Systemy operacyjne

Charakterystyka systemów operacyjnych

Dr inż. Dariusz Caban mailto:dariusz.caban@pwr.edu.pl tel.: (071)320-2823

1

- Osoby, które ze względu na stan zdrowia, niepełnosprawność lub inne obiektywne przesłanki mogą mieć szczególne potrzeby związane ze sposobem realizacji zajęć, zaliczenia bądź przygotowaniem materiałów proszone są o zgłoszenie się na konsultacje, napisanie takiej informacji na prywatnym czacie, bądź napisanie e-maila w tej sprawie.
- Będę starał się, aby na moich zajęciach każdy miał równe prawo do zdobycia wiedzy i rozliczenia się z niej.

Literatura

- ✓ A. Silberschatz, J.L. Peterson, P.B. Galvin
 Podstawy systemów operacyjnych, WNT (liczne wydania)
- M. J. Bach Budowa systemu operacyjnego UNIX, WNT 1995
- Unix/Linux podręcznik użytkownika, różni autorzy i wydania
 Siever, E., Linux - podręcznik użytkownika. Wyd. RM

http://indyk.ict.pwr.wroc.pl/so

2

Przedmiotowe efekty kształcenia

Z zakresu wiedzy:

- PEK_W01: zna budowę systemów operacyjnych, podsystemy zarządzania procesami i pamięcią, system plików, modele bezpieczeństwa plików
- PEK_W02: zna podstawowe algorytmy szeregowania procesów, bez wywłaszczeń i z wywłaszczaniem
- PEK_W03: zna mechanizmy synchronizacji i komunikacji między procesami, a także wzorcowe rozwiązania problemów synchronizacji

Zaliczenie:

Kolokwium na początku nowego roku

Δ

Systemy operacyjne - produkty • Przykłady:

- - George (Odra, ICL)
 - OS/360 (IBM, RIAD)
 - VMS (DEC, VAX)
 - UNIX , Linux
 - Xenix, SunOS, Solaris, HPUX
 - Mach, OSF
 - CP/M
 - MS DOS, MS Windows
 - Windows 95/98/ME
 - Windows NT/2000/XP/2003

Systemy eksploatowane bezpośrednio

- Brak pamięci stałej
 - Ładowanie programu do pamięci
 - Program ładujący (boot loader)
- Przenoszalność programów
 - Problem różnej konfiguracji
 - · Biblioteki we/wy
 - Przenoszalność kodu źródłowego
 - · Assembler'y i kompilatory
 - Programy łączące (konsolidatory)
- Harmonogramy pracy
 - Mała efektywność wykorzystania sprzętu
 - Duży koszt sprzętu

Wrocław University of Technology

7

Praca wsadowa

- · Operator gromadzi zadania we wsady
 - Zawód: technik operator MC
 - Wsad
 - Połączone zadania od różnych użytkowników
 - Przetwarzane razem (jedno po drugim)
 - Użytkownik nie nadzoruje realizacji
- Skutki wprowadzenia
 - Oszczędność na czasie instalowania
 - Niewygoda dla użytkownika
 - Karty perforowane jako podstawowy nośnik danych
- Rezydentny monitor
 - Karty sterujące przetwarzaniem wsadu

Wrocław University of Technology

_

Przetwarzanie pośrednie

- Czas wykonania zadania

 - Czas pracy procesora + czas we/wyProcesor niewykorzystany w czasie we/wy
- Przetwarzanie pośrednie
 - Wsad kopiowany na taśmę magnetyczną
 - Wyniki wyprowadzane na taśmę magnetyczną
 - Wymaga urządzeń do kopiowania

Spooling

- Zrównoleglenie:
 - pracy procesora centralnego
 - operacji wejścia/wyjścia
- Przetwarzanie pośrednie bez dodatkowego sprzetu
 - Kopiowanie taśma magnetyczna we/wy
- Wykorzystywane przy obsłudze drukowania

Buforowanie Zrównoleglenie pracy procesora i operacji we/wy Stosowane we wszystkich współczesnych SO Element systemu obsługi urządzeń we/wy Wymaga dodatkowej pamięci na bufory Nie można buforować całego zadania przed rozpoczęciem przetwarzania Wrocław University of Technology 11

Wieloprogramowość

- Cel poprawa efektywności
 - Wprowadzenie wielu zadań do systemu
 - Lepsze zrównoleglenie we/wy i operacji procesora centralnego
 - Przetwarzanie wsadowe
- Przetwarzanie współbieżne
 - Programy przetwarzane "kawałkami"
 - Problem odtwarzania kontekstu procesu
- Zasada "braku wywłaszczania":
 - przetwarzanie programu w procesorze centralnym nie jest przerywane dopóki nie musi być wykonane we/wy

