

200

Akreditace

je postup, na jehož základě vystavuje oprávněný orgán oficiální uznání, že organizace nebo osoba jsou způsobilé k vykonávání určitých činností (ISO Guide 2:1996).

Používá se v souvislosti s pojmem akreditace laboratoře.

AKREDITACE je oficiálním uznáním, že zkušební laboratoř je způsobilá provádět <u>určité zkoušky</u> nebo <u>určité druhy zkoušek</u>

Národním akreditačním orgánem je Český institut pro akreditaci (ČIA).

© Tůmová

6.5 Důležité pojmy v podnikovém řízení kvality

Autorizace

je zvláštní pověření, kterým je organizace státem pověřena pro výkon určitých služeb pro státní správu.

AUTORIZACE - pověření zkušební laboratoře státním orgánem pro činnost v regulované oblasti. Je "Nadstavba" akreditace.

© Tůmo

Certifikace

je postup, při kterém obvykle třetí strana poskytuje písemné ujištění, že výrobek, postup nebo služba je ve shodě se stanovenými požadavky.

Používá se ve spojitosti s certifikací způsobilosti pracovníků v metrologii -

tj. objektivní posuzování jejich schopností plnit požadované úkoly.

Posuzuje se teoretická a odborná připravenost i schopnost praktické metrologické činnosti.

© Tůmová

Obecně platí:

CERTIFIKACE - činnost <u>třetí strany</u> prokazující shodu vlastností certifikovaného výrobku (služby,

...) s určenými normami, technickými dokumenty, právními předpisy.

Postup, kterým poskytuje třetí strana <u>písemné</u> ujištění ...

- certifikace výrobků
- certifikace systému kvality
- certifikace osob

© Tůmová

0 14...

6.6.1 Stavební podmínky metrologických laboratoří

- při výstavbě metrologických laboratoří je třeba přihlédnout k řadě požadavků:
- způsob umístění laboratoře
- vhodnost prostorů pro kalibrování
- vhodné zdroje energie
- vhodné osvětlení, vytápění, klimatizace (referenční podmínky)
- vhodné vnější prostředí a vlivy, které by neměly ohrozit pravdivost měření

© Túmová

6.6 Metrologická pracoviště

- mezi tato pracoviště patří zejména
- autorizovaná metrologická střediska (AMS) a akreditované kalibrační laboratoře (AKL)
- při akreditaci se posuzuje nestrannost a nezávislost, věrohodnost, technická způsobilost (vybavení pracoviště a prostor) a spolupráce se zákazníky (legislativní činnost)

© Tům

- pokud nejsou některé kalibrační činnosti slučitelné, nutné je oddělit do různých prostorů
- vyloučení prostorů, kde jsou otřesy a chvění
- orientace místnosti na sever (+/– 30°)
- vhodné umístění parkoviště (min 200 m od budovy)
- výška laboratoře (alespoň 3 m)
- alespoň 2 h denně sluneční osvětlení místnosti
- umělé osvětlení mezi 1000 5000 lx
- vlastní napájení ze sítě nebo přes oddělovací transformátory

© Tůmová

- vyvedení "pracovní země" pro uzemnění pracovních stolů
- vlastní jištění laboratorních stolů
- v laboratoři do objemu 100 m³ je nutná výměna vzduchu minimálně 40 m³ / 1 pracovníka
- etalony, kalibrační zařízení musí být chráněny před mimořádnými vlivy (sálavé teplo, prach, vlhkost, pára, vyšší elmg. pole)
- doporučená teplota 23°C +/-1°C, vlhkost 45 55 % (tj. referenční podmínky pro laboratoře elektrických veličin, pro neelektrické veličiny je referenční teplota laboratoře 20°C)

© Tůmová

6.6.2 Povinnosti pracovníků a odborných útvarů

hlavní (podnikový) metrolog

- zabezpečuje plnění všech metrologických úkonů podle Zákona č. 505/1990 Sb. a jeho novelizací
- řídí metrolog. činnost na podřízených pracovištích
- odpovídá za provádění všech opatření vyplývajících z právních a interních předpisů a opatření k zajištění potřeb metrologie
- zastupuje podnik při jednání v oblasti metrologie se státními orgány

