(19) World Intellectual Property Organization International Bureau

| 2011 | 12012 | 12013 | 12013 | 12013 | 12013 | 12013 | 12013 | 12013 | 12013 | 12013 | 12013 | 12013 | 12013

(43) International Publication Date 6 December 2001 (06.12.2001)

PCT

(10) International Publication Number WO 01/92573 A1

(51) International Patent Classification7:

- (21) International Application Number: PCT/KR01/00904
- (22) International Filing Date:

30 May 2001 (30.05.2001)

(25) Filing Language:

Korean

C12Q 1/68

(26) Publication Language:

English

(30) Priority Data: 2000-29369

30 May 2000 (30.05.2000) KR

- (71) Applicant (for all designated States except US): BIOMEDLAB CO., LTD. [KR/KR]; 4F., Dongsung Bldg., 1-49 Dongsung-dong, Jongro-gu, Seoul 110-510 (KR).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KIM, Hyun-Jung [KR/KR]; 113-301, Chunggu Apt., Hansolmaul, Jungja-dong, Bundang-gu, Songnam-city 463-010, Gyonggi-do (KR). KIM, Na-Young [KR/KR]; 320-205, Shinshigazi Apt., Mok-dong, Yangchun-gu, Seoul 158-055 (KR). YOON, Sung-Wook [KR/KR]; RM. 501, Munseong Bldg., 574-3 Dogok-dong, Gangnam-gu, Seoul 135-270 (KR). KIM, Jeong-Mi [KR/KR]; 7-208, Misung Apt., Bulgwang 1-dong, Eunpyong-gu, Seoul 122-041 (KR). PARK, Mi-Sun [KR/KR]; 316, Jure-dong, Sasang-gu, Busan 617-010 (KR).

- (74) Agent: JO, Eui-Je; Top Patent & Law Firm, RM. 1405, Hyechun Bldg., #831, Yuksam-dong, Gangnam-gu 135-080 (KR).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DIAGNOSIS KIT FOR MYCOBACTERIUM SPECIES IDENTIFICATION AND DRUG-RESISTANCE DETECTION AND MANUFACTURING METHOD THEREOF

mt516a

(57) Abstract: The present invention relates to diagnosis kit for Mycobacterium species identification and drug-resistance detection and manufacturing method thereof, which can discriminate a Mycobacterium Tuberculosis rpoB gene point mutation relating to the Mycobacterium species identification and drug-resistance swiftly, exactly and in large quantities using an oligonucleotide chip. The diagnosis kit for Mycobacterium species identification and drug-resistance detection in accordance with the present invention consists of an olignucleotide chip including a Mycobacterium tuberculosis Mycobacterium species identification probe and a drug-resistance detection probe of a complex probe, a Mycobacterium tuberculosis rpoB gene, and a fluorescent material containing a biotin-binding protein so as to detect hybridization of amplified products of a speciment marked as biotine and the corresponding probe.

-1-

DIAGNOSIS KIT FOR MYCOBACTERIUM SPECIES IDENTIFICATION AND DRUG-RESISTANCE DETECTION AND MANUFACTURING METHOD THEREOF

DESCRIPTION

Technical Field

The present invention relates to a diagnosis kit for Mycobacterium species identification and drug-resistance detection and a manufacturing method thereof, and more specifically, to a diagnosis kit for Mycobacterium species identification and drug-resistance detection in which point mutations of Mycobacterial rpoB gene related to the drug-resistance can be discriminated speedily and accurately in large quantity by using an oligonucleotide chip, and a manufacturing method thereof.

15

20

25

10

5

Background Art

About two million people die from tuberculosis worldwide each year. The increase in immigration, the spread of HIV/AIDS, and the emergence of drug-resistance strains are enhancing the mortality of tuberculosis. AIDS patients and newborns with weak immune system can develop tuberculosis from not only Mycobacterium tuberculosis infection but also MOTT (Mycobacterium other than tuberculosis) infection, particularly, Mycobacterium avium-intracellulare (MAI), Mycobacterium chelonae, Mycobacterium fortuitum, Mycobacterium kansasaii, Mycobacterium xenopi, Mycobacterium marinum, Mycobacterium scrofulaceum, and Mycobacterium szulgai.

Tuberculosis is normally treated by chemotherapy with various antituberculosis drugs. Since there are numerous different strains of Mycobacteria with diverse drug-susceptibility, detection and identification of the causative bacterium is important for the effective treatment.

For the diagnosis of tuberculosis, chest X-ray examination and sputum

test are commonly used. However, chest X-ray can often misdiagnose an already-cured inactive tuberculosis or other types of chest diseases as tuberculosis. Sputum test can be typically preformed by the following two methods: sputum smear microscopy in which sputum of a patient is thinly spread on a slide, and then the bacteria are selectively stained for microscopic observation, and culture method in which the bacteria are cultured under physiological conditions for visual observation. Sputum smear microscopy is relatively simple and rapid, but cannot easily discriminate Mycobacterium Detection and identification of the mycobacterium tuberculosis from MOTT. strains have been done by the culture method, but it takes at least 6-8 weeks due to the slow growth rate of the bacteria. During this period, a combination of primary anti-tuberculosis drugs is used, which may result in therapeutic failure In fact, increasing numbers of strains have been and drug-resistance. determined to be resistant to primary anti-tuberculosis drugs such as isoniazid (INH), rifampin (RIF), streptomycin (STR), ethambutol (EMB), pyrasinamide (PZA).

10

15

20

25

30

Therefore, in order to achieve effective control and treatment of tuberculosis, a necessity of rapidly identifying the causative bacterium at the initial stage of infection has been increasingly recognized. Recently, molecular biological techniques by which mycobacterial species identification can be made within a relatively short time have been devised. These methods use speciesspecific sequences of the mycobacterial genes such as IS6110 as the target DNA. However, the IS6110 gene has different copy numbers in various mycobacterial species and does not present in some species. Several reports indicate that the IS6110 gene is not mycobacterium-specific. Therefore, the use of IS6110 as target DNA may cause false-positive or false-negative results. The highly polymorphic region of 16S rRNA DNA has also been used for species identification since it shows species-specific polymorphism. Several commercial products have been developed based on this method: Accuprobe (Gen-probe, San Diego, CA, U.S.A.) which can be applied directly to a specimen,

and AMTD (Gen-probe, San Diego, CA, U.S.A.) and Amplicor MTB (Roche Diagnostics Systems, Somerville, NJ, U.S.A.) in which target DNA are PCR (polymerase chain reaction) amplified prior to analysis to enhance sensitivity. However, the 16S rRNA gene occasionally has different copies in a single strain, and this could complicate accurate species determination. Moreover, in order to assess the drug-resistance, an additional molecular biological analysis on the rpoB gene has been necessary.

Hereinafter, point mutations of Mycobacterium tuberculosis related to drug-resistance are described in detail. Resistance against RIF, a primary antituberculosis drug, is known to be related to the mutations of rpoB gene encoding RNA polymerase β-subunit. More than 30 different mutations identified so far have shown to be concentrated in the 81bp core region of the 3,534bp rpoB gene (Amalio Telenti, Paul Imboden, Francine Marchesi, Douglas Lowrie, Sterwart Cole, M. Joseph Colston, Lukas Matter, Kurt Schopfer, and Thomas Bodmer, "Detection of rifampin-resistance mutation in Mycobacterium tuberculosis" THE LACET, Vol.341, pp. 647-650, 1993).

Table 1 illustrates point mutations occurring in codons 507 through 533 of the M. tuberculosis rpoB gene. As illustrated in Table 1, point mutations occur more frequently in codons 513, 516, 526, and 531, which are also observed more prevalently than the others.

[Table 1]

5

10

15

20

25

L	.
CODON	VARIANT NUCLEOTIDE (AMINO ACID CHANGE)
510	CAG(Gln) > CAT(His)
511	CTG(Leu) > CCG(Pro), CGG(Arg)
512	AGC(Ser) > ACC(Thr), CGC(Arg)
513	CAA(Gln) > CTA(Leu), AAA(Lys), CCA(Pro)
515	ATG(Met) > ATA(IIe)
516	GAC(Asp) > GTC(Vei), TAC(Tyr), GAG(Glu), GGC(Gly)
521	CTG(Leu) > ATG(Met)
522	TCG(Ser) > TTG(Leu)
526	CAC(His) > TAC(Tyr), GAC(Asp), CGC(Arg), CTC(Leu), CCC(Pro), CAA(Glu), AAC(Asn), CAG(Gln)
531	TCG(Ser) > TTG(Leu), TGG(Trp), TGT(Cys), CAG(Gin)

Rifabutin (abbreviated as RIB), a spiro-piperidyl derivative of rifamycin S, is used to prevent MAC infection in AIDS patients (James M. Musser, "Antimicrobial Agent Resistance in Mycobactera: Molecular Genetic Insights", Clinical Microbiology Review, Vol. 8, No. 4, pp. 496-514, 1995). Resistance

-4-

against RIB is also related to the point mutations of the rpoB gene. However, the drug-susceptibility of a mutation displays difference between RIF and RIB: Several mutations showing resistance to RIF have determined to be susceptible to RIB. Mutation showing resistance to both RIF and RIB were also reported (Della Bruna C., G. Schiopacassi, D. Ungheri, D. Jabes, E. Morvillo, and A. Sanfilippo, "A new spiro-piperidyl rifamycin: in vitro and in vivo studies", J. Antibiot. Vol. 36, pp. 1502-1506, 1983, Dessen A., A. Quenmard, J. S. Blanchard, w. R. Jacobs, Jr., and J. C. Sacchettini, "Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis" Science, Vol. 267, pp. 1638-1641, 1995). RIB has often been used to treat RIF-resistant infection, which were effective in many cases (Gillespie S. H., A. J. Baskerville, R. N. Davidson, D. Felmingham, and A. D. M. Bryceson, "The serum rifabutin concentrations in patient successfully treated for multi-resistant Mycobacterium tuberculosis infection", J. Antimicrobi. Chemother. Vol. 33, pp. 661-674, 1990).

10

15

20

25

30

In addition, the species-specific characteristics of rpoB gene have been used for mycobacterial species identification. Korean Patent Registration No. 234975 discloses a method for the detection and identification of mycobacterial strains by PCR-RFLP (restriction fragment length polymorphism after polymerase chain reaction) assay using a set of novel PCR primers that specifically amplifies the rpoB gene of mycobacterial species. Also, Korean Patent Registration No. 285254 discloses a method of detecting and distinguishing Mycobacterium tuberculosis complex and MOTT by using primers that can amplify rpoB gene fragments of Mycobacterium tuberculosis complex and MOTT in a respectively different size.

However, the above-described methods require bacterial culture step prior to PCR amplification, limit the kind of species or the number of samples that can be analyzed, and are laborious having a PCR step followed by a restriction enzyme treatment step and/or an electrophoresis step.

In the Korean Patent Registration No. 285253, a method of detecting rifampin-resistance in Mycobacterium tuberculosis with a nested PCR-SSCP

(polymerase chain reaction-single strand conformational polymorphism) and a single-step nested PCR-SSCP. This method include two PCR and polymorphism assay steps and therefore it takes about four days to determine rifampin-resistance.

PCT International Publication No. WO97/29212 by Affymetrix discloses a technology of a sequencing DNA chip of rpoB gene. With this method, the entire base sequences of 700bp in the rpoB gene should be analyzes to obtain clinically important information such as species identity and drug-resistance.

Disclosure of the Invention

5

10

15

20

25

To solve the above problems, it is an object of the present invention to provide a diagnosis kit for Mycobacterium species identification and drug-resistance detection in which features relating to both the Mycobacterium species identification and the drug-resistance detection can be discriminated speedily and accurately in large quantity.

It is another object of the present invention to provide a method of manufacturing a diagnosis kit for Mycobacterium species identification and drug-resistance detection in which features relating to both the Mycobacterium species identification and the drug-resistance detection can be discriminated speedily and accurately in large quantity.

It is still another object of the present invention to provide a set of primers of a polymerase chain reaction (PCR) for faster Mycobacterium species identification by enabling efficient PCR amplification of rpoB gene fragment (157bp) of numerous species directly from uncultured specimens including sputum samples.

It is yet another object of the present invention to provide experimental conditions for polymerase chain reaction (PCR) for efficient amplification of the 157bp fragment of rpoB gene from various Mycobacteria.

To accomplish the above objects of the present invention, there is provided a diagnosis kit for Mycobacterium species identification and drug-

resistance detection comprising: an oligonucleotide chip including species identification probes comprised of species-specific DNA sequences of Mycobacterial rpoB gene, Mycobacterial drug-resistance detection probes comprised of one or more modified codons of Mycobacterial rpoB gene, and contrast group probes comprised of wild-type sequences corresponding to each drug-resistance detection probe; and a method for detecting the hybridization of the oligonucleotide chip and the specimen DNA.

By the above construction, drug-resistance detection as well as Mycobacterium species identification can be simultaneously performed. In particular, since Mycobacterial rpoB gene point mutations related to drug-resistance can be discriminated by comparing the intensity of hybridization signal of the drug-resistance detection probe with that of the contrast group probe, and species identification can be made by comparing the hybridization intensities of the species-specific probes, the Mycobacterial species identification and the drug-resistance detection can be performed speedily and accurately in large quantity.

