# 平成17年度 日本留学試験(第2回)

# 試験問題

## 平成17年度(2005年度)日本留学試験

## 理科

(80分)

## 【物理·化学·生物】

(3科目の中から、2科目を選んで解答してください。)

### I 注意事項

- 1. 試験開始の合図があるまで、この問題用紙の中を見ないでください。
- 2. 各科目は、次のページにあります。

| 科目 | ページ |        |    |  |  |  |  |
|----|-----|--------|----|--|--|--|--|
| 物理 | 1   | $\sim$ | 15 |  |  |  |  |
| 化学 | 17  | $\sim$ | 25 |  |  |  |  |
| 生物 | 27  | ~      | 36 |  |  |  |  |

- 3. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 4. 問題用紙の余白は、メモに使ってもいいです。
- 5. 監督者の許可なしに、部屋の外に出ることはできません。
- 6. 試験が終わっても、この問題用紙を持ち帰ることはできません。
- 7. 受験番号と名前を下の欄に、受験票と同じように記入してください。

## II 解答上の注意

- 1. 各問題には、その解答を記入する行番号 **1** , **2** , **3** , …がついています。解答は問題の文の指示にしたがって、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 2. 解答用紙に書いてある注意事項も必ず読んでください。

| 受験番 |   |  | * |  |  | * |  |  |  |
|-----|---|--|---|--|--|---|--|--|--|
| 名   | 前 |  |   |  |  |   |  |  |  |

## 物理

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、 この中から2科目を選んで解答してください。選んだ2科 目のうち、1科目を解答用紙のおもて面に解答し、もう1 科目を裏面に解答してください。

「物理」を選択する場合は、右のように、解答用紙の左上 にある「解答科目」の「物理」を○で囲み、その下のマー ク欄をマークしてください。選択した科目が正しくマーク されていないと、採点されません。

| <解答用紙記入例>      |                  |               |  |  |  |  |  |  |  |
|----------------|------------------|---------------|--|--|--|--|--|--|--|
| 解答             | 解答科目 Subject     |               |  |  |  |  |  |  |  |
| 物 理<br>Physics | 化 学<br>Chemistry | 生物<br>Biology |  |  |  |  |  |  |  |
| •              | 0                | 0             |  |  |  |  |  |  |  |
|                | -                |               |  |  |  |  |  |  |  |

T 次の問い A (問 1), B (問 2), C (問 3), D (問 4, 5), E (問 6), F (問 7) に答 えなさい。ただし、重力加速度(acceleration due to gravity)の大きさをgとする。

A 一定の加速度 a で鉛直上方(vertically upward)へ加速しているエレベーター(elevator) に乗っている人が、質量mの小物体を初速度0で自由落下 (free fall) させた。

問1 エレベーターに乗っている人から見て、小 物体が落下直後から距離 ℓ だけ落下するのに かかる時間はいくらか。正しいものを、次の ①~④の中から一つ選びなさい。



① 
$$\sqrt{\frac{\ell}{g-a}}$$
 ②  $\sqrt{\frac{2\ell}{g-a}}$  ③  $\sqrt{\frac{\ell}{g+a}}$  ④  $\sqrt{\frac{2\ell}{g+a}}$ 

$$4 \sqrt{\frac{2\ell}{a+a}}$$

## 理科一2

 ${f B}$  一様な太さの針金で右下の図のような形をつくった。くさびを使ってこれを1点で支え て左右のバランス (balance) を保つようにしたい。

問2 AB線上, Aから何cmのところを支えたら よいか。正しいものを、次の①~⑦の中から 2 cm 一つ選びなさい。



- **③** 5 ① 3 **⑤** 7 7 9
- 12 cm -6 cm 18 cm

 ${f C}$  図のように、水平面となす角が heta の斜面がある。斜面との摩擦が無視できる小物体  ${f A}$ を斜面上の点Pから初速度0で、点Qまで滑らせた。点QにおけるAの速さは $v_A$ であ った。次に、斜面との動摩擦係数 (coefficient of kinetic friction) が μ΄ の小物体 Β を同 じように滑らせたところ、点QにおけるBの速さは v<sub>B</sub> であった。



