Mètodes basats en rangs tècniques concretes: test de Mann-Whitney-Wilcoxon per dues mostres independents

Mètodes no paramètrics i de remostratge Grau interuniversitari en Estadística UB – UPC

Prof. Jordi Ocaña Rebull Departament d'Estadística, Universitat de Barcelona

- Adequada per comparar paràmetres de localització de 2 grups independents
- $\mathbf{Y} = (Y_{11},...,Y_{1n}, Y_{21},...,Y_{2m})$ mostra aleatòria
- $\{Y_{1j}\}$, $\{Y_{2j}\}$ obtingudes independentment, sota 2 condicions diferents associades a distribucions F_1 i F_2 , respectivament
- F_1 i F_2 continues univariants
- N = n + m mida mostral total

Prova de Mann-Whitney-Wilcoxon planteig – condicions de validesa

- μ_i i σ_i paràmetres de localització i escala (o dispersió) per cada grup i=1,2
 - (no necessàriament mitjana i desviació típica)
- La distribució de $\{Y_{1i}\}$ i $\{Y_{2i}\}$ és la mateixa excepte possibles \neq de localització i escala:

escala: $F_1\left(\frac{y-\mu_1}{\sigma_1}\right) = F_2\left(\frac{y-\mu_2}{\sigma_2}\right)$

• Però també suposarem que $\sigma_1 = \sigma_2 \rightarrow$ hipòtesi d'igualtat de distribucions esdevé:

Prova de Mann-Whitney-Wilcoxon planteig – condicions de validesa

$$H_0$$
: $\mu_1 = \mu_2$
 H_1 : $\mu_1 \neq \mu_2$ H_1 : $\mu_1 > \mu_2$ H_1 : $\mu_1 < \mu_2$
(bilateral) (unilateral) (unilateral)

(o equivalentment

$$H_0$$
: $\delta=0$ vs H_1 : $\delta\neq 0$ (o $\delta>0$, o $\delta<0$) per $\delta=\mu_1-\mu_2$)

Prova de Mann-Whitney-Wilcoxon hipòtesis nul·la i alternativa

- $\mathbf{R} = (R_{11},...,R_{1n}, R_{21},...,R_{2m})$ rangs de la mostra
- Suma de rangs dins cada grup:

$$R_{1.} = \sum_{j=1}^{n} R_{1j}$$
 $R_{2.} = \sum_{j=1}^{m} R_{2j}$

$$R_{1.} + R_{2.} = 1 + 2 + ... + N = \frac{N(N+1)}{2}$$

com més gran R_1 més petit R_2 i viceversa, un determina l'altre. Suficient tabular distribució de R_1

Estadístic de Wilcoxon: suma de rangs

- Mínim valor de R_1 és n(n + 1)/2, i de R_2 és m(m + 1)/2
- Per comoditat (brevetat de la taula) als textos "clàssics" d'estadística no paramètrica s'acostuma a tabular l'estadístic "U de Mann-Whitney":

$$U = \min \left\{ R_{1.} - \frac{n(n+1)}{2}, R_{2.} - \frac{m(m+1)}{2} \right\}$$

 Convé també saber-ho (a molts llocs explicat així)

Estadístic "U"

 Modernament s'acostuma a utilitzar la suma dels rangs del primer grup:

$$W = R_{1.} = \sum_{j=1}^{n} R_{1j}$$

• O bé:

$$W=R_{1.}-\frac{n(n+1)}{2}$$

 Aquesta segona definició de "W" és la que utilitza la funció 'wilcox.test' de R. És la que farem servir

Estadístic "W" de Wilcoxon

 També es podria muntar tot el test al voltant de l'estadístic:

$$S = \sum_{i=1}^{n} \sum_{j=1}^{m} I_{\{Y_{1i} < Y_{2j}\}} = nm - W$$

- És a dir, vegades que una observació del primer grup és menor que una del segon
- Lògicament, encara que el resultat final és el mateix, les taules, les expressions per la mitjana, etc. són diferents

Estadístic de Mann-Whitney

$$H_0: \mu_1 = \mu_2$$

$$H_1$$
: $\mu_1 \neq \mu_2$ es rebutja H_0 si:

$$U \leq u_{\alpha}(n,m)$$

$$H_1$$
: $\mu_1 > \mu_2$ es rebutja H_0 si:

$$U \le u_{\alpha}^* (n, m)$$

i $\overline{R}_1 > \overline{R}_2$

$$H_1$$
: $\mu_1 < \mu_2$ es rebutja H_0 si:

$$U \le u_{\alpha}^* (n, m)$$

i $\overline{R}_{1.} < \overline{R}_{2.}$

 $u_{\alpha}(n,m)$ valor crític a taula per prova bilateral $u_{\alpha}^{*}(n,m)$ valor crític a taula per prova unilateral per nivell de significació α i mides mostrals n,m

