Chapitre 3

Théorèmes fondamentaux de l'anaylse fonctionnelle

3.1 Théorème de Riesz

1

Théorème 3.1. Soit X un espace vectoriel normé. La boule unité fermée de X est compacte si et seulement si X est de dimension finie.

Exemple Dans l'espace vectoriel $E=\mathcal{C}^0([0,2\pi],\mathbb{C})$ muni de la norme $\|.\|_\infty$ où

$$||f||_{\infty} = \sup_{0 \le t \le 2\pi} |f(t)|, f \in E$$

on considère la suite $(f_n)_{n\geq 0}$ définie par

$$f_n(t) = e^{int}, n \ge 0, t \in [0, 2\pi]$$

Montrons que E est dimension infinie.

^{1.} Frigyes Riesz, mathématicien hongrois, 1880-1956, l'un des fondateurs de l'analyse fonctionnelle.

Solution. La suite $(f_n)_{n\geq 0}$ ainsi est un élément de la boule unité fermée $\overline{B}(O,1)$, et vérifie

$$|f_n(t) - f_m(t)|^2 = |e^{int} - e^{imt}|^2 = 2 - 2\cos(n - m)t$$

D'où,

$$||f_n - f_m||_{\infty} = \sup_{0 \le t \le 2\pi} |f_n(t) - f_m(t)| = \sup_{0 \le t \le 2\pi} \sqrt{(2 - 2\cos(n - m)t)} = 2$$

Ce qui montre que la suite $(f_n)_{n\geq 0}$ n'admet donc aucune une suite extraire convergente. Par conséquent, la boule $\overline{B}(O,1)$ n'est pas compacte dans E. Par le Théorème de Riesz, l'espace E est de dimension infinie.

3.2 Théorème de Hahn-Banach

Le Théorème de Hahn-Banach [4, 5]² est l'un des grands résultats fondamentaux de l'analyse mathématique.

Théorème 3.2. [5] Soit X un espace vectoriel normé, et soit M un sous-espace vectoriel de X. Si f est une forme linéaire continue sur M, alors, il existe un prolongement de f en une forme linéaire \widehat{f} continue sur tout X et telle que $||f|| = ||\widehat{f}||$.

3.2.1 Applications du Théorème de Hahn-Banach

Théorème 3.3. Soit M un sous-espace vectoriel d'un espace vectoriel normé X et soit $x_0 \in X$ tel que $d(x_0, M) > 0$. Alors, il existe $f \in X'$ telle que

i.
$$||f|| = 1$$

ii.
$$f(M) = 0$$

iii.
$$f(x) = d(x, M), x \in X$$

Si M=0, on aura le résultat suivant

Corollaire 3.1. Soit X un espace vectoriel normé, et soit $x_0 \in X$. Il existe $f \in X'$ telle que ||f|| = 1 et $f(x_0) = ||x_0||$.

Corollaire 3.2. *Soit* X *un espace vectoriel normé, et soit* $x \in X$. *Alors,*

$$||x|| = \max_{f \in X', ||f|| = 1} |f(x)|$$

^{2.} Hans Hahn, 1879-1934, est un mathématicien et philosophe autrichien qui a apporté de nombreuses contributions à l'analyse fonctionnelle, la topologie, la théorie des ensembles et le calcul des variations.

Corollaire 3.3. Soit $\{x_i\}_{i=1}^n$, $n \in \mathbb{N}, n \geq 1$, un ensemble de vecteurs linéairement indépendants dans X. Il existe alors un ensemble de formes linéaires $\{f_i\}_{i=1}^n$ dans X' vérifiant $f_j(x_i) = \delta_{ij}$, $1 \leq i, j \leq n$. Dans ce cas, on aura pour tout $x \in \overline{\{x_i\}_{i=1}^n}$,

$$x = \sum_{j=1}^{n} f_j(x) x_j$$

Remarques 1. Le Corollaire précédent donne un procédé de définir la base duale de l'espace dual d'un espace vectoriel normé de dimension finie.

2. Le système $(\overline{\{x_i\}_{i=1}^n}, \{f_i\}_{i=1}^n)$ est dit système biorthogonal.

Définition 3.1. Un sous-espace vectoriel M d'un espace vectoriel normé X admet un supplément dans X s'il existe un sous-espace fermé N de X tel que $X = M \oplus N$.

