

Quantum number, Electronic configuration and Shape of orbitals

- **151.** (d) K=4s¹, Cr=3d⁵ 4s¹, Cu=3d¹⁰ 4s¹
- **153.** (a) It is the ground state configuration of chromium.
- **154** (d) n=4, l=3, m=-2, s=+1/2
- **155.** (b) $n = 4 \rightarrow 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2, 4p^6, 4d^{10}, 4f^{14}$ So l = (n-1) = 4-1 = 3 which is f orbit contain 7 orbital.
- **156.** (d) 2p have contain maximum 6 electron out of which there are 3 are of + 1/2 spin and 3 are of 1/2 spin

- **157.** (a) For 4*f* orbital electron, n = 4 l = 3 (Because 0, 1, 2, 3) s, p, d, f m = +3, +2, +1, 0, -1, -2, -3 s = +1/2
- **158.** (b) $24Cr \rightarrow 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1$ (We know that for p the value of l=1 and for d, l=2) For l=1 total number of electron = 12 For l=2 total number of electron = 5.

IIT-JEE CHEMISTRY

159. (c) Atomic number of potassium is 19 and hence electronic configuration will be $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^1$

Hence for $4s^1$ electron value of Quantum number are

Principal quantum number n = 4

Azimuthal quantum number l=0

Magnetic quantum number m = 0

Spin quantum number s = +1/2

- **160.** (d) According to Hund's rule electron first fill in unpaired form in vacant orbital then fill in paired form to stabilized the molecule by which $1s^2, 2s^2, 2p_x^2$ is not possible. According to Hund's rule. Because $2p_x, p_y, p_z$ have the same energy level so electron first fill in unpaired form not in paired form so it should be $1s^2, 2s^2, 2p_x^1, 2p_y^1$.
- **161.** (c) It is governed by Aufbau principle.
- **162.** (d) The electronic configuration of atomic number $24 = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1$
- **163.** (b) The maximum number of electron in any orbital is 2.
- **164.** (c) According to pauli principle 2 electron does not have the same value of all four quantum number. They have maximum same value are 3.

ESTD: 2005

- **165.** (a) Number of orbitals = $n^2 = 4^2 = 16$.
- **166.** (d) We know from the Aufbau principle, that 2p orbital will be filled before 3s orbital. Therefore, the electronic configuration $1s^2$, $2s^2$, $2p^2$, $3s^1$ is not possible.
- **167.** (d) Each orbital may have two electrons with opposite spin.
- **168.** (d) Maximum no. of electrons in a subshell = 2(2l + 1) for f-subshell, l = 3 so 14 electrons accommodated in f-subshell.

IIT-JEE CHEMISTRY

- **169.** (b) Each orbital has atleast two electron.
- **170.** (a) Nucleus of 20 protons atom having 20 electrons.
- 171 : (c) 14

Maximum number of electrons in 5f orbitals

f-orbital: $I = 3 \rightarrow \text{number of orbitals} = 2I + 1 = 7$ Each orbital can hold 2 electrons $\rightarrow \text{total} = 7 \times 2 = 14$

172 (d) 10Maximum number of electrons in an atom with I = 2 and n = 3

Number of orbitals = 2I + 1 = 5Each orbital can hold 2 electrons \rightarrow total = $5 \times 2 = 10$

173 (c) Excited state of neon atom Given configuration: 1s² 2s² 2p⁵ 3s¹

Total electrons = 2 + 2 + 5 + 1 = 10 electrons

Fluorine (F, Z = 9) \rightarrow 9 electrons

Neon (Ne, Z = 10) \rightarrow 10 electrons

Step 1: Compare with ground states

Ground state of F: $1s^2 2s^2 2p^5 \rightarrow 9$ electrons

Ground state of Ne: 1s² 2s² 2p⁶ → 10 electrons

Step 2: Analyze given configuration

For \mathbf{Ne} , $2p^6$ should be fully filled, but here we have $2p^5$ and $3s^1 \rightarrow$ one

electron from 2p excited to 3s

This is an excited state of neon

:

174. (b) For m = 0, electron must be in s-orbital.

175. (d) 2dz² orbital is a single d-orbital

Each orbital can hold maximum 2 electrons (with opposite spins)

176. (c) In this type of electronic configuration the number of unpaired electrons are 3.

177. (a) Atomic number of Cu is 29 so number of unpaired electrons is 1

$$Cu = (Ar)$$

$$\boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1}$$

179. (b) 10

Maximum number of electrons in 3d subshell

d-subshell: $I = 2 \rightarrow \text{number of orbitals} = 2I + 1 = 5$ Each orbital can hold 2 electrons $\rightarrow \text{total} = 5 \times 2 = 10$

180. (c) 2(2I+1)

Maximum number of electrons in a sub-shell

Number of orbitals in a subshell: 2l + 1

Each orbital can hold 2 electrons \rightarrow maximum electrons = 2 x (2l + 1)

