Physics 0625 IGCSE 2010 Formula Sheet Pg 1/9

Physics 0625 IGCSE 2010 Fo	ormula Sheet Pg 2/9
- Density is defined as the mass per unit volume. The unit is kylm3 or glcm3 Density = mass volume	- When obj is moving at constant speed, there is NO are & hence NO resultant force Moving at constant speed of 2.5 mls
- Finding density of a regularly shaped obj a) Use a beam balance to measure mass.	constant speech => acc = 0 => Freultent = ON.
b) Use a rector to measure the sides & calculate whome using formula. c) Calculate cleasity by $d = \frac{m}{V}$	- Extention - Load Graph extention lem
- Finding density of an irregular shoped obj.	I load propertionality
a) Use beam balance to measure mass b) hower the object into a half-filled measuring cylinder & record the volume as the increse in water level c) Calculate the density by d= m	When limit of proportionality is not reached, the Fore is proportional to the extention of the spring Scalus & Vectors
3 Forces.	Scalars => quantities with magnitudes only Eg. bength, time, mass, current, temp
- When there is a resultant force, there will be an acceleration and vice versul Force = mail x acc or F = ma	Vectors => qualities with magnitudes & directions Eg Force, velocity, acceleration
Eg. $\frac{15N}{2kg}$ $\frac{20N}{4m}$ Resultant func = 20-15	Determining usultant of nun parallel vectors 20N Not down to scale. 45N Find resultant for.
= 5N (left) Acceleration = #	Scale lemilon 4.5cm
$= \frac{5}{2}$ $= 2.5 m/s^2$	7 7cm => 70 N

Physics 0625 IGCSE 2010 Formula Sheet Pg 3/9

4 Moments

Moments = Fore x dut 1 (Nm) (N) (m)

Eg It system is in equilibrium, find F

- a) Total clockens moments = F x 0.2 = 0.2 F No
- b) Total antidockers moments = 40 × 0.5
- c) Total CW moments = Total ACW moments

1

F = 20

= 100N

- For an object to be stable.

- a) Centre of mass must be as low as possible
- b) Centre of mass must be with the base of obj.

Ey.

5 Work, Energy, Power

6 Pressure

Barometer => to measure atmospheric pressure

Physics 0625 IGCSE 2010 Formula Sheet Pg 4/9 Evaporation is the escape of the more-Monometer => To find present of gas X energetic molecules from the surha of a The Presure of gus X = 1ATM + heg liquid 1 Temperature (1 evaporation 1 Surface Area pressure underneath liquid surloce 1 drought over surhu) A Pressure at point P = 1 ATM + heg (8) Thermal properties of matter Solul Liquid Gas Under const temperature, expands the expands the P.V. = P2 V2 DKINETIC model of matter - Advantages of using thermocouple => measuring high temperature Solid Gas Liquid - measuring rapid changing temperature. 0 distance between gluse together for aport molecules Heating graph of water Forces between molecules strongest weakest Builing Temp stays , - Temperature of gas T, speed of molecules T - Presure of gas is due to bombardment of ges perticle on the container wall. melhag temp stays tls constant. - Temperature of gas T, pressure T
At higher temp, parheles move faster &
the force of bombardment T Builing is a pricess whereby liquid changes to gas without a change in temperature. Method is a process whereby solid changes to liquid without a change in temperature. - Brownian motion shows the random motion of our particles Bright specks seen is smole pacheles

Physics 0625 IGCSE 2010 Formula Sheet Pg 5/9

- Condensation is the process whereby gos changes to liquid without a change in temperature

Solidification is the process whereby liquid changes to solid without a change in temperature.

Energy change due to change in temp

E = m < 0 } E - energy (J)

m - mais (kg)

c - specific heat

capacity (J/kg/°C)

Energy change due to change in state

Melting / freezing | E - energy (J)

E = mlf | lf - latent heat of fusion

(J/kg)

boiling I condensation | E - energy (J)

E = mlv | m - mass Cleg)

lv - latent heat of

Voponsation.

Differences between boiling & evaporation,

Boiling Evaporation

fast process slow process

bubbes seen no bubble, seen

Occurs throughout liqued Occurs on the surface

heat source provided heat from surrounding

occurs at fixed temp Occurs over a range of temp

Transfer of Thermal Energy

- Conduction (mainly for solids)

→ due to molecular vibration

A [09.000000] B

Particle at A absorbs heat energy & vibrate fasters. The particles collides with the neighbouring particles & pass the heat energy to B.

