Дипломна работа

Диана Генева <dageneva@qtrp.org>

2019

Съдържание

1	Нулева зона	2
Α	Приложение за AdaBoost	3

Глава 1

Нулева зона

Бла, бла, бла, аз съм толкова емоционална. Не знам

Приложение А

Приложение за AdaBoost

Ще разгледаме алгоритъма AdaBoost в дискретния случай, като доказателството следва това в samme.

Задачата е следната: Дадено е K-брой класове. Имаме тренировъчни данни $M:=(x_1,y_1),(x_2,y_2),\cdots(x_n,y_n),x_i\in X,y_i\in \{1\dots K\},i=1\dots n$ и множество $\mathcal H$ от класификатори от вида $h_i:X\times\{1\dots K\}\to\{0,1\}$, където

$$h_i(x,y) = \begin{cases} 1, & \text{ако класът на x е y} \\ 0, & \text{иначе} \end{cases}$$

и съответно $\sum\limits_{j=1}^K h_i(x,j)=1$. При дадена константа T, търсим линейна комбинация на функции от \mathcal{H} :

$$H = \sum_{i=1}^{T} \alpha_i h_i$$

която минимизира загубата на точност. По-точно, искаме да оптимизираме следната функция на загубата:

$$L_{0,1}(g,x,y) = \begin{cases} 0, & g(x,y) = max(g(x,1), \ldots g(x,K)) \\ 1, & \text{uhave} \end{cases}$$

Тоест, имаме загуба 1, ако класификаторът ни не е познал правилно класа и 0, в противен случай. Това може да се запише и по следния начин:

$$L_{0,1}(g,x,y) = \begin{cases} 0, & y = argmax_j(g(x,j)) \\ 1, & \text{uhave} \end{cases}$$

съответно можем да добавим константа, която няма да промени минимизацията:

$$L_{0,1}(g,x,y) = \begin{cases} 0, & y = argmax_j \left(g(x,j) - \frac{1}{K} \left(\sum\limits_{k=1}^K g(x,k) \right) \right) \\ 1, & \text{uhave} \end{cases} = \begin{cases} 0, & g(x,y) - \frac{1}{K} \left(\sum\limits_{j=1}^K g(x,j) \right) > 0 \\ 1, & \text{uhave} \end{cases}$$

Нека означим $\tilde{g}(x,y)=g(x,y)-rac{1}{K}\Biggl(\sum\limits_{j=1}^{K}g(x,j)\Biggr)$. Тоест, искаме да оптимизираме:

$$L_{0,1}(g,x,y) = \begin{cases} 0, & \tilde{g}(x,y) > 0 \\ 1, & \text{uhave} \end{cases}$$

Тъй като тази функция не е диференцируема, можем за удобство да използваме експоненциалната функция на загубата, дефинирана по следния начин:

$$l(q, x, y) = e^{-\tilde{g}(x, y)}$$

Освен че тя е диференцируема, имаме, че ако $\tilde{g}(x,y)>0, l(g,x,y)>0$ и ако $\tilde{g}(x,y)\leq 0, l(g,x,y)\geq 1$, което означава, че l(g,x,y) ограничава отгоре $L_{0,1}(g,x,y)$ и в някакъв смисъл е "по-песимистична".

AdaBoost алгоритъмът избира последователно функции h_i от $\mathcal H$ и намира за всяка тегло α_i .

С H_t ще означаваме линейната комбинация, получена от първите t избрани класификатори. Имаме, че:

$$\begin{split} H_t(x,y) &= \sum_{i=1}^t \alpha_i h_i(x,y) \\ &= H_{t-1}(x,y) + \alpha_t h_t(x,y) \end{split}$$

$$\begin{split} \tilde{H}_t(x,y) &= \\ &= H_{t-1}(x,y) + \alpha h_t(x,y) - \frac{1}{K} \left(\sum_{j=1}^K H_{t-1}(x,j) + \alpha h_t(x,j) \right) \\ &= H_{t-1}(x,y) - \frac{1}{K} \left(\sum_{j=1}^K H_{t-1}(x,j) \right) + \alpha \left[h_t(x,y) - \frac{1}{K} \left(\sum_{j=1}^K h_t(x,y) \right) \right] \\ &= \tilde{H}_{t-1}(x,y) + \alpha \tilde{h}(x,y) \\ H_0(x,y) &= 0 \text{ U } \tilde{H}_0(x,y) = 0 \quad \forall x \in X, \forall y \in \{1 \dots K\} \end{split} \tag{A.0.2}$$