13

Systemy wielodostępne

- Podklasa systemów wieloprogramowych
 - Umożliwia pracę interaktywną wielu użytkowników z systemem
- Zastąpienie przetwarzania wsadowego przez bezpośredni dostęp
- Podział czasu między zadania przetwarzane współbieżnie
 - Ryzyko zawłaszczenia procesora
 - Przez program nie wykonujący we/wy
 - Wywłaszczanie procesów
 - Zadania muszą być przerywane po pewnym kwancie czasie
- Podział zadań na pierwszo i drugoplanowe

Początkowe komputery osobiste

- Minimalizacja kosztów sprzętu
 - Procesora
 - · Wprowadzenie mikroprocesorów
 - Procesory 8 bitowe
 - IBM PC pierwszy mikrokomputer 16-bitowy
 - Pamięci operacyjnej
 - Wykorzystanie pamięci dynamicznej
 - Mała pojemność (np. 16 kB)
 - Porty we/wy zamiast kanałów
- Uproszczenie oprogramowania
 - Dostosowanie do możliwości sprzętu
 - Rezygnacja z zabezpieczeń koniecznych w systemach wieloprogramowych

15

Stacje robocze i systemy rozproszone

- · Powrót do przetwarzania bezpośredniego
 - Możliwy dzięki niskim kosztom sprzętu
- Korzyści:
 - Przyśpieszenie reakcji/obliczeń
 - Zwiększenie niezawodności
- Zachowanie zalet pracy wielodostępnej
 - Łaczność miedzy użytkownikami i systemami
 - Poczta elektroniczna (email)
 - Koordynacja projektów grupowych
 - Zdalne zarządzanie oprogramowaniem
 - Integracja stacji poprzez sieci lokalne
 - Podział zasobów na prywatne i współdzielone

Nowe trendy Systemy mobilne Wirtualizacja Wykorzystanie chmury obliczeniowej Wrocław University of Technology

Podsystemy SO: we/wy i plików

- Podsystem we/wy
 - Przyłączanie urządzeń zewnętrznych do systemu (sterowniki)
 - Specyficzne cechy urządzeń zewnętrznych
 - Urządzenia znakowe, blokowe i sieciowe
- Podsystem plików
 - Organizacja przechowywania danych na urządzeniach bezpośredniego dostępu (różnego rodzaju dyskach)
 - Implementacja abstrakcji: plików i katalogów
 - Implementacja praw dostępu

19

Podsystemy SO: pamięć i procesy

- · Zarządzanie procesami
 - Proces wykonywanie się programu
 - Identyfikacja procesów
 - Tworzenie i kończenie (zabijanie) procesów
 - Przełączanie procesów
 - Kontekst procesu
 - Przełączanie bez wywłaszczania
 - Przełączanie z wywłaszczaniem
 - kwant czasu przetwarzania
 - czasomierz, przerywanie przetwarzania
- Zarządzanie pamięcią
 - Segmentacja i stronicowanie
 - Pamięć wirtualna
 - Struktura pamięci procesu

Komendy użytkownika

- Powłoka systemu operacyjnego
 - Komunikacja z użytkownikiem
 - Edycja linii komendy
 - Skrypty systemowe
 - np. command.com, bsh
- Komendy
 - Wewnętrzne
 - Wbudowane w powłoce SO
 - Zewnętrzne
 - · Ładowane z pliku wykonywalnego
 - Ścieżka wyszukiwania
- Uruchamianie programów (komend zewnętrznych)

21

Funkcje systemowe

- Metody wołania
 - specjalne rozkazy (trap)
 - "normalne" wywołania podprogramów
 - dynamicznie łączone adresy
 - odwołanie do pamięci chronionej
- Przekazywanie parametrów
 - przez rejestry
 - przez stos
 - bloki danych (control blocks)
- Przykładowe funkcje MS Windows
 - INT 21H wywołanie DOS'a

Budowa systemu i administrowanie

- Parametry ustawialne
 - Dostrajanie systemu
 - Rejestr systemu Windows
 - Parametry kompilowane
- Instalowanie modułów i sterowników
- Ochrona
 - Uprawnienia dostępu do obiektów
 - Dostęp do serwisów systemowych
 - Ochrona zasobów
 - Ściany ogniowe i ochrona antywirusowa

23

