Total patients = 21

Female = 10

Male = 10

Male/ female at birth – 1

Basic Statistics:

- The study successfully included 21 patients (10 females, 10 males, 1 male/female at birth)
- Age range was 15-25 years (mean 19.95 ± 2.44 years)
- Time from transplant ranged from 1-16 years (mean 7.71 \pm 4.61 years)

	AGE	BMI *	FAT (%)	HgA1c	LDL	HDL \
coun	nt 21.000000	21.000000	21.000000	19.000000	17.000000	17.000000
mea	n 19.952381	25.433333	26.842857	5.205263	87.117647	44.941176
std	2.438774 4	.548443 7.3	320080 0.3	93663 30.	783279 12.2	08965
min	15.000000	19.400000 1	1.800000	4.300000	49.000000 2	7.000000
25%	18.000000	22.000000	21.000000	5.000000	63.000000	33.000000
50%	20.000000	24.200000	27.000000	5.300000	71.000000 4	17.000000
75%	21.000000	27.600000	31.000000	5.350000	113.000000	54.000000
max	25.000000	38.000000	40.100000	5.900000	143.000000	64.000000

	Triglycerides QOL PHQ9 GAD7
count	17.000000 9.000000 13.000000
mean	153.705882 73.686667 6.769231 8.384615
std	73.124692 14.813312 5.262348 5.575818
min	46.000000 58.700000 0.0000000
25%	99.000000 60.870000 3.000000
50%	143.000000 67.920000 6.000000 9.000000
75%	175.000000 89.130000 9.000000 12.000000
max	341.000000 96.740000 18.000000 18.000000

Obesity Classifications Comparison:

- BMI method showed 38.1% abnormal weight (23.8% overweight, 14.3% obese)
- Body fat % method showed 28.6% abnormal weight (23.8% overweight, 4.8% obese)
- The difference was most notable in obesity classification (14.3% vs 4.8%)

BMI Classifications:

BMI_ Category

Normal 13

Overweight 5

Obese 3

Overweight/Obese by BMI: 38.1%

Body Fat Classifications:

Normal 15

Overweight 6

Overweight/Obese by Fat%: 28.6%

Gender Specific statistics:

- Males showed higher rates of overweight/obesity than females in both methods
- BMI method: Males 45.5% vs Females 30.0%
- Fat% method: Males 36.4% vs Females 20.0%

Female Statistics (n=10):

Overweight/Obese by BMI: 30.0%

Overweight/Obese by Fat%: 20.0%

Male Statistics (n=10):

Overweight/Obese by BMI: 40.0%

Overweight/Obese by Fat%: 30.0%

Clinical Metrics:

- High prevalence of hypertension (52.4% on BP medications)
- Mental health metrics showed gender differences:
- Females had higher PHQ9 scores (8.00 ± 4.69 vs 3.67 ± 2.42)
- Females had higher GAD7 scores $(9.00 \pm 4.74 \text{ vs } 7.43 \pm 6.60)$
- Quality of life scores averaged 73.69 ± 14.81

Age (years): 19.95 ± 2.44

Years from transplant: 7.71 ± 4.61

HgbA1c: 5.21 ± 0.39

LDL: 87.12 ± 30.78

HDL: 44.94 ± 12.21

QOL score: 73.69 ± 14.81

Depression (PHQ9): 6.77 ± 5.26

Anxiety (GAD7): 8.38 ± 5.58

Hypertension (on BP meds): 52.4%

Mental Health Analysis:

Mental Health metrics by Gender -

PHQ9 GAD7 QOL

mean std mean std mean std

GENDER

Female 8.00 4.69 9.00 4.74 7 7.17 15.90

Male 3.67 2.42 7.43 6.60 72.88 15.12

Male (Female at birth) 18.00 NaN 12.00 NaN 58.70 NaN

Correlation Heatmap:

Analysis of correlation table -

- Strong positive correlation (0.73) between BMI and Fat%
- Notable negative correlation (-0.55) between Fat% and Quality of Life (QOL)
- HgA1c shows moderate positive correlation (0.61) with Age
- Strong positive correlation (0.84) between HDL and QOL
- Depression (PHQ9) and Anxiety (GAD7) show positive correlation (0.2), but not as strong as might be expected
- BMI shows moderate negative correlation (-0.42) with HDL

Distribution plots:

Analysis of distribution -

a. Age distribution

- Bell-shaped distribution centered around 20 years
- Range from 15 to 25 years
- Most patients clustered between 18-22 years

b. BMI distribution

- Right-skewed distribution
- Most values between 22.5-27.5
- Few outliers above 35

c. Fat% distribution

- Bimodal distribution
- First peak around 20-25%
- Second peak around 30-35%
- Wide spread from 15% to 40%

Gender Comparison:

a. BMI by Gender:

- Males show slightly higher median BMI
- Females show less variability in BMI
- One male outlier with high BMI

b. Fat% by Gender:

