Minimum Spanning Tree (MST)

MST의 정의, 찿는 방법, 활용도 이해

- 01. 퀴즈 풀이 & 예습 내용 복습 (이번 주 #1~3차 답안 공개)
- 02. MST는 무엇이며, 어떻게 활용되는가?
- 03. MST의 성질 + Greedy 방법 개요
- 04. Kruskal's Algorithm
- 05. Prim's Algorithm Lazy Version
- 06. Prim's Algorithm Eager Version
- 07. 실습: Prim's Algorithm Eager Version 구현

(초점 1) 이 방법들이 왜 항상 MST를 잘 찿아내는가? (초점 2) 우리가 배운 자료구조를 어떻게 잘 활용해 이 들을 효율적으로 구현하는가?

Minimum Spanning Tree (MST): Weight 합 최소인 Spanning Tree

- <입력>
- 연결되었으며 (connected)
- edge weight 있는(她晦有)
- undirected graph G
 - 1 G CL 写aol all

- Spanning Tree:
- G의 subgraph 중
- Tree 이며 (connected & acyclic)
- Spanning (모든 정점 포함)

- <출력>
- Minimum Spanning Tree (MST):
- Spanning Tree 중 <u>weight 합</u> 최소인 Tree → 完始

acyclic: cycle 없음

[Q] 다음 중 그래프 G의 spanning tree인 것을 모두 고르시오.

Brute-force 알고리즘: 모든 가능한 spanning tree 탐색하며 weight 비교

완전탐색 알고리즘

가능한 모든 경우의 수를 모두 탐색하면서 요구조건에 충족되는 결과만을 가져온다.

■ V, E 커질수록 너무 많은 spanning tree 있어 시간 오래 걸림 → 왜 배운 過의

- 더 효율적인 방법 필요
 - Greedy Algorithm
 - Kruskal's AlgorithmPrim's Algorithm

MST 활용 예: 연결 자원 가능한 적게 쓰며 모든 지점 연결되도록 할 때 사용

간선 합 최소 (minimum)

spanning

<North Seattle의 자전거 도로>

〈컴퓨터망의 2계층 연결〉 Broadcasting 시 모두에게 데이터 전달하되 무한 loop 생기지 않도록)spanning tree 구성

··· 이 외에도 매우 많음 ···

MST 활용 예: 연결 자원 가능한 적게 쓰며 모든 지점 연결되도록 할 때 사용

<캠퓨터망에서 Multicast or Broadcast> 여러 receiver에게 같은 데이터를 전송할 때 (예: streaming) spanning tree 형태로 전송하면 같은 copy가 불필요하게 여러 번 재전송되거나 loop을 도는 것 방지할 수 있음

그 외 MST의 중요성

- **주요 자료 구조** 함께 잘 활용하는 좋은 예
- Union Find (with Connected Component 저장 구조)
- Priority Queue (with Binary Heap)
- Indexed Priority Queue: PQ에 저장한 key 값 변경 가능. 이를 위해 각 key를 unique한 index 와 함께 저장하고, key 값 변경 시 index 사용해 변경하고자 하는 key 지정

Minimum Spanning Tree (MST)

MST의 정의, 찿는 방법, 활용도 이해

- 01. 퀴즈 풀이 & 예습 내용 복습 (이번 주 #1~3차 답안 공개)
- 02. MST는 무엇이며, 어떻게 활용되는가?
- 03. MST의 성질 + Greedy 방법 개요 / 앞으로 볼 모든 MST 찾는 알고리즘에 공통 적용되는 기본 개념 & 성질 학습
- 04. Kruskal's Algorithm
- 05. Prim's Algorithm Lazy Version
- 06. Prim's Algorithm Eager Version
- 07. 실습: Prim's Algorithm Eager Version 구현

[Q] MST의 입력 그래프 G는 왜 '연결'된 그래프여야 하나?

- <입력>
- 연결되었으며 (connected)
- edge weight 있는 → 건선의 나는 부
- undirected graph G

<연결된 그래프>

<연결 안 된 (비연결) 그래프>

간선 weight 모두 서로 다르다면 MST는 단 하나(유일)

Weight 같은 간선 있다면 MST 둘 이상 가능 (단 모든 MST의 weight sum은 같음)

[Q] 각 그래프에서 서로 다른 MST 다 찾아 보시오.

Copyright © by Sihyung Lee - All rights reserved.

[Q] 입력 그래프 G에 V개 정점 있다면, Spanning Tree는 반드시 V-1개 간선 포함. Why?

