Лабораторная работа №5 по курсу «Радиотехнические устройства и системы» Моделирование S-параметров

Кузнецов В.В., ассистент кафедры ЭИУ1-КФ $17\ \text{ноября}\ 2013\ \text{г}.$

1 Цель работы

Цель данного лабораторной работы — изучение моделирования S-параметров в программе Qucs.

Данная программа основана на вновь разработанном ядре схемотехнического моделирования (разработка совместно с Берлинским институтом высокочастотной техники) и работает под управлением операционных систем (ОС) Linux и Windows. В данной программе возможно моделирование аналоговых и цифровых схем, моделирование на постоянном и переменном токе и моделирование переходного процесса. Недостатком программы является разделение аналогового и цифрового моделирования.

Родной операционной системой для Qucs является Linux, и при работе на этой системы следует ожидать наибольшей производительности. Настоятельно рекомендуется использовать для работы программы ОС Linux.

Версию Qucs для Linux можно установить в один клик, используя пакетный менеджер, а версию для Windows можно скачать бесплатно с сайта разработчика http://qucs.souceforge.net.

2 Краткое введение в анализ высокочастотных схем

2.1 Ѕ-параметры четырёхполюсника

Четырёхполюсником является любая электронная схема, имеющая один вход и один выход: усилитель, фильтр, аттенюатор. Активный четырёхполюсник содержит источники питания и может усиливать входной сигнал. Активный четырёхполюсник как правило содержит биполярный или полевой транзистор, интегральный операционный усилитель и т.п. схемы. Пассивный четырёхполюсник не имеет источников питания. и не может усиливать сигнал. К пассивным четырёхполюсникам относятся LC- и RC- фильтры которые содержат только индуктивность, ёмкость и сопротивление.

В радиотехнике для того, чтобы охарактеризовать четырёхполюсник применяется матрица S-параметров, или иначе матрица рассеяния. S-параметры устанавливают связь между нормированными амплитудами напряжения и тока на входе и на выходе четырёхполюсника. Если вход четырёхполюсника подключен к источнику переменного тока с некоторым выходным сопротивлением Z_1 , то часть энергии от источника передаётся на вход, а часть — отражается от входа. Пусть нормированная амплитуда падающей на вход волны равна a_1 , а отражённой волны b_1 .

Такое же рассуждение справедливо и для выхода четырёхполюсника, к которому подключена нагрузка с сопротивлением Z_2 . Часть энергии, поступающей с выхода четырёхполюсника, поглощается нагрузкой, а часть энергии — отражается от неё и поступает обратно в четырёхполюсник. Пусть нормированная амплитуда падающей на нагрузку волны равна a_2 , а отражённой от нагрузки волны b_2 .

Нормированные амплитуды падающей и отражённой волны на входе и на выходе свзаны через матрицу рассеяния:

$$b_1 = S_{11}a_1 + S_{12}a_2 \tag{1}$$

$$b_2 = S_{21}a_1 + S_{22}a_2 (2)$$

Физический смысл S-параметров следующий:

 S_{11} — коэффициент отражения от входа четырёхполюсника. Показывает степень согласования между источником входного сигнала и входными цепями четырёхполюсника. Если $S_{11}=0$, то вся энергия от источника входного сигнала проходит на вход четырёхполюсника без отражения.

 S_{12} — коэффициент обратной передачи. Показывает степень передачи энергии с выхода четырёхполюсника на вход. Характеризует степень развязки между входом и выходом, что показывает устойчивость активных четырёхполюсников.

 S_{21} — коэффициент передачи. Равен коэффициенту усиления по мощности четырёхполюсника. Для активных четырёхполюсников может быть больше единицы, а для пассивных — всегда меньше единицы.

 S_{22} — коэффициент отражения от нагрузки. Показывает степень передачи энергии с выхода в нагрузку. Если $S_{22}=0$, то вся энергия с выхода четырёхполюсника поглощается нагрузкой без отражения.

Для пассивных четырёхполюсников всегда $S_{21}=S_{12}$ и $S_{11}=S_{22}$, так как внутрь четырёхполюсника не поступает дополнительная энергия от источников питания.

2.2 Коэффициент стоячей волны — KCB

3 Заключение

В результате выполнения лабораторной работы произведен анализ работы амплитудного детектора и балансного смесителя в программе Qucs. Произведён анализ условий балансировки диодного кольцевого смесителя.