Si X est un espace de Hilbert, le supplément d'un sous-espace vectoriel M de X est le sous-espace vectoriel fermé M^\perp dit complémentaire orthogonal. Toutefois, pour X un espace de Banach, M admet un supplément si M est de dimension finie. On a donc

Théorème 3.4. Tout sous-espace vectoriel de dimension finie M d'un espace de Banach X admet un supplément dans X.

Corollaire 3.4. Soit X un espace vectoriel normé tel que $X \neq \{0\}$. Alors, $X' \neq \{0\}$.

Corollaire 3.5. Soit X un espace vectoriel normé, et soit $x_0 \in X$ tel que

$$\forall f \in X' : f(x_0) = 0$$

Alors, $x_0 = 0$.

3.2.2 Une autre application

Le résultat suivant est très important. Il est conséquence du Théorème de Hahn-Banach. On l'a utilsé précédemment pour montrer que le Théorème 2.3 ne demeure pas vrai pour $p=\infty$, i.e., $\ell_\infty'\neq\ell_1$.

Théorème 3.5. Soit X un espace de Banach. Si X' est séparable, alors X l'est aussi.

Preuve. Soit $\{f_i\}_{i\geq 1}$ un ensemble partout dense dans \mathcal{X}' . Par la définition de la borne supérieure, et pour chaque f_k , on choisit un élément $x_k \in \mathcal{X}$ tel que

$$||x_k|| = 1 \text{ et } ||f_k(x_k)|| \ge \frac{||f_k||}{2}, k \ge 1$$

Posons

$$K = \left\{ \sum_{k \ge 1} \lambda_k x_k, \ \lambda_k \in \mathbb{Q} \right\}$$

K est dénombrable dans \mathcal{X} .

De plus, si $\overline{K} \neq \mathcal{X}$, alors par le Théorème 4.3, il existe $f \in \mathcal{X}'$, $f \neq 0$ telle que

$$f(x) = 0, \ x \in \overline{K}$$

En particulier,

$$f(x_k) = 0, \ k \ge 1$$

D'où,

$$\exists m \in \mathbb{N} / \|f_m - f\| < \epsilon, \forall \epsilon > 0$$

Par suite,

$$|(f - f_m)(x_m)| = |f_m(x_m)| \ge \frac{||f_m||}{2} = \frac{||f_m||}{2} ||x_m||$$

Donc

$$||f - f_m|| \ge \frac{||f_m||}{2} \Rightarrow ||f_m|| < 2\epsilon$$

Soit finalement

$$||f|| \le ||f - f_m|| + ||f_m|| < 3\epsilon$$

Par conséquent, $f \equiv 0$. Contradiction.

Exercice Soient E et F deux espaces vectoriels normés. Montrer que F est complet si et seulement si $\mathcal{L}(E,F)$ est complet.

Solution (\Rightarrow) Démontrée dans le chapitre 2.

(\Leftarrow) Soit $(y_n)_n$ une suite de Cauchy dans F. Soit $x_0 \in E, ||x_0|| = 1$. D'après le Corollaire 4.1 du Théorème de Hahn-Banach, il existe $f \in X'$, |f| = 1 et $f(x_0) = ||x_0||$. Soit $T_n : E \to F$, $(n \ge 1)$ définies par

$$T_n(x) = f(x)y_n, \quad x \in E, n \ge 1$$

On a donc:

$$T_n \in \mathcal{L}(E, F), n \ge 1$$

et de plus, pour tous $n, m \in \mathbb{N}, n \neq m$:

$$||T_n - T_m|| = \sup_{\|x\| \le 1} ||f(x)(y_n - y_m)|| = ||y_n - y_m|| \sup_{\|x\| \le 1} |f(x)| = ||y_n - y_m||$$

La suite $(T_n)_n$ est donc de Cauchy dans $\mathcal{L}(E,F)$. Elle est donc convergente vers certain $T \in \mathcal{L}(E,F)$ car $\mathcal{L}(E,F)$ est complet. Posons $Tx_0 = y$. Alors,

$$||y_n - y|| = ||T_n(x_0) - Tx_0|| = ||(T_n - T)x_0|| \le ||T_n - T|||x_0|| \to 0, \quad (n \to +\infty)$$

La suite $(y_n)_n$ est donc convergente vers $y, y \in F$. Par conséquent, l'espace F est complet.

