Instituto de Computação Universidade Federal Fluminense

Notas de Aula de Teoria dos Grafos

Prof. Fábio Protti Niterói, agosto de 2015.

Conteúdo

1	Con	ceitos Básicos	5
	1.1	Grafos, vértices, arestas	5
	1.2	Vizinhança e grau	6
	1.3	Subgrafos	7
	1.4	União, interseção, complemento $\dots \dots \dots \dots \dots$	8
	1.5	Grafo completo, clique, conjunto independente	9
	1.6	Passeios, trilhas, caminhos, ciclos	9
	1.7	Distância, excentricidade, diâmetro	11
	1.8	Isomorfismo de grafos	11
	1.9	Maximalidade e minimalidade	11
	1.10	Grafos conexos e desconexos	12
	1.11	Grafos bipartidos	13
	1.12	Propriedades hereditárias	14
	1.13	Grafos como estruturas de dados	14
	1.14	Exercícios	15
2	Árv	ores	18
	2.1	Conceito de árvore	18
	2.2	Folhas	19
	2.3	Centro de uma árvore	19
	2.4	Pontes	20
	2.5	Árvores geradoras	21
	2.6	Exercícios	23
3	Con	ectividade	24
	3 1	Cortes de vértices	24

		3.1.1 Articulações e blocos	4
		3.1.2 Conectividade de vértices	5
		3.1.3 Caminhos internamente disjuntos em vértices 2	25
	3.2	Cortes de arestas	6
		3.2.1 Ligações (ou co-ciclos)	27
		3.2.2 Conectividade de arestas	7
		3.2.3 Caminhos disjuntos em arestas 2	9
	3.3	Exercícios	9
4	Gra	afos Eulerianos e Hamiltonianos 3	1
	4.1	Grafos Eulerianos	1
		4.1.1 Passeios Eulerianos abertos	3
	4.2	Grafos Hamiltonianos	3
	4.3	Exercícios	7
5	$\mathbf{Em}_{\mathbf{j}}$	parelhamentos 4	0
	5.1	Definição de emparelhamento	0
	5.2	Teorema de Berge	0
	5.3	Teorema de Tutte	1
	5.4	Teorema de Hall	2
	5.5	Teorema de König	3
	5.6	Exercícios	:3
6	Col	oração de Vértices 4	5
	6.1	Grafos k -coloríveis	5
	6.2	Grafos críticos	5
	6.3	Cotas para o número cromático	6
		6.3.1 Construção de Mycielski	6

		6.3.2 Teorema de Brooks	47
	6.4	Exercícios	47
7	Col	oração de Arestas	49
	7.1	Grafos k -coloríveis em arestas	49
	7.2	Teorema de Vizing	49
	7.3	Exercícios	50
8	Pla	naridade	51
	8.1	Definição de grafo planar	51
	8.2	Fórmula de Euler	51
	8.3	Caracterizações de grafos planares	52
	8.4	Mapas e o Teorema das Quatro Cores	53
	8.5	Exercícios	53
9	Gra	ofos Direcionados	55
	9.1	Conceitos básicos sobre digrafos	55
	9.2	Teorema de Gallai-Hasse-Roy-Vitaver	56
		9.2.1 Torneios	58
	9.3	Exercícios	58

1 Conceitos Básicos

Neste capítulo forneceremos todas as definições e resultados fundamentais que serão utilizados ao longo de todo o texto.

1.1 Grafos, vértices, arestas

Um grafo (simples) G é formado por um conjunto de $v\'{e}rtices$, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta, então os vértices x e y são os extremos desta aresta. Dizemos também que x e y estão conectados, ou que são adjacentes ou vizinhos.

Um grafo pode ser representado geometricamente como um conjunto de pontos no plano (representando os vértices) e linhas que ligam estes pontos (representando as arestas). Observamos que o mesmo grafo pode ter várias representações geométricas diferentes.

Exemplo 1.1. Seja G o grafo tal que $V(G) = \{a, u, v, w, x, y, z\}$ e $E(G) = \{uv, vw, wx, xy, yz, zu, av, ax, az\}$. Na Figura 1.1 temos duas representações geométricas diferentes para G.

Figura 1.1: Duas representações geométricas diferentes para o mesmo grafo.

A ordem de um grafo é G é o número de vértices de G. Utilizamos a seguinte notação: n = |V(G)| e m = |E(G)|. O tamanho de um grafo G é a

soma n + m. Um grafo trivial é aquele com um único vértice (n = 1). Um grafo nulo é aquele com $V(G) = \emptyset$ (isto é, n = 0).

