Definition 10.1 (Homomorphism). For any group G and \overline{G} , a **homomorphism** is a mapping from G to \overline{G} that preserves structure. That is, $\forall a \ b \in G, \phi(ab) = \phi(a)\phi(b)$.

Definition 10.2 (Kernel of Homomorphism). The **kernel** of a homomorphism $\phi: G \to \overline{G}$ is the set $\{x \in G \mid \phi(x) = e\}$. The kernel of ϕ is denoted by Ker ϕ

The following lemmas assumes $\phi: G \to \overline{G}$ is a homomorphism.

Lemma 10.1 (Homomorphism Preserves identity). $\phi(e_G) = e_{\overline{G}}$.

Proof.
$$\phi(g) = \phi(eg) = \phi(e)\phi(g)$$
, by cancellation, $\phi(e) = e_{\overline{G}}$.

Lemma 10.2 (Homomorphism Preserves Inverse). $\forall g \in G, \phi(g^{-1}) = \phi(g)^{-1}$.

Proof.
$$e_{\overline{G}} = \phi(e_G) = \phi(g^{-1}g) = \phi(g^{-1})\phi(g)$$
, then $\phi(g)^{-1} = \phi(g^{-1})$.

Lemma 10.3 (Homomorphism Preserves Power). $\forall g \in G, n \in \mathbb{Z}, \phi(g^n) = \phi(g)^n$.

Proof. Induction on n.

- Base: $\phi(g^0) = \phi(g)^0$ by Lemma 10.1.
- Negative Direction:

$$\phi(g^{-(n+1)})$$

$$=\phi(g^{-n-1})$$

$$=\phi(g^{-n}g^{-1})$$

$$=\phi(g^{-n})\phi(g^{-1})$$

$$=\phi(g^{-n})\phi(g)^{-1}$$

$$=\phi(g)^{-n}\phi(g)^{-1}$$
(By induction hypothesis)
$$=\phi(g)^{-(n+1)}$$

• Positive Direction: Similarly to the negative direction.

Lemma 10.4 (Image of Homomorphism is Subgroup). $\phi(G) = \{\phi(g) \mid g \in G\}$ is subgroup of \overline{G} .

Proof. By three-steps:

- $\phi(e) \in \phi(G)$
- For any $\phi(a)$ $\phi(b) \in \phi(G)$, $\phi(a)\phi(b) = \phi(ab) \in \phi(G)$.
- For ang $\phi(a) \in \phi(G)$, $\phi(a)^{-1} = \phi(a^{-1}) \in \phi(G)$.

Lemma 10.5 (Homomorphism on Order). For any $g \in G$, if |g| is finite, $|\phi(g)|$ divides |g|; If |G| is finite, $|\phi(g)|$ divides |g| and $|\phi(G)|$.

Proof. Let |g| = n, $\phi(g)^n = \phi(g^n) \to \phi(g)^n = e$, then $|\phi(g)|$ divides n. Since |G| is finite, so is |g|, and we proved $|\phi(g)|$ divides |g|. Since $\phi(G)$ is a subgroup of \overline{G} and $\phi(g) \in \phi(G)$, $|\phi(g)|$ divides $|\phi(G)|$.

Lemma 10.6 (Kernel is Subgroup). Ker ϕ is a subgroup of G.

Proof. By three-steps:

- $\phi(e) = e \text{ so } e \in \text{Ker } \phi$.
- For any $a \ b \in \operatorname{Ker} \phi$, $\phi(ab) = \phi(a)\phi(b) = e$ so $ab \in \operatorname{Ker} \phi$.
- For any $a \in \text{Ker } \phi$, $\phi(a^{-1}) = \phi(a)^{-1} = e^{-1} = e \text{ so } a^{-1} \in \text{Ker } \phi$.

Lemma 10.7. For any $a \ b \in G$, $\phi(a) = \phi(b) \iff a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$.

Proof. (\Longrightarrow) $\phi(a)^{-1}\phi(b) = \phi(a^{-1})\phi(b) = \phi(a^{-1}b) = e \to a^{-1}b \in \operatorname{Ker} \phi$ then $a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$.

 (\Leftarrow) $a \operatorname{Ker} \phi = b \operatorname{Ker} \phi \text{ imples } a^{-1}b \in \operatorname{Ker} \phi \text{ imples } \phi(a^{-1}b) = e \text{ imlpes } \phi(a^{-1})\phi(b) = e \text{ imples } \phi(a)^{-1}\phi(b) = e \text{ imples } \phi(a) = \phi(b)$

Lemma 10.8 (Inverse Image of Homomorphism). For any $g \in G$, if $\phi(g) = g'$, then $\phi^{-1}(g') = \{x \in G \mid \phi(x) = g'\} = g \operatorname{Ker} \phi$.

