3° de Secundaria Unidad 2 2023-2024

Obtenidos

Practica la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:

- Deduce información acerca de la estructura atómica a partir de datos experimentales sobre propiedades atómicas periódicas.
- Representa y diferencia mediante esquemas, modelos y simbología química, elementos y compuestos, así como átomos y moléculas.
- Explica y predice propiedades físicas de los materiales con base en modelos submicroscópicos sobre la estructura de átomos, moléculas o iones, y sus interacciones electrostáticas.

					•		
ப		^+ 1	10	\sim	\sim		٠
_	uı	ILL	ua		u		
•					_	٠.	۰

Pregunta	Puntos	Obtenidos	Pregunt a	Punto
1	5		10	10
2	5		11	5
3	5		12	5
4	5		13	5
5	5		14	10
6	5		15	10
7	5		16	5
8	5			
9	10		Total	100

Ejemplo 1

Identifica en las siguientes reacciones cuáles son de combinación, de descomposición, de desplazamiento o desplazamiento doble.

- $3 O_2 + \text{energia} \uparrow \longrightarrow 2 O_3$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento
- $b \quad \mathrm{Ba(NO_3)_2} + \mathrm{K_2SO_4} \longrightarrow \mathrm{BaSO_4} + \mathrm{KNO_3}$
 - A Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

- \mathbf{c} CaCO₃(s) \longrightarrow CaO(s) + CO₂
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento
- - A Descomposición
 - B Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejercicio 1

de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 H_2 O(1) \longrightarrow 2 H_2(g) + O_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $CuSO_4 + calor \uparrow \longrightarrow CuO + SO_3O$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

- - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- d $4 \operatorname{Al}(s) + 3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{Al}_2 \operatorname{O}_3(s)$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 2 de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento
- $b 2 Al(s) + 3 S(s) \longrightarrow Al_2 S_3(s)$
 - A Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

- $\mathsf{C} \ \mathrm{Mg}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_2(\mathrm{s})$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $Al + H_2SO_4 \longrightarrow Al_2(SO_4)_3 + H_2$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejemplo 2

Balancea la siguiente ecuación química:

$$H_2O + \longrightarrow H_2 O_2$$

Solución:

Si representamos la ecuación química con átomos de distintos colores para cada elemento, tenemos:

$$H_2O + \longrightarrow H_2 O_2$$
 \bigcirc

Hay 2 O en los productos y 1 O en los reactivos, por lo que hay que multiplicar por 2 al H_2O .

Ahora, hay 4 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar por 2 al H_2 .

Por lo tanto, la ecuación química balanceada es:

$$2 H_2 O \longrightarrow 2 H_2 + O_2$$

Ejemplo 3

Balancea la siguiente ecuación química:

$$CH_4 + O_2 \longrightarrow CO_2 \quad H_2O$$

Solución:

Si representamos la ecuación química con átomos de distintos colores para cada elemento, tenemos:

Hay 4 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 2 al H₂O.

Ahora hay 4 O en los productos y 2 en los reactivos, por lo que hay que multiplicar por 2 al O_2 . Y la ecuación balanceada es:

Por lo tanto, la ecuación química balanceada es:

$$\mathrm{CH_4} + 2\,\mathrm{O_2} \longrightarrow \mathrm{CO_2} + 2\,\mathrm{H_2O}$$

Ejercicio 3	de 5 puntos
Balancea la siguiente ecuación química:	
$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$	
Ejercicio 4	de 5 puntos
Balancea la siguiente ecuación química:	
$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O_2$	
Ejercicio 5	de 5 puntos
Balancea la siguiente ecuación química:	0e 0 puntos
Mg(OH) $_2$ + HCl \longrightarrow MgCl $_2$ + H	I ₂ O

Ejercicio 6	de 5 puntos
Balancea la siguiente ecuación química:	
$N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$	
1,214 02 1120	
Fiercicio 7	de 5 ountes
Ejercicio 7	de 5 puntos
Ejercicio 7 Balancea la siguiente ecuación química:	de 5 puntos
	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos

Ejercicio 8 _____ de 5 puntos _____ de 5 puntos Completa la siguiente tabla determinando para cada especie, la cantidad de protones (1), neutrones (1) y electrones

