# Unit -V : Digital Electronics Principles Design of Counters

Dr B Srinath Assistant Professor Dept. of Electronics and Communication Engineering SRM Institute of Science and Technology Kattankulathur Campus

### Table of contents

- 1. Counters
- 2. Types of counter designs
  - Difference: Asynchronous and Synchronous designs
- 3. Steps to design a Synchronous counter
- 4. Steps to design a Asynchronous counter

## Introduction

- Counters are the basic elements of a digital circuit.
- For every clock pulse, it counts in two different ways, namely
  - Up count: 0, 1, 2, 3, .....14, 15.
  - Down count: 15, 14, 13, 12, 11, 10, .....2,1,0.
- Designing a counter requires flip flops as it need to record every bit in each clock pulse.
- Two types of counter designs:
  - Asynchronous
  - Synchronous



## Types of counter designs



# Difference: Asynchronous and Synchronous designs

### **Asynchronous:**

- In this type of design, flipflops are connected in such a way that output of first flipflop drives the clock for the next flip-flop.
- All the flip-flops are not clocked simultaneously.
- Logic circuit is very simple even for more number of states.
- Low speed: The clock is propagated through number of flipflops before it reaches last flipflop.

## **Synchronous:**

- In this type of design, no connection between the output of first flip-flops and the clock input of next flip-flop.
- All the flip-flops are clocked simultaneously.
- Design involves complex logic circuit as the number of states increases.
- *High speed*: The clock is propagated uniformly to all the flip-flops.

### Waveform



Figure 2: Asynchronous waveform



Figure 3: Synchronous waveform

## Up/Down Counter



Figure 4: Logic Diagram

## Up/Down Counter



Figure 5: Up-count waveform

# Up/Down Counter



## Steps to design a Synchronous counter

- It is necessary to first obtain the stable table from the given circuit information.
- Assign binary values to each state in the state table.
- Determine the number of flip flops needed and assign a letter symbol to each state.
- Choose the type of flip flop to be used.
- From the state table , derive the circuit excitation and output tables.
- Using K-map or any other simplification method, derive the circuit output functions and the flip-flop input functions.
- Draw the logic diagram.

## Synchronous: Sequence counter

- Design a Synchronous counter using JK flip flop to count the sequence  $4 \to 6 \to 7 \to 3 \to 1 \to 4...$
- According to  $2^n \ge N$ . Here, N =7 therefor n =3 flip-flops.

| Present state |   |   | Next state |          |          | Flip flop inputs |       |       |       |       |       |
|---------------|---|---|------------|----------|----------|------------------|-------|-------|-------|-------|-------|
| A             | В | С | $A_{+1}$   | $B_{+1}$ | $C_{+1}$ | $J_A$            | $K_A$ | $J_B$ | $K_B$ | $J_C$ | $K_C$ |
| 0             | 0 | 0 | 0          | 0        | 1        | 0                | X     | 0     | X     | 1     | X     |
| 0             | 0 | 1 | 1          | 0        | 0        | 1                | X     | 0     | X     | X     | 1     |
| 0             | 1 | 0 | 0          | 1        | 1        | 0                | X     | X     | 0     | 1     | X     |
| 0             | 1 | 1 | 0          | 0        | 1        | 0                | X     | X     | 1     | X     | 0     |
| 1             | 0 | 0 | 1          | 1        | 0        | X                | 0     | 1     | X     | 0     | X     |
| 1             | 0 | 1 | 1          | 1        | 0        | X                | 0     | 1     | X     | X     | 1     |
| 1             | 1 | 0 | 1          | 1        | 1        | X                | 0     | X     | 0     | 1     | X     |
| 1             | 1 | 1 | 0          | 1        | 1        | X                | 1     | X     | 0     | X     | 0     |

## K -map

|                | $\overline{B} \overline{C}$ | $\overline{B} C$ | ВС | $B\overline{C}$ |  |
|----------------|-----------------------------|------------------|----|-----------------|--|
| $\overline{A}$ | 0                           | 1                | 0  | 0               |  |
| A              | X                           | X                | X  | X               |  |

Table 1: 
$$J_A = \overline{B}C$$

|                | $\overline{B} \overline{C}$ | $\overline{B} C$ | ВС | $B\overline{C}$ |
|----------------|-----------------------------|------------------|----|-----------------|
| $\overline{A}$ | 0                           | 0                | X  | X               |
| A              | 1                           | 1                | X  | X               |

Table 3:  $J_A = A$ 

|                | $\overline{B}  \overline{C}$ | $\overline{B} C$ | ВС | $B \overline{C}$ |
|----------------|------------------------------|------------------|----|------------------|
| $\overline{A}$ | X                            | X                | X  | X                |
| A              | 0                            | 0                | 1  | 0                |

Table 2:  $K_A = BC$ 

|                | $\overline{B} \overline{C}$ | $\overline{B} C$ | ВС | $B\overline{C}$ |  |
|----------------|-----------------------------|------------------|----|-----------------|--|
| $\overline{A}$ | X                           | X                | 1  | 0               |  |
| A              | X                           | X                | 0  | 0               |  |

