

Problem R-84P . The compound $C_{17}H_{27}NO_3Si$ whose 270 MHz ¹ H NMR spectrum (CDCl ₃) is shown has part structures:
$-OSi(CH_3)_2C(CH_3)_3$ O O O O
(a) DBE
(b) Identify additional part structures from the NMR spectrum. Give chemical shifts and coupling constants.
(c) Irradiation of the signal at δ 5.7 leads to an increase in area of the signal at δ 3.5 of 24%. However, irradiation of the signal at δ 1.9 leads to no change of the signal at δ 3.5. What experiment is being done here, and what does it tell you about the structure of R-84P ?
(d) Give a complete structure of R-84P below and make a note of any additional structural ambiguities (if any) that remain. Assign signals.
(e) Explain the origin of the closely spaced doublet at δ 0 (the sample contains no tetramethylsilane).

Problem R-84P. The compound $C_{17}H_{27}NO_3Si$ whose 270 MHz ¹H NMR spectrum (CDCl₃) is shown has part structures:

$$-OSi(CH_3)_2C(CH_3)_3$$
(a) DBE 6

(b) Identify additional part structures from the NMR spectrum. Give chemical shifts and coupling constants.

(c) Give a complete structure of **R-84P** below and make a note of any additional structural ambiguities (if any) that remain. Assign signals.

(d) Irradiation of the signal at δ 5.7 leads to an increase in area of the signal at δ 3.5 of 24%. However, irradiation of the signal at δ 1.9 leads to no change of the signal at δ 3.5. What experiment is being done here, and what does it tell you about the structure of **R-84P**?

This is a Nuclear Overhauser Effect (NOE) experiment. It tells us that the δ 5.7 and δ 3.5 protons are close in space (i.e., double bond stereochemistry is as shown), and that the proton at δ 5.7 causes a large part of the relaxation of δ 3.5. The protons at δ 1.9 are not very close to δ 3.5 proton.

(e) Explain the origin of the closely spaced doublet at δ 0 (the sample contains no tetramethylsilane).

The molecule is chiral, and hence the gem-dimethyl groups on silicon are diastereotopic.

