

Supplementary Materials for

Body-size reduction in vertebrates following the end-Devonian mass extinction

Lauren Sallan* and Andrew K. Galimberti

*Corresponding author. E-mail: lsallan@sas.upenn.edu

Published 13 November 2015, *Science* **350**, 812 (2015) DOI: 10.1126/science.aac7373

This PDF file includes:

Materials and Methods Supplementary Text Figs. S1 to S91 Tables S1 to S40 Full Reference List

Materials and Methods

Datasets

Our main dataset contains body sizes for 1124 Devonian-Mississippian vertebrate occurrences, most of which represent named species (Table S1). Body size was represented by lateral total length (snout to end of tail) of the typical adult specimen of each taxon as described in the literature (Table S1). Our dataset is estimated to contain at least 75% of described genera and 90% of published species with macrofossil material (see Figure S1 and 15). Remaining named taxa either lack appropriate body fossil descriptions, figures, and/or photographs in print and online.

Many of the missing taxa are only known from microfossil material such as teeth or scales. There is also no established relationship between fish scale and tooth size and total length as these elements vary along the body, grow throughout life and may be replaced (5, 33). Different scale and tooth taxa may also represent different sections of the same animal (34). These latter exclusions explain the increasing gap between number of known genera and recorded body sizes in the Mississippian versus the Devonian (Figure S1). The number of chondrichthyan tooth form taxa rose dramatically beginning in the Famennian. Most of these taxa lack body fossils (34). That said, the vast majority of Mississippian shark teeth, including isolated tooth plates which may represent a significant portion of the jaw, are qualitatively much smaller than their counterparts in Mesozoic and Cenozoic oceans (14). Therefore, they may fall in line with the expectations from body fossil results.

Body sizes were recorded on a per-occurrence and per-species basis and were thus treated as independent data points. Ghost lineages and occurrences lacking specific size data were excluded from this study, even when data were available for the same taxon elsewhere in the record. As a result, trends could be examined both within and among lineages with reduced risk of phylogenetic constraint biasing the overall signal (e.g. *Bothriolepis* in Figures 1C and S4C and Table S1). Total lengths were collected from published descriptions where stated in the text and extracted from published photographs of complete type specimens or lateral reconstructions using the measurement tools in *ImageJ* (35) and embedded scale bars. They are likely to fall closer to average adult size than maximums. Many Paleozoic vertebrate taxa are only described from disarticulated skeletal pieces or incomplete specimens but are nevertheless diagnosable to the genus level. As these components can scale with total length, body size was estimated by extrapolating the scale of available material onto images of articulated or reconstructed close relatives (same genus, or family if gross ecomorphology was similar) in *ImageJ*. Estimated total lengths are marked by an asterisk in Table S1.

Absolute dates are lacking for most Paleozoic vertebrate occurrences and faunas. In addition, relative dates are normally given as ranges up to 5 or 10 million years (13, 16). For time series analyses, we binned our length metrics according to geological stage and assigned an age equivalent to the stage midpoint in the *Geological Timescale 2012* (36). Taxon occurrences with uncertain ages encompassing multiple stages were included in each stage to avoid introducing bias. This resulted in 1325 binned datapoints (Table S2) and might have increased the conservatism of the trends shown here. Binned body length data were transformed by Log₁₀ to reduce the effects of allometry (2, 8; Table S3).

In order to determine the role of climate parameters, we sampled temperature and oxygen values from published datasets for the Devonian and Mississippian. There exist multiple estimates from various models and proxies and these conflict in terms of absolute values and trends (Tables S7, S9; Figs. S7-S9). We therefore sampled values from multiple datasets, under the assumption that if there were a relationship, then the models showing that would be the most accurate. Oxygen level estimates were taken from multiple conflicting sources, including *COPSE* model pO² estimates (39), *GEOCARBSULFvolc* atmospheric O² percentage estimates (17 in 38), and atmospheric O² percentages calculated from charcoal remains (39; Figure S7, Table S7).

We considered using the Mo-based sea oxygenation proxy produced by Dahl et al. (11) and previously compared to vertebrate maximum size. However, their published dataset only contained values from drill cores at single localities from three of our time bins (Givetian, Frasnian, Famennian). These diverged widely between sampled layers. The original authors summarized these values using the 90th percentile line for the entire later Phanerozoic, Devonian to present. Thus, it was not specific enough for our purposes.

Temperature-related datasets included pH-adjusted sea surface d¹⁸O (Figure 4 in 16, also used in 40), COPSE model temperature estimates (37), COPSE model pCO² estimates (37), paleosol pCO² estimates (41), GEOCARBSULFvolc atmospheric CO² ppm estimates (17 in Figure 2a of 38), and averaged atmospheric CO² ppm estimates from multiple proxies (Figure 4b of 42; Table S10; Figs. S8, S9). As these proxies and models were sampled at different intervals, we used the Figure Calibration plugin (42) in ImageJ to capture values for the stage midpoints. Midpoint dates were based either on in the last version of The Geological Time Scale at the time of publication (36, 43, 44) or the version used by the original authors.

In order to account for potential biases in the vertebrate fossil record, we tracked body length distributions for species in well-sampled vertebrate faunas. We first compiled lists of all Devonian and Mississippian localities bearing at least five taxa with *in situ* body length values falling into at least two size classes. In order to avoid taxonomic and taphonomic biases, we removed faunas for which body size data was available for fewer than three major vertebrate divisions ("Placodermi," "Agnatha," "Acanthodii," Sarcopterygii, Actinopterygii, Chondrichthyes). Taphonomy was controlled for by extrapolating sizes as above; all these groups exhibit the same types of hard tissues (dentine, enamel, calcified cartilage and bone) and so pieces of large specimens are as likely to be preserved as small specimens in the same depositional environments (45). Thus, we can infer that absences are real (45). No vertebrate taxon in our dataset, and no Paleozoic vertebrate taxon larger than 1m, is known from soft tissue alone. Exceptional or poor preservation should therefore have affected all body sizes equally in our faunal samples.

We binned the raw body lengths from the selected localities into size classes (Figure 2A; Table S14). Higher size classes covered greater size ranges (~100 cm within classes representing over 100 cm in total length versus 20 cm for size classes under 100 cm in total length) in order to mitigate the scaling issues mentioned above. This had the effect of reducing the relative influence of very large taxa on our results but also limited the weight of their absence, again providing a conservative estimate. We generated a

matrix of per-site size occurrences, with faunas as rows and size classes as columns, in order to analyze changes in size composition over time as below (Table S14).

Analyses

We implemented linear regressions in PAST (46) to determine the significance and effect size of correlations between Log-transformed body lengths and age (Tables S3-S5; Figures 1, S2-S6). This was done for the overall dataset, Devonian and Mississippian subsets, as well as major divisions and subclades with more than five samples (Tables S4, S5, S19, S20, S22-S30, S32-S37; Figs. 1, S2-S6, S16-S91). Ordinary Least Squares (OLS) was applied as the midpoints of our time bins are relatively fixed (37), and age may only affect body the length distributions, not the reverse. We also performed Reduced Major Axis (RMA) analyses as there remains uncertainty in the exact age of samples within our time bins, and the stage lengths themselves have reported margins of error (37).

We found that OLS and RMA generated nearly identical effect sizes and probabilities, thus choice of model did not affect the overall results. The main difference between the models was the resultant slope, with OLS trends lines matching the reported means more closely. OLS results were reported in the main text and Figure 1. We also performed pairwise non-parametric Mann-Whitney U tests between temporally consecutive binned samples (Tables S6, S21, S38-S40).

Body size data for the Devonian and Mississippian was fitted to oxygen and temperature estimates from each of the aforementioned sources (Tables S7, S9; Figs. S7-S9). For these analyses, we both OLS and RMA regressions for the reasons given above (Tables S8, S9, S11, S12; Figs. S10-S13). Few of the estimates produced significant correlations and only the *GEOCARBSULFvolc* atmospheric O₂ model (*17* in *38*) and the PH-adjusted dO₁₈ sea surface temperature model (*16*) showed measurable effect sizes (Tables S8, S9, S11, S12; Figures S10-S13). Stage mid-point values from these two models were used to represent climate parameters in subsequent analyses.

We used the R time-series analysis package *PaleoTS* (47) to fit several models of trait evolution to various iterations of the binned size data. Models included general random walk (directional trend or active selection), directional trend with a shift (for the overall Devonian-Mississippian data), unbiased random walk, stasis, reversion to central tendency (Ornstein-Uhlenbeck process) and covariance of first differences with those for temperature or oxygen values. We calculated means and variances for Log-transformed body lengths for each stage in the overall dataset (Table S3), Devonian subset, and major Devonian divisions and clades with more than five datapoints in the entire time series. Mississippian-specific data and lineages appearing in four or fewer stages were not subjected to individual model-fitting tests as *PaleoTS* cannot detect directional trends in time series with less than seven points (48).

The multivariate version of the *PaleoTS* function can detect coordinated trends among shorter time series that span at least seven points total, although it cannot currently detect shifts. We performed multivariate tests for all Devonian vertebrate divisions and all well-sampled Devonian subclades as listed in Figures 1B and 1C using directional, random walk and stasis models and covariance with oxygen or temperature. All model-fitting exercises were performed using the joint method, which is more sensitive to directional trends in smaller datasets with uneven sampling, such as early

vertebrates (48). Best fit was determined by using log-likelihoods to calculate the Akaike Information Criterion and Akaike weights (AW) for each model (Tables S13, S22, S31).

We next analyzed our matrix of binned body lengths in well-sampled vertebrate faunas to see whether global trends were mirrored at the ecosystem level or biased by local sampling. The matrix was first used to generate a histogram for visual inspection of trends and outliers (Fig. 2A). The faunas were then binned by stage and subjected to Analysis of Similarity (ANOSIM), a stage-based pairwise permutation test with one million replicates, in PAST (46, 15). This showed the significance of changes in the distribution of faunal size composition across stage boundaries (Table S15). We also calculated Similarity Percentages (SIMPER), again in PAST, in order to track changes in relative contribution of size classes to faunal distributions in adjacent stages (15; Table S16). Finally, the faunal body size matrix was subjected to non-parametric multidimensional scaling (NMDS; Tables S17, S18; Figures 2B, 2C, S14, S15) in order to tease out the main axes of variation in the data and visualize faunal patterns apparent from the histogram, ANOSIM and SIMPER (15). This was used to plot the size class "ecospace" seen in Figures 2B and 2C. Points along the first two coordinates were binned by time interval (Early, Middle and Late Devonian; Early, Middle and Late Mississippian).

Supplementary Text

Cope's Rule in Devonian Vertebrates

Model-fitting exercises strongly favored a directional trend among Devonian vertebrates (AW=0.97), independent of changing environmental parameters which received little or no support as drivers (oxygen AW=0, temperature AW=0.29). The majority of vertebrate divisions exhibited significant length increases over the Devonian (Tables S17-S19), particularly the numerically dominant and ecologically diverse "Placodermi" and lobe-finned Sarcopterygii (Figures 1B, S8, S9). The seemingly static exceptions were Tetrapoda and "Acanthodii" for reasons of taxonomic practice (Tables S17, S18). Sarcopterygii is paraphyletic with respect to the twelve Late Devonian tetrapod genera (5), and the latter appear at relatively large sizes (Table S1).

Acanthodian affinities are debated, but they are likely paraphyletic stem-chondrichthyans (49). Combining "Acanthodii" and Chondrichthyes produces a significant trend line nearly identical to the latter alone (Tables S17; S18, Figures S28, S29). Worker bias may produce a size filter: smaller and earlier disarticulated forms are designated acanthodian while larger later fossils are termed chondrichthyan. Despite these exceptions, multivariate model-fitting strongly favored a coordinated, directional trend (AW:0.94; Table S20); a true Cope's Rule phenomenon.

It is notable that none of the Devonian clades recorded a significant size reduction. Other trends among Devonian vertebrates are also of particular interest. Jawless fishes ("Agnatha") show their most significant increases following the takeover of vertebrate ecosystems by jawed fishes in the Emsian (14; Pragian vs. Emsian Mann-Whitney U p: 0.045; Table S20) despite first appearances in the Silurian (5). Indeed, widespread jawless stem-gnathostome clades, the Osteostraci and Heterostraci, increase their size significantly in the early-mid Devonian (Tables S20-S22, S27, S36; Figures S30-S33). The benthic antiarch *Bothriolepis*, the most widespread, abundant and speciose Devonian

genus (5, 15), tracks the trend of the global vertebrate fauna (5, Figures 1C, S4, S38-S39; Table S23, S24;). Multivariate model-fitting again supported an overall directional trend for these subclades (AW:0.99; Table S29).

Changing size structure at Devonian localities reflects the overall Cope's Rule trend. The vast majority of species at early Devonian sites fall within the smallest size classes (>40 cm body length); very few taxa were over 80 cm (Tables S12, S14). Occupation of larger size bins increased over the Devonian in line with a decline in per-site small taxon diversity (Figure 2A; Tables S12-S14). When taken with the overall dataset, these faunal results suggest that entire structure of Devonian vertebrate ecosystems, from large apex predators to benthic detritivores, exhibited a coordinated trend toward larger body sizes. As a significant role for abiotic drivers was previously rejected, biotic factors, such as ecological interactions, must have largely underlain the Cope's Rule body size trend across Devonian vertebrates.

Fig. S1.

Devonian-Mississippian vertebrate genera and body size counts. Number of genera per stage for all vertebrates (black) and major groups (see key). Grey line represents the number of recorded body lengths. The gap between genera and sizes in the Mississippian is largely due to an increase in shark tooth forms post-extinction. These cannot be used to reliably estimate body size.

Fig. S2OLS regression: Devonian Log. size/age (Ma; n=1006). See Table S4 for metrics.

Fig. S3OLS regression: Mississippian Log. size/age (n=318). See Table S4 for metrics.

Fig. S4.RMA regression version of Fig. 1. See Fig. 1 caption for key and Tables S5 for metrics.

Fig. S5. RMA regression: Devonian Log size/age (n=1006). See Table S5 for metrics.

Fig. S6. RMA regression: Mississippian Log size/age (n=318). See Table S5 for metrics.

Fig. S7. Oxygen estimate curves. See methods and Table S7 for details.

Fig. S8.Temperature and proxy estimate curves. See methods and Table S9 for details.

Fig. S9. CO₂ estimate curves as proxies for temperature. See methods and Table S9 for details.

Fig. S10. OLS regression: sizes and *GeoCarbSulfvolc* oxygen (17). See Table S8 for regression metrics.

Fig. S11.RMA regression: sizes and *GeoCarbSulfvolc* oxygen (17). See Table S9 for regression metrics.

Fig. S12. OLS regression: sizes and sea surface dO_{18} temperature proxy (16). See Table S11 for regression metrics.

Fig. S13. RMA regression: sizes and sea surface dO_{18} temperature proxy (16). See Table S12 for regression metrics.

Fig. S14.NMDS for Devonian-Mississippian faunas (Bray-Curtis distances). See Table S14 for faunal size composition and Table S17 for scores based on species counts within bins.

Fig. S15.NMDS for Devonian-Mississippian faunas (Kulczynski distances). See Table S14 for size composition of faunas. See Table S18 for NMDS scores based on presence-absence of size classes.

Fig. S16.OLS regression: Devonian "Agnathan" size/age. See Table S19 for metrics.

Fig. S17. RMA regression: Devonian "Agnathan" size/age. See Table S20 for metrics.

Fig. S18. OLS regression: Devonian "Placoderm" size/age. See Table S19 for metrics.

Fig. S19. RMA regression: Devonian "Placoderm" size/age. See Table S20 for metrics.

Fig. S20. OLS regression: Devonian Sarcopterygii size/age. See Table S19 for metrics.

Fig. S21. RMA regression: Devonian Sarcopterygii body size/age. See Table S20 for metrics.

Fig. S22.OLS regression: Devonian Tetrapoda size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (Table S19). The mean transformed body length for the Devonian was plotted in Fig. 1B.

Fig. S23.RMA regression: Devonian Tetrapoda size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (Table S20). The mean transformed body length for the Devonian was plotted in Fig. S4B.

Fig. S24.OLS regression: Devonian Actinopterygii size/age. See Table S19 for metrics.

Fig. S25.RMA regression: Devonian Actinopterygii size/age. See Table S20 for metrics.

Fig. S26.OLS regression: Devonian "Acanthodian" size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S19 for metrics). Therefore, the mean transformed body length for the Devonian was plotted in Fig. 1B.

Fig. S27.RMA regression: Devonian "Acanthodian" size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S20 for metrics). Therefore, the mean transformed body length for the Devonian was plotted in Fig. S4B.

Fig. S28.OLS regression: Devonian Chondrichthyes size/age. See Table S19 for metrics.

Fig. S29. RMA regression: Devonian Chondrichthyes size/age. See Table S20 for metrics.

Fig. S30. OLS regression: Devonian Acanthodian-Chondrichthyes size/age. See Table S19 for metrics.

Fig. S31. RMA regression: Devonian Acanthodian-Chondrichthyes size/age. See Table S20 for metrics.

Fig. S32.
OLS regression: Devonian Heterostraci ("Agnatha") size/age. See Table S23 for metrics.

Fig. S33. RMA regression: Devonian Heterostraci ("Agnatha") size/age. See Table S24 for metrics.

Fig. S34.OLS regression: Devonian Osteostraci ("Agnatha") size/age. See Table S23 for metrics.

Fig. S35.RMA regression: Devonian Osteostraci ("Agnatha") size/age. See Table S24 for metrics.

Fig. S36.OLS regression: Devonian Arthrodira ("Placoderms") size/age. See Table S25 for metrics.

Fig. S37. RMA regression: Devonian Arthrodira ("Placoderms") size/age. See Table S26 for metrics.

Fig. S38.OLS regression: Devonian Antiarchi ("Placoderms") size/age. See Table S25 for metrics.

Fig. S39. RMA regression: Devonian Antiarchi ("Placoderms") size/age. See Table S26 for metrics.

Fig. S40.OLS regression: Devonian *Bothriolepis* (Antiarchi: "Placoderms") size/age. See Table S25 for metrics.

Fig. S41.RMA regression: Devonian *Bothriolepis* (Antiarchi: "Placoderms") size/age. See Table S26 for metrics.

Fig. S42. OLS regression: Devonian Ptyctodontida ("Placoderms") size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S25 for metrics). Therefore, the mean transformed body length for the Devonian was plotted in Fig. 1C.

Fig. S43.RMA regression: Devonian Ptyctodontida ("Placoderms") size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S26 for metrics). Therefore, the mean transformed body length for the Devonian was plotted in Fig. S4C.

Fig. S44.OLS regression: Devonian Phyllolepida ("Placoderms") size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S25 for metrics). Therefore, the mean transformed body length for the Devonian was plotted in Fig. 1C.

Fig. S45.RMA regression: Devonian Phyllolepida ("Placoderms") size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S26 for metrics). Therefore, the mean transformed body length for the Devonian was plotted in Fig. S4C.

Fig. S46.OLS regression: Devonian Petalichthyida ("Placoderms") body lengths and age. This regression did not produce a significant correlation (a=0.05) despite a large effect size (r=0.48; See Table S25 for metrics). This is probably due to low sample size in a few bins. Therefore, the mean log-transformed body length for the Devonian was plotted in Fig. 1C.

Fig. S47.RMA regression: Devonian Petalichthyida ("Placoderms") body lengths and age. This regression did not produce a significant correlation despite a large effect size (r=0.47; See Table S26 for metrics). This is probably due to low sample size in a few bins. Therefore, the mean log-transformed body length for the Devonian was plotted in Fig. S4C.

Fig. S48.OLS regression: Devonian Climatiida ("Acanthodians") body lengths and age. See Table S27 for metrics.

Fig. S49.RMA regression: Devonian Climatiida ("Acanthodians") body lengths and age. See Table S28 for metrics.

Fig. S50.

OLS regression: Devonian Gyracanthida ("Acanthodians") size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S27 for metrics). This was likely due to low sample size in the later Devonian. Therefore, the mean transformed body length for the Devonian was plotted in Fig. 1C.

Fig. S51.RMA regression: Devonian Gyracanthida ("Acanthodians") size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S28 for metrics). This was likely due to low sample size in the later Devonian. Therefore, the mean transformed body length for the Devonian was plotted in Fig. S4C.

Fig. S52.

OLS regression: Devonian Ischnacanthida ("Acanthodians") size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S27 for metrics). This was likely due to low sample size in the later Devonian. Therefore, the mean transformed body length for the Devonian was plotted in Fig. 1C.

Fig. S53.RMA regression: Devonian Ischnacanthida ("Acanthodians") size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S28 for metrics). This was likely due to low sample size in the later Devonian. Therefore, the mean transformed body length for the Devonian was plotted in Fig. S4C.

Fig. S54.OLS regression: Devonian Acanthodida ("Acanthodians") size/age. This regression did not produce a significant correlation or effect size (See Table S27 for metrics). This was likely due to low sample size. Therefore, the mean transformed body length for the Devonian was plotted in Fig. 1C.

Fig. S55.RMA regression: Devonian Acanthodida ("Acanthodians") size/age. This regression did not produce a significant correlation but had a medium effect size (r=0.29; See Table S28 for metrics). The former was likely due to low sample size. Therefore, the mean transformed body length for the Devonian was plotted in Fig. 4SC.

Fig. S56.OLS regression: Devonian Porolepiformes (Sarcopterygii) size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S29 for metrics). This was likely due to low sample size in the early Devonian. The mean transformed body length for the Devonian was plotted in Fig. 1C.

Fig. S57.

RMA regression: Devonian Porolepiformes (Sarcopterygii) body lengths and age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S30 for metrics). This was likely due to low sample size in the later Devonian. The mean transformed body length for the Devonian was plotted in Fig. 4SC.

Fig. S58.OLS regression: Devonian Dipnoi (Sarcopterygii) size/age. See Table S29 for metrics.

Fig. S59. RMA regression: Devonian Dipnoi (Sarcopterygii) size/age. See Table S30 for metrics.

Fig. S60.OLS regression: Devonian Osteolepiformes (Sarcopterygii) size/age. See Table S29 for metrics.

Fig. S61.RMA regression: Devonian Osteolepiformes (Sarcopterygii) body lengths and age. See Table S30 for metrics.

Fig. S62.OLS regression: Devonian Rhizodontida (Sarcopterygii) size/age. This regression did not produce a significant correlation despite a moderate-strong effect size (r=0.35; See Table S29 for metrics). This was likely due to extremely low sample size in the later Devonian. Therefore, the mean transformed body length for the Devonian was plotted in Fig. 1C.

Fig. S63.RMA regression: Devonian Rhizodontida (Sarcopterygii) size/age. This regression did not produce a significant correlation despite a moderate-strong effect size (r=0.35; See Table S30 for metrics). This was likely due to extremely low sample size in the later Devonian. Therefore, the mean transformed body length for the Devonian was plotted in Fig. S4C.

Fig. S64.OLS regression: Devonian Actinistia (Sarcopterygii) size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S29 for metrics). This was likely due to extremely low sample size Devonian. Therefore, the mean transformed body length for the Devonian was plotted in Fig. 1C.

Fig. S65.RMA regression: Devonian Actinistia (Sarcopterygii) size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S30 for metrics). This was likely due to extremely low sample size Devonian. Therefore, the mean transformed body length for the Devonian was plotted in Fig. S4C.

Fig. S66.OLS regression: Mississippian "Acanthodian" size/age. This regression did not produce a significant correlation and had a low effect size (See Table S32 for metrics). This was likely due to divergent sizes and diversity in the two remaining lineages (Acanthodids and Gyracanthids). Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 1B.

Fig. S67.RMA regression: Mississippian "Acanthodian" size/age. This regression did not produce a significant correlation and had a moderate effect size (See Table S33 for metrics). This was likely due to divergent sizes in the two remaining lineages. Therefore, the mean transformed body length for the Mississippian was plotted in Fig. S4B.

Fig. S68.OLS regression: Mississippian Chondrichthyes body lengths and age. See Table S32 for metrics.

Fig. S69.RMA regression: Mississippian "Chondrichthyes" body lengths and age. See Table S33 for metrics.

Fig. S70.OLS regression: Mississippian Actinopterygii size/age. This regression did not produce a significant correlation despite a moderate effect size (See Table S32 for metrics). As the sample size was large, this may represents real stasis in size parameters. However, Mann-Whitney U results suggest significant change in the distribution, likely representing a shift towards a greater number of smaller taxa. Therefore, the mean transformed body length for the Mississippian was plotted in Fig. S1B.

Fig. S71.

RMA regression: Mississippian Actinopterygii size/age. This regression did not produce a significant correlation despite a moderate effect size (See Table S32 for metrics). However, Mann-Whitney U results suggest significant change in the distribution, likely representing a shift towards a greater number of smaller taxa. Therefore, the mean transformed body length for the Mississippian was plotted in Fig. S4B.

Fig. S72.OLS regression: Mississippian Sarcopterygii body lengths and age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S32 for metrics). Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 1B.

Fig. S73.RMA regression: Mississippian Sarcopterygii body lengths and age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S32 for metrics). Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 4SB.

Fig. S74.

OLS regression: Mississippian Tetrapoda size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S32 for metrics). This is likely because of the existence of larger taxa in Mississippian freshwater ecosystems, mirroring either a faster return to Late Devonian size distributions or undersampling of smaller tetrapods in such environments (see Figure 2C). Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 1B.

Fig. S75.

RMA regression: Mississippian Tetrapoda size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S33 for metrics). This is likely because of the existence of larger taxa in Mississippian freshwater ecosystems, mirroring either a faster return to Late Devonian size distributions or undersampling of smaller tetrapods in such environments (see Figure 2C). Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 4SB.

Fig. S76.OLS regression: Mississippian Acanthodida ("Acanthodian") size/age. This regression did not produce a significant correlation (p=0.07 at a=0.05) but had a very large effect size (r=0.60; See Table S34 for metrics). This discrepancy is likely due to low sample size. Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 1C.

Fig. S77.RMA regression: Mississippian Acanthodida ("Acanthodian") size/age. This regression did not produce a significant correlation (p=0.07 at a=0.05) but had a very large effect size (r=0.60; See Table S35 for metrics). This discrepancy is likely due to low sample size. Therefore, the mean transformed body length for the Mississippian was plotted in Fig. S4C.

Fig. S78. OLS regression: Mississippian Gyracanthida ("Acanthodian") size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S34 for metrics). This is likely due to the appearance of small spine-based species in the late Mississippian, which may be juveniles. Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 1C.

Fig. S79.

RMA regression: Mississippian Gyracanthida ("Acanthodian") size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S35 for metrics). This is likely due to the appearance of small spine-based species in the late Mississippian, which may be juveniles. Therefore, the mean transformed body length for the Mississippian was plotted in Fig. S4C.

Fig. S80.OLS regression: Mississippian *Gyracanthus* (Gyracanthida: "Acanthodian") size/age. See Table S34 for metrics.

Fig. S81.RMA regression: Mississippian *Gyracanthus* (Gyracanthida: "Acanthodian") size/age. See Table S35 for metrics.

Fig. S82.OLS regression: Mississippian Elasmobranchii (Chondrichthyes) size/age. See Table S34 for metrics.

Fig. S83.RMA regression: Mississippian Elasmobranchii (Chondrichthyes) size/age. See Table S35 for metrics.

Fig. S84.OLS regression: Mississippian Holocephali (Chondrichthyes) size/age. See Table S34 for metrics

Fig. S85.RMA regression: Mississippian Holocephali (Chondrichthyes) size/age. See Table S35 for metrics

Fig. S86.OLS regression: Mississippian Rhizodontida (Sarcopterygii) size/age. This regression did not produce a significant correlation but had a moderate effect size (r=0.31; See Table S36 for metrics). This discrepancy is likely due to low sample size. Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 1C.

Fig. S87.RMA regression: Mississippian Rhizodontida (Sarcopterygii) size/age. This regression did not produce a significant correlation but had a moderate effect size (r=0.31; See Table S37 for metrics). This discrepancy is likely due to low sample size. Therefore, the mean transformed body length for the Mississippian was plotted in Fig. S4C.

Fig. S88.

OLS regression: Mississippian Dipnoi (Sarcopterygii) size/age. While the sample size was only 4, Dipnoi were included because of their importance as a clade in the Devonian and strong microfossil record. Predictably, this regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S36 for metrics). Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 1C.

Fig. S89.

RMA regression: Mississippian Dipnoi (Sarcopterygii) size/age While the sample size was only four, Dipnoi were included because of their importance as a clade in the Devonian and strong microfossil record. Predictably, this regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S37 for metrics). Therefore, the mean transformed body length for the Mississippian was plotted in Fig. S4C.

Fig. S90.OLS regression: Mississippian Actinistia (Sarcopterygii) size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S36 for metrics). Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 1C.

Fig. S91.RMA regression: Mississippian Actinistia (Sarcopterygii) size/age. This regression did not produce a significant correlation, had a low effect size and the trend was not distinguishable from a flat line (See Table S37 for metrics). Therefore, the mean transformed body length for the Mississippian was plotted in Fig. 4SC.

