BRI R 1920

BRL

AD 103022/

REPORT NO. 1920

CHARACTERIZATION OF SOLUTIONS OF THE EQUATION $e^{Ax} = x$.

P. R. Schlegel

August 1976

Approved for public release; distribution unlimited.

USA BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	
REPORT NO. 1920		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Characterization of Solutions of the		Final
Equation $e^{Ax} = x$.		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(a)
P. R. Schlegel		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Ballistic Research Labora	atories	
Aberdeen Proving Ground, MD 21005		RDTE Proj. No. 1W161102AH43
11. CONTROLLING OFFICE NAME AND ADDRESS USArmy Materiel Development & Read	inoss Command	12. REPORT DATE
5001 Eisenhower Avenue	iness Command	AUGUST 1976
Alexandia, VA 22333		21
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
{		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)		
16 CURRI EMENTARY NATES		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on teverse side if necessary an	d identify by block number)	
Characterize, Solution, Rolle's Theorem		
20. ABSTRACT (Carriffrue on reverse side if necessary and	t identify by block number	
This paper characterizes the solutions of the equation $e^{Ax} = x$, where A is any real number.		
		i

TABLE OF CONTENTS

	Pag	е
I.	INTRODUCTION	,
II.	CHARACTERIZATION OF SOLUTIONS	,
III.	CONCLUSION	ì
•	ACKNOWLEDGEMENT	ŀ
	DISTRIBUTION LIST	_

INTRODUCTION

This paper characterizes the solutions of the equation

$$x = e^{Ax}, (1)$$

which arises in several areas of investigation, e. g., determining the maximum range of an artillary trajectory for fixed time under a given aerodynamic drag [1]; determining the residual velocity of a bullet traveling through a liquid as a function of fuze delay time and striking velocity [2]; calculation of the burning rate for constant frequency in a T-Burner experiment [3]; and in the problem of intense surface heating of a slab [4].

II. CHARACTERIZATION OF SOLUTIONS

We will now state and prove a series of lemmas, which will characterize the solutions of $e^{Ax} = x$ as a function of A. The first three lemmas will give the algorithms for generating the solutions. In the sequel a value of x which satisfies $e^{Ax} = x$ will be referred to as a solution. Also, log(x) will denote the natural logarithm of x.

Lemma 1. For $0 < A < e^{-1}$, the sequence $y_{i+1} = e^{Ay}i$, $y_0 = e$, is a bounded monotone decreasing sequence and its limit is a solution.

Proof: $y_0 = e > e^{Ay_0} = y_1$. Assume $y_0 > y_1 > ... > y_i$. Then

¹ McCoy, H., Private consultation.

Walther, R., et al, Forthcoming report concerning vulnerability analysis of MiG-21 aircraft to 20 mm and improved 20 mm projectiles with various types fuzing.

Jbiricu, M. M., Forthcoming report on analysis of T-Burner results based on A-13 propellant data.

Masters, J. I., "Problems of Intense Surface Heating of a Slab Accompanied by Change Phase," Journal of Applied Physics, Vol. 21, 1956, pp. 477-484.

 $y_{i+1} = e^{Ay}i < e^{Ay}i-1 = y_i$. Hence, by induction the sequence is monotone decreasing and bounded by zero; in fact, it is bounded below by e^{A} . Therefore, $y_i \rightarrow y$ and y is a solution.

Lemma 2. For $0 < A < e^{-1}$, the sequence $y_{i+1} = A^{-1}\log(y_i)$, $y_0 = A^{-1}$, is a bounded monotone increasing sequence and its limit is a solution.

Proof: For $0 < A < e^{-1}$, $y_1 = A^{-1}\log(A^{-1}) > A^{-1}\log(e) = A^{-1} = y_0$. Assume $y_0 < y_1 < \ldots < y_i$, then $y_{i+1} = A^{-1}\log(y_i) > A^{-1}\log(y_{i-1}) = y_i$. Thus, by induction the sequence is monotone increasing.

