Convex nonsmooth optimization Part II: Proximity operator

Barbara Pascal

LS2N, CNRS, Centrale Nantes, Nantes University, Nantes, France barbara.pascal@cnrs.fr

http://bpascal-fr.github.io

Collaboration

This course is a direct adaptation of the course built by Jean-Christophe Pesquet (CentraleSupélec) and Nelly Pustelnik (LPENSL)

Motivation

Let $\mathcal H$ be a real Hilbert space. Let $f\in \Gamma_0(\mathcal H)$ have a Lipschitz gradient with Lipschitz constant $\beta>0$. Find

$$\widehat{x} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} f(x).$$

Gradient descent algorithm

Set
$$\gamma \in]0, +\infty[$$
 and $x_0 \in \mathcal{H}$.
For $n = 0, 1...$
 $\mid x_{n+1} = x_n - \gamma \nabla f(x_n).$

The sequence $(x_n)_{n\in\mathbb{N}}$ generated by this *explicit* scheme converges to a minimizer of f provided that such a minimizer exists and $\gamma\in]0,2/\beta[$.

Motivation

Let \mathcal{H} be a real Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$ have a Lipschitz gradient with Lipschitz constant $\beta > 0$.

Find

$$\widehat{x} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} f(x).$$

Alternative algorithm

Set
$$\gamma \in]0, +\infty[$$
 and $x_0 \in \mathcal{H}$.

For n = 0, 1...

$$| x_{n+1} = x_n - \gamma \nabla f(x_{n+1}).$$

Questions:

- ightharpoonup How to determine x_{n+1} at each iteration n of this *implicit* scheme ?
- ▶ Which values of γ guarantee the convergence of $(x_n)_{n \in \mathbb{N}}$?
- What to do if f is nonsmooth?

Let \mathcal{H} be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$.

lacktriangleq The Moreau envelope of f of parameter $\gamma\in\]0,+\infty[$ is

$$^{\gamma}f\colon \mathcal{H} \to \mathbb{R}\colon x \mapsto \inf_{y\in\mathcal{H}} f(y) + \frac{1}{2\gamma} \|y-x\|^2.$$

Let \mathcal{H} be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$.

lacktriangle The Moreau envelope of f of parameter $\gamma\in\]0,+\infty[$ is

$$^{\gamma}f: \mathcal{H} \to \mathbb{R}: x \mapsto \inf_{y \in \mathcal{H}} f(y) + \frac{1}{2\gamma} ||y - x||^2.$$

 \triangleright The proximity operator of f is

$$\operatorname{prox}_{\gamma f} \colon \mathcal{H} \to \mathcal{H} \colon x \mapsto \underset{y \in \mathcal{H}}{\operatorname{argmin}} \ f(y) + \frac{1}{2\gamma} \|y - x\|^2.$$

Let \mathcal{H} be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$.

▶ The Moreau envelope of f of parameter $\gamma \in]0, +\infty[$ is

$$^{\gamma}f:\mathcal{H}\to\mathbb{R}:x\mapsto \inf_{y\in\mathcal{H}}f(y)+\frac{1}{2\gamma}\|y-x\|^2.$$

 \triangleright The proximity operator of f is

$$\operatorname{prox}_{\gamma f} \colon \mathcal{H} \to \mathcal{H} \colon \mathsf{x} \mapsto \underset{\mathsf{y} \in \mathcal{H}}{\operatorname{argmin}} \ f(\mathsf{y}) + \frac{1}{2\gamma} \|\mathsf{y} - \mathsf{x}\|^2.$$

Proximity operator: characterization

Let \mathcal{H} be a Hilbert space and $f \in \Gamma_0(\mathcal{H})$.

$$(\forall x \in \mathcal{H})$$
 $p = \operatorname{prox}_f(x) \Leftrightarrow x - p \in \partial f(p)$.

Proximity operator: characterization

Let \mathcal{H} be a Hilbert space and $f \in \Gamma_0(\mathcal{H})$.

$$(\forall x \in \mathcal{H})$$
 $p = \operatorname{prox}_f(x) \Leftrightarrow x - p \in \partial f(p)$.

<u>Proof</u>: By using Fermat's rule, for every $x \in \mathcal{H}$, $p = \text{prox}_f(x)$ if and only if

$$p = \underset{y \in \mathcal{H}}{\arg \min} \ f(y) + \frac{1}{2} ||y - x||^2$$

$$\Leftrightarrow 0 \in \partial \left(f + \frac{1}{2} || \cdot -x||^2 \right) (p)$$

$$\Leftrightarrow 0 \in \partial f(p) + p - x$$

$$\Leftrightarrow x \in (\mathrm{Id} + \partial f)(p).$$

Let \mathcal{H} be a Hilbert space and $\mathcal{C} \subset \mathcal{H}$.

