Optimization Method homework 7

Qingfu Wen

2015213495

November 1, 2015

CONTENTS

i.	Problem 1	2
ii.	Problem 2	2
iii.	. Problem 3	3

I. PROBLEM 1

Solve the following 0-1 programming problem:

min
$$2x_1 + 3x_2 + 4x_3$$

s.t. $-3x_1 + 5x_2 - 2x_3 \ge -4$
 $3x_1 + x_2 + 4x_3 \ge 3$ (i.1)
 $x_1 + x_2 \ge 1$ (i.2)

$$x_1, x_2, x_3 \in \{0, 1\}$$
 (i.3)

Solution:

- First, we can try a feasible solution (1,1,0), $f_{min} = 5$.
- we can list all possible solution by enumeration and validate it by constraint condition and present f_{min} .

and present jmin.								
point	present f_{min}	1	2	3	f			
(0,0,0)	5	Y	N					
(1,0,0)	5	Y	Y	Y	2			
(0,1,0)	2	Y	N					
(0,0,1)	2	Y	Y	Y	4			
(1,1,0)	2	Y	Y	Y	5			
(1,0,1)	2	N						
(0,1,1)	2	Y	Y	Y	7			
(1,1,1)	2	Y	Y	Y	9			

Above all, we can see the optimal solution is (1,0,0), $f_{min} = 2$.

II. PROBLEM 2

Suppose a factory produce two kind of products, product 1 and product 2, and each product's profits are respectively 15 and 25 (hundred yuan). Producing these products need production line A and production line B. For producing one product 1, it takes 1 hour on each line A and line B. For producing one product 2, it takes 3 hours on line A and 1 hour on line B. When making production plan, we need to consider:

- 1. P_1 : profits of every week are no less than 750.
- 2. P_2 : number of product 1 produced every week are no less than 25, product 2 are no less than 10.
- 3. P_3 : work time of line A is no more than 60 hours and line B is no more than 40 hours, or the expense of line A is 3 times than line B for working another hour.

Please model this problem by goal programming.

Solution:

min
$$P_1d_1^- + P_2(d_2^- + d_3^-) + P_3(3d_4^+ + d_5^+)$$

s.t. $15x_1 + 25x_2 + d_1^- - d_1^+ = 750$
 $x_1 + d_2^- - d_2^+ = 25$
 $x_2 + d_3^- - d_3^+ = 10$
 $x_1 + 3x_2 + d_4^- - d_4^+ = 60$
 $x_1 + x_2 + d_5^- - d_5^+ = 40$
 $x_1, x_2, d_i^-, d_i^+ \ge 0, i = 1, \dots, 5$

III. PROBLEM 3

Solve the following goal programming problem using graph method:

min
$$P_1d_1^- + P_2(d_2^- + d_3^-) + P_3(3d_4^+ + d_5^+)$$

s.t. $15x_1 + 25x_2 + d_1^- - d_1^+ = 750$
 $x_1 + d_2^- - d_2^+ = 25$
 $x_2 + d_3^- - d_3^+ = 10$
 $x_1 + 3x_2 + d_4^- - d_4^+ = 60$
 $x_1 + x_2 + d_5^- - d_5^+ = 40$
 $x_1, x_2, d_i^-, d_i^+ \ge 0, i = 1, \dots, 5$

Solution:

Considering constraint condition P_1 and P_2 , the solution is in the gray area. By adding P_3 , we can see the optimal solution is B(33.33,10).