

MANUAL Final Report (Lockheed Missiles and Space Co.) 121 p HC \$5.50 : CSCL 21 CSCL 21H

Unclas G3/20 - 28106

HUNTSVILLE RESEARCH & ENGINEERING CENTER

LOCKHEED MISSILES & SPACE COMPANY, INC. A SUBSIDIARY OF LOCKHEED AIRCRAFT CORPORATION

HUNTSVILLE, ALABAMA

Lockheed

Missiles & Space Company, Inc.

HUNTSVILLE RESEARCH & ENGINEERING CENTER

Cummings Research Park 4800 Bradford Drive, Huntsville, Alabama

SOLID ROCKET BOOSTER THERMAL RADIATION MODEL - VOLUME II USER'S MANUAL

March 1976

Contract NAS8-31310

Prepared for National Aeronautics and Space Administration Marshall Space Flight Center, Alabama 35812

> py A.L. Lee

APPROVED:

B. Hobson Shirley, Supervior Engineering Sciences Section

> / J.S. Farrior Resident Director

FOREWORD

This user's manual is a supplement to "Solid Rocket Booster Thermal Radiation Model - Volume I - Final Report," LMSC-HREC TR D496763-I. This manual was prepared by personnel of the Thermal & Fluid Physics Group, Engineering Sciences Section, of the Lockheed-Huntsville Research & Engineering Center under Contract NAS8-31310. The contract period of performance was from 20 January 1975 through 20 March 1976. The work was administered under the technical direction of Mr. William C. Claunch of the Structures and Propulsion Laboratory, NASA-Marshall Space Flight Center.

CONTENTS

Section		Page
	FOREWORD	ii
1	STRUCTURE OF THE PROGRAM	1
2	INPUT GUIDE	4
	2.1 Input Card Group 1	5
	2.2 Input Card Group 2	5
	2.3 Input Card Group 3	9
	2.4 Input Card Group 4	11
	2.5 Input Card Group 5	12
3	EXAMPLES OF INPUT CARDS AND OUTPUT PRINTOUT	15
4	PROGRAM CHARACTERISTICS	32
5	PROGRAM LISTING	35

1. STRUCTURE OF THE PROGRAM

The SRB plume thermal radiation program is stored on a magnetic tape which was created by a Univac 1108 7-track tape drive. There are two entry points corresponding to the two main programs on the tape. The main program, MAINS, deals with a single plume, which was used during the phases of development and checkout and for making the data tapes. The second main program, MAIN, computes the heating rate due to dual plume configuration and view factor calculation. Many subroutines on the tape are common to both MAINS and MAIN programs. In its logical structure, the MAINS program is the same as the MAIN program, minus the ICALC = 2 option, which calculates the view factors. The logical structure of MAIN program is shown in Chart 1.

The entire code consists of 2 main programs, 24 subroutines, 1 PROC and 3 elements. The relations between the main programs and the subroutines are summarized in Table 1. The PROC defines dimension statements which are used in the COMMON blocks. They are inserted in the program by using an INCLUDE statement. The elements are used to list the entire program, to compile the program elements when the array sizes are changed and to punch the program deck. More about these elements is discussed in Section 4. where the run characteristics are concerned.

Chart 1 - The Logical Structure of the MAIN Program

Table 1
RELATIONS BETWEEN MAIN PROGRAMS AND SUBROUTINES

Subroutine	Single Plume (MAINS) Heating Rate		Plume AIN) View Factor
	meating Nate	ICALC = 1	ICALC = 2
DIMENS (PROC)	х	x	x
ATTEN	x	x	
CHOSE	x	x	x
DIFVDC			x
DISK	x	x	x
EMITT	x	x	
ESCAP		x	
ESCAPE	x		
FRTAPE	x	x	•
INPUT	x	х .	
INTRCP		x	
IOPKT	x	x	
OUTPUT	x	x	
PINGEA	x	x	x
PINGEB	x	x	х
QUADEQ	x .	x	x
QUICKP	x	×	
SCATTR	x	x	
SORTNG	x	x	x ·
SPHERE	x	x	
TARGET	x	x	x
TRANSF		×	×
VFEMIT			x
VFOUTP			x
ZCOORD	x	ж	

[&]quot;x" indicates the requirement of the subroutine.

2. INPUT GUIDE

The input cards for the program can be organized into five groups. Each group of input cards is read by a program element, i.e., either the main program or a subroutine, except as noted. Table 2 summarizes the input card groups.

Table 2
INPUT CARD GROUPS

Input Card Group	Incurred by	Single Plume Heating Rate	Dual I Heating Rate	
Group		Heating Kate	Heating Nate	view factor
1	MAIN		x	x
2	TARGET	x	x	x
3	INPUT	x	x	
4	FRTAPE	x	x	•
* 5	VFEMIT			x

^{*}The first card reading NRAY and NSTART is requested in the MAIN program.
"x" indicates the requirement of the data card group.

As is apparent in Table 2, not all the five groups of input cards are required in a data card ensemble. The single plume heating rate calculation, for example, requires the input cards only from groups 2, 3 and 4. Preparation of input cards for each group will be discussed in detail in the following paragraphs.

2.1 INPUT CARD GROUP 1

This group is required in the MAIN program and consists of two cards:

Card I: (I8) ICALC

Card 2: (10F8.0) ((PP(I, J), J = 1, 3), SIG(I), PSI(I), I = 1, 2)

ICALC indicates if this run is for view factor calculation in which case ICALC = 2 or for heating rate calculation in which case ICALC can be any value other than 2. It is suggested that ICALC = 1 be used to indicate heating rate calculation. When the view factor calculation is intended (where ICALC = 2), the card 2 is omitted. The input format is indicated in parentheses.

The card 2 reads the basic coordinate systems of the dual plumes. (PP(1, 1), PP(1, 2), PP(1, 3)) are the (X1, X2, X3) coordinates of the center of the exit plane of the first plume with respect to the central coordinate system. SIG(1) and PSI(1) is the σ and ψ angles of the axis of the plume. (PP(2, 1), PP(2, 2), PP(2, 3)), SIG(2), PSI(2) are the corresponding values for the second plume. The coordinate system is shown in Fig. 1. The central coordinate system is centered at the mid point between the two ungimbaled plume exit planes. The coordinate systems (X1', X2', X3') and (X1'', X2'', X3'') are the local coordinates aligned with the first and second plume, respectively. All distances are non-dimensionalized with respect to nozzle radius at the exit plane.

2.2 INPUT CARD GROUP 2

This group, which is read by calling TARGET subroutine in all calculation cases, describes the target geometry. There is really no limit as to how many target surfaces can be considered in the calculation. However, in the present setup of the program array dimensions, the number of target surfaces is not to exceed 10. Each target surface is described by a set of two cards, described as follows:

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Fig 2-1 - Coordinate Systems of Gimbaled Dual Plumes

Card 1: (514,4X,7F8:0) IPTION,NN1,NN2,NRING1,NRING2,RADISK,RCP1,RCP2,RADISU

Card 2: (9F8.0) X10, X20, X30, X40, X50, X60, X70, X80, X90

This group of cards is ended by adding a blank card following the second card of the last set. All lengths are in non-dimensional units.

•	•
IPTION,	target surface code
	IPTION = 1, Cylinder; 2, Frustum; 3, Para- boloid; 4, Ellipsoid, 5, Parallelogram; 6, Annular Disk
NNl	number of view points along arc length, or along P1-P2 line in parallelogram case
NN2	number of view points along axial direction, or along P2-P3 line in parallelogram case, or along the radial direction in disk case
NRING 1	number of view point areas along radial direction on the constraint disk passing through the point P1. This is applicable to cylinder and frustum only.
NRING2	Same as above except for the constraint plane passing through the point P2. This is applicable to cylinder, frustum and paraboloid only.
RADISK	radius of the constraint disk passing the point P2 for the cases of cylinder, frustum and paraboloid; the outer radius in the case of annular disk; not applicable in the cases of ellipsoid or parallelogram
RCP1	radius of the inner radius on the constraint disk passing through point P1. This is applicable to cylinder and frustum. In the case of annular disk, RCP1 is the inner radius of the disk.
RCP2	radius of the inner radius on the constraint disk passing through point P2. This is applicable to cylinder, frustum and paraboloid.
RADISU:	radius of the constraint disk passing through Pl for the case of frustum only
X10, X20, X30	the (X1, X2, X3) coordinates of point P1
X40, X50, X60	the coordinates of P2
X70, X80, X90	the coordinates of P3, except the annular disk case where ($X70, X80, X90$) are the outward normal vector components

The designations of P1, P2 and P3 are summarized in Table 3.

 $\begin{array}{c} \text{Table 3} \\ \text{DESIGNATIONS OF POINTS P}_1, \text{P}_2 \text{ AND P}_3 \end{array}$

IPTION Shape	P ₁ (X10, X20, X30)	P ₂ (X40, X50, X60)	P ₃ (X,70, X80, X90)	
I Cylinder	Center of	Center of	An Arbitrary Point not on	
2 Frustum	the Top	the Base	the Axis	
3 Paraboloid	The Vertex			
4 Ellipsoid	Center of the Body	The Pole	At the Zero Meridian	
5 Parallelogram	corners of th	, P ₂ , P ₃ are the thr e plane, clockwise of direction of the neg	on the plane,	
6 Center of the Disk		On the rim of the disk. P1-P2 forms the line from which the view vectors count in right-hand rule sense with its normal.	P ₃ repre- sents the unit normal vector of the disk	

2.3 INPUT CARD GROUP 3

This group is read by INPUT subroutine. The first card of this group carries some control parameters.

Card 1: (718, F8.0) IX, JX, IRGN, JRGN, NSTART, ISO, IPLUME, REX

IX, JX	printout control parameters. The results of heating rate computations will be printed (IX) times at (JX) sample increments, i.e., IX = 3, JX = 2000, the results will be printed out 3 times when 2000, 4000 and 6000 samples are generated, respectively.
IRGN, JRGN	number of regions the plume body is divided in longitudinal and radial directions, respectively
NSTART	a starting random number, any six-digit integer
ISO	use 0. to indicate if isotropic scattering is desired; use 1 to indicate anisotropic scattering. In latter case, cards 7 and 8 of this group are required.
IPLUME	run options
= I	to compute the heating rate on target surfaces. card 6 in this group is omitted in this case.
= 2	to compute the heating rate on target surface. The plume is defined by QUICKP subroutine. cards 2, 3, 4 and 5 are omitted in this case.
= 3	interception of target surface is not tested (therefore the Input Card Group 2 needs only a blank card); trajectories of the photons are recorded in a data tape (when this option is used, a cataloged tape must be assigned to Unit 10). The output tape can then be used with IPLUME = 4 option.
= 4	the trajectories of the photons are read from an input data tape which must be assigned to Unit 10 at the start of the run. In this case, cards 2 through 8 are omitted.
REX	the radius of the exit plane in physical units (cm). For the standard SRB REX = 185 cm (6.07 ft).

Card 2: (F10.0) GAMMA

Card 2 is repeated (JRGN) times. Each GAMMA is the half cone angle of the concentric conic division within the plume.

Card 3: (F10.0) HZ(I)

Card 4: (6F10.0) (PROP(K, I, J), K = 1,6)

Card 5: (6F10.0) (PROP(K, I, J), K = 7,10)

HZ(I) is the longitudinal division of the plume body. PROP(K, I, J) is the K^{th} property of the plume in the I^{th} longitudinal division and J^{th} radial division. The index K defines the plume property as shown in Table 4.

Table 4
DEFINITION OF PROP(K, I, J) ARRAY

K	Plume Property
1	Al ₂ O ₃ Particle Number Density, N (parts/ft ³)
2	Al ₂ O ₃ Particle Temperature, T _p (R)
3	Al ₂ O ₃ Particle Radius, r _p (ft)
4	$\sum N r_p^2 \text{ (parts/ft)}$
5	Gas Temperature, T _g (R)
6	Gas Pressure, Pg (lb/ft ²)
7	Mole Fraction for CO
8	Mole Fraction for CO ₂
9	Mole Fraction for H ₂ O
10	Mole Fraction for HCl

Cards 3, 4 and 5 are in a loop and are repeated (IRGN+1) times; cards 4 and 5 are in an inner loop, repeating (JRGN+1) times.

Cards 2 to 5 are put together as a package as the result of a plume flow field computation.

Card 6: (4F10.0) PC, PAMB, TC, XK

This card is used only when IPLUME = 2

PC pressure in the combustion chamber (lb/ft²)

PAMB ambient pressure (lb/ft²)

TC combustion chamber temperature (R)

XK polytropic exponent

Card 7: (5F10.0) SA, SB, SC, SD, SE

Card 8: (5F10.0) SF, SG, SH, SI, SJ

Cards 7 and 8 are required only when anisotropic scattering option (ISO = 1) is used. The quantities SA, SB,...etc., define linear segments of the scattering distribution curve.

As an example, a set of the values of SA, SB, etc., are given below.

SA	SB	SC	SD	SE	SF	SG	SH	SI	SJ
4.0	15.0	80.0	160.0	175.0	0.2	4.0	15.0	4.2	160.0

2.4 INPUT CARD GROUP 4

This group consists of only one data card and is read in FRTAPE subroutine only when IPLUM = 4 option is used.

Card 1: (318, 4F8.0) KEY, ITG, NTRAJ, DELPHI, TX, TY, TZ

KEY control parameter

= 1 compute the heating rate for the entire geometry ensemble

= 2	for a single target surrounding the plumes, in this case DELPHI = 2π
= 3	single small target within DELPHI
= 4	single small target, using cosine projection to compute the heating rate
= 0	terminate the run
= -l	to tabulate the distribution of the sample trajectories on the data tape in increments of ϕ , η , θ and X1
ITG	the identity of the target surface of which the heating rate is to be computed. This parameter is used in KEY = 3 and 4 cases.
NTRAJ	number of the trajectories to be read from the data tape
DELPHI .	the angle subtended by the target surface as viewed from the origin point of the coordinate system. This parameter is used in KEY = 3 and 4 cases.
TX, TY, TZ	the center location of the target surface or the intersection point of the centerline of the DELPHI cone and the target surface. These points are used in KEY = 3 and 4 cases.

2.5 INPUT CARD GROUP 5

This group consists of 3 cards.

Card 1: (218) NRAY, NSTART

NRAY	number of sample sizes used to calculate the view factor
NSTART	a starting random number, any six-digit integer

Card 2: (18) IEMIT

IEMIT	the identifying code of the emitting surface
= 1	half cylinder
= 2	half frustum
= 3	not used
= 4	hemisphere
= 5	parallelogram
= 6	annular disk

= 7 full cylinder

= 8 full frustum

= 9 sphere

Card 3: (10F8.0)

This card reads 10 non-dimensional quantities to define the emitting surface. They are summarized in Table 5.

Table 5
DESCRIPTION OF THE EMITTING SURFACES

			P P	P ₃ or DC
IEMIT	R ₁	P _l	P ₂	3 01 50
l Half Cylinder	Radius of the cylinder .	Center of the top	Center of the bottom	Normal at mid arc
2 Half Frustum	Radius of the top	Center of the top	Center of the bottom	Mid arc point of the bottom
3 Not Used				
4 Hemisphere	Radius of the sphere	Center of the sphere	Normal at the center of the surface	
5 Parallelogram			re three consecutiv counterclockwise d	
6 Annular Disk	Inner radius of the disk	Center of the disk	A point on the outer periphery	Normal of the disk
7 Full Cylinder	Radius of the cylinder	Center of the top	Center of the bottom	Normal at an arbitrary point on the surface
8 Full Frustum	Radius of the sphere	Center of the top	Center of the bottom	A point on the periphery on the bottom
9 Sphere	Radius of the sphere	Center of the sphere		

LMSC-HREC TR D496763-II

3. EXAMPLES OF INPUT CARDS AND OUTPUT PRINTOUT

Three complete run decks listed on pages 16 through 21 show the input cards.

The first deck is an IPLUME = 1 case for the dual plume heating rate computation. The complete deck that defines a sea level plume with afterburning is included in the listing. This deck is generated from the Lockheed plume flowfield program. The listing actually shows the particle number density, N, (PROP(1,I,J)) in units of $P/ft^3 \times 10^{-9}$. In the IPLUME = 1, 2 and 3 cases, the INPUT subroutine, where the Input Card Group 3 is read, is called again to input the next case provided there are no changes in the target geometries. A blank card following last input card will terminate the run.

The second deck is an IPLUME = 4 case for the single plume heating rate computation where an input data tape assigned to unit 10 is used. The last data card can be repeated as many times as the case may be. A blank card following the last data card terminates the run.

The third deck is an example of calculating the view factors. The data cards read as Input Card Group 5 can be repeated as many times as desired to compute the view factors on a set of target surfaces from different emitting surfaces. A blank card following the last data card terminates the run.

```
*RUN RADIAT . 1HN1 3V451053 . LEE-ALBIN202 . 19 . 150
*A50 + T TAPL1 + T + 1 3 2 1 5
*REWIND TAPE1
ICOPY+G TAPEI+TPF&
*FREE TAPL1
*SETC * I
MAP+IS
 IN MAIN
 LIB SYS$*MSFC$.
1 XUT
                                                                                     0.0
                                                         3.4315
                                                                   0.0
                                                                            0.0
         -3.4315 0.0
                                               0.0
                            0.0
                                      0.0
 • 0
       12
   5
           8
                 0
                      0
                                                       0.0
                                                                  6.0
                                                                            4.0
                                               -4.0
                                      6.0
 • 0
         -6.0
                   -4.0
                            0.0
                                                                     185.0
                                                        0
                                                                 1
              5000
                          14
                                     5
                                       456 12
 100
 2.4
 3.6
 4.6
 6.0
   • 0
  .2571
                4078.
                          .196
                                      •0988
                                                  37290
                                                              1302.
                                      · 1537
                          .0275
  ·1603
               •248€
                                      •1034
                                                  3752.
                                                              1400 •
  .27
               4077.
                          1957
                          .0274
  ·1604
               ·2484
                                      ·1537
                                      .1132
                                                  3802.
                                                              1629.
  ·2971
               4081.
                          .1952
                                      • 1539
  ·1606
               2487
                          •027
               4085.
                          •195
                                      • 12
                                                  3849.
                                                              1918.
  1 د•
   1609
               •249
                          •0267
                                      · 1538
                                                  3883.
                                                              2175
                          °196
                                      • 144
   ,39
               4080.
   .1612
                .2492
                          ·0265
                                      1538
                                      •03
                                                  3523 •
                                                              1835.
   . 2675
               3371.
                          .1033
   .16
                •2469
                          .0297
                                      1508
   o 4
                          .196
   2571ء
                                      •0988
                                                  3729.
                                                              1302.
               40 / 7.9
                                      ·1537
   ·1603
                •2483
                          .0275
                          .196
                                      •1034
                                                  3752.
                                                              1400 •
   041
               40/6.
                                      ·1536
   ·1604
                •2484
                           .0274
                                                              1629.
   .491
                4082.
                           195
                                      •113
                                                  3802.
                                      • 1538
                           ·0268
   ·1606
                e24d8
                                                              1918.
                                                  3849•
                4085。
                           . 195
                                      .12
   1 ك.
                           .0267
                                      ·1538
   · 1609
                •249
                                                              2028 •
   . 46.
                4080.
                           .196
                                      0144
                                                  4000•
                .2492
                           0265
                                      1538
   .1612
                           .103
                                      •03
                                                  1522.
                                                              20200
   .268
                33/1.
                                      •0096
   ·035
                0.001
                           •02
   • B
   .2571
                4078.
                           •196
                                      .0988
                                                  3814.
                                                              1364 •
   .1604
                           .0269
                                       .1543
                •2486
                                                              1391.
   ۰27
                40/6.
                           .196
                                       1024
                                                  3804 •
   . 1604
                                       •1542 ·
                           .027
                ·2486
                                                              1492.
                                       د 113 ه
                                                  3804 ⋅
   .297
                           .195
                4084.
                                       • 154
   1605
                •24<sup>87</sup>
                           .027
                                                              1634 •
   iده
                4085.
                           · 175
                                       •12
                                                  3812.
                                       • 1539
   ·1606
                ·2487
                           027ء
                                                  4079.
                                                              2029.
   .39
                           .196
                                       • 144
                4080.
                                       1518
                           .0231
   1469
                .225
```

·268	3371.	•103	•03	4000•	2029。
• 1 2	- 1	•04	•08		
1 • 4					
· 451	4078.	196ء	•096d	3873。	1410.
£005	と4 8つ	. 0∠65	1547	•	
· 4 /	4076.	•196	•1034	J851•	1411•
1605	∠488	•0೭06	• 1546		
.297	4062.	.16	•155	3804•	1395.
· 1605	•2487	•0269	• 1544		
•31	4085 。	·195	•12	3697·	1268.
• 1602	•2482	.0277	• 15 <i>ა</i> 8		
• 39	4080.	.196	• 144	4127.	0229•
• 1554	•2157	•0251	• 1469		
• 268	3371.	•103	•03	4000 •	2029•
•18	• 1	•05	•08	,	
2.13					
• 457	4078.	.196	•0988	3834•	1272.
•1604	•2487	•0267	• 1548		
• 47	4076.	.196	4د10 • 10	3775.	1195.
.1602	•2485	•0272	•1546		
.297	4082	.195	•113	3685•	1080•
•16	•248	•0279	• 154		•
•31	4085.	.195	•12	3700.	1130•
.1601	•248	.0275	• 1541		7
.37	4082	.196	• 14	3909•	1626.
•1607	249	•0262	• 1547		
٠٥٥.	3370.	•06	•01	4179.	2029•
•1746	•007	•0989	•0562		
2 • 49					
•23	4070.	.196	•098	3718.	1034•
•16	•2482	.0275	•1546		
.25	4075.	.196	•10⊅	3686.	1011.
•16	•248	.0278	•1543		
•275	4080.	.196	•12	3685.	1041•
.1599	•248	.0278	•1542		
•33	4080.	.195	• 14	3822•	1348.
• 1604	•2487	.0268	• 1546		
•32	4080.	.194	• 135	4000•	1800•
•18 -	•2	•04	•13		
•09	4000•	. 1	•07	4200•	2029•
.18	•01	• 1	•06		
2.89		• -			
• < <	4050.	.196	•097	3611.	849•
.1594	•24 14	•0286	•1537		
• 23	4080.	.196	• 1	3636•	909•
• 1596	•2476	•028	• 1541		
•26	4080.	• 196	• 1 1	3770•	1170.
.1601	•2484	•0273	• 1546		
.315	4080.	.195	•13	3930.	1600•
.1607	.2492	•026	• 1549		
• J05	4080.	•194	• 125	4323.	2029•
• < 130	•1221	•0554	•1057		-
•05	3500.	. 1	•03	4000•	2029•
• ८	•01	•09	•06		
3022			· -		
• < 1	J900∙	.190	•075	3581.	785•
• 1 5 7 Z	• 24 1	.0289	•1534	•	
• 4	3915.	. 195	• 1	3700•	976•
	•				

REPRODUCIBILITY OF THE 17 LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER ORIGINAL PAGE IS POOR

•16	• 248	•0277	• 1545		
• 44	4000•	.195	• 11	3870•	1471•
• TPDD	• ८ 49	•0262	• 1549		
*21	4030.	• 196	•115	4000•	1824•
• 100A	€475	•U≥55	• 1551		
• J	3910.	• i	• 135	4340.	2029•
• < 13 9	•113	•0568	•1043		
i e	3400•	• i	•02	4000•	2029•
• 1899	•0153	•1015	•0632		
J•6					
• < 1	3850.	•19	•07	3775.	. 1044.
• 1001	• 2484	•0271	• 1549		
0435	3900 .	• 195	•09	3920•	1400•
• 1605	· 249	•026	• 155		
• 48	4000	• 195	• 1	4003•	1730•
• 1008	• 2494 *****	•0256	• 1551		
• 3095	4050.	• 195	• 11	4055•	1940•
•161	• 45	•0252	• 1552		
• 2 /	3850.	.19	• 12	4357.	2029•
•2151 05	•114	•06	• 1024		
•05	3500.	• 1	•005	4858 .	2029。
•0905	•0001	•05	•03		
4•27	250-		_		
•21	3900.	•185	•072	4304•	2371•
•1607	•2501	•0238	• 1549		
• 45	3940.	• 185	•09	4130•	1975•
•1611	•25	•0246	• 1555		
• = 1	4000.	•186	• 1	4080•	1990.
• 161	•2498	•025	• 1552		
• 495 16	3900.	.186	• 1	4150•	2050•
-18	•2	•032	• 135		
•001	4000.	•15	•0001	4370•	2029•
•41	•05	•08	•075		
•00001	4000	• 05	•000001	3156.	2029•
•1055 4•89	•00002	•063	•0367		
•46	4.31.3	1 70			
•16	4219.	.179	• 15	4444•	3544•
• 445	•250 <u>1</u>	•0235	• 1539		
•1607	4177.	.181	• 147	4385•	3300.
•1807 •39	•2502 4175。	•0236	• 1543	1.000	
•1613	.2503	• 185 0343	• 133	4209•	2469
•05	4000	•0242	• 1553	4100	0.000
•1997	• 1534	•18	• 1	4190.	2029•
•000001		044	•12	4000	0-00
•15	3000.	•01	•000001	4000.	2029。
	•005	•085	•05	.	
•00001	3000.		•000001	3000.	2029.
•08 6.40	•000c1	· 04	•025		
6•49	4436.4	1			
•4961	4264	.185	• 17	4260•	2973•
•1612	•2502	.0242	• 1545		_
• 48	4200 •	.186	•168	4197.	2931•
。1616 。385	•2503	•0244	• 1548	4.1.1313	a, a a . =
•1010 •202	4175.	.166	•133	4183•	2692•
•1010 •434	• 2503	•0243	• 155J		0= 1/
	2000°	•191	•085	4435.	2029•
• < 10 <	•0886	•0709	•0923	~~ ~ ~	A A
•000001	4000.	•01	•000001	3681.	2029•

•134/	•0006	•08	•0444		
•000001	3000.	•01	•000001	2503•	2029•
•0352	•00001	•0069	•0004		
8.23		• • •			
•3/	41/1.	•191	• 135	4011.	1666.
•1612	•2497	•0255	• 1549	1.07	
•35	4171.	•191	• 126	3979•	1869•
•161	•2497	•0257	• 1548		
•3∠	4129.	.189	•113	4010•	1895•
•1609	•2496	•0255	• 155		
。	3900.	• 1895	•085	4400•	2029•
٠٤١٥ .	• 1	•07	•09 ,	•	
•000001	3000•	•01	•000001	3900•	2029•
•15	•005	•083	•05		
•000001	3000.	•01	•000001	2 7 00•	2029.
•07	•00001	•04	•025		
9.19					
• 35	41/1.	•19	• 133	3945.	1493.
•160/	•2492	•026	• 1549		
. کک	41/0.	•19	•128	3945•	1564.
• 1 60 /	•2492	•026	•155		
4 ك •	4130.	.19	• 155	4100•	2000•
∘∠U∠5	•1481	.0453	•1168		
•	4000.	•18	•085	4466•	2029•
•21/3	•0/23	•079	•086		
•000001	3000·	•01	•000001	3800•	2029.
• 1 2	•001	•063	•04		
•000001	J000.	•01	•000001	2182.	2029.
• U5Y	•00001	, 0353	•021		
12・3					
。 と は よ と は と に に に に に に に に に に に に に	4154.	• 188	•09	4167•	2029。
6 L 655	•∠UJ8	·02/9	• 141		
· 465	4050.	• 188	•092	4167.	2029•
.185	•18	•035	•13		
• ←	4000.	•19	•07≥	4320•	2029。
0 Z I Z 5	。1538	•0547	• 1064		
•000001	4000.	•01	•000001	4200.	2029.
• 1 R	•02	. 085	•06		
•000001	J500 .	•01	•000001	3500•	2029•
012	10000	•065	•044	_	
•000001	∠UUU•	10.	•000001	2000•	2029.
•06	•00001	03	•02		

FIN

```
*RUN RADIAT . 1HNTSV451053 . LEE-ALBIN202 . 5 . 100
.ASG.T TAPE1.T.14445
*ASG+T 10+T+09052 • SPSL DATA
REWIND TAPE1
*COPY*G TAPE1*TPF$
FRLE TAPE1
*SETC * I
*MAP.IS
IN MAINS
LIU SYSS*MSFCS.
*XQT
                                  0.0
                                          0.0
                                                   0.5
                         1.0
   2
       4
          4
                1 4
                                                                    0.0
                                                   0.0
                                                           1.0
                                          0.0
 1 • 5
       0•0
                 0.0
                         0.0
                                  0.0
                         0.5
                                  0.0
                                          0.0
                                                   0.5
       4
                1 1
   1
           4
 2.5
                 0.0
                         -1.5
                                  0.0
                                          0.0
                                                   -1.5
                                                           0.5
                                                                    0 \cdot 0
        0.0
                4 . 4
                                  0.5
                                          2.5
                                                   2.25
   2
       8 10
                         3.0
                                                           3.0
                                                                    0.0
 2.5
                0.0
                         -0.5
                                  0.0
                                          0.0
                                                   -0.5
        0.0
                0 0
                         2.625
                                  2.125
   6
       8 4
                                                                    0.0
                                                   1.0
                                                           0.0
 1.5
        0.0
                0.0
                         -1.5
                                  2.625
                                          0.0
                                    123456
                                                  0
                                                          4 185 • 0
       1
                1
                    50000
```

PFIN

```
*RUN RADIAT . IHNTSV451053 . LEE-ALBIN202, 9, 150
'ASG T TAPE1 + T + 13328
*REWIND TAPE1
*COPY*G TAPE1 *TPF$
FREE TAPE1
IMAP, IS
IN MAIN
LIU SYSS*MSFCS.
* XÚT
      2
         3 2 2
                        1.01
                               0.0
                                      0.0
                                               2.303
       -3.4315.0.0
 • O
                        12.3
                                -3.4315 0.0
                                               0.0
                                                       -2.4315 0.0
       8. 3 2 2
  7
                        1.01
                                0.0
                                       0.0
                                               2.303
 Φ,
        3.4315 0.0
                        12.3
                                3.4315 0.0
                                               0.0
                                                       4.4315 0.0
  .6
       2 20
             1 1
                        10.0
                                2.0
 • 0
      0.0
              0.0
                        0.0
                                10.0
                                       0.0
                                               1.0
                                                       0.0
                                                               0.0
   10000 987654
      3
1.0
       0.0
              0.0
                       0.0
                                1.0
                                      70.0
                                               0.0
   10000 987654
      5
      -1 \cdot 0
             0.0
                        0.0
                                1.0
                                       0.0
                                               0.0
                                                       1.0
                                                               2.0
   10000 987654
      6
       0.0
               3.4315
                        0.0
                                0.0
                                       4 • 4315
                                               0.0
                                                       1 \circ 0
                                                               0.0
                                                                       0.0
   10000 987654
       1
       0 • 0
2.0
                        -5.O
               0.0
                                4.0
                                        0.0
                                               -5.0
                                                       0.0
                                                               0.0
                                                                        1.0
   10000 987654
      2
2.0
      0.0
           0.0
                        5.0
                                4.0
                                        0.0
                                               5.0
                                                       4.0
                                                                0.0
                                                                        4 • 0
FIN
```

The output of the program consists of four main parts, which correspond to output examples 1 to 4, respectively.

The first part of the output is the description of the input targer geometry. Part of the printout is shown as the output example 1 (page 23). The first two lines print out the input read by the TARGET subroutine. The transformation matrix and the coefficients of the quadric equation follow. Then the view point vectors from the origin of the central coordinate system to the center of the area segments on the target surface are printed out. The numbers in numerical order on the left column are the index numbers for the subareas, which are used throughout the output.

```
INPUT DATA FOR TARGET NO.
              2
          3
  2
      4
                  2
                          2.0000
                                  1.0000
                                           .0000
                                                  1.0000
  •0000
          .0000
                   *0000 =1 *0000 - ... 0000 - ... 0000 =1 *0000
                                                           2.0000
                                                                    .0000
TRANSFORMATION MATRIX
    --100000+01
                                     --198419-08
                     •000000
     .000000
                     +100000+01---
                                    --000000 - -
     .198419-08
                     •0000000
                                     -.1000000+01
COEFFICIENTS FOR A CONE
     -+400000+01
C2 =
       ·1000000+01
€3 =
       ·100000+0:
C4 =
       •000000
C5 =
      -+198419-07
C6 =
       9000000
<del>C-7-</del>
       *000000
C8 =
       •000000
C9 =
       •000000
CONST =
          .000000
RADIUS OF CONTRAINT DISK = - +200000+01
COEFFICIENTS FOR CONSTRAINT PLANES
       -+100006+<u>01</u>-----
C12 =
        .000000
C13 =
      --.198419-n8
CEND
          •00000n
         +100000+01
CBASE=
REFERENCE POINTS ON CONSTRAINT DISK
                                        Τ(
                                            -i.oooon
                                                        2.00000
                                                                   •0000g )
COMPONENTS FOR VIEW POINT VECTORS ......
     1.
            VPI= --833333+00
                                  VP2= +117851+01
                                                        VP3≃
                                                              •117851+01
            VF1= -.833333+00
     2.
                                  VP2=---117851+01
                                                        VP3= +117851+01-
     3.
            VP1= --833333+UU
                                  VP2= --117851+01
                                                        VP3= -.117851+01
     έξ φ
            ·-VP3= = •117851+01
     5.
            VP1= -.500000+00
                                  VP2= •707107+00
                                                        VP3=
                                                              •707197+0a
     6.
            VP1= -+500000+00
                                 -VP2= -+707107+00
                                                       -VP3= +707107+00
     7.
            VR1= -.500000+00
                                  VP2= -.707107+00
                                                        vP3= -•707107+00
     8.
            VR1= -+500000+00
                                  VP2= +707107+08
                                                        VP3= --707107+00
     9.
            VR1= --166667+00
                                  VP2= +235702+00
                                                        VP3=
                                                              235702+00
         10+
                                                        ¥P3= +2357<del>02*00</del>
            VP1= -.166667+00
    11.
                                  VP2= -+235702+00
                                                        VP3= -.235702+00
    12.
            VP1= -.166667+BD
                                  VP2= +235702+00
                                                        VP3= -+235702+00
ON CONSTRAINT DISK NO.1
            RMEAN
                                  AREA
   1
         ·100000+01
                              •008000
   2
         •100000+n1
                              •000000
                                                   REPRODUCIBILITY OF THE
                                                   ORIGINAL PAGE IS POOR
ON CONSTRAINT DISK NO.2
          ---RMEAN
                                 -- <del>AREA</del>
   1
         •500000+n0
                              ·785398+JD
   .2
         · 15000U+01-
                            - +235619+91----
```

The second part of the output printout (pages 25 and 26) is the properties of the plume. GAMMA is the half-cone angle of the radial division in the plume. The number on the left column is the index number for the axial regions of the plume. The plume properties are printed two times in IPLUME = 1 and 2 cases. The first time each individual property is grouped by axial and radial region. In the second printout all properties for a given region are listed. The first printout is done in INPUT subroutine, the second is done in OUTPUT subroutine. In IPLUME = 3 case, only the first printout is given, while in IPLUME = 4 case, both printouts are given in the first output and only the second printout is given at the subsequent output.

