PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C08F 10/00, 4/642

(11) Internationale Veröffentlichungsnummer: WO 98/40419

A1

(43) Internationales

Veröffentlichungsdatum:

17. September 1998 (17.09.98)

(21) Internationales Aktenzeichen:

PCT/EP98/01231

(22) Internationales Anmeldedatum:

5. März 1998 (05.03.98)

(30) Prioritätsdaten:

197 09 402.3 7. März 1997 (07.03.97) DE 197 13 546.3 2. April 1997 (02.04.97) DE 23. Dezember 1997 (23.12.97) DE 197 57 262.6 DE 197 57 563.3 23. Dezember 1997 (23.12.97)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): TARGOR GMBH [DE/DE]; Rheinstrasse 4G, D-55116 Mainz (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BINGEL, Carsten [DE/DE]; Elsa-Brandström-Strasse 13-15, D-65830 Kriftel (DE). GOERES, Markus [DE/DE]; Im Bubenhain 3, D-65760 Eschborn (DE). FRAAIJE, Volker [DE/DE]; Rüsterstrasse 15, D-60325 Frankfurt (DE). WINTER, Andreas [DE/DE]; Taunusblick 10, D-61479 Glashütten (DE). BIDELL, Wolfgang [DE/DE]; Dahlienstrasse 19, D-67112 Mutterstadt (DE). GREGORIUS, Heike [DE/DE]; Salinenstrasse 6, D-55543 Bad Kreuznach (DE). HINGMANN, Roland [DE/DE]; Stahlbühlring 54, D-68526 Ladenburg (DE). FISCHER, David [DE/DE]; Am Petzenberg 2, D-67725 Breunigweiler (DE). SÜLING, Carsten [DE/DE]; brecht-Dürer-Ring 20c, D-67227 Frankenthal (DE).

(74) Anwalt: STARK, Vera; BASF Aktiengesellschaft, D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: METHOD FOR PRODUCING OLEFIN POLYMERS WITH A HIGHER MELTING POINT
- (54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON OLEFINPOLYMERISATEN MIT ERHÖHTEM SCHMELZPUNKT

(57) Abstract

The invention relates to a method for producing polyolefins by polymerizing olefins at pressures ranging from 0.5 to 3,000 bars and at temperatures ranging from -60 to 300 °C in the presence of a metallocene carrier catalyst. To this end, a metallocene carrier catalyst is used containing the following active constituents: a) a metallocene complex and b) a metallocenium ion forming compound selected from the group consisting of Lewis acids and ionic compounds with non-coordinating anions.

(57) Zusammenfassung

Verfahren zur Herstellung von Polyolefinen durch Polymerisation von Olefinen bei Drücken im Bereich von 0,5 bis 3000 bar und Temperaturen im Bereich von -60 bis 300 °C in Gegenwart eines Metallocen-Trägerkatalysators, wobei man einen Metallocen-Trägerkatalysator, enthaltend als aktive Bestandteile A) einen Metallocenkomplex, B) eine metalloceniumionenbildende Verbindung, ausgewählt aus der Gruppe, bestehend aus Lewissäuren und ionischen Verbindungen mit nicht-koordinierenden Anionen verwendet.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Osterreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
	Australien	GB				TD	Techad
AZ			Vereinigtes Königreich	MC	Monaco		
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin .	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	ΠL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
СМ	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
cz	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		•

Verfahren zur Herstellung von Olefinpolymerisaten mit erhöhtem Schmelzpunkt

5 Beschreibung

Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Polyolefinen durch Polymerisation von Olefinen bei Drücken im Bereich von 0,5 bis 3000 bar und Temperaturen im 10 Bereich von -60 bis 300°C in Gegenwart eines Metallocen-Trägerkatalysators, sowie die Verwendung der so erhältlichen Polymerisate von Olefinen zur Herstellung von Fasern, Folien und Formkörpern.

Metallocenkatalysatoren werden immer häufiger in trägerfixierter

15 Form beispielsweise zur Polymerisation von Olefinen eingesetzt,
da dies verfahrenstechnische Vorteile hat.

Katalysatoren, die aus Metallocen und Aluminoxanen erhältlich sind, liefern jedoch in trägerfixierter Form Polymere, ins-20 besondere Propylenpolymerisate, mit, im Vergleich zum analogen löslichen Katalysatorsystem, abgesenktem Polymerschmelzpunkt (siehe EP-A 0 576 970 im Vergleich zu EP-A 0 780 402). Ein abgesenkter Schmelzpunkt bedeutet abgesenkte Kristallinität des Polymeren und verschlechtert mechanische Eigenschaften, wie Steifig-25 keit.

Aufgabe der vorliegenden Erfindung war es daher, ein Polymerisationsverfahren unter Verwendung eines trägerfixierten Katalysatorsystem zu finden, welches Polymere mit erhöhtem 30 Schmelzpunkt, ähnlich jenen, die mit den analogen gelösten Katalysatorsystemen erhältlich sind, zugänglich machen, wobei die sonstigen Eigenschaften des Polymeren, wie hohes Molekulargewicht Mw, enge Molekulargewichtsverteilung Mw/Mn und geringe xylollösliche Anteile praktisch unverändert bleiben beim Übergang vom 35 löslichen zum trägerfixierten Katalysator.

Demgemäß wurde ein Verfahren zur Herstellung von Polyolefinen durch Polymerisation von Olefinen bei Drücken im Bereich von 0,5 bis 3000 bar und Temperaturen im Bereich von -60 bis 300°C in 40 Gegenwart eines Metallocen-Trägerkatalysators, dadurch gekennzeichnet, daß man einen Metallocen-Trägerkatalysator, enthaltend als aktive Bestandteile

- A) einen Metallocenkomplex
- B) eine metalloceniumionenbildende Verbindung, ausgewählt aus der Gruppe, bestehend aus Lewissäuren und ionischen Verbindungen mit nicht-koordinierenden Anionen

verwendet, sowie die gemäß den Verfahrensmerkmalen erhältlichen Polymerisate von Olefinen und deren Verwendung zur Herstellung von Fasern, Folien und Formkörpern gefunden.

- 10 Als Metallocenkomponente A) des erfindungsgemäßen Verfahrens kann grundsätzlich jedes Metallocen dienen. Das Metallocen kann sowohl verbrückt als auch unverbrückt sein und gleiche oder verschiedene Liganden aufweisen. Bevorzugt sind Metallocene der Gruppe IVb des Periodensystems der Elemente, wie Titan, Zirkonium oder Hafnium.
- Es können selbstverständlich auch Mischungen unterschielicher Metallocene als Komponente A) dienen.

Gut geeignete Metallocenkomponenten A) sind solche, die bei20 spielsweise in DE-A 196 06 167 auf die hier ausdrücklich Bezug
genommen wird, beschrieben sind, wobei besonders auf die Offenbarung auf Seite 3, Zeile 28 bis Seite 6, Zeile 48 der
DE-A 196 06 167 hingewiesen wird.

