A pipeline to analyse PASP data

Reference

This repository contains the pipeline and raw results described in the manuscript:

Botond Sipos, Adrian M. Stütz, Greg Slodkowicz, Tim
 Massingham, Jan Korbel, Nick Goldman: PASP - a whole transcriptome poly(A) tail length determination assay for the
 Illumina platform.

Click <u>here</u> for more details on the wetlab experiment.

Using the pipeline

The pipeline can be used by invoking the following make targets:

- Fetch raw data from ENA: make fetch
- Generate transcriptome from SGD annotation: make transcriptome
- Align and parse reads: make parse
- Test for differential polyadenylation: make test or make
 lsf test
- Parse spike-in reads (make parse_spikeins) and build "error model" (make error_model)

- Filter test results by G-tail coverage: make gtail cov filter
- Plot correlation between technical replicates: make gtail tech corr
- Plot and cluster tail length distributions: make classify_tail_dists
- Correlate thresholded tail lengths with PASTA and PAL-seq:
 make corr_with_studies

Index of selected raw results

Illumina reads

Sequencing data are available in the <u>ArrayExpress database</u> under accession number E-MTAB-2456.

Alignment

Sample	Alignment log	Alignment report
WT1A	http://bit.ly/PAT-seq- WT1A_aln_log	http://bit.ly/PAT-seq- WT1A_align_pdf
WT1B	http://bit.ly/PAT-seq- WT1B_aln_log	http://bit.ly/PAT-seq- WT1B_align_pdf
WT1C	http://bit.ly/PAT-seq- WT1C_aln_log	http://bit.ly/PAT-seq- WT1C_align_pdf`

WT1D	http://bit.ly/PAT-seq- WT1D_aln_log	http://bit.ly/PAT-seq- WT1D_align_pdf
WT2A	http://bit.ly/PAT-seq- WT2A_aln_log	http://bit.ly/PAT-seq- WT2A_align_pdf
WT2B	http://bit.ly/PAT-seq- WT2B_aln_log	http://bit.ly/PAT-seq- WT2B_align_pdf
WT2C	http://bit.ly/PAT-seq- WT2C_aln_log	http://bit.ly/PAT-seq- WT2C_align_pdf
WT2D	http://bit.ly/PAT-seq- WT2D_aln_log	http://bit.ly/PAT-seq- WT2D_align_pdf
MUT1A	http://bit.ly/PAT-seq- MUT1A_aln_log	http://bit.ly/PAT-seq- MUT1A_aln_pdf
MUT1B	http://bit.ly/PAT-seq- MUT1B_aln_log	http://bit.ly/PAT-seq- MUT1B_aln_pdf
MUT1C	http://bit.ly/PAT-seq- MUT1C_aln_log	http://bit.ly/PAT-seq- MUT1C_aln_pdf`
MUT1D	http://bit.ly/PAT-seq- MUT1D_aln_log	http://bit.ly/PAT-seq- MUT1D_aln_pdf
	http://bit.ly/PAT-seq-	http://bit.ly/PAT-seq-

MUT2A	MUT2A_aln_log	MUT2A_aln_pdf
MUT2B	http://bit.ly/PAT-seq- MUT2B_aln_log	http://bit.ly/PAT-seq- MUT2B_aln_pdf
MUT2C	http://bit.ly/PAT-seq- MUT2C_aln_log	http://bit.ly/PAT-seq- MUT2C_aln_pdf
MUT2D	http://bit.ly/PAT-seq- MUT2D_aln_log	http://bit.ly/PAT-seq- MUT2D_aln_pdf

