Algebra II (ISIM), lista 12 (1.02.2022, deklaracje 31.01.2022, 9:00)

Teoria: Ciało ułamków. Przykłady: ciało szeregów Laurenta, ciało funkcji wymiernych. Tw. Gaussa: Jeśli R: UFD, to R[X] też. Kryterium Eisensteina. Funkcje wielomianowe, homomorfizm ewaluacji w punkcie.

R oznacza pierścień przemienny z $1 \neq 0$.

- 1. Udowodnić, że:
 - (a) $\mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\}$ to ciało ułamków pierścienia Gaussa $\mathbb{Z}[i]$.
 - (b) $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ to ciało ułamków pierścienia $\mathbb{Z}[\sqrt{2}]$.
 - (c) \mathbb{Q} to ciało ułamków pierścienia $\mathbb{Z}\left[\frac{1}{2}\right]$.
 - (d) $\mathbb{Q}(X)$ to ciało ułamków pierścienia $\mathbb{Z}[X]$.
- 2. Dla $W(X) = \sum a_i X^i \in R[X]$ określamy funkcję $\hat{W}: R \to R$ wzorem $\hat{W}(a) = \sum a_i a^i$. \hat{W} nazywamy funkcją wielomianową (wyznaczoną przez W) często pomijamy w zapisie).
 - (a) Podać przykład niezerowego wielomianu $W(X) \in \mathbb{Z}_5[X]$ takiego, że wyznaczona przezeń funkcja wielomianowa jest zerowa.
 - (b) Dla $a \in R$ określamy funkcję $\varphi_a : R[X] \to R$ wzorem $\varphi_a(W) = \hat{W}(a)$. Udowodnić, że φ_a jest homomorfizmem pierścieni (zwanym funkcją ewaluacji w punkcie a).
 - (c) Udowodnić twierdzenie Bezouta: Załóżmy, że K jest ciałem, $W(X) \in K[X]$ jest niezerowy oraz $a \in K$. Wtedy a jest pierwiastkiem wielomianiu W (tzn. $\hat{W}(a) = 0$) $\iff (X a)|W(X) \le K[X]$.
- 3. Wskazać wielomiany nierozkładalne:
 - (a) stopnia 2 w $\mathbb{Z}_5[X]$,
 - (b) stopnia 3 w $\mathbb{Z}_7[X]$,
 - (c) stopnia 4 w $\mathbb{Z}_2[X]$.
- 4. (a) Załóżmy, że R jest dziedziną, $W(X) \in R[X]$ oraz $\deg W = n > 0$. Udowodnić, że W ma nie więcej niż n pierwiastków w R.
 - (b) Ile pierwiastków ma wielomian $X^3 + 5X \in \mathbb{Z}_6[X]$?
- 5. (a) Udowodnić, że jeśli K jest ciałem skończonym, to każda funkcja $f:K\to K$ jest wielomianowa.
 - (b) Udowodnić, ze jeśli R jest pierścieniem nieskończonym, to nie każda funkcja $f:R\to R$ jest wielomianowa.
 - (c)* W (b) wskazać konkretną funkcję, która nie jest wielomianowa.
- 6. * (a) Czy pierscienie $\mathbb{Z}, \mathbb{Z}[X], \mathbb{Z}[X, Y]$ są izomorficzne?
 - (b) Czy pierścienie $\mathbb{Z}[X], \mathbb{Z}[X^2], \mathbb{Z}[X^2, X^3]$ są izomorficzne?
- 7. (a) Załóżmy, że $W(X), V(X) \in \mathbb{R}[X]$ są względnie pierwsze, niezerowe. Udowodnić, że istnieją wielomiany $S(X), T(X) \in \mathbb{R}[X]$ takie, że w ciele $\mathbb{R}(X)$ mamy:

$$\frac{1}{W(X) \cdot V(X)} = \frac{S(X)}{W(X)} + \frac{T(X)}{V(X)}$$

- (b) Udowodnić, że każdą funkcję wymierną $f(X) \in \mathbb{R}(X)$ można przedstawić jako sumę ułamków postaci $\frac{V(X)}{W(X)}$, gdzie $W, V \in \mathbb{R}[X]$ oraz W(X) jest potęgą nierozkładalnego wielomianu stopnia ≤ 2 . (uwaga: dzięki temu umiemy całkować funkcje wymierne)
- 8. Załóżmy, że $d \in \mathbb{Z}$ nie jest kwadratem liczby całkowitej . Udowodnić, że każdy ideał w pierścieniu $\mathbb{Z}[\sqrt{d}]$ jest generowany przez co najwyżej 2 elementy. (wsk: dla $I \triangleleft \mathbb{Z}[\sqrt{d}]$ rozważyć zbiory $I_0 = I \cap \mathbb{Z}$ i $I_1 = \{b \in \mathbb{Z} : a + b\sqrt{d} \in I \text{ dla pewnego } a \in \mathbb{Z}\}$. Imitować dowód tw. Hilberta o bazie)
- 9. Niech p będzie liczbą pierwszą. Udowodnić, że wielomian $\Phi(X) = X^{p-1} + X^{p-2} + \cdots + X + 1$ jest nierozkładalny w $\mathbb{Q}[X]$. (wsk: Rozważyć automorfizm Ψ : $\mathbb{Q}(X) \to \mathbb{Q}(X)$ dany wzorem $\Psi(f(X)) = f(X+1)$. $\Phi(X) = \frac{X^{p-1}}{X-1}$. Zastosować kryterium Eisensteina.)
- 10. Obliczyć szeregi (a)– $(1+X)^{-1}$, (b) $(1+2X)^{-1}$ w pierścieniu $\mathbb{R}[\![X]\!]$ i w pierścieniu $\mathbb{Z}_4[\![X]\!]$. Porównać uzyskane wyniki z rozwinięciem odpowiednich funkcji w szereg Taylora.
 - (c)* Sformułować i udowodnić ogólną prawidłowość.
- 11. Załóżmy, że norma euklidesowa δ w pierścieniu euklidesowym R spełnia warunki:
 - $\delta(a+b) \leq \max\{\delta(a), \delta(b)\}$ oraz $\delta(ab) = \delta(a) + \delta(b)$ dla wszystkich $a, b \in R$. Udowodnić, że iloraz i reszta w dzieleniu z resztą w R zgodnie z δ sa wyznaczone jednoznacznie. (uwaga: tak jest w pierscieniu K[X]).