Описание проекта: оценка рисков невозврата кредита

В вашем распоряжении данные клиентов банка «Скрудж», которые планируют взять кредит. Вам необходимо выяснить, что из имеющихся данных влияет на своевременное погашение кредита и каким именно образом.

Исследование поможет в создании модели кредитного скоринга — системы для оценки способности потенциального заёмщика погасить свой кредит.

По каждому клиенту есть информация о его семейном положении, образовании, доходе и другие данные. Вам предстоит подготовить данные к анализу и исследовать их, в процессе отвечая на вопросы.

Описание данных

- children количество детей в семье;
- days_employed сколько дней работает клиент;
- dob_years возраст клиента;
- education уровень образования клиента;
- education_id идентификатор образования клиента;
- family_status семейное положение клиента;
- family_status_id идентификатор семейного положения клиента;
- gender пол клиента;
- income_type тип дохода клиента;
- debt был ли у клиента когда-либо просрочен платёж по кредиту;
- total_income ежемесячный доход;
- purpose причина оформления кредита.

Цель работы

• В рамках проекта необходимо проанализировать данные клинетов банка Скрудж для лдальнейшего опредления характеритсик заёмщика, влияющих на своевременное погашение кредита. Это поможет в дальнейшем создать основу для модели кредитного скоринга — системы для оценки способности потенциального заёмщика погасить свой кредит.

План работы

- Первичный анализ данных и предобработка
 - загрузка и изучение структуры данных
 - проверка и устранение пропущенных значений
 - устраненние некорректных значений
 - устранение неявных дубликатов
- Создание дополнительных признаков
 - разделите клиентов по уровню дохода
 - разделение по возрастным группам
 - разделение по количеству детей
- Исследование влияющих факторов
 - Уровень дохода
 - Анализ влияния дохода на своевременное погашение кредита
 - Образование
 - Исследование связи между уровнем образования и вероятностью задолженности
 - Возраст
 - Анализ возрастных категорий и их связи с задолженностью по кредитам
 - Количество детей
 - влияние количества детей на риск задолженности
- Анализ данных
 - построение графиков и сводных таблиц для наглядной визуализации сравннеия должников и не должников
- Проверка исследовательских гипотез
 - У клиентов с детьми более высокий уровень финансовой ответственности и, следовательно, более низкий риск просрочек по кредиту.
 - Одинокие мужчины с низким доходом чаще оказываются должниками, чем семейные мужчины со средним доходом.
- Выводы
 - описание полученных результатов и итоговые выводы проведённого исследования

Датасет содержит данные, которые несут в себе информацию о клиентах банка Скрудж:

- демография
 - возраст, семейное положение, количество детей
- финансновые показатели
 - уровень дохода, тип занятости
- данные об образовании
- цель кредита
- ____информацию о своевременности возврата кредита___

- 1. Загрузите датасет.
- 2. Сделайте копию датасета.
- 3. Изучите типы данных и определите, соответствуют ли они содержимому.

a при работе на платформе по адресу /datasets/credit_scoring_eng.csv

df_raw=pd.read_csv('https://code.s3.yandex.net/datasets/credit_scoring_eng.csv')

4. Напишите вывод.

```
In [2]: # Импортируйте библиотеки для работы
# с таблицами и графиками
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [3]: # Загрузите датасет в переменную df_raw или другую по вашему выбору.
# Он доступен по адресу <a href="https://code.s3.yandex.net/datasets/credit_scoring_eng.csv">https://code.s3.yandex.net/datasets/credit_scoring_eng.csv</a>
```

```
In [4]: # При помощи метода .copy() скопируйте датасет # для работы с ним в переменную df или другую df=df_raw.copy()
```

```
In [5]: # Изучите общую информацию о датасете df.info()
```

```
RangeIndex: 21525 entries, 0 to 21524
Data columns (total 12 columns):
 # Column
             Non-Null Count Dtype
                      _____
                 21525 non-null int64
    children
    days_employed 19351 non-null float64
1
   dob_years 21525 non-null int64
education 21525 non-null object
education_id 21525 non-null int64
family_status 21525 non-null object
2
 3
 5
    family_status_id 21525 non-null int64
 6
             21525 non-null object
 7
    gender
    income_type
debt
                       21525 non-null object
 9
    debt
                       21525 non-null int64
                       19351 non-null float64
 10 total_income
                       21525 non-null object
 11 purpose
dtypes: float64(2), int64(5), object(5)
memory usage: 2.0+ MB
```

<class 'pandas.core.frame.DataFrame'>

In [6]: df.head()

purpose	total_income	debt	income_type	gender	family_status_id	family_status	$education_id$	education	dob_years	days_employed	children	•	Out[6]:
purchase of the house	40620.102	0	employee	F	0	married	0	bachelor's degree	42	-8437.673028	1	0	
car purchase	17932.802	0	employee	F	0	married	1	secondary education	36	-4024.803754	1	1	
purchase of the house	23341.752	0	employee	М	0	married	1	Secondary Education	33	-5623.422610	0	2	3
supplementary education	42820.568	0	employee	М	0	married	1	secondary education	32	-4124.747207	3	3	
to have a wedding	25378.572	0	retiree	F	1	civil partnership	1	secondary education	53	340266.072047	0	4	
•												4	

1. Таблица представлена 12 колонками и 21525 строками

2. Данные в таблице представлены 3 типами: float64, int64 и object:

- int64 для столблцов children, dob_years, education_id, family_status_id, u debt
 - это целочисленные данные, что логично соответвует как описанию данных, так и простмору первых 5 строк таблицы
- float64 для столбцов days_employed u total_income
 - это числовые данные с плавающей точкой, что логично соответвует описанию данных, так и простмору первых 5 строк таблицы
- object для столбцов education, family_status, gender, income_type, u purpose
 - это текстовые данные , что логично соответвует описанию данных, так и простмору первых 5 строк таблицы

3. Также стоит обратить внимани на колонки days_employed и total_income.

