EXAMEN DE ARQUITECTURA DE COMPUTADORES. La Rábida, 13 de Septiembre de 2016

Apellidos	Nombre
-----------	--------

Valor de cada:

Respuesta correcta + 0.1 Respuesta incorrecta - 0.05 No respuesta - 0.05

TIEMPO REALIZACIÓN EXAMEN: 45 minutos

		Espacio para res	spuestas LUUUUU							
4.	En un sistema computador, y referida a la tarea de denomina:									
1*	A) Productividad	C) Tiempo de ejecución	D							
	B) Tiempo de respuesta	D) Ninguna de las afirmaciones anteriores es correcta								
	Atendiendo a los conceptos de productividad y tiempo de re									
2*	A) El tiempo de respuesta y la productividad	C) La productividad	В							
	B) El tiempo de respuesta	D) Depende de la segmentación								
	El Principio de Localidad Temporal, se aplica:									
3*	A) Únicamente a los accesos de instrucciones	C) Tanto a los accesos de datos como de instrucciones	В							
	B) Únicamente a los accesos de datos	D) Ninguna de las afirmaciones anteriores es correcta								
	El rendimiento de la CPU depende del:	·								
4*	A) CPI (Ciclos Por Instrucción) únicamente	C) Recuento de instrucciones	\mathbf{C}							
	B) La tensión de alimentación de la CPU	D) Ninguna de las afirmaciones anteriores es correcta								
	Los MIPS (Millones de Instrucciones Por Segundo):									
5*	A) Son independientes del repertorio de instrucciones de la	C) Nos permiten calcular exactamente el tiempo de	D							
5"	máquina	ejecución de un programa real	В							
	B) Varían entre programas en el mismo computador	D) Ninguna de las afirmaciones anteriores es correcta								
	Para un determinado tamaño de Memoria Caché, a meno	or tamaño de bloque corresponde:								
6*	A) Mayor tasa de acierto por localidad espacial	C) Mayor tasa de aciertos	В							
	B) Mayor tasa de acierto por localidad temporal	D) Ninguna de las afirmaciones anteriores es correcta								
	¿Qué estrategia de escritura plantea más problemas de col	herencia?								
7*	A) En un sistema monoprocesador no se emplea estrategia	C) La coherencia de caché no está relacionada con la	D							
,	de escritura alguna	estrategia de escritura	D							
	B) La de escritura inmediata	D) La de post-escritura								
	La frecuencia o tasa de fallos en memoria se define como:									
8*	A) La fracción de accesos a memoria no encontrados en el	C) La fracción de accesos a memoria no encontrados en								
	nivel superior de la jerarquía de memoria	cualquier nivel de la jerarquía de memoria	A							
	B) La fracción de accesos a memoria no encontrados en el									
	nivel inferior de la jerarquía de memoria	nivel inferior de la jerarquía de memoria								
	Atendiendo a los tipos de fallos de caché, los de capacidad									
9*	A) En cachés con correspondiencia directa									
	D) En analyse and anomaly and anois total mounts are sisting	conjuntos								
	B) En cachés con correspondencia totalmente asociativa Para un mismo sistema de memoria, un mismo tamaño d	D) Ninguna de las afirmaciones anteriores es correcta								
	del campo <i>etiqueta</i> es el de la correspondencia:	e bioque y distintas correspondencias, ei menor tamano								
10*	A) Directa	C) Totalmente asociativa	A							
	B) Asociativa por conjuntos	D) Ninguna de las afirmaciones anteriores es correcta								
	El número de comparaciones de las etiquetas de los bloqu									
11*		C) Con el tamaño de bloque	В							
	B) Con la menor asociatividad	D) Ninguna de las afirmaciones anteriores es correcta								
	¿Cuál de las siguientes afirmaciones es cierta?	, ,								
	A) Cuando existen varios niveles de caché, si hay una	C) El rendimiento de una configuración concreta de caché								
12*	caché partida siempre se aplica al nivel inferior	nunca depende del programa que se ejecute	D							
	B) En una memoria caché se puede aplicar siempre algún	D) Ninguna de las afirmaciones anteriores es correcta								
	algoritmo de reemplazo									
	Atendiendo a las posibles combinaciones de operandos									
	implica operación diádica en un sistema computador, ind									
13*	A) Una máquina puede tener dos operandos por instrucción		D							
10	y ninguno referenciado a memoria	instrucción y los tres referenciados a memoria	D							
	B) Una máquina puede tener dos operandos por instrucción	, .								
	y uno referenciado a memoria	explicitado en la instrucción								
4 4.5	El valor de todas las señales de control durante un period		ъ							
14*	A) Un microprograma P) Una appropriá alemental	C) Una instrucción	D							
	B) Una operación elemental	D) Ninguna de las afirmaciones anteriores es correcta								
15*	En un computador serie Von Neumann, indica cuál de las A) No pueden realizarse operaciones elementales a la vez	C) Pueden estar ejecutándose varias instrucciones a la vez	D							
13"	B) Tiene instrucciones de bifurcación condicional siempre	D) Ninguna de las afirmaciones anteriores es correcta	В							
	=, 110110 mon accioned de offareación condicional siemple	= , 1 gain at iat annihilation antonion antonion to contocta								

