

Теория вероятностей и математическая статистика

Лекция 1. Случайные события

Литература

Литература:

- 1) Колмогоров А.Н. *Основные понятия теории вероятностей*. М.: Наука, 1974. 120 с.
- 2) Чистяков В.П. Курс теории вероятностей. 8-е изд. М.: URSS, 2015. 304 с.
- Гнеденко Б.В. Курс теории вероятностей. 10-е изд. М.: Книжный дом «ЛИБ-РОКОМ», 2011. — 488 с.
- 4) Свешников А.А. Сборник задач по теории вероятностей, математической статистике и теории случайных функций. 5-е изд., стер. СПб.: Издательство "Лань", 2013. 448 с. Режим доступа https://e.lanbook.com/book/5711.

Теория вероятностей — это математическая дисциплина, в рамках ко- торой моделируют и изучают такие события в повседневной жизни, науке и технике, которые носят случайный характер.

В теории вероятностей первичным понятием является произвольное множество. Элементы ω этого множества называют *элементарными событиями*, а само множество Ω называют *пространством элементарных событий*.

Для описания каждой реальной задачи пространство Ω выбирается наиболее подходящим образом. Пусть, например, опыт состоит в подбрасывании один раз правильной шестигранной игральной кости. Наблюдаемый результат — число очков на верхней грани. Пространство элементарных событий Ω в этом случае равно множеству $\{1, 2, 3, 4, 5, 6\}$, а элементарные события — цифры от одной до шести.

Пространство Ω может быть **дискретным** или **непрерывным**. Дискретные пространства подразделяются на конечные и счетные — эквивалентные множеству натуральных чисел.

Если пространство Ω дискретно, то **случайным событием** может быть любое подмножество пространства элементарных событий. События обозначают прописными буквами латинского алфавита: A, B, C, . . . , Z . Говорят, что событие A произошло (наступило, реализовалось), если результатом опыта явился элементарный исход, принадлежащий A .

Событие, совпадающее с пустым множеством \emptyset , называется **невозможным событием**, а событие, совпадающее со всем множеством Ω , — **достоверным событием**. Невозможное событие не происходит ни в одном опыте, а достоверное — осуществляется всегда.

Если пространство Ω непрерывно, то событиями являются не любые его подмножества, а только те, которые принадлежат σ - алгебре событий, т. е. семейству подмножеств, замкнутому относительно основных операций над множествами. Для того, чтобы задать σ - алгебру событий, надо предварительно определить основные операции и отношения между событиями. Поскольку любое событие отождествляется с некоторым множеством, то над событиями можно совершать те же операции, что и над множествами.

Множества, состоящие из одинаковых элементов, называют равными.

Если каждый элемент множества A является также элементом множества B, то пишут $A \subset B$ и говорят, что A есть **подмножество** B или A **включено** в B или A **внутри** B .

С помощью логических символов определение включения одного множества в другое записывается следующим образом:

$$A \subset B \Leftrightarrow \forall x(x \in A \rightarrow x \in B) \Leftrightarrow (x \in A \Rightarrow x \in B).$$

Суммой двух событий A и B называется событие A + B, являющееся объедине- нием $A \cup B$. Событие A + B состоит в том, что произошло по крайней мере одно из событий A или B.

Произведением событий A и B называется событие AB, равное пересечению $A \cap B$. Событие AB происходит тогда и только тогда, когда происходит и A и B.

Если множества не имеют общих элементов, то их называют **непересекающимися**, а соответствующие события — **несовместными**. Для двух множеств A и B в этом случае $AB = \emptyset$. Например, события «выпадет чётное число очков» и «выпадет нечётное число очков» несовместны, так как множества $A = \{2, 4, 6\}$ и $B = \{1, 3, 5\}$ не пересекаются. 5

События A_1 , A_2 , . . . , A_n образуют **полную группу**, если они попарно несовместны, а в сумме дают достоверное событие. Например, указанные выше события $A = \{2, 4, 6\}$ и $B = \{1, 3, 5\}$ образуют полную группу.