Output Example 2

```
TOTAL PLUME VOLUME = '
                             •11312+33 REX3
                                                       NOZZLE EXIT RADIUS = 18
   TOTAL RADIANT HEAT RATE =
                                  .4396+13 WATTS
- •93831+34~ •10066+35 ~~•10734+35 · •12418+35 -
                                                      ·11519+05----
                    15565+35
                               013733+35
                                           ·12418+55
                                                      11523+05
   . 3 ..
        - •93825+34:~~{13565+35~~ •13733455:~
                                          ~~12418+35~
                                                     ¯∙11523+ฃ5¯
         -93819+64
                     *15065+05
                                +10733+05
                                           ·12229+:5
                                                      ·19735+35
         757735
                                                      *8481I+34
         · 82957+34
                    •93117+34
                               ·13483+35
                                           ·11202+05
                                                      o65589+04
   - 7
        1.000040454
                    `•9G87G+44 ~~•16423+36~~•16851+<u>2</u>5~
                                                      ·64914+54
         +C+95668 •
                    +93178+34
                                           ·13481+35
                                • 10531+15
                                                      +61854+04
   -9-----81841+34 --- 92217+34
                               •13221+25***•75663+a4
                                                      ·27023+34
         12180+35
   10
                    +11958+35
                               *86677+34
                                           · 29:34+34
                                                      ·85841+01
   11
         *16538*35
                    ~14839+35
                               *91193*;4****24599÷54**
                                                      ~353<u>14</u>~110
   12
         ·14/93+35
                    +13372+35
                               ·10228+25
                                           •39722+g4
                                                      •35314+as
 ---13---
         • 12236+35 --
                                          *38511+64 ** 35314+00
                    * 11512+C5-
                               ~~94719+54^
   14
         13485+35
                    • 95912+24
                               061219+24
                                           017682+34
                                                      ·35314+08
  <u>~~v\TPUT~Fox~PkoPERTY~~2</u>
  ·22548+34
                               *22687*34
                    • 22663+ 4
                                           ·22680+04
                                                      ·20888+94
    *3 *** ** + 22648+34
                    ₹22653+54~~~22687+54~~₹22689+64~~₹22689
         · 22548+34 / · 22663+34
                               ·22687+54
                                           ·22683+c4
                                                      ·23891+34
        <del>~~~22639+54~~~22659+54~~</del>•2267<del>7</del>*54<del>~~</del>;22676+54~
                                                      ~2T7T4+J4
         ,22548+34
                     .22661+14
                                ·22667+34
                                           ·22667+04
                                                      ·21824+04
      --- • 22312+34-- • 22416+34--
                               ~~22495+54 ~~~~22443+54~~
                                                      720880+04TT
         021762+34
                     22070+34
                                ·22342+14
                                           · 22583+54
                                                      025513+04
        -- +21693+34 -- >22529+34--
 - ---9----
                               -22151+24--
                                           #21952+54 T
                                                      +21493+94T
         +22596+34
                    · 22667+34
                               • 22327 + 24
                                           023995+34
                                                      ×19978+04
        ~~23372+34~~~23229+34<del>~</del>
  --- }- }-
                               -22419*34<sup>---</sup>328899+<u>24</u>--$18549<del>*</del>84
   12
         ·23389+34
                    ·23147+34
                               *22225+34
                                           ·23674+94
                                                      ·18440+04
   ·23594+54· ··· • 22431+54···
                                          ~619732+34~
                                                      ~ 16667*04~
         +22923+34
                    +22686+34
                               ·22388+34
                                           • 20456+04
                                                      ·16641+04
                                                    REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
  •59741+01
                    ·59571+31
                               o59436+31
                                           ·59595+31
                                                      ·44943+31
       -----• 59741+61-- • 56576+61---• 56916+31----• 59595+31---
                                                      54494C+TT
         •59741+31
                    456692+31
                               ·57310+01
                                           •59595÷al
                                                      ·41424+01
         ~59741+31~~~59657+31~~ <59538+31
                                          ~~59434+<u>%1~~~~47</u>T65+7T
         *57741+31
                    +59741+31
                               ·59578+11
                                           •59277*c1
                                                      044171+31
    -7 ---
       -- =54331+31
                    +59587 FC1 - +59588+21 - +59331+21 - -- 43878+21
         +53728+31
                    +59436+51
                                           .58715+31
                               ·59516+21
                                                      • 43589+01
  - 9----- »57637+01
                    +57973+11
                               ~•58242+<u>%</u>1
                                           *54749*31°
                                                      •36583+01 --- -
                    *56197+31
         *55666+31
                               A56126431
                                           ·39272+01
                                                      ·16230+01
         ~>>8#7+#1---*56284+Ir ~~$6574+Il~~#Z8731+#1~~
                                                      T3*48U+00T
         ·=7432+31
   12
                     +57336+51
                                ·57633+51
                                           +29394+#1
                                                      •3#48#+aa
```

```
TP - ( DEGREES KELVIN )
TG - TOEGREES-KEEVIN-)----
N - ( PARIS/Ch3 )
TAUP - ( '--) " -----
TAUG - ( - )
TAU - (------
RP = ( MICRONS )
A/E = ( = )
MF - ( - )
THE - ( EXIT RADIT )
 GAMMA = 1.29 2.40 3.60 4.60 6.00
1 TG = •20802+64 •21605+04 •21263+64 •21662+34
1 TAUP= •46529+01 •49777+51 •53463+51 •60666+51 •40444+51
 TAUG= .87378+30 .94974+35 .15691+51 .11415+61 .11801+01
 1 TAU= -.55267+31 .59274+01 .64154+31 .72074+31
                                   ·52245+31
 1 RP "=- "*59711+#[" -59568+01" -5945##[1 "*59595+#[ -- 44964#]
   A/E= .19393+63 .19313+83 .19873+88 .19188+89 .22948+88
" TIRADEK = 1 43142-23 TF13468-52 TF26318-22 TF34318-22 F35572-32
   HZ = .43800+ss
 2 TP = •22648+54 •22663+34 •22687+64 •22686+34 •23888+64
2 N = .93831+04 .13065+05 .10733+05 .12418+05 .11523+05
2 TAUG= •85757+&@ •91596+@@ •10114+@1 •10226+@1 •94589+@@
7385451-49858+51-6354[+2]-6354[+2]-673865+5[-49858+5]
 2 RP = •59741+61
             059571+D1
                            •59595+31 •4494D+31
                     •59436+61
   2RADEK= +43913-23 +14333-02 +26759-02 +35358-02 +38755-02
 T2 THZ = TT4800000+000T
3 [G = +21297+04 +21193+04 +21997+04 +21933+04 +22533+04
3 TAUP= +46289+g1 +53774+01 +56551+01 +69666+91 +40399+51
3 TAU= +54632+31 +62442+01 +65511+51 +67392+31 *+47692+01
 A/C= +18549+30 +17468+00 +16951+60 +13574+20 +15686+39
----3RADFK= ---48654-03 ---15570-02 ----25718-02 ----28019-02-----44194-02---
 3 HZ = .12001+g1
       •2264d+54 •22663+04 •22687+04 •22683+04 •23891f54
 4 TP =
4 N = .93819+54 .13365+05 .15733+25
                            •12229+Q5 •13705+35
```

In the case of heating rate calculation with IPLUME = 1, the number of events of emission, re-emission and scattering of each region are tabulated. If the anisotropic scattering option is used, the coefficients of the scattering distribution are printed on top of the table, otherwise, the words "isotropic scattering" are printed. A part of this output is shown in output example 3 (page 28).

Output	Example	3
Output	Transfer	_

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

ANTUIROP	I C	SCAT	TERING
----------	-----	------	--------

		A= 4.000 f= .2000			80.000 15.000	D=160.000 1= 4.200	E=175.Cg
	<u>,</u>		-,				
DIST	RIBUTION OF	SCATTERINGS	AND EM	ISSIONS THR	OUSHOUT P	LUME	
		,					
•		1 + 20	2 0 4 0	3.60	4.60	6.00	
· ₁ ·	NEMIT =	12	37	76	111	93	
1	REEMITS =	23	5 g	110	125	121	
1	ISCAT =	76	218	413	567	375	
2	NEMIT =	19	42	83	100	119	
2	REEMITS =	29	108	150	151	157	
2	ISCAT =	115	373	746	726	641	
3	NEMIT =	8	41	82	79	110	
3	REEMITS =	34	124	162	139	140	
3	ISCAT =	173	519	" " " " BDS	831	737	•
- 4	T NEMIT =	36	120	199	192	400	
4	REEMITS =	85	316	441	344	486	
4	ISCAT =	433	1556	2352	2449	2045	
g	NEMIT =	12	44	68	104	246	
5	REEMITS =	5 7	135	238	280	318	
5	I SCAT =	217	672	1252	1366	1191	
6	NEMIT =	19	46	99	165	305	
6	REEMITS =	56	196	393	373	. 487	
6	ISCAT =	274	1028	1557	1691	1721	
. 7	NEMIT =	15	51	101	173	269	
7	KEEMITS =	<u>,</u> 48	155	328	354	452	
7	ISCAT =	273	828	1447	1614	1422	
· 8	NEMIT =	12	58	139	159	279	
	REEMITS =	55	235	450	422	539	
ช	TSCAT = T	304	755	i 772	1856	1500	
9	NEHIT =	43	130	298	329	470	
9	REEMITS =	151	483	902	689	1044	
. 9	15CAT = "	546	1881	3393	2502	1201	
10	NEMIT =	68	196	334	314	433	
10	REEMITS =	260	719	980	705	1016	
10		926	2744	3678	1435	3	
iı	NEMIT =	415	1975	1934	994	829	

The last part of the output is the tabulation of heating flux on each subarea of target surfaces. The area numbers are consistent with the area view vector numbers in the first part of the output. The heating rates are given in both W/cm² and Btu/ft²-sec in two adjacent columns. The average heating rates of groups of NN1 subareas are also given, as shown in output example 4 (page 30).

Output example 5 (page 31) shows the output for view factor calculations. The view factor column lists the computed view factors from the emitting surface to the subarea. The corresponding reciprocal view factor is given on the same line. The view factor of the emitting surface to the entire target surface and its reciprocal are given below the table.

TOTAL NUMBER OF EMISSION/ACSONPILON = 30000 177375 REX = 185.0 RADIAT = 4.0964+09 WAT

TARGET MG. _ 1 ON TARGET MAIN SIDE SURFACE

AREA	NUMBER	AREA	HEAT TRANSFER	HEAT TRANSFER	AREA	HIT AREA
NUMBER	OF HITS			BTU/SEC=FT2	NUMBER	···· HILL
1	35 • ₾	1	1-4141+51	1.2456+01	1	1.428571
ż	42 • €	2	1.6969+31	1 • 4947 + 61	2	1.428571
3	67•α	3	2.7069+61	2 • 38 43 + 01	3	1.428571
4	<u> </u>		2.1413+61	1.8861+01		1-428571
5	57.0	5	2.3029+01	2.9285+01	5	1.428571
6	58.0		2.3433+61	2.2641+01-		1.428571
7	7 ሮ + ሮ	7	2.8282+51	2.4911+61	7	1.428571
8	75.2	8	3.0302+01	2.6690+01 -		t-428571
9	6p.c	9	2.4241+21	2.1352+01	9	1.428571
10	<u>45.2</u>	12 .	1.8181+51	1.6614+01	· · - 1 0 - ·	
11	42.C	11	1.6969+51	1.4947+01	1 1	1.428571
12	39•∩	12		u. 4 • 3879+01	12	1.428571
» Э——————	NN1. A	VERAGE	2.1649±01	1.9669+61		
13	<u>41ea</u>		1.6565+91	1.4591+61	· -1 3 ·	
14	58•3	1 4	2.3433+01	2.2641+01	14	1.428571
15	54.0		2 • 1 8 1 7 + 5 1		<u></u>	1.428571
16	69 • D	16	2.7877+71	2.4555+01	16	1.428571
17	64.0			2.2776+01	17	1.428571
18	86.5	18 召開	3.4746+51	3.5655+81	18	1.428571
19	53.0	19 8	2.1413+01	1.8861+01	1-9	-1.428571
20	56.€	2, 29	2.2625+[1	1 • 9 9 2 9 + 0 1	20	1.428571
21	45. ~		4.8181+74	1.6014+61		1.428571
22	50.0	22 10 1	2.0201+51	1.7794+01	22	1.428571
23	52+0 .	23	2.1009+01	1.8535+01	23	1.428571
24	32 • r	24 甾片	1.2929+01	1.1388+61	24	1.428571
	NNI A	UED + C / 22	•	1.9573+01	.,	
25	25.7	25 26	1.0101+01	8.8968+06	25	1.428571
. 26	4 <u>_6</u> _4 <u>_</u> 2	26	1.6161+61	1.4235+01	26	1-428571
27	45 • 2	27	1.8181+21	1.6014+01	27	1.428571
28	64.€	28.	2.4241+31	2.1352+01	 2. 8	1 - 428571-
29	41.5	29	1.6565+01	1 • 45 9 1 + 0 1	29	1.428571
30	59.0	<u> </u>	2.3837+21	2.0996+41		1.428571
31	53.0	31	2 • 1 4 1 3 + 5 1	1.8861+61	31	1.428571
32	37.€	37	1.4949+51	1.3167+41		1 # 428571-
33	57.5	33	2.3029+31	2.4285+01	33	1.428571

VIEW FACTOR OUTPUT

MHITP = 0 MMISS = 4696 TOTAL SAMPLE = 5000 NSTART = 664321MHITG

	EAF	REA = 6.283	3190+00				
LOCKHEED -	TARGET NO.	1					
HUNTSVII	TARGET MAIN	SURFACE,	L =	1			
LE RES	AREA Number	NO. OF HITS	AREA NUMBER	VIEW FACTOR	HITAREA	AREA NUMBER	VIEW FACTOR BY RECIPROCITY
D - HUNTSVILLE RESEARCH & ENGINEERING CENTER	ω 1 2 3	9 . 7 . 9 .	1 2 3	1 • 8000-03 1 • 4000-03 1 • 8000-03	2 • 1817 + 00 2 • 1817 + 00 2 • 1817 + 00	! 2 3	6.2500-04 4.8611-04 6.2500-04
ENGINE	4 5	4 a 1 9 a	4 5	8.∆≎⊽⊽-04 3.8000-03	2•1817+00 6•5450+00	4 5	2.7778-04 3.9583-03
ERING	6 7 8	20• 19• 20•	6 7 8		6.5450+00 6.5450+00 6.5450+00	6 7 8	4.1667- <u>0</u> 3 3.9583-03 4.1667-03
CENTER	9 10 11	24 • 24 • 25 •	9 1 () 1 ()	4.8∵⊅≎≔∂3 4.8∵⊅≎≔∂3 5.2°⊋¤≕∂3	1 • 0 9 0 8 + 0 1 1 • 0 9 0 8 + 0 1 1 • 0 9 0 8 + 0 1	9 10 11	8.3333-03 8.3333-03 8.6806-03
	1 2	27.	1 2	5.4000-33	1.0908+01	12	9.3750-03

TOTAL HIT = 207.

VIEW FACTOR = 4.1400-02 RECIPR VF = 3.3120-03

4. PROGRAM CHARACTERISTICS

The following characteristics of executing the SRB thermal radiation program are discussed.

- The code is stored on a 7-track tape which can be read into a Univac 1108 Exec 8 computer by the following control cards.
 - @ RUN
 - @ ASG, T TAPE1, T, tape number
 - @ REWIND TAPE1
 - @ COPY, G TAPE1, TPF\$
 - @ FREE TAPE 1

When either IPLUME = 3 or 4, an additional tape needs to be assigned.

@ ASG, T 10, T, SAVEO5 (for IPLUME = 3) @ ASG, T 10, T, (tape number) (for IPLUME = 4)

The source program and the relocatable elements takes 33 blocks on tape. If the absolute elements are included, the length is extended to 61 blocks. There are two absolute elements, DP and SP, corresponding to dual plume program and single plume program, respectively.

- The program has to be mapped before execution. The control cards for mapping are as follows:
 - @ MAP, IS DP, DP IN MAIN LIB SYS\$*MSFC\$.
 - @ XQT DP

The core storage taken up by the dual plume program is 50 K. The core requirement for the single plume program is about the same (49 K).

e The core storage requirement for the program varies with the array assignments, which can be done by changing the parameters in the PDP element. The values used in the current version of the program on tape are as follows:

ISEG = 18, JSEG = 10, PPT = 10, NTMAX = 10, NRING = 12, NSIDEA = 250

where

ISEG = number of regions in the plume in the axial direction

JSEG = number of regions in the plume in the radial direction

PPT = number of plume properties

NTMAX = maximum number of target surfaces

(NTARGT < NTMAX)

NRING = maximum number of divisions in the radial direction on the constraint disks

(NRING > MAX(NRING1, NRING2))

NSIDEA = maximum number of view point areas on the target surface (NSIDEA > NN1*NN2).

Whenever the dimensions are changed, the program elements involving the dimensions need to be recompiled before execution. To recompile the affected program elements, one needs simply to include the following card in the run stream.

@ ADD, P • FORCARDS

• To obtain a listing of the entire program, the control card shown below is used after the source program file has been copied into core. The printout takes 90 pages.

@ ADD, P •PRTCARDS

• To obtain a punch card deck of the entire program, the control card shown below is used after the source program file has been copied into core. The punch card output is approximately 3700 cards.

@ ADD, P •PUNCARDS

- The run time of the program depends very much on the case at hand. The following examples serve to indicate the estimate of a run.
 - a. When IPLUME = 3 option is used to generate the data tape for a plume, the run time depends on the attenuation and absorption of the plume. To complete a data tape with 100,000 sample trajectories requires 65 minutes for sea level plume with afterburning and 35 minutes for a 72,000 ft plume.
 - b. It takes about 10 seconds to read 10,000 sample points from data tape.
 - c. It takes 25 minutes to run 25,000 samples in the dual plume calculation (IPLUME = 1) with three target surfaces. The same run takes about 2 minutes if the data were read from a tape (IPLUME = 4).

d. It takes about 4 minutes to compute 10,000 samples in a view factor calculation involving two target surfaces. A similar run with 40,000 samples requires 16 minutes of computer time.

These runs were executed on the Univac 1108 computer at NASA-MSFC.

5. PROGRAM LISTING

The entire source program is listed on pages 36 through 117. The program elements are listed in alphabetical order except the PDP DIMENS, which defines the dimension parameters and the COMMON blocks and is listed first.

SRB PLUME THERMAL RADIATION PROGRAM LISTING

DATE 030576

		• • • • • • • • • • • • • • • • • • •
ELT.L DIM	EN5	·
LTOO7 RLI	870 03/	05-11:42:51-(0,)
σοηοι	000	DIM PRUC
100002	000	PARAMETER ISEG=18, JSEG=10, PPT=10
იი <u>იცა</u>	000	PARAMETER 1JSEG-ISEG-JSEG, 1PT=1SEG+1, JPT=JSEG+1, IJPT=IPT-JPT
400000	000	CUMMON/PROPTY/PROP(PPT, IPT, JPT)
620305 <u> </u>	000	CUMMON/RESULT/ 10.1015K, IDAREA, KRING KPHI.DISTNS.XX(3)
90000	000	CUMMUN/IN1/IX.JX.IRGN.JRGN.NSTART.1SO.SIGBET.REX.GAMAA.SIGMA
000n0 7	co o	COMMON/IN2/ HZ(IPT) HZCUBE(IPT) HIHZCB(IPT) Z(IPT)
ចច្ចប្រជាព	000	CUMMUN/IN3/ GAMMAS(JSEG), TANG(JSEG), TANG2(JSEG), CEMMA(JSEG),
00099 8	000	P3TANZ(JSEG),TNG2(JPT)
G 2991 D	000	COMMON/IN4/ IREMIT(IJSEG), NEMIT(IJSEG), ISCAT(ISEG, JSEG)
11000	000	CUMMON/INS/TAU(ISEG.JSEG), TAUP(ISEG.JSEG), TAUG(ISEG.JSEG),
000012	000	• XNHU(IJSEG), CHIBTA(IJSEG)
BC9013	<u> </u>	CUMMON/CNST:/SA.SB.SC.SD.SE.SF.SG.SH.SI.SJ.C1.C2.C3.C4
P1000	000	CUMMON/CNST2/A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,AK,A1K
០០បុភ [5	000	CUMMUN/CHST3/S1,52,53,54,55,56,57,58,59,C1K,C2K,C3K,C4K
0000416	000	COMMON/CNST4/QA.QB.QC.QD.QE,IEMIT.JEMIT.KEMIT.IEVENT.JEVENT.
560017	030	JNDEX, INDEX, KNDEX
C(3-)1B	200	CUMMON /CNST5/P1,TWOPI.HALFPI.STFBLZ.RADIAT.H.IPLUME
C10a19	_ 233_	CUMMON/TRIG/SINETA, COSETA, TANETA, COST, THETA, THETA, PHII, ETA, ALPHI
LUU1179	บอ	COMMON/QP/TTNG(JPT),TTNG2(JPT),V(1J5EG)
G('51)2 <u>1</u>	000	END
900022	ឧ១១	GEOM PROC
000013 <u> </u>	000	PARAMETER NIMAX=10, NRING=12, NSIDE=250
Ს ᲡᲘᲡ24 .	000	COMMON/ONCE/ NTARGI, COEF(NTMAX, 10) DATA (NTMAX, 16) DISKEQ (NTMAX, 5
£60452	çço	• I BODY (NTMAX) ROOND (NTMAX) PLAREA (NTMAX) NAREA (NTMAX 3)
000026	000	<pre> •VLCTOR(NTMAX,NSIDEA,3).VAREA(NTMAX,NSIDEA).RRING(NTMAX,2) </pre>
590uz <u>7</u>	<u> </u>	• CKING (NINAX NKING , 2) NCKING (NTHAX , 2) DPHIC (NTMAX) RBONDUIN (MAX)
ចិច្ចប្ប 2 ត	000	MEANCINTMAX.NRING.2).SREF(NTMAX.3.2).TREF(NTMAX.3.2)
600n29 <u></u>	<u> </u>	COMMON VEINAL HIT(NSIDEA NTMAX . 3)
060030	000	END ·

1	SUGROUTINE ATTEN(IXPR,RI,RIS,H,JZ,ZESCAP)	
2	INCLUDE DIMOLIST	
3	J=1	
4	CALL RANDOM(U)	
5	XY = -ALOG(U)	
6 7	ATEN = G.G	
	SEVENT # 0.0	
8	IF (COSETA -GT. n.6) GO TO 300	
Ŷ	IF(JNDEX.LE.J2) GO TO 500	
<u> </u>	1F(COST -LT- n-7) GO TO 550	
1	C ATTENUATION LOUP FOR THETA LT 90 DEG AND ETA GT 90 DEG	
2	530 IF (HZ(INDEX) .GT. Z(J)) GO TO 400	
7	C BUNDLE FROM REGION (INDEX, JNDEX) INTERSECTS REGION (INDEX, JNDEX+1)	
4	SMAX = (2(J) = 2(J+1))/COSETA	
<u>s</u>	IF (J-E4-1) SMAX# (Z(1) - H 1 / COSETA	
6 7	501 SP = (XY - ATEH) / TAU(INDEX, JNDEX)	·· ·
tr tr	IF (SP. LE. SNAX) GO TO 600	
9	IF (JNDLX *EQ. JRGN) GO TO 1000 ATEN = ATEN + TAU(INDEX.JNDEX)*SMAX	
j j	JADEX = JIPK + 1	
ř	SEVENT # SEVENT + SMAX	
2	3 = 7+1 2F4F41 - 2F4E41 + 2447	
<u>.</u>	GO TO 503	
4	HOG SHAX = {HZ(INDEX) - Z(J-1)}/COSETA	
5 .	C BUNDLE FROM REGION (INDEX, JNDEX) INTERSECTS REGION (INDEX-1, JNDEX)	
6	IF [J.Ew.1] SHAX = (HZ(INDEX)-H)/COSETA	
7	HOL SP = (XY-ATEN) / TAULINDEX, JNDEX)	
B	IF (SP +LE+ SHAX) GO TO GOD	
9	IF(INDEX .EQ. 1) 60 TO 1000	······
อ	TEN = ATEN + TAU(INDEX, JNDEX) .	
1	INDEX = INDEX - 1	
ટ	SEVENT * SEVENT. + SMAX	
3	402 IF (HZ (INUEX) . GT . Z (J)) GO TO 403	
4	SMAX = (Z(J) = HZ(INDEX+1))/COSETA	
5"	60 10 531	
Δ	HG3 SHAX = (HZ(INDEX) - HZ(INDEX +1))/ COSETA	
1	SP = (XY-ATEN) / TAU(INDEX, JNDEX)	
13	IF (SP-LL, SMAX) 60 TO 600	
9	IF (INDEX .EQ. 1) GO TO 1000	
<u>0</u>	ATEN = ATEN + TAU(INDEX, JNDEX)+SMAX	
1	INDEX = INDEX-1	
2	SEVENT = SEVENT + SMAX	
3	GO TO 402	
. !	C ATTENUATION LOOP FOR THETA GT 90 DEG AND ETA GT 90 DEG	
15	550 IF (H2(INDEX) .GT. 2(J)) GO TO 450	
7	C BUNDLE FROM REGION (INDEX, JNDEX) INTERSECTS REGION (INDEX, JNDEX-1)	
	SMAX = (Z(J) -Z(J-1))/COSETA	
. u . u	IF(J.EQ.1) SMAX = (Z(1)-H)/COSETA	
9 . n	551 SP = (XY-ATEN)/ TAU(INDEX, JNDEX) IE(SP. LE SMAY) CO. TO. 402	
0 1	IF(SP.LE.SMAX) GO TO 600 ATEN = ATEN + TAU(INDEX, JNDEX) • SMAX	
. 2	JNDEX = JNDEX = [
3	SEVENT = SEVENT + SHAX	
, 1	J # J+)	

56	IF (JNDEX.LE.JZ) GC TO 500
57	GO TO 550
58	450 SHAX = (HZ(INDEX) -Z(J-1))ZCOSETA
59	C BUNDLE FROM REGION(INDEX, JNDEX) INTERSECTS REGION(INDEX=1, JNDEX)
. 5 O	IF (J.EW.1) SMAX = (HZ(INDEX) - H)/COSETA
61	SP = (XY-ATEN) / TAU(INDEX, JNDEX)
62_	IF(SP .LE. SMAX) GO TO 600
63	IF (INDEX .EQ. 1) GU TO .100G ATEN = ATEN + TAULINDEX, JNDEX) + SMAX
64	INDEX = INDEX ~ I
6° .	SEVENT = SEVENT + SMAX
-63	451 IF (HZ(INDEX) .GT.Z(J)) GO TO 452
н	SHAX = (Z(J) + HZ(INDEX +1)) / COSETA
64	60 TO 551
70	452 SMAX = [HZ(INDEX] = HZ(INDEX +1)]/COSETA
-71	SP = (XY~ATEN) / TAU(INDEX.JNDEX)
12	IF (SP .LI . SHAX) GO TO 600
73	IF (INDLX .EQ. 1) GO TO 1000
74	ATEN = ATEN + TAULINDEX, JNDEX) + SMAX
75	INDEX = INDEX - 1
10	SEVENT+SEVENT+SMAX_
7.7	60 TO 451
	335 IE (Aubriver F - 71) CO 10 351
79	F (CUSTALTADAD) GO TO 750 C ATTENUATION LOOP FOR THEFALT 90 DEG AND ETA LT 90 DEG
ij	30) IF (HZ ((NDEX+1).LT.Z(J)) GO TO 800
។ 1 a 2	C BUNDLE FROM REGION (THREX JNDEX) INTERSECTS REGION (THREX JNDEX + 1)
43	SMAX = (Z(J) - Z(J-11) / COSETA
84	IF(J. C. 1) SMAX = (2(1) - H) / COSETA
43	30? SP = (XY - ATEN) / TAU(INDEX, JNDEX)
-	IF (SP .LE. Sha4) 60 TO 630
8/	IF (JNDLX .ED. JRGN) GO TO 1001
133	ATER = ATER + TAULINDEX JNDEX) +SHAX
89	I+X3GAC = X3GAC
700	SEVENT = SEVENT +SMAX
71	J = J+1
42	C BUNDLE FROM REGION (INDEX, JNDEX) INTERSECTS REGION (INDEX+1, JNDEX)
93 94	BOD SHAX = INZ(INDEX+1) - Z(J+1)) /COSETA
95	IF(J.Eq.1) SMAX = (H7(INDEX+1) - H) / COSETA
76	SP = (XY+ATEN) / [AU(INDEX.JNDEX)
97	JF(SF-LE-SMAX) GO TO 603
98	IF (INDEX .EQ. IRGN), GO TO 1001
99	ATEN = AIEN + TAU(INDEX, JNDEX) +SMAX
100	INDEX = INDEX+1
الاآ	SEVENT = SEVENT → SHAX
132	801 1F (HZ([NDEX+]) .LT. Z(J)) GO TO 802
17.3	SMAX = {Z(J) = HZ(INDEX)} / COSETA
3 - 1	GO TO 332
165	BO2 SMAX = (HZ(INDEX +1) - HZ(INDEX)) / COSETA SP = (XY-ATEN) / TAU(INDEX, JNDEX)
-0	IF (SP.LE.SHAX) GO TO 600
1 ;)	IF (INDEX.LQ. IRGN) 60 TO 1001
_1 58 1)₹	ATEN = AIEN + TAU(INDEX, JNDEX) + SMAX
, st	. INDEX = INDEX +1
111	SEVE IT = SEVENT + SHAX
• •	

J100 No.	
112	GO TO BO:
113	C ATTENUATION LOOP FOR THETA GT 90 DEG AND ETA LT 90 DEG
114	750 IF(HZ(INDEX +1) -LT. Z(J)) GO TO 650
115	C BUNDLE FROM REGION(INDEX. JNDEX) INTERSECTS REGION(INDEX. JNDEX-1)
115	SHAX = (Z(J) - Z(J-1)) / COSETA
:17	[F (J .EQ. 1) SMAX = (2(1) - H) / COSETA
118	751 SP = (X7 - ATEN) / TAU(INDEX, JNDEX)
119	IF (SP .LE.SMAX) GO TO 600
173	ATEN = ATEN + TAU(INDEX, INDEX) - SMAX
121	JNDEX = JNDEX = 1 SFVENT = SEVENT + SMAX
122	J = J+1
124	C IF JUDEX = JZ BUNDLE WILL NOT INTERSECT CONE (JUDEX - 1) USE THETA LT 90 DEG LOOP
125	IF (380) F x 3 F x 3 7 1 60 TO 301
175	GU 10 750
127	C BUNDLE FROM REGION (INDEX. JNDEX) INTERSECTS REGION (INDEX+1. JNDEX)
128	650 SMAX = (HZ(INDEX +1) - Z(J-1)) / COSETA
129	(F (J .LU. 1) SMAX = (HZ(INDEX +1) - H) / COSETA
1 1 2	SP = (XY-ATEN) / TAU(INDEX, JNDEX)
131	IF (SP +LE. SHAX) GO TO 600
112	IF (INDEX .EQ. IRGN) GO TO 1001
1 13	ATEN = ALEN + TAU(INDEX, JNDEX) - SMAX
134	INDEX = 100 K+1
135	SEVENT & SEVENT + SMAX
:36	651 IF (HZ(16DEX +1) -LT- Z(J)) 60 TO 652
127	SMAX & (Z(J) - HZ(INDEX)) / COSETA
139	60 TO 751
139	652 SMAX = (HZ(INDEX+1) - HZ(INDEX)) / COSETA
140	SP = (XY-ATEN) / TAU(INDEX, JNDEX)
1 4 1	1 (SP.LL. SMAX) GO TO 603
્ય2 ગુ43	IF (INDEX .EQ. IRGN) GO TO 1001 ATEN = ATEN + TAU (INDEX, JNDEX) • SHAX
144	INDEX = INDEX+1
145	SEVENT + SEVENT + SMAX
176	60 10 651
147	SEC CONTINUE
1 5 8	C CALCULATE CHURDINATES OF SCATER EVENT
144	IEVENT = INDEX
1.0	JEVENT = JNDEX
151	SEVENT = SEVENT +SP
1 2 2	SESNET = SEVERITOSINETA
153	H=H+COSLIA+SEVENT
154	SS4SESHET **2
122	H25#R1S+SS+2. +SESNET+R1+COSTALPHA1
136	RZ#SQRT(RZS)
15/	ARGUMI=(K15+R25=S5)/(2+0R10R2)
158	
160	
150	PH11=PH11+BETA
142	A A A
لة	IF (PHII.GI.TAOPI)PHII=PHII-TWOPI
54	
1-5	202 R15=R25
٥٥	
167	

5 B	IF (REDGE . GT . R1) GO TO 1112
9	JNDEX=JNUEX+1
70	IF (JNDEX LE, JRGN) GO TO 1112
7 l	IXPRat
72	IF(COSETA.GT.O.9) IXPR=2
73	ZESCAP=2(J+1)
74	SIGBET=SEVENT
75	RETURN
7.6	1112 KNDEX=JRGNe(INDEX=1)+JNDEX
/ 7	CALL RANDOM (U)
7.8	IF (U.LI. CHISTA(KNDEX)) GO TO 200
7 9	ISCAT(INDEX, JNDEX) = ISCAT(INDEX, JNDEX) + 1
ati	IXPR=3
H 1	RETURN
ម.2	SCO THEMITIKNDEX) = [REMITIKNDEX]
i3 3	IXPR=3
4.4	RETURN
,; ^c ,	Inga IXPR#1
36	ZESCAP=Z(J)
57	SIGHET ESEVENT+SMAX
19	RETURN
47	1051 IXPR=2
99	ZESCAP#2(J)
7	SIGHET = SEVENT+SMAX
92	REJURN
€ 3	END .
	The second section of the sec
.5 CH358	

		SUBROUTINE CHOSE (P1.P2.ROUTS.SMIN. IOUT)
		DIMENSION P1(3) . P2(3) . ROOTS(4,2) . SHIN(4) LINSIDE(2)
		RANGE (X1.Y1, Z1, X2, Y2, Z2) = SQRT ((X2-X1) 0 + 2 + (Y2-Y1) +02+(Z2-Z1) +02)
		C®TUDI
		EPS=1.0k-4
		AL=RANGE(P1(1),P1(2),P1(3),P2(1),P2(2),P2(3))
-		DO 10 11=1,2
		TX=R00T5(1,11)
-		ŤY=ROOTS(2,11)
		12=R00T5(3,11)
		ALI = AB > (ITX - P1(1)) + (P2(1) - P1(1)) + (TY - P1(2)) + (P2(2) - P1(2))
		A(77-9)(3) (6P2(3)-P1(3))/Ab
•		AL2=ABS((TX=P2(1))+(P2(1)=P1(1))+(TY=P2(2))+(P2(2)=P1(2))
		+ (T/-P2(3)) (P2(3)-P1(3)) /AL
		IF (ABS((AL+(AL1+AL2))/AL).GT.EPS) GO TO 20
	,	INSIDE(II)=1
		90 TO 12
	22	INSIDE(11)=0
	10	CONTINUE
	• =	IF (INSIDE(1).EQ.8.AND.INSIDE(2).EQ.Q) GO TO 23
		IF (INSIDE(1).EQ.01 GO TO 21
		IF (INSIDE(2).EQ.0) 60 TO 22
		IF (KUOIS(4,1).GT.KOOTS(4,2)) GO TO 21
	22	SMIN(1)=ROOTS(1.1)
		"SMIN(2)=kU0TS(2,1)
		SMIN(3)=ROUTS(3.1)
• •		SMIN(4)=KOOTS(4,1)
		90 10 100
	21	SMIN(1)=ROUTS(1.2)
		SM1N(2)=ROUTS(2,2)
• •	•••	\$MIN(3)=800TS(3,2)
		SHIN(4)=KOOTS(4,2)
		G0 T0 100
	23	[00] =]
	100	RETURN
	• • • •	END
DIF	ADC	

l a	•	SUBROUTINE DIFVDC(SU.PHRANG.U)
- }		HODIFIED DIFVOC FOR HADIATIVE HEAT TRANSFER PROGRAM TESTING PURPOSES.
4	č	
5		DIMENSION SU(3),U(3)
6		PI=3.14159
7		CALL RANDOM (RN1)
8		CALL RANDOM (RNZ)
4		TH=PIOZ.*KNZ
10		HALFPI=P1/2+0 GO TO 30
1 1		th frauding 2 2 auth
1.2		PH=ASIN(SQRT(RNL))
13		DIFF=AB>(PHRANG-HALFPI)
14		1F (D1FF - LT - 0 - 1) GO TO 20
15		PH*PH+PHRANG/HALFPI
	20	CONTINUE.
1.7		UIP*COS(PH)
16		U2P=5[N(PH) • CQ5(TH)
19		U3P#SIN(PH) •SIN(TH)
Z 1		15 (DEC+C) + 1 • C • (0)
?2		PHS=ACOS(SU(1)) THS=HALFP1+ATAN2(SU(3),SU(2))
23		U(1) = U1P • COS (PHS)
24 -	. —	U(2) = UIP+SIN(PHS)+SIN(THS)+U2P+COS(THS)-U3P+COS(PHS)+SIN(THS)
25		u(3) =-UIP+SIN(PHS). COS(THS)+U2P+SIN(THS)+U3P+COS(PHS)+COS(THS)
25 21		60 TO 50
	31	O PH*ACOS(1RN1-RN1)
2년		U 1)=COS(PH)
30		_U(2)=SIN(PH) «COS(TH)
31		U(3)=SIN(PH)+SIN(TH)
3.2	5:	O_RETURN
33		END

	•TPF\$.DISK SUBROUTINE DISK (IFOR.NDATA	.P.A.XT.IHXX)
<u>'</u>	C IFORDO, HEAD INPUT DATA	** ** * * * * * * * * * * * * * * * *
	IFOR #1, CHECK FOR HIT	
· }	C INIT EQ D. NO HIT ON THE DI	SK
,	C INIT GE B. SCORE A HIT. EQU	
)	INCLUDE GEOM.LIST	
,	DIMENSION A(3),P(3),XT(4)	- , , , , , , , , , , , , , , , , , , ,
3	DETMNT(X11.X12.X13.X21.X22	X23,X31,X32,X33) =
' . "		•X22•X33 + X21•X32•X13 + X31•X12•X23
}	2 - X11	•x23•x32 - x22•x13•x31 - x33•x12•x21
	{H1T=3	
	XT(4) = 2 • E 30	
1	P1=3.14159	
	TWOP1=6+28318	
•	NA=[NT(DATA(NDATA.1))	
·	NR=INTIDATA (NDATA . 2))	
,	ROUT=DATA(NDATA,4)	
} ,	X1=DATA(NDATA,5)	
,]	Y1=DATA(NDATA,6)	
, !	Z1=DATA(NDATA,7) X2=DATA(NDATA,8)	
	YZ=DATA(NDATA,9)	•
· }	Z2=DATA(NUATA,19)	
ì	A1=DATACHUATA.11)	,
,,	AZ=DATA(NDATA,12)	
,	A3=DATAINDATA,131	
,	RINERKING (NDATA.1)	
3	DR=(ROUT-RIN)/FLOAT(NR)	
7	DT=TAOPI/FLOAT(NA)	
)	RMAG=5QRT((X2-X1)**2 + (Y2*	·Y1)**2 + {Z2-Z1}**2}
i	B1 = (X2 = A1) / RMAG	•
2	D2#172+711/RMAG	
3	B3=(22-21)/RMAG	
4	ABI=A2+u3-A3+B2	
	AB2=A3+u1-A1-83	
·	AB3#A1 • 62 - AZ • B1	
<i>!</i>	1F (1FOR-1)	100,200,200
,	100 CONTINUE WRITE (6,190)	
,)	DISCR=DETMNT(B1.B2.B3.A1.A2	1 49 401 409 4093
<u></u>	RMAG=RIN-UR/2.0	:
2	NSIDE A = B	
3	NRR=0	
4	110 RMAG=RMAG+DR	
	IF (RMAG.GT.ROUT)	GO TO 150
5	AREA=RMAG+DR+DT	
7	TH==UT/2.0	
В	NSIDEX=NRR+NA	
9 ~ ~~~	NRR=URR+1	
)	120_TH=TH+DT	
1	IF (TH.G. (WOPI)	GO TO 110
è	NSIDEX=NSIDEX+1	
3	SINTH=SIN(TH)	•
4	COSTH≃CUS(TH)	

