SEQUENCE LISTING

```
E.I. duPont de Nemours and Company, Inc.
<110>
       Suh, Wonchul
Rouviere, Pierre
      PARALLEL CHROMOSOMAL STACKING OF TRAITS IN BACTERIA
<120>
<130>
      CL2026 US NA
       us 60/434773
<150>
<151>
       2002-12-19
<160>
       43
<170>
      PatentIn version 3.2
<210>
<211>
       912
<212>
       DNA
<213>
       Pantoea stewartii
<220>
       misc_feature
<221>
<222>
       (1)..(3)
<223>
       Alternative start codon usage TTG instead of ATG
ttgacggtct gcgcaaaaaa acacgttcac cttactggca tttcggctga gcagttgctg
                                                                        60
gctgatatcg atagccgcct tgatcagtta ctgccggttc agggtgagcg ggattgtgtg
                                                                       120
ggtgccgcga tgcgtgaagg cacgctggca ccgggcaaac gtattcgtcc gatgctqctq
                                                                       180
ttattaacag cgcgcgatct tggctgtgcg atcagtcacg ggggattact ggatttagcc
                                                                       240
tgcgcggttg aaatggtgca tgctgcctcg ctgattctgg atgatatgcc ctgcatggac
                                                                       300
gatgcgcaga tgcgtcgggg gcgtcccacc attcacacgc agtacggtga acatgtggcg
                                                                       360
attctggcgg cggtcgcttt actcagcaaa gcgtttgggg tgattgccga ggctgaaggt
                                                                       420
ctgacgccga tagccaaaac tcgcgcggtg tcggagctgt ccactgcgat tggcatgcag
                                                                       480
                                                                       540
ggtctggttc agggccagtt taaggacctc tcggaaggcg ataaaccccg cagcgccgat
                                                                       600
gccatactgc taaccaatca gtttaaaacc agcacgctgt tttgcgcgtc aacgcaaatg
gcgtccattg cggccaacgc gtcctgcgaa gcgcgtgaga acctgcatcg tttctcgctc
                                                                       660
gatctcggcc aggcctttca gttgcttgac gatcttaccg atggcatgac cgataccggc
                                                                       720
aaagacatca atcaggatgc aggtaaatca acgctggtca atttattagg ctcaggcgcg
                                                                       780
gtcgaagaac gcctgcgaca gcatttgcgc ctggccagtg aacacctttc cgcggcatgc
                                                                       840
caaaacggcc attccaccac ccaacttttt attcaggcct ggtttgacaa aaaactcgct
                                                                       900
                                                                       912
gccgtcagtt aa
<210>
       303
<211>
<212>
       PRT
       Pantoea stewartii
<213>
<400>
       2
```

Met Thr Val Cys Ala Lys Lys His Val His Leu Thr Gly Ile Ser Ala 1 5 10 15 Glu Gln Leu Leu Ala Asp Ile Asp Ser Arg Leu Asp Gln Leu Leu Pro 20 25 30 Val Gln Gly Glu Arg Asp Cys Val Gly Ala Ala Met Arg Glu Gly Thr 35 40 45 Leu Ala Pro Gly Lys Arg Ile Arg Pro Met Leu Leu Leu Leu Thr Ala 50 55 60 Arg Asp Leu Gly Cys Ala Ile Ser His Gly Gly Leu Leu Asp Leu Ala 65 70 75 80 Cys Ala Val Glu Met Val His Ala Ala Ser Leu Ile Leu Asp Asp Met 85 90 95 Pro Cys Met Asp Asp Ala Gln Met Arg Arg Gly Arg Pro Thr Ile His $100 \hspace{1cm} 105 \hspace{1cm} 110$ Thr Gln Tyr Gly Glu His Val Ala Ile Leu Ala Ala Val Ala Leu Leu 115 120 125 Ser Lys Ala Phe Gly Val Ile Ala Glu Ala Glu Gly Leu Thr Pro Ile 130 135 140 Ala Lys Thr Arg Ala Val Ser Glu Leu Ser Thr Ala Ile Gly Met Gln 145 150 155 160 Gly Leu Val Gln Gly Gln Phe Lys Asp Leu Ser Glu Gly Asp Lys Pro 165 170 175 Arg Ser Ala Asp Ala Ile Leu Leu Thr Asn Gln Phe Lys Thr Ser Thr 180 185 190 Leu Phe Cys Ala Ser Thr Gln Met Ala Ser Ile Ala Ala Asn Ala Ser Cys Glu Ala Arg Glu Asn Leu His Arg Phe Ser Leu Asp Leu Gly Gln 210 215 220 Ala Phe Gln Leu Leu Asp Asp Leu Thr Asp Gly Met Thr Asp Thr Gly 225 230 235 240 Lys Asp Ile Asn Gln Asp Ala Gly Lys Ser Thr Leu Val Asn Leu Leu 245 250 255 Gly Ser Gly Ala Val Glu Glu Arg Leu Arg Gln His Leu Arg Leu Ala 260 265 270 Ser Glu His Leu Ser Ala Ala Cys Gln Asn Gly His Ser Thr Thr Gln

275 280 285

Leu Phe Ile	Gln Ala Trp Phe	Asp Lys Lys L	∟eu Ala Ala Va	l Ser
290	295		300	

<210> <211> <212> <213>	3 1296 DNA Pant	oea :	stewa	arti [.]	i											
<220> <221> <222>	CDS (1).	. (12	96)													
<400> atg ago Met Ser 1	3 cat His	ttt Phe	gcg Ala 5	gtg Val	atc Ile	gca Ala	ccg Pro	ccc Pro 10	ttt Phe	ttc Phe	agc Ser	cat His	gtt Val 15	cgc Arg	,	48
gct ctg Ala Leu	caa Gln	aac Asn 20	ctt Leu	gct Ala	cag Gln	gaa Glu	tta Leu 25	gtg Val	gcc Ala	cgc Arg	ggt Gly	cat His 30	cgt Arg	gtt Val	!	96
acg ttt Thr Phe	ttt Phe 35	cag Gln	caa Gln	cat His	gac Asp	tgc Cys 40	aaa Lys	gcg Ala	ctg Leu	gta Val	acg Thr 45	ggc Gly	agc Ser	gat Asp	1	.44
atc gga Ile Gly 50	ttc Phe	cag Gln	acc Thr	gtc Val	gga Gly 55	ctg Leu	caa Gln	acg Thr	cat His	cct Pro 60	ccc Pro	ggt Gly	tcc Ser	tta Leu	1	.92
tcg cac Ser His 65	ctg Leu	ctg Leu	cac His	ctg Leu 70	gcc Ala	gcg Ala	cac His	cca Pro	ctc Leu 75	gga Gly	ccc Pro	tcg Ser	atg Met	tta Leu 80	2	40
cga ctg Arg Leu	atc Ile	aat Asn	gaa Glu 85	atg Met	gca Ala	cgt Arg	acc Thr	agc Ser 90	gat Asp	atg Met	ctt Leu	tgc Cys	cgg Arg 95	gaa Glu	2	88
ctg ccc Leu Pro	gcc Ala	gct Ala 100	ttt Phe	cat His	gcg Ala	ttg Leu	cag Gln 105	ata Ile	gag Glu	ggc Gly	gtg Val	atc Ile 110	gtt Val	gat Asp	3	36
caa atg Gln Met	gag Glu 115	ccg Pro	gca Ala	ggt Gly	gca Ala	gta Val 120	gtc Val	gca Ala	gaa Glu	gcg Ala	tca Ser 125	ggt Gly	ctg Leu	ccg Pro	3:	84
ttt gtt Phe Val 130	Ser	gtg Val	gcc Ala	tgc Cys	gcg Ala 135	ctg Leu	ccg Pro	ctc Leu	aac Asn	cgc Arg 140	gaa Glu	ccg Pro	ggt Gly	ttg Leu	4:	32
cct ctg Pro Leu 145	gcg Ala	gtg Val	atg Met	cct Pro 150	ttc Phe	gag Glu	tac Tyr	ggc Gly	acc Thr 155	agc Ser	gat Asp	gcg Ala	gct Ala	cgg Arg 160	4:	80
gaa cgc Glu Arg	tat Tyr	acc Thr	acc Thr 165	agc Ser	gaa Glu	aaa Lys	att Ile	tat Tyr 170	gac Asp	tgg Trp	ctg Leu	atg Met	cga Arg 175	cgt Arg	5	28
cac gat His Asp	cgt Arg	gtg Val 180	atc Ile	gcg Ala	cat His	cat His	gca Ala 185	tgc Cys	aga Arg	atg Met	ggt Gly	tta Leu 190	gcc Ala	ccg Pro	_. 5	76
cgt gaa Arg Glu								Pro		ĂΊa					6	24

```
ttg atc ccc gaa ctg gat ttt ccc cgc aaa gcg ctg cca gac tgc ttt
Leu Ile Pro Glu Leu Asp Phe Pro Arg Lys Ala Leu Pro Asp Cys Phe
                                                                                                                                        672
cat gcg gtt gga ccg tta cgg caa ccc cag ggg acg ccg ggg tca tca
His Ala Val Gly Pro Leu Arg Gln Pro Gln Gly Thr Pro Gly Ser Ser
225 230 235 240
                                                                                                                                        720
act tct tat ttt ccg tcc ccg gac aaa ccc cgt att ttt gcc tcg ctg
Thr Ser Tyr Phe Pro Ser Pro Asp Lys Pro Arg Ile Phe Ala Ser Leu
                                                                                                                                        768
ggc acc ctg cag gga cat cgt tat ggc ctg ttc agg acc atc gcc aaa
Gly Thr Leu Gln Gly His Arg Tyr Gly Leu Phe Arg Thr Ile Ala Lys
260 265 270
                                                                                                                                        816
gcc tgc gaa gag gtg gat gcg cag tta ctg ttg gca cac tgt ggc ggc
Ala Cys Glu Val Asp Ala Gln Leu Leu Ala His Cys Gly Gly
                                                                                                                                        864
ctc tca gcc acg cag gca ggt gaa ctg gcc cgg ggc ggg gac att cag
Leu Ser Ala Thr Gln Ala Gly Glu Leu Ala Arg Gly Gly Asp Ile Gln
290 295 300
                                                                                                                                        912
gtt gtg gat ttt gcc gat caa tcc gca gca ctt tca cag gca cag ttg
Val Val Asp Phe Ala Asp Gln Ser Ala Ala Leu Ser Gln Ala Gln Leu
305 310 315 320
                                                                                                                                        960
aca atc aca cat ggt ggg atg aat acg gta ctg gac gct att gct tcc Thr Ile Thr His Gly Gly Met Asn Thr Val Leu Asp Ala Ile Ala Ser 325 330 335
                                                                                                                                       1008
cgc aca ccg cta ctg gcg ctg ccg ctg gca ttt gat caa cct ggc gtg
Arg Thr Pro Leu Leu Ala Leu Pro Leu Ala Phe Asp Gln Pro Gly Val
340 345 350
                                                                                                                                       1056
gca tca cga att gtt tat cat ggc atc ggc aag cgt gcg tct cgg ttt
Ala Ser Arg Ile Val Tyr His Gly Ile Gly Lys Arg Ala Ser Arg Phe
355
                                                                                                                                       1104
act acc agc cat gcg ctg gcg cgg cag att cga tcg ctg ctg act aac
Thr Thr Ser His Ala Leu Ala Arg Gln Ile Arg Ser Leu Leu Thr Asn
                                                                                                                                       1152
acc gat tac ccg cag cgt atg aca aaa att cag gcc gca ttg cgt ctg
Thr Asp Tyr Pro Gln Arg Met Thr Lys Ile Gln Ala Ala Leu Arg Leu
385 390 395 400
                                                                                                                                       1200
gea-ggc-ggc-aca-cca-gcc-gcc-gcc_gat_att_gtt_gaa_cag_gcg_atg_cgg
Ala Gly Gly Thr Pro Ala Ala Ala Asp Ile Val Glu Gln Ala Met Arg
                                                                                                                                       1248
acc tgt cag cca gta ctc agt ggg cag gat tat gca acc gca cta tga
Thr Cys Gln Pro Val Leu Ser Gly Gln Asp Tyr Ala Thr Ala Leu
                                                                                                                                       1296
<210>
<211>
<212>
             431
             PRT
<213>
             Pantoea stewartii
<400>
Met Ser His Phe Ala Val Ile Ala Pro Pro Phe Phe Ser His Val Arg
1 10 15
```

