

Current Phase 2 Reconstruction - Performance

the offline tracking for Phase2
 is based on the Iterative Tracking

	Step Name	Seeding	Target Tracks		
*	HighPtQuad	pixel quadruplets	prompt, high $p_{_{\rm T}}$		
*	HighPtTriplet	pixel triplets	prompt, high p _t , recovery		
*	LowPtQuad	pixel quadruplets	prompt, low p _T		
* :ry)	LowPtTriplet	pixel triplets	prompt, low p _t , recovery		
	DetachedQuad	pixel quadruplets	displaced		
	PixelPair	pixel pairs	high p _r , recovery		
	Muon Inside-Out	muon-tagged tracks	muon		
	Muon Outside-In	muon-tagged tracks	muon		

^{*} iterations as we have in the current HLT configuration

Current Phase 2 Reconstruction - Timing

From our previous slides: (previous release)

	Efficiency [%]		Fakerate [%]			<timing> per event [ms]</timing>		ns]
	<pu>=0 <pu>=200</pu></pu>		<pu>=0</pu>	<pu>=200</pu>		<pu>=0</pu>	<pu>=200</pu>	
HighPtQuad	77	74	0.25	1.8	x7	140	6600	x50
HighPtTriplet	15	15	0.7	25	x36	28	3000	x115
LowPtQuad	0.8	0.9	0.3	7.8	x26	60	7300	x120
LowPtTriplet	0.05	0.09	1	35	x35	10	1600	x180
DetachedQuad	0.6	0.5	0.7	17	x24	12	3900	x350
PixelPair	1	1	2	55	x27	6	450	x90

^{*} w/in the HighPtQuad <timing> we are not taking into account the currently needed PV reconstruction, which costs **8** and **2400** ms at <PU>=0 and <PU>=200 respectively, as now

To Do

- reduce the number of iterations from 6(8) to 2 iterations ✓
- tuning the pattern recognition in order to minimize the timing (while keeping the physics performance) (
 - i.e. limit the number of candidates in the pattern recognition ✓
- update: using the beamspot instead of the PV in the track selection (~✓)
- Increase the thresholds (pT > 0.9 GeV) (ongoing)
- Limit pseudorapidity (|eta| < 3) (ongoing)
- Check usage of pixel PV
- Check usage of pixelTracks
- Try seed cleaning
- Check effect of PV constraint

- MC_Tracking_v0: it represents the minimum set of modules for the track reconstruction as it is done in the offline reconstruction ✓
- MC_Tracking_v2 : path with 2 iterations ✓
 - Performance and Timing Plots with this version ✓
 - Working with CMSSW_11_0_0_pre6 + Run on new samples (106X, thanks!) ✓

CMSSW_11 Baseline Timing

Inner tracking / total

PU=0: 255 / 600 ms [42%] PU=200 : 11537 / 15985 ms [72%]

Adapting MC_Tracking_v2 to HLT - Performance Plots

Baseline CMSSW_11 Efficiency vs Eta - PU200

Efficiency vs Eta - PU200

Adapting MC_Tracking_v2 to HLT - Performance Plots

Baseline

FakeRate vs PU

FakeRate vs PU

Timing

inner tracking / total

PU=0: 235 / 590 ms [40%] PU=200: 9820 / 17271 ms [57%]

timing gain: 2.5 s (15%)

- Time for "initialsteptrackcandidates" and "highpttripletsteptrackcandidates" decreased
- Time for "unsortedOfflinePrimaryVertices" increased (slightly more fakes)

BACKUP

CMSSW_11 Baseline Performance Plots

CMSSW_11 Baseline Performance Plots

Efficiency vs Phi - PU200

Efficiency vs PU

Fake Rate vs PU

Backup 0

CMSSW 11 Baseline Performance Plots

Backup 0
CMSSW_11 Baseline Performance Plots

Backup 0
CMSSW_11 Baseline Performance Plots

Switch to CMSSW_11_0_0_pre6 - Part 1

Step3 from the release (trackingOnly):

- > cmsrel CMSSW_11_0_0_pre6
- > cd CMSSW_11_0_0_pre6/src/ && cmsenv
- > runTheMatrix.py -w upgrade -n | grep 2026 | grep trackingOnly | grep 14TeV
- > runTheMatrix.py -w upgrade -l 20434.1 > 20434.1.log &

