Week 10

软73 沈冠霖 2017013569

May 7, 2019

1 T1

算法 对于P, 先按照kmp算法的流程求出数组 π 。

之后先对于每个符号 \mathbf{a} ,求出 $\delta(0,a)$,有 $\delta(0,a)=1$ 当仅当 $\mathbf{P}[1]=\mathbf{a}$,否则 $\delta(0,a)=0$ 。

之后对于q=1 to m进行遍历,对于给定的q再对每个符号a进行遍历,如果 $q \neq m\&\&P[q+1]=a$,则有 $\delta(q,a)=q+1$,否则 $\delta(q,a)=\delta(\pi[q],a)$ 。

复杂度 根据 kmp 算法的结论,求出数组 π 的时间复杂度是 $\theta(m)$ 。

求出 $\delta(0,a)$ 的时间复杂度是 $\theta(\Sigma)$ 。

而之后进行两层遍历,因为 $\pi[q]< q$,因此在求 $\delta(q,a)$ 的时候, $\delta(\pi[q],a)$ 必定已经求出来并且储存了,因此两层遍历中间的操作是theta(1)的,因此总共时间复杂度是 $\theta(m\Sigma)$ 。

证明 根据定义, $k = \delta(q, a)$ 等价于k为最大,满足 $P_i \supset P_q a$ 的i。因此, $t+1 = \delta(q, a)$ 等价于t为最大的满足 $P_i \supset P_q$,且P[i+1] = a的i。

 $\delta(q,a)$ 等价于t为最大的满足 $P_i \sqsupset P_q$,且P[i+1]=a的i。 而根据 kmp 算法的结论, $P_i \sqsupset P_q$ 等价于 $i \in \pi^*[q] \cup q$ 。此时,如果 $P[i+1]=a\&\&i \neq m$,则q就是最大的i, $\delta(q,a)=q+1$ 。否则,只需要证明 $\delta(\pi[q],a)-1$ 是最大的i即可。

首先证明 $r=\delta(\pi[q],a)-1$ 是其中一个满足条件的i。因为 $P_r \supset P_{\pi[q]},P_{\pi[q]} \supset P_q$,因此有 $P_r \supset P_q$,因此成立。

其次证明r是最大的i。假设有比r更大的i,令这个更大的为s,则如果 $s \in \pi^*[q]$,则 $P_s \supset P_{\pi[q]}, P[s+1] = a, s > r$,s就应该是 $\delta(\pi[q], a)$,与 $\delta(\pi[q], a) = r$ 矛盾。而如果s = q,则P[s+1] = P[q+1] = a,与 $P[q+1] \neq a$ 或者q = m矛盾。因此r是最大的i, $\delta(q, a) = \delta(\pi[q], a)$ 。

2 T2

2.1 1

算法 先按照kmp算法的流程求出π。

之后遍历 $\mathbf{i}=1$ to \mathbf{m} ,令 $\mathbf{k}=i-\pi[i]>0$,如果 $\pi[i]\neq 0$ 并且 $\mathbf{k}=\frac{\pi[i]}{\rho(P_{\pi_i})}$,则 $\rho(P_{\pi_i})+1$,否则 $\rho(P_i)=1$ 。

求 π 复杂度为 $\theta(m)$, 遍历的复杂度为 $\theta(m)$, 总共复杂度 $\theta(m)$ 。

证明 按照上述算法, $k=\rho(P_i)>1$,等价于将集合 $i\cup\pi^*[i]$ 从小到大排序,能构成公差为i的等差数列。只需要证明这个结论成立。

再证明必要性。如果能构成公差为 $t=\frac{i}{k}$ 的等差数列,则对于任意的 $j,\pi^{j+1}[i]=\pi^{j}[i]-t,\pi^{k}[i]=0$,则有 $w=P_{t}$ $\exists \forall P_{\pi^{j}[i]},j< k$,也就是 $P_{\pi^{j+1}[i]}P_{t}=P_{\pi^{j}[i]},P_{i}=w^{k}$,必要性成立。

2.2 2

证明 先给定串的长度m,字母表大小NUM,则最多有 NUM^m 个串。如果能证明对于给定的串长度, $E[\rho^*(P)] = O(1)$ 就可以证明结论成立。

2.3 3

正确性 如果模式串和待比较串的下一位相同,这个算法和kmp操作完全一致。否则,kmp算法是将两个串的相对位置向后移动了 $q-\pi[[q]$ 位,而这个算法则是向后移动了 $max(1,\lceil\frac{q}{\rho^*(P)+1}\rceil)$,则只需要证明这个数值恒小于等于 $q-\pi[q]$ 即可。

首先, $1 \leq q - \pi[q]$ 。其次,要证明 $\left\lceil \frac{q}{\rho^*(P) + 1} \right\rceil \leq q - \pi[q]$,只需要证明 $q \leq (\rho^*(P) + 1)(q - \pi[q])$ 。如果 $q - \pi[q]$ 可以被q整除,那么根据上面的算法,有 $\rho(P_q)(q - \pi[q]) = q$,式子成立。如果不可以被q整除,则有 $P[i] = P[i + z(q - \pi[q])$ 对于任意的正整数z,在不超过范围的前提下成立。则必定可以找到最大的z使得 $z(q - \pi[q]) \leq P_q$,有 $P_{z(q - \pi[q])} = w^z$,且 $q \leq (z + 1)(q - \pi[q])$,此时有 $z \leq \rho^*(P)$,因此有 $q \leq (\rho^*(P) + 1)(q - \pi[q])$ 。

