Introduction to Statistical Learning

Author: Robert Hastie et al Type: #source #textbook

Topics: Statistics Machine Learning

1 - Introduction

- Statistical learning refers to tools to understand data; it can be supervised or unsupervised
- Minimal linear algebra knowledge required for this book
- Notation: n is num. of data points/observations, p is num. of variables, \mathbf{X} is $n \times p$ matrix with x_{ij} representing each observation ($1 \le i \le n, 1 \le j \le p$)
 - y_i is ith observation on variable,

$$\mathbf{y} = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix}$$

2 - Statistical Learning

2.1 - What is Statistical Learning?

- Inputs are known as predictors, independent variables, features, variables
- If we observe p predictors $X=(X_1,X_2,\ldots,X_p)$ and response Y, there might be a relationship $Y=f(X)+\epsilon$
 - f represents systematic information and ϵ is an error term
- Statistical learning refers to a set of approaches for estimating f

2.1.1 - Why Estimate *f***?**

- We estimate f for prediction or inference
 - Prediction: since error ϵ averages to zero, we can predict Y using $\hat{Y}=\hat{f}(X)$
 - \hat{f} is treated as a black-box (do not need to know exact form)
 - Accuracy of \hat{Y} is **reducible error**, ϵ is **irreducible error** (always provides an upper bound for accuracy of prediction of Y)
 - Inference: \hat{f} is not treated as a black box, exact form is needed
 - Important questions:
 - What predictors are associated with response?
 - What is the relationship between response and each predictor?
 - Can the relationship between Y and each predictor be modeled linearly, or is it more complicated?
 - Linear models may be more suitable for simple/interpretable inference, whereas non-linear models may be better for more accurate (but more challenging) prediction

2.1.2 - How Do We Estimate f?

- Goal: apply a statistical learning method to training data to estimate unknown function f (find a function \hat{f} such that $Y \approx \hat{f}(X)$)
- Methods
 - · Parametric methods consist of a two-step model-based approach
 - 1. Assume f has the form

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

- 2. Use a procedure to estimate parameters $\beta_0, \beta_1, \dots, \beta_p$ (a common method is least squares)
- Disadvantage: model chosen may not match true form of f
 - Might be overly simple, but we could also choose a simpler model leading to overfitting/model learning noise
- Non-parametric methods do not make any assumption about f and aim to estimate an f that is as close to the
 data points as possible
 - Disadvantage: as no assumptions are made, a very large num. of observations is needed for an accurate estimate

2.1.3 - The Trade-Off Between Prediction Accuracy and Model Interpretability

A more restrictive method is better for inference because of its interpretability

2.1.4 - Supervised vs. Unsupervised Learning

- Supervised learning focuses on inference/prediction tasks and is when we use response variables
- **Unsupervised learning** is when we do not have response variables and need to analyze relationships between variables or observations
 - Ex: cluster analysis
- If we have n observations with m < n observations having response variables, we can do **semi-supervised learning** (beyond scope of this book)

2.1.5 - Regression Versus Classification Problems

- Variables can take quantitative or qualitative values
- Regression problems involve a quantitative response, classification problems involve a qualitative response (this is not always the case)

2.2. - Assessing Model Accuracy

• There is no free lunch in statistics, so there is no method/model dominating all others

2.2.1 - Measuring the Quality of Fit

Most common measure of fit is mean-squared error (MSE) given by

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{f}(x_i))^2.$$

where $\hat{f}(x_i)$ is prediction given by \hat{f} of ith observation

- We are interested in how our method does on the test set/previously unseen data, not the training set
 - We want to use the method minimizing $Ave(y_0 \hat{f}(x_0))^2$, where (x_0, y_0) is a previously unseen observation not used to train the learning method
 - · Choosing the method that minimizes training MSE does not work

- Many methods estimate coefficients to minimize training MSE (so test MSE can be much larger)
- Overfitting occurs when a given method achieves a small training MSE but a large test MSE

2.2.2 - The Bias-Variance Trade-Off

Expected test MSE has the following decomposition:

$$E(y_0 - \hat{f}(x_0))^2 = \text{Var}(\hat{f}(x_0)) + [\text{Bias}(\hat{f}(x_0))]^2 + \text{Var}(\epsilon)$$

- We need to select a statistical learning method with low bias and low variance
 - Variance refers to the amount \hat{f} changes with changes in the training set
 - Bias refers to the error introduced by the method of approximation used
 - Ex: linear regression may be too simple of a method for many problems, so using it may lead to
- The relationship between bias, variance, and the test set MSE is known as the bias-variance trade-off
- Cross-validation is a way to test MSE using training data

2.2.3 - The Classification Setting

- Accuracy of \hat{f} in classification is done via **training error rate** $\frac{1}{n}\sum_{i=1}^{n}I(y_{i}\neq\hat{y}_{i})$ where I is an indicator random variable
- The **test error rate** is given by $\operatorname{Ave}(I(y_0 \neq \hat{y}_0))$ where \hat{y}_0 is the predicted class label
- Bayes Classifier
 - Motivation: test error rate is minimized when we choose a classifier assigning each observation to most likely class given predictor values
 - Assigning test observation with predictor x_0 to class j such that $P(Y=j|X=x_0)$ is maximized
 - The Bayes error rate is $1 E(\max_j P(Y = j|X))$
 - Error for a particular $X = x_0$ is $1 \max_j P(Y = j | X = x_0)$
- K-Nearest Neighbors
 - We do not know the distribution P(Y = j|X) for real data
 - Estimates the conditional distribution of Y given X via $P(Y=j|X=x_0)=\frac{1}{K}\sum_{i\in\mathcal{N}_0}I(y_i=j)$ where K is a given parameter, x_0 is a test observation, and j is a class
 - Using the above estimation, KNN classifies the test observation x_0 to class with largest probability
 - A higher K leads to a low variance but high bias model (choosing an optimal value of K is important as it directly affects model flexibility)

