(Week 1)

10.1.7 Given parametric equations and parameter intervals for the motion of a particle in xy - plane below, identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by particle and direction of motion.

10.1.19 Match the given parametric equations with one of the parametric curves.

 $x = 3 - \sin t, y = 5 + \cos t$ Sin t = 3-x	7 y 3,5 x x

10.1.35 Find a parametrization for the ray (half line) with initial point (2,4) when t=0 and (-2,1) when t=1.

	พิกัด x	, พิกัล y	$x = x_0 + at $ 1
t = 0 .;	2	4	y = y, + bt2
t : 1;	- 2	1	①; -2 * 2 + a(1) ~ a = -4
			(2) 1 = 4 + b(1) ~ b = -3
		Ans	1 1 x = 2-4t
		, r	$\begin{cases} 1 : x = 2 - 4t \\ 2 : y = 4 - 3t \end{cases}$

10.2.6 Find an equation for the line tangent to the curve at the point defined by the given value of t. Also, find the value of $\frac{d^2y}{dx^2}$ at this point.

$$x = \sec^{2} t - 1, y = \cos t \quad ; t = -\frac{\pi}{3} \sim 60$$

$$y - y_{0} = \frac{\pi}{3} (x - x_{0}) \qquad \text{whin } t = \frac{\pi}{3} = X_{0} = \sec^{2} \left(-\frac{\pi}{3}\right) = 1 = 4$$

$$y_{0} = \cos \left(-\frac{\pi}{3}\right) = \frac{1}{2}$$

$$\frac{dx}{dt} = 2 \left(\sec t\right) \left(\tan t \cdot \sec t\right) \qquad \frac{dy}{dx} = \frac{-\sin t}{2} = \frac{\cos^{3} t}{\cos^{2} t}$$

$$\frac{dy}{dt} = -\sin t \qquad \frac{d^{2}y}{dt} = -\frac{3\cos^{2} t \cdot \sin t}{\cos^{2} t} = \frac{\cos^{3} \left(-\frac{\pi}{3}\right)}{\cos^{2} t} = \frac{1}{16} \left(x - 3\right)$$

$$y = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{2}$$

$$y = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{2}$$

$$y = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{2}$$

$$y = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{2}$$

$$y = \frac{1}{16} + \frac{1}{16} + \frac{1}{2} = \frac{1}{16} \left(x - \frac{1}{3}\right) = \frac{1}{16$$

10.2.23 Find the	area enclosed	by the given	ellipse.
-------------------------	---------------	--------------	----------

$x = a \cos t, y = b \sin t$; 0 ≤ t ≤ 2π	
	•	
 		,

10.2.27 Find the length of the curve.

$L = \int_{a}^{b} \sqrt{(f'(x))^{t} + (g'(x))^{t}} dt$
$\int_{0}^{2} \sqrt{(t)^{2} + (2t+1)^{v_{1}}} dt$
$\int_{0}^{2} \sqrt{t^{2} + 2t + 1} dt$
$= \int_{0}^{z} \sqrt{(t+1)^{2}} dt$
= f.t+1.dt
$= \frac{t^2}{2} + t \Big _0^2$
$=\frac{(2)^2}{2}+2+0$
= 4 Ans.

10.2.31 Find the area of the surface generated by revolving the curve $x = \frac{1}{4}\cos(4t)$, $y = 6 + \frac{1}{4}\sin(4t)$ on $0 \le t \le \frac{\pi}{4}$ about the x – axis.		
7		
$X = \frac{1}{4} \cos(4t) \qquad \Rightarrow \frac{dx}{dt} = -\sin(4t)$ $S = \int_{2\pi y}^{1} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt \qquad \qquad y = 6 + \frac{1}{4} \sin(4t) \Rightarrow \frac{dy}{dt} = \cos(4t)$		
$S = \int_{a} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \qquad \qquad y = 6 + \frac{1}{4} \sin(4t) \implies \frac{dy}{dt} = \cos(4t)$		
<u></u>		
$= \int_{0}^{4} 2\pi \left(6 + \frac{1}{4} \sin (4t) \right) \sqrt{\frac{(-\sin 4t)^{2} + (\cos 4t)}{1}} dt$		
π Sin 4t + cos 4t = 1 j sin u + cos u = 1		
$\int_{0}^{4} 12\pi + \frac{1}{2}\pi \sin(4t) dt$		
$\int_{0}^{12\pi} dt + \int_{0}^{12\pi} \frac{\pi}{a^{2}} \sin \left(\frac{4t}{u}\right) dt$		
provide the state of the state		
$= 12\pi t \Big _{0}^{\frac{\pi}{4}} + -\pi \cos(4t) \Big _{0}^{\frac{\pi}{4}}$		
$= \left[\frac{3}{4\pi} \left(\frac{\pi}{\mu} \right) - (0) \right] + \left[-\frac{\pi}{8} \cos \left(\mu \cdot \frac{\pi}{\mu} \right) + \frac{\pi}{8} \cos 0 \right]$		
3π ² (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
<u>217</u> 8		
The area of the surface $3\pi^2 + \frac{\pi}{4}$ And		

