

FIG.1A

MATCH WITH FIG. 1A

241	AAG	CTA	TTC	TCT	TTC									AAG		GGG	AAG	GTC	AGC	GGG	300
	TTC	GAT.	A/AG	AGA	¢AG		-									CCC	TTC	CAG	TCG	CCC	300
	K	L	F	S	F	T	K	Y	F	L	K	I	Ε	K	N	G	K	٧	S	G	
301				+			-+-							+			-+-			GTT	360
				. Е																CAA	
						_												_	_	v \CTC	
361	CAA	CGG	CAG	+ TTT(cgg ⁻	TAA	-+- TTG	TCG	TTG	+ ATA	ATG	AAT	CGG	+ TAC	TTG	TTC	-+- TTC	CCC	TTT	GAG	420
	٧	Α	٧	K	Α	I	N	S	N	Υ	Y	L	Α	М	N	K	K	G	K	L	
421				+		- - -	-+-							+			-+-			GGA + CCT	480
	Υ	G	S	K	Ε	F	N	N	D	С	K	L	K	Ε	R	Ι	Ε	Ε	N	G	
MATCH	Y G S K E F N N D C K L K E R I E E N G MATCH WITH FIG. 1C																				

FIG.1B

FIG.1C

MATCH WITH FIG. 2B

	1				50
FGF4	MS.GPGTAAV	ALLPAVLLAL	LA	.PWAGRGGAA	APTAPNGTLE
FGF6	MSRGAGRLQG	TLWALVFLGI	LV	.GMVVPSPAG	TR.ANNTLLD
FGF5	MSL	SFLLLLFFSH	LILSAWAHGE	KRLAPKGQPG	PAATDRNPIG
FGF1					
FGF2					
FGF9				MAPLGEVG	NYFGVQDAVP
FGF7		MHKW	ILTWILPTLL	YRSCF	HIICLVGTIS
KGF2		MWKW	${\it ILTHCASAFP}$	$HLPGCCCC\pmb{CF}$	LLLF LV SSVP
FGF3				MGL	IWLL L LSLLE
FGF8	MGSPRSALSC	LLLHLLVLCL	QAQVRSAAQK	${\tt RGPGAGNPAD}$	TLGQGHEDRP
	51 ·				100
FGF4		VALSTARLEV	AAQPKEAA	VOSGAGDY	LGIKRL
FGF6			EIAG		
FGF5	_		AASLGSQGSG		
FGF1			KFNLPPG		
FGF2			DGGSGAFPPG		
FGF9			QSEAGGLPRG		
FGF7			SSPE		
KGF2			SSFSSPSSAG		
FGF3			RLRRDAG		
FGF8			EGSKEQRDSV		
rGrö	r GURDRAGAN	PINEMENIES	EGOVE ÓVOS A	TIT ICA T STOTAL	

FIG.2A

MATCH WITH FIG. 2A

```
150
       101
       RRL....YC NVGIGFHLQA LPDGRIGGAH ADT.RDSLLE LSPVERGV.V
FGF4
       RRL....YC NVGIGFHLQV LPDGRISGTH EEN.PYSLLE ISTVERGV.V
FGF6
       GSL....YC RVGIGFHLQI YPDGKVNGSH EAN.MLSVLE IFAVSQGI.V
FGF5
       KLL....YC SNG.GHFLRI LPDGTVDGTR DRSDQHIQLQ~LSAESVGE.V ~
FGF1
       KRL....YC KNG.GFFLRI HPDGRVDGVR EKSDPHIKLQ LQAEERGV.V
FGF2
       ROL....YC R.T.GFHLEI FPNGTIQGTR KDHSRFGILE FISIAVGL.V
FGF9
       VRR.....LF CRT.QWYLRI DKRGKVKGTQ EMKNNYNIME IRTVAVGI.V
FGF7
       WRK....LF SFT.KYFLKI EKNGKVSGTK KENCPYSILE ITSVEIGV.V
KGF2
       RRK....LY CAT.KYHLQL HPSGRVNGSL .ENSAYSILE ITAVEVGI.V
FGF3
       RRLIRTYQLY SRTSGKHVQV LANKRINAMA EDGDPFAKLI VETDTFGSRV
FGF8
                                                           200
        151
        SIFGVASRFF VAMSSKGKLY G.SPFFTDEC TFKEILLPNN YNAYESYKYP
FGF4
        SLFGVRSALF VAMNSKGRLY A. TPSFQEEC KFRETLLPNN YNAYESDLYQ
FGF6
        GIRGVFSNKF LAMSKKGKLH A.SAKFTDDC KFRERFQENS YNTYASAIHR
FGF5
        YIKSTETGQY LAMDTDGLLY G.SQTPNEEC LFLERLEENH YNTYISKKH.
FGF1
        SIKGVCANRY LAMKEDGRLL A.SKCVTDEC FFFERLESNN YNTYRSRKY.
FGF2
        SIRGVDSGLY LGMNEKGELY G.SEKLTQEC VFREQFEENW YNTYSSNLYK
FGF9
        AIKGVESEFY LAMNKEGKLY A.KKECNEDC NFKELILENH YNTYAS....
FGF7
        AVKAINSNYY LAMNKKGKLY G.SKEFNNDC KLKERIEENG YNTYAS....
KGF2
        AIRGLFSGRY LAMNKRGRLY A. SEHYSAEC EFVERIHELG YNTYASRLYR
FGF3
        RVRGAETGLY ICMNKKGKLI AKSNGKGKDC VFTEIVLENN YTALQNAKY.
FGF8
```

