# Machine Learning - B Lectures 5

Lecture 5: Computational Learning Theory

Amartya Sanyal

University of Copenhagen

## Computational Learning Theory

- So far our questions were of the form: Given m samples i.i.d. from a distribution D, can we bound the error  $\varepsilon = O(m^{-\alpha})$ ?
- Now, we will treat the learning algorithm as a computational process.
- We must specify: interaction with *D*, prior information, runtime, and hypothesis representation.
- Goal: Determine what can be learned under computational restrictions.

# Binary Classification Setting

- Instance space X (e.g.  $\mathbb{R}^d$ ,  $\{0,1\}^d$ ).
- Label space  $Y = \{+1, -1\}$ .
- Concept class C and hypothesis class H: subsets of functions  $X \to Y$ .
- Data distribution D over X.
- Example oracle EX(c, D) returns (x, c(x)) for  $x \sim D$ .
- Target concept  $c \in C$  is unknown.

#### Learning Algorithm Model

- Learning algorithm A for concept class C using hypotheses from  $\mathcal{H}$ .
- Queries EX(c, D) multiple times at unit cost.
- Returns hypothesis  $h \in \mathcal{H}$ .
- Randomness from sampling and internal coin flips.
- Overall probability denoted by Pr.
- Population Error of h is  $err_D(h) = \mathbb{E}_{(x,y)\sim D}[h(x) \neq y]$

## PAC Learnability: Definition 1

#### Definition

**Definition:** A concept class  $\mathcal C$  over domain X is PAC learnable with  $\mathcal H$  if

- there exists an algorithm A and polynomial p there exists an algorithm A and polynomial p
- such that for any target  $c \in \mathcal{C}$  and distribution D, such that for any target  $c \in \mathcal{C}$  and distribution D,
- given  $m \ge p(1/\epsilon, 1/\delta)$  i.i.d. samples from EX(c, D), given  $m \ge p(1/\epsilon, 1/\delta)$  i.i.d. samples from EX(c, D),
- the algorithm outputs  $h \in \mathcal{H}$  satisfying  $\Pr[\operatorname{err}_D(h) \leq \epsilon] \geq 1 \delta$  the algorithm outputs  $h \in \mathcal{H}$  satisfying  $\Pr[\operatorname{err}_D(h) \leq \epsilon] \geq 1 \delta$

## Understanding the PAC Definition

- Efficiency/Computational Complexity: time measured in calls to EX(c, D) and runtime of algorithm.
- Proper vs. improper learning: whether  $\mathcal{H} = \mathcal{C}$ .
- **Known**: Concept Class C, error  $\varepsilon$ , and failure probability  $\delta$ ; Unknown: target c and distribution D.
- **Oracle variants**: noisy labels, positive-only, membership queries, statistical queries.

# Problem 1: Learning Axis-Aligned Rectangles

**Target Concept:** True rectangle unknown to learner.

**Data Sampling:** Draw  $m = \frac{4}{6} \ln \frac{4}{\delta}$  samples; mark positives (green) and negatives (red).

Algorithm: Output minimal rectangle covering all positive samples (blue).



#### Proof

**Step 1:** Split true rectangle boundary into 4  $\epsilon/4$ -mass strips (yellow shading).

**Step 2:** Each strip empty w.p.  $\leq e^{-m\varepsilon/4}$ .

**Step 3:** Over 4 strips gives failure  $< 4e^{-m\varepsilon/4} < \delta$ .

Empty with probability  $(1 - \frac{\epsilon}{4})^m \le e^{(-m\epsilon/4)}$ .

Apply union bound for overall failure.

# Theorem: PAC Learnability of Axis-Aligned Rectangles

#### Theorem

Let  $C_{rect}$  be the class of axis-aligned rectangles in  $\mathbb{R}^2$ . For any  $0 < \epsilon, \delta < 1$ , sampling

$$m = \frac{4}{\epsilon} \ln \frac{4}{\delta}$$

i.i.d. examples from  $EX(c, \mathcal{D})$  suffices for a learner to output a hypothesis rectangle h such that

$$\Pr_{\mathcal{D}}[h(x) \neq c(x)] \leq \epsilon$$

with probability at least  $1 - \delta$ . Hence  $C_{rect}$  is PAC learnable.

