exploratory-data-analysis

February 17, 2022

1 Data Analysis with Python

Estimated time needed: 30 minutes

1.1 Objectives

After completing this lab you will be able to:

• Explore features or charecteristics to predict price of car

Table of Contents

Import Data from Module

Analyzing Individual Feature Patterns using Visualization

Descriptive Statistical Analysis

Basics of Grouping

Correlation and Causation

ANOVA

What are the main characteristics that have the most impact on the car price?

1. Import Data from Module 2

Setup

Import libraries:

```
[]: #install specific version of libraries used in lab
#! mamba install pandas==1.3.3
#! mamba install numpy=1.21.2
#! mamba install scipy=1.7.1-y
#! mamba install seaborn=0.9.0-y
```

```
[]: import pandas as pd import numpy as np
```

Load the data and store it in dataframe df:

This dataset was hosted on IBM Cloud object. Click HERE for free storage.

```
[]: path='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/

→IBMDeveloperSkillsNetwork-DA0101EN-SkillsNetwork/labs/Data%20files/

→automobileEDA.csv'

df = pd.read_csv(path)

df.head()
```

2. Analyzing Individual Feature Patterns Using Visualization

To install Seaborn we use pip, the Python package manager.

Import visualization packages "Matplotlib" and "Seaborn". Don't forget about "%matplotlib inline" to plot in a Jupyter notebook.

```
[]: import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline
```

How to choose the right visualization method?

When visualizing individual variables, it is important to first understand what type of variable you are dealing with. This will help us find the right visualization method for that variable.

```
[]: # list the data types for each column print(df.dtypes)
```

Question #1:

What is the data type of the column "peak-rpm"?

```
[]: # Write your code below and press Shift+Enter to execute
```

```
int64
symboling
normalized-losses
                        int64
make
                       object
                       object
aspiration
num-of-doors
                       object
body-style
                       object
drive-wheels
                       object
engine-location
                       object
wheel-base
                      float64
length
                      float64
width
                      float64
                      float64
height
curb-weight
                        int64
engine-type
                       object
num-of-cylinders
                       object
                        int64
engine-size
fuel-system
                       object
                      float64
bore
                      float64
stroke
```

float64 compression-ratio horsepower float64 peak-rpm float64 city-mpg int64 highway-mpg int64 price float64 city-L/100km float64 ${\tt horsepower-binned}$ object diesel int64 int64 gas

dtype: object peak-rpm
Click here for the solution

float64

For example, we can calculate the correlation between variables of type "int64" or "float64" using the method "corr":

[5]: df.corr()

