<u>Лабораторная работа № 4. "Синтез системы оперативной</u> обработки".

ЦЕЛЬ РАБОТЫ

В результате настоящей работы студенты должны: знать: постановку задачи синтеза системы оперативной обработки; понимать: зависимости характеристик синтезируемой системы оперативной обработки от её параметров;

уметь: синтезировать системы оперативной обработки заданной стоимости и системы с эаданным временем ответа.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Изучить теорию работы по описанию и указанным литературным источникам.
- 2. Дать обоснование необходимых формул и выполнить требуемые расчеты.
 - 3. Оформить отчет по лабораторной работе.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Синтез системы оперативной обработки (СОО) сводится к выбору таких значений параметров структуры (оборудования) и таких алгоритмов управления вычислительным процессом, при которых СОО оказывается наилучшим образок приспособленной для решения заданного класса задач.

Постановка задачи синтеза СОО. Основными характеристиками СОО, предназначенных для решения задач в реальном масштабе времени, являются производительность, время пребывания задачи в СОО и стоимость. Производительность определяется средним количеством задач λ_0 , обрабатываемых СОО в единицу времени. Время пребывания задач обычно характеризуется средним промежутком времени U от момента поступления задачи в СОО до момента окончания её обработки. Стоимость равна суммарной стоимости устройств, входящих в состав СОО. Производительность λ_0 определяется назначение СОО и задана. С учетом этого задача проектирования СОО в части выбора состава оборудования — номенклатуры устройств — может быть сформулирована в одной из

следующих постановок:

- 1. Синтезировать СОО минимальной стоимости, которая обеспечивает решение λ_0 задач в единицу времени при среднем времени пребывания задач в СОО, не превосходящем заданного значения \mathbf{U}^* .
- 2. Синтезировать СОО о минимальным временем пребывания задач, которая обеспечивает решение λ_0 задач в единицу времени, причем стоимость СОО не должна превышать заданного значения \mathbf{S}^* .

Задача проектирования в первой постановке сводится к синтезу СОО с заданным временем пребывания задач, а во второй постановке - к проектировании СОО заданной стоимостью. В каждом из этих случаев необходимо выбрать совокупность устройств, число и характеристики которых обеспечивали бы заданную производительность λ_0 СОО и для СОО с заданным временем пребывания задач имели бы минимально возможную стоимость, а для СОО заданной стоимости обеспечивали бы минимально возможное время пребывания задач (минимальное время ответа).

<u>Характеристики устройств и задач.</u> Состав устройств и их характеристики зависят от класса решаемых задач. Для выбора состава оборудования СОО необходимы следующие характеристики задач. Пусть СОО предназначается для решения M типов задач, поступающих на обработку с интенсивностями $\lambda_1, \ldots, \lambda_M$ задач в единицу времени. В таком случае СОО должна иметь производительность:

$$\lambda_0 = \sum_{j=1}^{M} \lambda_j , \qquad (1)$$

и доля задач ј -го типа в потоке задач, поступающем на вход СОО, равна λ_i/λ_0 . Исходя из алгоритмов решения задач можно определить потребность в устройствах каждого типа: процессоре, внешних запоминающих устройствах и устройствах ввода-вывода. Примем, что в СОО должны попользоваться **n** типов устройств, которые обозначим номерами n. Теперь возникает задача определения 1, быстродействия устройств каждого типа» необходимых комплектации СОО о заданным временем пребывания задач или заданной стоимости. Чтобы определить быстродействие устройств необходимо располагать оценками сложности вычислений по задачам каждого из М типов. Сложность вычислений характеризуется средним числом операций каждого типа, выполняемых в процессе решения одной задачи. Пусть для задачи каждого типа j=1, ..., М даны следующие характеристики сложности вычислений: $\alpha_{1i}, ..., \alpha_{ni}$ среднее количество обращений к устройствам за время решения задачи

