物理学院学术辅导

王逸飞

北京大学物理学院

November 23, 2019

王逸飞

一些不严谨且 没用的闲话

次(性工)
准备概念
线性空间的概念
线性空间的基与维数
子空间与子空间的直
和
线性空间的网

1 一些不严谨且没用的闲话

2 线性空间

- 准备概念
- 线性空间的概念
- 线性空间的基与维数
- 子空间与子空间的直和
- 线性空间的同构
- 商空间

王逸飞

一些不严谨且 没用的闲话

线性空间

和 线性空间的同构

Section 1

一些不严谨且没用的闲话

线性关系

线性代数

王逸飞

一些不严谨且 没用的闲话

我性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直和 线性空间的同构

问题

我们见过的最简单数量关系是什么? 我们见过的最简单的那些几何对象是什么? 它们有怎样的性质和联系?

问题

面对不那么简单的关系和对象, 我们怎样处理?

线性关系

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和

线性空间的同构 商空间

任务

- 研究线性关系.
- 研究更丰富的关系

手段

- 代数方法 → 线性代数.
- 分析方法 → 微积分.

线性关系

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直和 线性空间的同构

任务

- 研究线性关系。
- 研究更丰富的关系.

手段

- 代数方法 → 线性代数.
- 分析方法 → 微积分.

问题

什么是关系?什么是代数?

请站稳扶好,注意安全

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 线性空间的同构

好了, 废话说完了, 让我们进入抽象的世界.

王逸飞

一些不严谨且 没用的闲话

线性空间

线性空间的概念 线性空间的基与维数 子空间与子空间的直

线性空间的同构

Section 2

线性空间

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直和

线性空间的同构 商空间

Subsection 1

准备概念

复数

线性代数

王逸飞

准备概念

定义(复数)

- 1 复数,复数集 ℂ
- 2 加法和乘法

性质 (复数)

- 1 加法交换律
- 2 加法结合律
- 3 单位元 (加法单位元 0 和乘法单位元 1)
- 4 加法逆元
- 5 乘法逆元
- 6 分配律

王逸飞

一些不严谨! 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 经性空间的同构

定义 (list)

 (x_1,\cdots,x_n) .

定义 (\mathbb{F}^n)

$$\mathbb{F}^n = \{(x_1, \cdots, x_n) : x_i \in \mathbb{F} \ \forall j = 1, \cdots, n\}.$$

Remark

 \mathbb{F} 是所谓"数域", 指 \mathbb{C} 或 \mathbb{R} . 我们暂不讨论其他域.

\mathbb{F}^n 上的运算

线性代数

王逸飞

一些不严谨! 没用的闲话

经性穴间

准备概念

在實際之 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 经性空间的同数 定义 (加法)

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n).$$

性质 (加法交换律)

定义 (0)

定义 (加法逆元)

定义(数乘)

域(补充)

线性代数

王逸飞

定义(环)

定义了加法和乘法运算的非空集合被称为环当且仅当这两个 运算满足

- 11 加法结合律
- 2 加法交换律
- 3 存在零元
- 4 存在加法逆元 (负元)
- 5 乘法结合律
- 6 乘法对加法的左分配律和右分配律

定义(域)

有单位元且非零元可逆的交换环.

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念

线性空间的概念 线性空间的基与维数

子空间与子空间的直 和 Subsection 2

线性空间的概念

线性空间

线性代数

王逸飞

一些不严谨! 没用的闲话

准备概念 线性空间的概念 线性空间的基与维数 조尔河上子公司的克

线性空间的基与维数 子空间与子空间的直 和 线性空间的同构 商空间

定义 (加法和数乘)

定义 (线性空间)

定义了加法和数乘的集合称为线性空间如果其运算满足

- 1 加法交换律
- 2 加法和乘法的结合律
- 3 加法零元存在
- 4 加法逆元存在
- 5 域的单位元是数乘单位元
- 6 左分配律和右分配律

向量 线性空间举例

线性代数

王逸飞

一些不严谨[没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维

子空间与子空间的 和 线性空间的同构 商空间

定义(向量)

线性空间中的元素称为向量.

例 (什么是线性空间)

- \mathbb{F}^n 对于我们之前定义的加法和数乘.
- \blacksquare \mathbb{R}^3 对于我们高中学过的矢量的加法和数乘 (实际上是上一条的特例,但这是最直观的例子,所以单独列出). 1
- 定义某个区间某个区间上的可导函数。
- 定义在某个区间上的黎曼可积函数.

