CN-Basic L28

IP Packet Format

Dr. Ram P Rustagi rprustagi@ksit.edu.in http://www.rprustagi.com/https://www.youtube.com/rprustagi

The Internet network layer

host, router network layer functions:

IP datagram format

- motivation: local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus)

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

- 16-bit port-number field:
 - -60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - -routers should only process up to layer 3
 - -address shortage should be solved by IPv6
 - -violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - -NAT traversal: what if client wants to connect to server behind NAT?

ICMP: internet control message protocol

 used by hosts & routers to communicate network-level information

- error reporting: unreachable host, network, port, protocol
- echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Query Messages:

<u>Type</u>	<u>Code</u>	<u>description</u>
0/8	0	Echo reply/request (ping)
13/14	0	Timestamp request/reply
10/9	0	Router solicitation/advt

Error Reporting Messages

3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
5	0	Redirect
11	0	TTL expired
12	0	bad IP header

ICMP Messages

- Few points to note
 - -No ICMP error msg will be generated for
 - Response to datagram carrying an ICMP error message
 - Fragmented datagram that is not the first fragment
 - Datagram having multicast address
 - Datagram having special address e.g.

```
-127.0.0.1, or 0.0.0.0
```

ICMP Redirect

Src: Forouzan - Data Communication and Networking

ICMP PMTU Discovery

- It is a mechanism
 - It is not a protocol
- Mechanism
 - Intermediate router informs the sender
 - error : destination not reachable
 - code : Fragmentation required
- IP Fragmentation is avoided in general
- Path MTU (PMTU) discovery is used
 - To find the max segment size for a given path
- Fragment is a costly process
 - Especially for NAT address
 - is configured by default in any enterprise

ARP - Address Resolution Protocol

- Packet delivery to a host requires two addresses
 - Logical address IP Address
 - Physical address MAC address
- Need to find mapping from logical to physical
 - ARP is used RFC 826

Fig Src: Forouzan - Data Communication and Networking, SIE

ARP - 4 cases

Case 1. A host has a packet to send to another host on the same network.

Case 3. A router receives a packet to be sent to a host on another network. It must first be delivered to the appropriate router.

Case 2. A host wants to send a packet to another host on another network. It must first be delivered to a router.

Case 4. A router receives a packet to be sent to a host on the same network.

ARP

- ARP Request and Reply
 - ARP Request is broadcast
 - ARP Reply is Unicast
- Other forms of ARP
 - Proxy ARP (RFC 1027)
 - Reverse ARP (RFC 903)
 - Gratuitous ARP

Reverse ARP

- Reverse ARP (RARP)
 - RFC 903
 - Used for diskless stations
- Organization does not have enough IP Address
 - Target as MAC Bcast does not cross the router
 - Needs one RARP server for each subnet
- BOOTP
 - Improvement over RARP
 - Has a relay agent to forward across network
 - Has static mapping of MAC to IP
 - Manageability issues
- DHCP replaces BOOTP

Summary

- IP Packet Format
- ICMP
- NAT
- ARP
 - Reverse ARP
 - BOOTP
 - DHCP