LOGISTIC REGRESSION

1 Warm-up

The logistic model assumes that the random variables $(X,Y) \in \mathbb{R}^d \times \{0,1\}$ are such that

$$\mathbb{P}(Y = 1|X) = \frac{\exp\left(\langle \beta^*, X \rangle\right)}{1 + \exp\left(\langle \beta^*, X \rangle\right)},$$

with $\beta^* \in \mathbb{R}^d$. In this case, $\mathbb{P}(Y = 1|X) > 1/2$ if and only if $\langle \beta^*, X \rangle > 0$, so the frontier between $\{x : h_*(x) = 1\}$ and $\{x : h_*(x) = 0\}$ is an hyperplane, with orthogonal direction β^* .

- 1. In this question only, $\beta^* = (\beta_0, \beta_1) \in \mathbb{R} \times \mathbb{R}_*$ and $X_i = (1, x_i)$ for all $1 \leq i \leq n$.
 - (a) Provide the value x_* of x_i such that $\mathbb{P}(Y_i = 1|X_i) = 1/2$.

By definition, $\mathbb{P}(Y_i = 1 | X_i) = 1/2$ if and only if $\beta_0 + \beta_1 x_i = 0$ i.e. if $x_i = -\beta_0/\beta_1$.

(b) Another classifier could be defined by choosing a threshold $\tilde{p} \in (0,1)$ and defining $\tilde{h}(X_i) = 1$ if and only if $\mathbb{P}(Y_i = 1|X_i) > \tilde{p}$. Provide \tilde{x} such that $\mathbb{P}(Y_i = 1|X_i) = \tilde{p}$. Explain a practical interest to choose $\tilde{p} < 1/2$.

By definition, $\mathbb{P}(Y_i = 1|X_i) = \tilde{p}$ if and only if $(1 - \tilde{p})e^{\beta_0 + \beta_1 x_i} = \tilde{p}$ i.e. if $\beta_0 + \beta_1 x_i = \log(\tilde{p}/(1 - \tilde{p}))$.

2. The usual logistic regression classifier is defined by $h_n: x \mapsto 1$ is $x^{\top} \hat{\beta}_n > 0$ and 0 otherwise, where $\hat{\beta}_n$ is an estimator of β . Therefore $h_n(X) = 1$ if and only if $\mathbb{P}(Y = 1|X) > 1/2$. Other classifiers can be defined by setting $h_n(X) = 1$ if and only if $\mathbb{P}(Y = 1|X) > p_*$ for a chosen $p_* \in (0,1)$. Two classifiers were built with $p_* = 0.5$ and $p_* = 0.2$, associate each classifier with its point on ROC curve displayed above.

The red dot corresponds to $p_* = 0.2$ as decreasing p_* leads to more individual classified in group 1 which can only increase the true positive rate and the false positive rate.

2 Softmax regression

Assume that the observation Y takes values in $\{1, ..., M\}$ and that $X \in \mathbb{R}^d$. The negative loglikelihood to be minimized to estimate the parameters of the model is given by:

$$\theta \mapsto \ell_n^{\text{multi}}(\theta) = -\frac{1}{n} \sum_{i=1}^n \sum_{k=1}^M \mathbb{1}_{Y_i = k} \log \mathbb{P}_{\theta}(Y_i = k | X_i),$$

where $\{(X_i, Y_i)\}_{1 \le i \le n}$ are i.i.d. observations with the same law as (X, Y).

1. Explain the construction of $\mathbb{P}_{\theta}(Y_i = k|X_i)$, $1 \leq i \leq n$ for a softmax regression model with parameters $\omega_m \in \mathbb{R}^d$ for $1 \leq m \leq M$. In this case, $\theta = \{\omega_1, \ldots, \omega_M\}$.

In a softmax regression setting, we assume, for $1 \le m \le M$ and $1 \le i \le n$, that

$$\mathbb{P}_{\theta}(Y_i = k|X_i) = \frac{e^{\omega_k^{\top} X_i}}{\sum_{\ell=1}^n e^{\omega_{\ell}^{\top} X_i}}.$$

2. In the setting of the softmax regression function, compute $\theta \mapsto \nabla_{\theta} \ell_n^{\text{multi}}(\theta)$.

It is enough to compute the partial derivative of $\theta \mapsto \log \mathbb{P}_{\theta}(Y_i = k|X_i)$ with respect to each ω_i , $1 \leq j \leq M$. For all $1 \leq k \leq M$,

$$\log \mathbb{P}_{\theta}(Y_i = k | X_i) = \omega_k^{\top} X_i - \log \left(\sum_{\ell=1}^n e^{\omega_{\ell}^{\top} X_i} \right).$$

Therefore, for all $1 \leq j \leq M$,

$$\partial_{\omega_j} \log \mathbb{P}_{\theta}(Y_i = k | X_i) = X_i \mathbb{1}_{j=k} - \frac{e^{\omega_j^\top X_i}}{\sum_{\ell=1}^n e^{\omega_\ell^\top X_i}} X_i.$$

