Automated Verification of Cyber-Physical Systems A.A. 2022/2023

Statistical Model Checking

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

Statistical Model Checking

- In the recent literature, there is not full consensus, as it may refer to:
 - estimate the probability of a BLTL property of a stochastic system
 - in a stochastic system, transitions between states are not deterministic, but probabilistic
 - estimate the probability of an LTL property of a deterministic system
 - thus, input is the same of a classical model checking problem
 - but output is "probabilistic"
 - also referred to as quantitative model checking or monte-carlo model checking

- In our context, a random variable is a function from some event space Ω to $\mathbb R$
 - $X:\Omega\to\mathbb{R}$
- Suppose we have a probability $\mathbb P$ defined on 2^{Ω}
 - thus, \mathbb{P} is defined on sets of events $E \subseteq \Omega$
 - recall the Kolmogorov axioms:
 - $\forall E \subseteq \Omega$. $\mathbb{P}(E) \in [0,1]$
 - \bullet $\mathbb{P}(\Omega) = 1$
 - $\forall I \subseteq \mathbb{N} : (E_i \in 2^{\Omega} \land \forall i \neq j \in I. \ E_i \cap E_j = \varnothing) \rightarrow \mathbb{P}(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} \mathbb{P}(E_i)$
- The mean of a random variable, also called expected value, is defined as $\mu_X = \mathbb{E}[X] = \sum_{\omega \in \Omega} p(\omega)X(\omega)$
 - here $p(\omega) = \mathbb{P}(\{\omega\})$
 - by the axioms above, $p(\omega) \in [0,1]$ and $\sum_{\omega \in \Omega} p(\omega) = 1$
 - for $|\Omega| < \infty$, this is a weighted average...
- Example: ...

- Suppose that $|\Omega|=2$, i.e., we have just two possible outcomes
 - ullet without loss of generality, $\Omega=\{0,1\}$
 - again, p(0) and p(1) are defined in some way
 - for sure, p(1) = 1 p(0); often p(1) is simply p and p(0) is q = 1 p
- A Bernoulli random variable Z on Ω is s.t.
 - $Z: \{0,1\} \to \{0,1\}, Z(x) = x$
 - we simply write Z instead of Z(x)
 - given \mathbb{P} on 2^{Ω} , we define $p_Z = \mathbb{P}(Z=1)$
 - following the notation above,

$$\mu_{Z} = \mathbb{E}[Z] = Z(1)p_{Z} + Z(0)q_{Z} = p_{Z}$$

- A Bernoulli process consists in repeatedly running independent trials on a Bernoulli variable Z
 - either finite or infinite sequence of trials
 - "independent" means that the probability of outcome $o_1 \dots o_n$ is $\prod_{i=1}^n p(o_i)$
 - if there are k outcomes such that $o_i = 1$, then $\mathbb{P}(\{o_1 \dots o_n\}) = p_7^k q_7^{n-k} = p_7^k (1-p_7)^{n-k}$
- We can define a geometric random variable X_7 s.t.
 - $X:\Omega^{\infty}\to\mathbb{N}$
 - $X_Z(\omega) = n$ iff Z = 1 for the first time after exactly nindependent trials (with probability p_Z)
- Thus, $\mathbb{P}(X_Z = N) = q_Z^{N-1} p_Z$
 - as a consequence, $\mathbb{P}(X_Z \leq N) = \sum_{n \leq N} q_Z^{N-1} = 1 q_Z^N$

- ullet Suppose now that, in some way, you know the value of p_Z
- How many trials would we need to see Z = 1?
- Well, in these terms, you would need infinitely many trials
 - special case 1: you can't see Z=1 if $p_Z=0$
 - special case 2: you see Z=1 after 1 trial if $p_Z=1$
 - we are interested in $0 < p_Z < 1$
- Let's relax a bit: how many trials would we need to see Z=1 with a given confidence $1-\delta$?
 - ullet e.g.: I want to be 90% sure, so $\delta=0.1$
- We have $\mathbb{P}(X_Z \le N) = 1 (1 p_Z)^N \ge 1 \delta$
 - solving N as a function of δ and p_Z , we have $N \geq \frac{\log(\delta)}{\log(1-p_Z)}$
 - note that both numerator and denominator are negative, as

- For fixed p_Z , N decreases with δ
 - ullet i.e., increases with $1-\delta$
 - you are ok if you are less confident? you can try less
 - you want to be more confident? you have to try more

- For fixed δ , N decreases with p_Z
 - you want to detect something with big probability? you can try less
 - you want to detect something with small probability? you have to try more

- ... But we do not know p_Z
 - indeed, it is exactly what we want to estimate by making trials
- Again, getting at the precise value p_Z is too difficult, but we can choose an accuracy
 - we may choose some value $\varepsilon>0$ of interest and test if $p_Z\geq \varepsilon$
 - ε is our error margin, $H_0 \equiv (p_Z \ge \varepsilon)$ is the null hypothesis
- We have that $M = \frac{\log(\delta)}{\log(1-\varepsilon)} \geq \frac{\log(\delta)}{\log(1-\rho_Z)} = N$
- Recalling the steps before, we have $\mathbb{P}(X_Z \leq M) \geq \mathbb{P}(X_Z \leq N) > 1 \delta$
- Thus: $p_Z \ge \varepsilon$ implies $\mathbb{P}\left(X_Z \le \frac{\log(\delta)}{\log(1-\varepsilon)}\right) \ge 1-\delta$
 - using conditional probabilities and putting M back in, we have $\mathbb{P}(X_Z < M \mid p_Z > \varepsilon) > 1 \delta$

- Suppose we want to decide if $H_0 \equiv p_Z \ge \varepsilon$ holds (hypothesis testing)
- We perform $M = \left\lceil \frac{\log(\delta)}{\log(1-\varepsilon)} \right\rceil$ trials on Z
 - if we never see Z = 1, then we reject H_0
 - \bullet otherwise, we accept H_0
- There are 4 possible "higher outcomes"
 - *type-I error*: H_0 is rejected, but $p_Z \ge \varepsilon$ holds
 - *type-II error*: H_0 is accepted, but $p_Z < \varepsilon$ holds
 - we were right in rejecting/accepting H_0 (2 cases)
- The probability of a type-I error is denoted by α , the probability of a type-II error is β
 - generally speaking, they could be dependent on each other
- We have $\alpha = \mathbb{P}(X > M \mid H_0) = 1 \mathbb{P}(X \leq M \mid H_0) \leq \delta$
 - since $\mathbb{P}(X \leq M \mid H_0) \geq 1 \delta$

- Grosu, Smolka: "Monte Carlo Model Checking", Proc. of TACAS 2005
- In LTL Monte-Carlo Model Checking, the first part of the input is as in standard LTL Model Checking:
 - a Kripke structure $S = \langle S, I, R, L \rangle$
 - ullet an LTL formula arphi
 - let us say that we directly have the Büchi Automaton $B=B_{\neg\varphi}\times B_{\mathcal{S}}$
 - as it is computed by explicit on-the-fly model checkers like SPIN
- Then, we also have two additional inputs: $0 < \delta, \varepsilon < 1$
- Output as in standard LTL Model Checking:
 - either PASS...
 - ... or FAIL with a counterexample

- If FAIL with a counterexample σ is returned, then for sure we have an error in our model
 - ullet that is, $\mathcal{S} \not\models \varphi$ holds
 - σ is a counterexample showing that $\mathcal{S} \not\models \varphi$
- Otherwise, it may still be the case that, notwithstanding the PASS result, $\mathcal{S} \not\models \varphi$
- However, the probability that $\mathcal{S} \not\models \varphi$ is less than δ
 - indeed, this does only work with a huge assumption (which involves the remaining input ε), as we will see
 - however, the huge assumption could be made reasonable
- How is this achieved? Exactly through the steps outlined above!

