Suites numériques

Destiné aux élèves de Terminale S Lycée de Dindéfelo Présenté par M. BA

1^{er} décembre 2024

I. Généralités

1. Définition

On appelle suite numérique toute fonction définie de \mathbb{N} ou d'une partie E de \mathbb{N} vers \mathbb{R} .

On note : $U: \mathbb{N} \to \mathbb{R}$

 $n \mapsto U_n$

Le réel U_n est appelé terme général ou terme d'indice n. L'ensemble des termes de la suite est noté (U_n) et $n \in \mathbb{N}$ ou $(U_n)n \in \mathbb{N}$.

2. Modes de définition d'une suite

2.1. Suite explicite

2.2.Définition

Lorsqu'une suite (U_n) est exprimée en fonction de n, alors on dit que la suite (U_n) est définie par une formule explicite et on note $U_n = f(n)$.

Exemple 1:

Soit (u_n) et (v_n) des suites définies par : $u_n = 2n^2 + 1$ $v_n = \frac{n^2 - 4}{2n}n \in \mathbb{N}^*$

Calculer

 u_0 ; u_{10} ; u_{50}

 v_1 ; v_{10} ; v_{50}

Solution 1:

3. Suite définie par récurrence

3.1.Définition

Lorsque la suite (U_n) est définie par une relation entre U_n et U_{n+1} , alors on dit que (U_n) est définie par une relation de récurrence.

$$\left\{ \begin{array}{cccc} u_0 & = & \alpha \\ u_{n+1} & = & 2u_n-3 \end{array} \right., \quad \left\{ \begin{array}{cccc} v_1 & = & \alpha \\ v_{n+1} & = & f(v_n) \end{array} \right.$$

NB: Par exemple, pour calculer u_p , il faudrait faire p calculs successifs. Exemple 2:

$$\begin{cases} u_0 = 2 \\ U_{n+1} = \frac{2U_n + 3}{U_n + 1} \end{cases}$$

Calculer les cinq premier termes de u_n .

Solution 2:

Exercice d'application 1:

Dans chacun des cas suivants, calculer les 6 premiers termes de la suite U_n .

1.
$$U_n = 7n^2 - 5n + 2, n \in \mathbb{N}$$
.

2. $u_{n+1} = 2u_n + 3$ et $u_0 = -1$.

Correction 1:

4. Sens de variation d'une suite

Définition:

Une suite (u_n) est dite :

- Croissante si : $\forall n$, : $u_{n+1} \ge u_n$. c'est-à-dire, $u_{n+1} u_n > 0$
- Décroissante si : $\forall\;n;,\;:\;u_{n+1}\leq u_n.$ c'est-à-dire, $\;u_{n+1}-u_n<0\;$
- Monotone si elle est croissante ou décroissante.
- Constante si : $\forall n$, : $u_{n+1} = u_n$.

Étudier le sens de variation d'une suite (u_n)

C'est dire si elle est croissante ou décroissante ou constante.

Règle:

Pour étudier le sens de variation d'une suite (u_n) , on compare deux termes consécutifs, pour cela, on peut étudier le signe de leur différence, ou, s'il s'agit de nombres strictement positifs, comparer leur quotient à 1.

Exemple 3:

Soit la suite (u_n) définie par : $u_n = \frac{n+2}{2n+1}$

Alors:
$$u_{n+1} = \frac{(n+1)+2}{2(n+1)+1} = \frac{n+3}{2n+3}$$

$$u_{n+1} - u_n = \frac{n+3}{2n+3} - \frac{n+2}{2n+1} = \frac{-3}{(2n+1)(2n+3)}$$
Pour tout entier naturel n , on a donc: $u_{n+1} - u_n$

Pour tout entier naturel n, on a donc : $u_{n+1} - u_n < 0$.

La suite étudiée est par conséquent décroissante.

Solution 3:

II. Démonstration par récurrence

La démonstration par récurrence suit les étapes suivantes :

1. Initialisation

On montre que la propriété P(n) est vraie pour une première valeur $n = n_0$.

$$P(n_0)$$
 est vraie.

