Table 7.1 Common finite-difference formulas.

Type of approximation	Formula	Truncation error
Forward differences	$f'_{i} = (f_{i+1} - f_{i})/(\Delta x)$ $f''_{i} = (f_{i+2} - 2f_{i+1} + f_{i})/(\Delta x)^{2}$ $f'''_{i} = (f_{i+3} - 3f_{i+2} + 3f_{i+1} - f_{i})/(\Delta x)^{3}$ $f'''_{i} = (f_{i+4} - 4f_{i+3} + 6f_{i+2} - 4f_{i+1} + f_{i})/(\Delta x)^{4}$	$O(\Delta x)$
Backward differences	$f'_{i} = (f_{i} - f_{i-1})/(\Delta x)$ $f''_{i} = (f_{i} - 2f_{i-1} + f_{i-2})/(\Delta x)^{2}$ $f'''_{i} = (f_{i} - 3f_{i-1} + 3f_{i-2} - f_{i-3})/(\Delta x)^{3}$ $f''''_{i} = (f_{i} - 4f_{i-1} + 6f_{i-2} - 4f_{i-3} + f_{i-4})/(\Delta x)^{4}$	$O(\Delta x)$
Central differences	$\begin{split} f_i' &= (f_{i+1} - f_{i-1})/(2 \Delta x) \\ f_i'' &= (f_{i+1} - 2f_i + f_{i-1})/(\Delta x)^2 \\ f_i''' &= (f_{i+2} - 2f_{i+1} + 2f_{i-1} - f_{i-2})/(2(\Delta x)^3) \\ f_i''' &= (f_{i+2} - 4f_{i+1} + 6f_i - 4f_{i-1} + f_{i-2})/(\Delta x)^4 \end{split}$	$O(\Delta x^2)$

Table 7.2 Higher order finite-difference formulas.

Type of formula	Formula	Truncation error
Forward	$f_i' = (-f_{i+2} + 4f_{i+1} - 3f_i)/(2(\Delta x))$	$O(\Delta x)^2$
differences	$f_i'' = (-f_{i+3} + 4f_{i+2} - 5f_{i+1} + 2f_i)/(\Delta x)^2$	
differences	$f_{i}^{i'} = \frac{(3f_{i+3} + 3f_{i+2} + 3f_{i+1} + 3f_{i+1} + 3f_{i+1} - 5f_{i})}{(2(\Delta x)^{3})}$	
	$f_{i}^{""} = (-2f_{i+5} + 11f_{i+4} - 24f_{i+3} + 26f_{i+2} - 14f_{i+1} + 3f_{i})/(\Delta x)^{4}$	
Backward	$f'_{i} = (3f_{i-1} + f_{i-2})/(2(\Delta x))$	$O(\Delta x^2)$
differences	$f_i'' = (2f_i - 5f_{i-1} + 4f_{i-2} - f_{i-3})/(\Delta x)^2$	
differences	$f_{i}^{"} = (5f_{i} - 18f_{i-1} + 24f_{i-2} - 14f_{i-3} + 3f_{i-4})/(2(\Delta x)^{3})$	
	$f_{i}^{""} = (3f_{i} - 14f_{i-1} + 26f_{i-2} - 24f_{i-3} + 11f_{i-4} - 2f_{i-5})/(\Delta x)^{4}$	
Control	$f_i' = \frac{(3f_i - 14)f_{i-1} + 26f_{i-2}}{f_i'} = \frac{(-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2})}{(12(\Delta x))}$	$O(\Delta x^4)$
Central	$J_{i} = (-J_{i+2} + 0J_{i+1} - 0J_{i-1} + J_{i-2})/(22(\Delta x)^{2})$	
differences	$f_i'' = (-f_{i+2} + 16f_{i+1} - 30f_i + 16f_{i-1} - f_{i-2})/(12(\Delta x)^2)$	
	$f_{i}^{""} = (-f_{i+3} + 8f_{i+2} - 13f_{i+1} + 13f_{i-1} - 8f_{i-2} + f_{i-3})/(8(\Delta x)^3)$	
	$f_{i}^{""} = (-f_{i+3} + 12f_{i+2} - 39f_{i+1} + 56f_{i} - 39f_{i-1} + 12f_{i-2} - f_{i-3})/(6(\Delta x)^{4})$	