

| quaternioni e i gruppi di rotazioni

Elisa Pagli

I quaternioni e i gruppi di rotazioni

Elisa Paglia

Università degli studi di Cagliari - Corso di studi Matematica

23 luglio 2021

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Indice

- 1. Premessa
- 2. Quaternioni
- 3. Quaternioni e gruppi di rotazioni
- 4. Le sfere e i gruppi ortogonali speciali

Premessa

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Definizione

Definiamo il gruppo ortogonale di dimensione n come

$$O(n) := \left\{ A \in GL(n,\mathbb{R}) \mid A^T A = AA^T = I_n \right\}.$$

Osservazione

In particolare, è possibile visualizzare O(2) come il gruppo di tutte le matrici di rotazione $\begin{pmatrix} \cos \vartheta - \sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{pmatrix}$ e di riflessione $\begin{pmatrix} \cos \vartheta & \sin \vartheta \\ \sin \vartheta & -\cos \vartheta \end{pmatrix}$. Dunque, esso può essere geometricamente descritto dall'unione di due circonferenze.

Premessa

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Definizione

Definiamo il gruppo ortogonale speciale come

$$SO(n) := \{ A \in O(n) \mid det A = 1 \}.$$

Osservazione

L'applicazione

$$\begin{pmatrix} \cos \vartheta - \sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{pmatrix} \mapsto e^{i\vartheta} = \cos \vartheta + i \sin \vartheta$$

definisce un omeomorfismo tra SO(2) e S^1 .

Premessa

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Obiettivo

Lo scopo di questo lavoro è trovare una descrizione simile per i gruppi ortogonali speciali SO(3) e SO(4) in termini della 3-sfera S^3 .

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Definizione

L'algebra dei quaternioni è lo spazio vettoriale reale

$$\mathbb{H} = \{ a + bi + cj + dk \mid a, b, c, d \in \mathbb{R} \},\$$

con le regole moltiplicative:

$$i^{2} = j^{2} = k^{2} = -1,$$

 $ij = k, jk = i, ki = j,$
 $ji = -k, kj = -i, ik = -j.$

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Definizione

Rifacendoci alla terminologia dei numeri complessi, diciamo:

- $q^* = a bi cj dk$ conjugato di q = a + bi + cj + dk,
- q reale se b = c = d = 0,
- q immaginario puro se a = 0.

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Proprietà

- 1. L'operazione di coniugato $q\mapsto q^*$ è un'antiinvoluzione, cioè $(pq)^*=q^*p^* \ \, \forall p,q\in \mathbb{H}.$
- 2. $|q|^2=qq^*=q^*q=a^2+b^2+c^2+d^2$ è una forma quadratica positiva su $\mathbb H$. Inoltre $\forall q\in\mathbb H$ diverso da 0, l'elemento $q^{-1}=q^*/|q|^2$ è l'inverso destro e sinistro di q.

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Proprietà

3. È possibile scrivere ogni quaternione $q \notin \mathbb{R}$, con q = a + bi + cj + dk, come somma di una parte reale e di una parte immaginaria, ovvero:

$$q = A + BI$$
,

dove I è un quaternione immaginario puro, $I^2=-1$, A=a e $B=\sqrt{b^2+c^2+d^2}$.

Da cui, è facile intuire che $\mathbb{R}[q]\cong\mathbb{C}$.

4. Se I è immaginario puro con $I^2=-1$, allora esistono $J,K\in\mathbb{H}$ tali che I,J,K rispettino la stessa legge di moltiplicazione di i,j,k.

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Definizione

Definiamo l'insieme dei quaternioni unitari come

$$U := \{ q \in \mathbb{H} \mid |q|^2 = qq^* = 1 \} = S^3 \subset \mathbb{R}^4.$$

l quaternioni e i gruppi di rotazioni

Elisa Pagli

Teorema 1

Siano $a_p: x \mapsto px$, $b_q: x \mapsto xq^*$ la moltiplicazione a sinistra e la moltiplicazione a destra rispettivamente, dove $p, q \in U$. Sia $\varphi: U \times U \to SO(4)$ l'omomorfismo di gruppi, definito come

$$\varphi(p,q) = a_p \circ b_q : x \mapsto pxq^*.$$

Allora:

- 1. φ è suriettivo;
- 2. $\varphi(p,q)=id_{\mathbb{H}}$ se e solo se (p,q)=(1,1) o (p,q)=(-1,-1).

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Dimostrazione 1.1

La prova della suriettività si basa sui seguenti punti:

- φ è un'applicazione C^{∞} .
- Il differenziale φ^* : $T_{(p,q)}(UxU) \to T_{\varphi(p,q)}(SO(4))$ è invertibile.
- \bullet Per il Teorema della funzione inversa, φ è un diffeomorfismo locale. Ma un diffeomorfismo locale è un applicazione aperta.
- Poichè UxU è un aperto, $\varphi(UxU)$ è un aperto di SO(4).
- UxU è compatto, SO(4) è uno spazio di Hausdorff, di conseguenza, per il lemma dell'applicazione chiusa, φ è chiusa. Ciò significa che $\varphi(UxU)$ è un chiuso.
- $\varphi(UxU)$ è un aperto e chiuso del connesso SO(4) ed è diverso da \emptyset , dunque $\varphi(UxU) = SO(4)$.

l quaternioni e i gruppi di rotazioni

Elisa Pagli

Dimostrazione 1.2

Mostriamo che $\varphi(p,q)=id_{\mathbb{H}}\Leftrightarrow (p,q)=(1,1)$ o (p,q)=(-1,-1).