3 - Linear Regression

3.1 - Simple Linear Regression

- Simple linear regression is an approach to predict a quantitative respone Y with a single predictor variable X
 - Relationship modeled as $Y pprox eta_0 + eta_1 X$
 - Regressing Y on or onto X
 - β_0, β_1 are **coefficients** or **parameters**; we aim to find estimates $\hat{\beta}_0$ and $\hat{\beta}_1$

3.1.1 - Estimating the Coefficients

- We want to find $\hat{\beta}_0$ and $\hat{\beta}_1$ such that $y_i \approx \hat{\beta}_0 + \hat{\beta}_1$ is as "close" as possible to the n data points
 - Defining closeness: a common approach is minimizing the least squares criterion
 - If $e_i = y_i \hat{y}_i$, each e_i is the *i*th **residual** and the **residual sum of squares** (RSS) is defined as $RSS = e_1^2 + e_2^2 + \cdots + e_n^2$, or equivalently as

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

Using calculus, we can show the RSS is minimized via

$$\hat{eta}_1 = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^n (x_i - ar{x})^2} \ \hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$$

where \bar{x} and \bar{y} are the sample means of x and y, respectively

3.1.2 - Assessing the Accuracy of the Coefficient Estimates

- Note we estimate $Y = f(X) + \epsilon$; this can be written as $Y = \beta_0 + \beta_1 X + \epsilon$ and is known as the **population regression** line
 - Population regression line is the best linear approximation to the true relationship between Y and X
- Information from a sample can be used to estimate characteristics of a large population
 - Ex: multiple different least squares lines generated from random samples of a single population regression line
 - An unbiased estimator does not systematically under or overestimate the true parameter
- · Accuracy of sample estimators
 - The standard error of $\hat{\mu}$ is $Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{n}$
 - If $\sigma^2={
 m Var}(\epsilon)$ (estimated from the data), the standard errors of \hat{eta}_0 and \hat{eta}_1 are

$$egin{split} ext{SE}(\hat{eta}_0)^2 &= \sigma^2 \left[rac{1}{n} + rac{ar{x}^2}{\sum_{i=1}^n (x_i - ar{x})^2}
ight] \ ext{SE}(\hat{eta}_1)^2 &= rac{\sigma^2}{\sum_{i=1}^n (x_i - ar{x})^2} \end{split}$$

- Estimate of σ is the **residual standard error** and given by $\mathrm{RSE} = \sqrt{\mathrm{RSS}/(n-2)}$
- Confidence intervals
 - Ex: An $\alpha\%$ confidence interval is defined in a range of values such that with $\alpha\%$ probability, the interval will contain the true unknown value of the parameter
 - Linear regression 95% CI for $\hat{\beta}_1$ and $\hat{\beta}_2$: $\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1)$ and $\hat{\beta}_0 \pm 2 \cdot \text{SE}(\hat{\beta}_0)$
- Hypothesis testing
 - Most common hypothesis test involves testing null hypothesis versus alternative hypothesis
 - Null hypothesis: H₀: there is no relationship between X and Y
 - Alternative hypothesis H_a : there is some relationship between X and Y
 - In linear regression, this corresponds to testing $H_0: \beta_1 = 0$ and $H_a: \beta_1 \neq 0$
 - How large should $\hat{\beta}_1$ be for us to reject null hypothesis? This also depends on $SE(\hat{\beta}_1)$
 - To determine this, we compute the t-statistic $t=rac{\hat{eta}_1-0}{\mathrm{SE}(\hat{eta}_1)}$
 - Measures number of stdevs $\hat{\beta}_1$ is away from
 - If no relationship between X and Y, we would expect the t-statistic to have a t-distribution with n-2 degrees of freedom
 - The probability of observing any number greater than or equal to |t| (assuming $\beta_1 = 0$ is easy in a t-distribution due to its bell shape; this probability is the **p-value**
 - A small p-value indicates it is unlikely to observe a substantial association between X and Y due to chance (small p-value means we reject the null hypothesis)

3.1.3 - Assessing the Accuracy of the Model

- After rejecting null hypothesis that $\hat{\beta}_1 = 0$ in favor of the alternative hypothesis, we want to quantify the extent to which the model fits the data
- Quality of a linear regression fit is assessed using RSE and \mathbb{R}^2 statistic
 - Residual standard error (RSE) is equal to $\sqrt{\frac{1}{n-2} \text{RSS}}$
 - R^2 statistic is a proportion (unlike RSE, which is measured in units of Y:

$$R^2 = rac{\mathrm{TSS} - \mathrm{RSS}}{\mathrm{RSS}} = 1 - rac{\mathrm{TSS}}{\mathrm{RSS}}$$

where $ext{TSS} = \sum (y_i - \bar{y})^2$

- RSS measures proportion of variability in Y that can be explained by X, so \mathbb{R}^2 statistic measures proportion of variability in Y that is not explained by X
- May also use Cov(X,Y) (technically $\widehat{Cov}(X,Y)$ but we omit this for notation)
 - In the simple linear regression setting, it can be shown $R^2=r^2$

3.2 - Multiple Linear Regression

We can extend the simple linear regression model for p predictors with

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$$

where X_i represents the jth predictor and β_i represents the association of X_i and the response

• β_i is interpreted as the average effect on Y with a one unit increase in X_i (holding all other predictors fixed)

3.2.1 - Estimating the Regression Coefficients

- We aim to estimate $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ to make predictions
 - Parameters are estimated using least squares and minimizing the sum of squared residuals
- A counterintuitive result
 - A variable X_i may have a statistically non-significant positive β_i in a multiple regression while having a significant positive β_1 in a simple linear regression
 - Ex: running a multiple linear regression of shark attacks onto ice cream sales and temperature versus a simple linear regression of shark attacks onto ice cream sales

