## **HW** 3

This assignment covers several aspects of Linear Regresstion. **DO NOT ERASE MARKDOWN CELLS AND INSTRUCTIONS IN YOUR HW submission** 

- Q QUESTION
- A Where to input your answer

## Instructions

Keep the following in mind for all notebooks you develop:

- Structure your notebook.
- Use headings with meaningful levels in Markdown cells, and explain the questions each piece of code is to answer or the reason it is there.
- Make sure your notebook can always be rerun from top to bottom (Kernel Tab -> Restart and Run All)
- Start working on this assignment as soon as possible. If you are a beginner in Python this might take a long time. One of the objectives of this assignment is to help you learn python and scikit-learn package.
- Follow README.md for homework submission instructions
- In this notebook we assume '../data/' location of all data files to be read and written

## Related sklearn material and online tutorials

sklearn User Guide

### sklearn data pre-processing

- train\_test\_split
- common\_pittfalls
- train test split tutorial

### sklearn multiple linear regression

- tutorial
- API documentation
- Linear Regression
- multiple linear regression tutorial

## sklearn polynomial regression

- generate polynomial features
- polinomial regression tutorial

### correlation

correlation

# **Linear Regression**

In jupyter notebook environment, commands starting with the symbol % are magic commands or magic functions. **%\*timeit** is one of such function. It basically gives you the speed of execution of certain statement or blocks of codes.

```
In [ ]: import pandas as pd
  import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt
```

**Q1** Read the car\_data.csv data (we assume ../data/ location of all data files to be read and written) from **data** folder using pandas. Replace the ??? in the code cell below to accomplish this taks.

A1 Replace ??? with code in the code cell below

| Out[ ]: |   | car_ID | symboling | CarName                     | fueltype | aspiration | doornumber | carbody     | drivewheel | enginel |
|---------|---|--------|-----------|-----------------------------|----------|------------|------------|-------------|------------|---------|
|         | 0 | 1      | 3         | alfa-romero<br>giulia       | gas      | std        | two        | convertible | rwd        |         |
|         | 1 | 2      | 3         | alfa-romero<br>stelvio      | gas      | std        | two        | convertible | rwd        |         |
|         | 2 | 3      | 1         | alfa-romero<br>Quadrifoglio | gas      | std        | two        | hatchback   | rwd        |         |
|         | 3 | 4      | 2         | audi 100 ls                 | gas      | std        | four       | sedan       | fwd        |         |
|         | 4 | 5      | 2         | audi 100ls                  | gas      | std        | four       | sedan       | 4wd        |         |

5 rows × 26 columns

**Q2** Here, you will practice the usage of common data cleaning and manipulation functions in 3 steps.

- 1. Use isnull() to figure out the number of NaN values per column
- 2. Remove the column with majority NaN values (if any)
- 3. Check if there are still NaN values in the dataframe using isna() method

A2 Replace ??? with code in the code cell below

```
# There is no missing data here on this dataset :
In [ ]:
        #df.?
        #df.?
        df.isnull().sum() # prints out each column individually with an integer. If the integer
        # it will be noticed that there are no null values in this dataset
        car_ID
                            0
Out[]:
        symboling
                            0
        CarName
                            0
        fueltype
                            0
        aspiration
                            0
        doornumber
                            0
        carbody
        drivewheel
        enginelocation
                            0
        wheelbase
        carlength
                            0
        carwidth
                            0
                            0
        carheight
        curbweight
                            0
        enginetype
                            0
        cylindernumber
        enginesize
                            0
        fuelsystem
                            0
        boreratio
                            0
        stroke
        compressionratio
                            0
        horsepower
                            0
                            0
        peakrpm
        citympg
                            0
        highwaympg
                            0
        price
                            0
        dtype: int64
In [ ]: # lets get some statistical information :
        # df.?
        df.describe()
```

| enginesiz | curbweight  | carheight  | carwidth   | carlength  | wheelbase  | symboling  | car_ID     |       |
|-----------|-------------|------------|------------|------------|------------|------------|------------|-------|
| 205.00000 | 205.000000  | 205.000000 | 205.000000 | 205.000000 | 205.000000 | 205.000000 | 205.000000 | count |
| 126.90731 | 2555.565854 | 53.724878  | 65.907805  | 174.049268 | 98.756585  | 0.834146   | 103.000000 | mean  |
| 41.64269  | 520.680204  | 2.443522   | 2.145204   | 12.337289  | 6.021776   | 1.245307   | 59.322565  | std   |
| 61.00000  | 1488.000000 | 47.800000  | 60.300000  | 141.100000 | 86.600000  | -2.000000  | 1.000000   | min   |
| 97.00000  | 2145.000000 | 52.000000  | 64.100000  | 166.300000 | 94.500000  | 0.000000   | 52.000000  | 25%   |
| 120.00000 | 2414.000000 | 54.100000  | 65.500000  | 173.200000 | 97.000000  | 1.000000   | 103.000000 | 50%   |
| 141.00000 | 2935.000000 | 55.500000  | 66.900000  | 183.100000 | 102.400000 | 2.000000   | 154.000000 | 75%   |
| 326.00000 | 4066.000000 | 59.800000  | 72.300000  | 208.100000 | 120.900000 | 3.000000   | 205.000000 | max   |
| •         |             |            |            |            |            |            |            |       |

**Q3:** In this task, out of all categorical columns, we focus only on the fueltype column processing in 2 steps.

- 1. Use label encoder from sklearn and convert the fueltype categorical values to numerical values.
- 2. Create a new dataframe that contains only the numerical columns.

