Package 'mulgar'

August 26, 2023
Title Functions for Pre-Processing Data for Multivariate Data Visualisation using Tours
Version 1.0.2
Description This is a companion to the book Cook, D. and Laa, U. (2023) https://dicook.github.io/mulgar_book/ "Interactively exploring high-dimensional data and models in R". by Cook and Laa. It contains useful functions for processing data in preparation for visualising with a tour. There are also several sample data sets.
Depends R (>= 4.0)
Imports geozoo, tibble, ggplot2, tidyr, dplyr, purrr, stats, methods
Suggests tourr, ggdendro, colorspace, mclust, kohonen
License MIT + file LICENSE
Encoding UTF-8
LazyData true
LazyDataCompression bzip2
RoxygenNote 7.2.3
<pre>URL https://dicook.github.io/mulgar/, https://github.com/dicook/mulgar</pre>
BugReports https://github.com/dicook/mulgar/issues
NeedsCompilation no
Author Dianne Cook [aut, cre] (https://orcid.org/0000-0002-3813-7155), Ursula Laa [aut] (https://orcid.org/0000-0002-0249-6439)
Maintainer Dianne Cook <dicook@monash.edu></dicook@monash.edu>
Repository CRAN
Date/Publication 2023-08-25 22:00:02 UTC
R topics documented:
aflw
box

2 aflw

aflw	AFLW player statistics	
Index		24
	Som_model	
	som model	
	sketches_train	
	sketches_test	
	simple_clusters	
	rmvn	19
	pooled_vc	19
	plane nonlin	1
	plane	1
	pisa	1'
	pca_model	10
	norm vec	
	mc_ellipse	1:
	hierfly	1. 1
	ggslice_projection	12
	ggslice	1
	ggscree	1
	ggmcbic	10
	gen_xvar_ellipse	
	gen_vc_ellipse	
	convert_proj_tibble	
	clusters_nonlin	,
	clusters	
	calc_norm	
	$calc_mv_dist $:
	c1	:
	bushfires	4

Description

This is data from the 2021 Women's Australian Football League. These are average player statistics across the season, with game statistics provided by the fitzRoy package. If you are new to the game of AFL, there is a nice explanation on Wikipedia. The primary analysis is to summarise the variation using principal component analysis, which gives information about relationships between the statistics or skills sets common in players. One also might be tempted to cluster the players, but there are no obvious clusters so it could be frustrating. At best one could partition the players into groups, while recognising there are no absolutely distinct and separated groups.

Format

A dataset with 381 rows and 35 columns

box 3

Details

```
id, given_name, surname, number, position, team player identification detailstime_pct, ..., clearances player statistics for the match
```

Examples

```
require(dplyr)
data(aflw)
glimpse(aflw)
```

box

3D plane in 5D

Description

This data is simulated to use for testing. It has three dimensions of variability and two of noise. It is created from a 3 factor model. All variables are linearly associated.

Format

A dataset with 200 rows and 5 columns

Details

x1, x2, x3, x4, x5 five numeric variables

See Also

plane

```
box_pca <- prcomp(box)
ggscree(box_pca)</pre>
```

4 bushfires

bushfires

Australian bushfires 2019-2020

Description

This data was collated by Weihao (Patrick) Li as part of his Honours research at Monash University. It contains fire ignitions as detected from satellite hotspots, and processed using the spotoroo package, augmented with measurements on weather, vegetation, proximity to human activity. The cause variable is predicted based on historical fire ignition data collected by County Fire Authority personnel.

Format

A dataset with 1021 rows and 60 columns

Details

id, lon, lat, time unique id, and spatiotemporal information for each fire ignition FOR_CODE, FOR_TYPE, COVER, HEIGHT, FOREST vegetation variables rf, arf7-arf720 average rainfall, on that day, and over last 7, ..., 720 days se, ase7-ase720 solar exposure, on that day, and over last 7, ..., 720 days maxt, amaxt7-amaxt720 max temperature, on that day, and over last 7, ..., 720 days mint, amint7-amint720 min temperature, on that day, and over last 7, ..., 720 days ws, aws_m0-aws_m24 average wind speed, on that day, and for last 1-24 months dist_road, log_dist_road distance to nearest road dist_cfa, log_dist_cfa distance to nearest county fire authority facility dist_camp, log_dist_camp distance to nearest camp site cause predicted ignition cause, accident, arson, burning_off, lightning

```
require(dplyr)
data(bushfires)
glimpse(bushfires)
```

c1 5

c1

Challenge data sets

Description

Simulated data with different structure

Format

A datasets with differing number of rows and columns

Details

```
x1, x2, ... numeric variables
```

Examples

```
require(ggplot2)
ggplot(c1, aes(x=x1, y=x2)) +
  geom_point() + theme(aspect.ratio=1)
```

calc_mv_dist

Compute Mahalanobis distances between all pairs of observations

Description

For a data matrix, compute the sample variance-covariance, which is used to compute the Mahalanobis distance.

