Metody probabilistyczne Rozwiązania zadań

2. Aksjomatyczna definicja prawdopodobieństwa

10.10.2017

Zadanie 1. Udowodnij, że jeśli $A, B \in \mathcal{F}$ to również $A \setminus B \in \mathcal{F}$.

Odpowiedź: Wykorzystamy tutaj fakt, że $A \setminus B = A \cap B'$ (wystarczy narysować diagram Venna, aby się o tym przekonać). Ponieważ $B \in \mathcal{F}$ to z własności 2 algebry zdarzeń mamy $B' \in \mathcal{F}$. Z wykładu wiemy, że iloczyn dwóch zdarzeń z \mathcal{F} również należy do \mathcal{F} . Ponieważ $A \in \mathcal{F}$, mamy więc $A \cap B' \in \mathcal{F}$, co kończy dowód.

Zadanie 2. Pokaż, że dla dowolnych A_1, \ldots, A_n mamy $P(A_1 \cup \ldots A_n) \leq P(A_1) + \ldots + P(A_n)$.

Odpowiedź: Wykorzystamy fakt z poprzedniego zadania mówiący, że dla dowolnych A i B zachodzi $P(A \cup B) \leq P(A) + P(B) - P(A \cap B)$. Ponieważ prawdopodobieństwo jest zawsze nieujemne, $P(A \cap B) \geq 0$, a tym samym $P(A \cup B) \leq P(A) + P(B)$.

Dowód jest przez indukcję dla $n=2,3,\ldots$ Przypadek bazowy dla n=2 zbiorów właśnie pokazaliśmy. Załóżmy teraz, że własność zachodzi dla n-1 i pokażemy, że zachodzi wtedy również dla n (krok indukcji). Weźmy zbiór A jako $A=A_1\cup\ldots\cup A_{n-1}$, a zbiór B jako A_n . Mamy:

$$P(A_1 \cup \ldots \cup A_{n-1} \cup A_n) = P(A \cup B) \le P(A) + P(B) = P(A_1 \cup \ldots A_{n-1}) + P(A_n). \tag{1}$$

Teraz wystarczy wykorzystać założenie indukcyjne:

$$P(A_1 \cup \dots A_{n-1}) < P(A_1) + \dots + P(A_{n-1}),$$

które po wstawieniu do prawej strony (1) daje:

$$P(A_1 \cup \ldots \cup A_{n-1} \cup A_n) \le P(A_1) + \ldots + P(A_n),$$

co kończy dowód.

Zadanie 3. Pokaż, że jeśli A_1, A_2, \dots jest zstępujący i $A = \bigcap_{n=1}^{\infty} A_n$ to:

$$P(A) = \lim_{n \to \infty} P(A_n)$$

Odpowiedź: Można to zadanie zrobić podobnie, jak to dla ciągu wstępującego. Pójdziemy tu jednak na skróty i wykorzystamy to, że udowodniliśmy już analogiczną własność dla ciągu wstępującego i pokażemy, że wynika z tego powyższa własność dla ciągu zstępującego.

Zdefiniujemy sobie $C_n = A'_n$ dla $n = 1, 2, \ldots$ Zauważmy, że jeśli $A_1 \supset A_2 \supset \ldots$ jest zstępujący, to wtedy $C_1 \subset C_2 \subset \ldots$ jest wstępujący (wystarczy narysować diagram Venna, aby się o tym przekonać). Zdefiniujemy sobie $C = C_1 \cup C_2 \cup \ldots$ Z twierdzenia o ciągach wstępujących:

$$P(C) = \lim_{n \to \infty} P(C_n).$$

Ale zauważmy, że z prawa De Morgana:

$$C' = (C_1 \cup C_2 \cup \ldots)' = (A'_1 \cup A'_2 \cup \ldots)' = A_1 \cap A_2 \cap \ldots = A.$$

Tym samym:

$$P(A) = P(C') = 1 - P(C) = 1 - \lim_{n \to \infty} P(C_n) = \lim_{n \to \infty} (1 - P(C_n)) = \lim_{n \to \infty} P(A_n),$$

co należało dowieść.

Zadanie 4. Pokaż, że prawdopodobieństwo na dyskretnej przestrzeni zdarzeń spełnia aksjomaty Kolmogorowa

Odpowiedź: Przypomnijmy, że $\Omega = \{\omega_1, \omega_2, \ldots\}$ jest zbiorem przeliczalnym, a rozważana rodzina zdarzeń \mathcal{F} jest rodziną wszystkich podzbiorów Ω , tzn. $\mathcal{F} = 2^{\Omega}$. Każdemu ω_i przypisujemy liczbę $p_i \geq 0$ taką, że $\sum_{i=1}^{\infty} p_i = 1$. Prawdopodobieństwo dowolnego zdarzenia $A \subseteq \Omega$ definiujemy jako $P(A) = \sum_{i: \omega_i \in A} p_i$. Sprawdzimy teraz wszystkie trzy aksjomaty Kołmogorowa:

- 1. Nieujemność $P(A) \geq 0$: ponieważ $p_i \geq 0$ dla każdego i, to również każda ich suma będzie nieujemna.
- 2. Normalizacja $P(\Omega) = 1$:

$$P(\Omega) = \sum_{i: \ \omega_i \in \Omega} p_i = \sum_{i=1}^{\infty} p_i = 1,$$

gdzie ostatnia równość wynika z warunku, jaki nałożyliśmy na sumę p_i .

3. Addytywność: mając ciąg A_1, A_2, \ldots zdarzeń rozłącznych, tj. takich, że $A_i \cap A_j = \emptyset$, musimy pokazać, że $P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j)$. Mamy:

$$P\Big(\bigcup_{j=1}^{\infty} A_j\Big) = \sum_{i: \ \omega_i \in \bigcup_{i=1}^{\infty} A_j} p_i \stackrel{(*)}{=} \sum_{i: \ \omega_i \in A_1} p_i + \sum_{i: \ \omega_i \in A_2} p_i + \ldots = \sum_{j=1}^{\infty} P(A_j),$$

gdzie w (*) wykorzystaliśmy fakt, że zbiory A_j są rozłączne, więc może sumować po każdym ze zbiorów z osobna.