

FUNÇÕES

Definição 1: sejam A e B dois conjuntos, $A \neq \emptyset$; $B \neq \emptyset$. Uma função definida em A com valores em B é uma lei que associa a <u>todo</u> elemento $x \in A$ um único elemento $y \in B$.

Observação: Se $A \subset \mathbb{R}$ e $B \subset \mathbb{R}$, a função é dita real de variável real. Notação: $f: A \to B$ ou y = f(x).

Definição 2: O conjunto A é chamado de domínio da função f, denominado de D(f). O conjunto B é o contradomínio de f, denominado de CD(f) e o conjunto $I = \{y \in B | y = f(x), x \in A\}$ é a imagem da função f, denominado de Im(f):

Exemplo: Sejam $A=\{x\in\mathbb{Z}|-2\le x\le 1\}$ e $B=\{y\in\mathbb{Z}|-1\le y\le 5\}$ e considere a função $f:A\to B,\, f(x)=x^2.$

Observação: Quando não se especificar o domínio de uma dada função, subentende-se que ele seja o conjunto de todos os números reais para os quais a função exista.

Exemplo: Dada a função $f(x) = \frac{1}{x-2}$, o domínio dessa função é $D(f) = \{x \in \mathbb{R} | x \neq 2\}$, salvo menção contrária.

Definição 3: O gráfico de uma função f é o conjunto dos pontos (x; y) em \mathbb{R}^2 para os quais $x \in A$, $y \in B$ e y = f(x).

Observação: O gráfico de uma função pode ser interceptado por uma reta vertical qualquer em no máximo um ponto.

Exemplos: Encontre o domínio e a imagem da função f e faça um esboço de seu gráfico.

a)
$$f(x) = 2$$
 $D(f) = \mathbb{R}$ $Im(f) = \{2\}$

b)
$$f(x) = x + 3$$

$$D(f) = \mathbb{R}$$

$$Im(f) = \mathbb{R}$$

c)
$$f(x) = \sqrt{x-1}$$

$$D(f) = \{x \in \mathbb{R} | x \ge 1\}$$

$$Im(f) = \{ y \in \mathbb{R} | y \ge 0 \}$$

d)
$$f(x) = \frac{x^2 - 9}{x - 3}$$

$$D(f) = \{x \in \mathbb{R} | x \neq 3\}$$

$$Im(f) = \{ y \in \mathbb{R} | x \neq 6 \}$$

Definição 4: Uma função $f:A\to B$ é dita:

- i) crescente se $x_1 < x_2$ então $f(x_1) < f(x_2) \quad \forall x_1, x_2 \in A$
- ii) decrescente $x_1 < x_2$ então $f(x_1) > f(x_2)$ $\forall x_1, x_2 \in A$

Se uma função é apenas crescente ou apenas decrescente em A, dizemos que ela é monótona em A.

Funções Básicas

Função afim

É toda função do tipo f(x) = ax + b em que $a, b \in \mathbb{R}$ e $a \neq 0$. Seu gráfico é uma reta tendo inclinação ou coeficiente angular a e intercepto b.

Exemplo: A função f(x)=2x+1 é uma função afim. Seu gráfico é uma reta como faremos abaixo:

Função quadrática

É toda função da forma $f(x) = ax^2 + bx + c$ em que $a, b, c \in \mathbb{R}$ e $a \neq 0$. Seu gráfico é uma parábola com concavidade para cima caso a > 0 e concavidade para baixo caso a < 0.

Exemplo: Dadas as funções quadráticas $f(x) = x^2 + 2x + 1$ e $g(x) = -2x^2 + 3$ seus gráficos são parábolas como faremos abaixo:

Função exponencial

É toda função do tipo $f(x) = a^x$ em que a > 0 e $a \neq 1$. Seu gráfico é crescente se a > 1 e decrescente se 0 < a < 1, como mostrado nas figuras abaixo:

Exemplos: Esboce os gráficos das funções:

a)
$$f(x) = 2^x$$

b)
$$f(x) = \left(\frac{1}{2}\right)^x$$

Exercícios

1) Esboce os gráficos das seguintes funções:

a)
$$f(x) = 3x$$

b)
$$f(x) = 2x + 5$$

b)
$$f(x) = 2x + 5$$
 c) $f(x) = -x - 4$

d)
$$f(x) = x^2 - 5x + 6$$

e)
$$f(x) = -x^2 + 5x$$

d)
$$f(x) = x^2 - 5x + 6$$
 e) $f(x) = -x^2 + 5x$ f) $f(x) = x^2 - 4x + 4$

$$g) f(x) = 3^x$$

g)
$$f(x) = 3^x$$
 h) $f(x) = \left(\frac{1}{3}\right)^x$ i) $f(x) = 4^{x-1}$

i)
$$f(x) = 4^{x-1}$$

j)
$$f(x) = 3^{-x}$$

j)
$$f(x) = 3^{-x}$$
 k) $f(x) = 2^x - 2$