Reading Material

CS 5135/6035 Learning Probabilistic Models Lecture 20: Monte Carlo Integration

Gowtham Atluri

November 12, 2018

Chapter 3. Monte Carlo Integration
 Christian Robert and George Casella. Introducing Monte Carlo Methods with R

- Chapter 5. Monte Carlo Integration http://www.math.chalmers.se/Stat/Grundutb/CTH/tms150/1516/ MC_20151008.pdf
- Andrieu et al. An introduction to MCMC for machine learning, Machine learning, 2003.

Gowtham Atlur

S 5135/6035 Learning Probabilistic Models

mber 12, 2018 1

Gowtham Atlu

S 5135/6035 Learning Probabilistic Mode

lovember 12, 2018

2 / 28

Topics

- Monte Carlo Integration Methods
- Probability Interpretation
- Convergence
 - Estimate convergence
 - Error in the estimate
- Importance Sampling

Integrals in Bayesian approaches

Bayesian approaches require solving integrals in different scenarios:

- Normalization (e.g., for determining the posterior distribution)
- Marginalization (e.g., for averaging nuisance parameters)
- Expectation (e.g., to obtain summary statistics of the posterior)

Challenges:

• Integrals in large dimensional spaces

$$p(\theta_1|y) = \int_{\theta_2...\theta_k} p([\theta_1, \theta_2, ..., \theta_k]|y) d\theta_2 ... d\theta_k$$

Closed form solutions to integrals are not always possible

Solution: - Monte Carlo Methods

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

rember 12, 2018 3

Gowtham Atl

CS 5135/6035 Learning Probabilistic Models

November 12, 2018

4 / 28

Monte Carlo Methods: a general introduction

- Monte Carlo methods are a broad class of computational algorithms
 - \bullet that rely on repeated random sampling to estimate a desired quantity

Example: Can we determine the value of π using MC method?

Approach:

- 1 Draw a square, and inscribe a circle in it
- Uniformly scatter points over the square
- Ount the number of points inside the circle
 - Compute fraction of points inside the circle
 - Area of Circle/Square = $\pi r^2/(2r)^2 = \pi/4$
- $\hat{\mathbf{o}}$ $\hat{\pi} = 4 \times \text{ fraction of points in circle}$

Monte Carlo Integration: Introduction

 \bullet Computing a definite integral $\int_a^b f(x) dx$ is equivalent to computing the area under the curve

Example: compute
$$\int_0^5 \frac{4}{1+x^2} dx$$

- $\bullet \ \ \, \text{The same Monte Carlo approach for computing } \pi \ \, \text{applies here too!}$
 - We know value of integral
 - $A_1 = \int_0^5 1 dx = 5$; $A = 4A_1 = 20$
 - Scatter *n* points uniformly in the range [0,5]
 - Compute proportion of points p in region of interest
 - Area under the curve is the area Ap

n Atluri CS 5135/6035 Learning Probabilistic Models November 1

CS 5135/6035 Learning Probabilistic Models

November 12, 2018

Monte Carlo Integration: Problem and Solution

Problem:

• We are interested in computing the value of the integral

$$I(f) = \int_{\mathbf{x}^{min}}^{\mathbf{x}^{max}} f(\mathbf{x}) d\mathbf{x}$$

- I(f) is a d-dimensional integral of a function f
- x is a d-dimensional vector

$$I(f) = \int f(x) dx = \int_{x_1 = x_1^{min}}^{x_1 = x_1^{min}} \dots \int_{x_d = x_d^{min}}^{x_d = x_d^{min}} f(x_1, \dots, x_d) dx_1 \dots dx_d$$

Solution:

• Monte Carlo approximation of the integral *I*(*f*) is given by

$$S_n = \frac{1}{n} \sum_{i=1}^n g(\mathbf{x}_i)$$

- where f(x) = g(x)p(x)
- $n \text{ samples } \{x_1, \dots, x_n\}$ are drawn i.i.d. from p(x)