- Recall that a (non-deterministic) Büchi Automaton (BA) is a 5-tuple $B = \langle \Sigma, Q, \delta, Q_0, F \rangle$ where:
 - ullet Σ is the *alphabet*, i.e., a finite set of symbols
 - Q is the finite set of states, $Q_0 \subseteq Q$ are the initial states and $F \subseteq Q$ are the final states
 - $\delta \subseteq Q \times \Sigma \times Q$ is the transition relation
- We suppose that $B = B_{\neg \varphi} \times B_{\mathcal{S}}$ is the Cartesian product of the Kripke structure \mathcal{S} and the Büchi automaton generated from φ using known algorithms
 - e.g., as it is implemented in SPIN
- A *lasso* of B is a sequence $\sigma = q_0 x_0 q_1 \dots q_n$ s.t.:
 - $\forall 0 \leq i < n. (q_i, x_i, q_{i+1}) \in \delta$
 - $\exists 0 \leq k \leq n : \forall 0 \leq i, j < n-1. \ q_i \neq q_i \land q_n = q_k$
- A lasso is accepting if $\exists k \leq i \leq n : q_i \in F$

- We may easily define a probability distribution on the finite runs σ of B:
 - ullet $\mathbb{P}(q_0)=rac{1}{|Q_0|}$
 - $\mathbb{P}(q_0x_0q_1\ldots q_{n-1}x_{n-1}q_n) = \mathbb{P}(q_0x_0q_1\ldots q_{n-1})\frac{1}{|\delta(q_{n-1})|}$
 - being $\delta(q) = \{(q, x, q') \mid (q, x, q') \in \delta\}$
 - that is: each time we have a (non-deterministic) choice, we choose one uniformly at random
- Such probability is well-defined: we may extend it to obtain a (discrete) probability space $(2^L, \mathbb{P})$
 - being $L = \{ \sigma \mid \sigma \text{ is a lasso in } B \}$
 - furthermore, $L \supseteq L_a = \{ \sigma \mid \sigma \text{ is an accepting lasso in } B \}$
 - $L_n = L \setminus L_a$ is the set of non-accepting lassos

- Given $(2^L, \mathbb{P})$, our Bernoulli variable Z is defined by:
 - ullet take one lasso σ from L, following the rules defined by ${\mathbb P}$
 - that is: make a random walk (see the algorithm below)
 - Z=1 iff $\sigma \in L_a$ is accepting
- From a theoretical point of view, since $|L|<\infty$, we would be tempted to say that $p_Z=\frac{|L_a|}{|L|}$
- But this is not true, since lassos do not have the same probability, according to P
- Thus, $p_Z = \mathbb{P}(Z=1) = \sum_{\lambda_a \in L_a} \mathbb{P}(\lambda_a)$
 - not actually useful for computation: L_a requires generating L, which may run out of computational resources


```
MC^2(KS\_BA \mathcal{SA}, double \varepsilon, double \delta) {
   for i in 1.. \left\lceil \frac{\log(\delta)}{\log(1-\varepsilon)} \right\rceil
       if (SampleLasso(\mathcal{SA}) == (1, \sigma))
          return (FAIL, \sigma);
   return PASS;
}
SampleLasso(KS_BA \mathcal{SA} = \langle \Sigma, Q, \delta, Q_0, F \rangle) {
   (i, f, H, q) = (0, 0, \emptyset, pick\_unif\_random(Q_0);
   while (H(q) = \perp) {
      H(q) = i + 1; i = i + 1;
      if (q \in F) f = i;
      q = \operatorname{pick\_unif\_random}(\delta(q));
   }
   if (H(q) \le f) return (1, getCurrLasso(H));
   else return (0, \perp);
}
```

Nested DFS for LTL Model Checking

```
DFS(KS_BA SA, state (s,q), bool n, state a) {
   let \mathcal{SA} = \langle S_A, I_A, R_A, L_A \rangle;
   for each (s', q') \in S_A s.t. ((s, q), (s', q')) \in R_A {
      if (n \land (s,q) == a)
         exit reporting error;
      if ((s', q', n) \notin T) {
         T = T \cup \{(s', q', n)\};
         DFS (SA, (s', q'), n, a);
          if (\neg n \land (s', q')) is accepting) {
            DFS (SA, (s', q'), \text{ true}, (s', q'));
1 1 1 1
LTLMC(KS S, LTL \varphi) {
   \mathcal{A} = BA_from_LTL(\varphi); T = \varnothing;
   let S = \langle S, I, R, L \rangle, A = \langle \Sigma, Q, \delta, Q_0, F \rangle;
   for each s \in I, q \in Q_0
      DFS(\mathcal{S} \times \mathcal{A}, (s,q), false, null);
```

- Standard LTL Model Checking requires both time and space to be at least O(|S|)
 - easily billion of states, often unaffordable for real-world systems
- Here, time is O(MD) and space is O(D)
 - being *D* the diameter of *S*, i.e., the length of the longest lasso starting from an initial state
 - $M = \left\lceil \frac{\log(\delta)}{\log(1-\varepsilon)} \right\rceil$ as usual
- No type-II errors: if we find a counterexample, we are happy
- Given the discussion on the background, if the answer is PASS, then the probability that an error is present but came undetected through the M trials is less than δ
- However, this is only true if we assume that $p_{ab} \in \mathcal{E}$

LTL Monte-Carlo Model Checking: $p_Z \ge \varepsilon$

- Recall that Z=1 iff, making a random walk on the given BA, I find an accepting lasso
 - recall also that an accepting lasso is "bad", i.e., the property does not hold in the system
- ullet Thus, we are saying that the probability that, among all lassos I can find with a random walk, the probability that it is accepting is at least arepsilon
- There are two cases:
 - $p_Z < \varepsilon$, e.g., because there are not errors in the starting system, thus $p_Z = 0$
 - well, if this is true, the probability of that a counterexample exists is less than ε
 - $p_Z \ge \varepsilon$, then the probability that a counterexample exists is less than δ by the discussion above
 - note however that such two probabilities are not defined in the same way

LTL Monte-Carlo Model Checking: Experimental Results

- Results for classical systems: dining philosophers and Needham-Schroeder protocol
 - for dining philosophers, two properties: one is false (with counterexample), one is false
 - Needham-Schroeder is the bugged version (with counterexample)
 - $\delta = 0.1, \varepsilon = 0.0018 \rightarrow M = 1257$
- Columns meaning:
 - ph: number of philosophers
 - mr: parameter in the Needham-Schroeder protocol
 - the bigger the value, the bigger the number of states
 - entr: number of entries in the hash table (RAM usage...)
 - mxl: max length of a lasso
 - cxl: length of the counterexample found
 - M: number of trials to find a counterexample

