Exploring Factors Influencing Movie Success

Stat 184 Final Project

Sara Al Riyami

Layan Al Busaidi

April 28, 2025

Introduction

Movies are a huge part of our lives and a multi-billion-dollar industry that shapes and reflects society. With millions of people watching and reviewing films every year, the movie industry continues to evolve. Thousands of films are released annually, but only a few become truly successful. What factors contribute to a movie's success? Is it the genre, the budget, the actors, or something else? In this project, we set out to explore the elements that influence a movie's success by analyzing datasets of films and looking at trends in ratings, profits, and casting.

We are interested in this topic because movies are not only a major form of entertainment but also a massive industry. Understanding what leads to success can offer insights into both audience preferences and the strategies that shape film making today.

To guide our analysis, we focused on three key research questions:

- 1. How do audience ratings compare across the five most common movie genres?
- 2. Which top studios have the best return on investment, and is there a relationship between movie budget and profit?
- 3. Which stars appear most frequently in successful movies, and does the presence of specific stars tend to be linked to higher movie success?

Through these questions, we aim to uncover patterns and insights that explain what contributes to a movie's success. By comparing audience ratings across genres, we hope to identify which types of films tend to get the most viewers. Investigating studio performance and budget-profit relationships allows us to understand how financial decisions impact profitability. Finally, analyzing the presence of frequently featured stars helps us explore whether certain actors consistently appear in higher-performing films, potentially revealing a link between star presence and success. Overall, our goal is to better understand the creative and financial factors that shape successful movies.

Data Provenance

To explore the factors contributing to movie success, we used two well-sourced datasets that each provided different but complementary information from major online movie databases. We cleaned and combined these datasets through a detailed wrangling and merging process to create a final dataset. This merged version gave us the foundation needed to conduct a thorough Exploratory Data Analysis (EDA) and effectively address our research questions.

Before settling on these data sources, we evaluated multiple datasets. An earlier dataset link the source of old?, included many relevant attributes, but the newer ones offered more complete and consistent data, especially in financials and studio identifiers, making them a better fit for our analysis.

Main Dataset

Our main dataset was sourced from a **Github** repository created by the authors Tran Hieu Le, Totyana Hill, Fahim Ishrak and Zhilin Wang. It was originally scraped from TMDb (The Movie Database) this dataset contains information on approximately 5,000 movies released between the 1930s and 2016. Each *case* in the dataset represents a single movie, and includes essential attributes related to its financial performance and basic descriptors. The key *attributes* include production budget, worldwide revenue, title, production company, runtime, and genre. The *purpose* of collecting this data was to offer a structured overview of film financials, enabling analysis of profitability and return on investment.

Secondary Dataset

Our secondary dataset was obtained from **Kaggle** and published by Daniel Grijalva. It was originally scraped from IMDb and contains metadata on approximately 7,600 movies spanning from 1980 to 2020. Each *case* corresponds to an individual movie and captures its descriptive, creative, and audience-related *attributes*. These include age rating, director, writer, lead actor (star), release year, rating count, and rating score. The *purpose* of this dataset was to supplement our main data by providing richer descriptive and audience-related information, which helped us better address our research questions.

Merged and Final Dataset

To answer our research questions, we combined our two datasets into a single, cleaned, and well-structured table. The datasets were merged based on matching movie titles and production companies to ensure accuracy and consistency. To maintain data quality, we excluded records with missing or invalid values and treated zero values in financial fields as missing. We also created a new variable, *Profit*, by subtracting budget from revenue to better assess the financial success in our analysis.

The final dataset includes movies released from 1980 to 2019, which aligns with the expected coverage based on the original time spans of the two source datasets. It contains 15 key attributes across essential categories: content (title, genre, runtime, rating), financials (budget, revenue,

profit), production details (studio, director, star), and audience reception (rating score and count). This comprehensive dataset provided a strong foundation to explore our research questions related to genre-based ratings, profit of companies, and the influence of star actors on a film's success.

FAIR and CARE Principles

The **FAIR** principles are essential for promoting high standards in data sharing, transparency, and long-term usability which our datasets do align to these guidelines.

