IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

Shuichi TAKAMIYA

Group Art Unit: Unassigned Examiner: Unassigned

Application No.: Unassigned

Confirmation No.: Unassigned

Filing Date:

March 12, 2004

Title: DEVELOPING SOLUTION FOR HEAT-SENSITIVE LITHOGRAPHIC PRINTING PLATE PRECURSOR

AND METHOD FOR PREPARING LITHOGRAPHIC PRINTING PLATE

SUBMISSION OF CERTIFIED COPY OF PRIORITY DOCUMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

The benefit of the filing date of the following priority foreign application(s) in the following foreign country is hereby requested, and the right of priority provided in 35 U.S.C. § 119 is hereby claimed.

Country: Japan

Patent Application No(s).: 2003-066120

Filed: March 12, 2003

In support of this claim, enclosed is a certified copy(ies) of said foreign application(s). Said prior foreign application(s) is referred to in the oath or declaration. Acknowledgment of receipt of the certified copy(ies) is requested.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

P.O. Box 1404 Alexandria, Virginia 22313-1404 (703) 836-6620

Date: March 12, 2004

Rlaton N. Mandros

Registration No. 22,124

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 3月12日

出 願 番 号 Application Number:

特願2003-066120

[ST. 10/C]:

[J P 2 0 0 3 - 0 6 6 1 2 0]

出 願 人
Applicant(s):

富士写真フイルム株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年 9月18日

【書類名】

特許願

【整理番号】

Y1J0982

【提出日】

平成15年 3月12日

【あて先】

特許庁長官殿

【国際特許分類】

G03F 7/32

【発明者】

【住所又は居所】 静岡県榛原郡吉田町川尻4000番地 富士写真フイル

ム株式会社内

【氏名】

高宮 周一

【特許出願人】

【識別番号】

000005201

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】

100059959

【弁理士】

【氏名又は名称】 中村 稔

【選任した代理人】

【識別番号】 100067013

【弁理士】

【氏名又は名称】 大塚 文昭

【選任した代理人】

【識別番号】 100082005

【弁理士】

【氏名又は名称】 熊倉 禎男

【選任した代理人】

【識別番号】 100065189

【弁理士】

【氏名又は名称】 宍戸 嘉一

19

【選任した代理人】

【識別番号】 100074228

【弁理士】

【氏名又は名称】 今城 俊夫

【選任した代理人】

【識別番号】 100084009

【弁理士】

【氏名又は名称】 小川 信夫

【選任した代理人】

【識別番号】 100082821

【弁理士】

【氏名又は名称】 村社 厚夫

【選任した代理人】

【識別番号】 100086771

【弁理士】

【氏名又は名称】 西島 孝喜

【選任した代理人】

【識別番号】 100084663

【弁理士】

【氏名又は名称】 箱田 篤

【手数料の表示】

【予納台帳番号】 008604

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

感熱性平版印刷版用現像液及び平版印刷版の製版方法

【特許請求の範囲】

【請求項1】 直鎖型アルキレンオキサイド付加物及び分岐型アルキレンオキサイド付加物を含有することを特徴とする感熱性ポジ型平版印刷版用アルカリ現像処理液。

【請求項2】 さらにアニオン界面活性剤及び両性界面活性剤からなる群から選ばれる少なくとも1種を含有する請求項1記載のアルカリ現像処理液。

【請求項3】 支持体上に赤外線吸収染料を含有する画像記録層を有する感熱性ポジ型平版印刷版を赤外線露光後、請求項1又は2記載のアルカリ現像処理液で現像処理する平版印刷版の製版方法。

【発明の詳細な説明】

$[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、コンピュータ等のデジタル信号に基づき、赤外線レーザー走査により直接製版できる、いわゆるダイレクト製版可能な平版印刷版原版からの製版に適したアルカリ現像処理液に関する。本発明はさらに、コンピュータ等のデジタル信号に基づき、赤外線レーザー走査により直接製版できる、いわゆるダイレクト製版可能な平版印刷版原版からの平版印刷版の製版方法に関する。

$[0\ 0\ 0\ 2]$

【従来の技術】

近年、レーザーの発展はめざましく、特に近赤外から赤外に発光領域を持つ固体レーザー、半導体レーザーは、高出力かつ小型のものが容易に入手できるようになっており、このデジタルデータから直接製版するシステムの露光光源として、これらのレーザーは非常に有用である。

レーザー書き込みに適する画像記録材料として、例えばクレゾール樹脂のような結着剤と、光を吸収して熱を発生する物質と、キノンジアジドのような熱分解性であって、且つ分解前の状態では前記結着剤の溶解性を実質的に低下させうる化合物とを含有するポジ型の画像記録材料が提案されている。

これは、赤外線照射により露光部分において前記光を吸収して熱を発生する物質が発熱し、露光部分をアルカリ可溶性にするもの(ヒートモード型)であるが、支持体であるアルミニウムに吸熱されてしまうため熱効率が低く、現像工程におけるアルカリ現像処理液に対する溶解性は満足のいくものではなかった。このため、現像液のアルカリ濃度を上げ、露光部分の溶解性を確保してきた。

[0003]

ところが、ヒートモード型の平版印刷版原版は、上記のような高濃度のアルカリ条件下では画像部のアルカリ現像処理液に対する耐溶解性が低く、画像記録材料表面に僅かに傷があるだけで溶解され、画像部に欠陥を生ずるなどの問題があった。特に、アルカリ水溶液に対して可溶性の高い高分子化合物を使用するポジ型の平版印刷版原版において、その傾向はより顕著であった。

従って、非画像部に残膜が生じないようにアルカリ現像液のアルカリ濃度を上げるには限度があり、形成した画像部に欠陥を与えることなく、高鮮鋭で鮮明な画像を形成するのは困難であった。特に、ドット部や細線などを含む精細な画像において、その高鮮鋭化、再現性の向上が要求されている。そのため、現像液に各種界面活性剤を添加することが検討されており、画像の高鮮鋭化に関してある程度の向上が得られている。

例えばアルカリ現像液中にエチレンオキサイド付加物を含有させることが示され(例えば、特許文献 1 参照。)、また、アルカリ現像液中にポリオキシアルキレン系のノニオン界面活性剤を含めることが提案されている(例えば、特許文献 2 参照。)。

しかしながら、現像液中への感光層成分の溶け込みによって、上記のような現像抑制剤が感光層成分、特にアルカリ可溶性樹脂と相互作用して、現像抑制する効果が減少することが問題となっている。

[0004]

【特許文献1】

特開2000-321788号公報

【特許文献2】

特開平11-338126号公報

[0005]

【発明が解決しようとする課題】

本発明は、従来における諸問題を解決し、感光層成分が溶け込んでも、一定の性能を発揮することができ、画像部に欠陥を与えることなく高鮮鋭で鮮明な画像を形成し得るアルカリ現像処理液及び製版方法を提供することを目的とする。

[0006]

【課題を解決するための手段】

本発明者は上記課題を達成するために鋭意検討を重ねた結果、特定の化合物を 組み合わせて、アルカリ現像処理液に含有させておくことにより、長期にわたる 現像処理で感光層成分が溶け込んだとしても、高鮮鋭で鮮明な画像を形成し得る ことを見出し、本発明を完成させるに至った。

従って本発明は、直鎖型アルキレンオキサイド付加物及び分岐型アルキレンオキサイド付加物を含有することを特徴とする感熱性ポジ型平版印刷版用アルカリ現像処理液である。

本発明の好ましい実施態様では、上記アルカリ現像処理液がアニオン界面活性 剤及び両性界面活性剤からなる群から選ばれる少なくとも1種をさらに含有する

本発明はさらに、支持体上に赤外線吸収染料を含有する画像記録層を有する感 熱性ポジ型平版印刷版を赤外線露光後、上記のアルカリ現像処理液で現像処理す る平版印刷版の製版方法に向けられている。

[0007]

【発明の実施の形態】

先ず、本発明のアルカリ現像処理液について説明する。

本発明のアルカリ現像処理液(以下、単に「現像液」ともいう。) はアルカリ性の水溶液であって、従来公知のアルカリ水溶液の中から適宜選択することができる。

アルカリ水溶液としては、ケイ酸アルカリ若しくは非還元糖と、塩基とを含む 現像液が挙げられ、特にpH12.5~14.0のものが好ましい。

前記ケイ酸アルカリとしては、水に溶解したときにアルカリ性を示すものであ

ケイ酸アルカリは1種単独でも、2種以上を組み合わせて用いてもよい。

[0008]

上記アルカリ水溶液は、ケイ酸塩の成分である酸化ケイ素 SiO_2 とアルカリ酸化物 M_2O (Mはアルカリ金属又はアンモニウム基を表す。)との混合比率、及び濃度の調整により、現像性を容易に調節することができる。

前記アルカリ水溶液の中でも、前記酸化ケイ素 SiO_2 とアルカリ酸化物 M_2O との混合比率(SiO_2/M_2O :モル比)が $0.5\sim3.0$ のものが好ましく、 $1.0\sim2.0$ のものがより好ましい。

また、現像液中のケイ酸アルカリの濃度としては、良好な現像性を発揮し且つ 廃液処理における取り扱いの利便を図る点から、アルカリ水溶液の質量に対して 一般に1~10質量%が適当であり、3~8質量%がより好ましく、4~7質量 %が最も好ましい。

[0009]

非還元糖と塩基とからなる現像液において、非還元糖とは遊離性のアルデヒド 基やケトン基を持たないために還元性を有しない糖類を意味し、還元基同士の結 合したトレハロース型少糖類、糖類の還元基と非糖類が結合した配糖体、糖類に 水素添加して還元した糖アルコールに分類される。本発明ではこれらのいずれも 好適に用いることができる。

トレハロース型少糖類としては、例えばサッカロースやトレハロースが挙げられ、前記配糖体としては、例えばアルキル配糖体、フェノール配糖体、カラシ油配糖体などが挙げられる。

糖アルコールとしては、例えばD、L-アラビット、リビット、キシリット、D、L-ソルビット、D,L-マンニット、D,L-イジット、D,L-タリット、ズリシット、アロズルシットなどが挙げられる。さらには、二糖類の水素添加で得られるマルチトール、オリゴ糖の水素添加で得られる還元体(還元水あめ)なども好適に挙げることができる。

[0010]

上記のうち、非還元糖としては、糖アルコール、サッカロースが好ましく、中でも特に、Dーソルビット、サッカロース、還元水あめが適度なpH領域に緩衝作用がある点でより好ましい。

これらの非還元糖は単独でも、二種以上を組み合わせてもよく、現像液中に占める割合としては、 $0.1 \sim 30$ 質量%が好ましく、 $1 \sim 20$ 質量%がより好ましい。

[0011]

前記ケイ酸アルカリ若しくは非還元糖には、塩基としてアルカリ剤を従来公知の物の中から適宜選択して組み合わせることができる。

該アルカリ剤としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、リン酸三ナトリウム、リン酸三カリウム、リン酸三アンモニウム、リン酸二ナトリウム、リン酸二カリウム、リン酸二アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸アンモニウムなどの無機アルカリ剤、クエン酸カリウム、クエン酸三カリウム、クエン酸ナトリウムなどが挙げられる。

[0012]

さらにモノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノイソプロピルアミン、ジイソプロピルアミン、トリイソプロピルアミン、ローブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、エチレンイミン、エチレンジアミン、ピリジンなどの有機アルカリ剤も好適に挙げることができる。

これらのアルカリ剤は単独で用いても、二種以上を組み合わせて用いてもよい

中でも水酸化ナトリウム、水酸化カリウムが好ましい。その理由は、非還元糖に対する添加量を調整することにより、広いpH領域においてpH調整が可能となるためである。また、リン酸三ナトリウム、リン酸三カリウム、炭酸ナトリウム、炭酸カリウムなどもそれ自身に緩衝作用があるので好ましい。

6/

[0013]

本発明のアルカリ現像処理液は、上述のようなアルカリ水溶液に、直鎖型アルキレンオキサイド付加物及び分岐型アルキレンオキサイド付加物を含有することを特徴とする。

[直鎖型アルキレンオキサイド付加物]

本発明で使用する直鎖型アルキレンオキサイド付加物の例として、以下の一般式(I)で示されるものがある。

$$R - O - (A) m - (B) n - H$$
 (I)

式(I)中、Rは水素原子、炭素原子数 $1\sim30$ のアルキル基、アルケニル基、又は炭素原子数 $6\sim48$ のアリール基を表し、A及びBは互いに異なる基であって、 $-CH_2CH_2O-$ 又は $-CH_2CH$ (CH_3)O-のいずれかを表し、m、nは0又は $1\sim50$ の整数を表し、但しmとnは同時に0ではない。

[0014]

上記式(I)中、Rで示されるアルキル基、アルケニル基は分岐していてもよく、アルキル基、アルケニル基、アリール基は置換基を有していてもよく、置換基として例えば炭素原子数 $1\sim20$ のアルキル基、ハロゲン原子、炭素原子数 $6\sim15$ のアリール基、炭素原子数 $7\sim17$ のアラルキル基、炭素原子数 $1\sim20$ のアルコキシ基、炭素原子数 $2\sim20$ のアルコキシーカルボニル基、炭素原子数 $2\sim15$ のアシル基などが挙げられる。

上記化合物において、AとBがともに存在するとき、ランダム状でもブロック 状の共重合体でもよい。また、化合物中、mとnの合計は一般に2~50、好ま しくは2~30、より好ましくは2~20である。

上記化合物中、プロピレンオキシ基が存在するとき化合物の水溶解性が許容で きる範囲で存在するのが望ましい。

[0015]

式(I)で示される直鎖型アルキレンオキサイド付加物の更なる具体例として、次の①~⑥で示されるものがある。

- ① HO-(A) m-(B) n-H
- ② $C_pH_{2p+1}-O-(A)m-(B)n-H(pは1~30の整数を表す。)$

③ $C_qH_{2q-1}-O-(A)m-(B)n-H(qは2~30の整数を表す。)$

(4)

 $(R_{01}$ は水素原子、又は炭素原子数 $1\sim20$ の分岐していてもよいアルキル基を表す。)

(5)

 $(R_{01}$ は水素原子、又は炭素原子数 $1\sim20$ の分岐していてもよいアルキル基を表す。)

(6)

 $(R_{01}$ は水素原子、又は炭素原子数 $1\sim20$ の分岐していてもよいアルキル基を表す。)

上記式①~⑥においてA、B、n、mの定義は式(I)における定義と同義である。

[0016]

上記① \sim ⑥の式で示される化合物の中で、式④で示される化合物が好ましく使用され、その中でも R_{01} が炭素原子数 $1\sim10$ 、好ましくは炭素原子数 $1\sim4$ 、より好ましくは炭素原子数 $1\sim3$ のアルキル基を表すものである。

[0017]

本発明で使用する直鎖型アルキレンオキサイド付加物の分子量としては、画像部に対する充分な溶解抑止力を発揮し、且つ非画像部に対して充分な現像性を発揮する点から、一般に50~10000が適当である。該分子量は好ましくは1

00~5000であり、500~3500が最も好ましい。

本発明のアルカリ現像処理液において、直鎖型アルキレンオキサイド付加物を 1種単独で、又は 2種以上を組み合わせて用いることができる。アルカリ性現像 処理液における直鎖型アルキレンオキサイド付加物の含有量は、一般に 0.00 $1 \sim 10.0$ 質量%、好ましくは $0.01 \sim 5.0$ 質量%、特に好ましくは $0.05 \sim 1.0$ 質量%である。

[0018]

[分岐型アルキレンオキサイド付加物]

ここで分岐型アルキレンオキサイド付加物とは、その分子構造中に基(II): -(A)m-(B)n-H (II)

(式中、A及びBは互いに異なる基であって、 $-CH_2CH_2O-$ 又は $-CH_2CH_2O$ H(CH_3)O-のいずれかを表し、m、nは0又は $1\sim50$ の整数を表し、但しmとnは同時に0ではない。)を2以上有する化合物を意味する。但し、ここで分岐型アルキレンオキサイド付加物にはポリエチレングリコール、ポリプロピレングリコール、エチレンオキサイドプロピレンオキサイド縮合物といったポリアルキレングリコールは含まれない。

上記化合物において、AとBがともに存在するとき、ランダム状でもブロック 状の共重合体でもよい。また、式(II)においてmとnの合計は一般に2~50 、好ましくは2~30、特に好ましくは2~20である。

[0019]

本発明で使用する分岐型アルキレンオキサイド付加物の具体例として、

- (1)基:-O-(A) m-(B) n-H (式中、A、B、m、n は、式(II) における定義と同義である。)を分子構造中に 2 以上有する化合物、及び
- (2)分子構造中に窒素原子を含み、窒素原子に結合している基:-(A)m-(
- B) n-H (式中、A、B、m、n は、式(II)における定義と同義である。) を 2以上有する化合物などが含まれる。前記(2)の化合物において、2以上の基:
- (A) m- (B) n-Hが同一の窒素原子に結合していてもよいし、別個の窒素原子に結合していてもよい。

本発明で使用する分岐型アルキレンオキサイド付加物は、上記基(II)を分子

分岐型アルキレンオキサイド付加物におけるアルキレンオキサイドの総付加モル数は、 $2\sim200$ モル/分子、好ましくは $2\sim100$ モル/分子、より好ましくは $2\sim50$ モル/分子である。

上記化合物中、プロピレンオキシ基が存在するとき化合物の水溶解性が許容で きる範囲で存在するのが望ましい。

[0020]

本発明で使用する分岐型アルキレンオキサイド付加物の更なる具体例として、 以下の式(III)、(IV)、(IV')で示される化合物がある。

下記式(III)で示される化合物

CH₂-O-R₁ (CH-O-R₃)r (III) CH₂-O-R₂

〔式(III)中、rは $1\sim1$ 0の整数を表し、 R_1 、 R_2 、 R_3 はそれぞれ独立して水素原子又は下記式(II):

$$- (A) m - (B) n - H$$
 (II)

(式(II)中、A及びBは互いに異なる基であって、 $-CH_2CH_2O-又は-CH_2CH_2CH_3O-O$ のいずれかを表し、m、nは0又は $1\sim5$ 0の整数を表し、但しmとnは同時に0ではない。)を表し、但し R_1 、 R_2 、 R_3 はのうち少なくとも2つは上記式(II)にて示される基を表す。]

式(III)中、rは好ましくは $1\sim6$ 、特に好ましくは $1\sim4$ の整数を表す。

[0021]

式(III)で示される分岐型アルキレンオキサイド付加物の例として、糖アルコール (例えばD, L-トレイット、D, L-アラビット、リビット、キシリット、D, L-ソルビット、D, L-マンニット、D, L-イジット、D, L-タリット、ズルシット、アロズルシットなど)のアルキレンオキサイド付加化合物、及びグリセリンのアルキレンオキサイド付加化合物などがある。これらの化合物は市場において一般に入手