10

15

20

25

According to a specific embodiment of the present invention, in said diagnosis kit for Mycobacterial species identification and drug-resistance detection, the drug-resistance detection probe comprises one or more modified codons discovered in 507-533 codons of rpoB gene.

By the above construction, since one or more modified codons discovered in 507-533 codons in which point mutations frequently occur are used as a probe, drug-resistance can be discriminated speedily and accurately with only part of the Mycobacterial rpoB gene.

According to a more specific embodiment of the present invention, in said diagnosis kit for Mycobacterial species identification and drug-resistance detection, the drug-resistance detection probes are rifampin-resistance probes and/or rifabutin-sensitive probes.

By the above construction, it can be discriminated speedily and accurately whether a specimen has rifampin-resistance and/or rifabutin

susceptibility.

10

15

20

25

30

According to another embodiment of the present invention, there is provided a method of manufacturing a diagnosis kit for Mycobacterium species identification and drug-resistance detection comprising the steps of: (a) modifying species identification probes comprised of species-specific DNA sequences of Mycobacterial rpoB gene, Mycobacterial drug-resistance detection probes comprised of one or more modified codons of Mycobacterial rpoB gene, and contrast group probes comprised of wild-type sequences corresponding to each drug-resistance detection probe to contain an amine group on the 5' terminal; (b) inducing an aldehyde group on glass; and (c) fabricating an oligonucleotide chip by immobilizing the modified probes on the glass by Schiff base reaction.

By the above construction, the diagnosis kit having the advantage of simultaneously discriminating Mycobacterium species identity and drug-resistance speedily and accurately in large quantity, can be easily fabricated.

According to another aspect of the present invention, a set of PCR primers for Mycobacterium species identification comprises DGR8 and DGR9 having base sequences by which Mycobacterial rpoB gene fragments (157bp) are specifically amplified.

In the case that the primer set is used, DNA isolated from uncultured clinical specimens can be used as a template of a polymerase chain reaction, and the rpoB gene fragment (157bp) of 44 species belonging to Mycobacterium genus can be efficiently amplified. Accordingly, the Mycobacterium species identification and the drug-resistance detection can be performed within a short time, for example, approximately in six hours. The PCR products obtained by using the primer set are DNA of 157bp size that can be used as a target DNA of oligonucleotide chip analysis.

In a method for Mycobacterium species identification and drug-resistance detection according to still another aspect of the present invention, a fragment of rpoB gene in a specimen is PCR amplified under the reaction conditions such as

an annealing temperature of 64°C, a reaction cycle of 40, and a primer concentration of 100pmol with primers DGR8 and DGR9, and then the amplified product is used for Mycobacterial species identification and drug-resistance detection by using said diagnosis kit according to the present invention.

DNA chip technology developed in early 1980s presents a method of providing a large amount of genetic information at a time. This method has been used to investigate gene expression, mutation and polymorphism of human or bacterium genome.

5

10

15

20

25

30

The present invention utilizes the DNA chip technology that enables rapid genetic analysis, and provides a diagnosis kit for Mycobacterium species identification and drug-resistance detection and a manufacturing method thereof, in which the Mycobacterium species identification and the point mutations of Mycobacterium tuberculosis related to drug-resistance can be discriminated.

In the present invention, mutations occurring in the rpoB gene of Mycobacterium tuberculosis have been investigated to identify drug-resistant strains, based on the relationship between drug-susceptibility and rpoB gene mutation described in the background art. More specifically, the rpoB gene fragment (157bp) including the 81bp core region where Mycobacterial point mutations occur most frequently is PCR amplified using a particular primer set, and then the amplified DNA is hybridized with an oligonucleotide chip, to thereby detect point mutations for drug-resistance determination.

The method using said oligonucleotide chip includes a step of amplifying target DNA from clinical specimens by PCR. In order to successfully apply the method to clinical samples, PCR should be performed with highly efficient primers.

In Korean Patent Application No. 2000-0029369, biotin-TR8 and TR9 that have been devised by using only the rpoB gene base sequence of Mycobacterium tuberculosis are used as primers. The DNA amplified by using the primers is 157bp fragment containing the 81bp core region where point mutations related to rifampin-resistance occur most frequently. However, the

amplification efficiency of biotin-TR8/ TR9 primers is not sufficient for uncultured specimens such as sputum and therefore the analysis time with these primers exceeds 6-8 weeks due to bacterial culture step. MOTT may not be amplified even from cultured samples due to the low efficiency of these primers. In other words, a rapid analysis on the species identity and drug-resistance cannot be accomplished without DNA amplification directly from sputum samples.

Thus, the inventors combine base sequences of the rpoB gene of forty-three different species of Mycobacteria as well as Mycobacterium tuberculosis, to thereby devise a new primer set. When this primer set is used, isolated DNA from uncultured specimens can be used as a template for PCR, and a specific rpoB gene sequence of forty-three bacterial species as well as Mycobacterium tuberculosis can be amplified by a single PCR step. When the amplified product is applied to a DNA chip, the Mycobacterium species identification and rpoB mutation detection can be simultaneously performed within a short period of time.

Brief Description of the Drawings

10

15

20

25

- FIG. 1 is a flowchart view illustrating a process of manufacturing an oligonucleotide chip for Mycobacterium species identification and drug-resistance detection according to the present invention;
- FIG. 2 is a pictorial view showing a result in which rpoB gene is amplified using biotin-TR8 and TR9 primers and then undergone an electrophoresis in 2% agarose gel, according to the present invention;
- FIGs. 3A through 3J are pictorial views showing fluorescent images obtained by hybridization of PCR amplified clinical samples using biotin-dUTP with the oligonucleotide chip, according to the present invention;
- FIG. 4 is a view of an array format indicating the probe positions of the oligonucleotide chip used in the FIGs. 3A through 3J views;
- FIG. 5 is a diagram showing an array format of an oligonucleotide chip using probes of SEQ ID NO 5 through 12 according to the present invention;

v. .

FIGs. 6A through 6C are pictorial views showing the experimental results of Mycobacterial species identification using the oligonucleotide chip of FIG. 5;

FIG. 7 is a diagram showing an array format of an oligonucleotide chip in which probes of base sequences of SEQ ID NO 41 through 46 detecting additional rpoB gene mutations related to rifampin-resistance in Mycobaterium tuberculosis are included;

5

10

15

20

25

30

FIGs. 8A through 8D are pictorial views showing the diagnostic results of clinical isolates regarding rifampin-resistance and rifabutin-susceptibility using the oligonucleotide chip of FIG. 7;

FIG. 9A is a pictorial view showing a 2% agarose gel DNA band image of PCR amplified products using PCR conditions disclosed in the prior application of the inventors, i.e. an annealing temperature of 63°C and 35 cycles with biotin-TR8 and TR9 primers of 50pmol;

FIG. 9B is a pictorial view showing a 2% agarose gel image of PCR amplified products using the PCR conditions according to the present invention, i.e. an annealing temperature of 64°C and 40 cycles with biotin-DGR8 and DGR9 primers of 100pmol;

FIG. 10 is a pictorial view showing a 2% agarose gel image of eleven sputum specimens PCR amplified by using biotin-DGR8 and DGR9 primers under the optimized condition according to the present invention; and

FIGs. 11A through 11B are pictorial views showing the diagnostic results of sputum specimens regarding rifampin-resistance using the oligonucleotide chip of FIG. 7.

Best Mode for Carrying Out the Invention

Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. However, the following embodiments are nothing but embodiments for demonstrating structures and effects of the present invention. Thus, the present invention is not limited to the following embodiments.

- 11 -

Embodiment 1-1: Mycobacterial genomic DNA

Mycobacterial genomic DNA extracted from ten clinical isolate cultures were provided after sequencing from the Department of Respiratory Diseases, Asan Medical Center (Seoul, Korea), and additional Mycobacterial genomic DNA were obtained from ATCC (Manassas, VA USA).

Embodiment 1-2: Fabrication of oligonucleotide probes and primers

Table 2 illustrates sequences of oligonucleotide probes and primers.

Each of biotin-TR8 and TR9 and probes used were custom-synthesized from Bionics (Seoul, Korea). All other reagents were first-grade.

10 [Table 2]

5

Probes or Primers	Sequences
Tuberculosis bacteria group probes	
Mc1	5'Amine-T10-tcttcggcaccagccag 3'
Mc2	5'Amine-T10-tcttcggaaccagccag 3'
Mc5	5'Amine-T10-tcttcggaacgtcgcag 3'
Mex	5'Amine-T10-tcttcggaacctcgcag 3'
Mycobacterium species identification probes	
Ms1	5'Amine-T10-ggtctgtcacgtgagcgtg 3'
Ms2	5'Amine-T10-ggtctgtcccgtgagcgtg 3'
Ms3	5'Amine-T10-ggtctgtcgcgtgagcgtg 3'
Ms4	5'Amine-T10-ggtctgtcccgggagcgtg 3'
Ms5	5'Amine-T10-ggtctgtcccgcgagcgtg 3'
Ms6	5'Amine-T10-ggtctgtcgcgcgagcgtg 3'
Ms7	5'Amine-T10-ggtctgacccgtgaccgtg 3'
Ms8	5'Amine-T10-ggtctgagccgggagcgtg 3'
Wild-type probes	
F2	5'Amine-T10-cagccagctgagccaat 3'
F3	5'Amine-T10-gctgagccaattcatgg 3'
F4	5'Amine-T10-attcatggaccagaaca 3'
F5	5'Amine-T10-tggaccagaacaacccg 3'
F6	5'Amine-T10-caacccgctgtcggggt 3'
F7	5'Amine-T10-ggttgacccacaagcgc 3'
Rifampin-resistance probes	5'Amine-T10-ccgactgtcggcgctgg 3'
mt511	
mt513	5'Amine-T10-cagccagccgagccaat 3'
mt516a	5'Amine-T10-gctgagcccattcatgg 3'
mt516b	5'Amine-T10-attcatggiccagaaca 3'
mt518 mt521	5'Amine-T10-attcatgtaccagaaca 3'
	5'Amine-T10-tggaccagcacaacccg 3'
mt522 mt526a	5'Amine-T10-caacccgatgtcggggt 3'
mt526b	5'Amine-T10-caacccgctgttggggt 3'
mt526c	5'Amine-T10-ggttgacciacaagege 3' 5'Amine-T10-ggttgaccidacaagege 3'
mt531 .	5'Amine-T10-ggttgaccgacaagcgc 3'
mt516c	5'Amine-T10-ggttgaccegeaagege 5
mt526d	5'Amine-T10-cegaciguggegetegg 5
mt526e	5'Amine-T10-atteatggageagaaca 5 5'Amine-T10-ggttgaccaacaagege 3'
mt526f	5'Amine-T10-ggttgaccacagege 3'
mt526g	5'Amine-T10-ggttgacetgcaagege 3'
mt526h	5'Amine-T10-ggttgacccagaagcgc 3'
cf) Rifabutin-sensitive probes:	5'Amine-T10-ggttgaccggcaagcgc 3'
Primers	31mmo 110 85-5
Bio-TR 8	5'biotin-tgcacgtcgcggacctcc 3'
TR 9	5'tegeegeatcaaggagt 3'
Mycobacterium species identification	J wgoogogawaaggag. J
additional probes	
	SIA mine T10 generates secondition 21
MTAB	5'Amine-T10-gcagctgagccaattcat 3'
MF	5'Amine-a10-cgacgtcgcagctgtcg 3'

According to the above order illustrated in Table 2, SEQ ID NOs 1-40 are assigned.

As illustrated in Table 2, an oligonucleotide chip for investigating point mutation of rpoB gene is devised including seven wild-type probes, seventeen RIF-resistance probes, and eight RIB-sensitive probes.

As a result, seventeen RIF-resistance probes of SEQ ID NOs 20-36 can discriminate the mutations of codon 511 (Leu >Pro), codon 513 (Gln >Pro), codon 516 (a: Asp >Val, b: Asp >Tyr, c: Asp >Glu), codon 518 (Asn >His), codon 521 (Leu >Met), codon 522 (Ser >Leu), codon 526 (a: His)Tyr, b: His)Asp, c: His)Arg, d: His)Asn, e: His)Ala, f: His >Cys, g: His)Gln, h: His >Gly), and codon 531 (Ser >Leu).

5

10

15

20

25

30

Eight RIB-sensitive probes of SEQ ID NOs 22, 23 and 31-36 among seventeen RIF-resistance probes can discriminate the mutations of codon 516 (a: Asp >Val, b: Asp >Tyr, c: Asp >Glu), and codon 526 (d: His >Asn, e: His >Ala, f: His >Cys, g: His >Gln, h: His >Gly).

Strains having mutation type 516a and 516b have shown conflict with respect to RIB-susceptibility as indicated in many reports (James M. Musser, "Antimicrobial Agent Resistance in Mycobacteria: Molecular Genetic Insights", Clinical Microbiology Review, Vol.8, No. 4, pp. 496-514, 1995). The current format of the oligonucleotide chip includes 516a and 516b probes in RIB-sensitive probes.

