ECE313 Summer 2012

Problem Set 11

Reading: Gaussian RVs, Scaling of pdfs

Quiz Date: Fri, July 17

Note: It is very important that you solve the problems first and check the solutions afterwards.

Problem 1

Examples 3.6.1, 3.6.2, 3.6.3, 3.6.4, 3.6.5, 3.6.6

Problem 2

Let μ and σ respectively denote the statistical mean and standard deviation of scores in an exam. The grading policy suggests the following assignment of grades:

- A: scores at least $\mu + \sigma$
- B: scores in the range $[\mu, \mu + \sigma]$
- C: scores in the range $[\mu \sigma, \mu]$
- D: scores in the range $[\mu 2\sigma, \mu \sigma]$
- F: scores less than $\mu 2\sigma$

Assume that the scores can be approximated by a Normal density function with mean μ and standard deviation σ . For each grade, find the percentage of the students receiving that grade. In a class of size 30, approximately, how many students receive A? Use the table on page 191.

Solution

Let $X \sim N(\mu, \sigma^2)$.

Percentage who receive $A = P(\mu + \sigma \le X) = P\left(\frac{X - \mu}{\sigma} \ge 1\right) = 1 - \Phi(1) = 16\%.$

Percentage who receive $B = P\left(\mu \le X < \mu + \sigma\right) = P\left(0 \le \frac{X - \mu}{\sigma} < 1\right) = \Phi\left(1\right) - \Phi\left(0\right) = 34\%.$

Percentage who receive $C = P(\mu - \sigma \le X < \mu) = P(-1 \le \frac{X - \mu}{\sigma} < 0) = \Phi(0) - \Phi(-1) = 34\%.$

Percentage who receive $D = P(\mu - 2\sigma \le X < \mu - \sigma) = P\left(-2 \le \frac{X - \mu}{\sigma} < -1\right) = \Phi(-1) - \Phi(-2) = 14\%$.

Percentage who receive $F = P(X < \mu - 2\sigma) = P\left(\frac{X-\mu}{\sigma} < -2\right) = \Phi(-2) = 2\%$.

In a class of size 30, approximately $30 \cdot 0.16 = 4.8 \approx 5$ students receive A.

Problem 3

Let X be an exponential random variable with parameter λ and let Y = aX, a > 0. Show that Y is an exponential random variable.

Solution

For pdf of Y, we have

$$f_Y(v) = \frac{1}{a} f_X\left(\frac{v}{a}\right) = \frac{\lambda}{a} e^{-\lambda\left(\frac{v}{a}\right)} = \frac{\lambda}{a} e^{-\frac{\lambda}{a}v}, \qquad v \ge 0.$$

So Y is an exponential random variable with parameter $\frac{\lambda}{a}$.