Application of recurrent neural network for the prediction of target non-apneic arousal regions in physiological signals

N Nesaragi¹, S Majumder², A Sharma¹, K Tavakolian², S Patidar¹

¹National Institute of Technology Goa, Goa, India ²University of North Dakota, Grand Forks, USA shivnarayan.patidar@nitgoa.ac.in, kouhyar.tavakolian@und.edu

You Snooze, You Win: Physio Net/Computing in Cardiology Challenge 2018

Layer type	Parameters	Number of parameters	Output shape
Input			(258, 2)
BiLSTM	Number of features= 50,		(50)
Output	Fully connected to output	2	2

Activation function: Sigmoid Cost function: Cross entropy

Method:

- Sequences of Instantaneous frequencies and Spectral entropies are used as feature vectors
- Feature vectors are normalized
- At first stage, ninety LSTM models are trained then, nine QD layers are modelled each for ten LSTMs.
- Finally, o/p of QD layers are averaged for prediction

- Segments of one minute durations are used for training
- Testing involves one minute segments with 50% overlapping.
- For 1 minute segment of a given PSG signal (*fs*=200Hz), a feature vector of 258 length is obtained by computing spectrograms over 258 time windows.
- The time outputs for the instantaneous frequency and spectral entropy values correspond to the center of the time windows

Highlights:

- No preprocessing is done in this work
- Algorithm learns suitable features from training data
- Low computational complexity

Future work: Performance can be boosted by:

- Deriving clinically informative reconstructed PSG signals using appropriate transforms
- Better tuning of LSTM models
- Including more feature vectors.

Scores (Test Data subset)

AUPRC 0.095

AUROC 0.624

Average run time (test set): 0.306%

of quota

Maximum run time (test set):

0.32% of quota