Unfair Dining Philosophers

	DDFS	3	${\tt MC}^2$			
ph	time	entr	time	mxl	cxl	М
4	0.02	31	0.08	10	10	3
8	1.62	511	0.20	25	8	7
12	3:13	8191	0.25	37	11	11
16	>20:0:0	_	0.57	55	8	18
20	_	oom	3.16	484	9	20
30	_	oom	35.4	1478	11	100
40	_	oom	11:06	13486	10	209

	DDF	rs	${ m MC}^2$			
ph	time	entr	time	mxl	cxl	М
4	0.17	29	0.02	8	8	2
8	0.71	77	0.01	7	7	1
12	1:08	125	0.02	9	9	1
16	7:47:0	173	0.11	18	18	1
20	_	oom	0.06	14	14	1
30	_	oom	1.12	223	223	1
40	_	oom	1.23	218	218	1

Fair Dining Philosophers

	DDFS		${ m MC}^2$		
ph	time	entr	time	mxl	avl
4	0:01	178	0:20	49	21
6	0:03	1772	0:45	116	42
8	0:58	18244	2:42	365	99
10	16:44	192476	7:20	720	234
12	_	oom	21:20	1665	564
16	-	oom	3:03:40	7358	3144
20	_	oom	19:02:00	34158	14923

	DDFS				
ph	time	entr	time	mxl	avl
4	0:01	538	0:20	50	21
6	0:17	9106	0:46	123	42
8	7:56	161764	2:17	276	97
10	_	oom	7:37	760	240
12	_	oom	21:34	1682	570
16	_	oom	2:50:50	6124	2983
20	-	oom	22:59:10	44559	17949

Unfair Needham-Schroeder

	DI	DFS	MC^2			
mr	time	entr	time	mxl	cxl	M
		607				
		2527				
		13471				
		39007				
32	36.2	85279	2:54	269	63	11012

	DDFS		MC^2			
$_{\mathrm{mr}}$	time	entr	time	mxl	cxl	M
40	1:11	158431	1:46	325	117	7818
48	2:03	264607	1:45	232	25	6997
		409951		278	133	28644
64	5:18	600607				29982
72	_	oom	11:53	336	63	43192

- Grosu, Smolka: "Quantitative Model Checking", Proc. of ISOLA 2004
- Input is the same as before: a KS \mathcal{S} , an LTL formula φ , $0<\delta, \varepsilon<1$
 - again, let's say we have $B = B_{\neg \varphi} \times B_{\mathcal{S}}$
- Output is the same: PASS or (FAIL, counterexample)
- FAIL is FAIL as before
- Much easier interpretation for PASS: as we will see, with confidence $1-\delta$ we have a bound ε on the probability of $\mathcal{S}\not\models\varphi$

- Let Z be a random variable with values in [0,1]
 - thus, Z is generally not a Bernoulli variable
 - but Bernoulli variables are a special case, so the methodology discussed below can be applied
- Recall that the *mean* of Z is $\mu_Z = \mathbb{E}[Z] = \sum_{\omega \in \Omega} p(\omega) Z(\omega) \in [0,1]$ • recall that, if Z is a Bernuolli variable, $\mu_Z = p_Z$
- ullet The purpose here is exactly to compute μ_Z
- The exact value cannot be directly computed, so let us say we output $\tilde{\mu}_Z$ instead
- The methodology proposed here ensures that $\mathbb{P}(\mu_Z(1-\varepsilon) \leq \tilde{\mu}_Z \leq \mu_Z(1+\varepsilon)) \geq 1-\delta$
 - so again, ε is a tolerance and δ is a confidence on the result
 - typically, they should be close to zero
 - often, this is called a (ε, δ) -approximation

OAA: Optimal Approximation Algorithm

- Dagum, Karp, Luby, Ross: "An Optimal Algorithm for Monte Carlo Estimation". SIAM Journal on Computing, 29(5):1484–1496, 2000.
- We have Z as a random variable in [0,1]: how do we compute an (ε, δ) -approximation $\tilde{\mu}_Z$ of μ_Z ?
- Idea: perform N independent trials of Z, callect results Z_1,\ldots,Z_n and then output $\tilde{\mu}_Z=\frac{\sum_{i=1}^N Z_i}{N}$
- Straightforward problem: how to choose N, so as we have an (ε, δ) -approximation?

OAA: Optimal Approximation Algorithm

- We may employ an algorithm which *dynamically adjusts* the value of *N* on the basis of the results obtained so far
- In doing so, we use an auxiliary function SRA (Stopping Rule Algorithm)
- We also suppose to have a procedure \mathcal{P}_Z which performs an experiment on Z and returns the corresponding value in [0,1]
 - ullet of course, different calls to \mathcal{P}_Z will return different values
- Big limitation: $\mu_Z > 0$, or SRA does not terminate

OAA: Optimal Approximation Algorithm

```
OAA(procedure_for_Z \mathcal{P}_{7}, double \varepsilon, double \delta) {
      \hat{\mu}_Z = SRA(\mathcal{P}_Z, min\{\frac{1}{2}, \sqrt{\varepsilon}\}, \frac{\delta}{3});
      \Upsilon = 2(1+\sqrt{\varepsilon})(1+2\sqrt{\varepsilon})\left(1+\frac{\log(3)-\log(2)}{\log(2)-\log(\delta)}\right) \frac{4(e-2)(\log(2)-\log(\delta))}{\varepsilon^2}\,;
      N = \frac{\varepsilon T}{\Omega - \varepsilon};
      S = \frac{1}{2} \sum_{i=1}^{N} (\mathcal{P}_{Z}() - \mathcal{P}_{Z}())^{2};
      \rho_Z = \max\left\{\frac{S}{N}, \varepsilon \hat{\mu}_Z\right\};
      N = \frac{\rho_Z \Upsilon}{\hat{\sigma}^2};
      S = \frac{1}{N} \sum_{i=1}^{N} \mathcal{P}_{Z}();
      return \tilde{\mu}_Z = \frac{S}{N};
```


SRA: Stopping Rule Algorithm

```
SRA (procedure_for_Z \mathcal{P}_Z, double \varepsilon, double \delta) {

\Upsilon = 1 + (1 + \varepsilon)^{\frac{4(e-2)(\log(2) - \log(\delta))}{\varepsilon^2}};

N = 1;

S = 0;

while (S \le \Upsilon) {

N = N + 1;

S = S + \mathcal{P}();

}
return \hat{\mu}_Z = \frac{S}{N};
}
```


- Leveraging on OAA, we use the almost same framework used for Monte-Carlo Model Checking
 - Bernoulli variable Z s.t. Z=1 iff, making a random walk, you detect an non-accepting lasso
 - note that we reversed the previous definition: we will be back on this
 - Z is a special case of the random variables of OAA, so we may apply OAA to Z
 - also the probability space $(2^L, \mathbb{P})$ is the same
- The subroutine SampleLasso is the same as above

- DAA* is a modified version of DAA: as soon as Z=0 for some trial, exit with probability 0
 - i.e., if a counterexample has been found
- Thus, OAA* returns either 0 (in the previous case) or 1 (otherwise)

```
QMC(KS_BA \mathcal{SA}, double \varepsilon, double \delta) {
   \tilde{p}_Z = \mathsf{OAA}^*(\mathsf{SampleLasso}(\mathcal{SA}), \varepsilon, \delta);
   if (\tilde{p}_7 == 0) {
      \sigma = extract the accepting lasso from the
             last trial;
      return (FAIL, \sigma);
   else
      return PASS;
}
```


- Why Z = 1 if we find a "good" lasso?
 - instead of Z=1 if we find a counterexample, as it was for MC²?
- Recall that OAA only works if $p_Z = \mu_Z > 0$, otherwise SRA does not terminate
- With the current definition, $p_Z > 0$ means "there is at least a good lasso"
 - with the MC² definition, $p_Z > 0$ means "there is at least a counterexample": could easily be false!
- Even if "there is at least a good lasso" is false, QMC terminates as OAA* immediately exit after the first trial...

