Introduction of Reinforcement Learning

Tian Lan

2018-11-3

Reference

- 1 David Silver UCL course
- 2 My notebook for RL
- One standard repo for RL agent in PyTorch
- 4 Alibaba Reinforcement Learning Application
- Output
 Lots of repos can be found on GitHub

Outline

- Introduction and MDP
- Planning by DP
- Model-Free Value-Based
- Value function approximation
 - FA and its limitation
 - Open DQN and extensions
- Model-Free Policy-Based
 - Policy Gradient
 - Algorithms
- Model-Based
 - Integrating Learning
 - Open Dyna Q
- Application
 - RL in NLP
 - Alibaba StarCraft

1. Introduction

Figure 1: Reinforcement Learning

Reinforcement Learning:

Dynamic decision process with delay reward

- no supervisor, only reward signal from environment
- Feedback is delayed
- Time really matters
- Agent's action affect subsequent data it receives

Reward hypothesis:

All goals can be described by Maximisation of expected cumulative rewards

RL Task

Prediction and Control

What is MDP and why we need it?

- Markov decision processes formally describe the Environment for RL In RL, we only care about Agent and Environment
- Current state is known, the history can be thrown away

$$S_t = F(h_{< t})$$

Almost all RL problems can be formalised as MDPs

MDP definition

$$(S, A, R, P, \gamma)$$

$$P_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

$$R_s^{a} = \mathbb{E}[R_{t+1} | S_t = s, A_t = a]$$

$$\gamma \in [0, 1]$$

Policy definition
Define the distribution of the action condition on state

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

Return Reward
 Cumulative reward from current state

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$$

- Value function
 - State Value function

$$v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$$

Action Value function

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

- Bellman Equation
 - State Value Bellman function

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

Action Value Bellman function

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = a, A_t = a]$$

Optimal Bellman Equation

$$egin{aligned} v_*(s) &= {\it max_a} q_*(s,a) \ &q_*(s,a) &= R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s') \ &q_*(s,a) &= R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a {\it max_{a'}} q_*(s',a') \end{aligned}$$

Find stable $v_*(s)$, prediction problem solved

Find stable $p_*(s, a)$, control problem solved

Need to use iterate the equation, because the Optimal Bellman Equation is nonlinear.

Dynamic Programming: Optimal method for decision process

- Optimal substructure
 Optimal solution can be decomposed into subproblems
- Overlapping subproblems
 Solutions can be cached and reused
- Markov Decision Process satisfy the properties
 - Bellman equation gives the way to decompose solution
 - Value function store solution

Prediction

- Problem: MDP and policy π given, solve ν_{π} , evaluate policy π
- Solution: iterative application of Bellman equation

$$v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\pi}$$

• Convergence of v_{π} can be proven

$$v_{k+1}(s) = \sum_{a \in A} \pi(a|s) (R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s'))$$

$$v^{k+1} = R^{\pi} + \gamma P^{\pi} v^k$$

Control

- ullet Problem: MDP and initial policy π given, return best π
- Solution: Policy Iteration
 - Evaluation

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

Improve policy

$$\pi' = greedy(v_{\pi})$$

Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Figure 2: Policy Iteration

Convergence

$$egin{aligned} v_{\pi}(s) &= extit{max}_{a \in A} q_{\pi}(s, a) = v_{*}(s) \ & q_{*}(s, a) = R^{a}_{s} + \gamma \sum_{s' \in S'} P^{a}_{ss'} v_{*}(s') \ & v_{\pi}(s) = q_{\pi}(s, \pi'(s)) = extit{max}_{a \in A} q_{\pi}(s, a) \geq q_{\pi}(s, \pi(s)) = v_{\pi}(s) \end{aligned}$$

Optimal Bellman equation satisfy, solve the MDP control problem

 Value Iteration for control problem Iterative application of this equation

$$v_*(s) \leftarrow \textit{max}_{\textit{a} \in \textit{A}} \textit{R}^{\textit{a}}_s + \gamma \sum_{s' \in \textit{S}} \textit{P}^{\textit{a}}_{\textit{ss'}} \textit{v}_*(s')$$

Value Iteration is another way to solve the control and prediction problem

• Constraint for Planning by DP MDP must be given, which means that $P^a_{ss'}$ and R^a_s can be accessed.