На всяка итерация t на алгоритъма, дефинираме разпределение върху тренировъчните данни, което ще означаваме с \mathcal{D}_t , където $\mathcal{D}_t(i)$ дава вероятност на i-тия пример. Идеята е да може да се даде по-голяма вероятност на тези примери, върху които предните t-1 избрани функции бъркат и да се избере тази функция, която се представя най-добре върху така претеглените данни. В началото на алгоритъма за \mathcal{D}_1 избираме равномерно разпределение, тоест:

$$\mathcal{D}_1(i) = \frac{1}{n}, i = 1 \cdots n$$

Алгоритъмът е следният:

1.
$$D_1(i) = \frac{1}{n}, i = 1 \cdots n$$

2.
$$H_0 = \emptyset$$

3. За всяко t om 1 go T се прави следното:

3.1.
$$h_t = argmin_{h \in \mathcal{H}} P_{i \sim D_t} \left(\tilde{h}(x_i, y_i) \leq 0 \right)$$

3.2.
$$\varepsilon_t = P_{i \sim D_t} \left(\tilde{h}(x_i, y_i) \leq 0 \right)$$

3.3.
$$\alpha_t = ln\left(\frac{1-\varepsilon_t}{\varepsilon_t}\right) + ln\left(K-1\right)$$

3.4.
$$H_t = H_{t-1} \cup \{(h_t, \alpha_t)\}$$

3.5. За всяко і om 1 go n:

$$\text{3.5.1. } \mathcal{D}_{t+1}(i) = \frac{\mathcal{D}_t(i)e^{-\alpha_t \tilde{h}_t(x_i,y_i)}}{\sum\limits_{j=1}^n \mathcal{D}_t(j)e^{-\alpha_t \tilde{h}_t(x_i,y_j)}}$$

4.
$$H = H_T$$

5. Връщаме H

Целта на AdaBoost алгоритъмът е да се намери такова H, което минимизира експоненциалната грешка l.

 $3 \mathrm{a} \ \mathrm{ga} \ \mathrm{Bugum}$, че горният алгоритъм намира такова H, ще докажем няколко твърдения.

Първо нека положим $w_{t,i} = e^{-\tilde{H}_{t-1}(x_i,y_i)}$ за удобство.

Твърдение 1.
$$\mathcal{D}_t(i) = \frac{w_{t,i}}{\sum\limits_{j=1}^n w_{t,j}}$$

Доказателство: Ще го докажем по индукция.

• База t = 1

$$\begin{split} \frac{w_{1,i}}{\sum\limits_{j=1}^{n}w_{1,j}} &= \frac{e^{-\tilde{H}_0(x_i,y_i)}}{\sum\limits_{j=1}^{n}e^{\tilde{H}_0(x_j,y_j)}}\\ &\stackrel{\text{A.0.2}}{=\!=\!=\!}\frac{1}{n}\\ &\stackrel{\text{peg 1.}}{=\!=\!=}\mathcal{D}_1(i) \text{ 30 BCЯКО i} \end{split}$$

