

AR App Development:

Pelvic Tumor Resection Guidance

Done by:

Alba Centeno, Noelia García, Antonio Sánchez and Marta Martín

TABLE OF CONTENTS

INTRODUCTION

BACKGROUND

Pelvic tumors pose significant challenges in surgical management due to their complex anatomical location and potential for aggressive growth.

INTRODUCTION

IMPORTANCE

Given the complexities associated with pelvic sarcomas and the challenges in achieving optimal resection margins while preserving limb function, tools such as AR technology can revolutionize surgical planning and execution.

OBJECTIVES

The objective of our project is to **develop an AR application** capable of <u>calculating optimal</u> <u>margins</u> and <u>projecting the tumor</u> along with its safety resection boundaries in real-time during surgery.

The aim is to provide the surgeon with a **visual and practical tool** that:

- ☐ Facilitates precise tumor resection
- Minimizes damage to surrounding structures
- ☐ Improves surgical and oncological outcomes for patients

SPECIFIC OBJECTIVES

Several key steps had to be considered for the accomplishment of the project.

This includes:

- Design and 3D printing of a **surgical guide** for attachment to the pelvic region.
- Definition of a **AR-based marker** for our application.
- Development of a **AR application for tumor visualization** on top of the pelvis.
- Added **functionalities** for clinical environment simulation.
 - Ability to customize for <u>different patients and tumor</u> types.
 - Option to show the <u>optimal approach for resection</u>.
 - Toggle options to <u>show/hide the pelvic bone and tumor</u>.
 - Option to display the <u>coronal cross-section</u> of the tumor.

ROADMAP

PELVIS MODEL

Physical model:

Model Utilized: Pelvis 3D printed Phantom

- Lent to us by the UC3M lab
- Guide attached to it
- Accurately replicate the anatomical structure of the human pelvis in the app

Virtual model:

SURGICAL GUIDE DESIGN

- Design **surgical guide** to attach to <u>pelvis</u> bone.
- Design **card holder** for AR <u>marker</u>.

Added side slot to introduce the card

SURGICAL GUIDE DESIGN

- 3D print the combined model.
- Several tries
- Solution: changing printing parameters
 - Support structure to Normal
 - > Build plate temperature to 60°
 - ➤ Infill density to 10%

MARKER DEFINITION

- Software: vuforia
- Requirement: universal marker
 - > No personal identification
 - Easily identifiable by app
 - Available everywhere

PelviAR DEVELOPMENT

Main part of the project

Software: **Unity** & VSCode → 7 C# scripts

Design requirements:

- 1. Practical and **user-friendly** interface
- 2. Aid surgeons **prior** the operation
- 3. Visualize **resection margins** on patient

PelviAR FEATURES

- Dropdown for **patient selection**
- Slider for tumor transparency
- Button for superposition of real and virtual model

PelviAR FEATURES

- Button for anatomical CT image
- Calculation of sphere boundary
- **Input field** for personalized margin

Hide sphere 2

LIMITATIONS

Lack of database

iOS implementation

LIMITATIONS

Margins projections

Tumor location

Rudimentary margin calculation

FUTURE LINES

Solve limitations

- Accurate projection of margins and tumor
- Real 3D model from a CT.
- □ IOS implementation.

Advanced calculation margins algorithm

- Consider tumor size, severity and location
- Consider nearby structures (vascularization)

FUTURE LINES

Solve limitations

- Accurate projection of margins and tumor
- Real 3D model from a CT.
- □ iOS implementation.

Advanced calculation margins algorithm

- Consider tumor size, severity and location
- Consider nearby structures (vascularization)

Validation Method

☐ Tracking systems: evaluate the effectiveness of the app

CONCLUSION

FIRST STEP • Visualization • Optimal margins calculation • The content of the c

THANKS

DO YOU HAVE ANY QUESTIONS?

PelviAR DEMO

