

機器學習

第1章 機器學習簡介

講師:紀俊男

- 什麼是機器學習程式
- 人工智慧簡史
- 人工智慧各領域的關係
- 機器如何學習
- 機器學習要會的數學基礎
- 機器學習解題手法種類
- 機器學習的應用領域

一般程式的運作原理

機器學習程式運作原理

重點整理

- 一般程式
 - 程式師:撰寫**邏輯規則**
 - 使用者:輸入資料→輸出資料
- 機器學習程式
 - ●程式師:訓練資料、標準答案、統計模型→邏輯規則
 - 使用者:輸入資料→預測解答

人工智慧簡史

第一次人工智慧興起(1956~1974)

• 達特茅斯會議(1956/08/31)

John McCarthy

Marvin Minsky

Nathaniel Rochester

Claude Shannon

- 與會人員
 - 約翰・麥卡錫(John McCarthy)
 - 「人工智慧」一詞提出者
 - 「符號學派」之父
 - 馬文·閔斯基 (Marvin Minsky)
 - ▶ 麻省理工學院人工智慧實驗室創始人
 - 「神經網路」之父
 - 納撒尼爾・羅徹斯特(Nathaniel Rochester)
 - IBM 701 設計者
 - 克勞徳・夏農(Claude Shannon)
 - 「資訊理論」創始人
- 成就
 - · 正式提出「人工智慧」一詞
 - ▶ 奠定「**符號學派**」在人工智慧的主流地位

第一次人工智慧寒冬(1974~1980)

• 失敗原因

• 「**符號推論**」雖然好用,但不是萬能。

• 失敗事蹟

- 「**機器跳棋**」程式
 - 僅止於「州冠軍」。無法打敗人類高手。
- 「機器翻譯」成果
 - 一塌糊塗!「自動語言處理委員會」不願再投資。
- 「背景知識(Frame Axiom)」不足
 - 「下雨 **→** 要帶傘」,但機器無法「感知」現在是否下雨。
- 「莫拉維克悖論(Moravec's Paradox)」提出
 - 內容:人類無意識的直覺與感知,只需少少計算能力。但電腦用盡計算能力,卻無法產生任何直覺與感知。
 - 舉例:機器會解微積分一類難題,無法解辨識人臉這類易事。
- 「萊特希爾報告(Sir James Lighthill's Report)」
 - 受「英國科學工程委員會」之邀,評估「人工智慧」到底能否能解決現實問題。
 - 給出「沒有證據顯示,任何一個人工智慧領域,對人類進步做出重大承諾」答案。
 - 英國政府全面停止補助。人工智慧寒冬正式開始。

第二次人工智慧興起(1980~1987)

- 興起原因
 - 「專家系統(Expert System)」:嘗試以資料庫灌注大量背景知識
- 代表人物
 - 愛德華·費根鮑姆 (Edward A. Feigenbaum)
 - 專家系統之父
 - 認為「智慧」=「推論」+「知識」
- 實際成果
 - Dendral 專家系統
 - 可以用「質譜儀」資料,推論「分子結構」

第二次人工智慧寒冬(1987~1993)

- 失敗原因
 - 「專家系統」的背景知識太龐大,窮究人力無法完整建立。
- 失敗事蹟
 - 日本「第五代電腦」計畫失敗
 - 日本產業經濟省撥款八億五千萬美元
 - 想打造「機械翻譯」、「理解圖像」、「如人類般推理」的機器
 - 因日本經濟泡沫,經費停止。引發各國經濟危機,人工智慧補助經費削減
 - 「仿生學派」的控訴
 - 認為「機器應該要有五感」、「背景知識應該自己學,不是人類輸入」
 - 說法受到認同。「專家系統」補助經費銳減。

第三次人工智慧崛起(1997~)

- 興起原因
 - 「神經網路」證明效果顯著 + 「硬體效能」能跟上
- 代表人物
 - 麥可·I·喬丹 (Michael I. Jordan)
 - 第一個把「統計學」引入「神經網路」的人
 - 「神經網路」起飛的重要貢獻人物
 - 傑佛瑞·辛頓 (Geoffrey E. Hinton)
 - 提出「自動編碼器(Auto Encoder)」理論
 - 能透過「**壓縮資料維度**」,產生「新的概念」
 - 讓電腦從一堆雜亂資料中,自動找出共同的抽象意義,變為可能
 - 「深度學習」之父,第三次人工智慧浪潮起飛的重要貢獻人物

