

Année universitaire 2022-2023

Feuille de TD N° 2 Analyses de données : Analyse en Composantes Principales

Exercice : Supposons qu'on a observé le jeu de données suivant :

Sujet/Descripteur	D_1	D_2	D_3	D_4
S_1	-11	-60	110	40
S_2	-12	-62	93	25
S_3	-15	-80	113	39
S_4	-14	-75	94	25
S_5	-14,5	-82	100	30
S_6	-13	-72	102	32
Moyenne:				
Écart-type :				

On note les variables $X_1 = D_1$, $X_2 = D_2$, $X_3 = D_3$ et $X_4 = D_4$.

- 1. Compléter le tableau de données et donner le centre de gravité et l'inertie totale.
- 2. Calculer la distance entre les sujets $(D_1 \text{ et } D_2)$, $(D_1 \text{ et } D_3)$ et $(D_1 \text{ et } D_4)$. Interpréter le résultat.
- 3. Donner la formule de centrage et réduction d'une variable, et donner la matrice centrée réduite Z.
- 4. Caculer la matrice de corrélation.
- 5. interpréter les corrélation entre la varibale X_3 et les autres variables.
- 6. On donne les valeurs propres et les vecteurs propres de R:

$$\lambda_1 = 2.001, \quad \lambda_2 = 1.967, \quad \lambda_3 = 0.032, \quad \lambda_4 = 0.0003$$

et

$$v_{1} = \begin{pmatrix} 0.441933 \\ 0.467633 \\ -0.57415 \\ -0.50633 \end{pmatrix}, v_{2} = \begin{pmatrix} -0.55021 \\ -0.52745 \\ -0.41487 \\ -0.49694 \end{pmatrix},$$

$$v_{3} = \begin{pmatrix} 0.655642 \\ -0.68925 \\ -0.23389 \\ 0.200895 \end{pmatrix}, v_{4} = \begin{pmatrix} -0.2685 \\ 0.167476 \\ -0.66598 \\ 0.675519 \end{pmatrix}$$

7. Compléter le tableau donnant les composantes principales :

Sujet/Descripteur	Y_1	Y_2	Y_3	Y_4
S_1				
S_2				
S_3				
S_4				
S_5				
S_6				

- 8. Calculer l'inertie expliquée par chaque composante principale et les inerties cumulées.
- 9. Combien de composant yes principales on doit choisir pour expliquer au moins 80% d'informations.
- 10. Calculer les corrélations entres les variables initiales et les composantes principales choisies. Et dessiner le cercle de corrélations.