Ala Leu Gln Asn Leu Ala Gln Glu Leu Val Ala Arg Gly His Arg Val 20 25 30 Thr Phe Phe Gln Gln His Asp Cys Lys Ala Leu Val Thr Gly Ser Asp 40 45 Ile Gly Phe Gln Thr Val Gly Leu Gln Thr His Pro Pro Gly Ser Leu 50 60 Ser His Leu Leu His Leu Ala Ala His Pro Leu Gly Pro Ser Met Leu 65 70 75 80 Arg Leu Ile Asn Glu Met Ala Arg Thr Ser Asp Met Leu Cys Arg Glu 85 90 95 Leu Pro Ala Ala Phe His Ala Leu Gln Ile Glu Gly Val Ile Val Asp 100 105 110 Gln Met Glu Pro Ala Gly Ala Val Val Ala Glu Ala Ser Gly Leu Pro 115 120 125 Phe Val Ser Val Ala Cys Ala Leu Pro Leu Asn Arg Glu Pro Gly Leu 130 135 140 Pro Leu Ala Val Met Pro Phe Glu Tyr Gly Thr Ser Asp Ala Ala Arg 145 150 155 160 Glu Arg Tyr Thr Thr Ser Glu Lys Ile Tyr Asp Trp Leu Met Arg Arg 165 170 175His Asp Arg Val Ile Ala His His Ala Cys Arg Met Gly Leu Ala Pro 180 185 190 Arg Glu Lys Leu His His Cys Phe Ser Pro Leu Ala Gln Ile Ser Gln 195 200 205 Leu Ile Pro Glu Leu Asp Phe Pro Arg Lys Ala Leu Pro Asp Cys Phe His Ala Val Gly Pro Leu Arg Gln Pro Gln Gly Thr Pro Gly Ser Ser 225 230 235 240 Thr Ser Tyr Phe Pro Ser Pro Asp Lys Pro Arg Ile Phe Ala Ser Leu 245 250 255 Gly Thr Leu Gln Gly His Arg Tyr Gly Leu Phe Arg Thr Ile Ala Lys 260 265 270 Ala Cys Glu Glu Val Asp Ala Gln Leu Leu Leu Ala His Cys Gly Gly 285 285 Leu Ser Ala Thr Gln Ala Gly Glu Leu Ala Arg Gly Gly Asp Ile Gln

290 295 300

Val Val Asp Phe Ala Asp Gln Ser Ala Ala Leu Ser Gln Ala Gln Leu Thr Ile Thr His Gly Gly Met Asn Thr Val Leu Asp Ala Ile Ala Ser 325 330 335 Arg Thr Pro Leu Leu Ala Leu Pro Leu Ala Phe Asp Gln Pro Gly Val Ala Ser Arg Ile Val Tyr His Gly Ile Gly Lys Arg Ala Ser Arg Phe 355 360 365 Thr Thr Ser His Ala Leu Ala Arg Gln Ile Arg Ser Leu Leu Thr Asn 370 380 Thr Asp Tyr Pro Gln Arg Met Thr Lys Ile Gln Ala Ala Leu Arg Leu Ala Gly Gly Thr Pro Ala Ala Ala Asp Ile Val Glu Gln Ala Met Arg Thr Cys Gln Pro Val Leu Ser Gly Gln Asp Tyr Ala Thr Ala Leu <210> 1149 <211> <212> DNA Pantoea stewartii <220> <221> CDS <222> (1)..(1149)<400> atg caa ccg cac tat gat ctc att ctg gtc ggt gcc ggt ctg gct aat Met Gln Pro His Tyr Asp Leu Ile Leu Val Gly Ala Gly Leu Ala Asn 1 10 15 48 ggc ctt atc gcg ctc cgg ctt cag caa cag cat ccg gat atg cgg atc Gly Leu Ile Ala Leu Arg Leu Gln Gln His Pro Asp Met Arg Ile 96 ttg ctt att gag gcg ggt cct gag gcg gga ggg aac cat acc tgg tcc Leu Leu Ile Glu Ala Gly Pro Glu Ala Gly Gly Asn His Thr Trp Ser 144 ttt cac gaa gag gat tta acg ctg aat cag cat cgc tgg ata gcg ccg Phe His Glu Glu Asp Leu Thr Leu Asn Gln His Arg Trp Ile Ala Pro 192 ctt gtg gtc cat cac tgg ccc gac tac cag gtt cgt ttc ccc caa cgc 240 Leu Val Val His His Tro Pro Asp Tyr Gln Val Arg Phe Pro Gln Arg 65 70 75 80 cgt cgc cat gtg aac agt ggc tac tac tgc gtg acc tcc cgg cat ttc Arg Arg His Val Asn Ser Gly Tyr Tyr Cys Val Thr Ser Arg His Phe 85 90 95288

Page 6

gcc Ala	ggg Gly	ata Ile	ctc Leu 100	cgg Arg	caa Gln	cag Gln	ttt Phe	gga Gly 105	caa Gln	cat His	tta Leu	tgg Trp	ctg Leu 110	cat His	acc Thr	336
gcg Ala	gtt Val	tca Ser 115	gcc Ala	gtt Val	cat His	gct Ala	gaa Glu 120	tcg Ser	gtc val	cag Gln	tta Leu	gcg Ala 125	gat Asp	ggc Gly	cgg Arg	384
att Ile	att Ile 130	cat His	gcc Ala	agt Ser	aca Thr	gtg Val 135	atc Ile	gac Asp	gga Gly	cgg Arg	ggt Gly 140	tac Tyr	acg Thr	cct Pro	gat Asp	432
tct Ser 145	gca Ala	cta Leu	cgc Arg	gta Val	gga Gly 150	ttc Phe	cag Gln	gca Ala	ttt Phe	atc Ile 155	ggt Gly	cag Gln	gag Glu	tgg Trp	caa Gln 160	480
ctg Leu	agc Ser	gcg Ala	ccg Pro	cat His 165	ggt Gly	tta Leu	tcg Ser	tca Ser	ccg Pro 170	att Ile	atc Ile	atg Met	gat Asp	gcg Ala 175	acg Thr	528
gtc Val	gat Asp	cag Gln	caa Gln 180	aat Asn	ggc Gly	tac Tyr	cgc Arg	ttt Phe 185	gtt Val	tat Tyr	acc Thr	ctg Leu	ccg Pro 190	ctt Leu	tcc Ser	576
gca Ala	acc Thr	gca Ala 195	ctg Leu	ctg Leu	atc Ile	gaa Glu	gac Asp 200	aca Thr	cac His	tac Tyr	att Ile	gac Asp 205	aag Lys	gct Ala	aat Asn	624
ctt Leu	cag Gln 210	gcc Ala	gaa Glu	cgg Arg	gcg Ala	cgt Arg 215	cag Gln	aac Asn	att Ile	cgc Arg	gat Asp 220	tat Tyr	gct Ala	gcg Ala	cga Arg	672
cag Gln 225	ggt Gly	tgg Trp	ccg Pro	tta Leu	cag Gln 230	acg Thr	ttg Leu	ctg Leu	cgg Arg	gaa Glu 235	gaa Glu	cag Gln	ggt Gly	gca Ala	ttg Leu 240	720
ccc Pro	att Ile	acg Thr	tta Leu	acg Thr 245	ggc Gly	gat Asp	aat Asn	cgt Arg	cag Gln 250	ttt Phe	tgg Trp	caa Gln	cag Gln	caa Gln 255	ccg Pro	768
caa Gln	gcc Ala	tgt Cys	agc Ser 260	gga Gly	tta Leu	cgc Arg	gcc Ala	ggg Gly 265	ctg Leu	ttt Phe	cat His	ccg Pro	aca Thr 270	acc Thr	ggc Gly	816
tac Tyr	tcc Ser	cta Leu 275	ccg Pro	ctc Leu	gcg Ala	gtg Val	gcg Ala 280	ctg Leu	gcc Ala	gat Asp	cgt Arg	ctc Leu 285	agc Ser	gcg Ala	ctg Leu	864
 gat_ Asp	<u>gtg</u> Val 290	ttt_ Phe	acc_ Thr	<u>tct</u> Ser	t <u>cc</u> Ser	<u>tct</u> Ser 295	gtt Val	cac His	cag Gln	<u>acg</u> Thr	att Ile 300	gct Ala	cac His	ttt Phe	gcc Ala	912
							ggg Gly									960
ttg Leu	ttt Phe	tta Leu	gcc Ala	gga Gly 325	ccg Pro	gcc Ala	gag Glu	tca Ser	cgc Arg 330	tgg Trp	cgt Arg	gtg Val	atg Met	cag G1n 335	cgt Arg	1008
ttc Phe	tat Tyr	ggc Gly	tta Leu 340	ccc Pro	gag Glu	gat Asp	ttg Leu	att Ile 345	gcc Ala	cgc Arg	ttt Phe	tat Tyr	gcg Ala 350	gga Gly	aaa Lys	1056
ctc Leu	acc Thr	gtg Val 355	acc Thr	gat Asp	cgg Arg	cta Leu	cgc Arg 360	att Ile	ctg Leu	agc Ser	ggc Gly	aag Lys 365	ccg Pro	ccc Pro	gtt Val	1104

ccc gtt ttc gcg gca ttg cag gca att atg acg act cat cgt tga Pro Val Phe Ala Ala Leu Gln Ala Ile Met Thr Thr His Arg 370 375 380

<210> 6

<211> 382 <212> PRT

<213> Pantoea stewartii

<400> 6

Met Gln Pro His Tyr Asp Leu Ile Leu Val Gly Ala Gly Leu Ala Asn $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Leu Ile Ala Leu Arg Leu Gln Gln Gln His Pro Asp Met Arg Ile 20 25 30

Leu Leu Ile Glu Ala Gly Pro Glu Ala Gly Gly Asn His Thr Trp Ser 35 40 45

Phe His Glu Glu Asp Leu Thr Leu Asn Gln His Arg Trp Ile Ala Pro 50 55 60

Leu Val Val His His Trp Pro Asp Tyr Gln Val Arg Phe Pro Gln Arg 65 70 75 80

Arg Arg His Val Asn Ser Gly Tyr Tyr Cys Val Thr Ser Arg His Phe 85 90 95

Ala Gly Ile Leu Arg Gln Gln Phe Gly Gln His Leu Trp Leu His Thr 100 105 110

Ala Val Ser Ala Val His Ala Glu Ser Val Gln Leu Ala Asp Gly Arg 115 120 125

Ile Ile His Ala Ser Thr Val Ile Asp Gly Arg Gly Tyr Thr Pro Asp 130 135 140

Ser Ala Leu Arg Val Gly Phe Gln Ala Phe Ile Gly Gln Glu Trp Gln 145 150 160

Leu Ser Ala Pro His Gly Leu Ser Ser Pro Ile Ile Met Asp Ala Thr 165 170 175

Val Asp Gln Gln Asn Gly Tyr Arg Phe Val Tyr Thr Leu Pro Leu Ser 180 185 190

Ala Thr Ala Leu Leu Ile Glu Asp Thr His Tyr Ile Asp Lys Ala Asn 195 200 205

Leu Gln Ala Glu Arg Ala Arg Gln Asn Ile Arg Asp Tyr Ala Ala Arg 210 215 220

Gln Gly Trp Pro Leu Gln Thr Leu Leu Arg Glu Glu Gln Gly Ala Leu Page 8 230 235 240