Michael I. Jordan

Geoffrey E. Hinton

實際成果

- 1997:許峰雄的「IBM 深藍 (Deep Blue) 」,打敗人類西洋棋棋王卡斯帕洛夫 (Garry Kasparov)
- 2006:「自動編碼器(Auto Encoder)」與「蒙地卡羅樹搜尋(Monte Carlo Tree Search)」理論提出
- 2011:人工智慧程式「華生」,參加 Jeopardy! 益智問答節目,打敗所有人類,獲得冠軍
- 2011: Google 大腦計畫,在看了 1000 萬張照片後,自動產生了「貓」這個概念。
- 2017: 黃士傑主導開發的 AlphaGo 圍棋程式,以三戰全勝的戰績,打敗人類圍棋棋王柯潔。
- 2017: AlphaGo Zero 會自我廝殺,互相教導。40 天後,產生比 AlphaGo 還強的版本。

第三次人工智慧寒冬會來臨嗎?

- **有可能**!許多 AI 學者開始為文,表達質疑立場
 - Filip Piekniewski: 「 Al Winter is Well on its Way 」 (2018)
 - Gary Marcus: \[\sum_{\text{In defense of skepticism about deep learning} \] \(\text{2018} \)
- 第三次人工智慧的隱憂
 - 相信「深度學習」,是人工智慧的最終解藥
 - 1956 年,「符號推論」也被視為人工智慧最終解藥
 - 1980 年,「專家系統」也被視為人工智慧最終解藥
 - 「深度學習」做出來的程式 / 模型,是**黑盒子**
 - 它可以運作,但人類不知道它如何運作的
 - 若發生問題,或想要優化,會無從著手
 - 「深度學習」對於「**開放性問題**」做得不太好
 - 對於 19x19 路、變化總數有限的圍棋,做得很好!
 - 對於「自動駕駛」,這種變化總數無上限的事情,做得不如人意!

小節整理

• 第一次人工智慧浪潮(1956)

● 崛起:「符號推論」

• 沒落: 背景知識不足

• 第二次人工智慧浪潮(1980)

● 崛起:「專家系統」

● 沒落:輸入背景知識,曠日廢時

• 第三次人工智慧浪潮(1997)

● 崛起:「神經網路」+「統計學」+「自編碼理論」=「深度學習」

• 沒落:??(黑盒子?開放性問題?)

「人工智慧」有哪些領域

機器學習的演算法有哪些

機器學習

監督式學習

非監督式學習

迴歸

分類

集群

線性 迴歸 神經網路

邏輯 迴歸

單純 貝氏 支援 向量 機

決策 樹 隨機 森林

神經網路

K-平 均法 神經網路

機器 vs. 深度 vs. 強化學習的比較

Step 1: 收集資料

特徵值1 特徵值2 特徵值3 特徵值4

資料庫

特徵向量1 特徵向量2 特徵向量3 特徵向量4

Α В D 國別 年齡 薪資 是否購買 72000 France 44 No Spain 27 48000 Yes 30 54000 Germany No 5 38 61000 Spain No 40 Yes Germany 35 58000 Yes France 52000 Spain No. 48 79000 France Yes 10 50 83000 No Germany 37 67000 11 France Yes

特徵 = Features

特徵矩陣

自變數

應變數

購買 = a · (國別) + b · (年龄) + c · (薪資) a, b, c = 權重

Step 2:資料前處理-缺失資料補足

	А	В	С	D
1	國別	年齡	薪資	是否購買
2	France	44	72000	No
3	Spain	27	48000	Yes
4	Germany	30	54000	No
5	Spain	38	61000	No
6	Germany	40	63777.78	Yes
7	France	35	58000	Yes
8	Spain	38.78	52000	No
9	France	48	79000	Yes
	Germany	50	83000	No
10	Ocumany			

刪除

• 缺失資料佔比不大時可用

• 以該特徵值的平均為值

中位數

• 以該特徵值的中位數為值

• 最常出現數字

- 以該特徵值中,最常出現數字為值
- 在統計上又稱為眾數(mode)

Step 3:資料前處理-類別資料數位化

「類別資料」無法計算 → 需要「數位化」

	Α	В	С	D
1	國別	年齡	薪資	是否購買
2	France	44	72000	No
3	Spain	27	48000	Yes
4	Germany	30	54000	No
5	Spain	38	61000	No
6	Germany	40	63777.78	Yes
7	France	35	58000	Yes
8	Spain	38.78	52000	No
9	France	48	79000	Yes
10	Germany	50	83000	No
11	France	37	67000	Yes