分岐型アルキレンオキサイド付加物のその他の具体例として、糖アルコールを 縮合したジグリセリン、トリグリセリン、テトラグリセリン、ペンタグリセリン 及びヘキサグリセリンなどのポリグリセリンのアルキレンオキサイド付加物が挙 げられる。

[0022]

式 (IV) 、 (IV') で示される化合物

$$N = (A)m-(B)n-H$$
 $(A)m'-(B)n'-H$
 (IV)
 $(A)m''-(B)n''-H$

$$H-(B)n''-(A)m''$$
 $N(CH_2)_aN$ $(A)m-(B)n-H$ (IV') $H-(B)n'''-(A)m''$ $(A)m'-(B)n'-H$

(式(IV)、(IV')中、A及びBは互いに異なる基であって、 $-CH_2CH_2O-Z$ は $-CH_2CH$ (CH_3)O-のいずれかを表し、m、nは0又は $1\sim50$ の整数を表を表し、但しmとnは同時に0ではなく、m'、n'は0又は $1\sim50$ の整数を表し、但しm'、n'は同時に0ではなく、m"、n"は0又は $1\sim50$ の整数を表し、但しm"とn"は同時に0ではなく、m"、n"は0又は $1\sim50$ の整数を表し、但しm"とn"は同時に0ではなく、m"、n"は0又は $1\sim50$ の整数を表し、但しm"とn"はは同時に0ではなく、式(IV)中、aは $2\sim12$ の整数を表す。)

式(IV)で示される化合物の例としてトリエタノールアミンEO付加物などが挙 げられる。

式(IV´)で示される分岐型アルキレンオキサイド付加物の例として、エチレンジアミンEO/PO付加物、エチレンジアミンPO付加物、エチレンジアミンPO付加物、地電化工業(株)製の商品名テトロニックの商品カタログなどに記載されている化合物などを挙げることができる。

その他の分岐型アルキレンオキサイド付加物の例として、トリメチロールプロピルエーテルEO付加物、トリメチロールプロピルエーテルEO/PO付加物、トリメチロールプロピルエーテルPO付加物などがある。

[0023]

本発明で使用する分岐型アルキレンオキサイド付加物の分子量としては、画像部に対する充分な溶解抑止力を発揮し、且つ非画像部に対して充分な現像性を発揮する点から、一般に50~10000が適当である。該分子量は好ましくは100~500であり、500~3500が最も好ましい。

[0024]

本発明のアルカリ現像処理液において、分岐型アルキレンオキサイド付加物を 1種単独で、又は2種以上を組み合わせて用いることができる。アルカリ性現像 処理液における分岐型アルキレンオキサイド付加物の含有量は、一般に0.00 1~10.0質量%、好ましくは0.01~7.5質量%、特に好ましくは0. 05~5.0質量%である。

本発明のアルカリ現像処理液において、直鎖型アルキレンオキサイド付加物と 分岐型アルキレンオキサイド付加物との合計含有量は、 $0.002\sim20.0$ 質量%の範囲が適当で、 $0.02\sim12.5$ 質量%の範囲がより好ましく、 $0.1\sim6.0$ 質量%の範囲が特に好ましい。

[0025]

本発明のアルカリ現像処理液には、露光部の溶解速度を上げる目的及び現像カス発生を抑制する観点から、アニオン界面活性剤及び両性界面活性剤からなる群から選ばれる少なくとも1種をさらに含有させてもよい。

アニオン界面活性剤の例としては、例えばラウリルアルコールサルフェートのナトリウム塩、ラウリルアルコールサルフェートのアンモニウム塩、オクチルアルコールサルフェートのナトリウム塩などの高級アルコール硫酸エステル塩類、高級アルキルエーテル硫酸エステル塩類、イソプロピルナフタレンスルホン酸のナトリウム塩、イソブチルナフタレンスルホン酸のナトリウム塩、ドデシルベンゼンスルホン酸のナトリウム塩、メタニトロベンゼンスルホン酸のナトリウム塩などのようなアルキルアリールスルホン酸塩、第2ナトリウムアルキルサルフェ

ートなどの炭素数8~22の高級アルコール硫酸エステル類、セチルアルコールリン酸エステルのナトリウム塩などのような脂肪族アルコールリン酸エステル塩類、たとえば $C_{17}H_{33}CON$ ($C_{17}H_{33}CON$ ($C_{17}H_{25}O_{3}N$ a などのようなアルキルアミドのスルホン酸塩類、ナトリウムスルホこはく酸ジオクチルエステル、ナトリウムスルホこはく酸ジヘキシルエステルなどの二塩基性脂肪族エステルのスルホン酸塩類、ヒドロキシアルカンスルホン酸塩類、アルカンスルホン酸塩類、アルキルジフェニルエーテルスルホン酸塩類、ジフェニルエーテルジスルホン酸塩類、ジアルキルスルホ琥珀酸エステル塩類、オレフィンスルホン酸塩類、直鎖アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩類、ポリオキシエチレンアルキルスルホフェニルエーテル塩類、N-アルキルスルホ琥珀酸モノアミドニナトリウム塩、石油スルホン酸塩類などが挙げられる。

中でも芳香族型アニオン界面活性剤として以下の(V) \sim (VIII) にて示される化合物が挙げられる。

[0026]

$$R^1$$
 O R^2 $X-SO_3M$ (V)

(式(V)中、 R^1 、 R^2 はそれぞれ独立に水素原子又は分岐していてもよいアルキル基を表し、X、Yはそれぞれ独立に単結合又は式:-O-(CH_2CH_2O) n-(nは $1\sim100$ の整数である。)を表し、Mは1価のアルカリ金属を表す。)

上記式(V)中、 R^1 、 R^2 で示されるアルキル基としては、炭素原子数 $1\sim 40$ が適当で、好ましくは炭素原子数 $2\sim 20$ 、特に好ましくは炭素原子数 $4\sim 12$ であり、X、Yはそれぞれ独立に単結合又は式: $-O-(CH_2CH_2O)$ n-(nは好ましくは $2\sim 50$ の整数、特に好ましくは $3\sim 30$ の整数を表す。)を表し、Mはナトリウム、カリウム、リチウムなどを表し、特にナトリウムが好まし

610

[0027]

上記式(V)で示される化合物の好ましい例として以下の(1)~(3)がある。

(2)
$$R^1 \longrightarrow R^2$$
 SO_3Na $O(CH_2CH_2O)_{10}-SO_3Na$

(3)
$$R^{1} \qquad R^{2}$$

$$O(CH_{2}CH_{2}O)_{10}-SO_{3}Na$$

$$O(CH_{2}CH_{2}O)_{10}-SO_{3}Na$$

上記式中、 R^1 、 R^2 として特に好ましくは nC_8H_{17} 、 $nC_{12}H_{25}$ が挙げられる。

[0028]

$$R_{02} = X-SO_3M \qquad (VII)$$

(式(VI)及び(VII)中、R $_{02}$ は水素原子又は分岐していてもよいアルキル基を表し、Xは単結合又は式: $-O-(CH_2CH_2O)n-(nは1\sim100$ の整数である。)を表し、Mは1価のアルカリ金属を表す。)

上記式(VI)中、R $_{02}$ で示されるアルキル基としては炭素原子数 $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{5}$ $_{6}$ $_{5}$ $_{5}$ $_{5}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{8}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$

[0029]

式(VI)で示される化合物の好ましい例として、以下の(4)及び(5)がある。

(4)
$$R_{02}$$
 SO₃Na

(5)

R₀₂ O(CH₂CH₂O)₁₀-SO₃N₈

上記式中、R $_{02}$ として特に好ましくは $_{17}$ 、 $_{17}$ $_{12}$ $_{12}$ $_{12}$ が挙げられる。 【 $_{10}$ $_{10}$ $_{12}$ $_{12}$ $_{13}$ $_{14}$ $_{15}$ $_{$

上記式(VII)中、 R_{02} で示されるアルキル基としては炭素原子数 $1\sim40$ が適当で、好ましくは炭素原子数 $2\sim20$ 、特に好ましくは炭素原子数 $4\sim12$ であり、Xは単結合又は式: $-O-(CH_2CH_2O)$ n-(nは好ましくは $2\sim50$ の整数、特に好ましくは $3\sim30$ の整数を表す。)を表し、Mはナトリウム、カリウム、リチウムなどを表し、特にナトリウムが好ましい。

式(VII)で示される化合物の好ましい例として、以下の(6)及び(7)がある。

(6)

(7)

上記式中、R $_{02}$ として特に好ましくは $_{17}$ 、 $_{12}$ H $_{25}$ が挙げられる。【0031】

(式(VIII)中、X、Yはそれぞれ独立に単結合又は式: $-O-(CH_2CH_2O)$ n-(nは1~100 の整数である。)を表し、Mは1価のアルカリ金属を表す。)

上記式(VIII)中、X、Yはそれぞれ独立に単結合又は式:-O-(CH_2CH_2O)n-(nは好ましくは $2\sim50$ の整数、特に好ましくは $3\sim30$ の整数を表す。)を表し、Mはナトリウム、カリウム、リチウムなどを表し、特にナトリウムが好ましい。

[0032]

式(VIII)で示される化合物の好ましい例として、以下の(8)~(10)がある。

$$\begin{array}{c} \text{(10)} \\ \\ \text{O(CH}_2\text{CH}_2\text{O)}_{10}\text{-SO}_3\text{Na} \\ \\ \text{O(CH}_2\text{CH}_2\text{O)}_{10}\text{-SO}_3\text{Na} \\ \end{array}$$

[0033]

上記式 (V) \sim (VIII) で示される化合物の中でも、式(V)にて示される化合物が好ましい。

芳香族型アニオン界面活性剤の具体例を以下に挙げる。

[0035]

本発明で使用する両性界面活性剤の例としては、アミノ酸型両性界面活性剤及 びベタイン型両性界面活性剤などが挙げられる。

アミノ酸型両性界面活性剤の例として以下の式(IX)の化合物及び式(X)の化合物から選ばれるものがある。

$$R^3$$
-NH- $(CH_2)_mCOOR'$ (IX)
 $(CH_2)_nCOOR''$
 R^4 -N (X)

[0036]

上記式(IX)中、R 3 は好ましくは炭素原子数 3 ~ 2 0、より好ましくは 4 ~ 1 2の炭化水素基を表し、一般に脂肪族炭化水素基であり直鎖でも分岐鎖でもよく、好ましくは直鎖であり、また、飽和でも不飽和でもよく、好ましくはアルキル基又はアルケニル基である。また、R $^\prime$ は水素原子又は 1 価のアルカリ金属、例えばナトリウム、カリウム、リチウムであり、特にナトリウムが好ましい。mは 1 ~ 1 0、好ましくは 2 0、特に好ましくは 2 0の整数を表す。

[0037]

上記式(IX)で示される化合物の好ましい例として以下の(11)がある。

(11) $R^3-NH-(CH_2)_2COONa$

 R^3 として特に好ましくは nC_8H_{17} 、 $nC_{12}H_{25}$ が挙げられる。

[0038]

上記式(X)中、R 4 は好ましくは炭素原子数 $3 \sim 20$ 、より好ましくは $4 \sim 12$ の炭化水素基を表し、一般に脂肪族炭化水素基であり直鎖でも分岐鎖でもよく、好ましくは直鎖であり、また、飽和でも不飽和でもよく、好ましくはアルキル基又はアルケニル基である。また、R''、R''、は水素原子又は 1 価のアルカリ金属、例えばナトリウム、カリウム、リチウムであり、特にナトリウムが好ましい。 n、pは $1 \sim 10$ 、好ましくは $2 \sim 8$ 、特に好ましくは $2 \sim 6$ の整数を表す

[0039]

上記式(X)で示される化合物の好ましい例として以下の(12)がある。

(12)
$$(CH_2)_2COOH$$
 R^4-N $(CH_2)_2COONa$

 R^4 として特に好ましくは $n C_8 H_{17}$ 、 $n C_{12} H_{25}$ が挙げられる。

上記式(IX)又は(X)で示される化合物のうち、式(X)で示される化合物が好ましい。

上記化合物は、常法に従って製造することができる。また、例えば商品名パイオニンC-158(竹本油脂(株)製)などの市販品としても入手可能である。

[0040]

また、ベタイン型両性界面活性剤の例として以下の式(XI)の化合物が挙げられる。

(式中、 R^5 、 R^6 、 R^7 はそれぞれ炭素原子数 $1 \sim 30$ の炭化水素基を表し、qは $1 \sim 10$ の整数を表す。)

式(XI)中、R 5 、R 6 、R 7 は好ましくは炭素原子数 $1\sim20$ 、より好ましくは炭素原子数 $1\sim12$ の炭化水素基を表し、一般に脂肪族炭化水素基であって、直鎖でも分岐していてもよく、また、飽和でも不飽和でもよく、具体的にアルキル基、アルケニル基などが挙げられる。qは $1\sim10$ 、好ましくは $2\sim8$ 、より好ましくは $2\sim6$ の整数を表す。

式(XI)で示される化合物の好ましい例として以下の(13)がある。

 R^5 として特に好ましくは nC_8H_{17} 、 $nC_{12}H_{25}$ が挙げられる。

両性界面活性剤としてその他、イミダゾリニウム塩類、イミダゾリン類、スルホベタイン類などが挙げられる。

$[0\ 0\ 4\ 1]$

本発明のアルカリ現像処理液中には、アニオン界面活性剤及び両性界面活性剤から選ばれる 1 種を単独で、又は 2 種以上を併用して含めることができる。現像液中におけるアニオン界面活性剤及び/又は両性界面活性剤の含有量としては、 $0.001\sim10$ 質量%が好ましく、 $0.005\sim1$ 質量%がより好ましく、 $0.001\sim0.5$ 質量%が最も好ましい。

[0042]

アルカリ現像処理液は、上記のとおり、ケイ酸アルカリ若しくは非還元糖と、塩基を含む現像液を用いるが、そのカチオン成分として従来よりLi+、Na+、K+、NH⁴+が用いられ、中でも、イオン半径の小さいカチオンを多く含有する系では、画像記録層への浸透性が高く現像性に優れる一方、画像部まで溶解して画像欠陥を生ずる。従って、アルカリ濃度を上げるには、ある程度の限度があり、画像部に欠陥を生ずることなく、且つ非画像部に画像記録層(残膜)が残存しないように完全に処理するためには、微妙な液性条件の設定が要求された。

しかし、前記カチオン成分として、そのイオン半径の大きいカチオンを用いることにより、画像記録層中への現像液の浸透性を抑制することができ、アルカリ 濃度、即ち、現像性を低下させることなく、画像部の溶解抑止効果をも向上させることができる。

前記カチオン成分としては、上記アルカリ金属カチオン及びアンモニウムイオンのほか、他のカチオンも用いることができる。

[0043]

本発明のアルカリ現像処理液には、さらに現像性能を高める目的で、以下のような添加剤を加えることができる。

例えば特開昭58-75152号公報に記載のNaCl、KCl、KBrなど の中性塩、特開昭58-190952号公報に記載のEDTA、NTAなどのキ レート剤、特開昭 5 9 - 1 2 1 3 3 6 号公報に記載の [Co(N H₃)₆] C l₃ 、CoCl₂・6 H₂Oなどの錯体、特開昭 50-51324号公報に記載のアル キルナフタレンスルホン酸ソーダ、n-テトラデシル-N,N-ジヒドロキシエ チルベタインなどのアニオン又は両性界面活性剤、米国特許第4,374,92 0号明細書に記載のテトラメチルデシンジオールなどの非イオン性界面活性剤、 特開昭55-95946号公報に記載のp-ジメチルアミノメチルポリスチレン のメチルクロライド4級化合物などのカチオニックポリマー、特開昭56-14 2528号公報に記載のビニルベンジルトリメチルアンモニウムクロライドとア クリル酸ソーダとの共重合体などの両性高分子電解質、特開昭57-19295 1号公報に記載の亜硫酸ソーダなどの還元性無機塩、特開昭58-59444号 公報に記載の塩化リチウムなどの無機リチウム化合物、特開昭59-75255 号公報に記載の有機Si、Tiなどを含む有機金属界面活性剤、特開昭59-8 4241号公報に記載の有機ホウ素化合物、EP101010号明細書に記載の テトラアルキルアンモニウムオキサイドなどの4級アンモニウム塩等が挙げられ る。

$[0\ 0\ 4\ 4\]$

本発明のアルカリ現像処理液の使用態様は特に限定されるものではない。

近年、製版・印刷業界では製版作業の合理化及び標準化のため、印刷版用の自動現像機が広く用いられている。この自動現像機は、一般に現像部と後処理部からなり、印刷版を搬送する装置と各処理槽及びスプレー装置からなり、露光済みの印刷版を水平に搬送しながら、ポンプで汲み上げた各処理液をスプレーノズルから吹き付けて現像処理するものである。また、最近は処理液が満たされた処理液槽中に液中ガイドロールなどによって印刷版を浸漬搬送させて処理する方法も知られている。このような自動処理においては、各処理液に処理量や稼働時間などに応じて補充液を補充しながら処理することができる。

[0045]

この場合、現像液よりもアルカリ強度の高い水溶液を補充液として現像液中に加えることによって、長時間現像タンク中に現像液を交換することなく多量の画像形成材料を処理できる。本発明の製版方法において上記のアルカリ現像処理液を使用する際にも、この補充方式を採用することが好ましい態様である。

前記補充液としても、上記のアルカリ現像処理液を、現像用の現像液よりもアルカリ強度の高い水溶液として使用することができる。

[0046]

前記現像液及び現像液補充液には、現像性の促進や抑制、現像カスの分散及び 印刷版画像部の親インキ性を高める目的で、必要に応じて種々の界面活性剤や有 機溶剤などを添加することもできる。

界面活性剤としては、上記した以外のノニオン系、カチオン系、アニオン系又は両性界面活性剤から選択できる。

[0047]

現像液あるいは補充液中に含める有機溶剤としてはベンジルアルコールなどが 好ましい。また、ポリエチレングリコールもしくはその誘導体、又はポリプロピ レングリコールもしくはその誘導体などの添加も好ましい。

さらに必要に応じて、ハイドロキノン、レゾルシン、亜硫酸又は亜硫酸水素酸のナトリウム塩若しくはカリウム塩などの無機塩系還元剤、有機カルボシ酸、消泡剤、硬水軟化剤を加えることもできる。

[0048]

アルカリ現像処理液及び補充液を用いて現像処理された平版印刷版は、水洗水や界面活性剤などを含有するリンス液、アラビアガムや澱粉誘導体を含む不感脂化液で後処理がなされる。この後処理には、これらの処理液を種々組み合わせて行うことができる。

また、実質的に未使用の現像処理液で処理する、いわゆる使い捨て処理方式とすることも可能である。

[0049]

