Examen de Teoría de Percepción - Recuperación Segundo Parcial ETSINF, Universitat Politècnica de València, Junio de 2016

	_	
Apellidos:	Nombre:	

Cuestiones (3 puntos, 30 minutos, sin apuntes)

$$P(A) = P(B) = P(C) = 1/3$$

- C Sean A, B y C tres clases con la misma probabilidad a priori y f.d. condicional de clase de tipo Bernoulli $\mathbf{p}_A = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}$, $\mathbf{p}_B = \begin{pmatrix} 0.4 \\ 0.6 \end{pmatrix}$, $\mathbf{p}_C = \begin{pmatrix} 0.8 \\ 0.5 \end{pmatrix}$. ¿En qué clase sería clasificada una muestra $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ dados los parámetros anteriores?
 - A) Clase A
 - B) Clase B $c_B = 0.24$
 - C) Clase C $c_{\rm C} = 0.4$.
 - D) En cualquiera de las tres

$$c^*(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{argmax}} \log P(c) + \log p(\mathbf{x} \mid c)$$

$$\begin{split} &= \underset{c=1,\dots,C}{\operatorname{argmax}} \ \log \, P(c) + \log \, \prod_{d=1}^D p_{cd}^{x_d} (1-p_{cd})^{(1-x_d)} \\ &= \underset{c=1,\dots,C}{\operatorname{argmax}} \ \log \, P(c) + \sum_{d=1}^D x_d \log p_{cd} + (1-x_d) \log (1-p_{cd}) \end{split}$$

B Dado el siguiente conjunto de vectores binarios bidimensionales:

n	1	2	3	4	5	6	7	8	9	10	11	12
$\overline{x_{n1}}$	1	1	0	1	1	1	0	1	1	0	1	1
x_{n2}	1	0	1	0	1	0	1	1	1	1	1	1
c_n	1	1	1	1	1	1	1	1	2	2	2	2

¿Cuál es la estimación de los parámetros del clasificador Bernoulli más probable?

- A) $\hat{p}(1) = \frac{1}{3}, \, \hat{p}(2) = \frac{2}{3}, \, \hat{\mathbf{p}}_1 = \left(\frac{6}{11}, \frac{5}{11}\right)^t \, \mathbf{y} \, \hat{\mathbf{p}}_2 = \left(\frac{3}{7}, \frac{4}{7}\right)^t$ B) $\hat{p}(1) = \frac{2}{3}, \, \hat{p}(2) = \frac{1}{3}, \, \hat{\mathbf{p}}_1 = \left(\frac{6}{8}, \frac{5}{8}\right)^t \, \mathbf{y} \, \hat{\mathbf{p}}_2 = \left(\frac{3}{4}, \frac{4}{4}\right)^t$
- C) $\hat{p}(1) = \frac{1}{3}, \, \hat{p}(2) = \frac{2}{3}, \, \hat{\mathbf{p}}_1 = \left(\frac{6}{8}, \frac{5}{8}\right)^t \, \mathbf{y} \, \hat{\mathbf{p}}_2 = \left(\frac{3}{4}, \frac{4}{4}\right)^t$
- D) $\hat{p}(1) = \frac{2}{3}, \ \hat{p}(2) = \frac{1}{3}, \ \hat{\mathbf{p}}_1 = \left(\frac{6}{11}, \frac{5}{11}\right)^t \ \text{y} \ \hat{\mathbf{p}}_2 = \left(\frac{3}{7}, \frac{4}{7}\right)^t$
- B ¿Cuál de los siguientes valores del parámetro p no define una distribución multinomial?
 - A) **p** = $(\frac{3}{4}, \frac{1}{4})^t$
 - B) $\mathbf{p} = (\frac{3}{4}, \frac{3}{4})^t$
 - C) $\mathbf{p} = (\frac{1}{2}, \frac{1}{2})^t$
 - D) Todos los valores anteriores del parámetro \mathbf{p} definen una distribución multinomial.
- C | Sean A y B dos clases con igual prior y f.d.p. condicionales de clase gaussianas con los siguientes parámetros $\mu_A = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \mu_B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ y $\Sigma_B = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$, ¿qué tipo de frontera de decisión definen?

