☞ Fonction logarithme 1

On considère la fonction suivante définie sur]0; $+\infty$ [:

$$f(x) = 4x + 10 - 1x\ln(x)$$

- 1. Calculer la limite de f en 0^+
- 2. Calculer la limite de f en $+\infty$
- **3.** Calculer la dérivée de f.
- **4.** Déterminer le signe de f'(x).
- **5.** En déduire le tableau de variation de f(x).
- **6.** Déterminer le nombre de solutions de f(x) = 0 et en donner un encadrement d'amplitude 10^{-2} .

Logarithme

Correction:

1. On sait que:

$$\lim_{x \to 0^+} 4x + 10 = 10$$

$$\lim_{x \to 0^+} 1x \ln(x) = 0 \quad \text{par propriété du cours}$$

$$\text{donc } \lim_{x \to 0^+} 4x + 10 - 1x \ln(x) = 10$$

2.

$$\lim_{x\to +\infty} 4x + 10 = +\infty$$

$$\lim_{x\to +\infty} -1x \ln(x) = -\infty \quad \text{par propriété du cours}$$
 donc
$$\lim_{x\to +\infty} 4x + 10 - 1x \ln(x) = -\infty \quad \text{par prédominance de } x \ln(x)$$

3.

$$f'(x) = 4 - 1 (x \ln(x))'$$

$$= 4 - 1 (x' \ln(x) + x \times \ln(x)')'$$

$$= 4 - 1 (\ln(x) + x \times \frac{1}{x})'$$

$$= 4 - 1 (\ln(x) + 1)'$$

$$= 3 - 1 \ln(x)$$

4.

$$f'(x) \ge 0$$
$$3 - 1\ln(x) \ge 0$$
$$-1\ln(x) \ge -3$$
$$\ln(x) \le \frac{-3}{-1}$$
$$x \le e^{\frac{-3}{-1}}$$

5. On a:

x	0		$e^{\frac{-3}{-1}}$		+∞
f'(x)		+	0	-	
f(x)		10	$10+1e^{\frac{-3}{-1}}$		-∞

6. D'après le tableau de variation, comme 10 > 0, la fonction f ne peut pas s'annuler sur l'intervalle $[0; e^{\frac{-3}{-1}}]$.

Pour $x > e^{-\frac{3}{-1}}$, la fonction est décroissante de $10 + 1e^{-\frac{3}{-1}} > 0$ vers $-\infty$, donc, d'après le théorème des valeurs intermédiaires, il existe une unique valeur

Logarithme TG

 $\alpha > e^{\frac{-3}{-1}}$ telle que $f(\alpha) = 0$. En utilisant la calculatrice, on trouve :

> f(20.08) > 0f(20.09) < 0 $20.08 \le \alpha \le 20.09$