Generalized greedy algorithms.

François-Xavier Dupé & Sandrine Anthoine

 ${\it LIF~\&~I2M} \\ {\it Aix-Marseille~Universit\'e-CNRS-Ecole~Centrale~Marseille,~Marseille} \\ {\it ANR~Greta}$

Séminaire Parisien des Mathématiques Appliquées à l'Imagerie, 05/01/2017

Sparsity is good,

Saturn (original)

Sparsity is good,

Saturn (original)

Saturn (coefficients)

Sparsity is good,

Saturn (original)

Saturn (2.6% of the coefficients)

Classically

Find the best k-sparse minimizer of y on the dictionary Φ ,

$$\min_{x \in \mathbb{R}^n} \|y - \Phi x\|_2^2 \quad \text{s.t.} \quad \|x\|_0 \leqslant k \tag{A}$$

Classically

Find the best k-sparse minimizer of y on the dictionary Φ ,

$$\min_{x \in \mathbb{R}^n} \|y - \Phi x\|_2^2 \quad \text{s.t. } \|x\|_0 \leqslant k \tag{A}$$

More generally

Find the best k-sparse minimizer,

$$\min_{x \in \mathcal{H}} f(x) \quad \text{s.t.} \ \|x\|_0 \leqslant k \tag{P} \label{eq:P}$$

Classically

Find the best k-sparse minimizer of y on the dictionary Φ ,

$$\min_{x \in \mathbb{R}^n} \|y - \Phi x\|_2^2 \quad \text{s.t. } \|x\|_0 \leqslant k \tag{A}$$

More generally

Find the *best* k-sparse minimizer,

$$\min_{x \in \mathcal{H}} f(x) \quad \text{s.t. } \|x\|_0 \leqslant k \tag{P}$$

Today

Find a k-sparse zero of an operator $\mathbf{T}: \mathcal{H} \to \mathcal{H}$ (e.g. $\mathbf{T} = \nabla f$),

Find
$$x \in \mathcal{H}$$
 s.t
$$\begin{cases} ||x||_0 \leqslant k \\ 0 = \mathbf{T}(x) \end{cases}$$
 (Q)

 \mathcal{H} : Hilbert space.

How to solve these problems ?

How to solve these problems?

Linear setting (A), at least four families of methods,

- convex relaxation;
- MP, OMP;
- CoSaMP, SP;
- IHT, HTP.

How to solve these problems?

Linear setting (A), at least four families of methods,

- convex relaxation;
- MP, OMP;
- CoSaMP, SP;
- IHT, HTP.

How to generalize? Convergence?

Generalization for (P),

- OMP [Zhang 2011],
- GraSP [Bahmani et. al. 2013],
- IHT, HTP [Yuan et. al. 2013];

Generalization for (P),

- OMP [Zhang 2011],
- GraSP [Bahmani et. al. 2013],
- IHT, HTP [Yuan et. al. 2013];

Today's talk:

```
Goal solve (P) or/and (Q),
```

Approach greedy

- theoretically grounded,
- inspired by CoSaMP [Needell, Tropp, 2009] and GraSP [Bahmani et. al., 2013].

Generalized greedy algorithms.

Today's topic

- 1 CoSaMP and its generalizations
- 2 The Restricted Diagonal Property
- 3 Three other generalizations
- 4 Poisson Noise Removal

Today's topic

- CoSaMP and its generalizations
 - CoSaMP and its guarantees
 - GraSP and its guarantees
 - GCoSaMP and its guarantees
- 2 The Restricted Diagonal Property
- Three other generalizations
 - Generalized Subspace Pursuit
 - Generalized Hard Thresholding Pursuit
 - Generalized Iterative Hard Thresholding
- 4 Poisson Noise Removal
 - Moreau-Yosida regularization
 - Experiments

Optimization problem

Let

- $T: \mathcal{H} \to \mathcal{H}$ be an operator
- k the expected sparsity.

We wish to solve

Find
$$x \in \mathcal{H}$$
 such that $\mathbf{T}(x) = 0$ and $||x||_0 \le k$. (Q)

Optimization problem

Let

- $T: \mathcal{H} \to \mathcal{H}$ be an operator
- \bullet k the expected sparsity.

We wish to solve

Find
$$x \in \mathcal{H}$$
 such that $\mathbf{T}(x) = 0$ and $||x||_0 \le k$. (Q)

Special case: $\mathbf{T} = \nabla f$

- \bullet (Q): find a critical point of f that is k-sparse.
 - \bullet Related problem: find a minimizer of f among the k-sparse vectors.
 - Related algorithms:
 - $\mathbf{T}(x) = \mathbf{\nabla}_x(||\Phi x y||_2^2)$: CoSaMP, SP...
 - ▶ $\mathbf{T}(x) = \nabla f(x)$, f convex: GraSP, GOMP...

CoSaMP [Needell, Tropp, 2009]

Goal:
$$\min_{x} ||\Phi x - y||_{2}^{2}$$
 s. t. $||x||_{0} \le k$

Algorithm

```
Require: y, \Phi, k.
```

Initialization:
$$x^0 = 0$$
.