Probes Mc1, Mc2, and Mc5 of SEQ ID NOs 1-3 devised in order to discriminate Mycobacterium species from other bacteria are mixed and affixed as a single spot on an oligonucleotide chip. From the positive reaction on the probes, Mc1 can detect M. tuberculosis, M. africanum, M. asiaticum, M. bovis (2), M. gastri, M. avium (2), M. celatium (2), M. genavense, M. gordonae, M. haemophilum, M. interjectum, M. intermedium, M. intracellulare, M. kansasii, M. leprae, M. malmoense, M. scrofulaceum, M. szulgai, M. xenopi, M. terrae, M. triviale, M. nonchromogenicum, M. aurum, M. chitae, M. peregrinum, M. phlei, M. smegmatis, M. thermoresistibile, and M. vaccae, Mc2 can detect pathogenic or non-pathogenic but clinically important M. marium, M. shimoidei, M. ulcerans, M. abscessus, and M. chelonae, and Mc5 can detect M. fortuitum.

Also, probe Mex of SEQ ID NO 4 detecting Corynebacterium diphtheriae which is not mycobactria but belongs to similar but different genus as a contrast group, is added in order to compare hybridization signals with each other, to thereby enable a more accurate determination on whether or not the strain under examination belongs to Mycobacteria.

5

10

15

20

25

Eight Mycobacterial species identification probes of SEQ ID NO 5 through 12 including partial sequences of Mycobacterial species-specific rpoB gene have been added in order to perform Mycobacterial species identification in more detail, in addition to probes which can discriminate Mycobacteria from other similar bacteria. In the case of the Mycobacterium species identification probes, the Ms1 probe can detect M. tuberculosis, M. africanum, M. bovis, and M. gastri. The other probes have been devised to detect M. asiaticum (Ms2), M. simiae (Ms2), M. aurum (Ms2), M. senegalence (Ms2), M. shimoidei (Ms2), M. neoaurum (Ms2), M. terrae (Ms2), M. gordonae (Ms2), M. haemophilum (Ms2), M. szulgai (Ms2), M. intracellulare (Ms2), M. kansasii (Ms2), M. scrofulaceum fortuitum (Ms2), M. fallax (Ms2), M. flavescens (Ms2), M. (Ms2), M. peregrinum (Ms2), M. phlei (Ms2), M. vaccae (Ms2), M. marinumv (Ms2), M. ulcerans (Ms2), M. chitae (Ms2), M. genevense (Ms2), M. smegmatis (Ms2), M. intermedium (Ms3), M. malmonense (Ms3), M. nonchromogenicum (Ms3), M. leprae (Ms3), M. avium (Ms4), M. triviale (Ms4), M. celatium (Ms4), M. interjectum (Ms5), M. xenopi (Ms6), M. chelonae (Ms7), M. abscessus (Ms7), and M. thermoresistibile (Ms8) which are pathogenic or non-pathogenic but clinically significant and may need to be identified.

Additional species identification probes, MTAB and MF, have been devised to specifically detect M. tuberculosis (MTAB), M. africanum (MTAB), M. bovis (MTAB), M. bovis BCG (MTAB), M. intracelluare (MTAB), and M. kansasii (MTAB), M. fortuitum (MF), and M. flavescens (MF).

Embodiment 1-3: Fabrication of oligonucleotide chip

FIG. 1 is a flowchart view illustrating a process of fabricating an oligonucleotide chip for Mycobacterium DNA identification according to the

PCT/KR01/00904 WO 01/92573

present invention. As shown in FIG. 1, the oligonucleotide chip fabrication process includes: the first step (10) of modifying each of the Mycobacterium complex probes, Mycobacterium species identification probes having Mycobacterial species-specific DNA sequences of Mycobacterium rpoB gene, 5 Mycobacterium drug-resistance detection probes including one or more modified codons of the Mycobacterium rpoB gene, and contrast group probes including wild-type sequences corresponding to each drug-resistance detection probes, to contain an amine group at the 5' terminal; the second step (20) of introducing an aldehyde group on silvlated slide glass; and the third step (30) of affixing the modified probe on the slide glass by Schiff base reaction, to thereby fabricate an oligonucleotide chip.

More specifically, a particular DNA probe (see Table 2) was dissolved in 3×SSC to a concentration of 200pmol/ $\mu\ell$. The DNA probe solution of 0.1-0.2 µl was spotted on an aldehyde-derivatized slide glass (CEL Associates, Inc., MA, U.S.A), and reacted in a humidified incubator for 4 hours at 37 °C. Then the slide glass was treated with 0.2% sodium dodecyl sulfate (SDS) solution for one minute, distilled water for one minute, and then with NaBH₄ solution (0.1g NaBH₄, 30ml PBS, and 10ml EtOH) for five minutes. Finally, the slide glass was washed for one minute in distilled water and air-dried, and kept in a dark room at room temperature until it is used.

Embodiment 1-4: Polymerase chain reaction (PCR)

10

15

20

25

PCR has been performed in a total volume of $50\,\mu$ l with 10mM Tris-HCl (pH 8.3), 50mM KCl, 1.5mM MgCl₂, 1U Taq polymerase, 50pmol biotin-TR8 and TR9 primers (see Table 2). Further, 1mM dATP, dGTP, and dCTP of 2 µl each, dTTP of $1.5\mu\ell$, and 1mM biotin-dUTP of $0.5\mu\ell$ were added to randomly Table 3 incorporate fluorescence labeling in the resulting target DNA. illustrates the composition of PCR mixture.

- 16 -

[Table 3]

5

10

15

20

25

PCR REACTION MIXTURE COMPOSITION	AMOUNT (μμ)
10 x PCR buffer (MgCl ₂ -free)	. 5
MgCl ₂ (25 mM)	3
dNTPs (1 mM each)	2 (dT 1.5)
Biotin-dUTP (1 mM)	0.5
Primer 1: Bio-TR 8 (50 pmol/µl)	2 ·
Primer 2: TR 9 (50 pmol/µl)	2
Tag polymerase (5 unit/µi)	0.2
Template DNA	1

The PCR was performed for 35 cycles under the following conditions.

-predenaturation: at 94°C, for 5 minutes

-denaturation: at 94°C, for 30 seconds

-primer annealing: at 63 °C, for 30 seconds

-polymerization: at 72°C, for 45 seconds

-last extension: at 72°C, for 5 minutes

The PCR products produced through the above process are 157bp including 81bp core region, and has been identified by electrophoresis on a 2% agarose gel.

Embodiment 1-5: Hybridization and Scanning

A target DNA (157bp) of $20\mu l$ amplified by PCR was mixed with DNase buffer of $20\mu l$ and DNase I $(0.1U/\mu l)$ of $1\mu l$, and treated at $0^{\circ}\mathbb{C}$ for 5 minutes. The resulting target DNA was thermally treated at $99^{\circ}\mathbb{C}$ for 10 minutes to inactivate the DNase I. The mixture was then treated with 3N NaOH of $4\mu l$ at $25^{\circ}\mathbb{C}$ for 5 minutes, and then treated at $0^{\circ}\mathbb{C}$ for 5 minutes with Tris-HCl (pH 7.2) of $2\mu l$ and 3N HCl of $4\mu l$. To the above mixture, $12 \times SSPE$ (saline-sodium phosphate-EDTA buffer) of $50\mu l$ and $10^{\circ}M$ SDS of $0.5\mu l$ were added, and then transferred on to an oligonucleotide chip for hybridization at $40^{\circ}M$ for 3 hours.

After hybridization, the oligonucleotide chip was washed with 2 x SSPE and 0.03% SDS at 25°C for 3 minutes, with 1 x SSPE at 25°C for 5 minutes, and then with 0.2 x SSPE at 25°C for 5 minutes to remove unreacted DNA. The oligonucleotide chip was dried at 25°C, and a mixture of 3 x SSPE of $49\mu\ell$

and streptavidin-R-phycoerythrin of $1\mu\ell$ was added, then treated at 25°C for 10 minutes. The stained oligonucleotide chip was washed twice with 1 x SSPE for 1 minute, air-dried, and scanned with a laser fluorescence scanner (GMS 418 array scanner, TaKaRa, Japan).

5

10.

15

20

25

30

The wild-type (wt) probes consist of seven 17mer probes devised from rpoB gene sequence corresponding to codons 507-533, including the mutation site in middle (positions 8-12) and have maximum sequence overlaps between the wild-type probes. The present invention has been devised to accurately detect frequent point mutations by comparing the signal intensities of the rifampin-resistance probes with those of the corresponding wild-type probes, and simultaneously predict all point mutations found at 507-533 codons.

Each mutant probe is designed to have the most frequent mutation site located in the middle position (8-12 positions) of the probe as in the wild-type probes, to thereby enhance detection sensitivitiy and enable more accurate detection by comparing the signal intensities with wild-type probes. The hybridization efficiency was increased by attaching a T_{10} spacer on each probe, which is confirmed experimentally. It is considered that the T_{10} spacer reduces steric hindrance and hence increases the hybridization efficiency of the target DNA and the probes.

FIG. 2 is a pictorial view showing the result in which rpoB gene fragments (157bp) of ten clinical isolates are amplified using biotin-TR8 and TR9 primers and then undergone an electrophoresis in 2% agarose gel, according to the present invention. The ten amplified rpoB gene fragments (157bp) were digested with DNase I, and then hybridized with the oligonucleotide chip. After hybridization under the optimal conditions, that is, at 40°C for 3 hours, the oligonucleotide chip was stained with streptavidin-R-phycoerythrin for subsequent fluorescence scanning at 578nm. The resulting image can be analyzed for drug-resistance by comparing the fluorescent intensities of the wild-type (wt) probes with those of the mutation (mt) probes relatively. Mutant probes and wild-type probes have identical sequence except for a few base

producing mixed results.

L. B. Heifets has reported that strains having mutations of 511 (Leu>Pro), 516 (Asp>Tyr), 516 (Asp>Val), and 522 (Ser>Leu) are classified as low-level resistance strains with rifabutin MIC $\leq 5\mu g/ml$ (Heifets L. B., Antituberculosis drugs: antimicrobial activity in vitro, pp. 14-57 in L. B. Heifets (ed.), Drug susceptibility in the chemotherapy of mycobacterial infections, 1st ed. CRC Press, Boca Raton, Fla, 1991). For these cases, the drug-susceptibility test is necessary in addition to the oligonucleotide chip experiment.

In the cases of codon 526 mutants, it has been clearly determined that His>Gln, Gly, Asn, Ala, or Cys, are RIB-susceptibility whereas His>Tyr, Pro, Arg, or Asp are RIB-resistance, therefore, oligonucleotide chip experiment alone can discriminate RIB-susceptibility.

FIG. 5 is a diagram showing an array format of the oligonucleotide chip using probes Ms1-Ms8 designed for species identification. FIGs. 6A through 6C are pictorial views showing the experimental results of Mycobacterium species identification using the oligonucleotide chip of FIG. 5. In the case of Mycobacterium kansasii, Mycobacterium fortuitum, and Mycobacterium scrofulaseum, the signal of MCmix probe indicating mycobacteria appears more strongly than that of the control Mex probe, and the signal of number 2 probe is stronger than those of numbers 1, and 3-8 probes, among the species identification probes. Likewise, clinically significant 33 kinds of Mycobacteria can be identified. In the case of Mycobacterium tuberculosis, the signals of the Mcmix probe and number 1 probe turn on, MOTT except for Mycobacterium gastri can be confirmed by signals on the Mcmix probe and the number 2 through number 8 probes.

In the following embodiment 2, the materials used were: sixteen different species of Mycobacterial genomic DNA have been provided from the Jeju University (Jeju, Korea). DNA probes and primers were custom-synthesized from Bionics (Seoul, Korea). All other reagents were first-grade.

10

15

20

25

Additional probes detecting mutations of the rpoB gene of rifampinresistance Mycobacterium tuberculosis can be used with above-mentioned drugresistance probes. Base sequences of three additional probes and their corresponding wild-type probes are shown in Table 4.

[Table 4]

5

10

15

20

	<u> </u>		
PROBE	BASE SEQUENCE	DRUG-SUSCEPTIBILITY	IDENTIFICATION
Mt509	S'amine-t10- ggcaccagacagctgag-3'	RFP-R, RBU-S	509 MUTANT
Mt533	5'amine-t10- tgtcggcgccggggccc-3'	RFP-R, RBU-R	533 MUTANT
Mt524	5'amine-t10- tgtcggggttaacccac-3'	RFP-R, RBU-R	524 MUTANT
Wt509	5'amine-t10- ggcaccagccagctgag-3'	RFP-S, RBU-S	509 WILD TYPE
Wt533	5'amine-t10- tgtcggcgctggggccc-3'	RFP-S, RBU-S	533 WILD TYPE
Wt524	5'amine-t10- tgtcggggttgacccac-3'	RFP-S, RBU-S	524 WILD TYPE

By comparing fluorescent intensities of probes, mutations such as codon 509(Ser)→AGA(Arg), codon 533 CTG(Leu)→CCG(Pro), codon 524 TTG(Leu)→TTA(Leu) can be detected. In Table 4, RFP represents rifampin, RBU represents rifabutin, R represents resistance, and S represents susceptibility.

