Problem Set 3

August 20, 2024

- 1. Take a collection of functions $f_n\Omega \to \mathbb{R}^N$, $\Omega \subseteq \mathbb{R}^M$, $n \in \mathbb{N}$. The collection $\{f_n\}_{n \in \mathbb{N}}$ define a **sequence of functions**, and for each $x \in \Omega$, we have a possibly different sequence $\{f_n(x)\}$ in \mathbb{R}^N .
 - Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of functions with $f_n:\Omega\to\mathbb{R}^N$ and $\Omega\subseteq\mathbb{R}^M$. We say that $\{f_n\}_{n\in\mathbb{N}}$ converges point-wise to $f:\Omega\to\mathbb{R}^N$ if $x\in\Omega\Longrightarrow f_n(x)\to f(x)$.
 - Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of functions with $f_n:\Omega\to\mathbb{R}^N$ and $\Omega\subseteq\mathbb{R}^M$. We say that $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to $f:\Omega\to\mathbb{R}^N$ if $\forall \varepsilon>0,\ \exists N\in\mathbb{N}$ such that

$$||f_n(x) - f(x)|| < \varepsilon$$

when $n \geq N$ and $x \in \Omega$.

- (a) Let $f_n : \mathbb{R} \to \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ be defined such that $f_n(x) = x/n$ and f(x) = 0. Check that f_n converges point-wise to f.
- (b) Show f_n defined above does not converge uniformly to f.
- (c) Show that uniform convergence implies point-wise convergence.
- 2. Let $A \subseteq \mathbb{R}^N$ be a convex set. We say that $f: A \to \mathbb{R}^N$ is **quasi-concave** if for any $x, y \in A$ and for any $\alpha \in [0, 1]$, we have

$$f(\alpha x + (1 - \alpha)y) > \min\{f(x), f(y)\}$$

and strictly quasi-concave is the above inequality holds strictly for any $\alpha \in (0,1)$. Show that if f is quasi-concave, then $\arg\max_{x\in A} f(x)$ is a convex set (recall the empty set is vacuously convex). Further show that if f is strictly quasi-concave, then $\arg\max_{x\in A} f(x)$ is a singleton or empty.

- 3. Consider a continuous function $f: \mathbb{R}^N \to \mathbb{R}$. Show
 - (a) If f is differentiable and $x^* \in \mathbb{R}^N$ is a local maximizer or minimizer of f, then $\nabla f(x^*) = 0$.
 - (b) If f is three times continuously differentiable and $x^* \in \mathbb{R}^N$ is such that $\nabla f(x^*) = 0$, then if x^* is a local maximizer, the symmetric $N \times N$ Hessian $D^2 f(x^*)$ is negative semi-definite. Optional: Prove that if $D^2 f(x^*)$ is negative definite, then x^* is a unique global maximizer (Hint: For the first part, you could potentially use a Taylor expansion formula. For the second part, you could leverage the fact that a matrix is ND iff it has all strictly negative eigenvalues)

¹Note the difference between this definition and the definition for point-wise convergence is that the $N \in \mathbb{N}$ in the definition for point-wise convergence can potentially depend on x whereas the $N \in \mathbb{N}$ in the uniform convergence definition can only depend on ε . This is a subtle but important distinction.

- (c) If f is concave, then $f(x+z) \le f(x) + Df(x)z$ for any x, z.
- (d) If f is concave, then any critical point (i.e. x such that Df(x) = 0) is a global maximizer.
- 4. Define the set $\Delta = \{p \in \mathbb{R}_+^L : \sum_{\ell} p_{\ell} = 1\}$ and the functions z^+ on Δ as $z_{\ell}^+(p) = \max\{z_{\ell}(p), 0\}$, where $z(p) = \{z_1(p), z_2(p), \dots, z_L(p)\}$ is a continuous homogeneous function of degree 0 and satisfying $p \cdot z(p) = 0$ for all $p \in \mathbb{R}^L$. Denote $\alpha(p) = \sum_{\ell} [p_{\ell} + z_{\ell}^+]$.
 - (a) Show that Δ is a non-empty compact and convex set.
 - (b) Show that $f: \Delta \to \Delta$ is continuous in p where

$$f(p) = \frac{1}{\alpha(p)} \left(p + z^{+}(p) \right)$$

- (c) Prove that f has a fixed point. (Hint: use some existing theorems!)
- (d) Use the fact that f has a fixed point and the properties of z to argue that $\exists p^*$ such that $z^+(p^*) \cdot z(p^*) = 0$. (*Hint*: Use the fact that $p^* \cdot z(p^*) = 0$).
- (e) Conclude that $z(p^*) \leq 0$

Remark 1. For consumer i, we define the excess demand function $z_i(p) = x_i(p, \omega_i) - \omega_i$ for wealth ω_i and prices p. One way to define general equilibrium is a vector of prices such that $\sum_i z_i(p) \leq 0$ for all i (i.e., there is no aggregate excess demand). You have just shown that under some conditions such a price vector always exists.