已知函数
$$f(x) = \frac{1}{a^x + 1} - \frac{1}{2}$$
 ($a > 0$ 且 $a \ne 1$), 若关于 x 的不等式 $f(ax^2 + bx + c) > 0$ 的

解集为(1,2),其中 $b \in (-6,1)$,则实数a的取值范围是______.

已知函数 $y = \sqrt{1 - x^2}$, $-\frac{1}{2} \le x \le \frac{1}{2}$ 的图像绕着原点按逆时针方向旋转 θ ($0 \le \theta \le \pi$) 弧度,

若得到的图像仍是函数图像,则 θ 可取值的集合为______.

.(1,2)

解析: 若
$$f(x) > 0$$
,则 $\frac{1}{a^x + 1} - \frac{1}{2} > 0$, $\therefore a^x < 1$,

当 0<a<1 时, x>0;当 a>1 时, x<0.

::不等式 $f(ax^2 + bx + c) > 0$ 的解集为(1,2),

∴
$$a>1$$
, $ax^2 + bx + c < 0$, 且 $ax^2 + bx + c < 0$ 的解集为 (1,2),

:.1 和 2 是方程 $ax^2 + bx + c = 0$ 的两个根,

∴
$$-\frac{b}{a}$$
 =1+2=3, ∴ $a = -\frac{1}{3}b$, \overline{m} $b \in (-6,1)$, ∴ $a \in \left(-\frac{1}{3},2\right)$,

又::a>1, $a \in (1,2)$,即实数 a 的取值范围是 (1,2).

若对任意 $x \in [1,2]$,均有 $|x^2 - a| + |x + a| = |x^2 + x|$,则实数 a 的取值范围为______. [-1,1]

.已知函数
$$f(x) = \begin{cases} x - \frac{8}{x} & x < 0 \\ |x - a| & x \ge 0 \end{cases}$$
,若对任意的 $x_1 \in [2, +\infty)$,都存在 $x_2 \in [-2, -1]$,使得

 $f(x_1) \cdot f(x_2) \ge a$,则实数 a 的取值范围为______.

【解析】 $\because x_1 \in [2,+\infty)$, $x_2 \in [-2,-1]$, $f(x_2) > 0$,

 $\therefore (x_2-rac{8}{x_2})\cdot |x_1-a|\geq a$,即对任意的 $x_1\in [2,+\infty)$,都存在

$$x_2 \in [-2,-1]$$
 ,使 $|x_1-a| \geq rac{a}{x_2 - rac{8}{x_2}}$ 恒成立 ,

∴有
$$|x_1-a|_{min}\geq (rac{a}{x_2-rac{8}{x_2}})_{min}=rac{a}{7}$$
 ,

当a≤0时,显然不等式恒成立;

当
$$0 < a < 2$$
时, $2 - a \geq rac{a}{7}$,解得 $0 < a \leq rac{7}{4}$;

当 $a\geqslant 2$ 时, $|x_1-a|\in [0,+\infty)$,此时不成立.

综上,
$$a \leq \frac{7}{4}$$
.

故答案为: (-∞.⁷/₄]