3. Funções reais de variável real

3.3 Continuidade

Vamos agora tratar a noção de continuidade que, como sabemos, está extremamente relacionada com o conceito de limite. Faremos primeiro uma abordagem sobre a continuidade pontual, isto é sobre a continuidade do ponto de vista local, e passaremos depois a um tratamento global, onde nos interessaremos pelas propriedades das funções contínuas em intervalos.

Definições e exemplos

Descontinuidades

Continuidade lateral

Propriedades sobre a continuidade pontual

Resultados sobre funções contínuas

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função e $a \in D$ um ponto do seu domínio. Diz-se que f é contínua em a quando

$$a$$
 é ponto isolado de D ou $a \in D'$ e $\lim_{x \to a} f(x) = f(a)$.

Simbolicamente, traduz-se a continuidade de f em a escrevendo

$$\forall \delta > 0, \ \exists \varepsilon > 0 : \ (x \in D \ \land \ |x - a| < \varepsilon) \Longrightarrow |f(x) - f(a)| < \delta.$$

Diz-se ainda que:

- ▶ f é contínua em A, com $A \subset D$, quando f é contínua em todo o ponto $a \in A$;
- f é contínua quando f é contínua em todo o domínio D.

Exemplos

1. As funções f e g definidas a seguir são contínuas.

$$f: \mathbb{Z} \longrightarrow \mathbb{R}$$
$$x \longmapsto x$$

$$g: [0,2] \cup]4,6] \longrightarrow \mathbb{R}$$

 $x \longmapsto x$

2. Toda a função polinomial, $p \colon \mathbb{R} \longrightarrow \mathbb{R}$, definida como segue, é contínua

$$p(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_{n-1}x + a_n, \quad n \in \mathbb{N}.$$

Em particular, toda a função constante é contínua.

3. As funções seno e cosseno são contínuas.

4. As funções definidas por $f(x) = e^x$, $x \in \mathbb{R}$, e $g(x) = \ln x$, $x \in \mathbb{R}^+$, são contínuas.

- 5. A função $g: \mathbb{R} \to \mathbb{R}$ definida por $g(x) = \begin{cases} -1 & \text{se } x < 0 \\ 1 & \text{se } x \ge 0 \end{cases}$ é contínua em $\mathbb{R} \setminus \{0\}$.
- 6. A função $g: \mathbb{R} \to \mathbb{R}$ definida por $g(x) = \begin{cases} x^2 & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$ é contínua em $\mathbb{R} \setminus \{0\}$.

Descontinuidades

Da definição de continuidade, uma função $f\colon D\subset\mathbb{R}\longrightarrow\mathbb{R}$ possui uma descontinuidade no ponto $a\in D$ quando se verificar uma das duas condições seguintes:

- $a \in D'$ e não existe $\lim_{x \to a} f(x)$;
- $a \in D'$, existe $\ell = \lim_{x \to a} f(x)$ mas $\ell \neq f(a)$.

Diz-se, em particular, que f possui uma descontinuidade removível , quando

$$\lim_{x\to a} f(x) = \ell \quad \land \quad \ell \neq f(a),$$

caso em que, modificando o valor da função no ponto *a*, seria possível remover a descontinuidade, e que possui uma descontinuidade de salto , quando

$$\lim_{x \to a^+} f(x) = \ell_1 \quad \land \quad \lim_{x \to a^-} f(x) = \ell_2 \quad \land \quad \ell_1 \neq \ell_2.$$

Descontinuidades

As funções apresentadas a seguir possuem uma descontinuidade na origem. Trata-se de uma descontinuidade removível no caso da função ℓ e de uma descontinuidade de salto no caso da função j.