Parsing alignments

Sample	Parse log	Parse report
WT1A	http://bit.ly/PAT-seq- WT1A_parse_log	http://bit.ly/PAT-seq- WT1A_parse_pdf
WT1B	http://bit.ly/PAT-seq- WT1B_parse_log	http://bit.ly/PAT-seq- WT1B_parse_pdf
WT1C	http://bit.ly/PAT-seq- WT1C_parse_log	http://bit.ly/PAT-seq- WT1C_parse_pdf
WT1D	http://bit.ly/PAT-seq- WT1D_parse_log	http://bit.ly/PAT-seq- WT1D_parse_pdf
WT2A	http://bit.ly/PAT-seq-	http://bit.ly/PAT-seq-

	WT2A_parse_log	WT2A_parse_pdf
WT2B	http://bit.ly/PAT-seq- WT2B_parse_log	http://bit.ly/PAT-seq- WT2B_parse_pdf
WT2C	http://bit.ly/PAT-seq- WT2C_parse_log	http://bit.ly/PAT-seq- WT2C_parse_pdf
WT2D	http://bit.ly/PAT-seq- WT2D_parse_log	http://bit.ly/PAT-seq- WT2D_parse_pdf
MUT1A	http://bit.ly/PAT-seq- MUT1A_parse_log	http://bit.ly/PAT-seq- MUT1A_parse_pdf
MUT1B	http://bit.ly/PAT-seq- MUT1B_parse_log	http://bit.ly/PAT-seq- MUT1B_parse_pdf
MUT1C	http://bit.ly/PAT-seq- MUT1C_parse_log	http://bit.ly/PAT-seq- MUT1C_parse_pdf
MUT1D	http://bit.ly/PAT-seq- MUT1D_parse_log	http://bit.ly/PAT-seq- MUT1D_parse_pdf
MUT2A	http://bit.ly/PAT-seq- MUT2A_parse_log	http://bit.ly/PAT-seq- MUT2A_parse_pdf
MUT2B	http://bit.ly/PAT-seq- MUT2B_parse_log	http://bit.ly/PAT-seq- MUT2B_parse_pdf

MUT2C	http://bit.ly/PAT-seq-	http://bit.ly/PAT-seq-
110120	MUT2C_parse_log	MUT2C_parse_pdf
MUT2D	http://bit.ly/PAT-seq-	http://bit.ly/PAT-seq-
WIU 12D	MUT2D_parse_log	MUT2D_parse_pdf

Quantifying tail length slippage using spike-in standards

• Tail run lengths until the first 1-5 non-A bases in reads mapped to spike-in poly(A) tracts PDF

Testing differences between wild type and mutant tail runs

Comparison	Test log	Test report	Results
WT1 vs. MUT1	TXT	<u>PDF</u>	<u>CSV</u>
WT2 vs. MUT2	TXT	<u>PDF</u>	CSV

Tail run distributions from all transcripts with G-tail coverage > 1000

- <u>WT1</u>
- <u>WT2</u>
- <u>MUT1</u>

Cross-study correlation

| WT1 vs. MUT1 | http://bit.ly/PAT-seq-TEST_WT1_vs_MUT1_log |
http://bit.ly/PAT-seq-TEST_WT1_vs_MUT1_pdf | http://bit.ly/PAT-seqTEST_WT1_vs_MUT1_trs_tab | WT2 vs. MUT2 | http://bit.ly/PAT-seqTEST_WT2_vs_MUT2_log | http://bit.ly/PAT-seq-TEST_WT2_vs_MUT2_pdf |
http://bit.ly/PAT-seq-TEST_WT2_vs_MUT2_trs_tab |

Tail run distributions from all transcripts with G-tail coverage > 1000

- WT1: http://bit.ly/PAT-seq-CLS WT1 pdf
- WT2: http://bit.ly/PAT-seq_CLS_WT2_pdf
- MUT1: http://bit.ly/PAT-seq-CLS MUT1 pdf
- MUT2: http://bit.ly/PAT-seq-CLS_MUT2_pdf

