Decentralized Bribery and Market Participation

Sergey V. Popov

Management School Queen's University Belfast

Gothenburg, August 27, 2013

- *Likhoimstvo* = taking bribes for doing bad stuff.
- Mzdoimstvo = taking bribes for doing stuff you're supposed to do for free.

- *Likhoimstvo* = taking bribes for doing bad stuff.
- Mzdoimstvo = taking bribes for doing stuff you're supposed to do for free.

Problems

■ First one — obvious,

- *Likhoimstvo* = taking bribes for doing bad stuff.
- Mzdoimstvo = taking bribes for doing stuff you're supposed to do for free.

Problems

■ First one — obvious, ex-post verifiable.

- *Likhoimstvo* = taking bribes for doing bad stuff.
- Mzdoimstvo = taking bribes for doing stuff you're supposed to do for free.

Problems

- First one obvious, ex-post verifiable.
- Second one —

- Likhoimstvo = taking bribes for doing bad stuff.
- Mzdoimstvo = taking bribes for doing stuff you're supposed to do for free.

Problems

- First one obvious, ex-post verifiable.
- Second one a *transfer*.

- Likhoimstvo = taking bribes for doing bad stuff.
- Mzdoimstvo = taking bribes for doing stuff you're supposed to do for free.

Problems

- First one obvious, ex-post verifiable.
- Second one a *transfer*.
- This paper: there are welfare implications for the second type of bribe.

Literature

Empirical Literature:

- Exposure to corruption ⇒ less investment, slower growth.
- Corrupt economies are heavily regulated.
- Putin is blamed for economic development, but not for corruption.

Theoretical Literature:

- Stealing from governmental coffers is bad for development.
- Rent-seeking is vacuous.
- Bribes can improve the allocation.

This Paper

Questions

- How does the "transfer bribe" affect the capital market?
- Can it be beneficial?
- Can it harm?

This Paper

Questions

- How does the "transfer bribe" affect the capital market?
- Can it be beneficial?
- Can it harm?

Answers

It can make the society worse off by scaring small businesses away.

This Paper

Questions

- How does the "transfer bribe" affect the capital market?
- Can it be beneficial?
- Can it harm?

Answers

- It can make the society worse off by scaring small businesses away.
- It might not be a good idea to decentralize bureaucracy.

Fundamentals

Agents

- Agents consume a single good.
- Agents have roles: *investor* or *inspector*.

Roles

investor gets a random project, need to invest K, after investment observes return R, needs to pass an inspection.

Fundamentals

Agents

- Agents consume a single good.
- Agents have roles: investor or inspector.

Roles

- investor gets a random project, need to invest K, after investment observes return R, needs to pass an inspection.
- inspector asks for a bribe, if not paid does not pass the project.

Investors

- Investor observes *K* **project size**.
- Expects to pay a **bribe** s.
- Investor chooses whether to start up a project:
 - After investment, **project return** *R* is observed.
 - If s > RK, investor can decide to not pay the bribe and walk away.
 - Expected return is $E[RK s^*]_+ K$.

Investors

- Investor observes *K* **project size**.
- Expects to pay a bribe s.
- Investor chooses whether to start up a project:
 - After investment, **project return** *R* is observed.
 - If s > RK, investor can decide to not pay the bribe and walk away.
 - Expected return is $E[RK s^*]_+ K$.
- Will start up the project if $E[R s^*/\kappa]_+ > 1$.

Investors

- Investor observes *K* **project size**.
- Expects to pay a **bribe** s.
- Investor chooses whether to start up a project:
 - After investment, project return R is observed.
 - If s > RK, investor can decide to not pay the bribe and walk away.
 - Expected return is $E[RK s^*]_+ K$.
- Will start up the project if $E[R s^*/\kappa]_+ > 1$.

Result

When $K > K^*(s^*)$, investor participates.

