Stacking utilizado nos experimentos

Raphael Rodrigues Campos 28 abril, 2016

Capítulo 1

Overview

1.0.1 Stacking

Stacking também conhecido como "Stacked Generalization" é um método para combinar multiplos classificadores usando algoritmos de aprendizados heterogêneos $L_1, ..., L_N$ sobre um único conjunto de dados D, que consiste de exemplos $e_i = (x_i, y_i)$, onde x_i é o vetor de atributos e y_i sua classificação.

1.0.1.1 Stacking Framework

O staking framework utilizado é baseado no descrito em [1] David H. Wolpert, "Stacked Generalization", Neural Networks, 5, 241–259, 1992. Foi utilizado um stacking de dois níveis (o framework não se limita a apenas dois níveis, é possível fazer o stacking de quantos níveis julgar necessário), que pode ser dividido em duas fases. Na primeira fase, um conjunto de classificadores do nível base $C_1, C_2, ..., C_N$ é gerado, onde $C_i = L_i(D)$. Na segunda fase um classidicador do meta-nível aprende a combinar as saídas dos classificadores do nível base.

Para gerar o conjunto de treino para o aprendizado do classificador do meta-nível, pode-se aplicar o procedimento **leave-one-out** ou **cross validation**. Por questões óbvias de custo computacional, é utilizado nesse relatório cross validation, mais especificamente **5-fold cross validation**. Cada classificador do nível base aprende usando $D-F_k$ deixando o k-ésimo fold para teste: $\forall i=1,...,N: \forall k=1,...,5: C_i^k=L_i(D-F_k)$. Agora, os classificadores recém aprendidos são usados para gerar as predições para $\forall x_j \in F_k: \hat{y}_j^i = C_i^k(x_j)$. O conjunto de treino do meta-nível consiste de exemplos da seguinte forma $((\hat{y}_i^1,...,\hat{y}_i^N),y_i)$, onde os atributos são as predições do s classificadores do nível base e a classe é a classe correta sabida de antemão.

1.0.1.1.1 Exemplo Esse procedimento pode parecer complicado, mas na verdade é simples. Como um exemplo, vamos gerar alguns dados sintéticos com a função "saída = soma do três componentes de entrada". Nosso conjunto de treino D consiste de 5 pares de entrada e saída $\{((0,0,0),0),((1,0,0),1),((1,2,0),3),((1,1,1),3),((1,-2,4),3)\}$, todas as entradas sem ruídos. Vamos rotular esses 5 pares de entrada e saída como F_1 até F_5 (Então por exemplo $D-F_2$ consiste dos quatros pares $\{((0,0,0),0),((1,2,0),3),((1,1,1),3),((1,-2,4),3)\}$). Nesse exemplo, temos dois classificadores do nível base C_1 e C_2 , e um único classificador do meta-nível Γ . O conjunto de treino do meta-nível D' é dado pelo cinco pares de entrada e saída $\{((C_1^k(F_k), C_2^k(F_k)), \text{ componente de saída de } F_k): \forall k \in \{1, ..., 5\}$ e $C_i^k = L_i(D-F_k)\}$ (Esse espaço do meta-nível possui duas dimensões de entrada e uma de saída). Ou seja, a instância do conjunto de treino do meta-nível correspondente a k=1 tem o componetne de saída 0 e entrada $(C_1^1((0,0,0)), C_2^1((0,0,0)))$. Agora nos é dado um exemplo de teste no formato do nível base (x_1, x_2, x_3) . Nós predizemos seu valor com $\Gamma((C_1((x_1, x_2, x_3)), (C_2((x_1, x_2, x_3))))$, onde C_1 e C_2 foram treinados com todo D, e Γ com D'. Em outras palavras, nós predizemos o valor da entrada de teste $Q = (x_1, x_2, x_3)$ treinando

 Γ em D' e assim predizendo a entrada formada pelas predições do valor do exemplo de teste q, de ambos classificadores do nível base C_1 e C_2 , que por suas vezes foram treinados com todo D.

