AL/2018/01/S-T		17028
සියලු ම හිමිකම් ඇවිටිණි/ගුංගුට பුනිට්பුලි	மையுடையது/All Rights Reserved	
இ ஒவை சிறை දෙපාර්තමේන්තුව இ ලංකා විශාශ இளங்கைப் பரீட்சைத் திணைக்களம் இலங் Department of Examinations Sci Lauka Depart	O 050750 TO BASIS BOTTO COMPOSITION OF THE PROPERTY OF THE PRO	நால் oදපාර්තමේන්තුව ලී ලංකා විභාග oදපාර්තමේන්තු අබාගන්සිස්බර් මූහත්කසට பரிட்சைத் திணைக்கள Glub , Sri Lanka Department of Examinations, Sri Lank நாழிலு oදපාර්තමේන්තුව ලී ලංකා විභාග oදපාර්තමේන්තුව ආකාශයේස්බර් මූහත්කයේ பரிட்சைத் திணைக்கள
අධානයන මෙන සහ්ඛ්ර பொது	டி கலகிக පතු (උසස් පෙළ) විභ த் தராதரப் பத்திர (உயர் தர)ப் ட cate of Education (Adv. Level) Exar	றைக, 2018 අ ை ப் கிற மீட்சை, 2018 கைஸ்ர்
<mark>භෞතික විදනව I</mark> பௌதிகவியல் I Physics I	01SI	2018.08.10 / 0830 - 1030 சூக தேவகி இரண்டு மணித்தியாலம் Two hours

- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- * පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ **විභාග අංකය** ලියන්න.
- * පිළිතුරු පතුයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමත් ව කියවන්න.
- * 1 සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි** තෝ ඉතාමත් ගැළපෙන හෝ පිළිතුර තෝරා ගෙන, එය, **පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයකින්** (X) ලකුණු කරන්න.

ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

(ගුරුත්වජ ත්වරණය, $g = 10 \,\mathrm{N\,kg^{-1}}$)

1. පීඩනයෙහි ඒකකය වනුයේ,

- (1) $kg m s^{-2}$
- (2) $kg m^2 s^{-2}$
- (3) $kg m^{-1} s^{-2}$
- (4) $kg m^2 s^{-3}$
 - (5) kg m^{-2} s⁻² A⁻¹

 ${f 2}.~~X,\,Y$ සහ $Z,\,$ වෙනස් මාන සහිත භෞතික රාශි තුනක් නිරූපණය කරයි. මේවා,

P = AX + BY + CZ

මගින් දැක්වෙන ආකාරයේ P නම් තවත් භෞතික රාශියක් සකස් කිරීම සඳහා සම්බන්ධ කළ හැකි ය. පහත පුකාශනවලින් අනෙක් ඒවාට වඩා වෙනස් මාන ඇත්තේ කුමකට ද?

(1) AX

- (2) AX CZ
- (3) $\frac{(AX)(CZ)}{BY}$ (4) $\frac{(BY)^2}{P}$ (5) (BY)(CZ)

- 3. පහත පුකාශවලින් කුමක් සතා නො**වේ උ**?
 - (1) ලේසර් ආලෝකය තීර්යක් තරංගවලින් සමන්විත වේ.
 - (2) ගැමා කිරණ තීර්යක් තරංග වේ.
 - (3) පෘථිවි කබොළ තුළින් ගමන් කරන පුාථමික තරංග (P-තරංග) අන්වායාම තරංග වේ.
 - (4) අතිධ්වති තරංග අන්වායාම තරංග වේ.
 - (5) FM තරංග අන්වායාම තරංග වේ.
- $oldsymbol{4}$. පරිපූර්ණ වායුවක් තුළ ධ්වනි වේගය v පිළිබඳ ව කර ඇති පහත පුකාශ සලකන්න.
 - (A) v, වායුවේ නිරපේක්ෂ උෂ්ණත්වයට අනුලෝමව සමානුපාතික වේ.
 - (B) v, වායුවේ මවුලික ස්කන්ධයට පුතිලෝමව සමානුපාතික වේ.
 - (C) v, වායුවේ මවුලික තාප ධාරිතා අතර අනුපාතය γ මත රඳා පවතී. ඉහත පුකාශවලින්,
 - (1) A පමණක් සතා වේ.
- (2) C පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.
- 5. සාමානාෳ සීරුමාරුවේ ඇති පුකාශ උපකරණ සම්බන්ධයෙන් කර ඇති පහත පුකාශවලින් කුමක් සතාඃ **නොවේ ද**?
 - (1) සරල අණ්වීක්ෂයක, වස්තුවෙහි පුතිබිම්බය අතාත්වික වේ.
 - (2) සරල අණ්වීක්ෂයක් භාවිතයෙන් කුඩා අකුරු කියවීමේ දී අවිදුර දෘෂ්ටිකත්වයෙන් පෙළෙන පුද්ගලයකුට දුර දෘෂ්ටිකත්වයෙන් පෙළෙන පුද්ගලයකුට වඩා වැඩි වාසියක් අත් වේ.

 - (4) සංයුක්ත අණ්වීක්ෂයක, අවසාන පුතිබිම්බය යටිකුරු වේ.
 - (5) නක්ෂතු දුරේක්ෂයක, වස්තු දුර හා පුතිබිම්බ දුර යන දෙකම ඉතා විශාල බව සලකනු ලැබේ.

6. පරිපූර්ණ වායුවක් යොදා ගනිමින් කෙරෙන එක්තරා තාපගතික කිුයාවලියක දී වායුවෙහි අභාාන්තර ශක්තියේ වැඩිවීම වායුවට සපයන ලද තාප පුමාණයට සමාන වේ. මෙම කිුයාවලිය,

- (1) චකීය කියාවලියකි.
- (2) ස්ථීරතාපී කිුයාවලියකි.
- (3) නියත පීඩන කිුයාවලියකි.
- (4) නියත පරිමා කියාවලියකි.
- (5) සමෝෂ්ණ කිුයාවලියකි.

7. ලෝහ දණ්ඩක උෂ්ණත්වය $100~^{\circ}{
m C}$ කින් වැඩි කරන විට එහි දිගෙහි භාගික වෙනස්වීම $2.4 imes 10^{-5}$ වේ. දණ්ඩ සාදා ඇති දුවායෙහි රේඛීය පුසාරණතාව වනුයේ,

(1) $2.4 \times 10^{-3} \, ^{\circ}\text{C}^{-1}$

- (2) $2.4 \times 10^{-4} \, ^{\circ}\text{C}^{-1}$
- (3) $2.4 \times 10^{-5} \, {}^{\circ}\text{C}^{-1}$

(4) $2.4 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$

(5) $2.4 \times 10^{-7} \, ^{\circ}\text{C}^{-1}$

f 8. එක්තරා පරිණාමකයක පුාථමික දඟරයේ වට f 900 ක් ඇති අතර ද්විතීයික දඟරයේ වට f 30 ක් ඇත. පුාථමික දඟරය හරහා $240~\mathrm{V}$ පුතාාවර්තක චෝල්ටීයතාවක් යෙදූ විට ද්විතීයික දඟරය හරහා චෝල්ටීයතාව වනුයේ,

- (1) 0 V
- (2) 8 V
- (3) 12 V (4) 72 V

9. පහත ඒවායින් කුමක් වී.ගා.බ. පුභවයක් නොවේ **ද**?

- (1) විද්යුත් රසායනික කෝෂය
- (2) පුකාශ දියෝඩය
- (3) පීඩවිද්යුත් ස්ඵටිකය
- (4) තාප විද්යුත් යුග්මය
- (5) ආරෝපිත ධාරිතුකය

10. (a) රූපයේ පෙන්වා ඇති තාර්කික පරිපථය සමක වනුයේ,

(1)

(a) රූපය (3)

11. අරය R_A වූ ඒකාකාර, ගෝලාකාර A නම් ගුහයකුගේ සහ අරය R_B වූ ඒකාකාර, ගෝලාකාර B නම් ගුහයකුගේ පෘෂ්ඨ මත ගුරුත්වජ ත්වරණ සමාන වේ. A හි ස්කන්ධය B හි ස්කන්ධය මෙන් දෙගුණයක් වේ නම්,

- (1) $R_A = \sqrt{2}R_B$ (2) $R_A = 2R_B$ (3) $R_A = \frac{R_B}{\sqrt{2}}$
- (4) $R_A = \frac{R_B}{2}$

 ${f 12}.~~({f a})$ රූපයේ පෙන්වා ඇති පරිදි A,B,C,D සහ E යනු වස්තුවක් මත කිුියාකරන විශාලත්වයෙන් සමාන ඒකතල බල පහකි. මෙම බලවල සම්පුයුක්තයේ දිශාව වඩාත් ම හොඳින් නිරූපණය වන්නේ පහත කුමන රූපයෙන් ද?

(1)

(3)

13. තිරස් සුමට පටියක් මත එහි දාරයේ නිශ්වලව සිටින ස්කන්ධය $2 imes 10^{-6} \; ext{kg}$ (2 මිලිගුෑම්) වූ කුහුඹුවකු කටින් පිඹ $0.2\,\mathrm{s}$ කාලයක දී ඉවත් කරනු ලැබේ. පිඹින දිශාව රූපයේ ඊතල මගින් පෙන්වා ඇති පරිදි තිරස් වේ. කුහුඹුවා $0.5\,\mathrm{m\,s^{-1}}$ තිරස් පුවේගයකින් පිඹින දිශාවට විසි වේ නම්, පිඹීම මගින් කුහුඹුවා මත ඇති කරන බලයේ සාමානෳ අගය වනුයේ,

- (1) $5 \times 10^{-6} \,\mathrm{N}$
- (2) 1×10^{-5} N (3) 2×10^{-5} N (4) 1×10^{-3} N
- (5) $5 \times 10^{-3} \,\mathrm{N}$

- 14. මිදුණු පොකුණක තිරස් පෘෂ්ඨය මත තබා ඇති m ස්කන්ධයෙන් යුත් කුඩා වස්තුවකට තිරස් දිශාවට v_0 ආරම්භක වේගයක් ලැබෙන පරිදි පයින් පහරක් දෙනු ලැබේ. වස්තුව පෘෂ්ඨය මත තිරස් සරල රේඛාවක භුමණය වීමකින් තොරව චලනය වේ. වස්තුව සහ පෘෂ්ඨය අතර ගතික ඝර්ෂණ සංගුණකය μ වේ. වාතයේ පුතිරෝධය නොසලකා හැරිය හැකි නම්, වස්තුව නැවතීමට පෙර ගමන් කරන දුර වනුයේ,
 - $(1) \quad \frac{v_0^2}{2\mu g}$

(1) O
 (2) A
 (3) B
 (4) C
 (5) D

- $(2) \quad \frac{v_0^2}{\mu g}$
- $(3) \quad \frac{2v_0^2}{\mu g}$
- (4) $\frac{v_0^2}{2g}$
- $(5) \quad \frac{2v_0^2}{g}$

15. සැහැල්ලු සර්වසම දඬු දහයක් භාවිත කරමින් එක එකෙහි ස්කන්ධය m වූ සර්වසම ගෝල එකොළහක් සම්බන්ධ කර රූපයේ පෙන්වා ඇති පරිදි ඒකතල ව්‍යුහයක් සාදා ඇත. ව්‍යුහයේ ග්‍රරුත්ව කේන්දය පිහිටීමට වඩාත් ම ඉඩ ඇති ලක්ෂාය වනුයේ,

16. ස්කන්ධය $2 \ kg$ වූ කුට්ටියක් තිරස් පෘෂ්ඨයක් දිගේ තල්ලු කරනු ලැබේ. කුට්ටියෙහි විස්ථාපනය x, කාලය t සමග විචලනය රූපයේ පෙන්වා ඇත. කුට්ටිය මත එහි චලිත දිශාවට කියාකරන F සම්පුයුක්ත බලයේ අගයයන් 0 < t < 2, 2 < t < 4 සහ 4 < t < 5 යන කාල අන්තර එක එකක් තුළ දී නොවෙනස්ව පවතී. පහත කුමක් මගින් කාලාන්තර එක එකක් තුළ දී F හි විශාලත්වය නිවැරදි ව දැක්වෙයි ද?

	F(N)	F(N)	F(N)
	(0 < t < 2)	(2 < t < 4)	(4 < t < 5)
(1)	0	0	0
(2)	0	1.5	0
(3)	0	2	0
(4)	1	0	0
(5)	2	1.5	1

17. සරල අනුවර්තී චලිතයක යෙදෙන වස්තුවක විස්ථාපන (x) – කාල (t) වකුය රූපයේ පෙන්වයි. මෙම චලිතය සඳහා කාලාවර්තය T, සංඛmax සහ උපරිම ත්වරණය a_{max} යන ඒවායේ විශාලත්වයන් දෙනු ලබන්නේ,

$x(10^{-2} \text{ m})$	1)					
0	\searrow	/	1	_/	\downarrow	 <i>t</i> (s)
-2-	0.5	/I	1.5\	<i>J</i> 2	2.5	

	T(s)	f(Hz)	ω (s ⁻¹)	$v_{\text{max}} \times 10^{-2} (\text{m s}^{-1})$	$a_{\text{max}} \times 10^{-2} (\text{m s}^{-2})$
(1)	0.5	2	4π	4	16
(2)	1	1	2π	4π	$8\pi^2$
(3)	1	2π	2	4π	8
(4)	1	1	2π	8π	$16\pi^{2}$
(5)	1	1	4π	8	16

- 18. පූද්ගලයෙක්, තමා සිටින ස්ථානයේ සිට 1 km දුරින් නිශ්චලව සිටින අලියකු නිරීක්ෂණය කරයි. පුද්ගලයාට ඇසෙන අලියාගේ කුංච නාදයේ ධ්වනි තීවුතාව $10^{-10}~{
 m W\,m^{-2}}$ වේ. ධ්වනිය පැමිණෙන්නේ ලක්ෂාාකාර පුභවයකින් යයි උපකල්පනය කරන්න. පුද්ගලයාගේ ශුවාතා දේහලීය $10^{-12}\,\mathrm{W\,m^{-2}}$ නම්, ඔහුට මෙම කුංච නාදය ඇසිය හැක්කේ කුමන උපරිම දුරක සිට ද?
 - (1) 1 km
- (2) 2 km
- (3) 4.5 km
- (4) 10 km
- (5) 20 km
- $oldsymbol{19}$. P සහ Q යන රසදිය-වීදුරු උෂ්ණත්වමාන දෙකක් P හි රසදිය බල්බය Q හි රසදිය බල්බයට වඩා විශාල වන පරිදි නිර්මාණය කර ඒ දෙකම $0\,^{\circ}\mathrm{C}-100\,^{\circ}\mathrm{C}$ පරාසයේ දී කුමාංකනය කළ යුතුව ඇත. බල්බ දෙකෙහි ම බිත්තිවලට එකම ඝනකම ඇති බව උපකල්පනය කරන්න. පහත පුකාශ සලකා බලන්න. සුදුසු ඒකාකාර සිදුරු අරයයන් සහිත කේශික නළ භාවිත කරමින් උෂ්ණත්වමාන දෙක,
 - (A) $0\,^{\circ}\text{C}$ සහ $100\,^{\circ}\text{C}$ සලකුණු අතර එකම කේශික දිග ලැබෙන පරිදි නිර්මාණය කළ හැකි ය.
 - (B) මනින උෂ්ණත්වයේ ශීසු වෙනස්වීම් සඳහා එකම පුතිචාර කාලය ලැබෙන පරිදි නිර්මාණය කළ හැකි ය.
 - (C) P උෂ්ණත්වමානයේ සංවේදීතාව Q උෂ්ණත්වමානයේ සංවේදීතාවට වඩා වැඩි වන පරිදි නිර්මාණය කළ හැකි ය.