Proof. Let $x \in \phi^{-1}(g')$, then $\phi(x) = g'$, by $\phi(g) = g'$ we have $\phi(x) = \phi(g)$ and $x \operatorname{Ker} \phi = g \operatorname{Ker} \phi$, thus $x \in g \operatorname{Ker} \phi$.

Let $gx \in \text{Ker } \phi$ where $\phi(x) = e$. $\phi(gx) = \phi(g)\phi(x) = g'e = g'$, thus $gx \in \phi^{-1}(g')$.

Theorem 10.1 (Properties of Homomorphism). The propositions above are true.

Proof. Trivial.
$$\Box$$

The following lemmas assume H is a subgroup of G.

Theorem 10.2 (Properties of Subgroups Under Homomorphisms). The following propositions are true.

Lemma 10.9 (Homomorphism Preserves Subgroup). $\phi(H)$ is a subgroup of $\phi(\overline{G})$.

Proof. By three-steps:

- $\phi(e) \in \phi(H)$.
- For any $\phi(a)$ $\phi(b) \in \phi(H)$, $\phi(a)\phi(b) = \phi(ab) \in \phi(H)$.
- For any $\phi(a) \in \phi(H)$, $\phi(a)^{-1} = \phi(a^{-1}) \in \phi(H)$.

Lemma 10.10 (Homomorphism Preserves Cyclic). If H is cyclic, then $\phi(H)$ is cyclic.

Proof. Let
$$H = \langle h \rangle$$
. For any $\phi(h^n) \in \phi(H)$, $\phi(h^n) = \phi(h)^n$, thus $\phi(H) = \langle \phi(h) \rangle$.

Lemma 10.11 (Homomorphism Preserves Abelian). If H is Abelian, then $\phi(H)$ is Abelian.

Proof. For any
$$\phi(a)$$
 $\phi(b) \in \phi(H)$. $\phi(a)\phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a)$. \square

Lemma 10.12 (Homomorphism Preserves Normality). If $H \triangleleft G$, then $\phi(H) \triangleleft \phi(G)$.

Proof. For any $\phi(g) \in \phi(G)$ and $\phi(h) \in \phi(H)$.

$$\phi(g)\phi(h)\phi(g)^{-1}$$

$$=\phi(ghg^{-1})$$

$$=\phi(h') \in \phi(H)$$
(By $H \triangleleft G$)

Lemma 10.13. If $|\operatorname{Ker} \phi| = n$, then ϕ is an n-to-1 mapping from G onto $\phi(G)$.

Proof. It is trivial that ϕ is G onto $\phi(G)$.

Let $g \in G$, and for any $x \in \text{Ker } \phi$, $\phi(xg) = \phi(x)\phi(g) = \phi(g)$. In other words, $\phi(g \text{Ker } \phi) = {\phi(g)}$.

Lemma 10.14. If H is finite, then $|\phi(H)|$ divides |H|.

Proof. Let $K = H \cap \operatorname{Ker} \phi$, since both H and $\operatorname{Ker} \phi$ are subgroups of G, so is K.

We will show that K is normal in H. For any $h \in H$ and $k \in K$, since h, h^{-1} and k are in H, so is hkh^{-1} . $\phi(hkh^{-1}) = \phi(h)\phi(k)\phi(h^{-1}) = \phi(h)e\phi(h^{-1}) = e$ so $hkh^{-1} \in \text{Ker } \phi$. So $hkh^{-1} \in K$.

Then we show $H/K \approx \phi(H)$. We claim the following function is an isomorphism:

$$\psi(hK) = \phi(h)$$

But first of all, we need to show it **is** a function. For any hK and kK in H/K, and hK = kK. We have $h^{-1}k \in K$ which implies $h^{-1}k \in \text{Ker } \phi$ and then $h \text{ Ker } \phi = k \text{ Ker } \phi \to \phi(h) = \phi(k)$.

• One-to-one: If $\psi(hK) = \psi(kK)$, then $\phi(h) = \phi(k)$ and $h \operatorname{Ker} \phi = k \operatorname{Ker} \phi$. Since h and k are in H, hH = kH = H. So:

$$hK = h(H \cap \text{Ker } \phi)$$

 $= hH \cap h \text{ Ker } \phi$ (Since $\lambda x.hx$ is injective)
 $= kH \cap k \text{ Ker } \phi$
 $= k(H \cap \text{Ker } \phi)$
 $= kK$

- Onto: For any $\phi(h) \in \phi(H)$ for some $h, \psi(hK) = \phi(h)$.
- Structure-Preserve:

$$\psi(hKkK) = \psi(hkK)$$

$$= \phi(hk)$$

$$= \phi(h)\phi(k)$$

$$= \psi(hK)\psi(kK)$$

Thus,
$$|\phi(H)| = \frac{|H|}{|K|}$$
.

