ELEN 30012 MID-TEST (a) hossten is time varying. Let $\chi(t) = t$. Then 51+7 = (t-5) 5 d 5 = (t ts-s² ds $\frac{1}{2}t^{3}-\frac{1}{3}t^{3}$ (2) Next let $= \left(\frac{t}{(6-s)(s-i)} \right) ds$ = ft ts-s2-t+s ds = [\frac{1}{2}ts - \frac{1}{3}s^3 - ts + \frac{1}{2}s^2] $=\frac{1}{6}t^3-\frac{1}{2}t^2$ (3) $(t-1) = \frac{1}{6}(t-1)^3$ = 6 [t3 - 7t - 3t +1] + b, (+).(2). Hence not

Total: 8 marks

(2) System is defined by (as y[n] - (l+i) y[n] = -sl[n] n > 1.Hen ce en ce 5Ci = (1+i)5[o] - x(n) = (1+i)5[o] - c (1)a nel 5[2] = (1+i)5[i] - c= (1+i)[(1+i)5[0] - c] - c= ((+i) 5[0] - c[((+i) + ()(1) So in general 5[:in] = (1+i) 5[0] -- C[(1+i)^n-1+...+(1+i)+1) Usby the sun of a George Series me obten $5[N] = (1+i)^n 5[0]$ $- (1+i)^n (2)$ $= (1+i)^{5} [0] + \frac{c}{i} [1-(1+i)^{3}]$ (b) The natural regionee is

(1) (1) (1) (1) (0), due to the (1)

in trial andition y(0)

The step regionse is (1) $\frac{C}{i}$ $\left[\left(+ i \right)^n \right]$, $\frac{due}{step in put}$ $\left(1 \right)$ $\frac{C}{step in put} = C \cdot 4$

(c) For the loan to be paid after N months, we need Y [W] = (1+i) 5[0] + = [1-(1+i)] 50 1-(1+i)N = - (1+i) N 5[0] i (1+i) N 5[0] (1+i) N - 1. If N=24, i=1010, 5[0]=10,000then the monthly payments need to (0.01) (1.01) 24 (10,000) (1.01)24 -\$ 470.73 Total: 14 marks h(t) = (et, t>0 (G) The system is causal because the impluse response h(t) = 0 (

Total:

(5) We know that 21+) (1) et f(t) = x(-t). $F(w) = \int_{\infty}^{\infty} f(t) e^{-jwt} dt$ = 100 2 (-t) e dt. (2) Let S = -t, dS = -dt, $\chi(\infty) = -\infty$ (2) $f(w) = \int_{-\infty}^{-\infty} -\chi(s) e^{-t} ds$ (2) $=\int_{-\infty}^{\infty} \chi(s) e^{-s} ds$ $\times (-\omega)$. $\chi(t) \iff \chi(-w).$