

Sistemas Distribuídos

Web Services

Arquitetura REST

Microsserviços

Web Services

- camada de software para facilitar a interação entre cliente e servidor, tornandoa mais rica e mais estruturada.
- incluem uma API que permite aceder a serviços remotos através da rede
- independentemente da linguagem das aplicações cliente e servidor, os pedidos e respostas são *usualmente* codificados numa Representação Externa de Dados (RED) em XML e transmitidos sobre HTTP
 - Outra possível RED: JSON
- são identificados por um URI (URL ou URN)

Interface e formato das mensagens

Service Description

- Tal como no CORBA e Java RMI, há uma descrição para a interface do web service. Há também a especificação do protocolo de codificação e comunicação das mensagens e a localização do Web Service (URL ou URN)
- A IDL usada é a Web Services Description Language (WSDL)

SOAP - Simple Object Access Protocol

- extensão de XML-RPC
- é um protocolo para troca de mensagens, usualmente sobre HTTP, que trata do correto encapsulamento dos dados em XML
- possíveis protocolos para envio das mensagens HTTP, SMTP, TCP, UDP
- não levanta problemas na presença de firewalls

Web Services: camada de software usada pelas aplicações

Applications Directory service Choreography Security Web Services Service descriptions (in WSDL) SOAP URIs (URLs or URNs) XML HTTP, SMTP or other transport camada de transporte do modelo OSI: TCP, ...

Web Services: arquitetura

- tal como em Java RMI, o cliente do Web Service poderá consultar a descrição do serviço de nomes ou de diretoria
- UDDI:Universal Description Discovery and Integration
 - protocolo para publicar e pesquisar meta-informação sobre web services... permite que uma aplicação descubra e use um web service em tempo de execução

Web Services

- servem de suporte à computação distribuída via internet, facilitando a cooperação de aplicações baseadas em diferentes linguagens
- os detalhes de SOAP e XML são usualmente escondidos por APIs (Java, Perl, Python, C++). A service description pode ser usada para gerar as rotinas de marshalling e unmarshalling de forma automática.
- diferença relativamente ao Object Model Distribuído: um web service é assegurado por um único objeto
 - o garbage collection neste caso não é tão crítico, porque não expõe objetos a referências remotas
 - a referência remota para o objeto não é relevante (ele é o único associado ao serviço)
 - Para lá do Web Service, podem existir muitos objetos, para funcionalidade de apoio...
- Uso de XML em SOAP e nos dados:
 - vantagem: mais legível, por humanos
 - desvantagem: processamento mais lento que formatos binários

Figure 19.6 Use of HTTP POST Request in SOAP client-server communication

POST /examples/stringer

endpoint address

Host: www.cdk4.net

Content-Type: application/soap+xml

Action: http://www.cdk4.net/examples/stringer#exchange


```
<env:envelope xmlns:env=</pre>
```

namespace URI for SOAP envelope

<env:header> </env:header>

<env:body> </env:body>

</env:Envelope>

SOAP em Java

- JAX-WS significa Java API for XML Web Services e inclui:
 - Java Architecture for XML Binding (JAXB)
 - SOAP with Attachments API for Java (SAAJ)
- A API do JAX-WS esconde a complexidade do protocolo SOAP
 - O programador não precisa gerar ou fazer o parse explícito de mensagens SOAP
- Web Service <u>Endpoint</u> é a implementação do Web Service
 - Fica no servidor

Web Services em Java: Servidor e descrição

Assumindo que se começa por desenvolver a *Service Interface* e a sua implementação (*endpoint*)

- há ferramentas para gerar automaticamente o Skeleton e a descrição do serviço em WSDL
- o serviço vai correr num Servlet Container (exemplo: Apache Tomcat)
- Depois de preparado, o web service deve estar num ficheiro ".war", que pode ser deployed (instalado) no Servlet Container
 - o dispatcher do *servlet container* identifica a operação no pedido
 - pelo header http Action
 - e invoca o método apropriado no respetivo Skeleton
- É possível gerar a classe do Proxy, para o cliente, em runtime, a partir da service description... mas não é sempre assim.

