Theorem (Alternating Series Test). An alternating series $a_1 - a_2 + a_3 - a_4 + a_5 - a_6 + a_7 - a_8 + \cdots$ converges to a sum S if $a_1 \ge a_2 \ge a_3 \ge a_4 \ge \cdots \ge 0$ and $a_n \to 0$. Moreover, for every k, $s_{2k} < S < s_{2k+1}$ and for every n, $|S - s_n| < a_{n+1}$.

PROOF We use the hypotheses of the theorem to draw the figure below, which shows the terms a_1, a_2, a_3, \ldots of the alternating series as a decreasing sequence converging to zero along a vertical axis. Horizontal line segments one unit wide establish a strip of rectangles whose areas are the same as their vertical heights.

Let S be the area of the shaded rectangles in the left-most tower. This tower is followed by towers for even and odd partial sums s_{2k} and s_{2k+1} . Comparison of these figures immediately establishes $s_{2k} < S < s_{2k+1}$.

Moreover, it is clear from the picture that the dark rectangles in the left-most tower below a_{2k+1} represent the difference $S-s_{2k}$, and hence $|S-s_{2k}| < a_{2k+1}$. Also the white rectangles below a_{2k+2} represent the difference $s_{2k+1}-S$, hence $|S-s_{2k+1}| < a_{2k+2}$. Combining these inequalities gives $|S-s_n| < a_{n+1}$ for all n, as desired. As $a_n \to 0$, it further follows that $s_n \to S$, so the series indeed converges to S. QED