Notes on Integration and differentiation on \mathbb{R}^n , etc. Nicholas Maxwell

A measure defined on a Borel σ -algebra is called a Borel measure. Write $\mathcal{M}(\mathbb{R}^n)$ for the Borel measures on \mathbb{R}^n . If $E \subset \mathbb{R}^n$, then $\mathcal{M}(E)$ are the borel measures on E, but $\mathcal{M}(E) \subset \mathcal{M}(\mathbb{R}^n)$, by zero padding.

Definition: a positive finite measure μ on \mathbb{R}^n is regular if

- 1. $\mu(E) = \inf{\{\mu(U); U \text{ open}, U \supset E\}}$
- 2. $\mu(E) = \sup{\{\mu(K); K \text{ compact}, K \subset E\}}$

Every positive finite measure on \mathbb{R}^n is regular. For every measure $\nu \in \mathcal{M}(\mathbb{R}^n)$, for all $E \in \mathcal{B}\ell(\mathbb{R}^n)$, there exists a sequence of open sets $U_k \supset E$, and compact sets $K_n \subset E$ such that $\nu(U_n) \to \nu(E)$ and $\nu(K_n) \to \nu(E)$.

Proof: ADD

Definition: we say a measure $\nu \in \mathcal{M}(\mathbb{R}^n)$ is regular if each positive ν_k , in the Jordan decomposition $\nu = \sum_{k=0}^3 i^k \nu_k$, is regular. By the last result, every $\nu \in \mathcal{M}(\mathbb{R}^n)$ is regular and then the condition about sequences of sets holds.

If $\nu \in \mathcal{M}(\mathbb{R})$, we define its distribution function by $F_{\nu}(x) = \nu((\infty, x])$. $\nu \mapsto F_{\nu}$ is injective and linear on $\mathcal{M}(\mathbb{R})$.

Proof: ADD

Def: $F: \mathbb{R} \to \mathbb{R}$ is of bounded variation, BV, or say $F \in BV$, if $Var(F) < \infty$, where $Var(F) := \sup\{V_F(x); x \in \mathbb{R}\}$, and

$$V_F(x) := \sup \left\{ \sum_{k=1}^n |F(x_k) - F(x_{k-1})|; \ x_0 < x_1 < \dots < x_n = x, (x_k) \in \mathbb{R}, n \in \mathbb{N} \right\}.$$

Def: $F : \mathbb{R} \to \mathbb{R}$ is in NBV if $F \in BV$, F is right continuous at all $x \in \mathbb{R}$, and $\lim_{x \to -\infty} F(x) = 0$; normalized BV.

If $\nu \in \mathcal{M}(\mathbb{R}, \mathcal{B}\ell(\mathbb{R}))$, then $F_{\nu} \in NBV$.

Proof: ADD

(Folland 3.28) If $F \in BV$ then $\lim_{x \to -\infty} V_F(x) = 0$ and $F \in BV \Rightarrow V_F \in NBV$. Proof: ADD

Properties of BV,

- 1) If $F, G : \mathbb{R} \to \mathbb{R}$, $c \in \mathbb{R}$, then $V_{F+G}(x) \leq V_F(x) + V_F(x)$ and $V_{cF}(x) = |c|V_F(x)$. Hence BV is a vector space and if $F, G \in BV$, then $Var(F+G) \leq Var(F) + Var(G)$ and Var(cF) = |c|Var(F). NBV is a subspace of BV.
- 2) If $F \in BV$, then $V_F(x)$ is an increasing function of x, bounded above by Var(F).

- 3) a) Moreover, if x < y, then $V_F(y) V_F(x) = \sup \left(\left\{ \sum_{k=1}^n |F(x_k) F(x_{k-1})| ; x \le x_0 < x_1 < \dots < x_n = y \right\} \right)$.
 - b) special capse: $F(y) F(x) \le V_F(y) V_F(x) \le V_F(y) \le Var(F)$.
 - c) consequence: $F \in BV \Rightarrow F$ is bounded.
- 4) An increasing $F: \mathbb{R} \to \mathbb{R}$ is in BV iff F is bounded.
- 5) $F: \mathbb{R} \to \mathbb{R} \in BV$ iff $F = F_1 F_2$, where $F_1, F_2: \mathbb{R} \to \mathbb{R}$ are bdd and increasing.
- 6) $F: \mathbb{R} \to 0\mathbb{C} \in BV$ iff $\operatorname{Re} F, \operatorname{Im} F \in BV$.
- 7) $F \in BV \Rightarrow F$ continuous except at countable many points, and for all $x \in \mathbb{R}$, $F(x+) = \lim_{t \to x^+} F(t)$ and $F(x-) = \lim_{t \to x^-} F(t)$, and $\lim_{x \to +\infty} F(x)$ and $\lim_{x \to -\infty} F(x)$ all exist and are in \mathbb{R} .
- 8) $F \in BV \Leftrightarrow F = F_1 F_2 + iF_3 iF_4$, where $F_k : \mathbb{R} \to \mathbb{R}$, increasing, bounded, right continuous, and $\lim_{x \to -\infty} F_k(x) = 0$ for all k.

Proof: ADD

The linear map $T = \nu \mapsto F_{\nu}$ from $\mathcal{M}(\mathbb{R})$ to NBV is an isomorphism. Thus it is bijective and $Var(F_{\nu}) = ||\nu||$ for all $\nu \in \mathcal{M}(\mathbb{R})$, which implies that NBV is a Banach space with norm ||F|| = Var(F), $||T(\nu)|| = ||\nu||$.

Proof: ADD