

Algemene Chemie Oefeningen

- Formules
- oplossingsstrategieën

Dichtheid =
$$\frac{massa}{volume}$$
 $\rho = \frac{m}{V}$

$$\rho = \frac{m}{V}$$

$$[\rho] = \frac{g}{mL}$$

Molaire massa (tabel Mendeljev)

Molaire massa =
$$\frac{massa}{aantal \ mol}$$
 $M = \frac{m}{n}$ $[M] = \frac{g}{mol}$

$$M = \frac{m}{n}$$

$$[\mathsf{M}] = \frac{g}{mol}$$

1 mol = $6,02.10^{23}$ deeltjes (atomen, ionen, moleculen,...)

De massa van 1 atoom volgt uit: (1 mol materiaal in gram) / (avogadro's getal)

Bijvoorbeeld: het gewicht van 1 waterstofatoom is (1g / 6,022x10) $= 1,66 \times 10^{-24}$

Isotopen – gemiddelde atoommassa

Bepaald atoom in werkelijkheid verzameling atomen bestaande uit verschillende isotopen met elk een andere massa.

→ Afhankelijk van relatieve voorkomen en massa van deze isotopen gemiddelde atomaire massa berekenen.

$$A = \frac{p_1.A_1 + p_2.A_2}{100}$$

$$p_1 + p_2 = 100 \%$$

 $p_1 = \%$ voorkomen isotoop 1

 $p_2 = \%$ voorkomen isotoop 2

 A_1 = atomaire massa isotoop 1

 A_2 = atomaire massa isotoop 2

Chemische formules

Molecuulformule = chemische formule die het werkelijke aantal en type atomen weergeeft van de molecule.

→ De samenstelling van de molecule door aan te geven hoeveel atomen van elke soort in de molecule aanwezig zijn

Empirische formule = chemische formule die enkel de relatieve aantal en type atomen weergeeft van de molecule.

→ De samenstelling van de molecule met de kleinst mogelijke verhouding van gehele getallen

Bepalen empirische formules

We veronderstellen 100 g van de verbinding dan zijn de percentages gelijk aan de massa van elk element in gram.

- Stap 1: zet percentages op naar de massa van elk element in gram.
- Stap 2: zet massa van elk element om naar aantal mol
- **Stap 3:** deel de gevonden waarden door het kleinste getal van deze waarden
- **Stap 4:** Indien nodig, vermenigvuldig deze waarden met geheel getal om zo gehele getallen te krijgen.

Chemische formules

Vb. Een verbinding wordt geanalyseerd en bestaat uit 48.64% C, 8.16% H en 43.20% O. Wat is de empirische formule?

We veronderstellen 100 g van de verbinding dan zijn de percentages gelijk aan de massa van elk element in gram.

• **Stap 1:** zet percentages op naar de massa van elk element in gram.

Voor C: 48.64 g C Voor H: 8.16 g H Voor O: 43.20 g O

• Stap 2: zet massa van elk element om naar aantal mol

Voor C: 48.64 g C =
$$\frac{48.64 g}{12.01 g/mol}$$
 = 4.049 mol
Voor H: 8.16 g H = $\frac{8.16 g}{1.01 g/mol}$ = 8.095 mol
Voor O: 43.20 g O = $\frac{43.20 g}{15.99 g/mol}$ = 2.7 mol

• Stap 3: deel de gevonden waarden door het kleinste getal van deze waarden

Voor C:
$$\frac{4.049 \, mol}{2.7 \, mol} = 1.5$$
 Voor H: $\frac{8.095 \, mol}{2.7 \, mol} = 3$ Voor O: $\frac{2.7 \, mol}{2.7 \, mol} = 1$

• **Stap 4:** Indien nodig, vermenigvuldig deze waarden met geheel getal om zo gehele getallen te krijgen. (alles vermenigvuldigen met 2)

Voor C: 3 Voor H: 6 Voor O:2

→ Empirische formule : (C₃H₆O₂)_n

Chemische formules

Bepalen molecuulformules adhv molaire massa en empirische formule

Als empirische formule en molaire massa van verbinding gekend is, kan molecuulformule bepaald worden.

