$PS8_{T}ao$

jiongliangtao

March 2019

1 Introduction

Table 1:
1.501
-0.991
-0.247
0.744
3.504
-1.999
0.502
0.997
1.256
1.999

My estimate is very similar to the true value of beta in (1).

			7	Table 2:					
1.501	-0.991	-0.247	0.744	3.504	-1.999	0.502	0.997	1.256	1.999
			J	Table 3:					
1.501	-0.991	-0.247	0.744	3.504	-1.999	0.502	0.997	1.256	1.999
			7	Table 4:					
1.462	-0.977	-0.234	0.775	3.507	-1.971	0.537	0.971	1.243	2.002

From the table above, we can see that the Nelder Mead is less accurate than the LBFGS method.

Table 5:

1.501	-0.991	-0.247	0.744	3.504	-1.999	0.502	0.997	1.256	1.999	-0.500

i

Table 6:

	$Dependent\ variable:$				
	Y				
X1	1.501***				
	(0.002)				
X2	-0.991***				
	(0.003)				
X3	-0.247^{***}				
	(0.003)				
X4	0.744***				
	(0.003)				
X5	3.504***				
	(0.003)				
X6	-1.999***				
	(0.003)				
X7	0.502***				
	(0.003)				
X8	0.997***				
	(0.003)				
X9	1.256***				
	(0.003)				
X10	1.999***				
	(0.003)				
Observations	100,000				
R^2	0.971				
Adjusted R ²	0.971				
Residual Std. Error	0.500 (df = 99990)				
F Statistic	338,240.000**** (df = 10; 99990)				
Note:	*p<0.1: **p<0.05: ***p<0.01				

Note:

*p<0.1; **p<0.05; ***p<0.01