ඉහත පුකාශවලින්,

- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) B සහ C පමණක් සතා වේ.
- (4) A සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.
- ${f 20}$. ගිල්ලුම් තාපකයක් සවි කර ඇති සම්පූර්ණයෙන් පරිවරණය කරන ලද බොයිලේරුවකට $1 imes 10^{-2}~{
 m kg~s^{-1}}$ නියත ශීඝුතාවකින් $0\,^{
 m o}$ C හි ඇති ජලය නොකඩවා සපයනු ලැබේ. ජලයේ විශිෂ්ට තාප ධාරිතාව සහ වාෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය පිළිවෙළින් $4.2 imes 10^3~
 m J\,kg^{-1}~^{\circ}C^{-1}$ සහ $2.25 imes 10^6~
 m J\,kg^{-1}$ වේ. ජලය සපයන ශීඝුතාවයෙන්ම $100\,^{\circ}\mathrm{C}$ හි ඇති හුමාලය නිපදවීමට නම්, ගිල්ලුම් තාපකයේ ක්ෂමතාව විය යුත්තේ,
 - (1) 4.2 kW
- (2) 22.5 kW
- (3) 26.7 kW
- (4) 42.0 kW
- (5) 267.0 kW

- 21. පෙන්වා ඇති පරිපථයෙහි ධාරිතුක එක එකෙහි අගය 1 μF වේ. ධාරිතුක සම්පූර්ණයෙන් ම ආරෝපණය වූ විට ධාරිතුකවල ගබඩා වී ඇති මුළු ආරෝපණය වනුයේ,
 - (1) $2 \mu C$
- (2) $4 \mu C$
- (3) $5 \mu C$

- (4) $8 \mu C$
- (5) $10 \,\mu\text{C}$

22. රූපවල පෙන්වා ඇත්තේ ශිෂායකු විසින් අඳින ලද වාතයේ ඇති සබන් පෙණ බුබුළු කැටි පහකි. එක් එක් කැටියේ බුබුළුවල කේන්දු ඒකතල නම්, භෞතිකව තිබිය හැකි නිවැරදි හැඩය සහිත කැටිය පහත ඒවායින් කුමක් මගින් දැක්වේ ද?

23. රූපයේ පෙන්වා ඇති පරිදි, සඵල ආරෝපණය ධන වූ ආරෝපණ වහාප්තියක් ඇතුළත් වන පරිදි S නම් ගවුසියානු පෘෂ්ඨයක් ඇඳ ඇත. A ලෙස සලකුණු කර ඇති පෘෂ්ඨ කොටස හරහා විද්යුත් සුාවය $-\psi~(\psi>0)$ නම්, ගවුසියානු පෘෂ්ඨයේ ඉතිරි කොටස හරහා විද්යුත් සුාවය ψ_R පිළිබඳ ව පහත කුමක් සතා වේ ද?

(A), (B) සහ (C) පරිපථවල ඇති සර්වසම චෝල්ටීයතා පුභව තුනට නොගිණිය හැකි අභාපන්තර පුතිරෝධයක් ඇත. (B) පරිපථයෙහි (V) මගින් r අභාාන්තර පුතිරෝධයක් සහිත වෝල්ට්මීටරයක් නිරූපණය කෙරේ.

 $R_3=rac{R_{
m l}r}{R_{
m l}+r}$ නම්, පරිපථවල පෙන්වා ඇති I_1,I_2 සහ I_3 පිළිබඳ ව පහත කුමක් සතා වේ ද?

- (1) $I_1 = I_2 = I_3$ (4) $I_2 = I_3 > I_1$

- (2) $I_1 > I_2 > I_3$ (5) $I_3 > I_2 > I_1$
- (3) $I_1 > I_2 = I_3$

 ${f 25}$. පෙන්වා ඇති රූපයේ, ${f Z}$ මගින් නොදන්නා අගයයන්වලින් සමන්විත පුතිරෝධක ජාලයක් දැක්වේ. වෝල්ටීයතා පුභවයේ අභාාන්තර පුතිරෝධය නොගිණිය හැකි නම්, ජාලය මගින් විසර්ජනය කෙරෙන ක්ෂමතාව වනුයේ,

- (1) 60 mW
- (2) 90 mW
- (3) 120 mW

- (4) 150 mW
- (5) 180 mW

 ${f 26}$. රූපයේ පෙන්වා ඇති 1,2,3,4,5 සහ ${f 6}$, සර්වසම විදුලි බල්බ හයක් නිරූපණය කරයි. පහත දී ඇති (A), (B) සහ (C) තත්ත්ව යටතේ දී පරිපථයෙහි කිුියාකාරිත්වය සලකන්න.

(A) 2 බල්බය දැවී ඇති විට.

(5) A, B සහ C සියල්ලෙහි දී ම ය.

- (B) 2 සහ 5 බල්බ දැවී ඇති විට.
- (C) බල්බ කිසිවක් දැවී නොමැති විට.

පරිපථයේ දැවී නොමැති බල්බ එකම දීප්තියකින් දැල්වෙනු දැකිය හැක්කේ,

(1) B හි දී පමණි.

- (2) C හි දී පමණි.
- (3) A සහ C හි දී පමණි.
- (4) B සහ C හි දී පමණි.

27. දී ඇති පරිපථයේ 🕕, ② සහ ③ යන 741 කාරකාත්මක වර්ධක තුන පිළිවෙළින් ±15 V, ±10 V සහ ±8 V ජව සැපයුම් මගින් කිුිිියාත්මක වේ. $V_1,\,V_2$ සහ V_3 යන පුතිදාන වෝල්ටීයතාවල ආසන්න අගයයන් පිළිවෙළින් දෙනු ලබන්නේ,

- (2) + 15 V, -10 V, -8 V
- (3) + 2V, +4V, -4V
- (4) -15 V, +10 V, +8 V
- $(5) + 15 V_1 + 10 V_2 + 8 V_3$

 ${f 28}$. දිග ${f 5l}$ සහ ස්කන්ධය ${f 5m}$ වූ ඒකාකාර ඍජු බර ලැල්ලක් 2l පරතරයෙන් පිහිටි ආධාරක දෙකක් මත රූපයේ පෙන්වා ඇති පරිදි ති්රස් ව තබා ඇත. ස්කන්ධය m වූ පින්තාරුකරුවකුට තමාගේ තීන්ත බාල්දිය රැගෙන සම්පූර්ණ ලෑල්ල දිගේම ඇවිදීමට අවශා වේ. ලෑල්ල

නොපෙරළෙන පරිදි පින්තාරුකරුට රැගෙන යා හැකි තීන්ත බාල්දියේ උපරිම ස්කන්ධය කුමක් ද?

- (1) $\frac{15m}{2}$
- (3) $\frac{5m}{4}$
- (4) m
- (5) $\frac{m}{4}$

29. ඉහළින් විවෘතව පවතින A, B සහ C ටැංකි තුනක් ආරම්භයේ දී රූපයේ පෙන්වා ඇති මට්ටම්වලට ජලයෙන් පුරවා ඇත. ඒවා ස්ථීතික තත්ත්ව යෙදිය හැකි, බිහිදොරකට ඉතා අඩු වේගයකින් ජලය සපයයි. V_1 සහ V_2 කපාට දෙක, කපාටයට ඉහළින් පවතින පීඩනය කපාටයට හෙළින් පවතින පීඩනයට වඩා වැඩි වූ විට පහළට පමණක් ජලය ගලා යාමට ඉඩ දෙයි. රූපයේ දක්වා ඇති ආරම්භක තත්ත්ව සහිත ව පද්ධතිය කිුියාකරවීමට සැලැස්වූ විට පද්ධතියේ ඉනික්බිති කිුියාකාරීත්වය වඩාත් ම හොඳින් විස්තර කෙරෙන්නේ පහත කුමන පුකාශයෙන් ද?

- (1) බිහිදොර තුළින් ජලය ගැලීමට C පමණක් දායක වේ.
- (2) බිහිදොර තුළින් ජලය ගැලීමට, ආරම්භයේ දී C දායකවීම පටන් ගන්නා අතර ඉන්පසු B ද ඊටත් පසුව A ද දායක වේ.
- (3) බිහිදොර තුළින් ජලය ගැලීමට, ආරම්භයේ දී A දායකවීම පටන් ගන්නා අතර ඉන්පසු B ද ඊටත් පසුව C දායක වේ.
- (4) ටැංකි තුන කිසිම විටක එක්වර බිහිදොර තුළින් ජලය ගැලීමට, දායකත්වය නොදක්වයි.
- (5) ආරම්භයේ දී ටැංකි තුනම බිහිදොර තුළින් ජලය ගැලීමට දායකවන අතර වැඩිම දායකත්වය C ගෙන් ලැබේ.
- ${f 30}$. යං මාපාංකය සෙවීමේ පරීක්ෂණයක දී එකම දුවායෙන් සාදන ලද W_1,W_2 සහ W_3 වෙනස් කම්බි තුනක් භාවිත කර විතතිය ΔL සමග යොදන ලද ආතනා බලය F අතර පුස්තාරය සඳහා රූපයේ පෙන්වා ඇති පරිදි පිළිවෙළින් G_1,G_2 සහ G_3 වකු තුනක් ලබාගන්නා ලදී. වෙනස් පුස්තාර ලැබීමට හේතුව පිළිබඳ ව කර ඇති පහත පුකාශවලින් කුමක් සතා වේ ද?

- (1) W_1 කම්බිය W_2 ට වඩා වැඩි දිගකින් හා අඩු හරස්කඩ වර්ගඵලයකින් සමන්විත විය හැකි ය.
- (2) W_1 කම්බියට W_2 ට සමාන දිගක් තිබිය හැකි නමුත් හරස්කඩ වර්ගඵලය W_2 ට වඩා අඩු ය.
- (3) W_3 කම්බියට W_1 ට සමාන හරස්කඩ වර්ගඵලයක් තිබිය හැකි නමුත් දිග W_1 ට වඩා වැඩි ය.
- (4) W_2 කම්බියට W_3 ට වඩා අඩු හරස්කඩ වර්ගඵලයක් තිබිය හැකි නමුත් දිග \hat{W}_3 ට වඩා වැඩි ය.
- W_3 කම්බියෙහි $\frac{1}{8}$ හරස්කඩ වර්ගඵලය අනුපාතයේ අගය W_1 හි එම අගයට වඩා වැඩි විය හැකි ය.
- 31. තුනී, පැතලි Z නම් තහඩුවක් X හා Y නම් විශාල තිරස් තහඩු දෙකක් අතර හරිමැද තබා අවකාශය දුස්සුාවී තෙලකින් රූපයේ දක්වා ඇති පරිදී පුරවා ඇත. දැන්, X නිශ්චලව තබා ගනිමින් Z තහඩුව තිරස් ව v නියත වේගයකින් දකුණු දෙසට ද Y තහඩුව තිරස් ව $\frac{v}{2}$ නියත වේගයකින් වම් දෙසට ද අදිනු ලබන අවස්ථාවක් සලකන්න. X සහ Y තහඩු අතර තුනී තෙල් ස්තරවල පුවේග දෛශික වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,

- 32. $^{A}_{Z}$ X නම් විකිරණශීලි මූලදුවාස එක දිගට සිදුවන ක්ෂයවීම් මගින් lpha අංශුන් අටක් සහ eta^- අංශුන් හයක් විමෝචනය කිරීමෙන් පසු ස්ථායී $^{206}_{82}$ Pb බවට පත්වේ. X මූලදුවායේ ඇති පුෝටෝන සහ නියුටෝන සංඛාා වන්නේ පිළිවෙළින්,
 - (1) 92, 130
- (2) 92, 146
- (3) 92,238
- (4) 104, 148
- (5) 146, 92

33. සිරස් තලයක වූ ඒකාකාර නොවන හරස්කඩ වර්ගඵලයක් සහිත නළයක් තුළින් අනවරත හා අනාකුල ලෙස ගලන දුස්සුාවී නොවන හා අසම්පීඩා තරල පුවාහයක් සලකන්න. නළයේ සිරස් හරස්කඩ රූපයේ පෙන්වයි. අනාකුල රේඛාවක පිහිටීම් තුනක් X, Y සහ Z මගින් දැක්වේ. X හි දී නළයේ හරස්කඩ වර්ගඵලය හා Z හි දී එම අගය සමාන වේ. X, Y සහ Z ස්ථානවල දී පිළිවෙළින්

ඒකක පරිමාවක චාලක ශක්ති (KE_X , KE_Y , KE_Z), ඒකක පරිමාවක විභව ශක්ති (PE_X , PE_Y , PE_Z) හා තරල පීඩන (PE_X , PE_Y , PE_Z) යන රාශිවල සාපේක්ෂ විශාලත්ව සඳහා පහත දී ඇති අසමානතා සලකා බලන්න.

$$(A) \quad KE_Z < KE_X < KE_Y$$

(B)
$$PE_X < PE_Z < PE_Y$$

(C)
$$P_y < P_z < P_x$$

ඉහත අසමානතාවලින්,

- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.
- 34. තැටියක්, කේන්දුය හරහා යන තැටියට ලම්බක අවල සිරස් අක්ෂයක් වටා සර්ෂණයෙන් තොරව එක්තරා කෝණික වේගයකින් නිදහසේ හුමණය වේ. රූපයේ පෙන්වා ඇති පරිදි කාලය t=0 දී භුමණය වන තැටියේ ගැටිය මතට නොගිණිය හැකි වේගයකින් මකුළුවෙක් සිරස් ව පහත් වී නිශ්චලතාවට පත්වෙයි. කාලය (t) සමග තැටියේ පමණක් කෝණික ගමාතාව (L) සහ කෝණික වේගය (ω) හි විශාලත්වවල විචලනයවීම වඩාත් හොඳින් පෙන්නුම් කරනුයේ,

35. ස්කන්ධ සර්වසම වූ A, B සහ C යන ඒකාකාර වස්තු තුනක සිරස් හරස්කඩවල් රූපයේ දැක්වේ. A යනු අරය r වූ සන ගෝලයකි. C යනු අරය r වූ තනි බිත්ති සහිත කුහර ගෝලයකි. ගෝල ඒවායේ අදාළ කේන්දු හරහා යන සිරස් අක්ෂ වටා භුමණය කළ හැකි ය. B යනු අරය r වූ තැටියක් වන අතර එය තැටියේ කේන්දුය හරහා යන තැටියේ තලයට ලම්බක අක්ෂයක් වටා භුමණය කළ හැකි ය. සියලුම රූප එකම

පරිමාණයට ඇඳ ඇත. A,B සහ C වස්තූන්වලට, සමාන කෝණික වේගයන් අත්කර දීමට ලබාදිය යුතු භුමණ චාලක ශක්තීන් පිළිවෙළින් KE_A , KE_B සහ KE_C නම්, පහත පුකාශනවලින් කුමක් සතා වේ ද?

