MY455 Week 7

Homework 3

Exploratory Factor Analysis and Confirmatory Factor Analysis

Name of R-nerd

March 18, 2014

1. Exercise 1

```
> model.varimax.1 <- fa(values, nfactors = 1, residuals=TRUE,
+ rotate = "varimax")</pre>
```

> model.varimax.1

Factor Analysis using method = minres

Call: fa(r = values, nfactors = 1, rotate = "varimax", residuals = TRUE Standardized loadings (pattern matrix) based upon correlation matrix

MR1 h2 u2 com equal 0.42 0.18 0.82 1 understand 0.52 0.27 0.73 1 nature 0.46 0.21 0.79 1 care 0.63 0.39 0.61 1 loyal 0.62 0.38 0.62 1

MR1

SS loadings 1.43 Proportion Var 0.29

Mean item complexity = 1

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the null model are 10 and the objective fur. The degrees of freedom for the model are 5 and the objective function

The root mean square of the residuals (RMSR) is 0.05 The df corrected root mean square of the residuals is 0.09

The harmonic number of observations is 2243 with the empirical chi squ The total number of observations was 2243 with MLE Chi Square = 89.6

Tucker Lewis Index of factoring reliability = 0.88 RMSEA index = 0.087 and the 90 % confidence intervals are $0.072\ 0.10$ BIC = 51.05

Fit based upon off diagonal values = 0.97 Measures of factor score adequacy

	MKI
Correlation of scores with factors	0.82
Multiple R square of scores with factors	0.68
Minimum correlation of possible factor scores	0.36

	equal	understand	nature	care	loyal
equal	0.82	0.10	-0.01	-0.03	-0.04
understand	0.10	0.73	0.01	0.00	-0.06
nature	-0.01	0.01	0.79	-0.04	0.04
care	-0.03	0.00	-0.04	0.61	0.04
loyal	-0.04	-0.06	0.04	0.04	0.62

(a) First question

> model.varimax.2 <- fa(values, nfactors = 2, residuals=TRUE,

+ rotate = "varimax")

> model.varimax.2

Factor Analysis using method = minres

Call: fa(r = values, nfactors = 2, rotate = "varimax", residuals = TRUE Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR2 h2 u2 com equal 0.17 0.44 0.22 0.78 1.3 understand 0.18 0.66 0.47 0.53 1.1 nature 0.33 0.29 0.19 0.81 2.0 care 0.43 0.38 0.33 0.67 2.0 loyal 0.83 0.17 0.73 0.27 1.1

MR1 MR2
SS loadings 1.05 0.89
Proportion Var 0.21 0.18
Cumulative Var 0.21 0.39
Proportion Explained 0.54 0.46
Cumulative Proportion 0.54 1.00

Mean item complexity = 1.5

Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 10 and the objective fur. The degrees of freedom for the model are 1 and the objective function

The root mean square of the residuals (RMSR) is $\,$ 0 The df corrected root mean square of the residuals is $\,$ 0.01

The harmonic number of observations is 2243 with the empirical chi squ The total number of observations was 2243 with MLE Chi Square = 0.27

Tucker Lewis Index of factoring reliability = 1.005 RMSEA index = 0 and the 90 % confidence intervals are NA 0.045 BIC = -7.45

Fit based upon off diagonal values = 1
Measures of factor score adequacy

MR1
Correlation of scores with factors 0.84
Multiple R square of scores with factors 0.71

 $\begin{array}{c} \text{Minimum correlation of possible factor scores} & 0.42 \\ & & \text{MR2} \\ \text{Correlation of scores with factors} & 0.73 \\ \text{Multiple R square of scores with factors} & 0.53 \\ \text{Minimum correlation of possible factor scores} & 0.07 \\ \end{array}$

	equal	understand	nature	care	loyal
equal	0.78	0.00	0.01	-0.00	0.00
understand	0.00	0.53	-0.00	0.00	-0.00
nature	0.01	-0.00	0.81	0.00	-0.00
care	-0.00	0.00	0.00	0.67	0.00
loyal	0.00	-0.00	-0.00	0.00	0.27

(b) Second question

> model.oblimin.2 <- fa(values, nfactors = 2, residuals=TRUE,
+ rotate = "oblimin")</pre>

> model.oblimin.2

Factor Analysis using method = minres

Call: fa(r = values, nfactors = 2, rotate = "oblimin", residuals = TRUE Standardized loadings (pattern matrix) based upon correlation matrix

MR1	MR2	h2	u2	com
0.04	0.45	0.22	0.78	1
-0.03	0.70	0.47	0.53	1
0.26	0.24	0.19	0.81	2
0.35	0.31	0.33	0.67	2
0.86	-0.02	0.73	0.27	1
	0.04 -0.03 0.26 0.35	0.04 0.45 -0.03 0.70 0.26 0.24 0.35 0.31	0.04 0.45 0.22 -0.03 0.70 0.47 0.26 0.24 0.19 0.35 0.31 0.33	MR1 MR2 h2 u2 0.04 0.45 0.22 0.78 -0.03 0.70 0.47 0.53 0.26 0.24 0.19 0.81 0.35 0.31 0.33 0.67 0.86 -0.02 0.73 0.27