V (G 상 정점 수)	1	2	3	4	5
간선 수	0)	2 2 '	3 2	4 2
Spanning Tree		2000年 2000年			

따라서 MST 찾으려면 연결 안 된 정점으로 간선 하나씩 더해가되, V-1개 더했다면 멈추면 됨

Partition(cut) of graph G: G의 정점 중 1 ~ (V-1)개 정점으로 이루어진 부분 집합

■ G의 partition의 예

Partition은 인접 한 정점으로만 이루어질 필요는 없으며 어떤 정점 의 부분집합도 partition이 됨

Crossing Edge partition과 나머지 정점들 간 연결하는 간선

地的時期的

어떤 partition에 대해서도 최소 하나의 crossing edge는 반드시 MST에 포함 Why? MST에서는 모든 정점이 서로 연결되어야 하므로

어떤 partition에 대해서도 weight 최소인 crossing edge는 반드시 MST에 포함 Why? "Minimum" Spanning Tree여야 하므로

어떤 partition에 대해서도 weight 최소인 crossing edge는 반드시 MST에 포함 Why? "Minimum" Spanning Tree여야 하므로

- 만약 ST에서 두 partition을 weight 최소 아닌 crossing edge e1으로 연결했다면
- e1을 weight 더 작은 crossing edge e2 (< e1)로 대체함으로써
- weight 합 더 작은 트리 만들 수 있음
- 따라서 MST라면 crossing edge 중 weight 최소인 edge를 반드시 사용할 것임

[Q] 아래 그래프에서 partition {2,3,6}을 생각해 보자. Weight 최소인 crossing edge는 무엇인가?

- **•** 0-7 (0.16)
- **2**-3 (0.17)
- **√** 0-2 (0.26)
 - **1** 1-2 (0.36)

6 KNOCON/Prim 55-55

Greedy MST algorithm

(格智学和处理将 224次)

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- (어떤 방식으로 든) <mark>아직 서로 연결 안 한 partition 찾기</mark> (crossing edge 하나도 포함 안 한 partition 찾기)
- Crossing edge 중 weight 가장 작은 간선을 MST에 포함
- 총 **V-1개 간선 포함하면** 종료

Crossing ed 378 246

10

16[\]

24

18

_11

23

5 Of the select

Greedy MST algorithm

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- (어떤 방식으로 든) 아직 **서로 연결 안 한 partition** 찾기 (crossing edge 하나도 포함 안 한 partition 찿기)
- Crossing edge 중 weight 가장 작은 간선을 MST에 포함
- 총 V-1개 간선 **포함**하면 종료

Copyright © by Sihyung Lee - All rights reserved.

24

18

23

10

Greedy MST algorithm

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- (어떤 방식으로 든) 아직 서로 연결 안 한 partition 찾기 (crossing edge 하나도 포함 안 한 partition 찾기)
- Crossing edge 중 weight 가장 작은 간선을 MST에 포함
- 총 V-1개 간선 포함하면 종료

[Q] 아래 그래프에 Greedy MST algorithm 적용해 MST를 찾아보시오.

어떤 순서로 어떤 partition 선정했더라도 최종 결과는 같음 확인해 보자. (즉 위 알고리즘은 올바름)

Greedy MST algorithm

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- (어떤 방식으로 든) 아직 서로 연결 안 한 partition 찿기 (crossing edge 하나도 포함 안 한 partition 찿기)
- Crossing edge 중 weight 가장 작은 간선을 MST에 포함
- 총 V-1개 간선 포함하면 종료

왜 잘 동작해야 하나?

- (1) 반드시 MST에 포함되어야 하는 간선 포함해 가는 방식
- (2) MST에는 총 V-1개 간선 있어야 하므로

그래프 커지면 partition 수 매우 많아지며 이 중 연결 안 한 partition 잘 찾는 방법 필요

앞으로 볼 알고리즘은 이 부분이 다름

Minimum Spanning Tree (MST)

MST의 정의, 찿는 방법, 활용도 이해

- 01. 퀴즈 풀이 & 예습 내용 복습 (이번 주 #1~3차 답안 공개)
- 02. MST는 무엇이며, 어떻게 활용되는가?
- 03. MST의 성질 + Greedy 방법 개요
- 04. Kruskal's Algorithm
- 05. Prim's Algorithm Lazy Version
- 06. Prim's Algorithm Eager Version
- 07. 실습: Prim's Algorithm Eager Version 구현

Kruskal's Algorithm

검은색: Greedy algorithm 그대로

→ 푸른색: Crossing edge 추가할 partition 선정 방 ¬ 식만 특화한 부분

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- 간선을 weight의 오름차순에 따라 하나씩 검사하며 인간을 생물을 취하다.
- 추가했을 때 cycle 만들지 않는 간선이라면 MST에 추가
- 총 V-1개 간선 포함하면 종료 (경영) 8개메, 간인 7개 의제 2월)

<간선을 weight 오름차순으로 정렬한 결과>

- -0-7(0.16)
- **2-3** (0.17)
- **1-7** (0.19)
- **0-2** (0.26)
- **5-7** (0.28)
- 1-3 (0.29) 小島伽
- -1-5 (0.32)
- - 2-7 (0.34)
- **4-5** (0.35)
- 1-2 (0.36)
- 4-7 (0.37)
- **■** 0-4 (0.38)
- **6-2** (0.40)
- 3-6 (0.52)
- **■** 6-0 (0.58)
- 6-4 (0.93)

