# Appendix - Selection against instability: stable subgraphs are most frequent in empirical food webs

# Jonathan J. Borrelli

Wednesday, July 23, 2014

## Contents

| Definitions                      | 1 |
|----------------------------------|---|
| Subgraph Library                 | 1 |
| Define required functions        | 2 |
| Analysis                         | 4 |
| Determining motif frequency      | 4 |
| Determining Quasi Sign-Stability | 6 |
| Code for the figures             | 7 |

Borrelli, J. J. 2014. Selection against instability: stable subgraphs are most frequent in empirical food webs.  $-\text{Oikos}\ 000:\ 000-000$ 

The code provided here can also be obtained from GitHub by clicking this link

## **Definitions**

# Subgraph Library

The following code defines the sign matrix for each of the thirteen possible three-node subgraphs. Here, the "s" in the object name indicates that only single links are used, while a "d" indicates the presence of double links.

```
s1<-matrix(c(0,1,0,-1,0,1,0,-1,0),nrow=3,ncol=3)
s2<-matrix(c(0,1,1,-1,0,1,-1,-1,0),nrow=3,ncol=3)
s3<-matrix(c(0,1,-1,-1,0,1,1,-1,0),nrow=3,ncol=3)
s4<-matrix(c(0,1,1,-1,0,0,-1,0,0),nrow=3,ncol=3)
s5<-matrix(c(0,0,1,0,0,1,-1,-1,0),nrow=3,ncol=3)
d1<-matrix(c(0,1,1,-1,0,1,-1,1,0),nrow=3,ncol=3)
d2<-matrix(c(0,1,1,1,0,1,-1,-1,0),nrow=3,ncol=3)
d3<-matrix(c(0,1,1,1,0,0,1,0,0),nrow=3,ncol=3)
d4<-matrix(c(0,1,1,-1,0,0,1,0,0),nrow=3,ncol=3)
d5<-matrix(c(0,1,1,-1,0,1,1,-1,0),nrow=3,ncol=3)
d6<-matrix(c(0,1,1,1,0,1,1,1,0),nrow=3,ncol=3)</pre>
```

```
d7<-matrix(c(0,1,1,1,0,1,1,-1,0),nrow=3,ncol=3)
d8<-matrix(c(0,1,1,1,0,0,1,0,0),nrow=3,ncol=3)

mot.lst <- list(s1, s2, s3, s4, s5, d1, d2, d3, d4, d5, d6, d7, d8)
names(mot.lst) <- c("s1", "s2", "s3", "s4", "s5", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8")
```

#### Define required functions

#### Functions for counting motifs

The motif\_counter function takes in a list of graph objects and applies triad.census to each. It returns a data frame of the frequency of each connected three-node digraph.

The permutes\_rc function is a null model that generates iter number of permuted matrices from the input matrix (mat). Each permuted matrix is created by randomly sampling 2x2 submatrices matching the pattern

```
[,1] [,2]
[1,] 0 1
[2,] 1 0

or

[,1] [,2]
[1,] 1 0
[2,] 0 1
```

and swapping the 0s and 1s. This null model preserves the number of prey and predators of each species (the degree distribution).

```
permutes_rc <- function(mat, iter = 100){</pre>
  pattern1 \leftarrow matrix(c(0,1,1,0), nrow = 2, ncol = 2)
  pattern2 \leftarrow matrix(c(1,0,0,1), nrow = 2, ncol = 2)
  count <- 0
  mat.list <- list()</pre>
  for(i in 1:iter){
    mat.list[[i]] <- matrix(0, nrow = nrow(mat), ncol = ncol(mat))</pre>
  while(count < iter){
    srow <- sample(1:nrow(mat), 2)</pre>
    scol <- sample(1:ncol(mat), 2)</pre>
    test <- mat[srow, scol]</pre>
    if(sum(test == pattern1) == 4){
       count <- count + 1</pre>
      mat[srow, scol] <- pattern2</pre>
      mat.list[[count]] <- mat</pre>
      next
    } else if(sum(test == pattern2) == 4){
       count <- count + 1</pre>
      mat[srow, scol] <- pattern1</pre>
      mat.list[[count]] <- mat</pre>
      next
    } else {next}
  matrices <- lapply(mat.list, as.matrix)</pre>
  return(permuted.matrices = matrices)
```

#### Functions for determining quasi sign-stability

There are two main functions for determining quasi sign-stability, and a third that wraps them together to generate the desired number of iterations.