Table S1.Body lengths for all included occurrences. Asterisks indicate estimates.

Dody Kilgin	s for all illeraded	occurrences. Asierisks	mulcate estima	ics.	Body	size	
Group	Subgroup	Genus	Species	Stage bin Lochkovian-	(cm)	0.20	Citation Basden &
Actinopterygii	NA	Dialipina	markae	Emsian	6.3*		Young 2001 Basden &
Actinopterygii	NA	Ligulalepis	toombsi	Emsian	7.3*		Young 2001 Basden &
Actinopterygii	NA	Dialipina	salgueroensis	Emsian Eifelian-		12	Young 2001 Frickhinger
Actinopterygii	NA	Cheirolepis	tralli	Givetian Eifelian-		25	1991
Actinopterygii	NA	Moythomasia	striatus	Frasnian		15	Gross 1953 Long et al.
Actinopterygii	NA	Donnrosenia	schaefferi	Givetian		21	2008
Actinopterygii	NA	Howqualepis	rostridens	Givetian		50	Long 1988
Actinopterygii	NA	Howqualepis	youngorum	Givetian Givetian-		14	Choo 2009
Actinopterygii	NA	Stegotrachelus	finlayi	Frasnian		14.6	Swartz 2009 Whitheaves
Actinopterygii	NA	Cheirolepis	canadensis	Frasnian		53	1887
Actinopterygii	NA	Moythomasia	durgaringa	Frasnian		10	Daeschler 2000
Actinopterygii	NA	Moythomasia	nitida	Frasnian		15	Choo 2011
Actinopterygii	NA	Moythomasia	sp.	Frasnian		20	Choo 2011
Actinopterygii	NA	Mimipsicus	toombsi	Frasnian		20	Choo 2011
Actinopterygii	NA	Osorioichthys	marginis	Famennian	30*		Taverne 1997
Actinopterygii	NA	Krasnoyarichthys	jesseni	Famennian		10	Prokofiev 2002
Actinopterygii	NA	Limnomis	delaneyi	Famennian		6	Daeschler 2000 Friedman &
Actinopterygii	NA	Cuneognathus	gardineri	Famennian		12	Blom 2006 Dunkle &
Actinopterygii	NA	Tegeolepis	clarki	Famennian		100	Schaeffer 1973 Frickhinger
Actinopterygii	NA	Kentuckia	hlavini	Famennian		10	1991
Actinopterygii	NA	Gonatodus	brainerdi	Famennian		40	Newberry 1889 Woodward
Actinopterygii	NA	Ganolepis	gracilis	Tournaisian		5	1893
Actinopterygii	NA	Oxypteriscus	minimus	Tournaisian		5	Berg et al. 1967
Actinopterygii	NA	Senekichthys	hirundo	Tournaisian		10	Prokofiev 2004
Actinopterygii	NA	Ministrella	longicauda	Tournaisian		5	Berg et al. 1967
Actinopterygii	NA	Gyrolepitodus	sp.	Tournaisian		5	Berg et al. 1967
Actinopterygii	NA	Palaeobergia	microlepis	Tournaisian		12	Berg et al. 1967
Actinopterygii	NA	Mansfieldiscus	sweeti	Tournaisian		40	Long 1988
Actinopterygii	NA	Novogonatodus	kazantsevae	Tournaisian		20	Long 1988 Smithson et al.
Actinopterygii	NA	Aetheretmon	valentiacum	Tournaisian		12	2012
Actinopterygii	NA	Strepheoschema	fouldenensis	Tournaisian		16	Gardiner, 1985 Sallan and
Actinopterygii	NA	Fouldenia	ischyptera	Tournaisian		12	Coates, 2014 Smithson et al.
Actinopterygii	NA	Phanerosteon	ovensi	Tournaisian Tournaisian-		9	2012
Actinopterygii	NA	Cosmoptychius	striatus	Visean		26	Traquair 1877
Actinopterygii	NA	Rhadinichthys	alberti	Tournaisian		9	Lambe 1910
Actinopterygii	NA	Acrolepis	hortonensis	Tournaisian	30*		Lambe 1910 Hussakof &
Actinopterygii	NA	Elonichthys	browni	Tournaisian		11	Bryant 1918
Actinopterygii	NA	Mansfieldiscus?	gibbus	Tournaisian		10	Long 1988
Actinopterygii	NA	Kentuckia	deani	Tournaisian	13*		Berg et al. 1967

Actinopterygii	NA	Benedenius	deenensis	Visean	29	Boulenger 1899
Actinopterygii	NA	Adroichthys	tuberculatus	Visean	10	Gardiner 1969
Actinopterygii	NA	Mentzichthys	jubbi	Visean	40	Gardiner 1969
Actinopterygii	NA	Mentzichthys	maraisi	Visean	18	Gardiner 1969
Actinopterygii	NA	Mentzichthys	theroni	Visean	12	Gardiner 1969
Actinopterygii	NA	Aestaurichthys	fulcratus	Visean	10.5	Gardiner 1969
Actinopterygii	NA	Soetendalichthys	cromptoni	Visean	21	Gardiner 1969
Actinopterygii	NA	Australichthys	longidorsalis	Visean	15	Gardiner 1969
Actinopterygii	NA	Willomorichthys	striatulus	Visean	25	Gardiner 1969
Actinopterygii	NA	Sundayichthys	cromptoni	Visean	10	Gardiner 1969
Actinopterygii	NA	Dwykia	anaensis	Visean	12	Gardiner 1969
Actinopterygii	NA	Tarrasius	problematicus	Visean	9	Sallan 2012
Actinopterygii	NA	Holurus	parki	Visean	12	Berg et al. 1967
Actinopterygii	NA	Mesopoma	politum	Visean	7	Frickhinger 1991
Actinopterygii	NA	Mesopoma	pulchellum	Visean	8	Frickhinger 1991 Moy-Thomas
Actinopterygii	NA	Mesopoma	crassum	Visean	15	1934 Frickhinger
Actinopterygii	NA	Canobius	ramseyi	Visean	12	1991 Sallan and
Actinopterygii	NA	Styracopterus	fulcratus	Visean	16	Coates, 2014 Moy-Thomas
Actinopterygii	NA	Canobius	elegantulus	Visean	7	1934 Sallan and
Actinopterygii	NA	Paramesolepis	rhombus	Visean	13	Coates, 2014 Sallan and
Actinopterygii	NA	Paramesolepis	tuberculata	Visean	13	Coates, 2014 Moy-Thomas
Actinopterygii	NA	Rhadinichthys	canobiensis	Visean	12	1934 Sallan and
Actinopterygii	NA	Proteurynotus	sp.	Visean	16	Coates, 2014
Actinopterygii	NA	Rhadinichthys	carinatus	Visean	11	Traquair 1907 Sallan and
Actinopterygii	NA	Wardichthys	cyclosoma	Visean	11	Coates, 2014
Actinopterygii	NA	Rhadinichthys	elegantulus	Visean	4.5	Berg et al. 1967 Frickhinger
Actinopterygii	NA	Rhadinichthys	fusiformis	Visean	11	1991 Hussakof &
Actinopterygii	NA	Rhadinichthys	ornatissmus	Visean	25	Bryant 1918
Actinopterygii	NA	Cycloptychius	concentricus	Visean	12	Berg et al. 1967
Actinopterygii	NA	Elonichthys	serratus	Visean	12	Traquair 1881
Actinopterygii	NA	Elonichthys	striatulus	Visean Visean-	6	Traquair 1881
Actinopterygii	NA	Elonichthys	robisoni	Serpukhovian	10	Traquair 1881 Frickhinger
Actinopterygii	NA	Acrolepis	ortholepis	Visean	30	1991 Frickhinger
Actinopterygii	NA	Cherodopsis	geikei	Visean Visean-	9	1991 Frickhinger
Actinopterygii	NA	Nematoptychius	greenocki	Serpukhovian	45	1991 Moy-Thomas
Actinopterygii	NA	Platysomus	superbus	Visean	18	1934
Actinopterygii	NA	Gonatodus	punctatus	Visean Visean-	5	Traquair 1907 Frickhinger
Actinopterygii	NA	Eurynotus	crenatus	Serpukhovian Visean-		1991 Frickhinger
Actinopterygii	NA	Drydenius	insignius	Serpukhovian	10	1991 Moy-Thomas
Actinopterygii	NA	Phanerosteon	mirabile	Visean	14	
Actinopterygii	NA	Mesolepis	sp.	Visean Visean-	20	Photo Sallan and
Actinopterygii	NA	Amphicentrum	crassum	Serpukhovian	30	Coates, 2014

				Serpukhovia		
Actinopterygii	NA	Frederichthys	musadentatis	n Serpukhovia	5.7	Coates 1993
Actinopterygii	NA	Mesopoma	carricki	n Serpukhovia	7	Coates 1993
Actinopterygii	NA	Mesopoma	smithsoni	n Serpukhovia	8	Coates 1993
Actinopterygii	NA	Mesopoma	pancheni	n .	5.5	Coates 1993
Actinopterygii	NA	Mesopoma	planti	Serpukhovia n	6	Coates 1999
Actinopterygii	NA	Woodichthys	sp.	Serpukhovia n	11	Photo
Actinopterygii	NA	Melanecta	anneae	Serpukhovia n	5	
Actinopterygii	NA	Paratarrasius	hibbardi	Serpukhovia n	13.6	Lund & Melton 1982
Actinopterygii	NA	Aesopichthys	erinaceus	Serpukhovia n	9	
Actinopterygii	NA	Proceramala	montanensis	Serpukhovia n	10	Poplin & Lund 2000
Actinopterygii	NA	Cyranorhis	bergeraci	Serpukhovia n	15	Lund & Poplin 1997
Actinopterygii	NA	Kalops	monophrys	Serpukhovia n	11.6	Poplin & Lund 2002
Actinopterygii	NA	Kalops	diophrys	Serpukhovia n	9.6	Poplin & Lund 2002
Actinopterygii	NA	Discoserra	pectinodon	Serpukhovia n	6	Lund 2000
Actinopterygii	NA	Guildayichthys	carnegiei	Serpukhovia n	6	Lund 2000
Actinopterygii	NA	Wendyichthys	dicksoni	Serpukhovia n	12	Lund & Poplin 1997
Actinopterygii	NA	Wendyichthys	lautreci	Serpukhovia n	11	Lund & Poplin 1997
Actinopterygii	NA	Yogoniscus	gulo	Serpukhovia n	27	Frickhinger 1991
Actinopterygii	NA	Rhadinichthys	monensis	Serpukhovia n	9	
Actinopterygii	NA	Tanypterichthys	pridensis	Serpukhovia n	50	Weems &
Actinopterygii	NA	Cryphiolepis	striatus	Serpukhovia n	12	
Actinopterygii	NA	Fubarichthys	copiosus	Serpukhovia n	10	
Actinopterygii	NA	Apholidotus	ossna	Serpukhovia n	8	Frickhinger
	NA	•		Serpukhovia	15	
Actinopterygii		Elonichthys	obliquuis	n Serpukhovia		Mickle et al.
Actinopterygii	NA	Lineagruan	judithi	n Serpukhovia	9.5	Mickle et al.
Actinopterygii	NA	Lineagruan	snowyi	n Serpukhovia		2009 Mickle et al.
Actinopterygii	NA	Beagiascus	pulcherrimus	n Serpukhovia		2009 Frickhinger
Actinopterygii	NA	Atracauda	lundi	n Serpukhovia		1991
Actinopterygii	NA	Bourbonella	jocelynae	n Serpukhovia	3	
Actinopterygii	NA	Guntherichthys	lehiensis	n Serpukhovia	7.5	
Actinopterygii	NA	Spinofacia	pectinatus	n Serpukhovia	10	Mickle 2011
Actinopterygii	NA	Prohapolepis	scotica	n Serpukhovia	4	Lowney 1983
Actinopterygii	NA A santha adida	Blairolepis	loanheadensis	n	4.5*	Lowney 1983
Acanthodii Acanthodii	Acanthodida Climatiida	Promesacanthus Gladiobranchus	eppleri probaton	Lochkovian Lochkovian	3 11	
Acanthodii	Climatiida	Cassidiceps	vermiculatus	Lochkovian	6.7	
					2	3

							Wilson 1996
Acanthodii	NA	Brochoadmones	milesi	Lochkovian		14	Denison 1979
Acanthodii	Climatiida	Lupopsyrus	pygmaeus	Lochkovian		5.5	Denison 1979
Acanthodii	NA	Paucicanthus	vanelsti	Lochkovian		3.8	Hanke 2002 Hanke et al.
Acanthodii	Climatiida	Tetanopsyrus	lindoei	Lochkovian		3.7	2001 Hanke et al.
Acanthodii	Climatiida	Tetanopsyrus	breviacanthus	Lochkovian Lochkovian-		4	
Acanthodii	Ishnacanthida	Machaeracanthus	bohemicus	Emsian		200	Denison 1979
Acanthodii	Climatiida	Ptomacanthus	anglicus	Lochkovian		30	Denison 1979
Acanthodii	Climatiida	Vernicomacanthus	waynensis	Lochkovian		15	Denison 1979
Acanthodii	Climatiida	Uraniacanthus	spinosus	Lochkovian		15	Denison 1979
Acanthodii	Ishnacanthida	Onchus	besomensis	Lochhovian	30*		White 1962
Acanthodii	Ishnacanthida	Onchus	wheathillensis	Lochkovian	50*		White 1962
Acanthodii	Climatiida	Bradyacanthus	scutiger	Lochkovian		7	Denison 1979 Frickhinger
Acanthodii	Climatiida	Climatius	reticulatus	Lochkovian		14	1991 Frickhinger
Acanthodii	Climatiida	Euthacanthus	macnicoli	Lochkovian		14	
Acanthodii	Ishnacanthida	Ishnacanthus	gracilis	Lochkovian		16	Denison 1979 Frickhinger
Acanthodii	Acanthodida	Mesacanthus	mitchelli	Lochkovian Lochkovian-		6	•
Acanthodii	NA	Podoliacanthus	zychi	Pragian		16	Szaniawski 2012 Valiukevius,
Acanthodii	Climatiida	Acritolepis	ushakovi	Lochkovian		8	2003b Valiukevius,
Acanthodii	Climatiida	Acritolepis	urvantsevi	Lochkovian Lochkovian-	12*		2003b Valiukevius,
Acanthodii	Ishnacanthida	Poracanthodes	punctatus	Pragian	20*		2003b Valiukevius,
Acanthodii	Ishnacanthida	Acanthophora	transitans	Lochkovian Lochkovian-		7.5	2003b Maisley &
Acanthodii	NA	Sinacanthus	wuchangensis	Givetian	47*		Janvier 2011 Maisley &
Acanthodii	NA	Sinacanthus	sp.	Lochkovian	27*		Janvier 2011 Novitskava &
Acanthodii	Climatiida	Parexus	incurvus	Lochkovian		7.5	Obruchev 1967 Botella et al.
Acanthodii	Ishnacanthida	Machaeracanthus	goujeti	Pragian Pragian-	30*		2012 Sudkamp and
Acanthodii	Ishnacanthida	Machaeracanthus	hunsrueckianum	Emsian	150*		Burrow, 2007
Acanthodii	Ishnacanthida	Machaeracanthus	peracutus	Pragian- Emsian Pragian-	81*		Newberry 1889
Acanthodii	Ishnacanthida	Machaeracanthus	sulcatus	Givetian	110*		Newberry 1889 Wisshak et al.
Acanthodii	Climatiida	Undichna	septesmsulcata	Pragian Pragian-		34	2004
Acanthodii	Climatiida	Bryantonchus	peracutus	Emsian	31*		Burrow 2007 Sudkamp and
Acanthodii	Ishnacanthida	Machaeracanthus	sp.	Emsian	140*		Burrow, 2007
Acanthodii	Ishnacanthida	Taemasacanthus	erroli	Emsian	28*		Long 1986
Acanthodii	Ishnacanthida	Taemasacanthus	porca	Emsian	9.3*		Lindley 2000
Acanthodii	Ishnacanthida	Taemasacanthus	cooradigbeensis	Emsian	14*		Lindley 2002
Acanthodii	Ishnacanthida	Taemasacanthus	narrengullensis	Emsian	22*		Lindley 2002
Acanthodii	Ishnacanthida	Cavanacanthus	warrooensis	Emsian	16*		Lindley 2000
Acanthodii	Ishnacanthida	Cambaracanthus	comptus	Emsian	11*		Lindley 2000
Acanthodii	Climatiida	Sevyacanthus	elliotti	Emsian	24*		Burrow 2007
Acanthodii	Climatiida	Climatius	latispinosus	Emsian	54*		Burrow 2007
Acanthodii	Climatiida	Nodocosta	denisoni	Emsian	15*		Burrow 2007
Acanthodii	Ishnacanthida	Ishnacanthus	sp.	Emsian	31*		Burrow 2007
			-				

Acanthodii	Ishnacanthida	Cacheacanthus	utahensis	Emsian	32*		Burrow 2007 Cumbaa &
Acanthodii	Ishnacanthida	Melanocanthus	minutus	Emsian Eifelian-		2	Schultze 2002
Acanthodii	Climatiida	Diplacanthus	striatus	Givetian Eifelian-		10	Denison 1979
Acanthodii	Climatiida	Diplacanthus	tenuistriatus	Givetian		19	Denison 1979
Acanthodii	Gyracanthida	- Gyracanthides	sp.1	Eifelian		150	Long 2011
Acanthodii	Gyracanthida	Gyracanthides	sp.2	Eifelian	110*		Warren et al. 2000
	•	,	•				Blieck et al.,
Acanthodii	Gyracanthida	Gyracanthus	sp.	Eifelian Eifelian-	50*		1980 Frickhinger
Acanthodii	Climatiida	Rhadinacanthus	longispinus	Givetian Eifelian-		16	•
Acanthodii	Acanthodida	Cheiracanthus	murchisoni	Givetian Eifelian-		30	Denison 1979
Acanthodii	Acanthodida	Cheiracanthus	latus	Givetian		19	Denison 1979
Acanthodii	Ishnacanthida	Atopacanthus	pecularis	Eifelian	52*		Burrow 2004
Acanthodii	Ishnacanthida	Atopacanthus	ambrockensis	Eifelian Eifelian-	17*		Otto 1999
Acanthodii	Acanthodida	Mesacanthus	peachi	Givetian		6	Denison 1979
			p				Noyitskava &
Acanthodii	Acanthodida	Haplacanthus	marginalis	Givetian	28*		Obruchev 1967 Noyitskava &
Acanthodii	Acanthodida	Homacanthus	gracilis	Givetian	8.2*		Obruchev 1967
Acanthodii	Ishnacanthida	Machaeracanthus	longaevus	Givetian	16*		Reed 1986
Acanthodii	Ishnacanthida	Machaeracanthus	major	Givetian	260*		Newberry 1889
Acanthodii	Climatiida	Nodocosta	pauli	Givetian	16*		Denison 1979
Acanthodii	Climatiida	Diplacanthus	longispinus	Givetian Givetian-		22	Denison 1979
Acanthodii	Climatiida	Antarctonchus	glacialis	Frasnian Givetian-	80*		Denison 1979 Blieck et al.
Acanthodii	Gyracanthida	Gyracanthides	warreni	Famennian	50*		1980
Acanthodii	Climatiida	Culmacanthus	antarctica	Givetian	21*		Young 1989
Acanthodii	Climatiida	Culmacanthus	pambulensis	Givetian- Frasnian	14*		Young 1989
Acanthodii	NA	Archaecanthus	quadrisulcatus	Givetian	60*		Denison 1979
			•				Young &
Acanthodii	Climatiida	Milesacanthus	antarctica	Givetian		22	Burrow 2004
Acanthodii	Ishnacanthida	Howittacanthus	kentoni	Givetian		19	Long 1986
Acanthodii	Acanthodida	Lodeacanthus	guajicas	Givetian		3.12	Upniece 2001
Acanthodii	Acanthodida	Oracanthus	sp.	Givetian Givetian-	220*		Denison 1979
Acanthodii	Ishnacanthida	Persacanthus	simpsoniensis	Frasnian	34*		Reed 1986
Acanthodii	Ishnacanthida	Apateacanthus	vestustus	Frasnian	31*		Burrow 2004
Acanthodii	Ishnacanthida	Atopacanthus	dentatus	Frasnian	31*		Burrow 2004
Acanthodii	Climatiida	Culmacanthus	stewartii	Frasnian		14	Young 1989
Acanthodii	Ishnacanthida	Machaeracanthus	sp.	Frasnian	16*		Reed 1986
Acanthodii	Ishnacanthida	Machaeracanthus	restustus	Frasnian	55*		Wells 1940
Acanthodii	Climatiida	Diplacanthus	horridus	Frasnian		12	
Acanthodii	Acanthodida	Triazeugacanthus	affinus	Frasnian		3	Frickhinger 1991
Acanthodii	Acanthodida	Homalacanthus	concinnus	Frasnian		8	Frickhinger 1991
Acanthodii	Gyracanthida	Gyracanthus	sarlei	Frasnian	51*		Hussakof & Bryant 1918
Acanthodii	Climatiida	Florestacanthus	morenoi	Frasnian	56*		Burrow et al. 2003
Acanthodii	Climatiida	Cosmacanthus	malcomsoni	Frasnian	34*		Noyitskava & Obruchev 1967
Acanthodii	Ishnacanthida	Onchus	latus	Famennian		4	Derycke & Clement 2002
Acanthodii	Gyracanthida	Gyracanthus	sherwoodi	Famennian	90*	7	Newberry 1889
Adamindii	Syracanunua	Cyracaninas	STICT WOODI	i amennan	50		INCMPCITY 1008

Acanthodii	Climatiida	Diplacanthus	acus	Famennian		10	Gess 2001
		•					Derycke &
Acanthodii	Acanthodida	Devononchus	tenusipinus	Famennian		4	Clement 2002 Long et al.
Acanthodii	Ishnacanthida	Grenfellacanthus	zerinae	Famennian Famennian-	76*		2004
Acanthodii	Acanthodida	Acanthodes	Iopatini	Tournaisian		12	Beznosov 2009
Acanthodii	Acanthodida	Acanthodes	dublinensis	Famennian		30	Denison 1979
Acanthodii	Acanthodida	Acanthodes	ovensis	Tournaisian		8.7	Dineley 1999
Acanthodii	Acanthodida	Acanthodes	australis	Tournaisian		30	Beznosov 2009
Acanthodii	Gyracanthida	Gyracanthus	falciformis	Tournaisian	90*		Wells 1943
Acanthodii	Gyracanthida	Gyracanthus	compressus	Tournaisian	200*		McCoy 1854 Newberry et al.
Acanthodii	Gyracanthida	Gyracanthus	alleni	Tournaisian	100*		1870
Acanthodii	Gyracanthida	Gyracanthus	magnificus	Tournaisian	300*		Traquair 1902
Acanthodii	Gyracanthida	Gyracanthus	obliquus	Tournaisian	200*		Traquair 1902
Acanthodii	Gyracanthida	Gyracanthides	murrayi	Tournaisian Tournaisian-		50	Denison 1979
Acanthodii	Gyracanthida	Oracanthus	milleri	Serpukhovian	250*		Denison 1979
Acanthodii	Gyracanthida	Oracanthus	pustulosus	Tournaisian Tournaisian-		65	Patterson 1965
Acanthodii	Gyracanthida	Antacanthus	insignis	Visean	300*		Denison 1979
Acanthodii	Acanthodida	Acanthodes	nitidus	Visean		30	Watson 1937 Turner et al.
Acanthodii	Gyracanthida	Gyracanthides	hawkinsi	Visean		100	2005
Acanthodii	Acanthodida	Homacanthus	macrodus	Visean	12*		McCoy 1848
Acanthodii	Acanthodida	Homacanthus	microdus	Visean	18*		McCoy 1848
Acanthodii	Gyracanthida	Oracanthus	triangularis	Visean	150*		Denison 1979
Acanthodii	Gyracanthida	Oracanthus	vetustus	Visean	250*		Leidy 1856
Acanthodii	Gyracanthida	Gyracanthus	rectus	Visean	260*		Wells 1943
Acanthodii	Gyracanthida	Acanthodopsis	russelli	Visean Visean-	37*		Burrow 2004
Acanthodii	Acanthodida	Acanthodes	sulcatus	Serpukhovian Serpukhovia		30	Watson 1937
Acanthodii	Acanthodida	Acanthodes	lundi	n Serpukhovia		40	Zidek 1980
Acanthodii	Acanthodida	Acanthodes	wardi	n Serpukhovia		25	Denison 1979
Acanthodii	Gyracanthida	Aganacanthus	striatulus	n Serpukhovia	90*		Denison 1979
Acanthodii	Gyracanthida	Gyracanthus	youngi	n Serpukhovia	370*		Traquair 1884
Acanthodii	Gyracanthida	Gyracanthus	nobilis	n Serpukhovia	190*		Traquair 1884
Acanthodii	Gyracanthida	Marsdenius	sumiti	n Serpukhovia		10	Denison 1979
Acanthodii	Gyracanthida	Marsdenius	acuta	n		7	Denison 1979
Agnatha	Heterostraci	Protopteraspis	gosseletti	Lochkovian	21*		Dineley 1999
Agnatha	Heterostraci	Poraspis	polaris	Lochkovian	13*		Dineley 1999
Agnatha	Heterostraci	Poraspis	sericea	Lochkovian	20*		Dineley 1999 Elliott and
Agnatha	Heterostraci	Poraspis	rostrata	Lochkovian	18*		Petriello 2011 Frickhinger
Agnatha	Osteostraci	Cephalaspis	powrei	Lochkovian		12	1991
Agnatha	Osteostraci	Cephalaspis	cradleyensis	Lochkovian	12*		Dineley 1999
Agnatha	Osteostraci	Cephalaspis	cwmmillensis	Lochkovian	11*		Dineley 1999
Agnatha	Osteostraci	Cephalaspis	abergavenniensis	Lochkovian	21*		Dineley 1999
Agnatha	Osteostraci	Cephalaspis	pagei	Lochkovian			Dineley 1999 Moy-Thomas &
Agnatha	Osteostraci	Cephalaspis	lyelli	Lochkovian			Miles 1971
Agnatha	Osteostraci	Cephalaspis	toombsi	Lochkovian	30*		White 1935
Agnatha	Osteostraci	Cephalaspis	waynensis	Lochkovian	27*		White 1935

