БГТУ, ФИТ, ПОИТ, 2 семестр, Языки программирования

Синтаксический анализ

1. Синтаксический анализ: вторая фаза трансляции.

Синтаксический анализ выполняется после фазы лексического анализа и предназначен для распознавания синтаксических конструкций и формирования промежуточного кода.

2. Синтаксический анализ: основная фаза трансляции.

Без нее процесс трансляции не имеет смысла.

Все задачи лексического анализа могут быть решены в рамках синтаксического анализа. Т.е. можно создать транслятор без лексического анализатора. Лексический анализ необходим для освобождения алгоритма синтаксического разбора от рутинных алгоритмов.

3. Синтаксический анализатор: часть транслятора, выполняющая синтаксический анализ.

Входом для синтаксического анализа является таблица лексем (токенов) и таблица идентификаторов.

Выходом является дерево разбора.

4. Входная и выходная информация синтаксического анализатора.

5. Нет четкой границы между лексическим и синтаксическим анализатором. Алгоритм разбора распределяется между лексическим и синтаксическим анализатором.

Конструкции языка, которые разбираются лексическим или синтаксическим анализатором, определяет разработчик транслятора.

- 6. Задачи, выполняемые синтаксическим анализатором:
 - 1) поиск и выделение синтаксических конструкций в исходном тексте (разбор);
 - 2) распознавание (проверка правильности) синтаксических конструкций;
 - 3) выявление ошибок и продолжение процесса распознавания после обработки ошибок;
 - 4) формирование дерева разбора в случае, если нет ошибок.
- 7. Исходный текст для синтаксического анализатора таблица лексем (токенов).
- 8. Для описания языка, разбираемого синтаксическим анализатором, применяют грамматики типа 2 иерархии Хомского контекстно-свободные грамматики (лекция 12).

9. Грамматики типа 2 иерархии Хомского (КС-грамматики):

$$G_{II} = \langle T, N, P, S \rangle$$
 – контекстно-свободные грамматики.

Правила (продукции) грамматики P имеют вид:

$$A \rightarrow \alpha$$
,

A o lpha , где $A \in N$, $lpha \in V^*$, $V = N \cup T$ — словарь грамматики G_{II} .

S – стартовый символ грамматики.

- 11. Имеется три основных типа синтаксических анализаторов КС-грамматик:
 - нисходящие;
 - восходящие;
 - универсальные.
- 12. Преобразование грамматики

Формально преобразование грамматики определяется следующим образом:

$$G_1 = \langle T_1, N_1, P_1, S \rangle \rightarrow G_2 = \langle T_2, N_2, P_2, S \rangle \Leftrightarrow L(G_2) = L(G_1)$$

Основные цели преобразований КС-грамматик: упрощение правил грамматики и облегчение создания распознавателя языка.

- 13. Грамматика G является приведенной грамматикой, если в грамматике нет:
 - бесплодных символов;
 - недостижимых символов;
 - $-\lambda$ -правил;
 - цепных правил.

ВНИМАНИЕ! Шаги преобразования грамматики должны выполняться строго в указанном порядке.

14. Приведение грамматики G – отыскание эквивалентной приведенной грамматики G'.

Процесс приведения – упрощение грамматики.

15. Определение бесплодного символа.

Символ $A\in N$ в грамматике $G=\langle T,N,P,S\rangle$ называется бесплодным, если множество $\{\alpha\mid \alpha\in T^*,A\Rightarrow *\alpha\}=\varnothing$

Т.е. в грамматике G из нетерминала A нельзя вывести хотя бы одну цепочку, состоящую из терминальных символов или пустого символа λ .

Другими словами: нетерминальный символ называется бесплодным, если из него нельзя вывести ни одной цепочки.

