# CSCI361 Computer Security

Secret sharing and its applications

### Outline

- Motivation
- Secret sharing: model
  - Threshold schemes.
  - General schemes.
- Verifiable secret scheme
- Application

### Motivation

- Principle of reduced trust:
  - to keep a secret safe and also make the system more robust, it is best if less power is given to a single entity
    - A secret key used to encrypt a file system should not be entrusted to one person
      - What if he looses the secret?
      - He leak the secret
- Distributing trust gives a solution to both of the above problems.
  - Key recovery system
  - Dishonest user

## Key Escrow / Key Backup

To provide key backup:

- Divide the secret key into pieces
- Distribute the pieces to different servers such that certain subgroups of servers can recover the key
- Consider RSA system.
- N= 7x11=77,  $\varphi(N)$ =6×10=60
- d= 13,  $e = d^{-1} = 37 \mod 60$

A $\land$ B, B $\land$ C $\land$ D, C $\land$ E can recover the secret



### Key escrow can be (mis)used:

- In 1991 the U.S. government attempted to introduce a new standard which would enable the government to read all private communications
  - Private key is broken into two halves:
  - The government keeps one half
  - Another authority the other half
  - A court order allows an agency to access both halves
- This standard was not successful.

### A numerical example

- Consider a six digit combination lock.
  - The combination can be shared among 4 people.
  - Any three can calculate the combination.
  - No two people can calculate the combination.

| Person | C <sub>1</sub> | $C_2$ | $c_3$ | C <sub>4</sub> | <b>C</b> <sub>5</sub> | $C_6$ |
|--------|----------------|-------|-------|----------------|-----------------------|-------|
| One    | 1              | 1     | 1     | 0              | 0                     | 0     |
| Two    | 0              | 0     | 1     | 1              | 1                     | 0     |
| Three  | 1              | 0     | 0     | 0              | 1                     | 1     |
| Four   | 0              | 1     | 0     | 1              | 0                     | 1     |

Each  $c_i$  appears twice. As long so no more than one person is missing, somebody present knows  $c_i$ .

This is a threshold secret sharing scheme.

### Shamir's Secret Sharing (1979)

- A threshold scheme using polynomial interpolation.
- An honest dealer D distributes a secret s among n users, such that at least t users must collaborate to find the secret
  - less than t players cannot have any information about the secret

### The scheme

- We want to share a secret s among users  $U_1$ ,  $U_2$ ... $U_n$ , such that any t users can reconstruct the secret.
- Dealer D constructs a random polynomial f(x) of degree t-1 such that a<sub>0</sub>= s.

$$f(x) = a_0 + a_1 x + ... + a_{t-1} x^{t-1}$$

- This polynomial is constructed over numbers modulo a prime p, p is public.
- For user U<sub>i</sub>, Dealer does the following
  - Choose  $\dot{x_i}$
  - Calculate  $f(x_i)$
  - Such that all  $x_i$  i=1,...n, are distinct
  - $User U_i gets (x_i, f(x_i))$
- $(U_i, x_i)$  is public
  - Without losing generality, we can assume  $x_j = j$

### The Reconstruction Protocol

- Find the unique polynomial f(x) such that f(x) = f(j) and for j = 1, 2, ... t
- Reconstruct the secret to be f(0).



$$t=2, f(x)=a+bx$$



### Lagrange interpolation

- Suppose you have n pairs  $(x_i, y_i = f(x_i))$  and want to find the polynomial f.
- The polynomial of degree n-1 through the data is given by Lagrange interpolation.

$$f(x) = \sum_{j=1}^{n} f_j(x) \qquad f_j(x) = y_j \prod_{k=1, k \neq j}^{n} \frac{(x - x_k)}{(x_j - x_k)}$$

Consider a (3,6)-SSS over  $\mathbb{Z}_7$ .