• Нека твърденито е изпълнено за $\mathcal{D}_t(i)$ за всяко i

$$\bullet \ \mathcal{D}_t(i) = \frac{w_{t,i}}{\sum\limits_{j=1}^n w_{t,j}} \Rightarrow \mathcal{D}_{t+1}(i) = \frac{w_{t+1,i}}{\sum\limits_{j=1}^n w_{t+1,j}}$$

$$\begin{split} \mathcal{D}_{t+1}(i) & \stackrel{\text{deg 3.5.1}}{=\!=\!=} \frac{\mathcal{D}_{t}(i)e^{-\alpha_{t}\tilde{h}_{t}(x_{i},y_{i})}}{\sum\limits_{j=1}^{n}\mathcal{D}_{t}(j)e^{-\alpha_{t}\tilde{h}_{t}(x_{j},y_{j})}} \stackrel{\text{MX}}{=\!=\!=} \frac{\sum\limits_{k=1}^{m}w_{t,k}}{\sum\limits_{j=1}^{n}w_{t,k}} \\ & \stackrel{\text{def}}{=\!=\!=} \frac{e^{-\tilde{H}_{t-1}(x_{i},y_{i})}}{\sum\limits_{j=1}^{n}e^{-\tilde{H}_{t-1}(x_{k},y_{k})}} e^{-\alpha_{t}\tilde{h}_{t}(x_{i},y_{i})} \\ & \stackrel{\text{def}}{=\!=\!=} \frac{e^{-\tilde{H}_{t-1}(x_{i},y_{i})}e^{-\alpha_{t}\tilde{h}_{t}(x_{i},y_{i})}}{\sum\limits_{k=1}^{n}e^{-\tilde{H}_{t-1}(x_{k},y_{k})}} e^{-\alpha_{t}\tilde{h}_{t}(x_{j},y_{j})} \\ & = \frac{e^{-(\tilde{H}_{t-1}(x_{i},y_{i})+\alpha_{t}\tilde{h}_{t}(x_{i},y_{i}))}}{\sum\limits_{k=1}^{n}e^{-\tilde{H}_{t-1}(x_{j},y_{j})+\alpha_{t}\tilde{h}_{t}(x_{j},y_{j}))}} \underbrace{\sum\limits_{j=1}^{n}e^{-\tilde{H}_{t-1}(x_{j},y_{j})+\alpha_{t}\tilde{h}_{t}(x_{j},y_{j})}}_{\sum\limits_{i=1}^{n}e^{-\tilde{H}_{t}(x_{i},y_{i})}} \underbrace{\sum\limits_{i=1}^{e^{-\tilde{H}_{t}(x_{i},y_{i})}}e^{-\tilde{H}_{t}(x_{j},y_{j})}}_{\sum\limits_{i=1}^{n}e^{-\tilde{H}_{t}(x_{j},y_{j})}} \underbrace{\sum\limits_{i=1}^{e^{-\tilde{H}_{t}(x_{j},y_{j})}}e^{-\tilde{H}_{t}(x_{j},y_{j})}}_{\sum\limits_{i=1}^{n}e^{-\tilde{H}_{t}(x_{j},y_{j})}} \underbrace{\sum\limits_{i=1}^{e^{-\tilde{H}_{t}(x_{j},y_{j})}}e^{-\tilde{H}_{t}(x_{j},y_{j})}}_{\sum\limits_{i=1}^{n}e^{-\tilde{H}_{t}(x_{j},y_{j})}} \underbrace{\sum\limits_{i=1}^{e^{-\tilde{H}_{t}(x_{j},y_{j})}}e^{-\tilde{H}_{t}(x_{j},y_{j})}}_{\sum\limits_{i=1}^{n}e^{-\tilde{H}_{t}(x_{j},y_{j})}} \underbrace{\sum\limits_{i=1}^{e^{-\tilde{H}_{t}(x_{j},y_{j})}}e^{-\tilde{H}_{t}(x_{j},y_{j})}}_{\sum\limits_{i=1}^{n}e^{-\tilde{H}_{t}(x_{j},y_{j})}} \underbrace{\sum\limits_{i=1}^{e^{-\tilde{H}_{t}(x_{j},y_{j})}}e^{-\tilde{H}_{t}(x_{j},y_{j})}}_{\sum\limits_{i=1}^{n}e^{-\tilde{H}_{t}(x_{j},y_{j})}} \underbrace{\sum\limits_{i=1}^{e^{-\tilde{H}_{t}(x_{j},y_{j})}}e^{-\tilde{H}_{t}(x_{j},y_{j})}}_{\sum\limits_{i=1}^{n}e^{-\tilde{H}_{t}(x_{j},y_{j})}}\underbrace{\sum\limits_{i=1}^{e^{-\tilde{H}_{t}(x_{j},y_{j})}}e^{-\tilde{H}_{t}(x_{j},y_{j})}}_{\sum\limits_{i=1}^{n}e^{-\tilde{H}_{t}(x_{j},y_{j})}}$$