2. Hypothèse de récurrence

On suppose que la propriété est vraie pour un entier $k \geq n_0$. C'est ce qu'on appelle l'hypothèse de récurrence :

$$P(k)$$
 est vraie.

3. Hérédité

On démontre que si la propriété est vraie pour n = k, alors elle est aussi vraie pour n = k + 1. Autrement dit, on montre que:

$$P(k) \implies P(k+1).$$

4. Conclusion

Si les deux étapes précédentes sont vérifiées, alors, par le principe de récurrence, la propriété est vraie pour tout $n > n_0$.

Exemple 4:

Montrer que Pour tout $n \geq 1$

$$S(n) = 1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

Solution 4:

Propriété à démontrer : Pour tout $n \ge 1$, la somme des n premiers entiers naturels est donnée par:

$$S(n) = 1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

Étape 1: Initialisation

Pour n = 1, on a:

$$S(1) = 1.$$

D'autre part :

$$\frac{1(1+1)}{2} = 1.$$

Donc, la propriété est vraie pour n=1.

Étape 2 : Hypothèse de récurrence

Supposons que la propriété est vraie pour un entier $k \ge 1$, c'est-à-dire :

$$S(k) = \frac{k(k+1)}{2}.$$

Étape 3 : Hérédité

Montrons que la propriété est vraie pour k+1. En utilisant la définition de S(k+1), on a :

$$S(k+1) = S(k) + (k+1).$$

En remplaçant S(k) par l'hypothèse de récurrence, on obtient :

$$S(k+1) = \frac{k(k+1)}{2} + (k+1).$$

Factorisons (k+1):

$$S(k+1) = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}.$$

Ainsi, la propriété est vraie pour k + 1.

Conclusion

Par le principe de récurrence, la propriété est vraie pour tout $n \ge 1$.

Exercice d'application 2:

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_{n+1} = \frac{1}{3}u_n + \frac{5}{3}, & \forall n \in \mathbb{N}, \\ u_0 = 1. \end{cases}$$

Montrer que : $\forall n \in \mathbb{N}, \ u_n < \frac{5}{2}$.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_{n+1} = \sqrt{12 + u_n}, & \forall n \in \mathbb{N}, \\ u_0 = 0. \end{cases}$$

1. Montrer que : $\forall n \in \mathbb{N}^*, \ 3 \leq u_n \leq 4$.

Correction 2:

III. Suites Minorée-Majorée-Bornée-Convergente-Divergente-adjacents

1. Suites Minorées

Une suite (u_n) est dite **minorée** s'il existe un réel $m \in \mathbb{R}$ tel que :

$$\forall n \in \mathbb{N}, \quad u_n \geq m.$$

Dans ce cas, le nombre m est appelé une borne inférieure de la suite (u_n) .

Exemple 5:

Considérons la suite définie par :

$$u_n = \frac{1}{n}$$
, pour $n \in \mathbb{N}^*$.

Étudions si cette suite est minorée.

Solution 5:

Pour tout $n \in \mathbb{N}^*$, nous avons $u_n = \frac{1}{n} > 0$. Cela signifie que u_n est strictement positive pour tout entier naturel n. Ainsi, la suite (u_n) est minorée par 0, car :

$$\forall n \in \mathbb{N}^*, \quad u_n \ge 0.$$

2. Suites Majorées

Une suite (u_n) est dite **majorée** s'il existe un réel $M \in \mathbb{R}$ tel que :

$$\forall n \in \mathbb{N}, \quad u_n \leq M.$$

Dans ce cas, le nombre M est appelé une **borne supérieure** de la suite (u_n) .

Exemple 6:

Considérons la suite définie par :

$$u_n = 1 - \frac{1}{n}$$
, pour $n \in \mathbb{N}^*$.

Étudions si cette suite est majorée.

Solution 6:

Pour tout $n \in \mathbb{N}^*$, nous avons $u_n = 1 - \frac{1}{n}$. Observons les propriétés suivantes :

- Lorsque n augmente, $\frac{1}{n}$ diminue, ce qui implique que u_n croît et se rapproche de 1 sans jamais dépasser cette valeur.
- Ainsi, nous avons $u_n \leq 1$ pour tout $n \in \mathbb{N}^*$. La suite (u_n) est donc majorée par M = 1.