Kruskal's Algorithm

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- 간선을 weight의 오름차순에 따라 하나씩 검사하며
- 추가했을 때 cycle 만들지 않는 간선이라면 MST에 추가
- 총 V-1개 간선 포함하다 🖟 료

<간선을 weight 오름차순으로 정렬한 결과>

cycle 만드는 간선들

- 0-7 (0.16)
- **2**-3 (0.17)
- 1-7 (0.19)
- **0**-2 (0.26)
- **5-7 (0.28)**
- 1-3 (0.29) < 왼쪽 상황에서
- **1-5 (0.32)**
- **2-7 (0.34)**
- **4-5** (0.35)
- **1** 1-2 (0.36)
- **4-7 (0.37)**
- 0-4 (0.38)
- 6-2 (0.40)
- **3**-6 (0.52)
- **■** 6-0 (0.58)
- **6**-4 (0.93)

Kruskal's Algorithm ⊂

Greedy MST algorithm

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- **간선을 weight의 오름차순에 따라** 하나씩 검사하며
- 추가했을 때 cycle 만들지 않는 간선이면 MST에 추가
- 총 V-1개 간선 포함하면 종료

[Q] Kruskal's Algorithm은 Greedy MST에 포함. 따라서 MST 만들어 냄. Why?

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- (어떤 방식으로 든) 아직 서로 연결 안 한 partition 찾기 (crossing edge 하나도 포함 안 한 partition 찾기)
- Crossing edge 중 weight 가장 작은 간선 MST에 포함

 ¬ 총 V-1개 간선 포함하면 종료

<간선을 weight 오름차순으로 정렬한 결과>

- 0-7 (0.16)
- **2-3 (0.17)**
- 1-7 (0.19)
- 0-2 (0.26)
- **5-7 (0.28)**
- **1** 1-3 (0.29)
- **1-5** (0.32)
- **2-7 (0.34)**
- ..

cycle 안 만듦. 따라서 {1,7,0} 포함 partition과 {2,3} 포함 partition은 아직 연결 안 됨

[Q] 'cycle 안 만드는 간선' 조건 어떻게 효율적으로 체크? [A1] DFS

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- 간선을 weight의 오름차순에 따라 하나씩 검사하며
- 추가했을 때 cycle 만들지 않는 간선이라면 MST에 추가
- 총 V-1개 간선 포함하면 종료

[Q] 지금까지 MST에 포함한 정점이 V개, 간선이 E개라면 DFS로 cycle 탐지하는 데 걸리는 시간은? ^ V+()

Union Fina (연결 상태 변경 & 확인)

- N개 정점 주어짐
 - 0 ~ (N-1) 까지 정점(vertex)으로 표현
 - 간선(edge) 없는 상태에서 시작
- 2개 명령 수행 필요
 - Union(a, b): 점 a와 b를 간선으로 연결
 - Connected(a, b): a와 b 연결하는 경로 존재 하는지 True/False로 응답 (이를 Find 명령 이라고도 함)

각 정점 속한 component ID 저장

ids[a] == ids[b] 이면 a, b는 연결됨

■ 예제(N=10)

index: 0 1 2 3 4 5 6 7

ids[] 0 1 2 2 1 1 2 2

[Q] 간선 1-5 추가하면 cycle 생기는지 알고 싶다. 어떤 명령 쓰면 될까? Connected

WQU (Weighted Quick Union)의 비용

- 그래프 정점 수 V일 때
- union: log₂V
- connected: log₂V

- union(p,q): 작은 트리의 root를 큰 트리의 root 아래 연결
- 따라서 root 찿는 비용 log₂V가 union 비용
- connected(p,q): p,q의 root 비교
- 따라서 root 찾는 비용 log₂V가 connected 비용

'cycle 안 만드는 간선' 조건 확인 방식: DFS (~V) ₩s. UF (~log₂V

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- 간선을 weight의 오름차순에 따라 하나씩 검사하며
- 추가했을 때 cycle 만들지 않는 간선이라면 MST에 추가
- 총 V-1개 간선 포함하면 종료

THE TOP HENNH ETHER THE A PHE HEADY SENONA

Kruskal's Algorithm 코드: UF + minPQ (혹은 list 정렬해도 됨)

def mstKruskal(g): # Constructor: finds an MST and stores it

```
edgesInMST = [] # 지금까지 MST에 포함한 간선 저장
weightSum = 0 # MST에 포함한 간선의 weight 합
pq = PriorityQueue()
for e in g.edges:
   pq.put(e)
                  吃货和
uf = UF(g.V)
while not pq.empty() and len(edgesInMST) < g.V-1:
   e = pq.get()
   if not uf.connected(e.v, e.w): 仰即知识
                                      <Kruskal's Algorithm>
       uf.union(e.v, e.w)
                                      ■ 아무 간선 포함 않은 상태에서 시작 (MST = [])
       edgesInMST.append(e) 和标识.
       weightSum += e.weight
                                      ■ 간선을 weight의 오름차순에 따라 하나씩 검사하며
                                      ■ 추가했을 때 cycle 만들지 않는 간선이라면 MST에 추가
return edgesInMST, weightSum
                                      ■ 총 V-1개 가선 포함하면 종료
```