1.0.1.2 Stacking com distribuições de probabilidade

Usar probabilidade para gerar o conjunto de treino do meta-nível é mais vantajoso já que disponibiliza mais informação acerca das predições feitas pelos classificadores do nível base. Essa informações adicionais permitem que não seja usado somente a predição, mas também o confiança de cada classificador do nível base.

Nessa abordagem, cada classificador do nível base prediz uma Distribuição de Probabilidade (DP) sobre todas as classes possíveis. Então, a predição do classificador do nível base C apliacado a um exemplo x é a DP: $p^C(x) = (p^C(c_1|x), ..., p^C(c_m|x))$, onde $\{c_1, ..., c_m\}$ é o conjunto de possíveis valores para as classes e $p^C(c_i|x)$) descreve a probabilidade do exemplo x ser da classe c_i estimado pelo classificador C. A classe c_j com maior probalidade será classe predita por C. Dessa forma, os atributos do meta-nível serão as probabilidade preditas para cada classe possível por cada classificador do nível base. O número total de atributos no conjunto de treino do meta-nível seria Nm, m atributos para cada classificador do nível base.

Os experimentos rodados até então utilizaram o stacking framework com DPs.

1.0.1.3 Stacking com DP, Entropia e probabilidade máxima

No artigo [2] Is combining classifiers better than selecting the best one, os autores propões uma extensão para esse framework com DP espandindo o número de meta-atributos. Esse novos meta-atributos seriam:

- A distribuição de probabilidade mutiplicada
o pela probabilidade máxima: $p_{C_j} = p^{C_j}(c_i|x) \times M_{C_j}(x) = p^{C_j}(c_i|x) \times max_{i=1}^m(p^{C_j}(c_i|x)), \forall i \in \{1,...,m\}$ e $\forall j \in \{1,...,N\}$.
- As entropias das distripuições de probabilidade: $E_{C_j}(x) = -\sum_{i=1}^m p^{C_j}(c_i|x) \cdot \log_2(p^{C_j}(c_i|x))$.

O número total de atributos do meta-nível é N(2m+1).

A idea é obter ainda mais informações em relação a predição feita pelos classificadores do nível base. Como Ting and Witten (1999) disseram: o uso de distribuição de probabilidades tem a vantagemde capturar não apenas as predições dos classificadores do nível base, mas também, suas certezas. Os atributos adicionais tentam capturar a certeza de forma mais explicita.

Entropia é uma medida de incerteza. Quanto maior a entropia da distribuição menor é a certeza sobre a predição. A probabilidade máxima de uma DP M_{C_j} também contém informação sobre certeza da predição: quanto maior M_{C_j} for mais certo daquela resposta o classificador do nível base está, e vice versa.

Esse é uma ideia para aplicarmos futuramente. Nesse momento continuarei utilizanto somente a DP.

1.1 SVM

Nessa seção, vamos dar uma visão geral sobre Support Vector Machine(SVM) utilizado nos experimentos.

Seja $x_i \in \mathbb{R}^d$ um vetor de caracteríticas. Nosso objetivo é projetar um classificador, por exemplo, que associa a cada vetor x_i um rótulo positivo ou negativo baseado no critério desejado.

O vetor x_i é classificador olhando o sinal do resultado do função $f(x_i, w) = w^T x_i$. O objetivo é aprender a estimar os paramêtros $w \in \mathbb{R}^d$ de tal forma que o sinal é positvo seo vetor x_i pertence a classe negativa e negativo caso contrário. De fato, na formulação padrão do SVM o objetivo é ter o o valor da função no mínimo 1 no primeiro caso, e no máximo -1* no segundo, impondo uma margem.

1.1. SVM 5

O paramêtr w é estimado ou aprendido ajustando o função a um conjunto de treino de n pares de exemplos $(x_i, y_i), i = 1, ..., n$, onde $y_i \in \{-1, 1\}$ são os rótulos dos correspondentes vetores de caracteríticas. A qualidade do ajuste é mensurada pela função de perda que, em SVMs padrões SVMs, é a **hinge loss**:

$$l_i(w, x_i) = \max(0, 1 - y_i w^T x_i)$$
(1.1)

Note que a **hinge loss** é zero apenas se o valor de $w^T x_i$ é no mínimo 1 ou no máximo -1, dependendo do rótulo de y_i .

