Fábrica de Noobs

Criptografia - Criptografia RSA

A Criptografia RSA é um dos algoritmos de encriptação mais seguros e populares existentes na atualidade. Seu funcionamento baseia-se em princípios matemáticos, e se trabalhado com chaves grandes o suficiente, é sem dúvida um excelente algoritmo para se implementar.

Aqui vou tentar explicar o processo de encriptação e encriptação manual, o que vai envolver alguns conceitos matemáticos, que considero melhor explicar antes.

Número primo é qualquer número que seja divisível somente por 1 e por ele mesmo. Por exemplo, 17,11,37,41.

Podemos indicar restos de divisões utilizando **congruências**. Por exemplo:

$$8 \equiv 3 \mod(5)$$
 (lê-se 8 congruente a 3 módulo 5)

A notação acima mostra que 8 apresenta o mesmo resto que 3 ao ser dividido por 5. Veja outros exemplos:

$$101 \equiv 1 \mod(100)$$

$$478 \equiv 3 \mod(5)$$

$$256 \equiv 4 \equiv 1 \mod(3)$$

$$2 \equiv 0 \mod(2)$$

$$2^3 \equiv 0 \mod(2)$$

O ramo da Matemática que trabalha com tais propriedades chama-se Aritmética Modular, e é onde toda a criptografia RSA está baseada.

Para codificar uma mensagem, o primeiro passo é transformar todo o texto em números. Para isso, usamos a conhecida tabela ASCII:

								de cai							
000		016	>	032		048	0	064	@	080	P	096	ν.	112	p
001	0	017	4	033	Ţ	049	1	065	A	081	Q	097	а	113	q
002	0	018	‡	034	**	050	2	066	В	082	R	098	b	114	r
003	*	019	II.	035	#	051	3	067	C	083	S	099	C	115	S
004		020	\mathbb{P}	036	\$	052	4	068	D	084	T	100	d	116	t
005	•	021	S	037	용	053	5	069	E	085	U	101	е	117	u
006	•	022		038	&	054	6	070	F	086	V	102	f	118	V
007		023	‡	039	1	055	7	071	G	087	W	103	g	119	W
008		024	†	040	(056	8	072	H	088	X	104	h	120	X
009		025	+	041)	057	9	073	I	089	Y	105	i	121	У
010		026	→	042	*	058	:	074	J	090	Z	106	j	122	Z
011	o'	027	←	043	+	059	;	075	K	091	1	107	k	123	{
012	9	028	L	044	,	060	<	076	L	092	1	108	1	124	1
013		029	\leftrightarrow	045	=	061	=	077	M	093]	109	m	125	}
014	F	030	A	046		062	>	078	N	094	^	110	n	126	~
015	4	031	•	047	1	063	?	079	0	095		111	0	127	0

Por exemplo, codificaremos "morte ao miojo" da seguinte forma:

109 111 114 116 101 032 097 111 032 109 105 111 106 111

Aqui, terminamos o processo de pré-codificação e passamos para a codificação propriamente dita.

Importante: é conveniente, para evitar uma possível (apesar de improvável) quebra por frequência linguística, que o texto a ser codificado esteja em alguma cifra que não haja repetição de letras. Por exemplo, cifra de Vigenère.

Agora precisamos encontrar dois parâmetros RSA. Vamos chamá-los de p e q. Esses números precisam ser necessariamente primos. Em situações reais, esses números são astronômicos (algo no mínimo da ordem de 10^{100}), o que impossibilita qualquer tentativa de decodificação sem a chave. Aqui tem alguns http://compoasso.free.fr/primelistweb/page/prime/liste_online_en.ph
p. Mas no nosso caso, usaremos esses:

$$p = 17$$
$$a = 23$$

Depois, determinamos o produto desses dois números, e chamamos tal produto de n.

$$n = 17 * 23$$
$$n = 391$$

Vamos chamar n de chave pública do código. Ela pode ser divulgada para qualquer pessoa que queira criptografar e lhe enviar uma mensagem.

Já p e q são chaves privadas, e não devem ser reveladas. Se n for um número pequeno, é fácil deduzir os outros valores, mas isso é impossível para valores grandes.

