Segment 5: Analyzing Observational Studies

Section 05: Inverse Probability Weighting

Inverse Probability of Treatment Weighting

One way we've seen to "restructure" the data:

- 1. Estimate the propensity score
- 2. Weight the sample \rightarrow pseudopopulation to approximate the design of a randomized trial
 - Weights will depend on the estimated propensity score
 - ► Treatment assignment will be unconfounded in the pseudopopulation

There are many methods for estimating causal effects that rely on this type of *Inverse Probability of Treatment* (IPTW) weighting

IPTW: Basic Intuition

Goal: Weight the observed sample to create a pseudopopulation that is balanced with respect to covariates (i.e., as though "randomized")

- ▶ The less likely a unit is to have received treatment $Z_i = z$, the larger representation it should get in the pseudopopulation
- ▶ Up-weight "weirdos": units whose treatment assignment is very different from what would be suggested by the propensity score
 - ▶ Unit $Z_i = 1$ and $e_i(X_i) = 0.05$ gets a weight of $\frac{1}{0.05} = 20$ ▶ Unit with $Z_i = 1$ and $e_i(X_i) = 0.9$ gets weight of $\frac{1}{0.9} = 1.11$
- Weights adjust for confounding by creating a pseudiopopulation where all individuals have the same probability of receiving Z=1 and Z=0
- Rooted in ideas of survey sampling

Example: IPTW Intuition

(adapted from Hernan and Robins textbook)

1 0 0 0 2 0 0 1 3 0 0 0 4 0 0 0 5 0 1 0 6 0 1 0 7 0 1 0 8 0 1 1 9 1 0 1 10 1 0 1 11 1 0 0 12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 20 1 1 0		X_i	Z_i	Y_i^{obs}
2 0 0 1 3 0 0 0 4 0 0 0 5 0 1 0 6 0 1 0 7 0 1 0 8 0 1 1 9 1 0 1 10 1 0 1 11 1 0 0 12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 0	1	0	0	0
4 0 0 0 5 0 1 0 6 0 1 0 7 0 1 0 8 0 1 1 9 1 0 1 10 1 0 1 11 1 0 0 12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	2	0	0	1
4 0 0 0 5 0 1 0 6 0 1 0 7 0 1 0 8 0 1 1 9 1 0 1 10 1 0 1 11 1 0 0 12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	3	0	0	
10 1 0 1 11 1 0 0 12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	4	0	0	0
10 1 0 1 11 1 0 0 12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	5	0	1	0
10 1 0 1 11 1 0 0 12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	6	0	1	0
10 1 0 1 11 1 0 0 12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	7	0	1	0
10 1 0 1 11 1 0 0 12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	8		1	
11 1 0 0 12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	9	1	0	1
12 1 1 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	10	1	0	1
13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	11		0	
14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	12	1	1	
15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	13	1	1	1
16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	14	1	1	1
16 1 1 1 17 1 1 1 18 1 1 0 19 1 1 0	15	1	1	
18 1 1 0 19 1 1 0	16	1	1	1
19 1 1 0	17	1	1	1
19 1 1 0	18	1	1	0
20 1 1 0	19	1	1	0
	20	1	1	0

- $ightharpoonup X_i \in (0,1)$ for not severe, severe injury
- $ightharpoonup Z_i \in (0,1)$ for control, surgery
- $Y_i^{obs} \in (0,1) \mbox{ for no complication,} \\ \mbox{complication}$
- ▶ 69% Z = 1 have $X_i = 1$
- ▶ 43% Z = 0 have $X_i = 1$
- Assume unconfoundedness conditional on X
 - $Pr(Z_i = 1|X_i = 1) = 0.75$
 - $Pr(Z_i = 1|X_i = 0) = 0.50$

IPTW: Example

	X_i	Z_i	Y_i^{obs}
1	0 0 0 0	0 0	0
2	0	0	1
3	0	0	0
4 5	0	0	0
5	0	1	0
6	0 0	1	0
7	0	1	0
7 8 9	0	1	1
9	1	0	1
10	1	0	1
11	1	0	0
12	1	1	1
13	1	1	1
14	1	1	1
15	1	1	1
16	1	1	1
17	1	1	1
18	1	1	0
19	1	1	0
20	1	1	0

▶ What is $Pr(Y_i(0) = 1)$: Prob of complication if everyone had received control?

