Name: Kevin Guillen Student ID: 1747199

117 - SS2 - HW3 - August 25th, 2021

- [1] Let V and W be finite-dimensional \mathbb{F} -vector spaces.
 - (a) Show that $\dim(\operatorname{Hom}(V, W)) = \dim(V) \dim(W)$ by finding an explicit basis.

Proof. Since V and W are both finite, let the dimension of V and the dimension of W be denoted by n and m respectively. By definition that means the basis for V and W are the following.

$$\mathcal{B}_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$

$$\mathcal{B}_{\mathcal{W}} = \{w_1, w_2, \dots, w_m\}$$

Now let us define the linear maps $\pi_{ij}: V \to W$ for $1 \le i \le n$ and $1 \le j \le m$ by the following,

$$\pi_{ij}(v_p) = \begin{cases} w_j & p = i \\ 0 & p \neq i \end{cases}$$

These will serve as a basis for Hom(V, W), and we will prove it with the following. Let α_{ij} be a scalar and assume we have,

$$\pi = \sum_{i,j}^{n,m} \alpha_{ij} \pi_{ij} = 0$$

This would mean for $\pi(v_i)$ and $i \in \{1, 2, ..., n\}$,

$$\pi(v_i) = \sum_{j=0}^{m} \alpha_{ij} w_j = 0$$

Recall though that the set of vector w_j for $1 \le j \le m$ are linearly independent, and thus our maps π_{ij} are also linearly independent.

Now take any function π from Hom(V, W). We can define it its values when inputting the basis of V as $\pi(v_i) \in W$. Meaning when $i \in 1, 2, ..., n$ and α_{ij} as a scalar, we can express $\pi(v_i)$ as,

$$\pi(v_i) = \sum_{j=1}^{m} \alpha_{ij} w_j$$

Which means,

$$\pi = \sum_{i,j}^{n,m} \alpha_{ij} \pi_{ij}$$

because the linear functions agree on basis vectors. This means for $1 \leq i \leq n$ and $1 \leq j \leq m$,

$$\operatorname{Hom}(V, W) = \operatorname{span}(\{\pi_{ij}\})$$

This is the proof since we know there are $\dim(V)\dim(W)$ of these functions.

(b) Show that $\operatorname{Hom}(V,V) \cong V \otimes V^*$. Sorry if this isn't formal/rigorous enough I saved this for last since I get the reasoning, but I'm running out of time.

Proof. From class (prop 9.1) we showed that setting U = V for Hom(U, V) that $V^* \otimes V \cong \text{End}(V)$ and that really End(V) is just Hom(V, V).

We also know from class and a previous homework (or maybe I think a mastery problem) that $V^* \otimes V \cong V \otimes V^*$. Thus through transitivity we can compose these isomorphisms and we'll end up with $\operatorname{Hom}(V,V) \cong V \otimes V^*$.

[2] Let $T: \mathbb{F}^3 \to \mathbb{F}^3$ be the linear transformation with matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 3 \\ 3 & 4 & 1 \\ 4 & 4 & 4 \end{pmatrix}$$

Compute the standard matrix $[\Lambda^2 T]$ with respect to the standard basis $\{e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3\}$ of $\Lambda^2(\mathbb{F}^3)$.

Solution: First let's get the computations for $T(e_i)$ out of the way,

$$T(e_1) = \begin{pmatrix} 1 & 4 & 3 \\ 3 & 4 & 1 \\ 4 & 4 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$T(e_2) = \begin{pmatrix} 1 & 4 & 3 \\ 3 & 4 & 1 \\ 4 & 4 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$$

$$T(e_3) = \begin{pmatrix} 1 & 4 & 3 \\ 3 & 4 & 1 \\ 4 & 4 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$$

Then we solving for the standard matrix with respect to the standard basis we get,

