Rec'd PCT/PTO 25 FER 2005

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-276760

(43)公開日 平成4年(1992)10月1日

(51) Int.Cl.5

G 0 3 G 5/06

識別記号 3 1 2

庁内整理番号

8305 - 2H

FI

技術表示箇所

審査請求 未請求 請求項の数4(全10頁)

(21)出願番号

持願平3-38350

(22)出願日

平成3年(1991)3月5日

(71)出願人 000004455

日立化成工業株式会社

東京都新宿区西新宿2丁目1番1号

(72)発明者 森下 芳伊

茨城県日立市東町四丁目13番1号 日立化

成工業株式会社茨城研究所内

(72)発明者 杉本 靖

茨城県日立市東町四丁目13番1号 日立化

成工業株式会社茨城研究所内

(72)発明者 林田 茂

茨城県日立市東町四丁目13番1号 日立化

成工業株式会社茨城研究所内

(74)代理人 弁理士 若林 邦彦

最終頁に続く

(54) 【発明の名称】 電子写真感光体

(57)【要約】

【目的】 電子写真感光体において、感度が高く、くり 返し使用しても帯電性、暗減衰、感度、画質等が経時的 に劣化しないようにする。

【構成】 下記一般式(I)で表されるナフチルアミン 化合物を含有することを特徴とする電子写真感光体 【化1】

〔ただし、式中、A r は置換基を有してもよいナフチル 基、Ri及びRiは、水素原子、ハロゲン原子、遺換基を 有してもよいアルキル基、アルコキシ基、アミノ基、ア リール基、アリールオキシ基を、R₂及びR₃はそれぞれ 独立して水素原子、ハロゲン原子、置換基を有してもよ いアルキル基、アルコキシ基を表す。k及びnは1~5 の整数、I及びmは1~4の整数である]

BEST AVAILABLE COPY

【特許請求の範囲】

下記一般式([)で表されるナフチルア 【請求項1】 ミン化合物を含有することを特徴とする電子写真感光 体。

【化1】

$$(R_1)_{\underline{k}} \qquad (R_2)_{\underline{l}} \qquad (R_3)_{\underline{k}} \qquad (R_4)_{\underline{k}} \qquad (1)$$

【ただし、式中、Arは置換基を有してもよいナフチル 10 基、R1及びR1は、水素原子、ハロゲン原子、置換基を 有してもよいアルキル基、アルコキシ基、アミノ基、ア リール基、アリールオキシ基を、R.及びR.はそれぞれ 独立して水素原子、ハロゲン原子、置換基を有してもよ いアルキル基、アルコキシ基を表す。 k 及びn は1~5 の整数、1及びmは1~4の整数である)

【請求項2】 導電性支持体上に、電荷発生物質及び電 荷輸送物質を含む光導電層を設けた電子写真感光体であ って、前記電荷輸送物質が一般式(I)で表されるナフ

【請求項3】 電荷発生物質及び電荷輸送物質がそれぞ れ別個の層に含まれる請求項2記載の電子写真感光体。

【請求項4】 導電性支持体と光導電層間に下引き層を 設けた請求項2又は3記載の電子写真感光体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は電子写真感光体に関す

[0002]

【従来の技術】従来、電子写真感光体はSe、CdS等 の無機材料で構成される感光体が主流であったが、最近 は、取扱い上の安全性、価格の点で優れる有機材料を用 いた電子写真感光体が注目されている。この電子写真感 光体には、電荷発生物質と電荷輸送物質とが混在した単 一層からなる単層型、電荷発生層と電荷輸送層とを積層 した積層型(いわゆる2層構造)感光体がある。

【0003】電荷輸送層に用いられる電荷輸送物質とし ては、ポリピニルカルパゾールとトリニトロフルオレノ ン(モル比1対1)の混合物のような電子輸送能を有す る電荷輸送物質、ヒドラゾン、エナミン、ベンジジン誘 導体(特公昭55-42380号公報、特開昭62-2 37458号公報、特公昭59-9049号公報)のよ うな正孔輸送能を有する電荷輸送物質がある。

【0004】これらを用いた感光体は優れた初期特性を 有していると思われるがそれらの化合物が酸化されやす いという欠点があるために、感光体をくり返し使用した 場合に帯電性、暗滅衰及び感度が低下したり、残留電位 が上昇するといった問題がある。また、ピフェニルアミ フェニルー4ーアミンなどが知られているが、電荷輸送 材料として必ずしも有用なものではなかった。

[0005]