- В обоих колонках количество строк (19351) не соответствует общему количеству строк таблицы(21525)
 - таким образом в этих стоблцах могут быть пропцщенные значения, например NAN

Шаг 2. Выполните предобработку данных

- 1. Найдите и изучите пропущенные значения в столбцах.
- 2. Устраните пропущенные значения: удалите или замените их.
- 3. Объясните выбранную стратегию обработки пропущенных значений.

```
In [7]: # найдем пропущенные значения в общем количестве
        df.isnull().sum().sort_values(ascending=False)
Out[7]: days_employed
                             2174
        total_income
                             2174
        children
                                0
        dob_years
                                0
        education
        education_id
        family_status
        family_status_id
        gender
        income_type
                                0
                                0
        debt
                                0
        purpose
        dtype: int64
In [9]: # найдем пропущенные значения в процентном соотношении
        df.isnull().mean().sort_values(ascending=False)
Out[9]: days_employed
                             0.100999
        total_income
                             0.100999
        children
                            0.000000
        dob_years
                            0.000000
        education
                            0.000000
        education_id
                            0.000000
        family_status
                            0.000000
                            0.000000
        family_status_id
                             0.000000
        gender
        income_type
                             0.000000
                             0.000000
        debt
        purpose
                             0.000000
        dtype: float64
```

- в колонках days_employed u total_income 2174 пропусков, что составляет 10 процентов от всех данных
- слишком большой процент для удаления строк из данных
- поэтому было решено заменить пропуски в зависимости от типа данных

сначада для обоих столбцов применим describe()

```
In [10]: # Применение метода describe() к двум столбцам: 'days_employed' u 'total_income' df[['days_employed', 'total_income']].describe()
```

days_employed total_income 19351.000000 19351.000000 count mean 63046.497661 26787.568355 std 140827.311974 16475.450632 min -18388.949901 3306.762000 25% -2747.423625 16488.504500 **50**% -1203.369529 23202.870000 **75%** -291.095954 32549.611000 401755.400475 362496.645000

Out[10]:

в колонке days_employed присуствуют отрицательные значения(это приславутые аномалии)

- пропущенные же знаенчия заменим 0
 - из идеи что клиенты могли быть безработными на момент заполения данных

```
In [11]: # Замена пропущенных значений в days_employed на 0 df['days_employed'].fillna(0, inplace=True)
```

в колонке total_income обратим внимание на мин макс значения

- то есть присуствуют явные выбросы
 - таким образом выбираем для замены медианное значение, поскольку оно менее чувститвельно кним

```
In [12]: # Замена пропущенных значений в total_income на медианное значение df['total_income'].fillna(df['total_income'].median(), inplace=True)
```

```
In [14]: # найдем пропущенные значения в общем количестве
          df.isnull().sum().sort_values(ascending=False)
Out[14]: children
          days_employed
          dob_years
                              0
          education
                              0
          education_id
          family_status
          family_status_id
          gender
                              0
          income_type
                              0
          debt
                              0
          total_income
                              0
                              0
          purpose
          dtype: int64
            1. Изучите уникальные значения в столбцах с уровнем образования ( education ) и полом клиента ( gender ).
            2. Устраните неявные дубликаты и некорректные значения.
In [17]: # Уникальные значения в стольце education
          df['education'].unique()
Out[17]: array(["bachelor's degree", 'secondary education', 'Secondary Education',
                  'SECONDARY EDUCATION', "BACHELOR'S DEGREE", 'some college',
                  'primary education', "Bachelor's Degree", 'SOME COLLEGE',
                  'Some College', 'PRIMARY EDUCATION', 'Primary Education',
                  'Graduate Degree', 'GRADUATE DEGREE', 'graduate degree'],
                dtype=object)
In [19]: sorted(df['education'].unique())
Out[19]: ["BACHELOR'S DEGREE",
           "Bachelor's Degree",
           'GRADUATE DEGREE',
           'Graduate Degree',
           'PRIMARY EDUCATION',
            'Primary Education',
            'SECONDARY EDUCATION',
            'SOME COLLEGE',
            'Secondary Education',
            'Some College',
           "bachelor's degree",
            'graduate degree',
            'primary education',
            'secondary education',
            'some college']
           • при анализе уникальных значений в колонке education видны повторяющиеся текстовые значения по смысловому содержанию, но в разных
              стилях написания
                например'Secondary Education'и 'SECONDARY EDUCATION'

    нужно привести все в нижний регистр

In [20]: # Уникальные значения \theta столбце education
          df['gender'].unique()
Out[20]: array(['F', 'M', 'XNA'], dtype=object)
           • при анализе уникальных значений в колонке gender видны XNA
                ■ заменим на 'Unknown'
          проведем замену и перепроверим уникальные значения в стоблцах education и gender
In [21]: # Приведение всех значений в стольце education к нижнему регистру для устранения дубликатов
          df['education'] = df['education'].str.lower()
In [22]: # Уникальные значения в столбце education
          df['education'].unique()
Out[22]:
          array(["bachelor's degree", 'secondary education', 'some college',
                  'primary education', 'graduate degree'], dtype=object)
          sorted(df['education'].unique())
In [23]:
Out[23]:
          ["bachelor's degree",
            'graduate degree',
            'primary education',
            'secondary education',
            'some college']
In [117...
         # Устранение некорректных значений в столбце gender
          df['gender'] = df['gender'].replace({'XNA': 'Unknown'})
          # Уникальные значения в столбце education
In [118...
          df['gender'].unique()
```

