

Modélisation multi physique avec OpenModelica

Modélisation multiphysique avec Modélica

Espace sur internet dédié à la modélisation multi physique :

http://www.insyte.website/modelisationMultiPhysique.php

1 - Présentation de Modelica

Le langage de modélisation orienté objet Modelica permet la modélisation pratique de systèmes complexes

Le simulateur associé a pour tâche de résoudre le système d'équations à chaque pas temporel.

Le langage, les bibliothèques et certains outils de simulation de Modelica sont libres et issus d'une demande industrielle.

Le développement de Modelica est assuré par l'association à but non lucratif Modelica Association.

Son développement a commencé en 2000.

Qui l'utilise?

Modelica est mise en œuvre dans des logiciels commerciaux :

CATIA de Dassault Systèmes, suite à l'intégration dans PLM du noyau Dymola (Dynasim AB, Suède, acquis par Dassault Systèmes en 2006) ;

LMS Imagine.Lab AMESim de LMS International;

MapleSim de Maplesoft, Canada;

MathModelica de Wolfram Research, Suède;

SimulationX de ITI GmbH, Dresde, Allemagne;

et dans des logiciels libres :

JModelica.org de l'Université de Lund et Modelon AB, Suède ;

OpenModelica de l'Université de Linköping, Suède ;

Modelicac pour Scilab-Xcos/Scicos.

2 - Open Modelica

OPENMODELICA is an open-source Modelica-based modeling and simulation environment intended for industrial and academic usage

OMEdit est l'éditeur d'OpenModelica

3 Installation

https://openmodelica.org/

3 - Les bibliothèques

Un large choix de bibliothèques standards gratuites est fourni

Pour ajouter une librairie par défaut faire :

Outils →Options→Librairies puis choisir les librairies à rajouter

Blocs,

Mécanique de rotation : Composants rotation, sources, sensors.

Mécanique de translation

Electrique: composants basiques, capteurs (sensors), sources

Thermique Fluide

4 - Exemple de régulation de chauffage d'une maison

Pour visualiser les courbes, il faut cocher les paramètres correspondants Le capteur (ici en °C) n'est pas indispensable, on peut également afficher la température de l'inertie thermique en Kelvin

On ajoute un thermostat pour maintenir la température entre 19,5°C et 20,5°C La température extérieure est ici constante

Température extérieure variable La température extérieure varie de -5°C à 25°C au cours de la journée

5 - Exemple de simulation de la voiture radiocommandées Tamiya TT01

Prise en compte de la résistance de l'air

F = 1/2. $Cx.mv.S.V^2$. L'effort aérodynamique $F=1/2.Cx.Mv.S.V^2$ est ajouté à l'effort constant.

<u>6 – Exemple : modélisation d'un moteur à courant continu</u>

On ouvre modelica

On créé un nouveau projet : icône

Pour agrandir la fenetre : clic droit puis propriétés

On insère les composants

On relie les composants

On rentre les paramètres de chaque composant (clic droit sur le composant puis paramètres)

Source de tension : 6 VRésistance : 10 ohm

- Constante de couple : 0.01 N.m/A

On rajoute une inertie valeur: $0,00001 \text{ kg.m}^2$ et un réducteur idéal avec k = 30

On lance la simulation, la première fois icône ______, on prendra une durée de simulation de 2 s

On affiche le courant dans la résistance

<u>Problème</u>: à partir de t = 0,6 s le moteur tourne sans consommer de courant car il n'y a aucun couple résistant

Evolution de la vitesse de rotation

On va rajouter un couple résistant

et une source constante, valeur - 0,005 N.m (valeur négative car c'est un couple résistant)

Tracé du courant circulant dans la résistance :

On va rajouter une charge après le réducteur : un couple qui varie dans le temps (en forme de rampe)

Durée: 5 s valeur maxi: -0,005 N.m (on modifie la durée de la simulation à 5 s)

Courbe du courant dans circulant dans la résistance :

On peut rajouter des capteurs de vitesse

Vitesses en entrée et en sortie du réducteur

Et un capteur de couple

Faire un graphe paramétrique : on veut le couple en fonction du courant