FIG. 7 is a diagram showing the array format of an oligonucleotide chip containing additional RIF-resistant probes. FIGs. 8A through 8D are pictorial views showing the diagnostic result regarding rifampin-resistance and rifabutin-sensitivity of clinical isolates using the oligonucleotide chip of FIG. 7. The clinical isolates used in the experiment were supplied from the Asan Medical Center (Seoul, Korea). Mutations in the samples were identified in the same manner as that of the embodiment 1 as #1 (516a mutant), #2 (511 mutant), #3 (516b mutant), and #4 (531 mutant), as shown in FIGs. 8A-8D. All the samples were Mycobacteria strains as judged by comparing Mcmix probe with Mex probe. The result of DNA sequencing agreed with the oligonucleotide chip results in all cases.

Embodiment 2-2: Fabrication of primer

The inventors used biotin-TR8 and TR9 primer set in the prior application, but has devised a new primer set, biotin-DGR8, DGR9, that can amplify Mycobacterium tuberculosis and MOTT from uncultured specimens such as sputum, with an increased efficiency compared to biotin-TR8/TR9.

The new primer set, biotin-DGR8, DGR9, has been devised by mixing partial base sequences of rpoB genes of forty-three kinds, that is, M. africanum, M. asiaticum, M. avium, M. bovis, M. bovis BCG strain French 1173P2, M. celatum strain ATCC51131, M. celatum strain ATCC51130, M. gastri, M. genavense, M. gordonae, M haemophilum, M. interjectum, M. intermedium, M. intracellulare, M. kansasii, M. leprae, M. malmoense, M. marinum, M. avium subsp. Paratuberculosis, M. scrofulaceum, M. shimoidei, M. simiae, M. szulgai, M. ulcerans, M. xenopi, M. terrae, M. triviale, M. nonchromogenicum, M. abscessus, M. aurum, M. chelonae, M. chitae, M. fallax, M. flavescens, M. fortuitum strain ATCC6841, M. fortuitum strain ATCC49403, M. neoaurum, M. peregrinum, M. phlei, M. senegalense, M. smegmatis, M. thermoresistibile, and M. vaccae, in addition to the Mycobacterium tuberculosis.

The partial base sequences of the rpoB gene used to devise biotin-DGR8 and DGR9 primers are illustrated as the SEQ ID NOs 49-92 in Table 5.

[Table 5]

5

10

15

	[I able 5]		· · · · · · · · · · · · · · · · · · ·
	Species	DGR9	DGR8
1	M. tuberculosis	tc gccgcgatca aggagt	gga ggtccgcgac gtgca
2	M. africanum	te geegegatea aggagt	gga ggtccgcgac gtgca
3	M. asiaticum	tt geegegatea aggagt	gga agtgcgtgac gtgca
4	Mycobacterium avium	tg geggegatca aggagt	gga ggtccgcgac gtgca
5	Mycobacterium bovis	te geegegatea aggagt	gga ggtccgcgac gtgca
6	Mycobacterium bovis BCG strain French 1173P2	te geegegatea aggagt	gga ggtccgcgac gtgca
7	Mycobacterium celatum strain ATCC51131	tg gcggcgatca aggagt	cga ggtgcgcgac gtgca
8	Mycobacterium celatum strain ATCC51130	tg geggeeatea aggagt	gga ggtccgcgac gtgca
9	Mycobacterium gastri	te geegeeatta aggagt	gga ggtccgcgac gtgca
10	Mycobacterium genavense	tg gcggcgatca aggagt	cga ggtccgcgac gtgca
11	Мусоbacterium gordonae	te geegegatea aggagt	gga agtacgtgac gtgca
12	Mycobacterium haemophilum	te geegegatea aggagt	gga agtacgtgac gtgca
13	Mycobacterium interjectum	te geegegatea aggagt	cga ggtccgcgac gtgca
14	Mycobacterium intermedium	tc gccgcgatca aggagt	gga agtcegtgae gtgca

15	Mycobacterium intracellulare	te geegegatea aggagt	gga ggtccgtgac gtcca
16	Mycobacterium kansasii	tc gccgcgatca aggagt	gga ggtccgtgac gtcca
17	Mycobacterium leprae	tc gccgctatca aggaat	aga ggtccgtgac gtgca
18	Mycobacterium malmoense	tc gccgcgatca aggagt	gga ggtccgtgac gtgca
19	Mycobacterium marinum	tt gcggcgatca aggagt	gga agttcgtgac gtgca
20	Mycobacterium avium subsp. Paratuberculosis	tg geggegatca aggagt	gga ggtccgcgac gtgca
21	Mycobacterium scrofulaceum	tg gcggcgatca aggagt	tga ggtccgcgac gtgca
22	Mycobacterium shimoidei	tt geegegatea aggagt	gga agttegtgae gtgea
23	Mycobacterium simiae	tg gcggcgatca aggagt	tga ggtccgcgac gtgca
24	Mycobacterium szulgai	tc gccgcgatca aggagt	gga ggtccgtgac gtgca
25	Mycobacterium ulcerans	tt geegegatea aggagt	gga agttcgtgac gtgca
26	Mycobacterium xenopi	tg gccgcgatca aggagt	gga ggtccgtgac gtgca
27	Mycobacterium terrae	te geegegatea aggagt	tga ggtccgtgac gtgca
28	Mycobacterium triviale	tc gccgcgatca aggagt	gga ggtccgcgac gtgca
29	Mycobacterium nonchromogenicum	tc gccgccatca aggaat	gga agttcgtgac gtgca
30	Mycobacterium abscessus	tg geggegatea aggagt	cga ggtccgcgac gtgca
31	Mycobacterium aurum	tt gccgcgatca aggagt	gga agtgegtgae gtgea
32	Mycobacterium chelonae	tg geggegatea aggagt	tga ggtccgcgac gtgca
33	Mycobacterium chitae	tg gcggcgatca aggagt	cga ggttcgtgac gtgca
34	Mycobacterium fallax	tg geggegatea aggagt	gga ggtccgcgac gtgca
35	Mycobacterium flavescens	tg gcggcgatca aggagt	cga agtccgtgac gtgca
36	Mycobacterium fortuitum strain ATCC6841	tg gcggcgatca aggagt	tga ggtccgcgac gtcca
37	Mycobacterium fortuitum strain ATCC49403	tg geggegatea aggagt	tga ggtccgcgac gtcca
38	Mycobacterium neoaurum	tg geggegatea aggagt	tga ggtccgcgac gtgca
39	Mycobacterium peregrinum	tg geggegatea aggagt	tga ggtccgcgac gtgca
40	Mycobacterium phlei	tg geggegatea aggagt	cga ggtccgcgac gtgca
41	Mycobacterium senegalense	tg geggegatea aggagt	tga ggtccgcgac gtgca
42	Mycobacterium smegmatis	tg gcggcgatca aggagt	cga ggtccgcgac gtgca
43	Mycobacterium thermoresistibile	tg geggegatea aggagt	ega ggteegegae gteca
44	. Mycobacterium vaccae	tg geggegatea aggaat	ega ggteegegae gtgea

In Table 6, the base sequences of the biotin-DGR8 and DGR9 fabricated as described above are illustrated and compared with the primer biotin-TR8 and TR9 of the prior application.

[Table 6]

5

PRIMER	BASE SEQUENCE	
biotin -TR8	5' biotin t g c a c g t c g c g a c c t c c 3'	
TR9	5'togcogcgatcaaggagt3'	
biotin-DGR8	5' blotin tg SacgtcRcgNacYtc3'	
DGR9	5'tBgcSgcBatYaaggaRt3'	

Reference) B: c, t, g

N: c, t, g, a

R: g, a

S: c, g

5 Y: c, t

10

15

20

25

Embodiment 2-3: Polymerase chain reaction (PCR)

In order to find optimal conditions for PCR using the newly devised biotin-DGR8 and DGR9 primer set, reaction conditions were varied as follows:

A. Temperature program

a. at 94 $^{\circ}$ C for 5 minutes, at 94 $^{\circ}$ C for 30 seconds, at 47 $^{\circ}$ C for 30 seconds, and at 72 $^{\circ}$ C for 45 seconds

b. at 94 $^{\circ}$ C for 5 minutes, at 94 $^{\circ}$ C for 30 seconds, at 63 $^{\circ}$ C for 30 seconds, and at 72 $^{\circ}$ C for 45 seconds

c. at 94 $^{\circ}$ C for 5 minutes, at 94 $^{\circ}$ C for 30 seconds, at 64 $^{\circ}$ C for 30 seconds, and at 72 $^{\circ}$ C for 45 seconds

d. at 94 $^{\circ}$ C for 5 minutes, at 94 $^{\circ}$ C for 30 seconds, at 65 $^{\circ}$ C for 30 seconds, and at 72 $^{\circ}$ C for 45 seconds

The yield of PCR product using the biotin-DGR8 and biotin-DGR9 primers changed depending on the annealing temperature, as dertermined by a 2% agarose gel electrophoresis. At the annealing temperature of 64 or $65\,^{\circ}$ C, maximum yield was obtained with less amount of side products of different size that appeared at 47 or $63\,^{\circ}$ C.

B. Reaction cycle

Using the biotin-DGR8 and biotin-DGR9 primers, the amplified products of the polymerase chain reaction performed at 64° C annealing temperature showed a single band with 35 cycles or 40 cycles as identified by a 2% agarose gel. The quantity of the amplified products was observed to be dependent on the reaction cycle, producing higher yield at 40 cycles. The most optimal PCR conditions were 64° C and 40° cycles.

C. Primer concentration

Using various concentrations of biotin-DGR8 and DGR9 primers, 50pmol, 100pmol, 500pmol, and 1000pmol, the polymerase chain reaction was performed at an annealing temperature of 64°C for 40 cycles. It was observed that the yield increased within 50~100pmol concentration range but decreased with over 100 pmol. Therefore, biotin-DGR8 and DGR9 primer concentrations of 50-100pmol are considered appropriate.

5

10

15

20

25

30

Using the optimal conditions determined experimentally as described above, sixteen different Mycobacterial species were PCR amplified. FIG. 9A is a pictorial view showing a 2% agarose gel image of PCR amplified products under the reaction conditions disclosed in the prior application of the inventors, that is, at 63°C and 35 cycles with biotin-TR8 and TR9 primers of 50pmol, and FIG. 9B is a pictorial view showing a 2% agarose gel image of PCR amplified products under the reaction conditions according to the present invention that is, at 64°C and 40 cycles with biotin-DGR8 and biotin-DGR9 primers of 100pmol.

As illustrated in FIGs. 9A and 9B, the primer set of the present invention, biotin-DGR8 and DGR9, showed more efficient amplification of the rpoB 157bp region in all sixteen Mycobacterial species compared to biotin-TR8 and TR9 primers. The 157bp amplified products can be used as the target DNA for oligonucleotide chip analysis.

Embodiment 2-4: Drug-resistance diagnosis of sputum specimen

Eleven DNA samples directly extracted from sputum specimens of tuberculosis patients or suspected patients were obtained from the Department of Respiratory Diseases, Asan Medical Center (Seoul, Korea).

FIG. 10 is a pictorial view showing a 2% agarose gel image of PCR amplified products of sputum specimens under conditions as optimized in the embodiment 2-3 according to the present invention, i.e. 64°C and 40 cycles with biotin-DGR8 and DGR9 primers of 100pmol. As shown in FIG. 10, Mycobacterium tuberculosis was not detected from #16 and #36 specimens. Nine specimens except for the above #16 and #36 specimens were determined as Mycobacterium tuberculosis positive. Thus, diagnosis by oligonucleotide chip

to detect drug-resistance was performed using the oligonucleotide chip of FIG 7. As a result, it was determined that eight specimens including #6, #20, #26, #27, #29, #38, #41, #49 were wild-type, that is, rifampin sensitive strains, and #57 was a resistant strain having mutations on codons 509 and 513. FIGs. 11A through 11B show the images obtained from oligonucleotide chip experiments: #27 (wild-type) #57 (509, 513 mutant), respectively. DNA sequencing result of the eight wild-type strains agreed with the oligonucleotide chip result and #57 was determined to be a rifampin-resistance strain by drug-susceptibility test.

Embodiment 2-5: Random labeling incorporating Cyanine 5-dUTP

A new detection method has been devised to reduce assay time compared to the prior application method that uses streptavidin-R-phycoerythrin staining after PCR incorporating random biotin labeling. More specifically, PCR was performed with Cyanine 5-dUTP (NEN, U.S.A) instead of biotin-dUTP to incorporate Cyanine randomly to the amplified products, which does not require a separate staining procedure prior to scanning. Accordingly, an obvious visual result can be obtained speedily and simply. At the time of a polymerase chain reaction, a concentration of Cyanine 5-dUTP used equals to that of biotin-dUTP of the existing method, and it is preferable that DGR8 without biotin modification is used as a primer. The experimental conditions are the same as the existing method except that the staining process is omitted and that 633nm is used in fluorescence scanning

The pars which are not particularly described in the embodiments 2-1 through 2-5 are same as those of the embodiments 1-1 through 1-5, which will thus be omitted.

Industrial Applicability

10

15

20

25

30

Finally, as described above, the present invention can perform Mycobacterial species identification and drug-resistance detection with only a portion of Mycobacterial rpoB gene (157bp), simultaneously, speedily and accurately in large quantity, which can provide useful information in tuberculosis

- 26 -

treatment so that an appropriate drug remedy can be given to the patients. Thus, at an early stage of the Mycobacterium infection, a proper administration of antibiotic agents and other necessary treatment can be provided to patients infected with mycobacteria.

