CS325 (Winter 2016) Quiz 1

ID·	Name:
112	Name

1. (2pts each) In each case, indicate True (T) or False (F) for $f = O(g), f = \Omega(g), f = \Theta(g)$.

	f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
(a.)	$n^2 \log n$	$1500n^3$	T	F	F
(b.)	$1.2 + 1.2^2 + \dots + 1.2^n$		T	T	T
(c.)	3^n	n^3	F	Т	F
(d.)	$n^{\log_4 5}$	$n^{\log_2 5}$	Т	F	F

2. (3 pts) Consider the following pseudo-code.

function f(n)

- 1. if n > 1:
- 2. print_a_line("still going")
- 3. f(n/2)
- 4. f(n/2)

Let T(n) denote the number of lines printed for input n. Write a recurrence relation for T(n).

$$T(n)=2T(n/2)+1$$

3. (4pts) Solve the recurrence relation T(n) = T(n-2) + c

$$T(n)=T(n-4)+2c=T(n-6)+3c=...=T(0)+nc/2=O(n)$$