Auto Log

Insight Data Engineering Fellowship, Silicon Valley
Gene Der Su

Motivation

Traffic in the Bay Area is a headache

- This framework can be used in to avoid traffic dense areas and for companies to re-route their customers/ vehicles
- Can also help companies monitor their fleets

Product

autolog.online

Auto Log

query one

query all

traffic graph

SF Traffic Map

Pipeline

(lat, long, car id, time, speed)

 Simulated on the simplified San Francisco map

Simulate data is challenging

Queries

- Compute and update data in real time is challenging
- The map is divided into 50 by 50 grids
- For each grid, the car density and the average is calculated and updated with the past 20 seconds data
- Since each grid is independent, all of them can be run in parallel on multiple nodes

Other considerations

- Simulated data can behave different than real world
- The simulator can generate 280MB/minute or 0.4 TB/day on one t2.micro with1 million cars
- The pipeline uses 10 m4.large. It costs around \$790.6 per month or \$26.35 per day in a 30 day month

About me

Machine Learning Engineer at GoFind.ai

Masters in Computer Science from UC Davis

Bachelor in Applied Math from UC Merced

Love badminton and cycling

Miscellaneous

- The grid is 790 ft. by 790 ft. square (around 2 city blocks covered by each side)
- Maximum processing: 19s @ 7000 messages/sec
- Data can be filtered by timestamp so data transfer delay won't be a big issue
- Mapping of city block to an id can be done for showing specific traffic volume on each street
- Data skew is a good thing (reduce the complexity of computing the graph)