Разностью двух множеств A и B называют множество $A \setminus B$, состоящее из тех элементов, которые входят в A , но не входят в B :

$$A \setminus B = \{x \in \Omega \mid x \in A \cap x \notin B\}.$$

Разности множеств соответствует **разность событий**. Это новое событие, состоящее в том, что A происходит, а B не происходит. Например, если $A = \{1, 2, 3, 4\}$ — множество очков меньших пяти, $B = \{2, 4, 6\}$ — множество чётных очков, то $A \setminus B = \{1, 3\}$. Если рассматривается разность между пространством элементарных событий и некоторым множеством A, то разность $\Omega \setminus A$ называется **дополнением множества** A и обозначается \overline{A} . Событие \overline{A} называют событием **противоположным** A. Это событие, состоящее в том, что A не происходит. Так, событием противоположным событию $A = \{1, 2, 3, 4\}$ будет событие выпадение числа очков больших или равных пяти .

Строгие определения

Определение σ **-алгебры**. Семейство подмножеств S пространства Ω называют σ -алгеброй, если выполняются следующие условия:

- а) пустое множество Ø и само пространство Ω входят в S ;
- б) данное семейство замкнуто относительно теоретикомножественных операций, включая счетные объединения и пересечения множеств из S.

Определение события.

Событием называют некоторое подмножество пространства элементарных событий Ω , принадлежащее σ - алгебре пространства Ω .

Свойства операций над событиями

Операции над событиями обладают следующими свойствами:

- A + B = B + A. $A \cdot B = B \cdot A$ (переместительное);
- $(A+B)\cdot C = A\cdot C + B\cdot C, A\cdot B + C = (A+C)\cdot (B+C)$ (распределительное);
- $(A+B)+C=A+(B+C), (A\cdot B)\cdot C=A\cdot (B\cdot C)$ (сочетательное);
- $A + A = A, A \cdot A = A;$
- $A + \Omega = \Omega, A \cdot \Omega = A;$
- $A + \overline{A} = \Omega, A \cdot \overline{A} = \emptyset;$
- $\overline{\varnothing} = \Omega, \, \overline{\Omega} = \varnothing, \, \overline{\overline{A}} = A;$
- $A B = A \cdot \overline{B}$;
- $\overline{A+B}=\overline{A}\cdot\overline{B}$ и $\overline{A\cdot B}=\overline{A}+\overline{B}$ законы де Моргана.

Вероятность. Аксиомы теории вероятностей.

Вероятностью называется числовая функция $P: F \to R$, заданная на σ -алгебре событий F, которая должна удовлетворять трем аксиомам:

- 1) $P(A) \ge 0$ для любого $A \in F$ (неотрицательность P);
- 2) P(Ω) = 1 (нормированность P);
- 3) P(A + B) = P(A) + P(B) для любых $A, B \in F$, $AB = \emptyset$ (аддитивность P) : для несовместных событий вероятность суммы событий равна сумме их вероятностей.

Тройку $\{\Omega, S, P\}$, где S есть σ -алгебра подмножеств пространства элементарных событий Ω , P — числовая функция, удовлетворяющая трем аксиомам, называют **вероятностным пространством** случайного опыта, а неотрицательную, нормированную и аддитивную вероятностную функцию P(A), $A \in S$, $A \subset \Omega$ — **распределением вероятностей**.

Аксиоматическая теория вероятностей в ее современном виде была создана русским математиком А. Н. Колмогоровым в 1933 году.

Основные теоремы и следствия теории вероятностей

Теорема (о монотонности распределения вероятностей).

Если из события A следует событие B , то справедлива формула: P (A) ≤ P (B).

Доказательство.

Так как $A \subset B$, то событие B представимо в виде $B = B\Omega = B(A + \overline{A}) = BA + B\overline{A} = A + B\overline{A}$.

Отсюда, используя аксиому сложения, получим $P(B) = P(A) + P(B\overline{A})$.

Так как в силу аксиомы 1 справедливо неравенство $P\left(B\overline{A}\right) \geq 0$, то из предшествующего равенства следует доказательство теоремы.

Основные теоремы и следствия теории вероятностей

Теорема (о вероятности противоположного события).

Вероятность противоположного события вычисляется по формуле:

$$P(\bar{A}) = 1 - P(A).$$

Доказательство. Из равенства $A + A^- = \Omega$ и аксиомы сложения следует $P(A) + P(A^-) = P(\Omega)$. В силу аксиомы нормированности $P(\Omega) = 1$, так что из предшествующего равенства получаем доказываемую формулу.

Отсюда, учитывая, что невозможное и достоверное события взаимно противоположны, т. е. справедливо равенство $\emptyset + \Omega = \Omega$, выводится утверждение $P(\emptyset) = 0$: **«вероятность невозможного события равна нулю»**.