10.3.10 Find the polar coordinates, $-\pi \le \theta \le 2\pi$ and $r \le 0$, of the following points given in Cartesian coordinates.

· ·	- 0			
	a. (-1,0)	b. (2,0)	c. (0, -5)	$d.\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$
r* = x*+	y² ; tanθ.	= <u>y</u> X		
				

10.3.23 Graph the sets of points whose polar coordinates satisfy the inequalities $\frac{\pi}{6} \le \theta \le \frac{5\pi}{6}$; $0 \le r \le 3$. เป็นแบบ ray line

10.3.38 Convert the polar equation to a Cartesian equation. Then use a Cartesian coordinate system to graph the Cartesian equation.

7 ^ y!	1 sin 20 = 5	— โจทย์	
	$\frac{\square}{2} \sin \theta \cos \theta$		
7 7	* r = X + y r Sin 20 = 5	; rcos 0 = x , rsin 0 =	g
	1 2 sin 0 cos 0 - 5 <		
	2Xy= 5		
	y = 5 2x	Ans.	

(Week 2)

10.4.1 Identify the symmetries of the curve $r = 9 + 9 \cos \theta$. Then sketch the curve.

10.4.3 Identify the symmetries of the curve $r = 1 - \sin \theta$. Then sketch the curve.

10.4.7 Identify the symmetries of the curve below. Then sketch the curve.

$$r = \sin\left(\frac{\theta}{2}\right)$$

10.4.11 Identify the symmetries of the curve below. Then sketch the curve.

$$r = -\sin(\theta)$$

10.5.1 Find the area of the region bounded by the spiral $r = 7\theta$ for $0 \le \theta \le \pi$.

10.5.7 Find the area inside one loop of the lemniscate $r^2 = 9 \sin 2\theta$

10.5.27 Find the length of the curve $\underline{r} = \cos^3(\theta/3), 0 \le \theta \le \pi/4$. $\underline{\frac{dr}{d\theta}} = 3\cos^2(\frac{\theta}{3}) \cdot -\sin(\frac{\theta}{3}) \cdot (\frac{1}{3})$ $= \int_{0}^{\pi} \sqrt{\left(\cos^3(\frac{\theta}{3})\right)^2 + \left(\cos^3(\frac{\theta}{3})\sin(\frac{\theta}{3})\right)^2}} d\theta$ $= \cos^4(\frac{\theta}{3}) \cdot \cos^4(\frac{\theta}{3}) \cdot$

 $= \int_{0}^{\pi/2} COS^{\frac{1}{2}} \left(\frac{\theta}{3} \right)$ $= \underbrace{\frac{1}{2}\theta} + \underbrace{\frac{3\sin\left(\frac{2\theta}{3}\right)}{t}}^{\pi/4}$

 $= \left[\frac{1}{2}\left(\frac{\pi}{4}\right) + \frac{3\sin\left(\frac{\pi}{3},\frac{\pi}{4}\right)}{4}\right] - \left[\frac{1}{2}\cdot \sigma + \frac{3\sin\left(\frac{\pi}{3},0\right)}{4}\right]$

 $= \frac{\pi}{8} + \frac{3\sin\left(\frac{\pi}{6}\right)}{4}$

11.1.1 Give a geometric description of the set of set of points in space whose coordinates satisfy the given pair of equations.

x = 9, y = 8

Z kánág	The line through the point (9,8,0)
У	
(6,6,0)	
Example.	

11.1.3 Give a geometric description of the set of set of points in space whose coordinates satisfy the given pair of equations.

$$y = 0, z = 0$$

The X	- axis Ans.	
	· ·	

11.1.7 Give a geometric description of the set of set of points in space whose coordinates satisfy the given pair of equations.

$$x^2 + z^2 = 16^{r^2}, y = 3$$

The circle with center (0,3,0) and radius 4, parallel to the xz-plane.