問3  $\mu'$  はいくらか。正しいものを、次の①~④の中から一つ選びなさい。

① 
$$\left(1-\frac{v_{\rm B}^2}{v_{\rm A}^2}\right)$$
tan  $\theta$ 

$$(1 - \frac{v_{\rm B}^2}{v_{\rm A}^2}) \frac{1}{\tan \theta}$$

$$(1 - \frac{v_B^2}{v_A^2}) \frac{1}{\tan \theta}$$
 
$$(\frac{v_A^2}{v_B^2} - 1) \frac{1}{\tan \theta}$$

 ${f D}$  次の図のように、質量が無視できるばねを床の上に鉛直(vertically)に固定し、上端に質量mの薄い板を水平になるように取り付けた。このとき、ばねは自然長から縮み、板は静止していた。次に、質量mの粘土(clay)を板の鉛直上方(vertically upward)、高さhの位置から初速度0で落下させたところ、板の中心に衝突した。粘土は板と一体となり、振動(oscillation)を始めた。ばね定数をkとし、運動は鉛直方向にのみ起こり、板は床に衝突しないものとする。



問4 衝突直後の粘土と板の速さはいくらか。正しいものを、次の①~⑤の中から一つ選びなさい。

- ①  $\sqrt{\frac{gh}{4}}$
- $2 \sqrt{\frac{gh}{2}}$
- $\Im \sqrt{gh}$

- $\bigcirc$   $\sqrt{4gh}$

問5 衝突後, ばねの長さは自然長から最大いくら縮むか。正しいものを, 次の①~④の中から一つ選びなさい。 5

- $\underbrace{mg + \sqrt{mg(mg + kh)}}_{k}$
- $2 \frac{mg + \sqrt{mg(mg + 2kh)}}{k}$
- $3 \frac{2mg + \sqrt{mg(mg + kh)}}{k}$

**E** 図のように、水平方向にx軸、鉛直上方向(vertically upward)にy軸をとる。x=L の位置にはx軸に垂直な滑らかな壁がある。原点(origin)Oから壁に向かってボール(ball)を初速度 V=(v,v) で投げた。ただし、ボールと壁との衝突が非弾性衝突(inelastic collision)で、はねかえり定数(coefficient of restitution)が0.5であった。



問 6 ボールは壁からはねかえって原点 0 に戻ってきた。v はいくらか。正しいものを、次の1~6の中から一つ選びなさい。 v=6

- ②  $3\sqrt{\frac{gL}{2}}$
- $3\sqrt{gL}$

**F** 2つの惑星 (planet) A, Bがある。Bの質量はAのp倍, Bの半径はAのq倍である。AやBの自転 (rotation) や公転 (revolution) は考えないものとする。

**問1** A, B の表面で同じ長さの単振り子 (simple pendulum) を振らす。B での単振り子 の周期は A での何倍か。正しいものを、次の①~⑥の中から一つ選びなさい。 **7** 倍

- ①  $\frac{p}{\sqrt{a}}$
- $\frac{p}{a}$

- $\bigcirc q$

## 理科一6

| II | 次の問い A (問1), B (問2), C (問3) に答えなさい。

**A** 次の表は 25°Cでの 5 つの金属の比熱 (specific heat) を示したものである。

| 金属         | アルミニウム     | 鉄     | 銅     | 銀     | 鉛      |
|------------|------------|-------|-------|-------|--------|
|            | (aluminum) |       |       |       | (lead) |
| 比熱 (J/g·K) | 0.900      | 0.444 | 0.385 | 0.237 | 0.159  |

**問1** 次の図のように 25°Cの銅製容器 (100 g) と水 (200 g) の入った断熱 (heat insulation) された水熱量計 (calorimeter) がある。これに, 100°Cに加熱した質量 100 g の金属を入れたところ, 水温は 28.6°Cになった。この金属は表にある 5 つの金属のうちのどれか。最も適当なものを,下の①~⑤の中から一つ選びなさい。ただし,水の比熱を 4.20 J/g・K とする。



