I226 Computer Networks

Chapter 4

Network Layer I

Assoc. Prof. Yuto Lim

Objectives of this Chapter

- Provide an understanding what are the five functions of network layer
- Explain in-depth knowledge on addressing issue and its network design
- Give an explanation of Internet control protocols for address resolution and multicast

pg. 2/47

Network Layer

Outline

- Introduction to Network Layer
- Packetizing
- Fragmentation and Re-assembly
- Addressing: IP Address
 - Classless InterDomain Routing (CIDR)
- Routing
- Internet Control Protocols
 - Internet Control Message Protocol (ICMP)
 - Address Resolution Protocol (ARP)
 - Internet Group Management Protocol (IGMP)

pg. 4/47

Functions of Network Layer

 Main task of the network layer is to move packets from the source host to the destination host

- ① Packetizing
- 2 Fragmentation and reassembling
- 3 Addressing: provides structured addresses to name networks
 - Uses an addressing scheme, e.g., IP address
- 4 Internetworking (Chapter 5)
- Souting algorithm: performs network routing (Chapter 8)
 How to forward packets?

pg. 5/47

Functions of Network Layer

Where is the Network Layer?

- From OSI, the Network Layer rests between the upper layer (Transport layer) and the lower layer (Data Link Layer)
- From the TCP/IP model, the network layer is called the Internet Layer and it rests between the upper <u>Transport</u> <u>Layer</u> and the lower <u>Host to Network Layer</u>

pg. 7/47

A Connecting Network

Figure: A collection of interconnected networks

Switching Technique

Packet Switching Technique

2 packet switching techniques:

_		
Issue	Datagram subnet	Virtual-circuit subnet
Circuit setup	Not needed	Required
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
State information	Routers do not hold state information about connections	Each VC requires router table space per connection
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC

Our Internet today

Figure: Datagram

Figure: Virtual-circuit

Services

- Transport layer provides 2 services:
 - Connectionless service
 - No set up is needed
 - Each packet contains information which allows the packet to be individually routed hop-by-hop through the network

- Connection-oriented service
 - A setup stage is used to determine the end-to-end path before a connection is established
 - Data flow streams are identified by some type of connection indicator (e.g.,: OSI, X.25, SNA)

Packetizing

- Objective: to encapsulate packets received from upperlayer protocols
- At sender
 - Break segment into packets
 - Assign packet numbers
- At final destination
 - Check if all packets have arrived
 - Reassemble packets into segment

pg. 12/47

Fragmentation and Re-assembly

- To handle different maximum transmission unit (MTU) size, the network layer must be able to fragment transport layer MTU into smaller MTU units, so that they can be transferred over various data link layer technologies, e.g.,
 - Ethernet is 1492 bytes
 - Token Ring is 4500 bytes
- Disadvantages of fragmentation
 Smaller MTU block, larger overhead

 - Smaller MTU block, more interrupts
 - More MTUs, more time processing
- When to re-assemble
 - At destination this results in packets getting smaller as data traverses Internet
 - At router need large buffers at routers, buffers may fill with fragments, all fragments must go through same router

pg. 13 / 47

IP Fragmentation

- IP re-assembles at destination only
- Uses fields in header
 - Data unit Identifier (ID)
 - Identifies end system originated datagram
 - Source and destination address
 - Protocol layer generating data (e.g.,: TCP)
 - Identification supplied by that layer
 - Data length
 - Offset (13-bit length)
 - Position of fragment of user data in original datagram
 - In multiples of 8 octets
 - More flag
 - Indicates that this is not the last fragment

Figure: Fragmentation example

Internet Names and Addresses

- Network names, generally like:
 - garfield.cs.hiram.edu
 - groups.google.com
- Essentially hierarchical in "domains"
 - "garfield" in "computer science" at "hiram college" in the "education" domain
 - "groups" of the "google" company in the "company" domain
- Translated to IP addresses by Domain Name Servers (DNS)
- IPv4 has 4 sets of 8 bits (0-255), e.g.,: 143.206.149.21

pg. 15/47

Getting an Address

- Organization gets a block of addresses from an Internet Service Provider (ISP)
- ISP gets its addresses from a bigger ISP or ICANN (also manages DNS names)
- Individual hosts gets address within organization's block
 - Manual: system administrator gives host a fixed IP (needed for externally available servers)
 - DHCP: protocol to request an available address for a finite time (it also gets first-hop router and DNS information)
 - DHCP addresses can be reused by different súbscribers if all subscribers are not online all the times