[5]:		symboling	normalia	zed-losses	wheel-base	length	\
	symboling	1.000000		0.466264	-0.535987	-0.365404	
	normalized-losses	0.466264		1.000000	-0.056661	0.019424	
	wheel-base	-0.535987		-0.056661	1.000000	0.876024	
	length	-0.365404		0.019424	0.876024	1.000000	
	width	-0.242423		0.086802	0.814507	0.857170	
	height	-0.550160		-0.373737	0.590742	0.492063	
	curb-weight	-0.233118		0.099404	0.782097	0.880665	
	engine-size	-0.110581		0.112360	0.572027	0.685025	
	bore	-0.140019		-0.029862	0.493244	0.608971	
	stroke	-0.008245		0.055563	0.158502	0.124139	
	compression-ratio	-0.182196		-0.114713	0.250313	0.159733	
	horsepower	0.075819		0.217299	0.371147	0.579821	
	peak-rpm	0.279740		0.239543	-0.360305	-0.285970	
	city-mpg	-0.035527		-0.225016	-0.470606	-0.665192	
	highway-mpg	0.036233		-0.181877	-0.543304	-0.698142	
	price	-0.082391		0.133999	0.584642	0.690628	
	city-L/100km	0.066171		0.238567	0.476153	0.657373	
	diesel	-0.196735		-0.101546	0.307237	0.211187	
	gas	0.196735		0.101546	-0.307237	-0.211187	
		width	height	curb-weig	ht engine-	size b	ore \
	symboling	-0.242423 -	0.550160	-0.2331	18 -0.110	0581 -0.140	019
	normalized-losses	0.086802 -	0.373737	0.0994	04 0.112	2360 -0.029	862
	wheel-base	0.814507	0.590742	0.7820	97 0.572	2027 0.493	244
	length	0.857170	0.492063	0.8806	65 0.68	5025 0.608	971
	width	1.000000	0.306002	0.8662	01 0.729	9436 0.544	885
	height	0.306002	1.000000	0.3075	81 0.074	4694 0.180	449

```
curb-weight
engine-size
                   0.729436
                             0.074694
                                           0.849072
                                                         1.000000
                                                                   0.572609
bore
                   0.544885
                              0.180449
                                           0.644060
                                                         0.572609
                                                                   1.000000
stroke
                   0.188829 -0.062704
                                           0.167562
                                                         0.209523 -0.055390
compression-ratio
                   0.189867
                              0.259737
                                           0.156433
                                                         0.028889
                                                                   0.001263
horsepower
                   0.615077 -0.087027
                                           0.757976
                                                         0.822676
                                                                   0.566936
                                                        -0.256733 -0.267392
                   -0.245800 -0.309974
peak-rpm
                                          -0.279361
city-mpg
                   -0.633531 -0.049800
                                          -0.749543
                                                        -0.650546 -0.582027
highway-mpg
                  -0.680635 -0.104812
                                          -0.794889
                                                        -0.679571 -0.591309
price
                   0.751265 0.135486
                                           0.834415
                                                         0.872335
                                                                   0.543155
city-L/100km
                   0.673363 0.003811
                                           0.785353
                                                         0.745059
                                                                   0.554610
diesel
                   0.244356 0.281578
                                           0.221046
                                                         0.070779
                                                                   0.054458
gas
                   -0.244356 -0.281578
                                          -0.221046
                                                        -0.070779 -0.054458
                                                 horsepower
                      stroke
                              compression-ratio
                                                              peak-rpm \
symboling
                   -0.008245
                                      -0.182196
                                                    0.075819
                                                              0.279740
                                                    0.217299
normalized-losses
                   0.055563
                                      -0.114713
                                                              0.239543
                                                    0.371147 -0.360305
wheel-base
                   0.158502
                                       0.250313
length
                   0.124139
                                       0.159733
                                                    0.579821 -0.285970
width
                                       0.189867
                                                    0.615077 -0.245800
                   0.188829
height
                   -0.062704
                                       0.259737
                                                   -0.087027 -0.309974
                                                    0.757976 -0.279361
curb-weight
                   0.167562
                                       0.156433
engine-size
                   0.209523
                                       0.028889
                                                   0.822676 -0.256733
bore
                                                   0.566936 -0.267392
                   -0.055390
                                       0.001263
stroke
                                                    0.098462 -0.065713
                   1.000000
                                       0.187923
compression-ratio
                   0.187923
                                       1.000000
                                                   -0.214514 -0.435780
                                      -0.214514
                                                    1.000000 0.107885
horsepower
                   0.098462
                                                    0.107885
                                                             1.000000
peak-rpm
                  -0.065713
                                      -0.435780
city-mpg
                   -0.034696
                                       0.331425
                                                   -0.822214 -0.115413
                   -0.035201
                                       0.268465
                                                   -0.804575 -0.058598
highway-mpg
price
                   0.082310
                                       0.071107
                                                   0.809575 -0.101616
city-L/100km
                   0.037300
                                      -0.299372
                                                    0.889488 0.115830
                                                   -0.169053 -0.475812
diesel
                   0.241303
                                       0.985231
gas
                   -0.241303
                                      -0.985231
                                                    0.169053
                                                              0.475812
                   city-mpg
                              highway-mpg
                                              price
                                                      city-L/100km
                                                                      diesel \
                  -0.035527
                                 0.036233 -0.082391
                                                          0.066171 -0.196735
symboling
normalized-losses -0.225016
                                           0.133999
                                                          0.238567 -0.101546
                                -0.181877
wheel-base
                   -0.470606
                                -0.543304
                                           0.584642
                                                          0.476153 0.307237
length
                                           0.690628
                  -0.665192
                                -0.698142
                                                          0.657373 0.211187
width
                   -0.633531
                                -0.680635
                                           0.751265
                                                          0.673363
                                                                   0.244356
height
                  -0.049800
                                -0.104812
                                           0.135486
                                                          0.003811 0.281578
                                           0.834415
curb-weight
                                -0.794889
                                                          0.785353 0.221046
                  -0.749543
engine-size
                  -0.650546
                                -0.679571
                                           0.872335
                                                          0.745059 0.070779
bore
                  -0.582027
                                -0.591309
                                           0.543155
                                                          0.554610 0.054458
stroke
                   -0.034696
                                -0.035201
                                           0.082310
                                                          0.037300
                                                                    0.241303
compression-ratio
                   0.331425
                                 0.268465
                                           0.071107
                                                         -0.299372
                                                                    0.985231
```