3.3 Théorème de catégorie de Baire

3

Définition 3.2. (Rappel) Soit X un espace métrique, et soit A un sous-ensemble de X. Un vecteur x_0 de X est dit point intérieur de A s'il existe une boule $B(x_0, r)$ de centre x_0 et de rayon r, (r > 0) incluse dans A.

Définition 3.3. L'ensemble des points intérieurs de A est dit intérieur de A et est noté $\overset{\circ}{A}$

On a donc

$$\overset{\circ}{A} = \{ x \in X/\exists r > 0 : B(x,r) \subset A \}$$

Le résultat suivant est utile pour démontrer les théorèmes de ce chapitre.

Théorème 3.6. Soit X un espace de Banach, et soit $(X_n)_{n\geq 1}$ une suite de fermés dans X tels que $X = \bigcup_{i\geq 1} X_i$. Alors, il existe $j \in \mathbb{N}, j \geq 1$ tel que $X_j \neq \emptyset$.

Autrement dit, un espace de Banach ne peut être une réunion dénombrable de fermés, tous d'intérieur vide.

Exemple Montrer que $(\mathbb{R}, |.|)$ muni de sa topologie usuelle n'est pas dénombrable.

Solution Par l'absurde, on suppose que $\mathbb{R} = \bigcup_{n \geq 1} \{x_n\}$, où $x_n \in \mathbb{R}, n \geq 1$. On a donc :

- 1. $(\mathbb{R}, |.|)$ est un espace de Banach.
- 2. Les singletons $\{x_n\}$ sont des fermés dans \mathbb{R} pour tout $n, n \geq 1$ car

$$\{x_n\}^C =]-\infty, x_n[\cup]x_n, +\infty[$$

3. René-Louis Baire, 1874-1932, est un mathématicien français.

est un ouvert dans \mathbb{R} .

Par le Théorème de Baire, il existe $j \in \mathbb{N}, j \geq 1$ tel que $\{x_j^o\} \neq \emptyset$. i.e., il existe un vecteur $a \in \mathbb{R}$ et r > 0 tel que $B(a, r) \subset \{x_j\}$. Contradiction.

3.3.1 Quelques applications du Théorème de Baire

Proposition 3.1. Soit (X, d) un espace métrique complet, et soit $\{X_n\}_{n\geq 1}$ une famille dénombrable de fermés de X d'intérieur vide. Alors, $\bigcup_{n\geq 1} X_n$ est aussi d'intérieur vide.

De même, on a le résultat suivant

Proposition 3.2. Soit (X, d) un espace métrique complet, et soit $\{X_n\}_{n\geq 1}$ une famille dénombrable d'ouverts denses dans X. Alors, $\bigcap_{n\geq 1} X_n$ est aussi un ouvert dense dans X.

Théorème 3.7. Soit (X, d) un espace métrique complet. On suppose que $X = \bigcup_{n \geq 1} X_n$ avec X_n des fermés de X. Alors, $\Omega = \bigcup_{n \geq 1} \mathring{X_n}$ est un ouvert dense dans X.

3.4 Théorème du graphe fermé

3.4.1 Graphe d'un opérateur linéaire

Définition 3.4. (*Rappel*) Soient X, Y des espaces vectoriels normés sur le même corps \mathbb{K} , et soit $T: X \to Y$ un opérateur linéaire. Le graphe de T est l'ensemble

$$G(T) = \{(x, Tx), x \in X\}$$

Définition 3.5. Un opérateur linéaire $T: X \to Y$ est dit fermé, si son graphe est fermé dans $X \times Y$.

i.e., $T: X \to Y$ est fermé si et seulement si

$$\forall (x_n)_n \subset X : ((x_n \to x) \land (Tx_n \to y)) \Rightarrow (x \in D(T) \land y = Tx)$$

On a donc le résultat suivant

3.4.2 Théorème du graphe fermé

Théorème 3.8. Soient X, Y des espaces de Banach, et soit $T: X \to Y$ un opérateur linéaire. Si le graphe de T est fermé, alors T est continu.

