Lecture 3 Relations

3.1 Definition

A **relation** is a correspondence between a first set, called the domain, and a second set, called the range, such that each member of the **domain** corresponds to **at least one** member of the **range**.

Relations is an extended study of Sets (from Lecture 2). Remember that given a Set A with **elements** {1, 2, 3} and Set B with **elements** {4, 5, 6}, we can write them down as follows:

$$A = \{1, 2, 3\}$$
 and $B = \{4, 5, 6\}$

In this module we learn about the Relations (R) of the <u>elements</u> inside <u>multiple sets</u>

So say we refer to elements inside Set **A** as \boldsymbol{a} and elements inside Set B as \boldsymbol{b} , then the following two statements can be written:

- (1) aRb or $(a, b) \in R$ which means \underline{a} is related to \underline{b} by \underline{R}
- (2) aRb or $(a, b) \notin R$ which means \underline{a} is not related to \underline{b} by \underline{R}

When a is related to b by R, then R can be defined as follows:

$$R = \{(a1, b1), (a2, b2), (a3, b3), \dots\}$$

Can you see the notation of R is similar to a normal set?

Q: What is R if elements in Set A and Set B (defined at the beginning) is related by R? A: $R = \{(1,4),(2,5),(3,6)\}$

3.2 Ordered Pair

The elements inside R are also called an ordered pair. As the name suggests the order matters which means (a, b) is not the same as (b, a) unless there's a condition/rule that says a = b.

first element taken from A and the second element taken from B

Note:

- a) If A and B are sets, and $A \neq B$, then the relations $A \times B = \{(a,b) : a \in A \text{ and } b \in B \}$
- b) If A and B are sets, and A = B, then the relations $A \times B = A^2$
- c) Instead of the notation (a, b) we can also use the notation $a \sim b$ Example: $R = \{(1,4),(2,5),(3,6)\}$ is the same as $R: 1 \sim 4, 2 \sim 5, 3 \sim 6$

R can be treated as sets of coordinates and can be mapped as follows:

Mapping a Relations on a Graph

3.3 Types of Relations

There are 4 types of Relations:

- a) One to One A relation A→B is **one-to-one relation** if no two elements of A is paired with the same element in B
- b) One to Many
 A relation A→B is one-to-many relation if an element of A is related to 2 or more elements of B
- c) Many to One A relation A→B is a **many-to one relation** if 2 or more elements of A are related to 1 element of B.
- d) Many to Many
 A relation A→B is many-to-many relation if 2 or more elements of A are related to 2 or more elements of B

Can you guess which is which?

3.4 Relations on a Set (Composition)

Relations are set, so we can apply the usual set operations to them

A relation on the set A is a relation from A to A. In other words, a relation on the set A is a subset of $A \times A$.

Example: Let $A = \{1, 2, 3, 4\}$. If no condition, then $R = A \times A = \{(a1,a1), (a2,a2), (a3,a3)...\}$ So, $R = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4) ...\}$

But say A is given a condition. The condition is $\{(a,b) \mid a < b\}$? Which ordered pairs are in the relation?

$$R = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

R	1	2	3	4
1		*	*	*
2			*	*
3				*
4				

If we have two relations R_1 and R_2 , and both of them are from a set A to a set B, then we can combine them to $R1 \cup R2$, $R1 \cap R2$, or R1 - R2.

In each case, the result will be another relation from A to B.

When we combine two relations together, we call it **composite of relations**

Say R be the relation from set A to set B, $(a, b) \in R$ where $a \in A$ and $b \in B$ Say S be the relation from set B to set C, $(b, c) \in S$ where $b \in B$ and $c \in C$

If we are going to combine the relations R and S together, we use the symbol $S \circ R$ to denote their **composite**

The *composite* of R and S is the relation consisting of ordered pairs (a, c)

Example 1:

Given
$$A = \{1, 2, 3, 4\}$$
 $B = \{a, b, c, d\}$ $C = \{x, y, z\}$

And:

$$R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\}$$
 (A has been mapped to B)

$$S = \{(b, x), (b, z), (c, y), (d, z)\}$$
 (B has been mapped to C)

$$(b, x) \circ (3, b) = (3, x)$$

 $(b, z) \circ (3, b) = (3, z)$

Answer:

$$S \circ R = \{(2, z), (3, x), (3, z)\}$$

Remember, ordered pair, $S \rightarrow R$ and $R \rightarrow S$ is the same or <u>not</u>?

Find the composite of $S \rightarrow R$?

Solution:

- a) (b, x) in S maps to element (3, b) in R, which means (3, x) is in $S \circ R$
- b) (b, z) in S maps to element (3, b) in R, which means (3, z) is in $S \circ R$
- c) (c, y) in S maps to no element in R (ignore)
- d) (d, z) in S maps to element (2, d) and (3, d) in R meaning (2, z) and (3, z) is in $S \circ R$

Example 2:

Let D and S be relations on $A = \{1, 2, 3, 4\}$

Given:

$$D = \{(a,b) \mid b = 5 - a\}$$
 "b equals $(5 - a)$ " $S = \{(a,b) \mid a < b\}$ "a is smaller than b" Find $S \circ D$?

