Slope of Polar Curves

Con sider the polar curve

$$r = f(\theta)$$
 $x = r \cos \theta$, $y = r \sin \theta$
 $x = f(\theta) \cos \theta$ $y = f(\theta) \sin \theta + f(\theta) \cos \theta$

Slope $\frac{dy}{dx} = \frac{dx}{d\theta} = \frac{f'(\theta) \sin \theta + f(\theta) \cos \theta}{f'(\theta) \cos \theta - f(\theta) \sin \theta}$

Slope $\frac{dy}{dx} = \frac{dr \sin \theta + r \cos \theta}{d\theta}$

Slope $\frac{dy}{dx} = \frac{dr \sin \theta + r \cos \theta}{d\theta}$

Explicitly find the slope of the

Explicit Find the slope of the polar cure
$$Y = e^{\cos Q}$$
 of $Q = 0$, $Q = \overline{Q}$
 $X = r \cos Q$
 $X = e^{\cos Q}$
 X

At
$$\theta = \frac{\pi}{2}$$

Slope = $\frac{-1+0}{0-1}$ = 1

* Arclength of Polar curves

If $\beta(\theta)$ has continuous derivative

on the interval $[\alpha', \beta]$ ($\alpha \le \theta \le \beta$),

then the length of the polar curve

 $r = \beta(\theta)$ from $\theta = \alpha$ to $\theta = \beta$

is given by

$$L = \int_{\alpha}^{\beta} [f(\theta)]^{2} f(\theta)^{2} d\theta$$

Exple Find the arclength of the polar curve

 $r = 2 - 2\cos\theta$ from $\theta = 0$ to $\theta = 2\pi$.

=28in0

$$= -8 \cos \frac{\theta}{2}$$

$$= -8 \cos \pi + 8 \cos \theta$$

$$= 8 + 8 = 16$$

f Differential Equations

2 Cos7 + e = 1

2 + 32 - 1 = 0

A differential Equation is

An equation that involve of
function and its derivatives

* n dy + cosy = en - ist order differential Equation.

 $x e^{x} \frac{dy}{dx} + x \frac{dy}{dx} - y = 2$

Erple

Which of the following equations are separable?

1)
$$\frac{dy}{dx} - y^{2}xe^{2x+4y} = 0$$

2) $\frac{dy}{dx} - y^{2}xe^{2x+4y} = 0$

2) $\frac{dy}{dx} - y^{2$

$$(1+x) \frac{dy}{dx} = y \qquad \frac{dy}{dx} = \frac{y}{1+x} = (\frac{1}{1+x}) \cdot (y)$$

$$\int_{A}^{A} y = \frac{y}{1+x} \qquad \frac{dy}{y} = \frac{dx}{1+x}$$

$$\int_{A}^{A} x = \frac{y}{1+x} \qquad \frac{dy}{y} = \frac{dx}{1+x}$$

$$\int_{A}^{A} x = \frac{1}{1+x} \qquad \frac{dy}{y} = \frac{dx}{1+x}$$

$$\int_{A}^{A} x = \frac{1}{1+x} \qquad \frac{dy}{y} = \frac{dx}{1+x}$$

$$\int_{A}^{A} y = \int_{A}^{A} (1+x) dx$$

X A differential Equation with an initial condition is called an initial - Value problem.

$$\int \frac{dy}{y} = \int \frac{dx}{1+x}$$

$$|y| = |y| = |y| + |y| + |y| = |y| = |y| = |y| = |y| = |y| = |y| + |y| = |y| + |y| = |y| + |y| +$$

Exple Show that the equation is Deparable and Solve the initial Value problem $\frac{dy}{dx} = -\frac{x}{y} \quad \sqrt{y(4)} = -3$ $\frac{dy}{dx} = (-x) \cdot (\frac{1}{y}) = \text{Sepairable}$ y dy = -x dxydy = -xdx $\frac{y^2}{2} = -\frac{\chi^2}{2} + C$ 2C = R y = - x ~ + 2C $y^{2} = -x^{2} + R$ When x = 4, y = -3(y(4) = -3) $(-3)^2 = -(4)^2 + R$ 9 = -16 + RR= 9+16 = 25

the S=(ution is $y^2 = - x^2 + 25 \iff x^2 + y^2 = 25$

