

STATE WINDOWS IN STATES

Database Normalization

•••

Designing a Proper Database

Database Normalization

- Structuring database tables such that
 - Redundancy is minimized
 - Data integrity is maximized
- Edgar F Codd: a pioneer in databases
 - Proposed "1st Normal Form" in 1970
 - Went on to propose many more increasingly strict normalized forms

Database Normalization

- Most famous Normal Form is BCNF: Boyce-Codd Normal Form
- We will be focusing on
 - 1st Normal Form
 - 2nd Normal Form
 - 3rd Normal Form & BCNF
- BCNF and 3NF are equivalent in the presence of a single column key (surrogate or synthetic key, most tables today)

UNF (1970)	1NF (1970)	2NF (1971)	3NF (1971)	EKNF (1982)	BCNF (1974)	4NF (1977)	ETNF (2012)	5NF (1979)	DKNF (1981)	6NF (2003)
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
x	1	1	1	1	1	1	1	1	1	1
×	x	1	1	1	1	1	1	1	1	1
X	×	X	1	1	1	1	1	1	1	1
X	×	X	X	1	1	1	1	1	1	N/A
x	×	X	X	x	1	1	1	1	1	N/A
x	×	X	X	x	x	1	1	1	1	N/A
X	X	X	X	X	X	X	1	1	1	N/A
×	X	X	×	X	X	X	X	1	1	N/A
X	×	X	X	X	×	X	X	X	1	N/A
x	X	X	X	x	X	X	X	X	x	1

Our Database

- Consider the following simple database
- This database is not normalized
- Let's fix it

Grades				
Grade	Student	Class	Teacher	Satisfied?
В	Joe Smith	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
Α	Kelly Chen	CSCI 440	M Wittie	Yes
В	Xerces Orion	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
С	Ted Jacobs	CSCI 440	M Wittie	Yes

- To Be in 1NF, there must be a key
- Let's review the concepts and terminology around keys

Grades				
Grade	Student	Class	Teacher	Satisfied?
В	Joe Smith	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
A	Kelly Chen	CSCI 440	M Wittie	Yes
В	Xerces Orion	CSCI 366	C Gross	Yes
A	Marge Liu	CSCI 366	C Gross	Yes
С	Ted Jacobs	CSCI 440	M Wittie	Yes

What Are Keys?

- A key is a set of attributes (columns) that uniquely determine a row
- The literature uses the term *superkey*, which makes it sound cool
- In a relation with no duplicates, the set of all columns is a *superkey*
- A candidate key (aka minimal superkey) is a key from which no attributes can be removed without causing it to no longer be a key
- The primary key is the candidate key used to identify rows in the relation
- In practice, an ID column is typically added to a relation to be the primary key. This is sometimes called a *surrogate* or *synthetic key*.

So, do we have a key in this relation?

Grades				
Grade	Student	Class	Teacher	Satisfied?
В	Joe Smith	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
Α	Kelly Chen	CSCI 440	M Wittie	Yes
В	Xerces Orion	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
С	Ted Jacobs	CSCI 440	M Wittie	Yes

- So, do we have a key in this relation?
- No. There are duplicate rows, so no set of columns uniquely identifies a row.

Grades				
Grade	Student	Class	Teacher	Satisfied?
В	Joe Smith	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
A	Kelly Chen	CSCI 440	M Wittie	Yes
В	Xerces Orion	CSCI 366	C Gross	Yes
A	Marge Liu	CSCI 366	C Gross	Yes
С	Ted Jacobs	CSCI 440	M Wittie	Yes

- We need to eliminate this duplicate data to get into 1NF
- Most real world databases there will be a surrogate key column, making the database trivially 1NF (Problem?)

Grades				
Grade	Student	Class	Teacher	Satisfied?
В	Joe Smith	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
Α	Kelly Chen	CSCI 440	M Wittie	Yes
В	Xerces Orion	CSCI 366	C Gross	Yes
С	Ted Jacobs	CSCI 440	M Wittie	Yes
			7	

- NB: Students can take multiple classes.
- We do not have a single column key here. So, what is our key?

Grades				
Grade	Student	Class	Teacher	Satisfied?
В	Joe Smith	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
Α	Kelly Chen	CSCI 440	M Wittie	Yes
В	Xerces Orion	CSCI 366	C Gross	Yes
С	Ted Jacobs	CSCI 440	M Wittie	Yes

- NB: Students can take multiple classes.
- We do not have a single column key here. So, what is our key?

Student + Class Uniquely determines a row so {Student, Class} is our key

Grades				
Grade	Student	Class	Teacher	Satisfied?
В	Joe Smith	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
A	Kelly Chen	CSCI 440	M Wittie	Yes
В	Xerces Orion	CSCI 366	C Gross	Yes
С	Ted Jacobs	CSCI 440	M Wittie	Yes

- To achieve 2NF, all data must depend on the entire key
- Again, this is trivially true with surrogate keys
 - You can start to see why surrogate keys became a standard

Grades				
Grade	Student	Class	Teacher	Satisfied?
В	Joe Smith	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
Α	Kelly Chen	CSCI 440	M Wittie	Yes
В	Xerces Orion	CSCI 366	C Gross	Yes
С	Ted Jacobs	CSCI 440	M Wittie	Yes
			17	

- We know the key is {Student, Class}.
- Is there any data that depends only on part of that key?