The function ran.unif takes an input of a signed matrix. It will then check each cell to see if there is a 1 or -1. Each 1 will be replaced by a value drawn from the random uniform distribution between 0 and 10, while each -1 is replaced by a value from the random uniform distribution between -1 and 0. The ran.unif function also assigns values to the diagonal from a random uniform distribition between -1 and 0. The resulting randomly sample matrix is returned.

```
ran.unif <- function(motmat){
  newmat <- apply(motmat, c(1,2), function(x){
    if(x==1){runif(1, 0, 10)}else if(x==-1){runif(1, -1, 0)} else{0}}
})
  diag(newmat) <- runif(3, -1, 0)
  return(newmat)</pre>
```

```
ļ
```

Given the input matrix maxRE will compute the eigenvalues and return the largest real part.

```
maxRE <- function(rmat){
  lam.max <- max(Re(eigen(rmat)$values))
  return(lam.max)
}</pre>
```

The above two functions are combined in eig.analysis. Given the number of desired sampling iterations, n, and a list of sign matrices to analyze, matrices, the eig.analysis function will return an n by length(matrices) matrix of eigenvalues. Specifically it is returning the  $max(Re(\lambda))$  for each sampled matrix. From this matrix quasi sign-stability can be calculated as the proportion of values in each column that are negative.

```
eig.analysis <- function(n, matrices){
  cols <- length(matrices)
  rows <- n
  eigenMATRIX <- matrix(0, nrow = rows, ncol = cols)
  for(i in 1:n){
    ranmat <- lapply(matrices, ran.unif)
    eigs <- sapply(ranmat, maxRE)
    eigenMATRIX[i,] <- eigs
}
return(eigenMATRIX)
}</pre>
```

# **Analysis**

Load required packages

```
library(igraph)
library(ggplot2)
library(reshape2)
```

## Determining motif frequency

Load in web data from GitHub. Click here to download the .Rdata file. This file is a list of igraph graph objects for each of the 50 webs used in the analysis. Once you have downloaded the file into your working directory:

```
load(paste(getwd(), "webGRAPHS.Rdata", sep = "/"))
```

The frequencies of each of the different subgraphs can now be determined easily with motif\_counter.

```
motfreq <- motif_counter(web.graphs)
kable(motfreq, format = "pandoc")</pre>
```

