

Faculty of Information and Communications Technology Bachelor Degree in Information Technology

BIOS4111

Test 1

Operating Systems Trimester: 05

From July 2024 to October 2024

BITOS4111

OPERATING SYSTEMS

MODULE DETAILS

Course Location : Swaziland

Examiner (s) : Mr. Ndumiso E. Khumalo

Contact details (email): ndumisoe.khumalo@qmail.com

Commence Date : Week 4

Submission Date : Week 4

Duration : 2 hours

INSTRUCTIONS:

- 1. This paper has 2 QUESTIONS
- 2. Answer **ALL** questions
- 3. The Total Marks is 60 and this paper contributes 15% to your final mark
- 4. Marks are provided next to each question in square brackets []
- 5. Use the spaces provided in the guestion paper or the provided answer sheet.
- 6. Read each question carefully before attempting.
- 7. Misconduct, cheating, possession of unauthorised materials, improper use of materials, unauthorised removal of materials from examination rooms or ignoring the instructions given by supervisors is STRICTLY PROHIBITED.

This exam paper consists of 3 pages including this cover page

GOODLUCK!!!

Faculty of Information and Communications Technology Bachelor Degree in Information Technology

BIOS4111

Test 1

Operating Systems Trimester: 05

From July 2024 to October 2024

QUESTION 1 – 25 MARKS

a.	Processes can execute concurrently or in parallel. Differentiate between	concurrent
	execution and parallel execution	[2]

- b. Outline the 3 basic computing resources for the computer system [3]
- c. With the aid of a diagram, explain:
 - i. the monolithic structure and the layered structure in operating systems [6]
 - ii. the modes of operation in operating systems & how they are implemented [6]
 - iii. the states in which a process can be in [8]

QUESTION 2 - 35 MARKS

- a. Outline the ALL the necessary conditions for a deadlock to occur. [4]
- b. With the aid of a diagram, explain two fundamental models of inter-process communication [4]
- c. Consider the following set of processes that arrive at time 0, with the length of the CPU burst given in milliseconds.

Process	Burst Time	Priority
P_1	10	3
P_2	1	1
P_3	2	4
P_{A}	1	5
P_5	5	2

The processes arrive in the order P_1 , P_2 , P_3 , P_4 , P_5 . Draw a Gantt chart for these processes and calculate the average waiting time using each algorithm below: [12]

- i. First Come First Serve (FCFS) Scheduling Algorithm
- ii. Shortest-Job-First (SJF) Scheduling Algorithm
- Round Robin (RR) Scheduling Algorithm with a time quantum of 4 milliseconds
- iv. Priority Scheduling Algorithm

Faculty of Information and Communications Technology Bachelor Degree in Information Technology

BIOS4111

Test 1

Operating Systems Trimester: 05

From July 2024 to October 2024

d. Consider a system with twelve resources and three threads: T_0 , T_1 , and T_2 . Thread T_0 requires ten resources, thread T_1 may need as many as four, and thread T_2 may need up to nine resources. Suppose that, at time t_0 , thread T_0 is holding five resources, thread T_1 is holding two resources, and thread T_2 is holding two resources as illustrated below.

	Maximum Needs	Current Needs
T_0	10	5
T_1°	4	2
T_2	9	2

Prove that at time t_0 , the system is in a safe state if the sequence of execution is $<T_1$, T_0 , $T_2>$.

Suppose that, at time t_1 , thread T_2 requests and is allocated one more resource. Is the system still in safe state? [5]

...... THE END