

Machine Learning for Materials

2. Machine Learning Basics

Aron Walsh

Department of Materials

Centre for Processable Electronics

Module Contents

- 1. Introduction
- 2. Machine Learning Basics
 - 3. Materials Data
 - 4. Crystal Representations
 - 5. Classical Learning
- 6. Artificial Neural Networks
- 7. Building a Model from Scratch
 - 8. Accelerated Discovery
- 9. Generative Artificial Intelligence
 - 10. Recent Advances

Artificial Intelligence

Computational techniques that mimic human intelligence

ARTIFICIAL INTELLIGENCE (AI)

(entire knowledge field)

MACHINE LEARNING (ML)

(data-driven statistical models)

Supervised

Unsupervised

Reinforcement

DEEP LEARNING

(multi-layered neural networks)

Focus on Machine Learning (ML)

Statistical techniques that improve with experience

Focus on Machine Learning (ML)

CLASSICAL MACHINE LEARNING

What type of learning is this?

Class Outline

Materials Learning Basics

- A. Terminology
- B. Evaluation metrics
- C. Learning by example

Linear Regression

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
Learned weights

Generalised Linear Models

Y =
$$\beta_0 + f_1(x_1) + f_2(x_2)$$

Non-Linear Interactions


```
def truth(r):
  \epsilon = 1
  v = (\epsilon/r)**12 - (\epsilon/r)**6
  return v
xvals = np.arange(1, 2, 0.01)
yvals = truth(xvals)
```


Default parameters with the scikit-learn Python package

Standard expansions work in low dimensions (D). Real problems face the "curse of dimensionality"

An exponential increase in the data requirements needed to cover the parameter space effectively, O(e^D)

Three Components of ML Models

1. Representation

Type of data and model architecture

2. Evaluation

Objective (or scoring) function to distinguish good from bad models

3. Optimisation

Update of model parameters to improve performance

- Classification model input a tensor of feature values and output a single discrete value (the class)
- Regression model input a tensor of feature values and output a continuous (predicted) value
- Feature an input variable
- Labelled example a feature with its corresponding label (the "answer" or "result")
- Ground truth reliable reference value(s)
- Hyperparameter model variables that can be tuned to optimise performance, e.g. learning rate

- Bias systematic error in the average prediction
- Variance variability around the average prediction

- Underfitting model too simple to describe patterns
- Overfitting model too complex and fits noise

underfitting

overfitting

Regression

Classification

- Underfitting model too simple to describe patterns
- Overfitting model too complex and fits noise

Typical Supervised ML Workflow

Class Outline

Materials Learning Basics

A. Terminology

B. Evaluation metrics

C. Learning by example

Model Assessment

Consider a linear model with optimal weights w

$$y \cap w_0 = w_0 + w_1 x_1$$

$$y \cap w_0$$

$$y' \cap w_1$$

$$y' \cap w_2$$

$$y' \cap w_3$$

$$y' \cap w_4$$

$$y' \cap w$$

Mean squared error (MSE)
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \text{model}(x_i, \mathbf{w}))^2 = \frac{1}{n} \sum_{i=1}^{n} (e_i)^2$$

Squaring the error ensures non-negativity and penalises larger deviations

Model Assessment

- Residual a measure of prediction error $e_i = y_i y_i^{predicted}$
- MAE Mean Absolute Error = $\frac{\sum_{i=1}^{n}|e_i|}{n}$
- RMSE Root Mean Square Error $= \sqrt{\frac{\sum_{i=1}^{n}(e_i)^2}{n}}$
- Standard Deviation a measure of the amount of dispersion in a set of values. Small = close to the mean.
 Expressed in the same units as the data, e.g.

lattice parameters a=4 Å, 5 Å, 6 Å mean = (4+5+6)/3=5 Å deviation = -1, 0, 1; deviation squared = 1, 0, 1 sample variance $\sigma^2=(1+0+1)/2=1$ standard deviation $\sigma=1$ Å

Model Training → Minimising Error

Model weights w are adjusted until a cost function (e.g. RMSE) is minimised

Gradient descent is a popular choice:

$$w_i
ightharpoonup w_i - \alpha \frac{d \text{ Error}}{dw_i}$$
Learning

Warning: local optimisation algorithms often miss global minima

Model Training → Minimising Error

Model weights w are adjusted until a cost function (e.g. RMSE) is minimised

Gradient descent is a popular choice:

$$w_i \rightarrow w_i - \alpha \frac{d \text{ Error}}{dw_i}$$
Learning

Model Training → Minimising Error

Optimisation algorithms have their own parameters, e.g. step size and no. of iterations

Learning rate (step size) $\alpha = 0.00$ 8 2 2 -2

W

Step number

```
# Define a function and its gradient
def f(x):
    return x**2
def df(x):
    return 2*x
# Initialise starting point and learning rate
x = 5
learning_rate = 0.1
# Perform gradient descent for 10 iterations
for i in range(10):
    # Compute the gradient of the function at x
    grad = df(x)
    # Update x using gradient descent
    x -= learning_rate * grad
```

Correlation Coefficient (r)

Describes the strength of the relationship between two variables (e.g. "ground truth" vs predicted values)

$$r \in [-1,1]$$

Positive: variables change in the same direction

Zero: no relationship between the variables

Negative: variables change in opposite directions

Pearson correlation*

$$r_{xy} =$$

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{x})^2}}$$

Reminder: correlation does not imply causation

Coefficient of Determination (r²)

Measure of the goodness of fit for a model.

