Estructuras Algebraicas

1- Pregunta

Sea G un conjunto con una operación binaria \diamondsuit . Supongamos que G con esta operación binaria verifica:

- i) $(a \diamondsuit b) \diamondsuit c = a \diamondsuit (b \diamondsuit c)$ para todos $a, b, c \in G$.
- ii) Las ecuaciones $a \diamondsuit x = b$ e $y \diamondsuit a = b$, pueden ser resueltas para $x, y \in G$, donde a y b son elementos arbitrarios de G.

Entonces: A) *G* con esta operación es un grupo. B) *G* con esta operación no es un grupo porque no tiene elemento neutro. C) *G* con esta operación no es grupo porque no todo elemento tiene inverso.

2- Pregunta

Dados los tres enunciados

- i) $f: (\mathbb{Q}^+, \bullet) \to (\mathbb{Q}^+, \bullet)$ definida por f(x) = 3x es un isomorfismo, donde (\mathbb{Q}^+, \bullet) , son los números racionales positivos respecto al producto.
- ii) $(\mathbb{Z}, \blacktriangle)$ es isomorfo a $(\mathbb{Z}, +)$, donde la operación \blacktriangle es definida por $a\blacktriangle b=a+b-7$.
- iii) $f:(\mathbb{Q},+)\to(\mathbb{Q},+)$ definida por f(x)=3x es un isomorfismo, donde $(\mathbb{Q},+)$ son los números racionales respecto a la suma.

Entonces una de las siguientes afirmaciones es correcta.

A) i) y ii) son correctos. B) ii) y iii) son correctos. C) i) y iii) son correctos.

3- Pregunta

Sea G un grupo, H y K subgrupos, entonces una de las siguientes afirmaciones es falsa:

- A) Si $H \triangleleft G$ y $K \triangleleft G$, entonces $H \cap K \triangleleft G$ (donde \triangleleft indica subgrupo normal).
- B) Si $H \triangleleft G$ y $K \triangleleft G$, entonces el grupo generado por H y K, < HUK > es normal en G
 - C) Si $H \triangleleft K \triangleleft G$, entonces $H \triangleleft G$.

4- Pregunta

Sea \mathbb{Q}/\mathbb{Z} el conjunto de todos los números racionales tales que $0 \le x < 1$. Definimos la operación

$$x\nabla y = x + y$$
 si $0 \le x + y < 1$
 $x\nabla y = x + y - 1$ si $1 \le x + y$

Entonces una de las siguientes afirmaciones es falsa:

- A) $(\mathbb{Q}/\mathbb{Z}, \nabla)$ es un grupo infinito. B) Existen elementos de \mathbb{Q}/\mathbb{Z} de orden infinito.
- C) Para cada $n \in \mathbb{Z}^+$, existen elementos de \mathbb{Q}/\mathbb{Z} de orden n.

5- Pregunta

Sea G un grupo y sea $f: G \to G$, $f(x) = x^2$.

Entonces una de las siguientes afirmaciones es falsa:

A) f es homomorfismo si y sólo si G es abeliano. B) f es un homomorfismo inyectivo si y sólo si el orden de G es par y G es abeliano. C) f es un homomorfismo inyectivo si y sólo si el orden de G es impar y G es abeliano.

Estructuras Algebraicas respuestas (Solamente entregar esta hoja por esta cara)				
1-	2	3	4	5
A continuación po	oner los razonam	ientos que han	dado lugar a	cada respuesta