This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1. A compound of the general formula (I):

5/1/

wherein

R² is hydrogen or C₁₋₆-alkyl,

10

5

Z is arylene or a divalent radical derived from a 5 or 6 membered heteroaromatic ring containing 1 or 2 heteroatoms selected from nitrogen, oxygen and sulfur,

15

which may optionally be substituted with one or two groups R⁷ and R⁸ selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR⁹, -NR⁹R¹⁰ and C₁₋₆-alkyl,

15

wherein R⁹ and R¹⁰ independently are hydrogen or C₁₋₆-alkyl,

$$-(CH_{2})_{q}^{-}(CR^{12}R^{13})_{r}^{-}(CH_{2})_{s}^{-} \qquad -(CR^{12}R^{13})_{r}^{-}(CH_{2})_{s}^{-} \qquad -(CR^{12}R^{13})_{r}^{-}(CH_{2})_{s}^{-} \qquad -(CR^{12}R^{13})_{r}^{-}(CH_{2})_{s}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CR^{12}R^{13})_{r}^{-}(CH_{2})_{s}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CR^{12}R^{13})_{r}^{-}(CH_{2})_{s}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CR^{12}R^{13})_{r}^{-}(CH_{2})_{s}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{q}^{-} \qquad -(CH_{2})_{s}^{-} \qquad -(CH_{2$$

5 wherein

M

10

r is 0 or 1,

q and s independently are 0, 1, 2 or 3,

R¹¹, R¹², R¹³ and R¹⁴ independently are hydrogen or C₁₋₆-alkyl,

5 wherein

10

R¹⁵, R¹⁶, R¹⁷ and R¹⁸ independently are

- hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -SCF₃, -NO₂, -OR²¹, -NR²¹R²², -SR²¹, -NR²¹S(O)₂R²², -S(O)₂NR²¹R²², -S(O)NR²¹R²², -S(O)R²¹, -S(O)₂R²¹, -C(O)NR²¹R²², -OC(O)NR²¹R²², -OC(O)NR²¹R²², -CH₂C(O)NR²¹R²², -CH₂OR²¹, -CH₂NR²¹R²², -OC(O)R²¹, -C(O)R²¹ or -C(O)OR²¹,
- C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl,

which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR²¹, -NR²¹R²² and C_{1.6}-alkyl,

• C₃₋₈-cycloalkyl, C₄₋₈-cycloalkenyl, heterocyclyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkyloxy, C₃₋₈-cycloalkyl-C₁₋₆-alkylthio, C₃₋₈-cycloalkylthio,

10

15

20

$$\begin{split} &C_{3\text{-8}}\text{-cycloalkyl-}C_{2\text{-6}}\text{-alkenyl},\ C_{3\text{-8}}\text{-cycloalkyl-}C_{2\text{-6}}\text{-alkynyl},\ C_{4\text{-8}}\text{-cycloalkenyl-}C_{1\text{-6}}\text{-alkyl},\\ &C_{4\text{-8}}\text{-cycloalkenyl-}C_{2\text{-6}}\text{-alkenyl},\ C_{4\text{-8}}\text{-cycloalkenyl-}C_{2\text{-6}}\text{-alkynyl},\ \text{heterocyclyl-}C_{1\text{-6}}\text{-alkyl},\\ &\text{heterocyclyl-}C_{2\text{-6}}\text{-alkenyl},\ \text{heterocyclyl-}C_{2\text{-6}}\text{-alkynyl},\ \text{aryl-}xyl,\ \text{aryl-}xyl,\ \text{aryl-}xyl,\ \text{aryl-}xyl,\ \text{aryl-}xyl,\ \text{aryl-}xyl,\ \text{aryl-}xyl,\ \text{aryl-}xyl,\ \text{heteroaryl-}xyl,\ \text{heteroaryl-}xyl,\$$

of which the cyclic moieties optionally may be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR²¹, -NR²¹R²² and C_{1-6} -alkyl,

wherein R²¹ and R²² independently are hydrogen, C_{1.6}-alkyl or aryl,

or R²¹ and R²² when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

or two of the groups R^{15} to R^{18} when placed in adjacent positions together may form a bridge $-(CR^{23}R^{24})_a$ -O- $(CR^{25}R^{26})_c$ -O-,

wherein

a is 0, 1 or 2,

25 c is 1 or 2,

 $R^{23},\,R^{24},\,R^{25}$ and R^{26} independently are hydrogen, $C_{1\text{-}6}\text{-}alkyl$ or fluorine,

