

Microprocessor and Assembly Language Lab

Lab Material 6 for CSE 312 (M&AL Lab)

Dr. Shah Murtaza Rashid Al Masud Associate Prof.

Dept. of CSE, UAP

MUL and DIV Operations

The MUL (unsigned multiply) instruction multiplies an 8, 16, or 32 bit operand by either AL, AX, or EAX. The instruction formats are:

MUL *r/m8*MUL *r/m16*MUL *r/m32*

The single operand is the multiplier. The following table shows the <u>default</u> multiplicand and product, depending on the size of the multiplier:

Multiplicand	Multiplier	Product AX	
AL	r/m8		
AX	r/m16	DX:AX	
EAX	r/m32	EDX:EAX	

The register(s) holding the product are twice the size of the multiplicand and multiplier, guaranteeing that overflow will never occur.

Example 1: The following statements perform 8-bit unsigned multiplication (5 * 10h), producing 50h in AX:

```
mov al,5h; AL=05H
```

mov bl,l0h; BL=10H

mul bl ; $AL*BL=5H*10H=50H \rightarrow AX$ CF = 0

The Carry flag is clear because AH (the upper half of the product) equals zero.

```
org 100h
mov al, 5h; AL=05H
mov bl, 10h; BL=10H
mul bl
ret
                                                                                     X
               emulator: noname.com
                                                                                           original source co...
               file math debug view external virtual devices virtual drive help
                                                               >>
                                                                       . . . . . .
                                                                                              ; You may customize this
                                                                                                                                 flags
                                                                                              ; The location of this t
                                                                       step delay ms: 0
                  Load
                             reload
                                      step back
                                                 single step
                                                               run
                                                                                           04
                                                                                              org 100h
                registers
                                                                                                                                  CF
                                      0700:0106
                                                                   0700:0106
                                                                                           06
                                                                                           07
                                                                                              mov al, 5h
                                                                                                                ; AL=05H
                                                                                                                                  ZF
                     00
                        50
                               07100: BO 176 N
                                                             MOU AL, 05h
                                                                                              mov bl, 10h
                                                                                                                 ; BL=10H
                               07101: 05 005 $
                                                             MOV BL, 010h
                                                                                           09
                                                                                              mul bl
                     00 10
                                07102: B3 179
                                                            MUL BL
                                                                                                                                  SF
                 BΧ
                                                                                           10
                                07103: 10 016 b
                                                             RET
                                                                                          11
12
                     00
                        07
                 CX
                               07104: F6 246 ÷
                                                            NOP
                                                                                                                                  OF
                                                                                               ret
                               07105: E3 227 II
                                                             NOP
                 DX
                     00 00
                               07106: C3 195
                                                             NOP
                                                                                           14
                                                             NOP
                                07107: 90 144 É
                 CS
                      0700
                               07108: 90 144 É
                                                             NOP
                                                                                           16
17
                                                                                                                                  ΑF
                               07109: 90 144 É
                                                             NOP
                 IΡ
                      0106
                               0710A: 90 144
                                                             NOP
                                                                                           18
                               0710B: 90 144 É
                                                             NOP
                                                                                           49
                 SS
                      0700
                                                                                           1
                               0710C: 90 144 É
                                                             NOP
                                                                                                                                  DF
                                                                                                                                      [6] ▼
                               0710D: 90 144 É
                                                             NOP
                 SP
                      FFFE
                               0710E: 90 144 É
                                                             NOP
                                                             NOP
                               0710F: 90 144 É
                      0000
                                                                                                                                    analyse
                               07110: 90 144 É
                                                             NOP
                      ดดดด
                               07111: 90 144 É
                                                             NOP
```


