(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年3 月14 日 (14.03.2002)

PCT

(10) 国際公開番号 WO 02/20552 A1

Satoru) [JP/JP]. 大園重雄 (OHZONO, Shigeo) [JP/JP]; 〒710-0801 岡山県倉敷市酒津2045番地の1 株式会社

哲 (KITA,

(51) 国際特許分類7:

C07J 5/00

(72) 発明者; および (75) 発明者/出願人 (米国についてのみ): 仲澤

(21) 国際出願番号:

PCT/JP01/07639

(22) 国際出願日:

2001年9月4日 (04.09.2001)

(25) 国際出願の言語:

日本語

(81) 指定国 (国内): CA, CN, HU, IN, MX, US.

クラレ内 Okayama (JP).

(NAKAZAWA, Makoto) [JP/JP]. 喜多

(26) 国際公開の言語:

日本語

JР

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(30) 優先権データ:

特願2000-273387

2000年9月8日(08.09.2000)

添付公開書類:

— 国際調査報告書

(71) 出願人 (米国を除く全ての指定国について): 株式会 社 クラレ (KURARAY CO., LTD.) [JP/JP]; 〒710-8622 岡山県倉敷市酒津1621番地 Okayama (JP). 2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: PROCESS FOR THE PREPARATION OF PREGNANE DERIVATIVES

(54) 発明の名称: プレグナン誘導体の製造方法

$$R^{3}O$$
 $R^{4}O$
 $R^{4}O$
 R^{2}
 $R^{3}O$
 R^{2}
 $R^{3}O$
 R^{2}

$$\mathbb{R}^{3}$$
O \mathbb{R}^{1} (IV)

サン アンファ

(57) Abstract: A process for the preparation of pregnane derivatives which comprises reacting a compound (I) with an alkali metal or an alkaline earth metal in the presence of ammonia or an amine to obtain a compound (II), protecting the hydroxyl groups of the compound (II) to obtain a compound (III), protecting the compound (IV), and subjecting the compound (IV) to solvolysis to obtain a compound (V); and compound (II).

/続葉有7

(57) 要約:

式 (I)

の化合物に、アンモニアまたはアミンの存在下、アルカリ(土類)金属を作用させ、式(II)

の化合物を得、その水酸基を保護して式(III)

の化合物を得、その3位を保護して式(IV)

$$R^3O$$

$$R^4O$$

$$H$$

$$OR^1$$

$$OR^2$$

の化合物を得、それを加溶媒分解して式(V)

$$R^{3}O$$

$$\stackrel{\stackrel{\circ}{=}}{\stackrel{\circ}{H}}OR^{2}$$
 (V)

を得るプレグナン誘導体の製造方法、及び化合物(II)。

1

明細書

プレグナン誘導体の製造方法

技術分野

本発明は、プレグナン誘導体の製造方法に関する。本発明により製造されるプレグナン誘導体は、例えば、下式で示されるスクアラミン(squalamine)の合成中間体として有用である。

$$H_2N$$
 H_2N
 $Squalamine$
 $Squalamine$

スクアラミンは、グラム陽性菌、グラム陰性菌、真菌などに対する強力な抗菌活性を有するとともに、抗ガン活性を有することが報告され、新たな抗生物質として注目されている化合物である[ジャーナル・オブ・オーガニック・ケミストリー(J. Org. Chem.)、63巻、3786頁(1998年);ジャーナル・オブ・オーガニック・ケミストリー(J. Org. Chem.)、63巻、8599頁(1998年);WO 98/24800など参照]。

背景技術

従来、スクアラミンはサメの肝臓から抽出されていたが、その抽出効率が0.00 $1\sim0.002$ 重量%と極めて低いため、化学的合成方法の検討が行われてきた。スクアラミンの化学的合成方法としては、 $1)3\beta$ -アセトキシー5-コラン酸を出発原料とする方法「テトラヘドロン・レターズ(TetrahedronLett

)、35巻、8103頁(1994年)参照]、2)3β-ヒドロキシ-5-コラン酸を出発原料とする方法[ジャーナル・オブ・オーガニック・ケミストリー(J. Org. Chem.)、60巻、5121頁(1995年);WO 94/19366参照]、3)21-ヒドロキシ-20-メチループレグナー4-エン-3-オンを出発原料とする方法[WO 98/24800参照]、4)スティグマステロールを出発原料とする方法[ジャーナル・オブ・オーガニック・ケミストリー(J. Org. Chem.)、63巻、3786頁(1998年);ジャーナル・オブ・オーガニック・ケミストリー(J. Org. Chem.)、63巻、8599頁(1998年);WO 98/24800参照]が知られている。

一方、上記4)の方法は、出発原料として用いるスティグマステロールを安価に入手可能であるが、スクアラミンの合成までには20工程を要する。また、3位水酸基を選択的に酸化する工程で使用する炭酸銀が高価であること、低温下でのオゾン酸化工程を経由するので特殊な反応設備が必要なこと、などの問題点を有していることから、この方法も必ずしも工業的に有利な方法とはいえない。

しかして、本発明の目的は、スクアラミンの合成中間体などとして有用なプレグナン誘導体を、入手容易な原料より、短段階で効率よく製造し得る方法を提供することにある。

発明の開示

本発明者らは、上記の目的を達成するため、 3α , 7α -ジヒドロキシー 5β -コ

ラン酸および/またはその塩を、微生物を用いた変換反応に付すことにより容易に得られる 7 α - ヒドロキシー 3 - オキソープレグナー1, 4 - ジエンー 2 0 - カルバルデヒド(特許第 2 5 2 5 0 4 9 号参照)を原料として選び、鋭意検討を行った。

 7α ーヒドロキシー3ーオキソー1,4ーコラジエン酸に、アンモニアの存在下、金属リチウムを作用させて 7α ーヒドロキシー3ーオキソー 5α ーコール酸を合成する方法は知られている [ケミカル・アンド・ファーマシューティカル・ブレティン(Chemical and Pharmaceutical Bulletin)、41巻、763 [(1993年)参照]。本発明者らは、 7α ーヒドロキシー3ーオキソープレグナー1,4ージエンー20ーカルバルデヒドの20位アルデヒドを還元して得られる 7α ,21ージヒドロキシー20ーメチループレグナー1,4ージエンー3ーオン(参考例1参照)に上記の反応を適用したところ、 7α ,21ージヒドロキシー20ーメチルー 5α ープレグナー3ーオンが良好な収率で得られることを見出した。 7α ,21ージヒドロキシー20ーメチルー 5β ープレグナー3ーオンは3ーケトーピスノルコレノールからケノデオキシコール酸を製造する際の合成中間体としてすでに知られているが(欧州特許公開第18515号公報参照)、 7α ,21ージヒドロキシー20ーメチルー 5α -プレグナー3ーオンは新規化合物である。

すなわち、本発明は、

(1) 式(I)

で示される化合物、すなわち 7α , 21-ジヒドロキシー 20-メチループレグナー 1, 4-ジエン-3-オン [以下、これを化合物(I)と略称する] に、アンモニア またはアミンの存在下で、アルカリ金属またはアルカリ土類金属を作用させることに

より式 (II)

で示される化合物、すなわち 7α , 21-ジヒドロキシー 20-メチルー $5\alpha-$ プレグナー 3-オン [以下、これを化合物(II)と略称する]を得、得られた化合物(II)の水酸基を保護して一般式(III)

(式中、R¹およびR²は水酸基の保護基を表す。)

で示される3-オキソプレグナン誘導体 [以下、これを3-オキソプレグナン誘導体 (III) と略称する]を得、得られた3-オキソプレグナン誘導体 (III)の3 位カルボニル基を保護して一般式 (IV)

$$R^3O$$
 R^4O
 R^4O
 R^4O
 R^2
 R^3O
 R^2
 R^3O
 R^2

(式中、R¹およびR²は前記定義のとおりであり、R³およびR⁴はそれぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基 、置換基を有していてもよいアルキニル基もしくは置換基を有していてもよいアラル キル基を表すか、またはR³およびR⁴は一緒になって置換基を有していてもよいアルキレン基を表す。)

で示されるプレグナン誘導体 [以下、これをプレグナン誘導体 (IV) と略称する] を得、得られたプレグナン誘導体 (IV) を加溶媒分解することを特徴とする一般式 (V)

$$\mathbb{R}^3$$
 \mathbb{H} \mathbb{R}^2 \mathbb{H} \mathbb{R}^2

(式中、R²、R³およびR⁴は前記定義のとおりである。)

で示される21-ヒドロキシプレグナン誘導体 [以下、これを21-ヒドロキシプレグナン誘導体 (V) と略称する] の製造方法、

(2) 式(I-1)

で示される化合物、すなわち(20S) -7α , 21-ジヒドロキシ-20-メチル -プレグナ-1, 4-ジエン-3-オン [以下、これを化合物(I-1)と略称する] に、アンモニアまたはアミンの存在下で、アルカリ金属またはアルカリ土類金属を 作用させることにより式(II-1)

で示される化合物、すなわち(20S) -7α , 21-ジヒドロキシ-20-メチル $-5\alpha-$ プレグナ-3-オン [以下、これを化合物(II-1)と略称する]を得、得られた化合物(II-1)の水酸基を保護して一般式(III-1)

$$OR^{1}$$

$$(III-1)$$

(式中、R¹およびR²は水酸基の保護基を表す。)

で示される3-オキソプレグナン誘導体 [以下、これを3-オキソプレグナン誘導体 (III-1)と略称する]を得、得られた3-オキソプレグナン誘導体 (III-1)の3位カルボニル基を保護して一般式 (IV-1)

$$R^3O$$

$$R^4O$$

$$H$$

$$IV-1)$$

(式中、R¹およびR²は前記定義のとおりであり、R³およびR⁴はそれぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基もしくは置換基を有していてもよいアラルキル基を表すか、またはR³およびR⁴は一緒になって置換基を有していてもよいアルキレン基を表す。)

