Table S1. Candidate genes which when mutated conferred wild type swarming motility¹

i able 3		iuale genes w	ilich when mutated comerred who t	ype swariiiiig	
Gene	PS ²	Class	Annotation ³	Phenotype	Strain
ссрА	1	regulation	transcription factor	WT	DK8468
defB	1	translation	met/cys deformylase	WT	DK8617
dltA	1	envelope	teichoic acid biosynthesis	WT	DK8532
dltB	1	envelope	teichoic acid biosynthesis	WT	DK7865
dltC	1	envelope	teichoic acid biosynthesis	WT	DK8533
dltD	1	envelope	teichoic acid biosynthesis	WT	DK8461
ggaB	1	envelope	teichoic acid biosynthesis	WT	DK8422
gidA	1	translation	tRNA modification	WT	DS5804
glpD	1	metabolism	glycerol-3-P DH	WT	DK8466
immR	1	regulation	transcription factor	WT	DK8464
lgt	1	envelope	lipoprotein diacyltransferase	WT	DK8465
secG	1	secretion	preprotein translocase	WT	DK9260
ybaE	1	unknown	putative transporter	WT	DK8415
ybxA	1	unknown	putative transporter	WT	DK8414
yneQ	1	unknown	unknown	WT	DK8418
yvrH	1	regulation	TCS sensor kinase	WT	DK8420
ywzH	1	unknown	unknown	WT	DK8531
cdaS	2	regulation	c-di-AMP synthease	WT	DK8621
dnaK	2	translation	protein folding chaperone	WT	DS5801
galE	2	envelope	UDP-glucose isomerase	WT	DS2882
pgi	2	envelope	glucose 6-P isomerase	WT	DK8647
tagE	2	envelope	teichoic acid biosynthesis	WT	DK9164
yerH	2	unknown	unknown	WT	DK8616
yisU	2	unknown	unknown	WT	DK9255
ylbC	2	unknown	unknown	WT	DK9256
yodl	2	unknown	unknown	WT	DK8622
yrzL	2	envelope	proteolytic chaperone MurAA	WT	DK8257
ytxM	2	unknown	unknown	WT	DK8625
yvrG	2	regulation	TCS response regulator	WT	DK8529
abrB	3	regulation	transcription factor	WT	DS5342
bkdAB	3	metabolism	oxoisovalerate DH	WT	DK4654
bkdB	3	metabolism	oxoisovalerate DH	WT	DK8623
cshA	3	regulation	RNA helicase	WT	DK7353
cshB	3	translation	RNA helicase	WT	DK7307
cysK	3	metabolism	cysteine synthase	WT	DK9254
dnaJ	3	translation	activator of DnaK	WT	DS5762
lepA	3	translation	elongation factor	WT	DS2164
nusG	3	translation	transcription anti-termination	WT	DK5430
rnmV	3	translation	5S RNA maturation	WT	DK7864
sigX	3	regulation	sigma factor X	WT	DK8574
ugtP	3	metabolism	glucosyltransferase	WT	DS3141
-			•		

yabA	3	replication	replication initiation	WT	DS2265
yjbl	3	unknown	unknown	WT	DK8569
ykaA	3	unknown	unknown	WT	DK7306
ylbN	3	unknown	unknown	WT	DK8618
ymdB	3	unknown	phosphodiesterase	WT	DS8546
ynzC	3	unknown	unknown	WT	DK9258
ypmA	3	unknown	unknown	WT	DK7862
уртВ	3	unknown	unknown	WT	DK7712
yqeY	3	unknown	unknown	WT	DK7621
ytpQ	3	unknown	unknown	WT	DK8624

¹Table is sorted first by priority score and then alphabetically by gene name.

²Each gene was assigned a priority score (PS) based on data analysis. A score of "3" indicates that the gene passed the criteria of a ratio of 0.1 or lower and a statistical P value of <0.05 and could not be eliminated by manual evaluation of the data. A score of "2" indicates that the gene did not pass the ratio cutoff but was rescued because it appeared to have an insertion differential by visual scanning of the data set. A score of "1" indicates that the gene passed the quantitative criteria and also showed strong insertion differential by visual scanning of the data set.

