Examenul de bacalaureat național 2019 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3z_1 - z_2 = 3(3-i) - (8-3i) =$	2p
	=9-3i-8+3i=1	3 p
2.	a-5+(a+1)-5=35	2 p
	$2a - 9 = 35 \Rightarrow a = 22$	3 p
3.	$4^{x}(2-4)+32=0 \Leftrightarrow 4^{x}=16$	3 p
	x=2	2 p
4.	Mulțimea numerelor naturale de o cifră are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele naturale de o cifră care verifică relația sunt 6, 7, 8 și 9, deci sunt 4 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{10} = \frac{2}{5}$	1p
5.	$\overrightarrow{AC} = \overrightarrow{CB}$, deci punctul C este mijlocul segmentului AB	2p
	m=4	3 p
6.	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} \Rightarrow 24 = \frac{6 \cdot AC}{2} \Rightarrow AC = 8$	3 p
	BC = 10	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	(2 0 0) 2 0 0	
	$A(1) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & \ln 2 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 1 & \ln 2 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	
	=2+0+0-0-0-0=2	3 p
b)	((a+1)(b+1) 0 0	
	$A(a)A(b) = \begin{pmatrix} (a+1)(b+1) & 0 & 0 \\ 0 & 1 & \ln((a+1)(b+1)) \\ 0 & 0 & 1 \end{pmatrix} =$	3 p
	· · · · · · · · · · · · · · · · · · ·	
	$(ab+a+b)+1 0 \qquad \qquad 0$	
	$= \begin{pmatrix} (ab+a+b)+1 & 0 & 0 \\ 0 & 1 & \ln((ab+a+b)+1) \\ 0 & 0 & 1 \end{pmatrix} = A(ab+a+b), \text{ pentru orice numere reale } a \text{ §i } b,$	2p
		r
	a > 0, b > 0	
c)	$A(a)A(a) = A((a+1)^2 - 1), A(a)A(a)A(a) = A((a+1)^3 - 1), \text{ pentru } a \text{ număr real, } a > 0$	2p
	$(a+1)^3 - 1 = 7 \Leftrightarrow (a+1)^3 = 8$, deci $a = 1$	3 p
2.a)	f(-2) = 6m - 6, pentru m număr real	3 p
	$6m-6=0 \Rightarrow m=1$	2p

b)	$f = X^3 + X^2 - X + 2 = (X + 2)(X^2 - X + 1)$	2p
	$x_1 = -2, \ x_2 = \frac{1 - i\sqrt{3}}{2}, \ x_3 = \frac{1 + i\sqrt{3}}{2}$	3p
c)	$x_1 + x_2 + x_3 = -m$, $x_1 x_2 x_3 = -2$	2p
	$a = \frac{x_1^3 + mx_1^2}{x_1 x_2 x_3} + \frac{x_2^3 + mx_2^2}{x_1 x_2 x_3} + \frac{x_3^3 + mx_3^2}{x_1 x_2 x_3} = \frac{mx_1 - 2}{x_1 x_2 x_3} + \frac{mx_2 - 2}{x_1 x_2 x_3} + \frac{mx_3 - 2}{x_1 x_2 x_3} = \frac{m(x_1 + x_2 + x_3) - 6}{x_1 x_2 x_3} = m(x_1 + x_2 +$	3р

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = e^x(x^2 + 4x + 1) + e^x(2x + 4) =$	3p
	$= e^{x} (x^{2} + 6x + 5) = e^{x} (x + 5) (x + 1), x \in \mathbb{R}$	2p
b)	Tangenta la graficul funcției f în $(x_0, f(x_0))$ este paralelă cu axa $Ox \Leftrightarrow f'(x_0) = 0$	2p
	$e^{x_0}(x_0+5)(x_0+1) = 0 \Leftrightarrow x_0 = -5 \text{ sau } x_0 = -1$	3p
c)	$\lim_{x \to -\infty} f(x) = 0, \ f(-5) = \frac{6}{e^5}, \ f(-1) = -\frac{2}{e} \ \text{si} \ \lim_{x \to +\infty} f(x) = +\infty$	2p
	Cum f este continuă pe \mathbb{R} și f este strict monotonă pe $(-\infty, -5)$, pe $(-5, -1)$ și pe $(-1, +\infty)$, ecuația $f(x) = a$ are exact trei soluții reale $\Leftrightarrow a \in \left(0, \frac{6}{e^5}\right)$	3 p
2.a)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x) = \frac{1}{\ln x}, x \in (1, +\infty)$	2p
	$F'(x) > 0$, pentru orice $x \in (1, +\infty)$, deci F este strict crescătoare pe intervalul $(1, +\infty)$	3 p
b)	$\int_{e}^{e^{2}} \frac{1}{x} f(x) dx = \int_{e}^{e^{2}} \frac{1}{x} \cdot \frac{1}{\ln x} dx = \ln(\ln x) \Big _{e}^{e^{2}} =$	3 p
	$= \ln 2 - \ln 1 = \ln 2$	2p
c)	$g(x) = \ln x \Rightarrow \mathcal{A} = \int_{e}^{a} g(x) dx = \int_{e}^{a} \ln x dx = x \ln x \left e^{-\int_{e}^{a} x \cdot \frac{1}{x}} dx = a \ln a - a \right $	3 p
	$a \ln a - a = 2a$ şi, cum $a > e$, obţinem $a = e^3$	2p