で示されるプレグナン誘導体 [以下、これをプレグナン誘導体(I V-1)と略称する] を得、得られたプレグナン誘導体(I V-1)を加溶媒分解して一般式(V-1)

(式中、R¹、R²、R³およびR⁴は前記定義のとおりである。)

で示される21-ヒドロキシプレグナン誘導体 [以下、これを21-ヒドロキシプレグナン誘導体 (V-1) と略称する] を得る上記 (1) の製造方法、

- (3) 化合物(I) に、アンモニアまたはアミンの存在下で、アルカリ金属またはアルカリ土類金属を作用させることを特徴とする化合物(II) の製造方法、
- (4) 化合物 (I-1) に、アンモニアまたはアミンの存在下で、アルカリ金属またはアルカリ土類金属を作用させ化合物 (II-1) を得る上記 (3) の製造方法、
- (5) 化合物 (II) の水酸基を保護して3-オキソプレグナン誘導体 (III) を得、得られた3-オキソプレグナン誘導体 (III) の3位カルボニル基を保護することを特徴とするプレグナン誘導体 (IV) の製造方法、
- (6) 化合物 (II-1) の水酸基を保護して3-オキソプレグナン誘導体 (III -1) を得、得られた3-オキソプレグナン誘導体 (III-1) の3位カルボニル基を保護してプレグナン誘導体 (IV-1) を得る上記 (5) の製造方法、
- (7) プレグナン誘導体(IV) を加溶媒分解することを特徴とする21-ヒドロキシプレグナン誘導体(V)の製造方法、
- (8) プレグナン誘導体(IV-1)を加溶媒分解して21-ヒドロキシプレグナン 誘導体(V-1)を得る上記(7)の製造方法、
- (9) 化合物 (II)、すなわち 7α , 21-ジヒドロキシー <math>20-メチルー $5\alpha-$ プレグナー 3-オン、
- (10) 上記 (9) の化合物 (II) の一つの態様である化合物 (II-1)、すなわち (20S) -7α , $21-ジヒドロキシ-20-メチル-5\alpha-プレグナ-3-$

オン、

(11)3-オキソプレグナン誘導体(III)を加溶媒分解して一般式(VI)

(式中、R²は前記定義のとおりである。)

で示される21-ヒドロキシ-3-オキソプレグナン誘導体 [以下、これを21-ヒドロキシ-3-オキソプレグナン誘導体 (VI) と略称する]を得、得られた21-ヒドロキシ-3-オキソプレグナン誘導体 (VI)の3位カルボニル基を保護することを特徴とする21-ヒドロキシプレグナン誘導体 (V)の製造方法、および (12)3-オキソプレグナン誘導体 (III-1)を加溶媒分解して一般式 (VI-1)

(式中、R²は前記定義のとおりである。)

で示される 21-ヒドロキシ-3-オキソプレグナン誘導体 [以下、これを 21-ヒドロキシ-3-オキソプレグナン誘導体 (VI-1) と略称する] を得、得られた 21-ヒドロキシ-3-オキソプレグナン誘導体 (VI-1) の 3位カルボニル基を保護して 21-ヒドロキシプレグナン誘導体 (V-1) を得る上記 (11) の製造方法である。

発明を実施するための最良の形態

上記一般式中、R¹およびR²が表す水酸基の保護基としては、水酸基の保護基と して作用する限りどのような保護基でもよく、例えばtertーブチル基、tert -アミル基などのアルキル基:ベンジル基、o-メチルベンジル基、m-メチルベン ジル基、pーメチルベンジル基、pーニトロベンジル基、pーメトキシベンジル基、 pーフェニルベンジル基、ジフェニルメチル基、トリフェニルメチル基などのアラル キル基:アセチル基、クロロアセチル基、ジクロロアセチル基、トリクロロアセチル 基、トリフルオロアセチル基、メトキシアセチル基、トリフェニルメトキシアセチル 基、フェノキシアセチル基、p-クロロフェノキシアセチル基、フェニルアセチル基 、ジフェニルアセチル基、プロピオニル基、ブチリル基、バレリル基、4ーペンテノ イル基、ピバロイル基、クロトノイル基、ベンゾイル基、oーメチルベンゾイル基、 m-メチルベンゾイル基、p-メチルベンゾイル基、2,3-ジメチルベンゾイル基 、2、4-ジメチルベンゾイル基、2、5-ジメチルベンゾイル基、2、6-ジメチ ルベンゾイル基、2、4、6-トリメチルベンゾイル基、p-フェニルベンゾイル基 などのアシル基;メトキシカルボニル基、9-フルオレニルメトキシカルボニル基、 エトキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、1,1-ジ メチルー2,2,2ートリクロロエトキシカルボニル基、2ー(トリメチルシリル) エトキシカルボニル基などのアルコキシカルボニル基;ビニルオキシカルボニル基、 アリルオキシカルボニル基などのアルケニルオキシカルボニル基;フェノキシカルボ ニル基、ヮーニトロフェノキシカルボニル基などのアリールオキシカルボニル基;ベ ンジルオキシカルボニル基、p-メトキシベンジルオキシカルボニル基、3,4-ジ メトキシベンジルオキシカルボニル基、o-ニトロベンジルオキシカルボニル基、p ーニトロベンジルオキシカルボニル基、2-(4-ニトロフェニル)エトキシカルボ ニル基、2-(2,4-ジニトロフェニル)エトキシカルボニル基などのアラルキル オキシカルボニル基:メトキシメチル基、ベンジルオキシメチル基、 p - メトキシベ ンジルオキシメチル基、p-ニトロベンジルメトキシメチル基、o-ニトロベンジル メトキシメチル基、(4-メトキシフェノキシ)メチル基、tertーブトキシメチル基、2-メトキシエトキシメチル基、2-(トリメチルシリル)エトキシメチル基などのアルコキシアルキル基;テトラヒドロ-2-フラニル基、テトラヒドロ-2-ピラニル基などのオキサシクロアルキル基;トリメチルシリル基、エチルジメチルシリル基、イソプロピルジメチルシリル基、tertーブチルジメチルシリル基、トリエチルシリル基、tertーブチルジフェニルシリル基、トリコェニルシリル基などの三置換シリル基などが挙げられる。

R³およびR⁴がそれぞれ表すアルキル基としては、炭素数1~6のアルキル基が好ましく、例えばメチル基、エチル基、nープロピル基、イソプロピル基、nーブチル基、1ーメチルプロピル基、2ーメチルプロピル基、nーペンチル基、1ーメチルブチル基、1,1ージメチルプロピル基、1,2ージメチルプロピル基、2,2ージメチルプロピル基、1-エチルプロピル基、nーヘキシル基などが挙げられる。これらのアルキル基は置換基を有していてもよく、かかる置換基としては、例えば水酸基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシル基;ベンジルオキシ基などのアラルキルオキシ基などが挙げられる。

 R^3 および R^4 がそれぞれ表すアルケニル基としては、炭素数 $3 \sim 6$ のアルケニル基が好ましく、例えば2-プロペニル基、2-ブテニル基、3-ブテニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-メチル-2-ブテニル基、1-メチル-3-ブテニル基、2-メチル-3-ブテニル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、3-メチル-3-ブテニル基、3-メチル-3-ブテニル基、1-エチル-2-プロペニル基、1-0キセニル基などが挙げられる。また、1-0キセニル基などが挙げられる。また、1-0キャニル基としては、炭素数 1-0のアルキニル基が好ましく、例えば1-0カープリール基、1-0カープチニル基、1-0カープチェル基、1-0カープチニル基、1-0カープチニル基、1-0カープチニル基、1-0カープチニル基、1-0カープチェル基、1-0カープチニル基、1-0カープチェル基、1-0カープチェル基、1-0カープチェル基、1-0カープチェル

シニル基などが挙げられる。これらのアルケニル基、アルキニル基は置換基を有していてもよく、かかる置換基としては、例えば水酸基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシル基;ベンジルオキシ基などのアラルキルオキシ基などが挙げられる。

R®およびR⁴がそれぞれ表すアラルキル基としては、アルキル部分として炭素数 1~6のアルキル基を有し、かつアリール部分として炭素数 6~10アリール基を有するものが好ましく、例えばベンジル基、1−フェニルエチル基、ナフチルメチル基などが挙げられる。これらのアラルキル基は置換基を有していてもよく、かかる置換基としては、例えば水酸基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基などのアルキル基;メトキシ基、エトキシ基、プロポキシ基、プトキシ基などのアルコキシル基;ベンジルオキシ基などのアラルキルオキシ基などが挙げられる。

R³およびR⁴が一緒になって表す置換基を有していてもよいアルキレン基としては、炭素数1~6のアルキレン基が好ましく、例えばメチレン基、エチレン基、メチルエチレン基、1,2ージメチルエチレン基、トリメチレン基、1ーメチルトリメチレン基、2ーメチルトリメチレン基、2ージメチルトリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などが挙げられる。

以下、各工程について説明する。

1: 化合物(I)または化合物(I)の一つの態様である化合物(I-1)を、アンモニアまたはアミンの存在下で、アルカリ金属またはアルカリ土類金属を作用させて化合物(II)または化合物(II)の一つの態様である化合物(II-1)を得る工程

アミンとしては、例えばメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチルジメチルアミン、ジエチルメ

チルアミン、イソプロピルアミン、ジイソプロピルアミン、トリイソプロピルアミン、イソプロピルジメチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、トリベンチルアミンなどが使用される。アンモニアまたはアミンの使用量は特に制限されないが、通常、化合物(I)に対して1~200倍重量の範囲であるのが好ましい。

アルカリ金属としては、例えばリチウム、ナトリウム、カリウム、ルビジウムなどが使用され、アルカリ土類金属としては、例えばカルシウム、ストロンチウム、バリウムなどが使用される。これらのアルカリ金属またはアルカリ土類金属の使用量は、化合物(I)1モルに対して2グラム原子以上であるのが好ましく、2~20グラム原子の範囲であるのがより好ましい。

