ECON 501B

Prof. Friedenberg October 2018

1. v is IR and no blocking pair:

```
IR: \forall i \in T \cup B: v(i) \succ_i \mu(i) \succsim_i i \text{ because } \mu \text{ is stable.}
Suppose \exists a blocking pair (t,b) for v:
b \succ_t v(t) \succsim_t \mu(t)
t \succ_b v(b) \succsim_b \Rightarrow (t,b) \text{ blocks } \mu
```

2. Proof by contrapositive:

```
Suppose \exists \mu' Pareto dominates \mu

Let C = \{i \in T \cup B | \mu'(i) \succ_i \mu(i)\}

C is non-empty by the definition of Pareto dominance.

For any t \in C, \mu'(t) \subseteq \mu(t) \cup C

For any b \notin \mu(t) \cup C, by definition of C:

\mu'(b) = \mu(b) \neq t.

Then, b \notin \mu'(t)

For any b \in C, \mu'(b) \succ_b \mu(b)

Let t' = \mu'(b)

Then b \in \mu'(t'), but b \notin \mu(t'), so \mu'(t') \neq \mu(t')

Because of strict preferences and Pareto dominance, \mu'(t') \succ_{t'} \mu(t')
```

So C forms a block to μ .

3. (a) The unique stable match, μ^* :

$$\mu^*(t_1) = b_k, \mu^*(t_i) = b_{i-1} \text{ for } i = 2, ..., K$$

To show that μ^* is unique stable, if suffices to show it is the outcome of both the T and B-Proposing DA.

T-Proposal:

- Round 1: t_1 matched to b_k and b_1 matched to t_2 and these matches do not change.
- Round k: b_k matched to t_{k+1} , they won't change later.

B-Proposal:

- Round 1: t_1 matched to b_k and b_1 matched to t_2 and these matches do not change.
- Round k: t_k matched to b_{k-1} , they won't change later.

Thus we have μ^*

- (b) Notice that t_1 and b_k have no incentive to misreport. If $b_k(k < K)$ misreports, through B-Proposal DA, at round i, such that i < k, b_i will be matched to t_{i+1} and they won't change later.
 - So they cannot get better matches.
- (c) If t_k misreports (k > 1), through *B*-proposal DAA, at round k 1, all unmatched b agents will propose to t_k , which does not include $(b_1, ..., b_{k-2})$ who have been matched

and won't change.

So t_k cannot get a better match.

Alternate answers for b and c:

Notice that under truthful reporting, the T-proposal DAA yields the same match as that from the B-proposal. So it is equivalent to treat mechanism $m(\cdot)$ as the B-proposal DAA.

Apply Theorem 3 (shown on October 4th in class) and truthful reporting is dominant for any agent $i \in T \cup B$.

4. By Contrapositive: $\forall t : mu(t) \succ_t \mu_{TD}(t)$

Want to show that all agents are matched under μ and μ_{TD}

For $\mu : \forall t : \mu(t) \succ_t \mu_{TD}(t) \succsim_t t$

All t matched. Because |T| = |B|, all b matched.

For μ_{TD} to be stable, $\forall b : \mu_{TD}(b) \succsim_b \mu(b) \succ_b b$ Suppose $\exists b : \mu(b) \succ_b \mu_{TD}(b)$. Let $t' = \mu(b)$ $\mu(t') = b \succ_{t'} \mu_{TD}(t')$

Thus (t', b) blocks μ_{TD}

All b agents are matched. |T| = |B| so all t matched.

Because all agents matched under μ_{TD} , there must be a b agent newly matched in the last round. Denote this agent as b^* .

Let $\mu_{TD}(b^*) \succ_{b^*} \mu(b^*)$

Remark: all $t, \mu_{TD}(t) \neq \mu(t)$ so for all $b, \mu_{TD}, b \neq \mu(b)$ and $t^* = \mu(b^*)$.

We know $\mu(t^*) \succ_{T^*} \mu_{TD}(t^*)$.

At the last round of T-proposal DAA, t^* must be matched to $\mu_{TD}(t^*)$, and t^* must have proposed to b^* before. We know t^* is acceptable to $b^* \Rightarrow b^*$ must be matched to someone at the second to the last round. But b^* rejects this t' agent at the last round and switch to $\mu_{TD}(b^*)$

At the last round, t' is unmatched, contradicting "the last round."