School of Computing

National University of Singapore

CS4243 Computer Vision and Pattern Recognition Semester 1, AY 2018/19

Lab 5 Corner Detector Due date: 7th Oct 2017, 2359hrs

Objective:

To understand and implement the corner detector that we learned in class.

Preparation:

• Download the file Lab5_pictures.zip from IVLE into your working directory. Uncompress the file and you should find the following pictures: letterBox.jpg, checker.jpg, pipe.jpg, carmanBox.jpg

Steps

The following shows the detailed steps of the corner detector that you will implement in this lab:

- Get the horizontal edge strength of every point in the image and store in *Ix*.
 - You can use the approximation Ix = pic(x+1,y) pic(x,y)
 - Note: you can ignore the pixels at the borders of the image i.e. set their Ix to zero
- Get the vertical edge strength of every point in image and store in *Iy*.
 - You can use the approximation Iy = pic(x, y+1) pic(x,y)
 - Note: you can ignore the pixels at the borders of the image i.e. set their Iy to zero
- Perform corner detection at all the sampled point locations (x, y) given by

$$(x,y) = (n*7, m*7)$$
 where $n = 1, 2, 3, ...$ and $m = 1, 2, 3, ...$

Hint:

• At each sample point, form the following 2 by 2 matrix by summing over a neighborhood of 13 by 13 pixels around that sample point

$$\sum\sum\begin{bmatrix}I_x^2 & I_xI_y\\I_xI_y & I_y^2\end{bmatrix}$$

- Compute the eigenvalues of the above matrix. using the Matlab function eig.
- Store the smaller of the eigenvalues at all the sampled point locations and store them in a matrix called eig_min.
- Find the top 200 values in the matrix eig_min, and mark these locations on the picture. You may use the following Matlab commands:
 - reshape
 - for arranging a 2D matrix into a 1D vector
 - o sort
 - for sorting the eigenvalues
 - find
 - for finding the locations in a matrix where the values are above the cut-off eigenvalues.
 - o cat
- for constructing a 3 channel RGB image from a single gray scale image, eg. cat(3, grayPic, grayPic, grayPic). This allows you to use color to mark the feature locations later (see rectangle below).
- o rectangle
 - *for marking the location of good features (i.e. corners)*
 - please mark the corners using red rectangles

Instructions

- Please perform corner detection on all the 4 pictures
- You must implement the corner detector by writing the Matlab codes all by yourself (i.e. you cannot get the codes from elsewhere).

Submission Instruction

At the end of your lab session, submit the softcopy of your Matlab codes and the pictures marked with good features (i.e. corners) to IVLE.

Please put your files in a folder and submit the folder. Use the following convention to name your folder:

StudentNumber_yourName_Lab#. For example, if your student number is A1234567B, and your name is Chow Yuen Fatt, for this lab, your file name should be A1234567B_ChowYuenFatt_Lab5.