Trabajo Bioinformática *

Ignacio Amat Hernández

Ángela LLopis Hernández

Estrella Ballester Hoyo

26 de abril de 2020

^{*}Grado en Ingeniería Biomédica, Escuela Técnica Superior de Ingenieros Industriales, Valencia, España.

Hemos implementado las trazas de manera que son perfectamente idénticas en Python y en C.

1		Mutation	i	z k	1
2	Deletion	[1]	1 -	1 (6
3	Insertion	[g]	2 -	1 1	2
4	Substitution	[g] -> [l]	1 -	1 1	2
5	Insertion	[1]	2 -	1 3	3
6	Match	[1]	1	0 3	3
7	Deletion	[o]	0 -	1 3	3
8	Insertion	[o]	1 -	1 5	5 5
9	Match	[o]	0	0 5	5 5
10	Deletion	[g]	-1 -	1 5	5 5
11	Insertion	[g]	0 -	1 1	1
12	Match	[g]	-1	0 1	1
13		— {1,1} —			
14	Insertion	[o]	2 –	1 4	4 6
15	Substitution	[o] -> [1]	1 -	1 4	4 6

Cuadro 1: Traza de INEXRECUR con X = "googol\$", W = "gol", z = 0 en C y Python

```
INEXRECUR
                       by XAVI GABRI AITANA ALFREDO
2
               [ 1 ]
3
               [ g ]
            [ g -> l ]
                           2
               [ 1 ]
6
                           1
                               0
                 [ o ]
            D
8
                   [ o ]
                   [ o ]
9
            {\rm M}
                                    0
10
                \mathbf{D}
                        [ g ]
11
                Ι
                        [ g ]
                                    0
                                        -1
                                              1
                                                  1
                        [ g ]
12
                {\rm M}
                                    -1
                                         0
                                              1
   13
                                                        [c(1, 1)]
                           2
                                         6
               [ o ]
                               -1
                                     4
14
       S
            [ o -> l ]
                        1
                             -1
                                   4
                                       6
15
```

Cuadro 2: Traza de INEXRECUR con X = "googol\$", W = "gol", z = 0 en R

1		Mutation	i z	k	1
2	Deletion	[g]	2 -1	0	6
3	Insertion	[g]	3 -1	1	2
4	Match	[g]	2 0	1	2
5	Deletion	[o]	1 -1	1	2
6	Insertion	[o]	2 -1	4	4
7	Match	[o]	1 0	4	4
8	Deletion	[o]	0 -1	4	4
9	Insertion	[o]	1 -1	6	6
10	Match	[o]	0 0	6	6
11	Insertion	[1]	3 -1	3	3
12	Substitution	[l] -> [g]	2 -1	3	3
13	Insertion	[o]	3 -1	4	6
14	Substitution	[o] -> [g]	2 -1	4	6

Cuadro 3: Traza de INEXRECUR con X = "googol\$", W = "goog", z = 0 en C y Python

1		INE	XRECUR	_	by	XAV	I GABI	RI AIT	ANA A	LFREDO		
2	_	D	[:	g]		2	-1	0	6			
3	_	I	[:	g]		3	-1	1	2			
4	_	M	[:	g]		2	0	1	2			
5	_	_	D	[c]		1	-1	1	2		
6	_	_	I	[c]		2	-1	4	4		
7	_	_	\mathbf{M}	[c]		1	0	4	4		
8	_	_	_])	[o]		0	-1	4	4	
9	_	_	_	I	[o]		1	-1	6	6	
10	_	_	- I	M	[o]		0	0	6	6	
11	_	I	[l]		3	-1	3	3			
12	_	\mathbf{S}	[1 -	> g]	4	2	-1	3	3			
13	_	I	[-	о]		3	-1	4	6			
14	_	S	[o -:	> g]	4	2	-1	4	6			

