

Earthquake Supercycles

GEOPH 677 Final Project Presentation - Rebekah Lee

Outline

- * Simple Earthquake Cycle (review)
- Prehistorical Data Sources
- * What determines whether a subduction zone will produce supercycles?

Simple Earthquake (EQ) Cycle

- *Large and great EQ release elastic strain accumulated during the previous interseismic period at highly locked asperities. (Noquet, 2016)
- *This resets the slip and moment deficit
- *Reduces local probability of another large EQ ***

Avouac J-P. 2015.

Annu. Rev. Earth Planet. Sci. 43:233-71

Problem

- * 2004 Mw 9.15 Sumatra Andaman and 2011 Mw 9.0 Tohoku, Japan occurred in regions where the maximum expected earthquakes were ~8.4
- This and other observations suggest that some earthquakes can borrow energy from previous seismic cycles —> Supercycles
- Not a long enough time history of data from historical and seismological records

Data Sources

- * Tsunami Record
 - eg. Sendai, Japan 869 and two prior events reached
 3 -4 km inland, similar to Tohoku
- * Paleoseismic displacement along Himalayan front
 - Modern EQs haven't ruptured the surface, but there is evidence of ruptures in the past with up to 26 m on surface
- * Turbidites- deposits from massive slope failures where rivers have deposited large deltas
 - Cascadia (Goldfinger et al, 2013)

Cascadia Turbidites (Goldfinger, et al, 2013)

- Correlated mass and thickness for same event at different sites
- * Modeled coseismic energy release as proportional to mass of turbidites triggered in seismic shaking
- * Assumptions:
 - * Plate Convergence between EQs increases elastic strain energy in proportion to intervening time
 - zero net energy gain over 10 ky time series

- High Energy States lead to massive event
- * Low energy states either result in long gap (cluster 2) or small EQ with net energy gain (cluster 3)

What determines Supercycles?

What Determines Supercycles?

- * Herrendorfer et al, (2015) observed that supercycles suggested to occur in regions where the estimated downdip width of the seismogenic zone is larger than average (>150 km).
- Investigate the link between supercycles and downdip width with 2D numerical modeling.

Avouac J-P. 2015.

Annu. Rev. Earth Planet. Sci. 43:233-71

- Visco elastic wedge
- *Conservative finite differences
 - Conservation of mass
 - Conservation of Momentum
 - Assumption of incompressibility (zero divergence)
 - Constitutive relationship connects deviatoric stresses and strain rates

Results of two end models

Long width = 248 Km

Short width = 102 Km

- Long width subduction zones characterized by supercycles that culminate in a Superevent.
- In Supercycles, smaller events only relieve the strain partially but overall excess strength continues to decrease until a low level.

Large Width Characteristics

- Characterize events into 3 types:
 - 1. Subcritical: fail to propagate far from nucleation region
 - 2. Pulse-like: propagate further but have short local duration
 - 3. Crack- like: most of the rupture area continues to slip through duration of rupture

Subcritical

Pulse-like

Crack-like

Large Width Characteristics

Subcritical Rupture

Subcritical events nucleate close to the downdip limit of the seismogenic zone and transfer stress close to the stopping location

Large Width Characteristics

Pulse-like Rupture

- Pulse-like ruptures nucleate from the downdip limit for short duration and transfer stress updip
- Combined, subcritical and pulse-like ruptures transfer stress towards the center of the seismogenic zone

Downdip Width and Supercycles

- Transition from ordinary cycles to supercycles between 120 and 150 km
- Ordinary cycles dominated by crack-like ruptures in a narrow seismogenic zone
- Supercycles occur in wide seismogenic zone and a sequence of subcritical and pulse-like ruptures prepare the occurrence of cracklike ruptures

