Distributed Computer Systems Engineering

CIS 508: Lecture 10 Networking Protocols II

Lecturer: Sid C.K. Chau Email: ckchau@masdar.ac.ae

Distributed Decision: Routing

- A collection of systems need to reach a decision for a specific task
- Information is exchanged among the systems
- No single system needs to keep track of the whole information of all systems
- Classical example: routing
 - Deciding the best path from source to destination
 - Each forwarding node only keeps track of local (neighbor) link states and next-hop forwarding decisions
 - E.g. Bellman-Ford algorithm, dynamic programming

How to route on the Internet?

- Shortest-path routing paradigm
 - Finding a path between two nodes in a network such that the sum of the weighted edges is minimized
 - Open Shortest Path First (OSPF)
 - Does routing on the Internet always follow shortest-path routing?
 - No, far from it!

Forming the Internet

- The Internet comprises of billions of routers, switches, hubs
- The network facilities belong to many different organizations
 - Most of organizations are not sharing the facilities selflessly
 - Complicated business, governmental, institutional polices affecting the formation of the Internet
- Information of the networks belonging to different organizations is not always public
- Routing in the Internet is never the same as routing within an organization

Customer-Provider Relationship

- Provider
 - Superior network infrastructure
 - Well-connected network connectivity
 - Presence in wider geography
- Customer
 - Inferior network infrastructure
 - Constrained network connectivity
 - Presence in local area
- Customer needs to pay provider for transit service to other networks

Customer-Provider Relationship

- Customer needs to pay provider for transit service to other networks
- Transit service
 - One party provides guaranteed connectivity to another party
- Provider cannot use customer for transit service
- Uni-directional connectivity

Peering Relationship

- Peering
 - Agreement among networks to directly exchange data traffic
 - Bilateral agreement
 - Not traffic transit through peer to other network
- Peer need not pay each other for mutual connectivity

General Relationship

- Tier-1 Providers
 - Global network connectivity
 - E.g. AT&T
- Tier-2 Providers
 - Local network connectivity
 - E.g. Etisalat
- Customers
 - E.g. Masdar
 - Peering allows connectivity between the customers of Tier 2 providers
- Not always use Tier 1 providers

Peering vs. Not Peering

Peering

- Reduces upstream transit costs
- Can increase end-to-end performance
- May be the only way to connect your customers to some part of the Internet (for "Tier 1" providers)

Not Peering

- Acquiring new customers makes profit
- Peers are usually your competitors
- Peering relationships may require periodic renegotiation
- Peering agreements are often confidential
- Decision to peer or not peer is a complicated business decision

Internet Exchange Point (IXP)

- Internet Exchange Point (IXP)
 - A third-party facility that enables peering among multiple parties
 - Can be not-for-profit or for-profit
 - E.g. LINX (London Internet Exchange), Ankabut
 - Separate peering can be established among participating parties
 - Participating in IXP not implying accepting data traffic from all other participants

Basic Ideas: Routing vs. Forwarding

- Forwarding
 - Each network controls its forwarding decisions
 - Decide next hop for its traffic
 - Forwarding table stores information & configuration
- Routing
 - Establish end-to-end paths
 - Forwarding table may be default
 - Routing protocol can be used to determine the forwarding tables

Forwarding Tables

Static approach

- Administrator manually configures forwarding table entries
- Advantages: More control; not restricted to destination-based forwarding
- Disadvantages: Do not scale; slow to adapt to network failures

Dynamic approach

- Routers exchange network reachability information using routing protocols; Routers use this to compute best routes
- Advantages: Rapidly adapt to topology changes; scalable
- Disadvantages: Can be made to scale well; Complex distributed algorithms; Consume CPU, Bandwidth, Memory
- Debugging can be difficult
- In practice: a mix of these. Static mostly at the "edge"

Routing Protocols & Architecture

- Interior Gateway Protocol (IGP): routing protocol within an organization
 - Metric based: OSPF, IS-IS, RIP, EIGRP (Cisco)
 - Based on minimum weighted path
- Exterior Gateway Protocol (EGP): routing protocol across different organizations
 - Policy based: BGP (Border Gateway Protocol)
 - Routing scope of BGP is the entire Internet

Approaches of Distributed Routing

- Link State (e.g. OSPF, IS-IS)
 - Topology information is flooded within the routing domain
 - Best end-to-end paths are computed locally at each router.
 - Best end-to-end paths determine next-hops.
 - Based on minimizing some notion of distance
 - Works only if policy is shared and uniform
- Vectoring (e.g. RIP, BGP)
 - Each router knows little about network topology
 - Only best next-hops chosen by each router for each destination
 - Best end-to-end paths result from composition of all next-hop choices
 - Not require any notion of distance
 - Not require uniform policies at all routers

Classification

Autonomous Systems

- A collection of physical networks grouped together using IP
 - Having a unified administrative routing policy (e.g. a single organization)
 - Can hide its internal network topology (encapsulation)
 - Examples
 - Campus networks, Corporate networks
 - ISP Internal networks
- An autonomous system is an autonomous routing domain that has been assigned an Autonomous System Number (ASN)
 - "... the administration of an AS appears to other ASes to have a single coherent interior routing plan and presents a consistent picture of what networks are reachable through it"

RFC 1930: Guidelines for creation, selection, and registration of an Autonomous System

AS Numbers (ASNs)

- ASNs are 16 bit values (64512 through 65535 are "private")
- Currently over 11,000 in use
- Examples
 - Genuity (formerly known as BBN): 1
 - MIT: 3
 - Harvard: 11
 - UC San Diego: 7377
 - **AT&T**: 7018, 6341, 5074, ...
 - UUNET: 701, 702, 284, 12199, ...
 - Sprint: 1239, 1240, 6211, 6242, ...
- ASNs represent units of routing policy

