Tensorflow

2019년 3월 25일 월요일 오후 12:01

1. Node , Tensor : graph

위 그림에서 모든 node들은 tensorflow에서 ops(operations)라고 부르고, x, y와 같이 정해지지 않은 leaf-node 들을 place-holder라고 합니다. vector의 흐름이 연산과는 반대로 되어 있는데, 이는 dependency를 보여줍니다. 이 operation 결과들(Tensors)의 흐름을 'tensorflow'라고 합니다. 즉, tensorflow는 연산결과들에 대한 설명(?)쯤으로 이해하면 될 것 같습니다. tensorflow는 session(tensorflow를 CPU/GPU 등의 연산장치에 올려놓는 것)을 형성하기 전에 반드시 만들어 져야 합니다.

2. Tenser

○ Ranks(차원) : 차수

Rank	Math entity	Python example
0	Scalar (magnitude only)	s = 483
1	Vector (magnitude and direction)	v = [1.1, 2.2, 3.3]
2	Matrix (table of numbers)	m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3	3-Tensor (cube of numbers)	t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n	n-Tensor (you get the idea)	

○ shapes : 각 element에 값이 몇개씩 들어있는지

Rank	Shape	Dimension number	Example
0	0	0-D	A 0-D tensor. A scalar.
1	[D0]	1-D	A 1-D tensor with shape [5].
2	[D0, D1]	2-D	A 2-D tensor with shape [3, 4].
3	[D0, D1, D2]	3-D	A 3-D tensor with shape [1, 4, 3].
n	[D0, D1, Dn-1]	n-D	A tensor with shape [D0, D1, Dn-1].

o Tpyes:

```
t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
```

Data type	Python type	Description
DT_FLOAT	tf.float32	32 bits floating point.
DT_DOUBLE	tf.float64	64 bits floating point.
DT_INT8	tf.int8	8 bits signed integer.
DT_INT16	tf.int16	16 bits signed integer.
DT_INT32	tf.int32	32 bits signed integer.
DT_INT64	tf.int64	64 bits signed integer.

3. <u>과정 : Constant(node) - Session - Run</u>

TensorFlow Placeholder

- All previous examples have manually defined tensors
 - · How can we input external data into TensorFlow?
 - Most simple way is using tf.placeholder and feed_dict

```
>>> a = tf.placeholder(tf.int16)
>>> b = tf.placeholder(tf.int16)

Create a placeholder to hold data.
>>> add = tf.add(a, b)
>>> mul = tf.mul(a, b)

tf.placeholder is dummy node to provide entry points for data to computation graph.
>>> with tf.Session() as sess:
>>> print(sess.run(add, feed_dict={a: 2, b: 3}))
print(sess.run(mul, feed_dict={a: 2, b: 3}))

A feed_dict is a python dictionary from tf.placeholder to data value
```

- 4. Node 자료형
 - a. Placeholder
 - b. Variable
 - c. Constant

- 1. Definition
- 2. Hypothesis
- 3. Cost function
- 4. Gradient descent algorithm