#### 12주 2강

# 광역통신망의 프로토콜과 교환 방식





숭실사이버대학교의 강의콘텐츠는 저작권법에 의하여 보호를 받는바, 무단 전재, 배포, 전송, 대여 등을 금합니다. \*사용서체: 나눔글꼴

### 1. 광역통신망, 광대역 융합망, 초고속 유선 가입자망의 개요

#### ◆ 광역통신망

- 도시와 도시 간, 국가와 국가 간 등 원격지 사이를 연결하는 통 신망
- 범위는 보통 10km 이상(인공위성을 이용한 패킷 통신은 제외)
- 광역통신망에서 각 노드를 연결할 때는 LAN과 달리 점-대-점 접속 방식 사용

#### ◆ 고속 광역통신망

- 도시와 도시, 국가와 국가 등 원격지 사이를 연결하는 광역통신 망에 텍스트, 이미지, 음성 등,모든 형태의 데이터를 디지털로 처리해 주는 고속의 정보통신망
- 보통의 해당 지역의 도시와 교외를 포함하여 범위가 수십 km
- 도시망(MAN)이 고속 광역통신망에 해당됨
  - MAN은 지리적으로 도시 하나 크기만한 영역에 분산되어 있는 LAN과 컴퓨터, WAN을 연결

## 1. 광역통신망, 광대역 융합망, 초고속 유선 가입자망의 개요

- ◆ 광대역 융합망
  - 통신과 방송, 인터넷 등 각종 서비스를 통합하며, 다양한 응용 서비스를 쉽게 개발할 수 있는 개방형 플랫폼에 기반을 둔통합 네트워크
- ◆ 초광대역 융합망
  - 미래 방송통신 서비스의 수요 충족을 위한 망
  - 광대역 융합망보다 10배 빠름(유선은 최고 1Gbps, 무선은 평균 100Mbps)
- ◆ 초고속 유선 가입자망
  - xDSL(전화선 이용), FTTH(광케이블 이용), HFC(광케이블과 동축 케이블 이용) 등의 유선망을 이용하여 가입자에게 초고 속 인터넷 서비스를 제공해주는 망

- ◆ 광역통신망의 교환 방식
  - 회선 교환 방식
    - 사용자가 전화망을 이용해 상대방을 호출하여 연결
  - 축적 교환 방식
    - 교환기를 이용하여 정보를 메시지나 패킷 단위로 저장하고 전 송
    - 메시지 교환 방식, 패킷 교환 방식, 셀 교환 방식으로 나뉨
      - 메시지 교환 방식에서는 메시지 길이가 매번 변함
      - 패킷 교환, 셀 교환 방식에서는 메시지 길이가 고정되고 규격화

◆ 광역통신망의 교환 방식



그림 7-2 광역통신망의 교환 방식

- ◆ 회선 교환
  - 회선 교환 방식
    - 노드와 노드 간에 물리적으로 전용 통신로를 설정하여 데이 터를 교환
    - 긴 메시지를 전송하는 데 적합하므로 팩스 화상통신, 파일 전 송 등에도 사용
      - 예) 공중 교환 전화망(PSTN)
    - 회선 설립 단계, 데이터 전송 단계, 회선 해제 3단계를 거침
      - 회선 설립 단계: 송신 측과 수신 측의 단말기를 물리적으로 연결하고, 데이터 링크로는 논리적으로 연결
      - 데이터 전송 단계: 설정된 데이터 링크를 이용해 정해진 순서에 따라 데이터를 송·수신
      - 회선 해제 단계 : 송수신을 완료한 회선을 해제

◆ 회선 교환



그림 7-3 회선 교환 방식

- ◆ 축적 교환 1 : 메시지 교환
  - 축적 교환 방식
    - 송신 노드와 수신 노드 사이에 있는 중계 노드에서 수신한 데이터를 일단 메모리에 저장한 후 다음 노드를 선택하여 송 신하는 방식
    - 데이터를 실시간으로 전송 하지 못함
    - 메시지 교환 방식, 패킷 교환 방식, 셀 방식이 있음