【発明が解決しようとする課題】本発明は、上記のよう な従来技術における問題点を改善し、ナフチルアミン化 合物を用いた、感度が高く、くり返し使用しても帯電 性、暗減衰、感度、画質等が経時的に劣化しない電子写 真感光体を提供するものである。

[0006]

【課題を解決するための手段】本発明は、下記一般式 (1) で表されるナフチルアミン化合物を含有すること を特徴とする電子写真感光体に関する。

【化2】

(ただし、式中Arは置換基を有してもよいナフチル 基、Ri及びRiは、水素原子、ハロゲン原子、置換基を チルアミン化合物である請求項1記載の電子写真感光 20 有してもよいアルキル基、アルコキシ基、アミノ基、ア リール基、アリールオキシ基を、Rz及びRzはそれぞれ 独立して水素原子、ハロゲン原子、置換基を有してもよ いアルキル基、アルコキシ基を表す。 k 及びn は l ~ 5 の整数、I及びnは1~4の整数である〕

> 【0007】以下、本発明について詳述する。一般式で 表されるナフチルアミン化合物は、例えば、次のように 製造することができる。

[化3]

30

{ただし、式中、Ar、Ri及びkは前記一般式(I) と同意義である〕で表されるアミン化合物(II)と一 般式

【化4】

〔ただし、式中、Xはヨウ素又は臭素を表す。また、R z、Rx、Rx、1、m及びnは前記一般式(I)と同意 義である〕で表されるハロゲン化アリール化合物とを鋼 系触媒(銅粉末、酸化銅、ハロゲン化銅等の銅化合物) 及び塩基性化合物(炭酸カリウム、炭酸ナトリウム、水 酸化カリウム、水酸化ナトリウム等のアルカリ金属の炭 酸塩又は水酸化物)の存在下で、無溶媒又は有機溶媒 (ニトロペンゼン、ジクロロペンゼン、キノリン、N, N-ジメチルホルムアミド、N-メチル-2-ピロリド ン、スルホラン等)共存下で、窒素雰囲気下、150~ ン誘導体としては、N,N - \Im フェニルー1,1 $^{\prime}$ - arPi 50 $^{\prime}$ $^{\prime}$

塩化メチレンやトルエンなどの有機溶剤に溶解し、不溶物を分離、溶剤を留去した後、残留物をアルミナカラム等で精製し、エタノール、酢酸エチル、トルエン等で再結晶することにより一般式(I)で表されるナフチルアミン化合物を製造することができる。

【0008】また、アミン化合物、ハロゲン化アリール化合物、銅系触媒及び塩基性化合物の使用量は、通常化学量論量を使用すればよいが、好ましくは、アミン化合物1モルに対して、ハロゲン化アリール化合物0.5~1.5モル、銅系触媒0.1~3モル、塩基性化合物1~3モルの範囲で使用すればよい。

【0009】本発明における一般式(I) で表されるナフチルアミン化合物としては、例えば、次のような化合物があげられる。

[0010]

【化5】

$$\begin{array}{c} R_1 \stackrel{4}{\longleftrightarrow} \stackrel{3}{\longleftrightarrow} \\ \stackrel{5}{\longleftrightarrow} \\ \stackrel{1}{\longleftrightarrow} \\ \stackrel{1}{\longleftrightarrow}$$

【0011】 【表1】

<u>R1</u>									
與我從金額 別 o .	R,	R,	R.	n,	Az				
1	2 - C E.	Ħ	B	4-CH,	<u></u>				
•	3 - C B,	Ħ	8	4-08,	ලා				
1	4-CM.	R	ES	4-CB.	@				
4	8. 4- dic#.		H	4-CM,	6				
0	3, 6- 4 i CH.	В	Æ	4-CH.	@				
•	8. 3 - 4 L C H.	15	ĸ	4-CM.	@				
†	2. 4- 4 (GH.	8	a	4-02,	@				
•	2, 5 4 (C M ,	8	8	4-CH,	ത്ത				
•	1, 4, 8- telCB,	Ħ	R	4-CH.	9				
10	1 - C. H.	8	5	4-CH,	ලෙ				
1 1	3 - C, B,	В	B	4-CH,	මෙ				
12	4 - C, H,	8	Ħ	4-0H,	@				
13	2, 8- 41C,X	1	B	4-CH,	©				
14	3-(2C.H.)	8	Æ	4-0H,	.				
1.5	4-(#2.元.)	ĸ	H	6-CH,	@				
16	2-(iC.H.)	B	R	4-CH,	©				
17	4-(1C.H.)	2	Ħ	4~0E1	@				
8.5	4-(tC.H.)	Ħ	A	4-CX;	@				
l I	3-CH:O	×	H	4-CE,	©				

[0012]