 R^{19} and R^{20} independently are hydrogen, C_{1-6} -alkyl, C_{3-8} -cycloalkyl or C_{3-8} -cyclo-alkyl, alkyl- C_{1-6} -alkyl,

E is
$$R^{27}$$
 R^{28} R^{30} R^{30} R^{31} R^{29} R^{31} R^{29} R^{30} R^{30} R^{31} R^{29} R^{31} R^{29} R^{30} R^{30} R^{30} R^{30} R^{30} R^{31} R^{30} R^{30} R^{31} R^{30} R^{30} R^{31} R^{30} R^{30} R^{31} R^{30} R^{31} R^{30} R^{31} R^{30} R^{30} R^{31} R^{30} R^{31} R^{30} R^{31} R^{31} R^{30} R^{31} R^{31} R^{31} R^{31} R^{32} R^{31} R^{32} R^{31} R^{32} R^{31} R^{32} R^{32} R^{33} R^{34} R^{35} R^{35

wherein

5

10

15

20

R²⁷ and R²⁸ independently are

hydrogen, halogen, -CN, -CF₃, -OCF₃, -OR³², -NR³²R³³, C_{1-6} -alkyl, C_{3-8} -cycloalkyl, C_{4-8} -cycloalkenyl or aryl,

wherein the cyclic moieties optionally may be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³², -NR³²R³³ and C₁₋₆-alkyl,

wherein

R³² and R³³ independently are hydrogen or C₁₋₆-alkyl, or

R³² and R³³ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

 $\ensuremath{\mathsf{R}}^{29},\,\ensuremath{\mathsf{R}}^{30}$ and $\ensuremath{\mathsf{R}}^{31}$ independently are

hydrogen, halogen, -CHF₂, -CF₃, -OCF₃, -OCH₂, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -OR³⁴, -NR³⁴R³⁵, -SR³⁴, -S(O)R³⁴, -S(O)₂R³⁴, -C(O)NR³⁴R³⁵, -OC(O)NR³⁴R³⁵, -NR³⁴C(O)R³⁵, -OCH₂C(O)NR³⁴R³⁵, -C(O)R³⁴ or -C(O)OR³⁴.

10

15

20

30

C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl,

which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁴, -NR³⁴R³⁵ and C_{1.6}-alkyl,

C₃₋₈-cycloalkyl, C₄₋₈-cycloalkenyl, heterocyclyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkenyl-C₂₋₆-alkenyl, C₃₋₈-cycloalkenyl-C₂₋₆-alkynyl, C₄₋₈-cycloalkenyl-C₂₋₆-alkenyl, C₄₋₈-cycloalkenyl-C₂₋₆-alkenyl, C₄₋₈-cycloalkenyl-C₂₋₆-alkynyl, heterocyclyl-C₁₋₆-alkyl, heterocyclyl-C₂₋₆-alkynyl, aryl, aryloxy, aroyl, aryl-C₁₋₆-alkoxy, aryl-C₁₋₆-alkyl, aryl-C₂₋₆-alkenyl, aryl-C₂₋₆-alkynyl, heteroaryl, heteroaryl-C₁₋₆-alkyl, heteroaryl-C₂₋₆-alkenyl, or heteroaryl-C₂₋₆-alkynyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁴, -NR³⁴R³⁵ and $C_{1.6}$ -alkyl,

wherein R³⁴ and R³⁵ independently are hydrogen, C_{1.6}-alkyl or aryl,

or R³⁴ and R³⁵ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

or two of the groups R²⁹, R³⁰ and R³¹ when attached to the same ring carbon atom or different ring carbon atoms together may form a radical -O-(CH₂)₁-CR³⁶R³⁷-(CH₂)₁-O-,
-(CH₂)₁-CR³⁶R³⁷-(CH₂)₁- or -S-(CH₂)₁-CR³⁶R³⁷-(CH₂)₁-S-,

wherein

t and I independently are 0, 1, 2, 3, 4 or 5,

R³⁶ and R³⁷ independently are hydrogen or C_{1.6}-alkyl.

as well as any optical or geometric isomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof.

