UMA205: Introduction to Algebraic Structures

Naman Mishra

January 2024

Contents

U	The course	1	
1	Peano's Axioms	2	Lecture
			01: Wed
_	m)		03 Jan
0	The course		'24

Instructor: Prof. Arvind Ayyer

Office: X-15

Office hours: TBD

Lecture hours: MWF 11:00-11:50 Tutorial hours: Tue 9:00-9:50

80% attendance is mandatory.

Prerequisites: UMA101 and UMA102 Texts: Several

• Analysis I, Terence Tao.

Grading

(20%) Quizzes on alternate Tuesdays, worst dropped. No makeup quizzes, but if a quiz is missed for a medical reason (with certificate), that quiz will be dropped.

(30%) Midterm

(50%) Final

Homeworks after every class, ungraded. Exams are closed book and closed notes, with no electronic devices allowed.

Aims of the Course

- Deal with formal mathematical structures.
- Learning the axiomatic method.
- See how more complicated structures arise from simpler ones.

1 Peano's Axioms

We try to formulate two fundamental quantities: 0 and the successor function $n \mapsto n_{++}$.

- (P1) 0 is a natural number.
- (P2) If n is a natural number, so is n_{++} .
- (P3) 0 is not the successor of any natural number.
- (P4) Different natural numbers have different successors.
- (P5) (Principle of mathematical induction) Let P(n) be any "property" for a natural number n. Suppose that P(0) is true, and that $P(n_{++})$ is true whenever P(n) is true. Then P is true for all natural numbers.

Denote the set of natural numbers by \mathbb{N} . Note that \mathbb{N} is itself infinite, but all of its elements are finite.

Proof. 0 is finite. If n is finite, then n_{++} is finite. Thus, by induction, all natural numbers are finite. (But wtf is a finite number?)

Remarks.

- There exist number systems which admit infinite numbers. For example, cardinals, ordinals, etc.
- This way of thinking is *axiomatic*, but not constructive.