Las distancias de EK no disminuyen en pasos sucesivos

Probar que si, dados vértices x, z y flujo f definimos a la distancia entre x y z relativa a f como la *longitud del menor* f-camino aumentante entre x y z, si es que existe tal camino, o ∞ si no existe o 0 si x=z, denotándola por $d_f(x,z)$, y definimos $d_k(x)=d_{f_k}(s,x)$ donde f_k es el k-ésimo flujo en una corrida de Edmonds-Karp, entonces $d_k(x) \leq d_{k+1}(x)$.

Demostración

- Se considera que [3.2.1] significa "se define esta propiedad o definición bajo este número o tag (para ser usado después)", mientras que (3.2.1) hace referencia a que se usa tal propiedad o definición.
- Además, se considera que $(3.2, \{1, 4\})$ es lo mismo que decir (3.2.1), (3.2.4)

0. Estructura

- 1 Suposición
 - $ullet \overrightarrow{xy} \in E \Rightarrow \overrightarrow{yx}
 otin E$
- 2 Re-definición de d_k
 - $d_k(x) = ext{longitud del menor } f_k ext{-camino aumentante entre } s ext{ y } x ext{ (o } \infty ext{ si no hay)}$
- 3 Definición de fFF vecino de x
 - y es fFF vecino de x si no está saturado (\overrightarrow{xy} forward) o no está vacío (\overleftarrow{yx} backward) el lado que los une (dependiendo del caso)
- 4 Si y es un f_kFF vecino de x, entonces $d_k(y) \leq d_k(x) + 1$
 - Separar en dos casos en función de la existencia de un f_k -camino aumentante entre s y x
- 5 Prueba por contradicción (suponiendo $\exists k, x : d_{k+1}(x) < d_k(x)$)
 - 5.1. Definición y propiedades de A, x_{min} e y_{min}
 - $\bullet \ \ A = \{x \in V: d_{k+1}(x) < d_k(x)\}$
 - Por suposición de (5), $A \neq \emptyset$
 - ullet s
 otin A
 - $ullet \ x_{min} \in A: d_{k+1}(x_{min}) = Min \ \{d_{k+1}(x): x \in A\}$
 - $ullet d_{k+1}(x_{min}) < d_k(x_{min})$

- $\bullet \ \ y:d_{k+1}(y) < d_{k+1}(x_{min}) \Rightarrow y \not\in A \Rightarrow d_k(y) \leq d_{k+1}(y)$
- $\exists C \ f_{k+1}$ -camino aumentante entre s y x_{min} de menor longitud tal que $\exists y \in V : y$ es el vértice inmediatamente anterior a x_{min}
- ullet y_{min} definido como el vértice inmediatamente anterior a x_{min} en C
- 5.2. Relaciones entre x_{min} e y_{min}
 - x_{min} es $f_{k+1}FF$ vecino de y_{min} por C
 - x_{min} no es f_kFF vecino de y_{min}
 - Usamos $d_{k+1}(x_{min})=d_{k+1}(y_{min})+1$ y que $d_k(y_{min})\leq d_{k+1}(y_{min})$ para llegar a que $d_k(x_{min})>d_k(y_{min})+1$ y no cumpla con la propiedad de fFF vecino y d_k .
- 5.3. Relación entre f_k y f_{k+1}
 - Para que pase (5.2), el f_k -camino aumentante usado por EK para construir f_{k+1} debe pasar primero por x_{min} y después por y_{min}
 - Vemos los dos casos disjuntos (por suposición (1)): $\overrightarrow{x_{min}y_{min}} \in E$ (en f_k -camino se envía flujo por la forward) o $\overrightarrow{y_{min}x_{min}} \in E$ (en f_k -camino se devuelve flujo por la forward)
 - Como el f_k -camino lo crea EK y este usa BFS, es de longitud mínima. Luego, por definición de d_k , tenemos que $d_k(y_{min}) = d_k(x_{min}) + 1$
- 5.4. Contradicción
 - Tenemos que $d_k(x_{min}) > d_k(y_{min})$ y que $d_k(y_{min}) = d_k(x_{min}) + 1$
- 6 Conclusión
 - Hubo absurdo que vino de suponer (5)