© Tůmová

11

- Eliminovat:
- termoelektrické napětí,
- přechodové a svodové odpory,
- rušivá el. a mag. pole,
- kapacitní vazby,
- nežádoucí smyčkové proudy,
- přístroje citlivé na otřesy musí být uloženy podle pokynů

© Túr

- se souhlasem vedení podniku může přebírat některé úkoly státní metrologie (např. pomoc při zabezpečování etalonáže určitých veličin, ověřování a kalibrování měřidel)
- zabezpečuje evidenci hlavních etalonů a měřidel a jejich kalibraci
- předkládá požadavky na schválení nových typů měřidel
- zabezpečuje kalibraci pracovních měřidel

© Tůmová

- schvaluje návrh rekalibračních lhůt pracovních měřidel a etalonů
- zabezpečuje uchování etalonů
- zabezpečuje vypracovávání schémat návaznosti měřidel aplikovaných měřidel
- dohlíží na údržbu a opravy měřidel, jejich optimální využívání
- zpracovává návrh metrologického řádu
- podílí se na příručce kvality (část o metrologii)

13

6.6.3 Matice odpovědnosti metrologických činností

- je součástí některých podnikových norem (není samostatným předpisem organizace)
- Grafická organizační pomůcka:
 vyjadřuje přehlednou formou odpovědnost odborných útvarů i výrobních jednotek,
 ukazuje, jak se příslušný útvar do uvedené činnosti zapojuje
- řádky matice tvoří jednotlivé pracovní činnosti
- sloupce tvoří pracovní útvar
- v průsečíku řádky a sloupce je odpovědnost

© Tůmová

15

vlastník měřidla

(útvar; výdejna; pracovník, kterému je měřidlo přiděleno)

 stará se o měřidlo, vede k jeho evidenci, předkládá k ověření a kalibraci

technická konstrukce

 stanoví metrologické a technické podmínky na součástech

technická normalizace

© Tůmová

- zabezpečuje informace o systému fyzikálních veličin, jednotek, o jejich změnách
- zavádí národní technické normy
- zpracovává podnik. normy v oblasti metrologie

14

6.6.4 Kvalifikace pracovníků

- pro AMS a AKL jsou z důvodu certifikace určité kategorie kvalifikačních úrovní:
- 1) skupina A pracovník s předpoklady pro vedení laboratoře (požadavky: SŠ nebo VŠ, 3 5 let praxe v oboru)
- 2) skupina B pracovník pro samostatný výkon činnosti (požadavky: SŠ, zaškolení, 2 3 roky praxe v oboru

© Tůmová

- Česká metrologická společnost (ČMS)
 a certifikáty způsobilosti
- a) skupina I požadavky: VŠ technického nebo přírodovědného zaměřená a 3 roky praxe v oboru nebo SŠ a 8 let praxe na úrovni 2
- b) skupina II požadavky: VŠ technického nebo přírodovědného zaměření nebo SŠ a 1 rok praxe v oboru nebo střední odborné vzdělání a 3 roky praxe v oboru
- c) skupina III požadavky: odborné vzdělání, odborná příprava, zaškolení (ZŠ a praxe min 1 rok nebo SŠ a odborná dvouměsíční stáž)

© Timov

17

7.1 Fyzikální veličiny

- fyzikální veličiny -> rovnice fyzikální zákony nebo definují nové veličiny
- pro definování soustavy jednotek a zavedení pojmu rozměr se považují některé veličiny za nezávislé, jejich volba je "náhodná" (základní veličiny);
- ostatní veličiny se definují podle rovnic odvozené veličiny
- mezinárodní soustava veličin ISQ

© Tůmová

19

- základní a odvozené jednotky spolu tvoří koherentní soustavu SI
- koncepce <u>Mezinárodní soustavy SI</u>, která vznikla v roce 1960, vychází z předchozí <u>soustavy MKSA</u> (metr, kilogram, sekunda, ampér) a doplněna 3 dalšími
- soubor fyzikálních veličin soustavy sedm základních veličin (délka, hmotnost, čas, elektrický proud, termodynamická teplota, látkové množství, svítivost),
- jejichž rozměry se značí: L, M, T, I, Θ, N, J
- (důležité pro vyjádření rozměrů některé odvozené veličiny)