7	C2#DETHNT(B1.COSTH.B3.A1.3.A3.AB1.SINTH.AB3)/DISCR
	C3#DETHNT(B1,82,COSTH,A1,A2,Q0,AB1,AB2,SINTH)/DISCR
9	CMAG=SQRT (C1+C1+C2+C3+C3+C3)
	VECTOR (NDATA, NSIDEX.1) = X1+RMAG • C1/CMAG
3	VECTORINDATA, NSIDEX, 2) = Y1+RMAG • C2/CMAG
5 1	VECTOR (NDATA , NSIDEX , 3) # 21+RMAG + C3/CMAG
52	VAREA (NUATA , NSIDEX) = AREA
3	RN51DE=FLOAT(NSIDEX)
4	#RITE (6,191) KNSIDE, (VECTOR (NDATA NSIDEX 1) 1 1 1 2 3).
, 5	VAREA(NDATA, NSIDEX)
٠ <u>٠</u>	60 10 120
» <i>!</i>	15C CONTINUE
· B	60 10 563
٠,	190 FORMAT (///39H VIEW POINT VECTORS OF AN ANNULAR DISK /)
'O	191 FORMAT [1x, F7. 3.4x, 4HVP1=, E12.6, 3x, 4HVP2=, E12.6, 3x, 4HVP3=, E12.6
7 1	• 8X,5HAREA#,E12.6)
12	230 CONTINUE
1.3	DENUM-41+A(1)+A2+A(2)+A3+A(3)
74	IF (AHS (DENOM) . LT. (. E - 20) GO TO 500
7.5	DN = -(A1+(P(1)-X1)+A2+(P(2)-Y1)+A3+(P(3)-Z1)) / DENOM
74	(F (DN-LT-0.)
7.7	XT(1)=P(1)+A(1)*DN
7 B	XT(2)=P(2)+A(2)+DN
7 9	XT(3)=P(3)+A(3)+DN
10	HXI=54RT((XT(1)=X1)=+2+(XT(2)=Y1)=+2+(XT(3)=Z1)=+2)
: 1	IF (KXT.GT.ROUT .OR. RXT.LT.RIN) GO TO 500
12	XT(4)=0N
2.3	NRX=INT((RXT-RIN)/OR)
<u> 4</u>	C1=(XT(1)=X1)/RXT
15	C2=(XT(2)-Y1)/RXT
	Ç3=(XT(3)=Z1)/RXT
s /	TH=ACOS(C1+81+C2+82+C3+83)
5 B	DET=DETMIT(C1,C2,C3,A1,A2,A3,81,82,B3)
59	IF (DET.LT.O.) THOTWOPI-TH
/0	NTH=INT(TH/DT)+1
3 1	IHIT=NRX•NA + NTH
. 2	500 CONTINUE
/3	RETURN
, , 14	END

44

1	2+TPF\$.EHITT SUBROUTINE EMITTINGSN,X,U,H,RIS,RI)
2	INCLUDE DIM.LIST
3	DO 103 I = I NRGN
4	X=X+XNHU(1)
5	XD = X/U
6	IF (XD.GT.1.) GU TO 200
7	IDO CONTINUL
8	2GO TEMIT = (1 - 1)/JRGN + 1
9	JENIT = 1 - JRGN + (IEHIT-1)
0	INDEX = IEMIT
<u> </u>	JNDEX # JEMIT
2	IEVENT = IEMIT
3	JEVENT = JEHIT
4	KENIT # 1
.5	KNDEX = 1
6	C FIX EMISSION COORDINATES
1	CALL RANDON(U)
18	H = (H1H2CB(IEMIT)+U + H2CUBE(IEMIT)) 00.33333
9	CALL RANDOM(U)
23	RIS = H. * 2 * (U . [TNG2(JEMIT+1)-TNG2(JEMIT)]+TNG2(JEMIT))
21	RI = SUNT(HIS)
2 2	C SELECT EMISSION DIRECTION
23	CALL RANDOM(U)
24	THETA=ThOP1eU
25 .	CALL RANDOM(U)
26	COSETA = 1. 2.0U
21	SINETA = SURT(1 COSETA ** 2)
<u> 28</u>	TANETA = SINETA / COSETA
24	C LL RANDOM (U)
30	PH11=TWOP1+U
31	RETURN
J2	END

1	SUBROUTINE ESCAP (X,A)	
2	INCLUDE GEOMILIST	
3	INCLUDE DIMILIST	23/4/79 0 24 - 124 - 1
4	C PUSITIVE X(1) IS IN THE PLUME EX	KIT DIRECTION.
_	C DEI THE OUTSIN MI THE CENTER OF TH	HE PLUME BASE PLANE.
6	DIMENSIUM X(3),A(3) NEMIT(KENIT) = NEMIT(KEMIT) + 1	
7	NEMIT (KENIT) = NEHIT (KEHIT) + 1	
9	IF (IPLUME.EQ.3)	GO TO 450
y	CALL SURTING (X.A)	
9	1F (1D.Eq.Q)	60 TO 300
1	DO 100 ITG=1,NTARGT	
2 _	IF (ITG.NE.ID)	GO TO 100
3	DO 110 L=1.3	
4	1F (L.HE. (1D[SK+])	GO TO 110
5	A14 - P1 8 61 5 A 4 1 O 1 1	
6	00 120 [MA#1:NA 1F (INA:HE:TOAREA)	
7	IF (INA.HE.IDAREA)	GO TO 120
B	HIT(INA, ITG, L) = HIT(INA, ITG, L) +1	
¥	120 CONTINUE	
20		·
21	100 CONTINUE	
2 2	300 CONTINUE	
2.3	M=M+1 (**	
24	GO TO 530	
. . .	45C IF (M.GE.I)	GO TO 455
26	WRITE (6,451)	
28	451 FORMAT (////IDX.45H IPLUME#3 IN	DUAL PL IS NOT APPLICABLE
24	500 RETURN	
30	LND	
		•
, S E S C	APL	

1	SUBROUTINE ESCAPE (H. HI. IXPR. RI. RIS. ZESCAP)	
-	INCLUDE GEON LIST	
2 3	INCLUDE DIMALIST	
4	DIMENSION X(3).A(3)	
5	C SET THE ORIGIN AT THE CENTER OF THE PLUME BA	SE PLANE.
6	C POSITIVE X(1) IS IN THE PLUME EXIT DIRECT!	ON.
7	NEMIT (KLHIT) = NEMIT (KEMIT) + 1	
Ħ	X(1)=H+d1	
Ψ	A(1)=CUSETA	
ַם	A (2) #SINE TA • COS(THETA)	
1	A(3)=SINETA+SIN(THETA)	
2	RaR1	
3	X(2)=R(*CO5(PH11)	
4	X(3) #R+51N(PHII) ETA#ACU5(COSETA)	·
5	IF (IPLUME.EQ.3)	GO TO 450
7	CALL SORING (X,A)	
, <i>i</i>	1F (10.L4.0) GO TO 281	
9	DO 183 ITG=1.NTARGT	
. D	IF (ITG.NE.ID) GO TO 100	
2 I	DO 400 L=1.3	
2 2	IF (L.NL. (IDISK+1')) GO TO 400	
2 3	NA=NAKEA(ID,L)	
24	DO 203 INA=1.NA	
25 🧍	IF (INA.NE.IDAREA) GO TO 200	
26	HIT(INA, ITG. L)=HIT(INA, ITG. L)+1.	
27	200 CONTINUE	
28	458 CONTINUE	
29	103 CONTINUE	
· 1	GO TO 300	•
1 i	300 CONTINUE	_
32 33	MaN+1	
34	GO TO' 500	
<u>.</u>	450 CONTINUE	
36	IF (M.GE.1)	GO TO 455
37	NRGN=18GN+JRGN	
38	WRITE (IC) IRGN, JRGN, RADIAT, REX	
39	DO 451 K=1.10	
40	DO 451 I=1.IRGN	
41	451 WRITE (10) (PROP(K,1,J), J=1,JRGN)	•
42	. WRITE (10) (GAMMAX(J). J=1.JRGN)	
43	K=0	
44	DO 452 1=1, IRGN WRITE (10) (TAUP(1,J), J=1, JRGN)	
45	WRITE (10) (TAUG(1.J), J=1.JRGN)	
46	WRITE (10) (TAU (1,J), J=1,JRGN)	
47 48	WRITE (10) (CHIBTA(K+J), J=1, JRGN)	
49	WRITE (10) (XNHU (K+J).J=1.JRGN)	
50	HZ(1+1)=HZ(1+1)=H1	
51	WRITE (10) H2(1+1)	·· ——·
52	HZ(1+1)=HZ(1+1) + H1	
53	452 K=K+JRGN	•
54	455 CONTINUE	

·	RXIT=ZESCAP+TANGIJRGN)	
	X(2)=X(2)+SIGBET+A(2)	
)	x(3)=x(3)+51G8ET+A(3)	
·	PHIX=ATAN2(X(3),X(2))	PHIX=PHIX+TWOPI
)	IF (PHIX.LT.O.)	1.11.7.0
	THETAX=THETA=PHIX	THEYAX THETAX+TWOP!
2	IF (THETAX.LT.Q.)	
}	[KHII=O	
1	DO 456 I=1.NRGN	
S	456 IRMIT=IRMIT+IREMIT(1) CALL IOPKT (M. IRMIT, X(1), RXIT, E	TA THETAX PHIX.1)
5	CALL TOPKT IN THATTAKA	ENDFILE 10
7	IF (M.GL.IX.JX)	
<u>B</u>	500 RETURN	
9	END	
	APE	
S FR17	APE	

	2020TPF5	
		SUBROUTINE FRYAPE (HI, NRGN, NPLR)
2.	<mark>ç</mark>	READ DATA TAPE WITH LOPKT (M IRHIT & R E T P 10)
3		KEY=1, COMPUTE THE HEATING RATE ON GEOMETRY ENSEMBLE
<u>4</u>		KEY=2, SHALL TARGET AROUNG THE PLUHE, DELPHI=2PI
5		KEY=3. SINGLE SMALL TARGET ENTIRELY IN DELPHI. DELPHI IN DEGREES.
ξ.	***	KEY#4, SINGLE SHALL TARGET, USE COSINE PROJECTION OF DELPHI
ን ብ	(TX, TY, TZ, IS CENTER OF SMALL GEOMETRY
9.	· · .	MPLM=1. SINGLE PLUME, 2. DUAL PLUME, NTRAJ IS NO OF PAIRS OF TRAJ
		INCLUDE GEOM, LIST
<u> </u>		INCLUDE DIMALIST
2		DIMENSION XP(3),PP(3) DIMENSION XI31 P(3) TEMPLITINGIDGA 33 TPLNE(13) IDLNE(13) PPLNE(13)
3		DIMENSION X(3), P[3], TFMHIT (NSIDEA, 3), IPLME(12), JPLME(12), KPLME(12) DIMENSION 1Z(12), TRU(12)
4		PI=3.14159
; ·		TWOPI=6.28318
6	•	K1C=0
Ž	50	READ (5.10) KEY.ITG.NTRAJ.DELPHI.TX.TY.TZ
8		IF (NIRAJ.EQ.D) GO TO 900
9		REAIND TO
O		K1G=K10+1
1		READ (12) IRGN.JRGN.RADIAT.REX
2		NRGN=IRUNOJRGN
3		DO 60 K#1.10
4		00 60 I=1, IRGN
5 -	60	READ (10) (PROP(K,1,J), Jal, JRGN)
6		READ (18) (GAMMAX(J), J=1, JRGN)
7 ´		CANNA CARLENA DE CONTRA
8		TANG(JRGN)=TAN(GAMXX)
9		K=2
3		00 61 I=1, IRGN
1		REAU (IG) (TAUP(I.J), Jal.JRGN) .
2		READ (18) (TAUG(1.J), Jag.JRGN)
3		READ (IC) (TAU (I,J), J#I,JRGN)
4		READ (10) (CHIBTA(K+J),J#1,JRGN)
5		READ (12) (XNHU (K+J),J#1,JRGN)
6		READ (10) HZ(1+1)
7	61	K#K+JRGN .
9		WRITE (6.11) KEY.ITG.NTRAJ.DELPHI.TX.TY.TZ
9		WRITE (6,12) IRGN.JRGN.RADIAT.REX
2		1F (KLY.GT.0) GO TO 75
ı	•	WRITE (6.13)
2	,	WRITE (6,14)
3		DO 70 K=1,10
4		WRITE (6,17) K
5		DO 78 I = 1 , IRGN
b		WRITE (6,18) I. (PROP(K,1,J), J=1,JRGN)
1		FURMATI /// 49HI PROPERTIES IN PLUHE REGIONS //)
8	1402	FORMATI // 26H TP + (DEGREES KELVIN) /
9		1 ZOH TG - (DEGREES KELVIN)
٧.,		1 26H N - (PARTS/CM3) /
1		* 15H TAUP * (-) /
2		15H TAUG - (+) /
3		2 15H TAU - (-) /
4		3 2CH RP - (MICRONS) /
5		4 15h A/L + (+) /

```
5 15H RADFK - ( + )
7 30H HZ - ( EXIT RADII )
 57
                                                             111 )
           1403 FORMAT ( 10H
                               <u>. GAMMA =: 11El1e2)</u>
 59
           1405 FORHAT (/14.6H TP #. 11611.5
60
           8002 FORMAT ( 14.6H
                                 TG . 11E11.5
           1406 FORMAT L 14.6H
 61
                                 N = 11E11.5
           1812 FORMAT ( 14.6H TAUP . 11E11.5
 63
           1813 FORMAT | 14,6H TAUG#, 11E11.5
          1407 FORMAT ( 14.6H TAU=: 11E11.5
1408 FORMAT ( 14.6H RP =: 11E11.5
 54
 15
           1409 FORHAT ( 14.6H
                                 A/E=, 11E11.5
 67
           1410 FORMAT ( 14.6HRADFK=, 11E11.5
         1412 FORMAT ( 14,6H HZ =, 11811.5 //)
 ٥H
 64
             75 CONTINUE
                ?0
                                                                GO TO 78
 7 1
                WRITE(6,1400),
                WRITE (6,1402)
 72
 73
                ARITE( 6.1403 ) ( GAMMAX(J) , J=1,JRGN)
                K = 3
 74
 15
                DO 1434 [= 1.1RGN
                MKITE(6.1405) 1. (PROP(2.1.1).Jal.TRON)
 75
 71
                WRITE (6,8302) [, (PROP(5,1,J),J=1,JRGN)
 18
                181 TE ( 6 , 1436) 1 . 1PROP ( 1 . 1 . J) . J . J . JRGN )
 79
                WRITE(6,1812) I, (TAUP(I,J),J=1,JRGN)
 40
                WRITE(6,1813) L. (IAUG(I,1),J*1,JRGN)
 ы 1
                WRITE (6,1407) I. (TAU (1.J), J=1,JRGN)
, ø 2
                #RITE (6,1408) [, (PROP(3,1,J), J=1, JRGN)
8.3
                WRITE( 6,1409) 1 . ( CHIBTA(K+J), J = 1, JRGN )
WRITE(6,1410) 1. (XNHU( K+J), J=1,JRGN)
 85
                HZ(1+1) = HZ(1+1) - H1
                WRITE(6,1412) 1 . HZ[1+1]
 6/
                HZ(1+1) = HZ(1+1) + H_1
 88
            404 K=K+JRGA
             10 FORMAT (318,6F8.0)
 89
 99
             11 FORMAT [1H1,21HREAD FROM TAPE KEY=
                                                         ,12,5X,11HTARGET NO = ,13,3X,
                        11HSANPLE NO = ,17,3X,8HDELPHI = ,F6.2.5H DEG. ,5X, 10HIX,TY,TZ = ,3F7.3 /)
 Υį
 9 Z
             12 FORMAT (7H IRGN = ,13,3X,6HJRGN = ,13,10X.
 73
 9.4
                  25HTOTAL RADIANT HEAT RATE = .1PE10.4.7H WATTS
 95
                         6X.5HREX =, EPF8.2,3H CM // )
                        110X.5PHSUBSCRIPTION K IN PROPIK.1.J) ARRAY
 96
 47
                       //10X,5RHK=1, PARTICLE NUMBER DENSITY (P/CH+03)
                         15X SOHKEZ: PARTICLE TEMPERATURE (DEG KELVIN)_
 98
 99
                         /10X.50HK#3, PARTICLE RADIUS (MICRONS)
                         .5X,50HK=4. PROJECTED AREA OF PARTICLE (HICRONO.2)
រូល១
               FORMAT (10%, SOHK#5, GAS TEMPERATURE (DEG KELVIN)
101
                         .5X.50HK=6. STATIC PRESSURE (PSIA)
162
163
                         /10%.50HK=7, MOLE FRACTION FOR CO (-)
រុខ។
                         *5X*5CHK=8 MOLE FRACTION FOR CO2 (*)
/10X*5GHK=9, MOLE FRACTION FOR H20+(-)
105
                         15x150HK=1, HOLE FRACTION FOR HCL (-)
166
               FORMAT (/// 17H OUTPUT FOR PROP ,5X,3H1 =.13 /)
107
             18 FORMAT (13.1P10E12.4 )
108
169
             20 FORMAT (110,5x,1P5£14.5 )
110
             78 CONTINUE
:11
                DELPHI=UELPHI/57.29578
```

12	DELHIT=1.0	
13	IF (KEY.EQ.4)	DELHIT-DELPHI/TWOPI
14	IHISS=0	
15	ISCUREDO	
٠	IF (KEY+GT+O)	GO TO 90
17	IF (NEY+EQ+0)	GO TO 908
l B	N=0	
19	DO 81 1=1,12	
20	JPLME(1)=0	
2	KPLME(I)=J	•
22	LTRU(1)=0	
23 24	1/(1)=0 Pt IP(ME(1)=0	
25 - -	81 IPLME(1)=0 10UT=0	
25 26	1001*U JOUT=3	
20 21	KOUT=0	
27 28	[01] = 9 (01] = 0	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	OPH=TwOP[/12.n	
30	DET=P1/12.0	
31	82 PH=C.3	N
3 <i>1</i> 3 <i>7</i>	62 FN=0+3	- •
3. 3.		
34	IF (N.GT.NTRAJ)	GO TO 88
ว์ร่	[a]	40 10 80
36	J=1	•
37 .	83 CALL TOPKT (M. TRMIT. ZS.R. ETA. THETA	.PH1.23
38	85 CONTINUE	
37 -	. IF(25.LT.0.0) [Z(1)=[Z(1)+1	
43	IF(25.GE.c.O.AND.ZS.LT.2.0) IZ(2)=	IZ(2)+1
41	1F(25.GE.2.0.AND.25.LT.4.0) [Z(3)=	
42	[F(25.GE.4.D.AND.25.LT.6.g) 12(4)	
43	IF(25.GL.6.0.AND.ZS.LT.8.0) 12(5)=	IZ(S)+1
44	IF(25.GL.8.0.AND.25.LT.10.) IZ(6)=	
45	IF (25.66.13.AND.25.LT.12.) 12(7)=	
46	1F (.45.6E.12AND.Z5.LT.14.) 1Z(8)=	
47	IF (ZS.GE.14.AND.ZS.LT.16.) 12(9)=	
48	IF(25.GE.16AND.25.LT.18.) IZ(10)	
49	IF(25.GE.18AND.25.LT.20.) 12(11)	
50	IF(25.GL.20.0)12(12)=12(12)+1	
51	T1=PH	
52	. TZ=ET	
53	TRUPH=PHI+THETA	
54	<pre>\$F (TRUPH.GT.ThOP1)</pre>	TRUPH=TRUPH=TWOPI
55 ~	00 86 I=1,12	
56	IF (PHI.GT.T1 .AND. PHI.LT.(T1+DPH))
5/	IF (ETA.GT.T2 .AND. ETA.LT. (T2+DET	
58	IF (THETA-GT-T) .AND. THETA-LT-(T)	
59	IF (TRUPH.GT.T) .AND. TRUPH.LT.(T)	+DPH)) LTRU([)=LTRU([)+1
60	TI=TI+DPH	
61	86 T2=T2+ULT	
52	IF (PHI.GT.TWOPI)	
53	IF (ETA.GT.PI)	1+TUOL≖TUOL
64	IF (THE [A.GT.TWOPI)	KOUT#KOUT+1
65	IF ([RUPH.GT.TWOPI)	LOUT=LOUT+1 ·
	GO TO 82	

8	WRITE (6,89) ([PLME(]).1=1.12),(JPLME(J),JE1,12),(KPLHE(1),1E1,12)
59 70	.(LTRU(1), [s1,12), (12(1), [s1,12), 1)	OUT.JOUT.KOUT.LOUT.N.NTRA.L
71	89 FORMAT (1H1, 21HNO OF EMIT IN DEL PHI IX.21HNO OF EMIT IN DEL ETA .1	* 1X 0 1 2 1 7 //
2 .	2 IX.21HNO OT EMIT IN THETA	X 1210 //
7 3	3 IX.21HNO OF EMIT IN TRU PHI ,1	V*1516 1/
74	4 1X-21HNO OF EMIT IN DEL Z	X,1219// V 1210 ///
75	5 1X.27HIOUT JOUT KOUT LOUT N NTR.	A [. 719]
7.4	GO_TO_50	AU 1717
7 7 C		
7 B	90 KNT=0	
Ÿ	M=0	
0	IHITP1=0	
1 1	IHITP2=0	
2	DO BO I=1 NSIDEA	
13	DO 80 Jal NTARGT	
4	00 80 K=1,3	
5	80 HIT(I,J,K)=0.9	
6	91 KNT = KNT + 1	
1	IF (KHT+GT+NTRAJ)	GO TO 500
8	93 CALL TOPKT (H, TRMIT, ZS, R, ETA, THETA, PHI)	2)
19	IPASS=3	
?.0	IF (25.LI.0.)	GO TO 98
71	IF {KEY.EQ.1 .OR. KEY.EQ.2}	GO TO 96
· · · · · · · · · · · · · · · · · · ·	PH2=ATAH2 (TZ.TY)	<u> </u>
3 .	IF (KEY.EQ.4)	PHI=PH2
?d	1F (KEY-Ey-4)	GO TO 96
5	PHD1F # AUS (PH2-PH1)	
6	IF (PHDIF.GT.DELPHI/Z.)	GD TO 91
7	96 X(1)=25	
8	<u>X151=K+CO2(BHI)</u>	- A 20 Mark
9	X(3) #R+SIN(PHI)	•
	PHISAVAPHI	- HANNING N. COLON
1	PHI=PHI+THETA	
3	P(1)=COS(ETA)	
9	P(2)=SIN(ETA)=COS(PHI)	
)5	P(3)=5[N(ETA)+S[N(PHI)	
16	IF [NPLM.EQ.]; IPASS=1	GO TO 97
7	KFPLM=1	
B	.92 00 94 [=1,3	•
9	XP(1)=X(1)	
0	94 PP(1) aP(1)	
1	CALL TRANSF (XP.X.PP.P.KFPLM.0)	
2	CALL INTROP (X.P.KFPLH, KOUT, XP.PP)	
3	IF (KOUT-EQ-0)	
4	IF (KOUT.EQ.1)	GO TO 97
٠	IF (KOUT-EQ-2)	IHITPI=IHITPI+I
6	IF (IPASS-EQ.2)	IHITP2=IHITP2+1
7	60 10 115	GO [O A]
	· · ·	
9	97 CONTINUE	
Đ		
i C	CALL SORING (X,P)	
2		GO TO 100
	**	an in ind

24	IF (IPASS.GT.0)	GO TO 115
25 -	IF (NPLM.EQ.1)	GO TO 91
26	IMISS=IMISS+1	
27	GO TO 91	
8	100 CONTINUE .	
9	IF (KEY+GT+1 .AND+ ID.NE+ITG)	GO TO 115
0	INATIDAKEA	
i	IITG=ID	
2	LDIS=IDISK+1	
3	HIT(INA, LITG, LOIS) = HIT(INA, LITG, LDIS)+DELHIT
4	ISCORE#ISCORE+I	
5	115 IF (NPLM.EQ.L .OR. IPASS.EQ.2)	GO TO 91
6	IPASS=2	
7	KFPLM=2	
в	PHI=PI=PHISAV	
9	X(1)=25	
ā	X(2)=R+COS(PH()	
1	X(3)=R*SIN(PHI)	
2	PHI=PHI-THETA	
3	P(1)=(US(ETA)	
4	P(2)=SIN(ETA)+COS(PHI)	
5	P(3)=SIN(ETA)+SIN(PHI)	
4	60 TO 92	
1	530 CONTINUE	
8	WRITE (6.510) KEY.ITG.NTRAJ.ISCORE.I	HITP1.IHITP2.IMISS.IRMIT
9 ~ ~	510 FORMAT (///6H KEY =,13.5x.5HITG =,13	,5X,7HNTRAJ =,18,5X,8H1SCORE =
0	1 ,17,5x,10H1H1TP1/2 =,218,5x,	7HIMISS = , 17 , 5X , 7HIRHIT = , 17/)
	120 IF (KEY-NE-4)	GO TO 600
1		
1 2	120 IF (KEY.NE.4)	GO TO 600
1 2 3	120 IF (KEY-NE-4) DO 121 I=1.NSIDEA 00 121 J=1.3	
1 2 3	120 IF (KEY-NE-4) DO 121 I=1.NSIDEA 00 121 J=1.3 121 TEMHIT(1.J)=0.0	GO TO 600
3	120 IF (KEY+NE+4) DO 121 I=1,NSIDEA 00 121 J=1,3 121 TEMHIT(1,J)=0.0 PH=0.	GO TO 600
3	120 IF (KEY-NE-4) DO 121 I=1.NSIDEA 00 121 J=1.3 121 TEMHIT(1.J)=0.0	GO TO 600
3	120 IF (KEY-NE-4) D0 121 I=1.NSIDEA 00 121 J=1.3 121 IEMHIT(1,J)=0.0 PH=0. 122 PH=PH+DELPHI COSPH=COS(PH)	GO TO 600
1 2 3 1 3 6 7 8	120 IF (KEY+NE+4) D0 121 I±1,NSIDEA 00 121 J=1,3 121 IEMHIT(1,J)=0.0 PH=0. 122 PH=PH+DELPHI COSPH=COS(PH) IF (COSPH+LT+N+)	GO TO 600
1 2 3 1 6 7 8	120 IF (KEY+NE+4) D0 121 I=1.NSIDEA 00 121 J=1.3 121 IEHHIT(1.J)=0.0 PH=0. 122 PH=PH+DELPHI COSPH=COS(PH) IF (COSPH+LT+n+1) D0 125 LUIS=1.3	GO TO 600
1 2 3 1 6 7 8	120 IF (KEY+NE+4) D0 121 I±1,NSIDEA 00 121 J=1,3 121 IEMHIT(1,J)=0.0 PH=0. 122 PH=PH+DELPHI COSPH=COS(PH) IF (COSPH+LT+N+)	GO TO 600
1 2 3 1 3 6 7 8 9 9	120 IF (KEY+NE+4) DO 121 I=1,NSIDEA 00 121 J=1,3 121 TEMHIT(1,J)=0+0 PH=2+ 122 PH=PH+DELPHI COSPH=COS(PH) IF (COSPH+LT+n+) DO 125 LDIS=1,3 NA=NAREA(ITG,LDIS) DO 125 K=1,NA	GO TO 600
1 2 3 1 1 3 6 6 7 8 8 9 D 1 2	120 IF (KEY+NE+4) DO 121 I=1.NSIDEA 00 121 J=1.3 121 IEMHIT(1.J)=0.0 PH=20 122 PH=PH+DELPHI COSPH=COS(PH) IF (COSPH-LT+N+1) DO 125 LUIS=1.3 NA=NAREA(ITG,LDIS)	GO TO 600
1	120 IF (KEY+NE+4) DO 121 I=1,NSIDEA 00 121 J=1,3 121 TEHHIT(1,J)=0.0 PH=2.0 122 PH=PH+DLLPHI COSPH=COS(PH) IF (COSPH+LT+0.) DO 125 LUIS=1.3 NA=NAREA(ITG,LDIS) DO 125 K=1,NA TEMHIT(K,LDIS) = TEMHIT(K,LDIS)+HIT(125 CONTINUE	GO TO 600
1	120 IF (KEY.NE.4) DO 121 I=1,NSIDEA 00 121 J=1,3 121 TEMHIT(1,J)=0.0 PH=2.0 122 PH=PH+DELPHI COSPH=COS(PH) IF (COSPH-LT.n.) DO 125 LUIS=1.3 NA=NAREA(ITG,LDIS) DO 125 K=1.NA TEMHIT(K.LDIS) = TEMHIT(K,LDIS)+HIT(125 CONTINUE GO TO 122	GO TO 600
1 2 3 1 1 3 6 7 7 8 8 9 9 9 1 1 2 2 3 3 4 5	120 IF (KEY.NE.4) DO 121 I=1,NSIDEA 00 121 J=1,3 121 TEMHIT(1,J)=0.0 PH=2. 122 PH=PH+DELPHI COSPH=COS(PH) IF (COSPH-LT-0.) DO 125 LUIS=1.3 NA=NAREA(ITG,LDIS) DO 125 K=1.NA TEMHIT(K,LDIS) = TEMHIT(K,LDIS)+HIT(125 CONTINUE GO TO 122 130 DO 132 I=1.3	GO TO 600
1 2 3 1 1 3 6 7 8 9 9 9 1 1 2 2 3 4 4 5 6	120 IF (KEY+NE+4) DO 121 I=1,NSIDEA 00 121 J=1,3 121 TEMHIT(1,J)=0.0 PH=0+ PH+DELPHI COSPH=COS(PH) IF (COSPH-LT+N+) DO 125 LUIS=1,3 NA=NAREA(ITG,LDIS) DO 125 K=1,NA TEMHIT(K,LDIS) = TEMHIT(K,LDIS)+HIT(125 CONTINUE GO TO 122 130 DO 132 J=1,NSIDEA	GO TO 600
1 2 3 1 1 2 3 6 7 8 9 9 1 1 2 2 3 3 9 9 5 6 6 7 7	120 IF (KEY+NE+4) DO 121 I=1,NSIDEA 00 121 J=1,3 121 TEMHIT(1,J)=0.0 PH=0+ COSPH=COS(PH) IF (COSPH-LT+0+) DO 125 LUIS=1,3 NA=NAREA(ITG,LDIS) DO 125 K=1,NA TEMHIT(K,LDIS) = TEMHIT(K,LDIS)+HIT(125 CONTINUE GO TO 122 130 DO 132 I=1,3 DO 132 J=1,NSIDEA 132 HIT(J,IU,I)=TEMHIT(J,I)	GO TO 600
1 2 3 1 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	120 IF (KEY.NE.04)	GO TO 600
1 2 3 1 2 3 9 9 9 9 1 2 2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	120 IF (KEY.NE.04)	GO TO 600
1 2 3 1 1 3 6 6 7 8 9 9 9 9 1 2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	120 IF (KEY.NE.04)	GO TO 600
1 2 3 1 1 3 6 6 7 7 8 9 9 9 1 1 2 3 3 9 9 5 6 6 7 7 8 8 9 9 9 9 1 1 1 2 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	120 IF (KEY+ONE - 4)	GO TO 600
1 2 3 1 1 3 6 6 7 8 9 9 1 1 2 3 9 9 5 6 6 7 7 8 9 9 0 1 2 2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	120 IF (KEY+ONE - 4)	GO TO 600
1	120 IF (KEY+NE-4) DO 121 I=1,NSIDEA 00 121 J=1,3 121 TEMHIT(1,J)=0.0 PH=20 122 PH=PH+DLPHI COSPH=COS(PH) IF (COSPH+LT+N+) DO 125 LUIS=1,3 NA=NAREA(ITG,LDIS) DO 125 K=1,NA TEMHIT(K,LDIS) = TEMHIT(K,LDIS)+HIT(125 CONTINUE GO TO 122 130 DO 132 I=1,3 DO 132 J=1,NSIDEA 132 HIT(J,ID,I)=TEMHIT(J,I) 600 CONTINUE C *** OUTPUT THE RESULTS IREMIT(1)=IRMIT IF (KEY+GT+1) CALL OUTPUT (H1,NRGN+0) GO TO 9-20	GO TO 600
1	120 IF (KEY+NE-4) DO 121 I=1,NSIDEA 00 121 J=1,3 121 TEMHIT(1,J)=0.0 PH=20 122 PH=PH+DELPHI COSPH=COS(PH) IF (COSPH-LT+N+) DO 125 LUIS=1,3 NA=NAREA(ITG,LDIS) DO 125 K=1,NA TEMHIT(K,LDIS) = TEMHIT(K,LDIS)+HIT(125 CONTINUE GO TO 122 130 DO 132 I=1,3 DO 132 J=1,NSIDEA 132 HIT(J,ID,II)=TEMHIT(J,I) 600 CONTINUE C = OUTPUT IHE RESULTS IREMIT(1)=IRMIT IF (KEY+GT+1) CALL OUTPUT (HI,NRGN,O) GO TO 9-20 610 CALL OUTPUT (HI,NRGN,ITG)	GO TO 600
1	120 IF (KEY+NE-4) DO 121 I=1,NSIDEA 00 121 J=1,3 121 TEMHIT(1,J)=0.0 PH=20 122 PH=PH+DLPHI COSPH=COS(PH) IF (COSPH+LT+N+) DO 125 LUIS=1,3 NA=NAREA(ITG,LDIS) DO 125 K=1,NA TEMHIT(K,LDIS) = TEMHIT(K,LDIS)+HIT(125 CONTINUE GO TO 122 130 DO 132 I=1,3 DO 132 J=1,NSIDEA 132 HIT(J,ID,I)=TEMHIT(J,I) 600 CONTINUE C *** OUTPUT THE RESULTS IREMIT(1)=IRMIT IF (KEY+GT+1) CALL OUTPUT (H1,NRGN+0) GO TO 9-20	GO TO 600

1	202 TPFS INPUT SUBROUTINE INF	UT INRGNAHIAE	ACTR)			•
2	C FACTR=1 FOR S			LUME IN COMPI	UTING RADIA.	
3	INCLUDE DIM,L				- <u> </u>	-
4	899 FORMAT (718,38	8.n)				
5	885 FORMAT (8F10.					
6	772 FORMAT (35HIA)	ERAGE NUMBER	DENSITY OF	PLUME . E15.	.6,1X,	
7	I ISHPAI	RTŠÍF¶3 OR Í	.E15.5.10H	PART/CH3 7	~ ·	
8	2 21H To	TAL PLUME VOL	UME = .E 15	5.5,5H REX3,10	ox.	
P	3 21H N	DZZLE EXIT RAD	1105 = .F8.	.2,3H CH /		
0		TAL_RADIANT_H		E 13 . 4 . 7H W.	ATTS /)	
1	DIMENSION X(2)	1,44(21,4(325)	CABS(4)			
2	COMPLEX INDX			•		
3	=I.(1)Y) ATAO		*	A		
4	1 0 · 3 · · 17E -7		.756E-6	-317E-5	. •106E≈4	•
5	2 +351E+4 . 3 +03131	, 738E-4 .	•161E=3	, •321E-3	. •589E-3	٠
7	3 •03[3] 4 •03733		•00252		, •00531	·
ย์	5 +02537	30983 . 3076 .	•01285 •03677	01643 04338	• •02060 • •05059	•
,	6 .05838	-46672	07559		09478	• _
g g	7 •135-3	• 11567 1	•12665	13795	14953	•
1	8 •16135	17337	.18556	. 19789	21033	- -
2	9 • 22285	23543	.24803	26063	•27322	•
3	A +2d5/6		31067	32305	• • 33523	<u>'</u> -
4	8 •34734	. 35933	. 37118	. 38289	39445	•
5 .	C 40585		*42815	43905	. 44977	
6	D .46C31	• 47067	.48085	49084	• •50066	,
7	€ •51029	51974	.52901	•53809	• •54700	
8	DATA (Y(I),I=	72,141) /				
9	F •55573	-56429	•57267	58087	, •58891	9
, j	(•5967H	. 69449	.61203_		62664	
1	H .63371	• •64û¢3 ·	. 64740	65402	· •66051	٥
2	1 • 66685	<u></u> •673 <u>0</u> 5 <u></u>	67912 في	•_ •68506	• • ¿908 <u>7</u>	
3	J .69655	• •75211 ·	•70754	71286	• •71806	•
·		728 <u>i 3</u>	. 73301		• •74244	•
5 i 6			.75583	76010	76429	•
7	M • 76838 N • 78757		77630			•
В	N •/8/5/ O •85482	•	•79469	, •79814 4 •81433	80152	•
<u> </u>		82327	81123 82612	82892	81737	•
0	Q .83435	82377 83698	. 682612 . 683956	84209	84457	•
1	R .84699		85171	85399	85624	•
2	5 .85843		86270	86477	86681	,
3	DATA (Y(1),10					_ - -
4	T .86883		. 87267	87455	8764D	
5	U .87821		.88173	, .88344	88512	
b	V - •886/7	88839	.88997	89153	89386	•
7	₩ .89457	, "896 <u>0</u> 4	89749	. 89891	90031	•
18	861CP。 X	•843å3	•90435	. 90565	90693	•
19	Y .90819	90942	•91063	91182	91299	•
· C	Z91414	•e91527	•9163 <u>8</u>	91748	91855	
· 1	1 491961	92364	• 92166	. •92267	92365	•
· 2	2 • 92462	• • 92558	92652	92744	• •92835	
3	3 • 92924 4 • 93349	• •93012 • •93514	. •93098 . •93666	• •93183 • •93816	. 493267	•
, 4					, .93963	

