Adaptive Fuzzy Double C-Means Clustering via Knowledge Transferring Latent Factor Analysis

I. INTRODUCTION

This is the supplementary file for the paper entitled "Adaptive Fuzzy Double C-Means Clustering via Knowledge Transfering Latent Factor Analysis" in IEEE Transactions on Industrial Informatics, which includes proofs of lemmas, proposed algorithms and experimental figures and tables cited by the paper. Specifically, Section 2 proves two important lemmas such as Lemma 1 and Lemma 2. Section 3 presents 3 algorithms and experimental figures and tables, as follows:

- (a) Proofs of Lemma 1 and Lemma 2;
- (b) Algorithm 1 NRNLF_KT;
- (c) Algorithm 2 AFD_SS;
- (d) Algorithm 3 NA;
- (e) Figure of parameter optimization for datasets with different rates of missing values on NLF model. (i.e., 30% and 80%);
- (f) Figure of recovery results for BSDS500 with 30% missing rate by using different image inpainting methods;
- (g) Figure of recovery results for BSDS500 with 30% missing rate by using different clustering methods;
- (h) Figure of NMIs for D1 with 30% and 80% missing values on AFD_SS model;
- (i) Tables of performances of imputation algorithms for 8 datasets with 30% and 80% missing;
- (i) Table of p-values for different datasets with different missing;
- (k) Table of NMAE±STD for BSDS500;
- (1) Table of parameter setting on 8 datasets;
- (m) Table of performance of three clustering algorithms for 8 datasets;
- (n) Table of performance of three clustering algorithms for 8 datasets with 30% and 80% missing;
- (o) Table of segmentation accuracy for different estimation methods.

II. SUPPLEMENTARY PROOFS OF LEMMA 1 AND LEMMA 2

A. Proof of Lemma 1

Proof: For $y_{m(a)}$ and $y_{m(b)} \in \mathcal{R}$, $\forall a, b \in \{1, 2, 3, \dots, d\}$, we have

$$\nabla \varsigma_{m,n}(y_{m(a)}) - \nabla \varsigma_{m,n}(y_{m(b)})
= \frac{\partial \varsigma_{m,n}(y_{m(a)})}{\partial f(y_{m(a)})} f'(y_{m(a)}) - \frac{\partial \varsigma_{m,n}(y_{m(b)})}{\partial f(y_{m(b)})} f'(y_{m(b)})
= e_{m,n} (L_3 f'(y_{m(b)}) - L_1 f'(y_{m(a)}))
+ \lambda \tilde{e}_{m,n} (L_4 f'(y_{m(b)}) - L_2 f'(y_{m(a)}))$$
(1)

where $L_1 = \sum_{i=1}^d [(f(y_{a(i)}) + f(z_{a(i)}))f(y_{n(i)})], L_2 = \sum_{i=1}^d [(f(y_{a(i)}) + f(\tilde{z}_{a(i)}))f(y_{n(i)})], L_3 = \sum_{i=1}^d [(f(y_{b(i)}) + f(z_{b(i)}))f(y_{n(i)})], L_4 = \sum_{i=1}^d [(f(y_{b(i)}) + f(\tilde{z}_{b(i)}))f(y_{n(i)})], L_5 = \sum_{i=1}^d [(f(y_{b(i)}) + f(\tilde{z}_{b(i)}))f(y_{n(i)})], L_6 = \sum_{i=1}^d [(f(y_{b(i)}) +$

$$\begin{aligned} &||\nabla\varsigma_{m,n}(y_{m(a)}) - \nabla\varsigma_{m,n}(y_{m(b)})||_{2} \\ &\leq ||e_{m,n}((L_{3} - L_{1} + L_{1})f^{'}(y_{m(b)}) - L_{1}f^{'}(y_{m(a)}))||_{2} \\ &+ ||\lambda\tilde{e}_{m,n}((L_{4} - L_{2} + L_{2})f^{'}(y_{m(b)}) - L_{2}f^{'}(y_{m(a)}))||_{2} \\ &\leq \left(||e_{m,n}L_{1}||_{2} + ||\lambda\tilde{e}_{m,n}L_{2}||_{2} + \left\lceil \frac{||e_{m,n}(L_{3} - L_{1})f^{'}(y_{m(b)})||_{2}}{||f^{'}(y_{m(b)}) - f^{'}(y_{m(a)})||_{2}}\right\rceil \\ &+ \left\lceil \frac{||\lambda\tilde{e}_{m,n}(L_{4} - L_{2})f^{'}(y_{m(b)})||_{2}}{||f^{'}(y_{m(b)}) - f^{'}(y_{m(a)})||_{2}}\right\rceil \right) ||f^{'}(y_{m(b)}) - f^{'}(y_{m(a)})||_{2} \\ &\leq \left(\varrho_{m,n}^{up} + \left\lceil \frac{||e_{m,n}^{up}(L_{3} - L_{1})f^{'}(y_{m(b)})||_{2}}{||f^{'}(y_{m(b)}) - f^{'}(y_{m(a)})||_{2}}\right\rceil \\ &+ \left\lceil \frac{||\lambda\tilde{e}_{m,n}^{up}(L_{4} - L_{2})f^{'}(y_{m(b)})||_{2}}{||f^{'}(y_{m(b)}) - f^{'}(y_{m(a)})||_{2}}\right\rceil \right) ||f^{'}(y_{m(b)}) - f^{'}(y_{m(a)})||_{2} \end{aligned}$$

 $\begin{aligned} &\text{where } \varrho^{up}_{m,n} = ||e^{up}_{m,n}L_1||_2 + ||\lambda \tilde{e}^{up}_{m,n}L_2||_2, e^{up}_{m,n} = r_{m,n} - p^{up}_{m,n}, \tilde{e}^{up}_{m,n} = \tilde{r}_{m,n} - \tilde{p}^{up}_{m,n}, p^{up}_{m,n} = \sum_{k \neq a,b}^d \sum_{i=1}^d f(y_{m(k)})(f(w_{k(i)}) + f(z_{k(i)}))f(y_{n(i)}), \\ &+ 2\sum_{i=1}^d N(f(w_{k(i)}) + f(z_{k(i)}))f(y_{n(i)}), \tilde{p}^{up}_{m,n} = \sum_{k \neq a,b}^d \sum_{i=1}^d f(y_{m(k)})(f(w_{k(i)}) + f(\tilde{z}_{k(i)}))f(y_{n(i)}) + 2\sum_{i=1}^d N(f(w_{k(i)}) + f(\tilde{z}_{k(i)}))f(y_{n(i)}), \\ &+ f(\tilde{z}_{k(i)}))f(y_{n(i)}), \text{ and } N = \max(f(y_{m(k)})), (m,n) \in \Lambda, k \in 1,2,3,\cdots,d. \end{aligned}$