Твърдение 2.
$$P_{i\sim D_t}\left(\tilde{h}(x_i,y_i)\leq 0\right)=\sum\limits_{i:\tilde{h}(x_i,y_i)\leq 0}\frac{w_{t,i}}{\sum\limits_{i=1}^n w_{t,j}}$$

Доказателство: Използвайки горното твърдение, имаме че:

$$P_{i \sim D_t}(\tilde{h}(x_i, y_i) \leq 0) = \sum_{i: \tilde{h}(x_i, y_i) \leq 0} \mathcal{D}_t(x_i) = \sum_{i: \tilde{h}(x_i, y_i) \leq 0} \frac{w_{t,i}}{\sum\limits_{j=1}^n w_{t,j}}$$

Твърдение 3. Изборът на $h_t = argmin_{h \in \mathcal{H}} P_{i \sim D_t}(\tilde{h}(x_i, y_i) \leq 0)$ от точка 3.2 на алгоритъма минимизира експоненциалната грешка на H_t върху тренировъчното множество, тоест:

$$h_t = argmin_{h \in \mathcal{H}} \left(\frac{1}{n} \sum_{i=1}^n l(H_{t-1} + Ch, x_i, y_i) \right),$$

където C е произволна константа.

Доказателство:

$$\begin{split} h_t &= argmin_{h \in \mathcal{H}} \left(\frac{1}{n} \sum_{i=1}^n l(H_{t-1} + Ch, x_i, y_i) \right) \\ &= argmin_{h \in \mathcal{H}} \left(\frac{1}{n} \sum_{i=1}^n e^{-(\tilde{H}_{t-1}(x_i, y_i) + C\tilde{h}(x_i, y_i))} \right) \\ &= argmin_{h \in \mathcal{H}} \left(\frac{1}{n} \sum_{i=1}^n e^{-\tilde{H}_{t-1}(x_i, y_i)} e^{-C\tilde{h}(x_i, y_i)} \right) \end{split}$$

Махаме константата $\frac{1}{n}$, тъй като тя не влияе на минимизацията, и заместваме с $w_{t,i}$.

$$= argmin_{h \in \mathcal{H}} \left(\sum_{i=1}^n w_{t,i} e^{-C\tilde{h}(x_i,y_i)} \right)$$

Сега можем да разделим сумата на две, в зависимост \tilde{h} е сбъркал, тоест дали $\tilde{h}(x_i,y_i) \leq 0$. Ако това е изпълнено, то $\tilde{h}(x_i,y_i) = h(x_i,y_i) - \frac{1}{K} \sum\limits_{j=1}^K \left(h(x_i,j)\right) = 0 - \frac{1}{K} = -\frac{1}{K}$ и е равно на $1 - \frac{1}{K}$ в противен случай, тоест:

$$\begin{split} &= argmin_{h \in \mathcal{H}} \left(\sum_{i: \tilde{h}(x_i, y_i) > 0}^{n} w_{t,i} e^{-C(1 - 1/K)} + \sum_{i: \tilde{h}(x_i, y_i) \leq 0}^{n} w_{t,i} e^{C/K} \right) \\ &= argmin_{h \in \mathcal{H}} \left(\left[\sum_{i=1}^{n} w_{t,i} e^{-C(1 - 1/K)} - \sum_{i: \tilde{h}(x_i, y_i) \leq 0}^{n} w_{t,i} e^{-C(1 - 1/K)} \right] + \sum_{i: \tilde{h}(x_i, y_i) \leq 0}^{n} w_{t,i} e^{C/K} \right) \\ &= argmin_{h \in \mathcal{H}} \left(\sum_{i=1}^{n} w_{t,i} e^{-C(1 - 1/K)} + \sum_{i: \tilde{h}(x_i, y_i) \leq 0}^{n} w_{t,i} (e^{C/K} - e^{-C(1 - 1/K)}) \right) \end{split}$$

