Analysis of Algorithms Merge Sort

Dr. Ashish Sharma

Sorting

Insertion sort

– Design approach: incremental

– Sorts in place: Yes

- Best case: $\Theta(n)$

Worst case:

 (n^2)

Bubble Sort

Design approach: incremental

Sorts in place: Yes

Running time: Θ

 (n^2)

Sorting

Selection sort

– Design approach: incremental

Sorts in place: Yes

Running time:

 (n^2)

Merge Sort

Design approach: divide and conquer

Sorts in place: No

Running time: Let's see!!

Divide-and-Conquer

- Divide the problem into a number of subproblems
 - Similar sub-problems of smaller size
- Conquer the sub-problems
 - Solve the sub-problems recursively
 - Sub-problem size small enough ⇒ solve the problems in straightforward manner
- Combine the solutions to the sub-problems
 - Obtain the solution for the original problem

Merge Sort Approach

To sort an array A[p . . r]:

Divide

 Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

Conquer

- Sort the subsequences recursively using merge sort
- When the size of the sequences is 1 there is nothing more to do

Combine

Merge the two sorted subsequences

Merge Sort

Alg.: MERGE-SORT(A, p, r) Check for base case if p < r then $q \leftarrow |(p + r)/2|$ Divide MERGE-SORT(A, p, q)Conquer MERGE-SORT(A, q + 1, r)

Conquer

Initial call: MERGE-SORT(A, 1, n)

MERGE(A, p, q, r)

Combine

Example – n Power of 2

Example – n Power of 2

Example – n Not a Power of 2

Example – n Not a Power of 2

Merging

- Input: Array A and indices p, q, r such that
 p ≤ q < r
 - Subarrays A[p.,q] and A[q+1,r] are sorted
- Output: One single sorted subarray A[p . . r]

Merging

- Idea for merging:
 - Two piles of sorted cards
 - Choose the smaller of the two top cards
 - Remove it and place it in the output pile
 - Repeat the process until one pile is empty
 - Take the remaining input pile and place it face-down onto the output pile

Merge - Pseudocode

Alg.: MERGE(A, p, q, r)

- 1. Compute n₁ and n₂
- 2. Copy the first n₁ elements into + 1] and the next n_2 elements into $R[1 ... n_2^1 + 1]$
- 3. $L[n_1 + 1] \leftarrow \infty$; $R[n_2 + 1] \leftarrow \infty$
- 4. $i \leftarrow 1$; $j \leftarrow 1$
- 5. for $k \leftarrow p$ to r
- 6. **do if** L[i] ≤ R[j]
- then $A[k] \leftarrow L[i]$
- $i \leftarrow i + 1$ 8.
- else $A[k] \leftarrow R[j]$ 9.
- $j \leftarrow j + 1$ 10.

Analyzing Divide-and Conquer Algorithms

- The recurrence is based on the three steps of the paradigm:
 - T(n) running time on a problem of size n
 - Divide the problem into a subproblems, each of size
 n/b: takes D(n)
 - Conquer (solve) the subproblems aT(n/b)
 - Combine the solutions C(n)

$$\Theta(1)$$
 if $n \le c$
 $T(n) = aT(n/b) + D(n) + C(n)$ otherwise

MERGE-SORT Running Time

Divide:

- compute q as the average of p and r: $D(n) = \Theta(1)$

Conquer:

recursively solve 2 subproblems, each of size n/2
 ⇒ 2T (n/2)

Combine:

- MERGE on an n-element subarray takes Θ(n) time ⇒ C(n) = Θ(n)

$$\Theta(1)$$
 if $n = 1$
 $T(n) = 2T(n/2) + \Theta(n)$ if $n > 1$

Solve the Recurrence

$$T(n) = c$$
 if $n = 1$
 $2T(n/2) + cn$ if $n > 1$

Use Master's Theorem:

Compare n with f(n) = cnCase 2: $T(n) = \Theta(n | gn)$