For
$$t = 0$$
 to $N - 1$,

$$g = \Phi^*(\Phi x^t - y) ,$$

$$\mathcal{G} = \operatorname{supp}(g_{|2k}) ,$$

$$S = G \cup \operatorname{supp}(x^t)$$
,

$$z = \Phi_{\mathcal{S}}^{\dagger} y$$
,

$$\mathcal{T} = \operatorname{supp}(z_{|k})$$
.

$$x^{t+1} = z_{|k}$$
Output: x^N

$$(set \ support)$$

(approximately solve on the support)

CoSaMP [Needell, Tropp, 2009]

Goal:
$$\min_{x} ||\Phi x - y||_{2}^{2}$$
 s. t. $||x||_{0} \le k$

Algorithm

```
Require: y, \Phi, k.
```

Initialization: $x^0 = 0$.

For
$$t = 0$$
 to $N - 1$,

$$g = \Phi^*(\Phi x^t - y) ,$$

$$\mathcal{G} = \operatorname{supp}(g_{|2k})$$
,

$$\mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t) ,$$

$$z = \underset{\text{argmin}}{\operatorname{argmin}} ||\Phi x - y||_{2}^{2},$$

 $\{x/\operatorname{supp}(x)\subseteq\mathcal{S}\}$

(LIF, I2M)

$$-y||_2^2$$
, (solve on extended support)

$$\mathcal{T} = \operatorname{supp}(z_{|k})$$
.

$$(set\ support)$$

$$x^{t+1} = z_{|k|}.$$

$$(approximately\ solve\ on\ the\ support)$$

Output: x^N .

CoSaMP [Needell, Tropp, 2009]

Goal:
$$\min_{x} ||\Phi x - y||_{2}^{2}$$
 s. t. $||x||_{0} \le k$

Algorithm

```
Require: y, \Phi, k.
```

Initialization: $x^0 = 0$.

For
$$t = 0$$
 to $N - 1$,

$$\mathcal{G} = \operatorname{supp}([\Phi^*(\Phi x^t - y)]_{|2k}) ,$$

$$\mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t) ,$$

$$z = \underset{\{x/\operatorname{supp}(x) \subset \mathcal{S}\}}{\operatorname{argmin}} ||\Phi x - y||_2^2 ,$$

$$\mathcal{T} = \operatorname{supp}(z_{|k})$$
.

$$x^{t+1} = z_{|k}$$
. Output: x^N .

(select new directions)

$$(solve\ on\ extended\ support)$$

$$(set\ support)$$

CoSaMP guarantees

Goal:
$$\min_{x} ||\Phi x - y||_{2}^{2}$$
 s. t. $||x||_{0} \le k$

Restricted Isometry Property

 Φ is has the Restricted Isometry Property with constant δ_k if and only if

$$\forall x \text{ s.t. } \operatorname{card}(\operatorname{supp}(x)) \le k, \qquad (1 - \delta_k) \|x\| \le \|\Phi x\| \le (1 + \delta_k) \|x\|$$

CoSaMP guarantees

Goal:
$$\min_{x} ||\Phi x - y||_{2}^{2}$$
 s. t. $||x||_{0} \le k$

Restricted Isometry Property

 Φ is has the Restricted Isometry Property with constant δ_k if and only if

$$\forall x \text{ s.t. } \operatorname{card}(\operatorname{supp}(x)) \le k, \qquad (1 - \delta_k) \|x\| \le \|\Phi x\| \le (1 + \delta_k) \|x\|$$

Consider $y = \Phi u + e$

Theorem (CoSaMP error bound)

If Φ is has the RIP with constant $\delta_{4k} \leq 0.1$, then at iteration t, x^t verifies

$$||x^t - u|| \le \frac{1}{2^t} ||u|| + 20\nu$$
,

with ν the incompressible error:

$$||u-u_{|k}||_2 + \frac{1}{\sqrt{k}} ||u-u_{|k}||_1 + ||e||_2$$
.

Gradient Support Pursuit [Bahmani et. al., 2013]

Goal:
$$\min_{x} f(x)$$
 s. t. $||x||_{0} \leq k$

CoSaMP

```
Require: f, k.
Initialization: x^0 = 0
For t = 0 to N - 1,
 \mathcal{G} = \operatorname{supp}([\Phi^*(\Phi x^t - y)]_{|2k}) ,
                                                                        (select new directions)
 \mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t),
                                                                         (set extended support)
 z = \operatorname{argmin} ||\Phi x - y||_2^2,
                                                                 (solve on extended support)
       \{x/\operatorname{supp}(x)\subseteq\mathcal{S}\}
 \mathcal{T} = \operatorname{supp}(z_{|k}).
                                                                                      (set support)
 x^{t+1} = z_{|k|}.
                                                    (approximately solve on the support)
Output: x^N
```

Gradient Support Pursuit [Bahmani et. al., 2013]

Goal:
$$\min_{x} f(x)$$
 s. t. $||x||_{0} \leqslant k$

Gradient Support Pursuit (GraSP)

```
Require: f, k.
Initialization: x^0 = 0.
For t = 0 to N - 1,
 \mathcal{G} = \operatorname{supp}([\nabla f(x)]_{|2k}),
                                                                        (select new directions)
 \mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t),
                                                                        (set extended support)
 z \in \operatorname{argmin} f(x),
                                                                (solve on extended support)
       \{x/\operatorname{supp}(x)\subseteq\mathcal{S}\}
 \mathcal{T} = \operatorname{supp}(z_{|k}).
                                                                                     (set support)
 x^{t+1} = z_{|k|}.
                                                    (approximately solve on the support)
Output: x^N.
```