- Recall that $\mathbb{P}(\mu_Z(1-\varepsilon) \leq \tilde{\mu}_Z \leq \mu_Z(1+\varepsilon)) \geq 1-\delta$
- If Z=1 for all trials, $\tilde{\mu}_Z=1$ -
- Thus, $1 = \tilde{\mu}_Z \ge \mu_Z (1 \varepsilon)$ always holds
- What remains is $\mathbb{P}(\mu_{Z}(1+arepsilon)\geq 1)\geq 1-\delta$
 - better: $\mathbb{P}(\mu_Z \geq \frac{1}{1+\varepsilon}) \geq 1-\delta$
- If we recall that $\mu_Z=p_Z=1-q_Z$ we have that $\mathbb{P}(q_Z\leq 1-\frac{1}{1+\varepsilon})=\mathbb{P}(q_Z\leq \frac{\varepsilon}{1+\varepsilon})\geq 1-\delta$
- Actually, for small ε , $\frac{\varepsilon}{1+\varepsilon} \approx \varepsilon$, thus we are saying that $\mathbb{P}(q_Z \leq \varepsilon) \geq 1 \delta!$
 - q_Z is the probability that, making a random walk, we find a counterexample
 - much better than the obscure assumption of MC²

- QMC seems extremely better than MC²
- So why MC² has been published as an improvement of QMC one year later?
- Because the OAA methodology requires much more steps
- For MC², the worst-case number of trials is $M = \frac{\log(\delta)}{\log(1-\varepsilon)}$
- For QMC, we can show that worst-case number of trials is bound by $N = O(4^{\frac{\log(2) \log(\delta)}{\varepsilon}})$
 - recall that $\log(\delta) < 0$
 - N > 5M
 - e.g., $\delta = 0.1, \varepsilon = 0.0018 \to M = 1257$ for MC²
 - but N=1257 with $\delta=\varepsilon=0.1$ for QMC
- RAM space is O(D) for both

Unfair Dining Philosophers

	DDF	S	QMC			
ph	time	entr	time	mxl	cxl	N
4	0.02	31	0.08	10	10	3
8	1.62	511	0.20	25	8	7
12	3:13	8191	0.25	37	11	11
16	>20:0:0	_	0.57	55	8	18
20	_	oom	3.16	484	9	20
30	_	oom	35.4	1478	11	100
40	_	oom	11:06	13486	10	209

	DDF	rs	QMC			
ph	time	entr	$_{ m time}$	mxl	cxl	Ν
4	0.17	29	0.02	8	8	2
8	0.71	77	0.01	7	7	1
12	1:08	125	0.02	9	9	1
16	7:47:0	173	0.11	18	18	1
20	_	oom	0.06	14	14	1
30	_	oom	1.12	223	223	1
40	_	oom	1.23	218	218	1

Fair Dining Philosophers

	DDFS		QMC		
phi	time	entries	time	mxl	avl
4	0:01	178	0:20	49	21
6	0:03	1772	0:45	116	42
8	0:58	18244	2:42	365	99
10	16:44	192476	7:20	720	234
12	_	oom	21:20	1665	564
14	-	oom	1:09:52	2994	1442
16	-	oom	3:03:40	7358	3144
18	-	oom	6:41:30	13426	5896
20	_	oom	19:02:00	34158	14923

	DDFS				
phi	time	entries	time	mxl	avl
4	0:01	538	0:20	50	21
6	0:17	9106	0:46	123	42
8	7:56	161764	2:17	276	97
10	_	oom	7:37	760	240
12	_	oom	21:34	1682	570
14	-	oom	1:09:45	3001	1363
16	-	oom	2:50:50	6124	2983
18	_	oom	8:24:10	17962	7390
20	_	oom	22:59:10	44559	17949

- Mancini, Mari, Melatti, Salvo, Tronci, Gruber, Hayes, Prodanovic, and Elmegaard. "Parallel Statistical Model Checking for Safety Verification in Smart Grids." In Proc. SmartGridComm 2018.
- EDN: Electric Distribution Network, also called "grid"
 - brings to residential houses, commercial buildings and industries the electricity they need
 - till some decades ago, simply based on demands
- Smart grid: usage of computational services to improve electricity distribution
 - e.g.: electricity usage is measured and then rendered in a web app

- Distribution System Operators (DSOs) and energy retailers compute price tariffs for residential users
- Expected Power Profiles (EPPs): how residential users will respond to price tariffs
- DSOs compute price tariffs so that EPPs do not threat substations safety
 - in each t, Aggregated Power Demand (APD) must be below the substation safety power threshold (e.g., 400 kW)
 - DSOs main goal is to achieve peak shaving

Problem at a Glance

Autonomous Demand Response

- Residential users may or may not follow their corresponding Expected Power Profiles (EPPs)
 - there may be automatic tools to enforce EPPs
 - implemented on small devices on users premises
 - still, there is no guarantee, due to unexpected needs, bad forecasts, limited computational resources, etc.

Problem

Given that users may deviate from EPPs with a given probability distribution, what is the resulting probability distribution for the aggregated power demand (APD)?

Problem at a Glance

APD-Analyser

- We present the APD-Analyser tool
 - APD: Aggregated Power Demand

- Main goal: compute the probability distribution for the APD
 - given probability distributions on each residential user Expected Power Profile (EPP)

APD-Analyser: Input and Output

APD-Analyser: Input

- Set of residential users U connected to the same substation
- Set of time-slots T (e.g., one month with 15 minutes step)
- Expected Power Profiles (EPP)
 - one for each user $u \in U$: for each time-slot $t \in T$, the expected power demand of u in t
 - $p_u: T \to \mathbb{R}$
- A probabilistic model for users deviations from EPPs
 - ullet a real function $dev_u:\mathbb{R} o [0,1]$, for each user $u\in U$
 - $\int_{-\infty}^{+\infty} dev_u(x) dx = 1$
 - $\int_a^b dev_u(x)dx$ = probability that actual power demand of u in any time-slot $t \in T$ is in $[(1+a)p_u(t), (1+b)p_u(t)]$
 - e.g.: $\int_{-0.02}^{0.02} dev_u(x) dx = \text{probability that actual power demand}$ of u in any time-slot $t \in T$ deviates at most $t \in T$ deviate

APD-Analyser: Input and Output

APD-Analyser: Input

- Substation safety requirements
 - $p_s: T \to \mathbb{R}$
 - ullet for each $t\in T$, DSO wants the APD to be below $p_s(t)$
 - that is, $\forall t \in \mathcal{T} \to \sum_{u \in U} [(1 + \operatorname{deviation}_u) p_u(t)] \leq p_s(t)$
- Key Performance Indicators (KPIs)
 - e.g., probability distribution that $p_s(t)$ is exceeded in any $t \in \mathcal{T}$
- Parameters
 - $0 < \delta, \varepsilon < 1$: as for output probability distributions, the values must be correct up to tolerance ε with statistical confidence δ
 - $\Pr[(1-\varepsilon)\mu \leq \tilde{\mu} \leq (1+\varepsilon)\mu] \geq 1-\delta$
 - μ : (unknown) correct value, $\tilde{\mu}$: computed value
 - $\gamma \in \mathbb{R}^+$: discretisation step for output probability distribution

