CS221 Section 3: Search

DP, UCS, A*

Search in AI: Applications

Route Planning

Game Playing

Scheduling Problems

Search in Al:

→ A tool for goal-based sequential problem solving

→ Many real-world applications!

What are the "ingredients" for a well-defined search problem?

Definition: search problem

- $s_{
 m start}$: starting state
- Actions(s): possible actions
- Cost(s, a): action cost
- $\operatorname{Succ}(s,a)$: successor
- Is $\mathbf{End}(s)$: found solution?

Search Algorithms

- Breadth-First Search (BFS)
- Depth-First Search (DFS)
- DFS with Iterative Deepening (DFS-ID)
- Backtracking
- Dynamic Programming (DP)
- Uniform Cost Search (UCS)
- UCS with A* heuristic

Search Algorithms

- Breadth-First Search (BFS)
- Depth-First Search (DFS)
- DFS with Iterative Deepening (DFS-ID)
- Backtracking
- Dynamic Programming (DP)
- Uniform Cost Search (UCS)
- UCS with A* heuristic

Section Problem

There exists **N** cities, labeled from C1 to CN.

There are one-way roads connecting some pairs of cities. The road connecting city *i* and city *j* takes *c(i,j)* time to traverse. However, one can **only travel from a city with smaller label to a city with larger label** (each road is one-directional).

From city C1, we want to travel to city CN. What is the shortest time required to make this trip, given the constraint that we should visit more odd-labeled cities than even labeled cities?

Example

- What is the shortest path (without constraint)?
- 2. What is the shortest path under the given constraint (visit more odd than even cities)?

Example

[C1, C2, C4, C5] has cost 14 but visits equal number of odd and even cities.

Best path is [C1, C3, C4, C5] with cost 16.

State Representation

Key idea: state-

A **state** is a summary of all the past actions sufficient to choose future actions **optimally**.

How would you represent a state for this problem?

State Representation

We need to know where we are currently at: current_city

We need to know how many odd and even cities we have visited thus far: **#odd**, **#even**

State Representation: (current_city, #odd, #even)

Total number of states: $O(N^3)$

Can We Do Better?

Check if all the information is really required

Instead of storing **#odd** and **#even**, we can store **#odd** - **#even** directly; this still allows us to check whether **#odd** - **#even** > 0 at (N, **#odd**, **#even**)

(current_city, #odd - #even) \rightarrow O(N²) states

Original Graph

State Graph

State s = (i, d) (current city, #odd-#even)

Precise Formulation of Problem

State s := (i, d) (current city, #odd-#even)

 $E := \{(i, j) \mid \exists \text{ road from i to j}\}\$

 $\mathsf{Actions}(s) := \{ move(j) \mid (i,j) \in E \}$

Cost(s, move(j)) := c(i, j)

 $\operatorname{Succ}(s,a) := egin{cases} (j,d+1) & j \text{ odd} \ (j,d-1) & j \text{ even} \end{cases}$

Start := (1,1)

isEnd(s) := i = N and d > 0

Which algorithms can you use to solve this problem? Any pros and cons?

Solving the Problem

Since we are computing shortest path, which is some form of optimization, we consider **DP** and **UCS**.

Recall:

- DP can handle negative edges but works only on DAGs
- UCS works on general graphs, but cannot handle negative edges
- > Which one works for our problem?

Solving the Problem

Since we are computing shortest path, which is some form of optimization, we consider **DP** and **UCS**.

Recall:

- DP can handle negative edges but works only on DAGs
- UCS works on general graphs, but cannot handle negative edges

Since we have a **DAG** and all edges are positive, both work!