It can be easily inferred from (2) that the L-smooth of $\varepsilon_{m,n}$ is determined by the L-smooth of $f(\cdot)$. Fortunately, like Sigmoid function, Gaussian function, and so on, the LF-dependent mapping function $f(\cdot)$ easily satisfies the property of L-smooth. Thus, there exists a positive constant M for $f(\cdot)$ satisfying

$$||f'(y_{m(a)}) - f'(y_{m(b)})||_{2} \le M||y_{m(a)} - y_{m(b)}||_{2}.$$

$$(3)$$

Based on (2) and (3), we have

$$||\nabla \varepsilon_{m,n}(y_{m(a)}) - \nabla \varepsilon_{m,n}(y_{m(b)})||_{2}$$

$$\leq M \left(\varrho_{m,n}^{up} + \lceil \frac{||e_{m,n}^{up}(L_{3} - L_{1})f'(y_{m(b)})||_{2}}{||f'(y_{m(b)}) - f'(y_{m(a)})||_{2}} \rceil + \lceil \frac{||\lambda \tilde{e}_{m,n}^{up}(L_{4} - L_{2})f'(y_{m(b)})||_{2}}{||f'(y_{m(b)}) - f'(y_{m(a)})||_{2}} \rceil \right) ||y_{m(a)} - y_{m(b)}||_{2}$$

$$= L||y_{m(a)} - y_{m(b)}||_{2}$$

$$(4)$$

where $\varrho_{m,n}^{up}$ is the same as defined in (2), $L \triangleq M(||e_{m,n}^{up}L_1||_2 + ||\lambda \tilde{e}_{m,n}^{up}L_2||_2 + \lceil \frac{||e_{m,n}^{up}(L_3-L_1)f^{'}(y_{m(b)})||_2}{||f^{'}(y_{m(a)})||_2}\rceil + \lceil \frac{||\lambda \tilde{e}_{m,n}^{up}(L_4-L_2)f^{'}(y_{m(b)})||_2}{||f^{'}(y_{m(b)}-f^{'}(y_{m(a)})||_2}\rceil)$. According to Definition 2, $\varsigma_{m,n}$ is L-smooth. Thus, the proof is complete.

B. Proof of Lemma 2

Proof: For $\forall y_{m(a)}$ and $y_{m(b)} \in \mathcal{R}$, we consider the second-order Taylor expansion of $\varsigma_{m,n}(y_{m(a)})$ at $y_{m(b)}$, given by

$$\varsigma_{m,n}(y_{m(a)}) \approx \varsigma_{m,n}(y_{m(b)}) + \nabla \varsigma_{m,n}(y_{m(b)})(y_{m(a)} - y_{m(b)})
+ \frac{1}{2} \nabla^2 \varsigma_{m,n}(y_{m(b)})(y_{m(a)} - y_{m(b)})^2,$$
(5)

which implies

$$\varsigma_{m,n}(y_{m(a)}) - \varsigma_{m,n}(y_{m(b)}) \approx \nabla \varsigma_{m,n}(y_{m(b)})(y_{m(a)} - y_{m(b)})
+ \frac{1}{2} \nabla^2 \varsigma_{m,n}(y_{m(b)})(y_{m(a)} - y_{m(b)})^2.$$
(6)

Letting $\delta = \min(\nabla^2 \varsigma_{m,n}(y_{m(k)}))$, we can obtain from (6) that

$$\varsigma_{m,n}(y_{m(a)}) - \varsigma_{m,n}(y_{m(b)})
\ge \nabla \varsigma_{m,n}(y_{m(b)})(y_{m(a)} - y_{m(b)}) + \frac{\delta}{2}(y_{m(a)} - y_{m(b)})^{2}.$$
(7)

Based on Definition 3, it can be easily seen from (7) that $\varsigma_{m,n}$ has strong convexity, which completes the proof.

III. SUPPLEMENTARY ALGORITHMS, FIGURES AND TABLES

REFERENCES

- [1] L. E. Peterson, "K-nearest neighbor," Scholarpedia, vol. 4, no. 2, pp. 1883, 2009.
- [2] Y. Song, M. Li, Z. Zhu, G. Yang, and X. Luo, "Non-negative latent factor analysis-incorporated and feature-weighted fuzzy double c-means clustering for missing data," *IEEE Trans. Fuzzy System.*, vol. 16, no. 4, pp. 3006–3017, 2020.
- [3] S. Jiang, Z. Ding, and Y. Fu, "Heterogeneous recommendation via deep low-rank sparse collective factorization," *IEEE Trans. Pattern. Anal. Mach. Intell.*, vol. 42, no. 5, pp. 1097–1111, 2020.
- [4] J. C. Bezdek, R. Ehrlich, and W. Full, "FCM: The fuzzy c-means clustering algorithm," Comput. Geosci., vol. 10, no. 2-3, pp. 191-203, 1984.
- [5] J. Gu, L. Jiao, and S. Yang, "Fuzzy double c-means clustering based on sparse self-representation," *IEEE Trans. Fuzzy Syst.*, vol. 26, no. 2, pp. 612–626, 2018.
- [6] M. Li, and Y. Song, "Triple factorization-like symmetric NLF models with latent item-item relationship," *IEEE. Trans. Syst. Man. Cybern. Syst.*, pp. 6073–6084, 2022.

