

SEQUENCE LISTING

<110> Beals, John

Kuchibhotla, Uma

<120> HETEROLOGOUS G-CSF FUSION PROTEINS

<130> P-15648

<160> 66

<170> PatentIn version 3.1

<210> 1

<211> 174

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<220>

<221> MISC_FEATURE

<222> (17)..(17)

<223> Xaa at position 17 is Cys, Ala, Leu, Ser, or Glu;

<220>

<221> MISC_FEATURE

<222> (37)..(37)

<223> Xaa at position 37 is Ala or Asn;

<220>
<221> MISC_FEATURE
<222> (38)..(38)
<223> Xaa at position 38 is Thr, or any other amino acid except Pro;

<220>
<221> MISC_FEATURE
<222> (39)..(39)
<223> Xaa at position 39 is Tyr, Thr, or Ser;

<220>
<221> MISC_FEATURE
<222> (57)..(57)
<223> Xaa at position 57 is Pro or Val;

<220>
<221> MISC_FEATURE
<222> (58)..(58)
<223> Xaa at position 58 is Trp or Asn;

<220>
<221> MISC_FEATURE
<222> (59)..(59)
<223> Xaa at position 59 is Ala or any other amino acid except Pro;

<220>
<221> MISC_FEATURE
<222> (60)..(60)

<223> Xaa at position 60 is Pro, Thr, Asn, or Ser;

<220>

<221> MISC_FEATURE

<222> (61)..(61)

<223> Xaa at position 61 is Leu, or any other amino acid except Pro;

<220>

<221> MISC_FEATURE

<222> (62)..(62)

<223> Xaa at position 62 is Ser or Thr;

<220>

<221> MISC_FEATURE

<222> (63)..(63)

<223> Xaa at position 63 Ser or Asn;

<220>

<221> MISC_FEATURE

<222> (64)..(64)

<223> Xaa at position 64 is Cys or any other amino acid except Pro;

<220>

<221> MISC_FEATURE

<222> (65)..(65)

<223> Xaa at position 65 is Pro, Ser, or Thr;

<220>

<221> MISC_FEATURE

<222> (66)..(66)

<223> Xaa at position 66 is Ser or Thr;

<220>

<221> MISC_FEATURE

<222> (67)..(67)

<223> Xaa at position 67 is Gln or Asn;

<220>

<221> MISC_FEATURE

<222> (68)..(68)

<223> Xaa at position 68 is Ala or any other amino acid except Pro;

<220>

<221> MISC_FEATURE

<222> (69)..(69)

<223> Xaa at position 69 is Leu, Thr, or Ser;

<220>

<221> MISC_FEATURE

<222> (93)..(93)

<223> Xaa at position 93 is Glu or Asn;

<220>

<221> MISC_FEATURE

<222> (94)..(94)

<223> Xaa at position 94 is Gly or any other amino acid except Pro;

<220>

<221> MISC_FEATURE
<222> (95)..(95)
<223> Xaa at position 95 is Ile, Asn, Ser, or Thr;

<220>
<221> MISC_FEATURE
<222> (97)..(97)
<223> Xaa at position 97 is Pro, Ser, Thr, or Asn;

<220>
<221> MISC_FEATURE
<222> (133)..(133)
<223> Xaa at position 133 is Thr or Asn;

<220>
<221> MISC_FEATURE
<222> (134)..(134)
<223> Xaa at position 134 is Gln or any other amino acid except Pro;

<220>
<221> MISC_FEATURE
<222> (135)..(135)
<223> Xaa at position 135 is Gly, Ser, or Thr;

<220>
<221> MISC_FEATURE
<222> (141)..(141)
<223> Xaa at position 141 is Ala or Asn;

<220>

<221> MISC_FEATURE

<222> (142)..(142)

<223> Xaa at position 142 is Ser or any other amino acid except Pro;

<220>

<221> MISC_FEATURE

<222> (143)..(143)

<223> Xaa at position 143 is Ala, Ser, or Thr.

<400> 1

Thr	Pro	Leu	Gly	Pro	Ala	Ser	Ser	Leu	Pro	Gln	Ser	Phe	Leu	Leu	Lys
1								10						15	

Xaa	Leu	Glu	Gln	Val	Arg	Lys	Ile	Gln	Gly	Asp	Gly	Ala	Ala	Leu	Gln
						20		25						30	

Glu	Lys	Leu	Cys	Xaa	Xaa	Lys	Leu	Cys	His	Pro	Glu	Glu	Leu	Val	
						35		40				45			

Leu	Leu	Gly	His	Ser	Leu	Gly	Ile	Xaa							
						50		55				60			

Xaa	Xaa	Xaa	Xaa	Xaa	Gln	Leu	Ala	Gly	Cys	Leu	Ser	Gln	Leu	His	Ser
					65			70			75			80	

Gly	Leu	Phe	Leu	Tyr	Gln	Gly	Leu	Leu	Gln	Ala	Leu	Xaa	Xaa	Xaa	Ser
					85			90				95			