Solving the Problem: Dynamic Programming

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{isEnd}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$$

If s has no successors, we set it as undefined

#n	hh	- #ev	en
πυ	uu	- mcv	CII

		-1	0	1	2	3
	C1	_	_	_	_	_
	C2	_	_	_	_	-
	C3	_	_	_	_	_
	C4	-	-	-	-	-
	C5	-	?	0	0	-

#nd	Ы	- #even
πuu	ч	- <i>m</i> cvcii

		-1	0	1	2	3
	C1	_	_	-	_	_
	C2	_	_	_	_	_
	C3	_	_	13	_	_
	C4	?	7	7	-	-
	C5	-	?	0	0	-

Solving the Problem: Uniform Cost Search

State s = (i, d) (current city, #odd-#even)

Explored: (C1, 1): 0

(C3, 2): 3 (C2, 0): 5

Frontier:

→ Frontier is a priority queue.

Explored: Frontier: (C1, 1): 0 (C2, 0): 5 (C3, 2): 3 (C4, 1): 9

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C3, 1): 6 (C3, 2): 3 (C4, -1): 7 (C2, 0): 5 (C4, 1): 9

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C4, -1): 7 (C3, 2): 3 (C4, 1): 9 (C2, 0): 5 (C4, 0): 12 (C3, 1): 6

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C4, 1): 9 (C3, 2): 3 (C4, 0): 12 (C2, 0): 5 (C5, 0): 14

(C3, 1): 6

(C4, -1): 7

Explored:

(C1, 1): 0

(C3, 2):3

(C2, 0):5

(C3, 1):6

(C4, -1): 7

(C4, 1): 9

State s = (i, d) (current city, #odd-#even)

Frontier:

(C4, 0): 12

(C5, 0): 14

(C5, 2): 16

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C5, 0): 14 (C3, 2): 3 (C5, 2): 16 (C2, 0): 5 (C5, 1): 19

(C3, 1):6

(C4, -1): 7

(C4, 1): 9

(C4, 0): 12

State s = (i, d) (current city, #odd-#even)

Explored: (C1, 1): 0(C3, 2):3(C2, 0):5(C3, 1):6(C4, -1): 7(C4, 1): 9(C4, 0): 12(C5, 0): 14

Frontier: (C5, 2): 16 (C5, 1): 19

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C5, 1): 19

(C3, 2):3

(C2, 0):5

(C3, 1): 6

(C4, -1): 7

(C4, 1): 9

(C4, 0): 12

(C5, 0): 14

(C5, 2): 16

STOP!(Since we found

C5 with #odd-#even > 0)

Comparison between DP and UCS

N total states, n of which are closer than goal state

Runtime of DP is O(N)

Runtime of UCS is O(n log n)

Example:

Start state C1, end state C5

- -DP explores O(N) states.
- -UCS will explore {C1, C2, C5} only. C3 will be in the frontier and C4 will be unexplored.

DP cannot handle cycles

Shortest path is [C1, C3, C2, C5] with cost 13.

Hard to define subproblems in undirected or cyclic graphs.

UCS cannot handle negative edge weights

Best path is [C1,C2,C3,C4,C5] with cost of 8, but UCS will output [C1,C3,C4,C5] with cost of 13 because C3 is marked as 'explored' before C2.

Back to our section problem, can we do the search faster than UCS?

Use A*!

https://qiao.github.io/PathFinding.js/visual/

Recap of A* Search from Lecture

A heuristic h(s) is any estimate of FutureCost(s).

Run uniform cost search with modified edge costs:

$$Cost'(s, a) = Cost(s, a) + h(Succ(s, a)) - h(s)$$

A heuristic h is **consistent** if

- $Cost'(s, a) = Cost(s, a) + h(Succ(s, a)) h(s) \ge 0$
- $h(s_{end}) = 0$.

If h is consistent, A^* returns the minimum cost path.

Finding a Heuristic by Relaxation

→ try to solve an easier (less constrained) version of the problem

→ attain a problem that can be solved more efficiently

Relaxation, more formally:

Definition: relaxed search problem-

A **relaxation** P' of a search problem P has costs that satisfy:

 $\mathsf{Cost}'(s, a) \leq \mathsf{Cost}(s, a).$

Which heuristic would you use to solve our problem more efficiently?

Hint: Relaxation!

