	Question 1	0.5 / 1 pts
	A generative model (select all that apply)	
Correct!	models how data is generated	
	represents how much energy is produced.	
Correct!	☑ builds our assumption into the model	
	models how the classifier is generated from the data.	
You Answered	models the relationship between the classifier and the data.	

	Question 2 1/1 pts
	Which are true about the class conditional distribution (CCD)? (select all that apply)
	the CCDs depend on the priors.
	the CCDs are the same for each class.
Correct!	the CCD models the feature distribution for each class.
Correct!	✓ the CCDs do not affect the priors.
Correct!	✓ there is a different CCD for each class.
Correct!	the CCD models the feature distribution for each class. the CCDs do not affect the priors.

	Question 3	0 / 1 pts
	Which are true about maximum likelihood estimation (MLE)? (select all the	nat apply)
You Answered	☑ it finds the parameter that maximizes the largest likelihood value.	
Correct!	☑ it maximizes the likelihood of the observed data.	
	it maximizes the probability of the classifier.	
	it always has a a closed form solution.	
	it selects the maximum possible value of the parameter.	
ś		
	Ouestion 4	0 / 1 pts

Why can the BDR be equivalently computed using the posterior, joint likelihood, or joint log-likelihood (select all that apply) You Answered ✓ the ordering is preserved because the posterior probability is bounded. ☐ the larger the posterior, the smaller the joint log-likelihood. Correct! ✓ monotonically increasing functions preserve rank ordering. Correct Answer ☐ the posterior, joint likelihood, and joint log-likelihood are the same thing.

	Question 5	0 / 1 pts
	Which are true about Naive Bayes classifier? (select all that apply)	
	it scales poorly with feature dimension.	
You Answered	the naive assumption means that the classifier boundary is linear.	
You Answered	correlations are modeled through covariance matrices.	
	it only works on 2-dimensional data.	
Correct!	each feature is modeled independently.	

	Question 2	1 / 1 pts
	What is regularization? (select all that apply)	
	subtracting the mean from the data, and dividing by the standard deviation.	
	setting the denominator to 1, or setting the numerator to 1	
	stopping model training after a fixed time period.	
Correct!	a penalty term that prevents the model weights from getting too large, controll complexity	ing
	a penalty term that encourages complex models by increasing weights	

In logistic regression, how does the prior distribution on **w** perform regularization (i.e., prevent overfitting)? (select all that apply)

Correct!

Using a large value of C means the prior variance will be large, so large values of w are possible.

Correct Answer

Using a small value of C means the variance of the Gaussian prior is small, so only w close to zero will be likely.

Using a large value of C means the prior variance will be small, so large values of w are possible.

You Answered

Using a small value of C means the variance of the Gaussian prior is large, so only w close to zero will be likely.

	Question 1 0 / 1 pts	
	Regarding the SVM (primal) problem and the SVM dual problem (select all that apply)	
Correct Answer	They both obtain the same classifier.	
Correct Answer	☐ The dual and primal problems are related through the Lagrange multipliers.	
	☐ The complexity of the dual problem is more than the primal problem.	
You Answered	$oxedsymbol{ iny}$ The complexity of the dual problem is less than the primal problem.	
	The dual solution is better than the primal solution.	:

	Question 3 1/1p	ts
	What is the similarity/difference between bagging and boosting? (select all that apply	y)
Correct!	✓ Both train multiple classifiers.	
	Bagging uses weak learners, while boosting uses strong learners.	
Correct!	☑ Both can learn non-linear classifiers.	
	Bagging focuses on samples that are common, while boosting ignores outliers.	
Correct!	Boosting focuses on errors of previous classifiers, while bagging trains independent classifiers.	

	Question 5	0 / 1 pts
	Classifier imbalance is when: (select all that apply)	
	The classifier obtains a larger loss after training.	
You Answered	✓ Some classes have more examples than others.	
	Rare classes require more examples.	
You Answered	✓ The class region is larger on one side of the decision boundary than the other.	
Correct!	Some errors are more important to avoid than others.	
ļ		

	Question 6	1 / 1 pts
	Which is the best classifier? (select all that apply)	
	Bayes classifier	
	Gradient Boosting	
	SVM	
	Adaboost	
Correct!	✓ There's no best classifier.	
	☐ Nearest neighbors	
	☐ Neural network	

	Question 1	0.5 / 1 pts
	Why is adding L2-norm regularization useful for linear regression? (select apply)	all that
Correct!	☑ it reduces the large weights to control model complexity.	
Correct Answer	it makes the matrix inversion well-conditioned.	
	it makes both the error and weight terms squared.	
	it encourages sparse weights (weights equal to 0).	
	☐ it shrinks the error smaller.	
	Question 2	0.67 / 1 pts
	What are the similarities/differences between L2-norm and L1-norm regulated (select all that apply)	ılarization?
Correct!	Optimization with L2-norm focuses more on reducing large weights.	
	☐ L2-norm is better at feature selection than L1-norm.	
Correct Answer	L1-norm is harder to optimize.	
	L2-norm regularized models are more complex than L1-norm regularized models.	odels.