Agnatha	Osteostraci	Cephalaspis	virgoi	Lochkovian	28*		White 1935 Frickhinger
Agnatha	Thelodonti	Turinia	pagei	Lochkovian		32	1991 Frickhinger
Agnatha	Heterostraci	Pteraspis	rostrata	Lochkovian		15	1991
Agnatha	Heterostraci	Pteraspis	jackana	Lochkovian	15*		White 1935
Agnatha	Heterostraci	Pteraspis	mitchelli	Lochkovian	26*		Dineley 1999
Agnatha	Osteostraci	Cwmaspis	billcrofti	Lochkovian	14*		Dineley 1999
Agnatha	Heterostraci	Rhinopteraspis	crouchi	Lochkovian	17*		Dineley 1999
Agnatha	Heterostraci	Rhinopteraspis	dunensis	Lochkovian	17*		Dineley 1999
Agnatha	Thelodonti	Nikolivia	milesi	Lochkovian		15	Turner 1982 Mark-Kurik and
Agnatha	Heterostraci	Errivaspis	waynensis	Lochkovian		19	Botella 2009 Loeffler &
Agnatha	Heterostraci	Althaspis	leachi	Lochkovian	70*		Thomas 1980 Loeffler &
Agnatha	Heterostraci	Althaspis	sennensis	Lochkovian	30*		Thomas 1980 Loeffler &
Agnatha	Heterostraci	Althaspis	tarloi	Lochkovian	26*		Thomas 1980 Voichyshyn
Agnatha	Osteostraci	Zenaspis	kasymyri	Lochkovian	30*		2011 Voichyshyn
Agnatha	Heterostraci	Podolaspis	danieli	Lochkovian	17*		2011 Voichyshyn
Agnatha	Heterostraci	Djurinaspis	secunda	Lochkovian	30*		2011 Voichyshyn
Agnatha	Heterostraci	Semipodolaspis	slobodensis	Lochkovian	24*		2011 Scott & Wilson
Agnatha	Osteostraci	Waengsjoeaspis	nahanniensis	Lochkovian	29*		2012 Scott & Wilson
Agnatha	Osteostraci	Waengsjoeaspis	platycornis	Lochkovian	22*		2012 Lebedev et al.
Agnatha	Heterostraci	Larovaspis	kneri	Lochkovian Lochkovian-	14*		2009 Moy-Thomas &
Agnatha	Galeaspida	Polybranchiaspis	liaojaoshanensis	Pragian	16*		Miles 1971 Moy-Thomas &
Agnatha	Galeaspida	Polybranchiaspis	minor	Lochkovian	4.3*		Miles 1971
Agnatha	Galeaspida	Polybranchiaspis	yulongssus	Lochkovian	22*		Zhu & Gai 2007
Agnatha	Galeaspida	Laxaspis	qujingensis	Lochkovian	26*		Liu 1975
Agnatha	Galeaspida	Laxaspis	rostrata	Lochkovian	28*		Liu 1975
Agnatha	Galeaspida	Diandongaspis	xishancunensis	Lochkovian	20*		Liu 1975 Wang & Wang
Agnatha	Galeaspida	Damaspis	vartus	Lochkovian	10*		1982
Agnatha	Galeaspida	Stephaspis	dipteriga	Lochkovian	18*		Gai & Zhu 2007
Agnatha	Galeaspida	Eugaleaspis	changi	Lochkovian	9*		Liu 1975
Agnatha	Galeaspida	Nanpanaspis	microculus	Lochkovian	14*		Liu 1975
Agnatha	Galeaspida	Cyclodiscaspis	ctenus	Lochkovian	22*		Liu 1975
Agnatha	Osteostraci	Didymaspos	grinrodi	Lochkovian	8.6*		Obruchev 1967
Agnatha	Osteostraci	Timanaspis	kossovi	Lochkovian	21*		Obruchev 1967
Agnatha	Osteostraci	Sclerodus	pustuliferus	Lochkovian	5.8*		Obruchev 1967
Agnatha	Osteostraci	Asceraspis	robusta	Lochkovian	16*		Obruchev 1967
Agnatha	Osteostraci	Hemicyclaspis	murchisoni	Lochkovian		21	Obruchev 1967
Agnatha	Osteostraci	Hirella	gracilis	Lochkovian		9	Obruchev 1967
Agnatha	Anaspida	Rhyncholepis	parvulus	Lochkovian		7	Obruchev 1967
Agnatha	Anaspida	Pterygolepis	nitidus	Lochkovian		11	Obruchev 1967
Agnatha	Anaspida	Pharyngolepis	oblongus	Lochkovian Lochkovian-		18	Obruchev 1967 Belles-Isles
Agnatha	Osteostraci	Parameteoraspis	oblongus	Emsian	20*		1989 Elliott & Loeffler
Agnatha	Heterostraci	Aporemaspis	pholidata	Lochkovian		11	1984
Agnatha	Heterostraci	Stegobranchiaspis	baringensis	Lochkovian	29*		Elliott 1983
Agnatha	Heterostraci	Escharaspis	alata	Lochkovian	30*		Elliott 1983

Agnatha	Heterostraci	Unarkaspis	schultzei	Lochkovian	29*	Elliott 1983
Agnatha	Heterostraci	Ctenaspis	obruchevi	Lochkovian	14*	Dineley 1976
Agnatha	Heterostraci	Ctenaspis	russelli	Lochkovian Lochkovian-	17*	Dineley 1976 Wang et al.
Agnatha	Heterostraci	Sanqiaspis	vietnamensis	Pragian Lochkovian-	10*	2010 Wang et al.
Agnatha	Heterostraci	Laxaspis	yulongssus	Pragian Lochkovian-	19*	2010 Wang et al.
Agnatha	Heterostraci	Bannhuanaspis	vukhuci	Pragian Lochkovian-	30*	2010 Voichyshyn
Agnatha	Osteostraci	Pattenaspis	rogalai	Pragian	20*	2011 Keating et al.
Agnatha	Osteostraci	Pattenaspis	whitei	Lochkovian	33*	2012 Keating et al.
Agnatha	Osteostraci	Diademaspis	janvieri	Lochkovian	40*	2012 Adrian &
Agnatha	Osteostraci	Diademaspis?	mackenziensis	Lochkovian Lochkovian-	9*	Wilson 1994
Agnatha	Osteostraci	Stensiopelta	pusulata	Pragian	23* Lochkovi	Janvier 1985
Agnatha	Osteostraci	Superciliaspis	gabrielsi		an	5 Afanassieva
Agnatha	Osteostraci	Tannuaspis	levenkoi	Lochkovian	24*	1985
Agnatha	Osteostraci	Hoelaspis	angulata	Pragian	7*	Obruchev 1967 Mark-Kurik &
Agnatha	Osteostraci	Tauraspis	rara	Pragian	8*	Janvier 1995 Mark-Kurik &
Agnatha	Osteostraci	Hapliaspis	apheles	Pragian	4*	Janvier 1995 Mark-Kurik &
Agnatha	Osteostraci	Severaspis	rostralis	Pragian	6*	Janvier 1995 Voichyshyn
Agnatha	Osteostraci	Benneviaspis	urvantsevi	Pragian	15*	2011 Voichyshyn
Agnatha	Osteostraci	Benneviaspis	podolica	Pragian	13*	2011
Agnatha	Osteostraci	Kiaeraspis	auchenaspidoides	Pragian	6*	Obruchev 1967 Moy-Thomas &
Agnatha	Osteostraci	Axinaspis	whitei	Pragian	16*	Miles 1971 Scott et al.
Agnatha	Osteostraci	Machairaspis	isachseni	Pragian	18*	2013 Carlsson &
Agnatha	Osteostraci	Victoraspis	longicornualis	Pragian	22*	Blom 2008 Voichyshyn
Agnatha	Osteostraci	Wladysagitta	janvieri	Pragian	17*	2006 Elliott and
Agnatha	Heterostraci	Poraspis	sp.	Pragian	6.2*	Petriello 2011 Voichyshyn
Agnatha	Heterostraci	Dnestraspis	firma	Pragian	17*	2011 Voichyshyn
Agnatha	Heterostraci	Parapteraspis	plana	Pragian	17*	2011 Voichyshyn
Agnatha	Heterostraci	Alaeckaspis	ustechiensis	Pragian	22*	2011 Voichyshyn
Agnatha	Heterostraci	Althaspis	elongata	Pragian	22	2011 Voichyshyn
Agnatha	Heterostraci	Althaspis	sapovensis	Pragian	35*	2011 Voichyshyn
Agnatha	Heterostraci	Palanasaspis	chekhivensis	Pragian	9.3*	2011 Voichyshyn
Agnatha	Heterostraci	Europrotaspis	arnelli	Pragian	21*	2011 Voichyshyn
Agnatha	Heterostraci	Pavolaspis	pasternaki	Pragian	21*	2011 Voichyshyn
Agnatha	Heterostraci	Weigeltaspis	sp.	Pragian	23*	
Agnatha	Heterostraci	Benneviaspis	whitei	Pragian	11*	2011 Voichyshyn
Agnatha	Heterostraci	Benneviaspis	zychi	Pragian	22*	2011
Agnatha	Heterostraci	Citharaspis	polonica	Pragian	15*	Voichyshyn

						2011
Agnatha	Heterostraci	Citharaenie	iunia	Dragian	15*	Voichyshyn 2011
Agnatha		Citharaspis	junia	Pragian		Voichyshyn
Agnatha	Heterostraci	Zychaspis	granulata	Pragian -	18*	2011
Agnatha	Heterostraci	Doryaspis	nathorsi	Pragian	21*	Pernegre 2004
Agnatha	Heterostraci	Doryaspis	arctica	Pragian	17*	Pernegre 2004 Blieck & Goujet
Agnatha	Heterostraci	Zascinaspis	laticephala	Pragian	38*	1983
Agnatha	Heterostraci	Spitbergaspis	prima	Pragian	14*	Pernegre 2004
Agnatha	Heterostraci	Gigantaspis	laticephala	Pragian	28*	Pernegre 2004
Agnatha	Heterostraci	Gigantaspis	isachuen	Pragian	55*	Pernegre 2004
Agnatha	Heterostraci	Gigantaspis	bocki	Pragian Pragian-	19*	Pernegre 2004
Agnatha	Heterostraci	Drepanaspis	gemuendenensis	Emsian	60	Obruchev 1967
Agnatha	Osteostraci	Acrotomaspis	instabilis	Pragian	5.4*	Obruchev 1967 Wang et al.
Agnatha	Galeaspida	Lungmenshanaspis	yunnanaspis	Pragian	9*	1996 Zhao & Zhu
Agnatha	Galeaspida	Sanqiaspis	zhaotongensis	Pragian	11*	2010 Zhao & Zhu
Agnatha	Galeaspida	Sanqiaspis	rostrata	Pragian	11*	2010
Agnatha	Galeaspida	Qingmenaspis	microculus	Pragian		5* Liu 1993
Agnatha	Galeaspida	Gantarostrataspis	gengi	Pragian	20*	Wang 1992
Agnatha	Galeaspida	Gumuaspis	rostrata	Pragian	15*	Wang 1992 Zhao et al.
Agnatha	Galeaspida	Macrothyraspis	Iongicornis	Pragian	10*	2002
Agnatha	Galeaspida	Hunanaspis	wudinensis	Pragian	23*	Liu 1975 Zhao et al.
Agnatha	Galeaspida	Wenshanaspis	zhichangensis	Pragian	9*	2002 Wang & Zhu
Agnatha	Galeaspida	Zhaotongaspis	janvieri	Pragian	20*	1994
Agnatha	Galeaspida	Pterogonaspis	yuhaii	Pragian	21*	Zhu 1992
Agnatha	Galeaspida	Dongfangaspis	major	Pragian	80*	Liu 1975 Wang et al.
Agnatha	Galeaspida	Lungmenshanaspis	kiangyouensis	Pragian	41*	1996 Zhao & Zhu
Agnatha	Galeaspida	Eugaleaspis	xujiachongensis	Pragian	14*	2010 Blieck & Goujet
Agnatha	Heterostraci	Zascinaspis	carmani	Pragian	33*	1983
Agnatha	Heterostraci	Allocryptaspis	laticostatus	Pragian	25*	Denison 1960
Agnatha	Heterostraci	Cosmaspis	transversa	Pragian	38*	Denison 1970
Agnatha	Heterostraci	Lampraspis	tuberculata	Pragian	32*	Denison 1970
Agnatha	Heterostraci	Protaspis	brevispina	Pragian	48*	Denison 1970
Agnatha	Heterostraci	Protaspis	mcgrewi	Pragian	37*	Denison 1970
Agnatha	Heterostraci	Cardipeltis	richardsoni	Pragian	36*	Denison 1966
Agnatha	Heterostraci	Cardipeltis	bryanti	Pragian	37*	Denison 1966
Agnatha	Heterostraci	Amphiaspis	argos	Pragian Pragian-	49*	Obruchev 1967
Agnatha	Heterostraci	Hibernaspis	macrolepis	Emsian Pragian-	41*	Obruchev 1967
Agnatha	Heterostraci	Eglonaspis	rostrata	Emsian Pragian-	38*	Obruchev 1967
Agnatha	Heterostraci	Olbiaspis	coalescens	Emsian Pragian-	29*	Obruchev 1967
Agnatha	Heterostraci	Siberiaspis	plana	Emsian Pragian-	26*	Obruchev 1967
Agnatha	Heterostraci	Angaraspis	urvantzevi	Emsian Emsian-	23*	Obruchev 1967
Agnatha	Osteostraci	Gustavaspis	trinodis	Eifelian	7*	Obruchev 1967 Elliott and
Agnatha	Heterostraci	Poraspis	thomasi	Emsian	6.2*	Petriello 2011
Agnatha	Galeaspida	Duyunaspis	paoyangensis	Emsian	20*	Zhao & Zhu

						2010
Agnatha	Heterostraci	Panamintaspis	snowi	Emsian	52*	Elliott & Ilyes 1996
Agnatha	Heterostraci	Blieckaspis	priscillae	Emsian	46*	Elliott & Ilyes 1996
Agnatha	Heterostraci	Indet. Pteraspidid	Α	Emsian	9.7*	Elliott & llyes 1996
Agnatha	Heterostraci	Indet. Pteraspidid	В	Emsian Emsian-	15*	Elliott & Ilyes 1996 Belles-Isles
Agnatha	Osteostraci	Yvonaspis	campbelltonensis	Eifelian Emsian-	44*	1988 Belles-Isles
Agnatha	Osteostraci	Yvonaspis	westolli	Eifelian Emsian-	35*	1988 Belles-Isles
Agnatha	Osteostraci	Parameteoraspis	moythomasi	Eifelian	27*	1988
Agnatha	Heterostraci	Pleurgaspis	macrorhyncha	Emsian	23*	Obruchev 1967
Agnatha	Osteostraci	Nectaspis	areolata	Emsian	12*	Obruchev 1967 Elliott and
Agnatha	Heterostraci	Lechriaspis	patula	Emsian	12*	Petriello 2011
Agnatha	Heterostraci	Cardipeltis	wallaci	Emsian	43*	Denison 1966
Agnatha	Heterostraci	Protaspis	dorfi	Emsian	41*	Bryant 1933
Agnatha	Heterostraci	Protaspis	bucheri	Emsian	24*	Denison 1953
Agnatha	Osteostraci	Cephalaspis	wyomingensis	Emsian	30*	Bryant 1933 Elliott et al.
Agnatha	Osteostraci	Cephalaspis	utahensis	Emsian	15*	1999
Agnatha	Osteostraci	Cephalaspis	brevirostris	Emsian	20*	Denison 1952
Agnatha	Heterostraci	Allocryptaspis	utahensis	Emsian	30*	Denison 1953a
Agnatha	Heterostraci	Allocryptaspis	ellipticus	Emsian	25*	Denison 1953a
Agnatha	Heterostraci	Clydonaspis	fabrensis	Emsian	25*	Elliott 1994
Agnatha	Heterostraci	Oreaspis	dunklei	Emsian	19*	Denison 1970
Agnatha	Heterostraci	Oreaspis	williamsi	Emsian	33*	Denison 1970 Ilyes and Elliott
Agnatha	Heterostraci	Tuberculaspis	elyensis	Emsian	11*	1994 Ilyes and Elliott
Agnatha	Heterostraci	Pirumaspis	lancasteri	Emsian	28*	1994 Ilyes and Elliott 1994
Agnatha Agnatha	Heterostraci Osteostraci	Lamiaspis Ilemoraspis	longiripa kirkinskayae	Emsian Emsian- Givetian	24* 20*	Sansom et al. 2008
Agnatha	Heterostraci	Tartuosteus	sp.	Eifelian- Givetian	200	Elliott et al. 2004
Agnatha	Heterostraci	Pycnosteus	sp.	Eifelian- Givetian	200	Elliott et al. 2004
Agnatha	Osteostraci	Balticaspis	latvica	Eifelian	5*	Otto & Laurin 2001
Agnatha	Heterostraci	Psammosteus	praecursor	Eifelian- Frasnian	84*	Elliott & Mark- Kurik 2005
Agnatha	Heterostraci	Psammosteus	livonicus	Eifelian- Givetian Eifelian-	74*	Elliott & Mark- Kurik 2005 Lebedev et al.
Agnatha	Heterostraci	Psammolepis	venyukovi	Givetian Eifelian-	79	
Agnatha	Heterostraci	Psammolepis	proia	Givetian Eifelian-	101	Kurik 2005 Elliott & Mark-
Agnatha	Heterostraci	Psammolepis	undulata	Givetian	56*	Kurik 2005
Agnatha	Galeaspida	Clarorbis	apponomedianus	Eifelian	20*	Pan & Ji 1993
Agnatha	Heterostraci	Rhinopteraspis	cornubica	Eifelian Eifelian-	14*	Tarlo 1961 Moy-Thomas &
Agnatha	Osteostraci	Trewinia	magnifica	Frasnian	60	Miles 1971 Newman &
Agnatha	Hyperoartii	Cornovichthys	blaauweni	Eifelian	12	Trewin 2001 Elliott & Mark-
Agnatha	Heterostraci Heterostraci	Psammosteus Schizosteus	bergi shkurlatensis	Givetian Givetian	98* 39*	Kurik 2005 Moloshnikov 2009
Agnatha	i icici usti dui	JUHZOSIEUS	311KU11a(C11515	Givendii	39	2003

Agnatha	Heterostraci	Tartuosteus	zhelezniogerskens is	Frasnian	56*		Moloshnikov 2007
Agnatha	Osteostraci	Alaspis	rosamundae	Frasnian	00	180	Janvier & Arsenault 1996
Agnatha	Osteostraci	Escuminaspis	laticeps	Frasnian			Janvier et al. 2004
Agnatha	Heterostraci	Aspidosteus	heckeri	Frasnian	100*	00	Obruchev 1967
Agnatha	Heterostraci	Obruchevia	heckleri	Frasnian	140*		Elliott et al. 2004
Agnatha	Heterostraci	Perscheia	pulla	Frasnian	49*		Elliott et al. 2004
Agnatha	Anaspida	Legendrelepis	parenti	Frasnian		8.5	Janvier 1996
Agnatha	Anaspida	Eupanerops	longaevus	Frasnian		10	Janvier 1996
Agnatha	Anaspida	Endeiolepis	aneri	Frasnian	16		Janvier 1996 Robertson
Agnatha	Osteostraci	Levesquaspis	patteni	Frasnian Pragian-	10*		1936
Chondrichthyes	Elasmobranchii	Antarctilamna	sp.	Emsian Pragian-	40		Long 2011 Bartels et al.
Chondrichthyes	NA	Stensioella	heintzi	Emsian		22	1998 Miller et al.
Chondrichthyes	Elasmobranchii	Doliodus	problematicus	Emsian Emsian-		23	2003 Maisley &
Chondrichthyes	NA	Zamponiopteron	spinifera	Eifelian		43*	,
Chondrichthyes	NA	Pucapampella	rodrigae	Emsian- Eifelian Emsian-	25*		Suarez-Riglos 1986 Maisley &
Chondrichthyes	NA	Pucapampella	sp.	Eifelian		30*	•
Chondrichthyes	NA	Acmoniodus	clarkei	Frasnian		200*	Bryant 1918 Hussakof and
Chondrichthyes	NA	Cladoselache	acanthopterygius	Frasnian		68*	Bryant 1918 Hussakof and
Chondrichthyes	NA	Cladoselache	brachypterygius	Frasnian	69		Bryant 1918 Hussakof and
Chondrichthyes	NA	Cladoselache	desmopterygius	Frasnian	29		Bryant 1918 Hussakof and
Chondrichthyes	NA	Cladoselache	fyleri	Frasnian	39		Bryant 1918 Hussakof and
Chondrichthyes	NA	Cladoselache	kepleri	Frasnian	160		Bryant 1918
Chondrichthyes	NA	Cladoides	wildungensis	Frasnian Frasnian-	500*		Maisley 2005
Chondrichthyes	Elasmobranchii	Ctenacanthus	major	Visean		270*	Maisley 1981 Lelievre &
Chondrichthyes	Elasmobranchii	Ctenacanthus	chemungensis	Frasnian		76*	Derycke 1998
Chondrichthyes	Elasmobranchii	Ctenacanthus	randalli	Frasnian		230*	Eastman 1907
Chondrichthyes	NA	Gladbachus	adentadus	Frasnian		11	Ginter 2004
Chondrichthyes	NA	Rhynchodus	pertenius	Frasnian Frasnian-	110*		Eastman 1907
Chondrichthyes	Elasmobranchii	Protacrodus	vetustus	Tournaisian	36*		Zangerl 1981
Chondrichthyes	NA	Diademodus	hydei	Famennian	40		Harris 1951
Chondrichthyes	NA	Tamobatis	vestustus	Famennian	120*		Williams 1998
Chondrichthyes	Elasmobranchii	Ctenacanthus	compressus	Famennian- Tournaisian Famennian-		140*	Maisley 1981 Lelievre &
Chondrichthyes	Elasmobranchii	Ctenacanthus	angustus	Tournaisian	190*		Derycke 1998
Chondrichthyes	Elasmobranchii	Ctenacanthus	nodocostatus	Famennian	130*		Newberry 1889
Chondrichthyes	NA	Ageleodus	pectinatus	Famennian		50*	Long 2011 Coates & Gess
Chondrichthyes	NA	Plesiosclachus	macracanthus	Famennian	16		2007
Chondrichthyes	NA	Tuberospina	nataliae	Famennian	82*		Lebedev 1995 Vorobyeva and
Chondrichthyes	NA	Thoralodus	cabrieri	Famennian	140*		Obruchev 1967 Zhao & Zhu
Chondrichthyes	NA	Stethacanthus	sp.	Famennian	70		2010

Chondrichthyes	Elasmobranchii	"Ctenacanthus"	vetustus	Famennian Tournaisian-	180*	Maisley 1981
Chondrichthyes	Elasmobranchii	Tristychius	arcuatus	Serpukhovian	50	O .
Chondrichthyes	Elasmobranchii	Ctenacanthus	altoensis	Tournaisian	150	Lund and Grogan, 2005
Chondrichthyes	Elasmobranchii	Ctenacanthus	formosus	Tournaisian	270*	Newberry 1873
Chondrichthyes	Elasmobranchii	Ctenacanthus	littoni	Tournaisian	290*	•
Ononuncitaryes	Liasinobianomi	Oteriacaminas	iittorii	Tournaisian	250	St. John &
Chondrichthyes	Elasmobranchii	Ctenacanthus	varians	Tournaisian	76*	Worthen 1875
Chondrichthyes	Elasmobranchii	Ctenacanthus	keokuk	Tournaisian	190*	Eastman 1902
Chondrichthyes	Elasmobranchii	Symmorium	20	Tournaisian- Visean	200*	Zangori 1001
Chonunchinyes	ElaSillobialicilli	Symmorium	sp.	Viseaii	200	Zangerl 1981 St. John &
Chondrichthyes	Elasmobranchii	Acondylacanthus	gracilis	Tournaisian	200*	Worthen 1875
Chondrichthyes	Elasmobranchii	Anaclitacanthus	semicostatus	Tournaisian	120*	St. John & Worthen 1875
Chondrichthyes	Elasmobranchii	Phoebodus		Tournaisian	70*	Zangerl 1981
·			Sp.		70 140*	<u> </u>
Chondrichthyes	Elasmobranchii	Sphenacanthus	marshi	Tournaisian		Newberry 1873
Chondrichthyes	Holocephali	Mazodus	kepleri	Tournaisian Tournaisian-	340*	Newberry 1889
Chondrichthyes	Symmorida	Denaea	sp.	Serpukhovian	50	Zangerl 1981
						Vorobyeva &
Chondrichthyes	Holocephali	Helodus	coniculus	Tournaisian	45	Obruchev 1967
Chondrichthyes	Elasmobranchii	Eunemacanthus	krapivnensis	Tournaisian	52*	Lebedev 1996 Moy-Thomas
Chondrichthyes	Elasmobranchii	Xenacanthus	sp.	Tournaisian	200*	1971
Chondrichthyes	Holocephali	Physonemus	gemmatus	Tournaisian	200*	Eastman 1917
·	·	•		Tournaisian-		
Chondrichthyes	Elasmobranchii	Bythiacanthus	ianishevskyi	Visean	80*	Eastman 1902
Chondrichthyes	Elasmobranchii	Bythiacanthus	lucasi	Tournaisian	68*	Eastman 1902
Chondrichthyes	Elasmobranchii	Bythiacanthus	solidus	Tournaisian	72*	Eastman 1902
Chondrichthyes	Symmorida	Falcatus	falcatus	Tournaisian- Serpukhovian	30	Lund and Grogan 2005
Chondrichthyes	Elasmobranchii	Asteroptychius	elegans	Tournaisian	110*	Newberry 1889
Chondrichthyes	Elasmobranchii	Wodnika?	triangularis	Tournaisian	80	Zangerl 1981
Chonuncilityes	Liasifiobiaticiii	Woutina!	lilaligularis	Tournaisian	00	St. John &
Chondrichthyes	Holocephali	Glymmatacanthus	irishii	Tournaisian	170*	Worthen 1875
Chondrichthyes	Holocephali	Batacanthus	baculiformis	Tournasian	190*	St. John & Worthen 1875
·	•					
Chondrichthyes	Elasmobranchii	Goodrichthys	eksdalensis	Visean Visean-	90	Zangerl 1981
Chondrichthyes	Elasmobranchii	Onychoselache	traquairi	Serpukhovian	15	Zangerl 1981
Chondrichthyes	Elasmobranchii	Sphenacanthus	serrulatus	Visean	230*	Zangerl 1981
,		·		Visean-		Moy-Thomas
Chondrichthyes	Holocephali	Deltoptychius	armigerus	Serpukhovian	45*	1971
Chondrichthyes	Holocephali	Chondrenchelys	problematica	Visean	12	Frickhinger 1991
Chondrichthyes	Elasmobranchii	Ctenacanthus	costellatus	Visean	90	
Chondrichthyes	Elasmobranchii	Ctenacanthus	denticulatus	Visean	76*	•
Chondrichthyes	Holocephali	Eucentrurus	paradoxus	Visean	6	Stahl 1999
Chondrionaryes	Поюсернан	Edociti di do	paradoxao	Viocari	J	Ginter &
Chondrichthyes	Elasmobranchii	Cladodus	elegans	Visean	120*	Maisley 2007
Chondrichthyes	Symmorida	Stethacanthus	altonensis	Visean- Serpukhovian	150	Lund & Grogan 2005
•	•			•		
Chondrichthyes	Elasmobranchii	Asteroptychius	semiornatus	Visean	52*	•
Chondrichthyes	Elasmobranchii	Coelosteus	ferox	Visean	270*	Newberry 1889
Chondrichthyes	Elasmobranchii	Cratoselache	pruvosti	Visean	73*	Zangerl 1981 Woodward
Chondrichthyes	Holocephali	Deltodus	croftoni	Visean	94*	1900
Chondrichthyes	Holocephali	Helodus	turgidus	Visean	45	Stahl 1999
Chondrichthyes	Holocephali	Physonemus	arcuatus	Visean	300*	Newberry 1889
	· r ·	•				St. John &
Chondrichthyes	Holocephali	Physonemus	altonensis	Visean	140*	Worthen 1875

0	-	5) <i>(</i>	704		Gijon &
Chondrichthyes	Elasmobranchii	Psammodus	sp.	Visean	70*		Rodriguez 1991
Chondrichthyes	Holocephali	Erismacanthus	jonesi	Visean	83*	05*	Stahl 1999
Chondrichthyes	Holocephali	Erismacanthus	maccoyanus	Visean	400*	25*	Stahl 1999
Chandrichthyes	Holocephali	Erismacanthus	formosus	Visean	180*		Stahl 1999
Chandrichthyes	Elasmobranchii	Amelacanthus	sulcatus	Visean	80*		Maisley 1982
Chandrighthyes	Elasmobranchii	Amelacanthus	plicatus	Visean	64* 87*		Maisley 1982
Chandrighthyes	Elasmobranchii	Amelacanthus	laevis	Visean	67 57*		Maisley 1982
Chondrichthyes	Elasmobranchii Elasmobranchii	Amelacanthus Eunemacanthus	pustulatus	Visean Visean	100*		Maisley 1982 Maisley 1982
Chondrichthyes Chondrichthyes	Elasmobranchii	Eunemacanthus	costatus	Visean	87*		Maisley 1982 Maisley 1982
Chondrichthyes	Elasmobranchii	Bythiacanthus	heterogyrinus brevis	Visean	120*		Maisley 1982
Chondrichthyes	Elasmobranchii	Bythiacanthus	vanhornei	Visean	80*		Maisley 1982
Chonanonaryes	Liadinobianomi	Буннаванинав	varinorner	Viocari	00		St. John &
Chondrichthyes	Elasmobranchii	Amacanthus	gibbosus	Visean	40*		Worthen 1875 St. John &
Chondrichthyes	Elasmobranchii	Geisacanthus	stellatus	Visean	40*		Worthen 1875
Chondrichthyes	Holocephali	Stichacanthus	coemansi	Visean Serpukhovia	25		Stahl 1999 Coates &
Chondrichthyes	Symmorida	Akmoniston	zangerli	n Serpukhovia	65		Sequiera 2001 Frickhinger
Chondrichthyes	Holocephali	Deltoptychius	sp.	n	50		1991
Oh an dui abthua	C abasa das a a ab alii	Orananius	:	Serpukhovia	40		Lund & Grogan
Chondrichthyes	Euchrondrocephalii	Gregorius	rexi	n Serpukhovia	12		2005 Lund & Grogan
Chondrichthyes	Euchrondrocephalii	Srianta	dawsoni	n	23*		2005
Chandrighthyaa	Euchrondroconholii	Doboorius	allafaani	Serpukhovia		20	Lund & Grogan
Chondrichthyes	Euchrondrocephalii	Debeerius	ellefseni	n Serpukhovia		30	2005
Chondrichthyes	Elasmobranchii	Heteropetalus	elegantulus	n Serpukhovia		7	Zangerl 1981 Lund & Grogan
Chondrichthyes	Elasmobranchii	Belantsea	montana	n O a manufula and i a		67	2005
Chondrichthyes	Elasmobranchii	Janassa	bituminosa	Serpukhovia n		26	Frickhinger 1991
Chonanonary	Liadinobianomi	dinacca	Sitarimiood	Serpukhovia			1001
Chondrichthyes	Elasmobranchii	Netsepoye	hawesi	n Communich ausia	5.5		Lund 1989
Chondrichthyes	Elasmobranchii	Petalorhyncus	beargulchensis	Serpukhovia n		10*	Lund 1989
Chondrichthyes	Elasmobranchii	Siksika	ottae	Serpukhovia n		13*	Lund 1989
Chonanonaryes	Liadinobianomi	Omoma	Ollac	Serpukhovia		10	Lund & Grogan
Chondrichthyes	Holocephali	Harpacanthus	fimbriatus	n		20	2005
Chondrichthyes	Chondrechelyiform es	Harpagofugator	volsellorhinus	Serpukhovia n		17	Lund 1982
Chonanonary		Tarpagoragator	Volodilorriirido	Serpukhovia			Lund & Grogan
Chondrichthyes	Holocephali	Traquairius	agkistrocephalus	n O a manufula and i a		46	2005
Chondrichthyes	Holocephali	Traquairius	spinosus	Serpukhovia n	30		Lund & Grogan 2005
•	•		•	Serpukhovia			Lund & Grogan
Chondrichthyes	Symmorida	Damocles	serratus	n Sorpukhovia	60		2005
Chondrichthyes	Symmorida	Stethacanthus	productus	Serpukhovia n		270	Lund & Grogan 2005
·	•			Serpukhovia			
Chondrichthyes	Symmorida	Orestiacanthus	fergusi	n Serpukhovia		20*	Lund 1984
Chondrichthyes	Symmorida	Squatinactis	caudispinatus	n		15	Zangerl 1981
				Serpukhovia			Lund & Grogan
Chondrichthyes	Symmorida	Squatinactis	montanus	n Serpukhovia		60	2005 Grogan & Lund
Chondrichthyes	Elasmobranchii	Thrinacoselache	gracia	n		90	2008
Chondrichthyes	Elasmobranchii	Gutturensis	nielsoni	Serpukhovia n		125	Sequeira and Coates 2000
Chonuncialityes	Liasinobianciiii	Gullarenois	HICIOUII	n Serpukhovia		100	Juaies 2000
Chondrichthyes	Elasmobranchii	Pleuracanthus	horridus	n .	28*		Traquair 1882
Chondrichthyes	Elasmobranchii	Pleuracanthus	gracilis	Serpukhovia n		44*	Traquair 1882
Chonanonaryou	Liacinobianomi	oaradariirido	3.400			τ−τ	114444II 1002