30 【表2】

20

20

R:									
但然亦含物 代 o .	R1	R.	R,	R.	A1				
3 0	3-CE,0	FL	Œ	4-0H,	@				
9 1	4 - C H , O	Ħ	H	4-CH,	ලා				
2.3	3, 5- 6 (CH ₁ 0	H	Ħ	4 - C H.	@				
2.5	3, 4- 4(CH,O	В	н	4-CH.	60				
14	9 CH.O	Ħ	К	4-CH.	මෙ				
2.6	2-C.E.C	Ħ	K	4-CH,	6				
1.6	3-C.E.O	Ħ	ĸ	4-CH,	©				
17	4-C: 8.0	2	ĸ	4-CH.	©				
3.6	3-CF,	H	×	4 - C H.	@				
2.0	4-07.0	Ħ	Ħ	4 - CH,	@				
30	S-CFICKIO	Ħ	Ħ	4-CB;	ത്ര				
9.1	4-CF,CR,0	н	H	4-CE,	ത്ത				
13	4~(GB,)*N	Ж	Ħ	4-CE,	ত্তিত				
3.8	4 = (-@)	Я	23	4~CE,	ලෙ				
14	4-(н		4-CH:	ത്ത				
3 B	4-(-@-C. H.)	н	Ħ	4-CE.	මෙ				
1 6	4 ~ (((() € C , H ,)	н	В	4 - C H,	©				
17	4 - C M.	н	B	4-C, E,	<u></u>				
1.0	1, 4- 41 CE,	8	7	4-C, 2.	©				

明示な合物 い。化	Ř,	a,	R.	R.	Ar
	3, 6- 4 (CH,	B	Я	4-C, H,	©
40	4-(tC.8.)	15	н	6 - C. M.	©
41	4 - C H, O	я	M	4 - Da 24	ത്ത
4.8	3, 4- 41CH ₁ 0	Ħ	н	4 - C ₁ B ₁	<u>@</u>
4.0	4 - C, H, O	Ħ	Я	4 - C。 B。	@
44	4-CF,CE,0	E	н	4-C.E.	
4.6	4 - (-@-c, E,)	H	15	4-C.E.	<u> </u>
4.0	4 - ((C, H,)	12	н	4-C.E.	30
47	4 -C B.	Я	Ж	4-10.H.	.
• •	3.4- 41CH,	#	Я	4- t C, H.	<u>.</u> 200
**	9, 6- 410H:	H	н	4 - t C . E.	300
5 9	4 - C H, D	H	н	4-1 C: H.	@
5 1	4 - C, H, O	Ħ	н	4 - t C. ff.	60
5.8	4-CF.CH.O	H	н	4-t C. B.	9
8.3	4 - (-@-)	M	н	4 - t C. H.	6
5.4	4 - (Ø-c E.)	Ħ	H	4-t C. H.	<u></u>
5.5	4 ~ (-@-t C, H,)	R	н	4 - 1 C. H.	ത്ത
5.6	4-(tC.E.)	K	Я	4 - C H, O	ത്ത
5 7	3.4- 41CM,	B	H	4-CH:0	@

【0013】 【表3】

【0014】 30 【表4】

【0015】 【表5】

#4									
概念(S)金物 質 g 。	Ri	R.	R,	R.	Ar				
6.4	3. 5- d1 CH,	H	н	4-CH,0	©				
5 0	4 - CH, O	В	н	4-CH.0	<u>©</u>				
• 0	4 - C: H: O	В	H	4-CH.0	ু ত্রে				
6 1	4 - C, H, Q	9	В	4-GF, GH, 6	©				
8 2	3 - C H.	В	Я	6-C7.CH.	මෙ				
* 1	4 - C E.	H	я	4-CF,CH,	<u></u>				
6.4	3, 4- dice.	n	×	4-07,CH,C	6				
+ 6	3.5- 41CH	В	H	4 - C7, CH, C	60				
5 6	4~(- @)	Ж	Я	4 - C.F. CH. C	(<u>0.0</u>)				
6 7	4-←©-сн.)	Ħ	Ж	4 - CF, CH, C	(C)				
0 8	4 – (-@-ося.)	Ħ	R.	4-CF,CH,C	©				
6 þ	4~ (- (- (- (- (- (- (- (- (- (- (- (- (-	Ħ	E	4 - GF, CH, O	@				
7 0	2 - C H, ,	R	R	4-CM:	6				
71	4 - C P. C H. Q	8	B	B	ලා				
7 1	8. 4- 4 CH.	B	Ħ	28	@				
7.2	8, 5- 4 i CH.	Ħ	Ħ	н	ത്ത				
7.4	4-(10.月.)	22	H	E	6				
7.8		3 - C 21,	н	3 - CH.	@				
7.	3. E-	3 -	А	3-CH.	(হুটো				

