

BIOMECATRÓNICA

Lugar geométrico de las raíces

El problema del sistema de control

Representación vectorial de complejos

¿Y con una función de transferencia?

Partiendo de la representación zpk de la función de transferencia, se pueden trazar m+n vectores que parten desde sus raíces hasta un punto en el plano

$$F(s) = \frac{\prod_{i=1}^{m} (s + z_i)}{\prod_{j=1}^{n} (s + p_j)}$$

$$M = \frac{\prod_{i=1}^{m} |(s+z_i)|}{\prod_{j=1}^{n} |(s+p_j)|} \qquad \theta = \sum_{i=1}^{m} \angle (s+z_i) - \sum_{j=1}^{n} \angle (s+p_j)$$

EIA Medición de ángulos

EIA Ejemplo 1

Evalúe la siguiente función de transferencia

en
$$s = -3 + j4$$

$$F(s) = \frac{(s+1)}{s(s+2)}$$

¿Qué es un lugar geométrico?

Es el lugar geométrico de los puntos en el plano que están a una distancia constante (radio) de un punto fijo llamado centro

Es el lugar geométrico de los puntos en el plano cuya suma de distancias a dos puntos fijos, llamados focos, es constante

Es el lugar geométrico de los puntos equidistantes de un punto fijo, llamado foco, y una línea recta fija, llamada directriz

Conjunto de puntos que cumplen una propiedad o condición geométrica específica

Definición del lugar de raíces

Representación de las trayectorias de los polos de G(s) en lazo cerrado a medida que varía la ganancia K

Propiedades del LGR

Formulación matemática del LGR

s es un polo de lazo cerrado si cumple KG(s)H(s)=-1

Esto quiere decir que

$$|KG(s)H(s)| = 1$$
 $\angle KG(s)H(s) = (2k+1)180^{\circ}$

EIA Ejemplo 2

Evalúe si $s_1=-2+j3$ y $s_2=-2+j\sqrt{2}/2$ se encuentran sobre el LGR del sistema de la figura. En caso afirmativo, encuentre el valor de ganancia respectivo

EIA Construcción del LGR

Construir exactamente el LGR es un proceso tedioso y que se realiza de manera más exacta usando MATLAB

Pero, se puede llegar a una aproximación mediante la aplicación de algunas reglas

Regla 1: Número de ramas

El número de ramas del lugar de las raíces es igual al número de polos en lazo abierto

EIA Regla 2: Simetría

El lugar de raíces es simétrico respecto al eje real

Regla 3: Segmentos sobre el eje real

En el eje real, para K>0 el lugar geométrico de las raíces existe a la izquierda de un número impar de raíces finitas en lazo abierto sobre el eje real

Regla 4: Puntos de partida y llegada

El lugar de las raíces comienza en los polos finitos en lazo abierto de de G(s)H(s) y termina en los ceros finitos e infinitos de G(s)H(s)

Regla 5: Comportamiento en infinito

El lugar de las raíces se acerca a asíntotas rectas cuando el lugar geométrico se acerca al infinito

Además, la ecuación de las asíntotas viene dada por la intersección del eje real $[\sigma_a]$ y el ángulo $[\theta_a]$ de la siguiente manera

$$\sigma_a = \frac{\sum \text{ polos finitos } - \sum \text{ ceros finitos}}{\text{\# polos finitos } - \text{\# ceros finitos}}$$

$$\theta_a = \frac{180^{\circ}(2k+1)}{\text{\# polos finitos } - \text{\# ceros finitos}}$$

$$k = 0, 1, 2, \dots$$

Regla 6: Puntos de ruptura

El lugar de las raíces se separara (o regresará) del eje real a medida que los polos del sistema se desplazan desde el eje real al plano complejo

$$\sum_{1}^{m} \frac{1}{\sigma + z_i} = \sum_{1}^{m} \frac{1}{\sigma + p_i}$$

EIA Ejemplo 3

Bosqueje el LGR del sistema mostrado en la figura

EIA Ejemplo 4

A simplified block diagram of a human pupil servomechanism is shown in Figure P8.14. The term $e^{-0.18s}$ represents a time delay. This function can be approximated by what is known as a Padé approximation. This approximation can take on many increasingly complicated forms, depending upon the degree of accuracy required. If we use the Padé approximation

$$e^{-x} = \frac{1}{1 + x + \frac{x^2}{2!}}$$

then

$$e^{-0.18s} = \frac{61.73}{s^2 + 11.11s + 61.73}$$

Since the retinal light flux is a function of the opening of the iris, oscillations in the amount of retinal light flux imply oscillations of the iris (*Guy*, 1976). Find the following:

- **a.** The value of *K* that will yield oscillations
- **b.** The frequency of these oscillations