Xaa	Glu	Leu	Gly	Pro	Thr	Leu	Asp	Thr	Leu	Gln	Leu	Asp	Val	Ala	Asp
						100		105				110			

Phe	Ala	Thr	Thr	Ile	Trp	Gln	Gln	Met	Glu	Glu	Leu	Gly	Met	Ala	Pro
						115		120				125			

Ala	Leu	Gln	Pro	Xaa	Xaa	Xaa	Ala	Met	Pro	Ala	Phe	Xaa	Xaa	Phe	
							130		135			140			

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
165 170

<210> 2

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 2
accccccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggacccg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgccct tagagcaagt gaggaagatc 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcaact ccttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccgaa ggagctggtg 240
ctcttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac 300
tctctggca tccccctgggc tccccctgagc agctgcgacg agcctgtgac agacccgtag 360
gggaccggag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgcgc 420
caactccata gcggggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gtcctgcag gccctggaag ggatctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggaccttccc tagaggcccc agttgggtcc caccttggac 600
acactgcagc tggacgtcgc cgacgggctc aacccagggg ggaacctgtg tgacgtcgc 660
ctgcagcggc tggggccac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacgggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780
aaccagaccg ccatgccggc cttcgctct gctttccggg acgtcggtt ggtctggcgg 840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctccat 900
ctgcagagct tcgtcgccgc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag 960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020
cagaattccg tggAACGGGT CGGG 1044

<210> 3

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 3
accccccctgg gcccctgccag ctcccctgccc cagagcttcc tgctcaagtg gggggacccg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgct tagagcaagt gaggaagatc 120
cagggcgcattg ggcgcagcgct ccagcgaaat ctcgttcaact ccttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccacccccga ggagctggtg 240
ctcttcgaca cacggtgttat gttcgacacg gtggggctcc tcgaccacct gctcggacac 300
tctctggca tccccctgggc tccccctgagc agctgcgacg agcctgtgac agacccgtag 360
gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc 420
caactccata gcggggtcggt ccgggacggtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gctcctgcag gcccctggaag ggatctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac 600
acactgcagc tggacgtcgc cgacgggctc aacccaggggt ggaacctgtg tgacgtcgc 660
ctgcagcggc tggggccac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacgggtgt ggttagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780
acccagggtg ccatgcccggc cttcaactct accttccggg acgtcggtg ggtcccacgg 840
tacggccgga agttgagatg gaagcagcgc cgggcaggag gggtcctggt tgccctccat 900
ctgcagagct tcgtcgccggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag 960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020
cagaattccg tggAACGGGT CGGG 1044

<210> 4

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 4
accccccctgg gccctgccag ctcccgtccc cagagcttcc tgctcaagtg gggggaccgg 60
ggacgggtcga gggacgggggt ctcgaaggac gagttcgct tagagcaagt gaggaagatc 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcaact cttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgtAACACC accaagctgt gccaccccgaa ggagctggtg 240
ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcggacac 300
tctctggca tccccctgggc tcccctgagc agctgcgacg agcctgtgac agacccgtag 360
gggaccggag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc 420
caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gtcctgcag gccctggaaag ggatctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggacottccc tagaggcccc agttgggtcc caccttggac 600
acactgcagc tggacgtcgc cgacgggctc aacccagggg ggaacctgtg tgacgtcgc 660
ctgcagcggc tggggccac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacgggtggt ggttagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780
acccaggggtg ccatgcccgc cttcgctct gctttccggg acgtcggtgg ggtcccacgg 840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctgg tgcctccat 900
ctgcagagct tcgtcgccgc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag 960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacacctcca cagcatggcg 1020
cagaattccg tggAACGGGT cggg 1044

<210> 5

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 5
accccccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggaccgg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgccct tagagcaagt gaggaagatc 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcaact ccttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccgaa ggagctggtg 240
ctcttcgaca cacggtggtat gttcgacacg gtggggctcc tcgaccacct gctcggacac 300
tctctggca tccccctgggc taacactagc agctgcgacg agcctgtgac agacccgtag 360
gggacccgat tggactcctc gacgcccagc caggccctgc agctggcagg ctgcttgagc 420
caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gtcctgcag gccctggaag ggatctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggaccttccc tagaggccc agttgggtcc caccttggac 600
acactgcagc tggacgtcgc cgacgggctc aacctcagggt ggaacctgtg tgacgtcgcac 660
ctgcagcggc tgtttgcac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacgggtgt ggttagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780
acccagggtg ccatgccggc cttcgctct gcttccggg acgtcgggtg ggtcccacgg 840
tacggccgga agcggagacg aaagcagcgc cggcaggag gggtcctggt tgcctccat 900
ctgcagagct tcgtcgccgc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag 960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacacctcca cagcatggcg 1020
cagaattccg tggAACGGGT CGGG 1044