Algorithm 1 NRNLF_KT	
Input: Λ , M , N , R , R , d	Ct
Operation Initialize $X^{(M + N)\times d}=0$, $(W^o)^{d\times d}=0$, $(Z^o)^{d\times d}=0$	Cost
initialize X (i.e., Y) and Y	
$(Z^{b})^{a \wedge a} \equiv 0, Y(M^{a+1}(V) \wedge a,$ $Z^{d \times d}, \tilde{Z}^{d \times d} \text{ and } W^{d \times d} \text{ at random}$	$\Omega\left(\left(\left M\right +\left N\right \right)\right)$
	$+3d) \times d)$
Initialize $A^{ M \times d}$, $\widetilde{A}^{ M \times d}$	$\Omega(M \times d)$
Initialize $B^{ N \times d}$, $\widetilde{B}^{ N \times d}$	$\Omega(N \times d)$
Initialize $\eta, \lambda, t_1 = 1$, maxsteps=n	$\Omega(1)$
while not converge and $t_1 \leq \mathfrak{n}$	×n
set A , A with zeroes	$\Omega(M \times d)$
set B, Bwith zeroes	$\Omega(N \times d)$
for each $r_{m,n}$ in Λ	$\times \Lambda $
$p_{m,n} = \sum_{k=1}^{d} \sum_{i=1}^{d} f(y_{m(k)}) (f(w_{k(i)}) + f(z_{k(i)}))$	$\Omega(d \times d)$
$\widetilde{p}_{m,n} = \sum_{k=1}^{d} \sum_{i=1}^{d} f\left(y_{m(k)}\right) \left(f\left(w_{k(i)}\right) + f\left(\widetilde{z}_{k(i)}\right)\right)$	$0) f(y_{n(i)}) \\ \Omega(d \times d)$
for $k=1$ to d	$\times d$
$b_{(n)i} = \sum_{i=1}^{d} \left(f\left(w_{k(i)}\right) + f\left(z_{k(i)}\right) \right) f\left(y_{n(i)}\right)$	$\Omega(d)$
$\widetilde{b}_{n(i)} = \sum_{i=1}^{d} \left(f\left(w_{k(i)}\right) + f\left(\widetilde{z}_{k(i)}\right) \right) f\left(y_{n(i)}\right)$	$\Omega(d)$
$y_{(n)i} \leftarrow y_{m(k)} + \eta f'\left(y_{m(k)}\right) \left(e_{m,n}b_{n(i)} + \lambda \tilde{e}_{m,n}\tilde{b}_{m(i)}\right)$,
1 6	$\Omega(1)$
end for for $i = 1$ to d	$\times d$
	$\Omega(d)$
$a_{m(k)} = \sum_{k=1}^{d} f(y_{(m)k}) (f(w_{k(i)}) + f(z_{k(i)}))$ $\tilde{a}_{m(k)} = \sum_{k=1}^{d} f(y_{m(k)}) (f(w_{k(i)}) + f(\tilde{z}_{k(i)}))$	$\Omega(d)$
$a_{m(k)} - \sum_{k=1}^{\infty} J(g_{m(k)}) (J(w_{k(i)}) + J(z_{k(i)}))$	
$y_{m(k)} \leftarrow y_{(n)i} + \eta f'\left(y_{(n)i}\right) \left(e_{m,n} a_{m(k)} + \lambda \tilde{e}_{m,n} \tilde{a}_{m(k)}\right)$	$\Omega(1)$
for $k=1$ to d	$\times d$
$w_{k(i)} \leftarrow w_{k(i)} + \eta \left(e_{m,n} + \lambda \widetilde{e}_{m,n} \right)$	7.00
$f\left(y_{m(k)}\right)f\left(y_{n(i)}\right)f'\left(w_{k(i)}\right)$	$\Omega(1)$
$z_{(k)i} \leftarrow z_{(k)i} + \eta e_{m,n} f\left(y_{m(k)}\right) f\left(y_{n(i)}\right) f'\left(z_{k(i)}\right)$	
	$\Omega(1)$
$\widetilde{z}_{k(i)} \leftarrow \widetilde{z}_{k(i)} + \eta \lambda \widetilde{e}_{m,n} f\left(y_{m(k)}\right) f\left(y_{n(i)}\right) f'\left(\widetilde{z}_{k(i)}\right) f'\left(\widetilde{z}_{k$	
	$\Omega(1)$
end for; end for	
end for	,
for $k=1$ to d	$\times d$
for $i = 1$ to d	$\times d$
$w_{k(i)}^o = f\left(w_{k(i)}\right)$	$\Omega(1)$
$z_{k(i)}^o = f\left(z_{k(i)}\right)$	$\Omega(1)$
$\widetilde{z}_{k(i)}^{o} = f\left(\widetilde{z}_{k(i)}\right)$	$\Omega(1)$
for $m=1$ to M	$\times M $
$x_{m(k)} = f\left(y_{m(k)}\right)$	$\Omega(1)$
for $n=1$ to N	$\times N $
$x_{n(i)} = f\left(y_{n(i)}\right)$	$\Omega(1)$
end for; end for end for	
end for $t_1 = t_1 + 1$	$\Omega(1)$
$t_1 - t_1 + 1$ end while	22(1)

Output: non-negative latent factor matrices $P,\,C,\,Q,\,H$ and \widetilde{H}

Algorithm 2 AFD_SS	
Input: The set of samples $X = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)^T$	T,
the quantity of clusters C ,	
the quantity of features S ,	
fuzzy coefficient m	
Operation	Cost
Initialize the membership degree	
matrix U at random	$\Omega(N \times C)$
Initialize swarm size L , dimension D , $t_2 = 1$,	
maxsteps n	$\Omega(1)$
Initialize $r_1, r_2, c_1, c_2, w, gb$	$\Omega(1)$
Initialize pb^L	$\Omega(L)$
Initialize $O^{L \times D}$	$\Omega(L \times D)$
for each $l \in L$	$\stackrel{\cdot}{\times}L$
if $f(\alpha_l) > pb_l$	$\Omega(1)$
$p\hat{b_l} = f(\hat{\alpha_l})$	$\Omega(1)$
end if	. ,
if $f(\alpha_l) > gb$	$\Omega(1)$
$gb = f(\alpha_l)$	$\Omega(1)$
end if	. ,
end for	
for each $l \in L$	$\times L$
for each $d \in D$	$\times D$
$v_{l,d} = wv_{l,d} + c_1r_1(pb_{l,d} - \alpha_{l,d}) +$	
$c_2 r_2 \left(gb - lpha_{l,d} ight)$	$\Omega(1)$
$\alpha_{l,d} = \alpha_{l,d} + v_{l,d}$	$\Omega(1)$
end for	
end for	
while not converge and $t_2 \leq \mathfrak{n}$	$ imes \mathfrak{n}$
obtain the discriminate feature set Z	
by solving SS model defined in (2)	$\Omega(N \times N)$
calculate the clustering centers o_i	
according to (27)	$\Omega(N \times S \times C)$
calculate the clustering centers $\hat{\mathbf{o}}_i$	
according to (27)	$\Omega(N \times C)$
update the membership degree matrix U	0
by using (27)	$\Omega(N \times C^2 \times S)$
$t_2 = t_2 + 1$	$\Omega(1)$
end while	
Output: the membership degree matrix U	

Fig. S1. Parameter optimization of datasets with different rates of missing values on NLF model. (a)30% and (b)80%.