10

20

R 6										
MP600 No.	R,	R.	R,	2.	A :					
77	3, 4- 4 i CB,0	H	3 C H.	8	ത്ത					
7.8	4-C.H.O	Ħ	B - C Ra	8I	60					
7 >	4 - C H,	В	Ħ	4 - Ç H.	ф Ф					
a 0	4 - C H . O	Ħ	E	4-CH,	@					
0.1	4-(-(@) CH.)	R	R	4 - C H ₄	ම					
4.1	4 - C. H.	н	H	4 - C, H,	@					
8.9	4 - C, H, O	н	H	4 ~ C; E;	@					
8.4	4 - C H,	12	н	4-CH,	ම්ම					
16	3. 5 - d i CR.	В	H	4 - C H.	600					
	4 - C H, O	E	В	4-(t C.B.)	.					
.,	4-CH.O	8	E	4 - CH.	9					
3.5	4 - C E,	Ħ	H	4-CR,	_					
# B	4 - C H,	Н	8	4 - C, E,						
9 0	4 - C R.	Ħ	R	4 - C, E,	a. 600°					
91	4 ~ (- இடு 	н	E	4 - C, E,	@					
0.2	4-100 EC.F.	М	Ħ	4,-(+ C. H.)	60					
• •	a.s-	H	Ħ	4 - (Ø) ₹ C. H.)	ത്ത					
9.4	9.4- a [C H.	n	н	4 - C H.	@					

[0016] 【表6】

	典4									
利却在全物 250.	Rı	R,	R,	R.	Ar					
4.6	9, 5- 41CH,	•	12	4 - C M.	@					
• •	4 - C, K,	×	15	6 - C M.	ලා					
17	4-(EC,H.)	2	11	6 - CH.	<u>ල</u> ා					
	4-(t G.H.)	8	8	4-CH;	ණ					
••	9, 6- 41 CH,		8	4 - C. H.	ලා					
100	3, 8- 41 CM,	8	W	4- t C, E.	ф					
101	4-CE.	=		4 - O, H, O	ලා					

【**0017**】一般式(I)で表されるナフチルアミン化 合物は、電子写真感光体に含有させ、電荷輸送物質とし て機能させることができる。電子写真感光体に適用する 場合は、一般式(I)で表されるナフチルアミン化合物 は他の電荷輸送物質、例えば高分子化合物のものではポ リーN-ピニルカルパゾール、ハロゲン化ポリーN-ピ ニルカルパゾール、ポリピニルピレン、ポリピニルイン ドロキノキサリン、ポリピニルベンソチオフエン、ポリ ピニルアントラセン、ポリピニルアクリジン、ポリピニ ルピラソリン等が、低分子化合物のものではフルオレ 50 の上に光導電層として構成することもできる。

ン、フルオレノン、2、7ージニトロー9ーフルオレノ ン、2、4、7-トリニトロー9ーフルオレノン、4H 30 -インデノ (1, 2, 6) チオフエン-4-オン、3, 7-ジニトロージベンゾチオフエン-5-オキサイド、 1-プロムピレン、2-フェニルピレン、カルパゾー ル、3-フェニルカルバゾール、2-フェニルインドー ル、2-フェニルナフタレン、オキサジアゾール、トリ アゾール、1-フェニルー3-(4-ジエチルアミノス チリル) -5- (4-ジエチルアミノフェニル) ピラゾ リン、2-フェニル-4-(4-ジエチルアミノフェニ ル) -5-フェニルオキサゾール、トリフェニルアミ ン、イミダゾール、クリセン、テトラフエン、アクリデ 40 ン、これらの誘導体等と併用することができる。他の電 荷輸送物質の配合割合は、一般式(I)で表されるナフ チルアミン化合物による電子写真特性の向上を損わない ために該誘導体1重量部に対して1重量部以下が好まし く、特に0.25重量部以下が好ましい。

【0018】本発明に係る電子写真感光体は、電荷輸送 物質及び電荷発生物質が混在して含まれる単一層を導電 性支持体の上に光導電層として構成することができる。 また、電荷発生物質と電荷輸送物質とを別額の層に含ま れるように形成したいわゆる2層構造層を導電性支持体

