### How simple can mass-spec files get?

# Databases are a speedy, small, and simple solution for MS data storage and access

William Kumler and Anitra E. Ingalls
wkumler@uw.edu ● github.com/wkumler/mzsql
University of Washington, School of Oceanography, Seattle, USA



Column-based tidy format is simple and intuitive for all MS types

Convert m/z and intensity tuples into database columns

### Pair with other separation data

- Retention time (liquid chromatography)
- Drift time (ion mobility)
- X/Y coordinate (imaging MS)

Link with MS<sup>n</sup> data via scan number

#### Pair with filename to aggregate multifile

- Optimized across files
- Metadata tables saved alongside

| Table: MS1                     |                         |                      |                 |                  |  |  |  |  |
|--------------------------------|-------------------------|----------------------|-----------------|------------------|--|--|--|--|
|                                | scan_num<br>Scan number | rt<br>Retention time | mz<br>m/z ratio | int<br>Intensity |  |  |  |  |
| Smp_A                          | 1                       | 0.10                 | 60.0452         | 6618             |  |  |  |  |
| Smp_A                          | 1                       | 0.10                 | 60.0532         | 2657             |  |  |  |  |
| millions of additional entries |                         |                      |                 |                  |  |  |  |  |
| Smp_Z                          | 1385                    | 22.35                | 60.0456         | 158084           |  |  |  |  |
| Smp_Z                          | 1385                    | 22.35                | 60.0531         | 4673             |  |  |  |  |

| Table: MS2                     |                         |                           |                      |                        |                        |                  |  |  |  |
|--------------------------------|-------------------------|---------------------------|----------------------|------------------------|------------------------|------------------|--|--|--|
| filename<br>Source file        | scan_num<br>Scan number | prescan<br>Precursor scan | rt<br>Retention time | fragmz<br>Fragment m/z | premz<br>Precursor m/z | int<br>Intensity |  |  |  |
| Smp_A                          | 2                       | 1                         | 0.12                 | 51.0238                | 241.0894               | 36104            |  |  |  |
| Smp_A                          | 2                       | 1                         | 0.12                 | 53.0394                | 241.0894               | 243165           |  |  |  |
| millions of additional entries |                         |                           |                      |                        |                        |                  |  |  |  |
| Smp_Z                          | 1390                    | 1385                      | 22.45                | 52.0186                | 185.1932               | 28371            |  |  |  |
| Smp_Z                          | 1390                    | 1385                      | 22.45                | 57.0923                | 185.1932               | 129604           |  |  |  |
| on chromatogram extraction:    |                         |                           |                      |                        |                        |                  |  |  |  |



Smp\_Z 1390 1385 22.45 52.0186 185.1932 28371
Smp\_Z 1390 1385 22.45 57.0923 185.1932 129604

lon chromatogram extraction:
SELECT \* FROM MS1 WHERE mz BETWEEN min AND max
Retention time range subset:
SELECT \* FROM MS1 WHERE rt BETWEEN min AND max
Fragment search:
SELECT \* FROM MS2 WHERE fragmz BETWEEN min AND max
Precursor search:
SELECT \* FROM MS2 WHERE premz BETWEEN min AND max

Problem: very large in memory! Solution: simple databases

#### Databases vs existing MS file options We compared 13 different mass-spectrometry file types in Python using six metrics - Single MS<sup>1</sup> scan - Ion chromatogram mzDB Parquet mzML - Consecutive MS<sup>1</sup> scans - Single MS<sup>2</sup> scan mzMLb - Precursor *m/z* search - Fragment *m/z* search A. Full scan B. Chromatogram C. RT Range 10.00 白 Databases outperformed on all metrics other than known scan extraction D. MS/MS scan E. Precursor search F. Fragment search - Often by 10-100x Parquet and DuckDB methods also reduced the on-disk file size ~50%



# Databases offer language agnostic data access with essentially zero memory overhead





