به نام خدا

ساختمان داده ها

جلسه بیست ویکم

دانشگاه بوعلی سینا

گروه مهندسی کامپیوتر

نيم سال دوم 98-1397

گرافها Graphs

- مقدمه و تعاریف
 - نمایش گراف
- ماتریس مجاورتی
- لیست مجاورتی
- لیست مجاورتی چندگانه
 - یالهای وزن دار
 - اعمال روی گرافها
 - جستجوی عمقی
 - جستجوی ردیفی
 - مولفه های همبند
 - درختهای پوشا
 - مولفه های دو اتصالی
- درخت پوشای کمترین هزینه
 - الگوریم راشال
 - الگوریتم پریم
 - الگوریتم سولین
 - کوتاهترین مسیر
 - یک مبدا چند مقصد
 - بین دو زوج راس
 - بستار متعدی
 - شبکه های فعالیت

مطالب این فصل

یک مبدا و چند مقصد

در این مساله گراف جهت دار (V, E) = Gرا در نظر مي گیریم. تابع وزني w(e) > 0 را براي لبه هاي w(e) > 0 و راس مبدا w(e) > 0 تعیین کوتاهترین مسیر از v_0 به بقیه رئوس در w(e) > 0 است. فرض مي کنیم تمام وزن ها مثبت باشند.

Starting Vertex: 0

Path	Length
1) 0, 3	10
2) 0, 3, 4	25
3) 0, 3, 4, 1	45
4) 0, 2	45
	Increasing

الگوريتم پيدا كردن كوتاه ترين مسير (دايكسترا)

- فرض کنید S مجموعه رئوسی باشد که دارای کوتاهترین مسیر است که تاکنون بدست آمده است.
- ای اگر کوتاهترین مسیر بعدی به راس u باشد آن گاه مسیری که از v آغاز v آغاز شده و به v ختم می شود فقط از راسهایی می گذرد که در v هستند.
- این همه راسهایی که در S نیستند مقصد مسیر بعدی باید راس u باشد که کمترین فاصله را دارد.
 - در S خیره u ، u به u ، u و تولید کوتاهترین مسیر از u به u ، u ، u ، u ، u می شود.

```
// nmax: maximum number of vertices
class Graph {
  int length[nmax] [nmax]; // length-adjacency matrix
  int dist[nmax]; // min-distance
  bool s[nmax];
  int choose(int); // used in ShortestPath
public:
  void ShortestPath(int, int);
};
// length[i][j] is set to a large number
// if <i, j> is not an edge
```

```
void Graph::ShortestPath(int n, int v) {
// n vertices, source vertex = v
  for(int i = 0; i < n; ++i) { // initialize
    s[i] = false; dist[i] = length[v][i];
  s[v] = true; dist[v] = 0;
  for (int j = 0; j < n-2; ++j) { // determine n-1 paths
    int u = choose(n);
    // choose u s.t. dist[u] is minimum where s[u] = false
    s[u] = true;
    for (int w = 0; w < n; ++w) {
    // update dist[w] where s[w] is false
    if((!s[w]) && (dist[u] + length[u][w] < dist[w]))
     dist[w] = dist[u] + length[u][w]; // shorter path found
```


iteration	s	Vertex	Distance							
		selected	LA	SF	DEN	СНІ	воѕт	NY	MIA	NO
			[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
Initial			+∞	+∞	+∞	1500	0	250	+∞	+∞
1	{4}	5	+∞	+∞	+∞	1250	0	250	1150	1650
2	{4,5}	6	+∞	+∞	+∞	1250	0	250	1150	1650
3	{4,5,6}	3	+∞	+∞	2450	1250	0	250	1150	1650
4	{4,5,6,3}	7	3350	+∞	2450	1250	0	250	1150	1650
5	{4,5,6,3,7}	2	3350	3250	2450	1250	0	250	1150	1650
6	{4,5,6,3,7,2}	1	3350	3250	2450	1250	0	250	1150	1650
	{4,5,6,3,7,2 ,1}									

کوتاهترین مسیر بین هر جفت از رئوس

را طول کوتاهترین مسیر از j به j تعریف می کنیم که این $A^k[i][j]$ مسیر هیچ راس میانی که اندیس بزرگتر از $A^k[i][j]$ داشته باشیم ، عبور نمی کند.

 $A^{n-1}[i][j]$

هزینه کوتاهترین مسیر از j به j در G است.

نكته اصلي در همه الگوريتم هايي كه روي زوج ها عمل مي كنند ، اين مي باشد كه همه آنها اللها اللها مي متواليي متواليي A^0, A^1, A^2, \dots و ايجاد مي كند.