(Week 3)

11.2.25 Express the vector 6i + 7j - 6k as a product of its length and	11.2.39 If $\overline{AB} = i + 8j - 3k$ and B is the point (6,4,3). find A.
direction.	$\overline{AB} = (B - A)i + (B - A)i + (B - A)i$
$\begin{array}{c c} \hline (V) & \hline V \\ \hline \hline (V) & \hline \\ ($	$\overline{AB} = (B_x - A_x)j + (B_y - A_y)j + (B_z - A_z)k$ $i + 8j - 3k = (6 - A_x)i + (4 - A_y)j + (3 - A_z)k$ $\begin{cases} & & & & & & & & & & & & & & & & & & &$
$\sqrt{b^2 + 3^2 + (-b)^2}$ $\sqrt{3b + 49 + 36}$	A _X = 5. 4- A _y = 8. 3-A _z = -3.
V36∓49∓76 √121 = 11	Ay = -4 A ₂ = 6
	∴ The point A is. <5, -4,6>

11.2.52 Use similar triangles to find the coordinates of the point Q that divides the segment from $P_1(x_1, y_1, z_1)$ to $P_2(x_2, y_2, z_2)$ into two lengths whose ratio is $\frac{p}{r} = r$

11.3.1 Find the following for the vectors $\mathbf{u} = 7\mathbf{i} - 7\mathbf{j} + \sqrt{2}\mathbf{k}$ and $\mathbf{v} = 7\mathbf{i}/7$ $7\mathbf{j} - \sqrt{2}\mathbf{k}$

a. $v \cdot u$, |v| and |u|

b. the cosine of the angle between v and u

c. the scalar component of \boldsymbol{u} in the direction of \boldsymbol{v}

d. the vector $proj_{\nu}u$

$$V \cdot U = V_{X}U_{X} + V_{Y}U_{Y} + V_{Z}U_{Z}$$

$$= (7 \cdot (-7)) + ((-7) \cdot 7) + (\sqrt{2} \cdot (-\sqrt{2}))$$

$$= -49 - 49 - 2$$

$$= -100$$

$$|U| = \sqrt{7^{2} + (-7)^{2} + (\sqrt{2})^{2}}$$

$$= \sqrt{49 + 49 + 2} = 10$$

$$|V| = \sqrt{(-7)^2 + 7^2 + (-\sqrt{2})^2}$$

$$= \left(\frac{-100}{10^{2}}\right) \left(-7i + 7j - \sqrt{2}k\right)$$

11.3.11 Find the angle between the vectors $\mathbf{u} = \sqrt{3}\mathbf{i} - 4\mathbf{j}$ and $\mathbf{v} = \sqrt{3}\mathbf{i} + \mathbf{j} - 4\mathbf{k}$.	11.3.20 Suppose that AB is the diameter of a circle with center O and that C is a point on one of two arcs joining A and B. Show that \overrightarrow{CA} and \overrightarrow{CB} are orthogonal.
$\theta = \cos^{-1}\left(\frac{u \cdot v}{ u v }\right) \qquad (u \cdot v) = (\sqrt{3}\sqrt{3}) + ((-4)(1)) + ((0)(-4))$ $= 3 + (-4) + 0$	of thogonal.
$= 3 + (-4) + 0$ $= \cos^{-1} \left(\frac{-1}{\sqrt{19} \sqrt{20}} \right)$ $= 1$ $ U = \sqrt{(\sqrt{3})^2 + (-4)^2}$	
= 1.62 = \sqrt{3+16}	
$ y = \sqrt{(\sqrt{3})^2 + (1)^2 + (-4)^2}$	
= \sqrt{3 + 1 + 16} = \sqrt{20}	

11.4.1 Find the length and direction (when defined) of $u \times v$ and $v \times u$.	11.4.18 Find the area of the triangle determined by the points P, Q and I Find a unit vector perpendicular to plane PQR.
	P(-1,1,2), Q(2,0,1), R(0,2,-1)
	- (-,-,-,) ((-,-,-,) ,(-,-, -)

11.4.23 Let $u=-14i+2j-2k$, $v=7i-j+k$, $w=j-7k$. Which vector, if any are (a) perpendicular? (b) Parallel?	11.4.25 Find the magnitude of the torque exerted by F on the bolt at P if $ \overrightarrow{PQ} = 4$ cm. and $ F = 42$ N.