- Inspector know neither *K* nor *R* of the project.
- Inspector decides on the bribe size s, believing in K^* .
- The inspector's problem is:

$$\max_{s} sP(RK > s).$$

- Inspector know neither *K* nor *R* of the project.
- Inspector decides on the bribe size s, believing in K^* .
- The inspector's problem is:

$$\max_{s} sP(RK > s).$$

- Inspector know neither *K* nor *R* of the project.
- Inspector decides on the bribe size s, believing in K^* .
- The inspector's problem is:

$$\max_{s} sP(RK > s).$$

 \blacksquare When K is trivial

$$\max_{s} s \underbrace{P(R > \frac{s}{K})}_{1-F_{R}(s/K)}.$$

- Inspector know neither *K* nor *R* of the project.
- Inspector decides on the bribe size s, believing in K^* .
- The inspector's problem is:

$$\max_{s} sP(RK > s).$$

 \blacksquare When K is trivial

$$\max_{s} s \underbrace{P(R > \frac{s}{K})}_{1-F_{R}(s/K)}.$$

The solution is

$$s/\kappa = \frac{1 - F_R(s/\kappa)}{f_R(s/\kappa)}.$$

■ In general, the solution is

$$s^* = \frac{\int_0^{+\infty} (1 - F_R(s^*/\kappa)) f_K(K) dK}{\int_0^{+\infty} 1/\kappa f_R(s^*/\kappa) f_K(K) dK} = \frac{E_K \left[P(R > s^*/\kappa) \right]}{E_K \left[1/\kappa f_R(s^*/\kappa) \right]}.$$

Introduction

Inspectors

In general, the solution is

$$s^* = \frac{\int_0^{+\infty} (1 - F_R(s^*/\kappa)) f_K(K) dK}{\int_0^{+\infty} 1/\kappa f_R(s^*/\kappa) f_K(K) dK} = \frac{E_K \left[P(R > s^*/\kappa) \right]}{E_K \left[1/\kappa f_R(s^*/\kappa) \right]}.$$

 \blacksquare $R \sim Exp(\alpha)$, and two levels of investment size (K_H and K_L) produce

■ In general, the solution is

$$s^* = \frac{\int_0^{+\infty} (1 - F_R(s^*/\kappa)) f_K(K) dK}{\int_0^{+\infty} 1/\kappa f_R(s^*/\kappa) f_K(K) dK} = \frac{E_K \left[P(R > s^*/\kappa) \right]}{E_K \left[1/\kappa f_R(s^*/\kappa) \right]}.$$

■ $R \sim \textit{Exp}(\alpha)$, and two levels of investment size (K_H and K_L) produce

In general, the solution is

$$s^* = \frac{\int_0^{+\infty} (1 - F_R(s^*/\kappa)) f_K(K) dK}{\int_0^{+\infty} 1/\kappa f_R(s^*/\kappa) f_K(K) dK} = \frac{E_K \left[P(R > s^*/\kappa) \right]}{E_K \left[1/\kappa f_R(s^*/\kappa) \right]}.$$

■ $R \sim Exp(\alpha)$, and two levels of investment size (K_H and K_L) produce

■ In general, the solution is

$$s^* = \frac{\int_0^{+\infty} (1 - F_R(s^*/\kappa)) f_K(K) dK}{\int_0^{+\infty} 1/\kappa f_R(s^*/\kappa) f_K(K) dK} = \frac{E_K \left[P(R > s^*/\kappa) \right]}{E_K \left[1/\kappa f_R(s^*/\kappa) \right]}.$$

■ $R \sim Exp(\alpha)$, and two levels of investment size (K_H and K_L) produce

Equilibrium

- The equilibrium is (K^*, s^*) such that:
 - lacksquare all projects bigger than K^* are implemented;
 - the bribe size is s*;
 - both are optimal decisions subject to rational beliefs.

Equilibrium

- The equilibrium is (K^*, s^*) such that:
 - all projects bigger than *K** are implemented;
 - the bribe size is s*;
 - both are optimal decisions subject to rational beliefs.
- Equilibrium exists
 - no participation: no projects are implemented
 - partial participation: a subset of projects is implemented
 - full participation: all projects are implemented

Capital Market

- The expected return of a project of size K is $[R s/\kappa]_+ 1$.
- The total profit is $[RK s]_+ K$.
- The derivative of that with respect to K is

Average return Extra chance of no cancelling
$$\overbrace{ \left(\int_{\frac{\bar{s}}{K}}^{+\infty} \left(R - \frac{\bar{s}}{K} \right) dF_R - 1 \right)}^{\text{Extra chance of no cancelling}} + K \underbrace{ \left(\int_{\frac{\bar{s}}{K}}^{+\infty} \left(\frac{\bar{s}}{K^2} \right) dF_R \right) . }_{\text{Extra chance of no cancelling}}$$

Model

Capital Market

- The expected return of a project of size K is $[R s/\kappa]_+ 1$.
- The total profit is $[RK s]_+ K$.
- \blacksquare The derivative of that with respect to K is

Average return Extra chance of no cancelling
$$\overbrace{ \left(\int_{\frac{\bar{s}}{K}}^{+\infty} \left(R - \frac{\bar{s}}{K} \right) dF_R - 1 \right)}^{\text{Extra chance of no cancelling}} + K \underbrace{ \left(\int_{\frac{\bar{s}}{K}}^{+\infty} \left(\frac{\bar{s}}{K^2} \right) dF_R \right) . }_{\text{Extra chance of no cancelling}}$$

- Tobin's marginal Q is bigger than 1.
 - Data in a corrupt economy would suggest increasing the scale of investment...

