

Рис.1 Визуализация метода сопряженных градиентов на примере квадратичной функции

Рис.2 Визуализация метода сопряженных градиентов на примере функции Розенброка

Рис.3 Визуализация метода Флетчера-Ривса на примере квадратичной функции

Рис.4 Визуализация метода Флетчера-Ривса на примере функции Розенброка

Рис.5 Визуализация метода Полака-Рибьера на примере квадратичной функции

Рис.6 Визуализация метода Полака-Рибьера на примере функции Розенброка

Таб. 1 Результаты вычислений в зависимости от Ерѕ (метод сопряженных градиентов)

	Квадратичная Функция при Eps=0.01	Квадратичная Функция при Eps=0.000001	Функция Розенброка при Eps=0.01, а = 4	Функция Розенброка при Eps=0.01, а = 80	Функция Розенброка при Eps=0.000001, а = 4	Функция Розенброка при Eps=0.000001, a =
Кол-во итераций	2	2	11	28	27	40
Кол-во вычисления функции	5	85	276	701	1150	1707
Кол-во вычисления градиентов	2	2	11	28	27	40
Точка минимума	(2,24; 0.00)	(2,236068; 0.000000)	(0,99 ; 0,99)	(0,99; 0,99)	(1,000000; 1,000000)	(0,99998; 0.99999)
Минимальное значение	-6.00	-6.00	0.00	0.00	0.000000	0.00

Таб. 2 Результаты вычислений в зависимости от метода вычисления

	Квадратичная Функция при Eps=0.01 метод сопряженных градиентов	Квадратичная Функция при Eps=0.01 Метод Флетчера-Ривса	Квадратичная Функция при Eps=0.01 Метод Полака-Рибьера	Функция Розенброка при Eps=0.01, а = 4 Метод сопряженных градиентов	Функция Розенброка при Ерs=0.01, а = 4 Метод Флетчера- Ривса	Функция Розенброка при Eps=0.01, а = 4 Метод Полака- Рибьера	Функция Розенброка при Eps=0.01, а = 80 метод сопряженны х градиентов	Функция Розенброка при Ерѕ=0.01, а = 80 Метод Флетчера-Ривса	Функция Розенброка при Ерs=0.01, а = 80 Метод Полака- Рибьера
Кол-во итераций	2	2	2	5	8	7	76	76	56
Кол-во вычисления функции	56	50	50	141	209	183	2101	2101	1541
Кол-во вычисления градиентов	2	2	2	5	8	7	76	76	56
Точка минимума	(2,24; 0,00)	(2,23; 0,00)	(2,23; 0,00)	(0,99; 0,99)	(1,00; 1,00)	(1,00; 1,00)	(0,99; 0,99)	(0,99; 0,98)	(0,99; 0,99)
Минимальн ое значение	-6,00	-6,00	-6,00	0,00	0,00	0,00	0,00	0,00	0,00

Таб. 3 Зависимость кол-ва вычислений от положения начальной точки

	Функция	Функция	Функция
	Розенброка	Розенброка	Розенброка
	Начальная	Начальная	Начальная
	точка $-(0,0)$	точка – (100,	точка – (2,
		100)	0)
Кол-во	9	376	12
итераций			
Кол-во	209	9751	287
вычисления			
функции			
Кол-во	9	376	12
вычисления			
градиентов			

В данной лабораторной работе был рассмотрены метод двумерной безусловной оптимизации, основанные на методе сопряженных градиентов.

На основании результатов можно сделать следующие выводы: для квадратичной функции разницы в выборе метода нету, поиск минимума осуществляется не более чем за n итераций, где n — размерность пространства. Для неквадратичных функций все методы устроены одинаково, за исключением вычисление коэффициента гамма. Преимущество имеет метод Полака-Рибьера. Так как в отличии от метода Флетчера-Ривса, начиная с некоторого момента (алгоритм Полака-Ривьера начинает проводить неявные рестарты).

Начальная точка (0,2) – 14 итераций

Начальная точка (0,0) - 8 итераций