# Introduction to hierarchical (mixed-effects) models part II

FW 891

Click here to view presentation online

### Christopher Cahill 27 September 2023



#### Purpose

- Another look at how we specify a joint posterior for hierarchical models (maths)
  - Demonstrate the importance of conditional independence
- Demonstrate a hierarchical binomial survival model for quail stocking survival

$$egin{aligned} y_i \overset{ind}{\sim} p\left(y \mid heta_i
ight) \ heta_i \overset{iid}{\sim} p( heta \mid \phi) \ \phi \sim p(\phi) \end{aligned}$$

$$egin{aligned} y_i \overset{ind}{\sim} p\left(y \mid heta_i
ight) \ heta_i \overset{iid}{\sim} p( heta \mid \phi) \ \phi \sim p(\phi) \end{aligned}$$

y<sub>i</sub> is observed data

$$egin{aligned} y_i \overset{ind}{\sim} p\left(y \mid heta_i
ight) \ heta_i \overset{iid}{\sim} p( heta \mid \phi) \ \phi \sim p(\phi) \end{aligned}$$

- y<sub>i</sub> is observed data
- $\theta = (\theta_1, \dots, \theta_n)$  and  $\phi$  are parameters

$$egin{aligned} y_i \overset{ind}{\sim} p\left(y \mid heta_i
ight) \ heta_i \overset{iid}{\sim} p( heta \mid \phi) \ \phi \sim p(\phi) \end{aligned}$$

- y<sub>i</sub> is observed data
- $\theta = (\theta_1, \dots, \theta_n)$  and  $\phi$  are parameters
- Only  $\phi$  has a prior that is set (assumed)

### Mathematical support puppies



 The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y)$$

 The joint posterior distribution of interest in hierarchical models is

$$p( heta, \phi \mid y)$$

Apply Bayes rule

 The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi)p(\theta, \phi)$$

Apply Bayes rule

 The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi) p(\theta, \phi) = p(y \mid \theta) p(\theta \mid \phi) p(\phi)$$

- Apply Bayes rule
- We can also break this joint distribution down into a conditional distribution of  $\theta$  given  $\phi$

 The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi) p(\theta, \phi) = p(y \mid \theta) p(\theta \mid \phi) p(\phi)$$

- Apply Bayes rule
- We can also break this joint distribution down into a conditional distribution of  $\theta$  given  $\phi$ 
  - Do this using conditional probability rules

• The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi) p(\theta, \phi) = p(y \mid \theta) p(\theta \mid \phi) p(\phi)$$

• The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi) p(\theta, \phi) = p(y \mid \theta) p(\theta \mid \phi) p(\phi)$$

• We may also care about the marginal posterior of  $\theta$ :

The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi) p(\theta, \phi) = p(y \mid \theta) p(\theta \mid \phi) p(\phi)$$

• We may also care about the marginal posterior of  $\theta$ :

$$p( heta \mid y) = \int p( heta, \phi \mid y) d\phi$$

The joint posterior distribution of interest in hierarchical models is

$$p( heta, \phi \mid y) \propto p(y \mid heta, \phi) p( heta, \phi) = p(y \mid heta) p( heta \mid \phi) p(\phi)$$

• We may also care about the marginal posterior of  $\theta$ :

$$p( heta \mid y) = \int p( heta, \phi \mid y) d\phi$$

• Or instead the marginal distribution of  $\phi$ :

$$p(\phi \mid y) = \int p( heta, \phi \mid y) d heta$$

• The joint posterior distribution of interest in hierarchical models is

$$p( heta, \phi \mid y) \propto p(y \mid heta, \phi) p( heta, \phi) = p(y \mid heta) p( heta \mid \phi) p(\phi)$$

• We may also care about the marginal posterior of  $\theta$ :

$$p( heta \mid y) = \int p( heta, \phi \mid y) d\phi$$

• Or instead the marginal distribution of  $\phi$ :

$$p(\phi \mid y) = \int p( heta, \phi \mid y) d heta$$

•  $p(unknowns|knowns) \propto \text{ assumptions you make}$ 

### Survival of stocked quail chicks



#### Survival of stocked quail chicks $\stackrel{\leftarrow}{\leftarrow}$



- Juvenile quail have relatively high mortality rates
- Managers want to conduct an management experiment where chicks are released into 100x100m pennedenclosures to determine chick survival in their region
  - Released between 6 and 20 chicks in on 11 farms
  - Go back one month later and see how many survive

