On Z_2 grading

In fact Z_2 grading has sence only in free Clifford algebra?? We consider two examples, when it failes

Example 1 Consider Clifford algebra over \mathbf{E}^3 (We suppose $W(\mathbf{x}) = -(\mathbf{x}, \mathbf{x})$) We know that

- 1. Odd elements \mathbf{x} project to rotation of \mathbf{E}^3 on the angle π with respect to axis directed along \mathbf{x} .
- 2. The even element $\mathbf{x} \cdot \mathbf{y}$ projects to the rotation of \mathbf{E}^3 on the angle $2 \angle (\mathbf{x}, \mathbf{y})$ with respect to axis which is orthogonal to both vectors. (It is identical transformation if \mathbf{x}, \mathbf{y} are linear dependent)

We see that

$$L_{\mathbf{e}_{\mathbf{x}}}L_{\mathbf{e}_{\mathbf{y}}} = L_{\mathbf{e}_{\mathbf{z}}} \,,$$

i.e. even and odd elements have the same projection.

Example 2 Consider Clifford Cliff $_k$ algebra over \mathbf{E}^k Consider map

$$\mathbf{E}^3 \to \mathtt{Cliff}_2$$
: $\beta(\mathbf{e}_x) = \mathbf{e}_x, \beta(\mathbf{e}_y) = \mathbf{e}_y, \beta(\mathbf{e}_z) = \mathbf{e}_x \cdot \mathbf{e}_y$

Yes, this map destroys parity, but it still obeys condition

$$\beta_{\mathbf{x}} \cdot \beta_{\mathbf{x}} = -(\mathbf{x}, \mathbf{x}) \cdot 1$$

hence by universality condition

$$\mathbf{E}^3$$
 $\swarrow\downarrow$
 $\mathsf{Cliff}_3\Rightarrow\mathsf{Cliff}_2$

we come to a map

$$\mathtt{Cliff}_3 \to \mathtt{Cliff}_2$$

ne can see that \mathtt{Cliff}_2 is associative algebra over \mathbf{E}^3 with