Overview

Synopsis: Exploratory Analysis of the NOAA Storm Database (1950-2011) to analyze severe weather outcomes.

Goals: 1. Identify events that are harmful to population health. 2. Identify events that have the greatest economic consequences.

Import Libraries and Create Functions

```
##
## ## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

plot <- function(names, totals, columns, main, colors){
    colnames(totals) <- names

    par(las=2,mar=c(6,4,1,1))
    barplot(totals, col=colors,main=main,cex.names = 0.6,cex.axis = 0.6)
    legend("topright", columns,fill=colors,bty = "n")
}</pre>
```

Data Processing

Read the original files and display column names.

```
StormData <- read.csv("./repdata_data_StormData.csv.bz2")
colnames(StormData)

## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"

## [6] "COUNTYNAME" "STATE" "EVYYDE" "BGN_DANGE" "BGN_DAT"
```

```
[6] "COUNTYNAME" "STATE"
                                  "EVTYPE"
                                               "BGN RANGE"
                                                            "BGN AZI"
## [11] "BGN LOCATI" "END DATE"
                                  "END_TIME"
                                               "COUNTY END" "COUNTYENDN"
## [16] "END RANGE" "END AZI"
                                  "END LOCATI" "LENGTH"
                                                            "WIDTH"
## [21] "F"
                                  "FATALITIES" "INJURIES"
                     "MAG"
                                                            "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG"
                                  "CROPDMGEXP" "WFO"
                                                            "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE"
                                  "LONGITUDE" "LATITUDE E" "LONGITUDE "
## [36] "REMARKS"
                     "REFNUM"
```

Look through Labels given to Event Type.

Before splitting the data into two reliable sets, clean up any data that our analysis would use. ### 1. Identify Event Type Labels that should be scrubbed.

```
event_types <- as.data.frame(table(StormData$EVTYPE))
event_types <- event_types[order(event_types$Var1), ]</pre>
```

###Clean up a majority of Identified Names In order to properly count and categorize records that have possible multiple events, records that possess an ampersand, slash, or 'and' will be labeled as a multiple event.

The naming of the event is to be done on the general overriding idea behind the event. For example, wind 65+ will be categorized the same as wind 45+ because both specific events deal with the event type of wind. This is done over several different instances.

```
StormData$EVTYPE <- as.character(StormData$EVTYPE)</pre>
StormData$EVTYPE[grep1("/|&|and", StormData$EVTYPE,ignore.case = TRUE)] <- "Multiple Event"
StormData$EVTYPE[grep1("volc", StormData$EVTYPE,ignore.case = TRUE)] <- "Volcano"
StormData$EVTYPE[grep1("wind|wnd", StormData$EVTYPE,ignore.case = TRUE)] <- "WIND"
StormData$EVTYPE[grep1("funnel|tornado", StormData$EVTYPE,ignore.case = TRUE)] <- "Tornado"</pre>
StormData$EVTYPE[grep1("glaze", StormData$EVTYPE,ignore.case = TRUE)] <- "Glaze"</pre>
StormData$EVTYPE[grep1("hail", StormData$EVTYPE,ignore.case = TRUE)] <- "Hail"</pre>
StormData$EVTYPE[grep1("dust", StormData$EVTYPE,ignore.case = TRUE)] <- "DUST"</pre>
StormData$EVTYPE[grep1("flood", StormData$EVTYPE,ignore.case = TRUE)] <- "FLOOD"</pre>
StormData$EVTYPE[grep1("ic(e|y)", StormData$EVTYPE,ignore.case = TRUE)] <- "Ice"</pre>
StormData$EVTYPE[grep1("fire|smoke", StormData$EVTYPE,ignore.case = TRUE)] <- "FIRE"</pre>
StormData$EVTYPE[grep1("thunder", StormData$EVTYPE,ignore.case = TRUE)] <- "Thunder Storm"
StormData$EVTYPE[grep1("slide|eros", StormData$EVTYPE,ignore.case = TRUE)] <- "Erosion"</pre>
StormData$EVTYPE[grep1("rain", StormData$EVTYPE,ignore.case = TRUE)] <- "Rain"</pre>
StormData$EVTYPE[grep1("freez|cold|snow|chill|winter", StormData$EVTYPE,ignore.case = TRUE)]
 <- "Cold Weather"
StormData$EVTYPE[grep1("TROPICAL.STORM", StormData$EVTYPE,ignore.case = TRUE)] <- "TROPICAL S
StormData$EVTYPE[grep1("heat", StormData$EVTYPE,ignore.case = TRUE)] <- "Heat"</pre>
StormData$EVTYPE[grep1("(hurri|opal)", StormData$EVTYPE,ignore.case = TRUE)] <- "Hurricane"
```

Seperate Data To Relevant Data for Question

```
health <- StormData[,(c(8,23:24))]
property<-StormData[,c(8,25:28)]</pre>
```

##Property Data Processing

Magnitude Values

These columns identify the magnitude that the damage shoohuld be multiplied against to accurately assess damage amount.

