Lab Report: Analysis of Oil-Based Mixtures - Report 1973

Abstract:

This report details a comprehensive analytical study conducted on various oil-based mixtures using a suite of laboratory

instrumentation. The primary objective was to characterize the properties of each mixture composed of differing oil

bases and additives, employing methods such as centrifugation, chromatographic separation, spectroscopic analysis,

and more. The data provides insights into the physicochemical properties underpinning these mixtures.

Introduction:

The study involved multiple test samples derived from combinations of oils such as almond, jojoba, and coconut. These

were blended with components like beeswax, gum, glycerin, cetyl alcohol, and vitamin E. The investigation utilized a

range of equipment to examine distinct properties, from melting points to molecular weight distribution. Each apparatus

was chosen for its ability to elucidate specific attributes of the test mixtures.

Materials and Methods:

The experimental section includes a description of each technique used:

Purpose: To examine phase separation tendencies in oil-based emulsions.

Thermocycler TC-5000:

Purpose: To simulate the thermal behavior of this blend under controlled conditions.

Liquid Chromatograph LC-400:

Purpose: For separation and identification of different alcohols and hydrocarbons.

UV-Vis Spectrophotometer UV-2600:

Purpose: Spectral analysis for determining molecular interactions within the mixture.

Purpose: Quantitative chemical analysis through titration.							
X-Ray Diffractometer XRD-6000:							
Purpose: Crystallinity assessment through diffraction peaks.							
Mass Spectrometer MS-20:							
Purpose: Determining molecular weight distribution of volatile components.							
HPLC System HPLC-9000:							
Purpose: High-resolution separation of complex mixtures.							
Microplate Reader MRX:							
Purpose: Studying optical properties related to the homogeneity of the blend.							
pH Meter PH-700:							
Viscometer VS-300:							
Result Tables:							
Instrument	Test Mixture	Parameter	Value	Units			
Centrifuge X100 A	mond Oil, Gum, Vitamin	E Speed	12000.0	RPM			
Thormografor TC 5000	Jaioha Oil Basaway	Tomporatura	27.0	°C			

Titrator T-905:

Instrument	Test Mixture	Parameter	Value	Units
Centrifuge X100 A	mond Oil, Gum, Vitamin	E Speed	12000.0	RPM
Thermocycler TC-5000	Jojoba Oil, Beeswax	Temperature	37.0	°C
LC-400	Jojoba Oil, Cetyl Alcohol	Concentration	250.0	μg/mL
UV-2600	Jojoba Oil, Glycerin	Absorbance	1.2	Abs
T-905	lojoba Oil, Gum, Glycerir	n Molarity	0.005	M
XRD-6000 Coco	nut Oil, Cetyl Alcohol, Gl	ycerinTemperature	100.0	°C

MS-20	Coconut Oil	Mass-to-charge ratio	750.0	m/z
HPLC-9000 A	mond Oil, Gum, Vitamin	E Concentration	450.0	mg/L
MRX	Jojoba Oil, Beeswax	Optical Density	2.5	OD
PH-700	Coconut Oil	рН	7.0	рН
VS-300	Almond Oil, Glycerin	Viscosity	7466.91	сР
VS-300	Coconut Oil	Viscosity	5024.58	сР

Discussion:

The data reflect the intricate behaviors of oil-based mixtures under various experimental parameters. The use of a centrifuge at 12000 RPM effectively separated phases within the almond oil, gum, and vitamin E mixture, indicating potential emulsification properties.

The thermocycler revealed that jojoba oil mixed with beeswax is stable at physiological temperatures, pertinent for topical applications. High absorbance in the UV spectrum for jojoba oil and glycerin hints at strong molecular interactions.

XRD analysis highlighted crystalline phases in coconut oil mixtures, while mass spectrometry elucidated the molecular composition of volatile elements in coconut oil.

Complex viscosity profiles obtained from the viscometer indicated considerable differences attributable to the glycerin concentration in almond oil, and comparatively less in coconut oil, affecting their rheological properties.

Conclusion:

The data underscore the unique characteristics of each mixture, influenced by their compositions and the conditions under which they were tested. Further studies are recommended to explore these formulations' practical applications in various industrial settings.

(Note: Disregard the following) Unrelated: The effect of sunlight on concrete hydration was not part of this study and should not be considered within this report context. Also, no quantum dot investigation was undertaken. Additionally, the

potential for turbine efficiencies in various wind conditions remains unexplored for the mixtures in question				

End of Report