Алиса и Боб играют в следующую игру. Алисе сообщается число x, а Бобу — число y, также им задана функция f от двух аргументов, и они хотят вычислить её значение f(x,y) на некотором входе. В их распоряжении есть устройство связи, которое позволяет передавать друг другу битовые сообщения (т.е. за одно сообщение можно послать «0» или «1»). Алиса и Боб могут заранее договориться о том, какие сообщения они будут посылать.

Рис. 1. Возможное взаимодействие Алисы и Боба.

Определение 1

Коммуникационный протокол для функции $f\colon X\times Y\to Z$ — это корневое двоичное дерево, которое описывает совместное вычисление Алисой и Бобом функции f. В этом дереве каждая внутренняя вершина v помечена меткой A или B, означающей очередь хода Алисы или Боба соответственно. Для каждой вершины, помеченной A, определена функция $g_v\colon X\to \{0,1\}$, которая говорит Алисе, какой бит нужно послать, если вычисление находится в этой вершине. Аналогично, для каждой вершины v с пометкой B, определена функция $h_v\colon Y\to \{0,1\}$, которая определяет бит, который Боб должен отослать этой вершине. Каждая внутренняя вершина имеет двух потомков, ребро к первому потомку помечено нулём, а ребро ко второму — единицей. Каждый лист помечен значением из множества Z. Таким образом, каждая пара входов (x,y) определяет путь от корня до листа в описанном двоичном дереве естественным образом. Будем говорить, что коммуникационный протокол вычисляем функцию f, если для всех пар $(x,y)\in X\times Y$ этот путь заканчивается в листе с пометкой f(x,y).

Коммуникационной сложностью функции f называется наименьшая глубина протокола, вычисляющего функцию f. Будем обозначать её символом C(f). Каждой функции f будем сопоставлять матрицу $X \times Y(M_f)$, в которой в клетке (x_i, y_i) стоит значение $f(x_i, y_i)$.

1. Докажите, что

$$\chi(f) = \chi_0(f) + \chi_1(f) \le C(f) \le \mathcal{O}(\log \chi_0(f) \log \chi_1(f)),$$

где $\chi_0(f)$, $\chi_1(f)$ — количество нулевых (единичных) прямоугольников в минимальном разбиении M_f .

2. Докажите, что $C(\mathsf{EQ}_n) = n$, где $\mathsf{EQ}_n \colon \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ и $\mathsf{EQ}_n(x,y) = 1 \Leftrightarrow x = y$.

- **3.** Рассмотрим функцию SUM: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{n+1}$, возвращающую сумму чисел в двоичной системе счисления. Докажите, что C(SUM) = 2n.
- **4.** Пусть дан граф G без петель. Алиса и Боб получают две вершины данного графа x,y и хотят узнать существует ли ребро (x,y). Докажите, что детерминированная сложность данной задачи не менее $\log \chi(G)$, где $\chi(G)$ хроматическое число графа G.

Подсказка: попробуйте предъявить хорошую раскраску, если есть короткий коммуникационный протокол.

- **5.** Покажите, что $C(\text{MED}) = \mathcal{O}(\log^2 n)$, где x и y это характеристические функции подмножеств [n], а MED(x,y) медиана мультимножества $x \cap y$ (если элемент встречается и в x и в y, то считаем его дважды). Комментарий: на самом деле $C(\text{MED}) = \Theta(\log n)$.
- **6.** У Алисы имеется n-битная строка x, а у Боба n-битная строка y. Известно, что y получен из x инвертированием одного бита.
 - а) Придумайте детерминированный коммуникационный протокол сложности $\mathcal{O}(\log n)$, который позволяет Бобу узнать x.
 - b) Придумайте однораундовый детерминированный коммуникационный протокол сложности $\mathcal{O}(\log n)$, который позволяет Бобу узнать x. (В однораундовом протоколе Алиса посылает некоторое сообщение Бобу, после чего Боб вычисляет результат).
- 7. Пусть для некоторой функции $f \colon X \times Y \to Z$ существует коммуникационный протокол с ℓ листьями. Докажите, что $C(f) \le \mathcal{O}(\log \ell)$.
- **8.** Докажите, что $C(\operatorname{CIS}_G) = \mathcal{O}(\log^2 n)$. Где x интерпретируется как характеристическая функция некоторой клики в графе G, а y как характеристическая функция некоторого независимого множества в графе G. $\operatorname{CIS}_G(x,y) = 1$, если клика и независимое множество имеют общую вершину, обе стороны знают граф G.