また、反応系に、上記したアルカリ金属もしくはアルカリ土類金属の金属アミドまたは金属水素化物を共存させるのが好ましい。金属アミドとしては、例えばリチウムアミド、リチウムジイソプロピルアミド、ナトリウムアミド、ナトリウムジイソプロピルアミド、カリウムジシクロヘキシルアミド、ナトリウムジシクロヘキシルアミド、ナトリウムジシクロヘキシルアミド、カリウムジシクロヘキシルアミド、カリウムジシクロヘキシルアミド、カリウムジシクロヘキシルアミド、カリウムジンクロヘキシルアミド、カリウムジンクロヘキシルアミド、カリウムジンクロヘキシルアミド、カリウムビス(トリメチルシリル)アミド、ナトリウムピス(トリメチルシリル)アミドなどが挙げられ、金属水素化物としては、例えば、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化マグネシウム、水素化カルシウムなどが挙げられる。これらのアルカリ金属もしくはアルカリ土類金属の金属アミドまたは金属水素化物を共存させる場合、その使用量は、化合物(I)1モルに対して20モル以下であるのが好ましい。

さらに、反応系に、アンモニウム塩、上記したアルカリ金属もしくはアルカリ土類 金属の水酸化物または上記したアルカリ金属もしくはアルカリ土類金属の塩が共存していてもよい。アンモニウム塩としては、例えば塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、炭酸アンモニウムなどが挙げられる。アルカリ金属またはアルカリ土類金属の水酸化物としては、例えば水酸化リチウム、水酸化ナトリウム、

水酸化カリウム、水酸化カルシウムなどが挙げられ、アルカリ金属またはアルカリ土類金属の塩としては、例えば塩化リチウム、臭化リチウム、ヨウ化リチウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、塩化カリウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウムなどの金属ハロゲン化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウムなどの金属炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウムなどの金属炭酸水素塩などが挙げられる。

反応は、溶媒の存在下または不存在下で行うことができる。使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えばメタノール、エタノール、 nープロパノール、イソプロパノールなどのアルコール;テトラヒドロフラン、ジエチルエーテル、ジメトキシエタンなどのエーテル;ペンタン、ヘキサン、ヘプタン、オクタン、石油エーテル、ベンゼン、トルエンなどの炭化水素またはこれらの混合物などが挙げられる。溶媒を用いる場合、その使用量は特に制限されないが、通常、化合物 (I) に対して1~100倍重量の範囲であるのが好ましい。

反応温度は、-100~200 Cの範囲であるのが好ましく、-80~30 Cの範囲であるのがより好ましい。

反応は、例えば、窒素、アルゴンなどの不活性ガス雰囲気下、アルカリ金属またはアルカリ土類金属をアンモニアまたはアミンに加え、必要に応じてさらに溶媒を加えて懸濁あるいは溶解させて得られた混合液に、化合物(I)または化合物(I)をアミンまたは溶媒に懸濁あるいは溶解させて得られた液を添加して行うのが好ましい。なお、アンモニウム塩、アルカリ金属もしくはアルカリ土類金属の水酸化物、塩、金属アミドまたは金属水素化物を反応系に共存させる場合は、反応開始時に添加していてもよく、反応の途中で添加してもよい。

このようにして得られた化合物 (II) または化合物 (II) の一つの態様である 化合物 (II-1) は、通常の有機化合物の単離・精製に用いられる方法により単離 ・精製することができる。例えば、反応混合物にメタノール、エタノールなどのアル コール;塩化アンモニウム、臭化アンモニウムなどのアンモニウム塩を添加して反応を停止させた後、混合物を食塩水または水にあけ、ジエチルエーテル、酢酸エチル、塩化メチレンなどの有機溶媒で抽出する。抽出液を、必要に応じて飽和炭酸水素ナトリウム水溶液などで洗浄して酸性物質を除去し、希塩酸、水、食塩水などで洗浄して塩基性物質および水溶性物質を除去した後、無水硫酸マグネシウム、無水硫酸ナトリウムなどで乾燥し、濃縮して得られる粗生成物を、必要に応じて蒸留、クロマトグラフィー、再結晶などによりさらに精製する。

得られる化合物(I I)、すなわち 7α , 21-ジヒドロキシー20-メチルー $5\alpha-$ プレグナー3-オン、および化合物(I I)の一つの態様である化合物(I I- 1)、すなわち(20 S)-7 α , 21-ジヒドロキシー 20-メチルー $5\alpha-$ プレグナー3-オンは新規化合物である。

2:化合物(II) または化合物(II) の一つの態様である化合物(II-1)の 水酸基を保護して3-オキソプレグナン誘導体(III) または3-オキソプレグナン誘導体(III) の一つの態様である3-オキソプレグナン誘導体(III) を得る工程

化合物(II) または化合物(II) の一つの態様である化合物(II-1) の水酸基、すなわち7位の水酸基と22位の水酸基の保護は、水酸基を保護するに際して通常行われる方法と同様の方法で行うことができる。

例えば、水酸基の保護基として、前記したアルキル基またはアラルキル基を用いる場合は、反応はtertーブチルクロリド、tertーアミルクロリドなどのアルキルハライド;ベンジルクロリド、ベンジルブロミド、oーメチルベンジルクロリド、mーメチルベンジルクロリド、pーメチルベンジルクロリド、pーニトロベンジルクロリド、pーメトキシベンジルクロリド、pーフェニルベンジルクロリド、ジフェニルメチルクロリド、トリフェニルメチルクロリドなどのアラルキルハライドを、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウムなどの金属水素化物;リチウム、ナトリウム、カリウムなどのアルカリ金属;マグネシウム、カルシ

ウムなどのアルカリ土類金属などの塩基の存在下に、化合物(II)または化合物(II)の一つの態様である化合物(II-1)と反応させることにより行うことができる。塩基の使用量は、アルキルハライドまたはアラルキルハライド1モルに対して1モル以上であるのが好ましく、 $1\sim10$ モルの範囲であるのがより好ましい。

水酸基の保護基として、前記したアシル基を用いる場合は、反応はアセチルクロリ ド、アセチルブロミド、クロロアセチルクロリド、ジクロロアセチルクロリド、トリ クロロアセチルクロリド、トリフルオロアセチルクロリド、メトキシアセチルクロリ ド、トリフェニルメトキシアセチルクロリド、トリフェニルメトキシアセチルブロミ ド、フェノキシアセチルクロリド、pークロロフェノキシアセチルクロリド、フェニ ルアセチルクロリド、フェニルアセチルブロミド、ジフェニルアセチルクロリド、プ ロピオニルクロリド、ブチリルクロリド、バレリルクロリド、4ーペンテノイルクロ リド、ピバロイルクロリド、クロトノイルクロリド、ベンゾイルクロリド、ベンゾイ ルブロミド、oーメチルベンゾイルクロリド、mーメチルベンゾイルクロリド、pー メチルベンゾイルクロリド、2、3-ジメチルベンゾイルクロリド、2、4-ジメチ ルベンゾイルクロリド、2,5-ジメチルベンゾイルクロリド、2,6-ジメチルベ ンゾイルクロリド、2, 4, 6-トリメチルベンゾイルクロリド、p-フェニルベン ゾイルクロリドなどの酸ハロゲン化物;または無水酢酸、無水クロロ酢酸、無水ジク ロロ酢酸、無水トリクロロ酢酸、無水トリフルオロ酢酸、無水メトキシ酢酸、無水ト リフェニルメトキシ酢酸、無水フェノキシ酢酸、無水p-クロロフェノキシ酢酸、無 水フェニル酢酸、無水ジフェニル酢酸、無水4-ペンテン酸、無水ピバリン酸、無水 クロトン酸、無水安息香酸、無水pーフェニル安息香酸などの酸無水物を、水素化リ チウム、水素化ナトリウム、水素化カリウム、水素化カルシウムなどの金属水素化物 : リチウム、ナトリウム、カリウムなどのアルカリ金属;マグネシウム、カルシウム などのアルカリ土類金属;トリメチルアミン、トリエチルアミン、ジイソプロピルエ チルアミン、ピリジン、N, Nージメチルアミノピリジン、N, Nージメチルアニリ ン、N、N-ジエチルアニリンなどのアミンなどの塩基の存在下に、化合物(II)

または化合物(II)の一つの態様である化合物(II-1)と反応させることにより行うことができる。塩基の使用量は、酸ハロゲン化物または酸無水物1モルに対して1モル以上であるのが好ましく、 $1\sim10$ モルの範囲であるのがより好ましい。

水酸基の保護基として、前記したアルコキシカルボニル基、アルケニルオキシカル ボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基を用いる場 **合、反応は、クロロギ酸メチル、クロロギ酸エチル、クロロギ酸2,2,2ートリク** ロロエチル、クロロギ酸9-フルオレニルメチル、クロロギ酸1,1-ジメチル-2 , 2, 2-トリクロロエチル、クロロギ酸2-(トリメチルシリル)エチルなどのア ルコキシカルボニルハライド;クロロギ酸ピニル、クロロギ酸アリルなどのアルケニ ルオキシカルボニルハライド;クロロギ酸フェニル、クロロギ酸 pーニトロフェニル などのアリールオキシカルボニルハライド;クロロギ酸ベンジル、クロロギ酸 p-メ トキシベンジル、クロロギ酸3, 4-ジメトキシベンジル、クロロギ酸o-ニトロベ ンジル、クロロギ酸pーニトロベンジル、クロロギ酸2ー(4ーニトロフェニル)エ チル、クロロギ酸2-(2,4-ジニトロフェニル)エチルなどのアラルキルオキシ カルボニルハライドを、トリメチルアミン、トリエチルアミン、ジイソプロピルエチ ルアミン、ピリジン、N, N-ジメチルアミノピリジン、N, N-ジメチルアニリン 、N、N-ジエチルアニリンなどのアミンなどの塩基の存在下に、化合物(II)ま たは化合物 (II) の一つの態様である化合物 (II-1) と反応させることにより 行うことができる。塩基の使用量は、アルコキシカルボニルハライド、アルケニルオ キシカルボニルハライド、アリールオキシカルボニルハライドまたはアラルキルオキ シカルボニルハライド1モルに対して1モル以上であるのが好ましく、1~10モル の範囲であるのがより好ましい。