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

ember 12, 2018 7

Monte Carlo Integration: Probability Interpretation

$$I(f) = \int_{\mathbf{x}^{min}}^{\mathbf{x}^{max}} f(\mathbf{x}) d\mathbf{x} = \int_{\mathbf{x}^{min}}^{\mathbf{x}^{max}} g(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \mathbb{E}_{p(\mathbf{x})}[g(\mathbf{x})] \approx \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{x}_i)$$

- Factorize f(x) = g(x)p(x)
- p(x) can be interpreted as a probability density
 - $p(x) \ge 0$ $\int p(x)dx = 1$
- Samples $\{x_1, \dots, x_n\}$ are drawn i.i.d. from density p(x)

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Model

ovember 12, 2018

0./20

Monte Carlo Integration: Probability Interpretation

$I(f) = \int_{\mathbf{x}^{min}}^{\mathbf{x}^{max}} f(\mathbf{x}) d\mathbf{x} = \int_{\mathbf{x}^{min}}^{\mathbf{x}^{max}} g(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \mathbb{E}_{p(\mathbf{x})}[g(\mathbf{x})] \approx \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{x}_i)$

- Factorize f(x) = g(x)p(x)
- p(x) can be interpreted as a probability density
 - $p(x) \ge 0$ $\int p(x)dx = 1$
- Samples $\{x_1, \ldots, x_n\}$ are drawn i.i.d. from density p(x)
- This approach is similar to
 - simulation approach in nuisance parameter averaging
 - Inv-transform sampling from a mixture of distributions
 - Key difference is in factorization of f(x)
- Factorization of f(x) = g(x)p(x) is key for MC to work
 - We need to find g(x) and p(x) such that $I(f) = \mathbb{E}_{p(x)}[g(x)]$

Gowtham Atlur

Atluri CS 5135/6035 Learning Probabilistic Models

November 12, 2018

Monte Carlo Integration: Probability Interpretation

$$I(f) = \int_{x^{min}}^{x^{max}} f(x) dx$$
 In MC integration $f(x) = g(x)p(x)$

Often p(x) is chosen to be Uniform

$$p(x) = \begin{cases} \frac{1}{\delta} & x^{min} \le x \le x^{max} \\ 0 & \text{otherwise} \end{cases} \quad \text{where } \delta = x^{max} - x^{min}$$

Then,

$$I(f) = \int_{\mathbf{x}^{min}}^{\mathbf{x}^{max}} f(\mathbf{x}) d\mathbf{x} = \int_{\mathbf{x}^{min}}^{\mathbf{x}^{max}} g(\mathbf{x}) \frac{1}{\delta} d\mathbf{x} = \mathbb{E}_{p(\mathbf{x})}[g(\mathbf{x})] \approx \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{x}_i)$$

where $g(\mathbf{x}) = \delta f(\mathbf{x})$

This (p(x) = Uniform) is called *ordinary* Monte Carlo Integration.

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

November 12, 2018

9 / 28

Monte Carlo Integration: Example

Compute
$$I(f) = \int_0^5 \frac{4}{1+x^2} dx$$
 (Here $d = 1$)

Using ordinary MC method

- $p(x) = Uniform(0,5) = \frac{1}{5} = \frac{1}{\delta}$ and $g(x) = \delta f(x)$
- $S_n = \frac{1}{n} \sum_{i=1}^n \delta f(x_i)$

Algorithm:

- 1 Initialize x_1, \ldots, x_n to 0s
- of for $i = 1, \ldots, n$ times
- a end
- **6** Return S_n

15
10 $g(x) = \delta f(x)$ $g(x) = \delta f(x)$ g(x) =

Monte Carlo Integration: Example

Compute
$$I(f) = \int_0^5 \frac{4}{1+x^2} dx$$
 (Here $d = 1$)

Using ordinary MC method

- $p(x) = Uniform(0,5) = \frac{1}{5} = \frac{1}{\delta}$ and $g(x) = \delta f(x)$
- $S_n = \frac{1}{n} \sum_{i=1}^n \delta f(x_i)$

