Paket 2 no.2

Erlang Wiratama Surya

2. Misalkan G adalah centroid dari segitiga ABC, O, O' adalah circumcenter dari ABC dan A'B'C' secara berturut-turut (jelas O' itu H sebenarnya).

Perhatikan kalau homothety dengan pusat G dan rasio $\frac{-1}{2}$ membawa segitiga ABC ke segitiga A'B'C', misalkan homothety tersebut membawa P ke P". Perhatikan kalau $2 = \frac{AP'}{A'P''} = \frac{A'P'}{A'P''}$, similarly $2 = \frac{A'P'}{A'P''} = \frac{B'P'}{B'P''} = \frac{C'P'}{C'P''}$. Well known kalau lokus dari titik X sehingga $\frac{XP'}{XP''} = 2$ adalah lingkaran yang diameternya TT' dimana $\frac{P'T}{TP''} = 2$ dan $\frac{P'T'}{T'P''} = -2$. Perhatikan kalau midpoint TT' adalah O', maka P'P'' melalui pusat lingkaran luar segitiga A'B'C'. Selain itu, karena $\frac{P'T}{TP''} = 2$ dan $\frac{P'T'}{T'P''} = -2$, jelas O'P'' panjangnya adalah setengah radius lingkaran luar segitiga A'B'C'. Perhatikan kalau ini berarti OP panjangnya adalah setengah radius lingkaran luar segitiga ABC. Selain itu, jelas juga $\frac{O'P'}{O'P''} = 4$ karena $\frac{P'T}{TP'''} = 2$ dan $\frac{P'T'}{T'P'''} = -2$.

Perhatikan kalau homothety dengan pusat G dan rasio $\frac{-1}{2}$ membawa OP ke O'P". Ini berarti OP parallel HP'. Misalkan radius lingkaran luar segitiga ABC adalah R, sudah dibuktikan $OP = \frac{R}{2}$. Lalu jelas radius lingkaran luar $A'B'C' = \frac{R}{2}$, maka O'P" = $\frac{R}{4}$, maka O'P' = R. Misalkan $PP' \cap OH = K$. Karena $OP \parallel HP'$, jelas segitiga PKO sebangun dengan segitiga P'KO', maka $\frac{O'K}{OK} = \frac{O'P'}{OP} = 2$. Maka PP' selalu melalui titik K dimana $\frac{O'K}{OK} = 2$.

Terbukti semua garis PP' yang mungkin melewati sebuah titik tetap, yakni K.