Reconstruction and validation done with:

cmsRun step3_RAW2DIGI_RECO_VALIDATION_DQM.py (MC samples? For now running on CMSSW_10_6 samples)

Switch to CMSSW_11_0_0_pre6 - Part 2

#process.load('Configuration.StandardSequences.Validation_cff')
#process.load('DQMServices.Core.DQMStoreNonLegacy_cff')
#process.load('DQMOffline.Configuration.DQMOfflineMC_cff')

process.load('Configuration.StandardSequences.FrontierConditions GlobalTag cff')

→ /afs/cern.ch/work/h/hyarar/public/Phase2/MC_Tracking/MC_Tracking_CMSSW_11_0_pre6

Release generated script with cleaned up cff files & paths

example

process.load('raw2digi step cff') Version 2) Release generated script with new paths plugged in process.load('MC Tracking v2 cmssw 11 0 cff') ############# process.load('MC prevalidation v2 cff') step3 RAW2DIGI RECO VALIDATION DQM.pv process.load('MC Dgmoffline v2 cff') needs: - step2.root - extras cmssw 11 0 cff.py (extra modules needed) - raw2digi step cff.py slight changes in the new release, like a - MC Tracking v0 cmssw 11 0 cff.py / MC Tracking v1 cmssw 11 0 cff.py / MC Tracking v2 cmssw 11 0 cff.py parameter called seedAs5DHit is - MC prevalidation v0 cff.py / MC prevalidation v1 cff.py / MC prevalidation v2 cff.py needed for TrajectoryBuilders (all changes - MC Damoffline step v0 cff.py / MC Damoffline step v1 cff.py / MC Damoffline step v2 cff.py can be found with a comment search #cmssw_11_0) Extra needed modules process.schedule = cms.Schedule(process.load("extras_cmssw_11 0 cff") *[process.raw2digi_step,process.MC Tracking_v2, process.load('Configuration.Geometry.GeometryExtended2026D41Reco cff') process.MC prevalidation v2, process.MC validation v2, process.load('Configuration.StandardSequences.MagneticField cff') process.MC Dqmoffline v2, process.DQMoutput step]) #process.load('Configuration.StandardSequences.RawToDigi cff') commented out #process.load('Configuration.StandardSequences.Reconstruction cff')

Backup 3
Adapting MC_Tracking_v2 to HLT - Performance Plots

Efficiency vs Phi - PU200

Efficiency vs PU

Fake Rate vs PU

Performance seems fine

Current Phase 2 Reconstruction - Timing

Cmssw Timing Job with multithreading

https://twiki.cern.ch/twiki/bin/viewauth/CMS/TriggerStudiesTiming

4. Executing the CMSSW Timing Job

- → For timing studies
- Running on vocms003/4 machine
- Multithreaded
 - 4 cores

As with all other hit jobs you just have to run with cmsRun. There are a few tips for doing a timing study however:

. If running witough multithreading, just execute the cmsRun job as always.

```
cmsRun hlt.py >& full.log&
```

If you want to compare your results with the timing obtained online, use 4 threads like the online processes do. In the HTL menu configuration scripts set the number of threads to 4

```
# enable TrigReport, TimeReport and MultiThreading
process.options = cms.untracked.PSet(
    wantSummary = cms.untracked.bool( True ),
    numberOfThreads = cms.untracked.uint32( 4 ),
    numberOfStreams = cms.untracked.uint32( 0 ),
)
```

Then start the script and assign the threads to 4 cores. This will assure you run as online (i.e., without hyperthreading).

```
#example assign to run on cores 0,1,2,3
nohup taskset -c 0-3 cmsRun hlt.py >& full.log&
```

Backup 5

3 iterations: Performance - Efficiency vs eta

The efficiency is recovered by the HighPtTriplet step, LowPtQuad does not add much.

Backup 5

3 iterations: Performance - Efficiency vs pt

- LowPtTriplet, DetachedQuad, PixelPair, and Muon iterations
 - o are meant for recovering the efficiency in phase-space which are probably not that relevant at HLT