Pro Ile Thr Leu Thr 245 Gly Asp Asn Arg 250 Phe Trp Gln Gln Gln 255 Pro Gln Ala Cys Ser Gly Leu Arg Ala 265 Leu Phe His Pro Thr Thr Gly Tyr Ser Leu Pro Leu Ala Val Ala Leu Ala Asp Arg Leu 275 Pro Leu Ala Val Ala Leu Ala Asp Arg Leu 285 Ser Ala Leu Asp Val Phe Thr Ser Ser Ser Ser Val His Gln Thr Ile Ala His Phe Ala Gln Gln Arg Trp Gln Gln Gln Gly Phe Phe Arg Met Leu Asn Arg Met 320 Leu Phe Leu Ala Gly Pro Ala Glu Ser Arg Trp Arg Val Met Gln Arg Phe Tyr Gly Leu Pro Glu Asp Leu Ile Asp Leu Ile Arg Phe Tyr Ala Gly Lys 340 Pro Glu Asp Leu Ile Ala Arg Phe Tyr Ala Gly Lys

Leu Thr Val Thr Asp Arg Leu Arg Ile Leu Ser Gly Lys Pro Pro Val 355 360 365

Pro Val Phe Ala Ala Leu Gln Ala Ile Met Thr Thr His Arg 370 375 380

<210> 7 <211> 1479 <212> DNA

<213> Pantoea stewartii

<220> <221>

225

<221> CDS <222> (1)..(1479)

ttg Leu	ccg Pro	gtc Val	acg Thr	ccg Pro 85	ttt Phe	tat Tyr	cgc Arg	ctg Leu	tgc Cys 90	tgg Trp	gag Glu	tcc Ser	ggc Gly	aag Lys 95	gtc Val	288
ttc Phe	aat Asn	tac Tyr	gat Asp 100	aac Asn	gac Asp	cag Gln	gcc Ala	cag Gln 105	tta Leu	gaa Glu	gcg Ala	cag Gln	ata Ile 110	cag Gln	cag Gln	336
ttt Phe	aat Asn	ccg Pro 115	cgc Arg	gat Asp	gtt Val	gcg Ala	ggt Gly 120	tat Tyr	cga Arg	gcg Ala	ttc Phe	ctt Leu 125	gac Asp	tat Tyr	tcg Ser	384
cgt Arg	gcc Ala 130	gta Val	ttc Phe	aat Asn	gag Glu	ggc Gly 135	tat Tyr	ctg Leu	aag Lys	ctc Leu	ggc Gly 140	act Thr	gtg Val	cct Pro	ttt Phe	432
tta Leu 145	tcg Ser	ttc Phe	aaa Lys	gac Asp	atg Met 150	ctt Leu	cgg Arg	gcc Ala	gcg Ala	ccc Pro 155	cag Gln	ttg Leu	gca Ala	aag Lys	ctg Leu 160	480
cag Gln	gca Ala	tgg Trp	cgc Arg	agc Ser 165	gtt val	tac Tyr	agt Ser	aaa Lys	gtt Val 170	gcc Ala	ggc Gly	tac Tyr	att Ile	gag Glu 175	gat Asp	528
gag Glu	cat His	ctt Leu	cgg Arg 180	cag Gln	gcg Ala	ttt Phe	tct Ser	ttt Phe 185	cac His	tcg Ser	ctc Leu	tta Leu	gtg val 190	ggg Gly	ggg Gly	576
aat Asn	ccg Pro	ttt Phe 195	gca Ala	acc Thr	tcg Ser	tcc Ser	att Ile 200	tat Tyr	acg Thr	ctg Leu	att Ile	cac His 205	gcg Ala	tta Leu	gaa Glu	624
cgg Arg	gaa Glu 210	tgg Trp	ggc Gly	gtc Val	tgg Trp	ttt Phe 215	cca Pro	cgc Arg	ggt Gly	gga Gly	acc Thr 220	ggt Gly	gcg Ala	ctg Leu	gtc Val	672
aat Asn 225	ggc Gly	atg Met	atc Ile	aag Lys	ctg Leu 230	ttt Phe	cag Gln	gat Asp	ctg Leu	ggc Gly 235	ggc Gly	gaa Glu	gtc Val	gtg Val	ctt Leu 240	720
aac Asn	gcc Ala	cgg Arg	gtc Val	agt Ser 245	cat His	atg Met	gaa Glu	acc Thr	gtt Val 250	ggg Gly	gac Asp	aag Lys	att Ile	cag Gln 255	gcc Ala	768
gtg Val	cag Gln	ttg Leu	gaa Glu 260	gac Asp	ggc Gly	aga Arg	cgg Arg	ttt Phe 265	gaa Glu	acc Thr	tgc Cys	gcg Ala	gtg Val 270	gcg Ala	tcg Ser	816
					-cat His										-ccc_ Pro	8.6 <u>4</u> _
gca Ala	gcc Ala 290	gct Ala	aag Lys	cag Gln	gcg Ala	aaa Lys 295	aaa Lys	ctg Leu	caa Gln	tcc Ser	aag Lys 300	cgt Arg	atg Met	agt Ser	aac Asn	912
					tat Tyr 310											960
gcc Ala	cat His	cat His	acc Thr	gtc Val 325	tgt Cys	ttt Phe	ggg Gly	cca Pro	cgc Arg 330	tac Tyr	cgt Arg	gaa Glu	ctg Leu	att Ile 335	cac His	1008
gaa Glu	att Ile	ttt Phe	aac Asn 340	cat His	gat Asp	ggt Gly	ctg Leu	gct Ala 345	gag Glu	gat Asp	ttt Phe	tcg Ser	ctt Leu 350	tat Tyr	tta Leu	1056

cac His	gca Ala	cct Pro 355	tgt Cys	gtc Val	acg Thr	gat Asp	ccg Pro 360	tca Ser	ctg Leu	gca Ala	ccg Pro	gaa Glu 365	ggg Gly	tgc Cys	ggc Gly	1104
					gcg Ala											1152
gac Asp 385	tgg Trp	gcg Ala	gta Val	gaa Glu	gga Gly 390	ccc Pro	cga Arg	ctg Leu	cgc Arg	gat Asp 395	cgt Arg	att Ile	ttt Phe	gac Asp	tac Tyr 400	1200
ctt Leu	gag Glu	caa Gln	cat His	tac Tyr 405	atg Met	cct Pro	ggc Gly	ttg Leu	cga Arg 410	agc Ser	cag Gln	ttg Leu	gtg val	acg Thr 415	cac His	1248
cgt Arg	atg Met	ttt Phe	acg Thr 420	ccg Pro	ttc Phe	gat Asp	ttc Phe	cgc Arg 425	gac Asp	gag Glu	ctc Leu	aat Asn	gcc Ala 430	tgg Trp	caa Gln	1296
					gtt Val											1344
cga Arg	cca Pro 450	cat His	aac Asn	cgc Arg	gat Asp	aag Lys 455	cac His	att Ile	gat Asp	aat Asn	ctt Leu 460	tat Tyr	ctg Leu	gtt Val	ggc Gly	1392
gca Ala 465	ggc Gly	acc Thr	cat His	cct Pro	ggc Gly 470	gcg Ala	ggc Gly	att Ile	ccc Pro	ggc Gly 475	gta Val	atc Ile	ggc Gly	tcg Ser	gcg Ala 480	1440
aag Lys	gcg Ala	acg Thr	gca Ala	ggc Gly 485	tta Leu	atg Met	ctg Leu	gag Glu	gac Asp 490	ctg Leu	att Ile	tga				1479
<210 <211	> 4	3 192														

<212> PRT

<400> 8

Met Lys Pro Thr Thr Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu 5 10 15

Ala Ile Arg Leu Gln Ala Ala Gly Ile Pro Val Leu Leu Glu Gln

Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Tyr Gln Glu Gln Gly Phe 35 40 45

Thr Phe Asp Ala Gly Pro Thr Val Ile Thr Asp Pro Ser Ala Ile Glu 50 60

Glu Leu Phe Ala Leu Ala Gly Lys Gln Leu Lys Asp Tyr Val Glu Leu 65 70 75 80

Leu Pro Val Thr Pro Phe Tyr Arg Leu Cys Trp Glu Ser Gly Lys Val 85 90 95

Phe Asn Tyr Asp Asn Asp Gln Ala Gln Leu Glu Ala Gln Ile Gln Gln Page 11

<213> Pantoea stewartii

100 105 110

Phe Asn Pro Arg Asp Val Ala Gly Tyr Arg Ala Phe Leu Asp Tyr Ser 115 120 125 Arg Ala Val Phe Asn Glu Gly Tyr Leu Lys Leu Gly Thr Val Pro Phe 130 140 Leu Ser Phe Lys Asp Met Leu Arg Ala Ala Pro Gln Leu Ala Lys Leu 145 150 155 160 Gln Ala Trp Arg Ser Val Tyr Ser Lys Val Ala Gly Tyr Ile Glu Asp 165 170 175 Glu His Leu Arg Gln Ala Phe Ser Phe His Ser Leu Leu Val Gly Gly 180 185 190 Asn Pro Phe Ala Thr Ser Ser Ile Tyr Thr Leu Ile His Ala Leu Glu 195 200 205 Arg Glu Trp Gly Val Trp Phe Pro Arg Gly Gly Thr Gly Ala Leu Val 210 215 220 Asn Gly Met Ile Lys Leu Phe Gln Asp Leu Gly Gly Glu Val Val Leu 225 230 235 240 Asn Ala Arg Val Ser His Met Glu Thr Val Gly Asp Lys Ile Gln Ala 245 250 255 Val Gln Leu Glu Asp Gly Arg Arg Phe Glu Thr Cys Ala Val Ala Ser 260 265 270 Asn Ala Asp Val Val His Thr Tyr Arg Asp Leu Leu Ser Gln His Pro 275 280 285 Ala Ala Ala Lys Gln Ala Lys Lys Leu Gln Ser Lys Arg Met Ser Asn 290 295 300

Ser Leu Phe Val Leu Tyr Phe Gly Leu Asn His His Asp Gln Leu 320

Ala His His Thr Val Cys Phe Gly Pro Arg Tyr Arg Glu Leu Ile His 335

Glu Ile Phe Asn His Asp Gly Leu Ala Glu Asp Phe Ser Leu Tyr Leu 345

His Ala Pro Cys Val Thr Asp Pro Ser Leu Ala Pro Glu Gly Cys Gly Ser Tyr Tyr Val Leu Ala Pro Val Pro His Leu Gly Thr Ala Asn Leu 375

