9-3-1 [OXZ] Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 4 MPa, 400°C and is condensed in the condenser at a pressure of 100 kPa. The mass flow rate is 10 kg/s. If the boiler receives heat from a source at 1200°C and the condenser rejects heat to a reservoir at 25°C, determine (a) the thermal efficiency of the cycle, (b) the exergetic efficiency of the cycle and (c) draw an exergy flow diagram for the cycle. Assume the atmospheric conditions to be 100 kPa and 25°C.

SOLUTION:

Heat Source at 1200 °C (1473 K)

Dead State: p0 = 100 kPa and T0 = 25 C (298 K)

Table 1 Properties at various state points in the steam power plant at rated conditions

	p kPa	T K	$\dot{\Psi} = \dot{m}\psi$ MW	s kJ/ $(kg \cdot K)$	h kJ/kg
State 0	100	298	0	0.36732	104.9787
State 1	4000	673	11.9988	6.7686	3213.48
State 2	100	372	4.4174	6.7686	2455.34
State 3	100	372	0.33636	1.3025	417.44
State 4	100	372	0.37703	1.3025	478.99313

Table 2 Device-specific analysis

Plant Component	Device	ΔΨ̈́ MW	W MW	Exergy Supplied from Reservoir MW	<i>İ</i> MW	Exergetic Efficiency %
Turbine	A	7.5814	+ 7.5814	0	0	100
Condenser	B Arie	4.08104	0	0	4.08104	0
Pump	C	0.04067	-0.04067	0	0	100
Boiler	D	11.6217	0	22.27138	10.64968	52.182
Total Plant			7.54073	22.27138	14.73072	33.86

(a) In order to determine the thermal efficiency, $\eta_{\rm th}$, the Cycle Panel from TEST was used.

$$\dot{W}_{net} = 7540.73 \text{ kW}$$

 $\dot{Q}_{in} = 27919.78 \text{ kW}$

$$\eta_{th} = \frac{\dot{W}_{net}}{\dot{Q}_{in}} = \frac{7540.73 \text{ kW}}{27919.78 \text{ kW}} = 0.27 = 27\%$$

(b) Rate of exergy supplied by the reservoir at 1473 K,

$$\dot{Q}_{\text{in}} \times (1 - \frac{T_o}{T_R}) = 27.919 \text{ MW} \times (1 - \frac{298 \text{K}}{1473 \text{K}}) = 22.271 \text{ MW}$$

To calculate the exergetic efficiency, η_{II} ,

$$\begin{split} \dot{W}_{net} &= 7540.73 \text{ kW} \\ \dot{W}_{max} &= \dot{W}_{rev} = \dot{W}_{net} + \dot{I} \\ \dot{W}_{max} &= 7540.73 + 14730.72 = 22271.4 \text{ kW} \\ \eta_{II} &= \frac{\dot{W}_{net}}{\dot{W}_{max}} = \frac{7540.73 \text{ kW}}{22271.4 \text{ kW}} = 0.3386 = 33.86\% \end{split}$$

Exergy diagram for the total plant (on MW basis)

9-3-2 [OXK] Steam is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 10 MPa and saturated liquid exits the condenser at a pressure of 0.01 MPa. The net power output (W_{net}) of the cycle is 150 MW. The turbine and the pump both have an isentropic efficiency of 85%. If the boiler receives heat from a source at 1200°C and the condenser rejects heat to a reservoir at 25°C, (a) identify the device of maximum exergy destruction (boiler: 0; turbine: 1; condenser: 3; pump: 4), (b) determine the exergetic efficiency of the cycle and (c) draw an exergy flow diagram for the cycle. Assume the atmospheric conditions to be 100 kPa and 25°C.

SOLUTION:

Heat Source at 1200 °C (1473 K)

Dead State: p0 = 100 kPa and T0 = 25 °C (298 K)

Table 1 Properties at various state points in the steam power plant at rated conditions

	p kPa	T K	$\dot{\Psi} = \dot{m}\psi$ MW	s $kJ/(kg \cdot K)$	h kJ/kg
State 0	100	298	0	0.36732	104.9787
State 1	10000	584	199.46	5.6141	2724.67
State 2	10	319	20.095	5.6141	1775.63
State 3	10	319	21.854	6.06035	1917.98
State 4	10	319	0.52502	0.6493	191.8298
State 5	10000	319	2.43201	0.6493	201.9197
State 6	10000	319	2.45637	0.65484	203.7