کوتاهترین مسیر بین هر جفت از رئوس

- اگر قبلا A^{k-1} را تولید کرده باشیم ، می توانیم A^{k} را با عمل روی هر زوج از رئوس i و i با توجه به یکی از دو قاعده زیر به دست آوریم :
- k کوتاهترین مسیر از j به j از هیچ راسی با اندیس بزرگتر از عبور عبور نمی کند و حتی از راسی با اندیس k نیز نمی گذرد و بنابراین هزینه آن $A^{k-1}[i][j]$ است.
- (2) چنین کوتاهترین مسیری اگر از راس k بگذرد شامل مسیری از k به i به دنبال آن مسیری از k به ت می باشد. هیچ کدام از این مسیرها با اندیس بزرگتر از k عبور نخواهد کرد ، بنابراین هزینه آن ها $A^{k-1}[i][k]$ و $A^{k-1}[i][k]$ می باشد.

کوتاهترین مسیر بین هر جفت از رئوس

1 فرمول : $A^{k}[i][j] = \min\{A^{k-1}[i][j], A^{k-1}[i][k] + A^{k-1}[k][j]\}, k \ge 0$

2 فرمول : $A^{-1}[i][j] = length[i][j]$

گراف جهت دار G و ماتریس هزینه آن (مثال)

A -1	0	1	2
0	0	4	11
1	6 3	0	2
2	3	∞	0
Δ	-1		

A^0	0	1	2				
0	0	4	11				
1	6	0	2				
2	3	7	0				
A^0							

\mathbf{A}^1	0	1	2				
0	0	4	6				
1	6	0	2				
2	3	7	0				
A ¹							

A^2	0	1	2
0	0	4	6
1	5	0	2
2	3	7	0
	A ²		

```
void Graph::AllLengths(int n) {
// length[n][n] is the length-adjacency matrix
// a[i][j] is the length of the shortest path between i and j
  for( int i = 0; i < n; ++i)
    for ( int j = 0; j < n; ++i)
      a[i][j] = length[i][j]; // construct A<sup>-1</sup>
 for(int k = 0; k < n; ++k)
   for(int i = 0; i < n; ++i)
     for(int j = 0; j < n; ++j)
        if(a[i][j] > (a[i][k] + a[k][j]))
          a[i][j] = a[i][k] + a[k][j];
```

مرتب سازی وجستجو Searching & Sorting

- جستجو خطی
- جستجوی دودویی
- مرتب سازی درجی
- مرتب سازی سریع
- مرتب سازی ادغام
- مرتب سازی هرمی

مطالب این فصل

مرتب سازی

- - کک نگهکان و گ نگها کلینگه نین که کون که نگل نگه نگل نگل نگ
 - بنگ کِگکگ گژن گگ گک نِکلِگ لِ نظی پ

اصطلاحات

• زمانی که یک لیست از رکوردها را جستجو می کنیم ، هدف پیدا نمودن رکوردهایی است که دارای فیلدی با مشخصات مورد نیاز باشند. این فیلد را کلید می نامند.

• کارایی روش و خط مشی جستجو بستگی به آرایش و نحوه قرار گرفتن رکوردها در لیست دارد.

جستجوي ترتيبي يا خطي

فرض کنید که لیست و یک کلید جستجو به نام Searchnum باشیم . هدف بازیابی رکوردی است که کلید آن منطبق بر searchnum باشد. اگر این لیست دارای n رکورد باشد ، با list[i].key به مقدار کلید رکورد i دسترسی پیدا می کنیم، لیست را با جستجوی مقادیر کلیدهای list[o].key مورد نظر برسی قرار می دهیم تا به رکورد مورد نظر برسیم یا تمام لیست را جستجو کنیم.

```
class Element {
  int key;
  // other fields;
public:
  int getKey() const { return key; }
  void setKey(int k) { key = k; }
 // ...
int SeqSearch(Element *f, int n, int k) {
// f is [1:n] array, seach if f[i].key == k
  int i = n;
  f[0] = setKey(k); // f[0] is a sentinel
  while(f[i].getKey() != k) --i;
  return i; // return 0 → not found!
```

Time complexity: O(n)

Better search method?

جستجوي دودويي

در جستجوي دودويي بايستي ليست بر اساس فيلد كليد مرتب شود ، يعني :

.list[0].key \le list[1].key \le $... \le$ list[n-1].key

جستجوي دودويي

این جستجو با مقایسه searchnum و searchnum ، به ازای searchnum شروع می شود.

هنگام مقایسه سه حالت ممکن است روی دهد:

- list[n- و list[middle].key (1 در این حالت رکوردهایی بین searchnum< list[middle].key (1 کنار گذاشته شده و جستجو با رکوردهای List[0] تا List[middle-1] دنبال می شود.
 - Searchnum=list[middle].key (2 : در این حالت جستجو با موفقیت به پایان می رسد.