		· · · · · · · · · · · · · · · · · · ·				·
56	6 194751 .	-94869	• • 94983	, •95094	• 95202	•
57	7 .95307 .	. 95409	• •95508	95604	95698	1
56	DATA (Y(I), 1a2	12.2811 /				
59	8 •95748 •	95877	95963	, .96046	96128	
50	9 .96237	.96284	96359	96432	96503	•
51	A #96572	.96639	96705	96769	96831	•
2	B •96892	96951	<u>• 97869</u>		97120	
6.3	C •97174 ,	•9722€	. 097277	. •97327	, .97375	,
		97469	· 97514		97601	·
15	E 197644 ,	•97685	. •97725	• 97764	97802	
5.6	F • 97840	<u>•97477</u>	. 97912	97947	97982	•.
5.7	6 .98015	-98348	• •98089	98111	, •98142	,
2 p	_ · _ H	982n1	, .9823D	98258		•
. 9	1 .98313 ,	.98339	98365	• 98390	98415	•
70	<u></u>	98463	78487	• 98510	98532	·
7 1	K •98554	.98576	98597	98617	98638	
7.2	L .98658 ,		98696	98715	98734	į
13	DATA (Y(I),I=2	82.322) /				·····
74		98769	98787	98804	98821	
7.5	, 7EBB7, N	.98853	98869	. •98885	• •98900	•
6	98915	•99051	. • 99165	99262	99344	•
77	P .99414 .	•99475	• •99528	. 99574	99614	•
' <u>d</u>	99649	•99686	99707	. •99732	99754	•
9	R 99773 .	09771	• •99806	• 99820	99833	•
) Ď	99845	99855	. 99865 .	99874	99882	•
91 .	Ť ∙998⊎9 ,	.99896	99902	99908	• 99913	
12	<u>U</u> 99918					-
13	. DATA STEBLZ	1,5.46E-12 /	•			
34	PI=.314159265E	+11				
15	TWOPI = 2. PI					
<u></u>	HALFPI = PI/2.		·			
. 7	2223 READ (5,899) 1	X.JX.IRGN.JR	GN,NSTART,I	SO. IPLUME , REX	•	
18	IF LIPLUNE . EQ.	.4.1		RETURN	· · · · · · · · · · · · · · · · · · ·	
39 70	IF (IX.EU.G .A	ND. JX.EQ.01		STOP		
·	IF (IPLUME.EQ.		**** *********************************	GO TO	995	
1	NEGH = IKGNOJR	GN				
,	ำื่นGัทปั≄าหศท÷ปี					
23	IRGNI=1KGN+1					
·4 ·5	DQ 17 Jel JRGN				****	
6	READ (5,885) G					
;;	GAMMAX(J) = GA				· · · · · · · · · · · · · · · · · · ·	
6 8	GAMMA = GAMMA	• PI/18g•				
	TANGLUD = TANG	GANMA)				
,	TANGE(J) = TAN	G(L) 9 0 Z				
១	37 CGAHMA(J) = Co	a (GAMMA)				
	HI . I. / TANG					
1						
2	DO 888 J=1.JRG	<u> </u>				·
12	$\frac{00.888 \text{ J=1,JRG}}{\text{TNG2(J+1)} = \text{TA}}$	NG2(J)		-		
13	TNG2(J+1) = TA TYNG(J+1)=TANG	NG2(J) (J)		-		
13	00 888 J=1.JRG TNG2(J+1) = TA TTNG(J+1)=TANG 888 TTNG2(J+1)=TTN	NG2(J) (J)		-		
13	00 888 J=1,JRG TNG2(J+1) = TA TTNG(J+1)=TANG 888 TTNG2(J+1)=TTN TTNG(1)=0.0	NG2(J) (J)				
13	00 888 J=1.JRG TNG2(J+1) = TA TTNG(J+1)=TANG 888 TTNG2(J+1)=TTN TTNG(1)=0.0 TNG2(1) = 0.0	NG2(J) (J)				
3 4 5 6 7	00 888 J=1.JRG TNG2(J+1) = TA TTNG(J+1)=TANG 888 TTNG2(J+1)=TTN TTNG(1)=0.0 TNG2(1) = 0.0 TNG2(1)=0.0	NG2(J) (J) ((J+1) ••2				
12 13 14 15 16 17	00 888 J=1.JRG TNG2(J+1) = TA TTNG(J+1)=TANG 888 TTNG2(J+1)=TTN TTNG(1)=0.0 TNG2(1) = 0.0	NG2(J) (J) ((J+1) ••2	PERTY IN TH	E PROP(K,1,J)	ARRAY	

	3 PARTICLE RADIUS (MICRONS)
	4 PROJECTED AREA OF PARTICLES (MICRONS
	S GAS TEMPERATURE (DEGREES KELVIN)
	6 STATIC PRESSURE (PSIA)
C Ka	
	B MOLE FRACTION FOR CO2 (-)
C K =	9 MOLE FRACTION FOR HZD (-)
	10 HOLE FRACTION FOR HCL (-)
	DO 882 I=1.1RGN1
1	READ(5,885) HZ[[]
? }	HZ(1) = HZ(1) + H1 $DO BBZ J=1.JRGN1$
, 1	READ (5,885) (PROP(K,1,J),K=1,6)
; — ···	READ (5.885) (PROP(K.H.J).K.7.10)
,	PROP(1,1,J)*PROP(1,1,J)/28317. #1.0E9
,	PROP(2,1,J)=(PROP(2,1,J)/1.8) • • 4
	PROP(3,1,J)=PROP(3,1,J)+30.48
7	PROP(5,1,J)#PROP(5,1,J)/1.8
	2 PROP(5,1,J)=PROP(5,1,J)++4
, - ,	Lag
2	DO 884 1=1.IRGN
)	H2CUBE(1) = HZ(1)++3
4	H1H2CH(1)=HZ([+1)+03-H2CUBE([)
5	00 884 J=1,JRGN
6	L=L+1
,	V(L) *
3	1P1/3.00(TTNG2(J+1)-TTNG2(J))0H1H2CB(1)
9	DO 884 K=1.10
3	SPJ =(PROP(K,I+1,J)=PROP(K,I,J))/(H2(I+1)=H2(I))
l	SPJ1=(PROP(K,1+1,J+1)-PROP(K,1,J+1))/(HZ(1+1)-HZ(1))
2	DPJ=(PKOP(K,I,J+1)-PROP(K,I,J))
3	DSPJ =SPJ1=SPJ
4	C) DALT = CHT = CHTG
'	C1=DPJ/DINJ
6	C2=0SPJ/OTNJ
7	A=PROP(N, 1.J) - SPJ•HZ(1) - C1•TTNG(J) + C2•HZ(1)•TTNG(J)
B	Baspl-csellagal
7	C=C1-C2+H2(1)
<u> </u>	D=C2
ì	A 1 = A + (TTNG2(J+1)=TTNG2(J))/2+C+(TTNG(J+1)+3-TTNG(J)++3)/3
2	A2=8 • (TING2(J+1)=TING2(J))/2+D • (TING(J+1) • • 3 - TING(J) • • 3)/3
3	P=THUP1 (A1/3 - (HZ(I+1) - 3 - HZ(1) - 3) + A2/4 - (HZ(I+1) - 4 - HZ(1) - 4)}
	4 PROP(K, I, J) = P/V(L)
5	GO TO 996
	5 READ(5,885) PC.PAMB.TC.XK
8	CALL WUICKP (PC.PAMB.TC.XK) HI=I./TANG(JRGN)
9	
	6 CONTINUE → JKGU®IRGN
1	XNAYG=0.C
2	KADIAT = 0.0
3	VT=C+J
4	Lac
5	XM*3.3 .
6	XY=4.05 FF BLZ+REX+03
7	DO 886 1=1.1RGN

68		0 886 J= .JRGN
69	T	GaPRUP(5,1,J) 25
70	71	PoPROP(2,1,J)00,25
71	L:	■L ◆ 1
72		T*VT+V(L)
73	•	ABS(1) *(.36B0225*(TG-1400°)}/30°48
74		F(TG.GT.2500.)CAB5(1) #.05/30.48
75		ABS(2) = (4.40048*(TG=1400.))/30.48
74		F(TG.GT.1800.)CABS(2) =(2.40G2-(TG-1800.))/30.48
7.7		F(TG.G).2700.1CABS(2) #.6/30.48
78		ABS(3) =(.8cr054*(TG-1400.))/30-48
79		F(TG.GT.2500.)CAB5(3) #.2/30.48
'40		ADS(4)=CABS(3)
81		KA=Q.O
82		0 34 K=1.4
8.3		ABS(K)=CABS(K)=PROP(K+6,[,J)=PROP(6,[,J)/14.7
84		KA=XKA+CABS(K)
ម 2		AUG(1,J) = REX#XKA
86 47		LANKA = 3,0
		LANKE # 3 . J
88		*i • 0
		0 688 441,40
91		(1) = FP = 1 - 8 = (W+D - 5)
9.2		##+6•2
3		0 404 H=1,2
94		F(X(H).LE.1000.) GO TO 400
75	· · · · · · · · · · · · · · · ·	F(X(M)+LE+20n00+) GO TO 401
96		F(X(M).LE.40000.) GO TO 402
97		F(X(M)+LE+10n00n+) GO TO 403
98	. 400 I	
99		C=X(H)/1000.
νúO		0 10 404
01		I=X(H)/1CO8
42		C=(X(N)-1000a-([1-2]+100a)/100a
0.3		0 70 454
134		1=X(H)/200+92
05		C=(X(M)-2000C(11-192)+200.)/200.
206		U TO 434
07		1=X(M)/2060+272
០ខ		C=(X(H)-40000(11-292)+2000.)/2000.
G Y	404 Y	Y(H) = Y([1]+(Y([]+[]-Y([]))+XC
10		F[N.EQ.40]YY[2]=1.0
211	В	FP=YY(2)-YY(1)
12		FITP.GT.2200.)INDX=CMPLX(1.8001)
13		FITP.64.2315.)INDX=CMPLX(1.8,.005)
214	1	FITP.LT.2200.)INDX=CMPLX(1.80001)
دًا ٢		ALL SPHERE (# ,PROP(3,1,J),INDX ,QEXT,QABS)
216		LANKA=PLANKA+BFP=QABS
17	688 P	LANKE=PLANKE+BFP+QEXT
18		ABS=PLANKA
>19		EXT=PLANKE
220		E=WABS/VEXT
:21		AUP(I.J)=PROP(1.I.J).QEXT.PI.REX.PROP(3.I.J)201.E-8
7.2.2		F(PROP(4,1,J),GT,G,S)

24	TAU(I,J)=TAUG(I,J)+TAUP(I,J)
25	CHIBTA(L)=(TAUG(1,J)+TAUP(1,J)OAE)/TAU(1,J)
26	XNAVG=V(L) PROP(1,1,J) REX++3+XNAVG
27	XNHU(L) = XY OV (L) O (NE - TAUP (1 . J) / REX + PROP (2. I. J) + XKA+PROP (5. I. J))
28	PROP(2,1,J)=TP
29	PROP(5,1,J)=TG
30	RADIAT*RADIAT+XNHU(L)
31 886	XMaXH+PHOP(1.1.J)+V(L)*PROP(3.1.J)**3
32	VTT = VT + (REX/(12++2+54))++3
33	XNAV6=XNAVG/VTT
<u> </u>	XXNAVG = XNAVG/(122.54)3
35	L#Û
36	00 990 1=1,1RGN
37	DO 990 J=1.JRGN
38	<u></u>
37	XNHU(L) = XNHU(L)/RADIAT
<u> 40</u>	IREMIT(L) = 0
41	NEMIT(L) = D
42 ">	ISCATU 1,J1=3
	CONTINUE
44	RADIAT=RADIAT • FACTR
ザン ・	WRITE (6,772) XHAVG. XXNAVG. VT . REX . RADIAT
46	00 106 K=1,10
47	4R1TE(6,107) K
98 : 97 108	DO 106 I = 1.IRGN
50 107	WRITE(6,108) 1, (PROP(K,1,J),J=1,JRGN)
	FORMAT (// 20H OUTPUT FOR PROPERTY , 13 /)
51 138 52	FORMAT (13,2X,11E11.5)
53	IF(ISU.Eq.)) RETURN
크로 (세	READ (5,885) SA,SB,SC,SD,SE READ (5,885) SF,SG,SH,SI,SJ
5 o	QA = SA
56	QB = SB
57	ψC ≈ SC
58	QD = SD
57	UE € SE
60	SA=SA/1d3.00PI
61	58×58/1×3.0•PI
6.2	SC=SC/18C.0=P1
63"	SD#SD/100.30P[
ь ч	SE#SE/180.0*PI
85	Alm.50SA0SJ
66	A2=.50(SH-SA).(SJ-SH)
61	A3=(5b-SA)+SH
o 8	A4=.5+(SC+SB).(SH+SG)
69	AS*(SC+SB)*SG
70	A6=.5.(5D=SC).(SG=SF)
71	A7=(SU-SC)+SF
7 2	A8#.5*(St=SD)*(S1=SF)
73	A9*(SL-50)*SF
74	A1J=,5*1PI-SE1*51
75	C1=A1+A2+A3
76	C2=C1+A4+A5
7 7	C3=C2+A5+A7 .
78	C4=C3+A0+A9
79	AK = (4+41;

280	S1#2+Q#AK#SA/SJ
281	52=(58-SA)/(SJ-SH)
282	53=52+52+5J
283	S4=(SC-S8)/(SH-SG)
284	\$5=\$4+\$4+\$H
285	\$6=(\$D+5C)/(\$G-\$F)
286	57#S6+S6+S6+S6
287	58=(5E-50)/(S1-5F)
288	59=58+58+5F+\$F,
243	CIK=CI/Ak
245	C2K=C2/AK
291	C3K=C3/AK
272	C4K=C4/AK
793	AIK=AI/AK
2 v 4	RETURN
295	END

1	• TPFS • INTRCP	
2	SUBROUTINE INTRCP (X.A.KPLUNC	E-KOUT-XP-AP)
3	C X IS THE LOCATION, A IS THE	VELOA (SVIII)
4	C KPLUME IS THE ORIGINATING PL	AFFOCIAL D C
5	C KOUT EQ O. IF NOT INTERCEPT	ANY DI LIME
6	C KOUT EN 1 OR 2 IF WITHIN OR	INTERCEPT TOAT BLOME
7	-	THE PERSON AND APPEARS OF THE PERSON AND APPEARS AND A
9	INCLUDE DIM.LIST	•
Ŷ	DIMENSION X(3),A(3),XP(3),AP	(3).xe(3).ie(ia)
10	X00126	
11	KTAHGT=1	
12 13	IF (KPLUME.EQ.1)	KTARGT=2
	CALL TRANSF (X,XPL,A,APL,O.K	TARGTI
14	L XPL AND APL ARE THE X AND A	IN KTARGT PLUME LOCAL COORDINATES NOW.
16		
17	HI=1.0/TANG(JRGN)	
18	S=TANG (JRGN)	
9 -	HPL#HZ(IRGNI) IF (IPLUME.EQ.4)	
2.0	HPL=HZ(IRGNI)-HI	GO TO 130
21	100 CONTINUE	
2	RLOC=(XPL(1)+H1) * TANG(JRGN)	
3	RPL=SURT(XPL(2)++2+XPL(3)++2	
2 4	IF (MPL.GT.RLOC)	
is	120 KOUTEKTARGT	G0 TO 200 .
6	DO 125 1=1.3	
27	XP(I)=XPL(I)	
8	125 AP(I)=APL(I)	`
9	GO TO 350	
	CHECK FOR INTERCEPTION	
1	SOC CONTINUE	
2	AA#1+#APL(2)++2 + (1++5+S)	•
3	B=XPL(2)+APL(2)+XPL(3)+APL(3))-S+S+(XPL(1)+H1)+APL(1)
4	C=^FU\&/**\PL(2)+XPL(3)+XP;(3)-S+S+(XPL(1)+H1)+(XPL(1)+H1)
5	~ " 1 - D + D = N M + C	
6	IF (CRIT.LT.O.)	GO TO 300
8	D# (+B-5WKT (CRIT))/AA	
9	1F (D-L1.0.)	GO TO 300
0	TZ*XPL(1)+D*APL(1)	+
ĭ	1F (TZ.LT.DOR.TZ.GT.HPL) 00 250 I=1.3	GO TO 300
5	XP(I)=XPL(I)+D+APL(I)	
3	250 AP(1)=APL(1)	
4	PHI1=ATAN2(XP(3).XP(2))	
5	IF (PHILLT-0.)	
6	KOUT=KTAHGT	PHI:=PHI:+TWOP:
7	300 CONTINUE	
8	RETURN	··
9	END	
	<u> </u>	
STOPKT		
		•

1	OZ*TPF\$.10PKT SUBROUTINE 10PKT (M.IRMIT.X	R.E.T.P.101
?		
3	DIMENSION S(500) C *** 10=1, WRITE TAPE, 10=2. RE	AD TAPE.
4	M∞M+1	
,	GO TO (100,200).	10
5	108 IF (M.E4.1) -	HH=0
7	[=5+NM	
3	S(I+1)=4	
9	S(1+2)=K	•
0	S(1+3)=L	
ŀ	S(I+4)=T	
2	S(I+5)*P	
3	MM=MM+1	
4	IF (MM+LT+108)	GO TO 500 '-
5	WRITE (10) IRHIT, (S(J), J=1	,500)
6	1F (M.EQ.100)	WRITE (6,151)
7	WRITE (6,150) H, MM, IRMIT, (S	(J),J=496,500)
	150 FORHAT (2X.12HH MM IRMIT #	•3110.5X•11HX R E T P = •5F13.6)
9	ISI FORMAT (//)	
0		***************************************
1	GO TO 500	· · · ·
2	ZDO CONTINUL	
3	IF (H.Eu.1)	MH=C
4 5 .	IF (MM.GT.O) READ (10) IRMIT.(5(J): J=1	GO TO 210
7	X=S(I+1)	
8 7	R=5(1+2) E=5(1+3)	
7		
,	T=S(I+4) P=S(I+5)	
2	M####!	•
² 3	1F (MM+EQ+100)	MM=0
4	SOO RETURN	····· •
<u>}</u>	END	
_	40 14 W	
	· Fig. 198 197 200 2 197 197 197 197 197 197 197 197 197 197	
SHAI	N	
	••	

1	C *** MAIN PROGRAM FOR DUAL PLUME	MONTE CARLO SIMULATION
2	C *** ICALC=B OR 1 FOR CALCULATING	G HEATING RATE, =2 FOR VIEW FACTOR
3	INCLUDE GEOM.LIST	
4	INCLUDE DIM LIST	
	COMMON /TWOPLM/PP(2,3).SIGI	2),PS1(2)
5 7	DIMENSION_P(3). N(3). X(3). A(3),XP(3),AP(3)
, 3	READ (5,3301) ICALC IF (ICALC.EQ.2)	
;	READ (5,3002) ((PP(I,J),J=1	GO TO 25
}	DO 20 1=1.2	121/214/11/62[(11/ [#1/5]
<u> </u>	WRITE (6,3003) 1, (PP(1,J),J	1.31.516(1).PS1(1)
2	PS1(1)@PS1(11/57.29578	-11011314(1)121(1)
3	20 SIG(1)*5[G(I)/57.29578	
ļ	25 CALL TARGET	
2	IF (ICALC.EQ.2)	GO TO 2000
	C CALCULATION OF HEATING RATE	
, 1	FACTR*2.0	
) }	40 CALL INPUT (NRGN.HI.FACTR)	
,	M±ù DO 50 K≈1,3	
_	UU 50 J=1.NTMAX	
•	DO SG I=1.NSIDEA	
,	50 HIT(I,J,K)=0.0	
·	CALL RNUM (NSTART)	
,	IF (IPLUME.EQ.3)	REWIND 10
٠	IF (IPLUME.EQ.4)	GO TO 500
'	DO 4C3 IXX=1.IX	
}	DO 39G JXX=1.JX	
	198 C LL RANDOM (U)	
) 	IF (U+G)+0+5)	
	CALL RANDOM (U)	. KPLUME#2.
	XNU#O.	
l	CALL EMITT (NRGN.XNU.U.H.R15	5.911
,	GO TO 300	- 1110
	200 IF (150.E4.D)	GO TO 250
	CALL SCATTR	
	GO TO 30g	
· · -	250 CALL RANDON (U)	
	. THETA=THOPI+U CALL RANDOM (U)	
	COSETA=12.*U	
	SINETA + SURT (1 COSETA • COSETA	
	TANETA *SINETA/COSETA	•
	300 CALL ZCOORD (RIS.RI,J.H.HI.	77.)
	CALL ATTENCIXPR.RI,RIS.H.JZ	ZESCAP)
	IF (IXPR.EQ.3)	GO TO 200
	P(1)*H=H1	
	P(2)=R1+COS(PHI1)	
	P(3)=RI+SIN(PH11)	
	W(1)=COSETA	·
	W(2)=SINETA+COS(THETA) W(3)=SINETA+SIN(THETA)	
	CALL TRANSF (P.X. M.A.KPLUME	•

<u> </u>	1F (KOUT.EQ.O)	GO TO 380
. 7	KPLUME = KOUT	
<u>6</u>	R15#XP(2)+XP(3)+XP(3)+XP(3)	
9	R1=SQRT(R1S)	
50	H=XP(1)+H} 1RGN1=1KGN+1	
61 62	••	GO TO 100
63	DO 350 IX=1 IRGN1	
64	IF (H.GT.HZ(11X))	GO TO 350
65	INDEX=11X-1	
66	JNDEX=JRGN	
67	GO TO 355 ·	
68	326 CONTINUE	
69	355 CONTINUL	
71	380 CONTINUE	CO TO 305
12	IF (IPLUME.EQ.3) GIMBLE=ABS(SIG(1))+ABS(SIG(2)	GO TO 385
7. 3	GINDLE=ADSISIGII) +ADSISIGIZ	.EO.11
74	IF (GIMULE.GT.1.E.6 .OR. IXPR	6-4611
75 76	GO TO 390	
71	385 CALL ESCAP (X.A)	
7 A	390 CONTINUE	·
; ; ·	IF (IPLUME.EQ.3)	GO TO 400
60	CALL OUTPUT (HI, NRGN. 0)	
1	430 CONTINUE	
82	GO TO 42	
83	SOO CALL FRTAPE (HI.NRGN.2)	
84 <u> </u>	GO TO 3000	· · · · · · · · · · · · · · · · · · ·
85	C CALCULATION OF VIEW FACTOR	•
	ZOOO CONTINUE	
ž 7	C ***	•
88	READ (5,3001) HRAY NSTART	GO TO 3000
89	IF (NRAY-LE-0)	40 10,3000
.70	CALL VEEMIT (0, X, A, EAREA)	
91	HeC	
92	MMISS=0 NHITP=0	a management and an analysis of the second o
73 94	MHIIG#D	·
/s	CALL RNUM (NSTART)	>
96	. 00 2050 K=1.3	
91	DO 2050 J=1.NTMAX	į
98	. DO 2050 I . NSIDEA	
99	2050 HIT(1,J,K)=0.0 ,	
e0	, C	P
01	2100 M=H+1	66 To
02	1F (M.GT.NRAY)	GO TO 2500
u 3	C	
04	CALL VEEMIT (L.X.A.EAREA)	
05	C DING CALL FARTHS AS AS	
106	2140 CALL SORTING (X,A)	
107	C IF (In the O)	GO TO 2200
108 109	IF (IU.NE.O) MMISS=MMISS+1	20 10 2200
110	60 10 3100	
,		

	2200 CONTINUE
3	IDX:=IDAREA
4	1DX2=ID
15	IDX3=IDISK+1
16	HIT(IDX1,IDX2,IDX3) = HIT(IDX1,IDX2,IDX3)+1+G
17	MHITG#MHITG+1
18	GO TO 2100
19 C	
	2500 CONTINUE
21	CALL VEUUTP (NRAY, NSTART, MHITP, MHISS, MHITG, EAREA)
2.2	GO TO ZCCO
-	3GGO STOP
	3001 FORMAT (318)
	JOBZ FURMAT (10F8+0)
	3003 FORMAT (/ 10x, 6HPLUME , 12, 10x, 14HLOCATION PP = , 3F9.4, 12x,
	I 7HSIGHA =,F7.2.6X,5HPSI = ,F7.2,8H DEGREES /1
28	3004 FORMAT (/10X.20HPLUME VERTEX ANGLE # .F7.2.8H DEGREES .8X.
29	1 14HPLUME LENGTH = .F7.2 //)
35	END
S MAINS	_
•	
	•
	•

15	TO 3000 LIND 10
OINENSION IPLME(12),JPLME(12),KPLME(12),12(12) CALL TAKGET	TO 3000 LIND 10
	TO 3000 LIND 10
FACTR=1.0	LIND 10
6	LIND 10
## DO 50 J=1,NTHAX 10 DO 50 I=1,NSIDEA 11 SC HIT(1,J,K)=0.0 12 CALL KNUM(NSTART) 13 IF (IPLUME.EQ.4) GO 14 IF (IPLUME.EQ.3) RE 15 DO 81 I=1,12 16 JPLME[1]=0 17 KPLME[1]=0 18 LTHU[]=0 19 IZ(1)=0 20 81 IPLME[1]=0 21 IOUT=0 22 JOUT=0 23 KOUT=0 24 LPUME.EQ. 25 NHIT=0 26 DPH=TMOPI/L2.0 27 DET=PI/IZ.0 28 DO 2222 IXX = 1.1X 29 C OETERMINE REGION OF EMISSION POINT 1 I CALL RANDOM(U) 2 X = 0 3 CALL EMITT(NRGN.X.U.H.RIS.RI) 6 C SELECT SCATTERING DIRECTION 7 CALL SCATTR 8 GO TO 4 9 C ISOTROPIC SCATTERING 3 3 CALL RANDOM(U) 1 THETA = TWOPI=U COSETA = 1 2.0*U	LIND 10
10	LIND 10
10	LIND 10
11 50 HIT(1,J,K)=0.0 12	LIND 10
	LIND 10
13	LIND 10
	LIND 10
15 , DO 81 I=1,12 16	LIND 10
16	
17	-
	-
81 IPLME(1)=0 21	
100T=3	-
LOUI=] NHIT= D PH=TMOP1/L2.0 DPH=TMOP1/L2.0 B	
NHIT=3 DPH=IMOP]/L2.0 DD 2222 IXX = 1.1X DO 1112 JXX = 1.JX COTERMINE REGION OF EMISSION POINT I CALL RANDOM(V) COTO 4 COTO 4 CALL SCATTERING DIRECTION CALL SCATTERING CALL RANDOM(V) THETA = TWOP =U CALL KANDOM(V) COSETA = 1 - 2-241	
DPH#IMOP]/L2.0 DET=PI/12.0 DD 2222 XX # 1, 1X DO 1112 JXX # 1. JX COTERMINE REGION OF EMISSION POINT I CALL RANDOM(U) CALL EMIIT(NRGN.X.U.H.RIS.RI) COTO 4 CALL SCATTERING DIRECTION ZIF(ISO.LU.G) GO TO 3 CALL SCATTERING CISOTROPIC SCATTERING THETA # TWOP =U CALL KANDOM(U) COSETA # 1 - 2.041	
DET=PI/12.0 DET=PI/12.0 DU 2222 IXX = 1.1X DU 1112 JXX = 1.1X COTORNINE REGION OF EMISSION POINT I CALL RANDOM(U) X = 0 CALL EMITT(NRGN.X.U.H.RIS.RI) (O TO 4 COTO 4 COTORNING DIRECTION 2 IF(ISO.EU.G) GO TO 3 CALL SCATTR GO TO 4 CISOTROPIC SCATTERING 3 CALL RANDOM(U) THETA = TWOPIAU CALL RANDOM(U) COSETA = 1 - 2.011	*
DET=P1/12.0 DD 2222 1XX = 1.1X D) 1112 JXX = 1.JX C DETERMINE REGION_OF EMISSION POINT 1 CALL RANDOM(V) X = 0 CALL EMITT(NRGN.X.U.H.RIS.RI) (O TO 4 C SELECT SCATTERING DIRECTION 2 IF(150.LU.G) GO TO 3 CALL SCATTR CALL SCATTR CISOTROPIC SCATTERING 3 CALL RANDOM(U) 1 THETA = TWOP[=U] CALL KANDOM(U) COSETA = 1 2.011	
O) 1112 JXX = 1.JX C DETERMINE REGION OF EMISSION POINT I CALL RANDOM(V) CALL EMITT(NRGN.X.U.H.RIS.RI) CO TO 4 COTO 4 CALL SCATTERING DIRECTION 2 IF(ISO.EU.G) GO TO 3 CALL SCATTR GO TO 4 CISOTROPIC SCATTERING 3 CALL RANDOM(U) THETA = TWOPIAU CALL RANDOM(U) COSETA = 1 2.011	
C DETERMINE REGION OF EMISSION POINT I CALL RAMDOM(V) X = 0 CALL EMITT(NRGN.X.U.H.RIS.RI) CO TO 4 COTO 4 CELECT SCATTERING DIRECTION 2 IF(ISO.EU.G) GO TO 3 CALL SCATTR CALL SCATTR CISOTROPIC SCATTERING CISOTROPIC SCATTERING THETA = TWOPI=U CALL KANDOM(U) COSETA = 1 - 2.041	
Z X = 0 CALL EMITT(NRGN.X.U.H.RIS.RI) (O TO 4 CO TO 4 CO TO 4 CO SELECT SCATTERING DIRECTION 2 IF(ISO.EU.G) GO TO 3 CALL SCATTR GO TO 4 CISOTROPIC SCATTERING 3 CALL RANDOM(U) THETA = TWOPI=U CALL KANDOM(U) COSETA = 1 - 2-844	
Z X = 0 CALL EMITT(NRGN.X.U.H.RIS.RI) (O TO 4 CO TO 4 CO TO 4 CO SELECT SCATTERING DIRECTION 2 IF(ISO.EU.G) GO TO 3 CALL SCATTR GO TO 4 CISOTROPIC SCATTERING 3 CALL RANDOM(U) THETA = TWOPI=U CALL KANDOM(U) COSETA = 1 - 2-844	
CALL EMITT(NRGN.X,U,H.RIS,RI) (O TO 4 COTO 4 COTO 4 COTO 4 COTO 4 COTO 4 COTO 5 CALL SCATTERING DIRECTION COTO 6 COTO 7 CALL SCATTR COTO 9 COTO 9 COTO 9 COTO 10 COTO 1	•
CO TO 4 C SELECT SCATTERING DIRECTION LIF(ISO.LU.G) GO TO 3 CALL SCATTR GO TO 4 CISOTROPIC SCATTERING CISOTROPIC SCATTERING THETA = TWOPIAU CALL KANDOM(U) COSETA = 1 - 20011	
C SELECT SCATTERING DIRECTION 2 IF (150.LU.G) GO TO 3 CALL SCATTR GO TO 4 C ISOTROPIC SCATTERING 3 CALL RANDOM(U) THETA = TWOP1=U CALL KANDOM(U) COSETA = 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
2 IF(ISO.EU.G) GO TO 3 CALL SCATTR GO TO 4 CISOTROPIC SCATTERING CISOTROPIC SCATTERING THETA = TWOPIAU CALL KANDOM(U) COSETA = 1 2.001	
CALL SCATTR GO TO 4 CISOTROPIC SCATTERING CISOTROPIC SCATTERING THETA = TWOPI=U CALL KANDOM(U) COSETA = 1 - 2-24U	
C ISOTROPIC SCATTERING S CALL RANDOM(U) THETA = TWOPIAU CALL KANDOM(U) COSETA = 1 - 2001	
3 .3 CALL RANDOM(U) 1 THETA = TWOPI=U 2	
3 CALL RANDOM(U) 1 THETA = IWOPIAU 2 CALL MANDOM(U) 3 COSETA = 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
CALL RANDOM(U) COSETA = 1 2.01	
3 COSETA = 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
	•
TANETA = SINETA / COSETA	
CALL ATTEMATIST ATTEMPT (ALL ATTEMPT A	
CALL ATTEN(IXPR,R1,R1S,H,JZ,ZESCAP) IF (IXPR,EQ.3) GO TO 2	
CALL ESCAPE (H. H.) TYPP DI DIE TERRITORIO	
·	
8Z PH=0.n	
ET=9•p	=NHIT+I
N=N+1 85 CONTINUE	=NHIT+I

4	ZS=ZESCAP-H1	
7	1F(25.LT.0.0) 12(1)=12(1)+1	
8	IF(ZS.GL.D.D.AND.ZS.LT.2.0)	
9	IFIZ5-GL-2-0-AND-25-LT-4-0) 12(3)=12(3)+1	
C	IFIZ5.GL.4.0.AND.ZS.LT.6.0) 1Z(4)#1Z(4)+1	
i	IF(25.GE.6.0.AND.25.LT.8.0) 12(5)=12(5)+4	
2	IF (25.GE.8.D.AND.25.LT.10.) [2(6)=12(6)+1	
3	IF(25.GL.10.AND.25.LT.12.) 17(7)=14(7)+1	
4	IF (25.Gt.12.AND.25.LT.14.) 12(8)=12(8)+1	
5	IF(ZS.GL.14.AND.ZS.LT.16.) IZ(9)=12(9)+1	
6	1F(Z5.Gt.16.AND.Z5.LT.18.) IZ(10)=1Z(10)+	· ·
7	IF(Z5.GL.18AND.Z5.LT.20.) IZ(11)=IZ(11)+	
B	IF(25.GL.20.0) 12(12)=17(12)+	
9	T1≖PH	·
٥	T2=ET	,
1	TRUPH=THETA-PHII	· · · · · · · · · · · · · · · · · · ·
2	1F (TRUPH.GT.TADPI)	TRUPH≖TRUPH+TWOPI
3	IF (TRUPH.LT.D.)	TRUPH=TRUPH+TWOP1
4	00 86 I=1.12	
5 -	IF (PHII.GT.TI .AND. PHII.LT.(TI+DPH))	IPLME(1)=IPLME(1)+1
ó	JF (ETA+GT+T2 -AND - ETA+LT+(T2+DET))	JPLME(1)=JPLME(1)+1
7	IF (THETA.GT.TI .AND. THETA.LT. (TI+DPH))	KPLME(I)=KPLME(I)+1
8	IF (TRUPH.GT.TI .AND. TRUPH.LT.(TI+DPH))	LTRU(I)=LTRU(I)+1
9	T1=T1+0PH	ETRO(1)-ETRO(1)+1
0	86 T2=T2+DET	
1	IF (PHILOGT.TWOPI.OR.PHILOLT.D.)	IOUT=10UT+1
2	IF (ETA+GT+P1)	1001=1001+1
3	IF (THEIA.GT.TWOPI)	KOUT#KOUT+1
4	IF (TRUPH.GT.TWOPI)	LOUT=LOUT+1
5	IF (JXX+NE+JX)	G0 T0 1112
6	NTRAJ#1	40 10 1112
7	DO 87 1=1.12	
8	87 NTHAJENTHAJ+IPLME(I)+JPLME(I)+KPLME(I)+LTR	11611417711
9	NTRAU=NTRAU/S	2(1)412(1)
o	WRITE (6.89) ([PLME([].]=1.12).[JPLME(J).J	al 12) //DINE//). (-1 12)
ĭ	(LTRU(1), =1, 12), (Z(1), =1, 12), OUY	
2	2 NHIT	tond i knot i Cool tu tu tu tu tu tu tu
<u> </u>	89 FORMAT 1///22H NO OF ENIT IN DEL PHI .1X	1218 77
4	1 1X.21HNO OF EMIT IN DEL ETA .1X.1	
5		219 //
6	3 1X,21HNO OF EMIT IN TRU PHI , 1X,1	217 //
7		219 ////
в	5 1X.34HIOUT JOUT KOUT LOUT N NTRAJ I	* - *
ັ້ງ	1112 CONTINUE	NHIT . 719 ///)
ō	IF (IPLUME.EQ.3)	CO TO 2222
i		GO TO 2222
2	CALL OUTPUT (HI.NRGN.O) 2222 CONTINUE	
3	GO TO 2223	
14		
5	3000 CALL FRIAPE (H1.NRGN,1)	
: Þ	END	
·	ENU	

```
LEE-ALBINZOZOTPFS.OUTPUT
                     SUBROUTINE OUTPUT (HI, NRGN, KODE)
                     INCTARE GEONITIEL
                    INCLUDE DIM, LIST
             C OUTPUT
     S
                 91 FORMAT(20X,2HA=,F7,4,3X,2HB=,F7,3,3X,2HC=,F7,3,3X,2HD=,F7,3,3X,
                    12HE= . F7 . 31
                 94 FORMAT 14x, 13, 6x, F9, 1, 114, 8x, 1PE10, 4, 5x, E15, 4, 113, 7x, OPF10, 6 )
                 95 FORMAT 1/22X, 12HNN1 AVERAGE . 10X.1PE10.4.5X.E15.4 /1
     Q
                333 FORMAT (1H1)
    10
                BB3 FORMAT 1/4X,4HAREA,8X,9H NUMBER .8X,4HAREA,3X,213X,
    11
                              13HHEAT TRANSFER, 4X) . 4X . 4HAREA . 8X . 8HHIT AREA
    12
                            __ 6HNUMBER.6X.11H OF HITS .6X.6HNUMBER.9X.5HW/CM2 .
    13
                   3
                              12X,11HBTU/SEC-FT2,8X,6HNUMBER )
                911 FORMAT(20X, 2HF*, F7.4, 3X, 2HG*, F7.3, 3X, 2HH*, F7.3, 3X, 2HI #, F7.3, 3X)
    : 4
    15
                   12HJ=,F7,3/)
              1400 FORMAT( // 40H1 PROPERTIES IN PL
1402 FORMAT( // 26H TP - ( DEGREES KELVIN )
    16
                                                PROPERTIES IN PLUME REGIONS
    17
    18
                1 20H TG - [ DEGREES KELVIN )
    19
    20
                   - 15H TAUP - ( - )
    71
                   * 15H TAUG - ( - )
                   2 15H TAU - 1 - )
    23
                   3 ZEH RP - ( MICRONS )
                   4 15H AZE - [ - ]
    24
                   5 15H MF - ( + ) /
7 3CH HZ - ( EXIT RADIL )
    25
                                                                     1/1.1
              1433 FORMAT (10H GAMMA *. 11F11.2 )
    27
              1435 FORHAT (/14,6H TP =, 11E11.5
    28
    29
              8302 FORMAT 1 14.6H TG =, 11E11.5
              1406 FORMAT 1 1416H N # 11E11.5
    3.1
              1812 FORMAT ( 14:6H TAUP#, 11E11.5
              1813 FORMAT ( 14,6H TAUG=, 11E11.5 ) 1407 FORMAT ( 14,6H TAU=, 11E11.5 )
    32
    33
              1408 FORMAT ( 14,6H
                                       <u> 9P =, 11Ε1,1•5</u>
    35
                                     A/E=, 11E11.5
              1409 FORMAT ( 14,6H
              1410 FORMAT ( 14,6HRADFK=, 11E11-5 ) 1412 FORMAT ( 14,6H H2 =, 11E11-5 / )
    36
    37
    12
            1600 FORMATE // 60H DESTRIBUTION OF SCATTERINGS AND EMISSIONS THROUGHOU
    39
                  IT PLUME
              16:1 FORMAT (6x.8H GAMMA =, 11F10.2 )
    40
              1603 FORMAT (/14.10H NEMIT =, 11110
    41
    42
              1624 FORMAT ( 14-10H __ ISCAT =, 11110 _1
    43
              1605 FORMAT ( 14.10H ISCORE #, 11110
              1606 FORMAT ( 14,10H IMISS = 11110 )
1607 FORMAT ( 14,10H REEMITS = 11110 )
    44
    45
    46
              1900 FORMAT (38HITOTAL NUMBER OF EMISSION/ABSORPTION =
    47
                             SHREX = F7.1,7X,8HRADIAT = IPE 12.4.6H WATTS /)
              1904 FORMAT 1// 25H ANIOTROPIC SCATTERING //)
1906 FORMAT (// 25H ISOTROPIC SCATTERING //)
    48
    49
             1909 FORMATCLIH TARGET NO. 131
    51
             31
                    FORMATILX. 27HON TARGET MAIN SIDE SURFACE)
   52
                    FORMAT(IX, 34HON_CONSTRAINT DISK PASSING THRU P1)
FORMAT(IX, 34HON_CONSTRAINT DISK PASSING THRU P2)
             32
    53
   54
                    IF (IPLUME.EQ.4)
                                                                        GO TO 130 ...
                    IF (NPPT.GE.1)
                                                                        GO TO 100
```