AS Graph: Example

• The subgraph showing all ASes that have more than 100 neighbors in full graph of 11,158 nodes. July 6, 2001. Point of view: AT&T route-server

AS Graph ≠ Internet Topology

BGP-4

- BGP-4: current operational version of Border Gateway Protocol
- Operate on AS level graph
- Policy-based routing protocol
- The de facto EGP of today's global Internet
- Relatively simple protocol, but configuration is complex and the entire world can see, and be affects by misconfigurations
 - 1989 : BGP-1 [RFC 1105]
 - Replacement for EGP (1984, RFC 904)
 - 1990 : BGP-2 [RFC 1163]
 - 1991 : BGP-3 [RFC 1267]
 - 1995 : BGP-4 [RFC 1771]

BGP Neighbor Relationships

- BGP is divided into two parts
 - 1. *eBGP*: protocol with external neighbor in a different Autonomous System
 - Functions: announce and withdraw forwarding decisions in AS level
 - iBGP: protocol with internal neighbor in the same Autonomous System
 - Functions: communicate with internal neighbor to consolidate routing operations

BGP Messages

- Open: Establish a peering session
- Keep Alive: Handshake at regular intervals
- Notification: Shuts down a peering session
- Update: Announcing new routes or withdrawing previously announced routes

```
announcement = IP prefix +
    attribute values
```

BGP Attributes

/alue	Code	Reference
<u> </u>	ORIGIN	[[RFC1771]
5	AS_PATH	[CRFC1771]
3	NEXT_HOP	E RFC17711
4	MED	[[RFC1771]
5	LOCAL PREF	[RFC1771]
Ь	ATOMIC_AGGREGATE	ERFC17711
7	AGGREGATOR	ERFC17711
8	COMMUNITY	ERFC19971
9	ORIGINATOR_ID	ERFC27963
10	CLUSTER LIST	ERFC27963
11	DPA	
75	ADVERTISER	ERFC18631
13	RCID_PATH / CLUSTER_ID	ERFC18631
14	MP_REACH_NLRI	ERFC22831
15	MP_UNREACH_NLRI	ERFC22831
16	EXTENDED COMMUNITIES	
255	reserved for development	

Example: AS_Path Attribute

How to Select Best Routes

- A BGP router can receive multiple announcements of routes the same destination (IP prefix)
- At most a single route is selected, based on
 - Attributes in announcements
 - Internal route selection policy
 - There is no uniform routing policy across different Autonomous
 Systems

Possible Route Selection Policy

Highest internal preference

Enforce relationships

Shortest AS_Path

Lowest MED

i-BGP < e-BGP

Lowest IGP cost to BGP egress

Traffic engineering

Lowest router ID

Default tie-breaking

Shorter AS_Path ≠ Shortest Path

Loop Prevention

- A loop occurs when Autonomous
 System accepts route that traverses itself
- To prevent loop, Autonomous
 System rejects route announcement
 that contains its AS number

Hot Potato Routing

- There can be multiple route through an Autonomous System to reach the same destination
- Which path is selected?
- Hot potato routing: get traffic off of your network as soon as possible
- Minimize the distance traversed within the Autonomous System
- Example: R3 should selects path to R1

Hot Potato Routing

- Hot potato routing cannot optimize the path selection through other AS
- Some Autonomous Systems may be willingly to declare its internal path distance, if there are multiple paths through it to the same destination
- Multi exit description (MED) can convey the internal information to the next Autonomous Systems
- Multi exit description may not reveal the true internal path distance

BGP Dynamics

- Why are BGP updates?
 - Misconfiguration (top reason)
 - Traffic engineering
 - BGP exploring many alternate paths
 - Software bugs in implementation of routing protocols
 - BGP session resets due to congestion or lack of interoperability
 - IGP instability exported by use of MEDs or IGP tie breaker
 - Sub-optimal vendor implementation choices
 - Bad policy
- How many updates are flying around the Internet?
- How long does it take routes to change?

Daily Update Count

Route Flapping

Route Flapping

Data source: RIPE NCC

Suppress Updates

- Rate limiting on sending updates
 - Send batch of updates every Minimal Route Advertisement Interval seconds)
 - Default value is 30 seconds
 - A router can change its mind about best routes many times within this interval without telling neighbors
 - Effective in dampening oscillations inherent in the vectoring approach
- Route Flap Dampening
 - Punish routes for "misbehaving"
 - Must be turned on with configuration

Software-Defined Networking

- Today's router and switches run on proprietary OSes
 - Cisco IOS, Juniper JunOS, Alcatel TimOS
 - Need to manage device-by-device locally and differently
- Software-defined Networking
 - Abstracting the control plane (routing policy, protocols) by a common API across devices and manufacturers
 - Enable global logically-centralized controller across the network
 - Increase interoperability and compatibility
 - Towards an OS for Network

Idea: An OS for Networks

Software-Defined Networking (SDN)

Software-Defined Networking

- Increasingly being supported by the industry
 - Juniper, NEC, HP, Netgear, ...
 - Used for enterprise networks
 - Adopted by large data center: Google
 - Large-scale adoption in near future
- Will SDN replace BGP?
 - Possibly
 - However, ISPs will retain the control and visibility of their policies

- Computer Networking

 James F. Kurose and Keith W. Ross; Pearson Addison-Wesley
 - Chapter 4.6

- BGP Tutorial , Tim Griffin
 - http://www.cl.cam.ac.uk/~tgg22/talks/BGP_TUTORIAL_ICNP_2002.ppt
- Software-defined Networking
 - https://www.coursera.org/course/sdn