【0019】上記の電荷発生物質としてはSi、Se、 As2S1, Sb2S1, Sb2Se1, CdS, CdSe, CdTe、ZnO、α型、β型、τ型、X型等の各種結 晶型の無金属フタロシアニン顔料、銅フタロシアニン、 アルミニウムフタロシアニン、亜鉛フタロシアニン、チ タニルフタロシアニン、コバルトフタロシアニン等の金 属フタロシアニン及びナフタロシアニン顔料、アソ顔 料、アントラキノン顔料、インジゴイド顔料、キナクリ ドン顔料、ペリレン顔料、多環キノン顔料、スクアリッ ク酸メチン顔料、アズレン顔料、ピロロピロール顔料な どがあげられる。顔料としては、これらの他に例えば、 特開昭47-37453号公報、特開昭47-3754 4号公報、特開昭47-18543号公報、特開昭47 ~18544号公報、特開昭48-43942号公報、 特開昭48-70538号公報、特開昭49-1231 号公報、特開昭49-105536号公報、特開昭50 -75214号公報、特開昭50-92738号公報、 特購昭61-162555号公報、特開平1-4547 4号公報、特開平2-175763号公報等に開示され **るものがある。**

【0020】光導電層には、既知の結合剤、可塑剤、流 動性付与剤、ピンホール抑制剤等の添加剤を使用するこ とができる。結合剤としては、例えば線状飽和ポリエス テル樹脂、ポリエステルカーポネート樹脂、ポリカーボ ネート樹脂、アクリル系樹脂、ブチラール樹脂、ポリケ トン樹脂、ポリウレタン樹脂、ポリーN-ビニルカルバ ゾール、ポリー (pーピニルフェニル) アントラセン、 シリコーン樹脂、ポリアミド樹脂、エポキシ樹脂、ポリ スチレン樹脂などがあげられる。

【0021】結合剤としてまた、熱及び/または光によ って架橋する熱硬化型及び光硬化型樹脂も使用できる。 いずれにしても絶縁性で通常の状態で皮膜形成能を有す る樹脂及び/または光によって硬化し皮膜を形成する樹 脂であれば特に制限はない。可塑剤としては、例えばハ ロゲン化パラフィン、ジメチルナフタレン、ジプチルフ タレート等があげられる。流動性付与剤としては、例え ば、モダフロー(モンサントケミカル社製)、アクロナ ール4F(バスフ社製)等があげられる。ピンホール抑 制剤としては、例えば、ベンゾイン、ジメチルテレフタ レート等があげられる。これらは適宜選択して使用さ れ、その量も適宜決定されればよい。

【0022】単一層構造を採る場合、電荷発生物質に対 する前記電荷輸送物質の配合量は前者1重量部当り、後 者1~10重量部が一般的である。好ましくは前者1重 量部当り後者1~5重量部である。結合剤の使用量は、 電荷発生物質1重量部当り1~3重量部であり、3重量 部を越えると電子写真特性が低下する傾向がある。その 他、上記可塑剤、添加剤は、電荷発生物質に対して数量 量%以下で適宜使用される。また、光導電体層全体の厚 さとしては $5\sim 1$ 0 0 μ mとするのが一般的である。 0 50 発生層または電荷輸送層が形成されたのち、その上に電

かし、最終的には光感度即ち帯電特性を損わないように 配慮して決定するのが望ましい。

【0023】一方、二層構造を採る場合、電荷発生層 は、上記Si、Seの場合には、真空蒸着法等で導電性 支持体上に厚さ $1\sim 20\,\mu$ m形成できる。また、Si、 Se以外の無機物、有機金属顔料又は有機顔料を電荷発 生物質として使用する場合には、膜形成のために上記結 合剤を使用する必要があり、その使用量は、電荷発生物 質1重量部当り通常0.5~3重量部であり、3重量部 を越えると電子写真特性が低下する傾向がある。その 他、上記可塑剤、添加剤は、電荷発生物質に対して数重 量%以下で適宜使用される。また、電荷輸送層は、一般 式(I)で表されるナフチルアミン化合物電荷輸送物質 として単独で用いる場合には、上記の結合剤を電荷輸送 物質である該誘導体1重量部当り0、5~3重量部用い ることができる。また、他の電荷輸送物質を併用する場 合、該電荷輸送物質が高分子化合物のときには、結合剤 を用いなくてもよいが、該高分子化合物 1 重量部に対し て結合剤を3重量部以下で使用してもよい。3重量部を 越えると電子写真特性が低下する傾向がある。その他上 記可塑剤、添加剤は上記電荷輸送性物質1重量部に対し て0.05重量部以下で適宜使用される。電荷発生層の 厚さは通常 0. 01~10 μm、好ましくは 0. 1~5 μ mとされる。0.01 μ m未満では、電荷発生層を均 一に形成するのが困難になることがあり、10μmを越 えると電子写真特性が低下する傾向がある。また、重荷 輸送層の厚さは通常 $5\sim50\mu$ m、好ましくは $10\sim3$ 5 μ m とされる。 5 μ m 未満では初期電位が低下しやす く、50µmを越えると感度が低下する傾向がある。