Table 2	Device-sp	ecific analy	vsis	y the			
Plant Component	Device	ΔΨ MW	W _u MW	Exergy Supplied from Reservoir MW	<i>İ</i> MW	Exergetic Efficiency %	Plant Component
Turbine	A	177.60	+ 152.46	0	25.143	6.6153	86
Condenser	В	21.328	0	0	21.3289	5.6118	0
Pump	C	1.93135	-2.2435	0	0.31216	0.0821	86
Boiler	D	197	0	380.07	183.07	48.1674	52.182
Total Plant			150.21	380.07	229.854	60.4766	39.52

In order to determine the thermal efficiency, $\eta_{\rm th}$, the Cycle Panel from TEST was used.

$$\dot{W}_{net} = 150210 \text{ kW}$$

$$\dot{Q}_{in} = 476463 \text{ kW}$$

$$\eta_{th} = \frac{\dot{W}_{net}}{\dot{Q}_{in}} = \frac{150210 \text{ kW}}{476463 \text{ kW}} = 0.3152 = 31.52\%$$

- (a) Maximum exergy is destroyed in boiler, 183.07 MW and exergetic efficiency of boiler is 52.2 %.
- (b) Rate of exergy supplied by the reservoir at 1473 K,

$$\dot{Q}_{\text{in}} \times (1 - \frac{T_o}{T_R}) = 476.46 \text{ MW} \times (1 - \frac{298 \text{K}}{1473 \text{K}}) = 380.07 \text{ MW}$$

To calculate the exergetic efficiency, η_{u} ,

$$\dot{W}_{net} = 150000 \text{ kW}$$

$$\dot{W}_{max} = \dot{W}_{rev} = \dot{W}_{net} + \dot{I} = 150210 + 229854 = 380064 \text{ kW}$$

$$\eta_{II} = \frac{\dot{W}_{net}}{\dot{W}_{max}} = \frac{150210 \text{ kW}}{380064 \text{ kW}} = 0.3952 = 39.52\%$$

Exergy diagram for the total plant (on MW basis)

9-3-3 [OXP] In a steam power plant operating on the ideal regenerative Rankine cycle with one open feedwater heater, steam enters the turbine at 9 MPa, 480°C and is condensed in the condenser at a pressure of 7 kPa. Bleeding from the turbine to the FWH occurs at 0.7 MPa. The net power output (W_{net}) of the cycle is 100 MW. The boiler receives heat from a source at 1200°C and the condenser rejects heat to atmosphere at 100 kPa, 25°C. (a) Perform an exergy inventory and draw an exergy flow diagram for the cycle. Determine (b) the thermal efficiency (η_{th}) and (c) exergetic efficiency of the cycle.

SOLUTION:

Heat Source at 1200 °C (1473 K).

Dead State: p0 = 100 kPa and T0 = 25 °C (298 K)

Table 1 Properties at various state points in the steam power plant at rated conditions

	p kPa	T K	$\dot{\Psi} = \dot{m}\psi$ MW	s $kJ/(kg \cdot K)$	h kJ/kg
State 0	0.1	298	0	0.36732	105
State 1	9	753	120.60	6.58819	3334.24
State 2	0.7	438	13.799	6.58819	2711
State 3	0.007	312	5.9475	6.58819	2045.46
State 4	0.007	312	0.08445	0.55893	163.33
State 5	0.7	312	0.13197	0.55893	164
State 6	0.7	438	9.457	1.9922	697.21
State 7	0.1	438	10.2639	1.9922	706.41

	1	0	10, 10, 100	of holl						
Table 2 Device-specific analysis										
Plant Component	Device	ΔΨ MW	Ŵu MW	Exergy Supplied from Reservoir MW	<i>İ</i> MW	Exergetic Efficiency %	Plant Component			
Turbine	A	100.85	+100.85	0	0	0	100			
Condenser	В	5.863	0	0	5.863	3.1877	0			
Pump 1	C	0.0475	-0.0475	0	0	0	100			
FWH	D	4.474	0	0	4.474	2.4325	67.88			
Pump 2	E	0.807	0.807	0	0	0	100			
Boiler	F	110.336	0	+183.92	73.588	40.01	60			
Total Plant			100	183.92	83.92	45.63	54.37			