Usage

```
calc_mv_dist(x)
```

Arguments

Х

multivariate data set

Details

This is useful for checking distance arise from a multivariate normal sample.

Value

vector of length n

6 clusters

Examples

calc_norm

Calculate the norm of a vector

Description

Returns the square root of the sum of squares of a vector

Usage

```
calc_norm(x)
```

Arguments

Χ

numeric vector

Value

numeric value

Examples

```
x <- rnorm(5)
calc_norm(x)</pre>
```

clusters

Three clusters in 5D

Description

This data is simulated to use for testing. It has three elliptical clusters in mostly variables 2 and 4. They are not equidistant.

Format

A dataset with 300 rows and 6 columns

clusters_nonlin 7

Details

```
x1, x2, x3, x4, x5 five numeric variables cl class variable
```

See Also

simple_clusters

Examples

```
clusters_pca <- prcomp(clusters[,1:5])
ggscree(clusters_pca)</pre>
```

clusters_nonlin

Four unusually shaped clusters in 4D

Description

This data is simulated to use for testing. It has two small spherical clusters, and a curve cluster and a sine wave cluster.

Format

A dataset with 300 rows and 6 columns

Details

```
x1, x2, x3, x4 five numeric variables
```

See Also

clusters

```
require(ggplot2)
ggplot(clusters_nonlin, aes(x=x1, y=x2)) +
  geom_point() +
  theme(aspect.ratio=1)
```

gen_vc_ellipse

convert_proj_tibble

This function turns a projection sequence into a tibble

Description

Take an array of a projection sequence, and turn into a tibble with numbered projections

Usage

```
convert_proj_tibble(t1)
```

Arguments

t1

tour projection sequence

Value

tbl1 tibble

Examples

```
require(tourr)
t1 <- interpolate(save_history(flea[, 1:6], grand_tour(4), max = 2))
tbl1 <- convert_proj_tibble(t1)</pre>
```

gen_vc_ellipse

Generate points on the surface of an ellipse

Description

This function generates points by transforming points on the surface of a sphere.

Usage

```
gen_vc_ellipse(vc, xm = rep(0, ncol(vc)), n = 500)
```

Arguments

vc symmetric square matrix describing the variance-covariance matrix which de-

fines the shape of the ellipse.

xm center of the ellipse, a vector of length equal to the dimension of vc

n number of points to generate

Value

```
matrix of size n x p
```

gen_xvar_ellipse 9

Examples

gen_xvar_ellipse

Ellipse matching data center and variance

Description

This function generates points on the surface of an ellipse with the same center and variance-covariance of the provided data.

Usage

```
gen_xvar_ellipse(x, n = 100, nstd = 1)
```

Arguments

x multivariate data set.

n number of points to generate

nstd scale factor for size of ellipse, in terms of number of standard deviations

Details

This is useful for checking the equal variance-covariance assumption from linear discriminant analysis.

Value

```
matrix of size n x p
```

10 ggmcbic

ggmcbic

Produces an mclust summary plot with ggplot

Description

Takes data returned by mclustBIC(), converts to a tibble for plotting.

Usage

```
ggmcbic(mc, cl = 1:nrow(mc), top = ncol(mc))
```

Arguments

mc mclustBIC object

cl subset of clusters to show

top number to indicate how many models to show, default "all"

Value

```
mc_bic a ggplot object
```

```
require(mclust)
data(clusters)
clusters_BIC <- mclustBIC(clusters[,1:5], G=2:6)
ggmcbic(clusters_BIC)
ggmcbic(clusters_BIC, top=4)

data(simple_clusters)
clusters_BIC <- mclustBIC(simple_clusters[,1:2])
ggmcbic(clusters_BIC, cl=2:5, top=3)</pre>
```

ggscree 11

ggscree	This function produces a simple scree plot

Description

Takes a PCA object returned by prcomp(), extracts the standard deviations of the principal components (PC), and plots these against the PC number. The guidance line assumes that all of the variables have been standardised prior to PCA.