Page 12

385	Trp	Ala	val	Glu	Gly 390	Pro	Arg	Leu	Arg	Asp 395	Arg	Ile	Phe	Asp	Tyr 400	
Leu	Glu	Gln	His	Tyr 405	Met	Pro	Gly	Leu	Arg 410	Ser	Gln	Leu	٧a٦	Thr 415	His	
Arg	Met	Phe	Thr 420	Pro	Phe	Asp	Phe	Arg 425	Asp	Glu	Leu	Asn	Ala 430	Тгр	Gln	
Gly	Ser	Ala 435	Phe	Ser	Val	Glu	Pro 440	Ile	Leu	Thr	Gln	Ser 445	Ala	Trp	Phe	
Arg	Pro 450	His	Asn	Arg	Asp	Lys 455	His	Ile	Asp	Asn	Leu 460	Tyr	Leu	val	Gly	
Ala 465	Gly	Thr	His	Pro	Gly 470	Ala	Gly	Ile	Pro	Gly 475	۷al	Ile	Gly	Ser	Ala 480	
Lys	Ala	Thr	Ala	Gly 485	Leu	Met	Leu	Glu	Asp 490	Leu	Ile					
<210 <211 <211 <211	L> { 2> [9 391 ONA Panto	oea s	stewa	artii	i										
<220 <221 <222	L> (CDS (1).	. (891	L)												
<222 <222 <400 atg	L> (2> ()> 9 qcq	(1).	ggc	tcq	aaa Lys	agc Ser	ttt Phe	gcg Ala	act Thr 10	gca Ala	tcg Ser	acg Thr	ctt Leu	ttc Phe 15	gac Asp	48
<222 <222 <400 atg Met 1	L> (2> (2) (2) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(1)., 9 gtt	ggc Gly cgt	tcg ser 5	Lys agc	ser	Phe	atg	Thr 10 ctt	Ala tac	Ser gca	Thr tgg	Leu tạc	Phe 15 cgc	Asp cac	48 96
<222 <222 <400 atg Met 1 gcc Ala	l> (2) 2> (3) 9cg Ala aaa Lys	gtt Val acc Thr	ggc Gly cgt Arg 20	tcg ser 5 cgc Arg	agc ser	ser gtg val gat_	Phe ctg Leu -caa-	atg Met 25 -aca-	Thr 10 ctt Leu	tac Tyr	ser gca Ala ttt	Thr tgg Trp -cat_	tgc Cys 30	Phe 15 cgc Arg	cac His	
<222 <222 <400 atg Met 1 gcc Ala —tgc- Cys	L> (2> (2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	gtt Val acc Thr	ggc Gly cgt Arg 20 gtc Val	tcg Ser 5 cgc Arg att Ile	agc Ser -gac- Asp	gtg Val gat Asp	ctg Leu -caa- Gln 40	atg Met 25 -aca- Thr	Thr 10 ctt Leu ctg Leu	tac Tyr ggc Gly	gca Ala ttt Phe	tgg Trp cat His 45	tgc Cys 30 gcc Ala	Phe 15 cgc Arg gac Asp	cac His cag Gln aaa	96
<222 <222 <400 atg Met 1 gcc Ala —tgc- Cys ccc Pro	L> (2> (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	gtt Val acc Thr gae- Asp 35	ggc Gly cgt Arg 20 gtc- val cag Gln	tcg ser 5 cgc Arg att Ile atg Met	agc ser -gac- Asp cct Pro	gtg Val gat- Asp gag Glu 55	ctg Leu -caa- Gln 40 cag Gln tcg	atg Met 25 -aca- Thr cgc Arg	Thr 10 ctt Leu ctg Leu ctg Leu	tac Tyr -ggc- Gly cag Gln	gca Ala ttt Phe cag Gln 60	tgg Trp cat His 45 ctt Leu	tgc Cys 30 gcc Ala gaa Glu	Phe 15 cgc Arg gac Asp atg Met	cac His cag Gln aaa Lys	96 144
<222 <222 <400 atg Met 1 gcc Ala -tgc- Cys ccc Pro acg Thr 65 gcg	L> (2> (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	gtt Val acc Thr gac- Asp 35 tcg Ser	ggc Gly cgt Arg 20 gtc- Val cag Gln gcc Ala	tcg ser 5 cgc Arg att Ile atg Met tac Tyr	agc Ser gac- Asp cct Pro gcc Ala 70	gtg Val gat- Asp gag Glu 55 ggt Gly atg	ctg Leu -caa- Gln 40 cag Gln tcg Ser	atg Met 25 -aca- Thr cgc Arg	Thr 10 ctt Leu ctg Leu ctg Leu atg Met	tac Tyr ggc- Gly cag Gln cac His 75	gca Ala ttt Phe cag Gln 60 gag Glu	tgg Trp cat His 45 ctt Leu ccc Pro	tgc Cys 30 gcc Ala gaa Glu gct Ala	Phe 15 cgc Arg gac_ Asp atg Met ttt Phe	cac His Cag_ Gln aaa Lys gcc Ala 80 gcg	96 1 <u>44</u> 192

					acg Thr											384
gtg Val	ggc Gly 130	ctg Leu	atg Met	atg Met	gcg Ala	caa Gln 135	att Ile	atg Met	ggc Gly	gtt Val	cgc Arg 140	gat Asp	aac Asn	gcc Ala	acg Thr	432
					gat Asp 150											480
gcg Ala	cgt Arg	gat Asp	att Ile	gtc Val 165	gac Asp	gat Asp	gct Ala	cag Gln	gtg Val 170	ggc Gly	cgc Arg	tgt Cys	tat Tyr	ctg Leu 175	cct Pro	528
gaa Glu	agc Ser	tgg Trp	ctg Leu 180	gaa Glu	gag Glu	gaa Glu	gga Gly	ctg Leu 185	acg Thr	aaa Lys	gcg Ala	aat Asn	tat Tyr 190	gct Ala	gcg Ala	576
cca Pro	gaa Glu	aac Asn 195	cgg Arg	cag Gln	gcc Ala	tta Leu	agc Ser 200	cgt Arg	atc Ile	gcc Ala	ggg Gly	cga Arg 205	ctg Leu	gta Val	cgg Arg	624
gaa Glu	gcg Ala 210	gaa Glu	ccc Pro	tat Tyr	tac Tyr	gta Val 215	tca Ser	tca Ser	atg Met	gcc Ala	ggt Gly 220	ctg Leu	gca Ala	caa Gln	tta Leu	672
ccc Pro 225	tta Leu	cgc Arg	tcg Ser	gcc Ala	tgg Trp 230	gcc Ala	atc Ile	gcg Ala	aca Thr	gcg Ala 235	aag Lys	cag Gln	gtg Val	tac Tyr	cgt Arg 240	720
aaa Lys	att Ile	ggc Gly	gtg Val	aaa Lys 245	gtt Val	gaa Glu	cag Gln	gcc Ala	ggt Gly 250	aag Lys	cag Gln	gcc Ala	tgg Trp	gat Asp 255	cat His	768
cgc Arg	cag Gln	tcc Ser	acg Thr 260	tcc Ser	acc Thr	gcc Ala	gaa Glu	aaa Lys 265	tta Leu	acg Thr	ctt Leu	ttg Leu	ctg Leu 270	acg Thr	gca Ala	816
tcc Ser	ggt Gly	cag Gln 275	gca Ala	gtt Val	act Thr	tcc Ser	cgg Arg 280	atg Met	aag Lys	acg Thr	tat Tyr	cca Pro 285	ccc Pro	cgt Arg	cct Pro	864
					cgc Arg			tag								891

<210> -10-

<400> 10

Met Ala Val Gly Ser Lys Ser Phe Ala Thr Ala Ser Thr Leu Phe Asp $1 \\ 0 \\ 15$

Ala Lys Thr Arg Arg Ser Val Leu Met Leu Tyr Ala Trp Cys Arg His 20 25 30

Cys Asp Asp Val Ile Asp Asp Gln Thr Leu Gly Phe His Ala Asp Gln 35 40 45

Pro Ser Ser Gln Met Pro Glu Gln Arg Leu Gln Gln Leu Glu Met Lys Page 14

²⁹⁶

PRT

<211> <212> <213> Pantoea stewartii

Thr Arg Gln Ala Tyr Ala Gly Ser Gln Met His Glu Pro Ala Phe Ala 65 70 75 80 Ala Phe Gln Glu Val Ala Met Ala His Asp Ile Ala Pro Ala Tyr Ala 85 90 95 Phe Asp His Leu Glu Gly Phe Ala Met Asp Val Arg Glu Thr Arg Tyr 100 105 110 Leu Thr Leu Asp Asp Thr Leu Arg Tyr Cys Tyr His Val Ala Gly Val 115 120 125 Val Gly Leu Met Met Ala Gln Ile Met Gly Val Arg Asp Asn Ala Thr 130 140 Leu Asp Arg Ala Cys Asp Leu Gly Leu Ala Phe Gln Leu Thr Asn Ile 145 150 155 160 Ala Arg Asp Ile Val Asp Asp Ala Gln Val Gly Arg Cys Tyr Leu Pro 165 170 175 Glu Ser Trp Leu Glu Glu Glu Gly Leu Thr Lys Ala Asn Tyr Ala Ala 180 185 190 Pro Glu Asn Arg Gln Ala Leu Ser Arg Ile Ala Gly Arg Leu Val Arg 195 200 205 Glu Ala Glu Pro Tyr Tyr Val Ser Ser Met Ala Gly Leu Ala Gln Leu 210 215 220 Pro Leu Arg Ser Ala Trp Ala Ile Ala Thr Ala Lys Gln Val Tyr Arg 225 230 235 240 Lys Ile Gly Val Lys Val Glu Gln Ala Gly Lys Gln Ala Trp Asp His 245 250 255

Arg Gln Ser Thr Ser Thr Ala Glu Lys Leu Thr Leu Leu Leu Thr Ala 260 265 270

Ser Gly Gln Ala Val Thr Ser Arg Met Lys Thr Tyr Pro Pro Arg Pro 275 280 285

Ala His Leu Trp Gln Arg Pro Ile 290 295

<210>

¹¹ 528 <21**1**>

DNA

Pantoea stewartii

```
<220>
<221>
             CDS
              (1)..(528)
<400> 11
atg ttg tgg att tgg aat gcc ctg atc gtg ttt gtc acc gtg gtc ggc
Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Val Gly
1 5 10 15
atg gaa gtg gtt gct gca ctg gca cat aaa tac atc atg cac ggc tgg Met Glu Val Val Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 20 25 30
ggt tgg ggc tgg cat ctt tca cat cat gaa ccg cgt aaa ggc gca ttt
Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe
35 40 45
gaa gtt aac gat ctc tat gcc gtg gta ttc gcc att gtg tcg att gcc Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ile Val Ser Ile Ala 50 55 60
ctg att tac ttc ggc agt aca gga atc tgg ccg ctc cag tgg att ggt
Leu Ile Tyr Phe Gly Ser Thr Gly Ile Trp Pro Leu Gln Trp Ile Gly
65 70 75 80
gca ggc atg acc gct tat ggt tta ctg tat ttt atg gtc cac gac gga
Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly
85 90 95
ctg gta cac cag cgc tgg ccg ttc cgc tac ata ccg cgc aaa ggc tac Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr 100 105 110
ctg aaa cgg tta tac atg gcc cac cgt atg cat cat gct gta agg gga
Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly
115 120 125
aaa gag ggc tgc gtg tcc ttt ggt ttt ctg tac gcg cca ccg tta tct
Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser
                                               135
aaa ctt cag gcg acg ctg aga gaa agg cat gcg gct aga tcg ggc gct
Lys Leu Gln Ala Thr Leu Arg Glu Arg His Ala Ala Arg Ser Gly Ala
145
                                       150
gcc aga gat gag cag gac ggg gtg gat acg tct tca tcc ggg aag taa
Ala Arg Asp Glu Gln Asp Gly Val Asp Thr Ser Ser Gly Lys
             12
175
<210>
<211>
<212>
             PRT
<213>
             Pantoea stewartii
Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Val Gly
1 10 15
```

