Projekt 5: Całkowanie metodą warstwową.

Kacper Połuszejko, 412183

Wstęp

Oszacowano wartości trzech poniższych całek za pomocą metody MC:

$$C_1 = \int_{-3}^{3} (1 + \tanh(x)) dx = 6$$

$$C_2 = \int_{0}^{10} \frac{1}{1 + x^2} dx = \arctan(10) - \arctan(0)$$

$$C_3 = \int_{0}^{1} \cos^{10}(\pi x) dx = 0.24609375$$

każdą za pomocą trzech metod: 1) metody podstawowej, 2) metody systematycznej, 3) metody warstwowej.

1 Metodyka

1.1 Metoda podstawowa

Dla całki postaci

$$C = \int_{a}^{b} g(x)dx$$

identyfikujemy fgp jako f(x) = const, z warunku normalizacji dostajemy

$$\int_{a}^{b} f(x)dx = \operatorname{const} \int_{a}^{b} 1dx = \operatorname{const}(b-a) = 1 \quad \Rightarrow \quad f(x) = \frac{1}{b-a}$$

Modyfikujemy całkę

$$C = \int_{a}^{b} \frac{g(x)}{f(x)} f(x) dx = \int_{a}^{b} [(b - a)g(x)] f(x)$$

a jej wartość przybliżamy średnią z próby

$$C \approx \bar{g} = \frac{1}{N} \sum_{i=1}^{N} (b-a) \cdot g(x_i), \quad x_i \sim U(a,b)$$

gdzie losowanie z rozkładu jednostajnego w zakresie [a,b], wykonujemy stosując prostą transformację $x_i = a + (b-a) \cdot U_i$, $U_i \sim U(0,1)$. U(0,1) to generator liczb pseudolosowych o rozkładzie jednostajnym w przedziale (0,1). Liczymy jeszcze drugi moment

$$\overline{g^2} = \frac{1}{N} \sum_{i=1}^{N} [(b-a) \cdot g(x_i)]^2, \quad x_i \sim U(a,b)$$

i wariancję średniej

$$\sigma_{\bar{g}}^2 = \frac{\overline{g^2} - \bar{g}^2}{N}$$

1.2 Metoda systematyczna

Najpierw dokonujemy podziału obszaru całkowania na M podobszarów. Załóżmy, że mają identyczną szerokość $\Delta x = (b-a)/M$. Wówczas lewą (x_m) i prawą (x_{m+1}) granicę przedziału wyznaczają

$$x_m = a + \Delta x \cdot (m-1), \quad m = 1, 2, \dots, M$$

$$x_{m+1} = x_m + \Delta x$$

W metodzie losowania systematycznego (warstwowego nieoptymalnego) określamy prawdopodobieństwo wylosowania zmiennej z danego podprzedziału p_m

$$p_m = \int_{x_m}^{x_{m+1}} f(x) dx$$

co dla **równomiernego podziału i jednorodnego rozkładu fgp** daje $p_m = 1/M$. Dla każdego podprzedziału m-tego określamy liczbę losowań

$$N_m = p_m \cdot N$$

obliczamy n = 1 i 2 moment oraz wariancję

$$\overline{g^n}_m = \frac{1}{N_m} \sum_{i=1}^{N_m} [(b-a) \cdot g(x_{im})]^n, \quad x_{im} \sim U(x_m, x_{m+1})$$

$$\sigma_m^2 = \overline{g^2}_m - (\overline{g}_m)^2$$

Teraz możemy oszacować wartość całki C jako średnią i wariancję średniej

$$C \approx \bar{g} = \sum_{m=1}^{M} p_m \cdot \bar{g}_m$$

$$\sigma_{\bar{g}}^2 = \sum_{m=1}^M \frac{p_m^2}{N_m} \cdot \sigma_m^2$$

1.3 Metoda warstwowa

W metodzie tej postępujemy identycznie jak dla losowania systematycznego poza jednym wyjątkiem, liczbę losowań N_m w każdym podprzedziale określamy według wzoru

$$N_m = \frac{p_m \hat{\sigma}_m}{\sum_{j=1}^M p_j \hat{\sigma}_j} \cdot N$$

gdzie: $\hat{\sigma}_j$ to prognozowane/szacowane wartości odchylenia standardowego, które obliczamy metodą systematyczną dla małej wartości N (np. $N=10^2,10^3$) — bo dokładnych wartości nie znamy. Oczywiście w trakcie wykonywania właściwych obliczeń (metoda warstwowa) na bieżąco wyznaczamy "dokładniejsze" wartości σ_m i ich ostatecznie używamy do liczenia wariancji średniej.