Addressing

- Unique addresses are required to define each host/machine/device/user in the network
- We cannot use the data link layer addresses! Because these addresses depend on the data-link technology
- Internet Address IP Address
 - Classless addressing mid 1990s
 - Classful addressing original architecture, Class A, B, C, D, and E
 - □ IPv4
 - 32-bit binary number, total IP address size 2³² (4.3 x 10⁹)
 - Dotted-Decimal Notation
 E.g., 128.11.3.31, 255.255.255.0
 - □ IPv6
 - 128-bit binary number, total IP address size is 2¹²⁸ (3.4 x 10³⁸)
 - Colon-Hexadecimal Notation
 E.g., 2001:0db8:85a3:0000:0000:8a2e:0370:7334

IPv4 Header

- Version e.g., 4
- Internet Header Length In 32-bit words, including options
- Type of Service
- Total Length datagram length
- Identification sequence number, which is used with addresses and user protocol to identify datagram uniquely
- Flags more bit, don't fragment
- Fragmentation Offset
- Time to Live
- Protocol TCP, UDP, assigned numbers are on www.iana.org

- Header checksum
 - Re-verified at each router
 - 16-bit ones complement sum of all 16-bit words in header
 - Set to zero during calculation
- Source address
- Destination address
- Option
- Padding to fill to multiple of 32 bits long

pg. 18/47

© Y. Lim

Addressing using IPv4

- IP address do not identify hosts in general. They identify a host on a network
- If a computer is connected to more than one network, it has more than one IP address (e.g.,: routers, multihomed hosts)

 - Class A 128 blocks (1st byte), 16,777,216 hosts Class B 16,384 blocks (1st & 2nd byte), 65536 hosts
 - Class C 2,097,152 blocks (1st, 2nd, 3rd byte), 256 hosts Class D 1 block, Multicasting, 268,435,456 hosts

 - Class E reserved for future use, 268,435,456 hosts

Special IP Address

pg. 20/47

© Y. Lim

Network Address

An address defines a network with all host-id = 0

Sample Internet

Subnets and Subnet Masks

- Allow arbitrary complexity of internetworked LANs within organization
- Insulate overall internet from growth of network numbers and routing complexity
- Site looks to rest of internet like single network
- Each LAN assigned subnet number
- Host portion of address partitioned into subnet number and host number
- Local routers route within subnetted network
- Subnet mask indicates the split between network + subnet number and host number

pg. 23 / 47

Subnet Addressing

- Class A & B networks too big
 - Very few LANs have close to 64K hosts
 - For electrical/LAN limitations, performance or administrative reasons
- Need simple way to get multiple "networks"
 - Use bridging, multiple IP networks or split up single network address ranges (subnet)

Example of Network Design

- JAIST has been assigned the 150.65.x.x range of addresses (this is a class B address)
 - We could have had one big network (with up to 65536 hosts) for the whole university attached to a single router
 - But that would a administrative nightmare: troubleshooting, traffic locality, and address allocation
 - So we create smaller subnets

```
10010110 01000001 00000000 00000000 (150.65.0.0)

(total of 256*256 = 65536)

10010110 01000001 11111111 11111111 (150.65.255.255)

16 bit network addr

16 bit host addr
```

pg. 25/47

Example of Network Design (cont.)

- Inside JAIST's network, we subnet our Class B allocation
- 150.65.0.0 into 256 subnets, by "stealing" 8 bits from the host bits
- Now one or more subnets can be assigned to each department and each department (subnet) can have a router
- So, a typical JAIST IP address is written as 150.65.170.1/24 where the /24 denotes the netmask

Storing/Exchanging Address

- Traditional IP scheme the netmask is implicit in the address
- Let see the entries that would be stores in a typical router:

<u>Network</u>				Next Hop
208.12.16/24	11010000	00001100	00010000*	x.x.x.
208.12.21/24	11010000	00001100	00010101*	x.x.x.x
• • •				
208.12.31/24	11010000	00001100	00011111*	x.x.x.x

- If we use classful addressing we must list 15 entries in the routing table
- Scaling issue: A few decades back, Internet was growing dramatically, service providers faced 2 problems
 - Growth of routing table entries
 - Depletion of addresses space

pg. 27/47

IP Address Problem (1997)