Kruskal's Algorithm의 비용

```
def mstKruskal(g): # Constructor: finds an MST and stores it
    edgesInMST = [] # 지금까지 MST에 포함한 간선 저장
                                                         [Q] Highlight한 부분 각각의 비용 생각해 보자.
    weightSum = 0 # MST에 포함한 간선의 weight 합
                                                            그래프 g의 정점 수 V, 간선 수 E라 가정
                                                             ら V 《 E 路 州
    pq = PriorityQueue()
    for e in g.edges:
        pq.put(e)
    uf = UF(g.V)
                                                             UF+PQ
    while not pq.empty() and len(edgesInMST) < g.V-1:</pre>
        e = pq.get()
        if not uf.connected(e.v, e.w):
                                                                                  필요한 횟수
                                                                 1회 비용
                                              Operation
                                           heop (complete tree)
            uf.union(e.v, e.w)
                                              (PQ) insert
                                                                 log[E]
                                                                            X
            edgesInMST.append(e)
                                                                 logE
            weightSum += e.weight
                                            PQ. delete min
                                                                                     E «
                                              UF, union
                                                                 100 V
                                                                                      ٧
                                                  到歌 ( ) : Val Hall )
    return edgesInMST, weightSum
                                            UF, connected
                                                                 logV
                                                mugatheter connected
```

Copyright © by Sihyung Lee - All rights reserved.

IF DFS) NEV

[Q] 다음 중 그래프 G의 MST를 (그대로) 구하는 경우는? (그래프의 edge weight > 0 이라 가정) 개 병생한 역이 내다 명

OUTTONE THE O - : THE SEE US.

- G의 모든 edge weight에 17 더한 후 Kruskal 알고리즘 사용
- G의 모든 edge weight에 17 곱한 후 Kruskal 알고리즘 사용
- G의 모든 edge weight을 제곱한 후 Kruskal 알고리즘 사용

₩위 3가지 경우 모두

기계학습 등에서 속성 유사한 원소끼리 (그래프에서 서로 가까운 원소) 묶어주어야 할 때 (clustering) 원하는 cluster 개수 될 때까지 Kruskal 알고리즘 사용하기도 함

Minimum Spanning Tree (MST)

MST의 정의, 찿는 방법, 활용도 이해

- 01. 퀴즈 풀이 & 예습 내용 복습 (이번 주 #1~3차 답안 공개)
- 02. MST는 무엇이며, 어떻게 활용되는가?
- 03. MST의 성질 + Greedy 방법 개요
- 04. Kruskal's Algorithm
- 05. Prim's Algorithm Lazy Version
- 06. Prim's Algorithm Eager Version
- 07. 실습: Prim's Algorithm Eager Version 구현

9 - 78MY 1966 MST/4774 865 99

Prim's Algorithm

검은색: Greedy algorithm 그대로

푸른색: Crossing edge 추가할 partition 선정 방 1 식만 특화한 부분

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- **정점 0은 MST에 포함**된 상태라 봄
- MST와 나머지 정점 연결하는 간선 중
- weight 가장 작은 간선을 MST에 추가하는 것 반복
- 총 V-1개 간선 포함하면 종료

Kruskal: 분산된 여러 덩어리 만들기 Prim: 한 덩어리에서 계속 뻗어 나감 (간선 weight이 모두 다르다면) 결과로 얻은 MST는 같음

Prim's Algorithm ⊂

Greedy MST algorithm

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- 정점 0은 MST에 포함된 상태라 봄
- MST와 나머지 정점 연결하는 간선 중
- weight 가장 작은 간선을 MST에 추가하는 것 반복
- 총 V-1개 간선 포함하면 종료

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- (어떤 방식으로 든) 아직 서로 연결 안 한 partition 찾기 (crossing edge 하나도 포함 안 한 partition 찾기)
- Crossing edge 중 weight 가장 작은 간선 MST에 포함
- 총 V-1개 간선 포함하면 종료

partition 1: 정점 0에서 시작해 지금까지 연결한 덩어리 partition 2: 나머지 정점

[Q] '두 partition 연결하는 crossing edge 중 최소 weight 간선' 어떻게 효율적으로 찾을까?