First operand is multiplicand and the second one is multiplier. Result is stored in AX

```
.MODEL SMALL
.STACK 100H
                                  emulator: mul v3.exe
                                                                                                             \times
_ DATA
                                           debug view external virtual devices virtual drive help
CODE SEGMENT
MAIN PROC
                                                                                             step delay ms: 0
                                                reload
                                                          step back
                                                                      single step
                                     Load
                                                                                    run
                                   registers
                                                         0720:0008
                                                                                         0720:0008
                                         Н
          MOU AX,1010H
                                                   07200: B8 184 7
          MOU BX, 2020H
                                        02
                                            00
                                                                                  MOU AX, 01010h
                                                                                  MOU BX, 02020h
                                                   07201: 10 016
                                       20
                                           20
                                                   07202: 10 016 ►
                                                                                  MUL BX
          MUL BX
                                                                                  MOU AX, 04C00h
                                                   07203: BB 187
                                    CX
                                        01
                                            | OD
                                                                                  INT 021h
                                                   07205: 20 032 SPA
                                                                                  NOP
                                        02
                                           04
                                   DΧ
                                                                                  NOP
                                                                                               flags
          MOU AX,4C00H
          INT 21H
                                                                                  NOP
                                                   07207: E3 227 π
                                   CS
                                         0720
                                                                                  NOP
                                                                                  NOP
                                                   07209: 00 000 NULL
                                   IΡ
                                         8000
         MAIN ENDP
                                                   0720A: 4C 076
                                                                                  NOP
                                                                                  NOP
END MAIN
                                    SS
                                         0710
                                                                                  NOP
                                                   0720C: 21 033
                                                                                  NOP
                                    SP
                                         0100
                                                   0720E: 90
                                                                                  NOP
                                                                                  NOP
                                    BP
                                         0000
                                                                                                 OF
                                                                                  NOP
                                                   07210: 90 144
                                                                                  NOP
                                    SI
                                         0000
                                                                                  NOP
                                         0000
                                    DΙ
                                                   07213: 90 144 É
                                                                                  NOP
                                                                                  NOP
                                                   07214: 90 144
                                         0700
                                    DS
                                                   07215: 90 144 É
                                         0700
                                   ES
                                                                                         debug
                                                           source
                                                                   reset
                                                                           aux
                                                    screen
```

First operand is multiplicand and the second one is multiplier. Result is stored in AX

Example 2: The following statements perform 16-bit unsigned multiplication (0010h * 2000h) producing 00020000h in DX:AX:

```
. data
val1 WORD 2000h
val2 WORD 0010h
.code
mov ax, val1; AX=2000H
mul val2
AX*val2=2000H*0010H=00020000h \rightarrow DX:AX CF = 1
The Carry flag is set because DX is not equal to zero.
```


MUL Instruction (MOV CX, 0000H)

```
.MODEL SMALL
.STACK 100H
                                emulator: mul v4 data segment.exe
. DATA
ual1 DW 1010h
va12 DW 2020h
                                              reload
                                   Load
                                 registers
.CODE SEGMENT
                                       Н
                                      02
                                         00
MAIN PROC
                                  ΑX
                                      20
                                         20
                                      01
                                         23
                                  CX
         MOU AX, @DATA
         MOU DS, AX
                                      92
                                         84
                                  DX
         MOU AX, val1
                                       0721
                                  CS
         MOU BX.va12
                                  IΡ
                                       BBBE
         MUL BX
                                  SS
                                       0710
                                  SP
                                       0100
         MOU AX,4C00H
         INT 21H
                                  BP
                                       0000
                                                 07221: CD
                                       0000
                                  SL
        MAIN ENDP
                                  DΙ
                                       0000
END MAIN
                                       0720
                                  DS
                                       0700
                                  ES
                                                         source
                                                 screen
```


Example 2: The following statements perform 16-bit unsigned multiplication (0011h * 2000h) producing 00022000h in DX:AX:

. data

val1 WORD 2000h

val2 WORD 0011h

.code

mov ax, vall ; AX=2000H

mul val2 ; AX*val2=2000H*0011H=00021000h → DX:AX

CF = 1

The Carry flag is set because DX is not equal to zero.