To show the sequence is bounded, we will generate a bound for the first three terms, assume a form of the bound on y_k , k = 1, ..., i, then use induction. To simplify notation, let $U = log(A^{-1})$. Then

$$y_1 = A^{-1}U$$
,
 $y_2 = A^{-1}\log(y_1) = A^{-1}[U + \log(U)]$,
 $y_3 = A^{-1}\log(y_2) = A^{-1}[U + \log(U + \log(U))]$
 $= A^{-1}[U + \log(U) + \log(1 + U^{-1}\log(U))]$.

Since log(1 + x) < x for x > 0, then

$$y_3 < A^{-1}[U + \log(U)[1 + U^{-1}]].$$

Note that U > 1, this implies log(U) > 0.

Assume the form of the bound holds for y, that is,

$$y_i < A^{-1}[U + \log(U)[1 + U^{-1} + ... + U^{2-i}]].$$

Then

$$y_{i+1} = A^{-1} \log(y_i)$$

 $< A^{-1} [\log(A^{-1}[U + \log(U)[1 + U^{-1} + ... + U^{2-1}]])]$

$$< A^{-1}[U + \log(U + \log(U)[1 + U^{-1} + ... + U^{2-i}])]$$

 $< A^{-1}[U + \log(U) + \log(1 + \log(U)[U^{-1} + ... + U^{1-i}])]$
 $< A^{-1}[U + \log(U)[1 + U^{-1} + ... + U^{1-i}]].$

Thus, the same form of the bound holds for y_{i+1} . Now

$$\sum_{k=0}^{1} u^{-k} < \sum_{k=0}^{\infty} u^{-k} = \frac{u}{u-1} ,$$

then for all i

$$y_i < A^{-1}[U + U(U - 1)^{-1}log(U)].$$

Therefore, $y_i \rightarrow y$ which satisfies $A^{-1}\log(y)$ or $y = e^{Ay}$, that is, y is a solution.

Lemma 3. For A < 0, the sequence $y_{i+1} = e^{Ay}i$, $y_0 = e$, has a unique limit and its limit is a solution.

Proof: By induction we will show the terms of even subscripts form a bounded monotone decreasing subsequence and the terms of odd subscripts form a bounded monotone increasing subsequence. Now

$$y_1 = e^{Ae} < e = y_0$$

$$y_2 = e^{Ay_1} > e^{Ay_0} = y_1$$
,

that is,

$$y_1 < y_2 < e = y_0$$

and

$$y_1 = e^{Ay}0 < e^{Ay}2 = y_3 = e^{Ay}2 < e^{Ay}1 = y_2.$$

Assume for i even

$$y_{i-1} < y_i < y_{i-2}$$

Then

$$y_{i-1} = \exp(Ay_{i-2}) < \exp(Ay_i) = y_{i+1} = \exp(Ay_i) < \exp(Ay_{i-1}) = y_i$$

For i odd assume

$$y_{i-2} < y_i < y_{i-1}$$
.

Then

$$y_{i} = \exp(Ay_{i-1}) < \exp(Ay_{i}) = y_{i+1} = \exp(Ay_{i}) < \exp(Ay_{i-2}) = y_{i-1}.$$

Hence, by induction the sequence has the following ordering:

$$y_1 < y_3 < y_5 < \dots < y_{2i+1} < \dots < y_{2i} < \dots < y_4 < y_2 < y_0$$

Suppose $y_{2i+1} \rightarrow y_0$ and $y_{2i} \rightarrow y_E$, where y_0 and y_E are distinct. Then by Rolle's theorem, there exists $x_1 \in (y_0, y_E)$ such that $\frac{d}{dx}(e^{Ax} - x)\big|_{x=x_1} = 0$. This implies $\exp(Ax_1) = A^{-1} < 0$. This is a contradiction.

Lemma 4. For A < 0 there exists a unique solution.