[感熱性ポジ型平版印刷版]

本発明の製版方法に使用する感熱性ポジ型平版印刷版は、支持体上に赤外線吸収染料を必須成分として含み、さらに通常、アルカリ可溶性樹脂などを含有する画像記録層を設けたものである。

以下に感熱性ポジ型平版印刷版について、詳しく説明する。先ず、その画像記録層となる感熱層の構成について説明する。

[赤外線吸収染料]

本発明において、感熱層に用いられる赤外線吸収染料は、赤外線を吸収し熱を 発生する染料であれば特に制限はなく、赤外線吸収染料として知られる種々の染料を用いることができる。

赤外線吸収染料としては、市販の染料及び文献(例えば「染料便覧」有機合成化学協会編集、昭和45年刊)に記載されている公知のものが利用できる。具体的には、アゾ染料、金属錯塩アゾ染料、ピラゾロンアゾ染料、キノンイミン染料、メチン染料、シアニン染料などの染料が挙げられる。本発明において、これらの染料のうち赤外光、もしくは近赤外光を吸収するものが、赤外光もしくは近赤外光を発光するレーザーでの利用に適する点で特に好ましい。

そのような赤外光、もしくは近赤外光を吸収する染料としては例えば特開昭58-125246号、特開昭59-84356号、特開昭59-202829号、特開昭60-78787号等に記載されているシアニン染料、特開昭58-173696号、特開昭58-181690号、特開昭58-194595号等に記載されているメチン染料、特開昭58-112793号、特開昭58-224793号、特開昭59-48187号、特開昭59-73996号、特開昭60-59240号、特開昭60-63744号公報等に記載されているナフトキノン染料、特開昭58-112792号公報等に記載されているスクワリリウム色素、英国特許434、875号記載のシアニン染料等を挙げることができる。

[0050]

また、染料として米国特許 5, 156, 938号記載の近赤外吸収増感剤も好適に用いられ、また、米国特許 3, 881, 924号記載の置換されたアリールベンゾ (チオ) ピリリウム塩、特開昭 57-142645号 (米国特許第4, 327, 169号) 記載のトリメチンチアピリリウム塩、特開昭 58-18105

1号、同58-220143号、同59-41363号、同59-84248号、同59-84249号、同59-146063号、同59-146061号公報に記載されているピリリウム系化合物、特開昭59-216146号公報記載のシアニン染料、米国特許第4,283,475号に記載のペンタメチンチオピリリウム塩等や特公平5-13514号、同5-19702号広報に開示されているピリリウム化合物等が、市販品としては、エポリン社製のEpolight III-178、Epolight III-130、Epolight III-125等が特に好ましく用いられる。

感熱層に用いられる赤外線吸収染料で特に好ましいものとして米国特許第4,756,993号明細書中に式(I)、(II)として記載されている赤外線吸収染料を挙げることができる。該色素はアルカリ化溶性樹脂と非常に強い相互作用を示し、感熱層の未露光部耐アルカル現像性において優れる。

[0051]

感熱層の赤外線吸収染料の添加量は感熱層重量に対し、感度及び感熱層の均一性の観点から3~50%が適当であり、好ましくは5~40%、更に好ましくは8~35%である。

以下に赤外線吸収染料の具体例を示すが、本発明はこれらに限定されるものではない。

[0052]

【化1】

[0053]

[アルカリ可溶性樹脂]

感熱層に使用されるアルカリ可溶性樹脂は、水不溶性且つアルカリ水可溶性の樹脂(以下、適宜、アルカリ可溶性高分子と称する)とは、高分子中の主鎖および/または側鎖に酸性基を含有する単独重合体、これらの共重合体またはこれらの混合物を包含する。したがって、平版印刷版原版の感熱層は、アルカリ性現像液に接触すると溶解する特性を有するものである。

感熱層に使用されるアルカリ可溶性高分子は、従来公知のものであれば特に制限はないが、(1)フェノール性水酸基、(2)スルホンアミド基、(3)活性イミド基のいずれかの官能基を分子中に有する高分子化合物であることが好ましい。例えば以下のものが例示されるが、これらに限定されるものではない。

[0054]

(1) フェノール性水酸基を有する高分子化合物としては、例えば、フェノールホルムアルデヒド樹脂、mークレゾールホルムアルデヒド樹脂、pークレゾールホルムアルデヒド樹脂、mー/pー混合クレゾールホルムアルデヒド樹脂、フェノール/クレゾール (mー,pー,又はmー/pー混合のいずれでもよい) 混合ホルムアルデヒド樹脂等のノボラック樹脂やピロガロールアセトン樹脂が挙げられる。フェノール性水酸基を有する高分子化合物としてはこの他に、側鎖にフェノール性水酸基を有する高分子化合物を用いることが好ましい。側鎖にフェノール性水酸基を有する高分子化合物としては、フェノール性水酸基と重合可能な不飽和結合をそれぞれ1つ以上有する低分子化合物からなる重合性モノマーを単独重合、或いは該モノマーに他の重合性モノマーを共重合させて得られる高分子化合物が挙げられる。

[0055]

フェノール性水酸基を有する重合性モノマーとしては、フェノール性水酸基有するアクリルアミド、メタクリルアミド、アクリル酸エステル、メタクリル酸エステル、又はヒドキシスチレン等が挙げられる。具体的にはN-(2-ヒドキシフェニル) アクリルアミド、N-(3-ヒドキシフェニル) アクリルアミド、N-(4-ヒドキシフェニル) アクリルアミド、N-(2-ヒドキシフェニル) メタクリルアミド、N-(4-ヒドキシフェニル) メタクリルアミド、N-(4-ヒドキシフェニル)

ーヒドキシフェニルアクリレート、pーヒドキシフェニルアクリレート、oーヒドキシフェニルメタクリレート、mーヒドキシフェニルメタクリレート、pーヒドキシフェニルメタクリレート、coーヒドロキシスチレン、mーヒドロキシスチレン、pーヒドロキシスチレン、2ー(2ーヒドロキシフェニル)エチルアクリレート、2ー(3ーヒドロキシフェニル)エチルアクリレート、2ー(4ーヒドロキシフェニル)エチルアクリレート、2ー(10年シフェニル)エチルメタクリレート、2ー(10年シフェニル)エチルメタクリレート、2ー(10年シフェニル)エチルメタクリレート、2ー(10年シフェニル)エチルメタクリレート等を好適に使用することができる。かかるフェノール性水酸基を有する樹脂は、2種類以上を組み合わせて使用してもよい。更に、米国特許4、123、279号明細書に記載されているように、tーブチルフェノールホルムアルデヒド樹脂のような、炭素数3~8のアルキル基を置換基として有するフェノールとホルムアルデヒドとの共重合体を併用してもよい。

[0056]

(2) スルホンアミド基を有するアルカリ可溶性高分子化合物としては、スルホンアミド基を有する重合性モノマーを単独重合、或いは該モノマーに他の重合性モノマーを共重合させて得られる高分子化合物が挙げられる。スルホンアミド基を有する重合性モノマーとしては、1分子中に、窒素原子上に少なくとも1つの水素原子が結合したスルホンアミド基ーNH-SO2-と、重合可能な不飽和結合をそれぞれ1つ以上有する低分子化合物からなる重合性モノマーが挙げられる。その中でも、アクリロイル基、アリル基、又はビニロキシ基と、置換或いはモノ置換アミノスルホニル基又は置換スルホニルイミノ基とを有する低分子化合物が好ましい。

[0057]

(3) 活性イミド基を有するアルカリ可溶性高分子化合物は、活性イミド基を分子内に有するものが好ましく、この高分子化合物としては、1分子中に活性イミド基と重合可能な不飽和結合をそれぞれ1つ以上有する低分子化合物からなる重合性モノマーを単独重合、或いは該モノマーに他の重合性モノマーを共重合させて得られる高分子化合物が挙げられる。

このような化合物としては、具体的には、N-(p-h)ルエンスルホニル)メタクリルアミド、N-(p-h)ルエンスルホニル)アクリルアミド等を好適に使用することができる。

[0058]

更に、アルカリ可溶性高分子化合物としては、前記フェノール性水酸基を有する重合性モノマー、スルホンアミド基を有する重合性モノマー、及び活性イミド基を有する重合性モノマーのうち2種類以上を重合させた高分子化合物、或いはこれら2種類以上の重合性モノマーに他の重合性モノマーを共重合させて得られる高分子化合物を使用することが好ましい。フェノール性水酸機を有する重合性モノマーに、スルホンアミド基を有する重合性モノマー及び/又は活性イミド基を有する重合性モノマーを共重合させる場合には、これら成分の配合重合比(質量比)は50:50から5:95の範囲にあることが好ましく、40:60から10:90の範囲にあることが特に好ましい。

[0059]

アルカリ可溶性高分子が前記フェノール性水酸基を有する重合性モノマー、スルホンアミド基を有する重合性モノマー、又は活性イミド基を有する重合性モノマーと、他の重合性モノマーとの共重合体である場合には、アルカリ可溶性を付与するモノマーは10モル%以上含むことが好ましく、20モル%以上含むものがより好ましい。共重合成分が10モル%より少ないと、アルカリ可溶性が不十分となりやすく、現像ラチチュードの向上効果が十分達成されないことがある。

[0060]

前記フェノール性水酸基を有する重合性モノマー、スルホンアミド基を有する 重合性モノマー、又は活性イミド基を有する重合性モノマーと共重合させるモノ マー成分としては、下記(m1)~(m12)に挙げる化合物を例示することが できるが、これらに限定されるものではない。

(m1) 2-ヒドキシエチルアクリレート又は2-ヒドロキシエチルメタクリレート等の脂肪族水酸機を有するアクリル酸エステル類、及びメタクリル酸エステル類。

(m2) アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリ

ル酸ブチル、アクリル酸アミル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸ベンジル、アクリル酸-2-クロロエチル、グリシジルアクリレート、等のアルキルアクリレート。

(m3) メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸アミル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸-2-クロロエチル、グリシジルメタクリレート、等のアルキルメタクリレート。

(m4) アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-エチルアクリルアミド、N-ヘキシルメタクリルアミド、N-シクロヘキシルアクリルアミド、N-ヒドキシエチルアクリルアミド、N-フェニルアクリルアミド、N-ニトロフェニルアクリルアミド、N-エチルーN-フェニルアクリルアミド等のアクリルアミド若しくはメタクリルアミド。

$[0\ 0\ 6\ 1]$

- (m5) エチルビニルエーテル、2-クロロエチルビニルエーテル、ヒドキシエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、オクチルビニルエーテル、フェニルビニルエーテル等のビニルエーテル類。
- (m6)ビニルアセテート、ビニルクロロアセテート、ビニルブチレート、安 息香酸ビニル等のビニルエステル類。
- (m7) スチレン、 α メチルスチレン、メチルスチレン、クロロメチルスチレン等のスチレン類。
- (m8) メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、 フェニルビニルケトン等のビニルケトン類。
- (m9) エチレン、プロピレン、イソブチレン、ブタジエン、イソプレン等の オレフィン類。
- (m 1 0) N ビニルピロリドン、アクリルニトリル、メタクリロニトリル等。
- (m11) マレイミド、N-アクリロイルアクリルアミド、N-アセチルメタクリルアミド、N-プロピオニルメタクリルアミド、N- (p-クロロベンゾイル) メタクリルアミド等の不飽和イミド。

(m12) アクリル酸、メタクリル酸、無水マレイン酸、イタコン酸等の不飽 和カルボン酸。

[0062]

アルカリ可溶性高分子化合物としては、赤外線レーザー等による露光での画像 形成性に優れる点で、フェノール性水酸基を有することが好ましく、例えば、フェノールホルムアルデヒド樹脂、mークレゾールホルムアルデヒド樹脂、pークレゾールホルムアルデヒド樹脂、mー/pー混合クレゾールホルムアルデヒド樹脂、フェノール/クレゾール(mー,pー,又はmー/pー混合いずれでもよい)混合ホルムアルデヒド樹脂等のノボラック樹脂やピロガロールアセトン樹脂が好ましく挙げられる。

また、フェノール性水酸基を有するアルカリ可溶性高分子化合物としては、更に、米国特許第4,123,279号明細書にきさいされているように、tーブチルフェノールホルムアルデヒド樹脂、オクチルフェノールホルムアルデヒド樹脂のような、炭素数3~8のアルキル基を置換基として有するフェノールとホルムアルデヒドとの縮重合体が挙げられる。

アルカリ可溶性高分子化合物の共重合の方法としては、従来知られている、グラフト共重合、ブロック共重合、ランダム共重合法等を用いることができる。

[0063]

本発明においてアルカリ可溶性高分子が、前記フェノール性水酸基を有する重合性モノマー、スルホンアミド基を有する重合性モノマー、又は活性イミド基を有する重合性モノマーの単独重合体或いは共重合体の場合、重量平均分子量が2,000以上、数平均分子量が500以上のものが好ましい。更に好ましくは、重量平均分量が5,000~300,000で、数平均分子量が800~250,000であり、分散度(重量平均分子量/数平均分子量)が1.1~10のものである。

また、本発明においてアルカリ可溶性高分子がフェノールホルムアルデヒド樹脂、クレゾールアルデヒド樹脂等の樹脂である場合には、重量平均分子量が500~20.000であり、数平均分子量が200~10,000のものが好ましい。

これらアルカリ可溶性高分子化合物は、それぞれ1種類或いは2種類以上を組み合わせて使用してよく、前記感熱層全固形分中、30~99質量%、好ましくは40~95質量%、特に好ましくは50~90質量%の添加量で用いられる。 感熱層の耐久性と感度の両面から上記の含有量の範囲が適当である。

[0064]

感熱層にはまた、カルボキシル基を有するアルカリ可溶性高分子化合物 (以下 (B1) 成分ということもある。) を含ませてもよい。

(B1) 成分の高分子化合物としては、カルボキシル基を有するアルカリ可溶性高分子化合物であれば何れでもよいが、下記で定義される高分子化合物 (b1-1) 、 (b1-2) が好ましい。

(b1-1) 下記一般式(i)で表される重合性モノマー単位を有するアルカリ 可溶性高分子化合物(以下、高分子化合物(b1-1)ともいう)

(式中、Xmは単結合又は2価の連結基を、Yは水素又はカルボキシル基を、Zは水素、アルキル基又はカルボキシル基を表す。)

一般式(i)で表される重合性モノマー単位を構成するモノマーとして、カルボキシル基と、重合可能な不飽和基を分子内にそれぞれ1以上有する重合性モノマーがある。

そのような重合性モノマーの具体例として、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸等の α 、 β - 不飽和カルボン酸類を挙げることができる。

[0065]

上記カルボキシル基を有する重合性モノマーと共重合させるモノマーとしては、例えば下記(1)~(11)が挙げられるが、これらに限定されるものではない。

- (1) 2 ヒドロキエチルアクリレート又は2-ヒドロキシエチルメタクリレート等の脂肪族水酸基を有するアクリル酸エステル類、メタクリル酸エステル類。
- (2) アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸アミル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸ベンジル、アクリル酸-2-クロロエチル、グリシジルアクリレート、N-ジメチルアミノエチルアクリレート等のアルキルアクリレート。
- (3)メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸アミル、メタクリル酸へキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸-2-クロロエチル、グリシジルメタクリレート、N-ジメチルアミノエチルメタクリレート等のアルキルメタクリレート。

[0066]

- (4) アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-エチルアクリルアミド、N-ヘキシルメタクリルアミド、N-シクロヘキシルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-フェニルアクリルアミド、N-エチルN-フェニルアクリルアミド、N-エチルN-フェニルアクリルアミド等のアクリルアミド又はメタクリルアミド。
- (5)エチルビニルエーテル、2-クロロエチルビニルエーテル、ヒドロキシエチ ルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、オクチル ビニルエーテル、フェニルビニルエーテル等のビニルエーテル類。
- (6) ビニルアセテート、ビニルクロロアセテート、ビニルブチレート、安息香酸ビニル等のビニルエステル類。
- (7)スチレン、α-メチルスチレン、メチルスチレン、クロロメチルスチレン等 のスチレン類。

[0067]

- (8)メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、フェニルビニルケトン等のビニルケトン類。
- (9)エチレン、プロピレン、イソブチレン、ブタジエン、イソプレン等のオレフィン類。

(10) N-ビニルピロリドン、N-ビニルカルバゾール、4-ビニルピリジン、アクリロニトリル、メタクリロニトリル等。

(11)マレイミド、N-アクリロイルアクリルアミド、N-アセチルメタクリルアミド、N-プロピオニルメタクリルアミド、N- (p-クロロベンゾイル) メタクリルアミド等の不飽和イミド。

[0068]

また、下記一般式 (ii) のモノマーも好ましく用いられる。

$$\begin{array}{c} R^{11} \\ + CH_2 - C \\ - C \\ O = C \\ - X \\ - C_mH_{2m} \cdot O \\ - C_nH_{2n} \cdot O \\$$

式中、XはO、S、Xは $N-R^{12}$ を表す。 $R^{10}\sim R^{12}$ は、各々独立に、水素原子XはYのよれます。Xのは、各々独立に、X0 から X0 を表し、X0 を表し、X1 を表す。X2 を表す。X3 を表し、X4 を表す。X5 を表す。X6 を表す。X7 を表す。X8 を表す。X9 を表す。X1 を表す。X1 を表す。X2 を表す。X3 を表す。X4 を表す。X5 を表す。X5 を表す。X6 を表す。X7 は各々独立に、X9 から X9 の X9 を表す。X9 を表す。X1 を表す。X1 を表す。X2 である。

[0069]

 $R^{10} \sim R^{12}$ におけるアルキル基としては、炭素原子数 $1 \sim 1$ 2 のものが好ましく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基などが挙げられる。p、q、r は好ましくは 0 から 5 0 0 の整数を表し、更に好ましくは 0 から 1 0 0 の整数を表す。

上記一般式(ii)で表される繰り返し単位に相当するモノマーの例を以下に挙げるが、この限りではない。

【0070】 【化2】

$$CH_{2} = C \qquad (1) \quad CH_{2} = C \qquad (2)$$

$$O = C - O + CH_{2}CH_{2}O + H \qquad O = C - O + CH_{2}CH_{2}O + H$$

$$CH_{3}$$
 $CH_{2} = C$
 $CH_{2} = CH$
 $CH_{2} = C$

(アルキレンオキサイドの平均分子量:1000)

$$CH_{2} = C$$

$$O = C - O - \left(CH_{2}CH_{2}O\right)_{4} - \left(C_{3}H_{6}O\right)_{8} - \left(CH_{2}CH_{2}O\right)_{4} - H$$
(7)

$$CH_{2} = C$$

$$O = C - O - \left(C_{3}H_{6}O\right)_{2} - \left(CH_{2}CH_{2}O\right)_{10} - \left(C_{3}H_{6}O\right)_{3} + H$$
(8)

