Chapter 12

Chi-Square and Nonparametric Tests

Learning Objectives

In this chapter, you learn:

- How and when to use the chi-square test for contingency tables
- How to use the Marascuilo procedure for determining pairwise differences when evaluating more than two proportions
- How and when to use nonparametric tests

χ² Test for the Difference Between Two Proportions

DCOVA

```
H_0: \pi_1 = \pi_2 (Proportion of females who are left handed is equal to the proportion of males who are left handed)

H_1: \pi_1 \neq \pi_2 (The two proportions are not the same)
```

- If H₀ is true, then the proportion of left-handed females should be the same as the proportion of left-handed males
- The two proportions above should be the same as the proportion of left-handed people overall

The Chi-Square Test Statistic

DCOVA

The Chi-square test statistic is:

$$\chi^{2}_{STAT} = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

where:

 f_o = observed frequency in a particular cell f_e = expected frequency in a particular cell if H_o is true

 χ^2_{STAT} for the 2 x 2 case has 1 degree of freedom

(Assumed: each cell in the contingency table has expected frequency of at least 5)

Decision Rule

The χ^2_{STAT} test statistic approximately follows a chisquared distribution with one degree of freedom

Decision Rule: If $\chi^2_{STAT} > \chi^2_{\alpha}$, reject H₀, otherwise, do not reject H_0

Observed vs. Expected Frequencies

DCOV<u>A</u>

	Hand Pr		
Gender	Left	Right	
Female	Observed = 12	Observed = 108	120
remale	Expected $=$ (14.4)	Expected = 105.6	120
Molo	Observed = 24	Observed = 156	100
Male	Expected = 21.6	Expected = 158.4	180
	36	264	300

The Chi-Square Test Statistic

	Hand Pr	_		
Gender	Left			
Female	Observed = 12	Observed = 108	120	
i emale	Expected = 14.4	Expected = 105.6	120	
Male	Observed = 24	Observed = 156	180	
IVIAIE	Expected = 21.6	Expected = 158.4	160	
	36	264	300	

The test statistic is:

$$\chi_{STAT}^{2} = \sum_{\text{all cells}} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$

$$= \frac{(12 - 14.4)^{2}}{14.4} + \frac{(108 - 105.6)^{2}}{105.6} + \frac{(24 - 21.6)^{2}}{21.6} + \frac{(156 - 158.4)^{2}}{158.4} = 0.7576$$

Decision Rule

χ² Test for Differences Among More Than Two Proportions

DCOVA

Extend the χ² test to the case with more than two independent populations:

 H_0 : $\pi_1 = \pi_2 = \dots = \pi_c$

 H_1 : Not all of the π_i are equal (j = 1, 2, ..., c)

The Chi-Square Test Statistic

DCOVA

The Chi-square test statistic is:

$$\chi^{2}_{STAT} = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

Where:

 f_o = observed frequency in a particular cell of the 2 x c table f_e = expected frequency in a particular cell if H_0 is true

 χ^2_{STAT} for the 2 x c case has (2 - 1)(c - 1) = c - 1 degrees of freedom

(Assumed: each cell in the contingency table has expected frequency of at least 1)

Expected cell frequencies for the c categories are calculated as in the 2 x 2 case, and the decision rule is the same:

Decision Rule:

If $\chi^2_{STAT} > \chi^2_{\alpha}$, reject H₀, otherwise, do not reject H₀

Where χ_{α}^{2} is from the chisquared distribution with c – 1 degrees of freedom

The Marascuilo Procedure

DCOVA

- Used when the null hypothesis of equal proportions is rejected
- Enables you to make comparisons between all pairs
- Start with the observed differences, p_j − p_{j'}, for all pairs (for j ≠ j') then compare the absolute difference to a calculated critical range

The Marascuilo Procedure

(continued)
DCOVA

Critical Range for the Marascuilo Procedure:

Critical range =
$$\sqrt{\chi_{\alpha}^2} \sqrt{\frac{p_j(1-p_j)}{n_j} + \frac{p_{j'}(1-p_{j'})}{n_{j'}}}$$

- (Note: the critical range is different for each pairwise comparison)
- A particular pair of proportions is significantly different if

$$|p_j - p_{j'}| >$$
critical range for j and j'

Marascuilo Procedure Example

DCOV<u>A</u>

A University is thinking of switching to a trimester academic calendar. A random sample of 100 administrators, 50 students, and 50 faculty members were surveyed

Opinion	Administrators	Students	Faculty
Favor	63	20	37
Oppose	37	30	13
Totals	100	50	50

Using a 1% level of significance, which groups have a different attitude?

