

Applied Cryptography CPEG 472/672 Lecture 8A

Instructor: Nektarios Tsoutsos

Authenticated Encryption (AE)

- We want confidentiality + integrity
 - Combine a cipher with a MAC
- Different ways to achieve this
 - Using MACs
 - Using Authenticated ciphers
- Real-life examples using AES (Thursday)
 - GCM (Galois counter mode)
 - OCB (Offset codebook)
 - SIV (Synthetic IV)

AE using MACs

- Three different constructions
 - Encrypt and MAC (EaM)
 - MAC then Encrypt (MtE)
 - Encrypt then MAC (EtM)
- What is the difference?
 - The cipher and the MAC are combined in different order
 - Different compositions have different properties
- Different keys for cipher and MAC

Encrypt and MAC (EaM)

- Ctxt and MAC computed separately
 - Parallelizable
- Sender computes C=E(K1,P)
 and T=MAC(K2,P)
- Recipient computes P=D(K1,C) and T'=MAC(K2,P)
 - ⊙ Check if T'==T
 - Decryption of C happens before checking T

Is EaM secure?

- In theory, EaM is the least secure variant
- Recall, the goal of MACs is unforgeability
 - This means a MAC could leak info about the input message
 - Confidentiality is not a goal of MACs
 - If the MAC is PRF the tag won't have leaks
- A secure MAC in EaM may leak ptxt bits
 - Makes recovering P from C easier

MAC then Encrypt (MtE)

- Then encrypt C=E(K1, P | | T)
- Recipient decrypts C
 - ⊙ P || T=D(K1,C)
 - Decryption of C happens before checking T
- Recipient computes T'=MAC(K2, P) and compares T' with T
 - More secure than EaM
- Used in TLS before v1.3

Encrypt then MAC (EtM)

- Sender encrypts ptxt
 - $\odot C = E(K1,P)$
- Sender generates a tag for C
 - \odot T=MAC(K2,C)

- \odot Check if T==T' and then decrypt P=D(K1,C)
- No decryption if tag verification fails
 - Recipient cannot be decryption oracle for attacks
 - Stronger than EaM, MtE; used on IPSec

Authenticated ciphers

- Alternative to cipher + MAC construction
- The cipher returns ctxt + tag
- Notation
 - Authenticated Encryption: (C,T) = AE(K,P)
 - Authenticated Decryption: (P,err) = AD(K,C,T)
 - No plaintext if there is error in tag verification
 - Prevents chosen-ctxt queries
- If ptxt is returned, it must be encrypted by someone who knows the AE key K

AEAD

Authenticated Encryption with Associated Data

- What is associated data?
 - Data we want to authenticate by not encrypt
 - E.g., packet header must be unencrypted
- Notation
 - Encryption: (C,A,T) = AEAD(K,P,A)
 - Associated data A is part of the output

 - Decryption: (P,A,err) = ADAD(K,C,A,T)
 - Error if C or A is corrupted
 - You may leave P or A empty in AEAD

Nonces in AE

- Nonces: prevent attackers from detecting if the same ptxt is encrypted twice
 - We have seen nonces and IVs before
 - Same approach in authenticated ciphers
- Nonce must be unique for the same key
- Notation
 - \odot (C,A,T) = AEAD(K,P,A,N)
 - \odot (P,A,err) = ADAD(K,C,A,T,N)

Evaluation criteria for AE

Security

- Protect confidentiality, authenticity, integrity
- AEAD as secure as a secure cipher and as strong as a secure MAC
- Misuse resistance: impact of nonce reuse

Performance

- Number of operations, parallelization
- Single-layer, double-layer structure
- Streamability: can we discard already processed blocks?
 - Less memory (e.g., useful for routers)

Hands-on exercises

- Encrypt and MAC
- MAC then Encrypt
- Encrypt then MAC
- AEAD example

Reading for next lecture

- Aumasson: Chapter 8 until end of chapter
 - We will have a short quiz on the material