Lemma 10.15 (Kernel is Normal). Ker ϕ is normal in G

Proof. We need to show: $\forall g \in G, g(\operatorname{Ker} \phi)g^{-1} \subseteq \operatorname{Ker} \phi$. For any $g \in G$ and $k \in \operatorname{Ker} \phi$, $\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e\phi(g^{-1}) = e$. So $gkg^{-1} \in \operatorname{Ker} \phi$. \square

Lemma 10.16. $\phi(Z(G))$ is a subgroup of $Z(\phi(G))$.

Proof. For any $\phi(g) \in \phi(Z(G))$ for some $g \in Z(G)$. For any $\phi(a) \in \phi(G)$, $\phi(a)\phi(g) = \phi(ag) = \phi(ga) = \phi(g)\phi(a)$, so $\phi(g) \in Z(\phi(G))$. Thus $\phi(Z(G)) \subseteq Z(\phi(G))$.

Then by three-steps:

- $\phi(e) \in \phi(Z(G))$.
- For any $\phi(a)$ $\phi(b) \in \phi(Z(G))$ where $a \ b \in Z(G)$, $\phi(a)\phi(b) = \phi(ab) \in \phi(Z(G))$.
- For any $\phi(a) \in \phi(Z(G))$ where $a \in Z(G)$, $\phi(a)^{-1} = \phi(a^{-1}) \in \phi(Z(G))$.

Lemma 10.17 (Inverse Image of Subgroup is Subgroup). If \overline{K} is a subgroup of \overline{G} , then $\phi^{-1}(\overline{K}) = \{k \in G \mid \phi(k) \in \overline{K}\}$ is a subgroup of G.

Proof. It is clearly a subset of G.

We will prove it is a subgroup by three-steps:

- $\phi(e) \in \overline{K}$
- For any $a \ b \in \phi^{-1}(\overline{K})$, $\phi(ab) = \phi(a)\phi(b)$ where $\phi(a) \ \phi(b) \in \overline{K}$, so is $\phi(ab)$.
- For any $a \in \phi^{-1}(\overline{K})$, $\phi(a^{-1}) = \phi(a)^{-1}$ where $\phi(a) \in \overline{K}$, so is $\phi(a)^{-1}$.

Lemma 10.18 (Inverse Image of Normal is Normal). If \overline{K} is a normal subgroup of G, then $\phi^{-1}(\overline{K}) = \{k \in G \mid \phi(k) \in \overline{K}\}$ is a normal subgroup of G.

Proof. We proved that $\phi^{-1}(\overline{K})$ is a subgroup of G.

For any $g \in G$ and $k \in \phi^{-1}(\overline{K})$, $\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g)^{-1} = \overline{k}' \in \overline{K}$ since \overline{K} is normal, thus $gkg^{-1} \in \phi^{-1}(\overline{K})$.

Lemma 10.19. If $\phi: G \to \overline{G}$ is onto and $\operatorname{Ker} \phi = \{e\}$, then ϕ is an isomorphism from G to \overline{G}

Proof. We need to show ϕ is one-to-one.

For any $\phi(a)$ and $\phi(b)$ such that $\phi(a) = \phi(b)$. We know $a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$, but $\operatorname{Ker} \phi = \{e\}$. So $\{a\} = \{b\}$ implies a = b.

Theorem 10.3 (First Isomorphism Theorem). Let $\phi : G \to \overline{G}$, then the mapping from $G/\operatorname{Ker} \phi$ to $\phi(G)$, given by $g\operatorname{Ker} \phi \mapsto \phi(g)$ is an isomorphism.

Proof. We denote that isomorphism as ψ . First, we need to show ψ is a function. That is, for any $g \operatorname{Ker} \phi$ and $h \operatorname{Ker} \phi$, if $g \operatorname{Ker} \phi = h \operatorname{Ker} \phi$, then $\psi(g \operatorname{Ker} \phi) = \psi(h \operatorname{Ker} \phi)$.

If $g \operatorname{Ker} \phi = h \operatorname{ker} \phi$, by Lemma 10.7, we know $\phi(g) = \phi(h)$ and then $\psi(g \operatorname{Ker} \phi) = \psi(h \operatorname{Ker} \phi)$.

