Data Visualization and Pre-processing

→ Import libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Load dataset

```
from google.colab import drive
drive.mount('/content/drive')
          Mounted at /content/drive

data = pd.read_csv('drive/My Drive/Churn_Modelling.csv')
data.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	838
2	3	15619304	Onio	502	France	Female	42	8	1596
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	1255
◀									•

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64

```
7
    Tenure
                     10000 non-null int64
                     10000 non-null float64
 8
    Balance
 9
    NumOfProducts
                     10000 non-null
                                     int64
 10 HasCrCard
                     10000 non-null int64
 11 IsActiveMember
                     10000 non-null int64
 12 EstimatedSalary 10000 non-null float64
 13 Exited
                     10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

Visualisations

1. Univariate Analysis

```
data['Gender'].value_counts()

Male 5457
Female 4543
Name: Gender, dtype: int64

# Plotting the features of the dataset to see the correlation between them

plt.hist(x = data.Gender, bins = 3, color = 'pink')
plt.title('comparison of male and female')
plt.xlabel('Gender')
plt.ylabel('population')
plt.show()
```



```
data['Age'].value_counts()

37     478
38     477
35     474
36     456
34     447
```

```
92 2
82 1
88 1
85 1
83 1
Name: Age, Length: 70, dtype: int64
```

comparison of age in the dataset

```
plt.hist(x = data.Age, bins = 10, color = 'orange')
plt.title('comparison of Age')
plt.xlabel('Age')
plt.ylabel('population')
plt.show()
```


data['Geography'].value_counts()

France 5014 Germany 2509 Spain 2477

Name: Geography, dtype: int64

comparison of geography

```
plt.hist(x = data.Geography, bins = 5, color = 'green')
plt.title('comparison of Geography')
plt.xlabel('Geography')
plt.ylabel('population')
plt.show()
```


data['HasCrCard'].value_counts()

7055
 2945

Name: HasCrCard, dtype: int64

Geography

comparision of how many customers hold the credit card

```
plt.hist(x = data.HasCrCard, bins = 3, color = 'red')
plt.title('how many people have or not have the credit card')
plt.xlabel('customers holding credit card')
plt.ylabel('population')
plt.show()
```


data['IsActiveMember'].value_counts()

5151
 4849

Name: IsActiveMember, dtype: int64

```
# How many active member does the bank have ?

plt.hist(x = data.IsActiveMember, bins = 3, color = 'brown')
plt.title('Active Members')
plt.xlabel('Customers')
plt.ylabel('population')
plt.show()
```


2. Bi - Variate Analysis

comparison between Geography and Gender

```
Gender = pd.crosstab(data['Gender'],data['Geography'])
Gender.div(Gender.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True, figsize=(6,
```


comparison between geography and card holders

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a93ced590>

comparison of active member in differnt geographies

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a93c7c950>

comparing ages in different geographies

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a93bfea10>


```
# calculating total balance in france, germany and spain

total_france = data.Balance[data.Geography == 'France'].sum()
total_germany = data.Balance[data.Geography == 'Germany'].sum()
total_spain = data.Balance[data.Geography == 'Spain'].sum()

print("Total Balance in France :",total_france)
print("Total Balance in Germany :",total_germany)
print("Total Balance in Spain :",total_spain)
```

plt.show()

```
Total Balance in Germany: 300402861.38
Total Balance in Spain: 153123552.01

# plotting a pie chart

labels = 'France', 'Germany', 'Spain'
colors = ['cyan', 'magenta', 'orange']
sizes = [311, 300, 153]
explode = [ 0.01, 0.01, 0.01]

plt.pie(sizes, colors = colors, labels = labels, explode = explode, shadow = True)

plt.axis('equal')
```


Total Balance in France: 311332479.49

3. Multi - Variate Analysis

sns.pairplot(data=data, hue='Exited')

Descriptive statistics				
[] l, 1 cell hidden				
Handle the Missing values				
[]				
Find the outliers and replace the outliers				
[] L, 6 cells hidden				
 Preprocessing 				
[]				
 Split the data into dependent and independent 	dent variables			
[] 🖟 1 cell hidden				
 Check for Categorical columns and perfore 	m encoding			
[] 🖟 1 cell hidden				
 Split the data into training and testing 				
[] 🖟 1 cell hidden				
Scale the independent variables				
[] 🖟 1 cell hidden				