UNCLASSIFIED

AD NUMBER AD012503 CLASSIFICATION CHANGES TO: unclassified FROM: confidential LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; JUN 1953. Other requests shall be referred to Naval Proving Ground, Dahlgren, VA.

AUTHORITY

30 Jun 1965, DoDD 5200.10; USNWC ltr, 24 Jun 1976

UNCLASSIFIED

A	N			
N	U	-	 	

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA, VIRGINIA

DOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS DOD DIR 5200 10

UNCLASSIFIED

THIS REPORT HAS BEEN DECLASSIFIED AND CLEARED FOR PUBLIC RELEASE.

DISTRIBUTION A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AD No. 12 SON ASTIA FILE COPY

U S NAVAL PROVING GROUND
DAHLGREN. VIRGINIA

REPORT 110 1138

FRAGMENTATION CHARACTERISTICS

23rd Partial Report

FRAGMENTATION TESTS OF NOTCHED-RING BOMBS, 250 LB , TYPE EX 17 MOD 0

Task

FINAL Report

Assignment NPG-Re3d-418-1-53

Copy No. __10

Classification <u>CONFIDENTIAL</u>

SECURITY INFORMATION

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod C

PART A

SYNOPSIS

- 1. This test was conducted to determine the fragmentation characteristics of 5 lots of 250 lb. Ring Bombs, Type Ex 17 Mod O, Composition B loaded, and having wrapped 3/8" square wire cases manufactured as follows:
 - a. 130,000 T.S. steel, 01050 deep internal notches, Lot 1
 - b. 102,000 T.S. steel, 04050 deep internal notches, Lot 2
 - c. 102,000 T.S. steel, 09025 deep external notches, Lot 3
 - d. 102,000 T.S. steel, 09025 deep side notches, Lot 4
 - e. 102,000 T.S. steel with no notches, Lot 5
- 2. a. The methods employed for controlling fragment size in Bomb Lots 1 to 4 were unsatisfactory, as could have been predicted before the test.
- b. The median beam spray, zone 55°-120°, fragment velocity was in the order of 5650 ft/sec for all bomb lots.
- c. Bomb Lots 1 and 2 produced about 20% more fragment hits at 60' than Lots 3, 4, and 5. This, in effect, indicates finer fragmentation for Lots 1 and 2. Approximately 80% of the effective fragment hits from all bombs were in polar zone 85°-105°.
- d. Peak blast pressures at 50' for all bomb lots averaged 7.4 psi.
- 3. a. In order to obtain better fragment size control it is recommended that (1) notch depths be increased to at least 50% of the wire thickness, (2) internal notches be used, and (3) wire in the neighborhood of 100,000 psi tensile strength be used for the Ex 17 Kod O Bomb.
- b. Consultations with the Naval Proving Ground and the Naval Ordnance Laboratory are also recommended before any more designs of controlled fragmentation bombs are contracted for by the Bureau of Ordnance.

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

TABLE OF CONTENTS

Page
SYNOPSIS
TABLE OF CONTENTS
AUTHORITY
REFERENCES
BACKGROUND
OBJECT OF TEST
PERIOD OF TEST
REPRESENTATIVES PRESENT
DESCRIPTION OF ITEM UNDER TEST
PROCEDURE
RESULTS AND DISCUSSION
CONCLUSIONS
RECOMMENDATIONS
APPENDIX A - FUZE AND BOMBS, PHOTOGRAPHS FIGURES 1-6 (Incl)
APPENDIX B - FIELD TEST SET-UP FIGURE 7
PHOTO SEQUENCE OF WATER PIT DETONATION
APPENDIX C - FRAGMENT SPACE DISTRIBUTION TABLES I-V (Incl)
APPENDIX D - FRAGMENT VELOCITIES
TABLE IX 1-11 (Incl TABLE X 1-19 (Incl
APPENDIX E - FRAGMENT MASS DISTRIBUTION TABLE XI 1-2 (Inci FIGURES 9-15 (Incl)
APPENDIX F - DISTRIBUTION

CONFIDENTIAL

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

PART B

INTRODUCTION

AUTHORITY:

This test was authorized by references (a) and (b) and conducted under Task Assignment NPG-Re3d-418-1-53, reference (c).

REFERENCES:

- BUORD Conf ltr NP9 Re3d-Re3c-LME, ANB: bc Ser 48430 of 1 December 1952
- BUORD Conf ltr NP9 Re3d-ANB:hjk Ser 49797 of 30 Docember 1952
- BUORD 1tr NP9 Re3d-ANB: bc of 29 July 1952
- Chamberlain Corp Conf ltr to BUORD (Re3c) of 30 October 1952 NMD Yorktown Conf ltr X24/XO (Gt 3) WFS: jes Ser 049 of
- 27 January 1953
- APG Conf Report No. 957 of 1 May 1952

3. BACKGROUND:

In the development of a 250 lb. low drag fragmentation bomb, the Chamberlain Corporation at Waterloo, Iowa was requested to manufacture five (5) lots of ring bombs, all having the same external contours but varying in types of steel and notching methods, in an effort to control fragment size.

OBJECT OF TEST:

This test was conducted to determine the fragmentation characteristics of 5 lots of 250 lb. Ring Bombs, Type Ex 17 Mod 0, Composition B loaded, and having wrapped 3/8" square wire cases manufactured as follows:

- 130,000 T.S. steel, 04050 deep internal notches, Lot 1
- 102.000 T.S. steel. 01050 deep internal notches, Lot 2 b.
- 102,000 T.S. steel, 01025 deep external notches, Lot 3
- 102,000 T.S. steel, 01025 deep side notches, Lot 4
- 102,000 T.S. steel with no notches. Lot 5 0.

CONFIDENTIAL SECURITY INFORMATION

5. PERIOD OF TEST:

a.	Dates Project Letters	1 December 1952
		30 December 1952
	Date Necessary Material Received	16 February 1953
c.	Date Commenced Test	5 March 1953
d.	Date Test Completed	30 April 1953

6. REPRESENTATIVES PRESENT:

This test was witnessed in part by Messrs: F. D. Donoghue and R. F. Grott representing the Bureau of Ordnance.

PART C

DETAILS OF TEST

7. DESCRIPTION OF ITEM UNDER TEST:

a. Five (5) lots of 250 lb. Ring Bombs Type Ex 17 Mod 0, Composition B loaded, with cases made according to Figures 2 to 6, inclusive, by the Chamberlain Corporation, Waterloo, Iowa. The essential physical data for the 5 lots of bomb cases obtained from reference (d) are as follows:

Lot Ho.	Case Material (SAE)	T.S. (psi)	Elong	R.A.	Hardness Rockwell **B**	Notch Location	Notch Depth
1	1038	130,000	8.5%	22.9%		internal	09050
2	1038	102,500	12.5%	53.0%	97 -9 8	internal	01050
3	1.038	102,500	12.5%	53.0%	97-98	external	09025
4	1038	102,500	12.5%	53.0%	97-98	* side	07C25
5	1038	102,500	12.5%	53.0%	97-98	plain wire	, no notobes

* The "side" notches are diametrically opposite and wound with notches fore and aft to bomb body.

NPG REPORT NO. 1138

Fragmentation Tests of Netched-Ring Bombs, 250 lb., Type Ex 17 Mod O

All Notch spacings were 3/8" from center to center.

All bombs had 1/16" thick steel inner liners. The bomb and explosive weights reported by Naval Mine Depot, Yorktown, Virginia, in reference (e) with fuze and boosters weights are as follows:

Bomb Ser Mo	Bomb Lot No.	Bomb Case weight ±0.015 lb.	Hot melt weight 40.03 lb.	Comp B weight	Wax Filler weight ±0.03 lb.	Nose fuse wtalbs.	Fuse booster wt.lbs.	Total weight lbs.
1	1	141.22	4.16	91.17	0.13	2.85	0.70	240.23
2	1	141.81	3.75	92.14	0.11	2.85	0.70	241.36
4	2	143.63	3.40	93.27	0.16	2,85	0.70	244.01
5	2	143.92	4.17	91.49	0.25	2.85	0.70	243.38
6	2	145.44	3.93	92.46	0.16	2.85	0.70	245.54
7	3	145.16	4.04	92.02	0.09	2.85	0.70	244.86
8	3	148.33	4.13	91.80	0.09	2.85	0.70	247.90
9	3	148.63	4-54	91.18	0.14	2.85	0.70	248.04
10	4	143.75	4.13	92.29	0.13	2.85	0.70	243.85
11	4	147.16	4.54	91.26	0.11	2.85	0.70	246.62
12	4	145.53	4.05	91.48	0.19	2,85	0.70	244.80
23	5	148.42	4.37	91.30	0.06	2.85	0.70	247.70
14	5	148.45	3.89	91.28	0.11	2.85	0.70	247.28
15	5	149.31	3.94	93.12	0.16	2.85	0.70	250.08
16	5	148.30	4.27	92.24	0.16	2.85	0,70	248.52
17	5	148.16	4.26	92.22	0.14	2.85	0.70	248.33
18	5	149.05	4.18	91.20	0.11	2.85	0.70	248.09

The nose fuzes AN-MIO3Al were modified for static detonation by the Naval Ordnance Laboratory, Figure 1. The fuze booster used on all bombs was a cylinder of bare Composition C-3, 2764 diameter and 2737 long and placed directly behind the nose fuze. These boosters were formed at the Naval Proving Ground and used to simulate the interim fuze arrangement planned by the Bureau of Ordnance.

b. Each bomb case was formed by wrapping a 3/8" square wire about a 1/16" thick steel liner. As computed by the Proving Ground, Lots 1 to 4 were designed by notching to produce 6640 cubical (3/8") fragments weighing 6.33 grams each. The total weight of wire was computed to be 92.66 lbs. No base fuzes were used in this test, and the base fuze cavities were plugged. The Proving Ground noted that two (2) turns of wire on the extreme base end of bombs from Lot 3 were not notched and does not know whether this was intentional or a manufacturing defect.

CONFIDENTIAL SECURITY INFORMATION CONFIDENTIAL

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

0

8. PROCEDURE:

a. All bombs, except No. 18 of Lot 5, which was detonated over the Naval Proving Ground Water Pit, were tested in a 60' radius semi-circular space arena having 1/8" mild steel panels 5' high and marked off in 5° polar angle zones. Each bomb was placed horizon-tally on a wooden stand with its nose pointed toward 0°. Four (4) foot high cane fiberboard packs for sample fragment recovery were placed at a 60' distance on the open arena side in zone 90°-106° and marked off in 4° zones. Three (3) 35mm Fastax cameras were used to obtain fragment velocities. Camera No. 1 viewed zone 55° to 120°, Camera No. 2 viewed zone 120°-180°, and Camera No. 3 viewed zone 0°-55°. Some of the nose fragment velocities were not obtained since their velocities were below 2000 ft/sec. and poor plate flashes are obtained at those velocities. The field set-up is shown in Figure 7.

b. Bomb No. 18 of Lot 5 was detonated over the Naval Proving Ground Water Pit in order to obtain a larger fragment sample. The water pit recovers 1/6 of the total fragments expelled in polar zone 60°-120°. Fragment velocities were also obtained in this test by using 15' high steel panels at a 60' distance in zone 84°-107°. A high speed photograph sequence showing the detonation and fragment flashes on the steel panels is shown in Figure 8.

c. Three (3) Naval Ordnance Laboratory indenter gages were placed at 50 feet from the 60' arena center in zone 135° on the open arena side to record peak blast pressures.