- 2. A compound according to claim 1, wherein R² is hydrogen.
- 3. A compound according to claim 1, wherein Z is

- wherein R⁷ and R⁸ are as defined in claim 1.
 - 4. A compound according to claim 3, wherein Z is

5. A compound according to claim 1, wherein X is

- wherein q is 0 or 1, r is 0 or 1, s is 0, 1 or 2, and R^{12} and R^{13} independently are hydrogen or $C_{1.6}$ -alkyl.
- 6. A compound according to claim 5, wherein X is -C(O)NH-, -C(O)NHCH₂-, -C(O)NHCH(CH₃)-, -C(O)NHCH₂CH₂-, -C(O)CH₂-, -C(O)CH=CH-, -(CH₂)_s-, -C(O)-, -C(O)O- or -NHC(O)-, wherein s is 0 or 1.
 - 7. A compound according to claim 6, wherein X is -C(O)NH-, -C(O)NHCH₂-, -C(O)NHCH(CH₃)-, -C(O)NHCH₂-, -C(O)CH₂-, -C(O)- or -NHC(O)-.
- 15 8. A compound according to claim 7, wherein X is -C(O)NH-.

15

9. A compound according to claim 1, wherein D is

$$R^{15}$$
 , R^{16} ,

- wherein R^{15} , R^{16} , R^{17} , R^{18} , R^{19} and R^{20} are as defined in claim 1.
 - 10. A compound according to claim 9, wherein D is

wherein R¹⁵, R¹⁶ and R¹⁷ are as defined in claim 1.

- 11. A compound according to claim 9, wherein R^{15} , R^{16} and R^{17} independently are hydrogen, halogen, -CN, -NO₂, -CF₃, -OCF₃, - $\overrightarrow{SCF_3}$, $C_{1.6}$ -alkyl, $C_{1.6}$ -alkoxy, -S- $C_{1.6}$ -alkyl, -C(O)OR²¹, -C(O)R²¹, -C(O)NR²¹R²², -S(O)₂R²¹, -S(O)₂CF₃, -S(O)₂NR²¹R²², $C_{3.6}$ -cycloalkyl or aryl, or two of the groups R^{15} , R^{16} and R^{17} when placed in adjacent positions together form a bridge –(CR²³R²⁴)_a-O-(CR²⁵R²⁶)_c-O-, wherein R^{21} and R^{22} independently are hydrogen or $C_{1.6}$ -alkyl, and a, c, R^{23} , R^{24} , R^{25} and R^{26} are as defined in claim 1.
- 12. A compound according to claim 11, wherein R^{15} , R^{16} and R^{17} independently are hydrogen, halogen, -CN, -CF₃, -OCF₃ or $\widehat{C_{1.6}}$ -alkoxy.
 - 13. A compound according to claim 12, wherein R¹⁵, R¹⁶ and R¹⁷ independently are hydrogen, halogen, -CF₃ or -OCF₃.

14. A compound according to claim 1, wherein E is

- 5 wherein R²⁷, R²⁸, R²⁹, R³⁰ and R³¹ are as defined in claim 1.
 - 15. A compound according to claim 14, wherein E is

10

wherein R^{27} and R^{28} are as defined in claim 1.

- 16. A compound according to claim 14, wherein R^{27} and R^{28} independently are
- hydrogen, C₁₋₆-alkyl,
 - C₃₋₈-cycloalkyl, C₄₋₈-cycloalkenyl or phenyl, which may optionally be substituted as defined in claim 1.
- 20 17. A compound according to claim 16, wherein R²⁷ is hydrogen and R²⁸ is
 - C₁₋₆-alkyl,

15

20

25

30

• C₄₋₈-cycloalkenyl or C₃₋₈-cycloalkyl, which may optionally be substituted as defined in claim 1.