- obecně lze každou veličinu Q vyjádřit jinými veličinami pomocí rovnice
- v metrologii čtyři typy rovnic
- a) veličinové (mezi veličinami)
- b) rozměrové (dimenzionální)
- c) jednotkové (mezi jednotkami)
- d) mezi číselnými hodnotami
- formálně lze zapsat vztah pro zpracování jednotek a veličin do tvaru

$$A = \{A\} \times [A]$$

© Tům

21

 rozměr veličiny Q se vyjadřuje rozměrovým součinem (dimension = rozměr)

$$\dim Q = A^{\alpha} B^{\beta} C^{\gamma}$$

kde A, B, C ... rozměrové symboly základních veličin A, B, C

α, β, γ ... rozměrové exponenty

 veličina, jejíž rozměrové exponenty jsou nulové, je bezrozměrná veličina, její rozměr je 1

© Tůmová

23

kde A ... značka pro fyzikální veličinu

{A} ... značka pro číselnou hodnot

[A] ... značka pro jednotku

- pozn. 1: složky vektorů jsou veličiny (mohou být také vyjádřeny uvedeným způsobem)
- pozn. 2: ČSN ISO 80000 doporučuje vyjádřit číselnou hodnotu explicitně poměrem veličiny k jednotce (např. λ/m = 2)

© Tůmová

22

 závislost každé odvozené veličiny na veličinách základních je vyjádřena pomocí rozměrů

$$\dim l = L$$

$$\dim m = M$$

$$\dim t = T$$

$$\dim i = I$$

• např. vyjádření rozměru veličiny výkonu

$$P = Fv = \frac{m \ a \ l}{t}$$

$$\dim P = M \times L \times T^2 \times L \times T^1 = \dots$$

© Tůmová

7.2 Mezinárodní soustava SI – definice základních jednotek

- metr (jednotka délky) –
- délka dráhy, kterou proběhne světlo ve vakuu za 1 / 299
 792 458 s
- kilogram (jednotka hmotnosti) –
- hmotnost mezinárodního prototypu kilogramu uloženého v Mezinárodním úřadě pro míry a váhy v Serves v Paříži (BIPM) – očekává se změna definice

4. © Túmová

- kelvin (jednotka termodynamické teploty) –
- 1 / 273,16 termodyn. teploty trojného bodu vody
- mol (jednotka látkového množství) –
- látkové množství soustavy, která obsahuje právě tolik elementárních jedinců, kolik je atomů v 0,012 kg uhlíku
 ¹²C (elementárními entitami mohou být atomy, molekuly, apod.)
- candela (jednotka svítivosti) –
- svítivost zdroje, který v daném směru vysílá monochromatické záření o kmitočtu f=540. 10^{12} Hz a jehož zářivost v tomto směru je 1/683 W na steradián

© Tůmová

27

- sekunda (jednotka času) –
- doba rovnající se 9 192 631 770 periodám záření, které odpovídá přechodu mezi dvěma hladinami velmi jemné struktury základního stavu atomu ¹³³Cs
- ampér (jednotka proudu) –
- stálý el. proud, který při průtoku dvěma rovnoběžnými přímými a nekonečně dlouhými vodiči zanedbatelného kruhového průřezu umístěnými ve vakuu ve vzájemné vzdálenosti 1 metru, mezi nimi vyvolá stálou sílu $F=2\cdot 10^{-7}\,\mathrm{N}$ na 1 metr délky

© Tůmová

/á

7.3 Psaní názvů a značek jednotek a veličin

- značky jednotek se nepíší velkými písmeny,
- první písmeno značky se píše velkým písmenem, pokud pojmenovávají jednotky pocházející od jména osoby (např. kelvin – K)
- značky zůstávají beze změny i v množném čísle, koncovka množného čísla se neuvádí
- po značkách se nikdy nedělá tečka, pouze pokud končí věta (špatně je h. nebo hod. !!)