9. RESULTS AND DISCUSSION:

a. Fragment Space Distribution

The detailed space data are listed in Tables I to V inclusive. Fragment hits are those which penetrated the 1/8" mild steel panels. The main concentration of fragment hits were in polar zone 80° to 150°. The distributions are as follows:

95°-100° 100°-105° 105°-130°

Totals

0

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Med 0

				*	
Polar		Hits p	er Total Zo	one	
Zone	Lot 1	Lot 2	Lot 3	Lot 4	Lot 5
0°-65°	67	147	60	121	81
65°-80°	8 80	769	440	698	610
80*-85*	700	700	750	430	700
85•-90•	1510	1183	980	8 8 2 ·	1010
90°-95°	2000	1808	1130	1077	1296
95°-100°	3480	4240	3760	3570	2980
100°-105°	1620	1303	1494.	1421	1016
105°-180°	180	369	99	214	260
Totals	10,437	10,519	8,713	8,413	7,953
Polar		% o	f Total Hi	ts	
Zone	Lot 1	Lot 2	Lot 3	Lot 4	Lot 5
0°-65°	0.6	1.4	0.7	1.4	1.0
65*-80*	8.4	7.3	5.1	8.3	7.7
80°-85°	6.7	6.7	8.6	5.Ì	8.8
85*-90*	14.5	11.2	11.2	10.5	12.7
900-950	10.5	17.2	13.0	12.8	16.3

b. Fragment Plate Penetrations

100.0

From the field observations on ricochet fence plates at 30', arena panels at 60', and velocity panels at 60' by the Water Pit, general statements on the penetration at 0° obliquity of these bomb fragments in zone 80°-105° can be made:

100.0

(1) The majority will make 1/2" diameter holes in 1/8" mild steel plate

100.0

100.0

100.0

- (2) about 33% will penetrate 5/8" thick STS plate at 30 feet
- (3) about 8% will penetrate 5/8" thick STS plate at 60 feet
- (4) none will penetrate 3/4" thick STS plate at 30 feet.

c. Fragment Velocities

(

The detailed fragment velocities of the seventeen (17) bombs are listed in Tables VI to X inclusive, and are summarized as follows:

Bomb		Average	Kedian Fra	gment Velo	cities (ft	./sec.)
<u>Portion</u>	Zone	Lot 1	Lot 2	Lot 3	Lot 4	Lot 5
Nose Beam Base	0°-15° 55°-120° 165°-180°	*1720 5520 4430	1730 5670 4680	1730 5790 4600	1780 5610 4200	1660 5600 4290

* estimated.

None of the variations in fragment velocities are regarded as significant.

d. Fragmont Mass Distribution

(1) Sample fragments recovered in zone 90°-106° from the 4' high cane fiberboard packs at 60' are shown in Figures 9 to 14, inclusive. The numbers and weights listed and averaged are tabulated in Table XI. The water pit recovery of Bomb Serial No. 18 of Lot 5, 1/6 of total expected in zone 60°-120°, is shown in Figure 15 and are listed in Table XI. The mass data are summarized as follows:

	Average No. Fragments Recovered in Zone 90°-106°								Total
	5/8-	1.25-	2.5-	3.5-	4.5-	5.5-	6.5-	7.5-	5/8-
Bomb	1.25	2.5	3.5	4.5	5.5	6.5	7.5	21.0	21.0
<u>lot</u>	grans	Krame	grams.	grams	grane	Krans	RTEMS	KLTWE	grams
1	28	34	21	33	4	15	14	1	*148
2	26	21	16	17	3	9	24	2	118
3	13	29	16	19	7	20	22	1	127
4	21	22	10	17	16	18	9	4	116
5	20	14	8	11	10	10	10	15	98
**5	407	231	167	222	209	173	107	230	1766

- * The 148 total is a more accurate figure than the 150 total obtained when the average individual groups are added.
- ** Recovered from Naval Proving Ground Water Pit on Bomb Serial No. 18. The numbers represent 1/6 of the total expected in zone 60°-120°.

CONFIDENTIAL SECURITY INFORMATION

(1)

- (2) Although the cane fiberboard recovery represents only a small portion of the total expected fragments the average numbers of Lot 5 are proportional to those recovered over the water pit. The water pit total of 1-1/4 to 21 gram fragments, 1359 multiplied by 6, is 8154. This figure agrees very well with the average number of fragments penetrating the 1/8" mild steel plate in the space distribution tests, 7794, in zone 60°-120° (Table V).
- obtained, a fair criterion is the total number of fragments of design size or larger as compared with the same quantity for the uncontrolled fragmenter. The design size for the subject bombs, as stated above, was 6.3 grams. The following table shows that even if allowance is made for a substantial degree of chipping of the design-size fragments, the "controlled" designs offer no advantage over the uncontrolled.

 Average Number of Recovered Fragments with Mass greater than m
 M
 Lot 1
 Lot 2
 Lot 3
 Lot 4
 Lot 5

 4.5
 34
 38
 50
 47
 45

 5.5
 30
 35
 43
 31
 35

 6.5
 15
 26
 23
 13
 25

 7.5
 1
 2
 1
 4
 15

Frevious experience has shown that shallow notches of the types employed in these bombs are of no value in producing equi-axed fragments. A notch at least half way through the wire would be required for satisfactory control.

e. Blast Data

The average peak blast pressures recorded by the Naval Ordnance Laboratory indenter gages at 50° from the bombs in zone 135° are as follows:

Bomb Lot	Peak Pressure (psi at 50')
1	7•3
2	7.4
3	<u>?•?</u>
4	7 • 5
•	7. 0

 \mathbf{O}

CONFIDENTIAL

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

There were no significant pressure differences between bomb lots. The pressure variation within bomb lots was ±0.9 psi. Reference (f) reported fragmentation and blast data for the 250 lb. Ex 2 Mod 0 Low Drag and the 250 lb. G.P. Standard AN-M57Al bombs. Their blast pressures are listed for comparison:

Bomb Ex 17-0 (Lots 1-5)	Filler Comp B	Average Filler weight (lbs.) 92	Average Peak Pressure psi at 50' 7.4
Ex 2-0 (Low Drag)	80/20 Tritonal	103	8.0
AN-M57A1 (G.P.)	80/20 Tritonal	130	9•3

PART D

CONCLUSIONS

10. a. The methods employed for controlling fragment size in Bomb Lots 1 to 4 were unsatisfactory, as could have been predicted before the test.

- b. The median beam spray, zone 55°-120°, fragment velocity was in the order of 5650 ft/sec for all bomb lots.
- c. Bomb Lots 1 and 2 produced about 20% more fragment hits at 60' than Lots 3, 4, and 5. This, in effect, indicates finer fragmentation for Lots 1 and 2. Approximately 80% of the effective fragment hits from all bombs, were in polar zone 85°-105°.
- d. Peak blast pressures at 50° for all bomb lots averaged 7.4 psi.

O)

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

PART E

RECOMMENDATIONS

- 11. a. In order to obtain better fragment size control it is recommended that (1) notch depths be increased to at least 50% of the wire thickness, (2) internal notches be used, and (3) wire in the neighborhood of 100,000 psi tensile strength be used for the Ex 17 Kod 0 Bomb.
- b. Consultations with the Naval Proving Ground and the Naval Ordnance Laboratory are also recommended before any more designs of controlled fragmentation bombs are contracted for by the Bureau of Ordnance.

The tests upon which this report is based were conducted by:
LT A. N. HUGHES, Fragmentation Firing Officer
Fragmentation Division
Terminal Ballistics Department

This report was prepared by:
V. PHILIPCHUK, Fragmentation Battery Officer
Fragmentation Division
Terminal Ballistics Department

This test was reviewed by:

R. H. LYDDANE, Director of Research

Terminal Ballistics Department

W. B. ROBERTSON, Lieutenant Commander, USN

Terminal Ballistics Officer

Terminal Ballistics Department

C. C. BRAMBLE, Director of Research, Ordnance Group

APPROVED: J. F. EYRME
Captain, USN
Commander, Naval Proving Ground

E. A. RUCKNER
Captain, USN
Ordnance Officer
By direction

CONFIDENTIAL

NPG REPORT NO. 1138

U. S. NAVAL PROVING GROUND DAHLGREN, VIRGINIA

()

Twenty-third Partial Report

on

Fragmentation Characteristics

Fragmentation Tests of Notched-Ring Bombs, 250 lb.,

Type Ex 17 Mod 0

Project No.: NPG-Re3d-418-1-53 Copy No.: 10 No. of Pages: 12

Date:

JUN 5 1953

CONFIDENTIAL SECURITY INFORMATION

U. S. NAVAL PROVING GROUND DAHLGREN, VIRGINIA

Twenty-third Partial Report

on

Fragmentation Characteristics

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

Project No.: NPG-Re3d-418-1-53 Copy No.: 10

No. of Pages: 12

Date:

JUN 5 1953

CONFIDENTIAL SECURITY INFORMATION

SCUPTY INFORMATION CONTROLLA CCNFIDENTIAL SECURITY INFORMATION S. :; The state of the s Mod O Lot 5 March 1992 250 lb. Bomb Type EX 17 Figure 2 7 WP9-63267 . !;

Scores accountes CUNFIDENTIAL SECURITY INFORMATION The second secon ------Mod O Lot 2 / 5 March 1953 250 lb. Bomb Type EX 17 Figure 3 NP9-63268 į -1

CONFIDENTAL SECURITY INFORMATION 17.2 THE STATE STREET THE PROPERTY OF THE STREET, THE PARTY OF THE PROPERTY OF THE Mod O Lot 3 5 warch 19 250 lb. Bomb Type EX Figure Sales in the sales THE NP9-63269 1 -1

A SECURITY INCONTROL

MERCHA

1

5 *

SECURITY INFORMATION CONFIDENTIAL SECURITY INFORMATION CONFIDENTAL 1 A CONTRACT OF THE CONTRACT OF 1 1 the part of the Party of the Pa The second secon Mod 0 Let 4 250 lt. bemb Type Ex Figure 5 March to professional and the second *F9-63270 11 1.4.1 1

MOJETY INFORTACE CONFIDENTIAL SECURITY INFORMATION AND THE PROPERTY OF THE PROPER ELECTROLET FICKLILL FOR DITTILL KUNSKENDERNIKE. THE PART WHEN THE [1] [1] 5 March 1953 250 lb. Bomb Type EX 17 Mod 0 Lot Figure 6 1 Standard 1

mentation Test of 250 lb. Bomb Typ March 195 for Fragn Figure 7 NP9-63272 Field Set up in 60' Radius