3. Model-Free Value-Based

Definition

- **1** MDP is unknow, but we still want to solve it. $P_{ss'}^a$ and R_s^a is unknown to us.
- 2 We can only learn the value or policy from the experience.
- \odot Find the optimal V value function, prediction solved.
- Find the optimal Q value function, control solved.

Monte-Carlo Learning

- Learn from the episode experience with environment
- MC is model-free: no knowledge of MDP (P, R)
- MC learns from complete expisode without bootstrapping
- MC's idea: $value = \mathbb{E}[G]$
- Onstraint: All epsiodes must terminate

Monte-Carlo Learning

1 Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \backsim \pi$$

② Discounted reward of episode

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

1 Update v(s) after episode

$$egin{aligned} \mathcal{N}(S_t) \leftarrow \mathcal{N}(S_t) + 1 \ & V(S_t) \leftarrow V(S_t) + rac{1}{\mathcal{N}(S_t)} (G_t - V(S_t)) \ & V(S_t) \leftarrow V(S_t) + lpha (G_t - V(S_t)) \end{aligned}$$

Temporal-Difference Learning

- TD methods learn directly from episodes of experience
- ② TD is model-free: no knowledge of MDP (P,R)
- TD learns from incomplete episode with bootstrapping
- TD update the value function with the guess from previous iteration

Temporal-Difference Learning

- **①** Goal: learn v_{π} online from experience under policy π
- MC update

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

3 TD(0)

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

- $R_{t+1} + \gamma V(S_{t+1})$ is called TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called TD error

Comparison

- TD learns online but MC wait until end of episode
- MC has high variance and zero bias, TD has low variance and some bias
- Onvergence:
 - MC converges to solution with MSE

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (G_t^k - V(s_t^k))^2$$

2 TD converges to max likelihood Markov model TD is better suited to the Markov environment.

$\mathsf{TD}(\lambda)$

$$E_0(s) = 0$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + 1(if \ S_t = s)$$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

- $TD(\lambda)$ converges faster than TD(0)
- \bullet δ_t define the result of fixing
- E_t define the degree of fixing

Generalised Policy Iteration evaluation π starting $V \pi$ n = greedy(V) improvement Policy evaluation Estimate v_{π} e.g. Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ e.g. Greedy policy improvement Figure 3: Generalised Policy Iteration

Sarsa

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

Figure 4: Sarsa Algorithm

$Sarsa(\lambda)$

```
Initialize Q(s, a) arbitrarily, for all s \in S, a \in A(s)
Repeat (for each episode):
   E(s, a) = 0, for all s \in S, a \in A(s)
   Initialize S, A
   Repeat (for each step of episode):
       Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
       \delta \leftarrow R + \gamma Q(S', A') - Q(S, A)
       E(S, A) \leftarrow E(S, A) + 1
       For all s \in S, a \in A(s):
           Q(s, a) \leftarrow Q(s, a) + \alpha \delta E(s, a)
           E(s, a) \leftarrow \gamma \lambda E(s, a)
       S \leftarrow S' : A \leftarrow A'
   until S is terminal
```

Figure 5: Sarsa(λ) Algorithm

Off-Policy and On-Policy

- On-Policy
 - ullet learn about policy π from experience sampled from π
 - The special case of the Off-Policy
- Off-Policy
 - \bullet learn about policy π from experience sampled from μ
 - Re-use experience generated from other policy (other agent or even human)
 - Balance between Exploiition and Exploration though Q-Learning