3.2.2 - Some Important Questions

- Is at least one of the predictors X₁,..., X_p useful in predicting Y?
 - We need to ask whether $\beta_1 = \beta_2 = \cdots = \beta_p = 0$ (this is our null hypothesis H_0), whereas the alternative hypothesis is H_a = at least one β_j is non-zero
 - Hypothesis test is performed using F-statistic $F = \frac{(\mathrm{TSS-RSS})/p}{\mathrm{RSS}/(n-p-1)}$
 - If linear model assumptions are correct, we can show $E(RSS/(n-p-1)) = \sigma^2$
 - Provided H_0 is true, we can also show $E((RSS RSS)/p) = \sigma^2$, so when H_0 is true, the F-statistic should close to 1
 - If n is sufficiently large, an F-statistic closer to 1 may still be sufficient to reject H_0 (on the other hand, a larger F is needed to reject H_0 when n is small)
 - Testing a subset of coefficients: $H_0=eta_{p-q+1}=eta_{p-q+2}=\cdots=eta_n=0$
 - We fit a second model that uses all variables except first q
 - Must look at F-statistic even if individual p-values indicate some relationship between Y and Xi
 - F-statistic adjusts for the number of predictors p
 - If we use individual t-statistics and corresponding p-values, about 5% of p-values will be below 0.05 by chance

- If p > n, there are more coefficients β_j to estimate than observations, so we cannot fit a multiple linear regression model using least squares and therefore cannot use F-statistic
- Do all of the predictors help to explain Y, or only a subset?
 - Task of determining which predictors explain Y is known as variable selection
 - Approach: try lots of models and judge quality of each
 - Total of 2^p models of all subsets of predictors, so this is impractical unless p is small
 - Other approaches: forward/backward selection, mixed selection
 - Note backward selection cannot be used if p > n
- How well does the model fit the data?
 - $R^2 = \operatorname{Cov}(Y, \widehat{Y})^2$ (the fitted linear model maximizes correlation between all possible models)
 - R² value always increases (perhaps slightly) when more predictors are added to model
 - Adding a new variable decreases RSS
 - If only a small increase happens with a new predictor, new predictor may not be necessary
 - · Graphical summaries of data can
- Given a set of predictor values, what response should we predict, and how accurate is our prediction?
 - There are three types of uncertainty associated with predictions using $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \cdots + \hat{\beta}_p X_p$
 - The least squares plane is only an estimate for the true population regression plane
 - The inaccuracy from coefficient estimates is **reducible error** (we can compute a confidence interval to quantify how close \hat{Y} is to f(X))
 - Assuming a linear model for f(X) can lead to reducible error (**model bias**)
 - Even if f(X) is known, the response cannot be predicted perfectly due to random error ϵ (irreducible error)
 - Prediction intervals incorporate reducible/irreducible error

3.3 - Other Considerations in the Regression Model

3.3.1 - Qualitative Predictors

- Predictors with only two levels
 - We can use one-hot encoding for predictors with two possible values
 - Using such a variable in the regression equation can be done via

$$y_i = eta_0 + eta_1 x_i + \epsilon_i$$

- Other encoding schemes can also be used, such as (-1, 1), (0, 1) (flipped one-hot encoding), etc.
- · Predictors with more than two levels
 - We can use a similar encoding scheme to the two level case with a baseline

3.3.2 - Extensions of the Linear Model

- While linear models work well and provide interpretable results, they make assumptions about additivity and linearity
 that may not always apply in practice
 - Additivity: association between predictor X_i and Y does not depend on other predictors
 - Linearity: Change in Y associated with a one-unit change in an X_j is constant
- Removing additivity assumption
 - Simple linear regression model may not account for interaction effect
 - Solution: add an interaction term $\beta_3 X_1 X_2$ in $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$ to make the model

$$Y = \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2 \epsilon = \beta_0 + \tilde{\beta_1} X_1 + \beta_2 X_2 + \epsilon$$

- The **hierarchical principle** states that if we include an interaction in a model, we should also include the main effects, even if their associated p-values imply their coefficients are not statistically significant
- Interactions in qualitative variables are very similar to those in quantitative variables
- Non-linear relationships
 - Polynomial regression can be used to extend linear models

3.3.3 - Potential Problems

- Non-linearity of the response-predictor relationships
 - **Residual plots** can be used to identify patterns in residuals and adjust model (e.g. by adding non-linear terms such as X^2 , $\log X$, \sqrt{X} , etc.) to account for non-linearity
- · Correlation of error terms
 - Standard errors for regression coefficients are computed assuming error terms ϵ_i are uncorrelated
 - If there is correlation, estimated standard errors will underestimate true standard errors
 - Such correlations occur in context of time series data (e.g. if error terms are positively correlated, we may see tracking in the residuals where adjacent residuals have similar values)
- Non-constant variance of error terms
 - **Heteroscedasticity** is when errors e_i do not have a constant variance
 - Standard errors/Cls/hypothesis tests for a linear model make this assumption
- Outliers
 - Residual plots can be used to identify outliers
 - Plotting studentized residuals (residuals divided by standard error) can be better to decide how large a residual needs to be before a point is considered an outlier
- High-leverage points
 - Points with **high leverage** have an unusual value for x_i
 - The leverage statistic can be used to quantify an observation's leverage for a simple linear regression

$$h_i = rac{1}{n} + rac{(x_i - ar{x})^2}{\sum_{i'=1}^n (x_{i'} - ar{x})^2}$$

- Larger leverage statistic implies an observation has high leverage
- Collinearity
 - Collinearity refers to when two or more predictor variables are closely related
 - Effects
 - Reduces accuracy of estimation of regression coefficients
 - Causes standard error $\hat{\beta}_j$ to grow, decreasing t-statistic and potentially causing us to fail to reject $H_0=\beta_j=0$
 - As a result, power of the hypothesis test (defined as probability of correctly detecting non-zero coefficient) is reduced by collinearity
 - Detecting collinearity
 - Between two variables, look for high values in correlation matrix
 - Between multiple values (multicollinearity), compute the variance inflation factor

$$ext{VIF}(\hat{eta}_j) = rac{1}{1 - R_{X_j|X_{-j}}^2}$$

where $R^2_{X_i \mid X_{-i}}$ is R^2 from regression of X_j onto other predictors

