Part III-B: className

Lecture by 李漫漫 Note by THF

2024年9月8日

目录

1	1-A																			2
	1.1	7																		2
	1.2	8	•															•		3
2	1-B																			3
	2.1	2																		3
	2.2	3																		3
3	1.																			5
4	2.																			5
5	3.																			5
6	4.																			6
	6.1	4.1																		6
	6.2	4.2	_		 _	_				_					_					6

1 1-A

1.1 7.

设事件 A 为一条船卸货时另一条船等待, x 为船甲到达的时间, y 为船乙到达的时间, A 可能以如下方式发生:

1. 甲先到,乙后到,且乙不在甲到达后 3 小时后才到达,即: x < y, y < x + 3, 即:

$$x \in (y - 3, y).$$

2. 乙先到,甲后到,且甲不在乙到达后 4 小时后才到达,即: y < x, x < y + 4, 即:

$$y \in (x-4,x)$$
.

合并后:

$$\begin{cases} y < x+3 \\ y > x-4 \end{cases}.$$

绘制样本空间如下:

$$S(\Omega) = 24 \cdot 24 = 576.$$

$$S(A) = S(\Omega) - \frac{1}{2} \cdot 20^2 - \frac{1}{2} \cdot 21^2 = 155.5.$$

$$P(A) = \frac{311}{1152}.$$

1.2 8.

构成三角形的条件: a+b+c=L, a+b>c (设 c 为最大边) $c=L-(a+b),\ (a+b)=L-c$ 即 $L-c>c,\ c<\frac{L}{2}$ 即

$$l(A) = \frac{L}{2}.$$
$$l(\Omega) = L.$$
$$P(A) = \frac{l(A)}{l(\Omega)} = \frac{1}{2}.$$

2 1-B

2.1 2.

六次摸球中第四次是黑球:前5次中有3次是黑球,2次是白球目标事件数:

$$N(A) = 5 \cdot \left(2^4 \cdot 3^2\right).$$

基本事件总数: $N(\Omega) = 5^6$

事件概率:

$$P(A) = \frac{N(A)}{N(\Omega)} = \frac{5 \cdot (2^4 \cdot 3^2)}{5^6} = \frac{144}{3125}.$$

2.2 3.

画单位圆:

设
$$x = \widehat{AB}$$
, $y = \widehat{BC}$, $\widehat{AC} = 2\pi - x - y$ Δ_{ABC} 是锐角三角形的条件:

$$\begin{cases} x > 0 \\ y > 0 \\ 2\pi - (x+y) > 0 \\ x < \pi \\ y < \pi \\ 2\pi - (x+y) < \pi \end{cases} \Rightarrow \begin{cases} x \in (0,\pi) \\ y \in (0,\pi) \\ x+y > \pi \\ x+y < 2\pi \end{cases}.$$

绘制样本空间:

由图可得:

$$S\left(A\right) = \frac{3}{4}S.$$

 $(\Delta_{ABC}$ 为钝角三角形)

$$S(\Omega) = S.$$

$$P(A) = \frac{S(A)}{S(\Omega)} = \frac{3}{4}.$$

3 1.

基本事件总数: $N(\Omega) = P_5^5 = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5 \cdot P_4^4$

目标事件: 第一封信有 4 个选择, 第一封信选择的信箱对应的信有 3 个选择, 第二封信选择的信箱对应的信有 2 个选择, 以此类推, 即: $N\left(A\right)=P_4^4$ 概率:

$$P(A) = \frac{N(A)}{N(\Omega)} = \frac{1}{5}.$$

4 2.

$$P(A) = \frac{C_4^1}{C_5^2} = \frac{2}{5}.$$

求 B 事件的逆事件: 两台电机均来自于供应商 I:

$$P\left(\bar{B}\right) = \frac{C_2^2}{C_5^2} = \frac{1}{10}.$$

$$P(B) = 1 - P(\bar{B}) = \frac{9}{10}.$$

5 3.

$$P(A) = \frac{C_4^4}{C_{54}^4} = \frac{1}{316251}.$$

- 6 4.
- 6.1 4.1

$$\Omega = \{(x, y, z) | x, y, z = 0, 1\}.$$

6.2 4.2