56	NPPT=NPPT+:
57	WRITE (6,1400)
5.8	WRITE (6,1402)
59	WRITE(6,1403) (GAMMAX(J) , J=1,JRGN)
60	K*0
61	DO 1404 J= 1,1RGN
67	WRITE(6,1465) I.(PROP(2,1,J.),J=1,JRGN)
63	#RITE(6,6022)[,(PROP(5,1,J),J=1,JRGN)
64	WRITE(6,1406) [,(PROP(1,1,J),J=1,JRGN)
65	WRITE(6,1812) 1. (TAUP(1,J).J=1.JRGN)
66	WRITE(6,1813) 1, (TAUG(1,J),J=1,JRGN)
67	WRITE (6,1407) I. (TAU(1,J), J=1.JRGN)
68	WRITE(6,1408),,(PROP(3,1,1),JRGN)
69	WRITE(6,1409) I . (CHIBTA(K+J), J = 1,JRGN)
70	WRITE(6,1410) [, (XNHU(K+J), J#1, JRGN)
71	HZ(1+1) = HZ(1+1) - H1
72	WRITE(6,1412) [, HZ([+1)
73	HZ(I+1) = HZ(I+1) + HI
74	1404 K=K+JRGN
75	C OUTPUT START HERE
16	190 CONTINUE
77	IF(150 • EQ . 0) 60 10 1903
78	WRITE(6,1904)
79	WRITE(6,91) QA.QB.QC.QD.QE
83	WRITE(6,911)SF.5G.SH.51.5J
91	GO TO 1705
82	1903 WRITE(6,1906)
83	IF (1PLUME.EQ.4) GO TO 200
84	1905 WRITE(6,1600)
85	WRITE(0,1601) (GAMMAX(J) , J=1,JRGN)
o 6	Lat
87	DO 1602 I = 1.1RGN
អូម	LX=L+JRGN+1
89"	#RITE(6,1603) 1 . (NEMIT(JX), JX=L+LX)
99	WRITE(6,1607) I, (IREMIT(JX), JX=L, LX)
9 1	L×LX+1
92	1602 WRITE (6,1604) I. (ISCAT(I.J), J=1.JRGN)
93	200 CONTINUL
	C FOR LOCAL THERMODYNAMIC EQUILIBRIUM
~95	IRMIT = 0
96	DO 754 J = 1.NRGN
97	754 IRMIT=IRMIT+IREMIT(J)
98	XA = FLOAT(M+1RMIT)
99	C
100	DO 894 K=1,NTARGT
101	IF (KODE, GT.O .AND. K.NE.KODE) GO TO 894
102	NCLOCK=DATA(K,1)
103	DO 893 L*1,3
134	IF (1800Y(K).GT.3.AND.L.NE.1) GO TO 893
ដែច	IF (1800Y(K).GT.2.AND.L.EQ.2) GO TO 893
106	WRITE (6,1900) M. IRMIT.REX.RADIAT
167	WRITE(6,1909) K
108	GO TO (11,12,13),L
109	11 WRITE(6,31)
10,	
110	GO TO 15

1.2	GO TO 15	
13 13	WRITE(6,33)	
14 15	CONTINUE	
5	PRINT 883	
6	NA=NAREA(K.L.)	
1	RGKNT=3.5	
b	RINGAV#C.	
17	00 1688 J=I+NA	
90	40 TO (21, 22, 22) L	
71 21	HTAREA=VAREA(K.J)	
2	60 TO 25	
	RCHECK=(J-1)/NCLOCK+1	
4	HTARLA-CHING(K.NCHECK.L-1)	•
25 25	CONTINUE	•'
۲۰ <u>.</u>	1F (HTAREA.LT. 1. nE-8) GO TO 1688	
27	X=HIT(J ₁ K ₂ L)/M	
ા છ	WN=RADIAT+HIT(J,K,L)/XA/HTAREA/REX/REX	
9	QN8TU=QN/1.1353	
300	WRITE (6,94) J.HIT(J.K.L).J.QN.QNBTU.J.HTA	REA
31	GKNT=RGKNT+1.0	
3.2	RINGAV=KINGAV+QN	
د د	IF (RGKNT.LT.DATA(K.11)	GO TO 1688
3 4	RINGAV=KINGAV/(RGKNT-0.5)	
35	RAVBTU#KINGAV/1-1353	
36	WRITE (6,95) RINGAV RAVBTU	
37	RGKNT=G.5	
3.8	RINGAV=3.	
	CUNTINUE	
	CONTINUE	
41 894	CONTINUE	
4.2	RETURN	
	END	•

	SUBROUTINE PINGEA (C.P.A.ROOTS.IPASS)
	01MENSTON ((10).P(3).A(3).ROOTS(4.2)
	RANGE (X1, Y1, Z1, X2, Y2, Z2) #SQRT ((X2-X1) + 2+ (Y2-Y1) - 2+ (Z2-Z1) + 2)
	IPASS=1
	EP5=1.Ct=10
	IF (ABS(A(1)):LT.EPS) GO TO 1
	W1*P(2)-P(1)*A(2)/A(1)
	W2=P(3)-P(1)*A(3)/A(1)
	A21*A(2)/A(1)
	f 1 Av f F 1 Am i E A
	01=((1)+((2)+A21aa2+((3)+A31++2+((4)+A21+((5)+A31+((6)+A21+A31
	W2=2+0+C(2)+A21+W1+2+D+C(3)+A31+W2+C(4)+W1+C(5)+W2+C(6)+(A31+W1
	* +A21+n2)+C(7)+C(8)+A21+C(9)+A31
	Q3*C(2)*W1**2+C(3)*W2**2+C(6)*W1*W2+C(8)*W1+C(9)*W2+C(10)
	IF (ABS(U1) LT.EPS) GO TO 121
	CALL QUADER(Q1,Q7,Q3,X1A,X1M1A,X1B,X1M1B,IFLAG)
	IF (IFLAG. EQ. 3) GO TO 191
	G0
121	IF (AUS(42).LT.EPS) GO TO 101
•••	X1A==Q3/Q2
	X1B #X1A
122	X2A=A21•X1A+W1
	X2B=A21 • X1B + 01
	X3A=A31+X1A+W2
	X38=A31+X18+N2
•	GO TO 102
	IF (ABS(A(2)).LT.EPS) GO TO 2
•	A32=A(3)/A(2)
	de Oles Literatura
	X1 = P(1)
	X1A=X1
	X18=X1
. _	Q1 = C(2) + C(3) • A 32 • • 2 + C(6) • A 32
	Q2=2+3+C(3)+A3Z+H3+C(4)+X1+C(5)+A32+X1+C(6)+W3+C(8)+C(9)+A32
	Q3=C(1) * X1 * * 2+C(3) * W3 * * 2+C(5) * X1 * W3 + C(7) * X1 + C(9) * W3 + C(10)
	IF (ABS(W1)-LT-EPS) GO TO 123
	CALL WUADEQ (WI. 42.43. X2A. XIM2A. X2B. XIM2B. IFLAG)
	IF (IFLAG.EQ.3) GO TO 101
	GO TO 124
123	
143	X2A=-43/42
	X28 = X2A
124	
127	X3B=A3Z+X2N+U3
	GO TO 102
•	
2	X1=F(1)
	χ2¤P(2) Υ14πΧΙ
	XIA=XI
	X D = X
	X2A=X2
	X2b=X2
	01=C(3)
	Q2=C(5)*X1+C(6)*X2+C(9) Q3=C(1)*X1**2+C(2)*X2**2+C(4)*X1*X2*C(7)*X1*C(8)*X2+C(10)
	03=C(1)=X1==Z+C(2)=X2==Z+C(7)=X1=XZ+C(7)=X1=C(0)=XZ+C(10)
	IF (AHS(WI)+LT+FPS) GO TO 125

56		CALL QUADER(Q1,Q2,Q3,X3A,X1M3A,X3B,X1M3B,1FLAG) IF (IFLAG.EQ.3) GO TO 101
57		60 TO 102
58	125	IF (ABS(42) .LT.EPS) GO TO 101
59	125	X3A=-Q3/Q2
60		X38=X3A
61	4.00	CONTINUE
<u>6 2</u>	102	SA=RANGE(P(1),P(2),P(3),X1A,X2A,X3A)
6.3		58 = RANGE (P(1), P(2), P(3), X1B, X2B, X3B)
64		ROOTS(1,1)*X1A
65		ROUT5(2,1)=X2A
6 <u>6</u>		ROOTS(3,1)=X3A
		ROUTS(4,1)*SA
68		ROOT5(1,2)*X1B
70		ROOTS (2, 2) * X28
71		ROOTS(3,2)=X3B
72		ROOTS(4,2)=S8
- / 2		GO TO 110
74	121	CONTINUE
75		IPASS#0
76	110	
11		END
• •		
1.5 P	INGEB	
		·
		·
		•

		SUBROUTINE PINGER (C.P.A.SHIN, IPASS)
		DIMENSION C(10) .P(3) .A(3) .5MIN(4)
		RANGE (X1.Y1.Z1,X7.Y2.Z2) = SQRT((X2-X1) = 2+ (Y2+Y1) = 2+ (Z2-Z1) = 2)
•		IPASS=1
·	- (EP5*1.0L+20
		CHECK1=C(7) A(1)+C(8)+A(2)+C(9)+A(3)+C(10)
,		IF (ABSICHECKI) LT.EPS) GO TO 105
		IF (ABS(A(1)).LT.EPS) GO TO 1
; - -		A21=A(2)/A(1)
		A31*A(3)/A(1)
<u>}</u>		W1=P(2)-A21+P(1)
2		
}		X)=-(C(8)+WI+C(9)+W2+C(10))/(C(7)+C(8)+A21+C(9)+A31)
, }		X2=A21+X1+H1
! -		X3=A31+X1+W2
		GO TO 102
<u> </u>		IF (ABS(A(2)).LT.EPS) GO TO 2
7	ı	A32=A(3)/A(2)
,		W3=P(3)+A32+P(2)
3		X1=P(1)
9		X2=-(C(7)*X1+C(9)*W3+C(10))/(C(8)+C(9)*A32)
1 2		X3=A37+A2+W3
		GO TO' 132
ĵ	-	X1=P(1)
4	2	X20P(2)
5 .		X3=-(C(7)+X1+C(8)+X2+C(10))/C(9)
6	, - : -	
,	102	CONTINUE
B		5MIN(1)=x1
9		5MIN(2) *X2
o		SMIN(3) = X3 SMIN(4) = RANGE(P(1),P(2),P(3),X1,X2,X3)
1		
2		GO TO 110
3	105	[PASS=0
4		CHECK2=C(7)*P(1)+C(8)*P(2)+C(9)*P(3)+C(10) IF (ABS(CHECK2)*LT*EPS) GO TO 106
5		
6		WRITE(6,22)
7		GO TO 110
8	106	WRITE(6,23)
9		IPASS=1
0		SMIN(1)=P(1)
1		SM1N(2)=P(2)
2		SHIN(3)=P(3)
3		SMIN(4)=0.0 .
4	110	RETURN FORMAT (2X,43HTHE STRAIGHT LINE IS PARALLEL TO THE PLANE.)
15	22	FORMAT (2X,43HTHE STRAIGHT LINE IS PARALLEL TO THE PLANE.)
46	23	FORMAT (2X.36HTHE STRAIGHT LINE LIES IN THE PLANE.)
17		END

i		SUBROUTINE QUADEQ (A.B.C.XRI,XIM1,XR2,XIM2,IFLAG)
2		1WRITE=0
3		D15C=8 - +2-4 - 0 - A - C
4		1F (DISC) 50,60,70
5	50	IFLAG=3
6		XR1=-b/(2.0+A)
7		XR2=XR1
8		XIMI=SQRT(-DISC)/(2.0.A)
9		X1M2=-XIMI
0		00 10 100
1	60	1FLAG=2
2		XRI==d/(2.0*A)
3		XR2=XR1
4		XIM1=3+3
5		XIM2=0.0
6		60 10 130
7	7 D	IFLAG=1
8		S=SQRI(DISC)
9		. XR1=(-B+5)/(2.0+A)
Q		X82=(-0-5)/(Z+0+A)
1		XIN1=D.C.C
2		X[M2=0.0
3	100	CONTINUE
4		1 F (ARITE • E Q • 0) GO TO 5
5 '	- -	WRITE(6,11) A,8,C
6		GO TO (1,2,3), IFLAG
7	1	WRITE(6,12) XR1,XIM1,XR2,XIM2
8		GO TO 5
7	2	WRITE(6,13) XR1,X1M1,XR2,XIM2
ī		GO TO 5
1	3	WRITE(6,14) XRI.XIMI,XR2,XIM2
2`	5	- RETURN
3	11	FORMAT (/,2x.33HCOEFFICENTS OF QUADRATIC EQUATION.8X.2Ha=:E12.5,
4		• 8X,2HB=,E12.5,8X,2HC=,E12.5)
5	12	FORMAT(10X, 28 HUNEQUAL REAL ROOTS XI= (, E12.5, 8H) + 1 (, E12.5,
6		+2H 1,/,33X,5HX2= (,E12.5,8H) + [(,E12.5,2H))
7	13	FORMAT(1CX, 28HEQUAL REAL ROOTS X1= (,E12.5,8H) + [(,E12.5,
θ		+2H 1,1/,33X 15HX2= (1E12+5,8H) + I (1E12+5,2H))
9	14	FORMAT(10X+28HCOMPLEX ROOTS XI= (+E12+5+8H) + 1 (+E12+5+
0		+2H)./,33X.5HX2= (,E12.5,8H) + I (,E12.5,2H))
1		END
	•	
	I C K P	

·	2 TPFS QUICKP SUBROUTINE QUICKP (PC PAMB TC XK)
!	INCLUDE DIM.LIST
	DIMENSION (215), (3(5), XNN(5), T(5)
	DATA C2(1),C2(2),C2(3),C2(4),C2(5)/
	1 -727272105.,-105.
	2 /
	DATA C3(1),C3(2),C3(3),C3(4),C3(5)/
	1 1.05,1.05,1.00,.95,.9
	DATA TILL T(2) T(3) T(4) T(5)
	1 2300.,2250.,229n.,2150.,2100./
	IRGN = 9
	JRGN = 5
	NRGN = IRGN-JRGN
	IRGN1 = 1RGN + 1
·	JRGNI. = JRGN + 1
	XN = PC • 20.
	PK # PC / FAMB
	XNN(1) = .950XN
	XNN(2) = 1.1.XN
	XNN(3) * XN
	XNN(4) = 69 0XN
	XNN(5) = .8.XN
	1F(PK.LE.6ù0.)GGAMMA = 2. + .0250 PK
	IF(PK.GT.600.)GGAHHA = 17. + .001 . PK
•	GGAMMA#GGAMMA/5.
	GAMMA=D • G
	00 131 J#1,5
	GAMMA = GAMMA + GGAMMA
	GAMMAX(J) = GAMMA
	G = GAMNA OPI/180.
	CGAMMA(J) = COS(G)
	TANG(J) = TAN(G)
	TANG2(J) = TANG(J)++2
	(U) SDNAT = (1+U)SDNT $TTNG(J) = SDNAT = (1+U)SDNT$
	101 TING2(J+1) = TING(J+1) # 02
·	TING(1) = 0.0
	TNG2(1) = 0.0
	TTNG2(1) = 0.0
	. HI = 1./TANG(5)
	. HZ(1) * 0.0
	H2(2) = 0.2
	HZ(3) = C.4
	HZ(4) = 0.6
	HZ(5) = 1.0
	H2(6) = 2.0
* 1 .*****	HZ(7) = 4.0
	H2(8) = 6.0
·	HZ(9) = 8.0
	HZ(10) = 10.0
	DO 102 l=1,10
	102 HZ(1) = HZ(1)+H1
	L=0
·	DO 1C4 1 = 1. IRGN

7	H1H2CB(1) = HZ(1+1)**3 + H2CU8E(1) DD 104 J = 1,JRGN
8	L m L + 1
9	V(L) = PI/3.0 *(TTNG2(J+1)*TTNG2(J))*H1H2CB(1)
Ö	X= P1+H1++2+(TTNG2(J+1)+T1NG2(J))+(HZ(1+1)+HZ(1))/V(L)
1	PROP([,1,J) = XNN(J)*X
2	PROP(2,1,J) = 2317.
3	H=HZ([+])=H1
4	IF(H.GT.,5.AND.H.LT.4.) PROP(2.1.J) = 2317.+C2(J).(H=.4)
5	IF(H.GE.4.) PROP(2.1.J) = C3(J)+2000.
6	PROP(3,I,J)=6,0
7	PROP(3.1.5)=3.0
8	PROP(5,1,4);T14) exec(xK=1)
9	PRUP(6,1,J) *PC+X/8.5+PROP(5,1,J)/TC
0 '	IF (PROP(6:1-1):LT.PAMB)PROP(6:1-1)=PAMB
1	PROP(7,1,J)=.249
2	PROP(8,1,J)=.026
73	PROP(9,1,J)=.152
7.4	PROP(10,1,4)=4161
75	PRUP(2,1,J)=PROP(2,1,J)**4
16	104 PROP(5,1,J)#PROP(5,1,J)**4
77	RETURN
78	END
	•
 ,	
,5 SCA	TTR

ì	SUBROUTINE SCATTR
2	INCLUDE DIMILIST
3	C ANISOTROPIC SCATTERING
4	904 CALL RANDOM(U)
5	IF (U-A1K)700,701,702
<u> </u>	700 ETAD=SQRT(S1+U)
7	GO TO 905
8	7C1 ETAD=SA
9	GO TO 905
0 1	702 IF(U-C K)703,704,705 703 PM213=(53-2+0+(U+AK-A1)+52)
2	IF(PM213.LT.0.01 PM213=0.0
3	ETAD=5A+52+5J=SQRT(PM213)
4	GO TO 905
<u>:</u> 5	704 ETAD=SB
6	GO TO 925
7	705 1F(U-C2K)706,707,708
8	706 PM213=(S5-2+0+(U+AK-C1)+S4)
9	1F(PM213.LT.0.0) PM213=0.0
0	ETAD=SU+S4+SH+SQRT(PM213)
1	GO TO 905
<u> </u>	707 ETAD=5C
3	GO TO 905
<u> </u>	708 1F (U-C3K) 709, 719, 711
5,	709 PM213=(S7-2.0.(U.AK-C2).S6)
<u>_</u>	1F(PM213.LT.0.0) PM213=0.0
7	ETAD=SC+56+SG+SGRT(PM213)
<u>8</u> 9	GU TU 905 710 ETAD≠SD
,	GO TO 905
1	711 1F(U-C4K)712,713,714
2	712 PM213=(S9+2+0+(U+AK=C3)+S8)
3	IF (PH213.LT.Q.Q) PH213=Q.Q
4	ETAD=S0-58+SF+SQRT(PM213)
5	GO TO 985
6	713 ETAD=SE
7	GO TO 905
8	714 ETAD=PI-SQRT(AK+(1.G-U)+2.Q+(PI-SE)/SI)
9	905 CALL RANDOM(U)
<u>o</u> _	. THETO = TWOPI + U
1	COETD=COS(ETAD)
<u>2</u> 3	SIETD#SIN(ETAD)
4	COTHD=COS(THETD) SITHD=SIN(THETD)
5	SITH*SIN(THETA)
6	COTH*COS(THETA)
7	ROX=SIETO+COTHD
8	REY*SIETD*SITHD
ġ	REZ=COETO
đ	RX= ROX+51TH+REY+CUSETA+COTH+REZ+SINETA+COT
ī	RY=-RUX+COTH+REY+COSETA+SITH+REZ+SINETA+SIT
2	RZ=-REY+SINETA+REZ+COSETA
3	THETA=ATAN(RY/HX)
4 5	1F(RX)112,113,113

56	GO TO 115
5.7	113 IF (THETA) 114, 115, 115
5.8	114 THETA=THETA+THOP!
5 9	115 COSETA = RZ .
60	SINETA = SQRT(1.=COSETA++2)
61	TANETA = SINETA / COSETA
. 62	COST = COS(THETA)
63	RETURN
54	END
	ν,
T.S SURT	NG
•	•
·	
	
	•
·	
	•
	·

1		SUBROUTINE SORTING (P.A)	•
		INCLUDE GEDH, LIST	
3		COMMON/RESULT/ ID. IDISK . IDAREA .	KRING, KPHI, DISTNS, XX(3)
4		DIHENSION C(10) . P(3) . A(3) . SMIN(4)
5		DIMENSION P1(3), P2(3), ROOTS(4,2	
· 6			X2-X11++2+(Y2-Y1)++2+(Z2-Z1)++2)
6		ATRIG(X1.Y1.Z1.X2.Y2,Z2.X3,Y3,Z	(3) =
ē		• SGRT((X1+(Y2-Y3)+X2+(Y3-Y1) • +(Z1+(X2-X3)+Z2+(X3-X1)	+X3+(Y1-Y2) ++2
.0		+(Y1+(Z2-Z3)+Y2+(Z3-Z1)	+ + + + + + + + + + + + + + + + + + +
1		IWRITE=0	77210
2		PI=3+14159265	
3		EPS=1.GE=4	
<u>+</u>		DISTNS=1.CE30	
5		10=3	No. '
7		DO 900 NDATA#1.NTARGT	r.
á		DO 500 II=1.10	
ÿ	500	C(II)=CULF(NUATA.II)	
g		IF (IBOUY (NDATA) .EQ.5)	GO TO 401
1		IF (IBODY (NDATA) . EQ. 6)	GO TO 402
2		CALL PINGEA(C.P.A.ROOTS, IPASS)	30 10 100
3		IF (IFASS.EQ.0) GO TO 400	
4		ICHOSE = IBODY (NDATA)	•
5		00 6C1 11=1.3	
6 7	601	P1(11)=UATA(NDATA,11+4)	······································
, H	801	P2(11) **DATA(NDATA,11+7)	
9	·	IF (ICHUSE+LT-4) GO-TO 494	
0	405	P1(II)=2.0.P1([11-P2(]1)	•
ı	404	CALL CHUSE (PI.PZ.ROUTS SHIN. IOU	Π, ,
2		IF (IOUT . HE . D) GO TO 400	•••
3	_	GO TO 402	
4	401	CALL PINGEBIC.P.A.SMIN, IPASS)	
6		IF (IPASS.EQ.1) GO TO 402	
ž	402	CONTINUÉ	
8	101	IF (IBOUY(NDATA).NE.6)	CO TO #42
9		CALL DISK (I.NDATA.P.A.SMIN.IHI	GO TO 403
Q		GO TO 412	• 1
ı	403	CONTINUE	
2	<u> </u>	CHECKI SMIN(4) OA(1) - (SMIN(1)-P(11)
3		CHECK2=5MIN(4) +A(2)=(5MIN(2)=P(21)
. 4		CHECK 3=SHIN(4) -A(3) - (SHIN(3) -P(31)
6		SUMCHK = ABS (CHECK 1) + ABS (CHECK 2) +	
7		IF (ID1-NE-D) 60 70 441	GO TO 400
8		IF (ID1.NE.D) GO TO 411 IF (IBODY(NDATA).NE.5) GO TO 41	2
9		PLATEATRIGE SHINELD SHINE 2) SH	IN(3).
o		DATA(NDATA,5) .DATA(NDATA,6).	DATA(NDATA.7).
1		DATA(NDATA, 8) . DATA(NDATA, 9) .	DATA(NDATA, 10)
2	·	PLA2#ATRIGE SHIN(1), SHIN(2), SH	IN(3),
3 4		DATA(NDATA, 8), DATA(NDATA, 9), DATA(NDATA, 11), DATA(NDATA, 12)	DATA(NDATA.18).

		• DATA(NDATA,11),DATA(NDATA,12),DATA(ND	
		DATA(NDATA, 14), DATA(NDATA, 15), DATA(ND	ATA+161 1
		PLA4=ATRIG(SHIN(1), SMIN(2), SMIN(3),	
		• DATA(NDATA,5).DATA(NDATA,6).DATA(NDAT	
		• DATA (NDATA, 14), DATA (NDATA, 15), DATA (ND	
		PCHECK=PLAREA(NOATA) = (PLA1+PLA2+PLA3+PLA	•
		<pre>IF (ABS(PCHECK/PLAREA(NDATA)).GT.EPS) GO GO TO 412</pre>	10 400
	411	1F (1HODY (NDATA) . GT . 3) GO TO 400	
		IF (ID1.EQ.1 .AND. IBODY(NDATA).LE.2)	GO TO 413
		IF (ID1.EQ.2) GO TO 415	35 15 115
		GO TU 439	
	415	HHI = RAMGE (SMIN(1), SMIN(2), SMIN(3), DATAIN	DATA,8),DATA(NDATA,9),
		• DATA(NDATA, 10))	•
		GO TO 414	
	413	HHI=RANGE (SMIN(1), SMIN(2), SMIN(3), DATA(N	DATA,5),DATA(NDATA.6),
		• DATA(NUATA,7)}	
	414	RCHECK=RBUND (NUATA)	DAURAN DRAUBNAUBA
		IF (IHODY (NDATA) .EQ. 2. AND .ID J.EQ. 11	
		IF (HH1.GT.RCHECK.OR.HH1.LT.RRING(NDATA,	1011 00 70 400
	4 L Z	CONTINUE IF (DISTNS.LT.SMIN(4)) GO TO 400	
		DISTNS*SMIN(4)	
		ID=NDATA	
		ID1SK=10;	•
		IF (IBODY(NDATA).EQ.6)	IDAREA=IHIT
		XX(2)=5MIN(2)	
		XX(3)*SHIN(3) '	
	400	CONTINUE	
	- <i></i> <u>-</u>	IF (LEOUY (NDATA) - GT - 3) GO TO 900	
	450	IDI=IDI+i	•
		IF (101.GT.21 GO TO 900	GO TO 450
; !		IF (IHODY(NDATA).GT.2 .AND. ID1.EQ.1)	GU 10 450
	421	00 421 11=1,6 C(11)=0.0	
	14.1	C(T)=DISKEQ(NOATA,1)	
: :		C(8) =DISKEQ(NDATA,2)	
· i		C(9)=DISKEQ(NDATA.3)	
,		GO TO (431,432),101	
	431	C(10)=DISKEQ(NDATA,4)	
		GO TO 431	•
	432	C(10)=DISKER(NDATA,5)	
	. = =	GO TO 401	
	' ; <u>0</u>	CONTINUE	
		IF (1+RITE.E0.0) GO TO 302	
<u> </u>		WRITE(6.5) P(1),P(2),P(3),A(1),A(2),A(3)	`
1		IF (ID.EW.O) GO TO 301	
		WRITE (6,7) ID, IDISK, DISTNS, XX(1), XX(2),	() ()
	201	GO TO 302	
}	301 302	WRITE(6,8)	
	302	IF (180DY(10),EQ.6)	GO TO 1000
1		11 140VV(11V/4EW48/	90 IO 100G
3			•
) 		IDAREA=0 If (ID.Ew.O) GO TO IDOO	•

12	NTOTAL=NAREA(ID.1)	
13	SS=1.0E30	
! 4	DO 110 II=1.NTOTAL .	
15	TVIE ** = RANGE (XX(1), XX(2), XX(3), VECTOR(10,11.1), VECTOR(10,11.2),	
6	• VECTOR(ID,11,3))	
7	JF (TVIEW.GE.SS) GO TO 110	
18	SS=TVIEN	
19	IDAREA=11	
20	119 CONTINUE	
21	NARC = DA FA (ID, I)	
23	NFRUST=DATA(ID,2)	
24	1F (1800Y(10).NE.4) GO TO 101	
25 -	P2P1=RANGE(DATA(ID,8),DATA(ID,9),DATA(ID,10),	
26	DATA(ID,S),DATA(ID,6),DATA(ID,7))	
27	PIT=RANGE (DATA(ID,5), DATA(ID,6), DATA(ID,7), XX(1), XX(2), XX(3))	
28	DOT=(DATA(ID,5)=DATA(ID,8))+(XX(1)=DATA(ID,5))	
2 9	+ (DATA(ID,6)-DATA(ID,9))+(XX(2)-DATA(ID,6)) + (DATA(ID,7)-DATA(ID,10)) - (XX(3)-DATA(ID,7))	
30	COSGN=DUT/(P2P1+P1T)	
31	GAMMA*ACUS(COSGM)	
3.2	102 PRESPECTATATIONS	
33 -	RTOP#NFRUST	·
3 4	ANGTOP#RIUP+PHI	
35	IF (GAMMA.GT.ANGTOP) GO TO 105	-
36	NF=(IDAREA-I)/NARC+1	
37	RN#NF	
3.6	PHIRNI=PHI • (RN=1)	
34	PHIRN2=PHI*RN	
40	IF (GAMNA.GE.PHIRM).AND.GAMMA.LT.PHIRM2) GO TO 105	
4 j	IF (GAMMA.LT.PHIRNI) GO TO 103	
42	NF=NF+1	
43	IDAREA = IDAREA + NARC	
44	GO TO 135	
45	103 NF#NF-1	
46	I DAREA - I DAREA - NARC	
47	GO 10 105	
H 8	101 CONTINUE	
49	NF = (IDAREA-1) /NARC+1	
50	IF (IBOUY(ID).LE.2 .OR. IBODY(ID).GE.5) GO TO 106	
ا ة د :	PIT=RANGE(DATA(ID,5),DATA(ID,6),DATA(ID,7),XX(1),XX(2),XX(3))	
5 <u>7</u> 5 3	PIA=RANGE (DATA (ID.S).DATA (ID.6),DATA (ID.7).VECTOR (ID. IDAREA,1).	
	• VECTUR(ID.IDAREA.21.VECTOR(ID.IDAREA.3))	
54 55	1F (P1T-LT-P1A) GO TO 191	
56	IF (IDARÉA-LE.NARC) GO TO 106 IP1=IDAREA-NARC	
5,	PIEDANCATNARC	
8	PIB=RANGE(DATA(ID.5), DATA(ID.6), DATA(ID.7), VECTOR(ID.1P1.1), • VECTOR(ID.1P1.2), VECTOR(ID.1P1.3))	
- - - -	PIAB=(PIA+PIB)/2.0	
50	IF (P&T+LE+PIAB) GO TO 106	
51	NEWELT	
5.2	IDAREA=IP1	
3	GO TO 126	
54	191 IF (IDAREA.GT.NTOTAL-NARC) GO TO 106	
- 	IPI*IDAKEA+NARC	
	PIHERANGE (DATA (ID. 5) . DATA (ID. 6) . DATA (ID. 7) . VECTOR (ID. IPI. 1) .	

