IBM Cloud-IKS(public) HITAM

Arashad Ahamad

Software Designer
IBM-ISL Hyderabad
arahamad@in.ibm.com
arashad.ahamad@gmail.com

Agenda:

1- Containers, Docker and Kubernetes

2- IBM Cloud and IKS

3- Demo on IKS

Expected outcome: After this session students will be aware about basic understanding about cloud technologies and IBM IKS

Back Ground:

Operating System:

Features:

- Resource Management
- File Management
- Process Management
- Memory Management
- Security Management

Process:

Some very basic facts:

- Running entity on OS.
- Process layout
- PCB
- Sources limits

Key linux features:

- CgroupLimit/manage resources
- Namespaces limits resources visibility

pid, net, mnt, ipc etc

NOTE: kernel >= 2.6.24 after 2008

Linux Containers:

Set of one or more processes that are isolated from the rest of the system.

- Abstraction at the app layer
- Very less in size
- Portable and consistent
- Same operating system kernel
- Arch dependent
- Image:
 - runtime, libs, apps

Steps:

Template-> Is -1 /usr/local/share/lxc/templates
Create-> lxc-create -n myContainer -t /usr/local/share/lxc/templates/lxc-centos
Start-> lxc-start -n myContainer
Info-> lxc-info -n myContainer
Delete-> lxc-destroy -n myContainer
Connect-> lxc-console -n myContainer

Virtual Machine:

Virtual machine (VM) is an emulation of a computer system.

VM1 VM2 OS: Window OS: Red hat Apps, process Apps, process **Hypervisor Process Servers** App **Operating System** (Linux kernel) Hardwares

Virtualization

Docker:

- Open platform for developing, shipping, and running applications
- Create and manage containers
- Docker containers can be run on VM

Docker Commands:

Create container

\$docker create --name mycontainer -t -i ubuntu bash

Rename container

\$docker rename CONTAINER NEW NAME

Run container

\$docker run --name myruncon -it ubuntu

Remove container

\$docker rm --force myruncon

Start container

\$docker start mycontainer

Stop container

\$docker stop mycontainer

Pause container

\$docker pause mycontainer

Attach container

\$docker attach mycontainer

Logs

\$docker logs mycontainer

Running Process in container

\$ docker top mycontainer

Copy files to/from container

\$ docker cp [OPTIONS] CONTAINER:SRC_PATH DEST_PATH| \$ docker cp [OPTIONS] SRC PATH|- CONTAINER:DEST_PATH

Execute a command on container

\$docker exec -it mycontainer bash

Docker images

\$docker images

Image build

\$docker build . \$docker build -t my/myimage:2.0 .

Remove image\$docker rmi <image name>

- \$ Save image to tar file \$docker save my_image:my_tag | gzip > my_image.tar.gz
- > Image push
- \$docker push my_image:my_tag
- Image pull \$docker pull

Docker VS Virtual Machine:

Docker

Virtual Machine

Kubernetes:

Kubernetes is a portable, extensible open-source platform for managing containerized workloads and services.

Kubernetes is an orchestration tool for containers.

- Cluster management
- Container security and isolation policies
- Design your own cluster

Kubernetes Capabilities:

Intelligent Scheduling

Self-healing

Horizontal scaling

Service discovery & load balancing

Automated rollouts and rollbacks

Secret and configuration management

Kubernetes Clusters:

- highly available cluster of interconnected computers
- ➤ Master- co-ordinates the cluster
- ➤ Node/Worker application run on this worker

Kuberneters cluster

Kubernetes POD and Node:

POD

- Group of one or more tightly coupled containers
 and shared resources
 - Shared storage, as Volumes
 - Networking, as a unique cluster IP address
 - Container image,ports
 - Atomic and smallest logical unit on k8s platform
- POD deployed on single node
- Unique Ip across the cluster

Node

- Worker Machine in k8s network
- VM or Physical Machine
- Node Components
 - Kublet resposible for communication between master and node
 - Container runtime -docker

Docker-cli	Kubectl-cli	
docker run -drestart=always -e DOMAIN=clustername nginx-app -p 80:80 nginx	kubectl runimage=nginx nginx-appport=80 env="DOMAIN=cluster kubectl expose deployment nginx-appport=80 name=nginx-http	
docker ps	kubectl get pod deployment service	
docker exec <cont-id> cat /etc/hostname</cont-id>	kubectl exec <pod-name> cat /etc/hostname</pod-name>	
docker logs -f <cont-id></cont-id>	kubectl logs -f <pod-name></pod-name>	
docker stop rm <cont-id></cont-id>	kubectl delete deployment-name service-name nginx-app Notice that we don't delete the pod directly. With kubectl we want to delete the Deployment that owns the pod. If we delete the pod directly, the Deployment will recreate the pod.	
docker info	kubectl cluster-info	

5- About IBM Cloud and IKS(PaaS) (with demo)

- 1- IBM Cloud
- 2- IKS
- 3- CLI installation and cluster creation

IBM Cloud:

A full-stack cloud platform that spans public, private and hybrid environments. Build with a robust suite of advanced data and Al tools, and draw on deep industry expertise to help you on your journey to the cloud.

A full-stack cloud platform with over 170 products and services covering data, server-less, containers, AI, IoT and blockchain.

IKS:

IBM Cloud™ Kubernetes Service is a managed container service for the rapid delivery of applications that can bind to advanced services like Watson™ and blockchain.

CLI installation and cluster creation:

https://cloud.ibm.com/docs/containers?topic=containers-container_index#container_index?cm_sp=Cloud-CloudDevSvc-_-OnPageNavCTA2-IBMCloudPlatform_IBMContainers-_-PDP

https://cloud.ibm.com/registration?target=%2Fcontainers-kubernetes%2Fcatalog%2Fcluster%2Fcreate&cm_sp=Cloud-CloudDevSvc-_-OnPageNavCTA1-IBMCloudPlatform_IBMContainers-_-PDP

OR

- **Step 1- Search "IBM Cloud and IKS" on google**
- **Step 2- Click on first searched item**
- Step 3- Click on `Get started with clusters` button

IBMCloud cli installation:

https://cloud.ibm.com/docs/cli?topic=cloud-cli-ibmcloud-cli#ibmcloud-cli

Setting up cluster:

https://cloud.ibm.com/docs/containers?topic=containers-clusters#clusters_cli

Characteristics	Lite clusters	Standard clusters
Available in Bluemix Public	\odot	\odot
In-cluster networking	\odot	\odot
Public network app access by a NodePort service	\odot	\odot
User access management	\odot	\odot
Bluemix service access from the cluster and apps	\odot	\odot
Disk space on worker node for storage	\odot	\odot
Persistent NFS file-based storage with volumes		\odot
Public or private network app access by a load balancer service		\odot
Public network app access by an Ingress service		\odot
Portable public IP addresses		\odot
Available in Bluemix Dedicated (Closed Beta)		\odot

Free Course, you can also get Badge for this course:

https://cognitiveclass.ai/courses/kubernetes-course/

Thank you!!!

Questions/Answers