 $\sum\limits_{i=1}^{n}w_{t,i}e^{-C(1-1/K)}$ е константа спрямо h, затова също не участва в минимизацията и тогова:

$$\begin{split} &= argmin_{h \in \mathcal{H}} \left(\sum_{i: \tilde{h}(x_i, y_i) \leq 0}^n w_{t,i} (e^{C/K} - e^{-C(1 - 1/K)}) \right) \\ &= argmin_{h \in \mathcal{H}} \left((e^{C/K} - e^{-C(1 - 1/K)}) \sum_{i: \tilde{h}(x_i, y_i) \leq 0}^n w_{t,i} \right) \end{split}$$

Нека $(e^{C/K} - e^{-C(1-1/K)}) > 0$. Този израз също не зависи от h:

$$= argmin_{h \in \mathcal{H}} \left(\sum_{i: \tilde{h}(x_i, y_i) \leq 0}^n w_{t,i} \right),$$

Можем да умножим по константата $\frac{1}{\sum\limits_{j=1}^n w_{t,j}}$ и да получим:

$$= argmin_{h \in \mathcal{H}} \left(\frac{\sum\limits_{i: \tilde{h}(x_i, y_i) \leq 0}^{n} w_{t,i}}{\sum\limits_{j=1}^{n} w_{t,j}} \right),$$

$$= argmin_{h \in \mathcal{H}} \left(\sum\limits_{i: \tilde{h}(x_i, y_i) \leq 0}^{n} \frac{w_{t,i}}{\sum\limits_{j=1}^{n} w_{t,j}} \right),$$
 begins a constant of the problem of the prob

 $\stackrel{\text{Твърдение 2}}{=\!\!\!=} P_{i\sim D_t}(\tilde{h}(x_i,y_i)\leq 0)$

Твърдение 4. Изборът на α_t от точка 3.3 на алгоритъма минимизира експоненциалната грешка на H_t върху тренировъчното множество, тоест:

$$\alpha_t = argmin_{\alpha}(\frac{1}{n}\sum_{i=1}^n l(H_{t-1} + \alpha h_t, x_i, y_i))$$

Доказателство:

Имаме, че
$$\varepsilon_t = P_{i \sim D_t}(\tilde{h}(x_i, y_i) \leq 0) \stackrel{\text{Твърдение 2}}{=} \sum_{i : \tilde{h}(x_i, y_i) \leq 0} \frac{w_{t,i}}{\sum\limits_{j=1}^n w_{t,j}}$$

Ако заместим C с α в предишното твърдение можем да получим, че:

$$argmin_{\alpha}(\frac{1}{n}\sum_{i=1}^{n}l(H_{t-1}+\alpha h_{t},x_{i},y_{i})) = argmin_{\alpha}\left(\sum_{i:\tilde{h}(x_{i},y_{i})>0}^{n}w_{t,i}e^{-\alpha(1-1/K)} + \sum_{i:\tilde{h}(x_{i},y_{i})\leq0}^{n}w_{t,i}e^{\alpha/K}\right)$$

Това, от което се интересуваме, е производната по α .