- **Findable**: Our primary dataset was sourced from Kaggle and the secondary from GitHub, both of which are widely recognized platforms that provide basic metadata and descriptive tagging, making the data easy to locate.
- Accessible: Both datasets are publicly available and can be retrieved without login or payment barriers through standard web protocols. However, because the long-term availability of external repositories is not guaranteed, we also uploaded both original datasets as well as our cleaned and merged version to our own GitHub repository to ensure continued access and reproducibility.
- Interoperable: The datasets are provided in CSV format, a widely accepted and accessible format that enables easy integration into R and other data analysis tools, which insures smooth integration and analysis across various platforms.
- Reusable: The data includes meaningful attributes that provide context for interpretation. Through our cleaning and documentation process, we enhanced its structure, added derived variables like Profit, and clearly described the data's provenance, making it suitable for future research.

The **CARE** principles, focus on the ethical use of data for all people, especially for Indigenous or marginalized communities. While our datasets do not directly involve sensitive or community specific data, it's still important to reflect on these principles to ensure our work is thoughtful, fair, and respectful.

- Collective Benefit: Our project aims to uncover trends in the film industry that can help others better understand what drives movie success, whether creatively or financially. We hope our analysis supports open learning and sparks interest in data-driven storytelling.
- Authority to Control: The datasets we used weren't officially released by the platforms that host the data (IMDb, TMDb). That being said, they do algin with their terms and conditions of public usage.
- Responsibility: We made sure to treat the data with care. Since the dataset is non-sensitive and publicly accessible, we mainly focused on cleaning, organizing, and documenting it properly so our analysis would be accurate, transparent, and respectful.
- Ethics: We focused on minimizing harm by ensuring that our dataset did not include private or sensitive information and we avoided making claims that could misrepresent people or groups. We used the data strictly for educational purposes, and we made sure our work promoted fairness and transparency.

EDA: Exploratory Data Analysis

In our project, we implemented **Exploratory Data Analysis** to understand the structure of our datasets and uncover any errors or patterns before diving into deeper analysis. We began by cleaning and **wrangling** the data to ensure it was accurate and usable. This included identifying and removing rows with missing values (NAs), as well as fixing inconsistencies.

After cleaning the data, we created **frequency** and **summary tables** to examine key statistics such as the mean, median, and standard deviation, giving us a clearer picture of the overall distribution of variables like ratings. We then used **visualizations** to uncover patterns and relationships that weren't immediately apparent from the summary statistics alone.

Through EDA, we were able to detect irregularities in our dataset, gain a better understanding of its overall structure, and identify key trends that guided our analysis. This process provided a strong foundation for answering our research questions and exploring the factors that contribute to a movie's success.

Rating Distributions in the Five Most Common Genres

In this section, we will explore how audience ratings vary across the five most common movie genres. We begin by examining the summary statistics to better understand the distribution of ratings within each genre.

Summary Table

We created a **summary table** that highlights key statistics such as *film count, minimum, maximum, mean, median, standard deviation, and the 1st and 3rd quartiles.* This helps us better understand the distribution and variation in ratings across genres. Table 1 below showcases these statistics for the top genres.

Table 1: Summary Table of Ratings for the Top 5 Movie Genres

Genre	FilmCount	MinRating	Q1Rating	MedianRating	Q3Rating	MeanRating	MaxRating	SdRating
Comedy	208	2.1	5.7	6.3	6.900	6.263942	8.8	0.9452131
Drama	207	4.1	6.4	7.0	7.500	6.906763	9.3	0.7832919
Action	199	3.7	5.8	6.3	6.900	6.301507	8.3	0.8837750
Adventure	94	4.7	6.1	6.5	7.275	6.563830	8.6	0.8893457
Horror	77	4.0	5.3	6.1	6.600	5.974026	8.1	0.9505404

Table 1 presents an overview of the ratings for the top five movie genres: Comedy, Drama, Action, Adventure, and Horror. Among these, **Drama** clearly stands out as the highest-rated genre, with a **mean rating** of **6.91**, a **median** of **7.0**, and a **maximum rating** of **9.3**. It also shows the most consistent performance, having the **lowest standard deviation** among all genres. In contrast, **Horror** ranks the lowest, with an **average rating** of **5.97** and the **widest spread** in ratings, indicating more variability in audience reception. The other genres fall in between, though **Adventure** shows a high level of variability similar to Horror.

