INTELIGENCIA ARTIFICIAL

Universidad Nacional Mayor de San Marcos

Facultad de Ingeniería de Sistemas e Informática

Agenda

- Metodologías para el desarrollo de SBC
- ❖V&V de SE
 - Verificación de SE
 - Fundamentos, tareas
 - Validación de SE
 - Fundamentos, personal involucrado, partes a validar, casuística
- Métodos cuantitativos de validación
 - Medidas de pares
 - Ratios de acuerdo

Ingeniería de Conocimiento

Metodologías para el desarrollo de SBC

- *****KADS
- CommonKADS
- **❖ IDEAL**
- * FASE

Verificación y Validación (V&V) de Sistemas Expertos

Análisis del comportamiento de un SI

Fuente: Validación y Usabilidad de Sistemas Informáticos, Vicente Moret Bonillo (2005)

Ing. Mg. Rolando A. Maguiña Pérez

- Evaluación de Sistemas Inteligentes
 - Analiza aspectos tales como
 - utilidad
 - robustez
 - eficiencia
 - posibilidades de ampliación
 - facilidad de manejo

V&V de Sistemas Inteligentes

- Cómo asegurarnos que el SBC está actuando de forma similar a como lo haría un experto humano
- Principal objetivo: asegurarnos que el sistema produce la salida correcta de la forma correcta

Permiten:

- Asegurar la calidad del producto desarrollado
- Asegurar su utilización en dominios críticos
- Asegurar su aceptación en la rutina diaria

Verificación de Sistemas Inteligentes

- Boehm,1981: comprobación que se está construyendo correctamente el producto
- Verificar que el sistema desarrollado cumple sus especificaciones de diseño y que el sw no contiene errores
- Tareas:
 - Verificación del cumplimiento de las especificaciones
 - ➤ Verificación de la BC
 - >Verificación del MI

Verificación del cumplimiento de las especificaciones

- Según González/Dankel
 - > Paradigma de representación del conocimiento adecuado?
 - ➤ Técnica de razonamiento adecuada?
 - Diseño e implementación del sistema, se han llevado a cabo modularmente?
 - Conexión con sw externo, adecuada?
 - > IU, cumple las especificaciones?
 - Mantenimiento del sistema, es posible?
 - Seguridad del sistema, cumple especificaciones?
 - BC, protegida ante posibles modificaciones del personal no autorizado?

Ing. Mg. Rolando A. Maguiña Pérez

Verificación de la BC

Punto de vista de las reglas:

Verificación de la consistencia

Punto de vista de los componentes de las reglas:

Verificación de la integridad (completitud)

Verificación de la BC

- Verificación de la consistencia
 - Tipos de inconsistencias
 - Reglas redundantes
 - Reglas conflictivas
 - Reglas contenidas en otras
 - Reglas cíclicas
 - Condiciones IF innecesarias

Verificación de la BC

- Verificación de la consistencia
 - Reglas redundantes
 - Redundancia sintáctica

$$p(x) \land q(x) \land s(x) \rightarrow w(x)$$
$$p(x) \land s(x) \land q(x) \rightarrow w(x)$$

- Redundancia semántica Premisas o conclusiones de una regla no son idénticas en la sintaxis, pero sí en el significado

$$p(x) \land q(x) \land s(x) \rightarrow w(x) = tormenta$$

 $p(x) \land s(x) \land q(x) \rightarrow w(x) = actividad-eléctrica$

Ing. Mg. Rolando A. Maguiña Pérez

Verificación de la BC

- Verificación de la consistencia
 - Reglas conflictivas

Premisas idénticas pero conclusiones contradictorias

$$p(x) \land q(x) \rightarrow w(x)$$

 $p(x) \land q(x) \rightarrow NOT w(x)$

Reglas englobadas en otras

$$p(x) \land q(x) \land s(x) \rightarrow w(x)$$
$$p(x) \land q(x) \rightarrow w(x)$$

- No tiene por qué ser una anomalía
- Hay que definir una estrategia adecuada de resolución de conflictos

Verificación de la BC

- Verificación de la consistencia
 - Reglas circulares

$$p(x) \rightarrow q(x)$$

 $q(x) \rightarrow w(x)$
 $w(x) \rightarrow p(x)$

Verificación de la BC

- Verificación de la integridad
 - Valores de atributos sin referencia
 - Valores ilegales de atributos
 - Conclusiones inalcanzables
 - Reglas sin salida

