Grundbegriffe der Informatik Aufgabenblatt 2

Matr.nr.:								
Nachname:								
Vorname:								
Tutorium:	Nr.				Na	ame	des Tutors:	
Ausgabe:	4. November 2015							
Abgabe:	13. N	3. November 2015, 12:30 Uhr						
	im GBI-Briefkasten im Untergeschoss							
	von (Gebäu	de 5	0.34				
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet								
abgegeben werden.								
Vom Tutor auszufüllen: erreichte Punkte								
Blatt 2:					/ 17	7	(Physik: 14)	
Blätter 1 – 2:				,	/ 30)	(Physik: 27)	

Mit [nicht Physik] gekennzeichnete Aufgaben werden von Studenten der Physik bitte nicht bearbeitet.

Aufgabe 2.1 (3 Punkte)

[nicht Physik]

Es sei Var_{AL} eine Menge von Aussagevariablen und es sei For_{AL} die Menge aller aussagenlogischen Formeln über Var_{AL} . Beweisen Sie, dass für alle $G, H \in For_{AL}$ die aussagenlogische Formel

$$(G \rightarrow H) \rightarrow (\neg H \rightarrow \neg G)$$

eine Tautologie ist.

Lösung 2.1

Es seien $G, H \in For_{AL}$. Es ist zu zeigen, dass für jede Interpretation $I: Var_{AL} \to \mathbb{B}$ gilt:

$$val_I((G \to H) \to (\neg H \to \neg G)) = \mathbf{w}.$$

Dazu sei $I: Var_{AL} \to \mathbb{B}$ eine Interpretation. Nach Definition der Abbildung val_I gilt:

$$val_I((G \to H) \to (\neg H \to \neg G)) = \neg val_I(G \to H) \lor val_I(\neg H \to \neg G).$$

Nach Definition der Abbildungen val_I und \vee gilt

$$val_I(G \to H) = \neg val_I(G) \lor val_I(H)$$

= $val_I(H) \lor \neg val_I(G)$.

Und nach Definition der Abbildungen val_I und \neg gilt

$$val_{I}(\neg H \rightarrow \neg G) = \neg val_{I}(\neg H) \lor val_{I}(\neg G)$$

= $\neg(\neg val_{I}(H)) \lor \neg(val_{I}(G))$
= $val_{I}(H) \lor \neg val_{I}(G)$.

Damit gilt

$$val_I((G \to H) \to (\neg H \to \neg G)) = \neg(val_I(H) \lor \neg val_I(G)) \lor (val_I(H) \lor \neg val_I(G)).$$

Fall 1: $val_I(H) \vee \neg val_I(G) = \mathbf{w}$. Nach Definition der Abbildung \vee gilt dann

$$\neg (val_I(H) \lor \neg val_I(G)) \lor (val_I(H) \lor \neg val_I(G)) = \neg \mathbf{w} \lor \mathbf{w} = \mathbf{w}.$$

Fall 2: $val_I(H) \lor \neg val_I(G) = \mathbf{f}$. Nach Definition der Abbildung \neg gilt dann $\neg (val_I(H) \lor \neg val_I(G)) = \mathbf{w}$. Und nach Definition der Abbildung \lor gilt somit

$$\neg(val_I(H) \lor \neg val_I(G)) \lor (val_I(H) \lor \neg val_I(G)) = \mathbf{w} \lor \mathbf{f} = \mathbf{w}.$$

In beiden Fällen gilt

$$val_I((G \to H) \to (\neg H \to \neg G)) = \neg(val_I(H) \lor \neg val_I(G)) \lor (val_I(H) \lor \neg val_I(G)) = \mathbf{w}.$$

Aufgabe 2.2 (2 Punkte)

Es sei A ein Alphabet, und für jede formale Sprache $L\subseteq A^*$ und jede formale Sprache $S\subseteq A^*$ sei

$$L \cdot S = \{u \cdot v \mid u \in L \text{ und } v \in S\}.$$

Es seien ferner L_1 , L_2 und L_3 drei formale Sprachen über A. Beweisen Sie, dass gilt:

$$L_1 \cdot (L_2 \cdot L_3) \subseteq (L_1 \cdot L_2) \cdot L_3$$
.