- **Stap 1:** Bepaal moleculaire massa van empirische formule.
- **Stap 2:** molaire massa van verbinding wordt meestal gegeven
- **Stap 3:** deel de molaire massa van de verbinding door de molaire massa van de empirische formule. (zo bepaal je n)
- **Stap 4:** Vermenigvuldig de empirische formule met het bekomen getal.

Vb. De molaire massa van vitamine C gelijk is 176,12 g/mol. Als de empirische formule $C_3H_4O_3$ is, wat is dan de moleculeformule van vitamine C?

• **Stap 1+2:** Bepaal moleculaire massa van empirische formule.

$$M((C_3H_4O_3)_n) = 3.\left(\frac{12,01g}{mol}\right) + 4.\left(\frac{1,01g}{mol}\right) + 3.\left(\frac{15,99g}{mol}\right) = 88,04 \text{ g/mol}$$

M(vitamine C) = 176,12 g/mol

• **Stap 3:** deel de molaire massa van de verbinding door de molaire massa van de empirische formule. (zo bepaal je n)

$$n = \left(\frac{176,12g/mol}{88,04g/mol}\right) = 2$$

• **Stap 4:** Vermenigvuldig de empirische formule met het bekomen getal voor n. molecuulformule vitamine $C = (C_3H_4O_3)_2 = C_6H_8O_6$

concentratie =
$$\frac{aantal\ mol}{volume}$$

$$C = \frac{n}{V}$$

$$[C] = \frac{mol}{L}$$

Molaire massa (tabel Mendeljev)

Molaire massa =
$$\frac{massa}{aantal \ mol}$$
 $M = \frac{m}{n}$

$$M = \frac{m}{n}$$

$$[M] = \frac{g}{mol}$$

Verdunningen

$$C_{geconcentreerd}.V_{geconcentreerd} = C_{verdund}.V_{verdund}$$

1 ppm = 1 mg opgeloste stof in 1L H_2O

1 ppb = 1 mg opgeloste stof in 1000L H_2O

Universiteit Antwerpen

- Excess A Limiting reactant
 - Excess B Limiting reactant

- **Stap 1:** Schrijf chemische reactievergelijking.
- Stap 2: Bepaal aantal mol
- **Stap 3:** Bepaal limiterende factor
- **Stap 4**: gebruik reactiestoichiometrie om aantal mol van onbekende te bepalen
- **Stap 5**: Reken om naar massa

Voorbeeld: Reactie van 100g H₂O met 100g CaC₂

$$2 H_2O + CaC_2 \rightarrow Ca(OH)_2 + C_2H_2$$

$$m_{H_2O} = 100g$$
 $m_{CaC_2} = 100g$ $m_{CaC_2} = 64,10 \frac{g}{mol}$ $n_{H_2O} = 5,55 \ mol$ $m_{CaC_2} = 1,56 \ mol$

$$m_{CaC_2} = 100g$$
 $M_{CaC_2} = 64,10 \frac{g}{mol}$
 $n_{CaC_2} = 1,56 mol$

$$n_{Ca(OH)_2} = 1,56 \, mol$$

 $n_{C_2H_2} = 1,56 \, mol$

overmaat

LIMITEREND

Er blijft 2,43 mol H₂O over

Het waterstofatoom: kwantumgetallen

Samenvatting: 4 kwantumgetallen

1. het hoofdkwantumgetal n

=> bepaalt de energie van het elektron in het H-atoom

$$E = -\frac{R}{n^2}$$

2. het nevenkwantumgetal I

=> bepaalt de grootte van de orbitaal-draaiimpuls van het elektron $L = \sqrt{l(l+1)}\hbar$

3. het magnetische kwantumgetal m_l

=> bepaalt de grootte van de component van de orbitaal-draaiimpuls in de meetrichting (richting van uitwendig magnetisch veld) $L_z = m_i \hbar$