Q-Leanring

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0 Repeat (for each episode):
    Initialize S
Repeat (for each step of episode):
    Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
    Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S';
until S is terminal
```

Figure 6: Off-Policy TD Learning, Q-Learning

- Reinforcement Learning can be used to solve large problem
 - Backgammon: 10^{20} states
 - Game of Go: 10¹⁷⁰ states
 Some environment: continuous state space
- Problem:
 - Tabular method need lots of memory to store Value Function
 - Learn value individually slowly
- Solution Value Function Approximation
 - Save the memory with approximation parameters w

$$v(s, w) \approx v_{\pi}(s)$$

$$q(s, a, w) \approx q_{\pi}(s, a)$$

Extension to unseen states

- Approximate model
 - Nonlinear model: Nerual Networks
 - Linear regression
 - Other regression model ...
- Optimal parameters
 - Gradient descent
 - Batch training

Gradient Descent

• Goal: Find the parameter vector w minimising MSE betweeen approximate value function v(s,w) and true value function $v_{\pi}(s)$

$$J(w) = \mathbb{E}_{\pi}[(v_{\pi}(s) - v(s, w))^2]$$

Gradient descent

$$\delta w = -\frac{1}{2}\alpha \nabla_w J(w) = \alpha \mathbb{E}_{\pi}[(v_{\pi}(s) - v(s, w)) \nabla_w v(s, w)]$$

$$\delta w = \alpha(v_{\pi}(s) - v(s, w)) \nabla_w v(s, w)$$

 \odot SGD \rightarrow Expectation

Gradient Descent

1 Linear function, x(S) is the feature vector

$$v(s, w) = x(S)^T w$$

Object function

$$J(w) = \mathbb{E}_{\pi}[(v_{\pi}(s) - x(s)^{T}w)^{2}]$$

Gradient Descent

$$\delta w = \alpha(v_{\pi}(s) - v(s, w))x(s)$$

4 Lookup table is the special case of Linear function

$$v(s, w) = x_{one-hot}^T w$$

Gradient Descent

MC

$$\delta w = \alpha (G_t - v(s_t, w)) \nabla_w v(s_t, w)$$

② TD(0)

$$\delta w = \alpha(R_{t+1} + \gamma v(s_{t+1}, w) - v(s_t, w)) \nabla_w v(s_t, w)$$

 \odot TD(λ)

$$\delta w = \alpha (G_t^{\lambda} - v(s, w)) \nabla_w v(s_t, w)$$

$$\delta_t = R_{t+1} + \gamma v(s_{t+1}, w) - v(s_t, w)$$

$$E_t = \gamma \lambda E_{t-1} + x(s_t)$$

$$\delta w = \alpha \delta_t E_t$$

Limiation

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✔)	×
Sarsa	✓	(✔)	×
Q-learning	✓	×	×
Gradient Q-learning	✓	✓	X

(✓) = chatters around near-optimal value function

Figure 7: Neural Networks don't work¹

An analysis of temporal-difference learning with function approximation. IEEE 1997

Batch Methods - DQN

- DeepMind Nature 2015
 - DRL of DQN
 - integrate the CNN and Q-Learning to master the games
 - Solve the divergence of nonlinear function approximation Q-Learning
- Idea
 - Experience replay: avoid relevance
 - Fixed Q target Network: Off-Policy