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- 정점 0은 MST에 포함된 상태라 봄
- 현재까지 만든 MST와 나머지 정점 연결하는 간선 중
- weight 가장 작은 간선을 MST에 추가하는 것 반복
- 총 V-1개 간선 포함하면 종료

[A1] 모든 간선 차례로 다 확인해 보기

[Q] 간선 E개라면 걸리는 시간은? △戶

<간선과 weight>

- **0-7 (0.16)**
- **2-3 (0.17)**
- **■** 1-7 (0.19)
- -0-2(0.26)
- **5-7 (0.28)**
- **■** 1-3 (0.29)
- **■** 1-5 (0.32)
- **2-7 (0.34)**
- 4-5 (0.35)
- **■** 1-2 (0.36)
- **4**-7 (0.37)
- **•** 0-4 (0.38)
- **■** 6-2 (0.40)
- **3**-6 (0.52)
- 6-0 (0.58)
- 6-4 (0.93)

Copyright ©

#Prim이 왜 Greedy에 포함되는가

연결 안된 partition을 찾아야하는데, 그 연결 안된 partition이 지금까지 만든 MST와 나머지 정점이다 그래서 그 crossing edge 중에 최소 비중의 것들을 계속 포함하니까 여기에 딱 들어온다

- -> 그러므로 Prim도 greedy MST이다
- -> 그러므로 Prim도 올바른 MST를 잘 찾아낸다

minPQ (minimum Priority Queue) 활용 방법: 각 iteration마다 최소 weight 간선 찾는데 ~E 아닌 ~log(E)

OH ストテレフトム PROUSE

<<mark>PQ</mark>에 저장된 간선> ■ 0-7 (0.16) -☞ 0

■ 0-2 (0.26) top 3

.7-2(0.34) X(::Grde !=)

0-4 (0.38)

7-4 (0.37)

■ 0-6 (0.58) → Abytest eltergester Crossing Elge

- 초기화: 0과 인접한 간선 모두 PQ에 추가
- V-1개 간선 추가할 때까지 아래 반복
 - PQ에서 weight 가장 작은 간선 v-w를 pop
 - v와 w 둘 다 MST 상에 있으면 이 간선 무시하고 다시 pop
 - v, w 중 v가 MST 상에, w가 외부에 있다고 가정
 - 간선 v-w와 새 정점 w를 MST에 추가 € Cycle delection
 - 새 정점 w와 인접한 간선 중 MST 외부와 연결하는 간선 모두 PQ에 추가

(c) Prim 到25可怜 可可如 \$11 时间 T/F3 五) 7告 40

```
def mstPrimLazy(g):
   def include(v): # v를 MST에 추가 & 인접한 간선 중 MST 외부로 향하는 간선 모두 추가
       included[v] = True
       for e in g.adi[v]:
           if not included[e.other(v)]: pq.put(e)
              型中在罗X→FOLGESDE
   edgesInMST(= [] # Stores edges selected as part of the MST
   included = [False] * g.V # included[v] == True if v is in the MST
   \weightSum = 0 # Sum of edge weights in the MST
                                                  초기화: 0을 MST에 추가 +
   pq = PriorityQueue() # Build a priority queue
                                                         0과 인접한 간선 모두 PQ에 추가
   include(0): 250m 대 表 0m 以表 也可
              叶R001多加州市公州 455
   while not pq.empty() and len(edgesInMST) < g.V-1:
       e = pq.get()
       if included[e.v] and included[e.w]: continue # v-w 모두 MST 상에 있는 간선 무시
       edgesInMST.append(e)
       weightSum += e.weight
       if not included[e.v]: include(e.v) # v,w 중 아직 MST에 포함 안 한 정점과 간선 포함
       if not included[e.w]: include(e.w)
   return edgesInMST, weightSum
```

```
while not pq.empty() and len(edgesInMST) < g.V-1:

knsowly upg e = pq.get() PQ에서 게내서, 사이를 만하기/만당하하다.

connected 하하 if included[e.v] and included[e.w]: continue # v-w 모두 MST 상에 있지 않다면

edgesInMST.append(e)

weightSum += e.weight

#문문문문사, 한경우 바라와 가 바라와 가 하지 포함 안 한 정점과 간선 포함

while not included[e.v]: include(e.v) # v,w 중 아직 MST에 포함 안 한 정점과 간선 포함

while not included[e.w]: include(e.w)

return edgesInMST, weightSum
```

Copyright © by Sihyung Lee - All rights reserved.

minPQ (minimum Priority Queue) 활용 방법 성능: ~E log(E)

- 초기화: 0과 인접한 간선 모두 PQ에 추가
- V-1개 간선 추가할 때까지 아래 반복
 - PQ에서 weight 가장 작은 간선 v-w를 pop
 - v와 w 둘 다 MST 상에 있으면 이 간선 무시하고 다시 pop
 - v, w 중 v가 MST 상에, w가 외부에 있다고 가정
 - 간선 v-w와 새 정점 w를 MST에 추가
 - 새 정점 w와 인접한 간선 중 MST 외부와 연결하는 간선 모두 PQ에 추가

	Operation	1회 비용	필요한 횟수
	PQ, delete min	~ <i>l</i> ∞5	E \
	PQ, insert	~ 100E	E) We 到
gL)	included[v] 확인	~!	EZ
.)	included[v] 변경	~	V

uf.connected (uf.union()

ELOE

→ Knuscalch 写色 Lect記画。 Primal Knuscalter 出れ地号 世上 (UF号 出る句) 四段)

Copyright © by Sihyung Lee - All rights reserved.