前記したアルコキシアルキル基を水酸基の保護基とする場合、反応は、1-メトキシメチルクロリド、1-メトキシメチルブロミド、ベンジルオキシメチルクロリド、p-エトロベンジルオキシメチルクロリド、p-エトロベンジルメトキシメチルクロリド、o-ニトロベンジルメトキシメチルクロリド、(4-メトキシフェノキシ)

メチルクロリド、 tertーブトキシメチルクロリド、2ーメトキシエトキシメチルクロリド、2ー (トリメチルシリル) エトキシメチルクロリドなどのアルコキシアルキルハライドを、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウムなどの金属水素化物;リチウム、ナトリウム、カリウムなどのアルカリ金属;マグネシウム、カルシウムなどのアルカリ土類金属;トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、N,Nージメチルアミノピリジン、N,Nージメチルアニリン、N,Nージメチルアニリン、N,Nージエチルアニリンなどのアミンなどの塩基の存在下に、化合物(II) または化合物(II) の一つの態様である化合物(II-1) と反応させることにより行うことができる。塩基の使用量は、アルコキシアルキルハライド1モルに対して1モル以上が好ましく、1~10モルの範囲であるのがより好ましい。

前記したオキサシクロアルキル基を水酸基の保護基とする場合、反応は、2,3一ジヒドロフラン、2,3一ジヒドロピランなどのオキサシクロアルケンを、酸の存在下で、化合物(II)または化合物(II)の一つの態様である化合物(II-1)と反応させることにより行うことができる。酸としては、例えばメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸などのスルホン酸;塩酸、硫酸などの鉱酸などが挙げられる。酸の使用量は、オキサシクロアルケン1モルに対して0.0001モル以上であるのが好ましく、0.001~1モルの範囲であるのがより好ましい。

水酸基の保護基として、前記した三置換シリル基を用いる場合、反応は、トリメチルシリルクロリド、トリメチルシリルブロミド、エチルジメチルシリルクロリド、イソプロピルジメチルシリルクロリド、tertーブチルジフェニルシリルクロリド、トリエチルシリルクロリド、tertーブチルジフェニルシリルクロリド、トリフェニルシリルクロリドなどの三置換シリルハライド;トリメチルシリルトリフルオロメタンスルホネート、エチルジメチルシリルトリフルオロメタンスルホネート、イソプロピルジメチルシリルトリフルオロメタンスルホネート、

リルトリフルオロメタンスルホネート、トリエチルシリルトリフルオロメタンスルホネート、tertーブチルジフェニルシリルトリフルオロメタンスルホネート、トリフェニルシリルトリフルオロメタンスルホネートなどの三置換シリルトリフルオロメタンスルホネートを、水素化ナトリウム、水素化カリウムなどの金属水素化物;トリエチルアミン、N,Nージメチルアミノピリジン、N,Nージエチルアミノピリジン、イミダゾール、2,6ールチジンなどのアミンなどの塩基の存在下に、化合物(II)または化合物(II)の一つの態様である化合物(IIー1)と反応させることにより行うことができる。塩基の使用量は、三置換シリルハライドまたは三置換シリルトリフルオロメタンスルホネート1モルに対して1モル以上であるのが好ましく、1~10モルの範囲であるのがより好ましい。

化合物(II)または化合物(II)の一つの態様である化合物(II-1)の水酸基を保護する反応は、溶媒の存在下または不存在下で行うことができる。使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えばジクロロメタン、ジクロロエタン、クロロベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素;テトラヒドロフラン、ジエチルエーテル、ジメトキシエタンなどのエーテル;ペンタン、ヘキサン、ヘプタン、オクタン、石油エーテル、ベンゼン、トルエンなどの炭化水素またはこれらの混合物などが挙げられる。溶媒を用いる場合、その使用量は特に制限されないが、通常、化合物(II)または化合物(II)の一つの態様である化合物(II)に対して1~100倍重量の範囲であるのが好ましい。

反応温度は、-80~200 \mathbb{C} の範囲であるのが好ましく、-20~180 \mathbb{C} の範囲であるがより好ましい。

なお、化合物(II) または化合物(II) の一つの態様である化合物(II-1) の7位の水酸基と22位の水酸基は、同じ種類の水酸基の保護基で保護してもよいし、異なる種類の水酸基の保護基で保護してもよい。

このようにして得られた3-オキソプレグナン誘導体(III)または3-オキソプレグナン誘導体(III)の一つの態様である3-オキソプレグナン誘導体(II

I-1) は、通常の有機化合物の単離・精製に用いられる方法により単離・精製することができる。例えば、反応混合物を食塩水または水にあけ、ジエチルエーテル、酢酸エチル、塩化メチレンなどの有機溶媒で抽出する。抽出液を、必要に応じて飽和炭酸水素ナトリウム水溶液などで洗浄して酸性物質を除去し、希塩酸、水、食塩水などで洗浄して塩基性物質、水溶性物質を除去した後、無水硫酸マグネシウム、無水硫酸ナトリウムなどで乾燥し、濃縮して得られる粗生成物を必要に応じて蒸留、クロマトグラフィー、再結晶などにより精製する。

3:3-オキソプレグナン誘導体(III) または3-オキソプレグナン誘導体(III) の一つの態様である3-オキソプレグナン誘導体(III-1)の3位カルボニル基を保護してプレグナン誘導体(IV)またはプレグナン誘導体(IV)の一つの態様であるプレグナン誘導体(IV-1)を得る工程

3ーオキソプレグナン誘導体(III)または3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(IIIー1)の3位カルボニル基を保護してプレグナン誘導体(IV)またはプレグナン誘導体(IV)の一つの態様であるプレグナン誘導体(IVー1)を得る方法としては、カルボニル基を保護するに際して通常用いられる方法を適用することができ、例えば、3ーオキソプレグナン誘導体(III)または3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)を、酸の存在下、アルコールと反応させる方法が挙げられる。

アルコールとしては、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、2-ズチルー1-プロパノール、n-ペンタノール、2-ペンタノール、3-メチルー2-ブタノール、2-ジメチルー1-プロパノール、3-ペンタノール、n-へキサノール、アリルアルコール、2-ブテン-1-オール、3-ブテン-1-オール、3-ブテン-1-オール、3-ペンテン-1-オール、3-ペンテン-1-オール、3-ペンテン-1-オール、3-ペンテン-1-オール、3-ペンテン-1-オール、3-ペンテン-1-オール、3-ペンテン-1-オール、3-ペンテン-1-オール、3-ペンテン-1-オール

ーオール、3ーメチルー3ーブテンー1ーオール、3ーメチルー3ーブテンー2ーオ ール、プロパルギルアルコール、2-ブチン-1-オール、3-ブチン-1-オール 、3-ブチン-2-オール、2-ペンチン-1-オール、3-ペンチン-1-オール 、3-ペンチン-2-オール、4-ペンチン-1-オール、2-メチル-3-プチン -1-オール、ベンジルアルコール、o-メチルベンジルアルコール、m-メチルベ ンジルアルコール、pーメチルベンジルアルコール、(2,3ージメチルフェニル) メタノール、(2,4-ジメチルフェニル)メタノール、(2,5-ジメチルフェニ ル) メタノール、(2, 6ージメチルフェニル)メタノール、(2, 4, 6ートリメ チルフェニル) メタノール、1ーフェニルエタノール、ナフチルメタノールなどの1 価アルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパン ジオール、2,2-ジメチル-1,3-プロパンジオール、1,2-ブタンジオール 、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、 1,6-ヘキサンジオールなどの多価アルコールなどが挙げられる。アルコールの使 用量は特に制限されないが、3ーオキソプレグナン誘導体(III)または3ーオキ ソプレグナン誘導体(III)の一つの態様である3-オキソプレグナン誘導体(I II-1) 1モルに対して通常1モル以上であるのが好ましく、アルコールとして1 価アルコールを用いる場合は、2~20モルの範囲であるのがより好ましく、多価ア ルコールを用いる場合は1~20モルの範囲であるのがより好ましい。

酸としては、例えばメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸などのスルホン酸;塩酸、硫酸などの鉱酸などが挙げられる。酸の使用量は特に制限されないが、通常、3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)1モルに対して0.0001~1モルの範囲であるのが好ましく、0.001~0.5モルの範囲であるのがより好ましい。

反応は、溶媒の存在下または不存在下で行うことができる。使用できる溶媒として

は、反応に悪影響を与えない限り特に制限はなく、例えばテトラヒドロフラン、ジエチルエーテル、ジメトキシエタンなどのエーテル;ペンタン、ヘキサン、ヘプタン、オクタン、石油エーテル、ベンゼン、トルエンなどの炭化水素;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、テトラクロロエタン、クロロベンゼン、 oージクロロベンゼンなどのハロゲン化炭化水素またはこれらの混合物などが挙げられる。溶媒を使用する場合、その使用量は特に制限されないが、通常、3ーオキソプレグナン誘導体(III)または3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)に対して1~200倍重量の範囲であるのが好ましい。

反応温度は、 $-100\sim200$ \mathbb{C} の範囲であるのが好ましく、 $-30\sim180$ \mathbb{C} の範囲であるのがより好ましい。

反応は、酸、3ーオキソプレグナン誘導体(III)または3ーオキソプレグナン 誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(IIIー1)、 アルコールおよび必要に応じて溶媒を混合し、所定温度で攪拌して行うのが好ましい