Somente ajustar ao treino é normalmente insuficiente. Para que a função seja capaz de generalizar para dados nunca visto, é preferível um **trade off** entre a acurácia do ajuste e complexidade do modelo. Dessa forma, é adionado um termo de regularição a formula, o regularizador na formulação padrão é mensurado pela normado vetor de pesos $|w|^2$. Tirando-se a média da perda de todo os exemplos de treino e adicionando-se a ela o regularizador ponderado pelo paramêtro λ produz uma função objetiva de perda regularizada:

$$E(w) = \lambda ||w||^2 + \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i f(w, x))$$
(1.2)

Note que a função objetiva é convexa, desse modo existe um único ótimo global.

A função $f(x_i, w)$ considerada até aqui é linear em sem viés. A subseção seguinte discute como um termo de viés pode ser adicionado ao SVM.

1.1.1 Adicionando viés

É comum adicionar a funcão do SVM um termo de viés b, e considerar a nova função $f(x_i, w) = w^T x_i + b$. Na prática termo de viés pode ser crucial para ajustar os dados de treino de forma ótima, já que não há razão que o produto interno $w^T x_i$ devesse ser naturalmente centrado em zero. Alguns algoritmos de aprendizado do SVM podem estimar ambos w e b diretamente. Porém, outros algoritmos como **Stochastic Gradient Descente(SGC)** e **Stochastic Dual Coordinate Ascent (SDCA)** não podem (ambos usados pelo LIBLINEAR). Nesse caso, uma simples solução é adcionar um termo constante B > 0 ao dado, por exemplo, considere os vetores estendidos:

$$\bar{x_i} = \begin{bmatrix} x_i \\ B \end{bmatrix}, \ \bar{w} = \begin{bmatrix} w \\ w_b \end{bmatrix}.$$

De modo que função incorpore implicitamente o termo de viés $b = Bw_b$:

$$\bar{w}^T \bar{x_i} = w^T x_i + B w_b \tag{1.3}$$

A desvantagem dessa redução é que o termo w_b^2 torna parte do regularizador do SVM, que encole o viés b em direção a zero. Esse efeito pode ser aliviado tomando valor de B suficientemente grandes, por causa disso $||w||^2 >> w_b^2$ e o efeito de encolimento pode ser ignorado. Infelizmente, fazer B muito grande faz o problema numericamente desbalanciado, assim uma troca justa entre encolhimento e estabilidade é buscada. Tipicamente, isso é obtido normalizando o dado, para que tenha uma norma Euclidiana unitária e, então, escolhendo $B \in [1, 10]$.

Referências:

- http://www.vlfeat.org/api/svm-fundamentals.html
- https://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

1.2 Esquema de ponderação TF-IDF

Um dos mais populares esquemas de ponderação de termos em recuperação de informação é baseado na combinação da frequência do termo (TF) e o fator IDF.

$$w_{i,j} = \begin{cases} tf \times idf &, f_{i,j} > 0\\ 0 &, f_{i,j} = 0 \end{cases}$$
 (1.4)

Há várias variações dos fatores TF e IDF, tais variações são mais adequadas que outras para certos algoritmo de classificação.

1.2.1 Variações de TF-IDF

A table 1.1 mostra cinco variações do fator TF. O esquema binário atribui 1 ao TF se o termo ocorre no documento, e 0 caso contrátio. A frequência pura é o uso da contagem do número de vezes que o termo ocorre no documento. A normalização log diminui a impacto do crescimento do frequência $f_{i,j}$. A normalização 0.5 introduz dois efeitos: 1) ele normaliza o peso pela frequência máxima no documento and 2) normaliza o peso mantendo-o entre 0.5 e 1. A normalização K é simplesmente uma generalização da anterior.