- $(1) \quad \textit{KE}_{\textit{A}} < \textit{KE}_{\textit{B}} < \textit{KE}_{\textit{C}}$
- $(2) \quad KE_C < KE_A < KE_B$
- $(3) \quad KE_C < KE_B < KE_A$

- $(4) \quad KE_A < KE_C < KE_B$
- $(5) \quad KE_A = KE_B = KE_C$

- ${f 36}$. සුනඛයකු පුහුණු කිරීමට භාවිත කරන නළාවක් ${f 22~kHz}$ සංඛාාතයක් ඇති කරන අතර එය මිනිසාගේ ශුවාතා දේහලීයට වඩා වැඩි ය. සුනඛයාගේ පුහුණුකරුට නළාව වැඩ කරන බව තහවුරු කර ගනීමට අවශා වේ. පුහුණුකරු, තමා දිගු ඍජු මාර්ගයක් අයිතේ සිටගෙන සිටින අතරතුර එම මාර්ගයේම ගමන් කරන මෝටර් රථයක සිට මෙම නළාව පිඹින ලෙසට මිතුරකුට පවසයි. පුහුණුකරුට ඔහුගේ ශුවාතා දේහලීය වූ 20 kHz වල දී නළාවේ හඬ ඇසීම සඳහා මෝටර් රථයට තිබිය යුතු වේගය සහ එහි චලිත දිශාව වනුයේ, (වාතයේ ධ්වනි වේගය $340~{
 m m\,s^{-1}}$ වේ.)
 - (1) 31 m s $^{-1}$, පුහුණුකරුගෙන් ඉවතට. (2) 32 m s $^{-1}$, පුහුණුකරුගෙන් ඉවතට.
 - (3) $34 \,\mathrm{m \, s^{-1}}$, පුහුණුකරුගෙන් ඉවතට.
 - (4) $32~{
 m m}\,{
 m s}^{-1}$, පුහුණුකරු දෙසට.
 - (5) $34 \,\mathrm{m}\,\mathrm{s}^{-1}$, පුහුණුකරු දෙසට.
- 37. මේසයක සමතල ති්රස් පෘෂ්ඨය මත තබා ඇති කඩදාසි කැබැල්ලක 23 අංකය ලියා ඇත. තුනී උත්තල කාචයක් අංකයට යම්තමින් ඉහළින් තබා ඉන්පසු එය තුළින් අංකයේ පුතිබිම්බය දෙස බලමින් පුකාශ අක්ෂය සිරස් ව තබා ගනිමින් එය සිරස් ව ඉහළට හෙමින් ගෙන යනු ලැබේ. කාචය 23 අංකයෙන් කුමයෙන් ඉහළට ගෙන යන විට එහි පුතිබිම්බයේ විශාලත්වයේ හා හැඩයේ වෙනස්වීම පහත කුමක් මගින් වඩාත් හොඳින් දැක්වෙයි ද?
 - (1)
- - ... 23.23 23.23 (5)
- 38. රූපයේ පෙන්වා ඇති ඝන බිත්ති සහිත කුහර වීදුරු පුිස්මය වර්තන අංකය μ_{σ} වූ දුවාසයකින් සාදා ඇත. වාතය තුළ ගමන් කරන PQ ඒකවර්ණ අාලෝක කිරණයක් රූපයේ පෙන්වා ඇති පරිදි වීදුරු පෘෂ්ඨය මත පතනය වේ. නිර්ගත කිරණය $X,\,Y$ සහ Z දිශා ඔස්සේ පිළිවෙළින් ගමන් කරවීමට නම්, μ වර්තන අංකයක් සහිත පාරදෘශා තරල මගින් පිළිවෙළින් පුස්මයේ කුහරය **වෙන වෙනම** පිරවිය යුත්තේ

- (1) $\mu < \mu_g$, $\mu = \mu_g$ සහ $\mu > \mu_g$ ලෙසට ය.
- (2) $\mu > \mu_g^{\text{\tiny p}}, \; \mu < \mu_g^{\text{\tiny p}}$ සහ $\mu = 1$ ිලෙසට ය.
- (3) $\mu = 1$, $\mu = \mu_g$ සහ $\mu < \mu_g$ ලෙසට ය.
- (4) $\mu = 1$, $\mu < \mu_g$ සහ $\mu > \mu_g$ ලෙසට ය. (5) $\mu = \mu_g$, $\mu = 1$ සහ $\mu = \mu_g$ ලෙසට ය.
- 39. අලුතින් විවෘත කරන ලද බිස්කට් පැකට්ටුවක ඇති බිස්කට්, භාජනයක් තුළට දමන ලද අතර එයට වාතය ඇතුළු වීමට හෝ පිටවීමට නොහැකි වන පරිදි පියනකින් තදින් වසන ලදී. භාජනය තුළ ආරම්භක සාපේක්ෂ ආර්දුතාව 80% ක් බව ද සොයා ගන්නා ලදී. දින කීපයකට පසුව භාජනය තුළ සාපේක්ෂ ආර්දුතාව 30% දක්වා අඩු වී ඇති බව ද බිස්කට්වල ස්කන්ධය m පුමාණයකින් වැඩි වී ඇති බව ද සොයා ගන්නා ලදී. භාජනය තුළ උෂ්ණත්වය දිගටම නියතව පැවතියේ නම්, ආරම්භයේ දී භාජනය තුළ තිබූ ජල වාෂ්පවල ස්කන්ධය වූයේ
 - (1) $\frac{5m}{}$

වීදුරු

 $oldsymbol{40}$. සමාන දිගවල් හා සමාන හරස්කඩ වර්ගඵලවලින් යුක්ත තාප පරිවරණය කරන ලද තාප සන්නායක දඬු හතරක් උෂ්ණත්ව $100~^{\circ}\mathrm{C}$ හි හා $0~^{\circ}\mathrm{C}$ හි පවත්වාගෙන ඇති තාප කටාර දෙකක් අතර සම්බන්ධ කර ඇත්තේ කෙසේදැයි රූපයේ පෙන්වා ඇත. A යනු සෑම විටම නියත heta උෂ්ණත්වයක පවතින තාප පරිවරණය කරන ලද තාප කටාරයකි. දඬුවල k_1,k_2 හා k_3 තාප සන්නායකතා පිළිවෙළින් 10,30 සහ $50~\mathrm{W}~\mathrm{m}^{-1}~\mathrm{K}^{-1}$ වේ. නොසැලෙන අවස්ථාවේ දී Aකටාරයේ heta උෂ්ණත්වය වනුයේ,

- (1) 90 °C
- (2) 85 °C
- (3) 80 °C
- (4) 75 °C
- (5) 65 °C

41. රූපයේ පෙන්වා ඇති සිරස් හරස්කඩකින් යුත් විශේෂ හැඩයක් සහිත වීදුරු බෝතලයක් විශාල කුහරයකින් ද අරය r වූ කුඩා ගෝලාකාර කුහරයකින් ද කුමයෙන් අරය කුඩා වන දිග l වූ පටු නළයකින් ද සමන්විත වේ. පෙන්වා ඇති පරිදි විශාල කුහරයේ සම්පූර්ණ පරිමාව ද කුඩා කුහරයේ පරිමාවෙන් අර්ධයක් ද ආරම්භයේ දී 0 °C ඇති ජලයෙන් පුරවා ඇත. බෝතලයේ පුසාරණය නොගිණිය හැකි නම්, XY මට්ටමේ සිට ජල පෘෂ්ඨයට මනින ලද උස (h), ජලයේ උෂ්ණත්වය (θ) සමග වෙනස්වීම වඩාත් ම හොඳින් නිරූපණය කරනු ලබන්නේ,

42. (a) රූපයේ පෙන්වා ඇති පරිපථයේ කඩ ඉරි සහිත කොටුව තුළ පුතිරෝධක ජාලයක් අන්තර්ගත වී ඇත. 2 V බැටරියට නොගිණිය හැකි අභාගන්තර පුතිරෝධයක් ඇත. ab හරහා සම්බන්ධ කළ පරිපූර්ණ චෝල්ට්මීටරයක් 1 V පාඨාංකයක් ලබාදෙයි. චෝල්ට්මීටරය පරිපූර්ණ ඇමීටරයකින් පුතිස්ථාපනය කළ විට එය 2 mA අගයක් දක්වයි. කඩ ඉරි මගින් සලකුණු කර ඇති කොටුව තුළ ඇති පුතිරෝධක ජාලය වනුයේ,

43. පෙන්වා ඇති පරිපථයෙහි, X සහ Y මගින් කඩ ඉරි සහිත කොටුව තුළ පිහිටි විචලා වෝල්ටීයතා පුභවයක අගු නිරූපණය කෙරේ. P යනු විචලා පුතිරෝධකයකි. D යනු පරිපූර්ණ දියෝඩයකි. X ලක්ෂායේ වෝල්ටීයතාව V_X හි අගය 0 සිට 15 V දක්වා කුමයෙන් වැඩි කරන විට, පහත පුස්තාර අතුරෙන් කුමක් මගින්, XYට දකුණු පැත්තේ පරිපථ කොටසෙහි සමස්ත පුතිරෝධය R හි වෙනස්වීම නිවැරදි ව දක්වයි ද?

 $V_{x}(V)$

44. (a) රූපයේ පෙන්වා ඇති පරිදි සිදුරේ අරය ඒකාකාර වූ දිගු කේශික නළයක් ඝනත්වය $d_{\rm w}$ වූ ජලය සහිත බීකරයක සිරස් ව ගිල්වූ විට කේශික නළය තුළ ජල කඳ h_0 උසකට නගී. දැන් (b) රූපයේ පෙන්වා ඇති පරිදි බීකරයේ ජලය කැලඹීමක් **නොවන** පරිදි ජල පෘෂ්ඨය මතට ඝනත්වය d_0 ($< d_{\rm w}$) වූ තෙලක් සෙමෙන් වත් කරනු ලැබේ. ජලය සහ තෙල් එකිනෙක මිශු නොවන දුව බව උපකල්පනය කරන්න. ජල පෘෂ්ඨයේ සිට මනිනු ලබන කේශික නළය තුළ ජල කඳේ උස H, තෙල් තට්ටුවේ උස h සමග විචලනයවීම වඩාත් ම හොඳින් නිරූපණය කරනු ලබන්නේ,

- (1) 1 cm
- (2) 2 cm
- (3) 3 cm
- (4) 4 cm

46. ඒකාකාර සවිශක්තියකින් යුත් කඹයක් යොදා ගනිමින් කණ්ඩායම් දෙකක් රූපයේ පෙනෙන පරිදි තද තිරස් සමතල පෘෂ්ඨයක් මත කඹ ඇදීමේ තරගයක් ආරම්භ කරති. කණ්ඩායම් දෙකම සමාන බල යොදන අතර එහි පුතිඵලයක් ලෙස කඹය මත වූ O ලක්ෂාය **වලිත නොවේ**. මෙම අවස්ථාව පිළිබඳ ව කර ඇති පහත පුකාශ සලකන්න.

(A) කණ්ඩායම් දෙකේ එක් එක් සාමාජිකයා කඹය මත සමාන බල යොදනු ලබන්නේ නම්, කඹයේ හැම තැනම ආතතියේ විශාලත්වය සමාන වේ.

 (B) කඹය මත ආතතියේ විශාලත්වය එහි භේදක ආතතිය ඉක්මවා යයි නම්, කඹය කැඩෙනුයේ P සහ Qඅතර පිහිටි ලක්ෂායකින් පමණි.

(C) පුද්ගලයකු විසින් කඹය මත යෙදිය හැකි උපරිම බලයේ විශාලත්වය පුද්ගලයාගේ පාද සහ පෘෂ්ඨය අතර ස්ථිතික ඝර්ෂණ සංගුණකය මත රඳා පවතී.

ඉහත පුකාශවලින්,

- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.
- 47. රූපයේ පෙන්වා ඇත්තේ එකම දුවායෙන් සාදන ලද සර්වසම මාන සහිත ඒකාකාර ලී ඝනක තුනක් සහ සර්වසම ඒකාකාර ලෝහ ඝනක තුනක් යොදා ගතිමින් සාදන ලද (A),(B) සහ (C) වස්තු තුනකි. (A) සහ (B) හි ලෝහ ඝනක පිළිවෙළින් ලී ඝනකවල උඩට සහ යටට අලවා ඇත. (C) හි ලෝහ ඝනකය රූපයේ පෙනෙන පරිදි ලී ඝනකය තුළ ඔබ්බවා ඇත.

(A), (B) සහ (C) වස්තු තුන දැන් ඒවායේ දිශානතිය වෙනස් නොවන සේ සෙමින් පහත් කර ජල තටාකයක සිරස් ව පාවීමට සලස්වනු ලැබේ. **ලී ඝනක** ජලය තුළට ගිලී ඇති ගැඹුරු පිළිවෙළින් H_{A},H_{B} සහ H_{C} නම්, පහත සම්බන්ධතාවලින් කුමක් සතා වේ ද?

(1) $H_A > H_B > H_C$

(2) $H_A = H_B > H_C$ (4) $H_C > H_B > H_A$

- (3) $H_A^A = H_B^B = H_C^C$ (5) $H_A > H_C > H_B$
- $oldsymbol{48}$. රූපයේ පෙනෙන පරිදි කඩදාසියේ තලයට ලම්බකව O ලක්ෂායේ රඳවා තබා ඇති අනන්ත දිගකින් යුත් සිහින් ඍජු කම්බියක් කඩදාසිය තුළට I ධාරාවක් ගෙන යයි. කේන්දුය O ලක්ෂාය වූ ද අරය r වූ ද වෘත්තයක පරිධිය මත රඳවා තබා ඇති ඉහත කම්බියට සමාන්තර වූ තවත් අනන්ත දිගැති සමාන කම්බි නවයක් එක එකක් කඩදාසිය තුළට I ධාරාවක් ගෙන යයි. A සහ B කම්බි සඳහා හැර, එක ළඟ පිහිටි ඕනෑම කම්බි දෙකක් අතර කෝණික පරතරය පෙන්වා ඇති පරිදි 30° කි. අනෙකුත් කම්බි නිසා O කේන්දුයෙහි රඳවා ඇති කම්බියෙහි ඒකක දිගක් මත චුම්බක බලයෙහි විශාලත්වය සහ දිශාව වනුයේ,

 $(\cos 30^\circ = \frac{\sqrt{3}}{2}$ ලෙස ගන්න.)