درخت تصمیم گیري براي جستجوي دودويي

مرتب سازي

- مرتب سازی می تواند در موارد زیر مفید باشد:
 - در جستجوی لیستها
 - در بررسی ورودیهای لیستها

- مرتب سازی را می توان به طور کلی به دو دسته تقسیم کرد:
 - مرتب سازی داخلی
 - O لیست به اندازه کافی کوچک است و در حافظه اصلی جا می گیرد
 - O مرتب سازی درجی, ادغام ، سریع و هرمی
 - مرتب سازی خارجی
- O در این حالت لیست خیلی بزگ است و در حافظه اصلی جا نمی گیرد و در درون دیسک یا نوار عمل مرتب سازی انجام می گیرد.

مرتب سازي درجي Insertion Sort

```
void insert(const Element e, Element *list, int i) {
// insert an Element e into an ordered sequence list[1]~
// list[i] and list[0] is a sentinel with the smallest key
  while(e.getKey() < list[i].getKey()) {
    list[i+1] = list[i];
    --i;
  }
  list[i+1] = e;
    Time Complexity: O(i)</pre>
```

```
void InsertSort(Element *list, int n) {
// sort the given list in non-decreasing order of key
  list[0] = MININT; // list[0] works as a sentinel
  for(int j = 2; j <= n; ++j)
    insert(list[j], list, j-1);
}

Record R<sub>i</sub> is left out of order (LOO) iff R<sub>i</sub> < max {R<sub>j</sub>}
    1≤j<i/pre>
```

Time Complexity: O(n²)

Insertion sort is stable

The simplicity makes it the fastest sorting method for about $n \le 20$

insertion sort تحلیل تابع

زمان محاسباتي جهت درج يک رکورد به داخل ليست مرتب شده ، O(i) خواهد بود.

زمان کل در بدترین حالت برابر است با :

$$O(\sum_{i=0}^{n-1} i) = O(n^2)$$

مرتب سازي درجي(مثال)

Case 1: worst-case of insertion sort

j	[1]	[2]	[3]	[4]	[5]
-	5	4	3	2	1
2	4	5	3	2	1
3	3	4	5	2	1
4	2	3	4	5	1
5	1	2	3	4	5

Case 2: only R₅ is LOO, just need to move R₅

j	[1]	[2]	[3]	[4]	[5]
-	2	3	4	5	1
2	2	3	4	5	1
3	2	3	4	5	1
4	2	3	4	5	1
5	1	2	3	4	5

O(1)

O(1)

O(1)

O(n)

مرتب سازي سريع (Quick Sort)

این روش در بین همه مرتب سازیها دارای بهترین متوسط زمانی است

 K_{i}

در مرتب سازی سریع کلید محور یا مفصل (pivot) که عمل در جرا کنترل می کند با توجه به زیر لیست مرتب شده $(R_1, ..., R_i)$ (R1, ..., R_i) در مکان صحیح قرار می گیرد. یعنی $(R_i, ..., R_i)$ نسبت به کل لیست در جای صحیح قرار می گیرد.

j <= s(i) يعنى اگر $K_j \geq K_{s(i)}$ در محل S(i) قرار بگيرد ، پس به از اي S(i) در محل S(i)

از $R_{s(i)-1}, \dots, R_{n-1}, \dots, R_{n-1}, \dots, R_{s(i)-1}, \dots, R_{n-1}, \dots, R_{n-1}, \dots, R_{s(i)-1}$ این رو بعد از جایگذاری ، لیست اصلی به دو زیر لیست که شامل رکور دهای و می باشند ، تقسیم می

شوند.

مرتب سازي سريع

```
void QuickSort(Element *list, int left, int right) {
// sort list[left] ~ list[right]
// put list[left] to the correct position and
// partition the given list into 2 sublists
  if(left < right) {</pre>
    int i = left;
    int j = right + 1;
    int pivot = list[left].GetKey();
    do {
      do {++i;} while (i < right && list[i].GetKey() < pivot);</pre>
      do (--j;} while (list[j].GetKey() > pivot);
      if(i < j) interchange(i, j);</pre>
    } while (i < j);</pre>
    interchange(left, j);
    QuickSort(list, left, j-1);
    QuickSort(list, j+1, right);
```

مرتب سازي سريع

R ₁	R_2	R_3	R_4	R ₅	R_6	R ₇	R ₈	R ₉	R ₁₀	Left	Right
[26	5	37	1	61	11	59	15	48	19]	1	10
[11	5	19	1	15]	26	[59	61	48	37]	1	5
[1	5]	11	[19	15]	26	[59	61	48	37]	1	2
1	5	11	[19	15]	26	[59	61	48	37]	4	5
1	5	11	15	19	26	[59	61	48	37]	7	10
1	5	11	15	19	26	[48	37]	59	[61]	7	8
1	5	11	15	19	26	37	48	59	[61]	10	10
1	5	11	15	19	26	37	48	59	61		

مرتب سازي سريع

در بد ترین حالت زمان مرتب سازی سریع $o(n^2)$ است.

• در این حالت لیست اولیه مرتب می باشد.

میانگین زمان محاسبه برای مرتب سازی سریع $O(n\log_2 n)$ می باشد.