- ◆ 축적 교환 1 : 메시지 교환
  - 메시지 교환 방식
    - 메시지를 1개 복사하여 여러 노드로 전송하는 방식
    - 전송하는 도중 오류가 발생해도 메모리에 저장된 사본을 재 전송할 수 있음
    - 회선의 효율성이 높음 (하나의 메시지를 여러 전송지에 보낼수 있음)
    - 메시지 길이가 가변적이라 효율적이지 않음 (교환기 기억 장치의 사용 효율, 전송 지연, 통신회선의 이용률 부분)

- ◆ 축적 교환 1 : 메시지 교환
  - 메시지 교환 방식



그림 7-5 메시지 교환 방식

- ◆ 축적 교환 2 : 패킷 교환
  - 패킷 교환 방식
    - 데이터를 패킷 형태로 분할하여 전송하고 수신
      - 패킷: 데이터를 일정한 길이로 분할하여 그 데이터 앞에 헤더를 두는 형태
    - PAD 기능이 노드나 교환기에 포함되어 있어야 한다
      - PAD : 전송 노드에서는 데이터를 패킷으로 분해하고 수신 노드에서는 패킷을 하나의 메시지로 합치는 기능
    - 가상회선 방식과 데이터그램 방식이 있음
    - 패킷 교환기의 메모리에 임시로 저장해 대기 하고 있다가 서비스 정보를 검색하면 선택한 출력 링크에서 목적지 노드 로 데이터를 전송

- ◆ 축적 교환 2 : 패킷 교환
  - 패킷 교환 방식



그림 7-6 패킷 교환망에서 패킷의 형태

- ◆ 가상회선 방식
  - 사용자가 호를 요청하면 노드 사이를 연결하는 전용 통신로 인 가상회선을 만들어 송신 노드와 수신 노드 간에 데이터를 전달
  - 가상회선이 만들어지면 해당 호를 종료하기 전까지 선택한 경로를 따라 패킷이 전송되며, 전송이 끝난 후 가상회선은 종료됨
  - 데이터를 전송하면 반드시 목적지에 도착시키기 때문에 연 결 지향 서비스라고 함

◆ 가상회선 방식



그림 7-7 패킷 교환에서 가상회선 방식

- ◆ 데이터그램 방식
  - 일련의 데이터를 패킷 단위로 분할하여 송신 노드와 수신 노드 간에 데이터를 전달
  - 패킷의 도착 순서가 바뀔 수 있기 때문에 도착한 패킷을 순서대 로 배열하는 조립 과정이 필요
    - 각 패킷이 스위치를 거치며 매번 최선의 경로를 선택하기 때문
  - 패킷을 전송하기 전에 가상회선을 먼저 만들지 않아도 되므로 비연결 지향 서비스라고 함

◆ 데이터그램 방식



그림 7-8 패킷 교환에서 데이터그램 방식

- ◆ 데이터그램 방식
  - 회선 교환과 메시지 교환 방식의 장점은 최대화하고, 단점은 최소화한 방식
  - 노드나 회선에 오류가 발생해도 다른 경로를 선택할 수 있어 전송이 중단되지 않음
  - 전송하는 데이터가 많은 환경에 적합
  - 패킷 교환망에서 DTE와 DCE 간 인터페이스를 위한 프로토 콜은 X.25

#### ◆ 데이터그램 방식

#### 표 7-1 패킷 교환의 장단점

| 장단점 | 내용                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 장점  | <ul> <li>프로토콜이 다른 이기종 망 간의 통신이 가능하다.</li> <li>장애 발생 시 대체 경로를 선택할 수 있는 등 회선 상태에 따라 경로 설정이 유동적이다. 패킷에 대한 우선순위를 부여할 수 있으며, 방송 형태의 전송이 가능하다.</li> <li>통신에 과부하가 발생하면 전송 지연이 발생하지만, 패킷의 송신은 가능하다.</li> <li>디지털 통신을 기본으로 하므로 전송 품질과 신뢰성이 높다.</li> <li>하나의 링크를 공유하므로 이용 효율이 높다.</li> <li>전송에 실패한 패킷에 대해서 재전송 요구가 가능하다.</li> <li>데이터 전송률 변환이 가능하여 전송률이 서로 다른 노드 간에도 전송이 가능하다.</li> </ul> |  |  |  |  |
| 단점  | <ul> <li>수신지에 도착한 패킷의 순서가 바뀔 수 있기 때문에 실시간 전송에는 부적합하다.</li> <li>패킷 단위로 헤더를 추가하기 때문에 패킷별 오버헤드가 발생한다.</li> <li>패킷 전송 지연으로 인해 한꺼번에 많은 데이터를 전송하는 데는 부적합하다.</li> </ul>                                                                                                                                                                                                                |  |  |  |  |