- (1) $\frac{\mu_0 I^2}{2\pi r} \left(1 + \sqrt{3}\right)$, YO දිශාව ඔස්සේ ය. (2) $\frac{\mu_0 I^2}{2\pi r} \left(1 + \sqrt{3}\right)$, OY දිශාව ඔස්සේ ය.
- (3) $\frac{\mu_0 I^2}{\pi r} (1 + \sqrt{3})$, OY දිශාව ඔස්සේ ය. (4) $\frac{\mu_0 I^2}{2r} (1 + \sqrt{3})$, OX දිශාව ඔස්සේ ය.
- (5) $\frac{3\mu_0 I^2}{2\pi r}$, YO දිශාව ඔස්සේ ය.

 $oldsymbol{49}$. $oldsymbol{(a)}$ රූපයේ පෙන්වා ඇති $oldsymbol{PQ}$ ඒකලිත ලෝහ අක්ෂ දණ්ඩකින් සමන්විත සෙල්ලම් කාරයක් නියත v වේගයකින්, සිරස් හරස්කඩ zx තලයේ වූ සයිනාකාර මාර්ගයක් දිගේ (b) රූපයේ පෙන්වා ඇති පරිදි ගමන් කරයි. කාලය t=0 දී PQ අක්ෂ දණ්ඩ y අක්ෂය හා සමපාත වේ. සුාව ඝනත්වය $oldsymbol{B}$ වූ ඒකාකාර චුම්බක ක්ෂේතුයක් xy තලයට ලම්බකව +zදිශාවට පුදේශය පුරාම පවතී නම්, කාලය (t)සමග දණ්ඩෙහි Q කෙළවරට සාපේක්ෂව Pකෙළවරෙහි ප්රීත වී.ගා.බ. (e) හි වෙනස්වීම වඩාත් ම හොඳින් නිරූපණය කරනු ලබන්නේ, (පෘථිවි චුම්බක ක්ෂේතුයේ බලපෑම නොසලකා හරින්න.)

 ${f 50}.$ A,B,C සහ D මගින් දක්වා ඇත්තේ කඩදාසියේ තලයට අභිලම්බව තබා ඇති සමාන්තර සර්වසම ඍජුකෝණාසුාකාර ලෝහ තහඩු හතරක සිරස් හරස්කඩවල් ය. B,C සහ D තහඩුවල එක එකෙහි මධාා ලක්ෂායේ කුඩා සිදුරක් තිබේ. $m{(a)}$ රූපයේ පෙන්වා ඇති පරිදි තහඩු තුන තබා ඇත්තේ ඒවායේ සිදුරු සමාක්ෂව පිහිටන ලෙස ය. $m{A}$ තහඩුව භූගත කර සම්පූර්ණ පද්ධතියම රික්තයක තබා තිබේ. පෙන්වා ඇති පරිදි සිදුරු හරහා ඇති අක්ෂය මත O ස්ථානයේ කාලය t=0 දී නිශ්චල ඉලෙක්ටුෝනයක් ඇති කරනු ලැබේ. ඉලෙක්ටුෝනය සඳහා (b) රූපයේ පෙන්වා ඇති පුවේග (v) – කාල (t) වකුය ලබාගැනීමට තහඩුවලට යෙදිය යුත්තේ කිනම් $V_B,\ V_C,$ හා V_D චෝල්ටීයතාවන් ද?(දී ඇති වෝල්ටීයතාවන් පුායෝගිකව යොදාගැනීමට සුදුසු බව හා ගැටි ඵල සහ ගුරුත්වාකර්ෂණ බලපෑම් නොසලකා හැරිය හැකි බව උපකල්පනය කරන්න.)

(a) රූපය

	V_B	V_C	V_D
(1)	- 3 kV	+ 2.6 kV	0 V
(2)	+ 2.5 kV	$-2.6 \mathrm{kV}$	+ 3 kV
(3)	+2.5 kV	+ 2.4 kV	+ 200 V
(4)	+ 3 kV	+ 2.6 kV	- 2.8 kV
(5)	+ 3 kV	+ 3.2 kV	– 2.2 kV

යියලු ම හිමිකම් ඇවිරිණි / $m{\psi}$ ගුට பதிப்புரிமையுடையது / $All\ Rights\ Reserved$]

ලි ලංකා විභාග දෙපාර්තමේත්තුව ලි ලංකා විභාග දෙපාර්ත**ම් අවර්තා සහ ජනාග් අවර්තාගේ සහ ජනාග් අවර්තමේ**න්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ශුමාමකසට ප්රියාපාසි නිකානැස්සහඟ ශුමාමකසට ප්රියාප්ති නිකානැස්සහඟ් මුමාමකසට ප්රියාපාසි නිකානුස්සහඟ ශුමාමකසට ප්රියාපාසි නිකානුස්සහඟ ප්රියාපාසි නිකානුස්සහ ප්රියාපාසි විභාග ප්රියාපාසි සහ ප්රියාපාසිය සහ ප්රියාප්ධ සහ ප්රියාප්ථා සහ ප්රියාපාසිය සහ ප්රියාපා

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்று General Certificate of Education (Adv. Level) Examination, August 2018

භෞතික විදුනව பௌதிகவியல் П Physics II

2018.08.13 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time

- 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

වැදගත් :

- 💥 මෙම පුශ්න පතුය පිටු 16 කින් යුක්ත වේ.
- lpha මෙම පුශ්න පතුය ${f A}$ සහ ${f B}$ යන කොටස් දෙකකින් යුක්ත වේ. **කොටස් දෙකට ම** නියමිත කාලය **පැය** තුනකි.
- 🛪 ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

A කොටස - වපුහගත රචනා (පිටු 2 - 8)

සියලු ම පුශ්නවලට පිළිතුරු මෙම පතුයේ ම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවක් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

B කොටස - රචනා **(82) 9 - 16)**

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න හතරකට පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- 🛪 සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු ${f A}$ සහ ${f B}$ කොටස් එක් පිළිතුරු පතුයක් වන සේ, \mathbf{A} කොටස \mathbf{B} කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- 🔆 පුශ්න පතුයේ **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

_	
	පරීක්ෂකවරුන්ගේ පුයෝජනය
	සදහා පමණි

ව්භාග අංකය :

කොටස	පුශ්න අංක	ලැබූ ලකුණු
	i	
A	2	
A	_ 3 = =	e - 1-
	4	
	5	
	6	-
	7	
D	8	
В	9 (A)	
	9 (B)	
	10 (A)	
	10 (B)	

අවසාන ලකුණු ඉලක්කමෙන් අකුරින්

	සංකෙත අංක
උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
ලකුණු පරීක්ෂා කළේ	
අධීක්ෂණය කළේ	

$oldsymbol{A}$ **කොටස- වපුහගත රචනා** පුශ්න **හතරට ම** පිළිතුරු **මෙම පතුයේ ම** සපයන්න. (ගුරුත්වජ ත්වරණය, $g=10~\mathrm{N}~\mathrm{kg}^{-1}$)

මෙම තීරයේ කිසිවක් තො ලියන්න

1. පාසල් විදාහාගාරයක භාවිත කෙරෙන හෙයාර් උපකරණයේ පරීක්ෂණාත්මක ඇටවුමක් (1) රූපයේ පෙන්වා ඇත. පෙන්වා ඇති පරිදි x_{w} සහ x_{l} අදාළ සූචකවල M සලකුණට පිළිවෙළින්, බීකරවල ජල සහ දුව මට්ටම්වල සිට උසවල් නිරූපණය කරයි.

- (a) (i) හෙයාර් උපකරණයේ ක්ලිපයක් (clip) භාවිත කිරීමේ අරමුණ කුමක් ද?

(iii) පාඨාංක කට්ටලයක් ලබාගෙන පුස්තාරයක් ඇඳීමට පරීක්ෂණය සැලසුම් කරන විට, බලාපොරොත්තු වන දුව කඳේ සහ ජල කඳේ උසවල් එකිනෙකට සැලකිය යුතු තරම් වෙනස් නම්, එක් උසකට වඩා අනෙක් උසට වැඩි අවධානයක් යොමු කළ යුතු ය. ඔබ වැඩි අවධානයක් යොමු කරන උස (වඩා අඩු උසක් ඇති එක ද නැතහොත් වඩා වැඩි උසක් ඇති එක ද) කුමක් ද? හේතු දක්වමින්

ඔබේ පිළිතුර පැහැදිලි කරන්න.

(iv) සෑම අවස්ථාවක දී ම නළ තුළ ජල සහ දුව කඳන්වල උසවල් වෙනස් කර ක්ලිපය වැසීමෙන් පසු, නව උසවල්වල පාඨාංක ලබාගැනීමට පෙර තවත් සීරුමාරුවක් කිරීමට ඔබට අවශා වේ. මෙම සීරුමාරුව කිරීමට ඔබ විසින් අනුගමනය කරනු ලබන පරීක්ෂණාත්මක කුමවේදය ලියන්න.

.....

(b) (2) රූපයේ පෙන්වා ඇති උපකරණය, හෙයාර් උපකරණයේ නළ තුළ වායු පීඩනය වෙනස් කිරීමට භාවිත කළ හැකි ය. මෙම පද්ධතිය බ'නුලි මූලධර්මයට අනුව කියාකරයි. උපකරණයේ X නම් පුදේශය හරහා ගමන් කරන පටු ජල පිහිරේ වේගය කරාමය ආධාරයෙන් සීරුමාරු කිරීම මගින් *T* නළය තුළ වායු පීඩනය වෙනස් කළ හැකි ය. හෙයාර් උපකරණයේ වැඩිදියුණු කළ ආකාරයක් සෑදීමට, (2) රූපයේ පෙන්වා ඇති උපකරණයේ A ස්ථානය (1) රූපයේ පෙන්වා ඇති රබර් නළයේ A ස්ථානයට සම්බන්ධ කළ හැකි ය.

(i) නළවල දුව කඳන් **ස්ථාපනය** කිරීමේ දී, පාසල් විදනාගාරයේ ඇති හෙයාර් උපකරණයේ සහ (b) හි සඳහන් කළ හෙයාර් උපකරණයේ වැඩිදියුණු කළ ආකාරයේ භාවිත කෙරෙන කිුිිියාපිළිවෙළවල් ලියා දක්වන්න.

පාසලේ ඇති හෙයාර් උපකරණය :

හෙයාර් උපකරණයේ වැඩිදියුණු කළ ආකාරය :

(ii) සාමානායෙන් පාසල් විදාහගාරයේ ඇති උපකරණයට වඩා (b) හි සඳහන් කළ වැඩිදියුණු කළ ඇටවුම භාවිත කිරීමේ පුධාන **වාසියක්** දෙන්න.

(c) ඉහත (b) හි සඳහන් කළ වැඩිදියුණු කළ උපකරණය භාවිතයෙන් ලබාගන්නා ලද පාඨාංක කට්ටලයක් උපයෝගී කරගෙන අඳින ලද පුස්තාරයක් පහත පෙන්වා ඇත. පුස්තාරය, පිළිවෙළින් ජලය සහ $h_{\rm r} (\times 10^{-3} \, {\rm m})_{\rm A}$ 300

- (i) මෙම පරීක්ෂණයේ දී 1 mm නිරවදාෘතාවකින් දිග මැනිය හැකි පරිමාණයක් ඔබට සපයා ඇත. මෙම පරීක්ෂණයේ දී ලබාගත් h_w මිනුම් හා බැඳුණු උපරිම **හාගික** දෝෂය කුමක් ද?
- (ii) පුස්තාරය මත වූ P සහ Q ලක්ෂා දෙක භාවිත කරමින්, සල්ෆියුරික් අම්ලයේ සාපේක්ෂ ඝනත්වය ගණනය කරන්න.

θ (°C)

කිසිවක් නො ලිය

(h)	ශිෂායෙක් මෙම පරීක්ෂණයේ දී (2)(b) රූපයේ පෙන්වා ඇති නළය
	වෙනුවට (2)(a) රූපයේ පෙන්වා ඇති කේශික නළය භාවිත කිරීමට තීරණය
	කළේ ය. පාඨාංක කට්ටලයක් ලබාගැනීමේ දී මෙය වඩා වාසිදායක ද? වඩා
	අවාසිදායක ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.

2(a) රූපය 2(b) රූපය

(i) බන්සන් දාහකය වෙනුවට විද්යුත් උදුන් තැටියක් (Electric hot plate) භාවිත කිරීමෙන් ඔබට මෙම පරීක්ෂණය නිවැරදි ව කිරීමට හැකි වේ ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.

3. සෘජුකෝණාසුාකාර වීදුරු කුට්ටියක් සහ වල අණ්වීක්ෂයක් භාවිත කර වීදුරුවල වර්තන අංකය සෙවීමට ඔබට කියා ඇත. ලයිකොපෝඩියම් කුඩු ස්වල්පයක් ද වීදුරු කුට්ටියේ පුමාණයට කපන ලද සුදු කඩදාසි කැබැල්ලක් ද සපයා ඇත. සුදු කඩදාසි කැබැල්ලක් ද සපයා ඇත. සුදු කඩදාසි කැබැල්ලෙහි මැද 'X' අකුරක් සලකුණු කර ඇත. මෙම පරීක්ෂණය සඳහා භාවිත කළ හැකි වල අණ්වීක්ෂයක රූපසටහනක් (1) රූපයේ පෙන්වා ඇත.

(a) A,B,C සහ D මගින් සලකුණු කර ඇති කොටස් හඳුන්වා දෙමින්, ඒවායේ කාර්යයන් කෙටියෙන් සඳහන් කරන්න.