MATCH WITH FIG. 2C

FIG.2B

	201				250
FGF4		GMFI	${f AL}{f SKNG}{f KTKK}$	${\tt GNRVSPTM}$	KVTHFLPRL.
FGF6		$\mathtt{GT}.\dots.\mathtt{YI}$	ALSKYGRVKR	GSKVSPIM	TVTHFLPRI.
FGF5		${\tt TEKTGREWYV}$	ALNKRGKAKR	${f G}{f C}{f S}{f P}{f R}{f V}{f K}{f P}{f Q}{f H}$	ISTHFLPRFK
FGF1		AEKNWFV	${\tt GLKKNGSCKR}$	${\tt GPRTHYGQ}$	KAILFLPLPV
FGF2		TSWYV	ALKRTGQYKL	GSKTGPGQ	KAILFLPMSA
FGF9	HV	:.DTGRRYYV	ALNKDGTPRE	${\tt GTRT}{\tt KRHQ}$	KFT HFLP RPV
FGF7	AKW	THNGGEM.FV	ALNQKGIPVR	${\tt GKKT}{\tt KKEQ}$	KTAHFLPMAI
KGF2	FNW	QHNGRQM.YV	ALNGKGAPRR	GQKTRRKN	TSAHFLPMVV
FGF3	TVSSTPGARR	QPSAERLWYV	SVNGKGRPRR	GFKTRRTQ	KSSLFLPRVL
FGF8		EGWYM	${\tt AFTR}{\tt KG}{\tt RPR}{\tt K}$	GSKTRQHQ	REVHFMKRLP
	251				300
FGF4	251				
FGF4					
FGF6					
		VTVPEKKNPP	SPIKSKIPLS	•	YRLKFRFG
FGF6 FGF5	QSEQPELSFT	VTVPEKKNPP	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1	QSEQPELSFT SSD	VTVPEKKNPP	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1 FGF2	QSEQPELSFT SSD KS DPDKVPELYK	VTVPEKKNPP DILSQS	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1 FGF2 FGF9	QSEQPELSFT SSD KS DPDKVPELYK T	VTVPEKKNPP DILSQS	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1 FGF2 FGF9 FGF7	QSEQPELSFT SSD KS DPDKVPELYK T	VTVPEKKNPP	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1 FGF2 FGF9 FGF7	QSEQPELSFT SSD KS DPDKVPELYK T HS	VTVPEKKNPP DILSQS LQSGLPRPPG	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1 FGF2 FGF9 FGF7 KGF2 FGF3	QSEQPELSFT SSD KS DPDKVPELYK T HS	VTVPEKKNPP DILSQS LQSGLPRPPG	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG

