Question 2: Derivation of the Generalized Black Scholes PDE

Consider an underlying asset S_t following

$$dS_t = \mu S_t dt + \sqrt{v_t} S_t dZ_t,$$

where Z_t is a standard Brownian motion and $v_t = \sigma_t^2$ is the variance process. Assume v_t follows a square-root diffusion of the form

$$dv_t = \kappa(\theta - v_t) dt + \gamma \sqrt{v_t} dW_t,$$

where W_t is another Brownian motion such that

$$Cov(dZ_t, dW_t) = \rho dt.$$

Solution

Let U(S, v, t) denote the price of a derivative contingent on S_t and v_t . By Itô's Lemma,

$$dU = U_t dt + U_S dS + U_v dv + \frac{1}{2} U_{SS} (dS)^2 + \frac{1}{2} U_{vv} (dv)^2 + U_{Sv} dS dv.$$

We compute the second-order terms:

$$(dS)^{2} = vS^{2} dt,$$

$$(dv)^{2} = \gamma^{2}v dt,$$

$$dS dv = \sqrt{vS} dZ \cdot \gamma \sqrt{v} dW = \gamma vS \rho dt.$$

Substituting into dU by dS_t and dv_t

$$dU = \left[U_t + \mu S U_S + \kappa (\theta - v) U_v + \frac{1}{2} v S^2 U_{SS} + \rho \gamma v S U_{Sv} + \frac{1}{2} \gamma^2 v U_{vv} \right] dt + \sqrt{v} S U_S dZ + \gamma \sqrt{v} U_v dW.$$

Under the risk-neutral measure \mathbb{Q} :

- the asset drift becomes r, i.e. $\mu = r$,
- the variance drift includes a risk-premium adjustment, so

$$dv_t = \left[\kappa(\theta - v_t) - \lambda v_t \right] dt + \gamma \sqrt{v_t} dW_t,$$

where λ is the market price of variance risk.

Thus the drift of U under \mathbb{Q} is

$$drift(dU) = U_t + rSU_S + \left[\kappa(\theta - v) - \lambda v\right]U_v + \frac{1}{2}vS^2U_{SS} + \rho\gamma vSU_{Sv} + \frac{1}{2}\gamma^2 vU_{vv}.$$

Given the No-arbitrage condition:

The discounted derivative price $e^{-rt}U(S_t, v_t, t)$ must be a martingale.

Hence the drift of U must equal rU. Setting drift -rU = 0 yields the PDE:

$$\frac{1}{2}vS^2U_{SS} + \rho\gamma vSU_{Sv} + \frac{1}{2}\gamma^2 vU_{vv} + rSU_S + \left[\kappa(\theta - v) - \lambda v\right]U_v - rU + U_t = 0.$$