IPTW: Example

	X_i	Z_i	Y_i^{obs}
1	0	0	0
2	0 0	0	1
3	0 0	0	0
4		0	0
5	0 0	1	0 0
6	0	1	
7	0 0	1	0
2 3 4 5 6 7 8 9	0	1	1
9	1	0	1
10	1	0	1
11	1	0	0
12	1	1	1
13	1	1	1
14	1	1	1
15	1	1	1
16	1	1	1
17	1	1	1 1
18	1	1	0
19	1	1	0
_20	1	1	0

- ▶ What is $Pr(Y_i(0) = 1)$: Prob of complication if everyone had received control?
- ▶ Of the 8 patients with $X_i = 0$, 4 received $Z_i = 0$ and 1 had $Y_i^{obs} = 1$
 - lackbox How many complications would have occurred if all 8 of these units had had $Z_i=0$?
 - ▶ 2: if the # of units is doubled, so is the number of complications
- Of the 12 with $X_i=1$, 3 had $Z_i=0$ and 2 had $Y^{obs}=1$
 - How many complications would have occurred if all 12 of these had had $Z_i = 0$?
 - \triangleright 8 (4 \times as many units, 4 \times as many Y)

Inverse Probability Weighting

	X_i	Z_i	Y_i^{obs}
1	0	$egin{array}{c} Z_i \ 0 \ 0 \ 0 \ \end{array}$	0
2	0 0	0	1
3	0	0	1 0
4	0	0	0
2 3 4 5	0	1	0
6 7	0 0	1	0
7	0	1 1	0
8 9	0	1	1
9	1	1 0	1 1
10	1	0	1 0
11	1	0	0
12	1	1	1
13	1	1 1	1 1
14	1	1	1
15	1	1	1
16	1	1	1
17	1	1	1
18	1	1	1 1 0
19	1	1	0
20	1	1	0

- ▶ What is $Pr(Y_i(0) = 1)$: Prob of complication if everyone had received control?
- ▶ If all 20 patients had received $Z_i = 0$
 - ▶ 2 (not 1) would have complications among the $X_i = 0$ patients
 - ▶ 8 (not 2) would have complications among the $X_i = 1$ patients
- $ightharpoonup \Rightarrow Pr(Y_i(0) = 1) = \frac{10}{20} = 0.5$
- ▶ Analogously, $Pr(Y_i(1)) = 1) = 0.5$

(Why can we assume that the rate of complication would have been the same in each level of X_i ?)

Inverse Probability Weighting: Intuition

- Think about two hypothetical scenarios where all are treated or untreated
- ► **Key Idea:** Combine those two hypothetical situations to create a hypothetical population in which every unit appears as *both* treated and untreated
 - ► A pseudopopulation larger than the observed data
- With conditionally unconfounded treatment assignment, the pseuodopopulation will have unconditionally unconfounded assignment
 - ► I.e., the covariate distribution will be the same in the treated and control group
- ➤ ⇒ The treated/control contrast in the pseudopopluation represents a causal effect (without further adjustment in the pseudopopulation)

Inverse Probability Weighting: Intuition

* robe

	X_i	Z_i	Y_i^{obs}
1	0	0	0
2	0	0	1
3	0	0	0
4	0	0	0
2 3 4 5	0	1	0
6	0	1	0
7	0	1	0
8	0	1	1
9	1	0	1
10	1	0	1
11	1	0	0
12	1	1	1
13	1	1	1
14	1	1	1
15	1	1	1
16	1	1	1
17	1	1	1
18	1	1	0
19	1	1	0
_20	1	1	0