표 7-2 교환 방식의 특징 비교

| 방식                 | 회선 교환                 | 축적 교환                                 |                                               |                            |
|--------------------|-----------------------|---------------------------------------|-----------------------------------------------|----------------------------|
| 특징                 |                       | 메시지 교환                                | 가상회선                                          | 데이터그램                      |
| 송수신 단위             | 메시지                   | 메시지                                   | 패킷                                            | 패킷                         |
| 전용 전송로             | 있음                    | 없음                                    | 없음                                            | 없음                         |
| 교환 장비              | 전자 기계식/컴퓨터<br>화된 교환기  | 파일 저장 기능이 있<br>는 메시지 교환 센터            | 소규모 컴퓨터                                       | 소규모 컴퓨터                    |
| 전송 경로              | 동일한 전송 경로             | 메시지마다 경로 설정                           | 전체 전송을 위한 경로<br>설정                            | 패킷마다 경로 설정                 |
| 통신 내용의<br>저장 기능    | 없음                    | 파일로 저장, 필요 시<br>검색                    | 일시 저장, 검색 기능<br>없음                            | 일시 저장, 검색 기능<br>없음         |
| 전송 형태              | 점-대-점                 | 브로드캐스트/멀티캐<br>스트 가능                   | 브로드캐스트/멀티캐스<br>트 일반적으로 불가능                    | 브로드캐스트/멀티캐스<br>트 일반적으로 불가능 |
| 코드와<br>통신속도 변환     | 없음                    | 있음                                    | 있음                                            | 있음                         |
| 송수신 데이터<br>순서      | 일치                    | 불일치                                   | 일치                                            | 불일치                        |
| 대역폭                | 고정                    | 동적                                    | 필요에 따라 선택 가능                                  | 필요에 따라 선택 가능               |
| 수신 측 주소            | 연결 확립 후 불필요           | 메시지마다 필요                              | 연결 확립 후 불필요                                   | 패킷마다 필요                    |
| 오버헤드 비트<br>등 제어 정보 | 연결 확립 후 불필요           | 메시지마다 필요                              | 패킷마다 필요                                       | 패킷마다 필요                    |
| 통신선로 오류<br>발생 시 처리 | 다른 회선 재설정             | 여러 경로 중 선택                            | 다른 회선 재설정                                     | 여러 경로 중 선택                 |
| 지연 후 전송            | 불가능                   | 수신 측이 준비되면<br>전송, 준비되지 않으면<br>지연 후 전송 | 브로드캐스트/멀티캐스<br>트 전송 가능                        | 브로드캐스트/멀티캐스<br>트 전송 가능     |
| 과부하                | 연결 호출 설정 거부<br>와 중단   | 메시지 전송 지연 증가                          | 연결 호 설정 거부와 중<br>단, 연결 설정 후에는 패<br>킷 전송 지연 증가 | 패킷 전송 지연 증가                |
| 데이터 분실<br>책임       | 사용자가 메시지 분<br>실 방지 책임 | 네트워크가 메시지 분<br>실 방지 책임                | 네트워크가 패킷 순서<br>책임                             | 네트워크가 각 패킷 분<br>실 방지 책임    |
| 적합한 전송<br>형태       | 길이가 긴 메시지 연<br>속 전송   | 속도가 느린 메시지<br>전송                      | 대량 데이터를 순간적으<br>로 고속 전송                       | 대량 데이터를 순간적으로 고속 전송        |
| 응용 분야              | 실시간 대화형 가능            | 실시간 대화형 어려움                           | 실시간 대화형 가능                                    | 실시간 대화형 가능                 |

# 수고하셨습니다.