【0071】 【化3】

$$CH_{3}$$

$$CH_{2} = C$$

$$O = C - O - \{CH_{2}CH_{2}O\}_{6} - H$$
(9)

$$CH_3$$
 $CH_2 = C$
 $O = C - O - (CH_2CH_2O)_m + C$

(10)

(アルキレンオキサイドの平均分子量:500)

$$CH_{3}$$

$$CH_{2} = C$$

$$O = C - O - (CH_{2}CH_{2}O) + H$$
(11)

(アルキレンオキサイドの平均分子量:2000)

$$CH_2 = CH$$

$$0 = C - O - \{-CH_2CH_2O\}_8 - H$$
(12)

$$CH_2 = CH$$

 $O = C - O - (C_3H_6O) - H$ (13)

(アルキレンオキサイドの平均分子量: 1500)

[0072]

上記一般式(ii)で表される繰り返し単位は、市販のヒドロキシポリ(オキシアルキレン)材料、例えば商品名プルロニック(Pluronic(旭電化工業(株)製)、アデカポリエーテル(旭電化工業(株)製)、カルボワックス(Carbowax(グリコ・プロダクス))、トリトン(Toriton(ローム・アンド・ハース(Rohm an

d Haas製)、およびP.E.G (第一工業製薬(株)製)として販売されているものを公知の方法でアクリル酸、メタクリル酸、アクリルクロリド、メタクリルクロリド又は無水アクリル酸等と反応させることによって製造できる。

別に、公知の方法で製造したポリ (オキシアルキレン) ジアクリレート等を用いることもできる。

[0073]

市販品のモノマーとしては、日本油脂株式会社製の水酸基末端ポリアルキレン グリコールモノ (メタ) アクリレートとしてブレンマーPE-90、ブレンマーPE-20 0、ブレンマーPE-350、ブレンマーAE-90、ブレンマーAE-200、ブレンマーAE-400 、ブレンマーPP-1000、ブレンマーPP-500、ブレンマーPP-800、ブレンマーAP-15 0、ブレンマーAP-400、ブレンマーAP-550、ブレンマーAP-800、ブレンマー50PEP -300、ブレンマー70PEP-350B、ブレンマーAEPシリーズ、ブレンマー55PET-400 、ブレンマー30PET-800、ブレンマー55PET-800、ブレンマーAETシリーズ、ブレ ンマー30PPT-800、ブレンマー50PPT-800、ブレンマー70PPT-800、ブレンマーAPT シリーズ、ブレンマー10PPB-500B、ブレンマー10APB-500Bなどが挙げられる。同 様に日本油脂株式会社製のアルキル末端ポリアルキレングリコールモノ(メタ) アクリレートとしてブレンマーPME-100、ブレンマーPME-200、ブレンマーPME-40 0、ブレンマーPME-1000、ブレンマーPME-4000、ブレンマーAME-400、ブレンマー 50P0EP-800B、ブレンマー50A0EP-800B、ブレンマーPLE-200、ブレンマーALE-200 、ブレンマーALE-800、ブレンマーPSE-400、ブレンマーPSE-1300、ブレンマーAS EPシリーズ、ブレンマーPKEPシリーズ、ブレンマーAKEPシリーズ、ブレンマーAN E-300、ブレンマーANE-1300、ブレンマーPNEPシリーズ、ブレンマーPNPEシリー ズ、ブレンマー43ANEP-500、ブレンマー70ANEP-550など、また共栄社化学株式会 社製ライトエステルMC、ライトエステル130MA、ライトエステル041MA、ライトア クリレートBO-A、ライトアクリレートEC-A、ライトアクリレートMTG-A、ライト アクリレート130A、ライトアクリレートDPM-A、ライトアクリレートP-200A、ラ イトアクリレートNP-4EA、ライトアクリレートNP-8EAなどが挙げられる。

[0074]

高分子化合物(b1-1)におけるカルボキシル基と、重合可能な不飽和基と

を分子内にそれぞれ1以上有する重合性モノマー成分を有する最小構成単位は、特に1種類のみである必要はなく、同一の酸性基を有する最小構成単位を2種以上、または異なる酸性基を有する最小構成単位を2種以上共重合させたものを用いることもできる。

共重合の方法としては、従来知られているグラフト共重合、ブロック共重合、 ランダム共重合法などを用いることができる。

[0075]

(b 1-2)カルボキシル基を有する下記一般式(i i i)、(i v)または(v)で表されるジオール化合物と下記一般式(v i i i)で表されるジイソシアネート化合物との反応生成物を基本骨格とするカルボキシル基を有するアルカリ可溶性高分子化合物(以下、高分子化合物(b 1-2)ともいう。)

[0076]

$$R^{13}$$
 HO $-R^{14}-C$ $R^{15}-OH$ (iii)

R¹³は水素原子、置換基(例えばアルキル、アリール、アルコキシ、エステル、ウレタン、アミド、ウレイド、ハロゲノの各基が好ましい。)を有していてもよいアルキル、アルケニル、アラルキル、アリール、アルコキシ、アリーロキシ基を示し、好ましくは水素原子、炭素原子数1~8個のアルキル基もしくは炭素原子数2~8のアルケニル基、炭素原子数6~15個のアリール基を示す。

 R^{14} 、 R^{15} 、 R^{16} はそれぞれ同一でも相異していてもよい、単結合、置換基(

例えばアルキル、アルケニル、アラルキル、アリール、アルコキシ及びハロゲノの各基が好ましい。)を有していてもよい二価の脂肪族又は芳香族炭化水素を示す。好ましくは炭素原子数1~20のアルキレン基、炭素原子数6~15のアリーレン基、更に好ましくは炭素原子数1~8個のアルキレン基を示す。

また、必要に応じ、 R^{14} 、 R^{15} 、 R^{16} 中にイソシアネート基と反応しない他の官能基、例えばエステル基、ウレタン基、アミド基、ウレイド基、炭素-炭素不飽和結合を有していてもよい。なお、 R^{13} 、 R^{14} 、 R^{15} 、 R^{16} のうちの2又は3個で環を構成してもよい。

Arは置換基を有していてもよい三価の芳香族炭化水素を示し、好ましくは炭素原子数6~15個の芳香族基を示す。

[0077]

 $OCN-R^{18}-NCO$ (viii)

式中、R¹⁸は置換基(例えばアルキル、アルケニル、アラルキル、アリール、アルコキシ、ハロゲノの各基が好ましい。)を有していてもよい二価の脂肪族又は芳香族炭化水素を示す。必要に応じ、R¹⁸中にイソシアネート基と反応しない他の官能基、例えばエステル、ウレタン、アミド、ウレイド基、炭素-炭素不飽和結合を有していてもよい。

[0078]

一般式(iii)、(iv) 又は(v) で示されるカルボキシル基を有するジオール化合物としては具体的には以下に示すものが含まれる。

即ち、3, 5-ジヒドロキシ安息香酸、2, 2-ビス(ヒドロキシメチル)プロピオン酸、2, 2-ビス(2-ヒドロキシエチル)プロピオン酸、2, 2-ビス(3-ヒドロキシプロピル)プロピオン酸、ビス(ヒドロキシメチル)酢酸、ビス(4-ヒドロキシフェニル)酢酸、4, 4-ビス(4-ヒドロキシフェニル)ペンタン酸、酒石酸、N, N-ビス(2-ヒドロキシエチル)-3-カルボキシープロピオンアミドなどが挙げられる。

[0079]

該(b1-2)のカルボキシル基を有するアルカリ可溶性高分子化合物は、下記一般式(vi)又は(vii)で表されるジオールを組み合わせた反応生成物であ

ると好ましい。

$$HO + CH_2CH - O + D + CVI)$$
 R^{17}

式中、 R^{17} はそれぞれ水素原子又は炭素原子数 $1\sim8$ のアルキル基を示し、nは2以上の整数を示す。 R^{17} における炭素原子数 $1\sim8$ のアルキル基としては、例えばメチル基、エチル基、i-プロピル基、n-ブチル基、i-ブチル基などが挙げられる。

以下に、上記一般式(vi)又は(vii)で表されるジオールの具体例を示すが、本発明はこれらに限定されるものではない。

[0080]

(vi) の具体例

 $HO-(-CH_2CH_2O-)_3-H$

 $HO-(-CH_2CH_2O-)_4-H$

 ${\rm HO-(-CH_2CH_2O-)_{5}-H}$

 $HO-(-CH_2CH_2O-)_6-H$

 $HO-(-CH_2CH_2O-)_7-H$

 $HO-(-CH_2CH_2O-)_8-H$

 ${
m HO-(-CH_2CH_2O-)_{10}-H}$

 $HO-(-CH_2CH_2O-)_{12}-H$

ポリエチレングリコール(平均分子量1000)

ポリエチレングリコール (平均分子量2000)

ポリエチレングリコール (平均分子量4000)

 $HO-(-CH_2CH(CH_3)O-)_3-H$

 $HO-(-CH_2CH(CH_3)O-)_4-H$

 ${
m HO-(-CH_2CH(CH_3)O-)_{6}-H}$

ポリプロピレングリコール (平均分子量1000) ポリプロピレングリコール (平均分子量2000) ポリプロピレングリコール (平均分子量4000)

[0081]

(vii) の具体例

 $HO-(-CH_2CH_2CH_2O-)_3-H$

 $HO-(-CH_2CH_2CH_2O-)_4-H$

 $HO-(-CH_2CH_2CH_2O-)_8-H$

 $HO-(-CH_2CH_2CH(CH_3)O-)_{12}-H$

[0082]

一般式(viii)で示されるジイソシアネート化合物として、具体的には以下に示すものが含まれる。

すなわち、2,4ートリレンジイソシアネート、2,4ートリレンジイソシアネートの二量体、2,6ートリレンジイソシアネート、pーキシリレンジイソシアネート、mーキシリレンジイソシアネート、4,4'ージフェニルメタンジイソシアネート、1,5ーナフタレンジイソシアネート、3,3'ージメチルビフェニルー4,4'ージイソシアネートなどの如き芳香族ジイソシアネート化合物;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネートなどの如き脂肪族ジイソシアネート化合物、イソホロンジイソシアネート、4,4'ーメチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサンー2,4(又は2,6)ージイソシアネート、1,3ー(イソシアネートメチル)シクロヘキサンなどの如き脂肪族ジイソシアネート化合物;1,3ーブチレングリコール1モルとトリレンジイソシアネートとの付加体などの如きジオールとジイソシアネートとの反応物であるジイソシアネート化合物などが挙げられる。

[0083]

高分子化合物(b1-2)の合成に使用するジイソシアネート及びジオール化合物のモル比は好ましくは0.8:1-1.2-1であり、ポリマー末端にイソシアネート基が残存した場合、アルコール類又はアミン類等で処理することによ

り、最終的にイソシアネート基が残存しない形で合成される。

[0084]

- (B1) 成分として、上記の高分子化合物 (b1-1) 及び (b1-2) から 1 種単独を使用してもよいし、また 2 種以上を併用してもよい。
- (B1) 成分中に含有されるカルボキシル基を有する繰り返し単位の含有量は、該(B1) 成分の各単量体の総量に基づいて2モル%以上であり、好ましくは2~70モル%であり、より好ましくは5~60モル%の範囲である。
- (B1) 成分の好ましい重量平均分子量は、3000~300,000が好ましく、6,000~100,000がより好ましい。

[0085]

さらに、(B 1)成分の好ましい添加量は、感熱層の全固形分質量に対して 0 $0.05 \sim 8.0$ 質量%の範囲であり、好ましくは $0.01 \sim 5.0$ 質量%の範囲であり、更に好ましくは $1 \sim 2.0$ 質量%の範囲である。

[0086]

[添加剤]

前記の感熱層を形成するにあたっては、上記の成分の他、本発明の効果を損な わない限りにおいて、更に必要に応じて、種々の添加剤を添加することができる。

-溶解性阻害化合物-

平版印刷版原版には、そのインヒビション(溶解性阻害)を高める目的で、該 感熱層に、種々のインヒビターを含有させることができる。

該インヒビターとしては特に限定されないが、4級アンモニウム塩、ポリエチレングリコール系化合物等が挙げられる。

[0087]

4級アンモニウム塩としては、特に限定されないが、テトラアルキルアンモニウム塩、トリアルキルアリールアンモニウム塩、ジアルキルジアリールアンモニウム塩、アルキルトリアリールアンモニウム塩、テトラアリールアンモニウム塩、環状アンモニウム塩、二環状アンモニウム塩が挙げられる。

具体的には、テトラブチルアンモニウムブロミド、テトラペンチルアンモニウ

ムブロミド、テトラへキシルアンモニウムブロミド、テトラオクチルアンモニウムブロミド、テトララウリルアンモニウムブロミド、テトラフェニルアンモニウムブロミド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムコージド、テトラステアリルアンモニウムフロミド、ラウリルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムブロミド、ベヘニルトリメチルアンモニウムブロミド、ラウリルトリエチルアンモニウムブロミド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリメチルアンモニウムブロミド、ジステアリルジメチルアンモニウムブロミド、ジステアリルジメチルアンモニウムブロミド、ジステアリルジメチルアンモニウムブロミド、ドリステアリルメチルアンモニウムブロミド、ドルアンモニウムブロミド、ドリステアリルメチルアンモニウムブロミド、ドルアンモニウムブロミド、トリステアリルメチルアンモニウムブロミド、ドルアンモニウムブロミド、ドリステアリルメチルアンモニウムブロミド、ドリステアリルメチルアンモニウムブロミド、ドリステアリルメチルアンモニウムブロミド、ドリステアリルメチルアンモニウムブロミド、ドリステアリルメチルアンモニウムブロミド、トリステアリルメチルアンモニウムブロミド、トリステアリルメチルアンモニウムブロミド、トリズテアリルメチルアンモニウムブロミド、トリジニウムブロミド等が挙げられる。特に特願2001-226297号、特願2001-370059号、特願2001-398047号明細書記載の4級アンモニウム塩が好ましい。

[0088]

4級アンモニウム塩の添加量は、画像記録層の全固形分量に対して固形分で 0 . $1\sim50$ 質量%であることが好ましく、さらには、 $1\sim30$ 質量%であることがより好ましい。上記含有量の範囲は、溶解性阻害効果を充分に発揮させ、且つバインダーの製膜性を悪化させない点で適当である。

[0089]

ポリエチレングリコール系化合物としては、特に限定されないが、下記構造の ものが挙げられる。

[0090]

 $R^{1} - \{-O - (R^{3} - O -) m - R^{2}\} n$

(R¹は多価アルコール残基又は多価フェノール残基、R²は水素原子、炭素原子数1~25の置換基を有しても良いアルキル基、アルケニル基、アルキニル基、アルキロイル基、アリール基又はアリーロイル基、R³は置換基を有しても良いアルキレン残基を示す。mは平均で10以上、nは1以上4以下の整数である。)

[0091]

上記構造のポリエチレングリコール系化合物の例としては、ポリエチレングリコール類、ポリプロピレングリコール類、ポリエチレングリコールアルキルエーテル類、ポリプロピレングリコールアルキルエーテル類、ポリエチレングリコールアリールエーテル類、ポリプロピレングリコールアリールエーテル類、ポリエチレングリコールアリールエーテル類、ポリエチレングリコールアリールエーテル類、ポリエチレングリコールアルキルアリールエーテル類、ポリエチレングリコールグリセリンエステル、ボリプロピレングリコールグリセリンエステル類、ポリエチレンソルビトールエステル類、ポリプロピレングリコールソルビトールエステル類、ポリエチレングリコール脂肪酸エステル類、ポリプロピレングリコール脂肪酸エステル類、ポリプロピレングリコール化エチレンジアミン類、ポリプロピレングリコール化エチレンジアミン類、ポリプロピレングリコール化エチレンジアミン類、ポリプロピレングリコール化ジエチレングリコール化ジエチレングリコール化ジエチレングリコール化ジエチレングリコール化ジエチレングリコール化ジエチレントリアミン類、ポリプロピレングリコール化ジエチレントリアミン類が挙げられる。

[0092]

これらの具体例を示すと、ポリエチレングリコール1000、ポリエチレング リコール2000、ポリエチレングリコール4000、ポリエチレングリコール 10000、ポリエチレングリコール20000、ポリエチレングリコール50 00、ポリエチレングリコール100000、ポリエチレングリコール2000 00、ポリエチレングリコール50000、ポリプロピレングリコール150 0、ポリプロピレングリコール3000、ポリプロピレングリコール4000、 ポリエチレングリコールメチルエーテル、ポリエチレングリコールエチルエーテ ル、ポリエチレングリコールフェニルエーテル、ポリエチレングリコールジメチ ルエーテル、ポリエチレングリコールジエチルエーテル、ポリエチレングリコー ルジフェニルエーテル、ポリエチレングリコールラウリルエーテル、ポリエチレ ングリコールジラウリルエーテル、ポリエチレングリコールノニルエーテル、ポ リエチレングリコールセチルエーテル、ポリエチレングリコールステアリルエー テル、ポリエチレングリコールジステアリルエーテル、ポリエチレングリコール ベヘニルエーテル、ポリエチレングリコールジベヘニルエーテル、ポリプロピレ ングリコールメチルエーテル、ポリプロピレングリコールエチルエーテル、ポリ プロピレングリコールフェニルエーテル、ポリプロピレングリコールジメチルエ

ーテル、ポリプロピレングリコールジエチルエーテル、ポリプロピレングリコー ルジフェニルエーテル、ポリプロピレングリコールラウリルエーテル、ポリプロ ピレングリコールジラウリルエーテル、ポリプロピレングリコールノニルエーテ ル、ポリエチレングリコールアセチルエステル、ポリエチレングリコールジアセ チルエステル、ポリエチレングリコール安息香酸エステル、ポリエチレングリコ ールラウリルエステル、ポリエチレングリコールジラウリルエステル、ポリエチ レングリコールノニル酸エステル、ポリエチレングリコールセチル酸エステル、 ポリエチレングリコールステアロイルエステル、ポリエチレングリコールジステ アロイルエステル、ポリエチレングリコールベヘン酸エステル、ポリエチレング リコールジベヘン酸エステル、ポリプロピレングリコールアセチルエステル、ポ リプロピレングリコールジアセチルエステル、ポリプロピレングリコール安息香 酸エステル、ポリプロピレングリコールジ安息香酸エステル、ポリプロピレング リコールラウリル酸エステル、ポリプロピレングリコールジラウリル酸エステル 、ポリプロピレングリコールノニル酸エステル、ポリエチレングリコールグリセ リンエーテル、ポリプロピレングリコールグリセリンエーテル、ポリエチレング リコールソルビトールエーテル、ポリプロピレングリコールソルビトールエーテ ル、ポリエチレングリコール化エチレンジアミン、ポリプロピレングリコール化 エチレンジアミン、ポリエチレングリコール化ジエチレントリアミン、ポリプロ ピレングリコール化ジエチレントリアミン、ポリエチレングリコール化ペンタメ チレンヘキサミンが挙げられる。