Remarque La réciproque est évidemment vraie, car si f est une fonction continue, le graphe de f est fermé. (même si f n'est pas linéaire)

Pour la preuve du Théorème 4.11, on a besoin du Lemme suivant

Lemme 3.1. Soit X un espace vectoriel normé, et soit C un ensemble convexe dans X tel que C = (-1)C. Si C admet un point intérieur, alors 0 est aussi un point intérieur de C.

Exemple Soient X,Y des espaces de Banach, et soit $T:X\to Y$ un opérateur linéaire. On suppose que

$$\forall f \in X', \forall (x_n)_n \in X: \lim_{n \to +\infty} x_n = 0 \Rightarrow \lim_{n \to +\infty} f(Tx_n) = 0 \tag{3.1}$$

Montrer, en utilisant le Théorème du graphe fermé, que T est continu.

Solution Soit $(x_n)_n$) une suite dans X convergeant vers un élément $x, x \in X$ et telle que $(Tx_n)_n$ converge vers $y, y \in Y$. Montrons que y = Tx.

On a

$$\lim_{n \to +\infty} (x_n - x) = 0$$

D'où, pour tout $f, f \in Y'$:

$$\lim_{n \to +\infty} f(T(x_n - x)) = 0$$

par (3.1). Donc

$$\lim_{n \to +\infty} f(T(x_n)) = f(Tx), \quad f \in X'$$

Comme *f* est continue,

$$f(\lim_{n\to+\infty} (T(x_n)) = f(Tx), \quad f\in X'$$

C-à-d, pour tout $f, f \in Y'$:

$$f(y) = f(Tx)$$

D'où, y=Tx par le Corollaire 4.5 du Théorème de Hahn-Banach. Le graphe de T est donc fermé. Comme X,Y sont de Banach, T est continu par le Théorème 4.10.

Corollaire 3.6. Soient X, Y des espaces de Banach, et soit $T: X \to Y$ un opérateur linéaire borné et bijectif. Alors, T^{-1} est aussi borné.

Remarque La condition que les espaces X et Y soient complets est nécessaire comme le montre l'exemple suivant

Exercice Soit $E=\mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme $\|.\|_\infty$ et soit F le sous-espace de E formé des fonctions de classe $\mathcal{C}^1([0,1],\mathbb{R})$. Montrer que le graphe de l'application

$$S: F \ni f \mapsto f' \in E$$

est fermé, mais S n'est pas continue.

Corollaire 3.7. Soient $||.||_1$ et $||.||_2$ deux normes sur un espace vectoriel normé X telles que $(X, ||.||_1)$ et $(X, ||.||_2)$ soient complets. S'il existe c > 0 tel que

$$\forall x \in X : ||x||_1 \le c||x||_2 \tag{3.2}$$

alors, $\|.\|_1$ et $\|.\|_2$ sont équivalentes sur X.

3.5 Théorème de Banach-Steinhaus

3.5.1 Théorème de Banach-Steinhaus

⁴ (ou Principe de la borne uniforme)

Soient $(X, ||.||_X)$ et $(Y, ||.||_Y)$ deux espaces vectoriels normés, et soit $(T_i)_{i \in I}$ une famille d'éléments de $\mathcal{L}(X, Y)$.

Définition 3.6. $(T_i)_{i \in I}$ est dite simplement bornée si

$$\forall x \in X : \sup_{i \in I} ||T_i x|| < +\infty$$

Définition 3.7. $(T_i)_{i\in I}$ est dite uniformément bornée si

$$\sup_{i \in I} ||T_i|| < +\infty$$

Il est clair que si $(T_i)_{i\in I}$ est uniformément bornée, alors $(T_i)_{i\in I}$ est simplement bornée. La réciproque n'est pas vraie en général. Toutefois, le résultat suivant affirme que ces définitions sont équivalentes dans le cas où X est de Banach. On a donc

Théorème 3.9. Soient $(X, ||.||_X)$ et $(Y, ||.||_Y)$ deux espaces vectoriels normés. On suppose que X est de Banach. Si $\{T_i\}_{i\in I}\subset \mathcal{L}(X,Y)$ est une famille simplement bornée, alors $\{T_i\}_{i\in I}$ est uniformément bornée.