$$T(e_1 \wedge e_2) = T(e_1) \wedge T(e_2)$$

$$= (1e_1 + 3e_2 + 4e_3) \wedge (4e_1 + 4e_2 + 4e_3)$$

$$= (4 - 12)e_1 \wedge e_2 + (4 - 16)e_1 \wedge e_3 + (12 - 16)e_2 \wedge e_3$$

$$= -8(e_1 \wedge e_2) - 12(e_1 \wedge e_3) - 4(e_2 \wedge e_3)$$

$$T(e_1 \wedge e_3) = T(e_1) \wedge T(e_3)$$

$$= (1e_1 + 3e_2 + 4e_3) \wedge (3e_1 + 1e_2 + 4e_3)$$

$$= (1 - 9)e_1 \wedge e_2 + (4 - 12)e_1 \wedge e_3 + (12 - 4)e_2 \wedge e_3$$

$$= -8(e_1 \wedge e_2) - 8(e_1 \wedge e_3) + 8(e_2 \wedge e_3)$$

$$T(e_2 \wedge e_3) = T(e_2) \wedge T(e_3)$$

$$= (4e_1 + 4e_2 + 4e_3) \wedge (3e_1 + 1e_2 + 4e_3)$$

$$= (4 - 12)e_1 \wedge e_2 + (16 - 12)e_1 \wedge e_3 + (16 - 4)e_2 \wedge e_3$$

$$= -8(e_1 \wedge e_2) + 4(e_1 \wedge e_3) + 12(e_2 \wedge e_3)$$

Now like in example 12.4 we can read off our coefficients to get the standard matrix and we get the following,

 $\begin{pmatrix}
-8 & -8 & -8 \\
-12 & -8 & 4 \\
-4 & 8 & 12
\end{pmatrix}$

[3] Let V be a \mathbb{F} -vector space. Show that if $T, S \in \text{End}(V)$ such that ST - TS commutes with S, then for every $k \in \mathbb{N}$:

$$S^kT - TS^k = kS^{k-1}(ST - TS)$$

Proof. Base case where k=1

$$S^{1}T - TS^{1} = 1S^{0}(S^{1}T - TS^{1})$$

we see is true.

Now assume it holds for k = n

Now for k = n + 1

$$S^{n+1}T - TS^{n+1}$$

$$S^nST - TS^nS \qquad \text{Recall though } ST - TS \text{ commutes with } S$$

$$(n+1)S^n(ST - TS)$$

We know it holds for k = n and thus by induction it holds for k = n + 1

[4] Let V be a \mathbb{F} -vector space. Show that if $T \in \operatorname{End}(V)$ such that $T^2 - T + I = 0$, then T is invertible.

Proof.

$$T^2 - T + I = 0$$

$$T^2 = T - I$$

$$I = TT^{-1}$$

$$T^2 = T - TT^{-1}$$

$$T^2 = T(I - T^{-1})$$

$$T = (I - T^{-1})$$

Therefore T is invertible.

[5] Let V be a \mathbb{F} -vector space. If $S, T \in \text{End}(V)$ such that ST = 0, does it follow that TS = 0?

Proof. Consider the vector space \mathbb{R}^2 over \mathbb{R} . We have in End(V) the following,

$$S = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

We see though that,

$$ST = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

but,

$$TS = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix} \neq ST$$

So, no. If we have two linear transformation S and T such that ST=0 it does not follow that TS=0

[6] Let $\mathbb{P}_n[x]$ denote the \mathbb{F} -vector space of all polynomials with degree less than or equal to n whose coefficients come from \mathbb{F} . Suppose that $L \in \operatorname{End}(V)$ such that Lp(x) = p(x+1) for every $p(x) \in \mathbb{P}_n[x]$. Prove that if D is the differentiation operator defined through the power rule, then:

$$I + \frac{D}{1!} + \frac{D^2}{2!} + \dots + \frac{D^{n-1}}{(n-1)!} = L$$

Proof. We are given that Lp(x) = p(x+1). We know $p(x) \in \mathbb{P}_n[x]$ is of the form

$$p(x) = a_n x^n + \dots + a_1 x + a_0$$

This means Dp(x), where D is the differentiation operator, is,

$$\frac{d}{dx}p(x) = na_n x^{n-1} + \dots + 2a_2 x + a_1 + 0$$

We see for different powers of D,

$$\frac{d^2}{dx^2}p(x) = n(n-1)a_nx^{n-2} + \dots + 6a_3x + 2a_2 + 0$$

$$\frac{d^3}{dx^3}(x) = n(n-1)(n-2)x^{n-3} + \dots + 24a_4x + 6a_3 + 0$$

$$\vdots$$

$$\frac{d^{n-1}}{dx^{n-1}}p(x) = n \cdot (n-1) \cdot (n-2) \dots 2 \cdot a_nx + 0 = n!a_nx$$

