Глава 6

Сума на подпространства и размерност на сумата. Директна сума.

Твърдение 6.1. Нека U и W са подпространства на линейно пространство V над поле F. Тогава:

- (i) $U \cap W$ е подпространство на V;
- $(ii)\ U\cup W\ e\ nodnpocmpaнcmво\ нa\ V\ moгава\ u\ cамо\ moгава,\ когато\ U\subseteq W\ unu\ W\subseteq U.$

Доказателство. (i) Ако $v_1, v_2 \in U \cap W$ и $\alpha \in F$, то $v_1 + v_2, \alpha v_1 \in U$, защото U е подпространство на V, съдържащо v_1 и v_2 . Аналогично, $v_1 + v_2, \alpha v_1 \in W$, защото W е подпространство на V, съдържащо v_1 и v_2 . В резултат, $v_1 + v_2, \alpha v_1 \in U \cap W$ и $U \cap W$ е подпространство на V.

(ii) Да допуснем, че $U \cup W$ е подпространство на V, U не се съдържа в W и W не се съдържа в U. Тогава съществуват вектори $u \in U \setminus W$ и $w \in W \setminus U$. Подпространството $U \cup W$ на V съдържа векторите u, w, а оттам и тяхната сума $u + w \in U \cup W$. Ако $u + w = u_1 \in U$, то $w = u_1 - u = u_1 + (-u) \in U$, противно на избора на $w \notin U$. Аналогично, допускането $u + w = w_1 \in W$ води до $u = w_1 - w \in W$, което противоречи на избора на $u \notin W$. С това установихме, че ако обединението $U \cup W$ е подпространство на V, то $U \subseteq W$ или $W \subseteq U$. Обратно, ако $U \subseteq W$, то от $U \cup W \subseteq W \subseteq U \cup W$ следва, че $U \cup W = W$. В частност, $U \cup W$ е подпространство на V, защото W е подпространство на V. Аналогично, за $W \subseteq U$ имаме $U \cup W \subseteq U \subseteq U \cup W$, откъдето $U \cup W = U$. В резултат, $U \cup W$ е подпространство на V, защото U е подпространство на V.

Определение 6.2. Ако V_1, \dots, V_n са подпространства на линейно пространство V над поле F, то множеството

$$V_1 + \ldots + V_n = \{v_1 + \ldots + v_n | v_i \in V_i\}$$

на сумите $v_1 + \ldots + v_n$ на вектори $v_i \in V_i$ се нарича сума на V_1, \ldots, V_n .

Твърдение 6.3. Ако V_1,\ldots,V_n са подпространства на линейно пространство V , то сумата

$$V_1 + \ldots + V_n = l(V_1 \cup \ldots \cup V_n)$$

съвпада с линейната обвивка на обединението $V_1 \cup \ldots \cup V_n$. В частност, $V_1 + \ldots + V_n$ е подпространство на V и това е минималното подпространство на V, съдържащо $V_1 \cup \ldots \cup V_n$.

Доказателство. Да означим

$$S := V_1 + \ldots + V_n = \sum_{i=1}^n V_i$$
 if $L := l(V_1 \cup \ldots \cup V_n)$.

Всеки вектор $v \in S$ е от вида

$$v = v_1 + \ldots + v_i + \ldots + v_n = 1 \cdot v_1 + \ldots + 1 \cdot v_i + \ldots + 1 \cdot v_n \in l(V_1 \cup \ldots \cup V_n) = L$$

с $v_i \in V_i \subseteq V_1 \cup \ldots \cup V_n$, така че $S \subseteq L$.

Обратно, ако $v \in L = l(V_1 \cup \ldots \cup V_n)$, то за всяко $1 \leq i \leq n$ съществуват $v_{i,1}, \ldots, v_{i,k_i} \in V_i$ и $\lambda_{i,1}, \ldots, \lambda_{i,k_i} \in F$ с

$$v = \sum_{i=1}^{n} \sum_{s=1}^{k_i} \lambda_{i,s} v_{i,s}.$$

Подпространствата V_i съдържат векторите

$$v_i := \sum_{s=1}^{k_i} \lambda_{i,s} v_{i,s}$$

И

$$v = \sum_{i=1}^{n} \left(\sum_{s=1}^{k_i} \lambda_{i,s} v_{i,s} \right) = \sum_{i=1}^{n} v_i = v_1 + \ldots + v_n \in S = V_1 + \ldots + V_n.$$

Това доказва $L \subseteq S$ и S = L.

