Homework Set 1 for Module 1

Due at the Beginning of Class (12:30 pm) on Friday, August 31

Name:	Class No:	Lab Div:
Signature:	Score:	/ 100

1. [10 points] Interpreting the values loaded into (A) and (B) as binary fractions, determine the result produced in (A) after executing the following code sequence (express the result as a base 10 fraction).

LDAA #\$73 LDAB #\$FD MUL ADCA #0

2. [20 points] Interpreting the values loaded into (D) and (Y) as *signed words*, determine the <u>result</u> stored in product after executing the following code sequence (express the result as a *base 10* number).

```
LDD #$274A
LDY #$FFE5
EMULS
STY product
STD product+2
product rmb 4
```

3. [20 points] Interpreting the values loaded into (D) and (X) as *signed words*, determine the <u>values</u> stored in quotient and remainder after executing the following code sequence (express the result as a *base 10* number).

```
LDD #$747E

LDX #$FA95

IDIVS

STX quotient

STD remainder

quotient rmb 2

remainder rmb 2
```

4. [4 points] Determine how the CC register bits will be affected (i.e., set, cleared, or unaffected) by execution of the following code sequence.

```
LDAA #$AA
BITA #$55
```

- 5. [4 points] Write a *single instruction* that *sets* bit 7 (the most significant bit) of memory location \$900 and leaves the other bits unaffected.
- 6. [4 points] Write a *single instruction* that *clears* bit 0 (the least significant bit) of memory location \$901 and leaves the other bits unaffected.
- 7. [4 points] Write a *single instruction* that *toggles* both bits 2 and 3 of the B register but leaves the other bits unaffected.
- 8. [4 points] Write a *single instruction* that *clears* the C, H, and V condition code register bits but leaves the others unaffected.
- 9. [4 points] Write a *single instruction* that *sets* the C and I condition code register bits but leaves the others unaffected.
- 10. [6 points] List all of the *conditional branch* instructions that utilize a *9-bit* offset and explain how the offset is encoded.
- 11. [10 points] Assemble the following code segment (by hand), and show the machine code that is generated:

	org	\$8000
	lbra	jloop
jloop	bra	kloop
kloop	lbra	jloop

12. [10 points] Complete the missing entries in the "condition code generation chart," below, and *derive* the Boolean function used by the BGT function to determine if a branch should be taken, i.e. the function that is *true* ("1") when (A) > (B). *Show all work*.

A_1	A_0	(A)	B ₁	B_0	(B)	?	С	Ζ	N	٧
0	0	0	0	0	0	(A) = (B)	0	1	0	0
0	0	0	0	1	+1	(A) < (B)				
0	0	0	1	0	-2	(A) > (B)	1	0	1	1
0	0	0	1	1	-1	(A) > (B)	1	0	0	0
0	1	+1	0	0	0	(A) > (B)	0	0	0	0
0	1	+1	0	1	+1	(A) = (B)	0	1	0	0
0	1	+1	1	0	-2	(A) > (B)	1	0	1	1
0	1	+1	1	1	-1	(A) > (B)	1	0	1	1
1	0	-2	0	0	0	(A) < (B)				
1	0	-2	0	1	+1	(A) < (B)				
1	0	-2	1	0	-2	(A) = (B)	0	1	0	0
1	0	-2	1	1	-1	(A) < (B)				
1	1	Υ-	0	0	0	(A) < (B)				
1	1	-1	0	1	+1	(A) < (B)				
1	1	-1	1	0	-2	(A) > (B)	0	0	0	0
1	1	-1	1	1	-1	(A) = (B)	0	1	0	0

	('	(
NT/	0	4	12	8	V'
N'	1	5	13	9	V
N	3	7	15	11	V
	2	6	14	10	V'
	Z'	Z		Z'	_