FIG.2C

MATCH WITH FIG. 2C

	301					
FGF4						
FGF6						
FGF5						
FGF1						
FGF2						
FGF9						
FGF7						
KGF2						
FGF3	LEASAH					
FGF8						

FIG.2D

GGAATTCCGG GAAGAGAGGG AAGAAAACAA CGGCGACTGG GCAGCTGCCT CCACTTCTGA 60 CAACTCCAAA GGGATATACT TGTAGAAGTG GCTCGCAGGC TGGGGCTCCG CAGAGAGAGA 120 CCAGAAGGTG CCAACCGCAG AGGGGTGCAG ATATCTCCCC CTATTCCCCA CCCCACCTCC 180 CTTGGGTTTT GTTCACCGTG CTGTCATCTG TTTTTCAGAC CTTTTTGGCA TCTAACATGG 240 TGAAGAAAGG AGTAAAGAAG AGAACAAAGT AACTCCTGGG GGAGCGAAGA GCGCTGGTGA 300 CCAACACCAC CAACGCCACC ACCAGCTCCT GCTGCTGCGG CCACCCACGT CCACCATTTA 360 CCGGGAGGCT CCAGAGGCGT AGGCAGCGGA TCCGAGAAAG GAGCGAGGGG AGTCAGCCGG 420 CTTTTCCGAG GAGTTATGGA TGTTGGTGCA TTCACTTCTG GCCAGATCCG CGCCCAGAGG 480 GAGCTAACCA GCAGCCACCA CCTCGAGCTC TCTCCTTGCC TTGCATCGGG TCTTACCCTT 540 CCAGTATGTT CCTTCTGATG AGACAATTTC CAGTGCCGAG AGTTTCAGTA CA ATG 595 Met TGG AAA TGG ATA CTG ACA CAT TGT GCC TCA GCC TTT CCC CAC CTG CCC 643 Trp Lys Trp Ile Leu Thr His Cys Ala Ser Ala Phe Pro His Leu Pro GGC TGC TGC TGC TGC TTT TTG TTG CTG TTC TTG GTG TCT TCC GTC 691 Gly Cys Cys Cys Cys Phe Leu Leu Leu Phe Leu Val Ser Ser Val CCT GTC ACC TGC CAA GCC CTT GGT CAG GAC ATG GTG TCA CCA GAG GCC Pro Val Thr Cys Gln Ala Leu Gly Gln Asp Met Val Ser Pro Glu Ala 739 ACC AAC TCT TCT TCC TCC TCC TTC TCC TCT CCT TCC AGC GCG GGA AGG 787 Thr Asn Ser Ser Ser Ser Ser Phe Ser Ser Pro Ser Ser Ala Gly Arg CAT GTG CGG AGC TAC AAT CAC CTT CAA GGA GAT GTC CGC TGG AGA AAG 835 His Val Arg Ser Tyr Asn His Leu Gln Gly Asp Val Arg Trp Arg Lys CTA TTC TCT TTC ACC AAG TAC TTT CTC AAG ATT GAG AAG AAC GGG AAG 883 Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys Asn Gly Lys GTC AGC GGG ACC AAG AAG GAG AAC TGC CCG TAC AGC ATC CTG GAG ATA 931 Val Ser Gly Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile ACA TCA GTA GAA ATC GGA GTT GTT GCC GTC AAA GCC ATT AAC AGC AAC Thr Ser Val Glu Ile Gly Val Val Ala Val Lys Ala Ile Asn Ser Asn 979 TAT TAC TTA GCC ATG AAC AAG AAG GGG AAA CTC TAT GGC TCA AAA GAA 1027 Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu Tyr Gly Ser Lys Glu TTT AAC AAT GAC TGT AAG CTG AAG GAG AGG ATA GAG GAA AAT GGA TAC 1075 Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly Tyr

