COHOMOLOGY OF LIE ALGEBRAS

3(b) Cohomology of Lie algebras

Let G be any connected semisimple Lie group, $K \subset G(\mathbb{R})$ a maximal compact subgroup, (ρ, V) a finite-dimensional complex representation of G, $\Gamma \subset G(\mathbb{R})$ a torsion-free discrete arithmetic subgroup. We let $X = G(\mathbb{R})/K$ be the symmetric space attached to G and define the local system

$$\tilde{V} = \Gamma \backslash (X \times V) \rightarrow X_{\Gamma} = \Gamma \backslash X.$$

Here Γ acts diagonally on $X \times V$. Note that $\Gamma = \pi_1(X_{\Gamma})$ and \tilde{V} is a local system. Define

$$C^{\infty}(\tilde{V}) = \{ f \in C^{\infty}(G(\mathbb{R}), V) \mid f(\gamma g) = \rho(\gamma) f(g), \gamma \in \Gamma, g \in G(\mathbb{R}) \} = Ind_{\Gamma}^{G}(V).$$

(We write G for $G(\mathbb{R})$ in much of this section.) This is a representation space for G and \mathfrak{g} , under the right regular representation R. There is an isomorphism of G-modules

$$C^{\infty}(\tilde{V}) \xrightarrow{\sim} C^{\infty}(\Gamma \backslash G(\mathbb{R})) \otimes V; \ f \mapsto F(g) = \rho(g)^{-1} f(g).$$

Indeed, if $h \in G$ then $R_h(F)(g) = \rho(gh)^{-1}f(gh)$, hence under this isomorphism, $R_h(f)$ maps to

$$[g \mapsto \rho(g^{-1})R_h(f)(g) = \rho(h) \cdot \rho((gh)^{-1})R_h(f)(g) = \rho(h) \cdot R_h F(g) = (R \otimes \rho(h)F)(g)].$$

We want to compute the cohomology groups $H^*(\Gamma \backslash G, \tilde{V})$ and especially $H^*(\Gamma \backslash X, \tilde{V})$. Now \tilde{V} is locally constant (in the euclidean topology) and so its cohomology is computed by the complex of global sections of the (twisted) de Rham complex:

$$0 \rightarrow \tilde{V} \rightarrow \mathcal{A}^0(\tilde{V}) \xrightarrow{d} \mathcal{A}^1(\tilde{V}) \xrightarrow{d} \dots \xrightarrow{d} \mathcal{A}^N(\tilde{V}) \rightarrow 0.$$

Here $\mathcal{A}^i(\tilde{V})$ is the locally constant sheaf that on a small ball U is just the C^{∞} differential *i*-forms on U with coefficients in V. Then

$$A^i(\tilde{V}) := \Gamma(\Gamma \backslash G, \tilde{V}) = A^i(G, V)^{\Gamma}.$$

Now $A^i(G, V)$ is the space of smooth functions on G that at the point g takes $\bigwedge^i T_{G,g}$ to V. But $\bigwedge^i T_{G,g} = \bigwedge^i \mathfrak{g}$. So

$$A^{i}(G,V) = C^{\infty}(G,Hom(\bigwedge^{i}\mathfrak{g},V)) = Hom(\bigwedge^{i}\mathfrak{g},C^{\infty}(G,V)).$$

We will compute exterior differentiation and then look at what this does to the Γ -invariant subspaces.

Differential forms and differentials.

The exterior derivative of a differential form is calculated by linearity using the formula

$$d(f\omega_1 \wedge \omega_2 \wedge \dots \omega_q) = df \wedge \omega_1 \wedge \omega_2 \wedge \dots \omega_q) + \sum_{i=1}^q (-1)^{i+1} f\omega_1 \wedge \dots \wedge d\omega_i \wedge \dots \omega_q.$$

This simplifies if $\omega_i = dx_i$ for a coordinate system x_1, \ldots, x_n , whose derivatives commute, but we have identified differentials with linear maps from the Lie algebra to functions, and elements of the Lie algebra certainly don't commute. Let X_1, \ldots, X_N be a basis for $\mathfrak{g}, \omega_1, \ldots, \omega_N$ the dual basis that parallelizes the cotangent space. Note in any case that if $f \in C^{\infty}(G)$ then $df = \sum X_j(f)\omega_j$. On the other hand, $d^2 f = 0$, and this allows us to compute $d\omega_i$ for each i, as follows:

$$0 = d^{2} f = d(\sum X_{j}(f)\omega_{j}) = \sum_{j} d(X_{j}(f) \wedge \omega_{j}) + \sum_{k} X_{k}(f)d\omega_{k}$$

$$= \sum_{i,j} X_{i} \circ X_{j}(f)\omega_{i} \wedge \omega_{j} + \sum_{k} X_{k}(f)d\omega_{k}$$

$$= \sum_{i < j} (X_{i} \circ X_{j} - X_{j} \circ X_{i})(f)\omega_{i} \wedge \omega_{j} + \sum_{k} X_{k}(f)d\omega_{k}$$

$$= \sum_{i < j} [X_{i}, X_{j}](f)\omega_{i} \wedge \omega_{j} + \sum_{k} X_{k}(f)d\omega_{k}.$$

