Projeto 4 MAE001 - Modelagem Mat. em Finanças I CAPM & Estrutura a Termo

Universidade Federal do Rio de Janeiro Instituto de Matemática Bacharelado em Matemática Aplicada Prof.: Marco Cabral

Brasil

Junho, 2019

Sumário

1	OS ALGORITMOS
1.1	Funções principais
1.1.1	Carregando dados e Calculando Estrutura a Termo
1.1.2	Plots dos gráficos
1.1.2.1	Função para plotagem
1.1.2.2	Plot Emitidos em 2017
1.1.2.3	Plot Emitidos em 2018
1.1.2.4	Plot Emitidos em 2019
2	ATIVIDADE 1
2.0.1	Estrutura a termo de juros
2.0.2	Estrutura a Termo para Título emitido em 2017
2.0.3	Estrutura a Termo para Título emitido em 2018
2.0.4	Estrutura a Termo para Título emitido em 2019
3	CONCLUSÃO

1 Os Algoritmos

Esta seção tem como objetivo apresentar todos os códigos utilizados nas simulações.

1.1 Funções principais

Utilizamos a linguagem Python3 para a implementação do algoritmo que determina a estrutura a termo de juros. Esse algoritmo tem depedência dos pacotes: Scipy para Spline, Numpy e MatPlotLib.pyplot para os gráficos.

1.1.1 Carregando dados e Calculando Estrutura a Termo

1.1.2 Plots dos gráficos

1.1.2.1 Função para plotagem

```
In [269]: # Funções para plotar gráficos
      def plot_spline(ts, ys, ano, lim):
          xs = np.linspace(1,lim,100)
          spl = spline(ts, ys, xs)
          plt.figure(figsize=(12,8))
          plt.title('Yield Curve - Titulos emitidos em %d' % ano)
          plt.xlabel('Tempo até maturidade (em anos)')
          plt.ylabel('Juros (%)')
          plt.grid(True)
          plt.plot(xs,spl, 'r')
          plt.plot(ts,ys, 'ro')
          plt.show()
1.1.2.2 Plot Emitidos em 2017
In [273]: plot_spline(ts_2017, ys_2017, 2017, 4)
1.1.2.3 Plot Emitidos em 2018
In [272]: plot_spline(ts_2018, ys_2018, 2018, 5)
1.1.2.4 Plot Emitidos em 2019
```

In [270]: plot_spline(ts_2019, ys_2019, 2019,4)

2 Atividade 1

Usamos como fonte de dados para valor das LTNs o histórico fornecido pelo site do Tesouro Nacional: ">, os dados obtidos foram transcritos diretamente para listas (ltns_2017, ltns_2018, ltns_2019) Utilizamos os arquivos LTN dos anos 2017, 2018 e 2019

Todos os valores usados levam em conta emissão em 01 de Janeiro do ano corrente, e maturidade em 01 de Janeiro do ano de maturidade, ano este que varia para cada ano de emissão.

2.0.1 Estrutura a termo de juros

Os juros foram calculados utilizando o modelo para estrutura a termo fornecido no livro texto:

$$y_m = \left(\frac{V_f}{B_{0,m}}\right)^{\frac{1}{m}} - 1$$

Onde:

 y_m é o rendimento/juros anual para o título.

m é o tempo restante para maturidade, em anos.

 $B_{0,m}$ é o valor em tempo 0 do título com maturidade em tempo m

 V_f é o valor de face, que no caso das LTNs: $V_f = 1000$

Com y_m calculados, plotamos a Curva de Rendimento (Yield Curve), ou estrutura a termo de juros.

O Gráfico é feito com tempo para maturidade no eixo horizontal e rendimento no eixo vertical, os pontos são interpolados com Spline do pacote SciPy.

2.0.2 Estrutura a Termo para Título emitido em 2017

Ano de Maturidade	Valor em tempo 0
2018	R\$ 897.78
2019	R\$ 812.14
2020	R\$ 754.04
2021	R\$ 651.41

2.0.3 Estrutura a Termo para Título emitido em 2018

Ano de Maturidade	Valor em tempo 0
2019	R\$ 936.03
2020	R\$ 855.85
2021	R\$ 770.38
2023	R\$ 622.14

2.0.4 Estrutura a Termo para Título emitido em 2019

Ano de Maturidade	Valor em tempo 0
2018	R\$ 897.78
2019	R\$ 812.14
2020	R\$ 754.04
2021	R\$ 651.41

3 Conclusão

Foi possível observar um SMILE no $\bf PUT$ de 6 dias, no $\bf CALL$ de 6 dias e no $\bf CALL$ de 28 dias.

No \mathbf{PUT} de 28 dias a curva ficou invertida