# Machine Learning and Differential Privacy

Maria-Florina Balcan 04/22/2015

# Learning and Privacy

- To do machine learning, we need data.
- What if the data contains sensitive information?
  - medical data, web search query data, salary data, student grade data.
- Even if the (person running the) learning algo can be trusted, perhaps the output of the algorithm reveals sensitive info.
- E.g., using search logs of friends to recommend query completions:

Why are \_\_ Why are my feet so itchy?

# Learning and Privacy

- To do machine learning, we need data.
- What if the data contains sensitive information?
- Even if the (person running the) learning algo can be trusted, perhaps the output of the algorithm reveals sensitive info.
- E.g., SVM or perceptron on medical data:
  - Suppose feature j is has-green-hair and the learned w has  $w_i \neq 0$ .
  - If there is only one person in town with green hair, you know they were in the study.

# Learning and Privacy

- To do machine learning, we need data.
- What if the data contains sensitive information?
- Even if the (person running the) learning algo can be trusted, perhaps the output of the algorithm reveals sensitive info.
- An approach to address these problems:

#### Differential Privacy

"The Algorithmic Foundations of Differential Privacy". Cynthia Dwork, Aaron Roth. Foundations and Trends in Theoretical Computer Science, NOW Publishers. 2014.

# Differential Privacy

E.g., want to release average while preserving privacy.

#### High level idea:

 What we want is a protocol that has a probability distribution over outputs:



such that if person i changed their input from  $x_i$  to any other allowed  $x_i$ , the relative probabilities of any output do not change by much.

# Differential Privacy

#### High level idea:

 What we want is a protocol that has a probability distribution over outputs:



such that it person I changed their input from  $x_i$  to any other allowed  $x_i'$ , the relative probabilities of any output do not change by much.

 This would effectively allow that person to pretend their input was any other value they wanted.

Bayes rule: 
$$\frac{\Pr(x_i|output)}{\Pr(x_i'|output)} = \frac{\Pr(output|x_i)}{\Pr(output|x_i')} \cdot \frac{\Pr(x_i)}{\Pr(x_i')}$$
(Posterior  $\approx$  Prior)

# Differential Privacy: Definition

It's a property of a protocol A which you run on some dataset X producing some output A(X).

• A is  $\epsilon$ -differentially private if for any two neighbor datasets S, S' (differ in just one element  $x_i \rightarrow x_i$ '),



for all outcomes v,

$$e^{-\epsilon} \leq \Pr(A(S)=v)/\Pr(A(S')=v) \leq e^{\epsilon}$$



probability over randomness in A



# Differential Privacy: Definition

It's a property of a protocol A which you run on some dataset X producing some output A(X).

• A is  $\epsilon$ -differentially private if for any two neighbor datasets S, S' (differ in just one element  $x_i \rightarrow x_i$ '),

#### View as model of plausible deniability

If your real input is  $x_i$  and you'd like to pretend was  $x_i$ ', somebody looking at the output of A can't tell, since for any outcome v, it was nearly just as likely to come from S as it was to come from S'.

for all outcomes v,

$$e^{-\epsilon} \leq \Pr(A(S)=v)/\Pr(A(S')=v) \leq e^{\epsilon}$$



probability over randomness in A



# Differential Privacy: Methods

It's a property of a protocol A which you run on some dataset X producing some output A(X).

- Can we achieve it?
- Sure, just have A(X) always output 0.
- This is perfectly private, but also completely useless.
- Can we achieve it while still providing useful information?

Say have n inputs in range [0,b]. Want to release average while preserving privacy.

- Changing one input can affect average by  $\leq$  b/n.
- Idea: take answer and add noise from Laplace distrib  $p(x) \propto e^{-|x| \epsilon n/b}$
- Changing one input changes prob of any given answer by  $< e^{\epsilon}$ .

Value with real me

Value with fake me

Say have n inputs in range [0,b]. Want to release average while preserving privacy.

- Changing one input can affect average by  $\leq$  b/n.
- Idea: compute the true answer and add noise from Laplace distrib  $p(x) \propto e^{-|x| \epsilon n/b}$
- Amount of noise added will be  $\approx \pm b/(n\epsilon)$ .
- To get an overall error of  $\pm \gamma$ , you need a sample size  $n = \frac{b}{v\epsilon}$ .
- If you want to ask k queries, the privacy loss adds, so to have  $\epsilon$ -differential privacy *overall*, you need  $n=\frac{kb}{\gamma\epsilon}$ .

#### Good features:

- Can run algorithms that just need to use approximate statistics (since just adding small amounts of noise to them).
- E.g., "approximately how much would this split in my decision tree reduce entropy?"

# More generally

 Anything learnable via "Statistical Queries" is learnable differentially privately.

Practical Privacy: The SuLQ Framework. Blum, Dwork, McSherry, Nissim. PODS 2005.

Statistical Query Model [Kearns93]:



 Many algorithms (including ID3, Perceptron, SVM, PCA) can be re-written to interface via such statistical estimates.

#### Problems:

- If you ask many questions, need large dataset to be able to can give accurate and private answers to all of them. (privacy losses accumulate over questions asked).
- Also, differential privacy may not be appropriate if multiple examples correspond to same individual (e.g., search queries, restaurant reviews).

## More generally

#### Problems:

- The more interconnected our data is (A and B are friends because of person C) the trickier it becomes to reason about privacy.
- Lots of current work on definitions and algorithms.