T.P. V - Fonctions

Code Capytale : a656-2028011

I - Définition & Tracé

Exercice 1. On considère la fonction f définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, f(x) = x^x.$$

1. Compléter le script Python suivant pour que la fonction f prenne en entrée un réel x et renvoie la valeur de f(x).

```
def f(x):
return ...
```

2. Compléter le code suivant pour qu'il affiche le graphe de f sur l'intervalle [0,01;3].

```
import matplotlib.pyplot as plt
import numpy as np

X = np.arange(..., ..., 0.01)
Y = [ ... for x in X]

plt.figure()
plt.plot(..., ..., 'r')
....
```

3. On rappelle que $x^x = e^{x \ln(x)}$. Définir une fonction g telle que l'appel g(x) retourne la valeur de $g(x) = e^{x \ln(x)}$.

```
import numpy as np
def g(x):
    return ...
```

4. Compléter le script suivant pour qu'on puisse constater la superposition entre les courbes représentatives de f et de g sur l'intervalle [0,01;3].

```
import matplotlib.pyplot as plt

X = np.arange(..., ..., 0.01)
Yf = [ ... for x in X]
Yg = [ ... for x in X]

plt.figure()
plt.plot(..., ..., 'r')
plt.plot(..., ..., 'g--')
....
```

Exercice 2. Pour tout n entier naturel, on pose

$$u_n = \frac{e^n}{2e^n + n^2}.$$

1. Compléter le script suivant pour que l'appel $\mathfrak{u}(\mathfrak{n})$ renvoie la valeur de u_n .

```
def u(n):
    y = ...
    return y
```

2. Compléter le code suivant pour qu'il affiche les valeurs de u_{10} et u_{50} :

```
print("La valeur de u_10 est :", ...)
print("La valeur de u_50 est :", ...)
```

Chapitre V - Fonctions ECT 2

3. Compléter le script suivant pour qu'il trace la suite de points de coordonnées $((n,u_n))_{n\in \llbracket 0.100\rrbracket}$.

```
import matplotlib.pyplot as plt

X = range(..., ...)
Y = [... for n in X]

plt.figure()
plt.plot(..., ...)

plt.show()
```

4. Que conjecturez-vous sur le comportement de la suite (u_n) ?

II - Fonction définie par morceaux

Exercice 3. [Inspiré d'Ecricome - 2021 - Exercice 2] On considère la fonction g définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, g(x) = \begin{cases} 0 \text{ si } x < 0 \\ e^{-2x} \text{ si } x \geqslant 0 \end{cases}.$$

1. Compléter le script Python suivant pour que la fonction g prenne en entrée un réel x et calcule g(x).

2. Utilisez le script précédent pour afficher les valeurs de g(-1) et $g(\ln(2))$.

```
print (...)
print (...)
```

Exercice 4. On considère la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, f(x) = \begin{cases} \frac{1}{2} & \text{si } x \in [1, 3] \\ 0 & \text{sinon} \end{cases}.$$

1. Compléter le script Python suivant pour que la fonction f prenne en entrée un réel x et renvoie la valeur de f(x).

```
\begin{array}{lll} \textbf{def} & f\left(x\right) \colon \\ & \textbf{if} & x <= 3 \ \textbf{and} \ \dots \ \vdots \\ & & \dots \\ & & \textbf{else} \colon \\ & & \dots \end{array}
```

2. Compléter le code suivant pour qu'il affiche le graphe de f sur l'intervalle [-5,5].

```
import matplotlib.pyplot as plt

X = np.arange(..., ..., 0.01)
Y = [ ... for x in X]

plt.figure()
plt.plot(..., ..., 'r')
....
```

Chapitre V - Fonctions ECT 2

III - Fonction avec paramètres

Exercice 5. Pour tout n entier naturel, on définit la fonction

$$f_n(x) = \begin{cases} x^n & \text{si } x \in [0,1] \\ 0 & \text{sinon} \end{cases}$$
.

1. Compléter le code suivant pour que l'appel f(n, x) renvoie la valeur de $f_n(x)$:

```
\begin{array}{l} \mathbf{def} \ \ f(n, \ x) \colon \\ \ \ \mathbf{if} \ \ x >= 0 \ \ \mathbf{and} \ \ \dots \colon \\ \ \ \mathbf{return} \ \ \dots \\ \ \ \mathbf{else} \colon \\ \ \ \mathbf{return} \ \ \dots \end{array}
```

2. Compléter le code suivant pour qu'il affiche la superposition, sur un même graphique, des courbes représentatives de f_n pour $n \in \{0, 2, 5, 10\}$.

```
import matpltotlib.pyplot as plt
X = np.arange(0, 1.001, 0.001)

plt.figure()
for n in [...]:
    Yn = [... for x in X]
    plt.plot(X, Yn, label="Graphe de f_"+str(n))

plt.legend()
plt.show()
```

Exercice 6. (Une suite d'intégales) [Inspiré d'Ecricome - 2022 - Exercice 2] Pour tout n entier naturel, on note $f_n(x) = \frac{x^n}{1+x}$ et $I_n = \int_0^1 f_n(x) dx$.

1. Compléter le code suivant pour qu'il affiche les représentations graphiques des fonctions f_1 , f_5 , f_{10} , f_{20} et f_{50} sur l'intervalle [0,1].

```
import numpy as np
import matplotlib.pyplot as plt
```

```
def f(x):
    return ...

X = np.linspace(0, 1, 100)

plt.figure()
for n in [...]:
    plt.plot(..., ..., "--", label=r"fn pour n="+str(n))

plt.legend()
...
```

- **2.** Pour tout $n \in \mathbb{N}$, interpréter géométriquement l'intégrale I_n .
- **3.** En utilisant le graphique ci-dessus, conjecturer la limite de la suite (I_n) lorsque n tend vers $+\infty$.