2 Wyniki

- 1. Zaimplementowano podstawową metodę Monte Carlo do całkowania w celu oszacowania wartości całki C_1 . Dla kolejnych wartości $N=10^k$, gdzie k=2,3,4,5, obliczono wartość całki, odchylenie standardowe średniej $\sigma_{\bar{g}}$ oraz względny błąd $R=\frac{\sigma_{\bar{g}}}{\bar{g}}\cdot 100\%$. Przedział [a,b] podzielono na M=10 równych podprzedziałów. Dla każdego N określono liczbę losowań przypadających na każdy z podprzedziałów i stworzono odpowiednie histogramy. Wyniki zestawiono w tabeli.
- 2. Zaimplementowano metodę losowania systematycznego i powtórzono obliczenia wykonane w punkcie 1.
- 3. Zaimplementowano metodę losowania warstwowego i ponownie wykonano obliczenia z punktu 1. Dodatkowo, oszacowano wartość $\hat{\sigma}_m$ przy użyciu metody systematycznej, wykonując 100 losowań (dla metody warstwowej przy $N=10^2$) oraz 1000 losowań (dla metody systematycznej przy $N>10^3$).
- 4. Obliczenia z punktów 1–3 powtórzono dla całek C_2 oraz C_3 .
- 5. Wyniki przedstawiono w formie tabel. Dodatkowo zamieszczono przykładowe histogramy rozkładu liczby losowań.

Tabela 1 Oszacowane wartości całek C_1, C_2, C_3 oraz ich odchylenia standardowe średniej i błędy względne.

 C_1 C_2

Metoda podstawowa					
N	\bar{g}	$\sigma_{ar{g}}$	R [%]		
10^{2}	5.776	0.481	8.341		
10^{3}	6.206	0.153	0.024		
10^{4}	5.980	0.0490	0.821		
10^{5}	6.013	0.0155	0.259		
Metoda systematyczna					
10^{2}	6.109	0.0398	0.650		
10^{3}	5.985	0.0154	0.258		
10^{4}	6.002	0.0049	0.081		
10^{5}	6.001	0.00151	0.026		
Metoda warstwowa					
10^{2}	6.030	0.0367	0.608		
10^{3}	6.003	0.0108	0.180		
10^{4}	5.996	0.0034	0.057		
10^{5}	6.0002	0.0011	0.018		

Metoda podstawowa					
N	\bar{g}	$\sigma_{ar{g}}$	R [%]		
10^{2}	1.076	0.193	17.969		
10^{3}	1.499	0.0751	5.011		
10^{4}	1.481	0.0241	1.619		
10^{5}	1.478	0.0075	0.511		
Metoda systematyczna					
10^{2}	1.525	0.0568	3.725		
10^{3}	1.470	0.0179	1.216		
10^{4}	1.471	0.0058	0.396		
10^{5}	1.468	0.0019	0.127		
Metoda warstwowa					
10^{2}	1.462	0.0260	1.780		
10^{3}	1.546	0.0551	3.566		
10^{4}	1.486	0.0240	1.613		
10^{5}	1.467	0.0067	0.456		

]	Metoda podstawowa					
N	\bar{g}	$\sigma_{ar{g}}$	R [%]			
10^{2}	0.316	0.0372	11.793			
10^{3}	0.229	0.0105	4.564			
10^{4}	0.246	0.0034	1.381			
10^{5}	0.247	0.0011	0.435			
1	Metoda systematyczna					
10^{2}	0.253	0.0072	2.845			
10^{3}	0.247	0.0028	1.137			
10^{4}	0.246	0.0008	0.344			
10^{5}	0.246	0.0003	0.114			
	Metoda warstwowa					
10^{2}	0.243	0.0144	5.911			
10^{3}	0.228	0.0087	3.803			
10^{4}	0.244	0.0029	1.194			
10^{5}	0.247	0.0009	0.344			
·						

Na podstawie powyższej tabeli można stwierdzić, że metoda podstawowa radzi sobie zdecydowanie najgorzej dla każdej z szacowanych całek. Metoda warstwowa daje najlepsze wyniki dla całki C_1 , natomiast metoda systematyczna dla całek C_2 i C_3 .

Rys. 1: Histogramy rozkładu ilości losowań dla całki C_1 . Po lewej dla $N=10^3$, po prawej dla $N=10^5$.

Jak widać na powyższych wykresach, w metodzie systematycznej rozkład ilości losowań jest jednorodny, co jest oczywiste, jako że liczba losowań w każdym z podprzedziałów jest identyczna, co wynika ze wzorów. W przypadku metody podstawowej wykonano N losowań za pomocą rozkładu jednorodnego na całym przedziale, dlatego widocznie są drobne różnice w każdym z podprzedziałów (dla $N=10^5$, są już jednak znacznie mniejsze). Natomiast w przypadku metody warstwowej liczba losowań rośnie dla podprzedziałów, w których funkcja g(x) najbardziej się zmienia. Dzięki temu generuje też ona najdokładniejsze wyniki, co widać w **Tabeli 1**.