

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

CTR06 – Laboratório de Controle Automático III Prof. Murillo Ferreira dos Santos, D. Eng.

PRÁTICA DE LABORATÓRIO 05 – Introdução a sistemas não lineares

Objetivo: Analisar componentes não lineares básicos, verificando que o princípio da superposição não é válido para tais elementos. Para sinais de excitação senoidal, verificar a deformação do sinal de saída, com o aparecimento de componentes harmônicas na saída de elementos não lineares.

Parte 1. No Simulink[®], na biblioteca *Simulink→Discontinuities*, identificar os elementos não lineares listados abaixo na Fig. 1: (a) atrito de Coulomb, (b) zona morta, (c) liga-desliga com histerese e (d) saturação.

Fig 1. Elementos não lineares comuns

Os dados de simulação estão na Tabela I abaixo:

TABELA I

ELEMENTO	PARÂMETROS	VALOR
Coulomb & Viscous Friction	Coulomb friction value	0.1
	Coefficient of viscous friction	1
Dead Zone	Start of dead zone	-0.1
	End of dead zone	0.1
Relay	Switch on Point	0.1
	Switch off Point	-0.1
	Output when on	0.6
	Output when off	-0.6
Saturation	Upper limit	0.1
	Lower limit	-0.1

Descrever o comportamento da saída do elemento não linear à medida que a amplitude da entrada senoidal (frequência de 1 Hz) é variada:

- 1. Gerar um gráfico com as curvas de entrada e saída para as amplitudes $X=\{0.01;0.51;1.01\}$ e comentar o comportamento da saída à medida que X cresce. Ou seja, gerar em um único gráfico (um por elemento), as curvas de saída para cada amplitude X do sinal senoidal de entrada.
- 2. Discorra sobre a deformação do sinal de saída de forma qualitativa relacionando-a com o aumento ou diminuição de *X*. (Entenda por deformação o "desvio" de um sinal com referência a um sinal senoidal puro).

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

CTR06 – Laboratório de Controle Automático III Prof. Murillo Ferreira dos Santos, D. Eng.

Parte 2. No Simulink[®], simular os elementos não lineares zona-morta e saturação, com os parâmetros especificados na Tabela II, no intervalo de tempo em segundos [0;0.1) com intervalo de amostragem Δt =1e-4.

TABELA II

ELEMENTO	PARÂMETROS	VALOR
Dead Zone	Start of dead zone End of dead zone	-0.05 0.05
Saturation	Upper limit Lower limit	0.1 -0.1

- 1. **SINAL ANALISADO Nº 1**: é constituído de duas componentes senoidais, de frequências 10 e 30 Hz, com amplitudes de 0,09 e 0,03, respectivamente. Ou seja, componente s_1 =0,09·sen(20 πt) e componente s_2 =0,03·sen(60 πt +0°).
 - Gerar, em um único gráfico, as entradas e respostas individuais dos elementos aos dois sinais de entrada. Comente os resultados quanto à deformação da saída em relação às entradas.
 - Gerar, em um único gráfico, a soma das respostas individuais do item anterior e também as respostas dos elementos não lineares para o sinal de entrada s_1+s_2 , ou seja, utilize o teorema da superposição quanto a classificação de sistemas não lineares.
- 2. **SINAL ANALISADO Nº 2**: é constituído de duas componentes senoidais, de frequências 10 e 30 Hz, com amplitudes de 0,09 e 0,03, respectivamente. Ou seja, componente s_1 =0,09·sen(20 πt) e componente s_2 =0,03·sen(60 πt +180°).
 - Gerar, em um único gráfico, as entradas e resposta individual dos elementos aos dois sinais de entrada. Comente os resultados quanto à deformação da saída em relação às entradas.
 - Gerar, em um único gráfico, a soma das respostas individuais do item anterior e também as respostas dos elementos não lineares para o sinal de entrada s_1+s_2 , ou seja, utilize o teorema da superposição quanto a classificação de sistemas não lineares.
- 3. **SINAL ANALISADO Nº 3**: é constituído de duas componentes senoidais, de frequências 10 e 30 Hz, com amplitudes de 0.33 e 0.11, respectivamente. Ou seja, componente s_1 =0,33·sen(20 πt) e componente s_2 =0,11·sen(60 πt +0°)
 - Gerar, em um único gráfico, as entradas e resposta individual dos elementos aos dois sinais de entrada. Comente os resultados quanto à deformação da saída em relação às entradas.
 - Gerar, em um único gráfico, a soma das respostas individuais do item anterior e também as respostas dos elementos não lineares para o sinal de entrada s_1+s_2 , ou seja, utilize o teorema da superposição quanto a classificação de sistemas não lineares.

Considerações Finais: Discorra sobre as conclusões que a atividade prática 2 proporcionou quanto aos aspectos de deformação harmônica, dependência de resposta com amplitude do sinal de entrada, princípio da superposição, etc..