Usage

```
ggscree(pc, q = 2, guide = TRUE, cumulative = FALSE)
```

Arguments

рс	PCA object
q	number of principal components to show, default 2 (you should change)
guide	logical whether to compute and add a typical value of the variance, if the data was full-dimensional
cumulative	logical whether to draw cumulative variance

Value

scree a ggplot object

Examples

ggslice

Generate an axis-parallel slice display

Description

Following the slice definition available in tourr this function returns a ggplot2 display of a slice defined via the projection onto two of the variables. Note that because the underlying function works with any projection, the axis labels need to be set by the user.

12 ggslice_projection

Usage

```
ggslice(data, h, v1 = 1, v2 = 2, center = NULL, col = NULL)
```

Arguments

data frame containing only variables used for the display

h slice thickness

v1 column number of variable mapped to x-axis v2 column number of variable mapped to y-axis

center center point vector used for anchoring the slice, if NULL the mean of the data

is used

col grouping vector mapped to color in the display

Value

ggplot2 object showing the sliced data

See Also

ggslice_projection

Examples

```
d <- geozoo::sphere.hollow(4, 1000)$points
ggslice(d, 0.3, 1, 2)
ggslice(d, 0.3, 1, 2, center = c(0, 0, 0.7, 0))</pre>
```

ggslice_projection

Generate slice display

Description

Generate slice display

Usage

```
ggslice_projection(data, h, proj, center = NULL, col = NULL)
```

Arguments

data frame containing only variables used for the display

h slice thickness

proj projection matrix from p to 2 dimensions

center center point vector used for anchoring the slice, if NULL the mean of the data

is used

col grouping vector mapped to color in the display

hierfly 13

Value

ggplot2 object showing the sliced data

See Also

ggslice

Examples

hierfly

Generate a dendrogram to be added to data

Description

Supplements a data set with information needed to draw a dendrogram. Intermediate cluster nodes are added as needed, and positioned at the centroid of the combined clusters. Note that categorical variables need to be factors.

Usage

```
hierfly(data, h = NULL, metric = "euclidean", method = "ward.D2", scale = TRUE)
```

Arguments

data	data set
h	an helust object
metric	distance metric to use, see dist for list of possibilities
method	cluster distance measure to use, see hclust for details
scale	logical value whether to scale data or not, default TRUE

Value

list with data and edges and segments

14 mc_ellipse

Examples

```
data(clusters)
cl_dist <- dist(clusters[,1:5])</pre>
cl_hw <- hclust(cl_dist, method="ward.D2")</pre>
require(ggdendro)
ggdendrogram(cl_hw, type = "triangle", labels = FALSE)
clusters$clw <- factor(cutree(cl_hw, 3))</pre>
cl_hfly <- hierfly(clusters, cl_hw, scale=FALSE)</pre>
if (interactive()) {
  require(tourr)
  glyphs <- c(16, 46)
  pch <- glyphs[cl_hfly$data$node+1]</pre>
  require(colorspace)
  clrs <- heat_hcl(length(unique(cl_hfly$data$clw)))</pre>
  pcol <- clrs[cl_hfly$data$clw]</pre>
  ecol <- clrs[cl_hfly$data$clw[cl_hfly$edges[,1]]]</pre>
  animate_xy(cl_hfly$data[,1:5], edges=cl_hfly$edges,
    col=pcol, pch=pch, edges.col=ecol,
    axes="bottomleft")
}
```

mc_ellipse

Computes the ellipses of an mclust model

Description

Takes data returned by Mclust(), extracts parameter estimates, and computes points on ellipses.

