

UE Atomistique

2ème partie : Les liaisons chimiques

- Chap. I: La liaison de covalence

Modèle de Lewis de la covalence

- Chap. II : La géométrie des molécules par la méthode de la VSEPR

- Chap. III: Approche quantique de la liaison de covalence

Théorie de l'hybridation

- Chap. IV : La liaison métallique - les cristaux métalliques

- Chap. V: La liaison ionique - les cristaux ioniques

33

Chap. III : Approche quantique de la liaison de covalence

III.1. Les orbitales moléculaires (O.M.) : description qualitative

III.1.a. Notion d'O.M.

La liaison de covalence est formée par 2 électrons de spins opposés.

Il y a recouvrement des O.A. apportés par chacun des 2 atomes.

Ces O.A. fusionnent pour donner des O.M. englobant les 2 noyaux.

Chaque électron apporte son O.A. ou sa « $\psi_{n.l.ml}$ ».

→ La liaison de covalence est une *liaison dirigée*, elle s'établit dans la direction qui permet *le recouvrement maximal*

L'O.M. ψ est une Combinaison Linéaire mathématique des fonctions d'onde ϕ des O.A. (C.L.O.A.). Le carré représente, en chaque point de l'espace, la densité de probabilité de présence des électrons qui l'occupent

Ex: molécule diatomique A-B

 \Rightarrow ψ = $c_A \varphi_A + c_B \varphi_B$ avec φ_A et φ_B fonctions d'onde des atomes A et B, respectivement c_A et c_B : coefficients

Comme toutes les orbitales, les O.M. peuvent être occupées par 2 électrons au maximum, de nombres de spin opposés

A chaque O.M. il correspond un niveau d'énergie donné.

35

Chap. III : Approche quantique de la liaison de covalence

III.1.b. Règles de formation des O.M.

- 1) Pour se recouvrir, les O.A. doivent avoir des énergies voisines
- 2) La combinaison de n O.A. donne n O.M. recouvrement de 2 O.A. \Rightarrow 1 O.M. liante + 1 O.M. antiliante
- 3) Chaque O.M. ne contient pas plus de 2 électrons (principe de Pauli)
- 4) Les O.M. sont remplies dans l'ordre d'énergie croissante

Rem : dans le cas de la liaison dite de coordination, le recouvrement se fait entre une O.A. vide et une O.A. qui possède la paire d'électrons.

Une orbitale moléculaire est dite <u>liante</u> lorsque les orbitales atomiques dont elle résulte sont en phase (l'interférence de leurs fonctions d'onde est constructive)

Une <u>orbitale moléculaire</u> est dite <u>antiliante</u> lorsque les orbitales atomiques dont elle résulte sont en opposition de phase (l'interférence de leurs fonctions d'onde est destructive)

Les orbitales liantes ont toujours un niveau d'énergie inférieur à ceux des orbitales dont elles sont issues: un doublet liant est toujours plus stable que les orbitales atomiques individuelles

Les orbitales antiliantes ont une énergie plus élevée que les orbitales atomiques dont elles sont issues

37

O.M. antiliante ($\psi = c_1 \phi_1 - c_2 \phi_2$)

Chap. III : Approche quantique de la liaison de covalence III.1.c. Les différents types de recouvrement i) Les O.M. de type σ Obtenues lors d'interactions d'O.A. s, p et d à condition que le recouvrement se fasse selon une symétrie axiale. Recouvrement est à symétrie axiale \Rightarrow on parle de liaison σ Recouvrement de 2 O.A. s \Rightarrow on obtient toujours une O.M. σ Recouvrement axial de 2 O.A. p \Rightarrow on obtient une O.M. σ 2 O.A. s: O.M. liante σ_s

O.M. liante σ_n

Chap. III : Approche quantique de la liaison de covalence

Les O.M. de type σ

- \rightarrow Les O.M. de type σ sont obtenues par recouvrement axial de 2 OA présentant un même axe de symétrie de révolution
- ightarrow Les OM de type σ correspondent aux liaisons simples de Lewis
- ightarrow Une liaison simple est toujours une liaison σ et nécessite l'interaction de 2 électrons σ

ii) Les O.M. de type π

Obtenues lors d'interactions d'O.A. p et d à condition que le recouvrement se fasse **latéralement** (fréquentes dans la chimie du carbone).