(a) Rate of exergy supplied by the reservoir at 1473K,
$$\dot{Q}_{in} \times (1 - \frac{T_o}{T_R}) = 230.57 \text{ MW} \times (1 - \frac{298 \text{K}}{1473 \text{K}}) = 183.92 \text{ MW}$$

(b) In order to determine the thermal efficiency, $\eta_{\it th}$, the Cycle Panel from TEST was used.

$$\dot{W}_{net} = 100000 \text{ kW}$$

$$\dot{Q}_{in} = 230571 \text{ kW}$$

$$\eta_{th} = \frac{\dot{W}_{net}}{\dot{Q}_{in}} = \frac{100000 \text{ kW}}{230571 \text{ kW}} = 0.4337 = 43.37\%$$

(c) To calculate the exergetic efficiency, η_{II} ,

$$\dot{W}_{net} = 100000 \text{ kW}$$

$$\dot{W}_{max} = \dot{W}_{rev} = \dot{W}_{net} + \dot{I}$$

$$\dot{W}_{max} = 100000 + 83924 = 183924 \text{ kW}$$

$$\eta_{II} = \frac{\dot{W}_{net}}{\dot{W}_{max}} = \frac{100000 \text{ kW}}{183924 \text{ kW}} = 0.5437 = 54.37\%$$

Exergy diagram for the total plant (on MW basis)

9-3-4 [OXU] Repeat problem 9-3-3 [OXP], assuming no steam is bled from the turbine for regeneration.

SOLUTION:

Heat Source at 1200 °C (1473 K)

Dead State: p0 = 100 kPa and T0 = 25 % (298 K)

Table 1 Properties at various state points in the steam power plant at rated conditions

	p kPa	T K	$\dot{\Psi} = \dot{m}\psi$ MW	s $kJ/(kg \cdot K)$	h kJ/kg
State 0	0.1	298	0	0.36732	105
State 1	9	753	107.404	6.58819	3334.24
State 2	0.7	438	0	6.58819	2711
State 3	0.007	312	6.69910	6.58819	2045.46
State 4	0.007	312	0.09513	0.55893	163.33
State 5	0.7	312	0.14865	0.55893	164.011
State 6	0.7	312	0.14963	0.55893	164.011
State 7	0.1	312	0.80187	0.55893	172.358

Table 2 Device-specific analysis

			101, 1	5, 70,,0			
Plant	Device	$ \Delta\dot{\Psi} $	\dot{W}_{u}	Exergy	İ	Exergetic	Plant
Component		MW	MW	Supplied	MW	Efficiency	Component
			1012 2018 322 11/12	from		%	
		Olkis	ides sugar rediti	Reservoir			
		is is pro	1150 WA SE ILL	MW			
Turbine	A	100.70	+100.70	0	0	0	100
Condenser	В	6.6039	geen 0	0	6.60397	3.3509	0
Pump 1	C	0.05352	-0.05352	0	0	0	100
FWH	D	N/A	N/A	N/A	N/A	N/A	N/A
Pump 2	E	0.6522	-0.6522	0	0	0	100
Boiler	F	106.60	0	+197.08	90.485	45.9128	54.08
Total Plant			100	197.08	97.08	49.2637	50.74

(a) Rate of exergy supplied by the reservoir at 1473K,
$$\dot{Q}_{\rm in} \times (1 - \frac{T_o}{T_R}) = 247.069 \text{ MW} \times (1 - \frac{298 \text{K}}{1473 \text{K}}) = 197.08 \text{ MW}$$

(b) In order to determine the thermal efficiency, η_{th} , the Cycle Panel from TEST was used.

$$\begin{split} \dot{W}_{net} &= 100000 \text{ kW} \\ \dot{Q}_{in} &= 247069 \text{ kW} \\ \eta_{th} &= \frac{\dot{W}_{net}}{\dot{Q}_{in}} = \frac{100000 \text{ kW}}{247069 \text{ kW}} = 0.4047 = 40.47\% \end{split}$$

(c) To calculate the exergetic efficiency, η_{II} ,

$$\begin{split} \dot{W}_{net} &= 100000 \text{ kW} \\ \dot{W}_{max} &= \dot{W}_{rev} = \dot{W}_{net} + \dot{I} \\ \dot{W}_{max} &= 100000 + 97080 = 197080 \text{ kW} \\ \eta_{II} &= \frac{\dot{W}_{net}}{\dot{W}_{max}} = \frac{100000 \text{ kW}}{197080 \text{ kW}} = 0.5074 = 50.74\% \end{split}$$