25 Bevorzugte Metallocenkomponenten A) sind solche der nachstehenden Formel (I).

30

$$R^{3}$$
 R^{3}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{8}
 R^{1}
 R^{2}
 R^{3}
 R^{6}
 R^{7}
 R^{8}
 R^{8}
 R^{7}
 R^{8}
 R^{7}
 R^{8}
 R^{7}
 R^{8}
 R^{7}
 R^{8}
 R^{7}
 R^{8}

worin

45

 $exttt{M}^{ exttt{l}}$ ein Metall der Gruppe IVb des Periodensystems der Elemente ist,

.

 R^1 und R^2 gleich oder verschieden sind und ein Wasserstoffatom, eine C_1 - C_{10} -Alkylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_6 - C_{20} -Arylgruppe, eine C_6 - C_{10} -Aryloxygruppe, eine C_2 - C_{10} -Alkenylgruppe, eine OH-Gruppe, eine NR^{12}_2 -Gruppe, wobei R^{12} eine C_1 - bis C_2 -Alkylgruppe oder C_6 - bis C_{14} -Arylgruppe ist, oder ein Halogenatom bedeuten,

 R^3 bis R^8 und R^3 ' bis R^8 ' gleich oder verschieden sind und ein Wasserstoffatom eine C_1 - C_{40} -Kohlenwasserstoffgruppe, die linear, cyclisch oder verzweigt sein kann, z.B. eine C_1 - C_{10} -Alkylgruppe,

10 C₂-C₁₀-Alkenylgruppe, C₆-C₂₀-Arylgruppe, eine C₇-C₄₀-Arylalkyl-gruppe, eine C₇-C₄₀-Alkylarylgruppe oder eine C₈-C₄₀-Arylalkenyl-gruppe, bedeuten, oder benachbarte Reste R⁴ bis R⁸ und/oder R⁴ bis R⁸ mit den sie verbindenden Atomen ein Ringsystem bilden, R⁹ eine Verbrückung bedeutet, bevorzugt

15
$$R^{10}$$
 R^{10} R^{11} R^{11}

bedeutet, wobei

45 R^{10} und R^{11} gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom oder eine C_1 - C_{40} -kohlenstoffhaltige Gruppe ist wie eine C_1 - C_{20} -Alkyl-, eine C_1 - C_{10} -Fluoralkyl-, eine C_1 - C_{10} -Alkoxy-,

4

eine C_6 - C_{14} -Aryl-, eine C_6 - C_{10} -Fluoraryl-, eine C_6 - C_{10} -Aryloxy-, eine C_2 - C_{10} -Alkenyl-, eine C_7 - C_{40} -Aralkyl-, eine C_7 - C_{40} -Alkylaryl- oder eine C_8 - C_{10} -Arylalkenylgruppe oder R^{10} und R^{11} jeweils mit den sie verbindenden Atomen einen oder mehrere Ringe bilden und x 5 eine ganze Zahl von Null bis 18 ist,

 ${\tt M}^2$ Silizium, Germanium oder Zinn ist, und die Ringe A und B gleich oder verschieden, gesättigt, ungesättigt oder teilweise gesättigt sind.

10

R9 kann auch zwei Einheiten der Formel I miteinander verknüpfen.

In Formel I gilt besonders bevorzugt, daß

15 M1 Zirkonium oder Hafnium ist,

 R^1 und R^2 gleich sind und für Methyl oder Chlor, insbesondere Chlor, stehen und $R^9 = M^2R^{10}R^{11}$ ist, worin M^2 Silizium oder Germanium ist und R^{10} sowie R^{11} eine $C_1 \cdot C_{20} \cdot \text{Kohlenwasserstoffgruppe}$, wie 20 $C_1 \cdot C_{10} \cdot \text{Alkyl}$ oder $C_6 \cdot C_{14} \cdot \text{Aryl}$ ist.

Die Indenyl- bzw. Tetrahydroindenylliganden der Metallocene der Formel I sind bevorzugt in 2-, 2,4-, 4,7-, 2,6-, 2,4,6-, 2,5,6-, 2,4,5,6- und 2,4,5,6,7-Stellung, insbesondere in 2,4-Stellung,

- 25 substituiert. Bevorzugte Substituenten sind eine C_1 - C_4 -Alkylgruppe wie z.B. Methyl, Ethyl oder Isopropyl oder eine C_6 - C_{10} -Arylgruppe wie Phenyl, Naphthyl oder Mesityl. Die 2-Stellung ist bevorzugt durch eine C_1 - C_4 -Alkylgruppe, wie z.B. Methyl oder Ethyl substituiert. Wenn in 2,4-Stellung substituiert ist, so gilt, daß
- R⁵ und R⁵ bevorzugt gleich oder verschieden sind und eine C_6 - C_{10} -Arylgruppe, eine C_7 - C_{10} -Arylalkylgruppe, eine C_7 - C_{40} -Alkylarylgruppe oder eine C_8 - C_{40} -Arylalkenylgruppe bedeuten.
- 35 Gut geeignete Metallocene der allgemeinen Formel I sind jene, die in der DE-Anmeldung 197 094 02.3 auf Seite 78, Zeile 21 bis Seite 100, Zeile 22 und in der DE-Anmeldung 197 135 46.3 auf Seite 78, Zeile 14 bis Seite 103, Zeile 22 offenbart sind, auf die hier ausdrücklich Bezug genommen wird; wobei das Dimethyl-
- 40 silandiylbis-[1-(2-methyl-4-(4-tert.-butyl-phenyl)indenyl)]zirco-niumdichlorid besonders gut geeignet ist.

Für den Substitutionsort gilt dabei die folgende Nomenklatur:

Von besonderer Bedeutung sind weiterhin Metallocene der Formel I, bei denen die Substituenten in 4- und 5-Stellung der Indenylreste 10 (R⁵ und R⁶ sowie R⁵' und R⁶') zusammen mit den sie verbindenden Atomen ein Ringsystem bilden, bevorzugt einen Sechsring. Dieses kondensierte Ringsystem kann ebenfalls durch Reste in der Bedeutung von R³-R⁸ substituiert sein. Beispielhaft für solche Verbindungen I ist Dimetylsilandiylbis(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid zu nennen.

Insbesondere bevorzugt sind solche Verbindungen der Formel I, die
in 4-Stellung eine C₆-C₂₀-Arylgruppe und in 2-Stellung eine
C₁-C₄-Alkylgruppe tragen. Beispielhaft für solche Verbindungen er
20 Formel I ist Dimethylsilandiylbis(2-methyl-4-phenylindenyl)zirkoniumdichlorid.