4. het spinkwantumgetal ms

=> bepaalt de grootte van de component van de spin-draaiimpuls in de meetrichting $S_z=m_s\hbar$

Pauliverbod

Hoe ziet de grondtoestand van een meerelektronen atoom eruit? In welke orbitalen bevinden de e- zich?

n	l	m_l	m_s			
1	0	0	1/2			
1	0	0	-1/2			
2	0	0	1/2			
2	0	0	-1/2			
2	1	-1	1/2			
2	1	-1	-1/2			
2	1	0	1/2			
2	1	0	-1/2			
2	1	1	1/2			
2	1	1	-1/2			

Onderscheiden toestanden in K en L schil

Uitsluitingsbeginsel / Pauliverbod:

Wolfgang Pauli 1900 - 1958

Geen twee elektronen in eenzelfde atoom kunnen dezelfde vier kwantumgetallen (n, l, m_l , m_s) hebben

of

Geen twee elektronen in eenzelfde systeem bevinden zich in dezelfde kwantumtoestand

- ieder e⁻ bevindt zich in een orbitaal, waarvan vorm en oriëntatie beschreven wordt door n, I en m_I
- ieder van deze orbitalen kan ten hoogste 2 elektronen bevatten, één met m₅ = 1/2, en één met m₅ = -1/2

Symbolische voorstelling van de elektronenconfiguratie

3s		voorstelling ruimtelijk onderscheiden orbitaal, voorafgegaan door de specificatie van de orbitaal				
3р		── voorstelling ontaarde orbitalen				
1s	$\boxed{\uparrow\downarrow}$	elektronen worden voorgesteld met pijltjes waarvan de oriëntatie de spin aangeeft				

Het Aufbau principe

- De energie van het elektron stijgt met zijn hoofdkwantumgetal n
- Binnen een bepaalde schil, stijgt de energie van het elektron met zijn nevenkwantumgetal /

De Regel van Hund

• Elektronen stoten elkaar af => zijn liefst ver van elkaar verwijderd

Regel van Hund / regel van maximale multipliciteit:

Wanneer meerdere elektronen in een verzameling ontaarde orbitalen aanwezig zijn, dan heeft de configuratie met het maximale aantal door het Pauliverbod toegelaten evenwijdige spins de laagste energie

Elementen van de 3e periode valentie-elektronen

Mg tot Ar: opvulling 3p analoog aan 2p in Be tot Ne

Elektronen in de buitenste schil: valentie-elektronen

1s
$$\uparrow \downarrow$$
 2s $\uparrow \downarrow$ 2p $\uparrow \uparrow$

4 valentie-elektronen

H 1 s ¹							He 1s ²
Li	Be	B	C	N	0	F	Ne
2s	2s ²	2s ² 2p ¹	2s ² 2p ²	2s ² 2p ³	2s ² 2p ⁴	2s ² 2p ⁵	2s ² 2p ⁶
Na	Mg	AI	Si	P	S	Cl	Ar
3s ¹	3s ²	3s ² 3p ¹	3s ² 3p ²	3s ² 3p ³	3s ² 3p ⁴	3s ² 3p ⁵	3s ² 3p ⁶

Valentie-elektronen bepalen chemische eigenschappen van het element!

Elementen van de 4e periode en transitiemetalen

Elementen na Ar in tabel van Mendeljev: K en Ca

- Chemisch sterk verwant met Na en Mg, resp.
- 4s orbitaal blijkt lagere energie te hebben dan 3d

=> K: [Ar] 4s¹ en Ca: [Ar] 4s²

Elementen na Ca: overgangsmetalen of transitiemetalen

Sc	Ti	V	Cr	Mn	Fe		- 1-		Zn
$3d^14s^2$	$3d^24s^2$	$3d^34s^2$	$3d^54s^1$	$3d^54s^2$	$3d^64s^2$	$3d^74s^2$	$3d^84s^2$	$3d^{10}4s^{1}$	$3d^{10}4s^2$

Algemeen opvulschema:

opvullen van onderschil: 2(2l+1) elektronen

Gaswetten

Experimentele vaststellingen:

```
Boyle: p.V = cte (bij cte T,n)
```

Charles: V/T = cte (bij cte p,n)

Gay-Lussac: p/T = cte (bij cte V,n)

(T in K!)