Heuristic for our problem

Remove the constraint that we visit more odd cities than even cities.

h(s) = h((i, d)) = length of shortest path from city i to city N

Note that the modified shortest path problem has O(N) states instead of $O(N^2)$.

Checking consistency

- Cost(s, a) + h(Succ(s, a)) h(s) \geq 0 (Triangle Inequality)
 - Suppose s = (Ci, d) and Succ(s, a) = (Cj, d')
 - Note that $h((Ci, d)) h((Cj, d')) \le c(Ci, Cj) = Cost(s, a)$
- h((CN, d)) = 0

How to compute *h*?

Reverse all edges, then perform UCS starting at C5 until C1 is found.

→ O(n log n) time (where n is # states whose distance to city CN is no farther than the distance of city C1 to city CN)

city	C1	C2	C 3	C4	C5
h	14	9	13	7	0

Original Graph

city	C1	C2	C3	C4	C5
h	14	9	13	7	0

Modified State Graph

(updated edge costs)

State s = (i, d) (current city, #odd-#even)

State s = (i, d) (current city, #odd-#even)

Explored: (C1, 1): 0

(C2, 0): 0 (C3, 2): 2

Frontier:

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C2, 0): 0 (C3, 2): 2

(C3, 1):5

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C5, 0): 0 (C2, 0): 0 (C3, 2): 2 (C4, -1): 0 (C3, 1): 5

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C3, 2): 2 (C2, 0): 0 (C3, 1): 5 (C4, -1): 0

(C5, 0): 0

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C4, 1): 2 (C2, 0): 0 (C3, 1): 5

(C4, -1): 0

(C5, 0): 0

(C3, 2): 2

State s = (i, d) (current city, #odd-#even)

Explored: From (C1, 1): 0 (C2, 0): 0 (C4, -1): 0 (C5, 0): 0 (C3, 2): 2

(C4, 1): 2

Frontier: (C5, 2): 2

(C3, 1):5

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C3, 1): 5 (C2, 0): 0

(C4, -1): 0

(C5, 0): 0

(C3, 2): 2

(C4, 1): 2

(C5, 2): 2

STOP!

State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C3, 1): 5 (C2, 0): 0 (C4, -1): 0 (C5, 0): 0 (C3, 2): 2

(C4, 1): 2

(C5, 2): 2

Actual Cost is 2 + h(1) = 2 + 14 = 16

Comparison of States visited

UCS		UCS(A*)		
Explored: (C1, 1): 0 (C3, 2): 3 (C2, 0): 5 (C3, 1): 6 (C4, -1): 7 (C4, 1): 9 (C4, 0): 12 (C5, 0): 14 (C5, 2): 16	Frontier: (C5, 1): 19	Explored: (C1, 1): 0 (C2, 0): 0 (C4, -1): 0 (C5, 0): 0 (C3, 2): 2 (C4, 1): 2 (C5, 2): 2	Frontier: (C3, 1): 5	

Comparison of States visited

UCS

Frontier:

(C5, 1): 19

(C3, 2):3

Explored:

(C1, 1): 0

(C2, 0):5

(C3, 1): 6

(C4, -1): 7

(C4, 1): 9

(C4, 0): 12

(C5, 0): 14

(C5, 2): 16

UCS explored 9 states

UCS(A*)

•

Explored: (C1, 1): 0

(C2, 0): 0

(OZ, O)

(C4, -1): 0

(C5, 0): 0

(C3, 2): 2

(C4, 1): 2

(C5, 2): 2

UCS(A*) explored 7 states

Frontier:

(C3, 1): 5

Summary

- States Representation/Modelling
 - make state representation compact, remove unnecessary information
- DP
 - underlying graph cannot have cycles
 - visit all reachable states, but no log overhead

UCS

- actions cannot have negative cost
- visit only a subset of states, log overhead
- A*
 - Introduce heuristic to guide search
 - ensure that relaxed problem can be solved more efficiently

That's it! Thanks for coming to section!