Beispiele für die Metallocenkomponente A des erfindungsgemäßen Verfahrens sind:

25

Dimethylsilandiylbis(indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdichlorid

30 Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkonium-dichlorid

Dimethylsilandiylbis (2-methyl-4-(2-naphthyl) indenyl) zirkonium-dichlorid

Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid

35 Dimethylsilandiylbis(2-methyl-4-t-butyl-indenylzirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-a-acenaphth-indenyl)zirkonium-

40 dichlorid

Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid

45 Dimethylsilandiylbis(2-methyl-4,5-benzo-indenyl)zirkonium-dichlorid
Dimethylsilandiylbis(2-methyl-4,6-diisopropyl-indenyl)zirkonium-

dichlorid Dimethylsilandiylbis(2-methyl-4,5-diisopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkonium-10 dichlorid Dimethylsilandiylbis(2-methyl-4-phenanthrylinden)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-phenanthylindenyl)zirkoniumdichlorid 15 Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid Methyl (phenyl) silandiylbis (2-methyl-4,6-diisopropyl-indenyl) zirkoniumdichlorid Methyl (phenyl) silandiylbis (2-methyl-4-isopropyl-indenyl) -20 zirkoniumdichlorid Methyl (phenyl) silandiylbis (2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Methyl (phenyl) silandiylbis (2-methyl-4,5-(methylbenzo) -indenyl) zirkoniumdichlorid 25 Methyl (phenyl) silandiylbis (2-methyl-4,5-(tetramethylbenzo) indenyl)zirkoniumdichlorid Methyl (phenyl) silandiylbis (2-methyl-4-a-acenaphth-indenyl) zirkoniumdichlorid Methyl (phenyl) silandiylbis (2-methyl-indenyl) zirkoniumdichlorid 30 Methyl (phenyl) silandiylbis (2-methyl-5-isobutyl-indenyl) zirkoniumdichlorid Methyl (phenyl) silandiylbis (2-methyl-4-phenanthrylindenyl) zirkoniumdichlorid Methyl (phenyl) silandiylbis (2-ethyl-4-phenanthrylindenyl) -35 zirkoniumdichlorid 1,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 1,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 1,2-Ethandiylbis(2-methyl-4,6-diisopropyl-indenyl)zirkoniumdichlorid 40 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid 1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid 1,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdichlorid 45 1,4-Butandiylbis(2-methyl-indenyl)zirkoniumdichlorid Bis (butylcyclopentadienyl) Zr+CH2CHCHCH2B-(C6F5) 3 Bis (methylindenyl) Zr+CH2CHCHCH2B (C6F5)3

WO 98/40419

PCT/EP98/01231

```
Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)-
   Zr^+CH_2CHCHCH_2B^-(C_6F_5)_3
   1,2-Ethandiylbis(2-methyl-indenyl)-Zr^+CH_2CHCHCH_2B^-(C_6F_5)_3
   1,4-Butandiylbis(2-methyl-indenyl)-Zr+CH2CHCHCH2B (C6F5)3
 5 Dimethylsilandiylbis(2-methyl-4,6-diisopropyl-indenyl)-
   Zr+CH2CHCHCH2B-(C6F5)3
   Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)-
   Zr+CH2CHCHCH2B-(C6F5)3
   Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-
10 Zr+CH<sub>2</sub>CHCHCH<sub>2</sub>B · (C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>
   Methyl (phenyl) silandiylbis (2-methyl-4-phenyl-indenyl) -
   Zr+CH2CHCHCH2B-(C6F5)3
   Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-
   Zr+CH2CHCHCH2B (C6F5)3
15 Dimethylsilandiylbis(indenyl)-Zr^+CH_2CHCHCH_2B^-(C_6F_5)_3
   Dimethylsilandiyl(tert.-Butylamino)(tetramethylcyclopentadienyl)-
   zirkoniumdichlorid
   [Tris(pentafluorophenyl)(cyclopentadienyliden)borato](cyclopenta-
   dienyl)-1,2,3,4-tetraphenylbuta-1,3-dienylzirkonium
20 Dimethylsilandiyl-[tris(pentafluorophenyl)(2-methyl-4-phenylinde-
   nyliden)borato](2-methyl-4-phenylindenyl)-1,2,3,4-tetraphenyl-
   buta-1,3-dienylzirkonium
   Dimethylsilandiyl-[tris(trifluoromethyl)(2-methylbenzindenyl-
   iden)borato](2-methylbenzindenyl)-1,2,3,4-tetraphenylbuta-1,3-
25 dienylzirkonium
   Dimethylsilandiyl-[tris(pentafluorophethyl)(2-methyl-indenyl-
   iden)borato](2-methyl-indenyl)-1,2,3,4-tetraphenylbuta-1,3-die-
   nylzirkonium
   Dimethylsilandiylbis (indenyl) zirkoniumdimethyl
30 Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdimethyl
   Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdimethyl
   Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdimethyl
   Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdi-
   methyl
35 Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdi-
   Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl
   Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdimethyl
   Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdi-
40 methyl
   Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdimethyl
   Dimethylsilandiylbis(2-methyl-4-a-acenaphth-indenyl)zirkoniumdi-
   methyl
   Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdimethyl
45 Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdimethyl
   Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdimethyl
   Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdimethyl
```

Dimethylsilandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4,6-diisopropyl-indenyl)zirkoniumdimethyl

Dimethylsilandiylbis(2-methyl-4,5-diisopropyl-indenyl)zirkonium-

5 dimethyl

Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdi-

10 methyl

Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-phenanthrylindenyl)zirkoniumdi-

Dimethylsilandiylbis(2-ethyl-4-phenanthrylindenyl)zirkoniumdi-

15 methyl

Methyl (phenyl) silandiylbis (2-methyl-4-phenyl-indenyl) zirkoniumdimethyl

Methyl (phenyl) silandiylbis (2-methyl-4,6-diisopropyl-indenyl)zirkoniumdimethyl

20 Methyl (phenyl) silandiylbis (2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl

Methyl (phenyl) silandiylbis (2-methyl-4,5-benzo-indenyl) zirkoniumdimethyl

Methyl (phenyl) silandiylbis (2-methyl-4,5- (methylbenzo) -

25 indenyl)zirkoniumdimethyl

Methyl (phenyl) silandiylbis (2-methyl-4,5-(tetramethylbenzo) indenyl) zirkoniumdimethyl

Methyl (phenyl) silandiylbis (2-methyl-4-a-acenaphthindenyl) zirkoniumdimethyl

30 Methyl (phenyl) silandiylbis (2-methyl-indenyl) zirkoniumdimethyl Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdimethyl

Methyl (phenyl) silandiylbis (2-methyl-4-phenanthrylindenyl) zirkoniumdimethyl

- 35 Methyl (phenyl) silandiylbis (2-ethyl-4-phenanthrylindenyl) zirkoniumdimethyl
 - 1,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl
 - 1,2-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl
 - 1, 2-Ethandiylbis(2-methyl-4,6-diisopropyl-indenyl)zirkoniumdi-

40 methyl

- 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl
- 1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
- 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
- 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdimethyl
- 45 1,4-Butandiylbis(2-methyl-indenyl)zirkoniumdimethyl

Besonders bevorzugt sind:

Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkonium-

5 dichlorid

Dimethylsilandiylbis (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiylbis (2-methyl-4-a-acenaphth-indenyl) zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid

10 Dimethylsilandiylbis (2-methyl-4,5-benzo-indenyl) zirkonium-dichlorid

Dimethylsilandiylbis(2-methyl-4,6-diisopropyl-indenyl)zirkonium-dichlorid

Dimethylsilandiylbis(2-methyl-4-phenanthryl-indenyl)zirkonium-

15 dichlorid

Dimethylsilandiylbis(2-ethyl-4-phenanthryl-indenyl)zirkonium-dichlorid

Methyl (phenyl) silandiylbis (2-methyl-4-phenanthryl-indenyl) - zirkoniumdichlorid

20 Methyl(phenyl)silandiylbis(2-ethyl-4-phenanthryl-indenyl)zirkoniumdichlorid

Herstellungsverfahren für Metallocene der Formel I sind z.B. in Journal of Organometallic Chem. 288 (1985) 63-67 und den dort zi-25 tierten Dokumenten beschrieben.

