Exploiting Channel Memory in Multi-User Wireless Scheduling without Channel Measurement: Capacity Regions and Algorithms

Chih-ping Li (http://www-scf.usc.edu/ \sim chihpinl) Michael J. Neely (http://www-rcf.usc.edu/ \sim mjneely)

University of Southern California
Los Angeles, CA, USA
WiOpt presentation, Avignon, France, June 1, 2010

Tech report ∼ arXiv:1003.2675v2

Wireless channels \sim i.i.d. over time

- simple
- wlog if instantaneous states known for free

Wireless channels \sim i.i.d. over time

- simple
- wlog if instantaneous states known for free

Channels have memory

- fading channels ∼ FSMC [Zorzi'96]
- ullet cognitive radio networks \sim secondary users see Markovian channels [Zhao'07]

Wireless channels \sim i.i.d. over time

- simple
- wlog if instantaneous states known for free

Channels have memory

- fading channels ∼ FSMC [Zorzi'96]
- ullet cognitive radio networks \sim secondary users see Markovian channels [Zhao'07]

Channel memory could help

- probing overhead
- channel-blind transmission regime (e.g. wireless CSMA)

Wireless channels \sim i.i.d. over time

- simple
- wlog if instantaneous states known for free

Channels have memory

- fading channels ∼ FSMC [Zorzi'96]
- ullet cognitive radio networks \sim secondary users see Markovian channels [Zhao'07]

Channel memory could help

- probing overhead
- channel-blind transmission regime (e.g. wireless CSMA)

Q: How to exploit channel memory?

• slotted time $t \in \{0, 1, 2, \ldots\}$

- slotted time $t \in \{0, 1, 2, \ldots\}$
- $a_n(t) \sim \text{i.i.d.}$

- slotted time $t \in \{0, 1, 2, \ldots\}$
- $a_n(t) \sim \text{i.i.d.}$
- $S_n(t) \sim$ symmetric positively correlated Markov ON/OFF

- slotted time $t \in \{0, 1, 2, \ldots\}$
- $a_n(t) \sim \text{i.i.d.}$
- $S_n(t) \sim$ symmetric positively correlated Markov ON/OFF
- no channel probing

- slotted time $t \in \{0, 1, 2, \ldots\}$
- $a_n(t) \sim \text{i.i.d.}$
- $S_n(t) \sim$ symmetric positively correlated Markov ON/OFF
- no channel probing
- serve one user / one packet per slot

- slotted time $t \in \{0, 1, 2, ...\}$
- $a_n(t) \sim \text{i.i.d.}$
- $S_n(t) \sim$ symmetric positively correlated Markov ON/OFF
- no channel probing
- serve one user / one packet per slot
- ACK/NACK feedback from the served user

- slotted time $t \in \{0, 1, 2, ...\}$
- $a_n(t) \sim i.i.d.$
- $S_n(t) \sim$ symmetric positively correlated Markov ON/OFF
- no channel probing
- serve one user / one packet per slot
- ACK/NACK feedback from the served user

 P_{01}

 P_{10}

Goal: Network capacity region? Throughput-optimal policy?

Difficulty

Difficulty

- capacity region $\Lambda = N$ -dimensional POMDP -
- information state:

$$\omega_n(t) \triangleq \Pr \{S_n(t) = 1 \mid \text{observation history} \}$$

Difficulty

Difficulty

• capacity region $\Lambda = N$ -dimensional POMDP

Λ? v

• information state:

$$\omega_n(t) \triangleq \Pr \{S_n(t) = 1 \mid \text{observation history} \}$$

Idea

- forget POMDP
- Construct a good inner bound Λ_{int}

 $\begin{array}{l} \text{network capacity region} \\ \sim \text{POMDP} \end{array}$

Round robin v1:

• Serve users in circular order $(1 \to 2 \to \cdots \to N)$; stay with each one until receiving a NACK.