このようにして得られたプレグナン誘導体(IV) またはプレグナン誘導体(IV) の一つの態様であるプレグナン誘導体(IV-1) は、通常の有機化合物の単離・精製に用いられる方法により単離・精製することができる。例えば、反応混合物を食塩水または水にあけ、ジエチルエーテル、酢酸エチル、塩化メチレンなどの有機溶媒で抽出する。抽出液を、必要に応じて飽和炭酸水素ナトリウム水溶液などで洗浄して酸性物質を除去し、希塩酸、水、食塩水などで洗浄して塩基性物質、水溶性物質を除去した後、無水硫酸マグネシウム、無水硫酸ナトリウムなどで乾燥し、濃縮して得られる粗生成物を必要に応じて蒸留、クロマトグラフィー、再結晶などにより精製する

4:プレグナン誘導体 (IV) またはプレグナン誘導体 (IV) の一つの態様である プレグナン誘導体 (IV-1) を加溶媒分解して 21- ヒドロキシプレグナン誘導体

(V) または21-ヒドロキシプレグナン誘導体(V) の一つの態様である21-ヒドロキシプレグナン誘導体(V-1) を得る工程

プレグナン誘導体(IV)またはプレグナン誘導体(IV)の一つの態様であるプレグナン誘導体(IV-1)を加溶媒分解する反応は、上記工程3で例示したアルコールまたは水の存在下で行うのが好ましい。アルコールとしてはメタノール、エタノール、イソプロパノールなどを使用するのが特に好ましい。アルコールまたは水の使用量は特に制限されないが、通常、プレグナン誘導体(IV)またはプレグナン誘導体(IV)の一つの態様であるプレグナン誘導体(IV)に対して1~200倍重量の範囲であるのが好ましい。

また、反応に際しては、反応系に塩基または酸を共存させることが特に好ましい。 かかる塩基としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、 水酸化バリウムなどの金属水酸化物; リチウム tertーブトキシド、ナトリウム t ertーブトキシド、カリウムtertーブトキシドなどの金属アルコキシド;炭酸 リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウムなどの金属炭酸塩;炭酸 水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウムなどの 金属炭酸水素塩などが挙げられる。また、酸としては、例えばメタンスルホン酸、エ タンスルホン酸、プロパンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン 酸などのスルホン酸:塩酸、硫酸などの鉱酸;トリフルオロホウ素、トリフルオロホ ウ素ジエチルエーテル錯体、三塩化アルミニウム、三塩化チタン、四塩化チタン、臭 化亜鉛などのルイス酸;トリフルオロ酢酸などが挙げられる。塩基を共存させる場合 、その使用量は特に制限されないが、通常、プレグナン誘導体(IV)またはプレグ ナン誘導体(IV)の一つの態様であるプレグナン誘導体(IV-1)1モルに対し て1モル以上であるのが好ましく、1~10モルの範囲であるのがより好ましい。ま た、酸を共存させる場合、その使用量は特に制限されないが、通常、プレグナン誘導 体(IV)またはプレグナン誘導体(IV)の一つの態様であるプレグナン誘導体(IV-1) 1モルに対して0.001モル以上であるのが好ましく、0.01~1モ ルの範囲であるのがより好ましい。

反応は、溶媒の存在下または不存在下で行うことができる。使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えばテトラヒドロフラン、ジエチルエーテル、ジメトキシエタンなどのエーテル;トルエン、ペンタン、ヘキサン、ヘプタン、オクタン、石油エーテルなどの炭化水素;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、テトラクロロエタン、クロロベンゼン、ロージクロロベンゼンなどのハロゲン化炭化水素またはこれらの混合物などが挙げられる。溶媒を使用する場合、その使用量は特に制限されないが、通常、プレグナン誘導体(IV)またはプレグナン誘導体(IV)の一つの態様であるプレグナン誘導体(IV)

反応温度は、 $-100\sim200$ Cの範囲であるのが好ましく、 $-30\sim180$ Cの範囲であるのがより好ましい。

反応は、プレグナン誘導体(IV)またはプレグナン誘導体(IV)の一つの態様であるプレグナン誘導体(IV-1)、アルコールまたは水、および必要に応じて塩基または酸、溶媒を混合し、所定温度で攪拌して行うのが好ましい。

このようにして得られた21ーヒドロキシプレグナン誘導体(V)または21ーヒドロキシプレグナン誘導体(V)の一つの態様である21ーヒドロキシプレグナン誘導体(V-1)は、通常の有機化合物の単離・精製に用いられる方法により単離・精製することができる。例えば、反応混合物を食塩水または水にあけ、ジエチルエーテル、酢酸エチル、塩化メチレンなどの有機溶媒で抽出する。抽出液を、必要に応じて飽和炭酸水素ナトリウム水溶液などで洗浄して酸性物質を除去し、希塩酸、水、食塩水などで洗浄して塩基性物質、水溶性物質を除去した後、無水硫酸マグネシウム、無水硫酸ナトリウムなどで乾燥し、濃縮して得られる粗生成物を必要に応じて蒸留、クロマトグラフィー、再結晶などにより精製する。

5:3-オキソプレグナン誘導体(III)または3-オキソプレグナン誘導体(III)の一つの態様である3-オキソプレグナン誘導体(III-1)を加溶媒分解

して21ーヒドロキシー3ーオキソプレグナン誘導体(VI)または21ーヒドロキシー3ーオキソプレグナン誘導体(VI)の一つの態様である21ーヒドロキシー3ーオキソプレグナン誘導体(VI-1)を得る工程

3ーオキソプレグナン誘導体(III)または3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(IIIー1)を加溶媒分解する反応は、上記工程3で例示したアルコールまたは水の存在下で行うのが好ましい。アルコールとしてはメタノール、エタノール、イソプロパノールなどを使用するのが特に好ましい。アルコールまたは水の使用量は特に制限されないが、通常、3ーオキソプレグナン誘導体(III)または3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)に対して1~200倍重量の範囲であるのが好ましい。

また、反応に際しては、反応系に塩基または酸を共存させることが特に好ましい。かかる塩基としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化バリウムなどの金属水酸化物;リチウム tertーブトキシド、ナトリウム tertーブトキシド、カリウム tertーブトキシドなどの金属アルコキシド;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウムなどの金属炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウムなどの金属炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウムなどの金属炭酸水素塩などが挙げられる。また、酸としては、例えばメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸などのスルホン酸;塩酸、硫酸などの鉱酸;トリフルオロホウ素、トリフルオロホウ素ジエチルエーテル錯体、三塩化アルミニウム、三塩化チタン、四塩化チタン、臭化亜鉛などのルイス酸;トリフルオロ酢酸などが挙げられる。塩基を共存させる場合、その使用量は特に制限されないが、通常、3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)1モルに対して1モル以上であるのが好ましく、1~10モルの範囲であるのがより好ましい。また、酸を共存させる場合、その使用量は特に

制限されないが、通常、3-オキソプレグナン誘導体(III)または3-オキソプレグナン誘導体(III)の一つの態様である3-オキソプレグナン誘導体(III0-1)1モルに対して0.001モル以上であるのが好ましく、0.01~1モルの範囲であるのがより好ましい。

反応は、溶媒の存在下または不存在下で行うことができる。使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えばテトラヒドロフラン、ジエチルエーテル、ジメトキシエタンなどのエーテル;トルエン、ペンタン、ヘキサン、ヘプタン、オクタン、石油エーテルなどの炭化水素;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、テトラクロロエタン、クロロベンゼン、oージクロロベンゼンなどのハロゲン化炭化水素またはこれらの混合物などが挙げられる。溶媒を使用する場合、その使用量は特に制限されないが、通常、3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)の一つの態様である3ーオキソプレグナン誘導体(III)の一つの態様であるのが好ましい。

反応温度は、 $-100\sim200$ Cの範囲であるのが好ましく、 $-30\sim180$ Cの範囲であるのがより好ましい。

反応は、3-オキソプレグナン誘導体(III)または3-オキソプレグナン誘導体(III)の一つの態様である3-オキソプレグナン誘導体(III-1)、アルコールまたは水、および必要に応じて塩基または酸、溶媒を混合し、所定温度で攪拌して行うのが好ましい。

このようにして得られた21ーヒドロキシー3ーオキソプレグナン誘導体(VI) または21ーヒドロキシー3ーオキソプレグナン誘導体(VI)の一つの態様である21ーヒドロキシー3ーオキソプレグナン誘導体(VI-1)は、通常の有機化合物の単離・精製に用いられる方法により単離・精製することができる。例えば、反応混合物を食塩水または水にあけ、ジエチルエーテル、酢酸エチル、塩化メチレンなどの有機溶媒で抽出する。抽出液を、必要に応じて飽和炭酸水素ナトリウム水溶液などで

洗浄して酸性物質を除去し、希塩酸、水、食塩水などで洗浄して塩基性物質、水溶性物質を除去した後、無水硫酸マグネシウム、無水硫酸ナトリウムなどで乾燥し、濃縮して得られる粗生成物を必要に応じて蒸留、クロマトグラフィー、再結晶などにより精製する。

6:21-ヒドロキシー3-オキソプレグナン誘導体(VI) または21-ヒドロキシー3-オキソプレグナン誘導体(VI) の一つの態様である21-ヒドロキシー3-オキソプレグナン誘導体(VI-1)の3位カルボニル基を保護して21-ヒドロキシプレグナン誘導体(V) または21-ヒドロキシプレグナン誘導体(V) の一つの態様である21-ヒドロキシプレグナン誘導体(V-1)を得る工程

21-ヒドロキシ-3-オキソプレグナン誘導体(VI)または21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である21-ヒドロキシ-3-オキソプレグナン誘導体(VI-1)の3位カルボニル基を保護して21-ヒドロキシプレグナン誘導体(V)の一つの態様である21-ヒドロキシプレグナン誘導体(V)の一つの態様である21-ヒドロキシプレグナン誘導体(V-1)を得る方法としては、カルボニル基を保護するに際して通常用いられる方法を適用することができ、例えば、21-ヒドロキシ-3-オキソプレグナン誘導体(VI)または21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である21-ヒドロキシ-3-オキソプレグナン誘導体(21-1)を、酸の存在下、アルコールと反応させる方法が挙げられる。