Als Komponente B) enthält das erfindungsgemäße Katalysatorsystem metalloceniumionenbildende Verbindungen B). Dies können Lewissäuren und/oder ionische Verbindungen mit nicht-koordinierten Anonen sein.

Als Lewis-Säure werden bevorzugt mindestens eine bor- oder aluminiumorganische Verbindung eingesetzt, die C_1 - C_{20} -kohlenstoffhaltige Gruppen enthalten, wie verzweigte oder unverzweigte

35 Alkyl- oder Halogenalkyl, wie z.B. Methyl, Propyl, Isopropyl, Isobutyl, Trifluormethyl, ungesättigte Gruppen, wie Aryl oder Halogenaryl, wie Phenyl, Tolyl, Benzylgruppen, p-Fluorophenyl, 3,5-Difluorophenyl, Pentachlorophenyl, Pentafluorophenyl, 3,4,5-Trifluorophenyl und 3,5-Di(trifluoromethyl)phenyl.

40

Besonders bevorzugt sind bororganische Verbindungen.

Beispiele für Lewis-Säuren sind Trifluorboran, Triphenylboran, Tris(4-fluorophenyl)boran, Tris(3,5-difluorophenyl)boran,

45 Tris(4-fluoromethylphenyl)boran, Tis(pentafluorophenyl)boran, Tris(tolyl)boran, Tris(3,5-dimethylphenyl)boran, Tris(3,5-dimethylphenyl)boran, Tris(3,5-dimethylphenyl)boran,

10

thylfluorophenyl)boran und/oder Tris(3,4,5-trifluorophenyl)boran. Insbesondere bevorzugt ist Tris(pentafluorophenyl)boran.

Gut geeignete ionische Verbindungen, die ein nicht koordinieren-5 des Anion enthalten, sind beispielsweise Tetrakis(pentafluorophenyl)borate, Tetraphenylborate, SbF₆⁻, CF₃SO₃⁻ oder CIO₄⁻. Als kationisches Gegenion werden im allgemeinen Lewis-Basen wie z.B. Methylamin, Anilin, Dimethylamin, Diethylamin, N-Methylanilin, Diphenylamin, N,N-Dimethylanilin, Trimethylamin, Triethylamin,

- 10 Tri-n-butylamin, Methyldiphenylamin, Pyridin, p-Bromo-N,N-dimethylanilin, p-Nitro-N,N-dimehylanilin, Triethylphosphin, Tri-phenylphosphin, Diphenylphosphin, Tetrahydrothiophen und Triphenylcarbenium eingesetzt.
- 15 Beispiele für solche erfindungsgemäßen ionischen Verbindungen mit nicht-koordinierenden Anionen sind

Triethylammoniumtetra(phenyl)borat,

Tributylammoniumtetra(phenyl)borat,

20 Trimethylammoniumtetra(tolyl)borat,

Tributylammoniumtetra(tolyl)borat,

Tributylammoniumtetra(pentafluorophenyl)borat,

Tributylammoniumtetra(pentafluorophenyl)aluminat,

Tripropylammoniumtetra(dimethylphenyl)borat,

25 Tributylammoniumtetra(trifluoromethylphenyl)borat,

Tributylammoniumtetra (4-fluorophenyl)borat,

N, N-Dimethylaniliniumtetra(phenyl)borat,

N, N-Diethylaniliniumtetra(phenyl)borat,

N, N-Dimethylaniliniumtetrakis (pentafluorophenyl) borate,

30 N, N-Dimethylaniliniumtetrakis (pentafluorophenyl) aluminat,

Di (propyl) ammonium tetrakis (pentafluorophenyl) borat,

Di (cyclohexyl) ammonium tetrakis (pentafluorophenyl) borat,

Triphenylphosphoniumtetrakis(phenyl)borat,

Triethylphosphoniumtetrakis(phenyl)borat,

35 Diphenylphosphoniumtetrakis(phenyl)borat,

Tri(methylphenyl)phosphoniumtetrakis(phenyl)borat,

Tri(dimethylphenyl)phosphoniumtetrakis(phenyl)borat,

Triphenylcarbeniumtetrakis (pentafluorophenyl)borat,

Triphenylcarbeniumtetrakis (pentafluorophenyl) aluminat,

40 Triphenylcarbeniumtetrakis (phenyl) aluminat,

Ferroceniumtetrakis(pentafluorophenyl)borat und/oder

Ferroceniumtetrakis(pentafluorophenyl)aluminat.

Bevorzugt sind Triphenylcarbeniumtetrakis(pentafluorophenyl)borat 45 und/oder N,N-Dimethylaniliniumtetrakis(pentafluorophenyl)borat.

Es können auch Gemische mindestens einer Lewis-Säure und mindestens einer ionischen Verbindung eingesetzt werden.

Als Cokatalysatorkomponenten sind ebenfalls Boran- oder Carboran- 5 Verbindungen wie z.B.

7,8-Dicarbaundecaboran (13),

Undecahydrid-7,8-dimethyl-7,8-dicarbaundecaboran,

Dodecahydrid-1-phenyl-1,3-dicarbaundecaboran,

Tri(butyl)ammoniumdecahydrid-8-ethyl-7,9-dicarbaundecaborat,

10 4-Carbanonaboran (14) Bis (tri (butyl) ammonium) nonaborat,

Bis(tri(butyl)ammonium)undecaborat,

Bis(tri(butyl)ammonium)dodecaborat,

Bis(tri(butyl)ammonium)decachlorodecaborat,

Tri(butyl)ammonium-1-carbadecaborate,

15 Tri(butyl)ammonium-1-carbadodecaborate,

Tri(butyl)ammonium-1-trimethylsilyl-1-carbadecaborate,

Tri(butyl) ammoniumbis (nonahydrid-1,3-dicarbonnonaborat) cobaltat(III),

Tri(butyl)ammoniumbis(undecahydrid-7,8-dicarbaundecaborat)fer-

20 rat(III),

von Bedeutung.

Die Trägerkomponente des erfindungsgemäßen Katalysatorsystems
25 kann ein beliebiger organischer oder anorganischer, inerter Feststoff sein, insbesondere ein poröser Träger wie Talk, anorganische Oxide und feinteilige Polymerpulver (z.B. Polyolefine).

Geeignete anorganische Oxide finden sich in den Gruppen 2, 3, 4, 30 5, 13, 14, 15 und 16 des Periodensystems der Elemente. Beispiele für als Träger bevorzugte Oxide umfassen Siliciumdioxid, Aluminiumoxid, sowie Mischoxide der beiden Elemente und entsprechende Oxid-Mischungen. Andere anorganische Oxide, die allein oder in Kombination mit den zuletzt genannten bevorzugten 35 oxidischen Trägern eingesetzt werden können sind z B. MGO. Zro-

35 oxidischen Trägern eingesetzt werden können, sind z.B. MgO, ZrO_2 , TiO_2 oder B_2O_3 , um nur einige zu nennen.