Solution:

a) From notes, A relation on the set A is a relation from A to A, so list down all elements of the relation A x A:

b) Find elements in A x A that satisfies D conditions:

D =
$$\{(a, 5-a)\}\$$

D = $\{(1, 4), (2, 3), (3, 2), (4, 1)\}\$

c) Find elements in A x A that satisfies S conditions:

$$S = \{a, a < b\}$$

 $S = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$

d) Find S o D: (give me your answer)

Given

$$S = \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$$
$$D = \{(1,4),(2,3),(3,2),(4,1)\}$$

Draw the relation of S o D

<u>Answer</u>

SoD =
$$\{(2, 4), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)\}$$

3.5 Inverse Relations

The inverse of a relation R from A to B is denoted R^{-1} , and defined from B to A as $R^{-1} = \{(b,a) \mid (a,b) \in R\}$

Example 1:

What is
$$R^{-1}$$
?
Given $R = \{(2,3), (2,5), (3,4), (3,6), (6,6)\}$

Solution:

$$R^{-1} = \{(3,2), (5,2), (4,3), (6,3), (6,6)\}$$

Example 2:

Given
$$R = \{(1,3), (2,1), (4,5), (6,6)\}$$

Solutions $R^{-1} = \{(3,1), (1,2), (5,4), (6,6)\}$

3.6 Representing Relations using Matrix

Another way to represent relations is by using the Zero - One Matrix

If R is a relation from $A=\{a_1,\ a_2,\ \ldots,a_m\}$ to $B=\{b_1,b_2,\ldots,b_n\}$, then R can be represented by the zero-one matrix $M_R=[m_{ij}]$ with

$$m_{ij} = 1$$
, if $(a_i, b_j) \in R$, and $m_{ij} = 0$, if $(a_i, b_j) \notin R$

Note that for creating this matrix we first need to list the elements in A and B in an order

Example:

Suppose that A = $\{1, 2, 3\}$ and B = $\{1, 2\}$. Let R be the relation from A to B containing (a, b) if $a \in A$, $b \in B$, and a > b. How can we represent the relation R = $\{(2, 1), (3, 1), (3, 2)\}$ as a zero-one matrix?

Solution:

$$\boldsymbol{M}_{R} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Note:

The matrices representing a **relation on a set** (a relation from A to A) are called **square** matrices.

3.7 Representing Relations using Digraphs

When R is a relation on a set A, we can draw it using a **directed graph**. For example, if $R = \{(1,1), (2,4), (3,2), (4,1), (4,3)\}$, then its directed graph is:

A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex α is called the initial

vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge. We can use arrows to display graphs.

Example:

Display the digraph with

 $V = \{a, b, c, d\},\$ $E = \{(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)\}.$

3.8 Properties of Relations

3.8.1 Reflexive Relations

A Relation R on a set A is said to be **reflexive** if $(a, a) \in R$ where $a \in A$

$(a, a) \in R$

Examples:

The relation R on $\{1,2,3\}$ given by R = $\{(1,1), (2,2), (2,3), (3,3)\}$ is reflexive. (All loops are present)

Why is $R = \{(1,1), (2,2), (3,3)\}$ not reflexive on $\{1,2,3,4\}$?

Solution: Because (4,4) is missing

3.8.2 Symmetric Relations

A relation R on a set A is said to be **symmetric** if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$

$(a, b) \in R$ implies $(b, a) \in R$

Examples:

The relation R on $\{1, 2, 3\}$ given by R = $\{(1,1), (1,2), (2,1), (1,3), (3,1)\}$ is symmetric. (All paths are 2-way)

Why is $R = \{(1,2), (2,1), (3,1)\}$ not symmetric?

Solution: Because (1,3) is missing

3.8.3 Transitive Relations

A relation R on a set A is said to be **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for every $a, b, c \in A$

If $(a, b) \in R$ and $(b, c) \in R$, this implies $(a, c) \in R$

Examples:

The relation R on $\{1,2,3\}$ given by R = $\{(1,1), (1,2), (2,1), (2,2), (2,3), (1,3)\}$ is transitive. (If I can get from one point to another in 2 steps, then I can get there in 1 step)

Why is $R = \{(1,2), (2,3), (1,3), (2,1)\}$ not transitive?

Because (1,1) and (2,2) are missing

3.8.4 Equivalence Relations

If a relation is (i) transitive, (ii) symmetric, (iii) transitive, then it is called an equivalence relation

Is {(1,1), (2,2), (3,3)} reflexive? symmetric? transitive?

Yes! Yes! Yes!