Proof: This follows immediately from lemma 3 and Rolle's theorem.

<u>Lemma 5</u>. For $0 < A < e^{-1}$ there exist exactly two solutions.

Proof: From lemma 1 and lemma 2 there exist two distinct solutions, call them x_1 and x_2 . Let $h(x) = e^{Ax} - x$. Suppose there exists a solution x_3 distinct from x_1 and x_2 . Now $\frac{dh}{dx} = Ae^{Ax} - 1$, that is, $\frac{dh}{dx}$ vanishes only at $x = A^{-1}\log(A^{-1})$. This is a contradiction, since Rolle's theorem says $\frac{dh}{dx}$ must vanish for at least two distinct points.

Lemma 6. For $A > e^{-1}$ there exist no solutions.

Proof: Let $g(x) = e^{Ax}$ and f(x) = x. Now g(x) > 1 + g'(0)x and $g'(0) > e^{-1}$. Then for a point, x_0 , of intersection (a solution) of f(x) and g(x), $x_0 > 1.58$. For x > 1.58, g(x) > g(1.58) + g'(1.58)(x - 1.58). This implies $x_0 > 4.86 > e$. Since g(e) > e and since, for x > e,

g'(x) > g'(e) > 1, there exist no solutions.

Lemma 7. For A = 0 or $A = e^{-1}$, $e^{Ax} = x$ has a unique solution.

Proof: Trivially, A = 0 has the unique solution x = 1. For $A = e^{-1}$, x = e is a solution. By assuming another solution $x_1 \neq e$, this results in an immediate contradiction to Rolle's theorem.

III. CONCLUSION

The previous seven lemmas have characterized the solutions of $e^{Ax} = x$. Figure 1 gives a graph of the solutions, and a tabular form of the solutions is given in Table 1.

There are more general forms of equations for which solutions are desired. By an appropriate change of variable, these can be readily reduced to the form $e^{Ax} = x$. For example, consider the solutions of

$$x + a = be^{c(x+d)}. (2)$$

Let $z = (\frac{x + a}{b})e^{c(a-d)}$ or $x = e^{c(d-a)}bz - a$, then (2) reduces to $z = e^{Az}$, where $A = bce^{c(d-a)}$. Another form is

$$ax = \exp(bx^{C}), (3)$$

then $x = a^{-1}z^{(c^{-1})}$, where z is a solution of $e^{Az} = z$ for $A = bca^{-c}$.

For A < 0, lemma 4 shows the existence of a unique solution. Lemma 3 gives a simple algorithm for approximating the solution, but for A < -1, this algorithm converges slowly. Fritsch, Shafer and Crowley [5] considered the case for A < 0 and gave an efficient algorithm for approximating the solution.

⁵ Fritsch, F. N., Shafer, R. E. and Crowly, W. P., "Solution of Transcendental Equation we^W = x", Communication of the ACM, Vol. 16, 1973, pp. 123-124.

Figure 1. Solution of $X = e^{AX}$

TABLE 1. SOLUTIONS OF THE EQUATION $X = e^{AX}$

A	x ₁	$\mathbf{x_2}$
0.365	2.41047	3.09768
0.360	2.23913	3.39658
0.355	2.13025	3.63730
0.350	2.04754	3.85633
0.345	1.98002	4.06488
0.340	1.92263	4.26824
0.335	1 - 87 257	4.46944
0.330	1.82808	4 • 67 0 5 1
0.325	1.78801	4.87287
0.320	1.75153	5.07765
0.315	1.71804	5 • 28 57 7
0.310	1 • 687 07	5.49803
0.305	1.65826	5.71515
0.300	1.63134	5.93779
0.295	1 • 60 60 7	6.16660
0.290	1 • 58226	6.40223
0.285	1.55976	6 • 64529
0.280	1.53842	6.89645
0.275	1.51815	7 • 15638
0.270	1.49883	7.42576
0.265	1.48039	7.70533
0.260	1 • 46274	7.99586
0.255	1 • 44584	8.29818
0.250	1 • 42961	8.61317
0.245	1.41402	8.94177
0.240	1.39901	9.28500
0.235	1.38454	9 • 64397
0.230	1 • 37 0 58	10.01987
0.225	1.35710	10.41401
0.220	1.34406	10.82731
0.215	1.33144	11.26283
0.210	1.31921	11.72078
0.205	1.30736	12.20354
0.200	1.29586	12.71321
0.195	1.28469	13.25207
0 - 190	1 • 27 38 3	13.82269
0.185	1.26327	14.42792
0.180	1.25300	15.07093
0 - 175	1-24300	15.75529
0.170	1.23325	16.43501
0.1€5	1.22375	17 • 26459

