多线程排序实验报告

李胜锐 2017012066

1 实验环境

Operating System: Windows10

Processor: 2.6 GHz 4-Core Intel Core i7

Memory: 4GB

Language: C++

IDE: Microsoft Visual Studio 2019

2 算法分析

2.1 多线程归并排序算法

递归调用排序阶段和递归调用归并时,都采用了多线程算法。因此:

$$egin{align} PMS_1(n) &= 2PMS_1(n/2) + \Theta(n) = \Theta(n\lg n) \ &= PMS_\infty(n) = PMS_\infty(n/2) + \Thetaig(\lg^2 nig) \ &= \Thetaig(\lg^3 nig) \ \end{split}$$

2.1 多线程快速排序算法

在递归调用 n/2 规模的快速排序算法自身时,采用了多线程模式。因此:

$$MS_1'(n) = 2MS_1'(n/2) + \Theta(n) = \Theta(n\lg n)$$
 $MS_\infty'(n) = MS_\infty'(n/2) + \Theta(n) = \Theta(n)$

3 结果分析

	MULTI_THREAD	YES	NO	
NUM_SIZE		163	NO	
1000		0.000331	0.017748	merge sort
10000		0.003998	0.007181	
100000		0.044753	0.067171	
1000000		0.482935	0.73066	

	MULTI_THREAD	YES	NO	
NUM_SIZE		TES	NO	
1000		5.60E-05	8.80E-05	quick sort
10000		0.0007	0.000802	
100000		0.007728	0.00799	
100	1000000		0.108492	

实验发现,采用多线程算法反而使得运算速度变慢。经过查阅资料得知,由于本地电脑 CPU 核数量有限,多线程算法的实际并行度会很低,远远达不到理论并行度的要求。并且,由 于采用递归,多线程程序分配线程的次数非常高,造成了额外的时间浪费。

此外,快速排序算法运行速度比归并算法快 10 倍左右,这应该是由于快速排序无需额外分配内存,并且内存读写次数更少导致的。另外,归并算法相比快速排序多线程的并行度优势并没有体现出来。

4 实验总结

通过这次试验,发现在计算机实际运行的过程中,多线程算法由远远达不到理论上的并行度,反而容易因为分配分配线程的额外开销导致运行速度反而更慢。