[Q] 다음 그래프에 Prim의 알고리즘을 적용해 간선 0-7, 1-7, 0-2를 추가했다. 0-2를 추가한 후에는 PQ에 어떤 key 값이 들어있는가?

- **•** 0.17 0.26 0.28 0.29 0.38 0.40
- **•** 0.17 0.28 0.29 0.38 0.40
- 0.17 0.28 0.29 0.32 0.37 0.38 0.58
- 0.17 0.28 0.29 0.32 0.34 0.36 0.37 0.38 0.40 0.58

Minimum Spanning Tree (MST)

MST의 정의, 찿는 방법, 활용도 이해

- 01. 퀴즈 풀이 & 예습 내용 복습 (이번 주 #1~3차 답안 공개)
- 02. MST는 무엇이며, 어떻게 활용되는가?
- 03. MST의 성질 + Greedy 방법 개요
- 04. Kruskal's Algorithm
- 05. Prim's Algorithm Lazy Version
- 06. Prim's Algorithm Eager Version
- 07. 실습: Prim's Algorithm Eager Version 구현

Prim's Algorithm

검은색: Greedy algorithm 그대로

푸른색: Crossing edge 추가할 partition 선정 방식만 특화한 부분

- 아무 간선 포함 않은 상태에서 시작 (MST = [])
- **정점 0은 MST에 포함**된 상태라 봄
- MST와 나머지 정점 연결하는 간선 중
- weight 가장 작은 간선을 MST에 추가하는 것 반복
- 총 V-1개 간선 포함하면 종료

Prim's Algorithm Lazy Version

Prim's Algorithm Eager Version

47

- MST와 나머지 정점 연결하는 간선 모두 포함
- MST 내부 연결하는 간선도 일부 포함 (기존에 추가되었으나 weight 높아 pop되지 않은 것)

MST 만드는데 불필요한 간선도 일단 PQ에 쌓아 두었다 나중에 pop 할 때 검사해보고 제거하므로 'Lazy'

- MST에 포함되지 않은 <mark>나머지 정점별로</mark> (한 번에 갈 수 있는 점들만) 최소 weight 간선 하나씩만 포함
- MST에 포함된 정점에 대한 간선 (MST 내부 연결하는 간선)은 포함하지 않음 (이미 최소 weight 간선이 pop 되었음)

MST 만드는데 꼭 필요한 간선만 PQ에 저장하므로 'Eager'

Copyright ⊌ by Sinyung Lee - All rights reserved.

Prim's Algorithm Lazy Version

Prim's Algorithm Eager Version

<PQ에 저장된 간선>
2-3 (0.17)
5-7 (0.28)
1-3 (0.29)
1-5 (0.32)
7-2 (0.34)
1-2 (0.36)
4-7 (0.37)
0-4 (0.38)
2-6 (0.40)
0-6 (0.58)

<PQ에 저장된 간선>

- 3 2-3 (0.17)
- 5 5-7 (0.28)
- 4 4-7 (0.37)
- 6 2-6 (0.40)

■ PQ가 간선 수 E에 비례한 수의 간선 포함하므로

- insert, delete 비용 ~log E
- insert, delete 횟수 ~E

- PQ에 최대로 정점 수 V만큼의 값만 저장하므로
- insert, delete 비용 ~log V
- insert, delete 횟수~V
- 보통 V << E 이므로 비용 절감

Copyright © by Sihyung Lee - All rights reserved.

双坡 乱出怨

Prim's Algorithm Eager Version: Indexed minPQ 활용 방법

- 초기화: 0과 **인접한 정점과 최소 weight 간선** PQ에 추가
- V-1개 가선 추가할 때까지 아래 반복
 - PQ에서 weight 가장 작은 간선 v-w를 pop해서 MST에 추가
 - v, w 중 w가 새로 MST에 연결된 정점이라고 가정
 - 새 정점 w와 인접한 간선 중 MST 외부 정점 x와 연결하는 간선에 w-x 대해
 - x에 대한 간선이 아직 PQ에 없다면 PQ에 추가
 - x에 대한 간선 e가 이미 PQ에 있다면, w-x의 weight이 e보다 작은 경우 e를 대체 (decreaseKey)

	정점 번호 (index)	PQ에 저장된 간선[坤 (key)	ב
	0	Never used	
2	1 (132142142)	7-1(0.19)	
3	2	0-2 (0.26)	
	3	1-3 (0.29)	
	4	0-4 (0.38) 1 4 (0.31) 5	-4(o.35)
	5 (短地地)	97-5 (0.2B)	
	6	0-6 (0.58) 3-6 (0.52)	
0	7 (7374202)	0-7 (0.16)	ts reserved

[Q] 다음 그래프에 Prim's Algorithm Eager Version을 적용해 간선 0-7을 추가했다. 0-7를 추가한 후에는 indexed minPQ에 어떤 key 값이 들어있는가?

