Lab. 07

```
Logic Design Lab.
Spring 2023
```

Prof. ChangGun Lee

(cglee@snu.ac.kr)

TA. Seonghyeon Park

TA. Jihwan Kim

TA. Hoyong Lee

(rubis.ld.ta@gmail.com)

Contents

- Synchronous Binary Counter
- Frequency Divider
- Implementation on Logic Design Board (Review)
- Two Digit Counter

Filp Flops (Recap)

4-bit Counter – JK Filp Flop Implementation

- J-K flip-flop functions as a T flip-flop if you connect the same input to J and K.
- A will repeat 0 and 1.

States				Count	
D	C	В	A	Count	
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	2	
0	0	1	1	3	
0	1	0	0	4	
0	1	0	1	5	
0	1	1	0	6	
0	1	1	1	7	
1	0	0	0	8	
1	0	0	1	9	
1	0	1	0	10	
1	0	1	1	11	
1	1	0	0	12	
1	1	0	1	13	
1	1	1	0	14	
1	1	1	1	15	

Frequency Divider – JK Filp Flop Implementation

negative edge triggered JK Flip Flop

RUBIS

6

Implementation on Logic Design Board (Review)

- ① Power Input : Molex Connector (DC 5V Only)
- ② Power, DONE LED
- ③ FPGA : XC3S50AN-4TQG144C
- 4 User I/O Ports (P1): 16X2 2,54mm Pitch
- ⑤ User I/O Ports (P2) : 16X2 2,54mm Pitch
- 6 User I/O Ports (P3, P4) : 2 8X2 2,54mm Pitch
- 7 User Output LEDs : 6 output LEDs
- 8 User Output LEDs : 6 7-segment LEDs
- User Input Switches: 10pin Dip Switch
- 10 User Input Switches : 6 Tactile Swiltches
- ① Oscillator : 50MHz
- Mode Select Switch
- ① JTAG Header

Pin Number Mapping

	3		A
Pin 1	5 6 7 8 10 11 12 13 15	7-Segment Display [J1] 7-Segment Display [72]	B C D A B C D E
	18 19 20 21 24 25 27 28 29	[J2] 7-Segment Display [J3]	F G A B C D E F
	30 31 32 33 41 42 43 44 45 46	DIP Switch [DipSW1] Tactile Switch [SW1]	1 2 3 4 5 6 7 8 9

Pin Num		Component	
48		Tactile Switch [SW2]	
	49	Tactile Switch [SW3]	
	50	Tactile Switch [SW4]	
	51	Tactile Switch [SW5]	
	54	Tactile Switch [SW6]	
	55		A
	58		В
	59	7-Segment	С
	60	Display	D
	62	[]4]	Е
	63		F
	64		G
P2	68		Α
	69		В
	70	7-Segment	C
	71	Display	D
	72	[]5]	E
	75		F
	76		G
	77		A
	78		В
	79	7-Segment	C
	82	Display	D
	83	[J6]	E
	84		F
	85		G
	87	LED [D1]	Red
	88	LED [D2]	Yellow
	90	LED [D3]	Green
	91	LED [D4]	Red
	92	LED [D5]	Yellow
	93	LED [D6]	Green

Pin Num			Pin Num	
	96		120	
	98			121
	99			124
	101			125
	102			126
	103			127
Р3	104	P4	129	
	105		130	
	110		131	
	111		132	
	112		134	
	113			135
	114		138	
	115		139	
	116			141
	117			142

Pin		Component		
	1		TMS	
JP101	2	ITAG	TDI	
,	107	,	TDO	
	109		TCK	
	37		M1	
Mode	38	Mode SW	MO	
SW	39		M2	
	144		PROG	
	67	Configuration	INIT	
FPGA	73		DONE	
	74		SUSPEND	
	35			
	53			
FPGA	80	Not Connected (Input Only/VREF)		
1101	97			
	123		-	
	140			

Pin		Component	
	57	Clock 50MHz	
	14		
	23		
	40		
	61	VCCO	
	86	,,,,,	
	95		
	119		
	136		
	36		
	66	VCCAUX	
	108		
	133		
	22		
FPGA	52	VCCINT	
	94		
	122		
	9		
	17		
	26		
	34	GND	
	56		
	65		
	81		
	89		
	100		
	106 118		
	128		
l	137		

Assign I/O pins for the half adder

Boundary Scan > Initialize Chain

Choose the schematic source you've written.