**A3** Replace ??? with code in the code cell below.

Out[ ]:

```
In [ ]: # Label Encoding for 2-class columns:
    from sklearn.preprocessing import LabelEncoder
# Le = ?
# df.?
le = LabelEncoder()
unique_labels = [*df['fueltype'].unique()]
le.fit(unique_labels)
df['fueltype'] = le.transform(df['fueltype']) # didn't necessarily create a new datafr

In [ ]: # Create new dataframe with selected columns
# df=?
In [ ]: df.head()
```

| ]: |   | car_ID | symboling | CarName                     | fueltype | aspiration | doornumber | carbody     | drivewheel | enginel |
|----|---|--------|-----------|-----------------------------|----------|------------|------------|-------------|------------|---------|
|    | 0 | 1      | 3         | alfa-romero<br>giulia       | 1        | std        | two        | convertible | rwd        |         |
|    | 1 | 2      | 3         | alfa-romero<br>stelvio      | 1        | std        | two        | convertible | rwd        |         |
|    | 2 | 3      | 1         | alfa-romero<br>Quadrifoglio | 1        | std        | two        | hatchback   | rwd        |         |
|    | 3 | 4      | 2         | audi 100 ls                 | 1        | std        | four       | sedan       | fwd        |         |
|    | 4 | 5      | 2         | audi 100ls                  | 1        | std        | four       | sedan       | 4wd        |         |

5 rows × 26 columns

Out[ ]

Q4: Use seaborn histplot to plot a distribution graph for the engine sizes

A4 Replace ??? with code in the code cell below

Out[ ]: <Axes: xlabel='enginesize', ylabel='Count'>



**Q5:** Use seaborn histplot to plot a distribution graph for the car prices

A5 Replace ??? with code in the code cell below

```
plt.figure(figsize=(4,3),dpi=150)
In [ ]:
        sns.histplot(data=df['price'])
        c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
        use_inf_as_na option is deprecated and will be removed in a future version. Convert i
        nf values to NaN before operating instead.
          with pd.option_context('mode.use_inf_as_na', True):
        <Axes: xlabel='price', ylabel='Count'>
Out[ ]:
```



Q6: Use seaborn scatterplot to present the relation between enginesize and the horsepower of a car

A6 Replace ??? with code in the code cell below

```
#sns.?
In [ ]:
        sns.scatterplot(x=df['enginesize'], y=df['horsepower'])
        <Axes: xlabel='enginesize', ylabel='horsepower'>
Out[ ]:
```



**Q7:** There is a correlation between the car price and the horsepower of a car. If horsepower of a car increase, the price of the car also increases most of the time, and in this question you will use the seaborn scatterplot to present the relation between price and horsepower.

Next, use hue parameter of scatterplot function to illustrate datapoints that relate to specific fueltype category.

A7 Replace ??? with code in the code cell below

```
In []: #sns.?
sns.scatterplot(data=df, x=df['enginesize'], y=df['horsepower'], hue='fueltype')
Out[]: <Axes: xlabel='enginesize', ylabel='horsepower'>
```



**Q8:** Use pairplot from sns to plot the data frame df and justify your feature selection.

**A8:** replace ??? with code in the code cell below.

```
In [ ]: # 2. Use pairplot from sns to plot our data frame df
    #sns.?
sns.pairplot(data=df)
```

```
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option context('mode.use inf as na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use inf as na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option context('mode.use inf as na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use inf as na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use inf as na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option context('mode.use inf as na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option context('mode.use inf as na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option context('mode.use inf as na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use inf as na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use inf as na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
```

```
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
   with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert i
nf values to NaN before operating instead.
   with pd.option_context('mode.use_inf_as_na', True):
c:\Users\Hunter\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The
figure layout has changed to tight
   self._figure.tight_layout(*args, **kwargs)
```

Out[]: <seaborn.axisgrid.PairGrid at 0x1c95727cf10>



#### **Q9** Data Visualization:

- 1. Use heatmap chart from seaborn library to findout the correlation between the columns in our dataset.
- 2. Update data frame 'df' to contain 5 columns from existing 'df' with the highest correlation to column "price". Also include price column in the updated data frame.

```
In []: #corr_matrix = df.corr()
#plt.figure(figsize=(12,12))
#sns.?

df.head() # CarName, aspiration, doornumber, carbody, drivewheel, enginelocation, fuel
corr_matrix = df.drop(columns=['CarName', 'aspiration', 'doornumber', 'carbody', 'driv
plt.figure(figsize=(12,12))
sns.heatmap(corr_matrix, annot=True)
```

