연구 주제	비행제어 입출력장치 결함 대비 제어법칙 재구성 기법 개발					
문서 제목	KAI 과제 진행 상황보고					
작성자	서용준, 이소망, 정연택, 강형관, 박희인	회의 일시	2020 년 5 월 14 일 오후 3 시			
수신자	김유단 교수님	비고				

1. Trim point 데이터 기반 Xcg 추정 (소망)

1.1. 참고문헌

T. H. B. Wu, "Method and apparatus for the linear real time estimation of an aircraft center of gravity", United States Patent 5571953, Nov 5, 1995.

1.2. 추정 방법

$$CG_EST = 0.25 + \frac{\frac{K_c}{4}(K_1 + K_2(\alpha_B) + K_3(STAB))}{\frac{nw}{qs}}$$

- 주요 변수 : alpha(AoA), delta_e(elevator input)
- landing 상황에서 trim point에서의 alpha와 delta_e 값의 관계를 이용하여 Xcg 추정

1.3. 시뮬레이션 방법

- 고도 4000m에서 특정 cg에 대해 (V_T, alpha, delta_e)를 변수로 trim point (level flight) 탐색
 - → cg는 -2% ~ 8% 까지 (2% 간격) 탐색
 - → V_T는 120 m/s ~ 300 m/s 까지 (20 m/s 간격) 탐색
 - → 탐색한 총 trim point 수 : 60 개
 - → 동일 cg에 대해서는 trim alpha와 del_e 값이 거의 선형적인 관계를 가짐

● 참고 문헌의 식을 단순화하고, least-square 방법을 적용하여 파라미터(p₀, p₁, p₂) 결정

$$\Delta X_{cg} = q/W \times (p_0 + p_1\alpha + p_2\delta_e)$$

W: 항공기의 무게(mg), q: dynamic pressure

1.4. 시뮬레이션 결과

real	estimated	error	real	estimated	error	real	estimated	error
-2	-1.9525	0.0475	2	1.8247	-0.1753	6	5.5796	-0.4204
-2	-2.0241	-0.0241	2	1.8181	-0.1819	6	5.6478	-0.3522
-2	-1.9323	0.0677	2	1.9578	-0.0422	6	5.8329	-0.1671
-2	-1.8166	0.1834	2	2.1267	0.1267	6	6.0554	0.0554
-2	-1.7521	0.2479	2	2.2399	0.2399	6	6.2183	0.2183
-2	-1.7610	0.2390	2	2.2730	0.2730	6	6.2949	0.2949
-2	-1.8469	0.1531	2	2.2228	0.2228	6	6.2816	0.2816
-2	-2.0069	-0.0069	2	2.0929	0.0929	6	6.1831	0.1831
-2	-2.2337	-0.2337	2	1.8907	-0.1093	6	6.0067	0.0067

-2	-2.5171	-0.5171	2	1.6270	-0.3730	6	5.7637	-0.2363
0	-0.0611	-0.0611	4	3.7050	-0.2950	8	7.4485	-0.5515
0	-0.1013	-0.1013	4	3.7345	-0.2655	8	7.5583	-0.4417
0	0.0147	0.0147	4	3.8972	-0.1028	8	7.7650	-0.2350
0	0.1569	0.1569	4	4.0929	0.0929	8	8.0143	0.0143
0	0.2456	0.2456	4	4.2308	0.2308	8	8.2025	0.2025
0	0.2576	0.2576	4	4.2855	0.2855	8	8.3012	0.3012
0	0.1893	0.1893	4	4.2535	0.2535	8	8.3069	0.3069
0	0.0442	0.0442	4	4.1392	0.1392	8	8.2245	0.2245
0	-0.1704	-0.1704	4	3.9498	-0.0502	8	8.0615	0.0615
0	-0.4442	-0.4442	4	3.6963	-0.3037	8	7.8294	-0.1706

평균 오차 : 0.0013 % / 표준 편차 : 0.2382 % / 최대 오차 : 0.5515 %

1.5. 추후 연구

- 파라미터 결정에 사용된 60 개의 trim point 이외의 포인트에서 검증 필요
- 센서 오차 적용 여부
- 2. 3 차원 질량중심 추정기 설계 (Three-dimensional CoM Deviation Estimator) (용준)
 - 2.1. 정의
 - G: (실제) 질량중심
 - C: 명목 질량중심
 - 2.2. 가정
 - C는 강체에 고정되어 있다.
 - 질량 m과 관성모멘트 \mathbf{J}_G^b 는 알려져 있다.
 - 2.3. 운동방정식

$$^{i}\dot{\mathbf{v}}_{C/i} - \mathbf{g} + ^{b}\dot{\mathbf{\omega}}_{b/i} \times \mathbf{p}_{G/C} + \mathbf{\omega}_{b/i} \times (\mathbf{\omega}_{b/i} \times \mathbf{p}_{G/C}) = \frac{1}{m}\mathbf{F}$$

$$^{b}\dot{\mathbf{h}}_{G} + \mathbf{\omega}_{b/i} \times \mathbf{h}_{G} = \mathbf{M}_{C} - \mathbf{p}_{G/C} \times \mathbf{F}$$