GraSP guarantees

Goal:
$$\min_{x} f(x)$$
 s. t. $||x||_{0} \leqslant k$

Stable Restricted Hessian

f has a Stable Restricted Hessian with constant μ_k if and only if

$$\frac{A_k(x)}{B_k(x)} \le \mu_k, \quad \forall x \text{ s.t. } \operatorname{card}(\operatorname{supp}(x)) \le k,$$

where

$$A_k(x) = \sup \left\{ \frac{\langle y, H_f(x)y \rangle}{\|y\|_2^2} \mid \operatorname{card}(\operatorname{supp}(x) \cup \operatorname{supp}(y)) \le k \right\} ,$$

$$B_k(x) = \inf \left\{ \frac{\langle y, H_f(x)y \rangle}{\|y\|_2^2} \mid \operatorname{card}(\operatorname{supp}(x) \cup \operatorname{supp}(y)) \leq k \right\}.$$

GraSP guarantees

Goal:
$$\min_{x} f(x)$$
 s. t. $||x||_{0} \leq k$

Theorem (GraSP error bound)

f has a Stable Restricted Hessian with constant $\mu_{4k} \leqslant \frac{1+\sqrt{3}}{2}$ and there exists $\epsilon > 0$ such that $B_{4k}(u) > \epsilon \ \forall u$, then at iteration t, x^t verifies

$$\left\| \boldsymbol{x}^t - \boldsymbol{u}^\star \right\| \leqslant \frac{1}{2^t} \left\| \boldsymbol{u}^\star \right\| + \frac{C}{\epsilon} \left\| \boldsymbol{\nabla} f(\boldsymbol{u}^\star)_{|3k} \right\| .$$

GraSP guarantees

Goal:
$$\min_{x} f(x)$$
 s. t. $||x||_{0} \leqslant k$

Theorem (GraSP error bound)

f has a Stable Restricted Hessian with constant $\mu_{4k} \leqslant \frac{1+\sqrt{3}}{2}$ and there exists $\epsilon > 0$ such that $B_{4k}(u) > \epsilon \ \forall u$, then at iteration t, x^t verifies

$$\left\|\boldsymbol{x}^t - \boldsymbol{u}^\star\right\| \leqslant \frac{1}{2^t} \left\|\boldsymbol{u}^\star\right\| + \frac{C}{\epsilon} \left\|\boldsymbol{\nabla} f(\boldsymbol{u}^\star)_{|3k}\right\| \ .$$

- \bullet Error bound for f only once "differentiable".
- Notion of convexity restricted to k-sparse vectors.

Generalized CoSaMP

Goal: Find
$$x \in \mathcal{H}$$
 s. t. $\mathbf{T}(x) = 0$ and $||x||_0 \le k$

Gradient Support Pursuit (GraSP)

```
Require: T, k.
Initialization: x^0 = 0
For t = 0 to N - 1.
 \mathcal{G} = \operatorname{supp}([\nabla f(x)]_{|2k}),
                                                                        (select new directions)
 \mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t).
                                                                        (set extended support)
 z \in \operatorname{argmin} f(x),
                                                                (solve on extended support)
       \{x/\operatorname{supp}(x)\subseteq\mathcal{S}\}
 \mathcal{T} = \operatorname{supp}(z_{|k}).
                                                                                     (set support)
 x^{t+1} = z_{|k|}.
                                                   (approximately solve on the support)
Output: x^N.
```

Generalized CoSaMP

Goal: Find
$$x \in \mathcal{H}$$
 s. t. $\mathbf{T}(x) = 0$ and $||x||_0 \le k$

GCoSaMP

Require: T, k.

Initialization: $x^0 = 0$

For
$$t = 0$$
 to $N - 1$,

$$\mathcal{G} = \operatorname{supp}([\mathbf{T}(x)]_{|2k})$$
,

$$\mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t) ,$$

$$\mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^{\circ}) ,$$

$$z$$
 s. t.
$$\begin{cases} \sup(z) \subseteq \mathcal{S} \\ \mathbf{T}(z)|_{\mathcal{S}} = 0. \end{cases}$$

$$\mathcal{T} = \operatorname{supp}(z_{|k})$$
.

$$x^{t+1} = z_{|k|}$$

$$x^{t+1} = z_{|k}$$
 . (approximately s

Output: x^N .

(select new directions)

(set extended support)

(solve on extended support)

(set support)

Uniform Restricted Diagonal Property

$$\mathcal{D}_1 = \left\{ \mathbf{D} : \begin{array}{ccc} \mathcal{H} & \to & \mathcal{H}, \\ \mathbf{D} : & x & \mapsto & \sum_i d_i x_i e_i \end{array} \right. \text{ s.t. } \forall x \|\mathbf{D}x\| \ge \|x\| \right\}.$$

Definition (Uniform Restricted Diagonal Property)

 ${f T}$ is said to have the Uniform Restricted Diagonal Property (URDP) of order k if there exists $\alpha_k > 0$ and a diagonal operator \mathbf{D}_k in \mathcal{D}_1 such that $\forall (x,y) \in \mathcal{H}^2$,

$$\operatorname{card}(\operatorname{supp}(x) \cup \operatorname{supp}(y)) \leqslant k \Rightarrow$$

$$\|\mathbf{T}(x) - \mathbf{T}(y) - \mathbf{D}_k(x - y)\| \leqslant \alpha_k \|x - y\|.$$

Uniform Restricted Diagonal Property

$$\mathcal{D}_1 = \left\{ \mathbf{D} : \begin{array}{ccc} \mathcal{H} & \to & \mathcal{H}, \\ \mathbf{D} : & x & \mapsto & \sum_i d_i x_i e_i & \text{s.t. } \forall x \, \|\mathbf{D}x\| \ge \|x\| \end{array} \right\}.$$