		MR1	MR2
SS loadings	3	1.01	0.93
Proportion	Var	0.20	0.19
${\tt Cumulative}$	Var	0.20	0.39
Proportion	Explained	0.52	0.48
Cumulative	Proportion	0.52	1.00

With factor correlations of MR1 MR2 MR1 1.00 0.49 MR2 0.49 1.00

Mean item complexity = 1.4
Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 10 and the objective further degrees of freedom for the model are 1 and the objective function

The root mean square of the residuals (RMSR) is $\,$ 0 The df corrected root mean square of the residuals is $\,$ 0.01

The harmonic number of observations is 2243 with the empirical chi squ The total number of observations was 2243 with MLE Chi Square = 0.27

Tucker Lewis Index of factoring reliability = 1.005 RMSEA index = 0 and the 90 % confidence intervals are NA 0.045 BIC = -7.45

Fit based upon off diagonal values = 1 Measures of factor score adequacy

_ · · ·	
	MR1
Correlation of scores with factors	0.87
Multiple R square of scores with factors	0.76
Minimum correlation of possible factor scores	0.52
	MR2
Correlation of scores with factors	0.79
Multiple R square of scores with factors	0.63
Minimum correlation of possible factor scores	0.25

	equal	understand	nature	care	loyal
equal	0.78	0.00	0.01	-0.00	0.00
understand	0.00	0.53	-0.00	0.00	-0.00
nature	0.01	-0.00	0.81	0.00	-0.00
care	-0.00	0.00	0.00	0.67	0.00
loyal	0.00	-0.00	-0.00	0.00	0.27

(c) Third question

2. Exercise 2

- > ESS6.model <- 'universalism = $^{\sim}$ equal + understand + nature
- + benevolence = care + loyal'
- > ESS6.model.fit <- cfa(ESS6.model, data = values)
- > summary(ESS6.model.fit)

lavaan (0.5-16) converged normally after 29 iterations

Number of observations	2243
Estimator	ML
Minimum Function Test Statistic	54.320
Degrees of freedom	4
P-value (Chi-square)	0.000

Parameter estimates:

Information	Expected
Standard Errors	Standard

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
universalism =~				
equal	1.000			
understand	1.223	0.087	14.039	0.000
nature	1.071	0.082	13.051	0.000
benevolence =~				
care	1.000			
loyal	0.901	0.054	16.839	0.000
Covariances:				
universalism ~~				
benevolence	0.232	0.018	13.214	0.000
Variances:				
equal	0.807	0.029		
understand	0.657	0.029		
nature	0.881	0.032		
care	0.460	0.025		
loyal	0.427	0.021		
universalism	0.223	0.025		

benevolence 0.367 0.029

(a) First question

> ESS6.model.varfix.fit <- cfa(ESS6.model, data = values, std.lv = TRU
> summary(ESS6.model.varfix.fit)

lavaan (0.5-16) converged normally after 17 iterations

Number of observ	ations			2243
Estimator Minimum Function Degrees of freed P-value (Chi-squ	om	istic		ML 54.320 4 0.000
Parameter estimate	s:			
Information Standard Errors				Expected Standard
Latent variables:	Estimate	Std.err	Z-value	P(> z)
universalism =				
equal	0.472	0.026	17.882	0.000
understand	0.472	0.026		0.000
nature	0.506	0.028		0.000
benevolence =~	0.000	0.020	10.220	0.000
care	0.605	0.024	25.278	0.000
loyal	0.546	0.022		0.000
Covariances:				
universalism ~~				
benevolence	0.810	0.030	26.775	0.000
Variances:				
equal	0.807	0.029		
understand	0.657	0.029		
nature	0.881	0.032		

(b) Second question

care loyal

 ${\tt universalism}$

benevolence

0.460

0.427

1.000

1.000

0.025

0.021

- > ESS6.model.meacon <- 'universalism =~ v1*equal + understand + v1*nat
- + benevolence = care + loyal'
 > ESS6.model.meacon.fit <- cfa(ESS6.model.meacon, data = values, std.l</pre>
- > summary(ESS6.model.meacon.fit)

lavaan (0.5-16) converged normally after 18 iterations

Number of observations	2243
Estimator	ML
Minimum Function Test Statistic	55.040
Degrees of freedom	5
P-value (Chi-square)	0.000

Parameter estimates:

Information	Expected
Standard Errors	Standard

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
universalism =~				
equal (v1)	0.488	0.020	24.981	0.000
undrstnd	0.581	0.027	21.917	0.000
nature (v1)	0.488	0.020		0.000
benevolence =~				
care	0.607	0.024	25.261	0.000
loyal	0.544	0.022		0.000
_	0.022	****		
Covariances:				
universalism ~~				
benevolence	0.805	0.030	26.628	0.000
50110 7 0 1 0 110 0	0.000	0.000	20.020	0.000
Variances:				
equal	0.799	0.028		
understand	0.652	0.029		
nature	0.890	0.030		
care	0.458	0.025		
loyal	0.429	0.023		
universalism	1.000	0.021		
benevolence	1.000			
penevorence	1.000			

(c) Third question