48

96

144

192

240

288

336

384

432

480

528

Met Glu Val Val Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 20 Trp Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 40 45

```
Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ile Val Ser Ile Ala 50 55 60
Leu Ile Tyr Phe Gly Ser Thr Gly Ile Trp Pro Leu Gln Trp Ile Gly 65 70 75 80
Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly
85 90 95
Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr
100 105 110
Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly 115 125
Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser
130 135 140
Lys Leu Gln Ala Thr Leu Arg Glu Arg His Ala Ala Arg Ser Gly Ala
145 150 155 160
Ala Arg Asp Glu Gln Asp Gly Val Asp Thr Ser Ser Gly Lys
<210>
        13
<211>
        61
<212>
        DNA
<213>
        Artificial sequence
<220>
<223>
        Primer 5'kan(dxs)
<400> 13
tggaagcgct agcggactac atcatccagc gtaataaata acgtcttgag cgattgtgta
                                                                             . 60
                                                                               61
<210>
        14
        65
<211>
       DNA
      —Art-i-f-i-c-i-a-l—sequence-
<220>
        Primer 5'kan(idi)
<223>
<400> 14
tctgatgcgc aagctgaaga aaaatgagca tggagaataa tatgacgtct tgagcgattg
                                                                               60
tgtag
                                                                               65
<210>
        15
<211>
        65
<212>
        DNA
        Artificial sequence
<220>
        Primer 5'kan(lytB)
<223>
<400>
        15
```

Page 17

tttgata	attg aagtgctgga aatcgatccg gcactggagg cgtaacgtct tgagcgattg	60
tgtag		65
<210> <211> <212> <213>	16 65 DNA Artificial sequence	
<220> <223>	Primer 5'kan(dxr)	
<400> gaagcg	16 gcgc tggcagacaa agaagcagaa ctgatgcagt tctgacgtct tgagcgattg	60
tgtag		65
<210> <211> <212> <213>	17 65 DNA Artificial sequence	
<220> <223>	Primer 5'kan(ygbBP)	
<400> gacgcg	17 tcga agcgcgcaca gtctgcgggg caaaacaatc gataacgtct tgagcgattg	60
tgtag		65
<210> <211> <212> <213>	18 64 DNA Artificial sequence	
<220> <223>	Primer 3'kan	
<400> gaagac	18 gaaa gggcctcgtg atacgcctat ttttataggt tatatgaata tcctccttag	60
ttcc		64
<210> <211> -<212>	19 50 -DNA	
<213>	Artificial sequence	
<220> <223>	Primer 5'-T5	
<400> ctaagga	19 agga tattcatata acctataaaa ataggcgtat cacgaggccc	50
<210> <211> <212> <213>	20 70 DNA Artificial sequence	
<220> <223>	Primer 3'-T5(dxs)	
<400> ggagtc	20 gacc agtgccaggg tcgggtattt ggcaatatca aaactcatag ttaatttctc Page 18	60

ctcttt	aatg	70
<210> <211> <212> <213>	21 68 DNA Artificial sequence	
<220> <223>	Primer 3'-T5(idi)	
<400> tgggaa	21 ctcc ctgtgcattc aataaaatga cgtgttccgt ttgcatagtt aatttctcct	60
ctttaa	tg	68
<210> <211> <212> <213>	22 68 DNA Artificial sequence	
<220> <223>	Primer 3'-T5(lytB)	
<400> ctaccc	22 cggc acaaaaacca cgtgggttgg ccaacaggat ctgcatagtt aatttctcct	60
ctttaa	tg	68
<210> <211> <212> <213>	23 68 DNA Artificial sequence	
<220> <223>	Primer 3'-T5(dxr)	
<400> tgcaac	23 caat cgagccggtc gagcccagaa tggtgagttg cttcatagtt aatttctcct	60
ctttaa	tg ·	68
<210> <211> <212> -<213>	24 68 DNA -Artificial_sequence	
<220> <223>	Primer 3'-T5(ygbBP)	
<400> cggccg	24 ccgg aaccacggcg caaacatcca aatgagtggt tgccatagtt aatttctcct	60
ctttaa [.]	tg	68
<210> <211> <212> <213>	25 65 DNA Artificial sequence	
<220> <223>	Primer 5'-kanT5(ispA)	
<400>	25	

aacgaa	gacg cctctctaac cccttttaca ccggacaatg agtaacgtct tgagcgattg	60
tgtag		65
<210> <211> <212> <213>	26 65 DNA Artificial sequence	
<220> <223>	Primer 5'-kanT5(ychB)	
<400> ggtcaa	26 cgca tcaagttaaa aatggataac tggatagtga aataacgtct tgagcgattg	60
tgtag		65
<210> <211> <212> <213>	27 65 DNA Artificial sequence	
<220> <223>	Primer 5'-kanT5(gcpE)	
<400> gttgcg	27 cgtc tgaccctcaa tgccgaacaa tcaccggcgc agtaacgtct tgagcgattg	60
tgtag	,	65
<210> <211> <212> <213>	28 65 DNA Artificial sequence	
<220> <223>	Primer 5'-kanT5(ispB)	
<400> accata	28 aacc ctaagttgcc tttgttcaca gtaaggtaat cggggcgtct tgagcgattg	60
tgtag		65
<210> <211> -<212>	29 70 –DNA	
<213>	Artificial sequence	
<220> <223>	Primer 3'-kanT5(ispA)	
<400> ctggtt	29 ggcc tgcttaacgc aggcttcgag ttgctgcgga aagtccatag ttaatttctc	60
ctcttt	aatg	70
<210> <211> <212> <213>	30 68 DNA Artificial sequence	
<220>	Primar 3'-kanT5(vchp)	

<400> ataaaa	30 acag attaagtttt gccggagagg gccactgtgt ccgcatagtt aatttctcct	60
ctttaa	tg	68
<210> <211> <212> <213>	31 68 DNA Artificial sequence	
<220> <223>	Primer 3'-kanT5(gcpE)	
<400> aaatac	31 gtgt tgattttcta cgttgaattg gagcctggtt atgcatagtt aatttctcct	60
ctttaa	tg	68
<210> <211> <212> <213>	32 67 DNA Artificial sequence	
<220> <223>	Primer 3'-kanT5(ispB)	
<400> cgccat	32 atct tgcgcggtta actcattgat tttttctaaa ttcatagtta atttctcctc	60
tttaat	g	67
<210> <211> <212> <213>	33 25 DNA Artificial sequence	
<220> <223>	Forward primer for crt gene cluster	
<400> atgacg	33 gtct gcgcaaaaaa acacg	25
 <210> <211> <212> <213>	34 28 DNA <u>Artificial sequence</u>	
<220> <223>	Reverse primer for crt gene cluster	
<400> gagaaa	34 ttat gttgtggatt tggaatgc	28
<210> <211> <212> <213>	DNA	
<220> <223>	Primer T-kan	
<400> accgga	35 tatc accacttatc tgctc	25

<210> <211> <212> <213>	36 26 DNA Artificial sequence	
<220> <223>	Primer B-dxs	
	36 cagt cgtagctcct gggtgg	26
<210> <211> <212> <213>	37 32 DNA Artificial sequence	
<220> <223>	Primer T-T5	
<400> taacct	37 ataa aaataggcgt atcacgaggc cc	32
<210> <211> <212> <213>	38 25 DNA Artificial sequence	
<220> <223>	Primer B-idi	
<400> tcatgc	38 tgac ctggtgaagg aatcc	25
<210> <211> <212> <213>	39 45 DNA Artificial sequence	
<220> <223>	Primer B-ispB	
<400> accata	39 aacc ctaagttgcc tttgttcaca gtaaggtaat cgggg	45
<210> <211>	40 8609	
<212> <213>	DNA Artificial sequence	
<220> <223>	Plasmid pPCB15	
<400> cgtatg	40 gcaa tgaaagacgg tgagctggtg atatgggata gtgttcaccc ttgttacacc	60
gttttc	catg agcaaactga aacgttttca tcgctctgga gtgaatacca cgacgatttc	120
cggcag	tttc tacacatata ttcgcaagat gtggcgtgtt acggtgaaaa cctggcctat	180
ttccct	aaag ggtttattga gaatatgttt ttcgtctcag ccaatccctg ggtgagtttc	240
accagt	tttg atttaaacgt ggccaatatg gacaacttct tcgcccccgt tttcaccatg	300
ggcaaa	tatt atacgcaagg cgacaaggtg ctgatgccgc tggcgattca ggttcatcat	360

gccgtctgtg	atggcttcca	tgtcggcaga	atgcttaatg	aattacaaca	gtactgcgat	420
gagtggcagg	gcggggcgta	attttttaa	ggcagttatt	ggtgcctaga	aatattttat	480
ctgattaata	agatgatctt	cttgagatcg	ttttggtctg	cgcgtaatct	cttgctctga	540
aaacgaaaaa	accgccttgc	agggcggttt	ttcgaaggtt	ctctgagcta	ccaactcttt	600
gaaccgaggt	aactggcttg	gaggagcgca	gtcaccaaaa	cttgtccttt	cagtttagcc	660
ttaaccggcg	catgacttca	agactaactc	ctctaaatca	attaccagtg	gctgctgcca	720
gtggtgcttt	tgcatgtctt	tccgggttgg	actcaagacg	atagttaccg	gataaggcgc	780
agcggtcgga	ctgaacgggg	ggttcgtgca	tacagtccag	cttggagcga	actgcctacc	840
cggaactgag	tgtcaggcgt	ggaatgagac	aaacgcggcc	ataacagcgg	aatgacaccg	900
gtaaaccgaa	aggcaggaac	aggagagcgc	acgagggagc	cgccagggga	aacgcctggt	960
atctttatag	tcctgtcggg	tttcgccacc	actgatttga	gcgtcagatt	tcgtgatgct	1020
tgtcaggggg	gcggagccta	tggaaaaacg	gctttgccgc	ggccctctca	cttccctgtt	1080
aagtatcttc	ctggcatctt	ccaggaaatc	tccgccccgt	tcgtaagcca	tttccgctcg	1140
ccgcagtcga	acgaccgagc	gtagcgagtc	agtgagcgag	gaagcggaat	atatcctgta	1200
tcacatattc	tgctgacgca	ccggtgcagc	ctttttctc	ctgccacatg	aagcacttca	1260
ctgacaccct	catcagtgcc	aacatagtaa	gccagtatat	acactccgct	agcgcccaat	1320
acgcaaaccg	cctctccccg	cgcgttggcc	gattcattaa	tgcagctggc	acgacaggtt	1380
tcccgactgg	aaagcgggca	gtgagcgcaa	cgcaattaat	gtgagttagc	tcactcatta	1440
ggcaccccag	gctttacact	ttatgcttcc	ggctcgtatg	ttgtgtggaa	ttgtgagcgg	1500
ataacaattt	cacacaggaa	acagctatga	ccatgattac	gaattcgagc	tcggtaccca	1560
aacgaattcg	cccttttgac	ggtctgcgca	aaaaaacacg	ttcaccttac	tggcatttcg	1620
gctgagcagt	tgctggctga	tatcgatagc	cgccttgatc	agttactgcc	ggttcagggt	1680
gagcgggatt	gtgtgggtgc	cgcgatgcgt	gaaggcacgc	tggcaccggg	caaacgtatt	1740
cgtccgatgc	tgctgttatt	aacagcgcgc	gatcttggct	gtgcgatcag	tcacggggga	1800
_ttactggatt	_tagcctgcgc_	_ggttgaaatg_	_gtgcatgctg_	_cctcgctgat_	_tctggatgat_	1860
atgccctgca	tggacgatgc	gcagatgcgt	cgggggcgtc	ccaccattca	cacgcagtac	1920
ggtgaacatg	tggcgattct	ggcggcggtc	gctttactca	gcaaagcgtt	tggggtgatt	1980
gccgaggctg	aaggtctgac	gccgatagcc	aaaactcgcg	cggtgtcgga	gctgtccact	2040
gcgattggca	tgcagggtct	ggttcagggc	cagtttaagg	acctctcgga	aggcgataaa	2100
ccccgcagcg	ccgatgccat	actgctaacc	aatcagttta	aaaccagcac	gctgttttgc	2160
gcgtcaacgc	aaatggcgtc	cattgcggcc	aacgcgtcct	gcgaagcgcg	tgagaacctg	2220
catcgtttct	cgctcgatct	cggccaggcc	tttcagttgc	ttgacgatct	taccgatggc	2280
atgaccgata	ccggcaaaga	catcaatcag	gatgcaggta	aatcaacgct	ggtcaattta	2340
ttaggctcag	gcgcggtcga	agaacgcctg	cgacagcatt	tgcgcctggc	cagtgaacac	2400