(Week 4)

11.5.3 A line passes through the points P(-2,-9,3) and Q(-9,7,-3). Find the standard parametric equation for the line, written using the base point P(-2,-9,3) and the components of the vector \overline{PQ} .	11.5.13 Find a parametrization for the line segment joining the points $P(0,0,0)$ and $Q\left(10,8,\frac{9}{10}\right)$. Draw coordinate axes and sketch the segment, indicating the direction of increasing t for the parametrization.	

$x = -7 + t, \ y = 3 - 2t, \ z = -3t ; -\infty < t < \infty$	11.5.21 Find the equation for the plane through the point $P_0 = (5,4,7)$ and normal to the vector $n = 2i + 10j + 6k$	11.5.25 Find the equation for the plane through $P_0 = (-7, -3, 5)$ perpendicular to the following line.	
		$x = -7 + t$, $y = 3 - 2t$, $z = -3t$; $-\infty < t < \infty$	

1.5.29 Find the plane determined by the intersecting lines. $11.5.45 \text{ Find the distance from the plan } 7x + 9y + 9z = 56$	
L1: x = -1 + t $y = 2 + 3t$ $z = 1 - 2t$	7x + 9y + 9z = 14.
L2: x = 1 + 4s $y = 1 + 2s$ $z = 2 - 2s$	

1.5.47 Find the angle between the planes $4x + 5y = 3$ and $2x + 3y + 2z = -4$	11.5.65 Given two lines in space, either they are parallel, they intersect, or they are skew (line in parallel planes). Determine whether the lines below, taken two at a time, are parallel, intersect, or are skew. If they intersect, find the point of intersection. Otherwise, find the distance between the two lines.	

11.5.71 Is the line $x = -9 - 4t$, $y = -7 + 8t$, $z = -7t$ parallel to the plane $2x+y-z=3$? Given reasons for your answer.	11.5.73 Find two different planes whose intersection is the line $x=-3-3t$, $y=-2+t$, $z=-2+3t$. Write equations for each plane in the form $Ax+By+Cz=D$

(Week 5)

12.1. Find the limit or indicate that it does not exist. $\lim_{t \to \pi} \left[\left(\sin \frac{5}{4} t \right) i + \left(\cos \frac{7}{6} t \right) j + \left(\tan \frac{t}{4} \right) k \right]$	12.1.9 The path $r(t) = (4 \sin t)i + (4 \cos t)j$ describes motion on the circle $x^2 + y^2 = 16$. Find the particle's velocity and acceleration vector at $t = \frac{\pi}{4}$ and $\frac{\pi}{2}$ and sketch them as vectors on the curve.	

12.1.15 The equation $r(t) = (4\cos t)i + (6\sin t)j + (6)k$ is the position of a particle in space at time t. Find the particle's velocity and acceleration vector. Then write the particle's velocity at $t = 2\pi$ as a	d curve at the given parameter value.	
product of its speed and direction.	$r(t) = (\ln t)i + \left(\frac{t-1}{t+2}\right)j + (t\ln t)k$; $t = t_0 = 1$	

12.1.31 The vector function $r(t)$ is the position of a particle in space at time t. Determine the position function.	12.2.1 Evaluate the integral $\int_0^1 [(t^2)i + (6)j + (3t+4)k] dt$.
$r(t) = (2t\cos t)i + (2t\sin t)j + tk$	

12.2.9 Evaluate the integral.

$\int_{0}^{\pi/2} \left[2\cos 5t \ i - 3\sin 2t \ j + \sin^2 7t \ k \right] dt$	

L 2.2.17 Solve the initial	value problem for r as a	vector function of t.
-----------------------------------	--------------------------	-----------------------

Differential equation : $\frac{d^2r}{dt^2} = -18k$

Initial conditions: r(0) = 90k and $\frac{dr}{dt}\Big|_{t=0} = 15i + 15j$

12.2.25 A projectile is fired with an initial speed of 550 m/s at an angle of elevation of 30°. Answer parts (a) through (d) below.	12.2.39 A model train engine was moving at a constant speed on a straight horizontal track. As the engine moved along, a marble was fired into the air by a spring in the engine's smokestack. The marble, which continued to move with the same forward speed as the engine, rejoined the engine 1s after it was fired. The measure of the angle the marble's path made with the horizontal was 58°. Use the information to find how high the marble went and how fast the engine was moving		
	a t = 2Vo sind	$\int_{MAX} = \frac{\left(V_0 \sin \alpha\right)^2}{2q}$	
	9	J max 2g	
	1 = 2 (Vo sind) j g = 32 N/ft	= <u>(16)</u> *	
	31 "77	2 × 32	
	V ₆ Sind = 16 → V ₀ = 16 Sind	= 4 ft.	
	Siries		
	0 12		
	b R = <u>Vi</u> sin 2d		
	58		
	$\frac{1}{9}$ 2 sin $\frac{1}{9}$ 2 cos $\frac{1}{9}$		
	$\frac{16}{1000}$ 2 sin 58' COS 58'		
	(Sin 58')		
	$= \left(\frac{16}{\sin 58}\right) \left(\frac{16}{\sin 58}\right) 2 \sin 58 \cos 58$		
	SIN-58/(SIN-58/2		
	- 44 cet 50		
	= 16 <u>cot 58</u>		
	= 1.92		