- A VIF exceeding 5 or 10 (arbitrary) indicates significant collinearity
- Tackling collinearity can be done via combining collinear variables into a single predictor or dropping one or more
 of collinear variables

3.4 - The Marketing Plan

- Heavily refers to Advertising dataset, so omitted
- Tidbits
 - Use prediction intervals when computing individual responses $Y = f(X) + \epsilon$ and confidence intervals when computing average responses f(X) since prediction intervals will account for irreducible error ϵ

3.5 - Comparison of Linear Regression with K-Nearest Neighbors

- Linear regression is a **parametric** approach and makes assumptions about the form of f(X)
- Non-parametric methods do not make any assumptions about f(X)
- K-nearest neighbors regression estimates $f(x_0)$ with

$$\hat{f}(x_0)rac{1}{K}\sum_{x_i\in\mathcal{N}_0}y_i$$

- Optimal value for k depends on bias-variance tradeoff (lower K gives high variance, low bias)
- Parametric methods outperform non-parametric methods if parametric form is close to true form of X
 - As non-linearity increases, KNN will outperform linear regression
- The curse of dimensionality (little observations relative to number of classes) may hinder non-parametric methods

4 - Classification

- Motivation: categorical or quantitative response variable
- Predicting a qualitative response is referred to as classifying

4.1 - An Overview of Classification

Some examples of why we use classification: disease detection, spam filtering, disease-finding detection genes

4.2 - Why Not Linear Regression?

- Two main reasons
 - 1. Regression cannot accommodate qualitative outputs with more than 2 classes
 - 2. Regression will not provide meaningful estimates of P(Y|X) (even with just 2 classes)

4.3 - Logistic Regression

Models probability Y belongs to a category (we will do 2 classes)

4.3.1 - The Logistic Model

- We want to model relationship between p(X) = P(Y = 1|X) and X, using 0/1 coding
 - Model used is $p(X) = \beta_0 + \beta_1 X$
 - Problem: probabilities may not be in [0,1]
 - In logistic regression, we use the logistic function to create an S-shaped curve

$$p(X)=rac{e^{eta_0+eta_1X}}{1+e^{eta_0+eta_1X}}$$

- Quantity $rac{p(X)}{1-p(X)}=e^{eta_0+eta_1 X}$ is called **odds** and is in $[0,\infty)$
 - $\log \frac{p(X)}{1-p(X)}$ are **log-odds** or **logits**; the linear regression model p(X) is a logit linear in X

Model fitting using maximum likelihood

4.3.2 - Estimating the Regression Coefficients

• Use method of maximum likelihood; choose estimates \hat{eta}_0 and \hat{eta}_1 to maximize

$$\prod_{i:y_i=1} p(x_i) \prod_{i':y_i'=0} (1-p(x_{x'}))$$

- Statistical significance
 - Use a **z-statistic** (analogous to t-statistic), computed via $\frac{\hat{\beta}_1}{\operatorname{SE}(\hat{\beta}_1)}$
 - Large abs value of z-statistic indicates evidence against null hypothesis $H_0: \beta_1=0$ or $p(X)=rac{e^{eta_0}}{1+e^{eta_0}}$
 - Estimated intercept β_0 is usually not of interest and used to adjust fitted probabilities to proportion of ones in data

4.3.3 - Making Predictions

Can use 0/1 encoding for case with two qualitative outputs

4.3.4 - Multiple Logistic Regression

We can generalize two-predictor case as

$$\log\left(rac{p(X)}{1-p(X)}
ight)=eta_0+eta_1X_1+\cdots+eta_pX_p$$

where (X_1, \ldots, X_p) are predictors; this gives

$$p(X) = rac{e^{eta_0 + eta_1 X_1 + \cdots + eta_p X_P}}{1 + e^{eta_0 + eta_1 X_p + \cdots eta_p X_p}}$$

- Confounding variables
 - Results obtained using one predictor may differ from those obtained using multiple predictors (especially when there is correlation among predictors)
 - This is phenomenon known as confounding

4.3.5 - Multinomial Linear Regression

- Motivation: extending two-class logistic regression to K>2 classes
- Idea: select a single class (arbitrarily the kth class K) to serve as a baseline
 - P(Y = k|X = x) is

$$P(Y=y|X=x) = rac{e^{eta_{k_0} + eta_{k_1} x_1 + \cdots eta_{k_p} x_p}}{1 + \sum_{l=1}^{K-1} e^{eta_{l_0} + eta_{l_1} x_1 + \cdots + eta_{l_p} x_p}}$$

for $1 \le k \le K-1$ and

$$P(Y=K|X=x) = rac{1}{1 + \sum_{l=1}^{K-1} e^{eta_{l_0} + eta_{l_1} x_1 + \cdots eta_{l_p} x_p}}$$

• For $1 \le k \le K - 1$,

$$\log\left(rac{P(Y=k|X=x)}{P(Y=K|X=x)}
ight)=eta_{k0}+eta_{k_1}x_1+\cdots+eta_{k_p}x_p$$

