

Linear Algebra - Exam #1 - A. Terras, April 27, 2007

The exam is closed book, no calculators, no computers, no notes,

- 1) Define the following and give an example.
 - a) linearly independent vectors in a vector space V
 - c) linear transformation $T:V \rightarrow W$ where V and W are vector spaces
- 2) Given the matrix A below, find the reduced echelon form of A and then find a basis for the column space ColA and a basis for the null space NulA.

$$A = \begin{bmatrix} -3 & 9 & -2 & -6 \\ 6 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2 \end{bmatrix}.$$

- 3) True-False. Tell whether the following statements are true or false. If true, give a brief explanation and if false, give a counterexample.
 - a) The plane consisting of vectors (x,y,z) such that x+y+z=1 is a subspace of \mathbb{R}^3 .
 - b) Suppose W is a subspace of V and W^{\perp} denotes the orthogonal complement of W. Then $\dim(W) + \dim(W^{\perp}) = \dim(V)$.
 - c) Suppose A and B are nxn matrices. Then AB=BA.
- 4) Let \mathbb{P}_n be the vector space of polynomials of degree less than or equal to n.
 - a) What is the standard basis B_n for \mathbb{P}_n ?
 - b) Let $L:\mathbb{P}_2 \to \mathbb{P}_3$ be the function defined by $Lp(x) = \int\limits_0^x p(t)dt$.

Find the matrix of L using the basis $\,B_2\,$ for $\,\mathbb{P}_2\,$ and $\,B_3\,$ for $\,\mathbb{P}_3\,$.

- 5) Suppose that A is an $m \times m$ real matrix. Show that the following statements are equivalent.
 - i) The columns of A span \mathbb{R}^m .
 - ii) The equation $A\vec{x} = \vec{0}$ has a unique solution $\vec{x} = \vec{0}$.

Math 102 Exam # 1 Solutions

1)	a) v, vn eV are linearly independent if \$\frac{7}{5} \civ = \frac{7}{5} \text{for scalars c} \text{all e} = 0
	Example (b), (°) in IR2
	b) linear transformation T: V-) W means $T(c_1\vec{v}_1+c_2\vec{v}_2)=c_1T\vec{v}_1+c_2T\vec{v}_2$ for scalars c; & vectors $\vec{v}_1 \in V$
	Example, $V = W = \mathbb{R}^2$ $T(\vec{x}) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \vec{x}$
2)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\Rightarrow \text{Basis Col(A)} = \begin{cases} \begin{bmatrix} -3 \\ 3 \end{bmatrix}, \begin{bmatrix} -6 \\ -9 \end{bmatrix}, \begin{bmatrix} -2 \\ 4 \end{bmatrix} \\ 3 \end{bmatrix}, \begin{bmatrix} -9 \\ -2 \end{bmatrix} \end{cases}$ $\overrightarrow{VX} = \overrightarrow{0} \iff \begin{cases} x_1 + \frac{1}{3}x_4 = 0 \\ x_2 - \frac{1}{3}x_4 = 0 \end{cases} \iff \begin{cases} x_1 = -\frac{1}{3}x_4 \\ x_2 - \frac{1}{3}x_4 = 0 \end{cases} \iff \begin{cases} x_1 = -\frac{1}{3}x_4 \\ x_2 = \frac{1}{3}x_4 \end{cases}$
	$= \sqrt{4} \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \Rightarrow \begin{bmatrix} Basis Mil(A) = \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix}$

3	a) F \vec{o} is not in plane b) T Let $\{\vec{b}_1,, \vec{b}_n\}$ be basis of $W \subset \mathbb{R}^m$ Then set $A = (\vec{b}_1 \vec{b}_n)$ an $m \times n$ matrix $W = Col(A)$ and $W^{\perp} = Nul(A^{\top}) \subset \mathbb{R}^m$ $dim W = r$, $dim W^{\perp} = m - r$ $dim W + dim W^{\perp} = r + m - r$
	c) $F = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix}$ as $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 2 & 0 \end{pmatrix}$
4)	a) $\{1, x, x^2,, x^n\} = B_n$ b) $L1 = \int_0^x dt = x = 0.1 + 1 \cdot x + 0 \cdot x^2 + 0 \cdot x^3$
	$Lx = \int_0^1 t dt = \frac{1}{2}x^2 = 0.1 + 0.x + \frac{1}{2}(x^2 + 0x^3)$ $Lx^2 = \int_0^1 t^2 dt = \frac{1}{3}x^2 = 0.1 + 0.x + 0.x^2 + \frac{1}{3}x^3$
	$Mat = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Fundamental
5)	$Col(A) = \mathbb{R}^{m} \iff \dim ColA = m \iff \dim A \cup A = m - \dim ColA = 0$ $\iff A \cup A = \{0\}$