CIS 3223 Homework 3

Name: Solutions

Dr Anthony Hughes

Temple ID (last 4 digits:

Simple non-graphing calculator

Make:

- 1 (16 pts) Answer the following.
- (a) Find the smallest non-zero integer b such that $9b \equiv 0 \pmod{b}$

11

33) god(9, 33) = 3

(b) How many integers modulo 77 have inverses?

60

inverse = Unit

(c) Compute $2^{2024} \mod 33$

c) Compute
$$2^{2024} \mod 33$$

 $y(33) = y(3) p(1) = 2 \times 10 = 20$

 $2024 = 4 \pmod{20}$ $2024 = 4 \pmod{20}$ 2 = 33 = 33 = 6

$$2^{2024} = \frac{1}{33} = \frac{16}{33} = \frac{16}{$$

(d) 1.12(P39)

9(3) = 2

22006 = 0 (mod 2)

$$2^{2666}$$
 $2 = 2^{\circ} = 3$

2 (15 pts) Use the **modular exponentiation** algorithm to calculate 3^{31} (mod 37).

	digit	power	Z
	L	3	3
L	1	9	9×3 = 27
3	1	81 = 37 7	7*27=189=374
7	ĺ	49 = 37 12	12*4 = 48 = 11
15	l	144 = 37 33	33711 = 363 = 30
21			

3 (12 pts) What value of d should be used for the secret key (show steps)?

77

[Hint: Use the extended Euclidean algorithm]

$$p(221) = p(13) p(17) = 12 \times 16 = 192$$
 $g_{cd}(192,5) = 1$

Solve $192 \times + 5y = 1$
 $a = b = y = 1$
 $a =$

Could e = 3 be chosen?

4 (7 pts). 1.19 (p 40)

Fact:
$$a = bq + r$$
 . $gcd(a, b) = gcd(b, r) - Eochdean Algorith r$
 $F_{k+1} = F_k + F_{k-1} \Rightarrow gcd(F_{k+1}, F_k) = gcd(F_k, F_{k-1})$

So $gcd(F_{n+1}, F_n) = gcd(F_n, F_{n-1})$
 $= gcd(F_{n-1}, F_{n-2})$

Malhematically:

 $gcd(F_2, F_1) = 1$

5 (extra credit, 4 pts) P42 Q38(a)

Want smallest n so that
$$10^n = 1 \pmod{p}$$
, $n \mid 9(p)$
 $P = 11$, $9(1) = 10$, $n = 1, 2, 5, 10$ $10 = 10$, $10^2 = 11$ $n = 2$
 $P = 13$ $9(13) = 12$, $n = 1, 2, 3, 4, 6, 12$
 $10^1 = 13 \mid 0$, $10^2 = 13^9$, $10^3 = 13^9$, $10^4 = 13^3$, $10^6 = 1$ $n = 6$
 $10^1 = 17 \mid 9(17) = 16$, $n = 1, 2, 4, 8, 16$
 $10^1 = 17 \mid 0, 10^2 = 17 \mid 5, 10^4 = 17, 16, 10^6 = 17$

$$_{p=13}$$
 $_{p=17}$ $_{\downarrow\downarrow}$