Algorithm 3 NA	
Input: The set of samples $X = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)^T$	
the quantity of clusters C ,	,
the quantity of features S ,	
fuzzy coefficient m	
Operation Operation	Cost
Initialize the membership degree	
matrix U at random	$\Omega(N \times C)$
Initialize swarm size L , dimension D , maxsteps $\mathfrak n$	$\Omega(1)$
Initialize $r_1, r_2, c_1, c_2, w, gb$	$\Omega(1)$
Initialize pb^L	$\Omega(L)$
Initialize $O^{L \times D}$	$\Omega(L \times D)$
calculate complete data set X by	$\mathfrak{IL}(D \times D)$
solving the NRNLF_KT model defined in (5)	
t = t + 1	
end while	
while not converge and $t \leq \mathfrak{n}$	$ imes \mathfrak{n}$
obtain the discriminate feature set Z	
by solving SS model defined in (2)	$\Omega(N \times N)$
calculate the clustering centers o_i	,
according to (27)	$\Omega(N \times S \times C)$
calculate the clustering centers $\hat{\mathbf{o}}_i$,
according to (27)	$\Omega(N \times C)$
update the membership degree matrix U	, ,
by using (27)	$\Omega(N \times C^2 \times S)$
for each $l \in L$	$\times L$
if $f(\alpha_l) > pb_l$	$\Omega(1)$
$pb_i = f(\alpha_l)$	$\Omega(1)$
end if	
if $f(\alpha_l) > gb$	$\Omega(1)$
$gb = f(\alpha_l)$	$\Omega(1)$
end if	
end for	
for each $l \in L$	$\times L$
for each $d \in D$	$\times D$
update the $v_{l,d}$ and $\alpha_{l,d}$ by using (25)	$\Omega(1)$
end for	
end for	0(1)
t = t + 1	$\Omega(1)$
end while	
Output: the membership degree matrix U	

TABLE S1 PERFORMANCES OF IMPUTATION ALGORITHMS FOR DIFFERENT DATASETS WITH 30% MISSING

	34	3.6	IZNINI E11	TIME DA 101	TE ONE E (C)	I 00E (2)	NDM F IZE
	Matric	Mean	KNN [1]	UNLFA [2]	TF-SNLF [6]	LSCF [3]	NRNLF_KT
D1	M1	0.8603 ± 0.0012	0.7591 ± 0.0016	0.6248 ± 0.0042	0.6168 ± 0.0011	0.5622 ± 0.0011	0.4692 ± 0.0016
	M2	1.1603 ± 0.0018	1.1030 ± 0.0013	0.9811 ± 0.0063	0.9665 ± 0.0008	0.8602 ± 0.0016	0.7718 ± 0.0022
D2	M1	0.9855 ± 0.0011	0.9943 ± 0.0008	0.8583 ± 0.0011	0.8664 ± 0.0016	0.7816 ± 0.0009	$0.6986 {\pm} 0.0005$
	M2	1.2516 ± 0.0020	1.2990 ± 0.0006	1.1566 ± 0.0051	1.1627 ± 0.0017	1.0679 ± 0.0005	$0.9842 {\pm} 0.0016$
D3	M1	1.7346 ± 0.0014	1.6714 ± 0.0017	1.5046 ± 0.0068	1.4170 ± 0.0021	1.3283 ± 0.0008	1.2051 ± 0.0014
	M2	1.9822 ± 0.0019	1.9522 ± 0.0022	1.7700 ± 0.0036	1.6762 ± 0.0019	1.5721 ± 0.0019	1.4508 ± 0.0022
D4	M1	0.7448 ± 0.0008	0.6932 ± 0.0016	0.6474 ± 0.0045	0.6029 ± 0.0066	0.4392 ± 0.0013	$0.3268 {\pm} 0.0010$
	M2	0.9105 ± 0.0013	0.8912 ± 0.0023	0.8646 ± 0.0022	0.8365 ± 0.0025	0.5829 ± 0.0017	$0.5108 {\pm} 0.0008$
D5	M1	0.6324 ± 0.0017	0.5744 ± 0.0019	0.5349 ± 0.0016	0.5474 ± 0.0048	0.4624 ± 0.0013	$0.4215 {\pm} 0.0002$
	M2	0.9983 ± 0.0012	0.8577 ± 0.0013	0.7815 ± 0.0015	0.7930 ± 0.0006	0.7595 ± 0.0006	0.7157 ± 0.0006
D6	M1	0.9014 ± 0.0005	0.9219 ± 0.0022	0.7830 ± 0.0036	0.7133 ± 0.0010	0.7485 ± 0.0022	0.7224 ± 0.0011
	M2	1.1354 ± 0.0015	1.1501 ± 0.0025	0.9269 ± 0.0019	0.8211 ± 0.0013	0.8744 ± 0.0018	0.8315 ± 0.0013
D7	M1	1.3915 ± 0.0011	1.2771 ± 0.0017	1.1344 ± 0.0056	1.1100 ± 0.0008	0.9810 ± 0.0011	0.8577 ± 0.0005
	M2	1.7025 ± 0.0019	1.5713 ± 0.0013	1.4315 ± 0.0023	1.3912 ± 0.0019	1.1860 ± 0.0026	1.0977 ± 0.0004
D8	M1	0.8937 ± 0.0006	0.8570 ± 0.0024	0.7620 ± 0.0016	0.7752 ± 0.0026	0.6878 ± 0.0020	$0.6254 {\pm} 0.0005$
	M2	1.1286 ± 0.0018	1.0663 ± 0.0013	0.9472 ± 0.0013	0.9695 ± 0.0013	0.9136 ± 0.0023	$0.8797 {\pm} 0.0011$