Now we write $[X_i, X_j] = \sum_k c_{ij}^j X_k$ and thus

$$0 = \sum_{k} X_k(f) \left[\sum_{i < j} c_{ij}^k \omega_i \wedge \omega_j + d\omega_k \right].$$

But this is true for any f, and by letting f vary, we see that the term in brackets vanishes, in other words

$$d\omega_k = -\sum_{i < j} c_{ij}^k \omega_i \wedge \omega_j.$$

Continuing the manipulations, we eventually find that if

$$\omega \in A^q(G,V) = Hom(\bigwedge^q \mathfrak{g}, C^{\infty}(G,V))$$

$$d\omega(Y_0 \wedge \dots \wedge Y_q) = \sum_{j=0}^q (-1)^j Y_j(\omega(Y_0 \wedge \dots \wedge \hat{Y}_j \wedge \dots \wedge Y_q))$$
$$+ \sum_{r < s} \omega([Y_r, Y_s] \wedge Y_0 \wedge \dots \wedge \hat{Y}_r \wedge \dots \wedge \hat{Y}_s \wedge \dots \wedge Y_q)$$

The action $Y_j(\omega(\bullet))$ is right-differentiation of functions. The complete calculation can be found in Knapp, Lie Groups, Lie Algebras, and Cohomology, pp. 155-160.

The Lie algebra complex.

If (π, W) is any (complex) $U(\mathfrak{g})$ -module, we can define a complex $C^{\bullet}(\mathfrak{g}, W) = Hom(\bigwedge^{\bullet} \mathfrak{g}, W)$ with differential given by the same formula

$$df(Y_0, \dots, Y_q) = \sum_{j=1}^{n} (-1)^j \pi(Y_i) f(Y_0, \dots, \hat{Y}_j, \dots, Y_q) + \sum_{j=1}^{n} f([Y_i, Y_s], Y_0, \dots, \hat{Y}_r, \dots, \hat{Y}_s, \dots, Y_q).$$

Let $H^q(\mathfrak{g}, W) = \ker(d_q)/im(d_{q-1})$. Then

$$H^0(\mathfrak{g},W)=\{f\in Hom(\mathbb{C},W)\ |\ df(X)=0, \forall X\in \mathfrak{g}\}=\{f\in Hom(\mathbb{C},W)\ |\ \pi(X)=0, \forall X\in \mathfrak{g}\}.$$

In other words

$$H^0(\mathfrak{g},W)=W^{\mathfrak{g}}:=Hom_{U(\mathfrak{g})}(\mathbb{C},W).$$

Theorem. The functor $W \mapsto W^{\mathfrak{g}}$ is left-exact and $W \mapsto H^q(\mathfrak{g}, W)$ are its right-derived functors.

Proof. Since $W^{\mathfrak{g}} := Hom_{U(\mathfrak{g})}(\mathbb{C}, W)$, we know that the functor is left-exact and its right-derived functors are given by $Ext^q_{U(\mathfrak{g})}(\mathbb{C}, W)$. So we need to identify $C^{\bullet}(\mathfrak{g}, W)$ with $Hom_{U(\mathfrak{g})}(C^{\bullet}, W)$ where C^{\bullet} is an acyclic resolution of \mathbb{C} in the category of $U(\mathfrak{g})$ -modules. This will be sketched later in the setting of (\mathfrak{g}, K) -modules.

We certainly don't want to compute the cohomology of $C^{\infty}(G, V)$; but we have seen that

$$A^{i}(\tilde{V}) = A^{i}(G, V)^{\Gamma} = Hom(\bigwedge^{i} \mathfrak{g}, C^{\infty}(\Gamma \backslash G) \otimes V)$$

So

$$H^q(\Gamma \backslash G, \tilde{V}) = H^q(\mathfrak{g}, C^{\infty}(\Gamma \backslash G) \otimes V).$$

This is still not what we want to compute, which is $H^{\bullet}(X_{\Gamma}, \tilde{V}) = H^{\bullet}(\Gamma \backslash G/K, \tilde{V})$. We can compute this by a complex of differential forms $A^{\bullet}(X_{\Gamma}, \tilde{V}) = A^{\bullet}(X, V)^{\Gamma}$ and there is a functorial embedding

$$i_K: A^q(X,V)^\Gamma \hookrightarrow A^q(G,V)^\Gamma.$$

given by $G \mapsto X$; $g \mapsto gK$ (pullback of differentials). The image consists of f: $\bigwedge^q \mathfrak{g} \to C^\infty(\Gamma \backslash G) \otimes V$ such that

- (1) $f(Y_0, ..., Y_{q-1}) = 0$ if one of the $Y_i \in \mathfrak{k} = Lie(K)$;
- (2) $f \in (A^q(G, V)^{\Gamma})^K$ (right-invariant under K).