[0093]

ポリエチレングリコール系化合物の添加量は、充分な溶解性阻害効果を発揮し、かつ画像形成性を良好に保つ観点から、画像記録層の全固形分量に対して固形分で $0.1\sim50$ 質量%であることが適当であり、 $1\sim30$ 質量%であることがより好ましい。

[0094]

また、上記インヒビション(溶解性阻害)改善の施策を行った場合、感度の低下が生じるが、この場合、ラクトン化合物を添加物することが有効である。このラクトン化合物は、露光部に現像液が浸透した際、現像液とラクトン化合物が反

応し、新たにカルボン酸化合物が発生し、露光部の溶解に寄与して感度が向上するものと考えられる。

ラクトン化合物としては、特に限定されないが、下記一般式(L-I)及び一般式(L-II)で表される化合物が挙げられる。

[0095]

【化4】

一般式 (L-I)

[0096]

【化5】

一般式(L-II)

[0097]

一般式(L-I)及び一般式(L-II)において、 X^1 、 X^2 、 X^3 及び X^4 は、環の構成原子又は原子団であって、同じでも異なってもよく、それぞれ独立に置換基を有してもよく、かつ一般式(L-I)における X^1 、 X^2 及び X^3 の少なくとも一つ及び一般式(L-II)における X^1 、 X^2 、 X^3 及び X^4 の少なくとも一つは、電子吸引性置換基又は電子吸引性基で置換された置換基を有する。

 X^1 、 X^2 、 X^3 及び X^4 で表される環の構成原子又は原子団は、環を形成するための二つの単結合を有する非金属原子又は該非金属原子を含む原子団である。

好ましい非金属原子又は非金属原子団は、メチレン基、スルフィニル基、カルボニル基、チオカルボニル基、スルホニル基、硫黄原子、酸素原子及びセレニウム原子から選ばれる原子又は原子団であって、より好ましくは、メチレン基、カルボニル基及びスルホニル基から選ばれる原子団である。

[0098]

一般式(L-I)における X^1 、 X^2 及び X^3 の少なくとも一つ又は一般式(L-II)における X^1 、 X^2 、 X^3 及び X^4 の少なくとも一つは、電子吸引性基を有す る。本明細書において電子吸引性置換基は、ハメットの置換基定数 σ p が正の価 を取る基を指す。ハメットの置換基定数に関しては、Journal of Medicinal Ch emistry, 1973, Vol. 16, No. 11, 1207-1216等を参考にすることができる。ハメッ トの置換基定数σρが正の価を取る電子吸引性基としては、例えばハロゲン原子 (フッ素原子(σρ値:0.06)、塩素原子(σρ値:0.23)、臭素原子 $(\sigma p$ 値:0.23)、ヨウ素原子 $(\sigma p$ 値:0.18))、トリハロアルキル 基(トリブロモメチル(σρ値:Ο.29)、トリクロロメチル(σρ値:Ο. 33)、トリフルオロメチル(σ p値:0.54))、シアノ基(σ p値:0. 66)、ニトロ基 (σρ値:0.78)、脂肪族・アリールもしくは複素環スル ホニル基 (例えば、メタンスルホニル (σρ値:0.72))、脂肪族・アリー ルもしくは複素環アシル基(例えば、アセチル(σρ値: 0. 5 0)、ベンゾイ ル(σp値:0. 4 3))、アルキニル基(例えば、C≡CH(σp値:0. 2 3))、脂肪族・アリールもしくは複素環オキシカルボニル基(例えば、メトキ シカルボニル (σp値: 0. 45)、フェノキシカルボニル (σp値: 0. 44)、カルバモイル基(σρ値: 0.36)、スルファモイル基(σρ値: 0. 57)、スルホキシド基、ヘテロ環基、オキソ基、ホスホリル基等が挙げられる

[0099]

好ましい電子吸引性基は、アミド基、アゾ基、ニトロ基、炭素数1~5のフルオロアルキル基、ニトリル基、炭素数1~5のアルコキシカルボニル基、炭素数1~5のアシル基、炭素数1~9のアルキルスルホニル基、炭素数6~9のアリールスルホニル基、炭素数1~9のアルキルスルフィニル基、炭素数6~9のア

リールスルフィニル基、炭素数 $6 \sim 9$ のアリールカルボニル基、チオカルボニル基、炭素数 $1 \sim 9$ の含フッ素アルキル基、炭素数 $6 \sim 9$ の含フッ素アリール基、炭素数 $3 \sim 9$ の含フッ素アリル基、オキソ基及びハロゲン元素から選ばれる基である。

より好ましくは、ニトロ基、炭素数 $1\sim5$ のフルオロアルキル基、ニトリル基、炭素数 $1\sim5$ のアルコキシカルボニル基、炭素数 $1\sim5$ のアシル基、炭素数 $6\sim9$ のアリールスルホニル基、炭素数 $6\sim9$ のアリールカルボニル基、オキソ基及びハロゲン元素から選ばれる基である。

以下に、一般式(L-I)及びは一般式(L-II)で表される化合物の具体例を示すが、本発明はこれらの化合物に限定されるものではない。

【0100】 【化6】

$$NO_2$$
 Br
 $CLI-2$
 $CLI-2$
 $CLI-3$
 CH_3O
 CH_3O
 CH_3O
 $CLI-6$
 CF_3CF_2
 $CLI-7$
 $CLI-8$
 $CLI-8$
 $CLI-9$
 CH_3CO
 CH_3CO
 CH_3CO
 $CLI-2$
 $CLI-2$
 $CLI-2$
 $CLI-3$
 $CLI-3$
 $CLI-3$
 $CLI-3$
 $CLI-6$
 $CLI-6$

(LI-11)

(LI-10)

(LI-12)

[0101]

[0102]

一般式(L-I)及び一般式(L-II)で表される化合物の添加量は、画像記

録層の全固形分量に対して固形分で $0.1\sim50$ 質量%が好ましく、さらには、 $1\sim30$ 質量%がより好ましい。なお、この化合物は現像液と反応するため、選択的に現像液を接触することが望まれる。

このラクトン化合物は、いずれか一種を用いても、併用してもよい。また2種類以上の一般式(L-II)の化合物、又は2種類以上の一般式(L-II)の化合物を合計添加量が上記範囲内で任意の比率で併用してもよい。

[0103]

また、オニウム塩、oーキノンジアジド化合物、芳香族スルホン化合物、芳香族スルホン酸エステル化合物等の熱分解性であり、分解しない状態ではアルカリ水可溶性高分子化合物の溶解性を実質的に低下させる物質を併用することは、画像部の現像液への溶解阻止性の向上を図る点では、好ましい。オニウム塩としてはジアゾニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、セレノニウム塩、アルソニウム塩等を挙げることができる。

[0104]

本発明において用いられるオニウム塩として、好適なものとしては、例えば S. I. Schlesinger, Photogr. Sci. Eng., 18, 387(1974)、T. S. Balet al, Polymer, 21, 423(1980)、特開平5-158230号公報に記載のジアゾニウム塩、米国特許第4,069,055号、同4,069,056号、特開平3-140140号の明細書に記載のアンモニウム塩、D. C. Necker et al, Macromolecules, 17, 2468(1984)、C. S. Wen et al, Teh, Proc. Conf.Rad. Curing ASIA, p478 Tokyo, Oct (1988)、米国特許第4,069,055号、同4,069,056号に記載のホスホニウム塩、J. V.Crivello et al, Macromorecules, 10(6), 1307(1977)、Chem. & Eng. News, Nov. 28, p31(1988)、欧州特許第104,143号、米国特計第339,049号、同第410,201号、特開平2-150848号、特開平2-296514号に記載のヨードニウム塩、J. V.Crivello et al, Polymer J. 17, 73(1985)、J. V. Crivelloet al. J. Org.Chem., 43, 3055(1978)、W. R. Watt et al, J. Polymer Sci., Polymer Chem.Ed., 22, 1789(1984)、J. V. Crivello et al, Polymer Bull., 14, 279(1985)、J. V. Crivello et al, Macromorecules, 14(5), 1141(1981)、J. V. Crivello et al, J. Polymer Sci., Polymer Sci., Polymer Sci., Polymer Sci., Schem.

70,693 号、同233,567 号、同297,443 号、同297,442 号、米国特許第4,933,377 号、同3,902,114 号、同410,201 号、同339,049 号、同4,760,013 号、同4,734,444 号、同2,833,827 号、独国特許第2,904,626 号、同3,604,580 号、同3,604,581 号に記載のスルホニウム塩、J. V. Crivello et al, Macromorecules, 10(6),1307 (1977)、J. V. Crivello et al, J. Polymer Sci., Polymer Chem. Ed., 17, 1047 (1979) に記載のセレノニウム塩、C. S. Wen et al, Teh,Proc. Conf. Rad. Curing ASIA, p478 Tokyo, Oct (1988)に記載のアルソニウム塩等があげられる。

オニウム塩のなかでも、ジアゾニウム塩が特に好ましい。また、特に好適なジアゾニウム塩としては特開平5-158230号公報記載のものが挙げられる。

[0105]

オニウム塩の対イオンとしては、四フッ化ホウ酸、六フッ化リン酸、トリイソプロピルナフタレンスルホン酸、5-ニトロ-oートルエンスルホン酸、5-スルホサリチル酸、2, 5-ジメチルベンゼンスルホン酸、2, 4, 6-トリメチルベンゼンスルホン酸、2-ニトロベンゼンスルホン酸、3-クロロベンゼンスルホン酸、3-クロロベンゼンスルホン酸、3-プロモベンゼンスルホン酸、2-フルオロカプリルナフタレンスルホン酸、ドデシルベンゼンスルホン酸、1-ナフトール-5-スルホン酸、2-メトキシ-4-ヒドロキシ-5-ベンゾイルーベンゼンスルホン酸、及びパラトルエンスルホン酸等を挙げることができる。これらの中でも特に六フッ化リン酸、トリイソプロピルナフタレンスルホン酸や2, 5-ジメチルベンゼンスルホン酸のごときアルキル芳香族スルホン酸が好適である。

[0106]

好適なキノンジアジド類としては o ーキノンジアジド化合物を挙げることができる。本発明に用いられる o ーキノンジアジド化合物は、少なくとも 1 個の o ーキノンジアジド基を有する化合物で、熱分解によりアルカリ可溶性を増すものであり、種々の構造の化合物を用いることができる。つまり、 o ーキノンジアジドは熱分解により結着剤の溶解抑制を失うことと、 o ーキノンジアジド自身がアルカリ可溶性の物質に変化することの両方の効果により感材系の溶解性を助ける。本発明に用いられる o ーキノンジアジド化合物としては、例えば、 J . コーサー

著「ライトーセンシティブ・システムズ」(John Wiley & Sons. Inc.)第339~352頁に記載の化合物が使用できるが、特に種々の芳香族ポリヒドロキシ化合物あるいは芳香族アミノ化合物と反応させたo-+ノンジアジドのスルホン酸エステル又はスルホン酸アミドが好適である。また、特公昭43~28403号公報に記載されているようなベンゾキノン(1,2)~ジアジドスルホン酸クロライド又はナフトキノン~(1、2)~ジアジド~5~スルホン酸クロライドとピロガロール~アセトン樹脂とのエステル、米国特許第3,046,120号及び同第3,188,210号に記載されているベンゾキノン~(1,2~ジアジドスルホン酸クロライド又はナフトキノン~(1,2)~ジアジド~5スルホン酸クロライドとフェノ~ル~ホルムアルデヒド樹脂とのエステルも好適に使用される。

[0107]

さらにナフトキノンー(1,2)ージアジドー4ースルホン酸クロライドとフェノールホルムアルデヒド樹脂あるいはクレゾールーホルムアルデヒド樹脂とのエステル、ナフトキノンー(1,2)ージアジドー4ースルホン酸クロライドとピロガロールーアセトン樹脂とのエステルも同様に好適に使用される。その他の有用なoーキノンジアジド化合物としては、数多くの特許に報告され知られている。例えば特開昭47ー5303号、特開昭48ー63802号、特開昭48ー63803号、特開昭48ー96575号、特開昭49ー38701号、特開昭48ー13354号、特公昭41ー11222号、特公昭45ー9610号、特公昭49ー17481号、米国特許第2,797,213号、同第3,454,400号、同第3,544,323号、同第3,573,917号、同第3,674,495号、同第3,785,825号、英国特許第1,227,602号、同第1,251,345号、同第1,267,005号、同第1,329,888号、同第1,330,932号、ドイツ特許第854,890号などの各明細書中に記載されているものをあげることができる。

[0108]

○一キノンジアジド化合物の添加量は好ましくは印刷版材料全固形分に対し、
 1~50質量%、更に好ましくは5~30質量%、特に好ましくは10~30質量%の範囲である。これらの化合物は単一で使用できるが、数種の混合物として使用してもよい。

また特開平11-288089号公報記載の少なくとも一部がエステル化されたアルカ

リ可溶性樹脂を含んでも良い。

[0109]

[0110]

-現像促進剤-

また、感度を更に向上させる目的で、酸無水物類、フェノール類、有機酸類を 併用することもできる。

酸無水物類としては環状酸無水物が好ましく、具体的に環状酸無水物としては 米国特許第4,115,128 号明細書に記載されている無水フタル酸、テトラヒドロ無 水フタル酸、ヘキサヒドロ無水フタル酸、3,6-エンドオキシーテトラヒドロ 無水フタル酸、テトラクロル無水フタル酸、無水マレイン酸、クロル無水マレイ ン酸、α-フェニル無水マレイン酸、無水コハク酸、無水ピロメリット酸などが 使用できる。非環状の酸無水物としては無水酢酸などが挙げられる。

フェノール類としては、ビスフェノールA、2,2'ービスヒドロキシスルホン、pーニトロフェノール、pーエトキシフェノール、2,4,4'ートリヒドロキシベンゾフェノン、2,3,4ートリヒドロキシベンゾフェノン、4ーヒドロキシベンゾフェノン、4,4',4"ートリヒドロキシトリフェニルメタン、4,4',3",4"ーテトラヒドロキシー3,5,3',5'ーテトラメチルトリフェニルメタンなどが挙げられる。

[0111]

更に、有機酸類としては、特開昭60-88942 号、特開平2-96755 号公報などに記載されている、スルホン酸類、スルフィン酸類、アルキル硫酸類、ホスホン酸類、リン酸エステル類及びカルボン酸類などがあり、具体的には、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、p-トルエンスルフィン酸、エチ

ル硫酸、フェニルホスホン酸、フェニルホスフィン酸、リン酸フェニル、リン酸ジフェニル、安息香酸、イソフタル酸、アジピン酸、p-hルイル酸、3, 4-ジメトキシ安息香酸、フタル酸、テレフタル酸、4-シクロヘキセン-1, 2-ジカルボン酸、エルカ酸、ラウリン酸、n-ウンデカン酸、アスコルビン酸などが挙げられる。

上記の酸無水物、フェノール類及び有機酸類の印刷版材料中に占める割合は、 $0.05\sim20$ 質量%が好ましく、より好ましくは $0.1\sim15$ 質量%、特に好ましくは $0.1\sim10$ 質量%である。

[0112]

-界面活性剤-

感熱層中には、塗布性を良化するため、また、現像条件に対する処理の安定性を広げるため、特開昭62-251740号公報や特開平3-208514号公報に記載されているような非イオン界面活性剤、特開昭59-121044号公報、特開平4-13149号公報に記載されているような両性界面活性剤、EP950517公報に記載されているようなシロキサン系化合物、特開昭62-170950号公報、特開平11-288093号公報、特願2001-247351号に記載されているようなフッ素含有のモノマー共重合体を添加することができる。

非イオン界面活性剤の具体例としては、ソルビタントリステアレート、ソルビタンモノパルミテート、ソルビタントリオレート、ステアリン酸モノグリセリド、ポリオキシエチレンノニルフェニルエーテル等が挙げられる。両性活性剤の具体例としては、アルキルジ(アミノエチル)グリシン、アルキルポリアミノエチルグリシン塩酸塩、2-アルキル-N-カルボキシエチル-N-ヒドロキシエチルイミダゾリニウムベタインや-N-テトラデシル-N-N-ベタイン型(例えば、商品名「アモーゲンK」:第一工業(株)製)等が挙げられる。

シロキサン系化合物としては、ジメチルシロキサンとポリアルキレンオキシドのブロック共重合体が好ましく、具体例として、(株)チッソ社製、DBE-224, DBE-621, DBE-712, DBP-732, DBP-534、独Tego社製、Tego Glidel00等のポリアルキレンオキシド変性シリコーンを挙げることが出来る。

上記非イオン界面活性剤及び両性界面活性剤の印刷版材料中に占める割合は、 $0.01\sim1.5$ 質量%が好ましく、より好ましくは $0.1\sim5$ 質量%、さらに好ましくは $0.05\sim0.5$ 質量%である。

[0 1 1 3]

-焼出し剤/着色剤-

印刷版材料中には、露光による加熱後直ちに可視像を得るための焼き出し剤や 、画像着色剤としての染料や顔料を加えることができる。

焼出し剤としては、露光による加熱によって酸を放出する化合物(光酸放出剤)と塩を形成し得る有機染料の組合せを代表として挙げることができる。具体的には、特開昭50-36209号、同53-8128号の各公報に記載されているo-ナフトキノンジアジド-4-スルホン酸ハロゲニドと塩形成性有機染料の組合せや、特開昭53-36223号、同54-74728号、同60-3626号、同61-143748号、同61-151644号及び同63-58440号の各公報に記載されているトリハロメチル化合物と塩形成性有機染料の組合せを挙げることができる。かかるトリハロメチル化合物としては、オキサゾール系化合物とトリアジン系化合物とがあり、どちらも経時安定性に優れ、明瞭な焼き出し画像を与える。

[0114]

画像の着色剤としては、前述の塩形成性有機染料以外に他の染料を用いることができる。塩形成性有機染料を含めて、好適な染料として油溶性染料と塩基性染料をあげることができる。具体的にはオイルイエロー#101、オイルイエロー#103、オイルピンク#312、オイルグリーンBG、オイルブルーBOS、オイルブルー#603、オイルブラックBY、オイルブラックBS、オイルブラックT-505(以上オリエント化学工業(株)製)、ビクトリアピュアブルー、クリスタルバイオレットラクトン、クリスタルバイオレット(CI42555)、メチルバイオレット(CI42535)、エチルバイオレット、ローダミンB(CI145170B)、マラカイトグリーン(CI42000)、メチレンブルー(CI52015)などを挙げることができる。また、特開昭62-293247号公報に記載されている染料は特に好ましい。

