The correct answer is: manual algorithms

Dashboard / My units / FIT3158_S2_2022 / Assessments / Quiz Week 5			
Started on	Friday, 26 August 2022, 11:17 AM		
State	Finished		
Completed on	Friday, 26 August 2022, 11:26 AM		
	9 mins 29 secs		
Grade	1.00 out of 1.00 (100 %)		
Almost all network problems can be viewed as special cases of the			
○ a.	minimal spanning tree problem.		
○ b.	shortest path problem.		
c.	transshipment problem.		
Od. maximal flow problem.			
The correct answer	is: transshipment problem.		
A node	which can both send to and receive from other nodes is called a		
○ a.	supply node.		
○ b.	demand node.		
c.	transshipment node.		
od. random nod	de.		
The correct answer	is: transshipment node.		
Which	method is preferred for solving minimal spanning tree problems?		
○ a.	transshipment models		
b.	manual algorithms		
○ c.	simulation		
od. linear progr	ramming		

How many arcs are required to make a spanning tree in a network with n nodes and m arcs? a. m b. n-1 Oc. n od. m-1 The correct answer is: n-1 What is the objective function in the following maximal flow problem? +0 a. MAX X₁₄ b. MAX X₄₁ \circ c. MAX X₁₂ + X₁₃ + X₂₃ + X₂₄ + X₃₄ d. MIN X₄₁ The correct answer is: MAX X₄₁ Which method is preferred for solving fully connected transportation problems? oa. network flow methods b. linear programming o. trial and error od. simulation The correct answer is: linear programming The right hand side value (constraint) for the ending node in a shortest path problem has a value of a. 2 ○ b. -1 oc. 0

The correct answer is: 1		
The number of constraints in network flow problems is determined by the number of a. demands. b. nodes. c. supplies. d. arcs.	~	
The correct answer is: nodes.		
How could a network be modified if demand exceeds available supply? a. remove the extra demand arcs b. add a dummy supply c. add a dummy demand d. add extra supply arcs	~	
The correct answer is: add a dummy supply		
■ Quiz Week 4 Jump to	\$	

Quiz Week 6 ▶

d. 1