The choice of baseline is arbitrary and does not affect the output of the model (fitted values, log odds, z-statistics/p-values)

- Only affects β terms
- We use softmax coding as an alternative coding for multiple linear regression
 - As a result, rather than estimating coeffs for K-1 classes, we estimate K coefficients

4.4 - Generative Models for Classification

- Motivation: instead of modeling conditional distribution of Y given X, model distribution of each predictor separately given X and use Bayes' theorem to flip these into estimates of P(Y = k | X = x)
 - When X is normally distributed, this is similar to logistic regression
 - Reasons why this method may be needed:
 - 1. When there is significant separation between the two classes
 - 2. If predictors *X* are distributed approximately normally and sample sizes are relatively small, this method may be more accurate than logistic regression
 - 3. Methods can be naturally extended to case with > 2 response classes
- · Bayes' theorem
 - If π_k is **prior probability** of randomly chosen observation comes from kth class, $f(X) \equiv P(X|Y=k)$ is pdf of X (continuous if X is qualitative, discrete if quantitative)
 - Bayes' theorem states that the posterior probability P(Y = k | X = x) is

$$P(Y=k|X=x) = rac{\pi_k f_k(x)}{\sum_{i=1}^K \pi_l f_l(x)}$$

- Recall Bayes classifier has lowest error rate (if all the terms in the formula are correctly specified)
 - Estimating π_k is easy if we have sufficient sample size
 - Estimating density $f_k(x)$ is more difficult we discuss three methods to do so

4.4.1 - Linear Discriminant Analysis for p=1

- Assume we have p=1 predictors; to estimate $f_k(x)$, assume it is **normal** or **Gaussian**
 - Density function is pdf

$$f_k(x) = rac{1}{\sqrt{2\pi}\sigma_k} \mathrm{exp}\left(-rac{1}{2\sigma_k^2(x-\mu_k)^2}
ight)$$

where μ_k and σ_k^2 are mean/variance for kth class

• Using the above density $f_k(x)$, we obtain

$$p_k(x) = rac{\pi_k ext{exp}\left(-rac{1}{2\sigma_k^2(x-\mu_k)^2}
ight)}{\sum_{i=l}^K ext{exp}\left(-rac{1}{2\sigma_k^2(x-\mu_k)^2}
ight)}$$

- Log probability is $\delta_k(x) = x \cdot rac{\mu_k}{\sigma^2} rac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$
- Bayes decision boundary is point for which $\delta_1(x) = \delta_2(x)$
- Linear discriminant analysis (LDA) method approximates Bayes classifier by estimating μ_1, \dots, μ_K and π_1, \dots, π_K (as we cannot compute Bayes classifier unless we know distribution X is sampled from)
 - Estimates used are $\mu_k=rac{1}{n_k}\sum_{i;y_i=k}x_i$ and $\hat{\sigma}^2=rac{1}{n-K}\sum_{k=1}^K\sum_{i;y_i=k}(x_i-\hat{\mu}_k)^2$
 - Using this, we compute $\hat{\pi}_k = n_k/n$
 - LDA classifier plugs estimates into formula for $\delta_k(x)$ and assigns observation X=x for which $\hat{\delta}_k(x)$ is maximized (this is the **discriminant function**)

4.4.2 - Linear Discriminant Analysis for p>1

- Assume we have p>1 predictors and that each predictor has a 1D normal distribution
 - If a p-dimensional r.v. X has a multivariate Gaussian distribution, we write $X \sim \mathcal{N}(\mu, \Sigma_k)$, where Σ_k is the $p \times p$ covariance matrix of X
- LDA classifier
 - Assumes p>1 predictors are drawn from a multivariate Gaussian distribution $N(\mu_k, \Sigma)$, where μ_k is a class-specific mean
 - Bayes classifier assigns observation X=x for which $\delta_k(x)=x^T \Sigma^{-1} \mu_k \frac{1}{2} \Sigma \mu_k + \log \pi_k$ is largest
 - Bayes decision boundaries represent set of values x such that $\delta_k(x) = \delta_l(x)$
 - Parameters $\mu_1, \dots, \mu_K, \pi_1, \dots, \pi_k$ and Σ are estimated in a similar manner to 1D case
- Error rates
 - A confusion matrix displays performance of classification algorithm via true/false positive and negative information
 - We can modify the threshold for $p_k(X)$ if we want make less errors of a certain kind (e.g. predicting whether credit card holders will default or not on their statement)
 - The **ROC** (receiver operating characteristic) curve is a popular graphic for simultaneously displaying 2 types of errors for all possible thresholds
 - True/false positive rates are called sensitivity and specificity
 - If N is the total number of negative values and P (Type I error, 1-specificity) is the total number of positive values, TP/P is the true positive rate, FP/N is the true negative rate (1-Type II error, power, sensitivity, recall)

4.4.3 - Quadratic Discriminant Analysis

- Quadratic discriminant analysis (QDA) assumes (like LDA) observations from each class are drawn from a Gaussian distribution
 - Other assumptions: observation from kth class is of form $\mathcal{N}(\mu_k, \Sigma_k)$
 - Each class has its own covariance matrix Σ_k
 - With these assumptions, Bayes classifier assigns an observation X=x to the class for which $\delta_k=-\frac{1}{2}(x-\mu_k)^T\mathbf{\Sigma}_k(x-\mu_k)-\frac{1}{2}\log|\mathbf{\Sigma}_k|+\log\pi_k$ is greatest
- LDA vs. QDA
 - QDA estimates Kp(p+1)/2 parameters whereas LDA estimates p(p+1)/2 parameters
 - More parameters leads to higher variance, so QDA is better for large training sets
 - LDA is less flexible and is better for smaller training sets, but if the assumption that *K* classes have a common covariance matrix is wrong, LDA can have high bias

