Sequence	Z-transform	ROC
$\delta[n]$	1	$\forall z$
$\alpha^n \mu[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$-(\alpha)^n\mu[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
$n\alpha^n\mu[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$-n\alpha^n\mu[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $

Table 1: Z-transforms and ROCs associated with several elementary sequences.

Sequence	Z-transform	ROC
g[n]	G(z)	R_g
h[n]	H(z)	R_h
$g^*[n]$	$G^*(z^*)$	R_g
g[-n]	$G(\frac{1}{z})$	$\frac{1}{R_g}$
$\alpha g[n] + \beta h[n]$	$\alpha G(z) + \beta H(z)$	includes $R_g \cap R_h$
$g[n-n_0]$	$z^{-n_0}G(z)$	R_g except maybe $z = 0$ or $z = \infty$
$\alpha^n g[n]$	$G(\frac{z}{\alpha})$	$ lpha R_g$
ng[n]	$-z\frac{dG(z)}{dz}$	R_g except maybe $z=0$ or $z=\infty$
$g[n]\otimes h[n]$	G(z)H(z)	includes $R_g \cap R_h$

Table 2: Most important properties of the Z-transform. R_g denotes the region of the z-plane $R_{g-} < |z| < R_{g+}$ and R_h denotes the region $R_{h-} < |z| < R_{h+}$. Then $1/R_g$ denotes the region $1/R_{g+} < |z| < 1/R_{g-}$.

Property of $g[n]$	ROC of $G(z)$
Finite length $g[n] = 0 \ \forall n > M \ \forall n < N$	All z-plane except except $z = 0$ if $M > 0$ except $z = \infty$ if $N < 0$
Causal $g[n] = 0 \ \forall n < 0$	$R_{g-} < z $
Anticausal $g[n] = 0 \ \forall n > 0$	$ z < R_{g+}$
Left-sided $g[n] = 0 \ \forall n > N $ with $N > 0$	$0 < z < R_{g+}$
Right-sided $g[n] = 0 \ \forall n < M \ \text{with} \ M < 0$	$R_{g-} < z < \infty$

Table 3: Properties of the ROC of the Z-transform of a sequence depending on the span of the sequence in time-domain.