Course Notes

CSCA67 - Discrete Mathematics

Instructors:

Dr. Anna Bretscher

Email: bretscher@utsc.utoronto.ca

Office: IC493

Office Hours: Monday 12:10 - 1:30

Wednesday 1:10 - 2:00

Friday 1:10 - 2:00 (will change after week 6)

Dr. Richard Pancer

pancer@utsc.utoronto.ca

IC490

Monday 11:10 - 12:30

Friday 1:30 - 3:00

1 Propositions, Implications

Definitions:

A **proposition** is a statement that evaluates to True or False. In computer science, its often referred to as a **Boolean expression**.

A **compound roposition** is a proposition statement that involves multiple propositions joined by connectives. It takes multiple truth values as input and returns a single truth value as output.

A connective corresponds to English conjunctions such as "and", "or", "not" etc.

Basic connectives and truth tables:

Symbol	Meaning	D	Q	$P \wedge Q$	$P \lor Q$	$P \rightarrow Q$	$P \bowtie O$
$\overline{}$	"AND"	1	_			1 7 6	1 77 6
\ /	"OR"	T	T	Τ	T	T	T
V		Т	F	F	Т	F	F
\rightarrow	"IFTHEN"	177	Tr.	F	T	Tr.	F
\leftrightarrow	"IF AND ONLY IF"	Г	I	Г	1	1	r
\ /		F	\mathbf{F}	F	F	T	$^{\rm I}$
\neg	"NOT"			l '		_	I

Implication:

Different ways of writing $P \rightarrow Q$:

- 1. If P then Q
- 2. If P, Q
- 3. Q, if P
- 4. P only if Q
- 5. P is sufficient for Q
- 6. Q is necessary for P
- 7. If not Q, then not P
- 8. Not P or Q

Logical Equivalences:

Commutative	$p \wedge q \iff q \wedge p$	$p \lor q \iff q \lor p$
Associative	$(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$	$(p \lor q) \lor r \iff p \lor (q \lor r)$
Distributive	$p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$
Identity	$p \wedge T \iff p$	$p \vee F \iff p$
Negation	$p \vee \neg p \iff T$	$p \wedge \neg p \iff F$
Double Negative	$\neg(\neg p) \iff p$	
Idempotent	$p \wedge p \iff p$	$p \lor p \iff p$
Universal Bound	$p \lor T \iff T$	$p \wedge F \iff F$
De Morgan's	$\neg (p \land q) \iff (\neg p) \lor (\neg q)$	$\neg (p \lor q) \iff (\neg p) \land (\neg q)$
Absorption	$p \lor (p \land q) \iff p$	$p \land (p \lor q) \iff p$
Conditional or	$(p \to q) \iff (\neg p \lor q)$	$\neg (p \to q) \iff (p \land \neg q)$
(\rightarrow) Law		
Biconditional	$ (p \leftrightarrow q) \iff (p \to q) \land (q \to p) $	

Order of Operations:

- 1. $NOT(\neg)$
- 2. AND(\wedge)
- 3. $OR(\vee)$
- 4. Quantifiers (\forall/\exists)
- 5. $(\rightarrow / \leftrightarrow)$

2 **Predicates and Quantifiers**

Forall:	\forall	We simply One valu
There exists:	7	One valu
		Example
Negations:	¬ \/	There exis
$\neg \forall = \exists$	$\neg\exists=\forall$	$\exists n \in \mathbb{Z}, \ni$:

Prove statement in the form of $\exists x \in S, \ni: P(x)$

y need to find **one** value of x in the set S, that makes P(x) true.

sts an integer n, such that n^2 is even.

 $: n^2 \in 2\mathbb{Z}$

Let n=2, then $(2)^2=4$ which is an even number

Prove statement in the form of $\forall x \in S, \ni: P(x)$

This means we must use techniques such as algebraic manipulation to show that:

P(x) holds for every arbitrary $x \in S$

Example:

For all integers n, if n is odd, then n^2 is odd.