- Address space depletion
 - In danger of running out of classes A and B
 - Why?
 - Člass C too small for most domains
 - Very few class A very careful about giving them out
 - Class B greatest problem
- Class B sparsely populated
 - But people refuse to give it back
- Large forwarding tables
 - 2 million possible class C groups

Classless InterDomain Routing (CIDR)

 Since the first 20 bits are identical for all addresses, these entries could be aggregated as

<u>Network</u>		Next Hop
208.12.16/24	11010000 00001100 00010000*	x.x.x.x
208.12.21/24	11010000 00001100 00010101*	x.x.x.x
208.12.31/24	11010000 00001100 00011111*	x.x.x.
208.12.16/20	11010000 00001100 0001*	x.x.x.

This reduces the no. of entries in the routing table significantly. However, there might be exception that break entries what could have been aggregated. This introduces a set of issues resolved using the longest-prefix-match algorithms

pg. 29/47

Notrosk

CIDR (cont.)

 CIDR only works well if next hop of all the aggregated entries are the same. Suppose

MECMOLK		Next Hop
208.12.16/24	11010000 00001100 00010000*	x.x.x.
208.12.21/24 208.12.22/24	11010000 00001100 00010101* 11010000 00001100 00010110*	У·У·У·У ж.ж.ж.ж
208.12.31/24	11010000 00001100 00011111*	x.x.x.x

 Now not all hosts with first 20 bits common have the same next hop, so what do we do? We can either not aggregating or create exceptions such as

```
208.12.16/20 11010000 00001100 0001* x.x.x.x
208.12.21/24 11010000 00001100 00010101* y.y.y.y
```

 But, 208.12.21.5 will match both the first and second entry, so which one do we choose? Now we use the longestprefix-match and use the second entry

pg. 30/47

Nov+ Hon

CIDR (cont.)

- Set of IP address assignments
- Dropping the classes makes forwarding more complicated
- The routing table is scanned sequentially
- The entries can be aggregated, e.g., the 3 entries to 194.24.0.0/19
- If multiple entries with different subnet mask lengths match, the longest mask is used

University	First address	Last address	How many	Written as
Cambridge	194.24.0.0	194.24.7.255	2048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1024	194.24.8.0/22
(Available)	194.24.12.0	194.24.15.255	1024	194.24.12/22
Oxford	194.24.16.0	194.24.31.255	4096	194.24.16.0/20

pg. 31/47

Routing

- Where do you send the packets?
- Objective: is to calculate 'good' routes
- End systems and routers maintain routing tables
 - Indicate next router to which datagram should be sent
 - Static may contain alternative routes
 - Dynamic flexible response to congestion and errors
- Source routing
 - Source specifies route as sequential list of routers to be followed
 - Security
 - Priority
- Route recording
- Routing algorithms are discussed on Chapter 8

pg. 32/47

Internet Control Message Protocol (ICMP)

- IP (Internet Protocol) relies on several other protocols to perform necessary control and routing functions
 - Control functions (ICMP)
 - Multicast signaling (IGMP)
 - Setting up routing tables (RIP, OSPF, BGP)

- ICMP is a helper protocol that supports IP with facility for
 - Error reporting
 - Simple queries
- ICMP messages are encapsulated as IP datagrams

ICMP (cont.)

- Purpose: to provide feedback about problems in the IP network environment
- Delivered in IP packets

- ICMP message format
 - 4 bytes of ICMP header and optional message

```
7 8 15 16 31

8-bit type 8-bit code 16-bit checksum

(contents depend on type and code)
```

pg. 34/47

ICMP (cont.)

- ICMP is used to exchange messages between routers
- To announce network errors
 - If a network, host, port is unreachable, ICMP Destination Unreachable Message is sent to the source host
- To announce network congestion
 - When a router runs out of buffer queue space, ICMP Source Quench Message is sent to the source host
- To assist troubleshooting
 - ICMP Echo Message is sent to a host to test if it is alive used by ping
- To announce timeouts
 - If a packet's TTL field drops to zero, ICMP Time Exceeded Message is sent to the source host – used by traceroute

pg. 35 / 47

ICMP Query Message

- ICMP query
 - Request sent by host to a router or host
 - Reply sent back to querying host

