

Understanding Business & the requirements

"Global Mart" is an online store super giant having worldwide operations. It takes orders and delivers across the globe and deals with all the major product categories —

- Consumer
- Corporate
- Home Office

"Objective is to forecast the sales and the demand for the next 6 months, that would help manage the revenue and inventory accordingly."

"Global Mart" caters to 7 different market segments and in 3 major categories.

Project objective is to find out **2 most profitable (and consistent) segment** among all 21 Buckets [7*3 buckets] and **forecast the sales and demand for the next 6 months**.

Data Understanding

- The data currently has the transaction level data, where each row represents a particular order made on the online store. And there are 51,290 transaction records on the dataset.
- Data consists of 24 attributes with relates all these transactions. Two key attributes which are very essential for the model objectives
 - The "Market" attribute has 7-factor levels representing the geographical market sector that the customer belongs to.
 - The "Segment" attribute tells which of the 3 segments that customer belongs to.

Data Preparation

Most Profitable Buckets

Segment & Market	Rank			
EU Home Office	1			1.1
US Home Office	2			1.1
APAC Home Office	3		1.0)
US Consumer	4		1.0	
US Corporate	5		1.0	
EU Corporate	6	0.8		
APAC Corporate	7	0.7		
LATAM Consumer	8	0.7		
APAC Consumer	9	0.6		
EU Consumer	10	0.6		
•		0.0	0	

EDA- Overview of the data

Except Profit, rest other attributes are positive variables

EDA- Visualise the actual data

- Data shows a linear increasing seasonal trend
- A clear drop in 'Sales' & 'Quantity' for both markets (APAC & EU) at the beginning of the each year; at same time peak occurs around the end of each year

Model Building & Process

- Post Data preparations & EDA we got "APAC and EU Consumer" buckets are the most profitable. Forecasting will be done on these 2 buckets on 'Sales' & 'Quantity' are the attributes
- Being it's a Times Series Forecasting Model, data has been split by
 - o For Training 1:42 Months
 - o For Testing 43:48 Months
 - o For Forecasting 49:54 Months
- Time Series Modeling has been done by 4 buckets
 - APAC Consumer Sales
 - APAC Consumer Quantity
 - EU Consumer Sales
 - EU Consumer Quantity
- Modeling & Evaluation has been done through
 - o Classical decomposition Model
 - o Auto-ARIMA Model

Classical decomposition Model

Model Process

Model has been shown here for APAC Consumer Sales as an example; and same process have been followed across all the Buckets

1. Visualize the Actual data 1-48 month

- Data shows a linear increasing seasonal trend
- A clear drop in 'Sales' has been noticed at the beginning of the each year
- Hence we considered **MODULO FUNCTION** for a period of 12.
- Within YEAR seasonality has been modeled through 'SIN & COS FUNCTION'

2. Smoothing the data

Train Data: 1-42 month

4. Local Prediction = Actual data less Global Prediction Train Data: 1-42 month

8. Predict the Model on Test Data

[43-48 month] for evolution

Train Data: 1-42 month

ARIMA(0,0,1) model or equivalently a MA(1) model

5 - ACF & Residual

Train Data: 1-42 month

Auto-ARIMA Model

Model Process

Model has been shown here for APAC Consumer Sales as an example; and same process have been followed across all the Buckets

1. Visualize the Actual data 1-48 month

2. Model the dataset AUTO.ARIMA function

Train Data: 1-42 month

3. ADF and KPSS tests to check the Noise and result shows residuals is most likely white noise

Train Data: 1-42 month

4.Predict the Model on Test Data [43-48th month] for evolution

Classical decomposition Model

Model Evaluation & Results

MAPE

APAC Sales: ~20%
APAC Quantity: ~24%
EU Sales: ~23%

EU Quantity: ~26%

Auto-ARIMA position Model

Model Evaluation & Results

MAPE

APAC Sales: ~28%

APAC Quantity: ~26%

EU Sales: ~29%

EU Quantity: ~30%

Model Evaluation & Results Business Interpretation

- Classical Decomposition is giving a better MAPE value compared to the Auto-ARIMA model.
- It also seems that seasonality for the EU Market is slightly different compared to APAC.
- EU market is perhaps showing a slight quarterly seasonality on top of yearly seasonality, based on ACF plots and the Sales and Quantity vs Month plots.
- Modulo function along-with sin and cos can be tweaked to give better MAPE values for the EU market.

Forecasting for next 6 months [49:54 Month]

Classical Decomposition is showing better *MAPE* values during Training & Test Dataset, hence we have done the forecasting for next 6 months based on the same.

Forecasting shows, there will be a down trend for initial months but it will be recovered later part of the year.

Summary

<u>Actual Data</u> shows a linear increasing seasonal trend. A clear drop in 'Sales' & 'Quantity' for both markets (APAC & EU) at the beginning of the each year; at same time peak occurs around the end of each year.

Model Building & Evaluation

- Classical Decomposition is giving a better MAPE value compared to the Auto-ARIMA model.
- Seasonality for the EU Market is slightly different compared to APAC.
- EU market is perhaps showing a slight quarterly seasonality on top of yearly seasonality, based on ACF plots and the Sales and Quantity vs Month plots.
- Modulo function along-with sin and cos can be tweaked to give better MAPE values for the EU market.

Forecasting (49:54 Month)

 Based on Classical decomposition mode, Forecasting [48:54 month] shows a down trend for initial few month but it will be recovered later part of the year.