Exergy diagram for the total plant (on MW basis)

9-3-5 [OXX] Water is the working fluid in a cogeneration cycle that generates electricity and provides heat for campus buildings. Steam at 2.5 MPa, 320°C and a mass flow rate (*m*') of 1 kg/s, expands through a two-stage turbine. Steam at 0.2 MPa with a mass flow rate (*m*') of 0.3 kg/s is extracted between the two stages and provided for heating. The remaining steam expands through the second stage to the condenser at a pressure of 6 kPa. The condensate returns from the campus buildings at 0.1 MPa, 60°C and passes through a trap into the condenser. Each turbine stage has an isentropic efficiency of 80%. Heat addition to the boiler takes place from a source at 1200°C, the building is maintained at 50°C, and the atmospheric conditions are 100 kPa, 20°C. (a) Perform an exergy analysis and draw an exergy flow diagram for the system. (b) Define and evaluate the exergetic efficiency of the system.

Heat Source at 1200 °C (1473 K)

Dead State: p0 = 100 kPa and $T0 = 20 ^{\circ}\text{C}$ (293 K)

Table 1 Properties at various state points in the steam power plant at rated conditions

			20 Cm. 2.	. " Mo	
	p	T	$\dot{\Psi} = \dot{m}_{V}$	S	h
	kPa	K	MW	$kJ/(kg \cdot K)$	kJ/kg
		× Ø	Schrift, Wo "We Chilling	,	
State 0	0.1	293 5 ⁰	ing sund of gro	0.2966	84.0578
State 1	2.5	593 in 150 150 110	1.088	6.7223	3055.76
State 2	0.2	393	0.1739	6.7223	2547.30
State 3	0.2	5 393	0.1816	6.9807	2648.99
State 4	0.006 is no	309	0.1062	6.9807	2149.75
State 5	0.006	309	0.0780	7.3035	2249.60
State 6	0.006	309	0.0017	0.52087	151.51
State 7	2.5	309	0.0042	0.52087	154.01
State 8	0.1	333	0.0031	0.8312	251.21
State 9	0.2	333	0.0031	0.83089	251.21

 Table 2
 Device-specific analysis

Plant Component	Device	$ \Delta\dot{\Psi} $ MW	$egin{aligned} \dot{W_u} \ \mathbf{MW} \end{aligned}$	Exergy Supplied from	<i>İ</i> MW	Exergetic Efficiency %	Plant Component
				Reservoir			

Turbine	A	0.8284	+0.6863	0	0.1421	6.113	82.84
Condenser	В	0.07947	0	0	0.07947	3.4187	0
Pump	C	0.0025	-0.0025	0	0	0	100
Process Heater	D	0.1785	0	0	0.1785	7.679	0
Trap	E	0	0	0	0	0	0
Boiler	F	1.0838	0	+2.3245	1.24069	53.374	46.62
Total Plant			0.68383	2.3245	1.64076	70.58	29.42

(a) Rate of exergy supplied by the reservoir at 1473K,

$$\dot{Q}_{\text{in}} \times (1 - \frac{T_o}{T_R}) = 2.9017 \text{ MW} \times (1 - \frac{293 \text{ K}}{1473 \text{ K}}) = 2.3245 \text{ MW}$$

(b) In order to determine the thermal efficiency, η_{th} , the Cycle Panel from TEST was used.

$$\dot{W}_{net} = 683.834 \text{ kW}$$

$$\dot{Q}_{in} = 2901.744 \text{ kW}$$

$$\eta_{th} = \frac{\dot{W}_{net}}{\dot{Q}_{in}} = \frac{683.834 \text{ kW}}{2901.744 \text{ kW}} = 0.2356 = 23.56\%$$

(c) To calculate the exergetic efficiency, η_{II} ,

$$\dot{W}_{net} = 683.834 \text{ kW}$$

$$\dot{W}_{max} = \dot{W}_{rev} = \dot{W}_{net} + \dot{I}$$

$$\dot{W}_{max} = 683.834 + 1640.76 = 2324.5 \text{ kW}$$

$$\eta_{II} = \frac{\dot{W}_{net}}{\dot{W}_{max}} = \frac{683.83 \text{ kW}}{2324.5 \text{ kW}} = 0.29418 = 29.42\%$$

Exergy diagram for the total plant (on MW basis)