MATH 135: Introduction to the Theory of Sets

Jad Damaj

Fall 2022

Contents

1	Introduction	3
	1.1 August 25	•
	1.1.1 Introduction	
	1.1.2 Basics	
2	Axioms and Operations	Ę
	2.1 August 30	ŀ
	2.1.1 Zermelo Fraenkel Axioms of Set Theory	

Chapter 1

Introduction

1.1 August 25

1.1.1 Introduction

Foundations of Mathematics: language, axioms, formal proofs

- We focus on the axioms in set theory
- We use ZFC (Zermelo-Fraenkel + Choice)
- \bullet There is only one primitive notion : \in
- Within the ZFC universe, everything is a set

Course Outline:

- Basic axioms
- Operations, relations, functions
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- \bullet carindals
- AC
- ordinals

1.1.2 Basics

Principle of Extensionality: Two sets A, B are the same \leftrightarrow they have the same elements $\forall x (x \in A \leftrightarrow x \in B)$ **Example 1.1.1.** 2, 3, 5 = {5, 2, 4} = {2, 5, 2, 3, 3, 2}

Definition 1.1.2. There is a set with no elements, denoted \varnothing

- $\varnothing \neq \{\varnothing\}$
- $A \subseteq B$: A is a subset of $B \leftrightarrow$ each element of A is in B (use \subsetneq to denote proper subset)

1.1. AUGUST 25

- $\{2\} \subseteq \{2,3,5\}$ but $\{2\} \not\in \{2,3,5\}$
- Power set opertaion: $\mathcal{P}(A) = \{B \mid B \subseteq A\}$

We can define a hierarchy:

$$\begin{array}{l} V_0 = \varnothing, \ V_1 = \mathcal{P}(\varnothing) = \{\varnothing\}, \ V_2 = \mathcal{PP}(\varnothing) = \{\varnothing, \{\varnothing\}\} \\ V_3 = \mathcal{P}(V_2) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}, \ V_4, \dots \\ V_\omega = \bigcup_{n \in \mathbb{N}} V_n, \ \mathcal{P}(V_\omega), \ \mathcal{PP}(V_\omega), \dots, V_{\omega + \omega}, \dots, V_{\omega + \omega + \dots}, \dots, V_{\omega \times \omega}, \dots, V_{\omega^\omega} \end{array}$$

Chapter 2

Axioms and Operations

2.1 August 30

2.1.1 Zermelo Fraenkel Axioms of Set Theory

Setting: in ZFC all objects are sets

Language: contains vocabulary (\in), logical symbols (=, \land , $\lor \exists$, \forall , \neg), variables (x, y, A, B, etc.)

Axiom 2.1.1 (Extensionality Axiom). Two sets are the same if they have the same elements $\forall A, B(\forall x(x \in A \leftrightarrow x \in B) \to A = B)$

Axiom 2.1.2 (Empty Set Axiom). There is a set with no members, denoted $\varnothing \exists A \forall x (x \notin A)$

Axiom 2.1.3 (Pairing Axiom). For any sets u, v there is a est whose elements are u and v, denoted $\{u, v\}$ $\forall u, v \exists A \forall x (x \in A \leftrightarrow x = u \lor x = v)$

Axiom 2.1.4 (Union Axiom (Preliminary Form)). For any sets a, b there is a set whose elements are elements of a and elements of b, denoted $a \cup b$ $\forall a, b \exists A \forall x (x \in Ax \in u \lor x \in v)$

Axiom 2.1.5 (Powerset Axiom). Each set A, has a power set $\mathcal{P}(A)$. $\forall A \exists B \forall x (x \in B \iff x \subseteq A)$ where $x \subseteq A$ stands for $\forall y (y \in x \to y \in A)$

Axiom 2.1.6 (Union Axiom). For any set A, there is a set $\bigcup A$ whose members are members of the members of A. $\forall A \exists B \forall x (x \in B \leftrightarrow \exists y \in A(x \in y))$

 $\forall A \exists D \forall x (x \in D \leftrightarrow \exists y \in A (x \in y))$

Idea for the subset axiom: For any set A, there is a set B whose members are members of A satisfying some property.

2.1. AUGUST 30 135: Set Theory

eg. $B = \{x \in A \mid x \text{ satisfies property } P\} \subseteq A$

Example 2.1.7. $B = \{n \in \mathbb{N} \mid n \text{ cannot be described in less that 20 words}\}$

• let b be the smallest element in B, then b is the smallest element that cannot be described in 20 words.

• Paradox : need to use formal language to express property P.

Example 2.1.8. Let $B = \{x \, | \, x \notin x\}$

Question: $B \in B$? $B \in B \leftrightarrow B \notin B$: need to have property be contained in some larger set.

We can now restate the axiom more formally:

Axiom 2.1.9 (Subset Axiom (Scheme)). For each formula $\phi(x)$, there is an axiom: $\forall A \exists B \forall x (x \in B \leftrightarrow x \in A \land \phi(x))$

Example 2.1.10. Suppose there is a set of all sets A. Consider $B = \{x \in A \mid x \notin x\}$. Then $B \in B \leftrightarrow B \notin B$, contradiction. So there can be no such set A.

The language of 1rst order logic for ZFC:

The following are formulas:

- $x = y, x \in y$ atomic formulas
- $(\varphi \wedge \psi), (\varphi \vee \psi), \neg \varphi$ where φ, ψ are formulas
- $\exists v\varphi, \forall x\varphi$

Example 2.1.11. $\varphi(v,w) := (\exists v(v \in x \land \neg v = w)) \to (\forall y(\neg y \in y))$ is a formula