16. Алгоритм удаления бесплодных символов

Рекурсивно строим множества $N_0, N_1, N_2,...$

1)
$$N_0 = \emptyset$$

2)
$$N_1 = \{A \mid (A \to \alpha) \in P \land \alpha \in (N_0 \cup T)^*\} \cup N_0$$

3) если $N_1 \neq N_0$, то переход на шаг 4 иначе $G' = (T, N_1, P', S)$, где P' — правила из P , содержащие только символы $V' = N_1 \cup T$

4)
$$N_2 = \{A \mid (A \to \alpha) \in P \land \alpha \in (N_1 \cup T)^*\} \cup N_1$$

5) если $N_2 \neq N_1$, то переход на шаг 6 иначе $G' = (T, N_2, P', S)$, где P' — правила из P , содержащие только символы $V' = N_2 \cup T$

6)
$$N_3 = \{A \mid (A \to \alpha) \in P \land \alpha \in (N_2 \cup T)^*\} \cup N_2$$

- 7) если $N_3 \neq N_2$, то переход на шаг 8 иначе $G' = (T, N_3, P', S)$, где P' правила из P , содержащие только символы $V' = N_3 \cup T$
- 8) ...
- 17. В общем виде алгоритм удаления бесплодных символов можно записать следующим образом:

1)
$$N_0 = \emptyset$$

2)
$$i=1, N_i = \{A \mid (A \to \alpha) \in P \land \alpha \in (N_{i-1} \cup T)^*\} \cup N_{i-1}\}$$

3) если
$$N_i \neq N_{i-1}$$
, то i = i +1 b переход на шаг 2 иначе $G' = (T, N_i, P', S)$, где P' — правила из P , содержащие только символы $V' = N_i \cup T$

18. Определение недостижимого символа.

Символ $X \in (N \cup T)$ в грамматике $G = \langle T, N, P, S \rangle$ называется недостижимым, если он не встречается ни в одной сентенциальной форме грамматики.

Другими словами: недостижимым символом называется символ, который не может быть выведен из стартового символа грамматики S.

Очевидно, что такой символ грамматике не нужен.

Напоминание из лекции 12:

если
$$S \Rightarrow^* \beta$$
 и $\beta \in (T \cup N)^*$,

то eta называется **сентенциальной** формой грамматики $G = \langle T, N, P, S \rangle$).

19. Алгоритм удаления недостижимых символов

ВНИМАНИЕ! Перед удалением недостижимых символов, должны быть удалены бесплодные символы

Строим множества $V_0, V_1, V_2, ...$:

Описание алгоритма. Строим множество достижимых символов. Первоначально в это множество входит только стартовый (целевой) символ S грамматики, затем множество пополняем на основе грамматики.

Все символы, которые не войдут в это множество, являются недостижимыми и могут быть исключены в новой грамматике из словаря и из правил.

1)
$$V_0 = \{S_0\}$$
, $i = 1$

2)
$$V_i = \{x \mid x \in (N \cup T) \mid u \mid (A \to \alpha x \beta) \in P, A \in V_{i-1}\} \cup V_{i-1},$$
 где $\alpha, \beta \in (N \cup T)^*$

3) если
$$V_i \neq V_{i-1}$$
, то $i=i+1$ и переход на шаг 2, иначе $G'=(T',N',P',S)$, где $N'=N\cap V_i$, $T'=T\cap V_i$ P' — правила из P , содержащие только символы V_i .

20. Пример удаления бесплодных И недостижимых символов: $G = \langle \{a,b,c,d\}, \{A,B,C,S\}, P,S \rangle$, где $P = \{S \rightarrow aSa \mid b\underline{A}d \mid c, A \rightarrow c\underline{B}d \mid aAd, \underline{C} \rightarrow d\}$

Здесь бесплодные символы: A, B (нельзя вывести ни одной цепочки); Недостижимые символы: C (не выводится из стартового символа).

$$N_{\underline{i}} = \{A \mid (A \to \alpha) \in P \quad u \quad \alpha \in (N_{\underline{i}-1} \cup T)^*\} \cup N_{\underline{i}-1}$$

