India Energy Transition Dashboard (2000–2025)

Power BI Dashboard

M.TECH. (IIT BOMBAY): ENERGY SYSTEMS ENGINEERING

Table of Contents

1 Project Overview		roject Overview	. 2
2	0	bjectives	. 2
3	R	epository Structure	. 2
4	D	ataata	. 3
	4.1	Data Sources	. 3
	4.2	Assumptions & Limitations	. 3
	4.3	Data Preparation	. 3
	4.4	Standardization:	. 4
5	М	lethodology & Calculation:	. 4
	5.1	Emission Factors & Calculations	. 4
	5.2	Efficiency, Utilization and Emission Calculation	. 4
6	D	ata Model & Tables	. 5
	6.1	Fact Tables	. 5
	6.2	Dimension Tables	. 5
7	K	ey Measures & KPIs	. 6
8	D	ashboard Layout	. 6
	8.1	Page 1 – National Level Energy Summary	. 6
	8.2	Page 2 – State Level Energy Summary (1/2)	. 6
	8.3	Page 3 – State Level Energy Summary (2/2)	. 7
9	A	nalytical Use Cases	. 7
1	0	Key Insights	. 7
1	1	Technical Skills Demonstrated	. 7
1:	2	Business Value	. 7
1	3	Future Scope	. 8
1.	4	How to Use	8

1 Project Overview

This project develops an interactive Power BI dashboard to analyse India's installed capacity, generation, energy mix, renewable share, and emissions at national and state levels (2000–2025) & to provide insights useful for energy policy, planning, and consulting.

2 Objectives

- Understand the progress of India's energy transition from fossil fuels to renewables by combining domain expertise in the energy systems with Power BI data analytics skills.
- Visualize capacity addition, generation trends, and RE share at both national & state level.
- Quantify emissions from fossil generation and avoided emissions from renewable energy.
- Build interactive dashboards with filters and drilldowns for decision-making.
- Demonstrate data cleaning, modelling, and visualization skills in Power BI.

3 Repository Structure

India_Energy_Transition/

- README.md
- Data/
 - o raw/# Original downloaded datasets
 - processed/ # Cleaned & structured Excel files
- Docs/
 - Data model diagram
 - DAX_measures
- pbix/
 - India_Energy_Transition.pbix
- Output docs/ # Final outputs (Report PDF)

4 Data

4.1 Data Sources

Datasets	Source
Electricity Installed Capacity (State/national, by source)	NITI Aayog Energy Data Portal (ICED)
	https://iced.niti.gov.in
Electricity Power Generation (State/national, by source)	NITI Aayog Energy Data Portal (ICED)
	https://iced.niti.gov.in
Emission factors	CEA Baseline CO₂ factors
	(https://cea.nic.in)
India States Locations (Longitude, Latitude)	https://www.kaggle.com/

4.2 Assumptions & Limitations

- Year Ranges: Multi-year blocks (e.g., 2002–07) converted to single-year data at range-end.
- Renewable Definition: Solar, Wind, Small-Hydro, Bio Power.
- Capacity Factor: Derived directly from reported generation values.
- Missing Data: year gaps data filled using interpolation.
- Scope: Only national level & Indian states considered (Union Territories excluded).
- India Map: Used ArcGIS (only visible in online mode) because of Power BI desktop version limitation

4.3 Data Preparation

- Source Data: Downloaded raw datasets from NITI Aayog Energy data portal & CEA.
- Restructuring Years: Where only 5-year cumulative values were given, disaggregated into single years by interpolation. Renamed all "March-end" columns to reflect the corresponding year.
- Renewable Energy (RE) Consolidation: Created RES Total (2009–2025). Grouped subcategories into Solar (all types combined) and Biopower for consistency (2014–2025).
- Back casting (1997, 2002, 2007): Derived missing values using multiplying factors based on 2009 shares: Multiplying factor = year 2009 specific row value/ Total RES for year 2009
- Interpolation: Estimated annual values between plan-period years (1997, 2002, 2007) by dividing differences equally across intervals.
- **Validation**: Cross-checked reconstructed yearly series with India's 5-Year Plan periods for consistency.
- Final Transformation: Clean dataset structured into columns: Year | State | Source | Capacity (MW) | Generation (GWh) | Emissions (tCO₂ per MWh)
- **Cleaning Tools:** MS Excel (pre-processing), Power BI (pre-processing, modelling & visualization).