Esquema	TF
binário	0,1
frequência pura	$f_{i,j}$
normalização log	$1 + \log f_{i,j}$
normalização 0.5	$0.5 + 0.5 \frac{f_{i,j}}{max_i f_{i,j}}$
normalização ${\cal K}$	$k + (1-K)\frac{f_{i,j}}{\max_i f_{i,j}}$

Tabela 1.1: Variações do TF

A tabela 1.2 mostra três variações do fator TF. O esquema unário fixa o valor do IDF como 1 (IDF é ignorado). A frequência inversa é a formulação padrão para IDF. A frequência inversa suave soma 1 ao denominador e numerador para evitar comportamento inesperado quando n_i atingir valores extremos.

Esquema	IDF
unária	1
frequência inversa	$\log \frac{N}{n_i}$
frequência inversa suave	$\log \frac{N+1}{n_i+1}$

Tabela 1.2: Variações do IDF

As combinações das variações de TF e IDF produzem vários esquemas TF-IDF. Nesse trabalho focaremos apenas no esquema $(1 + \log f_{i,j}) \times \log \frac{N+1}{n_i+1}$.

1.3 Normalização dos documentos

Há várias formas de normalizar documentos representados no espaço vetorial como **bag-of-words**. Seja w_j um vetor de pesos, criado a partir de algum dos esquemas de ponderação mencionado acima, que representa um documento d_j no espaço vetorial. Temos as seguintes formas normalizações utilizadas nesse trabalho:

Normalização	fórmula
None	$w_j \\ w_i$
Max	$\frac{w_j}{\max_i w_{i,j}}$
L1	w_j
L2	$\frac{\ w_j\ _1}{\ w_i\ _2}$

Tabela 1.3: Normalizações

1.4 Efeitos dos esquemas de ponderação e normalização em classificação de texto

Nos experimentos subsequentes, é feito um estudo sobre os efeitos dessas normalizações e dos esquemas de ponderação quando aplicados a classificadores vetorias tais como Support Vector Machine (SVM) e K Nearest Neighbors (KNN).

1.4.1 SVM

% latex table generated in R 3.2.4 by x table 1.8-0 package % Thu Apr 28 10:22:27 2016

V1	V2	20NG	4UNI	ACM	REUTERS90
L2	microF1	90.06 ± 0.43	$\textbf{83.48}\pm\textbf{1.08}$	$\textbf{75.4}\pm\textbf{0.66}$	68.19 ± 1.15
LIZ	macroF1	89.93 ± 0.43	$\textbf{73.39}\pm\textbf{2.17}$	$\textbf{63.84}\pm\textbf{0.55}$	31.95 ± 2.59
L1	microF1	89.8 ± 0.4	78.23 ± 1.49	$\textbf{75.31}\pm\textbf{0.74}$	68.25 ± 1.2
171	macroF1	89.59 ± 0.43	67.47 ± 3.01	$\textbf{62.33}\pm\textbf{1.76}$	31.37 ± 2.22
MAX	microF1	88.35 ± 0.37	81.36 ± 1.01	73.82 ± 0.78	67.6 ± 1.1
MAA	macroF1	88.3 ± 0.38	68.01 ± 2.39	$\textbf{62.55}\pm\textbf{1.53}$	31.73 ± 3.13
NONE	microF1	83.47 ± 0.46	80.55 ± 0.72	71.34 ± 1.01	66.6 ± 1.06
	macroF1	83.37 ± 0.42	$\textbf{71.04}\pm\textbf{2.06}$	61.08 ± 0.67	$\textbf{31.68}\pm\textbf{3.32}$

Tabela 1.4: Comparação entre as normalizações aplicada ao calssificador SVM

Como pode-se observar, a normalização tem um papel fundamental no desempenho do SVM. A normalização L2 teve o melhor desempenho em todos os conjuntos de dados testados.

