

# PYTHON FOR RESERVOIR ENGINEERING AND GEOSCIENCES

—DESTINY OTTO & YOHANES NUWARA—

**SLIDE TWO** 

Courtesy: edureka

#### **AGENDA**

Python

Applications of Python in the oil and gas industry

Python Libraries

Getting Started with Python



Numpy, Pandas and Matplotlib





 $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$ 







# INTRODUCTION TO NUMPY, PANDAS AND MATPLOTLIB



### Numpy



The core library for scientific computing in python

It provides a high performance multidimensional array object and tools for working with these array

# **Numpy vs Lists**

Why Numpy is better than lists



# **Numpy Operations**

#### Tuples are immuta











# **Numpy Operations**



#### **Sum of axis**



sum

Sum of axis 0: [ 30, 33]

Sum of axis 1: [ 17, 21, 25]

# Sine and cosine plots





#### **Numpy Applications**

- Manipulating multidimensional arrays (transposing, etc) seismic data is a "4D" data consists of inlines, crosslines, time, and amplitude
- Data cleansing (search for NaNs, replace values) data quality control (QC)
- Load and read files with text formats parsing multiple files (e.g. ECLIPSE simulator files)
- Operations in Numpy (matrix linear algebra, FFT, etc) signal processing in geophysics, inverse problems
- **Generating random numbers** *synthetic data generation when data is not available* (!),
  - Monte Carlo simulation of a stochastic analysis in oil and gas
- Write files output results from program to a file



#### **Pandas**

# pandas

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$







## **Loading Python Libraries**

```
In [ #Import Python Libraries
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib as mpl
import seaborn as sns
```

Press Shift+Enter to execute the jupyter cell

### Reading data using pandas

```
In [ ]: #Read csv file
df = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/Salaries.csv")
```

**Note:** The above command has many optional arguments to fine-tune the data import process.

#### There is a number of pandas commands to read other data formats:

```
pd.read_excel('myfile.xlsx',sheet_name='Sheet1', index_col=None,
na_values=['NA'])
pd.read_stata('myfile.dta')
pd.read_sas('myfile.sas7bdat')
pd.read_hdf('myfile.h5','df')
```

## **Exploring data frames**

```
In [3]:#List first 5 records
    df.head()
```

Out[3]:

# **Data Frame data types**

| Pandas Type               | Native Python Type                                                    | Description                                                                                                                                                   |
|---------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| object                    | string                                                                | The most general dtype. Will be assigned to your column if column has mixed types (numbers and strings).                                                      |
| int64                     | int                                                                   | Numeric characters. 64 refers to the memory allocated to hold this character.                                                                                 |
| float64                   | float                                                                 | Numeric characters with decimals. If a column contains numbers and NaNs(see below), pandas will default to float64, in case your missing value has a decimal. |
| datetime64, timedelta[ns] | N/A (but see the <u>datetime</u> module in Python's standard library) | Values meant to hold time data.<br>Look into these for time series<br>experiments.                                                                            |

### **Data Frame data types**

int64

salary

dtype: object

```
In [4]: #Check a particular column type
       df['salary'].dtype
Out[4]: dtype('int64')
In [5]: #Check types for all the columns
       df.dtypes
Out[4]:rank
                   object
                   object
       discipline
                   int64
       phd
                   int64
       service
                   object
       sex
```

#### **Data Frames attributes**

Python objects have attributes and methods.

| df.attribute | description                                    |
|--------------|------------------------------------------------|
| dtypes       | list the types of the columns                  |
| columns      | list the column names                          |
| axes         | list the row labels and column names           |
| ndim         | number of dimensions                           |
| size         | number of elements                             |
| shape        | return a tuple representing the dimensionality |
| values       | numpy representation of the data               |

#### **Data Frames methods**

Unlike attributes, python methods have *parenthesis*. All attributes and methods can be listed with a *dir()* function: **dir(df)** 

| df.method()              | description                                                |
|--------------------------|------------------------------------------------------------|
| head( [n] ), tail( [n] ) | first/last n rows                                          |
| describe()               | generate descriptive statistics (for numeric columns only) |
| max(), min()             | return max/min values for all numeric columns              |
| mean(), median()         | return mean/median values for all numeric columns          |
| std()                    | standard deviation                                         |
| sample([n])              | returns a random sample of the data frame                  |
| dropna()                 | drop all the records with missing values                   |

### Selecting a column in a Data Frame

Method 1: Subset the data frame using column name: df['Rs']

Method 2: Use the column name as an attribute: df.Rs

*Note:* there is an attribute *rank* for pandas data frames, so to select a column with a name "rank" we should use method 1.