Cuadro 4: Traza de INEXRECUR con X = "googol\$", W = "goog", z = 0 en R

Γ						
1		Mutation	i	\mathbf{Z}	k	1
2	Deletion	[1]	2	0	1	6
3	Deletion	[o]	1	-1	1	6
4	Insertion	[g]	2	-1	1	2
5	Substitution	[g] -> [o]	1	-1	1	2
6	Insertion	[o]	2	-1	4	6
7	Match	[o]	1	0	4	6
8	Deletion	[o]	0	-1	4	6
9	Insertion	[g]	1	-1	1	2
10	Substitution	[g] -> [o]	0	-1	1	2
11	Insertion	[o]	1	-1	6	6
12	Match	[o]	0	0	6	6
13	Deletion	[g]	-1	-1	6	6
14	Insertion	[g]	0	-1	2	2
15	Match	[g]	-1	0	2	2
16		{2,2}				
17	Insertion	[g]	3	0	1	2
18	Substitution	[g] -> [l]	2	0	1	2
19	Deletion	[o]	1	-1	1	2
20	Insertion	[o]	2	-1	4	4
21	Match	[o]	1	0	4	4
22	Deletion	[o]	0	-1	4	4
23	Insertion	[o]	1	-1	6	6
24	Match	[o]	0	0	6	6
25	Deletion	[g]	-1	-1	6	6
26	Insertion	[g]	0	-1	2	2
27	Match	[g]	-1	0	2	2
28		{2,2}				
29	Insertion	[o]	3	0	4	6
30	Substitution	[o] -> [l]	2	0	4	6
31	Deletion	[o]	1	-1	4	6
32	Insertion	[g]	2	-1	1	2
33	Substitution	[g] -> [o]	1	-1	1	2
34	Insertion	[o]	2	-1	6	6
35	Match	[o]	1	0	6	6
36	Deletion	[o]	0	-1	6	6
37	Insertion	[g]	1	-1	2	2
38	Substitution	[g] -> [o]	0	-1	2	2

Cuadro 5: Traza de INEXRECUR con X = "googol\$", W = "gool", z = 1 en C y Python

```
INEXRECUR – by XAVI GABRI AITANA ALFREDO
1
        \begin{bmatrix} 1 \end{bmatrix}
2
     D
                     0
           [ o ]
3
                     1
                         -1
        Ι
4
             [ g ]
                         -1
           [ g -> o ] 1
                       -1
           [ o ]
6
        Ι
                      2
                         -1
           [ o ] 1
7
        Μ
                         0
           D [ o ]
8
                         0
                            -1
           I
              [ g ]
9
                        1
                            -1
10
           \mathbf{S}
              [ g -> o ]
                       0
                           -1
                               1
11
           Ι
               [ o ]
                            -1
                        1
              [ o ]
12
           Μ
                        0
                            0
                               6
              D [ g ]
13
                            -1
                               -1
                   [ g ]
                            0
                               -1
                                   2
14
               Ι
                 [ g ]
                           -1
                                   2
              Μ
                               0
15
  16
          [ g ] 3 0 1
                            2
17
        [g -> 1] 2 0
     S
                       1
18
           [ o ]
19
                     1
                         -1
20
             [ o ]
                     2
                         -1
        Ι
21
        Μ
           [ o ]
                     1
                         0
                            4
             [ o ]
22
           D
                         0
                            -1
23
           Ι
                [ o ]
                         1
                            -1
                                6
                                   6
                [ o ]
                         0
                            0
                               6
24
           Μ
                                -1
25
              D [ g ]
                            -1
                   [ g ]
                            0
                                   2
26
              Ι
                               -1
27
              M
                 [ g ]
                            -1
                                0
  28
          [ o ] 3 0 4
29
        [ o -> 1 ] 2 0 4 6
30
31
        D [ o ]
                     1
                         -1
32
        Ι
             [ g ]
                         -1
        \mathbf{S}
           [ g -> o ] 1
                       -1
33
        Ι
           [ o ]
34
                      2
                         -1
             [ o ] 1
35
        Μ
                         0
                            6
           D [ o ]
36
                        0
                            -1
                        1
           I
               [ g ]
37
                            -1
           S [g -> o] -1
38
```