Exemplos

1.
$$j(x) = \begin{cases} \frac{1}{1 + e^{1/x}} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

2.
$$\ell(x) = \begin{cases} x \operatorname{sen}(1/x) & \text{se } x \neq 0 \\ 1/10 & \text{se } x = 0 \end{cases}$$

Continuidade lateral

A continuidade lateral é uma noção que assume algum interesse quando estão em causa pontos de acumulação do domínio da função, já que no caso de pontos isolados, a função é trivialmente contínua, pela própria definição. Assim, diz-se que uma função $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ é

▶ contínua à direita no ponto $a \in D \cap D'$ quando

$$\lim_{x\to a^+} f(x) = f(a);$$

▶ contínua à esquerda no ponto $a \in D \cap D'$ quando

$$\lim_{x\to a^-} f(x) = f(a).$$

Observação

É óbvio que uma função f é contínua em $a \in D \cap D'$ se e só se f é contínua à direita e à esquerda no ponto a.

Continuidade lateral

Exemplos

Continuidade lateral

Exemplos

A partir da definição de função contínua num ponto e dos resultados apresentados sobre o limite de funções, extraem-se os resultados seguintes.

Teorema

[Continuidade de restrições]

Se $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ é contínua em $a \in D$, então qualquer restrição de f a um subconjunto do domínio que contenha a é também contínua em a.

Teorema

[Limitação de funções contínuas]

Se $f: D \subset \mathbb{R} \to \mathbb{R}$ é contínua em a, então f é limitada em alguma vizinhança de a, i.e.

$$\exists \varepsilon > 0, \ \exists M > 0: \ |f(x)| \leq M, \ \forall x \in D \cap]a - \varepsilon, a + \varepsilon[.$$

Observação

Do último resultado sai que se uma função f se torna ilimitada em qualquer vizinhança de certo ponto a então f não pode ser contínua em a. É o caso da função

$$f(x) = \begin{cases} \frac{1}{x-1} & \text{se } x \neq 1 \\ k & \text{se } x = 1 \end{cases}$$

onde k é uma constante arbitrária. Independentemente do valor de k, f não é contínua na origem, pelo facto se se tornar ilimitada em qualquer vizinhança de a=1.

Teorema

[Aritmética de funções contínuas]

Sejam $f,g:D\subset\mathbb{R}\to\mathbb{R}$ contínuas no ponto $a\in D$. Então as funções $f+g,\ f-g,\ f\cdot g$ são contínuas em a e a função $\frac{f}{g}$ é contínua em a , desde que $g(a)\neq 0$.

Observação

Deste teorema segue, em particular, que se f é contínua em a, então também são contínuas em a as funções kf, com k uma constante real, e ainda $\frac{1}{f}$, desde que $f(a) \neq 0$.

Teorema

[Continuidade da função composta] Sejam $f:D\subset \mathbb{R} \to \mathbb{R}$ e $g:B\subset \mathbb{R} \to \mathbb{R}$ tais que $f(D)\subset B$. Se f é contínua em $a\in D$ e g é contínua em f(a) então $g\circ f$ é contínua em a.

Observação

O Teorema anterior estabelece que a composta de duas funções contínuas é uma função contínua. No entanto, ainda que f ou g não sejam contínuas, pode acontecer que a composta seja contínua.

As funções contínuas em conjuntos "especiais" possuem propriedades fortes, que passamos agora a apresentar.

Teorema

[Teorema de Cantor]

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função contínua. Se D é fechado e limitado então f(D) é fechado e limitado.

Exemplos

- 1. A função definida por f(x) = 1, $\forall x \in [0,4]$, é contínua. Tem-se D = [0,4] e $f(D) = \{1\}$.
- 2. A função

$$g(x) = \begin{cases} x & \text{se } x \in [0, 2] \\ 2 & \text{se } x \in [4, 6] \end{cases}$$

é contínua em $D = [0, 2] \cup [4, 6]$. Tem-se f(D) = [0, 2].

Teorema

[Teorema de Weierstrass]

Se $f:[a,b]\to\mathbb{R}$ é contínua, então f é limitada e atinge os seus extremos em [a,b], isto é,

$$\exists \alpha, \beta \in [a, b]: f(\alpha) \leq f(x) \leq f(\beta), \forall x \in [a, b].$$

Observações

- ► Consideremos a função f(x) = x, $x \in]0,5]$, que não atinge mínimo. Isto acontece porque]0,5] não é fechado.
- ► Consideremos a função g(x) = x, $x \in [0, +\infty[$, que não atinge máximo. Isto acontece porque $[0, +\infty[$ não é limitado.

