

Amendments to the Claims:

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) An intraocular lens

~~characterised in having a configuration such that, in each the environment of an~~ immersion medium it ~~refracts~~ environment, an incoming wave with an elliptically oblongly curved wave front is refracted into an outgoing wave with a substantially spherical wave front.

2. (currently amended) An intraocular lens according to claim 1,

~~characterised by wherein the lens has~~ a positive refractive power in the environment of immersion medium and a negative spherical aberration.

3. (currently amended) An intraocular lens according to claim 2,

~~characterised by wherein the lens has~~ a refractive power at the ~~entre~~ center of the lens which in the environment of immersion medium is greater than or equal to +3 dpt, and wherein the lens is so ~~designed~~ configured that, in ~~the an air~~ environment of air it ~~refracts~~, an incoming wave with a substantially plane wave front is refracted into an outgoing wave with a hyperbolic wave front.

4. (currently amended) An intraocular lens according to claim 3,

~~characterized in that wherein~~ the hyperbolic wave front has an asphericity of less than or equal to -5.

5. (currently amended) An intraocular lens according to ~~one of claims~~ claim 3. and 4.

~~charaetised in that the intraocular wherein the~~ lens has at least one convexly curved surface whose curvature has an asphericity of less than or equal to -1.

6. (currently amended) An intraocular lens according to claim 1,

~~characterised by wherein the lens has a refractive power at the centre center of the lens which in the environment of immersion medium environment~~ is at most +2 dpt and at least -1 dpt, and wherein the lens is so ~~designed configured~~ that an incoming wave with a substantially plane wave front is refracted into an outgoing wave whose apex surface has a meridian with an inflexion point.

7. (currently amended) An intraocular lens according to claim 1,
~~characterized by wherein the lens has~~ a refractive power at the ~~centre~~
~~center~~ of the lens which in the ~~environment of~~ immersion medium ~~environment~~
is less than or equal to -2 dpt, and wherein the lens is so ~~designed~~ configured
that an incoming wave with a substantially plane wave front is refracted into an
outgoing wave with an elliptically oblongly curved wave front whose asphericity
measured in air is greater than + 10.

8. (currently amended) A method of determining ~~the~~ imaging properties
of an intraocular lens, comprising ~~the steps:~~

- producing a parallel light beam,
- orienting the light beam on to the intraocular lens,
- breaking the light beam refracted by the intraocular lens down into a
plurality of focused beams ~~by means of~~ via a lens arrangement, and
- detecting ~~the~~ local distribution of the focus beams focused by ~~means of~~
the lens arrangement.

9. (new) An intraocular lens according to claim 5, wherein the hyperbolic
wave front has an asphericity of less than or equal to -5.