For every $(m,r) \in \mathbb{Z} \times \mathbb{Q}$, y=mx $\Rightarrow \int_{X+(mx)^2=r^2}^{2} \Rightarrow \int_{X=\frac{r^2}{1+m^2}}^{2} \frac{r^2}{1+m^2}$ has at most 2 solutions Since $x^2 = \frac{r^2}{(1+m^2)}$ has at most 2 solutions and at most 1 y for each solution of x. Let S(m,r) be the solutions of the system $\begin{cases} y=mx \\ y=mx \end{cases}$ then $S=\bigcup_{(m,r)\in\mathbb{Z}\times\mathbb{Q}}^{2} S(m,r)$ is Countable by Countable union theorem.

For every $(x,y,z) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$, let $S_{(x,y,z)} = \{2^x + 3^y + 5^z\}$, then $S = \{2^x + 3^y + 5^z\}$: $(x,y,z) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} = \bigcup S_{(x,y,z)} \}$ is Countable by Countable union theorem. $(x,y,z) \in \mathbb{Q} \times \mathbb{Q} \times$

A Note $(0,1) = \bigcup_{k=1}^{\infty} [\frac{1}{k+1}, \frac{1}{k}]$ So every element of T is in at least one of the interval $[\frac{1}{k+1}, \frac{1}{k}]$.

If $\chi_1, \chi_2, ..., \chi_n$ are in T and $[\frac{1}{k+1}, \frac{1}{k}]$, then $1 > \chi_1^2 + ... + \chi_n^2 \ge \frac{1}{(k+1)^2} + ... + \frac{1}{(k+1)^2}$.

From this we get $1 > \frac{n}{(k+1)^2}$. So $n < (k+1)^2$.

Let $T_k = T \cap [\frac{1}{k+1}, \frac{1}{k}]$, then T_k has less their $(k+1)^2$ elements.

So T_k is a finite set. ... $T = \bigcup_{k=1}^{\infty} T_k$ is countable by the Countable union theorem.

Finite, hence countable

(5). Inf D=1 at sup D=5 => $D\subseteq [1,5]$ \Rightarrow $\forall x\in D$, $1\leq x\leq 5$, $\frac{1}{5}\leq x\leq 1$, $-1\leq x\leq 5$ $y\in [0,\sqrt{2})\cap Q$ \Rightarrow $0\leq y<\sqrt{2}$, $\sqrt{2}\leq y+\sqrt{2}<2\sqrt{2}$, $\chi(y+\sqrt{2})-\frac{1}{\chi}\leq 5(2\sqrt{2})-\frac{1}{5}=10\sqrt{2}+\frac{1}{5}$ Hence $10\sqrt{2}-\frac{1}{5}$ is an upper bound of \in . Since $\sup D=5$, by supremum limit theorem, $\exists x\in D$ such that hank n=5. Let $y_n=[10^n\sqrt{2}]$, then $y\in [0,\sqrt{2})\cap Q$, Lence $\chi_n(y_n+\sqrt{2})-\frac{1}{\chi_n}\rightarrow 5(\sqrt{2}+\sqrt{2})-\frac{1}{5}$. By supremum $|x_n|=10\sqrt{2}-\frac{1}{5}$.

(6) To show SupB=W, by Supremum limit theorem, it is enough to show O W is an upper bound of B and I WnEB such that him wn=W. For O, we have Y bEB, since B = C, so b = C, then b \le sup C = W. So W is an upper bound of B.

For O, Since sup A = W, by supremum limit theorem, I Wn \in A such that lim wn = W. Since A \in B, wn \in B and lim wn = W. We are done.