3. Suites Bornées

Une suite (u_n) est dite **bornée** s'il existe deux réels $m, M \in \mathbb{R}$ tels que :

$$\forall n \in \mathbb{N}, \quad m \le u_n \le M.$$

Dans ce cas, m est une borne inférieure et M une borne supérieure de la suite (u_n) . En d'autres termes, une suite bornée est à la fois majorée et minorée.

Exemple 7:

Considérons la suite définie par :

$$u_n = (-1)^n \cdot \frac{1}{n}$$
, pour $n \in \mathbb{N}^*$.

Étudions si cette suite est bornée.

Solution 7:

Pour tout $n \in \mathbb{N}^*$, la suite (u_n) alterne les signes (car $(-1)^n$ change de signe à chaque terme) et sa valeur absolue est donnée par $|u_n| = \frac{1}{n}$, qui décroît vers 0 lorsque $n \to \infty$.

Ainsi, nous avons:

$$-\frac{1}{n} \le u_n \le \frac{1}{n}.$$

Cela signifie que la suite (u_n) est minorée par $-\frac{1}{1} = -1$ et majorée par $\frac{1}{1} = 1$ pour tout $n \ge 1$. Par conséquent, (u_n) est une suite bornée.

4. Suites Convergente

- Si $(u_n)_n$ est croissante et majorée, c-à-d $(u_n \leq M)$, alors $(u_n)_n$ est convergente vers un $l \in \mathbb{R}$.
- Si $(u_n)_n$ est décroissante et minorée, c-à-d $(u_n \ge m)$, alors $(u_n)_n$ est convergente vers un $l \in \mathbb{R}$.

Remarque La suite u est dite convergente si et seulement si $\lim_{n\to\infty} u_n = \ell \in \mathbb{R}$. On dit que u converge vers ℓ

Exemple 8:

D'après l'exemple 7

$$u_n = \frac{1}{n}$$
, pour $n \in \mathbb{N}^*$.

est minorée. De plus, cette suite est décroissante, car pour n < m, nous avons $u_n > u_m$. Donc, la suite (u_n) est minorée et décroissante, ce qui implique qu'elle converge vers sa borne inférieure, à savoir :

$$\lim_{n \to \infty} u_n = 0$$

D'après l'exemple 8

$$u_n = 1 - \frac{1}{n}$$
, pour $n \in \mathbb{N}^*$.

est donc majorée par M=1. Par conséquent, la suite (u_n) est majorée et croissante. Elle converge vers sa borne supérieure, à savoir :

$$\lim_{n \to \infty} u_n = 1.$$

D'après l'exemple 9

De plus, lorsque $n \to \infty$, $|u_n| \to 0$, donc la suite converge vers 0. Nous avons donc :

$$\lim_{n \to \infty} u_n = 0.$$

Solution 8:

5. Suites Divergente

- Si $(u_n)_n$ est croissante et non majorée, alors $\lim_{n\to\infty}u_n=+\infty$. donc elle diverge
- Si $(u_n)_n$ est décroissante et non minorée, alors $\lim_{n\to\infty}u_n=-\infty$.donc elle diverge

Exemple 9:

La suite suivante est-elle $(u_n)_n = n - 3 + \frac{1}{n+1}$ est convergente? Solution 9:

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} (n - 3 + \frac{1}{n+1})$$

6. Théorème de la convergence

- Toute suite croissante et majorée est convergente .
- Toute suite décroissante et minorée est convergente .

Propriété

- Toute suite croissante et non majorée a pour limite $+\infty$.
- Toute suite décroissante et non minorée a pour limite $-\infty$.

