PERANCANGAN DAN REALISASI KARAKTERISASI ANTENA HORN MENGGUNAKAN BAHAN DASAR KALENG BEKAS DENGAN APERTURE BERBENTUK RECTANGULAR

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

MUHAMMAD AZKA RAMADHAN 6705180097

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

Latar Belakang

Sampah menjadi salah satu masalah besar yang di hadapi negara di dunia, begitu juga di Indonesia. Indonesia merupakan salah satu negara penghasil sampah terbesar di dunia. Ada banyak jenis sampah yang terbuang sia-sia dan tidak banyak digunakan kembali, salah satunya adalah sampah kaleng. Berdasarkan Riset terbaru Sustainable Waste Indonesia (SWI) mengungkapkan sebanyak 24 persen sampah di Indonesia masih tidak terkelola. Dari laporan itu diketahui juga jenis sampah yang paling banyak dihasilkan adalah sampah organik sebanyak 60 persen, sampah plastik 14 persen, diikuti sampah kertas (9%), metal (4,3%), kaca, kayu dan bahan lainnya (12,7%). [1]

Dari beberapa jenis sampah tersebut terdapat sampah kaleng. Kaleng dapat digunakan kembali menjadi suatu barang yang dapat memiliki nilai manfaat dan jual. Pada proyek akhir ini, memanfaatkan sampah kaleng bekas menjadi komponen yaitu antena yang dapat menerima gelombang elektromagnetik dan memancarkan gelombang elektromagnetik.

Antena adalah suatu piranti yang digunakan untuk merambatkan dan menerima gelombang radio atau elektromagnetik. Pemancaran merupakan satu proses perpindahan gelombang radio atau elektromagnetik dari saluran transmisi ke ruang bebas melalui antena pemancar. Sedangkan penerimaan adalah satu proses penerimaan gelombang radio atau elektromagnetik dari ruang bebas melalui antenna penerima. Karena merupakan perangkat perantara antara saluran transmisi dan udara, maka antenna harus mempunyai sifat yang sesuai dengan saluran pencatunya. [2]

Antenna memiliki beberapa jenis, salah satunya adalah antenna horn. Antenna horn memiliki gain yang tinggi dan bandwidth yang lebar, dan biasanya digunakan sebagai pemancar satelit. Antenna horn biasanya menggunakan bahan alumunium, tembaga, dan seng yang harus dicetak sehingga proses pembuatannya menjadi lebih rumit. Pada proyek akhir ini, memanfaatkan sampah kaleng bekas sebagai bahan dasar utama pembuatan antenna horn. Dengan memanfaatkan sampah tersebut sehingga dapat dirancang lebih mudah dan ramah lingkungan.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	2.45 GHz Wireless Power Transmitter	2019	Dalam penelitian ini penulis membuat suatu antena dengan kemampuan
	with Dual-Polarization-Switching		memancarkan daya nirkabel yang bekerja pada frekuensi 2,45 dan
	Cantenna for LED Accessories [3]		menggunakan kuku palsu yang terpasang LED sebagai penerima. Hasil
			penelitian membuktikan bahwa daya yang dipancarkan oleh antenna kaleng
			dapat membuat intensitas cahaya LED di kuku palsu berubah.
2	5.8 GHz Cantenna Radar [4]	2019	Dalam penelitian ini penulis membuat suatu antena kaleng dengan
2			kemampuan sebagai pemancar dan penerima sistem radar. Penelitian ini
			mencakup seluruh proses rekayasa dalam merancang dan menerapkan sistem
			radar.
3.	Rancang Bangun Antena Kaleng di	2019	Dalam penelitian ini penulis membuat suatu antenna dengan menggunakan
	frekuensi 2.4GHz untuk memperkuat		berbahan dasar kaleng bekas di frekuensi 2.4GHz. menggunakan usb wifi
	sinyal Wifi [5]		adapter untuk implementasi memperkuat sinyal wifi serta menambah gain.
4.	Analisis dan Implementasi Antena	2018	Dalam penelitian ini penulis membuat suatu antenna yang berfokus pada
	Penerima Sinyal Wi-Fi Menggunakan		pembuatan dan perbandingan kinerja antara wajan bolic, antenna kaleng,
	Antena Wajan Bolic, Antena Kaleng dan		dan antenna omni yang beroperasi pada frekuensi 2.4 GHz untuk jaringan
	Antena Omni [6]		

