Студент: Кошелев Сергей Маркович

Группа: Б01-908

Лабораторная работа №3.2.3(123)

Резонанс токов в параллельном контуре

Цель работы: исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазовочастотных характеристик, а также определение основных параметров контура.

В работе используются: генератор сигналов, источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

Введение

В данной работе изучаются резонансные явления в параллельном колебательном контуре. Так как он собран из стандартных радиоэлектронных элементов, могут возникать необратимые потери энергии, связанные с, например, утечками, диэлектрическими потерями в конденсаторах, вихревыми токами и потерями на перемагничивание сердечников катушек индуктивности, омическими потерями в проводниках. В связи с этим меняются резонансные свойства контура, в частности уменьшается добротность.

Потери в элементах контура зависят как от частоты, так и от амплитуды тока (напряжения), температуры и ряда других факторов, например, от вида диэлектрика конденсатора, сердечника катушки и т.д. От перечисленных факторов в общем случае зависят и основные параметры контура: индуктивность L, ёмкость С и суммарное активное сопротивление.

Так как в рабочем диапазоне частот нашего контура выполняется условие, что собственная резонансная частота катушки во много раз больше подаваемой частоты, то индуктивность представляется своим истинным значением L и активным сопротивлением R_L . Аналогично для конденсатора имеем, что в нашем диапазоне частот его эквивалентное последовательное сопротивление (ЭПС) $R_S = \frac{1}{\omega C} t g \delta$ ($t g \delta < 10^{-3}$, $\delta = \frac{\pi}{2} - \varphi$) пренебрежимо мало по сравнению с активным сопротивлением R_C .

В индуктивную ветвь параллельного колебательного контура нашей установки добавлен постоянный резистор R. Таким образом, суммарное активное сопротивление контура при его последовательном обходе принимается равным

$$R_{\Sigma} = R_L + R_S + R$$

Пользуясь комплексных амплитуд, для импедансов ёмкостной $Z_{\mathcal{C}}$ и индуктивной $Z_{\mathcal{L}}$ ветвей контура получаем формулы:

$$Z_C = R_S - \frac{i}{\omega C}$$
 $Z_L = R + R_L + i\omega L$

Отсюда легко выразить комплексные амплитуды токов в эти ветвях:

$$I_{C} = I \frac{Z_{L}}{Z_{C} + Z_{L}} = iQI_{0} \frac{\omega}{\omega_{0}} \frac{1 - i \frac{R + R_{L}}{\rho} \frac{\omega_{0}}{\omega}}{1 + iQ(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})}$$

$$I_{L} = I \frac{Z_{C}}{Z_{C} + Z_{L}} = -iQI_{0} \frac{\omega_{0}}{\omega} \frac{1 + itg\delta}{1 + iQ(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})}$$

$$U = I \frac{Z_{C}Z_{L}}{Z_{C} + Z_{L}} = Q\rho I_{0} \frac{(1 - i \frac{R + R_{L}}{\rho} \frac{\omega_{0}}{\omega})(1 + itg\delta)}{1 + iQ(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})}$$

где использованы стандартные характеристики колебательного контура: ω_0 — собственная частота, ho — реактивное сопротивление, Q — добротность

$$Q = \frac{\rho}{R_{\Sigma}} \gg 1$$

Это означает, что о резонансе, говорят, если добротность колебательного контура достаточно велика. При этом частоту ω_0 называют резонансной. Данное условие выполняется для всех контуров, используемых в нашей работе.

Из формул видно, что потерями в конденсаторах, явно представленных тангенсом угла $tg\delta$ потерь, в нашем случае меньшим 10^{-3} , можно пренебречь.

Наибольший практический интерес представляет случай, когда

$$|\Delta\omega| = |\omega - \omega_0| \ll \omega_0$$

Тогда полученные выражения упрощаются:

$$\begin{split} I_C &= QI_0 \frac{\omega}{\omega_0} \frac{e^{i\varphi_C}}{\sqrt{1+(\tau\Delta\omega)^2}}, \quad \varphi_C &= \frac{\pi}{2} - \frac{R+R_L}{\rho} - arctg(\tau\Delta\omega) \\ I_L &= QI_0 \frac{\omega_0}{\omega} \frac{e^{i\varphi_L}}{\sqrt{1+(\tau\Delta\omega)^2}}, \quad \varphi_L &= -\frac{\pi}{2} + \delta - arctg(\tau\Delta\omega) \\ U &= \rho QI_0 \frac{e^{i\varphi_U}}{\sqrt{1+(\tau\Delta\omega)^2}}, \quad \varphi_U &= -\frac{\omega_0}{\omega} \frac{R+R_L}{\rho} + \delta - arctg(\tau\Delta\omega) \end{split}$$

где $au = rac{2L}{R_{\Sigma}} = rac{2Q}{\omega_0}$ – время затухания.