	_	
168	P1A8=(P1A+P18)/2.0	
	IF (PIT.GE.PIAB) GO TO 106	
170_	NF=NF+1 IDAREA=[P]	
172	1DAREATIFI	
173	105 IF(IHRITE.EQ.O) GO TO 1000	
74	#RITE(6,121) IDAREA, NAREA(ID, 1), NF, VAREA(ID, IDAREA)	
175	GO TO 1202	
174	1100 CONTINUE	
177	1F (1015K.EQ.2) GO TO 1200	
178	PRX=XX(1)=DATA(ID.5)	
179	PRY=XX(2)+DATA(ID,6)	
180	PRZ=XX(3)=DATA(10,7)	
181	GO TO 1201	t
[3 <u>2</u>	1200 PKX=XX(1)-DATA(10,8)	
183	PRY=XX(2)=DATA(ID.9)	1
194	PRZ=XX(3)-DATA(10.10)	<u> </u>
105	12:1 NEGENCKING(ID.IDISK)	
186 _ 187	PRMAG=PANGE (PRX,PRY,PRZ,0.0,0.0)	
188	IF (NRG.LE.1) GO TO 1104	
189	DO 1151 KK=2,NRG	
190	RAVER=(KMEANC(ID,KK,IDISK)+RMEANC(ID,KK-1,IDISK))/2.0 IF (PRNAG,LT.RAVER) GO TO 1102	
191	1101 CONTINUE	
192	KRING=NRG	
1-3	GO TO 1103	
194	1102 KRING=KK=1	
195	GO TO 1103	
196	1104 KRING=1	
197	1103 SIGNT=PRX+TREF(ID.I.IDISK)+PRY+TREF(ID.2.IDISK)	
188 -	+PKZ • TREF (10,3,1015K)	
199	SIGNS=PRX+SREF(ID.1.IDISK)+PRY+SREF(ID.2.IDISK) .	
509	+PHZ+SREF(10,3,10[SK)	
201 202	ALNGT = RANGE (TREF(ID, 1, IDISK), TREF(ID, 2, IDISK), TREF(ID, 3, IDISK),	
203	9.0.0.C.3.0)	
204	DENON=ALNGT +PRMAG	
205	IF (ABS(DENOM).LT.1.QF-10) GO TO 1302 ROTANG=SIGNT/DENOM	
206	IF (ABS(ROTANG) GT . 1 . O) ROTANG = SIGN(1.0, ROTANG)	
207	CHECK + ABS (ACOS (ROTANG))	<u>-</u>
208	IF (SIGNT-GE-0.0.AND-SIGNS-GE-0.0) GO TO 1301	
209	IF (SIGNT-LE-0-0-AND-SIGNS-GE-0-0) GO TO 1301	
210	ANG#2.0.PI -CHECK	
211	GO TO 1313	
315	1301 ANG = CHECK	
213	60 70 1310	
214	1302 ANG=0.0	
212	131C COUNT ANG/DPHIC(ID)	
216 217	IID=DATA(ID,I)	
218	KPHI # COUNT+1.0	
219		
220	1DAREA=(KRING-1)+ID+KPHI	
221	IF (INRITE.EQ.O) GO TO 1000	
	MRITE (6,1311) KRING . KPHI , ANGI , CRING (ID . KRING , ID ISK) . IDAREA	
222	The state of the s	

		FORMAT(15)
5 7-	2	FORMAT(BE10.5)
6	5	FORMAT(/.1X.14HEMISSION POINT.2X.6HP(X1)=.E11.5.2X.6HP(X2)=.E11.5
27		• 2X.6HP(X3)=,E11.5,2X,17HDIRECTION COSINES,3E12.5)
28	7	FORMAT(3x, 14HHIT TARGET NO.: 12,4x,6HIDISK=:12,4x,
9		• 9HD1STANCE=.E11.5,5X,3HX1=,E11.5,3X,3HX2=.E11.5,3X,3HX3=.E11.5)
30	8	FORMAT(2x,14HNO IMPINGEMENT)
1	121	FORMATIOX, I THAREA INDEX=, 13, 3X, 22HOF TOTAL NO. OF AREAS=, 13, 5X.
32		•28HFRUSTUM (AXIS DIRECTION) NO13.3X.17HVIEW POINT AREA =.E10.4)
3	1311	FURMAT(3X,24HCUNSTRAINT DISK RING NO.: 13,3X,7HPHI NO.:
4		• I3.3x.18HANGLE(CLOCKWISE) =.F8.3.3X.17HVIEW POINT AREA =.E10.4.
5		• 3X, IIHAKEA INDEX=,[3]
6		END
		_
		^,
5 SP	HERE	*,
5 SP	HERE	*
5 SP	HERE	
\$ SP	HERE	
\$ SP	HERE	*, , , ,
\$ SP	HERE	*, , , , , , , , , , , , , , , , , , ,
\$ SP	HERE	
5 SP	HERE	*, , , , , , , , , , , , , , , , , , ,
5 SP	HERE	
5 SP	HERE	
5 SP	HERE	
,5 SP	HERE	
5 SP	HERE	

3 4 5	SUBROUTINE S DIMENSION A (EQUIVALENCE	120.21.811					
5	EQUIVALENCE	1401411011	20,2)		•		
5		(RARG, XKA)					SNGL0040
	DATA KONTRL,			<u> </u>			SNGLODSA
· °	DATA LL /12/						SNGL0060
7	REAL				···-		SNGLOOPE
A	·A AI .	AIS .	AR .	AREA .	AREAL .	ARS .	SNGLOLOC
8	C CCAB	42 t	BI CHIZER.	BIS .	BR .	BRS ,	SNGLOIL
10	D CRPR	CSCA	DEN .	CI .	CONST .	CR .	SNGL0120
ii	E DYI .	DYR	DIOP6	ENI .	DR .	DXR ,	SNGL 0130
12	F FAC	FACTOR.	FI	FIFTY	FOU	FR .	5NGL0140 5NGL0150
3	G GREAT	HALF		ONE	PI .	RATIO .	SNGLOISC
l#	H RPR	RX	RXN	RX2	RYI	RYR	<u>\$N</u> GL0170
15	I SCA	SIGI ,	SIGR	SMALL .	THR	Ti .	5NGL0180
i <u>6</u>	J TIGN ,	TR ,	THO	TWOPI .	х ,	XL.	SNGL0190
1.7	к үг ,	YR .	Z ,	ZER .	DARG .	DBLEF .	5NGL 0200
8	L PSI	<u>CHI</u>	GR .	GI ,	Α	В	SNGL 0210
P	DATA NN/120/			•		·	5NGL 0270
0	EQUIVALENCE	(N*NÜWBER)					
? I	DIMENSION CH	1(1),PSI(1	1.GR(1).GI	(1)	×.4		SNGL0380
3	EQUIVALENCE						SNGL 0310
	1	(B(1,1), G	R(1)) + (B(1	,2), GI(1)	13		SNGL0320
:4 :5	COMPLEX INDE	X * NIGEX * CV	KG			······································	SNGL0410
6	EQUIVALENCE	IJNDEX CAR	G), (X,DARG)			SNGL0420
7	REAL SNOLE	7. A. WILL	011	: : =		·	\$NGL043 <u>0</u>
8	DATA ZER, ONE DATA PI TOOP	I do susco	3/5 / 5031	0EB: •0E0;	2.0E0,3.0E	0.4.0E0.0.5	
9	DATA TIGN /1	T-73477753	<u> </u>	85007			5NGL 0460
10	DATA SMALL, G		-D:0PA/1-0	- 35 4 05	35 50 050		SNGL 0470
1	SNGLF (DAKG)	= DARG	14 1 B. 15 V. 16 M.	EZSATI • DES	53134 (AFD)	1.05+07	
32	SORTF (DARG)		6)			•	SNGL0490 SNGL0500
3	REALFICARGE	* REALICAR	G)			 	SNGL D510
14	AIMAF (CARG)	= AIMAGICA	RG)				SNGL0510
15		= EXP(DARG				••	5NGL0530
36	COSF(DARG)	COS (DARG)				SNGL 0540
7	SINF (DARG)	= SIN(DARG)	11.75 . 10			SNGL 0550
9	IF I XF (DARG)	# IFIX (DAR	G j				SNGLOSAC
39	ALOGF (DARG)						SNGL0570
0		= ABSIDARG					SNGL0580
1	FLOATF(1)	# FLOAT(I)		- -			SNGL0590
3	DBLEF (RAKG)	= RARG		······································			SNGL0600
4	KTRL = KON	TRL + I					SNGL0820
5 2	GO TO (2001.	<u> </u>	KTRL				SNGL 0830
· 6	QABS = ZER						5NGL 0930
7							SNGL0980
8	QRPR = ZER Costhe = Zer						SNGLO990
9	ALBEDO = ZER						SNGL 1000
Q.	AREA PI+						SNGLIOIO
1	AREAL = ARE	A/(FOURPLY					SNGL 1020
2	ASSIGN 11 TO						SNGL 1030
3	ASSIGN 17 TO		······································				SNGL LO40
, 4	A551GN 22 TU	JUMP 2			`	-	SNGL1050 SNGL1060

6	C ENTRY QMIESCIWAVE. RADIUS. INDEX. SIGHA, GEXT. QABS. GRPR. COSTHE.	SNGL 108
7	C (ALBEDO)	SNGL 109
. 8	2002 CONTINUE	SNGLIIO
0	AREA = ONE	SNGLIII
	AREA1 = ONE	SNGL112
2	ASSIGN IO TO JUMPO	SNGL 113
3	ASSIGN 16 TO JUMP!	SNGL 114
4	ASSIGN 21 TO JUMP2	SNGL115
j	GO TO 10000 C ENTRY CHIESCHAVE, RADIUS, THOSE STORA DEXT DADE DOOD COSTUS	SNGL116
	- THE CAME CANAL CANAL CONTRACT OF THE PARTY	5NGL 117
5	C IALBEDO) 2003 CONTINUE	_ SNGL118
8		5NGL 119
9	AREA = PI+RADIUS++2	_SNGL 120
ó .	AREA1 # AREA	SNGL 1 2,1
ĭ	ASSIGN 10 TO JUMPO	SNGL 122
2	I THUL OT AL NOIZZA	SNGL 12B
<u>-</u>	A551GN 21 TO JUMP2 GO TO 10000	SNGL 124
4	1000 CONTINUE	5NGL 125
· 5	JNDEX = INDEX	
-	SIGR = ZER	SNGL 127
,		_SNGL 1 28
8		SNGL 129
ğ ——	EXT = ZER SCA = ZER	SNGL130
	RPR = ZER	SNGL 131
ī	AR = ZER	_5NGL 1321
2	AI # ZER	SNGL 133
3	BR = ZER	~2N&F 1341
4	BI * ZER	SNGL 135
<u>.</u>	IF(LENGTH.EQ.O) LENGTH = NN	SNGL 1360
5	IF (LENGTH - EQ. NN) GO TO 11000	SNGL 1 37
7	WRITE(6,10999)	
B	10999 FORMATITIANAPPAYS IN CALLING PROCESS OF APPENDING TO APPENDING	SNGL 1391
9	10999 FORMAT(71H1ARRAYS IN CALLING PROGRAM DO NOT AGREE WITH THOSE IN S	
)	STOP	SNGL 141
<u></u>	11000 CONTINUE	<u> </u>
2	X = TWOPI + DALEF (RADIUS) / DBLEF (WAVE)	SNGL 1430
3	RX = ONE/X	_SNGL 1 441
ŧ	RX2 = RX++2.	SNGL 145
;	N = 5 + IFIXF(X) + S+IFIXF(EXPF(ALOGF(X/TWO)/THR))	_SNGL 1461
,	NI = N + 1	SNGL 1471
	M = N = 2	5NGL 1481
}	L = N = 2	5NGL1496
,	1F (N.LE.NN) GO TO 1000	_5NGL 1501
<u> </u>	WRITE(6:999) WAVE.RADIUS.INDEX.X.N.LFNGTH	SNGL 1511
	999 FORMATIA4HISUBROUTINE SPHERE CALLED WITH WAVELENGTH F. F. B.	_SNGL 152(5NGL 153(
<u>!</u>	111H RADIUS = E15.8/24H INDEX OF REFRACTION B (22F15.8.9H) KA	SHELLER
)	2010 00 17H REQUIRES N = 14. 32H ARRAYS ARE DIMENSIONED BY NO #	SAICH SEE
	314735H RECOMPILE WITH LARGER VALUE OF NN.)	SNGL 156
)	STOP	SNGL 157
	1000 CONTINUE	5NGL1580
,	CHIZER = COSF(X)	SNGL 159(
} 	CHI(1) = SINF(X) + CHIZERORX	SNGL 1600
,	CHI(2) #-CHIZER + CHI(I)*3.0*RX	SNGLIGIC
) <u></u> _	CONST = THR	SNGL 1620
	DO 1 1*3,N	_3M4L1620

112	SNGL 1640
164 L CONTINE	SNGL 1650
114 I CONTINUE 115 CONST = FLOATF(N + LL + 2)	SNGL 1660
116 (******DXR = FLOAT(M + LL + 2)	SNGL1670
	SNGL 1680
"" = CONSTACK # VITADACTURE # ONE 1	5NGL 1690
· · · · · · · · · · · · · · · · · · ·	SNGL 1700
""" 'A T I I I I I I I I I I I I I I I I I I	SNGL 1710
"	SNGL 1720
	5NGL 1730
22 DO 2 J = 1,LL	SNGL 1740
·	
	···
	
	

56	C ENTRY QMIESCIWAVE.RADIUS, INDEX.SIGMA, QEXT, QABS.QRPR.COSTHE	
57	C IALBEDO)	SNGL 109
58	2002 CONTINUE	SNGL 1 101
59	AREA = ONE	SNGLILL
<u>60</u>	AREAL = ONE	SNGL 1 121
61	ASSIGN TO JUHPO	SNGL 113
62 63	19HUL OT 31 MOISEA	5NGL 1141
63	ASSIGN 21 TO JUMP2	SNGL 115
64	GO TO 10000	SNGL 116
9 5	C ENTRY CHIESCIWAVE, RADIUS, INDEX, SIGMA, QEXT, QABS, QRPR, COSTHE	SNGL 117
66	C 1ALBEDO)	SNGLIIB
61	2003 CONTINUE	SNGL 1191
Ÿ.B	AREA = PI®RADIUS®®2	5NGL 120
69	AREA1 = AREA	SNGL 1 2,1
70	ASSIGN 10 TO JUHPO	5NGL 1 22
7 Ī	ASSIGN 16 TO JUMP!	SNGL 123
7.2	ASSIGN 21 TO JUMP2	SNGL 124
73	GO TO 10000	5NGL 1 25
74	10000 CONTINUE	SNGL 126
75	JNDEX = INDEX	SNGL 1 27
76	SIGR = ZER	SNGL 1 281
<i>j</i> 7	SIGI = ZER	SNGL 1 291
78	EXT = LER	SNGL 130
79	SCA = ZER	SNGL 131
ย อ	RPR = ZER	5NGL 132
81	AR = ZER	SNGL 133
82	AI = ZER	SNGL 134
83	DR = ZER	5NGL 135
84	B 1 ≠ ∠ER	5NGL 136
85	IF(LENGTH.EQ.D) LENGTH = NN	SNGL 137
86	1F(LENGTH.EQ.NN) GO TO 11000	5NGL 138
ь7	WRITE(6,14999) .	SNGL 139
88	10999 FORMAT (7) HIARRAYS IN CALLING PROGRAM DO NOT AGREE WITH THOSE IN	SUSNGL 140
89	IBROUTINE SPHERE)	SNGL 141
90	STOP	SNGL 142
91	I 1880 CONTINUL	5NGL 143
92	X = TWOPI+OBLEF(RADIUS)/DBLEF(WAVE)	SNGL 144
93 ~~	RX = ONE/X	SNGL 145
94	RX2 = RX***2	SNGL 146
95	N = 5 + IFIXF(X) + 5 IFIXF(EXPF(ALOGF(X/TWO)/THR))	SNGL 147
96	NI = N + 1	SNGL 148
97	M = N - 1	SNGL 149
98	L = N - 2	SNGL 150
9	IF (NoLE ON) GO TO 1000	SNGLISI
າຍ	WRITE(6,999) WAVE.RADIUS,INDEX.X.N.LENGTH	SNGL 152
1	999 FORMAT(44HISUBROUTINE SPHERE CALLED WITH WAVELENGTH * .E15.8.	SNGL 153
) 2	111H RADIUS = E15.8/24H INDEX OF REFRACTION = (,2E15.8.9H) KA	• .SNGL154
0.3	2E15.8,14H REQUIRES N # , 14, 32H ARRAYS ARE DIMENSIONED BY NN #	. SNGL 155
J4	314/35H RECOMPILE WITH LARGER VALUE OF NN.)	SNGL 156
us	STOP	SNGL 157
06	TOGO CONTINUE	SNGL 158
27 -	CHIZER = COSF(X)	SNGL 159
บ ย	CHI(1) = SINF(X) + CHIZER+RX	SNGL 160
U 9	CH1(2) =-CHIZER + CH1(1)+3.0+RX .	SNGL 161
10	CONST = THR	SNGL 162
11	DO 1 1=3,N	SNGL 163

12	SNGL 1640
and the contribution of th	SNGL 1650
	SNGL1660
- I rowled A PT A SI	SNGL 1670
	SNGL1680
- COURTING - VALIBUACONSI + ONE)	5NGL 1690
	SNGL 1700
The state of the s	5NGL1710
27 C 00 2 [#LL:1:=1	SNGL 1720
	SNGL 1730
	SNGL 1740
	SNGL 1750
	SNGL 1760
	SNGL 17.70
Z6 FAC = CONSTARX	SNGL 1780
DXR = FAC - ONE/(DXR + FAC)	SNGL 1790
28 CRATIO = FLOAT(2.(N + 1) - 11.RX - ONE/RATIO	SNGLIBOD
RATIO = (IWO+CONST = THR)+RX = ONF/RATIO	5NGL 1810
30 S CONTINUE	SNGL1820
PS1(N) = SMALL	5NGL1830
32 PSLIM) = SMALL *RATIO	SNGLIB40
33 CCONST = FLOAT(2+(N + LL) + 1)	SNGLI850
CONST = THO CONST - THR	SNGL 1860
35 CCONST = FLOAT(2+N + 1)	SNGL1870
16 <u>C DO 3 1=L,11,-1</u>	SNGL 1880
-7	SNGL1890
38 00 3 J = 1:L	SNGL1900
39	5NGL1910
40 CCONST = FLOAT(2+1 + 3)	SNGL 1920
CONST = CONST = THO	SNGL 1930
42	511GL 1940
3 CONTINUE	SNGL 1950
* ABSF.(PSI(1))	SNGL1960
IF (ABSF (PSI(2)) . GT. ABSF (PSI(1)) XL = ABSF (PSI(2))	SNGL1970
19 AI # PSI(1)/XL	SNGL1980
4) A2 = PS1(2)/XL	SNGL 1990
FACTOR = ONE/(XL+SQRTF((THR+RX+A1 = A21++2	SNGL2000
+ ((THR*KX**2 - ONE)*A1 - A2*RX)**2))	SNGL2010
00 4 1=1;H C1 PSI(1) = FACTOR-REST(1)	SNGL2020
	5NGL2030
	SNGL2340
	SNGL2050
·	SNGL2068
and the first of the military	SNGL2070
The state of the s	SNGL2080
- Ourstoll A Wansi	SNGL2090
THE VICE	SNGL2100
7 G1(1) * FAC ,	5NGL2110
CONST * ONE	SNGL2120
1 00 5 1*2,11	SNGL2130
2C====CONST # FLOAT(1)	SNGL2140
3 CONST = CONST + ONE	SNGL2150
RXN = CONSTORX	SNGL 2160
5 DEN = RXN - GR(1-1)	5NGL2170
6	SNGL2180
7 GR(1) =-RXN + FAC+DEN	SNGL2190

8	GI(1) = FAC+GI(1+1)	5NGL 2200
9	5 CONTINUE	5NGL 2210
0	FR = REALF(INDEX)	5NGL 2220
1	FI = ABSF(AIHAF(INDEX))	5NGL 2230
2	FAC * FR**2 + F1**2	SNGL2240
3	F (FAC. 4T. 010P4) GO TO 15	5NGL 2250
14 	ENR # FR/FAC	SNGL 2260
5	EHI ==FI/FAC	5NGL 2270
76	Z × X+SGRTF(FAC)	5NGL 2 2 8 0
77	ÝR ∓ X+FR	SNGL 2240
7 8	YI = x+FI	
7 9	FAC = ONE/(YR++2 + YI++2)	5NGL2310
30	RYR = FAC+YR	5NGL 2320
11	RYI ==FAC+YI	5NGL 23,30
2	DYR ≈ ∠ER	SNGL 2340
3	DYI = ZER	SNGL 2350
14	IFIL.GT.GREAT) GD TO 60	5NGL2360
5	K = 5 + IFIXF(Z) + 5+IFIXF(EXPF(ALOGF(Z/TWO)/THR))	SNGL 2370
16	1F(2*K+LT+5*N) GO TO 7	5NGL 2380
37	FAC = THOOYI	SNGL 2390
	IF(FAC.6T.FIFTY) GO TO 60	SNGL 2400
39	FAC * EXPE(FAC)	5NGL2410
აე	C1 =-HALF+FAC + HALF/FAC	SNGL 2420
y [DR = HALF+FAC + HALF/FAC	5NGL 2430
92	FAC = TWO+YR	SNGL 2440
y 3	CR * SINF(FAC)	SNGL 2450
94	FAC = ONE/(DR = COSF(FAC))	SNGL 2460
y 5	DYR = FAC+CR	5NGL 2470
96	DYI * FAC•CI	SNGL 2480
97	60 CONTINUE	SNGL 2490
r.	CONST # ZER	SNGL 2500
y y	00 6 I=1.NI · ·	SNGL 2510
	CONST = FLOAT(1)	SNGL 2520
01	CONST = CONST + ONE	5NGL 2530
)2	FR = CONST+RYR	SNGL 2540
03	FI = CONSTORYI	5NGL 2550
		SNGL 2560
04 05	DR = FR = DYR D1 = FI = DYI	5NGL 2570
-		
D 6	FAC = ONE/(DR • • 2 + DI • • 2)	SNGL 2580
07	DYR **FR + FAC*DR	SNGL 2590
0 6	DYI =-FI - FAC+DI	SNGL 2600
9	6 CONTINUL	SNGL 2610
10	GO TO 9	5NGL 2620
11	7 CONTINUE	SNGL 2630
12	J = MAXO(K,N)+ 5	5NGL 2640
13	CONST * FLOAT(J+1)	SNGL2651
14	FR = CONST+RYR	SNGL 2660
15	FI = CUNSTORYI	SNGL 2670
	FAC = ONE/FLOAT(2*J + 3)	5NGL 268(
17	FAC = ONE/(TWO+CONST + ONE)	SNGL 269
19	DYR = FR + FAC+YR	SNGL 2700
19	DYI = FI + FACOYI	SNGL 2718
2 <u>0</u> C	DO 8 [=J,N1,-]	SNGL 2721
21 C	[SNGL 273
22	D0 8 11=01,J	SNGL 2746

24	CCONST = FLOAT([+1]	
25	CONST = CONST - ONE	5NGL 276
26	FR = CONSTORYR	SNGL 277(
27	FI = CONSTORYI	
2.8	OR = DYR + FR	SNGL2791
29	D1 = DY1 + F1	
3 <u>0</u>	FAC = ONE/(DR0+2 + D1++2)	SNGL2810
1.	DYR = FR - FACODR	
2	DYI = FI + FAC+DI	5NGL 2830
3	8 CONTINUE	
4	GO TO 9	5NGL 2850
5	9 CONTINUE	5NGL 2860
6	CONST # FLOATF(N + 2)	SNGL 2870
	C DO 11 1*N,1,-1	
9		SNGL 28,90
9 ,	00 11 J = 1.N	
0		5 5NGL 2910
1	TIGN =-TIGN	
2	ARS * AR	SNGL 2930
3	AIS * AI	5NGL 2940
4		SNGL 2950
5	815 = 81	5NGL 2960
	CCONST = FLOAT(1 + 1)	SNGL 2970
7	CONST - CONST - ONE	
9	FAC # CONSTORX	5NGL 2990
7	DXR = FAC - ONE/(DXR + FAC)	
3	FR CONSTARYR	SNGL 3010
ł	FI = CONSTORYI	5NGL 3020
?	DR = DYR + FR	SNGL 3730
3	0! = 0! + F!	
ł	FAC = UNE/(DR+2 + DI++2)	SNGL 3050
•	DYR # FR - FAC-DR	
5 <u></u>	DYI FI + FAC+DI	. SNGL3070
7	DR = ENR+DYR - ENI+DYI	
3 	DI # ENRODYI + ENIODYR	5NGL 3090
)	CR * DXR - DR	ZNGT 3100
	<u>cl</u> = - 01	5NGL3110
	DR = GR(1) - OR	
·	DI = GI(I) - DI	SNGL 3130
i	FAC = ONE/(DR++2 + DI++2)	
<u> </u>	. TR # FAC+(CR+DR + CI+DI)	SNGL3150
•	TI = FAC+(CI+DR - CR+DI)	SNGL 3160
	AR - TROPSI(I) - TIOCHI(I)	. SNGL3170
	AI * TR*CHI(I) + TI*PSI(I)	5NGL 3180
	CR # DYR - ENR+DXR	SNGL3190
	CI + DYI - ENI+DXR	SNGL 3200
	DR = DYR = (ENR+GR(I) = FNIGGI(I)	SNGL 3210
	$= DYI - (ENR \bullet GI(I) + FNI \bullet GR(I))$	SNGL 3220
	FAC = DNE/(DR++2 + DI++2)	SNGL 3 2 3 D
	TR = FAC*(CR*DR + CI*DI)	
	TI #_FAC+(CleDR = CR+D1)	5NGL3250
	BR # TROPSI(I) - TIOCHI(I)	SNGL3260
· · · · · · · · · · · · · · · · · · ·	BI # TR+CHI(1) + TI+PSI(1)	SNGL3278
	A(1,1) = AR	
	A(I+2) = A1	SNGL 3290
	Ÿ(Î.Î.Î.) + BŘ	BNGF 3308

<u> </u>	8(1,2) = B!	SNGL 3320
1	CFAC = FLOAT(201 + 1)	5NGL3330
	FAC * TWO . CONST + ONE	SNGL 3340
3 3	SIGR = SIGR + TIGN+FAC+(AR - BR)	SNGL 3350
3 4	SIGI = SIGI + YIGN+FAC+(AI - BI)	SNGL3360
3.5	EXT = EXT + FAC+(AR + BR)	SNGL3370
16 <u>-</u> .	GO TO JUMPO (10.11)	SNGL3380
3.7	10 SCA = SCA + FAC+(AR++2 + AI++2 + BR++2 + BI++2)	SNGL3390
8 8	FAC * FLOAT(1+(1+2))/FLOAT(1+1)	SNGL3400
9	CA1 = FLOAT(i+(1+2))/FLOAT(1+1)	SNGL3410
0	AI =(TWO+CONST - ONE)/(CONST - ONE)	SNGL 3420
1	CA2 = FLOAT(2*1+1)/FLOAT(1*(1+1))	5NGL3430
2 .	A2 = (CONST = ONE) + (CONST + ONE)/CONST	SNGL 3440
3	RPR = RPR + AI + ('AR + ARS + AI + AIS + BR + BR + BI + BI + BI + BI + BI + BI	SNGL 34,50
4	1A2•(AR•BR•AI•BI)	SNGL 3460
5	11 CONTINUE	SNGL3470
ė	GO TO 25	SNGL3480
1	IS CONTINUÉ	SNGL3490
8	DYR = ZER	SNGL 3500
9	DYI * ZER	SNGL3510
.g	CONST = FLOATF(N + 2)	5NGL 3520
1	C 00 17 1=N, i, -1	5NGL 3530
٠	1 = N + 1	5NGL 3540
3	00 17 J = 1,N	5NGL3550
14 _	1 = 1 - 1	SNGL 3560
5 ,	TIGN =-TIGN ,	5NGL3570
5	AR5 = AR	5NGL3580
7	AIS "AI	5NGL3598
8	BRS = BR	5NGL3600
9	BIS * BI	SNGL 3610
0	Commercial Construction (1 + 1)	5NGL3620
1	CONST = CONST = ONE	SNGL3630
1.2	FAC = CONSTORX	SNGL 3640
3 -	DXR * FAC - ONE/(DXR + FAC)	SNGL 3650
4	FAC = DXR/(GR(1)++2 + G1(1)++2)	5NGL 3660
5	TR = FAC*GR([)	5NGL 3670
6	TI =-FAC+G1(1)	5NGL3680
7	AR = TR+PSI(1) = TI+CHI(1)	SNGL369D
8	AI = TReCHI(I) + TIePSI(I)	SNGL3700
ş	BR = PSI(1)	SNGL3700
3	B1 = CHI(1)	SNGL3720
i	A([, 1] = AR	SNGL3720
2	A(I,2) = AI	5NGL3740
3	B(1,1) = BR	SNGL3740_ SNGL3750
4	B([,2] = B]	SNGL 3760
5	CFAC = FLOAT(201 + 1)	5NGL3770
6	FAC = TWO+CONST + ONE	5NGL3770 5NGL3780
7	SIGR = SIGR + TIGN+FAC+(AR - BR)	SNGL3780
8	SIGI = SIGI + TIGN+FAC+(AI - BI)	5NGL3800
9	EXT = EXT + FAC (AR + BR)	
9	GO TO JUNP1 (16,17)	SNGL3810
1	16 SCA = SCA + FAC+(AR+02 + AI+02 + BR+02 + BI+02)	SNGL 3820
2	CA1 # FLOAT(1+(1+2))/FLOAT(1+1)	SNGL3830
3	A1 =(THO+CONST - ONE)/(CONST - ONE)	5NGL 3840
4	CA2 # FLOAT(2*1+1)/FLOAT([*(]+1))	SNGL 3850 SNGL 3860

336	RPR = RPR + A1+(AR+ARS + A1+A1S + BR+BRS + B1+B1S) +	SNGL 3880
337	A2+(AR+BR+A1+B1)	SNGL3890
338	17 CONTINUE	SNGL3900
339	GO TO 20	5 NGL 3910
340	20 CONTINUE .	5NGL 3920
341	SIGR ==TIGN+SIGR	5NGL 3930
342	SIGI =-TIGN+SIGI	5NGL 3940
343	SIGMA = SNGLF((SIGR++2 + SIGI++2)+RX2+AREAL)	SNGL 3950
344	CEXT = TWO+EXT+RX2+AREA	5NGL3960
345	QEXT # SNGLF(CEXT)	SNGL 3970
3 4 6	XKA × SNGLF(X)	5NGL 397A
347	GO TO JUMP2, (21,22)	SNGL 3980
348	21 CSCA = THO+SCA+RX2+AREA	SNGL 3990
349	QSCA = SNGLF(CSCA)	SNGL 4000
350	CCAB = CEXT - CSCA	SNGL 4010
351	QABS = SNGLF(CCAB)	SNGL 4020
352	CRPR * CEXT - FOU+RPR+RX2+AREA	5NGL4030
353	QRPR = SNGLF(CRPR)	SNGL4040
354	COSTHE = (QEXT - DEPRI/(GEXT - GABS)	SNGL 4050
355	ALBEDO = 1.0/(1.0 + QABS/QSCA)	5NGL4060
356	2Z RETURN	SNGL 4070
357	END	5NGL4080
TIS TAR	4€ Τ	
	•	

	SUBROUTINE TARGET
2	INCLUDE GEOM.LIST
3	REAL [11]:112:113:121:122:123:131:132:133:1:J.K.L.N1.N2.NUMBER.
4	LOWLIM, N. N
5	DIMENSION PDUM(3).XDUM(3).XTDUM(4)
6	RANGE (X1. YI. Z1. Y2. Z2. TECRY (Y2. Y2. Z2. Z2. Z2. Z2. Z2. Z2. Z2. Z2. Z2. Z
7	RANGE (X1.Y1.Z1.X2.Y2.Z2)=SQRT((X2-X1)++2+(Y2-Y1)++2+(Z2-Z1)++2) ATRIG(X1,Y1.Z1.X2.Y2.Z2.X3.Y3.Z3)=
8	* SURT((X1*(Y2-Y3)+X2*(Y3-Y1)+X3*(Y1-Y2))**2
7	+(Z1+(X2+X3)+Z2+(X3-X1)+Z3+(X1-X2))++2
0	• AIVIALTO 1214074143 741.444.4
i	MTX(U11,U12,U13,U21,U22,U23,U31,U32,U33) =
2	* U11*U12*U13 + U13*U21*U32 + U31*U12*U23
.3	* -U13*U22*U31 - U32*U23*U11 - U33*U12*U21
4	P1#3 • 14159265
5	HALFPI=PI/2.0
<u></u>	TWOPI=P1.02.0
•	NDATA=G
- - .	
	C DETERMINATION OF COEFFICIENTS FOR QUADRIC
,	C EMUNITURE DESCRIBING THREE DIMENSIONAL SURFACES.
	THEIR CONSTRAINT PLANES.SKEWED PLANES.AND
	DETERMINATION OF VIEW POINT VECTOR COMPONENTS
	AND VIEW POINT AREAS FOR THE VARIOUS GEOMETRIES
-	C. NTHAX MAX. NUMBER OF TARGETS ALLOWED IN THIS PROGRAM (.GE. NTARGT)
	THE CONSTRAINT ANNULAR RICE
	5 1.9E. MAXINRINGI.NRING2))
	C NS DEAR TUTAL NUMBER OF VIEW POINT AREAS ON THE SIDE SURFACE OF
*****	IARGEI [AGEA[NNIANNZ]]
	C. NTARGT NUMBER OF TARGETS
	(* * * * *
	(
	C CYLINDER
	C
	C IPTION=1
	C NNI NUMBER OF VIEW POINTS ALONG ARC LENGTH
	C NNZ=HUMBER OF VIEW POINTS ALONG AXIAL DIRECTION
	The manual of their foliation actions action belong the contractions
	C CONSTRAINT ANNULAR DISK PASSING THRU POINT PI(X10, X20, X30)
	NRING2 NUMBER OF VIEW POINT APEAS ALONG PARTY PROCESSING
	C CONSTRAINT ANNULAR DISK PASSING THRU POINT P2(X40, X50, X60)
	C RADISK = RADIUS OF THE CYLINDER
	C REPIRADIUS OF THE INNER CIRCLE ON THE CONTRAINT ANNULAR DISK
	
	C RCPZ=RADIUS OF THE INNER CIRCLE ON THE CONTRAINT ANNULAR DISK
	XID:X20:X30 ARE THE COORDINATES OF THE CENTER OF THE TOP
	\ ATUIADUIAON ARE THE COORDINATES OF THE CENTER OF THE OLDE
•	AZBIAGUIAZO ARE THE COORDINATES OF AN ARRITRADY DOINT NOT
	ON THE AXIS OF THE CYLINDED
	C FRUSTUM

56	С	IPTION=2
57	С	NNI*NUHBER OF VIEW POINTS ALONG ARC LENGTH
58	СС	NN2#NUMBER OF VIEW POINTS ALONG AVIAL DIRECTION
59	Ç	NKINGIEUPTIONAL, DOES NOT APPLY
60	<u>c</u>	NRINGZ*NUMBER OF VIEW POINT AREAS ALONG RADIAL DIRECTION ON THE
61	C	CONTINAINT ANNULAR DISK PASSING TURN DOTHE DOLLAR VER VIR.
95	c	
6.3	c	RCF1=UPITONAL, DOES NOT APPLY
64	. <u> </u>	RCPZ=RADIUS OF THE INNER CIRCLE ON THE CONTRAINT ANNIL AP DISK
65	Ç	FASSING THROUGH POINT PZ(X40,X50,XA0).
67	<u>c</u>	RADISU#RADIUS OF THE CONSTRAINT DISK THRU POINT BILLIA YOU YOU
	C	ALUINZUINSO ARE THE COORDINATES OF THE CENTER OF THE TOP
68 	¢	ATSIASSIASS ARE THE COORDINATES OF THE CENTER OF THE DAGE
69	Ç	A/U:A8U:X9B ARE THE COORDINATES OF THE ARBITRARY POINT NOT
70	<u>°</u>	ON THE AXIS OF THE FRUSTUM
71	Ç	
72 73	<u>c</u>	PARABOLUID
	, c	
74	٠٠ ٠٠ و و و و و و و و و و و و و و و و و	IPTION=3
75	Ç	NNI=HUHBER OF VIEW POINTS ALONG ARC LENGTH
76 77	C	NN2#UUNBER OF VIEW POINTS ALONG AXIAL DIRECTION
	C	MRINGITUPIIDNAL, DOES NOT APPLY
7 b 7 9	<u> </u>	NRINGZENUMBER OF VIEW POINT AREAS ALONG RADIAL DIRECTION ON THE
90	Ç	
	<u>-</u>	
: 1	٠ (RCFIEUPIIONAL, DOES NOT APPLY
82 83	ç	RCP2=RADIUS OF THE INNER CIRCLE ON THE CONTRAINT ANNULAR DISK
84	C	rassing through point parxyam, xam,
37	<u> </u>	X13; X20; X30 ARE THE COORDINATES OF THE VERTEY!
36	C	ATG. X50. X60 ARE THE COORDINATES OF THE CENTER OF THE DASE
37	··· č	
38	C	ON THE AXIS OF THE PARABOLOID
3°		Ell Tripoles Translation to the
90	c	ELLIPSOID (SPHERE IS A SPECIAL CASE)
7 1		1.17
? Z	Ċ	1FTION=4
3		NNI HOUNBER OF VIEW POINTS ALONG ARC LENGTH
74	Č	NN2=NUMBER OF VIEW POINTS ALONG PI-P2 AXIAL DIRECTION
 5	- 	NRINGI NRINGZ-OPTIONAL, DOES NOT APPLY
6	Ċ.	RAD HOUMERICAL VALUE OPTIONAL DOES NOT APPLY
7	<u> </u>	RCP1, RCP2=OPTIONAL, DOES NOT APPLY
B	Č	X13.X26.X30 ARE THE COORDINATES OF THE CENTER
9	<u>c</u>	X40.X50.X60 ARE THE COORDINATES OF THE POLE
Ó	č	X70, X80, X90 ARE THE COORDINATES OF THE ZERO MERIDIAN
) j		PLANE
2	Č	- CANE
3		IDIIONAC
4		IPTION=5
5		NNI=NUMBER OF VIEW POINTS ALONG P1-P2 LINE
6		NN2=humber of VIEW POINTS ALONG P2+P3 LINE
7	;	NRINGI, NRINGZ=OPTIONAL, DOES NOT APPLY
8		RAD-HUMERICAL VALUE OPTIONAL DOES NOT APPLY
9	<u>c</u>	RCP1.KCP2=OPTIONAL, DOES NOT APPLY
Ó		THE FOLLOWING ARE PI.PZ.P3 RESPECTIVELY
Ĭ.	~ <u>(</u>	X10. X20. X30 ARE THE COORDINATES OF A CORNER OF THE PLANE
•	C	X40.X50,X60 ARE THE COORDINATES OF THE NEXT CORNER.