ctttccgcgg	catgccaaaa	cggccattcc	accacccaac	tttttattca	ggcctggttt	2460
gacaaaaaac	tcgctgccgt	cagttaagga	tgctgcatga	gccattttgc	ggtgatcgca	2520
ccgccctttt	tcagccatgt	tcgcgctctg	caaaaccttg	ctcaggaatt	agtggcccgc	2580
ggtcatcgtg	ttacgttttt	tcagcaacat	gactgcaaag	cgctggtaac	gggcagcgat	2640
atcggattcc	agaccgtcgg	actgcaaacg	catcctcccg	gttccttatc	gcacctgctg	2700
cacctggccg	cgcacccact	cggaccctcg	atgttacgac	tgatcaatga	aatggcacgt	2760
accagcgata	tgctttgccg	ggaactgccc	gccgcttttc	atgcgttgca	gatagagggc	2820
gtgatcgttg	atcaaatgga	gccggcaggt	gcagtagtcg	cagaagcgtc	aggtctgccg	2880
tttgtttcgg	tggcctgcgc	gctgccgctc	aaccgcgaac	cgggtttgcc	tctggcggtg	2940
atgcctttcg	agtacggcac	cagcgatgcg	gctcgggaac	gctataccac	cagcgaaaaa	3000
atttatgact	ggctgatgcg	acgtcacgat	cgtgtgatcg	cgcatcatgc	atgcagaatg	3060
ggtttagccc	cgcgtgaaaa	actgcatcat	tgtttttctc	cactggcaca	aatcagccag	3120
ttgatccccg	aactggattt	tccccgcaaa	gcgctgccag	actgctttca	tgcggttgga	3180
ccgttacggc	aaccccaggg	gacgccgggg	tcatcaactt	cttattttcc	gtccccggac	3240
aaaccccgta	tttttgcctc	gctgggcacc	ctgcagggac	atcgttatgg	cctgttcagg	3300
accatcgcca	aagcctgcga	agaggtggat	gcgcagttac	tgttggcaca	ctgtggcggc	3360
ctctcagcca	cgcaggcagg	tgaactggcc	cggggcgggg	acattcaggt	tgtggatttt	3420
gccgatcaat	ccgcagcact	ttcacaggca	cagttgacaa	tcacacatgg	tgggatgaat	3480
acggtactgg	acgctattgc	ttcccgcaca	ccgctactgg	cgctgccgct	ggcatttgat	3540
caacctggcg	tggcatcacg	aattgtttat	catggcatcg	gcaagcgtgc	gtctcggttt	3600
actaccagcc	atgcgctggc	gcggcagatt	cgatcgctgc	tgactaacac	cgattacccg	3660
cagcgtatga	caaaaattca	ggccgcattg	cgtctggcag	gcggcacacc	agccgccgcc	3720
gatattgttg	aacaggcgat	gcggacctgt	cagccagtac	tcagtgggca	ggattatgca	3780
accgcactat	gatctcattc	tggtcggtgc	cggtctggct	aatggcctta	tcgcgctccg	3840
gcttcagcaa	cagcatccgg	atatgcggat	cttgcttatt	gaggcgggtc	ctgaggcggg	3900
agggaaccat	acctggtcct	ttcacgaaga	ggatttaacg	ctgaatcagc	atcgctggat	3960
agcgccgctt	gtggtccatc	actggcccga	ctaccaggtt	cgtttccccc	aacgccgtcg	4020
ccatgtgaac	agtggctact	actgcgtgac	ctcccggcat	ttcgccggga	tactccggca	4080
acagtttgga	caacatttat	ggctgcatac	cgcggtttca	gccgttcatg	ctgaatcggt	4140
ccagttagcg	gatggccgga	ttattcatgc	cagtacagtg	atcgacggac	ggggttacac	4200
gcctgattct	gcactacgcg	taggattcca	ggcatttatc	ggtcaggagt	ggcaactgag	4260
cgcgccgcat	ggtttatcgt	caccgattat	catggatgcg	acggtcgatc	agcaaaatgg	4320
ctaccgcttt	gtttataccc	tgccgctttc	cgcaaccgca	ctgctgatcg	aagacacaca	4380
ctacattgac	aaggctaatc	ttcaggccga	acgggcgcgt	cagaacattc	gcgattatgc	4440
tgcgcgacag	ggttggccgt	tacagacgtt	gctgcgggaa Page 2	gaacagggtg 4	cattgcccat	4500

tacgttaacg	ggcgataatc	gtcagttttg	gcaacagcaa	ccgcaagcct	gtagcggatt	4560
acgcgccggg	ctgtttcatc	cgacaaccgg	ctactcccta	ccgctcgcgg	tggcgctggc	4620
cgatcgtctc	agcgcgctgg	atgtgtttac	ctcttcctct	gttcaccaga	cgattgctca	4680
ctttgcccag	caacgttggc	agcaacaggg	gtttttccgc	atgctgaatc	gcatgttgtt	4740
tttagccgga	ccggccgagt	cacgctggcg	tgtgatgcag	cgtttctatg	gcttacccga	4800
ggatttgatt	gcccgctttt	atgcgggaaa	actcaccgtg	accgatcggc	tacgcattct	4860
gagcggcaag	ccgcccgttc	ccgttttcgc	ggcattgcag	gcaattatga	cgactcatcg	4920
ttgaagagcg	actacatgaa	accaactacg	gtaattggtg	cgggctttgg	tggcctggca	4980
ctggcaattc	gtttacaggc	cgcaggtatt	cctgttttgc	tgcttgagca	gcgcgacaag	5040
ccgggţggcc	gggcttatgt	ttatcaggag	cagggcttta	cttttgatgc	aggccctacc	5100
gttatcaccg	atcccagcgc	gattgaagaa	ctgtttgctc	tggccggtaa	acagcttaag	5160
gattacgtcg	agctgttgcc	ggtcacgccg	ttttatcgcc	tgtgctggga	gtccggcaag	5220
gtcttcaatt	acgataacga	ccaggcccag	ttagaagcgc	agatacagca	gtttaatccg	5280
cgcgatgttg	cgggttatcg	agcgttcctt	gactattcgc	gtgccgtatt	caatgagggc	5340
tatctgaagc	tcggcactgt	gcctttttta	tcgttcaaag	acatgcttcg	ggccgcgccc	5400
cagttggcaa	agctgcaggc	atggcgcagc	gtttacagta	aagttgccgg	ctacattgag	5460
gatgagcatc	ttcggcaggc	gttttctttt	cactcgctct	tagtgggggg	gaatccgttt	5520
gcaacctcgt	ccatttatac	gctgattcac	gcgttagaac	gggaatgggg	cgtctggttt	5580
ccacgcggtg	gaaccggtgc	gctggtcaat	ggcatgatca	agctgtttca	ggatctgggc	5640
ggcgaagtcg	tgcttaacgc	ccgggtcagt	catatggaaa	ccgttgggga	caagattcag	5700
gccgtgcagt	tggaagacgg	cagacggttt	gaaacctgcg	cggtggcgtc	gaacgctgat	5760
gttgtacata	cctatcgcga	tctgctgtct	cagcatcccg	cagccgctaa	gcaggcgaaa	5820
aaactgcaat	ccaagcgtat	gagtaactca	ctgtttgtac	tctattttgg	tctcaaccat	5880
catcacgatc	aactcgccca	tcataccgtc	tgttttgggc	cacgctaccg	tgaactgatt	5940
cacgaaattt	ttaaccatga	tggtctggct	<u>gaggatttt</u>	cgctttattt	acacgcacct	6000
tgtgtcacgg	atccgtcact	ggcaccggaa	gggtgcggca	gctattatgt	gctggcgcct	6060
gttccacact	taggcacggc	gaacctcgac	tgggcggtag	aaggaccccg	actgcgcgat	6120
cgtattttg	actaccttga	gcaacattac	atgcctggct	tgcgaagcca	gttggtgacg	6180
caccgtatgt	ttacgccgtt	cgatttccgc	gacgagctca	atgcctggca	aggttcggcc	6240
ttctcggttg	aacctattct	gacccagagc	gcctggttcc	gaccacataa	ccgcgataag	6300
cacattgata	atctttatct	ggttggcgca	ggcacccatc	ctggcgcggg	cattcccggc	6360
gtaatcggct	cggcgaaggc	gacggcaggc	ttaatgctgg	aggacctgat	ttgacgaata	6420
cgtcattact	gaatcatgcc	gtcgaaacca	tggcggttgg	ctcgaaaagc	tttgcgactg	6480
catcgacgct	tttcgacgcc	aaaacccgtc	gcagcgtgct	gatgctttac	gcatggtgcc	6540

