Question number	Scheme	Marks
4	$\frac{dy}{dx} = \frac{2\cos 2x(x^2 - 9)^{\frac{1}{2}} - \frac{1}{2} \times 2x\sin 2x(x^2 - 9)^{-\frac{1}{2}}}{(x^2 - 9)}$	M1A1A1
	$\frac{2\cos 2x(x^2-9)^{\frac{1}{2}}(x^2-9)^{\frac{1}{2}}-\frac{1}{2}\times 2x\times \sin 2x}{(x^2-9)^{\frac{1}{2}}}$	
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left(x^2 - 9\right)^{\frac{1}{2}}}{\left(x^2 - 9\right)} \right\}$	
	$\frac{dy}{dx} = \frac{2(x^2 - 9)\cos 2x - x\sin 2x}{\sqrt{(x^2 - 9)^3}} *$	dM1A1 cso [5]
	ALT	
	$y = \sin(2x) (x^2 - 9)^{-\frac{1}{2}}$ $\frac{dy}{dx} = 2\cos(2x)(x^2 - 9)^{-\frac{1}{2}} + \sin(2x) \left(-\frac{1}{2}\right) (2x)(x^2 - 9)^{-\frac{3}{2}}$	[M1A1A1
	$\left\{ \frac{dy}{dx} = \frac{2\cos(2x)(x^2 - 9) - x\sin(2x)}{(x^2 - 9)^{\frac{3}{2}}} \right\}$	
	$\frac{dy}{dx} = \frac{2(x^2 - 9)\cos(2x) - x\sin(2x)}{\sqrt{(x^2 - 9)^3}} *$	dM1A1 cso]
	Total 5 mark	

Mark	Notes
M1	For an attempt at Quotient rule.
	The definition of an attempt is that there must be a correct attempt to differentiate at least one
	term and the denominator must be $(\sqrt{x^2-9})^2$.
	Allow the terms in the numerator to be the wrong way around, but the terms must be
	subtracted.
	Attempt at differentiation of the terms:
	$\sin(2x) \to k \cos(2x)$ where k is an integer
	$(x^2-9)^{\frac{1}{2}} \to lx(x^2-9)^{-\frac{1}{2}}$
A1	For correct differentiation of at least one term.
	$2\cos(2x)(x^2-9)^{\frac{1}{2}}\text{ or }-\frac{1}{2}\times 2x\sin 2x(x^2-9)^{-\frac{1}{2}}$
A1	For a fully correct Quotient rule
	$\frac{dy}{dx} = \frac{2\cos 2x(x^2-9)^{\frac{1}{2}} - \frac{1}{2} \times 2x\sin 2x(x^2-9)^{-\frac{1}{2}}}{2}$
	$\frac{1}{\mathrm{d}x} = \frac{1}{(x^2-9)}$

dM1	For an attempt to rearrange to the given form.		
	Dependent on M1 being scored.		
	An attempt requires obtaining a single fraction and multiplying numerator and denominator		
	by $(x^2-9)^{\frac{1}{2}}$ (see {} in mark scheme).		
A1	Fully correct method to show		
cso	$\frac{dy}{dx} = \frac{2(x^2 - 9)\cos 2x - x\sin 2x}{\sqrt{(x^2 - 9)^3}}$		
	$\frac{dx}{dx} - \frac{\sqrt{(x^2-9)^3}}$		
	Allow with $\sqrt{(x^2 - 9)^3}$ given as $(x^2 - 9)^{\frac{3}{2}}$ or $\sqrt{(x^2 - 9)^3}$		
ALT – product rule			
M1	For an attempt at Product rule.		
	The definition of an attempt is that there must be a correct attempt to differentiate at least one		
	term.		
	Attempt at differentiation of the terms:		
	$\sin(2x)\left(x^2-9\right)^{-\frac{1}{2}} \to k\cos(2x)\left(x^2-9\right)^{-\frac{1}{2}} \text{ where } k \text{ is an integer}$		
	$\sin(2x)(x^2-9)^{-\frac{1}{2}} \to lx\sin(2x)(x^2-9)^{-\frac{3}{2}}$		
A1	For correct differentiation of at least one term.		
	Either $2\cos(2x)(x^2-9)^{-\frac{1}{2}}$ or $\sin(2x)\left(-\frac{1}{2}\right)(2x)(x^2-9)^{-\frac{3}{2}}$		
A1	For a fully correct Product rule		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\cos(2x)(x^2 - 9)^{-\frac{1}{2}} + \sin(2x)\left(-\frac{1}{2}\right)(2x)(x^2 - 9)^{-\frac{3}{2}}$		
dM1	For an attempt to rearrange to the given form.		
	Dependent on M1 being scored.		
	An attempt requires obtaining a single fraction and multiplying numerator and denominator		
	3		
A 1	by $(x^2 - 9)^{\frac{1}{2}}$ (see {} in mark scheme).		
A1	Fully correct method to show		
cso	$\frac{dy}{dx} = \frac{2(x^2 - 9)\cos 2x - x\sin 2x}{\sqrt{(x^2 - 9)^3}}$		
	Allow with $\sqrt{(x^2-9)^3}$ given as $(x^2-9)^{\frac{3}{2}}$ or $\sqrt{(x^2-9)^3}$		