Teorema

[Teorema do valor intermédio (Bolzano-Cauchy)] Seja $f: [a,b] \longrightarrow \mathbb{R}$ uma função contínua tal que $f(a) \neq f(b)$. Se k é um número real estritamente compreendido entre f(a) e f(b), então existe $c \in]a,b[$ tal que f(c)=k.

Corolário

[Teorema de Bolzano]

Se $f: [a,b] \longrightarrow \mathbb{R}$ é contínua e tal que f(a)f(b) < 0 então existe $c \in]a,b[$ para o qual f(c) = 0.

Corolário

Se $f:I\subset\mathbb{R}\longrightarrow\mathbb{R}$ é contínua e I é um intervalo de \mathbb{R} , então f(I) é um intervalo.

Observações

- 1. O primeiro corolário estabelece que uma função contínua num intervalo fechado e limitado não muda de sinal sem se anular (não diz qual é o ponto onde a função se anula nem quantas vezes se anula).
- 2. É fundamental que o domínio de f seja um intervalo. Consideremos a função

$$f(x) = \begin{cases} -1 & \text{se } x \in [-2, 0] \\ 1 & \text{se } x \in [1, 3], \end{cases}$$

que é contínua mas que muda de sinal sem se anular. Isto acontece precisamente porque o seu domínio não é um intervalo.

3. É fundamental que f seja contínua. Consideremos a função

$$g(x) = \begin{cases} 1/x & \text{se } x \in [-2, 0[\cup]0, 2] \\ 1 & \text{se } x = 0, \end{cases}$$

que está definida num intervalo e que muda de sinal sem se anular. Isto acontece porque g não é contínua.

4. Claro que a função pode não ser contínua nem estar definida num intervalo e, no entanto, anular-se sempre que muda de sinal. É o que acontece, por exemplo, com

$$k(x) = \begin{cases} x & \text{se } x \in [-1, 1] \\ 2 & \text{se } x \in [1, 3] \cup [4, 6] \end{cases}$$

mas o primeiro corolário não se refere a estes casos.

Exemplo

Vejamos que a equação $\ln x = \sec x + \frac{\pi}{2}$ possui uma raíz no intervalo $]\pi, 2\pi[.$

De facto, considerando a função contínua definida por

$$f(x) = \ln x - \sin x - \frac{\pi}{2}, x \in [\pi, 2\pi],$$

tem-se $f(\pi) < 0$ e $f(2\pi) > 0$. Logo (teorema do valor intermédio) existe $c \in]\pi, 2\pi[$ tal que f(c) = 0, ou seja tal que $\ln c = \sec c + \frac{\pi}{2}$.

Do segundo corolário sai que uma função contínua transforma um intervalo I noutro intervalo f(I).

Esta propriedade não é exclusiva das funções contínuas. De facto, por exemplo, para a função

$$f(x) = \begin{cases} x & \text{se } 0 \le x < 2\\ 6 - x & \text{se } 2 \le x \le 6 \end{cases}$$

tem-se I = [0, 6], f(I) = [0, 4] e, no entanto, f não é contínua.

Vejamos agora o que acontece, quanto à continuidade, à inversa de uma função contínua.

Seja $f: D \subset \mathbb{R} \longrightarrow f(D)$ contínua e bijetiva.

Define-se a inversa, $f^{-1}: f(D) \longrightarrow D$, que pode não ser contínua.

É o caso da função g e da sua inversa,

$$g(x) = \begin{cases} x+1 & \text{se } 0 \le x < 1 \\ x & \text{se } 2 \le x \le 3 \end{cases}$$

е

$$g^{-1}(x) = \begin{cases} x - 1 & \text{se } 1 \le x < 2 \\ x & \text{se } 2 \le x \le 3. \end{cases}$$

A função g é contínua e bijetiva e a g^{-1} não é contínua.

No entanto, se f for bijetiva e contínua num intervalo, então a inversa também é contínua.

Teorema

[Continuidade da função inversa]

Seja $f: I \longrightarrow J$ uma função contínua e bijetiva no intervalo I. Então a sua inversa, $f^{-1}: J \longrightarrow I$, é contínua.