When looking at film counts, **Comedy** and **Drama** are the most represented, each with over **200** films, while **Horror** has the lowest count with just **77** films, which may contribute to its greater rating variability.

Overall, the data suggests that Drama is both the most consistently high-performing genre and the best-rated on average, whereas Horror tends to be more unpredictable and generally receives lower ratings.

Box Plot

Figure 1 shows a box plot of the rating distributions for the top five movie genres. This visual helps us compare the typical ratings, variation, and presence of outliers across genres. It supports and expands on the summary statistics discussed earlier.

Figure 1: Distribution of Ratings for Top 5 Genres

The box plot in Figure 1 shows the distribution of movie ratings across the top five genres and helps bring the numbers in Table 1 to life through a visual format. One thing that really stands out is how **Drama**'s entire box is shifted higher than the others, meaning that not only is its average rating high, but most of its movies consistently land in that higher range. It also has a **tighter**

interquartile range, meaning the ratings are tightly clustered, further reinforcing that Drama is the most consistent genre overall. In contrast, **Horror** displays a much wider spread, this suggests more variability in audience reception.

Comedy shows several low-rated *outliers* in the box plot, indicating that while many comedy films fall around the average, a few are rated significantly lower. According to the Summary Table 1, Comedy has a **minimum rating** of **2.1**, and the box plot confirms this value is a outlier with a point far below the lower whisker.

This highlights how a few poorly received films can drag down the overall average, even if most of the genre performs reasonably well. It's a reminder that summary statistics alone don't always tell the full story, without a visual, we wouldn't easily notice how rare or extreme those low ratings are. The visual helps us see that while these outliers exist, they are not representative of the genre as a whole.

Company Profitability and Financial Patterns

In this section, we will examine which top production studios generate the highest profits and whether there is a noticeable relationship between how much a company spends (**budget**) and how much it earns (**profit**). We began by identifying the **15 most active production companies** in our dataset, which we defined as those with the highest number of films. Focusing on these studios allowed us to base our comparisons on a solid number of films, making the patterns we observed more reliable.

Profit Bar Chart

We began by calculating the average profit for each of the top 15 companies. To visualize this, we created a horizontal bar chart (Figure 2) that shows each company's name on the y-axis and its corresponding profit earnings in USD on the x-axis. The bars are sorted from lowest to highest average profit, allowing for a quick comparison of financial performance.

Figure 2: Profit of the 15 Most Active Production Companies

Figure 2 shows a clear range of performance across companies. **DreamWorks Animation** leads, by a significant amount, with the highest profit among all production companies analyzed. This suggests that DreamWorks not only produces successful films but also does so consistently across its portfolio. Following DreamWorks are *Walt Disney Pictures* and *Warner Bros*. also show strong profits, indicating that these companies don't only have a strong industry presence but also a track record of producing very profitable movies. On the other hand, other active studios like Lionsgate and Columbia Pictures displayed more moderate profits, suggesting variability in the financial outcomes of their film portfolios. At the lower end of the chart, companies like *MGM* and *Fox Searchlight Pictures* have noticeably lower profits, suggesting either higher production costs or lower returns. The *gap* between top and bottom studios is significant, indicating that not all active companies achieve the same financial outcomes.

To sum up, this visualization helps highlight which studios are most effective in turning their investments into financial success and provides a high-level view of profitability trends across the industry.

Budget Bar Chart

We then looked at the production budget for films produced by the same top 15 active companies to determine whether higher investment levels are associated with higher profits. The results are

shown in Figure 3, a horizontal bar chart similar in structure to the profit chart, where each bar represents a company and their corresponding average budget in USD on the x-axis. Then, again, the bars are sorted from lowest to highest average budget. We can see in Figure 3, the results highlight some interesting differences.