			wireless LAN berdasarkan kekuatan sinyal yang diterima, tinggi tempat dan
			bahan antenna.
5.	Perancangan Jaringan Wireless	2017	Dalam penelitian ini
3.	Menggunakan Antena Kaleng Sebagai		
	Penguat Sinyal [2]		
6.	Design and Simulation of Horn	2017	Dalam penelitian ini penulis merancang dan mensimulasikan antenna horn
	Antenna Using CST Software for GPR		menggunakan software CST Studio Suite untuk GPR System. Memperoleh
	System [7]		hasil yang cukup baik untuk dapat mendeteksi benda-benda yang tertimbun
			pasir, seperti besi dan kayu
7.	Design and Implementation of Cantenna	2016	Dalam penelitian ini penulis merancang dan mengimplementasikan antenna
	for Enhancing The Coverage Area of Wi-		berbahan dasar kaleng bekas untuk meningkatkan cakupan area titik akses
	Fi Access Point [8]		wifi
8.	Measuring Radar Signatures of a	2016	Dalam Penelitian ini penulis membuat antenna berbahan dasar kaleng bekas
0.	Simple Pendulum Using Cantenna		dengan kemampuan mengukur pancaran radar dari pendulum sederhana
	Radar [9]		menggunakan cantenna.
9.	Prototipe Antena Bi-Horn Dengan	2009	Dalam penelitian ini penulis membuat suatu antenna prototipe bi-horn
	Dua Arah Radiasi dan Satu Feeding		dengan radiasi sisi ganda menggunakan feeding monopole untuk operasi
	Monopole Beroperasi Pada Frekuensi		frekuensi 2.4 GHz. Bahan dasar antenna ini terbuat dari plat alumunium
	2.4GHz [10]		dengan ketebalan 2mm
10.	Manually Designed Wi-Fi Cantenna and	2012	Dalam penelitian ini penulis merancang secara manual antenna berbahan
10.	its Testing in Real-Time Environment		dasar kaleng bekas dan mengaplikasikannya untuk kekuatan sinyal WiFi di
	[11]		berbagai lokasi area kampus

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan dan realisasi karakterisasi antenna horn berbahan dasar kaleng dengan bentuk kubus. Perancangan menggunakan *software* CST *Studio Suite 2020*. Perancangan dilakukan beberapa kali dengan posisi monopole yang berbeda. Adapun model sistem yang telah dibuat dapat dilihat pada Gambar 1 dibawah ini.

Gambar 1 Model Sistem Perancangan Antenna Horn Berbahan Dasar Kaleng Bekas

Pada perancangan ini dilakukan simulasi dibanyak kondisi monopole yang berbeda yaitu perbedaan posisi dan tinggi monopole, dari perbedaan tersebut nantinya akan didapatkan *gain, return loss, vswr* paling optimum dengan tujuan agar bisa mendapatkan spesifikasi yang paling baik dan kemudian akan dilakukan realisasi.