Для любого события A истинны соотношения $\emptyset \subset A \subset \Omega$. Отсюда,

учитывая монотонность распределения вероятностей, следуют неравенства $0 \le P(A) \le 1$, утверждающие, что вероятность любого события всегда лежит между нулем и единицей.

Основные теоремы и следствия теории вероятностей

Теорема (о вероятности суммы совместных событий).

Для любых двух событий верна формула сложения вероятностей:

$$P(A \cup B) = P(A) + P(B) - P(AB).$$

Доказательство. Представим событие $A \cup B$ в виде $A \cup B = A + BA$, а событие B в виде $B = B\overline{A} + BA$. События в правых частях данных равенств несовместны, поэтому по аксиоме сложения получим:

$$P(A \cup B) = P(A) + P(B\overline{A}), P(B) = P(B\overline{A}) + P(BA).$$

Отсюда следует доказываемая формула сложения вероятностей.

Из формулы сложения вероятностей по индукции выводится общая формула вероятности суммы любого конечного числа событий. В частности, формула вычисления вероятности суммы трех событий имеет вид

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC).$$

Классическая схема вычисления вероятностей

Пусть пространство элементарных событий Ω конечно, состоит из n равновероятных исходов, вероятность каждого исхода равна 1/n и, следовательно, сумма вероятностей всех исходов равна единице. Определим вероятность каждого события $A \subset \Omega$ как сумму вероятностей тех исходов, которые входят в это подмножество. Все аксиомы теории вероятностей выполняются при такой схеме задания вероятностей событий, и, соответственно, выполняются все выводы, которые следуют из аксиом. Данную конечную схему вычисления вероятностей называют классической, а вероятность любого события $A \subset \Omega$ находят по формуле классической вероятности:

$$P(A) = \frac{N(A)}{N(\Omega)}$$

где буквой *N* обозначено число элементов в множестве.

Таким образом, вероятность любого случайного события в классической схеме равна отношению числа исходов, благоприятствующих появлению этого события, к общему числу элементарных исходов.

При решении многих задач с использованием классической схемы часто оказываются полезными различные комбинаторные формулы.

Декартово произведение множеств и правило умножения

Пусть заданы два множества A и B с произвольным числом элементов любой природы в каждом множестве. Образуем новое множество по правилу: $D = \{(a,b) \mid a \in A, b \in B\}$. Это новое множество называется **прямым или декартовым произведением множеств** A и B и обозначается $D = A \times B$. Элементы прямого произведения представляют собой упорядоченные пары, причём две упорядоченные пары равны только в том случае, когда у них равны первые элементы и равны вторые элементы.

Пример. Имея множества $A = \{1; 2\}$ и $B = \{\alpha; \beta\}$, можно образовать декартовы произведения следующего вида:

$$D_1 = A \times B = \{(1, \alpha); (1, \beta); (2, \alpha); (2, \beta)\},$$

 $D_2 = B \times A = \{(\alpha, 1); (\alpha, 2); (\beta, 1); (\beta, 2)\}.$

Как видно из примера, декартово произведение не обладает свойством коммутативности. Свойство коммутативности выполняется только для равных между собой множеств.

Декартово произведение множеств и правило умножения

Если дана система множеств A1, A2, . . . , An , то элементами декартова произведения являются упорядоченные наборы (a1, a2, . . . , an) , т. е.:

$$A1 \times A2 \times \cdots \times An = \{(a1, a2, \dots, an) | a1 \in A1, a2 \in A2, \dots, an \in An\}.$$

В том случае, когда сомножители декартова произведения являются конечными множествами, можно непосредственно подсчитать, что число упорядоченных наборов (a1, a2, . . . , an) в декартовом произведении равно произведению чисел элементов в каждом из множеств, т. е. справедлива формула:

$$N(A1 \times A2 \times \cdots \times An) = N(A1) \cdot N(A2)$$
 $N(An)$.

Данная формула является основной в комбинаторном анализе и обычно называется принципом или правилом умножения.

В частности, в рассмотренном ранее примере исходных множеств всего два и каждое содержит по два элемента, так что в декартовом произведении содержится четыре элемента.

Правило умножения и правило сложения

Правило умножения. Если из некоторого конечного множества первый элемент a_1 можно выбрать n_1 способами, а второй элемент a_2 можно выбрать n_2 способами, то оба элемента (a_1, a_2) в указанном порядке можно выбрать $n_1 \cdot n_2$ способами.

