An example of uncountable set

BY JACK YANSONG LI

Liii Network

Email: yansong@liii.pro

1 Countable set

Are there differences in size between different infinities? Before we answer this question, what is the "size" of an infinity?

Definition 1. A set is **countable** if it is either:

- 1. Finite (has a specific number of elements), or
- 2. Countably infinite (has the same "size" as the set of natural numbers \mathbb{N} , meaning its elements can be put into a one-to-one correspondence with \mathbb{N}).

The answer is Yes if we can find a set that is uncountable.

2 An example of uncountable set

The following proof is insipired by Rudin et al. 1953 [1]

Theorem 2. The set of real number \mathbb{R} is uncountable

Proof. To prove that the set of real numbers is uncountable, we use Cantor's diagonal argument. Here are the key steps:

- 1. Assume the contrary: Suppose the interval (0,1) is countable. Then, there exists a bijection $f: \mathbb{N} \to (0,1)$. This means we can list all real numbers in (0,1) as a sequence r_1, r_2, r_3, \ldots
- 2. **Decimal expansions**: Each real number r_i in the list can be written in decimal form as:

$$r_1 = 0.d_{11}d_{12}d_{13}...$$

 $r_2 = 0.d_{21}d_{22}d_{23}...$
 $r_3 = 0.d_{31}d_{32}d_{33}...$

and so on, where d_{ij} is the j-th digit after the decimal point of r_i .

- 3. Construct a new number: Create a new number $x = 0.x_1x_2x_3...$ where each digit x_i is chosen such that $x_i \neq d_{ii}$. To avoid issues with dual decimal representations (e.g., 0.999... = 1.000...), we can choose x_i to be 1 if d_{ii} is not 1, and 2 if d_{ii} is 1. This ensures x has a unique decimal expansion.
- 4. **Contradiction**: The number x differs from each r_i in the list at the i-th digit. Therefore, x is not in the list, contradicting the assumption that the list contains all real numbers in (0,1).
- 5. **Conclusion**: Since our assumption leads to a contradiction, the interval (0,1) must be uncountable. As (0,1) is a subset of \mathbb{R} , the set of all real numbers \mathbb{R} is also uncountable.

is uncountable	

Bibliography

[1] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1953.