#### How predictable is extinction?

Forecasting species survival at million-year timescales

Peter D Smits, Seth Finnegan

Department of Integrative Biology, University of California – Berkeley

## Foundational assertion of conservation paleobiology

By studying the past, we can better predict the future.

What are we predicting?

Extinction is hard to predict, but is important to conservation decisions.

### Predicting extinction

A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.

#### Predicting extinction

- A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.
- ► A taxon's global geographic range can change over time.

### Predicting extinction

- A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.
- ► A taxon's global geographic range can change over time.
- What happens to extinction risk as a taxon changes geographic range? How is extinction risk impacted if that taxon's global geographic range has recently increased or decreased?

## Data being analyzed: Neptune database



Global occurrences from Deep Sea Drilling Program and Ocean Drilling Project. – Lazarus. 1994. Math. Geo.; Spencer-Cervato. 1999. Palaeo. Elec.

### How we're analyzing the data

- Encoding the past
  - ▶ Change in geographic range between current observation and previous observation.
  - Average global temperature at time of previous observation (Mg/Ca elemental ratio).
  - Age in millions of years at time of observation.
- Explore model adequacy using posterior predictive distribution.
- $\triangleright$  Estimate out-of-sample predictive performance using k-fold cross-validation.

## A conceptual model for predicting extinction



# Measuring performance: confusion matrix

|   |           |                              | True condition                   |                                 |
|---|-----------|------------------------------|----------------------------------|---------------------------------|
|   |           | Total population             | Condition positive               | Condition negative              |
|   | Predicted | Predicted condition positive | <b>True positive</b> ,<br>Power  | False positive,<br>Type I error |
| ı | condition | Predicted condition negative | False negative,<br>Type II error | True negative                   |

 $\big( \mathsf{wikimedia} \big)$ 

# Measuring performance: Receiver Operating Characteristic



## Measuring performance: AUC ROC



The area represents the probability of correct ranking of a random "extant"-"extinct" pair.

$$\mathsf{AUC} = \begin{cases} 0.5 & \mathsf{non\ discrimination} \\ 0.6 - 0.7 & \mathsf{poor} \\ 0.7 - 0.8 & \mathsf{acceptable/fair} \\ 0.8 - 0.9 & \mathsf{excellent/good} \\ > 0.9 & \mathsf{outstanding} \end{cases}$$

# Measuring performance: k-fold cross-validation



# In-sample predictive performance, full dataset



AUC = 0.7-0.8 acceptable/fair

## In-sample predictive performance, by time and taxa



## Cross-validation results, full dataset



 $\mathsf{AUC} = 0.7\text{-}0.8\ \mathsf{acceptable/fair}$ 

### Cross-validation results, by time and taxa



### Summary

- ► The past matters...
  - Our best supported model includes either our historical covariates or allows all effects to vary over time.
- ▶ But not that much...
  - ► Models only average/fair expected out-of-sample performance.
- ▶ Allowing effects to vary over time is probably preferable to historical covariates measures and accounts for variation which is important when predicting extinction in novel environments.
- ▶ Mechanisms behind changes to geographic range operate at sub-million year scales. Perhaps their effects are weak/masked at million (or greater) year scales.



https://psmits.github.io/paleo\_book/index.html

### Acknowledgements

- ► UC Berkeley
  - Adiel Klompmaker
  - ► Emily Orzechowski
  - Larry Taylor
  - Sara Kahanamoku
  - Josh Zimmt
- ► University of Oslo
  - Franziska Franeck
- ► Neptune DB/MFN Berlin
  - David Lazarus



psmits.github.io/ trident



@PeterDSmits