<210> 6

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 6
accccccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggaccgg 60

ggacggtcga gggacggggt ctcgaaggac gagttcgct tagagcaagt gaggaagatc 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcaact ccttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccgaa ggagctggtg 240
ctcttcgaca cacgggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac 300
tctctggca tcccctggc tcccctgagc aattgcgacg agcctgtgac agacccgtag 360
gggacccgag gggactcggtt aacgaccacg caggccctgc agctggcagg ctgcttgagc 420
caactccata gctggtcggtt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gtcctgcag gccctggaag ggatctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac 600
acactgcagc tggacgtcgc cgacgggctc aacccaggggt ggaacctgtg tgacgtcgcac 660
ctgcagcggc tggggccac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacggtgtt ggttagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780
acccagggtg ccatgccggc cttcgctct gcttccggg acgtcgggtg ggtcccacgg 840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctgggt tgccctccat 900
ctgcagagct tcgtcgccggc ccgtccccc caggaccaac ggagggtaga cgtctcgaag 960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacacctcca cagcatggcg 1020
cagaattccg tggAACGGGT CGGG 1044

<210> 7

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 7
accccccctgg gccctgccag ctcccctgccc cagagcttcc tgctcaagtgg gggggacccg 60
ggacggtcga gggacggggtt ctcgaaggac gagttcgct tagagcaagt gaggaagatc 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcaact ccttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccgaa ggagctggtg 240

ctttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac	300
tctctggca tcgttaacgc taccctgagc agctgcgacg agcctgtgac agacccgtag	360
caattgcgtat gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc	420
caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg	480
ggcctttcc tctaccaggg gtcctgcag gccctggaag ggatctcccc ggaaaaggag	540
atggtccccg aggacgtccg ggacccccc tagaggcccc agttgggtcc caccttggac	600
acactgcagc tggacgtcgc cgacgggctc aaccagggtt ggaacctgtg tgacgtcgac	660
ctgcagcggc tggttgccac caccatctgg cagcagatgg aagaactggg aatggccct	720
aaacggtgtt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc	780
acccagggtg ccatgccggc cttcgctct gcttccggg acgtcgggtg ggtcccacgg	840
tacggccgga agcggagacg aaagcagcgc cgggcaggag ggtcctggc tgcccccatt	900
ctgcagagct tcgtcgccggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaa	960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgaccccca cagcatggcg	1020
cagaattccg tggAACGGGT cggg	1044

<210> 8

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 8 accccccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggacccg	60
ggacggtcga gggacggggt ctcgaaggac gagttcgct tagagcaagt gaggaagatc	120
cagggcgtat ggcgcagcgct ccagcggaat ctcgttcaact cttcttaggt cccgctaccg	180
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccacccga ggagctggtg	240
ctttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac	300
tctctggca tccccctgggc tccccctgagc agctgcgacg agcctgtgac agacccgtag	360
gggacccgag gggactcgtc gacgcccagc aacgccaccc agctggcagg ctgcttgagc	420

caactccata gcgggtcggtt gcggtgggtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gtcctgcag gccctggaag ggatctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac 600
acactgcagc tggacgtcgc cgacgggctc aaccagggtt ggaacctgtg tgacgtcgcac 660
ctgcagcggc tggccac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacggtgtt ggttagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780
acccagggtg ccatgccggc cttgcctct gcttccggg acgtcgggtg ggtcccacgg 840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggg tgcccccatt 900
ctgcagagct tcgtcgccggc ccgtccccc caggaccaac ggagggtaga cgtctcgaag 960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020
cagaattccg tggAACGGGT CGGG 1044

<210> 9

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 9
accccccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtggggacccg 60
ggacggtcga gggacgggggt ctcgaaggac gagttcgct tagagcaagt gaggaagatc 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcaact cttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccgaa ggagctgggt 240
ctcttcgaca cacggtggtt gttcgacacg gtggggctcc tcgaccacct gctcggacac 300
tctctggca tccccctgggc tccccctgagc agctgcgacg agcctgtgac agacccgttag 360
gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc 420
caactccata gcgggtcggtt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gtcctgcag gccctgaacg ggacctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggacttgccc tggaggcccg agttgggtcc caccttggac 600

acactgcagc tggacgtcg c gacgggctc aaccagggt ggaacctgtg tgacgtcgac 660
ctgcagcggc ttttgcac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacggtgtt ggttagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780
acccagggtg ccatgccggc ctccgcctct gcttccggg acgtcgggtg ggtcccacgg 840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctccat 900
ctgcagagct tcgtcgccgc ccgtcctccc caggaccaac ggagggtaga cgtctcgaa 960
ctggagggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020
cagaattccg tggAACGGGT CGGG 1044

<210> 10

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 10
accccccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggacccg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgct tagagcaagt gaggaagatc 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcaact cttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgtAACACC accaagctgt gccacccga ggagctggtg 240
ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gtcggacac 300
tctctggca tccccctggc tccccctgagc agctgcgacg agcctgtgac agacccgtag 360
gggaccggag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgctttagc 420
caactccata gcgggtcggt ccgggacgac gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gtcctgcag gccctggaaag ggatctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggacccccc tagaggcccg agttgggtcc caccttggac 600
acactgcagc tggacgtcg c gacgggctc aaccagggt ggaacctgtg tgacgtcgac 660
ctgcagcggc ttttgcac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacggtgtt ggttagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780

aaccagacccg ccatgccggc cttgcctct gcttccggg acgtcggtt ggtctggcgg 840
tacggccgga agcggagacg aaagcagcgc cggcaggag gggtcctggt tgcccccatt 900
ctgcagagct tcgtcgccgc ccgtccccc caggaccaac ggagggtaga cgtctcgaa 960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020
cagaattccg tggaacgggt cggg 1044