³Annotation is a brief description of function with regards to why the gene has been shown to be required for swarming motility.

Table S2: Strains

Strain	Genotype
DK654	dacA::kan
DK1042	wild type
DK4654	bkdAB::Tn10 spec
DK4825	yeaD::TnYLB kan
DK4956	ytlQ::kan
DK5430	nusG::spec (allele gift from Paul Babitzke, Penn State University)
DK7305	yvpB::spec
DK7306	ykaA::spec
DK7307	cshB::spec
DK7353	cshA::spec
DK7621	yqeY::TnLacJump kan
DK7712	ypmB::spec
DK7713	whiA::spec
DK7763	rnhC::erm
DK7855	gtaB::cat
DK7862	ypmA::spec
DK7864	rnmV::spec
DK7865	dltB::spec
DK8056	sweC::erm (allele gift from David Rudner, Harvard Medical School)
DK8058	sweD::kan (allele gift from David Rudner, Harvard Medical School)
DK8257	yrzL::kan (BGSC allele)
DK8414	ybxA::kan (BGSC allele)
DK8415	ybaE::kan (BGSC allele)
DK8417	yebA::kan (BGSC allele)
DK8418	yneQ::kan (BGSC allele)
DK8419	yolB::kan (BGSC allele)
DK8420	yvrH::kan (BGSC allele)
DK8421	rnr::kan (BGSC allele)
DK8422	ggaB::kan (BGSC allele)
DK8424	walH::kan (BGSC allele)
DK8460	prmC::kan (BGSC allele)
DK8461	dltD::kan (BGSC allele)
DK8464	immR::kan (BGSC allele)
DK8465	Igt::kan (BGSC allele)
DK8466	glpD::kan (BGSC allele)
DK8468	ccpA::kan (BGSC allele)
DK8486	yolB::kan amyE::P _{hag} -hag ^{T209C} spec
DK8525	yeaC::kan (BGSC allele)
DK8529	yvrG::kan (BGSC allele)
DK8531	ywzH::kan (BGSC allele)
DK8531	dltA::kan (BGSC allele)
DK8532	dltC::kan (BGSC allele)
DK8569	yjbl::kan (BGSC allele)
DK8570	yjcN::kan (BGSC allele)
DK8570	yopQ::kan (BGSC allele)
DK8574	sigX::kan (BGSC allele)
DK8614	ybaF::kan (BGSC allele)
	yerH::kan (BGSC allele)
DK8616 DK8617	defB::kan (BGSC allele)
וויסטום	ucionaii (DOSC alicic)

```
DK8618
               ylbN::kan (BGSC allele)
DK8619
               glnA::kan (BGSC allele)
               cdaS::kan aka yojJ (BGSC allele)
DK8621
DK8622
               yodl::kan (BGSC allele)
DK8623
               bkdB::kan (BGSC allele)
DK8624
               ytpQ::kan (BGSC allele)
               ytxM::kan (BGSC allele)
DK8625
DK8626
               yvcJ::kan (BGSC allele)
               pgi::kan (BGSC allele)
DK8647
               tagE::kan (BGSC allele)
DK9164
DK9233
               rsiX::TnYLB kan
               lpdV::kan (BGSC allele)
DK9234
               yaaR::kan (BGSC allele)
DK9253
DK9254
               cysK::kan (BGSC allele)
               yisU::kan (BGSC allele)
DK9255
DK9256
               ylbC::kan (BGSC allele)
               ylbM::kan (BGSC allele)
DK9257
DK9258
               ynzC::kan (BGSC allele)
DK9259
               greA::kan (BGSC allele)
               secG::kan (BGSC allele)
DK9260
DK9265
               fliT::TnYLB kan
               fliT::TnYLB kan amyE::P<sub>hag</sub>-hag<sup>T209C</sup> spec
DK9348
               dltD::kan (selected and maintained with high Mg2+)
DK9658
               ggaB::kan (selected and maintained with high Mg<sup>2+</sup>)
DK9659
               tagE::kan (selected and maintained with high Mg<sup>2+</sup>)
DK9660
               pgcA::kan (selected and maintained with high Mg<sup>2+</sup>)
DK9661
               ugtP::spec (selected and maintained with high Mg<sup>2+</sup>)
DK9663
DK9664
               gtaB::spec (selected and maintained with high Mg<sup>2+</sup>)
DS677
               ymcA::erm
               ylbF::erm
DS678
               secDF::Tn10 spec
DS1138
DS1240
               ftsE::Tn10 spec
DS1242
               ftsX::Tn10 spec
               ksgA::Tn10 spec amyE::PepsA-lacZ cat
DS1342
               amyE::P<sub>hag</sub>-hag<sup>T209C</sup> spec
DS1916
DS2164
               lepA::kan
DS2265
               yabA::cat
DS2802
               pgcA::Tn10 spec
DS2882
               galE::Tn10 spec
DS3141
               ugtP::spec
DS5334
               mecA::mls
DS5342
               abrB::cat
DS5762
               dnaJ::TnYLB kan
DS5801
               dnaK::TnYLB kan
               gidA::TnYLB kan
DS5804
DS6674
               yaaT::Tn10 spec
DS8546
               ymdB::TnKRM kan
DS8875
               yjbH::TnKRM kan
```