Твърдение 6.4. Нека U и W са крайномерни линейни подпространства на линейно пространство V над поле F. Тогава U+W и $U\cap W$ са крайномерни подпространства на V и

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W).$$

Доказателство. Подпространството $U \cap W$ на крайномерното пространство U е крайномерно. Ако $U \cap W \neq \{\overrightarrow{\mathcal{O}}\}$, то съществува базис a_1,\ldots,a_k на сечението $U \cap W$. При $U \cap W \subsetneq U$ и $U \cap W \subsetneq W$ допълваме до базис $a_1,\ldots,a_k,b_1,\ldots,b_n$ на U и до базис $a_1,\ldots,a_k,c_1,\ldots,c_m$ на W. Достатъчно е да проверим, че обединението $a_1,\ldots,a_k,b_1,\ldots,b_n,c_1,\ldots,c_m$ на трите системи вектори е базис на U+W, защото тогава U+W е крайномерно подпространство на V и

$$\dim(U) + \dim(W) - \dim(U \cap W) = (k+n) + (k+m) - k = k+n+m = \dim(U+W).$$

От
$$U = l(a_1, \ldots, a_k, b_1, \ldots, b_n)$$
 и $W = l(a_1, \ldots, a_k, c_1, \ldots, c_m)$ следва

$$U + W = l(a_1, \dots, a_k, b_1, \dots, b_n) + l(a_1, \dots, a_k, c_1, \dots, c_m) =$$

$$= l(a_1, \dots, a_k) + l(b_1, \dots, b_n) + l(a_1, \dots, a_k) + l(c_1, \dots, c_m) =$$

$$= l(a_1, \dots, a_k) + l(b_1, \dots, b_n) + l(c_1, \dots, c_m) = l(a_1, \dots, a_k, b_1, \dots, b_n, c_1, \dots, c_m),$$

защото сумата на две линейни комбинации на a_1,\dots,a_k е линейна комбинация на a_1,\dots,a_k . Нека

$$\sum_{i=1}^{k} x_i a_i + \sum_{j=1}^{n} y_j b_j + \sum_{s=1}^{m} z_s c_s = \overrightarrow{\mathcal{O}}$$
 (6.1)

с $x_i, y_j, z_s \in F$ е представяне на нулевия вектор като линейна комбинация на векторите $a_1, \ldots, a_k, b_1, \ldots, b_n, c_1, \ldots, c_m$. Полагаме

$$a := \sum_{i=1}^{k} x_i a_i, \quad b := \sum_{j=1}^{n} y_j b_j, \quad c := \sum_{s=1}^{m} z_s c_s$$

и забелязваме, че от $a+b+c=\overrightarrow{\mathcal{O}}$ следва

$$a+b=-c\in U\cap W=l(a_1,\ldots,a_k),$$

защото $a+b\in l(a_1,\ldots,a_k,b_1,\ldots,b_n)=U$ и $-c\in l(c_1,\ldots,c_m)\subset l(a_1,\ldots,a_k,c_1,\ldots,c_m)=W$. Следователно съществува вектор

$$a' = \sum_{i=1}^{k} t_i a_i \in l(a_1, \dots, a_k) = U \cap W,$$

изпълняващ равенството

$$a+b=-c=a'.$$

В резултат получаваме, че

$$\overrightarrow{\mathcal{O}} = a' + c = \sum_{i=1}^k t_i a_i + \sum_{s=1}^m z_s c_s.$$

Поради линейната независимост на векторите $a_1,\ldots,a_k,c_1,\ldots,c_m$ от базиса на W, оттук следва $t_i=0$ за всички $1\leq i\leq k$ и $z_s=0$ за всички $1\leq s\leq m.$ Сега

$$\sum_{i=1}^{k} x_i a_i + \sum_{j=1}^{n} y_j b_j = a + b = -c = \overrightarrow{\mathcal{O}}$$

изисква $x_i=0$ за всички $1\leq i\leq k$ и $y_j=0$ за всички $1\leq j\leq n$, защото базисът $a_1,\ldots,a_k,b_1,\ldots,b_n$ на U е линейно независима система вектори. С това доказахме, че единствената линейна комбинация (6.1) на $a_1,\ldots,a_k,b_1,\ldots,b_n,c_1,\ldots,c_m$, представяща нулевия вектор $\overrightarrow{\mathcal{O}}$ е тази с нулеви коефициенти. Следователно $a_1,\ldots,a_k,b_1,\ldots,b_n,c_1,\ldots,c_m$ е линейно независима система, а оттам и базис на $U+W_{\underline{c}}$

Ако $U\cap W=\{\overline{\mathcal{O}}\}$, избираме базис b_1,\ldots,b_n на U и базис c_1,\ldots,c_m на W. Достатъчно е да докажем, че $b_1,\ldots,b_n,c_1,\ldots,c_m$ е базис на U+W, защото тогава U+W е крайномерно пространство и

$$\dim(U) + \dim(W) - \dim(U \cap W) = n + m - 0 = n + m = \dim(U + W).$$

От $U = l(b_1, \ldots, b_n)$ и $W = l(c_1, \ldots, c_m)$ следва, че

$$U + W = l(b_1, \dots, b_n) + l(c_1, \dots, c_m) = l(b_1, \dots, b_n, c_1, \dots, c_m).$$

