Optimal Control WS20/21: Homework 2

Daniel Bergmann

January 29, 2021

Problem 1

a) Formulating the problem as an discrete-time, infinite-horizon o. c. problem yields

$$\min_{u_0, u_1, \dots} \sum_{k=0}^{\infty} \alpha^k f_0(x_k, u_k) = \sum_{k=0}^{\infty} 0.9^k f_0(x_k, u_k)$$
subject to
$$\begin{aligned}
x_{k+1} &= f(x_k, u_k), \\
x_k &\in \mathcal{X} = \{\xi_1, \dots, \xi_8\}, \\
u_k &\in \mathcal{U} = \{0, 1, 2\}, \\
x_0 &= \xi_1,
\end{aligned}$$
(1)

where the dynamics $f: \mathcal{X} \times \mathcal{U} \longrightarrow \mathcal{X}$ are defined by the arrows in the graph.

The Value function iteration is defined by the Bellman operator

$$V_{k+1}(x) = TV_k(x) = \min_{u \in \mathcal{U}} \{ f_0(x, u) + \alpha V_k(x) \}$$
 with $\alpha = 0.9$. (2)

Evaluated for this particular problem, this yields

$$\begin{split} V_{k+1}(\xi_1) &= \min_{u \in \mathcal{U}} \{1 + 0.9V_k(\xi_2), 1 + 0.9V_k(\xi_3)\}, \\ V_{k+1}(\xi_2) &= \min_{u \in \mathcal{U}} \{3 + 0.9V_k(\xi_7), 6 + 0.9V_k(\xi_5), 3 + 0.9V_k(\xi_4)\}, \\ V_{k+1}(\xi_3) &= \min_{u \in \mathcal{U}} \{1 + 0.9V_k(\xi_4), 2 + 0.9V_k(\xi_6), 3 + 0.9V_k(\xi_5)\}, \\ V_{k+1}(\xi_4) &= \min_{u \in \mathcal{U}} \{2 + 0.9V_k(\xi_7), 6 + 0.9V_k(\xi_8), 3 + 0.9V_k(\xi_6)\}, \\ V_{k+1}(\xi_5) &= \min_{u \in \mathcal{U}} \{0 + 0.9V_k(\xi_4), 0 + 0.9V_k(\xi_4), 1 + 0.9V_k(\xi_6)\}, \\ V_{k+1}(\xi_6) &= \min_{u \in \mathcal{U}} \{5 + 0.9V_k(\xi_1), 1 + 0.9V_k(\xi_7), 1 + 0.9V_k(\xi_8)\}, \\ V_{k+1}(\xi_7) &= \min_{u \in \mathcal{U}} \{2 + 0.9V_k(\xi_8), 2 + 0.9V_k(\xi_8), 2 + 0.9V_k(\xi_8)\}, \\ V_{k+1}(\xi_8) &= \min_{u \in \mathcal{U}} \{0 + 0.9V_k(\xi_8), 0 + 0.9V_k(\xi_8), 0 + 0.9V_k(\xi_8)\}, \end{split}$$

starting with an arbitrary inital value function $V^0: \mathcal{X} \longrightarrow \mathbb{R}$.

b) Value function $V: \mathbb{R}^8 \longrightarrow \mathbb{R}$, obtained after 1000 value function iterations:

$$V(\xi_1) = 3.61$$

$$V(\xi_2) = 4.80$$

$$V(\xi_3) = 2.90$$

$$V(\xi_4) = 3.80$$

$$V(\xi_5) = 1.90$$

$$V(\xi_6) = 1.00$$

$$V(\xi_7) = 2.00$$

$$V(\xi_8) = 0.00.$$
(4)

The values in (4) induce the following state feedback:

$$k(\xi_{1}) = u_{2}$$

$$k(\xi_{2}) = u_{1}$$

$$k(\xi_{3}) = u_{1}$$

$$k(\xi_{4}) = u_{1}$$

$$k(\xi_{5}) = u_{2}$$

$$k(\xi_{6}) = u_{2}$$

$$k(\xi_{7}) = u_{0}$$

$$k(\xi_{8}) = u_{0}.$$
(5)

For the initial state $x_0 = \xi_1$, the state-feedback given in (5) yields the optimal input sequence

$$u^* = (2 \ 1 \ 2),$$

that steers the state to the terminal state ξ_8 via the route $\xi_1, \xi_3, \xi_6, \xi_8$.