	En una unidad de control microprogramada, y suponien-							
16*	microprogramas tiene asociados una instrucción del tipo B		A					
		C) Los mismos que tiene la instrucción JMP A0000h						
		D) Esta unidad de control no almacena microprogramas						
	Sea una unidad de control microprogramada con secue							
17*	operación. Indica cuál de las siguientes afirmaciones es cierta: A) Tiene una etapa traductora tipo ROM de 256 posiciones C) Tiene una memoria de control con 256 posiciones							
1 /	B) Debe tener una etapa traductora ROM de al menos 256	· · · · · · · · · · · · · · · · · · ·	D					
	posiciones de memoria	D) No necesita etapa traductora						
	Considerando las instrucciones: CALL, RET y JMP, indic	a cuál de ellas no es de bifurcación:						
18*		C) BZ	D					
		D) Todas son de bifurcación						
	Sea la arquitectura DLX con unidades funcionales para							
	unidad sumador/restador requiere 2 ciclos y la de división	requiere 5 ciclos, dada la secuencia DIVF F1, F3, F2 y						
19*			В					
		C) Por dependencia de datos tipo RAW						
	, .	D) Ninguna de las afirmaciones anteriores es correcta						
	En la arquitectura DLX, el Adelantamiento Generalizado:							
20*	A) Elimina el número de detenciones derivadas de los		D					
		de riesgos por dependencia de datos						
-	B) Reduce los riesgos de control Los riegos por dependencia de datos del tipo WAW NO pu	D) Complica el hardware						
	A) Una arquitectura DLX con unidades funcionales con							
21*		y distintos tiempos de ejecución	В					
21	B) Una arquitectura DLX con unidades funcionales con los		ь					
	mismos tiempos de ejecución	,						
	En arquitectura VLIW (Very Long Instruction Word):							
	A) Se aplican exclusivamente técnicas software para	C) La compilación de los programas se hace en función						
22*		del hardware con que cuenta el computador	\mathbf{C}					
	B) Se aplican exclusivamente técnicas hardware para	D) Ninguna de las afirmaciones anteriores es correcta						
	mejorar el paralelismo a nivel de instrucción	-						
	El tamaño de palabra del computador que se considera en							
23*		C) 32 bits	\mathbf{C}					
	,	D) 64 bits						
	Comparando las arquitecturas Von Neumann y DLX estud							
24*		C) Sólo una de ellas ejecuta instrucciones ALU con	\mathbf{C}					
		modelo de ejecución Reg-Mem						
	, <u> </u>	D) Ambas consideran la duplicidad de los PC e IR						
	Sea una máquina no segmentada con cinco pasos de ejectambién con cinco etapas de 40 ns cada una, a partir de							
25*	consecutivas, el tiempo medio por instrucción resulta (cons		D					
23		C) 200 ns en ambas	b					
	,	D) 200 ns en la primera y 80 ns en la segunda						
	La arquitectura superescalar:	,						
	A) No permite realizar las mismas fases de distintas	C) Implica siempre supersegmentación						
26*	instrucciones a la vez		В					
	B) Permite realizar las mismas fases de distintas	D) Es equivalente a la supersegmentada						
	instrucciones a la vez							
	Comparando el cálculo de las direcciones a las que se acc	cede a la vez de una memoria estructurada por bancos						
27*	con el de una memoria entrelazada:	CO FILL I	В					
		C) El de la entrelazada es algo más complejo	~					
	, , , , , , , , , , , , , , , , , , , ,	D) Ninguna de las afirmaciones anteriores es correcta						
204	Un computador matricial:	C) Es de tine MIMD servir le clerifie d' 1. El	ъ					
28*		C) Es de tipo MIMD según la clasificación de Flynn D) Ninguna de los afirmaciones anteriores es correcto	В					
-	B) Es de tipo SIMD según la clasificación de Flynn En un multiprocesador NUMA,	D) Ninguna de las afirmaciones anteriores es correcta						
		C) Los accesos a memoria se hacen de igual forma a como						
29*		se realizan en un multicomputador	A					
		D) Ninguna de las afirmaciones anteriores es correcta						
	Los ordenadores de reducción:	2) 1 mgana ao iao aminaciones anteriores es correcta						
		C) Usan información explícita de los flujos de control						
30*		para producir la ejecución de las instrucciones	В					
	B) Emplean la necesidad que tiene un resultado de disparar		•					
L	la operación que generará el resultado requerido	*						
		-						

