Měření vzdálenosti Protokol z předmětu B3M38ASE

Filip Dašek

31. března 2024

1 Vyzařovací úhel

Vyzařovací úhel byl měřen ve třech vzdálenostech x = 20, 25 a 30 cm. Nejdříve byl nalezen čas t po který byla pozorována pojezdná odrazová plocha v dané vzdálenosti. Poté pomocí jednoduchého trojúhelníku lze psát:

$$\varphi_{FOV} = 2 \arctan\left(\frac{t \, v - x_{target}}{x}\right),$$

kde $v=3~{\rm cm/s}$ je rychlost odrazové plochy a $x_{target}=8~{\rm cm}$ je její šířka. Měření času t probíhalo jak v jendom, tak i v druhém směru pojezdu a výsledky byly zprůměrovány. Výsledky jsou v tabulce 1. Grafické znázornění plynoucí z naměřených hodnot lze vidět na obrázku 1.

Vzdálenost x [cm]	20	25	30
Lidar φ_{FOV} [°]	2.138	2.36	2.511
Ultrazvuk φ_{FOV} [°]	6.857	9.592	12.375

Tabulka 1: Naměřené hodnoty k experimentu s termočlánkem

Obrázek 1: Grafické znázornění naměřených vyzařovacích úhlů

1.1 Chybné měření

Naměřené hodnoty FOV senzorů nesouhlasí s hodnotami v datasheetu. Relativní chyby se pohybují v řádu stovek procent. Příčina bude pravděpodobně v chybné časové ose, která nebude v ms jak uvádí [1]. Kvůli tomu je pak výpočet času t odlišný a tedy je chybný i celý výpočet FOV.

2 Linearita

Linearita byla proměřena pro vzdálenosti x od 36 do 76 cm po 5 cm (tedy 9 hodnot). Porovnání senzorů včetně proložení naměřených hodnot afinními funkcemi metodou nejmenších čtverců je na obrázku 2. Rovnice nalezených afinních funkcí jsou zobrazeny níže:

$$x_{lidar} = 0.9833 x + 2.933$$

$$x_{ultras} = 1.03 x - 4.347$$

Obrázek 2: Graf srovnání linearity obou senzorů

V tabulce 2 jsou zobrazeny hodnoty pro chybu linearity senzorů. Absolutní chyba linearity vyjadřuje největsí odchylku od proložených přímek a relativní chyba linearity vyjadřuje absolutní chybu podělenou velikostí měřeného rozsahu (tedy 40 cm).

	Lidar	Ultrazvuk
Absolutní chyba linearity [cm]	0.9167	0.4833
Relativní chyba linearity [%]	2.29	1.21

Tabulka 2: Chyby linearity senzorů

3 Senzory na nárazníku

V této sekci budeme uvažovat rovný nárazník o velikosti 1.6 m. Abychom pokryli tuto vzdálenost měřeným ultrazvukovým senzorem, využijeme naměřených hodnot ze sekce 1. Tedy senzor má na vzdálenosti 20 cm oblast viditelnosti $l_{sens}=2.413$ cm. Abychom tedy pokryli oblast o délce 160 m je nutné mít minimálně $160/l_{sens}=66.307$. Po zaokrouhlení nahoru vychází 66 senzorů na nárazníku. To je jistě chybný výsledek, který plyne z komentáře 1.1 o chybách v měření.

4 Stanovení RPM lidaru

Dle datasheetu má lidar vzorkovací frekvenci f_s 100 Hz. V kombinaci s nalezeným FOV pro vzdálenost 30 cm můžeme psát vzorec pro výpočet rotační rychlosti následovně:

$$\omega = f_s \frac{FOV}{360} = 100 \frac{2.511}{360} = 0.698 \text{ ot.} \cdot \text{s}^{-1}$$

Automobil jedoucí rychlostí rychlostí v 130 km/h ujede mezi dvěma skeny takového lidaru:

$$l = \frac{v}{3.6\,\omega} = 52 \text{ m}$$

Použití v bezpečnostě kritickém odvětví jako jsou automobily by tedy bylo téměř nemožné. Musíme však opět připomenout, že tento výsledek vychází pravděpodobně z chybného měření viz 1.1.

5 Reference

[1] Návod k měření úlohy LIDAR and Ultrasonic 2.pdf