- 1) $N_0 = \emptyset$
- 2) $N_1 = \{S, C\}$
- 3) $N_1 \neq N_0$, переход на шаг 4
- 4) $N_2 = \{S, C\}$
- 5) $N_2 = N_1$ $G' = (\{a, b, c, d\}, \{S, C\}, \{S \to aSa, S \to c, C \to d\}, S)$

$$V_{i} = \{x \mid x \in (N \cup T) \land (A \to \alpha x \beta) \in P, A \in V_{i-1}\} \cup V_{i-1}$$

$$1) \ V_{0} = \{S\}$$

$$2) \ V_{1} = \{S, a, c\}$$

$$3) \ V_{2} = \{S, a, c\}$$

- 4) $G' = (\{a,c\}, \{S\}, \{S \to aSa, S \to c\}, S)$

Алгоритмы удаления бесплодных и недостижимых символов упрощают грамматики, сокращают количество символов алфавита и правил грамматики.

- 21. *Определение*. Правило $A \to B$, где $A, B \in N$ называется цепным.
- 22. **Теорема:** для грамматики G, содержащей цепные правила, всегда можно найти эквивалентную грамматику G' не содержащую цепных правил.
- 23. Правила вида $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow aX$ могут быть заменены одним правилом $A \to aX$, т.к. вывод $A \Rightarrow B \Rightarrow C \Rightarrow aX$ цепочки aX в грамматике G может быть заменен выводом $A \Rightarrow aX$ с помощью правила $A \rightarrow aX$.

24. Алгоритм исключения цепных правил

P — множество правил грамматики $\,G\,.$

Описание алгоритма.

Разобьем множество P на два подмножества P_1 и P_2 по следующему принципу: P_1 содержит правила вида $A_i \to B_i$, и P_2 — все остальные. На множестве P_1 построим множество правил $P(A_i)$,

для которых
$$B_i \to \alpha$$
 и $\alpha \in (N \cup T)^*$ правила из P_2 .

Замещаем цепные правила $A_i \to B_i$ в $P(A_i)$ на правила $A_i \to \alpha$. Тогда правила грамматики $P' = P(A_1) \cup P(A_2) \cup ... \cup P_2$ являются правилами грамматики G', не содержащие цепных правил.

25. Пример. Исключение цепных правил:

$$G = \langle \{+, *, (,), a\}, \{E, T, F\}, P, E \rangle$$
 где $P = \{E \to E + T \mid T, T \to T * F \mid F, F \to (E) \mid a\}$

Необходимо исключить правила $E \to T$, $T \to F$.

Пусть E — выражения, состоящие из слагаемых, разделенных знаками +, T — выражения, состоящие из сомножителей, разделенных знаками *,

F – выражения, которые могут быть выражением, либо терминалом a .

$$P_{1} = \{E \rightarrow T, T \rightarrow F\}$$

$$P_{2} = \{E \rightarrow E + T, T \rightarrow \underline{T}^{*}\underline{F}, F \rightarrow (\underline{E}) | a\}$$

$$P_{1}(E) = \{E \rightarrow \underline{T}\} \Rightarrow P_{1}(E) = \{E \rightarrow T^{*}\overline{F}, \underline{E} \rightarrow (E) | a\}$$

$$P_{1}(T) = \{T \rightarrow F\} \Rightarrow P_{1}(T) = \{\underline{T} \rightarrow (E) | a\}$$

$$P' = P_{1}(E) \cup P_{1}(T) \cup P_{2}$$

$$P' = \{E \rightarrow T^{*}F | (E) | a | E + T, T \rightarrow T^{*}F | (E) | a, F \rightarrow (E) | a\}$$

- 26. *Определение*. Правило вида $A \to \lambda$ называется λ -правилом или аннулирующим правилом.
- 27. **Теорема**: для грамматики G, содержащей λ -правила, всегда можно найти эквивалентную грамматику G' не содержащую λ -правил.
- 28. Алгоритм исключения λ -правил. Выполнить все возможные подстановки пустой цепочки вместо аннулирующего нетерминала во всех правилах грамматики.
- 29. Пример.