Table S3: Primers

Primer	Genotype
3250	ACGACTCACTATAGGGCGAATTG
3251	CTCACTAAAGGGAACAAAAGCTGG
5418	CTGTTGCGTTTGATTTTGCATA
5419	CTTTTGTTCCCTTTAGTGAGTAAACAAAAAGGCTATTGGACAT
5420	TTCGCCCTATAGTGAGTCGTTTAAAAGGCACCTTCCTTATGA
5421	GCTTATGAGCCGCTTCCCG
5769	TTGCTTTATATCCGCGTGCT
5770	CAATTCGCCCTATAGTGAGTCGTGAGTGGCTGGAGTAAAAGAG
5771	CCAGCTTTTGTTCCCTTTAGTGAGTGGCTGGAGTAAAAGAG
5772	TCTCTCCTCCAACACGTTTA
6853	AGAATGTCCCACAGCGCCT
6854	TTCGCCCTATAGTGAGTCGTTGTTTTCATCTTTATCTCCT
6855	CTTTTGTTCCCTTTAGTGAGATTCAAAAGTAAACACCTGAAGC
6856	GGCGGAAATCCGATGAGGA
6861	CGCATAATGATTATCAGCTTCAG
6862	TTCGCCCTATAGTGAGTCGTATTTACCACTTATAAAACTGC
6863	CTTTTGTTCCCTTTAGTGAGAAATCTTACTAATTTGATCGATTC
6864	TCACAAGCTTAAAGATTTGCTG
6865	AAGCCGTAATCAAACGGCTC
6866	TTCGCCCTATAGTGAGTCGTTTCTTTCATTTTTCCCAGCTCC
6867	CTTTTGTTCCCTTTAGTGAGAAAAGAAAGTAGGGGAACCTG
6868	ATTACATCGAAAGAACAGCTC
6876	TTTAGCTACGTTGTTTGCTTATG
6877	TTCGCCCTATAGTGAGTCGTTCTTATCATTAAAAACCCTCCAT
6878	CTTTTGTTCCCTTTAGTGAGAAAACGACTAACGAGGGGT
6879	AAATAAAGTAGGCGATGGCAC
7142	GAGCAGCTTACTGGAATCTCTAATC
7143	CAATTCGCCCTATAGTGAGTCGTCTTGCCGAGACAAGAAGTACTGC
7144	CCAGCTTTTGTTCCCTTTAGTGAGGTTATGTGGACTTTACAACTGGAAAG
7145	CGCATTCTTCAATAAACAGAAAGCC
7146	CATGAGGAAAACGGCAAAGTCGG
7147	CAATTCGCCCTATAGTGAGTCGTCCTTCACTTCCAGATTCGTTAATTC
7148	CCAGCTTTTGTTCCCTTTAGTGAGCTTGACGAAATCGCAGAACAGC
7149	CAAGCGCGTCTCATGTCCCTG
7167	CATTTCCGTACAAAACGTGTTACAC
7168	CAATTCGCCCTATAGTGAGTCGTCAGATCATCAGAATGCTCTACATTAATTG
7169	CCAGCTTTTGTTCCCTTTAGTGAGCCAAGCCGTTTTTACCATTTATCGTAC
7170	GCGTCAGAATCCAGTCCATGTTC
7175	CACTGCCTGAACCGGCTTAGGC
7176	CAATTCGCCCTATAGTGAGTCGTGATCGTCGGCAGAAGAAGAATGC
7177	CCAGCTTTTGTTCCCTTTAGTGAGCAGGAAAACCATTTCATCACCACC
7178	CGGACAAATTCACTTTCAACAGCG
7179	CGAGCCATTGTTCCCTGCTTTAG
7180	CAATTCGCCCTATAGTGAGTCGTGTGTCTGCATCAACAGCCAATTTGATG
7181	CCAGCTTTTGTTCCCTTTAGTGAGGAGTGCGCTCGATACCGTTATGC
7182	CATTTCGACTTCATGATGAGGAGTGCGCTCGATACCGTTATGC
7238	CACATATGTTTCCATCATACCCATCC
7239	TTCGCCCTATAGTGAGTCGTCACTGAATGGGACACGTAATA
7240	CTTTTGTTCCCTTTAGTGAGGATAAAAAACGTTCATAGAAAAAAG
7240	GGAACTACAGGCGGATTAACG
1241	GONNOTACAGGCGGATTAACG

