ECS 132, Spring 2024, Midterm 2 Topics

1. Conditional probability

- The basics from the Midterm 1 Topics still apply.
- The additional aspect we introduced was to consider events A_1, A_2, A_3 which are mutually exclusive and exhaustive. Normalization means that:

$$P(A_1|B) + P(A_2|B) + P(A_3|B) = 1$$

• Applications: HW5 #1

2. Common parametric distributions for a discrete random variable

- Bernoulli; $X \sim Bern(p)$
- Binomial; $X \sim Binom(n, p)$
- Geometric; $X \sim Geom(p)$
- Geometric*; $X \sim Geom^*(p)$
- Poisson; $X \sim Pois(\lambda)$
 - $P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}$
 - λ is the expected number of events in the time window of interest
 - Superposition of two Poisson processes
- Know PMF, CDF, E(X) and Var(X) for all the above distributions
- R functions (e.g., dbinom, pbinom, dpois, ppois, etc.)
- Applications
 - Coupon Collector problem
 - HW4 #2, 3, 4 on Poisson processes; HW5 #2.3

3. Boxplots and quantiles

- Median (50th quantile), 25th quantile, 75th quantile
- · Whiskers and outliers
- Application: HW4 #5

4. Continuous random variable, Y

- PDF: $f_Y(x)$ needs to satisfy two criteria:
 - (a) $f_Y(x) \ge 0$ for all x
 - (b) $\int_{-\infty}^{\infty} f_Y(x) dx = 1$
- CDF: $F_Y(k) = P(Y \le k) = \int_{-\infty}^k f_Y(x) dx$
- $E(Y) = \int_{-\infty}^{\infty} x f_Y(x) dx$
- $Var(Y) = E(Y^2) (E(Y)^2)$
- Applications: HW5 #2

5. Common parametric distributions for a discrete random variable

- Uniform: $Y \sim unif(a, b)$
- Exponential: $Y \sim Expo(\lambda)$ (λ is the expected number of events per unit time)
- Normal/Gaussian: $Y \sim N(\mu, \sigma^2)$
- Standard normal: $Z \sim N(0,1)$ and $\Phi(z)$ tables

– If
$$Y \sim N(\mu, \sigma^2)$$
 then $\frac{Y-\mu}{\sigma} \sim N(0, 1)$

- Know PDF, CDF, E(Y) and Var(Y) for all the above distributions
- Applications: HW5 #3, 4

6. Definitions of sensitivity and specificity

- Sensitivity, $\eta = P(T=1|D=1)$, True Positive Rate
- Specificity, $\theta = P(T=0|D=0),$ True Negative Rate
- Applications: HW5 #5