1. Электрический заряд. Закон Кулона.

Элементарный электрический заряд — фундаментальная физическая постоянная, минимальная «порция» электрического заряда, наблюдающегося в природе у свободных долгоживущих частиц, таких как протон (\bar{p}) и электрон (\bar{e}) , например. Согласно изменениям определений основных единиц СИ (с мая 2019 г.) элементарный заряд:

$$e = |\bar{e}| = |\bar{p}| = 1,602176634 \cdot 10^{-19} \,\mathrm{A} \cdot \mathrm{c} \approx 1,6 \cdot 10^{-19} \,\mathrm{K}$$
л

Свойства:

- 1. Скалярная величина
- 2. В природе существуют заряды двух типов (разных знаков)
- 3. Аддитивная величина
- 4. Величина заряда не зависит от того, движется заряд или нет
- Дискретная величина (Все частицы имеют заряд кратный элементарному)
- 6. В электрически изолированной системе заряд сохраняется

Закон Кулона:

Сила \vec{F}_{21} , с которой неподвижный точечный заряд q_1 действует на неподвижный точечный заряд q_2 равна:

$$\vec{F}_{21} = k \frac{q_1 q_2}{r_{21}^2} \cdot \frac{\vec{r}_{21}}{r_{21}},$$

где $\vec{r}_{21} = \vec{r}_2 - \vec{r}_1$ — радиус-вектор расстояния между зарядами, $\frac{\vec{r}_{21}}{r_{21}}$ — единичный вектор, определяющий направление силы \vec{F}_{21} .