Relacao Entre Velocidade e Distancia de Frenagem para Carros de Passeio

Aluno Consultor 1^{a,b}, Aluno Consultor 2^{a,b}, Consulente^{c,d} e Marcus A. Nunes^{a,e}

^aDepartamento de Estatistica - UFRN; ^bConsultor; ^cOutro Departamento - UFRN; ^dConsulente; ^eOrientacao

2 de Agosto de 2019

Este trabalho estuda a relacao entre a velocidade de carros (mph) e a distancia (pes) que eles levaram para parar completamente. Utilizamos o modelo de regressao linear simples para determinar se existe relacao entre estas duas variaveis.

regressao linear | automobilismo | segurança | transito

1. Objetivos

Diversos autores ja publicaram estudos referentes a seguranca no transito. McKenna et al. (1991), por exemplo, estuda a relacao entre as habilidades dos motoristas e a percepcao que eles possuem sobre estas habilidades. Alem desta característica, existem diversas outras que, se estudadas, podem aumentar a seguranca no transito. Uma destas caracteristicas e a distancia minima necessaria para que um carro pare completamente apos seus freios serem acionados.

Neste trabalho estamos interessados em verificar qual e a relacao que existe entre a velocidade de um carro (em milhas por hora) e a distancia que ele levou para parar completamente (em pes). Este conjunto de dados foi fornecido pelo programa R: A Language and Environment for Statistical Computing (R Core Team (2017)). A hipotese com a qual trabalhamos e a de que existe uma relacao positiva entre estas variaveis. Isto e, quanto mais rapido um carro estiver trafegando, maior vai ser a distancia necessaria para que este carro pare completamente.

Alem de verificar se ha correlação entre estas variaveis, desejamos obter uma relação capaz de prever o quanto uma variavel varia em relacao a outra. Ou seja, gostariamos de poder estimar a distancia necessaria para um carro parar completamente se soubermos qual a sua velocidade de trafego no momento em que os freios foram acionados.

2. Metodologia

Os dados analisados neste trabalho foram obtidos a partir de uma amostra de 50 carros. As medicoes foram realizadas na decada de 1920 e disponibilizadas originalmente por Ezekiel (1930). Nao ha informacoes a respeito dos modelos dos carros utilizados neste experimento.

Utilizaremos um metodo estatistico chamado regressao linear a fim de verificar se ha relacao entre a distancia necessaria para um carro parar completamente e sua velocidade. Este e um metodo bastante popular, capaz de descrever com bastante precisao a relacao entre as variaveis que nos interessam.

Sejam x_1, x_2, \dots, x_n as observações referentes a velocidade dos carros em questao. Considere y_1, y_2, \cdots, y_n as observações referentes a distancia necessaria para os carros pararem. De acordo com Kutner et al. (2004), podemos expressar a dependencia entre y e x atraves da equacao

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

onde β_0 e β_1 sao coeficientes estimados pelas equacoes

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$\widehat{\beta}_{0} = \overline{y} - \widehat{\beta}_{1} \overline{x}$$
(1)

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x} \tag{2}$$

As quantidades \overline{x} e \overline{y} sao, respectivamente, as medias amostrais de x_1, x_2, \dots, x_n e y_1, y_2, \dots, y_n . Estas medias amostrais sao dadas por

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Determinamos se o coeficiente β_1 e estatisticamente significante atraves de um teste t. Sob a hipotese nula, assumimos que o estimador possui distribuicao t com n-1 graus de liberdade.

3. Resultados

A fim de verificar visualmente se ha algum tipo de relacao entre as variaveis consideradas neste estudo, exibimos o grafico de dispersao dos dados na Figura 1. Note que e possivel perceber uma forte tendencia linear positiva na relacao entre estas variaveis. Quanto maior o valor da velocidade, maior a distancia necessaria para o carro parar completamente.

```
ggplot(cars, aes(x=speed, y=dist)) +
 geom_point() +
 labs(x="Velocidade (mph)", y="Distancia (pes)")
```

```
ggplot(cars, aes(x=speed, y=dist)) +
 geom_point() +
 labs(x="Velocidade (mph)", y="Distancia (pes)") +
 geom_smooth(method="lm", se=FALSE)
```

Alem disso, adicionamos ao grafico exibido na Figura 2 a reta que melhor descreve a relacao entre estas variaveis. Esta reta foi obtida atraves do metodo descrito na secao anterior, fazendo uso das formulas (1) e (2). Explicitamente, a equacao representada na Figura 2 e dada por

$$\widehat{y}_i = -17,5791 + 3,9324x_i. \tag{3}$$

Entretanto, precisamos testar se os coeficientes estimados e apresentados na relacao (3) sao, de fato, estatisticamente significantes. Para isto, testaremos as hipoteses

Fig. 1. Grafico de dispersao da distancia de parada completa (pes) versus velocidade (mph) dos carros.

$$H_0: \beta_0 = 0$$

 $H_1:\beta_0\neq 0$

e

$$H_0:\beta_1=0$$

$$H_1: \beta_1 \neq 0$$

Os resultados destes testes estao apresentados na Tabela 1.s

Tabela 1. Resultados dos testes de hipoteses realizados para a analise de regressao.

Coeficiente	Estimativa	Erro Padrao	t	p-valor
β_0	-17,5791	6,7584	-2,601	0,0123
$oldsymbol{eta}_1$	3,9324	0,4155	9,464	<0,0001

Note que, em ambos os casos, o p-valor encontrado e inferior a $\alpha=0,05$. Portanto, podemos rejeitar ambas as hipoteses nulas e β_0 e β_1 sao estatisticamente diferentes de zero.

Para finalizar a analise, devemos verificar se o modelo ajustado nao viola as hipoteses do modelo de regressao linear. Para verificar isto, exibimos a analise de residuos na Figura 3.

Fig. 2. Grafico de dispersao da distancia de parada completa (pes) versus velocidade (mph) dos carros com a reta que melhor se ajusta a estes dados.

Referências

Ezekiel M (1930). Methods of Correlation Analysis. Wiley, New York.

Kutner M, Nachtsheim C, Neter J, Li W (2004). Applied Linear Statistical Models - Fifth Edition. McGraw-Hill/Irwin, New York.

McKenna FP, Stanier RA, Lewis C (1991). "Factors underlying illusory self- assessment of driving skill in males and females." *Accident Analysis and Prevention*, **23**(1), 45–52.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Fig. 3. Analise de residuos do modelo de regressao linear ajustado.