Out[118... array(['F', 'M', 'Unknown'], dtype=object)

проверем информацию по исходной таблице и таблице на данном этапе анализа

```
In [119...
           df_raw.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 21525 entries, 0 to 21524
          Data columns (total 12 columns):
               Column
                            Non-Null Count Dtype
                                  -----
               children 21525 non-null int64
           0
              days_employed 19351 non-null float64
dob_years 21525 non-null int64
education 21525 non-null object
           1
           2
           3
              education_id 21525 non-null int64
           4
           5
              family_status 21525 non-null object
              family_status_id 21525 non-null int64
               gender 21525 non-null object income_type 21525 non-null object
           7
           8
           9
               debt
                                   21525 non-null int64
           10 total_income 19351 non-null float64
11 purpose 21525 non-null object
                                   21525 non-null object
          dtypes: float64(2), int64(5), object(5)
          memory usage: 2.0+ MB
In [120...
           df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 21525 entries, 0 to 21524
          Data columns (total 12 columns):
              Column
                            Non-Null Count Dtype
                                   -----
              children 21525 non-null int64
           0
              days_employed 21525 non-null float64 dob_years 21525 non-null int64 education 21525 non-null int64 education_id 21525 non-null int64
           1
           2
           3
           4
           5
               family_status 21525 non-null object
               family_status_id 21525 non-null int64
               gender 21525 non-null object income_type 21525 non-null object debt 21525 non-null int64
           7
           8
           9
           10
              total_income
                                   21525 non-null float64
                                   21525 non-null object
           11 purpose
          dtypes: float64(2), int64(5), object(5)
          memory usage: 2.0+ MB
             1. Проверьте наличие дубликатов. Изучите дублированные данные, если они есть, и примите решение — удалять их или оставить.
           # Проверка наличия дубликатов
In [121...
           duplicates = df.duplicated()
           print(f'Количество дубликатов: {duplicates.sum()}')
          Количество дубликатов: 71
             • в данных присусвует 71 дубликат
             • выведим пример дубликатов
In [122...
           # Изучение дублированных данных
           duplicate_rows = df[df.duplicated()]
           duplicate_rows.head()
Out[122...
                  children days_employed dob_years education education_id family_status family_status_id gender income_type debt total_income
                                                                                                                                                              purpose
                                                                                                                                                              purchase
                                                                                                                                                                 of the
                                                        secondary
                                                                                                                                                             house for
                                                         education
                                                                                                                                                             my family
                                                        secondary
                                                                                           civil
                                                                                                                                                              to have a
                                                                                                                       F
                                                                                                                                                   23202.87
           3290
                         0
                                        0.0
                                                                                                                                retiree
                                                                                                                                           0
                                                         education
                                                                                    partnership
                                                                                                                                                              wedding
                                                         bachelor's
                                                                                                                                                              wedding
                                                                                           civil
                         1
                                        0.0
                                                                               0
                                                                                                              1
                                                                                                                       F
                                                                                                                                           0
                                                                                                                                                   23202.87
           4182
                                                    34
                                                                                                                             employee
                                                           degree
                                                                                    partnership
                                                                                                                                                             ceremony
```

• на первый взгляд сложно оценить какие именно строки дублируются

60

58

secondary

education

secondary

education

• для лучшей визуализации отсортируем дублированные строки

0.0

0.0

0

0

4851

5557

4

```
In [123... # Найти и отсортировать дублированные строки duplicate_rows = df[df.duplicated(keep=False)]
```

1

civil

civil

partnership

partnership

1

1

F

F

wedding

ceremony

to have a

wedding

0

0

retiree

retiree

23202.87

23202.87

```
sorted_duplicates = duplicate_rows.sort_values(by=list(df.columns))

sorted_duplicates.head(6)

Out[123... children days_employed dob_years education_id family_status_family_status_id gender income_type debt_total_income_purpor
```

•••		children	days_employed	dob_years	education	education_id	family_status	family_status_id	gender	income_type	debt	total_income	purpos
	15892	0	0.0	23	secondary education	1	unmarried	4	F	employee	0	23202.87	second hand ca purchas
	19321	0	0.0	23	secondary education	1	unmarried	4	F	employee	0	23202.87	second hand ca purchas
	3452	0	0.0	29	bachelor's degree	0	married	0	М	employee	0	23202.87	bu residentia rea estat
	18328	0	0.0	29	bachelor's degree	0	married	0	М	employee	0	23202.87	bu residentia rea estat
	4216	0	0.0	30	secondary education	1	married	0	М	employee	0	23202.87	building rea estat
	6312	0	0.0	30	secondary education	1	married	0	М	employee	0	23202.87	building rea estat
	4												•

• удлаим дубликаты

```
In [124... # Удаление дубликатов df = df.drop_duplicates() print(f'Количество дубликатов после удаления: {df.duplicated().sum()}')
```

Количество дубликатов после удаления: 0

проверем информацию по исходной таблице и таблице на данном этапе анализа

```
In [125... df_raw.shape

Out[125... (21525, 12)

In [126... df.shape

Out[126... (21454, 12)

In [127... #строк стало на 71 меньше print(f'Количество строк стало меньше на : {round((1-df.shape[0]/df_raw.shape[0])*100,2)} процента')
```

Количество строк стало меньше на : 0.33 процента

Шаг 3. Выбросы и аномальные значения

Изучите столбцы total_income, dob_age, chidlren на наличие выбросов и аномальных значений, в том числе при помощи графиков. Если выбросы или аномалии будут обнаружены — обоснованно примите решение об их судьбе. Используйте подзаголовки третьего уровня (### Подзаголовок), чтобы создать структуру действий в рамках этого шага.