Unidad 2

Ejercicio 9	de 10 puntos							
Relaciona cada elemento con las características que le corresponden.								
a Titanio	A Elemento metaloide del grupo III, subgrupo A de la tabla periódica.							
b Oro	lacktriangle Elemento metálico con Z $=31.$							
C Helio	© Elemento metaloide, ubicado en el tercer período de la tabla periódica.							
d Boro	D Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.							
eRadón	E Elemento con 22 protones y 22 electrones.							
fYodo	F Elemento de la familia de los Halógenos con 74 neutrones.							
9 Bismuto	© Elemento de la familia de metales alcalino-terreos con 138 neutrones.							
h Radio	$\stackrel{\textstyle lack}{\textstyle lack}$ Elemento no metálico con Z $=83$.							
i Galio	(I) Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.							
j Silicio	① Metal brillante utilizado en joyería.							

Relaciona la especie química con la cantidad de protones y electrones de valencia .	
\bigcirc Ión oxígeno \bigcirc \bigcirc \bigcirc \bigcirc 20 protones y 2 electrones de valencia.	
B Nitrógeno (N)	
C 15 protones y 5 electrones de valencia.	
d 8 protones y 7 electrones de valencia.	
Calcio (Ca) e 34 protones y 6 electrones de valencia.	
E Ión Fluor (F⁻)	
F Oxígeno (O)	
h 3 protones y 2 electrones de valencia.	
G Neón (Ne) i 8 protones y 6 electrones de valencia.	
H Ión Litio (Li ⁺) j 10 protones y 8 electrones de valencia.	
T Fósforo (P)	
(J) Selenio (Se)	

Ejercicio 11 de 5 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

(A) Ión de Aluminio (Al³⁺)

(B) Ión de Nitrógeno (N³⁻)

C Ión de Flúor (F⁻)

(D) Litio (Li)

(E) Ión de Potasio (K⁺)

F Ión de Berilio (Be⁻)

 \bigcirc Ión de Azúfre (S²⁺)

(H) Ión de Cloro (Cl⁻)

(I) Ión de Hierro (Fe³⁺)

(I) Fósforo (P)

- 13 protones y 8 electrones de valencia.
- b _____ 17 protones y 8 electrones de valencia.
- c _____ 9 protones y 8 electrones de valencia.
- d _____ 4 protones y 3 electrones de valencia.
- e _____ 16 protones y 4 electrones de valencia.

- f _____ 15 protones y 5 electrones de valencia.
- **9** _____ 26 protones y 2 electrones de valencia.
- h ______ 7 protones y 8 electrones de valencia.
- i _____ 3 protones y 1 electrón de valencia.
- j _____ 19 protones y 8 electrones de valencia.

Ejercicio 12 de 5 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - (A) El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - E Ninguna de las anteriores
- **b** ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a derecha en la tabla periódica?
 - (A) La electronegatividad y el tamaño atómico
 - (B) El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - (D) Potencial de ionización y electronegatividad
 - E Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - (B) Derecha y hacia abajo
 - C Izquierda y hacia arriba
 - D Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - A Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - D Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 13 de 5 puntos

Relaciona cada concepto con su definición.

- (A) Las sustancias se representan sólo con símbolos atómicos.
- (B) Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- (C) Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- (D) Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

- o ____ Diagrama de esferas.
- ____ Fórmula estructural.
- c ____ Fórmula condensada.
- ____ Diagrama de esferas y barras.

Ejercicio 14 de 10 puntos

Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta.

a Explica bajo qué condiciones el número atómico permite deducir el número de electrones presentes en un átomo.

b En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?

Ejercicio 15

de 10 puntos

Escribe el grupo, subgrupo, período y clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla periódica que se muestra abajo.