c) We suppose

$$V^{0}(\xi) \le TV^{0}(\xi) \quad \forall_{\xi \in \mathcal{X}}, \tag{6}$$

for an initial function V^0 for a value function iteration with the Bellman Operator, defined in (2). From the lectures, we have the following properties.

$$||TV^1 - TV^2||_{\infty} \le \alpha ||V^1 - V^2||_{\infty}$$
(Contraction)
(7)

$$V^1(\xi) \le V^2(\xi) \quad \forall_{\xi \in \mathcal{X}} \Longrightarrow TV^1(\xi) \le TV^2(\xi) \quad \forall_{\xi \in \mathcal{X}}$$
 (Monotonicity) (8)

 V^* solves the Bellman Equation V^* is the Value function, since we have discounted costs. (9)

First we show, that the iteration converges to the value function of the problem. Since (7) holds and $\alpha \in (0,1)$, we deduce the convergence of $\{V_k\}_{k\in\mathbb{N}}$ by the Banach-Fixed-Point-Theorem. Since we have such a limit $\lim_{k\to\infty} V_k \longrightarrow V^*$, it has to satisfy the fixed point property $TV^* = V^*$. Hence it satisfies the Bellman equation and (9) verifies V^* as the value function of our problem.

Second, it remains to show that $V^0(\xi) \leq V^*(\xi) \forall_{\xi \in \mathcal{X}}$ holds.

By assumption (6) and the monotonicity property (8), we infer inductively, that $V_k(\xi) \leq V_{k+1}(\xi)$ for all $\xi \in \mathcal{X}$. Thus, the sequence $\{V_k(\xi)\}_{k \in \mathbb{N}_0}$ is non-decreasing for any $\xi \in \mathcal{X}$. This proves the claim $V^0(\xi) \le V^*(\xi) \forall_{\xi \in \mathcal{X}}.$

d) Maximization Problem:

$$\max_{V(\xi_1),\dots,V(\xi_n)} \sum_{k=0}^n V(\xi_i)$$
subject to
$$V(\xi_i) \le TV(\xi_i) \quad \forall_{i=1,\dots,n}.$$
(10)

To show: V^* is a solution to the maximization problem given above. Proof by contradiction. Suppose, there exists an admissible Function $V: \mathbb{R}^n \longrightarrow \mathbb{R}$ with

$$\tilde{V}(\xi_i) > V^*(\xi_i) \tag{11}$$

for at least one $i \in \{1, ..., n\}$. Since \tilde{V} is admissible for the given max. problem, we know that $\tilde{V}(\xi_i) \leq T\tilde{V}(\xi_i) \quad \forall_{i \in \{1,\dots,n\}}$. From excercise c) we know, that hence $\tilde{V}(\xi_i) \leq T^k \tilde{V}(\xi_i) \leq V^*(\xi_i)$ holds for all $i \in \{1, ..., n\}$ and for all $k \in \mathbb{N}$. This clearly contradicts (11). Thus, V^* maximizes the objective of the given problem.

e) Transform (10) into

$$V^* = \underset{V(\xi_1),\dots,V(\xi_n)}{\operatorname{arg max.}} \sum_{k=0}^{n} V(\xi_i)$$
subject to
$$V(\xi_i) \le f_0(\xi_i, u) + \alpha V(f(\xi, u))$$

$$\forall_{u \in \mathcal{U}(\xi_i)} \forall_{i=1,\dots,n}.$$

$$(12)$$

As shown in d), V^* maximizes the objective of problem (10). It remains to show, that the constraints of problems (10) and (14) are equivalent. The operator T is defined by the Bellman Equation, as written in (2). We have

$$V(\xi_i) \le TV(\xi_i) = \min_{u \in \mathcal{U}} \{ f_0(\xi_i, u) + \alpha V_k(\xi_i) \}$$

$$\le f_0(\xi_i, \tilde{u}) + \alpha V_k(\xi_i)$$
(13)

for any input signal $\tilde{u} \in \mathcal{U}$. This arises directly from the definition of the minimum. Thus, (10) and (14) denote the same problem.

It remains to formulate this as a linear program

$$V^* = \underset{V}{\operatorname{arg max.}} \quad c^T V$$
 subject to $AV \le b$. (14)

With $V = (V(\xi_1), \dots, V\xi_n)^T$, the objective max. $\sum_{k=0}^n V(\xi_i)$ is the same as min. c^TV with

$$c = -(1, \dots, 1)^T \in \mathbb{R}^n.$$

Now we rewrite the constraints as a linear inequality AV = b.