- Consider the 4 units with $Z_i = 0$ and $X_i = 0$
 - Used to create 8 units in the pseudopopulation
 - ▶ Each receives weight, $w_i = 2 = \frac{1}{0.5}$
 - $Pr(Z_i = 0|X_i = 0) = 0.5$
- Consider the 9 units with $Z_i = 1$ and $X_i = 1$
 - Used to create 12 members of the pseudopopulation
 - Each receives weight, $w_i = 1.33 = \frac{1}{0.75}$
 - $Pr(Z_i = 1|X_i = 1) = 0.75$

Inverse Probability Weighting

In general, for unit i with $X_i = x$ and $Z_i = z$

$$w_i = \frac{1}{Pr(Z_i = z | X_i = x)}$$

More generally,

$$w_i = \frac{1}{f(Z_i|X_i)} = \frac{Z_i}{e_i(X_i)} + \frac{1 - Z_i}{1 - e_i(X_i)}$$

Inverse of probability of receiving the treatment actually received.

For estimating causal effects:

$$E[Y(z)] = E\left[\frac{I(Z=z)Y^{obs}}{f(Z|X)}\right]$$

IP Weights Based on Propensity Scores

- lacktriangle In simple cases, could estimate Pr(Z|X) nonparametrically
 - lacktriangle Ensure exact balance on X in the pseudopopulation
- We have already discussed why this may not be feasible and motivated the propensity score $e(X_i)$ (and its estimate) as a quantity that can
- ► The idea for IPW with the estimated propensity score extends in a straightforward way
 - Where $\hat{e}_i(X_i)$ comes from a parametric model
 - ► Should create balance on *propensity score* in pseudopopulation
 - ► Should still check balance on individual covariates in the pseudopopulation

$$w_i = \frac{Z_i}{\hat{e}(X_i)} + \frac{(1 - Z_i)}{(1 - \hat{e}(X_i))}$$

IPTW Intuition

Based on propensity scores

- $Z_i = 1, \hat{e}(X_i) = 0.05$
 - \Rightarrow Unit i has X_i that look different from other Z=1 units
 - \Rightarrow Units with this X_i are underrepresented in the Z=1 group
 - \Rightarrow Upweight them by $\frac{1}{0.05}$
 - ⇒ Represent 20 observations in the pseudopopulation
- $Z_i = 1, \hat{e}(X_i) = 0.90$
 - \Rightarrow Unit i has X_i that look similar to other Z=1 units
 - \Rightarrow Units with this X_i are common in the Z=1 group
 - \Rightarrow Upweight them by $\frac{1}{0.90}$
 - \Rightarrow Represent 1.11 observations in the pseudopopulation

Estimating the ATE with IPW

Difference in the mean of the weighted outcomes is an unbiased estimate of the ATE:

$$\hat{\tau}_{ipw,1} = \frac{1}{N} \left(\sum_{i=1}^{N} \frac{Y_i Z_i}{e(X_i)} - \sum_{i=1}^{N} \frac{Y_i (1 - Z_i)}{1 - e(X_i)} \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(Y_i Z_i w_1(X_i) - Y_i (1 - Z_i) w_0(X_i) \right)$$

where $w_1(X_i)=\frac{1}{e(X_i)}$ and $w_0(X_i)=\frac{1}{1-e(X_i)}$ are weights for the treated, untreated, respectively

In practice, replace $e(X_i)$ with $\hat{e}(X_i)$, which actually improves efficiency

In practice, frequently accomplished with the library(survey) package in R

IPW Notes

Advantages

- Elegant theoretical foundation
- Improved efficiency (relative to matching or coarser stratification)
- Extension to more complex settings (e.g., time-varying treatments)
- Can be thought of as a continuation of stratification as the # of strata goes up and size of strata goes down

Disadvantages

- More sensitive to propensity score model specification
 - ► E.g., vs. stratification, which "shrinks" or "smooths" weights to the average within the stratum
- $\hat{e}(X_i)$ near 0 or 1 o very extreme weights
 - $e(X_i) \to 1: w_1(X_i) \to$
- Erratic finite sample performance
- Results can be dominated by a few observations