- Females show higher median body fat percentage
- Males show wider distribution
- Clear gender difference in fat distribution patterns

c. PHQ9 (Depression) by Gender:

- Females show higher median depression scores
- Females show greater variability
- Males cluster in lower range

d. GAD7 (Anxiety) by Gender:

- Similar pattern to PHQ9
- Females show higher median anxiety scores
- More variability in female scores

Scatter plots to assess correlation/ key relationships between variables:

a. BMI vs Body Fat%:

- Positive linear relationship
- Clear gender clustering
- Females tend to have higher fat% for same BMI

b. Age vs BMI:

- Weak positive relationship
- No clear gender patterns
- More scatter in older age groups

c. Depression vs Anxiety:

- Positive relationship
- Higher scores in female participants
- Clustering by gender visible

d. Body Fat% vs Quality of Life:

- Negative relationship
- Lower QOL scores with higher body fat%
- More pronounced in female participants

Comparison of BMI distributions for BP med users vs non-users:

- Box plot shows higher median BMI in BP medication users
- T-test results (t=1.3780, p=0.1842) indicate the difference is not statistically significant
- Greater BMI variability in BP medication users

T-test results for BMI difference between BP med users and non-users:

t-statistic: 1.3780

p-value: 0.1842

BP Medication and Body fat Analysis:

Overall Distribution:

- BP medication users (n=11) had a higher mean body fat percentage (28.43% ± 5.69%) compared to non-users (n=10, 25.10% ± 8.76%)
- The difference was not statistically significant (t=1.0426, p=0.3102)
- BP medication users showed less variability in body fat % (SD=5.69) compared to non-users (SD=8.76)

Distribution Ranges:

BP med users: 19.70% to 40.10% body fat

Non-BP med users: 11.80% to 38.80% body fat

Distribution Shape (from violin plots):

- BP medication users showed a more concentrated distribution around the median
- Non-BP medication users showed a wider, more variable distribution
- Both groups showed some bimodality, suggesting possible subgroups within each category

Descriptive Statistics for Body Fat %

BP Medication Users:

count 11.00

mean 28.43

std 5.69

min 19.70

25% 25.30

50% 27.20

75% 29.35

max 40.10

Name: FAT (%), dtype: float64

Non-BP Medication Users:

count 10.00

mean 25.10

std 8.76

min 11.80

25% 18.97

50% 22.55

75% 31.60

max 38.80

Name: FAT (%), dtype: float64

T-test Results:

t-statistic: 1.0426

p-value: 0.3102

Gender-specific Analysis:

Female:

Mean Body Fat % with BP meds: 30.32

Mean Body Fat % without BP meds: 30.33

Male:

Mean Body Fat % with BP meds: 25.22

Mean Body Fat % without BP meds: 17.25

BP Medication and Gender Interaction Analysis:

Female Participants:

• Almost identical mean body fat % between groups:

With BP meds: 30.32% ± 4.21% (n=4)

Without BP meds: 30.33% ± 6.84% (n=6)

- No significant difference (t=-0.0022, p=0.9983)
- Less variability in BP med users (SD=4.21 vs 6.84)

Male Participants:

- Significant difference between groups:
 - o With BP meds: 25.22% ± 3.41% (n=6)
 - Without BP meds: 17.25% ± 3.89% (n=4)
- Statistically significant difference (t=3.4316, p=0.0089)
- Males on BP medications had notably higher body fat %

Gender-Specific patterns:

- Females maintained similar body fat % regardless of BP medication status
- Males showed a marked difference based on BP medication status
- Male (Female at birth) participant had the highest body fat % (40.10%) and was on BP medications

Key Findings:

- BP medication status has a stronger association with body fat % in males than females
- The relationship between BP medications and body composition appears to be genderdependent
- The effect of BP medications on body fat % is more pronounced in male patients
- Female patients maintain similar body fat % regardless of BP medication status

Body Fat % by Gender and BP Medication Status

Group Statistics:

		mean	std	count
GENDER	On BP meds (yes/no)			
Female	No	30.33	6.84	6
	Yes	30.32	4.21	4
Male	No	17.25	3.89	4
	Yes	25.22	3.41	6
Male (Female at birth) Yes		40.10	NaN	1

Female T-test Results:

t-statistic: -0.0022

p-value: 0.9983

Male T-test Results:

t-statistic: 3.4316

p-value: 0.0089

Plot comparison of BMI vs Fat% classifications:

• Shows more "Normal" classifications using Fat% method

- Fewer "Obese" classifications using Fat% method
- Similar "Overweight" classifications between methods
- BMI method classifies more patients as obese than Fat% method

Plot gender-specific comparisons:

- Both methods show higher rates of overweight/obesity in males
- Larger discrepancy between methods in males
- BMI method consistently classifies more patients as overweight/obese compared to Fat% method
- Female classifications show less difference between methods

