

Réseaux

M1 Informatique

Pascal Guitton (repris par Damien Magoni)

Université Bordeaux 1

Organisation

- ♦ Cours, TD, TP
- ♦ Projet en groupe
- Examen (sans document)
- Objectifs:
 - ◆ culture de base
 - ◆ retombées concrètes (ADSL, WiFi, UMTS ...)
- ♦ Proche des SE, SR, SD

Bibliographie

- A. Tanenbaum, *Réseaux*, Pearson Education, 2-7440-7001-7, 2003 (4ème édition)
- ♦ C. Servin, Réseaux et télécoms, Dunod, 2-10-007986-7
- ♦ P. Mühlethaler, 802.11 et les réseaux sans fil, Eyrolles, 2-212-11154-1
- **♦** ...

Présentation

Introduction

- Préambule
- Motivations
- Modèle
- Applications

Structures

- Topologie
- Commutation
- Modèles
- Etendue
- Logiciels
- Exemples

Exemples

- dialogues (mail, chat, *conf)
- accès à des informations distantes (SI)
- commerce électronique
- travail collaboratif
- divertissement
- échange (P2P)

Remarques

- => modèles techniques et économiques variés
- => impacts sur la société (protection, sécurité)

Partage de ressources

- matérielles : imprimante, disque, UC ...
- logicielles : systèmes, compilateurs ...
- données : stock, clientèle, facturation ...
- humaines : expertises, contacts ...

Nomadisme

- télé*
- sans fil

Historique

- 18^{ème}: révolution industrielle
- 20^{ème} : révolution numérique

Traitement de l'information

- traitement, collecte, diffusion
- domaines : informatique, téléphonie, média (radio -> satellite)
- rapprochement et mélange (techniques, économiques)

Modèle centralisé

- 1 « gros »
 ordinateur avec ses
 périphériques dans
 une salle de calcul
- ENIAC, MARK 1

Modèle centralisé

- 1 « gros » ordinateur avec ses périphériques reliés par téléphone
- MAC (Armée américaine) : 30 machines à écrire (télétype) connectées

Modèle réparti

- 1 « petit » ensemble de mini-ordinateurs (E)
- 1 « grand » ensemble de micro-ordinateurs (P)

Topologie

Centralisée

- étoilés : point à point, multipoint (polling)
- hiérarchiques : multiplexeu (fréquence, temps)
- bouclés : réseaux locaux

Bilan

- pas optimisé :
 1 canal 1 terminal
- passage au réparti

Topologie

Répartie

- graphe
- routage fixe : unique, alterné, aléatoire
- routage adaptable : centralisé, réparti

Bilan

- partage de ressources : matérielles, logicielles, données, humaines
- fiabilité : destruction, saturation
- optimisation du coût d'utilisation
- évolution topologie puis nature communication : commutation

Circuits

- téléphonie : circuit attribué physiquement
- pas de correction d'erreur, pas de conversion (vitesse, format), pas d'optimisation

Messages

- décomposition en chemins indépendants
- émission, réception, stockage, réémission
- service très sur
- 62 · tálov (Franco) 60 · Sita

Paquets

- décomposition des messages en paquets de taille fixe
- compromis vitesse vs taille (interactif, fichier)
- paquet <> entité logique
- datagramme : paquets transmis indépendamment , pas de CF de bout en bout
- circuit virtuel : établissement d'une liaison, conservation de l'ordre, CF de bout en bout, adaptation débits, formats

Communication

Diffusion (broadcast)

- 1 seul canal de transmission partagé par tous les utilisateurs
- 1 E, 1 R (sélection/rejet à l'arrivée)
- 1 E, n R (diffusion générale/restreinte)

Point à point

- { paire de machines connectées }
- décomposition d'un trajet en une suite de trajets élémentaires (connexion pt à pt)
- plusieurs chemins possible entre E et R

Modèles

Architecture

- "gros" ordinateur muni de ressources
- ordinateur(s) interrogeant via un réseau
- modèle Client Serveur

Modèles

Communication

- envoi d'une requête de demande
- envoi d'une réponse
- processus émetteur processus récepteur
- alternance client/serveur : E / R

Modèles

Modèle P2P

Etendue

Réseau personnel (PAN)

ordinateur, souris, clavier, imprimante

Réseau local (LAN)

salle, bâtiment, entreprise/campus

Réseau métropolitain (MAN)

ville

Réseau à longue distance (WAN)

pays

Interconnexion de réseaux (Internet)

planète

Etendue

Interprocessor distance	Processors located in same	Example
1 m	Square meter	Personal area network
10 m	Room	
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country	
1000 km	Continent	Wide area network
10,000 km	Planet	The Internet

Réseau local

Propriétés

taille restreinte (< qqes km)
=> délai/temps de transmission borné
=> [très] haut débit (10 Mbit/s -> 10 Gbit/s)

Allocation

- statique : partage figé de l'accès (temps, fréquence)
- dynamique : accès à la demande

Réseau local

Topologies

- bus (Ethernet, 802.3)
- anneau (Token Ring, 802.5)

Réseau métropolitain

Réseau à longue distance

Composition

- hôtes (applis utilisateur)
- sous-réseau [de communication] (acheminement des messages)

Réseau à longue distance

Sous-réseau

- lignes de transmission (pas nécessairement physiques)
- équipements de commutation (ordinateurs) connectant les lignes de transmission
- commutateur, routeur (routage = sélection)

Satellite

- géostationnaires (36 000 m)
- stations d'émission
- stations de réceptions

Réseau à longue distance

Evolution

- structure (supports physiques, architecture)
- fonctionnement (services, débit)
 - => logiciels de réseau

Structuration

- augmentation de la complexité
- nécessité de décomposition (conception, maintenance, échange)
- notions de couche, de protocole, de service

Définitions

- modules logiciels regroupés fonctionnellement en <u>couche</u> (niveau N)
- rôle : assurer des <u>services</u> à la couche N
 + 1 en lui masquant les détails d'implémentation
- analogie : machine virtuelle, encapsulation
- dialogue (communication virtuelle) entre couches N (entités paires) de machines distantes
- <u>protocole</u>: ensemble de conventions (règles, formats) permettant le dialogue

Mécanismes dans les couches

Adressage

Contrôle d'erreur

Séquencement

Contrôle de flux

Multiplexage

Routage

Primitives (=> Services)

Transfert avec établissement de connexion

Primitive	Meaning	
LISTEN	Block waiting for an incoming connection	
CONNECT	Establish a connection with a waiting peer	
RECEIVE	Block waiting for an incoming message	
SEND	Send a message to the peer	
DISCONNECT	Terminate a connection	

Normalisation

Problème

- réseaux propriétaires (IBM, Bull, DEC)
- interconnexion de systèmes hétérogènes (machines, OS, liaisons)
- difficulté de connexion entre couches

Solutions

- standardisation : produits du marché (IBM PC, Windows)
- normalisation: instances internationales (ISO, IEEE) (RS 232, IEEE 802.3)

Organismes de normalisation

UIT (ITU)

- Union Internationale des Télécommunications
- Fondée en 1865 : télégraphe, puis téléphone
- > 1947 : agence de l'ONU
- > 1993 : UIT-T (ex CCITT : X 25)
- Membres : gouvernements, sociétés (opérateurs, fabricants...) , associations ...
- 3000 recommandations, 60 000 pages
- Ex: V24, V90 ...