4.4.4 - Naive Bayes

- Recall in Bayes' theorem, we estimate $p_k(x) = P(Y = k | X = x)$ in terms of π_1, \ldots, π_K and $f_1(x), \ldots, f_K(x)$
 - Estimating π_1, \dots, π_K is easy via training data, but each $f_i(x)$ is a p-dimensional density function with a mean vector and covariance matrix
 - In LDA/QDA, we estimate each mean vector μ_i and 1/K covariance matrices, respectively
 - In Naive Bayes, we assume within the kth class, the p predictors are independent, or $f_k(x) = f_{k_1}(x_1) \cdots f_{k_p}(x_p)$
 - This is a very powerful assumption, as it implies we no longer have to consider the marginal and joint distributions of the p-dimensional density functions
 - This method introduces some bias, but significantly reduces variance
- After making the naive Bayes assumption, we have

$$P(Y=k|X=x) = rac{\pi_k \cdots f_{k_1}(x_1) imes \cdots imes f_{k_p}(x_p)}{\sum_{l=1}^K \pi_l imes f_{l_1}(x_1) imes \cdots imes f_{l_p}(x_p)}$$

- Depending on whether X_j is quantitative or qualitative, there are different methods of estimating the one-dimensional density function f_{k_j} using x_{1_j}, \dots, x_{n_j}
 - If X_i quantitative, there are two methods:
 - We can assume $X_j|Y=k \sim \mathcal{N}(\mu_{jk},\sigma_{jk}^2)$
 - Use a non-parametric estimate for f_{kj}
 - If X_i qualitative, we can count proportion of training observations for the jth predictor corresponding to each class

4.5 - A Comparison of Classification Models

4.5.1 - An Analytical Comparison

- · We want to analytically compare LDA, QDA, naive Bayes, logistic regression
 - Setting: we have K classes and want to maximize P(Y = k|X = x)
 - Equivalently, we can set K as the baseline class and maximize $\log\left(\frac{P(Y=k|X=x)}{P(Y=K|X=x)}\right)$
 - ullet LDA/QDA assume log odds of posterior probabilities are linear/quadratic in x
 - Naive bayes log odds takes the form of a generalized additive model
- Takeaways of computing log odds
 - LDA is a special case of naive Base and naive Bayes is a special case of LDA
 - · Neither QDA nor naive Bayes is a special case of the other
 - Logistic regression log odds are also a linear function of the predictors, but chosen to maximize the likelihood function
 - LDA should outperform logistic regression (LR) when normality assumption holds (LR performs better when it does not)
 - KNN
 - Should dominate LDA and LR when decision boundary is very non-linear (assuming n is very large and p is small)
 - KNN requires a lot of observations to perform well
 - QDA may be preferred to KNN when decision boundary is very non-linear but n not large enough or p is not very small
 - Does not tell us which predictors are important

4.5.2 - An Empirical Comparison

- · Mostly book-specific, but some takeaways are below
 - · No one method always dominates the other
 - Similar to in regression, we can perform classification using transformations of the predictors (e.g. X^2 , X^3 , X^4 , etc.)

4.6 - Generalized Linear Models

- This is also book-specific, but some notes on the models used are below
- Motivation
 - Recall the issue of heteroscedasticity linear models assume error ϵ has mean zero and constant variance
 - Due to continuous nature of error ε, linear model may output continuous values when it should output integers

4.6.2 - Poisson Regression

• Recall the Poisson distribution — it is used to measure **counts** and has mean/variance λ

• Consider a model for the mean $\lambda = E(Y)$ with covariates X_1, \dots, X_p

$$\log(\lambda(X_1,\ldots,X_p)) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

or equivalently $\lambda(X_1,\ldots,X_p))=e^{\beta_0+\beta_1X_1+\beta_pX_p}$ where we want to estimate the β_i parameters (we took the log above so the model is linear in X_1,\ldots,X_p)

- We use a similar maximum likelihood approach to maximize $l(eta_0,\dots,eta_p)=\prod_{i=1}^n rac{e^{-\lambda(x_i)\lambda(x_i)^{y_i}}}{y_i!}$
- Differences between Poisson and linear regression
 - Interpretation: an increase in X_j by one unit is associated with an increase in the $E(Y)=\lambda$ by e^{β_j}
 - Mean-variance relationship: better modeled by Poisson regression, since variance is not constant (like linear regression assumes) and mean/variance are equal in Poisson regression
 - · Nonnegative fitted values: unlike linear regression, Poisson regression returns nonnegative values

4.6.3 - Generalized Linear Models in Greater Generality

- We have discussed three regression modelling approaches: linear, logistic, Poisson, which share some characteristics:
 - Each approach uses predictors X_1, \ldots, X_p to predict a response Y (we assume the distribution of Y based on the approach)
 - Each approach models mean of Y as a function of predictors
- We can transform each model for the mean of Y as a function of its predictors using a link function
 - Any regression approach that follows this general recipe is a generalized linear model

5 - Resampling Methods

- Resampling methods involve repeatedly drawing samples from a training set and refitting a model on each sample
 to obtain information about the fitted model
 - Common resampling methods include cross-validation and the bootstrap
 - Resampling is used for model assessment and model selection

5.1 - Cross-Validation

- Motivation: we may not always have a test set to compute the test error of a statistical method
 - To compute test error, we have several methods:
 - Make an adjustment using training error
 - Hold out a subset of the training data and apply the method on the held out data

5.1.1 - The Validation Set Approach

- The validation set approach consists of randomly dividing available set of observations into a training set and a validation set (aka a holdout set)
 - Validation set MSE provides estimate of test error rate
- Drawbacks of validation set approach
 - Validation estimate of test error rate can be highly variable and depends on which observations are included in training set and which are in validation set
 - Only a subset of the observations are included in training set, but statistical models perform better with more training data
 - So, validation set error may overestimate test error rate