(කාවස	හඳුන්වා දීම	කාර්ගය
	\boldsymbol{A}		***************************************
	\boldsymbol{B}	***************************************	
	C	***************************************	
	D	***************************************	

(b)	පරීක්ෂණය ආරම්භ කිරීමට පෙර චල අණ්වීක්ෂයක් හුරුපුරුදු කර ගැනීමක් කරන අතරතුර, තිරස් ගමන් කරවීමට අදාළ සියුම් සැකැසුම් ඇණය කරකැවීමේ දී අනුරූප ව'නියර් පරිමාණය ගමන් නොකළ බව ශිෂායෙක් නිරීක්ෂණය කළේ ය. මෙයට හේතුව දෙන්න.
(c)	චල අණ්වීක්ෂයක පුධාන පරිමාණයේ සහ ව'නියර් පරිමාණයේ විශාල කළ රූපයක් පෙන්වා ඇත. මෙම
(0)	චල අණ්වීක්ෂයේ කුඩා ම මිනුම සෙන්ට්මීටර වලින් ගණනය කරන්න.
	0 1 2 cm
	0 10 20 30 40 50
(<i>d</i>)	පරීක්ෂණය ඇරඹීමට පෙර ඔබ උපනෙතෙහි සිදු කරන සීරුමාරුව කුමක් ද?
(e)	දැන්, දී ඇති කඩදාසි කැබැල්ල චල අණ්වීක්ෂයේ G වේදිකාව (stage) මත තබා වීදුරු කුට්ටිය තැබීමට පෙර, ' X ' සලකුණ භාවිත කර අණ්වීක්ෂය මගින් පළමු මිනුම ගැනීමට ඔබට කියා ඇත. මෙය සාක්ෂාත් කරගැනීම සඳහා ඔබ අනුගමනය කරන පරීක්ෂණාත්මක කුමවේදයේ පුධාන පියවරවල් ලියා දක්වන්න.
(f)	ඉහත (e) හි සඳහන් කළ මිනුමට අනුරූප පුධාන පරිමාණයේ සහ ව'නියර් පරිමාණයේ අදාළ පිහිටුම් පහත දක්වා ඇත. මිනුමට අනුරූප පාඨාංකය සෙන්ටිමීටර වලින් ලියා දක්වන්න.
	7 cm
	5 6 7cm
	0 10 20 30 40 50
	40 50
	ඉහත (අ) හි සඳහන් කළ පළමු මිනුම ගත් පසු ඔබ විසින් සිදු කළ යුතු අනෙක් මිනුමි දෙකට අදාළ පරීක්ෂණාත්මක කුමවේදවල වැදගත් පියවරවල් ලියා දක්වන්න.
	(i)
	(ii)

දී ඇත. 4.606 cm,	5.496 cm,	7.206 cm	
	Se 10 Se	ල වර්තන අංකය ගණනය කරන්න.	
-	2		
***************************************	****************	••••••	••••

			277
		් මගින් ${ m dc}$ මෝටරයක් කිුයාත්මක කරන ආකාරය ${ m (A)}$ රූපයේ පෙන ාකාරයට සමදුරින් විදින ලද සිදුරු කට්ටලයක් සහිත Y තැටියක්	
මා්ටරයේ අක්ෂය	ට ලම්බකව සවි ක	තර ඇත. තැටිය හුමණය වන විට LED ය මගින් නිපදවෙන ආලෝ	කය
දුරු හරහා ගො	ත් P පුකාශ දියෝ ${\mathfrak t}$	ධය මතට පතිත වේ. (C) රූපය බලන්න. (D) රූපයෙහි පෙන්වා ද	
කාශ දියෝඩ පරි	්පථය V වෝල්ටීය \imath	තාවක් ජනනය කරයි.	
		Y	
	— [, , ,]	LED .	
	dc මෝටරය ්		
	» L		†°
	-X		<u></u> −'ŏ
]	/	(D) රූපය	}
+445	7524		
- 1.5 V 1.5 V	1.5 V 1.5 V	(B) රූපය (C) රූපය	
(A) び	8979		
(A) 0ෑ a) X සංරචකය ෑ			
i) A woodaw t	vg200000.		
			••••
) <i>Y</i> තැටියේ භුම)ණ වේගය ඔබ ඡේ	වනස් කරන්නේ කෙසේ ද?	
\	. 1537	/ 100 m n 0 m n	
') සමාන්තරගත	ව 1.3 V කෝෂ හස	තරක් තිබීමේ වාසිය කුමක් ද?	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
) තැටියෙහි සිදු	රු 20 ක් ඇත්තේ	නම් සහ එය තත්පරයකට භුමණ 5 ක් ඇති කරන්නේ නම්, ආලෙ	න්ක
		ැති P මත වදින සංඛාහතය කුමක් ද?	4

***************************************	***************************************	•••••••••••••••••••••••••••••••••••••••	••••
		ාශ දියෝඩ පරිපථය මගින් ඇති කරන චෝල්ටීයතාව (V) කාලය	
සමග වෙනස් උපකල්පනය		දැයි පෙන්වීමට දළ සටහනක් අඳින්න. V හි උපරිම අගය $3\ { m V}$ ය	වැයි
Composition			

(f) ඉහත (D) රූපයේ පුකාශ දියෝඩ පරිපථයෙහි පුතිදානය, දැන් පහත පෙන්වා ඇති පරිපථයෙහි පුදානයට සම්බන්ධ කරනු ලැබේ. පරිණාමකයේ පුාථමිකයෙහි සහ ද්විතීයිකයෙහි වට සංඛ්‍යාව පිළිවෙළින් 25 සහ 750 ක් වේ. C ධාරිතාවයේ අගය ඉතා විශාල බව උපකල්පනය කරන්න. සෙනර් වෝල්ටීයතාව, $V_z = 75$ Vලෙස ගන්න.

(i) ඉහත පරිපථයෙහි භාවිත කර ඇත්තේ කුමන වර්ගයේ පරිණාමකයක් ද?

(ii) සෙනර් දියෝඩය හරහා බලාපොරොක්තු විය හැකි චෝල්ටීයකාවෙහි අගය කුමක් ද?

(iii) කාලය t සමග V_0 පුතිදාන චෝල්ටීයතාව වෙනස් වන ආකාරය පෙන්වීමට දළ සටහනක් අඳින්න. පුතිදාන චෝල්ටීයතාවෙහි විශාලත්වය, V_0 අක්ෂය මත දක්වන්න.

(g) ඉහත විස්තර කර ඇති පරීක්ෂණය මගින් dc වලින් dc ට (dc to dc) චෝල්ටීයතා පරිවර්තකයක් සෑදීමට කුමයක් සපයා ඇතැයි ශිෂායෙක් තර්ක කරයි. ඔබ මෙම තර්කය සමග එකඟ වන්නේ ද? පිළිතුර පැහැදිලි කරන්න.

සියලු ම හිමිකම් ඇවිරුණි / மුඟුට පුණිට්පුගිකගපුකLපානු / $All\ Rights\ Reserved$]

இவை சில்வ අදහර්තමේන්තුව ලී ලංකා විභාග අදහර්තමේන්**ශී ලංකා විභාග අදහර්තමේන්තුව මූ** ලංකා විභාග අදහර්තමේන්තුව මූ ලංකා විභාග අදහර්තමේන්තුව මූ ලංකා විභාග අදහර්තමේන්තුව මූ ලංකා විභාග අදහර්තමේන්තුව විභාගය යුතුව මූ ලංකා විභාග අදහර්තමේන්තුව විභාගය යුතුව මූ ලංකා විභාග අදහර්තමේන්තුව විභාගය යුතුව සහ අධ්ය සහ සහ අධ්

පුශ්න **ගතරකට** පමණක් පිළිතුරු සපයන්න. (ගුරුත්වජ ත්වරණය, $g=10~{
m N~kg}^{-1})$

- 5. (a) තරල පුවාහයක් සඳහා බ'තූලි සමීකරණය $P+rac{1}{2}dv^2+hdg$ = නියතයක්, යන්නෙන් ලිවිය හැකි අතර මෙහි සියලු ම සංකේතවලට සුපුරුදු තේරුම ඇත. $rac{1}{2}dv^2$ පදයට, ඒකක පරිමාවක ශක්තියේ **ඒකකය** ඇති බව පෙන්වන්න.
 - (b) ලොව ඇති උසස් වාරිමාර්ග පද්ධතිවලින් එකක් ශීූ ලංකාවේ පවතී. ගොවීන්ට හා ගැමීයන්ට ජලය සපයන එවැනි වාරිමාර්ග පද්ධතියක් (1) රූපයේ පෙන්වා ඇති පරිදි පුධාන අංග තුනකින් සමන්විත ය.

අංගය 1 : වැව හෝ ජලාශය සහ වැව් බැම්ම.

අං**ගය 2 : වායුගෝලයට** නිරාවරණය වී ඇති වැවේ සිට පිටතට ජලය ගෙන යන ඇළ මාර්ගය.

අංශය 3 : බිසෝකොටුව, බිත්ති කළුගල් හෝ ගඩොලින් සාදා ඇති සෘජුකෝණාසුාකාර ටැඹක හැඩැති සිරස් කුටීරය ((1) රූපය බලන්න). වැවෙන් ජලය පිට කිරීමට අවශා වූ විට, ජලය පළමුව බිසෝකොටුවට ඇතුළු වීමට ඉඩහරින අතර එය තුළ දී ජල පුවාහයේ වේගය විශාල

පිටතට ජලය වැඩි බැම්ම ලෙන යන අැළ මාර්ගය v_2 D C B (1) රූපය E

ලෙස අඩු වේ. බිසෝකොටුව තුළ දී එක්වරම ජල පුවාහයේ හරස්කඩ වර්ගඵලය වැඩිවීම මෙසේ අඩුවීමට එක් හේතුවකි. ඊට අමතරව, ජලය බිසෝකොටුවේ ගල් බිත්ති සමග ගැටීම නිසා ජල පුවාහයේ ශක්තියෙන් සැලකිය යුතු පුමාණයක් ද බිසෝකොටුව තුළ දී හානි වේ.

ඔබේ ගණනය කිරීම් සඳහා, රූපවල පෙන්වා ඇති තිත් ඉරි මාර්ග දිගේ අනවරත සහ අනාකූල පුවාහ තත්ත්වයන් යෙදිය හැකි බව ද වැව තුළ ජල මට්ටමේ උස නොවෙනස්ව පවතින බව ද උපකල්පනය කරන්න.

- (2) රූපයේ පෙන්වා ඇති පරිදි 1 සහ 2 අංගවලින් **පමණක්** සමන්විත වාරිමාර්ග පද්ධතියක් සලකන්න.
 - (i) වැව තුළ ජල මට්ටමේ උස h නම්, Q ලක්ෂායේ දී පිටවන ජලයේ වේගය v_1 සඳහා පුකාශනයක්, h සහ g ඇසුරෙන් වුහුත්පන්න කරන්න.
- (ii) $h=12.8~\mathrm{m}$ නම්, $v_{_1}$ හි අගය ගණනය කරන්න.
- (iii) Q ලක්ෂායේ දී ජලය මගින් ගෙන යන ඒකක පරිමාවක චාලක ශක්තිය ගණනය කරන්න. ජලයේ ඝනත්වය $1000~{
 m kg}~{
 m m}^{-3}$ වේ.
- (c) පිටවන ජලයේ විනාශකාරී බලය පාලනය කිරීමට, (1) රූපයේ පෙන්වා

ඇති පරිදි, පුරාතන ඉංජිනේරුවරුන් විසින්, 3 වන අංගය වන බිසෝකොටුව වැවට එක් කරන ලදී.

- (i) (1) රූපයේ පෙන්වා ඇති පරිදි වැවේ සිට බිසෝකොටුවට උමගක් හරහා ජලය ඇතුළු වේ. උමග කුමයෙන් සිහින් වන අතර, ඇත්දොර සහ බිහිදොරෙහි දී උමගේ හරස්කඩ වර්ගඵලයන් පිළිවෙළින් A සහ 0.6A බව උපකල්පනය කරන්න. උමග තුළ B ලක්ෂායේ දී ජල පුවාහයේ වේගය v_B ගණනය කරන්න. උමගේ E ඇත්දොරේ දී ජල පුවාහයේ වේගය c_B ගණනය කරන්න. උමගේ c_B ඇත්දොරේ දී ජල පුවාහයේ වේගය c_B ගණනය කරන්න.
- (ii) උමග තුළ B ලක්ෂායේ දී ජල පුවාහයේ පීඩනය P_B ගණනය කරන්න. වායුගෝලීය පීඩනය $1 imes 10^5~\mathrm{N~m^{-2}}$ වේ.
- (iii) ජල පුවාහයේ පීඩනය සහ වේගය පිළිවෙළින් $P_B^{\ B}$ වලින් 75% සහ $v_B^{\ B}$ වලින් 65% ක් වන අගයන්වල ඇති, පිටතට ජලය ගෙන යන ඇළ මාර්ගය තුළ වූ, C නම් ලක්ෂාය සලකන්න.
 - (1) C ලක්ෂායේ දී ජල පුවාහයේ පීඩනය P_C හි අගය **ලියන්න**.
 - (2) C ලක්ෂායේ දී ජල පුවාහයේ වේගය v_{C} හි අගය **ලියන්න**.
- (iv) (1) රූපයේ පෙන්වා ඇති D ලක්ෂායේ දී, පිටවන ජලයේ වේගය v_2 ගණනය කරන්න.
- (v) ඉහත (b) (iii) හි ගණනය කළ අගයට සාපේක්ෂව (1) රූපයේ පෙන්වා ඇති D ලක්ෂායේ දී ජලය මගින් ගෙන යන ඒකක පරිමාවක චාලක ශක්ති **හානියේ පුතිශතය** ගණනය කරන්න.
- (vi) වාරිමාර්ග පද්ධතියට බිසෝකොටුව එක් කිරීමෙන්, පිටතට යන ජල පුවාහයේ විනාශකාරී බලය පාලනය කිරීමට ආදි ඉංජිනේරුවන්ට හැකි වූයේ කෙසේ දැයි සැකෙවින් පැහැදිලි කරන්න.

පහත සඳහන් ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

සාමානායෙන් සුළඟ සහ ගුරුත්වය මගින් සාගර තරංග ඇති කරයි. සුනාමි තරංග සහ උදම් රළ මෙන්ම, සුළඟ මගින් සාගරයේ ඇති වන තරංග, ගුරුත්ව තරංග සඳහා උදාහරණ කිහිපයක් වේ. සාගර පාෂ්ඨය හරහා සුළඟ හමන විට සුළඟ මගින් සාගරයේ ජල පෘෂ්ඨය අඛණ්ඩව කළඹයි. මෙම තත්ත්වය යටතේ දී ජල-වාත අතුරු මුහුණතේ සමතුලිතතාව යළි ඇති කිරීමට ගුරුත්ව බලය උත්සාහ කරයි. මෙහි පුතිඵලයක් ලෙස සාගර තරංග තිර්මාණය වේ. ගැඹුරු-ජල තරංග සහ නොගැඹුරු-ජල තරංග වශයෙන් සාගර තරංග පුධාන ආකාර දෙකකට වර්ග කළ හැකි ය. ගැඹුරු-ජල තරංග සහ නොගැඹුරු-ජල තරංග යන **පද** සාගරයේ නියම ගැඹුර හා කිසි සම්බන්ධයක් නොමැත. සාගරයේ ගැඹුර (h), තරංගයේ (λ) තරංග ආයාමයෙන් අඩකට වඩා වැඩි, සාගරයේ ඇති තරංග ගැඹුරු-ජල තරංග ලෙස හැඳින්වේ. සාගරයේ ගැඹුර(h)තරංගයේ (λ) තරංග ආයාමයෙන් අඩකට වඩා අඩු වන විට ඒවා නොගැඹුරු-ජල තරංග ලෙස හැඳින්වේ. සාගරයේ දී ගැඹුරු-ජල තරංගවල තරංග ආයාම $1\,\mathrm{m-}1\;\mathrm{km}$ පරාසයක පවතින අතර ඉතාගැඹුරු-ජල තරංගවල තරංග ආයාම $10~\mathrm{km}$ - $500~\mathrm{km}$ පරාසයේ පවතී. ගැඹුර h වූ සාගරයක නොගැඹුරු-ජල තරංගවල පුචාරණ වේගය v හි අගය $v=\sqrt{gh}$ මගින් ලබාදෙයි. සාගරයේ සාමානා ගැඹුර 4 km පමණ වේ.