3 Maximum likelihood estimation

The unknown parameter β^* may be estimated by maximizing the conditional likelihood of the observations given the input data:

$$\widehat{\beta}_n \in \operatorname{argmax}_{\beta \in \mathbb{R}^d} \prod_{i=1}^n \left[\left(\frac{\exp\left(\langle \beta, i \rangle \right)}{1 + \exp\left(\langle \beta, x_i \rangle \right)} \right)^{Y_i} \left(\frac{1}{1 + \exp\left(\langle \beta, x_i \rangle \right)} \right)^{1 - Y_i} \right],$$

to define the empirical classifier

$$\widehat{h}_n: x \mapsto \mathbb{1}_{\langle \widehat{\beta}_n, x \rangle > 0}.$$

1. Compute the gradient and the Hessian H_n of

$$\ell_n: \beta \mapsto -\sum_{i=1}^n \left[Y_i \langle x_i, \beta \rangle - \log(1 + \exp(\langle x_i, \beta \rangle)) \right].$$

What can be said about the function ℓ_n when for all $\beta \in \mathbb{R}^d$, $H_n(\beta)$ is nonsingular? This assumption is supposed to hold in the following questions.

Since for all $u \in \mathbb{R}^d$, $\nabla_{\beta} \langle u, \beta \rangle = u$,

$$\nabla \ell_n(\beta) = -\sum_{i=1}^n Y_i x_i + \sum_{i=1}^n \frac{\exp(\langle x_i, \beta \rangle)}{1 + \exp(\langle x_i, \beta \rangle)} x_i.$$

On the other hand, for all $1 \le i \le n$ and all $1 \le j \le d$,

$$\partial_j \left(\frac{\exp(\langle x_i, \beta \rangle)}{1 + \exp(\langle x_i, \beta \rangle)} x_i \right) = \frac{\exp(\langle x_i, \beta \rangle)}{(1 + \exp(\langle x_i, \beta \rangle))^2} x_{ij} x_i,$$

where x_{ij} is the jth component of x_i . Then

$$(H_n(\beta))_{\ell j} = \sum_{i=1}^n \frac{\exp(\langle x_i, \beta \rangle)}{(1 + \exp(\langle x_i, \beta \rangle))^2} x_{ij} x_{i\ell},$$

that is,

$$H_n(\beta) = \sum_{i=1}^n \frac{\exp(\langle x_i, \beta \rangle)}{(1 + \exp(\langle x_i, \beta \rangle))^2} x_i x_i^{\top}.$$

 $H_n(\beta)$ is a semi positive definite matrix, which implies that $\beta \mapsto \ell_n(\beta)$ is convex. If we assume that H_n is nonsingular, ℓ_n is strictly convex.

2. Prove that there exists $\widetilde{\beta}_n \in \mathbb{R}^d$ such that $\|\widetilde{\beta}_n - \beta^*\| \leq \|\widehat{\beta}_n - \beta^*\|$ and

$$\widehat{\beta}_n - \beta^* = -H_n(\widetilde{\beta}_n)^{-1} \nabla \ell_n(\beta^*).$$

Using a Taylor expansion between β^* and $\widehat{\beta}_n$, there exists $\widetilde{\beta}_n \in B(\beta^*, \|\widehat{\beta}_n - \beta^*\|)$ such that

$$\nabla \ell_n(\widehat{\beta}_n) = \nabla \ell_n(\beta^*) + H_n(\widetilde{\beta}_n)(\widehat{\beta}_n - \beta^*).$$

By definition, $\nabla \ell_n(\widehat{\beta}_n) = 0$. Therefore,

$$\widehat{\beta}_n - \beta^* = -H_n(\widetilde{\beta}_n)^{-1} \nabla \ell_n(\beta^*),$$

where $H_n(\tilde{\beta}_n)^{-1}$ exists since $H_n(\beta)$ is assumed to be non-singular for all β .

In the following it is assumed that the $(x_i)_{1 \leq i \leq n}$ are uniformly bounded, $\widehat{\beta}_n \to \beta^*$ a.s. and that there exists a continuous and nonsingular function H such that $n^{-1}H_n(\beta)$ converges to $H(\beta)$, uniformly in a ball around β^* .

3. Define for all $1 \leq i \leq n$, $p_i(\beta) = e^{\langle x_i, \beta \rangle} / (1 + e^{\langle x_i, \beta \rangle})$. Check that

$$\mathbb{E}\left[e^{-n^{-1/2}\langle t, \nabla \ell_n(\beta^*)\rangle}\right] = \prod_{i=1}^n \left(1 - p_i(\beta^*) + p_i(\beta^*)e^{\langle t, x_i \rangle / \sqrt{n}}\right) e^{-p_i(\beta^*)\langle t, x_i \rangle / \sqrt{n}},$$

$$= \exp\left(\frac{1}{2}t^T \left(n^{-1}H_n(\beta^*)\right)t + O(n^{-1/2})\right).$$

