Devoir maison 13 - Applications linéaires

Soient E un espace vectoriel de dimension 3, $\mathscr{B}=(e_1,e_2,e_3)$ une base de E, m un réel et $f_m\in\mathscr{L}(E)$ dont la matrice dans la base \mathscr{B} est :

$$M = \begin{pmatrix} \frac{1}{3} & m & m \\ m & \frac{1}{3} & m \\ m & m & \frac{1}{3} \end{pmatrix}$$

- 1. Déterminer les valeurs du paramètre m pour que f_m soit bijective.
- **2.** On suppose que m = 1, et on note $f = f_1$.
 - a. Déterminer les réels λ tels que $g_{\lambda} = f \lambda \operatorname{Id}_{E}$ ne soit pas bijective.
 - **b.** Pour chacune de ces valeurs λ , déterminer $\operatorname{Ker}(g_{\lambda})$.
 - c. Déterminer une base \mathscr{B}' de E telle que la matrice de f dans \mathscr{B}' soit diagonale.