(Week 6)

12.3.5 Find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve.

$$r(t) = (3\cos^3 t)j + (3\sin^3 t)k$$
 ; $0 \le t \le \frac{\pi}{6}$

 $v(t) = (-9\cos^2t \sin t)j + (a\sin^2t \cos t)k$

 $|v| = \sqrt{(-9\cos^2t \sin t)^2 + (-9\sin^2t \cos t)^2}$

= $\sqrt{81\cos^4 t \sin^2 t}$ + 81 $\sin^4 t \cos^2 t$

 $= \sqrt{81\cos^2 t \cdot \sin^2 t \cdot \left(\cos^2 t + \sin^2 t\right)}$

= 9 costsint

T = v

- (-9cos²t sint) j + (9sin²t cost)k 9costsint

- (- cos t)j+(sin t)k

 $\int_{2}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$

= Jacostsint dt

 $\frac{9}{2}\sin^2 t$

 $= \frac{q}{2} \sin^2\left(\frac{\pi}{6}\right) - \frac{q}{2} \sin^2\left(0\right)$

 $\frac{q}{2} \left(\frac{1}{2}\right)^2 - \frac{q}{2} \left(0\right)^4$

12.3.7 Find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve.

 $r(t) = (2t \cos t)i + (-2t \sin t)j + \left(\frac{4\sqrt{2}}{3}\right)t^{3/2}k \qquad ; 0 \le t \le \pi$

 $V(t) = (-2t \sin t + 2 \cos t)i + (-2t \cos t - 2 \sin t)j + 2\sqrt{2t}k$

 $|v| = \sqrt{(-2t \sin t + 2\cos t)^2 + (-2t \cos t - 2\sin t)^2 + (2\sqrt{2t})^2}$

= \(\frac{4t^2\sin^4t}{-\second \text{stsint}\cost + \frac{4\cos^4t}{4\cos^4t} + \frac{8t\sint}{8t\sint}\cost + \frac{4\sin^2t}{4\sin^2t} + \frac{8t^2}{8t^2}

 $= \sqrt{4t^2(\sin^2 t + \cos^2 t) + 4(\cos^2 t + \sin^2 t) + 8t}$

= \ \ 4t^+ 8t + 4

 $\begin{array}{ccc}
 & 1(2t+2) \\
 & 2t+2 & \longrightarrow 2(t+1)
\end{array}$

T = <u>V</u>

 $\frac{(-2t \sin t + 2 \cos t)i + (-2t \cos t - 2 \sin t)j + 2\sqrt{2t}k}{2(t+1)}$

 $\frac{(-t \sin t + \cos t)i + (-t \cos t - \sin t)j}{t+1} + \frac{\sqrt{2t}k}{t+1}$

12.3.9 Find the point on the curve $r(t) = (5 \sin t)i + (-5 \cos t)j + 12tk$ at a distance 52π units along the curve from the point (0,-5,0) in the direction of increasing arc length.