Um multigrafo é uma generalização do conceito de grafo simples. Em um multigrafo podem existir arestas paralelas (arestas que compartilham os mesmos extremos) e laços (um laço é uma aresta da forma xx). Laços também são chamados de loops.

1.2 Vizinhança e grau

A vizinhança aberta de um vértice v é o conjunto de seus vizinhos. Utilizamos a notação N(v) para designar a vizinhança aberta de v. A vizinhança fechada de um vértice v é definida como $N[v] = N(v) \cup \{v\}$.

O grau de um vértice é o número de vezes em que ele ocorre como extremo de uma aresta. (Esta definição se aplica tanto para grafos como para multigrafos.) Utilizamos a notação d(v) para designar o grau do vértice v. Em um grafo simples, o grau de um vértice é igual ao número de vizinhos que ele possui, isto é, d(v) = |N(v)|.

Um grafo é regular quando todos os seus vértices têm o mesmo grau. Um grafo é k-regular quando todos os seus vértices têm grau igual a k.

O grau máximo de G é definido como $\Delta(G) = \max\{d(v) \mid v \in V(G)\}$. O grau mínimo de G é definido como $\delta(G) = \min\{d(v) \mid v \in V(G)\}$.

Dado um grafo G tal que $V(G) = \{v_1, v_2, \dots, v_{n-1}, v_n\}$ e os graus dos vértices satisfazem $d(v_1) \leq d(v_2) \leq \cdots \leq d(v_{n-1}) \leq d(v_n)$, a sequência de graus de G é precisamente a sequência

$$(d(v_1), d(v_2), \ldots, d(v_{n-1}), d(v_n)).$$

Exemplo 1.2. A sequência de graus do grafo G definido anteriormente no Exemplo 1.1 é (2,2,2,3,3,3,3). Temos que $\delta(G)=2$ e $\Delta(G)=3$.

Um vértice é *isolado* quando tem grau zero (não possui vizinhos). Um vértice v é *universal* quando está conectado por arestas a todos os demais vértices, isto é, $N(v) = V(G) \setminus \{v\}$. Se v é um vértice universal então d(v) = n - 1.

O seguinte teorema é conhecido como Teorema do Aperto de Mãos:

Teorema 1.1. Em qualquer grafo simples G,

$$\sum_{v \in V(G)} d(v) = 2m.$$

Demonstração. Observe que cada aresta xy é contada duas vezes na soma $\sum_{v \in V(G)} d(v)$ – uma vez na parcela d(x) e outra na parcela d(y).

1.3 Subgrafos

Um subgrafo de um grafo G é um grafo H tal que $V(H) \subseteq V(G)$ e $E(H) \subseteq E(G)$. H é um subgrafo próprio de G quando H é um subgrafo de G que não é o próprio G.

Um subgrafo gerador ("spanning subgraph") de G é um subgrafo H de G tal que V(H) = V(G). Em outras palavras, H tem os mesmos vértices de G, mas não necessariamente todas as arestas de G.

Um subgrafo H de G é um subgrafo induzido por um conjunto de vértices $X \subseteq V(G)$ se V(H) = X e vale a seguinte propriedade: se $xy \in E(G)$ e $x,y \in X$ então $xy \in E(H)$. Neste caso, utilizamos a notação H = G[X]. Informalmente, um subgrafo induzido por um conjunto de vértices X mantém todas as arestas originais de G que possuem seus dois extremos em X.

Um subgrafo H de G é um subgrafo induzido por um conjunto de arestas $E' \subseteq E(G)$ se:

- $\bullet \ E(H) = E';$
- $V(H) = \{x \mid x \text{ \'e extremo de alguma aresta de } E'\}.$

Utilizamos a notação H=G[E'] para designar que H é um subgrafo induzido por um conjunto de arestas E'.

A seguinte notação é bastante útil. Se S é um subconjunto de vértices de G, então $G-S=G[V(G)\backslash S]$. Se v é um vértice de G então $G-v=G-\{v\}$.

Se E' é um subconjunto de arestas de G, então o grafo G-E' é definido da seguinte forma: V(G-E')=V(G) e $E(G-E')=E(G)\setminus E'$. Se e é uma aresta de G então $G-e=G-\{e\}$.

