数学2B 第4回の演習問題の解答例

問:

1. 以下のように定義される ${\bf R}$ から ${\bf R}$ へ写像が「単射」,「全射」,「全単射」,「いずれでもない」のどれ になるか調べなさい.

$$f_1(x) = x^3$$
, $f_2(x) = x^2$, $f_3(x) = x^3 - x$, $f_4(x) = e^x$

2. 次の行列の階数を求めなさい.

$$A = \begin{pmatrix} 1 & 0 & 2 & 2 & 4 \\ 1 & 1 & 1 & 4 & 9 \\ -1 & 1 & -3 & 0 & -3 \end{pmatrix}$$

解答例:

1. $f_1(x)$ は全単射である.実際に任意の実数 y に対して $x=y^{1/3}$ という実数が存在し, $y=f_1(x)$ となるので,f は全射である.一方, $f_1(x_1)=f_1(x_2)$ とすると $(x_1-x_2)(x_1^2+x_1x_2+x_2^2)=0$ となり,実数の範囲では $x_1=x_2$ となるので,f は単射でもある.

 $f_2(x)$ はいずれでもない. 任意の実数 x に対して $f_2(x) \ge 0$ より, $f_2(x)$ は全射ではない. また, $f_2(1) = f_2(-1)$ より $f_2(x)$ は単射でもない.

 $f_3(x)$ は全射であるが単射ではない. $f_3(x)$ のグラフの形より全射である. 一方, $f_3(-1)=f_3(0)=f_3(1)$ であるので単射ではない.

 $f_4(x)$ は単射ではあるが全射ではない.任意の実数 x に対して $f_4(x)>0$ より, $f_4(x)$ は全射ではない.一方, $f(x_1)=f(x_2)$ とすると $e^{x_1-x_2}=1$ より $x_1-x_2=0$ でなければならず, $f_4(x)$ は単射である.

2. Aに列基本変形を用いて下階段行列に変形する.

$$A \to \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & 2 & 5 \\ -1 & 1 & -1 & 2 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & -4 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ -1 & 1 & -4 & 0 & 0 \end{pmatrix}$$

これより、次の3個のベクトルはAの階数は3である。