【0024】しかし、いずれの場合も最終的には光感度 即ち帯電特性を損わないように配慮して決定するのが望 ましい。光導電層の厚さがあまり厚くなりすぎると層自 体の可撓性が低下する惧れがあるので注意を要する。

【0025】本発明の電子写真感光体を、電荷発生層と 電荷輸送層をもつ二層構造とする場合、導電性支持体の 上に電荷発生層を形成し、その上に電荷輸送層を形成し たものが、電子写真特性上好ましいが、電荷発生層と電 荷輸送層が逆になっていてもよい。導電性支持体にはア ルミニウム、真ちゅう、銅、金等の金属、金属を蒸着し たマイラーフイルムなどが用いられる。

【0026】導電性支持体上に電荷発生物質及び電荷輸 送物質を含有する単一層、電荷発生層及び電荷輸送層か らなる二層を形成するには、各層の成分をアセトン、メ チルエチルケトン等のケトン系溶剤、テトラヒドロフラ ン等のエーテル系溶剤、トルエン、キシレン等の芳香族 系溶剤、塩化メチレン、1、2-ジクロロエタン、1. 1.2-トリクロロエタン等のハロゲン化炭化水素系溶 剤等の溶剤に均一に溶解または分散させたのち、導電性 支持体上に強布乾燥することができる。このうち、重荷

and managed the second of the

10

A North Control of the Control

14

荷輸送層または電荷発生層を同様に塗布乾燥して二層構 造とすることができる。

【0027】塗布乾燥は、例えば浸積塗工法、アプリケ 一夕塗工法、ドクターブレード塗工法等の塗工法を用い て所定の膜厚に塗工し、15分間自然乾燥させた後、5 0~150℃で30~90分間乾燥して行うことができ る。

【00'28】本発明に係る電子写真感光体は、さらに導 電性支持体と光導電層間に下引き層を有してもよい。該 下引き層には、熱可塑性樹脂を使用することが好まし い。該熱可塑性樹脂としては、例えば、ポリアミド樹 脂、ポリウレタン樹脂、ポリビニルプチラール樹脂、メ ラミン樹脂、カゼイン、フェノール樹脂、エポキシ樹 脂、エチレン-酢酸ピニル共重合体樹脂、エチレン-ア クリル酸共重合体樹脂などがあげられるが、ポリアミド 樹脂が好ましい。ポリアミド樹脂としては、具体的に は、トレジンMF30、トレジンF30、トレジンEF 30T (以下帝国化学産業(株)製ポリアミド樹脂の商 品名)、M-1276 (日本リルサン (株) 製ポリアミ ド樹脂の商品名)等がある。下引き層に含有されるこれ 20 らの樹脂は、単独で又は2種類以上混合して用いてもよ 63.

【0029】本発明において、ポリアミド樹脂を使用し て下引き層を設ける場合は、熱硬化性樹脂及び硬化剤を ポリアミド樹脂と併用することが好ましい。熱硬化性樹 脂及び硬化剤の併用によって下引き層の耐溶剤性及び膜 の強度は向上し、下引き層の上に光導電層を設ける際に 光導電層形成用溶液中の溶媒等によるダメージを受けに くくなる.

【0030】熱硬化性樹脂としては、例えば、メラミン 樹脂、ベンゾグアナミン樹脂、ポリウレタン樹脂、エポ キシ樹脂、シリコン樹脂、ポリエステル樹脂、アクリル 樹脂、尿素樹脂等の熱硬化性樹脂が使用でき通常の状態 で皮膜を形成できる熱硬化性樹脂であれば特に制限はな い。これらは熱可塑性樹脂に対して300重量%以下で 使用するのが好ましい。硬化剤としては、例えば、トリ メリット酸、ピロメリット酸などのカルポン酸や、カル ポン酸を有するアミドのオリゴマーなどがあげられる。 これらは、前記熱硬化性樹脂に対して20重量%以下で 使用することが好ましい。

【0031】下引き層を形成する方法としては、例えば 熱可塑性樹脂、必要に応じて使用される、熱硬化性樹 脂、硬化剤等をメタノール、エタノール、イソプロパノ ールなどのアルコール溶剤と塩化メチレン、1、1、2 トリクロロエタンなどのハロゲン系溶剤の混合溶剤に 均一に溶解し、これを導電性基体上に浸渍塗工法、スプ レー塗工法、ロール塗工法、アプリケータ塗工法、ワイ ヤバー強工法等の強工法を用いて強工し乾燥して形成す ることができる。