Examples of:

Good Concluctors => metals.

Bad Goductors => plashe, rubber, gluss etc

- Convection (mainly for liquid & gos)

- due to change in density

Hot water rises, cold water sinks to set up convectional current.

O Hot water at bottoms gets heated & rises.

Radiation (for all matters)

Due to informed radiation

1/////	Good Absorber K Emitter	Bad Absorber & Emitter
Black & dull	/	
White & shing surfice.		

Physics 0625 IGCSE 2010 Formula Sheet Pg 619

10 General Wave Properties	Refraction du to change in spreed
- V=fx 3 V- speed (ms-1) f- frequency (Hz) x- wovelength (m)	Deep to shallow => faster to slower (bends towards normal)
Transverse wave is a wave whereby the source of vibration is perpendicular to the wove motion	Deep
Eg. rupe wave, water wave, light.	Diffrich n
source of Vibration	Wide Gop Narww Gop
Longitudinal work is a wave whereby the source of vibration is parallel to the work motion. Eg Sound wave	
source of vibration were motion.	1 Light
Reflection at a plane surface	- Characteristics of plane mirror image
water wave	 → upright → virtual → laterally inverted → obj dut = image dut
normal	-> obj size = image size.
reflicted water	ray of incidence to the flechon
<u>.</u>	

Construction of Ray Diagram

Point Object

Extended object

Retruction

n = sin 1 (from less cluse to denser)

n- refrective index (no unit)

1 - 4 of incidence

r- 4 of refrechen

 $\Lambda = \frac{1}{\sin c}$, C- critical angle

This Conveying Leas

- Construct ray diagram for real & virtual images.

(2) Electromagnetic Spectrum

- Transverse waves that travel of the speed of light (3×108 ms-1)

Rome's Mother Is Very Usly, exclaimed X-my

7 Radio wave 1 MICROWAVE Infra-red Visible light Ultravioled Grandma) Gramma My

increasing decreasing wavelength | frequency

(13) Sound

- Sound is an example of longitudinal wave

- Ronge of audible frequency => 20Hz to 20kHz.

- Higheramplitude => Louder sound Higher Enquency => higher pitch:

- Speed of sound travels fastest through solid, followed by liquid then gus.

Physics 0625 IGCSE 2010 Formula Sheet Pg 8/9

(4) Atomic Physics	Structure of an Alom
- Radioactive emission occur randomly over	Na neutrons
time & spuce.	> proton number
Charateristics of Alpha, Beta, Gamma Emission	Na atom has:
Alpha(d) Beta (B) Gamma(d)	11 protons
Nature helium atom electrons Highly energetic waves	23-11 = 12 neutrons
Ionising Very strong More than B. Least wining effect would power Less than & power	Il electrons (number of protens = electron
Penetrating Least Penetrative Most Penetrative	Decay by Alpha Emission
power Stupped by Stopped by Stopped by few a sheet of Aluminum of cm thick of paper Osen thick Lead	Parent daughter alpha nuclide partick
Charge tve -ve neutral	nuclide particle
Deflection in E-field	Eg
	226 Ra -> 222 Rn + 4 He
1 + + + + + + + + + + / B	
<i>→</i>	Decay by Beta Emission
×	ZX -> AY + energy
	parent claughter beta nuclide nuclide particle
DN L	. /
Deflection in Magnetic field	234 Th -> 234 Pa + 0e
\times \times \times \times \times \times	B particle
XXXXXXX	Decay by Gamma Emission
	$A \cup Y$ B
\times \times \times \times	parent daughter games
$\times \times \times \times \times$	parent claughter gamma nuclicle nuclicle rays
B magnetu field	* means excited state.
÷	· ·

Half - Life

The half-life of a sample of radioachue element is defined as the time taken for half of the unstable nuclei to decay

 $N = N_0 \left(\frac{1}{2}\right)^n$

N: no. of underay nuclei
No: Initial no. of underayed nuclei
n: number of half-lifes

Number of underayed atoms.

T> I holf-life.

After time of I half-life, number of undecayed atoms will be halved