Remarque Le nom du Théorème exprime bien le contenu du résultat :
"On déduit une borne uniforme à partir de bornes ponctuelles. "

^{4.} Władysław Hugo Dionizy Steinhaus, 1887-1972, est un mathématicien et professeur polonais.

3.5.2 Quelques applications

Corollaire 3.8. Soit S un sous-ensemble d'un espace de Banach X tel que

$$\forall f \in X' : \sup_{x \in S} |f(x)| < +\infty$$

Alors, S est borné.

Corollaire 3.9. Soient X et Y deux espaces de Banach, et soit $(A_n)_n$ une suite dans $\mathcal{L}(X,Y)$ convergeant simplement sur X vers un opérateur A.

Alors, $A \in \mathcal{L}(X,Y)$. De plus, la suite $(||A_n||)_n$ est bornée.

3.5.3 L'inverse de la propriété de Hölder dans ℓ_p

Corollaire 3.10. Soient $1 \le p, q \le +\infty$, avec $\frac{1}{p} + \frac{1}{q} = 1$. On suppose que

$$\forall x = (x_n)_n \in \ell_p : \text{ la série } \sum_{n=0}^{+\infty} x_n y_n \text{ est convergente}$$
 (3.3)

Alors, $y \in \ell_q$.

Preuve. 1. Si $1 \le p < +\infty$: On définit $f: \ell_p \to \mathbb{C}$ par

$$f(x) = \sum_{k=1}^{+\infty} x_k y_k$$

Par (3.3), l'application f est bien définie.

Pour tout $n \in \mathbb{N}, n \geq 1$, on pose $f_n : \ell_p \to \mathbb{C}$ avec

$$f_n(x) = \sum_{k=1}^n x_k y_k$$

pour tous $x \in \ell_p$ et $n \ge 1$.

Alors, $f_n \in \ell_p', n \ge 1$. En effet, f_n est linéaire, et de plus, pour tout $x, x \in \ell_p$:

$$|f_n(x)| = |\sum_{k=1}^n x_k y_k| \le \sum_{k=1}^n |x_k y_k| \le \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^n |y_k|^q\right)^{\frac{1}{q}}$$

$$\le \left(\sum_{k=1}^n |y_k|^q\right)^{\frac{1}{q}} \left(\sum_{k=1}^\infty |x_k|^p\right)^{\frac{1}{p}}$$

$$\le \left(\sum_{k=1}^n |y_k|^q\right)^{\frac{1}{q}} ||x||_p$$

par l'inégalité de Hölder (Corollaire 2.1, chapitre 2). Ce qui montre que f_n est continue, et que $|f_n| \le (\sum_{k=1}^n |y_k|^q)^{\frac{1}{q}}, \ n \ge 1$.

De plus,

$$\forall x \in \ell_p : \lim_{n \to +\infty} f_n(x) = f(x)$$

Du Corollaire 4.10 du Théorème de Banach-Steinhaus, découle que $f \in \ell_p'$. Finalement, par le Théorème 2.3, $y \in \ell_q$ et $\|y\|_q = \|f\|_{\ell_p'}$.

2. Pour $p = +\infty$: On prend la suite $x_n = sign(y_n)$ où

$$sign(x) = \frac{|x|}{x}$$
 si $x \neq 0$ et $sign(0) = 0$

Donc, $x \in \ell_{\infty}$. De plus, par (3.3), la série

$$\sum_{n=0}^{+\infty} x_n y_n = \sum_{n=0}^{+\infty} |y_n|$$

est convergente. Par conséquent, $y \in \ell_1$.

3.6 Théorème de l'application ouverte

Définition 3.8. Soient E et F deux espaces topologiques. Une application $f: X \to Y$ est dite ouverte si l'image par f, de tout ouvert de E est un ouvert de F.

Exemple L'application

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto f(x) = x^2$$

n'est pas ouverte en x = 0.

En effet, f(]-1,1[)=[0,1[n'est pas un voisinage de 0. Cependant, f est ouverte en tout point $x\in\mathbb{R}, x\neq 0$.

