Hannah M. Claus

Automated Optimisation of Collision-aware Contact Classification in Robotics

Introduction

- Robots have become an essential part of our everyday lives.
- Humanoid robots are designed to take over simple human tasks to collaborate with humans, or assist in extreme environments [1].
- To improve their autonomy, these robots have to be able to discriminate unintended collisions from intended contact.

Solution:

Collision-aware Contact Classifier

Related Work

- The state-of-the-art collision detection on humanoid robots suggests setting up specific constant thresholds.
- Once a measured torque signal from the robot surpasses the threshold, it can be classified as a collision [2].
- However, this approach is tedious and not prone to changes.
- Creating a state-of-the-art collision classifier using grayscale thresholds, only a maximum of 68.7% recognition accuracy is achieved.
- ➤ Hence, by implementing a convolutional neural network (CNN), that reads torques from the robot and applies Fourier Transform (FT), a new classifier is introduced.

Methodology

Optimisation Methods:

- Bayesian Optimisation
- Random Search
- Hyperband

Development of a framework for automation:

- Training & Testing
- Optimisation
- Instant Data Generation & Prediction

Author

Hannah M. Claus

2022

Bachelor's Thesis, AI & Robotics University of Bedfordshire, UK hannahmclaus@gmail.com

Supervisors:

Vitaly Schetinin, Ph.D., University of Bedfordshire

Daniel Leidner, Ph.D., German Aerospace Center (DLR)

Conclusion

- 1. By implementing a CNN and FT, the collision-aware contact classifier's recognition accuracy has been improved significantly.
- 2. Optimisation is important in order to achieve better results that lead to safer work environments.
- 3. The framework offers a complex infrastructure that allows future extensions of the classifier.

Future Work

Rollin' Justin (DLR)

- Add a new contact state:
 Contact + Collision
 - Increase the dataset for the training and testing procedures
 - Decrease the prediction time to let the robot react more quickly to collisions
 - Create collision-aware contact classifiers for each joint and each action of the robot to be more precise [3]

Analysis

- The recognition accuracy has been improved by +29.4%
- The 3 contact states:
 No Contact, Contact, Collision
- can be successfully classified using a CNN and spectrograms (images from the FT)
- The framework automates the
 - 5 most important processes
- Through the framework, the classifier can be used on any robot and any joint

Predictions

Results

The best average recognition accuracies achieved by the classifier

Manual Optimisation of the CNN (Base Accuracy)

Automated Optimisation of the collision-aware contact classifier:

Hyperband Optimisation

98.1%

Random Search Optimisation

References:

- [1] Djuric, A.M., Urbanic, R.J. and Rickli, J.L. (2016). A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems SAE International Journal of Materials and Manufacturing, [online] 9(2), pp.457-464.
- [2] S. Takakura, T. Murakami and K. Ohnishi, "An approach to collision detection and recovery motion in industrial robot," 15th Annual Conference of IEEE Industrial Electronics Society, 1989, pp. 421-426 vol.2, doi: 10.1109/IECON.1989.69669.
- [3] Ericson, C. (2004). Real-Time Collision Detection. [online]
 Google Books. CRC Press.