۱ - در شکل (۱) یک مدار مغناطیسی با یک فاصله هوایی دیده میشود. ابعاد هسته عبارتند از:

 $A_c = 1.5 \times 10^{-3} \, m^2$ مساحت سطح مقطع:

 $l_c = 0.7 \, m$ طول متوسّط هسته:

 $g = 2.5 \times 10^{-3} \, m$ طول فاصله هوایی:

دورN = 25

نفوذپذیری هسته را بینهایت ($m o \infty$) فرض کرده و از اثر نشت مغناطیسی و اثر لبهها صرف نظر کنید. اکنون به ازای جریان i=1 موارد زیـر را محاسـبه کنیـد: (الـف) شـار کـل (ب) شـار پیونـدی هسـته (ج) اندوکتانس L کلاف.

کید. ($\mu = 1500 \mu_0$) مسأله (۱) را با نفوذپذیری محدود هسته ($\mu = 1500 \mu_0$) تکرار کنید.

P ست. D سناطیسی شامل حلقه هایی از ماده مغناطیسی به شکل مجموعه ای با ضخامت D است. حلقه ها، دارای شعاع داخلی R_i و شعاع خارجی R_o هستند. اگر نفوذپذیری آهن، بینهایت بوده و از اثر نشت مغناطیسی و اثر لبه ها چشم پشی کنیم، این موارد را محاسبه کنید:

 A_c و سطح مقطع الف) طول متوسّط هسته l_c

 $\mathfrak{R}_{\scriptscriptstyle g}$ و رلوکتانس فاصله هوایی $\mathfrak{R}_{\scriptscriptstyle c}$ و رلوکتانس فاصله هوایی

به ازای N = 75 دور، این موارد را محاسبه کنید:

پ) اندوکتانس L (ت)جریان لازم برای این که چگالی شار فاصله هوایی $R_{\rm g}=1.2T$ باشد

ث) شار پیوندی λ هم ارز آن برای هسته.

N دور سیم پیچ را نشان میدهد. با ϕ شار نیر سطح مقطع یک مدار مغناطیسی با تقارن دایره ای با N دور سیم پیچ را نشان میدهد. با چشم پوشی از اثر لبه ها و نشت مغناطیسی و فرض بینهایت بودن نفوذپذیری هسته M شار نود نیو نشان شار فاصله هوایی M و چگالی شار M و اندوکتانس M را برای جریان M آرمیچر در سیم پیچ، محاسبه کنید. همچنین مقدار M و M را بر حسب M و M به گونه ای بیابید که چگالی شار در داخل هسته، یکنواخت باشد.

۵- در شکل زیر تعداد دور سیم پیچ برابر ۱۰۰۰ دور بوده و طول مسیر متوسّط هسته mm میباشد. 1 و چگالی شار هسته 1 تسلا باشد، مطوبست:

(الف) تعیین جریان سیم پیچ و ضریب نفوذ پذیری هسته؟

(ب) اگر جریان سیم پیچ 0.5A باشد چگالی شار درشکاف هـوایی را بـه دسـت آوریـد. منحنـی مغناطیسـی هسته مطابق شکل زیر می باشد

 F_2 برای مدار مغناطیسی شکل زیر جهت و نیروی محرّکه مغناطیسی لازم برای F_2 را چنان تعیین کنید که شار فاصله هوایی برابر F_2 باشد. منحنی مغناطیسی هسته مطابق جدول زیر است (طول متوسّط شاخه های کناری F_2 و طول متوسّط شاخه میانی برابر F_2 است.)

۷- مدار مغناطیسی شکل زیر از دو قسمت خطّی و غیر خطّی (قطعه غیر خطّی m تشـکیل شـده اسـت. $\varphi_m = (F_m + 0.01F_m^{-2}) \times 10^{-4}$ در قطعـه بـه صـورت F_m در قطعـه بـه صـورت F_m داده شده است (F_m بر حسب آمپر دور و Φ_m بر حسب وبر). برای ایجاد چگالی شار مغناطیسی برابر Φ_m تســلا

چه جریانی باید از سیم پیچ عبور داده شود؟ (از شارهای پراکندگی صرف نظر کنید. سطح مقطع همه جا مساوی $10cm^2$ است). طول مسیر قسمت خطّی 10cm و ضریب نفوذ پذیری آن 10×10^{-4} است.