Правило сложения. Если из некоторого конечного множества первый элемент a_1 можно выбрать n_1 способами, а второй элемент a_2 можно выбрать n_2 способами, то хотя бы один из этих элементов (a_1 или a_2) можно выбрать $n_1 + n_2$ способами.

Правила умножения и сложения справедливы для любого конечного числа (два и более) выбираемых элементов.

Размещения и перестановки

Пусть имеется некоторое множество из n элементов. Каждое его упорядоченное подмножество, состоящее из k элементов, называется размещением из n элементов по k. Согласно определению, одно размещение отличается от другого либо составом элементов, либо их порядком.

Число размещений находится по правилу умножения в виде

$$A_n^k = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-k+1),$$
 или
$$A_n^k = \frac{n!}{(n-k)!}.$$

В частном случае k=n размещения называют **перестановками**. Одна перестановка отличается от другой только порядком расположения элементов, а число всевозможных перестановок в конечном множестве из n элементов вычисляется по следующей формуле:

$$P_n = A_n^n = n!.$$

Размещения с повторениями

Пусть некоторый опыт состоит в случайном выборе k элементов из множества, содержащего *п* элементов. Выбор организован таким образом, что каждый выбранный элемент возвращается обратно, так что при следующем выборе может быть взят как новый элемент, так и прежний. В дальнейшем отобранные элементы упорядочиваются либо в порядке поступления, либо по указанному в решаемой задаче правилу. Полученное таким образом соединение называют размещением с повторениями. Одно размещение с повторениями может отличаться от другого элементами, их порядком и количеством повторений элементов. Число всех размещений из n элементов по k с повторениями обозначается $\bar{\mathcal{A}}^k$ и находится по следующей формуле:

$$\bar{A}_n^k = n^k$$
.

При выводе данной формулы использовался комбинаторный принцип умножения k множеств, каждое из которых содержит n элементов.

Сочетания

Любое подмножество из k элементов некоторого множества из n элементов называют сочетанием из n по k. Одно сочетание отличается от другого хотя бы одним элементом. Число сочетаний находят по формулам:

$$C_n^k = \frac{A_n^k}{k!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$

Действительно, любое подмножество, содержащее k элементов множества из n элементов, может быть упорядочено k! способами. Таким образом, общее число размещений A_n^k больше общего числа соответствующих сочетаний C_n^k в k! раз, т. е.

$$A_n^k = k! \cdot C_n^k$$
.

Разделив формулы для числа размещений на k!, получим формулу вычисления количества сочетаний.

Для чисел $\binom{C_n^k}{n}$, называемых также **биномиальными коэффициентами**, справедливы следующие тождества:

$$C_n^k = C_n^{n-k}$$
 (свойство симметрии), $C_{n+1}^k = C_n^k + C_n^{k-1}$ (рекуррентное соотношение),

$$C_n^0 + C_n^1 + C_n^2 + \cdots + C_n^n = 2^n$$
 (следствие биномиальной формулы Ньютона).

Сочетания с повторениями

В данной схеме случайный выбор k элементов из множества, содержащего n элементов, организован таким образом, что каждый выбранный элемент возвращается обратно, так что при каждом следующем выборе может быть взят как новый элемент, так и любой ранее выбранный. Полученное таким образом соединение называют **сочетанием с повторениями**. Одно сочетание с повторениями отличается от другого хотя бы одним элементом или числом повторений элемента. Число всех сочетаний с повторениями из n элементов по k обозначается \bar{C}_n^k и находится по следующей формуле:

$$\bar{C}_n^k = C_{n+k-1}^k.$$

Действительно, в соответствии со схемой с возвращением и упорядочиванием, используя правило умножения, получим, что число упорядоченных соединений длиной k равно $n(n+1)(n+2)\cdots(n+k-1)$. Разделив данное число на k! и домножив числитель и знаменатель полученной дроби на (n-1)!, найдем число сочетаний с повторениями в указанном выше виде

$$\bar{C}_n^k = \frac{(n-1)! \cdot n(n+1)(n+2) \cdot \dots \cdot (n+k-1)}{k! \cdot (n-1)!} = \frac{(n+k-1)!}{k! \cdot (n-1)!} = C_{n+k-1}^k.$$

