Numerical Methods Homework 7

Adam Kit - 3707437

26 May 2020

1 Newtons Divided Difference

Given the data below

X	5	7	11	13	17
У	150	392	1452	2366	5202

we find that the polynomial

$$f(x) = 150 + 121(x - 5) + 24(x - 5)(x - 7) + 1(x - 5)(x - 7)(x - 11) + 0.001041(x - 5)(x - 7)(x - 11)(x - 13)$$
 represents the data. The plot can be seen in figure 1

2 Rocket Velocity Interpolation

Given the data below

t	0	10	15	16	20	25	27.5	30
V	0	227.04	362.78	??	517.35	701.35	??	901.67

we use newtons divided difference to obtain the incomplete values.

2.1 First Order

The first is found to be

$$v(t) = 22.704x$$

. We estimate v(t = 16) = 363.264

2.2 Second Order

The second order is found to be

$$v(t) = 22.704x + 0.2962x(x - 10)$$

Thus v(t = 16) = 391.7056

2.3 Plot

The plot can be seen in Figure 2.3, and I would say that the second order is best to use here, however high order is probably even better. We estimate from the graph $v(27.5) \approx 766.9$. I hope t is in ms because this is a slow rocket.

