

Reinforcement Learning Introduction

Reinforcement Learning

September 22, 2022

Welcome to the course

The course uses the textbook:

Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, 2018, 2nd edition

http://incompleteideas.net/book/the
-book.html

Reading assignments are given for each topic

Course Administration

Most topics will contain

- quizzes on Illias and
- exercises.

Both are mandatory for the testat. Exercises will give 10 points each, and a minimum number of points is needed for each exercise.

There (should) be enough time during the course to solve the exercises. Exercises are available on a kubernetes cluster using jupyter lab and nbgrader.

Exercise Environement

Login to https://gpuhub.el.eee.intern using your enterpriselab account. Select Reinforcement Learning Course Image

Server Options

0	Minimal environment Spawns the baseline JupyterLab server
0	Tensorflow & PyTorch environment Spawns a JupyterLab server with Tensorflow and PyTorch
•	Reinforcement Learning Course Spawns a JupyterLab server for the RL course
0	Reinforcement Learning Admin Only for RL course administration
0	Deep Learning 4 Games Course Spawns a JupyterLab server for the DL4G course
Start	

Exercises Environment

Select nbgrader->Assignment List

Select fetch to get the assignement and submit to submit it when solved

Intro to python

- The exercise are in python 3.
- In the first week there are no exercises, but a python course and some python basic exercises (that do not need to hand in)
- If you have not programmed python yet, please familiarize yourself with python in the first week ©.

Learning Objectives: Introduction

- Differentiate between Reinforcement Learning (RL) and other Machine Learning (ML) Techniques
- Know when RL methods can be applied and when not
- Explain the interaction of a RL technique with the environment
- Know the different types of RL agents

In products...

Example:

Example: Atari Games (Deepmind)

Example: Crossing (HSLU, ABIZ)

Example: Hide and Seek

Reinforcement Learning

What is reinforcement learning?

What is reinforcement learning not?

It is not supervised learning:

There is not data available from an external expert

It is not unsupervised learning:

It is not about finding structures in data or interpreting unlabeled data.

Goal of Reinforcement Learning

In reinforcement learning:

- An agent tries different actions and
- Receives a reward

All goals can be described by the maximization of the expected cumulative reward

Agent and Environment

Agent and Environment (II)

In many problems and also in the most common implementations, the agent might not receive the full state, but a so called **observation** of the state.

Either for simplicity or because the agent is not able to observe the full state (for example in a game like Poker or Jass)

Cumulative Rewards

Maximizing the cumulative reward or expected return:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

Often, a discounted return is used:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

 $0 \le \gamma \le 1$

Concepts and Notation

```
action at time t
A_t
S_t
                state at time t, typically due, stochastically, to S_{t-1} and A_{t-1}
R_t
               reward at time t, typically due, stochastically, to S_{t-1} and A_{t-1}
               policy (decision-making rule)
\pi
\pi(s)
                action taken in state s under deterministic policy \pi
\pi(a|s)
                probability of taking action a in state s under stochastic policy \pi
G_t
               return following time t
v_{\pi}(s)
                value of state s under policy \pi (expected return)
v_*(s)
                value of state s under the optimal policy
q_{\pi}(s,a)
               value of taking action a in state s under policy \pi
q_*(s,a)
                value of taking action a in state s under the optimal policy
```

Types of RL Agents (will be covered in the lecture)

Value based:

- No Policy (implicit)
- Value Function

Policy Based:

- Policy
- No Value Function

Actor Critic

- Policy
- Value Function

Model Free

- Policy and/or Value Function
- No Model

Model

- Policy and/or Value Function
- Model (explicit or learned)

Tabular Methods

 Policy and/or Value Function for each state