

TECNOLOGÍA ELÉCTRICA Teoría de Circuitos Circuitos de Corriente Continua Métodos de análisis

Enrique Comesaña Figueroa

e.comesana@usc.es

Despacho 5 – Módulo II, segunda planta superior Escola Politécnica Superior de Enxeñaría, Campus Terra, Lugo

Introducción

Para resolver un circuito es necesario un conjunto de ecuaciones que se obtienen aplicando de forma combinada las **leyes de Kirchoff** y las **relaciones i-v** de los elementos del circuito.

Las **relaciones i-v** describen el comportamiento de un elemento independientemente de donde se conecte.

Las **leyes** de **Kirchoff** son condiciones introducidas por las conexiones entre elementos que se realizan en el circuito.

En un circuito de E elementos: 2E ecuaciones con 2E incógnitas.

Estudiaremos dos métodos de análisis:

- Método de las tensiones de nudo
- Método de las corrientes de malla

Tensión de nudo:

La tensión de nudo es el valor de tensión en un nudo de un circuito que está referido a la tensión de un nudo de referencia o de tierra.

El nudo de referencia se le asigna un valor de tensión de referencia (normalmente 0 V). El nudo de referencia se identifica con alguno de los símbolos:

Una vez conocidas las tensiones de todos los nudos de un circuito, se pueden obtener las diferencias de tensión como:

Ejemplo 1: Calcular las diferencias de tensión conocidas las tensiones de nudo

 $v_1 = 10V$, $v_2 = 2V$, $v_3 = -4V$ y $v_4 = 5V$

Solución:

$$v_A = v_4 - v_1 = 5 - 10 = -5 \text{ V}$$
 $v_B = v_2 - v_1 = 2 - 10 = -8 \text{ V}$
 $v_C = v_2 - v_3 = 2 + 4 = 6 \text{ V}$
 $v_D = v_4 - v_2 = 5 - 2 = 3 \text{ V}$
 $v_E = v_4 - 0 = 5 \text{ V}$
 $v_F = 0 - v_3 = 4 \text{ V}$
 $v_G = 0 - v_4 = -5 \text{ V}$

Ejemplo 2: Calcular las las tensiones de nudo en los casos siguientes:

a)
$$v_3 = 0$$
 b) $v_4 = 0$

Solución:

a)
$$v_3 = 0$$

$$v_2 - v_3 = 10$$
 $v_2 = 10 \text{ V}$

 $v_3 = 0$

$$v_1 - v_2 = -5$$
 $v_1 = 5 \text{ V}$

$$v_1 - v_2 = -5$$
 $v_1 = 5 \text{ V}$
 $v_1 - v_4 = 8$ $v_4 = -3 \text{ V}$

b)
$$v_4 = 0$$

$$v_4 = 0$$
 $v_1 - v_4 = 8$
 $v_1 = 8 \text{ V}$
 $v_1 - v_2 = -5$
 $v_2 = 13 \text{ V}$
 $v_2 - v_3 = 10$
 $v_3 = 3 \text{ V}$

¡El valor de las tensiones de nudo no es único!

El análisis de nudos (o método de las tensiones de nudo) es un método sistemático y general para el análisis de circuitos.

Sustituye las diferencias de tensión por las tensiones de nudo como variables del circuito. Este cambio de variable reduce el número de ecuaciones a resolver.

Se basa en la aplicación de:

- La ley de las corrientes de Kirchoff (KCL).
- La ley de Ohm.

Dado un circuito de N nudos sin fuentes de tensión:

- 1. Elegir el nudo de referencia y asignar las tensiones de los restantes nudos.
- 2. Asignar las corrientes de cada rama del circuito.
- 3. Aplicar la KCL a cada nudo, salvo al nudo de referencia, se obtienen N-1 ecs.
- 4. Utilizar la ley de Ohm para obtener la relación i-v de cada elemento del circuito y escribir las corrientes de rama en función de las tensiones de nudo.
- 5. Sustituir las relaciones i-v en las ecuaciones obtenidas con KCL (paso 2).
- 6. Calcular las tensiones de nudo resolviendo las N-1 ecuaciones.

Ejemplo: Calcular las tensiones de nudo en el circuito de la figura.