EXAMEN DE ARQUITECTURA DE COMPUTADORES

La Rábida, 13 de Septiembre de 2016

PROBLEMA 1. (2,5 ptos.). Un sistema computador (sin memoria virtual) tiene una memoria principal de 128 Kpalabras de 8 bits cada una de ellas y una memoria caché de 8 Kbits, dividida en 2 conjuntos, con 256 palabras/bloque.

- a) Justificar e indicar, de la **Memoria Principal**: 1° su capacidad en bits, 2° el número de bloques que tiene; y, de la **Memoria Caché**: 1° su capacidad en bytes, 2° su número de palabras, 3° su número de bloques, 4° su número de bloques por conjunto, y, 5° su número de bits por bloque.
- b) Mostrar el formato de la dirección que define la unidad central de proceso en base a la función de correspondencia empleada, definiendo cada uno de los campos en los que se divide y los bits correspondientes a cada uno de esos campos.

Se supone que, después de haber estado la memoria caché "vacía" (*instante 0*), a continuación en el *instante 1* se encuentran en la memoria caché los bloques de memoria principal B12, B8, B15, leídos en ese orden y todas sus direcciones ordenadamente una vez. Suponer que el algoritmo de reemplazamiento de bloques es el LRU (Least Recently Used).

c) Mostrar el contenido de la memoria caché en el *instante 1*. Mostrarlo según el esquema siguiente:

d) Identificar cuántos fallos de caché se han producido, de qué tipo y leyendo qué dirección, en este *instante 1*.

A continuación, la CPU lee la secuencia de direcciones de memoria: 0, 1, 2, 3, 320, 321 y 449 (*instante 2*), según el orden marcado en la misma.

- e) Mostrar el contenido de la memoria caché en el instante 2.
- f) Hasta ese *instante 2*, ¿cuántos fallos y de qué tipo se han producido en total?.

g) Hasta ese instante 2, ¿cuántos aciertos se han producido?.

Por último, la CPU lee la secuencia de direcciones 768, 769 y 1023 (*instante 3*), según el orden marcado en la misma.

- h) Mostrar el contenido de la memoria caché en el instante 3.
- i) En esas últimas lecturas, ¿cuántos fallos y de qué tipo se han producido?.

PROBLEMA 2. (2,25 ptos.). Para el sistema computador representado en la figura, y para la secuencia de instrucciones siguiente:

Dirección de Memoria	Instrucción
(en hexadecimal)	(en ensamblador)
A0000h	ADD .4, 00129h
A0001h	CALL A0002h
A0002h	MOVE .2, 120(.2)
A0003h	RET

- 1. Mostrar los formatos de las instrucciones.
- 2. Definir la secuencia de operaciones elementales y el solapamiento posible de las mismas. Especificar el cronograma según el flujo marcado por el programa propuesto, y considerando una sóla vez la ejecución de cada instrucción.
- 3. Definir el valor de las señales de control correspondiente a la secuencia de operaciones elementales PC←Desplazamiento (en el RI) + R3 y D←PC, realizadas de forma conjunta en el menor tiempo posible. Mostrar únicamente el valor de las señales que intervienen directamente en dicha operación.

Teniendo en cuenta:

- a) PRIMERA INSTRUCCIÓN: La instrucción aritmética ADD, con direccionamiento directo absoluto a registro para el primer operando y directo absoluto a memoria para el segundo. Suponer que se produce un trap de desbordamiento como consecuencia de la suma, bifurcándose a la dirección A0002h. El resultado erróneo de esta suma no es necesario almacenarlo en su destino.
- SEGUNDA INSTRUCCIÓN: La instrucción de llamada a subrutina CALL, con modo de direccionamiento directo absoluto a memoria.
- c) TERCERA INSTRUCCIÓN: La instrucción de transferencia MOVE, con modo de direccionamiento directo absoluto a registro para el primer operando y directo relativo a registro base para el segundo operando.
- d) CUARTA INSTRUCCIÓN: La instrucción RET de retorno de subrutina.

