

## First Semester 2023-24 Data Structures and Algorithms Design (Merged-SEZG519/SSZG519) Exercises (Analyzing Algorithms)

1. Use Master's theorem to solve the following division functions.

a. 
$$T(n) = 3T(n/2) + n^2$$

$$T(n) = aT(n/b) + g(n)$$
 where  $g(n) = n^k \log^p n$ 

$$a = 3, b = 2, g(n) = n^2 \Rightarrow so k = 2, p = 0$$

$$a < b^k$$
 and  $p >= 0 \Rightarrow O(n^k \log^p n) = O(n^2)$ 

b. 
$$T(n) = 4T(n/2) + n^2$$

$$T(n) = aT(n/b) + g(n)$$
 where  $g(n) = n^k \log^p n$ 

$$a = 4$$
,  $b = 2$ ,  $g(n) = n^2 \Rightarrow so k = 2$ ,  $p = 0$ 

$$a = b^k$$
 and  $p > -1 \implies O(n^k \log^{p+1} n) = O(n^2 \log n)$ 

c. 
$$T(n) = 16T(n/4) + n$$

$$T(n) = aT(n/b) + g(n)$$
 where  $g(n) = n^k \log^p n$ 

$$a = 16, b = 4, g(n) = n \Rightarrow so k = 1, p = 0$$

$$a > b^k \Rightarrow O(n^{\log_b a}) = O(n^{\log_4 16}) = O(n^2)$$

d. 
$$T(n) = 2T(n/2) + n\log n$$

$$T(n) = aT(n/b) + g(n)$$
 where  $g(n) = n^k \log^p n$ 

$$a = 2$$
,  $b = 2$ ,  $g(n) = nlogn \Rightarrow so k = 1$ ,  $p = 1$ 

$$a = b^k$$
 and  $p > -1 \implies O(n^k \log^{p+1} n) = O(n \log^2 n)$ 

e. 
$$T(n) = 2T(n/4) + n^{0.51}$$

$$T(n) = aT(n/b) + g(n)$$
 where  $g(n) = n^k \log^p n$ 

$$a = 2$$
,  $b = 4$ ,  $g(n) = n^{0.51} \Rightarrow so k = 0.51$ ,  $p = 0$ 

$$a < b^k$$
 and  $p >= 0 \Rightarrow O(n^k \log^p n) = O(n^{0.51})$ 

f. 
$$T(n) = \sqrt{2T(n/2)} + \log n$$

$$T(n) = aT(n/b) + g(n)$$
 where  $g(n) = n^k \log^p n$ 

$$a = \sqrt{2}$$
,  $b = 2$ ,  $g(n) = log n \Rightarrow so k = 0$ ,  $p = 1$ 

$$a > b^k$$
 and  $p >= 0 \implies O(n^{\log_b a}) = O(n^{\log_2 \sqrt{2}}) = O(n^{0.5})$ 



g. 
$$T(n) = 6T(n/3) + n^2 \log n$$
  
 $T(n) = aT(n/b) + g(n)$  where  $g(n) = n^k \log^p n$   
 $a = 6, b = 3, g(n) = n^2 \log n \Rightarrow \text{so } k = 2, p = 1$   
 $a < b^k \text{ and } p >= 0 \Rightarrow O(n^k \log^p n) = O(n^2 \log n)$ 

- 2. Use Master's theorem to solve the following decreasing functions.
  - a. T(n) = 0.5T(n-1) + n

$$T(n) = aT(n-b)+g(n)$$
, where  $g(n) = n^k$   
 $a = 0.5$ ,  $b = 1$ ,  $g(n) = n \Rightarrow$  so  $k = 1$   
 $a < 1$ ,  $O(n^k) = O(n)$ 

b. 
$$T(n) = 2/3T(n-1) + n^2$$

$$T(n) = aT(n-b)+g(n)$$
, where  $g(n) = n^k$   
 $a = 2/3$ ,  $b = 1$ ,  $g(n) = n^2 \Rightarrow$  so  $k = 2$   
 $a < 1$ ,  $O(n^k) = O(n^2)$ 

c. 
$$T(n) = T(n-1) + n^2$$

$$T(n) = aT(n-b)+g(n)$$
, where  $g(n) = n^k$   
 $a = 2/3$ ,  $b = 1$ ,  $g(n) = n^2 \Rightarrow$  so  $k = 2$   
 $a = 1$ ,  $O(n^{k+1}) = O(n^3)$ 

d. 
$$T(n) = 2T(n-1) + n^2$$

$$T(n) = aT(n-b)+g(n)$$
, where  $g(n) = n^k$   
 $a = 2, b = 1, g(n) = n^2 \Rightarrow \text{so } k = 2$ 

$$a > 1$$
,  $O(n^k a^{n/b}) = O(n^2 2^n)$ 

e. 
$$T(n) = 3T(n-2) + n$$

$$T(n) = aT(n-b)+g(n)$$
, where  $g(n) = n^k$   
 $a = 3$ ,  $b = 2$ ,  $g(n) = n \Rightarrow \text{so } k = 1$   
 $a > 1$ ,  $O(n^k a^{n/b}) = O(n 3^{n/2})$