Verificación del MI

Si se usa herramientas comerciales, dificultad se reduce

> (responsabilidad de ingeniero cognimático se reduce a escoger la herramienta adecuada)

Si se construye su propio mecanismo de inferencia se puede usar técnicas clásicas de la Ingeniería del Sw

Validación de Sistemas Inteligentes

- Boehm, 1981: comprobación que se está construyendo el producto correcto
 - Constatar la validez de los resultados
 - Constatación del cumplimiento de las necesidades y los requisitos del usuario

Aspectos grales de la Validación

- Características principales del proceso de validación
 - Personal involucrado en el proceso
 - Partes del sistema a validar
 - Casuística de la validación
 - Criterios de validación
 - Métodos de validación
 - Momento en que se realiza la validación
 - Errores cometidos en la validación

Partes del sistema a validar

- Resultados finales
 - Rendimiento gral del sistema
- Resultados intermedios
 - Descripción del funcionamiento intermedio del sistema
 - Permite corregir errores cometidos
- Razonamiento seguido
 - Un razonamiento incorrecto puede ser fuente de errores cuando queramos ampliar la BC del sistema
 - > Tenemos que diseñar sistemas que "piensen" como lo haría un experto humano... también en la forma

Casuística de la Validación

- Método básico:
 - Análisis de casos de prueba ya resueltos
- Características de la muestra:
 - Cantidad
 - Representatividad
- Debe incluir dos tipos de datos:
 - Los que incluyan las características de cada caso particular
 - Un criterio que permita identificar el tipo de caso que estamos tratando

Ing. Mg. Rolando A. Maguiña Pérez

Proceso de validación a partir de casos de prueba

Ing. Mg. Rolando A. Maguiña Pérez

Casuística de la Validación

- Proceso de validación
 - Obtención de la casuística de validación
 - Transferencia de los datos al sistema que ha de interpretarlos
 - Resultados y criterios: entrada del proceso de validación en el que se analiza el rendimiento del sistema

Personal involucrado en la Validación

Tipos de Validación

- Criterio de validación
 - Validación contra el experto
 - Validación contra el problema

Validación contra el problema

❖ Nuestro sistema: ¿acierta realmente, o resuelve convenientemente, el problema planteado?

Ventajas

- Método completamente objetivo
- La solución real puede verse en el problema

Desventajas

- Falacia del superhombre
- No siempre puede realizarse una validación contra el problema

Validación contra el problema

La falacia del superhombre

Validación contra el experto

- Se utilizan las opiniones y las interpretaciones de los expertos humanos como criterio de validación
 - Puede haber discrepancias entre expertos o sesgos en este tipo de validación
 - Factores externos: estrés,...
 - Pueden no ser independientes
 - Pueden ser ambiguos
 - Pueden pertenecer a distintas escuelas de pensamiento
 - Pueden no ser objetivos Ing. Mg. Rolando A. Maguiña Pérez

Validación contra el experto

- Procedimientos
 - Validación contra un solo experto
 - ·Ventajas: suele haber al menos un experto disponible
 - ·Inconvenientes: validación puede no ser fiable
 - Validación contra un grupo de expertos
 - Ventajas: no estamos supeditados a una única opinión, y permite comparar el grado de consistencia entre expertos
 - Inconvenientes: los expertos no son todos iguales
 - Validación contra un consenso de expertos
 - Ventajas: En teoría es el método más objetivo y confiable
 - Inconvenientes: puede haber un experto especialmente influyente, ¿cómo se mide el consenso?

Ing. Mg. Rolando A. Maguiña Pérez

Métodos de Validación

- Métodos cualitativos
- Métodos cuantitativos
 - No son mutuamente excluyentes
 - Se puede utilizar una combinación de ambas

Métodos cualitativos de Validación

- Métodos cualitativos
- Emplean técnicas subjetivas de comparación de rendimientos
 - Validación superficial
 - Pruebas de Turing
 - Pruebas de campo
 - Análisis de sensibilidad

Métodos cuantitativos de Validación

- Emplean medidas estadísticas para cuantificar el rendimiento de un SBC
- Métodos estadísticos: contraste de hipótesis, ANOVA, intervalos de confianza, etc.
- Tres grupos de técnicas cuantitativas:
 - Medidas de pares
 - Medidas de grupos
 - Ratios de acuerdo