APD-Analyser: Input and Output

APD-Analyser: Output

- Probability distribution for APD resulting from EPPs disturbed with given probabilistic disturbance model
 - easy to evaluate KPIs once such distribution is computed
 - formally: $\Psi(W)$ is the probability that APD takes a value in interval W in any time-slot $t \in T$
- Exactly computing Ψ is infeasible, thus we compute $\tilde{\Psi}$ as a (ε, δ) approximation of a γ -discretisation of the APD
- For each γ -discretised value $w = \mathsf{APD}_{min} + k\gamma$, we compute $\tilde{\Psi}(w)$ s.t., with confidence at least 1δ :
 - if $\tilde{\Psi}(w) = \perp \notin [0,1]$ then $\Psi([w, w + \gamma)) < \varepsilon$
 - otherwise, $\tilde{\Psi}([w, w + \gamma))$ is within $(1 \pm \varepsilon)\Psi(w)$

APD-Analyser: Algorithm

- Monte-Carlo model checking
 - ullet goal: estimate the mean of a 0/1 random variable Z_w
 - $Z_w=1$ iff, taken at random a $t\in T$, the value of the APD is in $[w,w+\gamma)$, when EPPs are perturbed using deviations model dev_u
 - ullet then, the mean is exactly our $\Psi(w)$
- Method: perform N independent experiments (samples) for
 - Z_w , and then the mean of Z_w is $\frac{\sum_{i=1}^N \hat{Z_i}}{N} \in [0,1]$
 - Optimal Approximation Algorithm (OAA) by Dagum & al. (2000) + Monte-Carlo Model Checking (MCMC) by Grosu & Smolka (2005)
 - sequential analysis: use outcomes of previous experiments to compute N
 - the value of *N* is automatically adjusted, at run-time, while performing the samples
 - so that the desired tolerance ε is achieved with desired accuracy δ

Optimal Approximation Algorithm (OAA)

- O Phase 1
 - Perform $N_1 = f_1(\varepsilon, \delta)$ experiments $\hat{Z}_{1,1}, \dots, \hat{Z}_{1,N_1}$
 - ② Compute mean of successful experiments $\hat{\mu}_Z = \frac{1}{N_1} \sum_{i=1}^{N_1} \hat{Z}_{1,i}$
- Opening Phase 2
 - Perform $2N_2 = 2f_2(\varepsilon, \delta, \hat{\mu}_Z)$ experiments $\hat{Z}_{2,0}, \dots, \hat{Z}_{2,2N_2-1}$
 - ② Compute $S = \frac{1}{N_2} \sum_{i=0}^{N_2-1} \frac{|\hat{Z}_{2,2i} \hat{Z}_{2,2i+1}|}{2}$
- Phase 3
 - Perform $N_3 = f_3(\varepsilon, \delta, \hat{\mu}_Z, S, N_2)$ experiments $\hat{Z}_{3,1}, \dots, \hat{Z}_{3,N_3}$
 - ② Return mean of successful experiments $\tilde{\mu}_Z = \frac{1}{N_3} \sum_{i=1}^{N_3} \hat{Z}_{1,i}$
 - It holds that $\Pr[(1-arepsilon)\mu_{Z} \leq ilde{\mu}_{Z} \leq (1+arepsilon)\mu_{Z}] \geq 1-\delta$

OAA + Monte-Carlo Model Checking (MCMC)

- Correct phase 1 using statistical hypothesis testing
- If $\sum_{i=1}^{M} \hat{Z}_{1,i} = 0$ for $M = f_4(\varepsilon, \delta) = \left\lceil \frac{\ln(\delta)}{\ln(1-\varepsilon)} \right\rceil$, terminate the computation
- Return $\tilde{\mu}_{Z}=0$
- It holds that $\Pr[\mu_Z < \varepsilon] \ge 1 \delta$

APD-Analyser: HPC Algorithm

- $N = N_1 + N_2 + N_3$ can be prohibitively high
 - easily order of 10⁹ in our experiments
 - OAA+MCMC to be run for each different value of w
 - if performed with a sequential algorithm, order of 1 month for the computation time
- We re-engineer the OAA to be run on a HPC infrastructure, i.e., a cluster (distributed memory)
 - main obstacle: value of N depends on samples outcomes! To be computed at run-time
- One orchestrator node instructs worker nodes to perform given number of samples
 - worker nodes perform samples in parallel and send results to the orchestrator
 - the orchestrator keeps track of phases of each worker and of different values of w
- As a result, less than 2 hours of computation with 89 workers

APD-Analyser: HPC Implementation Sketch

Different workers may be in different phases and different w

Experimental Evaluation: Case Study

- 130 houses in Denmark, all connected to the same substation
- EPPs computed by using methodologies from the literature
 - starting point: historical data collected on those houses for one year (SmartHG FP7 project)
 - computed as shifts within given flexibilities so as to collaboratively respond to price policies
- Very liberal deviation model: up to $\pm 40\%$ variations with 10% probability, up to $\pm 20\%$ variations with 20% probability
- We want to compute the APD for each month of the year
 - by using time-slots of 1 day, we have $5^{30 \times 130}$ overall number of deviations

Experimental Evaluation: Case Study

INPUT FOR SUBSTATION

Experimental Results

Experimental Results: HPC Scalability

# workers	samples/sec	speedup	efficiency
1	5924.89	$1\times$	100%
20	79275.028	$13.38 \times$	66.90%
40	162578.98	$27.44 \times$	68.60%
60	257791.96	$43.51 \times$	72.52%
80	335823.24	56.68×	70.85%

speedup =
$$\frac{s_k}{s_1}$$
, efficiency = $\frac{s_k}{ks_1}$

Conclusions

- We presented the HPC-based tool APD-Analyser
- Main purpose: support DSOs in analysing effects of price policies on aggregated power demand (APD) at substation level
 - especially for highly-fluctuating and individualised price policies
- From expected power profiles disturbed by probabilistic deviations (input) to probability distribution for APD (output)
- As a result, APD-Analyser enables safety assessment of price policies in highly dynamic ADR schemas

Statistical Model Checking for Everything

- Zuliani, Platzer, Clarke: "Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification", Formal Methods in System Design vol. 43, 2013
- In the works above, it was necessary to have some simple language defining the system
 - e.g., Promela of SPIN, though they use a different language
 - needed to perform the Cartesian product of the property and the system itself
 - and also to actually make a random walk of the system
 - actually, such a limitation is not difficult to overcome, but it is presented in this way
 - especially ok for systems already expressed in the language, but which went out of resources
- Here, we directly use simulators
 - Simulink, but conceptually also Modelica

