Equipo HP

Problemas tema 2

1. Representa los siguientes valores enteros siguiendo los sistemas de representación, utilizando 8 bits para cada caso. Indica en caso de no poder representar.

number	unsigned	S-M	BCD	2C	Excess 64
35	00100011	00100011	00110101	11011101	01100011
-96	X	11100000	X	10100000	X

2. Dadas las siguientes cadenas binarias de 8 bits, determina el valor numérico que Representan. Si no representa ningún valor numérico válido indícalo

string	unsigned	S-M	2C	Excess 128	BCD
10101010	170	-42	86	42	Х
01010101	85	85	171	-43	55

- 3. Sea una representación con punto fijo de 2 bytes; un bit para el signo, un byte para el parte entero (SM) y 7 bits para el parte decimal. [-255.9921875]
 - a) Determina el rango de los valores que se puede representar.
 - b) Determina la resolución de la representación? (número decimal) 0.0078125
 - c) Determina la representación más cerca del número decimal 0.3. 0.296875

- d) Determina el error en la representación de 0.3? (número decimal) 0.003125
- e) Representa el número decimal -41.28125. (binario, 16 bits)

1 00101001 0100100

- 4. Sea una representación con punto fijo de 2 bytes; un byte para el signo y parte entera (SM) y un byte para el decimal.
 - a) Determina el rango de los valores representables [, ...] (dos números decimales)
 - b) Determina la resolución de la representación. (número decimal)
 - c) Determina la representación más cerca al número decimal 0.1. (binario, 16 bits)
 - d) Determina el error en la representación de 0.1? (número decimal)
 - e) Representa el número decimal -104.140625. (binario, 16 bits)

5. Representa el número en formato estándar de punto flotante IEEE754 de 32 bits.					
-34.8125					
6. Representa el número en formato estándar de punto flotante IEEE754 de 32 bits.					
-26.625					
7. Determina el número decimal que corresponde a la siguiente representación del					
estándar de punto flotante IEEE754 de 32 bits?					
010000100010000000000000000000000000000					
8. Determina el numero decimal que corresponde a la siguiente representación del					
estándar de punto flotante IEEE754 de 32 bits dada en hexadecimal?					
8000001					
Cadena binaria correspondiente número real representado					
9. ¿A qué números decimales corresponde la siguiente representación del estándar de					
punto flotante IEEE754 de 32 bits?					
 _					
10000000110000000000000000					
10. Representa el número en formato estándar de punto flotante IEEE754 de 32 bits.					
-0.5625					
-0.5025					
+ 2 ³ + 2 ¹⁰					

11. Genera para el numero entero 6, su representación BCD en Hamming-SEC.

D ₇	D ₆	D ₅	P ₄	D ₃	P ₂	P ₁

12. Enviada una palabra 7 bits Hamming-SEC correspondiendo a un digito BCD. No puede tener más que un bit erróneo. El test de paridad para P1 y P2 (C1 y C2) falla y sabemos que el número enviado es un 5. Da la palabra recibida.

D ₇	D ₆	D ₅	P ₄	D ₃	P ₂	P ₁
						l

13. Dado el siguiente dígito BCD crea las cadenas binarias para poder detectar y/o corregir errores según los sistemas que aparecen en la tabla.

Dígito BCD	Hamming SEC	Hamming SEC/DED
X7X6X5X3	$x_7x_6x_5p_4x_3p_2p_1$	x ₇ x ₆ x ₅ p ₄ x ₃ p ₂ p ₁ p
0111		

14. Dadas las siguientes cadenas binarias que representan dígitos BCD que han sido codificadas en Hamming SEC-DED ($x_7x_6x_5p_4x_3p_2p_1p$). determina si se ha producido error en uno o dos bits (considera despreciable la probabilidad de error en 3 bits), y si es posible, indica el dígito BCD correcto que se quería enviar ($x_7x_6x_5x_3$).

Cadena binaria	Nº de errores	Posición bit/s	Dígito BCD correcto
$x_7x_6x_5p_4x_3p_2p_1p$		erróneo/s	X7X6X5X3
00001111			
01101000			