Évaluation 4 – Sujet B

Exercice 1

1. Écrire chaque nombre sous la forme $a\sqrt{b}$, où a est un entier et b l'entier naturel le plus petit possible.

(a)
$$\sqrt{125}$$

(b)
$$\sqrt{30} \times \sqrt{20}$$

(c)
$$3\sqrt{5} - \sqrt{20} + 3\sqrt{45}$$

2. Écrire sans racine carrée au dénominateur :

(a)
$$\frac{3}{\sqrt{11}}$$

(b)
$$\frac{3}{\sqrt{6}+1}$$

3. Donner une valeur arrondie de $\frac{3}{\sqrt{11}}$ à 10^{-4} près, puis un encadrement d'amplitude 10^{-3} de $\frac{3}{\sqrt{6}+1}$.

Exercice 2

On fait tourner chacune des roulettes suivantes et on note la couleur obtenue. Modéliser chaque expérience aléatoire en complétant le tableau donné.

Exercice 3

On considère la fonction (incomplète) suivante écrite en Python :

def inconnue(b, h):
a = ...
return ...

- 1. Comment s'appelle cette fonction?
- 2. Combien de paramètres possède-t-elle?
- 3. Quel mot-clé permet de préciser ce que renvoie une fonction en Python?
- 4. Compléter la fonction afin qu'elle renvoie l'aire d'un triangle de base b et de hauteur h. Remarque. On rappelle que l'aire d'un tel triangle est donnée par la formule :

$$\frac{b \times h}{2}$$

5. Comment utiliser cette fonction afin de déterminer l'aire d'un triangle de base 10 et de hauteur 7?