TABLE S2 PERFORMANCES OF IMPUTATION ALGORITHMS FOR DIFFERENT DATASETS WITH 80% MISSING

	Matric	Mean	KNN	UNLFA	TF-SNLF	LSCF	NRNLF_KT
D1	M1	0.8746 ± 0.0003	0.7910 ± 0.0011	0.7248 ± 0.0012	0.7040 ± 0.0012	0.6280 ± 0.0005	0.4997 ± 0.0005
	M2	1.1824 ± 0.0005	1.1259 ± 0.0013	1.0556 ± 0.0008	1.0328 ± 0.0003	0.9329 ± 0.0011	0.7929 ± 0.0002
D2	M1	0.9902 ± 0.0010	1.0483 ± 0.0008	0.9318 ± 0.0016	0.9264 ± 0.0011	0.8639 ± 0.0013	0.7483 ± 0.0009
	M2	1.2753 ± 0.0009	1.3452 ± 0.0020	1.2157 ± 0.0025	1.2372 ± 0.0026	1.1593 ± 0.0005	1.0300 ± 0.0012
D3	M1	1.7308 ± 0.0006	1.5377 ± 0.0016	1.4505 ± 0.0013	1.3707 ± 0.0023	1.3561 ± 0.0009	1.3263 ± 0.0010
	M2	1.9805 ± 0.0008	1.7436 ± 0.0003	1.6150 ± 0.0033	1.6331 ± 0.0015	1.6099 ± 0.0022	1.5603 ± 0.0011
D4	M1	0.7239 ± 0.0007	0.7599 ± 0.0006	0.6918 ± 0.0026	$0.6588 {\pm} 0.0016$	0.4816 ± 0.0022	0.3704 ± 0.0015
	M2	0.9045 ± 0.0009	0.9320 ± 0.0005	0.9284 ± 0.0028	0.8819 ± 0.0022	0.6243 ± 0.0019	0.5111 ± 0.0007
D5	M1	0.7157 ± 0.0008	0.6175 ± 0.0010	0.5530 ± 0.0046	0.5642 ± 0.0019	0.4881 ± 0.0023	0.4620 ± 0.0013
	M2	1.0235 ± 0.0006	0.9289 ± 0.0013	0.8168 ± 0.0030	0.8280 ± 0.0015	0.7956 ± 0.0026	0.7503 ± 0.0022
D6	M1	0.9147 ± 0.0011	0.8638 ± 0.0015	0.7925 ± 0.0015	0.7635 ± 0.0024	$0.7504 {\pm} 0.0015$	0.7672 ± 0.0015
	M2	1.1549 ± 0.0010	1.0938 ± 0.0006	0.9565 ± 0.0009	0.9671 ± 0.0030	$0.9256 {\pm} 0.0026$	0.9493 ± 0.0026
D7	M1	1.3838 ± 0.0013	1.2385 ± 0.0009	1.1337 ± 0.0050	1.1451 ± 0.0028	1.0721 ± 0.0023	$0.8744{\pm}0.0019$
	M2	1.6895 ± 0.0005	1.5286 ± 0.0007	1.4414 ± 0.0016	1.4556 ± 0.0019	1.2648 ± 0.0030	1.1284 ± 0.0017
D8	M1	0.9231 ± 0.0008	0.8299 ± 0.0012	0.7644 ± 0.0059	0.7320 ± 0.0011	0.7526 ± 0.0016	0.6570 ± 0.0013
	M2	1.1715 ± 0.0009	1.1248 ± 0.0016	1.0653 ± 0.0022	1.0283 ± 0.0006	0.9916 ± 0.0022	$0.9144 {\pm} 0.0024$
	(a)		(b)		(c)		(d)

Fig. S2. Recovery results for BSDS500 with 30% missing rate by using different methods. (a)original image, (b)original image with 30% missing, (c)Mean, (d)KNN, (e)UNLFA, (f)TF-SNLF, (g)LSCF, (h)NRNLF_KT.

(g)

(h)

(f)

Fig. S3. Recovery results for BSDS500 with 30% missing by using different methods.

(e)

Fig. S4. NMIs for D1 with different rates of missing values on AFD_SS model. a)30% and b)80%.

TABLE S3 P-VALUES OF DIFFERENT DATASETS WITH DIFFERENT MISSING

	Mean		KN	IN	UNI	LFA	TF-S	NLF	LS	CF	NRNL	F_KT
	30% 8	80%	30%	80%	30%	80%	30%	80%	30%	80%	30%	80%
D1	0.4252 0.0	0049	0.5771	0.1108	0.6139	0.0899	0.6302	0.1596	0.6899	0.1395	0.7139	0.2414
D2	0.6271 0.0	0634	0.6386	0.0968	0.6238	0.0116	0.6559	0.1201	0.6849	0.0833	0.6901	0.1558
D3	0.4157 0.0	0022	0.4768	0.018	0.4951	0.0789	0.5159	0.0167	0.5302	0.0477	0.5897	0.1078
D4	0.5209 0.0	0573	0.6068	0.0965	0.6216	0.1026	0.6587	0.1558	0.6657	0.1324	0.6705	0.1658
D5	0.5433 0.0	0006	0.5522	0.0109	0.5801	0.0632	0.6509	0.0154	0.6816	0.0258	0.6999	0.0445
D6	0.4572 0.0	0039	0.4823	0.0601	0.4934	0.0131	0.5135	0.0506	0.5323	0.0124	0.5713	0.0746
D7	0.4970 0.0	0582	0.5305	0.0421	0.5672	0.1049	0.6231	0.1281	0.6304	0.1794	0.6728	0.1883
D8	0.5513 <u>0.0</u>	0085	0.5834	0.1018	0.6081	0.1931	0.6161	0.1511	0.6577	0.2204	0.7364	0.2537

TABLE S4 NMAE% \pm STD% FOR BSDS500

Algorithm	Mean	KNN	UNLFA	TF-SNLF	LSCF	NRNLF_KT
NMAE%±STD%	32.11±2.35	27.59±2.71	22.82±1.66	21.42±1.02	19.07±1.67	16.25±1.28

TABLE S5
PARAMETER SETTING ON DIFFERENT DATASETS

Parameter	D1	D2	D3	D4	D5	D6	D7	D8
d	6	4	2	6	5	19	8	9
λ_1	0.3	0.6	0.5	0.8	0.6	0.5	0.7	0.4
λ_2	0.4	0.3	0.7	0.6	0.4	0.3	0.5	0.4