- 2.4. 추정기 설계
 - 2.4.1. 정의
 - J 관성모멘트
 - p 명목 질량중심에 대한 실제 질량중심의 상대위치
 - f 힘

- μ 모멘트
- ω 각속도
- α 각가속도
- \mathbf{a} 참가속도 (proper acceleration; $\mathbf{a} = {}^{i}\dot{\mathbf{v}}_{C/i}^{b} \mathbf{g}^{b}$)
- (참고: 모든 벡터성분은 강체좌표계로 나타냄.)

2.4.2. 요구조건

- 센서는 가속도센서(참가속도)와 자이로(각속도)가 사용된다.
- 힘, 모멘트 추정기가 필요하다.
- 각가속도센서 또는 각가속도 추정기가 필요하다.

2.4.3. 프로세스 식

추정 대상은 p이고 x=p로 표기한다.

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \sqrt{T}\mathbf{G}_k\mathbf{w}_k$$
$$E\left[\mathbf{w}_k\mathbf{w}_l^T\right] = \mathbf{I}_3\delta_{k,l}$$

2.4.4. 측정 식

• 출력 벡터

$$\mathbf{y}^{T} = \begin{bmatrix} \mathbf{f}^{T} & \boldsymbol{\mu}^{T} & \boldsymbol{\omega}^{T} & \boldsymbol{\alpha}^{T} & \mathbf{a}^{T} \end{bmatrix}$$

• 출력 식

$$\mathbf{h}(\mathbf{x},\mathbf{y}) = \mathbf{0}$$

여기서

$$h(x,y) = \begin{bmatrix} x \times f - \mu + J\alpha + \omega \times (J\omega) \\ f / m - \alpha \times x - \omega \times (\omega \times x) - a \end{bmatrix}$$

따라서

$$\begin{split} \frac{\partial \mathbf{h}}{\partial \mathbf{x}} &= - \begin{bmatrix} [\mathbf{f}]_{\times} \\ [\boldsymbol{\alpha}]_{\times} + [\boldsymbol{\omega}]_{\times}^{2} \end{bmatrix} \\ \frac{\partial \mathbf{h}}{\partial \mathbf{y}} &= - \begin{bmatrix} [\mathbf{p}]_{\times} & -\mathbf{I}_{3} & [\boldsymbol{\omega}]_{\times} \mathbf{J} - [\mathbf{J}\boldsymbol{\omega}]_{\times} & \mathbf{J} & \mathbf{O}_{3} \\ \mathbf{I}_{3} / m & \mathbf{O}_{3} & 2\mathbf{p}\boldsymbol{\omega}^{T} - \boldsymbol{\omega}\mathbf{p}^{T} - \mathbf{p}^{T}\boldsymbol{\omega}\mathbf{I}_{3} & [\mathbf{p}]_{\times} & -\mathbf{I}_{3} \end{bmatrix} \end{split}$$

• 측정 식

$$\mathbf{h}(\mathbf{x}_{\scriptscriptstyle k},\mathbf{y}_{\scriptscriptstyle k})=\mathbf{0}$$

$$\mathbf{z}_{k} = \mathbf{y}_{k} + \mathbf{v}_{k}$$

 \mathbf{v}_{ι} 의 특성은 센서나 추정기가 결정한다.