**Proof Sketch:** Follows directly from the earlier analysis: the algorithm uses  $m = O(1/\epsilon \ln(1/\delta))$  samples and with high probability achieves error at most  $\epsilon$ , matching the PAC definition.

# Representation and Complexity (PAC Learnability - Definition 2)

- Representation Scheme. A mapping  $\rho: (\Sigma \cup \mathbb{R})^* \to \mathcal{C}$  where each concept  $c \in \mathcal{C}$  is encoded by a string  $\sigma$  of length  $|\sigma| = \mathrm{size}(c)$ . E.g., axis-aligned rectangle specified by its four real-valued corners, or a conjunction specified by the list of its literals.
- Instance and Concept Size. Let  $X_d$  be all inputs of "size" d and  $C_d$  the corresponding concept class. Typically,  $\operatorname{size}(c) = O(d)$ .
- **Efficient PAC Learning.** A concept class  $\mathcal C$  is efficiently PAC learnable if there exists an algorithm A that, on input  $\epsilon, \delta, d, \sigma$  runs in time  $\operatorname{poly}(d,\operatorname{size}(c),1/\epsilon,1/\delta)$

We will next talk about a learning task where the size of the hypothesis class is important for learnability

## PAC Learnability: Definition II

#### Definition

A concept class  $\mathcal{C} = \bigcup_{d \geq 1} \mathcal{C}_d$  over instance spaces  $\mathcal{X} = \bigcup_{d \geq 1} \mathcal{X}_d$  is efficiently PAC learnable by hypothesis class  $\mathcal{H} = \bigcup_{d \geq 1} \mathcal{H}_d$  if

- there exists an algorithm A and polynomial p there exists an algorithm A and polynomial p
- such that  $\forall d \geq 1$ ,  $c \in \mathcal{C}_d$ , distributions D on  $\mathcal{X}_d$ , and  $0 < \epsilon, \delta < 1$ , such that  $\forall d \geq 1$ ,  $c \in \mathcal{C}_d$ , distributions D on  $\mathcal{X}_d$ , and  $0 < \epsilon, \delta < 1$ ,
- given  $m \ge p(d, \operatorname{size}(c), 1/\epsilon, 1/\delta)$  samples from  $\operatorname{EX}(c, D)$ , given  $m \ge p(d, \operatorname{size}(c), 1/\epsilon, 1/\delta)$  samples from  $\operatorname{EX}(c, D)$ ,
- the algorithm A outputs  $h \in \mathcal{H}$  satisfying  $\Pr[\operatorname{err}_D(h) \leq \epsilon] \geq -\delta$ , the algorithm A outputs  $h \in \mathcal{H}$  satisfying  $\Pr[\operatorname{err}_D(h) \leq \epsilon] \geq 1 \delta$ ,
- and A runs in time at most  $p(d, \text{size}(c), 1/\epsilon, 1/\delta)$ .

## Problem 2: PAC Learning Conjunctions

**Problem 2:** Instance space  $X = \{0, 1\}^d$ , Concept class  $C_{\wedge} = \{c_{P,N} : P, N \subseteq [d]\}$ , where

$$c_{P,N}(x) = \bigwedge_{i \in P} x_i \wedge \bigwedge_{j \in N} (1 - x_j).$$

**Representation Size:** Each conjunction is encoded by its active literal sets P, N, so  $\operatorname{size}(c) = |P| + |N| = O(d)$ .

**Algorithm:** Start with all 2d literals in the hypothesis. For each positive example x, drop any literal  $\ell$  for which  $\ell(x)=0$ . Use

$$m = \frac{2d}{\epsilon} \ln \frac{2d}{\delta}$$
 samples.

#### Problem 2: PAC Learning CONJUNCTIONS

#### Theorem

Let  $\mathcal{C}_{\wedge}$  be the class of conjunctions of d literals over  $X = \{0,1\}^d$ . For any  $0 < \epsilon, \delta < 1$ , sampling  $m = \frac{2d}{\epsilon} \ln \frac{2d}{\delta}$  i.i.d. examples from  $EX(c,\mathcal{D})$  suffices for a learner to output  $h \in \mathcal{C}_{\wedge}$  such that

$$\Pr\left\{\Pr_{\mathcal{D}}[h(x) \neq c(x)] \leq \epsilon\right\} \geq 1 - \delta$$

Key idea: The only way our hypothesis can err is by retaining a literal that should have been dropped. Call such a literal "bad," and then show that every bad literal is eliminated with high probability over our *m* samples.