ජලය යට සිදුවන භූ කම්පන, සාගර පත්ලේ හෝ ඊට යට සිදුවන ගිනිකඳු පිපිරීම්, සහ විශාල උල්කාශ්මයක් සාගරය හා ඝට්ටනය වීම වැනි සාගරයේ මහා පරිමාණ කැළඹීම් හේතුකොට ගෙන පුබල සුනාමි ඇති වේ. සුනාමියක් යනු ගැඹුරු සාගරයේ දී 10 km-500 km පරාසයේ ඉතා දිගු තරංග ආයාම සහිත සාගර තරංග මාලාවක් වේ. වෙරළේ සිට ඉතා දුරින් ගැඹුරු සාගරයේ දී සුනාමි තරංගයේ හැඩය සයිනාකාර තරංගයකට ආසන්න කළ හැකි වුව ද 1 (a) රූපයේ දැක්වෙන පරිදි එය වෙරළ ආසන්නයේ නොගැඹුරු ජලයට ළඟා වන විට කුමයෙන් සංකීර්ණ ස්වරූපයක් අත්කර ගනී. සුනාමි තරංගයේ වෙරළට ළඟා වන පළමු කොටස ශීර්ෂයක් ද

නැතහොත් නිම්නයක් ද යන්න මත එය උදම් රළෙහි ශීඝු නැග්මක් හෝ බැස්මක් ලෙස දිස් විය හැකි ය. සමහර අවස්ථාවල දී වෙරළ තී්රයේ ඉමේ හි දී තරංගයේ හැඩයේ ඉදිරිපස $1\,(b)$ රූපයේ පෙන්වා ඇති පරිදි ඉතා සංකීර්ණ හැඩයක් ගත හැකි අතර එය වෙරළ තී්රයේ ඉම ශීඝුයෙන් පසුපසට යන ලෙස හා ඉන්පසුව පැමිණෙන මීටර කිහිපයක් දක්වා වර්ධනය වූ දැවැන්ත තරංග උසක් ලෙස දිස් විය හැකි ය. තරංග වේගය සහ තරංග උස යන දෙක ම මත රඳා පවතින, සාගර පෘෂ්ඨය හරහා සුනාමි තරංග ශක්තිය සම්පේුෂණය කිරීමේ ශීඝුතාව ආසන්න වශයෙන් නියත වේ. නොගැඹුරු ජලයට තරංග ඇතුළු වන විට සුනාමි තරංගයේ Hූ උසෙහි අගය

සාමානායෙන් $H_{_S}\!=\!H_{_d}\!\left(\!rac{h_{_d}}{h_{_c}}\!
ight)^{\! -\! 4}$ මගින් දෙනු ලැබේ.

මෙහි H_d යනු ගැඹුරු ජලයේ දී තරංග උස වන අතර, h_d සහ h_{arphi} යනු පිළිවෙළින් ගැඹුරු සහ නොගැඹුරු ජලයේ ගැඹුරවල් ය.

සාගරය හරහා සූතාම් තරංග පුචාරණය වන විට, තරංගයේ ශීර්ෂ වර්තනයට ලක්විය හැකි ය. එය ඇති වන්නේ තරංග ශීර්ෂය දිගේ ජලයේ ගැඹුර වෙනස් වන නිසා තරංගයේ කොටස් චෙනස් වේගවලින් ගමන් කරන බැවින් ය. එයට අමතරව, සූනාමි තරංගයේ ගමන් මගෙහි ඇති කුඩා දූපත්, ගල්පර වැනි බාධක සහ වෙරළ තී්රයට ආසන්නයේ සාගර පතුලේ උස්මිටි වෙනස්කම් නිසා මෙම තරංග නිරෝධනයට සහ විවර්තනයට භාජනය වේ. 2004 දෙසැම්බර් මස 26 වන දින සිදු වූ විනාශකාරී සුනාමියෙන් පසු විදහඥයින් කණ්ඩායමක් විසින් ශීු ලංකාවේ මුහුදු තීරයේ සුනාමි තරංග උසවල් නිමානය කර ඇත. (2) රූපයේ ඇති රේඛාවල දිගෙන් මුහුදු තීරයේ සුනාමි තරංගයේ ශීර්ෂවල උසවල් පෙන්වයි. පුාථමික පුභවයේ සහ බාධකවලින් පරාවර්තිත සහ විවර්තිත තරංග මගින් අධිස්ථාපනය වූ තරංග, මුහුදු තීරයේ තරංග උසවල්වල විෂම රටාවට සහ හානියේ විචලනයට හේතු පාදක වී ඇත.

- (a) සුළඟ සහ ගුරුත්වය මගින් සාගර තරංග ඇති වන්නේ කෙසේ දැයි කෙටියෙන් පැහැදිලි කරන්න.
- (b) සාගරයේ පවතින ගැඹුරු-ජල තරංග සහ නොගැඹුරු-ජල තරංග අතර වෙනස කුමක් ද?
- (c) ඡේදයේ සඳහන් කර ඇති, සුනාමි කරංග ඇති වන හේතු **තූන** මොනවා ද?
- (d) සාගරයේ ඇති විය හැකි සුනාමි තරංගවල ආකාරය (ගැඹුරු-ජල තරංග හෝ නොගැඹුරු-ජල තරංග) හඳුන්වා, 4 km සාමානා ගැඹුරක් ඇති සාගරයේ සුනාමි තරංගවල වේගය $\mathbf{m} \ \mathbf{s}^{-1}$ වලින් නිමානය කරන්න.

(f) සාගරයේ, ජලයේ ගැඹුර $6250~\mathrm{m}$ වූ ස්ථානයක සුනාමි තරංගයක උස ගණනය කරන්න. ජලයේ ගැඹුර $10~\mathrm{m}$ වූ ස්ථානයක තරංගයේ උස 5 m ලෙස ගන්න. සුනාමියෙහි තරංග ආයාමය සැලකිල්ලට ගනිමින් ගැඹුරු සාගරයේ සුනාමි තරංග අනාවරණය කිරීමට අපහසු ඇයි දැයි පැහැදිලි කරන්න.

- (g) වෙරළ තී්රයේ ඉමේ දී සුනාමි තරංගයක් 1 (b) රූපයේ පෙන්වා ඇති හැඩය ගන්නේ යැයි උපකල්පනය කරමින්, දැවැන්ත ජල කඳක් පැමිණීමට පෙර වෙරළ තී්රයේ ඉම ගොඩබිමින් ඉවතට යන්නේ ඇයි දැයි කෙටියෙන් පැහැදිලි කරන්න.
- (h) ඉහත (g) පුශ්නයෙහි සඳහන් කළ සුනාමි තරංග ආකෘතිය (3) රූපයේ පෙන්වා ඇති පරිදි සයිනාකාර තරංග කොටසකට ආසන්න කළ හැකි නම්, වෙරළ තී්රයේ ඉම පසුපසට සාගරය දෙසට යාම ආරම්භ කළ මොහොත සහ ජල කඳ පෙර වෙරළ තී්රයේ ඉමට ළඟා වීම අතර පවතින කාලය **මිනිත්තු** වලින් ගණනය කරන්න. සයිනාකාර තරංග කොටස සඳහා v = $10~{
 m m~s}^{-1}$ සහ λ = $18~{
 m km}$ ලෙස ගන්න.

- (i) යාබදව පිහිටි ඉතා අඩු තරංග උසවල් සහිත පුදේශ හා සන්සන්දනය කළ විට තරංග උස ඉතා විශාල වන සමහර ස්ථාන (2) රූපයේ පෙන්වයි. කුමන සංසිද්ධිය මේ සඳහා හේතුපාදක විය හැකි ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.
- (j) (2) රූපයේ පෙන්වා ඇති පරිදි 2004 දී සුනාමි තරංග දිවයිනේ බටහිර වෙරළට පවා ළඟා වීමට හේතුව ඇයි දැයි සැකෙවින් පැහැදිලි කරන්න.
- 7. (a) කොන්කීුට් යනු සිමෙන්ති, වැලි, ගල් සහ ජලයෙහි තද බවට පත් වූ මිශුණයකි. වෙරගැන්වූ කොන්කීුට් (Reinforced concrete) වනුහයන් යනු කොන්කීුට් සහ වාතේ කම්බි කුරුවලින් සමන්විත වනුහයන් ය. වාතේ සහ කොන්කීුට් වැනි සියලු ම දෘඪ වස්තූන් යම්තාක් දුරකට පුතාහස්ථ වේ. කොන්කී්ට් සම්පීඩනය යටතේ දී ශක්තිමත් වුවත් විතතිය යටතේ දී **දුර්වල** වන අතර, වානේ මෙම අවස්ථා දෙකම යටතේ දී ශක්තිමත් ය. සංයුක්තයක් ලෙස පුධාන වශයෙන් කොන්කීුට් සම්පීඩනයට පුතිරෝධී වන අතර පුධාන වශයෙන් වානේ කම්බි කුරු ආතතිය දරාගනී.
 - 1 (a) රූපයේ පෙන්වා ඇති පරිදි W භාරයකට යටත්ව, ආධාරක දෙකක් මත තබා ඇති වානේ කම්බි කුරු **නොමැති** සෘජුකෝණාසුාකාර හරස්කඩකින් යුත් සාමානාෳ කොන්කීු්ට් බාල්කයක් සලකන්න. මෙම තත්ත්වය යටතේ තිත් ඉරි මගින් පෙන්වා ඇති පරිදි බාල්කයේ පහළ කොටස විතතියක් අත්දකින අතර ඉහළ කොටස සම්පීඩනයක් අත්දකී.

- $({
 m i})$ W භාරය යටතේ, සාමානාෳ කොන්කීුට් බාල්කයේ ඉරිතැලීමට වඩාත්ම ඉඩ ඇත්තේ කුමන (උඩ හෝ යට) පැත්ත ද?
- (ii) 1 (a) රූපයේ පෙන්වා ඇති තත්ත්වය වැඩිදියුණු කිරීම සඳහා 1 (b) රූපයේ පෙන්වා ඇති පරිදි, කොන්කීුට් නිෂ්පාදන අවස්ථාවේ දී වානේ කම්බි කුරු කොන්කීුට් බාල්කයේ පතුලට ආසන්නයෙන් ඇතුළත් කරනු ලබයි. මෙමගින් කොන්කී්ට් බාල්කයේ භාර දරාගැනීමේ හැකියාව වැඩිදියුණු වී ඉරිතැලීම වැළැක්වෙනුයේ කෙසේ දැයි මෙම පුශ්නය ආරම්භයේ දී ඇති තොරතුරු උපයෝගී කරගනිමින් පැහැදිලි කරන්න.

(b) මෘදු වානේ (S) සඳහා ආතනා පුතාාබලය $\left(rac{F}{A}
ight)_S$ - විකිුයාව $\left(rac{\Delta l}{l}
ight)_S$ අතර සම්බන්ධය 2 (a) රූපයේ පෙන්වා ඇති පරිදි ආදර්ශනය කළ හැකි ය. කොන්කී්ට් පහසුවෙන් කැඩෙන සුළු (හංගුර) දුවායක් වුව ද, **ආතනා බලයක් යටතේ** කොන්කී්ට්වල (C) ආතනා පුතාහබලය $\left(rac{F}{A}
ight)_C$ - විකිුයාව $\left(rac{\Delta l}{l}
ight)_C$ අතර සම්බන්ධය $2\,(\mathrm{b})$ රූපයේ පෙන්වා ඇති පරිදි ආදර්ශනය කළ හැකි ය. වෙරගැන්වූ කොන්කීුට්වල වාතේ කම්බි කුරු කොන්කීුට්වලට ඉතා හොඳින් බැඳී ඇති අතර, කොන්කීට් පඑදු වන තුරු ඒවා එකට බැඳී බාහිර භාරයන්වලට පුතිරෝධය දක්වයි. 2 (b) රූපයේ පෙන්වා ඇති වකුය P ලක්ෂාsයට පැමිණි විට **කොන්බ්ට් පළුදු වේ**.

- 2 (a) සහ 2 (b) රූප භාවිත කරමින්
 - (i) මෘදු වානේවල යංමාපාංකය $E_{arsigma}$ ගණනය කරන්න.
- (ii) කොන්කීුට්වල යංමාපාංකය E_{C} ගණනය කරන්න.

(c) දෘඪ ති්රස් පෘෂ්ඨයක් මත තබා ඇති දිග l වූ වෙරගැන්වූ ඒකාකාර කොන්කීට් බාල්කයක් (3) රූපයේ පෙන්වා ඇත. එක එකෙහි දිග l වූ ඒකාකාර සිලින්ඩරාකාර සර්වසම, මෘදු වානේ කම්බි කුරු හතරකින් සහ කොන්කීට්වලින් බාල්කය වෙරගන්වා ඇත. භාවිත කළ කොන්කීට් සහ වානේවලට අදාළ පුතාහබලය-විකිුයාව සම්බන්ධතා පිළිවෙළින් 2 (a) සහ 2 (b) රූපවල දී ඇත. බාල්කය එහි හරස්කඩ වර්ගඵලය පුරාම ඒකාකාරව යොදා ඇති F_{I} සමස්ත ආතනා බලයකට යටත්ව තබා ඇති අතර ආතනා බලය යටතේ කොන්කීට් සහ මෘදු වානේ කම්බි කුරු Δl එකම විතතියක් ඇති කරන බව උපකල්පනය කරන්න.