	Α	В	С	D
1	國別	年齡	薪資	豊否購買
2	1	44	72000	0
3	2	27	48000	1
4	3	30	54000	0
5	2	38	61000	0
6	3	40	63777.78	1
7	1	35	58000	1
8	2	38.78	52000	0
9	1	48	79000	1
10	3	50	83000	0
11	1	37	67000	1

Step 4: 資料前處理 - 降維(選做)

僅剩一個維度,資訊量不變

• 降維原理(以 PCA 法為例)

- 購買者=「年輕+有錢」or「年長+小康」
- 以「最大方差法」找最適合座標
- 所有資料點往新X座標投影 (此乃線性代數之「座標變換」)
- 降維成功

• 降維的好處

- 減低運算量,增加計算速度
- 以人類可理解的 2D/3D 圖描繪出結果來

• 降維的方法

- 特徵選擇法:**去除**若干影響力不強的特徵
 - 反向淘汰法、卡方檢定法...
- 特徵提取法:將影響力不強的特徵合併
 - 主成分分析 (Principal Components Analysis) 法

Step 5:資料前處理 - 切分訓練集、測試集

訓
練
集

測試集

	A	В	С	D
1	國別	年齡	薪資	是否購買
2	France	44	72000	No
3	Spain	27	48000	Yes
4	Germany	30	54000	No
5	Spain	38	61000	No
6	Germany	40	63777.78	Yes
7	France	35	58000	Yes
8	Spain	38.78	52000	No
9	France	48	79000	Yes
10	Germany	50	83000	No
11	France	37	67000	Yes

• 訓練集 (Training Set)

- 約佔 2/3 ~ 3/4
- ●「影響因子」+「解答」
- 用於訓練機器學習模型之用

• 測試集 (Testing Set)

- 約佔 1/3 ~ 1/4
- 僅包含「影響因子」
- 用於測試機器學習模型有多好
- 測出來的答案會與真實答案對比

Step 6:資料前處理 - 特徵縮放(選做)

特徵縮放前

	國別	年齡	薪資	是否購買
	1	44	72000	0
	2	27	48000	1
	3	30	54000	0
	2	38	61000	0
	3	40	63777.78	1
	1	35	58000	1
	2	38.78	52000	0
	1	48	79000	1
	3	50	83000	0
	1	37	67000	1
平均值	1.9	38.778	63777.78	0.5
標準差	0.875595	7.253777	11564.1	0.527046

特徵縮放後

	國別	年齡	薪資	是否購買
	-1.02787	0.719901	0.711013	-0.94868
	0.114208	-1.62371	-1.36438	0.948683
	1.256289	-1.21013	-0.84553	-0.94868
	0.114208	-0.10725	-0.24021	-0.94868
	1.256289	0.168464	1.73E-07	0.948683
	-1.02787	-0.52083	-0.49963	0.948683
	0.114208	0.000276	-1.01848	-0.94868
	-1.02787	1.271338	1.316334	0.948683
	1.256289	1.547056	1.662233	-0.94868
	-1.02787	-0.24511	0.27864	0.948683
平均值	0	1.97E-16	-5.3E-16	0
標準差	1	1	1	1

- 何謂「特徵縮放」 (Feature Scaling)
 - 讓各特徵影響力相當
 - 平均值=0、標準差=1
- 特徵縮放的好處
 - 各特徵影響力相等
 - 收斂至標準答案快
- 如何做特徵縮放

$$\hat{x} = \frac{x - Avg(x)}{Std(x)}$$

Step 7:選擇機器學習演算法

Step 8:模型訓練

$$P_0$$
位於線段 = $\begin{cases} 左下: 不買 \hat{f}(x_0, y_0) = 0 \\ 右上: 會買 \hat{f}(x_0, y_0) = 1 \end{cases}$

誤差函數 =
$$\sum_{k=0}^{n-1} |\hat{f}(x_0, y_0) - f(x_0, y_0)|$$

- 取出「訓練集」資料
- 計算各點落在哪邊 → 與真實答案比對
- 「擬合」 (Fitting)
- 以「微分」/「偏微分」,讓「誤差函數」有極小值又稱為「參數推估」(針對 a, b, c)

誤差函數 =
$$\sum_{k=0}^{n-1} |\hat{f}(x_0, y_0) - f(x_0, y_0)|$$
 a 極小值 = $\frac{\partial}{\partial a} \sum_{k=0}^{n-1} (\hat{f}(x_0, y_0) - f(x_0, y_0))^2$ b 極小值 = $\frac{\partial}{\partial b} \sum_{k=0}^{n-1} (\hat{f}(x_0, y_0) - f(x_0, y_0))^2$ c 極小值 = (略)