#### Data Frames groupby method

Using "group by" method we can:

- Split the data into groups based on some criteria
- Calculate statistics (or apply a function) to each group
- Similar to dplyr() function in R

```
In [ ]:#Group data using pressure
    df_pressure = df.groupby(['pressure'])
In [ ]:#Calculate mean value for each numeric column per each group
    df_pressure.mean()
```

#### Data Frames *groupby* method

Once groupby object is create we can calculate various statistics for each group:

```
In [ ]:#Calculate mean salary for each pressure:
    df.groupby('pressure')[['temperature']].mean()
```

#### Data Frames *groupby* method

groupby performance notes:

- no grouping/splitting occurs until it's needed. Creating the *groupby* object only verifies that you have passed a valid mapping
- by default the group keys are sorted during the *groupby* operation. You may want to pass sort=False for potential speedup:

```
In [ ]: #Calculate mean Rs for each pressure:
    df.groupby(['Rs'], sort=False)[['pressure']].mean()
```

### **Data Frame: filtering**

To subset the data we can apply Boolean indexing. This indexing is commonly known as a filter. For example if we want to subset the rows in which the salary value is greater than \$120K:

```
In []: #Calculate mean pressure for each Rs:
      df \, sub = df[\, df[\,'Rs'\,] > 120000\,]
```

Any Boolean operator can be used to subset the data:

```
> greater; >= greater or equal;
< less; <= less or equal;
== equal; != not equal;
```

```
In [ ]: #Select only those rows that contain low pressures
      df f = df[ df['pressure'] == 'lowpressures' ]
```

#### **Data Frames: Slicing**

There are a number of ways to subset the Data Frame:

- one or more columns
- one or more rows
- a subset of rows and columns

Rows and columns can be selected by their position or label

### **Data Frames: Slicing**

When selecting one column, it is possible to use single set of brackets, but the resulting object will be a Series (not a DataFrame):

```
In [ ]:#Select column pressure:
    df['pressure']
```

When we need to select more than one column and/or make the output to be a DataFrame, we should use double brackets:

```
In [ ]:#Select column pressure:
    df[['Rs','pressure']]
```

#### **Data Frames: Selecting rows**

If we need to select a range of rows, we can specify the range using ":"

```
In []: #Select rows by their pressures: df[10:20]
```

Notice that the first row has a position 0, and the last value in the range is omitted:

So for 0:10 range the first 10 rows are returned with the positions starting with 0 and ending with 9

#### **Data Frames: method loc**

If we need to select a range of rows, using their labels we can use method loc:

```
In []:#Select rows by their labels:
    df_sub.loc[10:20,['Pressure','FVF','temperature']]
Out[]:
```

#### **Data Frames: method iloc**

If we need to select a range of rows and/or columns, using their pressures we can use method iloc:

```
In []: #Select rows by their labels:
df_sub.iloc[10:20,[0, 3, 4, 5]]
```

Out[]:

#### Data Frames: method iloc (summary)

```
df.iloc[0] # First row of a data frame
df.iloc[i] #(i+1)th row
df.iloc[-1] # Last row
```

```
df.iloc[:, 0] # First column
df.iloc[:, -1] # Last column
```

```
df.iloc[0:7]  #First 7 rows
df.iloc[:, 0:2]  #First 2 columns
df.iloc[1:3, 0:2]  #Second through third rows and first 2 columns
df.iloc[[0,5], [1,3]]  #1st and 6th rows and 2nd and 4th columns
```

## **Data Frames: Sorting**

We can sort the data by a value in the column. By default the sorting will occur in ascending order and a new data frame is return.