Replace the empty fields with the magnitude O

```
table(property$PROPDMGEXP)
```

```
##
                              0
                                            2
                                                          4
##
                                                                5
                                      1
## 465934
                    8
                               216
                                      25
                                                               28
##
                                h
                                      Н
                                                   m
##
                                       6 424665
                                                   7 11330
```

```
table(property$CROPDMGEXP)
```

```
##
## ? 0 2 B k K m M
## 618413 7 19 1 9 21 281832 1 1994
```

```
property$PROPDMGEXP<-factor(property$PROPDMGEXP,levels=c("H","K","M","B","h","m","0"))
property$PROPDMGEXP[is.na(property$PROPDMGEXP)] <- "O"
property$CROPDMGEXP<-factor(property$CROPDMGEXP,levels=c("K","M","B","k","m","O"))
property$CROPDMGEXP[is.na(property$CROPDMGEXP)] <- "O"</pre>
```

Convert the magnitude into the multiplier used for calculating damage amount.

Using the following key to identify the multiplier for the orders of magnitude. 1. o(one) = 1.2. h(undred) = 100.3. k(thousand) = 1000.4. m(million) = 1000000.5. b(billion) = 1000000000.0

```
property$PROPDMGEXP <- as.character(property$PROPDMGEXP)</pre>
property$CROPDMGEXP <- as.character(property$CROPDMGEXP)</pre>
property$PROPDMGMLT <- 0</pre>
property$CROPDMGMLT <- 0</pre>
property$PROPDMGMLT[grep1("h", property$PROPDMGEXP,ignore.case = TRUE)]<-100</pre>
property$PROPDMGMLT[grep1("k", property$PROPDMGEXP,ignore.case = TRUE)]<-1000</pre>
property$PROPDMGMLT[grep1("m", property$PROPDMGEXP,ignore.case = TRUE)]<-1000000</pre>
property$PROPDMGMLT[grep1("b", property$PROPDMGEXP,ignore.case = TRUE)]<-1000000000</pre>
property$PROPDMGMLT[grep1("o", property$PROPDMGEXP,ignore.case = TRUE)]<-1</pre>
property$CROPDMGMLT[grep1("k", property$CROPDMGEXP,ignore.case = TRUE)]<-1000</pre>
property$CROPDMGMLT[grep1("m", property$CROPDMGEXP,ignore.case = TRUE)]<-1000000</pre>
property$CROPDMGMLT[grep1("b", property$CROPDMGEXP,ignore.case = TRUE)]<-1000000000</pre>
property$CROPDMGMLT[grep1("o", property$CROPDMGEXP,ignore.case = TRUE)]<-1</pre>
property$PROPDMG <- property$PROPDMG * property$PROPDMGMLT</pre>
property$CROPDMG <- property$CROPDMG * property$CROPDMGMLT</pre>
property$total <- property$PROPDMG + property$CROPDMG</pre>
```

Results

Now that everything is clean we will beign to analyze the data to answer our two goals for looking at this dataset

Population Health Question

Health Totals

```
health.totals <- aggregate(cbind(FATALITIES,INJURIES) ~ EVTYPE, data = health, sum, na.rm=TRU
E)
health.totals$TOTAL <- health.totals$FATALITIES + health.totals$INJURIES
health.totals <- health.totals[order(-health.totals$TOTAL), ]
health.totals <- health.totals[1:25,]
plot(health.totals$EVTYPE,
    as.matrix(t(health.totals[,c(-1,-4)])),
    colors = c("dark blue","red"),
    columns = c("Fatalities","Injuries"),
    main = "Most Harmful Event Type in the United States")</pre>
```


Population Health Assessment

It is easily said that tornado's cause the largest weather-related risk to the overall population health. However, the averages of the events tell a different story about the most deadly single weather events. This will require additional research and analysis to properly identify which event has the worst outcomes for population health.

Economic Impact

We will begin to look at the Economic Impact of certain types of events. ### Economic Health Results

```
economic.total <- aggregate(cbind(PROPDMG,CROPDMG, total) ~ EVTYPE, data = property, sum, na.
rm=TRUE)
economic.crop <- economic.total[order(-economic.total$CROPDMG), ]
economic.crop <- economic.crop[1:25,]
economic.prop <- economic.total[order(-economic.total$PROPDMG), ]
economic.prop <- economic.prop[1:25,]
plot(economic.prop$EVTYPE,
    as.matrix(t(economic.prop[,c(-1,-3,-4)])),
    colors = c("dark blue","red"),
    columns = c("Property Damage"),
    main = "Economic Impact of Weather on Propery Damage")</pre>
```



```
plot(economic.crop$EVTYPE,
    as.matrix(t(economic.crop[,c(-1,-2,-4)])),
    colors = c("dark blue","red"),
    columns = c("Crop Damage"),
    main = "Economic Impact of Weather on Crop Damage")
```

