Galactic Coordinates, *I* and *b*.

If z is specified as a height in kpc, the distance is known.

Galactic Velocity components based on cylindrical coordinate system.

Rotation CW seen from NGP. dR/dt, theta = R d(theta)/dt, Z = dz/dt

Origin of the spread in u values of stars in Solar neighborhood (the LSR).

Stars with orbits like A have u<0.

Stars with orbits like C have u=0.

Stars with orbits like B have u>0.

Avg is u_avg < 0 because more stars like A than like B.

Asymmetric Drift - the average theta (azimuthal) velocity component falls behind the circular velocity.

For the MW: the peculiar motions of stars in our neighborhood increasingly fall behind the LSR in v (azimuthal) motion as older populations of stars are considered.

Differential rotation.

S can be a clump of neutral H gas as well as a star. If it is H gas, it is observed in radio (21 cm), which gives high precision line-of-sight (radial) velocities).

Differential rotation.

- a) How stars in the solar neighborhood (d<0.5 kpc) would appear if there was differential rotation such that $|V_{circ}|$ decreases with R. (i.e., d Θ /dR < 0).
- b) Both tangential (dashed line) and radial velocity (solid line) components show sinusoidal dependence on Galactic longitude .

Using HI, 21cm radiation to measure disk kinematics.

The Milky Way's rotation curve gleaned (indirectly) from various observations.

Orbital velocity of stars in the galaxy

Using the Doppler shift to plot a cloud's position

Hartmann/Impey: The Cosmic Journey, 5th ed., Fig. 23–10

© 1994 Wadsworth, Inc.

Spiral pattern

Sheer model