Лабораторный практикум по курсу «Математическая статистика»

Лабораторная работа № 1 «Проверка статистических гипотез»

студентаВасильев	группы <u> — Б21-</u>	<u>524</u> . Дата сдачи:_07.11.2023
Ведущий преподаватель:	Трофимов А.Г.	_ оценка:
подпись:		
	Вариант №	6

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проверки статистических гипотез.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры Математическо ожидание, <i>mi</i>		Дисперсия, σ_i^2
X_1	$\chi^2(2)$	$\chi^2(n)$	2	4
X_2	N(3, 1)	$N(m,\sigma)$	3	1

Указание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \overline{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i	Объем выборки, <i>n</i> _i
X_1	2.100	4.736	2.176	150
X_2	2.998	1.119	1.058	150
Pooled	2.549	2.927	1.464	300

Указание: для расчета использовать функции mean, var, std (scipy.stats: describe)

2. Однопараметрические критерии

Для случайной величины X_1 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = _0.05$ _	Ошибка стат. решения
z-test	m = 2.1	-0.002	0.998	<i>Н</i> ₀ принимает ся	нет
t-test	m = 1.9	1.119	0.264	<i>Н</i> ∂принимает ся	нет
χ²-test (m – изв)	σ = 2.1	161.409	0.496	<i>Н</i> ∂принимает ся	нет
χ²-test (m – не изв)	σ = 2	176.398	0.124	<i>Н</i> ∂принимает ся	нет

Указание: для проверки гипотез использовать функции **ztest**, **ttest**, **vartest** (**scipy.stats: ttest_1samp**, **chisquare**)

3. Двухвыборочные критерии

Для случайных величин X_1, X_2 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = _0.05_$	Ошибка стат. решения
2-sample t-test	$m_1 = m_2$	-5.030	8.482 e^- 7	<i>H</i> ₀ отвергаетс я	нет
2-sample F-test (m – изв)	$\sigma_1 = \sigma_2$	4.180	0	<i>Н</i> ∂принимает ся	нет
2-sample F-test (m – не изв)	$\sigma_1 = \sigma_2$	4.168	0	<i>H</i> ₀принимает ся	нет

Указание: для проверки гипотез использовать функции ttest2, vartest2 (scipy.stats: ttest_ind, chisquare)

4. Исследование распределений статистик критерия

Статистическая гипотеза: H_0 : $\underline{m}_I = 2 (\underline{\sigma}_I \underline{u} \underline{s} \underline{e})$

Формула расчёта статистики критерия Z: $\overline{\sigma/\sqrt{n}}$

Формула расчёта статистики P-value: $p = 2 * min(\underline{F_Z(z)}, 1 - \underline{F_Z(z)})$

Число серий экспериментов N = 1000

Теоретические характеристики:

СВ	Распределение в условиях H_0	Параметры	Математическое ожидание	Дисперсия	С.к.о.
Z	N(0,1)	m, σ^2	m = 0	1	1
P-value	R(0,1)	a,b	m = 0.5	0.08	0.29

Выборочные характеристики:

СВ	Среднее	Оценка дисперсии	Оценка с.к.о.	
Z	0.050	1.050	1.025	
P-value	0.489	0.083	0.289	

Указание: при расчете выборочных значений статистики использовать функции norminv, tinv, chi2inf, finv (scipy.stats: norm.ppf, t.ppf, chi2.ppf, f.ppf)

Гистограмма частот статистики Z и теоретическая функция $f_z(z|H_0)$:

Гистограмма частот статистики P-value и теоретическая функция $f_p(p|H_0)$:

Указание: для построения гистограмм и теоретических функций плотности использовать функции hist, normpdf, tpdf, chi2pdf, fpdf (scipy.stats: norm.pdf, t.pdf, chi2.pdf, f.pdf, histogram; matplotlib.pyplot: hist)