Network Programming Part 2

MCIT 595

Naming and Addressing

- IP address
 - Identifies a single host
 - 32 bits (IPv4), 128 bits (IPv6)
 - Written as dotted octets (8 bits)
 - e.g., 0x0a000001 is 10.0.0.1
- Host name
 - Identifies a single host
 - · Variable length string
 - Maps to one or more IP address
 - e.g., www.upenn.edu
 - gethostbyname() translates name to IP address

Knowing What Port Number To Use

- · Popular applications have well-known ports
 - E.g., port 80 for Web and port 25 for e-mail
 - See http://www.iana.org/assignments/port-numbers
- Well-known vs. ephemeral ports
 - Network service has a well-known port (e.g., port 80)
 - Between 0 and 1023
 - Unused ephemeral (i.e., temporary) port
 - Between 1024 and 65535

Byte Ordering

- · Hosts differ in how they store data
 - E.g., four-byte number (byte3, byte2, byte1, byte0)
- Little endian ("little end comes first") ← Intel PCs!!!
 - Low-order byte stored at the lowest memory location
 - Byte0, byte1, byte2, byte3
- Big endian ("big end comes first")
 - High-order byte stored at lowest memory location
 - Byte3, byte2, byte1, byte 0

Byte Ordering

Byte Ordering Solution

```
uint16_t htons(uint16_t host16bitvalue);
uint32_t htonl(uint32_t host32bitvalue);
uint16_t ntohs(uint16_t net16bitvalue);
uint32 t ntohl(uint32 t net32bitvalue);
```

- Use for all numbers (int, short) to be sent across network
 - Typically used for port numbers