LQR - State Analysis

LQR is an optimal control algorithm that calculates the best effective control input given the Q and R matrices to the controller for estimating the best K control matrix to apply to the state input.

For the simulation our findings are:

- HIGH Q, LOW R FINISHED AND GET THE GOALS VERY FAST
- HIGH R, LOW Q ONLY STAYS ON GOAL 3
- HIGH R, HIGH Q ACHIEVES ALL GOALS VERY CONSERVATIVE
- LOW R, LOW Q ONLY STAYS ON GOAL 1
- MID Q, MID R A WELL BALANCE BETWEEN GOAL AND RESPONSE INPUT

Import libraries

```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import glob
import os
```

Load the log file and calculcate position and goals

```
In [3]: df = pd.read_csv(fpath, nrows=1)
    df.head(2)
```

Out[3]:

	q_diag	r_diag	horizon	tolerance	dt_	
0	0.85	0.2	100	0.2	0.2	

```
In [4]: df = pd.read_csv('log_task4.csv', skiprows=2)

df['Goal'] = np.sqrt(df.X_Goal**2+df.Y_Goal**2)

df['Pos'] = np.sqrt(df.X_Pos**2+df.Y_Pos**2)

df['error_x'] = df.X_Goal - df.X_Pos

df['error_y'] = df.Y_Goal - df.Y_Pos

df['error'] = df.Goal - df.Pos

df['error_theta'] = df.Theta_Goal - df.Theta

df.head()
```

Out[4]:

	X_Goal	Y_Goal	X_Pos	Y_Pos	Theta_Goal	Theta	Goal	Pos	error_x	error_y	error	error_theta
0	1	1.0	0.001182	2.042230e-07	0.785398	7.549530e-07	1.414214	0.001182	0.998818	1.0	1.413032	0.785397
1	1	1.0	0.011637	2.114010e-07	0.785398	6.888020e-07	1.414214	0.011637	0.988363	1.0	1.402577	0.785397
2	1	1.0	0.017428	1.706140e-07	0.785398	1.007170e-06	1.414214	0.017428	0.982572	1.0	1.396785	0.785397
3	1	1.0	0.041714	-2.976340e-08	0.785398	1.138330e-06	1.414214	0.041714	0.958286	1.0	1.372500	0.785397
4	1	1.0	0.076365	-2.923880e-07	0.785398	1.322700e-06	1.414214	0.076365	0.923635	1.0	1.337849	0.785397

```
In [5]: def plot_pair(var1, var2, var3, palette, color_var1, color_var2, color_var3, title, xlabel, ylabel):
            fig, ax = plt.subplots(1, figsize=(12,6))
            ax = sns.lineplot(
                data=df,
                x=df.index, y=var1,
                palette=palette,
                label=var1,
                color = color_var1,
                ax=ax
            )
            ax = sns.lineplot(
                data=df,
                x=df.index, y=var2,
                palette=palette,
                label=var2,
                color=color_var2,
                ax=ax
            )
            ax = sns.lineplot(
                data=df,
                x=df.index, y=var3,
                palette=palette,
                label=var3,
                color=color_var3,
                ax=ax
            fig.suptitle(title)
            ax.set_xlabel(xlabel)
            ax.set_ylabel(ylabel)
            ax.legend(title="Legend", loc="upper left", fontsize=12, title_fontsize='13')
            ax.grid(True)
        def plot_distributions(var1, var2, var1_color, var2_color):
            fig, ax = plt.subplots(figsize=(12,6))
            sns.histplot(df.X_Goal, color=var1_color, ax=ax, label=var1)
            sns.histplot(df.X_Pos, color=var2_color, ax=ax, label=var2)
            ax.legend();
            ax.set_xlabel(f'{var1} | {var2}')
```

```
fig.suptitle(f'{var1} | {var2} Distributions')
```

X (Goal vs Pos) Analysis

We can show here the effects of trajectories of X, Y and Theta over time and also the errors.

For this qualification we can se how good is the controller performing over time the control actions.

X Goal (SP) vs X Pos

Y_Goal (SP) vs Y_Pos

Goal (SP) vs Pos

Theta_Goal (SP) vs Theta

In [10]: plot_distributions(var1='X_Goal', var2='X_Pos', var1_color='blue', var2_color='darkorange')

X_Goal | X_Pos Distributions

In [11]: plot_distributions(var1='Y_Goal', var2='Y_Pos', var1_color='blue', var2_color='green')

Y_Goal | Y_Pos Distributions

In [12]: plot_distributions(var1='Goal', var2='Pos', var1_color='blue', var2_color='red')

Goal | Pos Distributions

In [13]: plot_distributions(var1='Theta_Goal', var2='Theta', var1_color='blue', var2_color='magenta')

Theta_Goal | Theta Distributions

