

CO-560-A Databases and Web Services

Instructors: Peter Baumann

email: <u>p.baumann@jacobs-university.de</u>

office: room 88, Research 1

Where It All Started

Source: Wikipedia

- 1890 census on 62,947,714 US population "Big Data"
 - was announced after only six weeks of processing
- Hollerith "tabulating machine and sorter"
- Tabulating Machine Company
 - → International Business Machines Corporation

Hollerith card puncher, used by the United States Census Bureau

Herman Hollerith in 1888

Hollerith punched card

What Happens in an Internet Minute?

What Is "Big Data"?

- Internet: the unprecedented information collector
 - 2012: 200m Web servers [Yahoo]
 - estd 50+b static pages [Yahoo]
 - 40 b photos [Facebook]
 - 2012: 31b searches/m [Google]
- 2025: 463 Exabytes / day

- Typical Big Data:
 - Business Intelligence
 - Social networks Facebook, Twitter, GPS, ...
 - Life Science: patient data, imagery
 - Geo: Satellite imagery, weather data, crowdsourcing, ...

Data = the "new gold", "new oil"
Petrol industry: "more bytes than barrels"

Today: "Data Deluge"

- It is estimated that a week's work at the New York Times contains more information than a person in the 18th Century would encounter in their entire lifetime and the thought is that within 10 years the rate of information doubling will occur every 72 hours." -- P. "Bud" Peterson, U Colorado
- "global mobile data traffic 597 petabytes per month in 2011 (8x the size of the entire global Internet in 2000) estimated to grow to 6,254 petabytes per month by 2015" -- Forbes, June 2012
- a typical new car has about 100 million lines of code
 - -- http://www.wired.com/autopia/2012/12/automotive-os-war/

Big Data in Business

[Wikipedia]

- Walmart: more than 1 million customer transactions every hour;
 imported into databases estimated to contain more than 2.5 PB of data
 - =167 times all books in the US Library of Congress
- FICO Falcon Credit Card Fraud Detection System protects 2.1 billion active accounts world-wide
- Estd.: business data worldwide x2 every 1.2 years

Data Management: The Task

- Manifold information, accessed by users in manifold (often unanticipated) ways
 - Standard task
 - Many variations
- Solution: individually configurable standard tool

...is this marketing speak???

What Is a Database [System]?

- Database = DB = an integrated collection of data
 - With a well-described structure = schema
- Database [Management] System = DBMS
 - = software to store and manage databases
 - ...and no one else!
- describes excerpt of real-world enterprise
 - "Universe of Discourse" (UoD), "mini world"
- Example:
 - Entities (students, courses, ...)
 - Relationships (Madonna is taking 320301, ...)

History:

- 60s... IMS (hierachical model, for tapes), CODASYL (network model, still tapes)
- 1974 SEQUEL defined (Chamberlain et al.)
- 1977 IBM prototype System R; Oracle starts implementation
- 1979 first Oracle SQL DBMS shipped
- 1981 IBM ships SQL/DS
- 1983 IBM introduces DB2
- 1985 Ingres, Informix switch to SQL
- 1987 ISO 9075 Database Language SQL
- 1988 dBASE IV with SQL
- 1989 ISO SQL-89
- 1992 ISO SQL-92
- 1999 SQL:1999 (SQL3): extensibility
- 2003 SQL:2003

Key to success: query language

- Intuitive (hm...)
- Yet precise, formalised semantics
- Declarative = abstracts from internals
- ...hence optimizable

Genealogy of Relational Database Management Systems

Database Landscape Map - December 2012

...and Then Came NoSQL

www.nosql-database.org

- original intention: modern web-scale databases
 - began early 2009, has grown rapidly
 - Broadened into "Next-Generation Databases"
- Fast: On >50 GB data:
 - MySQL: Writes 300 ms avg
 - Cassandra: Writes 0.12 ms avg
- The Empire strikes back: NewSQL

...but still:

Jelvix

Source: Stack Overflow, Amazon, Statista

je

COURSE & LAB ORGANIZATION

Prerequisites

- Interest, Curiosity, Engagement
- General CS I+II, programming, basic algebra
 - data structures (trees!), object-oriented concepts
 - general programming experience
 - Linux (project!)
- Non-CS majors: contact me!
 - possibly more difficult w/o prerequisites, specifically lab
 - This is an advanced CS course!
- "reading without writing is daydreaming"
- On any difficulties, contact TAs/me

Resources

- Textbooks Databases:
 - Database Systems: The Complete Book
 Ullman & Garcia Molina & Widom, Prentice Hall
 - Database Management Systems
 Ramakrishnan & Gehrke, McGraw Hill
- Textbook Web services:
 - Open Source Web Development with LAMP Lee & Brent, Addison Wesley
 - The Web manifold tutorials, find your favourite
- Course material: peter-baumann.org
 - \rightarrow teaching \rightarrow DBWS
- Instructor: p.baumann@

