

CSE3032 - Competitive Programming WIN SEM (2022-2023) AMR Class Number: AP2022236001007 Slot: L11+L12+L19+L20 ASSIGNMENT - 3

Last Date for Submission: Wednesday (11-02-2023)

Write the program using (C / C++ / Java / Python) to solve the following problems.

	<u> </u>	(C / C++ / Java / Python) to solve the l					
S.No	Problem	Link					
	Name						
1	Spiral Matrix 1	https://www.hackerrank.com/contests/coding-test-1-					
	$1 \rightarrow 2 \rightarrow 3$	bitshyderabad/challenges/spiral-matri	oitshyderabad/challenges/spiral-matrix-1/problem				
	4 → 5 6						
	$7 \leftarrow 8 \leftarrow 9$						
2	ZIG-ZAG	Input:					
2	Matrix	1 2 3	C.C.T.				
	Mauix	456	7/7/				
		789	V///				
		Output:	7///				
		1 2 4 7 5 3 6 8 9	V4/4				
3	Unique	https://www.hackerearth.com/practice	a/algorithms/stringalgorithm/hasias				
3	subsequences	of-string-manipulation/practiceproble					
	subsequences	264057c9/	ems/argorium/umque-suosequence-				
4	subsequences	https://www.hackerearth.com/problem/algorithm/subsequences-					
7	subsequences	2/					
5	Good		e/algorithms/stringalgorithm/basics				
	Subsequences	https://www.hackerearth.com/practice/algorithms/stringalgorithm/basics-of-string-manipulation/practiceproblems/algorithm/good-sequences-					
	Buoscquences	46c31a23/	omo argonumi good-sequences-				
6	SUBSEQ -	https://www.spoj.com/problems/SUB	SEO/				
U	_	intps.//www.spoj.com/problems/SOD	BBEQ/				
	Counting						
7	Subsequences	1-44//	AMATION/tt 10				
7	SUMMATION	https://www.spoj.com/problems/SUM	/IMATION/cstart=10				
	SUMMATION						

Note:

- If Code similarity is found, assignment will not be considered and Zero (0) Marks will be awarded.
- You have to upload a single document consisting of all the above programs and corresponding Output.
- You will be asked to explain the code, run and show the same program in the respective platforms (hacker rank / hacker earth / spoj)

```
1) Spiral Matrix
Code:
import java.util.Scanner;
public class Main{
  static Scanner sc = new Scanner(System.in);
  static int[][] arr;
  static int n;
  static int rowStart;
  static int rowEnd;
  static int colStart;
  static int colEnd;
  public static void main(String [] args){
     n=sc.nextInt();
     arr=new int[n][n];
     for(int i=0;i< n;i++){
       for(int j=0; j< n; j++){
          arr[i][j]=sc.nextInt();
        }
     rowStart=0;
     rowEnd=n-1;
     colStart=0;
     colEnd=n-1;
     while(rowStart<=rowEnd && colStart <= colEnd){</pre>
       for(int i=colStart;i<=colEnd;i++) {</pre>
          System.out.print(arr[rowStart][i] + " ");
        }
       rowStart++;
       for(int i=rowStart;i<=rowEnd;i++){</pre>
          System.out.print(arr[i][colEnd] + " ");
        }
       colEnd--;
       if(rowStart<=rowEnd){</pre>
```

```
for(int i=colEnd;i>=colStart;i--){
              System.out.print(arr[rowEnd][i] + " ");
           }
           rowEnd--;
        if(colStart<=colEnd){</pre>
           for(int i=rowEnd;i>=rowStart;i--){
              System.out.print(arr[i][colStart] + " ");
           }
           colStart++;
Output:
 Spiral Matrix 1
               Submissions
                            Discussions
 Submitted in a few seconds • Score: 1.00
                                                                                           Status: Accepted
                Test Case #3
                                                Test Case #4
                                                                                Test Case #5
2) Zig-Zag Matrix
Code:
import java.util.Scanner;
public class Assignments{
   static int[][] arr;
   static int n=3;
   static Scanner sc=new Scanner(System.in);
   public static void main(String [] args){
     arr=new int[n][n];
     for(int i=0;i<n;i++){
        for(int j=0;j< n;j++){}
           arr[i][j]=sc.nextInt();
     int i=0, j=0, k=0;
     int[] a=new int[n*n];
     boolean up=true;
     while(k < n*n){
```

```
if(up){
        if(j==n-1){
           i++;
           up=false;
         }
                     else if(i==0){
           j++;
           up=false;
         }
                     else{
           i--;
           j++;
              else{
        if(i==n-1){
           j++;
           up=true;
                     else if(j==0){
           i++;
           up=true;
                     else{
           i++;
           j--;
    for(int num:a){
      System.out.print(num + " ");
    }
  }
Output:
C:\Users\Windows\OneDrive\Documents\CP>javac Assignments.java
C:\Users\Windows\OneDrive\Documents\CP>java Assignments.java
1 2 3 4 5 6
7 8 9
1 2 4 7 5 3 6 8 9
C:\Users\Windows\OneDrive\Documents\CP>
```