Now consider
$$\left(I + \frac{D}{1!} + \frac{D^2}{2!} + \dots + \frac{D^{n-1}}{(n-1)!}\right) p(x)$$

$$= p(x) + \frac{D}{1!}p(x) + \frac{D^2}{2!}p(x) + \dots + \frac{D^{n-1}}{(n-1)!}p(x) + \frac{D^n}{n!}p(x)$$

$$= (a_nx^n + \dots + a_1x + a_0) + (na_nx^{n-1} + \dots + 2a_2x + a_1)$$

$$+ (\frac{n(n-1)}{2}a_nx^{n-2} + \dots + 3a_3x + a_2) + (\frac{n(n-1)(n-2)}{6}x^{n-3} + \dots + 4a_4x + a_3 + 0)$$

$$+ \dots + na_nx + a_n$$

$$= a_n(x^n + nx^{n+1} + nx^{n-1} + \frac{n(n-1)}{2}x^{n-2} + \dots + nx + 1) + \dots + a_3(x^3 + 3x^2 + 3x + 1)$$

$$+ a_2(x^2 + 2x + 1) + a_1(x + 1) + a_0$$

$$= a_n(x + 1)^n + \dots + a_3(x + 1)^3 + a_2(x + 1)^2 + a_1(x + 1) + a_0$$

$$= p(x + 1)$$

$$= Lp(x)$$

Now if p(x) were to be deg(p(x)) < n say for this case specifically n-1 through the same method as shown we'd see $D^{n-1}p(x) = (n-1)!a_{n-1}$

And we see

$$\left(I + \frac{D}{1!} + \frac{D^2}{2!} + \dots + \frac{D^{n-1}}{(n-1)!}\right) p(x) = a_{n-1}(x^{n-1} + (n-1)x^{n-2} + \dots + 1)
+ a_2(x^2 + 2x + 1) + a_1(x+1) + a_0
= a_{n-1}(x+1)^{n-1} + \dots + a_2(x+1)^2 + a_1(x+1) + a_0
= p(x+1)
= Lp(x)$$

therefore we have as desired that $\left(I + \frac{D}{1!} + \frac{D^2}{2!} + \dots + \frac{D^{n-1}}{(n-1)!}\right) p(x) = L$

[7] Let V be a \mathbb{F} -vector space with subspaces U and W. Prove that if $T \in \operatorname{End}(V)$ such that U and W are invariant under T, then the subspace spanned by U and W is invariant under T.

Proof. Let the vector space Z represent the subspace spanned by U + W.

$$Z = \operatorname{span}(\{U + W\})$$

Meaning any vector $z \in Z$ is of the form $z = \alpha u + \beta w$ where u and w are vectors of U and W respectively with α and β begin scalars. This gives us,

$$T(z) = T(\alpha u + \beta w) = \alpha T(u) + \beta T(w)$$

Recall though since U and W are invariant under T we have that $T(u) \in U$ and $T(w) \in W$ and Z is the span of U + W, therefore,

$$\alpha T(u) + \beta T(w) \in Z$$

Meaning Z is invariant under T. Z was defined to be the span of U + W. So we have that if U and W are invariant under T then the subspace spanned by U and W is also invariant under T.

- [8] Let V be a \mathbb{F} -vector space with $E, F: V \to V$ projections.
 - (a) Prove that im(E) = im(F) if and only if EF = F and FE = E.

Proof. For the forward direction we will assume $\operatorname{im}(E) = \operatorname{im}(F)$. This means for any vector $x \in V$ there exists some vector $y \in V$ such that E(x) = F(y). Now consider,

$$EF(y) = EE(x)$$

 $= E(E(x))$ Recall though all projections are idempotent
 $= E(x)$
 $= F(y)$
 $EF = F$

Now consider,

$$FE(x) = FF(y)$$

 $= F(F(y))$ Recall though all projections are idempotent
 $= F(y)$
 $= E(x)$
 $FE = E$

as desired. So now we have if $\operatorname{im}(E) = \operatorname{im}(F)$ implies EF = F and FE = E Now for the reverse direction, we will assume EF = F and FE = E. This means for any vector $x \in V$ we have, EF(x) = F(x) and FE(x) = E(x).

We know that for vector x, there exists some vector $y \in \text{im}(E)$ such that E(x) = y. Now consider the following,

$$E(x) = y$$
 Recall our assumption $FE = E$
$$FE(x) = y$$

$$F(E(x)) = y$$

Recall though y was in the image of E and now we can see that it is also in the image of F. Therefore $\operatorname{im}(E) \subseteq \operatorname{im}(F)$.

