CSE 33/1-1/08.02.2024/

Quiz ≥ 2 out of 3/4
Syllabus will be repeat in every
exam

Google Claurisom: kpbmkcm

Other's Section!

 $5 \Rightarrow 9:25 \Rightarrow SAC 503$ $6 \Rightarrow 10:50 \Rightarrow NAC 992$ $7 \Rightarrow 12:15 \Rightarrow SAC 513$

Tent Books!

Microphocesson > Banny B Bney (70-751.)

Intenfacing => N. Mathivanan

For Lab >> Charles Manut

L-2/10.02.2024

- @ Component of a simple microcomputers
 - Central Processing Unit (CPU)
 - Memory (RAM on ROM)
 - I/O Ports
 - I/O Derices
 - > For internal connectivity!
 - Data Bus -> Both way
 - Address Bus ⇒ One way
 - Controll Bus > Both way

>	Microprocessor!						
	- Multipuripose						
	- Programmabl						

- prammable
- clock-driven
- Register based
- reads binary instruction
- accept binary data a inputs
- process according to instruction
- provides output

- Sync.

- Enternal Source

To case of PC (Pensonal Computer), CPV refers to microprocessor

O CPU!

- Data processing
- Pata movement
- Logical operation

=> BIV => BUS Intenface Unit

> Used for data movement

(*) Microprocessor is a data processing unit. > Main function

data computation -- performed by ALU movement.

ALU!

- Anithmetic and Logic Unit

- data changes - function that cawe
 - Add - Compane
 - Subtract - Inerement
 - AND - Decrement
 - OR
 - cannot itself more data from place to place.
 - Penforms operation where data found band leave result in the same place.

- # Fetch/ Frecute cycle: Fetch -> Decode -> Enecute -> Stone
- Microprocesson can do nothing itself. Needs ∫ - Memony cincuits ⇒ to stone program instruction - Z/O Cincuits => for data movement - Power supply Controll by control logic
- Power of a Microprocessor!
 - capacity to process data
 - three measurement
 - length of the microprocesson data wond (Data Bus)
 - number of memory words that the microprocessor can address (Adness Bus)
 - Speed of enecuting an instruction (clock speed)

$$f = 5 \text{ MHz} = 5 \times 10^6 \text{ Hz}$$

$$T = \frac{1}{f} = \frac{1}{5 \times 10^6 \text{ Hz}} = 0.2 \times 10^6 \text{ s}$$

$$= 200 \text{ nS}$$

$$= 200 \text{ nS}$$

Bus cycle > cycle needed for executing a single instruction (CPI)

$$f = 20 \text{ MHz} = 20 \times 10^6 \text{ Hz}$$

$$T = \frac{1}{f} = \frac{1}{20 \times 10^6 \text{ Hz}} = 0.05 \times 10^6 \text{ s}$$

World's first microprocessor!

(D) => Critical Dimension

- Difference between two transistor

(1) Pedicated Controllers:

- known as microcontroller
- used to control smart machines - microwave oven, washing machine etc.
- a complete computer with limited capacity.
- contain application => ADC, Timen, PWM Genetication etc.
- TMS-1000 > 4-bit microprocessor - by Tenas instruments
- 8048 => 8-6it CPU (1976)

Bit - Slice Processon:

- used to build a custom CPU
- used for parallel processing
- AMD-2900 => 4-bit ALU - multiplexer - sequencers
- Intel 3000
- 4-bit is a slice of the whole word capacity of the computer.
- connected in papallel can works as 8-bit, 16bit_32bitet.
- custom instruction set (microcode)

(iii) General Purpose CPU

- used in PC, Laptop

- can do all computational work

There are two part in a CPU

- BIU (BUS Interface Unit)

- EU (Execution Unit)

Physical Address = Code Segment × 10H + Instruction Point (offset)

eode Jegment address = xxxx H | Chit binary | xxxx H x 10 H | xxxx H | 20 bit binary

Instruction Point/ Offset = xxxx H

2 Physical Addresy = XXXXH X 10H + XXXX H

= XXXXX H + XXXX H

= XXXXX H

in binary - 20 bit

\$20 bit address,

- can locate 2° location in a memory

- can locate 2° location in a memory

- memory size 2° = 1 m (byte addressable)

- in call of one address, there will be movement of
6 byte to the queene. FIFO

₩ 8086 > 14 Register

De Instruction Queue:

2.01100011							
Without Pipeline	Fi	2 D ₁	3 F,	4 F2	5 D ₁	F ₂	
Pipeline =							=> BIV > Queue
Overlaping phases	Fi	F ₂	F ₃	Fy D2	F ₅ E ₂	Fc Time save	\rightarrow EU

* The Queue Openation!

- i. Decode first byte to decide opeode lengths and update queue Go to step (ii)
- 11. Is it single byte? Yes > Go to step(iv)
- iii. Take second byte from queue as opeode. Decode second byte. Go to step (iv)
- IV. Enecute it with data bytes decoded by decoder. Go to step (1)