Low-rank Matrix Completion from Noisy Entries

Sewoong Oh

Joint work with Raghunandan Keshavan and Andrea Montanari Stanford University

> Forty-Seventh Allerton Conference October 1, 2009

Motivating Example

• Netflix Challenge

The Model

- 1. Low-rank matrix M
- 2. N = M + Z
- 3. Uniformly random sample *E*

$$N_{ij}^{E} = \begin{cases} M_{ij} + Z_{ij} & \text{if } (i,j) \in E \\ 0 & \text{otherwise.} \end{cases}$$

- 1. Low-rank matrix M
- 2. N = M + Z
- 3. Uniformly random sample E

$$N_{ij}^{E} = \left\{ egin{array}{ll} M_{ij} + Z_{ij} & \mbox{if } (i,j) \in E \ , \\ 0 & \mbox{otherwise}. \end{array}
ight.$$

Goal : Estimation $\hat{M}(E, N^E)$ that minimizes

$$\mathsf{RMSE} \equiv \left(\frac{1}{\mathit{mn}} \sum_{i,j} (\mathsf{M}_{ij} - \hat{\mathsf{M}}_{ij})^2\right)^{1/2} \; .$$

- Characterized by 4 parameters:
 - ▶ Data size $m \times n$, assume fixed $\alpha \equiv m/n$
 - ▶ Rank r
 - ► Sample size |*E*|
 - ▶ Noise Z^E

{ Running example :
$$Z_{ij} \sim i.i.d. N(0,\sigma_z^2)$$
 }

$$RMSE_{ALG} \leq F(n, r, |E|, Z^{E})$$

- Characterized by 4 parameters:
 - ▶ Data size $m \times n$, assume fixed $\alpha \equiv m/n$
 - ▶ Rank r
 - ▶ Sample size |E|
 - ▶ Noise Z^E

{ Running example :
$$Z_{ij} \sim i.i.d. N(0,\sigma_z^2)$$
 }

$$RMSE_{ALG} \leq F(n, r, |E|, Z^E)$$

- Characterized by 4 parameters:
 - ▶ Data size $m \times n$, assume fixed $\alpha \equiv m/n$
 - ► Rank r
 - ► Sample size |E|
 - ► Noise Z^E

{ Running example :
$$Z_{ij} \sim \text{i.i.d. } N(0,\sigma_z^2)$$
 }

$$\mathsf{RMSE}_{OptSpace} \ \leq \ C \, \frac{n \, \sqrt{r}}{|E|} ||\mathsf{Z}^E||_2 \\ \left(C \, \sigma_z \, \sqrt{r n \log n / |E|} \, , \, \, \mathsf{for \, Gaussian} \right)$$

- Characterized by 4 parameters:
 - ▶ Data size $m \times n$, assume fixed $\alpha \equiv m/n$
 - ▶ Rank r
 - ► Sample size |E|
 - Noise Z^E { Running example : $Z_{ij} \sim \text{i.i.d. } N(0,\sigma_z^2)$ }

$$\begin{split} \mathsf{RMSE}_{\mathit{OptSpace}} & \leq & C \, \frac{n \, \sqrt{r}}{|E|} ||\mathsf{Z}^E||_2 \\ & \qquad \qquad \left(C \, \sigma_{\mathsf{Z}} \, \sqrt{r n \log n / |E|} \, , \, \, \mathsf{for \, Gaussian} \right) \\ \mathsf{RMSE}_{\mathit{Oracle}} & \simeq & \frac{1}{\sqrt{|E|}} ||\mathsf{Z}^E||_F \\ & \qquad \qquad \left(\sigma_{\mathsf{Z}} \, \sqrt{2 \, r \, n / |E|} \, , \, \, \mathsf{for \, Gaussian} \right) \end{split}$$

- Characterized by 4 parameters:
 - ▶ Data size $m \times n$, assume fixed $\alpha \equiv m/n$
 - ▶ Rank r
 - ► Sample size |E|
 - ► Noise Z^E

{ Running example : $Z_{ij} \sim \text{i.i.d. } N(0,\sigma_z^2)$ }

$$\mathsf{RMSE}_{OptSpace} \ \leq \ C \, \frac{n \, \sqrt{r}}{|E|} ||\mathsf{Z}^E||_2 \\ \left(C \, \sigma_{\mathsf{Z}} \, \sqrt{r n \log n / |E|} \, , \, \, \text{for Gaussian} \right) \\ \mathsf{RMSE}_{Oracle} \ \simeq \ \frac{1}{\sqrt{|E|}} ||\mathsf{Z}^E||_F \\ \left(\sigma_{\mathsf{Z}} \sqrt{2 \, r \, n / |E|} \, , \, \, \text{for Gaussian} \right) \\ \mathsf{OPTSPACE} \ \text{is Near-optimal}$$

Numerical Simulation Results

• Fixed $n = 500, r = 4, \sigma_z = 1$

Main Contribution

OPTSPACE

1. Complexity: Low complexity

2. Theory: Near-optimal performance guarantee

3. Practice: Numerical simulations

Naïve Approach

$$N^E = \sum_{k=1}^n x_k \sigma_k y_k^T$$

Rank-*r* projection :

$$\mathcal{P}_r(\mathsf{N}^E) \equiv \frac{mn}{|E|} \sum_{k=1}^r x_k \sigma_k y_k^T$$

Naïve Approach Fails

- Define : $deg(row_i) \equiv \#$ of samples in row i.
- For |E| = O(n), there exists a row with degree $\Omega(\log n/(\log \log n))$.
- *spurious* singular values of $\Omega(\sqrt{\log n/(\log \log n)})$.