gccactgcga	cgacgtcatt	gacgatcaaa	cactgggctt	tcatgccgac	cagccctctt	6600
cgcagatgcc	tgagcagcgc	ctgcagcagc	ttgaaatgaa	aacgcgtcag	gcctacgccg	6660
gttcgcaaat	gcacgagccc	gcttttgccg	cgtttcagga	ggtcgcgatg	gcgcatgata	6720
tcgctcccgc	ctacgcgttc	gaccatctgg	aaggttttgc	catggatgtg	cgcgaaacgc	6780
gctacctgac	actggacgat	acgctgcgtt	attgctatca	cgtcgccggt	gttgtgggcc	6840
tgatgatggc	gcaaattatg	ggcgttcgcg	ataacgccac	gctcgatcgc	gcctgcgatc	6900
tcgggctggc	tttccagttg	accaacattg	cgcgtgatat	tgtcgacgat	gctcaggtgg	6960
gccgctgtta	tctgcctgaa	agctggctgg	aagaggaagg	actgacgaaa	gcgaattatg	7020
ctgcgccaga	aaaccggcag	gccttaagcc	gtatcgccgg	gcgactggta	cgggaagcgg	7080
aaccctatta	cgtatcatca	atggccggtc	tggcacaatt	acccttacgc	tcggcctggg	7140
ccatcgcgac	agcgaagcag	gtgtaccgta	aaattggcgt	gaaagttgaa	caggccggta	7200
agcaggcctg	ggatcatcgc	cagtccacgt	ccaccgccga	aaaattaacg	cttttgctga	7260
cggcatccgg	tcaggcagtt	acttcccgga	tgaagacgta	tccaccccgt	cctgctcatc	7320
tctggcagcg	cccgatctag	ccgcatgcct	ttctctcagc	gtcgcctgaa	gtttagataa	7380
cggtggcgcg	tacagaaaac	caaaggacac	gcagccctct	tttcccctta	cagcatgatg	7440
catacggtgg	gccatgtata	accgtttcag	gtagcctttg	cgcggtatgt	agcggaacgg	7500
ccagcgctgg	tgtaccagtc	cgtcgtggac	cataaaatac	agtaaaccat	aagcggtcat	7560
gcctgcacca	atccactgga	gcggccagat	tcctgtactg	ccgaagtaaa	tcagggcaat	7620
cgacacaatg	gcgaatacca	cggcatagag	atcgttaact	tcaaatgcgc	ctttacgcgg	7680
ttcatgatgt	gaaagatgcc	agccccaacc	ccagccgtgc	atgatgtatt	tatgtgccag	7740
tgcagcaacc	acttccatgc	cgaccacggt	gacaaacacg	atcagggcat	tccaaatcca	7800
caacataatt	tctcaagggc	gaattcgcgg	ggatcctcta	gagtcgacct	gcaggcatgc	7860
aagcttggca	ctggccgtcg	ttttacaacg	tcgtgactgg	gaaaaccctg	gcgttaccca	7920
acttaatcgc	cttgcagcac	atcccccttt	cgccagctgg	cgtaatagcg	aagaggcccg	7980
caccgatcgc	ccttcccaac	agttgcgcag	cctgaatggc	gaatggcgct	gatgtccggc	8040
ggtgcttttg	ccgttacgca	ccaccccgtc	agtagctgaa	caggagggac	agctgataga	8100
aacagaagcc	actggagcac	ctcaaaaaca	ccatcataca	ctaaatcagt	aagttggcag	8160
catcacccga	cgcactttgc	gccgaataaa	tacctgtgac	ggaagatcac	ttcgcagaat	8220
aaataaatcc	tggtgtccct	gttgataccg	ggaagccctg	ggccaacttt	tggcgaaaat	8280
gagacgttga	tcggcacgta	agaggttcca	actttcacca	taatgaaata	agatcactac	8340
cgggcgtatt	ttttgagtta	tcgagatttt	caggagctaa	ggaagctaaa	atggagaaaa	8400
aaatcactgg	atataccacc	gttgatatat	cccaatggca	tcgtaaagaa	cattttgagg	8460
catttcagtc	agttgctcaa	tgtacctata	accagaccgt	tcagctggat	attacggcct	8520
ttttaaagac	cgtaaagaaa	aataagcaca	agttttatcc	ggcctttatt	cacattcttg	8580
cccgcctgat	gaatgctcat	ccggaattt	Page 2	6		·8609

```
6329
<211>
       DNA
       Artificial sequence
<220>
<223>
       Plasmid pKD46
<400>
catcgattta ttatgacaac ttgacggcta catcattcac tttttcttca caaccggcac
                                                                       60
ggaactcgct cgggctggcc ccggtgcatt ttttaaatac ccgcgagaaa tagagttgat
                                                                      120
                                                                      180
cgtcaaaacc aacattgcga ccgacggtgg cgataggcat ccgggtggtg ctcaaaagca
gcttcgcctg gctgatacgt tggtcctcgc gccagcttaa gacgctaatc cctaactgct
                                                                      240
                                                                      300
ggcggaaaag atgtgacaga cgcgacggcg acaagcaaac atgctgtgcg acgctggcga
tatcaaaatt gctgtctgcc aggtgatcgc tgatgtactg acaagcctcg cgtacccgat
                                                                      360
                                                                      420
tatccatcgg tggatggagc gactcgttaa tcgcttccat gcgccgcagt aacaattgct
caagcagatt tatcgccagc agctccgaat agcgcccttc cccttgcccg gcgttaatga
                                                                      480
tttgcccaaa caggtcgctg aaatgcggct ggtgcgcttc atccgggcga aagaaccccg
                                                                      540
                                                                      600
tattggcaaa tattgacggc cagttaagcc attcatgcca gtaggcgcgc ggacgaaagt
aaacccactg gtgataccat tcgcgagcct ccggatgacg accgtagtga tgaatctctc
                                                                      660
ctggcgggaa cagcaaaata tcacccggtc ggcaaacaaa ttctcgtccc tgatttttca
                                                                      720
ccacccctg accgcgaatg gtgagattga gaatataacc tttcattccc agcggtcggt
                                                                      780
                                                                      840
cgataaaaaa atcgagataa ccgttggcct caatcggcgt taaacccgcc accagatggg
cattaaacga gtatcccggc agcaggggat cattttgcgc ttcagccata cttttcatac
                                                                      900
tcccgccatt cagagaagaa accaattgtc catattgcat cagacattgc cgtcactgcg
                                                                      960
                                                                     1020
tcttttactg gctcttctcg ctaaccaaac cggtaacccc gcttattaaa agcattctgt
                                                                     1080
aacaaagcgg gaccaaagcc atgacaaaaa cgcgtaacaa aagtgtctat aatcacggca
                                                                     1140
gaaaagtcca cattgattat ttgcacggcg tcacactttg ctatgccata gcatttttat
                                                                     1200
ccataagatt agcggatcct acctgacgct ttttatcgca actctctact gtttctccat
acccgttttt ttgggaattc gagctctaag gaggttataa aaaatggata ttaatactga
                                                                     1260
                                                                     1320
aactgagatc aagcaaaagc attcactaac cccctttcct gttttcctaa tcagcccggc
                                                                     1380
atttcgcggg cgatattttc acagctattt caggagttca gccatgaacg cttattacat
tcaggatcgt cttgaggctc agagctgggc gcgtcactac cagcagctcg cccgtgaaga
                                                                     1440
                                                                     1500
gaaagaggca gaactggcag acgacatgga aaaaggcctg ccccagcacc tgtttgaatc
gctatgcatc gatcatttgc aacgccacgg ggccagcaaa aaatccatta cccgtgcgtt
                                                                     1560
                                                                     1620
tgatgacgat gttgagtttc aggagcgcat ggcagaacac atccggtaca tggttgaaac
cattgctcac caccaggttg atattgattc agaggtataa aacgaatgag tactgcactc
                                                                     1680
gcaacgctgg ctgggaagct ggctgaacgt gtcggcatgg attctgtcga cccacaggaa
                                                                     1740
```

<210>

41.

ctgatcacca	ctcttcgcca	gacggcattt	aaaggtgatg	ccagcgatgc	gcagttcatc	1800
gcattactga	tcgttgccaa	ccagtacggc	cttaatccgt	ggacgaaaga	aatttacgcc	1860
tttcctgata	agcagaatgg	catcgttccg	gtggtgggcg	ttgatggctg	gtcccgcatc	1920
atcaatgaaa	accagcagtt	tgatggcatg	gactttgagc	aggacaatga	atcctgtaca	1980
tgccggattt	accgcaagga	ccgtaatcat	ccgatctgcg	ttaccgaatg	gatggatgaa	2040
tgccgccgcg	aaccattcaa	aactcgcgaa	ggcagagaaa	tcacggggcc	gtggcagtcg	2100
catcccaaac	ggatgttacg	tcataaagcc	atgattcagt	gtgcccgtct	ggccttcgga	2160
tttgctggta	tctatgacaa	ggatgaagcc	gagcgcattg	tcgaaaatac	tgcatacact	2220
gcagaacgtc	agccggaacg	cgacatcact	ccggttaacg	atgaaaccat	gcaggagatt	2280
aacactctgc	tgatcgccct	ggataaaaca	tgggatgacg	acttattgcc	gctctgttcc	2340
cagatatttc	gccgcgacat	tcgtgcatcg	tcagaactga	cacaggccga	agcagtaaaa	2400
gctcttggat	tcctgaaaca	gaaagccgca	gagcagaagg	tggcagcatg	acaccggaca	2460
ttatcctgca	gcgtaccggg	atcgatgtga	gagctgtcga	acagggggat	gatgcgtggc	2520
acaaattacg	gctcggcgtc	atcaccgctt	cagaagttca	caacgtgata	gcaaaacccc	2580
gctccggaaa	gaagtggcct	gacatgaaaa	tgtcctactt	ccacaccctg	cttgctgagg	2640
tttgcaccgg	tgtggctccg	gaagttaacg	ctaaagcact	ggcctgggga	aaacagtacg	2700
agaacgacgc	cagaaccctg	tttgaattca	cttccggcgt	gaatgttact	gaatccccga	2760
tcatctatcg	cgacgaaagt	atgcgtaccg	cctgctctcc	cgatggttta	tgcagtgacg	2820
gcaacggcct	tgaactgaaa	tgcccgttta	cctcccggga	tttcatgaag	ttccggctcg	2880
gtggtttcga	ggccataaag	tcagcttaca	tggcccaggt	gcagtacagc	atgtgggtga	2940
cgcgaaaaaa	tgcctggtac	tttgccaact	atgacccgcg	tatgaagcgt	gaaggcctgc	3000
attatgtcgt	gattgagcgg	gatgaaaagt	acatggcgag	ttttgacgag	atcgtgccgg	3060
agttcatcga	aaaaatggac	gaggcactgg	ctgaaattgg	ttttgtattt	ggggagcaat	3120
ggcgatgacg	catcctcacg	ataatatccg	ggtaggcgca	atcactttcg	tctactccgt	3180
tacaaagcga	ggctgggtat	ttcccggcct	ttctgttatc	cgaaatccac	tgaaagcaca	3240
gcggctggct	gaggagataa	ataataaacg	aggggctgta	tgcacaaagc	atcttctgtt	3300
gagttaagaa	cgagtatcga	gatggcacat	agccttgctc	aaattggaat	caggtttgtg	3360
ccaataccag	tagaaacaga	cgaagaatcc	atgggtatgg	acagttttcc	ctttgatatg	3420
taacggtgaa	cagttgttct	acttttgttt	gttagtcttg	atgcttcact	gatagataca	3480
agagccataa	gaacctcaga	tccttccgta	tttagccagt	atgttctcta	gtgtggttcg	3540
ttgtttttgc	gtgagccatg	agaacgaacc	attgagatca	tacttacttt	gcatgtcact	3600
caaaaatttt	gcctcaaaac	tggtgagctg	aatttttgca	gttaaagcat	cgtgtagtgt	3660
ttttcttagt	ccgttacgta	ggtaggaatc	tgatgtaatg	gttgttggta	ttttgtcacc	3720
attcattttt	atctggttgt	tctcaagttc	ggttacgaga	tccatttgtc	tatctagttc	3780
aacttggaaa	atcaacgtat	cagtcgggcg	gcctcgctta Page 28	tcaaccacca 8	atttcatatt	3840