- As before, we have to define our probability space; this time is not easy
- Given a set X, a σ -algebra on X is $\mathcal{Y} \subseteq 2^X$ s.t. \mathcal{Y} is closed for complements, countable unions and countable intersections, i.e.:
 - $\forall Y \in \mathcal{Y}$. $\bar{Y} \in \mathcal{Y}$, with $\bar{Y} = \{x \in X \mid x \notin Y\}$ being the complement of Y
 - $\forall I \subseteq \mathbb{N} \text{ s.t. } Y_i \in \mathcal{Y}$:
 - $\forall i, j \in I. \ Y_i \cup Y_j \in \mathcal{Y}$
 - $\forall i, j \in I. \ Y_i \cap Y_j \in \mathcal{Y}$
- Example: $\mathcal{Y}_1 = 2^X$ and $\mathcal{Y}_2 = \{\varnothing, X\}$ are always σ -algebras
- Example: for $X = \{a, b\}$, $\mathcal{Y} = \{\{a\}, \{b\}, \{a, b\}\}$ is not a σ -algebra since $\{a\} \cap \{b\} = \emptyset \notin \mathcal{Y}$

- If $X \subseteq \mathbb{R}^n$, the *Borel set* on X, denoted by $\mathcal{B}(X)$, is the smallest σ -algebra of X which contains all open sets of X
 - recall that a set $A \subseteq \mathbb{R}^n$ is open iff, for all $a \in A$, there exists a n-dimensional ball (border excluded) centered in a which is contained in A
 - that is, $\exists \varepsilon > 0$: $\forall x \in \mathbb{R}^n$. $|a x| < \varepsilon \Rightarrow x \in A$
- The pair $(X, \mathcal{B}(X))$ is called *measureable space*
- Thus, given $X \subseteq \mathbb{R}^n$, $\mathcal{B}(X)$ retains all open sets already in X and ensures that intersection, union and complementation are still in $\mathcal{B}(X)$
- We are interested in this since our systems are defined via variables on real intervals
 - sets of states are subsets of \mathbb{R}^n

- A stochastic kernel on $(X, \mathcal{B}(X))$ is a function $K: X \times \mathcal{B}(X) \to [0, 1]$ s.t.:
 - for all $x \in X$, the function $K_X : \mathcal{B}(X) \to [0,1]$ defined by $K_X(B) = K(x,B)$ is a probability measure on \mathcal{B}
 - that is, the three Kolmogorov axioms are true
 - note that K_X actually takes subsets...
 - for all $B \in \mathcal{B}(X)$, the function $K_{\mathcal{B}}: X \to [0,1]$ is a measureable function on X
 - we are less interested on this point

- Since each state is a point $x \in X \subseteq \mathbb{R}$, execution traces are sequences $\sigma \in X^\omega$
 - for finite (terminated) runs, we may add a loop on the last state (stuttering)
- We want to define probabilities on traces, thus $\Omega = X^{\omega}$
- Usually, we define the probability on $(\Omega, 2^{\Omega})$
- For these types of Ω , we are happy with something contained in 2^{Ω} , namely \mathcal{F} as the cylindric σ -algebra built on Ω
 - essentially, such sequences behave "well"

- We suppose to have a stochastic kernel K defined on (Ω, \mathcal{F})
- Together with an initial state $x \in X$, this defines a probability on (Ω, \mathcal{F})
 - $\mathbb{P}(X_1 \in B) = 1$ if $x \in B$ and 0 otherwise;
 - $\bullet \ \mathbb{P}(X_{i+1} \in B) = K(x_i, B)$
 - K defines the outgoing transitions probability
- Thus, if we are able to define a K, we have a probability space for our SMC methodology

Discrete Time Hybrid Automaton

- Giving a precise semantics of Simulink (or Modelica) is difficult, but the following definition is quite close
- A Discrete Time Hybrid Automaton (DTHA) is defined as $\mathcal{D} = \langle Q, E, n, q_0, x_0, \Phi, J \rangle$ where:
 - n is the dimension of the state space, which is understood to be \mathbb{R}^n
 - \circ (Q, E) is a directed graph
 - Q is a set of locations, E is a set of control switches or modalities
 - (q_0, x_0) is the starting state, $(q_0, x_0) \in Q \times \mathbb{R}^n$
 - $\bullet \Phi = \{ \phi_q : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n \mid q \in Q \}$
 - $J = \{j_e : \mathbb{R}^n \to \mathbb{R}^n \mid e \in E\}$

- The transition relation δ of a DTHA $\mathcal D$ defines when we go from a state in $Q \times \mathbb R^n$ to another
 - not simple as for Kripke structures, where one step is one step:
 here, also time passing is important
- 2 underling ideas:
 - ullet time only passes within locations, handled by Φ
 - jumps within locations happen in time 0, defined by E with conditions given by J
 - either the time pass within a location, or a jump between locations is performed
- $\delta \in Q \times \mathbb{R}^n \times (\mathbb{R}^+ \dot{\cup} E) \times Q \times \mathbb{R}^n$

- $\delta \in Q \times \mathbb{R}^n \times (\mathbb{R}^+ \dot{\cup} E) \times Q \times \mathbb{R}^n$
- $(q, x, t, q, x') \in \delta \equiv (q, x) \rightarrow_t (q, x')$ iff $x' = \phi_q(t, x)$
 - note that q does not change
- $(q, x, e, q', x') \in \delta \equiv (q, x) \rightarrow_e (q', x')$ iff $x' = j_e(x) \land e = (q, q')$
 - note that time does not pass
- $\Delta: Q \times \mathbb{R}^n \to (\mathbb{R}^+ \dot{\cup} E)$ is the simulation function
 - decides if, in a given state, a location jump or a time pass has to be performed
 - if time passes, decides how much
 - unified notation $(q, x) \rightarrow_{\Delta(q, x)} (q', x')$

- ullet δ may be non-deterministic
 - in a given state (q, x), both some j_e and ϕ_q could be enabled
 - ullet even if only ϕ_q is enabled, many values for t may apply
- Δ is deterministic; in Simulink:
 - if both a discrete and a continuous transition can be taken, take the discrete one
 - if continuous, stay for the maximum time allowed before a location change
 - an ordering on outgoing edge is always available, so the first one is selected when multiple edges are present

- A trace is a sequence $\sigma = (s_0, t_0), \dots, (s_i, t_i), \dots$ s.t.
 - $s_0 = (q_0, x_0)$
 - $\forall i \geq 0$. $s_i \in Q \times \mathbb{R}^n$, $t_i \in \mathbb{R}^+$
 - $\forall i \geq 0. \ s_i \rightarrow_{\Delta(s_i)} s_{i+1}$
 - $\forall i \geq 0$. $t_i = \Delta(s_i)$ if $\Delta(s_i) \in \mathbb{R}^+$
 - $\forall i \geq 0$. $t_i = 0$ if $\Delta(s_i) \in E$
- At step $\sigma_i = (s_i, t_i)$, the global time is $\sum_{j=0}^{i-1} t_j$
- For an infinite trace σ , $\sum_{i=0}^{\infty} t_i = \infty$
 - there must be finitely many location switches in finite time

Probabilistic Discrete Time Hybrid Automaton Semantics

- For a set X, let $D(X) = \{f \mid f \text{ is a probability density function on } X\}$
 - for $X = \{x_1, \dots, x_n\}$, $f(t) = \sum_{i=1}^n p_i \delta(t x_i)$, for any choice of $\pi_i \in [0, 1]$ s.t. $\sum_{i=1}^n p_i = 1$
 - here δ is the Dirac function, i.e. $\delta(0)=1, \forall x\neq 0. \ \delta(x)=0$
 - otherwise, for continuous X, f(t) is s.t. $\int_a^b f(x)dx \in [0,1]$ for any $[a,b] \subseteq X$ and $\int_X f(x)dx = 1$
- A probabilistic transition function Π for a DTHA \mathcal{D} is a function $\Pi: Q \times \mathbb{R}^n \to D(\{0,1\}) \times D(\mathbb{R}^+) \times D(E)$
 - since Π returns 3 values, we will denote its components by $\Pi(s) = \langle \Pi_a(s), \Pi_c(s), \Pi_d(s) \rangle$
 - the following must be true: $\forall (q, q') \in E, r \in Q, x \in \mathbb{R}^n. \ q \neq r \rightarrow \Pi_d(r, x)(q, q') = 0$