r(t) = (5sint)i + (-5 cos t)j - 12 tk v(t) = (5cos t)i + (5sint)j - 12 k
v(t) = (5(05t)) + (5(5)) + (
V = 13
s(t) = ∫ (ν(τ) dτ
$S(t) = \int V(\tau) d\tau$
ti
, to - 13. dT
= 42 T t
and a t
sit) - 18t
: t = S unutine
unuh
* r(t(s)) = (5sin t); + (-5cost)j - 12tk
Coin (S); - Ecos (S) ; - 40 (S)].
= 33IN/ = 11 3(II) (= 11 = 17 /= 1 K
$\frac{-3011(\frac{13}{13})!}{(\frac{13}{13})!} = \frac{2003(\frac{13}{13})!}{(\frac{13}{13})!} = \frac{10}{13} \left[\frac{13}{13} \right]!$
$= 5\sin\left(\frac{s}{15}\right)i - 5\cos\left(\frac{s}{15}\right)j - 12\left(\frac{s}{13}\right)k$ $r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{13}\right)j - 12\left(\frac{52\pi}{13}\right)k$
$r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{13}\right)j - 12\left(\frac{52\pi}{13}\right)k$ $= 0i - 5j - 48\pi k$
$r(52\pi) = 5\sin(\frac{52\pi}{13})i - 5\cos(\frac{52\pi}{33})j - 12(\frac{52\pi}{13})k$ $= 0i - 5j - 48\pi k$
$r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{13}\right)j - 12\left(\frac{52\pi}{13}\right)k$ $= 0i - 5j - 48\pi k$
$r(52\pi) = 5\sin(\frac{52\pi}{13})i - 5\cos(\frac{52\pi}{13})j - 12(\frac{52\pi}{13})k$ $= 0i - 5j - 48\pi k$
$r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{13}\right)j - 12\left(\frac{52\pi}{13}\right)k$ $= 0i - 5j - 48\pi k$
$r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{13}\right)j - 12\left(\frac{52\pi}{13}\right)k$ $= 0i - 5j - 48\pi k$
$r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{38}\right)j - 12\left(\frac{52\pi}{18}\right)k$ $= 0i - 5j - 48\pi k$
$r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{38}\right)j - 12\left(\frac{52\pi}{138}\right)k$ $0i - 5j - 48\pi k$
$r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{13}\right)j - 12\left(\frac{52\pi}{13}\right)k$ $= 0i - 5j - 48\pi k$
$r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{38}\right)j - 12\left(\frac{52\pi}{18}\right)k$ $= 0i - 5j - 48\pi k$
$r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{38}\right)j - 12\left(\frac{52\pi}{18}\right)k$ $= 0i - 5j - 48\pi k$
$r(51\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{13}\right)j - 12\left(\frac{52\pi}{13}\right)k$ $= 0i - 5j - 48\pi k$
$r(51\pi) = 5\sin\left(\frac{5\pi}{13}\right)i - 5\cos\left(\frac{5\pi}{13}\right)j - 12\left(\frac{52\pi}{13}\right)k$ $= 0i - 5j - 48\pi k$
$r(52\pi) = 5\sin\left(\frac{52\pi}{13}\right)i - 5\cos\left(\frac{52\pi}{33}\right)j - 12\left(\frac{52\pi}{13}\right)k$ $= 0i - 5j - 48\pi k$
$r.(52\pi) = 5\sin\left(\frac{2\pi}{13}\right)i - 3\cos\left(\frac{2\pi}{13}\right)j - 12\left(\frac{52\pi}{13}\right)k$ $= 0i - 5j - 48\pi k$
$r(52.\pi) = 5\sin\left(\frac{5\pi}{3\pi}\right)i - 5\cos\left(\frac{5\pi}{3\pi}\right)j - 12\left(\frac{5\pi}{3\pi}\right)k$ $= 0i - 5j - 48\pi k$

12.3.14 Find the arc length parameter along the curve from the point where t=0 by evaluating the integral $s=\int_0^t |v(\tau)| d\tau$. Then find the length of the indicated portion of the curve.

$r(t) = (6+2t)i + (4+3t)j + (9-3t)k \qquad ; -1 \le t \le 0$

12.3.18 To illustrate that the length of depend on the parameterization used to of one turn of the helix with the following	compute it, calculate the length	12.4.13 Find T,N :
$a.r(t) = (\cos 4t)i + (\sin 4t)j + 4tk$	$; 0 \le t \le \frac{\pi}{2}$	V
$b.r(t) = \left[\cos\left(\frac{t}{2}\right)\right]i + \left[\sin\left(\frac{t}{2}\right)\right]j + \frac{t}{2}k$	$; 0 \le t \le 4\pi$	
$c.r(t) = (\cos t)i - (\sin t)j - tk$	$; -2\pi \le t \le 0$	
Note that the helix shown to the right is ju does not exactly correspond to the param	neterizations in parts a, b or c.	
* un s(t) = $\int v(\tau) d\tau \longrightarrow u$	กนค่าขอบเขต จะได้ arc length (L)	
* $u_1 s(t) = \int v(\tau) d\tau \longrightarrow u_1$	กหค่าขอบเขต จะได้ arc length (L)	
* u_1 $s(t) \cdot \int v(\tau) d\tau \longrightarrow u_1$	กนค่าขอบเขตจะได้ arc length (L)	
* $u_1 s(t) = \int v(\tau) d\tau \longrightarrow u_1$	กนค่าขอบเขตจะได้ arc length (L)	
* $y = y = y = y = y = y = y = y = y = y $	กนค่าขอบเขต จะได้ arc length (L)	
* $m \cdot s(t) = \int v(\tau) d\tau \longrightarrow m$	กนค่าขอบเขตจะได้ arc length (L)	
* $u s(t) = \int v(\tau) d\tau \longrightarrow u$	กนค่าขอบเขต จะได้ arc length (L)	
* $m \sim s(t) = \int v(\tau) d\tau \longrightarrow m$	กนค่าขอบเขตจะได้ arc length (L)	
* $u_1 s(t) = \int v(\tau) d\tau \rightarrow u_1$	กนค่าขอบเขต จะได้ arc length (L)	