✓ Both are ways to control model complexity

Correct!

	Question 3	0 / 1 pts
	What is the advantage of using sparsity (LO-norm) constraints? (select all that	apply)
Correct Answer	The number of desired features can be directly specified.	
You Answered	Because only a few features need to be selected, the optimization problem is ea	asier.
	Without the regularization term in the objective, the data-fit term can be minimized more.	d
Correct Answer	The weights can be better interpreted.	
	It has a closed-form solution.	
	Question 4	0 / 1 pts
	Why do we need to apply feature normalization before using feature selection regression models?	n
Correct Answer	So that the ordering of the weights can be interpreted.	
	So that the weights can be shrunk faster to zero.	
	So that linear algebra operations are well-conditioned.	
	☐ So that the L2-norm of the features is smaller than the L2-norm of the weights.	
You Answered	So that the training algorithm can run faster.	

	Question 5	0.33 / 1 pts
	Regarding RANSAC: (select all that apply)	
	It fits models to random subsets of the data, and combines them to improve the estimated function.	ne
Correct Answer	☐ More iterations increase the probability of learning the correct function.	
Correct!	It fits models to random subsets of the data to search for the largest set of cordata.	nsistent
Correct Answer	It assumes that more than 50% of the data are inliers.	
	☐ It can only be used with linear regression.	
	Question 6	1 / 1 pts
	NATI - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	

	Question 6	1 / 1 pts
	What are advantages of kernel ridge regression? (select all that apply)	
	t is not sensitive to the kernel hyperparameters.	
Correct!	✓ There is a closed-form solution.	
	☐ The complexity is lower than standard ridge regression.	
	It provides a measurement of uncertainty for each prediction.	
Correct!	✓ It can learn non-linear functions.	

	Question 7	0 / 1 pts
	What are the main differences between kernel ridge regression (KRR) and opposess regression (GPR)? (select all that apply)	Gaussian
You Answered	given the same kernel, GPR and KRR learn different functions.	
	GPR and KRR are actually the same.	
	KRR provides uncertainty estimates, while GPR does not.	
Correct Answer	GPR uses a fully Bayesian framework, while KRR does not.	
You Answered	KRR uses a kernel matrix, while GPR uses a Gaussian kernel.	
	Ouestion 8	0 / 1 pts
	Question 8	0 / 1 pts
	Question 8 Why is maximizing the marginal likelihood good for estimating hyperparam model? (select all that apply)	
You Answered	Why is maximizing the marginal likelihood good for estimating hyperparam	
You Answered	Why is maximizing the marginal likelihood good for estimating hyperparam model? (select all that apply)	
You Answered Correct Answer	Why is maximizing the marginal likelihood good for estimating hyperparam model? (select all that apply) Can be used for all types of regression/classification models.	neters of a
	Why is maximizing the marginal likelihood good for estimating hyperparam model? (select all that apply) Can be used for all types of regression/classification models. It is easier to implement than cross-validation.	neters of a

	Question 1	0.67 / 1 pts
	The goal of Principal Component Analysis (PCA) is to (select all that a	pply)
	separate the classes in the low-dimensional space.	
	maximize the intra-class variance in the low-dimensional space	
Correct!	find basis vectors that are orthogonal.	
Correct Answer	minimize the reconstruction error of the data.	
Correct!	maximize the variance of the data in the low-dimensional space.	
	Ouestion 2	0.33 / 1 pts

	Question 2	0.33 / 1 pts
	How to select the number of principal components? (select all that apply)	
	to minimize the classification error on the test set.	
Correct Answer	to maintain an average reconstruction error.	
Correct!	✓ to preserve some percentage of variance of the data.	
Correct Answer	to minimize the classification error with cross-validation.	
	Use a random value since it doesn't matter.	

DR only preserves properties of the feature space, which discards some class structure,

causing more classification errors.

	Question 5	0 / 1 pts
	Which statements are true about Fisher's linear discriminant (FLD)? (select a apply)	all that
	FLD aims to maximize the projected variance of the classes	
	FLD can only be applied to 2 classes.	
Correct!	FLD aims to maximize the difference between projected means of the classes.	
You Answered	FLD focuses on preserving pairwise distances between points.	
Correct Answer	FLD assumes the classes are Gaussian distributions.	
	Question 6	0.5 / 1 pts
	What is the goal of linear dimensionality reduction for text? (select all that a	pply)
	build a probabilistic model relating documents to topics.	

maximize the separation between document classes.

reduce the vocabulary size of the bag-of-words model.

represent documents as a combination of latent topics.