 ${f j}$ -го типа; ${f \theta_{1i}}, \ \dots, \ {f \theta_{ni}}$ - среднее количество операций, выполняемых за одно обращение к устройствам 1, ..., n в процессе .решения задачи j го типа. Произведения $\alpha_{1i}^*\theta_{1j}, \ ..., \ \alpha_{nj}^*\theta_{nj}$ определяют среднее число операций, выполняемых устройствами 1, ..., п соответственно в процессе решения одной задачи ј -го типа. Вместо того, чтобы оперировать с М типами задач, введем одну "среднюю" задачу, обобщающую в себе свойства задач различных типов. Характеристики вычисляются путем усреднения одноименных характеристик задач типа j=1, ..., M по вероятностям λ_i / λ_0 появления задач каждого типа в смеси задач, обрабатываемых СОО в мультипрограммном режиме. Исходя из этого, среднее число оснащении к устройству i=1, ..., n за время решения задачи и среднее число операций, выполняемых устройством при обслуживании одного обращения, равны соответственно:

$$\begin{split} &\alpha_i = (1/\lambda_0)^* \sum_{j=1}^M \lambda_j^* \alpha_{ij} \;, \\ &\theta_i = (1/\alpha_0)^* \sum_{i=1}^M \theta_{ij}^* \alpha_{ij} \;, \end{split} \tag{2}$$

В дальнейшем будем считать, что СОО обрабатывает однотипные задачи, характеристики которых равны в среднем $\alpha_1, ..., \alpha_n$ и $\theta_1, ..., \theta_n$. Процесс обработки задачи - случайный процесс, в ходе которого производится в среднем $\alpha_1, ..., \alpha_n$ обращений к устройствам 1, ..., n и каждое из устройств выполняет в среднем $\theta_1, ..., \theta_n$ операций. Быстродействие и стоимость каждого устройства связана между собой определенной зависимостью: стоимость устройства монотонно возрастает с увеличением быстродействия. Чтобы получить результаты в компактной аналитической форме, примем допущение, что стоимость устройства i -го типа является линейной функцией быстродействия S_i = k_i * V_i , где k_i - коэффициент пропорциональности с единицей измерения руб. с/операция, т.е. коэффициент определяет цену единицы быстродействия.

Формулировка задачи синтеза СОО. Заданы:

- 1) производительность λ_0 ;
- 2) количество типов устройств n;
- 3) зависимости стоимости от быстродействия устройств $S_1 \!\!=\!\! k_1 \!\!\!* V_1, \ldots, S_n \!\!\!=\!\! k_n \!\!\!* V_n;$
- 4) характеристики задач α_1 , ..., α_n и θ_1 , ..., θ_n , определяющие среднее число обращений к устройствам 1, ..., n и среднее число операций, выполняемых устройством при обслуживании обращения;

5) предельно допустимое время пребывания задачи \mathbf{U}^* в СОО (или предельно допустимая стоимость \mathbf{S}^* СОО).

Требуется определить быстродействие устройств каждого типа, обеспечивающее заданную производительность λ_0 , время пребывания $\mathbf{U} {\leq} \mathbf{U}^*$ (или стоимость COO $\mathbf{S} {\leq} \mathbf{S}^*$) и минимизирующие стоимость \mathbf{S} COO (или время пребывания \mathbf{U}).

СИНТЕЗ СОО С ЗАДАННОМ ВРЕМЕНЕМ ПРЕБЫВАНИЯ ЗАДАЧ

Задача синтеза СОО в первой постановке формулируется следующим образом; требуется построить систему, обеспечивающую решение λ_0 задач в единицу времени при времени ответа (времени пребывания задач в системе), не превосходящем заданного значения \mathbf{U}^* , причем стоимость оборудования (устройств системы) должна быть минимальной.

Примем, что исходя из содержательного описания задач определены типы устройств, необходимых для комплектации СОО, однако быстродействия устройств неизвестны. Как доказано в [1] -, при сделанных допущениях быстродействие \mathbf{V}_i устройств $\mathbf{i=1},$..., \mathbf{n} при котором время пребывания не превосходит заданного $\mathbf{U} \leq \mathbf{U}^*$, производительность равна λ_0 и стоимость СОО минимальна, определяется значениями:

$$V_{i} = \lambda_{i} * \theta_{i} + (1 / (\lambda_{0} * U^{*})) * \sqrt{(\lambda_{i} * \theta_{i}) / k_{i}} * \sum_{j=1}^{n} \sqrt{\lambda_{j} * \theta_{j} * k_{j}},$$
(3)

где $\lambda_i = \lambda_0 * \alpha_i$ - интенсивность обращений к i - му устройству в процессе работы COO.