<210> 11

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 11
accccccctgg gccctgccag ctccctgccc cagagttcc tgctcaagtgggggacccg 60
ggacggtcga gggacgggggt ctcgaaggac gagttcgccct tagagcaagt gaggaagatc 120
cagggcgatg ggcgcgcct ccagcgaaat ctcgttcaact cttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgttaacacc accaagctgtt gccaccccgaa ggagctggtg 240
ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccaccc gctcgac 300
tctctggca tccccctggc tccccctgagc agctgcgacg agcctgtgac agacccgtag 360
gggaccccgag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc 420
caactccata gcgggtcggt ccgggacggtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gtcctgcag gccctggaaag ggatctcccc ggaaaaggag 540
atggtcccccg aggacgtccg ggacccccc tagaggcccc agttgggtcc caccttggac 600
acactgcagc tggacgtcgcc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac 660
ctgcagcgcc tggggccac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacgggttgt ggttagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780
acccagggtg ccatgccggc cttcaactct accttccggg acgtcggtt ggtccacgg 840
tacggccgga agttgagatg gaagcagcgc cggcaggag gggtcctggt tgcccccatt 900
ctgcagagct tcgtcgccgc ccgtccccc caggaccaac ggagggtaga cgtctcgaa 960

ctggagggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020
cagaattccg tggAACGGGT CGGG 1044

<210> 12
<211> 1044
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 12
accccccctgg gcccctgccag ctcccctgccc cagagcttcc tgctcaagtg gggggacccg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgct tagagcaagt gaggaagatc 120
cagggcgatg ggcgcagcgct ccagcggaat ctcgttcaact ctttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgtAACACC accaagctgt gccacccccga ggagctggtg 240
ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcgacac 300
tctctggca tcgttaacgc taccctgagc agctgcgacg agcctgtgac agacccgtag 360
caattgcgat gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc 420
caactccata gccccgtcggt ccgggacggtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggc gtcctgcag gcccctggaa ggatctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggacccccc tagaggcccg agttgggtcc caccttggac 600
acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac 660
ctgcagcggc tgTTTgcccac caccatctgg cagcagatgg aagaactggg aatggcccct 720
aaacgggtggt ggtAGACCGT cgtctacctt cttgaccctt accggggagc cctgcagccc 780
acccagggtg ccatgccggc cttcgccctt gctttccggg acgtcggtg ggtcccacgg 840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgccctccat 900
ctgcagagct tcgtcgccggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaa 960
ctggagggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020
cagaattccg tggAACGGGT CGGG 1044

<210> 13

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 13
accccccctgg gcccctgccag ctcccctgccc cagagcttcc tgctcaagtg gggggaccccg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgccct tagagcaagt gaggaagatc 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcaact ccttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgtAACACC accaagctgt gccacccccga ggagctggtg 240
ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcgacac 300
tctctgggca tccccctgggc tccccctgagc agctgcgacg agcctgtgac agacccgtag 360
gggacccgag gggactcgtc gacgcccagc aacgccaccc agctggcagg ctgcttgagc 420
caactccata gcgggtcggtt gcgggtggtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gctcctgcag gcccctggaag ggatctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggacccccc tagaggccc agttgggtcc caccttggac 600
acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgcac 660
ctgcagcggc tggggccac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780
acccagggtg ccatgccggc cttcgccctt gctttccggg acgtcggtg ggtcccacgg 840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgccctccat 900
ctgcagagct tcgtcgccggc ccgtctcccc caggaccaac ggagggtaga cgtctcgaag 960
ctggagggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacacctcca cagcatggcg 1020
cagaattccg tgaaacgggt cggg 1044

<210> 14

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 14
accccccctgg gcctgtccag ctccctgccc cagagcttcc tgctcaagtg gggggacccg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgccct tagagcaagt gaggaagatc 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcaact cttcttaggt cccgctaccg 180
cgtcgcgagg tcgagaagct gtgttaacacc accaagctgt gccaccccgaa ggagctggtg 240
ctttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcggacac 300
tctctggca tccccctggc tccccctgagc agctgcgacg agcctgtgac agacccgtag 360
gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc 420
caactccata gcgggtcggt ccgggacggtc gaccgtccga cgaactcggt tgaggtatcg 480
ggcctttcc tctaccaggg gtcctgcag gcccctgaaag ggatctcccc ggaaaaggag 540
atggtccccg aggacgtccg ggaccttccc tagaggaacg gtaccggtcc caccttggac 600
acactgcagc tggacgtcgc cgacttgcac tggccagggt ggaacctgtg tgacgtcgcac 660
ctgcagcggc tggggccac caccatctgg cagcagatgg aagaactggg aatggccct 720
aaacgggttgt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780
acccagggtg ccatgccggc cttcgctct gctttccggg acgtcgggtg ggtcccacgg 840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggccctggc tgccctccat 900
ctgcagagct tcgtcgccggc ccgtccccc caggaccaac ggagggtaga cgtctcgaag 960
ctggagggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgaccccca cagcatggcg 1020
cagaattccg tggAACGGGT CGGG 1044

