PMATH 347: Groups & Rings

Syed Mustafa Raza Rizvi

October 2, 2020

Contents

1	Group Theory	1
1	Dihedral Symmetries and Permutations	2
2	Definition of a Group	3
3	Elementary Properties of Groups	5
4	Isomorphisms	6
5	Subgroups	7
6	Cosets and Lagrange's Theorem	9
7	Cosets (continued), Normal Subgroups	10
8	Applications of Normality	12
9	Direct Products	14
A	ppendix	15

Part I Group Theory

Dihedral Symmetries and Permutations

Let C_n denote a regular n-gon for $n \geq 3$ (in \mathbb{R}^3). A dihedral symmetry of C_n is any "rigid motion" that moves C_n back to itself (so that it looks unchanged).

For example, the dihedral symmetries of C_6 include; Rotations (by multiples of $60 \,\mathrm{deg}$), "flips" (**reflections**) along an axis, and the "identity" symmetry (which does nothing)

Definition. D_{2n} = the set of all dihedral symmetries of C_n Note. In geometry the set is called D_n

Definition. Let X be any non-empty set.

- A **permutation** of X is a bijection $\sigma: X \to X$
- S_X is the set of all permutations of X
- If $X = \{1, 2, 3, \dots, n\}$ then we denote S_X by S_n

Special notation, terminology.

- id denotes the identity permutation in S_X (id(x) = x for all $x \in X$)
- The cycle notation for id is () or just.
- Given $\sigma \in S_X$, the support of σ is the set

$$supp(\sigma) = \{x \in X : \sigma(x) \neq x\}$$

That is, the supp (σ) is the set of elements in the cycle notation of σ

• σ, τ are **disjoint** if $\operatorname{supp}(\sigma) \cap \operatorname{supp}(\tau) = \emptyset$

Definition of a Group

Definition. Let A be a non-empty set. A binary operation on A is a function $*: A \times A \to A$

Notice that a binary operation requires closure by definition

Definition. A group is an ordered pair (G, *) where

- \bullet G is a non-empty set
- * is a binary operation on G;

which jointly satisfy the following further conditions

- 1. * is associative: (a*b)*c = a*(b*c) for all $a,b,c \in G$
- 2. There exists an **identity** element $e \in G$: a * e = e * a = a for all $a \in G$
- 3. Every $a \in G$ has a 2-sided **inverse**, i.e., an element $a' \in G$ which satisfies a * a' = a' * a = e (where e is the identity element from 2)

Note: A group, G, is called **abelian** (or **commutative**) if any $a, b \in G$ satisfy the equation a * b = b * a

Note that 2 ensures that a group is always non-empty

Notation: when discussing generic groups

- We often denote a group (G, *) by just G. Unless we want to distinguish the group from its underlying set, e.g. then group is denoted by \mathbb{G} and the set by just G
- We pften write ab or $a \cdot b$ for a * b
- Denote the identity element e of G by 1, often.
- Denote the inverse a' of an element a by a^{-1} , often
- The **order** of a group G, denoted |G|, is the number of its elements

Definition. In any group G, if $a \in G$ then define $a^0 = 1$ and $a^{n+1} = a \cdot a^n$ for $n \ge 0$. Also define $a^{-n} = (a^n)^{-1}$ for $n \ge 2$. This notation satisfies the usual rules of exponents.

Lemma 3.2. Let (G, \cdot) be a group, $a \in G$, and $m, n \in \mathbb{Z}$

- 1. $a^1 = a$
- $2. \ a^m \cdot a^n = a^{m+n}$
- 3. $(a^m)^n = a^{mn}$

Warning: in general $(ab)^n = a^n b^n$ is not true, since $(ab)^2 = abab$ and we need commutativity to get a^2b^2 .

Also, additive notation is used for operations involving the symbol +. Since for groups like $(\mathbb{R}, +)$, writing $a^n = a + \cdots + a$ is awkward.