Why-63273
...igh Speed incto us suce us so so conform the second second

MPG REPORT NO. 1138

APPENDIX C

Pragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE I

SPACE DISTRIBUTION DATA

250 lb. Bomb Ex 17 Mod O. Comp B loaded, Lot No. 1

60 ft. Radius Space Arena 1/8" MS panels 5' high

SECURITY INFORMATION

Date:	17 Mar	18 Mar	Average impacts	Average impacts per	Average impacts
	Rd.	Rd.	per 5°	total 5°	per unit
Zone	#11	/13	SQD0 OD	some on	solid
Degrees	Ser #1	Ser #2	papel	penel	angle
0-5	2	2	2.0	7	300
5-10		-			
10-15					
15-20					
20-25					
25-30					
30-35					
35-40					
40-45					
45-50	·	1	0.5	30	70
50-55	1	_	0.5	30	70
55-60	_				
60-65					
65-70	4	2	3.0	200	400
70-75	3	2	2.5	180	340
75-60	3 9 8	2 2 5	7.0	500	1000
80-85	Ŕ	16	9.0	700	1200
85-90	25	15	20.0	1510	28 C0
90-95	34	19	26.5	2000	3650
95-100	40	. 53	46.5	3480	6400
100-105	24	20	22.0	1620	3000
105-110		5	2.5	180	340
110-115			~• >	400	3 -4-7
115-120					
120-125					
125-130					
130-135		3	C.5	30	70
135-140		1	C.5	30 30	70
140-145	2	•	1.0	50 50	140
145-150	~		1.0	~	240
150-155		ı	0.5	10	70
155-160		4	0.5	17	(2.5)
160-165					
165-170					
170-175 175-180	.1 9		0.5 8.5	5 29	70
710-717					

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

CHILDREN TO STATE OF

TABLE II

SPACE DISTRIBUTION DATA

250 lb. Boub Ex 17 Mod O. Comp B loaded, Lot No. 2

60 ft. Radius Space Arena 1/8" MS panels 5' high

Date:	17 Mar	19 Mar	20 Mar	Average impects per 5°	Average impacts total 5°	Average impacts per unit
Zone Degrees	Ser #4	Ser #5	Ser #6	some on	sone on	solid angle
0-5	2	3	2	2.3 -	7.8	320
5-10		1	1	0.7	7	90
10-15	1		1	0.7	11	100
15-20			1	0.3	7	40
20-25						
25-30		je tilake + tje.	lastir Galdin uset dia = 0.	in Karthard Day, 1944, 194		
30-35		Sel Sandania			The supplemental states of the same	
35-40						
40-45					•	
45-50						
50-55						
55-60						200
60-65	2	2	1	1.7	114	230
65-70	3	6	4	, 4.3	300	590
70-75	3	4 7	4	3.7	270	510
75-80		7	i	2.7	199	370
80-85	14	7	7	9.3	700	1280
85-90	12	16	19	15.7	1183	2160
90-95	29	21	22	24.0	1808	3300 7800
95-100	60	49	61	56.7	4240	
100-105	23	15	15	17.7	1303	2440
105-110	3		4	2.3	165	32 0
110-115			•	3.0	7 C	140
115-120		1	2 1	1.0	19	40
120-125				0.3	19	40
125 - 130 130-135		1		0.3	17	40
135-140	1	1	1	0.7	40	100
140-145	i		*	0.3	ŭ	40
145-150	•			0.5	24	•
150-155						
155-160						
160-165						
165-170			1	0.3	5	40
170-175	2	3	i	2.0	19	300
175-180	2 6	3 6	1 6	6.0	20	800
_	== -	•	5	0.0	~~	
CONFIDENT SECURITY	ial Information	Ī			APP	endix c

TABLE III

SPACE DISTRIBUTION DATA

250 lb. Bomb Ex 17 Mod O. Comp B loaded, Lot No. 3

60 ft. Radius Space Arena 1/8" MS panels 5' high

Date:	9 Mar	10 Mar	11 Mar	Average impacts per 5°	Average impacts total 5°	Average impacts per unit
Zone	Ser #7	Ser #8	Ser #9	some on panel	some on panel	solid
Degrees						
0-5	2	2	2	2.0	7 3	300
5-10		1		0.3	,	40
10-15						
15-20 20-25						
25 -3 0		1		0.3	10	40
30-35		•		0.5	30	40
35-40						
40-45						
45-50						
50-55						
55-60	1		1	0.7	40	100
60-65						
65-70	2	2	1	1.7	118	230
70-75	2 3 4	2 2 3 5		1.7	122	23 0
75 ~8 0		3	2	3.0	20 C	400
80-85	12	5	13	10.0	750	1380
85-90	\mathbf{n}	16	12	13.0	980	1790
9C-95	14	14	17	15.0	1130	2100
95-100	56	55	40	50.3	376C	6920
100-105	18	18	25	20.3	1494	2790
105-110 110-115						
115-120					*	
120-125						
125-130			1	0,3	18	40
130-135			1	0.3	17	40
135-140		1	_	0.3	15	40
140-145		_		- • •		·
145-150						
150-155						
155-160						
160-165		1		0.3	7	40
165-170	•		^	0.0	^^	
170-175	1 5	4 5	2 8	2.3	22	310
175-180)	>	8	6.0	20	800

CONFIDENTIAL SECURITY INFORMATION

APPENDIX C

TABLE IV

SPACE DISTRIBUTION DATA

250 lb. Bomb Ex 17 Mod O. Comp B loaded, Lot No. 4

60 ft. Radius Space Arena 1/8" MS panels 5' high

Date:	9 Mar	10 Mar	ll Mar	Average impacts per 5°	Average impacts total 5°	Average impacts per unit
Zone			***	zone on	zone on	solid
Degrees	<u>Ser #10</u>	<u>Ser #11</u>	Ser #12	panel	panel	angle
0-5	2	2	2	2.0	7	300
5-10						
10-15					· -	
15-20	1			0.3	7	40
20-25						
25-30						
30-35						
35-40						
40-45						
45-50	1			0.3	17	40
50-55	1	1		0.7	40	100
55-60	•	4			50	100
60-65	1	1	2	0.7	50 188	100
65 -7 0 70-75	3	2	3	2.7	240	370 450
75 -8 0	4	3	4	3.3	2 7 0	510
8C-85	4	6	4 7	3.7	430	780
85 -9 0	5	21	9	5.7 11.7	882	1610
90-95	13	20	20	14.3	1077	1967
95-100	50	41	52	47.7	3570	6560
100-105	20	21	17	19.3	1421	2660
105-110	20	- 1	47	0.3	20	40
110-115		,		0.7	~0	40
115-120		2		0.7	50	100
120-125	1	ĩ		0.7	40	100
125-130	_	<i>-</i> 1	1	0.7	. 40	100
130-135		2 1 1	-	0.3	17	40
135-140						•
140-145		1		0.3	14	40
145-150						
150-155						
155-160						
16C-165						
165-170						
170-175	2 9	1 6	1 6	1.3	13	175
175-180	9	6	6	7.0	20	1000

CONFIDENTIAL SECURITY INFORMATION

TABLE V

SPACE DISTRIBUTION DATA

250 lb. Bomb Ex 17 Mod O. Comp B loaded, Lot No. 5

60 ft. Radius Space Arena 1/8" MS panels 5' high

Date:	5 Mar .	5 Mar	6 Mar	Mar	Mar	Average impacts per 5°	Average impacts total 5°	Average impacts per unit
Zone						ZODE OD	sone on	solid
Degrees	Ser #13	Ser #14	Ser #15	Ser #16	Ser #17	panel	panel	angle
0-5	1	2	3	2	3	2.2	7.4	310
5-10			3 2	2	-	0.6	6	80
10-15					1	0.2	3	30
15-20		٠	25					
20-25								
25-30								
30-35					1	0.2	8	30
35-40					•			
40-45					1	0,2	11	30
45-50			1	1		0.4	20	60
50-55								
55-60		1				0.2	13	30
60-65					1	0.2	13	30
65-70	5	1	3	2	4	3.0	200	400
70-75	1	2		1	1	1.0	7 0	140
75-80	3	5	7	1	7	4.6	340	630
80-85	8	15	4	10	8	9.0	700	1200
85-9 0	17	10	16	7	17	13.4	1010	1844
90 -9 5	17	15	21	17	16	17.2	1296	2370
95 -1 00	46	38	42	47	26	39.8	2980	5480
100-105	26	14	4	13	12	13.8	1016	1899
105-110	2	2	1	. 3	1	1.8	129	250
110-115			_					
115-120		_	1	_	2	0.6	40	80
120-125		1	1	1		0.6	40	80
125-130				1		0.2	12	3 0
130-135		_						
135-140		ı				0.2	10	3 0
140-145								
145-150								
150-155								
155-160								
160-165		•						
3.65 -17 0	•		•			0.4		80
170-175 175-180	1 7	6	2 6	0	6	0.6	6	960
T12-190	7	0	0	9	0	6.8	23	700

CONFIDENTIAL

CECURITY INFORMATION

APPENDIX C

CONFIDENTIAL

4

()

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod C

TABLE VI

FRAGMENT VELOCITY DATA LOT 1

60 Ft. Radius Am 35mm Fastax Cam Rd. 11, 250# Ex Total Weight 24	era 1 17-0 Ring	Bomb Ser. #1	Comp. B Filler W	mes per sec. Veight 91.17 lbs. 17 March 1953
Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total <u>Hits</u>	Velocity (f/s)
26	90-95	2	2	6810
27	90-95	2	2	, 6560
28	90-95 95 - 100	5 7	12	6320
29	90-95 95 - 100 100 - 105	6 4 1	11	6100
30	85-90 90-95 95 -1 00	3 2 1	6	590 0
31	90-95 95-100 100-105	3 1 5	9	5710
32	85-90 90-95 95-100 100-105	3 2 1 3	9	5530
33	85-90 90-9 5	2 1	3	5360
34	80-85 85-90 90-95 100-105	1 4 2 3	10	5210
35	75-80 80-85 85-90 95-100 100-105	1 2 1 2 1'	7	· 5060
. 36	75-80 80-85 100-105	2 2 1	5	4920
CONFIDENTIAL SECURITY INFORM	ATION	1		APPENDIX D

CONFIDENTIAL

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VI (Continued)

Frame in Which Hit Occurred	Zone	Boam No. Fragments	Total	Yelocity (f/s)
37	70-75 75-80 80-85 85-90 90-95	2 2 1 1	7	478 0
38	70-75 75-80	1	2	4660
40	95 -10 0 70-75	1	2	4430
43	65-70	1	1	4120
44	90-95	1	1	4020
45	100-105	2	2	3930
47	65 -7 0	1	1	3779
Median				5600
Averago				5 50 0

TABLE VI (Continued)

60 Ft. Radius Arena 3050 Frames per sec. 35mm Fastax Camera 2 Comp. B Rd. 11, 250# Ex 17-0 Ring Bomb Ser. #1 Filler Weight 91.17 lbs. Total Weight 240.23 lbs. Dates 17 March 1953 Frame in Which Total Base Hits Hit Occurred Velocity (f/s) No. Fragments **Zone** 175-180 170-175 175-180 175-180 175-180 175-180 175-180 175-180 175-180 175-180 170-175 175-180 175-180 175-180 165-170 170-175 160-165 165-170 175-180 1 (Base Plug) 175-180 175-180

CONFIDENTIAL SECURITY INFORMATION

Hedian

Average

APPENDIX D

TABLE VI (Continued)

60 Ft. Radius Arona 35mm Fastax Camera 1 Rd. 13, 250# Ex 17-0 Ring Bomb Ser. #2 Total Weight 241.36 lbs. 3050 Frames per sec. Comp. B Filler Weight 92.14 lbs. Date: 18 March 1953

Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
28	95-100	2	2	6540
29	95-100	6	6	6310
30	90-95 95 -1 00	3 5	8	6100
31	90-95 95-100 100-105	2 6 1	9	590 0
32	8 5-9 0 90-9 5 95-1 00	2 3 1	6	5720
33	85 -90 90 -9 5 100 - 105	2 1 2	5	5550
34	85-90 90-95 100-105	3 2 1	6	5380
35	80-85 85-90 95-100 100-105	2 2 2 2	8	5230
36	80-85 85-90 100-105	1 1 2	4	5080
37	80-85 90-95 95-100 105-110	3 1 1	6	4950
38	75- 80 80 - 85 105 - 110	1 2 1	4	4820

