1 Síťové modely, dekompozice do vrstev, filozofie komunikace jednotlivých vrstev mezi sebou, referenční model ISO/OSI, popis funkce jednotlivých vrstev (+ příklad činnosti, či používané protokoly a pod.), čtyřvrstvý model TCP/IP, porovnání s RM ISO/OSI

- Síťové modely
 - o ISO/OSI
 - V praxi se moc nepoužívá, pouze teoretický
 - o TCP/IP

TCP/IP	Model ISO/OSI
Aplikační vrstva	Aplikační vrstva
	Prezentační vrstva
	Relační vrstva
Transportní vrstva	Transportní vrstva
Síťová (IP) vrstva	Síťová vrstva
Vrstva síťového rozhraní	Linková vrstva
	Fyzická vrstva

0

- Filozofie komunikace
 - o Každá vrstva komunikuje jen se sousedními vrstvami
 - o Jednotlivé vrstvy vezmou data z vyšší, přidají obálku a předají nižší vrstvě

2 Taxonomie počítačových sítí, topologie počítačových sítí (výhody/nevýhody + příklady použití), role / postavení uzlu v rámci hierarchie sítě

- Rozdělení počítačových sítí
 - o Podle dosahu
 - Uvnitř počítače
 - Uvnitř procesoru
 - V místnosti
 - V budově
 - V campusu
 - Ve městě
 - Celostátní
 - Kontinentální
 - Celosvětový
 - Otevřené / privátní
 - o Podle použité technologie
 - o Účel
 - Propojení samostatných prvků internet
 - Propojení v rámci organizace intranet
- Topologie sítí
 - o Polygon (WAN)
 - o Hvězda
 - Sběrnice
 - o Kruh
 - o Strom

- Postavení uzlu v rámci hierarchie sítě
 - Klient server
 - o Peer to peer

3 Reálné vlastnosti přenosových cest, příklady porušení signálu, přenos digitálního signálu v základním a přeloženém pásmu (dokumentovat příklady konkr. síťových technologií), modulace signálu, spektrum signálu v základním pásmu, spektrum modulovaného signálu, vzorkování signálu, Shannonův teorém, průchod signálu pásmovou propustí, pojmy přenosová rychlost / výkon

- Reálné vlastnosti přenosových cest
 - o Útlum
 - Zkreslení
 - o **Šum**
 - Nadprahový / podprahový
 - Přeslech
- Přenos digitálního signálu v základním a přeloženém pásmu (dokumentovat příklady konkr. síťových technologií)
 - V základním pásmu
 - Jednoduše
 - 1 reprezentováno např 5V
 - 0 reprezentováno 0V
 - Manchestr
 - 1 = ↑, 0 = ↓
 - Non Return to Zero
 - 1 = kladné napětí, 0 = záporné napětí
 - NRZI
 - Změna úrovně = 1, beze změny = 0
 - o Signál v přeloženém pásmu
 - PSK
 - FSK
 - AM (QAM)
- Přenosová rychlost / výkon
 - Přenosová rychlost
 - Jaký objem se přenese za čas (bitrate)
 - Přenosový výkon
 - Objem užitečných dat za čas [bit/s]

4 Technologie F.V.: Sériový a paralelní přenos dat (RS232), synchronní a asynchronní signál, režimy přenosu, Strukturovaná kabeláž, kroucená dvoulinka, zakončovací impedance, Pojem kategorie strukturované kabeláže

- Synchronní a asynchronní signál
 - Synchronní pevně dané časové úseky
 - Asynchronní nejsou pevně dané časy
 - Arytmický přenos slov je asynchronní, ale bity ve slově jsou synchronně
- Režimy přenosu
 - o Simplexní
 - o Poloduplexní
 - Duplexní

