Theory of Automata and Formal Language Lecture-23

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj June 4, 2021

Definition

A grammar G is said to be context free grammar if all the production rules of the grammar are of the following form:-

$$A \to \alpha$$
 where $\alpha \in (V \cup \Sigma)^*$ and $A \in V$

Example: Consider the following grammar

 $S \rightarrow 0B/1A$

 $A \rightarrow 0/0S/1AA$

 $B \rightarrow 1/1S/0BB$

Derivation Tree

A tree is said to be derivation tree if it satisfies the following properties:-

- 1. All the nodes of the tree are labeled by variable, terminal or ϵ symbol.
- 2. The root node of the tree has labeled S (Starting symbol of the grammar).
- 3. All the internal nodes have labeled variable symbol.
- 4. All the leaf nodes have labeled terminal symbol or ϵ symbol.
- 5. If $A \to X_1 X_2 \dots X_n$ be a production rule used in the derivation of the string, then in the tree, A will be at the parent node and X_1, X_2, \dots, X_n will be at the children of this node A.

Left Most Derivation

A derivation $A \stackrel{*}{\Rightarrow} w$ is said to be left most derivation if we apply the production rule in the derivation at the left most variable in every step.

Right Most Derivation

A derivation $A \stackrel{*}{\Rightarrow} w$ is said to be right most derivation if we apply the production rule in the derivation at the right most variable in every step.

Some Examples

Example: Consider the following grammar

 $S \rightarrow 0B/1A$

 $A \rightarrow 0/0S/1AA$

 $B \rightarrow 1/1S/0BB$

For the string 00110101, find the left most derivation, right most derivation and derivation tree.

Example: Consider the following grammar

 $S \rightarrow AA$

 $A \rightarrow a/bA/Ab/AAA$

Find parse tree for the string bbaaaab.

Example: Consider the following grammar

 $S \rightarrow aAS/a$

 $A \rightarrow SbA/SS/ba$

Find derivation tree for the string aabbaa.

Ambiguity in Grammar and Language

Ambiguous String

A string $w \in L(G)$ is said to be ambiguous string if there exists more than one derivation for the string.

Ambiguous Grammar

A grammar G is said to be ambiguous if there exists some string $w \in L(G)$ for which more than one derivation tree are possible.

Example: Consider the following grammar:-

$$S\rightarrow S+S/S*S/a/b$$

Is this grammar ambiguous?

Solution:

Example: Consider the grammar G,

 $S \rightarrow SbS/a$.

Show that grammar G is ambiguous.

Solution:

Example: Consider the following grammar:-

 $S \rightarrow a/abSb/aAb$

 $A \rightarrow bS/aAAb$

Is this grammar ambiguous?

Solution:

Example: Consider the following grammar:-

 $S \rightarrow aB/ab$

 $A \rightarrow aAB/a$

 $B{\to}\;ABb/b$

Is this grammar ambiguous?

Solution:

Inherent Ambiguity

- If L is a context free language for which there exists an unambiguous grammar, then L is said to be unambiguous.
- If every grammar that generates L is ambiguous, then the language is said to be inherently ambiguous.

Example: Following language is inherent ambiguous L = $\{a^nb^nc^md^m!n \ge 1, m \ge 1\}$ cup $\{a^nb^mc^md^n!ngeq1, m \ge 1\}$