5.1.2 - Leave-One-Out Cross Validation

- Similar to validation set approach, but instead of creating two subsets, the model is trained on n-1 observations from training set and test MSE is computed using a particular (x_i, y_i)
 - Leads to more variability, but MSE_i is approximately an unbiased estimator of test error
 - Procedure can be repeated with each of $(x_1, y_1), \ldots, (x_n, y_n)$ used to estimate test error
 - LOOCV estimate for test MSE is avg of n test error estimates, e.g. $CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$
- Advantages
 - Does not overfit test error rate as much as validation set approach because training set is larger
 - No randomness in performing LOOCV, so results are always the same for each (x_i, y_i)
- Optimization
 - We can make the cost of LOOCV the same as that of a single model fit via the formula $CV_{(n)} = \sum_{i=1}^{n} \left(\frac{(y_i \hat{y}_i^2)}{1 h_i} \right)$ where h_i is leverage (defined in Chapter 3)
 - This formula does not always hold, in which case the model must be fit *n* times

5.1.3 - k-Fold Cross Validation

- Approach: divide set of observations into k folds of roughly equal size
 - First fold is treated as validation set, method is fit on k-1 other folds
 - MSE is computed on held-out fold
 - Procedure is repeated k times, where a different group of observations is treated as validation set
 - k-fold CV estimate is computed via $\mathrm{CV}_{(k)} = \frac{1}{k} \sum_{i=1}^k \mathrm{MSE}_i$
- Remark: LOOCV is a special case of k-fold CV where k=n
- · Evaluating k-fold CV results
 - If we want to determine how well a given model might perform on independent data, we may look for the model with the best estimate of the MSE
 - Alternatively, if we want the model with the lowest test error, in which we look at the lowest point on the estimated test MSE curve

5.1.4 - Bias-Variance Trade-Off for k-fold Cross-Validation

- k-fold CV often gives more accurate estimates of test error rate than LOOCV
 - LOOCV gives roughly unbiased estimates of test error
 - However, because each model is trained on roughly the same training data, there is high variance (mean of many highly correlated quantities has high variance)
 - k-fold CV leads to an intermediate amount of bias
 - Models are trained on less correlated training data, so there is less variance when compared to LOOCV
 - · Validation set approach leads to high bias
- Based on bias-variance tradeoff, one should consider 5/10-fold CV because it has been shown these estimates do not show excessive bias/variance

5.1.5 - Cross-Validation on Classification Problems

• When Y is qualitative, the LOOCV error rate takes the form $CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} Err_i$ (analogous for validation set and k-fold CV error rates)

5.2 - The Bootstrap

- The bootstrap is a method used to estimate the uncertainty associated with a given estimator/learning method
 - Ex: estimating standard errors of coeffs from a linear regression model

- We cannot generate more training data to estimate uncertainty, but we can repeatedly sample from original dataset
- Method
 - Suppose training dataset is Z with n observations
 - Randomly select n observations with replacement from dataset to produce a bootstrap dataset Z^{*1} (do this B times to obtain Z^{*1}, \ldots, Z^{*B}) and corresponding estimates
 - If our estimates are $\hat{\alpha}^{*1}, \dots, \hat{\alpha}^{*B}$, we compute the standard error via

$$\mathrm{SE}_B(\hat{\alpha}) = \sqrt{\frac{1}{B-1} \sum_{r=1}^B \left(\hat{\alpha}^{*r} - \frac{1}{B} \sum_{r'=1}^B \hat{\alpha}^{*r'} \right)}$$

• This serves as an estimate of standard error of $\hat{\alpha}$ estimated from original dataset

6 - Linear Model Selection and Regularization

While we will eventually consider non-linear models, there is still merit to using a linear model

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \epsilon$$

- There are some improvements that can be made to a linear model, particularly with least squares
- Issues with least squares
 - Prediction accuracy: if n is not much larger than p, least squares can have a lot of variability; if p > n, there is no unique least squares solution
 - Model interpretability: linear regression sometimes contains irrelevant variables, adding unnecessary complexity in the model
 - A related problem is feature selection
- We will discuss subset selection, shrinkage (regularization), and dimension reduction

6.1 - Subset Selection

6.1.1 - Best Subset Selection

- Algorithm:
 - 1. Let \mathcal{M}_0 be **null model**, which always predicts the sample mean for each observation
 - 2. For k = 1, ..., p
 - 2a) Fit least squares regression models with $\binom{p}{k}$ predictors
 - 2b) Pick best model among $\binom{p}{k}$ models (lowest RSS or highest R^2)
 - 3. Select best model out of all models chosen in 2b using predicted error from a validation set, Bayesian criterion (BIC), or adjusted \mathbb{R}^2
- Note training error decreases monotonically with more predictors, so choosing the best model out of all p+1 best models is not trivial
- Can be used for classification problems, but instead of RSS, the deviance (negative two times maximized loglikelihood)
- Caveat: very computationally expensive, as we have to evaluate 2^p models

6.1.2 - Stepwise Selection

- Forward stepwise selection
 - Algorithm:
 - 1. Let \mathcal{M}_0 be null model
 - 2

- 2a) Consider all p-k models that augment predictors in \mathcal{M}_k with one additional predictor
- 2b) Choose the best (in same way as in best subset selection) among these p-k models and call it \mathcal{M}_{k+1}
- 3. Select a single best model among $\mathcal{M}_0, \dots, \mathcal{M}_p$ in same way as in best subset selection
- Total models fitted is $1+\sum_{k=0}^{p-1}(p-k)=1+p(p+1)/2$ models (the first model is the null model)
- Caveat: not guaranteed to find best possible model out of all 2^p models because \mathcal{M}_{i+1} will contain everything in \mathcal{M}_i
 - Can be used if n < p, but a unique solution will not be reached if $p \ge n$
- · Backward stepwise selection
 - Algorithm omitted (similar to forward stepwise selection)
 - Caveat:
- Hybrid approaches between forward/backward stepwise selection are best