Algorithm:

- Initialize x_1, \ldots, x_n to 0s
- of for $i = 1, \ldots, n$ times
- Draw $x_i \sim U(0,5)$
- end
- **6** Compute $S_n = \frac{1}{n} \sum_{i=1}^n \delta f(x_i)$
- ## 5.436633068714979

= sum(delta.*f.(x))/n

o Return S_n

CC E12E /602E Learning Drobabilistic Made

Monte Carlo methods: Convergence

$$I(f) = \int f(x)dx = \int g(x)p(x)dx = \mathbb{E}_{p(x)}[g(x)] \approx \frac{1}{n}\sum_{i=1}^{n}g(x_i) = S_n$$

Questions:

- 1 Does the Monte Carlo integration method converge to the true value as larger and larger sets of samples are used?
 - We will Law of Large Numbers to answer this.
- 4 How to choose n in terms of desired accuracy and the confidence interval on the accuracy?
 - We will use Central Limit Theorem to answer this

Monte Carlo methods: Convergence (Q1)

$$I(f) = \int f(x)dx = \int g(x)p(x)dx = \mathbb{E}_{p(x)}[g(x)] \approx \frac{1}{n}\sum_{i=1}^{n}g(x_i) = S_n$$

• If the expectation $\mathbb{E}_{p(\mathbf{x})}[g(\mathbf{x})] = \mu$,

$$\mathbb{E}[S_n] = \mathbb{E}[\frac{1}{n}(g(x_1) + \ldots + g(x_n))] = \frac{1}{n}\mathbb{E}[g(x_1) + \ldots + g(x_n)] = \frac{n}{n}\mu = \mu$$

- Expectation of S_n is the same as $\mathbb{E}_{p(x)}[g(x)]$
- If the variance $Var[g(x)] = \sigma^2$,

$$Var[S_n] = Var[\frac{1}{n}(g(\mathbf{x}_1) + \dots + g(\mathbf{x}_n))] = \frac{1}{n^2} Var[g(\mathbf{x}_1) + \dots + g(\mathbf{x}_n)]$$
$$= \frac{1}{n^2} Var[g(\mathbf{x}_1)] + \dots + Var[g(\mathbf{x}_n)] = \frac{\sigma^2 + \dots + \sigma^2}{n^2} = \frac{\sigma^2}{n}$$

• Variance of the estimate S_n is O(1/n)

Monte Carlo methods: Convergence (Q1)

$$I(f) = \int f(\mathbf{x}) d\mathbf{x} = \int g(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \mathbb{E}_{p(\mathbf{x})}[g(\mathbf{x})] \approx \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{x}_i) = S_n$$

$$\mathbb{E}[S_n] = \mu = \mathbb{E}_{p(\mathbf{x})}[g(\mathbf{x})] \qquad Var[S_n] = \frac{\sigma^2}{n} = \frac{Var[g(\mathbf{x})]}{n}$$

- Monte Carlo methods converge to the true value as $n \to \infty$.
- Strong Law of Large Numbers: Let x_1, x_2, \dots, x_n be i.i.d. with $\mathbb{E}[x_i] = \mu \in \mathbb{R}, \ \textit{Var}(x_i) = \sigma^2 \in (0, \infty).$

If
$$\bar{x}_i = \frac{1}{n} \sum_{i=1}^n x_i$$
 then $\bar{x}_i \to \mu$

• LLN gives us the mean of the estimate S_n behavior when $n \to \infty$

Monte Carlo methods: Convergence (Q1)

Visualizing convergence for $I(f) = \int_0^5 \frac{4}{1+x^2} dx$, using $S_n = \frac{1}{n} \sum_{i=1}^n \delta f(x_i)$

```
S2 = zeros(1000):
S3 = zeros(1000):
 x1 = rand(Uniform(0,5),n[1]);
 S3[i] = sum(delta.*f.(x3))/n[3];
plot(layer(x=S3, Geom.histogram),
     layer(x=S2, Geom.histogram),
     layer(x=S1, Geom.histogram))
```