CONFIDENTIAL

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

TABLE VI (Continued)

Frame in Which Hit Occurred	Zone	Beam No Fragments	Total Hits	Velocity (f/s)
39	70-75 90-95 95-100	1 1 1	3	4690
40	75-80 80-85 90-95 105-110	1 2 1 1	5	4580
41	70-75 75-80 80-85 90-95	1 2 1 1	5	4460
44	70-75	1 1	1	4160
45	90-95	1	1	4070
48	80 -8 5 100 -1 05	1	2	3810
49	100-105	1	2 m 1	3730
Median				5440
Average				5330

NPG REPORT NO. 1138

CONFIDENTIAL

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VI (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 13, 250# Ex 17-0 Ring Bomb Ser. #2 Total Weight 241.36 lbs. 3150 Frames per sec. Comp. B Filler Weight 92.14 lbs. Date: 18 March 1953

Frame in Which Hit Occurred	Zone	Base No. Framents	Velocity (f/s)
26	175-180	1	7270
27	175-180	1	7000
29	175-180	1	6520
33	175-180	3	5730
34	175-180	1	5 <i>5</i> 60
36	175-180	1	5250
40	175-180	1	4730
45	175-180	1	4200
47	175-180	2	4020
48	175-180	1	3940
49	175-180	1	3860
54	175-180	1	3500
57	175-180	1	3320
5 8	165-170	1	3260
68	165-170	1	2780
71	175-180	3 (Base Plug)	2660
72	175-180	3	2630
73	175-180	2	2590
75	175-180	1	2520
Median			3850
Average			4070

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

TABLE VII

FRAGMENT VELOCITY DATA LOT 2

60 Ft. Radius Arena
35mm Fastax Camera 1
Rd. 12, 250# Ex 17-0 Ring Bomb Ser. #4
Total Weight 244.01 Lbs.

2950 Frames per sec. Comp. B Filler Weight 93.27 Lbs. Date: 17 March 1953

	•			
Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
29	95-100	4	4	6100
30	90 - 95 95 - 100 100 - 105	7 8 1	16	5900
31	90-95 95-100 100-105	4 2 1	7	5710
32	85-90 90-95 100-105	1 3 2	6	5530
33	85-90 90-95 100-105	2 1 5	8	5360
34	85-90	1	1	5210
35	80-85 85-90 90-95 95-100	2 3 2 1 5	13	5060
36	80-85 90-95	2 1	3	4920
37	80-85 105-110	2 1	3	4780
38	90-95 95-100	1	2	4660
39	80-85 90-95 95-100	1 2 1	4	45 40
40	80-85	ı	1	4430
41	70-75 90-95	1 2	3	4320

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb.,
Type Ex 17 Mod 0

TABLE VII (Continued)

Frame in Which Occurred	Zone	Becm No. Freements	Total Hits	Velocity (f/s)
42	100-105	2	2	4210
43	65-70 70-75 95-100	1 1 1	3	4120
46	90-95	1	1	3850
47	65-70	1	1	3770
Ledian				5400
average				523 0

The second of th

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VII (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 12, 250# Ex 17-0 Ring Bomb Ser. #4 Total Weight 244.01 Lbs. 3150 Frames per sec. Comp. B Filler Weight 93.27 Lbs. Date: 17 March 1953

Frame in Which Hit Occurred	Zone		Total Hits	Velocity (f/s)
25	175-180	1	1	7560
29	175-180	1	1	6520
31	165-170 175-180	1 2	3	6100
32	175-180	1	1	591 0
33	170-175	1.	1	5730
34	175-180	1	1	5560
35	175-180	1	1 .	5400
36	175-180	1	1	5250
37	175-180	2	2	5110
39	175-180	1	1	4850
40	170-175	1	1	4730
45	175-180	1	1	4200
50	175-180	2	2	3780
60	155-160	1	1	3150
69	175-180	1 (Base Plu	g) 1	2740
7 0	175-180	1	1	2700
71	175-180	1	1	2660
Median				52 20
Average				4910

THE RESERVE OF THE PARTY OF THE

The state of the s

Pragmentation Tests of Notched-Ring Bombs, 250 lb.,
Type Ex 17 Mod 0

TABLE VII (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 1 Rd. 14, 250# Ex 17-0 Ring Bomb Ser. #5 Total Weight 243.38 Lbs. 3150 Frames per sec. Comp. B Filler Weight 91.49 Lbs. Date: 19 March 1953

Frame in Which	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
28	90-95 95-100	2 10	12	6750
29	90-95	.3	9	6520
30	85-90 90-95 95-100 100-105	1 6 2 1	10	6300
31	85-90 90-95 95-100 100-105	2 1 1 2	6	6100
32	85-90 100-105	2 1	3	5910
33	85-90 100-105	2 1	3	5730
34	80-85 85-90 95-100 100-105	1 4 2 2	9	5560
35	80-85	1	1	5400
36	75-80 80 - 85	1	2	5250
38	80 - 85 85-90 90 - 95 95- 100	1 1 1	4	4970
39	75-80 100-105	2 1	3	4850
40	70-75 75-80 90-95	2 2 1	5	4730

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

TABLE VII (Continued)

Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
41	95-100	1	1	4610
42	90-95	1	1	4500
43	70 - 75 95 - 100	2 1	3	4400
44	65-70 70-75 95-100	1 1 1	3	4300
45	65-70	1	1	4200
46	90-95	1	1	4110
47	65-70	1	1	4020
Median				5990
Average				5710

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VII (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 14, 250# Ex 17-0 Ring Bomb Ser. #5 Total Weight 243.38 Lbs. 3300 Frames per sec. Comp. B Filler Weight 91.49 Lbs. Date: 19 March 1953

Frame in Which Hit Occurred	Zone	Base No. Framents	Velocity (f/s)
27	175-180	1	7330
28	175-180	1	7070
31	175-180	1	6390
32	175-180	2	6190
33	175-180	1	6000
34	175-180	2	582 0
35	175-180	1	5660
36	175-180	. 1	5500
37	175-180	1	5350
38	175-180	1	5210
39	170-175	1	5080
42	175-180	2	4710
45	175-180	1	4400
47	175-180	2	4210
48	175-180	2	4130
49	175-180	1	4040
50	170-175	1	3960
60	170-175	1	3300
65	170-175	1	3050
79	175-180	3 (Base Plug	2510
80	175-180	1	2480
Median			4880
Aver ago			4730

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VII (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 1 Rd. 14, 250# Ex 17-0 Ring Bomb Ser. #5 Total Weight 243.38 Lbs. 3150 Frames per sec. Comp. B Filler Weight 91.49 Lbs. Date: 19 March 1953

Frame in Which Hit Occurred	Zone	No. Framents	Velocity (f/s)
109	0-5	1	1730

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VII (Continued)

60 Ft. Radius Arena 35mm Fastax Camere 1 Rd. 15, 250# Ex 17-0 Ring Bomb Ser. #6 Total Weight 245.54 Lbs. 3100 Frames per sec. Comp. B Filler Weight 92.46 Lbs. Dates 20 March 1953

Frame in Which Hit Occurred	Zone	Boam No. Fragments	Total Hits	Velocity (f/s)
29	95-100	4	4	6410
30	90 -9 5 95 -1 00	16	7	6200
31	90-95 95-100	3	10	6000
32	90-95 95-100 100- 105	5 3	11	5810
33	85-90 90-95 100-105	2 2 2	6	5640
34	85-90 90-95 100-105	5 2 3	10	5470
35	85 -9 0 95 -1 00	1	2	5310
36	85-90 90-95 95-100	1 . 1	3	5170
37	80-85	2	2	5030
38	80-85 90-95 100-105	2 2 2	6	4890
39	90-95 105-110	1 2	3	4770
40	85-90 95-100	1	2	4650
41	95-100 100-105	2 1	3	4540

NPG REPORT NO. 1138

Fragmontation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VII (Continued)

Frame in Which Hit Occurred	Zone	Beem No. Fragments	Total Hits	Velocity (f/s)
42	65-70 85-90	2	3	4430
43	90 - 95 95-100 100 - 105	1 1	3	4330
44	70 -7 5 100-105	1	2	4230
45	85-90	1	1	4130
47	90-95	1	1	3960
Median				5610
Average				5410

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VII (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 15, 250# Ex 17-0 Ring Bomb Ser. #6 Total Weight 245.54 Lbs. 3150 Frames per sec. Comp. B Filler Weight 92.46 Lbs. Dates 20 March 1953

Frame in Which Hit Occurred	Zone	Base No. Fragments	Velocity (f/s)
31	175-180	1	6100
32	175-180	1	5910
33	175-180	1	5730
35	175-180	2	5400
46	175-180	1	4110
54	165-170	1	3500
55	175-180	1	3440
60	175-180	1	3150
71	175-180	1	2660
72	175-180	1	2630
73	175-180	2 (Base Plug	2590
74	175-180	1	2550
Median			3930
Average			3980

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VIII

FRAGMENT VELOCITY DATA LOT 3

60 Ft. Radius Arena 35mm Fastax Camera 1 Rd. 5, 250# Ex 17-0 Ring Bomb Ser. #7 Total Weight 244.86 lbs. 3050 Frames per sec. Comp. B Filler Weight 92.02 lbs. Date: 9 March 1953

Total	Weight 244	+ oo Tos.		Dates	y March 1973
	in Which Occurred	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
	28	90-95	1	1	6540
	29	90-95 95-100	7	8	6310
	30	90-95 95-100	2 5	7	6100
i jangsa	31	90-95 95-100 100-105	8 2 3	13	5900
	3 2	85-90 90-95 95-100 100-105	3 4 1 2	10	5720
,	33	100-105	1	1	5550
	34	85-90	3	3	5380
	35	80 - 85 85 - 90 100 - 105	2 1 1	4	523 0
	36	80-85	1	1	5080
	38	75-80 80-85 85-90 95-100	1 2 2 1	6	48 20
	39	75-80	1	1	4690
	41	70-75	2	2	4460

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VIII (Continued)

Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
42	75-80	· 1	1	4360
43	90-95	1	1	4260
44	65 - 70 95 - 100	2 1	3	4160
Median				5770
Average				5560

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VIII (Continued)

60 Pt. Radius Arena 35mm Fastax Camera 2 Rd. 5, 250# Ex 17-0 Ring Bomb Ser. #7 Total Weight 244.86 lbs.

3000 Frames per sec. Comp. B Filler Weight 92.02 lbs. Date: 9 March 1953

Frame in Which Hit Occurred	Zone	Base No. Fragments	Total Hits	Velocity (f/s)
24	175-180	1	1	7500
27	175-180	1	1	6670
32	135-140	1	1	5630
34	175-180	2	2	5290
35	175-180	2	2	5140
37	170-175	2	2	4860
41	175-18C	2	2	4390
44	175-180	2	2	4090
5 0	175-180	1	1	3600
51	175-180 170-175	1	2	3530
67	175-180	1	1	2690
68	175-180	2 (Base Plug)	2	2650
71	175 - 180 160 - 165	1	2	2540
Median				4500
Average				4340

CONTRACTOR TO THE PARTY OF THE

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

TABLE VIII (Continued)

60 Ft. Kadius Arena 35mm Fastax Camera 1 Rd. 7, 250% Ex 17-0 Ring Bomb Ser. #8 Total Weight 247.90 lbs. 3000 Frames per sec. Comp. B. Filler Weight 91.80 lbs. Date: 10 March 1953

Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hits	Val∞ity (f/a)
26	100-105	ì	1	6920
28	95-100	5	5	6430
29	90-95 95 - 100	16	7	6210
30	90-95 95-100 100-105	3 4 4	11	6000
31	90-95 95-100 100-105	2 3 1	6	5810
32	85 - 90 90-95 95 - 100	2 1 2	5	5630
33	85-90 90-95 95-100 100-105	3 1 2	.7	5 45 0
34	80-85 85-90 100-105	1 3 1	5	5290
36	80-85 1 00-1 05	1	2	5000
37	80-85 90-95	1	2	4860
38	70-75 90 - 95	4 1	5	4740
42	85-90	2	2	4290

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VIII (Continued)

Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hita	Velocity (f/s)
44	85-90	ı	1	4090
45	95-100	1	1	4000
46	70-75	1	1	3910
50	85-90	1	1	3600
52	65 -7 0 85 -9 0	1 1	2	3460
Median				5750
Average				5480

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb.,
Type Ex 17 Mod 0

TABLE VIII (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 7, 250# Ex 17-0 Ring Bomb Ser. #8 Total Weight 247.90 lbs.

