MODELOS DE ILUMINACIÓN

UN MODELO DE ILUMINACIÓN DEFINE LA NATURALEZA DE LA LUZ QUE EMANA DE UNA FUENTE DE LUZ, ASÍ COMO LA GEOMETRÍA DE SU DISTRIBUCIÓN DE INTENSIDAD.

- Modelos de Iluminación locales
 - Modelos empíricos qué hacen el uso de algoritmos, cuya finalidad es solo dar la apariencia de la interacción de la luz con los objetos.
- Modelos de Iluminación Globales
 - > algoritmos que se basan en las leyes físicas de la luz por lo tanto son mucho más complejos

CARACTERÍSTICAS

Modelos locales

- modelos empíricos
- no generan sombras ni reflejos
- no muestran las propiedades físicas de la luz
- no siempre están en tiempo real
- baratos computacionalmente

Modelos globales

- son en tiempo real
- generan sombras y reflejos
- toman en cuenta las propiedades físicas de la luz
- utilizan materiales
- caros computacionalmente

FUENTES DE ILUMINACIÓN

- Las fuentes de iluminación son los elementos que nos permiten representar casi cualquier elemento que genera luz en nuestro mundo físico.
 - Luz infinitamente distante o direccional.
 - Luz puntual o posicional
 - Luz spotlight o de reflector

INFINITAMENTE DISTANTE O DIRECCIONAL

Está ubicada en el infinito tiene una intensidad constante en las superficies (rayos se consideran paralelos) No sufre atenuación

PUNTUAL O POSICIONAL

 Se modela como un punto tiene una posición dentro de la escena los rayos son dirigidos en todas las direcciones tiene color e intensidad se visualiza como una esfera

PUNTUAL O POSICIONAL

 Se modela como un punto tiene una posición dentro de la escena los rayos son dirigidos en todas las direcciones tiene color e intensidad se visualiza como una esfera

DETIPO REFLECTOR (SPOTLIGHT)

 Se modela como un punto tiene posición dentro de la escena, rayos dirigidos en una dirección y restringidos con un cono tiene color e intensidad

FUENTES DE LUZ COMPLEJA

• Atenuación Lineal: luz posicional y de reflector

ATENUACIÓN RADIAL: DE REFLECTOR

ATENUACIÓN RADIAL: DE REFLECTOR

MODELO DE ILUMINACIÓN DE LAMBERT (SOMBREADO DE PHONG) IT=IA+ID+IS

COMPONENTE AMBIENTAL (ELEMENTO AMBIENTAL)

- IA: Componente ambiental luz que no viene de ninguna dirección en particular proviene de una fuente interactúa después de múltiples rebotes.
 - IA=la*ka:
 - la: intensidad de luz del ambiente, constante en todos los objetos
 - Ka: coeficiente de reflexión ambiente [0,1]

COMPONENTE DIFUSA(COLOR DEL OBJETO)

- ID=Ip*Kd*cos(Θ)
- Ip=Componente difusa: intensidad de la fuente puntual de luz
- Kd= coeficientes de reflexión de difusión [0,1]
- Θ = ángulo entre la dirección de incidencia de la fuente y la normal a la superficie
- IT=(la*Ka)+fatt* (lp*Kd*(N.L))

COMPONENTE ESPECULAR (BRILLOS Y REFLEJOS DEL OBJETO)

- IS=Is*ks:
- Is: Componente de brillos permitidos
- ks: coeficiente especular del material
- IS= Is*ks * $\cos(\partial)^n$
- IS= Is*ks *(R.V)
- IT=(Ia*Ka)+(fatt* Ip*Kd*(N.L)) + (Is*ks *(R.V))

ambient =
$$k_a * ambientColor$$

diffuse = $k_d * lightColor * cos(\theta)$
= $k_d * lightColor * max(0,N \cdot L)$
specular = $k_s * lightColor * cos(\varphi)^n$
= $k_s * lightColor * max(0,R \cdot V)^n$

MODELO DE ILUMINACIÓN PLANO

 Por cada superficie se tiene una intensidad de la luz (color) y se aplica a todos los puntos de la superficie.

MODELO DE ILUMINACIÓN DE GOURAUD

- Pasos a seguir
- calcular el vector normal a las superficies
- 2.- calcular los vectores normales en los vértices, mediante el promedio de las normales de las superficies que los comparten
- cálculo de la intensidad luminosa (color) en el vértice
- en el punto deseado volumento de la intensidad luminosa (color) volumento de la intensidad luminosa (col

NV1=(NS1+NS2)/2 NV2=(NS2+NS3)/2 NV6=(NS1+NS2+NS3+NS4+NS5+NS6) /6

IA=Interpolacion(IV0,IV6)
IB= Interpolacion(IV1,IV6)
IP=Interpolacion(IA,IB)

para a

MODELO DE ILUMINACIÓN DE PHONG

- Pasos a seguir
- Calcular el vector normal a las superficies
- calcular los vectores normales en los vértices, mediante el promedio de las normales de las superficies que los comparten
- Interpolar la normal en el punto deseado
- Cálculo de la intensidad luminosa (color) en el punto deseado

NA=Inteprolacion(NV0,NV6)

NB=Interpolacion(NV1,NV6)

NP=Interpolacion(NA,NB)

MODELOS DE ILUMINACIÓN GLOBALES

- Maneja tres interacciones:
 - Reflexión
 - Transmisión
 - Absorción

ALGORITMO DE RAY TRACING

- Los rayos se generan a partir de la fuente de luz
 - El rayo llega directamente al observador
 - ➤ El rayo llega al observador después de tener una o varias interacciones con objetos de la escena
 - > El rayo no llega al observador

ALGORITMO DE RAY TRACING

- Los rayos se generan a partir del observador
 - Se generan tantos rayos como pixeles de resolución tenga la imagen
 - Se genera un rayo por cada pixel que maneja la ventana de la aplicación

ALGORITMO DE RAY TRACING

- Por cada rayo se genera una estructura de árbol, en donde cada nodo representa una interacción con objetos del escenario; se considera la distancia que ha viajado el rayo
- El árbol se termina cuando:
- El rayo es absorbido por completo
- El rayo llega a una fuente de luz
- Cuando el árbol llega a una profundidad "n"
- Cuando el rayo viaja una distancia "d"

INTERACCIÓN DE REFLEXIÓN

INTERACCIÓN DE TRANSMISIÓN

T=(ni/nr)(W - (Cos/(th) - ni/nr . CFos(beta)) . N

ni= índice de refracción en material incidente
nr= índice de refracción en material refractante

$$\cos(th) = \sqrt{1 - (ni/nr)^2 (1 - \cos^2 (beta))}$$

INTERACCIÓN DE ABSORCIÓN