18. A compound according to claim 14, wherein E is

wherein R²⁹, R³⁰ and R³¹ are as defined in claim 1.

10 19. A compound according to claim 18, wherein E is

wherein R²⁹, R³⁰ and R³¹ are as defined in claim 1.

20. A compound according to claim 18, wherein R^{29} , R^{30} and R^{31} independently are

- hydrogen, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -OR³⁴,
 -NR³⁴R³⁵, -SR³⁴, -S(O)R³⁴, -S(O)₂R³⁴, -C(O)NR³⁴R³⁵, -OC(O)NR³⁴R³⁵, -NR³⁴C(O)R³⁵,
 -OCH₂C(O)NR³⁴R³⁵, -C(O)R³⁴ or -C(O)OR³⁴,
- C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl,

which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁴, -NR³⁴R³⁵ and C₁₋₆-alkyl,

C₃₋₈-cycloalkyl or C₄₋₈-cycloalkenyl,

which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁴, -NR³⁴R³⁵ and C₁₋₆-alkyl,

10

15

25

wherein R³⁴ and R³⁵ independently are hydrogen, C₁₋₆-alkyl or aryl,

or R³⁴ and R³⁵ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds.

21. A compound according to claim 20, wherein R²⁹, R³⁰ and R³¹ independently are

hydrogen, C_{1-6} -alkoxy, $-CF_3$, $-OCF_3$ or $-NR^{34}R^{35}$, wherein R^{34} and R^{35} are as defined in claim 1, or

 C_{1-6} -alkyl, C_{3-8} -cycloalkyl or C_{4-8} -cycloalkenyl, which are optionally substituted as defined in claim 1.

22. A compound according to claim 21, wherein R²⁹, R³⁰ and R³¹ independently are

hydrogen or

20

 C_{1-6} -alkyl, C_{3-8} -cycloalkyl or C_{4-8} -cycloalkenyl, which are optionally substituted as defined in claim 1.

- 23. A compound according to claim 22, wherein R^{29} , R^{30} and R^{31} independently are hydrogen, C_{1-6} -alkyl, C_{3-8} -cycloalkyl or C_{4-8} -cycloalkenyl, wherein C_{3-8} -cycloalkyl or C_{4-8} -cycloalkenyl are optionally substituted with C_{1-6} -alkyl.
- 24. A compound according to claim 23, wherein R²⁹ and R³¹ are both hydrogen and R³⁰ is C₁₋₆-alkyl, C₃₋₈-cycloalkyl or C₄₋₈-cycloalkenyl are optionally substituted with C₁₋₆-alkyl.
 - 25. A compound according to claim 24, wherein R^{29} and R^{31} are both hydrogen and R^{30} is $C_{1.6}$ -alkyl.

15

20

25

- 26. A compound according to claim 25, wherein R^{29} and R^{31} are both hydrogen and R^{30} is $C_{4.8}$ -cycloalkenyl which is optionally substituted with $C_{1.6}$ -alkyl.
- 27. A compound according to claim 1, wherein said compound has an IC₅₀ value of no greater than 5 μ M as determined by the Glucagon Binding Assay (I) or Glucagon Binding Assay (II).
- 28. A compound according to claim 27, wherein said compound has an IC₅₀ value of less than 1 μ M, preferably of less than 500 nM and even more preferred of less than 100 nM as determined by the Glucagon Binding Assay (I) or Glucagon Binding Assay (II).
- 29. A compound according to claim 1, wherein said compound is an agent useful for the treatment and/or prevention of an indication selected from the group consisting of hyperglycemia, impaired glucose tolerance, Type 2 diabetes, Type 1 diabetes and obesity.
- 30. A compound according to any one of the claims 1 to 29 for use as a medicament.
- 31. A pharmaceutical composition comprising at least one compound according to claim 1 together with one or more pharmaceutically acceptable carriers or excipients.
- 32. A pharmaceutical composition according to claim 31 in unit dosage form, said composition comprising from about 0.05 mg to about 1000 mg of the compound according to claim 1.
- 33. Use of a compound according to any one of the claims 1 to 29 for the preparation of a medicament for the treatment and/or prevention of disorders or diseases, wherein a glucagon antagonistic action is beneficial.
 - 34. Use of a compound according to any one of the claims 1 to 29 for the preparation of a medicament for the treatment and/or prevention of glucagon-mediated disorders and diseases.
 - 35. Use of a compound according to any one of the claims 1 to 29 for the preparation of a medicament for the treatment and/of prevention of hyperglycemia.