Medidas de pares

- Pretenden evaluar el grado de acuerdo entre los resultados de dos expertos
- Parte de una base de datos de validación
- Cada experto evalúa cada caso y asigna una etiqueta semántica determinada
- Cjto de etiquetas semánticas debe ser exhaustivo y éstas deben ser mutuamente excluyentes

Medidas de pares

- Procedimiento de obtención
 - Construir tabla de contingencia
 - 2. Calcular medida de pares
- Medidas más usadas
 - Índice de acuerdo
 - Índice de acuerdo dentro de uno
 - Índice Kappa
 - Índice Kappa ponderado

Tabla de contingencia

		Resultados experto B				
		1	2		k	Totales
Resultados experto A	1 2 	n n ₁₁ n ₂₁	n ₁₂ n ₂₂		$n_{1k} n_{2k}$	n ₁ n ₂
	K	n _{k1}	n _{k2}		n _{kk}	$n_{_k}$
	Totales	n ₁	n ₂		n _k	n = N

k categorías o etiquetas semánticas, N casos en total (muestra)

 n_{ii} : nro de casos en los que el experto A selecciona la categoría i mientras que

el experto B selecciona la categoría j (frecuencias absolutas)

 n_i : frecuencias absolutas marginales (nro total de casos pertenecientes a la fila i)

 \vec{n}_{j} : frecuencias absolutas marginales (nro total de casos pertenecientes a la col j)

Ing. Mg. Rolando A. Maguiña Pérez

Tabla de contingencia

Frecuencias absolutas marginales se obtienen a partir de los valores de las celdas:

$$n_{i.} = n_{i1} + n_{i2} + \dots + n_{ik}$$

$$n_{.j} = n_{1j} + n_{2j} + \dots + n_{kj}$$

$$n_{..} = \sum_{i=1}^{k} \sum_{j=1}^{k} n_{ij} = \sum_{i=1}^{k} n_{i.} = \sum_{j=1}^{k} n_{.j}$$

Índice de acuerdo

Cociente entre nro de observaciones de acuerdo entre los expertos y nro de observaciones totales

Indice de acuerdo =
$$\frac{\sum_{i=1,j=1,i=j}^{k} n_{ij}}{N} = \sum_{i=1,j=1,i=j}^{k} p_{ij}$$

 p_{ij} : frecuencias relativas de la diagonal principal

Índice de acuerdo - continuación

- Características:
 - Valores en intervalo [0,1]
 - Su valor no es afectado por variaciones en el orden de las categorías
 - Un experto siempre presenta acuerdo perfecto consigo mismo
 - No importa el orden en que escojamos a los expertos
- Ventajas:
 - Sencillez de cálculo
- Desventajas:
 - No toma en cuenta los acuerdo debidos a la casualidad
 - Se centra en los acuerdos sin hacer diferencias entre los desacuerdos que puedan aparecer

Índice de acuerdo dentro de uno

Considera como acuerdos parciales aquellas interpretaciones que se diferencian sólo en una categoría semántica.

nd de ac dentro de uno =
$$\frac{1}{N} \sum_{i=1,j=1,i=j,i=j\pm 1}^{K} n_{ij} = \sum_{i=1,j=1,i=j,i=j\pm 1}^{K} p_{ij}$$

- Características:
 - Similar al índice de acuerdo pero suma tbn las frecuencias de las diagonales adyacentes a la principal

Solamente es útil cuando se trabaja con escalas ordinales (hay un orden entre las categorías).

- Índice de acuerdo dentro de uno continuación
 - Ventajas:
 - Puede analizar tendencias
 - Desventajas:
 - Presenta el mismo problema que el índice de acuerdo, no tiene en cuenta los acuerdos debidos a la casualidad
 - Se centra en los acuerdos sin hacer diferencias entre los desacuerdos que puedan que puedan aparecer

Solución del ejercicio

Se considera el experto D y el SBC

a.1) Tabla de contingencia

a.2) Frecuencias relativas

D/SE	HeS	HeL	NoT	HoL	HoS	
HeS	0	0	0	0	0	0
HeL	0	0	1	0	1	2
NoT	1	1	2	1	0	5
HoL	0	1	1	0	0	2
HoS	0	0	0	0	1	1
	1	2	4	1	2	