Exercice Montrer qu'une application linéaire et continue $f: \mathbb{R} \to \mathbb{R}$ est ouverte si et seulement si $f(1) \neq 0$.

On a donc le résultat suivant dit Théorème de l'application ouverte ou Théorème de Banach-Schauder ⁵

Théorème 3.10. Soient X et Y deux espaces de Banach, et soit $T: X \to Y$ un opérateur linéaire continu et surjectif. Alors, il existe c > 0 tel que

$$T(B_X(O,1)) \supset B_Y(O,c) \tag{3.4}$$

Autrement dit, T transforme tout ouvert de X en un ouvert de Y, i.e., T est une application ouverte. D'où vient le nom du résultat. En effet, soit U un ouvert de X. Soit $y_0 \in T(U)$. Il existe donc $x_0 \in U$ tel que $y_0 = Tx_0$. Soit t > 0 tel que $t \in S(x_0, t) \subset U$. i.e.,

$$x_0 + B(O, r) \subset U$$

^{5.} Juliusz Paweł Schauder, 1899-1943, est un mathématicien polonais, connu pour ses travaux dans les domaines de l'analyse fonctionnelle, les EDP et la physique mathématique.

Il s'ensuit que

$$y_0 + T(B(O,r)) \subset T(U)$$

Par (3.4), on aura

$$T(B(O,r)) \supset B(O,rc)$$

Finalement

$$B(y_0, rc) \subset T(U)$$

3.6.1 Théorème d'homéomorphisme de Banach

Du résultat précédent, découle le Corollaire important suivant

Corollaire 3.11. (Théorème d'homéomorphisme de Banach)

Soient X et Y deux espaces de Banach, et soit $T: X \to Y$ un opérateur linéaire borné et bijectif. Alors, T^{-1} est aussi borné. (T est dit homéomorphisme)

Exemple Soit $X = \mathcal{C}([0,1],\mathbb{R})$, et soit $I:(X,\|.\|_{\infty}) \to (X,\|.\|_1)$ l'opérateur d'identité.

- 1. Montrer que *I* est linéaire, bijectif et continu.
- 2. Calculer ||I||.
- 3. Montrer que I^{-1} n'est pas un homéomorphisme (n'est pas continu). Utiliser la suite $(f_n)_n$ où $f_n(t) = t^n, n \ge 1$.
- 4. Que peut-on déduire par le Corollaire 4.10?

Solution 1. Il est clair que I est linéaire et bijectif, et son inverse est l'opérateur d'identité $I^{-1}:(X,\|.\|_1)\to (X,\|.\|_\infty)$. De plus, pour tout $f\in X$, on a

$$||I(f)||_1 = ||f||_1 = \int_0^1 |f(t)dt| \le \int_0^1 \sup_{t \in [0,1]} |f(t)dt| \le ||f||_{\infty}$$

D'où, I est continu, et

$$||I|| \le 1 \tag{3.5}$$

2. On a pour $f_0 = 1$ sur [0, 1]:

$$||I(f_0)||_1 = ||1||_1 = \int_0^1 dt = 1$$

et $||f_0||_{\infty} = 1$. Par conséquent,

$$||I|| = \sup_{\|f\|_{\infty}=1} ||I(f)||_1 \ge ||I(f_0)||_1 = 1$$
(3.6)

De (3.5) et (3.6), ||I|| = 1.

3. On a:

$$||I^{-1}f_n||_{\infty} = ||f_n||_{\infty} = \sup_{t \in [0,1]} |f_n(t)| dt = \sup_{t \in [0,1]} |t^n| dt = 1$$

De même,

$$||f_n||_1 = \int_0^1 |f_n(t)| dt = \int_0^1 |t^n| dt = \frac{1}{n+1}$$

Par suite,

$$\frac{\|I^{-1}f_n\|_{\infty}}{\|f_n\|_1} = n+1 \to +\infty, (n \to +\infty)$$

Ce qui montre que I^{-1} n'est pas continu.

4. De (3), l'opérateur I n'est pas un homéomorphisme. Comme $(X, \|.\|_{\infty})$ est un espace de Banach, par le Théorème d'homéomorphisme de Banach, l'espace $(X, \|.\|_1)$ n'est pas de Banach.