Claims:

5

10

15

20

25

30

1. A diagnosis kit for Mycobacterial species identification and drugresistance detection comprising:

an oligonucleotide chip including a species identification probe comprised of species-specific DNA sequences of Mycobacterial rpoB gene (157bp), a Mycobacterial drug-resistance detection probe comprised of one or more modified codons of mycobaterial rpoB gene (157bp), and a contrast group probe comprised of wild-type sequences corresponding to each said drug-resistance detection probe; and

a marker for detecting a hybridization of said oligonucleotide chip and a specimen.

- 2. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 1, wherein said species identification probe comprises SEQ ID NOs 5 through 12.
- 3. The diagnosis kit for Mycobacterial species identification and drug-resistance detection of claim 1 or 2, wherein said Mycobacterium drug-resistance detection probe comprises one or more modified codons of 507-533 codons of rpoB gene.
- 4. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 3, wherein said drug-resistance detection probe is a rifampin-resistance detection probe.
- 5. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 4, wherein said rifampin-resistance detection probe comprises modified 511, 513, 516, 518, 522, 526, and 531codons.
- 6. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 5, wherein said rifampin-resistance detection probe comprises probes of SEQ ID NOs 20 through 36.
- 7. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 5, wherein said rifampin-resistance probe further comprises modified 509, 533, and 524 codons.

- 8. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 7, wherein said rifampin-resistance detection probe further comprises probes of SEQ ID NOs 41 through 46.
- 9. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 3 or 4, wherein said drug-resistance detection probe further comprises a rifabutin susceptibility detection probe.

5

15

20

25

30

- 10. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 9, wherein said rifabutin susceptibility detection probe comprises modified 516 and 526 codons.
- 11. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 10, wherein said rifabutin susceptibility detection probe comprises probes of SEQ ID NOs 22, 23, and 31 through 36.
 - 12. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 1 or 2, wherein said oligonucleotide chip is formed by a Schiff base reaction of each probe comprised of part of rpoB gens modified to contain an amine group and an aldehyde group induced on glass.
 - 13. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 1 or 2, further comprising a means for amplifying the DNAs of the specimen.
 - 14. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 13, wherein said means comprises biotin-TR8 and TR9 primers of SEQ ID NOs 37 and 38 which amplify rpoB gene fragments (157bp) specifically.
 - 15. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 13, wherein said means comprises biotin-DGR8 and DGR9 primers of SEQ ID NOs 47 and 48 which amplify rpoB gene fragments (157bp) specifically.
 - 16. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 13, wherein said marker is a fluorescent material including said biotin-binding protein.

- 17. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 16, wherein said fluorescent material is streptavidin-R-phycoerythrin.
- 18. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 13, wherein said marker is Cynine 5-dUTP added in the polymerase chain reaction.
- 19. The diagnosis kit for Mycobacterial species identification and drug-resistance detection of claim 1 or 2, wherein said each probe comprises T_{10} included at 5' as a spacer.
- 20. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 1 or 2, wherein said oligonucleotide chip further comprises a Mycobacterium complex probe which can detect whether a specimen is Mycobacterium.
- 21. The diagnosis kit for Mycobacterial species identification and drugresistance detection of claim 20, wherein said tuberculosis bacteria group probe comprises probes of SEQ ID NOs 1 through 4.
- 22. A method of manufacturing a diagnosis kit for Mycobacterial species identification and drug-resistance detection comprising the steps of:
- (a) modifying a species identification probe comprised of species-specific DNA sequences of Mycobacterial rpoB gene, a Mycobacterial drug-resistance detection probe comprised of one or more modified codons of Mycobacterial rpoB gene, and a contrast group probe comprised of wild-type sequences corresponding to each said drug-resistance detection probe to contain an amine group;
 - (b) inducing an aldehyde group on glass; and

10

15

20

25

30

- (c) fabricating an oligonucleotide chip by affixing the modified probes on the glass with a Schiff base reaction, respectively.
- 23. The diagnosis kit manufacturing method of claim 22, further comprising the step of reducing a fixed imine bond formed in step (c) by NaBH₄.
 - 24. A pair of primers comprising base sequences of SEQ ID NOs 47

and 48 which specifically amplifies rpoB gene fragments (157bp) of species belonging to Mycobacterium genus.

- 25. A method for Mycobacterial species identification and drugresistance detection comprising the steps of:
- amplifying rpoB gene fragments of specimen by a polymerase chain reaction (PCR) by using a pair of primers according to claim 24; and

5

10

15

20

discriminating species by a fluorescent intensity corresponding to a particular species by using a diagnosis kit of claim 1.

- 26. The method for Mycobacterial species identification and drug-resistance detection of claim 25, wherein said PCR is performed at an annealing temperature of 64-65 $^{\circ}$ C.
- 27. The method for Mycobacterial species identification and drugresistance detection of claim 25 or 26, wherein said PCR is performed in a reaction period of 38-42.
- 28. The method for Mycobacterial species identification and drugresistance detection of claim 25 or 26, wherein said PCR is performed in a primer concentration of 50-100pmol.
- 29. The method for Mycobacterial species identification and drugresistance detection of claim 25, wherein said PCR further comprises a step of adding a Cynine 5-dUTP as a marker.
- 30. The method for Mycobacterial species identification and drugresistance detection of claim 25, wherein said specimen is uncultured sputum, blood or cerebrospinal fluid of a patient.

1/9 DRAWING

FIG. 1

FIG. 2

M N 22 24 30 36 48 82 87 90 91 94

M:MAKER, N:NEGATIVE CONTROL NUMBER:CLINICAL ISOLATE NUMBER

PCT/KR01/00904 WO 01/92573

#87(mt531/mt516c)#90(mt516c/mt526d)#91(mt531)

FIG. 3j

#94(mt511/mt531)

FIG. 4

FIG. 5

		PROBE 5	PROBE 5	PROBE 1	PROBE 1
		PROBE 6	PROBE 6	PROBE 2	PROBE 2
MEX	MEX	PROBE 7	PROBE 7	PROBE 3	PROBE 3
MC MIX	MC MIX	PROBE 8	PROBE 8	PROBE 4	PROBE 4

FIG. 6a

M.kansassi

FIG. 6b

M.fortuitum

FIG. 6c

M.scrofalaceum

FIG. 7

MCmix	MCmix	Mt516b	Mt516b	Mt524	Mt524	Wt533	Wt533
Mex	Mex	Mt516a	Mt516a	Mt522	Mt522	Wt531	Wt531
Mt526h	Mt526h	Mt509	Mt509	Mt521	Mt521	Wt526	Wt526
Mt526g	Mt526g	Mt533	Mt533	Mt518	Mt518	Wt524	Wt524
Mt526f	Mt526f	Mt531	Mt531	Mt513	Mt513	Wt521	Wt521
Mt526e	Mt526e	Mt526c	Mt526c	Mt511	Mt511	Wt518	Wt518
Mt526d	Mt526d	Mt526b	Mt526b	Wt516	Wt516	Wt513	Wt513
Mt516c	Mt516c	Mt526a	Mt526a	Wt509	Wt509	Wt511	Wt511

FIG. 8a

mt516a

FIG. 8b

mt511

PCT/KR01/00904 WO 01/92573

mt516b

FIG. 8d

mt531

FIG. 9a

M Imnop jk

FIG. 10

M 6 16 20 26 27 29 36 38 41 49 57 N

M:MAKER, N:NEGATIVE CONTROL NUMBER:CLINICAL ISOLATE NUMBER

9/9

FIG. 11a

FIG. 11b

#57(mt509,513)


```
biomedlab
<110>
         diagnosis kit for Mycobacterium species identification and
<120>
         drug-resistance detection and manufaturing method thereof
         SGG1601PCT
<130>
         KR10-2000-0029369
<150>
<151>
         2000-05-30
         92
<160>
         KopatentIn 1.71
<170>
<210>
<211>
<212>
         Mycobacterium tuberculosis
<213>
 <400>
          1
                                                                             17
 tetteggcac cagecag
 <210>
          2
 <211>
          17
 <212>
          DNA
          Mycobacterium marinum
 <213>
 <400>
                                                                            . 17
 tcttcggaac cagccag
 <210>
          3
           17
 <211>
  <212>
           Mycobacterium fortuitum
  <213>
  <400>
                                                                              17
  tcttcggaac gtcgcag
```

<210>	4	
<211>	17	
<212>	DNA	
<213>	Corynebacterium diphtheriae	
	•	
<400>	4	17
tcttcgga	ac ctogoag	1,
<210>	5	
<211>	19	
<212>	DNA	
<213>	Mycobacterium tuberculosis, M. africanum, M. bovis, M. gastri, MTB co	mplex
	•	
<400>	5	
ggtctgt	eac gtgagcgtg	19
<210>	6	
<211>	19	
<212>	DNA	idei M +M.neoaurum
<213>	Mycobacterium asiaticum, M.simiae, M.aurum, M.senegalense, M.shimo	ruer, m. c.
<400>	6	
	ccc gtgagcgtg	19
ggcccgc		
<210>	7	
<211>	19	
<212>	DNA	
<213>	Mycobacterium intermedium, M.leprae, M.malmoense, M.nonchromogen	cum
<400>	7	
ggtctgt	ege gtgagegtg	19
403.05		
<210>	8	
<211>	19	
インエンン	UNA	

<213>	Mycobarerium avium paratuberculosis, M.avium, M.triviale, M.celatiu	ma.
<400>	8	
ggtctgtc	cc gggagcgtg	19
-010		
<210>	9	
<211>	19	
<212>	DNA	
<213>	Mycobacterium interjectum	
<400>	9	
ggtctgtc	cc gcgagcgtg	19
<210>	10	
<211>	19	
<212>	DNA	
<213>	Mycobacterium xenopi	
<400>	10	
	egc gcgagcgtg	19
ygcccgcc	ge gegagegeg .	
<210>	11	
<211>	19	
<212>	DNA	
<213>	Mycobacterium chelonae, M. abscessus	
<400>	11	
ggtctgad	cc gtgaccgtg	19
<210>	12	
<211>	19	
<212>	DNA	
<213>	Mycobacterium thermoresistibile .	
.400		
<400>	12	19
ggtctgag	gcc gggagcgtg	19

<210>	13	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	13	
cagccag	ctg agccaat	17
		•
<210>	14	
<211>	17	•
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	14	
gctgagc	caa ttcatgg	17
<210>	15	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	15 .	17
attcatg	gac cagaaca	17
<210>	16	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
1225	1002200	
<400>	16	
tggacca	agaa caacccg	17
<210>	17	
<211>	17	

<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	17	
caacccgct	g teggggt	17
<210>	18	
<211>	17	
<212>	DNA .	
<213>	Mycobacterium tuberculosis	
<400>	18	
ggttgacc	ca caagcgc	17
	·	
<210>	19 .	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
•		
<400>	19	
ccgactgt	cg gcgctgg	17
	•	
<210>	20	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	20	
cagccagc	cg agccaat	17
<210>	21	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
	A.	

gctgagc	cca ttcatgg	17
<210>	22	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	22	
attcatg	gtc cagaaca	17
<210>	23	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
12132	Mycobacterium tabeledicai	
<400>	23	
attcatg	tac cagaaca	17
<210>	24	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	24	
	gca caacccg	17
cygacoa		
<210>	25	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	25	
	atg tcggggt	17
-2-0-03		
-010	26	

<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	26	
caacccgc	tg ttggggt	17
<210>	27	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	27	
	ta caagege	17
ggctgacc	ta caagege	
<210>	28	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	28	
ggttgacc	ga caagcgc	17
-010 \	20	
<210> <211>	29 17	
<211>	DNA	
<213>	Mycobacterium tuberculosis	
(213)	Mycobacterium tabereares	
<400>	29	
	cg caagcgc	17
<210>	30	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	

<400>	30	
ccgactgt	tg gcgctgg	17
<210>	.31	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	31	4.5
attcatgg	ag cagaaca	17
<210>	32	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
- 4 0 0 5		
<400>	32	17
ggttgacc	aa caagcgc	
<210>	33	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	33	
ggttgaco	ege caagege	17
<210>	34	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	34	
ggttgac	ctg caagege	17

<210>	35		
<211>	17		
<212>	DNA		
<213>	Mycobacterium tuberculosis	•	
<400>	35		
<400>		17	
ggttgace	ca gaagege	1,	
<210>	36		
<211>	17		
<212>	DNA		
<213>	Mycobacterium tuberculosis		
<400>	36		
ggttgacc	gg caagcgc .	17	
	•		
<210>	37		
<211>	18		
<212>	DNA		
<213>	Mycobacterium tuberculosis		
<400>	37	10	
tgcacgtc	gc ggacctcc	18	
<210>	38		
<211>	18		
<212>	DNA		
<213>	Mycobacterium tuberculosis		
<400>	38		
tegeegeg	at caaggagt	18	
101 CT			
<210>	39		
<211>	18		
<212>	DNA Mycobacterium tuberculosis, M.africanum, M.bovis, M.bovisBCG	98 2m2	M kanea
<213>	Mycobacterium tuberculosis, M.africanum, M.bovis, M.bovisBCG	m.intrace,	.ı. vansa

