

Universidade de Brasília Instituto de Exatas Departamento de Estatística

Cadeias de Markov e Economia da saúde

Uma aplicação utilizando o pacote heemod

Carolina Musso 18/0047850Henrique Oliveira Dumay 19/0121475

Professor(a): Cira Etheowalda Guevara Otiniano

Sumário 3

Sumário

1 Resumo	. 4
2 Introdução e Objetivos	. 4
3 Metodologia	. 4
3.1 Processo Semi-Markov	. 4
4 Resultados	. 6
5 Discussão	. 6
6 Conclusão	. 6
7 Apêndice	. 6

4 Metodologia

1 Resumo

2 Introdução e Objetivos

A avaliação econômica em saúde, cada vez mais fundamental na tomada de decisões dos sistemas de saúde, é utilizada para determinar quais intervenções devem ser financiadas com recursos limitados. Essencial em decisões sobre cobertura ou reembolso de novos medicamentos, esta abordagem foi pioneira na Austrália e em Ontário, Canadá. Atualmente é utilizada extensivamente no Reino Unido, onde o Instituto Nacional para Excelência em Saúde e Cuidados Clínicos (NICE) expande seu uso para dispositivos médicos, tecnologias de diagnóstico e procedimentos cirúrgicos (BRIGGS; CLAXTON; SCULPHER, 2006).

No Brasil esse é um campo em crescimento, especialmente em vista da necessidade de otimizar os recursos no Sistema Único de Saúde (SUS). Com um sistema de saúde pública que enfrenta desafios de financiamento e desigualdades regionais, a avaliação econômica torna-se crucial para garantir a eficiência na alocação de recursos e no acesso equitativo a tratamentos e tecnologias. Ainda há desafios, como a necessidade de maior capacitação técnica e integração de dados de saúde, mas a avaliação econômica está se tornando uma ferramenta cada vez mais importante na formulação de políticas de saúde no país (VANNI et al., 2009).

3 Metodologia

3.1 Processo Semi-Markov

Uma cadeia de markov é um processo estocástico em que a distribuição condicional para qualquer estado futuro X_{n+1} , dados os estados passados $X_0, X_1, ..., X_{n-1}$ e o estado presente X_n , é idenpendente dos estados passados e depende somente do estado presente. O processo assume um número finito de possíveis valores $\{X_n, n = 0, 1, 2, ...\}$ e, se $X_n = i$, considera-se que o processo está no estado \mathbf{i} no tempo \mathbf{n} . Assume-se que, quando o processo está no estado \mathbf{i} , existe uma probabilidade P_{ij} de ir para o estado \mathbf{j} em seguida. Isto é:

$$P\{X(n+1) = j | X_n = i_n, X_{n-1} = i_{n-1}, ..., X_1 = i_1, X_0 = i_0\} = P_{ij}$$

Metodologia 5

para todos os estados $i_0, i_1, ..., i_n, j$ e para todo $n \ge 0$. O valor P_{ij} representa a probabildiade do processo sair de **i** e ir para **j**.

Um processo estocástico $\{N(t): t \geq 0\}$ que pode estar em qualquer um de N estados (1, 2, ..., N) e, a cada vez que entrar em um estado \mathbf{i} , lá permanecer por uma quantidade de tempo aleatória, com média μ_i e, então, ir para um estado \mathbf{j} com probabilidade P_{ij} é chamado de processo semi-markov. Diferencia-se de uma cadeia de Markov por, nesta última, o tempo em que um processo passa em cada estado antes de uma transição ser o mesmo.

A proporção de tempo que um processo permanece em um estado ${\bf i}$ é dado por:

$$P_i = \frac{\mu_i}{\mu_1 + \mu_2 + \dots + \mu_N}, i = 1, 2, \dots, N$$

Com μ_i representando a quantidade esperada de tempo em que um processo permanece no estado **i** durante cada visita.

Considera-se π_i a proporção de transições que levam o processo ao estado **i**. X_n denota o estado do processo após a n-ésima transição. Então $\{X_n, n \geq 0\}$ é uma cadeia de Markov com probabildades de transição $P_{ij}, i, j = 1, 2, ..., N$. π_i será a probabilidade estacionária para essa cadeia de Markov. Isto é, π_i será a única solução não-negativa para

$$\sum_{i=1}^{N} \pi_i P_{ij} = 1\pi_i = \sum_{j=1}^{N} \pi_j P_{ij}, i = 1, 2, ..., N$$

Como o processo passa um tempo esperado μ_i no estado **i** sempre que visita aquele estado, P_i dever ser uma média ponderada de μ_i , em que π_i é poderado proporcionalmente a μ_i :

$$P_i = \frac{\pi_i \mu_i}{\sum_{j=1}^N \pi_j P_{ij}}, i = 1, 2, ..., N$$

e π_i é a solução da equação anterior.

A probabilidade P_i para um processo Semi-Markov

6 Apêndice

- 4 Resultados
- 5 Discussão
- 6 Conclusão
- 7 Apêndice

Referências 7

Referências

BRIGGS, A.; CLAXTON, K.; SCULPHER, M. Decision Modelling for Health Economic Evaluation. 1st. ed. Oxford University Press, USA, 2006. ISBN 0198526628. Disponível em: (https://www.amazon.com.au/Decision-Modelling-Economic-Evaluation-Handbooks/dp/0198526628).

VANNI, T. et al. Avaliação econômica em saúde: aplicações em doenças infecciosas. Cadernos de Saúde Pública, v. 25, n. 12, p. 2543–2552, 2009. Disponível em: $\langle \text{https://doi.org/}10.1590/\text{S0}102-311X2009001200002} \rangle$.