Lösung 2.2

Es ist zu zeigen, dass für jedes $w \in L_1 \cdot (L_2 \cdot L_3)$ gilt: $w \in (L_1 \cdot L_2) \cdot L_3$. Dazu sei $w \in L_1 \cdot (L_2 \cdot L_3)$. Dann gibt es ein $u \in L_1$ und ein $v \in L_2 \cdot L_3$ so, dass $w = u \cdot v$. Außerdem gibt es ein $\mu \in L_2$ und ein $\kappa \in L_3$ so, dass $v = \mu \cdot \kappa$. Damit gilt $w = u \cdot (\mu \cdot \kappa)$. Da · assoziativ ist, folgt $w = u \cdot (\mu \cdot \kappa) = (u \cdot \mu) \cdot \kappa$. Es gilt $u \cdot \mu \in L_1 \cdot L_2$ und damit $(u \cdot \mu) \cdot \kappa \in (L_1 \cdot L_2) \cdot L_3$. Wegen $w = (u \cdot \mu) \cdot \kappa$ folgt $w \in (L_1 \cdot L_2) \cdot L_3$.

Aufgabe 2.3 (1+1+1+1+1+1=6) Punkte)

Es sei A ein Alphabet.

- a) Geben Sie eine injektive Abbildung $f: A^* \to A^*$ an, die nicht surjektiv ist.
- b) Geben Sie eine surjektive Abbildung $g \colon A^* \to A^*$ an, die nicht injektiv ist.
- c) Geben Sie eine bijektive Abbildung $h \colon A^* \to A^*$ an, die nicht die identische Abbildung $A^* \to A^*$, $w \mapsto w$, ist.
- d) Geben Sie eine Abbildung $\varphi \colon A^* \to A^*$ so an, dass für jedes $w \in A^*$ gilt:

$$|\varphi(w)| = 2^{|w|} \cdot |w|^{|w|}.$$

e) Geben Sie eine Abbildung $\psi \colon 2^{A^*} \to 2^{A^*}$ so an, dass für jedes $L \in 2^{A^*}$ gilt:

$$\{|w| \mid w \in \psi(L)\} = \{3 \cdot |w| \mid w \in L\}.$$

f) Geben Sie eine Abbildung $\xi\colon 2^{A^*}\to 2^{A^*}$ so an, dass für jedes $L\in 2^{A^*}$ und für jedes $w\in A^*$ gilt:

$$w \in L$$
 genau dann, wenn $w \notin \xi(L)$.

Lösung 2.3

Mögliche Abbildungen sind

a)

$$f \colon A^* \to A^*,$$
 $w \mapsto w \cdot w,$

$$g\colon A^* \to A^*,$$
 $\epsilon \mapsto \epsilon,$ $x\cdot w \mapsto w$, wobei $x\in A$ und $w\in A^*$

c)

$$h \colon A^* \to A^*,$$
 $\epsilon \mapsto \epsilon,$ $w \cdot x \mapsto x \cdot h(w)$, wobei $w \in A^*$ und $x \in A$

d) Die Aufgabenstellung ist für $w = \varepsilon$ sinnlos. Also

$$\varphi \colon A^+ \to A^*,$$

$$w \mapsto (w \cdot w)^{|w \cdot w|^{|w|-1}},$$

e)

$$\psi \colon 2^{A^*} \to 2^{A^*},$$

$$L \mapsto \{ w \cdot (w \cdot w) \mid w \in L \},$$

f)

$$\xi \colon 2^{A^*} \to 2^{A^*},$$

$$L \mapsto A^* \setminus L.$$

Aufgabe 2.4 (1.5 + 1.5 + 3 = 6) Punkte)

