Cálculo Vetorial

— Folha 5 – abril de 2020 ———

Exercício 1. Seja \mathcal{R} o rectângulo $[0,1] \times [0,1]$. Calcule os integrais:

a)
$$\iint_{\mathcal{R}} (x^3 + y^2) d(x, y);$$

b)
$$\iint_{\mathcal{D}} y e^{xy} d(x,y);$$

c)
$$\iint_{\mathcal{P}} (xy)^2 \cos x^3 \ d(x,y);$$

d)
$$\iint_{\mathcal{R}} \ln[(x+10)(y+1)] d(x,y)$$
.

Exercício 2. Calcule os seguintes integrais:

a)
$$\int_0^1 \int_0^{x^2} dy \, dx$$
;

b)
$$\int_{1}^{2} \int_{2x}^{3x+1} dy dx;$$

c)
$$\int_0^1 \int_1^{e^y} (x+y) \ dx \ dy;$$

d)
$$\int_{0}^{1} \int_{3}^{x^{2}} y \, dy \, dx$$
.

Exercício 3. Calcule $\iint_{\mathcal{D}} f d(x, y)$, usando as duas possíveis ordens de integração, quando $f \in \mathcal{D}$ são:

a)
$$f(x,y) = xy$$
, $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, \ 0 \le y \le x^2\}$;

b)
$$f(x,y) = x \operatorname{sen}(x+y), \ \mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le \pi, \ 0 \le x \le 1\};$$

c)
$$f(x,y) = e^{x+y}$$
, $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$;

d)
$$f(x,y) = x^2 + y^2$$
, $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le \text{sen } x, \ 0 \le x \le \frac{\pi}{2}\}$.

Exercício 4. Inverta a ordem de integração nos seguintes integrais:

a)
$$\int_{-2}^{2} \int_{0}^{4-x^2} f(x,y) \, dy \, dx;$$

a)
$$\int_{-2}^{2} \int_{0}^{4-x^2} f(x,y) \, dy \, dx;$$
 e) $\int_{-2}^{2} \int_{-4+y^2}^{2-y} f(x,y) \, dx \, dy;$

b)
$$\int_{-1}^{1} \int_{0}^{4-x^2} f(x,y) \, dy \, dx;$$

b)
$$\int_{-1}^{1} \int_{0}^{4-x^2} f(x,y) \, dy \, dx;$$
 f) $\int_{1}^{e^2} \int_{\ln x}^{x} f(x,y) \, dy \, dx;$

c)
$$\int_0^2 \int_{-\sqrt{4-y^2}}^{2-y} f(x,y) \, dx \, dy;$$

g)
$$\int_{-2}^{2} \int_{0}^{-|y|+2} f(x,y) dx dy$$

d)
$$\int_{-2}^{2} \int_{-4+x^2}^{2-y} f(x,y) \, dx \, dy;$$

c)
$$\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{2-y} f(x,y) \, dx \, dy;$$
 g)
$$\int_{-2}^{2} \int_{0}^{-|y|+2} f(x,y) \, dx \, dy;$$
 d)
$$\int_{-3}^{2} \int_{-4+y^{2}}^{2-y} f(x,y) \, dx \, dy;$$
 h)
$$\int_{0}^{1} \int_{0}^{\sqrt{x}} f(x,y) \, dy \, dx + \int_{1}^{2} \int_{0}^{-x+2} f(x,y) \, dy \, dx.$$

Exercício 5. Represente graficamente o conjunto \mathcal{D} e calcule, recorrendo a integrais duplos, a sua área:

a)
$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2, x \le y \le x^2\};$$

b)
$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : -y^2 \le x \le y^2, \ 0 \le y \le 1\}.$$

Exercício 6. Seja $\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le x, \ 0 \le x \le 1\}.$

a) Calcule
$$\iint_{\mathcal{D}} (x+y) \ d(x,y)$$
.

b) Calcule o integral da alínea anterior, fazendo a mudança de variáveis x = u + v, y = u - v.

Exercício 7. Calcule os seguintes integrais, usando uma mudança de variáveis adequada:

a)
$$\iint_{\mathcal{D}} (x^2 + y^2) \ d(x, y)$$
, onde $\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : -1 \le x - y \le 0, -1 \le x + y \le 0\}$;

b)
$$\iint_{\mathcal{D}} (x-y) \ d(x,y)$$
, onde $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : -x \le y \le 3-x, \ 2x-2 \le y \le 2x\}$.

Exercício 8. Determine a área limitada pelas curvas $x^2 + y^2 = 2x$, $x^2 + y^2 = 4x$, y = x e y = 0.

Exercício 9. Calcule os seguintes integrais, usando coordenadas polares.

a)
$$\int_0^{2R} \int_0^{\sqrt{2Rx-x^2}} (x^2+y^2) dy dx;$$

b)
$$\int_0^1 \int_{x^2}^x dy \, dx$$
.

Exercício 10. Calcule a área dos seguintes subconjuntos de \mathbb{R}^2 :

a)
$$\{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 \le 4\};$$

b)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + (y-3)^2 \le 9\};$$

c)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + (y-3)^2 \le 4\};$$

d)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + (y-2)^2 \le 9\};$$

e)
$$\{(x,y) \in \mathbb{R}^2 : y \le 3, \ x^2 - 1 \le y \le 2x + 2)\};$$

f)
$$\{(x,y) \in \mathbb{R}^2 : x^2 - 4x + y^2 \le 0, \ x^2 - 2x + y^2 \ge 0\};$$

g)
$$\{(x,y) \in \mathbb{R}^2 : x^2 - 2x + y^2 \le 0, (x-1)^2 + y^2 \ge 1\};$$

h)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, \ y^2 - x^2 \le 1\};$$

i)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, \ y^2 - x^2 \le 1\};$$

j)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le xy\};$$

k)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1, \ x^2 + y^2 \le 9, \ y \le x + 3, \ y \ge x - 3\};$$

1)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le by\}$$
 (com $b > 0$);

m)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le by, \ x^2 + y^2 \le ax\} \ (\text{com } a,b > 0);$$

n)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le a^2, (x-b)^2 + y^2 \le b^2\} \text{ (com } a,b > 0);$$

o)
$$\{(x,y) \in \mathbb{R}^2 : (x^2 + y^2)^2 \le 3x^2 - y^2\};$$

p)
$$\{(x,y) \in \mathbb{R}^2 : (x^2 + y^2)^2 \ge 8(x^2 - y^2), \ x^2 + y^2 - 4y \le 0\}.$$