- 36. Use of a compound according to any one of the claims 1 to 29 for the preparation of a medicament for lowering blood glucose in a mammal.
- 37. Use of a compound according to any one of the claims 1 to 29 for the preparation of a medicament for the treatment and/or prevention of IGT.
 - 38. Use of a compound according to any one of the claims 1 to 29 for the preparation of a medicament for the treatment and/or prevention of Type 2 diabetes.
- 39. Use according to claim 38 for the preparation of a medicament for the delaying or prevention of the progression from IGT to Type 2 diabetes.
 - 40. Use according to claim 38 for the preparation of a medicament for the delaying or prevention of the progression from non-insulin requiring Type 2 diabetes to insulin requiring Type 2 diabetes.
 - 41. Use of a compound according to any one of the claims 1 to 29 for the preparation of a medicament for the treatment and/or prevention of Type 1 diabetes.
- 42. Use of a compound according to any one of the claims 1 to 29 for the preparation of a medicament for the treatment and/or prevention of obesity.
 - 43. Use according to any one of the claims 33 to 42 in a regimen which comprises treatment with a further antidiabetic agent.
 - 44. Use according to any one of the claims 33 to 43 in a regimen which comprises treatment with a further antiobesity agent.
- 45. Use according to any one of the claims 33 to 44 in a regimen which additionally comprises treatment with an antihypertensive agent.
 - 46. A method for the treatment and/or prevention of disorders or diseases, wherein a glucagon antagonistic action is beneficial, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.

15

20

- 47. The method according to claim 46, wherein the effective amount of the compound is in the range of from about 0.05 mg to about 2000 mg per day.
- 48. The method according to claim 46, wherein the effective amount of the compound is in the range of from about 0.1 mg to about 1000 mg per day.
 - 49. The method according to claim 46, wherein the effective amount of the compound is in the range of from about 0.5 mg to about 500 mg per day.
- 50. A method for the treatment and/or prevention of glucagon-mediated disorders and diseases, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
 - 51. A method for the treatment and/or prevention of hyperglycemia, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
 - 52. A method for for lowering blood glucose in a mammal, said method comprising administering to said mammal in need thereof an effective amount of a compound according to claim 1.
 - 53. A method for the treatment and/or prevention of impaired glucose tolerance, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1. ___
 - 54. A method for the treatment and/or prevention of Type 2 diabetes, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 30 55. A method for delaying or preventing the progression from impaired glucose tolerance to Type 2 diabetes, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.

30

- 56. A method for delaying or preventing the progression from non-insulin requiring Type 2 diabetes to insulin requiring Type 2 diabetes, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 57. A method for the treatment and/or prevention of Type 1 diabetes, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 58. A method for the treatment and/or prevention of obesity, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
 - 59. The method according to claim 46, further comprising administering an antidiabetic agent to said subject.
- 15 60. The method according to claim 46, further comprising administering an antiobesity agent to said subject.
 - 61. The method according to claim 46, further comprising administering an antihypertensive agent to said subject.
 - 62. A pharmaceutical composition according to claim 31 in unit dosage form, said composition comprising from about 0.1 mg to about 500 mg of the compound according to claim 1.
- 25 63. A pharmaceutical composition according to claim 31 in unit dosage form, said composition comprising from about 0.5 mg to about 200 mg of the compound according to claim 1.
 - 64. A compound according to claim 27, wherein said compound has an IC₅₀ value of less than 500 nM as determined by the Glucagon Binding Assay (I) or Glucagon Binding Assay (II).
 - 65. A compound according to claim 27, wherein said compound has an IC₅₀ value of less than 100 nM as determined by the Glucagon Binding Assay (I) or Glucagon Binding Assay (II).