Usage

```
mc_ellipse(mc, npts = 100)
```

Arguments

mc Mclust object

npts Number of points to simulate for each cluster, default 100

Value

mc_ellipses data frame

multicluster 15

```
require(ggplot2)
sc <- simple_clusters
sc$cl <- factor(clusters_mc$classification)
ggplot() +
   geom_point(data=sc, aes(x=x1, y=x2, colour=cl)) +
   geom_point(data=mce$ell, aes(x=x1, y=x2, colour=cl), shape=4) +
   geom_point(data=mce$mn, aes(x=x1, y=x2, colour=cl), shape=3) +
   theme(aspect.ratio=1, legend.position="none")</pre>
```

multicluster

Multiple clusters of different sizes, shapes and distance from each other

Description

This data is originally from http://ifs.tuwien.ac.at/dm/download/multiChallenge-matrix.txt, and provided as a challenge for non-linear dimension reduction.It was used as an example in Lee, Laa, Cook (2023) https://doi.org/10.52933/jdssv.v2i3.

Format

A dataset with 400 rows and 11 columns

Details

```
group cluster labelx1, ... x10 numeric variables
```

See Also

clusters

```
require(ggplot2)
ggplot(multicluster, aes(x=x1, y=x2)) +
  geom_point() + theme(aspect.ratio=1)
```

pca_model

norm_vec

Normalise a vector to have length 1

Description

Returns the normalised vector, where the sum of squares is equal to 1

Usage

```
norm_vec(x)
```

Arguments

Χ

numeric vector

Value

numeric vector

Examples

```
x <- rnorm(5)
norm_vec(x)</pre>
```

pca_model

Create wire frame of PCA model

Description

This function takes the PCA and produces a wire frame of the PCA to examine with the data in a tour. The purpose is to see how well the variance is explained. The model will be centered at the mean, and extend 3 SDs towards the edge of the data, which is assuming that the data is standardised.

Usage

```
pca_model(pc, d = 2, s = 1)
```

Arguments

рс	PCA obje	ect

d number of dimensions to use, default=2

s scale model, default=1

pisa 17

Value

a list of points and edges

Examples

```
data(plane)
plane_pca <- prcomp(plane)
plane_m <- pca_model(plane_pca)
plane_m_d <- rbind(plane_m$points, plane)
if (interactive()) {
   require(tourr)
   animate_xy(plane_m_d, edges=plane_m$edges, axes="bottomleft")
}</pre>
```

pisa

PISA scores

Description

This is data from the 2018 testing, available from https://webfs.oecd.org/pisa2018/SPSS_STU_QQQ.zip. A subset of the data containing only Australia and Indonesia, and the simulated scores for math, reading and science.

Format

A data set with 26371 rows and 31 columns

Details

CNT Country (Australia, Indonesia)

PV1MATH-PV10SCIE simulated scores for math, reading and science

```
require(dplyr)
data(pisa)
pisa %>% count(CNT)
```

plane_nonlin

plane

2D plane in 5D

Description

This data is simulated to use for testing. It has two dimensions of variability and three of noise. It is created from a 2 factor model, where all variables are related.

Format

A data set with 100 rows and 5 columns

Details

```
x1, x2, x3, x4, x5 five numeric variables
```

See Also

box

Examples

```
plane_pca <- prcomp(plane)
ggscree(plane_pca)</pre>
```

plane_nonlin

Non-linear relationship in 5D

Description

This data is simulated to use for testing. It has three dimensions of variability and two of noise. It is created from a 2 factor non-linear model. All variables are associated.

Format

A dataset with 100 rows and 5 columns

Details

```
x1, x2, x3, x4, x5 five numeric variables
```

See Also

plane, box

pooled_vc 19

Examples

```
plane_nonlin_pca <- prcomp(plane_nonlin)
ggscree(plane_nonlin_pca)</pre>
```

pooled_vc

Compute pooled variance-covariance matrix

Description

This function computes the group variance-covariance matrices, and produces a weighted average. It is useful for examining the linear discriminant analysis model.

Usage

```
pooled_vc(x, cl, prior = rep(1/length(unique(cl)), length(unique(cl))))
```

Arguments

x multivariate data set, matrix.

cl class variable

prior prior probability for each class, must sum to 1, default all equal

Value

matrix

Examples

```
data(clusters)
pooled_vc(clusters[,1:5], clusters$cl)
```

rmvn

Generate a sample from a multivariate normal

Description

This function generates a sample of size n from a multivariate normal distribution

Usage

```
rmvn(n = 100, p = 5, mn = rep(0, p), vc = diag(rep(1, p)))
```

20 simple_clusters

Arguments

n	number of points to generate
p	dimension
mn	mean of the distribution, a vector of length equal to the dimension of vc
VC	symmetric square matrix describing the variance-covariance matrix which defines the shape of the ellipse.