Интенсивность λ_i равна среднему количеству обращений к устройству за единицу времени. Составляющая $\lambda_i^*\theta_i$ в (3) равна количеству операций, выполняемых устройством при обслуживании λ_i обращения, и определяет минимально необходимое быстродействие устройств, при котором СОО обеспечивает обработку λ_0 задач в единицу времени со сколь угодно большим временем пребывания задач U. Вторая составляющая определяет "дополнительное" быстродействие, которое необходимо устройству, чтобы уменьшить время пребывания задач до $U \leq U^*$. Обратим внимание, что минимально необходимое быстродействие $\lambda_i^*\theta_i$ пропорционально вычислительной нагрузке, создаваемой в единицу времени λ_0 задачами, каждая из

которых приводит к выполнении $\alpha_i^*\theta_i$ операций на устройстве i. Однако "дополнительное" быстродействие распределяется между устройствами пропорционально корню квадратному из нагрузки $\lambda_i^*\theta_i = \lambda_0^*\alpha_i^*\theta_i$ на устройство.

Таким образом, минимум стоимости СОО с заданным временем пребывания задач достигается только в том случае, если быстродействия $V_1, ..., V_n$ устройств распределены в соответствии с (3). При этом стоимость СОО, обеспечивающая производительность λ_0 и время пребывания задач $U \leq U^*$:

$$S = \lambda_0^* \sum_{i=1}^n k_i^* \alpha_i^* \theta_i + (1/U^*)^* (\sum_{i=1}^n \sqrt{k_i^* \alpha_i^* \theta_i})^2.$$
 (4)

<u>Пример №1.</u> Пусть СОО, предназначенная для работы в реальном масштабе времени (РМВ), состоит из процессора с оперативной памятью ПРОП и двух разнотипных внешних запоминающих устройств ВЗУ1 и ВЗУ2 (рис.1). По каналу ввода-вывода ВВ в СОО поступают задания не обработку, инициирующие соответствующие задачи.

Пусть производительность СОО составляет $\lambda_0 = 0.2$ с $^{-1}$, т е. средний период между поступлением задач равен 5 с, и ограничение на среднее время пребывания задач в СОО $U^*=25$ с. Задачи имеют следующие характеристики:

- 1) среднее количество обращений к ПРОП, ВЗУ1 и ВЗУ2 в процессе решения одной задачи равно соответственно α_1 =53, α_2 =50, α_3 =2;
- 2) среднее количество операций, выполняемых этими устройствами при обслуживании одного обращения, θ_1 =15900, θ_2 =1, θ_3 =1;
- 3) стоимостные коэффициенты устройств положим равными $\mathbf{k_1}$ =1, $\mathbf{k_2}$ =5000, $\mathbf{k_3}$ =100000 руб./(операция/с).

Интенсивность обращений $\lambda_i=\lambda_0*\alpha_i$ к ПРОП, ВЗУ1 и ВЗУ2 в процессе работы СОО составляет соответственно $\lambda_1=10.6$; $\lambda_2=10$; $\lambda_3=0.4$ с ⁻¹. Минимально необходимое быстродействие устройств, определяемое первым членом в (3), равно $V_1^{\min}=200000$; $V_2^{\min}=10$; $V_3^{\min}=0.4$ операция/с. Стоимость СОО, обеспечивающая такое быстродействие,

$$\mathbf{S}^{min} = \sum_{i=1}^{n} \mathbf{k}_{i} * \mathbf{V}^{min}_{i} = 290$$
 тыс. руб.

Для обеспечения среднего времени пребывания задач быстродействие устройств должно быть повышено до значений, определяемых (3): V_1 =280000; V_2 =18; V_3 =0.75 операция/с. Указанное

быстродействие обеспечивается устройствами стоимостью $S_1=k_1*V_1=280;\ S_2=k_2*V_2=90;\ S_3=k_3*V_3=75$ тыс. руб. и стоимость СОО составляет S=445 тыс. руб.

Таким образом, производительность λ_0 =0.2 $c^{\text{-}1}$ обеспечивается за счет использования оборудования со стоимостью S^{min} =290 тыс. руб. и сокращение времени пребывания задач до U^* =25c потребовало увеличения стоимости СОО на S_0 =S- S^{min} =155 тыс. руб.

СИНТЕЗ СОО ЗАДАННОИ СТОИМОСТИ

Во второй постановке производительность системы λ_0 и суммарная стоимость устройств S являются ограничениями, и оптимальной считается система, имеющая минимальное время ответа U.

