PC3261: Classical Mechanics II

Assignment 7

- 1. [30 pts] A vaulter, carrying a pole with rest-length $10\,\mathrm{m}$, runs in the positive x-direction at speed $\beta=\sqrt{3}/2$. She enters a barn with rest-length $8\,\mathrm{m}$, which has its left door open and right one closed. At t=0 in the barn's frame, the left door closes with the left end of the pole (x'=0) just inside the door. At the same time, the right end of the pole is well inside the barn at $x=5\,\mathrm{m}$. Denote the event (t,x)=(0,0) by A, and the event (t,x)=(0,5) by B. Thus, the barn doors are closed with the pole completely inside the barn. An instant later, the right door opens and the vaulter runs harmlessly out of the barn.
- (a) Find t'_B in the vaulter's frame assuming that $t'_A = 0$.
- (b) At time t'_B , what length of the pole is inside the barn according to the vaulter?
- (c) Sketch the pole and the barn on a spacetime diagram, showing how the vaulter understands the sequence of these events.
- **2.** [40 pts] A particle is moving along the x-axis. It is uniformly accelerated so that the magnitude of the acceleration measured in its *instantaneous* rest frame is always g, a constant.
- (a) Defining four-acceleration as $\mathbf{a} \equiv d\mathbf{u}/d\tau$ where \mathbf{u} is the four-velocity, show that four-acceleration is always orthogonal to four-velocity, i.e. $\mathbf{a} \cdot \mathbf{u} = 0$.
- (b) Find $x(\tau)$ and $t(\tau)$ assuming $x(0) = x_0$, t(0) = 0 and $u^x(0) = 0$. Sketch the worldline of the particle on a spacetime diagram.
- (c) Find the particle's three-velocity $\vec{\mathbf{v}}(t)$. Does the particle's speed ever exceed the speed of light? Explain.
- **3.** [30 pts] Let S and S' be inertial frames of reference, with S' moving in the +x-direction with speed β relative to S. Consider a photon in S with wavelength λ_0 , moving at an angle θ with respect to the +x-axis.
- (a) What is the angle θ' with respect to the +x'-axis at which the photon moves with respect to a stationary observer in S'? And, what is the wavelength λ' of the photon measured by a stationary observer in S'?
- (b) Even when the motion of the photon is perpendicular to the +x-axis ($\theta = \pi/2$) there is a shift of wavelength. This is called the *transverse Doppler effect* and arises due to time dilation. At what angle θ does the photon have to move so that there is *no* Doppler shift between frames S and S'?
- (c) Instead of a photon, a bullet of mass m is fired in S with speed u at an angle θ with respect to the +x-axis. What is the angle θ' with respect to the +x'-axis at which the bullet moves with respect to a stationary observer in S'?

Last updated: November 9, 2023 10:09 am