Budget of the 15 Most Active Production Companies **DreamWorks Animation Walt Disney Pictures** Warner Bros. Columbia Pictures **Production Company Paramount Pictures Universal Pictures Summit Entertainment Touchstone Pictures TriStar Pictures New Line Cinema** Fox 2000 Pictures **Dimension Films** Lionsgate Metro-Goldwyn-Mayer (MGM) **United Artists** Fox Searchlight Pictures 0.0e+005.0e+07 1.0e+08 1.5e+ **Budget (USD)**

Figure 3: Profit of the 15 Most Active Production Companies

Budget vs. Profit Scatter Plot

Star Impact on Movie Success

SARA

Summary Table

This Summary Table 2 presents statistics for the five most frequently appearing stars in the dataset. The columns include: **Movie Count** (the number of films each star appeared in), **Avg. Rating** (the average audience rating for those films), **Rating SD** (the standard deviation of ratings), and **Avg. Profit** (the average profit for the star's films). This table helps us begin exploring whether the most active stars tend to be in more successful films. In the following sections, we'll

also visualize this data to examine whether their presence is linked to higher ratings or greater profitability.

Table 2: Summary Statistics for Top Stars

Star	Movie Count	Avg. Rating	Rating SD	Avg. Profit
Nicolas Cage	13	6.07	1.24	94028034
Adam Sandler	12	5.89	1.01	146358425
Dwayne Johnson	11	5.99	0.38	110519841
Tom Cruise	11	6.97	0.41	322109979
Tom Hanks	11	7.33	0.95	313617993

The table shows that **Nicolas Cage** appears in the most films, with a total of **13**, but also has the highest variability in ratings, with a standard deviation of **1.24**, suggesting inconsistent audience reception. In contrast, **Dwayne Johnson** is the most consistent performer, with a low standard deviation of **0.38**, though his average rating is relatively normal at **5.99**. **Tom Hanks** stands out with the **highest average rating** of **7.33**, reflecting strong audience approval, along with a high average profit. **Tom Cruise** offers the strongest balance, combining a high average rating of **6.97** with the highest average profit in the group.

