Certainly! Here's the comprehensive table you requested. It includes:

| Model                      | Core Ideas (Pros)               | Limitations (Cons)       | Technical Requirements  | Time Encoding         | Forecast Target                   | Eval Metrics               | Method                     |
|----------------------------|---------------------------------|--------------------------|-------------------------|-----------------------|-----------------------------------|----------------------------|----------------------------|
| Prophet                    | Seasonality & holiday built-in  | Weak with non-linearity  | Minimal                 | Internal              | Price, seasonality                | RMSE, MAPE                 | Additive Model             |
| LSTM                       | Captures temporal non-linearity | Needs much data          | No stationarity         | Cyclical or embedded  | Price, return, volatility         | RMSE, MAPE, R <sup>2</sup> | DL (RNN)                   |
| GRU                        | Efficient vs. LSTM              | Misses long dependencies | Same as LSTM            | Same                  | Price, volatility                 | Same as LSTM               | DL (RNN)                   |
| Bi-LSTM                    | Considers future/past context   | Future not always known  | Same as LSTM            | Same                  | Price (post-event), sentiment     | Same as LSTM               | DL (RNN)                   |
| CNN (Time Series)          | Local pattern learning          | Poor for long term       | No stationarity         | Treat time as channel | Price trend, short-term           | MSE, Accuracy (patterns)   | DL (CNN)                   |
| Transformer                | Global attention, long memory   | Heavy compute            | None, large data needed | Sin/Cos positional    | Price, return, volatility, regime | RMSE, MAE, R <sup>2</sup>  | DL (Attention)             |
| Informer/Autoformer        | Long horizon attention models   | Complex                  | No stationarity         | Learned embeddings    | Price, volatility, regime         | RSE, MASE                  | DL (Efficient Transformer) |
| N-HiTS                     | Fast + scalable forecasting     | Research stage           | None                    | Internal              | Trend, price                      | MASE, RSE                  | DL (Residual Hierarchical) |
| DeepAR                     | Probabilistic & multiple series | Needs AR-like structure  | None                    | Internal embeddings   | Price, volatility                 | NLL, CRPS                  | DL (Auto-regressive RNN)   |
| Deep State Space           | Uncertainty + deep learning     | Heavy compute            | None                    | Fourier/time basis    | Regime, macro-volatility          | NLL, RMSE                  | Bayesian DL                |
| TFT                        | Interpretable, deep attention   | Tuning complex           | None                    | Learned embeddings    | Price, volatility, return         | MAE, RMSE, R <sup>2</sup>  | DL (Attention + Gating)    |
| XGBoost/LightGBM           | Strong on structured data       | Manual lags needed       | Scaling + feature prep  | One-hot / cyclical    | Price, return, volatility         | R <sup>2</sup> , MAE, RMSE | Tree Boosting              |
| TabNet                     | Deep learning for tabular data  | New; needs fine-tuning   | No stationarity         | Embedded internally   | Price, return                     | RMSE, R <sup>2</sup>       | DL (Attentive FCN)         |
| DDPG (RL)                  | Continuous actions              | Reward shaping is tricky | Agent tuning            | In state vector       | Return, trading actions           | Sharpe, PnL, DD            | RL (Policy Gradient)       |
| TD3                        | Stable vs. DDPG (2 critics)     | Slower training          | Same                    | Same                  | Return, risk mgmt                 | Sharpe, PnL                | RL (Value + Policy)        |
| SAC                        | High exploration entropy        | Hyperparameter sensitive | High compute            | Same                  | Risk-adjusted returns             | Sharpe, Entropy, Profit    | RL (Entropy Optim.)        |
| PPO                        | Stable & safe RL training       | Reward design matters    | Sample efficiency       | Same                  | Portfolio weights                 | Sharpe, MDD                | RL (Clipped Policy)        |
| A3C                        | Fast, parallel training         | Sample inefficiency      | Same                    | Same                  | Return, policy learning           | Sharpe, Reward curve       | RL (Actor-Critic)          |
| AlphaStock                 | Combines RL + DL like AlphaZero | Very compute heavy       | RL + DL infra           | Structured state      | Portfolio strategy                | Profit, Sharpe             | Hybrid (Policy RL + DL)    |
| Meta-Learning (MAML, etc.) | Fast adaptation to change       | Experimental             | Time-aware adaptation   | Dynamic embeddings    | Regime change, multi-goal         | Transfer performance       | Meta-Learning              |