Empleando las conductancias y escribiendo las ecuaciones en forma matricial:

$$\begin{bmatrix} G_1 + G_2 & -G_2 \\ -G_2 & G_1 + G_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} I_{S1} - I_{S2} \\ I_{S2} \end{bmatrix}$$

CASO 1: La fuente de tensión está conectada al nudo de referencia y a otro nudo cualquiera. Se fija el valor de tensión para ese nudo igual al valor da la fuente.

CASO 2: La fuente de tensión está conectada entre dos nudos arbitrarios:

- Se introduce una corriente que atraviesa i_x la fuente como variable
- Se añade una nueva ecuación que relaciona las tensiones de nudo con el valor de la fuente

Ejemplo 1: Calcular las tensiones de nudo en el circuito de la figura.

Solución:

- Nudo 1:

$$v_1 = V_s$$

- Nudo 2:
 - Aplicando la KCL:

$$I_s + i_2 = i_3$$

- Utilizando la ley de Ohm:

$$I_{s} + \frac{V_{s} - v_{2}}{R_{2}} = \frac{v_{2}}{R_{3}}$$

$$i_2 = \frac{V_s - v_2}{R_2}$$

$$i_3 = \frac{v_2}{R_3}$$

$$v_2 = \frac{R_2 R_3 I_s + R_3 V_s}{R_2 + R_3}$$

Ejemplo 2: Calcular las tensiones de nudo en el circuito de la figura.

Solución:

- Nudo 1: $i_x = i_1$ (KCL-1)
- Nudo 2: $I_S = i_x + i_2$ (KCL-2)
- Fuente de tensión:

$$V_{\rm S} = v_1 - v_2$$

- Sumamos (KCL-1) y (KCL-2):

$$I_{\rm S} = i_1 + i_2$$

- Aplicamos la ley de Ohm:

$$i_1 = \frac{v_1}{R_1}$$
 $i_2 = \frac{v_2}{R_2}$

- Sustituyendo:

$$I_{s} = G_{1}v_{1} + G_{2}v_{2}$$

- Quedan las ecs.:

$$\begin{cases} I_s = G_1 v_1 + G_2 v_2 & \text{(KCL 1+2)} \\ V_s = v_1 - v_2 & \text{(Fuente)} \end{cases}$$

- Resolviendo:

$$v_1 = \frac{I_s + G_2 V_s}{G_1 + G_2}$$

$$v_2 = \frac{I_s - G_1 V_s}{G_1 + G_2}$$

Análisis de nudos: Circuito con fuentes dependientes

Las variables de control se expresan en función de las tensiones de nudo.

Ejemplo:

Solución:

- Ecs. de nudo:

- Nudo 1:
$$v_1 = 8 \text{ V}$$

- Nudo 2: $i_x + i_1 + 2 = 0$

- Nudo 3: $v_3 = 3i_x$

- Expresamos las corrientes de rama y las variables de control en función de las tensiones de nudo:

$$i_{x} = \frac{8 - v_{2}}{6}$$

$$i_{1} = \frac{3i_{x} - v_{2}}{3} = \frac{4}{3} - \frac{1}{2}v_{2}$$

- Sustituimos en las ecs. de nudo:

- Nudo 2:

$$v_2 = 7 \text{ V}$$

- <u>Nudo 3:</u>

$$\frac{v_2}{2} + v_3 = 4$$

- Despejando v₃:

$$v_3 = \frac{1}{2} V$$

Corriente de malla

Corriente que recorre una determinada malla siguiendo un circuito cerrado.

Para un circuito la relación entre las corrientes de rama y las corrientes de malla se obtienen por inspección:

$$i_A = i_1$$
 $i_B = -i_1$ $i_C = i_2$ $i_D = i_1 - i_2$

Ejemplo: Obtener las corrientes de rama a partir de las corrientes de malla

Solución:

$$i_A = -10 \text{ A}$$
 $i_B = 10 - (-3) = 13 \text{ A}$
 $i_C = 10 - 5 = 5 \text{ A}$
 $i_C = -3 - 5 = -8 \text{ A}$
 $i_E = -3 \text{ A}$
 $i_E = 5 \text{ A}$

El análisis de mallas (o método de las tensiones de nudo) es un método sistemático y general para el análisis de circuitos.

Sustituye las corrientes de rama por las corrientes de malla como variables del circuito. Este cambio de variable reduce el número de ecuaciones a resolver.