Organismes de normalisation

ISO

- International Standardization Organization
- Fondée en 1946
- 89 membres issus des instances nationales (AFNOR, ANSI, DIN ...)
- Organisée en Technical Commitee (TC), Sub-Commitee (SC) et Working Group (WG)
- ex : TC 97 : informatique
- Chronologie : Commitee Draft (CD), Draft International Standard (DIS) puis International Standard (IS)
- => plus de 13 000 normes
- Coopération UIT T et ISO pour les

Modèles de référence : OSI

Présentation

- modèle OSI (Open System Interconnection)
- Issue de l'ISO
- fonctionnalités des couches
- mais pas de protocole, ni de service
- 7 couches (support physique => applications)

Modèles de référence OSI

Modèles de référence : TCP/IP

Présentation

utilisé dans ARPA puis Internet

Modèles de référence : TCP/IP

Historique

- 50's (guerre froide) : vulnérabilité du réseau (téléphonique, centralisé) => réflexion DoD
- 60 : idée d'une structure maillée (P. Baran)
- 67 : ARPA : conception d'une structure

ARPAnet

- miniordinateurs (Interface Message Processor)
- reliés par des lignes à 56 kbits/s
- chaque IMP est relié à au moins 2 autres
 IMP

Structure d'ARPAnet

Evolution d'ARPAnet

12/69 -> 9/72

Extensions ARPAnet

- raccordement de réseaux => modèle
 TCP IP
- déploiement => outils (sockets, utilitaires), Unix BSD
- adressage => DNS

NSFnet

- fin des 70's : financement d'un réseau reliant 6 centres de calcul (56 kbits/s)
- ajout de nombreux sites
- raccordement à ARPAnet
- 90's : Internet

NSFnet (1988)

Evolution

- email, newsgroups, telnet, rlogin, ssh, ftp
- universitaires
- World Wide Web (CERN, T. Berners-Lee), Mosaic
- fournisseur d'accès : grand public
- entreprises
- plusieurs centaines de millions d'utilisateurs ?

Architecture

Exemples: Ethernet

Historique

- 70's : ALOHAnet (émission avec collision)
- Ethernet : B. Metcalfe (Xerox), 2,94 Mbits/s
- 78 : IEEE 802.3, 10 Mbits/s
- 3COM

Couche Physique

Bases théoriques de la transmission

half/full duplex, <u>signal</u>, <u>modulation</u>

Techniques de transmission

codage, série/parallèle,
 synchrone/asynchrone

Supports de transmission

paire torsadée, coaxial, fibre, sans fil

Simplex

- Transmission unidirectionnelle
- Un site : E ou R

Half duplex (alternat)

- Transmission unidirectionnelle
- Un site: alternativement E ou R

Full duplex

Transmission bidirectionnelle

Principe de base

- Transmission d'infos sur un support conducteur en faisant varier certaines caractéristiques : tension, courant ...
- Support filaire ou non filaire
- Variation en fonction du temps
- => signal f (t)

Transformée de Fourier

- début 19ème : Jean Baptiste Fourier
- Toute fonction périodique g (t) est exprimable en une somme de fonctions sinusoïdales et cosinusoïdales :
- g (t) = $\sum a_n \sin(2\pi n f t) + \sum b_n \cos(2\pi n f t)$
- f : fréquence fondamentale,
 a_n b_n : amplitude des harmoniques de rang n
- Calculs : $g(t) \Leftrightarrow \{ a_n b_n \}$
- => Tout signal y(t) est décomposable
- Donrécontation de v(t) par con enectro

Signal sinusoïdal

- Tous les dispositifs de transmission induisent des pertes de puissance du signal
- Perte inégale sur les différentes harmoniques
- Transmission de signaux avec une distorsion faible jusqu'à la <u>fréquence de</u> <u>coupure</u> (Fc)
- <u>Bande passante</u> (bandwith) : intervalle de fréquences garantissant une faible distorsion, délimité par la Fc

Ex : transmission du caractère b (ASCII)

Modes de transmission

- numérique (bande de base) :
 données binaires sous forme de
 signaux numériques (potentiels
 électriques)
- pb : atténuation sur de longues distances
- analogique (modulation d'une onde porteuse):
 - signal de base (onde) modifié en fct des infos à transmettre

Techniques de Modulation

- modems (ETCD) à chaque extrémité du circuit
- porteuse
 - tension continue : modulation d'amplitude
 - tension carrée : modulation à largeur d'impulsion
 - tension alternative : modulation d'amplitude, de fréquence, phase
- rapidité de modulation : inverse du temps le plus court existant entre 2 niveaux de modulation (unité = baud, <> bits/s)

Codage

- avant sa transmission, une info doit être numérisée
- exemples :
 - texte : suite de caractères, code ASCII
 - images, sons : suites de bits
- en général, 1 bit (octet) est associé à 1
 (8) bascule (0, 5V)
- transmission parallèle/série

Parallèle

- transmission simultanée des 8 bits sur 8 fils
- bus μP, imprimante
- distance < km (au delà, pbs de coût)

Série

- transmission bit après bit sur 1 fil
- circuits de conversion série-parallèle (registres à décalage), en E et en R
- synchronisation E R?
 - ex : 5V pdt 10s : 10 bits à 1 ou 5 bits à 1 ?

Synchronisation

- Pb majeur, cause de perte et d'erreurs
- prise en compte d'une horloge H
- pb : comment obtenir H ?
- sol 1 : transmission parallèle de H : coûteux
- sol 2 : "intégration" de H aux données
 - choix de H_E et H_R sensiblement équivalentes
 - synchronisation de H_E et H_R avec les bits du message
- 2 types de transmission : synchrone asynchrone

Asynchrone

- messages groupés en trames
- délimitées par un début et une fin
- début : synchronisation de H_R
- limitations :
 taille des messages (pour éviter une désynchronisation, vitesse (ajout d'infos de service)
- Ex: SLIP, PPP

Synchrone

- H_R recalée en permanence sur transitions du signal (0 <-> 1)
- envoi d'un message de synchro au préalable
- pas de limitations taille, vitesse
- pb : suite continue de 0 ou de 1
- sol : limiteur d'état permanent
 - E : inversion de tous les bits au delà du nième constant
 - R: processus inverse
- Ex: BSC, SDLC, HDLC, PPP

Supports guidés

- Paires torsadées
- Câble coaxial
- Fibre optique

Supports libres

- Faisceaux hertziens
- Liaisons satellite

Supports magnétiques

Débits

- 1 bande magnétique : 200 Go
- 1 boîte 60 x 60 x 60 cm : 1000 bandes,
 200 To
- Livraison en 24h (Europe) : débit = 19
 Gbits/s
- Livraison en 1h : débit >= 400 Gbits/s

Coûts

- 1 bande : 40 €, réutilisable 10 fois
- 1 boîte : 4000 €
- 1 envoi : < 1000 €

Paires torsadées (Unshielded Twisted Pair)

