Questions de cours.

- 1. Énoncer et démontrer l'inégalité de Cauchy-Schwarz pour les intégrales, avec les cas d'égalité.
- 2. Énoncer et démontrer la formule de Taylor avec reste intégral.
- 3. Énoncer et démontrer l'inégalité de Taylor-Lagrange.

1 Intégrales sur un segment

Exercice 1.1 (\star) . Calculer les intégrales suivantes :

1. $\int_{-1}^{1} \frac{e^{2t}}{e^t + 1} dt$ 2. $\int_{0}^{1} \frac{dt}{1 + t^2}$ 3. $\int_{0}^{1/2} \frac{dt}{\sqrt{1 - t^2}}$ 4. $\int_{0}^{2\pi} \cos(mt) \cos(nt) dt$ 5. $\int_{0}^{1} \frac{dt}{\sqrt{t + \sqrt{t^3}}}$ 6. $\int_{0}^{1} \frac{t dt}{\sqrt{1 + t^2}}$

7. $\int_1^2 \frac{\ln t}{\sqrt{t}} dt$.

Exercice 1.2 (\star) . Démontrer que :

$$\forall Q \in \mathbb{R}[X], \int_{-1}^{1} Q = -i \int_{0}^{\pi} Q\left(e^{i\theta}\right) e^{i\theta} d\theta.$$

Exercice 1.3 (*). Étudier la suite de terme général $\sum_{k=1}^{n} \frac{1}{\sqrt{(n+k+1)(n+k)}}$.

Exercice 1.4 (*). Soit $f:[0,1] \to \mathbb{R}$ continue t.q. $\int_0^1 f = \frac{1}{2}$. Montrer que f admet un point fixe.

Exercice 1.5 (*). On fixe a < b deux réels. Donner une CNS sur $f \in C^0([a,b],\mathbb{C})$ pour que :

$$\left| \int_{a}^{b} f \right| = \int_{a}^{b} |f| \, .$$

Exercice 1.6 (\star) . Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$. On suppose que pour toute application $g \in \mathcal{C}^2([0,1],\mathbb{R})$ vérifiant g(0) = g(1) = 0, $\int_0^1 fg = 0$. Montrer que f = 0.

Exercice 1.7 (Polytechnique '17, \star). Soit a < b des réels. Montrer que :

$$\forall \varepsilon > 0, \ \exists C > 0, \ \forall f \in \mathcal{C}^1\left(\left[a,b\right],\mathbb{C}\right), \ \forall x \in \left[a,b\right], \ \left|f^2(x) - f^2(a)\right| \leqslant C \int_a^x f^2 + \varepsilon \int_a^x f'^2.$$

$\mathbf{2}$ Développements limités

Exercice 2.1 (*). Donner un développement limité en le point et à l'ordre indiqués des fonctions suivantes :

- 1. $\tan x$, en 0, à l'ordre o (x^5) .
- **2.** $e^x \ln(1+x)$, en 0, à l'ordre $o(x^4)$.
- **3.** $\ln(1-\sin x)$, en 0, à l'ordre $o(x^4)$.
- **4.** $\arctan(e^x)$, en 0, à l'ordre $o(x^3)$.
- **5.** $\frac{\ln x}{x^2}$, en 1, à l'ordre $o((x-1)^3)$.
- **6.** $2^x x^2$, en 2, à l'ordre $o((x-2)^3)$.
- 7. $\sqrt[3]{x^3 + x + 1} \sqrt{x^2 x 1}$, en $+\infty$, à l'ordre $o\left(\frac{1}{x^2}\right)$.

Exercice 2.2 (*). Pour $n \in \mathbb{N}^*$, on définit $f_n : x \in \mathbb{R} \longmapsto (e^x - 1)^n$. Calculer $f_n^{(k)}(0)$ pour $0 \leqslant k \leqslant n$.

Exercice 2.3 (Principe des zéros isolés, \star).

1. Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction C^{∞} et $a \in \mathbb{R}$ un zéro de g d'ordre fini (i.e. g(a) = 0 et $\exists p \in \mathbb{N}, g^{(p)}(a) \neq 0$ 0). Montrer que a est un zéro isolé, i.e. il existe un $\eta > 0$ t.q. g ne s'annule en aucun point de $|a-\eta, a+\eta| \setminus \{a\}.$

2. On considère :

$$f: x \in \mathbb{R} \longmapsto \begin{cases} \exp\left(-\frac{1}{x^2}\right) & si \ x > 0 \\ 0 & si \ x \leqslant 0 \end{cases}.$$

- a. Tracer (sommairement) la courbe représentative de f.
- **b.** Montrer que pour tout $n \in \mathbb{N}$, il existe une fonction polynomiale $P_n : \mathbb{R} \to \mathbb{R}$ et un $\alpha_n \in \mathbb{N}$ t.q.

$$\forall x \in \mathbb{R}^*, \ f^{(n)}(x) = \frac{P_n(x)}{x^{\alpha_n}} f(x).$$

- **c.** En déduire que f est C^{∞} sur \mathbb{R} .
- **d.** Que peut-on dire de la série de Taylor de f en 0 ?
- 3. Étudier la réciproque du 1..

Exercice 2.4 (*). *Soit* $f: x \in \mathbb{R} \longmapsto x + \sin x$.

- **1.** Montrer que $f : \mathbb{R} \to \mathbb{R}$ est une bijection.
- **2.** Donner le développement limité à l'ordre $o(x^5)$ de f^{-1} en 0.

Exercice 2.5 (*). On définit une suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in\mathbb{R}_+^*$ et $\forall n\in\mathbb{N},\ u_{n+1}=\sin u_n$.

- **1.** Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite que l'on précisera.
- **2.** Trouver un $\gamma \in \mathbb{R}$ t.q. la suite $(u_{n+1}^{\gamma} u_n^{\gamma})_{n \in \mathbb{N}}$ converge.
- **3.** Utiliser le théorème de Cesàro pour en déduire un équivalent de $(u_n)_{n\in\mathbb{N}}$.

Exercice 2.6 (*). Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 . On suppose que $\lim_{+\infty} f = \lim_{+\infty} f'' = 0$.

- 1. À l'aide d'une formule de Taylor, majorer f' à l'aide de f et f''.
- **2.** Montrer que $\lim_{+\infty} f' = 0$.
- **3.** Trouver des contre-exemples en supprimant l'hypothèse $\lim_{+\infty} f = 0$ ou $\lim_{+\infty} f'' = 0$.

Exercice 2.7 (Mines '01, \star).

- **1.** Pour tout $n \in \mathbb{N}$, justifier l'existence d'un unique $x_n \in \mathbb{R}$ t.q. $x_n + e^{x_n} = n$.
- **2.** Déterminer la limite puis un équivalent de $(x_n)_{n\in\mathbb{N}}$.
- **3.** Former un développement asymptotique à deux voire trois termes de $(x_n)_{n\in\mathbb{N}}$.