Avogadro: $V = n.V_m$

Ideale gaswet:

$$p.V = n.R.T$$

R = gasconstante

 $R = 8,314472 \text{ J.K}^{-1}.\text{mol}^{-1}$

 $R = 0.0820578 \text{ L.atm. } K^{-1}.\text{mol}^{-1}$

 $R = 62,3637 L.Torr. K^{-1}.mol^{-1}$

 $R = 1,987 \text{ cal. } K^{-1}.\text{mol}^{-1}$

 $R = 8,31447.10^{-2} L.bar. K^{-1}.mol^{-1}$

Gevolg:
$$c = \frac{n}{V} = \frac{p}{R.T}$$

$$p.V = \frac{m}{M}.R.T \rightarrow \frac{p.M}{R.T} = \frac{m}{V} = \rho$$

Universiteit Antwerpen

Gasmengsels

$$p = p_A + p_B + \dots$$

Molfractie: $x_A = n_A/n$

$$p_A = n_A \cdot \frac{R.T}{V} = x_A \cdot n \cdot \frac{R.T}{V} = x_A \cdot p$$

Diffusie en effusie

effusiesnelheid
$$\sim \frac{1}{\sqrt{M}}$$

$$\frac{\text{effusiesnelheid}_{A}}{\text{effusiesnelheid}_{B}} = \frac{\sqrt{M_{B}}}{\sqrt{M_{A}}}$$

Reële gassen

$$\left(p + a \frac{n^2}{V^2}\right)(V - nb) = nRT$$

$$p = \frac{nRT}{V-nb} - a \frac{n^2}{V^2}$$

Lewis structuren

Gilbert Newton Lewis 1875 - 1946

MO theorie: complexe berekeningen en interpretatie

=> overgaan naar eenvoudiger model: Lewis structuren concept: gedeeld gebruik van valentie- elektronen leidt tot covalente bindingen

Wanneer twee atomen die zich in elkaars omgeving bevinden hun valentie-elektronen zodanig herschikken dat sommige elektronen samen gebruikt worden door de twee atomen dan wordt een stabiele molecule gevormd indien dit gedeelde elektronengebruik leidt tot volledig gevulde valentie-schillen voor beide atomen.

Lewis structuren

Gilbert Newton Lewis 1875 - 1946

Zwaardere elementen: ook d-orbitalen: opvulling mogelijk tot 18 elektronen

cirkeltjes benadrukken welke elektronen deelnemen aan de binding

Lewis structuren

H∙ + ∙ĊI: → HċĊI; vrije elektronenparer

Q: welke elektronen nemen deel aan de binding?

A: die elektronen die in beide cirkels voorkomen

2 elektronen in binding ~ in MO

6 overige valentie-e- van Cl ~ in AO

2e weergavemogelijkheid:

Coördinatief covalente binding

leder atoom levert één of meerdere elektronen:

$$A \cdot + \cdot B \longrightarrow A : B$$

leder atoom levert alle elektronen:

$$A + :B \longrightarrow A:B$$

coördinatief covalente binding

Ammonium-ion uit ammoniak:

$$\begin{array}{c} H \\ H^+ + : \overset{\cdot}{N}: H \\ \overset{\cdot}{H} \end{array} \longrightarrow \begin{bmatrix} \overset{\cdot}{H} \\ H : \overset{\cdot}{N}: H \\ \overset{\cdot}{H} \end{bmatrix}^+$$

Etheen: C₂H₄

Stikstofmolecule: N₂

$$: \dot{N} \cdot + \cdot \dot{N} : \longrightarrow (N \otimes N) \longrightarrow |N \otimes N|$$

Noodzakelijk: weten welke atomen in de molecule gebonden zijn aan elkaar

Voorbeeld: COCl₂ (carbonyldichloride of fosgeen)

1. Bereken het totaal aantal valentie-e- in de molecule (= som van de valentie-e- van de atomen), plus de negatieve lading van de molecule / ion, of min de positieve lading van de molecule / ion.