Как видно из выражений вблизи частоты ω_0 , зависимости модулей токов и напряжения на контуре имеют схожий вид. Это позволяет экспериментально исследовать резонанс токов именно по напряжению на контуре.

При резонансе $\omega_0 = \omega$, $\Delta \omega = 0$:

$$I_C = QI_0$$
 $\varphi_C = \frac{\pi}{2} - \frac{R + R_L}{\rho}$
$$I_L = QI_0 \quad \varphi_L = -\frac{\pi}{2} + \delta$$

$$U = \rho Q I_0 = Q^2 R_{\Sigma} I_0 \quad \varphi_U = -\frac{\omega_0}{\omega} \frac{R + R_L}{\rho} + \delta$$

Отметим, однако, что максимальные (резонансные) значения токов в контуре не строго равны QI_0 и достигаются не строго на частоте ω_0 . Соответствующие относительные поправки составляют доли малой величины Q^{-2} и связаны с входящим в выражения для токов отношением $\frac{\omega}{\omega_0}$.

Из формул вытекает, что на частоте ω_0 импеданс контура $Z={}^U/{}_{I_0}=Z_{\rm pes}e^{i\varphi_{\rm pes}}$ является почти чисто активным. В пренебрежении относительными поправками порядка его модуль и фаза относительно внешнего тока соответственно равны:

$$Z_{\mathrm{pes}} = Q\rho = Q^2 R_{\Sigma}$$
 $\varphi_{\mathrm{pes}} = -\frac{R + R_L}{\rho} + \delta$

При отклонении $\Delta\omega$ частоты внешней ЭДС от резонансной частоты таком, что выполняется условие

$$\tau \Delta \omega = \pm 1$$

амплитуда напряжения U, уменьшается в $\sqrt{2}$ раз относительно своей резонансной величины, а фаза φ_U изменяется на угол $\mp \pi/4$.

Величина $\delta\omega=2|\Delta\omega|=2/\tau$ представляет собой важную характеристику колебательного контура — ширину резонансной кривой $U_c(\omega)$ на уровне $U_c(\omega_0)/\sqrt{2}$, по которой можно определить время релаксации $\tau=2/\delta\omega$ и, зная резонансную частоту ω_0 , найти добротность контура $Q=\omega_0/\delta\omega$. Эти же параметры можно определить по фазовочастотной характеристике: тангенс угла наклона $\varphi_U(\omega)$ в точке резонанса определяет время релаксации τ со знаком « – », а расстояние по оси ω между точками, в которых фаза $\varphi_U(\omega)$ меняется от $\pi/4$ до $-\pi/4$, равно $2/\tau$ с относительной погрешностью порядка Q^{-2} .

Экспериментальная установка

Рис. 1а. Схема экспериментального стенда.

Ход работы

- 1. Проверка правильности соединения приборов. Подготовка к работе генератора сигналов и осциллографа согласно описанию.
- 2. Меняя частоту f генератора, убедиться по осциллографу и вольтметрам, что у синусоиды U(t) меняется амплитуда и фаза относительно начала координат, тогда как синусоида E(t) «привязана» к началу отсчёта, а её амплитуда остаётся неизменной с относительной погрешностью не более 1%.
- 3. Для контуров с 7 различными емкостями, меняя их с помощью переключателя на блоке, измерить резонансные частоты f_{0n} и напряжения $U(f_{0n})$, а также напряжения $E(f_{0n})$, игнорируя отклонения в пределах 1%. Резонанс определяется по максимуму напряжения U(f). При приближении к нему, удобно наблюдать фигуру Лиссажу, которая вырождается почти в резонансе в прямую с положительным наклоном. (см. таблицу ниже)
- 4. Для контуров с двумя разными ёмкостями снять АЧХ U(f) для значений $U(f) \ge 0.6U(f_{0n})$ (16-17 т. в сумме по обе стороны от резонанса) при том же напряжении E, что и в пункте 4.