AAT ACC TAT GCA TCA TTT AAC TGG CAG CAT AAT GGG AGG CAA ATG TAT Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met Tyr	1123
GTG GCA TTG AAT GGA AAA GGA GCT CCA AGG AGA GGA CAG AAA ACA CGA Val Ala Leu Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg	1171
AGG AAA AAC ACC TCT GCT CAC TTT CTT CCA ATG GTG GTA CAC TCA Arg Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser	1216
TAGAGGAAGG CAACGTTTGT GGATGCAGTA AAACCAATGG CTCTTTTGCC AAGAATAGTG	1276
GATATTCTTC ATGAAGACAG TAGATTGAAA GGCAAAGACA CGTTGCAGAT GTCTGCTTGC	1336
TTAAAAGAAA GCCAGCCTTT GAAGGTTTTT GTATTCACTG CTGACATATG ATGTTCTTTT	1396
AATTAGTTCT GTGTCATGTC TTATAATCAA GATATAGGCA GATCGAATGG GATAGAAGTT	1456
ATTCCCAAGT GAAAAACATT GTGGCTGGGT TTTTTGTTGT TGTTGTCAAG TTTTTGTTTT	1516
TAAACCTCTG AGATAGAACT TAAAGGACAT AGAACAATCT GTTGAAAGAA CGATCTTCGG	1576
GAAAGTTATT TATGGAATAC GAACTCATAT CAAAGACTTC ATTGCTCATT CAAGCCTAAT	1636
GAATCAATGA ACAGTAATAC GTGCAAGCAT TTACTGGAAA GCACTTGGGT CATATCATAT	1696
GCACAACCAA AGGAGTTCTG GATGTGGTCT CATGGAATAA TTGAATAGAA TTTAAAAATA	1756
TAAACATGTT AGTGTGAAAC TGTTCTAACA ATACAAATAG TATGGTATGC TTGTGCATTC	1816
TGCCTTCATC CCTTTCTATT TCTTTCTAAG TTATTTATTT AATAGGATGT TAAATATCTT	1876
TTGGGGTTTT AAAGAGTATC TCAGCAGCTG TCTTCTGATT TATCTTTTCT TTTTATTCAG	1936
CACACCACAT GCATGTTCAC GACAAAGTGT TTTTAAAACT TGGCGAACAC TTCAAAAATA	1996
GGAGTTGGGA TTAGGGAAGC AGTATGAGTG CCCGTGTGCT ATCAGTTGAC TTAATTTGCA	2056
CTTCTGCAGT AATAACCATC AACAATAAAT ATGGCAATGC TGTGCCATGG CTTGAGTGAG	2116
AGATGTCTGC TATCATTTGA AAACATATAT TACTCTCGAG GCTTCCTGTC TCAAGAAATA	2176
GACCAGAAGG CCAAATTCTT CTCTTTCAAT ACATCAGTTT GCCTCCAAGA ATATACTAAA	2236
AAAAGGAAAA TTAATTGCTA AATACATTTA AATAGCCTAG CCTCATTATT TACTCATGAT	2296
TTCTTGCCAA ATGTCATGGC GGTAAAGAGG CTGTCCACAT CTCTAAAAAC CCTCTGTAAA	2356
TTCCACATAA TCCATCTTTC CCAAACCAAC TATAAACAAT TTCCTATCAA CCCCAACTCT	2/16

