Hopping Transport in a Ring of Sites:

A Semi-Analytical Study of a Diffusion Process

Christian Bracher

Physics Program, Bard College

Talk at QBM Munich, July 2013

Acknowledgments

Thanks to:

John Delos (College of William & Mary)
Tobias Kramer (Universität Regensburg, Germany)
Manfred Kleber (Technische Universität München, Germany)
Christophe Blondel (Laboratoire Aimè-Cotton, Orsay, France)
John Yukich, Wolfgang Christian (Davidson College)
Jean-Sabin McEwen (Washington State University)

Arnulfo Gonzalez (Texas A&M University)

Alexandros Fragkopoulos (Georgia Institute of Technology)

Prologue: A Jack of Many Trades?

Some of the topics I've dabbled with (and published about) in the past:

- Foundations of quantum theory:
 Tunneling time problem, uncertainty relations
- Applied quantum mechanics:
 Scanning Tunneling Microscopy,
 Photodetachment process, "atom laser"
- Semiclassical approximation:
 Quantum Ballistic Motion (QBM!),
 Charged-particle waves in electromagnetic fields
- Statistical physics:
 Persistent random walk, "micromaser," diffusion problems

A topic I have not dabbled specifically with in the past:

Biophysics

Erwin Schrödinger's Apology

"A scientist is supposed to have a complete and thorough knowledge, at first hand, of *some* subjects, and therefore, is usually expected not to write on any topic of which he is not a master. This is regarded as a matter of *noblesse oblige*. For the present purpose, I beg to renounce the *noblesse*

...some of us should venture to embark on a synthesis of facts and theories, albeit with second-hand and incomplete knowledge of some of them — and at the risk of making fools of ourselves.

So much for my apology."

Preface, What is Life? The Physical Aspect of the Living Cell (1944).

Diffusion on a Closed Loop — Setup

Circular chain with

• p equivalent sites,

hosting

• *k* identical objects.

(Here,
$$p = 19$$
 and $k = 5$.)

Occupation rules:

- Sites are occupied or empty.
- Objects cannot share sites.

Diffusion on a Closed Loop — Rules of the Game

- Objects can "jump" to empty neighboring sites.
- Jump rates depend on occupation of adjacent sites:
 - Motion of isolated objects (rate A)

Separation from a "block" (rate B)

• Fusion of object to "block" (rate C)

• Transfer between "blocks" (rate D)

Diffusion on a Closed Loop — Analysis

Quantities of interest:

- The "dead" loop: Equilibrium properties
 - Partition function
 - Pattern averages
- The "alive" loop: Kinetics
 - Symmetry properties
 - Master equation
 - Numerical approach
 - Sample results

```
Publication: J.-S. McEwen, S. H. Payne, H. J. Kreuzer, C. Bracher, Int. J. Quant. Chem. 106, 2889 (2006).
```

Interlude: A Biological Connection?

Motion along one-dimensional chains is a common motif in cell biology:

Transcription of DNA

Molecular Motors

Does interaction between "adsorbates" play a role?

Loop in Equilibrium: Block Numbers

Block number m[Z] of a configuration Z:
 Number of contiguous "blocks" of objects in loop

- Equilibrium average $p_{eq}[\mathcal{Z}]$ of configuration depends only on m!
- ullet m changes in fusion and separation processes only $(\Delta m = \pm 1)$

Loop in Equilibrium: Partition Function

Principle of detailed equilibrium:

$$\frac{p_{\text{eq}}[\mathcal{Z}']}{p_{\text{eq}}[\mathcal{Z}]} = \left(\frac{B}{C}\right)^{m[\mathcal{Z}'] - m[\mathcal{Z}]}$$

• Number N[p, k, m] of configurations with m blocks:

$$N[p, k, m] = \frac{p(p-k-1)!(k-1)!}{m!(k-m)!(m-1)!(p-k-m)!}$$

• Partition function Z[p, k]:

$$Z[p,k] = \sum_{\mathcal{Z}} p_{eq}[\mathcal{Z}] = \sum_{m=1}^{k} N[p,k,m] (B/C)^{m}$$

can be expressed as a hypergeometric series:

$$Z[p,k] = \frac{B}{C} \cdot {}_{2}F_{1}(1-k, 1-p+k, 2; B/C)$$

Loop in Equilibrium: Correlation Functions

- Correlation functions (pattern averages) follow from Z[p, k]
- Example: $\langle \bullet \rangle$, $\langle \bullet \bullet \rangle$, $\langle \bullet \bullet \bullet \rangle$, $\langle \bullet \bullet \bullet \bullet \rangle$, $\langle \bullet \bullet \bullet \bullet \bullet \rangle$ (p = 19, k = 5)