Definition (Restricted Diagonal Property)

T is said to have the Restricted Diagonal Property (RDP) of order k if there exists $\alpha_k > 0$ such that for all subsets \mathcal{S} of \mathbb{N} of cardinal at most k, there exists a diagonal operator $\mathbf{D}_{\mathcal{S}}$ in \mathcal{D}_1 such that $\forall (x,y) \in \mathcal{H}^2$,

$$\left. \begin{array}{l} \operatorname{supp}(x) \subseteq \mathcal{S} \\ \operatorname{supp}(y) \subseteq \mathcal{S} \end{array} \right\} \Rightarrow$$

$$\|\mathbf{T}(x) - \mathbf{T}(y) - \mathbf{D}_{\mathcal{S}}(x - y)\| \leqslant \alpha_k \|x - y\|.$$

Generalized CoSaMP

Goal: Find
$$x \in \mathcal{H}$$
 s. t. $\mathbf{T}(x) = 0$ and $||x||_0 \le k$

Theorem (Generalized CoSaMP error bound)

Denote by x^* any k-sparse vector and $\alpha^C = \frac{2}{\sqrt{3}} - 1$. If there exists $\rho > 0$ such that $\rho \mathbf{T}$ has the Restricted Diagonal Property of order 4k with $\alpha_{4k} \leq \alpha^C$ then at iteration t, x^t verifies

$$||x^t - x^*|| \le \frac{1}{2^t} ||x^*|| + 12\rho ||\mathbf{T}(x^*)|_{3k}||$$
 (1)

Today's topic

- CoSaMP and its generalizations
 - CoSaMP and its guarantees
 - GraSP and its guarantees
 - GCoSaMP and its guarantees
- 2 The Restricted Diagonal Property
- Three other generalizations
 - Generalized Subspace Pursuit
 - Generalized Hard Thresholding Pursuit
 - Generalized Iterative Hard Thresholding
- 4 Poisson Noise Removal
 - Moreau-Yosida regularization
 - Experiments

The Restricted Diagonal Property and RIP

Definition (Restricted Diagonal Property)

T has RDP of order $k : \exists \alpha_k > 0, \forall S \subseteq \mathbb{N}, with |S| \leq k, \exists \mathbf{D}_S \in \mathcal{D}_1 \text{ such that } \operatorname{supp}(x) \subseteq S \& \operatorname{supp}(y) \subseteq S \Rightarrow$

$$\|\mathbf{T}(x) - \mathbf{T}(y) - \mathbf{D}_{\mathcal{S}}(x - y)\| \leqslant \alpha_k \|x - y\|.$$

Assume that **T** has RDP of order 2k, then if $||x||_0 \le k$ and $||y||_0 \le k$:

• $\|\mathbf{T}(x) - \mathbf{T}(y)\| \ge (1 - \alpha_{2k}) \|x - y\|$ (injectivity)

The Restricted Diagonal Property and RIP

Definition (Restricted Diagonal Property)

T has RDP of order $k: \exists \alpha_k > 0, \forall S \subseteq \mathbb{N}, with |S| \leq k, \exists \mathbf{D}_S \in \mathcal{D}_1 \text{ such}$ $that \operatorname{supp}(x) \subseteq \mathcal{S} \& \operatorname{supp}(y) \subseteq \mathcal{S} \Rightarrow$

$$\|\mathbf{T}(x) - \mathbf{T}(y) - \mathbf{D}_{\mathcal{S}}(x - y)\| \leqslant \alpha_k \|x - y\|.$$

Assume that **T** has RDP of order 2k, then if $||x||_0 \le k$ and $||y||_0 \le k$:

- $\|\mathbf{T}(x) \mathbf{T}(y)\| \ge (1 \alpha_{2k}) \|x y\|$ (injectivity)
- $(1 \alpha_{2k}) \|x y\| \le \|\mathbf{T}(x) \mathbf{T}(y)\| \le (D + \alpha_{2k}) \|x y\|$ $(D = |||\mathbf{D}_{2k}||| \text{ or sup }|||\mathbf{D}_{\mathcal{S}}||| \text{ if exists}).$

The Restricted Diagonal Property and RIP

Definition (Restricted Diagonal Property)

T has RDP of order $k : \exists \alpha_k > 0, \forall S \subseteq \mathbb{N}, with |S| \leq k, \exists \mathbf{D}_S \in \mathcal{D}_1 \text{ such that } \operatorname{supp}(x) \subseteq S \& \operatorname{supp}(y) \subseteq S \Rightarrow$

$$\|\mathbf{T}(x) - \mathbf{T}(y) - \mathbf{D}_{\mathcal{S}}(x - y)\| \leqslant \alpha_k \|x - y\|.$$

Assume that **T** has RDP of order 2k, then if $||x||_0 \le k$ and $||y||_0 \le k$:

- $\|\mathbf{T}(x) \mathbf{T}(y)\| \ge (1 \alpha_{2k}) \|x y\|$ (injectivity)
- $(1 \alpha_{2k}) \|x y\| \le \|\mathbf{T}(x) \mathbf{T}(y)\| \le (D + \alpha_{2k}) \|x y\|$ $(D = |||\mathbf{D}_{2k}||| \text{ or sup } |||\mathbf{D}_{\mathcal{S}}||| \text{ if exists}).$
- $\mathbf{T}(x) = \Phi^*(\Phi x z) \Leftrightarrow \Phi \text{ is RIP.}$