- 1. Let  $x_i = i$ , i = 1...6.
- 2. The secret is 3.
- 3.  $f(x)=3+3x+3x^2$ .
- 4. Share table

| Share | S <sub>1</sub> | s <sub>2</sub> | $s_3$ | S <sub>4</sub> | <b>S</b> <sub>5</sub> | S <sub>6</sub> |
|-------|----------------|----------------|-------|----------------|-----------------------|----------------|
| Value | 2              |                | 4     |                | :                     | 3              |

5. Assume P<sub>1</sub>, P<sub>3</sub> and P<sub>6</sub> cooperate, each giving an equation.

$$2=k+a_1+a_2$$
  
 $4=k+3a_1+2a_2$   
 $3=k+6a_1+a_2$ 

### Finding k with Lagrange interpolation

The data:  $Y_1=f(1)=2$ ,  $y_3=f(3)=4$ ,  $y_6=f(6)=3$ .

$$f(0) = \frac{(-x_3)(-x_6)}{(x_1 - x_3)(x_1 - x_6)} y_1$$

$$+ \frac{(-x_1)(-x_6)}{(x_3 - x_1)(x_3 - x_6)} y_3$$

$$+ \frac{(-x_1)(-x_3)}{(x_6 - x_1)(x_6 - x_3)} y_6$$

$$= 2 \times \frac{(-3)(-6)}{(1 - 3)(1 - 6)} + 4 \times \frac{(-1)(-6)}{(3 - 1)(3 - 6)} + 3 \times \frac{(-1)(-3)}{(6 - 1)(6 - 3)}$$

$$= 3$$

### Properties of Shamir's SS

#### Perfect Security

- t users can find a unique secret ,
- t-1 users cannot learn anything

#### Ideal

Each share is exactly the same size as the secret.

#### Extendable

- More shares can be created
  - New users joining the system

#### Flexible

- can support different levels of trust
  - Given more share to more trusted people

### Homomorphic property

- f(1), f(2)...f(n) are shares of polynomial f(x)
- g(1), g(2)...g(n) are shares of polynomial g(x)
- Then f(1)+g(1), f(2)+g(2)....f(n) + g(n) are shares of f(x)+g(x)
  - That is the secret f(0)+g(0)
- → to multiply a secret by a constant, each share holder has to multiply by the same constant

### Example

- Sharing s=5 among 7 people such that any three can find the secret
- $f(x)=5+2x+3x^2 \mod 11$ f(1)=10, f(2)=10, f(3)=5, f(4)=6, f(5)=2, f(6)=9, f(7)=1
- Sharing s=7 among the same people
- $g(x) = 7 + x + x^2 \mod 11$ g(1) = 9, g(2) = 2, g(3) = 8, g(4) = 5, g(5) = 4, g(6) = 5, g(7) = 8
- Shares of s=1 for the same people
- $1 (=5+7 \mod 11)$
- $u(x) = f(x)+g(x)= 1+3x+4x^2 \mod 11$ u(1)=8, u(2)=1..

### Verifiable secret sharing

- Dealer is not trusted
- Dealer needs to 'prove' that the shares are consistent shares
  - Every t-1 subset gives the same secret
- A verifiable secret sharing system allows users to check validity of their shares
- Two versions
  - Interactive proofs
    - Requires interaction between dealer and participants
      - costly
  - non Interactive proofs
    - dealer can send messages,
    - the shareholders cannot talk with each other or with the dealer (for share verification).
    - The can use public information to check validity of shares

## Threshold signature

#### Threshold RSA

- Public key (e,N), secret key (d,N)
- Share secret key among users:
  - $-d_1,d_2,...d_n$  using an extension of Shamir's scheme
- For a message m that t users agree on, each user produces a partial signature

$$H(m)^{d1}$$
,  $H(m)^{d2}$ ... $H(m)^{dt}$ 

 Combiner combines these partial signatures (e.g. multiply them) to obtain

$$H(m)^d = H(m)^{d1} \times H(m)^{d2} \times ... H(m)^{dt}$$

- The signed message is  $(m, H(m)^d)$
- Verification is as usual
- Given (m,s), we check  $H(m) = s^e \mod N$