Chondrichthyes	Holocephali	Rainerichthys	zangerli	Serpukhovia n	12.80	Grogan & Lund 2009
•	•	•	-	Serpukhovia		Grogan & Lund
Chondrichthyes	Holocephali	Papillioninchthys	stahlae	n Serpukhovia		2009
Chondrichthyes	Holocephali	Helodus	simplex	n Serpukhovia	45	Stahl 1999 Stahl et al.
Chondrichthyes	Holocephali	Deltodus	angularis	n Serpukhovia	66*	2000
Chondrichthyes	Elasmobranchii	Sphenacanthus	hybodoides	n Serpukhovia	190*	Maisley 1982
Chondrichthyes	Holocephali	Erismacanthus	sp.	n Serpukhovia	12	Stahl 1999 Frickhinger
Chondrichthyes	NA	unknown	sp. 1	n	12	1991
Chondrichthyes	Holocephali	unknown	sp. 2	Serpukhovia n	10	Lund & Grogan 2005
Chondrichthyes	Holocephali	unknown	sp. 3	Serpukhovia n	10	Lund & Grogan 2005
Chondrichthyes	NA	COCH 1	sp.	Serpukhovia n	15	Stahl 1999
Chondrichthyes	Holocephali	Lestrodus	newtoni	Serpukhovia n	300*	Zangerl 1981
Placodermi	Arthrodira	Kujdanwiaspis	podolica	Lochkovian- Pragian	15	Dupret et al.
		, ,	•	-		
Placodermi	Arthrodira	Wheathillaspis	wickhamkingi 	Lochkovian	20*	Denison 1978
Placodermi	Arthrodira	Heightingtonaspis	anglica	Lochkovian	30*	Denison 1978
Placodermi	Arthrodira	Heightingtonaspis	willsi	Lochkovian	50*	Denison 1978
Placodermi	Arthrodira	Heightingtonaspis	clarkei	Lochkovian	20*	Denison 1978 Dupret et al.
Placodermi	Arthrodira	Erikaspis	zychi	Lochkovian	50*	
Placodermi	Arthrodira	Palaeacanthaspis	vasta	Lochkovian	20*	2011 Wang et al.
Placodermi	Acanthothoraci	Hagiangella	goujeti	Lochkovian	7*	2010 Wang et al.
Placodermi	Antiarcha	Minicrania	lissa	Lochkovian	8*	2010 Wang et al.
Placodermi	Antiarcha	Chuchinolepis	dongmoensis	Lochkovian	6*	2010 Wang et al.
Placodermi	Antiarcha	Yunnanolepis	bacboensis	Lochkovian	14*	2010 Zhao & Zhu
Placodermi	Antiarcha	Yunnanolepis	chii	Lochkovian	18*	2010
Placodermi	Antiarcha	Yunnanolepis	porifera	Lochkovian	7*	Zhu 1996
Placodermi	Antiarcha	Heteroyunnanolepis	qujingensis	Lochkovian	22*	Zhu 1996
Placodermi	Antiarcha	Chuchinolepis	gracilis	Lochkovian	6*	Zhu 1996
		•	· ·			
Placodermi	Antiarcha	Zhanjilepis	aspriatilis	Lochkovian	6*	Zhu 1996 Zhu & Janvier
Placodermi	Antiarcha	Minicrania	lirouyii	Lochkovian	4.5*	1996
Placodermi	Petalichthyida	Diandongpetalichthys	liaojaoshanensis	Lochkovian Lochkovian-	10*	Zhu 1991
Placodermi	Arthrodira	Szelepis	yunnanensis	Pragian	30*	Liu 1979
Placodermi	Antiarcha	Phymolepis	cuifengshanensis	Lochkovian	8*	Zhu 1996
Placodermi	Antiarcha	Phymolepis	guoruii	Lochkovian	22*	Zhu 1996
Placodermi	Antiarcha	Chuchinolepis	qujingensis	Lochkovian	10*	Zhu 1996
Placodermi	Antiarcha	Chuchinolepis	sulcata	Lochkovian	17*	Zhu 1996
		•				
Placodermi	Antiarcha	Chuchinolepis	robusta	Lochkovian	7*	Zhu 1996 Zhao & Zhu
Placodermi	Antiarcha	Gavinaspis	convergens	Lochkovian	38*	2010 Dineley & Liu
Placodermi	Antiarcha	Eskimaspis	heintzi	Lochkovian	23*	1984
Placodermi	Antiarcha	Baringaspis	dineleyi	Lochkovian	49*	Miles 1973 Thanh &
Placodermi	Antiarcha	Yunnanolepis	meemannae	Pragian	29*	Janvier 1994
Placodermi	Arthrodira	Yujiangolepis	suni	Pragian	25*	Zhu et al. 2010
Placodermi	Petalichthyida	Neopetalichthys	yenmenpaensis	Pragian	18*	Liu 1973
	· ·	•				

Dia and a mai	۸ ساله سم ما:سم	Vissianasia		Descion	40*	D 2000
Placodermi	Arthrodira	Yiminaspis	shenme	Pragian	12*	Dupret 2008
Placodermi	Antiarcha	Mizia	longhuanensis	Pragian	6.5*	Zhu 1996
Placodermi	Arthrodira	Kujdanwiaspis	buczacziensis	Pragian	30*	Dupret 2010
Placodermi	Arthrodira	Radontina	prima	Pragian	40*	Denison 1978
Placodermi	Arthrodira	Radontina	tessellata	Pragian	28*	Denison 1978 Olive et al.
Placodermi	Arthrodira	Arabosteus	variabilis	Pragian	23*	2011 Mark-Kurik
Placodermi	Arthrodira	Eukaia	elongata	Pragian	44*	2013 Bartels et al.
Placodermi	Arthrodira	Tityosteus	rieversi	Pragian	200	1998 Bartels et al.
Placodermi	Arthrodira	Lunaspis	heroldi	Pragian	15	1998 Bartels et al.
Placodermi	Arthrodira	Lunaspis	broilii	Pragian	45	1998 Bartels et al.
Placodermi	Arthrodira	Gemuendina	stuertzi	Pragian	100	1998
Placodermi	Arthrodira	Proaethaspis	ohioensis	Pragian	12*	Denison 1960
Placodermi	Arthrodira	Kueichowlepis	sinensis	Emsian	4	18* Liu 1979
		·				Ritchie et al.
Placodermi	Antiarcha	Dayaoshania	youngi	Emsian	•	18* 1992
Placodermi	Arthrodira	Jiuchengia	longoccipita	Emsian- Givetian Emsian-	1	Wang & Wang 10* 1983 Lin & Wang
Placodermi	Arthrodira	Exutaspis	megista	Givetian	6	67* 1981
Placodermi	Arthrodira	Xiangshuiosteus	wui	Emsian	31*	Wang 1992
i idoodoiiiii	7 ii iii odii d	Alangonalooteao	wai	Lindan	01	Zhang & Young
Placodermi	Antiarcha	Liguanolepis	pileos	Emsian	6.7*	1992
Placodermi	Antiarcha	Wudinolepis	weni	Emsian	4.9*	Zhang 1965 Zhao & Zhu
Placodermi	Antiarcha	Microbranchius	chuandongensis	Emsian Emsian-	26*	2010 Ritchie et al.
Placodermi	Antiarcha	Xichonolepis	qujingensis	Eifelian Emsian-	70*	1992
Placodermi	Antiarcha	Bothriolepis	tungseni	Eifelian Emsian-	29*	Zhang 1965
Placodermi	Arthrodira	Groenlandaspis	sp. novaustrocambric	Eifelian	25	Dineley 1999
Placodermi	Arthrodira	Taemosteus	us	Emsian	140*	Young 2004 Frickhinger
Placodermi	Antiarcha	Bothriolepis	sp.	Emsian	50*	1991
Placodermi	Petalichthyida	Notopetalichthys	hillsi	Emsian	33*	Denison 1978
Placodermi	Arthrodira	Goodradigbeeon	australiensis	Emsian	150*	White 1978 Frickhinger
Placodermi	Arthrodira	Coccosteus	sp.	Emsian		40 1991
Placodermi	Arthrodira	Edgallagnia	gortori	Emsian- Eifelian	34*	Hunt and
		Edgellaspis	gorteri			Young 2011
Placodermi	Arthrodira	Dhanguura	johnstoni	Emsian	230*	Young 2004
Placodermi	Arthrodira	Cathlesichthys	weejasperensis	Emsian	270*	Young 2004
Placodermi	Arthrodira	Weejasperensis	gavini	Emsian	20*	White 1978
Placodermi	Arthrodira	Burrinjucosteus	asymmetricus confertituberculatu	Emsian	(94* White 1978
Placodermi	Arthrodira	Buchanosteus	s	Emsian	74*	Young 1979
Placodermi	Arthrodira	Arenipiscis	westolli	Emsian	87*	Young 1981
Placodermi	Arthrodira	Errolosteus	goodragibeensis	Emsian	77*	Young 1981
Placodermi	Arthrodira	Elvaspis	tuberculata	Emsian	15*	Young 2009
Placodermi	Arthrodira	Elvaspis	whitei	Emsian	11*	Young 2009
Placodermi	Arthrodira	Bimbianga	burrinjuckensis	Emsian	130*	Young 2005
Placodermi	Petalichthyida	Wijdeaspis	warrooensis	Emsian	20*	Denison 1978; Young 1978 Lelievre et al.
Placodermi	Arthrodira	Nefundia	qalibahensis	Emsian	51*	1985 Johnson et al.
Placodermi	Arthrodira	Aleosteus	eganensis	Emsian	18*	2000

							Bryant &
Placodermi	Arthrodira	Anarthraspis	montana	Emsian	69*		Ruedemann 1934 Elliott & Carr
Placodermi	Arthrodira	Bryantolepis	brachycephala	Emsian	14*		2010 Elliott & Carr
Placodermi	Arthrodira	Bryantolepis	williamsi	Emsian	22*		2010
Placodermi	Arthrodira	Simblaspis	cachensis	Emsian	47*		Denison 1953b
Placodermi	Arthrodira	Aethaspis	major	Emsian	59*		Denison 1953b
Placodermi	Arthrodira	Aethaspis	utahensis	Emsian	31*		Denison 1953b
Placodermi	Arthrodira	Atlantidosteus	pacifica	Eifelian	500*		Young 2003
Placodermi	Arthrodira	Coccosteus	cuspidatus	Eifelian- Givetian Eifelian-	40		Denison 1978
Placodermi	Antiarcha	Sherbonaspis	andreannae	Givetian	20*		Pateleyev 1993 Maisley &
Placodermi	Rhenanida	Bolivosteus	chacomensis	Eifelian	8*		Janvier 2011
Placodermi	Arthrodira	Holonema	sp.	Eifelian Eifelian-	19*		Rade 1964
Placodermi	Antiarcha	Byssacanthus	dilatatus	Frasnian	30		Denison 1978
Placodermi	Antiarcha	Asterolepis	estonica	Eifelian		50*	Denison 1978
Placodermi	Arthrodira	Homosteus	sp.	Eifelian	120*		Dineley 1999
Placodermi	Arthrodira	Homosteus	milleri	Eifelian	170*		Denison 1978
Placodermi	Arthrodira	Homosteus	sulcatus	Eifelian Eifelian-	21*		Mark-Kurik 1993
Placodermi	Arthrodira	Actinolepis	magna	Givetian Eifelian-		99*	Denison 1978
Placodermi	Arthrodira	Actinolepis	tuberculata	Givetian	56*		Denison 1978 Newman &
Placodermi	Arthrodira	Actinolepis	sp.	Eifelian Eifelian-	34*		Trewin 2008
Placodermi	Arthrodira	Hybosteus	mirabilis	Givetian	97*		Denison 1978
Placodermi	Arthrodira	Luetkeichthys	borealis	Eifelian	100*		Denison 1978 Denison 1978;
Placodermi	Petalichthyida	Wijdeaspis	arctica	Eifelian	33*		Young 1978
Placodermi	Arthrodira	Heterosteus	asmussi	Eifelian Eifelian-	600		Denison 1978
Placodermi	Arthrodira	Dickosteus	threiplandi	Givetian	50		Denison 1978 Mark-Kurik &
Placodermi	Arthrodira	Carolowilhemina	geognostica	Eifelian Eifelian-	300*		Carls 2002
Placodermi	Antiarcha	Pterichthyodes	milleri	Givetian Eifelian-	25*		Denison 1978
Placodermi	Ptyctodontida	Rhamphodopsis	threiplandi	Frasnian Eifelian-	8.8		Dineley 1999
Placodermi	Ptyctodontida	Goniosteus	gerolsteinensis	Givetian		35*	Denison 1978
Placodermi	Antiarcha	Wurungulepis	denisoni	Eifelian Eifelian-		36*	Young 1990 Sollas & Sollas
Placodermi	Ptyctodontida	Palaeospondylus	gunni	Givetian Eifelian-	29*		1904
Placodermi	Antiarcha	Bothriolepis	sinensis	Givetian	20*		Zhang 1965 Zhao & Zhu
Placodermi	Antiarcha	Bothriolepis	niushoushanensis	Eifelian		33*	2010 Zhao & Zhu
Placodermi	Antiarcha	Hunanolepis	xiui	Eifelian Eifelian-	50*		2010 Lin & Wang
Placodermi	Antiarcha	Yangaspis	jinningensis	Givetian Eifelian-	160*		1981
Placodermi	Petalichthyida	Quasipetalichthys	haikouensis	Givetian	58*		Denison 1978
Placodermi	Petalichthyida	Guangxipetalichthys	tiaomajianensis	Eifelian	18*		Ji & Pan 1997
Placodermi	Petalichthyida	Guangxipetalichthys	bobaiensis	Eifelian Eifelian-	28*		Ji & Pan 1997
Placodermi	Antiarcha	Dianolepis	liui	Givetian	50*		Zhang 1965
Placodermi	Antiarcha	Thursius	wudingensis	Eifelian	29*		Fan 1992

Placodermi	Antiarcha	Microbranchius	sinensis	Eifelian	5*	Pan 1984
Placodermi	Ptyctodontida	Desmoporella	minor	Givetian	15*	Denison 1978
Placodermi	Ptyctodontida	Palaeomylus	greenei	Givetian	230*	Denison 1978
Placodermi	Ptyctodontida	Palaeomylus	fragens	Givetian	270*	Denison 1978
Placodermi	Ptyctodontida	Ptyctodus	calceolus	Givetian	80*	Denison 1978
Placodermi	Ptyctodontida	Ptyctodus	ferox	Givetian	250*	Denison 1978
Placodermi	Ptyctodontida	Rhynchodus	excavatus	Givetian	80*	Denison 1978
Placodermi	Ptyctodontida	Rhynchodus	rostratus	Givetian	96*	Denison 1978
Placodermi	Petalichthyida	Ellopetalichthys	scheii	Givetian Givetian-	18*	Denison 1978
Placodermi	Arthrodira	Deirosteus	omaliusii	Famennian Givetian-	200*	Wells 1942
Placodermi	Arthrodira	Eastmanosteus	pustulosus	Frasnian	170*	Denison 1978
Placodermi	Arthrodira	Eastmanosteus	yunnanensis	Givetian	110*	Denison 1978
Placodermi	Arthrodira	Holonema	farrowi	Givetian	96*	Denison 1978
Placodermi	Arthrodira	Kiangyousteus	yohii	Givetian	120*	Denison 1978
Placodermi	Arthrodira	Rhenonema	eifelense	Givetian	300*	Denison 1978
Placodermi	Arthrodira	Tropidosteus	curvatus	Givetian	210*	Denison 1978
Placodermi	Antiarcha	Grossaspis	carinata	Givetian	32*	Denison 1978 Frickhinger
Placodermi	Antiarcha	Microbranchius	dicki	Givetian	6	1991
Placodermi	Arthrodira	Watsonosteus	fletti	Givetian-	58	Frickhinger 1991
				Frasnian		
Placodermi	Arthrodira	Groenlandaspis	antarcticus	Givetian	70*	Ritchie 1975
Placodermi	Arthrodira	Groenlandaspis	sp.	Givetian	60*	Ritchie 1975
Placodermi	Phyllolepid	Antarctaspis	mcmurdoensis	Givetian	40*	Denison 1978 Young & Long
Placodermi	Phyllolepid	New phlyctaeniid	sp.	Givetian	30*	2005
Placodermi	Arthrodira	Antarctolepis	gunni 	Givetian	45*	Denison 1978 Young &
Placodermi	Antiarcha	Bothriolepis	perija	Givetian	24*	Moody 2002
Placodermi	Antiarcha	Bothriolepis	gippslandensis	Givetian	43*	Long 1983
Placodermi	Antiarcha	Bothriolepis	cullodensis	Givetian	50*	Long 1983
Placodermi	Antiarcha	Bothriolepis	bindareei	Givetian	15*	Long 1983
Placodermi	Antiarcha	Bothriolepis	fergusoni	Givetian	30*	Long 1983
Placodermi	Antiarcha	Bothriolepis	warreni	Givetian	11*	Long 1983 Moloshnikov
Placodermi	Antiarcha	Bothriolepis	kassini	Givetian	22*	2010 Moloshnikov
Placodermi	Antiarcha	Bothriolepis	babichevi	Givetian	37*	2010
Placodermi	Antiarcha	Bothriolepis	askinae	Givetian	54*	Young 1988
Placodermi	Antiarcha	Bothriolepis	antarctica	Givetian	7.9*	Young 1988
Placodermi	Antiarcha	Bothriolepis	portalensis	Givetian	67*	Young 1988
Placodermi	Antiarcha	Bothriolepis	alexi	Givetian	45*	Young 1988
Placodermi	Antiarcha	Bothriolepis	karawaka	Givetian	45*	Young 1988
Placodermi	Antiarcha	Bothriolepis	macphersoni	Givetian	50*	Young 1988
Placodermi	Antiarcha	Bothriolepis	vuwae	Givetian	50*	Young 1988
Placodermi	Antiarcha	Bothriolepis	barretti	Givetian Givetian-	30*	Young 1988
Placodermi	Antiarcha	Bothriolepis	curonica	Frasnian	82*	Luksevics 2001
Placodermi	Arthrodira	Angarichthys	hyperboreus	Givetian	230*	Denison 1978
Placodermi	Antiarcha	Asterolepis	clarkei	Givetian	10*	Denison 1978
Placodermi	Antiarcha	Asterolepis	thule	Givetian Givetian-	32*	Denison 1978
Placodermi	Antiarcha	Asterolepis	orcadensis	Frasnian	190*	Denison 1978
Placodermi	Antiarcha	Asterolepis	dellei	Givetian	28*	Denison 1978
Placodermi	Antiarcha	Asterolepis	scabra	Givetian	40	Denison 1978
Placodermi	Arthrodira	Belgiosteus	mortelmansi	Givetian	360*	Denison 1978

Placodermi	Arthrodira	Livosteus	grandis	Givetian	210*	Denison 1978
Placodermi	Arthrodira	Protitanichthys	rockportensis	Givetian	110*	Denison 1978
Placodermi	Antiarcha	Gerdalepis	rhenana	Givetian Givetian-	27*	Denison 1978
Placodermi	Antiarcha	Gerdalepis	dohmi	Frasnian		69* Denison 1978 Young &
Placodermi	Antiarcha	Venezuelepis	antarctica	Givetian	14*	Moody 2002 Young &
Placodermi	Antiarcha	Venezuelepis	mingi	Givetian	15*	Moody 2002
Placodermi	Phyllolepid	Placolepis	harjica	Givetian	27*	Young 2005 Young & Long
Placodermi	Phyllolepid	Placolepis	tingeyi	Givetian	110*	2005
Placodermi	Arthrodira	Beyrichosteus	radiatus	Givetian	52*	Otto 2005
Placodermi	Phyllolepid	Cowralepis	mclachlani	Givetian	10.5	Carr et al. 1990
Placodermi	Ptyctodontida	Ptyctodopsis	menzeli	Givetian	7	Denison 1985 Young & Long
Placodermi	Phyllolepid	Austrophyllolepis	quiltyi	Givetian	22*	2005 Young & Long
Placodermi	Phyllolepid	Austrophyllolepis	ritchiei	Givetian	25*	2005 Young & Long
Placodermi	Phyllolepid	Austrophyllolepis	youngi	Givetian	20*	2005
Placodermi	Arthrodira	Boomeraspis	goujeti	Givetian Givetian-		55* Long 1995
Placodermi	Arthrodira	Pluordosteus	livonicus	Frasnian Givetian-		73* Denison 1978
Placodermi	Arthrodira	Pluordosteus	panderi	Frasnian	170*	Denison 1978
Placodermi	Antiarcha	Grossilepis	spinosa	Givetian	21*	Luksevics 2001
Placodermi	Antiarcha	Taenolepis	speciosa	Givetian Givetian-	37*	Denison 1978
Placodermi	Phyllolepid	Cobranrahlepis	petyrwardi	Frasnian Givetian-	22*	Young 2005
Placodermi	Phyllolepid	Yurammia	browni	Frasnian	16*	Young 2005 Janvier et al.
Placodermi	Antiarcha	Vukhulepis	lyhoaensis	Givetian	10*	1997 Long et al.
Placodermi	Antiarcha	Vietnamaspis	trii	Givetian	40*	1990 Wang & Wang
Placodermi	Arthrodira	Yinosteus	major	Givetian Givetian-	18*	1984
Placodermi	Arthrodira	Panxiosteus	oculus	Frasnian Givetian-	38*	Wang 1979
Placodermi	Antiarcha	Lepadolepis	stensioei	Frasnian Givetian-	37*	Denison 1978
Placodermi	Antiarcha	Asterolepis Epipetalichthys/Desmoporel	ornata	Frasnian	49*	Denison 1978
Placodermi	Petalichthyida	la	minor	Givetian Givetian-	11*	Denison 1978
Placodermi	Arthrodira	Clarkosteus	halmodeus	Frasnian	57*	Denison 1978
Placodermi	Antiarcha	Nawagiaspis	wadeae	Givetian	31*	Young 1990 Panteleyev
Placodermi	Antiarcha	Asperaspis	carinata	Givetian Givetian-	30*	1993
Placodermi	Antiarcha	Stegolepis	jugata	Frasnian Givetian-	34*	Denison 1978 Moloshnikov
Placodermi	Antiarcha	Tenizolepis	asiatica	Frasnian Givetian-	69*	2010 Moloshnikov
Placodermi	Antiarcha	Tenizolepis	rara	Frasnian	31*	2011
Placodermi	Arthrodira	Dinichthys	ohioensis	Givetian	72*	Skeels 1962
Placodermi	Ptyctodontida	Gamphacanthus	politus	Givetian	180*	Eastman 1907
Placodermi	Ptyctodontida	Acantholepis	pustulosus	Givetian	93*	Newberry 1889
Placodermi	Ptyctodontida	Acantholepis	fragilis	Givetian	210*	Eastman 1907
Placodermi	Ptyctodontida	Ctenurella	gladbachensis	Frasnian	18	Denison 1978 Johnson &
Placodermi	Ptyctodontida	Denisonodus	plutonensis	Frasnian	28*	Elliott 1996
Placodermi	Rhenanida	Jagorina	pandora	Frasnian	37*	Denison 1978

Placodermi	Ptyctodontida	Palaeomylus	hussakofi	Frasnian	230*	Denison 1978
Placodermi	Ptyctodontida	Palaeomylus	lunaeformis	Frasnian	250 150*	Denison 1978
Placodermi	Ptyctodontida		minor	Frasnian	48*	Denison 1978
Placodermi	•	Palaeomylus		Frasnian	32*	Denison 1978
	Ptyctodontida Ptyctodontida	Ptyctodus	bradyi			
Placodermi	Ptyctodontida	Ptyctodus	czarnockii kielcensis	Frasnian	110* 63*	Denison 1978
Placodermi	Ptyctodontida	Physical adva		Frasnian		Denison 1978
Placodermi	Ptyctodontida	Rhynchodus	marginalis	Frasnian	96*	Denison 1978
Placodermi	Ptyctodontida	Rhynchodus	tetradon	Frasnian	63*	Denison 1978
Placodermi	Petalichthyida	Epipetalichthys	wildungensis	Frasnian	48*	Denison 1978
Placodermi	Arthrodira	Aspidichthys	clavatus	Frasnian	200*	Denison 1978
Placodermi	Arthrodira	Aspidichthys	ingens	Frasnian	190*	Denison 1978
Placodermi	Arthrodira	Belosteus	elegans	Frasnian	68*	Denison 1978
Placodermi	Arthrodira	Brachydeirus	carinatus	Frasnian	65*	Denison 1978
Placodermi	Arthrodira	Brachydeirus	bicarinatus	Frasnian	48*	Denison 1978
Placodermi	Arthrodira	Brachydeirus	gracilis	Frasnian	33*	Denison 1978
Placodermi	Arthrodira	Brachydeirus	grandis	Frasnian	110*	Denison 1978
Placodermi	Arthrodira	Brachydeirus	minor	Frasnian	40*	Denison 1978
Placodermi	Arthrodira	Brachyosteus	deitrichi	Frasnian	27*	Denison 1978
Placodermi	Arthrodira	Braunosteus	schmidti	Frasnian	50*	Denison 1978
Placodermi	Arthrodira	Bruntonichthys	multidens	Frasnian	48*	Dennis & Miles 1979 Dennis & Miles
Placodermi	Arthrodira	Bullerichthys	fascidens	Frasnian	44*	1979
5				Frasnian-		
Placodermi	Arthrodira	Callognathus	regularis	Famennian	50*	Denison 1978 Dennis & Miles
Placodermi	Arthrodira	Camuropiscus	concinnus	Frasnian	32*	1979 Dennis & Miles
Placodermi	Arthrodira	Camuropiscus	laidlowi	Frasnian	15*	1979
Placodermi	Arthrodira	Copanognathus	crassus	Frasnian	200*	Denison 1978
Placodermi	Arthrodira	Cyrtosteus	inflatus	Frasnian	21*	Denison 1978
Placodermi	Arthrodira	Dinichthys	herzeri	Frasnian	700*	Denison 1978
Placodermi	Arthrodira	Dinomylostoma	beecheri	Frasnian Frasnian-	130*	Denison 1978
Placodermi	Arthrodira	Dinomylostoma	eastmani	Famennian	72*	Denison 1978
Placodermi	Arthrodira	Dunkleosteus	magnificus	Frasnian	340*	Denison 1978
Placodermi	Arthrodira	Dunkleosteus	newberryi	Frasnian	350*	Eastman 1907 Long and
Placodermi	Arthrodira	Eastmanosteus	calliaspis	Frasnian	89*	Trinajstic 2010
Placodermi	Arthrodira	Eldenosteus	arizonensis	Frasnian	360*	Denison 1978
Placodermi	Arthrodira	Enseosteus	jaekeli	Frasnian	32*	Denison 1978
Placodermi	Arthrodira	Enseosteus	hermanni	Frasnian	27*	Denison 1978
Placodermi	Arthrodira	Enseosteus	pachyostiodes	Frasnian	27*	Denison 1978
Placodermi	Arthrodira	Enseosteus	marocanensis	Frasnian	25*	Ruecklin 2011
Placodermi	Arthrodira	Erromenosteus	lucifer	Frasnian	76*	Denison 1978
Placodermi	Arthrodira	Erromenosteus	brachyrostris	Frasnian	32*	Denison 1978
Placodermi	Arthrodira	Erromenosteus	concavus	Frasnian	71*	Denison 1978
Placodermi	Arthrodira	Erromenosteus	diensti	Frasnian	64*	Denison 1978
Placodermi	Arthrodira	Erromenosteus	inflatus	Frasnian	43*	Denison 1978
Placodermi	Arthrodira	Erromenosteus	koeneni	Frasnian	300*	Denison 1978
Placodermi	Arthrodira	Fallacosteus	turnerae	Frasnian	36*	Long 1990
Placodermi	Arthrodira	Hadrosteus	rapax	Frasnian	86*	Denison 1978
Placodermi	Arthrodira	Harrytoombsia	sp.	Frasnian	53*	Long 1990
Placodermi	Arthrodira	Heinzichthys	ringueberryi	Frasnian	53*	Denison 1978
Placodermi	Arthrodira	Holonema	westolli	Frasnian	88*	Denison 1978
Placodermi	Arthrodira	Holonema	radiatum	Frasnian	150*	Denison 1978
Placodermi	Arthrodira	Holonema	rugosum	Frasnian	88*	Denison 1978
			-			