Here (1) says that the pullback of differentials from X to G vanish on vectors tangent to K, and (2) says that the coefficients of the differential are functions on X = G/K. More precisely – ignore Γ for the moment, since the right and left actions don't interfere: Say $f(g) \in Hom(\bigwedge^q T_{G,g}, V)$;

$$f(gk) \in Hom(\bigwedge^q T_{G,gk}, V) \xrightarrow{\sim}_{R(k^{-1})} Hom(\bigwedge^q T_{G,g}, V)$$

and the condition that f be K-invariant is that $R(k^{-1})f(gk) = f(g)$. But $R(k^{-1})$ acting on left-invariant vector fields is just Ad(k) acting on \mathfrak{g} . So to conclude

Lemma. The image of $i_K(A^q(X,V)^{\Gamma})$ is

$$Hom_K(\bigwedge^q(\mathfrak{g}/\mathfrak{k}), C^{\infty}(\Gamma\backslash G, V)) = Hom_K(\bigwedge^q(\mathfrak{g}/\mathfrak{k}), C^{\infty}(\Gamma\backslash G) \otimes V).$$

Define $C^{\infty}(\Gamma \backslash G)_0 \subset C^{\infty}(\Gamma \backslash G)$ to be the subspace of *K*-finite vectors: a vector whose translates under K generate a finite-dimensional subspace. Then it is clear that for any q,

$$Hom_K(\bigwedge^q(\mathfrak{g}/\mathfrak{k}), C^{\infty}(\Gamma\backslash G)\otimes V) = Hom_K(\bigwedge^q(\mathfrak{g}/\mathfrak{k}), C^{\infty}(\Gamma\backslash G)_0\otimes V).$$

because both V and $\bigwedge^q(\mathfrak{g}/\mathfrak{k})$ are finite-dimensional.

Thus for any representation (π, W) of $U(\mathfrak{g})$ on which the action of \mathfrak{k} integrates to a consistent K-finite action of K, we define

$$C^{q}(\mathfrak{g}, K; W) = Hom_{K}(\bigwedge^{q}(\mathfrak{g}/\mathfrak{k}), W).$$

This is a subspace of $C^q(\mathfrak{g}, W)$ and it is easy to see that it is preserved by the differential, so that we have a complex and can define the *relative Lie algebra* cohomology $H^q(\mathfrak{g}, K; W)$.

Proposition.
$$H^{\bullet}(X_{\Gamma}, \tilde{V}) \xrightarrow{\sim} H^{\bullet}(\mathfrak{g}, K; C^{\infty}(\Gamma \backslash G)_{0} \otimes V).$$

Again $H^q(\mathfrak{g}, K; \bullet)$ is the right-derived functor of a left-exact functor on the category of (\mathfrak{g}, K) -modules (see below). In what follows, G is a connected reductive Lie group, $K \subset G$ is a maximal compact subgroup (modulo the center of G) and $\mathfrak{g} = Lie(G), \mathfrak{k} = Lie(K)$.

Definition. 1. $A(\mathfrak{g},\mathfrak{k})$ -module is a $U(\mathfrak{g})$ -module whose restriction to $U(\mathfrak{k})$ is semi-simple and a sum of finite-dimensional \mathfrak{k} -modules.

- 2. A (\mathfrak{g} , K)-module is a (\mathfrak{g} , \mathfrak{k})-module (π , V) whose \mathfrak{k} action integrates to an action of K (note: K may be disconnected) in such a way that, for $k \in K$ and $X \in \mathfrak{g}$, we have $\pi(k)\pi(X)\pi(k^{-1})v = \pi(ad(k)X)v$ for all $v \in V$.
- 3. $A(\mathfrak{g}, K)$ -module V is admissible if for any irreducible representation τ of K, $Hom_K(\tau, V)$ is finite-dimensional.