0.866201

0.307581

1.000000

0.849072

0.644060

```
horsepower
                  -0.822214
                                -0.804575 0.809575
                                                          0.889488 -0.169053
peak-rpm
                  -0.115413
                                -0.058598 -0.101616
                                                          0.115830 -0.475812
city-mpg
                   1.000000
                                 0.972044 -0.686571
                                                         -0.949713 0.265676
highway-mpg
                   0.972044
                                 1.000000 -0.704692
                                                        -0.930028 0.198690
                  -0.686571
                                -0.704692 1.000000
                                                          0.789898 0.110326
price
city-L/100km
                  -0.949713
                                -0.930028 0.789898
                                                          1.000000 -0.241282
diesel
                                                         -0.241282 1.000000
                   0.265676
                                 0.198690 0.110326
                                                          0.241282 -1.000000
gas
                  -0.265676
                                -0.198690 -0.110326
                        gas
symboling
                   0.196735
normalized-losses 0.101546
wheel-base
                  -0.307237
length
                  -0.211187
width
                  -0.244356
height
                  -0.281578
curb-weight
                  -0.221046
engine-size
                  -0.070779
bore
                  -0.054458
stroke
                  -0.241303
compression-ratio -0.985231
horsepower
                   0.169053
peak-rpm
                   0.475812
city-mpg
                  -0.265676
highway-mpg
                  -0.198690
price
                  -0.110326
                   0.241282
city-L/100km
diesel
                  -1.000000
gas
                   1.000000
```

The diagonal elements are always one; we will study correlation more precisely Pearson correlation in-depth at the end of the notebook.

Question #2:

Find the correlation between the following columns: bore, stroke, compression-ratio, and horse-power.

 $\label{thm:columns} \begin{tabular}{ll} Hint: & if you would like to select those columns, use the following syntax: $$df[['bore', 'stroke', 'compression-ratio', 'horsepower']]$ \\ \end{tabular}$

```
[10]: # Write your code below and press Shift+Enter to execute df[['bore', 'stroke', 'compression-ratio', 'horsepower']].corr()
```

```
[10]:
                             bore
                                     stroke
                                              compression-ratio
                                                                 horsepower
                         1.000000 -0.055390
                                                                   0.566936
      bore
                                                       0.001263
                        -0.055390 1.000000
                                                       0.187923
                                                                   0.098462
      stroke
                                                                  -0.214514
      compression-ratio 0.001263 0.187923
                                                       1.000000
      horsepower
                         0.566936 0.098462
                                                      -0.214514
                                                                   1.000000
```

Click here for the solution

```
df[['bore', 'stroke', 'compression-ratio', 'horsepower']].corr()
```

Continuous Numerical Variables:

Continuous numerical variables are variables that may contain any value within some range. They can be of type "int64" or "float64". A great way to visualize these variables is by using scatterplots with fitted lines.

In order to start understanding the (linear) relationship between an individual variable and the price, we can use "regplot" which plots the scatterplot plus the fitted regression line for the data.

Let's see several examples of different linear relationships:

Positive Linear Relationship

Let's find the scatterplot of "engine-size" and "price".

```
[]: import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline
```

```
[]: # Engine size as potential predictor variable of price
sns.regplot(x="engine-size", y="price", data=df)
plt.ylim(0,)
```

As the engine-size goes up, the price goes up: this indicates a positive direct correlation between these two variables. Engine size seems like a pretty good predictor of price since the regression line is almost a perfect diagonal line.

