Q1. MLE of the mean and the variance of a normal distribution.

Let $\mathbf{X} = \{X_j\}_{j=1}^n$ be a random sample of size n from $X \sim N(\mu, \sigma^2)$. The log-likelihood function of the sample has the expression:

$$\ell(\mu, \sigma^2 | \mathbf{X}) = \frac{-n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2$$

The maximum likelihood estimates of mean and variance are

$$(\mu_{(\text{MLE})}, \sigma_{(\text{MLE})}^2) = \operatorname*{arg\,max}_{(\mu, \sigma^2)} \ell(\mu, \sigma^2 \big| \mathbf{X})$$

Differentiate $\ell(\mu, \sigma^2 | \mathbf{X})$ with respect to (μ, σ^2) to find $(\mu_{\text{(MLE)}}, \sigma^2_{\text{(MLE)}})$.

Hint: treat σ^2 , instead of σ , as a variable.

Q2. MLE variance vs unbiased sample variance.

Let $\mathbf{X} = \{X_j\}_{j=1}^n$ be a random sample of size n from $X \sim N(\mu, \sigma^2)$. Derive

$$E\left(\sum_{j=1}^{n} (X_j - \mu_{\text{(MLE)}})^2\right) = (n-1)\operatorname{Var}(X), \qquad \mu_{\text{(MLE)}} = \frac{1}{n}\sum_{j=1}^{n} X_j$$

Hint: calculate $E((X_j - \mu_{\text{(MLE)}})^2)$ for a particular j (for example, j = 1).

This result shows that the MLE of variance is biased.

- **Q3.** An example of central limit theorem.
 - i) Let $X \sim \text{Bern}(p)$. Find $\phi_X(\xi)$, the CF of X.
 - ii) Let $N \sim \text{Bino}(n, p)$. Find $\phi_N(\xi)$, the CF of N.
 - iii) Let $Y = \frac{N np}{\sqrt{n}}$ where $N \sim \text{Bino}(n, p)$. Find $\phi_Y(\xi)$, the CF of Y.
 - iv) At any finite ξ , show that $\lim_{n\to+\infty} \phi_Y(\xi) = \exp(\frac{-p(1-p)\xi^2}{2})$.

Hint: use the result $\lim_{n\to+\infty} (1-\frac{q}{n})^n = e^{-q}$. Do you know how to derive this result?

Note that $\exp(\frac{-p(1-p)\xi^2}{2})$ is the CF of N(0, p(1-p)).

Q4. Evaluate the performance of sample variance vs MLE of variance.

Draw a data set of n = 10 independent samples of $X \sim N(\mu, \sigma^2)$ with $\mu = 0.6$, $\sigma = 1.3$.

(A data set) =
$$\{X_j, j = 1, 2, \dots, n\}$$

The variance can be estimated in two ways:

MLE of variance:
$$\sigma_{(\text{MLE})}^2 = \frac{1}{n} \sum_{j=1}^{n} (X_j - \hat{\mu})^2, \qquad \hat{\mu} = \frac{1}{n} \sum_{j=1}^{n} X_j$$

Sample variance:
$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \hat{\mu})^2$$

We examine the mean squared error (MSE) and mean error (ME) over M = 500000 repeats.

$$MSE = \frac{1}{M} \sum_{k=1}^{M} \left(\sigma_{(est,k)}^2 - \sigma^2 \right)^2, \qquad ME = \frac{1}{M} \sum_{k=1}^{M} \left(\sigma_{(est,k)}^2 - \sigma^2 \right)$$

where $\sigma_{(\text{est,k})}^2$ denotes the estimated σ^2 from data set k. Report MSE and ME, respectively for the MLE of variance $\sigma_{(\text{MLE})}^2$ and the sample variance $\hat{\sigma}^2$. Observe the trade-off between minimizing bias and minimizing fluctuations.

Q5. Verify a key step in deriving the CF of a multivariate Gaussian. Derive

$$i\xi^{T}x - \frac{1}{2}(x - \mu)^{T}\Sigma^{-1}(x - \mu)$$

$$= -\frac{1}{2}(x - \mu - i\Sigma\xi)^{T}\Sigma^{-1}(x - \mu - i\Sigma\xi) + (i\xi^{T}\mu - \frac{1}{2}\xi^{T}\Sigma\xi)$$

Hint: Start from the right hand side.

Q6. Verify a key step in deriving the conditional Gaussian distribution. Let

$$\Sigma = \begin{bmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{bmatrix}, \qquad \Sigma^{-1} = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$$

Derive

$$A^{-1}B = -\Sigma_{XY}\Sigma_{YY}^{-1}$$
$$A^{-1} = (\Sigma_{XX} - \Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{YX})$$

Hint: Expand $\Sigma^{-1}\Sigma = I$.

Q7. Another version of Monty Hall's game.

Suppose the rules of the game are set as follows.

- The host puts a cash card of \$200 in one of the 3 boxes without you looking.
- After your initial selection, you are required to select and open one of the two remaining boxes (boxes you did not pick in your initial selection).
- If the box you open contains the card, then the game is ended without a winner; you and the host will start a new game from the start.

- If the box you open is empty, the host must offer you the <u>option</u> of paying \$5 to switch to the other remaining box.
- If the box of your final selection contains the cash card, you win \$200.

Suppose the box you open is empty and you are offered the option of paying \$5 to switch. Should you take the option to switch?

Q8. Use a finite difference equation to define a differential equation.

We consider several finite difference equations for defining theoretically the solution of a differential equation. Here the emphasis is not on the numerical accuracy; the emphasis is on the theoretical convergence as $\Delta t \to 0$. Consider a simple model ODE.

$$y' = y$$
, $y(0) = 1 \implies y_{\text{exact}}(t) = e^t$

We consider three finite difference equations:

FD1:
$$y(t + \Delta t) = y(t) + y(t)\Delta t$$

FD2: $y(t + \Delta t) = y(t) + y(t)\Delta t + \frac{1}{2}y(t)(\Delta t)^2$
FDr: $y(t + \Delta t) = y(t) + y(t)(1 + \varepsilon)\Delta t$, $\varepsilon \sim N(0, 1)$

Numerically solve the 3 finite difference equations to $t_f = 1$ with $\Delta t = 2^{-10}$.

- (a) Plot the 3 numerical solutions and the exact solution as functions of time.
- (b) Let error = |(numerical sol) (exact sol)|. Plot the errors in the 3 numerical solutions as functions of time. Use log scale for error.
- (c) Repeat part (b) with $\Delta t = 2^{-16}$.

The demonstrated convergence tells us that two finite difference equations differing by a Δt term can converge to the same differential equation.