a[k++]=arr[i][j];

3) Unique Subsequences

Code:

```
import java.util.*;
public class Main{
public static void main(String args[] ) throws Exception {
    Scanner sc=new Scanner(System.in);
    int T=sc.nextInt();
    for(int i=0;i<T;i++)
    {
    int N=sc.nextInt();
    String s=sc.next();
    int count=1;
    for(int j=0;j<N-1;j++)
    {
    if(s.charAt(j)==(s.charAt(j+1)))
    {
      continue;
    }
    count++;
    }
    System.out.println(count);
}
</pre>
```

Output:

RESULT: ⊘ Accepted

? Refer judge environment

Score	Time (sec)	Memory (KiB)	Language
20	1.57828	88016	Java 8

Input	Result	Time (sec)	Memory (KiB)	Score	Your Output	Correct Output	Diff
Input #1		0.219867	88016	5	Ø	Ø	
Input #2		0.228755	87876	5	Ø	ø	
Input #3		0.208829	86776	20	Ø	Ø	
Input #4		0.189342	84472	20		3	
Input #5		0.174619	83396	20	B	3	
Input #6		0.181752	85860	5	B	3	
Input #7		0.211551	88008	5	B	B	
Input #8		0.163566	84748	20	Ø	Ø	

4) Subsequences

Code:

```
#include<bits/stdc++.h>
using namespace std;
int main(){
    int n,ele;
    cin>>n;
    vector<int> fre(100001),fre1(100001);
    for(int i=0;i<n;++i){</pre>
       cin >> ele;
       fre[ele]++;
       fre1[ele]++;
     int i =100001;
     while(i>0 && !fre[i]) i--;
     i--;
    long long req = 0;
    while(i>0){
      if(fre[i] < fre[i+1]){</pre>
       req+=fre[i+1] - fre[i];
       fre[i] = fre[i+1];
      i--;
     if(req){
          cout<<req;</pre>
          return 0;
    vector<vector<int>> subs(fre[1],vector<int>(0));
    for(int i=1;i<=100001;++i){</pre>
         for(int j=0;j<fre[i];++j){</pre>
             subs[j].push_back(i);
    cout<<fre[1]<<"\n";</pre>
    for(int i=fre[1]-1;i>=0;--i){
         for(int j = 0;j<subs[i].size();++j){</pre>
             cout<<subs[i][j]<<" ";</pre>
         cout<<"\n";</pre>
    return 0;
```

Output:

RESULT: ◆ Accepted ⑦ Refer judg							judge
Score 20	Time (0.1293	Memory (KiB) 3896		Languag C++14	e		
Input	Result	Time (sec)	Memory (KiB)	Score	Your Output	Correct Output	Diff
Input #1		0.025354	1140	10	Ø	Ø	
Input #2	⊘ Accepted	0.024833	1140	10	Ø	ø	
Input #3		0.017256	2	10	B		
Input #4		0.017882	2	10	B	Ø	
Input #5		0.02492	3896	20	Ø	Ø	
Input #6		0.009331	2	20	Ø	6	
Input #7		0.009742	2	20	Ø	Ø	