## The hierarchical fluff chicken survival model —

$$egin{aligned} Y_i & \stackrel{ind}{\sim} \mathrm{Bin}(n_i, heta_i) \ heta_i & \stackrel{iid}{\sim} \mathrm{Be}(lpha, eta) \ lpha, eta & \sim p(lpha, eta) \end{aligned}$$

- Y<sub>i</sub> is number of chicks alive at end of month
- $n_i$  is number of chicks released at start of month
- $\theta_i$  is chick survival at farm i
- $\alpha$  and  $\beta$  are the parameters of the Beta distribution

## The hierarchical fluff chicken survival model —

$$egin{aligned} Y_i & \stackrel{ind}{\sim} \mathrm{Bin}(n_i, heta_i) \ heta_i & \stackrel{iid}{\sim} \mathrm{Be}(lpha, eta) \ lpha, eta & \sim p(lpha, eta) \end{aligned}$$

Also note that  $\phi$  from previous slides is now  $\phi = (\alpha, \beta)$ 

### Priors for $\alpha$ and $\beta$

- The interpretation of these parameters
  - $\alpha$  is successes
  - $\beta$  is failures
- A more useful parameterization in our case is
  - Beta expectation:  $\mu = \frac{\alpha}{\alpha + \beta}$
  - Beta sample size:  $\eta = \alpha + \beta$
- Easier to put priors on  $\mu$ ,  $\eta$  than  $\alpha$ ,  $\beta$  so we will take advantage of this

#### Go to the R and Stan code



#### The quail data and prior information

- The quail data
  - Not a ton of data
- The R script
- The Stan model

#### **Prior information**

 Bios note that the available literature indicates survival for transplanted baby quail ranges between 0.05 and 0.45

#### The TODO list

- 1. Reparameterize the beta distribution to estimate on mean  $\theta_{\mu}$  and sample size  $\eta$ .
  - Note  $\alpha$  and  $\beta$  will then be derived parameters
- 2. Develop a prior for mean survival that places approximately 95% of its probability mass in the range 0.05 to 0.45, and a prior that is somewhat diffuse for  $\eta$  but which has most probability mass at low values
- 3. Develop a hierarchical model for average chick survival and farm (i.e., group) specific survival estimates given the available data
- 4. Plot the marginal distribution of  $\alpha$  and  $\beta$  to help put the miserable integral symbols into perspective
- 5. Do a prior sensitivity test to your informative prior from (1)
- 6. What is the probability that survival from farm two is less than average? Similarly, what is the probability that survival from farm two is less than survival from farm 6?
- 7. If we went to a new farm in the region and wanted to release chicks, what would our best guess be for chick survival at this farm?

#### **Extensions**

The basic structure of a hierarchical model is

$$y \sim p(y \mid heta) \quad heta \sim p( heta \mid \phi) \quad \phi \sim p(\phi)$$

We can extend this to more than one level

$$y \sim p(y \mid heta) \quad heta \sim p( heta \mid \phi) \quad \phi \sim p(\phi \mid \psi) \quad \psi \sim p(\psi)$$

Remember conditional independence structure

$$p(\theta, \phi, \psi \mid y) \propto p(y \mid \theta) p(\theta \mid \phi) p(\phi \mid \psi) p(\psi)$$

#### Summary and outlook

- Specifically tried to talk about hierarchical models in a different (mathier) way than what we did last time
  - Did this to highlight how conditional independence plays a key role in our ability to build these models
- Built a hierarchical survival model for ditch chickens
  - ullet This included deriving an informative prior for  $heta_{\mu}$
- Began to play a bit more with output from hierarchical models to generate useful quantities for management
  - Probability of chick survival at a new farm not included in the original study
- Next time, dealing with divergent transitions and varying effects

#### References

- Berliner, L. M. 1996, Hierarchical Bayesian time series models", Maximum Entropy and Bayesian Methods, 15-22.
- Gelman and Hill 2007. Data analysis using regression and multilevel models
- Royle and Dorazio 2008. Hierarchical modeling and inference in ecology.
- Kery and Schaub. 2012. Bayesian Population Analysis using WinBUGS. Chapter 3
- McElreath 2023. Statistical Rethinking. Second Edition, Chapters 2 and 9.
- Punt et al. 2011. Among-stock comparisons for improving stock assessments of data-poor stocks: the "Robin Hood" approach. ICES Journal of Marine Sci.
- Jarad Niemi lecture on a very similar model from which my example is based heavily https://www.youtube.com/watch?v=nNQdvXfW73E