1 A sphere of radius 2.1 mm falls with terminal (constant) velocity through a liquid, as shown in Fig. 1.1.

Fig. 1.1

Three forces act on the moving sphere. The weight of the sphere is $7.2 \times 10^{-4} \, \text{N}$ and the upthrust acting on it is $4.8 \times 10^{-4} \, \text{N}$. The viscous force F_{V} acting on the sphere is given by

$$F_{V} = krv$$

where r is the radius of the sphere, v is its velocity and k is a constant. The value of k in SI units is 17.

(a) Determine the SI base units of k.

SI base units[2]

(b) Use the value of the upthrust acting on the sphere to calculate the density ρ of the liquid.

(c)	(i)	On the sphere in Fig. 1.1, draw three arrows to show the directions of the weight W , the upthrust U and the viscous force F_V . Label these arrows W , U and F_V respectively. [1]
	(ii)	Determine the magnitude of the terminal (constant) velocity of the sphere.

velocity =
$$ms^{-1}$$
 [2]

[Total: 8]