[0115]

-可塑剤-

更に印刷版材料中には必要に応じ、塗膜の柔軟性等を付与するために可塑剤が加えられる。例えば、ブチルフタリル、ポリエチレングリコール、クエン酸トリブチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジオクチル、リン酸トリクレジル、リン酸トリブチル、リン酸トリオクチル、オレイン酸テトラヒドロフルフリル、アクリル酸又はメタクリル酸のオリゴマー及びポリマー等が用いられる。

[0116]

-ワックス剤-

平版印刷版原版の画像記録層中には、キズに対する抵抗性を付与する目的で、表面の静摩擦係数を低下させる化合物を添加することもできる。具体的には、US6117913号公報、特願2001-261627号明細書、特願2002-032904号明細書、特願2002-165584号明細書に用いられているような、長鎖アルキルカルボン酸のエステルを有する化合物などを挙げることができる。添加量として好ましいのは、層を形成する材料中に占める割合が0.1~10質量%、より好ましくは0.5~5質量%である。

[0117]

平版印刷版原版は、通常上記各成分を含有する版材の感熱層組成物を溶媒に溶かして、適当な支持体上に塗布することにより製造することができる。

〔塗布溶剤〕

ここで使用する溶媒としては、エチレンジクロライド、シクロへキサノン、メチルエチルケトン、メタノール、エタノール、プロパノール、エチレングリコールモノメチルエーテル、1-メトキシー2-プロパノール、2-メトキシエチルアセテート、1-メトキシー2-プロピルアセテート、ジメトキシエタン、乳酸メチル、乳酸エチル、N, N-ジメチルアセトアミド、N, N-ジメチルホルムアミド、N-メチルピロリドン、テトラメチルウレア、N-メチルピロリドン、

ジメチルスルホキシド、スルホラン、γーブチロラクトン、トルエン、水等をあ げることができるがこれに限定されるものではない。これらの溶媒は単独あるい は混合して使用される。

塗布溶剤の選択にあたっては、上部記録層、下部記録層の2層構造を有するものについては、隣接して設けられる場合に互いの層の界面における相溶を防止するため、上部記録層の塗布溶媒は、下部記録層を実質的に溶解しないものを選択することが好ましい。溶媒中の上記成分(添加剤を含む全固形分)の濃度は、好ましくは1~50質量%である。

酸無水物を使用する際には塗布液中の水を0.5%以下にすることが好ましい

[0118]

〔塗布量〕

また、前記感熱性組成物の塗布量(固形分)は、用途によって異なるが、皮膜特性及び耐刷性の観点から $0.3 \sim 3.0$ g $/ m^2$ の塗布量で設けることができる。好ましくは $0.5 \sim 2.5$ g $/ m^2$ であり、さらに好ましくは $0.8 \sim 1.6$ g $/ m^2$ である。

[0119]

[重層構造]

本発明で使用する平版印刷版原版は、上記した成分を含有する画像記録層を支持体上に設けられたものであるが、これら画像記録層は、少なくとも2層以上の重層構成であってもよい(以下便宜上、上側層と下側層とからなる2層の場合を説明する)。

その場合上側層と下側層を構成する、アルカリ可溶性樹脂は、上記に説明した アルカリ可溶性樹脂を適用することができるが、上側層は、下側層よりもアルカ リに対する溶解性が低いものであるのが好ましい。

また、赤外線吸収染料は、各層において異なる赤外線吸収染料であってもよく、また各層に複数の化合物からなる赤外線吸収染料を用いてもよい。含有させる量としては、いずれの層に用いる場合にも、上記した通り、添加する層の全固形分に対して0.01~50質量%、好ましくは0.1~50質量%、特に好まし

[0120]

上記した熱分解性でありかつ熱分解しない状態ではアルカリ可溶性樹脂の溶解性を実質的に低下させる物質は、経時により一部分解することもあり得るので、画像記録層が重層構成の場合には、下側層に含有させるのが効果的であるが、いずれの層であっても、また両層であってもよい。含有させる量としては、上記した通りである。複数の層に添加する場合は、添加量の合計が上記範囲になるように添加することが好ましい。

また、ラクトン化合物は、重層構成の場合には、上側層に含有させるのが効果 的であるが、いずれの層であっても、また両層であってもよい。

[0 1 2 1]

〔支持体〕

平版印刷版原版に使用される親水性支持体としては、必要な強度と耐久性を備えた寸度的に安定な板状物が挙げられ、例えば、紙、プラスチック(例えば、ポリエチレン、ポリプロピレン、ポリスチレン等)がラミネートされた紙、金属板(例えば、アルミニウム、亜鉛、銅等)、プラスチックフィルム(例えば、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、酢酸酪酸セルロース、硝酸セルロース、ポリエチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール等)、上記のごとき金属がラミネート、もしくは蒸着された紙、もしくはプラスチックフィルム等が含まれる。

[0122]

支持体としては、ポリエステルフィルム又はアルミニウム板が好ましく、その中でも寸法安定性がよく、比較的安価であるアルミニウム板は特に好ましい。好適なアルミニウム板は、純アルミニウム板及びアルミニウムを主成分とし、微量の異元素を含む合金板であり、更にアルミニウムがラミネートもしくは蒸着されたプラスチックフィルムでもよい。アルミニウム合金に含まれる異元素には、ケイ素、鉄、マンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、

[0123]

特に好適なアルミニウムは、純アルミニウムであるが、完全に純粋なアルミニウムは精錬技術上製造が困難であるので、僅かに異元素を含有するものでもよい。このようにアルミニウム板は、その組成が特定されるものではなく、従来より公知公用の素材のアルミニウム板を適宜に利用することができる。本発明で用いられるアルミニウム板の厚みはおよそ0.1mm~0.6mm程度、好ましくは0.15mm~0.4mm、特に好ましくは0.2mm~0.3mmである。

[0124]

アルミニウム板を粗面化するに先立ち、所望により、表面の圧延油を除去するための例えば界面活性剤、有機溶剤又はアルカリ性水溶液などによる脱脂処理が行われる。アルミニウム板の表面の粗面化処理は、種々の方法により行われるが、例えば、機械的に粗面化する方法、電気化学的に表面を溶解粗面化する方法及び化学的に表面を選択溶解させる方法により行われる。機械的方法としては、ボール研磨法、ブラシ研磨法、ブラスト研磨法、バフ研磨法などの公知の方法を用いることができる。また、電気化学的な粗面化法としては塩酸又は硝酸電解液中で交流又は直流により行う方法がある。また、特開昭54-63902号公報に開示されているように両者を組み合わせた方法も利用することができる。

このように粗面化されたアルミニウム板は、必要に応じてアルカリエッチング 処理及び中和処理された後、所望により表面の保水性や耐摩耗性を高めるために 陽極酸化処理が施される。アルミニウム板の陽極酸化処理に用いられる電解質としては、多孔質酸化皮膜を形成する種々の電解質の使用が可能で、一般的には硫酸、リン酸、蓚酸、クロム酸あるいはそれらの混酸が用いられる。それらの電解質の濃度は電解質の種類によって適宜決められる。

[0125]

陽極酸化の処理条件は用いる電解質により種々変わるので一概に特定し得ないが一般的には電解質の濃度が $1\sim80$ 質量%溶液、液温は $5\sim70$ $\mathbb C$ 、電流密度 $5\sim60$ A / d m 2 、電圧 $1\sim100$ $\mathbb V$ 、電解時間 10 秒 ~5 分の範囲であれば適当である。陽極酸化皮膜の量は耐刷性の点で 1.0 g / m 2 以上であることが

好ましい。陽極酸化処理を施された後、アルミニウム表面は必要により親水化処理が施される。親水化処理としては、米国特許第2,714,066号、同第3,181,461号、第3,280,734号及び第3,902,734号に開示されているようなアルカリ金属シリケート(例えばケイ酸ナトリウム水溶液)法がある。この方法においては、支持体がケイ酸ナトリウム水溶液で浸漬処理されるか又は電解処理される。他に特公昭36-22063号公報に開示されているフッ化ジルコン酸カリウム及び米国特許第3,276,868号、同第4,153,461号、同第4,689,272号に開示されているようなポリビニルホスホン酸で処理する方法などが用いられる。

[0126]

本発明で使用する平版印刷版原版は、支持体上に少なくとも前記した画像記録層を設けたものであるが、必要に応じて支持体と画像記録層との間に下塗層を設けることができる。

下塗層成分としては種々の有機化合物が用いられ、例えば、カルボキシメチルセルロース、デキストリン、アラビアガム、2ーアミノエチルホスホン酸などのアミノ基を有するホスホン酸類、置換基を有してもよいフェニルホスホン酸、ナフチルホスホン酸、アルキルホスホン酸、グリセロホスホン酸、メチレンジホスホン酸及びエチレンジホスホン酸などの有機ホスホン酸、置換基を有してもよいフェニルリン酸、ナフチルリン酸、アルキルリン酸及びグリセロリン酸などの有機リン酸、置換基を有してもよいフェニルホスフィン酸、ナフチルホスフィン酸、アルキルホスフィン酸及びグリセロホスフィン酸などの有機ホスフィン酸、グリシンやβーアラニンなどのアミノ酸類、及びトリエタノールアミンの塩酸塩などのヒドロキシ基を有するアミンの塩酸塩等から選ばれるが、2種以上混合して用いてもよい。

[0127]

さらに下記式で示される構造単位を有する有機高分子化合物群から選ばれる少なくとも1種の化合物を含む下塗層も好ましい。

[0128]

$$R^{12}$$
 R^{13}
(COOX)_m

[0129]

 R^{11} は水素原子、ハロゲン原子又はアルキル基を表し、 R^{12} 及び R^{13} はそれぞれ独立して、水素原子、水酸基、ハロゲン原子、アルキル基、置換アルキル基、アリール基、置換アリール基、 $-OR^{14}$ 、 $-COOR^{15}$ 、 $-CONHR^{16}$ 、 $-COR^{17}$ 若しくは-CNを表すか、又は R^{12} 及び R^{13} が結合して環を形成してもよく、 R^{14} ~ R^{17} はそれぞれ独立してアルキル基又はアリール基を表し、Xは水素原子、金属原子、 $NR^{18}R^{19}R^{20}R^{21}$ を表し、 R^{18} ~ R^{21} はそれぞれ独立して、水素原子、アルキル基、置換アルキル基、アリール基若しくは置換アリール基を表すか、又は R^{18} 及び R^{19} が結合して環を形成してもよく、mは1~3の整数を表す。

[0130]

この下塗層は次のような方法で設けることができる。即ち、水又はメタノール、エタノール、メチルエチルケトンなどの有機溶剤もしくはそれらの混合溶剤に上記の有機化合物を溶解させた溶液をアルミニウム板上に塗布、乾燥して設ける方法と、水又はメタノール、エタノール、メチルエチルケトンなどの有機溶剤もしくはそれらの混合溶剤に上記の有機化合物を溶解させた溶液に、アルミニウム板を浸漬して上記化合物を吸着させ、その後水などによって洗浄、乾燥して下塗層を設ける方法である。前者の方法では、上記の有機化合物の0.005~10質量%の濃度の溶液を種々の方法で塗布できる。また後者の方法では、溶液の濃度は0.01~20質量%、好ましくは0.05~5質量%であり、浸漬温度は20~90℃、好ましくは25~50℃であり、浸漬時間は0.1秒~20分、

好ましくは2秒~1分である。これに用いる溶液は、アンモニア、トリエチルアミン、水酸化カリウムなどの塩基性物質や、塩酸、リン酸などの酸性物質によりpH1~12の範囲に調整することもできる。

下塗層の被覆量は耐刷性能の観点から、 $2\sim200\,\mathrm{m\,g/m^2}$ が適当であり、 好ましくは $5\sim100\,\mathrm{m\,g/m^2}$ である。

[0131]

上記のようにして作成された平版印刷版原版は、画像様に露光され、その後、 上記に詳述したアルカリ現像処理液を用いて現像処理を施される。

像露光に用いられる活性光線の光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。またg線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。レーザービームとしてはヘリウム・ネオンレーザー、アルゴンレーザー、クリプトンレーザー、ヘリウム・カドミウムレーザー、KrFエキシマレーザー等が挙げられる。本発明においては、近赤外線から赤外領域において発光波長を持つ光源が好ましく、固体レーザー、半導体レーザーが特に好ましい。

[0132]

こうして画像露光し、現像し、水洗及び/又はリンス及び/又はガム引きして得られた平版印刷版に、不必要な画像部がある場合には、その不必要な画像部の消去が行われる。このような消去は、例えば特公平2-13293号公報に記載されているような消去液を不必要画像部に塗布し、そのまま所定の時間放置したのちに水洗することにより行う方法が好ましいが、特開平59-174842号公報に記載されているようなオプティカルファイバーで導かれた活性光線を不必要画像部に照射したのち現像する方法も利用できる。

[0133]

以上のようにして本発明の製版方法により得られた平版印刷版は、所望により不感脂化ガムを塗布したのち、印刷工程に供することができるが、より一層の高耐刷力の平版印刷版としたい場合にはバーニング処理が施される。平版印刷版をバーニングする場合には、バーニング前に特公昭61-2518号、同55-2

8062号、特開昭1-31859号、同61-159655号の各公報に記載 されているような整面液で処理することが好ましい。

その方法としては、該整面液を染み込ませたスポンジや脱脂綿にて、平版印刷版上に塗布するか、整面液を満たしたバット中に印刷版を浸漬して塗布する方法や、自動コーターによる塗布などが適用される。また、塗布した後でスキージあるいは、スキージローラーで、その塗布量を均一にすることは、より好ましい結果を与える。

[0134]

整面液の塗布量は一般には $0.03\sim0.8g/m^2$ (乾燥重量)が適当である。整面液が塗布された平版印刷版は必要あれば乾燥された後、バーニングプロセッサー(たとえば富士写真フイルム(株)より販売されているバーニングプロセッサー:「BP-1300」)などで高温に加熱される。この場合の加熱温度及び時間は、画像を形成している成分の種類にもよるが、 $180\sim300$ での範囲で $1\sim20$ 分の範囲が好ましい。

バーニング処理された平版印刷版は、必要に応じて適宣、水洗、ガム引きなどの従来より行われている処理を施すことができるが水溶性高分子化合物等を含有する整面液が使用された場合にはガム引きなどのいわゆる不感脂化処理を省略することができる。このような処理によって得られた平版印刷版はオフセット印刷機にかけられ、多数枚の印刷に用いられる。

[0135]

【実施例】

以下、本発明を実施例に従って説明するが、本発明の範囲はこれらの実施例に 限定されない。なお、実施例中の「%」はすべて「質量%」を表す。

[0136]

[SiO2含有のアルカリ現像処理液の調製]

酸化ケイ素 SiO_2 及び酸化カリウム K_2O の混合比 SiO_2/K_2O が1.1のケイ酸カリウム4.0%水溶液1リットルに、以下に示す各種化合物を表1に記載の濃度(g/リットル)で添加し、アルカリ現像処理液(1)~(30)を作成した。また、比較のため、分岐型又は直鎖型アルキレンオキサイド付加物の一

[0137]

[非還元糖含有のアルカリ現像処理液の調製]

非還元糖と塩基とを組み合わせたD-ソルビット/酸化カリウム K_2O よりなるカリウム塩5.0%水溶液1リットルに、以下に示す各種化合物 $A\sim F$ 、 $a\sim j$ を表2に記載の濃度(g/リットル)で添加し、アルカリ現像処理液(31) \sim (60)を作成した。また、比較のため、分岐型又は直鎖型アルキレンオキサイド付加物の一方を添加、又は双方を無添加のアルカリ現像処理液(64) \sim (66)を作成した。

[0138]

分岐型アルキレンオキサイド付加物A~H及び 直鎖型アルキレンオキサイド付加物 a ~ v

D.

B. $\begin{array}{c} \text{CH}_3 \\ \text{H-b}_6(\text{OH}_2\text{CH}_2\text{C}) - b_5(\text{OHCH}_2\text{C}) \\ \text{N} \\ \begin{array}{c} \text{CH}_3 \\ \text{(CH}_2\text{CHO})b_1 - (\text{CH}_2\text{CH}_2\text{O})b_2 - \text{H}} \\ \text{CH}_3 \\ \text{(CH}_2\text{CHO})b_3 - (\text{CH}_2\text{CH}_2\text{O})b_4 - \text{H}} \\ \text{b}_1 + b_2 + b_3 + b_4 + b_5 + b_6 = 30 \end{array}$

C. $\begin{array}{c} \text{H-c_3(OH$_2$CH$_2$C)} \\ \text{H-c_4(OH$_2$CH$_2$C)} \\ \text{N-CH_2CH_2$-N} \\ \text{(CH$_2CH_2$O)$c$_2$-H} \\ \text{c$_1$+c_2$+$c$_3$+c_4$=$40} \end{array}$

 $d_1+d_2+d_3+d_4+d_5+d_6+d_7+d_8=40$

E.
$$\begin{array}{c} \mathsf{CH_2O}(\mathsf{CH_2CH_2O}) \mathsf{e_1-H} \\ | \\ \mathsf{CHO}(\mathsf{CH_2CH_2O}) \mathsf{e_2-H} \\ | \\ \mathsf{CH_2O}(\mathsf{CH_2CH_2O}) \mathsf{e_3-H} \\ | \\ \mathsf{e_1+e_2+e_3=30} \end{array}$$

F.
$$CH_3$$

 $CH_2O-(CH_2CHO)f_1-(CH_2CH_2O)f_2-H$
 CH_3
 $CHO-(CH_2CHO)f_3-(CH_2CH_2O)f_4-H$
 CH_3
 $CH_2O-(CH_2CHO)f_5-(CH_2CH_2O)f_6-H$

$$f_1+f_2+f_3+f_4+f_5+f_6=30$$

 $\begin{array}{c} \text{G.} \\ \text{CH$_2$O(CH_2CH_2$O)$g$_1$-H} \\ \text{CHO(CH_2CH_2$O)$g$_2$-H} \\ \text{CHO(CH_2CH_2$O)$g$_3$-H} \\ \text{CHO(CH_2CH_2$O)$g$_4$-H} \\ \text{CHO(CH_2CH_2$O)$g$_5$-H} \\ \text{CHO(CH_2CH_2$O)$g$_6$-H} \\ \text{CH$_2$O(CH_2CH_2$O)$g$_6$-H} \end{array}$

$$g_1+g_2+g_3+g_4+g_5+g_6=60$$

$$\begin{array}{c|cccc} \text{H.} & \text{CH}_3 \\ & \text{CH}_2\text{O}-(\text{CH}_2\text{CHO})\text{h}_1\text{-}(\text{CH}_2\text{CH}_2\text{O})\text{h}_2\text{-H}} \\ & \text{CH}_3 \\ & \text{CHO}--(\text{CH}_2\text{CHO})\text{h}_3\text{-}(\text{CH}_2\text{CH}_2\text{O})\text{h}_4\text{-H}} \\ & \text{CHO}--(\text{CH}_2\text{CHO})\text{h}_5(\text{CH}_2\text{CH}_2\text{O})\text{h}_6\text{-H}} \\ & \text{CHO}--(\text{CH}_2\text{CHO})\text{h}_7(\text{CH}_2\text{CH}_2\text{O})\text{h}_8\text{-H}} \\ & \text{CHO}--(\text{CH}_2\text{CHO})\text{h}_9(\text{CH}_2\text{CH}_2\text{O})\text{h}_{10}\text{-H}} \\ & \text{CHO}---(\text{CH}_2\text{CHO})\text{h}_9(\text{CH}_2\text{CH}_2\text{O})\text{h}_{10}\text{-H}} \\ & \text{CH}_3 \\ & \text{CH}_2\text{O}--(\text{CH}_2\text{CHO})\text{h}_{11}(\text{CH}_2\text{CH}_2\text{O})\text{h}_{12}\text{-H}} \end{array}$$