Additive Notation. When the group operation is denoted by + (or whenever the operation is being thought of as something "like addition") we may

- Denote the identity element by 0 (instead of 1)
- Denote the inverses by -a (instead of a^{-1})
- Denote $a + \cdots + a$ (n times) by na (instead of a^n), for any $n \ge 1$

This notation is seldom used for non-abelian groups

Definition. For a group G and element $a \in G$, the **order** of a (denoted |a| or o(a)) is the least integer n > 0 such that $a^n = 1$, if it exists. If no such n exists (this requires G to be infinite), then the order of a is defined to be ∞ **Remark.** The word has been used in two different ways

- of a group (the number of elements of the group) or
- of an *element* of a group (the least positive exponent giving the identity element)

Proposition 3.3. Suppose G is a group, $a \in G$, and $\circ(a) = n < \infty$. Then for all $k \in \mathbb{Z}$, $a^k = 1 \iff n|k$

Elementary Properties of Groups

Proposition 4.1. Let G be a group and $a, b, u, v \in G$

- 1. Left and right cancellation:
 - (a) if au = av, then u = v
 - (b) If ub = vb, then u = v
- 2. the equations ax = b and ya = b have unique solutions for $x, y \in G$

Corollary 4.2. In any group G, the identity element is unique

Proposition 4.3. Suppose G is a group

- 1. Each $a \in G$ has a unique inverse a^{-1}
- 2. $(a^{-1})^{-1} = a$ for all $a \in G$
- 3. $(ab)^{-1} = (b^{-1})(a^{-1})$ for all $a, b \in G$

Some terminology:

- 1. G is **abelian** if ab = ba for all $a, b \in G$
- 2. If $a \in G$ then $\langle a \rangle$ denotes the set $\{a^n : n \in \mathbb{Z}\}$. Thus $\langle a \rangle \subseteq G$
- 3. G is **cyclic** if there exists $a \in G$ such that $G = \langle a \rangle$

In this case we call a a **generator** of G

Note: A cyclic group can have more than one generator

Isomorphisms

The most fundamental relation between groups is that of isomorphism

Definition. Let $\mathbb{G} = (G, \star)$ and (\mathbb{H}, \diamond) be groups. A function $\varphi : G \to H$ is an **isomorphism from** \mathbb{G} **to** \mathbb{H} if φ is a bijection and

$$\varphi(x \star y) = \varphi(x) \diamond \varphi(y)$$
 for all $x, y \in G$

Theology:

- 1. If φ is an isomorphism from \mathbb{G} to \mathbb{H} , then the operation tables for \mathbb{G} and \mathbb{H} are "the same" (modulo the translation given by φ)
- 2. If the operation tables for \mathbb{G} and \mathbb{H} are "the same" in this sense, then \mathbb{G} and \mathbb{H} are "essentially the same group"

Definition. We say that groups \mathbb{G} and \mathbb{H} are **isomorphic** and write $\mathbb{G} \cong \mathbb{H}$ if ther exists an isomorphism $\varphi : G \to H$

Subgroups

Definition. Let $\mathbb{G} = (G, \cdot)$ be a group. A subgroup of \mathbb{G} is a subset $H \subseteq G$ satisfying

- 1. $H \neq \emptyset$
- 2. H is closed under products; i.e. $a, b \in H$ implies $ab \in H$
- 3. H is closed under inverses; i.e. $a \in H$ implies $a^{-1} \in H$

Proposition 6.2. If $\mathbb{G} = (G, \cdot)$ is a group and H is a subgroup of \mathbb{G} , then $\mathbb{H} = (H, \cdot \upharpoonright_H)$ is a group in its own right. $(\cdot \upharpoonright_H)$ is the restriction of the operation \cdot to pairs from H)

Conventions.