				ı													
Elemento	Grupo	Subgrupo	Período	Tipo													
Oro						L,	_	_	_	_	_	_	_				Ш
Potasio										\neg							
Paladio									\Box	\Box	\perp	\perp					
						ΙI											
Yodo													_				
Samario									\Box	\Box	\perp	\perp					

Ejercicio 16	de 5 puntos
Señala en cada uno de los enunciados si la sentencia es fal	lsa o verdadera.
La tabla periódica se encuentra constituida por filas (períodos) y columnas (grupos).	k Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso
b Los electrones de valencia se encuentran siempre en el último nivel de energía.	l El símbolo Cl ⁻ indica que el átomo de cloro ha tenido una reducción o pérdida de electrones.
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso
c El oxígeno y el nitrógeno son dos gases nobles de gran importancia.	M Una fórmula química sólo expresa la composición cualitativa de una sustancia.
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso
d El mercurio es un elemento líquido.	n En una fórmula química, los coeficientes indican el número de
☐ Verdadero ☐ Falso	moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.
e Los metales se ubican a la derecha y al centro de la tabla periódica.	☐ Verdadero ☐ Falso
☐ Verdadero ☐ Falso	El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico.
f Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad.	☐ Verdadero ☐ Falso
☐ Verdadero ☐ Falso	O La masa de un neutrón es similar a la del protón.
	☐ Verdadero ☐ Falso
9 La fórmula H ₂ O expresa que la molécula de agua está constituida por dos átomos de oxígeno y uno de hidrógeno.	
☐ Verdadero ☐ Falso	ρ Las únicas partículas elementales en el núcleo, son los protones y neutrones.
h En la fórmula de la Taurina, 4C ₂ H ₇ NO ₃ S, el número 4 indica que hay 4 átomos de carbono.	☐ Verdadero ☐ Falso
☐ Verdadero ☐ Falso	Q El número de masa representa la suma de protones y neutrones.
i Al número entero positivo, negativo o cero que se asigna a cada elemento en un compuesto, se denomina número de	☐ Verdadero ☐ Falso
oxidación.	r El número total de electrones en un átomo lo determina el
☐ Verdadero ☐ Falso	grupo al que pertenece. ☐ Verdadero ☐ Falso
j En la construcción de una fórmula química se escribe primero	
la parte positiva y enseguida la negativa.	S Los protones y neutrones son partículas constituidas por quarks.
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{2}{H}\overset{4.0025}{\text{Helio}}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}}}}}{\overset{N}}}}}}}}$	$\stackrel{18}{A}_{\Gamma}^{39.948}$	$\overset{36}{K}\overset{83.8}{\Gamma}$ Kriptón	$\overset{54}{\mathrm{131.29}}$	$\mathop{Radon}\limits^{86}$	0_{gameson}^{294}	$\sum_{\text{Luterio}}^{71}$	$\frac{103}{L} \frac{262}{L}$ Lawrencio	
	17 VIIA	9 18.998 Fluor	\bigcup_{Cloro}^{17}	$\overset{35}{\mathrm{Bromo}}$	53 126.9 T	$\overset{85}{\mathrm{At}}_{\dot{\epsilon}}^{210}$	$\frac{117}{\text{Tenso}}$	$\sum_{\text{Yterbio}}^{70}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\sum_{\text{Azúfre}}^{32.065}$	${\overset{34}{\mathrm{S}}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}\!$	$\overset{84}{Po}\overset{209}{O}$	$\frac{116}{L} \frac{293}{V}$	$\prod_{Tulio}^{69-168.93}$	$\underset{\text{Mendelevio}}{\text{101}} \overset{258}{\text{c}}$	
	15 VA	$\sum_{\text{Nitrógeno}}^{7}$	$\sum_{\text{Fósforo}}^{15\ 30.974}$	${\overset{33}{\Lambda}}^{74.922}$	$\overset{51}{51}\overset{121.76}{5}$ Antimonio	$\overset{83}{\text{Dis}}\overset{208.98}{\text{Dis}}$	$\overline{M}_{\text{oscovio}}^{288}$	$\frac{68}{\text{Erbio}}$	100 257 Fermio	