Проанализмруем столбцы total_income, dob_years и children методом describe()

In [128... display(df[['total_income', 'dob_years', 'children']].describe())

	total_income	dob_years	children
count	21454.000000	21454.000000	21454.000000
mean	26436.183035	43.271231	0.539946
std	15683.361605	12.570822	1.383444
min	3306.762000	0.000000	-1.000000
25%	17219.817250	33.000000	0.000000
50%	23202.870000	42.000000	0.000000
75%	31330.237250	53.000000	1.000000
max	362496.645000	75.000000	20.000000

- total_income:
 - минимальное значение 3306.76 и максимальное значение 362496.65(значительно превышает 75-й процентиль (31330.24)) указывают на наличие выбросов, соответственно можно заменить экстремальные значения на медиану или удалить

- среднее значени выше медианного
- dob_years:
 - максимум 75 лет в пределах разумного, но возраст 0 явно аномалия.
 - среднее значени близко к медианнму, что о говорит о возможной симметричности в распределении
- children:
 - присуствуюя явные аномальные значения -1 и 20, соответственно можно заменить их на медиану или удалить.

Построим граифки для столбцов total_income, dob_years и children

• используем для анализа аномалий и выборосов график boxplot и распределение на основе гистограммы

```
In [129... import matplotlib.pyplot as plt
import seaborn as sns

# Построение графика для `total_income`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['total_income'])
plt.title('Boxplot для total_income')
plt.show()
```

```
Вохріот для total_income

0 50000 100000 150000 200000 250000 300000 350000 total_income
```

```
In [130...
plt.figure(figsize=(8,5))
sns.histplot(df['total_income'], bins=30, kde=True)
plt.title('Гистограмма для total_income')
plt.show()
```



```
In [131... Q1 = df['total_income'].quantile(0.25)
    Q3 = df['total_income'].quantile(0.75)
    IQR=Q3-Q1
    print(f'Нижняя граница : {Q1 - 1.5*IQR }')
    print(f'Верхняя граница : {Q3 + 1.5*IQR }')
```

Нижняя граница : -3945.8127499999973 Верхняя граница : 52495.867249999996

- на графике видно, что есть значительное количество выбросов справа по данным в столбце total_income.
- есть значения, выходящие за верхний предел, что может указывать на аномалии.

```
In [132... # Построение графика для `dob_years`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['dob_years'])
plt.title('Boxplot для dob_years')
plt.show()
```



```
In [133...
plt.figure(figsize=(8, 5))
sns.histplot(df['dob_years'], bins=30, kde=True)
plt.title('Гистограмма для dob_years')
plt.show()
```



```
In [134... Q1 = df['dob_years'].quantile(0.25)
Q3 = df['dob_years'].quantile(0.75)

IQR=Q3-Q1

print(f'Нижняя граница : {Q1 - 1.5*IQR }')

print(f'Верхняя граница : {Q3 + 1.5*IQR }')
```

Нижняя граница : 3.0 Верхняя граница : 83.0

- на графике видны выбросы сдева
- возраст 0 явно является явной аномалией, так как клтент не может быть младше 18 лет

```
In [135... # Построение графика для `children`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['children'])
plt.title('Boxplot для children')
plt.show()
```

```
Boxplot для children
```


- видно несколько выбросов справа (большое количество детей 20)
- на графике видно, что есть аномальные значени -1

