

CS182: Introduction to Machine Learning – Neural Networks

Yujiao Shi SIST, ShanghaiTech Spring, 2025

Biological Neural Network

Perceptrons $h(x) = sign(w^T x)$

- Linear model for classification
- Predictions are +1 or -1

Combining Perceptrons

$$h(\mathbf{x}) = \begin{cases} +1 \text{ if } (h_1(\mathbf{x}) = +1 \text{ and } h_2(\mathbf{x}) = -1) \text{ or } (h_1(\mathbf{x}) = -1 \text{ and } h_2(\mathbf{x}) = +1) \\ -1 \text{ otherwise} \end{cases}$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations:
 - Negation: $\neg z = -1 * z$

• And:
$$AND(z_1, z_2) = \begin{cases} +1 \text{ if both } z_1 \text{ and } z_2 \text{ equal } +1 \\ -1 \text{ otherwise} \end{cases}$$

• Or:
$$OR(z_1, z_2) = \begin{cases} +1 \text{ if either } z_1 \text{ or } z_2 \text{ equals } +1 \\ -1 \text{ otherwise} \end{cases}$$

Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
 - Negation: $\neg z = -1 * z$

• And: $AND(z_1, z_2) = sign(z_1 + z_2 - 1.5)$

• Or: $OR(z_1, z_2) = sign(z_1 + z_2 + 1.5)$

Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
 - Negation: $\neg z = -1 * z$

• And:
$$AND(z_1, z_2) = \text{sign}\left([-1.5, 1, 1] \begin{bmatrix} 1 \\ z_1 \\ z_2 \end{bmatrix} \right)$$

• Or:
$$OR(z_1, z_2) = sign\left([1.5, 1, 1] \begin{bmatrix} 1 \\ z_1 \\ z_2 \end{bmatrix} \right)$$

Building a Network

$$h_1(\mathbf{x}), h_2(\mathbf{x}))$$

Building a Network

$$\frac{1}{h_1(x)} -1.5$$

 $\neg h_2(x)$

Building a Network

$$\frac{1}{h_1(x)} - \frac{1}{h_2(x)}$$

 $h_2(\mathbf{x})$

上海科技大学 $h(x) = OR(AND(h_1(x), \neg h_2(x)), AND(\neg h_1(x), h_2(x)))$ Shanghai Tech University

Building a $h_1(\mathbf{x})$ Network

Building a Network

上海科技大学
$$h(x) = OR(AND(h_1(x), \neg h_2(x)), AND(\neg h_1(x), h_2(x)))$$
 Shanghai Tech University

Building a Network

上海科技大学
$$h(x) = OR(AND(h_1(x), \neg h_2(x)), AND(\neg h_1(x), h_2(x)))$$
 Shanghai Tech University

Building a Network

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h_i(\mathbf{x}) = \operatorname{sign}(\mathbf{w}_i^T \mathbf{x}) = \operatorname{sign}\left(\sum_{d=0}^D w_{i,d} x_d\right)$$

上海科技大学 Shanghai Tash University

$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$ Shanghai Tech University

$w_{1,0}$ $\widetilde{w}_{2,0}$ x_1 1 $h_1(x)$ h(x) $w_{2,1}$ $W_{1,D}$ $h_2(x)$ x_D $W_{2,D}$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

Building a Network

上海科技大学

Building a Network

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

上海科技大学 Shanghai Tach University

$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$ Shanghai Tech University

$W_{1,0}$ **Building** a χ_1 $h_1(x)$ Network $w_{2,1}$ $h_2(\mathbf{x})$ χ_D $W_{2,D}$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

上海科技大学

$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$ Shanghai Tech University

Building a Network

$$h(x) = \text{sign}(\text{sign}(\mathbf{w}_{1}^{T}x) - \text{sign}(\mathbf{w}_{2}^{T}x) - 1.5) + \\ \text{sign}(-\text{sign}(\mathbf{w}_{1}^{T}x) + \text{sign}(\mathbf{w}_{2}^{T}x) - 1.5) + 1.5)$$

上海科技大学 Shanghai Tach University

Building a Network

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

Multi-Layer Perceptron (MLP)

(Fully-Connected) Feed Forward Neural Network

Activation Functions

Poll Question 1

True or False: Linear and logistic regression models can be expressed as neural networks.