4.4 Standardization:

- Units: Capacity (MW), Generation (GWh).
- Source names harmonized: Coal, Oil & Gas, Nuclear, Hydro, Solar, Wind, Small-Hydro, Bio Power
- Added "All India" rows in fact tables for direct national-level KPIs.
- Excluded Union Territories for simplification

5 Methodology & Calculation:

- Data Collection & Integration
- Data Cleaning and Transformation
- Data Modelling
- KPI & Metric Calculation
- Dashboard Development
- Validation & Cross-Check

5.1 Emission Factors & Calculations

Emission Factors (CEA Baseline Database, FY 2023-24):

EF_{Coal} = 0.97 tCO₂/MWh

 $EF_{Oil \& Gas} = 0.45 tCO_2/MWh$

Nuclear, Hydro & Renewables = 0

EF_{source} = Emission factor of a particular fuel source

EF_{fossil}, avg= weighted average emission factor of fossil fuels (Coal, Oil & gas)

$$\mathsf{EF}_{\mathsf{fossil},\,\mathsf{avg}} = \frac{\sum_{Fossil\,sources}(Generation_{Source}*EF_{source})}{\sum_{fossil\,sources}(Generation_{sources})}$$

5.2 Efficiency, Utilization and Emission Calculation

- Total Emissions = $\sum_{all\ sources} (Generation_{Source} * EF_{source})$
- Avoided Emissions = Total Renewable Generation * EF_{fossil}, avg
- Grid Emission Intensity gCO2 per kWh = $\frac{\text{Total Emission}}{\text{Total Generation}}$
- Avoided Emission = Total Renewable Generation * *EF*_{fossil,avg}
- Capacity Factor = $\frac{Total\ Generation}{Total\ Capacity*Yearly\ Hours}$

6 Data Model & Tables

- The model follows a Star Schema design in Power BI for efficient querying and flexible analysis.
- Fact tables store the main quantitative data for capacity, generation & emission factors
- Dimension tables provide descriptive attributes (state, region, source, year) to allow easy filtering/slicing
- Relationship: Many to one between facts and dimensions

6.1 Fact Tables

- **Generation_table:** Year, State, Source, Generation (GWh)
- Capacity_table: Year, State, Source, Capacity (MW)
- EF_Table: Source, Emission Factor (tCO2 PER MWh), notes
- Location Coordinates: State, Latitude, Longitude

6.2 Dimension Tables

- DimYear: Calendar year (2000–2025)
- DimState: State, Region
- DimSource: Source, Source group, Is_Renewable (True/False),
 Emission Factor tCO₂/MWh

7 Key Measures & KPIs

Core metrics developed in DAX, designed to work at both state and national levels:

Measures: Logical grouping of all KPIs

- Capacity Share (%)
- Generation Share (%)
- Renewable Energy Share
- **Capacity Factor**
- **Grid Emission Intensity**
- **Avoided Emission**
- Growth metrics (2020-25)
- Top 5 States by different metrics\

Capacity

- CAP RE MW
- CAP_Total_NoAllIndia_MW CAP RE NoAllIndia MW Cap_BySource_MW

Generation

- GEN RE GWh
- GEN Total NoAllIndia GWh GEN RE NoAllIndia GWh Gen_BySource_GWh

Emission

EM_AVG_Fossil_tCo2_perMWh EM_Avoided_MtCO2 EM_Intensity_Total_gCO2_per EM Total MtCO2

Shares (Energy Mix)

CAP RE Share % CAP RE NoAllIndia Share % CAP_RE_Source_Share_% CAP_Source_Share_% GEN RE Share % GEN RE Share NoAllIndia % GEN_Source_Share_% GEN RE Source Share %

