Моделирование физики в компьютерных играх, приложениях виртуальной реальности и тренажерах

Андрей Морозов

ФМЛ №30, июнь 2014

План

- О чем речь?
- История
- Современная наука
- Современное решение
- Проекты и люди
- Заключение

О чем речь?

- Компьютерные игры
- Кино

Рис. 1. Columbia Pictures, 2012

О чем речь? (2)

- Тренажеры
- Виртуальная реальность

Рис. 2. Transas, Шлюпбалка

Рис. 3. Dynamica, Вертолет

Объекты моделирования

- Твердые тела
- Ограничения
 - □ Шарниры
 - □ Связи
 - Пружины и демпферы
 - □ Моторы

Рис. 4. Weinstein

Объекты моделирования (2)

- Деформируемые тела
- Ткани
- Веревки
- Волосы

Рис. 5. Fedkiw

Объекты моделирования (3)

- Разрушаемые тела
- Жидкости и газы

Рис. 6. Fedkiw

Рис. 7. Fedkiw

Исторические вехи

- Основы механики
 - Коперник, Галилей, Ньютон 15-18 века
- Первые публикации
 - Верещагин 1974
 - □ Featherstone 1983
- Первое упоминание дисциплины
 - Alan Barr 1987, "Topics in physically-based modelling", SIGGRAPH

Основы механики. Ньютон

• 6 степеней свободы

$$\cup V = \dot{X} = (v, \omega)^T$$

- Масса и тензор инерции
 - \square M
 - □ *I* (Mirtich, 1996 треангуляция, теорема Грина)
- 2-й закон Ньютона

$$\Box \begin{pmatrix} F_{ext} \\ T_{ext} \end{pmatrix} = \begin{pmatrix} M & 0 \\ 0 & I \end{pmatrix} \dot{V} + \begin{pmatrix} 0 \\ \omega \times I\omega \end{pmatrix}$$

Основы механики. Трение

- Трение Кулона
 - $F \le \mu N$ (покой)
 - \Box $F = \mu N$ (скольжение)
- Виды трения
 - Покоя
 - Скольжения
 - □ Качения

Основы механики. Ударный

контакт

- Модели контакта
 - \Box Ньютон $(v_n^+ = -\varepsilon v_n^-)$
 - □ Пуассон (импульсы)
 - □ Стронг (энергии)

Рис. 9. Mirtich, Canny

Основы механики. Контакт покоя

■ В пределах точности тела не двигаются

Рис. 10. Erleben

Основы механики. Связи

- Идеальные связи
 - □ Можно заменить силами реакции
 - $\Box F_c = J^T \lambda$
- Шарниры (Joint)
 - $\Box C(X,t) = 0, \dot{C}(X,t) = JV$
 - $\Box M\dot{V} = F_{ext} + F_c$

Рис. 11. Erleben

Основы механики. Пружины

Пружина

$$\Box F_{S} = -k\Delta x$$

Демпфер

$$\Box F_d = -c\Delta \dot{x}$$

Рис. 12. Catto

Физическое моделирование. Алгоритмы

Физическое моделирование. Алгоритмы (2)

Физическое моделирование.

Численные методы

- Задача Коши численное интегрирование
 - □ Эйлер
 - Верле (Verlet)
- Расчет шарниров СЛАУ
 - \square LDL^T разложение
 - □ Разложение Холецкого
- Расчет контактов LCP
 - Проективный Гаусс-Зейдель
 - $O(n^2)$, n число контактов

Определение столкновений.

Подходы

- Дискретный
 - □ На текущем шаге обсчета
- Непрерывный
 - □ Пуля через бумагу
 - Расчет времени столкновения (TOI)

Рис. 13. Mirtich

Определение пересечений.

Примитивы

- Сфера
- Параллелепипед
- Капсула
- Цилиндр
- Конус
- Треугольник

Рис. 14. Naturalmotion

Определение пересечений.

Выпуклые геометрии

- GJK (Gilbert, Johnson, Keerthi 88)
 - □ Разность Минковского
 - □ Симплексы
 - \square В среднем O(n)
- Lin-Canny
 - □ библиотека I-Collide
- V-Clip
- EPA (GJK-based)

Рис. 15. Coumans

Определение пересечений. Выпуклые геометрии (2)

SAT (Separation axis theorem)

Определение пересечений. НеВыпуклые геометрии

- Разложение на выпуклые

Рис. 18

Определение пересечений.

Оптимизации

- Сетки
 - □ 2D
 - □ 3D (воксельные)
- Иерархии
 - Quad/Oct деревья
 - BVH

Рис. 19

Рис. 20, Coumans

Современное решение. Столкновение

02.06.2014

24

Современное решение. Целиком

Современное решение. Хитрости

Активация/деактивация

$$\square K_n = \frac{v^2}{2} + \frac{\omega^T I \omega}{2m}$$

- $\blacksquare K_n < K_{n \, min} \rightarrow$ деактивация
- Стабилизация связей
 - Баумгарте (Baumgarte, 1972)
 - □ Пост стабилизация (Chin, 1995)
 - □ Пре-стабилизация (Fedkiw, Weinstein, 2006)
- Использование GPGPU
 - CUDA/OpenCL

Физические движки

Платные

- Havoc (Ipion)
- Ageia (Meqon 99, Novodex 02)
- Natural Motion
- Digital Molecular Matter

Беспатные

- Tokamak
- ODE
- □ Bullet ("2012", "Как приручить дракона")

Персоны

- Roy Featherstone
- David Baraff
- Brian Vincent Mirtich
- Eran Guendelmann
- Erin Catto
- Kenny Erleben
- Ron Fedkiw
- Erwin Coumans (http://bulletphysics.org/)

Напоследок, о птичках

Спасибо за внимание!!!

