Problem 1

Proof. $(ii) \Rightarrow i)$ is self-evident. We will focus on $(i) \Rightarrow ii)$. Let $\overline{\xi} \in \mathbb{R}^{d+1}$ an arbitrage opportunity. Construct another arbitrage opportunity $\overline{\xi_*} = (\xi_*^0, \xi_*^1, \dots, \xi_*^d)$ by setting

$$\xi^0_* = \xi^0 - \overline{\xi} \cdot \overline{\pi}$$

$$\xi^i_* = \xi^i \text{ for all } i \ge 1.$$

For the newly constructed arbitrage opportunity, we have

$$\overline{\xi_*} \cdot \overline{\pi} = \sum_{i=0}^d \xi_*^i \cdot \pi^i$$

$$= (\xi_0 - \overline{\xi} \cdot \overline{\pi}) \pi^0 + \sum_{i=1}^d \xi^i \cdot \pi^i$$

$$= \xi_0 \cdot \pi_0 + \sum_{i=1}^d \xi^i \cdot \pi^i - \overline{\xi} \cdot \overline{\pi} \cdot \pi^0$$

$$= \overline{\xi} \cdot \overline{\pi} - \overline{\xi} \cdot \overline{\pi} \quad \text{because } \pi^0 = 1$$

$$= 0.$$

In particular, ξ_* fullfills the given condition.

Moreover, it is

$$\begin{split} \overline{\xi_*} \cdot \overline{S}(\omega) &= \sum_{i=0}^d \xi_*^i S^i(\omega) \\ &= (\xi_0 - \overline{\xi} \cdot \overline{\pi}) S^0(\omega) + \sum_{i=1}^d \xi^i \cdot S^i(\omega) \\ &= \overline{\xi} \cdot \overline{S}(\omega) - \overline{\xi} \overline{\pi} S^0(\omega) \end{split}$$

Now, $\overline{\xi} \cdot \overline{S}(\omega) \geq 0$ P-almost surely by definition, $\overline{\xi} \cdot \overline{\pi} \leq 0$ and $S^0(\omega) > 0$. Thus, $\overline{\xi_*} \cdot \overline{S}(\omega) \geq 0$ P-almost surely.

Futhermore, since $\overline{\xi_*} \cdot \overline{S}(\omega) > \overline{\xi} \cdot \overline{S}(\omega)$, we also have $\mathbb{P}(\overline{\xi_*} \cdot \overline{S}(\omega) > 0) \geq \mathbb{P}(\overline{\xi} \cdot \overline{S}(\omega) > 0) > 0$ as desired.

Clearly, i) or ii) implies iii). The other direction is false. Consider a market with d=1, r=0, and $\pi=(1)$. $\Omega=\mathbb{N}$ and S(0)=2, and $S(\omega)=1$ for all $\omega\neq 0$. $\xi=(1,-1)$, so $\overline{\xi}\cdot \pi=0$ and yada yada yada, but the probability that you make money is 0.

Problem 2

a)

Simply consider $\overline{\xi}=(-2,0,1).$ We have $\overline{\xi}\cdot\overline{\pi}=0$ and

$$\bar{\xi} \cdot \bar{S}(\omega_1) = -2 \cdot 1.1 + 0 + 3 = 0.8$$

$$\overline{\xi} \cdot \overline{S}(\omega_1) = -2 \cdot 1.1 + 0 + 4 = 1.8$$

b)

Consider $\overline{\xi}=(-4,1,1).$ We have $\overline{\xi}\cdot\overline{\pi}=-4+2+2=0$ and

$$\overline{\xi} \cdot \overline{S}(\omega_1) = -2 \cdot 1.1 + 3 + 1 = 1.8$$

$$\overline{\xi} \cdot \overline{S}(\omega_2) = -2 \cdot 1.1 + 1 + 3 = 1.8$$