Quantum Computing – theoretical basics for the quantum coin game

Dr. Jan-R. Lahmann, IBM
Member of the IBM Academy of Technology

https://twitter.com/JanLahmann

Bit, Qubit, Measurement, State

The bit is the basic unit of information and has two possible states: 0 and 1.

The qubit is the basic quantum unit of information and also is 0 or 1 when you measure, or look at, it. This corresponds to the quantum states |0| or |1|

A (general) quantum state can be written as

$$\alpha \cdot |0\rangle + \beta \cdot |1\rangle$$

It is called a superposition of $|0\rangle$ and $|1\rangle$.

 α, β are generalized probabilities (for measuring 0 or 1) with $\alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1$

It provides a probability distribution for each possible outcome of a measurement on the system.

Bloch Sphere

The Bloch sphere is a geometrical representation of the state of a qubit:

| 0 | is at the north pole, | 1 | is at the south pole

Quantum Gates

A quantum gate is a basic "operator", acting on a small number of qubits. Gates are the building blocks of quantum circuits.

A quantum gate acting on a single qubit can be defined by its action on the basis vectors $|0\rangle$ and $|1\rangle$. $z=|0\rangle$

1)

Examples:

X-Gate

It equates to a rotation around the X-axis of the Bloch sphere by 180°. It maps

$$|0\rangle$$
 to $|1\rangle$ and $|1\rangle$ to $|0\rangle$.

It is called "bit-flip".

Hadamard-Gate

The Hadamard gate acts on a single qubit. It maps the basis state

$$|0\rangle$$
 to $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $|1\rangle$ to $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$,

which means that a measurement will have equal probabilities to become 0 or 1. On the Bloch sphere, it is the combination of two rotations, 180° about the Z-axis followed by 90° about the Y-axis.

Systems with N Qbits: Superposition and Entanglement

A single quantum bit can exist in a superposition of $|0\rangle$ and $|1\rangle$, and N qubits allow for a superposition of all possible 2^N combinations.

Example for N=2:
$$\alpha \cdot |00\rangle + \beta \cdot |01\rangle + \gamma \cdot |10\rangle + \delta \cdot |11\rangle$$

 $\frac{1}{\sqrt{2}} \cdot (|00\rangle + |11\rangle)$ is an example for entanglement, i.e. a state of N qubits, which cannot be described independently of each other.

Heads or Tails: How Quantum Power Helps to Win a Coin Game Play online: http://ibm.biz/QCoinGame