- paire(s) de fils (qqs mm) desserte tél (1), LAN (4), réseau tél (qqs 10's)
- torsadée pour diminuer radiations parasites
- réseau téléphonique (1 paire),
- distance courte : qqs Mbits/s
- A : simplicité, coût
- I : signal affaibli après ~ 5 km (régénérateurs)
- catégories de fils :

Paires torsadées

Cable coaxial (coax)

• 2 conducteurs cylindriques coaxiaux et isolés

- diamètres : qqs mm (/ = 3,6)
- meilleure protection donc débits plus élevés (BP
 : 1 GHz, qqs 100 Mbits/s)
- réseau téléphonique, TV (câble) => CATV
- A : technique robuste, faible coût, débit élevé

Fibre optique

- 60's : apparition du laser (faisceau lumineux très directif et stable en amplitude et en fréquence)
- nécessité de systèmes pour guider la lumière
- 72 : fibre optique (piège à lumière)
- câble à fibres optiques

Système fibre optique

- Système : E + FO + R
- E : diode (LED ou laser), R : photodiode
- Système actif : régénérateur

Avantages

- performances
- BP : qqs GHz
- débits : 10 100 Gbits/s (th : 50 kGbits/s)
- compacité (diamètre : < 0,1 mm, qqs g/km)
- faible atténuation du signal (régénérateurs : 50 km)
- insensibilité aux parasites magnétiques

Inconvénients

coûts: fabrication, connectique, pose

Paires vs Fibres

Comparaison

- BP : MHz GHz
- Régénérateurs : 5 km 50 km
- pas d'interférence magnétique
- - insensible aux pannes de courants
- insensible à la corrosion
- - plus fine
- plus légère (1 km : 8 T 100 kg)
- plus résistante aux écoutes
- plus simple à poser compétences spécifiques
- plus solide –
- interfaces de couplage onéreuses

Libres

- transmission sans fil (wireless)
- M :
 - accès permanent (nomadisme),
 - difficulté d'accès dues aux infrastructures
- progression d'ondes électromagnétiques (antennes)
- propriétés dépendant de la longueur d'onde

Ondes électromagnétiques

Dénomination UIT

Ondes radio

- A : faciles à générer
- A : parcourent de longues distances
- A : ne sont pas arrêtées par les immeubles
- A: omnidirectionnelles
- I : sensibles aux interférences (équipements électriques)
- I : faible bande passante
- Rq : nécessité de réguler les fréquences utilisées

Micro-ondes

- > 100 MHz
- propagation linéaire
- antenne parabolique (pb d'alignement)
- utilisées pour le cœur du réseau téléphonique (avant FO)
- A : moins chères que la FO
- I : ne traverse pas les murs
- I: > 4GHz: absorbées par la pluie
- I : espace de fréquences limité

Régulation

- éviter les interférences
- France : ART + ANF (Agence Nationale des Fréquences)

Exemple

- téléphonie mobile
- performances, aléatoire, plus offrant
- 3G : appel d'offres
- bénéfices importants pour les gouvernements
- déficits importants pour les opérateurs

Introduction

- Téléphonie : 56 kbits/s
- TV par câble : 10 Mbits/s
- nécessité pour les opérateurs d'offrir Internet
- => services à large bande (broadband)
- xDSL

Rappel

- Réseau téléphonique a été inventé pour la voix
- Boucle locale : moyens mis en œuvre par un opérateur pour relier un utilisateur
- Infrastructure payée par ressources publiques

Aujourd'hui

 Réseau = voix + données, mise en œuvre ?

NA!------

Boucle Locale Radio

- Coûts infrastructure « cuivre » importants
- Technologie sans fil choisie par des opérateurs (Liaisons radio)
- Zones semi-urbaines
- BLR WLL (Wireless Local Loop)
- Débit : qqs Mbits/s à qqs 10s Mbits/s
- Cellules 1 km de diamètre

Accès haut-débit

- Zones urbaines : FO + cuivre (utilisateur final)
- Cas général : utilisation du réseau commuté
- BP BL utilisée pour la voix = 4000 Hz (filtre) mais borne > 1 MHz

xDSL

- Partage de la BP:
 - voix (4 kHz)
 - simplex montant : 32 à 640 Kbits/s (upload)

ADSL

- Codage des données en fréquences
- DMT (Discrete MultiTone)
- BP découpées en sous-canaux
- Répartition choisie par l'opérateur

- Network Interface Device
- Splitter (filtre séparateur de ligne)
- Digital Suscriber Line Access Multiplexer

Problème

- Atténuation avec la distance
- Distance utilisateur central < 3 4 km
- Zone de dégroupage

ADSL 2 +

- BP: 2,2 MHz
- Débit théorique : 25 Mbits/s (R), 1 Mbits/s (E)
- Débits accessibles si distance < 3 4 km

Multiplexage fréquentiel

• téléphone, groupes (primaire, secondaire ...)

Multiplexage longueur d'ondes (WDM)

Multiplexage temporel (TDM)

transmission numérique

Téléphonie mobile (cellulaire)

- 3 générations : voix analogique, voix numérique, voix + données numériques
- inventée aux EU mais développée en Europe
 - norme unique vs plusieurs systèmes
 - numéro reconnaissable
 - cartes prépayées
- 1946 : 1^{er} système de radiotéléphone (St Louis) canal unique, push to talk (CB)
- 1960 : IMTS, 2 fréquences (E, R), délais
- 1982 : AMPS (Bell Labs), ancêtre de la

AMPS

- découpage de l'espace en cellules (10 à 20 km)
- chaque cellule utilise 1 bande de fréquences (<> des cellules adjacentes)
- chaque cellule est équipée d'une antenne
- diminution de la taille de la cellule :
 - augmentation du nb d'appels simultanés
 - diminution de la puissance des antennes
 - diminution de la puissance (poids, consommation) des téléphones
- utilisée lors d'évènements (microcellules)

Découpage en microcellules

Fonctionnement

- 1 téléphone est dans une cellule, relié à la station de base (SB)
- qd il sort de la cellule, la SB constate un affaiblissement du signal
- elle communique avec les SB adjacentes et passe le relais à celle qui reçoit un signal fort
- le téléphone est alors prévenu et change de canal
- durée du transfert : 300 ms

GSM

- voix numérique, système G2 (EU : D-AMPS)
- émet sur 1 fréquence et reçoit sur 1 autre
- multiplexage fréquentiel et temporel
- 124 paires de canaux simplex
 - montants: 890 915 MHz
 - descendants: 935 960 MHz
- 1 canal simplex : 200 kHz, 8 connexions (MT)
- 1 cellule : < 992 canaux

GSM

3G

• P 180

Couche Liaison de données

Introduction

trames, service

Traitement des erreurs

détection, correction

Exemple

• HDLC

Machine à états finis

• automates, réseaux de Petri

Présentation

- rôle : permettre à 2 machines physiquement connectées de communiquer de façon fiable
- pb : liaisons imparfaites (pertes, corruption, délais)