Se basa en la aplicación de:

- La ley de las tensiones de Kirchoff (KVL).
- · La ley de Ohm.

Análisis de nudos: Circuito sin fuentes corriente

Dado un circuito de N mallas sin fuentes de corriente:

- 1. Asignar las corrientes de malla a cada malla del circuito.
- 2. Asignar las tensiones a cada elementos del circuito.
- 3. Aplicar la KVL en cada malla, se obtienen N ecs.
- 4. Utilizar la relación i-v de cada elemento del circuito y escribir las tensiones de cada elemento en función de las corrientes de malla.
- 5. Sustituir las relaciones i-v en las ecuaciones obtenidas con KVL (paso 2).
- Calcular las N corrientes de malla resolviendo las N ecuaciones.

Ejemplo: Calcular las corrientes de malla en el circuito de la figura

$$\begin{bmatrix} R_1 + R_3 & -R_3 \\ -R_3 & R_2 + R_3 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} V_{S1} \\ -V_{S2} \end{bmatrix}$$

Análisis de nudos: Circuito con fuentes de corriente

CASO 1: La fuente de corriente está en una rama que pertenece a una sola malla. Se fija el valor de corriente para ese nudo igual al valor da la fuente.

CASO 2: La fuente de corriente está en una rama compartida por dos mallas:

- Se introduce una tensión en la fuente v_x como variable
- Se añade una nueva ecuación que relaciona las corrientes de malla con el valor de la fuente

Ejemplo 1: Calcular las corrientes de malla en el circuito de la figura.

Solución:

- <u>Malla 1:</u>
 - Aplicando la KVL:

$$v_1 + v_3 - v_s = 0$$

- Malla 2:

$$i_2 = -i_s$$

- $v_1 = R_1 i_1$
- i No hace falta aplicar la KVL a la malla 2 ! $v_3 = R_3(i_1 i_2)$
- Utilizando la ley de Ohm:

$$i_1 R_1 + (i_1 - i_2) R_3 = v_s$$

- Resolviendo para i_1 :

$$i_1 = \frac{v_s + R_3 i_s}{R_1 + R_3}$$

Ejemplo 2: Calcular las corrientes de malla en el circuito de la figura.

Solución:

- Malla 1: $v_1 + v_x v_s = 0$ (KVL-1) + v_1
- Malla 2: $v_2 + v_3 v_x = 0$ (KVL-2) $v_s + \frac{1}{2}$
- Fuente de corriente: $i_s = i_2 i_1$
- Eliminamos v_x sumando (KVL-1) y (KVL-2):

$$v_1 + v_2 + v_3 - v_s = 0$$

- Aplicamos la ley de Ohm:

$$R_1 i_1 + R_2 i_2 + R_3 i_2 = v_s$$

- Quedan las ecs.:

$$-i_1 + i_2 = i$$

$$R_1 i_1 + (R_2 + R_3) i_2 = 1$$

- Resolviendo:

$$i_1 = \frac{v_S - (R_2 + R_3)i_S}{R_1 + R_2 + R_3}$$

$$i_2 = \frac{v_S + R_1 i_S}{R_1 + R_2 + R_3}$$

Análisis de nudos: Circuito con fuentes dependientes

Las variables de control se expresan en función de las corrientes de malla.

Ejemplo:

Solución:

- Ecs. de malla:

- Malla 1:
$$-24 + v_1 = 0$$

- Malla 2: $i_2 = -5i_x$

- Expresamos las tensiones de elemento y las variables de control en función de las corrientes de malla:

$$v_1 = 32i_1$$

$$i_x = i_1 - i_2$$

- Sustituimos en las ecs. de malla:
 - Malla 1: $-24 + 32i_1 = 0$
 - Malla 2: $-5i_1 + 4i_2 = 0$
- Resolviendo:

$$i_1 = \frac{4}{3} A$$

$$i_2 = \frac{15}{16} A$$

Comparativa: Análisis de nudos o de mallas

Naturaleza del ciruito:

- Menos nudos que mallas -> Análisis de nudos
- Menos mallas que nudos -> Análisis de mallas

Además hay ciertos circuitos que solo se pueden resolver por un método: ejemplo, los circuitos que no se pueden representar en un plano no se pueden resolver por mallas.

Que información nos piden:

Si se requieren las tensiones de nudos podría ser ventajoso emplear análisis nodal, o viceversa