TABLE 1. SOLUTIONS OF THE EQUATION $X = e^{AX}$ (CONTINUED)

A	x ₁	\mathbf{x}_{2}
0.160	1.21448	18-09916
0 • 155	1 • 20544	18.99452
0.150	1.19661	19.95730
0:145	1.18798	20.99510
0.140	1.17956	22.11665
0.135	1.17132	23.33206
0.130	1.16326	24.65310
0.125	1.15537	26.09349
0.120	1 • 1 47 65	27 • 66939
0 - 115	1-14009	29 • 39993
0 • 1 1 0	1.13269	31.30792
0.105	1 • 12544	33.42073
0.100	1.11833	35.77152
0.099	1.11692	36.27365
0.098	1.11552	36.78726
0.097	1.11413	37 • 31 27 3
0.096	1.11274	37.85044 38.40083
0.095 0.094	1.11135 1.10998	38.96432
0.094	1.10998 1.10860	39 • 54137
0.092	1.10363	40 - 13245
0.091	1.10587	40 - 73805
0.090	1.10452	41.35870
0.089	1.10316	41.99493
880.0	1.10182	42.64732
0.087	1 • 10047	43,31647
0.08€	1.09914	44.00300
0.085	1.09781	44.79756
0.084		45.43085
0.083	1.09516	46.17359
0.082	1.09384	46.93654
0.081	1.09253	47.72051
0.080	1.09122	48.52633
0.079	1.08992	49.35490
0.078	1.08862	50 - 20715
0.077	1.08733	51.08406
0.07£ 0.075	1 • 08604 1 • 08476	51.98668 52.91610
0.074	1.08348	53.87349
0.074	1.08221	54.860D8
0.072	1.08094	55.87716
J + U 1 &		55557710

TABLE 1. SOLUTIONS OF THE EQUATION $X = e^{AX}$ (CONTINUED)

A	x ₁	\mathbf{x}_{2}
0-071	1.07967	56.92612
0.070	1.07841	58.00840
0.069	1.07716	59 • 12555
0.068	1.07590	60.27923
0.067	1.07466	61 - 47 1 17
0.066	1.07342	62.70323
0.065	1.07218	63.97738
0.064	1.07094	65.29573
0.063	1.06971	66.66052
0 • 0 6 5	1 • 0 €3 49	68.07416
0 • 0 6 1	1 • 0 67 27	69.53919
0.060	1.06605	71.05837
0.059	1.06484	72.63460
0.058	1.06363	74.27106
0.057	1.06243	75.97111
0.056	1.06123	77 - 7 38 38
0.055	1.06004	79 • 57 677
0.054	1.05884	31.49049
0.053	1.057€€	83.48407
0.052	1.05647	85.56243
0.051	1.05529	87.7308(
0.050	1.05412	89.99511
0.049	1.05295	92.36141
0.048	1.05178	94•83656 97•42794
0.047	1.05062 1.04946	100 • 14359
0.045	1.04948	102.99232
0.045	1.04715	105.98377
0.043	1.04601	109.12852
0.043	1.04486	112.43818
0.041	1.04372	115.92557
0.040	1.04259	119.60483
0.039	1.04145	123.49162
0.038	1.04032	127 • 60333
0.037	1.03920	131.95928
0.036	1.03808	136.58106
0.035	1.03696	141-49283
0.034	1.03585	146.72169
0.033	1.03474	152-29819
0.032	1.03363	158.25686
0.031	1.03253	164.63684