Fonctionnalités

- traiter les erreurs de transmission
- réguler/adapter les flux E / R

Moyens

trames

Trames

- canal imparfait
 - nb bits reçus <, =, > nb bits envoyés,
 - valeurs modifiées
- trames contrôlées à l'aide d'un checksum : calculé par l'E, inséré dans la trame, vérifié par le R
- 3 types de trame :
 - comptées
 - délimitées par des octets spéciaux
 - délimitées par des motifs binaires

Trames

 champ dans l'entête indiquant le nb de caractères

Trames

- délimitées par des octets spéciaux (fanions, flags)
- pb : fanion présent dans un transfert binaire
- sol : le précéder d'un caractère spécial (ESC)
- remplissage de caractère (d'octet)
- utilisé dans PPP
- limitation : caractère de 8 bits

Remplissage de caractères

Trames

- taille qcq
- délimitées par des motifs binaires particuliers
- ex : 01111110, qd l'E détecte 5 bits à 1, (a) 01101111111111111110010

- (c) 011011111111111111110010
- remplissage de bits

Service

- ss connexion et ss accusé de réception
 - rapide, peu fiable
 - liaison sure (RL, fibre), temps réel (voix)
- ss connexion et avec accusé de réception
 - plus fiable,
 - liaisons ss fil
- avec connexion et accusé de réception
 - 3 phases : ouverture, transmission, fermeture
 - très fiable (trames numérotées)
 - garanties (pas de perte, ni de duplication, ordre respecté)

Introduction

- canal imparfait (BLR analogique, sans fil ...)
- 4 stratégies

Stratégie 1

- détection par écho
- R renvoie en écho le message reçu à E
- ex : Telnet, Minitel ...

Stratégie 2

- détection par répétition
- message émis 2 fois successivement
- ex : milieux très perturbés, applis temps réel

Stratégie 3

- données très redondantes : restitution des données émises à partir des données reçues
- → code correcteur d'erreur (ECC) canal peu fiable, ex : ss fil

Stratégie 4

- données "peu" redondantes : demande de réémission
- → code détecteur d'erreur (EDC) canal fiable, ex : fibre

Présentation

- Shanon : ajout limité d'infos redondantes rend arbitrairement petit le taux d'erreur résiduel
- compromis : taille info redondante, vitesse de transmission, taux d'erreur, coût matériel
- principe :
 - E : calcul d'une séquence de contrôle à partir des infos
 - E : transmission des infos et de la séquence
 SC_F
 - R : calcul d'une séquence SC_R à partir des infos reçues

Présentation

- d bits de données + c bits de contrôle
- t = d + c : longueur du mot transmis
- 2 d combinaisons de mots de données
- 2 t combinaisons de mots
- mais seule une partie de cet ensemble est valide
- → notion de code (ensemble des configurations valides)

Code correcteur : Contrôle de parité

- parité paire (impaire)
- ex : 'A',
 - code ASCII: 1000001
 - bit de parité : 0
 - transmis: 1000001 0
- pb : nb pair d'erreurs
- → contrôle longitudinal :
 - suite de trames (matrice)
 - contrôle sur les n^{ièmes} bits (n^{ième} colonne)
- VRC (Vertical Redundacy Check), LRC

Code correcteur : Hamming

- insertion de bits de contrôle dans les bits de données (position 2ⁿ)
- bit de données k contrôlé par les bits dont les positions sont les coefficients de la décomposition de k en puissances de 2
- ex : k = 13 = 1 + 4 + 8
 => bit 13 contrôlé par bits 1, 4 et 8
- valeur d'un bit de contrôle choisie pour assurer une parité
- contrôle de parité sur les bits de contrôle reçus

11 4 0 0

Code de Hamming

Char.	ASCII	Check bits
Н	1001000	00110010000
а	1100001	10111001001
m	1101101	11101010101
m	1101101	11101010101
i	1101001	01101011001
n	1101110	01101010110
g	1100111	01111001111
100	0100000	10011000000
С	1100011	11111000011
0	1101111	10101011111
d	1100100	11111001100
е	1100101	00111000101
		Order of bit transmission

Code détecteur : code polynomial

- CRC : Cyclic Redundancy Check
- bits d'infos à transmettre : coeff (0, 1) d'un polynôme
- mots du code représentés sous forme polynomiale
- $ex : C = \{ 000, 101, 110, 011 \}$
- \rightarrow { 0, 1 + x^2 , 1 + x, $x + x^2$ }
- arithmétique polynomiale modulo 2 (ou_{ex})
- ex : 01100 + 11010 = 10110
- déf: un code est cyclique si il est binaire et si toute permutation linéaire d'un mot du code est encore un mot du code (C?)

Code détecteur : code polynomial (CRC)

- pour tout code cyclique C, il existe 1 unique polynôme générateur G(x) (de degré g) tq tout polynôme de C est divisible par G(x)
- infos utilisateur : U(x)
- multiplier U(x) par x^g (~rajouter g 0)
- diviser x^g U(x) par G(x) (→ reste r(x))
- transmettre x^g U(x) r(x) (~rajouter r(x))
- à la réception, le reste de la division du polynôme recu par G (x) doit être nul

Frame : 1101011011

Generator: 10011

Message after 4 zero bits are appended: 1 1 0 1 0 1 1 0 1 1 0 0 0 0

Transmitted frame: 11010111011110

Exemple de protocole : HDLC

HDLC (High Level Data Link Control)

- protocole basé sur le bit (indép. des réseaux)
- 76 : normalisé par l'ISO
 ISO 3309 76 structures de trame
 ISO 4335 77 éléments de procédure

Exemple de protocole : HDLC

Trames

- délimitées par 2 fanions, pas plus de 5 bits à 1

Bits 8 8 8 ≥ 0 16 8

01111110	Address	Control	Data	Checksum	01111110

Présentation

• 3 phases : ouverture, transfert, fermeture

Transfert

- trames numérotées, acquittement : numéro de la dernière trame reçue correctement
- fenêtre coulissante de taille 7 (numéro mod 8)
- demande de réémission(s) en cas de pb(s)

trames: REJ (> n), SREJ (n)

Fenêtre coulissante (taille 1, mod 8)

Fenêtre coulissante (tailles 1, n)

Contrôle

- Seq : numéro de la prochaine trame à émettre
- Next : numéro de la prochaine trame à recevoir
- S: champ de supervision:
 RR (00), REJ (01), RNR (10), SREJ (11)
- M : champ de modification
- P / F : bit d'invitation / fin

Acquittement

- réception par R d'une trame I (Seq)
- 2 possibilités :
 - si R a une trame I à émettre : il utilise le champ Next de cette trame
 - sinon R envoie une trame S dt il utilise le champ Next
 - dans les 2 cas : Next <- Seq + 1
- en réception, Next est donc un acquittement des trames jusqu'à Next – 1 (modulo 8)

Contrôle de flux

- blocage de l'émission : trame RNR
- déblocage : RR
- si mauvaise réception, demande de réémission
 - de la trame Seq : SREJ
 - des trames depuis Seq : REJ
- mise en œuvre : 3 variables locales :

LSeq : n° Seq de la prochaine trame à émettre LSeq = LSeq + 1 à chaque émission

LNext : n° Seq de la prochaine trame à recevoir LNext = LNext + 1 à chaque réception