Die verwendeten Trägermaterialien weisen im allgemeinen eine spezifische Oberfläche im Bereich von 10 bis 1000 m^2/g , ein Poren-

- 40 volumen im Bereich von 0,1 bis 5 ml/g und eine mittlere Partikelgröße von 1 bis 500 μm auf. Bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 50 bis 500 m²/g, einem Porenvolumen im Bereich zwischen 0,5 und 3,5 ml/g und einer mittleren Partikelgröße im Bereich von 5 bis 350 μm. Besonders bevorzugt
- 45 sind Träger mit einer spezifischen Oberfläche im Bereich von 200

WO 98/40419

is 400 m²/g. Girom Poromalumon in Possible sectors at a contraction of the contraction

PCT/EP98/01231

bis 400 m²/g, einem Porenvolumen im Bereich zwischen 0,8 bis 3,0 ml/g und einer mittleren Partikelgröße von 10 bis 200 μm .

Wenn das verwendete Trägermaterial von Natur aus einen geringen

5 Feuchtigkeitsgehalt oder Restlösemittelgehalt aufweist, kann eine
Dehydratisierung oder Trocknung vor der Verwendung unterbleiben.
Ist dies nicht der Fall, wie bei dem Einsatz von Silicagel als
Trägermaterial, ist eine Dehydratisierung oder Trocknung empfehlenswert. Der Gewichtsverlust beim Glühen (LOI = Loss on igni10 tion) sollte 1 % oder weniger betragen. Die thermische Dehydratisierung oder Trocknung des Trägermaterials kann unter Vakuum und
gleichzeitiger Inertgasüberlagerung (z.B. Stickstoff) erfolgen.
Die Trocknungstemperatur liegt im Bereich zwischen 100 und 1000°C,
vorzugsweise zwischen 200 und 800°C. Der Parameter Druck ist in

15 diesem Fall nicht entscheidend. Die Dauer des Trocknungsprozesses kann zwischen 1 und 24 Stunden betragen. Kürzere oder längere Trocknungsdauern sind möglich, vorausgesetzt, daß unter den gewählten Bedingungen die Gleichgewichtseinstellung mit den Hydroxylgruppen auf der Trägeroberfläche erfolgen kann, was

20 normalerweise zwischen 4 und 8 Stunden erfordert.

Eine Dehydratisierung oder Trocknung des Trägermaterials ist auch auf chemischem Wege möglich, indem das adsorbierte Wasser und die Hydroxylgruppen auf der Oberfläche mit geeigneten Inertisierungs-25 mitteln zur Reaktion gebracht werden. Durch die Umsetzung mit dem Inertisierungsreagenz können die Hydroxylgruppen vollständig oder auch teilweise in eine Form überführt werden, die zu keiner negativen Wechselwirkung mit den katalytisch aktiven Zentren führen. Geeignete Inertisierungsmittel sind beispielsweise Silicium-30 halogenide und Silane, wie Siliciumtetrachlorid, Chlortrimethylsilan, Dimethylaminotrichlorsilan und metallorganische Verbindung von Aluminium, Bor und Magnesium wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Triethylboran, Dibutylmagnesium. Die chemische Dehydratisierung oder 35 Inertisierung des Trägermaterials erfolgt beispielsweise dadurch, daß man unter Luft- und Feuchtigkeitsausschluß eine Suspension des Trägermaterials in einem geeigneten Lösemittel mit dem Inertisierungsreagenz in reiner Form oder gelöst in einem geeigneten Lösemittel zur Reaktion bringt. Geeignete Lösemittel sind z.B. 40 aliphatische oder aromatische Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Toluol oder Xylol. Die Inertisierung erfolgt bei Temperaturen zwischen 25°C und 120°C, bevorzugt zwischen 50 und 70℃. Höhere und niedrigere Temperaturen sind möglich. Die Dauer

der Reaktion beträgt zwischen 30 Minuten und 20 Stunden, bevor-45 zugt 1 bis 5 Stunden. Nach dem vollständigen Ablauf der chemischen Dehydratisierung wird das Trägermaterial durch Filtration unter Inertbedingungen isoliert, ein- oder mehrmals mit geeigne-

25

WO 98/40419 PCT/EP98/01231 13

ten inerten Lösemitteln, wie sie bereits zuvor beschrieben worden sind, gewaschen und anschließend mit Inertgasstrom oder am Vakuum getrocknet.

5 Organische Trägermaterialien wie feinteilige Polyolefinpulver (z.B. Polyethylen, Polypropylen oder Polystyrol) können auch verwendet werden und sollten ebenfalls vor dem Einsatz von anhaftender Feuchtigkeit, Lösemittelresten oder anderen Verunreinigungen durch entsprechende Reinigungs- und Trocknungsoperationen be-10 freit werden.

Die Herstellung des Trägerkatalysators ist im allgemeinen nicht kritisch. Gut geeignete Varianten sind die folgenden:

- 15 Bei Variante I wird im allgemeinen mindestens eine Metallocenkomponente A) üblicherweise in einem organischen Lösungsmittel mit der metalloceniumionenbildenden Verbindung B) in Kontakt gebracht, um ein gelöstes oder teilsuspendiertes Produkt zu erhalten. Dieses Produkt wird dann in der Regel zum, gegebenenfalls
- 20 wie vorher beschrieben, vorbehandelten Trägermaterial, vorzugsweise poroses Siliciumdioxid (Silicagel) gegeben, das Lösemittel entfernt und den Trägerkatalysator als frei fließender Feststoff erhalten. Der Trägerkatalysator kann dann noch zum Beispiel mit C2- bis C10-Alk-1-enen vorpolymerisiert werden.

Nach Variante 2 erhält man den Metallocen-Trägerkatalysator im allgemeinen durch folgende Verfahrensschritte

- a) Umsetzung eines anorganischen Trägermaterials, vorzugsweise 30 poröses Siliciumdioxid wie vorher beschrieben, mit einem Inertisierungsmittel, wie vorher beschrieben, vorzugsweise einem Aluminiumtri-C₁-C₁₀-alkyl, wie Trimethylaluminium, Triethylaluminium, Triisobutylaluminium,
- 35 b) Umsetzung des so erhaltenen Materials mit einem Metallocenkomplex A) - vorzugsweise einem der Formel I - in feiner Metalldihalogenid-Form und einer metalloceniumionenbildenden Verbindung B) und anschließende
- 40 c) Umsetzung mit einer Alkali-, Erdalkali- oder Hauptgruppe-IIIorganometallverbindung, vorzugsweise Aluminiumtri- $C_1 \cdot C_{10} \cdot alkyl$, wie Trimethylaluminium, Triethylaluminium oder Triisobutylaluminium.
- 45 Dieses Verfahren ist in DE-A 19 606 197, auf die hiermit ausdrücklich Bezug genommen wird, ausführlich beschrieben.

