201710813 한현수

Best Accuracy = 78.57572174072266

1. Experiments

Base Line

batch_size	learning_rate	num_epoch	random_seed	dropout	optimizer	train_acc
16	2.00E-03	20	42	0	SGD	86

먼저 베이스 라인의 실험 결과입니다. Dropout, I2 regularization, learning_rate scheduling 없이, data augmentation은 random crop, random horizontal flip만 사용하여 진행한 결과 입니다. 그래프의 개형을 보니 20epoch임에도 불구하고, overfitting현상이 일어남을 확인할 수 있었습니다.

• Base Line + Dropout(0.5)

batch_size	learning_rate	num_epoch	random_seed	dropout	optimizer	train_acc	test_acc
16	2.00E-03	20	42	0.5	SGD	53.9	52.9

첫 실험에서 Dropout을 추가한 결과입니다. Dropout을 추가하니 overfitting이 일어나지 않음을 확인할 수 있었습니다. 하지만 epoch가 적어 underfitting인지는 확인할 수 없었습니다.

Base Line + Dropout + Adam optimizer

batch_size	learning_rate	num_epoch	random_seed	dropout	optimizer	train_acc	test_acc
16	2.00E-03	20	42	0.5	Adam	75.4	70.5

이는 위의 실험에 SGD optimizer에서 Adam optimizer로 바꾼 결과입니다. 이를 보고 SGD optimizer에 비해 더 빠른 학습이 진행된다는 것을 확인하였습니다.

Main Idea

제가 영감을 받은 Main idea는 아래의 논문에서 영감을 얻어 진행하였습니다.

He, Tong, et al. "Bag of tricks for image classification with convolutional neural networks." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

■ Learning Rate Scheduling

main idea에서 사용한 Learning Rate(Ir) Scheduling입니다. 이는 200epoch동안의 Ir으로 점점 0.001로 수렴하여 사용하였습니다. 그 이유는 참고한 논문에서의 추천하는 scheduling은 cosine annealing with warmup으로 초기 epoch은 점차 증가시키고 그 이후는 cosine 함수의 개형을 이용해 scheduling을 하는 것입니다. 이를 참고하여 유사하지만 pytorch에서 기본으로 제공하는 함수임 cyclicLR을 이용하여 위와 같은 learning rate scheduling을 하였습니다.

MixUp augmentation

MixUp이란 입력 이미지를 두개를 일정 비율(a)로 섞고 그에 따른 label 또한 a: (1-a) 로 만들어 augmentation 하는 기법입니다. 이를 사용하면 아래와 같은 결과를 만들 수 있습니다.

위의 두개의 main idea를 바탕으로 실험을 진행한 결과는 다음과 같습니다.

Batch_si	learning_r	num_ep	random_s	dropo	optimiz	12	MixUp_Al	lr_schedu	train_a
ze	ate	och	eed	ut	er	LZ	pha	ler	сс
32	2.00E-03	200	42	0.5	Adam	1.00 E-03	0.4	cycliclr	75.4

이를 보고 더 이상 train_acc가 올라가지 않는다 판단하여 l2 regularization을 1e-4로 낮추고 200epoch을 2회 train을 한결과 accuracy = 78.58이라는 결과를 얻었습니다.

추가적으로 실험했던 것들: mixup augmentation을 배치마다 확률로 사용하자.(MixUp_choice) batch_size를 최대한 키워보자. -> 이는 배치를 키우니 training time은 확연히 줄지만 overfitting 현상이 빨리 일어남을 확인할 수 있었습니다.