 $h_1+h_2+h_3+h_4+h_5+h_6+h_7+h_8+h_9+h_{10}+h_{11}+h_{12}=60$

- a. $HO-(-CH_2CH_2O-)_5-H$
- b. $HO-(-CH_2CH_2O-)_{10}-H$
- c. CH_3 HO-(- CH_2CHO -)₁₀-H
- d. $\label{eq:CH3} \text{CH}_3\\ \text{HO-(-CH}_2\text{CHO-)}_5\text{-(CH}_2\text{CH}_2\text{O-)}_5\text{-H}$
- e. C₁₂H₂₅~O-(-CH₂CH₂O-)₁₀-H
- f. CH_3 $C_{12}H_{25}$ O-(- CH_2 $\dot{C}HO$ -)₁₀-H
- g. $\label{eq:CH3} \text{CH}_3\\ \text{C}_{12}\text{H}_{25} \text{--O-(-CH}_2\text{CHO-)}_5\text{-(CH}_2\text{CH}_2\text{O-)}_5\text{-H}$
- h. O-(-CH₂CH₂O-)₁₀-H
- i. CH₃
 O-(-CH₂CHO-)₁₀-H
- j. CH₃ O-(-CH₂CHO-)₅-(CH₂CH₂O-)₅-H
- k. H₃C-O-(-CH₂CH₂O-)₁₀-H
- I. CH_3 $C+C-CH_2CHO-)_{10}-H$
- m. $\begin{array}{c} \text{CH}_3 \\ \text{H}_3\text{C-} \\ \end{array} \\ \text{O-(-CH}_2\text{CHO-)}_5\text{-}(\text{CH}_2\text{CH}_2\text{O-)}_5\text{-H} \\ \end{array}$

n.

o. C_9H_{19} O-(- CH_2CHO -)₁₀-H

p.
$$C_9H_{19}$$
 C_9H_{19} C

q. O-(-CH₂CH₂O-)₁₀-H

s. $\label{eq:CH3} \text{CH}_3\\ \text{O-(-CH}_2\text{CHO-)}_5\text{-(CH}_2\text{CH}_2\text{O-)}_5\text{-H}$

u. $\begin{tabular}{c} CH_3 \\ O-(-CH_2CHO-)_{10}-H \\ \end{tabular}$

【表1】

SiO ₂ 含有	化合物	化合物	化合物	化合物
アルカリ現像	A∼H	の濃度	a∼v	の濃度
処理液 No.		(g/L)		(g/L)
(1)	A	1.5	k	0. 5
(2)	В	1.5	k	0. 5
(3)	С	1.5	а	0. 5
(4)	С	1.5	b	0. 5
(5)	С	1.5	С	0. 5
(6)	С	1.5	d	0. 5
(7)	С	1.5	е	0. 5
(8)	С	1.5	f	0. 5
(9)	С	1.5	g	0. 5
(10)	С	1.5	h	0. 5
(11)	С	1.5	i	0. 5
(12)	С	1.5	j	0. 5
(13)	С	1.5	k	0. 5
(14)	С	1.5	1	0. 5
(15)	С	1.5	m	0. 5
(16)	C	1.5	n	0. 5
(17)	С	1.5	. 0	0. 5
(18)	C C	1.5	р	0. 5
(19)		1.5	q	0.5
(20)	С	1.5	r	0. 5
(21)	С	1.5	S	0. 5
(22)	С	1.5	t	0. 5
(23)	С	1.5	u	0.5
(24)	С	1.5	v	0. 5
(25)	D	1.5	е	0.5
(26)	D	1.5	h	0.5
(27)	E	1.5	k	0. 5
(28)	F	1.5	k	0.5
(29)	G	1.5	k	0. 5
(30)	Н	1.5	k	0.5
(61)	G	1.5	_	
(62)	_	_	k	0.5
(63)			_	_

【表2】

非還元糖含有	化合物	化合物	化合物	化合物
アルカリ現像	A∼H	の濃度	a ∼ v	の濃度
処理液 No.		(g/L)		(g/L)
(31)	A	1.5	k	0. 5
(32)	В	1.5	k	0. 5
(33)	С	1.5	а	0. 5
(34)	С	1. 5	b	0. 5
(35)	С	1.5	С	0.5
(36)	С	1.5	d	0.5
(37)	С	1.5	е	0. 5
(38)	С	1.5	f	0.5
(39)	C.	1.5	g	0. 5
(40)	С	1.5	h	0.5
(41)	C	1.5	i	0.5
(42)	С	1.5	j	0.5
(43)	С	1.5	k	0.5
(44)	С	1.5	1	0.5
(45)	С	1.5	m	0.5
(46)	С	1.5	n	0.5
(47)	C	1.5	0	0.5
(48)	С	1.5	р	0.5
(49)	С	1.5	q	0.5
(50)	С	1.5	r	0.5
(51)	С	1.5	s	0.5
(52)	С	1. 5	t	0.5
(53)	С	1.5	u	0.5
(54)	С	1.5	v	0.5
(55)	D	1.5	e	0.5
(56)	D	1.5	h	0.5
(57)	Е	1. 5	k	0.5
(58)	F	1. 5	k	0.5
(59)	G	1.5	k	0.5
(60)	Н	1.5	k	0.5
(64)	G	1. 5		_
(65)	_	_	k	0. 5
(66)			_	

【実施例1~60及び比較例1~6】

実施例 $1\sim6$ 0 及び比較例 $1\sim6$ で用いる感熱性ポジ型平版印刷版を以下のように作製した。実施例 $1\sim3$ 0 として各々、アルカリ現像処理液 $(1)\sim(30)$ で処理し、実施例 3 $1\sim6$ 0 として各々、アルカリ現像処理液 $(31)\sim(60)$ で処理し、比較例 $1\sim6$ として各々、アルカリ現像処理液 $(61)\sim(66)$ で処理した。

[0142]

<平版印刷版原版の作成1>

0.3 mm厚のアルミニウム板(材質1050)をトリクロロエチレンで洗浄して脱脂した後、ナイロンブラシと400メッシュのパミスー水懸濁液を用い、この表面を砂目立てし、水でよく洗浄した。

洗浄後、このアルミニウム板を4.5 \mathbb{C} の2.5 %水酸化ナトリウム水溶液に9 秒間浸漬してエッチングを行い、水洗した後、さらに2.0 %硝酸水溶液に2.0 秒間浸漬し、再度水洗した。このときの砂目立て表面のエッチング量は、約3 g/m 2 であった。

[0143]

次に、このアルミニウム板を7%硫酸を電解液として、電流密度15A/dm 2の直流電流で $3g/m^2$ の陽極酸化被膜を設けた後、水洗、乾燥した。

これを、30 Cの珪酸ナトリウム 2. 5 %水溶液で 10 秒処理し、下記下塗り層用塗布液を塗布し、80 C下で 15 秒間乾燥して支持体を得た。乾燥後の下塗り層の乾燥塗布量は、15 m g / m 2 であった。

[0144]

<下塗り層用塗布液>

下記共重合体P(分子量28000) 0.3g

メタノール

1 0 0 g

水

1 g

[0145]

共重合体P

[0146]

合成例1 (カルボキシル基を有するアルカリ可溶性高分子化合物 (共重合体) の合成)

攪拌機、冷却管及び滴下ロートを備えた20ml三ッロフラスコに、メタクリル酸n-プロピル6.39g(0.045モル)、メタクリル酸1.29g(0.015モル)及び1-メトキシー2-プロパノール20gを入れ、湯水浴により65℃に加熱しながら混合物を攪拌した。この混合物に「V-601」(和光純薬(株)製)0.15gを加え70℃に保ちながら窒素気流下2時間混合物を攪拌した。この反応混合物にさらにメタクリル酸n-プロピル6.39g(0.045モル)、メタクリル酸1.29g(0.015モル)、1-メトキシー2-プロパノール20g及び「V-601」0.15gの混合物を2時間かけて滴下ロートにより滴下した。滴下終了後、さらに90℃で2時間得られた混合物を攪拌した。反応終了後、メタノール40gを混合物に加え、冷却し、得られた混合物を水2リットルにこの水を攪拌しながら投入し、30分混合物を攪拌した後、析出物をろ過により取り出し、乾燥することにより15gの白色固体を得た。

ゲルパーミエーションクロマトグラフィーによりこの共重合体の重量平均分子量(ポリスチレン標準)を測定したところ53,000であった。

[0147]

合成例 2 (カルボキシル基を有するアルカリ可溶性高分子化合物 (共重合体) の合成)

上記合成例1と同様の操作によって、メタクリル酸エチル/メタクリル酸イソ

ブチル/メタクリル酸(モル%:35/35/30)を使用して共重合体を合成した。その重量平均分子量(ポリスチレン標準)を測定したところ50,000であった。

[0148]

合成例3 (カルボキシル基を有するポリウレタン樹脂の合成)

この反応液にN, N-ジメチルアセトアミド100ml、メタノール50ml及び 酢酸50mlを加え、攪拌した後に、これを水4リットル中に攪拌しながら投入し 、白色のポリマーを析出させた。このポリマーを濾別し、水にて洗浄後、減圧乾 燥させることにより、60gのポリマーを得た。

ゲルパーミエーションクロマトグラフィー(GPC)にて分子量を測定したところ、重量平均(ポリスチレン標準)で70, 000であった。また、滴定によりカルボキシル基含量を測定したところ $1.43 \operatorname{meq}/g$ であった。

[0149]

合成例 4 (カルボキシル基を有するポリウレタン樹脂の合成) 以下のジイソシアネート化合物 (モル%)

及び以下のジオール化合物 (モル%)

を用いて、合成例 3 と同様にして共重合体を合成した。得られた共重合体の滴定による酸含量は 1 . 7 2 meq/g であり、重量平均分子量(ポリスチレン標準)は 8 0 , 0 0 0 であった。

[0150]

合成例 5

攪拌機、冷却管及び滴下ロートを備えた500ml三つロフラスコにメタクリル酸31.0g(0.36モル)、クロロギ酸エチル39.1g(0.36モル)及びアセトニトリル200mlを入れ、氷水浴で冷却しながら混合物を攪拌した。この混合物にトリエチルアミン36.4g(0.36モル)を約1時間かけて滴下ロートにより滴下した。滴下終了後、氷水浴を取り去り、室温下で30分間混合物を攪拌した。この反応混合物にp-アミノベンゼンスルホンアミド51.7g(0.30モル)を加え、油浴にて70℃に温めながら混合物を1時間攪拌した。反応終了後、この混合物を水1リットルにこの水を攪拌しながら投入し、30分間得られた混合物を攪拌した。この混合物をろ過して析出物を取り出し、これを水500mlでスラリーにした後、このスラリーをろ過し、得られた固体を乾燥することにより、N-(p-アミノスルホニルフェニル)メタクリルアミドの白色固体が得られた(収量46.9g)

[0151]

次に攪拌機、冷却管及び滴下ロートを備えた20ml三つロフラスコにN-(p-r)ミノスルホニルフェニル)メタクリルアミド4.61g、(0.0192モル)、メタクリル酸エチル2.94g (0.0258モル)、アクリロニトリル0.80g (0.015モル)及びN,N-ジメチルアセトアミド20gを入れ、湯水浴により65 Cに加熱しながら混合物を攪拌した。この混合物に「V-65」(和光純薬(株)製)0.15gを加え、65 Cに保ちながら窒素気流下2時間混合物を攪拌した。この反応混合物にさらにN-(p-r)ミノスルホニルフェニル)メタク

リルアミド4.61g、メタクリル酸エチル2.94g、アクリロニトリル0. 80g、N,N-ジメチルアセトアミド及び「V-65」0.15gの混合物を2時 間かけて滴下ロートにより滴下した。滴下終了後、さらに65℃で2時間得られ た混合物を攪拌した。反応終了後、メタノール40gを混合物に加え、冷却し、 得られた混合物を水2リットルにこの水を攪拌しながら投入し、30分間混合物 を攪拌した後、析出物をろ過により取り出し、乾燥することにより15gの白色 固体を得た。ゲルパーミエーションクロマトグラフィーにより、この特定の共重 合体の重量平均分子量(ポリスチレン標準)を測定したところ、53,000で あった。

[0152]

得られた支持体上に下記画像記録層塗布液を塗布し、150℃、30秒乾燥さ せて、乾燥塗布量を1.8g/m²とし、ポジ型の平版印刷版原版を得た。

<画像記録層用塗布液>

上記人出例	9	の共重合体
工記	\mathcal{L}	ソ共里宣海

0.050g

上記合成例4の共重合体

0.050g

上記合成例5の共重合体

0.4g

m, p-クレゾールノボラック

0.6 g

(m/p L = 6/4、重量平均分子量 8000

未反応クレゾールを 0.5%含有)

シアニン染料A

0. 1 g

無水フタル酸

0.05g

p-トルエンスルホン酸

0.002g

エチルバイオレット

0.02g

 $(対イオン: 6 - ヒドロキシ - \beta - ナフタレンスルホン酸)$ ナフトキノン1, 2-ジアジド-5-スルホニルクロリドと

 $_{0.01g}
 _{0.01g}$

フッ素系界面活性剤

0.05g

(商品名:メガファックF-177、大日本インキ化学工業(株)製)

メチルエチルケトン

8 g

1-メトキシー2-プロパノール

4 g

[0153]

上記より得られた平版印刷版原版に出力 $500 \, \mathrm{mW}$ 、波長 $830 \, \mathrm{nm}$ ビーム径 $17 \, \mu \, \mathrm{m}$ ($1/\mathrm{e}^2$) の半導体レーザーを用いて主走査速度 $5 \, \mathrm{m}$ /秒にて露光し、 $25 \, \mathrm{C}$ に保持した。

この平版印刷版原版を、上記の各種アルカリ現像処理液を満たした自動現像機 PS900NP(富士写真フイルム (株) 製)により、現像温度30 $^{\circ}$ 、12秒で 現像処理した。補充液の補充なしに、50 $^{\circ}$ 、100 $^{\circ}$ 、200 $^{\circ}$ 2、300 $^{\circ}$ 、400 $^{\circ}$ 、500 $^{\circ}$ と処理した。現像処理が終了したのち、水洗工程を 経て、ガム (GU-7 (1:1)) などで処理して、製版が完了した平版印刷版 を得た。

[0154]

<画像部/非画像部のバランスの評価>

(非画像部の現像性の評価)

上記のようにして現像直後、 $50\,\mathrm{m}^2$ 、 $100\,\mathrm{m}^2$ 、 $200\,\mathrm{m}^2$ 、 $300\,\mathrm{m}^2$ 、 $400\,\mathrm{m}^2$ 、 $500\,\mathrm{m}^2$ と処理して得た平版印刷版の非画像部の現像性を「非画像部の残膜の有無」を観察することで、官能評価を行った。その結果を表3及び表4に示す。

- 基準-

○:十分に現像され、非画像部上の画像記録層の残存は認められなかった。印刷 物上に汚れがなかった。

△:非画像部上に画像記録層が若干残存していた。印刷物上には汚れがなかった。

×:現像不良が認められ、非画像部に画像記録層が残存していた。印刷物上に汚れが発生した。

[0155]

<画像部の膜べりの評価>

上記のようにして現像直後、 $50\,\mathrm{m}^2$ 、 $100\,\mathrm{m}^2$ 、 $200\,\mathrm{m}^2$ 、 $300\,\mathrm{m}^2$ 、 $400\,\mathrm{m}^2$ 、 $500\,\mathrm{m}^2$ と処理して得た平版印刷版の「画像部の欠陥」を下記基準に

従い、目視により観察し、官能評価を行った。評価結果を表5及び表6に示す。 -基準-

○:画像部に欠陥は認められなかった。印刷物上でも画像部の白ぬけはなかった。。

△:画像部濃度が若干低下し、一部に欠陥が認められた。印刷物上では、画像部 の白ぬけはなかった。

×:画像部濃度が大幅に低下し、画像部に欠陥した部分有り。印刷物上に画像部の白ぬけが発生した。

【表3】

例	SiO ₂ 含有			非画像 部	の現像	象性		
	現像処理液	直後	50	100	200	300	400	500
	No.		m ²					
実施例1	(1)	0	0	0	0	0	0	0
2	(2)	0	0	0	0	0	0	0
3	(3)	0	0	0	0	0	0	0
4	(4)	0	0	0	0	0	0	0
5	(5)	0	0	0	0	0	0	0
6	(6)	0	0	0	0		0	0
7	(7)	0	0	0	0	0	0	0
8	(8)	0	0	0	0	0	0	0
9	(9)	0	0	0	0	0	0	0
10	(10)	0	0	0	0	0	0	0
11	(11)	0	0	0	0	0	0	0
12	(12)	0	0	0	0	0	0	0
13	(13)	0	0	0	0	0	0	0
14	(14)	0	0	0	0	0	0	0
15	(15)	0	0	0	0	0	0	0
16	(16)	0	0	0	0	0	0	0
17	(17)	0	0	0	0	0	0	0
18	(18)	0	0	0	0	0	0	0
19	(19)	0	0	0	0	0	0	0
20	(20)	0	0	0	0	0	0	0
21	(21)	0	0	0	0	0	0	0
22	(22)	0	0	0	0	0	0	0
23	(23)	0	0	0	0	0	0	0
24	(24)	0	0	0	0	0	0	
25	(25)	0	0	0	0	0	0	0
26	(26)	0	0	0	0	0	0	0
27	(27)	0	0	0	0	0	0	0
28	(28)	0	0	0	0	0	0	0
29	(29)	0	0	0	0	0	0	0
30	(30)	0	0	0	0	0	0	0
比較例1	(61)	0	0	0	Δ	Δ	×	×
比較例2	(62)	0	0	0	Δ	Δ	×	×
比較例3	(63)	0	0	0	0	0	0	0

