# HEPS 工程工作笔记

# **HEPS Technical Note**

| 标题(Title)                   | SRW 和 XRT 的波动计算复核 1 – 光源发光特征的计算 |            |           |  |
|-----------------------------|---------------------------------|------------|-----------|--|
| 作者 (Author)/<br>系统 (System) | 杨福桂                             | 日期 (Date)  | 2020-2-7  |  |
| 编号 (Serial No.)             |                                 | 页数 (Pages) | 共 页 (含附件) |  |

### 摘要 (abstract):

以 HEPS-B3 和 B8 两条束线为模型,使用 XRT 和 SRW 计算光源发光和电子束团发光特性。主要考虑单电子与多电子发光特性,以及仿真软件波动计算结果的比对。

| 会 签          |             |             |             |
|--------------|-------------|-------------|-------------|
| Concurred by |             |             |             |
| 有效性          | 填表人         | 审核          | 批准          |
| Validation   | Prepared by | Reviewed by | Approved by |
| 签名           | XX          |             |             |
| Signature    | AA          |             |             |
| 日期 Date      | XX(一定写上日期)  |             |             |

### 1 束线光学设计需求综述

| HEPS-B3 和 B8 分别处于低和高 beta 直线节。储存环和光源参数如表 | ·格 I | l 1 所示。 |
|------------------------------------------|------|---------|
|------------------------------------------|------|---------|

|                | HEPS-B3    | HEPS-B8    |  |  |
|----------------|------------|------------|--|--|
| 储存环            |            |            |  |  |
| 电子能量 (GeV)     | 6          | 6          |  |  |
| 电流强度 (GeV)     | 0.2        | 0.2        |  |  |
| 能散             | 0.00111    | 0.00111    |  |  |
| 电子尺寸 (μm)      | 8.8*2.3    | 16.7*5.1   |  |  |
| 电子束团发散角 (μrad) | 3.1*1.2    | 1.65*0.53  |  |  |
| Beta function  | 2.84*1.92  | 10.12*9.64 |  |  |
| 发射度 (pm*rad)   | 27.28*2.76 | 27.55*2.70 |  |  |
| 插入件            |            |            |  |  |
| 能量点@谐波级次       | 23keV@1st  | 10keV@3st  |  |  |
| λ/2π (pm.rad)  | 19.74      | 19.74      |  |  |
| 周期 (mm)        | 12         | 35         |  |  |
| 周期数            | 180        | 142        |  |  |

表格 1-1 光源参数列表

# 2 仿真束线布局

由于光源处发光点的位置非确定,因此这里需要从波动计算结果分析光源尺寸。仿真束线布局图如图 2-1 所示。这里使用了椭圆柱面形的 KB 镜作为聚焦器件。为了去除口径衍射的影响, KB 镜的接收角度大于 4σ, 这里选择为 25μrad。考虑掠入射角 4mrad, 对应的反射镜长度约为 250mm。基于此,确定反射镜位置为 40m 和 40.3m, 反射镜长度为 300mm。



图 2-1 仿真布局图

### 3 SRW 波动仿真计算

# 3.1 单电子发光波动计算

光源出射到 40m 位置时的光场分布,半高全宽为 304μm×312μm,传播距离为 40m,由此可以计算光束发散角为 7.6μrad×7.8μrad FWHM,或者 3.23μrad×3.32μrad RMS。



图 3-1 40m 处光场分布

为了观察光源的光斑尺寸,SRW 提供了两种方法,如图 3-2 所示。一种是通过 Back Propagation 组件,把波前逆向传播至光源处;第二种方式是使用理想透镜成像,缩放比为 1:1。为了与 XRT 计算对应,这里同时考虑第三种方式,即 KB 镜聚焦,该模式下缩放比分别为 1.01:1(H)和 1:1(V)。结果如图 3-3 所示,光源点的单光子发光尺寸为 12.5 μm×12.5 μm FWHM,5.37μm×5.37 μm RMS。注意这里的统计值直接由 FWHM 算出,因此与图中显示值有所差异。



图 3-2 SRW 光源尺寸测量



图 3-3 SRW 三种不同方式计算的单光子发光尺寸

# 3.2 电子束团波动计算

接着考虑电子束团, SRW 提供两种考虑电子束团尺寸的方案, 一种是 Monte Carlo 追迹, 另外一种是卷积, 该计算由单电子追迹卷积直接获得。对应图 3-3, 图 3-4 给出

#### 了卷积的计算结果。



图 3-4 理想透镜成像和 KB 镜成像的多电子卷积结果

接着开展对 SRW 多电子束团的 Monte-Carlo 计算,分别对应理想透镜和 KB 镜成像两种方式。如图 3-5 所示,追迹电子数为 10000,光斑的半高全款分别为  $41.96\,\mu m \times 17.07\,\mu m$  和  $41.14\mu m \times 17.20\,\mu m$ ,二者结果接近。