The indicator function of C is

$$(\forall x \in \mathcal{H}) \qquad \iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise.} \end{cases}$$

Projection:

If C be a nonempty closed convex subset of \mathcal{H} , then

$$(\forall x \in \mathcal{H}) \qquad \operatorname{prox}_{\iota_{\mathcal{C}}}(x) = \operatorname{argmin} \frac{1}{2} \|y - x\|^2 = P_{\mathcal{C}}(x).$$

Power q function with $q \ge 1$:

Let $\chi > 0$, $q \in [1, +\infty[$ and $\varphi \colon \mathbb{R} \to]-\infty, +\infty] : \eta \mapsto \chi |\xi|^q$.

Then, for every
$$\xi \in \mathbb{R}$$
,

Then, for every
$$\xi \in \mathbb{R}$$
,
$$\begin{cases} \operatorname{sign}(\xi) \max\{|\xi| - \chi, 0\} & \text{if } q = 1 \\ \xi + \frac{4\chi}{3 \cdot 2^{1/3}} \left((\epsilon - \xi)^{1/3} - (\epsilon + \xi)^{1/3} \right) & \text{if } q = \frac{4}{3} \\ \text{where } \epsilon = \sqrt{\xi^2 + 256\chi^3/729} & \text{if } q = \frac{4}{3} \\ \xi + \frac{9\chi^2 \operatorname{sign}(\xi)}{8} \left(1 - \sqrt{1 + \frac{16|\xi|}{9\chi^2}} \right) & \text{if } q = \frac{3}{2} \\ \frac{\xi}{1 + 2\chi} & \text{if } q = 2 \\ \operatorname{sign}(\xi) \frac{\sqrt{1 + 12\chi|\xi|} - 1}{6\chi} & \text{if } q = 3 \\ \left(\frac{\epsilon + \xi}{8\chi} \right)^{1/3} - \left(\frac{\epsilon - \xi}{8\chi} \right)^{1/3} & \text{where } \epsilon = \sqrt{\xi^2 + 1/(27\chi)} & \text{if } q = 4 \end{cases}$$

Power q function with $q \ge 1$ and $\chi = 2$.

Quadratic function:

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.

Let $L \in \mathcal{B}(\mathcal{G}, \mathcal{H})$, $\gamma \in]0, +\infty[$ and $z \in \mathcal{G}$.

$$f = \gamma \|L \cdot -z\|^2 / 2 \quad \Rightarrow \quad \operatorname{prox}_f = (\operatorname{Id} + \gamma L^* L)^{-1} (\cdot + \gamma L^* z).$$

Let \mathcal{H} be a Hilbert space, $x \in \mathcal{H}$ and $f \in \Gamma_0(\mathcal{H})$.

Properties	g(x)	prox _g x
Translation	$f(x-z), z \in \mathcal{H}$	$z + \operatorname{prox}_f(x - z)$
Quadratic perturbation	$f(x) + \alpha \parallel x \parallel^2 / 2 + \langle z \mid x \rangle + \gamma$ $z \in \mathcal{H}, \alpha > 0, \gamma \in \mathbb{R}$	$\operatorname{prox}_{\frac{f}{\alpha+1}}\left(\frac{x-z}{\alpha+1}\right)$
Scaling	$f(ho x), ho \in \mathbb{R}^*$	$\frac{1}{\rho} \operatorname{prox}_{\rho^2 f}(\rho x)$
Reflexion	f(-x)	$-\operatorname{prox}_f(-x)$
Moreau enveloppe	$ \gamma f(x) = \inf_{y \in \mathcal{H}} f(y) + \frac{1}{2\gamma} x - y ^2 $ $ \gamma > 0 $	$\frac{1}{1+\gamma} \left(\gamma x + \operatorname{prox}_{(1+\gamma)f}(x) \right)$

For every $i \in \{1, ..., n\}$, let \mathcal{H}_i be a Hilbert space and let $f_i \in \Gamma_0(\mathcal{H}_i)$. If

$$(\forall x = (x_1, \ldots, x_n) \in \mathcal{H}_1 \times \cdots \times \mathcal{H}_n) \quad f(x) = \sum_{i=1}^n f_i(x_i),$$

then

$$\left(\forall x = (x_1, \dots, x_n) \in \mathcal{H}_1 \times \dots \times \mathcal{H}_n\right) \quad \operatorname{prox}_f(x) = \left(\operatorname{prox}_{f_i}(x_i)\right)_{1 \leq i \leq n}$$

Let \mathcal{H} be a separable Hilbert space.

Let $(b_i)_{i \in I}$ be an orthonormal basis of \mathcal{H} .