 $\forall n \in \mathbb{Z}, n \in 2\mathbb{Z} \to n^2 \in 2\mathbb{Z}$

Let $n = 2k, k \in \mathbb{Z}$

then $n^2 = (2k)^2 = 4k^2$ which is an even number.

Therefore: Forall integers n, if n is odd, then n^2 is odd. QED

2.1Modulus

$$10 \text{ mod } 3 = 1$$

The modulus or "mod" operator means the remainder when we divide two numbers.

Congruent mod means that two numbers have the same remainder when divided by one number.

$$10 \equiv_3 7 \Leftrightarrow 10 \mod 3 = 7 \mod 3$$

2.2 Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic states that any integer greater than 1 is either a prime number itself, or can be represented as the unique product of prime numbers. For example:

$$\begin{array}{ll} 16 & = 2^4 \\ 18 & = 2^1 \cdot 3^2 \\ 21 & = 2^0 \cdot 3^1 \cdot 5^0 \cdot 7^1 \end{array}$$

Numbers that can be written as the unique product of primes are called Composite Numbers.

Reminder: a **prime number** is an number that can only be divided evenly by 1 and the number itself.

3 Basic Proof Strategies

To prove in the form of $P \to Q$:

Direct Proof: Assume P is true then prove Q

This form works because if we recall the truth table for $P \to Q$,

When P is true, Q must be true for the statement to evaluate to true.

Proof by Contrapositve: Assume $\neg Q$ is true then prove $\neg P$

This form works because the contrapositive is logically equivalent to the original,

$$P \to Q \equiv \neg Q \to \neg P$$

Proof by Contradiction: Assume $\neg(\neg(P \to Q)) \equiv P \land \neg Q$

Then we must derive some sort of contradiction.

Once we arrive at the contradiction, that means one of our assumptions cannot be correct.

for example if $\neg Q$ is false, that means Q is true.

Proof by Cases/Exhaustion: $X \vee Y \to Q$ Show $X \to Q \wedge Y \to Q$ **Example**:

 $x \in \mathbb{Z} \to x^2 + x + 1 \in 2\mathbb{Z} + 1 \ (x^2 + x \text{ is odd})$

Case 1: x is odd

x = 2k + 1

$$(2k+1)^2 + (2k+1) + 1$$

$$=4k^2+6k+3$$

 $=2(2k^2+3)+3$ case holds when x is odd.

Case 2: x is even

x = 2k

$$(2k^2) + 2k + 1$$

$$=4k^2+2k+1$$

 $= 2(2k^2 + k) + 1$ case holds when x is even.

Since we have proven both case are indepently even, we can conclude $\forall x \in \mathbb{Z}, x^2 + x + 1 \in 2\mathbb{Z} + 1$

Some Definitions:

Theorem: A statement that has already been proved.

Axiom: A statement that is self evidently true.

Identiy: An equation that is true for all values of an arbitrary variable.

Proof: A mathematical argument demonstrating the truth of a proposition.

Tautology: A propositional logic formula that always evaluates to True. $(A \lor \neg A)$ - (I'm hungry or I'm not hungry)

Rational Number: A number that can be represented as the fraction of two relatively prime integers.

$$A \in \mathbb{Q} \to A = \frac{m}{n}, n \neq 0, m, n \in \mathbb{Z}, gcd(m, n) = 1$$

Logic in a nutshell

Statement	Ways to Prove it	Ways to Use it	How to Negate it
p	 Prove that p is true. Assume p is false, and derive a contradiction. 	 p is true. If p is false, you have a contradiction. 	not p
p and q	• Prove p , and then prove q .	 p is true. q is true. 	(not p) or (not q)
p or q	 Assume p is false, and deduce that q is true. Assume q is false, and deduce that p is true. Prove that p is true. Prove that q is true. 	 If p ⇒ r and q ⇒ r then r is true. If p is false, then q is true. If q is false, then p is true. 	(not p) and (not q)
$p \Rightarrow q$	 Assume p is true, and deduce that q is true. Assume q is false, and deduce that p is false. 	 If p is true, then q is true. If q is false, then p is false. 	p and (not q)
$p \iff q$	 Prove p ⇒ q, and then prove q ⇒ p. Prove p and q. Prove (not p) and (not q). 	• Statements p and q are interchangeable.	(p and (not q)) or ((not p) and q)
$(\exists x \in S) \ P(x)$	• Find an x in S for which $P(x)$ is true.	• Say "let x be an element of S such that $P(x)$ is true."	$(\forall x \in S) \text{ not } P(x)$
$(\forall x \in S) \ P(x)$	• Say "let x be any element of S ." Prove that $P(x)$ is true.	 If x ∈ S, then P(x) is true. If P(x) is false, then x ∉ S. 	$(\exists x \in S) \text{ not } P(x)$

