Particle spectrograph

Wave operator and propagator

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lpha eta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
) ₀ #1 †	-t ₁	$i\sqrt{2} kt_1$	0	0
6#1 0+	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
f#2 †	0	0	0	0
) ₀ -1 †	0	0	0	t_2

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2ik \sigma_{2+}^{\#1}{}^{\alpha\beta} = 0$	$0 - i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} \right) - i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$	
	$6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$	
	$4 i \eta^{\alpha\beta} k^{X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \delta = 0$	
 Total constraints/gau	ıge generators:	16

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}lphaeta}^{ ext{#2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\sharp 1} \dagger^{lpha eta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}ik(t_1+t_2)$	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_{1}^{\sharp 1}\dagger^{lpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	ikt_1
				2	y 2		
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1}^{#2} +^{\alpha}$ $f_{1}^{#1} +^{\alpha}$	0	0	0		,	0	0
_	0	-		$\frac{t_1}{\sqrt{2}}$	0		

	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{ ext{#2}}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_1^{\sharp 2}{}_{lpha}$	$\tau_{1-\alpha}^{\#1}$	$\tau_1^{\#2}_{\alpha}$
$\sigma_{1}^{\#1}\dagger^{lphaeta}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2r_5(t_1+t_2)}$	$\frac{\sqrt{2} (t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	0	0	0	0
$\sigma_{1}^{\#2}\dagger^{lphaeta}$	$\frac{\sqrt{2} (t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	$\frac{6k^2r_5+t_1+4t_2}{(1+k^2)^2(3t_1t_2+2k^2r_5(t_1+t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1+k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$-\frac{i\sqrt{2} k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	$-\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1+k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_{1}^{\sharp 1}\dagger^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2k^2r_5 + t_1}{(t_1 + 2k^2t_1)^2}$	0	$-\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$
$\tau_1^{\#_1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 r_5 + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$

±)[[[
$\sigma_1^{\#2}{}_{lpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$ au_{1}^{\#2}{}_{lpha}$				
0	0	0				
0	0	0				
0	0	0				
$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$		$\omega_{2^{+}lphaeta}^{\sharp1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta}$
$\frac{-2k^2r_5 + t_1}{(t_1 + 2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$				0
0	0	0	$\omega_{2}^{\#1}\dagger^{\alpha\beta}$ $f_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{i kt_1}{\sqrt{2}}$	$k^2 t_1$	0
$i\sqrt{2}k(2k^{2}r_{E}-t_{1})$		$-4 k^4 r_0 + 2 k^2 t_1$,		

 $6\,r_5\,\partial_i\omega_{\theta_{K}}^{\,\,K}\,\partial^{\theta}\omega^{\alpha_i}_{\,\,\alpha}-6\,r_5\,\partial_{\theta}\omega_{i_{K}}^{\,\,K}\,\partial^{\theta}\omega^{\alpha_i}_{\,\,\alpha}-6\,r_5\,\partial_{\alpha}\omega^{\alpha_i\theta}$

 $4t_1 \partial_{\theta} f_{\alpha_{l}} \partial^{\theta} f^{\alpha_{l}} + t_2 \partial_{\theta} f_{\alpha_{l}} \partial^{\theta} f^{\alpha_{l}} + 2t_1 \partial_{\theta} f_{|\alpha} \partial^{\theta} f^{\alpha_{l}} - t_2 \partial_{\theta} f_{|\alpha} \partial^{\theta} f^{\alpha_{l}} + 2(t_1 + t_2) \omega_{\alpha_{l}\theta} (\omega^{\alpha_{l}\theta} + 2\partial^{\theta} f^{\alpha_{l}}) + t_2 \partial_{\theta} f^{\alpha_{l}} + 2(t_1 + t_2) \omega_{\alpha_{l}\theta} (\omega^{\alpha_{l}\theta} + 2\partial^{\theta} f^{\alpha_{l}}) + d_{\theta} \partial_{\theta} f^{\alpha_{l}} + d_{\theta}$

 $4t_1\partial_\alpha f_{\,,\theta}\partial^\theta f^{\alpha\prime} + 2t_2\,\partial_\alpha f_{\,,\theta}\partial^\theta f^{\alpha\prime} - 4t_1\,\partial_\alpha f_{\,\theta\prime}\partial^\theta f^{\alpha\prime}$

Quadratic (free) action

 $t_2 \, \partial_\alpha f_{\theta_i} \, \partial^\theta f^{\alpha i} + 2 \, t_1 \, \partial_i f_{\alpha \theta} \, \partial^\theta f^{\alpha i} - t_2 \, \partial_i f_{\alpha \theta} \, \partial^\theta f^{\alpha i} +$

Massive and massless spectra

Massive particle			
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$		
Polarisations:	3		
Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$		
Spin:	1		
Parity:	Even		

Unitarity conditions

 $r_5 > 0 \&\& (t_1 < 0 \&\& (t_2 < 0 || t_2 > -t_1)) || (t_1 > 0 \&\& -t_1 < t_2 < 0)$