1. Suposición

- $ullet \overrightarrow{xy} \in E \Rightarrow \overrightarrow{yx}
 otin E$
 - No se restrictiva ya que si se tienen los dos lados, se considera el Network equivalente (en problema MFMC) obtenido al agregar
 - Nodo z
 - Lados $\overrightarrow{xz}, \overrightarrow{zy}, \overrightarrow{yx}$, los dos primeros con la capacidad de \overrightarrow{xy} , mientras que el último con la de \overrightarrow{yx}

2. Re-definición de d_k

- A fines prácticos y para mayor claridad a la hora de demostrar el problema, puede observarse en base a la definición que
 - $d_k(x) = \text{longitud del menor } f_k\text{-camino aumentante entre } s \text{ y } x \text{ (o } \infty \text{ si no hay)}$

3. Definición de fFF vecino de x

- Dado un flujo f y un vértice x, diremos que un vértice y es un vecino fFF de x si pasa alguna de las siguientes condiciones:
 - $\overrightarrow{xy} \in E \wedge f(\overrightarrow{xy}) < c(\overrightarrow{xy})$ (i.e., forward)
 - o $\overrightarrow{yx} \in E \wedge f(\overrightarrow{yx}) > 0$ (i.e., backward)

4. Si y es un f_kFF vecino de x, entonces $d_k(y) \leq d_k(x) + 1$

- Tenemos dos opciones posibles
 - No existe f_k -camino aumentante entre s y x
 - $\Rightarrow d_k(x) = \infty$ por (2)
 - Luego, es obvio que $d_k(y) \leq \infty$ por (2)
 - **Sí existe** algún f_k -camino aumentante entre s y x
 - ullet Tomamos el camino C_1 de longitud mínima $\Rightarrow len(C_1) = d_k(x)$
 - Como y es f_kFF vecino de x, entonces consideramos el camino C_2 que consiste de agregar y al final de $C_1 \Rightarrow$ es un f_k -camino aumentante entre s e y $\land len(C_2) = len(C_1) + 1 = d_k(x) + 1$
 - Como C_2 es un f_k -camino aumentante entre s e y, entonces por (2), como se considera el de longitud mínima, tenemos que $d_k(y) \leq len(C_2) \Rightarrow d_k(y) \leq d_k(x) + 1$
- Luego, se prueba la propiedad para los dos casos

5. Prueba por contradicción (suponiendo $\exists k, x : d_{k+1}(x) < d_k(x)$)

5.1. Definición y propiedades de A, x_{min} e y_{min}

- Definimos $A = \{x \in V: d_{k+1}(x) < d_k(x)\}$
 - Por suposición de (5), A tiene al menos un elemento $\Rightarrow A \neq \emptyset$ [5.1.1]
 - $d_k(s) = 0 orall k$ por definición en $(2) \Rightarrow 0 \nless 0 \Rightarrow^{def A} s
 otin A [5.1.2]$
- Definimos $x_{min} \in A: d_{k+1}(x_{min}) = Min \ \{d_{k+1}(x): x \in A\}$
 - $ullet \ d_{k+1}(x_{min}) <^{{
 m defA}} d_k(x_{min}) \ [5.1.3]$
 - Si tenemos $y:d_{k+1}(y) < d_{k+1}(x_{min}) \Rightarrow y
 otin A \Rightarrow d_k(y) \leq d_{k+1}(y) \ [5.1.4]$
 - Ya que por definición, x_{min} es de la menor distancia dentro de los de A
 - Sea C un f_{k+1} -camino aumentante entre s y x_{min} de menor longitud, entonces $\exists y \in V: y$ es el vértice inmediatamente anterior a x_{min} [5.1.5]
 - Existe el f_{k+1} -camino aumentante entre s y x_{min} por definición de d_k dado que $d_{k+1}(x_{min}) \neq \infty$ porque $d_{k+1}(x_{min}) <^{(5.1.3)} d_k(x_{min}) \leq^{(2)} \infty$
 - Existe el y ya que $x_{min} \neq s$, porque por (5.1.2), $s \notin A$; y por definición de $x_{min}, x_{min} \in A$
- Definimos y_{min} como el vértice inmediatamente anterior a x_{min} en el camino C definido en (5.1.5)