Capital Market

- The expected return of a project of size K is $[R s/\kappa]_+ 1$.
- The total profit is $[RK s]_+ K$.

Model

The derivative of that with respect to K is

Average return Extra chance of no cancelling
$$\overbrace{ \left(\int_{\frac{\bar{s}}{K}}^{+\infty} \left(R - \frac{\bar{s}}{K} \right) dF_R - 1 \right)}^{\text{Extra chance of no cancelling}} + K \underbrace{ \left(\int_{\frac{\bar{s}}{K}}^{+\infty} \left(\frac{\bar{s}}{K^2} \right) dF_R \right) . }_{\text{Extra chance of no cancelling}}$$

- Tobin's marginal Q is bigger than 1.
 - Data in a corrupt economy would suggest increasing the scale of investment...
 - but increase in scale will only increase the bribe size.

Consider a situation where both restricted and abundance equilibria exist.

Consider a situation where both restricted and abundance equilibria exist.

Consider a situation where both restricted and abundance equilibria exist.

- What if there is a signal about the investment size?..
- Say, with probability q the signal is correct (H when investor is of type H and I if investor is of type I).

- What if there is a signal about the investment size?..
- Say, with probability q the signal is correct (H when investor is of type H and I if investor is of type I).
- Then inspectors will believe their signals if both types of firms start up...

Imperfect Observation

Imperfect Observation

Imperfect Observation

- Private information about returns
 - If investors have a signal about R before investment, almost the same story.
 - If inspectors have a signal about each project, need to be able to convince the investor that he needs to pay higher bribe.

- Private information about returns
 - If investors have a signal about R before investment, almost the same story.
 - If inspectors have a signal about each project, need to be able to convince the investor that he needs to pay higher bribe.
- Honest inspectors
 - Improve the participation constraint, might invite small businesses.
 - Will let go the "big fish"

- Private information about returns
 - If investors have a signal about R before investment, almost the same story.
 - If inspectors have a signal about each project, need to be able to convince the investor that he needs to pay higher bribe.
- Honest inspectors
 - Improve the participation constraint, might invite small businesses.
 - Will let go the "big fish"
- Complaining to superiors
 - Lowers the participation constraint.
 - Does not have to lower the bribe.
 - Total welfare should increase...

- Private information about returns
 - If investors have a signal about R before investment, almost the same story.
 - If inspectors have a signal about each project, need to be able to convince the investor that he needs to pay higher bribe.
- Honest inspectors
 - Improve the participation constraint, might invite small businesses.
 - Will let go the "big fish"
- Complaining to superiors
 - Lowers the participation constraint.
 - Does not have to lower the bribe.
 - Total welfare should increase...
- ...

- Transfer bribery is not welfare-neutral.
 - It might put the economy in a bad equilibrium, where not all projects start up.

- Transfer bribery is not welfare-neutral.
 - It might put the economy in a bad equilibrium, where not all projects start up.
- Decentralization creates an inefficiency: bribe-takers cannot coordinate to switch to a better equilibrium.

- Transfer bribery is not welfare-neutral.
- It might put the economy in a bad equilibrium, where not all projects start up.
- Decentralization creates an inefficiency: bribe-takers cannot coordinate to switch to a better equilibrium.
- Recovery rate higher ⇒ bribe can go down (does not have to!)

- Transfer bribery is not welfare-neutral.
 - It might put the economy in a bad equilibrium, where not all projects start up.
- Decentralization creates an inefficiency: bribe-takers cannot coordinate to switch to a better equilibrium.
- Recovery rate higher ⇒ bribe can go down (does not have to!)
- Not rent-seeking.

- Transfer bribery is not welfare-neutral.
 - It might put the economy in a bad equilibrium, where not all projects start up.
- Decentralization creates an inefficiency: bribe-takers cannot coordinate to switch to a better equilibrium.
- Recovery rate higher ⇒ bribe can go down (does not have to!)
- Not rent-seeking.
- No strategic complementarities.
 - No crowding on markets.
 - No market power.