【0032】下引き層の厚さは、0.01 μm~5.0 50

 μ mが好ましく、特に 0. 05 μ m~2. 0 μ mが好ま しい。薄すぎると均一な電荷発生層が形成出来ず黒ボチ や白ポチが発生する傾向がある。又厚すぎると残留電位 の蓄積が大きくなり、印字枚数が増加するに従い印字濃 度の低下が発生する傾向がある。

【0033】本発明になる電子写真感光体を用いた複写 法は、従来と同様、表面に帯電、露光を施した後、現像 を行い、普通紙上に画像を転写し定着すればよい。

[0034]

【実施例】以下、実施例によって本発明を説明するが、 本発明は、これらに限定されるものではない。

実施例1~12

・型無金属フタロシアニン (東洋インキ社製) 1 重量 部、シリコン樹脂KR-3240(信越化学工業(株) 商品名、固形分15重量%) 6. 7重量部、テトラヒド ロフラン38.1重量部を混合し、この混合液をポール ミル (日本化学陶業製3寸ポットミル) を用いて8時間 混練した。得られた分散液をアプリケータによりアルミ ニウム板(100mm×700mm、厚さ0.1mm) 上に塗布し、120℃で30分間乾燥して厚さ0.5μ mの電荷発生層を形成した。

【0035】次に、下記表1に示した一般式(I)で表 されるナフチルアミン化合物 1. 2 重量部とビスフェノ ール2型ポリカーポネート樹脂(三菱ガス化学(株) 製、スー200)1.8重量部を塩化メチレン9重量部 と1、1、2-トリクロロエタン8重量部に溶解して得 られた塗布液をアプリケータにより上記基板の電荷発生 層上に塗布し、120℃で30分間乾燥して厚さ18 µ mの電荷輸送層を形成して電子写真感光体(A~L)を 得た。

【0036】前記実施例で得られた電子写真感光体の電 子写真特性を静電記録試験装置(川口電機株式会社製S P-428) を用いて測定し、結果を表7に示した。な お、表中の電位 V。(-V)は、ダイナミック測定で-5 k Vのコロナを10秒間放電したときの帯電電位を示 し、暗減衰 (Vk) はその後暗所において30秒間放置 したときの電位 (V₃₀) からの電位保持率〔(V₃₀/V a) ×100%) を示し、半減露光量(Esa)は101 uxの白色光で照射し、電位が半分になるまでの光量値 40 を示す。残留電位 Vaは10luxの白色光を30秒間 照射した後の電面電位を示す。

[0037]

【表7】

	,					
ABA	430.00	44884	(-y)	OP	E	A.
Ŀ	^	ීම් මෙ මෙමම ්	830	B 0. 1	1.4	•
,	Ð	ක් <u>ලල</u>	* 70	\$ 2.8	1. 3	٥
1	С	ලු -ලලල ක්	9.80	8 3. 2	1.4	0
٠	D	00 -000-44 -	8 9 0	8 3. 0	1.2	•

[0038]

【表8】

					_	
开始师	- ラ大作	电电阻器 电电路	(-V)	(%)	Jaz-que	√
Ŀ	-	© -000-44	1	31.3	1.4	•
6	7	@ • ⊕ ⊕ ⊕ • • • • • • • • • • • • • • • • •	1000	8 2.0	1.8	o
7	g	© -000-4.	840	3 3. 2	1.4	•
	Z	මම -ලලලා ≈ ම	\$ 0 0	\$2.5	1.4	0
•	1	60 -000-ir	900	49.7	i. 9	•
1.0	3		•20	80.4	l.3	•
11	2	<u>කූ ලලල</u> ය	1000	44.0	L. 3	•
12	.	ණ ලමම ්	*60	84.2	1.3	•

【0039】比較例1、2

実施例1~12におけるナフチルアミン化合物の代り に、下記表9に示した化合物を用いたほかは、同様にし 写真感光体の電子写真特性の測定結果を表9に示した。

[0040]

【表9】

A STATE OF	200	****	∀ , (- ∀)	(%)	Ing. mag	V; (-∀)
2	×	© 0-0	1	78.3		
	и	(T):1-0-4-1-(D)	370	77.0	1.0	٠

