TP 10 : Ecoulement autour d'un cylindre en LBM

Cours de modélisation numérique

12 mai 2023

L'objectif de ce TP est d'implémenter un modèle simple de Boltzmann sur réseau (LBM) en deux dimensions. A titre d'illustration, nous nous intéressons à l'écoulement d'un fluide autour d'un obstacle cylindrique. Ceci devrait avoir comme résultat la formation de ce qu'on appelle une allée de tourbillons de von Karman.

Le modèle

Nous considérons le système représenté sur la figure 1. Le système est périodique par rapport à la coordonnée horizontale tandis que les murs en haut et en bas sont des sites suivant la dynamique dite du *bounce-back*. Pour que le système évolue, nous imposons sur le bord de gauche une vitesse

FIGURE 1 – Schéma du système à implémenter

constante parallèle à l'axe des x produisant un écoulement de gauche à droite. Dans le but de rendre la dynamique plus intéressante, un obstacle circulaire (bounce-back également) est placé dans le tube.

Travail à faire

Vous trouverez sur Moodle un code lattice Boltzmann complet traitant la situation décrite cidessus. On vous demande de répondre aux questions suivantes :

- 1. Quelle grandeur semble le mieux caractériser le problème? Argumentez.
- 2. Faites varier cette grandeur pour pouvoir observer des turbulences (vortexs de *Von Karman*). A partir de quelle valeur apparaissent-elles?
- 3. Étudiez qualitativement ce qui se passe lorsque l'obstacle est déplacé, dupliqué ou modifié (par exemple, changer le cylindre en parallélépipède).
- 4. Modifiez le code pour qu'il y ait des murs en haut et en bas, comme sur la figure : appliquez la dynamique de *bounce-back*. Simulez ensuite le système sans obstacle, et avec les obstacles utilisés dans les questions précédentes. Commentez.
- 5. Pour finir, supposons que la largeur du domaine comporte N cellules, que le cylindre ait un diamètre de L cm et que le fluide soit de l'air à température ambiante. Discutez d'un moyen de connaître le temps physique que représente une itération, sachant qu'on a la relation suivante entre la viscosité cinématique ν_{LB} dans les unités du réseau et la viscosité cinématique ν_{phys} dans les unités physiques : $\nu_{LB} = \nu_{phys} \cdot \Delta t/\Delta x^2$, avec Δt le pas de temps du réseau et Δx la taille des cellules.