5) Good Subsequences

Code:

```
import java.util.*;
public class Main{
public static void main(String args[] ) throws Exception {
         long modulo = 1000000007;
         Scanner sc = new Scanner(System.in);
         int T = sc.nextInt();
         while(T-- !=0)
              String S = sc.next();
              int N = S.length(), i;
              long res[] = new long[27];
              for( i = 0; i<N; i++)</pre>
              {
                  int a = (int)S.charAt(i) - 97;
                  res[a]++;
              long ans = 1;
              for(int k = 0; k < 27; k++)
                   if(res[k] > 0)
                          ans = ans*(res[k])%modulo;
```

```
}
System.out.println(ans%modulo);
}
}
```

Output:

RESULT: ⊘ Accepted

? Refer judge environment

Score	Time (sec)	Memory (KiB)	Language
20	2.05618	87348	Java 8

Input	Result	Time (sec)	Memory (KiB)	Score	Your Output	Correct Output	Diff
Input #1	⊘ Accepted	0.24193	84800	9	Ø	Ø	
Input #2		0.163005	87348	8	Ø	Ø	
Input #3		0.164115	85036	8	Ø	Ø	
Input #4		0.163391	85164	9	Ø	Ø	
Input #5		0.18032	85120	8	Ø	Ø	
Input #6		0.179504	83352	8	Ø	ø	
Input #7		0.170613	85212	9	Ø	Ø	
Input #8		0.187684	84860	8	Ø	Ø	
Input #9		0.196515	83220	8	Ø	Ø	
Input #10		0.179341	87056	9	Ø	Ø	
Input #11		0.08261	83468	8	®	Ø	
Input #12		0.147151	84892	8	Ø	B	

```
6) SUBSEQ - Counting Subsequences
Code:
#include <bits/stdc++.h>
using namespace std;
#define pb push_back
#define ff first
#define ss second
#define mp make_pair
#define memo(a,b) memset(a,b,sizeof(a))
#define INF 1e9
#define EPS 1e-8
#define PI 3.14159265358979323846
typedef long long ll;
typedef unsigned long long ull;
/* int dx[] = \{1,-1,0,0\}, dy[] = \{0,0,1,-1\}; */// 4 Direction
/* int dx[] = \{1,-1,0,0,1,1,-1,-1\}, dy[] = \{0,0,1,-1,1,-1,1,-1\}; */// 8 Direction
/* int dx[] = \{1,-1,1,-1,2,2,-2,-2\}, dy[] = \{2,2,-2,-2,1,-1,1,-1\}; */// Knight Direction
/* int dx[] = \{2,-2,1,1,-1,-1\}, dy[] = \{0,0,1,-1,1,-1\}; */// Hexagonal Direction
int main()
{
  //freopen("input.txt","r",stdin);
  //freopen("output.txt","w",stdout);
  int T;
  scanf("%d",&T);
  while(T--)
     map <ll,ll> dp;
     dp[0] = 1;
     11 \text{ N}, sum = 0, ans = 0;
     scanf("%lld",&N);
     for(int i=1;i \le N;i++)
       int a;
       scanf("%lld",&a);
       sum+=a;
```

```
ans+=dp[sum-47];
       dp[sum]++;
    printf("\%lld\n",ans);
  }
  return 0;
Output:
```


New achievement!

 \times

You just solved the **Counting Subsequences** problem!

30850409 2023-02-11 18:56:22 Yaswanth Counting Subsequences

7) SUMMATION – SUMMATION

```
Code:
def sm(arr, n):
ans = 0
# Finding sum of the array.
for i in range(0, n):
ans = ans + arr[i]
print(ans * pow(2, n - 1))
# Driver Code
n = int(input())
a = []
for i in range(0, n):
x = input()
tmp = list(map(int, input().split(" ")))
a.append(tmp)
for e in a:
sm(e, len(e))
exit()
```

Output:

```
2
3
1 2 3
2
1 4
```

```
24
10
Process finished with exit code 0
```