Chi-Square Test Results

$$H_0$$
: $\pi_1 = \pi_2 = \pi_3$

 H_0 : $\pi_1 = \pi_2 = \pi_3$ H_1 : Not all of the π_j are equal (j = 1, 2, 3)

Chi-Square Test: Administrators, Students, Faculty

$$\chi^2_{STAT} = 12.792 > \chi^2_{0.01} = 9.2103 \text{ so reject H}_0$$

Marascuilo Procedure: Solution

DCOVA

Excel Output:

	<u>compare</u>						
Marascı	Marascuilo Procedure						
						*	
	Sample	Sample		Absolute	Std. Error	Critica	
Group	Proportion	Size	Comparison	Difference	of Difference	Range	Results
1	0.63	100	1 to 2	0.23	0.084445249	0.2563	Means are not different
2	0.4	50	1 to 3	0.11	0.078606615	0.2386	Means are not different
3	0.74	50	2 to 3	0.34	0.092994624	0.2822	Means are different

At 1% level of significance, there is evidence of a difference in attitude between students and faculty

χ² Test of Independence

DCOVA

• Similar to the χ^2 test for equality of more than two proportions, but extends the concept to contingency tables with r rows and c columns

H₀: The two categorical variables are independent (i.e., there is no relationship between them)

H₁: The two categorical variables are dependent (i.e., there is a relationship between them)

χ² Test of Independence

(continued)

DCOV<u>A</u>

The Chi-square test statistic is:

$$\chi^{2}_{STAT} = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

where:

 f_o = observed frequency in a particular cell of the rxc table

 f_e = expected frequency in a particular cell if H_0 is true

 χ^2_{STAT} for the r x c case has (r-1)(c-1) degrees of freedom

(Assumed: each cell in the contingency table has expected frequency of at least 1)

Expected Cell Frequencies

DCOVA

Expected cell frequencies:

$$f_e = \frac{\text{row total} \times \text{column total}}{n}$$

Where:

row total = sum of all frequencies in the row column total = sum of all frequencies in the column n = overall sample size

Decision Rule

The decision rule is

If
$$\chi^2_{STAT} > \chi^2_{\alpha}$$
, reject H_0 , otherwise, do not reject H_0

Where χ_{α}^{2} is from the chi-squared distribution with (r-1)(c-1) degrees of freedom

Example

The meal plan selected by 200 students is shown below:

Class	Numbe	Number of meals per week				
Standing	20/week	10/week	none	Total		
Fresh.	24	32	14	70		
Soph.	22	26	12	60		
Junior	10	14	6	30		
Senior	14	16	10	40		
Total	70	88	42	200		

Example

(continued)

The hypothesis to be tested is:

H₀: Meal plan and class standing are independent (i.e., there is no relationship between them)

H₁: Meal plan and class standing are dependent (i.e., there is a relationship between them)

Example: Expected Cell Frequencies

Observed:

(continued)

Class	Number of meals per week						
Standing	20/wk	10/wk	none	Total			
Fresh.	24	32	14	70			
Soph.	22	26	12	60			
Junior	10	14	6	30			
Senior	14	16	10	40			
Total	70	88	42	200			

Expected cell frequencies if H₀ is true:

Class	Num I			
Standing	20/wk	10/wk	none	Total
Fresh.	24.5	30.8	14.7	70
Soph.	21.0	26.4	12.6	60
Junior	(10.5)	13.2	6.3	30
Senior	14.0	17.6	8.4	40
Total	70	88	42	200

Example for one cell:

f _	row total × column total
'e —	n
_	$30 \times 70 = 10.5$
_	200

Example: The Test Statistic

(continued)

DCOV<u>A</u>

The test statistic value is:

$$\chi_{STAT}^{2} = \sum_{\text{all cells}} \frac{(f_o - f_e)^2}{f_e}$$

$$= \frac{(24 - 24.5)^2}{24.5} + \frac{(32 - 30.8)^2}{30.8} + \dots + \frac{(10 - 8.4)^2}{8.4} = 0.709$$

$$\chi^2_{0.05}$$
 = 12.592 from the chi-squared distribution with $(4-1)(3-1)=6$ degrees of freedom

Example: Decision and Interpretation

(continued)

Decision Rule:

If $\chi_{STAT}^2 > 12.592$, reject H₀, otherwise, do not reject H₀

Here, $\chi^2_{STAT} = 0.709 < \chi^2_{0.05} = 12.592$, so do not reject H₀ Conclusion: there is not sufficient evidence that meal plan and class standing are

related at $\alpha = 0.05$

Chapter Summary

In this chapter we discussed

- Applying the χ^2 test for the difference between two proportions
- Applying the χ^2 test for differences in more than two proportions
- Applying the Marascuilo procedure for comparing all pairs of proportions after rejecting a χ² test
- Applying the χ^2 test for independence

