THE IOT LORA PROJECT

PRESENTATION

TEAM MEMBERS:

PAUL LELOUP & ZAKARIA EL RHOSN

PROJECT SUPERVISOR: THIERRY GIL

PRODUCT MARKETING SHEET: SMART SENSOR

The Smart Sensor send sensors data to his gateway by radio

Sensors:

- Temperature
- Humidity
- Brightness
- Localisation, Hour, Date

Radio modules:

- LoRa (long range≈ 1 Km)
- Bluetooth Low Energy BLE (≈10 m)

Easy to measure consumption of all sensors :

Smart Sensor

Gateway

PRODUCT MARKETING SHEET: SMART GATEWAY

The Smart Gateway receive data from Smart devices, Process Images, and share all theses informations through large network

04/22/2019 - 13:54 : Maison Cam 4 : « Mimi » The cat just goes outside by the Kitchen window

04/23/2019

23/01/2019 - 08:13 : Cabinet Cam 2 : Door's Room n°5 has been opened by the secretary

> Ask Cabinet Cam 2 : Someone in the Waiting room?

04/23/2019 - 13:54 : Cabinet Cam 3 : Two clients are in the waiting room

 Monitors and Informs users of events that happened, in complete confidentiality.

函

- Practice in **several** areas
- Ability to communicate with other Smart Cameras for an even **higher** level of monitoring and **security**.
- The SoC on the development board facilitates the integration of **Artificial Intelligence** into the system
- Low memory requirement due to internal image processing.

SUMMARY

- Introduction
- Smart Sensor
 - Fonctionnalities
 - Design : Hardware
 - Design : Software
 - Result : Consumption test
- Smart Gateway
 - Overview
 - Applications
 - Component and Global Architecture
 - Hardware Design of Smart Camera
 - IP Design for LoRa Transceiver
- Conclusion

CONTEXT

Surveillance

Industrial Project of the End of Studies

Radio communication

The French National Centre for Scientific Research (CNRS)

Confidentiality

Smart

Internet of Things(IOT)

Sensors

23,14 billion connected devices

Embedded Systemes

Laboratory of Computer Science, Robotics and Microelectronics of Montpellier (LIRMM)

Image Processing

IA

Security

Field-Programmable Gate Array (FPGA)

Communication Protocol for IoT

Long Rand Low Power Networks

Surveillance

INTRODUCTION

- Research about IoT
- Prototypes: The Smart Sensor and The Smart Gateway
- Objectives of the project: Create a Smart Gateway and Smart Sensor to establish connection between Device of Future to send/receive datas. Smart Sensor and Smart Camera.
- Tools Required
- Differents steps...

SMART SENSOR: GANTT

Gantt Diagram for Smart Sensor Project

Gantt Diagram for Smart Gateway and Camera

Tasks to Do	Du 13 au 30 Sept	Du 1er au 15 Oct	Du 16 au 31 Oct	Du 1 ^{er} au 15 Nov	Du 16 au 30 Nov	Du 1er au 15 Dec	Du 16 au 31 Dec	Du 1 ^{er} au 15 Janv	Du 16 au 31 Janv	Du 1 ^{er} au 05 Fevr
Integration of LoRa-RF-868 Transceiver Module										
Validation of Smart camera communication										
Bibliographic Synthesis for Smart Cameras										
Study of v1 Smart Camera (Archi + ODDS)										
V2 Smart Camera specifications										
Conception Smart Camera										

SYSTEM

SMART SENSOR: SENSORS AND RADIOS MODULES

Temperature &

SMART SENSOR: HARDWARE DESIGN

SMART SENSOR: SOFTWARE DESIGN


```
PHASE SEND
#H026.33,L003.13,T023.07,H082054,,,D290119*

Humidité : 026.33 %
Luminosité : 003.13 %

Température : 023.07 °C

Heure : 08:20:54

Latitude : Pas de réseau GPS

Longitude : Pas de réseau GPS

Heure : 29/01/19
```

SMART SENSOR: CONSUMPTION MEASURE

SMART SENSOR: CONSUMPTION MEASURE

SMART GATEWAY – SMART SENSOR & CAMERA

Overview

SMART GATEWAY WITH CAMERA

Applications

Surveillance milieu Agricole (Agriculteurs et Eleveurs)

Surveillance et Sécurité Milieu Industriel

SMART GATEWAY WITH CAMERA

Component and Design

- Image Acquisition
- ❖ Data Processing with several algorithms
- Transmission of pertinent informations

SMART GATEWAY: DESIGN

Hardware Desgin Smart Camera

SMART GATEWAY: LORA DEVICE

IP Design for LoRa Transceiver

Respective advantages of Sigfox, LoRa, and NB-IoT in terms of IoT factors. [1]

DISCUSSIONS

Problems encountered:

- Some Fail in electronics cards
- Using Both Cortex A9 Cores of the ZYNQ with an AMP mode
- Configuration of the Semtech RF-LoRa-868-SO

Enrigeenring Resources used:

- Electronic card machine
- Computer
- Camera, Transceiver modules and Data Image Processing algorithmes

DISCUSSION / CONCLUSION

DEMONSTRATION

Bibliography

[1] A comparative study of LPWAN technologies for large-scale IoT deployment Kais Mekki, Eddy Bajic, Frederic Chaxel, Fernand Meyer. Research Centre for Automatic Control of Nancy, Campus Sciences.