Relation & Function In-class Exercises

1. Prove Theorem 5.1 (d)

對任意集合 $A \cdot B \cdot C \subseteq \mathcal{U}$:

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

d)
$$(AUB) \times C = (A\times C) \cup (B\times C)$$

for $a, b \in \mathcal{U}$.
 $(a,b) \in (AUB) \times C$
 $\Leftrightarrow a \in (AUB) \land b \in C$
 $\Leftrightarrow [(a \in A) \lor (a \in B)] \land (b \in C)$
 $\Leftrightarrow [(a \in A) \land (b \in C)] \lor [(a \in B) \land (b \in C)]$
 $\Leftrightarrow [(a,b) \in (A\times C)] \lor [(a,b) \in (B\times C)]$
 $\Leftrightarrow (a,b) \in (A\times C) \cup (B\times C)$

2. If $A = \{1, 2, 3, 4, 5\}$ and $B = \{w, x, y, z\}$, how many elements are there in $\mathcal{P}(A \times B)$?

$$|A \times B| = |A| * |B| = 5 * 4 = 20$$

 $|\mathcal{P}(A \times B)| = 2^{20}$

3. Consider the relation \Re on the set **Z** where we define $a \Re b$ when $ab \ge 0$.

Whether this binary relation \Re is reflexive, symmetric, or transitive?

For all integers x we have $xx = x^2 \ge 0$, so $x \Re x$ and \Re is reflexive. Also, if $x, y \in \mathbb{Z}$ and $x \Re y$, then $x \Re y \Rightarrow xy \ge 0 \Rightarrow yx \ge 0 \Rightarrow y \Re x$, so the relation \Re is symmetric as well.

However, here we find that (3, 0), $(0, -7) \in \Re$ since $(3)(0) \ge 0$ and $(0)(-7) \ge 0$ but $(3, -7) \notin \Re$ because (3)(-7) < 0. this relation is *not* transitive.

4. For $x, y \in R$ define $x \Re y$ to mean that $x - y \in Z$. Prove that \Re is an equivalence relation on R. Please show all workings.

To see that \mathcal{R} is **reflexive**, let $x \in \mathbf{R}$.

Then x - x = 0 and $0 \in \mathbb{Z}$, so $x \mathscr{R} x$ for all $x \in \mathbb{R}$.

To see that \mathcal{R} is symmetric, let $a, b \in \mathbf{R}$.

Suppose $a\mathcal{D}b$. Then $a - b \in \mathbf{Z}$, say a - b = m where $m \in \mathbf{Z}$.

Then b - a = -(a - b) = -m and $-m \in \mathbf{Z}$ Thus, $b \mathcal{R} a$.

For any $a, b \in \mathbf{R}$, $a \mathcal{R} b = b \mathcal{R} a$

To see that \mathcal{R} is **transitive**, let $a, b, c \in \mathbf{R}$.

Suppose that $a\mathcal{B}b$ and $b\mathcal{B}c$. Thus $a - b \in \mathbf{Z}$, and $b - c \in \mathbf{Z}$.

Suppose a - b = m and b - c = n, where $m, n \in \mathbb{Z}$.

Then a - c = (a-b) + (b-c) = m + n.

Now $m + n \in \mathbb{Z}$, it means $a - c \in \mathbb{Z}$. Therefore $a \mathcal{R} c$.

For any $a, b, c \in \mathbb{R}$, $a \mathcal{R} b$ and $b \mathcal{R} c => a \mathcal{R} c$

It now follows that \mathcal{R} is an equivalence relation on the set \mathbf{R} .

5. For each of the following functions, determine whether it is one-to-one and determine its range.

a)
$$f: \mathbb{Z} \to \mathbb{Z}, f(x) = 2x + 1$$

b)
$$f: \mathbf{R} \to \mathbf{R}, f(x) = e^x$$

c)
$$f: [0, \pi] \rightarrow \mathbf{R}, f(x) = \sin x$$

a)
$$f: \mathbb{Z} \to \mathbb{Z}, f(x) = 2x + 1$$

$$f(x_1) = f(x_2) \implies 2x_1 + 1 = 2x_2 + 1 \implies 2x_1 = 2x_2 \implies x_1 = x_2$$

One-to-one

Range is set of all odd integers.

b)
$$f: \mathbf{R} \to \mathbf{R}, f(x) = e^x$$

For each value of y, there is a unique x, such that f(x) = y. Thus, **One-to-one.** Range is \mathbf{R}^+ or (0, +)

c)
$$f: [0, \pi] \to \mathbf{R}, f(x) = \sin x$$

Let $x_1 = 0$, $f(0) = \sin(0) = 0$, $x_2 = \pi$, $f(\pi) = \sin(\pi) = 0$, $f(x_1) = f(x_2)$ but $x_1 \neq x_2$. Not One-to-one

Range is range is [0, 1].