### **Data Frames: Sorting**

#### We can sort the data using 2 or more columns:

```
In [ ]:df_sorted = df.sort_values( by =['FVF', 'temperature'], ascending = [True, False])
    df_sorted.head(10)
```

Out[]:

## Missing Values

Out[]:

#### Missing values are marked as NaN

```
In [ ] # Read a dataset with missing values
    flights = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/PVTs.csv")

In [ ] # Select the rows that have at least one missing value
    flights[flights.isnull().any(axis=1)].head()
```

### Missing Values

There are a number of methods to deal with missing values in the data frame:

df.method() description

dropna() Drop missing observations

dropna(how='all') Drop observations where all cells is NA

dropna(axis=1, how='all') Drop column if all the values are missing

dropna(thresh = 5) Drop rows that contain less than 5 non-missing values

fillna(0) Replace missing values with zeros

isnull() returns True if the value is missing

notnull() Returns True for non-missing values

## Missing Values

- When summing the data, missing values will be treated as zero
- If all values are missing, the sum will be equal to NaN
- cumsum() and cumprod() methods ignore missing values but preserve them in the resulting arrays
- Missing values in GroupBy method are excluded (just like in R)
- Many descriptive statistics methods have skipna option to control if missing data should be excluded. This value is set to True by default (unlike R)

#### **Aggregation Functions in Pandas**

Aggregation - computing a summary statistic about each group, i.e.

- compute group sums or means
- compute group sizes/counts

Common aggregation functions:

min, max count, sum, prod mean, median, mode, mad std, var

#### **Aggregation Functions in Pandas**

agg() method are useful when multiple statistics are computed per column:

```
In [ ] flights[['dep_delay','arr_delay']].agg(['min','mean','max'])
Out[ ]:
```

### **Basic Descriptive Statistics**

df.method() description

describe Basic statistics (count, mean, std, min, quantiles, max)

min, max Minimum and maximum values

mean, median, mode Arithmetic average, median and mode

var, std Variance and standard deviation

sem Standard error of mean

skew Sample skewness

kurt kurtosis

### **Pandas Applications**

- Read spreadsheets
- Dataframe manipulation (slicing or creating subsets of dataframes, merging, etc)
- **Datetime conversion** (datetime format in Pandas is YYYY-MM-DD. If our input has different format, we need to convert it)
- **Summary statistics** (knowing the mean, interquartiles, standard deviation, min, max)
- Data cleansing (searching for NaNs, removing unwanted rows or columns)
- **Regex** (string contains)





### **Matplotlib**



### **Data Visualization**



### **Data Visualization**



### **Data Visualization**



## Most common plot types in Matplotlib



# Matplotlib pyplot



## **Plot styles**

```
from matplotlib import pyplot as plt
from matplotlib import style
style.use('ggplot')
x = [5,8,10]
y = [12, 16, 6]
x2 = [6,9,11]
y2 = [6,15,7]
plt.plot(x,y,'g',label='line one', linewidth=5)
plt.plot(x2,y2,'c',label='line two',linewidth=5)
plt.title('Epic Info')
plt.ylabel('Y axis')
plt.xlabel('X axis')
plt.legend()
plt.grid(True,color='k')
plt.show()
```



# **Stack plots**



### Pie chart



## Multiple plots (subplots)

```
import numpy as np
import matplotlib.pyplot as plt
def f(t):
  return np.exp(-t) * np.cos(2*np.pi*t)
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2))
plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2))
plt.show()
```



### **Matplotlib Applications**

- **Creating subplots through automation** *displaying multiple well logs and composites (RHOB, NPHI, resistivity, GR, PEF, etc.) during formation eval*
- **Scatter plots** facies typing from petrophysical crossplots
- Logarithmic plots semilog plot for well-test analysis
- **Displaying histogram** evaluation of the statistical distribution of petrophysical variables
- **Displaying boxplot** identifying outliers in well logs or production data
- **Creating contour plots** spatial distribution of porosity, permeability, net pay, sand thickness, etc.
- **Displaying 3D plot** *wellbore trajectory visualization*



### **Scipy Applications**

- **Gridding data** gridding from a reservoir model (porosity, permeability, net pay in 2D/3D)
- Interpolate mapping porosity, permeability, net pay using different methods (spline, cubic, or kriging)
- Solve systems of equations and roots solving PVT (e.g. Peng-Robinson cubic EOS)
- **Using optimization methods** linear regression or curve fitting in well-test analysis, Arps' decline curve analysis