For all $t \in \mathbb{R}^d$,

$$\mathbb{E}\left[\exp\left(-\frac{1}{\sqrt{n}}\langle t, \nabla \ell_n(\beta^*)\rangle\right)\right] = \prod_{i=1}^n \mathbb{E}\left[\exp\left(\frac{1}{\sqrt{n}}(Y_i - p_i(\beta^*))\langle x_i, t\rangle\right)\right],$$

$$= \prod_{i=1}^n \left[\left(1 - p_i(\beta^*) + p_i(\beta^*)\exp\left(\frac{1}{\sqrt{n}}\langle x_i, t\rangle\right)\right)\exp\left(-\frac{p_i(\beta^*)}{\sqrt{n}}\langle x_i, t\rangle\right)\right].$$

Note that

$$\log\left(1 - p_i + p_i \exp(u/\sqrt{n})\right) = \log\left(1 + p_i \frac{u}{\sqrt{n}} + p_i \frac{u^2}{2n} + O\left(n^{-3/2}\right)\right) = p_i \frac{u}{\sqrt{n}} + \frac{p_i u^2}{2n} - \frac{p_i^2 u^2}{2n} + O\left(n^{-3/2}\right).$$

Finally,

$$\mathbb{E}\left[\exp\left(-\frac{1}{\sqrt{n}}\langle t, \nabla \ell_n(\beta^*)\rangle\right)\right] = \exp\left(\frac{1}{2n}\underbrace{\sum_{i=1}^n p_i(\beta^*)(1-p_i(\beta^*))\langle t, x_i\rangle^2}_{t^T H_n(\beta^*)t} + O(n^{-1/2})\right).$$

4. What is the asymptotic distribution of $-n^{-1/2}\nabla \ell_n(\beta^*)$ and of $\sqrt{n}(\widehat{\beta}_n - \beta^*)$?

Recall that for a multivariate random variable X, the moment-generating function is defined as

$$t \mapsto M_X(t) = \mathbb{E}\left[\exp\left(\langle t, X \rangle\right)\right].$$

In particular, we know that if $X \sim \mathcal{N}(\mu, \Sigma)$ then

$$t \mapsto M_X(t) = \mathbb{E}\left[\exp\left(\langle t, \mu + \frac{1}{2}\Sigma t\rangle\right)\right].$$

If, for all t, $M_{X_n}(t) \to M_X(t)$ then X_n converges to X in distribution. For all $t \in \mathbb{R}^d$, since $n^{-1}H_n(\beta^*) \to_{n \to \infty} H(\beta^*)$,

$$\mathbb{E}\left[\exp\left(-\frac{1}{\sqrt{n}}\langle t,\nabla \ell_n(\beta^\star)\rangle\right)\right] \to_{n\to\infty} \exp\left(\frac{1}{2}t^T H(\beta^\star)t\right).$$

Therefore, $-\nabla \ell_n(\beta^*)/\sqrt{n}$ converges in distribution to $Z \sim \mathcal{N}(0, H(\beta^*))$. On the other hand,

$$\sqrt{n}(\widehat{\beta}_n - \beta^*) = -\left(\frac{1}{n}H_n(\widetilde{\beta}_n)\right)^{-1} \frac{1}{\sqrt{n}} \nabla \ell_n(\beta^*).$$

As for all $n \ge 1$, $\tilde{\beta}_n \in B(\beta^*, \|\hat{\beta}_n - \beta^*\|)$, $\tilde{\beta}_n$ converges to β^* almost surely as n grows to infinity. Hence, almost surely

$$\left(\frac{1}{n}H_n(\tilde{\beta}_n)\right)^{-1} \to H(\beta^*)^{-1}$$

and, by Slutsky lemma, $\sqrt{n}(\widehat{\beta}_n - \beta^*)$ converges in distribution to $Z \sim \mathcal{N}(0, H(\beta^*)^{-1})$.

5. For all $1 \leq j \leq d$ and all $\alpha \in (0,1)$, propose a confidence interval $\mathcal{I}_{n,\alpha}$ such that $\beta_j^* \in \mathcal{I}_{n,\alpha}$ with asymptotic probability $1-\alpha$.

According to the last question, $\sqrt{n}(\widehat{\beta}_j - \beta_j^*)$ converges in distribution to a centered Gaussian random variable with variance $(H(\beta^*)^{-1})_{jj}$. On the other hand, almost surely,

$$\widehat{\sigma}_{n,j}^2 = (nH_n(\widehat{\beta}_n)^{-1})_{jj} \to_{n \to \infty} (H(\beta^*)^{-1})_{jj}.$$

Then,

$$\sqrt{\frac{n}{\widehat{\sigma}_{n,j}^2}}(\widehat{\beta}_{n,j} - \beta_j^{\star}) \to_{n \to \infty} \mathcal{N}(0,1).$$

An asymptotic confidence interval $\mathcal{I}_{n,\alpha}$ of level $1-\alpha$ is then given by

$$\mathcal{I}_{n,\alpha} = \left[\widehat{\beta}_{n,j} - z_{1-\alpha/2} \sqrt{\frac{\widehat{\sigma}_{n,j}^2}{n}} , \, \widehat{\beta}_{n,j} + z_{1-\alpha/2} \sqrt{\frac{\widehat{\sigma}_{n,j}^2}{n}} \right],$$

where $z_{1-\alpha/2}$ is the quantile of order $1-\alpha/2$ of $\mathcal{N}(0,1)$.