

APPLIED ALGORITHMS

GREEDY ALGORITHMS

ONE LOVE. ONE FUTURE.

CONTENT

- Basis of Greedy algorithms
- Coin exchange
- Knapsack
- Disjoint segments

Basis of Greedy algorithms

- Notations
 - S: solution under construction
 - C: set of candidates
 - select(C): select a potential candidate for inserting to the solution
 - *solution(S)*: return TRUE if S is a complete accepted solution, and return FALSE, otherwise
 - *feasible(S)*: return TRUE if *S* does not violate given constraints, and return FALSE, otherwise

```
Greedy() {
  S = \emptyset;
  while C \neq \emptyset and not solution(S){
     x = select(C);
     C = C \setminus \{x\};
     if feasible(S \cup \{x\}) {
        S = S \cup \{x\};
  return S;
```

Basis of Greedy algorithms

- Travelling Salesman Problem (TSP)
 - Find the shortest closed tour starting from point 1, visiting 2, . . ., n (each point is visited exactly once) and coming back to 1.
 - Nearest neighbor selection
 - At each step, find the nearest point to the current point (the last point of the solution under construction)

```
GreedyTSP() {
  S = [1]; cur = 1;
  C = \{2, 3, \ldots, n\};
  while C \neq \emptyset do {
    x = selectNearest(C, cur);
    C = C \setminus \{x\};
    S = S::x; // append S with x
    cur = x;
  return 5;
```

Basis of Greedy algorithms

- In general, greedy algorithms cannot ensure to find optimal solutions in all cases
- In some cases, there exist greedy algorithms and can find optimal solutions
 - Coin exchange with denominations 1, 2, 5, 10
 - Disjoint segments
 - Kruskal, Prim algorithms for finding minimum spanning tree of a given undirected weighted graph
 - Huffman code

Coin exchange problem

• Given coins of denominations 1, 2, 5, 10. Given a positive integer Y, how to get an amount of money Y from the coins such that the number of coins used is minimal.

```
Greedy(Y) {
 D = [1, 2, 5, 10];
  res = [];
 while Y > 0 do {
    x = select max item from D such that x \le Y;
    Y = Y - X;
    res = res::x; // append res with x
  return res;
```

Knapsack Problem

• There are n items $S = \{1, 2, 3, ..., n\}$. Item j has weight W_j and value C_j (j = 1, 2, ..., n). Given a bin with capacity B. Select a subset S of items from the given items such that the sum of weights of items of S is not greater than B and the sum of values of the items is maximal.

- Sort the items in a non-increasing of values
- Explore the items from left to right in the sorted list, select the item if it can be inserted into the bin without violating the capacity constraint

```
Greedy1(B, W, C) {
  L = sort items in a non-increasing of values;
  res = \{\};
  for j in L do {
    if W_i <= B then {
      res = res \cup {j}; B = B - W_j;
  return res;
```

- Counter example
- Number of items n = 3
- Capacity of the bin *B* = 19

Items	1	2	3
C_i	20	16	8
W_i	14	6	10

- Solution returned by Greedy1: $S_1 = \{1\}$ with total values 20
- Optimal solution $S^* = \{2, 3\}$ with total values 24

- Sort the items in a non-decreasing of weights
- Explore the items from left to right in the sorted list, select the item if it can be inserted into the bin without violating the capacity constraint

```
Greedy2(B, W, C) {
  L = sort items in a non-decreasing of weights;
  res = \{\};
  for j in L do \{
    if W_i <= B then {
      res = res \cup {j}; B = B - W_j;
  return res;
```

- Counter example
- Number of items n = 3
- Capacity of the bin *B* = 11

Items	1	2	3
C_{j}	10	16	28
W_j	5	6	10

- Solution returned by the Greedy2: $S_2 = \{1, 2\}$ with total values 26
- Optimal solution $S^* = \{3\}$ with total values 28

 Sort the items in a non-increasing of weights:

$$\frac{C_1}{W_1} \ge \frac{C_2}{W_2} \ge \dots \frac{C_n}{W_n}$$

 Explore the items from left to right in the sorted list, select the item if it can be inserted into the bin without violating the capacity constraint

```
Greedy3(B, W, C) {
  L = sort items in a non-increasing of \frac{c_i}{w};
  res = \{\};
  for j in L do \{
    if W_i \leftarrow B then {
       res = res \cup {j}; B = B - W_j;
  return res;
```

- Counter example
- Number of items n = 2
- Capacity of the bin $B \ge 2$

Item	1	2
C_{i}	10	10B - 1
W_i	1	В

- Clearly: $\frac{C_1}{W_1} = \frac{10}{1} \ge \frac{10B-1}{B} = \frac{C_2}{W_2}$
- Solution returned by the Greedy3: $S_3 = \{1\}$ with value 10
- Optimal solution $S^* = \{2\}$ with value 10B 1

- Let S_j be the solution obtained by Greedyj, (j = 1, 2, 3). Let S_4 be the best solution among S_1, S_2, S_3 :
- Then we have $\sum_{i \in S_4} Ci \ge \frac{1}{2} OPT$ (in which OPT is the total values of the optimal solution)

- Counter example
- Number of items n = 4
- Capacity of the bin *B* = 11

Items	1	2	3	4
C_i	9	10	18	27
W_i	4	5	6	10
C_i/W_i	2.25	2	3	2.7
Greedyi	27	19	27	7

- Solution returned by the Greedy4 has value 27
- Optimal solution $S^* = \{2, 3\}$ with value 28

Disjoint segments

- There are n jobs 1, 2, . . ., n. Job j starts at time-point S_j and finishes at time-point F_j
- Two jobs i and j are compatible if $[S_i, F_i]$ and $[S_i, F_i]$ are not overlap.
- Goal: Find a subset of the given jobs such that all pair of two jobs of the are pairwise compatible.

Greedy algorithm ideas

- Greedy 1: Sort the jobs in non-decreasing order of start time S_i .
- Greedy 2: Sort the jobs in non-decreasing order of finish time F_i .
- Greedy 3: Sort the jobs in non-decreasing order of duration $F_i S_i$.
- Greedy 4: Sort the jobs in non-decreasing order of conflict (conflict of a job j is the number of jobs that are not compatible with j)

Greedy algorithm ideas

Counter examples

Greedy 4

Disjoint segments: Greedy 2 is correct

- Algorithm Greedy 2 ensures to find an optimal solution
- Độ phức tạp O(nlog n)

```
Greedy2([S_1, F_1], . . ., [S_n, F_n]) {
  L = sort segments in a non-decreasing of F_i;
  res = \{\};
  for j in L do {
    if [S_j, F_j] is compatible with segments in res then {
      res = res \cup \{j\};
  return res;
```

HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!