Table 4: 
$$K_B = \overline{A}C$$

## contin..

|                | $\overline{B}  \overline{C}$ | $\overline{B} \overline{C} \mid \overline{B} C$ |   | $B\overline{C}$ |  |
|----------------|------------------------------|-------------------------------------------------|---|-----------------|--|
| $\overline{A}$ | 1                            | X                                               | X | 1               |  |
| A              | 0                            | X                                               | X | 1               |  |

|  | Tab | le 5 | $J_C$ | = A |
|--|-----|------|-------|-----|
|--|-----|------|-------|-----|

|                | $\overline{B}  \overline{C}$ | $\overline{B} C$ | ВС | $B\overline{C}$ |
|----------------|------------------------------|------------------|----|-----------------|
| $\overline{A}$ | X                            | 1                | 0  | X               |
| A              | X                            | 1                | 0  | X               |

Table 6:  $K_C = \overline{A}C$ 



## Synchronous: Decade counter

- Design a synchronous decade (count till 10 states) counter using D flip-flop.
- According to  $2^n \ge N$ . Here, N =10 therefor n =4 flip-flops.

| Present state |   |   | Next state |          |          |          | Flip flop inputs |       |       |       |       |
|---------------|---|---|------------|----------|----------|----------|------------------|-------|-------|-------|-------|
| A             | В | С | D          | $D_{+1}$ | $C_{+1}$ | $B_{+1}$ | $A_{+1}$         | $D_D$ | $D_C$ | $D_B$ | $D_A$ |
| 0             | 0 | 0 | 0          | 0        | 0        | 0        | 1                | 0     | 0     | 0     | 1     |
| 0             | 0 | 0 | 1          | 0        | 0        | 1        | 0                | 0     | 0     | 1     | 0     |
| 0             | 0 | 1 | 0          | 0        | 0        | 1        | 1                | 0     | 0     | 1     | 1     |
| 0             | 0 | 1 | 1          | 0        | 1        | 0        | 0                | 0     | 1     | 0     | 0     |
| 0             | 1 | 0 | 0          | 0        | 1        | 0        | 1                | 0     | 1     | 0     | 1     |
| 0             | 1 | 0 | 1          | 0        | 1        | 1        | 0                | 0     | 1     | 1     | 0     |
| 0             | 1 | 1 | 0          | 0        | 1        | 1        | 1                | 0     | 1     | 1     | 1     |
| 0             | 1 | 1 | 1          | 1        | 0        | 0        | 0                | 1     | 0     | 0     | 0     |
| 1             | 0 | 0 | 1          | 0        | 0        | 0        | 0                | 0     | 0     | 0     | 0     |

## Decade K-map



## Logic diagram



## Steps to design a Asynchronous counter

- Determine the number of flip-flops needed.
- Choose the flip-flop to be used.
- Write the truth table for the counter.
- Derive the reset logic by K-map simplification.
- Draw the logic diagram.

# Asynchronous: BCD ripple counter using JK Flip flop

• BCD counter goes through states 0-9, i.e. total 10 states. Thus, N = 10, and for  $2^n \ge N$ , w need n = 4 i.e. 4 flip-flops.

| CLK | A | В | С | D | Y |
|-----|---|---|---|---|---|
| 1   | 0 | 0 | 0 | 0 | 1 |
| 1   | 0 | 0 | 0 | 1 | 1 |
| 1   | 0 | 0 | 1 | 0 | 1 |
| 1   | 0 | 0 | 1 | 1 | 1 |
| 1   | 0 | 1 | 0 | 0 | 1 |
| 1   | 0 | 1 | 0 | 1 | 1 |
| 1   | 0 | 1 | 1 | 0 | 1 |
| 1   | 0 | 1 | 1 | 1 | 1 |
| 1   | 1 | 0 | 0 | 0 | 1 |
| 1   | 1 | 0 | 0 | 1 | 1 |

| CLK | A | В | С | D | Y |
|-----|---|---|---|---|---|
| 0   | 1 | 0 | 1 | 0 | 0 |
| 0   | 1 | 0 | 1 | 1 | 0 |
| 0   | 1 | 1 | 0 | 0 | 0 |
| 0   | 1 | 1 | 0 | 1 | 0 |
| 0   | 1 | 1 | 1 | 0 | 0 |
| 0   | 1 | 1 | 1 | 1 | 0 |

\*Y is the output port of the BCD ripple counter

## Contin..

- Derive the reset logic expression.





# Mod-6 ripple counter using T flip-flop

- 0 5 states.
- According to  $2^n \ge N$ . Here, N = 6 therefore n = 3 flip-flops.

| Clk | A | В | С | Y |
|-----|---|---|---|---|
| 0   | 0 | 0 | 0 | 1 |
| 1   | 0 | 0 | 1 | 1 |
| 2   | 0 | 1 | 0 | 1 |
| 3   | 0 | 1 | 1 | 1 |
| 4   | 1 | 0 | 0 | 1 |
| 5   | 1 | 0 | 1 | 1 |
| -   | 1 | 1 | 0 | 0 |
| -   | 1 | 1 | 1 | 0 |

# K-map



Figure 9:  $Y = \overline{A} + \overline{B}$ 

## Logic diagram



## Ring Counter



Figure 11: Ring Counter

### Johnson Counter



Johnson counter (note the  $\overline{Q}_D$  to  $D_A$  feedback connection)

Figure 12: Johnson Counter