

Labelling the Data

Discuss the slice selection and extraction process. Outline the chosen methods of manual slice labelling.

Two Dimensional Boundary Extraction

Dataset Curation

Discuss the sliding window technique used. Justify the dataset splits chosen.

Data Augmentation

Introduce the Keras class used and discuss acceptable transformations.

Architecture Implementation

Discuss the implementation of the U-Net architecture, early stopping, model checkpointing, metric visualisation, and training using Keras. Introduce the hyperparameters used to train the initial implementation and showcase initial results.

Experimentation

Discuss experiments carried out in order to both improve the performance, and gain a better understanding, of the subcomponents implemented. Experiments with hyperparameter optimisation, dropout, varying augmentation transformation ranges, and ablation studies are discussed.

Accuracy Metric Implementation

Discuss the motivation behind, and implementation of, a custom accuracy metric that makes used of thresholding, skeletonization, and is based off of average Euclidean distances between the predictions and ground truth.

Calcification Rate Estimation

Discuss the estimation of the calcification rate using the boundaries produced by the models implemented.

Three Dimensional Boundary Extraction

Dataset Curation

Discuss the sliding window technique used. Justify the dataset splits chosen.

Data Augmentation

Introduce the custom data loaders and discuss the custom transformations implemented.

Architecture

Discuss the implementation of multiple modified U-Net architectures designed to precess 3D data. Introduce the hyperparameters used to train the initial implementations and showcase initial results.