C: 4 e⁻

O: 6 e⁻ Totaal: 24 e⁻

Cl: 7 e

 NH_4^+ : 5 (N) + 4x1 (H) -1 (positief ion) = 8 e⁻¹

2. Teken de skeletstructuur van de molecule

= verbinding van alle met elkaar te verbinden atomen dmv één streepje

ieder streepje = één bindend elektronenpaar

=> 6 elektronen toegewezen; nog (24-6) = 18 e⁻ te alloceren

 Verdeel elektronen over de atomen die het centrale atoom omringen. Zorg ervoor dat voor deze eindstandige atomen aan de octetregel is voldaan.

$$(CI)$$
 $C - \overline{0}I$

igv. fosgeen: 18 e-

=> alle e opgebruikt

Q: is dit de eindstructuur?

A: neen, voor C is niet aan de octetregel voldaan...

 Verdeel de overblijvende elektronen paarsgewijs over het centrale atoom

Rond centrale atoom

6 e- => meestal dubbele binding

4 e- => meestal driedubbele binding

Q: Waarom dubbele binding met O?

A: elektronenconfiguratie O: 1s² 2s²2p⁴, met 2 ongepaarde e⁻ elektronenconfiguratie Cl: 1s² 2s²2p⁶ 3s²3p⁵, met 1 ongepaard e⁻

Formele lading

Uit idealisering dat alle covalente bindingen homopolair zijn: bepalen hoeveel valentie-elektronen elk atoom omringen

Uit dit aantal elektronen: bepaling van de lading van elk atoom (tov. aantal valentie-elektronen in neutrale atoom)

CI:
$$F = 7-6-1 = 0$$

O:
$$F = 6-4-2 = 0$$

Formele ladingen en meerdere Lewis structuren

Vaak meer dan 1 Lewis structuur mogelijk => Formele lading (FL) geeft aan welke meest waarschijnlijk is

- 1. Alle FL = 0 :: optimaal
- 2. Kies structuur met laagste aantal FL
- Eén hoge FL is beter dan meerdere hoge FL
- 4. FL met zelfde teken op naburige atomen :: hoogst onwaarschijnlijk
- 5. Kies structuur met negatieve FL op meest elektronegatieve atoom

Voorbeelden

carbonylchloride

[C/N/S]-: thiocyanaat ion

Resonantie / delocalisatie

Nitrietion: NO2

- 2 perfect evenwaardige structuren, maar telkens 2 verschillende N-O bindingen
- Experimenteel: 1 structuur met 2 gelijke N-O bindingen

= 1 structuur!!!

Uitzonderingen op de octetregel

1. moleculen met minder dan 8 valentie-e- rond het centrale atoom

2. moleculen met meer dan 8 valentie-e- rond het centrale atoom

3. moleculen met een oneven aantal elektronen

$$|\dot{\mathbf{n}} = 0\rangle$$
 $\langle 0 = \dot{\mathbf{n}} = 0\rangle$ $\langle 0 = \dot{\mathbf{n}} = \overline{0}|$

- = Valence Shell Electron Pair Repulsion
- = theorie die toelaat op 3D structuur van moleculen te voorspellen adhv electronenverdeling
- → Electronen in bindingen en in VEP proberen zich zover mogelijk van elkaar te positioneren
- 1. Teken Lewisstructuur
- 2. Tel aantal bindingen en VEP
- 3. Leg Ladingswolken zo ver mogelijk uit elkaar