Round robin v1:

- Serve users in circular order (1 \rightarrow 2 \rightarrow \cdots \rightarrow N); stay with each one until receiving a NACK.
- Maximize sum throughput [Ahmad et al'09]

Round robin v1:

- Serve users in circular order $(1 \to 2 \to \cdots \to N)$; stay with each one until receiving a NACK.
- Maximize sum throughput [Ahmad et al'09]
- Hard to analyze for N > 2

Round robin v1:

- Serve users in circular order (1 \rightarrow 2 \rightarrow \cdots \rightarrow N); stay with each one until receiving a NACK.
- Maximize sum throughput [Ahmad et al'09]
- Hard to analyze for N > 2

Round robin v1:

- Serve users in circular order $(1 \to 2 \to \cdots \to N)$; stay with each one until receiving a NACK.
- Maximize sum throughput [Ahmad et al'09]
- Hard to analyze for N > 2

Round robin v2:

• When switch to a new channel, set $\omega_n(t) = P_{01}^{(N)}$.

Theorem

Sum throughput of RRv2 is

$$c_N \triangleq \frac{\mathsf{P}_{01}(1-(1-x)^N)}{x\mathsf{P}_{10}+\mathsf{P}_{01}(1-(1-x)^N)}, \quad x \triangleq \mathsf{P}_{01}+\mathsf{P}_{10} < 1,$$

and each user shares c_N/N .

Theorem

Sum throughput of RRv2 is

$$c_N \triangleq \frac{\mathsf{P}_{01}(1-(1-x)^N)}{x\mathsf{P}_{10}+\mathsf{P}_{01}(1-(1-x)^N)}, \quad x \triangleq \mathsf{P}_{01}+\mathsf{P}_{10} < 1,$$

and each user shares c_N/N .

Lemma

• Sum throughput never exceeds $c_{\infty} = \frac{P_{01}}{xP_{10} + P_{01}}$.

Theorem

Sum throughput of RRv2 is

$$c_N \triangleq \frac{\mathsf{P}_{01} \big(1 - (1 - x)^N \big)}{x \mathsf{P}_{10} + \mathsf{P}_{01} \big(1 - (1 - x)^N \big)}, \quad x \triangleq \mathsf{P}_{01} + \mathsf{P}_{10} < 1,$$

and each user shares c_N/N .

Lemma

- Sum throughput never exceeds $c_{\infty} = \frac{P_{01}}{xP_{10} + P_{01}}$.
- Throughput loss of RRv2 $\leq c_{\infty} c_{N} \leq c_{\infty} (1-x)^{N}$.

Theorem

Sum throughput of RRv2 is

$$c_N \triangleq \frac{\mathsf{P}_{01}(1-(1-x)^N)}{x\mathsf{P}_{10}+\mathsf{P}_{01}(1-(1-x)^N)}, \quad x \triangleq \mathsf{P}_{01}+\mathsf{P}_{10} < 1,$$

and each user shares c_N/N .

Lemma

- Sum throughput never exceeds $c_{\infty} = \frac{P_{01}}{xP_{10} + P_{01}}.$
- Throughput loss of RRv2 $\leq c_{\infty} c_{N} \leq c_{\infty} (1-x)^{N}$.

"asymptotically optimal for symmetry traffic"

Randomized RRv2:

- 1. Randomly pick a subset of active users.
- 2. Run RRv2 for one round on active users with the order least-recently-used-first.

Randomized RRv2:

- 1. Randomly pick a subset of active users.
- 2. Run RRv2 for one round on active users with the order least-recently-used-first.

Intuitive Performance

- $\phi \sim N$ -dim binary vector; user n is active if nth entry is 1.
- $M(\phi) \sim$ number of active users in ϕ .

Randomized RRv2:

- 1. Randomly pick a subset of active users.
- 2. Run RRv2 for one round on active users with the order least-recently-used-first.

Intuitive Performance

- $\phi \sim N$ -dim binary vector; user n is active if nth entry is 1.
- $M(\phi)$ ~ number of active users in ϕ .

