

Angular impulse I: momest of inertia and Impulse momentum theorems I moment d'inertien During collisions, extremely large magnitude

Of = fedt forces act for extremely small

Linear impulse des yeatins Angular Impulse = IT dt st -> 10 10 (F->0) is created by impulsive forces F $J = \int F_{1} dt = \gamma_{1} \int F_{1} dt$ $J = \int F_{1} dt = \gamma_{1} \int F_{2} dt$ $J = \int F_{1} dt = \gamma_{1} \int F_{2} dt$ $J = \int F_{1} dt = \gamma_{2} \int F_{2} dt$ $J = \int F_{1} dt = \gamma_{2} \int F_{2} dt$ $J = \int F_{1} dt = \gamma_{2} \int F_{2} dt$ $J = \int F_{1} dt = \gamma_{2} \int F_{2} dt$ $J = \int F_{1} dt = \gamma_{2} \int F_{2} dt$ $J = \int F_{1} dt = \gamma_{2} \int F_{2} dt$ Direction of angular impulse about A will be imagined by swinging I vector around A. We calculate I by looking at Impulse diagram 9= SFAt = Salp = Sp > 9=0p $J = \int c dt = \int dL dt = \int dL = \Delta L \Rightarrow \int \overline{J} = \Delta \overline{L}$ Impulse-Momentum theorems J=DLp is applied about a point P Mich semains stationary before/during lafter

about CM. Jp= Ipwf-Ipwi OR Jon I Icm Wy -To = Ind OR Tem=Icmd. P=MVCM Le= Ion About St. pt. P. RIGID B LCM= Ion About CM P= MV La= Ion + MV cn 1 Leveral. particle p=m 0

Illustration - 26 A uniform rod AB of mass m and length l is at rest on a smooth horizontal surface. An impulse I is applied to the end B perpendicular to the rod in horizontal direction. Speed of particle P at a distance l/6 from the centre towards A of the rod at time $t = \frac{\pi ml}{12I}$ is:

(A)
$$2\frac{I}{m}$$
 (B) $\frac{I}{\sqrt{2}m}$ (C) $\frac{I}{m}$ (D)

SOLUTION .

 $S_{CM} = V_{cm} t = \frac{9}{m} \cdot \frac{\pi Ml}{12 \cdot 9} = \frac{\pi l}{12}$ $S_{p} = \frac{l}{12} (\pi - 2) \hat{i} - \frac{l}{6} \hat{j} \cdot S_{p} = -\frac{l}{6} \hat{i} \cdot S_{p} = -\frac{l}{6}$

Illustration - 25 A billiard ball, initially at rest, is given a sharp impulse by a rod. The rod is held horizontally at a height h above the centre of the ball. The ball immediately begins to roll without slipping after the impact. Calculate the height h in terms of the radius of the ball.

A thin rod of mass M and length L is hanging from a fixed support and is hit by an impulse lacting at a point distant h from fixed end perpendicular to its length. Calculate the impulse acting on rod at the fixed end and angular velocity of rod after the hit.

Conservation of angular momentum in collisions

J=OL. If J=0 about A in the body, then sl=0 => L remains conserved. Angular Momontum of a body/syctem i's Conserved about a point A if argular impulse about A is zero. For conservation of L are look for a point A about North $J_A = 0$. LA can be done only if all impulses act at one point only at A. I can be conferred about any point if frere is NO impulse.

about a fixed vertical axis through
$$C$$
, is lying on a frictionless horizontal table. A particle of equal mass strikes the rod with a velocity V_0 and sticks to it. The angular velocity of the combination immediately after the collision is:

(A) $\frac{3V_0}{4L}$ (B) $\frac{3V_0}{8L}$ (C) $\frac{3V_0}{2L}$ (D) None of these

Prod = 0

System C (D) None of these

1. Consequation of C (C) C (C) C (C) C (D) None of these

2. Consequation of C (C) C (D) None of these

A uniform rod of mass M and length L, which is free to rotate

55.

P is not conserved day Yaxis fer particle de System.

(For your B=0 all the time) Hore A TVO A O TO A O TO A O TO A TVO System.

Lamvy

Lamvy

O

Lamvy

Lamvy

O

Lamvy

O

Lamvy

O

Lamvy

Lamvy

O

Lamvy

Lamvy

O

Lamvy

L As particle sticks to god => Uparticle = UBB

at B.

U=Lw. FOR ELASTIC IMPACT. (e=1). CN

Vsep = e Vapp. $\frac{1}{8}^{2}\omega$ CT CT CN C(e=1 for plash). (Put e=0 if particle stokes) (put e=1 if elastic)

normal to one face at a point that is directly above the centre of the face at a height $\frac{a}{\cdot}$ above the centre. The minimum value of F for which the cube begins to topple above an edge without sliding is: $\frac{1}{2}$ mg **(B)** 2mg(C) Theling uniformly of CM as shown Mg 2. distributed N Shifts ahead by 2. Nand fact at P. Tp] = Tp) balance treques about P. $\left(F\left(\frac{a}{2} + \frac{a}{u}\right) - Mg\chi \right) \qquad \left(\frac{N-Mg}{r-r} \right)$ If F gols on increasing then I incolases. N's hifts towards front corner. CRITICAL POINT when N Shifts & reaches front Corner. Now Cube is about to be toppled over

A uniform cube of side a and mass m rests on a rough horizontal surface. A horizontal force F is applied

61.

topphing pointf f N All points are about to lift off toppling point $x = \frac{3 \text{ Fmax}}{4 \text{ Mg}}$ Finax $\frac{2Mg}{3}$ to avoid toppling. We balance torques at toppling print. Fmax $\frac{1}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{3}{4}$ Finax $\frac{3}{4}a = M_3 \frac{a}{2}$ Finax $\frac{3}{4}a = M_3 \frac{a}{2}$ Frax to avoid slippiy = Ms Mg.

*7. A block with a square base measuring $a \times a$, and height h, is placed on an inclined plane. The coefficient of friction is μ . The angle of inclination (θ) of the plane is gradually increased. The block will:

(A) topple before sliding if $\mu > \frac{a}{h}$ (B) topple before sliding if $\mu < \frac{a}{h}$ (C) slide before toppling if $\mu > \frac{a}{h}$

Owax tanks.

to avoid

shipping.

slide before toppling if $\mu < \frac{a}{h}$

(D)

og Con De Mg Sin De 2.

Omax = tan a to ave

R. topply