Value

```
matrix of size n x p
```

Examples

simple_clusters

Two clusters in 2D

Description

This data is simulated to use for testing. It has two spherical clusters, and two variables.

Format

A dataset with 137 rows and 3 columns

Details

```
x1, x2 two numeric variablescl class variable
```

See Also

clusters

```
require(ggplot2)
ggplot(simple_clusters, aes(x=x1, y=x2)) +
  geom_point() + theme(aspect.ratio=1)
```

sketches_test 21

sketches_test

Images of sketches for testing

Description

This data is a subset of images from https://quickdraw.withgoogle.com The subset was created using the quickdraw R package at https://huizezhang-sherry.github.io/quickdraw/. It has 6 different groups: banana, boomerang, cactus, flip flops, kangaroo. Each image is 28x28 pixels.

Format

A data frame with 1200 rows and 786 columns

Details

```
V1-V784 grey scale 0-255
word all NA, you need to predict this
id unique id for each sketch
```

See Also

sketches_train

Examples

sketches_train

Images of sketches for training

Description

This data is a subset of images from https://quickdraw.withgoogle.com The subset was created using the quickdraw R package at https://huizezhang-sherry.github.io/quickdraw/. It has 6 different groups: banana, boomerang, cactus, flip flops, kangaroo. Each image is 28x28 pixels. This data would be used to train a classification model.

22 som_model

Format

A data frame with 5998 rows and 786 columns

Details

```
V1-V784 grey scale 0-255

word what the person was asked to draw
id unique id for each sketch
```

Examples

som_model

Process the output from SOM to display the map and data

Description

This function generates a grid of points to match the nodes from the self-organising map (SOM), and jitters points from the data so they can be seen relative to the grid. This allows the clustering of points by SOM to be inspected.

Usage

```
som_model(x_som, j_val = 0.5)
```

Arguments

```
x_som object returned by kohonen::som
j_val amount of jitter, should range from 0-1, default 0.3
```

som_model 23

Value

- data this object contains
 - original variables from the data
 - map1, map2 location of observations in 2D som map, jittered
 - distance distances between observations and the closest node
 - id row id of data
- net this object contains
 - values of the nodes in the high-d space
 - map1, map2 nodes of the som net
 - distance distances between observations and the closest node
 - id row id of net
- edges from, to specifying row ids of net to connect with lines
- edges_s x, xend, y, yend for segments to draw lines to form 2D map

```
require(kohonen)
data(clusters)
c_grid <- kohonen::somgrid(xdim = 5, ydim = 5,
    topo = 'rectangular')
c_som <- kohonen::som(as.matrix(clusters[,1:5]), grid = c_grid)
c_data_net <- som_model(c_som)
require(ggplot2)
ggplot() +
    geom_segment(data=c_data_net$edges_s,
        aes(x=x, xend=xend, y=y, yend=yend)) +
    geom_point(data=c_data_net$data, aes(x=map1, y=map2),
        colour="orange", size=2, alpha=0.5)</pre>
```

Index

* cluster	ggslice, 11
hierfly, 13	ggslice_projection, 12
* datasets	
aflw, 2	hclust, <i>13</i>
box, 3	hierfly, 13
bushfires, 4	77.
c1, 5	mc_ellipse, 14
clusters, 6	multicluster, 15
clusters_nonlin,7	
multicluster, 15	norm_vec, 16
pisa, 17	pca_model, 16
plane, 18	
plane_nonlin, 18	pisa, 17
simple_clusters, 20	plane, 18
sketches_test, 21	plane_nonlin, 18
sketches_train, 21	pooled_vc, 19
Sketenes_train, 21	rmvn, 19
aflw, 2	1 11111, 19
	simple_clusters, 20
box, 3	sketches_test, 21
bushfires,4	sketches_train, 21
	som_model, 22
c1, 5	30m_mode1, 22
c2 (c1), 5	
c3 (c1), 5	
c4 (c1), 5	
c5 (c1), 5	
c6 (c1), 5	
c7 (c1), 5	
calc_mv_dist, 5	
calc_norm, 6	
clusters, 6	
clusters_nonlin,7	
convert_proj_tibble,8	
dist, <i>13</i>	
gen_vc_ellipse,8 gen_xvar_ellipse,9 ggmcbic,10 ggscree,11	