We can examine the correlation between 'engine-size' and 'price' and see that it's approximately 0.87.

```
[]: df[["engine-size", "price"]].corr()
```

Highway mpg is a potential predictor variable of price. Let's find the scatterplot of "highway-mpg" and "price".

```
[]: sns.regplot(x="highway-mpg", y="price", data=df)
```

As highway-mpg goes up, the price goes down: this indicates an inverse/negative relationship between these two variables. Highway mpg could potentially be a predictor of price.

We can examine the correlation between 'highway-mpg' and 'price' and see it's approximately -0.704.

```
[]: df[['highway-mpg', 'price']].corr()
```

Weak Linear Relationship

Let's see if "peak-rpm" is a predictor variable of "price".

```
[]: sns.regplot(x="peak-rpm", y="price", data=df)
```

Peak rpm does not seem like a good predictor of the price at all since the regression line is close to horizontal. Also, the data points are very scattered and far from the fitted line, showing lots of variability. Therefore, it's not a reliable variable.

We can examine the correlation between 'peak-rpm' and 'price' and see it's approximately -0.101616.

```
[]: df[['peak-rpm','price']].corr()
```

Question 3 a):

Find the correlation between x="stroke" and y="price".

Hint: if you would like to select those columns, use the following syntax: df[["stroke","price"]].

```
[]: # Write your code below and press Shift+Enter to execute df[["stroke","price"]].corr()
```

Click here for the solution

```
#The correlation is 0.0823, the non-diagonal elements of the table.
```

```
df[["stroke","price"]].corr()
```

Question 3 b):

Given the correlation results between "price" and "stroke", do you expect a linear relationship?

Verify your results using the function "regplot()".

```
[]: # Write your code below and press Shift+Enter to execute sns.regplot(x="stroke", y="price", data=df)
```

Click here for the solution

#There is a weak correlation between the variable 'stroke' and 'price.' as such regression wil

#Code:

```
sns.regplot(x="stroke", y="price", data=df)
```

Categorical Variables

These are variables that describe a 'characteristic' of a data unit, and are selected from a small group of categories. The categorical variables can have the type "object" or "int64". A good way to visualize categorical variables is by using boxplots.

Let's look at the relationship between "body-style" and "price".

```
[]: sns.boxplot(x="body-style", y="price", data=df)
```

We see that the distributions of price between the different body-style categories have a significant overlap, so body-style would not be a good predictor of price. Let's examine engine "engine-location" and "price":

```
[]: sns.boxplot(x="engine-location", y="price", data=df)
```

Here we see that the distribution of price between these two engine-location categories, front and rear, are distinct enough to take engine-location as a potential good predictor of price.

Let's examine "drive-wheels" and "price".

```
[]: # drive-wheels sns.boxplot(x="drive-wheels", y="price", data=df)
```

Here we see that the distribution of price between the different drive-wheels categories differs. As such, drive-wheels could potentially be a predictor of price.

3. Descriptive Statistical Analysis

Let's first take a look at the variables by utilizing a description method.

The describe function automatically computes basic statistics for all continuous variables. Any NaN values are automatically skipped in these statistics.

This will show:

the count of that variable

the mean

the standard deviation (std)

the minimum value

the IQR (Interquartile Range: 25%, 50% and 75%)

the maximum value

We can apply the method "describe" as follows:

```
[]: df.describe()
```

The default setting of "describe" skips variables of type object. We can apply the method "describe" on the variables of type 'object' as follows:

```
[]: df.describe(include=['object'])
```

Value Counts

Value counts is a good way of understanding how many units of each characteristic/variable we have. We can apply the "value_counts" method on the column "drive-wheels". Don't forget the method "value_counts" only works on pandas series, not pandas dataframes. As a result, we only include one bracket df['drive-wheels'], not two brackets df[['drive-wheels']].

```
[]: df['drive-wheels'].value_counts()
```

We can convert the series to a dataframe as follows:

```
[]: df['drive-wheels'].value_counts().to_frame()
```

Let's repeat the above steps but save the results to the dataframe "drive_wheels_counts" and rename the column 'drive-wheels' to 'value counts'.

```
[]: drive_wheels_counts = df['drive-wheels'].value_counts().to_frame()
    drive_wheels_counts.rename(columns={'drive-wheels': 'value_counts'},
    →inplace=True)
    drive_wheels_counts
```

Now let's rename the index to 'drive-wheels':

```
[]: drive_wheels_counts.index.name = 'drive-wheels' drive_wheels_counts
```

We can repeat the above process for the variable 'engine-location'.

