

Agenda

- 1. Brief introduction to R
- 2. Real-world applications
- 3. Meetups in 2018
- 4. Open end

What topics are you interested in?

Please provide as many ideas as possible to help us make future meetups fun and engaging!

	x	freq
5	Data Visualization	23
6	Exploratory Data Analysis	19
18	Time Series Analysis	15
4	Data Screening & Cleaning	13
12	R and Databases	13
9	Machine Learning	12
20	Reporting with R Markdown/Sweave/Reproducible Research	12
1	Bayes: R and BUGS/JAGS/Stan	10
7	Image Processing	10
17	Statistical Inference (e.g. Natural Language Processing)	10

R-Leipzig Member Survey

```
require(RCurl)
require(plyr)

dataCSV <- getURL('https://docs.google.com/spreadsheets/d/e/2PACX-1vSWD6_CAB)
df <- read.csv(textConnection(dataCSV), stringsAsFactors = FALSE)

topics <- unlist(df$topics)
topics <- unlist(strsplit(topics, ','))
topics <- plyr::count(topics)
topics <- topics[order(topics$freq, decreasing = TRUE),]

knitr::kable(head(topics, 10), format = 'html')</pre>
```

How would you rate your experience level?

Do you have a background in one or more of the following sciences?

	x	freq
3	Data Sciences	10
7	Healthcare)	10
10	Logic)	9
15	Formal Sciences (e.g. Mathematics	9
5	Genetics)	8
4	Economics)	6
12	Sociology	6
17	Life Sciences (e.g. Biochemistry	6
19	Social Sciences (e.g. Psychology	6
1	Applied Sciences (e.g. Engineering	5

Introduction to R

Why use R?

A quick comparison to other languages

"The best thing about R is that it was written by statisticians."

"The best thing about R is that it was written by statisticians."

while

"The worst thing about R is that it was written by statisticians."

- better, user friendly data analysis
- easy to use complex formula and advanced models
- steep learning curve (not hard for experienced programmers)
- good for standalone analysis
- the closer you are to statistics and research the more you might prefer R

- productivity and code reusability
- more flexible to program new stuff
- easy to learn for beginners
- good for analysis integrated into larger frameworks
- the closer you are to engineering, the more you might prefer python

Visualisation

- Lingua franca of statistics
- Traditional computational statistics (machine learning)
- Data exploration
- R Studio
- Shiny

Seminal ggplot2 scatterplot example

A plot that is only useful for demonstration purposes

https://hrbrmstr.github.io/hrbrthemes/

https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/

- slow (and sometimes ugly) code
- steep learning curve

- producing nice visualisations can be a pain
- immature functionality for data analysis

Open Source

Advanced Tools

Online Communities

Jobs

- *interesting* language design
- good for statistics heavy projects
- large ecosystem of packages
- mature system
- native code rather slow

- clean language design
- number crunching
- developing ecosystem
- < v1.0
- native code fast

From my perspective

for reliable statistical analysis (smaller scale)

python for larger data analysis/Deep Learning projects

Real-world applications

Foodborne illness in the U.S.

- **48 million** people get sick
- **128,000** get hospitalized
- **3,000** die

according to the center for disease control and prevention. The situation in the City of **Chicago** was particularly bad. Something had to be done...

To predict the probability of food establishments to have critical violations, data scientists looked at...

Business Licenses
Food Inspections
Crime
Garbage Cart Complaints
Sanitation Complaints
Weather
Sanitarian Information

...and increased the rate of detecting violations by 25%

For data processing the code uses extensively the data.table package.

All code available on GitHub

R-Meetups in 2018

What to expect from R-Meetups

Goals

- Networking
- Interdisciplinary Insights
- Practical Learning

What to expect from R-Meetups

Goals

- Networking
- Interdisciplinary Insights
- Practical Learning

Outline

Topic introduction	see scheduled topics	(~15 mins)
Code practice	attempt to solve the problem in small groups	(~60 mins)
Stand-ups	tell us about your projects and/or probelms	-
Open end	code, network or drink beer	-

Dataset

Speed Dating Experiment: What attributes influence the selection of a romantic partner?

Data from experimental speed dating events from 2002-2004, available on kaggle ($N \sim 8,000$ observations)

Dataset

Speed Dating Experiment: What attributes influence the selection of a romantic partner?

Data from experimental speed dating events from 2002-2004, available on kaggle ($N \sim 8,000$ observations)

Data Exploration Ideas

- What are the least desirable attributes in a male partner? Does this differ for female partners?
- Can people accurately predict their own perceived value in the dating market?
- ...

"The Ugly Truth of People Decisions in Speed Dating"

Save the date

topic	date	moderator
Data Visualization	16th April, 19:00	by Mandy Vogel
Exploratory Data Analysis	21th May, 19:00	by Björn Hommel
Machiene Learning	18th June, 19:00	by Nico Scherf
RMarkdown	16th July, 19:00	by Valentin Stefan
yet to be decided	-	by you?
yet to be decided	-	by you?
yet to be decided	-	by you?

• Volunteers?

Resources

- Updates about meetups on meetup.com
- r-leipzig's projects & presentations on GitHub
- r-leipzig on slack for r-related exchange
- Speed-Dating dataset on kaggle

Thanks!