[CSED233-01] Data Structure AVL Tree

Jaesik Park

Balanced Search Trees

- Memory-based search trees
 - Everything is in the main memory => fast, easy to implement, but... scale issue
 - Balanced BST
 - AVL (Adelson-Velskii & Landis) trees
 - Red-black trees
 - Splay trees, ...
 - Balanced multi-way search tree
 - 2-3, 2-3-4 trees (B-trees)
- Disk-based search trees
 - More scalable
 - Balanced multi-way search trees
 - B-trees (B+, B*)
 - Prefix B-trees

Balanced Trees

- Tree height is O(log n)
 - No leaf is much further away from the root than any other leaf
 - To minimize the longest path from the root to any leaf node
- Why balanced?
 - Insert, Delete, and Member take O(log n) time

Data Structure	Worst case	Average
Binary Search Tree (BST)	O(<i>n</i>)	O(log <i>n</i>)
Balanced Search Trees	O(log <i>n</i>)	O(log <i>n</i>)

Height-Balanced

- Perfectly height-balanced
 - If the sub-trees of any node are of the same height, so that all leaf nodes are at the same level
 - Too tough condition to satisfy
- ('Almost' perfectly) height-balanced
 - For each node, the height of its sub-trees can differ by at most 1, & the sub-trees are also height-balanced
 - We can prove that height = $O(\log n)$ since it is an almost balanced tree

Example: Height-Balanced

AVL Tree

- Height-balanced BST
 - For every node in the tree, the left & right sub-trees differ in height by at most 1
- Balance factor of node x
 - bf(x) = height(left(x)) height(right(x))
 - Note:
 - height(one node) = 0, height(empty tree) = -1
- AVL tree property
 - A valid AVL tree must satisfy: $-1 \le bf(x) \le 1$ for every node x

AVL Tree & Balance Factors

• An invalid AVL tree can be detected by bf(x)

Insertion in AVL tree

- Insertion can be done as in BST
 - But, it may cause violation of AVL tree property (height balanced)

- Restore the AVL property if needed
 - *Insert*(6)

Insertion in AVL tree

- Insertion can be done as in BST
 - But, it may cause violation of AVL tree property (height balanced)

- Restore the AVL property if needed
 - After *Insert*(6)

Insertion in AVL tree

- Insertion can be done as in BST
 - But, it may cause violation of AVL tree property (height balanced)

- Restore the AVL property if needed
 - After *Insert*(6), violated at 8

Restore AVL property

Some Observations

- After insertion,
 - Only nodes along the path from insertion point to root might have their balance altered
 - Need to rebalance the tree at such the "deepest" node (called pivot)

Pivot Node & Rotation

- Pivot node (denoted by A)
 - The nearest ancestor of the newly inserted node that may go out of balance
 - The "deepest" unbalanced node from the root
 - bf(A) becomes +2 or -2 after insertion

- Restoring the balance of the pivot node
 - Restores the balance of the whole sub-tree & potentially all of the nodes that were affected by the insertion
 - This restructuring mechanism is called "rotation"

Imbalance Types

- Let A be the pivot node
 - The deepest node that violates the AVL property

- Only four possible types:
 - LL: insertion into left sub-tree of left child of A
 - The insertion took place in the left sub-tree of a node whose parent (A) was left high
 - RR: symmetric case of LL
 - LR: insertion into right sub-tree of left child of A
 - The insertion took place in the right sub-tree of a node whose parent (A) was left high
 - RL: symmetric case of LR

Tree Rotations: Two Types

- Single rotation (for LL or RR imbalance)
 - Requires only a single rotation on the pivot node as an axis
- Double rotation (for LR or RL imbalance)
 - Requires a prior rotation on the root of the affected sub-tree, then a rotation on the pivot node
 - LR = RR + LL
 - RL = LL + RR
 - The first rotation does not affect the degree of imbalance but convert it to a simple LL or RR

Insertion Algorithm

- First, insert a new key as in BST
- Then, trace the path from the new leaf towards the root:
 - For each node x, check if $-1 \le bf(x) \le 1$
 - If yes, proceed to parent(x)
 - If no, rotate the tree on node x, and then finish (early termination)
 - That's the pivot

• Note:

- Once we perform a rotation on node x, we don't need to do any rotation on any ancestor of x
- Rotation may change x, so connect the resulting tree to parent(x)
- Update the height of nodes involved in rotations

Single Rotation: LL Case

Before insertion

After insertion

Single Rotation: LL Case (Right Rotation)