<400>	39	
gcagctga	gc caattcat	18
	·	
<210>	40	
<211>	17	
<212>	DNA	
<213>	Mycobacterium fortuitum, M.flavescens	
<400>	40	
cgacgtcg	ca gctgtcg	17
<210>	41	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	41	17
ggcaccag	ac agetgag	-
<210>	42	
<211>	17	
	DNA	
<213>	Mycobacterium tuberculosis	·
<400>	42	
	icc ggggccc	17
-,		
<210>	43	
<211>	17 .	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	43	
tgtcgggg	gtt aacccac	17

(210>	44	
(211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	44	
ggcacca	gee agetgag	17
<210>	45 ⁻	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	45	
tgtcggc	gct ggggccc	17
	•	
<210>	46	
<211>	17	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	46	
tgtcggg	gtt gacccac ·	17
<210>	47	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	this sequence is combinated with the rpoB genes of 44 species	
	belonged to Mycobaterium.	
<400>	47	
tgsacgt	ere gnacyte	17

<210>	48	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	This sequence is combinated with the rpoB genes of 44 species	
	belonged to Mycobacterium.	
<400>	48	
	at yaaggart	18
g g		
<210>	49	
<211>	306	
<212>	DNA	
<213>	Mycobacterium tuberculosis	
<400>	49	
tgcgtacg	gt cggcgagctg atccaaaacc agatccgggt cggcatgtcg cggatggagc	61
+	cg ggageggatg accaeccagg acgtggagge gateacaceg cagaegttga	120
gggtggte	cy ygayeggaty accaectagy acytygayge gattacaetg tagatyttga	12.
tcaacatc	cg gccggtggtc gccgcgatca aggagttctt cggcaccagc cagctgagcc	180
aattcatg	ga ccagaacaac ccgctgtcgg ggttgaccca caagcgccga ctgtcggcgc	240
tggggccc	gg cggtctgtca cgtgagcgtg ccgggctgga ggtccgcgac gtgcacccgt	300
cgcact		30
<210>	50	
<211>	306	
<212>	DNA	
<213>	Mycobacterium africanum	

<400>	50					
tgcgtacg	gt cggcgagctg	atccaaaacc	agatccgggt	cggcatgţcg	cggatggagc	. 60
gggtggtc	cg ggagcggatg	accacccagg	acgtggaggc	gatcacaccg	cagacgttga	120
tcaacatc	cg gccggtggtc	gccgcgatca	aggagttctt	cggcaccagc	cagctgagcc	180
aattcatg	ga ccagaacaac	ccgctgtcgg	ggttgaccca	caagcgccga	ctgtcggcgc	240
tggggccc	gg cggtctgtca	cgtgagcgtg	ccgggctgga	ggtccgcgac	gtgcacccgt	300
cgcact						306
•			•		·	
<210>	51					
<211>	306		•		:	
<212>	DNA					•
<213>	Mycobacteriu	m asiaticum				
<400>	51					
tgcgcacc	gt gggcgagttg	atccagaacc	agatccgggt	cggcatgtcc	cggatggagc	60
gcgtcgtc	cg cgagcggatg	accactcagg	acgtcgaggc	gatcacgccg	cagaccctga	120
tcaacatc	cg gccggtcgtt	gccgcgatca	aggagttctt	cggcaccagc	cagctctcgc	180
agttcatg	ga ccagaacaac	ccgctttcgg	gtctgaccca	caagcgccgc	ctgtcggcgc	240
tgggcccc	gg cggtctgtcc	cgtgagcgtg	ccggcctgga	agtgcgtgac	gtgcacccct	300
cgcact						306
<210>	F 2					
<210>	52					
<211>	300					
<212>	DNA					
<213>	Mycobacteriu	m avıum				
<400>	52					
tococace	gt cogtgagctg	atccagaacc	agatccgggt	cggcatgtcc	cggatggagc	60

gcgtcgtccg cgagcggatg accacccagg acgtcgaggc catcacgccg cagaccctga	120
tcaacatccg tcccgtcgtg gcggcgatca aggagttctt cggcaccagc cagctgtccc	180
agttcatgga ccagaacaac eegetgtegg ggetcaecca caagegeege etgteggege	240
tgggcccggg tggtctgtcc cgggagcggg ccgggctgga ggtccgcgac gtgcacccgt	300
	300
<210> 53	
<211> 306	
<212> DNA	
<213> Mycobacterium bovis	
<400> 53	
tgcgtacggt cggcgagctg atccaaaacc agatccgggt cggcatgtcg cggatggagc	60
and the state of t	
gggtggtccg ggagcggatg accacccagg acgtggaggc gatcacaccg cagacgttga	. 120
teaacateeg geeggtggte geegegatea aggagttett eggeaceage cagetgagee	180
aattcatgga ccagaacaac ccgctgtcgg ggttgaccca caagcgccga ctgtcggcgc	240
tggggcccgg cggtctgtca cgtgagcgtg ccgggctgga ggtccgcgac gtgcacccgt	300
cgcact	306
<210> 54	
<211> 306	
<212> DNA	
<213> Mycobacterium bovis BCG strain French 1173P2	
<400> 54	
tgcgtacggt cggcgagctg atccaaaacc agatccgggt cggcatgtcg cggatggagc	60
gggtggtccg ggagcggatg accacccagg acgtggaggc gatcacaccg cagacgttga	120

tcaacatco	g gccggtggtc	gccgcgatca	aggagttctt	cggcaccagc	cagctgagcc	180
aattcatgg	ga ccagaacaac	ccgctgtcgg	ggttgaccca	caagcgccga	ctgtcggcgc	240
tggggcccg	gg cggtctgtca	cgtgagcgtg	ccgggctgga	ggtccgcgac	gtgcacccgt	300
cgcact	·					306
<210>	55					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	n celatum si	rain ATCC5	1131		,
<400>	55					
ttcgtacco	gt cggtgagctg	atccagaacc	agatccgagt	cggcatgtcc	cgcatggagc	60
gggtggtco	eg egageggatg	accactcagg	acgtcgaggc	gatcacgccg	cagaccctga	. 120
tcaacatco	eg tecegtegtg	gcggcgatca	aggagttctt	cggcaccagc	cagctctcgc	180
agttcatgo	ga ccagaacaac	ccgctgtccg	ggctgaccca	caagcggcgc	ctgaacgcac	240
tgggcccg	gg tggtctgtcc	cgggagcggg	cgggcctcga	ggtgcgcgac	gtgcacccga	300
gtcact						306
<210>	56					
<211>	306					
<212>	DNA					
<213>	Mycobacteriu	m celatum si	train ATCC5	1130		
<400>	56					
ttcgtacc	gt cggtgagctg	atccagaacc	agatccgagt	cggcatgtcc	cgcatggagc	60
gggtggtc	cg cgagcggatg	accactcagg	acgtcgaggc	gatcacgccg	cagaccctga	120
						100

agttcatgo	ja ccagaacaac	ccgctgtccg	ggctgaccca	caagcggcgc	ctgaacgcac	240
tgggcccgg	gg tggtctgtcc	cgggagcggg	cgggcctcga	ggtgcgcgac	gtgcacccga	300
gtcact						306
<210>	57					
<211>	306					
<212>	DNA					
	Mycobacterium	n gastri				
<400>	57					
tgcgcacgg	gt gggcgagctg	atccagaacc	agatccgggt	cggcatgtcc	aggatggagc	60
gcgtcgtco	cg ggagcggatg	accactcagg	acgtcgaggc	catcacgccg	cagacgctga	120
tcaacatto	eg eceggtggte	gccgccatta	aggagttctt	cggcaccagc	cagctgtcgc	. 180
agttcatgo	ga ccagaacaac	ccgctgtcgg	gcctgaccca	caagcgccgg	ctttcggcgc	240
tgggcccc	gg cggtctgtca	cgtgagcgtg	ccgggctgga	ggtccgcgac	gtgcacccgt	300
cgcact			•			306
-23.0 5	50					
<210>	58					
<211>	306					
<212> <213>	DNA Mycobacterium	m genavense				
<400>	58					
tgcgcacgo	gt gggcgatctg	atccagaacc	agatccgggt	cggcatgtcg	cggatggagc	. 60
gggtggtco	cg tgagcggatg	accactcagg	acgtcgaggc	catcacgccg	cagaccctga	120
tcaacatco	eg teeggttgtg	gcggcgatca	aggagttctt	cggcaccagc	cagctctcgc	180
agttcatgo	ga ccagaacaac	ccqctqtcaq	gtctcaccca	caagcgccgg	ttgtcggcgc	240

cgcact <210> 59 <211> 306 <212> DNA <213> Mycobacterium gordonae <400> 59 tgcgcaccgt gggcgagctg atccagaacc agatccgggt cggcatgtcc cggatggagc 60 gcgtcgtgcg cgagcggatg accactcagg acgtcgagc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacca caagcgtcgt ctgtcggcgc 240 tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <211> 306 <211> DNA <213> Mycobacterium haemophilum
<pre><211> 306 <212> DNA <213> Mycobacterium gordonae <400> 59 tgcgcaccgt gggcgagctg atccagaacc agatccgggt cggcatgtcc cggatggagc 60 gcgtcgtgcg cgagcggatg accactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA</pre>
<pre><211> 306 <212> DNA <213> Mycobacterium gordonae <400> 59 tgcgcaccgt gggcgagctg atccagaacc agatccgggt cggcatgtcc cggatggagc 60 gcgtcgtgcg cgagcggatg accactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA</pre>
<pre><212> DNA <213> Mycobacterium gordonae <400> 59 tgcgcaccgt gggcgagctg atccagaacc agatccgggt cggcatgtcc cggatggagc 60 gcgtcgtgcg cgagcggatg accactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacca caagcgtcgt ctgtcggcgc 240 tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <211> 306 <212> DNA</pre>
<pre><213> Mycobacterium gordonae <400> 59 tgcgcaccgt gggcgagctg atccagaacc agatccgggt cggcatgtcc cggatggagc 60 gcgtcgtgcg cgagcggatg accactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacca caagcgtcgt ctgtcggcgc 240 tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA</pre>
tgcgcaccgt gggcgagctg atccagaacc agatccgggt cggcatgtcc cggatggagc 60 gcgtcgtgcg cgagcggatg accactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA
tgcgcaccgt gggcgagctg atccagaacc agatccgggt cggcatgtcc cggatggagc 60 gcgtcgtgcg cgagcggatg accactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccage cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA
tgcgcaccgt gggcgagctg atccagaacc agatccgggt cggcatgtcc cggatggagc 60 gcgtcgtgcg cgagcggatg accactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccage cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA
gcgtcgtgcg cgagcggatg accactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA
tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA
agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA
agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA
tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA
tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300 cgcact 306 <210> 60 <211> 306 <212> DNA
cgcact 306 <210> 60 <211> 306 <212> DNA
<210> 60 <211> 306 <212> DNA
<210> 60 <211> 306 <212> DNA
<211> 306 <212> DNA
<211> 306 <212> DNA
<212> DNA
<213> Mycobacterium haemophilum
•
<400> 60
tgcgcaccgt gggcgagctg atccagaacc agatccgggt cggcatgtcc cggatggagc 60
gcgtcgtgcg cgagcggatg accactcagg acgtcgaggc catcacgccg cagaccctga . 120
tcaacatccg gccggtcgtc gccgcgatca aggagttctt cggcaccagc cagctctcgc 180
agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240
tggggccggg tggtctgtcc cgtgagcgtg cgggtctgga agtacgtgac gtgcacccgt 300

cgcact				•		306
<210>	61					
<211>	306					
<212>	DNA	:				
<213>	Mycobacterium	n interjecti	ım			
<400>	61					
tgcgcacco	gt cggtgagctg	atccagaacc	agatccgggt	cggcatgtcc	aggatggagc	60
gcgtcgtc	cg ggagcggatg	accacccagg	acgtcgaggc	gatcacgccg	cagacgctga	120
			•			·
tcaacatc	eg geeggtegte	gccgcgatca	aggagttctt	cggcaccagc	cagctgtcgc	180
agttcatgo	ga ccagaacaac	ccgctgtcgg	gcctcaccca	caagcgccgc	ctgtcggcgc	240
						200
tgggcccg	gg cggtctgtcc	cgcgagcggg	ccggcctcga	ggtccgcgac	gtgcacccga	300
						. 306
accact						300
<210>	62					
<211>	306					
<212>	DNA.					
<213>	Mycobacterium	n intermedi:	ım			
	-		1			
<400>	62					
tgcgtaccg	gt cggcgagctg	atccagaacc	agatccgggt	cggcatgtcc	cgcatggagc	60
gcgttgtc	cg cgagcggatg	accactcagg	acgtcgaggc	catcacgccg	cagaccttga	120
tcaacatc	eg geeggtggte	gccgcgatca	aggagttctt	cggcaccagc	cagctctcgc	180
agttcatg	ga ccagaacaac	ccgctgtcgg	gtctgaccca	caagcgtcgt	ctgtcggcgt	240
tgggcccg	gg tggtctgtcg	cgtgagcgtg	ccgggctgga	agtccgtgac	gtgcacccgt	300
cacact						306