1.4 União, interseção, complemento

A união de dois grafos G e H é o grafo denotado por $G \cup H$ tal que:

$$V(G \cup H) = V(G) \cup V(H) \in E(G \cup H) = E(G) \cup E(H).$$

A interseção de dois grafos G e H é o grafo denotado por $G \cap H$ tal que:

$$V(G \cap H) = V(G) \cap V(H)$$
 e $E(G \cap H) = E(G) \cap E(H)$.

Dois grafos G e H são disjuntos em vértices se $V(G) \cap V(H) = \emptyset$. Dois grafos G e H são disjuntos em arestas se $E(G) \cap E(H) = \emptyset$. Se G e H são disjuntos em vértices, então é claro que são também disjuntos em arestas. Porém, G e H podem ser disjuntos em arestas tendo alguns vértices em comum.

O complemento de um grafo G é o grafo \overline{G} tal que $V(G)=V(\overline{G})$ e $E(G)=\{xy\mid xy\notin E(G)\}$. Note que G e seu complemento são grafos disjuntos em arestas. Portanto, $G\cap \overline{G}$ é um grafo sem arestas. Além disso, $G\cup \overline{G}$ é um grafo completo.

Exemplo 1.3. Se G é o grafo do Exemplo 1.1, então \overline{G} é o grafo representado na Figura 1.2.

Figura 1.2: Representação geométrica de \overline{G} , onde G é o grafo do Exemplo 1.1.

1.5 Grafo completo, clique, conjunto independente

Um grafo G é um grafo completo se quaisquer dois vértices de G são vizinhos. O número de arestas de um grafo completo é n(n-1)/2. Denotamos por K_n um grafo completo com n vértices. O grafo K_1 é o grafo trivial, o grafo K_2 é formado por dois vértices e uma aresta, e o grafo K_3 é o triângulo. A Figura 1.3 exibe os grafos K_3 , K_4 e K_5 .

Figura 1.3: Da esquerda para a direita: grafos K_3 , K_4 e K_5 .

Uma clique em um grafo G é um conjunto de vértices $K\subseteq V(G)$ tal que G[K] é completo. Em outras palavras, quaisquer dois vértices distintos de uma clique são adjacentes.

Um conjunto estável ou independente em um grafo G é um subconjunto de vértices $S \subseteq V(G)$ tal que G[S] é um grafo sem arestas. Em outras palavras, qualquer par de vértices de um conjunto independente é formado por vértices não adjacentes.

Um grafo com n vértices formando um conjunto independente é denotado por I_n .

1.6 Passeios, trilhas, caminhos, ciclos

Um passeio ("walk") é uma sequência de vértices $v_1, v_2, \ldots, v_{k-1}, v_k$ tal que $v_{j-1}v_j \in E(G)$ para $j=2,\ldots,k$. Note que em um passeio pode haver repetição de vértices e arestas. Se $v_1=v_k$, dizemos que o passeio é fechado; caso contrário, o passeio é aberto. Um passeio fechado é também denominado circuito por alguns autores.

Uma trilha ("trail") é um passeio $v_1, v_2, \ldots, v_{k-1}, v_k$ cujas arestas são todas distintas. Em uma trilha pode haver repetição de vértices, mas não

de arestas. Assim como no caso dos passeios, as trilhas também podem ser classificadas em fechadas e abertas.

Um caminho ("path") é um passeio $v_1, v_2, \ldots, v_{k-1}, v_k$ onde os vértices são todos distintos. Note que em um caminho, como não pode haver repetição de vértices, não há repetição de arestas. Portanto, todo caminho é uma trilha (mas nem toda trilha é um caminho). O comprimento de um caminho é o número de arestas neste caminho. Observe que não pode haver "caminho fechado", pois em um caminho não há repetição de vértices. Se P é um caminho e u, v são vértices deste caminho, denotamos por P[u, v] o subcaminho de P que vai de u até v.

Um ciclo ("cycle") é um passeio $v_1, v_2, \ldots, v_{k-1}, v_k$ tal que $v_1, v_2, \ldots, v_{k-1}$ é um caminho e $v_1 = v_k$. Por definição, em um ciclo devemos ter $k \geq 3$. O comprimento de um ciclo é o número de vértices (ou arestas) presentes no ciclo. Um ciclo de comprimento três é também chamado de $tri\hat{a}ngulo$. Um ciclo de comprimento ímpar [par] é chamado simplesmente de ciclo impar [ciclo par].

Uma corda é uma aresta que liga dois vértices não consecutivos de um ciclo (ou caminho). Um ciclo (resp., caminho) induzido em um grafo G é um ciclo (resp., caminho) sem cordas. Um ciclo induzido de comprimento pelo menos quatro é chamado de buraco ("hole"). Utilizamos a notação C_k para designar um ciclo induzido com k vértices, e a notação P_k para designar um caminho induzido com k vértices.