- A. Only true for linear regression
- B. Only true for logistic regression
- C. TOXIC
- D. True for both
- E. False for both

Linear Regression as a Neural Network

Logistic Regression as a Neural Network

(Fully-Connected) Feed Forward Neural Network

Layer l has dimension $D^{(l)} \to \text{Layer } l$ has $D^{(l)} + 1$ nodes, counting the bias node

(Fully-Connected) Feed Forward Neural Network

 $w_{j,i}^{(l)}$ is the weight between node i in layer l-1 and node j in layer l

So what are all these layers doing for us anyway?

 $w_{j,i}^{(l)}$ is the weight between node i in layer l-1 and node j in layer l

上海科技大学
ShanghaiTech University

上海科技大学
ShanghaiTech University
ation=logistic)

Neural Network Decision Boundaries: Example 1

-2

-3

上海科技大学 ShanghaiTech University Valion=logistic)

上海科技大学 ShanghaiTech University n=logistic

上海科技大学 Tuned Neural Network (layers=3, activation=logistic)

上海科技大学
ShanghaiTech University
ation=logistic)

上海科技大学 ShanghaiTech University ation=logistic)

上海科技大学 ShanghaiTech University n=logistic)

上海科技大学
ShanghaiTech University

Neural Network Decision Boundaries: Example 2

-2

-1

Signal and Outputs

Signal and Outputs

$$\mathbf{a}^{(l)} = W^{(l)}\mathbf{z}^{(l-1)} \text{ and } \mathbf{z}^{(l)} = [1, f(\mathbf{z}^{(l)})]^T$$

Forward Propagation for Making Predictions

- Input: weights $W^{(1)}$, ..., $W^{(L)}$ and a query data point \boldsymbol{x}
- Initialize $\mathbf{z}^{(0)} = [1, \mathbf{x}]^T$
- For l = 1, ..., L

$$\bullet a^{(l)} = W^{(l)} \mathbf{z}^{(l-1)}$$

$$\mathbf{z}^{(l)} = \left[1, f(\mathbf{a}^{(l)})\right]^T$$

• Output: $h_{W^{(1)},...,W^{(L)}}(x) = z^{(L)}$

Gradient Descent for Learning

- Input: $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}, \eta^{(0)}$
- Initialize all weights $W_{(0)}^{(1)}, ..., W_{(0)}^{(L)}$ to small, random numbers and set t = 0 (???)
- While TERMINATION CRITERION is not satisfied (???)
 - For l = 1, ..., L
 - Compute $G^{(l)} = \nabla_{W^{(l)}} \ell_{\mathcal{D}} \left(W_{(t)}^{(1)}, ..., W_{(t)}^{(L)} \right)$ (???)
 - Update $W^{(l)}$: $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta_0 G^{(l)}$
 - Increment t: t = t + 1
- Output: $W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}$

Poll Question 2

 Suppose you are training a twolayer (one-hidden layer) neural network with sigmoid activations for binary classification.

 True or False: There is a unique set of parameters that maximizes the likelihood of the dataset above.

A. TOXIC

B. True

C. False

Neural Network Learning Objectives

You should be able to...

- .. Explain the biological motivations for a neural network
- 2. Combine simpler models (e.g. linear regression, binary logistic regression, multinomial logistic regression) as components to build up feed-forward neural network architectures
- Explain the reasons why a neural network can model nonlinear decision boundaries for classification
- Compare and contrast feature engineering with learning features
- 5. Identify (some of) the options available when designing the architecture of a neural network
- 6. Implement a feed-forward neural network