3000 Frames per sec. Comp. B Filler Weight 91.80 lbs. Date: 10 March 1953

Frame in Which Hit Occurred	Zone	Base No. Fragments	Velocity (f/s)
23	175-180	1	7830
26	175-180	1	6920
30	175-180	2	6000
31	175-180	1	5810
34	170-175	1	5290
35	175-180	1	5140
37	175-180	1	4860
38	170-175	1	4740
41	175-180	1	4390
44 '	175-180	1	4090
48	175-180	1	3750
49	175-108	1	3670
50	175-180	1	3600
52	160-165	1	3460
67	175-180	2 (Base Plug)	2690
68	175-180	1	2650
70	175-180	1	2570
Median		,	4500
Average			4530

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

TABLE VIII (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 3 Rd. 7, 250# Ex 17-0 Ring Bomb Ser. #8 Total Weight 247.90 lbs. 3050 Frames per sec. Comp. B Filler Weight 91.80 lbs. Date: 10 March 1953

Frame in Which Hit Occurred	Zone	Nose No. Fragments	Velocity (f/s)
107	0-5	2	1710
108	0-5	1	1690

Average

1700

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VIII (Continued)

60 Ft. Radius Arena
35mm Fastax Camera 1
Rd. 9, 250# Ex 17-0 Ring Bomb Ser. #9
Total Weight 248.04 lbs.

3000 Frames per sec. Comp. B Filler Weight 91.18 Date: 17 March 1953

Total Weight 248.04 lbs.			Date: 17 March 1953		
	in Which Occurred	Zone	Beam No. Fragments	Total Fits	Velocity (f/s)
	27	95-100	1	1	6670
-	28	90-95	2	2	6430
	29	95-100 90-95 95-100	6 5 4	15	6210
ı	30	85-90 90-95 95-100 100-105	2 4 3 3	12	6000
	31	90-95 100-105	5	6	5810
•	32	85-90	3	3	5630
	33	85-90 100-105	1 4	5	5450
	34	80-85 85-90	2 · 4	6	5290
	35	80-85 100 - 105	1 2	3	5140
	36	80-85 85-90 95-100	2 1 1	4	5000
	37	75-80 90-95 95-100 75-80	1 2 1 2	6	4860
	41	65-70	1	1	4390
*	42	95-100	1	1	4290
	43	90-95	ı	1	4190
Media		· · · · ·			5850
Avera					5650
CONFI	DENTIAL ITY INFORM	MOITA	8		APPENDIX D

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VIII (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 9, 250# Ex 17-0 Ring Bomb Ser. #9 Total Weight 248.04 lbs. 3050 Frames per sec. Comp. B Filler Weight 91.18 lbs. Date: 17 March 1953

TOTAL HATELY 24	0.04 TD9.		Dave	1/ 20100 17/3
Frame in Which Hit Occurred	Zone	Base No. Fragments	Total Hits	Velocity (f/s)
24	175-180	2	2	7630
25	175-180	1	1	7320
30	175-180	2	, 2	6100
32	175-180	4	4	5720
34	175-180	1	1	5380
37	175-180	1	1	4950
38	175-180	2	2	4820
40	165-170	1	1	4580
41	175-180	1	1	4460
43	175-180	1	1	4260
45	175-180	1	1	4070
48	175-180	1	1	3810
49	175-180	1	1	3730
59	160-165	1	1	3100
61	160 - 165 175 - 180	· 1	2	3000
65	170-175	1	1	2820
66	175-180	2 (Base Plug)	2	2770
69	175-180	ı	1	2650
Nedian				4800
Average				4720

中国,我就是我们就是这个人的一个人的时候,我们就是这个人的一个人的,我们就是这个人的,我们就是这个人的,我们就是这个人的,我们就是这个人的,我们就是这个人的,我

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE VIII (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 3
Rd. 9, 250# Ex 17-0 Ring Bomb Ser. #9
Total Weight 248.04 lbs.

Comp. B
Filler Weight 91.18 lbs.
Date: 17 March 1953

3150 Frames per sec. Comp. B

Frame in Which Hit Occurred	Zone	Nose No. Fragments	Velocity (f/s)
108	0-5	1	1750

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE IX

FRAGMENT VELOCITY DATA LOT 4

60 Ft. Radius Arena 35mm Fastax Camera 1 Rd. 6, 250# Ex 17-0 Ring Bomb Ser. #10 Total Weight 243.85 Lbs. 3050 Frames per sec. Comp. B Filler Weight 92.29 Lbs. Date: 9 March 1953

Frame in Which Hit Occurred	Zone	Base No. Fragments	Total Hits	Velocity (f/s)
29	95-100	6	6	6310
30	95-100	7	7	6100
31	90-95 95-100	4 8	12	5900
32	90-95 95-100 100-105	1 2 2	5	5720
33	85-90 90-95 100-105	1 2 1	4	5550
34	85 - 90 90 -9 5 100 - 105	1 1 1	3	53 80
35	90 - 95 100 - 105	1 2	3	5230
36	85-90	1	1	5080
37	80-85 85-90 90-95 95-100	1 1 1 2	5	4950
38	80-85 90-95	1	2	4820
39	85 -90 90 - 95	1	2	4690
40	80-85 85-90 95-100	1 1 1	3	4 <i>5</i> 80

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE IX (Continued)

Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
41	100-105	1	1	4460
43	65-70 70 - 75	1	2	4260
44	95-100	2	2	4160
Median				5700
Average				5480

Commonwealth Commo

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE IX (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 6, 250# Ex 17-0 Ring Bomb Ser. #10 Total Weight 243.85 Lbs. 3000 Frames per sec. Comp. B Filler Weight 92.29 Lbs. Date: 9 March 1953

Frame in Which Hit Occurred	Zone		Total Hits	Velocity (f/s)
25	175-180	1	1	7200
27	175-180	1	1	6670
29	155-160	1	1	6210
31	170-175	2	2	5810
33	175-180	1	1	54 50
43	165-170 175-180	1	2	4190
44	175-180	2	2	4090
46	175-180	1	1	3910
52	160-165	1	1	3460
66	175-180	1	1	2730
67	175-180	2 (Base Plug) 2	2690
68	175-180	2	2	2650
69	175-180	1	1	2610
72	175-180	1	1	2500
Median				4230
Average				4190

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Kod O

TABLE IX (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 1 Rd. 8, 250# Ex 17-0 Ring Bomb Ser. #11 Total Weight 246.62 Lbs. 3000 Frames per sec. Comp. B Filler Weight 91.26 Lbs. Date: 10 March 1953

Frame in Which Hit Occurred	Zone	Beam No. Frarments	Total Hits	Velocity (f/s)
28	95-100	3	3	6430
29	90 - 95 95 - 100	2 9	11	6210
30	90 - 95 9 5- 100	4	8	6000
31	90 - 95 9 5- 100 100-105	5 1 3	9	5810
32	85-90 90-95 95-100 100-105	5 3 2 3	13	5630
33	85-90 100-105	4 2	6	5450
34	85-90 100-105	1 2	3	5290
35	80 - 85 85 - 90	3	6	5140
36	80-85 85-90 95-100	3 1 1	3	5000
37	75-80 80 - 85	1 1	2	4860
38	75-80	2	2	4740
39	75-80 80-85 85-90	1 1	3	4620
40	100-105	1	1	4500

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

TABLE IX (Continued)

Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
44	7075 85 - 90	2 1		4000
	90-95	1	4	4090
47	65-70	1	1	3830
48	65-70 80 - 85	1	2	3750
Median				5660
Average				5460

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

TABLE IX (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 8, 250# Ex 17-0 Ring Bomb Ser. #11 Total Weight 246.62 Lbs. 3000 Frames per sec. Comp. B Filler Weight 91.26 Lbs. Date: 10 March 1953

Frame in Which Hit Occurred	<u>Zone</u>		otal	Velocity (f/s)
23	175-180	1	1	7830
31	175-18c	1	1	5810
33	175-180	1	1	54 50
34	175-180	2	2	5290
35	175-180	2	2	5140
38	175-180	1	1	4740
39	175-180	1	1	4620
40	175-180	1	1	4500
41	175-180	1	1	4390
42	170-175	1	1	4290
43	175-180	2	2	4190
44	175-180	1	1	4090
45	170-175	1	1	4000
46	170 -1 75 1 75- 180	1	2	3910
51	175-180 170-185	1	2	3530
55	165-170	1	1	3270
62	160-165	1	1	2900
64	165-170	1	1	2810
66	175-180	1	1	2730
67	175-180	3 (Base Plug)	3	2690
72	160-165	. 1	1	2500
Median				4160
Average				4150

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE IX (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 3 Rd. 8, 750# Ex 17-0 Ring Bombs Ser. #11 Total Weight 246.62 Lbs. 3050 Frames per sec. Comp. B Filler Weight 91.26 Lbs. Date: 10 March 1953

Frame in Which Hit Occurred	Zone	Nose No. Fragments	Velocity (f/s)
103	0-5	1	1780
108	0-5	1	1690

Average

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE IX (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 1 Rd. 10, 250# Ex 17-0 Ring Bomb Ser. #12 Total Weight 244.80 Lbs.

2950 Frames per sec. Comp. B Filler Weight 91.48 Lbs. Date: 11 March 1953

	• • • • • • • • • • • • • • • • • • • •	•			
Frame in Which Hit Occurred	Zona	Beam No. Fragments	Total Hits	Velocity (f/s)	
25	100-105	1	1	7080	
27	95-100	6	6	6560	
28	90 - 95 95 - 100	5 9	14	6320	
29	90-95 95-100 100-105	4 4 2	10	6100	
30	90-95	2	2	5900	
31	100-105	3	3	5710	
32	85-90 100-105	2 2	4	5530	
33	85-90 95-100 100-105	1	, 3	536 0	
34	80 -85 85 - 90 90 - 95	3 3 1	7	521 0	
35	80-85 95-100 100-105	2 2 2	6	5060	
36	75-80 80-85 85-90	1 1 1	3	4920	
37	90-95 95-100 100-105	3 1 1	5	4780	
38	75-80 90-95 95-100	3 2 1	6	4660	

MPG REPORT NO. 1138

Fragmentation Test of Notched-Ring Bombs, 250 lb., Type Ex 17 Nc2 0

TABLE IX (Continued)

Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
39	70 -7 5 75 - 80 95-10 0	1 1	3	4540
40	70-75 85-90 90-95	1 2 1	4	4430
41	65-70	1	1	4320
42	70 -75 80 - 85	2 1	3	4210
43	65-70 95-100 100-105	1 1	3	4120
45	65-70	1	1	3930
Median				5470
Average				5420

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Kod O

TABLE IX (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 10, 250# Ex 17-0 Ring Bomb Ser. #12 Total Weight 244.80 Lbs.