Procediment "a ma", criteri de test amb estadístic U

$$H_0: \mu_1 = \mu_2$$

$$H_1$$
: $\mu_1 \neq \mu_2$
es rebutja H_0 si: $W \leq W_{\alpha/2}(n,m)$
o $W \geq W_{1-\alpha/2}(n,m)$

$$H_1$$
: $\mu_1 > \mu_2$
es rebutja H_0 si: $W \ge w_{1-\alpha}(n,m)$

$$H_1$$
: $\mu_1 < \mu_2$
es rebutja H_0 si: $W \le W_{\alpha}(n,m)$

Procediment "a ma", criteri de test amb estadístic W

- Si H_0 és certa:
 - (conseqüència de les propietats bàsiques de rangs, veieu presentació general sobre rangs)

$$E(W) = \frac{nm}{2}$$

$$var(W) = \frac{nm(n+m+1)}{12}$$

Prova de MWW: esperança i variància de W si H₀ és certa

- Per mides mostrals "grans"
 - (si l'aproximació pel Teorema central del límit es considera prou vàlida; a la pràctica per n i m fora de la taula)

$$Z \approx N(0, 1)$$

$$W - \frac{nm}{2}$$

$$=\frac{W-\frac{1}{2}}{\sqrt{\frac{nm(n+m+1)}{12}}}$$

Prova de Mann-Whitney-Wilcoxon aproximació normal

$$H_0: \mu_1 = \mu_2$$

$$H_1$$
: $\mu_1 \neq \mu_2$ es rebutja H_0 si:

$$|Z| \geq Z_{\alpha}$$

$$H_1$$
: $\mu_1 > \mu_2$ es rebutja H_0 si:

$$Z \geq Z_{2\alpha}$$

$$H_1$$
: $\mu_1 < \mu_2$ es rebutja H_0 si:

$$Z \leq -Z_{2\alpha}$$

 z_p valor crític >0 a taula N(0,1) per prova bilateral per nivell de significació p, és a dir:

$$z_p$$
 valor t.q. $Pr(|Z| \le z_p) = 1 - p, Z \sim N(0,1)$

Prova de MWW criteri de test per l'aproximació normal

- Si en realitat Y es mesura en escala ordinal o amb insuficient precisió, hi poden haver "empats" (ties)
- Estratègia habitual: assignar a cada sèrie de valors empatats els rangs que els tocarien (com si no estesin empatats) i posteriorment substituir-los per la seva mitjana → tota la sèrie de valors empatats queda amb el mateix rang mitjà

Prova de MWW amb empats

- Si hi ha empats, criteri de decisió pel test de rangs exacte (taula) NO 100% correcte
- Aproximació normal: es recomana aquesta aproximació per variància d'U:

$$\frac{nm(n+m+1)}{12} - \frac{nm\left(\sum_{i=1}^{s} \left(t_i^3 - t_i\right)\right)}{12(n+m)(n+m-1)}$$

s = nombre de sèries de valors empatats t_i = llargada de sèrie i de valors empatats

Empats: correcció de var

 Independentment de presència d'empats, atès que els *rangs* són *discrets*, per l'aproximació a la normal (contínua) es recomana:

$$Z = \frac{\left| W - \frac{nm}{2} \right| - \frac{1}{2}}{\sqrt{\frac{nm(n+m+1)}{12}}}$$

No unanimitat que representi cap millora

Correcció per continuïtat

- Normalment s'interpreta δ com la diferència de medianes
- Les variables Y_{1j} i Y_{2j} δ tindrien la mateixa distribució
- Estimar δ com el valor $\hat{\delta}$ que faria que la distribució de rangs de Y_{1j} i $Y_{2j} \hat{\delta}$ fos el màxim de semblant
- Valor que satisfà aquesta condició: mediana de les nm diferències $Y_{1j} Y_{2k}$

Estimació puntual de δ

- Calcular les nm diferències $d_{jk} = Y_{1j} Y_{2k}$, per j = 1, ..., n, k = 1, ..., m
- Ordenar-les de menor a més gran: $d_{(1)} < d_{(2)} < \ldots < d_{(nm-1)} < d_{(nm)}$
- Interval de confiança de nivell 1α : $[d(\lambda), d(v)]$
- Càlcul dels índexos $1 \le \lambda < \upsilon \le nm$: $\lambda = u_{\alpha}(n,m) + 1$, $\upsilon = nm \lambda + 1$ $(u_{\alpha}(n,m)$ és el valor crític bilateral a la taula del test de Mann-Whitney-Wilcoxon pel nivell α)

Interval de confiança per δ

Per n i m no inclosos a les taules:

$$\lambda^* = \frac{nm}{2} - Z_{\alpha} \sqrt{\frac{nm(n+m+1)}{12}}$$

$$v^* = 1 + \frac{nm}{2} + Z_{\alpha} \sqrt{\frac{nm(n+m+1)}{12}}$$

$$(\lambda, v) = \text{arrodoniment de } (\lambda^*, v^*)$$
tal que verifiqui $\lambda + v = nm + 1$

Prova de Mann-Whitney-Wilcoxon interval de confiança asimptòtic per δ

- Alternativa vàlida a l'enfoc paramètric normal si possibles diferències al paràmetre de localització, però no al d'escala
- De fet, molt sensible a ≠ en dispersió
- En enfoc paramètric, no normalitat menys perturbadora que heteroscedasticitat → hi ha autors que recomanen no utilitzar mai el test de M-W-W, millor prova paramètrica robusta com el test de Welch (però per dades ordinals això no seria possible!)

Prova de Mann-Whitney-Wilcoxon comentaris finals