# **Project-Wide Notes and Critical Considerations**

# 1. Stationarity Concerns

- Classical models (ARIMA, SARIMA) require stationarity (use differencing, detrending).
- DL/RL models (LSTM, Transformer, PPO, SAC, etc.) do not require stationarity, but large shifts (structural breaks) can still harm them.

**Best practice**: Detrend input data (optional) and scale features.

# 2. Feature Encoding for Time

• Cyclical Encoding (preferred for DL/RL): month\_sin=sin(2π×month12),month\_cos=cos(2π×month12)month\_sin=sin(2π×12month),month\_cos=cos(2π×12month)

• One-hot encoding or embedding layers for categorical time features (week, day-of-week) when used in tree models or DL hybrid models.

## 3. Technical Indicators to Include (examples)

Type Examples

Trend Moving Averages (SMA, EMA), MACD

Momentum RSI, Stochastic Oscillator, Williams %R

Volatility ATR (Average True Range), Bollinger Bands

Volume-based OBV (On-Balance Volume), Volume Price Trend

#### 4. Fundamental Indicators

- Earnings per Share (EPS)
- Price-to-Earnings Ratio (P/E)
- Price-to-Book Ratio (P/B)
- Dividend Yield
- Debt-to-Equity Ratio (D/E)
- Revenue, Net Income Growth
- Free Cash Flow
- Insider Buying Activity

## **5. Indices and Macro Factors to Monitor**

- S&P500, NASDAQ, Dow Jones (US indices)
- VIX (Volatility Index)
- Interest Rates (e.g., Fed Funds Rate)
- Inflation Data (CPI, PPI)
- Employment Data (Unemployment rate)
- Global Economic Sentiment Indices
- Oil Prices, Gold Prices, etc.

## 6. Time Series Specific Concerns

Concern Description

Seasonality Holiday effects, quarterly earnings

Regime Changes Market crash, major political events

Noise Random market movements unrelated to fundamentals

Outliers Extreme points can distort learning

# ✓ Take Care Notes (Golden Rules)

- Always normalize/standardize inputs (especially for DL).
- Watch for data leakage (future information contaminating the past).
- **Expand features** carefully: lags, rolling means, cumulative sums.
- Use cross-validation specific to time series (e.g., expanding windows).
- Regular model retraining is needed (market changes constantly).

### Common Forecasting Goals by Model

**Forecast Target Suggested Models** 

Price ARIMA, LSTM, Transformer, DeepAR, TFT

LSTM, GRU, RL (DDPG, PPO), TFT Return

Transformer, DeepAR, SAC Volatility

CNN, LSTM, XGBoost Momentum

PPO, SAC, TD3, TFT Risk

**Portfolio Allocation** AlphaStock, RL methods (DDPG, PPO, A3C)

**Multi-horizon / Sequence Output** Transformer, TFT, N-HiTS, DeepAR, Meta-Learning

#### 📚 Notes on Evaluation Metrics

Metric Purpose

RMSE / MAE / MSE General accuracy on price prediction

MAPE / SMAPE Scaled error, interpretability

**Sharpe Ratio** Return/risk in trading

Max Drawdown (MDD) Risk of capital loss

CRPS / NLL Probabilistic forecasts (DeepAR, Bayesian)

R<sup>2</sup> (R-squared) Goodness of fit

PnL (Profit) Total return for RL agents

- Data flow and logic steps for each model.
- In a way that teaches you how to implement a real stock market prediction system with each approach.
- Focused on Deep Learning (DL) and Reinforcement Learning (RL).

