Sequence detector

State diagram:

The FSM for the sequence detector has 4 states.

The States are represented as:

- ROOT = 00
- ONE = 01
- TWO = 10
- THREE = 11

Excitation Table

INPUT BIT (X)	PRESENT STATE(PS)	NEXT STATE(NS)	OUTPUT(Z)
0	00 (ROOT)	00 (ROOT)	0
1	00 (ROOT)	01 (ONE)	0
0	01 (ONE)	10 (TWO)	0
1	01 (ONE)	01 (ONE)	0
0	10 (TWO)	00 (ROOT)	0
1	10 (TWO)	11 (THREE)	0
0	11 (THREE)	10(TWO)	1
1	11 (THREE)	01 (ONE)	0

STATE TABLE:

DDECENT CTATE	(NEXT STATE , OUTPUT)		
PRESENT STATE	INPUT BIT		
	0 1		
00(ROOT)	(00,0)	(01,0)	
01(ONE)	(10,0)	(01,0)	
10(TWO)	(00,0)	(11,0)	
11(THREE)	(10,1)	(01,0)	

Transition table

DDECENT CTATE	NEXT STATE		
PRESENT STATE	INPUT BIT		
	0	1	
00(ROOT)	00	01	
01(ONE)	10	01	
10(TWO)	00	11	
11(THREE)	10	01	

OUTPUT TABLE

	OUTPUT		
PRESENT STATE	INPUT BIT		
	0 1		
00(ROOT)	0	0	
01(ONE)	0	0	
10(TWO)	0	0	
11(THREE)	1	0	

K-MAP

FOR NEXT STATE:

DDECENT CTATE	NEXT STATE		
PRESENT STATE	INPUT BIT		
	0	1	
00(ROOT)	00	01	
01(ONE)	10	01	
10(TWO)	00	11	
11(THREE)	10	01	

• For bit 1 of next state:

INPUT BIT(X)	PRESENT STATE(S1,S2)			
	00(ROOT)	01(ONE)	11(THREE)	10(TWO)
0	0	0	0	0
1	1	1	1	1

$$Y1 = X$$

• For bit 2 of next state :

INPUT BIT	PRESENT STATE(S1,S2)			
	00	01	11	10
0	0	1	1	0
1	0	0	0	1

$$Y2 = (\bar{X}.S2) + (X.S1.\bar{S2})$$

${\bf S1}$, ${\bf S2}$ denotes first and second bit of the states respectively.

FOR OUTPUT LOGIC:

INPUT BIT	PRESENT STATE(S1,S2)			
	00(ROOT)	01(ONE)	11(THREE)	10(TWO)
0	0	0	1	0
1	0	0	0	0

$$Z = (\bar{X}.S1.S2)$$

LOGIC DIAGRAM

