

Lecture 3:

Predicting Septic Shock and Its Progression

Sepsis & Septic Shock

Sepsis:

A system-wide severe infection leading to reduced blood pressure, organ perfusion, and possibly organ failure and death

Mortality:

US ~ 20-50%

Impact:

30-50% of all hospital deaths

Most expensive disease to treat

Leading cause of hospital readmission

The "Natural Time Course" of Sepsis & Septic Shock

Mortality in septic shock increases ~ 8% for every hour of delayed treatment*

Early treatment improves outcomes

Challenge:

Provide data-driven, objective, reliable early warnings in sepsis patients of impending septic shock before this clinical transition occurs to enable early therapy

The Key Hypothesis

Approach

- MIMIC-II adult ICU numeric (minute-to-minute) & EHR data
- Apply Sepsis-III* Consensus definitions of sepsis and septic shock to determine clinical states of every patient over time (groundtruth)
- Use Generalized Linear Modeling (GLM) to calculate a risk score from patient features
- With this risk score, use training data to build a classifier to predict impending septic shock in patients with sepsis
- Evaluate classifier performance on test data

Sepsis-3 Definitions*

Sepsis

- suspected infection AND
- Two or more of the following; AND
 - Respiratory rate ≥ 22/min OR
 - systolic blood pressure ≤ 100 mm-Hg OR
 - Glasgow coma score ≤ 13
- sequential organ failure assessment score ≥ 2

Septic shock

- sepsis AND
- despite adequate fluids, vasopressors needed to maintain MAP ≥ 65 mm-Hg AND
- serum lactate > 2 mM/L

Sepsis-2 Clinical State Labels are Temoporally Unstable

- mean number label changes per patient
 - Sepsis-2 16
 - Sepsis-3 1

Features, Risk Model, Decisions

Features

- Lactate, Glasgow coma score (GCS), sequential organ failure assessment (SOFA) scores, FiO₂
- heart rate, PaO2, respiratory rate

Training Set $\{(X_i, Y_i = y_i), i = 1,...,N\}$:

- $y_i = 0$ for feature vectors from patients with sepsis and no shock
- $y_i = 1$ for feature vectors from one-hour window preceding shock
- N class labels are independent Bernoulli observations

$$P(Y_i = y_i) = p_i^{y_i} (1 - p_i)^{1 - y_i}$$
 $y_i \in \{0, 1\}$

Features, Risk Model, Decisions

GLM Time-Evolving Risk Score $p(X(t),\beta)$:

$$p(\underline{X}(t),\underline{\beta}) = \frac{e^{\underline{X}(t)^T \underline{\beta}}}{1 + e^{\underline{X}(t)^T \underline{\beta}}}$$

$$L(\underline{\beta}) = \prod_{i=1}^{N} p(\underline{X}_{i}, \underline{\beta})^{y_{i}} \left(1 - p(\underline{X}_{i}, \underline{\beta})\right)^{1 - y_{i}} - \lambda \sum_{i=1}^{M} |\beta_{i}|$$

Likelihood Function L1-penalty

MLE of β

Decisions:

 $p(\underline{X}(t),\beta) > \theta$ predict pending shock

Advantages of This Approach

Interpretable Decision Rule!

	Variable	Coefficient	SE
	Intercept	-2.974330922	0.009551231
	HR	0.292503877	0.006985994
	SBP	-0.252831939	0.006893423
	PaO ₂	0.429659115	0.00438058
ALL	GCS	-0.634782631	0.005989372
	Lactate	0.733257393	0.00661599
	BUN	0.225824586	0.006995195
	WBC	0.285014711	0.005484431
	SOFA (Respiratory)	0.231603804	0.005592707
	SOFA (Coagulatory)	0.284541533	0.006787376
	SOFA (CV)	0.614226176	0.005742869

Some Examples

Patient never transitions to shock

Some Examples

Shock detected at 681 min, shock onset 2076 min, 23.25 hour early warning time

Performance

Vary θ , generate ROC, choose optimal θ

- sensitivity 88%, specificity 84%, AUC .93, *Average PPV .52*
- Median early warning time 7 hours

Patient-Specific Positive Predictive Value (PPV)

Conclusions:

- Risk score immediately after threshold-crossing determines PPV
- patient-specific PPV aids decision-making by physicians
- note the rapid change in risk score during entry into the pre-shock state

OK, This is Where We Are Right Now

- Sepsis-3 clinical state labels are temporally stable, Sepsis-2 are not
- Fairly reliable early warning of impending septic shock (sensitivity 88%, specificity 84%, AUC .93)
- Median 7 hour early warning time
- patient-specific PPV can be assigned to warning

How Does Patient Risk Evolve After Detection?