<210> 15

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 15

accccccctgg	gccctgccag	ctccctgccc	cagagcttcc	tgctcaagtg	gggggacccg	60
ggacggtcga	gggacggggt	ctcgaaggac	gagttcgct	tagagcaagt	gaggaagatc	120
cagggcgatg	gcgcagcgct	ccagcggaat	ctcgttcaact	ccttcttaggt	cccgctaccg	180
cgtcgcgagg	tcgagaagct	gtgtaaacacc	accaagctgt	gccaccccgaa	ggagctggtg	240
ctcttcgaca	cattgtggtg	gttcgacacg	gtggggctcc	tcgaccacct	gctcgacac	300
tctctgggca	tcgttaacgc	taccctgagc	agctgcgacg	agcctgtgac	agacccgtag	360
caattgcgat	gggactcgtc	gacgcccagc	aacgccaccc	agctggcagg	ctgcttgagc	420
caactccata	gcgggtcggt	gcgggtggtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggcctttcc	tctaccaggg	gttcctgcag	gccctggaag	ggatctcccc	ggaaaaggag	540
atggtccccg	aggacgtccg	ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc	tggacgtcgc	cgacgggctc	aacctcagggt	ggaacctgtg	tgacgtcgac	660
ctgcagcggc	tgtttgccac	caccatctgg	cagcagatgg	aagaactggg	aatggccct	720
aaacgggttgt	ggttagaccgt	cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
acccagggtg	ccatgccggc	cttcgcctct	gtttccggg	acgtcgggtg	ggtcccacgg	840
tacggccgga	agcggagacg	aaagcagcgc	cgggcaggag	gggtcctgg	tgcctccat	900
ctgcagagct	tcgtcgcgcc	ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaaag	960
ctggaggtgt	cgtaccgcgt	cttaaggcac	cttgcccagc	ccgacacctcca	cagcatggcg	1020
cagaattccg	tggaacgggt	cggg				1044

<210> 16

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 16

accccccctgg	gccctgccag	ctccctgccc	cagagcttcc	tgctcaagtg	gggggacccg	60
ggacggtcga	gggacggggt	ctcgaaggac	gagttcgct	tagagcaagt	gaggaagatc	120

cagggcgatg ggcgcaggct ccagcggaat ctcgttcaact ctttcttaggt cccgctaccg	180
cgtcgcgagg tcgagaagct gtgttaacacc accaagctgt gccaccccgaa ggagctggtg	240
ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcggacac	300
tctctggca tccccctggc tccccctgagc aattgcgacg agcctgtgac agacccgtag	360
gggacccgag gggactcggt aacgaccagc caggcccgtc agctggcagg ctgcttgagc	420
caactccata gctggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg	480
ggcctttcc tctaccaggg gtcctgcag gccctgaacg ggacctcccc ggaaaaggag	540
atggtccccg aggacgtccg ggacttgccc tggaggcccg agttgggtcc caccttggac	600
acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgcac	660
ctgcagcggc tggttgccac caccatctgg cagcagatgg aagaactggg aatggccct	720
aaacgggtgt ggttagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc	780
acccagggtg ccatgccggc cttcgctct gctttccggg acgtcgggtg ggtcccacgg	840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctccat	900
ctgcagagct tcgtcgccggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag	960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacacctca cagcatggcg	1020
cagaattccg tggAACGGGT CGGG	1044

<210> 17

<211> 1762

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 17	
gatgcgcaca agagttaggt tgctcatcggtttaaagatt tggagaaga aaatttcaaa	60
gccttggtgt tgattgcctt tgctcagtat cttcagcagt gtccatttga agatcatgtaa	120
aaatttagtga atgaagtaac tgaatttgca aaaacatgtt ttgctgtatga gtcagctgaa	180
aattgtgaca aatcacttca taccctttt ggagacaaat tatgcacagt tgcaactctt	240
cgtgaaacct atggtaaat ggctgactgc tgtgaaaaac aagaacctga gagaaatgaa	300

