"Machine Learning and Computational Statistics"

7th Homework

Exercise 1:

Consider the following data stemming from a two-dimensional normal distribution $p(x_1,x_2)^{\sim}N(\mu,\Sigma)$

X={(3.2, 2.9), (2.4, 6.0), (0.70, 4.3), (1.9, 3.5), (2.2, 4.8), (1.2, 2.1), (1.5, 2.1), (2.6, 4.8), (4.2, 7.5), (-1.5, 3.5)}

- (a) Estimate the mean and the covariance matrix of $p(x_1,x_2)$ (use the ML method).
- (b) Consider the one-dimensional normal pdfs $p_1(x_1)$, $p_2(x_2)$, modeling the features x_1 and x_2 , respectively. Do you believe that the independence assumption (i.e. $p(x_1,x_2)=p_1(x_1)$, $p_2(x_2)$) is valid in this case? Explain **very briefly**.

Exercise 2 (python code + text):

Consider a two-class, two-dimensional classification problem for which you can find attached two sets: one for training and one for testing (file HW6.mat). Each of these sets consists of pairs of the form (y_i,x_i) , where y_i is the class label for vector x_i . Let N_{train} and N_{test} denote the number of training and test sets, respectively. The data are given via the following arrays/matrices:

- \rightarrow train_x (a N_{train} x2 matrix that contains in its rows the training vectors x_i)
- \succ train_y (a N_{train} -dim. column vector containing the class labels (1 or 2) of the corresponding training vectors x_i included in train_x).
- \triangleright test_x (a N_{test} x2 matrix that contains in its rows the test vectors x_i)
- \succ test_y (a N_{test} -dim. column vector containing the class labels (1 or 2) of the corresponding test vectors x_i included in test_x).

Assume that the two classes, ω_1 and ω_2 are modeled by normal distributions.

- (a) Adopt the Bayes classifier.
 - i. Use the training set to **estimate** $P(\omega_1)$, $P(\omega_2)$, $p(x|\omega_1)$, $p(x|\omega_2)$ (Since $p(x|\omega_j)$ is modeled a normal distribution, it is completely identified by μ_j and Σ_j . Use the **ML estimates** for them as given in the lecture slides).
- ii. Classify the points x_i of the test set, using the Bayes classifier (for each point apply the Bayes classification rule and keep the class labels, to an a N_{test}—dim. column vector, called Btest_y containing the estimated class labels (1 or 2) of the corresponding test vectors x_i included in test_x.).
- iii. Estimate the error classification probability ((1) **compare** *test_y* and *Btest_y*, (2) **count** the positions where both of them have the same class label and (3) **divide** with the total number of test vectors).

- (b) Adopt the naïve Bayes classifier.
 - i. Use the training set to estimate $P(\omega_1)$, $P(\omega_2)$, $p(x_1|\omega_1)$, $p(x_2|\omega_1)$, $p(x_1|\omega_2)$, $p(x_2|\omega_2)$ (Each $p(x|\omega_j)$ is written as $p(x|\omega_j) = p(x_1|\omega_j)^*$ $p(x_2|\omega_j)$. Use the **ML estimates** of the mean and variance for each one of the 1-dim. pdfs).
- ii. Classify the points $x_i = [x_{i1}, x_{i2}]^T$ of the test set, using the naïve Bayes classifier (Estimate $p(x|\omega_j)$ with $p(x_{i1}|\omega_j)^* p(x_{i2}|\omega_j)$ and then apply the Bayes rule. Keep the class labels, to an a N_{test} —dim. column **vector**, called $NBtest_y$ containing the **estimated class labels** (1 or 2) of the corresponding test vectors x_i included in $test_x$)
- iii. Estimate the error classification probability (work as in the previous case).
- (c) Adopt the minimum Euclidean distance classifier.
 - i. Estimate the means of the classes.
- ii. Classify the points $x_i = [x_{i1}, x_{i2}]^T$ of the test set, using the minimum Euclidean distance classifier (Compute the Euclidean distances $||x-\mu_1||^2$ and $||x-\mu_2||^2$ and assign x to the class corresponding to the minimum distance. Keep the class labels, to an a N_{test} —dim. column **vector**, called $NBtest_y$ containing the **estimated class labels** (1 or 2) of the corresponding test vectors x_i included in $test_x$)
- iii. Estimate the error classification probability (work as in case (a)).
- (d) For each classifier, depict graphically the training set, using different colors for points from different classes.
- (e) Report the classification results obtained by the three classifiers and comment on them. Under what conditions, the classifiers would exhibit the same performance?

Hint: After downloading the attached MATLAB file, use the following python code to retrieve the above mentioned matrices and vectors:

```
import scipy.io as sio

Dataset = sio.loadmat('HW6.mat')

train_x = Dataset['train_x']
train_y = Dataset['train_y']
test_x = Dataset['test_x']
test_y = Dataset['test_y']
```