DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH1020 Physics II

Tutorial 4 (19.2.2018)

1. Find the force on a triangular loop due to a current carrying wire (see figure). Both the loop and the infinite wire carry a steady current I.

- 2. A conducting material with rectangular cross section PQRS is placed with the sides PQ along the x-axis and QR along y-axis. A uniform current I₀ê_z flows across the cross section. Conduction electrons therefore move with a drift velocity v = -v₀ê_z and the conductor is placed in a magnetic field B = B₀ê_y. (a) How are the electrons deflected? (b) Find the resulting potential difference between the opposite faces containing QR and PS.
- 3. A thin conducting wire in the configuration shown in the figure carries a steady current I. Find the magnetic field ${\bf B}$ at the point P, the center of the semicircle.

- 4. A long cylindrical conductor of radius R has a cylindrical hole of radius b(b < R). The axis of the hole is parallel to the axis of the conductor. The remaining portion of the conductor has a uniform volume current density **J** parallel to the axis. Show that the magnetic field in the hole is uniform.
- 5. A steady current I flows through an L-shaped wire as shown in the figure. Calculate the magnetic field in the xy-plane over the domain x > 0 and y > 0.

6. A steady current density in a medium is given by $\mathbf{J}(\rho,\phi,z) = J_0 e^{-\lambda \rho^2} \hat{e}_z$ where J_0 and λ are positive constant of appropriate dimensions. Assume $\mu = \mu_0$ for the medium. (a) Find the magnetic field arising out of this current. (b) Sketch the magnitude of the field as a function ρ .