Correct!

Correct Answer

	Question 7	0.5 / 1 pts
	What are the advantages of kernel PCA? (select all that apply)	
	it is efficient to compute the embedding of a new point.	
Correct!	☑ it creates a non-linear transformation using kernel functions.	
	it is the same as PCA, so there is no advantage.	
Correct Answer	it can boost classification accuracy of linear classifiers.	
	it can capture the class structure of the original feature space.	
L C-		
		0 / 1

	Question 1	0 / 1 pts
	What is a consequence of using Euclidean distance in K-means clustering? (that apply)	select all
You Answered	✓ the centers will always be in a region of dense samples.	
You Answered	samples are only assigned to one cluster, i.e., hard assignment.	
	the optimization problem is non-convex and has local minimums.	
Correct Answer	the partitioning of the space is formed by combining straight lines.	
Correct!	✓ the clusters tend to be circular.	
l		
	Question 2	1 / 1 pts
	What are the similarities/differences between K-means and GMM clusterin all that apply)	g? (select
	K-means automatically selects the number of clusters (K), while K needs to be made selected for GMMs.	inually
Correct!	GMMs use weighted averages to update the parameters, while K-means uses ave	erages.
Correct!	✓ Both methods suffer from the problem of local minimums or maximums.	
Correct!	K-means uses "hard" assignments, while GMM uses "soft" assignments.	

☐ Both assume the clusters are circular.

	Question 3	0.5 / 1 pts
	The bag-of-X model is useful because (select all that apply)	
Correct!	☑ it summarizes commonly occurring patterns into a histogram of words.	
Correct!	☑ it reduces the dimension of the data.	
You Answered	☑ it creates discriminative features.	
	the original image can be reconstructed from the bag-of-words.	
	it treats each word as independent.	

the amount of data in each cluster needs to be balanced, which can be effectively

controlled by normalization.

You Answered

	Question 1	0.33 / 1 pts
	The Perceptron can obtain different solutions on the same dataset becauthat apply)	se: (select all
	none of the above.	
You Answered	noise is added to the data to increase robustness.	
Correct Answer	all decision boundaries that classify the data perfectly have the same loss.	
Correct!	extstyle ext	
Correct!	the algorithm has a random component.	
	Question 2	0.5 / 1 pts
	Which statements are true about multi-class logistic regression? (select a	ll that apply)

composition of functions.

	Question 3	0 / 1 pts
	In an MLP, why should the activation functions be non-linear? (select all that	apply)
	Non-linear activations are faster to compute.	
Correct!	✓ They can map real values to probabilities, like softmax.	
You Answered	✓ It's better to limit the node outputs to be within [-1, 1] or [0, 1].	
	☐ The model would be equivalent to a single layer.	
Correct Answer	Forcing output values to 0 can induce sparse representations.	

Which statements are true regarding the Universal Approximation Theorem? (select all that apply)

Some continuous functions cannot be approximated by an MLP, regardless of the number of hidden nodes.

You Answered

- A deep network requires more parameters to train a similar model.
- None of the above.
- Stochastic gradient descent is the best way to train the network.

Correct!

✓ The number of nodes in the hidden layer could be exponential in the input size.

	Question 1	0.67 / 1 pts
	What are the problems with using a fully-connected (FC) layer on a 1-D audio) or a 2-D signal (e.g., image)? (select all that apply)	signal (e.g.,
Correct Answer	the number of parameters depends on the length of the signal.	
Correct!	the number of parameters is large if the signal is large.	
Correct!	✓ features are learned independently across locations in the signal.	
	it cannot learn correlations between inputs.	
	features are extracted from only the local region of the signal.	
	Question 2	1 / 1 pts
	Which statements are true about convolution (select all that apply)	

given a fixed input energy, the maximum response occurs when the signal is proportional

Correct!

Correct!

to the flipped filter.

convolution is the same as cross-correlation.

convolution is the same as multiplication in the frequency domain.

2D convolution is the same as vectorizing and applying 1-D convolution.

convolution cannot be applied to signals with finite length.

	Question 3	1 / 1 pts
	Combining convolution layers will (select all that apply)	
	be equivalent to one convolution layer.	
Correct!	☑ increase the receptive field size.	
Correct!	extract higher semantic-level features.	
Correct!	allow searching for larger patterns.	
	contain more parameters than an equivalent MLP.	
3		

	Question 5	1 / 1 pts
	Which statements are true about L2-norm regularization (select all that app	ıly)
Correct!	☑ it is the same as "weight decay" regularization.	
	the solution using L2-norm regularization is not affected by the magnitude of the weights.	
	it can only be applied to fully-connected layers.	
	it is effective when applied to just a few layers.	
Correct!	☑ it prevents weights from becoming too large.	