# Proof sketch: Learning Conjunctions

- **Setup:** Let  $c^* \in \mathcal{C}_{\wedge}$  be the target conjunction. We write  $\ell(x) = 1$  if the assignment x makes the literal  $\ell$  true and vice-versa.
- **Definition of Bad Literal:** A literal  $\ell$  is bad if

$$\Pr_{x \sim D} \left[ c^*(x) = 1 \land \ell(x) = 0 \right] \geq \frac{\epsilon}{2d}.$$

• Bounding Survival Probability: Any fixed bad literal  $\ell$  survives m positive samples with probability

$$\left(1 - \frac{\epsilon}{2d}\right)^m \le \exp\left(-\frac{m\epsilon}{2d}\right).$$

• Union Bound Over Literals: There are at most 2d literals, so the probability any bad literal remains is

$$2d \exp\left(-\frac{m\epsilon}{2d}\right) \leq \delta$$

for  $m=\frac{2d}{\epsilon}\ln\frac{2d}{\delta}$ . Hence, with probability  $1-\delta$ , no bad literals survive and the learned conjunction has error  $\leq \epsilon$ .

#### Consistent Learner

#### Definition

An algorithm A is a consistent learner for a concept class C using  $\mathcal{H}$  if, for every target concept  $c \in C_d$ , and every finite sample of labeled examples

$$(x_1, c(x_1)), (x_2, c(x_2)), \ldots, (x_m, c(x_m)),$$

the algorithm A, when given this sample, outputs  $h \in \mathcal{H}_d$  satisfying

$$\forall i \in \{1,\ldots,m\}: \quad h(x_i) = c(x_i).$$

- If A runs in time polynomial in d, m, and the representation size of c, it is an *efficient* consistent learner.
- Consistent learners coincide with Empirical Risk Minimisers under the 0–1 loss.
- By uniform convergence (finite VC-dimension), any efficient consistent learner yields an efficient PAC learner.

# Sample Complexity: Upper and Lower Bounds

**Upper bound (via VC-dimension).** Let a hypothesis class have VC-dimension  $d_{\rm VC}$ . Any consistent learner for this class is a PAC learner once the sample size satisfies

$$m \, \geq \, \kappa \, \Big( rac{1}{\epsilon} \, \ln rac{1}{\delta} \, + \, rac{d_{
m VC}}{\epsilon} \, \ln rac{1}{\epsilon} \Big),$$

for some universal constant  $\kappa > 0$ .

**Lower bound.** If the VC-dimension  $d_{\rm VC}>25$ , then any PAC learning algorithm for the class must use at least

$$m \geq \frac{d_{\mathrm{VC}} - 1}{32 \, \epsilon}$$

examples.

#### **Consequences:**

- ullet Finite VC-dimension  $\iff$  statistical PAC learnability.
- Even with finite VC-dimension, efficient (polynomial-time) PAC learning may fail (e.g. for 3-DNF).

# Problem 3: Learning 3-DNFs

- Instance space:  $X = \{0, 1\}^d$ , labels  $Y = \{0, 1\}$ .
- Concept class:

$$C_{3\mathrm{DNF}} = \Big\{ \ T_1 \lor T_2 \lor T_3 : T_i \in \{ \text{conjunctions over } d \ \mathsf{vars} \} \Big\}.$$

- Representation size: Each  $T_i$  has  $\leq 2d$  literals, so any 3-DNF has size O(d).
- VC dimension:  $VCdim(C_{3DNF}) \le 6d$ , so information-theoretically PAC learnable, but...

# Computational Hardness of Learning 3-DNFs

#### Theorem (Kearns-Valiant)

Assuming  $RP \neq NP$ , there is no randomized polynomial-time algorithm that PAC learns 3-DNF.