- DBWS list will subscribe first batch
 - Latecomers: your responsibility
 - Will NOT use course forum, Moodle!
- Teaching Assistants:
 - Valdrin Smakaj, v.smakaj@
 - Aryans Rathi, a.rathi@
 - Xhersila Olldashi, x.olldashi@
 - Flavia Tasellari, f.tasellari@
 - Alex Tretyakov, atretyakov@
- CLAMV: clabsql
 - a.gelessus@

Lab Project

- Implement core of an individual web service
 - Guided
 - Teams of 2 4
- Topics? suggest your own!
 - Earlier examples: cocktail database, stock trade monitoring, hospital drug inventory
- Tech platform: LAMP = Linux, Apache, MYSQL, [PHP | Python | Perl]
- Lab: offline work, submission via repo, discussion in class
 - Weekly lab slots with TA availability: Thu 11:15 12:30

Lab Project (contd.)

- Develop wherever you want, but final handover on a ClamV Linux box!
 - Support only for ClamV you will want to do it there
 - Will inspect & discuss source code with you better understand what you submit
- main evaluation criteria (no particular order):
 - complete wrt. requirements
 - engineering (bug-free, project & code documentation, coding quality, ...)
 - user-friendliness, professional look & feel
 - complexity (in absolute terms & in comparison to other teams' work)
 - own understanding

Where to Work

- CLAMV has reserved clabsql machine
- Connect with:
 - ssh <CampusNet Name>@clabsql.clamv.jacobs-university.de
 - ssh <CampusNet Name>@10.72.1.14
 - Password as distributed on paper
 - ssh <CampusNet Name>@, 10.17.2.8
- Assistance:
 - TAs
 - Dr Geleßus, <u>A.Gelessus@jacobs-university.de</u> (only CLAMV topics!)

Interactive SQL Access

Login to clabsql

Launch mysql client: mysql -u user -p

Pick database: use dbws;

List tables: show tables;

List table definition: describe Sailors;

Send SQL query: select * from Sailors;

Web Pages

- On clabsql, files sitting in your home directory -> public_html/ are accessible via web server
- Example:
 - User pbaumann
 - File public_html/index.html
 - Accessible via http://clabsql.clamv.jacobs-university.de/~pbaumann/index.html
- Caveat: web server must have permissions to access, minimum:
 - Files: permissions 644
 - Home directory & public_html & subdirectories: permissions 755

Course Plot - or: why should I take it?

- How to design databases, and how to search them
- How to design (Internet) services

- Database services revisited
- Practice: set up a Web service

What industry expects a CS graduate to know

Your entry point to the DB [dev/admin] world

Course Plot, Refined

- Database design
 - Entity-Relationship Model; UML
- The relational database model
 - Relations; SQL intro;
 ER mapping; views
 - SQL: queries, constraints, triggers
- Database application development

- Internet service architectures
 - HTTP, XML, JSON
- Database services revisited
 - Logical/Physical Design, Transaction Management, Security, Authorization
- Big Data
- Outlook

OUR RESEARCH

Our Research: Array Databases

- Large-Scale Scientific Information Services (L-SIS) Research Group
 - flexible, scalable services on massive n-D arrays
- Main visible results:
 - <u>rasdaman</u> Array DBMS worldwide in operational use
 - Datacube standards in <u>OGC</u>, ISO, INSPIRE eg, <u>SQL/MDA</u>
- Got rock-solid coding skills? Join us!
 - C++, Java, JavScript

Arrays, aka Datacubes

[DKRZ]

Big Data in Geo: Satellite Imagery

- 100s of Exabytes expected for 2020
- ngEO: planning for 10^12 satellite images under curation of ESA
- [ESA]

- Increased # of instruments flying
 - · A-Train, Landsat, Sentinels, ...
- Increased spectral resolution:
 5 (Landsat) to 250 (ALI/Hyperion)
- Increased spatial resolution: few meters
- NASA, ESA: each ~10 TB / day

Daily Hydro Estimator

Land Surface Temperature, Cloudfree

ECMWF: River Discharge

BIG EARTH DATA The Digitized Planet

On-Board Datacube Intelligence

ORBiDANse:
Orbital Big Data Analytics Service

[images: ESA, NASA]

CAREER RELEVANCE

Job Opportunities with DB Knowledge

- DBMS implementor (with DBMS vendor)
- DB administrator (DBA)
- Database consultants
- Software developer
 - ...without basic DB knowledge? No way!

Der Bereich Anwender Support bildet das Schlusslicht der Gehaltsskala für IT-Fachkräfte. Etwa 33.500 Euro verdient man in diesem Bereich. Einsteiger fangen mit einem Jahresgehalt von deutlich unter 30.000 Euro an. Die Halbleiter-Branche liegt bei der Höhe der Jahresgehalter klar an der

Skills Expected

Summary: Why Learn Databases?

- Fun & challenge
 - DBMS unique mix of most of CS:
 OS, programming languages, complexity theory, AI, logic, statistics, hardware, ...
- Money
 - Computer experts with database knowledge hold responsible jobs...and are well-paid!