 - B) Lineal definida a trozos
 - C) Cuadrática
 - D) Ninguna de las anteriores

- A La frontera de decisión entre dos clases que se obtiene con el vecino más cercano cuando las clases tienen un único prototipo es:
 - A) Lineal
 - B) Lineal a trozos
 - C) Cuadrática
 - D) Ninguna de las anteriores
- D | Sea la distancia Euclídea ponderada L_w con pesos postivos y no nulos:
 - A) $L_w(\mathbf{x}, \mathbf{y}) \leq L_2(\mathbf{x}, \mathbf{y})$ B) $L_1(\mathbf{x}, \mathbf{y}) \leq L_w(\mathbf{x}, \mathbf{y})$

 - C) $L_w(\mathbf{x}, \mathbf{y}) \geq L_0(\mathbf{x}, \mathbf{y})$
 - D) Ninguna de las anteriores
- Sea P el error del clasificador de Bayes. El error del vecino más cercano \hat{P} tiene la siguiente propiedad asintótica (cuando $n \to \infty$):
 - A) $\hat{P} = P$
 - $\hat{P} = 2P$

 - C) $\hat{P} \leq P$ D) $P \leq \hat{P} \leq 2P$
- B | En general, ¿cuál de las siguientes afirmaciones es falsa?
 - A) El Variance aumenta al escoger clasificadores más fuertes
 - B) El Variance aumenta al escoger clasificadores más débiles
 - C) El Bias es menor en clasificadores más fuertes
 - D) El Bias se reduce empleando Boosting
- Esencialmente en Boosting:
 - A) Se combinan diferentes clasificadores sobre el mismo conjunto de aprendizaje
 - B) Se combinan el mismo clasificador sobre diferentes conjuntos de aprendizaje
 - C) Se combinan diferentes clasificadores sobre diferentes conjuntos de aprendizaje
 - D) Ninguna de las anteriores
- C | En la teoría interactiva de la decisión, el criterio de decisión de una hipótesis h dada la señal x, la historia h' y la realimentación f es:
 - A) $\operatorname{arg\,max}_h p(h, h', f|x)$
 - B) $\operatorname{arg\,max}_h p(h, h', x|f)$
 - C) $\operatorname{arg\,max}_h p(h|x, h', f)$
 - D) $\operatorname{arg\,max}_h p(f|h,h',x)$

Examen de Teoría de Percepción - Recuperación Segundo Parcial ETSINF, Universitat Politècnica de València, Junio de 2016

Apellidos:		Nombre:	
Problemas	(4 puntos, 90 minutos, con apuntes)		

1. (2 puntos) Tenemos N=16 vectores de cuentas 5-dimensionales aleatoriamente extraídos de C=2 distribuciones multinomiales independientes:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\overline{x_{n1}}$	1	2	1	1	2	1	1	0	0	0	0	0	0	0	0	0
x_{n2}	2	1	0	1	2	0	0	3	0	0	0	0	0	0	0	0
x_{n3}	0	0	0	0	0	0	0	0	1	1	0	1	0	1	1	1
x_{n4}	1	0	2	1	0	2	3	3	1	2	1	1	2	1	1	3
x_{n5}	0	0	0	0	0	0	0	0	1	3	1	1	1	1	3	1
c_n	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2

- (a) Calcula los parámetros del clasificador multinomial más probable respecto a estos datos. (0.5 puntos)
- (b) Suaviza los parámetros multinomial mediante Laplace con $\epsilon=0.2.$ (0.5 puntos)
- (c) Suaviza los parámetros con descuento absoluto de $\epsilon=0.05$ e interpolación usando como distribución generalizada, la distribución uniforme. (0.5 puntos)
- (d) Clasifica la muestra de test $y = (1\ 1\ 1\ 1)^t$ con el clasificador multinomial resultante de aplicar los parámetros suavizados del apartado c). (0.5 puntos)

