

Nome: Nadia Carolina Ribeiro - 48498________ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	55.51	55.42	55.67	55.65	55.77	55.81	55.2	55.34	55.65
A	Medição 2	55.56	55.47	55.84	55.76	55.33	55.69	55.84	55.68	54.92
	Medição 3	55.61	55.51	55.85	55.55	55.5	55.4	55.56	55.77	55.34
	Medição 1	55.62	55.65	55.71	55.47	55.67	55.44	55.46	55.2	55.87
В	Medição 2	54.83	55.07	55.48	55.33	55.55	54.99	55.94	55.25	55.71
	Medição 3	55.66	54.94	54.94	55.6	55.7	55.13	55.95	55.77	55.42
	Medição 1	56.11	55.6	55.98	55.48	56.02	55.71	55.8	55.79	55.83
С	Medição 2	55.44	55.64	55.34	55.45	55.37	55.9	55.91	55.31	55.45
	Medição 3	55.97	55.18	55.49	55.82	55.08	55.62	55.45	55.92	55.29

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Peso m (gramas)	200	300	400	500	600	700	800	900
Comprimento l (cm)	4.98	5.79	6.6	8.15	8.47	8.68	9.35	10.13

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 19°C e 24°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	9.49	11.5	9.02	10.68	10.37	11.06	10.22	10.45
$I_a (mA)$	95.279	115.757	90.749	107.113	102.869	111.378	101.529	104.58

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza
20mA	$\pm (0.8\% + 3D)$
200mA	$\pm (1.2\% + 4D)$
20A	$\pm (2.0\% + 5D)$

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.