Course

<u>Progress</u>

<u>Dates</u>

**Discussion** 

Resources



# **Linear Classifiers Mathematically Revisited**



# Inner product and Orthogonal vectors

1/1 point (graded)

What is the inner product of  $\begin{bmatrix} 0,1,1 \end{bmatrix}$  and  $\begin{bmatrix} 1,1,1 \end{bmatrix}$  ?

2

Submit

You have used 1 of 3 attempts

#### Linear Classifier Practice

1/1 point (graded)

We saw in the lecture above that for a linear classifier h,  $h\left(x;\theta\right)=sign\left(\theta\cdot x\right)$ , i.e. the sign of the dot product of  $\theta$  and x. Now consider  $\theta$  which is given by

$$\theta = (1, -1) \tag{4.1}$$

Which of the following points would be classified as positive by  $\theta$ ? Please choose all correct answers.



 $\square (0,1)$ 

Submit

You have used 2 of 3 attempts

## Offset Added

1/1 point (graded)

Again, we have a linear classifier with heta given by

$$\theta = (1, -1) \tag{4.2}$$

and the offset,  $\theta_0$  given by  $\theta_0=-1$  Now which of the following points would be classified as positive by  $\theta$ ? Please choose all correct answers.



### Discussion

**Hide Discussion** 

**Topic:** Unit 1 Linear Classifiers and Generalizations (2 weeks):Lecture 2. Linear Classifier and Perceptron / 3. Linear Classifiers Mathematically Revisited

Add a Post

| Show all posts 💙 by rec                                                                                                                                                                                                                             | ent activity 🗸    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| my intutuion says perceptron equation notation is wrong, staff can you verify it?  lecture represents theta vector multiplied by X vector, but i feel it should be denoted as theta transpose multiplied by X vector. That                          | 2<br><u>. way</u> |
| • Geometrical interpretation                                                                                                                                                                                                                        | 4                 |
| What does theta represent?  Lunderstand that theta is a parameter vector (orientation of the line) But what exactly does it represent when we say theta (1,-1) Loans and the line is a parameter vector (orientation of the line).                  | 5<br>ant v        |
| Point on the decision boundary.  Hi, I have a doubt about what happen if we get points those are on the decision boundary. How we should classify them?                                                                                             | 6                 |
| Which of the following points would be classified as positive by $\theta$ ? Please choose all correct answers. why (1,-1) is correct answer?                                                                                                        | 1                 |
| Is theta_0 the offset parameter equivalent to (axes)intercept? If so, then (read description). How come the professor was able to show that $\theta_0 < 0$ , given that it was $> 0$ as the intercept point is $+ve$ ? I recall that the professor. | 6<br>or c         |
| What form of straight line(decision boundary) is mentioned in the lecture?  We know that there are various forms of equations for a straight line. Is the line (dec. bound.) $\theta \bullet X + \theta_0 = 0$ an $Y = mX + C$ for                  | <u>4</u>          |
| About Offset Problem  according to course, the offset problem has a bug                                                                                                                                                                             | 5                 |