De forma análoga, um caminho induzido é um caminho sem cordas. Utilizamos a notação P_k para designar um caminho induzido com k vértices.

Exemplo 1.4. Considere novamente o grafo G do Exemplo 1.1. Então:

 $W_1 = u, v, a, z, y, x, a, z$ é um passeio aberto;

 $W_2 = u, v, a, z, y, x, a, z, u$ é um passeio fechado;

T = a, v, w, x, a, z, y é uma trilha aberta;

 $P_1 = u, v, w, x, a, z, y$ é um caminho;

 $P_2 = u, v, w, x, y$ é um caminho induzido;

 $C_1 = u, v, w, x, y, z, u$ é um ciclo;

 $C_2 = u, v, a, z, u$ é um ciclo induzido.

Observação 1.1. Muitas vezes, será útil considerar passeios, trilhas, caminhos e ciclos como grafos (ou subgrafos), em vez de considerá-los simplesmente como sequências de vértices. Assim, por exemplo, podemos nos referir

a um caminho P com k vértices como um grafo P tal que $V(P) = \{v_1, \ldots, v_k\}$ e $E(P) = \{v_{j-1}v_j \mid 2 \le j \le k\}$.

1.7 Distância, excentricidade, diâmetro

A distância entre dois vértices x e y é o comprimento do menor caminho de x a y no grafo. Utilizamos a notação dist(x,y) para representar a distância entre x e y. Para qualquer vértice x, vale dist(x,x) = 0.

A excentricidade de um vértice v em um grafo G é definida como:

$$exc(v) = \max\{dist(v, x) \mid x \in V(G)\}.$$

Já o diâmetro de um grafo G define-se do seguinte modo:

$$diam(G) = \max\{exc(v) \mid v \in V(G)\}.$$

O centro de um grafo G é o conjunto de vértices de G com excentricidade mínima.

1.8 Isomorfismo de grafos

Dois grafos G e H são isomorfos se existe uma bijeção $f:V(G)\to V(H)$ tal que $xy\in E(G)$ se e somente se $f(x)f(y)\in E(H)$. Informalmente, G e H são o "mesmo" grafo, a menos de rotulações distintas para os vértices. Utilizamos a notação $G\cong H$ para designar que G e H são isomorfos.

Sejam G e H grafos quaisquer. Se existir algum subgrafo G' de G que seja isomorfo a H, dizemos que G contém H. Se existir algum subgrafo induzido G' de G que seja isomorfo a H, dizemos que G contém H como subgrafo induzido. Se nenhum subgrafo induzido de G é isomorfo a H, dizemos que G é livre de H.

1.9 Maximalidade e minimalidade

Um conjunto S é maximal em relação a uma propriedade P se: (i) S satisfaz P; (ii) não existe conjunto S' que satisfaça P e que contenha S propriamente.

Um conjunto S é $m\'{a}ximo$ em relação a uma propriedade P se: (i) S satisfaz P; (ii) não existe conjunto S' que satisfaça P e que possua mais elementos do que S.

Todo conjunto máximo é também maximal, mas nem todo conjunto maximal é máximo.

Exemplo 1.5. Considere o grafo G do Exemplo 1.1. Os conjuntos de vértices $S_1 = \{u, w, y\}$ e $S_2 = \{a, v, x, z\}$ são ambos conjuntos independentes maximais de G, mas apenas S_2 é um conjunto independente máximo de G.

De forma análoga, um conjunto S é minimal em relação a uma propriedade P se: (i) S satisfaz P; (ii) não existe conjunto S' que satisfaça P e que esteja propriamente contido em S. Um conjunto S é minimo em relação a uma propriedade P se: (i) S satisfaz P; (ii) não existe conjunto S' que satisfaça P e que possua menos elementos do que S. Todo conjunto mínimo é também minimal, mas nem todo conjunto minimal é mínimo.

Exemplo 1.6. Seja G um grafo qualquer. Um subconjunto $C \subseteq V(G)$ é uma cobertura (por vértices) de G se toda aresta de G tem pelo menos um de seus extremos em G. Considerando os mesmos conjuntos G_1 e G_2 do exemplo anterior, temos que G_1 e G_2 são coberturas minimais de G, mas apenas G_1 é uma cobertura mínima de G.

Os conceitos maximal/máximo e minimal/mínimo também se aplicam a grafos e subgrafos.