图 3-5 理想透镜(a)和 KB 镜(b)成像样品处的光斑分布

# 4 XRT 波动仿真计算

# 4.1 单电子发光波动计算

在 XRT 中将系统的发射度和能散设置为 0,可以模拟单电子发光的情况。图 4-1 给出了典型位置的追迹结果。从图(b)可以得到单电子发光的角度为  $312/40=7.8\mu rad$ ,从图(b)可以得到发光尺寸为  $5.86\mu m$  \*2\*40.3m/39.7m=11.89 $\mu m$ (H),6.33 $\mu m$  \*2=12.66 $\mu m$ (V)。





图 4-1 光源发散角(a), VKB 位置(b)和样品处(c)的光场分布

# 4.2 电子束团波动计算

追迹投点 10000 个,每个点计算 5e4 个光线,计算单个能量点的情况。仿真结果如图 4-2 所示,图(a)显示电子投点数已经能够体现电子束团的特征。图(b)和图(c)显示光场的发散 角为  $6.43*2=12.86\mu rad(H)$ ,  $6.85*2=13.7\mu rad(V)$ 。 图(d)给出了样品处光斑尺寸为  $21.48*2*40.3/39.7=43.6\mu m(H)$ ,  $8.67*2*40/40=17.34\mu m(V)$ 。



### 图 4-2 XRT 电子束团追迹图,分别是电子束团分布(a),发散角,VKB 位置和样品处 光场分布

# 5总结

同样开展 B3 束线的仿真, B3 和 B8 束线的统计结果如表 5-1 所示。SRW 多电子波前的 发散角比 XRT 稍微大一些,差异再 10%以内。这里数值的差异还需要考虑计算精度、显示图像的精度等因素。

|                    | HEPS-B3    |           | HEPS-B8     |             |
|--------------------|------------|-----------|-------------|-------------|
| FWHM               | XRT        | SRW       | XRT         | SRW         |
| 单电子发光尺寸 (μm)       | 5.32×5.32  | 5.53×5.53 | 11.89×12.66 | 12.5×12.5   |
| 单电子发光发散角<br>(μrad) | 7.88×7.88  | 7.72×7.72 | 7.8×7.8     | 7.6×7.8     |
| 总发光尺寸 (μm)         | 21.1×7.4   | 22.25×8.0 | 43.6×17.34  | 41.14×17.20 |
| 总发散角(μrad)         | 10.42×9.76 | 11.47×9.7 | 12.86×13.7  | 12.9×13.87  |

表 5-1 光源特性计算值汇总

作为参考,根据理论计算,可以得到 B8 束线的结果:

Single electron radiation size =  $(x)5.587 \mu m$  RMS, 13.1 $\mu m$  FWHM

Single electron radiation divergence =  $(x)3.532 \mu rad RMS$ , 8.3 $\mu rad FWHM$ 

Single electron radiation emittance = 19.733 pm rad

Total photon size (x)17.710 and (y)7.801  $\mu$ m RMS, (x)41.6 and (y)18.33  $\mu$ m FWHM Total photon divergence (x)6.073 and (y)5.868  $\mu$ rad RMS, (x)14.27 and (y)13.789  $\mu$ rad FWHM

#### B3 束线的结果:

Single electron radiation size =  $(x)2.429 \mu m$  RMS, 5.71  $\mu m$  FWHM

Single electron radiation divergence =  $(x)3.532 \mu rad RMS$ , 8.30 $\mu rad FWHM$ 

Single electron radiation emittance = 8.579 pm rad

Total photon size (x)9.136 and (y)3.364 μm, (x)21.470μm and (y)7.906 μm FWHM

Total photon divergence (x)5.281 and (y)4.441 μrad, FWHM (x)12.411 and (y)10.436 μrad

为了方便观察曲线的差异,将中心线的分布画在同一幅图里,如图 5-1 和图 5-2 所示。单电子情况下,只考虑 40m 处的光场分布,和样品处的光场分布。SRW 和 XRT 均使用 KB 聚焦模式计算情况。单电子成像完全一致。但对于电子束团的曲线,投点数 1e4 仍有待进一步提高。但垂直方向的一致性,说明该计算结果的正确性。





图 5-1 单电子追迹结果, VKB(a)和样品(b)处的光场分布





图 5-2 多电子追迹结果, VKB(a)和样品(b)处的光场分布

### 6工作中的问题

- (1) XRT 的 KB 镜建模过程中发现,KB 镜聚焦参数设置仍需进一步考虑,按照现在的参考,VKB 和 HKB 焦点不重合,且中心位置偏离预期中心,当掠入射角减小为 2e-3rad 时,该值减小到很小。但该误差不影响本算例的计算结论。
- (2) KB 聚焦计算中,SRW 的图像中心位置偏离波动计算光斑中心位置,这包括 VKB 的位置和样品位置。多电子追迹存在此问题,单电子追迹未发现该问题。