Finding a Local Machine

- Routing gets packet to correct local network
 - Based on IP address
 - Router sees that destination address is of local machine
- Still need to get packet to host
 - Using link-layer protocol
 - Need to know hardware address
- Same issue for any local communication
 - Find local machine, given its IP address

pg. 37/47

<u>Address Resolution Protocol (ARP)</u>

- RFC826, protocol to know the MAC address from the IP address of a host
- Using broadcast to get a response from a requested host
- Once the information obtained, it creates ARP table
 - Erase the entry when time is elapsed, and refresh the flow with the same questions
 - "arp" command is used in Windows/UNIX

[lss2-	-is13] % /usr/sbin/arp	-а		
	Media Table: IPv4 IP Address	Mask	Flags	Phys Addr
fjgi0	ap-is1-is13e1	255. 255. 255. 255		00:01:30:2c:94:00
. 50	lss-is13e1	255. 255. 255. 255	CD	00:03:ba:27:a5:98
fjgi0 fjgi0	lss2-is13 ss49-is13e1	255. 255. 255. 255 255. 255. 255. 255	3P	00:e0:00:c5:0f:70 00:30:1e:69:04:80
	192. 168. 0. 1	255. 255. 255. 255	SP	00:e0:00:c4:8f:70
hme0	BASE-ADDRESS. MCAST. NET		SM	01:00:5e:00:00:00
fjgi0	BASE-ADDRESS. MCAST. NET	240. 0. 0. 0	SM	01:00:5e:00:00:00

Reverse ARP

- RFC903, protocol to do the reverse operation of ARP
- A protocol used by a host to request its IP address from an administrative host, when it has available its MAC address
- Requires one or more server hosts to maintain a database of mappings of MAC addresses to their respective IP addresses
- Now, this role is done by DHCP and BOOTP

pg. 39/47

<u>Address Resolution Protocol (ARP)</u>

- Diagrammed for Ethernet (6-byte MAC addresses)
 - Operation
 - 1: request
 - 2: reply
 - Sender
 - Host sending ARP message
 - Target
 - Intended receiver of message
- Low-level Protocol
 - Operates only within local network
 - Determines mapping from IP address to hardware (MAC) address
 - Mapping determined dynamically
 - No need to statically configure tables
 - Only requirement is that each host know its own IP address

ARP Request

- ARP request
 - Operation
 - 1: request
 - Sender
 - Host that wants to determine MAC address of another machine
 - Target
 - Other machine
- Requestor
 - Fills in own IP and MAC address as "sender"
- Mapping
 - Fills desired host IP address in target IP address
- Requestor
 - Send to MAC address ff:ff:ff:ff:ff.ff.ff. Ethernet broadcast

ARP Reply

- ARP reply
 - Operation
 - 2: reply
 - Sender
 - Host with desired IP address
 - Target
 - Original requestor

- Sender MAC address

 Sender IP Address

 Target MAC address

 Target IP Address
- Responder becomes "sender"
 - Fill in own IP and MAC address
 - Set requestor as target
 - Send to requestor's MAC address

ARP Example

- 3 interconnected /24 networks: 2 Ethernets and 1 FDDI ring
- Interface between data link layer and network layer
- Mapping between IP addressés and MAC Ethernet addresses
- Host 1 want to send a packet to host 2. It broadcasts on his LAN: Who has IP addr. 192.31.65.5? Host 2 will respond with his MAC address E2

pg. 43 / 47

Multicast Routing

- Multicast: delivery of a packet to a group of receivers
- Multicasting is becoming increasingly popular in the Internet (video on demand; whiteboard; interactive games)
- Multiple unicast vs. multicast

Multicast Group Address

- Multicast group address "delivered" to all receivers in the group
- Internet uses Class D for multicast
- Multicast address distribution is managed by IGMP protocol

pg. 45/47

<u>IGMP</u>

- Internet Group Management Protocol (IGMP) operates between router and local hosts, typically on a LAN
- Router queries the local hosts for multicast group membership information
- Router "connects" active hosts to multicast tree via multicast protocol
- Hosts respond with membership reports: actually, the first host which responds (at random) speaks for all
- Host issues "leave-group" message to leave; this is optional since router periodically polls anyway (soft state concept)

pg. 46 / 47

Announcement

- Next is Chapter 5 Network Layer II
- 10:50 ~ 12:30 on 26 October (Wednesday)

pg. 47/47