

Stereo

Jiayuan Gu

gujy1@shanghaitech.edu.cn

Two-View Stereo

Problem Statement

- Given: stereo pair (assumed calibrated)
- Wanted: dense depth map (depth of each pixel)

Stereo Vision and Perception of Depth

What cues tell us about scene depth?

Stereo Vision and Perception of Depth

Notice the displacements of objects at different distances

History: Stereograms

Humans can fuse pairs of images to get a sensation of depth

Stereograms: Invented by Sir Charles Wheatstone, 1838

History: Stereograms

Humans can fuse pairs of images to get a sensation of depth

Stereo Matching

- Given: stereo pair (assumed calibrated)
- Wanted: dense depth map (depth of each pixel)

Review: Multi-view Geometry Problems

• **Structure:** Given projections of the same 3D point in two or more images, compute the 3D coordinates of that point

Slide credit: Noah Snavely

Review: Stereo Correspondence

• Stereo correspondence: Given a point in one of the images, where could its corresponding points be in the other images?

Slide credit: Noah Snavely

Basic Stereo Matching Algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information
- Simplest case: epipolar lines are corresponding scanlines
 - When does this happen?

Triangulation

 Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

Simplest Case: Parallel Images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at the same height
- Focal lengths are the same
- Then epipolar lines fall along horizontal scan lines of the images

Simplest Case: Parallel Images

Let's show that x' has the same y coordinate as x

Recall the essential matrix:

$$\mathbf{x}^{\prime T}\mathbf{E}\mathbf{x}=0, \qquad \mathbf{E}=[\mathbf{t}_{\times}]\mathbf{R}$$

$$\mathbf{R} = \mathbf{I}, \mathbf{t} = (t, 0, 0)$$

$$\boldsymbol{E} = [\boldsymbol{t}_{\times}]\boldsymbol{R} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -t \\ 0 & t & 0 \end{bmatrix}$$

$$(u' v' 1) \begin{pmatrix} 0 \\ -t \\ tv \end{pmatrix} = 0$$

$$-tv + tv' = 0$$

$$v = v'$$

Stereo image rectification

 If the image planes are not parallel, we can find the homographies to project each view onto a common plane parallel to the baseline

Stereo Image Rectification

Before Rectification

Stereo Image Rectification

After Rectification

Another Example of Rectification

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Triangulate the matches to get depth information

Depth from Disparity

$$\frac{x}{f} = \frac{B_1}{z} \qquad \frac{-x'}{f} = \frac{B_2}{z}$$

$$\frac{x - x'}{f} = \frac{B_1 + B_2}{z}$$

$$x - x' = \frac{fB}{z} \qquad z = \frac{fB}{x - x'}$$

Disparity is inversely proportional to depth!

Depth from Disparity

$$\frac{x}{f} = \frac{B_1}{z} \qquad \frac{x'}{f} = \frac{B_2}{z}$$

$$\frac{x - x'}{f} = \frac{B_1 - B_2}{z}$$

$$x - x' = \frac{fB}{Z}$$

$$z = \frac{fB}{x - x'}$$

Effect of Baseline on Stereo Results

- Larger baseline
 - + Smaller triangulation error
 - Matching is more difficult

- Smaller baseline
 - Higher triangulation error
 - + Matching is easier

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Compute disparity x x' and set depth(x) = Bf/(x x')

Search Correspondence

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD (or SAD) or normalized correlation

Search Correspondence

SSD: the sum of squared differences

Search Correspondence

Normalized correlation

Effect of Window Size on Correspondence Search

Window size 3

Window size 20

Smaller window:

- + More details
- More noise

Larger window:

- + Smoother disparity maps
- Fewer details

When will Basic Window Search Fail?

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Example: Textured Neighborhood

Window size: 1 pixel

Example: Textured Neighborhood

Window size: 7 pixels

Example: Textureless Neighborhood

Window size: 1 pixel

Example: Textureless Neighborhood

Window size: 7 pixels

Example: Specular Highlight

Window size: 1 pixel

Example: Specular Highlight

Window size: 7 pixels

Stereo as Optimization with Non-Local Constraints

Data

Autosterograms

A random dot autostereogram encoding a 3D scene of a shark, which can be seen with proper viewing technique.

