

Instituto de Ciências Exatas Departamento de Ciência da Computação

Computação Ubíqua

Tales Mundim Andrade Porto Danilo Ávila Monte Christo Ferreira

Monografia apresentada como requisito parcial para conclusão do Bacharelado em Ciência da Computação

Orientador Prof. Dr. Carla Denise Castanho

> Brasília 2011

Universidade de Brasília — UnB Instituto de Ciências Exatas Departamento de Ciência da Computação Bacharelado em Ciência da Computação

Coordenador: Prof. Lamar

Banca examinadora composta por:

Prof. Dr. Carla Denise Castanho (Orientador) — CIC/UnB

Prof. Dr. Professor I — CIC/UnB

Prof. Dr. Professor II — CIC/UnB

CIP — Catalogação Internacional na Publicação

Porto, Tales Mundim Andrade.

Computação Ubíqua / Tales Mundim Andrade Porto, Danilo Ávila Monte Christo Ferreira. Brasília : UnB, 2011.

27 p.: il.; 29,5 cm.

Monografia (Graduação) — Universidade de Brasília, Brasília, 2011.

1. palvrachave1, 2. palvrachave2, 3. palvrachave3

CDU 004.4

Endereço: Universidade de Brasília

Campus Universitário Darcy Ribeiro — Asa Norte

CEP 70910-900

Brasília-DF — Brasil

Instituto de Ciências Exatas Departamento de Ciência da Computação

Computação Ubíqua

Tales Mundim Andrade Porto Danilo Ávila Monte Christo Ferreira

Monografia apresentada como requisito parcial para conclusão do Bacharelado em Ciência da Computação

Prof. Dr. Carla Denise Castanho (Orientador) ${\rm CIC/UnB}$

Prof. Lamar Coordenador do Bacharelado em Ciência da Computação

Brasília, 2 de maio de 2011

Dedicatória

Dedico a....

Agradecimentos

Agradeço a....

Resumo

A ciência...

Palavras-chave: palvrachave1, palvrachave2, palvrachave3

Abstract

The science...

Keywords: keyword1, keyword2, keyword3

Sumário

1	Introdução	1
	1.1 Organização do trabalho	2
2	Localização e Reconhecimento Facial	•
	2.1 Localização	į
	2.2 Reconhecimento Facial	Ş
\mathbf{R}	eferências	6

Lista de Figuras

Lista de Tabelas

2.1	Requisitos teóricos para algoritmos de reconhecimento facial (7)	4
2.2	Requisitos práticos para algoritmos de reconhecimento facial (7)	4

Capítulo 1

Introdução

A computação ubíqua a tempos vem sendo tema de diversas pesquisas ao redor do mundo. Mark Weiser diz que o computador do futuro deve ser algo invisível (9) (10), o que proporciona ao usuário um melhor foco na tarefa e não na ferramenta. A computação ubíqua tenta atribuir a invisibilidade aos computadores. Como aconteceu com o motor, o computador também vive um momento "down-size", diminuindo cada vez mais o seu tamanho e se acoplando aos objetos do dia-a-dia.

O SmartSpace é um ambiente onde a computação ubíqua acontece em sua totalidade (4). Esse ambiente provê ao usuário uma melhor forma de interagir com os computadores usando diversas tecnologias que estimulam a interatividade natural. Tais tecnologias são capazes de fornecer inteligência, ao SmartSpace, necessária para concretizar a visão da ubicomp (2).

Para conseguir uma boa interação entre as diversas peças que compõem o SmartSpace é necessário que se tenha a disposição informações de contexto, como quem está no ambiente, onde está, o que está fazendo e outras que ajudam o sistema a definir o melhor ajuste dos equipamentos. Com uma base rica de informações de contexto, contendo os perfis dos usuários, garantimos uma maior acurácia na tomada de decisões. Informações de contexto como essas são complicadas de se obter devido a alta dinamicidade do ambiente, no qual usuários entram e saem a todo momento e interagem com diversos equipamentos.

A identificação de usuário em um SmartSpace é feita por meio de sistema de reconhecimento automático. Há alguns anos, um grande número de pesquisas vem sendo desenvolvidas para criação sistemas deste tipo (1). Um dos motivos clássicos é que os métodos baseados em cartões de identificação e senhas não são altamente confiáveis. Estes podem ser perdidos, extraviados e até fraudados (8).