For every $i \in I$, let $\varphi_i \in \Gamma_0(\mathbb{R})$ such that $\varphi_i \geq 0$. For every $x \in \mathcal{H}$, if

$$f(x) = \sum_{i \in I} \varphi_i(\langle x \mid b_i \rangle)$$

then

$$\operatorname{prox}_f(x) = \sum_{i \in I} \operatorname{prox}_{\varphi_i}(\langle x \mid b_i \rangle) b_i.$$

Remark: The assumption $(\forall i \in I)$ $\varphi_i \geq 0$ can be relaxed if \mathcal{H} is finite dimensional.

Let \mathcal{H} be a separable Hilbert space.

Let $(b_i)_{i \in I}$ be an orthonormal basis of \mathcal{H} .

For every $i \in I$, let $\varphi_i \in \Gamma_0(\mathbb{R})$ such that $\varphi_i \geq 0$. For every $x \in \mathcal{H}$, if

$$f(x) = \sum_{i \in I} \varphi_i(\langle x \mid b_i \rangle)$$

then

$$\operatorname{prox}_f(x) = \sum_{i \in I} \operatorname{prox}_{\varphi_i}(\langle x \mid b_i \rangle) b_i.$$

Example: $\mathcal{H} = \mathbb{R}^N$, $(b_i)_{1 \leq i \leq N}$ canonical basis of \mathbb{R}^N , $f = \lambda \| \cdot \|_1$ with $\lambda \in [0, +\infty[$.

$$(\forall x = (x^{(i)})_{1 \le i \le N}) \in \mathbb{R}^N) \qquad \operatorname{prox}_{\lambda \| \cdot \|_1}(x) = \left(\operatorname{prox}_{\lambda | \cdot |}(x^{(i)}) \right)_{1 \le i \le N}$$

Let $\mathcal H$ and $\mathcal G$ be two Hilbert spaces. Let $f\in \Gamma_0(\mathcal H)$ and $L\in \mathcal B(\mathcal G,\mathcal H)$ such that $LL^*=\mu\mathrm{Id}$ where $\mu\in]0,+\infty[$. Then

$$\operatorname{prox}_{f \circ L} = \operatorname{Id} - \mu^{-1} L^* \circ (\operatorname{Id} - \operatorname{prox}_{\mu f}) \circ L.$$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ such that $LL^* = \mu \mathrm{Id}$ where $\mu \in]0, +\infty[$. Then

$$\operatorname{prox}_{f \circ L} = \operatorname{Id} - \mu^{-1} L^* \circ (\operatorname{Id} - \operatorname{prox}_{\mu f}) \circ L.$$

<u>Proof</u>: $LL^* = \mu \mathrm{Id} \Rightarrow \mathrm{ran}\, L = \mathcal{H}$ is closed, hence

 $V = \operatorname{ran}(L^*) = (\ker L)^{\perp}$ is closed. The orthogonal projection onto V is $P_V = L^*(LL^*)^{-1}L = \mu^{-1}L^*L$.

For every $x \in \mathcal{H}$, $p = \operatorname{prox}_{f \circ L} x \Leftrightarrow x - p \in \partial(f \circ L)(p) = L^* \partial f(Lp)$

(since ran $L = \mathcal{H}$). Thus, $x - p \in V$.

It can be deduced that $P_{V^{\perp}}p = P_{V^{\perp}}x = x - P_{V}x = x - \mu^{-1}L^*Lx$. Furthermore,

 $x - p \in L^*\partial f(Lp) \Rightarrow Lx - Lp \in \mu\partial f(Lp) \Leftrightarrow Lp = \operatorname{prox}_{\mu f}(Lx).$ We have thus $P_V p = \mu^{-1} L^* Lp = \mu^{-1} L^* \operatorname{prox}_{\mu f}(Lx)$ and $p = P_V p + P_{V^{\perp}} p = x - \mu^{-1} L^* (\operatorname{Id} - \operatorname{prox}_{\mu f})(Lx).$

Particular case : $L \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ unitary, $\operatorname{prox}_{f \circ I} = L^* \operatorname{prox}_f L$.

▶ Illustration: denoising using an ℓ_1 penalty on the coefficients resulting from an orthogonal wavelet transform L.

Useful websites

- Exhaustive list of proximity operators, Matlab and Python codes: http://proximity-operator.net/ authors: Chierchia, Chouzenoux, Combettes, Pesquet
- On Github: https://github.com/cvxgrp/proximal authors: Parikh, Chu, Boyd
- SPAMS: http://spams-devel.gforge.inria.fr/ authors: Mairal, Bach, Ponce, Sapiro, Jenatton, Obozinski
- ► Fast implementation: https://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/software.html author: Condat