Решение по выбросам

- для колонки total_income(ежемесячный доход)
 - лучше удалить выбросы, чтоб они не искажади данные.

```
upper_limit = df['total_income'].quantile(0.95) # определение верхнего предела выбросов
In [137...
          df = df[df['total_income'] <= upper_limit]</pre>
In [138...
          df['total_income'].describe()
                   20381.000000
Out[138...
          count
                   24007.680143
                    9821.324564
          std
                    3306.762000
          min
          25%
                   16823.508000
          50%
                   23202.870000
          75%
                   29411.892000
                   53039.263000
          max
          Name: total_income, dtype: float64
            • для колонки dob_years(возраст клиента)
                ■ посмтотрим количсетво 0
In [139...
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 20381 entries, 0 to 21524
         Data columns (total 12 columns):
             Column
                               Non-Null Count Dtype
                                -----
             children
                               20381 non-null int64
          0
             days_employed
                               20381 non-null float64
          1
             dob_years
                                20381 non-null int64
          2
                                20381 non-null object
          3
              education
          4
              education_id
                               20381 non-null int64
          5
              family_status
                               20381 non-null object
              family_status_id 20381 non-null int64
          6
                                20381 non-null object
          7
              gender
                                20381 non-null object
              income_type
                                20381 non-null int64
              debt
             total_income
                                20381 non-null float64
          10
          11 purpose
                             20381 non-null object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 2.0+ MB
In [140...
          df[df['dob_years'] == 0].shape[0]
Out[140...
          100

    удалим 0

In [141...
          # Удалить строки, где dob_years равен 0
          df = df[df['dob_years'] != 0]
In [142...
          df['dob_years'].describe()
```

```
12.323288
           std
                       19.000000
           min
           25%
                       33.000000
           50%
                       43.000000
           75%
                       53.000000
                       75.000000
           max
           Name: dob_years, dtype: float64
            • для колонки children(количество детей в семье)
                ■ посмтотрим количсетво -1 и 20
In [143...
          df[df['children'] == -1].shape[0]
Out[143...
           47
          df[df['children'] == 20].shape[0]
In [144...
Out[144...
           73
            • удалим -1 и 20
In [145...
          # Удалить строки, где children равен -1
          df = df[df['children'] != -1]
In [146...
          # Удалить строки, где children равен 20
           df = df[df['children'] != 20]
          df['children'].describe()
In [147...
Out[147...
                    20161.000000
           count
                        0.470612
           mean
           std
                        0.749234
                        0.000000
           min
           25%
                        0.000000
           50%
                        0.000000
                        1.000000
           75%
           max
                        5.000000
           Name: children, dtype: float64
           восопльзуемся еще раз describe для демонстрации статистики по столбцам и отсуствию выбросов
          display(df[['total_income', 'dob_years', 'children']].describe())
In [148...
                                               children
                total_income
                                dob_years
         count 20161.000000 20161.000000 20161.000000
         mean 23997.798351
                                43.519865
                                               0.470612
           std
                 9812.385382
                                12.329629
                                               0.749234
                 3306.762000
                                19.000000
                                               0.000000
           min
          25%
               16817.222000
                                33.000000
                                               0.000000
          50%
               23202.870000
                                43.000000
                                               0.000000
          75%
               29410.209000
                                54.000000
                                               1.000000
                                75.000000
          max 53039.263000
                                               5.000000
          также продулируем построение графиков для визуализации данных
```

Out[142...

count

mean

20281.000000

43.514274

```
import matplotlib.pyplot as plt
In [149...
          import seaborn as sns
          # Построение графика для `total_income`
          plt.figure(figsize=(8, 5))
          sns.boxplot(x=df['total_income'])
          plt.title('Boxplot для total_income')
          plt.show()
```



```
In [150... # Построение графика для `dob_years`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['dob_years'])
plt.title('Boxplot для dob_years')
plt.show()
```

Вохріот для dob_years 20 30 40 50 60 70 dob_years

```
In [151... # Построение графика для `children`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['children'])
plt.title('Вохрlot для children')
plt.show()
```


проверем информацию по исходной таблице и таблице на данном этапе анализа

```
In [152... df_raw.shape
Out[152... (21525, 12)

In [153... df.shape
Out[153... (20161, 12)

In [154... #строк стало на 71 меньше рrint(f'Количество строк стало меньше на : {round((1-df.shape[0]/df_raw.shape[0])*100,2)} процента')
```

Шаг 4. Добавьте в таблицу новые столбцы

Количество строк стало меньше на : 6.34 процента

1. Разделите клиентов на 5 категорий по уровню дохода:

- Без дохода люди без работы и с нулевым доходом.
- Очень низкий доход люди, получающие ниже 14 процентиля от общего распределения дохода.
- Низкий доход люди, получающие между 14 и 34 процентилями от общего распределения дохода.
- Средний доход люди, получающие между 34 и 78 процентилями от общего распределения дохода.
- Высокий доход люди, получающие больше 78 процентиля от общего распределения дохода.

```
In [155...
          # Процентильные границы
           percentile_14 = df['total_income'].quantile(0.14)
           percentile_34 = df['total_income'].quantile(0.34)
           percentile_78 = df['total_income'].quantile(0.78)
           # Функция для присвоения категорий
           def income_category(income):
               if income == 0:
                   return 'Без дохода'
               elif income < percentile_14:</pre>
                   return 'Очень низкий доход'
               elif income < percentile_34:</pre>
                   return 'Низкий доход'
               elif income < percentile_78:</pre>
                   return 'Средний доход'
                   return 'Высокий доход'
           # Создание новой колонки согласно функции
           df['income_category'] = df['total_income'].apply(income_category)
           display(df[['total_income', 'income_category']].head())
           print(df['income_category'].value_counts())
```

total_income income_category 0 40620.102 Высокий доход 17932.802 Низкий доход 2 23341.752 Средний доход 42820.568 Высокий доход 4 25378.572 Средний доход 8870 Средний доход 4436 Высокий доход 4032 Низкий доход Очень низкий доход 2823 Name: income_category, dtype: int64

1. Разделите клиентов на две категории по возрасту: до 40 лет и после. Сохраните результат в колонке age_category.

```
In [156... # Место для вашего кода

# Функция для присвоения возрастных категорий

def age_category(age):
    if age < 40:
        return 'до 40 лет'
    else:
        return 'после 40 лет'

df['age_category'] = df['dob_years'].apply(age_category)

display(df[['dob_years', 'age_category']].head())
```

```
dob_yearsage_category042после 40 лет136до 40 лет233до 40 лет332до 40 лет453после 40 лет
```

1. Разделите клиентов на несколько категорий по количеству детей: без детей, от одного до двух, от трёх и больше. Сохраните результат в колонке childrens_category .

```
In [157... # Mecmo δηη βαωε2ο κοδα

def childrens_category(children):
    if children == 0:
        return 'δε3 μετεй'
    elif children <= 2:
```

```
return 'от одного до двух'
else:
    return 'от трёх и больше'

df['childrens_category'] = df['children'].apply(childrens_category)
display(df[['children','childrens_category']].head())
```

	children	childrens_category
0	1	от одного до двух
1	1	от одного до двух
2	0	без детей
3	3	от трёх и больше
4	0	без детей