정점 번호 (index)	PQ에 저장된 간선 (key)
0	
1	7-1 (0.19)
2	0-2 (0.26)
3	
4	0-4(0,38) n-4(0.30)
5	1-5 (0.28)
6	0-6 (0.58)
7	0-9 (0.16)

Indexed minPQ (minimum Priority Queue) 활용 방법 성능

- 초기화: 0과 인접한 정점과 최소 weight 간선 PQ에 추가
- V-1개 간선 추가할 때까지 아래 반복
 - PQ에서 weight 가장 작은 간선 v-w를 pop해서 MST에 추가
 - v, w 중 w가 새로 MST에 연결된 정점이라고 가정
 - 새 정점 w와 인접한 간선 중 MST 외부 정점 x와 연결하는 간선에 w-x 대해
 - x에 대한 간선이 아직 PQ에 없다면 PQ에 추가
 - x에 대한 간선 e가 이미 PQ에 있다면, w-x의 weight이 e보다 작은 경우 e를 대체 (decreaseKey)

Operation	1회 비용	필요한 횟수
PQ, delete min	109V	V
PQ, insert	logV	V (मार्ख्यामप द्वा)
PQ, decreaseKey	109 V	E
included[v] 확인	~1	~E
included[v] 변경	~1	~V

~ Elog V

Minimum Spanning Tree (MST)

MST의 정의, 찿는 방법, 활용도 이해

- 01. 퀴즈 풀이 & 예습 내용 복습 (이번 주 #1~3차 답안 공개)
- 02. MST는 무엇이며, 어떻게 활용되는가?
- 03. MST의 성질 + Greedy 방법 개요
- 04. Kruskal's Algorithm
- 05. Prim's Algorithm Lazy Version
- 06. Prim's Algorithm Eager Version
- 07. 실습: Prim's Algorithm Eager Version 구현

실습 목표: Prim's Algorithm의 Eager Version 구현

- 이번 시간에 배운 Prim's Algorithm Eager Version과 다른 알고리즘의 차이점 이해
- Indexed minPQ 적절하게 활용해 보기

프로그램 구현 조건

- Prim's algorithm eager version 수행하는 함수 구현 def mstPrimEager(g):
- 입력 g: WUGraph 객체 (Weighted Undirected Graph 객체)
 - 입력은 항상 WUGraph 객체가 들어온다고 가정
- 반환 값: 2-tuple (Edge 객체 리스트, weight 합계)
 - (1) MST에 포함한 간선(Edge 객체) 리스트. Prim's algorithm에서 선정하는 순서대로 포함해야 함
 - (2) MST에 포함한 간선의 weight 합계
- 이번 시간에 제공한 코드 UndirectedWeightedGraph.py에 위 함수 작성해 제출
 - 위 코드에 포함된 IndexMinPQ 반드시 사용해야 함
 - mstPrimEager() 외 이미 작성된 코드는 변경하거나 삭제하면 안 됨
 - mstPrimEager() 함수 입력이 WUGraph 객체이므로 WUGraph와 Edge 클래스 반드시 필요
 - 위 코드에 포함된 mstKruskal(), mstPrimLazy() 함수는 결과 및 속도 비교 위해 필요
 - UF 클래스는 mstKrusal() 실행 위해 필요

이들 두 함수 참조해 작성하세요.

reserved

프로그램 구현 조건

- 최종 결과물로 UndirectedWeightedGraph.py 파일 하나만 제출하며, 이 파일만으로 코드가 동작해야 함
- import는 원래 UndirectedWeightedGraph.py 파일에서 import하던 3개 패키지 외에는 추가로 할 수 없음 (Path, PriorityQueue, timeit)
- 각자 테스트에 사용하는 모든 코드는 반드시 if __name__ == "__main__": 아래에 넣어
- 제출한 파일을 import 했을 때는 실행되지 않도록 할 것

프로그램 입출력 예: __main__ 아래 테스트 코드에 있음

g8a = WUGraph.fromFile("wugraph8a.txt")
print(mstPrimEager(g8a))

([0-1 (5.0), 1-2 (6.0), 2-3 (4.0), 1-4 (8.0), 0-5 (11.0), 5-6 (7.0), 5-7 (9.0)], 50.0)

프로그램 입출력 예: __main__ 아래 테스트 코드에 있음

g8 = WUGraph.fromFile("wugraph8.txt")
print(mstPrimEager(g8))

([0-7 (0.16), 1-7 (0.19), 0-2 (0.26), 2-3 (0.17), 5-7 (0.28), 4-5 (0.35), 2-6 (0.4)], 1.81)

그 외 입출력 예제 필요하면 임의의 그래프를 입력으로 주고 mstPrimLazy()의 반환값과 같은지 비교해 보세요.