	14 IVA	$\bigcup_{\text{Carbono}}^{6}$	$\overset{14}{\text{Silicio}}$	${\overset{32}{G}}^{72.64}$	$\mathop{Sn}_{\text{Estaño}}^{118.71}$	$\overset{82}{Pb}_{\text{Plomo}}^{207.2}$	114 289 Flerovio	$\overset{67}{H0}^{0}$	99 252 Einsteinio	
	13 IIIA	5 Boro	$\bigwedge_{\text{Aluminio}}^{13 26.982}$	$\overset{31}{\mathbf{Galo}}^{69.723}$	49 114.82 Indo	81 204.38	113 284 Nihonio	$\bigcup_{\text{Disprosio}}^{66} 162.50$	$\bigcap_{\text{Californio}}^{98}$	
			12 IIB	$\overset{30}{ ext{Zn}}^{ ext{65.39}}$	$\overset{48}{\text{Cadmio}}$	$\overset{80}{H}\overset{200.59}{S}$	$\overset{112}{\text{C}}\overset{285}{\text{n}}$	\prod_{Terbio}^{65}	$\frac{97}{Bk}$	
			11 IB	$\overset{29}{\overset{63.546}{U}}$	$\mathop{\mathrm{Ag}}_{Plata}^{47}$	$\mathbf{A}_{\mathrm{Oro}}^{\mathrm{79\ 196.97}}$	${\overset{111}{R}}^{280}$	$\overset{\textbf{64}}{\text{Gadolinio}}$	96 247 $^{\rm curio}$	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \sum_{\text{58.693}}^{58.693}$	$\Pr^{46 \ 106.42}_{\text{Paladio}}$	$\Pr^{78~195.08}_{\text{Platino}}$	$\bigcup_{\text{Darmstadtio}}^{281}$	$\frac{63}{\mathbf{E}\mathbf{u}}$	95 243 Am	
			9 VIIIB	$\bigcup_{\text{Cobalto}}^{27} \bigcup_{\text{Cobalto}}^{58.933}$	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\overline{\Gamma}$ $\overline{\Gamma}$ Γ Indio		$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}\overset{244}{\text{Plutonio}}$	
		ro.	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\mathop{Rut}_{\text{Puthenio}}^{44}$	$\overset{76}{\text{Osmio}}$	$\overset{\text{108}}{\text{Hassio}}^{\text{277}}$	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	93 237 Neptunio	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{\mathbf{M}}\overset{54.938}{\mathbf{n}}$ Manganeso	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Re}_{\text{Renio}}^{75~186.21}$	$\overset{107}{Bh}_{\text{Bohrio}}$	60 144.24 Neodimio	$\bigcup_{\text{Uranio}}^{92 238.03}$	
	Simbología:	Negro: I Gris: S	6 VIB	$\overset{24}{\overset{51.996}{\text{Cromo}}}$	${\overset{42}{\mathrm{Molybdeno}}}^{95.94}$		${}^{266}_{Seaborgio}$	$\sum_{\mathbf{Praseodymio}}^{59} 140.91$	$\overset{\text{91}}{\text{Pa}}\overset{\text{231.04}}{\text{Protactinio}}$	
	Sim	$\sum_{\text{Símbolo}}^{\mathbf{Z}} A_r$	5 VB	23 $ 50.942 $ Vanadio	$\sum_{\text{Niobio}}^{41}$	$\overset{73}{\text{Tantalo}}$	$\bigcup_{\text{Dubnio}}^{105}$	$\overset{58}{\overset{140.12}{\bigcirc}}$	90 232.04 Th	
			4 IVB	22 47.867 Titanio	$\sum_{ ext{Circonio}}^{40\ 91.224}$	$\overset{72}{\text{Haftio}}$	$\overset{104}{RL}\overset{261}{\text{Rutherfordio}}$	$\overset{57}{La}$	$\overset{89}{A}^{227}_{C}$	
			3 IIIA	$\overset{21}{S}\overset{44.956}{c}$ Escandio	39 88.906 Yerio	57-71 * K	. 89-103 . * * . Actínido	s -terreos		nidos
	2 IIA	$\mathop{Berilio}^{4}$	$\overline{\mathrm{Mg}}^{24.305}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{\mathrm{Sr}}$	$\overset{56}{\mathrm{Bario}}$	$\overset{88}{R_{\text{adio}}}$	Alcalino Alcalino	le Ll o	obles los/Actín
1 IA	$\prod_{\text{Hidrógeno}}^{1}$	3 6.941 Li tio	$\overset{11}{\overset{22.990}{\text{N}}}$	$\sum_{\text{Potasio}}^{19 \ 39.098}$	$\mathop{Rb}\limits^{37-85.468}_{\text{Rubidio}}$	$\mathbf{\hat{C}}_{\mathbf{S}}^{55}$	$\frac{87}{\text{Francio}}$	Metales Alcalinos Metales Alcalino-terreos Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/Actínidos
	\vdash	2	m	4	Ŋ	9	7			