TABLE 1. SOLUTIONS OF THE EQUATION $X = e^{AX}$ (CONTINUED)

A	$\mathbf{x_1}$	\mathbf{x}_{2}
0.030 0.029 0.028 0.027 0.026 0.025 0.024 0.023 0.022	1.03143 1.03033 1.02924 1.02815 1.02706 1.02598 1.02490 1.02383 1.02276 1.02169	171.48276 178.84562 186.78404 195.36567 204.66900 214.78562 225.82297 237.90800 251.19164 265.85477
0.020 0.019 0.018 0.017 0.016 0.015	1.02062 1.01956 1.01850 1.01745 1.01640 1.01535	282.11590 300.24141 320.55929 343.47779 369.51134 399.31705
0.014 0.013 0.012 0.011 0.010 0.009	1.01430 1.01326 1.01222 1.01119 1.01015 1.00912	433.74729 473.92721 521.37198 578.16978 647.27751 733.01908
0.008 0.007 0.006 0.005 0.004 0.003	1.00810 1.00707 1.00605 1.00504 1.00402 1.00301	841.96771 984.60593 1178.69368 1456.79943 1885.48511 2624.17381
0.002 0.001 0.00 01 02	1.00201 1.00100 1.00000 0.99015 0.98058	4167.54073 9118.00663
04 05 06 07 08 09	0.96224 0.95345 0.94488 0.93654 0.92842 0.92049 0.91277	. 4

TABLE 1. SOLUTIONS OF THE EQUATION $X = e^{AX}$ (CONTINUED)

A	$\mathbf{x_1}$	$\mathbf{x_2}$
11	0.90522	
12	0.89786	
13	0.89067	
14	0.88364	
15	0 • 87 677	
16	0.87005	
17	0.86347	
18	0.85704	
19	0 - 8 5 0 7 5	
20	0.84458	
21	0.83854	
22	0.83262	
23	0.82682	
24	0.82113	
25	0.81555	
26	0.81008	
- • 27	0.80471	
- • 28	0.79944	
29	0.79427	
30	0.78918	
31	0.78419	
32	0.77929	
33	0 - 77 447	
34	0.76973	
35	0.76508	
-+36	0.76050	
- • 37	0.75600	
- • 38	0.75157	•
- • 39	0.74721	
40	0.74292	
- 41	0.73870	
42	0.73454 0.73045	
43 44	0.72642	
45 46	0.72245 0.71854	
47	0.71854	
- 48	0.71090	
49	0.70715	
50	0.70347	
51	0 • 69983	
	5.57700	

TABLE 1. SOLUTIONS OF THE EQUATION $X = e^{AX}$ (CONTINUED)

A	$\mathbf{x_1}$	\mathbf{x}_{2}
52	0.69625	
· - • 53	0.69271	
- • 54	0.68923	
- • 55	0.68579	
56	0.68240	
57	0.67905	
58	0.67575	
-•59	0.67249	
60	0.66927	
61	0.66610	•
62	0.66296	
63	0.65987	
64	0.65681	1
65	0.65379	
66	0.65081	
67	0 • 64787	
- • 68	0.64496	
- • 69	0.64208	
70	0.63924	
71	0.63644	•
72	0.63366	
73	0.63092	
74	0.62821	
75	0.62553	
76	0.62289	
77	0.62027	
78	0.61768	
79	•	
80	0.61259	
81	0.61008	
82	0.60760	
83	0.60515	
84	0.60273	
85	0.60033	
86	0.59795	•
87	0.59561	
88	0.59328	
89 90	0.59098 0.58870	
90 91		
91 92	0.58645	
72	0.58422	