Uniform Restricted Diagonal Property: characterization

Theorem

$$\beta \mathbf{T}$$
 is URDP of order k for \mathbf{D} , with $\alpha_k < 1$ and $\beta > 0 \Leftrightarrow \exists (m, L) \text{ such that } 0 < m \text{ and } 0 \le |||D|||^2 - \frac{m^2}{L^2} < 1$ and

$$|\operatorname{supp}(x) \cup \operatorname{supp}(y)| \le k \Rightarrow \begin{cases} \|\mathbf{T}(x) - \mathbf{T}(y)\| \le L \|x - y\| \\ \langle \mathbf{T}(x) - \mathbf{T}(y), D(x - y) \rangle \ge m \|x - y\|^2 \end{cases}$$

Uniform Restricted Diagonal Property: characterization

Theorem

$$\beta \mathbf{T}$$
 is URDP of order k for \mathbf{D} , with $\alpha_k < 1$ and $\beta > 0$ \iff $\exists (m, L) \text{ such that } 0 < m \text{ and } 0 \le |||D|||^2 - \frac{m^2}{L^2} < 1 \text{ and}$

$$|\operatorname{supp}(x) \cup \operatorname{supp}(y)| \le k \Rightarrow \begin{cases} \|\mathbf{T}(x) - \mathbf{T}(y)\| \le L \|x - y\| \\ \langle \mathbf{T}(x) - \mathbf{T}(y), D(x - y) \rangle \ge m \|x - y\|^2 \end{cases}$$

- ullet L-Lipschitz property on sparse elements.
- $\mathbf{D} = \mathbf{I}$: "monotone operator".

Uniform Restricted Diagonal Property: characterization

Theorem

$$\beta \nabla f$$
 is URDP of order k for \mathbf{D} , with $\alpha_k < 1$ and $\beta > 0$ \Leftrightarrow $\exists (m, L) \text{ such that } 0 < m \text{ and } 0 \le |||D|||^2 - \frac{m^2}{L^2} < 1 \text{ and}$

$$|\operatorname{supp}(x) \cup \operatorname{supp}(y)| \le k \Rightarrow \begin{cases} \|\nabla f(x) - \nabla f(y)\| \le L \|x - y\| \\ \langle \nabla f(x) - \nabla f(y), D(x - y) \rangle \ge m \|x - y\|^2. \end{cases}$$

- L-Lipschitz property on sparse elements.
- $\mathbf{D} = \mathbf{I}$: "monotone operator".

If
$$\mathbf{T} = \mathbf{\nabla} f$$

- L-Lipschitz property: Restricted Strong Smoothness.
- if $\mathbf{D} = \mathbf{I}$: Restricted Strong Convexity \hookrightarrow recovers the conditions of [Bahmani et. al., 2013].

Today's topic

- CoSaMP and its generalizations
 - CoSaMP and its guarantees
 - GraSP and its guarantees
 - GCoSaMP and its guarantees
- 2 The Restricted Diagonal Property
- 3 Three other generalizations
 - Generalized Subspace Pursuit
 - Generalized Hard Thresholding Pursuit
 - Generalized Iterative Hard Thresholding
- 4 Poisson Noise Removal
 - Moreau-Yosida regularization
 - Experiments

Generalized Subspace Pursuit

GCoSaMP

Require: T, k.

Initialization: $x^0 = 0$.

For
$$t = 0$$
 to $N - 1$,

$$\mathcal{G} = \operatorname{supp}([\mathbf{T}(x)]_{|2k})$$
,

$$\mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t) ,$$

$$z ext{ s. t. } \begin{cases} ext{supp}(z) \subseteq \mathcal{S} \\ \mathbf{T}(z)|_{\mathcal{S}} = 0. \end{cases}$$

$$\mathcal{T} = \operatorname{supp}(z_{|k})$$
.

$$x^{t+1} = z_{|k} .$$

Output: x^N .

GSP

Require: T, k.

Initialization: $x^0 = 0$.

For
$$t = 0$$
 to $N - 1$,

$$\mathcal{G} = \operatorname{supp}([\mathbf{T}(x)]_{|\mathbf{k}}) ,$$

$$\mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t) ,$$

$$z$$
 s. t.
$$\begin{cases} \operatorname{supp}(z) \subseteq \mathcal{S} \\ \mathbf{T}(z)_{|\mathcal{S}} = 0. \end{cases}$$

$$\mathcal{T} = \sup_{z \in \mathcal{T}} (z)_{|\mathcal{S}} = 0.$$
 $\mathcal{T} = \sup_{z \in \mathcal{T}} (z)_{|\mathcal{S}} = 0.$

$$r = \operatorname{supp}(z_{|k})$$
.

$$x^{t+1}$$
 s. t.
$$\begin{cases} \operatorname{supp}(x^{t+1}) \subseteq \mathcal{T} \\ \mathbf{T}(x^{t+1})|_{\mathcal{S}} = 0. \end{cases}$$

Output: x^N .

