Chapter 9 Input Modeling Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Purpose & Overview

- Input models provide the driving force for a simulation model.
- The quality of the output is no better than the quality of inputs.
- In this chapter, we will discuss the 4 steps of input model development:
 - ☐ Collect data from the real system
 - ☐ Identify a probability distribution to represent the input process
 - ☐ Choose parameters for the distribution
 - □ Evaluate the chosen distribution and parameters for goodness of fit.

Data Collection

- One of the biggest tasks in solving a real problem. GIGO garbage-in-garbage-out
- Suggestions that may enhance and facilitate data collection:
 - □ Plan ahead: begin by a practice or pre-observing session, watch for unusual circumstances
 - ☐ Analyze the data as it is being collected: check adequacy
 - ☐ Combine homogeneous data sets, e.g. successive time periods, during the same time period on successive days
 - □ Be aware of data censoring: the quantity is not observed in its entirety, danger of leaving out long process times
 - Check for relationship between variables, e.g. build scatter diagram
 - □ Check for autocorrelation
 - □ Collect input data, not performance data

3

Identifying the Distribution

- Histograms
- Selecting families of distribution
- Parameter estimation
- Goodness-of-fit tests
- Fitting a non-stationary process

Histograms

[Identifying the distribution]

- A frequency distribution or histogram is useful in determining the shape of a distribution
- The number of class intervals depends on:
 - □ The number of observations
 - □ The dispersion of the data
 - □ Suggested: the square root of the sample size
- For continuous data:
 - Corresponds to the probability density function of a theoretical distribution
- For discrete data:
 - □ Corresponds to the probability mass function
- If few data points are available: combine adjacent cells to eliminate the ragged appearance of the histogram

5

Histograms

[Identifying the distribution]

Vehicle Arrival Example: # of vehicles arriving at an intersection between 7 am and 7:05 am was monitored for 100 random workdays.

Arrivals per Period	Frequency
0	12
1	10
2	19
3	17
4	10
5	8
6	7
7	5
8	5
9	3
10	3
11	1

 There are ample data, so the histogram may have a cell for each possible value in the data range

Selecting the Family of Distributions

[Identifying the distribution]

- A family of distributions is selected based on:
 - ☐ The context of the input variable
 - □ Shape of the histogram
- Frequently encountered distributions:
 - □ Easier to analyze: exponential, normal and Poisson
 - $\hfill \square$ Harder to analyze: beta, gamma and Weibull

7

Selecting the Family of Distributions

[Identifying the distribution]

- Use the physical basis of the distribution as a guide, for example:
 - ☐ Binomial: # of successes in *n* trials
 - Poisson: # of independent events that occur in a fixed amount of time or space
 - □ Normal: dist'n of a process that is the sum of a number of component processes
 - □ Exponential: time between independent events, or a process time that is memoryless
 - □ Weibull: time to failure for components
 - □ Discrete or continuous uniform: models complete uncertainty
 - ☐ Triangular: a process for which only the minimum, most likely, and maximum values are known
 - □ Empirical: resamples from the actual data collected

Selecting the Family of Distributions

[Identifying the distribution]

- Remember the physical characteristics of the process
 - ☐ Is the process naturally discrete or continuous valued?
 - □ Is it bounded?
- No "true" distribution for any stochastic input process
- Goal: obtain a good approximation

9

Quantile-Quantile Plots

[Identifying the distribution]

- Q-Q plot is a useful tool for evaluating distribution fit
- If X is a random variable with cdf F, then the q-quantile of X is the γ such that

$$F(\gamma) = P(X \le \gamma) = q$$
, for $0 < q < 1$

- □ When *F* has an inverse, $\gamma = F^{-1}(q)$
- Let $\{x_i, i = 1, 2, ..., n\}$ be a sample of data from X and $\{y_j, j = 1, 2, ..., n\}$ be the observations in ascending order:

$$y_j$$
 is approximately $F^{-1}\left(\frac{j-0.5}{n}\right)$

where *j* is the ranking or order number

Quantile-Quantile Plots

[Identifying the distribution]

- The plot of y_j versus $F^{-1}((j-0.5)/n)$ is
 - □ Approximately a straight line if *F* is a member of an appropriate family of distributions
 - ☐ The line has slope 1 if *F* is a member of an appropriate family of distributions with appropriate parameter values

11

Quantile-Quantile Plots

[Identifying the distribution]

- Example: Check whether the door installation times follows a normal distribution.
 - ☐ The observations are now ordered from smallest to largest:

j	Value	j	Value	j	Value
1	99.55	6	99.98	11	100.26
2	99.56	7	100.02	12	100.27
3	99.62	8	100.06	13	100.33
4	99.65	9	100.17	14	100.41
5	99.79	10	100.23	15	100.47

□ y_j are plotted versus $F^{-1}((j-0.5)/n)$ where F has a normal distribution with the sample mean (99.99 sec) and sample variance (0.2832^2 sec^2)

Quantile-Quantile Plots

[Identifying the distribution]

- Consider the following while evaluating the linearity of a q-q plot:
 - ☐ The observed values never fall exactly on a straight line
 - ☐ The ordered values are ranked and hence not independent, unlikely for the points to be scattered about the line
 - □ Variance of the extremes is higher than the middle. Linearity of the points in the middle of the plot is more important.
- Q-Q plot can also be used to check homogeneity
 - ☐ Check whether a single distribution can represent both sample sets
 - □ Plotting the order values of the two data samples against each other