Ако
$$\sum\limits_{j=1}^n y_j b_j + \sum\limits_{s=1}^m z_s c_s = \overrightarrow{\mathcal{O}},$$
 то

$$\sum_{j=1}^{n} y_j b_j = \sum_{s=1}^{m} (-z_s) c_s \in l(b_1, \dots, b_n) \cap l(c_1, \dots, c_m) = U \cap W = \{ \overrightarrow{\mathcal{O}} \}.$$

Следователно

$$\sum_{i=1}^n y_j b_j = \overrightarrow{\mathcal{O}} \quad \text{if} \quad \sum_{s=1}^m z_s c_s = \overrightarrow{\mathcal{O}}.$$

От линейната независимост на базиса b_1,\ldots,b_n на U следва $y_j=0$ за всички $1\leq j\leq n$. Аналогично, линейната независимост на базиса c_1,\ldots,c_m на W изисква $z_s=0$ за всички $1\leq s\leq m$. Следователно единствената линейна комбинация на векторите $b_1,\ldots,b_n,c_1,\ldots,c_m$, представяща нулевия вектор $\overrightarrow{\mathcal{O}}$

е тази с нулеви коефициенти, така че $b_1, \ldots, b_n, c_1, \ldots, c_m$ е линейно независима система, а оттам и базис на U+W.

Ако $U\cap W=U$, то $U\subseteq W$. Следователно $U+W\subseteq W\subseteq U+W$ и U+W=W. Сега от $\dim(U\cap W)=\dim(U)$ и $\dim(U+W)=\dim(W)$ получаваме

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W).$$

Аналогично, за $U\cap W=W$ имаме $W\subseteq U$, откъдето U+W=U. В резултат, $\dim(U\cap W)=\dim(W)$, $\dim(U+W)=\dim(U)$ и отново

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W).$$

Определение 6.5. Сума на подпространства $V_1 + \ldots + V_n$ е директна, ако всеки вектор $v \in V_1 + \ldots + V_n$ има единствено представяне $v = v_1 + \ldots + v_n$ като сума на вектори $v_i \in V_i$.

Бележим с $V_1 \oplus \ldots \oplus V_n$ директната сума на подпространства.

ТВЪРДЕНИЕ 6.6. Сума на подпространства $V_1 + \ldots + V_n$ е директна тогава и само тогава, когато за всяко $1 \le i \le n$ е в сила

$$V_i \cap \left(\sum_{\forall j \neq i} V_j\right) = \{\overrightarrow{\mathcal{O}}\}.$$

Доказателство. Ако сумата $V_1 \oplus \ldots \oplus V_n$ е директна и

$$v_i = \sum_{\forall j \neq i} v_j \in V_i \cap \left(\sum_{\forall j \neq i} V_j\right),$$
 то
$$\sum_{\forall j \neq i} v_j + (-v_i) = \overrightarrow{\mathcal{O}}$$

 $c-v_i \in V_i$. От единствеността на представянето на $\overrightarrow{\mathcal{O}}$ като вектор от $V_1 \oplus \ldots \oplus V_n$ получаваме $v_i = \overrightarrow{\mathcal{O}}$, откъдето

$$V_i \cap \left(\sum_{\forall j \neq i} V_j\right) = \{\overrightarrow{\mathcal{O}}\}.$$

Обратно, нека $V_i \cap \left(\sum\limits_{\forall j \neq i} V_j\right) = \{\overrightarrow{\mathcal{O}}\}$ за всички $1 \leq i \leq n$ и

$$v = \sum_{i=1}^{n} v_i = \sum_{i=1}^{n} v_i'$$

са две представяния на вектор $v \in V_1 + \ldots + V_n$ като сума на вектори $v_i, v_i' \in V_i$. Тогава за всяко $1 \le i \le n$ имаме

$$V_i \ni v_i - v_i' = \sum_{\forall j \neq i} (v_j' - v_j) \in V_i \cap \left(\sum_{\forall j \neq i} V_j\right) = \{\overrightarrow{\mathcal{O}}\},\$$

откъдето $v_i = v_i'$ и двете представяния съвпадат. Това доказва директността на сумата $V_1 \oplus \ldots \oplus V_n$.

Твърдение 6.7. (Съответствие между разбиванията на базис и разлаганията в директна сума:) $Hexa\ V\ e\ ненулево\ крайномерно\ линейно\ пространство\ над\ none\ F.$

- (i) Ако e_1, \ldots, e_n е базис на V, то за всяко $1 \le k \le n-1$ е в сила разлагане $V = l(e_1, \ldots, e_k) \oplus l(e_{k+1}, \ldots, e_n)$ в директна сума на подпространства.
- (ii) Ако $V = U \oplus W$ е директна сума на ненулеви подпространства U и W, e_1, \ldots, e_k е базис на U и e_{k+1}, \ldots, e_n е базис на W, то $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ е базис на V.