 ${\it TABLE~S6}\\ {\it PERFORMANCE~OF~THREE~CLUSTERING~ALGORITHMS~FOR~DIFFERENT~DATASETS}$

Dataset	Matric	FCM [4]	FD_SS [5]	FWFDCM [2]	AFD_SS
D1	M3	54.72 ± 5.16	57.04±4.08	59.53 ± 2.24	60.82 ± 3.28
	M4	77.86 ± 2.28	78.03 ± 2.70	78.65 ± 3.13	79.70 ± 3.11
D2	M3	58.67 ± 3.45	65.06 ± 3.12	67.55 ± 4.35	69.11 ± 2.16
	M4	82.77 ± 6.12	84.58 ± 4.86	86.53 ± 1.45	87.89 ± 3.53
D3	M3	58.67 ± 8.03	65.06 ± 5.74	68.35 ± 5.75	69.11 ± 4.66
	M4	57.38 ± 0.78	58.54 ± 1.06	57.98 ± 3.20	$60.28 {\pm} 0.95$
D4	M3	15.65 ± 1.89	17.23 ± 2.22	18.06 ± 4.10	18.54 ± 3.26
	M4	58.10 ± 4.56	60.21 ± 2.09	60.84 ± 1.75	$61.25 {\pm} 1.42$
D5	M3	57.57 ± 3.35	59.07 ± 3.97	59.34 ± 2.44	$60.91{\pm}2.13$
	M4	76.06 ± 1.61	76.86 ± 1.26	76.99 ± 5.12	77.21 ± 0.97
D6	M3	18.56 ± 5.73	22.56 ± 4.49	24.17 ± 3.27	23.78 ± 5.08
	M4	60.32 ± 4.33	62.21 ± 3.56	$62.94{\pm}4.72$	62.82 ± 3.88
D7	M3	19.67 ± 7.26	23.47 ± 5.14	25.64 ± 2.27	$26.47{\pm}2.33$
	M4	61.47 ± 5.42	64.16 ± 3.84	65.56 ± 3.56	67.00 ± 4.56
D8	M3	57.33 ± 2.46	60.67 ± 3.06	61.75 ± 4.36	$63.36{\pm}1.91$
	M4	78.95 ± 3.15	81.44 ± 4.82	82.22 ± 5.75	83.31 ± 2.48

