Ex. No.: 6 Date:10.09.2020

Design of Half Adder and Full Adder Circuits

Aim:

To get the stimulated waves of half adder and full adder and verify it with theoretical values.

Apparatus/Tool required:

ORCAD / PSpice simulator - > 7400 Library - 7408, 7432 & 7486 Source Library - Digclock

Simulation Settings: Analysis Type - Time Domain

Run to time: 4ms (for Half Adder) Run to time: 8ms (for Full Adder)

Circuit Diagram:

Half - Adder Circuit

Full - Adder Circuit

Theory:

Half Adder Circuit:

19MID0020

Truth Table

A	В	S=A⊕B	C=A.B
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full Adder Circuit

Truth Table

A	В	С	S=A⊕B⊕C	$C=(A\oplus B).C+A.B$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Simulation Circuit Diagram and Output (Both Waveform and Truth Table):

Half – Adder

<u>Full – Adder</u>

Full odder:								
	0	C	A⊕B	5-) A @ 8@ C	A B-C	AB	C	
A	В			137	0	0	0	
0	0	0	0	0	0	0	0	
0	0	1	10 stell	Ship of the control of	0	0	0	
0	1	0	1		1	0	1	
0	1	1-1-			10	0	6	
F	0	0	70		1 1	0	12	
1	0	1		100	0	11		
1	31	0	0	13/13/13	0			
13	N	1						

Procedure:

- i. Draw the circuit diagram for half adder using the software ORCAD PCB DESIGNER LITE(offtime&ontime(1)=2ms; offtime&ontime(2)=1ms)
- ii. Place the voltage markers at the respective outputs
- iii. Create netlist and new simulation profile
- iv. Run the circuit
- v. Similarly draw the circuit diagram for full adder(offtime&ontime(1,2,3)=4ms;2ms;1ms)
- vi. Place the voltage markers at the respective outputs
- vii. Create netlist and new simulation profile
- **viii.** Run the circuit

Libraries needed: 7400

Source: digclock

Analysis type: time domain

Run to time (for half adder): 4ms

Run to time (for full adder):8ms

Result:

The theoretical values and the simulated results are same for both half and full adders

Inference:

Hence the theoretical values and stimulated results are verified.

Reg. No: 19MID0020 Name: Prashanth.S Date: 10-09-2020