

1994 CENSUS BUREAU INCOME

Mannheim University

Miguel Mendes,2179726 João Ferreira, 2179738

Maria Beili Mena, 2177377

Paola Tomorri, 2033630

Klea Hoxha, 1961755

Sueda Sogutlu, 1978962

What Brought Us Here

GOAL

Predict whether an individual earns more or less than \$50k per year

Data Profile and analysis

DROP

education → redundant with education.num
fnlwgt → outliers & low relevance

1994 Census Dataset Columns

Column Name	Description	
age	Age of the individual.	
workclass	Type of employment (e.g., Private, Self-emp-not-inc, Self-emp-inc, Federal-gov)	
fnlwgt	Final weight; estimates the number of people each observation represents in the population	
education	Highest level of education attained (e.g., Bachelors, HS-grad, 11th, Masters)	
education,num	Numerical representation of education, often corresponding to years of education (e.g., 13 for Bachelors)	
marital status	Marital status of the individual (e.g., Tech-support, Craft-repair, Other-sevice, Sales)	
relationship	Relationship status (e.g., Wife, Own-child, Husband, Not-in-family, Unmarried)	
race	Ethnicity or race (e.g., White, Black, Asian-Pac-Islander, Amer-indian-Estkimo)	
sex	Gender of the individual (e.g., Male, Female)	
native.country	Country of origin (e.g., United-States, Cambodia, England, Puerto-Rico)	
income	Target variable; indicates if annual income exceeds \$50K (>50K or <=50K)	

Preprocessing

Data Preprocessing Techniques

Variable	Preprocessing Method	
income	Binary (0: <=50K, 1: >50K)	
age	MinMax Scaling	
fnlwgt	MinMax Scaling	
education.num	MinMax Scaling	
workclass	One-Hot Encoding	
education	One-Hot Encoding	
marital.status	One-Hot Encoding	
occupation	One-Hot Encoding	
relationship	One-Hot Encoding	
race	One-Hot Encoding	
sex	One-Hot Encoding	
native.country	One-Hot (all nationalities) or Binary (US: 1, else: 0)	

Dataset Split

Model

Basic Models

	Train F1 Score	Validation F1 Score
Baseline Model	0.66	0.66
Logistic Regression	0.83	0.83
Decision Tree	0.95	0.79
Random Forest	0.95	0.81
Gradient Booster	0.84	0.84
SVM	0.82	0.83
BernoulliNB	0.77	0.76

Optimization: Used Grid Search and **Random Search**

Final Decision: Gradient
Boosting slightly
outperformed Random Forest
in Recall & Precision

Optimized Models

	Train Score	Validation Score
Random Forest	0.84	0.84
Gradient Boosting	0.84	0.84
SVC	0.83	0.83
Logistic Regression	0.83	0.83

Analysis of the best model

Challenges and error analysis of the best model

Results on the test data

	Precision	Recall	F1-Score
0	0.88	0.92	0.9
1	0.7	0.59	0.64
accuracy			0.84
macro avg	0.79	0.76	0.77
weighted avg	0.83	0.84	0.84

7 Outperformed 88% of Kaggle models

Importance of features to the result

Model Used: Random Forest

Top 3 features: Marital Status, Education Num, Age

✓ All show positive correlation with income > \$50K

THANKS FOR YOUR ATTENTION

Mannheim University

Miguel Mendes,2179726
João Ferreira, 2179738
Maria Beili Mena, 2177377
Paola Tomorri, 2033630
Klea Hoxha, 1961755
Sueda Sogutlu, 1978962