Перестановки с повторениями

В схеме упорядоченных разбиений множество, содержащее n элементов, разбивается на k упорядоченных подмножеств так, что первое подмножество содержит n_1 элементов первого типа, второе — n_2 элементов второго типа и т. д., а последнее — n_k элементов k -того типа, причем $n_1 + n_2 + \cdots + n_k = n$. Каждое такое разбиение образует соединение из n элементов, которое называют **перестановкой с повторениями**. Число всех перестановок с повторениями называется **полиноминальным коэффициентом**, обозначается $P_n(n_1, n_2, \ldots, n_k)$ и вычисляется по следующей формуле:

$$P_n(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}.$$

Действительно, в соответствии со схемой разбиения множества на упорядоченную конечную систему подмножеств и, используя правило умножения, получим, что число таких соединений длиной *п* находится с помощью следующих преобразований:

$$P_n(n_1, n_2, \dots, n_k) = C_n^{n_1} \cdot C_{n-n_1}^{n_2} \cdot C_{n-n_1-n_2}^{n_3} \cdot \dots \cdot C_{n_k}^{n_k} =$$

$$= \frac{n!}{n_1!(n-n_1)!} \cdot \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \cdot \dots \cdot \frac{n_k!}{0! \cdot n_k!} = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}.$$

Геометрическая схема вычисления вероятности

Формула классической вероятности следующим образом обобщается на случай непрерывных пространств элементарных исходов. Рассмотрим в качестве σ -алгебры S систему измеримых подмножеств пространства Ω . Пусть условия опыта таковы, что вероятность попадания в произвольное измеримое подмножество пропорциональна мере этого подмножества и не зависит от его местоположения в пространстве Ω . Данный опыт можно интерпретировать как бросание случайной точки на пространство Ω . При этих условиях вероятность появления любого события A из S вычисляется по так называемой формуле геометрической вероятности:

$$P(A) = \frac{\mu(A)}{\mu(\Omega)} ,$$

где буквой μ обозначена мера множества (длина, площадь или объем).

Геометрическая вероятность события *A* из *S* удовлетворяет всем аксиомам теории вероятностей, что позволяет применять к ней утверждения и теоремы, доказанные в рамках аксиоматики Колмогорова.

Условная вероятность

Пусть A и B — два события, рассматриваемые в данном опыте. Наступление одного события (скажем, A) может влиять на возможность наступления другого (B). Для характеристики зависимости одних событий от других вводится понятие условной вероятности.

Условной вероятностью события В при условии реализации события А называется отношение вероятности произведения событий А и В к вероятности события А, т.е.

$$P_A(B)=rac{P(AB)}{P(A)}\ ,\ P(A)
eq 0.$$
 Другое обозначение:
$$P(B|A)=rac{P(A\cdot B)}{P(A)}$$

Вероятность P(B), в отличие от условной, называется безусловной вероятностью.

Вероятность произведения двух событий

Вероятность произведения двух событий равна произведению безусловной вероятности одного из них на условную вероятность другого, при условии, что первое событие произошло:

$$P(AB) = P(A) \cdot P_A(B) = P(B) \cdot P_B(A); P(A) > 0, P(B) > 0.$$

Доказательство. Данные формулы непосредственно следуют из определения условной вероятности.

Применяя правило умножения индуктивно получают формулу умножения вероятностей для системы событий в следующем виде:

$$P(A_1A_2\cdots A_n)=P(A_1)\cdot P_{A_1}(A_2)\cdot P_{A_1A_2}(A_3)\cdots P_{A_1A_2\cdots A_{n-1}}(A_n).$$

Независимость событий

События А и В называются независимыми, если вероятность произведения данных событий равна произведению их вероятностей:

$$P(AB) = P(A) \cdot P(B)$$
.

Для двух независимых событий условная вероятность каждого из событий равна безусловной вероятности, что вытекает из следующих соотношений:

$$P_A(B) = \frac{P(AB)}{P(A)} = \frac{P(A) \cdot P(B)}{P(A)} = P(B) , P(A) \neq 0,$$

$$P_B(A) = \frac{P(AB)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A) , P(B) \neq 0.$$

Таким образом, для независимых событий появление одного из событий никак не влияет на вероятность появления другого.

Иногда именно равенство РА(В) = Р (В) берут за исходное определение независимости события В от события А. Однако, мы будем использовать более симметричное определение независимости, рассмотренное А.Н. Колмогоровым.