1.4.2 KNN

% latex table generated in R 3.2.4 by xtable 1.8-0 package % Thu Apr 28 10:22:36 2016

V1	V2	20NG	4UNI	ACM	REUTERS90
KNN-L2	microF1	87.39 ± 0.68	$\textbf{75.51}\pm\textbf{1.25}$	$\textbf{70.67}\pm\textbf{1.1}$	69.39 ± 1.46
IXININ-LIZ	macroF1	$\textbf{87.1}\pm\textbf{0.66}$	$\textbf{60.15}\pm\textbf{1.26}$	$\textbf{55.39}\pm\textbf{0.96}$	$\textbf{34.23}\pm\textbf{2.75}$
KNN-NONE	microF1	87.45 ± 0.67	$\textbf{75.73}\pm\textbf{1.2}$	71.06 ± 1.03	68.13 ± 1.01
KININ-INOINE	macroF1	$\textbf{87.15}\pm\textbf{0.65}$	$\textbf{60.02}\pm\textbf{0.8}$	$\textbf{55.82}\pm\textbf{0.92}$	$\textbf{31.53}\pm\textbf{3.42}$
KNN-L1	microF1	87.46 ± 0.69	$\textbf{75.74}\pm\textbf{0.86}$	$\textbf{71.02}\pm\textbf{1.08}$	67.8 ± 1.02
IXIVIN-LII	macroF1	$\textbf{87.16}\pm\textbf{0.66}$	$\textbf{60.29}\pm\textbf{0.55}$	$\textbf{55.83}\pm\textbf{1.15}$	$\textbf{30.91}\pm\textbf{2.7}$
KNN-MAX	microF1	87.53 ± 0.69	$\textbf{75.63}\pm\textbf{0.94}$	$\textbf{70.99}\pm\textbf{0.96}$	68.07 ± 1.07
	macroF1	87.22 ± 0.66	60.34 ± 1.36	55.85 ± 0.97	29.93 ± 2.48

Tabela 1.5: Comparação entre as normalizações aplicada ao calssificador KNN

Como pode-se observar, para o KNN a normalização teve pouco efeito sobre a efetividade do classificador. A normalização L2 empata estatisticamente com o esquema de ponderação sem normalização(None), que praticamente empatou com as outras normalizações.

Capítulo 2

Avaliação experimental

2.1 Caso de Estudo: Classificação Automática de Texto

2.1.1 Resultados e discussões

A Tabela 2.1 sumariza os resultados da avaliação empirica de algums algoritmos estado-da-arte para classificação de texto e os algoritmos propostos baseado na **Extremelly Randomized Tree**(doravante Extra-trees).

Primeiro aspecto que pode ser observado é que as Extra-Trees por si só melhoram a eficácia da Random Forest em dois conjuntos de dados (empatando nos outros dois). Esse resultado comprova que Extra-Trees também são mais robustas a ruídos e atributos irrelevante como mostrado em [Geurts et al., 2006], além disso, mostra que isso se mantém quando aplicadas a tarefas de classificação de texto. Todavia, está longe de figurar o cojunto dos melhores classificadores dentre os algoritmos analizados. O SVM continua sendo o melhor classificador, sendo o melhor classificador em todos os 4 conjuntos de dados. Isso não é supresa, já que o SVM é bom para aprender quando aplicado a dados de alta dimensionalidade e com natural robustês para atributos ruidosos e irrelevantes.

Logo em seguida vem *BERT* (Boosted Extremelly Randomized Trees), o algoritmo é uma extensão do *BROOF* proposto em [Salles et al., 2015b]. Os resultados obtidos com a abordagem comprova nossa intuição de que a simples substituição da RF pela Extra-Trees traria ganhos expressivos no poder de generalização do *BROOF*, tornando a técnica ainda mais competitiva se comparada a outros classificadores.

Outra proposta foi a substituíção da RF pela *Extra-Trees* no algorimo *LazyNN_RF*, na esperação de ganho no poder de generalização do mesmo. É nítido que o uso das Extra-Trees no algoritmo LXT proporcionou um ganho sobretudo nos conjuntos de dados 20NG e REUTERS90, quando comparado ao algoritmo Lazy.

Esses resultados reforçam que as Extra-Trees são mais robustas a ruídos que as RF, todavia estão aquém se comparadas a capacidade do SVM de lidar com dados de alta dimensionalidade e ruidosos. Porém, com uso das técnicas apresentadas em [Salles et al., 2015a] pode-se aumentar a capacidade desses algoritmos de lidar com dados ruidosos tarnando-os assim mais competitivos ou muitas vezes melhores que a os algoritmos a presentados na Tabela 2.1.