補充:過擬合 vs. 欠擬合

過擬合(Overfitting)

- 模型維度過高(特徵過多)
- 嘗試在訓練階段「取得高分」, 但在實戰階段卻「一塌糊塗」。
- 如同考試準備時,學了太多刁鑽的題目, 結果正式考試時,基本的題目卻答不出來。

欠擬合(Underfitting)

- 模型維度過低(特徵過少)
- 在訓練時期偷懶,採用了較少的特徵訓練模型, 只為了加快訓練速度。
- 如同考試準備時,只隨便翻了一下課本,結果正式考試時,基本的題目也答不出來。

Step 9:模型測試

直線斜率	y _i - Mx _i - C 結果	預測結果
負 (M<0)	>0> 位於線段右側	會買
	<0>位於線段左側	不買
正 (M>0)	>0> 位於線段左側	不買
	<0>位於線段右側	會買

- 將直線以「斜率型」表示
- 給定一個新的資料點 Pi
 - 年龄 = x_i
 - 薪資 = y_i
- 根據模型 y=Mx+C 預測結果
 - M<0:斜率是負的
 - y_i Mx_i C > 0:位於線段右側
 - 預測結果:會買

Step 10:持續學習 (Online Learning)

• 定義

- 機器學習模型 y=Mx+C製成後
- 新資料進來 → 預測 → 現實確認
- 根據「現實確認值」,重跑模型
- 得到修正後、更準的模型 *y=M'x+C'*
- 範例: Google 搜尋引擎
 - 模型製成: y=C_nX_n+C_{n-1}X_{n-1}+...C₀
 - 新資料進來:使用者的關鍵字
 - 預測:搜尋結果
 - 現實確認:使用者點擊了哪些結果
 - 修正模型: y=c'_nx_n+c'_{n-1}x_{n-1}+...c'₀

小節整理:機器如何學習

- 資料擷取 (Data Acquisition)
 - 爬蟲、資料庫
- 資料前處理 (Data Preprocessing)
 - 缺失補足 (Missing Data Complement)
 - 類別資料數位化 (Categorical Data Digitized)
 - 降維(Dimensionality Reduction)
 - 資料集切分(訓練集、測試集)(Dataset Spliting)
 - 特徵縮放 (Feature Scaling)
- 模型製成 (Modeling)
 - 資料擬合 (Fitting)
 - 模型測試 (Testing)
- 持續改進 (Model Improvement)
 - 持續學習 (Online Learning)

會用於機器學習的數學基礎

函數

- 自變數(Independent Variables)、應變數(Dependent Variables)
- 座標軸、函數圖形

• 幾何學

- N 元一次方程式、與其圖形(如:斜率、截距...)
- 空間點 --> 直線方程式距離、空間點位於直線的哪一側

• 線性代數

- 矩陣運算:特徵值、特徵向量、特徵矩陣運算
- 座標變換:維度獨立性(正交程度 Orthogonality)、降維、座標映射

微積分

• 微分、偏微分:取某一維度的極值時使用

• 統計學

- 各種統計量&意義:平均、中位數、標準差
- 統計分布:尤以「常態分布(Normal Distribution)」最為重要

機器學習應用領域

• 趨勢預測

• 股票漲跌

• 事物分類

• 疾病診斷、購物喜好、垃圾郵件

• 語言理解

• 文章分類、自動翻譯、聊天程式

• 電腦視覺

• 臉部辨識、年齡推測、物體辨識

• 電腦聽覺

• 語音輸入、音樂生成

• 自動化

• 自動駕駛、機器人工學

本章總結

• 機器學習程式與一般程式有何不同

- 一般程式:「邏輯規則」由程式師產生
- 機器學習程式:「邏輯規則」由統計模型自動產生

• 人工智慧簡史

• 已是「第三次人工智慧浪潮」,提防「第三次人工智慧寒冬」

• 人工智慧各領域關係

- 大數據:提供機器學習的資料來源
- 機器學習:下含各種演算法,如:神經網路、深度學習

• 機器如何學習

● 資料獲取 --> 資料前處理 --> 模型訓練 --> 模型測試

• 機器學習三大演算法類別

- 監督式學習:輸入+解答
- 非監督式學習:輸入
- 強化學習:自行摸索+獎勵

• 各種機器學習應用領域

• 趨勢預測、事物分類、語言理解、電腦視覺、電腦聽覺、自動化