12.4.13 Fin	d T,N and	1κ for the 1	space curve $r(t)$	$) = \frac{t^4}{4}i + \frac{t^3}{3}j$; t > 0.
T = <u>V</u>	,N	191/9f1 91/9f	$K = \frac{1}{ V } \left \frac{dT}{dt} \right $		

4.20 The total curvature of the portion of a smooth curve that runs $ms = s_0$ to $s_1 > s_0$ can be found by integrating κ from s_0 to s_1 If the ve has some other parameter, say t, then the total curvature is $K = \kappa ds = \int_{t_0}^{t_1} \kappa \frac{ds}{dt} dt = \int_{t_0}^{t_1} \kappa v dt$, where t_0 and t_1 correspond to s_0	
and s_1	
a. Find the total curvature of the portion of the helix $r(t)=(2\cos t)i+(2\sin t)j+tk$; $0\leq t\leq 4\pi$	
b. Find the total curvature of the parabola $y = 5x^2$; $-\infty < x < \infty$	

12.4.23 The formula $\kappa(x) = \frac{|f''(x)|}{[1+(f'(x))^2]^{3/2}}$ expresses the curvature $\kappa(x)$ of a twice – differentiable plane curve y = f(x) as a function of x. Find the curvature function of the following curve. Then graph f(x) together with $\kappa(x)$ over the given interval.

12.4.25 The formula $\kappa(x) = \frac{|f''(x)|}{[1+(f'(x))^2]^{3/2}}$ expresses the curvature of a twice – differentiable plane curve as a function of x. Find the curvature function of the curve. $y = -3\cos x$; $0 \le x \le 2\pi$. Then graph f(x) together with $\kappa(x)$ over the given interval.

$K(\chi) = \frac{ f''(\chi) }{[1+(f'(\chi))^2]^{3/2}}$	6 y		
	K(X)	x	
$\frac{3 \cos(x)}{[1 + (3 \sin(x))^{2}]^{3/2}}$		2π	
$= \frac{3 \cos(x)}{\left[1 + 9 \sin^2(x)\right]^{3/2}}$	···· _] y		
	6-		
y' = 3sin x y" = 3cosx			
ÿ" = 3 cosx			

(Week 7)

13.1.19 For the given function, complete parts (a) through (f) below. $f(x,y) = 25x^2 + 9y^2$ (a) Find the function's domain. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. The domain is the entire xy-plane. (b) Find the function's range. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. The range is [0,∞) ค่าจังยที่สุดที่เป็นไปใต้ (c) Describe the function's level curves. Choose the correct answer below. . For f(x,y) = 0, the level curve is the origin. For f(x,y) ≠ 0, the level curve are ellipses centered at the origin and major and major axes along the x,y,-axes, respectively. (d) Find the boundary of the function's domain. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. The are no boundary points. (e) Determine if the domain is an open region, a closed region, or neither. Choose the correct answer below. The domain is both open & closed (f) Decide if the domain is bounded or unbounded. Choose the

The domain is unbounded

correct answer below.

13.1.51 Find an equation for and sketch the graph of the level curve of the function f(x,y) that passes through the given point.