Bar Chart

SARA

Scatter Plot

Figure 4: Movie Ratings of Top 5 Most Frequent Stars

Conclusion

LAYAN

Sources and References

LAYAN

Code Appendix

```
# Load all necessary packages -----
library(tidyverse)
library(rvest)
library(dplyr)
library(janitor)
library(knitr)
library(kableExtra)
library(ggplot2)
#Define global elements ----
psuPalette <- c("#1E407C", "#BC204B", "#3EA39E", "#E98300",
                "#999999", "#AC8DCE", "#F2665E", "#99CC00")
# Tidy and Merging the two datasets: ----
# Read Data ----
url1 <- "https://raw.githubusercontent.com/Stat184-Spring2025/Sec4_FP_Layan_Sara/main/Data/Budg
MoviesSubRaw <- read.csv(url1, header = TRUE)</pre>
url2 <- "https://raw.githubusercontent.com/Stat184-Spring2025/Sec4_FP_Layan_Sara/main/Data/Mov
MoviesMainRaw <- read.csv(url2, header = TRUE)</pre>
# Tidying Secondary Movies data ----
# Filter out unwanted columns
MoviesSubTidy <- MoviesSubRaw %>%
  select(-c("released","budget","gross","genre","runtime"))
#Tidy the Main Movie data----
# Filter out unwanted columns
MoviesMainTidy <- MoviesMainRaw%>%
  select(-c("X", "popularity", "release_date", "vote_average",
            "vote_count", "Number_Genres"))
#Merging other two datasets----
MoviesJoined <- MoviesMainTidy%>%
  # Join by Title and Company
  inner_join(MoviesSubTidy, by = c("title"="name",
                                    "production_companies"="company") )%>%
  # Rename the columns
  rename(
    Title = title,
    Genre = genres,
    Company = `production_companies`,
    AgeRating= rating,
```

```
Year = year,
    Rating = score,
    RatingCount = votes,
    Director = director,
    Writer = writer,
    Star = star,
   Budget = budget,
   Revenue = revenue,
   RunTime= runtime,
    Country = country
 ) %>%
  # Re-order the columns
  select(Title, Genre, Company, AgeRating, Year,
         Rating, RatingCount, Director, Writer, Star, Budget, Revenue,
         RunTime, Country) %>%
  # Found two movies with revenues that are not in millions
  # Changed the two values
 mutate(
    Revenue = ifelse(Title == "Chasing Liberty", 12000000, Revenue),
   Revenue = ifelse(Title == "Death at a Funeral", 46000000, Revenue)
  # Replace O with NA in Budget and Revenue
 mutate(
   Budget = ifelse(Budget == 0, NA, Budget),
   Revenue = ifelse(Revenue == 0, NA, Revenue)
 ) %>%
  # Make a Profit column
 mutate(Profit = Revenue-Budget) %>%
 # Replace "Not Rated" and "Unrated" in AgeRating with NA
 mutate(
    AgeRating = ifelse(AgeRating %in% c("Not Rated", "Unrated"),
                       NA, AgeRating)
  ) %>%
  # Drop rows with missing Budget, Revenue, or AgeRating
  drop_na(Budget, Revenue, AgeRating)
# Create a csv file and save it
#write.csv(
# MoviesJoined,
# file = "MoviesJoined.csv",
# row.names = FALSE
#)
# Read the joined dataset ----
basePart <- "https://raw.githubusercontent.com/Stat184-Spring2025/"
mainPart <- "Sec4_FP_Layan_Sara/main/Data/MoviesJoined.csv"</pre>
```

```
url <- paste0(basePart,mainPart)</pre>
MoviesJoined <- read.csv(url, header = TRUE)
# Creating a summary table of Ratings by Genres ----
Genre_summary <- MoviesJoined%>%
  group_by(Genre)%>%
                       # Groups the data by Genre column
 summarise(
                    # Calculates summary statistics for each genre
   FilmCount = n(),
                      # Number of films in each genre
   MinRating = min(Rating, na.rm = TRUE), #Minimum rating (ignores NA values)
   Q1Rating = quantile(Rating, 0.25, na.rm = TRUE), # First quartile
   MedianRating = median(Rating, na.rm = TRUE),  # Median rating
   Q3Rating = quantile(Rating, 0.75, na.rm = TRUE), # Third quartile
   MeanRating = mean(Rating, na.rm = TRUE),  # Mean (average) rating
   # Maximum rating
 ) %>%
 arrange(desc(FilmCount))%>%
                                   # Sorts the genres by film count
  slice_head(n=5)
                 # Selects the top 5 movie genres with the most films
# Displaying the summary table ----
Genre_summary%>%
 kable(
   booktabs = TRUE,
   align = c("1", rep("c",8)), # Left-aligns the first column, centers the rest
   format = "latex"
 )%>%
 kableExtra::kable_styling(
   font_size = 16,  # Sets font size of the table
   latex_options = c("striped", "scale_down"),
 )%>%
 row_spec(0, bold = TRUE, background = "pink")%>% # Styles the header
 column_spec(1, italic = TRUE) # Styles the 1 column
# Wrangling Box Plot Data ----
## Get Top 5 Genres
TopGenres <- MoviesJoined %>%
 count(Genre, sort = TRUE) %>% # Counts num of movies per genre and sorts them
 slice_max(order_by = n, n = 5) %>% # Selects top 5 genres w most movies
 pull(Genre)
## Show data for only the Top 5 genres
MovieGenre <- MoviesJoined %>%
 filter(Genre %in% TopGenres) # Filter movies of only the top 5 genres
# Create the box plot for Genre and Ratings----
```