For a state $\xi_i \in \mathcal{X}$, the inequality

$$V(\xi_i) \le f_0(\xi, u) + \alpha V(f(\xi_i, u))$$

$$\iff V(\xi_i) - \alpha V(f(\xi_i, u)) \le f_0(\xi_i, u)$$
(15)

has to hold for each possible input $u \in \mathcal{U}$, which leads to three scalar inequalities per state. Such an inequality can be represented with a line in the matrix A, with an 1 in the i-th column and $-\alpha$ in the $f(\xi_i, u)$ -th column. The corresponding entry of the vector b is $f_0(\xi_i, u)$. The resulting matrices A, b for the particular problem can be found in the solutions-sheet or can be generated by the matlab script.

One can determine the optimal input u^* in any state ξ_i by using the input that makes inequality (13) an equality. This minimizes the V-value of the next state that will be reached.

Problem 2

a) System

$$x_{k+1} = Ax_k + Bu_k \quad \text{with}$$

$$A = \begin{pmatrix} 1 & 3 \\ -0.5 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, x_0 = \begin{pmatrix} 0.6 \\ -0.7 \end{pmatrix}.$$

$$(16)$$

The origin $x^e = 0 \in \mathbb{R}^2$ is a equlibrium point of (16), since $x^e = Ax^e$. We determine the eigenvalues by computing roots of the characteristic polynomial of A.

$$\det(A - \lambda I) = \det\begin{pmatrix} 1 - \lambda & -0.5 \\ 3 & 1 - \lambda \end{pmatrix} = \lambda^2 - 4\lambda + 1.$$

hence, roots of the char. pol. are

$$\lambda_{1,2} = 1 \pm i \frac{\sqrt{6}}{2}$$
 with *i* the imaginary unit.

Since $|\lambda_i| > 1$ for $i = 1, 2, x^e$ is an unstable equilibrium.

b) MPC optimization problem at time k with given state $x_k = \bar{x}$:

$$\min_{u_k, \dots, u_{k+N}} \sum_{j=k}^{k+N-1} f_0(x_j, u_j) + \phi(x_{k+N})$$

$$= \sum_{j=k}^{k+N-1} x_j^T Q x_j + u_j^T R u_j + x_{k+N}^T P x_{k+N}$$
subject to
$$x_{j+1} = A x_j + B u_j \text{ for all } j = k, \dots, k+N \quad \text{(dynamic constraints)}$$

$$u_j \le 1, \text{ for all } j = k, \dots, k+N, \quad \text{(input constraints)}$$

$$-u_j \le 1, \text{ for all } j = k, \dots, k+N, \quad \text{(terminal constraint)}$$

$$x_{k+N}^T P x_{k+N} \le c, \quad \text{(terminal constraint)}$$

$$x_k = \bar{x}, \quad \text{(initial state constraint)}$$

with

$$Q = I_2, R = 1, N = 3, c = \frac{\lambda_{\min}(P)}{|K|^2}, K = (0.3, 1.4).$$

- c) For the given controller u = Kx for \mathcal{X}_f , we show
 - For all states $x \in \mathcal{X}_f$, u = Kx is a feasible input signal. From linear algebra, we know

$$\lambda_{\min}(P) \|x\|^2 \le x^T P x \Longleftrightarrow \|x\|^2 \le \frac{x^T P x}{\lambda_{\min}(P)},\tag{18}$$

where $\|\cdot\|$ denotes the euclidean norm. We can use that to estimate

$$||u|| = ||Kx|| = x^T K K^T x = ||K||^2 x^T x = ||K||^2 ||x||^2$$
(19)

$$\stackrel{(18)}{\leq} ||K||^2 \frac{x^T P x}{\lambda_{\min}(P)} \leq ||K||^2 \frac{c}{\lambda_{\min}(P)} = 1.$$
 (20)

Hence, for $x \in \mathcal{X}_f$, satisfying the terminal constraint from (17), u is a feasible input.

