

Feature engineering

Machine Learning

Norman Juchler

The data science workflow

Problem definition

Data acquisition

Preprocessing

Exploratory data analysis

Feature engineering

Modeling and training

Model evaluation

Model deployment

Reporting

The data science workflow

Problem definition

Data acquisition

Preprocessing

Exploratory data analysis

Feature engineering

Modeling and training

Model evaluation

Model deployment

Reporting

- Transform raw data into a format that is more suitable for modeling.
- Extract features that are sensitive to the target variable(s), increase the signal to noise ratio
- Feature engineering is important for model accuracy, reducing overfitting, and enhancing the generalization capability of models
- Represents one way of introducing inductive bias into the model, and to exploit <u>prior knowledge</u>.

"Coming up with features is difficult, time-consuming, and requires expert knowledge. Applied machine learning is basically feature engineering."

—Prof. Andrew Ng

Efficient representations

• Humans are often so good at extracting relevant features from the input that we are not even aware that we are seeing the world in a latent space.

- Example: Human visual perception
 - Orientation of a human face, or facial expressions.
 - Brain extracts highly processed, derived features which might even incorporate information not contained in the input data, like common sense, cultural and intuitive psychological knowledge.

• Latent space: a compact representation of the data derived from the original data, that captures the most salient and abstract information about the data.

Feature engineering

 Feature engineering refers to the creation of derived features from the input features.

Objectives:

- Increase signal-to-noise ratio
- Increase separation power (for classification tasks)
- Minimize loss of information relevant for the ML task

 Feature engineering thus may incorporate commonsense and domain knowledge

Feature engineering process

- Brainstorming or testing features
- Deciding what features to create
- Creating features
- Testing the impact of the identified features on the task
- Improving your features if needed
- Repeat

Discretization

Discretization groups sets of values together into bins.

- Examples:
 - Dates → Days of the week
 - Days of the week → Weekday / Weekend
 - Binning of continuous variable into a small number of intervals
 - Use of a simple decision tree to sort data into subgroups
- Advantage: Increase in signal-to-noise
- Disadvantage: Loss of granularity

Simple transformations

New features can be generated by applying simple mathematical formulas

• Examples:

- Square of a single variable: Expand larger values
- Logarithm of a single variable: Expand smaller and compress the larger values
- Additive combinations: Sum of two or more variables
- Multiplicative combinations: Product of two or more variables
- Although directly derived from the input, simple transformations can have an important effect on model performance.

Symmetries in the input data

 A reliable way to increase the signal-to-noise ratio is to make use of symmetries that might exist in the underlying problem.

- Examples:
 - Weekly patterns
 - Symmetry of human faces
 - Left-right-symmetry of proteins
- Deviations in symmetrical features can indicate special information (e.g., presence of anomalies).

Coordinate transformations

- Once we have found symmetries, we may exploit them to disentangle the data.
- Example: radius on x axis, angle on y axis

The hashing trick

- Hashing is a fast and space-efficient way of vectorizing features.
- Idea:
 - Turn arbitrary features into indices.
 - Use a hash function which maps features of arbitrary type and number to a fixed number of index values.
- Potential problem:
 - This may potentially result in collisions
 - However, their probability can be made very small by choosing the right hash function

Feature selection (Recap)

- Reasons why removing some features might be useful:
 - Some features may not contain any relevant information for the task at hand
 - Increased signal-to-noise ratio can improve model performance
 - Models of reduced complexity can be more robust and easier to understand
 - A smaller model is usually faster in training and prediction.

What do you think is the difference between feature selection and dimensionality reduction?

Historical note

Early days (pre-deep learning era)

- Handcrafted features. Before deep learning, feature engineering was largely manual, relying on domain expertise to create informative features tailored to specific problems.
- Algorithm dependence. Features were sometimes designed to suit specific algorithms (e.g., kernel transformations and SVM, linear features for logistic regression)
- High importance: Was often one of the most critical factors for ML success, often outweighing the choice of algorithm

Emergence of deep learning (2010s)

- Shift to automated feature learning: DL models can learn hierarchical representations of data directly from raw inputs, reducing the reliance on manual feature engineering.
- End-to-end learning: Deep networks enabled end-to-end training pipelines where raw input data could directly map to predictions without handcrafted features.

Still relevant today, where...

- …interpretability / explainability plays a role
- ...one aims to incorporate domain / expert knowledge into ML models