5 F.V.: Ethernet, sítě v základním / přeloženém pásmu, kódování Manchester, sítě: 10Base-T, 100Base-TX (MLT-3, požadavky na šířku pásma), 100Base-FX, 1000Base-LX/SX, 1000Base-T (PAM5 – zapojení budičů v duplexním a poloduplexním režimu), kroucená dvoulinka, konektor RJ45, AUI, optická vlákna

- Base = sítě pracující v základním pásmu, Broad = sítě pracující v přeloženém pásmu
- 10Base-T
 - Hvězdicová topologie
 - o RJ45 + kroucená dvoulinka
 - o Plně duplexní
 - Možnost přejít na 100Base-T
 - Používají pouze 2 páry vodičů
 - Max 100m UTP, 100-400m STP
- 100Base-TX
 - Fast Ethernet
 - Auto Negotiation Protocol (volba 10/100Mbit, Half/Full duplex)
 - Kódování MLT-3

- 100Base-FX
 - Používá optická vlákna
 - Větší dosah až 2km
- 1000Base-LX
 - o Používá jednovidová a vícevidová vlákna
- 1000Base-SX
 - Používá poze vícevidová vlákna
 - Buzení infra LED diodou
- 1000Base-T
 - Využívá všechny 4 páry
 - Nové kódování každý symbol reprezentuje 2 bity
- AUI
- Konektor který obsahuje množstí signálů (15 pin), možnost připojení redukcí

6 Hlavní úkoly L.V., její zařazení v RM ISO/OSI, pojem sdílené médium, frekvenční a časový multiplex (+ příklad konkr. síťových technologií), TDM, řízení přístupu ke sdílenému médiu, pojem kolize, řízené centralizované / distribuované přístupové metody, metoda pollingu, metoda explicitních žádostí, rezervační metoda, prioritní (losovací) metoda, metody logického kruhu

- Hlavní úkoly
 - Přenášení a správné doručení bloků dat v rámcích v segmentu sítě kde může být více uzlů
 - Adresace
- Sdílené médium = síť topologie kruhové/sběrnicové...
- Řízení přístupu ke sdílenému médiu
 - Polling

- Žádost o vysílání
- o Rezervační rámce
- Priorita (např. nejvyšší adresa)
- Metoda logického kruhu (koluje token)

7 L.V.: neřízené distribuované přístupové metody, základní vlastnosti neřízených metod v porovnání s deterministickými přístupovými metodami, kolaps metod, ALOHA, taktovaná ALOHA, p/1/non persistent CSMA, metody collision avoidance, metody collision detect, CSMA+exp. backoff (pouze princip)

- Neřízené distribuované přístupové metody
 - Nezaručují výsledek
 - Je možné že se data nepodaří odvysílat
 - o Mohou být efektivnější než řízené metody, zejména při malé zátěži
 - Při vyšší zátěži se zahltí a pak síť zkolabuje
- ALOHA
 - o Přenos jedním RF kanálem
 - Stanice se na nic neohlíží, prostě vysílá
 - o Čeká na odpověď, případně přenos opakuje
 - o 18% efektivita
- Taktovaná ALOHA
 - Stanice vysílá jen v definovaných časech
- /1/non persistent CSMA (carier sense moltitime access)
 - o Detekuje obsazený kanál, čeká náhodnou dobu na další pokus
- Colision avoidance
 - Stanice si médium ve volném čase "zamluví"
- Colision detect
 - Stanice průběžně zjišťují jestli došlo ke kolizi, pokud ano, vyšlou speciální signál aby upozornili ostatní stanice
- CSMA+exponentional backoff
 - Metoda se přizpůsobuje zátěži
 - Doba odložení vysílání závisí na násobnosti kolizí
 - o Až 95% využití média

8 Podvrstvy L.V., Adresace na L.V., HW adresa (obsah, velikost,), oběžník, protokoly L.V. Ethernetu, struktura ethernetového rámce, další přednesené protokoly L.V., technologie přepínání na L.V., Funkce přepínače, porovnání toku rámců Switch X Hub, Propustnost přepínačů