Положим, что номенклатура устройств известна. Определим быстродействия V_1 , ..., V_n устройств, при которых будет обеспечена обработка λ_0 задач в единицу времени на СОО стоимостью $S ≤ S^*$ при минимальном времени пребывания задач. В [1] доказано, что при сделанных допущениях минимум времени пребывания задач в СОО стоимостью $S = S^*$ достигается, если быстродействия устройств i = 1, ..., n равны:

$$V_{i} = \lambda_{0} * \alpha_{i} * \theta_{i} + (S*/k_{i})*(\sqrt{k_{i} * \alpha_{i} * \theta_{i}} / \sum_{i=1}^{n} \sqrt{k_{i} * \alpha_{i} * \theta_{i}}), \qquad (5)$$

где S^* - предельно допустимая стоимость СОО. Раскроем смысл полученного выражения. Произведение $\alpha_i^*\theta_i$ характеризует среднее количество операций, выполняемых **i**-м устройством в процессе решения одной задачи. Величина $\lambda_0^*\alpha_i^*\theta_i$ равна количеству операций, выполняемых устройством за время поступления λ_0 задач, т.е. за единицу времени. Следовательно, величина $V^{\min}_{i=}\lambda_0^*\alpha_i^*\theta_i$ - это минимально необходимое быстродействие, которым должно обладать **i**-е устройство в составе СОО, обрабатывающей λ_0 задач в единицу времени. Сумма:

$$S^{min} = \sum_{i=1}^{n} k_i^* V_i = \lambda_0^* \sum_{i=1}^{n} k_i^* \alpha_i^* \theta_i$$
 (6)

определяет минимально необходимую стоимость COO, при которой будет обеспечена производительность λ_0 при неограниченно большом времени пребывания задач. Если стоимость \mathbf{S}^* , отведенная на создание COO, меньше \mathbf{S}^{\min} , обработка задач с заданной производительностью

 λ_0 в РМВ невозможна. При $S^*>S^{min}$, имеются средства в количестве $S_0=S^*-S^{min}$, за счет которых можно уменьшить время пребывания задач U. Для получения минимума U эти средства должны быть распределены в соответствии со вторым слагаемым в (5): быстродействие **i**-го устройства должно быть увеличено пропорционально корню квадратному нагрузки $\alpha_i * \theta_i$, которую создает задача на устройство.

Таким образом, минимум среднего времени пребывания задач в СОО достигается, если быстродействия V_1, \ldots, V_n устройств распределены в соответствии с (5). При этом среднее время пребывания задач составляет:

$$U = (1 / S_0)^* (\sum_{i=1}^n \sqrt{k_i^* \alpha_i^* \theta_i})^2, \qquad (7)$$

где $S_0 = S^* - S^{min}$, и может быть уменьшено только за счёт увеличения стоимости СОО.

Пример №2. Определим быстродействия V_1 , V_2 , V_3 устройств СОО со структурой (рис.1), описанной в предыдущем примере. Пусть производительность СОО составляет λ_0 =0.2 c^{-1} и стоимость определяется предельным значением S^* =400 тыс. руб. Как и в предыдущем примере, примем, .что характеристики задач равны α_1 =53; α_2 =50; α_3 =2; θ_1 =15900; θ_2 =1; θ_3 =1. Стоимостные коэффициенты k_1 =1; k_2 =5000; k_3 =100000 руб./(операция / с).

Минимально необходимое быстродействие устройств определяется величинами $V^{min}_{i}=\lambda_0*\alpha_i*\theta_i$ и равно $V^{min}_{1}=200000;$ $V^{min}_{2}=10;$ $V^{min}_{3}=0.4$ операция / с. Минимально необходимая стоимость СОО в соответствии с (6) составляет $S^{min}=290$ тыс. руб. Поскольку на СОО выдеалено $S^*=400$ тыс. руб., наличие резерва $S_0=S^*-S^{min}=110$ тыс. руб. позволяет повышать быстродействие устройств до значений, определяемых (5): $V_1=256000;$ $V_2=15.56;$ $V_3=0.65$ операция / с. При таком быстродействии устройств время пребывания задач в соответствий с (7) равно U=28.85 с.

ВАРИАЦИИ ПАРАМЕТРОВ

Проектирование BC представляет собой длительный итерационный процесс, в ходе которого имеют место перераспределения средств между подсистемами BC в пользу одних COO за счёт других COO.

Для обоснованного принятия решения по данному вопросу разработчик BC должен иметь количественные оценки функции $\mathbf{S} = \mathbf{f}(\mathbf{U}^*)$ при проектировании COO с заданным временем пребывания задач. Характер зависимости $\mathbf{S} = \mathbf{f}(\mathbf{U}^*)$ приведен на рис.2. Для получения зависимости $\mathbf{S} = \mathbf{f}(\mathbf{U}^*)$ необходимо повторять синтез COO при неизменных характеристиках задачи для различных значений $\mathbf{U}^* \pm \mathbf{l} * \Delta \mathbf{U}$, где $\mathbf{l} = \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots$.