¹当我们说一个集合是线性空间时,我们必须指出加法和乘法运算分别是什么,但由于我实在码不动字了,在后面几个例子中,对于平凡的加法和乘法不再做特殊说明.

线性空间举例

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与领 子空间与子空间

子空间与子空间的重和 级性空间的同构 商空间

例 (什么是线性空间.cont)

- 域上的多项式.
- 齐次线性方程组的解.
- 线性微分方程的解.
- 量子力学中的态空间.

例(什么不是线性空间)

- 起点在原点终点在一球面上的矢量, 对于矢量的加法和数乘.
- 非齐次方程的解.

研究线性空间的几个途径

线性代数

王逸飞

一些不严谨 E 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直

和 线性空间的同构 商空间

- 从元素的角度
- 从子集的角度
- 从集合划分的角度
- 从线性空间之间关系的角度

- 基与维数
- 子空间与子空间的直和
- 等价类, 商集和商空间
- 众多线性空间之相同的结构相同的结构

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概念 **线性空间的基与维数**

子空间与子空间的道 和

线性空间的同构 商空间

Subsection 3

线性空间的基与维数

向量组

线性代数

王逸飞

一些不严谨且
没用的闲话
线性空间
准备概念
线性空间的概念
线性空间的基与维持
专项目子空间的
结

定义

向量组 线性组合 线性表出 有限维线性空间 线性无关 (线性独立) 线性相关 极大线性无关组

性质

向量组 A 线性表出线性无关的 B 则 A 中向量个数大于等于 B.

向量组的不同极大线性无关组所含向量个数相等。

Remark

我们目前仅讨论有限维线性空间.2

基与维数

线性代数

王逸飞

一些不严谨且 没用的闲话

3文性全间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 定义

基 维数

性质

展开的唯一性

基的存在性.3

基中所含向量个数个数的唯一性.(由此可以定义维数) 维数与线性空间中线性无关向量组的规模. $(n \leq \dim V)$

Remark

从展开的唯一性看"线性独立"的意义.

³注意我们已经强调我们仅讨论有限维线性空间. 这一定理对无穷维线性空间也是成立的, 其证明需要用到佐恩引理或类似的集合论中的基本定理(公理).

基变换和坐标变换

线性代数

王逸飞

一些不严谨且 没用的闲话 线性空间

准备概念 线性空间的概念 **线性空间的基与维数** 子空间与子空间的直和

定理(基变换与坐标变换)

设 A 是 $n \times n$ 的可逆矩阵, $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ 和 $(\mathbf{e}_1', \cdots, \mathbf{e}_n')$ 是两 组基且满足

$$(\mathbf{e}_1', \cdots, \mathbf{e}_n') = (\mathbf{e}_1, \cdots, \mathbf{e}_n) A,$$
 (1)

矢量 $\mathbf{x} = (\mathbf{e}_1, \dots, \mathbf{e}_n) x = (\mathbf{e}'_1, \dots, \mathbf{e}'_n) x'$, 其中 x, x' 为坐标, 是列向量, 则有坐标变换⁴

$$x = Ax'. (2)$$

⁴这两种变换形式, 一种称为"协变", 一种称为"逆变". 结合对偶空间中的变换, 我们将会发现这两种变换形式有很深刻的内容. 4 毫 4 4 毫 4 9 9 9 9 9 9 9 9

例题

线性代数

王逸飞

一些不严谨! 没用的闲话

线性空间

线性空间的概念 **线性空间的基与维数**

例

证明 \mathbb{R} 上的 n 级对称矩阵构成线性空间, 并求出它的维数.

王逸飞

一些不严谨[没用的闲话 线性空间

例

在定义域为实数集 $\mathbb R$ 的所有实值函数形成的线性空间 $\mathbb R^{\mathbb R}$ 中

- 题干的表述有什么问题?
- $2 \sin x, \cos x, e^x \sin x$ 是否线性无关?
- ③ 对其中 n 个 n-1 阶连续可导函数 $f_1(x), \dots, f_n(x)$ 定义 朗斯基行列式为

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}$$

证明若存在 $x_0 \in \mathbb{R}$ 使得 $W(x_0) \neq 0$, 则这些函数线性无关.

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与

子空间与子空间的直 和

线性空间的同构 商空间

Subsection 4

子空间与子空间的直和

子空间 子空间的和

线性代数

王逸飞

一些不严谨£ 没用的闲话

线性空间
准备概念
线性空间的概念
线性空间的基与维数
子空间与子空间的直和
组集性空间的同构

定义

子空间 子空间的和

性质

- 加法和数乘封闭的子集为子空间.
- 两个子空间的交仍是子空间.
- 两个子空间的和仍是子空间, 维数为 $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 \dim(V_1 \cap V_2)$.