как итог

In [158... display(df[['children','childrens_category','dob_years', 'age_category','total_income','income_category']].head(10))

	children	childrens_category	dob_years	age_category	total_income	income_category
0	1	от одного до двух	42	после 40 лет	40620.102	Высокий доход
1	1	от одного до двух	36	до 40 лет	17932.802	Низкий доход
2	0 без детей		33	до 40 лет	23341.752	Средний доход
3	3	от трёх и больше	32	до 40 лет	42820.568	Высокий доход
4	0	без детей	53	после 40 лет	25378.572	Средний доход
5	0	без детей	27	до 40 лет	40922.170	Высокий доход
6	0	без детей	43	после 40 лет	38484.156	Высокий доход
7	0	без детей	50	после 40 лет	21731.829	Средний доход
8	2	от одного до двух	35	до 40 лет	15337.093	Низкий доход
9	0	без детей	41	после 40 лет	23108.150	Средний доход

Шаг 5. Проведите исследовательский анализ данных

Задайте структуру наиболее объёмной части исследования. Исследуйте факторы: Уровень дохода, Образование, Возраст, Количество детей. Отличается ли распределение между должниками и нет? Исследуйте вопрос графически. Постройте сводную таблицу по каждому фактору и покажите, как часто встречаются должники в каждой группе клиентов. Выберите подходящую визуализацию и сравните 2 группы.

• визуализируем таблицу с колонками, данные из которых будем анализировать

In [159... display(df[['income_category', 'education', 'dob_years', 'age_category', 'children', 'childrens_category', 'debt','total_income']].head(10)

	income_category	education	dob_years	age_category	children	childrens_category	debt	total_income
0	Высокий доход	bachelor's degree	42	после 40 лет	1	от одного до двух	0	40620.102
1	Низкий доход	secondary education	36	до 40 лет	1	от одного до двух	0	17932.802
2	Средний доход	secondary education	33	до 40 лет	0	без детей	0	23341.752
3	Высокий доход	secondary education	32	до 40 лет	3	от трёх и больше	0	42820.568
4	Средний доход	secondary education	53	после 40 лет	0	без детей	0	25378.572
5	Высокий доход	bachelor's degree	27	до 40 лет	0	без детей	0	40922.170
6	Высокий доход	bachelor's degree	43	после 40 лет	0	без детей	0	38484.156
7	Средний доход	secondary education	50	после 40 лет	0	без детей	0	21731.829
8	Низкий доход	bachelor's degree	35	до 40 лет	2	от одного до двух	0	15337.093
9	Средний доход	secondary education	41	после 40 лет	0	без детей	0	23108.150

• Уровень дохода

```
In [160... # Место для вашего кода
income_pivot = df.pivot_table(index='income_category', columns='debt', values='total_income', aggfunc='count')
display(income_pivot)
income_pivot.plot(kind='bar', figsize=(10, 6))
plt.title('Pacпределение должников и недолжников по уровню дохода')
plt.xlabel('Категория дохода')
plt.ylabel('Количество')
plt.legend(['Недолжники', 'Должники'])
```

Out[160... <matplotlib.legend.Legend at 0x7fbabec72d30>

• Образование

```
In [161... education_pivot = df.pivot_table(index='education', columns='debt', values='total_income', aggfunc='count')
display(education_pivot)
education_pivot.plot(kind='bar', figsize=(10, 6))
plt.title('Pacnpeделение должников и недолжников по уровню образования')
plt.xlabel('Уровень образования')
plt.ylabel('Количество')
plt.legend(['Недолжники', 'Должники'])

debt 0 1

education
```

education		
bachelor's degree	4377.0	254.0
graduate degree	6.0	NaN
primary education	248.0	31.0
secondary education	13240.0	1303.0
some college	641.0	61.0

Out[161... <matplotlib.legend.Legend at 0x7fbabe959100>

Распределение должников и недолжников по уровню образования 12000 - 10000 -

Уровень образования

• Возраст

```
In [162... age_pivot = df.pivot_table(index='age_category', columns='debt', values='dob_years', aggfunc='count')
display(age_pivot)
age_pivot.plot(kind='bar', figsize=(10, 6))
plt.title('Pacnpeделение должников и недолжников по возрасту')
plt.xlabel('Возрастная категория')
plt.ylabel('Количество')
plt.legend(['Недолжники', 'Должники'])

debt 0 1

age_category

до 40 лет 7493 861
```

Out[162... <matplotlib.legend.Legend at 0x7fbabeaf4550>

после 40 лет 11019 788

• Количество детей

```
In [163... children_pivot = df.pivot_table(index='childrens_category', columns='debt', values='children', aggfunc='count') display(children_pivot) children_pivot.plot(kind='bar', figsize=(10, 6)) plt.title('Распределение должников и недолжников по количеству детей') plt.xlabel('Категория по количеству детей') plt.ylabel('Количество') plt.legend(['Недолжники', 'Должники'])
```

```
debt01childrens_categoryбез детей123351011от одного до двух5856608от трёх и больше32130
```

Out[163... <matplotlib.legend.Legend at 0x7fbabe9fb850>

Проверьте исследовательскую гипотезу: у клиентов с детьми более высокий уровень финансовой ответственности и, следовательно, более низкий риск просрочек по кредиту.