© Tůmová

28

kombinované jednotky:

- vzniklé násobením několika jednotek lze psát se zvýšenou tečkou nebo mezerou (např. N·m nebo N m)
- vzniklé dělením jedné jednotky je nutno psát s lomítkem nebo se záporným exponentem (např. m/s nebo m · s⁻¹)
- mohou obsahovat pouze jedno lomítko, je dovoleno používat závorku nebo záporné exponenty
- (např. m/s² nebo m · s^{·2},
- ale nelze: m/s/s; $m*kg/(s^3A)$ nebo $m*kg*s^{-3}*A^{-1}$)
- Krát se značí tečkou uprostřed řádky nebo x (ne *)

© Tůmová

7.4 Číselné zápisy

- vždy po třech číslicích na obou stranách desetinné čárky je třeba umístit mezeru (např. 15 739,012 53), lze ji vypustit jen u čtyřmístných čísel
- k oddělování tisíců nelze použít čárku, zde se čárka používá k oddělení desetinného místa!
- matematické operace lze používat pouze u značek jednotek (např. kg/m³) a nikoli u pojmenování jednotek (kilogram/krychlový metr)
- musí být zřejmé, ke které značce jednotky se číselná hodnota vztahuje a která matematická operace se vztahuje k dané číselné veličině (např. 35 cm x 48 cm; nebo 35 x 48 cm?)

© Tůmová

31

- Značky jednotek musí být od číselné hodnoty odděleny mezerou (např. 5 kg)
- Značky a názvy jednotek nebo veličin nelze směšovat
- Psaní v textu:
- Značky veličin kurzivou (I, U, P, ...)
- Značky jednotek antikvou (A, V, W,...)
- Značení jednotek je povinné (A, V, W,...)
- Značení veličin je nepovinné (např. l, s nebo U, V)

© Tůmová 30

7.5 Doporučení pro tisk značek a čísel

- značky veličin se tisknou skloněným písmem bez ohledu na druh písma v ostatním textu
- pokud index vyjadřuje značku fyzikální veličiny, tiskne se skloněným písmem (kurzívou)
- ostatní indexy se tisknou stojatým písmem (antikvou), i když je značka veličiny psaná kurzívou
- např. $c_P p$... tlak (index kurzivou) $c_C - g$... plyn (index antikvou)

© Tůmová

7.6 Současné normy (1) CSN ISO 80000 Veličiny a jednotky 1: 2011 Obecně 2: 2012 Matematická znaménka a značky pro použití ve fyzikálních vědách a technice 3: 2007 Prostor a čas 4: 2007 Mechanika 5: 2011 Termodynamika 7: 2012 Světlo 8: 2008 Akustika (i EN) 9: Fyzikální chemie a molekulová fyzika 10: 2013 Atomová a jaderná fyzika (i EN) 11: 2013 Podobnostní čísla 12: 2012 Fyzika pevných látek

7.7 Vyhláška MPO

č. 264 / 2000 Sb.,
ve znění č. 424/2009 Sb.,

o základních
měřicích jednotkách a
ostatních jednotkách a
o jejich označování

7.6 Současné normy (2) • ČSN EN (z IEC) 80000 Veličiny a jednotky • -6: 2009 Elektromagnetismus • -13: 2009 Informatika • -14: 2010 Biotelemetrie související s lidskou fyziologií

tato vyhláška, vydaná MPO je výtahem z
ČSN ISO 31-0 Veličiny a jednotky,
Část 0:1992 Všeobecné zásady

(nyní ČSN ISO 80000 Veličiny a jednotky,
Část 1:2011 Obecně)
informuje o veličinách a jednotkách užívaných na území ČR
součástí vyhlášky je příloha,

1. jednotky a jejich desetinné násobky a díly

a) základní jednotky SI

viz 4. přednáška

- zvláštní název a značka jednotky teploty soustavy SI pro vyjádření teploty je Celsiův stupeň °C
- Celsiova teplota t je definována $t = T T_0$, rozdíl mezi dvěma termodynamickými teplotami T a $T_0 = 273,15$ K
- interval nebo rozdíl teploty může být vyjádřen v Kelvinech nebo stupních Celsia
- jednotka °C odpovídá jednotce K

síla	newton	N
tlak, napětí	pascal	Pa
energie, práce	joule	J
výkon, zářivý tok	watt	W
elektrický náboj	coulomb	C
lektrický potenciál	volt	V
elektrický odpor	ohm	Ω
vodivost	siemens	S

b) další jednotky SI

- odvozené jednotky –
- odvozují se ze základních jednotek pomocí definičních fyzikálních vztahů zapsaných obvykle ve formě veličinových rovnic

