

SRM Institute of Science and Technology

Ramapuram Campus

Department of Mathematics

 $Question \ Bank \ of \ \ Module-V(Z-Transform)$

(2020-2021-ODD)

Subject.Code: 18MAB201T

Subject.Name: Transforms and Boundary Value Problems

Year/Sem: II/III Part-A (1*20=20) Branch: Common to All branches

1	XXII (* (5)0	1	1	
1.	What is $z(5)$?	1 mark		
	$a)\frac{z}{z-1} \qquad b)\frac{5z}{z-1}$			
	z-1 $z-1$		(CLO-5	
	z = z - 1	Ans (b)	Remember)	
	$c)\frac{z}{5(z-1)} \qquad d)\frac{z-1}{z}$			
2	$z[(-1)^n] = $	1 n	1 mark	
2.				
	$a)\frac{z+1}{z} \qquad b)\frac{z}{2z-1}$		(CLO-5	
	$\begin{bmatrix} 2 & 2 & -1 \\ 7 & -7 \end{bmatrix}$	Ans (c)	Remember)	
	$c)\frac{z}{(z+1)} \qquad \qquad d)\frac{-z}{z+1}$			
3.	$z[(a)^n u(n)] = \underline{\hspace{1cm}}$	1 mark		
	$a)\frac{z}{z-a} \text{ if } z < a$ $b)\frac{z}{z+a} \text{ if } z > a$		(CLO-5	
	z-a $z+a$	Ans (c)	Remember)	
	$c)\frac{z}{z-a}$ if $ z > a$ $d)\frac{z}{z+a}$ if $ z > a$			
4.	What is $z[(-2)^n]$?	1 mark		
	$a)\frac{z+2}{z} \qquad b)\frac{z}{z-2}$		(CLO-5	
		Ans (d)	Remember)	
	$c)\frac{-z}{(z+2)} \qquad \qquad d)\frac{z}{z+2}$			
5.	What is $z[n]$?	1	mark	
	$a)\frac{z}{(z-1)^2} \qquad b)\frac{-z}{(z+1)^2}$		(CLO-5	
	$(z-1)^2 \qquad (z+1)^2$	Ans (a)	Remember)	
	$c)\frac{2z}{(z-1)^2} \qquad d)\frac{z}{(z+1)^2}$			
	1	1	I	

6.	$z[e^{-5n}] = \underline{\hspace{1cm}}$	1 mark	
	$a)\frac{z}{z+e^{-5}} \qquad b)\frac{z}{z-e^{-5}}$ $c)\frac{z}{z+e^{5}} \qquad d)\frac{2z}{z+e^{5}}$	Ans (b)	(CLO-5 Remember)
7.	What is Z-Transform of na ⁿ ?	1 mark	
	$a) \frac{az}{(z+a)^2} \qquad b) \frac{az}{(z-a)^2}$ $c) \frac{z}{(z-a)^2} \qquad d) \frac{z}{(z+a)^2}$	Ans (b)	(CLO-5 Remember)
8.	What is $z[n^2]$?	1 mark	
	$a) \frac{az}{(z+a)^2} \qquad b) \frac{az}{(z-a)^2}$ $c) \frac{z}{(z-a)^2} \qquad d) \frac{z}{(z+a)^2}$	Ans (a)	(CLO-5 Remember)
9.	If $z[f(t)]=F(z)$ then $\lim_{n\to\infty} F(z)=?$	1 mark	
	$a) f(0)$ $b) f(1)$ $c) f(\infty)$ $d) \lim_{t \to \infty} f(t)$	Ans (a)	(CLO-5 Remember)
10.	What is Z-Transform of $z \left[\frac{1}{n!} \right]$?	1 n	nark
	a) $e^{1/z}$ b) e^{z} c) $e^{-1/z}$ d) e^{-z}	Ans (a)	(CLO-5 Remember)
11.	$z\left[\sin\frac{n\pi}{2}\right] = \underline{\hspace{1cm}}$	1 mark	
	$a)\frac{z}{(z^2+1)}$ $b)\frac{z}{(z^2-4)}$ $c)\frac{z}{(z^2-1)}$ $d)\frac{2z}{(z^2+1)}$	Ans (a)	(CLO-5 Remember)
12.	$z\bigg[\cos\frac{n\pi}{2}\bigg] = \underline{\hspace{1cm}}$	1 mark	
	$a)\frac{z^2}{(z^2+1)}$ $b)\frac{z}{(z-1)}$ $c)\frac{z}{(z^2+1)}$ $d)\frac{z^2}{(z^2-1)}$	Ans (a)	(CLO-5 Remember)