- 6. Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$.
 - (a) How many functions are there from A to B?How many of these are one-to-one?How many are onto?
 - (b) How many functions are there from B to A?
 How many of these are onto?
 How many are one-to-one?

(a) There are $6^4 (= |B|^{|A|})$ functions from A to B.

There are
$$P(|B|, |A|) = \frac{6!}{2!} = \frac{6 \times 5 \times 4 \times 3 \times 2}{2} = 360$$

one-to-one functions from A to B.

There is no/zero onto function from A to B, because $|B| \ge |A|$.

(b) There are $4^6 (= |A|^{|B|})$ functions from B to A.

There are 1560 onto functions from *B* to *A*.

$$\sum_{k=0}^{4} (-1)^k {4 \choose 4-k} (4-k)^6 = 1560$$

There is no/zero one-to-one function from B to A, because $|B| \le |A|$.

7.

Let $g: \mathbb{N} \to \mathbb{N}$ be defined by g(n) = 2n. If $A = \{1, 2, 3, 4\}$ and $f: A \to \mathbb{N}$ is given by

$$f = \{(1, 2), (2, 3), (3, 5), (4, 7)\},\$$

find $g \circ f$.

$$g \circ f = \{ (1, 4), (2, 6), (3, 10), (4, 14) \}$$

- 8. Let $f, g: \mathbb{Z}^+ \to \mathbb{Z}^+$ where for all $x \in \mathbb{Z}^+$, f(x) = x + 1 and $g(x) = \max\{1, x 1\}$, the maximum of 1 and x 1.
 - **a)** Is g an onto function?
 - **b**) Is the function g one-to-one?
 - c) Show that $g \circ f = 1_{\mathbb{Z}^+}$.

- a) For each value y in Z^+ , there is a corresponding value x in Z^+ such that g(x) = y. E.g. if y = 7, then x = 8. Thus, g is an onto function.
- b) We have g(1) = 1 = g(2), but $1 \neq 2$, so g is not one-to-one.

c) For all
$$x \in \mathbf{Z}^+$$
, $(g \circ f)(x) = g(f(x))$
= $g(x+1)$
= $\max\{1, (x+1) - 1\}\}$
= $\max\{1, x\} = x$

Here $x \in \mathbf{Z}^+$, thus $(g \circ f) = \mathbf{1}_{\mathbf{Z}^+}$

1. Prove Theorem 5.1 (c)

對任意集合 $A \cdot B \cdot C \subseteq \mathcal{U}$:

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

For $a, b \in \mathcal{U}$.
 $(a, b) \in (A \cap B) \times C$
 $(a, b) \in (A \cap B) \times C$
 $(a \in A) \wedge (a \in B) \wedge (b \in C)$
 $(a \in A) \wedge (a \in B) \wedge (b \in C)$
 $(a \in A) \wedge (a \in B) \wedge (a \in B) \wedge (b \in C)$
 $(a \in A) \wedge (a \in B) \wedge (a \in B) \wedge (a \in B) \wedge (a \in C)$
 $(a, b) \in (A \times C) \wedge (a, b) \in (B \times C)$
 $(a, b) \in (A \times C) \cap (B \times C)$
 $(a, b) \in (A \times C) \cap (B \times C)$

- 2. If $A = \{1, 2, 3, 4\}$, give an example of a relation \Re on A that is
 - a) reflexive and symmetric, but not transitive
 - b) reflexive and transitive, but not symmetric
 - c) symmetric and transitive, but not reflexive
 - Reflexive and symmetric, but not transitive examples are

$$\mathcal{R} = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (2,3), (3,2)\}\$$

 $\mathcal{R} = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (1,4), (4,1)\}\$

b) Reflexive and transitive, but not symmetric examples are

$$\mathcal{R} = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,3), (1,3)\}\$$

