ИД3-19.1 (вариант 9)

Дано:

В результате эксперимента получены данные, записанные в виде статистического ряда:

70	95	75	85	60	77	55	63	80	67
90	78	57	76	84	82	75	68	73	62
62	81	77	72	97	68	85	56	92	71
73	78	98	63	83	85	70	90	66	91
86	68	55	93	71	96	77	81	86	72
82	62	70	78	67	87	91	99	78	87
91	58	81	97	75	83	71	66	61	76
73	85	65	90	86	61	54	75	78	93
87	58	72	92	66	98	65	81	76	63
95	83	65	57	80	87	61	92	56	71

Решение:

а) Располагаем значения результатов эксперимента в порядке возрастания, т. е. записываем вариационный ряд:

54	55	55	56	56	57	57	58	58	60
61	61	61	62	62	62	63	63	63	65
65	65	66	66	66	67	67	68	68	68
70	70	70	71	71	71	71	72	72	72
73	73	73	75	75	75	75	76	76	76
77	77	77	78	78	78	78	78	80	80
81	81	81	81	82	82	83	83	83	84
85	85	85	85	86	86	86	87	87	87
87	90	90	90	91	91	91	92	92	92
93	93	95	95	96	97	97	98	98	99

б) Находим размах варьирования: $\omega=x_{max}-x_{min}=99-54=45$ Величина отдельного интервала: $h=\frac{\omega}{9}=\frac{45}{9}=5$.

		1			
Номер	Границы	Середина	Частота	Относительная	Плотность
частичного	интервала	интервала	интервала n _i	частота	относительной
интервала I _i	x_{i} - x_{i+1}	$x'_{i} = (x_{i} + x_{i+1})/2$		$W_i = n_i / n$	частоты W _i / h
1	[54 – 59)	56.5	9	0.09	0.018
2	[59 – 64)	61.5	10	0.10	0.020
3	[64 – 69)	66.5	11	0.11	0.022
4	[69 – 74)	71.5	13	0.13	0.026
5	[74 – 79)	76.5	15	0.15	0.030
6	[79 – 84)	81.5	11	0.11	0.022
7	[84 – 89)	86.5	12	0.12	0.024
8	[89 – 94)	91.5	11	0.11	0.022
9	[94 – 99]	96.5	8	0.08	0.016
\sum	-	-	100	1	-
$\left \begin{array}{c} \angle_{i} \end{array} \right $					

в) Строим полигон частот и гистограмму относительных частот и график эмпирической функции распределения:

$$F^* = \begin{cases} 0, \text{при } x \leq 54 \\ 0.09, \text{при } 54 < x \leq 59 \\ 0.19, \text{при } 59 < x \leq 64 \\ 0.30, \text{при } 64 < x \leq 69 \\ 0.43, \text{при } 69 < x \leq 74 \\ 0.58, \text{при } 74 < x \leq 79 \\ 0.69, \text{при } 79 < x \leq 84 \\ 0.81, \text{при } 84 < x \leq 89 \\ 0.92, \text{при } 89 < x \leq 94 \\ 1, x > 94 \end{cases}$$

г) Находим выборочное среднее, выборочную дисперсию:

$$x_{\text{сред}} = \frac{1}{n} \sum_{i=1}^{k} x'_{i} n_{i} = 76.45$$

$$D_{\text{B}} = \frac{1}{n} \sum_{i=1}^{k} x'_{i}^{2} n_{i} - x_{\text{сред}}^{2} = 5988.85 - 5844.6025 = 144.2475$$

$$\sigma_{\text{B}} = \sqrt{D_{\text{B}}} = 12.0103 \dots$$

Номер частичного	Границы интервала	Середина интервала	Частота интервала	n _i x' _i	(x' _i) ²	n _i (x' _i) ²
интервала	X _i -X _{i+1}	$x'_{i} = (x_{i} + x_{i+1})/2$	n _i			
l _i						
1	[54 – 59)	56.5	9	508.5	3192.25	28730.25
2	[59 – 64)	61.5	10	615	3782.25	37822.5
3	[64 – 69)	66.5	11	731.5	4422.25	48644.75
4	[69 – 74)	71.5	13	929.5	5112.25	66459.25
5	[74 – 79)	76.5	15	1147.5	5852.25	87783.75
6	[79 – 84)	81.5	11	896.5	6642.25	73064.75
7	[84 – 89)	86.5	12	1038	7482.25	89787
8	[89 – 94)	91.5	11	1006.5	8372.25	92094.75
9	[94 – 99]	96.5	8	772	9312.25	74498
\sum_{i}	-	-	100	7645	54170.25	598885

Выборочная дисперсия является смещенно оценкой генеральной дисперсии, а исправленная дисперсия — несмещенной оценкой:

$$S^{2} = \frac{n}{n-1}D_{B} = \frac{100}{99} * 144.2475 = 145.70(45)$$
$$\sigma' = S = \sqrt{s^{2}} = 12.0708 \dots$$

д) Согласно критерию Пирсона необходимо сравнить эмпирические и теоретические частоты. Эмпирические частоты даны. Найдем теоретические частоты. Для этого пронумеруем X, т. е. перейдем к CB $z=(x-x_{cpeg})/\sigma_B$ и вычислим концы интервалов z_i и z_{i+1} , причем наименьшее значение z, т.е. z_1 , положим стремящимся κ -inf, а наибольшее, τ . е. τ 0 г. е. τ 1 к +inf. Результаты занесем в таблицу.