【表4】

例	非還元糖含有			上画像 部	の現像	 象性	<u></u>	
	現像処理液	直後	50	100	200	300	400	500
	No.		m ²	m ²	\mathbf{m}^2	m ²	m ²	m ²
実施例31	(31)	0	0	0	0	0	0	0
32	(32)	0	0	0	0	0	0	0
33	(33)	0	0	0	0	0	0	0
34	(34)	0	0	0	0	0	0	0
35	(35)	0	0	0	0	0	0	0
36	(36)	0	0	0	0	0	0	0
37	(37)	0	0	0	0	0	0	0
38	(38)	0	0	0	0	0	0	0
39	(39)	0	0	0	0	0	0	0
40	(40)	0	0	0	0	0	0	0
41	(41)	0	0	0	0	0	0	0
42	(42)	0	0	0	0	0	0	0
43	(43)	0	0	0	0	0	0	0
44	(44)	0	0	0	0	0	0	0
45	(45)	0	0	0	0	0	0	0
46	(46)	0	0	0	0	0	0	0
47	(47)	0	0	0	0	0	0	0
48	(48)	0	0	0	0	0	0	0
49	(49)	0	0	0	0	0	0	0
50	(50)	0	0	0	0	0	0	0
51	(51)	0	0	0	0	0	0	0
52	(52)	0	0	0	0	0	0	0
53	(53)	0	0	0	0	0	0	0
54	(54)	0	0	0	0	0	0	0
55	(55)	0	0	0	0	0	0	0
56	(56)	0	0	0	0	0	0	0
57	(57)	0	0	0	0	0	0	0
58	(58)	0	0	0	0	0	0	0
59	(59)	0	0	0	0	0	0	0
60	(60)	0	0	0	0	0	0	0
比較例4	(64)	0	0	0	Δ	Δ	×	×
比較例5	(65)	0	0	0	Δ	Δ	×	×
比較例6	(66)	0	0	0	0	0	0	0

【表5】

例	SiO₂含有		ŢĒ	画像部の	り膜べり)		
	現像処理液	直後	50	100	200	300	400	500
	No.		m ²	m ²	m ²	m ²	m²	m ²
実施例1	(1)	0	0	0	0	0	0	0
2	(2)	0	0	0	0	0	0	0
3	(3)	0	0	0	0	0	0	0
4	(4)	0	0	0	0	0	0	0
5	(5)	0.	0	0	0	0	0	0
6	(6)	0	0	0	0	0	0	0
7	(7)	0	0	0	0	0	0	0
8	(8)	0	0	0	0	0	0	0
9	(9)	0	0	0	0	0	0	0
10	(10)	0	0	0	0	0	0	0
11	(11)	0	0	0	0	0	0	0
12	(12)	0	0	0	0	0	0	0
13	(13)	0	0	0	0	0	0	0
14	(14)	0	0	0	0	0	0	
15	(15)	0	0	0	0	0	0	0
16	(16)	0	0	0	0	0	0	0
17	(17)	0	0	0	0	0	0	0
18	(18)	0	0	0	0	0	0	0
19	(19)	0	0	0	0	0	0	0
20	(20)	0	0	0	0	0	0	0
21	(21)	0	0	0	0	0	0	0
22	(22)	0	0	0	0	0	0	0
23	(23)	0	0	0	0	0	0	0
24	(24)	0	0	0	0	0	0	0
25	(25)	0	0	0	0	0	0	0
26	(26)	0	0	0	0	0	0	0
27	(27)	0	0	0	0	0	0	0
28	(28)	0	0	0	0	0	0	0
29	(29)	0	0	0	0	0	0	0
30	(30)	0	0	0	0	0	0	0
比較例1	(61)	0	0	Δ	Δ	×	×	×
比較例2	(62)	0	0	Δ	Δ	×	×	×
比較例3	(63)	×	×	×	×	×	×	×

[0159]

【表6】

例	非還元糖含有		<u>-</u>	画像部の	 D膜べ!	J	· · · · · · · · · · · · · · · · · · ·	
	現像処理液	直後	50	100	200	300	400	500
	No.		m ²	m ²	m ²	m ²	m^2	m^2
実施例31	(31)	0	0	0	0	0	0	0
32	(32)	0	0	0	0	0	0	0
33	(33)	0	0	0	0	0	0	0
34	(34)	0	0	0	0	0	0	0
35	(35)	0	0	0	0	0	0	0
36	(36)	0	0	0	0	0	0	0
37	(37)	0	0	0	0	0	0	0
38	(38)	0	0	0	0	0	0	0
39	(39)	0	0	0	0	0	0	0
40	(40)	0	0	0	0	0	0	0
41	(41)	0	0	0	0	0	0	0
42	(42)	0	0	0	0	0	0	0
43	(43)	0	0	0	0	0	0	0
44	(44)	0	0	0	0	0	0	0
45	(45)	0	0	0	0	0	0	0
46	(46)	0	0	0	0	0	0	0
47	(47)	0	0_	0	0	0	0	0
48	(48)	0	0	0	0	0	0	0
49	(49)	0	0	0	0	0	0	0
50	(50)	0	0	0	0	0	0	0
51	(51)	0	0	0	0	0	0	0
52	(52)	0	0	0	0	0	0	0
53	(53)	0_	0	0	0	0	0	0
54	(54)	0	0	0	0	0	0	0
55	(55)	0	0	0	0	0	0	0
56	(56)	0	0	0	0	0	0	0
57	(57)	0	0	0	0	0	0	0
58	(58)	0	0	0	0	0	0	0
59	(59)	0	0	0	0	0	0	0
60	(60)	0	0	0	0	0	0	0
比較例4	(64)	0	0	Δ	Δ	×	×	×
比較例5	(65)	0	0	Δ	Δ	×	×	×
比較例6	(66)	×	×	×	×	×	×	×

【実施例61~120及び比較例7~12】

実施例 6 $1 \sim 1$ 2 0 及び比較例 $7 \sim 1$ 2 で用いる感熱性ポジ型平版印刷版を以下のように作製し、実施例 6 $1 \sim 9$ 0 として各々、アルカリ現像処理液 $(1) \sim (30)$)で処理し、実施例 9 $1 \sim 1$ 2 0 として各々、アルカリ現像処理液 $(31) \sim (60)$ で処理し、比較例 $7 \sim 1$ 2 として各々、アルカリ現像処理液 $(61) \sim (66)$ で処理した。

[0161]

<平版印刷版原版の作成2>

上記の<平版印刷版原版の作成 1>で使用したのと同様に処理し下塗り層を設けたアルミニウム支持体に、以下の感光液 2 を塗布量が 0. 8 5 g/m^2 になるようにワイヤーバーで塗布した後、TABAI社製 PERFECT OVER PH200にてWindControlを 7 に設定して140 $\mathbb C$ 、50 秒で乾燥した。更にその上に感光液 3 を塗布量が 0 . 2 2 g/m^2 になるようにワイヤーバーで塗布した後、TABAI社製 PERFECT OVER PH200にてWindControlを 7 に設定して120 $\mathbb C$ 、60 秒で乾燥し、2 層構成の感熱層を有する平版印刷版原版を得た。

[0162]

(感光液 2)

上記合成例2の共重合体	0. 050g
上記合成例 4 の共重合体	0.050g
N-(4-アミノスルホニルフェニル)メタクリルアミド/	
アクリロニトリル/メタクリル酸メチル	
(36/34/30重量平均分子量50000)	1.896g
クレゾールノボラック (m/p=6/4 重量平均分子量4500、	
残存モノマー0.8wt%)	0. 237g
シアニン染料A	0. 109g
4,4'-ビスヒドロキシフェニルスルホン	0. 063g
無水テトラヒドロフタル酸	0. 190g
p - トルエンスルホン酸	0.008g

エチルバイオレットの対イオンを

6-ヒドロキシナフタレンスルホンに変えたもの

0.05g

フッ素系界面活性剤 (F176、大日本インキ工業(株)社製) 0.035g

メチルエチルケトン

26.6g

1-メトキシ-2-プロパノール

13.6g

y ーブチロラクトン

13.8g

[0163]

(感光液3)

上記合成例2の共重合体

0.050g

上記合成例4の共重合体

0.050g

クレゾールノボラック (m/p=6/4 重量平均分子量4500、

残存モノマー0.8wt%)

0. 237 g

シアニン染料A

0.047g

ステアリン酸ドデシル

0.060g

3-メトキシ-4-ジアゾジフェニルアミン ヘキサフルオロホスフェート

0.030g

フッ素系界面活性剤(F176(20%溶液)、大日本インキ工業(株)社製)

0.110g

フッ素系界面活性剤 (MCF312F(30%溶液)、大日本インキ工業(株)社製)

0. 12g

メチルエチルケトン

15.1g

1-メトキシ-2-プロパノール

7. 7 g

[0164]

上記より得られた平版印刷版原版に出力500mW、波長830nmビーム径 17μm (1/e²) の半導体レーザーを用いて主走査速度5m/秒にて露光し 、25℃に保持した。

この平版印刷版原版を、上記の各種アルカリ現像処理液を満たした自動現像機 PS900NP(富士写真フイルム (株) 製)により、現像温度30℃、12秒で 現像処理した。補充液の補充なしに、 $50 \,\mathrm{m}^2$ 、 $100 \,\mathrm{m}^2$ 、 $200 \,\mathrm{m}^2$ 、 $300 \,\mathrm{m}^2$

 m^2 、 $400 m^2$ 、 $500 m^2$ と処理した。現像処理が終了したのち、水洗工程を経て、ガム(GU-7(1:1))などで処理して、製版が完了した平版印刷版を得た。

[0165]

こうして製版された平版印刷版について、実施例 $1 \sim 6$ 0 と同様にして評価を行った。その評価結果を、非画像部の現像性について表 7 及び表 8 に、画像部の膜べりについて表 9 及び表 1 0 に示す。

[0166]

【表7】

例	Si0₂含有			上画像部		 读性		
	現像処理液	直後	50	100	200	300	400	500
	No.		m²	m ²	m ²	m ²	m^2	m ²
実施例61	(1)	0	0	0	0	0	0	0
62	(2)	0	0	0	0	0	0	0
63	(3)	0	0	0	0	0	0	0
64	(4)	0	0	0	0	0	0	0
65	(5)	0	0	0	0	0	0	0
66	(6)	0	0	0	0	0	0	0
67	(7)	0	0	0	0	0	0	0
68	(8)	0	0	0	0	0	0	0
69	(9)	0	0	0	0	0	0	0
70	(10)	0	0	0	0	0	0	0
71	(11)	0	0	0	0	0	0	0
72	(12)	0	0	0	0	0	0	0
73	(13)	0	0	0	0	0	0	0
74	(14)	0	0	0	0	0	0	0
75	(15)	0	0	0	0	0	0	0
76	(16)	0	0	0	0	0	0	0
77	(17)	0	0	0_	0	0	0	0
78	(18)	0	0	0	0	0	0	0
79	(19)	0	0	0	0	0	0	0
80	(20)	0	0	0	0	0	0	0
81	(21)	0	0	0	0	0	0	0
82	(22)	0	0	0	0	0	0	0
83	(23)	0	0	0	0	0	0	0
84	(24)	0	0	0	0	0	0	0
85	(25)	0	0	0	0	0	0	0
86	(26)	0	0	0	0	0	0	0
87	(27)	0	0	0	0	0	0	9
88	(28)	0	0	0	0	0	0	0
89	(29)	0	0	0	0	0	0	0
90	(30)	0	0	0	0	0	0	0
比較例7	(61)	0	0	0	0	Δ	Δ	
比較例8	(62)	0	0	0	0	Δ	Δ	Δ
比較例9	(63)	0			0	0	0	0

[0167]

【表8】

例	非還元糖含有	<u> </u>		上画像 音		 象性		
	現像処理液	直後	50	100	200	300	400	500
	No.		m ²	m ²	m ²	m ²	m²	m ²
実施例91	(31)	0	0	0	0	0	0	0
92	(32)	0	0	0	0	0	0	0
93	(33)	0	0	0	0	0	0	0
94	(34)	0	0	0	0	0	0	0
95	(35)	0	0	0	0	0	0	0
96	(36)	0	0	0	0	0	0	0
97	(37)	0	0	0	0	0	0	0
98	(38)	0	0	0	0	0	0	0
99	(39)	0	0	0	0	0	0	0
100	(40)	0	0	0	0	0	0	0
101	(41)	0	0	0	0	0	0	0
102	(42)	0	0	0	0	0	0	0
103	(43)	0	0		0	0	0	0
104	(44)	0	0	0	0	0	0	0
105	(45)	0	0	0	0	0	0	0
106	(46)	0	0	0	0	0	0	0
107	(47)	0	0	0	0	0	0	0
108	(48)	0	0	0	0	0	0	
109	(49)	0	0	0	0	0	0	0
110	(50)	0	0	0	0	0	0	0
111	(51)	0	0	0	0	0	0	0
112	(52)	0	0	0	0	0	0	0
113	(53)	0	0	0	0	0	0	0
114	(54)	0	0	0	0	0	0	0
115	(55)	0	0	0	0	0	0	0
116	(56)	0	0	0	0	0	0	0
117	(57)	0	0	0	0	0	0	0
118	(58)	0	0	0	0	0	0	0
119	(59)	0	0	0	0	0	0	0
120	(60)	0	0	0	0	0	0	0
比較例10	(64)	0	0	0	0	Δ	Δ	
比較例11	(65)	0	0	0	0	Δ	Δ.	\triangle
比較例12	(66)	0	0	0	0	0	0	0

[0168]

【表 9】

例	SiO₂含有			画像部	の膜べ	9		
	現像処理液	直後	50	100	200	300	400	500
	No.		m ²					
実施例61	(1)	0	0	0	0	0	0	0
62	(2)	0	0	0	0	0	0	0
63	(3)	0	0	0	0	0	0	0
64	(4)	0	0	0	0	0	0	0
65	(5)	0	0	0	0	0	0	0
66	(6)	0	0	0	0	0	0	0
67	(7)	0	0	0	0	0	0	0
68	(8)	0	0	0	0	0	0	0
69	(9)	0	0	0	0	0	0	0
70	(10)	0	0	0	0	0	0	0
71	(11)	0	0	0	0	0	0	0
72	(12)	0	0	0	0	0	0	0
73	(13)	0	0	0	0	0	0	0
74	(14)	0	0	0	0	0	0	0
75	(15)	0	0	0	0	0	0	0
76	(16)	0	0	0	0	0	0	0
77	(17)	0	0	0	0	0	0	0
78	(18)	0	0	0	0	0	0	0
79	(19)	0	0	0	0	0	0	0
80	(20)	0	0	0	0	0	0	0
81	(21)	0	0	0	0	0	0	10
82	(22)	0	0	0	0	0	0	0
83	(23)	0	0	0	0	0	0	0
84	(24)	0	0	0	0	0	0	0
85	(25)	0	0	0	0	0	Ō	0
86	(26)	0	0	0	0	0	0	0
87	(27)	0	0	0	0	Ō	0	10
88	(28)	0	0	0	0	0	0	10
89	(29)	0	0	0	0	0	Ō	0
90	(30)	0	0	0	0	Ō	0	10
比較例7	(61)	0	Δ	Δ	×	×	×	×
比較例8	(62)	0	Δ		×	×	X	×
比較例 9	(63)	×	×	1×	×	×	×	×

[0169]

【表10】

例	非還元糖含有		Į	画像部の	の膜べ!	J		 -
	現像処理液	直後	50	100	200	300	400	500
	No.		m ²	m^2	m ²	m²	m ²	m ²
実施例91	(31)	0	0	0	0	0	0	0
92	(32)	0	0	0	0	0	0	0
93	(33)	0	0	0	0	0	0	0
94	(34)	0	0	0	0	0	0	0
95	(35)	0	0	0	0	0	0	0
96	(36)	0	0	0	0	0	0	0
97	(37)	0	0	0	0	0	0	0
98	(38)	0	0	0	0	0	0	0
99	(39)	0	0	0	0	0	0	0
100	(40)	0	0	0	0	0	0	0
101	(41)	0	0	0	0	0	0	0
102	(42)	0	0	0	0	0	0	0
103	(43)	0	0	0	0	0	0	0
104	(44)	0	0	0	0	0	0	0
105	(45)	0	0	0	0	0	0	0
106	(46)	0	0	0	0	0	0	0
107	(47)	0	0	0	0	0	0	0
108	(48)	0	0	0	0	0	0	0
109	(49)	0	0	0	0	0	0	0
110	(50)	Ö	0	0	0	0	0	0
111	(51)	0	0	Ö	0	0	0	0
112	(52)	0	0	0	0	0	0	0
113	(53)	0	0	0	0	0	0	0
114	(54)	0	0	0	0	0	0	0
115	(55)	0	0	0	0	0	0	0
116	(56)	0	0	0	0	0	0	0
117	(57)	0	0	0	0	0	0	0
118	(58)	0	0	0	0	0	0	0
119	(59)	0	0	0	0	0	0	0
120	(60)	0	0	0	0	0	0	0
比較例10	(64)	0	Δ	Δ	×	×	X	×
比較例11	(65)	0	Δ	Δ	X	×	×	×
比較例12	(66)	×	×	×	×	×	X	×

[0170]

【発明の効果】

本発明のアルカリ現像処理液によれば、アルカリ現像処理液中に画像記録層の成分が溶けこんでも一定の性能を維持することができ、長期間安定に平版印刷版原版の現像処理を行うことができる。本発明の平版印刷版の製版方法によれば、現像性を維持しながら画像部に画像欠陥を招くことなく、エッジ調の高鮮鋭で鮮明な画像を形成することができる。

【書類名】

要約書

【要約】

【課題】 感光層成分が溶け込んでも、一定の性能を発揮することができ、画像部に欠陥を与えることなく高鮮鋭で鮮明な画像を形成し得るアルカリ現像処理液及び製版方法を提供する。

【解決手段】 直鎖型アルキレンオキサイド付加物及び分岐型アルキレンオキサイド付加物を含有することを特徴とする感熱性ポジ型平版印刷版用アルカリ現像処理液;さらにアニオン界面活性剤及び両性界面活性剤からなる群から選ばれる少なくとも1種を含有する上記アルカリ現像処理液;支持体上に赤外線吸収染料を含有する画像記録層を有する感熱性ポジ型平版印刷版を赤外線露光後、上記アルカリ現像処理液で現像処理する平版印刷版の製版方法。

特願2003-066120

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 [変更理由]

1990年 8月14日 新規登録

住所

神奈川県南足柄市中沼210番地

氏 名 富士写真フイルム株式会社