Shivani_Patel Assignment #1 Neural Networks

July 4, 2021

```
[1]: import numpy as np
     %matplotlib inline
     import matplotlib.pyplot as plt
     class Neural_Network(object):
         def __init__(self):
             #Define Parameters
             self.inputLayerSize = 2
             self.outputLayerSize=1
             self.hiddenLayerSize=3
             #Define Weights
             self.W1=np.random.rand(self.inputLayerSize,self.hiddenLayerSize)
             self.W2=np.random.rand(self.hiddenLayerSize,self.outputLayerSize)
         def forward(self,X):
             #Propagate inputs through network
             self.z2 = np.dot(X,self.W1)
             self.a2 = self.sigmoid(self.z2)
             self.z3 = np.dot(self.a2,self.W2)
             yHat = self.sigmoid(self.z3)
             return yHat
         def sigmoid(self, z):
             #Apply Sigmoid Activation Function
             return 1/(1+np.exp(-z))
         def sigmoidPrime(self,z):
             #Derivative of Sigmoid Function
             return np.exp(-z)/((1+np.exp(-z))**2)
         def costFunction(self, X, y):
             #Compute Cost Function with weights already stored in class
             self.yHat=self.forward(X)
             J=0.5*sum((y-self.yHat)**2)
```

```
return J
         def costFunctionPrime(self, X, y):
             \# Compute \ derivatives \ with \ respect \ to \ W1 \ and \ W2
             self.yHat=self.forward(X)
             delta3 = np.multiply(-(y-self.yHat),self.sigmoidPrime(self.z3))
             dJdW2=np.dot(self.a2.T,delta3)
             delta2=np.dot(delta3,self.W2.T)*self.sigmoidPrime(self.z2)
             dJdW1=np.dot(X.T,delta2)
             return dJdW1,dJdW2
[2]: X=np.array(([3,5],[5,1],[10,1]),dtype=float)
     y=np.array(([75],[80],[93]),dtype=float)
[3]: X
[3]: array([[ 3., 5.],
            [5., 1.],
            [10., 1.]])
[4]: y #answer
[4]: array([[75.],
            [80.],
            [93.]])
[5]: X=X/np.amax(X,axis=0)
     y=y/100
[6]: X,y
[6]: (array([[0.3, 1.],
             [0.5, 0.2],
             [1., 0.2]]),
      array([[0.75],
             [0.8],
             [0.93]))
[7]: NN=Neural_Network()
[8]: yH=NN.forward(X)
[9]: yH
[9]: array([[0.73101061],
            [0.7192052],
            [0.74626236]])
```

[11]: <matplotlib.legend.Legend at 0x7fd1f9f8bdc0>


```
[16]: dJdW2
[16]: array([[-0.04906394],
             [-0.04421233],
             [-0.04153439]])
[17]: scalar= 30
      NN.W1 = NN.W1+scalar*dJdW1
      NN.W2 = NN.W2+scalar*dJdW2
      cost2 = NN.costFunction(X,y)
      print (cost1,cost2)
     [0.03109995] [0.62784011]
[18]: scalar=3
      NN.W1 = NN.W1-scalar*dJdW1
      NN.W2 = NN.W2-scalar*dJdW2
      cost3 = NN.costFunction(X,y)
      print (cost2,cost3)
     [0.62784011] [0.56092123]
[19]: n= 2500
      array=[]
      x=np.arange(0,n)
      for i in range(n):
          dJdW1, dJdW2 = NN.costFunctionPrime(X,y)
          NN.W1 = NN.W1 - scalar*dJdW1
          NN.W2 = NN.W2 - scalar*dJdW2
          cost = NN.costFunction(X, y)
          array.append(cost)
      print(cost)
     [0.00178209]
[20]: plt.plot(x,array)
      plt.title('Cost v.s. Iteration')
[20]: Text(0.5, 1.0, 'Cost v.s. Iteration')
```



```
[21]: y
[21]: array([[0.75],
             [0.8],
             [0.93]])
[22]: scalar=15
      stats = []
      NN=Neural_Network()
      cost=NN.costFunction(X,y)
      while (cost > 0.000001):
          dJdW1,dJdW2=NN.costFunctionPrime(X,y)
          NN.W1 = NN.W1-scalar*dJdW1
          NN.W2 = NN.W2-scalar*dJdW2
          cost = NN.costFunction(X,y)
          stats.append(cost)
          if (scalar > 4):
              scalar -= 1
      yHat = NN.forward(X)
```

yHat

```
[22]: array([[0.7496793], [0.80094003], [0.92899356]])
```

[23]: plt.plot(stats)

[23]: [<matplotlib.lines.Line2D at 0x7fd1f1a9dc40>]

[24]: # This neural network minimizes the cost to 0.000001 using batch gradient descent.

The learning rate is designed to get smaller as it makes progress towards the target value.

This approach helps to filter out local minimums and focus on the global → minimum.