2.4.5. MAP Estimator for Implicit Measurement Equation

$$\begin{split} \hat{\mathbf{x}}_k^- &= \hat{\mathbf{x}}_{k-1} \\ \mathbf{P}_k^- &= \mathbf{P}_{k-1} + \mathbf{Q}_{k-1} \\ \mathbf{Q}_{k-1} &= \mathbf{G}_{k-1} \mathbf{G}_{k-1}^T \end{split}$$

$$\begin{split} \mathbf{H}_{k} &= \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \big(\hat{\mathbf{x}}_{k}^{-}, \mathbf{z}_{k} \big) \\ \mathbf{M}_{k} &= \frac{\partial \mathbf{h}}{\partial \mathbf{y}} \big(\hat{\mathbf{x}}_{k}^{-}, \mathbf{z}_{k} \big) \\ \mathbf{h}_{k} &= \mathbf{h} \big(\hat{\mathbf{x}}_{k}^{-}, \mathbf{z}_{k} \big) \\ \mathbf{S}_{k} &= \mathbf{h}_{k} \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{T} + \mathbf{M}_{k} \mathbf{R}_{k}^{-} \mathbf{M}_{k}^{T} \\ \hat{\mathbf{x}}_{k} &= \hat{\mathbf{x}}_{k}^{-} - \mathbf{K}_{k} \mathbf{h}_{k} \\ \hat{\mathbf{y}}_{k} &= \mathbf{z}_{k} - \mathbf{R}_{k} \mathbf{M}_{k}^{T} \mathbf{S}_{k}^{-1} \mathbf{h}_{k} \\ \mathbf{K}_{k} &= \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{T} \mathbf{S}_{k}^{-1} \\ \mathbf{P}_{k} &= (\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k}) \mathbf{P}_{k}^{-} (\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k})^{T} + \mathbf{K}_{k} \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{T} \mathbf{K}_{k}^{T} \end{split}$$

2.5. 시뮬레이션

2.5.1. 모델

항공기 모델은 F/A-18 HARV이다.

Figure 1 F/A-18 HARV

Figure 2 Measurements

Figure 3 CoM Estimator

2.5.2. 시뮬레이션

3. 옆미끄러짐각 추정 (연택)

3.1. 문제 상황

고받음각 상황 등 공력계수가 불확실한 상황에서 옆미끄러짐각 추정

3.2. 옆미끄러짐각 추정 방식

동역학 모델 기반 추정 – 모델 불확실성에 취약 기구학 모델 기반 추정 – 바람 변화에 취약

E. A. Morelli, "Real-time aerodynamic parameter estimation without air flow angle measurements," *J. Aircr.*, vol. 49, no. 4, pp. 1064–1074, 2012.

3.3.2. 받음각, 옆미끄러짐각 신호 재구성 재구성 과정에서 사용되는 식이 constant wind를 가정 바람 일정한 경우

바람이 변하는 경우

3.3.3. Least Square에서 발생하는 문제

초기값 설정 시 발생하는 Singularity 문제

수렴성 문제

Excitation 문제

3.3.4. Stochastic gradient descent 적용

$$\begin{split} \hat{\theta}_{\mathbf{k}+\mathbf{l}} &= \hat{\theta}_{\mathbf{k}} - \eta \nabla_{\hat{\theta}} J \text{, where } \nabla_{\hat{\theta}} J = X^T (X \hat{\theta} - z) \\ J &= J_{\mathrm{Re}} + J_{\mathrm{Im}} = \frac{1}{2} (z_{\mathrm{Re}} - X_{\mathrm{Re}} \hat{\theta})^T (z_{\mathrm{Re}} - X_{\mathrm{Re}} \hat{\theta}) + \frac{1}{2} (z_{\mathrm{Im}} - X_{\mathrm{Im}} \hat{\theta})^T (z_{\mathrm{Im}} - X_{\mathrm{Im}} \hat{\theta}) \end{split}$$

where

$$z = \begin{bmatrix} \Delta C_{Y}(\omega_{1}) \\ \vdots \\ \Delta C_{Y}(\omega_{k}) \end{bmatrix}, \quad X = \begin{bmatrix} \Delta p(\omega_{1}) & \cdots & \Delta \beta(\omega_{1}) \\ \vdots & & \vdots \\ \Delta p(\omega_{k}) & \cdots & \Delta \beta(\omega_{k}) \end{bmatrix}, \quad \hat{\theta} = \begin{bmatrix} C_{Y_{p}} & C_{Y_{r}} & C_{Y_{\delta_{r}}} & C_{Y_{\delta_{a}}} & C_{Y_{\beta}} \end{bmatrix}$$

Step size: 1e-5

Step size: 1e-4

3.4. 개선사항 및 추후 연구

3.4.1. Excitation 문제

현재 보유한 불확실성이 포함된 공력계수를 활용하는 방안 - 데이터를 이용해 보유한 공력계수의 불확실성을 줄이는 것을 목표로

3.4.2. 파라미터 튜닝 문제

Fourier transform[□] freq. band

Step size

3.4.3. 공력계수를 이용한 옆미끄러짐각 추정 필터 설계