|                | s1         | s2        | s3 | s4          | s5                  | d1      | d2      | d3     | d4      | d5  | d6  | d7  | d8  |
|----------------|------------|-----------|----|-------------|---------------------|---------|---------|--------|---------|-----|-----|-----|-----|
| akatorea       | 115        | 14        | 0  | 789         | 1466                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| akatoreb       | 63         | 18        | 0  | 338         | 497                 | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| benguela       | 269        | 445       | 0  | 464         | 391                 | 19      | 48      | 8      | 24      | 0   | 1   | 1   | 0   |
| berwick        | 132        | 14        | 0  | 855         | 1553                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| blackrock      | 407        | 71        | 0  | 2507        | 1976                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| bridgebrook    | 1931       | 629       | 0  | 6338        | 1539                | 30      | 111     | 0      | 21      | 0   | 4   | 0   | 0   |
| broad          | 641        | 16        | 0  | 5087        | 4151                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| broom          | 527        | 358       | 0  | 275         | 3292                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| bsq            | 5742       | 1202      | 0  | 10011       | 5736                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| canton         | 717        | 116       | 0  | 6561        | 5976                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| catlins        | 59         | 9         | 0  | 186         | 721                 | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| caymen fw      | 22330      | 5965      | 0  | 64365       | 53833               | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| chesapeake     | 86         | 21        | 0  | 58          | 130                 | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| coachella      | 311        | 638       | 0  | 424         | 317                 | 103     | 139     | 96     | 91      | 11  | 24  | 39  | 7   |
| coweeta1       | 68         | 36        | 0  | 266         | 551                 | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| coweeta17      | 86         | 26        | 0  | 421         | 822                 | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| csm            | 4540       | 944       | 0  | 5545        | 5327                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| cuban fw       | 23615      | 6220      | 0  | 65677       | 56327               | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| dempstersau    | 539        | 28        | 0  | 3215        | 2255                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| dempsterssp    | 723        | 28        | 0  | 4054        | 4145                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| dempsterssu    | 2464       | 567       | 0  | 10208       | 8210                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| elverde        | 8571       | 2824      | 26 | 11485       | 10558               | 183     | 179     | 1170   | 2668    | 174 | 13  | 112 | 382 |
| epb            | 10931      | 1730      | 0  | 16385       | 11214               | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| flensburg      | 1653       | 571       | 0  | 3763        | 2712                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| german         | 494        | 87        | 0  | 1876        | 2057                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| grass          | 82         | 30        | 0  | 193         | 152                 | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| healy          | 1108       | 267       | 0  | 5119        | 4929                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| jamaican fw    | 24879      | 6989      | 0  | 73176       | 61667               | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| kyeburn        | 657        | 213       | 0  | 6381        | 4470                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| lilkyeburn     | 654        | 35        | 0  | 2116        | 2026                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| littlerock     | 12210      | 9148      | 0  | 39239       | 11325               | 383     | 1039    | 63     | 1061    | 30  | 40  | 27  | 21  |
| martins        | 498        | 114       | 0  | 1257        | 2195                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| narrowdale     | 83         | 27        | 0  | 357         | 1208                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| northcol       | 278        | 50        | 0  | 710         | 1731                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| otago          | 5920       | 1950      | 0  | 10779       | 9177                | 182     | 211     | 272    | 634     | 0   | 16  | 22  | 36  |
| powder         | 270        | 38        | 0  | 945         | 1894                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| quick          | 2990       | 3059      | 2  | 6332        | 1873                | 419     | 1219    | 297    | 660     | 38  | 123 | 195 | 53  |
| reef           | 1448       | 1694      | 9  | 2001        | 1103                | 147     | 219     | 147    | 354     | 56  | 17  | 55  | 16  |
| shelf          | 5978       | 11211     | 2  | 11458       | 7760                | 130     | 132     | 33     | 79      | 13  | 0   | 4   | 1   |
| skipwith       | 330        | 1169      | 0  | 1985        | 559                 | 54      | 314     | 1      | 45      | 0   | 20  | 0   | 0   |
| stmarks        | 617        | 223       | 0  | 442         | 569                 | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| stmartin       | 538        | 278       | 0  | 712         | 482                 | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| stony          | 1035       | 124       | 0  | 8929        | 8208                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| suttonau       | 206        | 16        | 0  | 2570        | 1554                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| suttonsp       | 220        | 4         | 0  | 3467        | 2067                | 0       | 0       | 0      | 0       | 0   | 0   | 0   | 0   |
| suttonsu       | 312        | 6<br>1654 | 0  | 6445        | 1728                | 0<br>45 | 0<br>67 | 50     | 0<br>75 | 0   | 0   | 0   | 0   |
| sylt           | 4489       | 1654      | 0  | 6938<br>507 | 7989<br>794         | 45      |         |        |         | 0   | 0   | 1   | 2   |
| troy<br>venlaw | 186<br>186 | 20<br>17  | 0  | 507<br>638  | 794<br>932          | 0       | 0       | 0<br>0 | 0       | 0   | 0   | 0   | 0   |
|                | 1247       | 362       | 0  | 1905        | 93 <i>2</i><br>2551 | 13      | 0<br>4  | 21     | 0<br>8  | 0   | 0   | 0   | 0   |
| ythan_nopar96  | 1241       | 302       | U  | 1900        | 2001                | 13      | 4       | 21     | 0       | U   | U   | U   | U   |

