10/1/2019

## REGRESSION

5기 이세린



#### CONTENTS

- Preview
- Simple & Multiple Linear Regression
- Regression under Regulation
- 3. Logistic Regression



10/1/2019

# O. PREVIEW

3



#### 기계학습(Machine Learning)





## 기계학습(Machine Learning)

"컴퓨터가 어떤 작업(T)를 하는데 있어서

경험(E)로부터 학습하여

성능에 대한 측정(P)을 향상시키는 학문" - Tom Mitchell

"머신러닝 알고리즘은 데이터를 기반으로 통계적인 신뢰도를 강화하고 예측 오류를 최소화하기 위한 다양한 수학적 기법을 적용해 데이터 내의 패턴을 스스로 인지하고 신뢰도 있는 예측 결과를 도출해 낸다."



## 지도학습(Supervised Learning)





#### Regression VS Classification



Regression

What is the temperature going to

## 회귀(Regression)

- 여러 개의 독립 변수와 한 개의 종속변수 간의 상관관계를 모델링하는 기법 통칭
- 머신러닝에서 회귀 예측의 핵심:
  - 주어진 독립변수 피처와 결정 값 데이터 기반에서 학습
- →최적의 회귀 계수(Regression Coefficients)를 찾아내는 것.

• 단일회귀 VS 다중회귀 / 선형회귀 VS 비선형회귀



10/1/2019

# 1. SIMPLE & MULTIPLE LINEAR REGRESSION

9





How do we choose  $w_0$ ,  $w_1$  for  $\hat{y} = w_0 + w_1 x$ ?



#### 1. Normal Equation

$$Y_i = w_0 + w_1 X_i + \varepsilon_i$$

 $\frac{1}{n}\sum_{i=1}^n \varepsilon_i^2$  을 최소화 하는  $w_0$ ,  $w_1$  를 찾자!

$$\underset{w_0, w_1}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \{ Y_i - (w_0 + w_1 X_i) \}^2$$



 $\rightarrow$  미분값 = 0 일때 최소, 고차원 방정식 이용해  $w_0, w_1$  도출



- 2. 경사하강법(Gradient Descent)
- W 파라미터의 개수가 많은 경우, Normal Equation으로 해결이 어려움
- '점진적으로' 반복적인 계산을 통해 W 파라미터 값을 업데이트 하며 오류 값이 최소가 되는 W 파라미터를 구하는 방식.

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

$$(cost(W) = \frac{1}{2n} \sum_{i=1}^{n} (Wx^{(i)} - y^{(i)})^2)$$

Local minimum(O) Global minimum(X)



#### 2. 경사하강법(Gradient Descent)







#### 다중선형회귀

'독립변수가 하나가 아니라면?' '변수가 추가되면 더 좋은 모델을 만들 수 있지 않을까?'







#### 다중선형회귀

$$-Y = XW + \epsilon$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} W_0 \\ W_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$y_i = W_0 + W_1 x_i + \varepsilon_i$$

<단순선형회귀>

$$-Y = XW + \epsilon$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_{pn} \end{bmatrix} \begin{bmatrix} W_0 \\ \vdots \\ W_n \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$y_i = W_0 + W_1 x_1 + \dots + W_n x_n + \varepsilon_i$$

<다중선형회귀>



Same Form!

10/1/2019

# 2. REGRESSION UNDER REGULATION

IО



#### 과적합/과소적합 이해





#### 최적 모델을 위한 cost함수 구성요소





모델이 복잡해진다? → 모델의 Bias 감소/ 모델의 Variance 증가

모델이 단순해진다? → 모델의 Variance 감소/ 모델의 Bias 증가

## 릿지 회귀(Ridge Regression)

cost(W) = 
$$\frac{1}{n} \sum_{i=1}^{n} (Wx^{(i)} - y^{(i)})^2 + \alpha \sum_{i=1}^{n} w_i^2$$

→ (weight)^2 을 가능한 한 0에 가깝게 만든다.

$$\alpha \uparrow \rightarrow$$
 패널티  $\uparrow \rightarrow$  weight  $\downarrow$ 

$$\alpha \downarrow \rightarrow$$
 패널티  $\downarrow \rightarrow$  weight  $\uparrow$ 



#### 라쓰 회귀(Lasso Regression)

cost(W) = 
$$\frac{1}{n} \sum_{i=1}^{n} (Wx^{(i)} - y^{(i)})^2 + \alpha \sum_{i=1}^{n} |w_i|$$

→ |weight|을 가능한 한 0에 가깝게 만든다.

$$\alpha \uparrow \rightarrow$$
 패널티  $\uparrow \rightarrow$  weight  $\downarrow$   $\alpha \downarrow \rightarrow$  패널티  $\downarrow \rightarrow$  weight  $\uparrow$ 



10/1/2019

## 3. LOGISTIC REGRESSION

21



#### • 회귀

- 1. 단순회귀
- 2. 다중회귀
- 3. 릿지회귀
- 4. 라쏘회귀

Target | Quantitative

- 로지스틱회귀 Target이 Qualitative
  - 선형회귀 방식을 분류(classification) 에 적용한 알고리즘.
  - 이진 분류에 사용 ex) Spam E-mail detection: Spam or Ham
  - 분류 알고리즘들 중 굉장히 정확도가 높은 알고리즘으로 알려져 있음





- 결정 경계(Decision Boundary)
  - 두 클래스의 영역을 나누는 경계





Sigmoid Function
 (= Logistic Function)

특징: 무슨 일이 있어도 출력값이 0과 1 사이에 놓인다.

→ 회귀식을 Sigmoid Function에 대입하면, 출력 값이 반드시 0과 1 사이의 값이 나옴



#### 경사하강법(gradient descent) 적용을 위해 cost 함수 변환

• cost(W) = 
$$\frac{1}{n} \sum_{i=1}^{n} c(H(x), y)$$

• 
$$c(H(x), y) = \begin{cases} -\log(H(x)), & \text{if } y = 1\\ -\log(1 - H(x)), & \text{if } y = 0 \end{cases}$$



• 
$$c(H(x), y) = \begin{cases} -\log(H(x)), & \text{if } y = 1\\ -\log(1 - H(x)), & \text{if } y = 0 \end{cases}$$







• cost(W) = 
$$-\frac{1}{n}\sum_{i}^{n}y\log(H(x)) + (1-y)\log(1-H(x))$$







- 고전적인 Iris data
- 꽃받침, 꽃잎의 길이와 너비를 바탕으로 꽃잎의 종을 예측 (분류)





#### - 목적:

'꽃받침 길이를 기준으로 Sentosa/Not Sentosa를 분류하고 싶다.'

#### - 결과 해석:

꽃받침 길이가 2이면 Not Sentosa 꽃받침 길이가 4.5이면 Sentosa



#### Quest

• 'breast cancer' 데이터 셋을 사용

Radius 변수를 기준으로 breast cancer 양성/음성을 분류하는 로지스틱 회귀분석 모델을 만들고, 이를 시각화하고, Radius 길이가 20, 0.1일 때의 결과를 해석해주세요.

• 파일 불러오기:

from sklearn.datasets import load\_breast\_cancer