- ① アルミニウム
- ② 鉄
- ③ 銅
- 4) 銀
- ⑤ 鉛

 $\mathbf{B}$  体積  $\mathrm{V}$  の  $\mathrm{2}$  つの容器  $\mathrm{1}$  、  $\mathrm{2}$  に圧力  $p_0$  、温度  $T_0$  の理想気体を入れ、綿を詰めた小さな 管でつないだ。容器 1 は断熱(heat insulation)し、内部を加熱して温度  $T_0$  から T へ上 げた。容器 2 は温度  $T_0$  を保った。綿は互いの容器との間の圧力を等しく保ち、また温度 差を保った。その結果、容器 1 、2 内の気体の圧力はともに p となった。このときの容器 1, 2内の気体のモル数 (number of moles) をそれぞれ n₁, n₂とする。ただし、容器 内の気体全体のモル数をnとする。容器への熱の移動と容器の膨張(expansion)は無視 できるものとする。



**問2**  $n_2-n_1$  はいくらか。正しいものを、次の①~⑥の中から一つ選びなさい。

- ①  $n \frac{T T_0}{T_0}$  ②  $n \frac{T T_0}{T}$  ③  $n \frac{T T_0}{T + T_0}$

- (4)  $n \frac{T_0}{T T_0}$  (5)  $n \frac{T}{T T_0}$  (6)  $n \frac{T + T_0}{T T_0}$

 ${f C}$  なめらかに動くピストン (piston) をもつシリンダー (cylinder) に一定量の気体が入っている。この気体を圧力  $p_0$ , 体積  $V_0$  の状態から断熱変化 (adiabatic change) させて体積を 2 倍に膨張させた。

問3 このときの圧力と体積の変化の過程はどうなるか。最も適当なものを、次の図の① ~④の中から一つ選びなさい。



▲ 一端が閉じている長さ90cmの管の開口端 (open end) を吹いたところ, 最も低い音 から2番目に低い音がでた。

- 管内の空気の圧力が最も大きく変動する部分は閉じた端から何 cm の位置か。最も適 問 1 当なものを、次の①~⑤の中から一つ選びなさい。ただし、開口端の補正 (open end 11 cm correction) は無視できるものとする。
  - ① 23, 68
- **②** 0, 45, 90
- **③** 30, 90

- (4) 0, 60
- **(5)** 0, 90
- B 次の図のように、振動数がそれぞれ 338 Hz, 342 Hz の 2 つの音源 A, B がある。A, Bの間に静止している観測者が、うなり(beat)を聞いた。この観測者が AとBの間を 結ぶ直線上を一定の速さで移動したとき、うなりが聞こえなくなった。ただし、空気中の 音速を 340 m/s とする。



- 問2 観測者の移動の方向と速さはどうであったか。最も適当なものを、次の①~⑥の中か 12 ら一つ選びなさい。
  - A に向かう方向に速さ1 m/s
    B に向かう方向に速さ1 m/s
  - ③ A に向かう方向に速さ 2 m/s④ B に向かう方向に速さ 2 m/s

  - ⑤ A に向かう方向に速さ 4 m/s⑥ B に向かう方向に速さ 4 m/s

 ${f C}$  次の図のように、単スリット(single slit)を通したレーザー光(laser beam)を回折格子(diffraction grating)に入射し、回折格子から十分離れた地点でスクリーン(screen)に映る縞模様を観察した。レーザー光の波長(wave length)が $\lambda$ 、回折格子とスクリーンの距離はLである。スクリーンの中心付近で、スクリーン上の縞模様の明線の間隔がDであった。



問 3 回折格子の格子間隔はいくらか。最も適当なものを、次の①~⑥の中から一つ選びなさい。 **13** 

①  $\frac{\lambda D}{2L}$  ②  $\frac{\lambda D}{L}$  ③  $\frac{2\lambda D}{L}$  ④  $\frac{\lambda L}{2D}$  ⑤  $\frac{\lambda L}{D}$  ⑥  $\frac{2\lambda L}{D}$ 

| IV 次の問い A (問1), B (問2, 3), C (問4), D (問5), E (問6) に答えなさい。

**A** 電圧 (electric potential) V のかかった長さ L, 間隔 D の平行平板電極 (parallel plate electrode) がある。次の図のように、電荷 (charge) q (q>0) の粒子 (particle) を速さ v でこの電極間の中央に入射させて粒子の軌道 (orbit) を調べた。V の値を変えて実験を繰り返したところ、 $V < V_1$ では粒子が電極間から外へ出てきたが、 $V \ge V_1$ では出てこなかった。