Parameter Estimation

[Identifying the distribution]

- Next step after selecting a family of distributions
- If observations in a sample of size n are $X_1, X_2, ..., X_n$ (discrete or continuous), the sample mean and variance are:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 $S^2 = \frac{\sum_{i=1}^{n} X_i^2 - n\overline{X}^2}{n-1}$

If the data are discrete and have been grouped in a frequency distribution:

$$\overline{X} = \frac{\sum_{j=1}^{n} f_{j} X_{j}}{n}$$

$$S^{2} = \frac{\sum_{j=1}^{n} f_{j} X_{j}^{2} - n \overline{X}^{2}}{n-1}$$

where f_i is the observed frequency of value X_i

15

Parameter Estimation

[Identifying the distribution]

When raw data are unavailable (data are grouped into class intervals), the approximate sample mean and variance are:

$$\overline{X} = \frac{\sum_{j=1}^{c} f_j X_j}{n}$$

$$S^2 = \frac{\sum_{j=1}^{n} f_j m_j^2 - n \overline{X}^2}{n-1}$$

where f_j is the observed frequency of in the jth class interval m_i is the midpoint of the jth interval, and c is the number of class intervals

 A parameter is an unknown constant, but an estimator is a statistic.

Parameter Estimation

[Identifying the distribution]

Vehicle Arrival Example (continued): Table in the histogram example on slide 6 (Table 9.1 in book) can be analyzed to obtain:

$$n = 100, f_1 = 12, X_1 = 0, f_2 = 10, X_2 = 1,...,$$

and $\sum_{j=1}^{k} f_j X_j = 364$, and $\sum_{j=1}^{k} f_j X_j^2 = 2080$

□ The sample mean and variance are

$$\overline{X} = \frac{364}{100} = 3.64$$

$$S^2 = \frac{2080 - 100 \cdot (3.64)^2}{99}$$
= 7.63

- ☐ The histogram suggests X to have a Possion distribution
 - However, note that sample mean is not equal to sample variance.
 - Reason: each estimator is a random variable, is not perfect.

17

Goodness-of-Fit Tests

[Identifying the distribution]

- Conduct hypothesis testing on input data distribution using:
 - □ Kolmogorov-Smirnov test
 - Chi-square test
- No single correct distribution in a real application exists.
 - ☐ If very little data are available, it is unlikely to reject any candidate distributions
 - ☐ If a lot of data are available, it is likely to reject all candidate distributions

Chi-Square test

[Goodness-of-Fit Tests]

- Intuition: comparing the histogram of the data to the shape of the candidate density or mass function
- Valid for large sample sizes when parameters are estimated by maximum likelihood
- By arranging the n observations into a set of k class intervals or cells, the test statistics is:

which **approximately** follows the chi-square distribution with k-s-1 degrees of freedom, where s = # of parameters of the hypothesized distribution estimated by the sample statistics.

19

Chi-Square test

[Goodness-of-Fit Tests]

The hypothesis of a chi-square test is:

 H_0 : The random variable, X, conforms to the distributional assumption with the parameter(s) given by the estimate(s).

 H_1 : The random variable X does not conform.

Chi-Square test

[Goodness-of-Fit Tests]

Vehicle Arrival Example (continued):

 H_0 : the random variable is Poisson distributed.

 H_1 : the random variable is not Poisson distributed.

X i	Observed Frequency, O _i	Expected Frequency, E _i (O _i - E _i	
0	ر 12	2.6 } 7.8	$e^{-\alpha}\alpha^x$
1	10 🕽	9.6	$= n \frac{e^{-\alpha} \alpha}{\alpha}$
2	19	17.4 0.19	$-n{x!}$
3	17	21.1 0.8	A.
4	19	19.2 4.4	1
5	6	14.0 2.5	7
6	7	8.5 0.20	ô
7	5]	4.4	
8	5	2.0	
9	3 ≻	0.8	Combined because
10	3	0.3	_ \
> 11	1)	0.1	of min <i>E_i</i>
	100	100.0 27.6	i8

□ Degree of freedom is k-s-1 = 7-1-1 = 5, hence, the hypothesis is rejected at the 0.05 level of significance.

$$\chi_0^2 = 27.68 > \chi_{0.05.5}^2 = 11.1$$

Kolmogorov-Smirnov Test

[Goodness-of-Fit Tests]

- Intuition: formalize the idea behind examining a q-q plot
- Recall from Chapter 7.4.1:
 - □ The test compares the **continuous** cdf, F(x), of the hypothesized distribution with the empirical cdf, $S_N(x)$, of the N sample observations.
 - □ Based on the maximum difference statistics (Tabulated in A.8):

$$D = \max |F(x) - S_N(x)|$$

- A more powerful test, particularly useful when:
 - □ Sample sizes are small,
 - □ No parameters have been estimated from the data.

.

Summary

- In this chapter, we described the 4 steps in developing input data models:
 - □ Collecting the raw data
 - □ Identifying the underlying statistical distribution
 - ☐ Estimating the parameters
 - □ Testing for goodness of fit