アルコールとしては、例えばメタノール、エタノール、nープロパノール、イソプロパノール、nーブタノール、2ーブタノール、2ーメチルー1ープロパノール、nーペンタノール、2ーペンタノール、3ーメチルー2ーブタノール、2,2ージメチルー1ープロパノール、3ーペンタノール、nーへキサノール、アリルアルコール、2ーブテンー1ーオール、3ーブテンー1ーオール、3ーブテンー2ーオール、2ーペンテンー1ーオール、3ーペンテンー1ーオール、3ーペンテンー1ーオール、3ーペンテンー1ーオール、3ーペンテンー1ーオール、3ーペンテンー1ーオール、4ーペンテンー1

ーオール、3ーメチルー3ープテン-1ーオール、3ーメチルー3ープテン-2ーオ ール、プロパルギルアルコール、2 – ブチン– 1 – オール、3 – ブチン– 1 – オール 、3-ブチン-2-オール、2-ペンチン-1-オール、3-ペンチン-1-オール 、3-ペンチン-2-オール、4-ペンチン-1-オール、2-メチル-3-ブチン -1-オール、ベンジルアルコール、o-メチルベンジルアルコール、m-メチルベ ンジルアルコール、 p - メチルペンジルアルコール、 (2, 3 - ジメチルフェニル) メタノール、(2,4-ジメチルフェニル)メタノール、(2,5-ジメチルフェニ ル) メタノール、(2,6ージメチルフェニル) メタノール、(2,4,6ートリメ チルフェニル) メタノール、1-フェニルエタノール、ナフチルメタノールなどの1 価アルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパン ジオール、2, 2ージメチルー1, 3ープロパンジオール、1, 2ーブタンジオール 、1、3-ブタンジオール、1、4-ブタンジオール、1、5-ペンタンジオール、 1.6-ヘキサンジオールなどの多価アルコールなどが使用される。アルコールの使 用量は特に制限されないが、通常、21-ヒドロキシー3-オキソプレグナン誘導体 (VI) または21-ヒドロキシ-3-オキソプレグナン誘導体(VI) の一つの態 様である21-ヒドロキシ-3-オキソプレグナン誘導体(VI-1)1モルに対し て1モル以上であるのが好ましく、アルコールとして1価アルコールを用いる場合は 、2~20モルの範囲であるのがより好ましく、多価アルコールを用いる場合は1~ 20モルの範囲であるのがより好ましい。

酸としては、例えばメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ベンゼンスルホン酸、p-hルエンスルホン酸などのスルホン酸;塩酸、硫酸などの鉱酸などが使用される。酸の使用量は特に制限されないが、通常、21-EF ロキシー3ーオキソプレグナン誘導体(VI)または21-EF ロキシー3ーオキソプレグナン誘導体(VI)の一つの態様である21-EF ロキシー3ーオキソプレグナン誘導体(VI-1)1モルに対して0.001~1モルの範囲であるのが好ましく、0.001~0.5モルの範囲であるのがより好ましい。

反応は、溶媒の存在下または不存在下で行うことができる。使用できる溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えばテトラヒドロフラン、ジエチルエーテル、ジメトキシエタンなどのエーテル;ペンタン、ヘキサン、ヘプタン、オクタン、石油エーテル、ベンゼン、トルエンなどの炭化水素;ジクロロメタン、クロコホルム、四塩化炭素、ジクロロエタン、テトラクロロエタン、クロロベンゼン、o-ジクロロベンゼンなどのハロゲン化炭化水素またはこれらの混合物などが挙げられる。溶媒を使用する場合、その使用量は特に制限されないが、通常、<math>21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である <math>21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である <math>21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である <math>21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である <math>21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である <math>21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である <math>21-ヒドロキシ-3-オキソプレグナン誘導体(VI)に対して <math>1-2000倍重量の範囲であるのが好ましい。

反応温度は、 $-100\sim200$ \mathbb{C} の範囲であるのが好ましく、 $-30\sim180$ \mathbb{C} の範囲であるのがより好ましい。

反応は、酸、21-ヒドロキシ-3-オキソプレグナン誘導体(VI)または21-ヒドロキシ-3-オキソプレグナン誘導体(VI)の一つの態様である21-ヒドロキシ-3-オキソプレグナン誘導体(VI-1)、アルコールおよび必要に応じて溶媒を混合し、所定温度で攪拌して行うのが好ましい。

このようにして得られた21-ヒドロキシプレグナン誘導体(V)または21-ヒドロキシプレグナン誘導体(V)の一つの態様である21-ヒドロキシプレグナン誘導体(V-1)は、通常の有機化合物の単離・精製に用いられる方法により単離・精製することができる。例えば、反応混合物を食塩水または水にあけ、ジエチルエーテル、酢酸エチル、塩化メチレンなどの有機溶媒で抽出する。抽出液を、必要に応じて飽和炭酸水素ナトリウム水溶液などで洗浄して酸性物質を除去し、希塩酸、水、食塩水などで洗浄して塩基性物質、水溶性物質を除去した後、無水硫酸マグネシウム、無水硫酸ナトリウムなどで乾燥し、濃縮して得られる粗生成物を必要に応じて蒸留、クロマトグラフィー、再結晶などにより精製する。

21-ヒドロキシプレグナン誘導体(V)の一つの態様である21-ヒドロキシプ

レグナン誘導体(V-1)、例えば(20S) -21-ヒドロキシ-3-(スピロー 2'-(1',3'-ジオキソラン)) -20-メチル- $5\alpha-$ プレグナ- $7\alpha-$ オール ベンゾエートは、その22位が酸化されることにより(20S) -20-ホルミル-3-(スピロ-2'-(1',3'-ジオキソラン)) $-5\alpha-$ プレグナ- $7\alpha-$ オール ベンゾエートに誘導される(参考例2参照)。この化合物は、ジエチルホスホノ-3-メチル-2-ブタノンとの反応により(22E) -24-オキソー3-(スピロ-2'-(1',3'-ジオキソラン)) $-5\alpha-$ コレスタ-22-エン- $2\alpha-$ オール ベンゾエートに誘導され、さらに、ジャーナル・オブ・オーガニック・ケミストリー(20 の 20 に 20 に

$$O$$
 \overline{H} O O \overline{H} O O \overline{H} O \overline{H} O \overline{H} \overline{H}

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。

参考例 1 (20S) -7α , 21-ジヒドロキシー20-メチループレグナー1, 4-ジエン-3-オン(化合物(I))の合成

カルバルデヒド20.0g(54.8 mmo1)にエタノール200m1を加え、攪拌しながら氷冷した。この溶液に、水素化ホウ素ナトリウム0.61g(16.1 mmo1)を数回に分けて加え、添加終了後、氷冷下で1時間撹拌した。反応液に3%塩酸を加えて中和し、さらに水200m1を加えた後、エタノールを減圧下で留去した。残留物中に析出した粗結晶を濾過して回収後、水洗した。得られた粗結晶にトルエンを添加して加熱し、粗結晶中の水をトルエンとの共沸により除去した後、トルエンを減圧下で留去することにより、下記の物性を有する(20S) -7α , 21-52 ヒドロキシー20-34ループレグナー1, 4-520、3-34、8g(収率93%)を得た。

¹H-NMRスペクトル(270MHz、CDCl₃、TMS、ppm) δ:
0.765(s,3H),1.048(d,3H,J=6.6Hz),1.238(s,3H),2.490(dd,1H,J=3.3,13.9Hz),2.737(ddd,1H,J=1.8,3.3,13.9Hz),3.366(dd,1H,J=6.9,10.2Hz),3.635(dd,1H,J=3.3,10.2Hz),4.041(brs,1H),6.143(m,1H),6.253(dd,1H,J=1.8,10.1Hz),7.072(d,1H,J=10.1Hz)
実施例1 (20S)-7α,21-ジヒドロキシー20-メチルー5α-プレグナー3-オン(化合物(II))の合成

4-3.85 (brs, 1H).

得られた白色の残渣にトルエン50m1および3%塩酸100m1を加えて溶解させ、有機層と水層を分離した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮し、得られた粗生成物2.09gをシリカゲルカラムクロマトグラフィー(展開液:酢酸エチル/ヘキサン=2/1(容量比))で精製することにより、下記の物性を有する(20S) -7α ,21-ジヒドロキシ-20-メチル -5α -プレグナ-3-オン1.32gを得た(収率65%)。

なお、得られた化合物が 5 α 体であることは、上記で得られた化合物の 1 H-NM Rスペクトルを、欧州公開特許EP 1 8 5 1 5 号公報に記載されている方法に従って合成した(2 0 S)-7 α ,2 1 - ジヒドロキシ-2 0 - メチル-5 β - プレグナ-3 - オンの 1 H-NMRスペクトルと比較し、1 8 位および 1 9 位のメチル基に基づくピーク位置が相違していることに基づき決定した。

 $(20S) - 7\alpha$, 21-ジヒドロキシ-20-メチル $-5\alpha-$ プレグナ-3-オン 1 H-NMRスペクトル(270MHz、CDCl $_{3}$ 、TMS、ppm) δ : 0.710(s, 3H), 1.007(s, 3H), 1.044(d, 3H, J=6.9 , 10.9Hz), 1.0-2.5(m, 22H), 3.339(dd, 1H, J=6.9 , 10.9Hz), 3.614(dd, 1H, J=3.0, 10.9Hz), 3.8

(20S) -7α, 21-ジヒドロキシ-20-メチル-5β-プレグナ-3-オン

¹H-NMRスペクトル(270MHz、CDCl₃、TMS、ppm) δ:

0.729(s,3H),1.014(s,3H),1.070(d,3H,J=6
.9Hz),1.0-2.3(m,21H),2.414(ddd,1H,J=5.
0,13.9,13.9Hz),3.30-3.51(m,1H),3.60-3.80(m,1H),3.932(ddd,1H,J=3.0,3.0,5.9Hz)