Then we need to show it is an isomorphism:

- One-to-one: If $\psi(g \operatorname{Ker} \phi) = \psi(h \operatorname{Ker} \psi)$, $\phi(g) = \phi(h)$ gives $g \operatorname{Ker} \phi = h \operatorname{Ker} \phi$.
- Onto: For any $\phi(g) \in \phi(G)$ for some $g \in G$, we have $\psi(g \operatorname{Ker} \phi) = \phi(g)$.
- Structure-Preserve: For any $g \operatorname{Ker} \phi$ and $h \operatorname{Ker} \phi$:

$$\psi(g \operatorname{Ker} \phi h \operatorname{Ker} \phi)$$

$$= \psi(g h \operatorname{Ker} \phi)$$

$$= \phi(g h)$$

$$= \phi(g) \phi(h)$$

$$= \psi(g \operatorname{Ker} \phi) \psi(h \operatorname{Ker} \phi)$$

Lemma 10.20 (N/C Theorem). Suppose H is a subgroup of G, the normalizer $N(H) = \{x \in G \mid xHx^{-1} = H\}$, and the centerlizer $C(H) = \{x \in G \mid \forall h \in H, xh = hx\}$ (or equivalently, $\{C(H) = \{x \in G \mid \forall h \in H, xhx^{-1} = h\}\}$). Consider the homomorphism $\psi(g) = \phi_g : N(H) \to \operatorname{Aut}(H)$. N(H)/C(H) is isomorphic to some subgroup of $\operatorname{Aut}(H)$.

Proof. It is easy to show that $C(H) = \text{Ker } \psi$. Since for any $g \in N(H)$, $\psi(g) = \phi_e \to \phi_g = \phi_e$, then, g commutes with any $h \in H$, thus $g \in C(H)$. And for any $g \in C(H)$, $\psi(g) = \phi_g$, since g commutes with any $x \in H$, we have $\phi_g(x) = gxg^{-1} = xgg^{-1} = x$. This tell us that $\psi(g) = \phi_g = \phi_e$, thus $\psi(h) \in \text{Ker } \psi$.

Thus $N(H)/C(H) = N(H)/\operatorname{Ker} \psi$, by Theorem 10.3, $N(H)/C(H) \approx \psi(H)$ which is a subgroup of $\operatorname{Aut}(H)$.

Theorem 10.4 (Normal Subgroups are Kernels). Let $H \triangleleft G$, H is a kernel of some homomorphism of G. In particular, H is a kernel of the mapping $\gamma(g) = gH$ from G to G/H.

Proof. First, we need to show γ is a homomorphism. For any $a \ b \in G$, $\gamma(ab) = abH = aHbH = \gamma(a)\gamma(b)$.

For any $h \in H$, $\gamma(h) = hH = H$ because $h \in H$, since H is the identity of G/H, $H \subseteq \operatorname{Ker} \gamma$.

For any $x \in \text{Ker } \gamma$, we know $\gamma(x) = xH = H$, this implies $x \in H$, thus $\text{Ker } \gamma \subseteq H$.

Lemma 10.21 (Composition of Homomorphism). Let $\phi: G \to H$ and $\psi: H \to K$ are homomorphisms. $\psi \circ \phi: G \to K$ is also homomorphism.

Proof. For any $a \ b \in G$:

$$(\psi \circ \phi)(ab) = \psi(\phi(ab))$$

$$= \psi(\phi(a)\phi(b)) \qquad \text{(By ϕ is homomorphism)}$$

$$= \psi(\phi(a))\psi(\phi(b)) \qquad \text{(By ψ is homomorphism)}$$

$$= (\psi \circ \phi)(a)(\psi \circ \phi)(b)$$

Lemma 10.22 (Restricted Homomorphism). Let $\phi: G \to \overline{G}$ and H a subgroup of G. If $\operatorname{Ker} \phi \subseteq H$, prove that $\psi: H \to \overline{G}$ given by $\psi(h) = \phi(h)$ is also a homomorphism with kernel $\operatorname{Ker} \phi$.

Proof. ψ preserve structure by directly calls ϕ . For any $k \in \text{Ker } \phi$, since $\text{Ker } \phi \subseteq H$, $\psi(k) = \phi(k) = e$. And for any $h \in H$ such that $\psi(h) = e$, $h \in \text{Ker } \phi$ since $\psi(h) = \phi(h) = e$.

Lemma 10.23 (Homomorphism on Internal Direct Product is False). The following proposition is False: Let ϕ a homomorphism from G to some group and $G = H \times K$. Show that $\phi(H \times K) = \phi(H) \times \phi(K)$.

Proof. Consider $G = Z_2 \oplus Z_2$ and homomorphism $\phi((a,b)) = a+b$. Obviously $\langle (1,1) \rangle$ is the kernel, and $Z_2 \oplus Z_2 = (Z_2 \oplus \{e\}) \times (\{e\} \oplus Z_2)$. If the hypothesis is true, then the intersection of $\phi(Z_2 \oplus \{e\}) = Z_2$ and $\phi(\{e\} \oplus Z_2) = Z_2$ should be $\{e\}$ but it is not.