```
ggplot(
  data = MovieGenre,
 mapping = aes(
  x = Rating, # Set the x-axis to represent Rating
   y = Genre # Set the y-axis to represent Genre
 )
) +
geom_boxplot(fill = "lightpink") + # Creates box plot with pink boxes
 y = "Top Genres", #labels the x axis
 x = "Rating" #labels the y axis
theme_minimal()+
theme(
 text = element_text(size = 12),
 axis.title.x = element_text(face = "bold",  # Make the x-axis title bold
                             size = 14, # Set font size to 14
                             margin = margin(t = 15)
                             ),
 axis.title.y = element_text(face = "bold",
                             size = 14,
                             margin = margin(r = 15)
                             ) # margin pushes titles away from axis
# Creating visualizations for 2nd Question ----
# Get top 15 companies by number of movies
TopCompanies <- MoviesJoined %>%
  count(Company, sort = TRUE) %>%
  slice_max(n, n = 15) \%>%
 pull(Company)
#Create the Profit Bar Chart ----
#Get the average Profit for the Companies
CompanyProfit <- MoviesJoined %>%
  group_by(Company) %>%
 summarize(AverageProfit = mean(Profit, na.rm = TRUE)) %>%
 ungroup()
CompanyProfit %>%
  filter(Company %in% TopCompanies) %>%
  ggplot(aes(x = reorder(Company, AverageProfit), #Sort the bars by profit
            y = AverageProfit)) +
  geom_col(fill = "#AC8DCE") +
  coord_flip() + #Make it horizontal
  #Label axes
```

```
labs(
   x = "Production Company",
   y = "Profit (USD)"
 ) +
 theme minimal() +
 theme(
   axis.title = element_text(size = 14, face = "bold"),
   axis.text = element_text(size = 10, face = "bold")
 )
#Create the Budget Bar Chart ----
#Calculate Average Budget per Company
CompanyBudget <- MoviesJoined %>%
  group_by(Company) %>%
 summarize(AverageBudget = mean(Budget, na.rm = TRUE)) %>%
 ungroup()
#Filter to top companies and plot
CompanyBudget %>%
 filter(Company %in% TopCompanies) %>%
 ggplot(aes(x = reorder(Company, AverageBudget), y = AverageBudget)) +
 geom_col(fill = "#1E407C") +
 coord_flip() +
 labs(
   title = "Budget of the 15 Most Active Production Companies",
  x = "Production Company",
   y = "Budget (USD)"
 ) +
 theme_minimal() +
 theme(
   axis.title = element_text(size = 14, face = "bold"),
   axis.text = element_text(size = 10, face = "bold")
# Wrangling Star Summary Table Data ----
star_summary <- MoviesJoined %>%
 group_by(Star) %>% # Group data by each unique star
 summarise(
   Movie\_Count = n(),
                        # Count number of movies each star appeared in
   Avg_Rating = mean(Rating, na.rm = TRUE), # Calculate the average rating
   SD_Rating = sd(Rating, na.rm = TRUE), # Standard deviation of ratings
   Avg_Profit = mean(Profit, na.rm = TRUE) # Average profit per movie
 ) %>%
 arrange(desc(Movie_Count))%>%
                                    # Sort stars by number of movies
                      # Keeps only the top 5 most frequent stars
 slice_head(n=5)%>%
 mutate(across(where(is.numeric), round, 2)) # Rounds to 2 decimal places
```

```
# Displaying the Summary Table ----
star_summary %>%
 kable(booktabs = TRUE,
        col.names = c("Star", "Movie Count", "Avg. Rating",
                     "Rating SD", "Avg. Profit"), # Names columns
        align = c("1", rep("c", 4)), # Align first column left, others center
        format = "latex" # Output the table in LaTeX format (for PDF rendering)
 )%>%
 kableExtra::kable_styling(
   font_size = 16,
                               # Sets font size of the table
   latex_options = c("striped","scale_down") # Apply striped rows
 ) %>%
 row_spec(0, bold = TRUE) # Bold the header row
# Wrangling ScatterPlot of the Rating for Top Stars ----
# Identify Top 5 Stars by number of movies
top5_stars <- MoviesJoined %>%
 count(Star, sort = TRUE) %>% # Count how many times each star appears
 slice_head(n = 5) %>% # Keep the top 5 most frequent stars
 pull(Star)
# Filter movies for those stars
top_star_movies <- MoviesJoined %>%
 filter(Star %in% top5_stars)
# Plot the Scatterplot of Stars/Rating ----
ggplot(
 data = top_star_movies, # Use the filtered dataset
 mapping = aes(x = Star) # X-axis shows the star's name
                y = Rating,  # Y-axis shows the movie rating
                color = Star # Color points by star for distinction
 ) +
 geom_jitter(width = 0.2, size = 3) +
 scale_color_manual(values = psuPalette) + # Apply custom colors
 labs(
   x = "Star", # X-axis label
   y = "Movie Rating", # Y-axis label
   color = "Top Stars Name"
  ) +
 theme_minimal() + # Uses a clean, minimal theme
 theme(
   legend.position = "right", # Place the legend on the right
   legend.title = element_text(size = 14, face = "bold"),  # Set legend text size and bolds
```