

ROYALIME DU MAROC Attribite de l'Education Notionale, de la Formation Professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique

Concours d'accès en 1ère année des deux préparatoires des ENSA du Maroc 2019

Epreuve de PHYSIQUE - CHIMIE

Durée: 1h30'

Exercice 1: On présente ci-dessous les trajectoires, le vecteur-vitesse \vec{v} et le vecteur-accélération \vec{a} du centre d'inertie G d'une balle où $\sum \vec{F}$ le vecteur représentant la résultante des forces exercées sur la balle en mouvement.

Q21: Choisir la proposition correcte parmi les propositions suivantes :

A : Le mouvement de la représentation N°1 est circulaire et uniforme.

B: La trajectoire de la situation Nº2 ne peut pas être rectiligne.

C: Au sommet de la trajectoire de la situation N°3, v est un vecteur nul.

D: Le vecteur à de la balle est dirigé vers le haut lors de la montée dans la situation Nº3.

Exercice 2: On dispose sur un plan horizontal trois corps M_1 , M_2 et M_3 de masses respectivement 2, 5 et 8Kg reliés par des ficelles inextensibles et de masse négligeables. Le corps M_3 de 8Kg est entrainé par une force F = 60N. Lors du mouvement des trois corps, les forces de frottement sont supposées négligeables.

Q22 : Les accélérations en (ms-2) de M1, M2 et M3 dans cet ordre sont :

A: (10,5,4); B: (4,5,10); C: (4,4,4); D: (4,10,5)

Q23: Les tensions T1 et T2 en (N) des ficelles dans cet ordre sont :

A:(10,8); B:(28,28); C:(20,10); D:(8,28)

Exercice 3: On considère un mobile de masse m relié à deux ressorts idéaux R_1 et R_2 de raideur k_1 et k_2 et pouvant se déplacer sans frottement suivant un plan horizontal.

Q24 : Quelle formule vérifie la fréquence des oscillations du mobile ?

Q25 : La longueur l_1 du ressort R_1 à l'équilibre du mobile est donnée par

$$\mathbf{A}: l_1 = \frac{k_1}{k_2} l_0 \quad ; \quad \mathbf{B}: \ l_1 = \frac{k_1 \, l_0 + k_2 d}{k_1 k_2} \qquad ; \quad \mathbf{C}: \ l_1 = \frac{(k_1 - k_2) l_0 + k_2 d}{k_1 + k_2} \qquad ; \quad \mathbf{D}: \ l_1 = \frac{(k_1 + k_2) l_0 + k_2 d}{k_1 - k_2}$$

C:
$$l_1 = \frac{(k_1 - k_2)l_0 + k_2d}{k_1 + k_2}$$

$$\mathbf{D}: l_1 = \frac{(k_1 + k_2)l_0 + k_2 d}{k_1 - k_2}$$

Exercice 4 : On considère le dispositif représenté ci-contre. Les deux ressorts sont de masse négligeable et présentent la même raideur égale à 100 Nm^{-1} . Les masses M_1 et M_2 ont la même valeur égale à 1kg.

Q26: Choisir la proposition correcte parmi les propositions suivantes:

A: Le ressort du haut s'allonge de 20 cm ; B: Les deux ressorts s'allongent de 20 cm

C: Le ressort du bas ne s'allonge pas ; D: Les deux ressorts s'allongent de 10 cm

Exercice 5 : Une corde, comme le montre la figure ci-dessous, subit une perturbation se propageant de gauche à droite avec une célérité : $v = 5ms^{-1}$.

027 : La valeur du retard temporel \u03c4 du point M1 par rapport \u00e0 la source de l'onde S est :

A:
$$\tau = 6.0 \text{ ms}$$

Q28 : La photo de la corde ci-dessus a été prise à une date choisie comme origine du temps (to = 0). La distance séparant le maximum d'amplitude de l'onde et la source à la date t1 = 0,20 s sera de :

Exercice 6 : On considère deux objets A et B flottants sur la surface de la mer. Ils sont séparés d'une distance d = 51 m. Ils subissent une houle (une série de vagues) d'amplitude 2,0m, considérée comme une onde sinusoïdale de période T = 9,1 s. La distance qui sépare A et B est la distance minimale pour laquelle les deux objets vibrent en phase. A la date $t = \theta$, l'objet A est au sommet d'une vague.

Q29 : Choisir parmi les quatre représentations ci-dessous celle qui correspond au mouvement de l'objet A

en fonction du temps.

A: représentation 2

(B) représentation 1

C: représentation 3

D: représentation 4

Q30: L'objet B à t = 0 se trouve:

- A; au sommet ; B: au creux ;
- C: position nulle ;
- D: on ne peut rien dire

Q31: Les dates pour lesquelles l'objet A se trouve au creux d'une vague s'expriment par :

$$A: t = nT;$$
 $B: t = \left(\frac{n}{2}\right)T;$ $C: t = (n+1)T;$ $D: t = \left(n + \frac{1}{2}\right)T$

Exercice 7: Soit N_0 le nombre de noyaux radioactifs présents à un instant considéré « initial » d'une population de noyaux radioactifs. Soit $t_{1/2}$ le temps de demi-vie des noyaux constituants cette population.

