人工智能原理-作业4

Author: 夏弘宇 2023011004

T2

在一个线性回归问题中,有n个点 (x_i,y_i) , $i=1,2,\ldots,n$,通过最小二乘法求得的线性回归方程为 $\hat{y}=\hat{w}x+b$ 。需要证明以下等式成立:

$$\sum_{i=1}^n (y_i - ar{y})^2 = \sum_{i=1}^n (\hat{y}_i - ar{y})^2 + \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

其中 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ 表示y的样本均值。

MSE ⇒
$$\hat{y} = \hat{w} \times + b$$
. $i \mathcal{L} \left(\frac{1}{2} (y_i - \vec{y})^2 = \frac{1}{2} (\hat{y}_i - \vec{y})^2 + \frac{1}{2} (y_i - \hat{y}_i)^2 \right)$
 $\dot{\mathcal{L}} = \left[\frac{1}{2} (y_i - \vec{y})^2 = \frac{1}{2} (y_i - \hat{y} + \hat{y} - \vec{y})^2 = \frac{1}{2} (y_i - \hat{y})^2 + \frac{1}{2} (\hat{y} - \hat{y})^2 + 2\frac{1}{2} (y_i - \hat{y})(\hat{y} - \vec{y}) \right]$

即只需证 $\frac{1}{2} (y_i - \hat{y})(\hat{y} - \vec{y}) = 0$.

 $\dot{\mathbf{u}} = \mathbf{u} \times \mathbf{u} \times$

T4

设在一个K分类问题中,一个样例预测为第k类的概率建模为如下的对数线性模型:

$$\log P(Y=k) = \beta_k x - \log Z$$

其中:

- P(Y=k) 表示样例预测为第k类的概率
- x 是输入的样例数据(特征向量)
- β_k 为第k类的权重向量
- $-\log Z$ 是归一化项,保证所有类别的概率之和为1

证明通过该对数线性模型,预测概率的表达式为Softmax形式:

$$P(Y=k) = rac{e^{eta_k x}}{\sum_{j=1}^K e^{eta_j x}}$$

$$P(Y=k)=e^{R_{i}x-logZ}=e^{R_{i}x}$$

设-共有大美
则 $Z=\sum_{i=1}^{K}e^{R_{i}x}$ $Z=\frac{1}{Z}\cdot\sum_{i=1}^{K}e^{R_{i}x}=1$.
別 $Z=\sum_{i=1}^{K}e^{R_{i}x}$.
数 $P(Y=k)=\sum_{i=1}^{K}e^{R_{i}x}$

T1

题目描述

某销售公司收集了8名员工的月销售额 (万元) 和对应月薪 (元) 数据如下:

月销售额 (万元)	5.2	9.8	15.3	19.2	25	8	12	18
月薪 (元)	5000	7200	9300	11000	12800	6300	8000	10000

需要完成以下分析任务:

- 1. 绘制散点
- 2. 计算线性回归方程和回归系数r²
- 3. 计算MAE和MSE评估模型

(1) 散点图绘制

(2) 线性回归分析

1. 基础统计量计算:

- \circ $\sum x = 112.5$
- o ∑y = 69600
- \circ n = 8
- \circ $\bar{x} = 14.0625$
- $\circ \ \bar{y} = 8700$
- 2. **协方差计算**: ∑xy = 1096450

 $\Sigma x^2 = 1882.81$

 $Cov(x,y) = (1096450 - 8 \times 14.0625 \times 8700)/8 = 14712.5$

- 3. **方差计算**: Var(x) = (1882.81 8×14.0625²)/8 = 37.5973
- 4. 回归系数: $b = Cov(x,y)/Var(x) = 14712.5/37.5973 \approx 391.32$ $a = \bar{y} b \cdot \bar{x} \approx 3197$
- 5. **回归方程**: ŷ = 391.3x + 3197

6. 回归系数 \mathbf{r}^2 计算: SST = $\sum (y-\bar{y})^2 = 46340000$

SSE = $\sum (y-\hat{y})^2 \approx 281703.73$ $r^2 = 1 - SSE/SST \approx 0.9939$

7. 最终结果

• **回归方程**: y = 391.3x + 3197

• 决定系数: r² = 0.9939

(3) 误差分析

x	у	ŷ		y-ŷ	
5.2	5000	5232	232	53824	
9.8	7200	7032	168	28224	
15.3	9300	9185	115	13225	
19.2	11000	10710	290	84100	
25	12800	12980	180	32400	
8	6300	6327	27	729	
12	8000	7893	107	11449	
18	10000	10240	240	57600	

 $\mathsf{MAE} = (232 + 168 + 115 + 290 + 180 + 27 + 107 + 240)/8 \approx 170.0$

 $MSE = (53824 + ... + 57600)/8 \approx 35190$

MAE: 170.0元MSE: 35190

结论

- 1. 数据呈现强线性相关性 (r²=0.9939)
- 2. 回归方程y=391.3x+3197能很好解释月薪变化
- 3. 误差指标显示模型预测精度较高 (MAE=170, MSE=35190)