1.10 Grafos conexos e desconexos

Um grafo G é conexo se existe caminho entre qualquer par de vértices de G. Caso contrário, G é desconexo.

Uma componente conexa de um grafo G é um subgrafo conexo maximal de G. Denotamos por w(G) o número de componentes conexas de G. É claro que G é conexo se e somente se w(G) = 1.

1.11 Grafos bipartidos

Um grafo G é bipartido se V(G) pode ser particionado em conjuntos X e Y de modo que toda aresta de G tem um extremo em X e outro em Y. Como consequência desta definição, X e Y são conjuntos independentes.

Exemplo 1.7. O grafo G do Exemplo 1.1 é um grafo bipartido, onde $X = \{a, v, x, z\}$ e $Y = \{u, w, y\}$.

Um grafo bipartido G será bipartido completo se, para qualquer par de vértices x, y com $x \in X$ e $y \in Y$, vale que $xy \in E(G)$. Denotamos por $K_{p,q}$ um grafo bipartido completo com p vértices em X e q vértices em Y. Obviamente, $K_{p,q}$ tem pq arestas.

O seguinte teorema é uma caracterização de grafos bipartidos.

Teorema 1.2. Um grafo G é bipartido se e somente se G não contém ciclos ímpares.

Demonstração. Suponha por absurdo que G é um grafo bipartido contendo um ciclo ímpar $C = v_1, v_2, \ldots, v_{2k}, v_{2k+1}, v_1$, para algum inteiro $k \geq 1$. Seja $X \cup Y$ uma bipartição de V(G), e suponha sem perda de generalidade que $v_1 \in X$. Temos então que $v_2 \in Y$, $v_3 \in X$, ..., $v_{2k} \in Y$ e $v_{2k+1} \in X$. Mas isto implica que a aresta v_1v_{2k+1} possui seus dois extremos em X, uma contradição. Isto completa a prova da necessidade.

Suponha agora que G não contenha ciclos ímpares. Vamos provar que G é bipartido. É fácil ver que um grafo é bipartido se e somente se todas as suas componentes conexas são grafos bipartidos. Assim, basta considerar o caso em que G é conexo.

Considere um vértice v_0 qualquer de G. Defina os seguintes conjuntos:

$$X = \{ v \in V(G) \mid dist(v_0, v) \text{ \'e par} \},$$
$$Y = \{ v \in V(G) \mid dist(v_0, v) \text{ \'e impar} \}.$$

Para completar a demonstração, vamos mostrar que X é um conjunto independente. (A prova de que Y é um conjunto independente é similar.) Observe inicialmente que dois vértices $v_1, v_2 \in X$ que estão a distâncias distintas de v_0 não podem ser adjacentes, caso contrário $dist(v_0, v_1)$ e $dist(v_0, v_2)$

difeririam no máximo em uma unidade. Considere então que ambos estejam a uma mesma distância d de v_0 . Sejam P_1 e P_2 caminhos com comprimento d de v_0 a v_1 e v_2 , respectivamente. Seja z o vértice mais próximo de v_1 tal que $z \in V(P_1) \cap V(P_2)$. (Eventualmente, podemos ter $z = v_0$.) É fácil ver que $dist(z, v_1) = dist(z, v_2)$. Sejam $P_1[z, v_1]$ e $P_2[z, v_2]$ os subcaminhos de P_1 e P_2 que vão de z a v_1 e v_2 , respectivamente. Concluímos que estes subcaminhos têm o mesmo comprimento. Assim, v_1 e v_2 não podem ser adjacentes, caso contrário haveria um ciclo ímpar em G, a saber $(P_1[z, v_1] \cup P_2[z, v_2]) + v_1v_2$. Isto completa a prova da suficiência.

Observação 1.2. Uma generalização da definição de grafo bipartido completo é a definição de grafo k-partido completo, que é aquele cujo conjunto de vértices está particionado em conjuntos independentes V_1, V_2, \ldots, V_k , e tal que existe uma aresta entre dois vértices u e w se e somente se u e w pertencem a conjuntos distintos desta partição.

1.12 Propriedades hereditárias

Dado um grafo G, uma propriedade é hereditária por subgrafos [induzidos] se, quando ela é válida para G, é válida também para todos os subgrafos [induzidos] de G.

Exemplo 1.8. Se o grafo G é livre de triângulos, então "ser livre de triângulos" é uma propriedade hereditária por subgrafos e por subgrafos induzidos.