```
Algorithm 1 Deep Q-learning with experience replay
   Initialize replay memory D to capacity N
   Initialize action-value function Q with random weights \theta
   Initialize target action-value function \hat{Q} with weights \theta^- = \theta
  for episode 1, M do Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
       for t = 1. T do
            With probability \varepsilon select a random action a_t
            otherwise select a_t = \arg \max_a Q(\phi(s_t), a; \theta)
            Execute action a_t in the emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store experience (\phi_t, a_t, r_t, \phi_{t+1}) in D
            Sample random minibatch of experiences (\phi_i, a_i, r_i, \phi_{i+1}) from D
           \text{Set } y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
            Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the weights \theta
            Every C steps reset \hat{Q} = Q
       end for
  end for
```

Figure 8: DQN

Extension of DQN

- Ouble DQN
 - fix the overestimation problem of Q-Learning
 - avoid suboptimal result

$$loss = (r + \gamma Q(s', \arg\max_{a} Q(s', a', w), w^{-}) - Q(s, a, w))^{2}$$

- Prioritized Replay DQN
 - When reward is sparse, DQN is hard to train
 - TD error is the weight
- Oueling DQN
 - For some states, V function is more important
 - spee up

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Value-Based and Policy-Based RL

- Value Based
 - Learn value function
 - implicit policy (such as ϵ -greedy)
- Policy Based
 - No valuse function
 - Learn policy directly
- Actor-Critic
 - Critic: Learn Value Function
 - Actor: Learn policy with the guidance of Critic

Figure 9: Aliased

Advantage

- Learn policy with probability
- Learn for continous state space, better than Value-Based

Parameterise the policy

$$\pi_{\theta}(s, a) = \mathbb{P}[a|s, \theta]$$

2 Evaluate the policy with object function

$$J(\theta) = \sum \pi_{\theta}(a|s)Q(s,a;\theta)$$

$$J(\theta) = \mathbb{E}_{\pi_{\theta}, s \backsim \rho^{\pi}}[Q(s, a; \theta)]$$

- Optimize
 - Gradient Ascent
 - No Gradient Ascent

Compute the score function for gradient

1 Discrete environment - Softmax Policy

$$\pi_{ heta}(s,a) arpropto e^{\phi(s,a)^T heta}$$

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \phi(s, a) - \mathbb{E}_{\theta}[\phi(s, \cdot)]$$

$$abla_{ heta}\pi_{ heta}(s, a) = \pi_{ heta}(s, a) rac{
abla_{ heta}\pi_{ heta}(s, a)}{\pi_{ heta}(s, a)} = \pi_{ heta}(s, a)
abla_{ heta} \log \pi_{ heta}(s, a)$$

Continuing environment - Gaussian Policy

$$abla_{ heta} \log \pi_{ heta}(s,a) = rac{(a-\mu(s))\phi(s)}{\sigma^2}$$

Policy Gradient Theorem

For any policy object function, the **Policy Gradient** is the same^a

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} [
abla_{ heta} \log \pi_{ heta}(s, a) Q^{\pi_{ heta}}(s, a)]$$

- \bullet $\nabla_{\theta} \log \pi_{\theta}(s, a)$ means the gradient
- Q means the degree of fixing
- **3** Used to minimize the $-\log \pi_{\theta}(s, a)Q^{\pi_{\theta}}(s, a)$

 $[^]a https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html\\$

5. Policy Gradient Algorithms

MC Policy Gradient

```
function REINFORCE Initalise \theta arbitrarily for each spisode \{s_1, a_1, r_2, ..., \} \backsim \pi_{\theta} do for t = 1 to T - 1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t end for end for return \theta end function
```

5. Policy Gradient Algorithms

TD Policy Gradient

```
function TD Policy Gradient Initalise \theta arbitrarily for each episode do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t end for end for return \theta end function
```

Actor-Critic Policy Gradient

- MC has variance and need to be improved
- Actor-Critic
 - Critic: parametries $Q_w(s, a)$ for policy evaluation
 - Acotr: Policy Gradient with the guidance of Critic
 - Result

$$abla_{ heta} J(heta) pprox \mathbb{E}_{\pi_{ heta}} [
abla_{ heta} \log \pi_{ heta}(s, a) Q_w(s, a)]$$

$$\delta \theta = \alpha \nabla_{ heta} \log \pi_{ heta}(s, a) Q_w(s, a)$$

Actor-Critic Policy Gradient with Linear function approximation

