Q1. Evaluate
$$\overline{I} = \iint_{R} x \sin(x+y) dA$$
 where $R = [0, \overline{11}] \times [0, \overline{13}]$.

$$\overline{L} = -\int_{0}^{\pi/6} x \omega_{s} \left(x + \frac{\pi}{3}\right) dx + \int_{0}^{\pi/6} x \omega_{s} x dx$$

$$= \frac{1}{100} \left[\frac{1}{100} \times \frac{1}{100} \left(\frac{1}{100} \times \frac{1}{100} \right) - \left(\frac{1}{100} \times \frac{1}{100} \times \frac{1}{100} \right) \right] = \frac{1}{100}$$

$$= \frac{1}{100} \times \frac{1}{100}$$

$$\frac{1}{1} = \left[\begin{array}{c} x \sin \left(x + \frac{\pi}{3} \right) - \left(1 \right) \left(-\cos \left(x + \frac{\pi}{3} \right) \right) \right] \left[\frac{\pi}{6} \right]$$

$$= \left[x \sin x - \left(-\omega x \right) \right] \left[\frac{\pi}{6} \right]$$

$$= \left(-x \sin \left(x + \frac{\pi}{3} \right) - \cos \left(x + \frac{\pi}{3} \right) \right] \left[\frac{\pi}{6} \right]$$

$$= \left(-x \sin \left(x + \frac{\pi}{3} \right) - \cos \left(x + \frac{\pi}{3} \right) \right] \left[\frac{\pi}{6} \right]$$

$$= -\frac{11}{6} \sin \left(\frac{11}{2} \right) - \cos \left(\frac{11}{2} \right) + \cos \left(\frac{11}{3} \right) + \frac{11}{6} \left(\frac{1}{2} \right) + \frac{3}{2} - 1$$

$$= -\frac{11}{6} + \frac{1}{2} + \frac{11}{12} + \frac{\sqrt{3}}{2} - 1$$

$$\overline{L} = -\frac{\pi}{12} + \frac{\sqrt{3}}{2} - \frac{1}{2}$$
 // Ans.

Q2. Sketch the region of integration and change the order of integration
$$\frac{1}{L} = \int_{1}^{2} \int_{1}^{4} f(z, y) dy dx$$

$$R = \left\{ (2,y) \in \mathbb{R}^2 \mid 1 \leq 2 \leq 2, 0 \leq y \leq \ln x \right\}$$

$$y_1 = 0$$
 and $y_2 = h_X$

 $y = lm \times \Rightarrow x = e^{\gamma}$

$$\int \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(-\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(-\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right)} = e^{\frac{1}{\sqrt{2}}} \Rightarrow \text{ man value}$$

$$\int \left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = e^{-\left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right)} = e^{-\left(\frac{1}{\sqrt{2}, -\frac{1}{2\sqrt{2}}\right)} = e^{-\left(\frac{1}{\sqrt{2}, -\frac$$

	C	.)	1	max	Nate	7	Chan	ye o	1	(a)		اا ۔	_ \ '-	(7 13 Г	2, -1, 2)				
															(-4) ² +				
											=	40	oē	13 J	337	° C	/m	//~	
					Se	e y	u i	^	Ьm	srrn	J E	ΞXΑ	Μ						
						Sah													
							fhm				_ 1	,							
							, , , , , ,	ι.	-0 []	v 1									