tgcttcttgc aacacaaaaga tgacaaccca aacccccc gattggtag accagaggtt	360
gatgtatgt gcactgcttt tcatgacaat gaagagacat ttttaaaaaa atacttatat	420
gaaattgccca gaagacatcc ttactttat gccccggAAC tcctttctt tgctaaaagg	480
tataaagctg ctttacaga atgttgcAA gctgctgata aagctgcctg cctgttgcA	540
aagctcgatg aacttcggGA tgaaggGAAG gcttcgtctg ccaaACAGAG actcaagtgt	600
gccagtcTCC aaaaatttgg agaaAGAGCT ttcaaaAGCAT gggcAGTAGC tcgcctgAGC	660
cagagattc ccaaAGCTGA gtttgcAGAA gtttccAAgt tagtGACAGA tcttaccAAA	720
gtccacacgg aatgtgcCA tggagatctg cttaatgtg ctgtatGACAG ggcggacCtt	780
gccaAGTATA tctgtgAAAA tcaAGATTG ATCTCCAGTA aactGAAGGA atgtgtgAA	840
aaacctctgt tggaaaaATC ccactgcATT gccGAAGTGG AAAATGATGA gatgcctgct	900
gacttgcTT cattagctgc tgatttGTT gaaAGTAAGG atgttgcAA aaACTATGCT	960
gaggcaaAGG atgtttcct gggcatgttt ttgtatGAAT atGCAAGAAG gcatcctgat	1020
tactctgtcg tgctgctgct gagacttgcc aagacatATG aaACCACTCT agagaAGTGC	1080
tgtGCCGCTG cagatcctca tgaatgctat gccaAAgtgt tcgtatGAATT taaacctctt	1140
gtggaAGAGC CTCAGAATTt AATCAAACAA ATTGTGAGC ttttGAGCA gcttggAGAG	1200
tacaaattcc agaatgcgt attagttcgT tacaccaAGA aagtACCCCA agtgtcaACT	1260
ccaaCTCTG tagaggtctc aagaaACCTA ggAAAAGTGG gcagcaaATG ttgtAAACAT	1320
cctgaAGCAA aaAGAAATGCC ctgtgcAGAA gactatctat ccgtggcct gaaccAGTTA	1380
tgtgtgttgc atgagAAAAC gccaGTAAGT gacAGAGTCA ccaaATGCTG cacagaatcc	1440
ttggtaaca ggcgaccatg ctttcagct ctggaaAGTCG atgaaACATA cgttccAAA	1500
gagtttaatg ctgaaACATT caccttccat gcagatatat gcacacttC tgagaAGGAG	1560
agacAAatca agaaACAAAC tgcacttGTT gagctcgTGA aacacaAGCC caaggcaACA	1620
aaagAGCAAC tgaAGCTGT tatggatGAT ttcgcAGCTT ttgtAGAGAA gtgtGCAAG	1680
gctgacgata aggAGACCTG ctGccgAG gagggtaAAA aacttGTTGc tgcaAGTCAA	1740
gctgccttag gcttataatG ac	1762

<210> 18

<211> 232

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 18

Ala Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro
1 5 10 15

Ala Pro Glu Lys Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
20 25 30

Lys Asp Thr Lys Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val
35 40 45

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
50 55 60

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
65 70 75 80

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
85 90 95

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
100 105 110

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
115 120 125

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr
130 135 140

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
145 150 155 160

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
165 170 175

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
180 185 190

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
195 200 205

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
210 215 220

Ser Leu Ser Leu Ser Pro Gly Lys
225 230

<210> 19

<211> 229

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 19

Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe
1 5 10 15

Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr
20 25 30

Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val
35 40 45

Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val
50 55 60

Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser
65 70 75 80

Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu
85 90 95

Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser
100 105 110

Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro
115 120 125

Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln
130 135 140

Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala
145 150 155 160

Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr
165 170 175

Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu
180 185 190

Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser
195 200 205

Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
210 215 220

Leu Ser Leu Gly Lys
225

<210> 20

<211> 585

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 20

Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu
1 5 10 15

Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln
20 25 30

Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu
35 40 45

Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys
50 55 60

Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu
65 70 75 80

Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro
85 90 95

Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu
100 105 110

Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His
115 120 125

Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg
130 135 140

Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg
145 150 155 160

Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala
165 170 175

Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser
180 185 190

Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu
195 200 205

Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro
210 215 220

Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys
225 230 235 240

Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp
245 250 255

Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
260 265 270

Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His
275 280 285

Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser
290 295 300

Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala
305 310 315 320

Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg
325 330 335

Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr
340 345 350

Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Asp Pro His Glu
355 360 365

Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro
370 375 380

Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Asn Leu Gly Glu
385 390 395 400

Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro
405 410 415

Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys
420 425 430

Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys
435 440 445

Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His
450 455 460

Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser
465 470 475 480

Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr
485 490 495

Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp
500 505 510

Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala
515 520 525

Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu
530 535 540

Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys
545 550 555 560

Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val
565 570 575

Ala Ala Ser Gln Ala Ala Leu Gly Leu
580 585

<210> 21

<211> 703

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 21
gagcccaaat cttgtgacaa aactcacaca tgccccaccgt gcccagcacc tgaactcctg 60
gggggaccgt cagtcttcct cttcccccca aaacccaagg acaccctcat gatctcccg 120
acccctgagg tcacatgcgt ggtggtggac gtgagccacg aagaccctga ggtcaagttc 180
aactggtacg tggacggcgt ggaggtgcat aatgccaaga caaagccgcg ggaggagcag 240
tacaacagca cgtaccgtgt ggtcagcgtc ctcaccgtcc tgcaccagga ctggctgaat 300
ggcaaggagt acaagtgc当地 ggtctccaac aaagccctcc cagccccat cgagaaaacc 360
atctccaaag ccaaaggc当地 gccccgagaa ccacaggtgt acaccctgcc cccatcccg 420
gaggagatga ccaagaaccca ggtcagcctg acctgcctgg tcaaaggctt ctatcccagc 480
gacatcgccg tggagtggg gagcaatggg cagccggaga acaactacaa gaccacgcct 540
cccgtgctgg actccgacgg ctccttcctc ctctatagca agtcaccgt ggacaagagc 600
aggtggcagc agggaaacgt cttctcatgc tccgtgatgc atgaggctct gcacaaccac 660
tacacgcaga agaggctctc cctgtctccg ggtaaatgat agt 703

