

Course program 3D perception, sensors and calibration 1/ (FG) 2/ Registration (FG) 3/ Local description of curves and surfaces (FG) 4/ Point cloud rendering and meshing (TB) 5/ **Surface reconstruction** (JED) Modeling and segmentation 6/ (FG) Deep learning for 3D point clouds (JED) - Research seminar (optional) **Modalities Courses and practical courses** Evaluation: reports on practical courses, project

Summary

1/ Introduction

2

4

2/ Principles of surface digitizing

3/ Precision and calibration

4/ Demonstrations of 3D digitizing

3

5

Point cloud · Definition: - An unstructured set of 3D points on surfaces in a scene or object - Values: Spatial coordinates (X, Y, Z) • Associated measurements: intensity, color, etc. Point cloud

11 13

14 15

17 18

RGB-D image

- Definition
 - A frame of distances and colors of a scene or an object
 - Combining a Depth D and RGB image

Colorized depth image measured by Kinect – (shown as a point cloud)

Examples of point clouds

- Different kinds
 - Real, synthetic, with or without color
 - Static or mobile surveys ("relevés")
- Viewers:

20

- CloudCompare (OpenSource) demo
- MeshLab (OpenSource)
- RealWorks (commercial, free version of simple visualization)

20

19

Summary

- 1/ Introduction
- 2/ Principles of surface digitizing
- 3/ Precision and calibration
- 4/ Demonstrations of 3D digitizing

Principles and classification Surface digitizing By contact Contactless (mechanical) (wave-matter interaction) Passive Computer Triangulation Telemetry Time-of-flight Phase shift [Curless 2000; Active triangulation Aubreton 2010; Goulette 2002] Stereo-vision

21 22

Stereovision (passive triangulation) • Viewing the same scene from two places slightly offset from each other • Principle of depth perception for humans

24

Advantages and Limitations of Stereovision

- Pros/Benefits:
 - 3D coordinates obtained without specific lighting (passive vision technique)
- Cons/Limitations:
 - Difficulty of stitch matching ("appariement de points")
 - Automated Matching Methods
 - Characteristic points: SIFT, SURF
 - Dense Matching

Photogrammetry

- 3D metrology based on stereo-vision
 - Historically: Manual Matching of Points in Images
 - Characteristic elements of the images: contrast breaks, protruding edges, etc.

Leica SD 2000 - 1990s Analytical photogrammetric restitution Camera Digital Surface Model (DSM)

26 27

Laser triangulation laser (active) Laser (emeteur) Balanyage Parinewala Systeme optique (recepteur) • A laser beam is sent to the object to be measured • The scattered light is observed by a camera - The depth of the point is determined

28 31

32

35 36

39 40

Some Phase Difference Sensors

LARA (Zoller+Fröhlich)

Faro Focus 3D

43

Summary

- 1/ Introduction
- 2/ Principles of surface digitizing
- 3/ Precision and calibration
- 4/ Demonstrations of 3D digitizing

3/ Precision and calibration

- 3D points are geometric measurements
 - Obtained by physical (contact, light, etc.) and mechanical principles
- Systematic measurement errors can be improved
 - Using calibration ("étalonnage")

45

47

46 47

Principles of Calibration

- Sensor Model G (Optical, Geometry)
 - Allows to switch from the raw \boldsymbol{B}_i sensor data to the 3D points \boldsymbol{X}_i
 - Example of raw data: distance, scanning angle
 - Several q parameters:
 - intrinsic q_{int}; extrinsic q_{ext} (position and orientation) of the sensor.

$$X_i = g(B_i, q) \tag{1}$$

49

50 51

Calibration Method

- Procedure for precisely determining sensor parameters (q_{int}, q_{ext})
- · Based on
 - Experimental measurements, raw data set B_i and calculated points X_i
 - An R reference (3D points, model) and a metric (Euclidean distance, etc.)
 - Gives an estimated error $\boldsymbol{\epsilon}_i$ for each point

$$\varepsilon_i = d(X_i, R)$$

Solution

- · Least Squares Solving
 - Assumptions about measurement noises and the metric used: (normal distribution, etc.)
- Error function to minimize on parameter space:

$$f(q) = \sum_{i=1}^{n} \varepsilon_i^2 \tag{2}$$

$$f(q) = \sum_{i=1}^{n} d(g(B_i, q), R)^2$$
 (3)

52 53

52

- · Objective:
 - Finding the rigid transformation between a single beam scanner and a camera

Usage: colorization of point clouds Rue Soufflot in Paris, point cloud acquired by LARA-3D [Deschaud 2010]

4/3D scanning

demonstrations

4.1 Real-Time 3D Acquisition - Kinect

4.2 Laser Survey & Images - Faro Focus

54

Summary

1/ Introduction

60

- 3/ Precision and calibration

61

59

- 2/ Principles of surface digitizing
- 4/ Demonstrations of 3D digitizing

References

- T. Landes and P. Grussenmeyer, « Les principes fondamentaux de la lasergrammétrie terrestre », Revue XYZ, 2011
- · Numerical Recipes in C
- · Besl and McKay, 1992, ICP

References

- Curless 2000
- Aubreton 2010
- Goulette 2002
- Khalil 96
- Hartley and A. Zisserman 2000
- http://wiki.ros.org/kinect_calibration/technical
- Grussenmeyer 2011
- Glennie and Lichti 2010
- Abuhadrous 2005
- Pless and Zhang 2004. Extrinsic Calibration of a Camera and Laser Range
- Bouguet 2003
- Deschaud 2010