SmartCar

Axel Mendoza Thibaut Barroyer

Raspberry Car's Hardware

- 13.2 x 25.1 x 7.4 (cm)
- 800 g
- Max speed 2 km/h
- 3 hour autonomy
- Wireless communication
- Remote access

Raspberry Car's Hardware

- Raspberry PI 3 equipped with 4 processor cores
- Wish-eye camera handeling 15 fps
- Ultrasonic sensor with 1m range
- Wireless antenna of 300 MBPS

Costs

Matériel	Quantité	Prix	Livraison	Total
Pack de 16 dalles	4	30.00	0	120.00
Smart Video Car Kit for Raspberry Pi	1	90.59	0	90.59
Raspberry PI 3 Model B	1	40.26	0	40.26
Clé Intel Movidius	1	98.96	0	98.96
Clé Wifi nets XF2123	1	11.99	0	11.99
Märklin World 72201	2	9.89	6.99	26.77
6 * AA Battery	2	6.00	0	12.00 €
Total				407.57

Trajectory Planning Pipeline

Raspberry Car

Generate
Angle/Speed
labeled data

Pre-process and augment data

Real-time Angle/Speed prediction

Train
Deep Learning
model

Data Generation Method

Send joystick and trigger keys

Controller (User)

SCIA 2018

Send receive controller motion control

Client (Computer)

Perform motion commands and send ready token Server

(Raspberry)

Record current image with associated angle/speed

Camera (Embedded)

Data Augmentation

1. Flip Image

Flipped angle_label = 1

2. Random brightness generation on original and flipped images

Why CNN?

Pros:

- Invariant in translation
- Can analyze from small to high patterns
- State of the art in computer vision

Cons:

• Need a lot of data

Model Architecture

 Light enough for real-time prediction on raspberry

Good performance

```
Convolution(8, mask = (3,3), strides = (2,2))
             MaxPooling2D
Convolution(16, mask = (3,3), strides = (2,2))
             MaxPooling2D
Convolution(32 mask =(3,3), strides=(2,2))
             MaxPooling2D
        GlobalAveragePooling2D()
       Dense(32, activation='relu')
              Dropout(0.1)
               BatchNorm
     Dense(2, activation='sigmoid')
```

Obstacle Detection

- Ultrasonic sensor
- Range of 1 m
- Stop in front of obstacles

Sign Detection

- Need to detect boxes of the sign in the image
- Same model as angle/speed detection

SCIA 2018

Box Detection Method

Hough transform:

- common method for circle detection
- not for real time

Hand-made method:

- edge detection
- try to fit circle
- predict with the sign classifier

Sign Dataset

- 1) Random flip
- 2) Random scale
- 3) Random shift
- 4) Random brightness

Driving Demo

Improvement tracks

- Intersections management
- Improve computing power Donkey Car
- Movidius Inception
- LSTM

Contact

Thibaut Barroyer

thibaut.barroyer@epita.fr

Axel Mendoza

axel.mendoza@epita.fr

THANKS!

ANY QUESTIONS?

