```
import pandas as pd
import numpy as np
from sklearn.datasets import load wine
from sklearn.model_selection import train_test_split
from sklearn.naive bayes import GaussianNB, MultinomialNB
from sklearn.metrics import accuracy score
wine = load_wine()
dir(wine)
  ['DESCR', 'data', 'feature names', 'frame', 'target', 'target names']
wine.feature names
['alcohol',
   'malic_acid',
   'ash',
   'alcalinity of ash',
   'magnesium',
   'total phenols',
   'flavanoids',
   'nonflavanoid phenols',
   'proanthocyanins',
   'color intensity',
   'hue',
   'od280/od315_of_diluted_wines',
   'proline']
wine.target
  2, 2])
```

```
df = pd.DataFrame(wine.data,columns=wine.feature_names)
df_input = df
df['target'] = wine.target
```

df.head()

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intens
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	1
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df_input,df.target, test_size=0.2)
from sklearn.naive_bayes import GaussianNB, MultinomialNB
```

```
model_gnb = GaussianNB()
model_gnb.fit(X_train,y_train)
model_gnb.score(X_test,y_test)
```

1.0

```
model_mnb = MultinomialNB()
model_mnb.fit(X_train,y_train)
model_mnb.score(X_test,y_test)
```

0.944444444444444