Data-Driven Tracking with Event Cameras

Code Progress

- Downloaded dataset
- Created tracks from MultiFlow dataset using generate_tracks.py and generate_representations.py
- Finished training a model on synthetic data

```
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Initialized recurrent dataset with 256 tracks
Initialized recurrent dataset with 64 tracks.
LOCAL RANK: 0 - CUDA VISIBLE DEVICES: [0]
                                     | Params
   reference encoder |
                       FPNEncoder
                                      14.9 M
                                      14.9 M
   target encoder
                       FPNEncoder
   reference redir
                       Conv2d
                                      442 K
    target redir
                       Conv2d
                                      442 K
   softmax
                       Softmax
                       JointEncoder | 4.1 M
    ioint encoder
                                      1.0 K
   predictor
                       Flatten
                       L1Truncated 0
          Non-trainable params
         Total params
139.574 Total estimated model params size (MB)
/home/aircraft-lab/Documents/Deep Learning Project/dlenv/lib/python3.9/site-packages/pytorch lightning/loggers/tensorboard.py:250: UserWarning: Could not log computational graph since the `model.ex
ample input array attribute is not set or 'input array' was not given
 rank zero warn(
 /home/aircraft-lab/Documents/Deep Learning Project/dlenv/lib/python3.9/site-packages/pytorch lightning/trainer.py:1892: PossibleUserWarning: The number of training batches (8) is smaller th
an the logging interval Trainer(log every n steps=10). Set a lower value for log every n steps if you want to see logs for the training epoch.
 rank zero warn(
Epoch 2: 80%
                                                                                    8/10 [00:10<00:02, 1.30s/it, loss=7.4, v num=, loss/train step=7.080, loss/val=5.570, loss/train epoch=7.510]
Validation: 0it [00:00, ?it/s]
```

Research

Paper	Key Findings	Limitations	Feature Extraction	Results
Low-Latency Automotive Vision with Event Cameras	Reduces latency in automotive vision; enhances detection	Data fusion challenges with existing systems	Asynchronous data tracking	Faster reaction times, improved object detection
Temporal Feature Markers for Event Cameras	Uses strobe LEDs for accurate marker recognition	Issues with varying lighting conditions	Detects periodic LED events	High speed and accuracy in marker tracking
BlinkTrack: Feature Tracking over 100 FPS via Events and Images	Combines event and RGB data for high-frequency tracking	Relies on RGB quality and sync	Differentiable Kalman filter	Over 100 FPS tracking with events and images
Enhancing Robustness in Asynchronous Feature Tracking	Fuses event and frame data for robust tracking	Increased computational complexity	Patch-based fusion	Improved accuracy in dynamic environments
Data-driven Feature Tracking for Event Cameras	First data-driven event tracker; frame attention module	Performance in highly dynamic scenes uncertain	Template matching with correlation volume	130% improvement in feature age; faster inference