

IKI30320 Kuliah 17 26 Nov 2007

Ruli Manurung

Review & kompleksitas

Bayes' Rule

Ringkasan

# IKI 30320: Sistem Cerdas Kuliah 17: Efficient Probabilistic Reasoning

### Ruli Manurung

Fakultas Ilmu Komputer Universitas Indonesia

26 November 2007



IKI30320 Kuliah 17 26 Nov 2007

rtali Mariarar

Review & kompleksitas

Bayes' Rule

- Review & kompleksitas
- 2 Independence = efficiency
- Bayes' Rule
- 4 Ringkasan



IKI30320 Kuliah 17 26 Nov 2007

iuli Manurun

Review & kompleksitas

= efficiency

Bayes' Rule

Review & kompleksitas

2 Independence = efficiency

Bayes' Rule



### Review: Probabilistic Inference

IKI30320 Kuliah 17 26 Nov 2007

Review & kompleksitas

Independence = efficiency

Bayes' Rule

Dengan *joint probability distribution*, probability sembarang proposition bisa dihitung sbg. jumlah probability sample point di mana ia bernilai true.

|          | toothache |         | ¬ toothache |         |
|----------|-----------|---------|-------------|---------|
|          | catch     | ¬ catch | catch       | ¬ catch |
| cavity   | .108      | .012    | .072        | .008    |
| ¬ cavity | .016      | .064    | .144        | .576    |

Mis.: menghitung conditional probability:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$



### Normalisasi

Kuliah 17 26 Nov 2007

Review & kompleksitas

Baves' Rule

Dayes Hui

 $P(\neg cavity | toothache) = P(\neg cavity \land toothache) / P(toothache)$   $P(cavity | toothache) = P(cavity \land toothache) / P(toothache)$ Perhatikan bahwa pembaginya sama! Disebut konstanta normalisasi  $\alpha \rightarrow$  supaya jumlahnya 1.

 $P(Cavity | toothache) = \alpha P(Cavity, toothache)$ 

=  $\alpha$  [**P**(*Cavity*, *toothache*, *catch*) + **P**(*Cavity*, *toothache*, ¬*catch*)]

 $= \quad \alpha \left[ \langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle \right]$ 

=  $\alpha \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle$ 

#### Ide utama:

 $\alpha$  dapat diperoleh ketika menghitung **distribusi** utk. *query variable* (mis. *Cavity*)  $\to$  semua kemungkinan nilai.



# Beberapa istilah

Kuliah 17 26 Nov 2007

kompleksitas

Review &

#### Contoh sebuah "query"

- P(¬cavity|toothache)
- "Berapakah probabilitas gigi Anto tidak berlubang jika diketahui ia menderita sakit gigi?"
- (Bandingkan dengan logical query: "Jika Anto sakit gigi, apakah giginya tidak berlubang?")
- Query variable: variable yang ingin dihitung probabilitasnya (cavity)
- Evidence variable: variable yang kita tahu nilainya (toothache)
- Hidden variable: variable yang tidak kita tahu nilainya (catch)

#### Inference dengan (full) joint probability distribution:

Tentukan nilai evidence variable, jumlahkan probabilitas query variable untuk semua kemungkinan nilai hidden variable.



# Complexity inference dgn joint distribution

Kuliah 17 26 Nov 2007

nuli Mariururi

Review & kompleksitas

Bayes' Rule Ringkasan

- Jika ada n random variable Boolean, tabel full joint distribution berisi O(2<sup>n</sup>) nilai.
- Space complexity eksponensial dalam n. Untuk disimpan saja tidak feasible. Apalagi menghitung semua nilainya dari data empiris!
- Time complexity juga eksponensial dalam  $n(O(2^n))$ .

Dalam kenyataan, masalah probabilistic reasoning melibatkan ribuan random variable. Kita butuh metode yang lebih efisien!



IKI30320 Kuliah 17 26 Nov 2007

Manurung

Review & kompleksitas

Independence = efficiency

Ringkasan

Review & kompleksitas

2 Independence = efficiency

Bayes' Rule



# Independence

Kuliah 17 26 Nov 2007

Review & kompleksitas

Independence = efficiency

Bayes' Rule Ringkasan Kompleksitas jauh lebih efisien jika diketahui ada random variable yang saling independen.

### Dua proposition a dan b independent jhj

$$P(a|b)=P(a)$$
 atau  $P(b|a)=P(b)$  atau  $P(a \land b)=P(a) \times P(b)$ 

### Dua variable A dan B independent jhj

$$P(A|B)=P(A)$$
 atau  $P(B|A)=P(B)$  atau  $P(A,B)=P(A)P(B)$ 

Contoh: 2 dadu,  $d_1$  dan  $d_2$ , dilempar.

- $P(a \land b) = P(a|b) \times P(b) \rightarrow (Product rule)$
- $P(d_1 = 2 \land d_2 = 4) = P(d_1 = 2 | d_2 = 4) \text{ times} P(d_2 = 4)$
- $P(d_1 = 2 \land d_2 = 4) = P(d_1 = 2) \times P(d_2 = 4) = 1/6 \times 1/6 = 1/36$

Tabel *full joint distribution* untuk lemparan n dadu =  $2^n$  nilai!