## Complexity Classes: NP vs. RP

• **NP** (nondeterministic polynomial time): A language L is in NP if there is a poly-time verifier V(x, w) such that

$$x \in L \iff \exists w (|w| = poly(|x|) \text{ and } V(x, w) = 1).$$

Intuition: "yes"-instances have short certificates we can check efficiently.

• **RP** (randomized poly time): A language L is in RP if there is a randomized poly-time algorithm A(x) such that

$$x \in L \implies \Pr[A(x) \text{ accepts}] \ge \frac{1}{2},$$
  
 $x \notin L \implies \Pr[A(x) \text{ accepts}] = 0.$ 

• It is widely believed  $NP \neq RP$ .

## Computational Hardness of Learning 3-DNFs

#### Theorem (Kearns–Valiant)

Assuming  $RP \neq NP$ , there is no randomized polynomial-time algorithm that PAC learns 3-DNF.

**Proof strategy:** Reduce an NP-complete problem (3-COLOUR) to 3-DNF learning:

- Construct a training set  $\mathcal{D}$  from the NP instance so that a consistent 3-DNF exists *iff* the instance is in the language.
- ② Show that any efficient PAC learner for 3-DNF would then decide that language in RP time, forcing  $\mathrm{RP}=\mathrm{NP}.$

## Proof Part I: From NP to PAC Learning 3-Term DNF

#### In more detail,

- Suppose L is NP-complete. Given input  $\pi$ , we build a finite sample  $S = S^+ \cup S^-$  of labeled Boolean vectors.
- We use the uniform distribution D over S, and set PAC parameters  $\epsilon = \frac{1}{2|S|}, \ \delta = \frac{1}{2}.$
- If  $\pi \in L$ , our construction ensures  $\exists$  a 3-term DNF  $\phi$  consistent with all of S. Simulating  $EX(\phi, D)$  is trivial: just return random  $(x, y) \in S$ .
- A PAC learner for 3-TERM-DNF, with prob. $\geq 1 \delta = \frac{1}{2}$ , outputs h with  $\operatorname{err}(h) \leq \epsilon$ . But  $\epsilon < 1/|S|$  forces h to be perfect on S, so h is fully consistent.
- ullet Hence if a poly-time PAC learner existed, we'd have an RP procedure for L. Contradiction unless  $\mathrm{NP}=\mathrm{RP}.$

## Reduction Setup: 3-COLOURABLE → 3-TERM-DNF

A graph G=(V,E) on n vertices is 3-COLOURABLE if  $\exists$  mapping  $\chi:V\to\{r,g,b\}$  with  $\chi(u)\neq\chi(v)$  for every edge (u,v).

Build a labelled sample  $S = S^+ \cup S^- \subseteq \{0,1\}^n \times \{0,1\}$  such that  $G \in$  3-COLOURABLE  $\iff \exists \ \phi \in$  3-TERM-DNF consistent with S.

- **Build S**<sup>+</sup> For each vertex  $i \in V$ , define the vector  $v(i) \in \{0,1\}^d$   $v(i)_k = \begin{cases} 0, & \text{if } k = i, \\ 1, & \text{if } k \neq i. \end{cases}$  Label it positive (label 1).
- **Build S**<sup>-</sup>For each edge  $\{i,j\} \in E$ , define the vector  $e(i,j) \in \{0,1\}^d$   $e(i,j)_k = \begin{cases} 0, & \text{if } k=i \text{ or } k=j, \\ 1, & \text{otherwise.} \end{cases}$  Label it negative (label 0).

#### Example: 3-Colouring $\rightarrow$ 3-TERM-DNF



 $V_r = \{1,4\}, V_{\sigma} = \{2,5\}, V_{h} = \{3\}$ 

#### The induced 3-term DNF is

$$T_r = x_2 \wedge x_3 \wedge x_5, \quad T_g = x_1 \wedge x_3 \wedge x_4,$$

#### Positive examples $S^+$ .

| i obitive examples 5. |   |   |   |   |   |  |  |  |  |  |
|-----------------------|---|---|---|---|---|--|--|--|--|--|
| v(i)                  | 1 | 2 | 3 | 4 | 5 |  |  |  |  |  |
| v(1)                  | 0 | 1 | 1 | 1 | 1 |  |  |  |  |  |
| v(2)                  | 1 | 0 | 1 | 1 | 1 |  |  |  |  |  |
| <i>v</i> (3)          | 1 | 1 | 0 | 1 | 1 |  |  |  |  |  |
| v(4)                  | 1 | 1 | 1 | 0 | 1 |  |  |  |  |  |
| v(5)                  | 1 | 1 | 1 | 1 | 0 |  |  |  |  |  |

