COM S 6810 Theory of Computing

February 12, 2009

Lecture 8: Circuit Lower Bounds II

Instructor: Rafael Pass Scribe: Igor Gorodezky

In this lecture we prove an exponential lower bound on the size of constant-depth circuits computing the parity function. For the remainder of the lecture all circuits will have unbounded fan-in, and we will ignore \neg gates when measuring the size of a circuit.

Define AC_0 to be the class of boolean functions computed by constant-depth, polynomialsize circuits using $\{\neg, \lor, \land\}$ gates with unbounded fan-in. Consider the parity function on n bits:

$$PARITY(x_1, \dots, x_n) = \sum_{i=1}^{n} x_i \mod 2$$

One can show that PARITY can be computed by circuits of depth d and size $O(n2^{n^{1/(d-1)}})$. Naturally, we ask whether PARITY is in AC_0 . In this lecture we answer this question in the negative by proving the following lower bound.

Theorem 1 Any depth d circuit computing PARITY has size $\Omega(2^{n^{1/(2d)}/2})$.

The first exponential lower bound for constant-depth circuits computing PARITY was proved by Yao in 1985 and was strengthened to near-optimality by Håstad in 1986. Here we prove a bound slightly weaker than Håstad's using a technique due to Razborov and Smolensky (1987). We will prove Theorem 1 by, roughly speaking, showing that small constant-depth circuits can be accurately approximated by low degree polynomials while PARITY cannot.

1 The main argument

In this section we state two key lemmas and use them to prove Theorem 1; the proofs of the lemmas are deferred to the next section. The proof of the theorem requires us to consider not only boolean functions but functions (in particular polynomials) over \mathbb{F}_3^n , where $\mathbb{F}_3 = \{-1, 0, 1\}$ is the field of order 3.

Our first lemma tells us that a small constant-depth circuit can be accurately approximated by a low degree polynomial over \mathbb{F}_3^n .

Lemma 2 If C is a circuit of depth d and t is arbitrary then there exists a polynomial P over \mathbb{F}_3^n of degree $(2t)^d$ that differs from C on at most a $|C|/2^t$ fraction of inputs.

If we set $t = n^{1/(2d)}/2$ then Lemma 2 tells us that for any circuit C with $|C| < \frac{1}{100} 2^{n^{1/(2d)}/2}$ there exists a degree \sqrt{n} polynomial P over \mathbb{F}_3^n such that $C(\vec{x}) = P(\vec{x})$ for at least 99% of bit strings $\vec{x} \in \{0,1\}^n$.

To prove Theorem 1 it would suffice to show that there cannot exist a degree \sqrt{n} polynomial over \mathbb{F}_3^n that approximates PARITY with such accuracy. This is a silly claim, however, since PARITY is defined as a *linear* function over $\{0,1\}^n$. Therefore our proof proceeds more carefully, using not PARITY itself but a high degree analogue.

Define the parity of a bit string in $\{-1,1\}^n$ to be

$$\widehat{PARITY}(\hat{x}_1, \dots, \hat{x}_n) = \prod_{i=1}^n \hat{x}_i$$

Conveniently, PARITY has degree n, the maximum possible. Observe that if we map $\{0,1\}$ to $\{-1,1\}$ via $0 \leftrightarrow 1$ and $1 \leftrightarrow -1$ then we can relate PARITY and PARITY by

$$\widehat{PARITY}(\hat{x}_1, \dots, \hat{x}_n) = 1 + PARITY(\hat{x}_1 - 1, \dots, \hat{x}_n - 1) \mod 3$$
 (1)

Our second lemma tells us that PARITY cannot be well approximated by low degree polynomials over \mathbb{F}_3^n .

Lemma 3 Every degree \sqrt{n} polynomial over \mathbb{F}_3^n differs from PARITY on more than a $\frac{1}{100}$ fraction of inputs.

The proof of the theorem now follows easily.

Proof of Theorem 1. Assume for the sake of contradiction that PARITY can be computed by a depth d circuit C with $|C| < \frac{1}{100} 2^{n^{1/(2d)}/2}$. Then, by the discussion following Lemma 2, there exists a degree \sqrt{n} polynomial P over \mathbb{F}_3^n that agrees with PARITY on at least 99% of input strings in $\{0,1\}^n$.

Using the relation in equation (1), we can convert P into a degree \sqrt{n} polynomial \hat{P} that agrees with PARITY on at least 99% of input strings in $\{-1,1\}^n$. This contradicts Lemma 3 and completes the proof.

2 Proving the lemmas

Proof of Lemma 2. Assume that C uses only \neg and \lor gates; this loses no generality since $x \land y = \neg(\neg x \lor \neg y)$ and we agreed not to count \neg gates when measuring circuit size. We will approximate C by simulating its gates with polynomials over \mathbb{F}_3^n .

For the moment, fix an input string $\vec{x} \in \{0,1\}^n$. We begin by constructing a degree $(2t)^d$ polynomial P such that $P(\vec{x}) = C(\vec{x})$ with very high probability.

