- I have tried to use a half-Normal prior on the "standard deviation" of the spline coefficients, $\lambda^{-1/2}$, but it failed to converge even for Zimbabwe
- Explored the PC priors and trimmed down the number of parameters, as well as added spikes for TiPS at 5 and 10 that were previously missing
 - For ϕ , ψ , A and B, these are previously given GMRF with precision matrix $\mathbf{Q} = \lambda_1(\mathbf{D'D} + \lambda_2 \mathbf{I})$. The ratio between λ_1 and λ_2 controls how much the linear extrapolation is shrunk towards 0. Writing the penalty (precision matrix) as $\mathbf{Q} = \tau(\mathbf{D'D} + c\mathbf{I}) = \tau \mathbf{R}$, under the PC priors, we elicit information on the effective degrees of freedom (EDF) and translate this into a prior for λ . Following Ventrucci and Rue (2016), the EDF is approximated by the trace of the hat matrix under the classical linear regression model. Consider:

$$m{y} = m{B}m{eta} + m{arepsilon}$$
 where $arepsilon \sim N(0, au_arepsilon^{-1})$ with penalty $m{ au}m{eta}'m{R}m{eta},$

then the hat matrix is $(m{B'B} + rac{ au}{ au_e}m{R})^{-1}m{B'B}$