- HW adresa = MAC adresa
- Ethernetový rámec
 - Ethernet II
 - Adresa příjemce a odesílatele 2x6bit
 - Informace co rámec obsahuje 2bit
 - Data 48bit 1500bit
 - Kontrolní součet 4bit
 - (preambule pro synchronizaci 10101010)
 - o **802.3**
 - Místo typu dat se udává délka dat
 - o 802.3 s 802-2

- Může být specifikována konkrétní aplikace
- Funkce switche
 - Store and forward analýza celého rámce
 - Cut through

9 S.V. - význam, její zařazení v RM ISO/OSI, hlavní úlohy S.V., IPv4 - struktura hlavičky, popis jednotlivých polí a z nich vyplývajících možností, průchod IP paketu přes směrovače, ICMP

- Význam
 - o Implementuje jednotnou adresaci
 - Přenáší pakety
 - Zajišťuje směrování
- IPv4
 - Doručení dat uzel-uzel
 - Směrování IP paketů
 - Adresace
 - o Formát paketu
 - Ošetřuje fragmentaci
 - Do linkové vrstvy předává data doplněná o IP hlavičku
 - Hlavička
 - Verze
 - Délka záhlaví
 - Typ služby (nevyužívá se)
 - Celková délka paketu (až 64KB)
 - Identifikace IP paketu (pořadí)
 - Fragmentační příznak
 - Offset fragmentu (pro znovusestavení)
 - Doba živostnosti
 - Protokol vyšší vrstvy
 - Kontrolní součet IP záhlaví
 - IP adresa source
 - IP adresa destination
 - Volitelné položky
 - Data
- ICMP
 - o Povinou součástí UP
 - Hlášení chyb a nestandartních situací
 - Jsou v datové části IP paketů
 - o Z bezpečnostního hlediska je routery často zahazují
 - Zprávy
 - Echo (ping)
 - Nedoručený paket (proč nebyl doručen)
 - Timeout (doba životnosti byla překročena) (takhle jde zjišťovat topologie sítě TTL=1, TTL=2,...)

10 Fragmentace IP paketů (příklad), důvody fragmentace, protokol ARP, vysvětlit kompletní příklad komunikace z uzlu A např. ping www.google.com

• Fragmentace IP paketů

- o IP pakety se vkládají do linkových rámců např. ethernet max 1500b
- o MTU maximum transfer unit
- o Paket se rozdělí a určí se offset a pořadí fragmentu
- ARP adress resolution protocol
 - o Získání MAC adresy ze znalosti IP adresy
 - Počítač vyšle broadcast
 - o ARP je vkládáno přímo do linkového rámce
- **11** IP adresace, rozdělení IP adresy na základní části, třídy IP adres, síťová maska, vytváření podsítí (dokumentovat příkladem), neveřejné IP adresy
 - IP adresace
 - 4*8 bitů
 - Adresa sítě/adresa uzlu
 - Třídv adres
 - A 0 | adresa sítě | adresa uzlu
 - B 10 | adresa sítě | adresa uzlu
 - C 110 | adresa sítě | adresa uzlu
 - Neveřejné IP adresy pro intranetové sítě
 - \circ 10.0.0.0/8 tř. A
 - o 172.16.0.0/12 tř. B
 - 192.168.0.0/16 tř. C
 - o 127.0.0.0/8 loopback
- **12** T.V. význam, její zařazení v RM ISO/OSI, hlavní úlohy T.V., identifikace entit, všeobecně známé porty T.V., vícenásobné relace, základní vlastnosti nejpoužívanějších protokolů
 - Význam
 - Zajišťuje komunikaci koncových účastníků
 - o "Přizpůsobovací vrstva"
 - Chybové kontroly
 - o Rozdělení souborů na pakety
 - o Pozná že se data ztratila
 - Obnovuje pořadí dat
 - Entity odesílatelé a příjemci dat
 - o Např. proces, démon, úloha,...
 - Dynamicky vznikají a zanikají
 - Porty
 - o **0-65535**
 - Všeobecně známé porty
 - FTP 20
 - SSH 22
 - HTTP 80
 - Minecraft 25565
 - Když se připojí klient na server s daným portem, server ho přesune na jiný aby daný port uvolnil
 - TCP transmission control protocol
 - Je spojovanou službou = na dobu spojení vytváří spoj který pak zainká
 - o Plně duplexní