Kinetics of the Loop: Three Solution Approaches

Now, consider the loop out of equilibrium. Compare three approaches:

- Monte Carlo Simulation
 - + Easy to implement
 - Not systematic, statistical error, interpretation of results?
- Mean Field Methods (Diffusion Equation)
 - + Established method, good for extended, dilute systems
 - Misses correlations between objects
- Diagonalization
 - + Provides exact results
 - Numerically expensive, complexity grows fast with system size
 - + "Borrow" tricks from quantum mechanics

Symmetry and Invariance — A Primer

Some quantum theory in a nutshell:

- ullet Physical state of system is contained in state vector $|\Psi
 angle\left(t
 ight)$
- Time-dependent Schrödinger equation controls state evolution:

$$i\hbar rac{\partial}{\partial t} \ket{\Psi}(t) = \mathcal{H} \ket{\Psi}(t)$$

 $\mathcal{H} = \mathcal{H}^{\dagger}$ is the Hamilton operator

• A symmetry of the system is represented by a unitary operator $\mathcal{U}^{-1} = \mathcal{U}^{\dagger}$ that commutes with \mathcal{H} :

$$\mathcal{U}\mathcal{H}\mathcal{U}^{\dagger}=\mathcal{H}$$

ullet A symmetry ${\cal U}$ induces a decomposition of ${\cal H}$ into orthogonal parts:

$$\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \ldots \oplus \mathcal{H}_n$$

("block-diagonal form"), associated with the eigenspaces of \mathcal{U} .

Physical Symmetries of the Diffusion Problem

Symmetries thus simplify diagonalization, i. e., finding the eigenvalues and -states E_{ν} , $|\Psi_{\nu}\rangle$ of \mathcal{H} , by splitting \mathcal{H} into smaller, independent parts.

- Idea: Use the same principle to solve the diffusion problem!
- Physical symmetries of the diffusion setup:
 - Rotation of the pattern by an angle $2\pi/p$ (or a multiple)
 - Mirror reflection symmetry
 - Exchange of occupied and empty sites ("particle-hole symmetry")

Classifying Congruent Patterns

Insight (from abstract algebra):

- For prime p, the numbers $0, 1, \ldots, p-1$ form a number field under arithmetics modulo p.
- Convenient to choose a prime number of sites p in the loop!

Consequences:

- Every non-trivial rotation of a pattern of *k* objects yields a congruent, yet distinct pattern.
- Patterns form equivalence classes $\{\mathcal{Z}\}$ with p members each.
- The pattern sum *r* is a unique identifier of each pattern within a class:

$$r =$$
(sum of occupied site labels) mod p

(**Note**: None of this holds for composite *p*.)

Classifying Congruent Patterns — Example

- Primitive pattern with sum r = 0 is representative of class.
- Number of distinct primitives:

$$n[p, k] = \frac{(p-1)!}{k!(p-k)!}$$

• Straightforward binary coding scheme

Mirror Reflection Symmetry

mirror image pair

palindrome

- Pattern sum r changes sign under reflection
- Mirror image of primitive configuration is again primitive:
 - ullet Pairs two different primitives $\mathcal Z$ and $\mathcal Z'$, or
 - has inherent reflection symmetry (palindromic configuration)

Rate Matrices and Master Equation

As objects jump into adjacent sites, their configuration $[\mathcal{Z}|r]$ changes.

- A pattern \mathcal{Z} with block number m permits m possible jumps in (counter-)clockwise direction.
- ullet Jump changes the pattern sum r by ± 1
- Jumps target distinct primitive configurations \mathcal{Y} : Set up rate matrices $\mathbf{R}_{\circlearrowleft}[\mathcal{Y},\mathcal{Z}]$, $\mathbf{R}_{\circlearrowright}[\mathcal{Y},\mathcal{Z}]$

Occupation of a particular configuration $\langle [\mathcal{Z}|r] \rangle$ changes through:

• loss due to jumps leaving \mathcal{Z} :

$$R[\mathcal{Z}] = \sum_{\mathcal{Y}} \left(\mathbf{R}_{\circlearrowleft}[\mathcal{Y}, \mathcal{Z}] + \mathbf{R}_{\circlearrowright}[\mathcal{Y}, \mathcal{Z}] \right)$$

ullet gain through jumps from accessible configurations $[\mathcal{Y}|r\pm1].$

Rate Matrices and Master Equation

Master equation: Rate equation for occupation probability

$$\begin{split} \frac{d}{dt} \left\langle \left[\mathcal{Z} | r \right] \right\rangle (t) &= -R[\mathcal{Z}] \left\langle \left[\mathcal{Z} | r \right] \right\rangle (t) \\ &+ \sum_{\mathcal{Y}} R_{\circlearrowleft}[\mathcal{Z}, \mathcal{Y}] \left\langle \left[\mathcal{Y} | r - 1 \right] \right\rangle (t) + \sum_{\mathcal{Y}} R_{\circlearrowleft}[\mathcal{Z}, \mathcal{Y}] \left\langle \left[\mathcal{Y} | r + 1 \right] \right\rangle (t) \end{split}$$

Vector-matrix form:

- Collect $\langle [Z|r] \rangle$ into state vector $\mathbf{P}(t)$ of probabilities,
- Arrange jumping rates $R_{\circlearrowleft}[\mathcal{Y},\mathcal{Z}]$, $R_{\circlearrowright}[\mathcal{Y},\mathcal{Z}]$ into transition matrix \mathcal{A} :

$$\frac{d}{dt}\mathbf{P}(t) = \mathcal{A}\mathbf{P}(t)$$

• Formally similar to TDSE!

Reciprocal Space Patterns

Idea: Use rotational symmetry to simplify the master equation.

- Rotation of pattern $[\mathcal{Z}|r]$ changes pattern sum by fixed offset
- Define reciprocal space patterns via discrete Fourier transformation:

$$(\mathcal{Z}|q) = rac{1}{p} \sum_{r=0}^{p-1} e^{-2\pi i q r/p} \left[\mathcal{Z}|r
ight]$$
 $[\mathcal{Z}|r] = \sum_{q=0}^{p-1} e^{2\pi i q r/p} \left(\mathcal{Z}|q
ight)$

- Reciprocal space patterns $(\mathcal{Z}|q)$ are eigenstates under rotations
- Akin to angular momentum eigenstates in quantum mechanics, reciprocal space in solid state physics

Solution in Reciprocal Space

Master equation decouples into *p* independent equations:

$$rac{d}{dt} \left< \left(\mathcal{Z} | q
ight)
ight> (t) = \sum_{\mathcal{Y}} \mathcal{R}_q [\mathcal{Z}, \mathcal{Y}] \left< \left(\mathcal{Y} | q
ight)
ight> (t)$$

with reciprocal rate matrix elements:

$$\mathcal{R}_{q}[\mathcal{Z},\mathcal{Y}] = -R[\mathcal{Z}] + e^{-2\pi i q/p} R_{\circlearrowleft}[\mathcal{Z},\mathcal{Y}] + e^{2\pi i q/p} R_{\circlearrowleft}[\mathcal{Z},\mathcal{Y}]$$

- ullet Note: $\mathcal{R}_q[\mathcal{Z},\mathcal{Y}]=\mathcal{R}_{p-q}[\mathcal{Z},\mathcal{Y}]^*$
- ullet Rate matrix $\mathcal{R}_q[\mathcal{Z},\mathcal{Y}]$ is easily transformed into hermitian operator
- Diagonalize matrix using standard methods (QM!)
- Solution is superposition of exponentially decaying modes, decay rates $\lambda_{\nu}(q)$ are eigenvalues of rate matrices.

Example: k = 5 objects, p = 19 sites

- Complexity of the problem:
 - Number of distinct configurations: $N=\binom{19}{5}=11,628$
 - Number of primitive patterns: $N_p = N/p = 612$ (288 mirror image pairs + 36 palindromes)
 - Primitive patterns \mathcal{Z} by number of blocks m:

- Numerical expense:
 - ullet Find primitive patterns \mathcal{Z} , set up rate matrices $\mathbf{R}[\mathcal{Z},\mathcal{Z}']$
 - Spectral decomposition of hermitian 612×612 matrices for each momentum subspace $q = 0, 1, 2, \dots, 9$
 - Execution time < 1 min on my laptop (Core i5 processor)

Outlook: Persistent Random Walk

- Persistent random walk in two dimensions
- Interpretation: Simple polymer model
- Shown: Curves of constant entropic force for increasing joint stiffness

Publication: C. Bracher, Physica A 331, 448 (2004).

Outlook: Electron Source in a Uniform Magnetic Field

Publication: C. Bracher, A. Gonzalez, Phys. Rev. A **86**, 022715 (2012). (See also: APS Wall Calendar 2013.)

THANK YOU!

(Questions? Just ask!)