One also calls (\mathfrak{g}, K) -modules Harish-Chandra modules. They form an abelian category (a full subcategory of the category of $U(\mathfrak{g})$ -modules) with enough projectives and injectives. If V, W are (\mathfrak{g}, K) -modules, one can compute $Ext^{\bullet}(V, W)$ – extensions in the category of (\mathfrak{g}, K) -modules – by using a projective resolution of V:

$$\ldots \to P_i \to P_{i-1} \to \ldots \to P_0 \to V; \ C^i = Hom(P_i, W); \ Ext^q(V, W) = H^q(C^{\bullet}).$$

Let $P_i = U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} \bigwedge^i (\mathfrak{g}/\mathfrak{k})$ and define $\partial_q : P_q \to P_{q-1}$ by the expected formula

$$\partial_{q}(r \otimes x_{1} \wedge \cdots \wedge x_{q}) = \sum_{i < i} (-1)^{i-1} x_{i} \cdot r \otimes x_{1} \wedge \cdots \wedge \hat{x}_{i} \wedge \cdots \wedge x_{q})$$
$$+ \sum_{i < i} (-1)^{i+j} r \otimes ([x_{i}, Y_{j}] \wedge x_{1} \wedge \cdots \wedge \hat{x}_{i} \wedge \cdots \wedge \hat{x}_{j} \wedge \cdots \wedge x_{q})$$

Let $\varepsilon: P_0 = U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} \mathbb{C} \rightarrow \mathbb{C}$ be the augmentation.

Theorem. The P_j are projective, the maps ∂_q and ε are well-defined, and the sequence $\ldots \to P_q \to P_{q-1} \to \ldots \to \to P_0 \to \mathbb{C}$ is exact.

Proof. The detailed proofs are contained in §VII.8 of Knapp's yellow book. There are two points:

- (1) tensor product $U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} \bullet$ takes projectives to projectives and everything in the category is $U(\mathfrak{k})$ -projective;
- (2) The sequence is exact.

Exactness is a long calculation that reduces ultimately using filtrations to the exactness of the Koszul complex. The first point can be easily explained. Let V be any (\mathfrak{g}, K) -module and let U be a K-module. Let $I(U) = U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} U$. We check that this is a $(\mathfrak{g}, \mathfrak{k})$ -module (that it is a (\mathfrak{g}, K) -module follows easily). Let $W \subset U(\mathfrak{g})$ be a finite-dimensional subspace invariant under $ad(\mathfrak{k}), X \in W, Y \in U(\mathfrak{k})$; then

$$YX \otimes u = [Y, X] \otimes u + X \otimes Yu \subset W \otimes U.$$

So the action is semisimple and I(U) is a $(\mathfrak{g}, \mathfrak{k})$ -module.

Suppose $f: B \rightarrow A$ is a surjective morphism of (\mathfrak{g}, K) -modules. Now Frobenius reciprocity is a canonical isomorphism

$$Hom_{(\mathfrak{g},K)}(I(U),\bullet) = Hom_K(U,\bullet).$$

So the map $Hom_{(\mathfrak{g},K)}(I(U),B) \to Hom_{(\mathfrak{g},K)}(I(U),A)$ is surjective if and only if $Hom_K(U,B) \to Hom_K(U,A)$ is surjective; but this is clear because B and A are semisimple as K-modules. Thus I(U) is projective for any U, and in particular all the P_i are projective.

Corollary. The functors $H^{\bullet}(\mathfrak{g}, K; \bullet)$ are the right-derived functors of

$$W \mapsto Hom_{\mathfrak{g},K}(\mathbb{C},W).$$

In particular short exact sequences give rise to long exact sequences in the usual way.

Definition. Let U be a (\mathfrak{g}, K) -module. The contragredient of U is the subspace $\tilde{U} \subset Hom(U, \mathbb{C})$ of vectors on which K acts finitely.

Suppose U is admissible, so that as K-module, $U = \bigoplus_{\sigma \in \hat{K}} U(\sigma)$ with $U(\sigma) = Hom_K(\sigma, U) \otimes \sigma$ finite-dimensional. Then $\tilde{U} = \bigoplus_{\sigma \in \hat{K}} U(\sigma)^*$ where * is the usual contragredient for finite-dimensional representations. In particular, \tilde{U} is again admissible.

Definition. Let $\chi: Z(\mathfrak{g}) \to \mathbb{C}$ be an algebra homomorphism. The (\mathfrak{g}, K) -module U has infinitesimal character χ if $zu = \chi(z)u$ for all $z \in Z(\mathfrak{g})$, $u \in U$.

Corollary. Suppose U and V are (\mathfrak{g}, K) -modules with infinitesimal characters χ_U and χ_V , respectively. Suppose V is finite-dimensional and $\chi_U \neq \chi_{\tilde{V}}$. Then $H^q(\mathfrak{g}, K; U \otimes V) = 0$ for all q.