- A single rotation takes O(1) time
 - Insertion takes O(Height of AVL tree) time
- RR case is symmetric to LL case

rotation

Insert 4

- Insert 5
 - Violation at node 3
 Left (RR) rotation

- Insert 6
 - Violation at node 2
 Left (RR) rotation

- Insert 7
 - Violation at node 5
 Left (RR) rotation

Insert 16

Insert 15

Violation at node 7

Double Rotation: LR case

Single rotation only fails to restore the balance

Double Rotation: LR case-1 & case-2

- Further examine the sub-tree B_R
 - A new node is inserted either in C_I or C_R

Double Rotation (LR): First Rotation (RR)

• First, do a single left rotation on node B as an axis (as in RR case)

Double Rotation (LR): Second Rotation (LL)

- Then, do a single right rotation at node A (as in LL case)
 - Consequently LR = RR + LL : double rotation
- RL case is symmetric to LR case (RL = LL + RR)

Double Rotation: Example

- Restart our example
 - We've inserted 3, 2, 1, 4, 5, 6, 7, 16, but we failed to insert 15
 - We'll insert 15 again

- Insert 13, 12, 11, 10, 8, 9
 - Violation at node 4

• What's the final results?

Exercise

• Insert 3, 2, 1, 4, 5, 6, 7 into an AVL tree:

- Answer:
 - We need 4 rotations when insert 1, 5, 6, 7

Time Complexity: AVL Insertion

- Time complexity of each step of AVL insertion
 - BST insertion
 - O(log n)
 - Checking & rotation for all ancestors of the inserted node
 - O(log n)
 - Checking & rotation (if needed) for a single node
 - To update the balance factor of a single node = O(1)
 - Rotation = O(1)
- Overall time complexity of insertion is: O(log n)

Review: Deletion in BST

- There are 3 cases of deletion from
 - *Leaf* node
 - *Degree-1* node (with one child)
 - Degree-2 node (with two children)
 - The smallest key must be in a *leaf* or *degree-1* node

- In all cases, the last (deepest) deleted node is a
 - leaf node or degree-1 node

Deletion from AVL Tree

- First, perform BST deletion
- Then, trace the path from the last deleted node towards the root
 - For each node x, check if AVL property $(-1 \le bf(x) \le 1)$
 - If yes
 - Proceed to parent(x)
 - If no,
 - Do an appropriate rotation at node x
 - Details (in next slide)
 - Continue to trace the path until we reach the root

What Rotation (after BST Deletion)?

- If AVL property is violated at node x
 - If h(x.left) = h(x) 1 (that is, h(x.right) = h(x) 3)
 - If h(x.left.left) = h(x) 2 \rightarrow LL rotation(x)
 - Else If $h(x.left.right) = h(x) 2 \rightarrow LR rotation(x)$
 - If h(x.right) = h(x) 1 (that is, h(x.left) = h(x) 3)
 - If h(x.right.right) = h(x) 2 \rightarrow RR rotation(x)
 - Else If $h(x.right.left) = h(x) 2 \rightarrow RL rotation(x)$

Mote:

The above is the same as in the insertion case

What Rotation?: Interpretation

- For a given pivot (A),
 - Let B be the child of A with the longer height
 - Let C be the child of B with the longer height
 - If two children of B are of the same height, then C must be chosen in favor of single rotation

- Determine the type of imbalance based on A-B-C
 - LL, LR, RR, or RL

Delete (from Leaf): Example

- Delete 2 (leaf node)
 - Violation at node 5

RL type of imbalance

Delete (from Leaf): Example

RL rotation (= LL + RR)

Delete (from Deg-2 Node): Example

- Delete 8 (degree-2 node)
 - No violation at node 6, 7
 - So, finished

Delete: Children of the Same Height

- Delete 5 (leaf node)
 - Violation at node 7

 Which type, RR or RL?(when two subtrees of B are of the same height)

Delete: Children of the Same Height (1)

• When RR type (single rotation) is chosen:

Delete: Children of the Same Height (2)

• When RL type (double rotation) is chosen:

- Still violation at node 11
- → Fail

Delete: Children of the Same Height (3)

- As a consequence
 - If two sub-trees of B are of the same height
 - Then a single rotation must be chosen

References

- Further reading list and references
 - https://en.wikipedia.org/wiki/AVL_tree
 - https://www.geeksforgeeks.org/avl-tree-set-1-insertion/

- Slide credit
 - Jaesik Park
 - Seung-Hwan Baek
 - Jong-Hyeok Lee