Cross-study correlation

- PAL total vs. WT1: http://bit.ly/PAT seq PAL total vs WT1 pdf
- PAL total vs. WT2: http://bit.ly/PAT-seq PAL total vs WT2 pdf
- PAL_total vs. PASTA: http://bit.ly/PAT-seq-PAL total vs PASTA pdf

Dependencies

- Platform LSF
- Python 2.x
- numpy >= 1.6.2
- $\underline{\text{matplotlib}} >= 1.1.0$
- $\underline{\text{scipy}} >= 0.10.1$
- biopython >= 1.60
- <u>Bowtie2</u> >= 2.1.0
- samtools >= 0.1.19+
- wget

Using the analysis tools

The analysis tool can be found under patsy/:

patsy-align - classify read pairs and align them using Bowtie2

```
-h, --help
                   show this help message and exit
  -1 fq1
                   First FASTQ file.
  -2 fq2
                   Second FASTO file.
  -f ref
                   Reference fasta.
  -o outdir
                   Output directory.
  -s stats pickle Stats pickle file.
                   Portion of read start/end used for G-tai
  -l gtail sig
l classification
                   (14).
  -G gtag min
                   Minimum G-tag length(3).
                   Maximum number of Ns in the first -l bas
  -N max N
es (6).
  -I min fsize
                   Minimum fragment size (0).
  -X max fsize
                   Maximum fragment size (500).
  -p nr threads
                   Number of threads to use (1).
                   Report PDF.
  -r report
```

patsy-parse - parse classified and aligned PASP read pairs

```
Parse classified and aligned PASP read pairs (1.1).
optional arguments:
  -h, --help show this help message and exit
  -q qtail sam
                SAM file containing G-tail alignments.
 -n nvtr sam
                SAM file containing NVTR alignments.
                Dataset identifier.
  -d dataset id
  -f ref
                Reference fasta.
  -l gtail sig
                Portion of read start/end used for G-tail
classification.
  -G gtag min
                Minimum G-tag length(3).
                Maximum number of Ns in the first -l bases
  -N max N
 (6).
                Number of errors tolerated in the tail.
  -e err tol
  -o out pickle
                Output pickle file.
  -i tr list
                List of transcripts considered.
                Mapping quality treshold (30).
  -q min q
  -r report
                Report PDF.
  -t
                 Plot per-transcript coverage reports.
```

patsy-test - test for differential polyadenylation in PASP data

```
[-P lik penalty] [-M min size U] [-s sig
level1
                  [-op out pickle] [-ot out trs] [-og out g
lobl
                  [-otr out runs prefix] [-orr out rep pref
ix] [-r report]
                  [-t]
Test for differential polyadenylation in PASP data (1.1).
optional arguments:
  -h, --help
                        show this help message and exit
  -a [a pickles [a pickles ...]]
                        Parsed read pickles - group A.
                        Name of data group A.
  -na a name
  -b [b pickles [b pickles ...]]
                        Parsed read pickles - group B.
  -nb b name
                        Name of data group B.
  -i lrt_list
                        Transcripts to be tested with ancho
rs LRT.
  -P lik penalty
                        Log-likelihood penalty for data poi
nts outside valid
                         range.
                        Minimum sample size when performing
  -M min size U
Mann-Whitney U
                        test (30).
  -s sig level
                        Significance level.
  -op out pickle
                        Output pickle file.
```

```
-ot out_trs

perties.

-og out_glob

Output tabular file: global results

-otr out_runs_prefix

Output tabular file: dail runs prefix

orr out_rep_prefix

Output tabular file: tail runs prefix

-orr out_rep_prefix

Output tabular file: tail means per

replicate.

-r report

Report PDF.

-t

Plot reports for all transcripts.
```

patsy-spike - estimate the number of sequencing errors in runs of bases.

Size of the flanking sequence around		
the run of As.		
Maximum number of errors for which to		
plot the length		
distribution.		
Output pickle file.		
-q min_q Mapping quality treshold (30).		
-r report Report PDF.		
Read length.		
Result pickle file.		