Question number	Scheme	Marks
5 (a)	$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3 \Rightarrow \alpha^3 + \beta^3$	M1A1
	$=(\alpha+\beta)^3-3\alpha\beta(\alpha+\beta)^*$	cso [2]
(b)	$\alpha + \beta = -\frac{3}{2} \qquad \alpha\beta = \frac{6}{2} = 3$	B1
	$\left[\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)\right]$	
	$\alpha^3 + \beta^3 = \left(-\frac{3}{2}\right)^3 - 3 \times 3 \times \left(-\frac{3}{2}\right) = \frac{81}{8}$	B1 [2]
(c)	$\left(\alpha^2 + \beta^2\right)^2 = \alpha^4 + 2\alpha^2\beta^2 + \beta^4 \Rightarrow \alpha^4 + \beta^4 = \left(\alpha^2 + \beta^2\right)^2 - 2\left(\alpha\beta\right)^2 *$	M1A1 cso [2]
(d)	$\alpha^2 + \beta^2 = \left(-\frac{3}{2}\right)^2 - 2 \times 3 = -\frac{15}{4}$	B1
	Sum $(\alpha^3 - \beta) + (\beta^3 - \alpha) = \alpha^3 + \beta^3 - (\alpha + \beta) = \frac{81}{8} - (-\frac{3}{2}) = \frac{93}{8}$	B1
	Product $(\alpha^3 - \beta) \times (\beta^3 - \alpha) = (\alpha\beta)^3 - (\alpha^4 + \beta^4) + \alpha\beta$	M1
	$= 27 - \left[\left(-\frac{15}{4} \right)^2 - 2 \times 3^2 \right] + 3 = \frac{543}{16}$	A1
	Equation $x^2 - \frac{93}{8}x + \frac{543}{16} = 0 \Rightarrow 16x^2 - 186x + 543 = 0$	M1A1 [6]
	Total	12 marks
(a)		
M1	$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$	
A1 cso (b)	Obtains the given answer with no errors in the working	
B1	$\alpha + \beta = -\frac{3}{2}$ and $\alpha\beta = \frac{6}{2} = 3$	
B1	$\alpha^3 + \beta^3 = \frac{81}{8}$	
(c)		
M1	$\left(\alpha^2 + \beta^2\right)^2 = \alpha^4 + 2\alpha^2\beta^2 + \beta^4$	
A1 cso	Obtains the given answer with no errors in the working	

(d)	
B1	$\alpha^2 + \beta^2 = -\frac{15}{4} $ (May be implied by $\alpha^4 + \beta^4 = -\frac{63}{16}$)
B1	$\left(\alpha^3 - \beta\right) + \left(\beta^3 - \alpha\right) = \frac{93}{8}$
M1	$\left(\alpha^{3} - \beta\right) \times \left(\beta^{3} - \alpha\right) = \left(\alpha\beta\right)^{3} - \left(\alpha^{4} + \beta^{4}\right) + \alpha\beta$
A1	$(\alpha^{3} - \beta) + (\beta^{3} - \alpha) = \frac{93}{8}$ $(\alpha^{3} - \beta) \times (\beta^{3} - \alpha) = (\alpha\beta)^{3} - (\alpha^{4} + \beta^{4}) + \alpha\beta$ $(\alpha^{3} - \beta) \times (\beta^{3} - \alpha) = \frac{543}{16}$
M1	$x^2 - '\operatorname{sum}' x + '\operatorname{product}' (= 0)$
A1	$16x^2 - 186x + 543 = 0$