$$G = \langle \{a,b\}, \{I,A,B,C\}, P,I \rangle,$$
 где $P = \{I \rightarrow ABC, A \rightarrow BB | \lambda, B \rightarrow CC | a, C \rightarrow AA | b\},$

Заменим аннулирующий нетерминал A пустой цепочкой λ в тех правилах грамматики, где он встречается в правой части, остальные правила оставим без изменения.

$$I \to ABC | BC, C \to AA | A | b$$

$$P' = \{I \to ABC | BC, A \to BB, B \to CC | a, C \to AA | A | b\}$$

30. **Автоматы с магазинной памятью (МП-автоматы)** — распознаватели контекстно-свободных языков, которые можно представить в виде следующей схемы:

31. Формальное описание МП-автомата:

$$M = \langle Q, V, Z, \delta, q_0, z_0, F \rangle$$

Q — множество состояний управляющего устройства;

V — алфавит входных символов;

Z — специальный алфавит магазинных символов;

 δ — функция переходов автомата $Q \times (V \cup \{\lambda\}) \times Z \to P(Q \times Z^*)$,

где $P(Q \times Z^*)$ - множество подмножеств $Q \times Z^*$;

 $q_0 \in Q$ — начальное состояние автомата;

 $z_0 \in Z$ — начальное состояние магазина (маркер дна);

 $F \subseteq Q$ — множество конечных состояний.

Функция переходов δ отображает тройки (q,a,z) в пары (q',γ) для детерминированного автомата или во множество таких пар для недерминорованного автомата, где $q' \in Q^*, \gamma$ — символ в вершине магазина. Эта функция описывает состояние магазинного автомата, при чтении символа с входной ленты и перемещении головки.

32. Конфигурация МП-автомата

Конфигурация автомата (текущее состояние) описывается тройкой: (q,α,ω) , где

Q - текущее состояние автомата;

 α - остаток цепочки. Первый символ этой цепочки просматривается входной головкой автомата. Если $\alpha = \{\lambda\}$, то входной символ прочитан;

 ω - цепочка-содержимое магазина (стека). Если $\omega = \{\lambda\}$, то магазин пустой.

33. Один такт работы автомата:

$$(q,a\alpha,z\omega) \succ (q',\alpha,\gamma\omega)$$
, (читается как «переходит в конфигурацию») если $(q',\gamma) \in \delta(q,a,z)$.

При выполнении такта из магазина (стека) удаляется верхний символ, соответствующий условию перехода, и добавляется цепочка, соответствующая правилу перехода.

Первый символ цепочки становится вершиной стека.

Допускаются переходы, при которых входной символ игнорируется. Эти переходы (такты) называются λ -переходами.

34. Начальное состояние МП-автомата (q_0, α, z_0) ,

где q_0 — начальное состояние автомата, α — входная цепочка, z_0 — маркер дна магазина.

35. *Определение*. Цепочка α является допустимой (распознается) автоматом, если из начальной конфигурации за конечное число тактов работы автомат перейдет в заключительное состояние:

$$M=\left\langle Q,V,Z,\delta,q_0,z_0,F\right
angle$$
, если $(q_0,\alpha,z_0)\succ^*(q',\lambda,\lambda)$ и $q'\in F$.

36. Работа автомата $M=\langle Q,V,Z,\delta,q_0,z_0,F angle$

- 1) состояние автомата $(q, a\alpha, z\beta)$
- 2) читает символ a находящийся под головкой (сдвигает ленту);
- 3) не читает ничего (читает λ , не сдвигает ленту);
- 4) из δ определяет новое состояние q', если $(q',\gamma) \in \delta(q,a,z)$ или $(q',\gamma) \in \delta(q,\lambda,z)$.
- 5) читает верхний (в стеке) символ z и записывает цепочку γ т.к. $(q',\gamma)\in \delta(q,a,z)$, при этом, если $\gamma=\lambda$, то верхний символ магазина просто удаляется.
- 6) работа автомата заканчивается (q, λ, λ)

37. На каждом шаге автомата возможны три случая:

- 1) функция $\delta(q,a,z)$ определена осуществляется переход в новое состояние;
- 2) функция $\delta(q, a, z)$ не определена, но определена $\delta(q, \lambda, z)$ осуществляется переход в новое состояние (лента не продвигается);
- 3) функции $\delta(q,a,z)$ и $\delta(q,\lambda,z)$ не определены дальнейшая работа автомата не возможна (цепочка не разобрана).