1 Ladingswolk (diatomische molecule)

→ Lineaire molecule met bindingshoek 180°

A-X

2 Ladingswolken

→ Lineaire molecule met bindingshoek 180°

3 Ladingswolken

→ Vlakke driehoek met bindingshoek 120°

→ Indien 1 VEP gebogen X-A-X met bindingshoek 120°

 AX_2E Universiteit Antwerpen

CH₂O

SO₂

tetraëdrisch

4 Ladingswolken

→ Tetraeder met bindingshoek 109,5°

A regular tetrahedron

CH₄

→ Indien 1 VEP trigonale piramide met bindingshoek 107°

 NH_3

→ Indien 2 VEP gebogen met bindingshoek 104,5°

 H_2O

→ Trigonale bipyramide

Axis

Center

→ Indien 1 VEP schommel

→ Indien 2 VEP T-vorm

→ Indien 3 VEP Lineair

VSEPR: 6 ladingswolken

octahedron

→ Octaeder

→ Indien 1 VEP vierkante pyramide

SbCl₅²⁻

→ Indien 2 VEP vlak vierkant

XeF₄

Number of Bonds	Number of Lone Pairs	Number of Charge Clouds	Geometry	Example
2	0	2	Linear	o=c=0
3	0	3	Trigonal planar	H-C=0
2	1	6	Bent	O-S
4	0	•	Tetrahedral	Н НС-н Н
3	1	4	Trigonal pyramidal	H-N-H
_2	2		Bent	н0

TABLE 7.4 Geometry around Atoms with 2, 3, 4, 5, and 6 Charge Clouds

TABLE 7.4	deometry	around Atoms	With 2, 3, 4, 3, a	na o charge croads
Number of Bonds	Number of Lone Pairs	Number of Charge Clouds	Geometry	Example
5	0		Trigonal	
4	1	5	Seesaw	F S S
3	2	3	T-shaped	F Cl-F F
2	3		Linear	
6	0		Octahedral	
5	1	6	Square pyramidal	
4	2	8	Square planar	F Xe F
it <i>e</i>		L	-	

Energie veranderingen in chemie:

- Warmte q
 - +: warmte toegevoegd wordt aan systeem
 - -: warmte afgegeven door systeem
- Arbeid w
 - +: arbeid op systeem wordt uitgeoefend
 - -: systeem levert arbeid

Arbeid

Irreversiebele expansie (tegen constante druk)

$$w = -P\Delta V$$

 Reversiebele expansie (systeem is op elk ogenblik in evenwicht met omgeving → P niet meer constant maar T is constant)

$$w = -nRT \ln \frac{V_2}{V_1}$$

Warmtecapaciteit

 Warmtecapaciteit = hoeveelheid warmte nodig om temperatuur van een object of stof een bepaalde hoeveelheid te laten stijgen

$$C = \frac{q}{\Delta T}$$

 Specifieke warmtecapaciteit = de hoeveelheid warmte om temperatuur van 1g stof 1°C te laten stijgen

$$q = m c \Delta T$$

ΔU en ΔH

$$\Delta U$$
 = verandering in inwendige energie $\Delta U = q + w$

$$\Delta H = \text{verandering enthalpie}$$

$$\Delta H = \Delta U + p\Delta V$$

$$\Delta H = \Delta U + \Delta nRT \quad (\text{voor gassen}$$

$$\text{met } \Delta n = n_{\text{prod}} - n_{\text{reag}})$$

Wet van Hess voorbeeld

Synthese van propaan: $3C(gr) + 4H_2(g) \rightarrow C_3H_8(g)$

Bereken de standaardenthalpie van de synthesereactie vanuit de volgende experimentele data:

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(I)$$
 $\Delta H^\circ = -2220 \text{ kJ}$
 $C(gr) + O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = -394 \text{ kJ}$
 $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(I)$ $\Delta H^\circ = -286 \text{ kJ}$

Oplossing:

$$[C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(I) \Delta H_1^\circ = -2220 \text{ kJ}] \text{ x-1}$$

 $[C(gr) + O_2(g) \rightarrow CO_2(g) \qquad \Delta H_2^\circ = -394 \text{ kJ}] \text{ x 3}$
 $[H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(I) \qquad \Delta H_3^\circ = -286 \text{ kJ}] \text{ x 4}$
 $3C(gr) + 4 H_2(g) \rightarrow C_3H_8(g) \qquad \Delta H = -\Delta H_1^\circ + 3\Delta H_2^\circ + 4 \Delta H_3^\circ$
 $\Delta H = -106 \text{ kJ}$