复杂度 求 $\rho^*(P)$ 的复杂度是 $\theta(m)$ 。而在第i轮while循环中,s增加了 $\left\lceil \frac{q_i}{k} \right\rceil$,而q增加了 $O(q_i)$ 次。假设t轮跳出循环,则此时 $\sum_{i=1}^t \left\lceil \frac{q_i}{k} \right\rceil = O(n), \sum_{i=1}^t O(q_i) = O(kn)$ 。因此有总共复杂度为 $O(m+\rho^*(P)n)$

3 T3

测试环境 CPU:Inter Core i5-6300HQ,2.3GHZ

内存: 12G

环境: VS2017, release模式

算法原理 几种字符串匹配算法的原理和课上讲的完全一致。只额外提到一点: 我的RabinKarp算法没有做取余运算,因为int类型数据的加法和乘法在溢出后会自动取余。

结果正确性 无论是用课上的数据验证,还是自己设计数据,还是随机生成数据,五种算法得到的结果都完全一致,可以说明算法正确。

3.1 运行时间分析

具体的运行时间结果见下表1.2和折线图1.2。

固定模式串长度m,测试不同待比较字符串长度n的运行时间 首先,每个算法的运行时间大致都是线性增长的,和他们理论上对n的线性复杂度相符。 其次,这几种算法中,Rabin-Karp算法最慢,其次是有限自动机算法,KMP算法和Bover-Moore算法差不多,最快的是Naive算法。我猜想原因如下:

- 1.因为模式串很短,只有5,而且是随机生成的,因此出现重复模式的概率很低,因此利用自相似性的有限自动机算法和KMP算法效率都很低,而有限自动机算法每次都访问一个二维数组,而且需要把字符转码成为数字才能访问,因此效率更低。
- 2.因为我用了一共72个字符,数值计算本身就很耗费时间,因此Rabin-Karp的常数k很大,效率非常低下。
- 3.因为模式串自相似性很低,因此Boyer-Moore算法每次能够跳过几乎整个模式 串的长度,但是模式串长度本身就低,因此其效果也没那么好。

固定待比较字符串长度长度n,测试不同模式串长度m的运行时间 首先,随着m的增长,除了Bover-Moore之外,每个算法运行时间大概不变。对于后三

随着m的增长,除了Boyer-Moore之外,每个并宏运行时间入概不变。对了后三个算法这比较好理解,因为n远大于m,而他们运行时间都是 $\theta(n)$,而初始化时间相对运行时间可以忽略不计,因此他们运行时间大概不变。而这和Naive算法O(mn)的复杂度差别很大,可能是体系结构层次的问题了。

而对于Boyer-Moore来说,因为模式串是随机生成的,自相似性很低,因此每次几乎能跳过大半个乃至整个模式串,因此复杂度应该是近似其最好情况的复杂度 $O(\frac{n}{m})$ 的,因此随着m的增加,运行时间在减少。

其次,除了Boyer-Moore算法之外,另外四个算法的时间仍然是Naive快于KMP快于有限自动机快于Rabin-Karp,我猜想原因与之前的分析一致。

而在模式串长度较短的情况下,Boyer-Moore算法的确不是很好,但是模式串长度较长的时候,这个算法是最快的。我猜想其原因仍旧同上。而想必这也是在文本编辑器中多使用这个算法的原因了,因为一篇文章里要查询的词,

句子等自相似性不会很高,而且其长度一般大于等于10。这种情况下Boyer-Moore的运行时间不亚于甚至高于其他算法。

Table 1: 待比较字符串为不同长度时各个算法运行时间

测量序号	1	2	3	4	5	6	7	8
待比较串长度	10	100	1000	10000	100000	1000000	10000000	100000000
Naive算法执行时间 (ms)	0	0	0	0	0.2	1.4	13.2	127.4
Rabin-Karp算法执行时间 (ms)	0	0	0.2	0.4	1.8	19.6	196	1970.4
DFA算法执行时间 (ms)	0	0	0	0	1	11.2	109.4	1083.4
KMP算法执行时间 (ms)	0	0	0	0.2	0.2	2.8	27.8	278.2
Boyer-Moore算法执行时间 (ms)	0	0	0	0	0.6	3	29	292.2

注:每组数据都是运行5次后取的平均值,模式串长度均为5

Table 2: 模式串为不同长度时各个算法运行时间

测量序号	1	2	3	4	5	6	7	8
模式串长度	2	5	10	20	50	100	300	1000
Naive算法执行时问 (ms)	13	12.4	12.2	13	13	12.4	12.2	12.4
Rabin-Karp算法执行时间 (ms)	156	194.6	194.4	192.8	194.8	193.4	193.8	192.4
DFA算法执行时间 (ms)	106.4	107.4	108.6	106	106.6	108.6	107	105.4
KMP算法执行时间 (ms)	28	27.2	28	28	27.2	28.2	27.8	27.2
Boyer-Moore算法执行时间 (ms)	69.8	28.8	14.6	8.2	4.2	3.6	2.8	2.8

注:每组数据都是运行5次后取的平均值,待比较串长度均为10000000

