CVEN30008 Engineering Risk Analysis

Quantitative Risk Analysis using Monte Carlo Simulation

Subject Coordinator:

Dr Lihai Zhang

CONTACT:

Department of Infrastructure Engineering (Room B307)

lihzhang@unimelb.edu.au

Risk analysis

Codified Design – How safe is safe enough?

- This judgement must be made by code writers when
 - Identifying those natural and artificial forces that must be considered to ensure adequate safety and serviceability.
 - Providing criteria for achieving minimum required levels of structural resistance to these forces.

What has this judgement been based on?

Deterministic and Probabilistic Approaches

The deterministic approach

Probabilistic approach

Deterministic Approaches

DETERMINISTIC Approaches

- Deterministic calculations always give same answers (y_1,y_2) if input values (x_1,x_2,x_3) do not change

Output

(no variability)

Calculations might be

$$y_1 = x_1 + 3 * x_2^2 - 0.07 * ln(x_3)$$

 $y_2 = 2 * x_1 - 3 * x_2^2$

.

Probabilistic Approaches

When inputs (x₁,x₂,x₃)
 are random variables
 then outputs (y₁,y₂) are
 also random variables.

x₁ has a right skewed distribution,

x₂ ...

y₁ has a Normal distribution,y₂ ...

A **Monte Carlo method** is a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results .

The term **Monte Carlo** was coined in the 1940s by physicists working on nuclear weapon projects in the <u>Los Alamos National Laboratory</u>.

- Monte Carlo Simulation
 - 1. Defining all the random variables (continued)

- Monte Carlo Simulation
 - 2. Quantifying the probabilistic characteristics of the random variables.

A simply supported timber beam of length 5 m is loaded with a central load P with μ_S = 3 kN and σ_S = 1 kN. The bending strength of similar beams has been found to have a allowable load of 5 kN. Determine the probability of failure.

- Monte Carlo Simulation
 - 3. Generating values of these random variables.

Load P with $\mu_S = 3$ kN and $\sigma_S = 1$ kN

- Monte Carlo Simulation
 - 3. Generating 1000 values of these random variables.

Load P with $\mu_S = 3$ kN and $\sigma_S = 1$ kN

```
%Monte Carlo simulation with histogram
      clear all;
      close all;
      clc;
       % generate sample
                      %specifiy random seed
      rng(123456);
                    %mean
      mu = 3:
      sigma = 1; %standard deviation
      size = 1000; %sample size
11 -
12
13 -
      r = mu + sigma.*randn(size,1); %generate sample mu and sigma
14
```


- Monte Carlo Simulation
 - 3. Generate histogram of 1000 samples with 15 bins

```
15 % generate histogram
16 - hist(r,15);
17 - xlabel('Load P (N)');
18 - ylabel('Sample size');
19 - grid on;
20
```


- Monte Carlo Simulation
 - 4. Determine the probability of failure if the allowable load = 5 kN

```
%calculate probability of failure
21
22
23 -
       n = length(r);
24 -
       allowable load = 5;
       counter = 0;
25 -
26
27 -
      \neg for i = 1:n
28 -
            if r(i) > allowable load
                counter = counter+1;
29 -
30 -
            end
31 -
       end
32
       probability failure = counter/size*100;
33 -
       display(probability failure);
34 -
```

Command Window

```
probability_failure =
3.1000
```

Probability of failure: 3.1%