				(3))	<u>(131)</u>		(13))
$ au_1^{\#2}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2t_5(t_1+t_3))}$	$\frac{i\sqrt{2} k(6k^2 r_5 + t_1 + 4t_3)}{(1 + 2k^2)^2 (3t_1t_3 + 2k^2 r_5 (t_1 + t_3))}$	0	$\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{(1 + 2 k^2) (3t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_1^{\#1} \alpha \beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{\alpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	<u>t₁-2<i>t</i>3</u> 3 √2	0	$\frac{1}{3}$ i k (t ₁ - 2t ₃)
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3}\bar{i}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3} \bar{i} k (t_1 - 2 t_3)$	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\#1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}$ †	$i\sqrt{2}kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 - t_1$

 $\omega_{2^{+}\alpha\beta}^{\#1} \; f_{2^{+}\alpha\beta}^{\#1} \; \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $-\frac{ikt_1}{\sqrt{2}}$

 $k^2 t_1$

0

0

0

<u>t</u>1 2

$-rac{1}{3}t_1\;\omega_{\kappa}^{lpha\prime}\;\omega_{\kappalpha}^{\kappa}+rac{2}{3}t_3\;\omega_{\alpha}^{\prime}\;\omega_{\kappalpha}^{\kappa}-t_1\;\omega_{\kappa\lambda}^{\lambda\prime}\;\omega_{\kappa\lambda}^{\prime}-r_5\partial_{\imath}\omega^{\kappa\lambda}_{\kappa}^{\lambda}\partial_{\imath}\omega_{\lambda}^{\alpha}+ rac{2}{3}r_2\partial^{eta}\omega_{lpha}^{\kappa}\partial_{lpha}\omega_{lpha}^{\beta}-rac{2}{3}r_2\partial_{artheta}\omega_{lpha}^{\kappa}\partial_{\kappa}\omega^{lpha}\partial_{\imath}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}^{\kappa}\partial_{\kappa}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}^{\kappa}\partial_{lpha}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}\partial_{lpha}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}\partial_{lpha}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}\partial_{lpha}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}\partial_{lpha}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{artheta}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{lpha}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{lpha}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{lpha}\omega_{lpha}\partial_{lpha}- rac{2}{3}r_2\partial_{lpha}\omega_{lpha}- rac{2}{3}r_2\partial_{lpha}- r$	$^{5}\partial_{ heta}\omega_{\lambda}^{lpha}\partial_{\kappa}\omega^{ heta\kappa\lambda}$ - $^{F_{5}}\partial_{lpha}\omega_{\lambda}^{lpha}\partial_{\kappa}\omega^{\kappa\lambda heta}$ +	$rac{1}{2}t_1\partial^{lpha}\!f_{eta\kappa}\partial^{\kappa}\!f_{$	$t_1\;\omega_{\kappalpha}^{\;$	$_{1}\partial^{lpha}f_{\kappalpha}\partial^{\kappa}f'_{\prime}-rac{4}{3}t_{3}\partial^{lpha}f_{\kappalpha}\partial^{\kappa}f'_{\prime}-rac{1}{3}t_{1}\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f'_{\prime}+$	$\left(\omega_{ik\theta} \partial^k f^{i\theta} - \frac{1}{3} t_1 \omega_{i\alpha}^{\alpha} \partial^k f'_{k} + \frac{2}{3} t_3 \omega_{i\alpha}^{\alpha} \partial^k f'_{k} - \frac{1}{3} \omega_{i\alpha}^{\alpha} \partial^k f'_{k} - \frac{1}{3} \omega_{i\alpha}^{\alpha} \partial^k f'_{k} + \frac{1}{3} \omega_{i\alpha}^{\alpha} \partial^k f'_{k} - \frac{1}{3} \omega_{i\alpha}^{\alpha} \partial^k f'_{k}$	$_3 \omega_{_{/\lambda}}^{\lambda} \partial^{\kappa} f'_{\kappa} + \frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda\alpha} + \frac{1}{2} t_1 \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} +$	$_{1}\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa}+rac{2}{3}t_{3}\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa}+$	$rac{1}{3}r_2\partial_\kappa\omega^{\alphaetaeta}\partial^\kappa\omega_{\alphaetaeta}+rac{2}{3}r_2\partial_\kappa\omega^{ hetalpha}\partial^\kappa\omega_{\alphaetaeta}-rac{2}{3}r_2\partial^\beta\omega_{}{}^{lpha\lambda}\partial_\lambda\omega_{lphaeta}^{\prime}+$	$rac{2}{3}r_{2}\partial^{eta}\omega_{\lambda}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}+r_{5}\partial_{lpha}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}_{}-r_{5}\partial_{eta}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}_{}$	Added source term: $\left f^{lphaeta} \ au_{lphaeta} + \omega^{lphaeta\chi} \ \sigma_{lphaeta\chi} ight $
	$t_3 \; \omega_{,\alpha}^{\; lpha } \; \omega_{\kappa lpha}^{\; \; \kappa} - t_1 \; \omega_{,\kappa}^{\; \; \kappa \lambda} \; \omega_{\kappa \lambda}^{\; \; \prime} - r_5 \partial_{\imath} \omega_{\kappa \kappa}^{\; \; \kappa} \partial_{\lambda} \omega_{\lambda}^{\; \; lpha} + rac{1}{3} r_2 \partial_{ heta} \omega_{lpha eta}^{\; \; \; \kappa} \partial_{\kappa} \omega_{eta lpha eta}^{\; \; \kappa} - rac{1}{3} r_2 \partial_{ heta} \omega_{lpha eta}^{\; \; \; \kappa} \partial_{\kappa} \omega_{eta lpha eta}^{\; \; \kappa} - rac{1}{3} r_2 \partial_{ heta} \omega_{lpha eta}^{\; \; \; \; \kappa} \partial_{\kappa} \omega_{eta lpha eta}^{\; \; \; \kappa} - rac{1}{3} r_2 \partial_{ heta} \omega_{lpha eta}^{\; \; \; \; \kappa} \partial_{\kappa} \omega_{eta lpha eta}^{\; \; \; \; \kappa} - rac{1}{3} r_2 \partial_{ heta} \omega_{lpha eta}^{\; \; \; \; \kappa} \partial_{\kappa} \omega_{eta lpha eta}^{\; \; \; \; \kappa} - rac{1}{3} r_2 \partial_{ heta} \omega_{lpha eta}^{\; \; \; \; \kappa} \partial_{\kappa} \omega_{eta lpha eta}^{\; \; \; \; \kappa} \partial_{\kappa} \omega_{eta eta}^{\; \; \; \; \kappa} - rac{1}{3} r_2 \partial_{lpha} \omega_{lpha eta}^{\; \; \; \; \kappa} \partial_{\kappa} \omega_{eta}^{\; \; \; \; \kappa} \partial_{\kappa} \omega_{eta}^{\; \; \; \; \; \kappa} \partial_{\kappa} \omega_{eta}^{\; \; \; \; \; \kappa} \partial_{\kappa} \omega_{eta}^{\; \; \; \; \; \; \kappa} \partial_{\kappa} \omega_{eta}^{\; \; \; \; \; \; \; \kappa} \partial_{\kappa} \omega_{eta}^{\; \; \; \; \; \; \; \; \; \kappa} \partial_{\kappa} \omega_{eta}^{\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $	$-\frac{1}{3}t_{1}\omega_{\kappa}^{\alpha\prime}\omega_{\kappa\alpha}^{\kappa} + \frac{2}{3}t_{3}\omega_{\kappa}^{\prime\prime}\omega_{\kappa\alpha}^{\kappa} - t_{1}\omega_{\kappa}^{\kappa\prime}\omega_{\kappa\lambda}^{\prime} - r_{5}\partial_{\nu}\omega_{\kappa}^{\kappa\lambda}\partial_{\kappa}\omega_{\lambda\alpha}^{\alpha} +$ $\frac{2}{3}r_{2}\partial^{\beta}\omega^{\theta\alpha}_{\kappa}\partial_{\theta}\omega_{\alpha\beta}^{\kappa} - \frac{1}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\alpha\beta\theta} - \frac{2}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} -$ $r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} + r_{5}\partial_{\theta}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} +$	$t_{3} \omega_{\alpha'}^{\alpha'} \omega_{\kappa\alpha}^{ \kappa} - t_{1} \omega_{\kappa'}^{ \kappa} \omega_{\kappa\lambda}^{ \prime} - r_{5} \partial_{i} \omega_{\kappa\lambda}^{ \kappa} \partial_{\lambda} \omega_{\lambda}^{ \alpha} +$ $\cdot \frac{1}{3} r_{2} \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} - \frac{2}{3} r_{2} \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} -$ $\cdot 5 \partial_{\theta} \omega_{\lambda}^{ \alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda} - r_{5} \partial_{\alpha} \omega_{\lambda}^{ \alpha} \partial_{\kappa} \omega^{\kappa\lambda\theta} +$ $\cdot \frac{1}{2} t_{1} \partial^{\alpha} f_{\theta\kappa} \partial^{\kappa} f_{\alpha}^{ \theta} - \frac{1}{2} t_{1} \partial^{\alpha} f_{\kappa\theta} \partial^{\kappa} f_{\alpha}^{ \theta} -$	$t_{3} \omega_{\alpha}^{'a'} \omega_{\kappa\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \omega_{\kappa\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$t_{3} \omega_{\alpha}^{'a'} \omega_{\kappa\alpha}^{'} - t_{1} \omega_{\gamma}^{'\lambda} \omega_{\kappa\lambda}^{'} - r_{5} \partial_{i} \omega^{\kappa\lambda}_{\kappa}^{\lambda} \partial_{\lambda} \omega_{\lambda}^{a} +$ $\frac{1}{3} r_{2} \partial_{\theta} \omega_{\alpha\beta}^{\beta} \partial_{\kappa} \omega^{\alpha\beta\theta} - \frac{2}{3} r_{2} \partial_{\theta} \omega_{\alpha\beta}^{\beta} \partial_{\kappa} \omega^{\theta\alpha\beta} -$ $5 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda} - r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa\lambda\theta} +$ $\frac{1}{2} t_{1} \partial^{\alpha} f_{\theta\kappa} \partial^{\kappa} f_{\alpha}^{\beta} - \frac{1}{2} t_{1} \partial^{\alpha} f_{\kappa\theta} \partial^{\kappa} f_{\alpha}^{\beta} -$ $t_{1} \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{} - \frac{2}{3} t_{3} \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{} + \frac{1}{3} t_{1} \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{} -$ $1 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{} - \frac{4}{3} t_{3} \partial^{\alpha} f_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{} - \frac{1}{3} t_{1} \partial_{\kappa} f^{\lambda}_{\lambda}^{\lambda} \partial^{\kappa} f'_{} +$	$t_{3} \omega_{\mu}^{\ a''} \omega_{\kappa\alpha}^{\ k'} - t_{1} \omega_{\mu}^{\ k'} \omega_{\kappa\lambda}^{\ l'} - r_{5} \partial_{l} \omega^{\kappa\lambda}_{\kappa}^{\ k'} \partial_{l} \omega_{\lambda}^{\ a} +$ $\frac{1}{3} r_{2} \partial_{\theta} \omega_{\alpha\beta}^{\ k} \partial_{\kappa} \omega^{\alpha\beta\theta} - \frac{2}{3} r_{2} \partial_{\theta} \omega_{\alpha\beta}^{\ k} \partial_{\kappa} \omega^{\theta\alpha\beta} -$ $5 \partial_{\theta} \omega_{\lambda}^{\ a} \partial_{\kappa} \omega^{\theta\kappa\lambda} - r_{5} \partial_{\alpha} \omega_{\lambda}^{\ a} \partial_{\kappa} \omega^{\kappa\lambda\theta} +$ $\frac{1}{2} t_{1} \partial^{\alpha} f_{\theta\kappa} \partial^{\kappa} f_{\alpha}^{\ \theta} - \frac{1}{2} t_{1} \partial^{\alpha} f_{\kappa\theta} \partial^{\kappa} f_{\alpha}^{\ \theta} -$ $t_{1} \omega_{\kappa\alpha}^{\ a} \partial^{\kappa} f_{\mu}^{\ l'} - \frac{2}{3} t_{3} \omega_{\kappa\alpha}^{\ a} \partial^{\kappa} f_{\mu}^{\ l'} + \frac{1}{3} t_{1} \omega_{\kappa\lambda}^{\ l'} \partial^{\kappa} f_{\mu}^{\ l'} -$ $t_{1} \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f_{\mu}^{\ l'} - \frac{2}{3} t_{3} \omega_{\kappa\alpha}^{\ a} \partial^{\kappa} f_{\mu}^{\ l'} + \frac{1}{3} t_{1} \omega_{\kappa\lambda}^{\ l'} \partial^{\kappa} f_{\mu}^{\ l'} +$ $t_{1} \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f_{\mu}^{\ l'} - \frac{2}{3} t_{3} \partial^{\alpha} f_{\kappa\alpha}^{\ a} \partial^{\kappa} f_{\mu}^{\ l'} - \frac{1}{3} t_{1} \partial_{\kappa} f^{\lambda}_{\lambda}^{\ l'} \partial^{\kappa} f_{\mu}^{\ l'} +$ $t_{1} \partial^{\alpha} f_{\kappa\alpha}^{\ l'} \partial^{\kappa} f_{\mu}^{\ l'} - \frac{1}{3} t_{1} \partial_{\kappa} f^{\lambda}_{\lambda}^{\ l'} \partial^{\kappa} f_{\mu}^{\ l'} +$ $t_{1} \omega_{\mu\kappa}^{\ l'} \partial^{\kappa} f_{\mu}^{\ l'} - \frac{1}{3} t_{1} \omega_{\mu}^{\ l'} \partial^{\kappa} f_{\mu}^{\ l'} +$ $t_{2} \omega_{\mu\kappa}^{\ l'} \partial^{\kappa} f_{\mu}^{\ l'} - \frac{1}{3} t_{2} \omega_{\mu}^{\ l'} \partial^{\kappa} f_{\mu}^{\ l'} +$	$t_{3} \omega_{\lambda}^{(a)} \omega_{\kappa\alpha}^{\ \ \ \ \ \ } - t_{1} \omega_{\lambda}^{\ \ \ \ \ \ } \omega_{\lambda}^{\ \ \ \ \ \ } - r_{5} \partial_{i} \omega^{\kappa\lambda}_{\kappa}^{\ \ \ \ \ \ } \partial_{k}^{\ \ \ \ \ } \omega_{\lambda}^{\ \ \ \ \ } +$ $\frac{1}{3} r_{2} \partial_{\theta} \omega_{\alpha\beta}^{\ \ \ \ \ \ \ } \partial_{\kappa} \omega^{\alpha\beta\theta} - \frac{2}{3} r_{2} \partial_{\theta} \omega_{\alpha\beta}^{\ \ \ \ \ \ } \partial_{\kappa} \omega^{\alpha\beta\theta} -$ $5 \partial_{\theta} \omega_{\lambda}^{\ \ \ \ \ \ \ \ \ \ } \partial_{\kappa} \omega^{\alpha\beta} \partial_{\kappa} \partial_{\kappa$	$ \begin{array}{l} -\frac{1}{3}t_{1} \; \omega_{,}^{\alpha l} \; \omega_{\kappa}^{\ \ k} + \frac{2}{3}t_{3} \; \omega_{,}^{\alpha l} \; \omega_{\kappa}^{\ \ k} - t_{1} \; \omega_{,\kappa}^{\ \ k} \; \omega_{\kappa}^{\ \ l} - r_{5} \partial_{l} \omega^{\kappa \lambda}_{\kappa} \partial^{l} \omega_{\kappa}^{\ \ k} \\ \frac{2}{3}r_{2} \partial^{\beta} \omega^{\theta \alpha}_{\ \ \kappa} \partial_{\theta} \omega_{\alpha\beta}^{\ \ \ k} - \frac{1}{3}r_{2} \partial_{\theta} \omega_{\alpha\beta}^{\ \ \ k} \partial_{\kappa} \omega^{\alpha\beta\theta} - \frac{2}{3}r_{2} \partial_{\theta} \omega_{\alpha\beta}^{\ \ \ k} \partial_{\kappa} \omega^{\theta\alpha\beta} - \\ r_{5} \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\theta k \lambda} + r_{5} \partial_{\theta} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\theta k \lambda} - r_{5} \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + \\ 2 r_{5} \partial_{\theta} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - \frac{1}{2}t_{1} \partial^{\alpha} f_{\theta} \partial^{\kappa} f_{\alpha}^{\ \ \ \theta} - \frac{1}{2}t_{1} \partial^{\alpha} f_{\kappa} \partial^{\kappa} f_{\alpha}^{\ \ \theta} - \\ 2 r_{5} \partial_{\theta} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + \frac{1}{3}t_{1} \omega_{\kappa}^{\ \ \alpha} \partial^{\kappa} f_{\beta}^{\ \ \ \theta} - \frac{1}{2}t_{1} \partial^{\alpha} f_{\kappa} \partial^{\kappa} f_{\alpha}^{\ \ \ \theta} - \\ \frac{1}{2}t_{1} \partial^{\alpha} f_{\lambda}^{\ \ \ \ \lambda} \partial^{\kappa} f_{\beta}^{\ \ \ \ \ \phi} + \frac{1}{3}t_{1} \omega_{\lambda}^{\ \ \ \lambda} \partial^{\kappa} f_{\beta}^{\ \ \ \ \ \ \ \phi} - \\ \frac{2}{3}t_{3} \partial_{\kappa} f_{\lambda}^{\ \ \ \lambda} \partial^{\kappa} f_{\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$t_{3} \omega_{\mu}^{(a)} \omega_{\kappa\alpha}^{\ \ \ \ \ \ \ } - t_{1} \omega_{\mu\lambda}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ } \omega_{\kappa\lambda}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$t_{3} \omega_{\lambda}^{(a)} \omega_{\kappa\alpha}^{\ \ \ \ \ \ \ } - t_{1} \omega_{\kappa\lambda}^{\ \ \ \ \ \ \ \ \ \ \ \ } \omega_{\kappa\lambda}^{\ \ \ \ \ \ \ \ \ \ \ } - t_{2} \omega_{\lambda}^{\ \ \ \ \ \ \ \ \ } \omega_{\kappa}^{\ \ \ \ \ \ \ \ \ \ } - \omega_{\kappa}^{\ \ \ \ \ \ \ \ \ \ \ } \omega_{\kappa}^{\ \ \ \ \ \ \ \ \ \ \ \ } \omega_{\kappa}^{\ \ \ \ \ \ \ \ \ \ \ \ } - \omega_{\kappa}^{\ \ \ \ \ \ \ \ \ \ \ } \omega_{\kappa}^{\ \ \ \ \ \ \ \ \ \ \ \ } \omega_{\kappa}^{\ \ \ \ \ \ \ \ \ \ \ \ } \omega_{\kappa}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \omega_{\kappa}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \omega_{\kappa}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

 $\tau_0^{\#1} \uparrow$

ω ω

$\sigma_{2^{-}}^{\#1}{}_{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$
$\tau_2^{\#1}_+\alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_{2+}^{*1} + \alpha \beta$	$\sigma_{2}^{\#1} + ^{lphaeta\chi}$

 $\omega_2^{\#1} \dagger^{\alpha\beta\chi}$

		Massive particle			
? $J^P = 1^-$?	Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3)}$		
3 =1	~ ?	Polarisations:	3		
$\frac{1}{k^{\mu}}$		Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$		
	?	Spin:	1		
		Parity:	Odd		

$ \begin{array}{c} ?\\ J^P = 0^- \\ ?\\ ? \end{array} $
? ?

le		
$-\frac{1}{r_2} > 0$		
1		
$\frac{t_1}{r_2} > 0$		
0		
Odd		