3000 Frames per sec. Comp. B Filler Weight 91.48 Lbs. Date: 11 March 1953

Frame in Which Hit Occurred.	Zone	Base No. Pragments	Velocity (f/s)
23	175-180	1	7830
24	175-180	1	7500
28	175-180	1	6430
30	175-180	1	6000
35	175-180	1	5140
38	175-180	1	4740
39	170-175	1	4620
42	175-180	1	4290
43	170-175 175-180	1	4190
46	170-175	1	3910
51	165-170	1	3530
57	165-170	1	3160
60	165-170	1	3000
65	160-165	1	2770
69	175-180	1 (Base Plug	2610
70	175-180	· 1	2570
71	175-180	1	2540
Median			4200
Average			4390

Average

NPG REPORT NO. 1138

Fragmontation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE IX (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 3
Rd. 10, 250# Ex 17-0 Ring Bomb Ser. #12
Total Weight 244.80 Lbs.

3050 Frames per sec. Comp. B Filler Weight 91.48 Lbs. Date: 11 March 1953

Frame in Which Hit Occurred	Zone	Nose No. Fragments	Velocity (f/s)
90	10-15	1	2030
116	0-5	1	1580
Average			1810

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE Y

FRAGMENT VELOCITY DATA LOT 5

60 Ft. Radius Arena 35mm Fastax Camera 1 Rd. 1, 250# Ex 17-0 Ring Bomb Ser #13 Total Weight 247.70 Lbs. 2550 Frames per sec. Comp. B Filler Weight 91.30 Lbs. Date: 5 March 1953

Frame in Which Hit Occurred 24	<u>Zone</u> 95-100	Beam No. Fragments 3	Total Hita	Velocity (f/s) 6380
25	90-95 95 - 100	2 11	13	6120
26	90 -9 5 95-100 100-105	5 3 5	13	<i>5</i> 880
27	90-95 100-105	2	3	5670
28	90-95 95-100 100-105 85-90	2 1 1 7	11	5460
29	85-90 100-105	4 3	7	5280
30	90-95 100-105 85-90 80-85	2 1 3 2	8	5100
31	100-105 85-90 80-85	1 1 4	6	4940
32	10 5- 110 80-85	1	2	4780
33	85-90 80-85	1	2	4640
34	75-80	4	4	4500

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb.,
Type Ex 17 Mod 0

TABLE X (Continued)

Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
36	75-80 70-75 100-105	1 1 1	3	4250
38	65-70	2	2	4030
Median Average				5570 5420

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE X (Continued)

60 Ft. Radius Arena 35mm Fastaz Camera 2 Rd. 1, 250# Ex 17-0 Ring Bomb Ser #13 Total weight 247.70 Lbs. 2550 Frames per sec. Comp. B Filler Weight 91.30 Lbs. Date: 5 March 1953

Freme in Which	Zone	Base No. Fragments	Total Hits	Velocity (f/s)
23	175-180	2	2	6650
26	175-180	. 2	2	5880
30	175-180	2	2	5100
31	175-180	1	1	4940
34	175-180	1	1	4500
35	175-180	1	1	4370
37	175-180	2	2	4140
3 9	175-1 60	1	1	3920
40	175-180	1	1	3830
43	175-180	1	1	3560
44	175-180	2	2	3480
45	175-180	1	1	3400
50	175-180	1	1	3060
51	175-180 160-165	1	2	3000
54	175-180	1	1	2830
57	160-165 175-180	l (Base 3 Plug)	4	2680
. 59	175-180	1	1	2590
Median Average				3830 4010

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE X (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 1 Rd. 2, 250% Ex 17-0 Ring Bomb Ser #14 Total Weight 247.28 Lbs.

2550 Frames per sec. Comp. B Filler Weight 91.28 Lbs. Date: 5 March 1953

Frame in Which Hit Occurred 24	<u>Zone</u> 95-100	Beam No. Fragments 2	Total Hita 2	Velocity (f/s) 6380
25	90-95 95-100	. 2 8	10	6120
26	90-95 95-100 100-105	5 1 1	7	5880
27	85-90 90-95 95-100 100-105	1 2 4	8	5670
28	85-90 90-95 100-105	2 2 2	6	546 0
29	80-85 85-90 95-100 100-105	1 1 1	4	5280
30	80-85 8 5-9 0 100-105	3 2 1	6	5100
31	80-85 85-90 100-105	3 1 4	8	4940
32	80-85	6	6	4780
33	80-85 75-80 10 5 -110	1 1 1	3	4640
35	75-80	1	1	4370
36	70-75	1	1	4250
Median Average				5500 5410
CONFIDENTIAL SECURITY INFORM	ATION	4		APPENDIX D

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE X (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 2, 250# Ex 17-0 Ring Bomb Ser #14 Total Weight 247.28 Lbs.

2550 Frames per sec. Comp. B Filler Weight 91.28 Lbs. Date: 5 March 1953

				•
Frame in Which Hit Occurred	Zone	Base No. Fragments	Total Hits	Velocity (f/s)
22	175-180	2	2	6950
23	175-180	1	1	6650
28	175-180	1	1	5460
31	175-180	1	1	4940
35	170-175	1	1	4370
39	175-180 165-170	2 1	3	3920
40	175-180	2	2	3830
49	165-170	1 ,	1	3120
51	175-180	1	1	3000
5 5 .	160-165	. 1	1	2780
56	160-165	1	1	2730
60	175-180	3 (Base Plug)	3	2550
Median Average				3920 4110

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb.,
Type Ex 17-0 Mod 0

TABLE X (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 1 Rd. 3, 250# Ex 17-0 Ring Bomb Ser #15 Total Weight 250.08 Lbs. 3000 Frames per sec. Comp. B Filler Weight 93.12 Lbs. Date: 6 March 1953

				*
Frame in Which	Zona	Beam No. Fragments	Total Hits	Yelocity (f/s)
28	95-100	3	3	6430
29	95-100 90-95	5 2	7	6210
30	90-95 95-100	7	11	6000
31	85-90 90-95 95-100	3 4 1	8	5810
32	85-90 90-95	3	4	5630
33	85-90 90-95 95-100 100-105	7 3 2 1	13	545 0
34	85-90 95-100	2 2	4	5290
35	80-85 95-100 100-105	1 2 1	4	5140
36	80-85 75-80 100-105	1 2 1	4	5000
37	80-85	1	1	4860
38	75-80	. 1	1	4740
39	100-105 75-80	1	2	4620
40	90-95	1	1	4500

NFG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb.,
Type Ex 17-0 Mod C

TABLE X (Continued)

Frame in Which Hit Occurred	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
41	65-70	2	2	4390
42	75-80	1	1	4290
44	65-70	2	2	4090
Median Average				570 0 5 51 0

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Tyle Ex 17 Mod 0

TABLE X (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 3, 250# Ex 17-0 Ring Borb Ser #15 Total Weight 250.08 Lbs. 3150 Frames per sec. Comp. B Filler Weight 93.12 Lbs. Date: 6 March 1953

Frame in Which Hit Occurred	Zone	Base No. Fragments	Velocity (f/s)
23	175-180	1	8220
26	175-180	1	727 0
28	175-180	1	6750
29	175-180	2	6520
30	175-180	1	6300
32	175-180	2	591 0
39	175-180	1	4850
40	175-180	3	4730
41	175-180	1	4610
42	175-180	2	4500
43	175-180	1	4400
48	165-170	1	3940
5 0	170-175	1	3780
52	165-170	2	3630
5 9	165-170	1	3200
63	175-180	1	3000
64	165-170	1	2950
65	175-180	2 (Base Plug)	2910
66	175-180	2	2860
Median Average			4650 4670

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE X (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 1
Rd. 4, 250# Ex 17-0 Ring Bomb Ser #16
Total Weight 248.52 Lbs.

Comp. B
Filler Weight 92.24 Lbs.
Date: 7 March 1953

2950 Frames per sec.

Frame in Which Hit Occurred	Zona	Beam No. Fragments	Total Hits	Velocity (f/s)
27	95-100	1	1	6560
28	95-100	3	3	6320
29	90-95 95-100 100-105	1 7 1	9	6100
30	90-95 95-100 100-105	3 2 1	6	5900
31.	90 - 95 95-100 100-105	4 2 3	9	5710
32	90-95	5	5	5530
<u>3</u> 3	85-90	3	3	5360
34	80-85	2	2	5210
35	80-85	2	2	5060
36	95-100 100-105 80-85	2 2 2	6	4920
37	80-85 85-90	2 1	3	4780
38	85-90	1	1	4660
39	85-90 95-100	1	2	4540
40	95-100 105-110 75-80	1 1 1	3	4430

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE X (Continued)

Frame in which Hit Occurred	2one	Beam No. Fragments	Total Hits	Velocity (f/s)
41	95-100 100-105	1	2	4320
42	65-70	1	1	4210
43	90-95 65-70	2 1	3	4120
44	85-90	1	1	4020
Median Average				5550 5350

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod C

TABLE X (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2
Rd. 4, 250# Ex 17-0 Ring Bomb Ser #16
Total Weight 248.52 Lbs.

Comp. B
Filler Weight 92.24 Lbs.
Date: 7 March 1953

3000 Frames per sec. Comp. B

Frame in Which	Zone	Base No. Fragments	Total Hits	Velocity (f/s)
24	175-180	1	1	7500
27	175-180	1	1	6670
29	175-180	2	2	6210
31	175-180	2	2	5810
42	170-175	1	1	4290
44	175-180	1	1	4090
45	175-180	1	1	4000
47	175-180	1	1	383 0
48	175-180	1	1	3750
5 0	175-180	1	1	3600
55	175-180 155-160	1	2	327 0
57	175-180	1	1	3160
65	170-175	1	1	2770
69	175-180	2 (Base Plug)	2	2610
70	175-180	1	1	2570
72	175-180	1	1	2500
Median Average				386 0 423 0

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

Table X (Continued)

60 Ft. Radius Arena 35sk: Fastaz Camera 1
Rd. 16, 250# Ex 17-0 Ring Bomb Ser #17
Total Weight 248.33 Lbs.

Comp. B
Filler Weight 92.22 Lbs.
Date: 20 March 1953

3100 Frames per sec.

Frame in Which	Zone	Beam No. Fragments	Total Hits	Velocity (f/s)
28	95-100 100-105	2	3	6640
29	90 - 95 95 - 100	1 3	4	6410
30	90-9 5 95-100 100-105	2 5 4	11	6200
31	85-90 95-100 100-105	1 4 2	7	6000
32	85-90 90-95 95-100	3 6 1	10	5 810
33	85-90 90-95	2 2	4	5640
34	100-105	1	1	5470
35	80-85 8 5-9 0	2	3	5310
36	80-85 85-90 100-105	2 2 1	5	5170
37	80 -85 9 5-1 00	3	4	5030
38	75-80	ı.	1	. 4890
39	75-8 0 80 - 85	2 1	3	4770
4 C	75-80	1	1	4650

 $(\sqrt{2})$

CONFIDENTIAL

0

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE X (Continued)

Frame in Which Hit Occurred	Zona	Beam No. Fragments	Total Hits	Velocity (f/s)
42	70-75 85-90 95-100	1 1	3	4430
43	85-90	1	1	4330
44	65-70	1	1	4230
45	65-70	1	1	4130
48	85-90	1	1	3880
51	65-70	1	1	3650
Median Average				5800 5560

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE X (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd. 16, 250# Ex 17-0 Ring Bomb Ser #17 Total Weight 248.33 Lbs.