Exemplo 1.9. Se o grafo G possui um vértice universal, então "possuir um vértice universal" não é uma propriedade hereditária por subgrafos, nem por subgrafos induzidos.

Exemplo 1.10. Se o grafo G é completo, então "ser completo" não é uma propriedade hereditária por subgrafos, mas é uma propriedade hereditária por subgrafos induzidos.

Obviamente, toda propriedade hereditária por subgrafos quaisquer também é hereditária por subgrafos induzidos.

1.13 Grafos como estruturas de dados

A matriz de adjacências de um grafo G é uma matriz $A_{n\times n}$ onde:

$$A[i,j] = \begin{cases} 1, \text{se } ij \in E(G); \\ 0, \text{se } ij \notin E(G). \end{cases}$$

A matriz de adjacências é simétrica e possui zeros na sua diagonal principal. Utilizando a matriz de adjacências como estrutura de dados, basta armazenar o triângulo superior da matriz.

A matriz de adjacências gasta memória quadrática $(O(n^2))$, mas o tempo de acesso é constante – gasta-se tempo O(1) para decidir se dois vértices são vizinhos.

A lista de adjacências de um grafo G é um outro tipo de estrutura de dados para armazenar G. Neste tipo de representação, utiliza-se um vetor de ponteiros, onde cada ponteiro está associado a um vértice de G e aponta para uma lista encadeada contendo os vizinhos deste vértice.

O número de células de memória em uma lista de adjacências é n + 2m. Utilizando esta estrutura, gasta-se tempo O(n) no pior caso para decidir se dois vértices são vizinhos.

1.14 Exercícios

- 1.1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem mutuamente, ou três não se conhecem mutuamente.
- 1.2. Prove ou refute: se G é um grafo conexo, então dois caminhos de comprimento máximo de G possuem necessariamente pelo menos um vértice em comum.
- 1.3. Prove ou refute: se G é um grafo contendo exatamente dois vértices de grau ímpar, então existe necessariamente um caminho ligando estes dois vértices em G.
- 1.4. Prove ou refute: se $\delta(G)>\frac{1}{2}(n-2)$ então G é conexo.
- 1.5. Mostre que em uma festa com $n \ge 2$ pessoas, existem pelo menos duas pessoas com o mesmo número de conhecidos.

- 1.6. Um grafo k-partido é tal que seus vértices podem ser particionados em k conjuntos $V_1, V_2, ..., V_k$, de tal maneira que dois vértices pertencentes um mesmo subconjunto V_i são sempre não adjacentes. Um grafo k-partido completo é aquele em que todo par de vértices pertencentes a partes distintas é adjacente. Um grafo k-partido completo em que cada parte possua $\lfloor n/k \rfloor$ ou $\lceil n/k \rceil$ vértices é denominado grafo de Turán e denotado por $T_{k,n}$.
 - (a) Determinar o número de arestas de $T_{k,n}$
 - (b) Mostrar que se G é um grafo k-partido completo então $|E(G)| \le |T_{k,n}|$.
- 1.7. Prove que para todo grafo G vale $\delta(G) \leq 2m/n \leq \Delta(G)$.
- 1.8. Resolva os itens abaixo.
 - (a) Existe um multigrafo com a seguinte seqüência de graus: (3,3,3,3,5,6,6,6,6)?
 - (b) Existe um multigrafo com a seguinte seqüência de graus: (1,1,3,3,3,5,6,8,9)?
 - (c) Existe um grafo (simples) com a seqüência de graus do item anterior?
 - (d) Demonstre que a sequência $(d_1, d_2, ..., d_n)$ de inteiros não negativos é uma sequência de graus de algum multigrafo se e somente se $\sum_{i=1}^{n} d_i$ é par.
- 1.9. Um grafo (simples) é auto-complementar se $G \cong \overline{G}$.
 - (a) Dê dois exemplos de pares de grafos auto-complementares.
 - (b) Prove que um grafo auto-complementar tem 4k ou 4k+1 vértices, para k inteiro não negativo.
- 1.10. Sejam u e v dois vértices em um grafo G. Mostre que existe um passeio entre u e v se e somente se existe um caminho entre u e v.
- 1.11. Seja G um grafo satisfazendo uma propriedade P. Classifique (se houver) o tipo de hereditariedade de P (por subgrafos quaisquer e/ou por subgrafos induzidos), nos seguintes casos:

- (a) G é bipartido.
- (b) G é auto-complementar.
- (c) G é conexo.
- (d) $G \notin k$ -regular.
- (e) $\Delta(G) = k$.
- (f) G não contém ciclos.