Generalized Subspace Pursuit

Theorem (Generalized CoSaMP error bound)

If $\rho \mathbf{T}$ has the Restricted Diagonal Property of order 4k with $\alpha_{4k} \leqslant \alpha^C = \frac{2}{\sqrt{2}} - 1$ then at iteration t of GCoSaMP, x^t verifies

$$\left\|x^t - x^\star\right\| \leqslant \frac{1}{2^t} \left\|x^\star\right\| + 12\rho \left\|\mathbf{T}(x^\star)_{|3k}\right\| \ .$$

Theorem (Generalized Subspace Pursuit error bound)

If $\rho \mathbf{T}$ has the Restricted Diagonal Property of order 3k with $\alpha_{3k} \leqslant \alpha^S$ then at iteration t of GSP, x^t verifies

$$||x^t - x^\star|| \leqslant \frac{1}{2^t} ||x^\star|| + 12\rho ||\mathbf{T}(x^\star)|_{2k}||.$$

 x^* is k-sparse. α^S is the real root of $x^3 + x^2 + 7x - 1$.

Generalized Hard Thresholding Pursuit

GCoSaMP

Require: T, k.

Initialization: $x^0 = 0$.

For
$$t = 0$$
 to $N - 1$,

$$\mathcal{G} = \operatorname{supp}([\mathbf{T}(x)]_{|2k})$$
,

$$\mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t) ,$$

$$z \text{ s. t. } \left\{ \begin{array}{l} \operatorname{supp}(z) \subseteq \mathcal{S} \\ \mathbf{T}(z)|_{\mathcal{S}} = 0. \end{array} \right.,$$

$$\mathcal{T} = \operatorname{supp}(z_{|k})$$
.

$$x^{t+1} = z_{|k} .$$

Output: x^N .

GHTP

Require: T, k, η .

Initialization: $x^0 = 0$.

For
$$t = 0$$
 to $N - 1$,

$$\mathcal{G} = \operatorname{supp}([\mathbf{T}(x)]_{|\mathbf{k}})$$
,

$$\mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t) ,$$

$$z = \left[(\mathbf{I} - \eta \mathbf{T})(x^t) \right]_{|\mathcal{S}|},$$

$$\mathcal{T} = \operatorname{supp}(z_{|k})$$
.

$$x^{t+1}$$
 s. t.
$$\begin{cases} \operatorname{supp}(x^{t+1}) \subseteq \mathcal{T} \\ \mathbf{T}(x^{t+1})|_{\mathcal{S}} = 0. \end{cases}$$

Output: x^N .

Generalized Hard Thresholding Pursuit

Theorem (Generalized CoSaMP error bound)

If $\rho \mathbf{T}$ has the Restricted Diagonal Property of order 4k with $\alpha_{4k} \leqslant \alpha^C = \frac{2}{\sqrt{3}} - 1$ then at iteration t of GCoSaMP, x^t verifies

$$\left\|x^t - x^\star\right\| \leqslant \frac{1}{2^t} \left\|x^\star\right\| + 12\rho \left\|\mathbf{T}(x^\star)_{|3k}\right\| \ .$$

Theorem (Generalized HTP error bound)

If T has the Uniform Restricted Diagonal Property of order 2k with $\mathbf{D}_{2k} = \mathbf{I}, \ \alpha_{2k} \leqslant \alpha^H \ and \ \frac{3}{4} < \eta < \frac{5}{4}, \ then \ at \ iteration \ t \ of \ GHTP, \ x^t$ verifies

$$||x^t - x^*|| \le \frac{1}{2^t} ||x^*|| + 2 \frac{(1+2\eta)(1-\alpha_{2k})+4}{(1-\alpha_{2k})^2} ||\mathbf{T}(x^*)|_{2k}||$$
 (2)

 x^* is k-sparse. $\alpha^H = 7 - 2\sqrt{11}$.

Generalized Iterative Hard Thresholding

GCoSaMP

Require: T, k.

Initialization: $x^0 = 0$.

For
$$t = 0$$
 to $N - 1$,

$$\mathcal{G} = \operatorname{supp}([\mathbf{T}(x)]_{|2k})$$
,

$$\mathcal{S} = \mathcal{G} \cup \operatorname{supp}(x^t) ,$$

$$z$$
 s. t.
$$\begin{cases} \sup(z) \subseteq \mathcal{S} \\ \mathbf{T}(z)|_{\mathcal{S}} = 0. \end{cases}$$

$$\mathcal{T} = \operatorname{supp}(z_{|k})$$
.

$$x^{t+1} = z_{|k} .$$

Output: x^N .

GIHT

Require: $\mathbf{T}, k, \frac{\boldsymbol{\eta}}{\boldsymbol{\eta}}$.

Initialization: $x^0 = 0$.

For t = 0 to N - 1,

$$z = (\mathbf{I} - \eta \mathbf{T})(x^t) ,$$

$$\mathcal{T} = \operatorname{supp}(z_{|k})$$
.

$$x^{t+1} = z_{|k|}.$$

Output: x^N

Generalized Iterative Hard Thresholding

Theorem (Generalized CoSaMP error bound)

If $\rho \mathbf{T}$ has the Restricted Diagonal Property of order 4k with $\alpha_{4k} \leqslant \alpha^C = \frac{2}{\sqrt{3}} - 1$ then at iteration t of GCoSaMP, x^t verifies

$$||x^t - x^*|| \le \frac{1}{2^t} ||x^*|| + 12\rho ||\mathbf{T}(x^*)_{|3k}||$$
.

Theorem (Generalized IHT error bound)

If **T** has the Uniform Restricted Diagonal Property of order 2k with $\mathbf{D}_{2k} = \mathbf{I}$, $\frac{3}{4} < \eta < \frac{5}{4}$ and $\alpha_{2k} \leqslant \alpha^{\eta}$ then at iteration t of GIHT, x^t verifies

$$||x^t - x^*|| \le \frac{1}{2^t} ||x^*|| + 4\eta ||\mathbf{T}(x^*)|_{|3k}||$$
.

$$x^*$$
 is k-sparse. $\alpha^{\eta} = \frac{1-4|\eta-1|}{4(1+|\eta-1|)}$.

