Week 2: Intro to Machine Learning

Applied AI in Chemical and Process Engineering

DMMB Dissanayake

What you are going to learn

- Machine Learning Core Concepts
- Supervised Learning
- Common Supervised Learning Algorithms
- Vibe Coding Intro

Machine Learning/ Deep Learning/ Artificial Intelligence

Machine Learning

Al that learns from data without explicit instructions

E.g. Email spam filters, recommendation systems

Machine Learning – Broad Categorization

Supervised Learning

- Regression
- Classification

Unsupervised Learning

- Clustering
 - Dimensionality reduction

Supervised Learning

Regression and Classification

Classification

Will it be hot or cold tomorrow?

Fahrenheit

Regression - Example

In a cement plant, we want to predict CO₂ emissions based on operational parameters

Fuel Consumption (tons/hour)	Production Rate (tons/hour)	Combustion Efficiency (%)	Clinker-to-Cement Ratio	CO ₂ Emissions (tons/hour)
2.5	100	85	0.90	1.80
3.0	120	80	0.95	2.10
	Featu	ires		Target

Regression - Example

Regression

Classification - Example

In a chemical plant, we want to predict if a pump will fail based on sensor data

Vibration Level (mm/s)	Temperature (°C)	Pressure (bar)	Runtime (hours)	Failure Status 0-No failure, 1- Failure
2.5	70	5.0	500	No failure
4.8	85	6.2	1200	Failure
3.0	72	5.1	600	No failure
5.5	90	6.5	1500	Failure
2.8	68	4.8	450	Failure
4.2	82	5.8	1100	No failure
3.2	75	5.2	700	No failure
6.0	95	6.8	1600	Failure
2.7	69	4.9	400	No failure
4.5	88	6.0	1300	Failure

Classification – Example

Summary of Common ML algorithms

N decision (regression) trees are fitted on bootstrap samples. Split variable is selected from random subset of variables (Appendix S1.2.4):

- + flexible
- + robust (e.g. outliers)
- + few hyper-parameters
- (+) variable importance
- scales poorly

Tabular data:

- Classification
- Regression

Boosted regression trees:

N trees are fitted sequentially to minimize an overall loss function (Appendix S1.2.5):

- + flexible
- (+) variable importance
- many hyper-parameters
- high complexity

Tabular data:

- Classification
- Regression

Further Learnings

Machine Learning in Python

https://scikit-learn.org/stable/

Ordinary Least Square Regression (OLS)

Goal is to minimize the Residual Sum or Squares (RSS)

$$RSS = \sum [y_i - y_{pi}]^2$$

$$y = mx + c$$

Example – Simple system

Impeller Speed (RPM)	Mixing Efficiency (%)
	-
100	65
150	70
200	74
250	77
300	80
350	82
400	85
450	87
500	88
550	90

Linear Regression: Mixing Efficiency $R^2 = 0.968$, RMSE = 1.400

 $Mixing\ efficacy = 62.4 + 0.05 \times ImprellerSpeed$

Coefficient of Determination (R²)

R² measures how well a **regression model** explains the **variability** of the target variable.

$$R^2 = 1 - rac{ ext{SS}_{ ext{res}}}{ ext{SS}_{ ext{tot}}}$$

Where:

- $\mathrm{SS}_{\mathrm{res}} = \sum (y_i \hat{y}_i)^2 o \mathsf{Residual} \; \mathsf{Sum} \; \mathsf{of} \; \mathsf{Squares}$
- $\mathrm{SS}_{\mathrm{tot}} = \sum (y_i \bar{y})^2 o \mathsf{Total} \; \mathsf{Sum} \; \mathsf{of} \; \mathsf{Squares}$
- \hat{y}_i is the predicted value, and $ar{y}$ is the mean of actual values

R² Interpretation

R ² Value	Meaning
1	Perfect fit – model explains 100 % of the variability in data
0	Model explains none of the variability (predictions are as good as mean)
< 0	Model performs worse than a horizontal line (i.e., worse than just predicting the mean)
~0.7–0.9	Indicates a strong model , but context-dependent (high R ² doesn't always mean good generalization)

Measuring the Error in Models

Metric	Formula	Description
ME (Mean Error)	$ ext{ME} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)$	Measures the average error between actual values y_i and predicted values \hat{y}_i . A value close to 0 indicates little bias, but it can hide large errors due to cancellation.
MSE (Mean Squared Error)	$ ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$	Calculates the average of squared errors , giving more weight to larger errors. Commonly used to evaluate regression models.
RMSE (Root Mean Squared Error)	$ ext{RMSE} = \sqrt{rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2}$	Square root of MSE. Keeps the unit of the original variable, making it easier to interpret. Sensitive to outliers.

Example – Complex (somewhat) System

Can I predict the Yield?

Y= Yield

X (features) =
['reactor_temp', 'feed_flow', 'reactor_pressure',
'catalyst_conc', 'residence_time', 'sensors']

Why not OLS regression?

OLS regression model - evaluation

Can I trust it?

Training strategy with train/test split

70/30, 80/20 are commonly used strategies in ML

Can I trust?

The model is very weak when unseen data presented

Underfitting/Overfitting

Regularization

Regularization helps stop overfitting by penalizing complex models

Lasso Regression

 β_i represents the coefficients of the predictors

 λ is the tuning parameter that controls the strength of the penalty. As λ increases more coefficients are pushed towards zero

Previous example with Lasso regression

Regularization addressed the overfitting issue in OLS

Feature	Linear Regression	Lasso Regression
X0	17.78	14.30
X1	-2.83	-5.93
X2	7.28	7.02
Х3	3.03	2.68
X4	-13.23	-10.47
X5	2.46	0.00
X6	0.92	-0.00
X7	0.44	-0.82
X8	4.24	0.00
Х9	4.16	0.00
X10	3.02	0.00
X11	0.62	0.70
X12	-2.13	-0.00
X13	-0.38	0.00
X14	3.85	0.00

Decision Tree

Random Forest

Collection of Decision Trees

Random Forest Example

Y=Separation efficiency

X (features)= [reflux_ratio, feed_temperature, column_pressure, feed_composition vapor_velocity]

Let's fit OLS

Random Forest Regressor

Can we do even better? Perhaps yes

Rule of thumb

Scenario	Recommended Model(s)	Notes
Linear + Few variables	Linear/Logistic Regression	High accuracy if relationship is linear; highly interpretable
Linear + Many variables	Ridge/Lasso	Handles many predictors; requires tuning
Non-linear + Small data	Random Forest	Robust, good accuracy, moderate interpretability
Non-linear + Large data	Gradient Boosting	High accuracy, slower, less interpretable
Very large data + High compute	Neural Networks (deep learning)	Best for complex, big data; low interpretability
Need interpretability	Linear, Random Forest, Gradient Boosting (with SHAP/LIME)	Linear most interpretable; others with tools
Time constraints	Linear > Random Forest > Gradient Boosting > Neural Networks	Linear fastest, Neural Networks slowest

Remember ... most of real-life problems are non-linear

Coding has been a rate limiting factor for AI/ML development..

Hence Al's penetration has been somewhat limited in Science/Engineering

Vibe-Coding

Vibe-Coding (Al-assisted coding)

Describe what you want

Al generating code

Testing and Refining code

Iterate

Toolbox

Favorite

https://github.com/dissabnd/Applied-AI-in-Chemical-and-Process-Engineering