TABLE 1. SOLUTIONS OF THE EQUATION $X = e^{AX}$ (CONTINUED)

A	$\mathbf{x_1}$	x ₂
93	0.58201	
94	0.57982	
95	0.57766	
96	0.57551	
97	0.57339	
98	0.57129	
99	0.56921	
-1.00	0.56714	
-1.50	0.48391	
-2.00	0.42630	
-2.50	0.38343	
-3.00	0.34997	•
-3.50	0.32294	
-4.00	0.30054	
-4.50	0 • 28 1 6 1	*
-5.00	0.26534	
-5.50	0.25119	
-6.00	0.23873	
-6.50	0 • 227 67	
-7.00	0.21776	•
-7.50	0.20883	
-8.00	0.20073	
-8.50	0.19333	
-9.00	0.18656	
-9.50	0.18032	
-10.00	0.17455	
-10-50	0 • 16920	•
-11.00	0.16423	
-11.50	0.15958	
-12.00	0.15523	
-12.50	0.15116	
-13.00	0 • 14732	
-13.50	0 • 1 4 3 7 0	
-14.00	0 • 1 4 0 2 9	
-14.50	0.13706	
-15.00	0.13400	
-15.50	0.13109	
-16.00	0.12832	
-16.50	0.12569	
-17.00	0.12318	
-17.50	0.12079	

TABLE 1. SOLUTIONS OF THE EQUATION $X = e^{AX}$ (CONTINUED)

Α .	$\mathbf{x_1}$	x ₂
-18.00	0.11849	
-18.50	0.11630	
-19.00	0.11420	
-19.50	· 0.11218	
-20.00	0.11025	
-20.50	0.10839	
-21.00	0.10660	
-21.50	0.10488	
-55.00	0.10322	
-22.50	0.10162	
-23.00	0.10008	
-23.50	0.09859	
-24.00	0.09715	
-24.50	0.09575	
-25.00	0.09441	•
-25.50	0.09310	
-26.00	0.09184	
-26-50	0.09061	
-27.00	0.08942	
-27.50	0.08827	•
-28.00	0.08715	
-28.50	0.03606	
-29.00	0.08500	
-29.50 -30.00	0.08397 0.08297	
-30.50	0.08200	
-31.00	0.08200	
-31.50	0.08013	
-32.00	0.07923	
-32.50	0.07923	
-33.00	0.07750	
-33.50	0.07667	
-34.00	0.07585	•
-34.50	0.07506	
-35.00	0.07428	
-35.50	0.07352	

ACKNOWLEDGEMENT

The author gratefully acknowledges Dr. M. S. Taylor for his many useful editorial comments which were incorporated in this paper.

DISTRIBUTION LIST

No. o	_	No. of Copies	
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	1	Commander US Army Tank Automotive Development Command ATIN: DRDTA-RWL Warren, MI 48090
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMA-ST 5001 Eisenhower Avenue Alexandria, VA 22333	2	Commander US Army Mobility Equipment Research & Development Command ATTN: Tech Docu Cen, Bldg. 315 DRSME-RZT Fort Belvoir, VA 22060
1	Commander US Army Aviation Systems Command ATTN: DRSAV-E 12th and Spruce Streets	1	Commander US Army Armament Command Rock Island, IL 61202 Commander
1	St. Louis, MO 63166 Director US Army Air Mobility Research		US Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Road Adelphi, MD 20783
	and Development Laboratory Ames Research Center Moffett Field, CA 94035	1	Director US Army TRADOC Systems Analysis Activity
1	Commander US Army Electronics Command ATTN: DRSEL-RD Fort Monmouth, NJ 07703		ATTN: ATAA-SA White Sands Missile Range NM 88002
1	Commander US Army Missile Command ATTN: DRSMI-R Redstone Arsenal, AL 35809	Abo	Marine Corps Ln Ofc Dir, USAMSAA