GorshkovaYekS 11102024-183031

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\text{\tiny H}}=2.4~\Gamma\Gamma$ ц и $f_{\text{\tiny B}}=4.5~\Gamma\Gamma$ ц, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.7 дБ 2) 1.0 дБ 3) 1.3 дБ 4) 0.2 дБ

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.539	162.8	5.450	72.5	0.055	56.8	0.269	-44.5

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет docmamouho, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

Варианты ОТВЕТА:

- 1) аттенюатор с затуханием 1.3 дБ, подключённый к плечу 2;
- 2) аттенюатор с затуханием 0.0 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 0.9 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 1.9 дБ, подключённый к плечу 1.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.235	-75.3
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Выбрать Γ -образный четырёхполюсник (см. рисунок 2), который может обеспечить согласование со стороны плеча 1 на частоте 5.5 $\Gamma\Gamma$ ц.

Рисунок 2 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 3) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 3 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 4 ситуаций соответствует эта частотная характеристика?

Рисунок 4 – Различные реализации Г-образной цепи согласования

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -7.3~$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 11.2~ дБм.

Какая мощность рассеивается внутри цепи коррекции?

Варианты ОТВЕТА:

- 1) 10.7 мВт
- 2) 2.1 mBT
- 3) 2.5 мВт
- 4) 2.1 мВт

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.24 + 0.2\mathrm{i}$.

Найти модуль (в дБ) коэффициента передачи s_{21} .

Варианты ОТВЕТА:

- 1) -1.9 дБ
- 2) -0.9 дБ
- 3) -0.9 дБ
- 4) -0.4 дБ