The following code runs the null model analysis for the 50 food webs. First, each of the fifty webs are converted into binary adjacency matrices (web.matrices). Because the null model is a stochastic process the set.seed(10) allows for reproducible results. The code then loops through the list of adjacency matrices, generating 1000 permuted versions. The subgraphs are counted in each permuted matrix, and stored in a list (p.mot).

```
web.matrices <- lapply(web.graphs, get.adjacency, sparse = F)

set.seed(10)
pmot <- list()

for(i in 1:length(web.matrices)){
   p <- permutes_rc(web.matrices[[i]], 1000)
   g <- lapply(p, graph.adjacency)
   pmot[[i]] <- motif_counter(g)
   print(i)
}</pre>
```

Once subgraph counts have been obtained, the mean and standard deviation for each subgraph are computed. Z-scores are then computed as described in the methods section:

$$z_i = \frac{x_i - \overline{x}}{\sigma}$$

In cases where there were no occurrences of a subgraph (standard deviation = 0) NaN is produced following the appllication of the above formula. In these cases I have replaced the NaN with 0. The normalized profile was then computed (as desribed in the methods):

$$n_i = \frac{z_i}{\sqrt{\sum z_j^2}}$$

```
mus <- t(sapply(pmot, function(x){colMeans(x)}))
sig <- t(sapply(pmot, function(x){apply(x, 2, sd)}))</pre>
```

```
z <- (motfreq - mus)/sig
zmat <- as.matrix(z)
zmat[is.nan(zmat)] <- 0
profile <- apply(zmat, 2, function(x){x/sqrt(rowSums(zmat^2))})</pre>
```

Figure 1a is then just a boxplot of the above object profile, reordered according to decreasing quasi sign-stability (see below).

# **Determining Quasi Sign-Stability**

The first step to get quasi sign stability is to get the largest eigenvalues from a series of randomly parameterized sign matrices. In the following code I generate 10000 random parameterizations for each of the 13 subgraphs's sign matrices (mot.lst). The eig.analysis function will return a matrix where each column is a different subgraph and each row is the largest eigenvalue of a particular randomization.

```
set.seed(5)

n <- 10000
mot.stab<- eig.analysis(n, mot.lst)
colnames(mot.stab) <- names(mot.lst)</pre>
```

From that matrix, quasi sign-stability is calculated as the proportion of rows with a negative value. In other words, how many random parameterizations of the sign matrix were locally stable?

```
mot.qss <- apply(mot.stab, 2, function(x){sum(x<0)/n})
sorted <- sort(mot.qss, decreasing = T)
sorted</pre>
```

```
s1 s4 s5 s2 d3 d4 s3 d2 d1 d5
1.0000 1.0000 1.0000 0.5345 0.0891 0.0866 0.0561 0.0428 0.0370 0.0101
d7 d6 d8
0.0021 0.0000 0.0000
```

#### Correlation

Compute the correlation between QSS and median z-score

```
med.z <- apply(zmat[,names(sorted)], 2, median)
cor.test(sorted, med.z)</pre>
```

```
{\tt Pearson's\ product-moment\ correlation}
```

```
data: sorted and med.z
t = 3.527, df = 11, p-value = 0.004737
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.2966 0.9130
sample estimates:
    cor
0.7285
```

# Code for the figures

```
plot.df <- melt(profile[,names(sorted)])

fplot <- ggplot(plot.df, aes(x = Var2, y = value)) + geom_boxplot()

fplot <- fplot + geom_hline(aes(yintercept = 0), lty = 2, col = "red")

fplot <- fplot + theme_bw()

fplot + xlab("Subgraph") + ylab("Normalized Z-score")</pre>
```



```
sort.df <- melt(sorted)

qssplot <- ggplot(sort.df, aes(x = 1:13, y = value)) + geom_point(shape = 19, size = 3) + theme_bw()
qssplot + xlab("Subgraph") + ylab("Quasi Sign-Stability") + scale_x_discrete(limits=names(sorted))</pre>
```

