Team Selection

Author:

Time limit: 1 second

Memory limit: 256 megabytes

For an upcoming International Programming Contest, IIUC needs a strong team of **3** members. To accomplish this, IIUC's Competitive Programming Community arranged an Intra-University programming contest for all the competitive coders of IIUC.

After the contest, the top n coders with the maximum scores have been selected. Among the n coders, n coders will be chosen to form a team. The selection process is based on two criteria:

- 1. The team must have the maximum total score, which is calculated as the sum of the scores of the i^{th} , j^{th} , and k^{th} coder $(1 \le i, j, k \le n)$.
- 2. The team's combined programming skills must cover *10* specific programming concepts, namely: String, Stack, Queue, Hashing, Searching, Recursion, DP, Graph, Tree, and Maths.

Your task is to find the maximum total score of such a team. A team that fulfills the given criteria always exists. The selected team will be eligible to participate in the International Programming Contest.

<u>Input</u>

The first line contains t, the number of test cases (1 <= t <= 10). For each test case:

- The first line contains n, the number of top participants after the contest (3 <= n <= 20).
- The second line contains two integers s_i (1 <= s_i <= 100) and c_i (1 <= c_i <= 10), where s_i represents the score of the i^{th} (1 <= i <= n) participant, and c_i represents the number of programming concepts he/she is proficient at.
- The last line contains **c** space-separated topics indicating the programming concepts the participant is skilled in.

Output

For each test case, print the total maximum score of the team.

Example

Input	Output
1	270
5 100 4	
String Stack Queue Hashing	
100 2	
Hashing Searching	
80 4	
Recursion DP Graph Tree	
70 5	
Recursion DP Graph Tree Maths 90 1	
Maths	

Explanation

The maximum total score is achieved by selecting coders 1, 2, and 4. Their total score is 100 + 100 + 70 = 270, and they collectively have 10 programming concepts (String, Stack, Queue, Hashing, Searching, Recursion, DP, Graph, Tree, and Maths).