PERVERSE SHEAVES

XIAOLONG LIU

ABSTRACT. In this note we will introduce the basic theory of perverse sheaves, including constructible sheaves, perverse sheaves, nearby and vanishing cycles. Moreover we will also give a glimpse of \mathscr{D} -modules, the Riemann-Hilbert correspondence and mixed Hodge modules. Finally we will consider some applications of the theory, such as enumerative geometry and representation theory.

Contents

1. Introduction	2
1.1. Background/Motivation	2
1.2. Related works and some f	uture direction
Acknowledgments	2
2. Recollection of the basic the	eory of sheaves
2.1. Six Functors	2
2.2. Local Systems	3
3. Constructible sheaves	3
3.1. Preliminaries from algebra	ic geometry 3
3.2. Stratifications and constru	actible sheaves
3.3. Artin's vanishing theorem	3
3.4. Constructibility theorem	3
3.5. Verdier duality theorem	3
3.6. More compatibilities	3
3.7. Borel-Moore homology an	d fundamental classes 3
4. Perverse sheaves	3
4.1. Perverse sheaves	3
4.2. Intersection cohomology of	omplexes 3
4.3. Affine pushforward	3
4.4. Smooth pullback and smo	oth descent 3
4.5. Semismall maps	3
4.6. The decomposition theore	m and the hard Lefschetz theorem 3
5. Nearby and vanishing cycle	3
5.1. Basic things	3
5.2. Properties	3
5.3. Beilinson's theorem	3
6. A glimpse of the algebraic t	heory 3
7. About \mathcal{D} -modules and mixe	d Hodge modules
7.1. \mathscr{D} -modules and Riemann-	Hilbert correspondence 3
7.2. Mixed Hodge modules	3
8. More Applications	3
8.1. Relative Donaldson-Thom	
8.2. For geometric representat	on theory 3
References	4

Date: August 14, 2024.

 $^{2020\ \}textit{Mathematics Subject Classification.} \quad 55\text{N}30,\,18\text{F}20,\,55\text{N}33,\,58\text{A}35,\,32\text{S}60,\,32\text{C}05\ .}$

Key words and phrases. perverse sheaves, nearby cycles, vanishing cycles.

1. Introduction

1.1. Background/Motivation. Perverse sheaves were discovered in the fall of 1980 by Beilinson-Bernstein- Deligne-Gabber in [BBDG18], sitting at the confluence of two major developments of the 1970s: the intersection homology theory of Goresky-MacPherson, and the Riemann-Hilbert correspondence, due to Kashiwara and Mebkhout.

We will first follows the book [Ach21] to learn the basic theory of perverse sheaves. We will focus the theory of algebraic varieties over $\mathbb C$ and using analytic topology. We will also give a quike discussion about pure-algebraic theory using étale topology and étale cohomology. See also original [BBDG18].

We will also discuss some applications of this theory. Such as representation theory and enumerative geometry, especially the relative DT conjecture.

The prerequisites are: familiarity with the language of derived and triangulated categories; familiarity with introductory algebraic topology and some topology of complex algebraic varieties; familiarity with basic algebraic geometry.

1.2. Related works and some future direction. Need to add.

Acknowledgments. Need to add.

2. Recollection of the basic theory of sheaves

2.1. Six Functors. Here we recollect some definitions of sheaves. Including six functors.

Definition 2.1. Let $f: X \to Y$ be a continuous map between topological spaces and R be a commutative ring.

• Let $\mathscr{F} \in \mathsf{Sh}(Y,R)$, then the pullback $f^{-1}(\mathscr{F})$ of \mathscr{F} is the sheafification of

$$f_{\mathrm{pre}}^{-1}(\mathscr{F}): U \mapsto \varinjlim_{V \subset Y \ open, V \supset f(U)} \mathscr{F}(V).$$

This is an exact functor.

- Let $\mathscr{F} \in \mathsf{Sh}(X,R)$, then the pushforward $f_*(\mathscr{F})$ of \mathscr{F} is defined by $f_*(\mathscr{F})(U) := \mathscr{F}(f^{-1}(U))$.
- Let $\mathscr{F} \in \mathsf{Sh}(X,R)$, then the proper pushforward $f_!(\mathscr{F})$ of \mathscr{F} is defined by $f_!(\mathscr{F})(U) := \{s \in \mathscr{F}(f^{-1}(U)) : f|_{\mathsf{supp}(s)} : \mathsf{supp}(s) \to U \text{ is proper}\}.$
- We can define

$$\mathbb{R}\mathscr{H}om(-,-): \mathsf{D}^-(X,R)^{\mathrm{op}} \times \mathsf{D}^+(X,R) \to \mathsf{D}^+(X,R), \\ -\otimes^{\mathbf{L}} -: \mathsf{D}^\pm(X,R) \times \mathsf{D}^\pm(X,R) \to \mathsf{D}^\pm(X,R).$$

Here we recollect some useful and basic results about these functors.