프로그램 구현 조건 - 성능

- V << E인 그래프의 경우 mstKruskal, mstPrimLazy보다 mstPrimEager가 더 빠르게 결과 찿아야 함
- 채점 시에는 작성한 mstPrimEager의 실행 시간을 mstKruskal, mstPrimLazy과 비교해 더 빠른지 확인하며 (즉 상대 시간을 비교함) 절대 시간을 측정하지는 않음
- 실행 결과로 반환한 MST가 올바르지 않다면 성능 측정도 fail한 것으로 봄
- 답이 올바르지 않다면 성능 측정은 의미가 없으므로

프로그램 실행시간 출력 예: __main__ 아래 테스트 코드에 있음

```
0.000139050000000000000
8.065799999999999e-05
```

4.093300000000008e-05

```
g8a = WUGraph.fromFile("wugraph8a.txt")
n = 100
print(timeit.timeit(lambda: mstKruskal(g8a), number=n)/n)
print(timeit.timeit(lambda: mstPrimLazy(g8a), number=n)/n)
print(timeit.timeit(lambda: mstPrimEager(g8a), number=n)/n)
```

```
6.279300000000002e-05
5.88840000000002e-05
4.66980000000002e-05
```

구현된 API 정리

```
# 이미 구현된 기능
class (dg): # Weight 있는 방향성 없는 간선 나타내는 클래스 (예습자료 참조)
        # WUGraph 객체 내부의 간선이 Edge 클래스 객체이므로 mstPrimEager(g) 작성 시 사용됨
class W(Graph: # Weight 있는 방향성 없는 그래프 나타내는 클래스 (예습자료 참조)
       # mstPrimEager(g) 작성 시 사용됨 (함수 입력 g가 WUGraph 객체이므로)
class 🌿: # Union Find를 수행하고 결과를 저장하는 클래스
       # Kruskal's Algorithm 구현에 활용되며, Prim's Algorithm 구현에는 사용되지 않음
class IndexMinPQ: # Indexed minPQ를 나타내는 클래스 (예습자료 참조)
       #'mstPrimEager(g) 작성 시 반드시 사용
def mstKruskal(g): # WUGraph 객체 g에 대해 Kruskal's Algorithm 수행하고 결과 반환하는 함수
       # 성능 테스트에 사용되며, Prim's Algorithm 구현에는 사용되지 않음
def mstPrimLazy(g): WUGraph 객체 g에 대해 Prim's Algorithm Lazy Version 수행하고 결과 반환하는 함수
       # 이 코드 참조해서 mstPrimEager(g) 작성하기
                                               <IndexMinPQ에 대해 유의할 부분>
```

index: 정점 번호 key: 간선 (Edge 클래스 객체) insert(index, key) 하는데

delMin() 함수는 2-tuple (key, index) 반환함에 유의

구현할 API 정리: def mstPrimEager(g)

```
# 구현해야 하는 기능
def mstPrimEager(g): # WUGraph 객체 g에 Prim's Algorithm Eager Version 수행 후 결과 반환
   def include(w): # mstPrimEager() 내부에서 호출하는 함수로
      # 정점 w를 MST에 포함할 때 수행해야 하는 일 기술
      # included[w] = True > contain(m)
      # w에 인접한 각 간선 /e = w-x에 대해:
           정점 x가 아직 pa에 없다면 pq.insert(x, e)
           x가 이미 pq에 있고 pq에 저장된 간선보다 e의 weight이 더 작다면 pq.decreaseKey(x, e)
                          > bounof (m)
   # 필요한 자료구조 초기화
   # 결과 저장할 리스트(MST에 포함할 간선 저장하는 리스트)를 비어있는 리스트 []로 초기화
   # 각 정점의 포함 여부 결정하는 included[] 리스트를 모두 False로 초기화
   # pq = IndexMinPQ(g.V)
   # include(0) # include(0) 호출해 정점 0에 인접한 정점을 모두 pq에 추가함
   # while 결과 리스트에 V-1개의 간선을 포함하지 않았다면:
        e, w = pq.delMin()
   #
        e를 결과 리스트에 추가
   #
                                              Hint: UndirectedWeightedGraph.py 파일에서
                                          Prim's Algorithm Lazy Version 코드를 참조해 작성하세요.
   #
        include(w)
   # 결과 리스트와 이 리스트에 포함된 간선의 weight 합을 2-tuple로 반환
```


스마트 출결

Copyright © by Sihyung Lee - All rights reserved.

12:00까지 실습 & 질의응답

- 작성한 코드는 Ims > 강의 콘텐츠 > 오늘 수업 > 실습 과제 제출함에 제출
- 시간 내 제출 못한 경우 내일 11:59pm까지 제출 마감
- 마감 시간 후에는 제출 불가하므로 그때까지 작성한 코드 꼭 제출하세요.