実施例2(20S)-3-オキソ-20-メチル-5α-プレグナ-7α,21-ジオール ビスベンゾエートの合成

窒素雰囲気下、容量50m1のフラスコに実施例1の方法で得られた(20S)-

 7α , 21 - 3

 1 H-NMRZ A A

実施例3 (20S) -3-(スピロ-2'-(1',3'-ジオキソラン))-2 0-メチル-5α-プレグナ-7α,21-ジオール ビスベンゾエートの合成 容量100m1のフラスコに、実施例2の方法で得られた粗(20S)-3-オキソー20-メチル-5α-プレグナー7α,21-ジオール ビスベンゾエート1.34g(2.41mmo1) およびトルエン50m1を入れて溶解させ、次いでエチレングリコール1.76g(28.4mmo1) およびpートルエンスルホン酸80mg(0.42mmo1) を加えて、2時間還流した。反応液を飽和炭酸水素ナトリウム水溶液で2回洗浄し、無水硫酸マグネシウムで乾燥後、濃縮することにより、下記の物性を有する粗(20S)-20-メチル-3-(スピロ-2'-(1',3'

ージオキソラン)) -5α -プレグナー 7α , 21-ジオール ビスベンゾエート1

. 41gを得た(粗収率97%)。

¹H-NMRスペクトル (270MHz、CDC1₃、TMS、ppm) δ :
0.736 (s, 3H), 0.889 (s, 3H), 1.107 (d, 3H, J=5
.9Hz), 1.10-2.10 (m, 22H), 3.80-3.95 (m, 4H)
, 3.965 (dd, 1H, J=7.9, 10.9Hz), 4.286 (dd, 1H, J=3.0, 10.9Hz), 5.174 (brd, 1H, J=2.0Hz), 7
.35-7.61 (m, 6H), 8.013 (d, 2H, J=6.9Hz), 8.0
67 (d, 2H, J=6.9Hz)

. 9, 9. 9Hz), 3. 577 (dd, 1H, J=3. 0, 9. 9Hz), 3. 8
3-3. 93 (m, 4H), 5. 159 (brd, 1H, J=2. 0Hz), 7. 4
8 (dd, 2H, J=6. 9, 6. 9Hz), 7. 59 (d, 1H, J=6. 9Hz), 8. 056 (d, 2H, J=6. 9Hz)

300m1の3ツロフラスコに実施例2の方法で得られた(20S)-20-メチル-3-オキサー5α-プレグナー7α, 21-ジオール ビスベンゾエート34. 7g(62.3mmo1)を入れ、次いで、テトラヒドロフラン130m1を加え、得られた溶液にさらに炭酸カリウム11.2g(81.0mmo1)、水酸化ナトリウム13.6g(340mmo1)、水69m1、メタノール69m1を添加し、40℃で4時間攪拌した。反応完結後、反応液を濃縮し、水200m1、酢酸エチル300m1を加え攪拌した。水層を分離し、分離した水層をさらに酢酸エチル300m1を加え攪拌した。水層を分離し、分離した水層をさらに酢酸エチル200m1で抽出した。有機層を混合し、飽和重曹水100m1で2回洗浄し、さらに水100m1で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、濃縮し、下記物性を有する粗(20S)-21-ヒドロキシー20-メチルー3-オキサー5αープレグナー7αーオール ベンゾエート19.5g(粗収率69.5%)を得た。

¹H-NMRスペクトル (270MHz、CDC1₃、TMS、ppm) δ:

8. 006 (2H, d, J=6. 92Hz), 7. 557 (1H, dd, J=6. 92, 7. 94Hz), 7. 475 (2H, d, J=7. 94Hz), 5. 192 (1H, bs), 3. 587 (1H, dd, J=1. 98, 9. 90Hz), 3. 341 (1H, dd, J=5. 94, 9. 90Hz), 0. 9-2. 5 (22H, m), 1. 080 (3H, s), 1. 044 (3H, d, J=5. 94Hz), 0. 729 (3H, s).

 成

実施例 5 の方法で得られた(2 0 S) -21 ーヒドロキシー 2 0 ーメチルー 3 ーオキサー 5 α ープレグナー 7α ーオール ベンゾエート 1 6. 5 9 g(3 6. 6 5 mm o 1)をトルエン 1 6 6 m 1 に溶解させ、エチレングリコール 1 6. 0 g(2 5 8 m m o 1)、p ートルエンスルホン酸・1 水和物 0. 4 9 g(2. 6 m m o 1)を添加し、加熱還流下 4 0 時間攪拌した。反応完結後、飽和重曹水 1 0 0 m 1 に反応液を添加し、洗浄した。水層を分離後、有機層を飽和食塩水 1 0 0 m 1 で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、濾過濃縮し、得られた粗生成物 1 6. 2 gをシリカゲルカラムクロマトグラフィー(展開液:酢酸エチル/ヘキサン= 1 / 6)で精製することにより、下記物性を有する(2 0 S) -21 ーヒドロキシー 2 0 ーメチルー 3 ー(スピロー 2 ' ー(1 ' , 3 ' ージオキソラン)) -5α ープレグナー 7α ーオール ベンゾエート 5. 1 6 gを得た(収率 2 8 %)。

 1 H-NMRスペクトル(270MHz、CDC1₃、TMS、ppm) δ :
0.699(s, 3H), 0.882(s, 3H), 1.039(d, 3H, J=6.9Hz), 1.00-2.10(m, 22H), 3.328(dd, 1H, J=5.9, 9.9Hz), 3.577(dd, 1H, J=3.0, 9.9Hz), 3.83-3.93(m, 4H), 5.159(brd, 1H, J=2.0Hz), 7.48(dd, 2H, J=6.9, 6.9Hz), 7.59(d, 1H, J=6.9Hz), 8.056(d, 2H, J=6.9Hz)

実施例4の方法で得られた(20S)-21-ヒドロキシ-20-メチル-3-(スピロ-2'-(1',3'-ジオキソラン))-5α-プレグナ-7α-オールベンゾエート21.4g(43mmo1)、2,2,6,6-テトラメチル-1-ピペリジンオキシド0.13g(0.8mmo1)をジクロロメタン214m1に溶解させて氷冷し、この溶液に、臭化カリウム0.51g(4.3mmo1)を水21m

1に溶解させた溶液を氷冷下で添加して、激しく攪拌させた。次いで、この混合液に 、次亜塩素酸ナトリウム水溶液(2.64重量%,108ml,40mmol)に炭 酸水素ナトリウム (1.0g) を添加した水溶液を氷冷下で滴下し、滴下終了後、氷 冷下で2時間反応させた。反応終了後、有機層と水層を分離し、水層をジクロロメタ ンで抽出した($30m1 \times 2$)。抽出液を有機層と合わせて水($50m1 \times 2$)、飽 和食塩水 (20m1) で順次洗浄し、無水硫酸マグネシウムで乾燥後、濃縮し、得ら れた粗生成物をシリカゲルカラムクロマトグラフィー(展開液:酢酸エチル/ヘキサ ン=1/4 (容量比)) で精製することにより、下記の物性を有する(20S) -20-ホルミル-3-(スピロ-2'-(1', 3'-ジオキソラン))-5 α-プレグナー7αーオール ベンゾエート16.9gを得た(収率79%)。 $^{1}H-NMR$ スペクトル(270MHz、CDC1₃、TMS、ppm) δ : 0. 725 (s, 3H), 0. 886 (s, 3H), 1. 108 (d, 3H, J=6.9Hz), 1. 13-1. 97 (m, 21H), 2. 30-2. 38 (m, 1H) , 3. 830-3. 929 (m, 4H), 5. 166 (m, 1H), 7. 483 (d d, 2H, J=6. 9, 6. 9Hz), 7. 580 (ddd, 1H, J=2. 0, 6 . 9, 6. 9Hz), 8. 050 (dd, 2H, J=2. 0, 6. 9Hz), 9. 518 (d, 1H, J=3.0Hz)

産業上の利用可能性

本発明によれば、スクアラミンの合成中間体などとして有用なプレグナン誘導体を 、入手容易な原料より、短段階で効率よく製造することができる。

請 求 の 範 囲

1. 式(I)

で示される化合物に、アンモニアまたはアミンの存在下で、アルカリ金属またはアルカリ土類金属を作用させることにより式(II)

で示される化合物を得、得られた化合物の水酸基を保護して一般式(III)

$$OR^1$$
 OR^2
 OR^2

(式中、R¹およびR²は水酸基の保護基を表す。)

で示される3-オキソプレグナン誘導体を得、得られた3-オキソプレグナン誘導体の3位カルボニル基を保護して一般式(IV)

$$R^3O$$
 R^4O
 H
 OR^1
 OR^1
 OR^2

(式中、R¹およびR²は前記定義のとおりであり、R³およびR⁴はそれぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基もしくは置換基を有していてもよいアラルキル基を表すか、またはR³およびR⁴は一緒になって置換基を有していてもよいアルキレン基を表す。)

で示されるプレグナン誘導体を得、得られたプレグナン誘導体を加溶媒分解すること を特徴とする一般式(V)

(式中、 R^2 、 R^3 および R^4 は前記定義のとおりである。) で示される 21-ヒドロキシプレグナン誘導体の製造方法。

2. 式(I-1)

で示される化合物に、アンモニアまたはアミンの存在下で、アルカリ金属またはアルカリ土類金属を作用させることにより式(II-1)

で示される化合物を得、得られた化合物の水酸基を保護して一般式(III-1)

$$OR^1$$
 OR^2
 OR^2

(式中、R¹およびR²は水酸基の保護基を表す。)

で示される3-オキソプレグナン誘導体を得、得られた3-オキソプレグナン誘導体の3位カルボニル基を保護して一般式(IV-1)

$$R^3O$$
 $\frac{1}{H}$
 $(IV-1)$

(式中、R¹およびR²は前記定義のとおりであり、R³およびR⁴はそれぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基もしくは置換基を有していてもよいアラルキル基を表すか、またはR³およびR⁴は一緒になって置換基を有していてもよいアルキレン基を表す。)

で示されるプレグナン誘導体を得、得られたプレグナン誘導体を加溶媒分解して一般 式 (V-1)

