

Agenda of Today's Session

- What is Clustering?
- Types of Clustering
- What is K- Means Clustering?
- How does a K-Means Algorithm works?
- K-Means with Python

edureka!

Copyright © 2018, edureka and/or its affiliates. All rights reserved.

What is Clustering?

"Clustering is the process of dividing the datasets into groups, consisting of similar data-points"

 Points in the same group are as similar as possible

 Points in different group are as dissimilar as possible

What is Clustering?

Group of diners in a restaurant

Items arranged in a mall

Used?

Recommendation System

Recommended Movies

Fickr's Photos

Clustering?

Retail Store

Insurance Companies

Types of Clustering

- Exclusive Clustering
- Overlapping Clustering
- Hierarchical Clustering

Exclusive Clustering

- Hard Clustering
- Data Point / Item belongs exclusively to one cluster
- For Example: K-Means Clustering

Types of Clustering

- Exclusive Clustering
- Overlapping Clustering
- Hierarchical Clustering

Overlapping Clustering

- Soft Cluster
- Data Point/ Item belongs to multiple cluster
- For Example: Fuzzy/ C-Means Clustering

Types of Clustering

- Exclusive Clustering
- Overlapping Clustering
- Hierarchical Clustering

Hierarchical Clustering

What is

K-Means Clustering?

"K-Means is a clustering algorithm whose mail goal is to group similar elements or data points into a cluster."

NOTE: 'K' in K-Means represent the number of clusters

What is

K-Means Clustering?

Pile of dirty clothes

Where Can I apply K-Means?

K-Means Algorithm

Number of Clusters = 3

K-Means Algorithm

- Step 1: Select the number of clusters to be identified,
 i.e select a value for K =3 in this case
- Step 2: Randomly select 3 distinct data point
- Step 3: Measure the distance between the 1st point and selected 3 clusters

Distance from point 1 to the red the state cluster the green cluster

K-Means Algorithm

(red in this case).

K-Means Algorithm

red cluster

K-Means Algorithm

Find to which cluster does point 2 belongs to, how?

Repeat the same procedure but measure the

K-Means Algorithm

Find to which cluster does point 3 belongs to, how?

 Repeat the same procedure but measure the distance to the red mean

K-Means Algorithm

cluster, (red)

- Measure the distance
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance from the cluster mean (centroids)
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance from the cluster mean (centroids)
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance from the cluster mean (centroids)
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

K-Means Algorithm

to green cluster

edureka! **K-Means** Result from 1st iteration Original/Expected Result

K-Means Algorithm

Total variation within the cluster

According to the K-Means Algorithm it iterates over again and again unless and until the data points within each cluster stops changing

K-Means Algorithm

Iteration 2: Again we will start from the beginning. But this time we will be selecting different initial random point (as compared to what we chose in the 1st iteration)

- Step 1: Select the number of clusters to be identified, i.e. K =3 in this case
- Step 2: Randomly select 3 distinct data point
- Step 3: Measure the distance between the 1st point and selected 3 clusters

K-Means Algorithm Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

K-Means Algorithm Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

K-Means Algorithm

Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

K-Means Algorithm

Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

Total variation within the cluster

K-Means Algorithm

Iteration 3: Again we will start from the beginning and select different initial random point (as compared to what we chose in the 1st and 2nd iteration)

Pick 3 initial clusters

K-Means Algorithm

Cluster the remaining points

K-Means Algorithm

Finally sum the variation within each cluster

Total variation within the cluster

K-Means

The algorithm can now compare the result and select the best variance out of it

1st Iteration

2nd Iteration

3rd Iteration

K-Means Algorithm

Now what if we have our data plotted on the X and Y axis

K-Means Algorithm

Similarly, pick initial 3 random points..

K-Means Algorithm

We will be using the Euclidean distance (in 2D its same as that of a Pythagorean Theorem)

K-Means Algorithm

Again assign the point to the nearest cluster

K-Means Algorithm

Finally calculate the centroid (mean of cluster) including the new point

K-Means Algorithm

Finally in first iteration you get something like this...again you have to iterate this process to get the final cluster

X-Axis

How will you find K value

In the previous scenario k value was known to be 3, but this is not always true

How will you find

K value

For deciding the value of k, you have to use hit and trail method, starting from K = 1

K=1 is the worst case scenario, even you crossverify it with total variation

How will you find

K value

Now try with K = 2

K=2 is still better then K = 1 (Total Variation)

K = 1

Now try with K = 3

How will you find

K value

K=3 is even better than K =2 (Total Variation)

K = 1

K = 2

Now try with K = 4

How will you find

K value

Total variation in K=4 is less than K =3

K = 1 _____

K = 2 _____

K = 3

How will you

find

K value

Now try with K = 4

Total variation in K=4 is less than K =3

K = 1 ————

K = 2

K = 3

How will you find K value

Now try with K = 4

Each time you increase the cluster the variation decreases, no. of clusters = no. of data points then in that case the variation = 0

Total variation in K=4 is less than K=3

How will you find

K value

K-Means Algorithm

Summarizing the K-Means Algorithm

randomly chose k examples as initial centroids while true:

create k clusters by assigning each
example to closest centroid
compute k new centroids by averaging
examples in each cluster
if centroids don't change:
break

600,000 + SATISFIED LEARNERS Thank you! ©

For more information please visit our website www.edureka.co