- 1. In light of Proposition 6.2, we will return to beign lazy and not distinguish between \mathbb{H} and H.
- 2. We will no longer write $(H, \cdot \restriction_H)$ and instead just write (H, \cdot)
- 3. We write $H \leq G$ or $\mathbb{H} \leq \mathbb{G}$ to mean H is a subgroup of \mathbb{G}

Claim. For $a \in G$, $\langle a \rangle \leq G$

Definition. If G is a group and $a \in G$, then $\langle a \rangle$ is called the **cyclic subgroup** of G generated by a

Cyclic subgroups are important and are the easiest subgroups to find. Note that if G is a group and $a \in G$, then $\langle a \rangle$ is the *smallest* subgroup of G containing a. Furthermore, any subgroup that contains a must also contain $\langle a \rangle$.

Proposition 6.6. Let G be a group and $a \in G$

1. If $\circ(a) = \infty$ then $a^i \neq a^j$ for all $i \neq j$ and $\langle a \rangle \cong (\mathbb{Z}, +)$

2. If $\circ(a) = n$, then $\langle a \rangle = \{a^0, a^1, \dots, a^{n-1}\}$ and $\langle a \rangle \cong (\mathbb{Z}_n, +)$

Corollary 6.7. If G is a group and $a \in G$, then $o(a) = |\langle a \rangle|$. That is, the orders of an element and the cyclic subgroup generated by that element are the same

Cosets and Lagrange's Theorem

Definition. Suppose G is a group, $H \leq G$, and $a \in G$. The **left coset of** H **determined by a** is the set

$$aH := \{ah : h \in H\}$$

E.g. 1H = H.

Warning: aH is generally not a subgroup of G.

Note: When using additive notation, we write a + H instead of aH

Lemma 7.2. For all $a \in G$, |aH| = |H|. Hence all left cosets of H have the same size as H

Caution: It can happen that aH = bH even if $a \neq b$

Proposition 7.3. Suppose $H \leq G$. The set of left cosets of H partition G; that is

- $1. \ \cup \{aH : a \in G\} = G$
- 2. If $aH \neq bH$ then $aH \cap bH = \emptyset$

Theorem 7.4. (Lagrange's Theorem). Suppose G is a finite group and $H \leq G$. Then |H| divides |G|

Corollary 7.5. Suppose G is a finite group and $a \in G$. Then o(a) divides |G|

Corollary 7.6. If G is a finite group and |G| = n, then $x^n = 1$ for all $x \in G$

Corollary 7.7. If G is a finite group and |G| = p is prime, then G is cyclic **Note:** the proof of the previous corollary shows that if |G| is prime then *every* non-identity element of G is a generator

Cosets (continued), Normal Subgroups

The number of left and right cosets of a subgroup are the same, however, they aren't always the same. This is because there is a bijection between the collection of left cosets and right cosets of H

Definition. If G is a group and $H \leq G$, the **index** of H in G, denoted [G : H], is the number of distinct left (or right) cosets of H.

If G is *finite*, then

$$[G:H] = \frac{|G|}{|H|}$$

Definition. Suppose $H \leq G$. We say that H is **normal**, or is a **normal subgroup** and write $H \triangleleft G$, if aH = Ha for all $a \in G$

Note that this definition does not talk about commutivity, it talks about the left and right cosets being equal

Of course if G is abelian then every subgroup is normal. It is generally tedious to check whether a subgroup is normal or not.

Notation: Generalizing the notation used for cosets: If A, B are nonempty subsets of a group G and $g \in G$ then

$$gA := \{ga : a \in A\}$$

 $Ag := \{ag : a \in A\}$
 $AB := \{ab : a \in A \text{ and } b \in B\}$
 $A^{-1} := \{a^{-1} : a \in A\}$

With this notation we can "multiply" and "invert" nonempty sets as well as elements of G. The notation obeys the associative property of multiplication (Ag)B = A(gB), so we

can just write AgB, law of inverses $(AB)^{-1} = B^{-1}A^{-1}$ and $(gA)^{-1} = A^{-1}g^{-1}$. However, cancellation laws do not work in this context, set cancellation is not a thing, e.g. for any $a, b \in G$ it is true that aG = bG, but this does not imply that a = b as the only thing the equation conveys is that the two sets generated are equal. Similarly, it is not true that $AA^{-1} = 1$ (or $\{1\}$). Inverses of sets are not true inverses

