Learning to Synthesize

Yingfei Xiong Peking University

Program Estimation

- Problem:
 - Given a context c, find program $s = \operatorname{argmax}_s P(s \mid c)$?
 - A sub problem of program synthesis
- Applications:
 - Learning by examples
 - Context = input/output examples
 - Code completion
 - Context = partial code
 - Code generation from natural language description
 - Context = natural language description
 - Test-based program repair
 - Context = buggy program & tests
 - Test Generation
 - Context = program under test, P = bug-detecting capability

Challenges

- How to estimate the conditional probability $P(Prog \mid Context)$?
 - Should be consistent with other constraints, e.g., $P(invalid \mid Context) = 0$
- How to find program s such that $P(s \mid context)$ is the largest?
 - The space of program is huge

Learning to synthesis (L2S)

A general framework to address program estimation

- Combining four tools
 - Syntax: defining a search problem
 - Constraints: pruning off invalid choices in each step
 - Machine-learned models: estimating the probabilities of choices in each step
 - Search algorithms: solving the search problem

Example – Repairing incorrect conditions

Condition bugs are common

```
hours = convert(value);
+ if (hours > 12)
+ throw new ArithmeticException();
```

Missing boundary checks

```
if (hours >= 24)+ if (hours > 24)withinOneDay=true;
```

Conditions too weak or too strong

- Existing work can pinpoint incorrect condition
- Can we generate a correct condition to replace the incorrect one?

Syntax

```
• E → E ">12"

| E ">0"

| E "+" E

| "hours"

| "value"

| ...
```

The syntax defines the search space of conditional expressions

Search Order

- A program may be completed in different orders
 - hours>12
- Top-down

The order may greatly affect the performance of L2S.

Annotations

- Introduce annotations to symbols
 - E^D indicates E can be expanded downward
 - E^U indicates E can be expanded upward
 - E^{UD} indicates E can be expanded in both directions

From Grammar to Rewriting Rules

Grammar	Top-down Rules	Bottom-up Rules
E → E "+" E	$E^{D} \Rightarrow E \rightarrow E^{D}$ "+" E^{D}	$ \mathbf{E}^{\mathbf{U}} \Rightarrow \mathbf{E}^{\mathbf{U}} \rightarrow \mathbf{E} "+" \mathbf{E}^{\mathbf{D}} \\ \mathbf{E}^{\mathbf{U}} \Rightarrow \mathbf{E}^{\mathbf{U}} \rightarrow \mathbf{E}^{\mathbf{D}} "+" \mathbf{E} $
E → E ">12"	$E^{D} \Rightarrow E \rightarrow E^{D} ">12"$	$E^{U} \Rightarrow E^{U} \rightarrow E$ ">12"
$E \rightarrow$ "hours"	$E^D \Rightarrow E \rightarrow \text{"hours"}$	"hours" $\Rightarrow E^D \rightarrow$ "hours"

Creation Rules ⇒ E^D // starting from the root ⇒ E^{DU} // starting from a middle node ⇒ "hours" // starting from a leaf Ending Rule $E^U \Rightarrow E$

Example

Top-down

Bottom-up

Search Problem

- Each partial AST is a state
 - Start state is an empty AST
 - Ending state is a complete AST without annotations
- Each rewriting rule application gives a successor

- In practice, a subset of rewriting rules is selected to give a more deterministic order, e.g.,
 - Top-down rules + root creation rules
 - Bottom-up rules + leaf creation rules + ending rules

Solving the search problem

- In each step, we need to decide
- (1) which node to expand
- (2) which rule is used to expand

Decisions in Each Step

(1) Choosing a node to expand A policy is used to pick a node in a fixed order

Decisions in Each Step

(2) Pruning off invalid choices Constraints are generated and satisfiability is checked.

Structural Constraint Generation

- Each AST node defines a set of variables
 - For type constraints, each node n defines a type variable type[n]
- Each grammar rule defines a set of constraints

•
$$E_1 \rightarrow E_2$$
 ">12"

•
$$T[E_1] = Boolean$$

•
$$T[E_2] = Int$$

•
$$E_1 \rightarrow E_2$$
 ">12" • $E_2 \rightarrow E_3$ ">12"

•
$$T[E_1]$$
 = Boolean • $T[E_2]$ = Boolean

•
$$T[E_3] = Int$$

- The context gives a set of constraints
 - T[hours] = Int
 - $T[E_{root}] = Boolean$
- If a solver returns unsat, drop the current choice

Other constraints

- Semantic constraints
 - The variables are values at each node
 - The constraints are semantics of the operators
- Size constraints
 - The variables are size of the subtree starting from a node
 - The constraints are formulas to calculate the size

Decisions in Each Step

(3) Estimating the probabilities of the remaining choices

Training a machine-learned model

Training a model

- The user chooses a machine learning method for each symbol with U or D
- The model is trained on a corpus of programs and their contexts
 - A search process is re-enacted on each program and the choice of rules are stored as the training set

 Local names should be handled with proper embedding

Local Optimal ≠ Global Optimal

$$E_0$$
 $E \rightarrow E " > 12" 0.3$
 $E \rightarrow E " > 0" 0.6$

$$0.6 * 0.2$$
 E_0 = 0.12 E_1 >0 value

Search Algorithm

- Beam search a greedy method to solve the search problem
 - Keep 'n' most likely programs and their probabilities
 - Each time, use all valid rule applications to expand the program
 - Keep 'n' most likely expanded programs where their new probability is the highest
 - new probability = old probability × choice probability
- Other search algorithms may also be used

Preliminary Evaluation

- Predicting conditional expressions in large programs, with surrounding code as context
- A bottom-up order starting from the left most variable
- Use xgboost to train the models and features are manually defined
- Models are trained on the conditional expressions in the same project
- 10-fold cross validation is used

Results

Project	kLOC	Top 10 Precision
Chart-26	146	64.7%
Math-82	104	75.6%
Time-15	81	85.7%
Lang-9	28	85.2%

Summary and Future Work

- Learning to Synthesize: a framework for estimating a program under a context
- Work-in-progress
- Many future directions
 - Applications
 - Program repair, code generation, test generation, fault localization
 - Program verification?
 - Can we automate the choice of rule set?
 - What is the effect of different policies for choosing nodes?
 - Can we use better search algorithms? E.g., MCMC, bayesian optimization