I'll break it down carefully.



# ✓ Stock Prediction - Model Implementation Flows



# 4 1. Deep Learning Models (DL)

### **■ LSTM / GRU for Stock Prediction**

```
Raw Data (OHLCV + indicators + time features)
Data Cleaning (remove NaN, outliers)
Feature Engineering
    - Technical indicators (RSI, MACD)
    - Cyclical encoding (month/day/week sin-cos)
    - Normalize/standardize inputs
Data Preparation
    - Create sequences (lookback windows)
    - X = past N days' features
    - y = future price / return
Train-Test Split (time-aware split)
Build Model
    - LSTM layers (1-3 layers)
    - Dropout (for regularization)
    - Dense output (linear or sigmoid)
Train Model (early stopping, low LR)
Evaluate
    - RMSE, MAE, R<sup>2</sup> on validation set
Predict future price/return
```

### Bi-LSTM (Bidirectional LSTM)

(Same as above, **BUT**)

Use Bidirectional wrapper around LSTM layers to allow backward+forward temporal attention.

### CNN for Stock Prediction

```
Java
CopyEdit
Raw Data (candlestick OHLCV, indicators)

↓
Data Cleaning & Feature Engineering

↓
Data Shaping

— Convert into 2D shape (sequence length × features)

↓
Build CNN Model

— Conv1D or Conv2D layers

— Pooling layers (optional)

— Flatten → Dense output

↓
Train and Evaluate

↓
Predict patterns (short-term momentum, price)
```

### Transformer (Vanilla)

```
mathematica
CopyEdit
Raw Data (OHLCV, Indicators, Macro data)

Feature Engineering

- Technical + Fundamental data
- Cyclic Encode time features

Build Input Sequences

Positional Encoding

Build Transformer Encoder-Decoder
- Multi-Head Attention
- Feedforward Networks

Train Model

Evaluate
- RMSE, MAE, MAPE

Predict multiple steps ahead
```

### **□** Informer / Autoformer / Reformer

(Almost same as Transformer, but optimized)

java CopyEdit

```
Raw Data

Feature Engineering

Long-Horizon Sequence Preparation

Efficient Transformer Variant

- Sparse attention

- Decomposition of trends (Autoformer)

Train and Forecast long horizons
```

### DeepAR (Amazon)

```
java
CopyEdit
Raw Data (multiple stock series)

Time Series Normalization

↓
Feed Past Data (Autoregressive Inputs)

↓
Recurrent Neural Network (RNN)

↓
Output Future Probabilistic Forecasts

- Predict mean and variance
```

#### Temporal Fusion Transformer (TFT)

```
sql
CopyEdit
Raw Data

Static Features + Dynamic Features Separation

Embedding Layers

- Time Embeddings

- Feature Embeddings

Gated Residual Networks (GRN)

Attention Layers

- Select important historical steps

- Select important features

Train with Quantile Loss

Forecast future price/volatility/return
```

# **2.** Reinforcement Learning Models (RL)

#### DDPG / TD3 / SAC / PPO (RL for Trading)

```
CopyEdit
Raw Data (OHLCV, indicators, macro)
Environment Setup
    - Define State (features, indicators, past returns)
    - Define Action (buy, sell, hold, allocation %)
    - Define Reward (portfolio return, Sharpe Ratio)
Agent Setup
    - Actor network: outputs action
    - Critic network: evaluates action
Training Loop
    - Observe State
    - Select Action
    - Execute Action
    - Receive Reward
    - Update Policy (Actor + Critic)
   \downarrow
Evaluation
    - Total return
    - Sharpe Ratio
    - Max Drawdown
```

## ■ AlphaStock (Advanced RL + DL approach)

```
- Actor network
- Critic network

↓

Self-play / Simulated Trading

↓

Reward Shaping
- Profit, Risk Control, Transaction Costs

↓

Training Massive Simulations
↓

Evaluate on Unseen Market Conditions
```