Trimming

Solution : Trimming

$$\widetilde{\mathsf{N}}_{ij}^{\textit{E}} = \left\{ \begin{array}{c} 0 \quad \text{if } \textit{deg}(\textit{row}_i) > 2\mathbb{E}[\textit{deg}(\textit{row}_i)] \;, \\ 0 \quad \text{if } \textit{deg}(\textit{col}_j) > 2\mathbb{E}[\textit{deg}(\textit{col}_i)] \;, \\ \mathsf{N}_{ij}^{\textit{E}} \quad \textit{otherwise}. \end{array} \right.$$

Trimming

Solution : Trimming

$$\widetilde{\mathsf{N}}_{ij}^{\textit{E}} = \left\{ \begin{array}{c} 0 \quad \text{if } \textit{deg}(\textit{row}_i) > 2\mathbb{E}[\textit{deg}(\textit{row}_i)] \;, \\ 0 \quad \text{if } \textit{deg}(\textit{col}_j) > 2\mathbb{E}[\textit{deg}(\textit{col}_i)] \;, \\ \mathsf{N}_{ij}^{\textit{E}} \quad \textit{otherwise}. \end{array} \right.$$

Trimming

Solution : Trimming

$$\widetilde{\mathsf{N}}_{ij}^{\textit{E}} = \left\{ \begin{array}{c} 0 \quad \text{if } \textit{deg}(\textit{row}_i) > 2\mathbb{E}[\textit{deg}(\textit{row}_i)] \;, \\ 0 \quad \text{if } \textit{deg}(\textit{col}_j) > 2\mathbb{E}[\textit{deg}(\textit{col}_i)] \;, \\ \mathsf{N}_{ij}^{\textit{E}} \quad \textit{otherwise}. \end{array} \right.$$

The Algorithm

OPTSPACE

Input : sample positions E, sample values N^E , rank r **Output :** estimation \hat{M}

- 1: Trim N^E , and let \widetilde{N}^E be the output;
- 2: Compute rank-r projection $\mathcal{P}_r(\widetilde{\mathsf{N}}^E) = X_0 S_0 Y_0^T$;
- 3:

Main Result

Theorem (Keshavan, Montanari, Oh, 2009 Thm. 1.1)

Let M be an $n \times n$ matrix of rank-r bounded by $M_{\rm max}$. Then, w.h.p., rank-r projection achieves

$$\mathsf{RMSE} \ \leq \ C \mathsf{M}_{\max} \sqrt{\frac{nr}{|E|}} + C' \frac{n\sqrt{r}}{|E|} ||\mathsf{Z}^E||_2 \ .$$

$$\left(\mathsf{Example: } C\mathsf{M}_{\max} \sqrt{\frac{nr}{|E|}} + C'\sigma_z \sqrt{\frac{rn\log n}{|E|}} \right)$$

The Algorithm

OPTSPACE

Input: sample positions E, sample values N^E , rank r

Output: estimation \hat{M}

1: Trim N^E , and let \widetilde{N}^E be the output;

2: Compute rank-r projection $\mathcal{P}_r(\widetilde{N}^E) = X_0 S_0 Y_0^T$;

3: Minimize RMSE by gradient descent starting at (X_0, S_0, Y_0) .

Main Result

Theorem (Keshavan, Montanari, Oh, 2009 Thm. 1.1)

Let M be an n \times n matrix of rank-r bounded by $M_{\rm max}$. Then, w.h.p., rank-r projection achieves

$$\mathsf{RMSE} \ \leq \ C \mathsf{M}_{\max} \sqrt{\mathit{nr}/|E|} + C' \, ||\mathsf{Z}^E||_2 \, \mathit{n} \sqrt{\mathit{r}/|E|} \; .$$

Theorem (Keshavan, Montanari, Oh, 2009 Thm. 1.2)

Let M be an $n \times n$ rank-r incoherent matrix with $\sigma_1(M)/\sigma_r(M) = O(1)$. If $|E| \ge Cn r \max\{r, \log n\}$, then, w.h.p., OPTSPACE achieves

$$\mathsf{RMSE} \leq C'' \frac{n\sqrt{r}}{|E|} ||Z^E||_2 \;,$$

provided that the RHS is smaller than $\sigma_r(M)$.

Example: $C''\sigma_z \sqrt{r n \log n/|E|}$

Comparison: Theory

Theorem (Candés, Plan, 2009)

Assume strongly incoherent matrix M. If $|E| \ge C r n (\log n)^6$ then Semidefinite Programming achieves, w.h.p.,

RMSE
$$\leq C' \sqrt{\frac{n}{|E|}} ||Z^{E}||_{F} + C'' \frac{1}{n} ||Z^{E}||_{F}$$
.

Example:
$$C'\sigma_z\sqrt{n} + C''\sigma_z\frac{\sqrt{|E|}}{n}$$

Comparison: Theory

When Z is i.i.d $N(0,\sigma_z^2)$,

Oracle: RMSE
$$\simeq C\sigma_z \sqrt{\frac{r n}{|E|}}$$

OPTSPACE: RMSE
$$\leq C'\sigma_z \sqrt{\frac{r \, n \log n}{|E|}}$$

SDP: RMSE
$$\leq C'' \sigma_z \left\{ \sqrt{n} + \frac{\sqrt{|E|}}{n} \right\}$$

Comparison

• Fixed $n = 500, r = 4, \sigma_z = 1$, example from [Candés, Plan, 2009]

Conclusion

OPTSPACE

1. Complexity: Low complexity

2. Theory: Near-optimal performance guarantee

3. Practice: Numerical simulations

Thank you!

Conclusion

OPTSPACE

1. Complexity: Low complexity

2. Theory: Near-optimal performance guarantee

3. Practice: Numerical simulations

Thank you!