【0041】実施例13~17及び比較例3、4 実施例2、4、8、11、12及び比較例1、2で作成 した電子写真感光体の繰り返し使用での特性変化を調べ るため、実施例2、4、8、11、12及び比較例1、 2 で作成した感光体 (B、D、H、K、L、M、N) を 日立製作所製レーザビームプリンターSL-2000改 道機に装着して5、000枚複写を行った後、SP42 8 を用いて電子写真特性を測定した。さらに、初期と 5,000枚複写試験後に電子写真学会テストチャート 10 No. = 1 - T (1975年版)を複写して解像度を測 定した。それらの結果を第10表に示した。その結果、 本発明のナフチルアミン化合物を用いた電子写真感光体 は、比較例の感光体に比べ、高感度であり、くり返し使 用した場合においても低残留電位、高画質(解像度良 好)等の優れた特性を保持していることがわかる。

16

[0042]

【表10】

20

_						A lg					
İ	488	L	- 1		*		8.000数数多数				
		V.	VE	R.	٧.	FAL	٧,	V1	¥	٧.	744
1 3	•	8770	22.5	LP	•	IA.O	***	31.8	L.8	0	10.0
31 M	D	8	11.	LE	•	44.0	104	SL.	LB	•	16.0
#### 1.6	Ħ	8	E-1	L4	0	16.0	200	81.18	L6	•	IL0
### 1.6	K	2 00 0	4. 0	1.3		HL.O	386	12.1	1.8	•	14.0
300	Ļ	8	14,2	1.2	,	18.0	385	66. 0	1,9	•	10.0
注意调 3	М		TB. 3	2.1	**	18.0	836	11.2	2.9	70	19.0
比 统约	М	270	27.0	LG	•	16.0	720	47.8	1.0	*	2.0

 $\Psi_{a}(-\Psi)$ 、 $\Psi_{k}(\%)$ 、 $B_{ka}(lextrace)$ 、 $\Psi_{k}(-\Psi)$ 、訴象者(本/元四)

【0043】製造例

30 実施例で用いた電荷搬送材料のN-(3、5-ジメチル フェニル) - N - (4' - メチル - p - ターフェニル) -2-ナフチルアミン (例示化合物No. 5) の合成は 以下のようにして行った。

(N-(3,5-ジメチルフェニル)-2-ナフチルア ミンの合成)窒素雰囲気下、温度計、分水器付凝縮器及 び撹拌機装着100ml4つロフラスコにβーナフトー ル25.7g(0.18モル)、3、5-キシリジン2 4. 2g(0.20モル)及びp-トルエンスルホン酸 -水和物2.0g(0.01モル)を仕込み、190℃ て電子写真感光体 (M. N) を作製した。得られた電子 40 で1時間、220℃で2時間、250℃で1時間加熱撹 **拌した。その際、反応で生成する水は、分水器により反** 応系外へ取り出した。反応終了後、室温まで冷却し、ア セトンに溶解させたものをろ過、注水した。折出した固 体をろ別、メタノール/水 (1/1体積比) で洗浄後、 乾燥して目的のN-(3,5-ジメチルフェニル)-2-ナフチルアミンの乳白色固体42.1g(0.17モ ル)を得た。収率96%。

> 【0044】(例示化合物No. 5の合成)窒素雰囲気 下、温度計、分水器付凝縮器及び撹拌機装着50m13 50 つ口フラスコにN-(3, 5-ジメチルフェニル)-2

-ナフチルアミン8.37g(33.8ミリモル)、4 -ヨード-4′-メチル-p-ターフェニル12.51 (33.8ミリモル)、炭酸カリウム4.70g(3 4. 0ミリモル) 及び銅粉末2. 15g (33. 8ミリ モル)を仕込み、210~220℃で10時間加熱撹拌 した。その際、反応で生成する水は、分水器により反応 系外へ取り出した。反応終了後、内容物をトルエンに溶 解し、不溶解物をろ別して得られたトルエン溶液を減圧 *

元素分析値 (Car Hat Nとして計算)

★下で濃縮して淡かっ色の固体を得た。これをカラムクロ マトグラフィー(アルミナ/トルエン~シクロヘキサン 混合溶媒)で精製して得られた濃縮物を、エタノール~ トルエン溶合溶媒で再結晶を行って、白色結晶のN-(3, 5-ジメチルフェニル) -N-(4'-メチルー p-ターフェニル) - 2 - ナフチルアミン 4.06g

18

収率24.6%。

(8.3ミリモル)を得た。

С

Н 6.38%

90.76% 計算値

N 2.86%

90.69%

実測値

2. 72% 6. 27%

[0045]

【発明の効果】本発明のナフチルアミン化合物を用いた

電子写真感光体は、高感度、低残留電位、高耐久性の非 常に優れた電子写真特性を有するものである。

フロントページの続き

(72) 発明者 石川 裕子

茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.