È chiaro che, se (p,q)=(1,1) o (p,q)=(-1,-1) $\Rightarrow pxq^*=x \ \forall x\in \mathbb{H}.$

L'altra implicazione si ricava scegliendo opportunamente $x \in \mathbb{H}$:

- Se $x = q \Rightarrow p(qq^*) = q \Rightarrow p = q \Rightarrow \varphi(p,q) = \varphi(p,p)$;
- Se x = i allora $pip^* = i \Leftrightarrow pi = ip$. Ricordando che p = a+bi+cj+dk, e, svolgendo il prodotto, si ottiene p = a+bi;
- Se x=j, svolgendo lo stesso calcolo di sopra si ricava p=a. Ma, poiché $p\in U$, segue che $q=p=\pm 1$.

l quaternioni e i gruppi di rotazioni

Elisa Pagli

Osservazione

Dalla Proprietà (3), sappiamo che $\forall q \in \mathbb{H}$, con $q \notin \mathbb{R}$, è possibile scrivere q = A + BI, dove I è un quaternione immaginario puro e $I^2 = -1$. Se q è anche unitario, allora

$$1 = qq^* = (A + BI)(A - BI) = A^2 + B^2,$$

dunque $\exists \vartheta \in (0, \pi)$ tale per cui $q = \cos \vartheta + I \sin \vartheta$.

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Teorema 2

Sia $r_q: x \mapsto qxq^*$ l'applicazione definita da $r_q: x \mapsto qxq^*$, con $q \in U$. Allora, essa coincide con l'identità per gli elementi reali di $\mathbb H$ e manda quaternioni immaginari puri in quanternioni immaginari puri.

Inoltre r_q è la rotazione di \mathbb{R}^3 di un angolo 2ϑ attorno l'asse la cui direzione è definita da I.

Infine, l'omomorfismo di gruppi $\psi: U = S^3 o SO(3)$ definito da

$$\psi(q) = r_q$$

è suriettivo, e $\psi(q_1)=\psi(q_2)$ se e solo se $q_1=\pm q_2$.

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Dimostrazione

Verifichiamo la prima affermazione.

 $a\!\in\!\mathbb{R}$ commuta nel prodotto con i quaternioni, dunque $r_q(a)=qaq^*=aqq^*=a$.

Invece, se p è immaginario puro $\Rightarrow p^* = -p \Rightarrow r_q(p) = qpq^*$ e $(r_q(p))^* = (qpq^*)^* = qp^*q^* = -qpq^*$. Dunque qpq^* è immaginario puro.

Verifichiamo che $r_q \equiv Rot(I, 2\vartheta)$.

 $r_q(I)=I$ segue da $q=\cos \vartheta+I\sin \vartheta$, così come $q^*=q^{-1}$ e $qIq^{-1}=I$.

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Dimostrazione

Ora, siano J, K come nella proprietà (4). Allora

$$qJq^* = (\cos \vartheta + I \sin \vartheta)J(\cos \vartheta - I \sin \vartheta) =$$

$$=(\cos^2\vartheta-\sin^2\vartheta)J+(2\sin\vartheta\cos\vartheta)K=\cos(2\vartheta)J+\sin(2\vartheta)K$$

e, allo stesso modo, $qKq^* = -2(\sin\vartheta\cos\vartheta)J + (\cos^2\vartheta - \sin^2\vartheta)K$. Pertanto, r_q fissa l'asse definto da I, e compie una rotazione di 2ϑ nel piano definito da J, K.

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Dimostrazione

Verifichiamo che ψ è suriettiva.

Sia $s \in SO(3)$, allora s è una rotazione di un angolo ϑ attorno ad un asse I. Dunque, basta prendere $q \in U$ in modo tale che identifichi la direzione I con un angolo $\alpha = \vartheta/2$:

$$q = \cos \alpha + I \sin \alpha,$$

per cui $\psi(q)=r_q=s$.

L'ultima affermazione è una diretta conseguenza della presenza dell'angolo 2ϑ .

Le sfere e i gruppi ortogonali speciali

l quaternioni e i gruppi di rotazioni

Elisa Pagli

Corollario

1. Vi è un omeomorfismo

$$SO(3) \simeq S^3/\sim = \mathbb{RP}^3$$

dove \sim è la relazione di equivalenza su S^3 che identifica i punti antipodali x e -x.

2. Vi è un omeomorfismo

$$SO(4) \simeq (S^3 \times S^3)/\approx$$

dove \approx è la relazione di equivalenza su $S^3 \times S^3$ che identifica (x,y) con (-x,-y).

Le sfere e i gruppi ortogonali speciali

| quaternioni e i gruppi di rotazioni

Elisa Pagli

Dimostrazione

1. Dal Teorema (2), sappiamo che esiste un'applicazione continua e suriettiva $\psi: U=S^3 \to SO(3)$, con $\psi(x)=\psi(y)$ se e solo se x=y o x=-y. Inoltre, per la proprietà universale delle applicazioni della topologia quoziente, esiste un'applicazione continua

$$\overline{\psi}: (S^3/\sim) \to SO(3)$$

la quale è una biiezione. Ora, S^3 è compatto, e di conseguenza anche S^3/\sim lo è. Anche la topologia di sottospazio di $SO(3)\subset \mathbb{R}^9=\{matrici\ 3x3\}$ è metrica, quindi di Hausdorff. Da cui segue che $\overline{\psi}$ è un omeomorfismo.