Monte Carlo methods: Convergence (Q2)

- Question: How to choose n in terms of desired accuracy?
- ullet Approach: We can estimate the error, for a chosen value of n, and work backwards

$$\epsilon_n = \mathbb{E}_{p(\mathbf{x})}[g(\mathbf{x})] - \frac{1}{n} \sum_{i=1}^n g(\mathbf{x}_i)$$

- Central Limit Theorem:

 - Let x_1, x_2, \ldots, x_n be i.i.d. with $\mathbb{E}[x_i^2] < +\infty$. Let σ^2 denote the variance of x_i , i.e., $\sigma^2 = E((x_i E(x_i))^2)$ and $\epsilon_n = \mathbb{E}(x) \frac{1}{n} \sum_{i=1}^n x_i$.

then
$$(\frac{\sqrt{n}}{\sigma}\epsilon_n)$$
 converges in distribution to $\mathcal{N}(0,1)$

Monte Carlo methods: Convergence (Q2)

- Central Limit Theorem:

 - Let x_1, x_2, \ldots, x_n be i.i.d. with $\mathbb{E}[x_i^2] < +\infty$. Let σ^2 denote the variance of x_i , i.e., $\sigma^2 = E((x_i E(x_i))^2)$ and

then $(\frac{\sqrt{n}}{\sigma}\epsilon_n)$ converges in distribution to $\mathcal{N}(0,1)$

• From this, it follows that for any a and b

$$\lim_{n \to +\infty} p(\frac{\sigma}{\sqrt{n}} a \le \epsilon_n \le \frac{\sigma}{\sqrt{n}} b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

• We observe that when $x \sim \mathcal{N}(0,1), \ p(|x| \leq 1.96) \approx 0.95,$ using this

$$|\epsilon_n| \le 1.96 \frac{\sigma}{\sqrt{n}}$$
, with a probability close to 0.95

• Error ϵ_n is not dependent on the dimensionality of the integral d • It is of the order $O(1/\sqrt{n})$

Observations

• Error in the estimate of *I*(*f*) for *n* samples is

$$|\epsilon_n| \leq 1.96 rac{\sigma}{\sqrt{n}}, \;\; ext{with a probability close to 0.95}$$

- If want to reduce the error in the estimate
 - Increase n significantly
 - when unlimited computing resources and time are available
 - (Somehow) reduce σ^2
 - useful when constraints are on computing resources and time
- Importance sampling
 - Reduces variance (σ^2)

Monte Carlo methods: Importance Sampling

- Importance Sampling is a MC Integration approach
 - not a sampling approach
- The idea is to sample random numbers from a density that is close to the shape of the integrand.
 - Shape of f(x) and q(x) should look similar, $support(f) \subset support(q)$

$$I(f) = \int f(x)dx = \int \frac{f(x)}{q(x)}q(x)dx$$

- Choosing q(x) requires some effort
 - q(x) must be a probability density, i.e., $q(x) \ge 0$
- Using Monte Carlo integration on this 'factorization', we have Importance Sampling approach

Monte Carlo methods: Importance Sampling

$$I(f) = \int f(\mathbf{x}) d\mathbf{x} = \int \frac{f(\mathbf{x})}{g(\mathbf{x})} q(\mathbf{x}) d\mathbf{x}$$

Importance Sampling Approach:

- Initialize x_1, \ldots, x_n to 0s
- **2 for** i = 1, ..., n times
- Draw $\mathbf{x}_i \sim q(\mathbf{x})$
- end
- **5** Compute $S_n = \frac{1}{n} \sum_{i=1}^n \frac{f(x_i)}{g(x_i)}$
- Return S_n

Importance Sampling: Example

Compute
$$I(f) = \int_0^5 \frac{4}{1+x^2} dx$$

$$I(f) = \int f(x)dx = \int \frac{f(x)}{q(x)}q(x)dx$$

- We need to select q(x) such that
 - q(x) and f(x) are similar in shape
 - $q(x) \ge 0$, for $x \in [0, 5]$
 - $\int_0^5 q(x) dx = 1$
- $q'(x) = \frac{100-20x}{25}$
- $\int q'(x)dx = 10$
- $q(x) = \frac{10-2x}{25}$

• We need to draw samples from q(x) (accept-reject method?)