2	C CLOCKWISE ABOUT THE PLANE, LOOKING IN THE DIRECTION
3	C OF THE NEGATIVE NORMAL
4	C X70.X86.X90 ARE THE COORDINATES OF THE THIRD CORNER.
5	C CLOCKWISE ABOUT THE PLANE, LOOKING IN THE DIRECTION
6	C OF THE NEGATIVE NORMAL
7	C
8	C ANNULAR DISK
9	
0	C 1PTION=6
1	NNI * NUMBER OF VIEW POINTS IN ARC DIRECTION
2	C NNZ#NUMBER OF VIEW POINTS IN RADIAL DIRECTION
3	C NRINGI, NRING 2=OPTIONAL, DOES NOT APPLY
24	C RADISK *OUTER RADIUS OF THE DISK
75	C RCPI INNER RADIUS OF THE ANNULAR DISK
26	C RCP2=OPTIONAL DOES NOT APPLY
27	XID. X2C. X3D ARE THE COORDINATES OF PI. CENTER OF THE DISK
	THE TENTH IS A POINT ON THE DISK. P2. VIEW POINTS ARE COUNTED
28 29	FROM P1-P2 LINE IN RIGHT-HAND-ROLE SENSE WITH ITS NORTHE
	C X70, ABD. X90 IS THE DIRECTION COSINE OF THE POSITIVE NORMAL
30	770170031770 13 1100 03/1257700 000
3 1	
32	
33	10 CONTINUE .
34	NDATA=NDATA+1 READ (5,251) 1PTION.NN1.NN2.NRING1.NRING2.RADISK.RCP1.RCP2.RADISU
35	
J F	1
37	READ (5,252) x10,x20,x30,x40,x50,x60,x70,x80,x90
38	WRITE (6,201) NOATA
39	WRITE (6.251) [PTION.NNI, NN2, NRINGI, NRING2, RADISK, RCP1, RCP2, RADISU
40	WRITE (6,252) X10,X20,X30,X40,X50,X60,X70,X80,X90
41	NTARGT=NDATA
2	IF (NNI-LE-1) NNI=1
43	IF (NNZ-LE-1) NNZ=1
44	IF (NRING1.LE.I) NRING1=t
45	IF (NRIHG2.LE.1) NRING2=1
46	NAREA(NOATA,1)=NN1=NN2
47	NAKEA (NDATA, 2) = NNI = NKINGI
48	NAREA(NDATA,3)=NN1+NRING2
49	RADISK = ABS (RADISK)
50	RCP1*AUSIRCP1)
51	RCP2=AbS(KCP2)
52	IF (IPTION.EQ.4) GO TO 901
53	NI=1.0/FLOAT(NN1)
54	N2=1.C/FLOAT(NN2)
55	GO TO 962
56	901 NI=1.0/FLOAT(NNZ) N2=1.0/FLOAT(NNI)
57	The same of the sa
58	902 L=SQRT((X40-X10)++2+(X50-X20)++2+(X60-X30)++2) IF (IPTION-EQ-1 +0R+ IPTION-EQ-6) GO TO 801
5.9	IF (IPTION:EQ.2) GO TO 802
60	IF (IPTION-EQ.2) GO TO 803
61	
62	GO TO 9C3
163	BD1 RAD=KAD15K
164	GD TO 9C3
165	802 RAD=(RADISK-RADISU)/L
166	RBONDU (NDATA) = RADISU
167	GO TO 903

168	803	RAD=(RADISK 002)/L
169	903	RBOND (NDATA)=RADISK
170		IBODY(NDATA) = IPTION .
171		DATA (NDATA : 1) = NN I
172		DATA(NDATA,2)=NN?
173		DATA(NDATA,3)*L
174		DATA(NDATA,4)=RAD
175		DATA(NDATA,5)=XIG
176		DATA(NUATA,6)=X20
=		DATA(NDATA,7)=X30
178 179		DATA (NDATA, 8) = X40
180		DATA(NDATA,9)=X50 DATA(NDATA,10)=X60
181		DATA(NDATA,11)=X7f
182		DATA(NDATA, 12) = XAQ '
183		DATA (NDATA - 131 = X90
184		RRINGINDATA: 11=RCPL
185		RRING(NUATA, 2) = RCP2
186		10 //OT/200 No. 4.
187		
188		CVI=(XIG-X40)/CONEHT
187 _		CV2=(XZU-X50)/CONEHT
172		CV3=(x3C-x60)/CONEHT
191		ADDHT=CONEHT • RADISU/(RADISK=RADISU)
192		X1C=X1C+CV1+ADDHT .
143		X2U#X2C+CV2+ADDHT
194		X30=X30+CV3+ADDHT
145	905	5 CONTINUE
. L9 6		81-×40-×10
197		8^*X50-X20
148		_83=X60-X30
199		E1=X7J=x40
501 500 -		E2=X8C=X50
202		E3=X90=X60
263		R1=X7G-X10 R2=X80-X20
2U4		R3=X90=X30
205		BMAG=5QKT(B10020B2002+B3002)
206		EMAG=SQRT(E1++2+E2++23++2)
207		RMAG=SQRT(R10+2+R2+02+R3++2)
208		IF(IPTION-5) 191,111,100
209	101	BETA=ACUS(BI/((B1++2+B3+2)++5))
210		
211	102	BETA = BETA
\$15	103	THETA *HALFP 1-ACOS (B2/BMAG)
213		Ill=COS(THETA)+COS(BETA)
714		
215		113=-SIN(BETA) *COS(THETA)
216		I2I==SIN(THETA)*COS(BETA)
21/		122=C05(THETA)
21B		123#5[N(THETA) *SIN(BETA)
219		131=SIN(BETA)
5 50		132=0.0
221		133=CUS(BETA)
222		
223		HRITE(6,263) 111,112,113

224	WRITE16,203) 121,122,123
225	WRITE(6,203) [31,132,133
226	I=I:1+X10+I:12=X20+I:13+X30
227	J#121+X10+122+X2n+123+X30
228	K=1310X10+1320X20+1330X30
229	F(1PT10N=4) 104,110,104
230	104 1F(1PT10N-3) 105,108,105
231	105 IF(IPTION+2) 106,107,106
232	166 C1#12 ++2+131+42
233	C2=122**2+132*é2
234	C3=123 • • ? + 133 • • 2
235	C4=2.0+(121+172+131+132)
236	
237	C6=2.3+(122+123+132+133)
238	C7=2+G+(J+121+K+131)
239	C8=-2+0+(J+122+K+132)
740	C9=2.C*(J*123+K*133)
211	CONST=J. • 2+K • • 2-RAD • • 2
242 243	GO TO 109
244	107 Cl=+(RAU+111)++2+121++2+131++2
245	C2=-(RAD+112)++2+122++2+132++2
246	C3=-(RAU+113)++2+123++2+133++2
2 17	C4=2.L=(-RAD++20111+112+121+131+132)
248	C5=2+G+(-RAD++2+111+113+121+121+131+131)
2.9	C6*2+0*[-RAD*+2+]12+113+122+123+132*[33]
250	C7=-2.C*(-I*RAD*02*I11+J*121+K*I31)
251	C8=-2.0*(-I*RAD++2*[12+J+122+K+132]
252	C9=-2+0*(-I*RAD**2*113+J0123+K*133)
253	CONST==([=KAD]==?+J==?+K==2
254	4RITE(6,205)
255	GO TO 109
755	
257	C2=122••2+i32••2
576	C3=123••2+133••2
259	C4=2.0+(121+122+131+132)
260	C5=2+0+(121+123+131+133)
761	C6#2+3+(122+123+132+133)
762	RAD2=KAD/2.G
263	C7*-2.0*(J*[21+K*]31+RAD2*[11)
264	. C8=+2.C*(J*122+K*132+RAD2*112)
765	C9=-2.G*(J*123+K*133+RAD2*113)
266 267	CONST#J**Z+K**Z+Z*C*RADZ*I
268	WRITE(6,2G6)
269	109 WRITE(6,607) C1.C2.C3.C4.C5.C6.C7.C8.C9.CONST.RBOND(NDATA)
270	* RBONDU(NDATA)
211	XQ1=L+B1/BMAG XQ2=L+B2/BMAG
272	X03=L+B3/8HAG
273	X14=X4C-401
274	X25*X5G-X02
275	X36=X60-X03
276	C11=111
277	C12=112 .
278	C13*113
279	CBASE=111+X40+112+X50+113+X60

CEND=1110X14+1120X25+1130X36	
WRITE(6,208)	
WRITE(6,209) C11. C12. C13. CEND.C	BASE
DISKEQ(NDATA, 1) =C11	
DISKEQ(NDATA,2)=C12	
DISKEQ(NDATA,3)=C13	
DISKEQ(NUATA:4)=-CEND	
DISKEWINDATA, 51 == CBASE	•
NCRING(NUATA, 1)=NRING1	
NCRINGCHDATA, 2) #HRING2	
DRANG=2.0.PI.ni	
DPHIC(NDATA)=DRANG	•
`RRCP1=RBUND(NDATA)+RCP1	
	DU(NDATA)+RCP1 ,
RRCP2=RBOND (NDATA)=RCP2	5 - T-0 - T-
IF (NRINGI-LE-S .OR. IPTION-GT-2)	GO TO 922
DRI=RRCPI/FLOAT(NRING)	,
60 TQ 925	
92 <u>2</u> DR1±0•0	
925 IF (NKINGZ.LE.O) GO TO 923	
DR2#RHCP2/FLOAT(NRING2)	
GO TO 924	
	_
	GO TO 930 ·
· · · · · · · · · · · · · · · · · · ·	
	• *
	
	The service service service of the service ser
	·
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · ·	
	
	•
PI3MAZ=R3=PIPAZ	
	.0,0.0.0.0)
UA3X=P13MAX/P13MA .	
UA3Y=P13MAY/P13MA	
UA3Z=P13MAZ/P13MA	
U25X=UA3Y+U12Z=UA3Z+U12Y	•
U2SY=UA3Z•U12X+UA3X+U12Z	
9 9 9	#RITE(6, 209) C11, C12, C13, CEND, C DISKEQ(NDATA, 1) = C1 DISKEQ(NDATA, 2) = C12 DISKEQ(NDATA, 4) = CEND NCRING(NDATA, 1) = NRING1 NCHING(NDATA, 2) = IRRING2 DRANG=2.0-PI = NI DPHIC(NDATA) = DRANG RRCP1=RBDND(NDATA) = RCP1 IF (IPTION.EQ.2) RRCP1=RBDNI RRCP2=RBDND(NDATA) = RCP2 IF (IRING1.LE.G. OR. IPTION.GT.2) DRI=RRCP1/FLOAI(NRING1) GO TO 925 22 DRI=C.O 25 IF (NRING2.LE.O) GO TO 923 DR2=RCP2/FLOAT(NRING2) GO TO 924 23 DR2=G.O 24 DO 93D JJ=1,2 IF (JJ.EQ.2) GO TO 931 DR=DR1 RHEAN=RCP1+DR/2.O NRG=NRING1 GO TO 932 JR = DR2 RMEAN=RCP2+DR/2.O NRG=NRING2 CRING(NDATA, KK, JJ) = RMEAN RMEAN=RCP2+DR/2.O RMEAN=RCP2+DR/2.O RMEAN=RCP3+DRAG U12X=B3/BMAG U13X=P13MAX=R1-P1PAX P13MAX=R2-P1PAY P13MAX=R2-P1PAY P13MAX=R3-P1PAZ P13MAX-P13MAZ/P13MA UA3Y=P13MAZ/P13MA UA3Y=P13MAZ/P13MA

TREF(NDATA:1:2)=RBOND(NDATA)+UA3X
TREF (NDATA , 2 , 2) = RBOND (NDATA) + UA3Y
TREF (NDATA . 3 . 2) = RBOND (NDATA) + UA3Z
SREFINDATA . 1 . 2) = RBUND (NDATA) • U25X
SREF (NDATA, 2, 2) #RBOND (NDATA) #U2SY
SREF (NDATA, 3, 2) #RBOND (NDATA) + U25Z
TTX=TREF(NDATA.1.2)+X4G
TTY=THEF (NDATA, 2, 2)+X50
TTZ=TREF(NDATA,3,21+X60
SSX=SREF (NDATA.1.2)+X40
SSY=SREF (NDATA, 2, 2) + X5U
SSZ=SHEFINDATA +3.71+X60
WRITE(6,941) TTX.TTY.TTZ.SSX,SSY,SSZ
IF (IPTION.GT.2) GO TO 921
IF (IPTION.EQ.2) RSAVE #RBOND (NDATA)
IF (IPTION.EQ.2) RBOND (NDATA) = RBONDU (NDATA)
TREF (NDATA . 1 . 1) = RHOND (NDATA) + UA3X
TREF (NDATA, 2, 1) =RBONU (NDATA) +UA3Y
TREF (NDATA . 3 . 1) = RBOND (NDATA) • UA3Z
SREF (NDATA . 1 . 1) = RBOND (NDATA) + U25x
SREF (NDATA . 2 . 1) = RBOND (NDATA) + UZSY
SKEF INDATA . 3 . 1) = RBUND (NDATA) + U25Z
• # . • #
721 CONTINUE 721 CONTINUE
•
WRITE(6,333)
GO TO 112
11G C1=(RMAG+I1I) ++2+BMAG++2+(121++2+131++2)
CZ=(RMAG+112)++2+BMAG++2+(122++2+132++2)
C3=[RMAG=[13]++2+BMAG+*2+[123++2+[33++2]
C4=2.0+(RMAG+.2+11+112+BMAG+2+(121+122+131.132))
C5=2.0*(RHAG*+2*111+113+BMAG**2*(121+123+131*133))
C6*2.0*(HMAG*+2*112*113+BMAG**2*(122*123+132*133)).
C7=-2.D. (RMAG. 2.1.11+BMAG. 2.4 (J.121+K.131))
C8=-2.0*(RNAG**2*(*112+8MAG**2*(J*122+K*132))
C9=-2.G.(RMAG.+?.1.13+BMAG.+2.(J.123+K.133))
CONST = (HMAG + 1) ++ 2+ BMAG ++ 2 + (J++2+K++2) - (RMAG + BMAG) ++2
WRITE(6,210)
WRITE(6,267) C1,C2,C3,C4,C5,C6,C7,C8,C9,C0NST
WRITE(6,333)
GO TO 112
111 C: #X25 E3 + X80 + B3 = X50 • R3
C2=X33+L1+X90+B1-X60+R1
C3=X10+E2 +X70+82-X40+R2
CONST=X1G+(X60+X8G-X50+X90)+X20+(X40+X90-X60+X70)+X30+(X50+X70-X40
1*x80)
WRITE(0,211)
X1A=X1C+x70=x40
X2A=X2G+X8G-X50
X3A=X3C+X9C=X6C
DATA(NDATA,14)=X1A
DATA(NDATA, 15) #X2A
DATA (NDATA , 16) = X3A
PLA1=ATRIG(X10, X20, X30, X40, X50, X60, X70, X80, X90)
PLAZ=ATKIG(X10,X20,X30,X70,X80,X90,X1A,X2A,X3A)
PLAKEA(NDATA)=PLA1+PLA2
WRITE(6,612) C1,C2,C3,CONST,PLAREA(NDATA)

392	WRITE(6,333)	
393	1;2 IF(N1-1-0)113,113,100	
394_	113 1F(N2-1+01114,114,190	
395	114 1F(IPTION-5) 115,152,100	
33.9	115 IF (1PTION-4) 116,139,152	
397	116 NUMBER=1.0	
398	EXB1=83*E2-B2*E3	
399 407	EXB2*B1*E3*B3*E1	
401	EXB3=82*E1=81*E2 EXBMAG=(EXB1*=2+EXB2**2+EXB3**2)***5	
402	BXEXb1=b3+(B3+E1-B1+E3)-B2+(B1+E2-B2+E1)	
403	BXEXB2=B1 • (B1 • E2 • B2 • E1) - B3 • (B2 • E3 - B3 • E2)	
464	BXEXB3=62*(B2*E3-B3*E2)=B1*(B3*E1=B1*E3)	
405	EXB4#EXB1/EXBMAG	,
406	EXB5=EXB2/EXBMAG	· · · · · · · · · · · · · · · · · · ·
467	EXB6=LXB3/EXBMAG	1
40.8	FPH[#P]*N]	
9 ن 4	LOWLIM=C.G	
416	R#1.0	
411	117 GMAG=H2+L+(R+.5)	
712	UPL [H=k+12+L	
4 i 3	1F(GMAG-L)118,100.100	
414	118 GI=GMAG+B1/BMAG	
+15	G2=GMAG+B2/BMAG	
416	G3=GMAG=B3/BMAG : :	
417	IF(IPTION-1) 120,119,120	
418 419	119 RADIUS=KAD FGMAG=.5*N2*L	
420	AREA=4.D.FGMAG+RADIUS+FPHI	
421	GO TO 123	
422	120 BHGMAG=((B1+G1)0+2+(B2-G2)0+2+(B3-G3)++2)++5	
423	IF (IPTION +2) 122.121.122	
424	121 RADIUS=RAD+BMGMAG	
425	FPKR=FPh1+RAD+(1+n+RAD++2)+++5	
426	AREA=FPKR+(UPLIM-LOWLIM)+(2+0+BMAG-UPLIM-LOWLIM)	
427	LOWLIM=UPLIM	
428	GO TO 123	
429	122 RADIUS=SURT(RAD+BHGMAG)	
430	RAG=RAD++2-4-0+ABS(RAD)+(LOWLIM-BMAG) RUG = RAD++2 - 4-0+ABS(RAD)+(UPLIM - BMAG)	
431 432	FPRAD = FPHI/(6.0. RAD)	
433	AREA *FPRAD*(RAG**1*5 = RUG**1*5)	
434	LOWLIM = UPLIM	
435	123 M= 1:0	
436	124 PHI = (2.0+H = 1.0)+N1+PI	
437	IF(PHI - TWOP1) 125,138,138	
438	125 N = ABS(1./TAN(PHI))	
439	BXLXBM = ((BXEXB1++2 + BXEXB2++2 + BXEXB3++2)+++5)/N	
440	BXEXB4 = BXEXB1 / BXEXBM	<u> </u>
441	BXEXB5 = BXEXB2 / BXEXBM	
442_		
443	RHO = RADIUS / (N++2 + 1+0 1+++5	
444	RVXP = KHO + (EXB4 + RXEX84)	
445	RVYP=RHU+ (EXB5+8XEXB5)	
446		
447	RVXM≖RHO⊕ (EX84≔HXEXB4)	

48	RVYM+RHO+ (EXBB-BXEXB5)		
49	RVZH=RHU+ (EXB6-BXEXB6)		
50	RVX8E8#KADIUS+ BXEXB4/N		
151	RVYHEB*KADIUS* BXEX85/N		
15.2	RYZBEB=RADIUS+ BXEXB6/N		
5.3	RVXEB=RADIUS+EXB4		
54	RVYEB=RADIUS=EXB5		
155	RVZED=RADIUS•EXB6	•	
56	1F(PHI)126,126,127 126 WRITE(6,215) PHI		
57 58	60 to 1/0		
159	127 IF (PHI - HALFPI) 128,129,130		
160	128 RVX = RVXP		
161	RVY = RVYP		
162	RVZ = RVZP		
163	60 TO 137		1
164	129 RVX # RVXEB	•	
165	RVY * RVYEB		
,64	RVZ = RVZEB	•	
467	GO TO 137		
468	130 (F (PHI-P!) 131.132.133		
469	131 RVX * RVXM		
47C	RVY = RVYM		
471	RVZ = KVZM		
472	60 TO 137		
4/3	132 RVX = -RVXBEB		
474	RVY = -RVYBEB		
475	RVZ = -KVZBEB		
<u> </u>	GO TO 137 133 IF (PHI +PI+I+5) 134,135,136		
477	133 IF (PHI +PI+1.5) 134,135,136 134 RVX = -KVXP		•
4 ' '	RVY = -RVYP	•	, '' ' '' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
4/4	RVZ = =KVZP		
480 <u></u> 481	GO TO 137		
412	135 RVX = -RVXEB		
4 d 3	RVY = -RVYEB		
484	RYZ = +KYZEB		
4 6 5	GO TO 137		•
434	136 RVX = -KVXM		
487	RVYRVYM		
468	. RVZ = +RVZM		
489	137 VP1 = X40 - G1 + RVX	•	
440	VPZ = X50 = G2 + RVY		
491	VP3 = X60 - G3 +, RVZ		
492	WRITE (6,214) NUMBER. VPI. VPZ, VP3, AREA	<u> </u>	
493	NFIX=NUMBER		
494	· VECTOR(NDATA,NFIX,1)=VP1		
445	VECTOR(NDATA,NFIX,2)=VPZ	•	
496	VECTORINDATA.NFIX.31=VP3		
497	VAREA (NDATA . NF 1 X) = AREA	•	
498	· NUMBER=NUMBER+1.^		
499	M=M+1+G		
500	GO TO 124 138 R = R + 1.0	•	
501 502	1F1GMAG - L)117,100.100		

E N 4	CTUETA - TWOO! AND
504 505	FTHETA = TWOP1 4N2 PHIO = 0.0
- -	
506 507	F = 1.0 · 140 Z = 1.0
508	PHI1 = (2.00F - 1.0) +PI+NI
509	IF (PHII - TWOPI) 141,100,100
51C	141 THETAL=TWOPI • (2.0+Z-1.0)+N2
511	PHI2= PI •F• N1
512	DARI=RMAG++2+(CO5(PHIO))++2+BMAG++2+(SIN(PHIO))++2
513	DARF=RMAG**2* (COS(PH12))**2+BMAG**2* (SIN(PH12))**2
514	LOWL IM=BMAG+RMAG+RMAG+COS(PHIO)/SQRT(DARI)
515	UPLIM=BMAG-RMAG+RMAG+COS(PHI2)/SQRT(DARF)
516	A = (BMA G • RMAG) • • 2
517	B=2.C.BHAG.(BMAG2-RMAG2)
518	C=KMAG++2-BMAG++2
519	161 IF (ABS(BMAG-KMAG).LT.1.0E-10) GO TO 143
520	RF TBSC=RNAG+FTHETA/(4.U+BMAG+2+C)
, 21	RFTABC=KMA6+FTHETA+(4.3+A+C-B+2)/(8.0+BMAG+2+C)
122	CXEB=2.3.C. UPLIM+B
523	CX18=2.2.C. LOWLIN+B
524	RTFL=SQRT(A+B+UPLIM+C+UPLIM++2)
575	RIIL=5QRI(A+B+LOWLIM+C+LOWLIM++2)
526	FAREARRITUSC . (CXFB . RTFL - CX18 . RTIL)
527	[F [BMAG-RMAG] 142,143,144
5 2 8	142 CC=C
529 .	NUMARG=RIFL+UPLIM+SQRT(CC)+B/(2.00SQRT(CC))
539	DENARGERTIL+LONLIM.SQRT(CC)+B/(2.0.SQRT(CC))
531	SAREA=(1.G/SQRT(CC))+ALOG(NUMARG/DENARG)
5 3 2	GO TO 145
5.33	143 AREA = KMAG + FTHETA + (UPLIM - LOWLIM)
5.14	G0_T0_146
732	144 ASFARGE-(2.0.C.UPLIM+B)/SQRT(B2 - 4.4.C)
536	ASIARG=-(2.0.C.LOWLIN+B)/ SQRT(B2 - 4A.C)
537	CCE+C
538	FAREA=(1.c/SURT(CC1)+(ASIN(ASFARG)+ASIN(ASIARG))
539	145 AREA = FAREA + RFTABC+SAREA 146 DARO = HMAG++2 + COS(PHII/2+)++2 + BMAG++2 + SIN(PHII/2+)++2
5 4 0	
541	DABHAG ORMAG/SURT (DARO)
542 <u> </u>	A1 = D • SIN(PHI1/2•0) • R1/RMAG A2 = D • SIN(PHI1/2•0) • R2/KMAG
	· · · · · · · · · · · · · · · · · · ·
<u>544</u> 545	A3*D*SIN(PHI1/2,0)*R3/RMAG DANG*D**2*(SIN(PHI1/2.0))**2*COS(THETA1/2.0)
546	EPS=1.0L-10
547	IF (ABS(A1).LT.EPS.AND.ABS(A2).LT.EPS) GO TO 301
548	IF (AUS(UI) LT . EPS . AND . ABS(B2) . LT . EPS) GO TO 302
547	DET=A1+#2-A2+B1
550	S*82*DANG/DET
? 	T={A2+B3-A3+B2}/DET
552	U==B1+DANG/DET
553	V=(A3+B1-A1+B3)/DET
454	P=1-+2+v++2+1-0
555	Q#2.6*(5*T+U*Y)
556	K=5.4.2+U.4.2=(D.4.51N(PHI1/2.0))4.2
557	IF(THETA) - TWOPI)147,147,148
558	147 90 = 1.3
559	40 TO 149

560	140	QD ==1.0	
561		G3 = (-Q + QD + QD + (Q++2 + 4.0+P+R)++.5)/(2.6 + P	1
562		G2mU+V=G3	•
563		G1=5+T+G3	
564		GO TO 320	_
565	301	G3*DANG/A3	· · · · · · · · · · · · · · · · · · ·
566		FF1=B1	
567		FF2=82	
568		HH1==B3+G3	
569		60 TO 3C5	
570	302	G3*0•0	
571		FF = Á	
572		FF2#42	
573		HH I = D ANG	
574	305	HHZ=(D+SIN(PHI1/2.0))++2-G3++2	
575		IF (THETA: -TWOPI) 306,306,307	
5/6	306	QD=1.3	
577		GO TU 329	
578	307	Q9=-1.9	
579	309	IF (AUS(FFI).LT.EPS) GO TO 311	
500		COEFG=FF1++2+FF2++2	
581		COEF1=FF2+HH1/COEFG	•
582		COEF2=(HH10+2-HH2+FF1++2)/COEFO	· · · · · · · · · · · · · · · · · · ·
563		G2=CULF1+QD+SQRT(ABS(COEF1++2+COEF2))	
584		G1=(HH1-FF2+G2)/FF1	•
5 5	211	60 TO 320	
586	311	62#HH1/FF2	
587	226	GI=QD+SQRT(ABS(HH2=G2++2)) CONTINUE	
588 599	320	X41=2.6*X13-X46	
540		X51=2.0+X20-X50	
591		X61=2.0+X30+X60	
592		AXIHAG=1.0-D+COS(PHI1/2.0)/BHAG	•
593		AXI1=AXIHAG+B1	-
594		AXI2*AXIMAG*B2	
595	· <u></u>	AXI3*AXIMAG*B3	
596		VP1=X41+AXI1+G1	
597	·	VP2=X51+AX12+G2	
548		VP3=x61+AXI3+G3	
599		Z=Z+1.0	•
600		IF (THETA1-2.0+TWOPI) 150.151.151	
6CĨ	150	WRITE 16,214) NUMBER, VP1, VP2, VP3, AREA	
602		NF X=NUHUER	·
403		VECTOR(NDATA.NFIX.1)=VP1	
454		VECTOR (NDATA, NFIX, 2) = VP2	
605		VECTOR(NDATA,NFIX,3)=VP3	
404		VAREA(NOATA,NF1X)=AREA	
6 Ú 7		NUMBER # NUMBER + 1.0	
4D8		GO TO 141 -	•
404	151	PHIO = PHIZ	,
410		F = f +1.0	
611		GO TO 140	•
6 <u>12</u>	152	NUMBER = 1.0	
613		BDOTE = b1 *E1+B2*E2+B3*E3 AREA * n1 * N2 * SQRT ((BMAG * EMAG) * * 2 * BDOTE * * 2)	.*
614			
615		HOK=1.0/N1	

14		VERT=1.0/N2	•
617 518	104	V=1.0	
19		HeleO	· · · · · · · · · · · · · · · · · · ·
20	134	Q1=N1+(H-,5)+B1	
21		Q2=N1+(H5)+82 Q3=N1+(H5)+83	
22 .		#1=N2+(V-,5)+E1	
23		W2=N2+(V+.5)+E2	
24		<u>₩3=N2+(V-+5)+E3</u>	
25		VP1=X40+W1=Q1	A
26		VP2=X50+x2+QZ	
27		VP3=X60+m3-Q3	· · · · · · · · · · · · · · · · · · ·
28 _		WRITE (6,214) NUMBER . VP1 . VP2 . VP3 . AREA	
29		NFIX=NUMBER	
30		VECTOR (NDATA NF [X. 1) = VP1	
.31		VECTOR(NUATA, NF1x.2)=VP2	
72		VECTOR (NDATA, NF 1X, 3) = VP3	
33		VAREA (NDATA, NF 1X) = AREA	
34		NUMBER=NUMBER+1+A	
35		H#H+1*C	
36		IF (H-HOK) 154,154,155	·
37	155	A = A+1+2	
3 H		1F (V-VERT) 153, 153, 160	
40	193	CONTINUE	
41 .		IF (IPTION.LE.5)	GO TO 699 .
42	690	CALL DISK (D.NDATA.PDUM.XDUM.XTDUM.IHIT)	
43		CONTINUE	
44	4,,	IF (IPTION-EQ.5) GO TO 501	
43	'	COEF (NDATA, 1) = C1	
4.5		COLF (NDATA . 2) = C2	•
47		COEF (NDATA, 3) = C3	· · · · · · · · · · · · · · · · · · ·
48		COEF (NDATA . 4) = C4	<u>.,, ;</u>
49		COEF (HDATA . 5) ECS	
50		COLFINDATA, 61=C6	
51		COEFINDATA,7) = C7	
5 2 _		COLF (NDATA . 8) = C8	
53		COEF (NDATA, 91=C9	
⁵⁴		COLF INDATA, 101 = CONST	4
55		GO TO 503	
55	501,	DO 502 IZERO=1.6	
57 C 0	502	COEF (NDATA . IZERO) = G.O	
58. 59.		COEF (NDATA . 7) =C1	•
9 <u>0</u>		COEF(NDATA.8)=C2	
۰۰		COLE (NDATA, 9) +C3	
62	563	COLF (NDATA, 10) =-CONST	
6 3			
64		IF (IPIION.GT.3) GO TO 500 DO 360 KK=1,2	1
65		IF (KK.LW.1 .AND. IPTION.GT.2)	
66		WRITE(6,301) KK	GO TO 360
67		IF (KK.EQ.2) GO TO 351	
6.8		NRG=NRINGI	
69		GO TO 352	
70	351	NRG=NRING2	•
7 }	352	00 373 JJ=1.NRG	

1 6H C4 # , E12.6 / 6H C5 # , E 2	YLINDER ONE ARABOLOID 2
ST	YLINDER) ONE) ARABOLOID) 2 = . E12.6 / 6H C3 = . E12.6 / . 12.6 / 6H C6 = . E12.6 / 6H C7 = . H C9 = . E12.6 / 6H C3 = . E12.6 / . 2 = . E12.6 / 6H C3 = . E12.6 / . 12.6 / 6H C6 = . E12.6 / 6H C7 = . H C9 = . E12.6 / 9H CONST = . NDU (NDATA) . 2E12.6 / .
GO TO ID 77 201 FORMAT (1H1.1X.25HINPUT DATA FOR 78 202 FORMAT (/25H TRANSFORMATION MAT) 79 203 FORMAT (/30H COEFFICIENTS FOR A () 80 204 FORMAT (/30H COEFFICIENTS FOR A () 802 205 FORMAT (/30H COEFFICIENTS FOR A () 803 207 FORMAT (/30H COEFFICIENTS FOR A () 804 1 6H C4 = , E12.6 / 6H C5 = , () 805 2 . E12.6 / 6H C8 = . E12.6 / 6H () 807 607 FORMAT (/30H C0EFFICIENTS FOR A () 808 1 6H C4 = , E12.6 / 6H C5 = , () 809 2 . E12.6 / 6H C8 = . E12.6 / 6H () 809 2 . E12.	YLINDER) ONE) ARABOLOID) 2 = . E12.6 / 6H C3 = . E12.6 / . 12.6 / 6H C6 = . E12.6 / 6H C7 = . H C9 = . E12.6 / 6H C3 = . E12.6 / . 2 = . E12.6 / 6H C3 = . E12.6 / . 12.6 / 6H C6 = . E12.6 / 6H C7 = . H C9 = . E12.6 / 9H CONST = . NDU (NDATA) . 2E12.6 / .
201 FORMAT (1H1.1X.25HINPUT DATA FOR 202 FORMAT (/25H TRANSFORMATION MATERIAL PORTS FOR A (203 FORMAT (/30H COEFFICIENTS FOR A (205 FORMAT (/30H COEFFICIENTS FOR COMPACT (/30H COEFFICIENTS FOR A (305 FORMAT (/30H COEFFICIENTS FOR A (YLINDER) ONE) ARABOLOID) 2 = . E12.6 / 6H C3 = . E12.6 / . 12.6 / 6H C6 = . E12.6 / 6H C7 = . H C9 = . E12.6 / 6H C3 = . E12.6 / . 2 = . E12.6 / 6H C3 = . E12.6 / . 12.6 / 6H C6 = . E12.6 / 6H C7 = . H C9 = . E12.6 / 9H CONST = . NDU (NDATA) . 2E12.6 / .
202 FORMAT (/25H TRANSFORMATION MATE 79	YLINDER) ONE) ARABOLOID) 2 = . E12.6 / 6H C3 = . E12.6 / . 12.6 / 6H C6 = . E12.6 / 6H C7 = . H C9 = . E12.6 / 6H C3 = . E12.6 / . 2 = . E12.6 / 6H C3 = . E12.6 / . 12.6 / 6H C6 = . E12.6 / 6H C7 = . H C9 = . E12.6 / 9H CONST = . NDU (NDATA) . 2E12.6 / . STRAINT PLANES .
203 FORMAT (SE16.6) 204 FORMAT (30H COEFFICIENTS FOR A (205 FORMAT (30H COEFFICIENTS FOR A (205 FORMAT (30H COEFFICIENTS FOR A (206 FORMAT (30H COEFFICIENTS FOR A (207 FORMAT (30H COEFFICIENTS FOR A (208	YLINDER ONE ARABOLOID 2
204 FORMAT (/30H COEFFICIENTS FOR A (205 FORMAT (/30H COEFFICIENTS FOR A (205 FORMAT (/30H COEFFICIENTS FOR A (206 FORMAT (/35H COEFFICIENTS FOR A (207 FORMAT () 6H CI = , E12.6 / 6H (207 FORMAT () 6H CH = , E12.6 / 6H (207 FORMAT () 6H CH = , E12.6 / 6H (207 FORMAT () 6H CH = , E12.6 / 6H (207 FORMAT () 6H CH = , E12.6 / 6H (207 FORMAT () 6H CH = , E12.6 / 6H (207 FORMAT () 6H CH = , E12.6 / 6H (207 FORMAT () 6H CH = , E12.6 / 6H (207 FORMAT () 6H COEFFICIENTS FOR COMPAND () 6H CH = , E12.6 / 6H (207 FORMAT () 6H CH = , E12.6 / 7H CH COEFFICIENTS FOR A (207 FORMAT () 6H CH = , E12.6 / 7H CH	ONE ARABOLOID 2 = . E12.6 / 6H C3 = . E12.6 / 12.6 / 6H C6 = . E12.6 / 6H C7 = H C9 = . E12.6 / 9H CONST = . 2 = . E12.6 / 6H C3 = . E12.6 / 12.6 / 6H C6 = . E12.6 / 6H C7 = H C9 = . E12.6 / 9H CONST = . NDU (NDATA) . 2E12.6 /) STRAINT PLANES
205 FORNATI/30H COEFFICIENTS FOR A (206 FORMATI/35H COEFFICIENTS FOR A (207 FORMATI	ONE ARABOLOID 2 = . E12.6 / 6H C3 = . E12.6 / 12.6 / 6H C6 = . E12.6 / 6H C7 = H C9 = . E12.6 / 6H C3 = . E12.6 / 12.6 / 6H C6 = . E12.6 / 6H C7 = H C9 = . E12.6 / 6H C7 = H C9 = . E12.6 / 9H CONST = . NDU (NDATA) . 2E12.6 /) STRAINT PLANES
206 FORMATI/3SH COEFFICIENTS FOR A 6 2 2 FORMATI 6H C1 = 12.6 / 6H C5 = 18 4 1 6H C4 = 12.6 / 6H C5 = 18 5 2 12.6 / 6H C8 = 12	ARABOLOID 2 = . E12.6 / 6H C3 = . E12.6 / 12.6 / 6H C6 = . E12.6 / 6H C7 = H C9 = . E12.6 / 9H CONST = . 2 = . E12.6 / 6H C3 = . E12.6 / 12.6 / 6H C6 = . E12.6 / 6H C7 = H C9 = . E12.6 / 9H CONST = . NDU (NDATA) . 2E12.6 /) STRAINT PLANES
207 FORMAT(6H C1 = , E12.6 / 6H C6 = , E12.6 / 6H C5 = , E12.6 / 6H C5 = , E12.6 / 6H C5 = , E12.6 / 6H C8 = , E12.6 /	2 = . E12.6 / 6H C3 = . E12.6 / 12.6 / 6H C6 = . E12.6 / 6H C7 = H C9 = . E12.6 / 9H CONST = . 2 = . E12.6 / 6H C3 = . E12.6 / 12.6 / 6H C6 = . E12.6 / 6H C7 = H C9 = . E12.6 / 9H CONST = . NDU (NDATA) . 2E12.6 /) STRAINT PLANES
## 1 6H C4 # , E12.6 / 6H C5 # , E ## 2	12.6 / 6H C6 = , E12.6 / 6H C7 = H C9 = , E12.6 / 9H CONST = , 2 = , E12.6 / 6H C3 = , E12.6 / 6H C7 = H C9 = , E12.6 / 6H C7 = H C9 = , E12.6 / 9H CONST = , NDU (NDATA)
2 E12.6 / 6H CB = E12.6 / 6H 3 E12.6 / 6H CB = E12.6 / 6H FORMAT (6H C1 = E12.6 / 6H C5 = E12.6 6H C5	H C9 = , E12.6 / 9H CONST = , 2 = , E12.6 / 6H C3 = , E12.6 / H 12.6 / 6H C6 = , E12.6 / 6H C7 = H C9 = , E12.6 / 9H CONST = , NDU (NDATA)
3 E12.6./) 87 6D7 FORHAT(6H C1 * , E12.6 / 6H (6H C1 * , E12.6 / 6H C5 * , E12.6 / 6H C5 * , E12.6 / 6H C8 * , E12.6 /	2 = , E12.6 / 6H C3 = , E12.6 / 12.6 / 6H C6 = , E12.6 / 6H C7 = H C9 = , E12.6 / 9H CONST = , NDU (NDATA) , 2E12.6 /) STRAINT PLANES
## 607 FORMAT(6H C1 * , E12.6 / 6H (6H C1 * , E12.6 / 6H C5 * , E12.6 / 6H C5 * , E12.6 / 6H C5 * , E12.6 / 6H C8 * , E12.6 / 7G	2 = , E12.6 / 6H C3 = , E12.6 / 12.6 / 6H C6 = , E12.6 / 6H C7 = H H C9 = , E12.6 / 9H CONST = , NDU(NDATA) , 2E12.6 /) STRAINT PLANES
1 6H C4 = . E12.6 / 6H C5 =	12.6 / 6H C6 = , E12.6 / 6H C7 = H C9 = , E12.6 / 9H CONST = , NDU(NDATA) , 2E12.6 /) STRAINT PLANES
3 E12.6 / 30H RBOND (NDATA). RBO 91 228 FORMAT (/4GH COEFFICIENTS FOR COM 92 229 FORMAT 7H C11 * . E12.6 / 7H 93 1 E12.6 / 9H CEND * . E12.6 / 94 210 FORMAT (/35H COEFFICIENTS FOR AN 95 211 FORMAT (/30H COEFFICIENTS FOR A	H CY # , E12.6 / 9H CONST # , NDU(NDATA) , 2E12.6 /) STRAINT PLANES
3 E12.6 / 30H RBOND(NDATA). RBO 91 228 FORMAT(/4GH COEFFICIENTS FOR COM 92 229 FORMAT(7H C11 * . E12.6 / 7H 93	H CY # , E12.6 / 9H CONST # , NDU(NDATA) , 2E12.6 /) STRAINT PLANES
91 228 FORMAT(/4GH COEFFICIENTS FOR COM 92 209 FORMAT(7H C11 = , E12.6 / 7H 93 I E12.6 / 9H CEND = , E12.6 / 94 210 FORMAT(/35H COEFFICIENTS FOR AN 95 211 FORMAT(/30H COEFFICIENTS FOR A	STRAINT PLANES
92	STRAINT PLANES)
94 ZIO FORMATI/35H COEFFICIENTS FOR AN 95 ZII FORMATI/30H COEFFICIENTS FOR A	(12 m . F12.6 / 74 c13 m
45 211 FORMATI/35H COEFFICIENTS FOR AN	· · · · · · · · · · · · · · · · · · ·
211 FORMATI/30H COEFFICIENTS FOR A	BH CBASE . E12.6)
man a manufacture complete the factor of the	ELL IPSOID)
	LANE
96 212 FORMAT (6H C1 = 6 E12.6 / 6)	$C2 = \frac{1}{2} E12.6 / 6H C3 = \frac{1}{2} E12.6$
	C2 = , E12.6 / 6H C3 = , E12.6
	REA OF PARALLELOGRAM = .E12.6)
	X,4HVPZ=,E12.6,5X,4HVP3=,E12.6,
	•
	, , ,
	"
to be a fact that the first that the	VIEW POINT VECTORS)
The state of the s	CONSTRAINT DISK .3X.
	12H 11/1
39 J6Z FORMAT(15.3X.E12.6.8X.E12.6)	10. 11./.12X.7H RHEAN . 15X.4HAREA)
10 END	
) The transfer of the transfer	