• The condition $\phi(x_{j+1}) - \phi(x_j) \le f_0(x_j, u_j)$ is satisfied for all states x_j . Since we have linear system dynamics and quadratic costs as a quadratic expression in x_j . Plugging in our particular system, yields

$$\phi(x_{i+1}) - \phi(x_i) \le f_0(x_i, u_i) \tag{21}$$

$$\iff x_{i+1}^T P x_{i+1} - x_i^T P x_i \le -x_i^T Q x_i - u_i^T u_i \tag{22}$$

$$\iff (Ax_j + Bu_j)^T P(Ax_j + Bu_j) - x_j^T P x_j \le -x_j^T Q x_j - u_j^T R u_j. \tag{23}$$

With the state feedback $u_i = -Kx_i$, we get

$$((A - BK)x_i)^T P((A - BK)x_i) - x_i^T P x_i \le -x_i^T Q x_i - (-Kx_i)^T R(-Kx_i)$$
 (24)

$$\iff x_j^T((A - BK)^T P(A - BK) - P + Q + K^T RK)x_j \le 0$$
(25)

Hence with $M := (A - BK)^T P(A - BK) - P + Q + K^T RK$, we have

$$\phi(x_{j+1}) - \phi(x_j) \le f_0(x_j, u_j) \iff x_j^T M x_j \le 0 \iff M \le 0.$$

For our example, we have $M = \begin{pmatrix} -0.266 & 1.068 \\ 1.068 & -6.364 \end{pmatrix} \leq 0$, thus the condition holds true.

• The terminal region \mathcal{X}_f is positively invariant We show the invariance of the terminal region by proving $x_j^T P x_j < c$ for all times. Since f_0 is positive definite, we have with (21)

$$\phi(x_{j+1}) - \phi(x_j) \le f_0(x_j, u_j) \le 0.$$

Hence $x_j^T P x_j$ is decreasing over time and remaining smaller than c and hence $x_j \in \mathcal{X}_f$.

d) Write as quadratic optimization problem with quadratic constraints. The optimization variable has to contain the input signals as well as the resulting states

$$z = (x_k \dots x_{k+N} \ u_k \dots u_{k+N-1})^T \in \mathbb{R}^{(N+1)n+Nm}, \tag{26}$$

where n is the state space dimension and u the dimension of the input signal. Impolementation of the objective function then is achieved by setting

$$H = \operatorname{diag}(Q, \dots, Q, P, R, \dots, R) \in \mathbb{R}^{(N+1)n + Nm \times (N+1)n + Nm}$$
(27)

with N+1 blocks of Q and N blocks of R. The system dynamics are implemented by the equality constraints

$$x_{j+1} = Ax_j + Bu_j \Longleftrightarrow Ax_j - x_{j+1} + Bu_j = 0 \tag{28}$$

for each time sample $j = k, \dots k + N$. Further, we take the initial condition $x_k = \bar{x}$ into account. This yields the linear equation system $A_{eq}z = \begin{pmatrix} A_{eq}^x & A_{eq}^u \end{pmatrix} = b_{eq}$ with

$$A_{\text{eq}}^{x} = \begin{pmatrix} I & 0 & \cdots & \cdots & 0 & 0 \\ A & -I & 0 & \cdots & \cdots & 0 \\ 0 & A & -I & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \cdots & 0 \\ 0 & 0 & \cdots & A & -I & 0 \\ 0 & 0 & 0 & 0 & A & -I \end{pmatrix}$$

$$A_{\text{eq}}^{u} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ B & 0 & \cdots & 0 \\ 0 & B & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & \cdots & 0 & B \end{pmatrix}$$

$$(29)$$

$$A_{\text{eq}}^{u} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ B & 0 & \cdots & 0 \\ 0 & B & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & \cdots & 0 & B \end{pmatrix}$$

$$(30)$$

$$b_{\rm eq} = \left(x(k)\cdots 0\right)^T,\tag{31}$$

where the first lines of $A_{eq}^x, A_{eq}^u, b_{eq}$ represent the initial condition. The input constraints are represented within the inequality constraints of the problem. Therefore

$$A_{\rm in} = \begin{pmatrix} 0 & I \\ 0 & -I \end{pmatrix} \tag{32}$$

$$b_{\rm in} = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix}^T. \tag{33}$$

Lastly, the terminal constraints $x_N^T P x_N \leq c$ are implemented by $z^T T z$ with a blockdiagonal matrix T that consists of zeros exept at the position that meets x_N , this block is assigned with P. By definiteness of P,Q,R, the matrices T,H in the quadratic terms are positive (semi-)definite, while all other constraints are affine. This means, that the optimization problem is convex.

State traj. and input signals of 30 MPC Iterations exc e)

State traj. and input signals of 30 MPC Iterations exc f)