Grades				
Grade	Student	Class	Teacher	Satisfied?
В	Joe Smith	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
Α	Kelly Chen	CSCI 440	M Wittie	Yes
В	Xerces Orion	CSCI 366	C Gross	Yes
С	Ted Jacobs	CSCI 440	M Wittie	Yes

- Teacher depends only on Class!
- To fix this, we need to pull Teacher data out to a separate table

Grades				
Grade	Student	Class	Teacher	Satisfied?
В	Joe Smith	CSCI 366	C Gross	Yes
Α	Marge Liu	CSCI 366	C Gross	Yes
Α	Kelly Chen	CSCI 440	M Wittie	Yes
В	Xerces Orion	CSCI 366	C Gross	Yes
С	Ted Jacobs	CSCI 440	M Wittie	Yes
			7	

- We are now in 2NF
- Note that C Gross and M Wittie only appear once
 - Data redundancy has been removed
 - Easier to avoid update errors

Teaching			
Class	Teacher		
CSCI 366	C Gross		
CSCI 440	M Wittie		

Grades			
Grade	Student	Class	Satisfied?
В	Joe Smith	CSCI 366	Yes
Α	Marge Liu	CSCI 366	Yes
Α	Kelly Chen	CSCI 440	Yes
В	Xerces Orion	CSCI 366	Yes
С	Ted Jacobs	CSCI 440	Yes

- We can do better! There is still redundant data here!
- 3NF demands that all data depend only on the key
- What data here that does not depend on the key?

Teachin	g
Class	Teacher
CSCI 366	C Gross
CSCI 440	M Wittie

Grades			
Grade	Student	Class	Satisfied?
В	Joe Smith	CSCI 366	Yes
A	Marge Liu	CSCI 366	Yes
Α	Kelly Chen	CSCI 440	Yes
В	Xerces Orion	CSCI 366	Yes
С	Ted Jacobs	CSCI 440	Yes

- Satisfied does not depend on the key
- Rather, it depends on the Grade column
- OK, so let's pull that out as well

Teaching		
Teacher		
C Gross		
M Wittie		

Grades			
Grade	Student	Class	Satisfied?
В	Joe Smith	CSCI 366	Yes
Α	Marge Liu	CSCI 366	Yes
Α	Kelly Chen	CSCI 440	Yes
В	Xerces Orion	CSCI 366	Yes
С	Ted Jacobs	CSCI 440	Yes

- Satisfied does not depend on the key
- Rather, it depends on the Grade column
- OK, so let's pull that out as well!

Teaching	
Class	Teacher
CSCI 366	C Gross
CSCI 440	M Wittie

Satisfied		
Grade	Satisfied?	
Α	Yes	
В	Yes	
С	Yes	
D	No	
F	No	

Grades		
Grade	Student	Class
В	Joe Smith	CSCI 366
A	Marge Liu	CSCI 366
A	Kelly Chen	CSCI 440
В	Xerces Orion	CSCI 366
С	Ted Jacobs	CSCI 440

- We now have a database in 3NF
- It is also in BCNF
- 3NF typically satisfies BCNF, especially with surrogate keys

Teaching	
Teacher	
C Gross	
M Wittie	

Satisfied		
Grade	Satisfied?	
Α	Yes	
В	Yes	
С	Yes	
D	No	
F	No	

Grades		
Grade	Student	Class
В	Joe Smith	CSCI 366
A	Marge Liu	CSCI 366
A	Kelly Chen	CSCI 440
В	Xerces Orion	CSCI 366
С	Ted Jacobs	CSCI 440

- What have we accomplished?
- Data redundancy has been minimized
- Update complexity has been minimized
 - E.g. it is easy to change "Satisfied" criteria now

Teaching		
Class	Teacher	
CSCI 366	C Gross	
CSCI 440	M Wittie	

Satisfied		
Grade	Satisfied?	
Α	Yes	
В	Yes	
С	Yes	
D	No	
F	No	

Grades		
Grade	Student	Class
В	Joe Smith	CSCI 366
Α	Marge Liu	CSCI 366
A	Kelly Chen	CSCI 440
В	Xerces Orion	CSCI 366
С	Ted Jacobs	CSCI 440

Normal Form Summary

- Each non-key column in a relation depends on
 - The key (1NF)
 - The whole key (2NF)
 - And nothing but the key (3NF/BCNF)
 - So help me Cobb;)
- In the presence of a surrogate key, things become pretty obvious
 - o In industry, there is *always* a surrogate key
- What's The General Principle?

Normal Form Summary

- Each non-key column in a relation depends on
 - The key (1NF)
 - The whole key (2NF)
 - And nothing but the key (3NF/BCNF)
 - So help me Cobb;)
- In the presence of a surrogate key, things become pretty obvious
 - o In industry, there is *always* a surrogate key
- What's The General Principle?

Don't Repeat Yourself! (DRY)

Denormalizing

- We've talked about how to normalize a database
- Would you ever want to denormalize a database?

Denormalizing

- Yep! (Careful talking with the DBA though!)
 - Performance is the biggest reason to denormalize data
 - Say you wanted to find all students who didn't pass a class. The denormalized table would be faster to work with
 - No need to merge two tables together, just a simple filter.

Grades			
Grade	Student	Class	Satisfied?
В	Joe Smith	CSCI 366	Yes
Α	Marge Liu	CSCI 366	Yes
Α	Kelly Chen	CSCI 440	Yes
В	Xerces Orion	CSCI 366	Yes
С	Ted Jacobs	CSCI 440	Yes

Denormalizing

- Denormalization is basically caching at the database level
- "There are only two hard things in Computer Science: cache invalidation and naming things." -- Phil Karlton
- Be careful, but judicious denormalization can be a big win!

Grades			
Grade	Student	Class	Satisfied?
В	Joe Smith	CSCI 366	Yes
Α	Marge Liu	CSCI 366	Yes
A	Kelly Chen	CSCI 440	Yes
В	Xerces Orion	CSCI 366	Yes
С	Ted Jacobs	CSCI 440	Yes

MONICALIAN SHARE WINDOWS HIS TO THE WATER SHARE TO THE WATER SHARE TO THE SHARE THE SH