Probabilistic Discrete Time Hybrid Automaton Semantics

- Informally, a probabilistic transition function Π has the goal of definining a (possibly non-uniform) "random walk" on a DTHA
 - suppose we are in a state s = (q, x)
 - both a location change and a continuous move may be taken? choose at random with probability $\Pi_a(s)$
 - if a location change must take place, choose one at random with probability $\Pi_d(s)$
 - if time must pass, decide how much with probability $\pi_c(s)$

Probabilistic Discrete Time Hybrid Automaton Semantics

- Thus, $K((q, x), B) = p_a \sum_{e \in E(B, q, x)} \Pi_d(q, x)(e) + (1 p_a) \int_0^\infty \Pi_c(q, x)(t) I_B(q, \phi_q(t, x)) dt$
 - B is a Borel set over $Q \times \mathbb{R}^n$
 - $p_a = \Pi_a(q, x)(0)$
 - ullet arbitrary choice, could also have been $p_a=\Pi_a(q,x)(1)$
 - $E \supseteq E(B, q, x) = \{(q, q') \in E \mid (q', j_{(q,q')}(x)) \in B\}$
 - to be well-defined, we must stay in the same Borel set
 - I_B is the indicator function of B, i.e. $I_B(q,x) = 1$ iff $(q,x) \in B$, and 0 otherwise
 - again, to be well-defined, we must stay in the same Borel set
- It may be shown that K is a stochastic kernel, so probability is well-defined over infinite traces

Probabilistic DTHA in Simulink/Stateflow

- n is the number of variables in a Simulink/Stateflow model
 - ullet some of them may be discrete, but \mathbb{R}^n is for sure a superclass
- Q corresponds to "states" of Stateflow and E are states transitions
- ullet Simulink only perform deterministic transitions, so probability density function output by Π all consists in just one point being defined
- Differently from the Grosu & Smolka works, here we cannot provide a deterministic model and let the methodology turn it probabilistic
 - the user must define something probabilistic
 - typically done by introducing probabilistic blocks in the design
 - Uniform Random Number block

Bayes Theorem

- Conditional probability: $\mathbb{P}(A|B)$ is the probability of event A, under the assumption that event B already occured
 - by definition, $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Which is the relationship between $\mathbb{P}(A|B)$ and $\mathbb{P}(B|A)$?
- The well-known Bayes Theorem states that $\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$
 - $\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{i=1}^n \mathbb{P}(B|A_i)\mathbb{P}(A_i)}$ for $\bigcup_{i=1}^n A_i = B$
- Here we need a more refined version of the Bayes Theorem
- First of all, the conditional probability density function of a Bernoulli random variable X and a random variable U with values in (0,1) is $f(x_i|u) = u^{x_i}(1-u)^{1-x_i}$
 - then, $f(x_i = 1|u) = u$ and $f(x_i = 0|u) = 1$

Bayes Theorem

- Our refined version of the Bayes Theorem states that $f(u|x_1...x_n) = \frac{f(x_1...x_n|u)g(u)}{\int_0^1 f(x_1...x_n|v)g(v)dv}$
 - u is the unknown probability that we have an error in our system
 - x_i are "observations" of u: we make a simulation and see if it fails or not
 - ullet g is the probability prior distribution of u
 - prior as opposed to posterior $f(u|x_1...x_n)$: without having taken samples
 - we will assume it to have a given shape
 - since we assume observations to be independent, $f(x_1...x_n|u) = \prod_{i=1}^n f(x_i|u)$
- We want to know p as the probability of the posterior $f(u|x_1...x_n)$
- We use the *posterior Bayes estimator* of *p*

Bayes Theorem

• From the Bayes theorem it follows that $\int_{t_0}^{t_1} f(u|x_1 \dots x_n) du = F_{(x+\alpha,n-x+\beta)}(t_1) - F_{(x+\alpha,n-x+\beta)}(t_0)$ where:

- $t_0, t_1 \in (0,1)$
- $x = \sum_{i=1}^{n} x_i$ is the number of successes in the *n* trials
- $\alpha, \beta \in \mathbb{R}^+$ are given parameters
- $F_{A,B}(t) = \int_0^t g_{A,B}(u) du$ is a Beta distribution function
- g above is the prior density, here we assume it to be $g_{A,B}(u) = \frac{u^{A-1}(1-u)^{B-1}}{\int_0^1 t^{A-1}(1-t)^{B-1}dt}$
- thus, $F_{A,B}(t) = \frac{\int_0^t u^{A-1} (1-u)^{B-1} du}{\int_0^1 t^{A-1} (1-t)^{B-1} dt}$
- F may be easily made explicit, or simply computed using mathematical tools like MATLAB
- When sampling from a Bernoulli distribution with a Beta prior of parameters α, β , it is known that the meaning the posterior is $\hat{p} = \frac{x+\alpha}{n+\alpha+\beta}$

The Algorithm for BSMC

- BSMC: Bayes-based Statistical Model Checking
- The input is as follows:
 - ullet ${\cal S}$ as the simulator model for the system to be verified
 - may be black-box, Simulink, Modelica or proprietary
 - must have some probabilistic behaviour, i.e., 2 consecutive simulations may have different results
 - ullet φ as the BLTL property to be verified
 - Bounded LTL: all ${\bf U}$ operators must be bounded, i.e., they are of the form ${\bf U}^{\le t}$, with t>0
 - hence, also **F** and **G** must be bounded too
 - \bullet $\alpha, \beta \in \mathbb{R}^+$ as the parameters for the prior Beta distribution
 - $\delta \in (0,1)$ as the desired size of the output interval
 - $oldsymbol{c} \in \left(rac{1}{2},1
 ight)$ as the desired interval coverage coefficient

The Algorithm for BSMC

- The output is as follows:
 - (t_0, t_1) such that $t_1 t_0 = \delta$
 - \hat{p} as the estimate of the probability p that $\mathcal{S} \models \varphi$
- It holds that:
 - (t_0, t_1) is a 100c Bayesian interval estimate
 - $\hat{p} \in (t_0, t_1)$
 - usually at half interval, but with some adjustments
- ullet Thus, we want δ to be small
 - implies our output interval is narrow, and the estimate is accurate
- We want c to be high
 - implies we are confident on the estimate
- Needless to say, the smaller δ and the higher computation time required

The Algorithm

```
BSMC(ProbModel \mathcal{S}, BLTL property \varphi,
          double \alpha, \beta, c, \delta) {
   (n,x) = (0, 0);
   do {
       \sigma = simulate(S, time(\varphi));
       n = n+1; if (\sigma \models \varphi) x = x+1;
       \hat{p} = \frac{x+\alpha}{p+\alpha+\beta}; (t_0, t_1) = (\hat{p} - \frac{\delta}{2}, \hat{p} + \frac{\delta}{2});
        if (t_1 > 1) (t_0, t_1) = (1 - \delta, 1);
        if (t_0 < 0) (t_0, t_1) = (0, \delta);
       \gamma = F_{(x+\alpha,n-x+\beta)}(t_1) - F_{(x+\alpha,n-x+\beta)}(t_0);
    } while (\gamma < c);
    return \langle (t_0, t_1), \hat{p} \rangle;
```