#### Negative examples $S^-$ :

| e(i,j)                     | 1 | 2 | 3 | 4 | 5 |  |
|----------------------------|---|---|---|---|---|--|
| e(1,2)                     | 0 | 0 |   | 1 | 1 |  |
| e(2,3)                     | 1 | 0 | 0 | 1 | 1 |  |
| e(2,3)<br>e(3,1)<br>e(4,5) | 0 | 1 | 0 | 1 | 1 |  |
| e(4,5)                     | 1 | 1 | 1 | 0 | 0 |  |
| e(2,5)                     | 1 | 0 | 1 | 1 | 0 |  |

$$T_r = x_2 \wedge x_3 \wedge x_5, \quad T_g = x_1 \wedge x_3 \wedge x_4, \quad T_b = x_1 \wedge x_2 \wedge x_4 \wedge x_5, \quad \phi = T_r \vee T_g \vee T_b.$$

#### If G 3-Colourable, a Consistent 3-TERM-DNF Exists

**Claim:** If G is 3-colourable, then there exists a 3-term DNF formula consistent with T.

- Suppose  $\chi: V \to \{r, g, b\}$  is a valid colouring. Let  $V_r, V_g, V_b$  be the vertices of each colour class.
- Define three conjunctions:

$$T_c = \bigwedge_{i \notin V_c} x_i, \qquad \phi = T_r \vee T_g \vee T_b.$$

Intuition:  $T_c$  accepts exactly those vectors that "omit" only positions in  $V_c$ .

- Check positives: For any v(i), since  $i \in V_c$  for some colour c, all bits except position i are 1, so  $T_c(v(i)) = 1$ . Hence  $\phi(v(i)) = 1$ .
- Check negatives: Consider edge e(i,j). In each term  $T_c$ , at least one of  $i,j \notin V_c$ , so that coordinate is forced 0 in e(i,j), making  $T_c(e(i,j)) = 0$ . Hence  $\phi(e(i,j)) = 0$ .

#### If a Consistent 3-TERM-DNF Exists, G is 3-Colourable

**Claim:** If there is a 3-term DNF formula  $\phi$  consistent with T, then G is 3-colourable.

- Let  $\phi = T_r \vee T_g \vee T_b$  be any 3-term DNF consistent with S.
- For each vertex i,  $v(i) \in S^+$  must satisfy  $\phi$ , so it satisfies at least one term  $T_c$ . Assign colour c to vertex i.
- If an edge (i,j) had  $\chi(i) = \chi(j) = c$ , then both v(i) and v(j) satisfy  $T_c$ . But consistency demands  $T_c(e(i,j)) = 0$ . That forces both  $x_i$  and  $x_j$  to appear as positive literals in  $T_c$ , yet in e(i,j) both bits are 0, so  $T_c(e(i,j)) = 1$ —a contradiction.
- Hence no edge's endpoints share a colour, so  $\chi$  is a valid 3-colouring of G.

# Statistical Computational Trade-off

- 3-term DNF has no poly-time PAC learner (unless NP=RP).
- Any 3-term DNF  $\phi = T_1 \vee T_2 \vee T_3$  can be converted to an equivalent 3-CNF, but this may require  $\Theta(d^3)$  clauses.
- The VC-dimension of 3-CNF over d vars is  $\Theta(d^3)$ , so PAC requires

$$m = O\left(\frac{d^3 + \ln(1/\delta)}{\epsilon}\right)$$
 examples.

- **Homework:** Prove that, with *m* as above, there is a polynomial-time PAC learner for 3-CNF.
- Trade-off: Converting a 3-term DNF to an equivalent 3-CNF trades computational hardness for statistical cost. In particular, by collecting

$$m = \Theta\left(d^3/\epsilon\right)$$

examples, you can PAC learn 3-CNFs in polynomial time, thus "beating" the NP $\neq$  RP barrier at the expense of large statistical complexity.