<210>	63	•				•
<211>	306					
<212>	DNA					
<213>	Mycobacterium	n intracellu	ılare			
<400>	63					
tgcgcacc	gt gggtgagctg	atccagaacc	agatccgggt	cggcatgtcg	cggatggagc	60
gcgtcgtc	cg cgagcggatg	accacgcagg	acgtcgaggc	catcacgccg	cagaccctga	120
tcaacatc	eg geeggtegte	gccgcgatca	aggagttctt	cggcaccagc	cagctgagcc	180
agttcatg	ga ccagaacaac	ccgctgtccg	gtctgaccca	caagcgccgc	ctctcggcgc	240
tgggcccc	gg cggtctgtcc	cgtgagcgcg	ccggcctgga	ggtccgtgac	gtccacccct	300
cgcact						306
<210>	64					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	n kansasii	•			
<400>	64					
tgcgcacc	gt gggtgagctg	atccagaacc	agatccgggt	cggcatgtcg	cggatggagc	60
gcgtcgtc	cg cgagcggatg	accacgcagg	acgtcgaggc	catcacgccg	cagaccctga	120
tcaacatc	cg gccggtcgtc	gccgcgatca	aggagttctt	cggcaccagc	cagctgagcc	180
agticatg	ga ccagaacaac	ccgctgtccg	gtctgaccca	caagcgccgc	ctctcggcgc	240
tgggcccc	gg cggtctgtcc	cgtgagcgcg	ccggcctgga	ggtccgtgac	gtccacccct	300
cacact						306

Sequence Listing

	•					
<210>	65					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	a leprae				
<400>	65					
tgcgcacgg	t cggcgaattg	atccagaacc	agatccgggt	cggtatgtcg	cggatggagc	60
						•
gggtggtco	g ggagcggatg	accacccagg	acgtcgaggc	gatcacgccg	cagacgctga	120
						100
tcaatatco	g teeggtggte	geegetatea	aggaattett	cggcaccagc	cagctgtcgc	180
aattaataa	,, +0202202	cototatoas	anctasces	02240404	ctataaacac	240
agticatge	a tcagaacaac	ccccigicgg	gcccgaccca	caagegeegg	cigicggege	240
tagaccca	g tggtttgtcg	cataaacata	ccaaactaaa	ggtccgtgac	gtgcaccctt	300
-999-009:	,, ,,,,,,,,,,	~3~3~3~3~3	0099900090	550005050	30300000	
cgcact						306
<210>	66		•			
<211>	306					
<212>	DNA		•			
<213>	Mycobacterium	m malmoense				
<400>	66					
tgcgcacgg	t cggggagctg	atccagaacc	agatccgcgt	cggcatgtcg	cggatggagc	60
gcgtcgtcd	g ggagcggatg	accacccagg	acgtcgaggc	gatcacgccg	cagacgctga	. 120
tcaacatco	g gccggtggtc	gccgcgatca	aggagttctt	cggcaccagc	cagctgtcgc	180
						0.40
agttcatgg	a ccagaacaac	ccgctgtcgg	ggctgaccca	caagcgccgg	ctgtcggcgc	240
		a=t=====t=				200
radacccad	g tggtctgtcg	cgryagcgrg	ecygerryga	ygreegrgac	grgeaccegt	300
cacact						306
cgcact						
<210>	67					

<211> 306

<212>	DNA	
<213>	Mycobacterium marinum	
<400>	67	
tgcgcacgg	rt gggtgagctg atccagaacc agatccgggt cggcatgtcg cggatggagc	60
gggtggtc	g ggagcggatg accacccagg acgtcgaggc gatcacgccg cagacgctga	120
tcaacatco	eg teeggtegtt geggegatea aggagttett eggaaceage eagetgtege	180
agttcatgg	ga ccagaacaac ccgctctccg gtctcaccca caagcgccgc ctctcggcgc	240
tggggccgg	gg cggtctgtcc cgtgagcgcg ccggtctgga agttcgtgac gtgcacccgt	300
•		
cgcact		30€
<210>	68	
<211>	306	
<212>	DNA	
<213>	Mycobacterium avium subsp. paratuberculosis	
<400>	68	
tgcgcacco	gt cggtgagctg atccagaacc agatccgggt cggcatgtcc cggatggagc	60
gcgtcgtc	eg cgageggatg accaeccagg aegtegagge cateaegeeg cagaecetga	120
tcaacatco	eg tecegtegtg geggegatea aggagttett eggeaceage eagttgteee	180
agttcatg	ga ccagaacaac ccgctgtcgg ggctcaccca caagcgccgc ctgtcggcgc	240
	·	
tgggcccg	gg tggtctgtcc cgggagcgtg ccgggctgga ggtccgcgac gtgcacccgt	300
cccact		306
<210>	69	
<211>	306	
<212>	DNA	
<213>	Mycobacterium scrofulaceum	

