

Instrument for the Identification of Live and Dead Bacteria

ECEN 403 - 970

Arjun Krishnamoorthi

Team 52 (URS)

Advisor: Dr. Peter Rentzepis

Problem Statement and Goals

ENGINEERING
TEXAS A&M UNIVERSITY

- ▶ Bacteria are a serious threat to human life
- ► Current identification procedures are slow (~1 to 2 days)
- ► Goals:
 - ► Utilize fluorescence spectroscopy to detect bacteria
 - ► Apply PCA to distinguish live and dead bacteria
 - ▶ Develop a portable prototype for rapidly identifying live and dead bacteria

Accomplishments since the last presentation <4> hours	Ongoing progress/problems and plans until the next presentation
 Enclosure selected UVC LED (285 nm) acquired, mounted, and wired through soldered connections Focusing and collection optics aligned Coupled with emission monochromator through fiber optic port 	 Design and machine cover for unit Investigate using additional LEDs to increase fluorescence intensity

Disinfection Unit Subsystem

Configuration of disinfection unit.

Excitation and disinfection setup.

Emission Monochromator Subsystem

Accomplishments since the last presentation <8> hours	Ongoing progress/problems and plans until the next presentation		
 Emission monochromator selected (B&W Tek) Emission monochromator calibrated, aligned, and optimized for UV region Mounting plate machined for electronics project box UV sensitivity validated by detecting bacteria fluorescence 	 Continue increasing sensitivity to lower integration time Reduce noise in recorded spectra Resolve any machining issues Begin testing subsystem with excitation monochromator (for next semester) 		

Emission Monochromator Subsystem

Optical Bench

Input Optical Fiber

Communication Port

Detector + Fan

Input Power

Validation of UV sensitivity with bacteria (E. coli).

Validation of disinfection unit with bacteria (E. coli).

Excitation Monochromator Subsystem

Accomplishments since the last presentation <8> hours	Ongoing progress/problems and plans until the next presentation
 Scanning monochromator selected (Mini-Chrom) Stepper motor controller and driver selected (DCB 241) High-power UVC LED selected (280 nm) Mounting plate machined for electronics project box Scanning capability validated with tungsten halogen lamp 	 Manage heat dissipation with UVC LED Mount UVC LED on heat sink with soldered connections Resolve any machining issues Begin testing subsystem as excitation source (for next semester)

Excitation Monochromator Subsystem

DCB 241

Input Fiber Port

Scanning Mini-Chrom Monochromator

Validation of scanning capabilities with tungsten halogen lamp.

Control and Display Unit Subsystem

Accomplishments since the last presentation <8> hours	Ongoing progress/problems and plans until the next presentation		
 MATLAB GUI created through App Designer Serial communication through USB port validated for both monochromators PCA implemented through Statistics and Machine Learning Toolbox 	 Create simple GUI for processing data Optimize communication speed (baud rate, data compression, etc.) Optimize PCA parameters Continue debugging code 		

MATLAB GUI for communicating with excitation and emission monochromators.

PCA Score Plot

PCA Principal Component 1 Plot

Execution and Validation Plan

► Currently: Have completed practically all execution steps on schedule, validated all major subsystem functionalities, and begun integration of all subsystems

	October 11th	October 18th	October 25th	November 1st	November 8th	Execution
Control and	Develop MATLAB code for communicating with emission	Develop MATLAB code for communicating with excitation	Develop MATLAB code for processing data (plotting, PCA,	Develop simple GUI for interfacing with all subsystems	Validate GUI communication and processing requirements	Validation
Display Unit	monochromator monochromator	etc.)			Completed (Execution)	
Disinfection Unit	Select UV LED and optical fiber for subsystem	Design enclosure for subsystem	Machine enclosure for subsystem	Validate disinfection and excitation functions of subsystem	Couple with emission monochromator	Completed (Validation)
Excitation Monochromator	Select UV LED and microcontroller for subsystem	Design enclosure for subsystem	Machine enclosure for subsystem	Validate scanning capability of subsystem	Couple with emission monochromator	Incomplete
Emission Monochromator	Optimize sensitivity characteristics of subsystem	Design enclosure for subsystem	Machine enclosure for subsystem	Validate usage with disinfection unit	Couple with excitation monochromator	16

Thank You!

Questions?