GeoMAN: Multi-level Attention Networks for Geo-sensory Time Series Prediction

Yuxuan Liang^{1,2}, Songyu Ke^{3,2}, Junbo Zhang^{2,4}, Xiuwen Yi^{4,2}, Yu Zheng^{2,1,3,4}

- ¹ Xidian University, Xi'an, China
- ² Urban Computing Business Unit, JD Finance, Beijing, China
- ³ Shanghai Jiao Tong University, Shanghai, China
- ⁴ Southwest Jiaotong University, Chengdu, China

Introduction

Geo-sensory time series

- > Sensors deployed in different geospatial locations
- > Constantly reporting readings of different measurements
- > Examples

> Forecasting them is of great importance to our daily lives

Challenges

- Dynamic spatio-temporal correlation
- > External factors (e.g., meteorology)

Methodology

Preliminary

- \triangleright Suppose there are N_a sensors
- \triangleright Each sensor generates N_I kinds of readings about different measurements
- Predict the target series of a given sensor over the next au hours

Framework

- ➤ Multi-level attention network
 - Spatial attention
 - Temporal attention
- > External factors fusion module

Temporal Attention

> Select relevant historical time slots to make predictions

$$u_{t'}^o = \mathbf{v}_d^{\mathsf{T}} \tanh \left(\mathbf{W}_d' \left[\mathbf{d}_{t'-1}; \mathbf{s}_{t'-1}' \right] + \mathbf{W}_d \mathbf{h}_o + \mathbf{b}_d \right),$$

$$\gamma_{t'}^o = \frac{\exp\left(u_{t'}^o\right)}{\sum_{j=1}^T \exp\left(u_{t'}^j\right)}, \qquad \mathbf{c}_{t'} = \sum_{o=1}^T \gamma_{t'}^o \mathbf{h}_o,$$

$$\mathbf{c}_{t'} = \sum_{o=1}^{T} \gamma_{t'}^{o} \mathbf{h}_{o},$$

Spatial Attention

- > Local spatial attention: select relevant local features
- > Global spatial attention: select relevant sensors

External Factors Fusion

Encoder-decoder Achitecture

New encoder input

$$ilde{\mathbf{x}}_t = \left[ilde{\mathbf{x}}_t^{local}; ilde{\mathbf{x}}_t^{global}
ight]$$

>Update decoder hidden state

$$\mathbf{d}_{t'} = f_d \left(\mathbf{d}_{t'-1}, \left[\hat{y}_{t'-1}^i; \mathbf{ex}_{t'}; \mathbf{c}_{t'} \right] \right)$$

Output generation

$$\hat{y}_{t'}^i = \mathbf{v}_y^{\mathsf{T}} \left(\mathbf{W}_m \left[\mathbf{c}_{t'}; \mathbf{d}_{t'} \right] + \mathbf{b}_m \right) + b_y$$

Model Training

- > GeoMAN is smooth and differentiable
- Loss function

$$\mathcal{L}(heta) = \left\|\hat{\mathbf{y}}^i - \mathbf{y}^i
ight\|_2^2$$

Optimizer: Adam

Results

Method	Water Quality		Air Quality	
	RMSE	MAE	RMSE	MAE
ARIMA	8.61E-02	7.97E-02	31.07	20.58
VAR	5.02E-02	4.42E-02	24.60	16.17
GBRT	5.17E-02	3.30E-02	24.00	15.03
FFA	6.04E-02	4.10E-02	23.83	15.75
stMTMVL	6.07E-02	4.16E-02	29.72	19.26
stDNN	5.77E-02	3.99E-02	25.64	16.49
LSTM	6.89E-02	5.04E-02	24.62	16.70
Seq2seq	5.80E-02	4.03E-02	24.55	15.09
DA-RNN	5.02E-02	3.52E-02	24.25	15.17
GeoMAN	4.34E-02	3.02E-02	22.86	14.08

Attention Visualization

