

Variables

Robot A

Current state

Robot future states

(position, velocity)

Inter-robot factor

High cost if robot states

overlap at same timestep

Robot B

Current state

- 🗗 -

Distributing Collaborative Multi-Robot Planning with Gaussian Belief Propagation

Aalok Patwardhan, Riku Murai, Andrew J. Davison

Robots can collaborate to plan safe and efficient paths with iterative message passing

No centralized solver needed!

Formulating Path Planning as Inference on a Factor Graph

Factors

Dynamics factor

High cost if robot path is

dynamically infeasible

Cost functions

 $f(X) \propto e^{h(X)^{\mathsf{T}} \sum h(X)}$

solved using

Towards goals

Horizon state

Horizon state

Obstacle factor

....

High cost if state

is near obstacles in

environment

Gaussian Belief Propagation (GBP)

A distributed, iterative and asynchronous alternative to nonlinear least squares

 \searrow

Message passing to update beliefs of variables

Robot paths **react** to new changes in the environment

\bowtie

Algorithm (per robot)

Update current and horizon states Create or destroy inter-robot factors **Optimise** path with iterations of GBP