TABLE S7 PERFORMANCE OF THREE CLUSTERING ALGORITHMS FOR DIFFERENT DATASETS WITH 30% MISSING

M	lean	K	NN	UN	ILFA	TF-S	NLF	LS	CF	NRNLI	-KT
M3	M4	M3	M4	M3	M4	M3	M4	M3	M4	M3	M4
D1 F1 34.68±5.13	62.82±6.59	33.39 ± 3.58	62.55 ± 1.47	36.98 ± 1.13	64.80 ± 6.88	35.91 ± 4.77	63.96 ± 5.28	37.99 ± 4.31	67.52 ± 1.81	38.88±7.92 6	57.99 ± 4.35
F2 34.91±4.62	63.00±5.26	34.02 ± 4.65	62.38 ± 7.54	37.64 ± 7.69	965.25 ± 4.33	37.33 ± 7.04	66.49 ± 5.43	38.43 ± 1.74	68.04 ± 5.29	42.91±6.45 6	68.55 ± 2.67
F3 36.43 ± 2.24	63.43±3.42	35.43 ± 2.33	$62.38{\pm}5.43$	37.98 ± 6.53	365.87 ± 3.65	38.24 ± 6.43	66.49 ± 5.45	$39.80{\pm}2.23$	$68.84{\pm}4.32$	43.45±5.35 €	69.04 ± 3.45
F4 35.91±4.20	63.09 ± 3.13	36.33 ± 3.16	$63.82 {\pm} 2.78$	38.28 ± 4.41	l 66.96±1.47	$39.67 {\pm} 4.36$	68.44 ± 7.47	$40.27{\pm}4.53$	$69.70 \!\pm\! 4.24$	44.78 ± 1.137	70.90 ± 4.84
D2 F1 45.41±3.33	77.12±5.06	50.90 ± 5.74	78.94 ± 3.08	55.01 ± 6.14	480.48 ± 5.45	59.62 ± 4.63	82.02 ± 6.56	58.90 ± 6.34	$80.86{\pm}5.11$	61.57±7.07 8	33.94±3.31
F2 48.76±3.65	78.07±5.89	52.93 ± 4.95	78.52 ± 6.86	56.83 ± 4.17	780.03 ± 7.92	58.90 ± 2.46	$80.85{\pm}6.58$	59.01 ± 3.14	$81.45 {\pm} 5.78$	61.54±4.75 8	34.12 ± 4.02
F3 49.56±2.57	79.10±3.25	53.11 ± 5.05	79.01 ± 5.78	57.12±3.45	581.50 ± 6.54	$58.66{\pm}2.98$	81.94 ± 3.80	60.57 ± 2.11	82.05 ± 6.62	62.78 ± 2.838	34.20 ± 2.15
F4 50.54±3.01	80.92±4.16	54.55 ± 3.26	$80.19 {\pm} 3.41$	58.28 ± 2.11	182.03 \pm 7.54	$60.71 {\pm} 2.13$	$82.93{\pm}5.33$	59.96 ± 4.68	81.98 ± 1.41	63.78±7.26 8	35.02 ± 6.96
D3 F1 3.83±6.12	47.69 ± 7.26	4.90 ± 7.02	47.18 ± 3.57	5.37 ± 2.65	48.97 ± 7.25	5.89 ± 5.01	52.41 ± 1.73	5.77 ± 4.13	$50.30{\pm}2.13$	6.33 ± 2.57	62.52 ± 4.47
F2 5.09±5.87	50.08 ± 6.98	5.45 ± 6.59	49.33 ± 7.16	6.09 ± 1.07	50.31 ± 1.07	7.16 ± 3.75	53.56 ± 4.67	7.44 ± 5.38	54.39 ± 4.66	8.95 ± 6.02 5	63.56 ± 7.28
F3 6.13±4.32	52.08 ± 3.45	5.87 ± 5.27	$49.96{\pm}6.78$	7.25 ± 2.47	50.79 ± 2.57	7.16 ± 3.75	53.12 ± 5.07	8.63 ± 3.07	$54.88 {\pm} 5.12$	9.42±3.45 5	63.56 ± 7.28
F4 7.22 ± 4.69	53.22 ± 5.02	$6.55{\pm}6.32$	51.15 ± 4.78	8.61 ± 5.45	52.15 ± 7.4	$9.88 {\pm} 2.92$	54.18 ± 6.76	$9.31{\pm}4.98$	$55.70 \!\pm\! 5.61$	10.61±1.47 5	54.79±5.88
D4 F1 10.38±1.64	58.82±4.26	12.46 ± 5.94	56.79 ± 2.24	12.81 ± 4.95	57.12 ± 6.83	14.50 ± 7.26	58.93 ± 5.46	15.26 ± 5.03	60.93 ± 4.29	15.29 ± 6.396	60.91 ± 4.55
F2 13.55±0.96	59.51±2.16	15.50 ± 4.26	58.22 ± 3.04	15.61 ± 4.76	559.29 ± 3.67	16.22 ± 2.27	59.23 ± 2.24	16.11 ± 3.12	$60.88{\pm}5.17$	18.45 ± 6.896	61.70 ± 6.41
F3 13.98±1.26	60.01 ± 1.26	16.10 ± 3.49	58.89 ± 2.65	17.34 ± 4.66	559.87 ± 3.78	18.02 ± 1.65	61.07 ± 3.24	18.53 ± 5.85	61.88 ± 4.61	20.24±6.35 6	63.54 ± 5.24
F4 14.27 ± 0.45	60.95±2.59	16.30 ± 2.19	59.77 ± 5.47	18.31 ± 3.70	$60.22{\pm}2.86$	$19.62 {\pm} 7.72$	$62.52 {\pm} 6.44$	17.12 ± 4.57	$61.59 \!\pm\! 6.98$	23.78±3.87 6	65.48 ± 6.70
D5 F1 38.84±2.59	73.40 ± 2.11	42.49 ± 3.49	50.47 ± 1.51	44.69 ± 2.89	976.27 ± 5.85	43.10 ± 7.19	76.17 ± 1.59	47.49 ± 2.12	78.60 ± 6.42	48.71±4.957	7.18 ± 6.51
F2 39.90±2.07	74.22±2.56	45.65 ± 3.86	$52.52{\pm}1.85$	46.17 ± 6.07	777.92 ± 3.35	44.26 ± 7.81	77.84 ± 1.91	48.05 ± 4.93	$78.37 {\pm} 4.15$	50.14±1.957	78.20 ± 5.37
F3 40.11±3.16	75.02 ± 5.12	46.21 ± 5.83	52.78 ± 2.45	47.22 ± 5.13	377.54 ± 2.13	44.87 ± 4.23	77.84 ± 1.91	49.46 ± 3.24	78.64 ± 3.15	50.88 ± 2.457	9.02 ± 2.42
F4 40.95 ± 3.15	75.63±3.19	45.25 ± 2.94	52.20 ± 2.12	48.56±1.85	$578.21{\pm}2.62$	$45.67 \!\pm\! 1.12$	78.10 ± 6.55	$50.66{\pm}5.28$	$79.65 \!\pm\! 1.78$	51.39±6.987	19.74±1.45
D6 F1 23.09±2.55	62.87±7.16	22.68 ± 1.65	$62.35{\pm}4.53$	23.33 ± 1.88	865.04 ± 6.47	$24.84{\pm}4.78$	67.83 ± 5.02	$24.30{\pm}5.98$	67.50 ± 2.74	27.13±3.01 6	68.01 ± 7.93
F2 25.13±3.12	65.30±5.26	25.70 ± 1.78	65.18 ± 7.88	24.56 ± 6.45	66.59 ± 1.72	27.33 ± 5.42	68.79 ± 6.61	$24.35{\pm}2.42$	68.21 ± 4.02	25.51±4.99 6	69.75 ± 3.42
F3 26.62±2.16	66.78 ± 5.42	25.70 ± 1.78	$65.95{\pm}6.35$	25.07 ± 3.51	167.00 ± 2.45	$28.35{\pm}2.45$	68.67 ± 2.45	$25.80{\pm}2.45$	68.21 ± 4.02	26.13±3.44 6	9.32±2.44
F4 27.61 ± 5.46	67.99 ± 6.08	26.43 ± 4.65	67.26 ± 3.75	26.22 ± 2.28	$867.24{\pm}2.63$	$29.12 {\pm} 2.46$	69.07 ± 3.51	$26.45 {\pm} 7.89$	$69.31 {\pm} 5.12$	26.86±6.677	70.22 ± 1.31
D7 F1 20.04±3.19	52.54±5.16	20.70 ± 5.16	53.93 ± 6.4	21.80 ± 1.4	54.76 ± 2.46	21.06 ± 1.76	53.69 ± 7.62	24.12 ± 2	56.81 ± 5.72	23.09 ± 1.345	65.89 ± 1.71
F2 23.26±2.99	54.02±4.59	23.72 ± 6.54	55.71 ± 3.86	24.58 ± 4.82	257.02 ± 5.88	24.43 ± 7.31	57.42 ± 6.47	26.56 ± 5.85	58.49 ± 6.93	27.19±7.56 6	60.17 ± 5.56
F3 23.57±2.45	55.24±3.89	23.45 ± 4.35	56.75 ± 1.22	24.89 ± 2.14	457.63 ± 3.45	25.30 ± 5.32	57.88 ± 5.36	27.21 ± 3.25	59.47 ± 6.66	28.11±5.33 6	60.50 ± 4.43
F4 24.01±2.16	56.33±4.97	24.94±5.97	57.20 ± 6.72	25.60 ± 2.22	258.05 ± 6.81	$25.82 \!\pm\! 3.55$	58.05 ± 5.42	27.91 ± 5.09	$60.39 \!\pm\! 1.46$	28.74±4.76 6	61.40 ± 4.72
D8 F1 23.27±6.48	49.13±5.16	22.45 ± 3.66	50.40 ± 7.75	27.27±7.56	656.22 ± 5.65	$30.43{\pm}6.57$	58.81 ± 2.92	37.25 ± 3.84	$64.00{\pm}4.24$	40.63±4.12 6	66.77±5.25
F2 27.41±5.23	51.26±6.49	28.78 ± 2.57	53.09 ± 2.92	32.22±7.65	558.35 ± 5.96	$35.22{\pm}2.41$	61.55 ± 1.44	39.16 ± 4.12	64.57 ± 3.35	45.77±6.77 6	68.73 ± 6.62
F3 28.33±2.45	51.76±4.37	29.12 ± 2.45	53.87 ± 3.45	33.45 ± 6.21	1 59.54±2.47	35.78 ± 1.36	59.38 ± 2.45	39.75 ± 1.22	$67.13\!\pm\!3.25$	46.32±5.60 6	69.21±3.25
F4 29.22 ± 5.16					2 60.48±4.69	$36.36{\pm}4.46$	61.50 ± 5.43	$40.40{\pm}5.62$	$69.41 {\pm} 6.72$	47.40±3.85 7	0.55 ± 5.52
F1, F2, F3 and F4	represent FC	CM, FD_SS,	FWFDCM ar	d AFD_SS							

