

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ

Σ τοχαστικές Δ ιαδικασίες ($\Sigma { m EM\Phi E} \ \& \ \Sigma { m HMM}\Upsilon$) - Δ ευτέρα 27 Ιουνίου 2016

 $\mathbf{A}\mathbf{\Sigma}\mathbf{KH}\mathbf{\Sigma}\mathbf{H}$ 1 $(\mathbf{40}$ μονάδες) Δίνεται μια αλυσίδα $\{X_n\}_{n\in\mathbb{N}_0}$ στον χώρο καταστάσεων $\mathbb{X}=\{1,2,3,4,5\}$ με πίνακα πιθανοτήτων μετάβασης

$$P = \begin{pmatrix} 0 & 2/3 & 1/3 & 0 & 0 \\ 2/3 & 0 & 1/3 & 0 & 0 \\ 1/4 & 1/4 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/5 & 4/5 \\ 0 & 0 & 0 & 1/2 & 1/2 \end{pmatrix}.$$

- α) Ταξινομήστε τις καταστάσεις σε κλάσεις επικοινωνίας και χαρακτηρίστε τις ως προς την επαναληπτικότητα.
- β) Υπολογίστε τις πιθανότητες $\mathbb{P}[X_n=1\,|\,X_0=5]$ και $\mathbb{P}[X_n=5\,|\,X_0=5]$ για κάθε $n\in\mathbb{N}$.
- γ) Βρείτε όλες τις αναλλοίωτες κατανομές της αλυσίδας.
- δ) Αν $T_5^+ = \inf\{k > 0: X_k = 5\}$ είναι ο χρόνος πρώτης επιστροφής στην $[T_5^+ \mid X_0 = 5]$.
- ε) Αν $X_0=1$, ποια είναι η πιθανότητα η αλυσίδα να επισκεφτεί ποτέ την κατάσταση 2;

ΑΣΚΗΣΗ 2 (30 μονάδες) Ένα καλοκαιρινό μεσημέρι, οι παραθεριστές φτάνουν στη θάλασσα ως μια διαδικασία Poisson με ρυθμό $\lambda = 3/10 \mathrm{min}$. Κάθε παραθεριστής επιλέγει -ανεξάρτητα από τη διαδικασία άφιξης και από τις επιλογές των άλλωναν θα πάει για μπάνιο στην παραλία A (με πιθανότητα p=2/3) ή στην παραλία B (με πιθανότητα 1-p=1/3). Έστω N_A (αντίστοιχα N_B) το πλήθος των ανθρώπων που έχει πάει για μπάνιο στην παραλία A (αντίστοιχα στη B) την πρώτη ώρα.

- α) Ποια κατανομή ακολουθεί η τυχαία μεταβητή N_A ;
- β) Ποια κατανομή ακολουθεί η τυχαία μεταβλητή N_A δεδομένου ότι $N_B=5$;
- γ) Ποια κατανομή ακολουθεί η τυχαία μεταβλητή N_A δεδομένου ότι την πρώτη ώρα έφτασαν συνολικά 16 παραθεριστές;
- δ) Με δεδομένο ότι $N_B=5$, ποια είναι η πιθανότητα όλοι οι παραθεριστές που έφτασαν τα πρώτα 10 λεπτά να επέλεξαν την παραλία Α;

 ${f A}{f \Sigma}{f K}{f H}{f \Sigma}{f H}$ ${f 3}$ (40 μονάδες) Θεωρήστε έναν πεπερασμένο, μη προσανατολισμένο, συνεχτιχό γράφο G=(V,E) με σύνολο χορυφών V και σύνολο ακμών E. Δεν ξέρουμε το πλήθος |V| των κορυφών του G, ούτε τη δομή του. Μπορούμε να δούμε μόνο τοπικές πληροφορίες για τον G. Π .χ. αν είμαστε σε μια κορυφή $x \in V$ μπορούμε να δούμε να τους γείτονες της x, δηλαδή τις χορυφές $y \in V$ για τις οποίες $(x,y) \in E$, χαθώς χαι πόσους γείτονες έχουν οι γείτονές της x. Αυτό είναι ένα συνηθισμένο σενάριο π.χ. σε γράφους κοινωνικών δικτύων. Σ΄ αυτή την άσκηση θα δούμε πώς μπορούμε να επιλέξουμε τυχαία μια κορυφή από ένα τέτοιο γράφο.

Ας συμβολίζουμε με d(x) και ας λέμε βαθμό της $x \in V$ το πλήθος των γειτόνων της x. Ορίζουμε μια μαρχοβιανή αλυσίδα $\{X_n\}_{n\in\mathbb{N}_0}$ στο V με πιθανότητες μετάβασης που για $x \neq y$ δίνονται από την

$$p(x,y) = \begin{cases} \frac{1}{\max\{d(x),d(y)\}} &, \text{ an } (x,y) \in E \\ 0 &, \text{ an } (x,y) \notin E. \end{cases}$$

- α) Ποια είναι η πιθανότητα p(x,x) να παραμείνει η αλυσίδα σε μια κατάσταση $x \in V;$
- β) Δείξτε ότι, αν υπάρχουν δύο κορυφές με διαφορετικό βαθμό, τότε $\lim_{n \to \infty} \mathbb{P}\big[X_n = x\big] = \frac{1}{|V|}$ για κάθε $x \in V$ και οποιαδήποτε αρχική κατανομή (επομένως σε βάθος χρόνου είναι το ίδιο πιθανό να βρούμε την αλυσίδα σε οποιαδήποτε κορυφή).
- γ) Δείξτε οι παραπάνω πιθανότητες μετάβασης προχύπτουν εφαρμόζοντας τον αλγόριθμο Metropolis-Hastings για τον τυχαίο περίπατο στον G και γράψτε ένα ψευδοκώδικα που θα προσομοίωνε την παραπάνω αλυσίδα.

Τα επόμενα δύο ερωτήματα και μόνο αφορούν τον γράφο του παραπάνω σχήματος.

- δ) Για τον γράφο του παραπάνω σχήματος γράψτε τον πίνακα πιθανοτήτων μετάβασης P της αλυσίδας.
- ε) Αν $T = \inf \{k \geq 0 : X_k \in \{D, E, F\}\}$, υπολογίστε τον $\mathbb{E}[T \mid X_0 = A]$.