Tensor decompositions and cubic sections of rational surface scrolls

Kristian Ranestad

University of Oslo

Seattle, January 6. 2016

Report on recent collaboration with

Matteo Gallet (RICAM, Linz, Austria)

Nelly Villamizar (RICAM, Linz, Austria)

arXiv:1601.00694

Let $X \subset \mathbb{P}^N$ be a smooth variety and let

$$r = min\{k|Sec_k(X) = \mathbb{P}^N\}.$$

Then a general point in $y \in \mathbb{P}^N$ lies in the span of r points on X.

Let $X \subset \mathbb{P}^N$ be a smooth variety and let

$$r = min\{k|Sec_k(X) = \mathbb{P}^N\}.$$

Then a general point in $y \in \mathbb{P}^N$ lies in the span of r points on X.

Definition

Let $y \in \mathbb{P}^N$. The 'Variety of aPolar Subschemes"

$$\operatorname{VPS}_X(y,r) \subset \operatorname{{\sf Hilb}}_r(X)$$

is the closure of the set of smooth subschemes of length r whose span contains y.

Let $X \subset \mathbb{P}^N$ be a smooth variety and let

$$r = min\{k|Sec_k(X) = \mathbb{P}^N\}.$$

Then a general point in $y \in \mathbb{P}^N$ lies in the span of r points on X.

Definition

Let $y \in \mathbb{P}^N$. The 'Variety of aPolar Subschemes'

$$\operatorname{VPS}_X(y,r) \subset \operatorname{{\sf Hilb}}_r(X)$$

is the closure of the set of smooth subschemes of length r whose span contains y.

When X is the d-uple embedding, then $\operatorname{VPS}_X(y,r)$ coincides with the variety $\operatorname{VSP}(f,r)$ of powersum decompositions of a homogeneous form f of degree d.

apolarity

Definition

A subscheme $Z \subseteq X$ is said to be apolar to y, if

$$y \in \langle Z \rangle \subseteq \mathbb{P}^N$$

Note that $VPS_X(y,r)$, by definition, contains only apolar subschemes that are in the closure of the set of smooth apolar subschemes.

Cox ring

To effectively study apolar subschemes we use the Cox ring of X:

$$Cox(X) = \bigoplus_{L \in Pic(X)} H^0(X, L)$$

with multiplication

$$H^0(X,L)\otimes H^0(X,L')\to H^0(X,L\otimes L').$$

Note that the Cow ring is graded by Pic(X).

apolarity

Let

$$S \cong T \cong Cox(X)$$

For each element $A \in Pic(X)$ we let

$$S_A = T_A^{\vee}$$
:

A very ample $A \in \operatorname{Pic}(X)$ embeds $X \subset \mathbb{P}(S_A)$.

$$f \in S_A$$
, $H_f := \{g|g(f) = 0\} \subset T_A$

For each $B \in Pic(X)$, we define

$$I_{f,B} = \begin{cases} (H_f:T_{A-B}) = \{g \in T_B: \ g \cdot T_{A-B} \subseteq H_f\}, & \text{if } A-B > 0 \\ T_B, & \text{otherwise}, \end{cases}$$

where A - B > 0 if the line bundle A - B has global sections.

$$f \in S_A$$
, $H_f := \{g|g(f) = 0\} \subset T_A$

For each $B \in Pic(X)$, we define

$$I_{f,B} = \begin{cases} (H_f: T_{A-B}) = \{g \in T_B: g \cdot T_{A-B} \subseteq H_f\}, & \text{if } A - B > 0 \\ T_B, & \text{otherwise}, \end{cases}$$

where A - B > 0 if the line bundle A - B has global sections.

We set

$$I_f := \bigoplus_{B \in \operatorname{Pic}(X)} I_{f,B} \subset T.$$

Similarly, a subscheme $Z \subset X$ has ideal

$$I_Z := igoplus_{B \in \mathrm{Pic}(X)} I_{Z,B} \subset T; \qquad I_{Z,B} = \{g \in T_B | g_{|Z} \equiv 0\}$$

apolarity lemma

Lemma

A subscheme $Z\subset X$ is apolar to $[f]\in \mathbb{P}(S_A)$, if and only if $I_Z\subset I_f$

Note: If X is a toric variety, Cox(X) is a polynomial ring!