i	Xi	X _{i+1}	X _i - X _{сред}	X _{i+1} - X _{сред}	$z_i = (x_i -$	$z_{i+1} = (x_{i+1} -$
					$x_{cpeg})/\sigma_{\scriptscriptstyle B}$	$x_{cped})/\sigma_{\scriptscriptstyle B}$
1	54	59	-	-17.45	-	-1.45
2	59	64	-17.45	-12.45	-1.45	-1.04
3	64	69	-12.45	-7.45	-1.04	-0.62
4	69	74	-7.45	-2.45	-0.62	-0.20
5	74	79	-2.45	2.55	-0.20	0.21
6	79	84	2.55	7.55	0.21	0.63
7	84	89	7.55	12.55	0.63	1.04
8	89	94	12.55	17.55	1.04	1.46
9	94	99	17.55	-	1.46	-

Находим теоретические вероятности P_i и теоретические частоты $n'_i = nP_i = 100P_i$. Составляем расчетную таблицу.

i	Z _i	Z _{i+1}	Ф(z _i)	Ф(z _{i+1})	$P_i = \Phi(z_{i+1}) -$	n' _i = 100P _i
					Ф(z _i)	
1	-	-1.45	-0.5000	-0.4265	0.0735	7.35
2	-1.45	-1.04	-0.4265	-0.3508	0.0757	7.57
3	-1.04	-0.62	-0.3508	-0.2324	0.1184	11.84
4	-0.62	-0.20	-0.2324	-0.0793	0.1531	15.31
5	-0.20	0.21	-0.0793	0.0832	0.1625	16.25
6	0.21	0.63	0.0832	0.2357	0.1525	15.25
7	0.63	1.04	0.2357	0.3508	0.1151	11.51
8	1.04	1.46	0.3508	0.4279	0.0771	7.71
9	1.46	-	0.4279	0.5000	0.0721	7.21
\sum	-	-	-	-	1	100
$\frac{\angle}{i}$						

Вычислим наблюдаемое значение критерия Пирсона. Для этого составим расчетную таблицу. Послдние два столбца служат для контроля вычисления по формуле:

$$\chi^2_{\text{\tiny Ha6л}} = \frac{1}{n} \sum_{i=1}^k n_i^2 - n$$

i	n _i	n' _i	n _i - n' _i	(n _i - n' _i) ²	(n _i - n' _i) ² /	n _i ²	n_i^2/n'_i
					n' _i		
1	9	7.35	1.65	2.7225	0.3704	81	11.0204
2	10	7.57	2.43	5.9049	0.7800	100	13.2100
3	11	11.84	-0.84	0.7056	0.0596	121	10.2196
4	13	15.31	-2.31	5.3361	0.3485	169	11.0385
5	15	16.25	-1.25	1.5625	0.0962	225	13.8462
6	11	15.25	-4.25	18.0625	1.1844	121	7.9344
7	12	11.51	0.49	0.2401	0.0209	144	12.5109
8	11	7.71	3.29	10.8241	1.4039	121	15.6939

9	8	7.21	0.79	0.6241	0.0866	64	8.8766
\sum_{i}	100	100	-	-	$\chi^2_{\text{набл}} = 4,3505$	-	104,3505

Контроль:
$$\frac{\sum n_i^2}{n_{ij}} - n = \frac{\sum (n_i - n'_i)^2}{n} = 104.3505 - 100 = 4.3505$$

По таблице критических точек распределения χ^2 , уровню значимости α = 0.0025 и числу степеней свободы k = l – d = d – d = d находим: d = d – d = d – d = d – d = d – d = d – d = d –

Так как $\chi^2_{\rm набл} < \chi^2_{\rm кp}$, то гипотеза ${\rm H_0}$ о нормальном распределении генеральной совокупности принимается.

e) Если CB X генеральной совокупности распределена нормально, то с надежность γ = 0.95 можно утверждать, что математическое ожидание α CB X покрывается доверительным интервалом

$$\left(x_{\mathrm{cped}} - \frac{{\sigma'}_{\mathrm{B}}}{\sqrt{n}}t_{\gamma}; x_{\mathrm{cped}} + \frac{{\sigma'}_{\mathrm{B}}}{\sqrt{n}}t_{\gamma}\right)$$
, где $\delta = \frac{{\sigma'}_{\mathrm{B}}}{\sqrt{n}}t_{\gamma}$ — точность оценки.

В нашем случае $x_{\rm сред}=76.45$, $\sigma'=12.0708$, n = 100. $t_{\gamma}=1.984$, $\delta=2,3949$. Доверительным интервалом для α будет (74.0552; 78.8449). Доверительный интервал, покрывабщий среднее квадратичное отклонение σ с заданной надежность γ , ($\sigma'(1-q)$; $\sigma'(1+q)$), где q находится по данным γ и n из прил. 9. При $\gamma=0.95$ и n = 100 имеем: q=0.143. Доверительным интервалом для σ будет (10.3447; 13.7969)

