FYS1120 H-2011: Løsningsforslag for avsluttende eksamen

Oppgave 1

I en modell for en kuleformet atomkjerne med radius R varierer det elektriske feltet inne i kjernen som $\mathbf{E}(r) = Cr(x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z)$. Her er C en konstant og r er den radielle avstanden fra kjernens sentrum med $r^2 = x^2 + y^2 + z^2$.

1a) Vis at $\nabla \times \mathbf{E} = 0$.

Det holder å regne ut $(\nabla \times \mathbf{E})_x = \partial E_z/\partial y - \partial E_y/\partial z$ hvor $E_y = Cry$ og $E_z = Crz$. Nå er

$$\frac{\partial r}{\partial y} = \frac{\partial}{\partial y} (x^2 + y^2 + z^2)^{1/2} = \frac{1}{2} \cdot 2y(x^2 + y^2 + z^2)^{-1/2} = \frac{y}{r}$$

og derfor også $\partial r/\partial z = z/r$. Dermed er $(\nabla \times \mathbf{E})_x = C(yz - zy)/r = 0$. På samme måte blir de andre komponentene av $\nabla \times \mathbf{E}$ også null.

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.

Ladningstettheten ρ er gitt ved Maxwell's første ligning $\rho = \varepsilon_0 \nabla \cdot \mathbf{E}$ hvor divergensen er $\nabla \cdot \mathbf{E} = \partial E_x / \partial x + \partial E_y / \partial y + \partial E_z / \partial z$. Her er $\partial E_x / \partial x = C \partial / \partial x (xr) = C(r + x \partial r / \partial x) = C(r + x^2/r)$ og tilsvarende for de andre komponentene. Dermed blir $\rho = C \varepsilon_0 (3r + (x^2 + y^2 + z^2)/r) = 4C \varepsilon_0 r$. Den totale ladningen er nå gitt ved integralet

$$Q = \int d^3x \rho(r) = 4C\varepsilon_0 \int_0^R 4\pi r^3 dr = 4\pi\varepsilon_0 CR^4$$

1c) Sjekk resultatet for den totale ladningen ved å bruke Gauss' lov på integralform.

Teoremet sier at $Q = \varepsilon_0 \oint d\mathbf{a} \cdot \mathbf{E}$ hvor vi i dette problemet legger Gauss-flaten på atomkjernens overflate. Her det elektriske feltet radielt og kan skrives som $\mathbf{E} = Cr^2\hat{\mathbf{r}}$ med r = R og hvor den radielle enhetsvektor er $\hat{\mathbf{r}} = (x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z)/r$. Feltet har derfor den konstante størrelse $E = CR^2$. Siden det differensielle flateelementet d \mathbf{a} også peker i samme, radielle retning, blir integralet $Q = \varepsilon_0 CR^2 \oint d\mathbf{a} = \varepsilon_0 CR^2 \cdot 4\pi R^2 = 4\pi \varepsilon_0 CR^4$. Det stemmer med forrige utregning!

Oppgave 2

En ledning av kobber fører en konstant strøm $I=2.0\,\mathrm{A}$ og har en jevnt økende diameter. Den spesifikke ledningsevnen til kobber er $\sigma=5.81\times10^7\,\Omega^{-1}\mathrm{m}^{-1}$.

2a) Et sted på lederen er diameteren $d = 1.0 \,\mathrm{mm}$. Hvor sterkt er det elektriske feltet som driver strømmen i dette punktet?

Feltstyrken E følger fra $J = \sigma E$ hvor strømtettheten $J = I/\pi r^2 = 4I/\pi d^2$. Dermed har vi at $E = 4I/\sigma \pi d^2$ som gir $E = 2.55 \times 10^6 \, Am^{-2}/(5.81 \times 10^7 \, \Omega^{-1} m^{-1}) = 4.38 \times 10^{-2} \, V/m$.

2b) Finn hvordan det elektriske feltet varierer langs ledningen. Bruk dette til å beregne spenningsfallet ΔV i volt mellom to punkt på ledningen. Ved det ene punktet er diameter $d_1 = 1.0 \,\mathrm{mm}$, mens ved det andre punktet, som ligger $\ell = 5.0 \,\mathrm{mm}$ unna, er diameter $d_2 = 2.0 \,\mathrm{mm}$.