Um ambiente ubíquo capaz de reconhecer seus usuários, pode prover uma personalização automática do ambiente de acordo com as prefrências de cada usuário e até mesmo prover um ambiente mais seguro com controle de acesso físico e prevenção de fraudes (1). Atualmente, os métodos de reconhecimento mais utilizados são baseados no uso de cartões magnéticos e senhas, que requerem sua utilização durante uma transação, mas que não verificam sua idoneidade (3).

Hoje em dia, várias técnicas de reconhecimento por meio de faces, íris, voz, entre outras, vêm sendo estudadas e utilizadas em sistemas de reconhecimento automático (8). O reconhecimento facial pode ser considerada como uma das principais funções do ser humano pois permite identificar uma grande quantidade de faces e aspectos psicológi-

cos demonstrados pela fisionomia. Pode ser considerada, também, como um problema clássico da visão artificial pela complexidade existente na detecção e reconhecimento de características e padrões (1).

O reconhecimento facial vem se desenvolvendo junto a "quarta geração" de computadores através de sua aplicação na nova geração de interfaces que consiste na detecção e reconhecimento de pessoas (1).

É proposta então uma solução para o problema de localização e identificação de perfis de usuários em um SmartSpace utilizando como base o middleware UbiquitOS (5) integrado com o Kinect (11).

1.1 Organização do trabalho

Explicar a estrutura da monografia.

Capítulo 2

Localização e Reconhecimento Facial

Algo explicando o que terá nesse capítulo.

2.1 Localização

2.2 Reconhecimento Facial

As abordagens de identificação pessoal que utilizam "alguma coisa que você sabe", como Número de Indetificação Pessoal (PIN - "Personal Identification Number"), ou "alguma coisa que você tenha", como um cartão de identificação, não são confiáveis o suficiente para satisfazer os requisitos de segurança de um sistema de transações eletrônicas porque não têm a capacidade de diferenciar um usuário legítimo de um impostor que adiquiriu de forma ilegal o privilégio de acesso (6).

Biometria é uma tecnologia utilizada para identificação de um indivíduo baseado em suas características físicas ou comportamental, baseia-se em "alguma coisa que você é ou faz" para realizar a identificação e, por isso, tem a capacidade de diferenciar entre um indivíduo legítimo de um impostor (6). Teoricamente, qualquer característica física/comportamental pode ser utilizada para identificação caso siga alguns dos seguintes requisitos (7):

- 1. universidade: qualquer pessoa pode ser avaliada sobre essa característica;
- 2. **singularidade**: dada duas pessoas distinas, elas não podem ter a mesma característica;
- 3. **permanência**: a característica não pode mudar de acordo com o tempo;
- 4. exigibilidade: significa que a característica pode ser mensurada quantitativamente;

Porém, na prática também são considerados outros requisitos (7):

- 1. desempenho: o processo de identificação deve apresentar um resultado aceitável;
- 2. aceitação: indica em que ponto as pessoas estão dispostas a aceitar o sistema biométrico;
- 3. evasão: refere a facilidade de ser adulterado;

Novas técnicas de reconhecimento por meio de faces, íris, retina e voz, entre outras, têm sido abordadas para aplicações em sistemas de reconhecimento automático (8) (1). O reconhecimento facial é, apenas, uma das nove características biométricas utilizadas atualmente (7). Nas tabelas 2.1 e 2.2 são mostradadas as noves características biométricas mais utilizadas e seus respectivos comportamentos baseados nos requisitos mencionados acima.

Biometria	Universidade	Singularidade	Permanência	Exigibilidade
Face	Alta	Baixa	Média	Alta
Digital	Média	Alta	Alta	Média
Geometria da Mão	Média	Média	Média	Alta
"Hand Vein"	Média	Média	Média	Média
Iris	Alta	Alta	Alta	Média
"Retina Scan"	Alta	Alta	Média	Baixa
Assinatura	Baixa	Baixa	Baixa	Alta
Voz	Média	Baixa	Baixa	Média
Termograma	Alta	Alta	Baixa	Alta

Tabela 2.1: Requisitos teóricos para algoritmos de reconhecimento facial (7).