Solución:

a)

$$\begin{split} p(1) &= p(2) = \frac{8}{16} = 0.5 \\ \hat{\mathbf{p}}_1 &= \frac{1}{20} \begin{pmatrix} 1+2+1+1+2+1+1+0\\ 2+1+0+1+2+0+0+3\\ 0+0+0+0+0+0+0+0\\ 1+0+2+1+0+2+3+3\\ 0+0+0+0+0+0+0+0+0 \end{pmatrix} = \frac{1}{30} \begin{pmatrix} 9\\ 9\\ 0\\ 12\\ 0 \end{pmatrix} = \begin{pmatrix} 0.3\\ 0.3\\ 0.0\\ 0.4\\ 0.0 \end{pmatrix} \\ \hat{\mathbf{p}}_2 &= \frac{1}{20} \begin{pmatrix} 0+0+0+0+0+0+0+0\\ 0+0+0+0+0+0+0+0\\ 1+1+0+1+1+1\\ 1+2+1+1+2+1+1+3\\ 1+3+1+1+1+1+3+1 \end{pmatrix} = \frac{1}{30} \begin{pmatrix} 0\\ 0\\ 6\\ 12\\ 12 \end{pmatrix} = \begin{pmatrix} 0.0\\ 0.0\\ 0.2\\ 0.4\\ 0.4 \end{pmatrix} \end{split}$$

$$\hat{\mathbf{p}}_{1} = \begin{pmatrix} 0.3 \\ 0.3 \\ 0.0 \\ 0.4 \\ 0.0 \end{pmatrix} \rightarrow \hat{\mathbf{p}}_{1} = \frac{1}{2.0} \begin{pmatrix} 0.3 + 0.2 \\ 0.3 + 0.2 \\ 0.0 + 0.2 \\ 0.4 + 0.2 \\ 0.0 + 0.2 \end{pmatrix} = \begin{pmatrix} 0.25 \\ 0.25 \\ 0.10 \\ 0.30 \\ 0.10 \end{pmatrix}$$

$$\hat{\mathbf{p}}_{2} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.4 \end{pmatrix} \rightarrow \hat{\mathbf{p}}_{2} = \frac{1}{2.0} \begin{pmatrix} 0.0 + 0.2 \\ 0.0 + 0.2 \\ 0.0 + 0.2 \\ 0.2 + 0.2 \\ 0.4 + 0.2 \\ 0.4 + 0.2 \end{pmatrix} = \begin{pmatrix} 0.10 \\ 0.10 \\ 0.20 \\ 0.30 \\ 0.30 \end{pmatrix}$$

c)

$$\hat{\mathbf{p}}_{1} = \begin{pmatrix} 0.4 \\ 0.3 \\ 0.0 \\ 0.3 \\ 0.0 \end{pmatrix} \rightarrow \hat{\mathbf{p}}_{1} = \begin{pmatrix} 0.4 - 0.05 + \frac{1}{5} \cdot 0.15 \\ 0.3 - 0.05 + \frac{1}{5} \cdot 0.15 \\ 0.0 + \frac{1}{5} \cdot 0.15 \\ 0.3 - 0.05 + \frac{1}{5} \cdot 0.15 \end{pmatrix} = \begin{pmatrix} 0.38 \\ 0.28 \\ 0.03 \\ 0.28 \\ 0.03 \end{pmatrix}$$

$$\hat{\mathbf{p}}_{2} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.4 \end{pmatrix} \rightarrow \hat{\mathbf{p}}_{2} = \begin{pmatrix} 0.0 + \frac{1}{5} \cdot 0.15 \\ 0.0 + \frac{1}{5} \cdot 0.15 \\ 0.0 + \frac{1}{5} \cdot 0.15 \\ 0.2 - 0.05 + \frac{1}{5} \cdot 0.15 \\ 0.4 - 0.05 + \frac{1}{5} \cdot 0.15 \\ 0.4 - 0.05 + \frac{1}{5} \cdot 0.15 \end{pmatrix} = \begin{pmatrix} 0.03 \\ 0.03 \\ 0.18 \\ 0.38 \\ 0.38 \end{pmatrix}$$

d)

En nuestro caso, dado que las priors son idénticas, la regla de clasificación se reduce a: $\hat{c}(y) = \arg\max p(y \mid c)$

$$p(y = (1\ 1\ 1\ 1\ 1) \mid c = 1) = 0.38 \cdot 0.28 \cdot 0.03 \cdot 0.28 \cdot 0.03 = 2.7 \cdot 10^{-5}$$

 $p(y = (1\ 1\ 1\ 1\ 1) \mid c = 2) = 0.03 \cdot 0.03 \cdot 0.18 \cdot 0.38 \cdot 0.38 = 2.3 \cdot 10^{-5}$

La muestra y se clasifica en la clase 1.