D/SE	HeS	HeL	NoT	HoL	HoS	
HeS	0	0	0	0	0	0
HeL	0	0	0.1	0	0.1	0.2
NoT	0.1	0.1	0.2	0.1	0	0.5
HoL	0	0.1	0.1	0	0	0.2
HoS	0	0	0	0	0.1	0.1
	0.1	0.2	0.4	0.1	0.2	

Solución del ejercicio

- a.3) Índice de acuerdo e Índice de acuerdo entre uno Pares de expertos D, SE
 - Índice de acuerdo Índice_de_acuerdo(D,SE)= 0.3
 - Índice de acuerdo entre uno

Solución del segundo ejercicio

b) Índice de acuerdo

Para los pares de expertos A y B

A/B	HeS	HeL	NoT	HoL	HoS	
HeS	1	1	0	0	0	2
HeL	0	1	1	0	0	2
NoT	0	0	2	1	0	3
HoL	0	0	2	0	0	2
HoS	0	0	0	0	1	1
	1	2	5	1	1	

A/B	HeS	HeL	NoT	HoL	HoS	
HeS	0.1	0.1	0	0	0	0.2
HeL	0	0.1	0.1	0	0	0.2
NoT	0	0	0.2	0.1	0	0.3
HoL	0	0	0.2	0	0	0.2
HoS	0	0	0	0	0.1	0.1
	0.1	0.2	0.5	0.1	0.1	

Solución del ejercicio

Pares de expertos A, B

b.1) Indice de acuerdo

Indice_de_acuerdo(A,B) = 0.1 + 0.1 + 0.2 + 0 + 0.1 = 0.5

Medidas de grupos

- Fundamento: usar opiniones de varios expertos y los resultados del SI, para determinar si éstos son similares a los de los expertos humanos
- Tests más usados
 - Medidas de Williams
 - Análisis cluster

Ratios de acuerdo

- Pretenden medir acuerdo existente entre un experto (o SI) y una referencia std
- Procedimiento
 - Construir tabla de contingencia 2x2 para c/u de las categorías
 - Calcular los ratios derivados de estos valores

Métricas

- Las más usadas
 - Exactitud (Accuracy)
 - Precisión
 - Sensibilidad
 - > F-measure

Matriz de confusión

		Referencia std		D es la categoría	
		D	$\neg D$	bajo análisis	
	SI	D	TP	FP	TP + FP
		D T	FN	TN	FN + TN
enclatura:			TP + FN	FP + TN	TP + FP + FN + TN

Nome

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

Ing. Mg. Rolando A. Maguiña Pérez

Ratios de acuerdo

Exactitud (Accuracy)

Proporción de casos en que el SBC ha coincidido con el std para la categoría tomada en consideración

Exactitud =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

Nomenclatura:

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

Ing. Mg. Rolando A. Maguiña Pérez

Ratios de acuerdo

Precisión (Precision)

Nro de casos positivos que se han clasificado correctamente respecto del nro total de predicciones de la clase positiva

$$Precisión = \frac{TP}{TP + FP}$$

Ratios de acuerdo

Sensibilidad (Recall)

Es el nro de veces que se ha clasificado bien la categoría considerada respecto del nro total de veces que realmente dicha categoría aparece

Sensibilidad =
$$\frac{TP}{TP + FN}$$

Puede entenderse como la probabilidad de que el sistema clasifique correctamente el caso sabiendo que es positivo

Ratios de acuerdo

F-measure (F1)

Representa la media armónica entre los valores de las métricas sensibilidad y precisión

$$F1 = 2 \frac{\text{precisión} \times \text{sensibilidad}}{\text{precisión} + \text{sensibilidad}}$$

Ratios de acuerdo

Matriz de Confusión

		Α		Suponer que no hay diferencias entre las categorías hipertensión		
		Hiper	⊣Hiper	ligera e hipertensión severa		
SI	Hiper	TP=3	FP=0	3		
	⊣Hiper	FN=1	TN=6	7		
		4	6			

Accuracy = TP+TN/(TP+FP+FN+TN = 3+6/(3+0+1+6) = 9/10 = 0.90Precision = TP/(TP+FP) = 3/(3+0) = 3/3 = 1.0Sensibilidad = $TP/(TP+FN) = 3/(3+1) = \frac{3}{4} = 0.75$ F1 = 2(precision*sensibilidad)/(precision+sensibilidad) = 2(1*0.75)/(1+0.75)

Ing. Mg. Rolando A. Maguiña Pérez