Toutes les réponses doivent être soigneusement justifiées. La qualité de la rédaction interviendra de manière importante dans la notation.

Durée: 2h

Exercice 1

Soit (G, \cdot) un groupe.

- 1. Soit H un sous-groupe de G. Pour $a \in G$, on pose $aHa^{-1} = \{aha^{-1} : h \in H\}$. Montrer que aHa^{-1} est un sous-groupe de G.
- 2. On suppose de plus que G est abélien. On dit que $x \in G$ est un élément de torsion de G s'il existe $n \in \mathbb{N}^*$ tel que $x^n = 1_G$. Montrer que l'ensemble des éléments de torsion de G est un sous-groupe de G.

Exercice 2

Soit (G, \cdot) un groupe fini et H un sous-groupe de G.

- 1. Montrer que pour tout $a \in G$, H et $aH = \{ah : h \in H\}$ ont le même nombre d'éléments.
- 2. Soient $a, b \in G$. Démontrer que aH = bH ou $aH \cap bH = \emptyset$.
- 3. En déduire que le cardinal de H divise le cardinal de G.
- 4. On suppose que (G,\cdot) est un groupe fini d'ordre 7.
 - (a) Quels sont les sous-groupes de G?
 - (b) En déduire que tout élément de G différent de 1_G engendre G.
- 5. Soit S_4 le groupe des permutations sur 4 éléments et H un sous-groupe de S_4 de cardinal n. Déduire de ce qui précède les valeurs impossibles pour n.

Exercice 3

On considère l'anneau $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$. On note \mathbb{Z}_n^{\times} le groupe multiplicatif des éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$.

- 1. Donner la liste des éléments de \mathbb{Z}_{15}^{\times} .
- 2. On pose $n=7^2$. Donner en justifiant l'ordre du groupe \mathbb{Z}_n^{\times} .
- 3. On pose $n = 3 \times 5 \times 7$. Donner en justifiant l'ordre du groupe \mathbb{Z}_n^{\times} .
- 4. Calculer $\overline{7}^{482}$ dans $\mathbb{Z}/(105 \mathbb{Z})$.

Exercice 4

On considère les deux permutations suivantes σ et φ de S_7 définies par :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 2 & 6 & 1 & 4 & 3 \end{pmatrix},$$

$$\varphi = (2 \ 5) \ (1 \ 2 \ 4 \ 3) \ (1 \ 2).$$

- 1. Trouver pour chacune d'elles :
 - (a) la décomposition en produit de cycles à supports disjoints,
 - (b) la signature,
 - (c) l'ordre,
 - (d) une décomposition en produit de transpositions.
- 2. Calculer σ^{2019} et φ^{2019} .

La notion de sous groupe distingué était vue en CM en 2018-2019, mais pas en 2019-2020 (même si elle a fait l'objet d'exercices de TD sur les sous-groupes : cf TD5) : On dit qu'un sous-groupe H de G est un sous-groupe distingué de G si et seulement si pour tout $g \in G$, on a : $gHg^{-1} \subset H$.

Exercice 5

Soit H un sous-groupe distingué de S_6 contenant la transposition $\tau = (2 \ 4)$.

1. Pourquoi pour tout $\alpha \in S_6$, on a $\alpha \tau \alpha^{-1} \in H$?

2. Soit $\alpha \in S_6$, donné par

$$\alpha = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 6 & 5 & 4 \end{array}\right)$$

Quelle est la décomposition de $\alpha \tau \alpha^{-1}$ en cycles disjoints?

- 3. Soit $\sigma = (1 \ 3)$. Montrer qu'il existe une permutation $\beta \in S_6$, tel que $\sigma = \beta \tau \beta^{-1}$. β est-elle unique?
- 4. Soit $\theta \in S_6$ une transposition quelconque. Montrer que $\theta \in H$.
- 5. En déduire que $H = S_6$.
- 6. On considère plus généralement S_n le groupe des permutations sur n éléments. Déduire de ce qui précède que si H est un sous-groupe distingué de S_n contenant une transposition alors $H = S_n$.

Exercice 6

Soit (G, \bot) , (G', \top) deux groupes. Soient $f: G \to G'$ un morphisme de groupes. On rappelle que le noyau de f, noté ker f est défini par

$$\ker f = \{ x \in G : f(x) = 1_{G'} \}.$$

- 1. Montrer que f est injective si et seulement si le noyau de f est égal à $\{1_G\}$.
- 2. Montrer que le noyau de f est un sous-groupe distingué de G.
- 3. On considère ici que G et G' sont tous deux $(\mathbb{Z}, +)$ et on définit $f : \mathbb{Z} \to \mathbb{Z}$ avec f(x) = 3x. Montrer que f est un morphisme injectif. f est-il surjectif?