- Do temporal profiles of risk score organize into distinctive patterns (clusters) ?
- If yes, how do patient attributes differ between clusters?

Align time-evolving risk scores at threshold crossing time Apply spectral clustering to discover temporal classes

Spectral clustering: Overview

- Spectral clustering is a non-linear clustering algorithm
- It chooses clusters which minimize distance between points in the same cluster, while maximizing distances between points in different clusters

Linear vs non-linear clustering algorithms

- K-means is a commonly used linear clustering algorithm, meaning that boundaries between clusters are linear
- The tradeoff is in computation time: Non-linear clustering methods are more computationally intensive

K-means

Spectral clustering

How does spectral clustering work?

 Data are represented in a new space defined by the eigenvectors of the graph Laplacian matrix L:

L = DM - A

• DM is "Degree Matrix", A is "Adjacency Matrix"

What Is L = DM - A?

Assume N time-serie $\hat{\mathcal{P}}_i(t)$ {i=1,...,N}, {t=t₁,...,t_M}

$$\{i=1,...,N\}, \{t=t_1,...,t_M\}$$

Define a distance matrix D with elements d_{ij} that are distances between time-series

$$d_{ij} = \sqrt{\sum_{k=1}^{M} \left[\hat{p}_i(t_k) - \hat{p}_j(t_k) \right]^2}$$

No more "time", the data points are now the N² distances between each time series

Now, select "neighboring data points" and build adjacency matrix A

What Is L = DM - A?

Example of how to build A

For each row of D choose the NN nearest neighbors

Define the Degree Matrix DM as a matrix with diagonal elements equal to NN, off-diagonals zero

The Eigengap Heuristic

- Spectral clustering enables calculation of the number of clusters which exist in the data
- K, the number of clusters, can be chosen such that the resulting clusters are robust to small changes in the data
- Compute eigenvalues of L, rank order them and plot

- Look for the "eigengap"
- This defines K
 - Determine eigenvectors <u>e</u>₁,..<u>e</u>_K corresponding to eigenvalues below gap

The Eigengap Heuristic

	9 1	\mathbf{q}_2	\mathbf{e}_3	\mathbf{e}_{4}
	e_{21}	$e_{\!\scriptscriptstyle 22}$	e_{23}	e_{24}
E=	•	•	•	•
	•	•	•	•
	•	•	•	•
	$e_{\!\scriptscriptstyle \mathcal{N}1}$	e_{N2}	e_{N3}	$e_{\!\scriptscriptstyle N4}$

"Membership" of time-series 1 in terms of K clusters "Membership" of time-series 2 in terms of K clusters

"Membership" of time-series N in terms of K clusters

.

Now Cluster the Data

- Typically use K-means clustering to organize data points into clusters
- Cluster membership is then defined. Using cluster membership, calculate average within-cluster risk score over time and plot

How Does Patient Risk Evolve After Detection?

Differences in Physiology and Clinical-Phenotype Between Clusters 1 and 4

Clinical Phenotype and Co-Morbidities:

• No differences

Physiology:

• p = 0.01 significance

	Cluster 1	Cluster 4		Cluster 1	Cluster 4
HR	99.4	96.0	BUN	39.8	33.2
SBP	107.2	112.4	pН	7.30	7.33
DBP	59.3	62.4	PaCO ₂	40.5	41.9
MBP	72.5	75.1	Urine	5.6	3.2
Resp	22.7	21.6	Resp SOFA	1.1	0.6
FiO ₂	66.2%	61.2%	Nervous SOFA	0.5	0.3
GCS	12.1	12.8	Cardio SOFA	0.4	0.1
Platelets	211.0	232.1	Liver SOFA	0.1	0.0
Creatinine	2.2	1.9	Coag SOFA	0.5	0.3
Lactate	4.6	2.9	Kidney SOFA	1.2	0.8

Assigning Patients to Risk-Score Clusters Cluster 1 Versus Others

Conclusions:

- 80% accuracy immediately using initial data point
- ~90% accuracy by 5 hours
- increasing density of EHR measurements may help

Risk Score Relative to Time of First Intervention

Where We Are Now

- Sepsis-3 clinical state labels are temporally stable, Sepsis-2 are not
- Fairly reliable early warning of impending septic shock (sensitivity 88%, specificity 84%, AUC .93)
- Median 7 hour early warning time
- patient-specific PPV can be assigned to warning

- There is a dramatic change in risk score that occurs hours before patients are in "shock"
- This change is abrupt, risk changes dramatically in < 1 hour
- I believe the time of this change defines time of entry into septic shock
- Real-time calculation and display of risk score could be very informative to care-givers