- e) Las operaciones con la unidad aritmético-lógica se realizan en un periodo.
- f) Los cálculos de las direcciones de los operandos en memoria especificados con direccionamiento relativo, se realizarán de manera automática en el periodo de decodificación.
- g) El resultado de una operación o el operando destino va a ser siempre el especificado en primer lugar en la instrucción de ensamblador.
- h) Las operaciones de L/E en memoria se realizan durante dos periodos.
- i) La pila, que se implementa en el sistema con el registro SP (puntero de pila), funciona de la siguiente forma: 1) La pila crece hacia direcciones decrecientes. 2) El registro puntero de pila indica la dirección de memoria principal en la que se introdujo el último dato en la pila.
- j) Para cuando hay que salvar el contenido de SR y el de PC, siempre se almacenará primero el de SR.

PROBLEMA 3. (2,25 ptos.). El siguiente fragmento de código se ejecuta en un procesador DLX. En dicho procesador la etapa MEM requiere 1 ciclo de reloj. Las latencias (en ciclos de reloj) de las unidades funcionales son las siguientes: Sumador/restador entero: 1; Sumador/restador flotante: 2; y Multiplicador/Divisor: 4 (las dos últimas unidades funcionales para operaciones están **segmentadas**).

```
LW R2, 2(R1)
LW R5, 8(R2)
LF F2, 20(R2)
LF F0, 10(R1)
FADD F4, F0, F2
FDIV F5, F4, F2
SF 20(R5), F5
FMUL F8, F4, F5
```

- a) Suponiendo que la memoria tiene un único puerto de acceso y que no hay adelantamiento (bypass), indicar el estado de cada instrucción durante los ciclos de ejecución del código; calcular el número de ciclos necesarios para ejecutar este código; e indicar si existen bloqueos en la cadena y a qué se deben.
- b) Repetir el apartado a) para una versión del DLX que incluya **adelantamiento** (bypass) **generalizado** y suponiendo que la **memoria** tiene **dos puertos de acceso** (uno para instrucciones y otro para datos). Indicar el estado de cada instrucción durante los ciclos de ejecución del código; calcular el número de ciclos necesarios para ejecutar este código; e indicar si existen bloqueos en la cadena y a qué se deben. Indicar claramente los datos que se adelantan y entre qué etapas actúa el bypass.

Etapa	Instrucción ALU	Carga/Almacenamiento	Salto/Bifurcación
IF	$IR \leftarrow M[PC]$	IR ← M[PC]	IR ← M[PC]
	PC ← PC+4	PC ← PC+4	PC ← PC+4
ID	A ← Rs1; B ← Rs2	A ← Rs1; B ← Rs2	A ← Rs1; B ← Rs2
	PC1 ← PC	PC1 ← PC	PC1 ← PC
	IR1 ← IR	IR1 ← IR	IR1 ← IR
EX	ALU _{output} ← A op (B or (IR1 ₁₆) ¹⁶ ##IR1 ₁₆₃₁)	MAR ← A+(IR1 ₁₆) ¹⁶ ##IR1 ₁₆₃₁	Salto
		SMDR ← B	ALU _{output} ← PC1+IR1 ₁₆) ¹⁶ ##IR1 ₁₆₃₁)
			Cond ← (Rs1 op 0);
			Bifurcación
			ALU _{output} ← PC1+ IR1 ₂₆) ⁶ ##IR1 ₆₃₁)
MEM	ALUoutput1 ← ALUoutput	LMDR ← M[MAR]	If (cond):
		О	PC ← ALU _{output}
		M[MAR] ← SMDR	
WB	Rd ← ALU _{output} 1	$Rd \leftarrow LMDR$	

Tabla. Eventos en cada etapa de la segmentación de DLX diferenciados según el tipo de instrucción.

	Apellidos:	Nombre: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27																														
A	(- J)	1	1.		14	-		7	0		10	11	12	12	1.4	15	1.0	17	10	10	20	21	22	22	24	25	26	27	20	20	20	
	tado a) 2, 2 (R1)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
	5, 8(R2)																															
	2, 20(R2)																															
	0, 10(R1)																															
	F4, F0, F2																															
FDIV	F5, F4, F2																															
SF 2	0(R5), F5																															
FMUL	F8, F4, F5																															
Detenciones							Deter	Detenciones								Adelantamientos								Adelantamientos								
Anar	tado b)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	20	30	
	.2, 2(R1)	1		3	7	3	U	<i>'</i>	0		10	1.1	12	13	17	13	10	1/	10	1)	20	21	22	23	24	23	20	21	20	2)	30	
	5, 8(R2)																															
	2, 20(R2)																															
	0, 10(R1)																															
	F4, F0, F2																															
FDIV	F5, F4, F2																															
SF 2	0(R5), F5																															
FMUL	F8, F4, F5																															
Detenciones								Detenciones									Adelantamientos								Adelantamientos							