Linear Transformation on X

 X_1 : size of a house in sq. ft. \Longrightarrow \tilde{X}_1 : size of a house in sq. meters.

 X_1 : % of population above age 75;

 X_2 : % of population below age 18;

-

 \tilde{X}_1 : % of population below age 75;

 \tilde{X}_2 : % of population between 18 and 75.

If we scale or shift a predictor, say, $\tilde{x}_{i2}=2\times x_{i2}$ or $(1+x_{i2})$, how would this affect the LS fit?

- $ightharpoonup \hat{\mathbf{y}}$, \mathbf{r} , and R^2 stay the same;
- \triangleright $\hat{\beta}$ would be different.

The statements hold true, if we apply any linear transformation on the p predictors, i.e., the new design matrix $\tilde{\mathbf{X}} = \mathbf{X}_{n \times (p+1)} A_{(p+1) \times (p+1)}$, as long as the transformation does not change the rank of \mathbf{X} .