Placodermi	Arthrodira	Kendrichthys	cavernosus	Frasnian	85*	Dennis & Miles 1980
Placodermi	Arthrodira	Kimberia	whybrowi	Frasnian	71*	Dennis-Bryan & Miles 1983 Dennis-Bryan &
Placodermi	Arthrodira	Kimberia	bispicatus	Frasnian	110*	Miles 1983
Placodermi	Arthrodira	Leptosteus	bickensis	Frasnian	36*	Denison 1978
Placodermi	Arthrodira	Leptosteus	involutus	Frasnian	30*	Denison 1978
Placodermi	Arthrodira	Machaerognathus	woodwardi	Frasnian	210*	Denison 1978
Placodermi	Arthrodira	Malerosteus	gorizdroae	Frasnian	110*	Denison 1978
Placodermi	Arthrodira	Microsteus	dubius	Frasnian Frasnian-	27*	Denison 1978
Placodermi	Arthrodira	Pachyosteus	bulla	Famennian	54*	Denison 1978
Placodermi	Arthrodira	Parabelosteus	pusillus	Frasnian	32*	Denison 1978
Placodermi	Arthrodira	Parabelosteus	acuticeps	Frasnian	32*	Denison 1978
Placodermi	Arthrodira	Pholidosteus	friedeli	Frasnian	40*	Denison 1978
Placodermi	Arthrodira	Pluordosteus	sp.	Frasnian	100*	Denison 1978
Placodermi	Arthrodira	Pluordosteus	canadensis	Frasnian	87*	Denison 1978
Placodermi	Arthrodira	Pluordosteus	mironovi	Frasnian	59*	Denison 1978
Placodermi	Arthrodira	Pluordosteus	trautscholdi	Frasnian Frasnian-	65*	Denison 1978
Placodermi	Arthrodira	Pluordosteus	timanicus	Famennian	87*	Denison 1978
Placodermi	Arthrodira	Rachiosteus	pterygiats	Frasnian	100*	Denison 1978
Placodermi	Arthrodira	Rhinosteus	traquairi	Frasnian	60*	Denison 1978
Placodermi	Arthrodira	Rhinosteus	parvulus	Frasnian	32*	Denison 1978
Placodermi	Arthrodira	Rhinosteus	tuberculatus 	Frasnian	81*	Denison 1978 Dennis & Miles
Placodermi	Arthrodira	Rolfosteus	canningensis	Frasnian	46*	1979
Placodermi	Arthrodira	Synauchernia	coalescens	Frasnian	25*	Denison 1978
Placodermi	Arthrodira	Trematosteus	fontanellus	Frasnian	22*	Denison 1978
Placodermi	Arthrodira	Tapinosteus	heintzi	Frasnian	24*	Denison 1978
Placodermi Placodermi	Arthrodira Arthrodira	Timanosteus Torosteus	techernychevi tuberculatus	Frasnian Frasnian	72* 40*	Denison 1978 Gardiner & Miles 1990
Placodermi	Arthrodira	Torosteus	pulchellus	Frasnian	31*	Dennis & Miles 1979
Placodermi	Arthrodira	Tubonasis	lennardensis	Frasnian	32*	Dennis & Miles 1979
Placodermi	Antiarcha	Bothriolepis	prima	Frasnian	17*	Luksevics 2001
Placodermi	Antiarcha	Bothriolepis	obrutschewi	Frasnian	29*	Luksevics 2001
Placodermi	Antiarcha	Bothriolepis	cellulosa	Frasnian	66*	Luksevics 2001
Placodermi	Antiarcha	Bothriolepis	panderi	Frasnian	43*	Luksevics 2001
Placodermi	Antiarcha	Bothriolepis	traudscholi	Frasnian	48*	Luksevics 2001
Placodermi	Antiarcha	Bothriolepis	maxima	Frasnian	170*	Luksevics 2001
Placodermi	Antiarcha	Bothriolepis	evaldi	Frasnian Frasnian-	17*	Luksevics 2001
Placodermi	Antiarcha	Bothriolepis	leptocheira	Famennian	82*	Luksevics 2001 Werdelin &
Placodermi	Antiarcha	Bothriolepis	canadensis	Frasnian	46*	Long 1986
Placodermi	Antiarcha	Bothriolepis	favosa	Frasnian Frasnian-	56*	Denison 1978
Placodermi	Antiarcha	Bothriolepis	hayi	Famennian	51*	Denison 1978
Placedermi	Antiarcha	Bothriolepis	major	Frasnian Frasnian-	41*	Denison 1978
Placodermi	Antiarcha	Bothriolepis	obesa	Famennian	66*	Denison 1978
Placodermi	Antiarcha	Bothriolepis	taylori	Frasnian Frasnian-	61*	Denison 1978
Placodermi	Antiarcha	Bothriolepis	wilsoni	Famennian	72*	Denison 1978 Moloshnikov
Placodermi	Antiarcha	Bothriolepis	sanzarensis	Frasnian	76*	2010
Placodermi	Antiarcha	Bothriolepis	volongensis	Frasnian	48*	Denison 1978

Dlagadarmi	Antiorobo	Astorologia	ah adwiaki	Francian	E7*	Danisan 1070
Placodermi	Antiarcha	Asterolepis	chadwicki	Frasnian	57* 49*	Denison 1978
Placodermi	Antiarcha	Asterolepis	savesoederberghi	Frasnian Frasnian-	49	Denison 1978
Placodermi	Antiarcha	Asterolepis	maxima	Famennian	98*	Denison 1978
Placodermi	Arthrodira	Neophlyctenius	sherwoodi	Frasnian	50*	Denison 1978
Placodermi	Antiarcha	Grossilepis	tuberculata	Frasnian	26*	Luksevics 2001
Placodermi	Arthrodira	Walterosteus	lelievrei	Frasnian	29*	Ruecklin 2011
						Zakharenko
Placodermi	Arthrodira	Omalosteus	krutoensis	Frasnian	65*	2007 Long et al.
Placodermi	Ptyctodontida	Materpiscis	attenboroughi	Frasnian	18.7	2009
	,		Ü			Long and
Placodermi	Arthrodira	Mcnamaraspis	kaprios	Frasnian	35*	Trinajstic 2010
Placodermi	Arthrodira	Simosteus	tuberculatus	Frasnian	68*	Dennis & Miles 1982
i idodeiiiii	Admodita	Cimosteus	taberealatas	raoman	00	Gardiner &
Placodermi	Arthrodira	Compagopiscis	croucheri	Frasnian	36*	Miles 1994
Placodermi	Arthrodira	Golshanichthys	asiatica	Frasnian	140*	Long 1987
Placodermi	Arthrodira	Cogoniacus	gracilia	Frasnian	35*	Gardiner & Miles 1994
Placodermi	Arthrodira	Gogopiscus	gracilis	Frasilian		
		Gogosteus	sarahae	Frasnian	44*	Long 1994
Placodermi	Arthrodira	Pinguosteus	thulborni		48*	Long 1990
Placodermi	Arthrodira	Stenosteus	pertensis	Frasnian	73*	Denison 1978
Placodermi	Petalichthyida	Changyanophyton	hupeiense	Frasnian	30*	Denison 1978 Young et al.
Placodermi	Phyllolepid	Placolepis	budawangensis	Frasnian	8.3	2000
Placodermi	Arthrodira	Deirosteus	abbreviata	Frasnian	190*	Denison 1978
Placodermi	Antiarcha	Pambulaspis	cobandraensis	Frasnian	44*	Young 1983
Placodermi	Arthrodira	Cosmacanthus	malcolmsoni	Frasnian	150*	Newman 2005
Placodermi	Arthrodira	Draconichthys	elegans	Frasnian	64*	Ruecklin 2011
Placodermi	Arthrodira	Dinicthydae	indet.	Frasnian	68*	Lelievre 1981
Placodermi	Ptyctodontida	Chelyophorous	verneuli	Famennian	10	Denison 1978
Placodermi	Ptyctodontida	Ptyctodus	major	Famennian	160*	Denison 1978
						Long et al.
Placodermi	Arthrodira	Africanaspis	doryssa	Famennian	37*	1997
Placodermi	Arthrodira	Bungartius	perissus	Famennian	200*	Denison 1978
Placodermi	Arthrodira	Diplognathus	mirabilis	Famennian	540*	Denison 1978 Carr & Jackson
Placodermi	Arthrodira	Diplognathus	lafargei	Famennian	44*	2005
Placodermi	Arthrodira	Dunkleosteus	terrelli	Famennian	800	Denison 1978
Placodermi	Arthrodira	Dunkleosteus	denisoni	Famennian	52*	Kulczycki 1957
Placodermi	Arthrodira	Dunkleosteus	missouriensis	Famennian	190*	Branson 1914
Placodermi	Arthrodira	Dunkleosteus	marsaisi	Famennian	190*	Denison 1978
						Dennis-Bryan
Placodermi	Arthrodira	Eastmanosteus	tubercultatus	Famennian	120*	1987
Placodermi	Arthrodira	Glyptaspis	verrucosa	Famennian	800*	Denison 1978
Placodermi	Arthrodira	Gorgonichthys	clarki	Famennian	390*	Denison 1978
Placodermi	Arthrodira	Groenlandaspis	riniensis	Famennian	90*	Long et al. 1997
	,					Daeschler and
Placodermi	Arthrodira	Groenlandaspis	mirabilis	Famennian	110*	Frumes 2003
Placodermi	Arthrodira	Groenlandaspis	thorezi	Famennian	24*	Clement and Janvier 2005
i lacodellili	Aitiilodiia	Ordeniandaspis	(HOIGZI	i amemman	24	Daeschler and
Placodermi	Arthrodira	Groenlandaspis	pennsylvanica	Famennian	100*	Frumes 2003
Dlacadarmi	Arthrodire	Cracelandoon:-	diaioatua	Comercia:	0.5*	Daeschler and
Placodermi	Arthrodira	Groenlandaspis	disjectus	Famennian	85* 84*	Frumes 2003
Placodermi	Arthrodira	Gymnotrachelus	hydei	Famennian	84* 140*	Denison 1978
Placodermi	Arthrodira	Heinzichthys	gouldi	Famennian	140*	Denison 1978
Placodermi	Arthrodira	Holdenius	holdeni	Famennian	590*	Denison 1978
Placodermi	Arthrodira	Hussakofia	minor	Famennian	96*	Denison 1978

Placodermi	Arthrodira	Mylostoma	varibile	Famennian	120*	Denison 1978
Placodermi	Arthrodira	Paramylostoma	arcualis	Famennian	71*	Denison 1978
Placodermi	Arthrodira	Selenosteus	brevis	Famennian	87*	Denison 1978
Placodermi	Arthrodira	Stenosteus	glaber	Famennian	110*	Denison 1978
Placodermi	Arthrodira	Tafilalichthys	lavocati	Famennian	130*	Denison 1978
Placodermi	Arthrodira	Titanichthys	agassizi	Famennian	490*	Denison 1978
Placodermi	Arthrodira	Titanichthys	attenuatus	Famennian	440*	Denison 1978
Placodermi	Arthrodira	Titanichthys	clarkii	Famennian	490*	Newberry 1889
Placodermi	Arthrodira	Titanichthys	kozlowskii	Famennian	500*	Kulczycki 1957
Placodermi	Arthrodira	Titanichthys	termieri	Famennian	120*	Denison 1978
Placodermi	Arthrodira	Trachosteus	clarki	Famennian	75*	Denison 1978
Placodermi	Antiarcha	Sinolepis	macrocephala	Famennian	32*	Denison 1978
Placodermi	Antiarcha	Bothriolepis	alvensis	Famennian	46*	Denison 1978
Placodermi	Antiarcha	Bothriolepis	cristata	Famennian	35*	Denison 1978
Placodermi	Antiarcha	Bothriolepis	gigantea	Famennian	97*	Denison 1978
Placodermi	Antiarcha	Bothriolepis	groenlandica	Famennian	85*	Denison 1978
Placodermi	Antiarcha	Bothriolepis	lohesti	Famennian	19*	Denison 1978
Placodermi	Antiarcha	Bothriolepis	paradoxa	Famennian	48*	Denison 1978
Placodermi	Antiarcha	Remigolepis	cristata	Famennian	24*	Denison 1978
Placodermi	Antiarcha	Remigolepis	acusta	Famennian	48*	Denison 1978
Placodermi	Antiarcha	Remigolepis	kochi	Famennian	35*	Denison 1978
Placodermi	Phyllolepid	Phyllolepis	tolli	Famennian	50*	Denison 1978
Placodermi	Arthrodira	Dinichthys	corrugatus	Famennian	180*	Branson 1914
						Daeschler et al.
Placodermi	Arthrodira	Turrisaspis	elektor	Famennian	22*	2003
Placodermi	Arthrodira	Tiaraspis	subtilis	Famennian	110*	Daeschler and Frumes 2003
Placodermi	Antiarcha	Hillalepis	gippslandensis	Famennian	20*	Denison 1978
Placodermi	Antiarcha	Livnolepis	zadonica	Famennian	80	Moloshnikov 2008
Placodermi	Antiarcha	Kirgisolepis	karabaltaensis	Famennian	46*	Vorobyeva & Panteleyev 2005
Placodermi	Antiarcha	Ningxialepis	spinosa	Famennian	11.5	Jia et al. 2010
Sarcopterygii	Porolepiformes	Youngolepis	sp.	Lochkovian	50	Long 2011
carooptoryg.	Тогогориотпос	roungelopio	op.	Lochkovian-	00	Wang et al.
Sarcopterygii	Porolepiformes	Youngolepis	praecursor	Pragian	30*	2010
Sarcopterygii	Dipnoi	Powichthys	sp.	Lochkovian	50	Long 2011
Sarcopterygii	NA	Psarolepis	romeri	Lochkovian	13*	Yu 1998
Sarcopterygii	NA	Achoania	jarviki	Lochkovian	16*	Zhu et al. 2001
Sarcopterygii	NA	Styloichthys	changae	Lochkovian	16*	Zhao & Zhu
Sarcopterygii	NA	Meemania	eos	Lochkovian	10*	2010 Chang & Yu
Sarcopterygii	Dipnoi	Diabolepis	speratus	Lochkovian Pragian-	15*	
Sarcopterygii	Dipnoi	Westollrhynchus	lehmani	Emsian	69*	Schultze 2001
Sarcopterygii	Onychodont	Qingmenodus	yui	Pragian	70	Long 2011
Sarcopterygii	Onychodont	Bukkanodus	jesseni	Pragian	20	Long 2011
Sarcopterygii	Actinista	Euporosteus	yunnanensis	Pragian	12*	Zhu et al. 2012
Sarcopterygii	Dipnoi	Uranolophus	wyomingensis	Pragian- Emsian	30	Frickhinger 1991 Bernacsek &
Sarcopterygii	Dipnoi	Dipnorhynchus	sussmilchi	Emsian	57.8	Carroll 1981 Campbell et al.
Sarcopterygii	Dipnoi	Dipnorhynchus	cathlesae	Emsian	140*	2009 Chang & Wang
Sarcopterygii	Dipnoi	Speonedydrion	iani	Emsian	55*	Campbell et al.
Sarcopterygii	Dipnoi	Cathlorhynchus	trismodipterus	Emsian	28*	2009
Sarcopterygii	Dipnoi	Erikia	jarviki	Emsian	15*	Chang & Wang

							1995
Sarcopterygii	Dipnoi	Tarachomylax	oepiki	Emsian		17*	Barwick et al. 1997
Sarcopterygii	Osteolepiformes	New Osteolepiform	sp.	Emsian- Eifelian	24*		Hunt & Young 2012
Sarcopterygii	Dipnoi	Melanognathus	canadensis	Emsian	36*		Schultze 2001
Sarcopterygii	Porolepiformes	Nasogaluakus	chorni	Emsian	51*		Schultze 2000 Wang et al.
Sarcopterygii	Dipnoi	Sorbitohynchus	deleaslkitus	Emsian	76*		1990 Zhao & Zhu
Sarcopterygii	Tetrapodamorpha	Kenichthys	campbelli	Emsian	10*		2010 Frickhinger
Sarcopterygii	Porolepiformes	Porolepis	brevis	Eifelian Eifelian-	20		1991 Frickhinger
Sarcopterygii	Dipnoi	Dipterus	valenciennessii	Frasnian Eifelian-	30		1991 Frickhinger
Sarcopterygii	Porolepiformes	Gyroptychius	agassizi	Givetian Eifelian-	30		1991 Frickhinger
Sarcopterygii	Porolepiformes	Glyptolepis	paucidens	Givetian Eifelian-	62		1991 Vorobyeva
Sarcopterygii	Porolepiformes	Glyptolepis	leptopterus	Givetian	70*		2006
Sarcopterygii	Osteolepiformes	Thursius	macrolepidotus	Eifelian		12	Dineley 1999 Vorobyeva
Sarcopterygii	Osteolepiformes	Thursius	talsiensis	Eifelian		8*	•
Sarcopterygii	Osteolepiformes	Thursius	fischeri	Eifelian Eifelian-		9*	•
Sarcopterygii	Osteolepiformes	Osteolepis	macrolepidotus	Givetian		18	1991 Moy-Thomas &
Sarcopterygii	Porolepiformes	Holoptychius	sp.	Eifelian Eifelian-	57*		Miles 1971
Sarcopterygii	Dipnoi	Dongshanodus	qujingensis	Givetian		18*	Wang 1981 Qiao & Zhu
Sarcopterygii	Dipnoi	Sinodipterus	beibei	Eifelian Eifelian-	15*		2009 Newman & Den
Sarcopterygii	Dipnoi	Pinnalongus	saxoni	Givetian Eifelian-	30		Blaauwen 2007
Sarcopterygii	Dipnoi	Amadeodipterus	kencampbelli	Givetian Eifelian-		23*	Clement 2009 Young &
Sarcopterygii	Onychodont	Luckeus	abudda	Givetian Givetian-	38*		Schultze 2005
Sarcopterygii	Dipnoi	Dipterus	marginalis	Famennian	29*		Eastman 1907
Sarcopterygii	Dipnoi	Dipterus	uddeni	Givetian	24*		Eastman 1907
Sarcopterygii	Dipnoi	Dipterus	calvini	Givetian		24*	Eastman 1907
Sarcopterygii	Onychodont	Onychodus	sigmoides	Givetian	150*		Newberry 1889 Frickhinger
Sarcopterygii	Osteolepiformes	Thursius	pholidotus	Givetian	19		1991 Frickhinger
Sarcopterygii	Dipnoi	Pentlandia	macroptera	Givetian	12		1991 Frickhinger
Sarcopterygii	Osteolepiformes	Tristichopterus	alatus	Givetian Givetian-	28		1991 Young et al.
Sarcopterygii	Rhizodontida	Notorhizodon	mackelevyi	Frasnian Givetian-	300*		1992 Vorobyeva
Sarcopterygii	Porolepiformes	Laccognathus	panderi	Frasnian	200*		2006 Vorobyeva
Sarcopterygii	Porolepiformes	Laccognathus	grossi	Givetian		70*	2006 Young et al.
Sarcopterygii	Osteolepiformes	Koharalepis	jarviki	Givetian		100*	
Sarcopterygii	Osteolepiformes	Vorobjevaia	dolodon	Givetian		55*	1992
Sarcopterygii	Dipnoi	Cheirodipterus	onaweyensis	Givetian	73*		Schultze 1982
Sarcopterygii	Actinista	Miguashaia	grossi	Givetian- Frasnian	110*		Forey et al. 2000 Young et al.
Sarcopterygii	Dipnoi	Iowadipterus	halli	Givetian	57*		1992
Sarcopterygii	Osteolepiformes	Mahalepis	resima	Givetian	61*		Schultze 1992

Sarcopterygii	Osteolepiformes	Platyethmoidia	antarctica	Givetian	52*		Young et al. 1992
Sarcopterygii	Osteolepiformes	Eusthenopteron	kurshi	Givetian	36.6*		Zupins 2008
Sarcopterygii	Dipnoi	Grossipterus	crassus	Givetian	91*		Vorobyeva & Obruchev 1967
, , ,	•	·					Johanson &
Sarcopterygii	Rhizodontida	Aztecia	mahalae	Givetian	90*		Ahlberg 2001
Sarcopterygii	Actinista	Dictyonosteus	arcticus	Givetian	200*		Stensio 1922 Vorobyeva &
Sarcopterygii	Dipnoi	Rhinodipterus	sp.	Givetian	11*		Obruchev 1967
Sarcopterygii	Dipnoi	Barwickia	downnunda	Givetian	27*		Long 1992
Sarcopterygii	Dipnoi	Harajicadipterus	youngi	Givetian	17*		Clement 2009
Sarcopterygii	Osteolepiformes	Owensia	chooi	Givetian	18*		Holland 2009
Sarcopterygii	Dipnoi	Soederberghia	sp.	Givetian	27*		Schultze 2010
Sarcopterygii	Osteolepiformes	Bruenhopteron	murphyi	Givetian	45*		Schultze & Reed 2012 Campbell &
Sarcopterygii	Dipnoi	Dipnotuberculus	gnathodus	Givetian	100*		Barwick 2008 Vorobyeva
Sarcopterygii	Porolepiformes	Paraglyptolepis	karkiensis	Givetian	19*		1987
Sarcopterygii	Dipnoi	Tristichopterid rhipidistian	indet.	Givetian	50*		Schultze 2010
Sarcopterygii	Dipnoi	Chirodipterus	wildungensis	Frasnian	36.7*		Bernacsek & Carroll 1981 Frickhinger
Sarcopterygii	Dipnoi	Holodipterus	gogoensis	Frasnian	41*		1991 Campbell &
Sarcopterygii	Dipnoi	Pillararhynchus	longi	Frasnian	25*		Barwick 1009
Sarcopterygii	Actinista	Diplocerides	jaekeli	Frasnian	26		Stensio 1922 Frickhinger
Sarcopterygii	Osteolepiformes	Eusthenopteron	foordi	Frasnian	60		1991 Cloutier &
Sarcopterygii	Porolepiformes	Holoptychius	jarviki	Frasnian	37.5*		Schultze 1996 Vorobyeva and
Sarcopterygii	Porolepiformes	Holoptychius	bergmanni	Frasnian Frasnian-	73*		Obruchev 1967 Downs et al.
Sarcopterygii	Porolepiformes	Holoptychius	nobilissimus	Famennian	73*		2013 Vorobyeva &
Sarcopterygii	Porolepiformes	Holoptychius	sp.	Frasnian		95*	Obruchev 1967 Janvier &
Sarcopterygii	Onychodont	Onychodus	firouzi	Frasnian		98*	Martin 1979 Andrews et al.
Sarcopterygii	Onychodont	Onychodus	jandemmarrai	Frasnian	95		2006 Frickhinger
Sarcopterygii	Dipnoi	Scaumenacia	curta	Frasnian	64.6		1991
Sarcopterygii	Dipnoi	Fleurantia	denticulata	Frasnian	42		Cloutier 1996 Frickhinger
Sarcopterygii	Porolepiformes	Quebecius	quebecensis	Frasnian	6*		1991
Sarcopterygii	Dipnoi	Spodichthys	buetleri	Frasnian	23*		Snitting 2008
Sarcopterygii	Osteolepiformes	Platycephalichthys	bischoffi	Frasnian		400	Vorobyeva & Obruchev 1967 Vorobyeva
Sarcopterygii	Osteolepiformes	Jarvikina	wenjukowi	Frasnian		95*	1977 Frickhinger
Sarcopterygii	Actinista	Callistiopterus	clappi	Frasnian		7*	•
Sarcopterygii	Porolepiformes	Laccognathus	embryi	Frasnian	62*		2011 Janvier et al.
Sarcopterygii	Osteolepiformes	Sengoerichthys	ottomani	Frasnian	24*		2007
Sarcopterygii	Dipnoi	Rhinodipterus	ulrichi	Frasnian		24*	Schultze 1992
Sarcopterygii	Actinista	Holopterygius	nudus	Frasnian	28		Friedman & Coates 2006 Vorobyeva &
Sarcopterygii	Osteolepiformes	Latvius	grewingki	Frasnian	30*		Obruchev 1967 Janvier &
Sarcopterygii	Dipnoi	Iranorhynchus	seysdemamii	Frasnian	60		Martin 1979
							Vorobyeva &

Sarcopterygii	Dipnoi	Griphognathus	whitei	Frasnian	75	Campbell & Barwick 1986
Sarcopterygii	Actinista	Nesides	schmidti	Frasnian	20	Vorobyeva & * Obruchev 1967
Sarcopterygii	Dipnoi	Asthenorhynchus	meemanae	Frasnian	60	Long 2010 Clement &
Sarcopterygii	Dipnoi	Xeradipterus	hatcheri	Frasnian	3	5 Long 2010 Bernacsek &
Sarcopterygii	Dipnoi	Chirodipterus	australis	Frasnian	40.8	Carroll 1981
Sarcopterygii	Osteolepiformes	Marsdenichthys	longioccipitus	Frasnian	58	J
Sarcopterygii	Dipnoi	Robinsondipterus	longi	Frasnian	79*	Long 2010
Sarcopterygii	Dipnoi	Howidipterus	donnae	Frasnian	43	* Long 1992
Sarcopterygii	Dipnoi	Eoctenodus	microsoma	Frasnian	31	 Long 1987 Ahlberg et al.
Sarcopterygii	Dipnoi	Soederberghia	simpsoni	Frasnian	2	1 2001 Vorobyeva &
Sarcopterygii	Osteolepiformes	Panderichthys	rhombolepis	Frasnian	200	Obruchev 1967 Frickhinger
Sarcopterygii	Actinista	Chagrinia	sp.	Famennian	10	1991
Sarcopterygii	Osteolepiformes	Cryptolepis	grossi	Famennian	100*	Lebedev 1995 Vorobyeva &
Sarcopterygii	Osteolepiformes	Glyptopomus	kinnairdi	Famennian	27	Obruchev 1967 Vorobyeva &
Sarcopterygii	Osteolepiformes	Glyptopomus	minor	Famennian	6	O Obruchev 1967 Downs et al.
Sarcopterygii	Porolepiformes	Holoptychius	hallii	Famennian	9	0 2013 Vorobyeva &
Sarcopterygii	Porolepiformes	Holoptychius	radiatus	Famennian	60	•
Sarcopterygii	Osteolepiformes	Sterropterygion	markovskyi	Famennian	20*	1977
Sarcopterygii	Dipnoi	Jarvikia	arctica	Famennian	100	* Krupina 1999
Sarcopterygii	Dipnoi	Jarvikia	lebedevi	Famennian	72	* Krupina 1999 Davis et al.
Sarcopterygii	Rhizodontida	Sauripterus	anglicus	Famennian	160	
Sarcopterygii	Dipnoi	Soederberghia	groenlandica	Famennian	180*	Schultze 1992 Schultze &
Sarcopterygii	Osteolepiformes	Eusthenodon	waengsjoei	Famennian	43	Chorn 1998
Sarcopterygii	Osteolepiformes	Hyneria	lindae	Famennian	250*	Thomson 1968 Krupina et al.
Sarcopterygii	Dipnoi	Orlovichthys	limnatus	Famennian	28*	2001 Friedman &
Sarcopterygii	Dipnoi	Apatorhynchus	opistheretmus	Famennian	80	Daeschler 2007 Frickhinger
Sarcopterygii	Osteolepiformes	Canowindra	grossi	Famennian	52*	1991 Johanson et al.
Sarcopterygii	Osteolepiformes	Mandageria	fairfaxi	Famennian	16	0 2003 Ahlberg &
Sarcopterygii	Osteolepiformes	Cabonnichthys	bursi	Famennian	74	Johanson 1997 Johanson &
Sarcopterygii	Rhizodontida	Gooloogongia	loomesi	Famennian	89	Ahlberg 1998 Frickhinger
Sarcopterygii	Dipnoi	Phaneropleuron	andersoni	Famennian	3	3 1991 Ahlberg et al.
Sarcopterygii	Dipnoi	Rhynchodipterus	elginensis	Famennian	50	2001
Sarcopterygii	Osteolepiformes	Sterropterygion	brandei	Famennian	3	8 Thomson 1972
Sarcopterygii	Osteolepiformes	Heddleichthys	dalgliensis	Famennian	50	* Snitting 2009 Clement et al.
Sarcopterygii	Osteolepiformes	Langlieria	socqueti	Famennian	7	9 2009
Sarcopterygii	Dipnoi	Sunwapta	grandiceps	Famennian	10	Thomson 1967 Vorobyeva &
Sarcopterygii	Osteolepiformes	Uzunbulaklepis	obruchevi	Famennian	100	* Panteleyev 2005 Vorobyeva
Sarcopterygii	Osteolepiformes	Gyroptychius	pauli	Famennian	20	* 1977 Young et al.
Sarcopterygii	Osteolepiformes	Edenopteron	kiethcrooki	Famennian	250	2013
Sarcopterygii	Osteolepiformes	Osteolepidid	indet.	Famennian	18.	

