Initial Public Offering (IPO) on Permissioned Blockchain using Secure Multiparty Computation

Fabrice Benhamouda, **Angelo De Caro**, Shai Halevi, Tzipora Halevi, Charanjit jutla, Yacov Manevichk, and Qi Zhang

Outline

Hyperledger and Fabric

Fabric Architecture

Initial Public Offering and Multi-Party Computation

Hyperledger and Fabric

Hyperledger – www.hyperledger.org

- Global collaboration hosted by the Linux Foundation
 - Advances blockchain technologies for business, neutral, community-driven
 - Started in 2016: Hyperledger unites industry leaders to advance blockchain technology
 - ca. 230 members in May '18
- Develops and promotes blockchain technologies for business
- Hyperledger has 5 frameworks and 5 tools, hundreds of contributors

Hyperledger Fabric – github.com/hyperledger/fabric/

- A generic blockchain framework, modular, consortium
- Originally contributed by IBM and DAH
- Architecture, consensus, and cryptography contributed by IBM Research - Zurich

Hyperledger Overview

Hyperledger Modular Greenhouse Approach

Infrastructure

Technical, Legal, Marketing, **Organizational**

Ecosystems that accelerate open development and commercial adoption

Cloud Foundry

Node.js

Open Container Initiative

Frameworks

Meaningfully differentiated approaches to business blockchain frameworks developed by a growing community of communities

Permissioned with channel support

Permissioned & permissionless support

Mobile application focus

Decentralized identity

HYPERLEDGER **BURROW**

Permissionable smart contract machine

Tools

Typically built for one framework, and through common license and community of communities approach, ported to other frameworks

HYPERLEDGER COMPOSER

Model and build blockchain networks

HYPERLEDGER CELLO

As-a-service deployment

HYPERLEDGER EXPLORER

View and explore data on the blockchain

Ledger interoperability **CALIPER**

Blockchain framework benchmark platform

Fabric Architecture

In a Nutshell

Permissioned

- Strong identity management
- Support for multiple credential and cryptographic services for identity
- Support for "bring your own identity"

Privacy Friendly

- Support broader regulatory requirements for privacy and confidentiality
- Contract state concealable to unauthorized parties
- Business Logic is executed only after authorized entity request and only on a subset of the netwrok

Scalable

- Scale the number of participants and transaction throughput
- Eliminate non deterministic transactions
- Parallel execution of the business logic

Traditional design: Replicated State Machine

- All prior BFT systems operate like this [S90]
- All prior permissioned blockchains operate like this
 - Including Hyperledger Fabric until V0.6

Issues with the traditional replication design

Sequential execution

• Increased latency – or – complex schemes for parallelism

Operations must be deterministic

- Difficult to enforce with generic programming language (difficult per se!)
- Modular filtering of non-deterministic operations is costly [CSV16]

Trust model is fixed for all applications (smart contracts)

- Typically some (F+1) validator nodes must agree to result (at least one correct)
- Fixed to be the same as in consensus protocol

Privacy is difficult, as data spreads to all nodes

• All nodes execute all applications

Fabric Unique Architecture Scales

- Simulate tx and endorse
- Create rw-set
- Collect endorsements

- Order rw-sets
- Atomic broadcast (consensus)
- Stateless ordering service

- Validate endorsements & rw-sets
- Eliminate invalid and conflicting tx
- Persist state on all peers

- Includes techniques from databases
- Extends a middleware-replicated database [KJP10] to BFT model

Security First!

Strong identity management

Selective participation to authorized users

Accountability
Non-repudiation

Entities are accounted for the transactions they create, cannot forge others' transactions

Modular, easily extensible, "bring your on provider" membership architecture

Privacy / Access
Control

Contract state concealable to unauthorized parties

Authorized Execution

Logic is executed only after authorized entity request

Access Control Enforcement Framework

Privacy / Access
Control

User activity & contract logic concealable to unauthorized entities

Secure Chaincode Availability
Framework Application Libraries
for Privacy

Pluggable Components

Compatibility with standards

Initial Public
Offering (IPO) and
Multi-Party
Computation

Blockchain Can Revamp Initial Public Offering

- **IPO Trading** is an example of a *clearing price auction*, where a single seller sells multiple shares at the same price to many buyers.
 - A bank lists it publicly on the ledger, specifying a unique ID.
 - Then, brokerage houses can record IPO orders on the ledger on behalf of investors.
 - Later the listing bank invokes the sell-IPO process, and the peers engage in a protocol to determine the clearing price of this IPO, as well as the share allocation

- The use of a blockchain is highly beneficial:
 - It provides strong traceability and auditability
 - confidential orders without having to rely on a trusted party.

IPO – A First Attempt using Fabric

IPO Trading is an example of a *clearing price auction*, where a single seller sells multiple shares at the same price to many buyers.

- A bank lists shares publicly.
- Then, brokerage houses records the **IPO orders** on behalf of investors. (**Confidentiality required**)
- Later the listing bank determines the clearing price of this IPO, as well as the share allocation. (Settlement)

Secure Multi Party Computation (MPC)

- Cryptographic protocol for emulating a trusted party
 - In a system with no trusted parties
- P₁, P₂, ..., P_n are mutually suspicious
 - Each with its own secret input $x_1, x_2, ..., x_n$
 - Want to compute a joint function $y=f(x_1, x_2, ..., x_n)$

Goal:

Correctness: Everyone computes $y=f(x_1,...,x_n)$

Security: Nothing but the output is revealed

Multi-Party Computation Enables Decentralization and Privacy

- **Goal**: Enable private data that impacts transactions
 - In current Fabric, transaction data is seen by everyone
 - At least, everyone who needs to endorse the transaction
 - Private data support opens a whole new level of applications
 - Commerce: Purchase goes through if buyer has enough money
 - Shipping: Bidding on space for containers in a ship
 - Medical: Drug dispensed if client's condition warrants it
 - IoT: Aggregate recorded w/o revealing individual data
 - Audit: Action recorded when departments align their books
 - Without them having to share confidential data (e.g., Chinese wall)
- **Solution**: Use secure Multi-Party Computation (MPC). An interactive protocol with multiple parties, each with private input. Computing the correct output, learning nothing more, audit later when needed.

Fabric and MPC deliver Auditable Privacy

Demo: MPC based IPO on Blockchain

2. Buyers place orderers

4. Bank list the closed IPO

3. Banks sell IPO