1		TRANSF	
1	•	SUBROUTINE TRANSF (X.XP.V.VP	118,1001)
<u>*</u>		THIS PROZUM TO LUCEOUS TUBE	T IN X-COORD SYSTEM TO X-PRIME SYSTEM.
4	(IN AND LOUT REFER TO COORD 5	ACTEM O CENTARIO CACALM 1 14 Y-CACAL DISIEM 10 Y-KIME SISIEM*
<u>.</u>		1. LEFT PLUME COORDINATES.	TOTOR OF ACULA COORDINATES
		SIGMA BEASURES BETHEEN X1-AX	
		PSI MEASURES FROM X2-AXIS. R	OTATES ADDIT VIAAVIS
, A			
` <i>-</i>	}	Y MID AT WEE BOSTITION ASTITUTE	S. V AND VP ARE VELOCITY VECTORS.
ó		COMMON /TKOPLM/PP(2.3).SIG(2	1 PS+171
}		DIMENSION X(3), XP(3), V(3), VP	
2		IWRITE=S	121111111111111111111111111111111111111
3		IPASS=0	
4		DO 50 1=1.3	
5		XP(1)=X(1)	
6		VP(I)=V(I)	
		XS(1)=X(1)	
8	50	VS(I)=V(I)	
9		IF (IN.Eu.IOUT)	GO TO 500
0		IF (IN-E4-D)	GO TO 100
1		1F (10UT.EQ.0)	GO TO 200
2		GO TO 300	,
3	C	TRASFURM FROM O TO EITHER 1	OR 2
4		SIGMA=SIG(IOUT)	•
5		PSIH=PSI(10UT)	
6		DO 110 l=1,3	n
7	110	PPP(1)=PP(10UT.1)	
8		SINS=SIN(SIGMA)	, ~
9	·	COSS=CUS(SIGHA)	
)		SINP#S[N(PSIH)	
i	···· ··· · · · ·	COSP=COS(PSIH)	*
2	120	$XP(1) = (X(1) - PPP(1)) \circ CoSS + (X(1)) \circ Co$	2)-PPP(2))*SINS*SINP
3		-(x(3)-PPP(3))+SINS+CO	
4		XP(2)=(X(2)=PPP(2)) +COSP+(X(
5	····	XP(3)=(X(1)=PPP(1))=SINS=(X(
6		+{X(3)=PPP(3})+COSS+CO	
7		VP(1)=V(1)+COSS+V(2)+51NS+S1	<i>a</i>
8		VP(2)=V(2) *COSP+V(3) *SINP	
9		VP(3)=V(1)+SINS-V(2)+COSS+SI	NP+V(3)*COSS*COSP
0		IPASS=IPASS+1	
1		60 10 320	**************************************
2	C	TRANSFORM FROM 1 OR 2 TO 0	·
3		SIGMA=SIG(IN)	
4		P51H=PSI(IN)	
5		DO 210 l=1,3	
6		PPP(I)=PP(IN.I)	•
7		SINS=SIN(SIGMA)	
8		COSS=COS(SIGHA)	
9		SINP=SIN(PSIH)	
C		COSP#COS(PSIH)	
1	220	XP(1)= X(1) +COSS	+X(3)+SINS +PPP(1)
2		XP(2) = X(1) +SINS+SINP+X(2)+C	
3 ,		XP(3)=-X,(1)+SINS+COSP+X(2)+S	
		VP(1)= V(1)+CBSS	+V(3)+SINS

ś7	VP(3) =-V(1) ** SINS ** COSP+V(2) ** SIPASS ** IPASS ** I		·· · · · · · · · · · · · · · · · · · ·
58	GO TO 300		
59	C TRANSFORM FROM 1 TO 2 AND VI	CE VERSA	
60	300 IF (IN-EQ.D .OR. IOUT.EQ.D)	GO TO 500	
61	IF (IPASS.EQ.D)	GO TO 200	·····
62	IF (IPASS.EQ.2)	GO TO 500	
63	DO 320 [=1,3		
64	X(1)=XP(I)		
65	320 V([]=VP(I)		· · · · · · · · · · · · · · · · · · ·
66	GO TO 100	•	
67	SOO CONTINUE	<u>.</u>	
68	DO 520 l=1.3		
69	X(1)=X5(1)		
79	520 V(1)=VS(1)		
71	IF ([WKITE.EQ.1]	GO TO 600	
7 2	RETURN		
7 3	600 WRITE (6,601) (X(1),1=1,3),(XP(I),1=1,3),(V(I),I=1,3),	
74	(VP(1),1=1,3),	IN.IOUT	
75),7H V VP =,2(3F8.4,2x),7HIN-OUT=,21	2)
76 77	RETURN		
,,	END		
			·
,S VFLHT			
13 ALTHI	11	a. Wanayapee	
		1 7	
		\(\frac{1}{2}\)	
		•	

	FS.VFEHIT
i	SUBROUTINE VFEMIT (10, X, A, EAREA)
<u> </u>	10=0. TO READ INPUT DATA OF THE EMITTING SURFACE
. C	10=1. TO GIVE LOCATION X AND DIRECTION A OF THE EMITTING RAY
4	DIMENSION X(3),A(3),P1(3),P2(3),P3(3),DC(3),S(3)
5	DATA PI.TWOPI.HALFPI/3.14159. 6.28318, 1.57079/
6	RANGE(X1.X2.X3.Y1.Y2.Y3)=SQRT((X1-Y1)002+(X2-Y2)002+(X3-Y3)002)
7	MTX(X11,X12,X13,X21,X22,X23,X31,X32,X33) = X11*X22*X33+X21*X13*X32
8	+x12*x23*x31-x13*x22*x31-x11*x23*x32-x33*x12*x21
Ÿ	IF (10.NE.0) GO TO 200
0	NEMIT=J
Į.	IWRITE=C
2ς	10m3. INPUT PART
3 C	TEMIT IDENTIFIES THE EMITTING SURFACE. SAME AS IPTION IN TARGET
4 C •	. IEMITOL . HALF CYLINDER . 2. HALF FRUSTUM . 3.4. HEMISPHERE .
5 C •	5. PARALLELOGRAM, 6. ANNULAR DISK.
6 Č •	7. Fill CV: INDER O FILL FRUETUM O CRUSS
	7. FULL CYLINDER, 8, FULL FRUSTUM, 9. SPHERE.
В	
9	GO TO (110,120,130,140,150,160,110,120,130),1EHIT
	PI ON TOP, P2 ON BOTTOM, C IS FROM P2 TO P1
1	IG READ (5,192) R1.(P1(1),1=1,3),(P2(1),1=1,3),(DC(1),1=1,3)
	H#RANGE(P1(1),P1(2),P1(3),P2(1),P2(2),P2(3))
²	R2=K1
	RMEAN=R1
!	RL=R2
	5 C1=(P1(1)-P2(1))/H
6	<u> </u>
,	C3=(P1(3)-P2(3))/H
8	EAREA=KHEANOPIOH
7	IT (IEHIT.GE.7) EAREA=2.0EAREA
Q	<u> </u>
t c	DC IS PERPENDICULAR TO PI-P2 AXIS, EXTENDING FROM P2. TO P3. P2-P2-P2
21	20 READ (5,192) RI.(PI(I), [a1,3), (P2(I), [=1,3), (P3(I), [=1,3))
3	H=RANGE(P1(1),P1(2),P1(3),P2(1),P2(2),P2(3))
4	P2=RANGE (P3(1),P3(2),P3(3),P2(1),P2(2),P2(3))
5	DC(1)=(P3(1)=P2(1))/R2
6	DC(2)=(F3(2)-P2(Z))/R2
7	DC(3)=(P3(3)-P2(3))/R2
В	RMEAN=(k1+R2)/2.
· 	TVTX=(R2-R1)/H
_	
<u>'</u>	VIX=ATAN(IVIX)
	CVIX=CO>(VIX)
<u></u>	
	GO TO 115
	O CONTINUE
•	O READ (5,192) R1.(P1(1), [=1,3), (OC(1), [=1,3)
	EAKEA=ThOPIOR: OR:
	IF (IEMIT.EQ.9) EAREA=2.0EAREA
·	<u> </u>
,	HORMAL IN RHR SENSE, PI-P2-P3.
19	C READ (5,192) (P1(1), [a1,3), (P2(1), [#1,3), (P3(1), [#1,3)
	H12=RANGE (P1(1),P1(2),P1(3),P2(1),P2(2),P2(3))
!	H23=RANGE (P2(1),P2(2),P2(3),P3(1),P3(2),P3(3))
	EAREA+H12+H2)
	C121=(P2(1)-P1(1))/H12
-	C122=(P2(21-P)(2))/H12

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```
C123=(P2(3)-P1(3))/H12
 56
 57
                C231=(P3(1)-P2(1))/H23
 58
                C232=(P3(2)=P2(2))/H23
 54
                C233=(P3(3)-P2(31)/H23
 60
                VMAG2=(C122+C733-C123+C232)++2+(C231+C123+C233+C121)++2+
 6 Ï
                      [C1210C232-C1220C231)++2
 62
                VMAG=SGRT (VMAG2)
 63
               DC(1) = (C122 + C233 - C123 + C232) / VHAG
 64
                DC(2) = (C231 = C123 - C233 • C121)/VMAG
 65
                DC(3)=(C121+C232-C122+C231)/VMAG
                GO TO 161
 66
 67
               P2 IS ON THE OUTER RIM. THEREFORE R2=ABS(P2=P1). RI=INNER RADIUS.
            160 READ (5,192) RI. (PI(I).I=1,3). (P2(I).I=1,3). (DC(I).I=1.3)
 68
                R2=RANGL(P2(1),P2(2),P2(3),P1(1),P1(2),P1(3))
 69
 70
                EAREA=(R2+R2-R1+R1)+P1
 71
                GO TO 181
 72
            181 WRITE (6.195) [EMIT. RI.R2.(DC([],1=1.3),(P1([],1=1.3).
 13
                               (P2(1),[=1,3),(P3(1),[=1,3)
 74
                GO TO 5.0
 75
           191 FORMAT (818)
 76
            192 FORMAT (IGF8.0)
                                                    IEMIT = 13,10X, 7HR1.R2 =
 77
           195 FORMAT (////31H EMITTING SURFACE
 78
                        2F8.3 .16x.14HNORMAL D.C. = .3F8.4 // 10x. 5HP1 = .3F8.4.
 79
                        5x,5HP2 = ,3F8.4,5X,5HP3 = , 3F8.4 ///)
 មជ
         ć¯
           --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
  1
 82
         C
               10=1. OUTPUT PART
         c
 83
 8 4
           200 CONTINUE
 25
                CALL RANDOM (RN1)
                CALL RANDOM (RN2)
 85
 67
                GO TO 1210.220.230.240.250.260.210.220.2301.1EMIT
 88
            210 CONTINUE
 89
                HELV=RNI+H
 90
                GO TO 221
 91
            219 CALL RANDOM (RNI)
 42
            220 CONTINUE
 ¥3
                RL#RZ+SURT(RN1)
 94
                IF (RL.LT.R1)
                                                               GO TO 219
 95
               HELV=H+ (R2-RL)/(R2-R1)
           221 IF (ILMIT.EQ.) .OR. IEMIT.EQ.2)

IF (ILMIT.EQ.7 .OR. IEMIT.EQ.8)
 46
                                                               TH#(0.5-RN2)+HALFPI
 97
                                                               TH=TWOP1+RN2
                COSTH#COS(TH)
 98
 99
                SINTH=SIN(TH)
100
                XH1=C3+UC(2)=C2+DC(3)
                XM2=C1 . UC (31-C3.DC (1)
101
102
                XH3=C2+DC(1)-C1+DC(2)
103
                DSCH=HTX(C1,C2,C3,DC(1),DC(2),DC(3),XM1,XM2,XM3)
104
                IF (ABS(DSCH).LT.1.E-6)
105
               OWRITE (6,302) IEHIT.DSCM.CI.C2.C3.DC(1).DC(2).DC(3).XM1.XM2.XM3
106
                SPI=MTX(G.,C2.C3.CUSTH.DC(2).DC(3).SINTH.XM2.XM3)/DSCH
107
                SP2=HIX(C1,0..¢3,0C(1),COSTH,DC(3),XM1,S(NTH,XH3)/DSCM
168
                SP3=MTX(C1.C2.0..DC(1).DC(2).COSTH.XM1.XM2.SINTH)/DSCH
109
                X(1) = P2(1) + HELV + C1+ RL+SP1
110
                X(2)=P2(2)+HELV+C2+KL+5P2
111
                X(3)=P2(3)+HELV+C3+FL#5P3
```

1 2	IF (IEMIT.EQ.2 .OR. IEMIT.EQ.8)	GO TO 225
3 4	S(1)=SP1	
5	5(2)=SP2 S(3)=SP3	
16	GO TO 290	
7	225 XMI#C2+5P3+C3+SP2	
18	XH2=C3+SP1=C1+SP3	•
9	XM3=C1+SP2=C2+SP1	
20	DSCH#HTALSPI.SP2.SP3.C1.C2.C3.XI	11.XM2.XN31
2 }	IF (AHS(DSCM).LT.1.E-6)	· • • • • • • • • • • • • • • • • • • •
2 2	*WRITE (6.302) IEMIT.DSCM.C1.C2.0	3.DC(1).DC(2).DC(3).XM1.YM2.YM3
23	>(!)#M X{CV X,SP2,SP3,SV X,C2,C;	1.0.,XH2.XH3)/DSCM
24	S(2) #MTX(SP1,CVTX,SP3,C1,SVTX,C	3.XM1.0XM3)/DSCH
₹5	. 5(3) #MTx(SP1,SP2,CVTX,C1,C2,SVT)	.XH1,XM2.0.)/DSCH
26	<u>GO TO 293</u>	
27	238 CONTINUE	
28	240 CONTINUE	*****
24	241 COSANG=3.	
39	CALL DIFYDC (QC. TWOPI A)	
3 i 3 2	DO 242 I=1.3	
	X([]=P1([)+R1+A([)	
34		
 3 5	242 COSANG=CUSANG+DC(1) • S(1) IF (IEMIT.EQ.9)	
36	IF (COSANG.LT.O.)	GO TO 290
37	GO TO 270	GO TO 241
38	ZEC CONTINUE	
) Ý	D1=RN1+H12	
10	D2=RN2+H23	•
11	X(1)=P1(1)+C121+D1+C231+D2	4
,	X(2)=P1(2)+C122+D1+C232+D2	`
1.3	X(3)=P1(3)+C123+01+C233+D2	*
14	GO TO 264	
15	260 CONTINUE	
6	DC1=(P2(1)-P1(1))/R2	
17	DC2=(PZ(2)-P1(2))/H2	
8	DC3=(P2(3)-P1(31)/R2	
19	261 RR=R2+SukT (RN1)	
; i	IF [RR.uE.R]	GO TO 262
2 -	CALL HANDOM (RNI)	
3	. GO TO 261 262 THETWOP1+RN2	
, , ,		
5	COSTH=COS(TH) SINTH=SIN(TH)	- The same of the
6	XM1=DC(2)+DC3-DC(3)+DC2	
7	XM2=DC(31+DC(1)+DC3	
8	XM3=DC(1)+DC2+DC(2)+DC1	
9	DSCH=HTx(DC(1).DC(2).DC(3).DC1.D	C2.DC3.XMt.XM2.XM31
0	IF (ABS(USCM).LT.1.E-6)	CETACOLVAI IVACIVADI
1	*WRITE (6,302) IEMIT.DSCH.DC(1).0	C(2),DC(3),DC1,DC2,DC3,XM1,XM2,XM3
2	Bl#MIX(GDC(?),DC(3).COSTH.DC2.	DC3.SINTH.XN2.XM31 / BSCM
, 3	BZ=MTX(DC{1},n.,DC(3),DC1,COSTH,	DC3,XM1,SINTH,XM3) / DSCM
4	B3=MTx(DC(1).DC(2).n.,DC1.DC2.C0	STH.XML,XMZ.SINTH) / DSCM
	V 1 1 1 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2	The residual condition of the time of the first of the fi
5	X(1)=P1(1)+B1+RR X(2)=P1(2)+B2+RR	•

168		00 265 Ist.3			
169		S(1)=0C(1)		_	
170	295	CALL DIFVOC (S.HALFPI,A)			
171		IF (IWRITE.EQ.G)	GO TO 3	00	
172		NEMIT=NEMIT+1			
173		IF (NEMIT.GT.100)	GO TO 3	88	
174		WRITE (6.301) NEMIT . (X(I) . I=1 .	3),(A(I),I=1,3)		
175	300	CONTINUE			
176	301	FORMAT, (104 NEMIT X A . 112.2(4)	X,3F8+4) }		
177		FORMAT 1/28H JEMIT. DSCM. CIT	C12 SU ON .15.E14.5/	/10x+9£12+5 /1	
178	500	RETURN			
179		END			
	·				
					•
RT.S VFO	UTP				
					•
				-	
				-	
				-	
				-	

1	SUBROUTINE VEGUTP (NRAY, NSTART, MHITP	.NHISS.HHITG.EAREA)
2	C THIS PROGRAM OUTPUT THE VIEW FACTORS	•
3	INCLUDE GEOM.LIST	
4	10 FORMAT LIHI, SOX, INHVIEW FACTOR OUTPU	Τ)
5	· · · · · · · · · · · · · · · · · · ·	/)
b	12 FORMAT 1/9X,14HTOTAL SAMPLE = 18. 8X	
7	1 17: 5x.7HMMISS =,17: 5X, 7HM	HITG =: 17 //
۹	2 9X.7HEARFA =.1PE12.6 //)	
9	13 FORMAT (1H1)	•
0	2C FORMAT (// 11H TARGET NO. , 13 /)	
1	. 21 FORMAT (3CH TARGET MAIN SURFACE,	L = , 13 /)
2	22 FORMAT (43H ON CONSTRAINT DISK PASSI	
3	23 FORMAT (43H ON CONSTRAINT DISK PASSI	
<u>4</u>	30 FORMAT (/4X,4HAREA,5X,6HNO. OF,5X,4H	
5		BY / 3X,6HNUMBER,5X,4HHITS,5X,
6 ———	2 6HNUMBER.6X,6HFACTUR,18X,6HN 31 FORMAT (4X.13,5X,F6.0,6X,13.7X,1PE9.	
ម	32 FORMAT (/5X,12HTOTAL HIT = ,F8.0,BX)	
9	11HRECIPR VF = +E11+4 //)	1344154 LWCION PATT CTT 4 1000
0	33 FORMAT (/)	
`	WRITE (6,10)	
2	wRITE (6,11)	
ــــــــــــــــــــــــــــــــــــــ	WRITE (6,12) NRAY, NSTART, MHITP, MMISS	. HHITG . EAREA
 4	DO 190 K=1.NTARGT	The state of the s
5	NCLOCK=DATA(K.1)	
6	DO 180 L=1.3	
,	IF (IBOUY(K).GT.3.AND.L.NE.1)	GO TO 180
8	IF (1800Y(K).GT.2.AND.L.E0.Z)	GO TO 180
9	WRITE (6,25) K	
9	90 TO [111,112,113],	L '
1	111 WRITE (6,21) L .	
2	GO TO 120	
3	112 WRITE (6.22) L	
4	GO TO 120	
ວ່	113 WRITE (6.23) L	
<u>6</u>	GO TO 120	
7	J20 CONTINUE	
3	ARITE (6,30)	· · · · · · · · · · · · · · · · · · ·
9	NA=NAREA(K.L)	•
0	TOTA=C.	
1	CLINE#0.5	
2	00 170 J=1.NA	Management and the second seco
-3 -4	GO TO (131,132,132), 131 HTAREA=VAREA(K,J)	L
5		
6	60 TO 135 ·	
"	132 NCHECK=(J=1)/NCLOCK+1 HTAREA=CHING(K,NCHECK,L=1)	
8	135 CONTINUE TOTA=TOTA+HTAREA	
	IF (HTAKEA.LT.1.E=8)	GO TO 170
1	VF=HIT(J.K.L)/FLOAT(NRAY)	40 10 170
2	RVF=VF OLAREA/HTAREA	
_		
3	WRITE (6,31) J.HIT(J.K.L), J.VF.HTARE	

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

56		WRITE (6,331					
57		CLINE	-5				*******	
58	170	CONTINU						
59		TOTHITE						
60		00 175						
61	175	TOTHITE	TOTHIT	HIT(J.K.	L			
62		TVF=TOT	HIT/FLO	ATENRAY	, _ ,			
۵3		TRVF#TV!	FEEREA	ZTOTA				
64					FATRVE			
65	180	CONTINU	Ł,	· · ·	VIII-			
66	_	WRITE (6,131					
67	190	CONTINU	Ł				·	
68	300	CONTINU	Ł					
69		RETURN						
70		ENO						
		· · · · · · · · · · · · · · · · · · ·		······································				
				· · · · · · · · · · · · · · · · · · ·		······································		 <u>-</u>
iz šcoo	<u>.</u>			· · · · · · · · · · · · · · · · · · ·				
iz šcoo	IRO							
iz šcoo	IRO							
iz šcoo								
iz šcoo	<u>.</u>							
is šcos	n R Q							
	H 0							
.5 2000	DRO							
.s ¿coa	DRO							
.s ¿coa	DRO							
.5 2000	DRO							
.5 2000	DRO						. *	
.5 2000	DRO						- *	
.5 2000	DRO_						. 4	
,5 2000	DR D						- *	
,5 2000	DR 0						. *	

l	SUBROUTINE ZCOORD(RIS,RI,J.H.H	. 171
<u> </u>	INCLUDE DIMALIST	
3	C CALCULATE Z-COORDINATE OF INTERSEC	TON OF PHOTON PATH MARIE COMP
<u> </u>	ACT BAG I NE I A P P H I I	TOW OF THOSE PAIN WITH COME
•	(F (ALPHA.LT.O.)	ALPHA=ALPHA+TWOPI
<u>-</u>	COST=COS(ALPHA)	VEL HYWYELWALROLI
	4 # # H + TANETA	
.	₩2 = n••2	•
	RR # R15 + W2 - 2. R1 WCOST	
<u></u>	R = SWRT(RR)	
!	TANBIP = (RR + #2 - R15)/(2.0H	0R)
·	TNETA2 = TANETA002 G = ROTABBTP	
	a - Kalbibib	
-	Q2 = Q++2	
	IF(CUST-LT-0.0) GO TO 129	
	C HUNDLE INTERSECTS ONLY ONE SIDE OF	CONE ARRAY
	IF (COSETA.GE.CGAMMA(JRGN)) GO 1	0 150
	J2 # 1	7
	0 10 121 73 = 1k0 → 1NDEX + 1	
	150 L = 1	
	DO 152 JZ # 1. JRGN	
	152 IF (COSETA . GT . CGAMMA (JZ))	
	153 [F(JZ-JNDEX) 154,65,156	00 10 123
	154 J1 a state x = 12	
	00 155 J=1.J1	7 Marie P. 27 200 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
۲.	Y=TNETAZ-TANG2(JNDEX-J)	·
	ZIP = SURT (ABS (Q2+KROY))	
	155_Z(<u>J) </u>	
	2(J1+1)= HZ([RGN+1]+1.0	
	60 TO PP	•
	C CHECK FOR DOUBLE INTERSECTIONS WITH	CONE ARRAY
	129 (A = K15 + (1e = COST de 2)	
	IF (COSETA . LT . D.O) GO TO	141
	DO 122 JZ = 1 JRGN	
	IF (COSETA . GE . CGAMMA(JZ))	GO TO 123
	CB = CA / [INETAZ - TANG2[JZ]	
	X = SURT (CB + TANGZ (JZ))	
	ZA = X + TANETA / TANG2(JZ)	
	22 * (X = RI • COST) / TANETA	+H
	GO TO 123	1 P State
	141 DO 142 JZ = 1 JRGN	•
	1F (JZ . EQ . JNDEX) GO TO 12	
	IF (-CUSETA . GE . CGAMMA(JZ)	
	CB = CA / (TNETA2 = TANG2(JZ)	40 10 142
==		
	ZA = X . TANETA / TANGZ(JZ)	
	ZZ = (X = RI e COST) / TANETA	. u
	1	7 67
	142 CONTINUE	
		···
····	123 J1 # JHUEX + JZ IF (J1 +EQ + 0) GO TO 125	

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

56	. 00 124 J = 1.Ji
57	L = JNDEX - J
58	Y = TNETA2 - TANG2(L)
59	ZIP = SWRT(ABS(Q2-RR*Y))
60	IF(COSETA-LT-0.0) GO TO 131
61	Z(J) = (u-ZIP) / Y
62	GO TU 124
63	131 Z(J) = (G+Z1P) / Y
64	124 CONTINUE
65	C BUNDLE INTERSECTS ONLY ONE SIDE OF CONE ARRAY
66	125 J2 = JI+1
ω7	J3 * J2 + JRGN - JZ
4 ዘ	L_= J4
69	151 DO 126 J=J2,J3
70	IF CGAHNA(L) . LE . COSETA 1 GO TO 47
71	Y = THETA2 - TANG2(L)
72	21P = SykT(ABS(42=KR*Y))
7.3	IFICOSETA.LT.n.n) GO TO 127
74	$Z(J) = (u + Z_1P_1/Y)$
75	60 TO 126
76 77	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
// 78	GO: TO 66
79	65 Z(L) = HZ([RGN+1] + 1.0
/ 7 H O	GO TO 66
81 .	47 Z(J) = HZ([RGN+1] + 1.0
82	66 J = 1
	RETURN
t. 4	END
<u> </u>	
···	-

			
WELT.L	FORCARDS		•
£4.7007	RL1870 03/	05-11:43:08-(0,)	
100000	06.3	GFOR S ATTEN ATTEN	
010002	660	OFOR S DISK DISK	
D. 4463	200	OFOR . S EMITT . EMITT	
Guijna i	683	WFOR, S ESCAP, ESCAP	
0:3135	<u>cjā</u>	WFUR, S ESCAPE, ESCAPE	
2 2006	999	GFUR S FRTAPE FRTAPE	
er Jus	7 235	DEOR S INPUT INPUT	
ជី៤៧អូពូនិ	GOC	GFOR, S INTRCP. INTRCP	
(11.19		JEUR 5 MAIN MAIN	
01 00110	000	BFOR S MAINS MAINS	
DC 3011		OFOR, SOUTPUT, OUTPUT	•
8.U012	020	SFOR, S WUICKP, WUICKP	
Lu ni3_	<u></u>	OFOR, S SCATTR, SCATTR	
50 /614	000	WFOR.S SURTNG. SORTNG	
	000	WFOR S TARGET TARGET	
610019	000	WFOR S VEOUTP VFOUTP	
50.1013	<u></u>	SFOR S LCOORD LCOORD	
٠			
E . ELI	.*		
			_
,			
	·		
		•	•

116

CHUSE

PINGEA

คากจะยั

JUAUEQ

SPHERE

· LT.L	PUNCARDS					
ELTOO7	RUI870 037	05-Ti:4	3:09-10			
მნნტენ]	000	SPCH .S				
0. ភាពភូ2	ີ້ ວິວລີ	JPCH.S				
CC 163	667	₩PCH.5				
្រ ស្រូវ	<u> </u>		UIFVDC			·
C' Jau5	200	WPCH . S				
St 1106	335	SPCH.S				- •
ST Cart	, 023	APCH,5	LSCAP			
610000	300	Jarch, s	LSCAPE			P 446 p
ር ዓመንዎ	000	J₽CH,5	FRTAPE			
्र ज्याउ	0.0	SPCH'S	โกยบร			
0.0011	ີ ່ ຽະລັ	aPCH.5	INTROP			
0.0012	000	ĴPCH₁S	TOPKT			
0, 9013	cgb _	~%icH • ≥	MAIN			
5cm14	000	⊗PCH.5	CHIAINS			M D +
្តី ារខ្មែ	<u> </u>	APCH.S	TORIDO			
(1016)	ב הכי	है, भा अबुद्ध	PINGFA			
5 2017	2003	Ç⊋PCH.5	PINGER			
111111111111111111111111111111111111111	Ton i	ыРСн,5	ないないたほ			
C. 119	o:1	" DECH'S	MATCKE			
000423	0.7	ALCH 12	SCATTR			
wii)22		- 45 CH + 5	POKING			
000023	603	JPÇH,S	PHFE			•
b(a);24	600	92 CH • S	TARGET			
666325	203	JPCH,5	IRANSE			
160026	000	JPCH.S	V F E M I T			
600020	200	OPCH,S	VEUUTP			
mr ///2 /		WPCH.S	4COORD			
EPO EET						
	·			··		
					· · · · · · · · · · · · · · · · · · ·	
ቀጣሚያል ፤						
F 64208 (5028-53755	-11:43		*****************		
LEC-ALU.	1 N202 • TPF \$	ELEHENY	TABLE			
			-			

RELOCATABLE

RELOCATABLE 23 DEC 75
RELOCATABLE 23 DEC 75
RELOCATABLE 23 DEC 75
FOR SYMB 67 JAN 76

23 DEC 75

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

12

13

14

15 15

PINGLA FOR SYMB 18 MAR 75 21:15:11 1 17 CHUSE FOR SYMB 18 MAR 75 21:15:11 2 9 DJADEU FOR SYMB 18 MAR 75 21:15:16 3 9 PINGLB FOR SYMB 18 MAR 75 21:15:16 3 9 EMITT FOR SYMB 18 MAR 75 21:15:18 4 10 EMITT FOR SYMB 20 AUG 75 00:07:24 5 7 PULICKP	5 0 5 0 5 0)	1	17 18 18
PINGLE FOR SYMB 18 MAR 75 21:15:16 3 9 PINGLE FOR SYMB 18 MAR 75 21:15:16 3 9 EMITT FOR SYMB 20 AUG 75 00:07:24 5 7 FOR SYMB 15 OCT 75 14:36:01 6 3	5 0 5 0	<u>. </u>	1	18
FOR SYMB 18 HAR 75 21:15:16 3 9 HITT FOR SYMB 20 AUG 75 00:07:24 5 7 FOR SYMB 15 OCT 75 14:36:01 6 3	5 O	, }	1	18
#11T FOR SYMB 20 AUG 75 00:07:24 5 7 FOR SYMB 15 OCT 75 14:36:01 6 3		<u>'</u>	1	1 8
FOR SYMB 20 AUG 75 00:07:24 5 7 6 100H FOR SYMB 15 OCT 75 14:36:01 6 3	. u		•	10
FOR SYMB 15 OCT 75 14:36:01 6	, ,		1	
HICKS	<u>, </u>		1	1 !
	•			1.6
1SK FOR SYMB 31 OC 75 T1:09:31 0	2 0		<u>!</u>	16
AINS FOR SYMB 21 NOV 25 1212210	• •		1	18
ITEN SYMME 21 NOW 75" G2123122	םי	·	1	1 8
FOR SYMB 21 NOV 75 02:20:39 11	3 Q		L	19

20:16:07

20:18:45 20:18:47 20:18:49 23:01:29

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER	ORIGINAL PAGE IS POOR	REPRODUCIBILITY OF THE
G CENTER		

SPHERE	RELOCATABLE 07	JAN 76	23;01:36	17	2 62		2225
JOPKT		JAN 76	00:13:59	18	8	5 0 1	2289
IOPKT		JAN 76	00:14:00	19	2 9	· · ·	2297
PUNCARDS	ELT SYMB 19	JAN 76	12:13:34	20	4	5 0 1	2308
£2C76	FOR 5YMB 19	JAN 76	12:13:37	21	8	5 D i	2312
TOTRUE	FOR 51M8 19	JAN 76	12:13:53	22	` 12	5 0 1	2320
PHICARUS	ELT SYMU 26	JAN 76	10:50:40	23	4	5 O I	2332
FORCARDS	ELT SYNE 26	JAN 76	10:50:40	24	3	5 0 1	2336
FSCAPE	_ FOR SYMB 26	JAN 76	13:50:45	25	16	5 D I	2339
RANDOM	RELOCATABLE 26	JAN 76	10:53:38	26	1 4		2355
4 A [11		JAN 76	15:30:01	27	28	5 0 i	2360
014672	FOR PROC 29	JAN 76	00:34:52	28	11	1 0 1	2388
ATTEN	RELOCATABLE 29	JAN 76	US:34:57	29	4 43		2399
315K	RELOCATABLE 29	JAN 76	03:35:01	30	2 27		2446
f # 1 f t	RELOCATABLE 29	JAN 76	00:35:04	31	4 8	•	2475
ESCAP		JAN 76	00:35:07	32	4 7		2487
- SCAPE		JAN 76	00:35:10	33	5 20	•	2498
1 .TRCP		JAII 76	00:35:26	34	4 12		2523
*A I ta		JAH 76	00:35:30	35	6 24		
MA (1.5		JAN 76	00:35:33	36	5 32		2539
JUTCKP		JAN 76	00:35:42	36 37	5 32		2569
70000	 -	JAN 76	00:36:09		4 19		2606
DIFVIC		FEB 76	20:39:45	39	8 1,9	5 n 1 .	2629
Ultvoc	RELOCATABLE 03		20139147	40	2 11	<u> </u>	2652
SUTFUT		FEB 76	06:30:59	4 j			2660
OLTPUT		FE8 76	06:31:02		36	5 0 1	2673
IMPUT	-	FEB 76		42	4 45		2709
THPUT	-	FEB 76	01:58:22	43		<u> </u>	2758
SCATTR		FEB 76	01:58:30	44	4 77		2839
SCATTP	RELOCATABLE 12		01:58:35	45	13	5 0 1	2920
7FCM1T		FEB 76	01:58:39	46	4 15		2933
VECHII			01:58:40	47	97	5 0 1	2952
V/ 301P		FEB 76	01:58:46	48	2 58	_	2999
VEGUTE		FEB 76	01:58:46	49	18	<u> 5 0 · 1</u>	3059
50K1NG		FEB 76	J1:58:50	5 Ç	2 21	_	3077
SURTHG		FEB 76	22:42:10	_51	59	<u> </u>	3100
=		FEB 76	22:42:17	52	2 67	•	3159
TARGET		FEB 76	22:43:18	53	1,69	<u> 5 0 l</u>	3228
TARGET		FEB 76	22:43:35	54	2 158		3397
FRANSF		FE8 76	22:43:37	55	20	<u> 5 0 1 </u>	3557
THARSE		FEB 76	22:43:39	54	2 20		3577
FRIAPE		MAR 76	21:25:25	_57	7 1	<u>5 Q 1</u>	3599
FRTAPL		MAR 76	21:25:34	58	5 84		3670
5.0		MAR 76 .	21:25:34	59	1 _	<u> 5 0 1</u>	3759
SF .		MAR 76	21:26:01	60	865		3760
DP		MAR 76	21:26:04	61		5 0 1	4625
DP .	ABSOLUTE 04	MAR 76	21:26:50	62	910		4626
T AVAILABLE LOCATION-				·			5536
EMBLER PROCEDURE TABLE EMP	ry_		•				
OL PROCEDURE TABLE EMPTY		• •	*				1 4 444
	or and a second second						
FURING.	M PROCEDURE TABLE						
AME LUCATION							