LAcq: n° du dernier acquittement reçu

Transmission

- site : primaire, secondaire, mixte
- 3 types de transfert (négocié à l'ouverture)
- NRM : secondaire transmet seulement après invitation du primaire
- ABM : chaque site peut débuter la transmission
- ARM : secondaire peut débuter une transmission, mais primaire ouvre et ferme la connexion

Connexion

- primaire envoie SARM, SNRM, SABM
- secondaire acquitte par UA

Déconnexion

- annonce (primaire)
 trame : DISC, acquittée par UA
- réponse (secondaire) trame : DM
- demande (secondaire)
 trame : RD

Divers

erreur de réception (champ invalide ...)
 trame : FRMR, réponse : RSET

Bilan

- HDLC : protocole simple
- description des éléments de procédure longue, parfois ambiguë
- nécessité de méthodes formelles (math)
- spécification, vérification
- machines à états finis (FSM) : automates, réseaux de Petri

Présentation

- A = E + T
- E: { états (initial, final, courant) }
- T : { transitions (chgt d'état en fct d'un

Remarque

• Il existe beaucoup de types d'automates

Automate à E/S

- évt entrant : réception d'un message
- évt sortant : émission d'un message
- notation : me / ms, ? me / ! ms

Bit alterné

- système : E, R, canal imparfait
- ajout d'un bit pour acquitter des messages
- cycle parfait (infini) :
 E : émet 0, reçoit 0, émet 1, reçoit 1
 - R: reçoit 0, émet 0, reçoit 1, émet 1
- retour sur erreur : réémission après réception erronée

Bit alterné

• E: 4 états, R: 4 états

Exemple de HDLC

- 1 automate pour modéliser le fonctionnement
- présentation en 4 automates partiels : connexion, déconnexion, émission de trames I, réception de trames I.

Connexion

• 3 états

Déconnexion

• 3 états

Emission trames I

• 2 états

Réception trames I

• 3 états

Système global

- étude du fonctionnement d'un protocole très complexe :
 - grand nombre d'états des automates
 - aspect dynamique => contenusdes canaux
- => étude exhaustive
- construction d'un système global

Système global

- SG: Emetteur, Récepteur, Canal
- état (SG) = [état (E), état (R), état (C)
]

(a)

Who runs?	Frame accepted	Frame emitted	network layer
-	(frame	22	
R	0	Α	Yes
S	Α	1	_
R	1	Α	Yes
S	Α	0	_
R	0	Α	No
R	1	Α	No
S	(timeout)	0	-
S	(timeout)	1	
	runs? R S R S R S S S	runs? accepted (frame R 0 S A R 1 S A R 0 R 1 S (timeout)	runs? accepted (frame lost) R 0 A S A 1 R 1 A S A 0 R 0 A R 1 A S (timeout) 0

To

(b)

Arbre d'accessibilité

- système global parfois complexe à construire
- construction d'un graphe d'accessibilité
- recherche d'erreurs :
 - deadlocks, états inaccessibles, composantes connexes, boucle infinie

Arbre d'accessibilité

- nœud de l'arbre :
 état P1, contenu P1=>P2, état P2, contenu P2=>P1 >
- notation matricielle
- on part des états initiaux
- on construit l'arbre en tirant les transitions disponibles
- on arrête en cas d'erreur ou de nœud déjà obtenu

Réseaux de Petri

Présentation

RdP = { places } + { transitions } + jeton

Réseaux de Petri

Couche MAC Contrôle d'accès au canal

Introduction

Exemples

- CSMA
- **Ethernet**

Introduction

Présentation

- 2 modes de communication : pt à pt (WAN, ex : HDLC), diffusion (LAN)
- cas traité : diffusion
 => canal partagé (à accès multiple / aléatoire)
- nécessité d'établir une stratégie : contrôle d'accès au canal (Medium Access Control)
- MAC : sous-couche de la couche liaison

Allocation statique

- multiplexage fréquentiel (FDM)
- inefficace : trop peu ou trop d'utilisateurs

Exemples de protocoles : CSMA

CSMA (Carrier Sense Multiple Access)

 protocole à détection de porteuse : capacité "d'écoute" du canal

CSMA 1-persistant

- si une station veut émettre, elle écoute si il est libre, elle émet sinon, elle attend qu'il se libère
- en cas de collision, elle fait une pause (durée aléatoire) puis elle recommence au début

Exemples de protocoles : CSMA

CSMA non persistant

- idem que précédent,
- si le canal est occupé qd elle veut émettre
 - elle n'attend pas qu'il se libère elle fait une pause (durée aléatoire) elle recommence au début

Exemples de protocoles : CSMA

CSMA CD (Collision Detection)

- écoute pendant l'émission,
- en cas de collision, arrêt immédiat du transfert
- économie de temps et de bande passante

Norme

• IEEE 802.3

Supports physiques

Name	Cable	Max. seg.	Nodes/seg.	Advantages	
10Base5	Thick coax	500 m	100	Original cable; now obsolete	
10Base2	Thin coax	185 m	30	No hub needed	
10Base-T	Twisted pair	100 m	1024	Cheapest system	
10Base-F	Fiber optics	2000 m	1024	Best between buildings	

 carte Ethernet (contrôleur) : E/R transmission des trames, calculs des contrôles,

Raccordements physiques

Topologies

Trame DIX (Dec, Intel, Xerox)

Bytes	8	6	6	2	0-1500	0-46	4
(a)	Preamble	Destination address	Source address	Туре	Data (Pad	Check- sum

- bit de pds fort adr dest. = 1 : adr de groupe, diffusion restreinte, multidestinataire, multicast
- tous les bits = 1 : diffusion générale, broadcast
- type : identif. du protocole réseau souhaité
- taille min d'une trame : 64 octets (remplissage)

Détection de collision

 \Box τ : tps de propagation jusqu'aux extrémités (B)

• => tps de transmission > 2 τ => taille de trame minimale

Détection de collision

- débit : 10 Mbits/s,
- $\lg \max = 2500 \text{ m},$
- temps de propagation AR : $2 \tau = 50 \mu s$
- tps transmission (1 bit) = 100 ns
- donc trame de longueur minimale 500 bits, soit 64 octets (éventuellement remplissage)
- si débit = 1 Gbits/s alors taille minimale = 6400 octets (2500 m), 640 octets (250 m)

Ethernet commuté

- commutateur (switch)
- décomposition en plusieurs sousréseaux

Evolutions

- FastEthernet (802.3u)
 - 100 Mbits/s, supports (UTP 5, fibres), mêmes trames
- Gigabit (802.3z)

■ 1 Chite/e nllae tramae tonologia multinointe

Couche Réseau

Introduction

Routage

Congestion

Qualité de service

<u>IP</u>

Couche réseau : Introduction

Services pour la couche transport

- indépendants des technologies de routeur et de la topologie du sousréseau
- système d'adressage homogène (WAN, LAN)

Approches

- Internet : transport des paquets uniquement
 - { SEND, RECEIVE }, pas de CdF, ni de classement
- Télécom : service fiable en mode

Mode sans connexion

Fonctionnement

- transfert individuel des paquets
- datagramme

Exemple

- P1 veut transmettre un message m à P2
- couche réseau découpe m en 4 paquets
- envoi des paquets au routeur
- table de routage : { (adr dest, port sortie) }
- évolution dynamique : algos de routage

