Universal Algebraic Methods for Constraint Satisfaction Problems

William DeMeo

williamdemeo@gmail.com

University of Hawaii

joint work with Clifford Bergman

AMS Fall Western Sectional Meeting

University of Denver

8 October 2016

More specifically...

Let *D* be a finite set and $\Re \subseteq \operatorname{Rel}(D) = \bigcup_{n < \omega} \Re(D^n)$

 $\mathsf{CSP}(D, \mathcal{R})$ is the following decision problem:

Instance:

- variables: $V = \{v_1, \dots, v_n\}$ (a finite set)
- constraints: (C_1, \ldots, C_m) (a finite list)

Each C_i is a pair (\mathbf{s}_i, R_i) , where

 ${\tt williamdemeo@gmail.com}$

$$\mathbf{s}_i(j) \in V$$
 and $R_i \in \mathcal{R}$

Question: Does there exist a solution?

an assignment $f: V \to D$ of values to variables satisfying

$$\forall i \quad f \circ \mathbf{s}_i = (f \mathbf{s}_i(1), f \mathbf{s}_i(2), \dots, f \mathbf{s}_i(p)) \in R_i$$

Algebraic CSP

8 Oct 2016

3 / 18

What is a CSP?

Informally, a Constraint Satisfaction Problem consists of

- a list of variables ranging over a finite domain and
- a set of constraints on those variables.

Problem: can we assign values to all the variables so that all of the constraints are satisfied?

williamdemeo@gmail.com Algebraic CSP 8 Oct 2016 2/18

The CSP-Dichotomy Conjecture

Conjecture of Feder and Vardi

Every $CSP(D, \mathbb{R})$ either lies in \mathbb{P} or is \mathbb{NP} -complete.

Algebraic CSP 8 Oct 2016

Polymorphisms

Definition

Let $R \in \operatorname{Rel}_k(D)$ and $f \colon D^n \to D$. We say f preserves R if

$$(a_{11}, \ldots, a_{1k}), \ldots, (a_{n1}, \ldots, a_{nk}) \in R \Longrightarrow (f(a_{11}, \ldots, a_{n1}), \ldots, f(a_{1k}, \ldots, a_{nk})) \in R$$

 ${\tt williamdemeo@gmail.com}$

Algebraic CSP

8 Oct 2016

5 / 18

Galois Connection

Let \mathcal{R} be a set of relations on D.

 $Poly(\Re)$ = set of all operations preserving all relations in \Re .

These are the polymorphisms of \Re .

Let \mathcal{F} be a set of operations on D.

 $Inv(\mathcal{F})$ = set of all relations preserved by all operations in \mathcal{F} .

4 🗗 ▶

williamdemeo@gmail.com

Algebraic C

8 Oct 2016

6/18

Galois Connection...

...from relational to algebraic structures, and back.

$$\begin{array}{cccc} \textbf{Relational} & & \textbf{Algebraic} \\ (D, \mathcal{R}) & \longrightarrow & (D, \mathsf{Poly}(\mathcal{R})) \\ (D, \mathsf{Inv}(\mathcal{F})) & \longleftarrow & (D, \mathcal{F}) \\ \end{array}$$

 $CSP(D, \mathcal{R}) \equiv_{p} CSP(D, Inv(Poly(\mathcal{R})))$

We can use algebra to help classify CSPs!

Algebraic CSP

For an algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$ define $\mathsf{CSP}(\mathbf{A}) = \mathsf{CSP}(A, \mathsf{Inv}(\mathcal{F}))$

Informal algebraic CSP dichotomy conjecture

If $Poly(\mathbf{A})$ is rich, then $CSP(\mathbf{A})$ is tractable.

If $Poly(\mathbf{A})$ is poor, then $CSP(\mathbf{A})$ is \mathbb{NP} -complete.

, ,

williamdemeo@gmail.com Algebraic CSP 8 Oct 2016 7

Algebraic CSP

8 Oct 2016 8

Algebraic CSP

For an algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$ define $\mathsf{CSP}(\mathbf{A}) = \mathsf{CSP}(A, \mathsf{Inv}(\mathcal{F}))$

Informal algebraic CSP dichotomy conjecture

If Poly(A) is rich, then CSP(A) is tractable.

If $Poly(\mathbf{A})$ is poor, then $CSP(\mathbf{A})$ is \mathbb{NP} -complete.

What does it mean to be rich?

williamdemeo@gmail.com

8 Oct 2016

Method 1

8 Oct 2016

Two General Techniques/Algorithms

Method 1

If $\mathsf{Poly}(\mathfrak{R})$ contains a "cube term" then $\mathsf{CSP}(\mathfrak{R}) \in \mathbb{P}$

Examples of cube terms:

$$P(x, y, z) = x - y + z$$

 $M(x, y, z) =$ majority

Algebras with a cube term operation possess "few subpowers."

This is used to prove the algorithm is poly-time.

Two General Techniques for Tractable Algorithms

Two General Techniques/Algorithms

If $\mathsf{Poly}(\mathfrak{R})$ contains a "cube term" then $\mathsf{CSP}(\mathfrak{R}) \in \mathbb{P}$

Method 2

If Poly(\Re) contains WNU terms v(x, y, z) and w(x, y, z, u) satisfying v(y, x, x) = w(y, x, x, x), then $\mathsf{CSP}(\mathcal{R}) \in \mathbb{P}$.

8 Oct 2016 williamdemeo@gmail.com

8 Oct 2016

Two General Techniques for Tractable Algorithms

Current State of Affairs

Method 2

If Poly(\Re) contains WNU terms v(x, y, z) and w(x, y, z, u) satisfying v(y, x, x) = w(y, x, x, x), then $\mathsf{CSP}(\mathcal{R}) \in \mathbb{P}$.