We also know though that for a vector x, there exists some vector $y \in \text{im}(F)$ such that F(x) = y. Now consider the following,

$$F(x) = y$$
 Recall our assupmtion $EF = F$
$$EF(x) = y$$

$$E(F(x)) = y$$

y started in the image of F, but we can see that it is also in the image of E. This gives us that $\operatorname{im}(F) \subseteq \operatorname{im}(E)$

Putting this all together we have,

$$\operatorname{im}(E) \subseteq \operatorname{im}(F)$$
 and $\operatorname{im}(F) \subseteq \operatorname{im}(E) \to \operatorname{im}(F) = \operatorname{im}(E)$

as desired. \Box

(b) Prove that ker(E) = ker(F) if and only EF = E and FE = F

Proof. First we will go in the forward direction and assume $\ker(E) = \ker(F)$. This means whenever a vector $x \in V$ satisfies E(x) = 0 then it must also satisfy F(x) = 0.

We want to show that EF = E and FE = F. First let's work with EF = E. If this equality were to hold that would mean for any vector x in V we would have,

$$(E - EF(x) = 0)$$

So let's assume that it doesn't hold, that would mean there exists some vector y in V such that,

$$(E - EF)(y) \neq 0$$

We see though such a y would imply this about the kernel of E,

$$(E - EF)(y) \neq 0$$
$$(E(y) - EF(y)) \neq 0$$
$$E(y - F(y)) \neq 0$$

It's that since $E(y - F(y)) \neq 0$ that means it is NOT in the kernel of E. Recall though our assumption was that $\ker(E) = \ker(F)$, that means this is also not in the kernel of F. But,

$$F(y-F(y)) \neq 0$$

$$F(y)-F(F(y)) \neq 0$$
 Recall though every projection is idempotent
$$F(y)-F(y) \neq 0$$

$$F(y) \neq F(y)$$

Which is a contradiction. Therefore if the kernel of the projection E and F are the same then EF = E.

We can take a similar look at FE = F and see if this weren't true there would exist some vector y in V such that,

$$(F - FE)(y) \neq 0$$

Assuming this vector did indeed exist,

$$(F - FE)(y) \neq 0$$
$$F(y) - FE(y) \neq 0$$
$$F(y - E(y)) \neq 0$$

it would mean (y - E(y)) is not in the kernel of E. We see though,

$$E(y-E(y)) \neq 0$$

$$E(y)-E(E(y)) \neq 0$$
 Projections are idempotent
$$E(y)-E(y) \neq 0$$

$$E(y) \neq E(y)$$

which is again a contradiction. Therefore if the kernel of E and F are equal then EF=E and FE=F

Putting all this together: $\ker(F) = \ker(E)$ if and only if EF = E and FE = E

[9] (a) Prove that if E is a projection on a finite-dimensional \mathbb{F} -vector space, then there exists a basis \mathcal{B} such that the matrix representative $[E]_{\mathcal{B}}$ has the following special form: $e_{ij} = 0$ if $i \neq j$ and $e_{ii} = 0$ or 1 for all i and j.

Proof. First we will show why this exists. One important property about projections is that for any projection E it must be idempotent, in other words it must satisfy the following $E^2 = E$

If we recall how multiplication is defined between square matrices between matrix A and B to obtain C we get the following,

$$C = \begin{pmatrix} c_{11} & c_{22} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}$$

where $c_{ij} = a_{i1}b_{ij} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$

Recall though in this situation A = B = E. So if all our non diagonal terms are non zero the only time we could possibly have a non zero value would be when we are multiplying elements along the diagonal. In other words for i = j $c_{ij} = a_{ij}b_{ji} = a_{ii}a_{ii}$. If $e_{ii} = 0$ then $c_{ii} = 0$ if $e_{ii} = 1$ then $c_{ii} = 1$. Meaning regardless if $e_{ii} = 0$ or 1. A projection such that the matrix representative has this special form will satisfy the requirement of being a projection.

Now if there did exists some other matrix representative not of this form we'd see it wouldn't satisfy $E^2 = E$. Since first consider if the diagonal could be something other than 0 or 1. We'd see it the requirement would fail due to $x^2 \neq x$ for any $x \neq 0, 1$. Then the same reasoning applies to if non diagonal entries

(b) An *involution* is a linear transformation U on a \mathbb{F} -vector space V such that $U^2 = I$. Show that if $\operatorname{char}(\mathbb{F}) \neq 2$, then the equation U = 2E - I establishes a one-to-one correspondence between all projections E and all involutions U.