Mode sans connexion

Exemple

Mode avec connexion

Fonctionnement

- établissement d'un chemin (circuit virtuel)
- CV inscrit dans les tables de routage
- réservation de ressources locales (mémoires)
- table : { (ident de connexion, port de sortie) }
- transfert des paquets
- suppression du CV

Mode avec connexion

Exemple

Algorithmes de routage

Fonctionnement

- choix du port de sortie pour un paquet entrant
- fonction centrale de la couche réseau
- nécessité de robustesse (pannes) et de stabilité (évolutions)
- routage statique : calculé à la création du réseau en fonction de la topologie
- routage adaptatif : recalculé dynamiquement en fonction des infos collectées / reçues
- routage aléatoire : réseau très perturbé
- métriques : nb de km, nb de routeurs,

Plus court chemin

- réseau représenté par un graphe
- arêtes munies d'une [combinaison de] métrique : km, routeurs, délais, coût, pertes ...
- recherche du minimum de la fonction de coût entre chaque paire de sommets

Inondation

- envoi du paquet sur toutes les lignes
- "mémoire" par stockage des numéros émis
- inondation sélective · notion de direction

Vecteur de distance

- Bellman Ford ou Ford Fulkerson
- algo dynamique, utilisé par ARPA (< 1979)
- table indexée par routeur : (ligne préférée, distance évaluée)
- métrique : nb de paquets en attente, délai d'acheminement, distance
- délais connus pour tous les voisins immédiats
- réception des tables de délais transmises par tous les voisins
- mise à jour de la table de routage et

Vecteur de distance

(b)

Routage hiérarchique

- augmentation de la complexité des réseaux
 - => croissance des tables de routage et du trafic associé
- notion de région (partie d'un réseau)
- table de routage interne à une région
- 1 entrée par région externe

Routage hiérarchique

Full table for 1A

Dest.	Line	Hops		
1A	-	-		
1B	1B	1		
1C	1C	1		
2A	1B	2		
2B	1B	3		
2C	1B	3		
2D	1B	4		
ЗА	1C	3		
3B	1C	2 3 4		
4A	1C			
4B	1C			
4C	1C	4		
5A	1C	4		
5B	1C	5		
5C	1B	5		
5D	1C	6		
5E	1C	5		
	(b)		

Hierarchical table for 1A

est.	Line	Hops		
1A	-	-		
1B	1B	1		
1C	1C	1		
2	1B	2		
3	1C	2		
4	1C	3		
5	1C	4		

(a)

•Pb: 1A => 5C

(c)

Introduction

- qd il y a trop de paquets sur le réseau : congestion (dégradation des performances)
- paquets perdus (effet accélérateur)

Causes

- émission de plusieurs connexions sur une même ligne
- augmentation de la mémoire (file d'attente)
 - => augmentation du délai de traitement
 - => dépassement des timers,

Performances

Remarque

- CF <> CC
 - réseau 1 Gbit/s, 1 gros ordinateur transmet vers 1 PC => CF
 - réseau commuté avec lignes 1 Mbit/s,
 1000 ordinateurs transmettent à 100 kbit/s

Traitements

- 2 approches :
 - préventive : lors de la conception du réseau (CF, acceptation/refus d'une ouverture ...)
 - dynamique : surveillance, ajustement local
- basées sur des compromis : 1

Sous-réseau de CV

- routage évitant les zones de congestion
- contrôle d'admission : plus d'ouverture de connexion dès l'apparition d'une congestion

A: simple

 préallocation de ressources à l'ouverture de la connexion (tables, buffers, bande passante)

A : robustesse, I : sous-utilisation ressources

Délestage

 suppression de paquets (analogie avec la production d'électricité)

Stratégies de suppression :

- transfert de fichiers : derniers paquets arrivés
- applications multimédia : premiers paquets arrivés
- compression vidéo : images différentielles

Qualité de service

Introduction

- augmentation du nb d'applications réseau
- augmentation des attentes des utilisateurs

Application	Reliability	Delay	Jitter	Bandwidth	
E-mail	High	Low	Low	Low	
File transfer	High	Low	Low	Medium	
Web access	High	Medium	Low	Medium	
Remote login	High	Medium	Medium	Low	
Audio on demand	Low	Low	High	Medium	
Video on demand	Low	Low	High	High	
Telephony	Low	High	High	Low	
Videoconferencing	Low	High	High	High	

Qualité de service

Gigue (Jitter)

- variation du délai pour acheminer des paquets
- streaming vidéo : gigue faible

(b)

Qualité de service

Débits

- 4 types de trafic (/ QoS nécessaire)
 - débit constant : téléphonie
 - débit variable TR : vidéoconf compressée
 - débit variable différé : film sur internet
 - débit disponible : transfert de fichiers

Remarque

 il n'existe pas une bonne méthode mais un ensemble de stratégies à combiner

QdS: Stratégies

Sur-allocation de ressources

- + affinage dans le temps.
 - ex : réseau téléphonique
- mise en tampon de paquets (réduire la gigue)
 - ex : audio, vidéo sur le web (> 10 s)

QdS: Stratégies

Canalisation de trafic

- régulation coté serveur
- traite les rafales et les temps morts
- ex : seau percé (leaky bucket, [Turner

QdS: Stratégies

Canalisation de trafic

- pb : débit rigide ; arrivée d'une rafale ?
- extension : seau à jetons (token bucket) débit modulable à l'aide de jetons

QdS: Stratégies

Contrôle d'admission

- examen d'une spécification de flux (jeu de paramètres)
- ex:

Parameter	Unit
Token bucket rate	Bytes/sec
Token bucket size	Bytes
Peak data rate	Bytes/sec
Minimum packet size	Bytes
Maximum packet size	Bytes

QdS: Stratégies

Ordonnancement

- pb : variabilité des besoins des flux
 => risque de limitation de performances
- sol 1 : attente équitable n files d'attente, lecture séquentielle (fréq 1/n)

sol 2 : attente par octet plutôt que par

		1	Packet	Finishing time
Α	1 6 11 15 19 20		С	8
В	2 7 12 16		В	16
C	3 8	— o	D	17
D	4 9 13 17		Е	18
E	5 10 14 18		Α	20
	(a)	1		(b)

Présentation

interconnexion de réseaux =>

Hétérogénéité

• interconnexion de réseaux très

Item	Some Possibilities
Service offered	Connection oriented versus connectionless
Protocols	IP, IPX, SNA, ATM, MPLS, AppleTalk, etc.
Addressing	Flat (802) versus hierarchical (IP)
Multicasting	Present or absent (also broadcasting)
Packet size	Every network has its own maximum
Quality of service	Present or absent; many different kinds
Error handling	Reliable, ordered, and unordered delivery
Flow control	Sliding window, rate control, other, or none
Congestion control	Leaky bucket, token bucket, RED, choke packets, etc.
Security	Privacy rules, encryption, etc.
Parameters	Different timeouts, flow specifications, etc.
Accounting	By connect time, by packet, by byte, or not at all