Algemeen:

$$aA + bB \rightleftharpoons cC + dD$$

$$K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

Concentraties bij evenwicht

$$K_p = \frac{P_C{}^c \cdot P_D{}^a}{P_A{}^a \cdot P_B{}^b}$$

voor gassen

Partieeldrukken bij evenwicht

Evenwichtsconstante laat toe:

- Bepalen hoe ver reactie loopt
 - K_c zeer groot: meeste reactieproduct
 - K_c zeer klein: meeste reagentia
- Richting reactie voorspellen adhv. reactiequotient Q

$$Q_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$
 Concentraties op tijdstip t

- \circ Q_c < K_c: reactie loopt van reagentia naar producten tot Q_c = K_c
- \circ Q_c > K_c: reactie loopt van producten naar reagentia tot Q_c = K_c
- \circ Q_c > K_c: evenwicht

Evenwichtsconstante laat toe:

- Evenwichtsconcentraties te berekenen
 - 1. Schrijf reactievergelijking en balanceer
 - 2. Maak tabel met onder elke component in reactie:
 - Startconcentratie
 - Verandering in concentratie om naar evenwicht te gaan
 Stel x de concentratie van 1 van de componenten en gebruik stoichiometrie van de reactie om andere concentraties te bepalen
 - Evenwichtsconcentratie
 - 3. Vul in in uitdrukking voor de evenwichtsconstante en los op naar x
 - 4. Bereken evenwichtsconcentraties
 - 5. Controleer

$$\Delta G = \Delta G^{\circ} + RT \, lnQ$$

Van't Hoff:

$$\ln \frac{K_2}{K_1} = -\frac{\Delta H_r^{\circ}}{R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$$

enkele veel voorkomende zuren en zuurresten

TABLE D.1 Common Anions and Their Parent Acids

Anion	Parent acid	Anion	Parent acid	
fluoride ion, F-	hydrofluoric acid,* HF (hydrogen fluoride)	nitrite ion, NO ₂ ⁻ nitrate ion, NO ₃ ⁻	nitrous acid, HNO ₂	
chloride ion, Cl-	hydrochloric acid,* HCl (hydrogen chloride)	phosphate ion, PO ₄ ³⁻ hydrogen phosphate ion, HPO ₄ ²⁻ dihydrogen phosphate ion, H ₂ PO ₄ ⁻ sulfite ion, SO ₃ ²⁻ hydrogen sulfite ion, HSO ₃ ⁻ sulfate ion, SO ₄ ²⁻ hydrogen sulfate ion, HSO ₄ ⁻ hypochlorite ion, ClO ⁻	phosphoric acid, H ₃ PO ₄	
bromide ion, Br ⁻	hydrobromic acid,* HBr (hydrogen bromide)		sulfurous acid, H ₂ SO ₃	
iodide ion, I-	hydroiodic acid,* HI (hydrogen iodide)		sulfuric acid, H ₂ SO ₄	
oxide ion, O ^{2–} hydroxide ion, OH [–]	water, H ₂ O		hypochlorous acid, HClo	
sulfide ion, S ²⁻ hydrogen sulfide ion, HS ⁻ cyanide ion, CN ⁻	hydrosulfuric acid,* H ₂ S (hydrogen sulfide) hydrocyanic acid,* HCN (hydrogen cyanide)	chlorite ion, ClO ₂ ⁻ chlorate ion, ClO ₃ ⁻ perchlorate ion, ClO ₄ ⁻	chlorous acid, HClO ₂ chloric acid, HClO ₃ perchloric acid, HClO ₄	
acetate ion, CH ₃ CO ₂ ⁻ carbonate ion, CO ₃ ²⁻ hydrogen carbonate (bicarbonate) ion, HCO ₃ ⁻	acetic acid, CH ₃ COOH carbonic acid, H ₂ CO ₃			

^{*}The name of the aqueous solution of the compound. The name of the compound itself is in parentheses.