Rational curves

Sylvester (1850):

Proposition

Let $C \subset \mathbb{P}^N$ be a rational normal curve of degree N, and let $y \in \mathbb{P}^N$ be a general point. Then

$$VPS_C(y, r) = 1 \text{ pt}$$
 if $N = 2r - 1$,

and

$$VPS_C(y, r) = \mathbb{P}^1$$
 if $N = 2r - 2$.

Elliptic curves

Following Room we show:

Proposition

Let $C \subset \mathbb{P}^N$ be an elliptic normal curve of degree N+1, and let $y \in \mathbb{P}^N$ be a general point. Then

$$VPS_C(y, r) = 2 \text{ pts}$$
 if $N = 2r - 1$

and

$$VPS(y,r) = C$$
 if $N = 2r - 2$

Elliptic curves

Following Room we show:

Proposition

Let $C \subset \mathbb{P}^N$ be an elliptic normal curve of degree N+1, and let $y \in \mathbb{P}^N$ be a general point. Then

$$VPS_C(y, r) = 2 \text{ pts}$$
 if $N = 2r - 1$

and

$$VPS(y,r) = C$$
 if $N = 2r - 2$

What about curves of higher genus?

Toric surfaces

The following are examples with toric surfaces X.

In this case the Cox ring, Cox(X), is a polynomial ring.

Toric surfaces

The following are examples with toric surfaces X.

In this case the Cox ring, Cox(X), is a polynomial ring.

If
$$X=\mathbb{P}^2$$
, then $Pic(X)=\mathbb{Z}$ and $Cox(X)\cong \mathbb{C}[x_0,x_1,x_2]$

Hilbert, Mukai:

- $d = (A =)2 : VSP(f, 3) = V_5$ (a Fano threefold)
- $d = (A =)3 : VSP(f, 4) = \mathbb{P}^2$
- $d = (A =)4 : VSP(f, 6) = V_{22}$ (a Fano threefold)
- d = (A =)5 : VSP(f,7) = 1pt
- d = (A =)6 : VSP(f, 10) = S (a K3 surface)

$\mathbb{P}^1 imes \mathbb{P}^1$

If $X = \mathbb{P}^1 \times \mathbb{P}^1$, then $\operatorname{Pic}(X) = \mathbb{Z} \times \mathbb{Z}$, and $\operatorname{Cox}(X) \cong \mathbb{C}[x_0, x_1][y_0, y_1]$ If A = (1, 1) and $f \in S_A$ is general, then $\operatorname{VPS}_X([f], 2) = \mathbb{P}^2$.

$\mathbb{P}^1 imes \mathbb{P}^1$

If $X = \mathbb{P}^1 \times \mathbb{P}^1$, then $\operatorname{Pic}(X) = \mathbb{Z} \times \mathbb{Z}$, and $\operatorname{Cox}(X) \cong \mathbb{C}[x_0, x_1][y_0, y_1]$ If A = (1, 1) and $f \in S_A$ is general, then $\operatorname{VPS}_X([f], 2) = \mathbb{P}^2$.

Theorem

Let $X = \mathbb{P}^1 \times \mathbb{P}^1$, $A = (2,2) \in \operatorname{Pic}(X)$ and $f \in S_A$ be a general section. $\operatorname{VPS}_{\mathbb{P}^1 \times \mathbb{P}^1}([f], 4)$ is isomorphic to a smooth quadric threefold blown up along a smooth rational normal curve.

$$\mathbb{P}^1 imes \mathbb{P}^1$$

If
$$X = \mathbb{P}^1 \times \mathbb{P}^1$$
, then $\operatorname{Pic}(X) = \mathbb{Z} \times \mathbb{Z}$, and $\operatorname{Cox}(X) \cong \mathbb{C}[x_0, x_1][y_0, y_1]$
If $A = (1, 1)$ and $f \in S_A$ is general, then $\operatorname{VPS}_X([f], 2) = \mathbb{P}^2$.

Theorem

Let $X = \mathbb{P}^1 \times \mathbb{P}^1$, $A = (2,2) \in \operatorname{Pic}(X)$ and $f \in S_A$ be a general section. $\operatorname{VPS}_{\mathbb{P}^1 \times \mathbb{P}^1}([f], 4)$ is isomorphic to a smooth quadric threefold blown up along a smooth rational normal curve.