$f(x,y) = \sqrt{x + y^2 - 14} $; (6,3) $f(6,3) = \sqrt{6 + (3)^2 - 14}$ $= \sqrt{6 + 9 - 14}$ $= \sqrt{1}$ $= 1$ $1^2 = \sqrt{x + y^2 - 14}$ $1^3 = x + y^3 - 14$ $15 = x + y^3 - 14$	x 14

13.1.65 Find and sketch the domain of f. Then find an equation for the level curve or surface of the function passing through the given point.

fraction	first.	$\lim_{(x,y)\to(1,1]}$	= 10x	- y			rewriting	
แทน X	=0 um' ≠0 um'	y ≠ 0 ; y = 0 ;	y 10X	สรุปคือ	10.x - y 	= 0 .เข้าใกล้ 10		
	∴ jm (x,y) → (1,10)	x² - 20xy + 10x - y	<u>y`.</u>				
		= 0						

13.2.58 If $f(x_0, y_0) = 3$, what can you say about the limit below if f is continuous at (x_0, y_0) ? If f is not continuous at (x_0, y_0) ? Give reasons for your answers

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)$$

if it is continuous at (xo,yo,zo)?
$\lim_{(x,y)\to(x_0,y_0)} f(x_0,y_0) = f(x_0,y_0).$
if it is not continuous at (xo,yo,zo)?
lim f(x,y) ≠ f(x₀,y₀) (x,y) > (x₀,y₀) ≠ 3

13.2.41 By considering different paths of approach, show that the function has no limit as $(x,y) \rightarrow (0,0)$.

$$f(x,y) = -\frac{x}{\sqrt{x^2 + y^2}}$$

 _	
 •	

13.2.40 At what points (x,y,z) in space is the function continuous?
a. $h(x, y, z) = \sqrt{3 - \frac{x - y - 5z}{1}}$ b. $h(x, y, z) = \frac{1}{16 - \sqrt{x^2 + y^2 + z^2 - 25}}$
b. $h(x, y, z) = \frac{1}{16 - \sqrt{x^2 + y^2 + z^2 - 25}}$
_ น้ามเป็น 16 และใน√ ต้องมากกว่า 0

13.3.16 Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following function.

$$f(x,y) = e^{4xy} \ln(3y)$$

ďΧ	=	$\frac{3}{3x} \left(e^{4xy} \ln (3y) \right)$ $e^{4xy} \frac{3}{3x} (\ln (3y)) + \ln (3y) \frac{3}{3x} e^{4xy}$ e^{4xy}

13.3.48 Find all the second – order partial derivatives of the following function.

$w = 5ye^{x}$	
$\frac{\partial^2 \mathbf{w}}{\partial \mathbf{x}^2} = \frac{\partial}{\partial \mathbf{x}} \left(\frac{10 \times \mathbf{y}}{2000} \right) e^{\mathbf{x}^2 - 2\mathbf{y}}$	$\frac{\partial}{\partial x} \left(\int y e^{x^2 - 9y} \right) dx$
= 10xy <u> </u>	$= 5y \frac{\partial}{\partial x} (e^{x^2-4y}).$
= 10 Xy e ^{x-qy} (2X) + e ^{x-qy} 10y = 20x ye ^{x-qy} + 10y e ^{x-qy}	= 5ye ^{x*-9y} (2x)
= (10y ± 20xy)ex-49	<u>a</u> (Sye ^{x*-9y}) d _X
$\frac{\partial^2 W}{\partial y^2} = \frac{\partial^2 45 y^2}{\partial y^4} + \frac{\partial^2 5 e^{x^2 - 9 y}}{\partial y^4}$	= 5y <u>0</u> e ^{x*-ay} + e ^{x*-ay} 0 oy oy
= $\left(-45 \text{ ye}^{x^{\frac{2}{4}}-9}(-9) + e^{x^{\frac{2}{4}}-9}(-45)\right) + 5e^{x^{\frac{2}{4}}-9}(-9)$ = $\left(405 \text{ ye}^{x^{\frac{2}{4}}-9} - 45e^{x^{\frac{2}{4}}-9}\right) - 45e^{x^{\frac{2}{4}}-9}$ = $\left(405 \text{ y} - 90\right) e^{x^{\frac{2}{4}}-9}$	= .5y.e ^{x*-qy} (-9) + .5e ^{x*-qy} : -45ye ^{x*-qy} + .5e ^{x*-qy}
	: -45 ye ^{x - 49} + 5e ^{x - 49}
อิงอิง เท่ากัน เพื่องจากทั้งสอง	
<u>arw</u> J iln Continuous	
$\frac{\partial}{\partial y} \log y e^{x^2 - qy}$	
= 10xy $\frac{\partial}{\partial y} e^{x^2-qy} + e^{x^2-qy} \frac{\partial}{\partial y}$ 10xy	
= 10xy e ^{x-ay} (-9) + 10x e ^{x-ay} = (10x - 9xy) e ^{x-ay}	

13.3.77 Express A implicitly as a function of a, b and c and calculate $\frac{\partial A}{\partial a}$
and $\frac{\partial A}{\partial b}$.