13.	$z^{-1} \left[\frac{z}{z-a} \right] = \underline{\hspace{1cm}}$	1 mark	
	$a) a^{n+1}$ $b) a$ $c) a^{n}$ $d) a^{n-1}$	Ans (c)	(CLO-5 Remember)
14.	$z^{-1}\left[\frac{z}{(z-a)^2}\right] = \underline{\hspace{1cm}}$	1 mark	
	a) na^{n+1} b) na c) na^n d) na^{n-1}	Ans (d)	(CLO-5 Remember)
15.	$z^{-1} \left[\frac{1}{(z-a)} \right] = \underline{\hspace{1cm}}$	1 mark	
	a) a^{n+1} b) a c) a^n d) a^{n-1}	Ans (d)	(CLO-5 Remember)
16.	$z^{-1} \left[e^{1/z} \right] = \underline{\hspace{1cm}}$	1 mark	
	a) $\frac{1}{n+1}$ b) $\frac{1}{(n+1)!}$ c) $\frac{1}{(n-1)!}$ d) $\frac{1}{n!}$	Ans (d)	(CLO-5 Remember)
17.	$z^{-1}\left[\frac{z}{(z-1)^2}\right] = \underline{\hspace{1cm}}$	1 mark	
	a) n b) $n+1$ c) $n-1$ d) $\frac{1}{n}$	Ans (a)	(CLO-5 Remember)
18.	$z^{-1} \left[\frac{az}{(z-1)^2} \right] = \underline{\hspace{1cm}}$	1 mark	
	a) na^{n+1} b) na c) na^n d) na^{n-1}	Ans (c)	(CLO-5 Remember)
19.	$z^{-1} \left[\frac{z}{(z+1)} \right] = \underline{\hspace{1cm}}$	1 n	nark

	a) $(-1)^n$ b) $(-1)^{n+1}$ c) $(-1)^{n-1}$ a) $n(-1)^n$	Ans (a)	(CLO-5 Remember)
20.	What is $z[f(n) * g(n)]$	1 mark	
	a) $F(z).G^{-1}(z)$ b) $F^{-1}(z).G^{-1}(z)$		
	c) $F^{-1}(z).G(z)$ d) $F(z).G(z)$	Ans (d)	(CLO-5 Remember)
21.	$Z(a^n.n)$		
	(a) $\frac{az}{(z+a)^2}$ (b) $\frac{z}{(z-a)^2}$ (c) $\frac{az}{(z-a)^2}$ (d) $\frac{z}{a(z-a)^2}$	Ans (c)	(CLO-5 Remember)
22.	$Z[5.3^n - 2(-1)^n]$		
	(a) $5\left(\frac{z}{z-3}\right) - 2\left(\frac{z}{z+1}\right)$ (b) $4\left(\frac{z}{z-3}\right) + 2\left(\frac{z}{z-1}\right)$ (c) $5\left(\frac{z}{z-4}\right) + 2\left(\frac{z}{z+1}\right)$ (d) $5\left(\frac{z}{z-3}\right) + \left(\frac{z}{z-2}\right)$	Ans (a)	(CLO-5 Remember)
23.	$Z\left(\frac{1}{n}\right)$		
	(a) $z \log \left(\frac{z}{z-1} \right)$ (b) $z \log \left(\frac{z-1}{z} \right)$ (c) $\log \left(\frac{z-1}{z} \right)$ (d) $\log \left(\frac{z}{z-1} \right)$	Ans (d)	(CLO-5 Remember)
24.	$Z^{-1}\left(\frac{1}{(z-\frac{1}{2})(z-\frac{1}{3})}\right) \text{ residue at } z=\frac{1}{2}$		

