4 Algorithmische Strukturelemente

Bedingte Anweisung

Beispiel 1:

Kauft ein Kunde für mehr als 200 € ein, bekommt er 10 € Rabatt.

wenn Kaufpreis > 200 dann Kaufpreis = Kaufpreis – 10 endewenn

Kaufpreis > 200 ist ein Wahrheitswert, das Maschinenprogramm kennt aber nur den Datentyp ganze Zahl.

Kaufpreis -200 > 0

Sprung zu endewenn, falls Ergebnis von CMP ≤ 0

JLE (less or equal zero = JMPNP)

```
#Speicherbelegung:
LOADI 200 #Rabattgrenze
STORE 100
LOADI 10 #Rabatt
STORE 101
LOADI 205 # Einkaufspreis
STORE 102
```

#Termberechnung
LOAD 102
CMP 100

✓ JLE Preis
SUB 101

→ Preis: STORE 103

HOLD

Bedingung nicht erfüllt, Dann-Teil muss übersprungen werden.

Veranschauliche die bedingte Anweisung in einer Zustandsübergangstabelle:

Befehl	BZ	Akku	AS 100	AS 101	AS 102	AS 103
LOAD 102	14	205	200	10	205	
CMP 100	16	205	200	10	205	
JLE Preis	18	205	200	10	205	
SUB 101	20	195	200	10	205	
Preis: STORE 103	22	195	200	10	205	195

Befehl	BZ	Akku	AS 100	AS 101	AS 102	AS 103
LOAD 102	14	180	200	10	180	
CMP 100	16	180	200	10	180	
JLE Preis	20	180	200	10	180	
Preis: STORE 103	22	180	200	10	180	180

Beispiel 2:

In den Speicherzellen 100 und 101 stehen zwei Werte, ordne sie der Größe nach.

wenn Wert(100) > Wert(101) dann tausche Inhalt endewenn

Sprung, wenn Wert(100) - Wert(101) <= 0

Speicherbelegung LOADI 17 **STORE 100** LOADI 15 **STORE 101** #Programm **LOAD 100 CMP 101** JLE fertig **STORE 102 LOAD 101 STORE 100 LOAD 102 STORE 101** fertig: HOLD

Bedingung nicht erfüllt, Dann-Teil muss übersprungen werden.

weitere Lösungen?

#Programm	#Programm	#Programm
LOAD 100	LOAD 101	LOAD 101
SUB 101	SUB 100	SUB 100
JGT fertig	JLT fertig	JGE fertig
LOAD 100	LOAD 100	LOAD 100
STORE 102	STORE 102	STORE 102
LOAD 101	LOAD 101	LOAD 101
STORE 100	STORE 100	STORE 100
LOAD 102	LOAD 102	LOAD 102
STORE 101	STORE 101	STORE 101
fertig: HOLD	fertig: HOLD	fertig: HOLD

Beispiel 3:

#Programm

LOAD 101

SUB 100

JNE fertig

LOADI 0

STORE 102

fertig:

HOLD

#Programm

LOAD 101

CMP 100

JNE fertig

LOADI 0

STORE 102

fertig:

HOLD

Alternative (oder zweiseitige bedingte Anweisung)

Beispiel 4:

In den Speicherzellen 100 und 101 stehen zwei Zahlen. Die größere der beiden soll in Speicherzelle 102 eingetragen werden.

LOADI 19 STORE 100 LOADI 24 STORE 101

Bedingung wahr

CMP 101

JLT Bedingungf

STORE 102

JMP ende

Bedingung falsch

bedingter

Sprung

Bedingung falsch

Sprung

bedingter

Sprung

bedingter

Sprung

bedingter

Sprung

Veranschauliche die Alternative in einer Zustandsübergangstabelle:

Bedingung wahr

Befehl	BZ	Akku	AS 100	AS 101	AS 102
LOAD 100	10	24	24	19	0
CMP 101	12	24	24	19	0
JLT Bedf	14	24	24	19	0
STORE 102	16	24	24	19	24
JMP ende	22	24	24	19	24
ende: HOLD	24	24	24	19	24

Bedingung falsch

Befehl	BZ	Akku	AS 100	AS 101	AS 102
LOAD 100	10	19	19	24	0
CMP 101	12	19	19	24	0
JLT Bedf	18	19	19	24	0
LOAD 101	20	24	19	24	0
STORE 102	22	24	19	24	24
ende: HOLD	24	24	19	24	24

Beispiel 5:

Berechne den Betrag einer Zahl a (in AS 100) und speichere ihn in Zelle 101.

LOADI -19 STORE 100

LOAD 100

JLT negativ

STORE 101

JMP ende

negativ: MULI -1

STORE 101

ende: HOLD