```
function QAC
     Initialise s. \theta
    Sample a \backsim \pi_{\theta}
    for each step do
         Sample reward r = R_s^a and s' \sim P_s^a
         Sample action a' \backsim \pi_{\theta}(s', a')
         \delta = r + \gamma Q_w(s', a') - Q_w(s, a)
         \theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_{w}(s, a)
          w \leftarrow w + \beta \delta \phi(s, sa)
          a \leftarrow a', s \leftarrow s'
    end for
end function
```

DDPG (Deep Deterministic Policy Gradient)

- DQN can't handle with high-dimension or continous space
- Inspired by DQN, DeepMind propose DDPG
 - Actor-Critic: DQN is Critic and DPG2 is Actor
 - Fixed Q target Network for policy and value
 - Target Network update slowly

²http://proceedings.mlr.press/v32/silver14.pdf

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration

Receive initial observation state s_1

for t = 1. T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for

Figure 10: DDPG

Comparation

- Model-Free Learn value function and policy from the experience
- Model-Based Learn MDP from the experience and get the policy and value function by planning.

Figure 11: Model-Based method

- Use any supervised Learning model to learn the MDP
- Anything we know now can be used to solve MDP
- A direct way to solve the MDP but the bias is a disadvantage
- Model is the agent's impression of environment

1 Parameter η represente the MDP

$$P_{\eta} \approx P$$

$$R_{\eta} \approx R$$

- ② Goal: estimate model MDP from experience $\{s_1, a_1, r_2, ..., s_T\}$
- Supervised learning problem

$$S_t, A_t \rightarrow R_{t+1}, S_{t+1}$$

- After learning the MDP, solved by
 - Planning (Policy Iteration, Value Iteration)
 - Model-Free (DQN, Policy Gradient)

Dyna

- Thinking: Use the model to generate infinite samples

 This property is very useful for time-cost environment
- Simulation: Apply model-free RL to evalution the samples and fix the policy

Figure 12: Dyna

Intergrated Architexture for Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Do forever:

- (a) S ← current (nonterminal) state
- (b) A ← ε-greedy(S, Q)
- (c) Execute action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) Q(S, A)]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow$ random action previously taken in S

 $R, S' \leftarrow Model(S, A)$

 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

Figure 13: Dyna-Q, Q-Learning, DQN

Conclusion

- Reward is the core for Reinforcenment Learning
- f 2 If the problem can be thought as the MDP / POMDP, RL can be used
- 3 If the reward is clear, RL can be used
- Sample data is important, no experience no RL
- RL is difficult to train, be careful about parameters

RL in NLP

For task-oriented dialogue, reward is clear

- DQN for Policy Learning
- Deep Dyna-Q (Dyna-Q + DQN) for Policy Learning
- REINFORCE for Policy Learning

Figure 1: The illustration of SeqGAN. Left: D is trained over the real data and the generated data by G. Right: G is trained by policy gradient where the final reward signal is provided by D and is passed back to the intermediate action value via Monte Carlo search.

Figure 15: SeqGAN

SeqGAN

- Model the sequence generation as MDP
- The first work: integrate GANs with RL to generate discrete elemenets
- Generator is LSTM Policy (RL Agent)
 REINFORCE Algorithm is used for updating G
- Discriminator is CNN with MC Search

Alibaba StarCraft

Figure 16: StarCraft

Alibaba StarCraft

- Alibaba choose the StarCraft as the platform for RL research
 - Game is the wonderful platform for RL
 - Experience data is infinite
 - Reward is clear
- ② Difficulies
 - Real-Time strategy
 - Huge state and action space
 - Incomplete nformation games
 - Inference for spatial and sequential
 - Multi Agent

Alibaba StarCraft

Why GAMES?

- Advertisement in Alimama
- Search in TaoBao
- Intelligent agent for task-oriented dialogue (AliMeChat)
- 4 Alibaba RL sort strategy decision model for 11.11

End

Question and Answer