Graph from Introduction to mathematical arguments - by Michael Hutchings

4 Proof of Irrationality

4.1 Approach 1 - Fundamental Theorem of Arithmetic

Prove that $\sqrt{2}$ is irrational.

Assume the contrary that $\sqrt{2}$ is rational.

Then by the definition of rational numbers, $\sqrt{2} = \frac{m}{n}, \exists m, n \in \mathbb{Z}, gcd(m,n) = 1, n \neq 0$

$$\sqrt{2} = \frac{m}{n}$$

$$n\sqrt{2} = m$$

$$2n^2 = m^2$$

$$m = x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot x_3^{\alpha_3} \cdot \dots \cdot x_n^{\alpha_n} \qquad n = y_1^{\beta_1} \cdot y_2^{\beta_2} \cdot y_3^{\beta_3} \cdot \dots \cdot y_n^{\beta_n}$$

Each x, y are primes by the fundamental theorem of arithmetic.

$$m^2 = (x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot x_3^{\alpha_3} \cdot \dots \cdot x_n^{\alpha_n})(x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot x_3^{\alpha_3} \cdot \dots \cdot x_n^{\alpha_n})$$

This means that m^2 has 2n possible factors.

$$2n^2 = 2(y_{1_1}^{\ \beta} \cdot y_2^{\beta_2} \cdot y_3^{\beta_3} \cdot \dots \cdot y_n^{\beta_n})(y_{1_1}^{\ \beta} \cdot y_2^{\beta_2} \cdot y_3^{\beta_3} \cdot \dots \cdot y_n^{\beta_n})$$

This means that n^2 has 2n possible factors plus one factor 2.

as m^2 has an even number of prime factors, $2n^2$ will have an odd number of prime factors, contradicting the fundamental theorem.

$$\therefore \sqrt{2} \in \mathbb{I}$$
 by contradiction.

QED

4.2 Approach 2 - Definition of a Rational Number

Prove that $\sqrt{2}$ is irrational.

Assume the contrary that $\sqrt{2}$ is rational.

Then by the definition of rational numbers, $\sqrt{2} = \frac{m}{n}, \ni: m, n \in \mathbb{Z}, gcd(m,n) = 1, n \neq 0$

gcd(m, n) means that m, n MUST be relative prime.

$$\sqrt{2} = \frac{m}{n}$$

$$n\sqrt{2} = m$$

$$2n^2 = m^2$$

$$2n^2 = m^2 \Rightarrow m^2 \in 2\mathbb{Z} \Rightarrow m \cdot m \in 2\mathbb{Z}$$

The previousline showed that m is even, so now we can substitute m with any arbitrary even number 2k.

$$m = (2k), k \in \mathbb{Z}$$

$$2n^2 = (2k^2)$$

$$2n^2 = 4k^2$$

$$n^2 = 2k^2$$

$$n^2 \in 2\mathbb{Z} \Rightarrow n \in 2\mathbb{Z}$$

$$m, n \in 2\mathbb{Z} \Rightarrow \gcd(m, n) \neq 1$$

Since m, n are both even, they cannot be relatively prime, $\therefore \sqrt{2} \in \mathbb{I}$ by contradiction.

QED

5 Induction

Simple Induction Format:

Suppose we need to prove P(n) for all natural numbers.