Sind X und Y zwei Mengen und $f: X \to Y$ eine bijektive Abbildung, so ist die Relation

$$R_f = \{ (f(x), x) \mid x \in X \}$$

eine bijektive Abbildung von Y nach X, die wir mit f^{-1} bezeichnen, Umkehrab- bildung von f oder Inverse von f nennen, und für die für jedes $x \in X$ und jedes $y \in Y$ gilt:

$$f^{-1}(f(x)) = x \text{ und } f(f^{-1}(y)) = y.$$

Es sei A das Alphabet $\{a,b,c\}$, es sei γ die bijektive Abbildung

$$\gamma \colon \mathbb{Z}_3 \to A$$
, $0 \mapsto a$, $1 \mapsto b$, $2 \mapsto c$,

und es sei ⊙ die binäre Operation

$$\odot: A^* \times A^* \to A^*$$

$$(u,v) \mapsto \begin{cases} u, & \text{falls } u = \epsilon \text{ oder } v = \epsilon, \\ \gamma((\gamma^{-1}(x) + \gamma^{-1}(y)) \text{ mod } 3) \cdot (\mu \odot \kappa), & \text{falls } u = x \cdot \mu \text{ und } v = y \cdot \kappa \\ & \text{für } x, y \in A \text{ und } \mu, \kappa \in A^*, \end{cases}$$

wobei für jede nicht-negative ganze Zahl z der Ausdruck z mod 3 den Rest der ganzzahligen Division von z mit 3 bezeichne und bei Bedarf Zeichen in A als Wörter der Länge 1 in A^1 aufzufassen sind.

- a) Berechnen Sie die Wörter baac ⊙ aaaa, baac ⊙ bbbbbb und baac ⊙ cc.
- b) Es sei

$$\delta \colon A \to A$$
,
 $a \mapsto a$,
 $b \mapsto c$,
 $c \mapsto b$.

Geben Sie für jedes $u \in A^*$ ein $v \in A^*$ so an, dass $u \odot v = a^{|u|}$ gilt.

c) Beweisen Sie durch vollständige Induktion, dass für jedes $n \in \mathbb{N}_0$ gilt:

Für jedes
$$w \in A^n$$
: $w \odot a^n = w$.

Lösung 2.4

- a) baac \odot aaaa = baac, baac \odot bbbbbb = cbba und baac \odot cc = acac.
- b) Es sei $u \in A^*$ und es sei B der Zielbereich von u. Das Wort

$$v: \mathbb{Z}_{|u|} \to \delta(B),$$

 $i \mapsto \delta(u(i)),$

hat die gewünschte Eigenschaft.

c) *Induktionsanfang*: Es sei $w \in A^0$. Dann ist $w = \epsilon$. Nach Definition von \odot gilt somit $w \odot a^0 = w$. Insgesamt gilt:

Für jedes
$$w \in A^0$$
: $w \odot a^0 = w$.

Induktionsschritt: Es sei $n \in \mathbb{N}_0$ so, dass gilt:

Für jedes
$$u \in A^n$$
: $u \odot a^n = u$. (Induktionsvoraussetzung)

Weiter sei $w \in A^{n+1}$. Dann gibt es ein $x \in A$ und ein $u \in A^n$ so, dass $x \cdot u = w$. Damit gilt:

$$\begin{split} w\odot \mathtt{a}^{n+1} &= (x\cdot u)\odot (\mathtt{a}\cdot \mathtt{a}^n) \\ &= \gamma((\gamma^{-1}(x)+\gamma^{-1}(\mathtt{a})) \bmod 3)\cdot (u\odot \mathtt{a}^n). \end{split}$$

Nach Definition von γ , γ^{-1} und mod gilt:

$$\gamma((\gamma^{-1}(x) + \gamma^{-1}(a)) \bmod 3) = \gamma((\gamma^{-1}(x) + 0) \bmod 3)$$

$$= \gamma(\gamma^{-1}(x) \bmod 3)$$

$$= \gamma(\gamma^{-1}(x))$$

$$= \gamma$$

Nach Induktionsvoraussetzung gilt $u \odot a^n = u$. Somit gilt:

$$w \odot a^{n+1} = \gamma((\gamma^{-1}(x) + \gamma^{-1}(a)) \mod 3) \cdot (u \odot a^n)$$

= $x \cdot u$
= w .

Insgesamt gilt:

Für jedes
$$w \in A^{n+1}$$
: $w \odot a^{n+1} = w$.

Schlussworte: Gemäß des Prinzips der vollständigen Induktion gilt die Behauptung.