- 1. Сравним количество должников и недолжников в зависимости от количества детей.
- 2. Построим график для сравнения

Место для вашего кода

In [164...

```
children_debt_pivot = df.pivot_table(index='childrens_category', columns='debt', values='children', aggfunc='count', fill_value=0)
           children_debt_pivot
Out[164...
                                 0
                                       1
                       debt
           childrens_category
                   без детей 12335 1011
           от одного до двух
                               5856
                                      608
                                321
                                       30
           от трёх и больше
          # Вычислим долю должников в каждой категории
In [165...
           children_debt_pivot['debt_ratio'] = children_debt_pivot[1] / (children_debt_pivot[0] + children_debt_pivot[1])
           children_debt_pivot
Out[165...
                       debt
                                        1 debt_ratio
           childrens_category
```

```
In [166... # Вычислим долю должников в каждой категории children_debt_pivot['debt_ratio'] = children_debt_pivot[1] / (children_debt_pivot[0] + children_debt_pivot[1])

In [167... children_debt_pivot[['debt_ratio']].plot(kind='bar', figsize=(5, 3), color='skyblue') plt.title('Доля должников по категориям количества детей') plt.xlabel('Категория по количеству детей')
```

```
Out[167... Text(0, 0.5, 'Доля должников')
```

plt.ylabel('Доля должников')

от одного до двух

от трёх и больше

без детей 12335

1011

30

321

0.075753

0.094059

0.085470

Проверьте исследовательскую гипотезу: одинокие мужчины с низким доходом чаще оказываются должниками, чем семейные мужчины со средним доходом.

- 1. Нужно создать 2 группы
 - Одинокие мужчины с низким доходом.
 - Семейные мужчины со средним доходом.
- 2. Построить сводные таблицы
- 3. Построить графики визуализрующие итог
- выведем только те столбцы, что будем анализировать

```
In [168... display(df[['gender','family_status', 'income_category','debt']].head(10))
```

	gender	family_status	income_category	debt				
0	F	married	Высокий доход	0				
1	F	married Низкий доход						
2	М	married	married Средний доход					
3	М	M married Высокий доход						
4	F	civil partnership	Средний доход	0				
5	М	M civil partnership Высокий доход						
6	F	married	Высокий доход	0				
7	М	married	Средний доход	0				
8	F	civil partnership	hip Низкий доход					
9	М	married	Средний доход	0				

• проверим уникальные значения для столбцов gender и family_status

```
• видно, что есть такой вариант как 'civil partnership', но в условии не оговоренно что считать сименйм мужчиной
```

```
• поэтому будем рассматривать только вариант 'married'
```

```
In [171... # Группы
single_low_income_men = df[(df['gender'] == 'M') & (df['family_status'] == 'unmarried') & (df['income_category'] == 'Hизкий доход')]
display(single_low_income_men.head(10))
```

	children	days_employed	dob_years	education	education_id	family_status	family_status_id	gender	income_type	debt	total_income	purpose
479	0	-3029.321191	29	secondary education	1	unmarried	4	М	employee	0	17784.268	housing
834	0	-1523.564571	29	bachelor's degree	0	unmarried	4	М	employee	0	14129.326	purchase of the house
1085	0	-1618.549219	29	secondary education	1	unmarried	4	М	civil servant	0	16564.878	housing transactions
1277	0	-1205.259599	20	secondary education	1	unmarried	4	М	employee	0	14782.012	housing
1281	1	-318.559894	43	secondary education	1	unmarried	4	М	business	0	17122.443	housing renovation
1286	0	-5020.574409	35	secondary education	1	unmarried	4	М	employee	0	14321.866	real estate transactions
1344	0	-1418.055816	24	secondary education	1	unmarried	4	М	employee	1	17464.201	buying my own car
1430	0	-340.644655	27	secondary education	1	unmarried	4	М	employee	0	18332.241	building a property
1741	0	-405.802043	25	secondary education	1	unmarried	4	М	business	0	18242.696	buying my own car
1847	2	-679.171126	35	secondary education	1	unmarried	4	М	employee	0	16890.247	housing

In [172... married_medium_income_men = df[(df['gender'] == 'M') & (df['family_status'] == 'married') & (df['income_category'] =='Средний доход')] display(married_medium_income_men.head(10))

	children	days_employed	dob_years	education	education_id	family_status	family_status_id	gender	income_type	debt	total_income	purpose	i
2	0	-5623.422610	33	secondary education	1	married	0	М	employee	0	23341.752	purchase of the house	
7	0	-152.779569	50	secondary education	1	married	0	М	employee	0	21731.829	education	
9	0	-2188.756445	41	secondary education	1	married	0	М	employee	0	23108.150	purchase of the house for my family	
26	0	0.000000	41	secondary education	1	married	0	М	civil servant	0	23202.870	education	
60	1	-2534.462390	48	secondary education	1	married	0	М	employee	0	20784.365	to become educated	
66	0	-916.428829	28	secondary education	1	married	0	М	employee	0	23234.324	to become educated	
72	1	0.000000	32	bachelor's degree	0	married	0	М	civil servant	0	23202.870	transactions with commercial real estate	
76	1	-2252.192722	44	bachelor's degree	0	married	0	М	employee	0	23838.725	buying a second- hand car	
78	0	359722.945074	61	bachelor's degree	0	married	0	М	retiree	0	28020.423	purchase of a car	
83	0	0.000000	52	secondary education	1	married	0	М	employee	0	23202.870	housing	
4													

```
In [173... # Подсчет должников в каждой группе single_low_income_men['debt'].mean() married_medium_income_men_debt_ratio = married_medium_income_men['debt'].mean() print(f'Доля должников среди одиноких мужчин с низким доходом: {single_low_income_men_debt_ratio}') print(f'Доля должников среди семейных мужчин со средним доходом: {married_medium_income_men_debt_ratio}')
```