Referensi

- [1] CNN, "Riset: 24 Persen Sampah di Indonesia Masih Tak Terkelola," 25 4 2018. [Online]. Available: https://www.cnnindonesia.com/gaya-hidup/20180425101643-282-293362/riset-24-persen-sampah-di-indonesia-masih-tak-terkelola.
- [2] A. Karim, "Perancangan Jaringan Wireless Menggunakan Antena Kaleng Sebagai Penguat Sinyal," *Majalah Ilmiah INTI*, vol. 12, no. 2, 2017.
- [3] Y. Kosuke and K. Norifumi, "2.45-GHz Wireless Power Transmitter with Dual-Polarization-Switching Cantenna for LED Accessories," 2019 IEEE Wireless Power Transfer Conference, Ritsumeikan University, 2019.
- [4] H. H. Yi and E. P. Soe, "5.8GHz Cantenna Radar," *International Journal of Scientific and Research Publications*, vol. 9, no. 3, p. 406, Maret 2019.
- [5] T. D. Hakim and A. Nurdianto, "Rancang Bangun Antena Kaleng di Frekuensi 2.4 GHz Untuk Memperkuat Sinyal Wi-Fi," *Jurnal Ilmiah Elektrokrisna*, vol. 7, no. 3, 2019.
- [6] S. Ibrahim, A. Wijaya and Hutrianto, "Analisis dan Implementasi Antena Penerima Sinyal Wi-Fi Menggunakan Antena Wajan Bolic, Antena Kaleng, dan Antena Omni," *Bina Darma Conference on Computer Science*, pp. 2178-2185, 2018.
- [7] A. Joret, M. S. Sulong, M. F. L. Abdullah, A. Madun and S. H. Dahlan, "Design and Simulation of Horn Antenna Using CST Software for GPR System," *ISMAP 2017 IOP IOP Conf. Series: Journal of Physics: Conf. Series 995 (2018) 012080*, 2017.
- [8] R.Pradepaa and R.Santhiya, "Design and Implementation of Cantenna for Enhancing The Coverage Area of Wi-Fi Access Point," *IJMTES | International Journal of Modern Trends in Engineering and Science*, vol. 03, no. 06, pp. 222-225, 2016.
- [9] A. Harsh, "Measuring Radar Signatures of a Simple Pendulum using Cantenna Radar," *International Journal of Computers and Technology,* vol. 15, no. 5, pp. 6785-6795, April 2016.
- [10] I. Hidayah and Y. H. Pramono, "Prototipe Antena Bi-Horn dengan Dua Arah Radiasi dan Satu Feeding Monopole Beroperasi pada Frekuensi 2,4 GHz," *Seminar Nasional Informatika 2009*, pp. B47-B52, Mei 2019.
- [11] V. V. Kadu, "Manually Designed Wi-Fi Cantenna and its Testing in Real-Time Environment," International Journal of Engineering Research and Development, vol. 3, no. 2, pp. 1-6, Agustus 2012.

Form Kesediaan Membimbing Proyek Tingkat

Tanggal: 10 Desember 2020

Kami yang bertanda tangan dibawah ini:

CALON PEMBIMBING 1

Kode : RDL

Nama: Radial Anwar, S.Si., M.Sc., Ph.D

CALON PEMBIMBING 2

Kode : DNN

Nama: Dwi Andi Nurmantris, S.T., M.T.

Menyatakan bersedia menjadi dosen p embimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : 6705180097

Nama : Muhammad Azka Ramadhan

Prodi / Peminatan : TT/ (contoh: MI / SDV)

Calon Judul PA : Perancangan dan Realisasi Karakterisasi Antena Horn menggunakan Bahan Dasar

Kaleng Bekas dengan Aperture Berbentuk Rectangular

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

20201210

(Radial Anwar, S.Si., M.Sc., Ph.D)

Calon Pembimbing

(Dwi Andi Nurniantris, S.T., M.T.)

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl. Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk Mahasiswa) : 6705180097 Dosen Wali : RMT / ROHMAT TULLOH Program Studi : D3 Teknologi Telekomunikasi

Nama : MUHAMMAD AZKA RAMADHAN

2018/2019 - GANJIL

2010/2019 - GANGIL					
Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А	
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С	
DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ	
DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	А	
DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	А	
DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	АВ	
DUH1A2	LITERASI TIK	ICT LITERACY	2	А	
HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	АВ	
	Jumlah SKS		20		
	IPS				

2018/2019 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	А	
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	В	

Jumlah SKS	21	
IPS	3.6	

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	А	
DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	АВ	
DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	АВ	
DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	В	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А	
LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	А	
	21				
	IPS		3.6		

2018/2019 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2019/2020 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	АВ	
DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А	
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ	
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	АВ	
DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	С	
DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	АВ	
DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	АВ	
	Jumlah SKS				
	IPS		3.34		

2019/2020 - GENAP

Kode Mata Kuliah	Mata Kullah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А	
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	AB	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	АВ	
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ	
DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	А	
DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	А	
DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	А	
	Jumlah SKS				
	IPS		3.76		

2019/2020 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2020/2021 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2		
UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2		
UWI3E1	HEI	HEI	1		
VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2		
VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3		
VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3		
VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2		
	Jumlah SKS				
	IPS				

2020/2021 - GENAP

Kode Mata Kuliah	Mata Kullah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

Jumlah SKS	: 81 SKS		IPK: 3.6
Tingkat III	: 81 SKS	Belum Lulus	IPK : 3.6
Tingkat II	: 81 SKS	Belum Lulus	IPK : 3.6
Tingkat I	: 41 SKS	Belum Lulus	IPK: 3.66

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 10 Desember 2020 20:32:38 oleh MUHAMMAD AZKA RAMADHAN