Chapter 12

On-Line Topic:
McNemar Test for the
Difference Between
Two Proportions
(Related Samples)

Learning Objectives

In this topic, you learn:

How and when to use the McNemar test

McNemar Test (Related Samples) DCOVA

 Used to determine if there is a difference between proportions of two related samples

 Uses a test statistic the follows the normal distribution

McNemar Test (Related Samples)

(continued)

DCOVA

Consider a 2 X 2 contingency table:

	Cond		
Condition 1	Yes	No	Totals
Yes	Α	В	A+B
No	С	D	C+D
Totals	A+C	B+D	n

McNemar Test (Related Samples)

(continued)

DCOVA

The sample proportions of interest are

$$p_1 = \frac{A + B}{n}$$
 = proportion of respondents who answer yes to condition 1

$$p_2 = \frac{A+C}{n}$$
 = proportion of respondents who answer yes to condition 2

• Test
$$H_0$$
: $\pi_1 = \pi_2$ (the two population proportions are equal) H_1 : $\pi_1 \neq \pi_2$ (the two population proportions are not equal)

McNemar Test (Related Samples)

(continued)

DCOVA

The test statistic for the McNemar test:

$$\mathbf{Z}_{STAT} = \frac{\mathbf{B} - \mathbf{C}}{\sqrt{\mathbf{B} + \mathbf{C}}}$$

where the test statistic Z is approximately normally distributed

McNemar Test Example

DCOV<u>A</u>

Suppose you survey 300 homeowners and ask them if they are interested in refinancing their home. In an effort to generate business, a mortgage company improved their loan terms and reduced closing costs. The same homeowners were again surveyed. Determine if change in loan terms was effective in generating business for the mortgage company. The data are summarized as follows:

McNemar Test Example

	Survey response after change				
Survey response before change	Yes	No	Totals		
Yes	118	2	120		
No	22	158	180		
Totals	140	160	300		

Test the hypothesis (at the 0.05 level of significance):

 H_0 : $\pi_1 \ge \pi_2$: The change in loan terms was ineffective

 H_1 : $\pi_1 < \pi_2$: The change in loan terms increased business

McNemar Test Example

DCOVA

Survey response	Survey re	esponse	e after
before change	Yes	No	Totals
Yes	118	2	120
No	22	158	180
Totals	140	160	300

The critical value (0.05 significance) is $Z_{0.05} = -1.645$

The test statistic is:

$$Z_{STAT} = \frac{B-C}{\sqrt{B+C}} = \frac{2-22}{\sqrt{2+22}} = -4.08$$

Since $Z_{STAT} = -4.08 < -1.645$, you reject H_0 and conclude that the change in loan terms significantly increase business for the mortgage company.

Topic Summary

In this topic we discussed

How & when to use the McNemar test

Chapter 12

On-Line Topic: Chi-Square Test for the Variance or Standard Deviation

Learning Objectives

In this topic, you learn:

 How to use the Chi-Square to test for a variance or standard deviation

Chi-Square Test for a Variance or Standard Deviation

• A χ^2 test statistic is used to test whether or not the population variance or standard deviation is equal to a specified value:

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_a$$
: $\sigma^2 \neq \sigma_0^2$

$$\chi_{STAT}^2 = \frac{(n-1)S^2}{\sigma^2}$$

Where n = sample size

 S^2 = sample variance

 σ_{γ}^2 = hypothesized population variance

 χ_{STAT}^2 follows a chi-square distribution with d.f. = n - 1

Reject H₀ if
$$\chi^2_{STAT} > \chi^2_{\alpha/2}$$
 or if $\chi^2_{STAT} < \chi^2_{1-\alpha/2}$

Chi-Square Test For A Variance: An Example

DCOVA

Suppose you have gathered a random sample of size 25 and obtained a sample standard deviation of s = 7 and want to do the following hypothesis test:

$$H_0$$
: $\sigma^2 = 81$

$$H_a$$
: $σ^2 ≠ 81$

$$\chi_{STAT}^2 = \frac{(\mathbf{n-1})S^2}{\sigma^2} = \frac{24*49}{81} = 14.185$$

Since
$$\chi_{0.975}^2 = 12.401 < 14.185 < \chi_{0.025}^2 = 39.364$$
 you fail to reject H₀

Topic Summary

In this topic we discussed

 How to use the Chi-Square to test for a variance or standard deviation