Equipements

- physique : répéteurs, hubs : régénère les signaux binaires
- liaison de données : ponts, commutateurs (switchs) : adaptation « légère » de trames
- réseau : routeurs multiprotocoles

Exemple

- a : trame transmise de LAN1 vers LAN2 (examen de l'adresse MAC)
- b : paquet extrait de la trame, encapsulation dans une nouvelle trame entre LAN1 et LAN2

Circuits virtuels concaténés

- concaténation de CV partiels
- chaque routeur réalise les (éventuelles) conversions de formats, de numéros de CV

Datagrammes

- paquets passent par des routeurs différents
- meilleurs débits en général, fiabilité moindre

Tunnel

- connexion de 2 réseaux similaires à distance
- ex : succursales d'une E
- création d'une liaison virtuelle

Tunnel

 analogie avec une voiture allant de Paris à Londres via le tunnel sous la Manche (train)

Couche réseau Internet

Internet Protocol (IP)

- IPv4, IPv6
- mode datagramme
- format : entête + données

Format datagramme

- version : 4 -> 6
- IHL : longueur de l'entête en mots de 32 bits

$$(5 <= IHL <= 15)$$

- type de service : classe (fiabilité, service)
- longueur totale : entête + données
- identification : id. de datagramme (fragment)
- DF : don't fragment
- MF: more fragments (fragments à suivre)

Format datagramme

- protocole : transport (TCP, UDP)
- total de contrôle d'entête : recalculé à chaque saut (variation de TTL)
- adresses : système d'adressage global
- options : nouvelles versions, idées

Système d'adressage

- identifie de façon unique un équipement (ordinateur, routeur) relié à Internet
- 1 n° / carte réseau (éventuellement plusieurs pour une machine)
- adresse de 32 bits : n° de réseau + n° d'hôte
- variant de 0.0.0.0 à 255.255.255.255
- initialement basé sur 5 classes (A ... E)
- numéros de réseau gérés par l'ICANN

Classes d'adressage

■ A: 128 x 16 M B: 16384 x 65536

■ C: 2 M x 256 D: multicast

Valeurs particulières

0	0) (0	0	C)	0	0	C) (0	0	0	0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0	0	0	C) C)	0	This host
0	0)	_	_		•	•	•				() ()		_	_	_	_	_	_	_	15	Н	os	st									_		A host on this network
1	1	-	1	1	1	6100000	1	1	1	EG MIN	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	Ĺ	1	Broadcast on the local network
25	_	_	_	1	۷e	etv	NC	ork				_	_			1 1	1	1	_	_	_	_	_						_				1 1	1 1	1		Broadcast on a distant network
			9	12	.7					(Anything)										Loopback																	

IΡ

Constat

- IP conçu pour connecter universités et DOD
- 90's : explosion du nb de machines connectés
- 00's : accélération (portables, téléphones ...)
- plus assez d'adresses IP
- solutions : sous-réseau, NAT, IP V6 ...

FAI

- ex : adresse /16 (classe B) : 65534 numéros
- particuliers: attribution dynamique
- professionnels : connexions permanentes
- ADSL : facturation au forfait (plus à la durée)
- particuliers : plusieurs machines / famille

IP: sous-réseaux

Sous réseaux

- pb : extension des réseaux identifiés par un n°
- ex : université classe B pour son dépt info, arrivée d'autres dépts => répéteurs (max : 4)

IP: sous-réseaux

Sous réseaux

- paquet arrive sur le routeur central ?
- sol 1 : table contenant toutes les adresses : complexe à gérer
- sol 2 : utiliser une partie de l'adresse réseau

- ex: 14 + 16 => 14 + 6 + 10 (64 RL à 1022 hôtes)
- notion de masque de sous-réseau (submask)
- ex : 255.255.252.0 ou /20 (bits réseau + ss-rés)

IP: sous-réseaux

Sous réseaux

- décomposition invisible à l'extérieur
- pas de demande à faire
- configuration de machines

IP: NAT

Traduction d'adresses de réseaux (NAT)

- attribution pour chaque machine d'une adresse unique prélevée dans une plage d'adresses déclarées privées
 - 10.0.0.0 **→**10.255.255.255/8 :
 - 16 M adr
 - $-176.16.0.0 \rightarrow 172.31.255.255/12$:
 - 1 M adr
 - 192.168.0.0 →192.168.255.255/16: 65 k adr
- utilisée pour routage interne
- 1 adresse unique pour machines d'une E
- onvoi ovtorno : traduction (NAT boy []

IP: NAT

Traduction d'adresses de réseaux (NAT)

IP: NAT

Avantages

résoud un pb, très utilisé

Inconvénients

- contraire aux principes de l'architecture
 IP
- altère la nature d'Internet : réseau sans connexion → réseau avec connexion
- NAT box centralise beaucoup d'infos de connexion : risque de panne
- utilise infos couche 4 (adresse port, champs UDP/TCP) pour routage extérieur → intérieur

IP v6

Evolution

- explosion du nb de machines conectées
- explosion du type de machine connectée
- => IP v4 limité et contraint
- 90 : IETF fait un appel à propositions
 - milliards d'hôtes, réduire tables de routage, optimiser le protocole (vitesse, sécurité), coexistence versions, nomadisme
- 92 : 21 réponses, 7 sérieuses, 3 publiées
- SIPP : Simple Internet Protocol Plus (Deering + Francis)
- => IP v6

IP v6

IP v6

- adresses plus longues (16 octets)
 7 x 10²³ d'adresses / m² (toute la terre)
- entête et options simplifiés
 => traitement plus rapide par les routeurs
- authentification, confidentialité incluses
- transition v4 v6 : 1 dizaine d'années ?

Introduction

service, sockets

Exemples de protocoles

• UDP, TCP

Introduction

- services proches de ceux de la couche réseau
- modes avec/sans connexion, adressage, contrôle de flux
- différence : code transport sur ordinateurs utilisateurs [vs routeur – opérateur]
- possibilité pour l'utilisateur d'améliorer la QoS
- primitives transport indép. du réseau
 => portabilité des logiciels sur des réseaux

Flux transport

Echange de Transport Protocol Data Unit
: TPDU - paquet - trame

Exemple de service transport

Primitive	Packet sent	Meaning
LISTEN	(none)	Block until some process tries to connect
CONNECT	CONNECTION REQ.	Actively attempt to establish a connection
SEND	DATA	Send information
RECEIVE	(none)	Block until a DATA packet arrives
DISCONNECT	DISCONNECTION REQ.	This side wants to release the connection

Gestion de connexion transport

Sockets

• primitives de TCP (Unix Berkeley)

Primitive	Meaning
SOCKET	Create a new communication end point
BIND	Attach a local address to a socket
LISTEN	Announce willingness to accept connections; give queue size
ACCEPT	Block the caller until a connection attempt arrives
CONNECT	Actively attempt to establish a connection
SEND	Send some data over the connection
RECEIVE	Receive some data from the connection
CLOSE	Release the connection

Sockets

Primitives

- socket : création d'un pt terminal, allocation de tables
 - E : format d'adressage, type de service, protocole
 - S : descripteur de fichier (si succès)
- bind : affectation d'une adresse réseau au socket
- listen : allocation d'espace pour mettre en attente des appels entrants, non bloquant
- accept : création d'un socket, bloquant
 S : descripteur de fichier

Exemples de protocoles Transport

UDP

- User Datagram Protocol
- sans connexion
- applis encapsulent datagrammes IP et les envoient sans établir de connexion
- format d'un segment UDP : entête + données

• entête :

◄ 32	Bits —
Source port	Destination port
UDP length	UDP checksum

UDP

Analyse

- pas de CdF, de contrôle d'erreur, de retransmission (laissés aux applis utilisateur)
- UDP = interface pour IP
- adapté aux applis client serveur (transferts simples et rapides)

Exemple: DNS

- envoi d'un segment UDP pour connaître une adresse IP
- réponse par un segment UDP
- pas d'ouverture/fermeture, CdF ...