gctgtaagtg	tttaaatctt	tacttattgg	tttcaaaacc	cattggttaa	gccttttaaa	3900
ctcatggtag	ttattttcaa	gcattaacat	gaacttaaat	tcatcaaggc	taatctctat	3960
atttgccttg	tgagttttct	tttgtgttag	ttcttttaat	aaccactcat	aaatcctcat	4020
agagtatttg	ttttcaaaag	acttaacatg	ttccagatta	tattttatga	atttttttaa	4080
ctggaaaaga	taaggcaata	tctcttcact	aaaaactaat	tctaatttt	cgcttgagaa	4140
cttggcatag	tttgtccact	ggaaaatctc	aaagccttta	accaaaggat	tcctgatttc	4200
cacagttctc	gtcatcagct	ctctggttgc	tttagctaat	acaccataag	cattttccct	4260
actgatgttc	atcatctgag	cgtattggtt	ataagtgaac	gataccgtcc	gttctttcct	4320
tgtagggttt	tcaatcgtgg	ggttgagtag	tgccacacag	cataaaatta	gcttggtttc	4380
atgctccgtt	aagtcatagc	gactaatcgc	tagttcattt	gctttgaaaa	caactaattc	4440
agacatacat	ctcaattggt	ctaggtgatt	ttaatcacta	taccaattga	gatgggctag	4500
tcaatgataa	ttactagtcc	ttttcctttg	agttgtgggt	atctgtaaat	tctgctagac	4560
ctttgctgga	aaacttgtaa	attctgctag	accctctgta	aattccgcta	gacctttgtg	4620
tgttttttt	gtttatattc	aagtggttat	aatttataga	ataaagaaag	aataaaaaaa	4680
gataaaaaga	atagatccca	gccctgtgta	taactcacta	ctttagtcag	ttccgcagta	4740
ttacaaaagg	atgtcgcaaa	cgctgtttgc	tcctctacaa	aacagacctt	aaaaccctaa	4800
aggcttaagt	agcaccctcg	caagctcggt	tgcggccgca	atcgggcaaa	tcgctgaata	4860
ttccttttgt	ctccgaccat	caggcacctg	agtcgctgtc	tttttcgtga	cattcagttc	4920
gctgcgctca	cggctctggc	agtgaatggg	ggtaaatggc	actacaggcg	ccttttatgg	4980
attcatgcaa	ggaaactacc	cataatacaa	gaaaagcccg	tcacgggctt	ctcagggcgt	5040
tttatggcgg	gtctgctatg	tggtgctatc	tgactttttg	ctgttcagca	gttcctgccc	5100
tctgattttc	cagtctgacc	acttcggatt	atcccgtgac	aggtcattca	gactggctaa	5160
tgcacccagt	aaggcagcgg	tatcatcaac	ggggtctgac	gctcagtgga	acgaaaactc	5220
acgttaaggg	attttggtca	tgagattatc	aaaaaggatc	ttcacctaga	tccttttaaa	5280
ttaaaaatga	agttttaaat	caatctaaag	tatatatgag	taaacttggt	ctgacagtta	5340
ccaatgctta	atcagtgagg	cacctatctc	agcgatctgt	ctatttcgtt	catccatagt	5400
tgcctgactc	cccgtcgtgt	agataactac	gatacgggag	ggcttaccat	ctggccccag	5460
tgctgcaatg	ataccgcgag	acccacgctc	accggctcca	gatttatcag	caataaacca	5520
gccagccgga	agggccgagc	gcagaagtgg	tcctgcaact	ttatccgcct	ccatccagtc	5580
tattaattgt	tgccgggaag	ctagagtaag	tagttcgcca	gttaatagtt	tgcgcaacgt	5640
tgttgccatt	gctacaggca	tcgtggtgtc	acgctcgtcg	tttggtatgg	cttcattcag	5700
ctccggttcc	caacgatcaa	ggcgagttac	atgatccccc	atgttgtgca	aaaaagcggt	5760
tagctccttc	ggtcctccga	tcgttgtcag	aagtaagttg	gccgcagtgt	tatcactcat	5820
ggttatggca	gcactgcata	attctcttac	tgtcatgcca	tccgtaagat	gcttttctgt	5880

gactggtgag tactcaacca	agtcattctg	agaatagtgt	atgcggcgac	cgagttgctc	5940
ttgcccggcg tcaatacggg	ataataccgc	gccacatagc	agaactttaa	aagtgctcat	6000
cattggaaaa cgttcttcgg	ggcgaaaact	ctcaaggatc	ttaccgctgt	tgagatccag	6060
ttcgatgtaa cccactcgtg	cacccaactg	atcttcagca	tcttttactt	tcaccagcgt	6120
ttctgggtga gcaaaaacag	gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	6180
gaaatgttga atactcatac	tcttcctttt	tcaatattat	tgaagcattt	atcagggtta	6240
ttgtctcatg agcggataca	tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	6300
gcgcacattt ccccgaaaag	tgccacctg				6329
<210> 42 <211> 3423 <212> DNA <213> Artificial seq <220>	uence				
<223> Plasmid pSUH5					
<400> 42 agattgcagc attacacgtc	ttgagcgatt	gtgtaggctg	gagctgcttc	gaagttccta	60
tactttctag agaataggaa					120
agcactcagg gcgcaagggc	tgctaaagga	agcggaacac	gtagaaagcc	agtccgcaga	180
aacggtgctg accccggatg	aatgtcagct	actgggctat	ctggacaagg	gaaaacgcaa	240
gcgcaaagag aaagcaggta	gcttgcagtg	ggcttacatg	gcgatagcta	gactgggcgg	300
ttttatggac agcaagcgaa	ccggaattgc	cagctggggc	gccctctggt	aaggttggga	360
agccctgcaa agtaaactgg	atggctttct	tgccgccaag	gatctgatgg	cgcaggggat	420
caagatctga tcaagagaca	ggatgaggat	cgtttcgcat	gattgaacaa	gatggattgc	480
acgcaggttc tccggccgct	tgggtggaga	ggctattcgg	ctatgactgg	gcacaacaga	540
caatcggctg ctctgatgcc	gccgtgttcc	ggctgtcagc	gcaggggcgc	ccggttcttt	600
ttgtcaagac cgacctgtco	ggtgccctga	atgaactgca	ggacgaggca	gcgcggctat	660
cgtggctggc cacgacgggc	gttccttgcg	cagctgtgct	cgacgttgtc	actgaagcgg	720
gaagggactg_gctgctattg	ggcgaagtgc	cggggcagga	tctcctgtca	tctcaccttg	780
ctcctgccga gaaagtatcc	atcatggctg	atgcaatgcg	gcggctgcat	acgcttgatc	840
cggctacctg cccattcgac	caccaagcga	aacatcgcat	cgagcgagca	cgtactcgga	900
tggaagccgg tcttgtcgat	caggatgatc	tggacgaaga	gcatcagggg	ctcgcgccag	960
ccgaactgtt cgccaggctc	aaggcgcgca	tgcccgacgg	cgaggatctc	gtcgtgaccc	1020
atggcgatgc ctgcttgccg	aatatcatgg	tggaaaatgg	ccgcttttct	ggattcatcg	1080
actgtggccg gctgggtgtg	gcggaccgct	atcaggacat	agcgttggct	acccgtgata	1140
ttgctgaaga gcttggcggd	gaatgggctg	accgcttcct	cgtgctttac	ggtatcgccg	1200
ctcccgattc gcagcgcatc	gccttctatc	gccttcttga	cgagttcttc	tgagcgggac	1260
tctggggttc gaaatgaccg	accaagcgac	gcccaacctg Page 3	ccatcacgag O	atttcgattc	1320

caccgccgcc	ttctatgaaa	ggttgggctt	cggaatcgtt	ttccgggacg	ccggctggat	1380
gatcctccag	cgcggggatc	tcatgctgga	gttcttcgcc	caccccagct	tcaaaagcgc	1440
tctgaagttc	ctatactttc	tagagaatag	gaacttcgga	ataggaacta	aggaggatat	1500
tcactataaa	aataggcgta	tcacgaggcc	ctttcgtctt	cacctcgaga	aatcataaaa	1560
aatttatttg	ctttgtgagc	ggataacaat	tataatagat	tcaattgtga	gcggataaca	1620
atttcacaca	gaattcatta	aagaggagaa	attaactcat	atggaccatg	gctaattccc	1680
atgtcagccg	ttaagtgttc	ctgtgtcact	gaaaattgct	ttgagaggct	ctaagggctt	1740
ctcagtgcgt	tacatccctg	gcttgttgtc	cacaaccgtt	aaaccttaaa	agctttaaaa	1800
gccttatata	ttctttttt	tcttataaaa	cttaaaacct	tagaggctat	ttaagttgct	1860
gatttatatt	aattttattg	ttcaaacatg	agagcttagt	acgtgaaaca	tgagagctta	1920
gtacgttagc	catgagagct	tagtacgtta	gccatgaggg	tttagttcgt	taaacatgag	1980
agcttagtac	gttaaacatg	agagcttagt	acgtgaaaca	tgagagctta	gtacgtacta	2040
tcaacaggtt	gaactgcgga	tcttgcggcc	gcaaaaatta	aaaatgaagt	tttaaatcaa	2100
tctaaagtat	atatgagtaa	acttggtctg	acagttacca	atgcttaatc	agtgaggcac	2160
ctatctcagc	gatctgtcta	tttcgttcat	ccatagttgc	ctgactcccc	gtcgtgtaga	2220
taactacgat	acgggagggc	ttaccatctg	gccccagtgc	tgcaatgata	ccgcgagacc	2280
cacgctcacc	ggctccagat	ttatcagcaa	taaaccagcc	agccggaagg	gccgagcgca	2340
gaagtggtcc	tgcaacttta	tccgcctcca	tccagtctat	taattgttgc	cgggaagcta	2400
gagtaagtag	ttcgccagtt	aatagtttgc	gcaacgttgt	tgccattgct	acaggcatcg	2460
tggtgtcacg	ctcgtcgttt	ggtatggctt	cattcagctc	cggttcccaa	cgatcaaggc	2520
gagttacatg	atcccccatg	ttgtgcaaaa	aagcggttag	ctccttcggt	cctccgatcg	2580
ttgtcagaag	taagttggcc	gcagtgttat	cactcatggt	tatggcagca	ctgcataatt	2640
ctcttactgt	catgccatcc	gtaagatgct	tttctgtgac	tggtgagtac	tcaaccaagt	2700
cattctgaga	atagtgtatg	cggcgaccga	gttgctcttg	cccggcgtca	atacgggata	2760
ataccgcgcc	_acatagcaga_	_actttaaaag_	_tgctcatcat_	_tggaaaacgt_	_tcttcggggc_	<u> 2820</u>
gaaaactctc	aaggatctta	ccgctgttga	gatccagttc	gatgtaaccc	actcgtgcac	2880
ccaactgatc	ttcagcatct	tttactttca	ccagcgtttc	tgggtgagca	aaaacaggaa	2940
ggcaaaatgc	cgcaaaaaag	ggaataaggg	cgacacggaa	atgttgaata	ctcatactct	3000
tcctttttca	atattattga	agcatttatc	agggttattg	tctcatgagc	ggatacatat	3060
ttgaatgtat	ttagaaaaat	aaacaaatag	gggttccgcg	cacatttccc	cgaaaagtgc	3120
cacctgcatc	gatggccccc	cgatggtagt	gtggggtctc	cccatgcgag	agtagggaac	3180
tgccaggcat	caaataaaac	gaaaggctca	gtcgaaagac	tgggcctttc	gttttatctg	3240
ttgtttgtcg	gtgaacgctc	tcctgagtag	gacaaatccg	ccgggagcgg	atttgaacgt	3300
tgcgaagcaa	cggcccggag	ggtggcgggc	aggacgcccg	ccataaactg	ccaggcatca	3360

aattaa	gcag aaggccatcc	tgacggatgg	cctttttgcg	tggccagtgc	caagcttgca	3420
tgc						3423
<210> <211> <212> <213>	43 156 DNA Artificial sequ	ience				
<220> <223>	Promoter PT5					
<400> ctataa	43 aaat aggcgtatca	cgaggccctt	tcgtcttcac	ctcgagaaat	cataaaaaat	60
ttattt	gctt tgtgagcgga	taacaattat	aatagattca	attgtgagcg	gataacaatt	120
tcacaca	agaa ttcattaaag	aggagaaatt	aactca			156