

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э.БАУМАНА

(национальный исследовательский университет)»

Факультет: Информатика и системы управления

Кафедра: Теоретическая информатика и компьютерные технологии

Лабораторная работа № 4

«Численное интегрирование»

по дисциплине «Численные методы»

Вариант 9

Работу выполнил

студент группы ИУ9-62Б

Егоров Алексей

1. Цель работы

Сравнительный анализ методов численного интегрирования: метод средних прямоугольников, метод трапеций, метод Симпсона, метод Монте-Карло. Вычисление уточненного значения интеграла.

2. Постановка задачи

Дано: интеграл $I = \int_{a}^{b} f(x) dx$, где f(x) - подынтегральная функция, непрерывная на [a, b].

Найти: значение интеграла $I \approx I^*$ с погрешностью $\epsilon < 0.01$

Индивидуальный вариант: $f(x) = 2sin(\sqrt{x})$, a = 0, $b = \frac{\pi^2}{4}$

$$\int_{0}^{\frac{\pi^{2}}{4}} 2\sin(\sqrt{x})dx = 4$$

3. Теоретические сведения

3.1 Метод средних прямоугольников

Вычисление интеграла основано на приближенном вычислении площади под графиком с помощью суммирования площадей прямоугольников, ширина которых определяется шагом разбиения, а высота - значением подынтегральной функции в узле интегрирования.

$$I^* = h \sum_{i=1}^n f(\frac{x_{i-1} + x_i}{2}) = h \sum_{i=1}^n f(a + ih + \frac{h}{2}), h = \frac{b-a}{n}$$

3.2 Метод трапеций

Вычисление интеграла основано на приближенном вычислении площади под графиком с помощью суммирования площадей прямоугольных трапеций, высота которых определяется шагом разбиения, а основание - значением подынтегральной функции в узле интегрирования.

$$I^* = \frac{h}{2} \sum_{i=0}^{n} f(x_i) = \frac{h}{2} \left(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i) \right), \ h = \frac{b - a}{n}$$

3.3 Метод Симпсона

Метод Симпсона заключается в приближении подынтегральной функции полиномом второй степени $y=a_ix^2+b_ix+c_i$ на каждом участке разбиения [a,b].

$$I^* = \frac{h}{3} (f(a) + f(b) + 4(f(x_1) + f(x_2) + \dots + f(x_{n-1})) + 4(f(x_2) + \dots + f(x_n)) + \dots + 2(f(x_n) + f(x_n) + \dots + f(x_n))), n = 2m$$

3.4 Метод Монте-Карло

Метод Монте-Карло - статистический метод. На отрезке [a,b] строится прямоугольник с высотой $f_{max}(x)$. Случайным образом в этом прямоугольнике выбирается n точек, подсчитывается количество m точек, попавших под график функции.

$$I^* = (b - a) * f_{max}(x) * \frac{m}{n}$$

3.5 Уточнение значение интеграла

 $I = I^* + O(h^k)$, где I^* - приближенное значение интеграла, k - порядок точности метода, $O(h^k) = ch^k$, h - шаг, c - константа.

Для методов средних прямоугольников и трапеций k=2, для метода Симпсона k=4.

Из
$$I=I_h^*+ch^k$$
 и $I=I_{\frac{h}{2}}^*+c(\frac{h}{2})^k$ следует уточненное значение интеграла: $I=I_{\frac{h}{2}}^*-\frac{I_h^{*-I_{\frac{h}{2}}^*}}{2^k-1}$