7. Suites adjacents

Deux suites u et v sont adjacentes si et seulement si , l'une est croissante, l'autre est décroissante et la limite de leur différence est égale à 0 . C'est-à-dire

$$\begin{cases} u \text{ est croissante} \\ v \text{ est décroissante} \\ \lim_{n \to \infty} (u_n - v_n) = 0 \end{cases} \text{Ou} \begin{cases} v \text{ est croissante} \\ u \text{ est décroissante} \\ \lim_{n \to \infty} (u_n - v_n) = 0 \end{cases}$$

Exemple 10:

Soient deux suites définies par :

$$u_n = 1 - \frac{1}{n}, \quad v_n = 1 + \frac{1}{n}.$$

Montrer que les deux suite sont adjacents.

Solution 10:

Exercice d'application 3: Soient les deux suites suivantes définies par récurrence pour tout $n \in \mathbb{N}$:

$$\begin{cases} u_0 = 1, & v_0 = 2, \\ u_{n+1} = \frac{u_n + v_n}{2}, & v_{n+1} = \sqrt{u_n \cdot v_n}. \end{cases}$$

Correction 3:

7.Théorème du point fixe

 $\begin{cases} (u_n) \text{ est une suite qui converge vers un réel } \ell \\ f \text{ une fonction définie sur un intervalle } I \text{ et continue en } \ell \end{cases} \quad \mathbf{Alors} \lim_{x \to +\infty} f(u_n) = f(\ell)$ Pour tout entier naturel $n, u_n \in I$

Exemple 11:

 (u_n) est la suite définie par $u_0=0$ et pour tout entier naturel $n,u_n+1=\frac{1}{2}u_n+1$.

- a) Montrer que pour tout entier naturel $n, u_n \leq u_{n+1} \leq 2$
- b)En déduire que (u_n) est convergente. On note ℓ sa limite.
- c) Déterminer la valeur de ℓ

Solution 11:

IV. Représentation graphique des termes d'une suite

1. Suite explicite

- Si u_n est définie de façon explicite; $u_n = f(n)$ alors représenter graphiquement la suite (u_n) consiste à représenter dans un repère l'ensemble des points isolés (n, u_n) .
 - $-\,$ On peut aussi représenter directement les valeurs des termes de la suite sur l'un des axes du repère.

Exemple 12:

Représenter les 6 premiers termes de la suite (u_n) définie par

a)
$$u_n = \frac{n^2 + 1}{2n + 3}$$

Solution 12:

a)

La suite $u_n = 2n - 7$ est représentée par les points (n, u_n) pour n = 0, 1, 2, 3, 4, 5.

2. Suite définie par récurrence

$$\begin{cases} u_0 = \alpha, \\ u_{n+1} = g(u_n), \end{cases}$$

où g est la fonction associée à la suite (u_n) . On trace C_g , ainsi que la première bissectrice y=x.

Par une méthode graphique de projection, on construit les termes successifs de la suite (u_n) en suivant les étapes suivantes :

- 1. On place le premier terme u_0 sur l'axe des abscisses.
- 2. On lit la valeur de $u_1 = g(u_0)$ en projetant u_0 verticalement sur C_g . Cette valeur se trouve sur l'axe des ordonnées.
- 3. On projette u_1 sur l'axe des abscisses à l'aide de la première bissectrice y=x.
- 4. On utilise à nouveau la courbe C_g pour déterminer $u_2=g(u_1)$, en projetant u_1 verticalement sur C_g .
- 5. On projette u_2 sur l'axe des abscisses via la première bissectrice.
- 6. On répète ce processus pour calculer les termes suivants u_3, u_4, \ldots

Ce procédé, appelé *construction par itération graphique*, permet de visualiser l'évolution des termes de la suite (u_n) et d'étudier son comportement (convergence, divergence ou oscillation).

Exemple 13:

Soit (u_n) la suite définie par, $u_0 = 2$ et, pour tout $n \in \mathbb{N}$ $u_{n+1} = 2\sqrt{u_n}$.

Construis les 6 premiers termes de (u_n) .

Solution 13:

Soit f la fonction définie sur $[0; +\infty[$ par $f: x \mapsto 2\sqrt{x}$. Ainsi, pour tout $n \in \mathbb{N}, u_{n+1} = f(u_n)$

1.On trace (C_f) , la courbe représentation de la fonction f.