After examining the value counts of the engine location, we see that engine location would not be a good predictor variable for the price. This is because we only have three cars with a rear engine and 198 with an engine in the front, so this result is skewed. Thus, we are not able to draw any conclusions about the engine location.

4. Basics of Grouping

The "groupby" method groups data by different categories. The data is grouped based on one or several variables, and analysis is performed on the individual groups.

For example, let's group by the variable "drive-wheels". We see that there are 3 different categories of drive wheels.

```
[]: df['drive-wheels'].unique()
```

If we want to know, on average, which type of drive wheel is most valuable, we can group "drive-wheels" and then average them.

We can select the columns 'drive-wheels', 'body-style' and 'price', then assign it to the variable "df_group_one".

```
[]: df_group_one = df[['drive-wheels','body-style','price']]
```

We can then calculate the average price for each of the different categories of data.

```
[]: # grouping results

df_group_one = df_group_one.groupby(['drive-wheels'],as_index=False).mean()

df_group_one
```

From our data, it seems rear-wheel drive vehicles are, on average, the most expensive, while 4-wheel and front-wheel are approximately the same in price.

You can also group by multiple variables. For example, let's group by both 'drive-wheels' and 'body-style'. This groups the dataframe by the unique combination of 'drive-wheels' and 'body-style'. We can store the results in the variable 'grouped' test1'.

```
[]: # grouping results

df_gptest = df[['drive-wheels','body-style','price']]

grouped_test1 = df_gptest.groupby(['drive-wheels','body-style'],as_index=False).

→mean()

grouped_test1
```

This grouped data is much easier to visualize when it is made into a pivot table. A pivot table is like an Excel spreadsheet, with one variable along the column and another along the row. We can convert the dataframe to a pivot table using the method "pivot" to create a pivot table from the groups.

In this case, we will leave the drive-wheels variable as the rows of the table, and pivot body-style to become the columns of the table:

```
[]: grouped_pivot = grouped_test1.pivot(index='drive-wheels',columns='body-style') grouped_pivot
```

Often, we won't have data for some of the pivot cells. We can fill these missing cells with the value 0, but any other value could potentially be used as well. It should be mentioned that missing data is quite a complex subject and is an entire course on its own.

```
[]: grouped_pivot = grouped_pivot.fillna(0) #fill missing values with O grouped_pivot
```

Question 4:

Use the "groupby" function to find the average "price" of each car based on "body-style".

```
[]: # Write your code below and press Shift+Enter to execute

df_gptest2 = df[['body-style','price']]

grouped_test_bodystyle = df_gptest2.groupby(['body-style'],as_index= False).

→mean()

grouped_test_bodystyle
```

Click here for the solution

```
# grouping results
df_gptest2 = df[['body-style','price']]
grouped_test_bodystyle = df_gptest2.groupby(['body-style'],as_index= False).mean()
grouped_test_bodystyle
```

If you did not import "pyplot", let's do it again.

```
[]: import matplotlib.pyplot as plt %matplotlib inline
```

Variables: Drive Wheels and Body Style vs. Price

Let's use a heat map to visualize the relationship between Body Style vs Price.

```
[]: #use the grouped results
plt.pcolor(grouped_pivot, cmap='RdBu')
plt.colorbar()
plt.show()
```

The heatmap plots the target variable (price) proportional to colour with respect to the variables 'drive-wheel' and 'body-style' on the vertical and horizontal axis, respectively. This allows us to visualize how the price is related to 'drive-wheel' and 'body-style'.