2. (2 puntos) Dado el conjunto de aprendizaje $X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8, \mathbf{x}_9, \mathbf{x}_{10}\}$ con la distribución de clases que muestra la figura. Realiza una ejecución del algoritmo de condensado de Hart con distancia euclídea y k=1.

Clase A
$$\mathbf{x}_1 = (1, 1)$$
 $\mathbf{x}_3 = (1, 2)$ $\mathbf{x}_5 = (3, 2)$ $\mathbf{x}_9 = (5, 4)$ $\mathbf{x}_{10} = (3, 1)$

$$\mathbf{x}_{3} = (1, 2)$$
 $\mathbf{x}_{5} = (3, 2)$
 $\mathbf{x}_{9} = (5, 4)$
 $\mathbf{x}_{10} = (3, 1)$

Clase B
 $\mathbf{x}_{2} = (4, 1)$
 $\mathbf{x}_{4} = (5, 2)$
 $\mathbf{x}_{6} = (2, 3)$
 $\mathbf{x}_{7} = (4, 3)$
 $\mathbf{x}_{8} = (3, 4)$

El orden de recorrido de los prototipos en el algoritmo de Hart es **decreciente** con el índice de los mismo: $\mathbf{x}_{10} \dots \mathbf{x}_{1}$. En caso de **empate** de distancias de prototipos de clases diferentes se clasifica en la clase incorrecta.

Solución:

Primera parte, construcción del conjunto S y G:

$$\mathbf{x}_{10} \rightarrow S$$

 \mathbf{x}_{9} , Acierto $\rightarrow G$
 \mathbf{x}_{8} , Error $\rightarrow S$
 \mathbf{x}_{7} , Acierto $\rightarrow G$
 \mathbf{x}_{6} , Acierto $\rightarrow G$
 \mathbf{x}_{5} , Acierto $\rightarrow G$
 \mathbf{x}_{4} , Error $\rightarrow S$
 \mathbf{x}_{3} , Acierto $\rightarrow G$
 \mathbf{x}_{2} , Error $\rightarrow S$
 \mathbf{x}_{1} , Acierto $\rightarrow G$

$$S = {\mathbf{x}_{10}, \mathbf{x}_{8}, \mathbf{x}_{4}, \mathbf{x}_{2}} \text{ y } G = {\mathbf{x}_{9}, \mathbf{x}_{7}, \mathbf{x}_{6}, \mathbf{x}_{5}\mathbf{x}_{3}, \mathbf{x}_{1}}$$

Segunda parte, recorrido de G:

$$\mathbf{x}_9, \operatorname{Error} \to S$$

 $\mathbf{x}_7, \operatorname{Error} \to S$
 $\mathbf{x}_6, \operatorname{Acierto}, \operatorname{no} \operatorname{mover} \operatorname{a} S$
 $\mathbf{x}_5, \operatorname{Acierto}, \operatorname{no} \operatorname{mover} \operatorname{a} S$
 $\mathbf{x}_3, \operatorname{Acierto}, \operatorname{no} \operatorname{mover} \operatorname{a} S$
 $\mathbf{x}_1, \operatorname{Acierto}, \operatorname{no} \operatorname{mover} \operatorname{a} S$
 $\operatorname{error} = 1 \to \operatorname{volver} \operatorname{a} \operatorname{recorrer} G$

Segunda parte, recorrido de G:

$$\mathbf{x}_6$$
, Acierto, no mover a S
 \mathbf{x}_5 , Acierto, no mover a S
 \mathbf{x}_3 , Acierto, no mover a S
 \mathbf{x}_1 , Acierto, no mover a S
 $error = 0 \rightarrow Acabar$

Acaba con el conjunto reducido: $S = \{\mathbf{x}_{10}, \mathbf{x}_9, \mathbf{x}_8, \mathbf{x}_7, \mathbf{x}_4, \mathbf{x}_2\}$