• Random mixing \sim time sharing

Theorem

The capacity region under randomized RRv2 is

$$\Lambda_{int} = \left\{ oldsymbol{\lambda} \mid oldsymbol{\lambda} \leq oldsymbol{\mu}, \; oldsymbol{\mu} \in \mathsf{conv}\left(\left\{rac{c_{M(oldsymbol{\phi})}}{M(oldsymbol{\phi})}oldsymbol{\phi}
ight\}
ight)
ight\}.$$

Theorem

The capacity region under randomized RRv2 is

$$\Lambda_{\mathit{int}} = \left\{ \boldsymbol{\lambda} \mid \boldsymbol{\lambda} \leq \boldsymbol{\mu}, \; \boldsymbol{\mu} \in \mathsf{conv}\left(\left\{ \frac{c_{M(\phi)}}{M(\phi)} \boldsymbol{\phi} \right\} \right) \right\}.$$

Lemma

If a directional vector $\mathbf{v} \sim positive\ combination\ of$ binary vectors having \mathbf{n} ones, then in that direction:

max sum throughput $\geq c_n$

sum throughput loss $\leq c_{\infty}(1-x)^n$

Inner Bound:

$$\Lambda_{\text{int}} = \left\{ \lambda \mid \lambda \leq \mu \in \text{conv} \left(\left\{ \begin{bmatrix} 0 \\ c_1 \end{bmatrix}, \begin{bmatrix} c_2/2 \\ c_2/2 \end{bmatrix}, \begin{bmatrix} c_1 \\ 0 \end{bmatrix} \right\} \right) \right\}. \qquad (P_{01} = P_{10} = 0.2)$$

$$\lambda_2$$
sum-throughput optimal

Inner Bound:

$$\Lambda_{\text{int}} = \left\{ \boldsymbol{\lambda} \mid \boldsymbol{\lambda} \leq \boldsymbol{\mu} \in \text{conv} \left(\left\{ \begin{array}{c} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{c}_1 \end{bmatrix}, & \begin{bmatrix} \boldsymbol{c}_2/2 \\ \boldsymbol{c}_2/2 \end{bmatrix}, & \begin{bmatrix} \boldsymbol{c}_1 \\ \boldsymbol{0} \end{bmatrix} \end{array} \right\} \right) \right\}. \qquad (\mathsf{P}_{01} = \mathsf{P}_{10} = 0.2)$$

Inner Bound:

$$\Lambda_{\text{int}} = \left\{ \boldsymbol{\lambda} \mid \boldsymbol{\lambda} \leq \boldsymbol{\mu} \in \text{conv}\left(\left\{ \begin{array}{c} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{c}_1 \end{bmatrix}, & \begin{bmatrix} \boldsymbol{c}_2/2 \\ \boldsymbol{c}_2/2 \end{bmatrix}, & \begin{bmatrix} \boldsymbol{c}_1 \\ \boldsymbol{0} \end{bmatrix} \end{array} \right\} \right) \right\}. \qquad (\mathsf{P}_{01} = \mathsf{P}_{10} = 0.2)$$

Inner Bound:

$$\Lambda_{\text{int}} = \left\{ \boldsymbol{\lambda} \mid \boldsymbol{\lambda} \leq \boldsymbol{\mu} \in \text{conv}\left(\left\{ \begin{bmatrix} 0 \\ c_1 \end{bmatrix}, \begin{bmatrix} c_2/2 \\ c_2/2 \end{bmatrix}, \begin{bmatrix} c_1 \\ 0 \end{bmatrix} \right\} \right) \right\}. \qquad (\mathsf{P}_{01} = \mathsf{P}_{10} = 0.2)$$

• If treating channels \sim i.i.d.

sum throughput $\leq \pi_{\mathsf{ON}}$

Inner Bound:

$$\Lambda_{\text{int}} = \left\{ \boldsymbol{\lambda} \mid \boldsymbol{\lambda} \leq \boldsymbol{\mu} \in \text{conv}\left(\left\{ \begin{array}{c} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{c}_1 \end{bmatrix}, & \begin{bmatrix} \boldsymbol{c}_2/2 \\ \boldsymbol{c}_2/2 \end{bmatrix}, & \begin{bmatrix} \boldsymbol{c}_1 \\ \boldsymbol{0} \end{bmatrix} \end{array} \right\} \right) \right\}. \qquad (\mathsf{P}_{01} = \mathsf{P}_{10} = 0.2)$$

• If treating channels \sim i.i.d.