- (i) කොන්කීට් මත ආතනා බලය (F_C) සඳහා පුකාශනයක්, E_C කොන්කීට්වල හරස්කඩ වර්ගඵලය A_C l සහ Δl ඇසුරෙන් ලියන්න.
- (ii) මෘදු වානේ කම්බි කුරු **හතරම මත** ආතනz බලය (F_g) සඳහා පුකාශනයක්, E_g මෘදු වානේ කම්බි කුරු **හතරෙහිම** මුළු හරස්කඩ වර්ගඵලය A_g l සහ Δl ඇසුරෙන් ලියන්න.
- (iii) කොන්කීට් පඑදු වීමට පෙර, සමස්ත ආතනා බලය $(F_{\!_{I\!\!P}})$ කොන්කීට් සහ වානේ යන දෙකම මගින් දරා සිටියි නම්, වෙරගැන්වූ කොන්කීට් බාල්කය මත **සමස්ත** ආතනා බලය $F_{\!_{I\!\!P}}$ සඳහා පුකාශනයක් ලබාගන්න.
- (iv) වෙරගැන්වූ කොන්කුීට් බාල්කයේ A හරස්කඩ වර්ගඵලය dh වේ. (3) රූපය බලන්න. බාල්කය සඳහා $l=2000~{
 m mm}$, සිලින්ඩරාකාර මෘදු වානේ කම්බි කුරක අරය $r=6~{
 m mm}$, $\Delta l=0.1~{
 m mm}$, $d=150~{
 m mm}$ සහ $h=250~{
 m mm}$ වේ.
 - (1) ඉහත (c) (iii) හි ලබාගත් පුකාශනය භෞතිකව වලංගු වන්නේ කුමන තත්ත්වයක් යටතේ ද? වෙරගැන්වූ කොන්කී්ට් බාල්කය සඳහා ඉහත දී ඇති දත්ත භාවිත කර (c) (iii) හි ලබාගත් පුකාශනය, බාල්කය සඳහා භෞතිකව වලංගු වන බව පෙන්වන්න.
 - (2) F_t හි අගය ගණනය කරන්න. (ඔබගේ ගණනය කිරීම සඳහා, $\frac{A_S}{A} \leq 3\%$ නම් $A_C = dh$ ලෙස ගන්න. එසේ නැතහොත් $A_C = dh A_S$ ලෙස ගන්න. $\pi = 3$ ලෙස ගන්න.)
- (v) වෙරගැන්වූ කොන්කීු්ට් බාල්කය පඑදු කරන අවම ආතනා බලය ගණනය කරන්න.
- 8. 1 (a) රූපයේ පෙන්වා ඇති පරිදි පළල d සහ ඝනකම t වූ, තඹ පටියක් ඉහළ සිට පහළට I ධාරාවක් රැගෙන යයි. පටියේ තලයට ලම්බක දිශාවට සහ එය තුළට පිහිටි සුාව ඝනත්වය B වූ ඒකාකාර චුම්බක ක්ෂේතුයක පටිය තබා ඇත. එම සැකසුමේ හරස්කඩ පෙනුම ද 1 (b) රූපයේ පෙන්වා ඇත. ආරෝපණ වාහක ඉලෙක්ටුෝන වන අතර ඒවා v_d ප්ලාවිත වේගයකින් ප්ලවනය වේ.

- (a) (i) 1(b) රූපයේ පෙන්වා ඇති ඉලෙක්ටෝනය (P) මත කි්යාකරන චුම්බක බලයේ දිශාව කුමක් ද? 1(b) රූපය ඔබේ පිළිතුරු පතුයට පිටපත් කර ගෙන මෙම බලයේ දිශාව පෙන්වීමට, ඉලෙක්ටෝනය මත ඊතලයක් පැහැදිලි ව අඳින්න.
 - (ii) දැන් ඔබ, 1 (b) රූපයේ පෙන්වා ඇති තඹ පටිය, ධන ලෙස ආරෝපිත වූ වාහක සහිත වෙනත් පටියකින් පුතිස්ථාපනය කරන්නේ නම්, ධන ලෙස ආරෝපිත වාහකයක් මත කිුිිියාකරන චුම්බක බලයේ දිශාව කුමක් ද?
- (b) (i) කාලය ගෙවීයන විට ඉහත (a)(i) හි විස්තර කළ තඹ තහඩුවෙහි **පවතින ආරෝපණ** සැලකු විට නව සමතුලිත තත්ත්වයක් ඇති වේ. (2) රූපය ඔබේ පිළිතුරු පතුයට පිටපත් කර ගෙන ධන ආරෝපණ නිරූපණය කිරීමට '+' ද සෘණ ආරෝපණ නිරූපණය කිරීමට '-' ද භාවිත කරමින් මෙම නව සමතුලිත තත්ත්වය විදහා දක්වන්න.

- (ii) (b) (i) හි සඳහන් කළ සමතුලිත තත්ත්වය ඇති වීමට හේතුව පැහැදිලි කරන්න.
- (iii) p-වර්ගයේ අර්ධ සන්නායකයක ඇති කුහර ධන ලෙස ආරෝපිත වාහක බව සතාාපනය කිරීමට, ඔබ මෙම ආචරණය භාවිත කරන ආකාරය සැකෙවින් විස්තර කරන්න.
- (c) (i) හෝල් වෝල්ටීයතාව $V_H^{}$ සඳහා පුකාශනයක් $v_{d^{\prime}}^{}$ B සහ d ඇසුරෙන් වහුත්පන්න කරන්න.
 - (ii) තඹ වැනි සන්නායකයක් තුළින් ගමන් කරන I ධාරාව, $I=neAv_d$ ලෙස ලිවිය හැකි අතර මෙහි සියලු ම සංකේත සඳහා ඒවායේ සුපුරුදු තේරුම ඇත.
 - (1) $I = neAv_A$ සමීකරණය වහුත්පත්ත කරන්න.
 - (2) තඹ පටිය සඳහා n,e,t,I සහ B ඇසුරෙන් V_H සඳහා පුකාශනයක් ලබාගන්න.
 - (3) ඒකාකාර $0.5~{\rm T}$ වුම්බක ක්ෂේතුයක ඇති ඝනකම $1\times 10^{-3}~{\rm m}$ වූ තඹ පටියක් සලකන්න. $I=48~{\rm A}$ සහ $V_H=1.5\times 10^{-6}~{\rm V}$ නම්, තඹවල ඒකක පරිමාවක ආරෝපණ වාහක සංඛ්‍යාව ගණනය කරන්න. $e=1.6\times 10^{-19}~{\rm C}$ ලෙස ගන්න.

(d) හෘදරෝග වෛදාපවරු විද්යුත් චුම්බක පුවාහ මීටර භාවිත කරමින් ධමනි තුළ රුධිරයේ පුවාහ වේගය අධීක්ෂණය කරති. එවැනි පුවාහ මීටරයක අදාළ කොටස්වල දළ සටහනක් (3) රූපයේ පෙන්වා ඇත.

ධමනි තුළ රුධිරය සමග රුධිර පුවාහ වේගය වන v වලින්ම එම දිශාවටම ගමන් කරන Na^+ සහ Cl^- විශාල අයන සාන්දුණයක් රුධිර ප්ලාස්මාවල අන්තර්ගත වේ. රුධිරයේ ඇති අයන, ආරෝපණ වාහක ලෙස හැසිරෙන බව උපකල්පනය කරන්න.

- (i) (3) රූපයේ පෙන්වා ඇති ධමනිය තුළින් රුධිරය ගලන විට, P ඉලෙක්ටෝඩයේ ධුැවීයතාව කුමක් ද? ඔබේ පිළිතුරට හේතුව දෙන්න.
- (ii) පද්ධතියට යෙදූ ඒකාකාර චුම්බක ක්ෂේතුයේ සුාව ඝනත්වය B ද ධමනියේ විෂ්කම්භය D ද නම්, P සහ Q ඉලෙක්ටෝඩ දෙක හරහා වෝල්ටීයතාව V_{PQ} හි විශාලත්වය සඳහා පුකාශනයක් v, B සහ D ඇසුරෙන් ලියන්න.
- (iii) $V_{PQ} = 160 \, \mu \text{V}$, $D = 5 \, \text{mm}$ සහ $B = 2 \times 10^3 \, \text{ගවුස්} \, (1 \, \text{ගවුස්} = 10^{-4} \, \text{T})$ නම්, ධමනිය තුළ රුධිරයේ වේගය v හි අගය ගණනය කරන්න.

$oldsymbol{9.}$ (\mathbf{A}) කොටසට හෝ (\mathbf{B}) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- $({f A})$ (1) රූපයේ පෙන්වා ඇති පරිපථයේ 5 ${f V}$ කෝෂයට ඇත්තේ නොගිණිය හැකි අභාාන්තර පුතිරෝධයකි. ${f Z}$ යනු පුතිරෝධකයකි.
- $\int_{-5}^{4S} v z$

(1) රූපය

- (a) S ස්විච්චිය වැසූ පසු Z පුතිරෝධකයේ අගය 1 k Ω වන විට එහි ක්ෂමතා හානිය ගණනය කරන්න. (b) (2) රූපයේ පෙන්වා ඇති සෘජුකෝණාසුාකාර ABCD චෝල්ටීයතා ස්පන්දය ඇති කිරීම සඳහා දැන් ස්විච්චිය වරක් සංවෘත කර විවෘත කරනු ලැබේ.
 - වෝල්ටීයතා ස්පන්දයේ විස්තාරය සහ පළල පිළිවෙළින් 5~V සහ 10~ms වේ. ස්පන්දය ඇති කළ විට එය පරිපථය තුළින් $2\times 10^6~m~s^{-1}$ වේගයක් සහිත ව ගමන් කරයි. පරිපථය තුළින් ගමන් කරන විට ස්පන්දයේ සෘජුකෝණාසුාකාර හැඩය නොවෙනස්ව පවතින බව උපකල්පනය කරන්න.

- (i) $2 \, \mathrm{cm}$ දිගක් සහිත Z පුතිරෝධකයේ දිග හරහා ගමන් කිරීමට චෝල්ටීයතා ස්පන්දයේ AB බෑවුමට කොපමණ කාලයක් ගත වේ ද?
- (ii) Z පුතිරෝධකයේ සම්පූර්ණ දිග හරහාම $5\,\mathrm{V}$ මුළු චෝල්ටීයතාව ආසන්න වශයෙන් කොපමණ කාලයක් පවතී ද?
- (iii) Zපුතිරෝධකයේ අගය $1\,\mathrm{k}\,\Omega$ ලෙස උපකල්පනය කරමින් පුතිරෝධකය තුළ වෝල්ටීයතා ස්පන්දය මගින් හානි කරනු ලබන ශක්තිය ගණනය කරන්න.
- (c) (3) රූපයේ පෙන්වා ඇති සෘජුකෝණාසුාකාර චෝල්ටීයතා තරංග ආකෘතිය ලබාගැනීම සඳහා දැන් S ස්විච්චිය අඛණ්ඩව සංවෘත සහ විවෘත කරනු ලැබේ.

(3) රූපයේ පෙන්වා ඇති පරිදි ස්පන්දයක පළල $1~{
m ms}$ සහ චෝල්ටීයතා තරංග ආකෘතියේ ආවර්ත කාලය $5~{
m ms}$ වේ. මෙම තත්ත්වය යටතේ Z පුතිරෝධකයේ අගය $1~{
m k}~\Omega$ වන විට එය තුළ ක්ෂමතා හානිය ගණනය කරන්න.

(d) Yස්පත්දන ධාරා පුභවයක් මගින් නිපදවන ලද විස්තාරය I_0 සහ පළල T_0 වූ සෘජුකෝණාසුාකාර ධාරා ස්පන්දයක් (4) රූපයේ පෙන්වා ඇති පරිදි දිග l_1 සහ l_{γ} වන පුතිරෝධක කම්බි දෙකක් තුළට ගමන් කරයි. පරිපථයේ ඇති අනෙක් සෑම සම්බන්ධක කම්බියකම නොගිණිය හැකි පුතිරෝධ ඇතැයි උපකල්පනය කරන්න. දිග l_1 සහ l_2 ද එක එකෙහි හරස්කඩ ක්ෂේතුඵලය A ද වූ පුතිරෝධක කම්බි දෙක සාදා ඇත්තේ පුතිරෝධකතාව ho

- (i) R_1 සහ R_2 යනු පිළිවෙළින් දිග l_1 සහ l_2 වන කම්බිවල පුතිරෝධ නම්, R_1 සහ R_2 සඳහා පුකාශන ලියන්න.
- (ii) දිග l_1 සහ l_2 වන කම්බි හරහා පිළිවෙළින් ගමන් කරන ධාරා ස්පන්දයන්ගේ I_1 සහ I_2 විස්තාර සඳහා පුකාශන, I_0 , $l_1^{}$ සහ $l_2^{}$ ඇසුරින් ව<u>ා</u>ුත්පන්න කරන්න.
- (e) (5) රූපයේ පෙන්වා ඇති පරිදි වායුමය X-කිරණ අනාවරකයක් සුදුසු වායුවකින් වට වී ඇති දිග L වූ PQ පුතිරෝධක ඇනෝඩ කම්බියකින් සමන්විත ය. (5) රූපයේ පෙන්වා ඇති පරිදි පටු ඉලෙක්ටුෝන ස්පන්දයක් ඇනෝඩ කම්බියෙහි S ලක්ෂායට ආසන්නව **වායුව තුළ** ඇති කරමින් X-කිරණ ෆෝටෝනයක් වායුව මගින් අවශෝෂණය කරගත්තේ යැයි සිතමු. මෙම ඉලෙක්ටුෝන ස්පන්දය වායුවෙන් ඇදගෙන PQ ඇනෝඩ කම්බිය මත S ලක්ෂායේ දී ඉලෙක්ටුෝන ධාරා ස්පන්දයක් ඇති කිරීමේ හැකියාවක් ඇනෝඩ කම්බියට ඇත. අනතුරුව ඉලෙක්ටුෝන ධාරා ස්පන්දය දෙකට බෙදී v වේගයෙන් කම්බියේ දෙපැත්තට ගමන් කරයි.

 Δt යනු ඉලෙක්ටුෝන ධාරා ස්පන්ද දෙක ඇනෝඩ කම්බියේ Pසහ Q දෙකෙළවරට ළඟා වීමට ගන්නා කාලයන් අතර **පරතරය** නම්, X -කිරණ ෆෝටෝනය අවශෝෂණය කරගත් S ලක්ෂායට P ලක්ෂායේ සිට දුර වන x සඳහා පුකාශනයක් $\Delta t,\ v$ සහ L මගින් වනුත්පන්න කරන්න.

 $({f B})(a)$ (1) රූපයේ පෙන්වා ඇති පරිපථය සාදා ඇත්තේ ධාරා ලාභය 100 ක් වූ සිලිකන් ටුාන්සිස්ටරයක් භාවිත කිරීමෙනි. ටුාන්සිස්ටරයේ පාදම-විමෝචක සන්ධිය ඉදිරි නැඹුරු කිරීමට $0.7~\mathrm{V}$ අවශා බව උපකල්පනය කරන්න.

- (i) සංගුාහක පුතිරෝධකය හරහා තිබිය හැකි උපරිම ධාරාව ගණනය කරන්න.
- (ii) $V_B = 5~\mathrm{V}$ සඳහා ඉහත (i) හි කත්ත්වය සහතික වන R_B සඳහා උපරිම අගය ගණනය කරන්න.

- (1) $V_{R} = 5 \text{ V}$ සඳහා F පුතිදානයෙහි චෝල්ටීයතාව ගණනය කරන්න.
- (2) ටුාන්සිස්ටරය කුියාකරන නව විධිය කුමක් ද?