Доля должников среди одиноких мужчин с низким доходом: 0.16939890710382513 Доля должников среди семейных мужчин со средним доходом: 0.09852717115286948

```
In [174... # Сводные таблицы single_low_income_men.pivot_table(index='family_status', columns='debt', values='total_income', aggfunc='coun' married_medium_income_men_pivot = married_medium_income_men.pivot_table(index='family_status', columns='debt', values='total_income', aggfunc='coun' display(single_low_income_men_pivot) print('') display(married_medium_income_men_pivot)
```

```
debt01family_status15231debt01family_status1775194
```

```
import matplotlib.pyplot as plt

# Визуализация
labels = ['Одинокие мужчины с низким доходом', 'Семейные мужчины со средним доходом']
debt_ratios = [single_low_income_men_debt_ratio, married_medium_income_men_debt_ratio]

plt.figure(figsize=(10, 6))
plt.bar(labels, debt_ratios, color=['red', 'green'])
plt.title('Доля должников среди различных групп клиентов')
plt.xlabel('Группы клиентов')
plt.ylabel('Доля должников')
```

Out[175... Text(0, 0.5, 'Доля должников')

Шаг 6. Напишите общий вывод

- На основе построенных графиков в шаге 5 можно сделать следующие выводы
 - Уровень дохода
 - с увеличением дохода количество должников в основном снижается
 - наибольшее количество дллжников наблюдается среди людей снизким и очень низкми доходом
 - о то есть уровень дохода один из главных рисков возникнвоения задолжности
 - Образование
 - основные должники срели людей со средним образованием
 - чем выше уровень образования, тем меньше вероятность быть должником
 - Возраст
 - в обоих категориях с одной стороны основнвая масса людей без задоллжности, сдругой строны количество должников сопоставимо
 - однако после 40 недолжников существенно больше, что может быть связано с опытом и ростом финансовой грамотности
 - Количество детей
 - среди клиентов без детей самое большое количество как должников, так и недолжников
 - с деьтми от 3 и выше количество должников существенно падает
 - возможно наличие детей не позволяет быть более финансово рискованным

Распределение между должниками и недолжниками действительно отличается в зависимости от уровня дохода, образования, возраста и количества детей.

- Низкий доход и среднее образование увеличиают вероятность задолженности
- Высшее образование и высокий уровень дохода плюс возраст от 40 снижают риск стать должником.

Вывод по гипотезе 1

• таблица и визуализация не подтверждают гипотезу о том, что клиенты с детьми имеют более высокий уровень финансовой ответственности.

Вывод по гипотезе 2

• Гипотеза о том, что одинокие мужчины с низким доходом чаще оказываются должниками, чем семейные мужчины со средним доходом, подтверждается

• Одинокие мужчины с низким доходом имеют более высокую вероятность просрочить кредиту по сравнению с семейными мужчинами со средним доходом.

Таким образом первая гипотеза не подтверждается, вторая гпитеза подтвреждается

*Шаг 7. Проведите дополнительное исследование

1 debt_ratio

0.094210

0.079689

debt

education

2644

other 15868 1374

275

purpose_category

(Необязательное задание) Исследуйте причины оформления кредита. Правда ли, что люди, которые брали кредит на образование, реже всего оказывались должниками?

```
In [176...
         # Изучите уникальные значения в поле purpose
          unique_purposes = df['purpose'].unique()
          print('Уникальные значения в поле purpose:', unique_purposes)
         Уникальные значения в поле purpose: ['purchase of the house' 'car purchase' 'supplementary education'
          'to have a wedding' 'housing transactions' 'education' 'having a wedding'
          'purchase of the house for my family' 'buy real estate'
          'buy commercial real estate' 'buy residential real estate'
          'construction of own property' 'property' 'building a property'
          'buying a second-hand car' 'buying my own car'
          'transactions with commercial real estate' 'building a real estate'
          'housing' 'transactions with my real estate' 'cars'
          'second-hand car purchase' 'getting an education' 'to become educated'
          'car' 'wedding ceremony' 'to get a supplementary education'
          'purchase of my own house' 'real estate transactions' 'to own a car'
          'purchase of a car' 'profile education' 'university education'
          'buying property for renting out' 'to buy a car' 'housing renovation'
          'going to university' 'getting higher education']
          делим клиентов на группы по образованию и остальным причинам
In [177...
          # Функция для разделения на группы по цели кредита
          def find_education_purpose(purpose):
              if 'education' in purpose.lower():
                  return 'education'
              else:
                  return 'other'
          df['purpose_category'] = df['purpose'].apply(find_education_purpose)
In [178...
          purpose_debt_pivot = df.pivot_table(index='purpose_category', columns='debt', values='purpose', aggfunc='count', fill_value=0)
          purpose_debt_pivot['debt_ratio'] = purpose_debt_pivot[1] / (purpose_debt_pivot[0] + purpose_debt_pivot[1])
          display(purpose_debt_pivot)
          purpose_debt_pivot[['debt_ratio']].plot(kind='bar', figsize=(10, 6), color='red')
          plt.title('Доля должников по категориям целей кредита')
          plt.xlabel('Цель кредита')
          plt.ylabel('Доля должников')
          plt.show()
```


таким образом должников среди людей, бравших кредит на оьразование выше, чем по остальным причинам

• гпиотеза не подтвержена