Proof. The natural equivalence of (bi)-functors:

$$Hom_{(\mathfrak{g},K)}(\mathbb{C},U\otimes V)\stackrel{\sim}{\longrightarrow} Hom_{(\mathfrak{g},K)}(\tilde{V},U)$$

gives rise to isomorphisms of derived functors

$$H^q(\mathfrak{g},K;U\otimes V)\stackrel{\sim}{\longrightarrow} Ext^q(\tilde{V},U).$$

So it suffices to show that $Ext^q(\tilde{V},U)=0$ for all q. Now by hypothesis, there is $z\in Z(\mathfrak{g})$ that acts as 1 on U and as 0 on \tilde{V} . If q=0 and $h:\tilde{V}\to U$ is a (\mathfrak{g},K) -morphism then h(v)=zh(v)=h(zv)=0. If q>0, let $S\in Ext^q(\tilde{V},U)$ correspond to a Yoneda extension, i.e. a long exact sequence of (\mathfrak{g},K) -modules

$$0 \rightarrow U \rightarrow E_{q-1} \rightarrow \dots \rightarrow E_0 \rightarrow \tilde{V} \rightarrow 0.$$

Then z acts consistently on this sequence and as the identity on U and as 0 on \tilde{V} , and defines an equivalence with the trivial Yoneda extension.

Alternatively, multiplication by z defines two natural transformations of bifunctors $(A, B) \mapsto Ext^q_{(\mathfrak{g}, K)}(A, B)$, say z_1 and z_2 , by acting in the first and second variable, respectively. For q = 0 we have $z_1 = z_2$. Suppose they are equal up to q-1. Let $B \to C \to B'$ be an exact sequence of (\mathfrak{g}, K) -modules with C injective. Then the exact cohomology sequence breaks up as $Ext^{j-1}(U, V') \to Ext^j(U, V)$ which is surjective for j = 1 and an isomorphism for $j \geq 2$, and which commutes with z_1 and z_2 . This reduces the case of q to that of q-1. In our setting, $z_1 = 0$ and $z_2 = 1$, so we are done.

Compact quotients.

Suppose $\Gamma \backslash G$ is compact. Then $C^{\infty}(\Gamma \backslash G)_0 \subset L_2(\Gamma \backslash G)$ where the measure defining L_2 is any right-invariant Haar measure dg on $G = G(\mathbb{R})$. It is not hard to show that if G is reductive, then any right-invariant Haar measure is also left-invariant. Now $L_2(\Gamma \backslash G)$ is a Hilbert space on which G acts by a unitary representation – unitary because

$$< r(h)f, r(h)f'>_{L_2} = \int_{\Gamma \backslash G} f(gh)f'(gh)dg = \int_{\Gamma \backslash G} f(g)f'(g)dg = < f, f'>_{L_2},$$

where the second equality follows from invariance of dg.

The following theorem is due to Gelfand and Piatetski-Shapiro:

Theorem. Assume $\Gamma \backslash G$ is compact. Then $L_2(\Gamma \backslash G)$ decomposes as G-module as a countable Hilbert space direct sum:

$$L_2(\Gamma \backslash G) = \widehat{\bigoplus}_{\pi} m(\pi, \Gamma) \pi$$

where π runs over irreducible unitary representations of G and $m(\pi, \Gamma) \in \mathbb{N}$. In particular, the multiplicity of π is always finite, and is zero except for a countable set of π .

The classification of irreducible unitary representations is incomplete, but the following theorem is fundamental. Choose a maximal compact (or compact connected) subgroup K of G. We define a K-finite vector in a Hilbert space representation (π, \mathcal{V}) as above; a smooth vector $v \in \mathcal{V}$ is one for which, for any element $X \in Lie(G)$ and any $w \in \mathcal{V}$ the function $t \mapsto \langle \pi(exp(tX)v, w) \rangle$ from \mathbb{R} to \mathcal{V} is infinitely differentiable.

Theorem(Harish-Chandra). Let π be an irreducible unitary Hilbert space representation of the reductive Lie group G and let $\pi_0 \subset \pi$ denote the subspace of K-finite smooth vectors. Then $U(\mathfrak{g})$ acts naturally on π_0 by $\pi(X)v = \frac{d}{dt}\pi(\exp(tX)v)$ and makes it an irreducible (\mathfrak{g}, K) module.

This is proved in several stages, the most important being that any irreducible representation of K occurs with finite multiplicity in π_0 – in other words, that π_0 is an *admissible* (\mathfrak{g}, K) module. This implies that every K-finite vector is automatically smooth. The proofs can be found in the beginning of Chapter VIII of Knapp's book Representation Theory of Semisimple Groups.