sum throughput
$$\leq \pi_{\mathsf{ON}}$$

Max throughput gain from channel memory:

$$\frac{c_{N} - \pi_{ON}}{\xrightarrow{N \to \infty}} \frac{P_{01}}{x P_{10} + P_{01}} - \frac{P_{01}}{P_{10} + P_{01}}$$

$$x \triangleq P_{01} + P_{10}$$

Simple MaxWeight policy

Stabilize any $\lambda \in \Lambda_{int}$:

- find a proper random mixture of (2^N-1) RRv2 policies so that $\mu>\lambda$
- impractical

Simple MaxWeight policy

Stabilize any $\lambda \in \Lambda_{int}$:

- find a proper random mixture of (2^N-1) RRv2 policies so that $\mu>\lambda$
- impractical

Q-dependent dynamic round robin (QRR)

1. Observe $Q_n(t)$, and find ϕ^* that maximizes

$$f(\overrightarrow{Q}(t)) \triangleq \sum_{n:\text{active}} \left[\frac{Q_n(t) \mathsf{P}_{01}^{(M(\phi))}}{\mathsf{P}_{10}} - \frac{\mathsf{P}_{10} + \mathsf{P}_{01}^{(M(\phi))}}{\mathsf{P}_{10}} \sum_{n=1}^{N} Q_n(t) \lambda_n \right]$$

2. Run RRv2 on active users of ϕ^* for one round by least-recently-used-first.

Simple MaxWeight policy

Stabilize any $\lambda \in \Lambda_{int}$:

- find a proper random mixture of (2^N-1) RRv2 policies so that $\mu>\lambda$
- impractical

Q-dependent dynamic round robin (QRR)

1. Observe $Q_n(t)$, and find ϕ^* that maximizes

$$f(\overrightarrow{Q}(t)) \triangleq \sum_{n:\text{active}} \left[\frac{Q_n(t) \mathsf{P}_{01}^{(M(\phi))}}{\mathsf{P}_{10}} - \frac{\mathsf{P}_{10} + \mathsf{P}_{01}^{(M(\phi))}}{\mathsf{P}_{10}} \sum_{n=1}^{N} Q_n(t) \lambda_n \right]$$

2. Run RRv2 on active users of ϕ^* for one round by least-recently-used-first.

Theorem

For any λ interior to Λ_{int} , policy QRR stabilizes the network.

- proved by a frame-based variable-length Lyapunov drift argument
- QRR ∼ polynomial time algorithm

Wrap Up

$$\text{max channel memory gain} = \frac{P_{01}}{{\color{blue} x}\,P_{10} + P_{01}} - \frac{P_{01}}{P_{10} + P_{01}} \quad (x = P_{01} + P_{10} < 1)$$

Applications / Future Work

- Channel measurement and delayed information in multi-user wireless scheduling
 - Limited channel probing
 - Other QoS metrics
- Opportunistic spectrum access in cognitive radio networks
 - State of the art is POMDP for single-user case. Lots of potentials here!
- How channel memory can help in modern network protocols
 - Random access (e.g. CSMA) in wireless networks?
- Transform POMDP and restless bandit into stochastic network control problems

A New Methodology for Restless Bandit

In this paper:

Let λ^* be the optimal solution to a restless bandit problem over Λ_{int} . If λ^* is known, QRR achieves it in the network.

A New Methodology for Restless Bandit

In this paper:

feasible solutions of practical interest

Let λ^* be the optimal solution to a restless bandit problem over Λ_{int} . If λ^* is known, QRR achieves it in the network.

What if....

.... a QRR-like policy achieves λ^* without knowing it in advance, then we are actually solving (approximately) a high-dimensional restless bandit!

A New Methodology for Restless Bandit

In this paper:

feasible solutions of practical interest

Let λ^* be the optimal solution to a restless bandit problem over Λ_{int} . If λ^* is known, QRR achieves it in the network.

What if....

.... a QRR-like policy achieves λ^* without knowing it in advance, then we are actually solving (approximately) a high-dimensional restless bandit!

- pour unlimited traffic into the network
- perform admission control and utility maximization [Neely, Modiano, Li, ToN'08]
 to let the network learn the optimal solution