Rank-65547 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65547

General information

Number of lines	3
Number of points	7
Number of singular points	3
Number of Eckardt points	0
Number of double points	3
Number of single points	3
Number of points off lines	1
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$2^3, 1^3, 0$

Singular Points

The surface has 3 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0)$$

$$1: P_1 = \mathbf{P}(0,1,0,0) = \mathbf{P}(0,1,0,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{19}$$

Rank of lines: (0, 4, 28)

Rank of points on Klein quadric: (0, 2, 19)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_2 = (0,0,1,0) = \ell_1 \cap \ell_2$$

Single Points

The surface has 3 single points:

The single points on the surface are:

0:
$$P_5 = (1, 1, 0, 0)$$
 lies on line ℓ_0
1: $P_6 = (1, 0, 1, 0)$ lies on line ℓ_1

2: $P_7 = (0, 1, 1, 0)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 1 points not on any line: The points on the surface but not on lines are:

$$0: P_4 = (1, 1, 1, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} 012 \\ \hline 0 & 011 \\ 1 & 101 \\ 2 & 110 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_0	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_0	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_1	P_2

The surface has 7 points:

The points on the surface are:

$$0: P_0 = (1, 0, 0, 0)$$

$$1: P_1 = (0, 1, 0, 0)$$

$$2: P_2 = (0, 0, 1, 0)$$

$$3: P_4 = (1, 1, 1, 1)$$

 $4: P_5 = (1, 1, 0, 0)$
 $5: P_6 = (1, 0, 1, 0)$

$$6: P_7 = (0, 1, 1, 0)$$

$$2: P_2 = (0, 0, 1, 0)$$

$$5 \cdot P_c = (1.0, 1.0)$$