	Question 6	0 / 1 pts
	Ensembling models can reduce errors when (select all that apply)	
	ach model is trained on the errors of the previous models.	
Correct Answer	☐ The errors of the models are partially uncorrelated.	12
Correct Answer	the errors of the models are uncorrelated.	- 5
	none of the above.	
You Answered	✓ the errors of the models are correlated.	

Question 7	0.67 / 1 pts
What are the advantages of applying Dropout? (select all that apply)	
☑ it makes the classifier robust by randomly removing important features.	
it controls the model complexity by reducing weights.	
it uses an approximation to model averaging to reduce errors.	
it performs feature selection in each layer.	
dropped nodes are removed when computing the gradients, which makes the signal more reliable.	gradient
	What are the advantages of applying Dropout? (select all that apply) it makes the classifier robust by randomly removing important features. it controls the model complexity by reducing weights. it uses an approximation to model averaging to reduce errors. it performs feature selection in each layer.

	Question 8	1 / 1 pts
	Why is data augmentation effective? (select all that apply)	
	it makes the receptive field larger so that the whole sample can be seen.	
Correct!	☑ it increases the number of training examples.	
	it requires less epochs to converge.	
	it augments the layers with additional weights to model more complex function	S.
Correct!	☑ it makes the network robust to the transformations used for data augmentation	ı.

	Question 1	0.67 / 1 pts
	What is the advantage of having sparse activations? (select all that apply)
Correct!	sparse activations tend to form part-based representations that are more r	obust.
	sparse activations are easier to store in memory.	
	zero-valued activations reduce the L2-norm of the weights.	
Correct Answer	sparse activations save computation.	
Correct!	zero-valued activations have zero-valued gradients, which reduces the vanishi gradient problem.	ng
L		
	Question 2	0.5 / 1 pts
	Why is batch normalization helpful? (select all that apply)	
	☐ It makes sure that each mini-batch is representative of the dataset.	
Correct!	It is a reparameterization of the network that makes it more stable to train.	
	☐ It makes each iteration of training more efficient.	
Correct Answer	☐ It makes training more effective, allowing larger learning rates.	
	☐ It normalizes each batch to be the same length to reduce overhead.	

ing rate during SGD training? (select all that apply)
getting too large.
D more efficient at the end.
arch in the parameter space.
ch for a minimum.
he computed gradient when we are near to a minimum.

need to re-initialize the weights of the network with a random distribution.

do not require as much data because the feature extractors are trained well already.

assume that the features of the pre-trained network will generalize to the new task.

Correct!

Correct!

	Question 1	0 / 1 pts
	Which statements are true about autoencoders? (select all that apply)	
Correct Answer	☐ They are an unsupervised learning method using neural networks.	
	The dimension of the latent representation must be lower than the dimension of input.	f the
You Answered	The objective is to minimize the classification error of the latent representat	ion.
Correct!	Besides fully-connected layers, autoencoders can also be composed of other lay convolution, max pooling, etc.	vers like
Correct Answer	Weight sharing is used to reduce the number of trainable parameters.	
_		
	Question 2	0 / 1 pts
	Denoising auto-encoders aim to (select all that apply)	
Correct Answer	make the network to learn about the data manifold.	
You Answered	add noise to expand the data manifold to prevent singular matrices.	
	make training more efficient.	
	remove noise from the input so that the data manifold is better defined.	
Correct Answer	enables better latent representation when its dimension is larger than the input dimension.	

	Question 3	0.33 / 1 pts
	Which statements are true about the reparameterization trick? (select	all that apply)
Correct Answer	It writes a r.v. as the function of another r.v.	
Correct!	☑ It allows backpropagation through a sample of a r.v.	
	☐ It decomposes a random variable into two r.v.'swith orthogonal directions	
Correct Answer	The probability density can be computed if the inverse transformation is a	vailable.
	It is a way to change the parameters of the neural network so that it is easier	to train.
,		
	Question 4	
8	What is the difference between VAEs and GANs? (select all that apply)	
Correct!	The VAE is explicitly learning the posterior density of a latent variable, while to implicitly learning a probability density of the data.	the GAN is
	The GAN is supervised learning, while the VAE is unsupervised learning.	
Correct Answer	☐ The VAE is more stable (easier) to train than the GAN.	- 5
You Answered	GANs can produce novel samples, while VAEs cannot.	
Correct Answer	The VAE is trained to maximize the data marginal likelihood, while the GAN is maximize confusion.	s trained to