DS1 - Équilibres en solution aqueuse

Exercice 1 – Azote et engrais

L'azote (Z=7) est, avec le carbone (Z=6), l'oxygène (Z=8) et l'hydrogène (Z=1), un des composants principaux du vivant. Il est notamment utilisé pour produire des engrais. On étudie ici quelques composés azotés.

- 1. Donner la configuration électronique de l'azote dans son état fondamental. Déterminer son nombre d'électrons de valence. À quelle famille appartient l'azote?
- 2. Le tableau ci-dessous indique les températures d'ébullition de quelques composés diatomiques. Interpréter l'évolution constatée.

- 3. L'ammoniac NH_3 peut être obtenu par le procédé Haber-Bosch en faisant réagir du diazote N_2 et du dihydrogène H_2 . Proposer, en détaillant le raisonnement, une structure de Lewis pour la molécule d'ammoniac, puis pour l'ion ammonium NH_4^+ .
- 4. La molécule d'ammoniac forme une pyramide à base triangulaire et l'ion ammoniac un tétraèdre régulier. Représenter leur géométrie. S'agit-il de composés polaires?
- 5. Le phosphore appartient à la même famille que l'azote. Lequel de ces deux éléments est le plus électronégatif? Justifier.
- 6. Le phosphore peut former avec l'hydrogène un gaz hautement toxique : la phosphine PH₃. La température d'ébullition de la phosphine est de 185 K et celle de l'ammoniac est de 240 K. Interpréter soigneusement ces valeurs, en comparant toutes les interactions intermoléculaires qui peuvent exister et en rappelant l'ordre de grandeur des énergies associées.

Solution aqueuse d'ammoniac

On considère une solution aqueuse S d'ammoniac de concentration $c_0 = 1{,}00 \times 10^{-2} \,\mathrm{mol \cdot L^{-1}}$ à 25 °C. On donne p $K_a(\mathrm{NH_4}^+/\mathrm{NH_3}) = 9{,}2$ à 25 °C.

- 7. Justifier que l'ammoniac est une base de Brønsted. S'agit-il d'une base forte?
- 8. Définir la constante d'acidité du couple de l'ammoniac. Représenter le diagramme de prédominance de ce couple.
- 9. Ecrire l'équation de la réaction qui se déroule entre l'ammoniac et l'eau. Déterminer sa constante d'équilibre.
- 10. Déterminer la composition de la solution S à l'équilibre. En déduire le pH de la solution.

Teneur en élément azote d'un engrais

L'ammonitrate est un engrais azoté solide, bon marché, très utilisé dans l'agriculture. Il est vendu par sac de $500\,\mathrm{kg}$ et contient du nitrate d'ammonium $\mathrm{NH_4NO_3(s)}$. Les indications fournies par le fabricant d'engrais sur le sac à la vente stipulent que le pourcentage en masse de l'élément azote N est de $34,4\,\%$.

Afin de vérifier l'indication du fabricant, on dose les ions ammonium $\mathrm{NH_4}^+(\mathrm{aq})$ présents dans l'engrais en introduisant dans un bécher $V_1=10,0\,\mathrm{mL}$ d'une solution préparée en dissolvant $6,00\,\mathrm{g}$ d'engrais dans une fiole jaugée de $V_0=250\,\mathrm{mL}$. Cette solution est dosée à l'aide d'une solution d'hydroxyde de sodium NaOH de concentration $c=0,200\,\mathrm{mol}\cdot\mathrm{L}^{-1}$. À l'équivalence, le volume V_E de soude ajouté est de $14,0\,\mathrm{mL}$.

- 11. L'ammonitrate est très soluble dans l'eau. Écrire l'équation de dissolution correspondante.
- 12. Faire un schéma du montage utilisé pour réaliser ce titrage. On indiquera clairement le contenu de chaque élément de verrerie utilisé.
- 13. Rappeler les caractéristiques que doit posséder une réaction de titrage.
- 14. Écrire l'équation de la réaction correspondant au titrage et déterminer sa constante d'équilibre. Commenter.
- 15. La figure représentée en annexe 1 représente la courbe pH = $f(V_{NaOH})$. Sur l'annexe à rendre avec la copie, faire apparaître la construction graphique permettant de trouver le point d'équivalence. Donner les coordonnées de ce point.
- 16. On donne la conductivité molaire ionique de quelques espèces.

Représenter l'allure de la courbe $\sigma = g(V_{\text{NaOH}})$ que l'on obtiendrait en mesurant la conductivité σ de la solution au cours du titrage. Justifier.

- 17. Lister toutes les espèces chimiques présentes à l'équilibre dans le mélange réactionnel à l'équivalence. Retrouver la valeur du pH de la solution en ce point.
- 18. Exprimer, puis calculer la quantité de matière n_0 en ions $NH_4^+(aq)$ dans la fiole jaugée en fonction des données. En déduire la quantité de nitrate d'ammonium présente dans cette fiole
- 19. Calculer la masse d'azote présente dans l'échantillon. Les indications du fabricant sontelles vérifiées?

Données : masses molaires $M(N) = 14 \,\mathrm{g \cdot mol^{-1}}, \ M(O) = 16 \,\mathrm{g \cdot mol^{-1}}$ et $M(H) = 1 \,\mathrm{g \cdot mol^{-1}}.$

Exercice 2 – Acide citrique

L'acide citrique, de formule $C_6H_8O_7$ est un triacide : pour simplifier, on le notera AH_3 . Le diagramme de distribution de ses différentes formes est représenté en annexe 2

- 1. Sur l'annexe 2 à rendre avec la copie, attribuer chaque courbe du diagramme à une forme acido-basique dérivant de l'acide citrique.
- 2. En déduire les pK_a successifs et le diagramme de prédominance de l'acide citrique.
- 3. Comment peut-on qualifier les espèces AH_2^- et AH^{2-} ?
- 4. On ajoute quelques gouttes d'acide citrique concentré sous sa forme la plus acide à ungrand volume d'une solution concentrée d'ammoniac. Identifier les espèces majoritaires à l'état final
- 5. En déduire l'équation bilan de la transformation. Déterminer sa constante d'équilibre thermodynamique.

Annexe 1 – Dosage pH-métrique des ions ammonium

Annexe 2 - Diagramme de distribution des formes acido-basiques de l'acide citrique