Describes how well that known data is approximated

$$r^2 \in [0,1]$$

Zero: baseline model with no variability that predicts \overline{y}

0.5: 50% of the variability in y is accounted for

One: model matches observed values of y exactly

Three equivalent definitions

$$r^{2} = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$r^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - y_{i}^{predicted})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$r^{2} = 1 - \frac{\sum_{i=1}^{n} (e_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Note: a unitless metric. Alternative definitions are sometimes used

Correlation, Causation...

F. Messereli, New England Journal of Medicine 367, 1562 (2012)

Classification Metrics

Confusion (or error) matrix provides a summary of classification model performance


```
Perfect model to classify My best
 metals and insulators
      (N = 100)
```

Accuracy = Correct/Total
$$(70+30)/100 = 100 \%$$

$$(66+22)/100 = 88 \%$$

Classification Metrics

Confusion (or error) matrix provides a summary of classification model performance

```
\begin{bmatrix} 70 & 0 \\ 0 & 30 \end{bmatrix} \begin{bmatrix} 66 & 4 \\ 8 & 22 \end{bmatrix} Sensitivity = TP/(TP+FN) 70/(70+0) = 100 \% My best model (N = 100) My best model (N = 100)
```


Fill in "?" for this confusion matrix

	Predicted class				
		Insulator	Metal		
Actual class	Insulator	10	2		
	Metal	Ś	4		

Class Outline

Materials Learning Basics

A. Terminology

B. Evaluation metrics

C. Learning by example

Supervised Regression

Model that maps an input to an output based on example input-output pairs (labelled data)

Regression predicts a continuous value, e.g. to extract a reaction rate

Target
variable

$$y = f(x) + \varepsilon$$

Learned
function

Regression Example

Predict the dielectric constant of a crystal

Feature	Dimensions
Bandgap ^a	1
Δ Pauling energy ^b	1
Material density ^a	1
Formation energy (per atom) ^a	1
Oxidation state (minimum, variation) ^a	2
Madelung energy (minimum, maximum) ^c	2
Ionic species (one hot encoded) ^c	85

TABLE II. Performance metrics of support vector regression (SVR) and deep neural network (DNN) for training and test data. Metrics are mean Pearson's correlation coefficient (r²), average error (MAE), mean squared error (MSE), and root mean square error (RMSE).

Metric	SVR		DNN	
	Training	Test	Training	Test
r^2	0.92	0.86	0.95	0.84
MAE	0.24	0.44	0.20	0.55
MSE	0.69	0.99	0.38	1.17
RMSE	0.83	0.99	0.62	1.08

Note: outliers are often interesting cases (poor or exceptional data)

Regression Example

Predict the dielectric constant of a crystal

SHAP (SHapley Additive exPlanations) analysis is a method for interpreting ML models

Relative importance of input features in making predictions

A positive SHAP indicates a feature contributes to an increase in the prediction

Regression Example

Predict the dielectric constant of a crystal

Supervised Classification

Model that maps an input to an output based on example input-output pairs (labelled data)

Classification predicts a category, e.g. decision trees for reaction outcomes

Class label y = f(x) Classifier

Assignment can be absolute or probabilistic (e.g. 90% apple, 10% pear)

Classification Example

Predict if a material will be stable or unstable

Probabilistic score for the class label

- Positive (Syntheizable)
- Unlabeled
- Negative

Positive Unlabeled Data

Positive Unlabeled Learning

Classification Example

ABX₃ perovskite crystals

Neural network model

Improved selectivity for promising compositions

Radius ratio rules

Likelihood of formation

Unsupervised Learning

Model that can identify trends or correlations within a dataset (unlabeled data)

Clustering groups data by similarity, e.g. high-throughput crystallography

Input data

$$\mathbf{x} \to f(\mathbf{x})$$

Transformation to new representation

Unsupervised Example

Map materials space according to their features

Reinforcement Learning

Model that performs a series of actions by trial and error to achieve an objective

Maximise reward,
e.g. reaction conditions to
optimise yield

Automated Samples, experiments conditions, etc.

Agent ≠ Environment

Actions

Reinforcement Example

Class Outcomes

- 1. Define machine learning
- 2. Describe the three components of machine learning with examples
- 3. Explain the statistical metrics used to assess model performance

Activity:

Crystal hardness