Guia de configuracion del bloque $Synchronous\ Machine\ pu$ (Fundamental) en Simscape

September 22, 2025

1 Datos de diseño (Appendix B)

Potencia nominal	$P_n = 6250 \mathrm{kVA}$
Tensión nominal L-L	$V_n = 4160 \mathrm{V}$
Frecuencia	$f_n = 60 \mathrm{Hz}$
Factor de potencia	0.85
Número de polos	$20 \Rightarrow \text{pares } p = 10$
Resistencia de estator	$r_s = 0.00636 \text{ pu}$
Inductancia de fuga de estator	$x_{ls} = 0.1235 \text{ pu}$
Amortiguador d:	$r_{kd} = 0.03578 \text{ pu}, \ x_{lkd} = 0.1119 \text{ pu}$
Amortiguador q:	$r_{kq1} = 0.05366 \text{ pu}, \ x_{lkq1} = 0.1678 \text{ pu}$
Campo:	$r_{fd} = 0.0084 \text{ pu}, \ x_{lfd} = 0.2691 \text{ pu}$
Inercia	$H = 7.11 \mathrm{s}$

2 Configuración del bloque en Simulink

Abra el bloque Synchronous Machine pu Fundamental y seleccione la pestaña Parameters. Ingrese:

Nominal power, voltage, frequency and poles

$$P_n = 6.25 \times 10^6 \,\text{VA}, \quad V_n = 4160 \,\text{V}_{\text{rms}}, \quad f_n = 60 \,\text{Hz}, \quad p = 10.$$

Stator $[R_s, L_l, L_{md}, L_{mq}]$

$$R_s = r_s$$
, $L_l = x_{ls}$, $L_{md} = (a \text{ estimar})$, $L_{mq} = (a \text{ estimar})$.

Nota: en el modelo p.u. de Simscape, L y X en p.u. son numéricamente iguales porque $\omega_{\rm base}=1$ p.u.

Field
$$[R_f, L_{lfd}]$$

$$R_f = r_{fd}, \qquad L_{lfd} = x_{lfd}.$$

Dampers $[R_{kd}, L_{lkd}, R_{kq1}, L_{lkq1}]$

$$R_{kd} = r_{kd}, \ L_{lkd} = x_{lkd}, \ R_{kq1} = r_{kq1}, \ L_{lkq1} = x_{lkq1}.$$

Inertia and friction

$$H = 7.11 \,\mathrm{s}$$
, friction $F = 0$.

Inicial conditions deje en cero, excepto V_f si desea fijar una excitación inicial (modo manual).

3 Estimación de L_{md} y L_{ma}

El artículo reporta (vía pruebas dinámicas) las reactancias equivalentes X_d, X_d', X_d'' y X_q, X_q'' y las constantes de tiempo $T'_{do}, T''_{do}, T''_{qo}$. Con los datos de diseño (fugas y resistencias) y esas mediciones, podemos obtener L_{md} y L_{mq} .

Relaciones en eje d

Con campo y un amortiguador en d:

$$X_d = X_{ls} + L_{md},\tag{1}$$

$$X_d' = X_{ls} + \frac{L_{md} L_{lfd}}{L_{md} + L_{lfd}},\tag{2}$$

$$X_d'' = X_{ls} + \frac{L_{md} L_{lkd}}{L_{md} + L_{lkd}}. (3)$$

Despejes útiles (a partir de (3) y (2)):

$$L_{md} = \frac{(X_d'' - X_{ls}) L_{lkd}}{L_{lkd} - (X_d'' - X_{ls})},\tag{4}$$

$$L_{md} = \frac{(X_d' - X_{ls}) L_{lfd}}{L_{lfd} - (X_d' - X_{ls})}.$$
 (5)

La ecuación (1) verifica coherencia en estado estacionario.

subsection*Relaciones en eje q Con un amortiguador en q:

$$X_q = X_{ls} + L_{mq}, (6)$$

$$X_q'' = X_{ls} + \frac{L_{mq} L_{lkq1}}{L_{mq} + L_{lkq1}}. (7)$$

Despeje:

$$L_{mq} = \frac{(X_q'' - X_{ls}) L_{lkq1}}{L_{lkq1} - (X_q'' - X_{ls})}, \quad \text{y comprobar con } L_{mq} = X_q - X_{ls}.$$
 (8)

Comprobación con constantes de tiempo

Para verificar (o ajustar levemente R de amortiguadores/campo), use:

$$T'_{do} \approx \frac{L_{md} + L_{lfd}}{R_f} \cdot \frac{L_{lfd}}{L_{md} + L_{lfd}},\tag{9}$$

$$T_{do}^{"} \approx \frac{L_{md} + L_{lkd}}{R_{kd}} \cdot \frac{L_{lkd}}{L_{md} + L_{lkd}},\tag{10}$$

$$T''_{do} \approx \frac{L_{md} + L_{lkd}}{R_{kd}} \cdot \frac{L_{lkd}}{L_{md} + L_{lkd}},$$
 (10)
 $T''_{qo} \approx \frac{L_{mq} + L_{lkq1}}{R_{kq1}} \cdot \frac{L_{lkq1}}{L_{mq} + L_{lkq1}}.$ (11)

Si los tiempos calculados difieren sensiblemente de los medidos, ajuste ligeramente R_{kd} o R_{kq1} (procedimiento de identificación).