Segurança no XML

funcionalidade para assinar ou para cifrar

- Para determinadas garantias de segurança, não basta proteger o canal... o próprio documento tem de incorporar alguma metainformação (assinatura, informação de chaves...)
- para ser validada posteriormente à cessação do canal de comunicação

- o XML permite várias formas sintáticas para os mesmos dados
- a assinatura digital do XML é precedida de uma conversão para Canonical XML
 - representação normalizada e serializada de XML

Alguns Web Services da Amazon

Web service	Description
Amazon Elastic Compute Cloud (EC2)	Web-based service offering access to virtual machines of a given performance and storage capacity
Amazon Simple Storage Service (S3)	Web-based storage service for unstructured data
Amazon Simple DB	Web-based storage service for querying structured data
Amazon Simple Queue Service (SQS)	Hosted service supporting message queuing (as discussed in Chapter 6)
Amazon Elastic MapReduce	Web-based service for distributed computation using the MapReduce model (introduced in Chapter 21)
Amazon Flexible Payments Service (FPS)	Web-based service supporting electronic payments

GRID Computing

- middleware desenhado para permitir e optimizar a partilha de recursos (computadores, dados, sensores, software) em larga escala
- usualmente os utilizadores destes sistemas (cientistas, engenheiros) colaboram para alcançar um objetivo comum, como um estudo que requer o processamento de grandes quantidades de dados, por exemplo.
- os recursos estão alojados em computadores de diferentes plataformas, com ambiente heterogéneo
- o middleware GRID pode assentar em Web Services

Grid & Cloud

Grid

- Usualmente heterogéneas (mas não necessariamente)
- Lidar com enorme volume de dados ou processamentos complexos
- Geograficamente dispersas
- Exemplos
 - Open Science Grid (OSG) http://www.opensciencegrid.org/
 - LHC Computing Grid (CERN)
 - Middleware: Globus Toolkit

Cloud

- Paradigma "recente" de computação distribuída de larga escala
 - Motivações:
 - Uso mais geral (muitos ou poucos dados); maior leque de utilizadores
 - vocação para os serviços
 - Virtualização
 - Alocação de recursos dinâmica em função das necessidades
 - Exemplos:
 - Amazon, GoogleApps, Windows Azure

Cloud Computing

Computação em Nuvem permite armazenamento e/ou computação baseado na Internet. Reduz a necessidade de armazenamento, software e capacidade de processamento do lado dos equipamentos terminais (junto do utilizador)

Cloud computing

Instructor's Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education

Arquitetura REST

- REST Representational State Transfer
 - É uma arquitetura para interação em sistemas distribuídos
 - Surgiu em 2000, da tese de doutoramento de Roy Thomas Fielding
- Objetos têm estado, cuja representação é transportada por pedidos HTTP
 - PUT; POST; GET; DELETE
 - Cada pedido tem um significado próprio (criar, alterar, consultar e apagar objetos)
- Em comparação com os SOAP based Web Services:
 - Mais leve
 - Ainda intelegível
 - Formato dos dados pode ser JSON ou XML (mantém flexibilidade)

Arquitetura REST

- Analogia com SOAP:
- mensagem de consulta de dados sobre o utilizador nº 12345
- SOAP WS:

REST:

http://www.acme.com/phonebook/UserDetails/12345

O url inclui os parâmetros da consulta

Microsserviços

 Uma abordagem de desenvolvimento de software que separa as tarefas de um processo complexo num conjunto de serviços e processos autónomos, que comunicam através de APIs, cooperando para a realização de um serviço composto.

Figure II-2. A microservice architecture with each function broken out as a separate microservice

Imagens: Brendan Burns (2018). Designing Distributed Systems

Microsserviços

Em comparação com sistemas monolíticos, os Microsserviços

- maior agilidade
- facilitam manutenção do software
- promover a modularização e conformidade com normas e APIs
- facilitam alterações à arquitetura, permitindo escalar de modo mais eficaz, com o reforço aplicado de forma independente em cada componente/serviço