Biometria	Desempenho	Aceitação	Evasão
Face	Baixa	Alta	Baixa
Digital	Alta	Média	Alta
Geometria da Mão	Média	Média	Média
"Hand Vein"	Média	Média	Alta
Iris	Média	Média	Alta
"Retina Scan"	Alta	Baixa	Alta
Assinatura	Baixa	Alta	Baixa
Voz	Baixa	Alta	Baixa
Termograma	Média	Alta	Alta

Tabela 2.2: Requisitos práticos para algoritmos de reconhecimento facial (7).

Um dos motivos que icentivou os diversos estudos sobre reconhecimento facial são as vantagens que o mesmo possui em relação a impressão digital e a íris. No reconhecimento por impressão digital, a desvantagem consiste no fato que nem todas as pessoas possuem uma impressão digital com "qualidade" suficiente para ser reconhecida por um sistema. Já o reconhecimento por íris apresenta uma alta confiabilidade e larga variação, sendo estável pela vida toda. Porém, a desvantagem está relacionada ao modo de captura da íris que necessita de uma alinhamento entre a câmera e os olhos da pessoa (1).

No anos 70, os estudos do reconhecimento facial eram baseados sobre atributos faciais mensuráveis como olhos, nariz, sobrancelhas, bocas, entre outros. Porém, os recursos computacionais eram escassos e os algoritmos de extração de características eram ineficiêntes.

Então, as pesquisas na área ressurgiram nos anos 90, inovando os métodos existentes (6)(1).

A maioria dos sitemas de reconhecimento facial são compostos por tarefas preliminares, como detecção e a segmentação (?). Algumas destas utilizam diversas tarefas que compõe o processamento facial que, por sua vez, é composto por diferentes tarefas que variam entre as aplicações, como por exemplo (1):

- 1. Classificação: classificação de uma face visualmente com base em categorias como pele, olhos (?);
- 2. **Identificação**: verifica se uma face pertence a um conjunto de faces conhecidas (?);
- 3. Reconhecimento: diz se uma face é "familiar" ou não (?);
- 4. **Detecção**: em uma imagem qualquer, se reconhece o local onde as faces estão (?);
- 5. **Segmentação**: identifica as partes que compõe uma face (?);
- 6. **Representação**: seleciona as informações de uma face que serão utilizadas para representá-las (?);

Referências

- [1] Ângelo Rodrigo Bianchini. Arquitetura de redes neurais para o reconhecimento facial baseado no neocognitron. Master's thesis, São Carlos, http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo = 164, 2001.1, 2, 4, 5
- [2] Fabricio Nogueira Buzeto. Um conjunto de soluções para a construção de aplicativos de computação ubíqua. Master's thesis, Universidade de Brasília, 2010. 1
- [3] John Daugman. Face and gesture recognition: Overview. *IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE*, 19(7), 1997. 1
- [4] Gregory Abowd; Chris Atkeson; Irfan Essa. Ubiquitous smart spaces. A white paper submitted to DARPA (in response to RFI), 1998. 1
- [5] Alexandre Rodrigues Gomes. Ubiquitos uma proposta de arquitetura de middleware para a adaptabilidade de serviços em sistemas de computação ubíqua. Master's thesis, Universidade de Brasília; Departamento de Ciência da Computação, http://monografias.cic.unb.br/dspace/handle/123456789/110, 2007. 2
- [6] Lin Hong; Anil Jain. Integrating faces and fingerprints for personal identification. *IEEE Transactions on Pattern and Machine Intelligence*, 20(12):1295–1307, dezembro 1998. 3, 4
- [7] José Hiroki Saito Milene Arantes, Alessandro Noriaki Ide. A system for fingerprint minutiae classification and recognition. In *Proceedingsof the 9th International Conference on Neural Information Processing (ICONIP'O2)*, volume 5, pages 2474 2478. vii, 3, 4
- [8] Anil Jain Sharath Pankanti, Ruud M. Bolle. Biometrics: The future of identification, 2000. 1, 4
- [9] Mark Weiser. The computer for the 21st century. Scientific American, 1991. 1
- [10] Mark Weiser. The world is not a desktop. ACM Interactions, 1993. 1
- [11] Wikipedia. Kinect. http://en.wikipedia.org/wiki/Kinect. 2