Quand le recouvrement est latéral, on parle de liaison π

41

Chap. III : Approche quantique de la liaison de covalence

Les O.M. de type π

- ightarrow Les O.M. de type π sont obtenues par recouvrement latéral de 2 OA dont les axes de symétrie sont parallèles
- ightarrow Une liaison obtenue par ce type de recouvrement est une liaison π et les électrons associés à cette liaison sont des électrons π

Une liaison π ne peut exister que s'il existe déjà une liaison σ

ightarrow Une liaison multiple (double ou triple) est donc toujours constituée d'une liaison σ et d'une ou 2 liaisons π

III.2. Molécules polyatomiques : théorie de l'hybridation

La théorie des O.M. permet-elle de prévoir la géométrie des molécules ?

III.2.a. Position du problème

A priori, les recouvrements d'O.A. ${\bf s}$ et ${\bf p}$ devraient conduire à des angles de liaison de 90° ou 180°

Or les angles de liaisons sont souvent différents de ces 2 valeurs

Exemple: CH4

43

Chap. III : Approche quantique de la liaison de covalence

Ex: CH4

$$C$$
 (Z=6) \rightarrow (He)2s²2p² C activé \rightarrow (He)2s¹2p³ H (Z=1) \rightarrow 1s¹

D'après le principe de recouvrement maximum et à partir des 4e- de valence du carbone, on peut former:

- une liaison covalente σ par recouvrement de l'OA 2s du carbone avec l'OA 1s de l'H
- 3 liaisons covalentes σ identiques, mais différentes de la précédente, par recouvrement (dans les 3 cas) d'1 OA 2p du carbone avec 1 OA 1s d'1 H

Les OA 2p du carbone étant orientées dans des directions perpendiculaires entre elles, on s'attend à ce que les 3 liaisons soient perpendiculaires entre elles

Or les angles réels sont à 109.5° et toutes les liaisons sont identiques (VSEPR)

Pour mettre en accord la théorie et l'expérience il faut envisager l'existence de nouvelles orbitales \Rightarrow Orbitales Atomiques Hybrides O.A.H.

→ « mélange » des OA occupées par les électrons de valence d'un atome

III.2.b. La théorie de l'hybridation

4 liaisons de covalence identiques

 \Rightarrow formation de 4 nouvelles O.A. identiques à partir des 4 O.A. s et p de valence du C (4 O.A.H.).

→ on va mélanger l'OA s du carbone avec ses 3 OA p

De manière générale quand on hybride n O.A., on obtient n O.A.H. de même niveau d'énergie, par combinaisons linéaires des fonctions d'onde des O.A. de départ.

Nous n'envisagerons ici que des hybridations avec des O.A. s et p.

45

Chap. III : Approche quantique de la liaison de covalence

III.2.c. Exemple de formation des O.A.H.

Envisageons d'hybrider les O.A. de la couche de valence du C (Z=6) de configuration électronique 1s² 2s² 2p².

fondamental

Chap. III : Approche quantique de la liaison de covalence

49

Chap. III : Approche quantique de la liaison de covalence

III.2.e. Hybridation et géométrie moléculaire

<u>i) Tableau des configurations électroniques de C, de N et de O</u> dans leurs différents états d'hybridation

On construit ce tableau en tenant compte des résultats suivants :

- 1) Un électron célibataire dans une O.A.H. est toujours un électron σ c'est-à-dire qui formera une liaison σ
- 2) Une PL dans une O.A.H. peut donner une liaison de coordination
- 3) Un électron célibataire dans une O.A. pure np est toujours un électron π c'est-à-dire qui formera une liaison π
- 4) pas d'électron π sans électron σ nécessaire à la liaison de base (c'est à dire pas de liaison π sans liaison σ)

<u>ii) Règles générales pour établir la géométrie des molécules à partir de la théorie de l'hybridation</u>

Pour déterminer la géométrie d'une molécule il faut :

- 1) Établir le schéma de Lewis de chaque atome engagé dans la molécule.
- 2) Faire le <u>décompte</u> pour <u>chaque atome</u> du nombre :
 - d'électrons σ (liaison simple)
 - d'électrons π (liaison double et triple)
 - de Pl
- 3) Faire l'inventaire à l'aide du tableau des configurations des différents types d'hybridation envisageables
- 4) Quand le tableau propose plusieurs types d'hybridation, il faut choisir celui qui correspond à la plus grande stabilité (**répulsion minimale**) en sachant que les PL sont plus répulsifs que les DL.