 $\mathcal{R} = \{(1,1), (2,2), (3,3), (4,4), (1,2)\}$

c) Symmetric and transitive, but not reflexive examples are

$$\mathcal{R} = \{(1,2), (2,1), (1,1)\}\$$

 $\mathcal{R} = \{(1,1), (2,2), (1,2), (2,1)\}\$

- 3. a) Rephrase the definitions for the reflexive, symmetric, transitive, and antisymmetric properties of a relation \Re (on a set A), using quantifiers.
 - **b)** Use the results of part (a) to specify when a relation \Re (on a set A) is (i) *not* reflexive; (ii) *not* symmetric; (iii) *not* transitive; and (iv) *not* antisymmetric.

```
a)
             reflexive if \forall x \in A(x,x) \in \mathcal{R}
   ii.
             symmetric if \forall x, y \in A[(x, y) \in \mathcal{R} \implies (y, x) \in \mathcal{R}]
  iii.
             transitive if \forall x, y, z \in A[(x, y), (y, z) \in \mathcal{R} \implies (x, z) \in \mathcal{R}]
             antisymmetric if \forall x, y \in A \ [(x, y), (y, x) \in \mathcal{R} \implies x = y]
  iv.
b)
    i.
             not reflexive if \exists x \in A(x,x) \notin \mathcal{R}
   ii.
             not symmetric if \exists x, y \in A[(x, y) \in \mathcal{R} \land (y, x) \notin \mathcal{R}]
             not transitive if \exists x, y, z \in A[(x, y), (y, z) \in \mathcal{R} \land (x, z) \notin \mathcal{R}]
  iii.
             not antisymmetric if \exists x, y \in A[(x, y), (y, x) \in \mathcal{R} \land x \neq y]
  iv.
```

4. If $A = \{w, x, y, z\}$, determine the number of relations on A that are (a) reflexive; (b) symmetric; (c) reflexive and symmetric; (d) reflexive and contain (x, y); (e) symmetric and contain (x, y); (f) antisymmetric; (g) antisymmetric and contain (x, y); (h) symmetric and antisymmetric; and (i) reflexive, symmetric, and antisymmetric.

(a)
$$\binom{4}{2} = \frac{4!}{2!2!} = 6$$

 $2^{6 \times 2} = 2^{12}$

- (b) $2^4 \times 2^6 = 2^{10}$
- (c) 2^6
- (d) 2^{11}
- (e) $2^4 \times 2^5 = 2^9$

- (f) $2^4 \times 3^6$
- (g) $2^4 \times 3^5$
- (h) 2^4
- (i) 1

- 5. Let $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$.
 - (a) List a possible function from A to B.
 - (b) How many functions $f: A \rightarrow B$ are there?
 - (c) How many functions $f: A \to B$ are one-to-one? (d) How many functions $g: B \to A$ are there? (e) How many functions $g: B \to A$ are one-to-one? (f) How many functions $f: A \to B$ satisfy f(1) = x? (g) How many functions $f: A \to B$ satisfy f(1) = f(2) = x? (h) How many functions $f: A \to B$ satisfy f(1) = x and f(2) = y?
 - (a) $\mathcal{F} = \{(1, b), (2, b), (3, b), (4, b)\}$, where $b \in \{x, y, z\}$
 - (b) 3^4
 - (c) 0
 - (d) 4^3
 - (e) $4 \times 3 \times 2 = 24$
 - (f) 3^3
 - (g) 3^2
 - (h) 3^2

6. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{6, 7, 8, 9, 10, 11, 12\}$. How many functions $f: A \to B$ are such that $f^{-1}(\{6, 7, 8\}) = \{1, 2\}$?

Since
$$f^{-1}(\{6,7,8\}) = \{1,2\}$$

 $f\{(1,b),(2,b),(3,c),(4,c),(5,c)\}$
 $b \in \{6,7,8\}$, $c \in \{9,10,11,12\}$
 $3^2 \times 4^3 = 576$

7. Let $f: A \to B$, with $A_1, A_2 \subseteq A$. Then prove that $f(A_1 \cup A_2) = f(A_1) \cup f(A_2);$

For
$$b \in B$$
, $b \in f(A, UA_2)$
 $\Rightarrow b = f(a)$ for some $a \in (A_1 UA_2)$
 $\Rightarrow b = f(a)$ for some $(a \in A_1) \vee (a \in A_2)$
 $\Rightarrow (b = f(a))$ for some $a \in A_1 \vee (b = f(a))$ for some $a \in A_2$
 $\Rightarrow b \in f(A_1) \vee b \in f(A_2)$
 $\Rightarrow b \in f(A_1) \vee f(A_2)$

Thus, $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$