Gowtham Atluri CS 5135/6035 Learning Probabilistic Models

CS 5135/6035 Learning Probabilistic Mod

Importance Sampling

Accept-Reject Method

Importance Sampling

- 1 Initialize x_1, \ldots, x_n to 0s
- **2** for $i = 1, \ldots, n$ times
- Draw $x_i \sim q(x)$
- **6** Compute $S_n = \frac{1}{n} \sum_{i=1}^n \frac{f(x_i)}{g(x_i)}$
- Return S_n

5.477582181147847

Importance Sampling: Variance reduction

- In ordinary MC: $I(f) = \int f(x) dx = \int g(x) p(x) dx$
 - Variance of the estimate S_n

$$Var[S_n] = \frac{Var[g(x)]}{n}$$

- In addition to n, variance depends on Var[g(x)]
- In Importance sampling:

$$I(f) = \int f(x)dx = \int \frac{f(x)}{g(x)}q(x)dx$$

• Variance of the estimate is

$$Var[S_n] = \frac{Var[\frac{f(x)}{q(x)}]}{n}$$

- ullet If the shape of q is similar to f, the ratio f/q will be (nearly) constant
 - This will keep the term $Var\left[\frac{f(x)}{g(x)}\right]$ small
 - Due to this estimate in Importance Sampling has low variance
 - when q is selected appropriately

CS 5135/6035 Learning Probabilistic Models

Comparing variance Ordinary MC and IS

Ordinary MC Integration

Importance Sampling

```
f(x) = 4/(1+x^2);
f(x) = 4/(1+x^2);
                                      p(x) = (10-2x)/25;
S = zeros(100);
                                      S = zeros(100);
for i= 1:100
                                      for i= 1:100
   x = rand(Uniform(0,5),n);
                                          x = accept_reject_method(n);
```

5.499100825974856

5.495252969036046

var(S)

0.0027350615959637506

0.0006740964975615764

Comparing variance Ordinary MC and IS

$$I(f) = \int f(x)dx = \int g(x)p(x)dx \qquad I(f) = \int f(x)dx = \int \frac{f(x)}{q(x)}q(x)dx$$

- Sampling well in places where g(x) is high is critical to good approximation
- When p(x) = Uniform
 - Regions where f(x) takes a high value are not given a priority
 - Takes more samples to get a good approximation in those regions

CS 5135/6035 Learning Probabilistic Models

Comparing variance Ordinary MC and IS

$$I(f) = \int f(x)dx = \int g(x)p(x)dx \qquad I(f) = \int f(x)dx = \int \frac{f(x)}{q(x)}q(x)dx$$

$$p(x) = U(0,1)$$

$$p$$

- When p(x) has a shape different from g(x)
 - Regions where g(x) is higher are poorly sampled
 - Takes a LOT of samples to get a good approximation in those regions

CS 5135/6035 Learning Probabilistic Models

November 12, 2018 26 / 28

Comparing variance Ordinary MC and IS

- When p(x) has a shape simular to f(x)
 - g(x) = f(x)/p(x) is nearly a constant (when f(x) takes high values)
 - Small number of samples can result in good approximation

CS 5135/6035 Learning Probabilistic Models

Summary

- Monte Carlo Integration
 - Ordinary MC (p(x) = U(a, b))
 - Importance Sampling (q(x)) has a similar shape as f(x)
- Probability interpretation
- Convergence
 - Estimate converges
 - Variance of the estimate Var(g(x))/n
 - Depends on both Var[g(x)] and n
- Importance Sampling
 - reduces variance of the estimate
 - by reducing the value of the term $Var[g(x)] = Var[\frac{f(x)}{g(x)}]$