TABLE S8 PERFORMANCE OF THREE CLUSTERING ALGORITHMS FOR DIFFERENT DATASETS WITH 80% MISSING

	N	Mean	KN.	N [1]	UN	LFA	TF	SNLF	LS	CF	NRNLF	KT
	M3	M4	M3	M4	M3	M4	M3	M4	M3	M4	M3	M4
D1 F1	25.92±4.73	842.53 ± 6.07	28.25±4.32	52.46±1.26	29.12±5.48	355.08 ± 1.27	33.00±1.0	5 54.40±2.11	34.37±2.79	53.78 ± 1.30	32.65±6.315	3.36 ± 1.71
F2	27.25 ± 2.34	4 947.24±4.73	31.32 ± 1.86	54.62 ± 4.1	32.75 ± 1.79	957.06 ± 1.29	37.33 ± 7.0	466.49 ± 5.43	33.41 ± 3.24	56.36 ± 5.19	34.60 ± 2.335	6.36 ± 3.82
F3	27.88 ± 2.33	549.45 ± 3.54	31.66 ± 0.45	54.90 ± 3.45	33.45 ± 2.41	57.06±1.29	38.02 ± 5.2	367.12 ± 3.45	34.50 ± 2.42	57.02 ± 3.45	35.00 ± 4.215	7.22 ± 1.17
F4	28.41±4.13	$850.64{\pm}5.32$	32.13 ± 4.91	55.25 ± 2.81	34.74±1.36	58.95 ± 3.47	39.67 ± 4.3	6 68.44±7.47	34.72 ± 4.46	58.17 ± 5.17	35.29±5.07 5	8.36±1.49
D2 F1	38.05 ± 2.29	952.15 ± 1.64	40.23 ± 3.64	58.13 ± 4.45	42.69 ± 3.51	59.53±1.04	59.62 ± 4.6	382.02 ± 6.56	43.93 ± 5.12	64.51 ± 1.71	49.85 ± 4.576	4.36 ± 5.14
F2	39.63±4.13	555.15 ± 1.76	42.11 ± 6.24	59.61 ± 5.39	44.56 ± 4.47	762.85 ± 4.11	58.90 ± 2.4	681.94±3.8	46.04 ± 4.99	67.43 ± 5.11	50.77 ± 5.676	7.36 ± 3.85
F3	39.23 ± 2.13	356.87 ± 2.54	41.05 ± 3.26	60.23 ± 6.25	45.11 ± 3.26	663.46 ± 3.20	59.16 ± 3.2	682.56 ± 2.58	46.98 ± 3.65	68.23 ± 5.77	52.25 ± 345 6	8.38 ± 2.68
F4	40.58±6.5	$557.80{\pm}2.33$	42.51 ± 3.57	60.67±5.94	45.75±3.28	$864.02{\pm}1.77$	60.71 ± 2.1	3 82.93±5.33	48.13 ± 4.14	69.04 ± 1.44	51.43 ± 5.526	9.36 ± 5.85
D3 F1	2.16 ± 4.25	30.66 ± 2.29	5.01 ± 3.36	54.76 ± 4.51	5.71 ± 1.25	38.77 ± 2.59	5.89 ± 5.01	52.41 ± 1.73	4.49 ± 5.57	35.09 ± 4.01	5.43 ± 5.9 3	5.36 ± 6.65
F2	2.50 ± 5.06	32.06 ± 1.51	5.26 ± 2.37	56.18 ± 2.19	5.79 ± 4.86	39.35 ± 2.41	7.16 ± 3.75	53.56 ± 4.67	4.93 ± 2.26	36.47 ± 4.94	6.02 ± 5.63 3	6.36 ± 1.13
	2.87 ± 3.25	33.57 ± 2.33		57.34 ± 3.21		39.87 ± 2.41			5.02 ± 1.12	37.55 ± 3.45	6.12 ± 2.42 3	8.23 ± 2.11
F4	3.29 ± 3.87	35.37 ± 4.99		58.35 ± 6.27					5.85 ± 4.48	40.29 ± 2.28	6.30 ± 4.63 4	
	9.38 ± 4.77	40.01 ± 2.17	12.72 ± 3.77	42.76 ± 1.65							15.03 ± 5.084	0.36 ± 5.19
		7 44.82±4.57		45.19 ± 3.76				759.23 ± 2.24		45.31 ± 1.33	16.84 ± 1.504	
		244.99 ± 3.25		46.22 ± 4.23				659.23 ± 2.24			16.95 ± 2.004	
		345.12 ± 5.04	10.01	47.23 ± 4.04							17.07 ± 3.884	
		838.65 ± 5.7		37.78 ± 4.11							37.21 ± 3.254	
		641.23±3.09									39.61 ± 4.214	
		143.21 ± 2.11									40.23 ± 5.324	
		6 45.82±6.59									41.52 ± 2.864	
		3 42.88±5.86		46.57 ± 2.19							18.52 ± 3.435	
		9 44.03±4.62		49.42±2.06		250.47±5.07					19.22±1.92 5	
		245.55 ± 3.35		50.42±3.22							19.87 ± 2.355	
		3 47.24±5.25		49.23 ± 2.75							20.77 ± 2.735	
		8 42.12±5.54		46.98 ± 4.29							19.97 ± 5.754	
		8 46.46±1.92		50.34±6.66							21.88 ± 1.095	
		447.21 ± 2.01		50.75 ± 2.35				6 57.88±3.52			22.01 ± 5.345	
		1 48.56±5.31	19.75 ± 6.95								22.24 ± 6.395	
		747.63 ± 1.86	_,	44.90 ± 4.24				758.81 ± 2.92			30.20 ± 4.995	
		748.16 ± 2.94		47.72 ± 4.23							34.84 ± 3.305	
		448.75 ± 1.35									35.02 ± 2.226	
F4	33.91±1.20	0 49.35±6.89	32.80±3.30	48.90±1.93	34./5±3.80	50.21±4.98	30.30±4.4	0 01.50±5.43	35.09±4.23	01.88±1.07	36.52±4.63 6	1.30±5.13

TABLE S9 SEGMENTATION ACCURACY OF DIFFERENT ESTIMATION METHODS

Algorithm	Mean	KNN	UNLFA	TF-SNLF	LSCF	NRNLF_KT
FCM	75.25 ± 3.02	76.12 ± 5.84	79.96±1.54	79.35±2.71	80.86±5.93	81.27±4.13
FD_SSR	77.68 ± 4.65	78.29 ± 3.81	81.19 ± 1.66	81.26 ± 4.12	82.54 ± 3.56	83.89 ± 2.46
AFD_SSR	78.52 ± 3.92	79.75 ± 4.59	83.01 ± 4.29	$82.84{\pm}2.37$	83.64 ± 2.04	84.41 ± 1.38