Da tverrsnittet $A = \pi d^2/4$ øker langs ledningen, vil strømtettheten J avta. Dermed vil også det elektriske feltet E avta langs ledningen slik at det blir en funksjon E(x) av posisjonen x langs ledningen. Da det er oppgitt at diameteren øker jevnt, må den i punktet x være $d = d_1 + (d_2 - d_1)x/\ell$ hvis den er d_1 for x = 0 og d_2 for $x = \ell$. Tverrsnittet av ledningen i punkt x er dermed $A(x) = \pi d^2(x)/4$ slik at feltstyrken her er $E(x) = I/\sigma A(x)$. Spenningsfallet ΔV mellom de to gitte punktene blir dermed $\Delta V = \int_0^\ell dx E(x)$ eller

$$\Delta V = \frac{4I}{\sigma\pi} \int_0^{\ell} \frac{dx}{[d_1 + (d_2 - d_1)x/\ell]^2} = \frac{4I}{\sigma\pi} \frac{\ell}{d_2 - d_1} \frac{-1}{d_1 + (d_2 - d_1)x/\ell} \Big|_0^{\ell}$$
$$= \frac{4I}{\sigma\pi} \frac{\ell}{d_2 - d_1} \Big(\frac{1}{d_1} - \frac{1}{d_2} \Big) = \frac{4I\ell}{\sigma\pi d_1 d_2}$$

Dette kan skrives som $\Delta V = (4I/\sigma\pi d_1^2)(d_1/d_2)\ell$ hvor den første faktoren er feltstyrken E fra forrige spørsmål. Dermed blir $\Delta V = E \times 0.5\ell = 4.38 \times 10^{-2} \, V/m \times 2.5 \, m = 0.11 \, V$.

2c) Finn et uttrykk for hvor mye ohmsk varme som utvikles per tidsenhet i et lite stykke Δx av ledningen og herav den totale varmeeffekt i watt som genereres mellom de to punktene i forrige spørsmål.

Dette lille ledningsstykket har motstand $\Delta R = \Delta x/\sigma A(x)$ og gir opphav til en varmeeffekt $\Delta P = I^2 \Delta R$. Den totale effekten blir dermed

$$P = \frac{I^2}{\sigma} \int_0^{\ell} \frac{dx}{A(x)} = I \int_0^{\ell} dx E(x) = I \Delta V$$

eller $P = 2A \times 0.11V = 0.22W$. Dette svaret kunne vi igrunnen ha skrevet umiddelbart ned.

Oppgave 3

Figuren viser tverrsnittet av en elektrisk linjeladning med tetthet λ som ligger inni

i et rør. Det består av to koaksiale lag med isolerende materiale. Det innerste laget med ytre radius r=a har en dielektrisk konstant som er tilærmet lik ε_0 som i luft. Det ytre laget i området a < r < b har dielektrisk konstant $\varepsilon > \varepsilon_0$. Det elektriske

Figure 1: Tverrsnitt av røret med en linjeladning i r = 0.

potensialet V(r) på den ytre overflaten av røret er V(b) = 0. Utenfor røret er det luft.

3a) Beregn potensialet utenfor røret, det vil si for r > b.

Det elektriske forskyvningsfeltet D(r) er direkte bestemt ved linjeladningen λ alene. Fra Gauss' lov følger det at $D(r) = \lambda/2\pi r$. Utenfor ledningen er derfor det elektriske feltet $E(r) = D(r)/\varepsilon_0 = \lambda/2\pi\varepsilon_0 r$. Potensialet er derfor $V(r) = -\int dr(E(r) = -(\lambda/2\pi\varepsilon_0) \ln r + C$ hvor C er en integrasjonskonstant. Den bestemmes ved grensebetingelsen V(b) = 0 som gir $V(r) = -(\lambda/2\pi\varepsilon_0) \ln(r/b)$ i dette området.

3b) Hvor stor er den induserte ladningstettheten på den ytre overflaten av røret?

Mens det elektriske feltet like utenforfor den ytre overflaten er $E_{>} = D(b)/\varepsilon_0 = \lambda/2\pi\varepsilon_0 b$, er det like innefor denne overflaten $E_{<} = D(b)/\varepsilon = \lambda/2\pi\varepsilon b$. Denne forskjellen skyldes den induserte overflatladningen σ_i på den ytre overflaten med størrelse $\sigma_i = \varepsilon_0(E_{>} - E_{<})$ som gir $\sigma_i = (\lambda/2\pi b)(1 - \varepsilon_0/\varepsilon)$.