Als Olefine werden solche der Formel Rm-CH=CH-Rn verwendet, worin R_{m} und R_{n} gleich oder verschieden sind und ein Wasserstoffatom oder einen kohlenstoffhaltigen Rest mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atome, bedeuten, und R_{m} und R_{n} zusammen mit 5 den sie verbindenden Atomen einen oder mehrere Ringe bilden können. Beispiele für solche Olefine sind 1-Olefine mit 2 bis 40, vorzugsweise 2 bis 10 C-Atomen, wie Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 4-Methyl-1-penten oder 1-Octen, Styrol, Diene wie 1,3-Butadien, 1,4-Hexadien, Vinylnorbornen, Norbornadien, 10 Ethylnorbornadien und cyclische Olefine wie Norbornen, Tetracyclododecen oder Methylnorbornen. Bevorzugt werden in dem erfindungsgemäßen Verfahren Ethen oder Propen homopolymerisiert, oder Ethen mit einem oder mehreren 1-Olefinen mit 3 bis 20 C-Atomen, wie Propen, und/oder einem oder mehreren Dienen mit 4 bis 20 15 C-Atomen, wie 1,4-Butadien, Norbornadien oder Ethylnorbornadien, copolymerisiert. Beispiele solcher Copolymere sind Ethen/Propen-Copolymere oder Ethen/Propen/1,4-Hexadien-Terpolymere.

Die Polymerisation wird bei einer Temperatur von -60 bis 300°C, 20 bevorzugt 50 bis 200°C, durchgeführt. Der Druck beträgt 0,5 bis 3000 bar, bevorzugt 5 bis 64 bar.

Die Polymerisation kann in Lösung, in Masse, in Suspension oder in der Gasphase, kontinuierlich oder diskontinuierlich, ein- oder 25 mehrstufig durchgeführt werden.

Die erfindungsgemäßen Polyolefine zeichnen sich unter anderem dadurch aus, daß sie eine hohe Kristallinintät, unter anderem ausgedrückt durch einen hohen DSC-Schmelzpunkt, und hohe Steifigkeit haben. Dieses Eigenschaftsprofil kann nach derzeitigem Kenntnisstand auf eine besondere Mikrostruktur der Polymerketten zurückgeführt werden.

Beispiele

35

Vergleichsbeispiel 1 (Aluminoxan-Katalysator)

- a) Herstellung des Trägermaterials
- 40 1000 g Kieselgel (60 μm, Fa. Grace, 8 h bei 180°C im Vakuum (1 mbar) ausgeheizt) wurden in 5 l Toluol unter N₂-Atmosphäre suspendiert. Bei einer Temperatur von 18°C wurden 7,75 l (6,83 kg) 1,53 molare Methylaluminoxan(MAO)lösung (in Toloul, Fa. Witco) über 120 Minuten zugegeben. Anscließend wurde 7 h bei Raumtempetatur nachgerührt, filtriert und der Filterkuchen zweimal je mit 2,5 l Toluol gewaschen. Anschließend wurde im Vakuum getrocknet.

Beladung mit Metallocenkomplex

10 g des unter a) hergestellten MAO beladenen Kieselgels wurden in einem evakuierten Gefäß vorgelegt. Anschließend wurde unter

- 5 Rühren eine Lösung von 58 mg (0,1 mmol) rac.-Dimethylsilylenbis(2-methylbenzindenyl)zirkondichlorid in 13,2 ml 1,53 molarer MAO-Lösung (Toloul) zugegeben. Nach dem Druckausgleich mit N2 wurde 30 Minuten beim Raumtemperatur durchmischt. Dann wurde, zunächst bei 20°C, die Hauptmenge Lösungsmittel im Vakuum ab-
- 10 destilliert (bis kein Lösungsmittel mehr überging). Anschließend wurde die Temperatur in 5°C Schritten auf 55°C erhöht und der Katalysator solange getrocknet, bis er als oranges, gut rieselfähiges Pulver zurückblieb.
- 15 Vergleichsbeispiel 2 (Aluminoxan Katalysator)

wie Vergleichsbeispiel 1, jedoch wurde als Metallocen rac-Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid verwendet.

20

Vergleichsbeispiel 3 (Aluminoxan-Katalysator)

wie Vergleichsbeispiel 1, jedoch wurde als Metallocen rac-Dimethylsilandiylbis(2-methyl-4-(1-naphtyl)indenyl)zirkonium-25 dichlorid verwendet.

Beispiel 1 (Borat-Katalysator)

a) Herstellung des Trägermaterials

30

500 g Kieselgel (60 μm, Fa. Grace, 8 h bei 180°C im Vakuum (1 mbar) ausgeheizt) wurden in 4 l trockenem Heptan unter N₂-Atmosphäre suspendiert. Bei Raumtemperatur wurden 2 l Triiso-butylaluminium (2 molar in Heptan) in 120 Minuten zugegeben, wobei sich die Suspension auf 40°C erwärmt. Anschließend wurde 2 h bei Raumtemperatur nachgerührt, filtriert und der Filterkuchen mit 2

b) Beladung mit Metallocenkomplex

40

10 g des unter a) hergestellten desaktivierten Kieselgels wurden in einem vorher inertisierten Gefäß vorgelegt und in 40 ml trokkenem Toloul suspendiert. Zu dieser Suspension wurden nacheinander 290 mg (0,5 l mmol) Dimethylsilylenbis(2-methylbenz-

1 Heptan gewaschen. Anschließend wurde im Vakuum getrocknet.

45 indenyl)zirkondichlorid, 488 mg (0,61 mmol) N,N-Dimethylanilinium-tetrakis(pentaflourphenyl)borat und 2 ml Triisobutyl-aluminium (2 molar in Heptan) zugegeben. Die Suspension wurde auf 70°C er-

16

wärmt und bei dieser Temperatur 1 h gerührt. Nach 4 h Nachrühren bei Raumtemperatur wurde das Lösungsmittel im Ölpumpenvakuum entfernt. Man erhielt ein frei fließendes, rot-braunes Pulver.

5 Beispiel 2 (Borat-Katalysator)

wie Beispiel 1, jedoch wurde als Metallocen rac-Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid verwendet.

10 Beispiel 3 (Borat-Katalysator)

wie Beispiel 1, jedoch wurde als Metallocen rac-Dimethylsilandiylbis(2-methyl-4(1-naphtyl)indenyl)zirkoniumdichlorid verwendet.

15 Propylenpolymerisation

Allgemeine Polymerisationsvorschrift

In einem mit Stickstoff gespülten 1-1-Stahlautoklav wurden 0,6 1
20 flüssiges Propylen bei Raumtemperatur vorgelegt. Über eine
Schleuse wurden 4 mmol Tri-isobutyl-aluminium (2 molare Lösung in
Heptan) zugegeben. Nach 5 min. Rühren wurde ebenfalls über die
Schleuse der geträgerte Katalysator zugegeben und der Autoklav
auf 60°C aufgeheizt. Die Polymerisation wurde bei 60°C über einen
25 Zeitraum von 90 Minuten durchführt. Das Polymerisat fiel in Form
eines gut rieselfähigen Grießes an.

30

35

40

45

17

Die Schmelzpunkte der entsprechenden Polymeren sind der Tabelle zu entnehmen.