Agora, vamos determinar a chamada função totiente em n, que não é nada mais que:

$$\varphi(n) = (p-1) * (q-1)$$

No caso:

$$\varphi(n) = (16) * (22)$$

 $\varphi(n) = 352$

Daí, basta escolhermos um número que satisfaça $1 > e > \varphi(n)$ e $d(e) \notin d(\varphi n)$ ou seja, que esteja entre 1 e o valor que encontramos anteriormente e não possua divisores comuns (além do 1, claro) com ele. Para facilitar a codificação, vou escolher 3.

$$e = 3$$

Depois, precisamos encontrar um número d que satisfaça:

$$d * e \equiv 1 \mod(\varphi n)$$

No nosso exemplo:

$$d*3 \equiv 1 \mod(352)$$

Em aritmética modular, d é chamado de inverso multiplicativo de e: $\varphi(n)$. Felizmente, temos calculadoras online que já fazem esse serviço.

Modular inversion

Use the extended Euclidean algorithm to compute a modular multiplicative inverse

Comp	utes m for n	n ⁻¹ =	m (m	od p), w	here n a	and p	are o	oprime	
Displa	ys the steps	oft	he exte	nde	d Eu	clidean	algori	thm.		
Set n	= 3									
Set p	= 352									
Sub	mit									
	1	_								
step	quotient	t ₁	t ₂	t ₃	u ₁	u ₂	u ₃	v ₁	v ₂	v ₃
step 0	quotient	t ₁	t ₂	t ₃	u ₁	u ₂	u ₃	v ₁	v ₂	v ₃
<u> </u>	quotient	t ₁	-117		u ₁ 1	_	-	H	1	-

The modular inverse is:

235

Basta acessarmos http://www.cs.princeton.edu/~dsri/modular-inversion-answer.php, informarmos o valor de e na primeira caixa e de $\varphi(n)$ na segunda:

Set
$$\mathbf{n} = 3$$
Set $\mathbf{p} = 352$

Como nos mostrou, o resultado é:

$$d = 235$$

Ao final do processo, terminamos com os seguintes valores:

Chaves públicas: (n; e)

Chaves privadas: (p; q; d)

Ou, no nosso caso:

Chaves públicas: (391; 3)

Chaves privadas: (17,23,235)

É só depois de ter esses 5 valores que realizamos a codificação propriamente dita.

Voltamos a mensagem pré-codificada originalmente:

109 111 114 116 101 032 097 111 032 109 105 111 106 111

Vamos denotar cada conjunto de números por bloco, e chama-los, um por um, de M. A formula para codificar cada bloco M é:

$$C = M^e \mod (n)$$

Sendo C o bloco codificado que obteremos após aplicar a fórmula.

Veja o exemplo:

$$C = 109^3 \mod (391)$$

Também felizmente, podemos fazer isso com uma calculadora de restos (http://www.calculadoraonline.com.br/divisao-polinomios), tornando o trabalho infinitamente mais fácil:

Logo:

$$109^3 \mod (391) = 37$$

E daí temos nosso primeiro bloco codificado. Devemos repetir o processo para todos os outros blocos. Realizando-o, temos a seguinte mensagem codificada já em RSA:

Se quisermos decodificar, podemos fazê-lo utilizando outra fórmula:

$$M = C^d \mod (n)$$

No caso do primeiro bloco:

$$M = 37^{235} \mod (391)$$

O que também pode ser feito usando a calculadora de restos, e dá:

37^235 391
109 861446673595105281331747779724
Calcular
Lana

Logo:

$$109 = 37^{235} \mod (391)$$

Que é o valor do primeiro bloco. Realizando o processo completo, temos novamente:

109 111 114 116 101 32 97 111 32 109 105 111 106 111

Comparando com a tabela ASCII, chegamos no resultado original e deciframos a mensagem.

Se quisermos automatizar o processo podemos usar esse site,

https://www.cs.drexel.edu/~introcs/Fa11/notes/10.1_Cryptography/R SA Express EncryptDecrypt.html que oferece um codificador e decodificador automático de RSA com base na tabela ASCII.

Basta informarmos os valores de n e e para codificar, e de d para decifrar:

Supply Modulus: N 391							
Supply Encryption Key and Plaintext message M:		Supply Decryption Key and Ciphertext message C:					
Encryption Key: e 3		Decryption Key: d 235					
Plaintext Message to encode:		Ciphertext Message in numeric form:					
morte ao miojo		37 304 45 24 16 315 79 304 315 37 265 304 30 304					
Encrypt	OR	Decrypt					
Plaintext Message in numeric form:	on.	Decrypted Message in numeric form:					
109 111 114 116 101 032 097 111 032 109 105 111 106 111		109 111 114 116 101 32 97 111 32 109 105 111 106 111					
Encrypted Message in numeric form:		Decrypted Message in text form:					
37 304 45 24 16 315 79 304 315 37 265 304 30 304		morte ao miojo					