T1C09 - Réactions de combustion

E. Machefer

10 janvier 2024

1 Quelques définitions

COURS

1.1 Réaction d'oxydo-réduction

Une réaction de combustion est une réaction d'oxydoréduction où :

- le combustible est le **réducteur**
- le comburant (en général O_2) est l'**oxydant**

Exercice 1.

Définir les termes oxydant et réducteur.

Cette réaction nécessite de l'énergie pour pouvoir démarrer.

Le combustible est en général une molécule contenant les éléments C, H et O (alcanes, alcools). Dans le cas d'une réaction complète, les produits de la combustion sont le dioxyde de carbone et de l'eau.

Combustion de l'éthanol (C₂ H₅ OH) C₂ H₅ OH + 3 O₂ \rightarrow 2 CO₂ + 3 H₂ O

Exercice 2.

Les couples redox sont CO₂/C₂ H₆ O et O₂/H₂ O

1. Écrire les demi équations électroniques

2 Ouverture : Les enjeux liés au CO₂

AD

2.1 Activité 2 p 157 hachette

```
1.
```

```
2.  m_u = 167 \times 10^6 \; t = 167 \times 10^9 \; kg   mu = 167e9 \quad \# \; kg   Mu = 60.0e-3 \quad \# \; kg/mol   Mc = 44.0e-3 \quad \# \; kg/mol   Nu = mu/Mu   \# \; Nu/Nc = 0.9 \; \Rightarrow \; Nc = 0.9 \; Nu   Nc = \; Nu \; / \; 0.9   mc = \; Nc \; \star \; Mc   print("La \; masse \; de \; carbone \; est \; mc = \{:.2e\} \; kg = \{:.2e\} \; t".format(mc, \; mc*1e-3))  La masse de carbone est mc = 1.36e+11 \; kg = 1.36e+08 \; t
```

4.

3.1 Énergie molaire de réaction

Lors de la combustion, des liaisons covalentes sont détruites et d'autres sont créées. L'énergie molaire de réaction (E_r) est définie par

$$E_r = E_d - E_f$$

où E_d représente l'énergie nécessaire à apporter pour casser les liaisons covalentes (dissociation des atomes), et E_f l'énergie récupérée lors de la formation de nouvelles liaisons. E_r , E_d et E_f sont des énergies molaire et s'expriment en J/mol.

Remarque 1.

Une réaction est :

- endothermique si $E_r > 0 \text{ J/mol}$
- exothermique si $E_r < 0 \text{ J/mol}$
- athermique si $E_r = 0 \text{ J/mol}$

Document 1.

C - C $C = O(CO_2)$ Liaison C - HC - OO = OO - HC = O348 496 804 E_l (kJ/mol) 413 360 463796

Combustion du méthane CH₄

 $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2 O$

 $E_d = 4 \ E_l(C-H) + 2 \ E_l(O=O) = 4 \times 413 + 2 \times 496 = 2644 \ kJ/mol$

 $E_f = 2 \times E_l(C = O) + 4 \times E_l(O-H) = 2 \times 796 + 4 \times 463 = 3444 \; kJ/mol$

 $E_{\rm r} = E_{\rm d}$ - $E_{\rm f} = 2644$ - $3444 = -800~{\rm kJ/mol}$

C'est une réaction exothermique.

Exercice 3.

Faire de même avec la combustion de l'éthanol vu précédemment.

3.2 Transfert d'énergie lors d'une combustion

Définition 1.

Lors d'une combustion, le système chimique libère de la chaleur (noté Q, en J).

$$Q = n \times E_r, \qquad Q = -m \times PC$$

avec m la masse de combustible et PC son pouvoir calorifique (en J/kg)

Exercice 4.

15 p 166

Pouvoir calorifique de la paraffine

TP

4.1 Documents

Document 2.

— Calcul de la chaleur reçue :

$$Q = m \times c \times (\theta_f - \theta_i),$$

avec Qen joules (J), men kg, θ_x en °C (ou en K), et c la capacité thermique massique

- Capacités thermiques massiques :
 - $c_{\rm eau} = 4180 \; J \cdot kg^{-1} \cdot K^{-1}$
 - $-c_{alu} = 897 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
- Chaleur latente de fusion de la paraffine : $L_{fusion} = 1,42 \text{ MJ} \cdot \text{kg}^{-1}$
- Formule brute de la paraffine : C_{25} H_{52}
- Masses molaire:
 - M(C) = 12.0 g/mol; M(O) = 16.0 g/mol; M(H) = 1.0 g/mol
- Le pouvoir calorifique d'un combustible correspond à l'énergie dégagée par la combustion complète d'un kilogramme de combustible
- L'énergie totale est conservée lors de la combustion :
 - une partie permet le changement d'état
 - une partie chauffe la canette
 - une partie chauffe l'eau

Document 3.

- 1. Avant la combustion
 - peser la bougie et la canette à vide
 - mettre de l'eau jusqu'à la moitié de la canette
 - déterminer la masse d'eau
 - fixer la canette au dessus de la bougie à l'aide d'une pince
 - introduire la sonde de température dans la canette
- 2. Combustion
 - allumer la bougie et la placer juste en dessous de la canette
 - relever la température toute les deux minutes

4.2 Partie expérimentale

- 1. Faire le schéma de l'expérience à réaliser
- 2. Remplir le tableau suivant pour les données initiales

masse	de la bougie	de la canette	d'eau	Température du système
$(\times 10^{-3} \text{ kg})$				

3. Relever les températures au cours de l'expérience

t (min)	0	2	4	6	8	10
θ (°C)						

4. Relever la masse finale de la bougie.

FIGURE 1 – Conservation de l'énergie

4.3 Analyse des résultats

- 1. (a) Déterminer la chaleur reçue par l'eau lors de l'expérience.
 - (b) Même question pour la canette.
 - (c) Déterminer l'énergie nécessaire à la fusion de la paraffine.
- 2. L'énergie totale libérée lors de la combustion correspond à la somme de ces termes.
 - (a) Rappeler la relation entre la chaleur dégagée lors d'une combustion (Q), la masse de combustible consumé (m) et le pouvoir calorifique du combustible (P_c) .
 - (b) À partir des résultats expérimentaux, déterminer le pouvoir calorifique de la paraffine.
- 3. Les ouvrages de références donnent un pouvoir calorifique $P_c(paraffine) = 46,0~kJ/g$. Déterminer l'écart relatif 1 . Commenter les les éventuelles sources d'erreur.
- 4. (a) Déterminer l'énergie molaire de la réaction.
 - (b) Établir l'équation de la combustion de la paraffine.
 - (c) Déterminer la masse de dioxyde de carbone produite lors de la combustion effectuée.

^{1.} écart entre valeur théorique et valeur mesuré sur la valeur théorique