1

EE5609 Assignment 9

SHANTANU YADAV, EE20MTECH12001

The python solution code is available at

 $\mathbf{E} = \mathbf{A}^{-1}.$

https://github.com/Shantanu2508/Matrix_Theory/blob/master/Assignment 9/assignment9.py

$$[\mathbf{A} \ \mathbf{I}] = \begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & 4 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 4 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1 \end{pmatrix}$$
(2.0.1)

$$\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 2 & 3 & 4 & | & 0 & 1 & 0 & 0 \\
0 & 0 & 3 & 4 & | & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1
\end{pmatrix} (2.0.2)$$

$$\stackrel{R_2 \leftarrow R_2 - R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 2 & 0 & 0 & | & 0 & 1 & -1 & 0 \\
0 & 0 & 3 & 4 & | & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1
\end{pmatrix} (2.0.3)$$

$$\stackrel{R_3 \leftarrow R_3 - R_4}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 2 & 0 & 0 & | & 0 & 1 & -1 & 0 \\
0 & 0 & 3 & 0 & | & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1
\end{pmatrix} (2.0.4)$$

$$\xrightarrow{R_4 \leftarrow \frac{R_4}{4}} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1 & 0 & | & 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 1 & | & 0 & 0 & 0 & \frac{1}{4}
\end{pmatrix}$$
(2.0.5)

$$= [\mathbf{I} \ \mathbf{E}]$$

$$(2.0.6)$$

1 Problem

Discover whether

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{pmatrix} \tag{1.0.1}$$

is invertible, and find A^{-1} if it exists.

2 Solution

Therefore

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{pmatrix}$$
 (2.0.7)

The matrix \mathbf{A} is in row reduced echolon form with four pivot elements. Therefore the rank(\mathbf{A}) is 4. Hence the rows of matrix \mathbf{A} constitute of 4 linearly independent vectors. Thus it can be concluded that matrix \mathbf{A} is invertible. Using Gauss-Jordan Elimination, if there exists an elimentary matrix \mathbf{E} such that $\mathbf{E}[\mathbf{A}\ \mathbf{I}] = [\mathbf{I}\ \mathbf{E}]$ then \mathbf{E} is the inverse of \mathbf{A} i.e