Course Code:	Course Title	Credit
CSDC7022	Blockchain	3

Pr	Prerequisite: Cryptography and System Security	
Co	Course Objectives:	
1	Understand blockchain platforms and its terminologies.	
2	Understand the use of cryptography required for blockchain.	
3	Understand smart contracts, wallets, and consensus protocols.	
4	Design and develop blockchain applications	
Co	Course Outcomes:	
1	Explain blockchain concepts.	
2	Apply cryptographic hash required for blockchain.	
3	Apply the concepts of smart contracts for an application.	
4	Design a public blockchain using Ethereum.	
5	Design a private blockchain using Hyperledger.	
6	Use different types of tools for blockchain applications.	

Module		Content	Hrs
1		Introduction to Blockchain	6
	1.1	What is a blockchain, Origin of blockchain (cryptographically secure	
		hash functions), Foundation of blockchain: Merkle trees	
	1.2	Components of blockchain, Block in blockchain, Types: Public,	
		Private, and Consortium, Consensus Protocol, Limitations and	
		Challenges of blockchain	
2		Cryptocurrency	6
	2.1	Cryptocurrency: Bitcoin, Altcoin, and Tokens (Utility and Security),	
		Cryptocurrency wallets: Hot and cold wallets, Cryptocurrency usage,	
		Transactions in Blockchain, UTXO and double spending problem	
	2.2	Bitcoin blockchain: Consensus in Bitcoin, Proof-of-Work (PoW),	
		Proof-of-Burn (PoB), Proof-of-Stake (PoS), and Proof-of-Elapsed	
		Time (PoET), Life of a miner, Mining difficulty, Mining pool and its	
	7	methods	
3		Programming for Blockchain	8
	3.1	Introduction to Smart Contracts, Types of Smart Contracts, Structure	
		of a Smart Contract, Smart Contract Approaches, Limitations of	
		Smart Contracts	
	3.2	Introduction to Programming: Solidity Programming - Basics,	
		functions, Visibility and Activity Qualifiers, Address and Address	
		Payable, Bytes and Enums, Arrays-Fixed and Dynamic Arrays,	
		Special Arrays-Bytes and strings, Struct, Mapping, Inheritance, Error	
		handling	
	3.3	Case Study - Voting Contract App, Preparing for smart contract	
		development	

4		Public Blockchain	8
		Introduction to Public Blockchain, Ethereum and its Components,	
		Mining in Ethereum, Ethereum Virtual Machine (EVM), Transaction,	
		Accounts, Architecture and Workflow, Comparison between Bitcoin	
		and Ethereum	
		Types of test-networks used in Ethereum, Transferring Ethers using	
		Metamask, Mist Wallet, Ethereum frameworks, Case study of	
		Ganache for Ethereum blockchain. Exploring etherscan.io and ether	
		block structure	
5		Private Blockchain	8
	5.1	Introduction, Key characteristics, Need of Private Blockchain, Smart	
		Contract in a Private Environment, State Machine Replication,	
		Consensus Algorithms for Private Blockchain - PAXOS and RAFT,	
		Byzantine Faults: Byzantine Fault Tolerant (BFT) and Practical BFT	
	5.2	Introduction to Hyperledger, Tools and Frameworks, Hyperledger	
		Fabric, Comparison between Hyperledger Fabric & Other	
		Technologies	
	5.3	Hyperledger Fabric Architecture, Components of Hyperledger Fabric:	
		MSP, Chain Codes, Transaction Flow, Working of Hyperledger	
		Fabric, Creating Hyperledger Network, Case Study of Supply Chain	
		Management using Hyperledger	
6		Tools and Applications of Blockchain	3
		Corda, Ripple, Quorum and other Emerging Blockchain Platforms,	
		Blockchain in DeFi: Case Study on any of the Blockchain Platforms.	

Te	Textbooks:	
1	Blockchain Technology, Chandramouli Subramanian, Asha A. George, Abhillash K. A and	
	Meena Karthikeyen, Universities Press.	
2	Mastering Ethereum, Building Smart Contract and Dapps, Andreas M. Antonopoulos Dr.	
	Gavin Wood, O'reilly.	
3	Imran Bashir, Mastering Blockchain: A deep dive into distributed ledgers, consensus	
	protocols, smart contracts, DApps, cryptocurrencies, Ethereum, and more, 3rd Edition, Packt	
	Publishing	
Re	References:	
1	Blockchain for Beginners, Yathish R and Tejaswini N, SPD	
2	Blockchain Basics, A non Technical Introduction in 25 Steps, Daniel Drescher, Apress.	
3	Blockchain with Hyperledger Fabric, Luc Desrosiers, Nitin Gaur, Salman A. Baset,	
	Venkatraman Ramakrishna, Packt Publishing	

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

En	d Semester Theory Examination:
1	Question paper will comprise a total of six questions.
2	All question carries equal marks
3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
4	Only Four question need to be solved.
5	In question paper weightage of each module will be proportional to the number of respective
	lecture hours as mention in the syllabus.

Die	gital Useful Links
1	Blockchain By Example, Bellaj Badr, Richard Horrocks, Xun (Brian) Wu, November 2018,
1	Implement decentralized blockchain applications to build scalable Dapps.
2	Blockchain for Business, https://www.ibm.com/downloads/cas/3EGWKGX7.
3	https://www.hyperledger.org/use/fabric
4	NPTEL: https://onlinecourses.nptel.ac.in/noc19 cs63/preview
	Draft Syllabits Oraft Syllabits