Proof. Assuming we are not working in a field of characteristic 2. First let us begin with some involution U we can obtain its respective projection E through the following,

$$E = \frac{U+I}{2}$$

We know this satisfies the property of begin a projection through the following.

$$E^{2} = \frac{U+I^{2}}{2} = \frac{U+I}{2} \frac{U+I}{2}$$

$$= \frac{U^{2}+U+U+U^{2}}{4}$$

$$= \frac{2U+2I}{4}$$

$$= \frac{2(U+I)}{2(2)}$$

$$= \frac{U+I}{2} = E$$

$$U \text{ is an involution so,}$$

Then we see for any projection we can obtain its respective involution through,

$$U = 2E - I$$

We can see this indeed satisfies being an involution through the following.

$$U^2 = (2E - I)^2$$

$$= 4E^2 - 2E - 2E + I^2$$
 Recall though E is a projection so,
$$= 4E - 4E + I$$

$$= 0 + I$$

$$= I$$

We have thus showed the 1-1 correspondence due to being able to obtain any projections respective involution and vice versa. \Box

- (c) Prove that the only eigenvalues of a projection are 0 and 1. Furthermore, prove that the only eigenvalues of an involution are -1 and 1. (This does not require the vector space to be finite-dimensional.)
- [10] Find all the (complex) eigenvalues and eigenvectors of the following matrices over \mathbb{C} :

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 1 & 1 \\ 0 & i \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad \text{and} \quad \mathbf{E} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Solution:

A) Solving for the eigenvalues and eigenvectors of A, $det(A - \lambda I) = \lambda^2$. Solving for $\lambda^2 = 0$ we get $\lambda = 0$.

Now to get the corresponding eigenvector we get,

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Thus the eigenvalue for A is 0 and its corresponding eigenvector is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

B) Solving for the eigenvalues and eigenvectors of B, $det(B - \lambda I) = \lambda^2 - \lambda - \lambda i + i$. Solving for λ we get, $\lambda = i, 1$.

Now lets obtain the corresponding eigenvector for $\lambda_1 = i$,

$$\begin{pmatrix} 1 - i & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Now for $\lambda_2 = 1$,

$$\begin{pmatrix} 0 & 0 \\ 0 & i-1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Thus we have for the eigenvalues $\lambda_1 = i$ and $\lambda_2 = 1$ the corresponding eigenvectors are $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ respectively.

C) For C we have $det(C - \lambda I) = i - \lambda - \lambda i + \lambda^2$. Solving for λ we get the following eigenvalues: 1, i.

Let's obtain the corresponding eigenvector for $\lambda_1 = i$,

$$\begin{pmatrix} 1-i & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

We get for the first equation (1-i)x+y=0. We see if we set x=(-1-i) we get, -1+i-i-1+y=-2+y=0. Therefore y=2. Thus the corresponding eigenvector is $\begin{pmatrix} -1-i\\2 \end{pmatrix}$ Now to obtain the corresponding eigenvector for $\lambda_2=1$,

$$\begin{pmatrix} 0 & 1 \\ 0 & i-1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Thus our eigenvector for eigenvalues $\lambda_1 = i$ and $\lambda_2 = 1$ are $\begin{pmatrix} -1 - i \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ respectively.

D) For D we have, $det(D - \lambda I) = -\lambda^3 + 3\lambda^2 = -\lambda^2(\lambda - 3)$. Solving for λ we get $\lambda = 0, 3$.

Now solving for the corresponding eigenvector for $\lambda_1 = 3$, (Some steps I'm skipping over since it would be a lot of matrices to type out)

$$\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

This gives us that $x_1 = x_2$ by the first row, and $x_2 = x_3$ by the second row. Thus our corresponding eigenvector is, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Now for the corresponding eigenvector for $\lambda_2 = 0$,

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

We see the corresponding eigenvectors to be $\begin{pmatrix} -1\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$

Thus for the eigenvalue $\lambda_1 = 3$ the corresponding eigenvector is $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and for $\lambda_2 = 0$ the

corresponding eigenvectors are $\begin{pmatrix} -1\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$

D) For D we have $det(D - \lambda I) = -\lambda^3 + 3\lambda^2 - 3\lambda + 1 = -(\lambda - 1)^3$. Solving for λ we get $\lambda = 1$. Now solving for the corresponding eigenvector we get,

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Thus we see the corresponding eigenvector for
$$\lambda = 1$$
 is $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$