直和

线性代数

王逸飞

一些不严谨』 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直和

中空间与于空间的 和 线性空间的同构 商空间

定义

子空间的直和.(分解的唯一性) 补空间

性质 (直和的等价表述)

- 1 $V_1 + V_2$ 是直和.
- $V_1 + V_2$ 中零向量的表示唯一.
- 3 $V_1 \cap V_2 = 0$.
- $\dim(V_1 + V_2) = \dim V_1 + \dim V_2.$
- 5 V_1 的一个基与 V_2 的一个基合起来是 $V_1 + V_2$ 的一个基

性质

补空间存在.5

⁵有限维的证明是容易的.

直和

线性代数

王逸飞

一些不严谨£ 没用的闲话

线性空间

线性空间的概念 线性空间的基与维数 **子空间与子空间的直**

线性空间的同构 商空间

性质 (多个子空间直和的等价表述)

- 1 $V_1 + \cdots + V_s$ 是直和.
- ② $V_1 + \cdots + V_s$ 中零向量的表示唯一.
- $V_i \cap \left(\sum_{j \neq i} V_j\right) = 0.$
- $\dim(V_1 + \cdots + V_s) = \dim V_1 + \cdots + \dim V_s.$
- 5 V_1 的一个基, V_2 的一个基, \cdots , V_s 的一个基合起来是 $V_1 + \cdots + V_s$ 的一个基.

王逸飞

一些不严谨且 没用的闲话

线性空间

线性空间的概念 线性空间的基与维数

和 线性空间的同构

线性空间的问

Subsection 5

线性空间的同构

线性空的的同构

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直和

线性空间的同构 商空间

定义

同构映射 (保持加法和数乘的双射) 同构

性质

同构保持了以下关系:

- ■零元
- 负元
- 线性表出和线性相关性
- ■基
- 维数
- 子空间

有限维线性空间的结构

线性代数

王逸飞

一些不严谨」 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 线性空间的同构

定理

Remark

 \mathbb{F} 上所有 n 维线性空间都与 \mathbb{F}^n 同构.

例题

线性代数

王逸飞

一些不严谨! 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直和 线性空间的同构

例

设集合 $X=\{x_1,\cdots,x_n\}$, 求 X 到 $\mathbb F$ 上所有映射构成的 $\mathbb F$ 上线性空间 $\mathbb F^X$ 的一个基和维数. 并写出 $f\in\mathbb F^X$ 在这组基下的坐标.

王逸飞

一些不严谨且 没用的闲话

线性空间

线性空间的概念 线性空间的基与维数

子空间与子空间的 和

线性空间的同构

商空间

Subsection 6

商空间

等价关系 等价类 商集

线性代数

王逸飞

一些不严谨且 没用的闲话 线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和

线性空间的 **商空间**

定义 (等价关系 ~)

如果一个非空集合 S 的一个二元关系 R 满足

1 反身性: $aRa, \forall a \in S$ **2** 对称性: $aRb \Rightarrow bRa$

3 传递性: $aRb, bRc \Rightarrow aRc$

则称 R 是一个等价关系.⁶

定义(划分 等价类)

定义 (商集 S/\sim)

等价类作元素构成的集合.

[。] 「等价关系通常记作 ~,所以我在标题中写这个符号并不是为了卖萌.匆♀♀

商空间

线性代数

王逸飞

一些不严谨! 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 线性空间的同构

商空间

定义

设 $U \in V$ 的子空间, 定义 V 上的等价关系 $\alpha \sim \beta$: $\alpha - \beta \in U$, 我们将 α 所在的等价类记为 $\alpha + U$, 称其 为 W 的一个陪集. 定义陪集的加法和数乘:

- $(\alpha + W) + (\beta + W) := (\alpha + \beta) + W$
- $k(\alpha + W) := k\alpha + W$

定义 (商空间)

上面定义的等价关系定出线性空间 V 的一个商集,这个商集对于上面定义的加法和数乘构成线性空间,称为商空间。记作V/U.

商空间

线性代数

王逸飞

一些不严谨且 没用的闲话 线性空间 准备概念 线性空间的基合 线性空间与子空间的直 级性空间与中空间的直 数性空间与两面的

Remark

商空间 V/U 中的向量 (元素) 是 V 的子集 (等价类), 而不是 V 中的向量.

性质

商空间的维数。 商空间与补空间的同构。

例

非齐次线性方程组的解集是商空间的元素。

例题

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直

线性空间的同构 **商空间** 证明上一页写出的性质