We see that $L^2(\Gamma \backslash G)_0 = C^{\infty}(\Gamma \backslash G)_0$ and that this in turn is $\widehat{\bigoplus}_{\pi} m(\pi, \Gamma) \pi_0$. Thus

Theorem. Assume $\Gamma \backslash G$ is compact. Then for any finite-dimensional representation V of G,

$$H^{\bullet}(X_{\Gamma}, \tilde{V}) \xrightarrow{\sim} \widehat{\bigoplus_{\pi}} m(\pi, \Gamma) H^{\bullet}(\mathfrak{g}, K; \pi_0 \otimes V).$$

Thus the calculation of the cohomology of X_{Γ} divides into two parts: a global part, which is the determination of $m(\pi, \Gamma)$, and a purely Lie-theoretic part, which is the calculation of $H^{\bullet}(\mathfrak{g}, K; \pi_0 \otimes V)$. The first part is very hard, the second part was solved some time ago. First I switch to the adelic setting.

Theorem (Borel-Harish-Chandra). Let G be a reductive group over \mathbb{Q} with center Z, and for any open compact subgroup $K \subset G(\mathbf{A}_f)$, let ${}_KS(G) = G(\mathbb{Q}) \backslash G(\mathbf{A}) / K_{\infty} Z(\mathbb{R}) \times K$. Then ${}_KS(G)$ is compact for one K if and only it it is compact for all K if and only if G/Z has \mathbb{Q} -rank 0; in other words, if G/Z does not contain a subgroup isomorphic to GL(1).

One says that G/Z is anisotropic if it is of \mathbb{Q} -rank 0. The adelic version of the Gelfand-Piatetski-Shapiro theorem is the following:

Theorem. Let G be a (connected) reductive group over \mathbb{Q} with center Z, and assume G/Z is anisotropic. Then $L_2(G(\mathbb{Q})\backslash G(\mathbf{A}))$ decomposes as $G(\mathbf{A})$ -module as a countable Hilbert space direct sum:

$$L_2(G(\mathbb{Q})\backslash G(\mathbf{A})) = \widehat{\bigoplus_{\pi}} m(\pi)\pi$$

where π runs over irreducible unitary representations of $G(\mathbf{A})$.

We fix a maximal compact subgroup $K_{\infty} \subset G(\mathbb{R})$. With π as in the theorem, a vector $v \in \mathcal{V}_{\pi}$ is *smooth* if it is C^{∞} with regard to the action of $G(\mathbb{R})$ and if there is an open compact subgroup $K_f \subset G(\mathbf{A}_f)$ that fixes v. Write $\pi_0 \subset \pi$ for the space of K_{∞} -finite smooth vectors. Then

- (1) π_0 determines π (and vice versa); in particular, π_0 is irreducible as a representation of $(U(\mathfrak{g}), K_{\infty}) \times G(\mathbf{A}_f)$;
- (2) π_0 admits a unique factorization (up to scalar multiples) $\pi_0 \xrightarrow{\sim} \pi_\infty \otimes \otimes'_p \pi_p$ where the product is taken over all prime numbers, π_∞ is an irreducible (\mathfrak{g}, K_∞) -module, and each π_p is an irreducible (smooth) representation of $G(\mathbb{Q}_p)$.

If V is a representation of G, we can then define $H^{\bullet}(\mathfrak{g}, K_{\infty}; \pi \otimes V) := H^{\bullet}(\mathfrak{g}, K_{\infty}; \pi_{\infty} \otimes V) \otimes \pi_f$ where $\pi_f = \otimes_p' \pi_p$ is an irreducible smooth representation of $G(\mathbf{A}_f)$. If $K_f \subset G(\mathbf{A}_f)$ is open compact, we can similarly define

$$H^{\bullet}(\mathfrak{g}, K_{\infty}; \pi^{K_f} \otimes V) := H^{\bullet}(\mathfrak{g}, K_{\infty}; \pi_{\infty} \otimes V) \otimes \pi_f^{K_f}.$$

Working through the comparison of $_KS(G)$ with a union of spaces of the form $\Gamma_i\backslash G(\mathbb{R})/K_\infty Z(\mathbb{R})$, we find

Proposition. For any representation V of G, there is a canonical isomorphism

$$H^{\bullet}({}_{K}S(G), \tilde{V}) \stackrel{\sim}{\longrightarrow} \bigoplus_{\pi} H^{\bullet}(\mathfrak{g}, K; \pi_{\infty} \otimes V) \otimes \pi_{f}^{K_{f}};$$

$$H^{\bullet}(S(G), \tilde{V}) \xrightarrow{\sim} \bigoplus_{\pi} H^{\bullet}(\mathfrak{g}, K; \pi_{\infty} \otimes V) \otimes \pi_f,$$

where the latter isomorphism commutes with the action of $G(\mathbf{A}_f)$ on both sides.

