

planetmath.org

Math for the people, by the people.

example of definable type

 ${\bf Canonical\ name} \quad {\bf Example Of Definable Type}$

Date of creation 2013-03-22 13:29:43 Last modified on 2013-03-22 13:29:43

Owner aplant (12431) Last modified by aplant (12431)

Numerical id 5

Author aplant (12431) Entry type Example Classification msc 03C07

Related topic ExampleOfUniversalStructure

Related topic DedekindCuts

Consider $(\mathbf{Q}, <)$ as a structure in a language with one binary relation, which we interpret as the order. This is a universal, \aleph_0 -categorical structure (see example of universal structure).

The theory of $(\mathbf{Q}, <)$ has quantifier elimination, and so is o-minimal. Thus a type over the set \mathbf{Q} is determined by the quantifier free formulas over \mathbf{Q} , which in turn are determined by the atomic formulas over \mathbf{Q} . An atomic formula in one variable over B is of the form x < b or x > b or x = b for some $b \in B$. Thus each 1-type over \mathbf{Q} determines a Dedekind cut over \mathbf{Q} , and conversely a Dedekind cut determines a complete type over \mathbf{Q} . Let $D(p) := \{a \in \mathbf{Q} : x > a \in p\}$.

Thus there are two classes of type over **Q**.

- 1. Ones where D(p) is of the form $(-\infty, a)$ or $(-\infty, a]$ for some $a \in \mathbf{Q}$. It is clear that these are definable from the above discussion.
- 2. Ones where D(p) has no supremum in \mathbf{Q} . These are clearly not definable by o-minimality of \mathbf{Q} .