Независимость событий

Пример. Проводится опыт, состоящий в двукратном подбрасывании симметричной монеты. В этом случае пространство элементарных событий состоит из четырех исходов: $\Omega = \{ \Gamma\Gamma, \GammaP, P\Gamma, PP \}$. Рассмотрим событие

А = { ГГ, ГР } «выпадение «герба» при первом подбрасывании монеты» и событие В = { ГГ, РГ } — «выпадение «герба» при втором подбрасывании». Тогда произведение событий АВ = { ГГ } — выпадение герба при первом и втором подбрасывании монеты. По классической схеме вычисления вероятностей P(A) = P(B) = 1/2, P(AB) = 1/4. События A и B независимы, поскольку выполняется условие $P(AB) = P(A) \cdot P(B)$.

Для двух независимых событий формула вероятности произведения событий имеет вид:

$$P(AB) = P(A) \cdot P(B).$$

Независимость системы событий

Система из n событий называется независимой, если для любой ее подсистемы из k ≤ n событий справедливы следующие формулы :

$$P(A_1A_2...A_k) = P(A_1) \cdot P(A_2) \cdot \cdots \cdot P(A_k).$$

Из независимости системы событий непосредственно из опре- деления следует попарная независимость событий. Обратное утверждение неверно

Для системы из n независимых событий формула вероятности произведения событий выводится по индукции и имеет вид:

$$P(A_1A_2...A_n) = P(A_1) \cdot P(A_2) \cdot \cdots \cdot P(A_n).$$

Формула полной вероятности

Одним из следствий совместного применения теорем сложения и умножения вероятностей являются формулы полной вероятности и Байеса. Напомним, что события $A_1,\,A_2,\,\ldots,\,A_n$ образуют полную группу, если $A_i\cdot A_j=\varnothing,\,i\neq j$ и $\sum\limits_{i=1}^nA_i=\Omega.$ Систему таких событий называют также разбиением.

Теорема. Пусть события H_1 , H_2 , ..., H_n образуют полную группу. Тогда для любого, наблюдаемого в опыте, события A имеет место формула полной вероятности.

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A|H_i).$$

Формула полной вероятности

Доказательство:

Так как $H_1 + H_2 + ... + H_n = \Omega$, то в силу свойств операций над событиями $A = A \cdot \Omega = A \cdot (H_1 + H_2 + \ldots + H_n) =$ $=A\cdot H_1+A\cdot H_2+\ldots+A\cdot H_n$. Из того, что $H_i\cdot H_j=\varnothing$, следует, что $(A\cdot H_i)\cdot (A\cdot H_j)=\varnothing,\; i\neq j,\; \mathrm{r.\,e.}$ события $A\cdot H_i$ и $A\cdot H_j$ также несовместны. Тогда по теореме сложения вероятностей P(A)= $= P(A \cdot H_1) + P(A \cdot H_2) + \ldots + P(A \cdot H_n)$ r.e. $P(A) = \sum_{i=1}^{n} P(A \cdot H_i)$. To теореме умножения вероятностей $P(A \cdot H_i) = P(H_i) \cdot P(A|H_i)$, откуда и следует формула полной вероятности.

В формуле полной вероятности события H_1, H_2, \ldots, H_n обычно называют sunomesamu; они исчерпывают все возможные предположения (гидотезы) относительно исходов как бы первого этапа опыта, событие A — один из возможных исходов второго этапа.

Формула Байеса

Следствием формулы полной вероятности является формула Байеса или meope-ма $\varepsilon unomes$. Она позволяет переоценить вероятности гипотез H_i , принятых до опыта и называемых $\varepsilon unophimu$ («а priori», доопытные, лат.) по $\varepsilon unophima$ уже $\varepsilon unophima$ послеоныти $\varepsilon unophima$ («а posteriori», послеонытные).

Теорема. Пусть события H_1 , H_2 , ..., H_n образуют полную группу событий. Тогда условная вероятность события H_k ($k = \overline{1,n}$) при условии. что событие A произошло, задается формулой

$$P(H_k|A) = \frac{P(H_k) \cdot P(A|H_k)}{P(A)},$$

где $P(A) = P(H_1) \cdot P(A|H_1) + \ldots + P(H_n) \cdot P(A|H_n)$ — формула полной вероятности

Формула Байеса

Доказательство:

Применив формулы условной вероятности и умножения вероятностей, имеем

$$P(H_k|A) = \frac{P(H_k \cdot A)}{P(A)} = \frac{P(H_k) \cdot P(A|H_k)}{P(A)},$$

где P(A) — формула полной вероятности