1. State the Predicates

 $P(n):\ldots$

2. Base case

Prove that P(n) holds when n is the smallest possible natural number. $P(0): \ldots$ is True.

3. Inductive Hypothesis

Assume that P(k) holds for any arbitrary k $P(k): \dots$ is True.

4. Inductive Step

Prove that $P(k) \to P(k+1)$ Assume P(k) then show P(k+1)

Example: Prove
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

Stating the Predicate:
$$P(n): \sum_{i=0}^{n} i = \frac{n(n+1)}{2}, \forall n \in \mathbb{N}$$

Base case:
$$n = 0 : \sum_{i=0}^{0} i = 0$$
 $\frac{0(0+1)}{2} = 0$

Inductive Hypothesis: Assume for any arbitrary $k \ge 0$, P(k) holds.

$$P(k) = \sum_{i=0}^{k} k = \frac{k(k+1)}{2}$$

Inductive Step: Prove $P(k) \rightarrow P(k+1)$

$$P(k+1) = \sum_{i=0}^{k+1} i = 1 + 2 + 3 \dots + k + (k+1)$$

$$P(k+1) = \frac{k(k+1)}{2} + (k+1)$$
 by Inductive Hypothesis

$$P(k+1) = \frac{k(k+1)+2(k+1)}{2}$$
$$P(k+1) = \frac{(k+1)(k+2)}{2}$$

Conclusion:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}, \forall n \in \mathbb{N}$$

6 Pigeonhole Principle

Core Principle: There exists n pigeons and m pigeonholes, if n > m, there must be at least one pigeonhole with at least two pigeons.

Example: Prove that if 7 distinct numbers are selected from $\{1, 2, \dots 11\}$, then some two will add to 12.

Pigeons: 7 distinct numbers

Pigeonholes: 6 sets of numbers that add up to 12.

$$\{1,11\},\{2,10\},\{3,9\},\{4,8\},\{5,7\},\{6\}$$

Note: If we select 7 numbers from a set of 6, we will be forced to select at least 2 of the numbers from the same set.

 \therefore if 7 distinct numbers are selected from $\{1, 2, \dots 11\}$, then at least two will add up to 12.

QED

7 Proof Samples

7.1 Euclid's Proof for Infinite Primes

Assume to the contrary that there are a finite number of primes,

then let this be the complete set of primes: $p_1, p_2, p_3 \dots p_n$

$$let A = (p_1 \cdot p_2 \cdot p_3 \cdot p_4 \dots, p_n) + 1$$

A is not divisible by any known primes as it always leaves a remainder of 1.

so either A is a prime number itself, or A has a unique prime factor that is not in the existing list.

Contradictions:

if A is a prime number, then p_n is not the greatest prime.

if A is a composite number, then $p_1, p_2, p_3 \dots p_n$ does not contain all the primes.

Therefore, there must be an infinite number of primes.

QED

7.2 Arithmetic mean and Geometric mean

Defintion. The arithmetic mean of a_1, a_2 :

$$\frac{a_1 + a_2}{2}$$

Definition. The geometric mean of a_1, a_2 :

$$\sqrt{a_1 \cdot a_2}$$

Prove that:
$$\forall a_1, a_2 \in \mathbb{Z}^+, \frac{a_1 + a_2}{2} \ge \sqrt{a_1 \cdot a_2}$$

$$\frac{a_1 + a_2}{2} \ge \sqrt{a_1 \cdot a_2}$$

$$(\frac{a_1 + a_2}{2})^2 \ge a_1 \cdot a_2$$

$$\frac{a_1^2 + 2(a_1 \cdot a_2) + a_2^2}{4} \ge a_1 \cdot a_2$$

$$a_1^2 + 2(a_1 \cdot a_2) + a_2^2 \ge 4(a_1 \cdot a_2)$$

$$a_1^2 + 2(a_1 \cdot a_2) + a_2^2 \ge 4(a_1 \cdot a_2)$$

$$a_1^2 - 2(a_1 \cdot a_2) + a_2^2 \ge 0$$

$$(a_1 - a_2)^2 \ge 0$$

QED