CCCAGGGGCT TAAACTGAGC AAATCAAATA TATACTGGTA TATGTGTAAC CATATACAAA 2476 AACCTGTTCT AGCTGTATGA TCTAGTCTTT ACAAAACCAA ATAAAACTTG TTTTCTGTAA 2536 ATTTAAAGAG CTTTACAAGG TTCCATAATG TAACCATATC AAAATTCATT TTGTTAGAGC 2596 ACGTATAGAA AAGAGTACAT AAGAGTTTAC CAATCATCAT CACATTGTAT TCCACTAAAT 2656 AAATACATAA GCCTTATTTG CAGTGTCTGT AGTGATTTTA AAAATGTAGA AAAATACTAT 2716 TTGTTCTAAA TACTTTTAAG CAATAACTAT AATAGTATAT TGATGCTGCA GTTTTATCTT 2776 CATATTTCTT GTTTTGAAAA AGCATTTTAT TGTTTGGACA CAGTATTTTG GTACAAAAAA 2836 AAAGACTCAC TAAATGTGTC TTACTAAAGT TTAACCTTTG GAAATGCTGG CGTTCTGTGA 2896 TTCTCCAACA AACTTATTTG TGTCAATACT TAACCAGCAC TTCCAGTTAA TCTGTTATTT 2956 TTAAAAATTG CTTTATTAAG AAATTTTTTG TATAATCCCA TAAAAGGTCA TATTTTTCCC 3016 ATTCTTCAAA AAAACTGTAT TTCAGAAGAA ACACATTTGA GGCACTGTCT TTTGGCTTAT 3076 AGTTTAAATT GCATTTCATC ATACTTTGCT TCCAACTTGC TTTTTGGCAA ATGAGATTAT 3136 AAAAATGTTT AATTTTTGTG GTTGGAATCT GGATGTTAAA ATTTAATTGG TAACTCAGTC 3196 TGTGAGCTAT AATGTAATGC ATTCCTATCC AAACTAGGTA TCTTTTTTTC CTTTATGTTG 3256 AAATAATAAT GGCACCTGAC ACATAGACAT AGACCACCCA CAACCTAAAT TAAATGTTTG 3316 GTAAGACAAA TACACATTGG ATGACCACAG TAACAGCAAA CAGGGCACAA ACTGGATTCT 3376 TATTTCACAT AGACATTTAG ATTACTAAAG AGGGCTATGT GTAAACAGTC ATCATTATAG 3436 TACTCAAGAC ACTAAAACAG CTTCTAGCCA AATATATTAA AGCTTGCAGA GGCCAAAAAT 3496 AGAAAACATC TCCCCTGTCT CTCCCACATT TCCCTCACAG AAAGACAAAA AACCTGCCTG 3556 GTGCAGTAGC TCACACCTGT AATCCCAGCA GTTTGGGAGA CTGTGGGAAG ATGGCTTGAG 3616 3676 AAACAAAACA AATGTAGCCA TGCGTGGTGG.CATATACCTG TGGTCCCAAC TACTCAGGAG 3736 GCTGAAACGG AAGGATCTCT TGGGCCCCAG GAGTTTGAGG CTGCAGTGAG CTATAATCTT 3796 GCCATTGCAC TCCAGCCTGG GTGAAAAAGA GCCAGAAAGA AAGGAAAGAG AGAAAAGAGA 3856 3916 3976 GATTGTTTGG TAAGGAGTAA TGACATTCTC TTGCATTTAA AAGTGGCATA TTTGCTTGAA 4036

ATGGAAATAG	AATTCTGGTC	CCTTTTGCAA	CTACTGAAGA	AAAAAAAAAG	CAGTTTCAGC	4096
CCTGAATGTT	GTAGATTTGA	AAAAAAAAA	AAAAAAACTC	GAGGGGGGC	CCGTACCCAA	4156
TTCGCCCTAT	AGTGAGTCGT	Ã				4177

FIG.3D

FIG.5

FIG.6

FIG.7

FIG.8

1-3 MINIMAL CELL ACCUMULATION, NO GRANULATION 4-6 IMMATURE GRANULATION, INFLAMMATORY CELLS, CAPILLARIES 10-12 FIBROBLASTS, COLLAGEN, EPITHELIUM

FIG.9

1-3 MINIMAL CELL ACCUMULATION, NO GRANULATION 4-6 IMMATURE GRANULATION, INFLAMMATORY CELLS, CAPILLARIES 7-9 GRANULATION TISSUE, CELLS, FIBROBLASTS, NEW EPITHELIUM 10-12 FIBROBLASTS, COLLAGEN, EPITHELIUM

FIG.10

ANTI-CYTOKERATIN IMMUNOSTAINING 0-NO CLOSURE 5-SLIGHT TO MODERATE CLOSURE 10-COMPLETE CLOSURE

FIG.11

ANTI-CYTOKERATIN IMMUNOSTAINING 0-NO CLOSURE 5-SLIGHT TO MODERATE CLOSURE 10-COMPLETE CLOSURE

FIG.12

PCNA SCORING 0-2 SLIGHT PROLIFERATION 3-5 MODERATE PROLIFERATION 6-8 INTENSE PROLIFERATION

FIG.13

PCNA SCORING 0-2 SLIGHT PROLIFERATION 3-5 MODERATE PROLIFERATION 6-8 INTENSE PROLIFERATION

FIG.14

MRGSHHHHHHGSCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGD VRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSN YYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVA LNGKGAPRRGQKTRRKNTSAHFLPMVVHS

kgf-2 synthetic cys37 Bam HI AAAGGATCCTGCCAGGCTCTGGGTCAGGACATG

FIG. 15

DAY 8 POSTWOUNDING

FIG.16

GLUCOCORTICOID TREATED ANIMALS

FIG.17

- FIG.18

FIG.19A

DAY 10 POSTWOUNDING FIG.19B

GLUCOCORTICOID TREATED GROUP

FIG.20

0.5 0.4-0.3-0.2-0.1-KBM KBM KGM KGM 1000 100 30 10 3 1 0.3 0.1

CONC. (ng/ml)