Доказателство. (i) Ако e_1, \ldots, e_n е базис на V, то

$$V = l(e_1, \dots, e_n) = l(e_1, \dots, e_k) + l(e_{k+1}, \dots, e_n).$$

Произволен вектор

$$v = \sum_{i=1}^{k} x_i e_i = \sum_{j=k+1}^{n} x_j e_j \in l(e_1, \dots, e_k) \cap l(e_{k+1}, \dots, e_n)$$

с $x_i \in F$ от сечението на двете линейни обвивки дава линейна комбинация

$$\sum_{i=1}^{k} x_i e_i + \sum_{j=k+1}^{n} (-x_j) e_j = \overrightarrow{\mathcal{O}}$$

на базисните вектори e_1, \ldots, e_n , представяща нулевия вектор $\overrightarrow{\mathcal{O}}$. Съгласно линейната независимост на e_1, \ldots, e_n , оттук следва $x_i = 0$ за всички $1 \leq i \leq n$. Това доказва, че $v = \overrightarrow{\mathcal{O}}$, $l(e_1, \ldots, e_k) \cap l(e_{k+1}, \ldots, e_n) = \{\overrightarrow{\mathcal{O}}\}$ и сумата

$$V = l(e_1, \dots, e_k) \oplus l(e_{k+1}, \dots, e_n)$$

е директна.

(ii) Ако $V=U\oplus W$ е разлагане на V в директна сума на ненулеви подпространства $U,W,\,e_1,\ldots,e_k$ е базис на U и e_{k+1},\ldots,e_n е базис на W, то от $U=l(e_1,\ldots,e_k)$ и $W=l(e_{k+1},\ldots,e_n)$ следва

$$V = U \oplus W = l(e_1, \dots, e_k) \oplus l(e_{k+1}, \dots, e_n) = l(e_1, \dots, e_k, e_{k+1}, \dots, e_n).$$

Произволна линейна комбинация $\sum\limits_{i=1}^n x_i e_i = \overrightarrow{\mathcal{O}}$ дава вектор

$$\sum_{i=1}^{k} x_i e_i = \sum_{i=k+1}^{n} (-x_i) e_i \in l(e_1, \dots, e_k) \cap l(e_{k+1}, \dots, e_n) = U \cap W = \{\overrightarrow{\mathcal{O}}\}\$$

от сечението на U и W, откъдето

$$\sum_{i=1}^{k} x_i e_i = \overrightarrow{\mathcal{O}} \quad \mathbf{u} \quad \sum_{i=k+1}^{n} x_i e_i = \overrightarrow{\mathcal{O}}.$$

Линейната независимост на базиса e_1, \ldots, e_k на U изисква $x_i = 0$ за всички $1 \leq i \leq k$. Аналогично, линейната независимост на базиса e_{k+1}, \ldots, e_n на W води до $x_i = 0$ за всички $k+1 \leq i \leq n$. Това доказва, че векторите e_1, \ldots, e_n са линейно независими, а оттам и базис на V.

Твърдение 6.8. Нека V е n-мерно линейно пространство, а U е k-мерно подпространство на V за някои естествени числа k < n. Тогава съществува (n-k)-мерно подпространство W на V, така че

$$V = U \oplus W$$
.

Bсяко такова подпространство W се нарича допълнение на U до V.

Доказателство. Избираме произволен базис e_1, \ldots, e_k на U и го допълваме до базис $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ на V. Тогава

 $V=l(e_1,\ldots,e_k,e_{k+1},\ldots,e_n)=l(e_1,\ldots,e_k)\oplus l(e_{k+1},\ldots,e_n)=U\oplus l(e_{k+1},\ldots,e_n)$ съгласно Твърдение 6.7 (i). Полагаме $W:=l(e_{k+1},\ldots,e_n)$ и забелязваме, че W е подпространство на V с размерност n-k, защото векторите e_{k+1},\ldots,e_n са линейно независими като част от линейно независимата система вектори $e_1,\ldots,e_k,e_{k+1},\ldots,e_n$. Това доказва съществуването на допълнение W на произволно собствено подпространство U на V.

Допълнението W на подпространство U не е единствено. Например, ако $V=\mathbb{R}^3$ и U е права през началото в \mathbb{R}^3 , то произволна равнина W през началото, не съдържаща U е допълнение на U до \mathbb{R}^3 , т.е. $U\oplus W=\mathbb{R}^3$. Ако $V=\mathbb{R}^3$ и U е равнина през началото, то произволна права W през началото, нележаща в U е допълнение на U до $\mathbb{R}^3=U\oplus W$.