### Out[]: <Axes: >



In [ ]: # Task 2: Update data frame 'df' to contain 5 columns from existing 'df' with the high
# is this 5 columns + the price column? enginesize = 87, curbweight = 84, horsepower =
#df=?

df = df[['price', 'enginesize', 'curbweight', 'horsepower', 'carwidth', 'highwaympg']]
df.head()

| Out[ ]: |   | price   | enginesize | curbweight | horsepower | carwidth | highwaympg |
|---------|---|---------|------------|------------|------------|----------|------------|
|         | 0 | 13495.0 | 130        | 2548       | 111        | 64.1     | 27         |
|         | 1 | 16500.0 | 130        | 2548       | 111        | 64.1     | 27         |
|         | 2 | 16500.0 | 152        | 2823       | 154        | 65.5     | 26         |
|         | 3 | 13950.0 | 109        | 2337       | 102        | 66.2     | 30         |
|         | 4 | 17450.0 | 136        | 2824       | 115        | 66.4     | 22         |

# **Data Preparation**

**Q10** Pre-processing

1. Assign 'price' column value to y and rest of the columns to x

**A10** Replace ??? with code in the code cell below

Q11 Use train\_test\_split to split the data set as train:test=(80%:20%) ratio.

A11 Replace ??? with code in the code cell below

```
In [ ]: from sklearn.model_selection import train_test_split

# X_train, X_test, y_train, y_test =?

# View the shape of your data set

# X_train.shape, X_test.shape, y_train.shape, y_test.shape

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state
X_train.shape, X_test.shape, y_train.shape, y_test.shape
Out[ ]: ((164, 5), (41, 5), (164,), (41,))
```

## Regression Task

### **Multiple Linear Regression**

**Q12** Fit multiple linear regression model on training data using all predictors, see (i) Linear Regression Example; (ii) scikit-learn linear model

$$Y = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_p * x_p$$

A12: Replace ??? with code in the code cell below

```
In []: from sklearn.linear_model import LinearRegression
#Linear_model = ?
#Linear_model.?
linear_model = LinearRegression()
linear_model.fit(X_train, y_train)

Out[]: v LinearRegression
LinearRegression()
```

Q13: Model Scoring

- 1. Calculate the test MSE
- 2. Print the score from the model using test data

**A13** Replace ??? with code in the code cell below

```
In [ ]: ### Treadway Test, this does not answer A13.
        ### The MSE seemed so large, that I decided to prove to myself that the MSE was correc
        ### I wrote my own MSE calculation within this cell, and it matches the MSE in the bel
        \# MSE = (1/n)sum(yi - yhat k)^2
        \# MSE = (1/n)sum(y \ actual - y \ predicted)^2
        y predict = linear model.predict(X test)
        frame = pd.DataFrame({'y_test': y_test, 'y_predict': y_predict})
        frame['difference'] = frame['y_test'] - frame['y_predict']
        frame['square'] = frame['difference'] ** 2
        #frame[:30]
        frame.shape
        mse_ = (1/frame.shape[0])*frame['square'].sum()
        print(frame.head())
        print(mse )
        # there's only 41 rows, but the differences between
                           y_predict difference
                y_test
                                                         square
        15
             30760.000 25834.948104 4925.051896 2.425614e+07
             17859.167 18803.324891 -944.157891 8.914341e+05
        9
             9549.000 11298.304551 -1749.304551 3.060066e+06
        100
        132 11850.000 13694.906024 -1844.906024 3.403678e+06
        68 28248.000 23680.377070 4567.622930 2.086318e+07
        14565923.040455319
In [ ]: # Calculate the score on train and test sets
        # Your code goes below
        from sklearn.metrics import mean squared error
        import matplotlib.pyplot as plt
        #y_pred=?
        #mse = ? # Calculate the test MSE
        #print("Test mean squared error (MSE): {:.2f}".format(mse))
        y_pred = linear_model.predict(X_test)
        mse = mean_squared_error(y_test, y_pred)
        print("Test mean squared error (MSE): {:.2f}".format(mse))
        print("Test Score: ", linear_model.score(X_test, y_test))
```

Test mean squared error (MSE): 14565923.04 Test Score: 0.8154904845465165

### **Polinomial Regression**

Q14: Polynomial extension of the feature set captures the non-linear dependencies in the data

- Create a polinomial feature transformer with degree **TWO** using sklearn library PolynomialFeatures
- 2. Transform the training dataset using the polinomial feature transformer

A14 Replace ??? with code in the code cell below

Q15: Train the new model

- 1. Create a LinearRegression model using sklearn
- 2. Train the model using the transformed Train data(X\_train)/ or Polinomial train data
- 3. Print the score for the Polinomial Regression for the Train data.

See (i) Linear Regression Example; (ii) Use the transformed X\_train features inside the score() function for the correct model scores.

A15 Replace ??? with code in the code cell below