	(a) $\frac{6}{2^{n+1}}$ (b) $\frac{6}{2^{n-1}}$ (c) $\frac{6}{2^{n+2}}$		
			(CLO-5
	(d) $-\frac{6}{2^{n+1}}$	Ans (b)	Remember)
	$Z^{-1}\left(\frac{8z^2}{(2z-1)(4z-1)}\right)$		
25.	$\left(\frac{2z-1)(4z-1)}{(2z-1)(4z-1)}\right)$		
	(a) $\left(\frac{1}{2}\right)^n * \left(\frac{1}{4}\right)^n$		
	(b) $(1)^n * \left(\frac{1}{4}\right)^n$	Ans (a)	(CLO-5 Remember)
	(c) $\left(\frac{1}{8}\right)^n * \left(\frac{1}{4}\right)^n$		
	$(d) \left(\frac{1}{2}\right)^{n-1} * \left(\frac{1}{4}\right)^n$		
26.	y(n+2) - 4y(n+1) + 4y(n) = 0 where $y(0) = 1, y(1) = 0$		
	(a) $Y(z)(z^2 - 4z + 4) = z^2 + 4z$		
	(b) $Y(z)(z^2 + 4z + 4) = z^2 - 4z$		(CLO-5
	(c) $Y(z)(z^2 - 4z + 4) = z^2 - 4z$ (d) $Y(z)(z^2 - 4z - 4) = z^2 + 4z$	Ans (c)	Remember)
27.	Z [t] is		
21.	$n=\infty$		
	(a) $Z[t] = T \sum_{n=1}^{\infty} n z$		
	(a) $Z[t] = T \sum_{n=1}^{n=\infty} n z$ (b) $Z[t] = T \sum_{n=1}^{n=\infty} n z^{-n}$	Ans (b)	(CLO-5
	(c) $Z[t] = T \sum_{n=1}^{n=\infty} \frac{1}{n} z^{-n}$	`,	Remember)
	(d) $Z[t] = T \sum_{n=1}^{n=\infty} z^{-n}$		
28.	$Z \left[-n^2\right]$ is		
	(a) $-\frac{z(z+1)}{(z-1)^3}$ (b) $\frac{z}{(z-1)^2}$ (c) $\frac{z(z+1)}{(z-1)^3}$.0.
	$(d) \frac{Tz}{(z-1)^2}$	Ans (a)	(CLO-5 Remember)

29.	$Z\left(e^{3t-7}\right)$ is		
	(a) $\frac{e^7 z}{z + e^{-3t}}$ (b) $\frac{e^{-7} z}{z - e^{-3t}}$ (c) $\frac{e^{-7}}{z - e^{-t}}$ (d)		
	$\frac{e^7}{z + e^{-t}}$	Ans (b)	(CLO-5 Remember)
30.	Z- Transform formula		
	(a) $Z[f(n)] = \sum_{n=1}^{n=\infty} f(n) z^{-n}$		
	(b) $Z[f(n)] = \sum_{n=1}^{\infty} (f(n)z)^{-n}$	Ans (a)	(CLO-5 Remember)
	(c) $Z[f(n)] = \sum_{n=1}^{n=\infty} z^n$		
	(d) $Z[f(n)] = \sum_{n=1}^{n=\infty} f(n) z^{-n}$		
31.	Inverse Z transform of $\frac{z^2}{\left(z-\frac{1}{2}\right)(z-4)}$ is		
	(a) $\left[2\left(\frac{1}{2}\right)^n - \left(\frac{1}{4}\right)^n\right]$ (b) $\left[2\left(\frac{1}{2}\right)^n + \left(\frac{1}{4}\right)^n\right]$		
	(c) $\left[\left(\frac{1}{2} \right)^n - \left(\frac{1}{4} \right)^n \right]$ (d) $\left[\left(\frac{1}{2} \right)^n + \left(\frac{1}{4} \right)^n \right]$	Ans (a)	(CLO-5 Remember)
32.	$Z\left(e^{t+7}\right)$ is		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$\frac{e^{10}}{z+e^{-t}}$	Ans (b)	(CLO-5 Remember)
33.	Z[n(2n-1)] is		
	(a) $\frac{2z}{(z+1)^2}$ (b) $\frac{z(z+3)}{(z-1)^3}$ (c) $\frac{2z}{(z-1)^3}$ (d) $\frac{z}{(z-1)}$		
		Ans (b)	(CLO-5 Remember)
34.	Z[n-1] is		
<u> </u>	<u> </u>		<u> </u>

	$a)\frac{z}{(z-1)^2} \qquad b)\frac{-2z}{(z+1)^2}$		
	$c)\frac{2z(1-z)}{(z-1)^2} \qquad \qquad d)\frac{z}{(z+1)^2}$	Ans (c)	(CLO-5 Remember)
35.	inverse Z- transform of $\frac{z}{z^2 - 7z + 10}$		
	(a) $-\frac{1}{3(z-5)} + \frac{1}{3(z+2)}$ (b) $-\frac{1}{3(z-5)} - \frac{1}{3(z-2)}$		(CLO.5
	(c) $\frac{1}{3(z-5)} - \frac{1}{3(z-2)}$ (d) $-\frac{1}{(z-5)} + \frac{1}{(z-2)}$	Ans (c)	(CLO-5 Remember)
36.	$Z(\sin \omega t)$ is		
	(a) $\frac{z \sin \omega T}{z^2 - 2z \cos \omega T - 1}$ (b) $\frac{z \sin \omega T}{z^2 - 2z \cos \omega T + 1}$		
	(c) $\frac{z^2 \sin \omega T}{z^2 - 2z \cos \omega T + 1}$ (d) $\frac{z \sin \omega T}{z^2 + 2z \cos \omega T + 1}$	Ans (b)	(CLO-5 Remember)