Python Code Documentation

Function

admissible_subsets

Description

Performs variable selection in the linear model setting. Can to handle both $p \leq n$ and p > n situations. See the reference for further details.

Usage

 $admissible_subsets(y, X, N, steps, burnin, po, PropWeights)$

Arguments

y: An $n \times 1$ NumPy array of response data.

X: An $n \times p$ NumPy array of predictors.

N: The number of importance samples used to estimate $E(h(\beta_M))$ within

the pseudo-marginal MCMC. Default is 100.

steps: The number of MCMC steps.

burnin: The number of initial *steps* to discard.

po: Belief about the number of predictors in the true model. Can be chosen

via cross-validation with admissible_subsets_cv.

PropWeights: The weights used for proposing which predictors to add or drop as the

MCMC samples index sets $M \subset \{1, \dots, p\}$. Default is to use squared coefficient estimates from elastic net, via the ElasticNetCV function

from the 'sklearn.linear_model' Python module, added by n^{-2} .

Values

chain: A $(steps-burnin) \times p$ NumPy array containing the MCMC sample path

(or trace) over index sets M, after burnin number of steps.

postSample: A NumPy array containing the indices (in each row) for every M visited

in the MCMC sample path.

postProbs: A list containing the relative frequencies for which each of the index sets

M in postSample was visited in the MCMC sample path.

AcceptRatio: The number of MCMC steps in which a proposed index set M was accepted.

References

J. P. Williams and J. Hannig (2017). Non-penalized variable selection in high-dimensional linear model settings via generalized fiducial inference. *Submitted*.

Supplement: https://jonathanpw.github.io/assets/WilliamsHannig_supplement.pdf

Function

admissible_subsets_cv

Description

Performs k-fold cross-validation to choose po in admissible_subsets, using an implementation of admissible_subsets. See the reference for further details.

Usage

 $admissible_subsets_cv(y, X, N, steps, burnin, grid, num_folds)$

Arguments

y: An $n \times 1$ NumPy array of response data.

X: An $n \times p$ NumPy array of predictors.

N: The number of importance samples used to estimate $E(h(\beta_M))$ within

the pseudo-marginal MCMC, during the cross-validation procedure. De-

fault is 30.

steps: The number of MCMC steps, during the cross-validation procedure.

Default is 200.

burnin: The number of initial steps to discard, during the cross-validation pro-

cedure. Default is 100.

grid: A list of po values to perform cross-validation over. Default is

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

 num_folds : The number of folds to partition the data into for performing k-fold

cross-validation. Default is 10.

Values

po: The optimal tuning parameter based on the implemented cross-

validation.

References

J. P. Williams and J. Hannig (2017). Non-penalized variable selection in high-dimensional linear model settings via generalized fiducial inference. Submitted.

 $Supplement: $$ https://jonathanpw.github.io/assets/WilliamsHannig_supplement. pdf$