We can simulate each \neg gate with a linear polynomial, since $\neg x = 1 - x$ for $x \in \{0, 1\}$. We can naively simulate a \vee gate on input bits $\{b_1, \ldots, b_k\}$ using a polynomial which we will call nOR:

$$nOR(b_1, ..., b_k) = 1 - \prod_{i=1}^{k} (1 - b_i)$$

Clearly nOR cannot be used directly since its degree k might be very high. We can approximate it, however, using low degree polynomials as follows.

Choose $S \subseteq [k]$ uniformly at random and consider

$$q_S = \left(\sum_{j \in S} b_j\right)^2 \mod 3$$

We square the sum to avoid an output of -1. If $b_i = 0$ for all i then $q_S = (b_1 \vee \cdots \vee b_k) = 0$. If $b_i = 1$ for some i then clearly $(b_1 \vee \cdots \vee b_k) = 1$, while $q_S = 1$ with probability at least 1/2: this is because we can define an injection from the subsets T for which $q_T = 0$ to the subsets S for which $q_S = 1$ by mapping $T \mapsto T \setminus \{b_i\}$ if $b_i \in T$ and otherwise mapping $T \mapsto T \cup \{b_i\}$.

We can amplify this effect by uniformly and independently choosing t subsets $\{S_1, \ldots, S_t\}$ and, writing q_i for q_{S_i} , simulating the \vee gate with $nOR(q_1, \ldots, q_t)$, which has degree 2t. Since each q_i fails with probability at most 1/2, we have

Prob
$$(\operatorname{nOR}(q_1,\ldots,q_t) \neq (b_1 \vee \cdots \vee b_k)) \leq 2^{-t}$$

Let P be the polynomial produced by approximating gates with polynomials as described above and composing those polynomials as per the circuit layout. Since each gate approximation fails on the (fixed) input \vec{x} with probability at most 2^{-t} , we have

$$\operatorname{Prob}\left(P(\vec{x}) \neq C(\vec{x})\right) \le |C|2^{-t} \tag{2}$$

by the union bound, where the probability is over the possible choices of P.

Equation (2) holds for any fixed \vec{x} , therefore

$$\operatorname{Exp}(|\{\vec{x} \mid P(\vec{x}) \neq C(\vec{x})\}|) = \sum_{\vec{x} \in \{0,1\}^n} \operatorname{Prob}(P(\vec{x}) \neq C(\vec{x})) \leq 2^n \frac{|C|}{2^t}$$

Since the expectation is over P, we conclude that there exists a choice of P that differs from C on at most a $|C|2^{-t}$ fraction of inputs.

Proof of Lemma 3. The proof is a straightforward counting argument. Assume for the sake of contradiction that there exists a degree \sqrt{n} polynomial \hat{P} that agrees with PARITY on at least 99% of input strings. Thus if $S \subseteq \{-1,1\}^n$ is the set of inputs on which \hat{P} and PARITY agree, we have $|S| \ge \frac{99}{100}2^n$.

We claim that any function $f: S \to \mathbb{F}_3$ can be computed by a degree $\frac{n}{2} + \sqrt{n}$ polynomial. To see this, start with a polynomial interpolation of f:

$$P_f(\hat{x}_1, \dots, \hat{x}_n) = \sum_{(\hat{y}_1, \dots, \hat{y}_n) \in S} \left(f(\hat{y}_1, \dots, \hat{y}_n) \prod_{i=1}^n (-\hat{x}_i \hat{y}_i - 1) \right)$$

Clearly P_f agrees with f on all of S. Moreover, we can replace any monomial in P_f of degree greater than $\frac{n}{2}$ by a polynomial of degree at most $\frac{n}{2} + \sqrt{n}$ as follows. If $\prod_{i \in I} \hat{x}_i$ is a monomial with $|I| > \frac{n}{2}$ then

$$\prod_{i \in I} \hat{x}_i = \prod_{i \in [n]} \hat{x}_i \prod_{j \in [n] \setminus I} \hat{x}_j$$

$$= \widehat{PARITY}(\hat{x}_1, \dots, \hat{x}_n) \prod_{j \in [n] \setminus I} \hat{x}_j$$

$$= \hat{P}(\hat{x}_1, \dots, \hat{x}_n) \prod_{j \in [n] \setminus I} \hat{x}_j$$

and the claim is proved since $|[n] \setminus I| \leq \frac{n}{2}$.

We conclude that if #pol is the number of degree $\frac{n}{2} + \sqrt{n}$ polynomials over \mathbb{F}_3^n , then #pol is at least the number of functions $f: S \to \mathbb{F}_3$. This implies

$$\#\text{pol} > 3^{|S|} > 3^{\frac{99}{100}2^n}.$$

Since every polynomial is a linear combination of monomials we have $\#\text{pol} = 3^{\#\text{mon}}$ where #mon is the number of monomials of degree at most $\frac{n}{2} + \sqrt{n}$. But

$$\# \text{mon} = \sum_{i=0}^{\frac{n}{2} + \sqrt{n}} \binom{n}{i} < \frac{99}{100} 2^n$$

so $\#\text{pol} < 3^{\frac{99}{100}2^n}$, a contradiction.