Exemples de protocoles Transport

TCP

- Transmission Control Protocol
- transmission fiable sur des réseaux nonfiables
- conçu pour s'adapter à des interréseaux hétérogènes, évolutifs
- basé sur IP (datagramme) : timer pour retransmission en cas de perte réassemblage en messages ordonnés
- données urgentes (Suppr ou ^C): envoi immédiat des données [stockées]

Fonctionnement

- 2 pts de connexion (sockets) : E et R
- n° socket : adresse IP ordinateur + n° local (port, 16 bits)
- port < 1024 : ports réservés (services standards)

Port	Protocol	Use
21	FTP	File transfer
23	Telnet	Remote login
25	SMTP	E-mail
69	TFTP	Trivial File Transfer Protocol
79	Finger	Lookup info about a user
80	HTTP	World Wide Web
110	POP-3	Remote e-mail access
119	NNTP	USENET news

Fonctionnement

- 1 socket peut supporter n connexions
- 1 connexion TCP est
 - identifiée par (socket 1, socket 2) (pas de multicast)
 - bidirectionnelle
 - un flux d'octets (pas de mémoire de décomposition)

• E : 4 segments de 512

R: read (1 bloc de 2048)

Entête

• fixe (20 octets) + options

Entête

- port source/destination : ident de la connexion
- n° de séquence/n° d'accusé : ordonnancement
- Ig de l'entête : mesurée en mots de 32 bits
- 6 drapeaux de 1 bit chacun
- URG : données urgentes à suivre
- ACK : validité du n° d'accusé
- PSH : remise immédiate des données (pas de stockage)
- RST : réinitialisation de la connexion

Entête

- taille de fenêtre : nb d'octets transmissibles après l'octet acquitté
- peut être nulle
- séparation acquittement / autorisation d'envoi
- fenêtres dynamiques de taille variable
- checksum : entête + données

Etablissement d'une connexion

- Serveur : attend l'arrivée d'une communication (listen, accept)
- Client: initiateur envoie une demande de connexion (connect, IP – port) segment TCP (SYN = 1, ACK = 0)

Etablissement d'une connexion

Libération d'une connexion

- connexion TCP: bidirectionnelle
- nécessité de fermer les 2 sens
- fermeture d'un sens : envoi d'un segment (FIN = 1), ACK
- timer déclenché à l'envoi, ferme la connexion si pas de ACK à l'échéance

Transmission de données

Réseaux sans fil

Introduction

BlueTooth

IEEE 802.11

Introduction

Nature

- interconnexion de systèmes : clavier, souris -BlueTooth
- réseaux locaux : WiFi, WiMax
- grands réseaux : téléphonie GSM, GPRS, UMTS

Historique

- idée ancienne
- 1901 : transmission télégraphique (Morse)
- 1997 : norme IEEE 802.11 (WiFi)
- 2005 : norme IEEE 802.16 (WiMax)

Introduction

BlueTooth

Historique

- 1994 : Ericsson souhaite connecter ses matériels mobiles (téléphones, PDA)
 SIG avec IBM, Intel, Nokia, Toshiba
- techno faible { portée, puissance, coût }
- concurrence avec les LAN sans fil (WiFi)
- 1999 : spécif V1
- comité IEEE adopte BlueTooth comme base de discussion d'une norme (802.15) pour les PAN (Personnal Area Network)

BlueTooth

Architecture

 picoréseau : 1 maître + 7 esclaves actifs, 10 m

BlueTooth

Profils

création d'une liste de 13 applis

spécifiques

Name	Description
Generic access	Procedures for link management
Service discovery	Protocol for discovering offered services
Serial port	Replacement for a serial port cable
Generic object exchange	Defines client-server relationship for object movement
LAN access	Protocol between a mobile computer and a fixed LAN
Dial-up networking	Allows a notebook computer to call via a mobile phone
Fax	Allows a mobile fax machine to talk to a mobile phone
Cordless telephony	Connects a handset and its local base station
Intercom	Digital walkie-talkie
Headset	Intended for hands-free voice communication
Object push	Provides a way to exchange simple objects
File transfer	Provides a more general file transfer facility
Synchronization	Permits a PDA to synchronize with another computer

Introduction

- appelée aussi WiFi (Wireless Fidelity)
- pbs :
 - trouver une bande radio internationale
 - gérer la faible portée radio
 - gérer la confidentialité
- normalisation : 1990 1997
- compatibilité avec Ethernet au dessus de la couche 2 (transmission de paquet IP)
- 1999: 802.11 (2 Mbits/s), 802.11b (11 Mbits/s)
- 2001 : 802.11g (54 Mbits/s)

Introduction

- 2 modes de fonctionnement :
 - avec station de base (point d'accès)
 - sans station de base (réseau ad hoc)

Sous couche MAC

- Ethernet : écoute puis émission
- sans fil : pb de la portée radio

Sous couche MAC

- CSMA non adapté
- 2 modes :
 - DCF (obligatoire)
 - PCF (facultatif)

PCF

- Point Coordination Function
- station de base qui invite séquentiellement à émettre
- émission régulière d'infos systèmes nécessaires pour les émissions

DCF

- Distributed Coordinated Function
- protocole CSMA CA (Collision Avoidance)
- 2 modes :
 - écoute avant d'émettre, émission complète, en cas de collision réémission et attentes aléatoires
 - écoute "partielle", utilisation d'un canal virtuel représentant l'occupation

Exemple

- A veut émettre vers B :
- A émet une demande : RTS
- B répond OK : CTS
- C entend RTS de A: NAV
- D entend CTS de B: NAV

Time ——▶

Exemple

- canaux bruités non fiables (micro ondes)
- fragmentation des trames, protocole Stop and Wait

Géan

Renater

Structure

- Groupement d'Intérêt Professionnel (GIP)
- MEN, MRT, CNRS, Instituts ...
- 2005 : 30 personnes, 26 M€
- 4^{ème} génération
- appels d'offre
- réseau maillé, 2,5 Gb/s, IPV4 et IPV6

Renater

Structure

IdF

Renater

Architecture

- Rénater = épine dorsale
- réseaux de collecte
- supportent trafic non E + R

Aquitaine

- ESRA : Réseau régional de l'Aquitaine
- universités (Bx, Pau), écoles d'ingénieurs, CNRS, IUFM, Académie, Rectorat

Renater

Bordeaux 1 : Réaumur

