array}{cccc} \phi: & \mathbb{R}_3[X] & \rightarrow & \mathbb{R}^4 \\ & P & \mapsto & (P(0), P'(1), P''(1), P''(2)) \end{array}$$

- 1. Montrer que ϕ est un isomorphisme.
- **2.** En déduire qu'il existe un et un seul polynôme $P \in \mathbb{R}_3[X]$ vérifiant

$$P(0) = 1,$$
 $P'(1) = 2,$ $P''(1) = -1,$ et $P''(2) = 1.$

Exercice 27 (34.2)

On considère une fonction dérivable $f:[a,b]\to\mathbb{R}$ et n+1 réels $\alpha_0<\alpha_1<\ldots<\alpha_n$ de l'intervalle [a,b]. Montrer qu'il existe un unique polynôme $P\in\mathbb{R}_{2n+1}[X]$ tel que

$$\forall i \in [0, n], P(\alpha_i) = f(\alpha_i) \text{ et } P'(\alpha_i) = f'(\alpha_i).$$

Exercice 28 (34.2)

**

**

Soit E l'espace vectoriel des polynômes de degré inférieur ou égal à n. Soit f l'application définie sur E par

$$f(P) = P(X+1) + P(X-1) - 2P(X).$$

- 1. Montrer que f est une application linéaire de E dans E.
- **2.** Calculer $f(X^p)$; quel est son degré? En déduire ker f, Im f et le rang de f.
- 3. Soit Q un polynôme de $\operatorname{Im} f$; montrer qu'il existe un unique polynôme P tel que

$$f(P) = Q$$
 et $P(0) = P'(0) = 0$.

Exercice 29 (34.2)

Soit $E = \mathbb{R}_2[X]$. On note $E^* = \mathbf{L}(E, \mathbb{K})$ l'espace vectoriel des formes linéaires sur E.

- **1.** Montrer que E^* est isomorphe à \mathbb{R}^3 .
- 2. On considère les trois formes linéaires sur E, définies pour tout P de E par

$$f_0(P) = P(0);$$
 $f_1(P) = P(1);$ $f_2(P) = P(2).$

On pose par ailleurs, pour tout P de E

$$f(P) = \int_0^2 P(t) \, \mathrm{d}t.$$

Montrer que f appartient à l'espace vectoriel engendré par $\{f_0, f_1, f_2\}$.

Exercice 30 (34.2)

Sur $E = \mathbb{R}_n[X]$, on définit les n + 1 formes linéaires

$$\phi_k: P \mapsto P^{(k)}(0), \quad k \in [0, n].$$

Montrer que la famille $(\phi_0, \phi_1, \dots, \phi_n)$ est un base de $E^* = \mathbf{L}(E, \mathbb{R})$.