The default labels convey no useful information to us. Let's change that:

```
[]: fig, ax = plt.subplots()
    im = ax.pcolor(grouped_pivot, cmap='RdBu')

#label names
row_labels = grouped_pivot.columns.levels[1]
    col_labels = grouped_pivot.index

#move ticks and labels to the center
    ax.set_xticks(np.arange(grouped_pivot.shape[1]) + 0.5, minor=False)
    ax.set_yticks(np.arange(grouped_pivot.shape[0]) + 0.5, minor=False)

#insert labels
    ax.set_xticklabels(row_labels, minor=False)
    ax.set_yticklabels(col_labels, minor=False)

#rotate label if too long
    plt.xticks(rotation=90)

fig.colorbar(im)
    plt.show()
```

Visualization is very important in data science, and Python visualization packages provide great freedom. We will go more in-depth in a separate Python visualizations course.

The main question we want to answer in this module is, "What are the main characteristics which have the most impact on the car price?".

To get a better measure of the important characteristics, we look at the correlation of these variables with the car price. In other words: how is the car price dependent on this variable?

5. Correlation and Causation

Correlation: a measure of the extent of interdependence between variables.

Causation: the relationship between cause and effect between two variables.

It is important to know the difference between these two. Correlation does not imply causation. Determining correlation is much simpler the determining causation as causation may require independent experimentation.

Pearson Correlation

The Pearson Correlation measures the linear dependence between two variables X and Y.

The resulting coefficient is a value between -1 and 1 inclusive, where:

- 1: Perfect positive linear correlation.
- 0: No linear correlation, the two variables most likely do not affect each other.
- -1: Perfect negative linear correlation.

Pearson Correlation is the default method of the function "corr". Like before, we can calculate the Pearson Correlation of the 'int64' or 'float64' variables.

```
[]: df.corr()
```

Sometimes we would like to know the significant of the correlation estimate.

P-value

What is this P-value? The P-value is the probability value that the correlation between these two variables is statistically significant. Normally, we choose a significance level of 0.05, which means that we are 95% confident that the correlation between the variables is significant.

By convention, when the

p-value is < 0.001: we say there is strong evidence that the correlation is significant.

the p-value is < 0.05: there is moderate evidence that the correlation is significant.

the p-value is < 0.1: there is weak evidence that the correlation is significant.

the p-value is > 0.1: there is no evidence that the correlation is significant.

We can obtain this information using "stats" module in the "scipy" library.

```
[ ]: from scipy import stats
```

Wheel-Base vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'wheel-base' and 'price'.

```
[]: pearson_coef, p_value = stats.pearsonr(df['wheel-base'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

→ of P = ", p_value)
```

Conclusion:

Since the p-value is < 0.001, the correlation between wheel-base and price is statistically significant, although the linear relationship isn't extremely strong (~ 0.585).

Horsepower vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'horsepower' and 'price'.

```
[]: pearson_coef, p_value = stats.pearsonr(df['horsepower'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

→of P = ", p_value)
```

Conclusion:

Since the p-value is < 0.001, the correlation between horsepower and price is statistically significant, and the linear relationship is quite strong (~ 0.809 , close to 1).

Length vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'length' and 'price'.

```
[]: pearson_coef, p_value = stats.pearsonr(df['length'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

→of P = ", p_value)
```

Conclusion:

Since the p-value is < 0.001, the correlation between length and price is statistically significant, and the linear relationship is moderately strong (~ 0.691).

Width vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'width' and 'price':

```
[]: pearson_coef, p_value = stats.pearsonr(df['width'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value
→of P =", p_value)
```

Conclusion: Since the p-value is < 0.001, the correlation between width and price is statistically significant, and the linear relationship is quite strong (~ 0.751).

1.1.1 Curb-Weight vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'curb-weight' and 'price':

```
[]: pearson_coef, p_value = stats.pearsonr(df['curb-weight'], df['price'])
print( "The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

→ of P = ", p_value)
```

Conclusion:

Since the p-value is < 0.001, the correlation between curb-weight and price is statistically significant, and the linear relationship is quite strong (~ 0.834).

Engine-Size vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'engine-size' and 'price':

```
[]: pearson_coef, p_value = stats.pearsonr(df['engine-size'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

→of P =", p_value)
```

Conclusion:

Since the p-value is < 0.001, the correlation between engine-size and price is statistically significant, and the linear relationship is very strong (~ 0.872).