3c) Hva blir det elektriske potensialet inni røret for r < a?

Da vi vet at V(b) = 0, vil potensialet lenger inn i ledningen være gitt ved integralet $V(r) = -\int_b^r dr E(r) = -\int_b^a dr E(r) - \int_a^r dr E(r)$. I området a < r < b er det elektriske feltet $E(r) = \lambda/2\pi\varepsilon_1$, mens for r < a er det $E(r) = \lambda/2\pi\varepsilon_0$. De to integralene gir da til sammen $V(r) = (\lambda/2\pi\varepsilon_0)[\ln(a/r) + (\varepsilon_0/\varepsilon)\ln(b/a)]$. Dette er potensialet inni

ledningen. Når $r \to 0$, divergerer det mot $+\infty$ når linjeladningen er positiv.

Oppgave 4

En kvadratisk ledningssløyfe med sidekant $a=1.0\,\mathrm{cm}$ befinner seg utenfor en uendelig lang og rett ledning i avstand $r=1.0\,\mathrm{cm}$ som vist i figuren. Ledningen fører en konstant strøm $I_0=1.0\,\mathrm{A}$.

Figure 2: Den kvadratiske sløyfen ligger i avstand a fra ledningen som brytes.

4a) Beregn den magnetiske fluksen gjennom sløyfen og vis at svaret blir $\Phi_B = \mu_0 I_0 a \ln 2/2\pi$.

Magnetfeltet i en avstand r fra ledningen er $B(r) = \mu_0 I_0/2\pi r$. Fluksen gjennom sløyfen blir dermed

$$\Phi_B = a \int_a^{2a} dr B(r) = \frac{a\mu_0 I_0}{2\pi} \int_a^{2a} \frac{dr}{r} = \frac{a\mu_0 I_0}{2\pi} \ln \frac{2a}{a}$$

som gir det oppgitte svaret.

4b) Strømmen blir nå plutselig slått av. Anta for enkelhets skyld at dette skjer ved tiden t=0 og med en tidskonstant $\tau=1.0\,\mu\text{s}$. For t>0 avtar derfor strømmen som $I_0\exp\left(-t/\tau\right)$. Beregn nå strømmen I' som dermed induseres i den kvadratiske sløyfen som funksjon av tiden når den har en ohmsk motstand $R=1.0\,\Omega$.

Etter at strømmen er brutt ved tiden t=0, avtar fluksen gjennom sløyfen med tiden senere som $\Phi_B(t) = (\mu_0 I_0 a \ln 2/2\pi) \exp(-t/\tau)$. Dette induserer en elektromotorisk spenning $\mathcal{E} = -\partial \Phi_B/\partial t$ som gir en strøm

$$I'(t) = \mathcal{E}(t)/R = \frac{a\mu_0 I_0}{2\pi\tau R} \ln 2e^{-t/\tau}$$

gjennom sløyfen. Ved tiden t=0 har vi den maksimalt, induserte strøm $I_0'=a\mu_0I_0\ln 2/2\pi\tau R$ med størrelse

$$I_0' = \frac{\mu_0}{4\pi} \frac{2aI_0}{\tau R} \ln 2 = 10^{-7} \frac{Tm}{A} \frac{2 \times 10^{-2} mA \times 0.693}{10^{-6} sR} = 1.39 \times 10^{-3} \frac{Tm^2}{sR} = \frac{1.39 \, mV}{R}$$

som gir $I'_0 = 1.39 \, mA$.

4c) Finn størrelsen til kraften (N) som virker på sløyfen like etter at strømmen er slått av. Forklar i hvilken retning den virker.

Magnetisk kraft på et ledningselement ℓ som fører strømmen I', er gitt ved $F = B\ell I'$. Den virker tiltrekkende på den innerste, parallele siden av strømsløyfen og frastøtende på den ytterste. Kreftene på de to andre sidene opphver hverandre. Nettokraften ved tiden t=0 blir dermed

$$F = \frac{\mu_0 I_0}{2\pi} \left(\frac{1}{a} - \frac{1}{2a} \right) a I_0' = \frac{\mu_0}{4\pi} I_0 I_0' = 10^{-7} Tm \times 1.39 \, mA = 1.39 \times 10^{-10} \, N$$

da 1 Tm = 1 N/A. Den er tiltrekkende da strømmen blir indusert i en slik retning at fluksreduksjonen skal motarbeides - Lenz' lov.