Another example with different operand


```
.MODEL SMALL
.STACK 100H
.DATA
val1 DW 1010h
va12 DW 2020h
.CODE SEGMENT
MAIN PROC
        MOU AX, @DATA
        MOU DS, AX
        MOU AX, val1
        MUL val2
        MOU AX,4C00H
        INT 21H
       MAIN ENDP
END MAIN
```


The DIV (unsigned divide) instruction performs 8-bit, 16-bit, and 32-bit division on unsigned integers. A single operand is supplied (register or memory operand), which is assumed to be the divisor. The instruction formats for DIV are:

DIV *r/m8*

DIV *r/m16*

DIV r/m32

The following table shows the relationship between the dividend, divisor, quotient, and remainder. Everything is determined by the size of the **divisor**:

The following table shows the relationship between the dividend, divisor, quotient, and remainder. Everything is determined by the size of the **divisor**:

Dividend	Divisor	Quotient	Remainder
AX	r/m8	AL	AH
DX:AX	r/m16	AX	DX
EDX:EAX	r/m32	EAX	EDX

Example 1: The following instructions perform 8-bit unsigned division (83h / 2), producing a quotient of 41h and a remainder of 1:

```
mov ax,0083h ; AX=0083H
```

mov bl,2; BL=02H

div bl ; AX/BL=0083H/02H→AL=41H, AH=01H

First operand is dividend and the second one is divisor.

Quotient or Result is stored in AL and the Reminder in AH

```
; You may customize this and other start-up templates; ; The location of this template is c:\emu8086\inc\0_com_template.txt org 100h

mov ax,0083h
mov bl,2
div bl
```

div bl

ret


```
.MODEL SMALL
.STACK 100H
.DATA
CODE SEGMENT
MAIN PROC
       mov ax,0083h
       mov b1,2
       div bl
        MOU AX,4C00H
        INT 21H
       MAIN ENDP
END MAIN
```


Example 2: The following instructions perform 16-bit unsigned division (8003h / 100h), producing a quotient of 80h and a remainder of 3.

DX contains the high part of the dividend, so it must be cleared before the DIV instruction executes:

```
mov dx,0; DX=0
```

mov ax,8003h ; AX=8003H

mov cx,100h ; CX=100H

div cx ; AX=0800H DX=0003H

```
org 100h
mov dx,0
                    ; DX=0
mov ax,8003h
                         ; AX=8003H
mov cx,100h
                    ; CX=100H
                                                                                                             original source co... —
div cx
                            emulator: div2.com
                                                                                                            02 ; You may customize this
ret
                            file math debug view external virtual devices virtual drive help
                                                                                                            03; The location of this t
                                                                                                                                                      flags
                                                                                                            04
                                                                                       . . . . . .
                                                                                                            05 org 100h
                                                                                       step delay ms: 0
                                          reload
                                                                single step
                               Load
                                                    step back
                                                                                                             06
                                                                              run
                                                                                                            07 mov dx,0
                                                                                                                                     ; DX=0
                                                                                                            08 mov ax,8003h
                                                                                                                                          ; AX
                             registers
                                                    0700:010B
                                                                                   0700:010B
                                                                                                             09 mov cx,100h
                                                                                                                                         ; CX=
                                                                                                             10 div cx
                                     80
                                             07100: BA 186
                                                                            MOU DX, 00000h
                                                                                                            11
                                             07101: 00 000 NULL
                                                                            MOV AX, 08003h
                                             07102: 00 000 NULL
                                                                            MOV CX, 00100h
                                                                                                             13
                                                                                                                ret
                                             07103: B8 184 7
07104: 03 003 $\psi$
07105: 80 128 $\psi$
                                                                            DIU CX
                                                                                                            14
                              CX
                                 01
                                     00
                                                                            RET
                                                                                                            15
16
                                             07105: 80 128 C
07106: B9 185
                                                                            NOP
                                 00 03
                              DΧ
                                                                            NOP
                                                                                                            17
                                             07107: 00 000 NULL
                                                                            NOP
                              CS
                                             07108: 01 001 9
                                   0700
                                                                            NOP
                                             07109: F7 247 ≈
0710A: F1 241 ±
                                                                            NOP
                              IΡ
                                   01 OB
                                                                            NOP
                                                                                                                                                             § ▼
                                                                                                                                                        DF
                                             0710B: C3 195
                                                                            NOP
                              SS
                                   0700
                                             0710C: 90 144 É
                                                                            NOP
                                             0710D: 90 144 É
                                                                            NOP
                                   FFFE
                                                                                                                                                         analyse
                                             0710E: 90 144 É
                                                                            NOP
```


First operand is dividend and the second one is divisor.

Quotient or Result is stored in AX and the Reminder in DX