### Contoh lain

Kuliah 17 26 Nov 2007

uli Manurun

kompleksitas
Independence

= efficiency
Bayes' Rule

Bayes' Rule Ringkasan Mis. ditambahkan variable  $Weather = \langle sunny, rain, cloudy, snow \rangle$  ke masalah dokter gigi (Cavity, Toothache, Catch)

- Tabel full joint distribution-nya ada 32 nilai.
- Tapi cuaca dan gigi tidak berhubungan...
- Untuk menghitung probabilitas proposition mengenai cuaca dan gigi, kalikan probabilitasnya, mis.:

```
P(toothache \land Weather = cloudy) = P(toothache) \times P(Weather = cloudy)
```

• P(Weather) cukup disimpan secara terpisah. 8+4=12 nilai.





# Jadi ingat ini...

IKI30320 Kuliah 17 26 Nov 2007

rtuli iviariururiç

Review & kompleksitas

Independence = efficiency

Bayes' Rule

Dineliane





# Conditional Independence

Kuliah 17 26 Nov 2007

nuii ivianunun

Independence

= efficiency
Bayes' Rule

Ringkasan

- Dalam kenyataan, absolute independence jarang terjadi.
- Mis. dalam kedokteran gigi, ratusan variable biasanya berhubungan.
- Tapi hubungan itu bisa langsung atau tidak langsung!

### Conditional independence

cavity mempengaruhi probabilitas toothache cavity mempengaruhi probabilitas catch
Tetapi ini adalah dua efek yang terpisah!

- Nilai Toothache memberi kita info tentang nilai Catch, tetapi secara tidak langsung (lewat Cavity).
- Dkl, kalau kita sudah tahu nilai Cavity, mengetahui nilai Toothache tidak memberikan info baru tentang Catch.



# Conditional independence = efisien

Kuliah 17 26 Nov 2007

Independence

= efficiency

```
• Catch dan Toothache conditionally independent krn Cavity:
  P(Catch|Toothache, Cavity)=P(Catch|Cavity) (...coba diperiksa!)
```

Statement vang ekivalen:

```
P(Toothache|Catch, Cavity)=P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
```

Full joint distribution bisa direduksi:

```
P(Toothache, Catch, Cavity) =
P(Toothache, Catch|Cavity) P(Cavity) =
P(Toothache|Cavity) P(Catch|Cavity) P(Cavity) =
2 nilai + 2 nilai + 1 nilai = 5 nilai
```

### Pengaruh efisiensi

Scr. umum, conditional independence mengubah kompleksitas joint distribution dari eksponensial menjadi linier dalam jumlah variable.



IKI30320 Kuliah 17 26 Nov 2007

Bayes' Rule

Bayes' Rule



# Dari mana asalnya nilai P?

IKI30320 Kuliah 17 26 Nov 2007

Ruli Manurung

Review & kompleksitas

Bayes' Rule

Disalessa

#### Jawaban:

Eksperimentasi. Hitung frekuensi.

Mis. lempar koin 100 kali. Muncul heads  $47x \rightarrow P(heads) = 0.47$ .

Biasanya, lebih mudah menghitung P(Akibat|Sebab):

- Ambil sampel 100 orang, mis. penderita meningitis
- Mis. ada hipotesa 50 kemungkinan gejala: demam, pusing, leher pegal, mual, dst. → lakukan 50 tes pada setiap orang.

Biasanya, lebih sulit menghitung P(Sebab|Akibat):

- Ambil sampel 50 kelompok @ 100 orang: yang demam, yang pusing, yang leher pegal, yang mual, dst.
- Tes apakah mereka menderita meningitis.

Yang **dibutuhkan** dokter (ahli diagnostik) adalah P(Sebab|Akibat)! Adakah cara "menyulap" P(a|b) menjadi P(b|a)?



# Bayes' Rule

Kuliah 17 26 Nov 2007

Review & kompleksitas

Bayes' Rule

- Ada! Sebuah pendekatan yang praktis (tetapi kontroversial scr. teoritis) adalah Bayes' Rule.
- Product rule:  $P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$
- Bayes' rule:  $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$
- Bayes' rule:  $P(Sebab|Akibat) = \frac{P(Akibat|Sebab)P(Sebab)}{P(Akibat)}$



# Bayes' Rule & Distribution

IKI30320 Kuliah 17 26 Nov 2007

Review & kompleksitas

Bayes' Rule

- Seringkali ada banyak gejala (akibat), dan satu penyebab. Mis. dokter ingin menghitung:
   P(meningitis|leher\_pegal \( \rightarrow pusing \( \rightarrow \) gatal\_gatal \( \ldots \))
- Masalah: jika menggunakan Bayes', kita harus hitung prior probability kombinasi gejala tsb.
- **Solusi**: yang kita hitung adalah distribusi:  $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y)$
- P(X) hanya dibutuhkan untuk normalisasi jumlah probabilitas menjadi 1, jadi bisa diabaikan.



IKI30320 Kuliah 17 26 Nov 2007

uli Manurung

Review & kompleksitas

Davisa' Dul

- Review & kompleksitas
- 2 Independence = efficiency
  - Bayes' Rule
- 4 Ringkasan



# Ringkasan

IKI30320 Kuliah 17 26 Nov 2007

Ruli Manurung

Review & kompleksitas

Bayes' Rule

- Inference dengan full joint distribution konsepnya sangat mudah dimengerti, tetapi dalam kenyataan tidak feasible (exponential time & space complexity)
- Agar inference bisa tractable, kita mengambil asumsi independence.
- Dalam kenyataan, kita hanya bisa mengambil asumsi conditional independence.
- Bayes' Rule, ditambah dengan conditional independence, adalah mekanisme yang sangat berguna.