% latex table generated in R 3.2.4 by xtable 1.8-0 package % Thu Apr 28 17:53:01 2016

2.1.1.1 Stacking

Nessa seção contrastamos o aumento do poder de generalização ao combinarmos técnicas altamente eficázes, tais como LazyNN_RF, BROOF, BERT e LazyExtraTrees(LXT), com o ganho proporcionado pela combinação de alguns classificadores estado-da-arte para classificação automática de texto.

V1	V2	20NG	4UNI	ACM	REUTERS90
SVM	microF1	90.06 ± 0.43	$\textbf{83.48}\pm\textbf{1.08}$	$\textbf{75.4}\pm\textbf{0.66}$	68.19 ± 1.15
	macroF1	89.93 ± 0.43	$\textbf{73.39}\pm\textbf{2.17}$	$\textbf{63.84}\pm\textbf{0.55}$	31.95 ± 2.59
BERT	microF1	88.93 ± 0.39	$\textbf{84.61}\pm\textbf{0.98}$	$\textbf{74.8}\pm\textbf{0.59}$	67.33 ± 0.72
DEIG	macroF1	88.59 ± 0.5	$\textbf{73.61}\pm\textbf{1.85}$	$\textbf{62.1}\pm\textbf{0.99}$	$\textbf{29.24}\pm\textbf{1.4}$
BROOF	microF1	87.96 ± 0.24	84.41 ± 1.07	73.35 ± 0.79	66.79 ± 0.97
BROOF	macroF1	87.44 ± 0.28	$\textbf{73.23}\pm\textbf{1.1}$	60.76 ± 0.8	$\textbf{28.48}\pm\textbf{2.17}$
LAZY	microF1	87.96 ± 0.37	$\textbf{82.34}\pm\textbf{0.61}$	$\textbf{74.02}\pm\textbf{0.79}$	66.3 ± 1.07
	macroF1	87.39 ± 0.37	68.33 ± 1.6	59.46 ± 1.35	26.61 ± 2.12
KNN	microF1	87.53 ± 0.69	75.63 ± 0.94	70.99 ± 0.96	68.07 ± 1.07
IXIVIN	macroF1	87.22 ± 0.66	60.34 ± 1.36	55.85 ± 0.97	$\textbf{29.93}\pm\textbf{2.48}$
NB	microF1	88.99 ± 0.54	62.63 ± 1.7	73.54 ± 0.71	65.32 ± 1.13
ND	macroF1	88.68 ± 0.55	51.38 ± 3.19	58.03 ± 0.85	$\textbf{27.86}\pm\textbf{0.79}$
XT	microF1	85.94 ± 0.23	81.66 ± 1.03	71.94 ± 0.66	64.33 ± 0.86
	macroF1	85.57 ± 0.22	65.44 ± 2.41	57.4 ± 1.13	24.47 ± 2.22
LXT	microF1	88.39 ± 0.51	81.24 ± 0.71	69.63 ± 0.91	65.92 ± 0.82
	macroF1	88.05 ± 0.44	66.89 ± 1.23	57.33 ± 1.48	26.71 ± 2.53
RF	microF1	83.64 ± 0.29	81.52 ± 1	71.05 ± 0.31	63.92 ± 0.81
	macroF1	83.08 ± 0.35	65.44 ± 1.91	56.56 ± 0.45	24.36 ± 1.98

Tabela 2.1: Comparação entres métodos de base

Tabela 2.2: Legenda para os stacking. Os classificadores reportados na descrição são todos do nível base, para todos os stackings foi utilizado RF como classificador do meta-nível.