2.On trace la droite la d'équation y = x

Exercice d'application 4:

b)
$$u_n = 2n - 7$$

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_{n+1} = \sqrt{5u_n} + 1 \\ u_0 = 1. \end{cases}$$

Correction 4:

IV. Suite arithmétiques et suites géométriques

1. Suite arithmétiques

Une suite (u_n) est arithmétique si chaque terme s'obtient en ajoutant au précédent un même nombre r appelé raison : $u_{n+1} = u_n + r$.

a. Expression du terme général

Si (u_n) une suite arithmétique de raison r et de premier terme U_p alors on a :

$$u_n = u_p + (n - p)r$$

Avec u_p le premier terme, p l'indice du premier terme et r la raison

A retenir

Pour montrer qu'une suite (U_n) est arithmétique de raison r, il suffit de montrer que :

$$U_{n+1} - U_n = r$$

Exemple 14:

On considère la suite (U_n) définie par :

$$U_n = 5n + 3$$

Montrer que (U_n) est une suite arithmétique dont on précisera la raison et le premier terme. Solution 14:

b. Somme des premiers termes

Soit (Un) une suite arithmétique.

Pour tous entiers naturels n et p tels que $p \leq n$, on a :

De façon général si la suite a pour premier terme u_p , alors la somme $S_n = u_p + u_{p+1} + \ldots + u_n$ vaut :

$$S_n = \frac{(n-p+1)(u_p + u_n)}{2}$$

NB la Somme $S_n = u_0 + u_1 + \ldots + u_n$ peut etre notée par $S_n = \sum_{k=0}^n u_k$.

Exemple de sommation:

$$\sum_{k=0}^{4} 2k + 7 = \cdots$$

$$\sum_{k=0}^{10} 5 = \cdots$$

2. Suites géométriques

Une suite (u_n) est dite géométrie si chaque terme s'obtient en multipliant le précédent par un même nombre q appelé raison : $u_{n+1} = u_n \times q$.

a. Expression du terme général

Si le premier terme est u_p , alors :

$$u_n = u_p \times q^{n-p}$$

A retenir

Pour montrer qu'une suite u_n est géométrique de raison q, il suffit de montrer que :

$$\frac{U_{n+1}}{U_n} = q$$

Exemple 15:

Montrer que (v_n) est une suite géométrique dont on précisera la raison et le premier terme puis exprimer (v_n) en fonction de n.

$$\begin{cases} U_0 = 5 \\ U_{n+1} = 2U_n + 3 \end{cases} \quad et \quad V_n = U_n + 3$$

b. Somme des premiers termes

Pour toute suite géométrique, de raison $q \neq 1$, on a :

$$S_n = u_p + u_{p+1} + \ldots + u_n = u_p \times \frac{1 - q^{n-p+1}}{1 - q}$$

$$S_n = u_p \times \frac{1 - q^{n-p+1}}{1 - q}$$

c. Sens de variation

- Si 0 < q < 1, la suite (u_n) est décroissante.
- Si q > 1, la suite (u_n) est croissante.
- Si q = 1, la suite (u_n) est constante.

Remarque:

Soit q un nombre réel. Soit q un nombre réel.

— Si q > 1, alors

$$\lim_{n \to +\infty} q^n = +\infty.$$

— Si -1 < q < 1, alors

$$\lim_{n \to +\infty} q^n = 0.$$

V. Etude de suites définie par récurrence

EXERCICE 3 (BAC 2023)

On considère la suite numérique $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} U_0=6\\ U_{n+1}=\frac{1}{U_n}+\frac{3}{4}U_n, n\in\mathbb{N} \end{cases}$ culer u_1 et u_2 .

- (0.5pt)1) Calculer u_1 et u_2 .
- 2) Démontrer par récurrence que : $\forall n \in \mathbb{N}, \quad u_n \ge \sqrt{3}$. (01pt)
- 3) Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{1}{x} + \frac{3}{4}x.$
 - a) Etudier le sens de variations de f. (01pt)
 - b) En déduire par récurrence que $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante. (0.5pt)
- 4) Montrer que $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite. (01pt)