(1) 電気磁気学

	-	
受験番号		

1. 次の問いに答えよ

- (1) 誘電率 ϵ の誘電体で満たされた無限空間中に半径 a の導体球がある。誘電体中の電界を測定したところ $E=k_1 r/|r|^3$ (r は導体球の中心からのベクトル、 k_1 は定数)であった。この導体球が無限遠点に対して有する電位を求めよ。
- (2) (1)において、導体球と同じ中心を有し、半径 b (b>a)の球面を考え、この球面を貫く全電束数を求めて、導体球の有する電荷量を求めよ、
- (3) (1)(2)より、この導体球と無限遠点間の静電容量はいくらか。
- (4) ついで、導電率 σ の導体で満たされた無限空間中に半径 α の球状電極がある。導体中の電界を測定したところ $E = k_2 r / |r|^3$ (rは導体球の中心からのベクトル、 k_2 は定数) であった。球状電極から流れ出る電流を求めよ。
- (5) 右図のような半球状導体を電極とした場合の接地抵抗を求めよ.

- 右下図のように断面が長方形の鉄心(透磁率μ)にN巻のコイルを巻いた無端ソレノイドがある。 ただし、漏れ磁束は無いものとする、次の設問にしたがって答えよ。
 - (1) コイルに電流 I を流したとき、鉄心内の半径 r ($a \le r \le b$) の点での磁束密度を求めよ.
 - (2) (1)の磁束密度をrに関して積分し、鉄心断面を通る磁束数を求めよ。

- (3) (2)の結果より鉄心の磁気抵抗を求めよ.
- (4) このコイルの自己インダクタンスを求めよ.