							Chorn 1998
Sarcopterygii	Osteolepiformes	Thursius	estonicus	Famennian		29*	Vorobyeva 1977
Sarcopterygii	NA	Viluichthys	fradkini	Famennian	59*		Vorobyeva 1977
Sarcopterygii	Osteolepiformes	Lamprotolepis	verrucosa	Famennian	45*		Vorobyeva 1977
Sarcopterygii	Rhizodontida	Barameda	decipiens	Tournaisian		200*	Garvey et al. 2005 Long &
Sarcopterygii	Dipnoi	Delatitia	breviceps	Tournaisian		80*	•
Sarcopterygii	Rhizodontida	Strepsodus?	anculonamensis	Tournaisian	35*		Ahlberg 1998
Sarcopterygii	Actinista	Rhabdoderma	sp.	Tournaisian	22		Dineley 1996
Sarcopterygii	Rhizodontida	Letognathus	hardingi	Tournaisian	92*		Brazeau 2005 Vorobyeva
Sarcopterygii	Rhizodontida	Pycnoctenion	jacuticus	Tournaisian Tournaisian-	62*		1977
Sarcopterygii	Actinista	Coelacanthus	welleri	Visean	19		Eastman 1908
Sarcopterygii	Osteolepiformes	Megalichthys	laticeps	Visean Visean-	27		Traquair 1884 Johanson et al.
Sarcopterygii	Rhizodontida	Strepsodus	sauroides	Serpukhovian Visean-		190*	Vorobyeva &
Sarcopterygii	Rhizodontida	Rhizodus	hibberti	Serpukhovian Visean-	700*		Obruchev 1967
Sarcopterygii	Actinista	Rhabdoderma	elegans	Serpukhovian	18		Forey 1981
Sarcopterygii	Actinista	Rhabdoderma	ardrossense	Visean Visean-		11.7	Forey 1981
Sarcopterygii	Actinista	Rhabdoderma	huxleyi	Serpukhovian		16	Forey 1981
Sarcopterygii	Actinista	Rhabdoderma	tingleyense	Visean	45		Forey 1981 Frickhinger
Sarcopterygii	Actinista	Coelacanthopsis	curta	Visean	9		1991
Sarcopterygii	Osteolepiformes	Cladarosymblea	narrienense	Visean		22*	Fox et al. 1995
Sarcopterygii	Rhizodontida	Floydus	punicellus	Visean Visean-		97*	Snyder 2006
Sarcopterygii	Rhizodontida	Screbinodus	ornatus	Serpukhovian Visean-		150	Jeffery 2012 Smith et al.
Sarcopterygii	Dipnoi	Uronemus	splendens	Serpukhovian Visean-		70*	1987 Sharp & Clack
Sarcopterygii	Dipnoi	Straitonia	watersoni	Serpukhovian Serpukhovia		50*	Lund & Grogan
Sarcopterygii	Actinista	Allenypterus	montanus	n Serpukhovia	15		2005 Lund & Grogan
Sarcopterygii	Actinista	Caridosuctor	populosum	n Serpukhovia	25		2005 Lund & Grogan
Sarcopterygii	Actinista	Hadronector	donbairdi	n Serpukhovia		12	2005 Lund & Lund
Sarcopterygii	Actinista	Lochmocerceus	aciculodontus	n Serpukhovia	10		1984 Lund & Grogan
Sarcopterygii	Actinista	Polyosterohynchus	beargulchensis	n Serpukhovia	15		2005 Moy-Thomas
Sarcopterygii	Rhizodontida	Rhizodopsis	sauroides	n Serpukhovia		30	•
Sarcopterygii	Rhizodontida	Archichthys	sulcidens	n Serpukhovia		91*	Jeffery 2006 Garcia et al.
Sarcopterygii	Rhizodontida	Unnamed	sp.	n Givetian-		400	2006 Ahlberg &
Tetrapoda	NA	Panderichthys	rhombolepis	Frasnian Givetian-		100*	
Tetrapoda	NA	Tiktaalik	roseae	Frasnian		100*	2006 Vorobyeva
Tetrapoda	NA	Parapanderichthys	stolbovi	Frasnian		150*	
Tetrapoda	NA	Elginerpeton	pancheni	Frasnian	230*	:	Ahlberg 1995
Tetrapoda	NA	Acanthostega	gunnari	Famennian		70*	Clack 2002
Tetrapoda	NA	Ichthyostega	stensoei	Famennian	130*		Blom 2005
Tetrapoda	NA	Ichthyostega	watsoni	Famennian	56*		Blom 2005
•							

Tetrapoda	NA	Ichthyostega	eigili	Famennian	92*		Blom 2005 Campbell &
Tetrapoda	NA	Metaxygnathus	denticulus	Famennian	70*		Bell 1977 Ahlberg et al.
Tetrapoda	NA	Densignathus	rowei	Famennian	100*		2005 Ahlberg &
Tetrapoda	NA	Ventastega	curonica	Famennian	110*		Clack 2008 Clack et al.
Tetrapoda	NA	Ymeria	denticulata	Famennian	70*		2012 Lebedev &
Tetrapoda	NA	Tulerpeton	curtum	Famennian	90*		Coates 1995
Tetrapoda	NA	Pederpes	finneyae	Tournaisian	65		Clack & Finney 2005 Clack &
Tetrapoda	NA	Occidens	portlocki	Tournaisian	100*		Ahlberg 2004
Tetrapoda	NA	Crassigyrinus	sp.	Tournaisian	120*		Smithson et al. 2012 Smithson et al.
Tetrapoda	NA	Small tetrapod	indet.	Tournaisian	40*		2012 Smithson et al.
Tetrapoda	NA	Ribbo	en	Tournaisian	85*		2012
•			sp.			4	
Tetrapoda	NA	Lethiscus	stocki	Visean		15*	Wellstead 1982 Paton et al.
Tetrapoda	NA	Casineria	kiddi	Visean	10		1999
Tetrapoda	NA	Ossinodus	pueri	Visean	150*		Warren 2007 Brough &
Tetrapoda	NA	Palaeomolgophis	scoticus	Visean	15*		Brough 1967 Lombard & Bolt
Tetrapoda	NA	Whatcheeria	deltae	Visean Visean-	100		1995
Tetrapoda	NA	Crassigyrinus	scoticus	Serpukhovian	180		Panchen 1985 Brough &
Tetrapoda	NA	Adelogyrinus	simnorhynchus	Visean Visean-		23*	Brough 1967
Tetrapoda	NA	Greererpeton	burkemorani	Serpukhovian	140		Godfrey 1989
Tetrapoda	NA	Balanerpeton	woodi	Visean	50		Clack 2002
Tetrapoda	NA	Eldeceeon	rolfei	Visean		35	Clack 2002
Tetrapoda	NA	Silvanerpeton	miripedes	Visean		40	Clack 2002
Tetrapoda	NA	Westlothiana	lizzae	Visean	20		Clack 2002
тспарода	IVA	Westiotiliana	IIZZUC	Visean-	20		Older 2002
Tetrapoda	NA	Loxomma	sp.	Serpukhovian Visean-		27	Clack 2002
Tetrapoda	NA	Acherontiscus	caledoniae	Serpukhovian		16	Carroll 1969 Thomson et al.
Tetrapoda	NA	Antlerpeton	clarkii	Visean		21*	1998
Tetrapoda	NA	Eucritta	melanolimnetes	Visean		47*	Clack 1998
Tetrapoda	NA	Ophiderepeton	nanum	Visean		13*	Boyd 1982 Brough &
Tetrapoda	NA	Dolichopareias	disjectus	Visean Visean-		26*	Brough 1967 Bolt & Lombard
Tetrapoda	NA	Deltaherpeton	hiemstrae	Serpukhovian Visean-		82*	2010
Tetrapoda	NA	Eoherpeton	watsoni	Serpukhovian Visean-	87*		Smithson 1985
Tetrapoda	NA	Doragnathus	woodi	Serpukhovian Serpukhovia	70*		Smithson 1980 Holmes &
Tetrapoda	NA	Caerorhachis	bairdi	n Serpukhovia	30		Carroll 1977 Garcia et al.
Tetrapoda	NA	Colosteid	indet.	n Serpukhovia	60		2006
Tetrapoda	NA	Adelospondylus	watsoni	n Serpukhovia	20*		Carroll 1967 Carroll et al.
Tetrapoda	NA	Utaherpeton	franklini	n Serpukhovia	5		1991
Tetrapoda							
	NA	Proterogyrinus	sp.	n Serpukhovia	250		Clack 2002

Tetrapoda NA Spathicephalus mirus n 100* 2

Table S2.Descriptive statistics for raw body lengths (cm).

Stage	N	Min (cm)	Max (cm)	Mean	St. D.	Var.	Median	1st Quart.	3rd Quart.
Lochkovian	141	3.00	200.00	20.91	19.31	372.87	22.00	11.00	27.00
Pragian	104	4.00	200.00	31.32	32.86	1080.07	22.00	15.00	35.50
Emsian	117	2.00	270.00	45.24	47.26	2233.10	29.50	18.75	51.00
Eifelian	90	5.00	600.00	60.15	89.57	8023.22	31.50	19.25	59.50
Givetian	184	3.12	360.00	65.28	67.08	4275.70	33.00	21.75	70.00
Frasnian	234	3.00	700.00	76.83	83.80	7022.02	51.00	31.00	84.75
Famennian	138	4.00	800.00	110.25	135.86	18456.72	72.00	39.50	115.00
Tournaisian	72	5.00	340.00	97.70	89.83	8068.71	69.00	21.50	172.50
Visean	130	4.50	700.00	63.86	87.42	7641.94	29.50	13.00	82.75
Serpukhovian	116	3.00	700.00	57.37	99.80	9960.08	17.00	10.00	50.00

Table S3.Descriptive statistics for Log-transformed body lengths. Means and variances used in *PaleoTS* model-fitting analyses. Other metrics mapped in box plots (Fig. 1A).

Stage	N	Min	Max	Mean	St. D.	Var.	Median	1st Quart.	3rd Quart.
Lochkovian	141	0.48	2.30	1.22	0.29	0.09	1.23	1.04	1.43
Pragian	104	0.60	2.30	1.36	0.33	0.11	1.34	1.18	1.55
Emsian	117	0.30	2.43	1.49	0.38	0.14	1.47	1.27	1.71
Eifelian	90	0.70	2.78	1.55	0.42	0.18	1.50	1.28	1.77
Givetian	184	0.49	2.56	1.63	0.40	0.16	1.60	1.34	1.90
Frasnian	234	0.48	2.85	1.72	0.38	0.14	1.71	1.49	1.93
Famennian	138	0.60	2.90	1.83	0.44	0.19	1.86	1.60	2.06
Tournaisian	72	0.70	2.53	1.74	0.53	0.28	1.84	1.33	2.24
Visean	130	0.65	2.85	1.53	0.48	0.23	1.47	1.11	1.11
Serpukhovian	116	0.48	2.85	1.40	0.52	0.27	1.23	1.00	1.70

Table S4.OLS regressions: Devonian and Mississippian sizes and age. See Figure 1A, S2 and S3 for plots. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Devonian (N=1007)	Mississippian (N=319)
Slope a	0.012	-0.013
Intercept b	6.21	-2.92
err a	0.00074	0.0029
err b	0.29	0.98
r	0.45	-0.25
r^2	0.20	0.062
t	16.09	-4.56
p(uncorr)	5.32E-52	7.30E-06
permut p	0.0001	0.0001
95% CI on a	0.011/0.013	-0.019/-0.0073
95% CI on b	5.66/6.75	-4.94/-0.94
Durbin-Watson	1.30	0.87
p(homoscedastic)	0.00027	9.90E-01

Table S5. RMA regression: Devonian and Mississippian sizes and age. See Figure S4, S5, and S6. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log_{10} .

	Devonian	Mississippian
	(N=1007)	(N=319)
Slope a	0.026	-0.053
Intercept b	11.82	-16.40
err a	0.00074	0.0029
err b	0.083	0.95
r	0.45	-0.25
r^2	0.20	0.062
t	16.09	-4.56
p(uncorr)	5.32E-52	7.30 E- 06
permut p	0.0001	0.0001
95% CI on a	0.025/0.027	-0.057/-0.049
95% CI on b	11.3/12.34	-17.58/-15.10
Durbin-Watson	1.024	0.90
p(homoscedastic)	0.023	0.16

Table S6. Mann-Whitney U-tests for pairwise stages. Values for each stage vs. previous stage. Body lengths (cm) transformed by Log_{10} .

Stage	T=Ub	p(same)	Monte Carlo p
Lockhovian			
Pragian	5549	0.0011	0.0011
Emsian	4769	0.0056	0.0046
Eifelian	4854	0.34	0.34
Givetian	7307	0.11	0.12
Frasnian	18500	0.013	0.015
Famennian	13070	0.0022	0.0015
Tournaisian	4738	0.58	0.59
Visean	3508	0.004	0.0038
Serpukhovian	6169	0.018	0.018

Table S7.Oxygen estimates for stage midpoints. Values for taken from published graphs. Stage midpoints estimated from timescale in use at publication of original estimates. See Figure S4 for plot.

	GCSv % atmos. (Berner 2009)	COPSE pO2 (Bergmann 2004)	Charcoal % atmos. (Glasspool and Scott 2010)
Lock	25.37	0.23	
Prag	25.72	0.24	
Ems	23.1	0.26	14.84
Eif	20.29	0.29	15.25
Giv	18.7	0.31	16.02
Fra	17.75	0.37	18.54
Fam	19.21	0.54	22.59
Tour	22.49	0.69	27.16
Vis	23.12	1.13	27.83
Serp	22.08	1.24	27.06

Table S8.OLS regressions: sizes and oxygen estimates. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	GCSv % atmos. (Berner 2009)	COPSE pO2 (Bergman et al. 2004)	Charcoal % atmos. (Glasspool and Scott 2010)
Slope a	-0.054	0.0075	-0.0024
Intercept b	2.71	1.56	1.67
err a	0.0042	0.036	0.0028
err b	0.090	0.022	0.059
r	-0.33	0.0057	-0.027
r^2	0.11	3.30E-05	0.00072
t	-12.83	0.21	-0.88
p(uncorr)	1.41E-35	0.83	0.38
permut p	0.0001	0.83	0.38
95% CI on a	-0.061/ -0.047	-0.066/ 0.080	-0.0083/ 0.0034
95% CI on b	2.55/ 2.87	1.51/ 1.60	1.55/ 1.79
Durbin- Watson	1.062	0.94	1.17
p(homosced.)	0.38	6.49E-08	1.99E-09

Table S9.RMA regressions: sizes and oxygen estimates. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	GCSv % atmos. (Berner 2009)	COPSE pO2 (Bergman et al. 2004)	Charcoal % atmos. (Glasspool and Scott 2010)
Slope a	-0.16	1.31	-0.091
Intercept b	5.01	0.90	3.50
err a	0.0042	0.036	0.0028
err b	0.0082	0.00064	0.0036
r	-0.33	0.0057	-0.027
r^2	0.11	3.30E-05	0.00072
t	-12.82	0.21	-0.88
p(uncorr)	1.41E-35	0.83	0.40
permut p	0.0001	0.83	0.38
95% CI on a	-0.17/-0.15	1.25/3.97	-0.28/-0.087
95% CI on b	4.84/5.17	-0.47/0.92	3.41/7.29
Durbin- Watson	0.77	0.50	0.60
p(homosced.)	0.91	9.48E-109	7.57E-05

Table S10.Temperature and proxy estimates for stage midpoints. Values taken from published graphs. Stage midpoints estimated from timescale in use at publication of original estimates. See Figs. S5 and S6 for plots.

Stage	dO18 Sea Surface (Royer et al. 2004)	Conodont Temp. (Grossman 2012)	COPSE Temp. (Bergman et al. 2004)	COPSE pCO2 (Bergmann et al. 2004)	Paleosol pCO2 (Breecker et al. 2010)	GCSv atmos. CO2 (Berner 2009)	Proxies atmos. CO2 (Royer 2014)
Lock	3.28	32.23	21.52	4019.59	1884.46	2888.26	1582.29
Prag	3.63	34.35	21.13	3778.65	1744.93	2735.89	1784.41
Ems	4.07	29.13	20.57	3455.34	1362.32	2570	2076.03
Eif	4.74	27.99	20.26	3202.74	840.58	1970.65	1813.28
Giv	5.32	28.48	20.28	3179.24	1437.68	1547.4	1654.48
Fra	5.92	35.33	20.3	3085.21	1686.96	1737.02	1377.29
Fam	4.37	31.58	18.56	2309.5	1095.65	1889.39	840.23
Tou	2.95	25.22	16.32	1539.67	921.74	589.16	681.42
Vis	1.17	22.45	15.53	1269.34	365.22	311.51	531.28
Serp	0.05	17.23	14.93	1081.29	376.81	375.85	317.61

Table S11.OLS regression: sizes and temperature estimates. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀. dO₁₈ Sea Surface Temperature had the largest effect size (r) and so was used in model-fitting.

	dO ₁₈ Sea Surface (Royer et al. 2004)	Conodont Temp. (Grossman 2012)	COPSE Temp. (Bergman et al. 2004)	COPSE pCO2 (Bergman et al. 2004)	Paleosol pCO2 (Breecker et al. 2010)	GCSv atmos. CO2 (Berner 2009)	Proxies Atmos. CO2 (Royer, 2014)
Slope a	0.050	0.068	-0.012	-5.49E-05	-3.76E- 05	-6.73E-05	-6.87E-05
Intercept b	1.37	1.36	1.79	1.71	1.61	1.67	1.65
err a	0.0068	0.0023	0.0056	1.28E-05	2.40E-05	1.44E-05	2.24E-05
err b	0.029	0.069	0.11	0.038	0.032	0.027	0.031
r	0.20	0.080	-0.059	-0.12	-0.043	-0.13	-0.084
r^2	0.040	0.0064	0.0036	0.014	0.0019	0.016	0.0070
t	7.44	2.93	-2.16	-4.28	-1.57	-4.66	-3.062
p(uncorr)	1.82E-13	0.0034	0.031	2.00E-05	0.12	3.46E-06	0.0022
permut p	0.0001	0.0025	0.029	0.0001	0.11 -8.57E- 05/	0.0001	0.0016
95% CI on a	0.037/ 0.065	0.0022/ 0.011	-0.023/ -0.00066	-8.077E-05/ -2.82E-05	-7.90E- 06	-9.56E-05/ -3.90E-05	-0.00011/ -2.22E-05
	1.30/	1.23/	1.57/	1.63/	1.54/	1.61/	1.58/
95% Cl on b	1.43	1.50	2.015	1.79	1.67	1.73	1.72
Durbin- Watson	1.14	0.95	0.95	0.96	0.95	0.96	0.95
p(homosced.)	7.67E-07	3.33E-05	5.47E-11	5.09E-07	1.38E-07	2.57E-11	2.82E-12

Table S12.RMA regression: sizes and temperature estimates. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀. dO₁₈ Sea Surface Temperature had the largest effect size (r) and so was used in model-fitting.

	dO ₁₈ Sea Surface (Royer et al. 2004)	Conodont Temp. (Grossman 2012)	COPSE Temp. (Bergman et al. 2004)	COPSE pCO2 (Bergman et al. 2004)	Paleosol pCO2 (Breecker et al. 2010)	GCSv atmos. CO2 (Berner 2009)	Proxies Atmos. CO2 (Royer, 2014)
Slope a	0.25	0.084	-0.20	-0.00047	-0.0087	-0.00053	-0.00082
Intercept b	0.60	-0.9	5.46	2.86	2.65	2.46	2.62
err a	0.0068	0.0023	0.0056	1.28E-05	2.40E-05	1.44E-05	2.24E-05
err b	0.00092	0.0048	0.012	0.0015	0.0012	0.00086	0.0011
r	0.20	0.080	-0.059	-0.12	-0.043	-0.13	-0.084
r^2	0.040	0.0064	0.0036	0.014	0.0019	0.016	0.0070
t	7.44	2.93	-2.16	-4.28	-1.57	-4.66	-3.062
p(uncorr)	1.82E-13	0.0034	0.031	2.00E-05	0.12	3.46E-06	0.0022
permut p	0.0001	0.0041	0.034	0.0001	0.11	0.0001	0.003
95% CI on a	0.24/	0.080/	-0.60/	-0.00049/	-0.0026/	-0.00055/	-0.00085/
33 /6 CI OII a	0.26	0.088	-0.19	-0.00045	-0.00084	-0.00051	-0.00078
0E9/ Clanb	0.54/	-1.023/	5.27/	2.79/	2.58/	2.40/	2.56/
95% Cl on b	0.66	-0.77	13.09	2.93	4.82	2.51	2.68
Durbin- Watson	0.69	0.61	0.52	0.56	0.61	0.56	0.57
p(homosced.)	8.24E-34	4.20E-24	4.83E-84	7.80E-70	4.11E-54	7.72E-52	1.65E-34

Table S13.Model comparison for body lengths time series. Body lengths (cm) transformed by Log₁₀. The "directional with shift" model identified the shift at Step 7, marking the Famennian/End-Devonian as the end of one trend and start of another.

Model	Log Likelihood	K	AICc	Akaike Weight
Directional with Shift (GRW/shift)	13.71	4	-16.63	0.932
Directional (GRW)	6.02	2	-6.056	0.005
Random walk (URW)	5.96	1	-9.35	0.025
Stasis	4.28	2	-2.57	0.001
Temperature (dO ₁₈)	7.86	2	-9.72	0.029
Oxygen (% atmos.)	6.57	2	-7.14	0.008

Table S14.Species per size class in Devonian-Mississippian faunas.

species per size c				60-	80-	100-	200-	300-		
	1-19 cm	20-39 cm	40-59 cm	79 cm	99 cm	199 cm	299 cm	399 cm	400± c	m Total
Xishancun	10	6	0	0	0	0	0	0	0	16
Cwm Mill	5	1	0	0	0	0	0	0	0	6
Wayne Herbert	3	'	O	U	U	U	U	U	O	O
Quarry	6	6	0	0	0	0	0	0	0	12
Canadian	•	0	<u>.</u>	•	•	•	•	•	•	40
Arctic	3	6	1	0	0	0	0	0	0	10
MOTH	8	2	0	0	0	0	0	0	0	10
Cuifengshan	15	6	0	0	0	0	0	0	0	21
Besom Farm	0	5	2	1	0	0	0	0	0	8
Dniester	2	8	1	0	0	0	0	0	0	11
Khmeleva Cottonwood	4	2	0	0	0	0	0	0	0	6
Canyon	0	6	1	0	0	0	0	0	0	7
Strypa	5	6	0	0	0	0	0	0	0	11
Wood Bay	4	3	1	0	0	0	0	0	0	8
Xujiachong	9	5	1	0	1	0	0	0	0	16
Hunsruck	1	1	1	3	1	2	1	0	0	10
Kureyka	0	5	2	0	0	0	0	0	0	7
Cavan Bluff	4	3	0	0	0	2	0	0	0	9
Wee Jasper	2	1	0	1	1	1	2	0	0	8
Water Canyon	3	8	4	0	0	0	0	0	0	15
Beartooth		0	0		•	•	•	•	•	40
Butte	1	6	2	1	0	0	0	0	0	10
Wuding	3	3	0	2	0	1	0	0	0	9
Parnu	2	2	1	0	2	0	0	0	0	7
Tiaomaijan	1	5	2	0	0	1	0	0	0	9
Vstrechnaya	1	1	4	3	1	1	1	0	1	13
Narva	1 6	1	1	0	1 0	1	1 0	0	1	7 16
Achanarras	2	6 6	2 1	1	0	1 1	0	0	0 0	
Cruaday Tynet Burn	4	4	2	2	0	0	0	0	0	11 12
Qujing	3	1	1	1	0	0	0	0	0	6
Orcadian Lake	3 7	6	1	2	0	1	0	0	0	17
Gerolstein	3	2	0	1	1	0	1	0	0	8
Rockport	1	0	1	1	2	1	0	1	0	7
Aztec	2	7	10	4	2	3	0	0	1	, 29
Haikou	1	0	2	1	0	4	0	0	0	29 8
Mt. Howitt	1	2	3	1	0	0	0	0	0	7
Abava	1	0	0	0	1	2	1	0	0	, 5
Abuvu	1	J	U	J	1	_	ı	U	U	3