Efficiency and Utilization

CF_RE_% CF Total % CAP_Growth_YoY_% GEN_Growth_YoY_%

National Cards

• Cap_%_by_Source CAP_Growth_2020_2025_% CAP_Growth_YoY_fixed_% CAP_RE_fixed_MW CAP_Total_fixed_MW
CF_Total_Fixed_%
EM_Avoided_fixed_MtCO2 EM_intensity_Total_gCO2_per_kWh_fixed EM_Total_fixed_MtCO2 Gen_%_by_source_ GEN_Growth_2020_2025_% GEN_Growth_YoY__fixed_%

GEN RE fixed GWh

GEN_Total_fixed_GWh

State Cards

CAP_Growth_State_2020_2025_% CAP RE State fixed MW CAP_Total_State_fixed_MW CF_Total_State_Fixed_% EM Avoided State fixed MtCO2 EM_intensity_Total_State_gCO2_per_kWh_fixed EM_Total_State_fixed_MtCO2 GEN Growth State 2020 2025 % GEN_RE_State_fixed_GWh GEN_Total_State_fixed_GWh Top5 Rank CAP Top5_Rank_GEN Top5_Rank_CAP_RE Top5 Rank EM Avoided

Top5 Rank EM Total Top5_Rank_RE_GEN

8 Dashboard Layout

8.1 Page 1 – National Level Energy Summary

- Cards (2025 baseline): Renewable capacity, Renewable Generation, Total Capacity, Total Generation, avoided emissions, Total CO2 emissions, Grid emission intensity, capacity factor (%), 2020–25 capacity and generation growth.
- Graphs: Total capacity & generation trends, emissions trends, avoided emissions, Capacity and Generation share by source for year 2000-2025
- **Slicers:** Year, source, source Type, Is Renewable.

8.2 Page 2 – State Level Energy Summary (1/2)

- Cards (2025): Same KPIs as national but state-specific.
- **Graphs:** Same trends but state-specific for year 2016-2025
- **Slicers:** Year, state, region, source, source type, Is renewable

8.3 Page 3 – State Level Energy Summary (2/2)

- Graphs: Top 5 states by capacity, Renewable capacity, generation, Renewable generation, emissions, avoided emissions.
- Map: State-wise total & Renewable generation.
- Slicers: Year, state, region, source, source type, Is renewable

9 Analytical Use Cases

- **National-level insights:** Track India's RE transition, fossil reliance, and emissions avoidance.
- **State benchmarking:** Compare states by generation, capacity mix, and emission.
- **Top performers:** Identify top 5 states driving the Renewable energy push.
- **Scenario testing:** Use slicers to dynamically see year-wise, source-wise, and region-wise shifts.

10 Key Insights

- India's Renewable share in capacity is significantly higher than in generation shows utilization challenge.
- Coal remains the backbone of power generation (~70%), driving emissions.
- Avoided emissions from Renewable Energy are growing rapidly, reducing around 240 MtCO₂ in 2025.
- State-level variations: Southern & Western states dominate in solar and wind, while Eastern India is still coal-heavy.
- Rajasthan and Gujarat lead in Renewable generation while Chhattisgarh and Uttar Pradesh lead in Emissions.

11 Technical Skills Demonstrated

- **Power BI:** Data transformation (Power Query), star schema modelling and dimension design, DAX, measure, Dashboard design principles, interactive map
- Excel: Data cleaning & transformation
- Analytics: KPI design, Emission modelling, actionable insights
- Energy Domain: Knowledge of India's power sector, emissions accounting, RE integration.

12 Business Value

- Helps policymakers assess progress toward renewable targets.
- Provides state-level insights for investment prioritization.
- Quantifies emission reduction benefits of RE adoption.

13 Future Scope

- Integrate Real-time data APIs
- Add Financial Metrics LCOE, tariff data etc.
- Scenario Analysis Add projections for 2030/2070 net zero
- Automate updates via Power Query
- Benchmarking Compare India with global Renewable/CO₂ intensity benchmarks

14 How to Use

- Download the .pbix file from repository link
- Open file in Power BI Desktop.
- Keep Internet ON to view India map
- Use slicers to explore national/state data