Cuadro 6: Traza de INEXRECUR con X = "googol\$", W = "gool", z = 1 en R

```
inexrecur_time.c
1
   12.34 \mu s from 10000 iterations.
3
4
   inexrecur_time.py
5
              sys
                       user
   268.89 \mu s 0.37 \mu s 268.16 \mu s
6
7
8
   inexrecur_time.R
9
   user
              system
                          elapsed
   5422 \mu s
              18\mu s
                          5443 \mu s
```

Cuadro 7: Tiempos de "CPU".

Ejecutando desde la línea de comandos como scripts usando #!/bin/env Rscript y #!/bin/env Python.

```
1
    bench ./inexrecur_clean ./inexrecur_clean.py ./inexrecur_clean.R
 2
    benchmarking bench/./inexrecur_clean
 3
    _{\mathrm{time}}
                               4.524 \text{ ms}
                                               (4.496 ms .. 4.551 ms)
 4
                               0.999 R^2
                                               (0.999 R^2 \dots 1.000 R^2)
                               4.522 \text{ ms}
                                               (4.499 ms .. 4.559 ms)
5
    mean
 6
    std dev
                               89.83 \ \mu s
                                               (58.07 \ \mu s \ \dots \ 133.1 \ \mu s)
8
    benchmarking bench/./inexrecur_clean.py
9
    time
                               39.26 \, \mathrm{ms}
                                              (39.12 ms .. 39.40 ms)
                                              (1.000\ R^2\ \dots\ 1.000\ R^2)
10
                               1.000 R^2
                                              (39.18 ms .. 39.45 ms)
11
                               39.30 \text{ ms}
    mean
                                              (177.4 \ \mu s \ \dots \ 388.7 \ \mu s)
12
    std dev
                               266.5 \ \mu s
13
14
    benchmarking bench/./inexrecur_clean.R
                               278.5 \text{ ms}
                                              (273.6 ms .. 285.0 ms)
15
    time
                                              (1.000\ R^2\ \dots\ 1.000\ R^2)
                               1.000 R^2
16
                                              (279.1 ms .. 281.9 ms)
17
    mean
                               280.6 \, \mathrm{ms}
                                              (1.027 \text{ ms} \dots 2.517 \text{ ms})
    std dev
                               1.714 \text{ ms}
18
    variance introduced by outliers: 16% (moderately inflated)
```

Cuadro 8: Tiempo de "pared" según la utilidad bench.

```
inexrecur_clean.c
==81469== in use at exit: 18,588 bytes in 164 blocks
==81469== total heap usage: 191 allocs, 27 frees, 24,894 bytes allocated
inexrecur_mem.py
6,631,424 bytes
inexrecur_mem.R
4,932,584 bytes
```

Cuadro 9: Memoria usada medido usando herramientas de los lenguajes.

```
time ./inexrecur_clean
   (5,5)
   (1,1)
   ./inexrecur_clean
    0.00s user 0.00s system 44\% cpu 0.004 total
                                     676 \text{ kB}
6
   max memory:
   time ./inexrecur_clean.py
    (1, 1)
   (5, 5)
10
    ./inexrecur_clean.py
11
    0.03\,\mathrm{s} user 0.01\,\mathrm{s} system 82\,\% cpu 0.039 total
12
                                     6272 \text{ kB}
13
   max memory:
14
15
    time ./inexrecur_clean.R
16
    [[1]]
    [1] 5 5
17
18
19
    [[2]]
20
    [1] 1 1
21
22
    ./inexrecur_clean.R
   0.23\,\mathrm{s} user 0.04\,\mathrm{s} system 97\,\% cpu 0.277 total
23
24 max memory:
                                     67476~\mathrm{kB}
```

Cuadro 10: Memoria usada medido usando herramientas del sistema operativo.