About these error bounds

For all four algorithms

• Guaranteed convergence to unique solution if it exists, at an exponential rate.

Generalized greedy algorithms.

• Incompressible error of the form $||T(x)|_{\cdot k}||$.

27 / 38

About these error bounds

For all four algorithms

- Guaranteed convergence to unique solution if it exists, at an exponential rate.
- Incompressible error of the form $||T(x)|_{k}||$.

For GCoSaMP and GSP

- Invariance to scaling of the algorithm, no parameters to set.
- Guarantee in the RDP case (no "monotonicity" of **T** or "convexity" of f required).

Generalized greedy algorithms.

About these error bounds

For all four algorithms

- Guaranteed convergence to unique solution if it exists, at an exponential rate.
- Incompressible error of the form $||T(x)|_{|\cdot k}||$.

For GCoSaMP and GSP

- Invariance to scaling of the algorithm, no parameters to set.
- Guarantee in the RDP case (no "monotonicity" of **T** or "convexity" of f required).

For GHTP and GIHT

- Requires careful setting of the step η w.r.t to \mathbf{T} .
- Guarantee only in the URDP case with $\mathbf{D} = \mathbf{I}$ ("monotonicity" of \mathbf{T} or "convexity" of f required).

Today's topic

- CoSaMP and its generalizations
 - CoSaMP and its guarantees
 - GraSP and its guarantees
 - GCoSaMP and its guarantees
- 2 The Restricted Diagonal Property
- 3 Three other generalizations
 - Generalized Subspace Pursuit
 - Generalized Hard Thresholding Pursuit
 - Generalized Iterative Hard Thresholding
- Poisson Noise Removal
 - Moreau-Yosida regularization
 - Experiments

Forward model

The observed data y is a Poisson noise corrupted version of x,

$$y \sim \mathcal{P}(x)$$
.

Sparsity assumption

$$x = \Phi \alpha$$
 with $\|\alpha\|_0 \leq k$ and $k << n$.

with

- y the observation (e.g. a $\sqrt{n} \times \sqrt{n}$ image),
- x the true image,
- $\Phi \in \mathbb{R}^{n \times d}$ a dictionary (redundant if d > n),
- α coefficients to be found $(x = \Phi \alpha)$.

Regularized Sparse Poisson denoising

Writing $F_{\nu}(x) = -\log P(y|x)$, one naturally seeks to

Minimize the neg-log-likelihood under a sparsity constraint

$$\min_{\alpha \in \mathbb{R}^d} F_y(\mathbf{\Phi}(\alpha)) \quad \text{ s. t. } \|\alpha\|_0 \leqslant k \text{ .}$$

$$F_y: x \in \mathbb{R}^n \mapsto \sum_{i=1}^n f_y^i(x[i]), \text{ with }$$

$$f_y^i(\xi) = \begin{cases} -y[i]\log(\xi) + \xi & \text{if } y[i] > 0 \text{ and } \xi > 0, \\ \xi & \text{if } y[i] = 0 \text{ and } \xi \geqslant 0, \\ +\infty & \text{otherwise.} \end{cases}$$

Regularized Sparse Poisson denoising

Writing $F_y(x) = -\log P(y|x)$, one naturally seeks to

Minimize the neg-log-likelihood under a sparsity constraint

$$\min_{\alpha \in \mathbb{R}^d} F_y(\mathbf{\Phi}(\alpha)) \quad \text{ s. t. } \|\alpha\|_0 \leqslant k \text{ .}$$

$$F_y: x \in \mathbb{R}^n \mapsto \sum_{i=1}^n f_y^i(x[i]), \text{ with }$$

$$f_y^i(\xi) = \begin{cases} -y[i]\log(\xi) + \xi & \text{if } y[i] > 0 \text{ and } \xi > 0, \\ \xi & \text{if } y[i] = 0 \text{ and } \xi \geqslant 0, \\ +\infty & \text{otherwise.} \end{cases}$$

Issues:

- no full domain, no tolerance if a pixel is removed (set to 0),
- non-Lipschitz gradient.

Regularized Sparse Poisson denoising

Instead, we propose

Min. a regularized neg-log-likelihood under a sparsity constraint

$$\min_{\alpha \in \mathbb{R}^d} \mathcal{M}_{\lambda, F_y}(\mathbf{\Phi}(\alpha)) \quad \text{ s. t. } \|\alpha\|_0 \leqslant k \ .$$

which is equivalent to

Using GCoSaMP/GSP with

$$\mathbf{T} = \frac{1}{\nu\lambda} \mathbf{\Phi}^* \circ (\mathbf{I} - \mathrm{prox}_{\nu\lambda F_u}) \circ \mathbf{\Phi}$$

- $\mathcal{M}_{\lambda,f}$ is the Moreau-Yosida regularization of f with parameter λ .
- $prox_f$ is the proximal operator.
- ν is the frame bound for Φ .