Cedar Valley	0	2	1	0	2	4	2	0	0	11
Gauja	3	3	1	2	2	3	1	0	0	15
Gladbach	5	3	1	0	0	2	0	0	0	11
Gogo	5	16	9	7	4	1	1	0	0	43
Kerman	0	0	1	1	0	3	0	0	1	6
North Evans	0	0	2	0	0	2	4	2	0	10
Miguasha	8	2	3	2	1	1	0	0	0	17
Wietrznia	0	1	2	2	1	4	0	0	0	10
Rodebjergi	0	1	2	0	1	1	0	0	0	5
Rhinestreet	0	2	2	0	2	2	0	1	0	9
Chemung	0	0	0	1	2	2	1	0	0	6
Wildungen	0	18	7	7	2	1	0	0	2	37
Stolbovo	0	0	0	1	2	1	0	0	1	5
Oryol	1	1	0	1	2	2	0	0	0	7
Portishead	0	1	0	1	2	2	0	0	0	6
Aina Dal	0	2	0	1	0	3	0	0	0	6
Britta Dal	0	1	2	1	1	2	0	0	0	7
Hyner	1	1	1	0	1	3	1	0	0	8
Evieux	1	1	0	1	0	2	0	0	0	5
Ketleri	1	1	0	1	0	2	0	0	0	5
Cleveland Shale	2	1	2	4	3	8	1	1	7	29
Witpoort	2	1	1	0	1	1	0	0	0	6
Izkchul Village	6	0	0	1	0	0	0	0	0	7
									U	,
Foulden	5	3	0	0	0	0	0	0	0	8
Foulden Mansfield	5 1	3 2				0 0	0 1			
			0	0	0			0	0	8
Mansfield	1	2	0 2	0 0	0 1	0	1	0 0	0 0	8 7
Mansfield Waaipoort	1 7	2 2	0 2 1	0 0 0	0 1 0	0 0	1 0	0 0 0	0 0 0	8 7 10
Mansfield Waaipoort Glencartholm	1 7 21	2 2 2	0 2 1 1	0 0 0 0	0 1 0 1	0 0 1	1 0 0	0 0 0 0	0 0 0 0	8 7 10 26
Mansfield Waaipoort Glencartholm Burdiehouse	1 7 21 3	2 2 2 4	0 2 1 1	0 0 0 0	0 1 0 1	0 0 1 1	1 0 0 1	0 0 0 0	0 0 0 0	8 7 10 26 11
Mansfield Waaipoort Glencartholm Burdiehouse Wardie	1 7 21 3 8	2 2 2 4 4	0 2 1 1 1	0 0 0 0 0	0 1 0 1 0	0 0 1 1 0	1 0 0 1 1	0 0 0 0 0	0 0 0 0 1 1	8 7 10 26 11 15
Mansfield Waaipoort Glencartholm Burdiehouse Wardie Cheese Bay	1 7 21 3 8 6	2 2 2 4 4 2	0 2 1 1 1 1	0 0 0 0 0 0	0 1 0 1 0 0	0 0 1 1 0	1 0 0 1 1 0	0 0 0 0 0 0	0 0 0 0 1 1	8 7 10 26 11 15
Mansfield Waaipoort Glencartholm Burdiehouse Wardie Cheese Bay East Kirkton	1 7 21 3 8 6	2 2 2 4 4 2 2	0 2 1 1 1 1 1 4	0 0 0 0 0 0	0 1 0 1 0 0 0	0 0 1 1 0 0	1 0 0 1 1 0 0	0 0 0 0 0 0 0	0 0 0 0 1 1 1	8 7 10 26 11 15 10 7
Mansfield Waaipoort Glencartholm Burdiehouse Wardie Cheese Bay East Kirkton Gilmerton	1 7 21 3 8 6 1	2 2 4 4 2 2	0 2 1 1 1 1 1 4 0	0 0 0 0 0 0 0 0	0 1 0 1 0 0 0 0	0 0 1 1 0 0 0	1 0 0 1 1 0 0	0 0 0 0 0 0 0	0 0 0 0 1 1 1 0	8 7 10 26 11 15 10 7
Mansfield Waaipoort Glencartholm Burdiehouse Wardie Cheese Bay East Kirkton Gilmerton Ardross Castle	1 7 21 3 8 6 1 1 5	2 2 4 4 2 2 1	0 2 1 1 1 1 1 4 0	0 0 0 0 0 0 0 0	0 1 0 1 0 0 0 0	0 0 1 1 0 0 0 2	1 0 0 1 1 0 0 0	0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 1	8 7 10 26 11 15 10 7 7
Mansfield Waaipoort Glencartholm Burdiehouse Wardie Cheese Bay East Kirkton Gilmerton Ardross Castle Abden	1 7 21 3 8 6 1 1 5	2 2 4 4 2 1 2 1 0 2	0 2 1 1 1 1 4 0 1 3 1 2	0 0 0 0 0 0 0 0	0 1 0 1 0 0 0 0 0	0 0 1 1 0 0 0 2 0	1 0 0 1 1 0 0 0	0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 1	8 7 10 26 11 15 10 7 7 8 5
Mansfield Waaipoort Glencartholm Burdiehouse Wardie Cheese Bay East Kirkton Gilmerton Ardross Castle Abden Inchkeith Bearsden Loanhead	1 7 21 3 8 6 1 1 5 1 3 7	2 2 4 4 2 1 2 1 0 2 2	0 2 1 1 1 1 4 0 1 3 1 2 3	0 0 0 0 0 0 0 1 0 0 1 1 2	0 1 0 1 0 0 0 0 1 0 0 0 0	0 0 1 1 0 0 0 2 0 0 0 0	1 0 0 1 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 1 0 0	8 7 10 26 11 15 10 7 7 8 5 5 12 22
Mansfield Waaipoort Glencartholm Burdiehouse Wardie Cheese Bay East Kirkton Gilmerton Ardross Castle Abden Inchkeith Bearsden Loanhead Niddrie	1 7 21 3 8 6 1 1 5 1 3 7	2 2 4 4 2 1 2 1 0 2 0	0 2 1 1 1 1 4 0 1 3 1 2 3	0 0 0 0 0 0 0 1 0 0 1 1 2	0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 0 2 0 0 0 0 0 3 1	1 0 0 1 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 0 0 0	8 7 10 26 11 15 10 7 7 8 5 5 12 22 5
Mansfield Waaipoort Glencartholm Burdiehouse Wardie Cheese Bay East Kirkton Gilmerton Ardross Castle Abden Inchkeith Bearsden Loanhead Niddrie Millstone Grit	1 7 21 3 8 6 1 1 5 1 3 7 7 0 5	2 2 4 4 2 1 2 1 0 2 0 3	0 2 1 1 1 1 1 4 0 1 3 1 2 3 0	0 0 0 0 0 0 0 1 0 0 1 1 2 1	0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 0 2 0 0 0 0 0 3 1 0	1 0 0 1 1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 0 0 0 0	8 7 10 26 11 15 10 7 7 8 5 5 12 22 5 14
Mansfield Waaipoort Glencartholm Burdiehouse Wardie Cheese Bay East Kirkton Gilmerton Ardross Castle Abden Inchkeith Bearsden Loanhead Niddrie	1 7 21 3 8 6 1 1 5 1 3 7	2 2 4 4 2 1 2 1 0 2 0	0 2 1 1 1 1 4 0 1 3 1 2 3	0 0 0 0 0 0 0 1 0 0 1 1 2	0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 0 2 0 0 0 0 0 3 1	1 0 0 1 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 0 0 0 0	8 7 10 26 11 15 10 7 7 8 5 5 12 22 5

Table S15.Pairwise ANOSIM p-values (Bray-Curtis distances). Based on 1 million replicates.

	LO	PR	EM	El	GI	FR	FA	то	SE
LO		0.5756	0.07935	0.01325	0.000885	0.000378	4.10E-05	0.1395	0.002289
PR	0.5756		0.6234	0.3259	0.02964	0.006007	0.000431	0.4503	0.03212
EM	0.07935	0.6234		0.7173	0.4323	0.1026	0.003856	0.3575	0.203
EI	0.01325	0.3259	0.7173		0.4499	0.05361	0.000382	0.2118	0.02424
01	0.00088	0.00004	0.4000	0.4400		0.5000	0.04000	0.4000	0.0047
GI	5 0.00037	0.02964	0.4323	0.4499		0.5669	0.04626	0.1682	0.2817
FR	8	0.006007	0.1026	0.05361	0.5669		0.1558	0.02464	0.4439
				0.00038					
FA	4.10E-05	0.000431	0.003856	2	0.04626	0.1558		0.008997	0.003401
TO	0.1395	0.4503	0.3575	0.2118	0.1682	0.02464	0.008997		
VI	0.05401	0.2668	0.3671	0.5682	0.01337	0.00126	0.000292	0.6399	0.06268
	0.00228								
SE	9	0.03212	0.203	0.02424	0.2817	0.4439	0.003401	0.608	

Table S16.SIMPER results for adjacent stages
SIMPER LOCKHOVIAN VS. PRAGIAN: 44.01 (DISSIMILARITY INDEX)

				(= : = = : : : : : : : : : : : : : : : :	
	Av.	Contrib.	Cumulative	Mean	Mean
Taxon	dissim	%	%	abund. 1	
1-19 cm	21.92	49.81	49.81	6.13	3.29
20-39 cm	12.19	27.71	77.52	5	4
40-59 cm	4.046	9.194	86.71	0.5	0.857
60-79 cm	2.592	5.89	92.6	0.125	0.429
100-199	2.002	0.00	32.0	0.125	0.423
cm	1.364	3.099	95.7	0	0.286
80-99 cm	1.209	2.747	98.45	0	0.286
200-299					
cm	0.6819	1.549	100	0	0.143
400+ cm	0	0	100	0	0
300-399	0	0	100	0	0
PRAGIAN	VS. EMSIA	N: 47.93			
	Av.	Contrib.	Cumulative	Mean	Mean
Taxon	dissim	%	%	abund. 1	abund. 2
20-39 cm	13.15	27.44	27.44	4	4.2
1-19 cm	13.08	27.28	54.72	3.29	2.6
40-59 cm	6.799	14.18	68.9	0.857	1.2
60-79 cm	5.446	11.36	80.26	0.429	0.8
100-199	5.440	11.30	00.20	0.429	0.0
cm	4.775	9.961	90.23	0.286	0.8
200-299	4.775	9.901	90.23	0.200	0.0
200-299 cm	2.783	5.805	96.03	0.143	0.4
80-99 cm	1.903	3.969	100	0.286	0.2
400+ cm	1.903	0.909	100	0.200	0.2
300-399	0	0	100	0	0
EMSIAN V	'S. EIFELIA				
_	Av.	Contrib.	Cumulative	Mean	Mean
Taxon	dissim	%	%	abund. 1	
20-39 cm	13.49	30.24	30.24	4.2	3.25
40-59 cm	8.09	18.14	48.38	1.2	1.75
1-19 cm	7.51	16.84	65.22	2.6	2.5
60-79 cm	4.728	10.6	75.81	8.0	1
100-199					
cm	3.516	7.883	83.7	8.0	0.625
80-99 cm	2.998	6.721	90.42	0.2	0.5
200-299					
cm	2.99	6.704	97.12	0.4	0.25
400+ cm	1.284	2.879	100	0	0.25
300-399	0	0	100	0	0
	VS. GIVET	IAN:			
52.23	_		_		
_	Av.	Contrib.	Cumulative	Mean	Mean
Taxon	dissim	%	%	abund. 1	abund. 2

20-39 cm	12.82	24.55	24.55	3.25	2.44
1-19 cm	8.778	16.81	41.35	2.5	2.11
100-199					_
cm	8.059	15.43	56.78	0.625	2
40-59 cm	7.573	14.5	71.28	1.75	2.11
60-79 cm	5.087	9.739	81.02	1	1.33
80-99 cm	4.828	9.244	90.26	0.5	1.11
200-299	3	5.743	06.01	0.25	0.556
cm 400+ cm	3 1.414	2.707	96.01 98.71	0.25	0.550
300-399	0.6721	1.287	100	0.25	0.111
300-399	0.0721	1.207	100	U	0.111
GIVETIAN	VS. FRAS	NIAN: 59.1	7		
0	Av.	Contrib.	Cumulative	Mean	Mean
Taxon	dissim	%	%	abund. 1	abund. 2
20-39 cm	13.2	22.31	22.31	2.44	3.91
1-19 cm	11.32	19.13	41.44	2.11	1.64
40-59 cm	9.085	15.36	56.8	2.11	2.64
100-199					
cm	7.108	12.01	68.81	2	1.82
60-79 cm	6.073	10.26	79.07	1.33	1.91
80-99 cm	4.783	8.084	87.16	1.11	1.36
200-299					
cm	4.132	6.983	94.14	0.556	0.545
300-399	1.778	3.005	97.15	0.111	0.273
400+ cm	1.689	2.854	100	0.111	0.364
EDVCVIIV	IVS EVM	MENIAN: 5	6 3/		
FRASNIAN		MENIAN; 5		Mean	Mean
	Av.	Contrib.	Cumulative	Mean abund, 1	Mean abund, 2
Taxon	Av. dissim	Contrib. %	Cumulative %	abund. 1	abund. 2
Taxon 20-39 cm	Av. dissim 10.96	Contrib. % 19.45	Cumulative % 19.45	abund. 1 3.91	abund. 2 1.11
Taxon 20-39 cm 1-19 cm	Av. dissim 10.96 9.281	Contrib. % 19.45 16.47	Cumulative % 19.45 35.92	abund. 1 3.91 1.64	abund. 2 1.11 0.889
Taxon 20-39 cm	Av. dissim 10.96	Contrib. % 19.45	Cumulative % 19.45	abund. 1 3.91	abund. 2 1.11
Taxon 20-39 cm 1-19 cm 40-59 cm	Av. dissim 10.96 9.281	Contrib. % 19.45 16.47	Cumulative % 19.45 35.92	abund. 1 3.91 1.64	abund. 2 1.11 0.889
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199	Av. dissim 10.96 9.281 8.812	Contrib. % 19.45 16.47 15.64	Cumulative % 19.45 35.92 51.56	abund. 1 3.91 1.64 2.64	abund. 2 1.11 0.889 0.667
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm	Av. dissim 10.96 9.281 8.812 6.369 6.298	Contrib. % 19.45 16.47 15.64 11.31 11.18	Cumulative % 19.45 35.92 51.56 62.87 74.05	abund. 1 3.91 1.64 2.64 1.82 1.91	abund. 2 1.11 0.889 0.667 2.78 1.11
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776 AN VS. TO Av.	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152 URNAISIAI Contrib.	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100 N: 69.66 Cumulative	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399 FAMENNIA	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776 AN VS. TO Av. dissim	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152 URNAISIAI Contrib. %	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100 N: 69.66 Cumulative %	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273 Mean abund. 1	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111 Mean abund. 2
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399 FAMENNIA	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776 AN VS. TO Av.	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152 URNAISIAI Contrib.	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100 N: 69.66 Cumulative	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399 FAMENNIA Taxon 1-19 cm 100-199	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776 AN VS. TO Av. dissim 22.59	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152 URNAISIAI Contrib. %	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100 N: 69.66 Cumulative % 32.43	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273 Mean abund. 1	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111 Mean abund. 2
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399 FAMENNIA Taxon 1-19 cm 100-199 cm	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776 AN VS. TO Av. dissim 22.59 16.34	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152 URNAISIAN Contrib. % 32.43	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100 N: 69.66 Cumulative %	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273 Mean abund. 1 0.889	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111 Mean abund. 2 4
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399 FAMENNIA Taxon 1-19 cm 100-199	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776 AN VS. TO Av. dissim 22.59	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152 URNAISIAN Contrib. % 32.43 23.46	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100 N: 69.66 Cumulative % 32.43 55.89	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273 Mean abund. 1 0.889 2.78	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111 Mean abund. 2 4
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399 FAMENNIA Taxon 1-19 cm 100-199 cm 20-39 cm	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776 AN VS. TO Av. dissim 22.59 16.34 8.815	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152 URNAISIAN Contrib. % 32.43 23.46 12.65	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100 N: 69.66 Cumulative % 32.43 55.89 68.55	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273 Mean abund. 1 0.889 2.78 1.11	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111 Mean abund. 2 4 0 1.67
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 200-299 cm 300-399 FAMENNIA Taxon 1-19 cm 100-199 cm 20-39 cm 80-99 cm	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 AN VS. TO Av. dissim 22.59 16.34 8.815 5.927	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152 URNAISIAN Contrib. % 32.43 23.46 12.65 8.51	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100 N: 69.66 Cumulative % 32.43 55.89 68.55 77.06	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273 Mean abund. 1 0.889 2.78 1.11 1.11	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111 Mean abund. 2 4 0 1.67 0.333
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399 FAMENNIA Taxon 1-19 cm 100-199 cm 20-39 cm 80-99 cm 40-59 cm	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776 AN VS. TO Av. dissim 22.59 16.34 8.815 5.927 5.892 4.961	Contrib. % 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152 URNAISIAN Contrib. % 32.43 23.46 12.65 8.51 8.458 7.123	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100 N: 69.66 Cumulative % 32.43 55.89 68.55 77.06 85.51 92.64	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273 Mean abund. 1 0.889 2.78 1.11 1.11 0.667 1.11	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111 Mean abund. 2 4 0 1.67 0.333 0.667 0.333
Taxon 20-39 cm 1-19 cm 40-59 cm 100-199 cm 60-79 cm 80-99 cm 400+ cm 200-299 cm 300-399 FAMENNIA Taxon 1-19 cm 100-199 cm 20-39 cm 80-99 cm 40-59 cm 60-79 cm	Av. dissim 10.96 9.281 8.812 6.369 6.298 5.854 3.576 3.416 1.776 AN VS. TO Av. dissim 22.59 16.34 8.815 5.927 5.892	Contrib. 19.45 16.47 15.64 11.31 11.18 10.39 6.348 6.063 3.152 URNAISIAN Contrib. 32.43 23.46 12.65 8.51 8.458	Cumulative % 19.45 35.92 51.56 62.87 74.05 84.44 90.78 96.85 100 N: 69.66 Cumulative % 32.43 55.89 68.55 77.06 85.51	abund. 1 3.91 1.64 2.64 1.82 1.91 1.36 0.364 0.545 0.273 Mean abund. 1 0.889 2.78 1.11 1.11 0.667	abund. 2 1.11 0.889 0.667 2.78 1.11 1.11 0.778 0.222 0.111 Mean abund. 2 4 0 1.67 0.333 0.667

					_				
400+ cm	2.141	3.074	99.56	0.778	0				
300-399	0.3059	0.4391	100	0.111	0				
TOURNAISIAN VS. VISEAN: 49.6									
1001117110	Av.	Contrib.	Cumulative	Mean	Mean				
Taxon	dissim	%	%	abund. 1	abund. 2				
1-19 cm	20.67	41.68	41.68	4	5.6				
40-59 cm	8.587	17.31	58.99	0.667	1.4				
20-39 cm	8.46	17.06	76.04	1.67	2				
60-79 cm	2.562	5.166	81.21	0.333	0.2				
200-299									
cm	2.404	4.847	86.06	0.333	0.2				
80-99 cm	2.404	4.847	90.9	0.333	0.2				
400+ cm	2.27	4.575	95.48	0	0.4				
100-199									
cm	2.243	4.521	100	0	0.4				
300-399	0	0	100	0	0				
VISEAN V	S SEDDIII	<Η∩\/ΙΔΝΙ·	61 04						
VIOLAIN V	Av.	Contrib.	Cumulative	Mean	Mean				
Taxon	dissim	%	%	abund. 1	abund. 2				
1-19 cm	25.66	41.43	41.43	5.6	9				
20-39 cm	8.155	13.17	54.6	2	2.67				
40-59 cm	5.892	9.513	64.11	1.4	1.33				
100-199									
cm	5.033	8.125	72.23	0.4	1.17				
80-99 cm	4.567	7.372	79.61	0.2	1.17				
60-79 cm	4.44	7.169	86.77	0.2	1.5				
300-399	2.974	4.802	91.58	0	0.667				
200-299									
cm	2.876	4.642	96.22	0.2	0.667				
400+ cm	2.342	3.782	100	0.4	0.5				

Table S17.

NMDS scores for faunas (Bray-Curtis distances). Scores based on actual species counts within size classes. See Fig. 2 for bins and Fig. S11 for plot with site labels. Positive values on coordinate 1 are associated with larger size classes, while positive values on coordinate 2 were associated with marine localities.

	Coordinate	Coordinate
Name	1	2
Xishancun	-0.13401	-0.013816
CwmMill	-0.083392	-0.093586
MOTH	-0.10853	-0.068182
WayneHerbertQuarry	-0.11426	-0.011808
CanadianArctic	-0.085673	0.017303
Cuifengshan	-0.15994	-0.012009
BesomFarm	-0.044874	0.082915
Dniester	-0.094358	0.04847
Khmeleva	-0.076849	-0.068996
CottonwoodCanyon	-0.10139	0.085455
Strypa	-0.11027	-0.0081705
WoodBay	-0.070683	-0.023517
Xujiachong	-0.099404	-0.0095991
Hunsruck	0.079494	-0.0050898
Kureyka	-0.070452	0.090676
CavanBluff	-0.037325	-0.047101
WeeJasper	0.056662	-0.06292
WaterCanyon	-0.087255	0.052567
BeartoothButte	-0.047713	0.05855
Wuding	-0.022731	-0.039727
Parnu	0.00056634	-0.023888
Tiaomaijan	-0.028912	0.052565
Vstrechnaya	0.061833	0.054546
Narva	0.070133	-0.016985
Achanarras	-0.061435	0.0077254
Cruaday	-0.035423	0.023681
TynetBurn	-0.056288	0.0072966
Qujing	-0.014589	-0.059493
OrcadianLake	-0.073725	0.0005295
Gerolstein	-0.0049861	-0.060064
Rockport	0.11244	-0.045717
Aztec	-0.0048322	0.10969
Haikou	0.11576	0.042735
MtHowitt	0.0053003	0.050534
Abava	0.13287	-0.078127
CedarValley	0.10312	0.036683
Gauja	0.020518	-0.0098037
Gladbach	-0.039258	-0.025969
Gogo	-0.074547	0.13633
Kerman	0.1688	0.013633
NorthEvans	0.17388	0.11399
Miguasha	-0.029436	-0.016227
Wietrznia	0.10568	0.041446
Rodebjergi	0.085453	0.063042
Rhinestreet	0.076676	0.042699

Chemung	0.16831	-0.037918
Wildungen	-0.026642	0.18204
Stolbovo	0.18426	-0.062142
Oryol	0.096716	-0.038702
Portishead	0.13664	-0.034202
AinaDal	0.11477	0.0011165
BrittaDal	0.096416	0.018351
Hyner	0.084435	-0.0009897
Evieux	0.086954	-0.057573
Ketleri	0.086796	-0.057514
ClevelandShale	0.093189	0.11828
Witpoort	0.034236	-0.033983
Mansfield	0.020348	0.039858
Foulden	-0.092882	-0.049242
Izkchul	-0.086201	-0.11627
Waaipoort	-0.086985	-0.045435
Glencartholm	-0.15124	-0.067141
Burdiehouse	-0.035098	0.00047472
Wardie	-0.095921	-0.021231
CheeseBay	-0.078886	-0.046934
EastKirkton	-0.013405	0.083134
Gilmerton	0.095244	-0.039737
Abden	0.017612	0.095065
Inchkeith	-0.016783	-0.10785
ArdrossCastle	-0.071549	-0.041947
Bearsden	-0.064529	-0.028782
Loanhead	0.0044847	-0.00511
Niddrie	0.19072	-0.068371
MillstoneGrit	-0.051642	-0.071964
BearGulch	-0.1809	0.073297
Cowdenbeath	0.14488	-0.010856

Table S18.NMDS scores for faunas (Kulczynski distances). Scores based on presence-absence of each size class. See Fig. S14 for plot with site labels.

Name	Axis 1	Axis 2
Xishancun	-0.1226	-0.02018
CwmMill	-0.12212	-0.020014
MOTH	-0.12237	-0.020097
WayneHerbertQuarry	-0.12181	-0.019839
CanadianArctic	-0.089901	0.025169
Cuifengshan	-0.12329	-0.020545
BesomFarm	-0.035556	-0.020343
Dniester	-0.090164	0.025245
Khmeleva	-0.12312	-0.020437
CottonwoodCanyon	-0.082074	0.10377
Strypa	-0.12168	-0.019849
WoodBay	-0.090234	0.025355
Xujiachong	-0.050686	0.056372
Hunsruck	0.033898	0.0039239
Kureyka	-0.081909	0.10307
CavanBluff	-0.078478	-0.082769
WeeJasper	0.068255	-0.035528
WaterCanyon	-0.090005	0.025281
BeartoothButte	-0.056105	-0.041361
Wuding	0.004864	-0.087033
Parnu	-0.050779	0.056429
Tiaomaijan	-0.044317	0.013779
Vstrechnaya	0.040517	0.010886
Narva	0.022518	0.068491
Achanarras	-0.012376	-0.037861
Cruaday	-0.012536	-0.037776
TynetBurn	-0.056192	-0.041463
Qujing	-0.055693	-0.041528
OrcadianLake	-0.012175	-0.037965
Gerolstein	0.050867	-0.077614
Rockport	0.12141	-0.020329
Aztec	0.031512	-0.010271
Haikou	0.036156	-0.11186
MtHowitt	-0.055571	-0.041571
Abava	0.14325	0.10062
CedarValley	0.07133	0.094408
Gauja	0.034246	0.0039685
Gladbach	-0.044383	0.013631
Gogo	0.032222	0.0040946
Kerman	0.16607	-0.1025
NorthEvans	0.14809	0.18342
Miguasha	0.023205	-0.013294
Wietrznia	0.087015	0.0073068
Rodebjergi	0.067749	0.080208
Rhinestreet	0.079737	0.11211
Chemung	0.19272	0.030769
Wildungen	0.10444	0.0093181
-		

Stolbovo	0.20392	-0.040336
Oryol	0.047844	-0.050833
Portishead	0.12373	-0.045452
AinaDal	0.094843	-0.11098
BrittaDal	0.087157	0.0073483
Hyner	0.019335	0.060311
Evieux	0.0047295	-0.086832
Ketleri	0.004954	-0.087226
ClevelandShale	0.051335	0.020554
Witpoort	0.0021087	0.038518
Mansfield	-0.026544	0.084663
Foulden	-0.12286	-0.020317
Izkchul	0.0032877	-0.17811
Waaipoort	-0.089776	0.024997
Glencartholm	0.0018686	0.038595
Burdiehouse	-0.00856	0.090023
Wardie	-0.071405	0.10781
CheeseBay	-0.10793	0.056918
EastKirkton	-0.089626	0.024948
Gilmerton	0.071182	-0.052474
Abden	-0.089596	0.024806
Inchkeith	-0.031916	-0.14225
ArdrossCastle	-0.089464	0.024858
Bearsden	-0.055863	-0.041507
Loanhead	0.045865	-0.00581
Niddrie	0.2244	-0.033266
MillstoneGrit	-0.00179	0.1686
BearGulch	0.032604	0.0039937
Cowdenbeath	0.15221	0.039727

Table S19.OLS regressions: Devonian vertebrate division sizes and age.

	Agnatha	Placo.	Actinopt.	Sarcopt.	Tetra.	Acanth.	Chond.	Aca.+Ch.
N	219	429	28	158	15	115	41	156
Slope a	0.012	0.012	0.011	0.0085	-0.0086	0.029	0.012	0.0095
Intercept b	6.39	6.46	5.26	4.90	-1.19	2.48	6.23	5.20
err a	0.0018	0.0014	0.0039	0.0020	0.0051	0.0028	0.0043	0.0022
err b	0.73	0.53	1.51	0.78	1.91	2.48	1.62	0.85
r	0.42	0.40	0.47	0.32	-0.42	0.097	0.40	0.33
r^2	0.18	0.16	0.22	0.10	0.18	0.0094	0.16	0.11
t	6.91	8.96	2.68	4.17	-1.67	1.040	2.71	4.39
p(uncorr)	5.20E- 11	9.81 E- 18	0.013	5.12E-02	0.12	0.30	0.0099	2.06E-05
permut p	0.0001	0.0001	0.013	0.0001	0.12	0.29	0.010	0.0001
95% CI on a	0.0077/ 0.017	0.0098 /0.015	0.0029/ 0.019	0.0051/ 0.012	-0.015/ -0.0077	-0.0028/ 0.0027	0.0062/ 0.017	0.0054/ 0.014
95% CI on b	4.50/ 8.37	4.45/ 7.52	2.25/ 8.63	3.59/ 6.34	-3.91/ 4.80	0.28/ 4.66	4.13/ 8.26	3.59/ 6.94
Durbin-Watson	1.26	1.42	2.034	1.56	2.32	1.38	1.44	1.23
p(homosced.)	5.98E- 07	0.95	0.017	0.40	0.56	0.71	0.25	0.51

Table S20.RMA regressions: Devonian vertebrate division sizes and age.

	Agnatha	Placo.	Actinopt.	Sarcopt.	Tetra.	Acanth.	Chond.	Aca.+Ch.
N	219	429	28	158	15	115	41	156
Slope a	0.029	0.031	0.023	0.027	-0.020	0.029	0.029	0.029
Intercept b	13.21	13.68	9.90	11.94	-5.58	12.95	12.87	12.77
err a	0.0018	0.0014	0.0039	0.0020	0.0051	0.0027	0.0043	0.0022
err b	0.53	0.28	2.27	0.61	3.63	1.17	2.63	0.75
r	0.42	0.40	0.47	0.32	-0.42	0.097	0.40	0.33
r^2	0.18	0.16	0.22	0.10	0.18	0.094	0.16	0.11
t	6.91	8.96	2.79	4.17	-1.67	1.040	2.71	4.27
p(uncorr)	5.20E-	9.81E-						
p(sillour)	11	18	0.013	5.12E-02	0.12	0.30	0.01	3.43E-05
permut p	0.0001	0.0001	0.013	0.0001	0.12	0.30	0.009	0.0002
95% CI on a	0.025/	0.030/	0.015/	0.022/	-0.030/	0.025/	0.018/	0.026/
00 /0 OI OII u	0.033	0.034	0.030	0.030	-0.0052	0.090	0.037	0.032
95% CI on b	11.61/	12.57/	6.97/	10.17/	-9.16/	11.25/	8.86/	11.47/
0070 01 011 5	14.56	14.67	12.71	13.37	-12.15	37.03	15.62	13.96
Durbin-Watson	0.95	1.058	1.53	1.096	1.57	0.83	1.20	1.00
n/homoood \	3.29E-							
p(homosced.)	08	0.0062	0.06	0.10	0.014	0.093	0.77	0.69

Table S21. Mann-Whitney U-Test results for vertebrate divisions. Body lengths (cm) transformed by Log₁₀. Monte Carlo p-values for each stage versus previous stage. Only comparisons of bins with more than four values included.

Stage	Acanth.	Actinopt.	Agnatha	Chond.	Placo.	Sarc.	Tetra.	Aca+Ch.
Lockhovian								
Pragian	0.0003		0.99		0.031	0.26		0.0001
Emsian	0.23		0.045		0.062	0.84		0.25
Eifelian	0.98		0.071		0.82	0.16		0.95
Givetian	0.56		0.14		0.71	0.015		0.41
Frasnian	0.98	0.76	0.24		0.065	0.38	0.47	0.087
Famennian	0.62	0.67		0.85	0.0008	0.38	0.055	0.35
Tournaisian	0.024	0.21		0.082		0.83	0.72	0.006
Visean	0.71	0.15		0.031		0.47	0.12	0.039
Serpukhovian	0.91	0.005		0.0001		0.94	0.22	0.0007

Table S22.