The notation shortens the definition of a subgroup;

Fact: If G is a group and $\emptyset \neq H \subseteq G$, then the following are equivalent

- 1. $H \leq G$
- 2. $HH \subseteq H$ and $H^{-1} \subseteq H$
- 3. HH = H and $H^{-1} = H$

This is since $HH \subseteq H \iff H$ is closed under products, $H^{-1} \subseteq H \iff H$ is closed under inverses

Applications of Normality

Proposition 9.1. Suppose $H \leq G$. The following are equivalent (TFAE):

- 1. $H \triangleleft G$
- 2. $aHa^{-1} = H$ for all $a \in G$
- 3. $aHa^{-1} \subseteq H$ for all $a \in G$
- 4. If $h \in H$, then $aha^{-1} \in H$ for all $a \in G$

Lemma 9.2. Suppose $H, K \triangleleft G$ and $H \cap K = \{1\}$. Then hk = kh for all $h \in H, k \in K$

Useful trick: For $a, b \in G$, their **commutator** is $[a.b] = a^{-1}b^{-1}ab$. This makes it easy to show $ab = ba \iff [a, b] = 1$ by using prop 9.1. and showing the expression is in the intersection

If we have that H, K are two subgroups of G, then $H \subseteq HK$ (since $1 \in K$) and $K \subseteq HK$ (because $1 \in H$), but HK does not need to be a subgroup.

Proposition 9.3. Suppose G is a group and $H, K \leq G$. If either $H \triangleleft G$ or $K \triangleleft G$, then $HK \leq G$

Proof sketch:

Sub-claim: HK = KH. Proof: assume H is normal, since $HK = \bigcup_{k \in K} Hk = \bigcup_{k \in K} kH = KH$

Show that $(HK)(HK) \subseteq HK$ and $(HK)^{-1} \subseteq HK$, by making use of $HH = H = H^{-1}$

Definition. Suppose G is a group and $H \leq G$. The **normalizer** of H, denoted $N_G(H)$, is the set

$$N_G(H) = \{ a \in G : aH = Ha \}$$

Normalizers are useful in many contexts, a couple of them are

- 1. $N_G(H) \leq G$
- $2. \ H \triangleleft G \iff N_G(H) = G$

Corollary 9.4. Suppose G is a group and $H, K \leq G$. If $K \subseteq N_G(H)$ (or $H \subseteq N_G(K)$) then $HK \leq G$

Direct Products

Definition. Let (G_1, \star) and (G_2, \diamond) be groups. Their **direct product** is $(G_1 \times G_2, *)$ where

$$(a_1, a_2) * (b_1, b_2) = (a_1 * b_1, a_2 \diamond b_2)$$

More clarification: We are defining $(G_1 \times G_2, *)$, which means there is some new binary operation * on the set of all the ordered pairs (tuple), i.e. of all cartesian products, of elements from G_1 and G_2 . Whereby, applying the binary operation on elements from $(G_1 \times G_2, *)$ means that we evaluate individual entries/components with respect to the binary operation associated with the group they come from.

E.g. letting $G_1 = G_2 = \mathbb{R}$ would give us the euclidean plane (\mathbb{R}^2) with the appropriate restrictions.

Fact: If G_1, G_2 are groups, then $G_1 \times G_2$ is also a group

Notation:

- If both \star and \diamond are written as + then we may also write * as +
- Products of more factors are defined analogously. $G^n = \underbrace{G \times \cdots \times G}_n$

Theorem 10.1. Let G be a group. Suppose there exists $H, K \triangleleft G$ satisfying

- 1. $H \cap K = \{1\}$
- $2. \ HK = G$

Then $G \cong H \times K$

Corollary 10.3. $(\mathbb{Z}_{mn}, +) \cong (\mathbb{Z}_m, +) \times (\mathbb{Z}_n, +)$ provided gcd(m, n) = 1

Appendix