Proposition 2.2 ([Ach21]). Let $f: X \to Y$ be a continuous map between topological spaces and R be a commutative ring.

(1) f^{-1} is exact and f_* , $f_!$ are left exact functor. So we can define

$$\mathbf{R}f_*, \mathbf{R}f_! : \mathsf{D}^+(X, R) \to \mathsf{D}^+(Y, R), \quad f^{-1} : \mathsf{D}(Y, R) \to \mathsf{D}(X, R).$$

Moreover, consider $f: X \to Y$ and $g: Y \to Z$, then we have $(g \circ f)^{-1} = f^{-1}g^{-1}$ and $(g \circ f)_* = g_* \circ f_*$. If X, Y, Z are Hausdorff and locally compact, then $(g \circ f)_! = g_! \circ f_!$.

(2) If $h: Y \hookrightarrow X$ is a locally closed embedding, then for any $\mathscr{F} \in \mathsf{Sh}(Y,R)$ the sheaf $h_!(\mathscr{F})$ is the sheafification of $h_{!,\mathrm{pre}}\mathscr{F}$ which maps U to $\Gamma(U \cap Y,\mathscr{F})$ if $U \cap \overline{Y} \subset Y$ and 0 otherwise.

Moreover in this case $h_!$ is exact. Note that $h_!(\mathscr{F})_x \cong \begin{cases} \mathscr{F}_x & \text{if } x \in Y, \\ 0 & \text{if } x \notin Y. \end{cases}$

(3) We have

$$\mathbf{R} f_* \mathbf{R} \mathscr{H} om(f^{-1} \mathscr{F}, \mathscr{G}) \cong \mathbf{R} \mathscr{H} om(\mathscr{F}, \mathbf{R} f_* \mathscr{G})$$

for any $\mathscr{F} \in \mathsf{D}^-(Y,R)$ and $\mathscr{G} \in \mathsf{D}^+(X,R)$.

(4) We have

$$\mathbf{R}\mathscr{H}om(\mathscr{F}\otimes^{\mathbf{L}}\mathscr{G},\mathscr{H})\cong\mathbf{R}\mathscr{H}om(\mathscr{F},\mathbf{R}\mathscr{H}om(\mathscr{G},\mathscr{H}))$$

for any $\mathscr{F}, \mathscr{G} \in \mathsf{D}^-(X,R)$ and $\mathscr{H} \in \mathsf{D}^+(X,R)$.

Theorem 2.3 (Proper base change, [Ach21] 1.2.13). Consider a cartesian square

$$X' \xrightarrow{g'} X$$

$$\downarrow^{f'} \qquad \qquad \downarrow^{f}$$

$$Y' \xrightarrow{g} Y$$

(1) If all the spaces are Hausdorff and locally compact, then for any $\mathscr{F}\in\mathsf{D}^+(X,R)$ we have isomorphism

$$g^{-1}f_!\mathscr{F} \cong f'_!(g')^{-1}\mathscr{F}.$$

(2) If f is proper, then for any $\mathscr{F} \in \mathsf{D}^+(X,R)$ we have isomorphism

$$g^{-1}f_*\mathscr{F} \cong f'_*(g')^{-1}\mathscr{F}.$$

2.2. Local Systems.

3. Constructible sheaves

- 3.1. Preliminaries from algebraic geometry.
- 3.2. Stratifications and constructible sheaves.
- 3.3. Artin's vanishing theorem.
- 3.4. Constructibility theorem.
- 3.5. Verdier duality theorem.
- 3.6. More compatibilities.
- 3.7. Borel-Moore homology and fundamental classes.

4. Perverse sheaves

- 4.1. Perverse sheaves.
- 4.2. Intersection cohomology complexes.
- 4.3. Affine pushforward.
- 4.4. Smooth pullback and smooth descent.
- 4.5. Semismall maps.
- 4.6. The decomposition theorem and the hard Lefschetz theorem.

5. Nearby and vanishing cycles

- 5.1. Basic things.
- 5.2. Properties.
- 5.3. Beilinson's theorem.

6. A GLIMPSE OF THE ALGEBRAIC THEORY

- 7. About \mathscr{D} -modules and mixed Hodge modules
- 7.1. \mathcal{D} -modules and Riemann-Hilbert correspondence.
- 7.2. Mixed Hodge modules.

8. More Applications

- 8.1. Relative Donaldson-Thomas Theory for 4-folds.
- 8.2. For geometric representation theory.

4

References

 $[Ach21] \qquad \hbox{Pramod Achar. $Perverse Sheaves and Applications to Representation Theory. American Mathematical Society, 2021.}$

[BBDG18] Alexander Beilinson, Joseph Bernstein, Pierre Deligne, and Ofer Gabber. Faisceaux pervers. Astérisque 100, 1983/2018.

Institute of Mathematics, AMSS, Chinese Academy of Sciences, 55 Zhongguancun East Road, Beijing, 100190, China

 $Email\ address: \ {\tt liuxiaolong23@mails.ucas.ac.cn}$