Question Number	Answer		Mark
17a	Use of sum of e.m.f. = sum of p.d. Correct rearrangement leading to given equation	(1) (1)	
	Or Total resistance of circuit = $R + r$ Correct rearrangement with total resistance replaced by $\frac{\varepsilon}{r}$	(1) (1)	2
	Example of rearrangement	(-)	
	$\varepsilon = I(R+r), \text{ so } \frac{\varepsilon}{I} = R+r, \text{ so } R = \frac{\varepsilon}{I} - r$		
17b	Gradient calculation (to calculate ε) $\varepsilon = 1.5 \text{ V}$ $r = 2 \Omega$	(1) (1) (1)	
	OR $r = 2 \Omega$ (read from y-intercept) Use of co-ordinates from the graph with the formula $\varepsilon = 1.5 \text{ V}$	(1) (1) (1)	3
17c	Current (in r/R /circuit) decreases Reference to $P = I^2r$ (Do not allow if R used instead of r) P decreases, so student is correct (MP3 dependent on MP2)	(1) (1) (1)	
	OR V across r decreases Reference to $P = V^2/r$ (Do not allow if R used instead of r) P decreases, so student is correct (MP3 dependent on MP2)	(1) (1) (1)	
	OR $V ext{ across } r ext{ decreases}$ $P = VI ext{ and current (in } r/R/\text{circuit) decreases}$ $P ext{ decreases, so student is correct}$ (MP3 dependent on MP2)	(1) (1) (1)	
	OR Current (in r/R /circuit) decreases $P = VI$ and p.d. across r decreases P decreases, so student is correct (MP3 dependent on MP2)	(1) (1) (1)	3