Stacking	Descrição
COMB1	$\overline{ m BROOF + Lazy}$
COMB2	BERT + LXT
COMB3	BROOF + Lazy + BERT + LXT
COMBSOTA	SVM + KNN + XT + RF + NB
COMBALL	Stacking de todos

- 2) temos um a abordagem combinando stacking, bagging (arvores tradicionais e LAZY) e boosting (BROOF e BERT)
- 3) os resulatdos de stacking so são bons q
do os novos métodos de florestas entram (COMBSOTA não en tao bom)
- 4) ha' um ganho em combinar tudo mas 5) nao precisa combinar tudo praobter bons resuatdos, o stacking de florestas jah eh competitivo

% latex table generated in R 3.2.4 by xtable 1.8-0 package % Thu Apr 28 18:21:38 2016

V1	V2	20NG	4UNI	ACM	REUTERS90
COMBALL	microF1	91.67 ± 0.44	$\textbf{86.74}\pm\textbf{1.17}$	$\textbf{78.46}\pm\textbf{0.72}$	$\textbf{80.02}\pm\textbf{1.24}$
COMDALL	macroF1	$\textbf{91.43}\pm\textbf{0.42}$	$\textbf{79.45}\pm\textbf{2.23}$	$\textbf{63.72}\pm\textbf{1.01}$	$\textbf{37.84}\pm\textbf{3.14}$
COMB3	microF1	90.63 ± 0.57	$\textbf{86.79}\pm\textbf{0.86}$	77.34 ± 0.6	79 ± 1.14
COMDS	macroF1	90.4 ± 0.57	$\textbf{79.63}\pm\textbf{1.91}$	$\textbf{62.91}\pm\textbf{0.92}$	$\textbf{33.93}\pm\textbf{2.97}$
COMB2	microF1	90.2 ± 0.51	$\textbf{86.54} \pm \textbf{1.06}$	76.88 ± 0.55	$\textbf{78.25}\pm\textbf{1.17}$
COMDZ	macroF1	89.95 ± 0.52	$\textbf{79.41}\pm\textbf{1.63}$	$\textbf{62.66}\pm\textbf{0.81}$	$\textbf{32.86}\pm\textbf{2.23}$
COMBSOTA	microF1	90.65 ± 0.45	$\textbf{84.95}\pm\textbf{1.15}$	77.78 ± 0.73	74.63 ± 1
COMDSOIA	macroF1	90.42 ± 0.44	$\textbf{75.96}\pm\textbf{1.78}$	$\textbf{63.04}\pm\textbf{0.85}$	27.66 ± 0.88
COMB1	microF1	89.32 ± 0.42	$\textbf{86.52}\pm\textbf{1.18}$	76.74 ± 0.73	77.22 ± 1.14
COMDI	macroF1	89.01 ± 0.44	$\textbf{78.66}\pm\textbf{1.9}$	$\textbf{62.2}\pm\textbf{1.01}$	31.71 ± 2.7
BERT	microF1	88.93 ± 0.39	$\textbf{84.61}\pm\textbf{0.98}$	74.8 ± 0.59	67.33 ± 0.72
DERT	macroF1	88.59 ± 0.5	73.61 ± 1.85	$\textbf{62.1}\pm\textbf{0.99}$	29.24 ± 1.4
SVM-L2	microF1	90.06 ± 0.43	83.48 ± 1.08	75.4 ± 0.66	68.19 ± 1.15
	macroF1	89.93 ± 0.43	73.39 ± 2.17	$\textbf{63.84}\pm\textbf{0.55}$	31.95 ± 2.59

Tabela 2.3: Comparação entre os métodos de stackings

Bibliografia

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. $Machine\ Learning$, 63(1):3–42, 2006. ISSN 0885-6125. doi: 10.1007/s10994-006-6226-1. URL http://dx.doi.org/10.1007/s10994-006-6226-1.

Thiago Salles, Marcos Gonçalves, and Leonardo Rocha. Random forest based classifiers for classification tasks with noisy data. 2015a.

Thiago Salles, Marcos Gonçalves, Victor Rodrigues, and Leonardo Rocha. Broof: Exploiting out-of-bag errors, boosting and random forests for effective automated classification. In *Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '15, pages 353–362, New York, NY, USA, 2015b. ACM. ISBN 978-1-4503-3621-5. doi: 10.1145/2766462.2767747. URL http://doi.acm.org/10.1145/2766462.2767747.