Automorphic vector bundles. Now assume (G, X) a Shimura datum, so that X is of Hermitian type. Fix $h \in X$ and let [W] be the automorphic vector bundle on S(G, X) attached to a finite-dimensional representation of K_h . We can replace the de Rham complex by the Dolbeault complex in the discussion above. Instead of

$$A^i(G,V) = C^{\infty}(G,Hom(\bigwedge^i \mathfrak{g},V)) = Hom(\bigwedge^i \mathfrak{g},C^{\infty}(G,V)).$$

we have

$$A^{0,q}([W]) = [C^{\infty}(G(\mathbb{Q})\backslash G(\mathbf{A}), Hom(\bigwedge^{i}(\mathfrak{p}^{-}), W))]^{K_{h}}$$

$$= Hom_{K_{h}}(\bigwedge^{i}(\mathfrak{p}^{-}), C^{\infty}(G(\mathbb{Q})\backslash G(\mathbf{A})) \otimes W)$$

$$= [\bigwedge^{i}(\mathfrak{p}^{-})^{*} \otimes C^{\infty}(G(\mathbb{Q})\backslash G(\mathbf{A})) \otimes W]^{K_{h}}.$$

Now $\mathfrak{k}_h \oplus \mathfrak{p}^-$ is the Lie algebra of a subgroup $P_h \subset G_{\mathbb{C}}$ (not defined over \mathbb{R} and the definition of relative Lie algebra cohomology in this case identifies $A^{0,q}([W])$ with $C^q(Lie(P_h), K_h; C^{\infty}(G(\mathbb{Q})\backslash G(\mathbf{A})) \otimes W)$. Thus Dolbeault's theorem gives us an isomorphism

$$H^q(S(G,X),[W] \xrightarrow{\sim} H^q(Lie(P_h),K_h;C^{\infty}(G(\mathbb{Q})\backslash G(\mathbf{A}))\otimes W).$$

Again, we can replace $C^{\infty}(G(\mathbb{Q})\backslash G(\mathbf{A}))$ by $\bigoplus_{\pi} m(\pi)\pi_0$ and then we find an isomorphism of $G(\mathbf{A}_f)$ -spaces

$$H^q(S(G,X),[W]) \xrightarrow{\sim} \bigoplus_{\pi} m(\pi)H^q(Lie(P_h),K_h;\pi_{\infty}\otimes W)\otimes \pi_f.$$

Hodge theory for (\mathfrak{g}, K) -modules.

The analytic arguments used to prove the Hodge theorem in complex geometry becomes completely algebraic in the setting of relative Lie algebra cohomology. Change notation: let π be a (\mathfrak{g}, K) -module that comes from a unitary representation of G. We want to compute $H^q(\mathfrak{g}, K; \pi \otimes V)$ for any irreducible finite-dimensional representation (ρ, V) . We already know that this vanishes unless π and V have opposite infinitesimal characters. To apply Hodge theory, we endow W with an admissible scalar product: one that is invariant under K and with respect to which the action of \mathfrak{p} is self-adjoint. The existence of such a scalar product is easy to show: V is a representation of G, therefore of the compact real form G_u , and therefore possesses a G_u -invariant (hermitian) scalar product (unique up to positive scalar multiples), say $(,)_V$. This means that $Lie(G_u) = \mathfrak{k} \oplus i\mathfrak{p}$ acts by skew-adjoint operators: if $X \in Lie(G_u)$ then (Xv, v') + (v, Xv') = 0. For X = iY with $Y \in \mathfrak{p}$ this means

$$0 = i(Yv, v') + \bar{i}(v, Yv') = i[(Yv, v') - (v, Yv')]$$

which means that \mathfrak{p} is self-adjoint.

Let $D^q(\pi \otimes V) = \bigwedge^q \mathfrak{p}^* \otimes \pi \otimes V$ with scalar product given by the tensor product of the hermitian Killing form on $\mathfrak{p}_{\mathbb{C}}$:

$$(x,y) = B(x,\bar{y})$$

(dualized and taken to the q-th power) with the scalar products already defined on the other two factors. All of these scalar products are invariant under \mathfrak{k} . Write $\tau = \pi \otimes \rho$, so that $\tau(x) = \pi(x) \otimes 1 + 1 \otimes \rho(x)$ for $x \in \mathfrak{g}$. The adjoint with respect to the scalar product on τ is given by

$$\tau^*(x) = -\tau(x), x \in \mathfrak{k}; \ \tau^*(x) = -\pi(x) + \rho(x), x \in \mathfrak{p}.$$