4. Практическая реализация

Листинг 1. Численное интегрирование

```
package main
import (
  "fmt"
  "math"
  "math/rand"
  "time"
)

func avRect(a, b float64, n int, f func(float64) float64) float64 {
  h := (b - a) / float64(n)
  sum := 0.0

for i := 1; i <= n; i++ {
    sum += f(a + float64(i)*h - h/2)
}

return h * sum
}</pre>
```

```
func trapezoid(a, b float64, n int, f func(float64) float64) float64
{
h := (b - a) / float64(n)
sum := (f(a) + f(b)) / 2
for i := 1; i < n; i++ {
   sum += f(a + h*float64(i))
 }
return h * sum
}
func simps(a, b float64, n int, f func(float64) float64) float64 {
h := (b - a) / float64(n)
sum := f(a) + f(b)
for i := 1; i < n; i++ {
   if i%2 == 0 {
    sum += 2 * f(a+float64(i)*h)
  } else {
     sum += 4 * f(a+float64(i)*h)
  }
 }
return h / 3 * sum
func montekarl(n int, a, b, maxX float64, f func(float64) float64)
float64 {
type point struct {
  x, y float64
points := make([]point, 0, n)
for i := 0; i < n; i++ {
   points = append(points, point{a + rand.Float64()*(b-a),
rand.Float64() * f(maxX)})
// fmt.Println(points)
cnt := 0
for _, p := range points {
  if p.y \le f(p.x) {
    cnt += 1
  }
 return ((b - a) * f(maxX)) * (float64(cnt) / float64(n))
```

```
}
func main() {
 rand.Seed(time.Now().UnixNano())
rectN := 16
trapN := 32
 simpN := 16
 e := 4.0
 tf := func(x float64) float64 {
   return 2 * math.Sin(math.Sqrt(x))
 a, b := 0.0, math.Pi*math.Pi/4
 fmt.Printf("n: %d Rect: %.16f diff=%.16f correction=%.16f
corrected=%.16f cor dif=%.16f\nn: %d Trap: %.16f diff=%.16f
correction=%.16f corrected=%.16f cor dif=%.16f\nn: %d Simp: %.16f
diff=%.16f correction=%.16f corrected=%.16f cor dif=%.16f\n",
   rectN,
   avRect(a, b, rectN, tf),
   math.Abs(avRect(a, b, rectN, tf)-e),
   math.Abs(avRect(a, b, rectN, tf)-avRect(a, b, 2*rectN,
tf))/(math.Exp2(2)-1),
   avRect(a, b, 2*rectN, tf)+(avRect(a, b, rectN, tf)-avRect(a, b,
2*rectN, tf))/(math.Exp2(2)-1),
   math.Abs(avRect(a, b, 2*rectN, tf)+(avRect(a, b, rectN,
tf) -avRect(a, b, 2*rectN, tf))/(math.Exp2(2)-1)-e),
   trapN,
   trapezoid(a, b, trapN, tf),
   math.Abs(trapezoid(a, b, trapN, tf)-e),
   math.Abs(trapezoid(a, b, trapN, tf)-trapezoid(a, b, 2*trapN,
tf))/(math.Exp2(2)-1),
   trapezoid(a, b, 2*trapN, tf)+(trapezoid(a, b, trapN,
tf)-trapezoid(a, b, 2*trapN, tf))/(math.Exp2(2)-1),
   math.Abs(trapezoid(a, b, 2*trapN, tf)+(trapezoid(a, b, trapN,
tf)-trapezoid(a, b, 2*trapN, tf))/(math.Exp2(2)-1)-e),
   simpN,
   simps(a, b, simpN, tf),
   math.Abs(simps(a, b, simpN, tf)-e),
   math.Abs(simps(a, b, simpN, tf)-simps(a, b, 2*simpN,
tf))/(math.Exp2(4)-1),
   simps(a, b, 2*simpN, tf)+(simps(a, b, simpN, tf)-simps(a, b,
2*simpN, tf))/(math.Exp2(4)-1),
   math.Abs(simps(a, b, 2*simpN, tf)+(simps(a, b, simpN, tf)-simps(a,
b, 2*simpN, tf))/(math.Exp2(4)-1)-e),
```

```
eps := 0.01
cntP := 2
m := montekarl(cntP, a, b, b, tf)
for math.Abs(m-e) >= eps {
   cntP *= 2
   m = montekarl(cntP, a, b, b, tf)
}
fmt.Printf("n=%d Monte: %.16F diff=%.16f\n", cntP, m, math.Abs(m-e))
}
```

5. Результат

```
|anyegorov@000NBA06KRMD6M lab4 % go run main.go

n: 16 Rect: 4.0073233361758049 diff=0.0073233361758049 correction=0.0015750199260293 corrected=4.0041732963237466 cor_dif=0.0041732963237466

n: 20 Trap: 3.9820289713209958 diff=0.0179710286790042 correction=0.0038697563812775 corrected=3.9897684840835508 cor_dif=0.0102315159164492

n: 14 Simp: 3.9879251374175335 diff=0.0120748625824665 correction=0.0005211058257376 corrected=3.9952206189778594 cor_dif=0.0047793810221406

n=65536 Monte: 3.9994367077595534 diff=0.0005632922404466
```

Рисунок 1. Результат работы программы

Метод	n	Вычисленное значение интеграла	Абсолютная погрешность	Уточненное значение интеграла	Абсолютная погрешность
Средних прямоуго льников	16	4.0073233361758049	0.007323336175 8049	4.00417329632 37466	0.00417329632 37466
Трапеций	20	3.9911119796005776	0.008888020399 4224	3.99494074519 96248	0.00505925480 03752
Симпсон а	14	3.9879251374175335	0.012074862582 4665	3.99522061897 78594	0.00477938102 21406
Монте-К арло	65536	3.9994367077595534	0.000563292240 4466	-	-

6. Вывод

В ходе выполнения лабораторной были реализованы 4 метода численного интегрирования: метод средних прямоугольников, метод трапеций, метод Симпсона, метод Монте-Карло. Для каждого метода, кроме метода Монте-Карло, было вычислено уточненное значение. Из первых трех методов самым точным оказался метод Симпсона, а метод трапеций наименее точным. В методе Монте-Карло для достижения сравнимой точности необходимо выбирать большое количество случайных точек, что негативно сказывается на производительности вычислений.