	Jednotka		
Veličina	Název	Značka	
rovinný úhel	radián	rad	
prostorový úhel	steradián	sr	
kmitočet	hertz	Hz	
	© Tůmová		

kapacita	farad	F
magnetický tok	weber	Wb
nagnet. indukce	tesla	Т
indukčnost	henry	Н
světelný tok	lumen	lm
osvětlení	lux	lx
radioaktivita	becquerel	Bq
pohlcená dávka	gray	Gy

42

- <u>pozn.</u> jednotky rovinného a prostorového úhlu (dříve nazývané doplňkové jednotky)
- rovinný úhel radián
- = úhel mezi dvěma poloměry kružnice, které na obvodě vytíná oblouk stejné délky, jakou má poloměr
- prostorový úhel steradián
- = prostorový úhel kužele, který vytíná na povrchu kužele se středem ve vrcholu kužele plochu rovnou ploše čtverce o stranách rovných poloměru koule

4. © Tůmová 41

Giga	G	10 ⁹	nano	n	10-9
Mega	M	10 ⁶	mikro	μ	10-6
kilo	k	10 ³	mili	m	10-3
hekto	h	10 ²	centi	c	10-2
deka	da	10 ¹	deci	d	10-1

4. © Tůmová 43

c) předpony a jejich značky používané pro označení dekadických násobků a dílů

před- pona	značka	faktor	před- pona	značka	faktor
Yotta	Y	1024	yocto	У	10 ⁻²⁴
Zetta	Z	1021	zepto	z	10 ⁻²¹
Exa	E	10 ¹⁸	atto	a	10 ⁻¹⁸
Peta	P	10^{15}	femto	f	10 ⁻¹⁵
Tera	Т	10 ¹²	piko	р	10 ⁻¹²

© Tůmová

2. Jednotky, které jsou definovány na základě jednotek SI, ale nejsou dekadickými násobky nebo díly těchto veličin

	Jedno	notka	
Veličina	Název	Značka	
	oběh	_	
	grad nebo gon	gon	
rovinný úhel	stupeň	o	
	úhlová minuta	1	
	úhlová vteřina	//	
4.	© Tůmová	44	

4. Jednotky a ná ve specia	izvy jednotek po lizovaných obla	-
	Jedn	otka
Veličina –	Název	Značka
optická mohutnost	dioptrie	_
hmotnost drahých kovů a kamenů	karát	_
4.	© Tůmová	47

jejichž ho	3. jednotky používan dnoty jsou stanoveny	•
Veličina	Jedno	otka
vencina	Název	Značka
energie	elektronvolt	eV
hmotnost	unifikovaná atom. hmotnostní jednotka	u
4.	© Tůmová	46

hmotnost textil. příze a osnovy na jednotku délky	tex	tex
tlak krve a jiných tělních tekutin	milimetr rtuti	mm Hg
plocha účinného průřezu	barn	b

5. složené jednotky

- kombinací jednotek uvedených v 1. části se tvoří složené jednotky
- V názvu jednotky nesmí být 2 nebo více předpon!

© Tůmová

- vyskytují se v různých oborech, např.
- a) strojírenství tvrdost, hlubokotažnost, odchylky tvaru a plochy, přímost, rovinnost, vlnitost, drsnost povrchu
- b) dřevařství nasáklivost dřeva, bobtnání dřeva, koeficient seschnutí
- c) sklářství hranolový účiník, bublinkatost skla, astigmatický rozdíl
- d) textilní průmysl stálobarevnost, prodyšnost, savost, povrchová smáčivost

© Tůmová

51

7.8 Technické veličiny

- technická veličina
- = název pro kvantitativní a kvalitativní popis jevů, stavů a těles v technické praxi, který má empirický nebo konvenční charakter a není odvozen od fyzikálních principů a zákonů
- technické veličiny jsou většinou měřitelné a vyjadřují se obvykle součinem číselné hodnoty a příslušné měřicí jednotky

© Tùn

ová

Konec 4. přednášky

DĚKUJI ZA POZORNOST

© Tůmová