(式中、R²、R³およびR⁴は前記定義のとおりである。)

で示される21-ヒドロキシプレグナン誘導体を得る請求項1に記載の製造方法。

3. 式(I)

で示される化合物に、アンモニアまたはアミンの存在下で、アルカリ金属またはアルカリ土類金属を作用させることを特徴とする式 (II)

で示される化合物の製造方法。

4. 式(I-1)

で示される化合物に、アンモニアまたはアミンの存在下で、アルカリ金属またはアルカリ土類金属を作用させ式(II-1)

で示される化合物を得る請求項3に記載の製造方法。

5. 式(II)

で示される化合物の水酸基を保護して一般式(III)

$$OR^1$$
 OR^2
 OR^2

(式中、R¹およびR²は水酸基の保護基を表す。)

で示される3-オキソプレグナン誘導体を得、得られた3-オキソプレグナン誘導体の3位カルボニル基を保護することを特徴とする一般式(IV)

$$R^3O$$
 R^4O
 R^4O
 R^3O
 R^2
 R^3O
 R^2
 R^3O

(式中、R¹およびR²は前記定義のとおりであり、R³およびR⁴はそれぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基もしくは置換基を有していてもよいアラルキル基を表すか、またはR³およびR⁴は一緒になって置換基を有していてもよいアルキレン基を表す。)

で示されるプレグナン誘導体の製造方法。

6. 式(II-1)

で示される化合物の水酸基を保護して一般式(III-1)

$$OR^1$$
 OR^2
 OR^2

(式中、R¹およびR²は水酸基の保護基を表す。)

で示される3-オキソプレグナン誘導体を得、得られた3-オキソプレグナン誘導体の3位カルボニル基を保護して一般式(IV-1)

$$R^3O$$
 R^4O
 R^4O
 R^4O
 R^2
 R^3O
 R^2
 R^3O
 R^4O
 R^4O

(式中、R¹およびR²は前記定義のとおりであり、R³およびR⁴はそれぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基もしくは置換基を有していてもよいアラルキル基を表すか、またはR³およびR⁴は一緒になって置換基を有していてもよいアルキレン基を表す。)

で示されるプレグナン誘導体を得る請求項5に記載の製造方法。

7. 一般式(IV)

$$R^3O$$
 R^4O
 H
 OR^2
 $IV)$

(式中、R¹およびR²は水酸基の保護基を表し、R³およびR⁴はそれぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基もしくは置換基を有していてもよいアラルキル基を表すか、またはR³およびR⁴は一緒になって置換基を有していてもよいアルキレン基を表す。)

で示されるプレグナン誘導体を加溶媒分解することを特徴とする一般式(V)

$$\mathbb{R}^{3}$$
OH \mathbb{H} \mathbb{R}^{3} OH \mathbb{H} $\mathbb{$

(式中、 R^2 、 R^3 および R^4 は前記定義のとおりである。) で示される 21-ヒドロキシプレグナン誘導体の製造方法。

8. 一般式 (IV-1)

$$R^3O$$
 R^4O
 R^4O
 R^4O
 R^2
 R^3O
 R^2
 R^3O
 R^2

(式中、R¹およびR²は水酸基の保護基を表し、R³およびR⁴はそれぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、

置換基を有していてもよいアルキニル基もしくは置換基を有していてもよいアラルキル基を表すか、またはR³およびR⁴は一緒になって置換基を有していてもよいアルキレン基を表す。)

で示されるプレグナン誘導体を加溶媒分解して一般式 (V-1)

$$R^3O$$

$$R^4O$$

$$H$$

$$(V-1)$$

(式中、R²、R³およびR⁴は前記定義のとおりである。)

で示される21-ヒドロキシプレグナン誘導体を得る請求項7に記載の製造方法。

9. 式(II)

で示される 7α , $21-ジヒドロキシ-20-メチル-5<math>\alpha$ -プレグナー3-オン。 10. 式(II-1)

で示される(20S) -7α , 21-ジヒドロキシ-20-メチル -5α -プレグナ-3-オンである請求項9に記載の化合物。

11. 一般式(III)

(式中、R¹およびR²は水酸基の保護基を表す。)

で示される3-オキソプレグナン誘導体を加溶媒分解して一般式(VI)

$$OH \qquad (VI)$$

(式中、R²は前記定義のとおりである。)

で示される21-ヒドロキシ-3-オキソプレグナン誘導体を得、得られた21-ヒドロキシ-3-オキソプレグナン誘導体の3位カルボニル基を保護することを特徴とする一般式(V)

$$R^3O$$
 R^4O
 H
 OH
 (V)

(式中、R²は前記定義のとおりであり、R³およびR⁴はそれぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基もしくは置換基を有していてもよいアラルキル基を表すか、またはR³およびR⁴は一緒になって置換基を有していてもよいアルキレン基

を表す。)

で示される21-ヒドロキシプレグナン誘導体の製造方法。

12. 一般式 (III-1)

$$OR^1$$
 OR^2
 OR^2

(式中、R¹およびR²は水酸基の保護基を表す。)

で示される3-オキソプレグナン誘導体を加溶媒分解して一般式(VI-1)

(式中、R²は前記定義のとおりである。)

で示される21-ヒドロキシー3-オキソプレグナン誘導体を得、得られた21-ヒ ドロキシー3-オキソプレグナン誘導体の3位カルボニル基を保護して一般式(V-1)

(式中、R²は前記定義のとおりであり、R³およびR⁴はそれぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を

有していてもよいアルキニル基もしくは置換基を有していてもよいアラルキル基を表すか、または R^3 および R^4 は一緒になって置換基を有していてもよいアルキレン基を表す。)

で示される21-ヒドロキシプレグナン誘導体を得る請求項11に記載の製造方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/07639

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07J5/00							
According to International Patent Classification (IPC) or to both national classification and IPC							
	B. FIELDS SEARCHED						
Minimum do Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07J5/00						
70		extent that such documents are included i	n the fields searched				
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS, REGISTRY (STN)							
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
X A	Organic Letters, (2000), 2(19), on web	pages 2921 to 2922,	9,10 1-8,11,12				
X A	Bioorg. Med. Chem., (2000), 8(8), pages 2059 to 2065	9,10 1-8,11,12				
A	Chem. Pharm. Bull., (1993), 41(4), pages 763 to 765	1-12				
A	WO 94/20520 Al (Magainin Pharm. 15 September, 1994 (15.09.94), & AU 9463974 A & EP 68833		1-12				
	& JP 8-507527 A & US 563769						
A	EP 18515 A2 (Hoffmann La Roche 12 November, 1980 (12.11.80), & US 4230625 A & US 430124 & JP 56-8399 A		1-12				
☐ Furthe	r documents are listed in the continuation of Box C.	See patent family annex.					
"A" docum	categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the inte- priority date and not in conflict with the	re application but cited to				
	red to be of particular relevance document but published on or after the international filing	"X" understand the principle or theory und document of particular relevance; the considered novel or cannot be considered.	claimed invention cannot be				
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		step when the document is taken along "Y" document of particular relevance; the	claimed invention cannot be				
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means		considered to involve an inventive ste combined with one or more other such combination being obvious to a person	documents, such				
"P" docum	ent published prior to the international filing date but later e priority date claimed	"&" document member of the same patent					
Date of the actual completion of the international search 09 November, 2001 (09.11.01) Date of mailing of the international search report 20 November, 2001 (20.11.01)							
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer					
Facsimile No.		Telephone No.					

Form PCT/ISA/210 (second sheet) (July 1992)

	属する分野の分類(国際特許分類(IPC)) 07J5/00				
	, ., .,				
B. 調査を行	テった分野				
調査を行ったよ	最小限資料(国際特許分類(IPC))				
Int. Cl' C 0	7 J 5 / 0 0	•			
•	***************************************	•			
最小限資料以外の資料で調査を行った分野に含まれるもの					
•	·				
		•			
国際調査で使用	用した電子データベース(データベースの名称、	調査に使用した用語)			
CAPLUS, REGI	SIKI (SIN)				
C. 関連する	ると認められる文献	· · · · · · · · · · · · · · · · · · ·	日日7年、シッ		
カテゴリー*	引用文献名 及び一部の箇所が関連する。	ときは、その関連する箇所の表示	関連する 請求の範囲の番号		
X	Organic Letters, (2000), 2(19), p. 29	921–2, on web	9, 10		
A			1-8, 11, 12		
Х	Bioorg. Med. Chem., (2000), 8(8), p. 20	059-65	9, 10		
A			1-8, 11, 12		
A	Chem. Pharm. Bull., (1993), 41 (4), p. 763-5		1-12		
	·				
* 引用文献の		の日の後に公表された文献			
「A」特に関連	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表さ			
もの 出願と矛盾するものではなく、発明の					
	公表されたもの E張に疑義を提起する文献又は他の文献の発行	「X」特に関連のある文献であって、 の新規性又は進歩性がないと考;	当該文献のみで発明		
日若しく	くは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、ヨ	当該文献と他の1以		
文献(理由を付す) 上の文献との、当業者にとって 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられ			目明である組合せに るもの		
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
国際調査を完了	了した日 09.11.01	国際調査報告の発送日 20.	11,01		
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP)		特許庁審査官(権限のある職員) 富永 保	4P 9159		
郵便番号100-8915 東京都千代田区霞が関三丁目4番3号		電話番号 03-3581-1101	が 内線 3490		

C (続き).	こ(続き). 関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
. A	WO 94/20520 A1 (MAGAININ PHARM. INC.) 15. Sep. 1994 (15. 09. 94) & AU 9463974 A & EP 688333 A1 & JP 8-507527 A & US 5637691 A	1–12			
A	EP 18515 A2 (HOFFMANN LA ROCHE F., UND CO. A. G.) 12. Nov. 1980(1 2. 11. 80) & US 4230625 A & US 4301246 A & JP 56-8399 A	1–12			
		·			
-		·			
		·			
·					
		·			
· .					
•					