Idea of proof:

- dim $I_{f,(2,1)} = 4$.
- If $[\Gamma] \in \mathrm{VPS}_{\mathbb{P}^1 \times \mathbb{P}^1}([f], 4)$, then dim $I_{\Gamma, (1,2)} = 2$, and $I_{\Gamma, (1,2)} \subset I_{f, (2,1)}$.
- Therefore there is a natural map, $\Phi_f : \mathrm{VPS}_{\mathbb{P}^1 \times \mathbb{P}^1}([f], 4) \to G(2, I_{f,(2,1)}).$
- If $g \in I_{f,(2,1)}$) is general, then $Z(g) \subset \mathbb{P}^1 \times \mathbb{P}^1$ is a rational curve apolar to f.
- Use Sylvesters VPS-result on rational curves to show that $\operatorname{Im} \Phi_f$ is a smooth quadric threefold.

Theorem

Let $X = \mathbb{P}^1 \times \mathbb{P}^1$, $A = (3,3) \in \operatorname{Pic}(X)$ and $f \in S_A$ be a general section. Then $\operatorname{VPS}_{\mathbb{P}^1 \times \mathbb{P}^1}([f],,6)$ is a surface isomorphic to a smooth Del Pezzo surface of degree 5.

Theorem

Let $X = \mathbb{P}^1 \times \mathbb{P}^1$, $A = (3,3) \in \operatorname{Pic}(X)$ and $f \in S_A$ be a general section. Then $\operatorname{VPS}_{\mathbb{P}^1 \times \mathbb{P}^1}([f],,6)$ is a surface isomorphic to a smooth Del Pezzo surface of degree 5.

Idea of proof:

- As a (3,3) form f is the restriction to $Q := \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$ of a form cubic form F.
- F has a unique apolar set of 5 points Γ_0 , and $\Gamma_0 \cap Q = \emptyset$.
- If $\Gamma \subset Q$ is 6 general points, then $\Gamma = Q \cap C$ for a twisted cubic curve C.
- $\mathrm{VPS}_{\mathbb{P}^1 \times \mathbb{P}^1}([f], , 6) = Hilb_{3t+1}(\Gamma_0)$ the Hilbert scheme of twisted cubic curves that contains Γ_0 .

Let
$$X=F_1$$
, then $\operatorname{Pic}(X)=\mathbb{Z}\times\mathbb{Z}=\langle E,F\rangle, E^2=-1, E\cdot F=1, F^2=0.$

If
$$A = E + 2F$$
 and $f \in S_A$ is general, then $\operatorname{VPS}_X([f], 2) = \mathbb{P}^1$

Let
$$X = F_1$$
, then $\operatorname{Pic}(X) = \mathbb{Z} \times \mathbb{Z} = \langle E, F \rangle, E^2 = -1, E \cdot F = 1, F^2 = 0$.

If A = E + 2F and $f \in S_A$ is general, then $\operatorname{VPS}_X([f], 2) = \mathbb{P}^1$

Theorem

Let $X = F_1$, A = 3E + 6F and $f \in S_A$ a general section. Then $VPS_{F_1}([f], 8)$ is isomorphic to \mathbb{P}^2 blown up in 8 points.

Idea of proof:

- dim $I_{f,(2E+3F)} = 2$.
- If $g \in I_{f,(2E+3F)}$ is general, then $Z(g) \subset F_1$ is an elliptic curve C_g .
- Any $\Gamma \in \mathrm{VPS}_{F_1}(f,8)$ is contained in C_g for some g.
- Use VPS-result on elliptic curves to show that

$$\cup_{g} \mathrm{VPS}_{\mathcal{C}_g}(f,8) = \cup_{g} \, \mathcal{C}_g \to \mathrm{VPS}_{F_1}([f],,8)$$

is a birational morphism.

References

- M. Gallet, K. Ranestad, N. Villamizar: Varieties of apolar subschemes of toric surfaces, arXiv:1601.00694
- T. G. Room, The geometry of determinantal loci, Cambridge University Press, 1938.
- J.J. Sylvester, *Sketch of a memoir on elimination, transformation, and canonical forms*, Collected Works I (1904), 184–197.
- -,An essay on canonical forms, supplemented by a sketch of a memoir on elimination, transformation and canonical forms, Collected Works I (1904), 203–216.

Thank You!