Problemática: 7.- Interfaz Cerebro-Computadora para Personas con Discapacidad - Documento Técnico del Proyecto

Equipo: 3A

Categoría: 1- NEUROTECH BUILDERS

Participantes:

- Quispe Tancara Aracely Katy
- Suxo Andrade Mauricio Alejandro
- Villarroel Garvizu

1. Análisis Detallado del Problema

En Bolivia, miles de personas con discapacidad motora severa —especialmente jóvenes de zonas periurbanas como El Alto, Plan 3000 o la zona sur de Cochabamba—enfrentan una profunda exclusión digital, pese a conservar sus capacidades cognitivas y visuales. Esta exclusión no solo es técnica, sino estructural: no existen políticas públicas robustas de tecnología asistiva, los dispositivos comerciales son inalcanzables para la mayoría (más de 1000 USD), y el sistema educativo y laboral sigue siendo inaccesible para quienes no pueden usar interfaces físicas convencionales.

El cuidado recae en el entorno familiar, en especial en madres, bajo condiciones de sobrecarga y sin apoyo institucional ni herramientas tecnológicas. Al mismo tiempo, las TIC, lejos de cerrar brechas, las amplían si no se adaptan: portales no accesibles, ausencia de contenidos inclusivos, baja conectividad y falta de alfabetización digital reproducen la desigualdad.

Sin intervención deliberada, la digitalización del país corre el riesgo de generar un "apartheid tecnológico" entre ciudadanos conectados y ciudadanos invisibles. La buena noticia es que la tecnología de bajo costo y código abierto tiene un enorme potencial transformador, como lo demuestran iniciativas bolivianas de prótesis impresas en 3D o sistemas de seguimiento ocular con webcams y Arduino.

Desde una perspectiva ética y de justicia social, proveer tecnologías adaptadas no es un privilegio, sino un derecho. Garantizar acceso equitativo a herramientas digitales para personas con discapacidad motora severa no solo impulsa su autonomía y dignidad, sino que enriquece a toda la sociedad. La verdadera inclusión digital comienza por no dejar a nadie atrás.

2. Objetivo General

Desarrollar una interfaz digital manos-libres, accesible y personalizable, que permita a personas con discapacidad motora severa controlar una computadora usando sólo su mirada, un soplido o su actividad cerebral.

3. Descripción Clara de la Solución

Las siguientes etapas descritas, se integrarán en una aplicación ejecutable, con interfaz intuitiva, que no requiere conocimientos técnicos para ser usada por familiares o cuidadores.

3.1. Seguimiento ocular con visión artificial

Usamos OpenCV y una webcam común para que el usuario controle el movimiento del mouse simplemente con la mirada. Sin sensores invasivos ni hardware costoso.

3.2. Sensor de acción por soplido

Mediante un sensor barométrico BME280 conectado a la terminal Wio, el usuario puede hacer clic soplando ligeramente. Soplido suave para el click izquierdo y soplido fuerte para el derecho, ambos soplidos pueden mantenerse de forma prolongada

3.3. Control cerebral opcional con EEG

A través de una interfaz EEG ultraeconómica (SpikerShield + 2 electrodos), entrenamos un modelo de Machine Learning para detectar una intención de acción directamente desde el cerebro. Esto permite personalizar aún más la experiencia y ofrecer una opción para usuarios con movilidad extremadamente limitada.

4. Funcionamiento y Aplicación del Prototipo

El usuario podrá mover el cursor con su mirada, y realizar selecciones con un soplido o con una señal cerebral detectada. Esto abre la puerta a actividades antes imposibles por su discapacidad, tales como:

- Escribir con teclados virtuales.
- Navegar por Internet.
- Comunicarse con su entorno.
- Usar plataformas educativas o laborales.
- Controlar dispositivos inteligentes en el hogar.

5. Recursos Utilizados

Hardware

- Webcam estándar (laptop)
- Sensor barométrico BME280

- Terminal Wio
- SpikerShield (Backyard Brains) + 2 electrodos

Software

- Python 3.12
- OpenCV
- Mediapipe
- Pyautogui
- Pandas
- Numpy
- Scikit-learn
- h5py
- Arduino IDE

- http.server
- pynput.mou
- Aplicación ejecutable personalizad a (.exe)

Dataset para entrenamien EEG: to

EEG

Dataset for RSVP and P300

Speller Brain-Comp uter

Interface

6. Impacto Esperado

• Social: Empoderamos a jóvenes con parálisis severa devolviéndoles voz, control y autonomía.

Combatimos la exclusión educativa y digital en zonas de alta vulnerabilidad.

• Económico: Hacemos viable el acceso a empleo remoto, capacitación técnica y educación virtual.

Reducimos la dependencia económica de estas personas respecto a sus familias o cuidadores.

> Tecnológico: Creamos un sistema replicable, adaptable y basado en estándares abiertos.

Facilitamos que centros de salud, ONGs y programas de inclusión puedan escalar esta solución rápidamente.

7. Documentación ampliada

https://drive.google.com/drive/folders/114AutlYIFZXYapXnj8T_00Vmnqq h6Jkm?usp=drive link