Multivariate model comparisons for Devonian divisions. Body lengths in cm transformed by Log₁₀ to correct for allometry. Models fit to transformed body length means and variances using the joint method (n=42). Temperature proxy is sea surface dO₁₈ (from Royer et al. 2004). Oxygen proxy is estimated atmospheric percentage from the GEOCARBSULFvolc model (Berner, 2009 in Royer, 2014).

Model	Log Likelihood	K	AICc	Akaike Weights
Directional (GRW)	22.89	9	-22.15	0.94
Random walk (URW)	18.44	8	-16.53	0.06
Stasis	8.84	8	2.68	0
Temperature (dO ₁₈)	-2.023	3	10.68	0
Oxygen (% atmos.)	0.032	3	6.57	0

Table S23.OLS regressions: Devonian "Agnathan" clades size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Heterostraci	Osteostraci
N	110	70
Slope a	0.019	0.0079
Intercept b	9.054	4.49
err a	0.0022	0.0031
err b	0.87	1.27
r	0.64	0.29
r^2	0.41	0.086
t	8.68	2.53
p(uncorr)	4.48E-14	0.014
permut p	0.0001	0.014
95% CI on a	0.015/ 0.023	0.00029/ 0.016
95% CI on b	7.36/ 10.66	1.36/ 7.85
Durbin-Watson	1.61	1.61
p(homosced.)	0.15	0.019

Table S24.RMA regressions: Devonian "Agnathan" clade size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Heterostraci	Osteostraci
N	110	70
Slope a	0.029	0.027
Intercept b	13.30	12.21
err a	0.0022	0.0031
err b	0.76	1.61
r	0.64	0.29
r^2	0.41	0.086
t	8.68	2.53
p(uncorr)	4.48E-14	0.014
permut p	0.0001	0.014
95% CI on a	0.024/ 0.033	0.021/ 0.078
95% CI on b	11.19/ 14.92	9.82/ 32.98
Durbin-Watson	1.29	1.064
p(homosced.)	0.047	0.0092

Table S25.OLS regressions: Devonian "Placoderm" clades size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Arthrodira	Antiarchi	Bothriolepis	Ptyctodontida	Phyllolepida	Petalichthyida
N	231	133	49	31	12	13
Slope a	0.011	0.014	0.013	0.0011	0.0015	0.010
Intercept b	5.91	6.80	6.64	2.13	1.97	5.45
err a	0.0017	0.0018	0.0046	0.015	0.014	0.0057
err b	0.66	0.71	1.74	5.64	5.41	2.25
r	0.38	0.55	0.39	0.014	0.031	0.48
r^2	0.14	0.30	0.15	0.00019	0.00098	0.23
t	6.12	7.52	2.88	0.074	0.11	1.80
p(uncorr)	3.98 E- 09	7.65E-12	0.0060	0.94	0.92	0.10
permut p	0.0001	0.0001	0.0066	0.94	0.91	0.098
95% CI on a	0.0075/ 0.014	0.010/ 0.017	0.0047/ 0.021	-0.029/ 0.033	-0.015/ 0.064	0.0028/ 0.023
95% CI on b	4.71/ 7.29	5.42/ 8.14	3.43/ 9.74	-9.37/ 14.34	-4.27/ 25.94	2.45/ 10.51
Durbin-Watson	1.73	1.74	2.21	1.65	2.24	2.11
p(homosced.)	0.39	0.46	0.74	0.83	0.81	0.40

Table S26.RMA regressions: Devonian "Placoderm" clades size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Arthrodira	Antiarcha	Bothriolepis	Ptyctodontida	Phyllolepida	Petalichthyida
N	231	133	49	31	12	13
Slope a	0.028	0.025	0.034	-0.076	0.049	0.022
Intercept b	12.68	11.16	14.58	-27.36	19.94	9.90
err a	0.0017	0.0018	0.0046	0.014	0.015	0.0057
err b	0.44	0.50	3.039	29.21	34.27	5.072
r	0.38	0.55	0.39	-0.011	0.092	0.48
r^2	0.14	0.30	0.15	0.00012	0.0084	0.23
t	6.12	7.52	2.88	-0.060	0.29	1.80
p(uncorr)	3.98 E- 09	7.65E-12	0.0060	0.95	0.77	0.10
permut p	0.0001	0.0001	0.0058	0.95	0.76	0.098
95% CI on a	0.025/ 0.031	0.021/ 0.028	0.023/ 0.043	-0.251/ -0.052	0.039/ 0.22	0.011/ 0.072
95% CI on b	11.45/ 13.77	9.62/ 12.45	10.45/ 17.80	-93.90/ -18.07	16.08/ 85.64	5.81/ 29.71
Durbin-Watson	1.18	1.34	1.55	0.89	1.03	1.32
p(homosced.)	0.069	0.48	0.19	0.84	0.67	0.40

Table S27.OLS regressions: Devonian "Acanthodian" clade size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Climatiida	Gyracanthida	Ischnacanthida	Acanthodida
N	40	22	39	17
Slope a	0.0084	-0.0027	-0.0037	0.0045
Intercept b	4.54	0.90	0.16	2.71
err a	0.0029	0.0060	0.0052	0.011
err b	1.15	2.27	2.068	4.19
r	0.43	-0.18	-0.12	0.11
r^2	0.18	0.032	0.013	0.013
t	2.90	-0.45	-0.70	0.41
p(uncorr)	0.0061	0.67	0.49	0.69
permut p	0.005	0.66	0.49	0.69
95% CI on a	0.0022/ 0.014	-0.014/ 0.014	-0.15/ 0.0077	-0.015/ 0.036
95% CI on b	2.088/ 6.87	-3.19/ 7.22	-4.32/ 4.67	-4.65/ 14.78
Durbin- Watson p(homosced.)	1.53 0.56	1.75 0.11	1.55 0.97	1.70 0.30

Table S28.RMA regressions: Devonian "Acanthodian" clade size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Climatiida	Gyracanthida	Ischnacanthida	Acanthodida
N	40	22	39	17
Slope a	0.020	-0.044	-0.032	0.028
Intercept b	9.04	-12.88	-11.041	11.71
err a	0.0029	0.0096	0.0052	0.0069
err b	1.33	10.77	4.28	7.086
r	0.42626	-0.20	-0.12	0.29
r^2	0.18169	0.041	0.013	0.085
t	2.9047	-0.93	-0.70	1.18
p(uncorr)	0.0061	0.37	0.49	0.26
permut p	0.0071	0.37	0.48	0.26
95% CI on a	0.015/ 0.024	-0.13/ -0.03	-0.11/ -0.024	0.012/ 0.096
95% CI on b	7.18/ 10.93	-42.14/ -8.037	-38.91/ -7.76	5.67/ 37.94
Durbin-				
Watson	1.12	1.62	0.96	1.14
p(homosced.)	0.082	0.93	0.74	0.52

Table S29.OLS regression: Devonian Sarcopterygii clades size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Porolepiformes	Dipnoi	Osteolepiformes	Rhizodontida	Actinistia
N	22	63	41	5	10
Slope a	0.0044	0.0055	0.025	0.012	-0.00045
Intercept b	3.42	3.67	11.32	6.64	1.41
err a	0.0056	0.0025	0.0063	0.018	0.016
err b	2.16	0.98	2.37	6.88	6.051
r	0.17	0.27	0.54	0.35	-0.0099
r^2	0.029	0.071	0.30	0.12	9.89E-05
t	0.78	2.16	4.075	0.64	-0.028
p(uncorr)	0.45	0.035	0.00021	0.57	0.98
permut p	0.42	0.036	0.0003	0.65	0.98
95% CI on a	-0.0031/ 0.014	-0.00013/ 0.011	0.013/ 0.038	-0.017/ 0.079	-0.020/ 0.11
95% CI on b	0.46/ 7.063	1.53/ 5.75	6.49/ 16.01	-3.93/ 32.12	-6.27/ 43.47
Durbin- Watson	2.21	1.68	2.036	0.94	0.75
p(homosced.)	0.39	0.42	0.13	0.24	0.65

Table S30.RMA regressions: Devonian Sarcopterygii clades size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Porolepiformes	Dipnoi	Osteolepiformes	Rhizodontida	Actinistia
N	22	63	41	5	10
Slope a	0.025	0.021	0.039	0.33635	-0.045
Intercept b	11.54	9.47	16.23	14.926	-15.53
err a	0.0056	0.0025	0.0057	0.018	0.016
err b	4.67	0.95	4.54	47.36	36.65
r	0.17153	0.23	0.41	0.35	-0.0099
r^2	0.029423	0.071	0.17	0.12	9.89E-05
t	0.77865	2.16	2.78	0.64	-0.028
p(uncorr)	0.4453	0.035	0.0084	0.57	0.98
permut p	0.4277	0.19	0.0083	0.65	0.98
95% CI on a	0.0079/ 0.093	0.016/ 0.027	0.028/ 0.048	0.019/ 0.14	-0.15/ 0.019
95% CI on b	5.00/ 37.82	7.64/ 11.93	12.35/ 19.66	9.82/ 55.662	-54.82/ 8.592
Durbin-					
Watson	1.07	1.040	1.28	1.35	1.15
p(homosced.)	0.70	0.003	0.32	0.33	0.032

Table S31.

Multivariate model comparison for Devonian clades. Body lengths in cm transformed by Log₁₀ to correct for allometry. Models fit to transformed body length means and variances using the joint method (n=82). Temperature proxy is sea surface dO₁₈ (from Royer et al. 2004). Oxygen proxy is estimated atmospheric percentage from the GEOCARBSULFvolc model (Berner, 2009 in Royer, 2014).

Model	Log Likelihood	K	AICc	Akaike Weights
Directional (GRW)	28.12	17	-12.67	0.99
Random walk (URW)	21.36	16	-2.35	0.01
Stasis	11.62	16	17.12	0
Temperature (dO ₁₈)	-23.09	3	52.49	0
Oxygen (% atmos.)	-13.28	3	32.87	0

Table S32.OLS regression: Mississippian divisions size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Actinopterygii	Sarcopterygii	Tetrapoda	"Acanthodians"	Chondrichthyes
N	103	35	40	31	145
Slope a	-0.0036	-0.0016	-0.0024	-0.0058	-0.018
Intercept b	-0.16	1.12	0.87	-0.14	-4.32
err a	0.0028	0.0093	0.0077	0.0093	0.0035
err b	0.95	3.14	2.57	3.17	1.18
r	-0.13	-0.031	-0.050	-0.12	-0.40
r^2	0.016	0.00094	0.0025	0.013	0.16
t	-1.29	-0.18	-0.31	-0.62	-5.16
p(uncorr)	0.20	0.86	0.76	0.54	8.10 E- 07
permut p	0.20	0.83	0.76	0.53	0.0001
95% CI on a	-0.0088/ 0.0019	-0.020/ 0.014	-0.018/ 0.012	-0.025/ 0.013	-0.025/ -0.012
95% CI on b	-1.92/ 1.70	-4.95/ 6.39	-4.39/ 5.68	-6.59/ 6.29	-6.59/ -2.25
Durbin-Watson	1.64	0.83	1.58	1.10	1.40
p(homosced.)	0.84	0.14	0.12	0.32	0.020

Table S33.RMA regression: Mississippian divisions size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Actinopterygii	Sarcopterygii	Tetrapoda	"Acanthodians"	Chondrichthyes
N	103	35	40	31	145
Slope a	-0.029	-0.054	-0.047	-0.050	-0.045
Intercept b	-8.57	-16.38	-14.29	-15.35	-13.58
err a	0.0028	0.0093	0.0077	0.0092	0.0035
err b	0.91	9.89	6.69	10.069	1.39
r	-0.13	-0.031	-0.050	-0.12	-0.40
r^2	0.016	0.00094	0.0025	0.013	0.16
t	-1.29	-0.18	-0.31	-0.62	-5.16
p(uncorr)	0.20	0.86	0.76	0.54	8.10 E- 07
permut p	0.20	0.86	0.76	0.54	0.0001
95% CI on a	-0.087/ -0.023	-0.18/ -0.041	-0.16/ -0.036	-0.16/ -0.041	-0.050/ -0.40
95% CI on b	-28.36/ -6.66	-57.74/ -12.15	-50.5/ -10.33	-51.91/ -12.14	-15.28/ -11.76
Durbin-Watson	1.14	0.80	1.25	0.84	1.42
p(homosced.)	0.0057	0.91	0.16	0.58	0.71

Table S34. OLS regressions: Mississippian "Acanthodian" and Chondrichthyes clades size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log_{10} .

	Acanthodida	Gyracanthida	Gyracanthus	Holocephali	Elasmobranchii
N	10	22	8	29	59
Slope a	0.013	-0.0089	0.014	-0.027	-0.021
Intercept b	5.58	-0.94	7.29	-7.50	-5.25
err a	0.0060	0.0096	0.0057	0.0088	0.0045
err b	2.026	3.28	1.98	2.95	1.52
r	0.60	-0.20	0.72	-0.51	-0.53
r^2	0.36	0.041	0.51	0.26	0.28
t	2.10	-0.93	2.51	-3.11	-4.68
p(uncorr)	0.069	0.37	0.046	0.0043	1.79E-05
permut p	0.077	0.37	0.054	0.0046	0.0001
95% CI on a	0.0020/ 0.025	-0.029/ -0.015	0.0057/ 0.022	-0.044/ -0.014	-0.031/ -0.012
95% CI on b	2.0082/ 9.70	-7.97/ -7.24	4.44/ 9.88	-12.92/ -2.95	-8.70/ -2.00
Durbin-Watson	2.27	2.00	2.41	1.76	1.67
p(homosced.)	0.77	0.011	0.072	0.71	0.0067

Table S35. RMA regressions: Mississippian "Acanthodian" and Chondrichthyes clades size/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log_{10} .

	Acanthodida	Gyracanthida	Gyracanthus	Holocephali	Elasmobranchii
N	10	22	8	29	59
Slope a	0.021	-0.044	0.020	-0.053	-0.040
Intercept b	8.46	-12.88	9.26	-16.18	-11.64
err a	0.0060	0.0096	0.0057	0.0088	0.0045
err b	4.11	10.77	3.91	8.70	2.32
r	0.60	-0.20	0.72	-0.51	-0.53
r^2	0.36	0.041	0.51	0.26	0.28
t	2.10	-0.93	2.5108	-3.11	-4.68
p(uncorr)	0.069	0.37	0.046	0.0044	1.79E-05
permut p	0.08	0.37	0.050	0.0056	0.0001
95% CI on a	0.011/ 0.046	-0.13/ -0.029	0.0029/ 0.031	-0.064/ -0.036	-0.047/ -0.032
95% CI on b	5.20/ 16.87	-42.14/ -8.037	3.15/ 12.95	-19.95/ -10.53	-14.31/ -9.00
Durbin-Watson	1.93	1.24	2.34	1.33	1.25
p(homosced.)	0.25	0.067	0.15	0.99	0.17

Table S36.OLS regressions: Mississippian Sarcopterygii clades sizes/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Rhizodontida	Dipnoi	Actinistia
N	14	4	14
Slope a	0.012	-0.0025	-0.046
Intercept b	6.12	0.97	-0.32
err a	0.010	0.0055	0.0052
err b	3.46	1.87	1.74
r	0.31	-0.31	-0.25
r^2	0.098	0.095	0.062
t	1.14	-0.46	-0.89
p(uncorr)	0.27	0.69	0.39
permut p	0.26	0.66	0.39
95% CI on a	-0.0063/ 0.034	-0.017/ 0.0095	-0.014/ -0.0041
95% CI on b	-0.16/ 13.55	-3.89/ 5.17	-3.44/ 2.52
Durbin-Watson	1.82	2.57	2.80
p(homosced.)	0.36	0.89	0.80

Table S37.RMA regressions: Mississippian Sarcopterygii clades sizes/age. Confidence intervals from 1999 bootstrapped replicates. Body lengths (cm) transformed by Log₁₀.

	Rhizodontida	Dipnoi	Actinistia
N	14	4	14
Slope a	0.037	-0.0082	-0.019
Intercept b	14.78	-0.96	-5.010
err a	0.010	0.0055	0.0052
err b	11.98	3.51	3.038
r	0.31	-0.31	-0.25
r^2	0.098	0.095	0.062
t	1.14	-0.46	-0.89
p(uncorr)	0.27	0.69	0.39
permut p	0.27	0.67	0.39
95% CI on a	0.021/ 0.12	-0.035/ -0.0016	-0.062/ -0.0018
95% CI on b	9.51/ 43.76	-8.42/ 1.38	-19.55/ 0.56
Durbin-Watson	1.28	2.68	2.076
p(homosced.)	0.47	0.15	0.22

Table S38.Mann-Whitney U-Tests: "Agnathan" and "Placoderm" clades. Body lengths (cm) transformed by Log₁₀.Monte Carlo p-values for each stage versus previous stage. Only comparisons of bins with more than four values included.

Stage	Heterostraci	Osteostraci	Arthrodira	Antiarcha	Ptyctodontida
Lockhovian					
Pragian	0.071	0.0047	0.96	0.71	
Emsian	0.47	0.01	0.069	0.93	
Eifelian	0.0003	0.83	0.13	0.14	
Givetian	0.9		0.4	0.88	0.16
Frasnian	1		0.0082	0.001	0.41
Famennian			0.0001	0.69	

Table S39.Mann-Whitney U-Tests: "Acanthodian" and Chondrichthyes subclades. Body lengths (cm) transformed by Log₁₀.Monte Carlo p-values for each stage versus previous stage. Only comparisons of bins with more than four values included.

Stage	Climatiida	Ischnacanthida	Gyracanthida	Elasmobranchii	Holocephali
Lockhovian					
Pragian		0.19			
Emsian	0.65	0.43			
Eifelian	0.23				
Givetian	0.33				
Frasnian					
Famennian					
Tournaisian					
Visean			0.71	0.13	0.048
Serpukhovia	ın		0.83	0.006	0.24

Table S40.Mann-Whitney U-Tests: Sarcopterygii clades. Body lengths (cm) transformed by Log₁₀. Monte Carlo p-values for each stage versus previous stage. Only comparisons of bins with more than four values included.

Stage	Porolepiformes	Osteolepiforms	Dipnoi	Actinistia	Rhizodontida
Lockhovian					
Pragian					
Emsian					
Eifelian			0.15		
Givetian	0.77	0.0045	0.43		
Frasnian	0.6	0.092	0.14		
Famennian		0.29	0.068		
Tournaisian					
Visean					0.2
Serpukhovia	n			0.98	0.79

References and Notes

- 1. E. R. Pianka, On r- and K-selection. Am. Nat. 104, 592–597 (1970). doi:10.1086/282697
- 2. N. A. Heim, M. L. Knope, E. K. Schaal, S. C. Wang, J. L. Payne, Cope's rule in the evolution of marine animals. *Science* **347**, 867–870 (2015). Medline doi:10.1126/science.1260065
- 3. S. M. Stanley, An explanation for Cope's rule. *Evolution* **27**, 1–26 (1973). doi:10.2307/2407115
- 4. P. J. Harries, P. O. Knorr, What does 'Lilliput Effect' mean? *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **284**, 4–10 (2009). doi:10.1016/j.palaeo.2009.08.021
- 5. M. Friedman, L. C. Sallan, Five hundred million years of extinction and recovery: A Phanerozoic survey of large-scale diversity patterns in fishes. *Palaeontology* **55**, 707–742 (2012). doi:10.1111/j.1475-4983.2012.01165.x
- 6. R. Lockwood, Body size, extinction events, and the early Cenozoic record of veneroid bivalves: A new role for recoveries. *Paleobiology* **31**, 578–590 (2005). doi:10.1666/04070.1
- 7. M. S. Y. Lee, A. Cau, D. Naish, G. J. Dyke, Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. *Science* **345**, 562–566 (2014). <u>Medline</u> doi:10.1126/science.1252243
- 8. J. L. Payne, A. B. Jost, S. C. Wang, J. M. Skotheim, A shift in the long-term mode of foraminiferan size evolution caused by the end-Permian mass extinction. *Evolution* **67**, 816–827 (2013). Medline doi:10.1111/j.1558-5646.2012.01807.x
- 9. M. V. Lomolino, Body size evolution in insular vertebrates: Generality of the island rule. *J. Biogeogr.* **32**, 1683–1699 (2005). doi:10.1111/j.1365-2699.2005.01314.x
- 10. B. Choo, M. Zhu, W. Zhao, L. Jia, Y. Zhu, The largest Silurian vertebrate and its palaeoecological implications. *Sci. Rep.* **4**, 5242 (2014). Medline doi:10.1038/srep05242
- 11. T. W. Dahl, E. U. Hammarlund, A. D. Anbar, D. P. Bond, B. C. Gill, G. W. Gordon, A. H. Knoll, A. T. Nielsen, N. H. Schovsbo, D. E. Canfield, Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 17911–17915 (2010). Medline doi:10.1073/pnas.1011287107
- 12. J. C. Lamsdell, S. J. Braddy, Cope's rule and Romer's theory: Patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. *Biol. Lett.* **6**, 265–269 (2010). Medline doi:10.1098/rsbl.2009.0700
- 13. L. C. Sallan, M. Friedman, Heads or tails: Staged diversification in vertebrate evolutionary radiations. *Proc. Biol. Sci.* **279**, 2025–2032 (2012). Medline doi:10.1098/rspb.2011.2454
- 14. L. C. Sallan, T. W. Kammer, W. I. Ausich, L. A. Cook, Persistent predator-prey dynamics revealed by mass extinction. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 8335–8338 (2011). Medline doi:10.1073/pnas.1100631108
- 15. L. C. Sallan, M. I. Coates, End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 10131–10135 (2010). Medline <a href="Medical Content of the End of Content of

- 16. D. L. Royer, R. A. Berner, I. P. Montañez, N. J. Tabor, D. J. Beerling, CO₂ as a primary driver of Phanerozoic climate. *GSA Today* **14**, 4–10 (2004). doi:10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2
- 17. R. A. Berner, Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. *Am. J. Sci.* **309**, 603–606 (2009). doi:10.2475/07.2009.03
- 18. B. Worm, M. Sandow, A. Oschlies, H. K. Lotze, R. A. Myers, Global patterns of predator diversity in the open oceans. *Science* **309**, 1365–1369 (2005). Medline doi:10.1126/science.1113399
- 19. D. M. Raup, Size of the Permo-Triassic bottleneck and its evolutionary implications. *Science* **206**, 217–218 (1979). Medline doi:10.1126/science.206.4415.217
- 20. Materials and methods are available as supplementary materials on *Science* Online.
- 21. S. M. Stanley, Relation of Phanerozoic stable isotope excursions to climate, bacterial metabolism, and major extinctions. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 19185–19189 (2010). Medline doi:10.1073/pnas.1012833107
- 22. D. Jablonski, Survival without recovery after mass extinctions. *Proc. Natl. Acad. Sci. U.S.A.* **99**, 8139–8144 (2002). Medline doi:10.1073/pnas.102163299
- 23. P. J. Wagner, G. F. Estabrook, Trait-based diversification shifts reflect differential extinction among fossil taxa. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 16419–16424 (2014). Medline doi:10.1073/pnas.1406304111
- 24. S. M. Stanley, A theory of evolution above the species level. *Proc. Natl. Acad. Sci. U.S.A.* **72**, 646–650 (1975). <u>Medline doi:10.1073/pnas.72.2.646</u>
- 25. J. A. Long, E. Mark-Kurik, Z. Johanson, M. S. Y. Lee, G. C. Young, Z. Min, P. E. Ahlberg, M. Newman, R. Jones, J. den Blaauwen, B. Choo, K. Trinajstic, Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. *Nature* **517**, 196–199 (2015). Medline doi:10.1038/nature13825
- 26. D. Jablonski, Background and mass extinctions: The alternation of macroevolutionary regimes. *Science* **231**, 129–133 (1986). Medline doi:10.1126/science.231.4734.129
- 27. J. H. Knouft, L. M. Page, The evolution of body size in extant groups of North American freshwater fishes: Speciation, size distributions, and Cope's rule. *Am. Nat.* **161**, 413–421 (2003). Medline doi:10.1086/346133
- 28. B. Van Valkenburgh, X. Wang, J. Damuth, Cope's rule, hypercarnivory, and extinction in North American canids. *Science* **306**, 101–104 (2004). Medline doi:10.1126/science.1102417
- 29. L. A. K. Barnett, R. L. Earley, D. A. Ebert, G. M. Cailliet, Maturity, fecundity, and reproductive cycle of the spotted ratfish *Hydrolagus colliei*. *Mar. Biol.* **156**, 301–316 (2009). doi:10.1007/s00227-008-1084-y
- 30. J. F. Ponge, Disturbances, organisms and ecosystems: A global change perspective. *Ecol. Evol.* **3**, 1113–1124 (2013). Medline doi:10.1002/ece3.505

- 31. N. B. Fröbisch, J. Fröbisch, P. M. Sander, L. Schmitz, O. Rieppel, Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 1393–1397 (2013). Medline doi:10.1073/pnas.1216750110
- 32. C. Romano, M. B. Koot, I. Kogan, A. Brayard, A. V. Minikh, W. Brinkmann, H. Bucher, J. Kriwet, Permian-Triassic Osteichthyes (bony fishes): Diversity dynamics and body size evolution. *Biol. Rev.* 10.1111/brv.12161 (2014). Medline doi:10.1111/brv.12161
- 33. L. C. Sallan, M. I. Coates, The long-rostrumed elasmobranch *Bandringa* Zangerl, 1969, and taphonomy with a Carboniferous shark nursery. *J. Vertebr. Paleontol.* **34**, 22–33 (2014). doi:10.1080/02724634.2013.782875
- 34. M. Ginter, S. Turner, The Middle Paleozoic selachian genus *Thrinacodus*. *J. Vertebr. Paleontol.* **30**, 1666–1672 (2010). doi:10.1080/02724634.2010.520785
- 35. W. S. Rasband, ImageJ (U.S. National Institutes of Health, Bethesda, MD, 1997–2015); http://imagej.nih.gov/ij/.
- 36. F. Gradstein, J. G. Ogg, M. Schmitz, G. Ogg, *The Geological Timescale 2012* (Elsevier, Boston, 2012).
- 37. N. M. Bergman, T. M. Lenton, A. J. Watson, COPSE: A new model of biogeochemical cycling over Phanerozoic time. *Am. J. Sci.* **304**, 397–437 (2004). doi:10.2475/ajs.304.5.397
- 38. D. L. Royer, Atmospheric CO₂ and O₂ during the Phanerozoic: Tools, patterns and impacts. *Treatise Geochem.* **6**, 251–267 (2014). doi:10.1016/B978-0-08-095975-7.01311-5
- 39. I. J. Glasspool, A. C. Scott, Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcol. *Nat. Geosci.* **3**, 627–630 (2010). doi:10.1038/ngeo923
- 40. P. J. Mayhew, M. A. Bell, T. G. Benton, A. J. McGowan, Biodiversity tracks temperature over time. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 15141–15145 (2012). <u>Medline doi:10.1073/pnas.1200844109</u>
- 41. D. O. Breecker, Z. D. Sharp, L. D. McFadden, Atmospheric CO₂ concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 576–580 (2010). Medline doi:10.1073/pnas.0902323106
- 42. F. V. Hessman, Figure_Calibration; www.astro.physik.uni-goettingen.de/~hessman/ImageJ/Figure_Calibration/.
- 43. F. M. Gradstein, J. G. Ogg, A. G. Smith, *A Geologic Time Scale 2004* (Cambridge Univ. Press, Cambridge, 2005).
- 44. J. G. Ogg, G. Ogg, F. M. Gradstein, *The Concise Geologic Timescale* (Cambridge Univ. Press, Cambridge, 2008).
- 45. D. J. Bottjer, D. Jablonski, Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. *Palaios* **3**, 540–560 (1988). doi:10.2307/3514444
- 46. Ø. Hammer, D. A. T. Harper, P. D. Ryan, PAST: Paleontological statistics software package for education and data analysis. *Palaeontol. Electron.* **4**, 1–9 (2001).
- 47. G. Hunt, Fittings and comparing models of phyletic evolution: Random walks and beyond. *Paleobiology* **32**, 578–601 (2006). doi:10.1666/05070.1

- 48. G. Hunt, "Evolutionary patterns within fossil lineages: model-based assessment of modes, rates, punctuations and process," in *From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century*, R. K. Bambach, P. H. Kelley, Eds. (Paleontological Society Paper Series, The Paleontological Society, Boulder, CO, 2008), pp. 578–601.
- 49. S. Giles, M. Friedman, M. D. Brazeau, Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome. *Nature* **520**, 82–85 (2015). <u>Medline</u> doi:10.1038/nature14065