References

- Avouac, J.-P. (2015), From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle, *Annual Review of Earth and Planetary Sciences*, 43(1), 150223150959,000, doi:10.1146/annurevearth-060614-105302.
- Goldfinger, C., Y. Ikeda, R. S. Yeats, and J. Ren (2013), Superquakes and Supercycles, Seismological Research Letters, 84 (1), 24-32, doi: 10.1785/0220110135.
- Herrendorfer, R., Y. van Dinther, T. Gerya, and L. A. Dalguer (2015), Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone, *Nature Geoscience*, 8 (6), 471-474, doi:10.1038/ ngeo2427.
- Nocquet, J.-M., P. Jarrin, M. Vall´ee, P. A. Mothes, R. Grandin, F. Rolandone, B. Delouis, H. Yepes, Y. Font, D. Fuentes, M. R´egnier, A. Laurendeau, D. Cisneros, S. Hernan- dez, A. Sladen, J.-C. Singaucho, H. Mora, J. Gomez, L. Montes, and P. Charvis (2016), Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake, *Nature Geoscience*, 10(February), doi:10.1038/ngeo2864.

S Parameter

S parameter: initial stress excess/stress drop

Influence of Relative friction drop and static Friction

Supercycle case studies

Material Parameters

Parameter	Symbol	Unit	Wedge	Seis. zone	Aseis. zone	Rigid body	Sticky air
Min. viscosity	η_{min}	Pa·s	5.10^{21*}	$1.7 \cdot 10^{14*}$	$1.7 \cdot 10^{14*}$	$1.7 \cdot 10^{22*}$	$3.3 \cdot 10^{13*}$
Max. viscosity	η_{max}	Pa·s	$5 \cdot 10^{21*}$	$5 \cdot 10^{21*}$	$5 \cdot 10^{21*}$	$1.7 \cdot 10^{22*}$	$3.3 \cdot 10^{13*}$
Shear modulus	G	GPa	9.2*	9.2^{*}	9.2*	$2.95 \cdot 10^{9*}$	9.2*
Density	ho	$kg \cdot m^{-3}$	2900	2900	2900	2900	2.9
Static friction	μ_s	_	<u> </u>	0.2	0.002	- I	
Dynamic friction	μ_d	_		0.035	0.157		
Char. velocity	V_c	$\mathrm{m}\cdot\mathrm{s}^{-1}$	<u>-</u>	0.16	0.031	_	-
Cohesion	C	MPa	_11	11.1	11.1	<u>-</u>	_

Global downdip width estimates

Subduction zone segment	ref. 5 W (km)	ref. 6-7 W (km)	Average W (km)
Andaman	243	159	201
Sumatra	174	159	166.5
Java	188	173	180.5
Philippines	81	79	80
S-Ryukyu	73	116	94.5
N-Ryukyu	122	116	119
Nankai	132*	116	124
Marianas	93	85	89
IzuBonin	104	85	94.5
Japan	161	162	161.5
S-Kuril	102	148	125
N-Kuril	95	137	116
Kamchatka	110	150	130
Ws-Aleutians	72	108	90
C-Aleutians	75	139	107
E-Aleutians	72	130	101
W-Alaska	91	151	121
E-Alaska	180	151	165.5
Mexico	74	73	73.5
Costa Rica	103	83	93
Cocos	138	83	110.5
Colombia	101	128	114.5
N-Peru	118	128	123
S-Peru	79	133	106
N-Chile	105	143.5	124.25
S-Chile	190*	105	147.5
Antilles	168	120	144
Sandwich	131	68	99.5
S-Kermadec	117	119	118
N-Kermadec	112	119	115.5
S-Tonga	80	101	90.5
N-Tonga	98	101	99.5
S-New Hebrides	83	70	76.5
D'Entrecasteaux	72	70	71
N-NewHebrides	100	70	85
Salomon Islands	87	62	74.5
Bougainville	97	62	79.5
New Britain	121	101	111
Hikurangi	178		178
Cotobato	52		52
Flores	57		57
W-Aegean	179		179
Cascadia	127*		127
Timor	110		110
Seram	76		76
Halmahera	79		79
Sangihe	104		104
Sulawesi	62		62
Manila	98		98