<400>	69					
tgcgcaccg	t cggtgagctg	atccagaacc	agatccgggt	cggcctgtcg	cgtatggagc	60
gtgtcgtgc	g tgagcgcatg	accacccagg	acgtcgaggc	gatcaccccg	cagaccetga	120
		~~~~~~	aggageteett	caacsacsac	canetatene	180
LCaacatec	eg ccccgtcgtg	geggegatea	aggagetete	cygcaccage	cagcigicge	100
agttcatgo	a ccagaacaac	ccactatcaa	gtctgaccca	caagcgtcgt	ctatcagcac	240
-99,	,			2 2 2		
tgggccccg	g cggtctgtcc	cgtgagcgcg	ccggccttga	ggtccgcgac	gtgcactcca	300
gccact					•	306
<210>	70					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	n snimoldei				
<400>	70					
	t gggtgagctg	atccagaacc	agateegggt	cggcatgtcg	cggatggagc	60
-5-55	,- 555-5-5-		3 200	0, 2		
gggtggtcd	g ggagcggatg	accacccagg	acgtcgaggc	gatcacgccg	cagacgctga	. 120
tcaacatc	g teeggtegtt	gccgcgatca	aggagttctt	cggaaccagc	cagctgtcgc	180
					•	
agttcatgo	ya ccagaacaac	ccgctgtccg	gtctcaccca	caagcgccgc	ctctcggcgc	240
tggggccg	g cggtctgtcc	cgtgagcgtg	ccgggctgga	agttcgtgac	gtgcacccgt	300
•						200
cgcact						306
<210>	71					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	m simiae				
	<b>.</b> <del> </del>					•
<400>	71					

tgegeaceg	t gggtgagctg	atccagaacc	agatccgggt	eggectgtee	cgcatggagc	60
gcgtcgtgc	g tgagcggatg	accacccagg	acgtcgaggc	gatcacgccg	cagaccctga	120
tcaacatcc	g teeegtegtg	gcggcgatca	aggagttctt	cggtaccagc	cagctgtcgc	180
agttcatgg	a ccagaacaac	ccgctttcgg	gtctgaccca	caagcgtcgc	ctgtcggcgc	240
tgggccccg	g cggtctgtcc	cgtgagcgtg	ccggccttga	ggtccgcgac	gtgcacgcca	300
gccact				,	•	306
<210>	72					
	306					
<212>	DNA					
<213>	Mycobacteriu	n szulgai				
<400>	72					
tgcgcaccg	t gggcgagttg	atccagaacc	agatccgggt	cggcatgtcc	cggatggagc	60
gegtegtge	g cgagcggatg	accacccagg	acgtcgaggc	gatcacgccg	cagaccctga	120
tcaacatco	g gcccgtcgtc	gccgcgatca	aggagttett	cggcaccagc	cagctctcgc	180
agttcatgg	a ccagaacaac	ccgctctccg	gtctgaccca	caagcggcgt	ctgtccgctc	240
tggggccgg	g cggtctgtcc	cgtgagcggg	ccgggctgga	ggtccgtgac	gtgcacccgt	300
cgcact						306
<210>	73					
<211>	306					
	DNA					
<213>	Mycobacteriu	n ulcerans				
<400>	73					
+	t	2100202200	agatocogget	caacatatca	caastaasac	60

gggtggtcc	g ggagcggatg	accacccagg	atgtcgaggc	gatcacgccg	cagacgctga	120
tcaacatcc	g teeggtegtt	gccgcgatca	aggagttctt	cggaaccagc	cagctgtcgc	180
agttcatgg	a ccagaacaac	ccgctctccg	gtctcaccca	caagcgccgc	ctctcggcgc	240
tggggccgg	g cggtctgtcc	cgtgagcgcg	ccggtctgga	agttcgtgac	gtgcacccgt	300
cgcact						306
					•	
<210>	74					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	n xenopi				
	•					
-	74					
tgcgcacgg	t cggcgagctg	atccaaaacc	agatccgggt	cggcatgtcg	aggatggagc	60
aaataataa	~ ~~~~~~	200201020	acateaaaac	astascaca	canacettea	120
gggtggtcc	g cgagcggatg	accactcagg	acytcyayyc	gattattttg	cagaccetga	120
tcaacatcc	g ccccgtggtg	gccgcgatca	aggagttctt	cggcaccagc	cagctctcgc	180
agttcatgg	a tcagaacaac	ccgctgtcgg	ggctcaccca	caagcggcgg	ctctcggcgc	240
ttggtccgg	g cggtctgtcg	cgcgagcggg	ccgggctgga	ggtccgtgac	gtgcactcga	. 300
gccact	٠					306
<210>	75					
	306					
	DNA					
	Mycobacterium	n terrae				
				•		
<400>	75					
tgcgcacgg	t gggtgagctg	atccagaacc	agatccgggt	cgggttgtcc	cggatggagc	60
gtgtggtcc	g cgagcggatg	accacccagg	acgtcgaggc	catcacgccg	cagaccctga	120

tcaacatco	cg cccggtggtc	gccgcgatca	aggagttctt	cggcaccagc	cagctctcgc	180
agttcatgo	ga ccagaacaac	ccgctgtcgg	gtctgaccca	caagcgccgg	ctgtcggcgc	240
tgggcccg	gg tggtctgtcc	cgtgagcgtg	ccgggcttga	ggtccgtgac	gtgcacccgt	300
cccact						306
<210>	76					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	m triviale				
<400>	76					
tgcgcacc	gt cggggagttg	atccagaacc	agatccgggt	cgggctgtcc	cggatggagc	60
gggtggtg	cg cgagcggatg	accacccagg	atgtcgaggc	gatcacgccg	cagacectga	120
tcaacatc	cg cccggtggtc	gccgcgatca	aggagttctt	cggcaccagc	cagctgtcgc	180
agttcatg	ga ccagaacaac	ccgctgtccg	ggctgaccca	caagcgccgg	ctgtcggcgc	240
tggggccc	gg cgggctctcc	cgggagcggg	ccgggctgga	ggtccgcgac	gtgcacccca	300
gccact						306
<210>	77					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	m nonchromo	genicum			
<400>	77					
tgcgcacc	gt gggtgagctg	atccagaacc	agatccgggt	cgggctgtcc	cggatggagc	60
gcgtggtc	cg cgagcggatg	accacccagg	acgtcgaggc	catcacgccg	cagaccctga	120
tcaacatc	ca cecaataate	accaccatca	aggaattett	coocaccago	cagetatege	180

agttcatgg	ga ccagaacaac	ccgctgtcag	gtctgaccca	caagcggcgt	ctgtcggcgc	240
tgggccccg	gg tggtctgtcg	cgtgagcgcg	ccggcctgga	agttcgtgac	gtgcacccgt	300
cccact						306
<210>	78					
<211>	306					
<212>	DNA					
<213>	Mycobacteriu	m abscessus				
· <400>	78	•				
tgcgtaccg	gt cggcgagctg	attcagaacc	agatccgggt	cggcctgtcc	cgtatggagc	60
gcgtcgtgc	eg tgagegeatg	accacgcagg	acgtcgaggc	gatcaccccg	cagaccctga	120
tcaacatco	eg tecegtegtg	geggegatea	aggagttctt	cggaaccagc	cagctgtcgc	180
agttcatgç	ga ccagaacaac	ccgctgtcgg	gcctgaccca	caagcgtcgt	ctgtcggcgc	240
tgggccccg	gg tggtctgacc	cgtgaccgcg	ccggcctcga	ggtccgcgac	gtgcacccct	300
cgcact						306
.010.	70					
<210>	79					
<211>	306					
<212> <213>	DNA Mycobacterium	m aurum				
<400>	79					
tgcgcaccg	gt gggcgagttg	atccagaacc	agatccgggt	cggcatgtcc	cggatggagc	60
gcgtcgtcd	eg egageggatg	accactcagg	acgtcgaggc	gatcacgccg	cagaccctga	120
tcaacatco	eg geeggtegtt	gccgcgatca	aggagttctt	cggcaccagc	cagctctcgc	180
		coacttt.ca	atotacce:	633000000	ctateaacac	240

tggġccccg	gg cggtctgtcc	cgtgagcgtg	ccggcctgga	agtgcgtgac	gtgcacccct	300
cgcact						306
<210>	80					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	n chelonae				
<400>	80					
tgcgtaccg	jt cggcgagctg	atccagaacc	agatccgggt	cggcctgtcg	cgtatggagc	60
gcgtcgtgc	cg tgagcgcatg	accactcagg	acgtcgaggc	gatcaccccg	cagaccctga	120
tcaacatco	cg toccgtcgtg	gcggcgatca	aggagttctt	cggaaccagc	cagctgtcgc	180
agttcatgo	ga ccagaacaac	ccgctttcgg	gtctgaccca	caagcgtcgt	ctgtcggctc	240
tgggccccg	gg tggtctgacc	cgtgaccgcg	ctggccttga	ggtccgcgac	gtgcacccct	300
cgcact						306
<210>	81					
<211>	306		•			
<212>	DNA					
<213>	Mycobacterium	n chitae				
<400>	81					
tgcgcaccg	gt gggtgagctg	atccagaacc	agatccgggt	cggcctgtcc	cgcatggagc	60
gcgtcgtgc	cg cgagcggatg	accacccagg	acgtcgaggc	catcacgccg	cagaccctga	120
tcaacatco	eg tecegtegtg	gcggcgatca	aggagttctt	cggcaccagc	cagctgtcgc	180
agttcatgo	ga ccagaacaac	ccgctgtccg	ggctgaccca	caagcgtcgt	ctctcggcgc	240
tcgggcccg	gg cggtctgtcc	cgtgagcgcg	ccggtctcga	ggttcgtgac	gtgcacccgt	300

cgcact						,306
<210>	82					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	m fallax			•	
<400>	82					
tgcgcacco	t gggcgagctg	atccagaacc	agatccgggt	cggcctgtcc	cggatggagc	60
gegtegted	eg cgageggatg	accacccagg	acgtcgaggc	gatcaccccg	cagaccctga	120
tcaacatco	g tecegtggtg	gcggcgatca	aggagttctt	cgggaccagc	cagetgtege	180
agttcatgo	ga ccagaacaac	ccgctgtcgg	gcctgaccca	caagcgccgg	ctgtccgcgc	240
ttggcccc	gg cggtctgtcc	cgtgagcgcg	ccggcctgga	ggtccgcgac	gtgcacgcca	300
gccact						306
<210>	83					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	n flavescens	5			
<400>	83					
tgcgcaccg	t cggcgagctg	atccagaacc	agatccgggt	cggcctgtcg	cggatggagc	60
gcgtcgtco	g tgagcggatg	accacccagg	acgtcgaggc	gatcacgccg	cagaccctga	120
tcaacateo	g tecegtegtg	gcggcgatca	aggagttctt	cggtacgtcg	cagctgtcgc	180
agttcatgg	a ccagaacaac	ccgctgtcgg	gtctgaccca	caagcgccgc	ctgtcggcgc	240
tgggccccg	g tggtctgtcc	cgtgagcgcg	ccggcctcga	agtccgtgac	gtgcacccgt	300
cgcact						306

# **Sequence Listing**

<210>	84					
<211>	306					
<212>	DNA					
<213>	Mycobacterium	fortuitum	strain ATC	C6841		
<400>	84					
tgcgcacc	gt gggcgagctg	atccagaacc	agatccgcgt	cggcctgtcc	cgcatggagc	60
gcgtcgtgo	cg tgagcgcatg	accacccagg	acgtcgaggc	gatcaccccg	cagaccctga	120
tcaacatc	cg tecegtegtg	gcggcgatca	aggagttctt	cggaacgtcg	cagetgtége	180
agttcatg	ga tcagaacaac	ccgctgtcgg	gtctgaccca	caagcgtcgt	ctgtcggcgc	240
tgggcccc	gg cggtctgtcc	cgtgagcgcg	ccggccttga	ggtccgcgac	gtccactcgt	300
cgcact						306
<210>	85					
<211>	306					
<212>	DNA				•	
<213>	Mycobaterium	fortuitum :	strain ATCC	19403		·
<400>	85					
tgcgcacc	gt gggcgagctg	atccagaacc	agatccgggt	cggcctgtçc	cgcatggagc	60
gcgtcgtg	cg tgagcgcatg	accacccagg	acgtcgaggc	gatcaccccg	cagaccctga	120
tcaacatc	eg teeegtegtg	gcggcgatca	aggagttctt	cggaacgtcg	cagctgtcgc	180
agttcatg	ga tcagaacaac	ccgctgtcgg	gtctgaccca	caagcgtcgt	ctgtcggcgc	240
tgggcccc	gg cggtctgtcc	cgtgagcgcg	ccggccttga	ggtccgcgac	gtccactcgt	300
cgcact						306

<210> 86

### **Sequence Listing**

<211>	306					
<212>	DNA					
<213>	Mycobacterium	n neoaurum				
<400>	86					
tgegeaeeg	gt gggtgagctg	atccagaatc	agatccgggt	cggcctgtcg	cgcatggagc	60
gggtcgtgd	eg egagegeatg	accacccagg	acgtcgaggc	gatcaccccg	cagaccctga	120
tcaacatco	eg tecegtegtg	gcggcgatca	aggagttctt	cgggaccagc	cagctgtcgc	180
agttcatgo	ga ccagaacaac	ccgctgtcgg	gtctgaccca	caagcgtcgt	ctgtcggcgc	240
tgggcccc	gg tggtctgtcc	cgtgagcgtg	ccggacttga	ggtccgcgac	gtgcactcca	300
gccact	·	•				306
<210>	87					
<211>	306					
<212>	DNA		,			
<213>	Mycobacterium	n peregrinu	n			
<400>	87					
tgegeace	gt cggtgagctg	atccagaacc	agatccgggt	cggcctgtcg	cgtatggagc	60
gtgtcgtgd	cg tgagcgcatg	accacccagg	acgtcgaggc	gatcaccccg	cagaccctga	120
tcaacatc	eg ccccgtcgtg	gcggcgatca	aggagttctt	cggcaccagc	cagctgtcgc	. 180
agttcatgo	ga ccagaacaac	ccgctgtcgg	gtctgaccca	caagcgtcgt	ctgtcggcgc	240
tgggcccc	gg cggtctgtcc	cgtgagcgcg	ccggccttga	ggtccgcgac	gtgcactcca	300
gccact						306
<210>	88					
<211>	306					

<212> DNA

<213>	Mycobacterium phlei				
<400>	88				
tgcgcacc	gt cggcgagctg atccaga	acc agatccgggt	cggcctgtcg	cgtatggagc	. 60
gcgtcgtg	eg egagegeatg accaece	cagg acgtcgaggo	gatcacgccg	cagaccctga	120
tcaacatc	eg tecegtegtg geggega	atca aggagttctt	cggcaccagc	cagctgtcgc	180
agttcatg	ga ccagaacaac ccgctgt	cgg gtctgaccca	caagcgccgc	ctgtcggcgc	240
tgggcccg	gg cggtctgtcc cgtgago	egeg eeggeetega	ggtccgcgac	gtgcaccaca	300
gccact					306
					•
<210>	89				
<211>	306				
<212>	DNA				
<213>	Mycobacterium senega	alense			
<400>	89				
tgcgcacco	gt gggtgagctg atccaga	acc agatccgggt	cggcctgtcc	cgcatggagc	60
gcgtcgtgd	cg tgagcggatg accacco	agg acgtcgaggc	gatcacgccg	cagaccctga	120
tcaacatco	eg tecegtegtg geggega	tca aggagttctt	cggtaccagc	cagctgtcgc	180
agttcatgo	ga ccagaacaac ccgcttt	cgg gtctgaccca	caagcgtcgc	ctgtcggcgc	240
tgggcccc	g cggtctgtcc cgtgago	egtg ccggccttga	ggtccgcgac	gtgcacgcca	300
gccact					306
<210>	90				
<211>	306				
<212>	DNA				
<213>	Mycobacterium smegma	itis			

<400> 96	0					
tgegcaeegt	cggtgagctg	atccagaacc	agatccgcgt	gggcctgtcc	cgcatggagc	60
gtgtcgtgcg	tgagcgcatg	accacccagg	acgtcgaggc	gatcacgccg	cagaccctga	120
tcaacatccg	tecegtegtg	gcggcgatca	aggagttctt	cggcaccagc	cagctgtcgc	180
agttcatgga	ccagaacaac	ccgctgtcgg	gtctgaccca	caagcgtcgt	ctttcggcgc	. 240
tgggccccgg	cggtctgtcc	cgtgagcgcg	ctggcctcga	ggtccgcgac	gtgcacccca	. 300
gccact						306
<210> 9	1					
<211> 3	06					
<212> D	NA					
<213> M	ycobacteriu	n thermores:	istibile			
<400> 9	1					
tgcgcaccgt	cggcgagctg	atccagaacc	agatccgggt	cggcctgtcc	cgcatggagc	60
gcġtcgtgcg	cgagcggatg	accacccagg	acgtcgaggc	gatcacgccg	cagaccctga	120
tcaacatccg	ccccgtcgtg	gcggcgatca	aggagttctt	cggcaccagc	cagctgagcc	. 180
agttcatgga	ccagaacaac	ccgctgtcgg	gtctgaccca	caagcgccgg	ctgtcggcgc	240
tgggcccggg	cggtctgagc	cgggagcgcg	ccggcctcga	ggtccgcgac	gtccacccgt	300
cgcact						306
,						
<210> 9	92			•		
<211> 3	306					
	ONA					
	Mycobacteriu	m vaccae				
<400> 9	32					
tacacacaat	caataaacta	atccagaacc	agatecgegt	caacctctca	cgtatggagc	60

gtgtcgtccg	cgagcggatg	accacccagg	acgtcgaggc	gatcactccg	cagacectga	120
tcaacatccg	tcccgtcgtg	gcggcgatca	aggaattctt	cggcaccagc	cagctgtcgc	180
agttcatgga	ccagaacaac	ccgctgtcgg	gtctgaccca	caagcgtcgc	ctgtcggcgc	240
tgggccccgg	eggtctgtcc	cgtgagcgcg	ccggcctcga	ggtccgcgac	gtgcactcca	300
accact						306

#### INTERNATIONAL SEARCH REPORT

nternational application No. PCT/KR01/00904

A. CLA	SSIFICATION OF SUBJECT MATTER					
IPC	7 C12Q 1/68					
According to	International Patent Classification (IPC) or to both nati	ional classification and IPC				
B. FIEI	LDS SEARCHED		<del> \</del>			
i	umentation searched (classification system followed by	classification symbols)				
IPC7 C12Q	1/68					
Documentation	on searched other than minimun documentation to the e	xtent that such documents are included in the fil	eds searched			
Korean Pater	nt and applications for inventions since 1975					
	a base consulted during the intertnational search (name	of data base and, where practicable, search trer	ms used)			
	s, CAPLUS, WPI, Medline, BIOSIS in STN ri? and rpoB and drug and resistance and probe and hyb	ridiz?'				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
	T					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
х	Thomas R. Gingeras et al. 'Simultaneous Genotyping		1,3-5, 13, 16-18, 20,			
	Hybridization Pattern Recognition Analysis of Gene Research, 1998, Vol. & Issue 5, pp. 435-448	ric Mycobacterium DNA Arrays' In:Genome	22			
77	Translate Annal Denset Anna Control		12512161820			
X	Troesch A. et al. 'Mycobacterium species identificati density DNA probe array' In:Journal of Clinical Mic		1,3-5, 13, 16-18, 20, 22			
P, X	EP 1076099 A2 (NISSHINBO INDUSTRIES, INC)	14 FEBRUARY 2001	1-30			
A	Victor T. C. et al. 'Detection of Mutation in Drug Resistance Genes of Mycobacterium 1-30					
	Tuberculosis by a Dot-blot Hybridization Strategy' In: Tubercle and Lung Disease, 1999, Vol. 79, No. 6, pp. 343-348					
Α	Rossau, R. et al. 'Evaluation of the INNO-LiPA Rif.	TB assay, a reverse hybridization assay for	1-30			
	the simultaneous detection of Mycobacterium tuberc		-			
	1997, Vol. 41, No. 10, pp. 2093-2098					
Further	documents are listed in the continuation of Box C.	See patent family annex.				
	ategories of cited documents:	"T" later document published after the internation	mal filing date or priority			
"A" document	defining the general state of the art which is not considered articular relevence	date and not in conflict with the application the principle or theory underlying the inver-	n but cited to understand			
"E" earlier app	plication or patent but published on or after the international	"X" document of particular relevence; the claims	ed invention cannot be			
filing date "L" document	; which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered step when the document is taken alone	to involve an inventive			
	stablish the publication date of citation or other ason (as specified)	"Y" document of particular relevence; the claim considered to involve an inventive step w				
-	referring to an oral disclosure, use, exhibition or other	combined with one or more other such doc				
"P" document	published prior to the international filing date but later riority date claimed	being obvious to a person skilled in the art "&" document member of the same patent family	•			
	ual completion of the international search	Date of mailing of the international search rep	ort			
28	8 SEPTEMBER 2001 (28.09.2001)	04 OCTOBER 2001 (04.10.2001)	1			
Name and ma	iling address of the ISA/KR	Authorized officer				
Government (	ectual Property Office Complex-Daejeon, Dunsan-dong, Seo-gu, Daejeon City 302-701, Republic of Korea	HAN, Hyun Sook				
_	82-42-472-7140	Telephone No. 82-42-481-5596				
Form PCT/ISA/	/210 (second sheet) (July 1998)					

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

LI BLACK BURDERS
MAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиев.

#### IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.