Indian Institute of Technology Hyderabad (IITH)

Electrical Machines Laboratory, Department of Electrical Engineering

Experiment-1: OC, SC and Load Tests on 1-\phi Transformer

1. Aim of this Experiment

The objective of this experiment is to determine the values of R, X, B_m , and G_i through short circuit and open circuit test as well as to verify the equivalent circuit representation through a load test.

2. Circuit Description and Test Arrangement

The equivalent circuit of a 1- ϕ transformer in approximate form is shown in Figure 1. Here, R and X are the total resistance and leakage reactance respectively of the transformer windings referred to a particular side. Similarly, B_m , and G_i are the magnetizing susceptance and the iron loss conductance, respectively, referred to a particular side.

The circuit arrangements for open circuit test, short circuit test, and load test are shown in Figures 2, 3 and 4, respectively.

Figure 1. Equivalent circuit representation of a 1-φ transformer.

Figure 2. 1-φ transformer open circuit test arrangement.

Figure 3. 1-φ transformer short circuit test arrangement.

Figure 4. 1-\phi transformer load test arrangement.

3. Test Procedure

OPEN CIRCUIT TEST:

- a) Apply rated voltage on the LV side.
- b) Note down the voltmeter, ammeter, and wattmeter readings (indicated by $V_{{\it OC}}$, I_{OC} and P_{OC} , respectively).
- c) Determine G_i and B_m (referred to the LV side) by using the following formulae.

$$G_i = \frac{P_{OC}}{V_{OC}^2} \tag{1.1}$$

$$Y = \frac{I_{OC}}{V_{OC}}$$

$$B_m = \sqrt{Y^2 - G_i^2}$$
(1.2)

$$B_m = \sqrt{Y^2 - G_i^2} \tag{1.3}$$

SHORT CIRCUIT TEST:

- a) Establish rated current on the HV side by adjusting the input voltage.
- b) Note down the voltmeter, ammeter, and wattmeter readings (indicated by V_{SC} , I_{SC} and P_{SC} , respectively).
- c) Determine R and X (referred to the HV side) by using the following formulae.

$$R = \frac{P_{SC}}{I_{SC}^2} \tag{1.4}$$

$$Z = \frac{V_{SC}}{I_{SC}} \tag{1.5}$$

$$X = \sqrt{Z^2 - R^2} {1.6}$$

LOAD TEST:

- a) Apply rated voltage on the HV side.
- b) Take the voltmeter and ammeter readings (indicated by V_{L1} , V_{L2} , I_{L1} and I_{L2}) for different settings of the resistance bank.
- c) For a particular setting of the resistance bank, the value of load resistance (indicated by R_L) can be found from the readings of Voltmeter 2 and Ammeter 2.
- d) For a given value of load resistance and input voltage, calculate the value of I_{L1} from the equivalent circuit.

4. Results and Discussions

OPEN CIRCUIT TEST:

$$V_{OC} = G_i(\text{referredto LV side}) = B_m(\text{referredto LV side}) =$$

$$I_{OC} = G_i(\text{referredto HV side}) = B_m(\text{referredto HV side}) =$$

$$P_{OC}$$
=

SHORT CIRCUIT TEST:

$$V_{SC} = R(\text{referred to HV side}) = X(\text{referred to HV side}) =$$

$$I_{SC} = R(\text{referred to LV side}) = X(\text{referred to LV side}) =$$

$$P_{SC} =$$

LOAD TEST:

V_{L1}	$V_{_{L2}}$	I_{L1}	I_{L2}	$R_{\scriptscriptstyle L}$	I_{L1}
(measured)	(measured)	(measured)	(measured)	(calculated)	(calculated)

5. Conclusions

Comment on the accuracy of the equivalent circuit representation.
