CS344: Design and Analysis of Computer Algorithms

Homework 1

Group Members: Stephen Kuo, Derek Mui

1) In each of the following situations, indicate whether f = O(g), or $f = \Omega(g)$, or both (in which case $f = \Theta(g)$).

Answer:

- (a) f(n) = n 100 and g(n) = n 200Both are O(n), so $f = \Theta(g)$
- (b) $f(n) = n^{1/2}$ and $g(n) = n^{2/3}$ Since they're both power s of n, compare the powers. $\frac{1}{2} < \frac{2}{3}$ so f = O(g)
- (c) $f(n) = 100n + \log n$ and $g(n) = n + (\log n)^2$ They are both O(n) so $f = \Theta(g)$
- (d) $f(n) = n \log n$ and $g(n) = 10n \log 10n$ They are both $O(\log n)$ so $f = \Theta(g)$
- (e) $f(n) = \log 2n$ and $g(n) = \log 3n$ They are both $O(\log n)$ so $f = \Theta(g)$
- (f) $f(n) = 10 \log n$ and $g(n) = \log (n^2)$ Both are $O(\log n)$ so $f = \Theta(g)$
- (g) $f(n) = n^{1.01}$ and $g(n) = n\log^2 n$ If both sides are divided by n we then need to compare $n^{0.01}$ and $\log^2 n$. Ultimately, the power function wins, so $f = \Omega(g)$
- (h) $f(n) = \frac{n^2}{\log n}$ and $g(n) = n(\log n)^2$ Divide both sides by $\frac{n}{\log n}$ and we will only need to compare n and $(\log n)^3$. The result is $f = \Omega(g)$
- (i) $f(n) = n^0.1$ and $g(n) = (\log n)^{10}$ Similar to problems g and h, $f = \Omega(g)$
- (j) $f(n) = (log n)^{log n}$ and $g(n) = \frac{n}{log n}$ The function $f(n) = n^{log log n}$, thus $f = \Omega(g)$

(k)
$$f(n) = \sqrt{n}$$
 and $g(n) = (log n)^3$
Again, $f = \Omega(g)$

(l)
$$f(n) = n^{1/2}$$
 and $g(n) = 5^{\log_2 n}$
 $g(n) = n^{\log_2 5} \approx n^{2.32}$ thus, $f = O(g)$

(m)
$$f(n) = n2^2$$
 and $g(n) = 3^n$
 $\lim_{n \to +\infty} \frac{n*2^n}{3^n} = \frac{n}{1.5^n} \Rightarrow f = O(g)$

(n)
$$f(n) = 2^n$$
 and $g(n) = 2^{n+1}$
Here, $f = \Theta(g)$

(o)
$$f(n) = n!$$
 and $g(n) = 2^n$
It seems that $n! > \sqrt{2\pi n(\frac{n}{e})^n}$. Thus, $f = O(g)$

(p)
$$f(n) = (\log n)^{\log n}$$
 and $g(n) = 2^{(\log_2 n)^2}$
The function $f(n) = n^{\log \log n}$ and the function $g(n) = (2^{\log_2 n})^{\log_2 n} = n^{\log_2 n}$. Thus, $f = O(g)$

(q)
$$f(n) = \sum_{i=1}^n i^k$$
 and $g(n) = n^{k+1}$
 $f(n) = 1^k + 2^k + ... + n^k \le n^k + n^k + ... n^k = n * n^k = n^{k+1} = g(n) \Rightarrow f(n) = O(g(n))$

Also: $f(n) = 1^k + 2^k + \ldots + (\frac{n}{2})^k + (\frac{n}{2} + 1)^k + \ldots + n^k \geq \frac{n^k}{2^k} + \frac{n^k}{2^k} + \ldots + \frac{n^k}{2^k} = \frac{n}{2} * \frac{1}{2^k} * n^k = n^{k+1} * \frac{1}{2^{k+1}} \Rightarrow f = \Omega(g)$

Thus,
$$f = \Theta(g)$$

- 2) Show that, if c is a positive real number, then $g(n)=1+c+c^2+\ldots+c^n$ is:
 - (a) $\Theta(1)$ if c < 1
 - (b) $\Theta(1)$ if c=1
 - (c) $\Theta(1)$ if c > 1

Answer:

If c = 1, $g(n) = 1 + 1 + ... + 1 = n + 1 = \Theta(n)$. Otherwise:

$$g(n) = \frac{c^{n+1}-1}{c-1} = \frac{1-c^{n+1}}{1-c}$$

If
$$c < 1$$
, then $1 - c < 1 - c^{n+1} < 1$. So, $1 < g(n) < \frac{1}{1-c}$. Thus, $g(n) = \Theta(1)$ If $c > 1$, then $c^{n+1} > c^{n+1} - 1 > c^n$. So, $\frac{c^n}{1-c} < g(n) < \frac{c}{1-c} * c^n$. Thus, $g(n) = \Theta(c^n)$

3) Determine the number of paths of length 2 in a complete graph of n nodes. Give your answer in Big-O notation as a function of n.

Answer: If a graph has 3 vertices, then there are 3 paths of length 2 on that particular graph. Thus, that gives us $3\binom{a}{b}$