5	Metallocen		Polymerisaton	Tm [°C] 4)
-	rac-Dimethyl-silylen- bis(2-methylbenz- indenyl)zirkondichlorid	VB1 ¹⁾ B1 ²⁾	homogen ³⁾ heterogen (MAO) heterogen (Borat)	147,0 ⁵⁾ 144 147
10	rac-Dimethylsilandiyl- bis(2-methyl-4-phenyl- indenyl)zirkondichlorid	VB2 B2	homogen heterogen (MAO) heterogen (Borat)	159,4 ⁶⁾ 149,4 155,8
	rac-Diemthylsilandiyl- bis(2-methyl-4(1-naph- tyl)indenyl)zirkondi- chlorid	VB3 B3	homogen - heterogen (MAO) heterogen (Borat)	161,0 ⁶⁾ 149,0 155,9

15

1) Vergleichsbeispiel

- 2) Beispiel
- 3) Mit MAO-Aktivierung, ohne Träger
- 4) Schmelztemperaturen, gemessen mit DSC nach ISO 3146.
- 20 ₅₎ US 5,455,366
 - 6) EP-A 576 970

25

30

35

40

45

Patentansprüche

- Verfahren zur Herstellung von Polyolefinen durch Polymerisation von Olefinen bei Drücken im Bereich von 0,5 bis 3000 bar und Temperaturen im Bereich von -60 bis 300°C in Gegenwart eines Metallocen-Trägerkatalysators, dadurch gekennzeichnet, daß man einen Metallocen-Trägerkatalysator, enthaltend als aktive Bestandteile
- A) einen Metallocenkomplex
 B) eine metalloceniumionenbildende Verbindung, ausgewählt aus der Gruppe bestehend aus Lewissäuren und ionischen
 Verbindungen mit nicht-koordinierenden Anionen verwendet.
- 15 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Metallocenkomplex A) solche der allgemeinen Formel (I)

20

$$R^{3}$$
 R^{4}
 R^{5}
 R^{6}
 R^{9}
 R^{8}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{6}
 R^{6}
 R^{5}
 R^{6}
 R^{7}
 R^{6}
 R^{5}
 R^{4}

worin

35

40

45

 ${\tt M}^{\tt l}$ ein Metall der Gruppe IVb des Periodensystems der Elemente ist,

 R^1 und R^2 gleich oder verschieden sind und ein Wasserstoff-atom, eine C_1 - C_{10} -Alkylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_6 - C_{20} -Arylgruppe, eine C_6 - C_{10} -Aryloxygruppe, eine C_2 - C_{10} -Alkenylgruppe, eine OH-Gruppe, eine NR^{12}_2 -Gruppe, wobei R^{12} eine C_1 - bis C_2 -Alkylgruppe oder C_6 - bis C_{14} -Arylgruppe ist, oder ein Halogenatom bedeuten, R^3 bis R^8 und R^3 bis R^8 gleich oder verschieden sind und ein

5

20

35

Wasserstoffatom eine C_1 - C_{40} -Kohlenwasserstoffgruppe, die linear, cyclisch oder verzweigt sein kann, z.B. eine C_1 - C_{10} -Alkylgruppe, C_2 - C_{10} -Alkenylgruppe, C_6 - C_{20} -Arylgruppe, eine C_7 - C_{40} -Arylalkylgruppe, eine C_7 - C_{40} -Alkylarylgruppe oder eine C_8 - C_{40} -Arylalkenylgruppe, bedeuten, oder benachbarte Reste R^4 bis R^8 und/oder R^4 bis R^8 mit den sie verbindenden Atomen ein Ringsystem bilden,

$$BR^{10}$$
, AIR^{10} , $Ge - , -0 - , -s - , SO, SO_2 , SO_2 , SO_3 , SO_4 , SO_5 , SO_6 , SO_7 , SO_8 , SO_8 , SO_9 , $SO_$$

bedeutet, wobei

R¹⁰ und R¹¹ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom oder eine C₁-C₄₀-kohlenstoffhaltige
Gruppe ist wie eine C₁-C₂₀-Alkyl-, eine C₁-C₁₀-Fluoralkyl-,
eine C₁-C₁₀-Alkoxy-, eine C₆-C₁₄-Aryl-, eine C₆-C₁₀-Fluoraryl-,
eine C₆-C₁₀-Aryloxy-, eine C₂-C₁₀-Alkenyl-, eine
C₇-C₄₀-Aralkyl-, eine C₇-C₄₀-Alkylaryl- oder eine C₈-C₁₀-Arylalkenylgruppe oder R¹⁰ und R¹¹ jeweils mit den sie verbinden-

20

den Atomen einen oder mehrere Ringe bilden und x eine ganze Zahl von Null bis 18 ist,

M² Silizium, Germanium oder Zinn ist, und die Ringe A und B gleich oder verschieden, gesättigt, ungesättigt oder teilweise gesättigt sind,

verwendet.

- 10 3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß man als Metallocenkomplex A) solche verwendet, in welchen die Liganden Indenyl- oder Tetrahydroindenylderivate sind und wobei \mathbb{R}^3 , \mathbb{R}^5 , \mathbb{R}^3 ' und \mathbb{R}^5 ' nicht Wasserstoff bedeuten.
- 15 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man als Metallocenkomplex A) solche verwendet, in welchen die Liganden Indenyl- oder Tetrahydroindenylderivate sind und wobei R³, R³' nicht Wasserstoff und R⁵, R⁵' eine C6-C10-Arylgruppe, C7-C10-Arylalkylgruppe, C7- bis C40-Alkylarylgruppe oder C8-C40-Alkenylarylgruppe bedeuten.
- Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man Propylen im wesentlichen isotaktisch homopolymerisiert oder mit Comonomeren, ausgewählt aus der Gruppe bestehend aus Ethylen und C₄- bis C₁₀-Alk-1-enen, copolymerisiert.
 - 6. Polyolefine, erhältlich nach den Verfahrensmerkmalen, gemäß den Ansprüchen 1 bis 5.
 - 7. Verwendung der, gemäß den Verfahrensmerkmalen des Verfahrens nach den Ansprüchen 1 bis 5, erhältlichen Polymerisate von C_2 bis C_{10} -Alk-1-enen zur Herstellung von Fasern, Folien und Formkörpern.

40

35

30

INTERNATIONAL SEARCH REPORT

Into...ational Application No PCT/EP 98/01231

		101721	90/ 01231
A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C08F10/00 C08F4/642		
According to	o International Patent Classification (IPC) or to both national classific	cation and IPC	
	SEARCHED		·····
IPC 6	ocumentation searched (classification system followed by classificat C08F		
	tion searched other than minimum documentation to the extent that		
Electonic c	lata base consulted during the international search (name of data b	ase and, where practical, search terms us	ed)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re	levant passages	Relevant to claim No.
Р,Х	WO 97 31038 A (BASF AKTIENGESELL August 1997 cited in the application see Claims; page 13, line 31 to	·	1-7
X	WO 95 15815 A (MOBIL OIL CORP) 1 1995 see claims; pages 15-16, example		1-7
	example 6		
X	WO 96 23005 A (GRACE W R & CO) 1 1996 see claims; pages 24-25, example	_	1-7
X	WO 91 09882 A (EXXON CHEMICAL PA 11 July 1991 see claims; page 28, example 8	TENTS INC)	1-7
		-/	
X Furth	ner documents are listed in the continuation of box C.	X Patent family members are liste	ed in annex.
° Special car	tegories of cited documents :		
"A" docume conside "E" earlier d	ont defining the general state of the art which is not ered to be of particular relevance focument but published on or after the international	 "T" later document published after the ir or priority date and not in conflict we cited to understand the principle or invention "X" document of particular relevance; the 	ith the application but theory underlying the
Which :	ate nt which may throw doubts on priority claim(s) or is cited to establish the publicationdate of another n or other special reason (as specified)	cannot be considered novel or can involve an inventive step when the "Y" document of particular relevance; the cannot be considered to involve an	not be considered to document is taken alone e claimed invention
other n	nt referring to an oral disclosure, use, exhibition or neans int published prior to the international filing date but an the priority date claimed	document is combined with one or ments, such combination being ob- in the art. "&" document member of the same pate	more other such docu- vious to a person skilled
	actual completion of theinternational search	Date of mailing of the International a	
6	August 1998	21/08/1998	·
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Mergoni, M	

