CS 480

Introduction to Artificial Intelligence

April 16, 2024

Announcements / Reminders

- Please follow the Week 13 To Do List instructions (if you haven't already)
- Work on your last Written Assignment

- FINAL EXAM is on THURSDAY (04/25/2024)
 - IGNORE Registrar's FINAL EXAM date
 - Last week of classes! NOT finals week
 - Section 02: contact Mr. Charles Scott (scott@iit.edu) to make arrangements

Plan for Today

- A Casual Introduction to Machine Learning
- Deep Learning
- Bio-Inspired AI

Deep Learning

Deep Learning

Deep learning is a broad family of techniques for machine learning (also a sub-field of ML) in which hypotheses take the form of complex algebraic circuits with tunable connections. The word "deep" refers to the fact that the circuits are typically organized into many layers, which means that computation paths from inputs to outputs have many steps.

Shallow vs. Deep Models

Machine Learning vs. Deep Learning

Machine Learning

Deep Learning

Source: https://www.quora.com/What-is-the-difference-between-deep-learning-and-usual-machine-learning

Machine Learning vs. Deep Learning

Source: https://www.intel.com/content/www/us/en/artificial-intelligence/posts/difference-between-ai-machine-learning-deep-learning.html

Deep Learning: Feature Extraction

Source: https://en.wikipedia.org/wiki/Deep learning

Bio-Inspired Artificial Intelligence [NOT ON FINAL EXAM]

Complex Environments

What's the Connection Here?

Source: https://wikipedia.org/

Charles Darwin

Source: https://wikipedia.org/

Charles Robert Darwin was an English naturalist, geologist and biologist, best known for his contributions to the science of evolution. His proposition that all species of life have descended over time from common ancestors is now widely accepted, and considered a foundational concept in science.

Evolved Antenna

antenna designed fully or substantially by an automatic computer design program that uses an evolutionary algorithm that mimics Darwinian evolution.

An evolved antenna is an

Source: https://wikipedia.org/

Engineered vs. Evolved Antenna

Source: Jason D. Lohn, Gregory S. Hornby, and Derek S. Linden - "Human-competitive evolved antennas"

Evolutionary Algorithms [Wikipedia]

An evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm.

An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions (see also loss function).

Evolution of the population then takes place after the repeated application of the above operators.

Biology and Evolutionary Algorithms Background

Chromosome

A chromosome is a package of DNA with part or all of the genetic material of an organism (source: Wikipedia).

It contains genes responsible for specific traits.

Artificial Chromosome

In Evolutionary Algorithms an artificial chromosome is a genetic representation of the task to be solved.

Typically:

1 individual = 1 chromosome = 1 solution

Also called a genotype.

Genetic Algorithm: Roots

Directed search algorithms based on the concept of biological evolution

Developed by John Holland, University of Michigan (1970's)

- to understand the adaptive processes of natural systems
- to design artificial systems software that retains the robustness of natural systems

Genetic Algorithm: Process

(Start)

Current Population Evaluation

Individual Selection

Mating / Crossover

Stop or Replace Current Population

New Population

Potential Mutation

Genetic Algorithm: The Idea

Genetic Algorithm: The Idea

Source: https://livebook.manning.com/book/algorithms-and-data-structures-in-action/chapter-18/v-14/102

Genetic Algorithm: Example

y = f(x,y) - fitness function

"Good enough" / local maximum

Best / global maximum

Traveling Salesman Problem

TO THIS

A traveler needs to visit all the cities from a list, where distances between all the cities are known and each city should be visited just once. What is the shortest possible route that he visits each city exactly once and returns to the origin city?

N cities \rightarrow (N-1)!/2 paths | 15 cities \rightarrow 43589145600 paths

Source: https://medium.com/ivymobility-developers/traveling-salesman-problem-9ab623c88fab

Example: Genetic Algorithm

http://ostap0207.github.io/web-ga-tsp/

Ant Colony Optimization: The Idea

Source: https://wikipedia.org/

Example: Ant Colony Optimization

https://courses.cs.ut.ee/demos/visual-aco/

Genetic Algorithm in Action

Source: https://www.youtube.com/watch?v=qv6UVOQ0F44

Genetic Programming: Application

Current Issue

First release papers

Archive

About ∨

Submit manuso

HOME > SCIENCE > VOL. 324, NO. 5923 > DISTILLING FREE-FORM NATURAL LAWS FROM EXPERIMENTAL DATA

Distilling Free-Form Natural Laws from Experimental Data

MICHAEL SCHMIDT AND HOD LIPSON Authors Info & Affiliations

SCIENCE • 3 Apr 2009 • Vol 324, Issue 5923 • pp. 81-85 • DOI: 10.1126/science.1165893

Genetic Programming: Video

Distilling Freeform Natural Laws from Experimental Data

Michael Schmidt Hod Lipson

Generative Al Models [NOT ON THE FINAL EXAM]

Generative vs Discriminative Models

Discriminative

Generative model models actual distributions for EACH CLASS / LABEL / TAG

to

LABELS / TAGS

to

make a P(class | sample) prediction

Discriminative model models the

decision boundary between CLASSES /

make a P(class | sample) prediction

Generative vs Discriminative Models

Discriminative

Generative model uses training data to learn P(sample, class) joint probabilities

and then

uses Bayes Theorem to get the P(class | sample) prediction

Discriminative model uses training data to learn P(class | sample) conditional probability

and then

uses it to make a prediction

Generative vs Discriminative Classifier

Discriminative

Generative classifiers:

- Assume some form of P(class),P(sample | class)
- Estimate P(class), P(sample | class)using training data
- Use Bayes Theorem to calculateP(class | sample)

Discriminative classifiers:

- Assume some form of P(class | sample)
- Estimate P(class | sample) using training data

Generative vs Discriminative Classifier

Discriminative

Generative classifiers:

- Naive Bayes
- Bayesian networks
- Markov random fields
- Hidden Markov Models (HMM)

Discriminative classifiers:

- Logistic regression
- Support Vector Machines
- Traditional neural networks
- k-Nearest Neighbors
- Conditional Random Fields (CRF)s

Generative Al Model: the Idea

Generative AI Model: the Idea

Taxonomy of Generative AI Models

Explicit Density

Implicit Density

Tractable vs. Approximate Density

Tractable density models place constraints on the model architecture so that the density function has a form that makes it easy to calculate.

Approximate density models use variety of techniques to approximate the density function:

- latent vectors
- denoising

Autoencoder Model

Source: https://lilianweng.github.io/posts/2018-08-12-vae/

Latent Space

Source: https://synthesis.ai/2023/03/21/generative-ai-ii-discrete-latent-spaces/

Variational Autoencoder Model

Source: https://lilianweng.github.io/posts/2018-08-12-vae/

Autoregressive Model (GPT-3)

What is it?

Generative Pre-trained Transformer 3 (GPT-3) is an autoregressive language model that uses deep learning to produce human-like text. It is the third-generation language prediction model in the GPT-n series (and the successor to GPT-2) created by OpenAI, a San Francisco-based artificial intelligence research laboratory.

Size:

175 billion machine learning parameters

~45 GB

Source: Wikipedia

Diffusion Model

Forward Diffusion Process

Source: https://medium.com/@steinsfu/stable-diffusion-clearly-explained-ed008044e07e

Generative Adversarial Network

Source: https://www.toptal.com/machine-learning/generative-adversarial-networks