$$\frac{\partial \left(\sum\limits_{i:\tilde{h}(x_i,y_i)>0}^n w_{t,i}e^{-\alpha(1-1/K)} + \sum\limits_{i:\tilde{h}(x_i,y_i)\leq 0}^n w_{t,i}e^{\alpha/K}\right)}{\partial \alpha} = 0 \qquad \longleftrightarrow$$

$$-\alpha \left(1-\frac{1}{K}\right) e^{-\alpha(1-1/K)} \left(\sum_{i:\tilde{h}(x_i,y_i)>0} w_{t,i}\right) + \frac{\alpha}{K} \, e^{\alpha/K} \left(\sum_{i:\tilde{h}(x_i,y_i)\leq 0} w_{t,i}\right) = 0 \qquad \longleftrightarrow \qquad (1-\frac{1}{K}) e^{-\alpha(1-1/K)} \left(\sum_{i:\tilde{h}(x_i,y_i)>0} w_{t,i}\right) = 0$$

$$\frac{\alpha}{K} \, e^{\alpha/K} \left(\sum_{i:\tilde{h}(x_i,y_i) \leq 0} w_{t,i} \right) = \alpha \left(1 - \frac{1}{K} \right) e^{-\alpha(1-1/K)} \left(\sum_{i:\tilde{h}(x_i,y_i) > 0} w_{t,i} \right) \qquad \longleftrightarrow \qquad$$

$$\frac{ \underline{\mathscr{A}} e^{(\alpha/K + \alpha(1-1/K))}}{K} \underbrace{\frac{K}{\mathscr{A}(K-1)}} = \frac{\sum\limits_{i:\tilde{h}(x_i,y_i)>0} w_{t,i}}{\sum\limits_{i:\tilde{h}(x_i,y_i)<0} w_{t,i}} \longleftrightarrow$$

$$rac{e^{lpha}}{K-1} = rac{\sum\limits_{i: ilde{h}(x_i,y_i)>0} w_{t,i}}{\sum\limits_{i: ilde{h}(x_i,y_i)<0} w_{t,i}}$$
 /логаритмуваме \longleftrightarrow

$$\alpha = \ln \left(\frac{\sum\limits_{i:\tilde{h}(x_i,y_i)>0} w_{t,i}}{\sum\limits_{i:\tilde{h}(x_i,y_i)<0} w_{t,i}} \right) + \ln(K-1)$$

$$\alpha = ln \left(\frac{\sum\limits_{i=1}^n w_{t,i} - \sum\limits_{i:\tilde{h}(x_i,y_i) \leq 0} w_{t,i}}{\sum\limits_{i:\tilde{h}(x_i,y_i) \leq 0} w_{t,i}} \right) + ln(K-1)$$

Умножаваме и делим на $\sum\limits_{i=1}^n w_{t,i}$ в сумата

$$\alpha = ln \left(\frac{\sum\limits_{i=1}^n w_{t,i} - \sum\limits_{i:\tilde{h}(x_i,y_i) \leq 0} w_{t,i}}{\sum\limits_{i=1}^n w_{t,i}} - \sum\limits_{i=1}^n w_{t,i} + ln(K-1) \right)$$

$$\alpha = \ln \left(\frac{1-\varepsilon_t}{\varepsilon_t}\right) + \ln(K-1)$$

Което съвпада с избора на lpha от точка 3.3 на алгоритъма.

От Твърдение 3 и Твърдение 4 следва, че полученото в точка 5. от алгоритьма H ще е с минимална експоненциална грешка върху тренировъчните

данни.

Наблюдение: На стъпка $argmin_{h\in\mathcal{H}}\left((e^{C/K}-e^{-C(1-1/K)})\sum_{i:\tilde{h}(x_i,y_i)\leq 0}^n w_{t,i}\right)$ при намиране на минимално h за улеснение приехме, че знакът на $(e^{C/K}-e^{-C(1-1/K)})$ е положителен, за да запазим задачата за минимум. За $C=\alpha$ това означава, че $\alpha>0$ и тъй като $\alpha=ln\left(\frac{1-\varepsilon}{\varepsilon}\right)+ln(K-1)$, оттук идва ограничението, че $\varepsilon<\frac{K-1}{K}$. Тоест, грешката на всеки от класификаторите не трябва да надхвърля $\frac{K-1}{K}$.