BLTL Logic, Formally

$$\Phi ::= p \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid (\Phi) \mid \Phi_1 \ \mathbf{U}^{\leq t} \ \Phi_2$$

- $t \in \mathbb{Q}^+$ is a time
- Atomic propositions p are of the form $y \sim v$, being y a variable in the model, $\sim \in \{<,>,\leq,\geq,=\}$ and $v \in \mathbb{Q}$
- Some other derived operators:
 - of course true, false, OR and other propositional logic connectors
 - future (or eventually): $\mathbf{F}^{\leq t}\Phi = \operatorname{true} \mathbf{U}^{\leq t} \Phi$
 - globally: $\mathbf{G}^{\leq t} \Phi = \neg (\text{true } \mathbf{U}^{\leq t} \neg \Phi)$
- As for LTL, $\mathcal{S} \models \varphi$ when, for all executions σ of \mathcal{S} , σ satisfies φ
- For a given σ , $\sigma \models \varphi$ iff σ , $0 \models \varphi$

BLTL Logic, Formally

- To define when $\sigma, i \models \varphi$, a recursive definition over the recursive syntax of BLTL is provided
 - recall that $\sigma = (s_0, t_0), \ldots, (s_i, t_i), \ldots$
 - at step $\sigma_i = (s_i, t_i)$, the global time is $\sum_{j=0}^{i-1} t_j$
- σ , $i \models y \sim v$ iff $\sigma(i)(y) \sim v$
- $\sigma, i \models \Phi_1 \land \Phi_2 \text{ iff } \sigma, i \models \Phi_1 \land \sigma, i \models \Phi_2$
- $\sigma, i \models \neg \Phi \text{ iff } \sigma, i \not\models \Phi$
- $\sigma, i \models \Phi_1 \ \mathbf{U}^{\leq t} \ \Phi_2 \ \text{iff}$ $\exists k \geq i : \ \sigma, k \models \Phi_2 \land \forall i \leq j < k. \ \sigma, j \models \Phi_1 \ \text{and} \ \sum_{j=i}^{k-1} t_j \leq t$
- Note this is different from the bounded semantics of LTL used in Bounded Model Checking

On BSMC Algorithm

- Crucial steps in BSMC algorithm:
 - simulate, i.e., invoking our simulator, whatever it is
 - evaluating $\sigma \models \varphi$
- Does simulate actually returns σ ?
 - typically, simulators output is a log with lines $(t_i, v_{i1}, \ldots, v_{in})$
 - being v_{i1}, \ldots, v_{in} the values at time t_i for each of the n variables used in the simulator model
 - ullet usually, state locations may be inferred from v_{i1},\ldots,v_{in}
 - ullet usually, $t_{i+1}=t_i+\Delta t$ for a fixed (and small) $\Delta t>0$
 - thus, a simple postprocess computation may translate the log in an execution $\sigma = (s_0, t_0), \dots, (s_i, t_i), \dots$
 - this also allows to compute $\sigma(i)(y)$ for any variable y

On BSMC Algorithm

- The first 2 inputs of the BSMC algorithm are straightforward
 - if I want to verify something, of course I need a model and a property
- We may understand δ , c: they control accuracy and confidence of the result
 - the more accuracy/confidence is required, the longer the computation
- What about α, β ?
 - informally, it is a measure of the "weight" we believe passes and fails should have
 - if none is known, it is probably good to choose a uniform Beta distribution, i.e., $\alpha=\beta$
 - e.g., $\alpha = \beta = 1$

On BSMC Algorithm

- It may be proven that BSMC nearly always terminates:
 - for all possible valid inputs, BSMC terminates with probability 1
 - no, this does not imply that BSMC always terminates (we are in an infinite space)
 - but it is enough for practical applications
- It may be proven that errors on BSMC output are unlikely
 - let our null hypothesis be $p \in (t_0, t_1)$
 - both type-I and type-II errors are bounded by $\frac{\pi_0(1-c)}{c(1-\pi_0)}$
 - recall: type-I is saying that $p \notin (t_0, t_1)$ when instead $p \in (t_0, t_1)$
 - recall: type-II is saying that $p \in (t_0, t_1)$ when instead $p \notin (t_0, t_1)$
 - c is the coverage input as in BSMC
 - π_0 is the actual (prior) probability that $p \in \{1, 1, 1\}$

- Case study: Fault-Tolerant Fuel Control System
 - for details, see http://www.mathworks.com/help/simulink/examples/ modeling-a-fault-tolerant-fuel-control-system. html
- Gasoline engine (e.g., used in avionics), must provide power for vehicle operations
- This model focuses on a critical parameter: the air/fuel rate, which must be kept close to a reference value, i.e., 14.6
 - air is pumped away by intake manifold, fule is pumped in by injectors

- The model uses sensors for some key measurements: EGO (exhaust gas residual oxygen), engine speed, throttle, pressure
- If all sensors works well, it is rather easy to control the actuators so that the air/fuel ratio is 14.6
 - the actuator is on the fuel rate
- But sensors may fail: the controller is able to detect such failures and adjust actuators accordingly
- If more than one sensor fail, the engine is shut down
- We need a stochastic system, thus sensor failures are made probabilistic
 - independent Poisson processes with different arrival rates: $\mathbb{P}(N(t) = n) = \frac{\lambda^n t^n}{n! a^{\lambda t}}$
- The other parts of the system are deterministic
 - there should be the throttle command as input, but it is replaced by a triangular deterministic input

- BLTL formula to be checked: $\neg \mathbf{F}^{100}\mathbf{G}^1$ FuelFlowRate = 0
 - it must not happen that, within 100 seconds, the fuel flow rate becomes zero for 1 second
- Different experiments varying:
 - $(\delta, c) \in \{0.05, 0.01\} \times \{0.99, 0.999\}$ (4 possible pairs)
 - fault rates for sensors in {(3,7,8),(10,8,9),(20,10,20),(30,30,30)}
- The C-H bound is also computed: how many experiments should be done with the Chernoff-Hoeffding methodology

Table 3 Posterior mean/number of samples for estimating probability of (15) with uniform prior and $\delta = 0.05$, and sample size required by the Chernoff-Hoeffding bound [27]

		Interval coverage c	
		0.99	0.999
Fault rates	(3 7 8)	0.3569/606	0.3429/972
	(10 8 9)	0.8785/286	0.8429/590
	(20 10 20)	0.9561/112	0.9625/158
	(30 30 30)	0.9778/43	0.9851/65
	C-H bound	922	1382

Table 4 Posterior mean/number of samples when estimating probability of (15) with uniform prior and $\delta = 0.01$, and sample size required by the Chernoff-Hoeffding bound [27]

		Interval coverage c	
		0.99	0.999
Fault rates	(3 7 8)	0.3558/15205	0.3563/24830
	(10 8 9)	0.8528/8331	0.8534/13569
	(20 10 20)	0.9840/1121	0.9779/2583
	(30 30 30)	0.9956/227	0.9971/341
	C-H bound	23026	34539