Аналогично при проектировании СОО заданной стоимости необходимо знать зависимость $\mathbf{U} = \boldsymbol{\varphi}(\mathbf{S}^*)$, характер которой приведён на рис.3. Для получения зависимости $\mathbf{U} = \boldsymbol{\varphi}(\mathbf{S}^*)$ необходимо повторить синтез СОО при неизменных характеристиках задачи для различных значений $\mathbf{S}^* \pm \mathbf{l}^* \Delta \mathbf{S}$, где $\mathbf{l} = \mathbf{1}, \mathbf{2}, \mathbf{3}, \dots$

МЕТОДИКА ВЫПОЛНЕНИЯ РАЕОТЫ

- 1. Выполнить, синтез СОО с заданным временем пребывания задач.
- 1.1. Рассчитать V^{min}_{i} .
- 1.2. Рассчитать S^{min}_i.
- 1.3. Рассчитать V_i , обеспечивающие U^* .
- 1.4. Рассчитать S и S_0 .
- 1.5. Рассчитать зависимость $S=f(U^*)$.
- 2. Выполнить синтез СОО заданной стоимости.
- 2.1. Рассчитать $\mathbf{V}_{\mathbf{i}}^{\min}$.
- 2.2. Рассчитать **S**^{min}.
- 2.3. Рассчитать S_0 и V_i для заданной S^* .
- 2.4. Рассчитать **U**.
- 2.5. Рассчитать зависимость $\mathbf{U} = \boldsymbol{\varphi}(\mathbf{S}^*)$.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

- 1. Какие характеристики СОО являются ограничениями и объектами минимизации при различных постановках задач синтеза оптимальных СОО?
- 2. Как зависят характеристики от параметров системы для СОО с заданным временем пребывания и для СОО заданной стоимости?
- 3. Какая последовательность преобразований используется для синтеза оптимальных СОО при различных постановках задачи синтеза?
- 4. Как влияет изменение \mathbf{U}^* на \mathbf{S} при синтезе COO с заданным временем пребывания?

- 5. Как влияет изменение S^* на U при синтезе COO заданной стоимости?
- 6. Какие можно сделать предложения по перераспределению средств между синтезированными СОО и другими системами ВС на основе анализа зависимостей $\mathbf{S=f(U}^*)$ и $\mathbf{U=\phi(S}^*)$?

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Результаты синтеза и анализа СОО с заданным временем пребывания, оформленные в виде графиков и таблиц, а также использованные формулы в соответствии с п. 1 методики выполнения работы.
- 2. Результаты синтеза и анализа СОО заданной стоимости, оформленные в виде таблиц и графиков, а также использованные формулы в соответствии с п. 2 методики выполнения работы.
- 3. Выводы по работе.

Рис.1. Пример структуры СОО для работы в РМЗ.

Рис.2. Характер зависимости $\mathbf{S} = \mathbf{f}(\mathbf{U}^*)$ для COO с заданным временем пребывания задач.

Рис.3. Характер зависимости $\mathbf{U} = \boldsymbol{\varphi}(\mathbf{S}^*)$ для СОО заданной стоимости.

ЛИТЕРАТУРА

- 1. Основы теории вычислительных систем. М., "Высшая школа", 1978.
- 2. Майоров С. М., Новиков Г. И. Структура электронных вычислительных машин. Л., "Машиностроение", Ленинградское отделение, 1979.

ВАРИАНТЫ ЗАДАНИЙ

1. Индивидуальные характеристики задачи и устройств.

№ варианта	$\lambda_0 1/c$	α_1	α_2	α_3	\mathbf{U}^*	\mathbf{S}^*
1	0.1	80	50	2	10	300
2	0.1	80	40	1	15	300
3	0.1	70	50	2	10	300
4	0.1	70	40	1	15	300
5	0.2	60	50	2	20	400
6	0.2	60	40	1	20	400
7	0.2	50	50	2	20	400
8	0.2	50	40	1	20	400
9	0.4	40	40	2	40	500
10	0.4	40	30	1	40	500
11	0.4	30	40	2	30	500
12	0.4	30	30	1	30	500

Таблица 1.

2. Общие характеристики задачи и устройств.

 θ_1 =16000 операций,

 θ_2 =5 операций,

 θ_3 =1 операция,

 k_1 =1 руб./(операция / с),

 $\mathbf{k_2} = 5000$ руб./(операция / с),

 $\mathbf{k_3}$ =100000 руб./(операция / с).