Signatures of symmetry-protected topology in Entanglement Entropy for one-dimensional systems

UP 400 – BS Project presented by Aman Anand (4th year UG, 14807)

Introduction

Motivation and Objective
Model and Methodology
Results and Discussions
Conclusions and Future Work

What is Symmetry-protected topology?

Symmetry protected topological (SPT) order is a kind of order in zero temperature quantum mechanical states of matter that have symmetry and a finite energy gap. The SPT states are short-range entangled states with a symmetry.

The SPT order has the following defining properties:

- (a) distinct SPT states with a given symmetry cannot be smoothly deformed into each other without a phase transition, if the deformation preserves the symmetry.
- (b) however, they all can be smoothly deformed into the same trivial product state without a phase transition, if the symmetry is broken during the deformation.

Example- Haldane phase of odd-integer-spin chain.

What is Entanglement Entropy?

$$|\psi\rangle = \frac{|00>+|11>}{\sqrt{2}} \neq (a_1|0>+b_1|1>) \otimes (a_2|0>+b_2|1>)$$

$$\rho_A = Tr_B[\rho]$$

$$S_{\text{Re}\,nyi}^n = \frac{1}{1-n} \log \left(Tr[\rho_A^n] \right)$$

$$S_{VN} = -Tr[\rho_A \ln \rho_A]$$

Image source: Nature **528,** 77–83 (2015)

Introduction

Motivation and Objective

Model and Methodology
Results and Discussions
Conclusions and Future Work

Motivation

Objective

To calculate correlation matrix and using that to calculate the general time evolving entanglement entropy, where we further look for signatures of SPT

Introduction
Motivation and Objective

Model and Methodology

Results and Discussions
Conclusions and Future Work

SSH Model

$$H = \sum_{i} \left[t_1(a_i^{\dagger}b_i + b_i^{\dagger}a_i) + t_2(a_{i+1}^{\dagger}b_i + b_i^{\dagger}a_{i+1}) + w_i a_i^{\dagger}a_i + w_i' b_i^{\dagger}b_i \right]$$

- 1) For $|t_1| < |t_2|$ the system is a topological insulator (TI).
- 2) For $|t_1| > |t_2|$ the system is topologically trivial
- 3) For $|t_1| = |t_2|$ there is a quantum critical point (QCP).

$$t_1 = v \& t_2 = w$$

б

Methodology

The Entanglement Entropy was calculated using the correlation matrix.

$$C_{ij} = \text{Tr}[\rho c_i^{\dagger} c_j] = \langle c_i^{\dagger} c_j \rangle = \langle \Psi | c_i^{\dagger} c_j | \Psi \rangle.$$

For non-interacting systems,

$$S_{Renyi}^{(n)} = \frac{1}{1-n} \text{Tr}[\ln[(1-C)^n + C^n]].$$

$$S_{VN} = -\text{Tr}[(1 - C)\ln(1 - C) + (C)\ln(C)].$$

For the thermal case the correlation matrix is

$$C_{ij} = \sum_{k=1}^{N} U_{ki}^{\dagger} U_{jk} \frac{1}{e^{\beta E_k} + 1}.$$

For time evolving pure state the correlation matrix is

$$C_{ij}(t) = \sum_{\alpha\beta k} U_{i\beta} U_{j\alpha}^{\dagger} U_{k\beta} U_{k\alpha}^{\dagger} n_k e^{i(E_{\beta} - E_{\alpha})t}.$$

Introduction
Motivation and Objective
Model and Methodology

Results and Discussions

Conclusions and Future Work

Entropy vs subsystem size

Entropy vs temperature

Entropy vs time

von Neumann entropy vs time

Effect of different pure states

Effect of phase transition

Effect of system size

Effect of boundary condition

Effect of disorder

Introduction
Motivation and Objective
Model and Methodology
Results and Discussion

Conclusions and Future Work

Conclusions

- ❖ The Entanglement Entropy is not a good measure for finding signature of symmetry protected topology and one must look for the signatures in low energy states.
- ❖ The boundary conditions and system size don't cause any significant change in the entangled entropy time evolution.
- ❖ Disorder causes Anderson localisation which leads to decrement of the overall entropy.

Future Work

- ❖ Taking low energy states and looking at their time evolution with phase transitions.
- Will the system approximately thermalise?
- * How will the results change when one introduces interaction.
- Looking into similar models like the Kitaev chain.