Q32 : Le nombre de noyaux $N(nt_{1/2})$ qui restent au bout de la durée $nt_{1/2}$ est :

$$A: N(nt_{1/2}) = (N_0)^{1/n}; \qquad B: N(nt_{1/2}) = \frac{N_0}{2^n}; \quad C: N(nt_{1/2}) = N_0 e^{-2n}; \quad D: N(nt_{1/2}) = \frac{N_0}{2^n}$$

Exercice 8 : On considère quatre circuits électriques (a), (b), (c) et (d) représentés sur les figures ci-dessous.

Les quatre circuits sont alimentés au travers un interrupteur K par générateur parfait de force électromotrice E. La bobine est supposée idéale d'inductance L.

On ferme l'interrupteur K à l'instant t = 0. Soit i(t) le courant débité par le générateur.

Q33: Circuit (a): vers quelle valeur tend la tension u_R aux bornes de la résistance R lorsque $t \to \infty$?

(A:
$$u_R = 0$$
; $B: u_R = E$; $C: u_R = \frac{E}{2}$; $D: u_R = -E$

Q34: Circuit (b): dès la fermeture de l'interrupteur K, quelle valeur prend i(t)?

$$A: i(t) = 0.$$
 ; $B: i(t) = \frac{E}{R}$. ; $C: i(t) = \frac{E}{R}e^{-\frac{t}{\tau}}$ avec $\tau = RC$. ; $D: i(t) \to \infty$.

Q35 : Circuit (c) : dès la fermeture de l'interrupteur K, quelle valeur prend i(t)?

$$A: i(t) = 0.$$
 ; $B: i(t) = \frac{E}{R}$; $C: i(t) = \frac{E}{R}e^{\frac{-t}{\tau}}$ avec $\tau = \frac{L}{R}$; $D: i(t) \to \infty$.

Q36 : Circuit (d) : en régime stationnaire établi (ou permanant), la tension aux bornes de R1 est :

$$A: u_{R_1} = 0$$
 ; $B u_{R_1} = E \frac{R_1}{R_1 + R_2}$; $C: u_{R_1} = E$; $D: u_{R_1} = E \frac{R_1 R_2 C}{L}$

Exercice 9 : Dans le circuit électrique représenté sur le schéma ci-dessous, le commutateur est placé dans un premier temps sur la position (1), de telle sorte qu'un régime permanent est atteint. A l'instant t = 0, il est placé en position (2). On s'intéresse à l'évolution du courant i(t) en fonction du temps.

Q37 : Parmi les quatre évolutions représentées sur le graphique, choisir la représentation qui traduit correctement l'évolution du courant i(t) en fonction du temps.

- A: Evolution (a)
- ; B: Evolution (b) ; C: Evolution (c)
- D: Evolution (d)

Exercice 10 : Une onde plane monochromatique visible de longueur d'onde à éclaire une fente fine de largeur I pratiquée dans un écran opaque. La figure de diffraction observée sur un écran de projection situé à la distance D derrière la fente, présente une frange centrale brillante limitée par deux franges sombres.

Q 38 : L'expression de la largeur de la frange centrale brillante de cette figure de diffraction est :

 $A:2\frac{\lambda D}{L}$; $B:2\frac{\lambda L}{D}$; $C:2\frac{LD}{2}$; $D:2\frac{D}{M}$

Exercice 11: On réalise une pile avec les couples $Au^{3+}_{(aq)}/Au_{(s)}$ et $Cu^{2+}_{(aq)}/Cu_{(s)}$.

 $[Cu^{2+}]_i$ et $[Au^{3+}]_i$ sont respectivement les concentrations initiales des ions du cuivre et de l'or.

Un ampèremètre indique que le courant électrique circule de la demi-pile à l'or vers la demi-pile au cuivre.

Q39 : choisir la proposition correcte parmi les quatre suivantes :

A : les électrons circulent de la demi-pile au cuivre vers la demi-pile à l'or

B: il y a réduction sur l'électrode de cuivre

C : dans la pile les cations vont de la demi-pile à l'or vers la demi-pile au cuivre

D : la cathode est l'électrode du cuivre

Q40 : le quotient de réaction initial Q_i s'exprime par :

 $A: Q_{l} = \frac{[Cu^{2+}]_{l}^{3}}{[Au^{3+}]_{l}^{2}} ; \qquad B: Q_{l} = \frac{[Cu^{2+}]_{l}^{2}}{[Au^{3+}]_{l}^{3}} ; \qquad C: Q_{l} = \frac{[Cu^{2+}]_{l}}{[Au^{3+}]_{l}} ; \qquad D: Q_{l} = \frac{[Au^{3+}]_{l}^{2}}{[Cu^{2+}]_{l}^{3}} ; \qquad C: Q_{l} = \frac{[Cu^{2+}]_{l}^{2}}{[Cu^{2+}]_{l}^{3}} ; \qquad C: Q_{l} = \frac{[Cu^{2+}]_{l}^{2}}{[Cu^{2+}]_{l}^{2}} ; \qquad C: Q_{l} = \frac{[Cu^$