С3				
	U, B	f, кГц	u/u0	f/f0
	0,52	22,8	0,592	0,966
	0,564	22,9	0,642	0,970
	0,586	22,94	0,667	0,972
слева	0,62	23	0,705	0,975
	0,671	23,09	0,763	0,978
	0,715	23,16	0,813	0,981
	0,753	23,22	0,857	0,984
	0,805	23,31	0,916	0,988
резонанс	0,879	23,6	1,000	1,000
	0,82	23,8	0,933	1,008
	0,773	23,89	0,879	1,012
	0,74	23,95	0,842	1,015
CUDARA	0,671	24,08	0,763	1,020
справа	0,624	24,17	0,710	1,024
	0,592	24,24	0,673	1,027
	0,56	24,28	0,637	1,029
	0,535	24,36	0,609	1,032

C5				
	U	f	u/u0	f/f0
	0,338	18,87	0,534	0,958
	0,39	19,04	0,616	0,966
CHORO	0,402	19,07	0,635	0,968
слева	0,437	19,16	0,690	0,973
	0,51	19,33	0,806	0,981
	0,55	19,39	0,869	0,984
	0,6	19,53	0,948	0,991
резонанс	0,633	19,7	1,000	1,000
	0,621	19,86	0,981	1,008
	0,563	20,03	0,889	1,017
	0,502	20,18	0,793	1,024
справа	0,43	20,36	0,679	1,034
справа	0,406	20,43	0,641	1,037
	0,375	20,52	0,592	1,042
	0,33	20,69	0,521	1,050
	0,303	20,8	0,479	1,056

5. Для тех же двух контуров снять ФЧХ $\varphi_U(f)$ для $U(f) \ge 0.3U(f_{0n})$ (16-17 т. в сумме по обе стороны от резонанса).

C3						c5					
f, кГц	х0, дел	х, дел	dф	f/f0	phi/pi	f	x0	Х	deltaPhi	f/f0	phi/pi
21,83	4,8	2,9	1,2435	0,9250	0,3958	18,07	5,7	3,6	1,1574	0,9173	0,3684
22,29	4,7	3	1,1363	0,9445	0,3617	18,43	5,6	3,6	1,1220	0,9355	0,3571
22,68	4,6	3,2	0,9561	0,9610	0,3043	18,73	5,5	3,7	1,0282	0,9508	0,3273
22,84	4,6	3,3	0,8878	0,9678	0,2826	19,01	5,4	4	0,8145	0,9650	0,2593
23,05	4,6	3,5	0,7513	0,9767	0,2391	19,19	5,35	4,15	0,7047	0,9741	0,2243
23,18	4,5	3,7	0,5585	0,9822	0,1778	19,39	5,3	4,5	0,4742	0,9843	0,1509
23,31	4,5	3,9	0,4189	0,9877	0,1333	19,51	5,3	4,7	0,3557	0,9904	0,1132
23,6	4,5	4,5	0,0000	1,0000	0,0000	19,7	5,2	5,2	0,0000	1,0000	0,0000
23,78	4,4	4,9	-0,3570	1,0076	-0,1136	20,02	5,1	5,9	-0,4928	1,0162	-0,1569
23,89	4,4	5,1	-0,4998	1,0123	-0,1591	20,07	5,1	6,1	-0,6160	1,0188	-0,1961
24,07	4,4	5,3	-0,6426	1,0199	-0,2045	20,21	5,1	6,3	-0,7392	1,0259	-0,2353
24,27	4,3	5,5	-0,8767	1,0284	-0,2791	20,34	5,1	6,4	-0,8008	1,0325	-0,2549
24,51	4,3	5,6	-0,9498	1,0386	-0,3023	20,58	5	6,6	-1,0053	1,0447	-0,3200
24,93	4,2	5,8	-1,1968	1,0564	-0,3810	20,85	4,9	6,7	-1,1541	1,0584	-0,3673
25,68	4,1	5,8	-1,3026	1,0881	-0,4146	21,3	4,8	6,8	-1,3090	1,0812	-0,4167