3200 Frames per sec. Comp. B Filler Weight 92.22 Lbs. Date: 20 March 1953

Frame in Which	Zone	Base No. Fragments	Velocity (f/s)
24	175-180	1	8000
26	175-180	1	73 80
30	175-180	1	6400
32	175-180	1	6000
33	175-180	3	5820
34	175-180	1	565 0
36	175-180	2	5330
39	175-180	2	4920
40	175-180	1	4800
42	175-180	1	4570
44	175-180	1	4360
45	175-180	1	4270
46	165-170	1	4170
69	175-180	2 (Base Plug)	27 80
7 0	175-180	1	2740
71	175-180	1	27 00
Median Average			5200 498 0

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Borbs, 250 lb.,
Type Ex 17 Mod 0

TABLE X (Continued)

60 Ft. Radius Areno
35mm Fastax Camera 1
Rd. 16, 250# Ex 17-0 Ring Bomb Ser #17
Total Weight 248.33 Lbs.

3100 Frames per sec.
Comp. B
Filler Weight 92.22 Lbs.
Date: 20 March 1953

Frame in which	Zone	Nose No. Fragments	Velocity (f/s)
112	0-5	1	166 0

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE X (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 1 Rd. 17, 250# Ex 17-0 Ring Bomb Ser #18 Total Weight 248,09 Lbs.

2950 Frames per soc. Comp. B Filler Weight 91.20 Lbs. Date: 23 March 1953 (water Pit)

Frame in which	Zone	Beam Spray (84° - 107°) No. Fragments	Total	Yelocity (f/s)
28	95-101	1	1	6320
29	95-101 101-107	10 5	15	6100
30	90-95 95-101 101-107	10 8	22	59 00
31	90-95 95-101 101-107	6 5 4	15	571 0
32	90-95 95-101 101-107	11 2 11	24	553 0
33	84-90 90-95 95-101 101-107	3 7 2 4	16	536 0
34	84-90 90-95 101-107	8 6 5	19	521 0
35	84-90 90-95 95-101 101-107	3 2 1 5	11	506 0
36	84 -9 0 10 1- 107	4 3	7	492 0
37	84-90 95-101 101-107	2 2 3	7	478 0
38	95-101	1	1	4660

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

TABLE X (Continued)

Frame in Which Hit Occurred	Zone	Beam Spray (84° - 107°) No. Fragments	Total Hits	Velocity (f/z)
39	90 -9 5 95-101	2 1	3	454 0
40	84-90 90-95	1	2	4430
41	84-90 90-95 95-101 101-107	1 2 1	5	4320
42	84-90	2	2	4210
44	84-90 101-107	1 2	3	4020
Median Average				5530 5380

Fragmentation Tests of Notched-Ring Bombs, 250 lb.,
Type Ex 17 Mod 0

TABLE X (Continued)

60 Ft. Radius Arena 35mm Fastax Camera 2 Rd 17, 250# Ex 17-0 Ring Bomb Ser #18 Total Weight 248.09 Lbs.

()

2950 Frames per sec. Comp. B Filler Weight 91.20 Lbs. Date: 23 March 1953 (Water Pit)

()

Frame in which	Zone	Beam Spray (84° - 107°) No. Fragments	Total Hits	Yelocity (f/s)
29	95-101	3	. 3	6100
30	95-101 101-107	11 9	20	5900
31	90-95 95-101 101-107	8 6 9	23	571 0
32	90-95 95-101 101-107	8 5 7	20	5530
33	90-95 95-101 101-107	3 8	20	536 0
34	84-90 90-95 95-101 101-107	2 10 2 6	20	521 0
35	84-90 90-95 10 1-1 07	10 4 5	19	5060
36	84-90 90-95 101-107	5 2 4	11	4920
37	&4-9 0 10 1- 107	3 2	5	4780
38	84-90 95-101 101-107	2 2 3	7	466 0
39	95-101	1	1	454 0 .

()

NPG REPORT NO. 1138

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

Table X (Continued)

Frame in Which Hit Occurred 40	<u>Zona</u> 90-95	Beam Spray (84° - 107°) No. Fragments	Total Hits 1	Velocity (f/s) 4430
42	84-90 95-101 101-107	1 1 1	3	421 0
45	84-90 101-107	1	2	3930
47	84-90 101-107	1	2	3770
Median Avorage				5440 5310

Ī

STATE OF THE PROPERTY OF THE P

TABLE XI

MASS DISTRIBUTION DATA

	918
1 1	62213 62813 62813
	406.6 506.9 398.7
156 140 1141 1160 1160 1160 1160 1160 1160	106 101 118
	4146
12.0 12.0 8.0 8.0 8.0 21.0 21.0	11.7
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	117.
0.00 0.	0 N 8 N
	1111
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1111
2 4 6 7 7 1 2 1 1 7 5 1 1 1 1	2 02 02 12
board pack, zone 90°-106°, 4' high at 60' distance of 4.5-5.6 5.5-6.5 6.5-7.5 7.5-8.5 8.5-9.5 9 Crams Crams Crams Crams Crams Crams Grams	7.7 18.0 41.4 21.7
28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	® 4 8 °
106° 4' 6.5-7.5 6.5-7.5 0ms - Ho. 0ms - Ho. 136.0 21 156.0 25 200.8 30 149.5 22	55.5 98.2 41.6 85.1
H H H H H H H H H H H H H H H H H H H	20 20 18 18
6.5-6.5 107.1 17 107.1 1	89.0 120.3 108.5 108.2
4000 000 400 m	21 18 10 16
25.4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	78.2 50.7
25 25 25 25 25 25 25 25 25 25 25 25 25 2	16 21 15 17
10eded 5.5-4.5 6.5-4.5 6.6-80. 110.9 28 112.9 29 46.6 12 44.7 11 (8.1 17 62.8 15 100.9 27 63.8 16 78.7 19	85.2 85.2 59.8 69.6
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1000
Comp B 10 2.55-5.5 2.55-5.5 Come Ro. Come	25 25 38 28 28 38 38 38 38 38 38 38 38 38 38 38 38 38
EX 17-0, Comp B Recovered in canal OF RECOVERED FALL 1.25-2.5 2.5-3.5 Crans From Errans Errans From Recovered in canal Recovere	
MACOUNTY DE CONTROL OF RECOURTS OF RECOURT	28.5 18 62.4 33 26.5 15 41.4 22
[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	
8 27 28 27 28 27 28 28 27 28 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 28 27 28 28 27 28 27 28 28 27 28 27 28 28 27 28 28 27 28 28 27 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	0 18 4 25 1 20 5 21
20.5 20.7 20.7 20.5 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	15.0 23.4 17.1 18.5
260 1b Bomb Type EX 17-0, Comp B loaded Sample Fragments Recovered in cane fiber NUMBER AND WEIGHT OF RECOVERED FRAGMENTS C-0.255 0.255-1.55 2.55-3.5 3.55-4. Frame France Grant	9.8 13.5 12.5 11.9
	10 11 12 Avg · Lot #4
Bomb Sur No. 1 2 2 Avg. Lot #1 5 6 Avg. Lot #8 9 9	Q

APPENDIX E

Ì

TABLE XI (Continued)

	Of distance	
	srboard pack, some 90°-106°, 4' high at 60' distance	
	fiberboard pack, sone	GENTS
250 lb. Bomb Type EX 17-0, Comp 8 load	Sample Fragments Recovered in case fibe	AND WEIGHT OF RECOVERED PRACTICE
250 lb.	Semple	BUTCHESS AND

SUPERIOR AND RELIGIES OF SUPERIOR AND	1			ŀ						ŀ	*	R R T R T R R	4	7.4		8.6.5	9	10.8	10.5	27.72	10		
5	-	1000		:		•		•			?		•										1
5			500		ST DES	20	reme	2	rams	E	reme	100 · S		STRUE S	Ċ		8	2	10		× × ×	-	Posts
作	١.				E.	i I	•			¥.				•	¥		2		L		S S S S S S S S S S S S S S S S S S S		No.
•	å	No.		No.	Gree.				ne. No.	9	2	į	9	i i		의		9		١	<u>.</u>	j	
-	8.2	21	81.8	17	29.5 1	0	7.7	7	6		14	55.1	· •	8.4	88	86.1	49.0	9	11.0	~	8	422.1	82648
	17.7	20	19.0	2	20.7	4	2		5.2 16	34.5	9	28.6	4	1.7	1 35	+ 6.	88	•	S S	×	8	355.0	62640
	15.5	38	33.5	2	\$2.6	•	9.5 1	2	3.4 15	3	o N	76.9	11 2	8.6	3 36	4	•	1 9	8	10	8	466.6	82985
	14.0	16	28.8	15	8	2	2.9	6	6.8 3	60.7	7 10	75.2	9	8.8	5 18	2 7	3	S	83.2	50	Z	348 S	62986
•	22.5	25	16.5	•	35.0	11 8	6.3 2	20	67.6 12	8	2	139.4	21 4	23	6	7	20.	2	66.1	9	124	551.3	62985
	17.4	20	25.7	7	24.9	4	2.4 1	7	0.8 10	58.6	9 10	68.0	20	•	1.2 27	.1 5	53.	5 3.4	47.1	*	8	428.7	i

(<u>)</u>

Fragments Recovered from HPG Water Pit which represent 1/6 of total expected in some 60°-120° Bomb No. 18, Lot 5.

13

APPENDIX E

NP9-63084 18 March 1953 250 lb. Bomb Type EX 17 Mod 0 Lot 1. cane fiberboard pack at 60'.