FIG.21B

FIG.21C

FIG.22A

FIG.22A-1

FIG.22B

ATGTGGAAATGGATACTGACCCACTGCGCTTCTGCTTTCCCGCACCTGCCGGGTTGCTGC Met Trp Lys Trp IIe Leu Thr His Cys Ala Ser Ala Phe Pro His Leu Pro Gly Cys Cys	60
TGCTGCTGCTGCTGCTGTTCCTGGTTTCTTCTGTTCCGGTTACCTGCCAGGCTCTG Cys Cys Cys Phe Leu Leu Phe Leu Val Ser Ser Val Pro Val Thr Cys Gin Ala Leu	120
GGTCAGGACATGGTTTCTCCGGAAGCTACCAACTCTTCCTCTTCCTCTTTCTCTCCCGGGIy GIn Asp Met Val Ser Pro Glu Ala Thr Asn Ser Ser Ser Ser Phe Ser Ser Pro	180
ACTTCCGCTGGTCGTCACGTTCGTTCTTACAACCACCTGCAGGGTGACGTTCGTT	240
AAACTGTTCTCTTTCACCAAATACTTCCTGAAAATCGAAAAAACGGTAAAGTTTCTGGG Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys Asn Gly Lys Val Ser Gly	300
ACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTT Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile Thr Ser Val Glu Ile Gly Val	360
GTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTC Vai Ala Vai Lys Ala Ile Asn Ser Asn Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu	
TATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGA Tyr Gly Ser Lys Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly	480
TACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTATGT	
AATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAAACACCTCTGCTCACASn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg Arg Lys Asn Thr Ser Ala His	
TTTCTTCCAATGGTGGTACACTCATAG 627 Phe Leu Pro Met Val Val His Ser *	

ATGACCTGCCAGGCTCTGGGTCAGGACATGGTTTCTCCGGAAGCTACCAACTCTTCCTCT MetThrCysGlnAlaLeuGlyGlnAspMetValSerProGluAlaThrAsnSerSerSer	60
TCCTCTTTCTCTCCCCGTCTTCCGCTGGTCGTCACGTTCGTT	120
GGTGACGTTCGTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAAATCGAAAAA GlyAspValArgTrpArgLysLeuPheSerPheThrLysTyrPheLeuLysIleGluLys	180
AACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGATAACA AsnGlyLysValSerGlyThrLysLysGluAsnCysProTyrSerIleLeuGluIleThr	240
TCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATG SerValGluIleGlyValValAlaValLysAlaIleAsnSerAsnTyrTyrLeuAlaMet	300
AACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAG AsnLysLysGlyLysLeuTyrGlySerLysGluPheAsnAsnAspCysLysLeuLysGlu	360
AGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG ArgIleGluGluAsnGlyTyrAsnThrTyrAlaSerPheAsnTrpGlnHisAsnGlyArg	420
CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGACAGAAAACACGAAGG GlnMetTyrValAlaLeuAsnGlyLysGlyAlaProArgArgGlyGlnLysThrArgArg	480
AAAAACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG 525 LysAsnThrSerAlaHisPheLeuProMetValValHisSer *	

FIG.24A

ATGACTTGCCAGGCACTGGGTCAAGACATGGTTTCCCCGGAAGCTACCAACAGCTCCAGCTCTAGCTTCA	70
GCAGCCCATCTAGCGCACGTCGTCACGTTCGCTCTTACAACCACTTACAGGGTGATGTTCGTTGGCGCAA	140
S S P S S A G R H V R S Y N H L Q G D V R W R K	
ACTGTTCAGCTTTACCAAGTACTTCCTGAAAATCGAAAAAAACGGTAAAGTTTCTGGGACCAAGAAGGAG	210
TGACAAGTCGAAATGGTTCATGAAGGACTTTTAGCTTTTTTTT	
AACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACA HHHHHHHHHHHHHHHHHHHHHHHHHHHHH	280
N C P Y S I L E I T S V E I G V V A V K A I N	
GCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA ++++++++++++++++++++++++++++++++++	350
S N Y Y L A M N K K G K L Y G S K E F N N D C K	
CGACTTCCTCTCTATCTCCTTTTACCTATGTTATCGATACGTAGTAAATTGACCGTCGTATTACCCTCC	420
L K E R I E E N G Y N T Y A S F N W Q H N G R CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGACAGAAAACACGAAGGAAAAACACCT HILLIAGUU AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	490
GTTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTCT	
CTGCTCACTTTCTTCCAATGGTGGTACACTCATAG ++++ +++ +++ ++++ ++++ ++++ ++++ GACGAGTGAAAGAAGGTTACCACCATGTGAGTATC	
SAHFLPMVVHS FIG.24B	

MTCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKL KERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.25

MAGRHVRSYNHEQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV VAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVA LNGKGAPRRGQKTRRKNTSAHFLPMVVHS. ATGGTTCGTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAATCGAAAAA AACGGTAAAGTTTCTTGGGACCAAGAAGAAGAACTGCCCGTACAGCATCCTGGAGATA ACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCAACTATTACTTA GCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAAG CTGAAGGAGAGAGAAAATGGATACAATACCTATGCATCATTTAACTGGCAG CATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAAGGAGCTCCAAGGAGAGACACTCA CAGAAAACACCGAAGGAAAAACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCA TAG

MVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAM NKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTR RKNTSAHFLPMVVHS.

FIG.27

ATGGAAAAAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCAT CCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCA ACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC AATGACTGTAAGCTGAAGGAGAGAGAGAAAATGGAAAATACCTATGCATC ATTTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAG CTCCAAGGAGAGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTTCTTCCA ATGGTGGTACACTCATAG

MEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDC KLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVH S. ATGGAGAACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGT TGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAAC TCTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAA AATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTA TGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGACAGAAAACACGAAGGAAAA ACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG

MENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGY NTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.29

ATGGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACT CTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAA ATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTAT GTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGACAGAAAACACGAAGGAAAAA CACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG

MVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMY VALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.30

MGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKT RRKNTSAHFLPMVVHS.

MTCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKL K

FIG.32

MAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV — VAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLK

FIG.33

C-37 To Ser

FIG.34

C-106 To Ser

FIG.35

	BrdU SCORE	3.8±0.4	5.0±0.4	4.6±0.7	4.2±0.7	3.3±0.25 p=0.0217†	5.3±0.9
WOUND HEALING RAT MODEL	RE-EPITH. <i>(u</i> m)	1142±141	923±61	1275±148	1310±182	1389±115 p=0.0074†	1220±89 p=0.0254†
	HISTOLOGICAL SCORE	6.8±0.2	6.4±0.2	6.8±0.2	8.0±0.5 p=0.0445*	8.4±0.4 p=0.0159* p=0.0053†	8.5±0.3 p=0.0047* p=0.0445†
	% WOUND CLOSURE	58.8±3.7	60.2±2.6	65±1.4	68.4±2.4	66.2±2.1	71.2±2.6 p=0.0367* p=0.0217†
FFFECT OF KGF-2 A33 ON NORMAL WOUND HEALING RAT MODEL	WOUND SIZE (mm)	25.9±2.5	25.1±1.7	22.0±0.9	21.1±1.4	19.9±1.5	18.1±1.6 p=0.0398* p=0.0200†
	TREATMENT	NO TREATMENT	BUFFER	$KGF-2/\Delta 33$ (0.1 μ g)	$\begin{array}{c} \text{KGF-2/} \triangle 33 \\ (0.4 \mu \text{g}) \end{array}$	KGF-2/ \triangle 33 (1.0 μ g)	KGF-2/∆33 (4.0µg)

FIG.37

FIG.38

FIG.39

FIG.40

FIG.42B

FIG.43

DAY 8 POSTWOUNDING

FIG.47

FIG.48

FIG.49

FIG. 50

FIG. 51

PROLIFERATION OF HEPATOCYTES FOLLOWING SYSTEMIC ADMINISTRATION OF KGF-2

PROLIFERATION OF PANCREATIC CELLS FOLLOWING SYSTEMIC ADMINISTRATION OF KGF-2

FIG. 60