$-m_1 \frac{w_1}{2} \sin(\theta_1)$	0	0	0	0	-1	0	1	0	0	0	0	0	0	0	$\ddot{\theta}_1$	$\frac{w_1}{2}\dot{ heta}_1^2\cos(heta)$.)
$-m_1w_1\sin(\theta_1)$	$-m_2 \frac{w_2}{2} \sin(\theta_2)$	0	0	0	0	0	-1	0	1	0	0	0	0	0	$\ddot{ heta}_2$	$w_1\dot{\theta}_1^2\cos(\theta_1) + \frac{w_2}{2}\theta$	$\theta_2^2\cos(\theta_2)$
$-m_1w_1\sin(\theta_1)$	$-m_2w_2\sin(\theta_2)$	$-m_3\frac{w_3}{2}\sin(\theta_3)$	0	0	0	0	0	0	-1	0	1	0	0	0	$\ddot{\theta}_3$	$w_1\dot{\theta}_1^2\cos(\theta_1) + w_2\dot{\theta}_2^2\cos(\theta_2)$	$\left(\frac{w_3}{2}\dot{ heta}_3^2\cos(heta_3) ight)$
$-m_1w_1\sin(\theta_1)$	$-m_2w_2\sin(\theta_2)$	$-m_3w_3\sin(\theta_3)$	$-m_4 \frac{w_4}{2} \sin(\theta_4)$	0	0	0	0	0	0	0	-1	0	1	0	$\ddot{\theta}_4$	$w_1\dot{\theta}_1^2\cos(\theta_1) + w_2\dot{\theta}_2^2\cos(\theta_2) + w_3\theta_2$	$\theta_3^2 \cos(\theta_3) + \frac{w_4}{2} \dot{\theta}_4^2 \cos(\theta_4)$
$-m_1w_1\sin(\theta_1)$	$-m_2w_2\sin(\theta_2)$	$-m_3w_3\sin(\theta_3)$	$-m_4w_4\sin(\theta_4)$	$-m_5 \frac{w_5}{2} \sin(\theta_5)$	0	0	0	0	0	0	0	0	-1	0	$\ddot{\theta}_5$	$w_1\dot{\theta}_1^2\cos(\theta_1) + w_2\dot{\theta}_2^2\cos(\theta_2) + w_3\dot{\theta}_3^2\cos(\theta_3)$	$(x_1) + w_5 \dot{\theta}_4^2 \cos(\theta_4) + \frac{w_5}{2} \dot{\theta}_5^2 \cos(\theta_5)$
$\frac{w_1}{2}\cos(\theta_1)$	0	0	0	0	0	-1	0	1	0	0	0	0	0	0	F_{ax}	$rac{w_1}{2}\dot{ heta}_1^2\sin(heta_1)$)
$w_1\cos(\theta_1)$	$\frac{w_2}{2}\cos(\theta_2)$	0	0	0	0	0	0	-1	0	1	0	0	0	0	F_{ay}	$w_1\dot{\theta}_1^2\sin(\theta_1) + \frac{w_2}{2}\theta_1^2$	$ u_2^2 \sin(\theta_2) $
$w_1\cos(\theta_1)$	$w_2\cos(\theta_2)$	$\frac{w_3}{2}\cos(\theta_3)$	0	0	0	0	0	0	0	-1	0	1	0	0	F_{bx}	$w_1\dot{\theta}_1^2\sin(\theta_1) + w_2\dot{\theta}_2^2\sin(\theta_2)$	$(1) + \frac{w_3}{2}\dot{\theta}_3^2\sin(\theta_3)$
$w_1\cos(\theta_1)$	$w_2\cos(\theta_2)$	$w_3\cos(\theta_3)$	$\frac{w_4}{2}\cos(\theta_4)$	0	0	0	0	0	0	0	0	-1	0	1	F_{by}	$w_1\dot{\theta}_1^2\sin(\theta_1) + w_2\dot{\theta}_2^2\sin(\theta_2) + w_3\theta_2$	$u_3^2 \sin(\theta_3) + \frac{w_4}{2} \dot{\theta}_4^2 \sin(\theta_4)$
$w_1\cos(\theta_1)$	$w_2\cos(\theta_2)$	$w_3\cos(\theta_3)$	$w_4\cos(\theta_4)$	$\frac{w_5}{2}\cos(\theta_5)$	0	0	0	0	0	0	0	0	0	-1	F_{cx}	$w_1\dot{\theta}_1^2\sin(\theta_1) + w_2\dot{\theta}_2^2\sin(\theta_2) + w_3\dot{\theta}_3^2\sin(\theta_3)$	$(w_1) + w_5 \dot{\theta}_4^2 \sin(\theta_4) + \frac{w_5}{2} \dot{\theta}_5^2 \sin(\theta_5)$
$\frac{1}{3}m_1w_1^2$	0	0	0	0	0	0	$-w_1\sin(\theta_1)$	$w_1\cos(\theta_1)$	0	0	0	0	0	0	F_{cy}	$4k_a(\frac{3\pi}{2} - \theta_1) + 4k_b(\pi$	$(- heta_1+ heta_2)$
0	$\frac{1}{3}m_2w_2^2$	0	0	0	0	0	0	0	$-w_2\sin(\theta_2)$	$w_2\cos(\theta_2)$	0	0	0	0	F_{dx}	$-4k_b(\pi-\theta_1+\theta_2)-4k$	$c(\pi+\theta_2-\theta_3)$
0	0	$\frac{1}{3}m_3w_3^2$	0	0	0	0	0	0	0	0	$-w_3\sin(\theta_3)$	$w_3\cos(\theta_3)$	0	0	F_{dy}	$4k_c(\pi + \theta_2 - \theta_3) + 4k_d$	$(\pi - \theta_3 + \theta_4)$
0	0	0	$\frac{1}{3}m_4w_4^2$	0	0	0	0	0	0	0	0	0	$-w_4\sin(\theta_4)$	$w_4\cos(\theta_4)$	F_{ex}	$-4k_d(\pi-\theta_3+\theta_4)-4k$	$e(\pi+ heta_4- heta_5)$
0	0	0	0	$\frac{1}{3}m_5w_5^2$	0	0	0	0	0	0	0	0	0	0	$\int F_{ey}$	$4k_e(\pi + \theta_4 -$	$\theta_5)$
									$ au_{Coulomb}$	$=-\mu \ \vec{F}_{root}\ $	$ tanh(100\dot{\theta}_{roc}) $	$_{ot})$					
									$ au_{viscous}$								