CONFIDENTIAL
SECURITY INFORMATION
Fragments, recovered in 4' high

Figure 9

SCALE 1

FRAG NO.	1726		250 LB E	OMBC EV	17 MOS	0.0		_HP9 NO. 63/8	9/
			SAMPLE BEA	M SPRAY	FRACME	NTS.			-
		SERIAL NO	4		SERIAL	NO 5		SERIAL NO 6	
0 - 5%	90-94° GMS. PCS. 10 · · · GMS. 2.2 - · ·	7 7	r-102' 102-106'		94'-98 5	98-102 1 17 35 - 2	02'-106' 90'-94'	94-98 98-102 3 0.4 2.1	102:-106 - , 5 - , 0.9 - ,
56 -1%	CMS	5.0 - 4.5		٠	6.9	4.9 - 3	2	7 6.2 10.0	2 9 • •
14 -242	GMS	12.2	70	2 3.9	4.	12 8 - 1	5 5 9 = 9	2 9 9 3.9 15.5	58
22-32	GM3. • • PCS. 5 • QM3.13.4 • •	5 15.6 3 35.0	3 7	2 5.9	17.2	11.4 • • 5 ² .6	97	52 110 .	
312-412	PCS.	19.8 - 30.1	10 30.6	3	3 113	19.2 • • 4'	• 2 8.7	2 · • 4 • • 16.7 • •	3 A
4%-5%	GMS. PCS. GMS.	203					•	2 -	
51/2-61/2	GMS. PCS. 2 GMS. JL9	238 = 312		6.4	.5.6	252 = 2 252 = 31	2 2	23.4 = 411.5	6.4
62-72	GMS. 7 = GMS. 469 = -	20.1 = 32.9		40.0	3,9	15 16 99 9 0 66	9 m 46 5 m 4	39.9 = 6.5	7 = 10 46.5 = 10
7/2-8/2	GMS. PCS. GMS.							2 2 5.3	
82-92	GMS. PCS. GMS.								
912-1012	GMS. PCS. GMS.			<u>.</u>	10.0			2 433	
10 12 -11 12	GMS. PCS. GMS.								
111/2-121/2	PCS. GMS.								
12 1/2 - 13 1/2	PCS. GMS.								
16½-17½	GM3. PCS. GM3.				•			14 4	
,								47 50 50	
				SC.4	LE 1°			•	

C. ... IblaniaL hligh

boy. Fragments rocy of high

FRAR NO.	1721					17 MC			X	N P9	NO. 62	813
	6 77- 6.4*		NO 10 98-102	100:-10t;			NO 11		70-94	SERIAL		102 -106
0 - %	GWS. PCS. 7 GWS. 17	,,,		•	•	12						10 1
50 - 1 14	GMS.	// 6 m a	3 4 2			11						
14-24	GWS. 5 GWS. 10.3 P	1.5	72 • •	5	10	10 17. 4	10	,3 ₅ •	2 n	7/3.4	73 * *	², · •
24-34	GWS. PCS. GWS. 2.7	3 .		<u>2</u>	3 • •	,3 - -	JI.7		32	,4 ,1,9 = =	5,4,7	
312-41/2	Pre -	3	27.5 4 b			. , .	324	# # # . 16. 4 %	,4 ,65	237	4 B	,3 ¹ 7 =
4%-5%	GMS. 5 - GMS. 242	9	23.9	2 0	3 14.1	3 /4.8	38.8	2 10.5 ■ ●		203 4 B	5 25 • 8	54 =
512-612	GMS. PCS. 3 GMS. 12.6	2 3	7	3 14 ©	298 ===	243 6	355 1 1	30.7	5'5	7 42.5 Sh Sa	23.7 5 €	13 vs. 13 is 36 g is as
612-712	GMS. / PCS. / GMS. 7.4		359 6 0 j	2 -	6.6	353	341 00 CA	19.8 00 00	,' - 72 -		3 2	
7½-8½	GMS. PCS. GMS.	1/7			7.9		a'			29 10	2 1 1	1 78
8½-9½	GMS. PCS. GMS.			** ***			1		•		1	93 🏚
92-102	GMS PCS. GMS.					•			,9 ¹ 8 =			
10%-11%	GMS. PCS. GMS.											
1112-1212	GMS. PCS. GMS.				e (= =				j		ı/.z —	
12½-13½	GMS. PCS. GMS.	13.										e sky
,					SCAL	.E 1"						

11 mr n 1953 CC.

The Sa 17 mos D Lot 4. Progment: re ver dig ak t 50'.

Figure 12 ,0 lb: ca . fi

FRAS NO.1	1718		0.6		040 EX 17 M00 0		MP9 NO. 6	24.48
					OMB EX 17 MOD O SPRAY FRACMENTS		1777	
		SERIAL	NO 13		-7.200		SERIAL NO 14	
	10-94 °	1 94-4	98-108	10K-10C		90-94	74-18 18-102	102'-106
0 - 54	RNS. PCS. 2 . , ENS. 9	3 .	4	2.		4 1 1	4 . 4 . 1.7 .	2.8
40 - 1 %	QMS	3 - 26	4.9	7 5:4		3 = =	3 6 7 ° 3.1 ° 5.5 °	7
14-212	CDS. 3 PCS. 3 CDS. 52	10.5	5 -	3 • • 6.5 •		3 A 5:/ •	4 2 1 7.8 • 1 4./	2 .
24-34		3.3	12.2 • •			2 6.1	1 3 29 8.7	• <u> </u>
312-41/2	GMS. PCS. 2 q d GMS. 8.1	3	, -	, -		2.83	2 2 7.7 83	•
44-54	GWS. PCS. / GWS. 4.9	202 - 6		1., T		3 =	3 153 243	19.
514-614	GMS. 8 P PCS. 4 GMS. 23. • 1	2 -	5 302	3 8 -		2	2 1 11.5 = 5.7	1 -
612-712	GMS. PCS. 3 GMS. 20.5		2	3 - 209 -			2 - /6	17 0
7%-8%	GMS. PCS. GMS.	2 =	3 = 22.9 =	1,7 •			8/2 - 3 8/2 - 23.5	
8½-9½	GMS. PCS. GMS.	, <u>.</u> =	9.2	8.9			1' - 8's -	2 17.7
912-1012	CMS. 1 - CMS. 9.7	20. =	98 -	9.5	•	99 -	96 - 95	9.8
10%-11%	GWS. PCS. GWS.	<i>i.</i> -					3 = 326 = 1	-
1112-1212	PCS. GMS.							
NOSE - FRA O' 448.4	LMENT.	4						
448.4	QWS.							

FRAR NO.	CONT. TO STATE OF THE PARTY OF																	PP	NO. 162	985
	TREESES			Sig.	- 6	2.5 SAMI	A F	B E	OMA V SI	PRAY	17 FR	MO								
		NZ NZ	254		5.540					AAJ		17.77				T				•
			SER	IAL	NO I	5					SEA	IAL	ו סא	16			SER	IAL N	10 17	
	-	90-94	94	-15	98-	·IOE	102	-106	10:-	94	74	-98"	95-1	oz	102'-106	90-94	f 94°	-98"	95-102	102 -106
0 - 54	ERS. PCS.	7 :		•		•		• •		•		٠.	10			₹.	٠ ا ح	• . •		٠ .
100000000000000000000000000000000000000	ens.	2.1	1.3	-	2.1		22	. •	3	•	12	• •	3.6		15.	1.1	1.5		1.0	
40-14	PCS.			• •	•		_	•		• •			-	•	•	• •		• •		
	ers.	2 -	4.1	• •	7.7		2.5	• •	4.4.		4.1		4.0 -	•	15 .	.6.0	7.0	• •	7.5	
14-21	QPS.					•				•		. 4	•	•	4	-	İ	•	-	
200	PCS.	14 .	1.2	•	10		21	•	5.1	_	7.3		12.3		31	1.5	5.4	-	10 -	36
22-34		•				•	4	•									-			1
	PCS.	<u>.</u>	2.6	•	3	•	15.1	•			3.2	•	2.5	-	2.5	3.5	-11.9		99	3.2
312-412	ems.			•				•		_		•					• •	+ >		
		3 -	3	•	155	, .	114	•	3	٠.	2.7	•	4.2	•		3	a 27#	::	224	23.8
4%-5%	GWS.	•	11.2				- T	•				•	1.444				- 1.0	•		•
	PCS.	3,	5.0	•	9		2	•	4.7	•	2 10.1	-				19.5	- J42	•	9.3	3 -
512-612	GMS.		3.0		7/4	-	7.2	•	Tul	-	IV. I	•		-		21.2	- /74		1.9	y7.€.
V/4 T/E	PCS.	.t. = =			3	•	119	~	3 18.4	.	2 J2.5		3 17.9		11.4 •	3 -	4			1 2 =
612-712	GWS.	240			17.3	14	II.9	-	18.4		14.5		17.4.		L.L.	18.8	- 211		.6.3	11.4
	PCS.			to.	424	- 7	3 ' 210	•_	6.7	•	7.3		3		.! -	3	7		10	. / =
	GMS.	15.3	-		424		ZLO.	-	6.7		7.5		21.1	-		20.3	458		166.7 🗪 🚍	-
1/2 - 0/2	PCS.				159	_		-	1	•	10	_	1	-		15.5		-		2 _
04 - 04	GMS.		-		159		z.7		LZ.£		8.0		8./_			15.5	8.1			16.6
	GWS. PCS.			_	,	6 72	2	-	2				_			1,				
	GMS.		9.4	_	9.0		17. 8		18.1					- !	-	9.4	-			
912-1012	CMS. PCS.										,	_			1		,	82		
	GPS.		9.4	- 10							9.4		305		9.6	<u> </u>	20.1			
10年-11先	GMS. PCS.										,	-		1				_		-
	GF3		10.8		u'L		ш'і	_	-		21.3	_					31.5			222
1112-1212	CMS. PCS.						i													
	CHS.		ļ								<u></u>			-		12.4				
124-134	CMS. PCS.													1						
	GRS.												129			-				
1311-1411	GMS.		İ											Î						
	PCS. GMS.										14.0								<u> </u>	
14%-15%	CHS.																			
	PCS. GMS.		14.6	_	15.2	1000					150			-						
*																		1		

o first d cl t . re 14

, ,,

NEG-63021

25 Larch 1913

SECULITY INFORMATION
250 10. Bomb Tyre BX 17 L. O Lot 5, Serial No. 18. Fragments recovered
from NFG water Fit represent 1/0 of total expected in zone 60°-120°.

Figure 15

MPG REPORT NO. 1138

()

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod O

DISTRIBUTION

Bureau of Ordnance:	
Ad3 Re2 Re3 Re3d Re3c	1 2 2 2
Director, Armed Services Technical Information Agency Document Service Center Knott Building Dayton 2, Ohio	1
Navy Research Section Library of Congress Washington 25, D. C. (Via EUORD Re3)	2
Commanding General Aberdeen Proving Ground Aberdeen, Maryland Attn: Technical Information Section Development and Proof Services	1
Commander, Operational Development Force U. S. Atlantic Fleet, U. S. Naval Base Norfolk 11, Virginia	1
Naval Ordnance Laboratory	1
Naval Ordnance Laboratory Attn: Explosives Division Attn: Mr. H. W. Semon	1
Picatinny Arsenal, Dover, New Jersey Attn: Technical Division	1

LAT

Fragmentation Tests of Notched-Ring Bombs, 250 lb., Type Ex 17 Mod 0

DISTRIBUTION (Continued)

Reports Office APL/JHU, Silver Spring, Maryland	1
APL/JHU, Silver Spring, Marvland Attn: Mr. H. S. Morton (Via INSORD, Silver Spring, Maryland)	1
Bureau of Ordnance Technical Liaison Office Bell Telephone Laboratories Whippany, New Jersey	1
USNOTS, Inyokern, China Lake, California	1
Inst. for Cooperative Research JHU/1315 St. Paul St. Via: (District Chief, Phila. Ord District 1500 Chestmut St., Phila. 2, Pa. Attn: Mr. Edward R. C. Niles)	ı
Commanding Officer Frankford Arsenal Philadelphia, Pa.	1
Inst. for Air Weapons Research University of Chicago Chicago, Illinois Via: Director, Office of Naval Research Branch Office John Crerar Library Bldg., 10th Floor 86 East Randolph St. Chicago 1, Illinois	1
Local:	
OT OTZ File	1 1 1