Обработка результатов

1. Для каждого из выбранных контуров, найдя резонансные значения частоты f_0 и напряжения U, заполним таблицу со следующими характеристиками:

$$L = \frac{1}{4\pi^2 \omega_0^2 C}$$
$$\rho = \sqrt{\frac{L}{C}}$$

$$Z_{
m pes} = R_1 \frac{U}{E} \qquad R_1 = 1008 \ {
m Om} - {
m coпротивление} \ {
m pesucropa}$$

$$Q = \frac{Z_{\rm pe3}}{\rho}$$

$$R_{\Sigma} = \frac{Z_{\rm pe3}}{Q^2}$$

$$R_s = \rho \cdot 10^{-3}$$

$$R_L = R_{\Sigma} - R_s$$

Nº	Сп, нФ	f0, кГц	U, B	E, B	L, мкГн	р, Ом	Zрез, Ом	Q	R∑, Oм	Rs, Om	RL, Om
1	25,1	32,2	1,540	0,3	973,3	196,9	5174,4	26,28	7,494	0,197	7,297
2	33,2	27,9	1,190	0,3	980,2	171,8	3998,4	23,27	7,384	0,172	7,212
3	47,3	23,6	0,879	0,3	961,5	142,6	2953,4	20,71	6,883	0,143	6,740
4	57,4	21,4	0,736	0,3	963,6	129,6	2473,0	19,09	6,788	0,130	6,659
5	67,5	19,7	0,633	0,3	967,0	119,7	2126,9	17,77	6,735	0,120	6,616
6	82,7	17,7	0,511	0,3	977,7	108,7	1717,0	15,79	6,885	0,109	6,777
7	101,6	16,1	0,434	0,3	961,8	97,3	1458,2	14,99	6,492	0,097	6,395
Ср	Среднее значение										6,81
Среднеква	Среднеквадратичная погрешность										0,12
Коэфо	Коэффициент Стьюдента										2,5
Случа	Случайная погрешность										0,31

2. По полученным зависимостям U(f) вблизи резонанса для контуров С3 и С5 строим АЧХ в абсолютных координатах, а также в относительных $(\frac{U}{U_0}, \frac{f}{f_0})$

По ширине $d=x_2-x_1$ резонансных кривых в относительных координатах на уровне $\frac{1}{\sqrt{2}}\cong 0,707$ определяем добротности контуров по формуле $Q=\frac{1}{d}$

	x1	x2	d	Q
C3	0,9748	1,0241	0,0493	20,28
C5	0,9736	1,0310	0,0574	17,42

3. По полученным фазовым сдвигам строим ФЧХ для обоих контуров. Для удобства вычисления следующих величин, приведем ФЧХ к привычному виду, то есть построим зависимость <u>сдвига</u> фаз от частоты.

По этим графикам находим добротность, как расстояние между по оси Ох, в которых Y меняется от $\pi/4$ до $-\pi/4$ (в наших координатах от -0.25 до 0.25), равное 1/Q

	x1	x2	d	Q
C3	0,9707	1,0275	0,0568	17,61
C5	0,9677	1,0310	0,0633	15,80

4. Строим зависимость $R_L(f_{0n})$. Проводим линию соответствующую посчитанному среднему значению $\langle R_L \rangle = 6.81~\mathrm{OM}$

5. Для контура (С7) с самой маленькой добротностью (Q=15) строим векторную диаграмму. По оси абсцисс откладываем ток источника I. Из теории было получено, что $I=I_L+I_C$ ($I_L=I_R$ из последовательности соединения), причем в резонансе I_C опережает I на $(\frac{\pi}{2}-\frac{1}{Q}\cong 86^\circ)$, а I_L отстает на $\frac{\pi}{2}$. Также было выведено,

что напряжение \pmb{U} ($\pmb{U}=\pmb{U}_{\pmb{C}}$ в силу параллельности) отстает на величину $\frac{1}{Q}$. $\pmb{U}_{\pmb{R}}$ и $\pmb{U}_{\pmb{L}}$ на векторной диаграмме совпадают по направлению соответственно с $\pmb{I}_{\pmb{L}}$ (из-за активности сопротивления \pmb{R} и равенства $\pmb{U}_{\pmb{R}}=\pmb{R}\cdot\pmb{I}_{\pmb{R}}$) и \pmb{I} .

Вывод