- ①  $\frac{1}{4} \frac{q V_1 L^2}{v^2 D^2}$
- ②  $\frac{1}{4} \frac{q V_1 D^2}{v^2 L^2}$

- $\bigcirc \frac{qV_1D^2}{v^2L^2}$

 ${f B}$  次の図のように,電気容量(capacitance)C のコンデンサー(capacitor),抵抗値 (resistance) Rおよび3Rの抵抗 (resistor), スイッチ (switch) と起電力 (electromotive force) E の電池をつないだ。スイッチを閉じる前には、コンデンサーは 帯電(charge)していなかった。電池の内部抵抗は無視できるものとする。



**問2** スイッチを閉じた直後,抵抗値3尺の抵抗を流れる電流はいくらか。正しいものを, 次の①~⑤の中から一つ選びなさい。 15

- ①  $\frac{E}{4R}$  ②  $\frac{E}{3R}$  ③  $\frac{4E}{3R}$  ④  $\frac{E}{3R+C}$  ⑤  $\frac{(C+R)E}{(4C+3R)R}$

問3 スイッチを閉じてから十分に時間がたった後、コンデンサーに蓄えられた電荷 (charge) はいくらか。正しいものを、次の①~⑤の中から一つ選びなさい。 16

- ①  $\frac{1}{4}CE$  ②  $\frac{1}{3}CE$  ③  $\frac{3}{4}CE$  ④ CE ⑤  $\frac{4}{3}CE$

C 方位磁石 (compass) を置き、その真上で南北に水平に導線 (conducting wire) をは った。この導線に大きさIの電流を流したところ、磁針 (compass needle) は西に  $20^\circ$ 傾 いて静止した。20°の sin, cos, tan の値を次の表に示した。

|     | sin  | cos  | tan  |
|-----|------|------|------|
| 20° | 0.34 | 0.94 | 0.36 |

問 4 導線に大きさ 2I の電流を流したとき、磁針が西に  $\alpha$  傾いて静止した。  $\alpha$  はどのよ うな条件を満たしているか。最も適当なものを、次の①~④の中から一つ選びなさい。

- (1)  $\alpha = 40^{\circ}$  (2)  $\sin \alpha = 0.68$  (3)  $\cos \alpha = 0.47$  (4)  $\tan \alpha = 0.72$

 ${f D}$  z軸の正の向きに磁束密度(magnetic flux density)B の一様な磁場(磁界)がある。 次の図のように、yz 平面上の z>0 の範囲に、十分に広く、また x 方向には十分に薄い蛍光板を置いた。正電荷(positive charge)q を持つ質量 m の荷電粒子(charged particle)を、xz 平面内で、x 軸の正の方向と  $\theta$  の角度をなす向きに原点  $O\left(0<\theta\leq\frac{\pi}{2}\right)$  から速さ v で打ち出した。荷電粒子は yz 面に戻ってきて蛍光板に衝突した。



問5 荷電粒子が蛍光板に衝突した点の座標(coordinate)はどれか。正しいものを、次の①~④の中から一つ選びなさい。ただし、重力の影響は無視できるものとする。 18

① 
$$\left(0, \frac{2mv}{qB}\cos\theta, \frac{\pi mv}{qB}\sin\theta\right)$$
 ②  $\left(0, \frac{mv}{qB}\cos\theta, \frac{2\pi mv}{qB}\sin\theta\right)$ 

E ある回路 (circuit) に流れる交流電流 (alternating current) を、その周期より短い時 間間隔  $\Delta t$  で測定したところ, k 回目( $k=1\sim8$ )の測定値が次の表のようになった。

| k       | 1   | 2   | 3   | 4   | 5    | 6    | 7    | 8    |
|---------|-----|-----|-----|-----|------|------|------|------|
| 電流値 [A] | 1.0 | 2.4 | 2.4 | 1.0 | -1.0 | -2.4 | -2.4 | -1.0 |

問 6 このデータから、この交流電流の実効値 (effective value) を求めるといくらになる 19 A か。最も適当なものを、次の①~⑤の中から一つ選びなさい。

① 1.0 ② 1.4 ③ 1.8 ④ 2.0 ⑤ 2.4

物理の問題はこれで終わりです。解答欄の  $20 \sim 75$  は空欄にしてください。

この問題用紙を持ち帰ることはできません。