Experiments

We compare using GSP, GCoSaMP, GHTP or GIHT to solve

$$\min_{\alpha \in \mathbb{R}^d} \mathcal{M}_{\lambda, F_y \circ \mathbf{\Phi}}(\alpha) \quad \text{ s. t. } \|\alpha\|_0 \leqslant k ,$$

Experiments

We compare using GSP, GCoSaMP, GHTP or GIHT to solve

$$\min_{\alpha \in \mathbb{R}^d} \mathcal{M}_{\lambda, F_y \circ \Phi}(\alpha) \quad \text{s. t. } \|\alpha\|_0 \leqslant k ,$$

to

• Subspace Pursuit (SP):[Dai and Milenkovic, 2009]

$$\min_{\alpha \in \mathbb{R}^d} \| \mathbf{\Phi}(\alpha) - y \|_2^2 \quad \text{s. t. } \|\alpha\|_0 \leqslant k ,$$

• l_1 -relaxation: using Forward-Backward-Forward primal-dual algorithm [Combettes et. al. 2012] to solve

$$\min_{\alpha \in \mathbb{R}^d} F_y \circ \mathbf{\Phi}(\alpha) + \gamma \|\alpha\|_1 ,$$

- SAFIR: adaptation of BM3D [Boulanger et al., 2010].
- MSVST: variance-stabilizing method [Zhang et al., 2008].

Comparing greedy l_0 and l_1 results

Figure: Cameraman, maximal intensity 30, undecimated wavelet transform.

Comparing greedy l_0 and l_1 results

Figure: Cameraman, maximal intensity 30, undecimated wavelet transform.

Influence of λ in $\mathcal{M}_{\lambda,\cdot}$

 $\lambda = 10, \text{ MAE} = 0.81 \ \lambda = 0.1, \text{ MAE} = 0.74$

Maximal Intensity: 10, k: 1500, Φ : cycle-spinning wavelet transform.

Results

Figure: NGC 2997 Galaxy image. (LIF, I2M)

Results

Figure: NGC 2997 Galaxy image.

Numerical results

	Sparse Cameraman		Galaxy	
	MAE	SSIM	MAE	SSIM
Noisy	1.57	0.252	0.63	0.19
GSP	0.252	0.87	0.17	0.71
SP	0.55	0.63	0.28	0.55
SAFIR	0.256	0.86	0.15	0.84
MSVST	0.251	0.84	0.12	0.83
ℓ_1 -relaxation	0.64	0.73	0.252	0.50

Table: Comparison of denoising methods on a sparse version of Cameraman (k/n = 0.15) and the NGC 2997 Galaxy.

Take away messages

We have

- presented a general greedy optimization algorithms, with theoretical guarantees;
- applied it to a Moreau-Yosida regularization of Poisson likelihood;
- shown encouraging results for Poisson denoising.

Perspectives includes

- application in other known settings such as dictionary learning, additional regularization...
- gain understanding on the behavior of GCoSaMP, GSP and co.

Thanks for your attention.

Any questions?

Moreau-Yosida regularization

Definition (Lemaréchal et al. 1997)

Let $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a proper, convex and lower semi-continuous function. The Moreau-Yosida regularization of f with parameter λ is:

$$\mathcal{M}_{\lambda,f}: \mathbb{R}^d \to \mathbb{R},$$

 $s \mapsto \inf_{x \in \mathbb{R}^d} \left[\frac{1}{2\lambda} ||s - x||^2 + f(x) \right]$

Moreau-Yosida regularization

Definition (Lemaréchal et al, 1997)

Let $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a proper, convex and lower semi-continuous function. The Moreau-Yosida regularization of f with parameter λ is:

$$\mathcal{M}_{\lambda,f}: \mathbb{R}^d \to \mathbb{R},$$

 $s \mapsto \inf_{x \in \mathbb{R}^d} \left[\frac{1}{2\lambda} ||s - x||^2 + f(x) \right]$

Remarks:

- The gradient of $\mathcal{M}_{\lambda,f}$ is linked with proximal operator.
- λ regulates the similarity between f and $\mathcal{M}_{\lambda,f}$.

Gradient for the Moreau-Yosida regularization of Poisson likelihood

Proposition (Combettes and Pesquet, 2007)

Let Φ is a tight frame (i.e. $\exists \nu > 0$, such that $\Phi \circ \Phi^* = \nu \mathbf{I}$), then the gradient of the Moreau-Yosida regularization of $F_{\nu} \circ \Phi$ is:

$$\nabla \mathcal{M}_{\lambda, F_y \circ \mathbf{\Phi}}(x) = \frac{1}{\nu \lambda} \mathbf{\Phi}^* \circ (\mathbf{I} - \text{prox}_{\nu \lambda F_y}) \circ \mathbf{\Phi}$$

with

$$\operatorname{prox}_{\nu\lambda F_y}(x)[i] = \frac{x[i] - \nu\lambda + \sqrt{|x[i] - \nu\lambda|^2 + 4\nu\lambda y[i]}}{2}$$

Optimization problem

$$\min_{\alpha \in \mathbb{R}^d} \mathcal{M}_{\lambda, F_y \circ \mathbf{\Phi}}(\alpha) \quad \text{ s. t. } \|\alpha\|_0 \leqslant k \quad \text{ (P)},$$

with,

- Φ the dictionary,
- λ the regularization parameter,
- \bullet k sought sparsity.

Optimization problem

$$\min_{\alpha \in \mathbb{R}^d} \mathcal{M}_{\lambda, F_y \circ \mathbf{\Phi}}(\alpha) \quad \text{s. t. } \|\alpha\|_0 \leqslant k \quad (P),$$

with,

- Φ the dictionary,
- λ the regularization parameter,
- k sought sparsity.

The bias between the solution of (P) and the non-regularized problem, under mild condition, is $\mathcal{O}(\sqrt{\lambda})$. [Mahey et Tao, 1993]