БЛОК №7

7. ПОВЕРХНОСТИ 7.1. Теоретические положения

Поверхность на комплексном чертеже задается элементами, однозначно её определяющими. К ним относятся: оси вращения, очерковые линии, центр сферы, меридианы и т.п. Поверхность считается заданной, если для любой точки пространства можно на комплексном чертеже выяснить: «Принадлежит она данной поверхности или нет?». При решении задач следует руководствоваться правилом: точка принадлежит поверхности, если она принадлежит линии, расположенной на этой поверхности.

7.1.1. Поверхности вращения

Поверхностью вращения называется такая, которая образуется вращением какой-либо линии, называемой образующей, вокруг прямой, называемой осью вращения.

Окружности, по которым перемещаются точки образующей при её вращении вокруг оси, **называются параллелями** поверхности вращения.

Кривые линии, получающиеся в сечении поверхности вращения плоскостями, проходящими через ось вращения, называются **меридианами**. **Меридиан**, расположенный в плоскости уровня, **называется главным**.

Многообразие поверхностей вращения включает в себя и известные поверхности вращения второго порядка, такие как цилиндр и конус вращения, однополостный и двуполостный гиперболоиды вращения, параболоид вращения, Эллипсоид вращения.

7.1.2. Линейчатые поверхности

Поверхность называется линейчатой, если она образуется движением прямой линии (образующей) по заданному закону. Закон движения обычно задается направляющими линиями. К разворачивающимся (т.е. без складок и разрывов совмещающимся с плоскостью) линейчатым поверхностям относятся конические и цилиндрические поверхности, а также торсовая, образуемая касательными, проведенными к пространственной кривой в каждой её точке.

Линейчатые поверхности Каталана образуются с помощью трёх направляющих, в качестве которых могут выступать прямые и кривые линии и плоскости параллелизма. Плоскостью параллелизма называется плоскость, которой перемещающаяся по двум направляющим образующая остается постоянно параллельной (рис.39). зависимости OT вида направляющих различаются три вида линейчатых поверхностей с плоскостью параллелизма: направляющие

кривые линии —цилиндроид, направляющие а и b-кривая и прямая линии - коноид, направляющие а и b-скрещивающиеся прямые линии - линейчатый параболоид (другие названия — косая плоскость, гиперболический параболоид).

При решении задач, в которых встречаются линейчатые поверхности, следует помнить, что любая точка, принадлежащая поверхности, должна принадлежать какойлибо образующей этой поверхности.

К винтовым линейчатым поверхностям относятся прямой и наклонный геликоиды, образованные вращением прямой линии (образующей) вокруг оси с её равномерным одновременным перемещением вдоль этой оси. Если прямая образующая перпендикулярна оси вращения, то геликоид называется прямым, если пересекает ось под углом – наклонным.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какие существуют способы задания поверхностей?
- 2. Как задается кинематическая поверхность?
- 3. Что такое каркас поверхности?
- 4. Как определить принадлежность точки поверхности?
- 5. Что такое параллели и меридианы поверхности вращения?
- 6. Как образуется поверхность Каталана?
- 7. Приведите определение винтовой поверхности, способ её образования?
- 8. Назовите линейчатые развертывающиеся поверхности?

1. Построить очерковые линии поверхностей вращения и недостающие проекции точек ${\bf A}$ и ${\bf B}$, принадлежащих этим поверхностям.

2. Построить очерковые линии следующих поверхностей: сферы (заданы её центр $\mathbf O$ и точка $\mathbf A$ на поверхности) и конуса (заданы ось $\mathbf i$ и образующая ℓ).

3. Построить недостающие проекции кривой линии АВ, принадлежащей поверхности сферы.

4. Построить недостающие проекции криволинейных четырехугольников **ABCD**, принадлежащих поверхностям конусов.

5. Построить недостающие проекции точек A, B, C, D, E, F, принадлежащих поверхности тора (кольца).

6. Построить недостающие проекции точек и линий, принадлежащих следующим линейчатым поверхностям:

а) конической $\Phi(n,S)$;

б)цилиндрической $\Phi(n,s)$;

в) цилиндроиду $\Phi(a,b,\Pi_1);$

г) коноиду $\Phi(m,n,\Pi_2)$;

д) косой плоскости $\Phi(m,n,\Pi_2)$;

e) прямому геликоиду $\Phi(i,\ell,H)$;

ж) наклонному геликоиду $\Phi(\mathbf{i}, \ell, \mathbf{H})$.