INTERNATIONAL SEARCH REPORT

im ational Application No PCT/EP 98/01231

(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCI/EP 98/01231
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
(EP 0 628 574 A (TOSOH CORP) 14 December 1994 see claims; pages 5 to 7, example	1-7
(EP 0 727 443.A (TOSOH CORP) 21 August 1996 see claims; page 13, example 1	1-7
(KAZUO SOGA ET AL: "POLYMERIZATION OF OLEFINS WITH THE CATALYST SYSTEM (RCP)TICL3 (R = H, CH3)/SIO2-COMMON ALKYLALUMINIUM ACTIVATED WITH A SUITABLE LEWIS ACID" MAKROMOLEKULARE CHEMIE, MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 193, no. 7, 1 July 1992, pages 1687-1694, XP000282074 see page 1687, Abstract; page 1688 paragraphs 1 to 3	1-7
	HLATKY G G ET AL: "SUPPORTED IONIC METALLOCENE POLYMERIZATION CATALYSTS" MACROMOLECULES, vol. 29, no. 24, 18 November 1996, page 8019/8020 XP000631135 see the whole document	1-7

INTERNATIONAL SEARCH REPORT

Information on patent family members

In. ational Application No PCT/EP 98/01231

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9731038 A	28-08-1997	DE 19606167 A AU 1791997 A	21-08-1997 10-09-1997
WO 9515815 A	15-06-1995	US 5498582 A CA 2174768 A EP 0732972 A JP 9506135 T	12-03-1996 15-06-1995 25-09-1996 17-06-1997
WO 9623005 A	01-08-1996	AU 4701796 A EP 0805824 A	14-08-1996 12-11-1997
WO 9109882 A	11-07-1991	AT 122688 T AU 643255 B AU 7181191 A CA 2072752 A DE 69019535 D DE 69019535 T EP 0507876 A EP 0627448 A ES 2072598 T PT 96392 A	15-06-1995 11-11-1993 24-07-1991 03-07-1991 22-06-1995 19-10-1995 14-10-1992 07-12-1994 16-07-1995 15-10-1991
EP 0628574 A	14-12-1994	JP 6345806 A DE 69407094 D DE 69407094 T	20-12-1994 15-01-1998 02-07-1998
EP 0727443 A	21-08-1996	JP 8291202 A	05-11-1996

INTERNATIONALER RECHERCHENBERICHT

Into. .ationales Aktenzeichen PCT/EP 98/01231

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C08F10/00 C08F4/642 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 · CO8F Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. P,X WO 97 31038 A (BASF AKTIENGESELLSCHAFT) 1-7 28. August 1997 in der Anmeldung erwähnt siehe Ansprüche; Seite 13, Zeile 31 bis Seite 16, Zeile 26 X WO 95 15815 A (MOBIL OIL CORP) 15. Juni 1-7 siehe Ansprüche; Seiten 15-16, Beispiele 2, 3 und 4; Seite 19, Beispiel 6 WO 96 23005 A (GRACE W R & CO) 1. August X 1-7 1996 siehe Ansprüche; Seiten 24-25, Beispiele X WO 91 09882 A (EXXON CHEMICAL PATENTS INC) 1-7 11. Juli 1991 siehe Ansprüche; Seite 28, Beispiel 8 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X Siehe Anhang Patentfamille entnehmen T" Spätere Veröffentlichung, die nach deminternationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidlert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erkann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffertlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Täligkeit beruhend betrachtet werden, wenn die Veröffertlichung mit einer oder mehreren anderen Veröffertlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem Internationalen Anmeidedatum, aber nach "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts August 1998 21/08/1998 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Mergoni, M

1

INTERNATIONALER RECHERCHENBERICHT

Into. ...donales Aktenzeichen
PCT/EP 98/01231

		PCI/EP 9	0/01231
C.(Fortsetz	rung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommer	nden Teile	Betr. Anspruch Nr.
Х	EP 0 628 574 A (TOSOH CORP) 14. Dezember 1994 siehe Ansprüche; Seiten 5 bis 7, Beispiele		1-7
X	EP 0 727 443 A (TOSOH CORP) 21. August 1996 siehe Ansprüche; Seite 13, Beispiel 1		1-7
X	KAZUO SOGA ET AL: "POLYMERIZATION OF OLEFINS WITH THE CATALYST SYSTEM (RCP)TICL3 (R = H, CH3)/SIO2-COMMON ALKYLALUMINIUM ACTIVATED WITH A SUITABLE LEWIS ACID" MAKROMOLEKULARE CHEMIE, MACROMOLECULAR CHEMISTRY AND PHYSICS, Bd. 193, Nr. 7, 1. Juli 1992; Seiten 1687-1694, XPO00282074 siehe Seite 1687, Zusammenfassung; Seite 1688 Absätze 1 bis 3		1-7
X	HLATKY G G ET AL: "SUPPORTED IONIC METALLOCENE POLYMERIZATION CATALYSTS" MACROMOLECULES, Bd. 29, Nr. 24, 18. November 1996, Seite 8019/8020 XP000631135 siehe das ganze Dokument		1-7

1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inte...utionales Aktenzeichen PCT/EP 98/01231

	r		
Im Recherchenbericht Ingeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9731038 A	28-08-1997	DE 19606167 A AU 1791997 A	21-08-1997 10-09-1997
WO 9515815 A	15-06-1995	US 5498582 A CA 2174768 A EP 0732972 A	12-03-1996 15-06-1995
		JP 9506135 T	25-09-1996 17-06-1997
WO 9623005 A	01-08-1996	AU 4701796 A EP 0805824 A	14-08-1996 12-11-1997
WO 9109882 A	11-07-1991	AT 122688 T AU 643255 B AU 7181191 A CA 2072752 A DE 69019535 D DE 69019535 T EP 0507876 A EP 0627448 A ES 2072598 T PT 96392 A	15-06-1995 11-11-1993 24-07-1991 03-07-1991 22-06-1995 19-10-1995 14-10-1992 07-12-1994 16-07-1995 15-10-1991
EP 0628574 A	14-12-1994	JP 6345806 A DE 69407094 D DE 69407094 T	20-12-1994 15-01-1998 02-07-1998
EP 0727443 A	21-08-1996	JP 8291202 A	05-11-1996