<210> 22
<211> 981
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic construct

<400> 22
tccaccaagg gcccattcggt cttcccgcta gcgccctgct ccaggagcac ctccgagagc 60
acagccgccc tgggctgcct ggtcaaggac tacttccccg aaccggtgac ggtgtcgtgg 120
aactcaggcg ccctgaccag cggcgtgcac accttcccggt ctgtcctaca gtcctcagga 180
ctctactccc tcagcagcgt ggtgaccgtg ccctccagca gcttgggcac gaagacctac 240
acctgcaacg tagatcacaa gcccagcaac accaaggtagg acaagagagt tgagtccaaa 300
tatggtcccc catgcccacc ctgcccagca cctgagttcc tggggggacc atcagtcttc 360
ctgttccccca caaaacccaa ggacactctc atgatctccc ggaccctga ggtcacgtgc 420
gtgggtggtgg acgtgagcca ggaagacccc gaggtccagt tcaactggta cgtggatggc 480
gtggaggtgc ataatgccaa gacaaagccg cgggaggagc agttcaacag cacgtaccgt 540
gtggtcagcg tcctcaccgt cctgcaccag gactggctga acggcaagga gtacaagtgc 600
aaggcttcca acaaaggcct cccgtcctcc atcgagaaaa ccatttccaa agccaaaggg 660
cagccccgag agccacaggt gtacaccctg ccccatccc aggaggagat gaccaagaac 720
caggtcagcc tgacctgcct ggtcaaaaggc ttctacccca ggcacatcgc cgtggagtgg 780
gagagcaatg ggcagccgga gaacaactac aagaccacgc ctccctgct ggactccgac 840
ggctcccttc tcctctacag caggctaacc gtggacaaga gcaggtggca ggagggaaat 900
gtcttctcat gctccgtgat gcatgaggct ctgcacaacc actacacaca gaagagccctc 960
tccctgtctc tggtaaatg a 981

<210> 23
<211> 406
<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 23

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
1 5 10 15

Ala Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln
20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
35 40 45

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
50 55 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser
65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro
115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe
130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Glu Pro
165 170 175

Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
180 185 190

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
195 200 205

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
210 215 220

Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
225 230 235 240

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
245 250 255

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
260 265 270

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro
275 280 285

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
290 295 300

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn
305 310 315 320

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
325 330 335

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
340 345 350

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
355 360 365

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
370 375 380

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
385 390 395 400

Ser Leu Ser Pro Gly Lys
405

<211> 403

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 24

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
1 5 10 15

Ala Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln
20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
35 40 45

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
50 55 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser
65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro
115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe
130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Glu Ser
165 170 175

Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly
180 185 190

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Asp Thr Leu Met
195 200 205

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln
210 215 220

Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val
225 230 235 240

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr
245 250 255

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
260 265 270

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile
275 280 285

Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
290 295 300

Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser
305 310 315 320

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
325 330 335

Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
340 345 350

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val
355 360 365

Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met
370 375 380

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
385 390 395 400

Leu Gly Lys

<210> 25

<211> 500

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 25

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
1 5 10 15

Ala Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln
20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
35 40 45

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
50 55 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser
65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro
115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe
130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Gly Gly
165 170 175

Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp Ala His
180 185 190

Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu Glu Asn Phe
195 200 205

Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln Gln Cys Pro
210 215 220

Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu Phe Ala Lys
225 230 235 240

Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys Ser Leu His
245 250 255

Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu Arg Glu Thr
260 265 270

Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro Glu Arg Asn
275 280 285

Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu Pro Arg Leu
290 295 300

Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His Asp Asn Glu
305 310 315 320

Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg Arg His Pro
325 330 335

Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg Tyr Lys Ala
340 345 350

Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala Cys Leu Leu
355 360 365

Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser Ser Ala Lys
370 375 380

Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu Arg Ala Phe
385 390 395 400

Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro Lys Ala Glu
405 410 415

Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys Val His Thr
420 425 430

Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Asp
435 440 445

Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser Ser Lys Leu
450 455 460

Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys Ile Ala
465 470 475 480

Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala Ala
485 490 495

Asp Phe Val Glu
500

<210> 26

<211> 69

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 26
gtaagcttgc gtcgacgcta gcggcgccgc gccatggccg gacctgccac ccagagcccc 60
atgaagctg 69