Bore vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'bore' and 'price':

```
[]: pearson_coef, p_value = stats.pearsonr(df['bore'], df['price'])

print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

→of P = ", p_value )
```

Conclusion:

Since the p-value is < 0.001, the correlation between bore and price is statistically significant, but the linear relationship is only moderate (~ 0.521).

We can relate the process for each 'city-mpg' and 'highway-mpg':

City-mpg vs. Price

```
[]: pearson_coef, p_value = stats.pearsonr(df['city-mpg'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

→of P = ", p_value)
```

Conclusion:

Since the p-value is < 0.001, the correlation between city-mpg and price is statistically significant, and the coefficient of about -0.687 shows that the relationship is negative and moderately strong.

Highway-mpg vs. Price

```
[]: pearson_coef, p_value = stats.pearsonr(df['highway-mpg'], df['price'])
print( "The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

→ of P = ", p_value )
```

Conclusion: Since the p-value is < 0.001, the correlation between highway-mpg and price is statistically significant, and the coefficient of about -0.705 shows that the relationship is negative and moderately strong.

6. ANOVA

ANOVA: Analysis of Variance

The Analysis of Variance (ANOVA) is a statistical method used to test whether there are significant differences between the means of two or more groups. ANOVA returns two parameters:

F-test score: ANOVA assumes the means of all groups are the same, calculates how much the actual means deviate from the assumption, and reports it as the F-test score. A larger score means there is a larger difference between the means.

P-value: P-value tells how statistically significant our calculated score value is.

If our price variable is strongly correlated with the variable we are analyzing, we expect ANOVA to return a sizeable F-test score and a small p-value.

Drive Wheels

Since ANOVA analyzes the difference between different groups of the same variable, the groupby function will come in handy. Because the ANOVA algorithm averages the data automatically, we do not need to take the average before hand.

To see if different types of 'drive-wheels' impact 'price', we group the data.

```
[]: grouped_test2=df_gptest[['drive-wheels', 'price']].groupby(['drive-wheels']) grouped_test2.head(2)
```

```
[]: df_gptest
```

We can obtain the values of the method group using the method "get group".

```
[]: grouped_test2.get_group('4wd')['price']
```

We can use the function 'f_oneway' in the module 'stats' to obtain the F-test score and P-value.

This is a great result with a large F-test score showing a strong correlation and a P-value of almost 0 implying almost certain statistical significance. But does this mean all three tested groups are all this highly correlated?

Let's examine them separately.

fwd and rwd

```
[]: f_val, p_val = stats.f_oneway(grouped_test2.get_group('fwd')['price'], ___

→grouped_test2.get_group('rwd')['price'])

print( "ANOVA results: F=", f_val, ", P =", p_val )
```

Let's examine the other groups.

4wd and rwd

4wd and fwd

```
[]: f_val, p_val = stats.f_oneway(grouped_test2.get_group('4wd')['price'],

⇒grouped_test2.get_group('fwd')['price'])

print("ANOVA results: F=", f_val, ", P =", p_val)
```

Conclusion: Important Variables

We now have a better idea of what our data looks like and which variables are important to take into account when predicting the car price. We have narrowed it down to the following variables:

Continuous numerical variables:

Length

Width

Curb-weight

Engine-size

Horsepower

City-mpg

Highway-mpg

Wheel-base

Bore

Categorical variables:

Drive-wheels

As we now move into building machine learning models to automate our analysis, feeding the model with variables that meaningfully affect our target variable will improve our model's prediction performance.

1.1.2 Thank you for completing this lab!

1.2 Author

Joseph Santarcangelo

1.2.1 Other Contributors

Mahdi Noorian PhD

Bahare Talayian

Eric Xiao

Steven Dong

Parizad

Hima Vasudevan

Fiorella Wenver

Yi Yao.

1.3 Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2020-10-30	2.1	Lakshmi	changed URL of csv
2020-08-27	2.0	Lavanya	Moved lab to course repo in GitLab

##

 $\ensuremath{{}^{\odot}}$ IBM Corporation 2020. All rights reserved.