- Kontroluje správnost dat, CRC, úplnost
- Např. WWW, e-mail SSH
- UDP user datagram protocol
 - o Jednosušší než TCP
 - Nespojová služba
 - Odešle data a už se o ně nestará
 - Např. DNS, VoIP

13 Protokol TCP, TCP hlavička a z ní vyplývající vlastnosti TCP, charakter TCP spojení, příznaky a jejich použití, 3-way Handshake, stavy při spojení, technika zpožděné odpovědi, fragmentace TCP segmentů, protokol UDP – vlastnosti a porovnání s TCP, oblast vhodnosti pro aplikaci TCP/UDP

- TCP hlavička
 - Zdrojový port
 - Cílový port
 - Pořadové číslo
 - Potvrzovací číslo
 - Offset dat
 - Příznaky
 - o Délka okna
 - Kontrolní součet
 - Urgent pointer
- Příznaky a jejich použití
 - o URG
 - o ACK
 - PSH (push) nesena aplikační data přenést data okamžitě aplikaci (např. VoIP)
 - o RST odmítnutí spojení
 - o SYN
 - o FIN
- 3 Way handshake navazování spojení
 - o SYN
 - SYN-ACK
 - o ACK

Real-world Example

- Stavy při spojení
 - o SYN-SENT
 - LISTEN
 - o SYN-SEND
 - SYN-RCVD
 - o **ESTABLISHED**
- Technika zpožděné odpovědi
 - Snaha serveru sdružovat s potvrzovacími pakety (počká 200-500ms)
- Fragmentace

- o Pokud je TCP segment příliš velký, použije se fragmentace
- o TCP záhlaví se při fragmentaci neopakue, jen IP záhlaví

14 Směrování IP paketů, funkce směrovače, směrovací tabulka (popis, vyhodnocování), implicitní směrování prováděné v síťové vrstvě OS, zpětná smyčka a její význam pro směrování, statická tvorba směrovací tabulky (+ příklad tvorby směr. tb. pro konkrétní zadanou síť), využití ICMP pro opravu záznamů ve směrovací tab., defaultní záznam

- Směrování IP packetů
 - o Směrovač předává datagramy z jednoho svého rozhraní do jiného
 - Dívá se do 3. síťové vrstvy
 - Používá směrovací tabulku k rozhodování
- Funkce směrovače
 - Příchozí datagram vynásobí na každém řádku směrovací tabulky s maskou sítě a porovná s adresou cílové sítě
 - Pokud se shoduje, vyšle data na daný port
 - o Pokud je více stejných porovná se metrika ("cena za cestu")
 - o Pokud nenastanou shody vyšle na default (maska 0.0.0.0)
- Implicitní směrování v OS
 - Obecné datagramy
 - Loopback
 - Oběžníky
 - o Echo reply
- Zpětná smyčka
 - Řeší odesílání packetů na vlastní adresu
 - Zatěžovalo by zbytečně síť, proto loopback
- ICMP Dynamické vytváření směrovacích tabulek u hostů
 - Směrovače upozorní hosty pomocí ICMP na existenci jiných směrovačů (ICMP redirect)
- Statická tvorba směrovací tabulky
 - 0 ?

15 Směrovací protokoly, rozdělení IGP/EGP, pojem optimální cesta, centralizované a izolované směrování, princip DVA a LSA algoritmů (výhody a nevýhody)

• EGP – Exterior gateway protocol

•