(b) ස්වකීය කොටු සටහන (block diagram) (2) රූපයේ දී ඇති, සංඛාහංක පරිපථය කිුයාත්මක වන්නේ පහත පරිදි ය. A සහ B පුදාන එක එකක් ද්විමය 1 හෝ 0 භාර ගනී. $F_{\mathsf{1}},\ F_{\mathsf{2}}$ සහ F_{3} පුතිදාන වන අතර මෙහි

A < B වන විට පමණක් $F_{_1} = 1$ වේ, නැතහොත් $F_{_1} = 0$ වේ.

A=B වන විට පමණක් $F_2=1$ වේ, නැතහොත් $F_2=0$ වේ.

A>B වන විට පමණක් $F_{_3}=1$ වේ, නැතහොත් $F_{_3}=0$ වේ.

(i) A සහ B පුදාන ලෙස ද, F_1 , F_2 සහ F_3 පුතිදාන ලෙස ද ගෙන සතානා වගුවක් පිළියෙළ කරන්න.

(1) රූපය

≨1 kΩ

- (ii) F_1, F_2 සහ F_3 සඳහා බූලියානු පුකාශන ලියන්න.
- (iii) ඉහත දී ඇති තත්ත්වයන්ට අනුව කිුයාත්මක වන තාර්කික පරිපථයක්, තාර්කික ද්වාර භාවිත කර අඳින්න.

$10.\ \ (A)$ කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- (A) බැදීම යනු ආහාර සකස් කිරීමේ කුමවේදයක් වන අතර එය ආහාර පිළියෙල කිරීමට රත් වූ තෙල් තාපන මාධායක් ලෙස භාවිත කිරීම හා සම්බන්ධ වේ. බැදිය යුතු ආහාර දුවා පුමාණයට සාපේක්ෂව විශාල තෙල් පුමාණයක් භාවිත කර බැදීම සිදුකරන්නේ නම්, එය ගැඹුරු තෙලෙහි බැදීම (deep frying) ලෙස හැඳින්වේ. බැදීම සිදුකරන්නේ සාපේක්ෂව කුඩා තෙල් පුමාණයක් භාවිත කර නම්, එය කලතා බැදීම (stir frying) ලෙස හැඳින්වේ. සාමානායෙන් ගැඹුරු තෙලෙහි බැදීම සිදුවන්නේ 190 °C 140 °C උෂ්ණත්ව පරාසයේ දී වන අතර කලතා බැදීම සිදුවන්නේ 115 °C 100 °C උෂ්ණත්ව පරාසයේ දී ය. තෙල් විශාල පුමාණයක් අඛණ්ඩව පුතිස්ථාපනය කළ යුතු නිසා ගැඹුරු තෙලෙහි බැදීම මිල අධික වන නමුත් බොහෝ අවස්ථාවල ගැඹුරු තෙලෙහි බැදීම මගින් වඩා රසවත් ආහාර ලබාදෙයි.
 - ශිෂායකු විසින් කුඩා තෙල් පුමාණයක් භාවිත කර වඩා වැඩි උෂ්ණත්ව සාක්ෂාත් කරගැනීමේ උත්සාහයක් සඳහා කරන ලද විමර්ශනයක පුතිඵල පහත දී ඇත. පද්ධතියේ තාප ධාරිතාව වැඩි කර එමගින් වඩා වැඩි උෂ්ණත්වයන් ලබාගැනීමට ඔහු කුඩා තෙල් පුමාණයක මිශු කරන ලද, නැවත භාවිත කළ හැකි කුඩා ඝන පෝසිලේන් ගෝල පුමාණයක් භාවිත කළේ ය.
 - (a) පුථම පියවර ලෙස ශිෂායා බාහිර පෘෂ්ඨ පරිවාරක දුවායකින් ආවරණය කර ඇති සුදුසු බඳුනකට $0.2~{
 m kg}$ තෙල් පුමාණයක් දමා කුඩා ගිල්ලුම් තාපකයක් මගින් $200~{
 m C}$ දක්වා රත් කළේ ය. ඉන්පසු තාපකය ඉවත් කර ක්ෂණිකව වියළි ආහාර දුවායක $0.2~{
 m kg}$ පුමාණයක් එයට එකතු කර තෙල් සමග මිශු කරන ලදී. තෙලෙහි සහ ආහාර දුවායේ විශිෂ්ට තාප ධාරිතා පිළිවෙළින් $1650~{
 m J~kg^{-1}~{
 m C}^{-1}}$ සහ $1600~{
 m J~kg^{-1}~{
 m C}^{-1}}$ ද නම් සහ ආහාර දුවායේ ආරම්භක උෂ්ණත්වය $30~{
 m C}$ ද නම් මිශුණයේ අවසාන උෂ්ණත්වය ගණනය කරන්න. හිස් බඳුනේ තාප ධාරිතාව, තෙල්හි තාප ධාරිතාව හා සසඳන විට නොගිණිය හැකි යයි ද පරිසරයට වන තාප හානිය නොසලකා හැරිය හැකි යයි ද උපකල්පනය කරන්න.
 - (b) ශිෂායා විසින් ඊළඟට බඳුන හිස් කර අලුත් තෙල් ඉහත (a) හි පුමාණය ම (0.2 kg) දමා කුඩා ඒකාකාර ඝන පෝසිලේන් ගෝල එක්තරා පුමාණයක් ද එකතු කරන ලදී. එකතු කරන ලද ගෝල (1) රූපයේ පෙන්වා ඇති පරිදි විධිමත් ලෙස ඇසිරී ඇතැයි (විධිමත් ඇසිරීමක්) උපකල්පනය කරන්න. ගෝල එකතු කරන ලද්දේ ගෝල ඇසිරෙන විට ඇති කරන ලද හිදැස් තුළට බඳුනේ ඇති තෙල් පරිමාවෙන් අර්ධයක් පිරී යන ආකාරයට ය. ((1) රූපය බලන්න.)
 - (i) ගෝල විධිමත් ලෙස ඇසිරී ඇති නිසා (2) රූපයේ දක්වා ඇති පරිදි ගෝල මගින් අයත් කරගෙන ඇති ඒකක **ඝනක** සැලකීමට ගෙන ගෝලවල මුළු පරිමාව හිදැස් තුළ අඩංගු තෙල් පරිමාවට සමාන බව පෙන්වන්න. (π = 3 ලෙස ගන්න.)
 - (ii) තෙල්හි සහ පෝසිලේන්හි ඝනත්ව පිළිවෙළින් $900~kg~m^{-3}$ සහ $2500~kg~m^{-3}$ නම්, පෝසිලේන් ගෝලවල ස්කන්ධය ගණනය කරන්න.
 - (iii) ශිෂායා විසින් ඉන්පසු පෝසිලේන් ගෝල සහිත තෙල් බඳුන $200\,^{\circ}\mathrm{C}$ දක්වා රත් කර, ඉහත (a) හි සඳහන් කළ ආකාරයට නැවතත් $30\,^{\circ}\mathrm{C}$ හි $(2)\,^{\circ}$ රූපය ඇති එම ආහාර දුවායෙන් එම පුමාණය ම $(0.2~\mathrm{kg})$ එකතු කර මිශු කරන ලදී. පෝසිලේන් හි විශිෂ්ට තාප ධාරිතාව $1000~\mathrm{J}~\mathrm{kg}^{-1}~\mathrm{c}^{-1}$ නම්, මිශුණයේ අවසාන උෂ්ණත්වය ගණනය කරන්න. හිස් බඳුනේ තාප ධාරිතාව සහ පරිසරයට වන තාප හානිය නොසලකා හරින්න.
 - (c) ඉහත විමර්ශනයේ දී භාවිත කළ ඒවාට වඩා කුඩා පෝසිලේන් ගෝල භාවිත කළහොත් ලැබෙන වාසිය කුමක් ද?
- $(\mathbf{B})(a)$ (1) රූපයේ පෙන්වා ඇත්තේ, පුකාශ විද්යුත් ආචරණ පරීක්ෂණය සිදුකිරීමට අවශා ඇටවුමක අතාවශා කොටස් වේ.
 - (i) D ලෙස ලකුණු කර ඇති කොටස වෝල්ටීයතා සැපයුමකි. පුකාශ විද්යුත් ධාරාව (I) විභව අන්තරය (V) අතර ලාක්ෂණිකය ලබාගැනීම සඳහා D ට තිබිය යුතු වැදගත් ම ලක්ෂණ **දෙක** මොනවා ද?
 - (ii) A සහ B ලෙස ලකුණු කර ඇති කොටස් නම් කරන්න.
 - (iii) ${
 m W}\,{
 m m}^{-2}$ වලින් මනින ලද **එකම** තීවුතාවයන් ඇති කොළ [තරංග ආයාමය $\lambda_{
 m p}$] සහ රතු [තරංග ආයාමය $\lambda_{
 m p}(>\lambda_{
 m p})$] ඒකවර්ණ ආලෝක කදම්බ දෙකක් වර්කට එක් කදම්බය බැගින් A මතට පතනය වීමට
 - සලස්වනු ලැබේ. ආලෝක කදම්බවල සංඛාහතයන් A සාදා ඇති දුවායේ දේහලී සංඛාහතයට වඩා වැඩි ය.
 - (1) කොළ සහ රතු වර්ණ සඳහා, V සමග I හි විචලනය **එකම** පුස්තාරයක දැක්වීමට දළ සටහනක් අඳින්න. කොළ සහ රතු වර්ණ සඳහා වන වකු පිළිවෙළින් G සහ R ලෙස පැහැදිලි ව සලකුණු කළ යුතු ය. කොළ සහ රතු වර්ණ සඳහා, පතනය වන ෆෝටෝනවලින් එකම පුතිශතයක් පුකාශ ඉලෙක්ටුෝන විමෝචනය කරන්නේ යැයි උපකල්පනය කරන්න.
 - (2) කොළ සහ රතු වර්ණ සඳහා, නැවතුම් විභවයන් අතර පරතරය ΔV ද සංඛxාතයන් අතර පරතරය Δf ද නම්, අයින්ස්ටයින්ගේ පුකාශ විදහුත් ආචරණ සමීකරණය භාවිතයෙන්, $\frac{\Delta f}{\Delta V}$ අනුපාතය සඳහා පුකාශනයක්, ප්ලාන්ක් නියතය h සහ ඉලෙක්ටුෝනයක ආරෝපණයේ විශාලත්වය e ඇසුරෙන් ලබාගන්න.

ආලෝක කදම්බය

වෝල්ට්මීටරය

(1) රූපය

(b) 2 (a) රූපයේ පෙන්වා ඇති පරිදි එක්තරා පුකාශ විද්යුත් දුමාර අනතුරු අඟවන පද්ධතියක් (smoke alarm system) පුධාන වශයෙන් ඒකවර්ණ ආලෝක විමෝචක දියෝඩයක් (LED) සවි කර ඇති T-හැඩැති කුටීරයක්, පුකාශ කැතෝඩයක් සහ ඉලෙක්ටොනික අනතුරු ඇඟවීමේ උපකරණයකින් (alarm) සමන්විත ය.

දුමාර-නොමැති සාමානා තත්ත්වය යටතේ දී 2 (a) රූපයේ පෙන්වා ඇති පරිදි LED ආලෝක කදම්බයේ ෆෝටෝන පුකාශ කැතෝඩයේ ගැටීමකින් තොරව කුටීරය තුළින් ඉවතට ගමන් කරයි. දුමාරය කුටීරය තුළට ඇතුළු වන විට ෆෝටෝනවලින් යම් පුමාණයක් දුම් අංශුන් සමග ගැටී 2 (b) රූපයේ පෙන්වා ඇති පරිදි ඒවායේ තරංග ආයාම වෙනස් නොවී විවිධ දිශා ඔස්සේ ගමන් කරයි. එසේ ගැටුණු ෆෝටෝන සංඛ්‍යාව කුටීරය තුළ ඇති දුම් අංශුන් සංඛ්‍යාවට සමානුපාතික වේ. ගැටුණු ෆෝටෝනවලින් එක්තරා සංඛ්‍යාවක් ප්‍යාශ කැතෝඩය :-= මත පතනය වන අතර එමගින් කුඩා ප්‍යාශ විදුහුත් ධාරාවක් ඇති කරයි. පුමාණවත් තරම් ෆෝටෝන සංඛ්‍යාවක් ප්‍යාශ කැතෝඩය

මත පතනය වූ විට එය ඉලෙක්ටොනික අනතුරු ඇඟවීමේ

 $h = 6.6 \times 10^{-34} \,\mathrm{J}$ s, රික්තයක් තුළ ආලෝකයේ වේගය $c = 3 \times 10^8 \,\mathrm{m}\,\mathrm{s}^{-1}$ සහ $1 \,\mathrm{eV} = 1.6 \times 10^{-19} \,\mathrm{J}$ ලෙස ගන්න.

- (ii) කාර්ය ශුිතයන් පිළිවෙළින් $1.4\,\mathrm{eV}$ සහ $1.6\,\mathrm{eV}$ වූ දුවාවලින් සාදන ලද X සහ Y පුකාශ කැතෝඩ දෙකක් ඔබට ලබා දී ඇත. ඉහත (b) (i) හි සඳහන් කළ LED ය සහිත දුමාර අනතුරු අගවන පද්ධතියක් නිපදවීම සඳහා සුදුසු පුකාශ කැතෝඩය $(X\,\mathrm{ext}\ Y)$ කුමක් ද? ඔබේ පිළිතුර සනාථ කරන්න.
- (iii) LED හි ක්ෂමතාව 10 mW වේ. ශක්තියෙන් 3% ක් පමණක් තරංග ආයාමය 825 nm වූ ආලෝකය නිපදවීමට වැය වේ නම්, LED ය මගින් තත්පරයක දී පිට කළ ෆෝටෝන සංඛාාව ගණනය කරන්න.
- (iv) අනතුරු ඇඟවීමේ උපකරණය කිුියාකරවීමට, LED ය මගින් තත්පරයකට විමෝචනය කළ ෆෝටෝනවලින් යටත් පිරිසෙයින් 20% ක් පුකාශ කැතෝඩය ලබාගත යුතු ය. අනතුරු ඇඟවීමේ උපකරණය කිුිියාකරවීමට තත්පරයක් තුළ දී පුකාශ කැතෝඩය මතට පතිත විය යුතු අවම ෆෝටෝන සංඛ්‍යාව ගණනය කරන්න.
- (v) පුකාශ කැතෝඩය මත ෆෝටෝන පතනය වන වීට, පතනය වන ෆෝටෝනවලින් කොටසක් පමණක් පුකාශ ඉලෙක්ටෝන වීමෝචනයට දායකත්වය දක්වයි. පතිත ෆෝටෝනවලින් 10% ක් පමණක් පුකාශ ඉලෙක්ටෝන වීමෝචනය කරන බව උපකල්පනය කරමින්, අනතුරු ඇඟවීමේ උපකරණය කිුියාකරවීමට පුකාශ කැතෝඩය මගින් නිපදවිය යුතු අවම පුකාශ විද්යුත් ධාරාව ගණනය කරන්න. $e=1.6\times 10^{-19}~{\rm C}$ ලෙස ගන්න.