6.1.3 - Choosing the Optimal Model

- We need to determine which model from best subset selection/forward/backward selection result in the best model
 - Approaches:
 - 1. Indirectly estimate test error by adjusting training error to account for overfitting
 - 2. Directly estimate test error using a validation set approach or CV
- Adjusting training error
 - C_p is defined as $\frac{1}{n}(RSS + 2d\hat{\sigma}^2)$ where d is the number of predictors in the model
 - Penalty for training error to account for underestimation of test error
 - Akaike information criterion (AIC) is defined for models fit with maximum likelihood
 - In the case of a model with Gaussian errors, maximum likelihood and least squares have the same results, so $AIC = \frac{1}{n}(RSS + 2d\hat{\sigma}^2)$
 - Bayesian information criterion (BIC) is defined as $\frac{1}{n}(RSS + \log(n)d\hat{\sigma}^2)$
 - As $\log(n) > 2$ when n > 7, BIC places a higher penalty on larger datasets (higher emphasis on smaller models)
 - The **adjusted** R^2 value is defined as $1-\frac{\mathrm{RSS}/(n-d-1)}{\mathrm{TSS}/(n-1)}$
 - Large adjusted R^2 indicates a model with small test error
 - ullet Penalizes addition of noise variables in the model via n-d-1 term
- Validation/CV
 - Validation/CV may be better for model selection than adjusting training error
 - Less assumptions made, can be used in a wider selection of tasks,
 - The one-standard error rule states that the smallest (simples) model within one stdev of the lowest point on the
 error curve

6.2 - Shrinkage Methods

 Motivation: fit a model containing all p predictors using a technique that constrains or regularizes coefficient estimates

6.2.1 - Ridge Regression

• Ridge regression aims to find estimates \hat{eta}^R as the values that minimize

$$\sum_{i=1}^n \left(y_i - eta_0 \sum_{j=1}^p eta_j x_{ij}
ight)^2 + \lambda \sum_{j=1}^n eta_j^2 = ext{RSS} + \lambda \sum_{j=1}^n eta_j^2$$

where $\lambda \geq 0$ i a tuning parameter and $\lambda \sum_{j=1}^n \beta_j^2$ is a shrinkage penalty

- Note: individual coefficients β_i may increase as λ increases (while ridge coefficient estimate as a whole tend to decrease in aggregate as λ increases)
- Because the estimates $\hat{\beta}_{j,\lambda}$ are not **scale equivariant**, the value of $X_j\hat{\beta}_{j,\lambda}$ depends on the scaling of X_j , as well as potentially other variables X_1, \ldots, X_p
 - As a result, it is best to apply ridge regression after standardizing the predictors using

$$ar{x}_{ij} = rac{x_{ij}}{\sqrt{rac{1}{n}\sum_{i=1}^n(x_{ij}-ar{x}_j)^2}}$$

- Improvement over least squares
 - When relationship of response to predictors is roughly linear, least squares estimates will have low bias but high variance
 - If p > n, the least squares estimates do not have a unique solution, whereas ridge regression can perform well
 by trading off a small increase in bias for a large decrease in variance
 - · Computationally more efficient than best subset selection

6.2.2 - The Lasso

- Motivation: ridge regression always includes all p predictors
- The **lasso** coefficients $\hat{\beta}_{\lambda}^{L}$ aim to minimize

$$\sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij}
ight)^2 + \lambda \sum_{i=1}^p |eta_j|$$

- Uses an L1 norm (whereas ridge regress uses an L1 norm)
- Forces some coefficient estimates to be zero when λ is sufficiently large, so **variable selection** is performed (yields **sparse** models as a result)
- Alternative formulation for ridge and lasso regression
 - We can have a "budget" s such that $\sum_{i=1}^p |\beta_j| \le s$ and $\sum_{i=1}^p \beta_j^2 \le s$ that prevent the coefficient estimates from becoming too small
 - This can be generalized to $\sum_{j=1}^p I(eta_j
 eq 0) \leq s$ which represents best subset selection
- Variable selection property
 - Refer to book, but we can essentially represent points containing $\hat{\beta}$ values with the same RSS value on ellipses
 - When an ellipse touches the constraint region (represented by $|\beta_1| + |\beta_2| \le s$ or $\beta_1^2 + \beta_2^2 \le s$), lasso/ridge regression stop working
- Comparing lasso/ridge regression
 - Lasso implicitly assumes some predictors will be zero, so ridge will do better in the case where all predictors are
 related to the response
 - However, as the number of predictors related to the response is not known a priori, cross-validation can be
 used to determine the
 - Shrinkage
 - Ridge regression shrinks every dimension of data by the same proportion
 - · Lasso regression shrinks all coefficients towards zero by the same amount
- Bayesian interpretation
 - Assumption: coefficient vector β has some prior distribution $p(\beta)$ where $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$
 - If $f(Y|X,\beta)$ is the likelihood of the model, we can multiply the prior distribution by the likelihood to give the **posterior distribution**

$$p(\beta|X,Y) \propto f(Y|X,\beta)p(\beta|X) = f(Y|X,\beta)p(\beta)$$

where we use Bayes theorem to demonstrate proportionality and the fact that X is stationary in the equality

6.2.3 - Selecting the Tuning Parameter

- Cross-validation provides a simple way to choose λ
 - Choose a grid of λ values and compute cross-validation error for each λ
 - Select λ for which cross-validation error is smallest

6.3 - Dimension Reduction Methods

.