Program FPGA Only > Program Succeeded

Two Digit Counter

Two Digit Counter Structure

1. Implement the **Counter** Module in Verilog. It should start from 0, and increment 1 every **positive edge of clock**. The next value of 99 should be 0. Additionally, your implementation should handle external reset signal, it should set the counter back to 0 when the signal is HIGH.

2. Implement the **Two Digit Counter** in Verilog and upload your implementation to the Logic Design Board. It should start from 0, and increment 1 every second. The next value of 99 should be 0. Additionally, your implementation should handle external reset signal, it should set the counter back to 0 when the signal is HIGH. Use 50MHz oscillator (pin 57) as clock input, and a tactile switch (pin 47) as reset button. Also, use two 7-segment displays as your two-digit output.

Sample Code (Behavioral Description)

```
`timescale 1ns / 1ps
module freq divider(
    input clr,
    input clk,
    output reg clkout
   );
         reg[31:0] cnt;
         always@ (posedge clk) begin
                if(clr) begin
                         cnt <=32'd0;
                         clkout <= 1'b0;
                end
                 else if (cnt == 32'd25000000) begin
                         cnt <= 32'd0;
                         clkout <= ~clkout;</pre>
                end
                 else begin
                         cnt <= cnt + 1;
                 end
        end
endmodule
```

Frequency Divider

```
timescale lns / lps
2
    module bcd to 7(
        input [3:0] bcd,
        output reg [6:0] seg
 6
        );
7
8
        always@(bcd) begin
9
          case (bcd)
10
             4'd0: seg <= 7'b01111111;
             4'dl: seg <= 7'b0000110;
11
             4'd2: seg <= 7'b1011011;
12
             4'd3: seg <= 7'b1001111;
13
14
             4'd4: seg <= 7'bl100110;
             4'd5: seg <= 7'bl101101;
15
16
             4'd6: seg <= 7'bll111101;
17
             4'd7: seg <= 7'b0000111;
             4'd8: seg <= 7'bllllllll;
18
             4'd9: seg <= 7'bl101111;
19
20
          endcase
       end
21
22
23
   endmodule
```

BCD to 7-segment Decoder

- Hint: There is modular operation in Verilog. But..
 - Our board does not support division by 10.
 - We recommend using 4 bit for each digit in counter logic

```
wire [6:0] bcd;
wire [3:0] ten_bcd;
wire [3:0] one_bcd;
assign ten_bcd = bcd / 10;
assign one_bcd = bcd % 10;
```

```
* HDL Analysis *

Analyzing top module <tdc_main>.

ERROR:Xst:867 - "tdc_main.v" line 15: Operator / is only supported when the second operand is a power of 2.

Found 2 error(s). Aborting synthesis.

-->
```

Simulating 50MHz clock in test bench

50MHz : period is 20ns(So we should flip clock every 10ns)


```
'timescale lns / lps
module counter_sim;
   // Inputs
   reg clk;
   reg reset;
   // Outputs
   wire [6:0] cnt;
   // Instantiate the Unit Under Test (UUT)
   counter uut (
      .clk(clk),
      .reset (reset),
      .cnt(cnt)
   );
   always #10 clk=~clk;
   initial begin
      // Initialize Inputs
      clk = 0;
      reset = 1;
   end
endmodule
```

• Remind) Simulating more than 1ms

Report

Counter Module (Verilog)

- 1. Result of simulation (should attach waveform of three case)
 - should increase 1 in normal case
 - should set 0 when counter = 100
 - should be 0 when reset = 1
 (The bus value of the counter must be clearly visible in picture)

Two Digit Counter

- 1. All Verilog source code
 - should include code for module, submodule
 (i.e., TDC main, counter, freq divider, BCD-7 seg decoder)
 - only module code, no test bench code
- 2. Result of implementation of three case
 - should increase 1 in normal case
 - should set 0 at t = 100s
 - should be 0 when pressing the reset button (at least 2 pictures should be attached for each case)

Discussion