Table S4. TnSeq samples used in this study.

Sample name	Figure	Reference	Identifier
Sanchez_Kearns_TnSeq_WT	1, 2, S1	this study	SAMN27609185
Sanchez_Kearns_TnSeq_swarm_rep1	1, 2, S1	this study	SAMN27609186
Sanchez_Kearns_TnSeq_swarm_rep2	S1	this study	SAMN27609187
Sanchez_Kearns_TnSeq_swarm_rep3	S1	this study	SAMN27609188
Sanchez_Kearns_TnSeq_swarm_rep4	S1	this study	SAMN27609189
Sanchez_Kearns_TnSeq_swarm_rep5	S1	this study	SAMN27609190

Table S5. Excel datasheet containing raw TnSeq data and priority score assignments.

SUPPLEMENTAL FIGURE LEGENDS

Figure S1: TnSeq priority classification of candidate genes defective in swarming **motility.** Sample genes with transposon insertion density graph generated using Artemis software. Transposon insertions oriented such that the spectinomycin resistance cassette is cooriented with the inserted gene colored red, while insertions that counter-orient the resistance gene are colored blue. Y-axis indicates the number of insertions indicates the number of sequencing reads at that insertion position. Gene length and orientation indicated as a gray arrow. Top dataset is from the control library, and next 5 data sets are from the five motilityenriched pools respectively to show reproducibility. Raw data annotation is included below to see actual gene location. Black bar indicates 1 kb in X-axis genome distance. Priority 1 represented genes that passed mathematical criteria for differential insertion and the difference was readily visible on manual inspection. Priority 2 were those genes that failed at least one of the mathematical criteria but were rescued by a clear insertion differential by manual inspection. Priority 3 genes were those that passed mathematical criteria but did not appear to have a dramatic insertion differential by manual inspection. Priority 4 genes were those genes that passed mathematical criteria but were discarded for having few, if any, transposon insertions in the control dataset. Priority 5 genes were those genes that passed neither mathematical nor manual inspection criteria and were discarded.

Figure S2: Some mutants exhibit a "terracing" phenotype. Shown are images of Petri plates containing LB fortified with 0.7% agar, centrally inoculated with the indicated strain and incubated overnight at 37°C. Terracing is the result of premature swarm cessation and reinitiation at a later time point. The period of immobility may consume nutrients at the region adjacent to the swarm edge such that upon re-initiation, the swarm density fails to reach a high

of a yield thereby demarking the location of the original stopping point. As a result, the swarm tends to have a bullseye appearance with a mutant-specific pattern.

Figure S1

Figure S2