#### Meta-Learning (MAML for Stock Prediction)

```
csharp
CopyEdit
Raw Data (market tasks)

Meta-Training Phase

- Learn an initialization that adapts fast

Meta-Testing Phase

- Fine-tune quickly on new stocks / new market regimes

Adapted Model predicts price, return, regime
```



# Overall Deep Learning/RL Stock Prediction Workflow

#### markdown CopyEdit

- 1. Problem Formulation
  - Price prediction? Return? Volatility?
- 2. Data Collection
  - OHLCV, Technical, Macro, Fundamental
- 3. Data Cleaning
  - NaN removal, Outlier smoothing
- 4. Feature Engineering
  - Technical Indicators
  - Cyclical Date Encoding
- 5. Model Selection
  - DL (LSTM, Transformer) for pure forecasting
  - RL (PPO, DDPG) for action/trading strategy
- 6. Model Training
  - Time-aware validation (expanding window CV)
- 7. Model Evaluation
  - RMSE, MAPE, Sharpe Ratio
- 8. Backtestind
  - Simulate strategies on historical data
- 9. Deployment
  - Predict live or trade live
- Monitoring

- Retrain and adapt to market regime changes



- **DL = Prediction** (future values)
- RL = Decision Making (how to act in market)

They can work together (first predict price, then act accordingly)!

Multicollinearity (high correlation between two or more input features) can seriously hurt many models (especially linear ones like ARIMA, SARIMAX, or even tree models if too severe).

Here are some excellent Python libraries and methods to detect multicollinearity:



# Libraries and Methods to Check Multicollinearity

| Library              | Functionality                                    | Example Function / Method                                   | Notes                                   |
|----------------------|--------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|
| statsmodels          | Calculate Variance Inflation Factor (VIF)        | variance_inflation_factor()                                 | Gold standard for VIF checks            |
| pingouin             | VIF and partial correlations                     | pingouin.vif()                                              | Very easy, returns clean DataFrame      |
| scikit-learn         | Correlation matrix + PCA analysis                | np.corrcoef(), PCA()                                        | Not direct VIF but useful               |
| seaborn + matplotlib | Visual correlation heatmaps                      | <pre>sns.heatmap(corr_matrix)</pre>                         | Fast visual spotting of collinear pairs |
| pycaret              | Built-in multicollinearity removal in preprocess | <pre>setup(, remove_multicollinearity=True)</pre>           | Full pipeline automation                |
| feature-engine       | Select/remove collinear features                 | <pre>feature_engine.selection.DropCorrel atedFeatures</pre> | Specialized for data cleaning           |



# Typical Code Snippets for Checking Multicollinearity:

#### 1. VIF Calculation (statsmodels)

from statsmodels.stats.outliers\_influence import variance\_inflation\_factor import pandas as pd # Assume `X` is your features DataFrame vif\_data = pd.DataFrame() vif\_data["feature"] = X.columns

```
vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
print(vif_data)
```

- **VIF > 5**: Moderate multicollinearity
- **VIF > 10**: Serious multicollinearity

#### 2. Correlation Matrix with Heatmap (seaborn)

```
python
CopyEdit
import seaborn as sns
import matplotlib.pyplot as plt
corr = X.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.show()
```

• Look for correlation coefficients > 0.8 or < -0.8 between features!

## 3. Automatic VIF Check (pingouin)

CopyEdit import pingouin as pg vif = pg.vif(X) print(vif)

Much faster, good for big DataFrames.



# **Best Practice for DL models:**

- Deep Learning (LSTM, Transformer, etc.) are less sensitive to multicollinearity.
- For classical models (ARIMA, XGBoost without regularization, LightGBM default settings), you must clean collinear features first!



# Recommended Quick Start

- For small projects: use pingouin or statsmodels VIF.
- For large pipelines: use **feature-engine** inside a preprocessing pipeline.