5.2. Relaciones entre x_{min} e y_{min}

- x_{min} es $f_{k+1}FF$ vecino de y_{min} [5.2.1]
 - Por definición de fFF vecino y dado que forman parte de C
- x_{min} no es f_kFF vecino de y_{min} [5.2.2]
 - Como C es de longitud mínima y, en base a la definición de d_k , tenemos que $d_{k+1}(x_{min})=d_{k+1}(y_{min})+1$
 - Luego, como $d_{k+1}(y_{min}) < d_{k+1}(x_{min})$, por (5.1.4) tenemos que $y_{min} \not\in A$ y que $d_k(y_{min}) \le d_{k+1}(y_{min})$
 - · Luego, entonces, tenemos que

$$egin{aligned} d_k(x_{min}) &> d_{k+1}(x_{min}) ext{ por def. de } x \ &= d_{k+1}(y_{min}) + 1 ext{ por lo visto antes} \ &\geq d_k(y_{min}) + 1 ext{ ya que } y_{min}
otin A \end{aligned}$$
 $\Rightarrow d_k(x_{min}) > d_k(y_{min}) + 1 ext{ [5.2.3]}$

• Como (4) no se cumple, por contra-recíproca, tenemos que x_{min} no es f_kFF vecino de y_{min}

5.3. Relación entre f_k y f_{k+1}

- Para que pueda pasar $(5.2, \{1, 2\})$, el f_k -camino aumentante usado por EK para construir f_{k+1} debe pasar primero por x_{min} y luego por y_{min}
 - Para probarlo, debemos ver los dos casos posibles (disjuntos) en base a la suposición del Network (1):

$$egin{aligned} \bullet & \overrightarrow{x_{min}y_{min}} \in E \ & \bullet & (5.2.1) \Rightarrow f_{k+1}(\overrightarrow{x_{min}y_{min}}) > 0 \ & \bullet & (5.2.2) \Rightarrow f_{k}(\overrightarrow{x_{min}y_{min}}) = 0 \end{aligned}$$

• Luego, como $f_{k+1}(\overrightarrow{x_{min}y_{min}}) > f_k(\overrightarrow{x_{min}y_{min}})$, enviamos flujo por $\overrightarrow{x_{min}y_{min}}$, por lo que en el camino debe estar primero x_{min} y después y_{min} (ya que se usa de forma *forward*)

•
$$\overrightarrow{y_{min}x_{min}} \in E$$

• $(5.2.1) \Rightarrow f_{k+1}(\overrightarrow{y_{min}x_{min}}) < c(\overrightarrow{y_{min}x_{min}})$

• $(5.2.2) \Rightarrow f_k(\overrightarrow{y_{min}x_{min}}) = c(\overrightarrow{y_{min}x_{min}})$

• Luego, como $f_{k+1}(\overrightarrow{y_{min}x_{min}}) < f_k(\overrightarrow{y_{min}x_{min}})$, devolvemos flujo usando la backward $\overrightarrow{x_{min}y_{min}}$. Por ello, entonces, debe estar primero x_{min} y después

· Luego, en ambos casos, se cumple la propiedad

 y_{min}

- Dado, esto, sabemos entonces que para pasar de f_k a f_{k+1} , usamos un f_k -camino aumentante de la forma $s \dots x_{min} y_{min} \dots t$
 - Como es usado por EK y este usa BFS, este camino es de longitud mínima. Luego, $d_k(y_{min}) = d_k(x_{min}) + 1 \ [5.3.1]$

5.4. Contradicción

- Por (5.2.3) tenemos que $d_k(x_{min})>d_k(y_{min})+1$; mientras que por (5.3.1) tenemos que $d_k(y_{min})=d_k(x_{min})+1$
- Luego, esto significa que $d_k(x_{min})>d_k(y_{min})+1=d_k(x_{min})+2\Rightarrow d_k(x_{min})>d_k(x_{min})+2\Rightarrow 0>2, \text{ por lo que llegamos a un absurdo que vino de la suposición de (5)}$

6. Conclusión

• Dado que se llegó a un absurdo desde la suposición de (5), entonces $ot \exists x \in V: d_{k+1}(x) < d_k(x) \Rightarrow \forall x \in V, d_{k+1}(x) \geq d_k(x) \blacksquare$