<210> 27

<211> 61

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 27
ggggcagggga gctggctggg cccagtggag tggcttcctg cactgtccag agtgcactgt 60
g 61

<210> 28

<211> 59

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 28
ggacagtgcgca ggaaggccact ccactgggcc cagccagctc cctgccccag agcttcctg 59

<210> 29

<211> 72

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 29
gaacacctcgag gatcctcatt agggctgggc aaggtgcctt aagacgcggt acgacacctc 60
caggaagctc tg 72

<210> 30

<211> 69

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 30
gtaagcttgc gtcgacgcta gcggcgccgc gccatggccg gacctgccac ccagagcccc 60
atgaagctg 69

<210> 31

<211> 57

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 31
gctctaaggc cttgagcagg aagctctggg gcagggagct cgctggggccc agtggag 57

<210> 32

<211> 53

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 32
gggccccagcg agctccctgc cccagagctt cctgctcaag gccttagagc aag 53

<210> 33

<211> 72

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 33
gaacctcgag gatcctcatt agggctgggc aaggtgcctt aagacgcggt acgacacctc 60
caggaagctc tg 72

<210> 34

<211> 69

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 34
gtaagcttgc gtcgacgcta gcggcgccgc gccatggccg gacctgccac ccagagcccc 60
atgaagctg 69

<210> 35

<211> 61

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 35
gtccgagcag cactagttcc tcggggtgcc acagcttgggt ggtgttacac agcttctcct 60
g 61

<210> 36

<211> 66

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 36
ggcgcagcgc tccaggagaa gctgtgtaac accaccaagc tgtgccaccc cgaggaacta 60
gtgctg 66

<210> 37

<211> 72

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 37
gaacctcgag gatcctcatt agggctggc aaggtgcctt aagacgcggt acgacacacctc 60
caggaagctc tg 72

<210> 38

<211> 69

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 38
gtaagcttgc gtcgacgcta gcggcgccgc gccatggccg gacctgccac ccagagcccc 60
atgaagctg 69

<210> 39

<211> 61

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 39
gccccggcgct ggaaagcgct ggcgaaggcc ggcatggcgg tctggttggg ctgcagggca 60
g 61

<210> 40

<211> 60

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 40
ggcccctgcc ctgcagccca accagaccgc catgccggcc ttccggcagcg ctttccagcg 60

<210> 41

<211> 72

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 41
gaacctcgag gatcctcatt agggctggc aaggtgcctt aagacgcgt acgacacactc. 60
caggaagctc tg 72

<210> 42

<211> 69

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 42

gtaagcttgc gtcgacgcta gcggcgccgc gccatggccg gacctgccac ccagagcccc 60
atgaagctg 69

<210> 43

<211> 68

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 43

gcccggcgct ggaaggtaga gttgaaggcc ggcatggcac cctgggtggg ctgaagagca 60
ggggccat 68

<210> 44

<211> 74

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 44

gggaatggcc cctgctttc agcccaccca gggtgccatg ccggccttca actctacatt 60
ccagcgccgg gcag 74

<210> 45

<211> 72

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 45

gaacctcgag gatcctcatt agggctgggc aagggtgcctt aagacgcggt acgacacacc 60

caggaagctc tg

72

<210> 46

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 46

gctagcggcg cgccaccatg 20

<210> 47

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 47

gctcagggtta gcgttaacga tgcccagaga gtg 33

<210> 48

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 48

gggcatcggtt aacgctaccc tgagcagctg

30

<210> 49

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 49

gactcgagga tcctcattag ggctggg

27

<210> 50

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 50

gctagcggcg cgccaccatg gccggacctg ccacccag

38

<210> 51

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 51

caagcagccg gccagctggg tggcggtgct ggggcagctg ctcag

45

<210> 52

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 52

gccccagcaa cgccacccag ctggccggct gcttgag

37

<210> 53

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 53

gactcgagga tcctcattag ggctggcaa ggtgccttaa gacgcgg

47

<210> 54

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 54
gctagcggcg cgccaccatg

20

<210> 55

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 55

ggggcaacta gtcaggtag cccaggg

27

<210> 56

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 56

gctaacctga ctatgtccc cagccag

27

<210> 57

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 57

gactcgagga tcctcattag ggctggg

27

<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic construct

<400> 58
gctagcggcg cgccaccatg 20

<210> 59
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic construct

<400> 59
ggtgcaattg ctcaggggag cccag 25

<210> 60
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic construct

<400> 60
gcaattgcac cagccaggcc ctg 23

<210> 61
<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 61

gactcgagga tcctcattag ggctggg

27

<210> 62

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 62

gcttagcggcg cgccaccatg gccggacctg ccacccag

38

<210> 63

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 63

ccggacttgtt cccgttcagg gcctgcagga gccccctg

37

<210> 64

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 64

gaacgggacc agtccggagt tgggtcccac cttgg

35

<210> 65

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 65

gactcgagga tcctcattag ggctggcaa ggtgccttaa gacgcgg

47

<210> 66

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 66

gtcgacgcta gcggcgcc accatggccg gacctg

36