Examples: majority, semilattice

Algebras with these operations are congruence SD-\

The two general techniques do not cover all cases of a WNU term.

Two possible directions:

- 1. Find a completely new algorithm.
- 2. Combine the two existing algorithms.

We describe some progress in the second direction.

A Motivating Example

Let $\mathbf{A} = \langle \{0, 1, 2, 3\}, \cdot \rangle$, have the following Cayley table:

	0	1	2	3
0	0	0	3	2
1	0	1	3	2
2 3	3	3	2	1
3	2	2	1	3

What is an instance of CSP(S(A))?

Contraint relations are subdirect products of subalgebras of A.

The proper nontrivial subuniverses of **A** are $\{0,1\}$ and $\{1,2,3\}$.

Potatoes of a six-variables instance of $CSP(S(\mathbf{A}))$

12 / 18

Subuniverse of Product = Constraint Relation

Each colored line represents a tuple in the relation R

$$\textit{R} \subseteq \textit{A} \times \textit{A} \times \textit{Sq}_3 \times \textit{Sq}_3 \times \textit{S}_2 \times \textit{S}_2$$

williamdemeo@gmail.com

Algebraic CSP

8 Oct 2016 14 / 18

Subuniverse of Product = Constraint Relation

Each colored line represents a tuple in the relation R

$$\textit{R} \subseteq \textit{A} \times \textit{A} \times \textit{Sq}_3 \times \textit{Sq}_3 \times \textit{S}_2 \times \textit{S}_2$$

Question: Does this *R* form a subuniverse?

williamdemeo@gmail.com

Algebraic CSF

8 Oct 2016 14.

Theorem 1

Let \mathbf{A}_i , \mathbf{B}_i be finite algebras in a Taylor variety. Assume

- each A_i is abelian
- each B_i has a sink s_i

Suppose

$$\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_J \times \mathbf{B}_1 \times \cdots \times \mathbf{B}_K$$

Then

$$\operatorname{\mathsf{Proj}}_{1,..,J} R \times \{s_1\} \times \{s_2\} \times \cdots \times \{s_K\} \subseteq R$$

By *Taylor variety* we mean an idempotent variety with a Taylor term.

Theorem 1

Let \mathbf{A}_i , \mathbf{B}_i be finite algebras in a Taylor variety. Assume

- each **A**_i is abelian
- each \mathbf{B}_i has a sink s_i

Suppose

$$\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_J \times \mathbf{B}_1 \times \cdots \times \mathbf{B}_K$$

Then

$$\mathsf{Proj}_{1,...J} R \times \{s_1\} \times \{s_2\} \times \cdots \times \{s_K\} \subseteq R$$

By Taylor variety we mean an idempotent variety with a Taylor term.

 $s \in B$ is called a sink if for all $t \in Clo_k(\mathbf{B})$ and $1 \le j \le k$, if t depends on its j-th argument, then $t(b_1, \ldots, b_{i-1}, s, b_{i+1}, \ldots, b_k) = s$ for all $b_i \in B$.

Theorem 2

Let \mathbf{A}_i , \mathbf{B}_i be finite algebras in a Taylor variety. Assume

- each **A**_i has a cube term operation
- each B_i has a sink s_i

Suppose

$$\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_J \times \mathbf{B}_1 \times \cdots \times \mathbf{B}_K$$

Then

$$\mathsf{Proj}_{1...J} R \times \{s_1\} \times \{s_2\} \times \cdots \times \{s_K\} \subseteq R$$

Theorem 2

Let \mathbf{A}_i , \mathbf{B}_i be finite algebras in a Taylor variety. Assume

- each **A**_i has a cube term operation
- each B_i has a sink s_i

Suppose

$$\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_J \times \mathbf{B}_1 \times \cdots \times \mathbf{B}_K$$

Then

$$\operatorname{\mathsf{Proj}}_{1,...J} R \times \{s_1\} \times \{s_2\} \times \cdots \times \{s_K\} \subseteq R$$

The proof depends on the following result of Barto, Kozik, Stanovsky: a finite idempotent algebra has a cube term iff every one of its subalgebras has a so called transitive term operation.

williamdemeo@gmail.com

8 Oct 2016

16 / 18

williamdemeo@gmail.com

8 Oct 2016

16/18

Application

Corollary

Suppose every algebra in the set A contains either a cube terms or a sink. Then CSP(A) is tractable.

Algorithm:

Restrict the given instance to potatoes with cube terms.

Find a solution to the restricted instance (in poly-time by few subpowers).

If a restricted solution exists, then there is a full solution (by Thm 2).

If no restricted solution exists, then no full solution exists.

Quotient strategy

Start with

$$\mathbf{A}_1 \times \mathbf{A}_2 \times \cdots \times \mathbf{A}_n$$

Choose a tuple of congruence relations

$$\Theta = (\theta_1, \theta_2, \dots, \theta_n) \in \prod \mathsf{Con}\, \mathsf{A}_i$$

so that $A := \{ \mathbf{A}_1/\theta_0, \dots, \mathbf{A}_n/\theta_n \}$ is a "jointly tractable" set of algebras.

That is, CSP(A) is tractable.

Obvious fact: a solution to I is a solution to I/Θ .

For some problems, we have the following converse:

 (\star) a solution to I/Θ can always be extended to a solution to I.

Problem: For what algebras does the *-converse hold?

williamdemeo@gmail.com

Algebraic CSP

8 Oct 2016

17 / 18

williamdemeo@gmail.com

8 Oct 2016