Homework 5

- 1. Consider independent observations $y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$ for i = 1, ..., n. Show $\sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_i)^2$ is independent from $(\hat{\beta}_0, \hat{\beta}_1)$ by calculating $Cov(\hat{\beta}_0, y_i \hat{\beta}_0 \hat{\beta}_1 x_i)$ and $Cov(\hat{\beta}_1, y_i \hat{\beta}_0 \hat{\beta}_1 x_i)$.
- 2. Suppose you collect your regression data from two companies. One has better quality than the other. So you model the data from the first company by $y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$ independently for $i = 1, ...n_1$, and the data from the second one by $y_i \sim N(\beta_0 + \beta_1 x_i, 2\sigma^2)$ independently for $i = n_1 + 1, ..., n_1 + n_2$. The data from the two companies are also independent from each other.
 - (a) Find the MLE for (β_0, β_1) .
 - (b) Find the mean of the MLE.
 - (c) Find the variance of the MLE.
 - (d) Find the joint distribution of the MLE.