38. Язык $L(M) = \{\alpha \mid (q_0, \alpha, z_0) \succ^* (q', \lambda, \lambda), q' \in F\}$ — допускаемый автоматом M .

Пример:

$$M = \langle \{q_0, q_1, q_2\}, \{a, b\}, \{z_0, a\}, \delta, q_0, z_0, \{z_0\} \rangle$$

$$\delta(q_0, a, z_0) = (q_1, z_0 a)$$

$$\delta(q_1, a, a) = (q_1, aa)$$

$$\delta(q_1, b, a) = (q_2, \lambda)$$

$$\delta(q_2, b, a) = (q_2, \lambda)$$

$$\delta(q_2, \lambda, z_0) = (q_0, \lambda)$$

Этот автомат является детерминированным.

Работу автомата при распознавании входной цепочки можно представить в виде последовательности конфигураций:

Конфигурация	Функции перехода
$(q_0, aabb, z_0)$	1) $\delta(q_0, a, z_0) = (q_1, z_0 a)$
(q_1, abb, z_0a)	2) $\delta(q_1, a, a) = (q_1, aa)$
(q_1,bb,z_0aa)	3) $\delta(q_1, b, a) = (q_2, \lambda)$
(q_2,b,z_0a)	4) $\delta(q_2, b, a) = (q_2, \lambda)$
(q_2,λ,z_0)	5) $\delta(q_2, \lambda, z_0) = (q_0, \lambda)$
(q_0,λ,λ)	
Разобрана	

$$\delta(q_0, a, z_0) = (q_1, z_0 a)$$

$$\delta(q_1, a, a) = (q_1, aa)$$

$$\delta(q_1, b, a) = (q_2, \lambda)$$

$$\delta(q_2, b, a) = (q_2, \lambda)$$

$$\delta(q_2, \lambda, z_0) = (q_0, \lambda)$$

Шаг	Состояние	Входная	Магазин	Функция
		цепочка		перехода
1	q_0	aabb	z_0	1
2	q_1	abb	az_0	2
3	q_1	bb	aaz_0	3
4	q_2	b	az_0	4
5	q_2	λ	z_0	5
6	q_0	λ	λ	

Пример:

$$M = \langle \{q_0, q_1, q_2\}, \{a, b\}, \{z_0, a\}, \delta, \{z_2\} \rangle$$

$$\delta(q_0, a, z_0) = (q_0, z_0 a)$$

$$\delta(q_0, b, z_0) = (q_0, z_0 b)$$

$$\delta(q_0, a, a) = \{(q_0, aa), (q_1, \lambda)\}$$

$$\delta(q_0, b, a) = (q_0, ab)$$

$$\delta(q_0, b, b) = \{(q_0, ba), (q_1, \lambda)\}$$

$$\delta(q_0, b, b) = \{(q_0, bb), (q_1, \lambda)\}$$

$$\delta(q_1, a, a) = (q_1, \lambda)$$

$$\delta(q_1, b, b) = (q_1, \lambda)$$

$$\delta(q_1, \lambda, z_0) = (q_2, \lambda)$$

```
(q_0,abba,z_0) (q_0,bba,z_0a) (q_0,ba,z_0ab) (q_0,a,z_0abb) (q_0,\lambda,z_0abba) Не разобрана, т.к. входная цепочка прочитана и переход (q_0,\lambda,z_0abba) не определен. (q_0,abba,z_0) (q_0,bba,z_0a) (q_0,ba,z_0ab) (q_1,a,z_0a) (q_1,\lambda,z_0) (q_2,\lambda,\lambda) Разобрана
```