In what follows, we choose a (real) basis x_1, \ldots, x_D of \mathfrak{p} (and don't confuse the dimension D with the differential d. If $\eta \in D^q(\pi \otimes V) = Hom(\bigwedge^q \mathfrak{p}, \pi \otimes V)$ and $J \subset \{1, \ldots, D\}, |J| = q$, we write

$$\eta_J = \eta(x_{j_1}, \dots, x_{j_q}).$$

Proposition. Define $d^*: D^q(\pi \otimes V) \to D^{q-1}(\pi \otimes V)$ by the formula

$$(d^*\eta)_J = \sum_{j=1}^D \tau(x_j)^* \eta_{\{j\} \cup J}.$$

Then d^* commutes with K, maps the K-invariant subspace $C^q(\pi \otimes V)$ into the K-invariant subspace $C^{q-1}(\pi \otimes V)$, and is formally adjoint to d:

$$(d^*\eta, f) = (\eta, df)$$

for $\eta \in D^q$, $f \in D^{q-1}$.

Proof. We recall the formula for df (with a shift of indices):

$$df(Y_{j_1}, \dots, Y_{q+1}) = \sum_{j} (-1)^{j-1} \tau(Y_j) f(Y_1, \dots, \hat{Y}_j, \dots, Y_{q+1}) + \sum_{r < s} f([Y_r, Y_s], Y_1, \dots, \hat{Y}_r, \dots, \hat{Y}_s, \dots, Y_{q+1})$$

$$= \sum_{j} (-1)^{j-1} \tau(Y_j) f(Y_1, \dots, \hat{Y}_j, \dots, Y_{q+1})$$

because $[\mathfrak{p},\mathfrak{p}] \subset \mathfrak{k}$ so the bracket terms vanish. Thus (replacing the Y_u 's by x_{j_u}

$$(\eta, df) = \sum_{|I|=q} (\eta_I, (df)_I)_{\tau} = \sum_{|I|=q} (\eta_I, \sum_u (-1)^{u-1} \tau(x_{j_u}) f_{I(u)})_{\tau}$$

where $I = \{j_1, \ldots, j_q\}$ and I(u) is I with the j_u term removed. And thus by adjunction

$$(\eta, df) = \sum_{I,u} ((-1)^{u-1} \tau^*(x_{j_u}) \eta_I, f_{I(u)}.$$

Using the anticommutation formula

$$\eta_I = (-1)^{u-1} \eta_{\{j_u\} \cup I(u)}$$

this shows after reviewing the notation that $(\eta, df) = (d^*\eta, f)$.

Now if $x \in k$ we find

$$-(\tau(x)d^*\eta, f) = (\tau(x)^*d^*\eta, f) = (d^*\eta, \tau(x)f) = (\eta, d\tau(x)f)$$
$$= (\eta, \tau(x)df) = (-\tau(x)\eta, df) = -(d^*\tau(x)\eta, f).$$

Thus d^* commutes with K and in particular takes the K-invariants to K-invariants.

Let $\Delta = dd^* + d^*d$. For each q, Δ is an endomorphism of $D^q(\pi \otimes V)$ and of $C^q(\pi \otimes V)$. Moreover, for $\eta \in D^q(\pi \otimes V)$

$$(\Delta \eta, \eta) = (d\eta, d\eta) + (d^*\eta, d^*\eta)$$

and since the scalar product is positive non-degenerate,

$$\Delta \eta = 0 \Leftrightarrow d\eta = 0 \text{ and } d^*\eta = 0 \Leftrightarrow (\Delta \eta, \eta) = 0.$$

In this case we say η is *harmonic*; and we let $\mathcal{H}^q(\pi \otimes V) \subset C^q(\pi \otimes V)$ denote the subspace of harmonic forms.

Proposition. For every q, the map $\mathcal{H}^q(\pi \otimes V) \rightarrow H^q(\mathfrak{g}, K; \pi \otimes V)$ is an isomorphism.

Proof. This is equivalent to the orthogonal decomposition

$$C^q(\pi \otimes V) = \mathcal{H}^q(\pi \otimes V) \oplus Im(d) \oplus Im(d^*).$$

Note for example that for $\eta \in C^q$,

$$d\eta = 0 \Leftrightarrow (d\eta, f) = 0 \ \forall f \in C^{q+1} \Leftrightarrow \eta \perp Im(d^*).$$

So $C^q = \ker(d) \oplus Im(d^*)$ is an orthogonal decomposition. Similarly, $Z^q := \ker d = \mathcal{H}^q \oplus Im(d)$ is an orthogonal decomposition because $\mathcal{H}^q = Z^q \cap \ker d^*$.

Kuga's formula calculates the action of Δ in terms of a specific element, the Casimir element, in $Z(\mathfrak{g})$.