PRÁCTICA 4

Diagrama de Bode

Valores de los elementos usados en el circuito:

R = 10 K Ω C = 10 nF Frecuencias de corte: ω_0 = 1 / R * C = 10000 rad/s f_0 = ω_0 / 2 * π = 1591,549431Hz

Montamos el circuito:

Datos experimentales:

Frecuencia	log(Frecuencia)	ω	Bode Fase	Bode	Bode
				Amplitud	Teórico
10	1	62,83184	-0,35999526	-0,00017145	-0,00017145
15,84893192	1,2	99,58175549	-0,57054269	-0,00043065	-0,00043065
25,11886432	1,4	157,8264464	-0,90420404	-0,00108166	-0,00108166
39,81071706	1,6	250,1380604	-1,43288702	-0,00271649	-0,00271649
63,09573445	1,8	396,4421092	-2,27025758	-0,00682029	-0,00682029
100	2	628,3184	-3,59527378	-0,0171115	-0,0171115
158,4893192	2,2	995,8175549	-5,68686695	-0,04285481	-0,04285479
251,1886432	2,4	1578,264464	-8,96881083	-0,10685391	-0,10685386
398,1071706	2,6	2501,380604	-14,043691	-0,26357172	-0,26357162
630,9573445	2,8	3964,421092	-21,6254637	-0,63395819	-0,63395794
1000	3	6283,184	-32,1419076	-1,44507012	-1,4450696
1584,893192	3,2	9958,175549	-44,8799368	-2,99213678	-2,99213588
2511,886432	3,4	15782,64464	-57,641357	-5,42939866	-5,42939737
3981,071706	3,6	25013,80604	-68,2095002	-8,60751589	-8,60751433
6309,573445	3,8	39644,21092	-75,8428342	-12,2314902	-12,2314885
10000	4	62831,84	-80,9569389	-16,0722353	-16,0722335
15848,93192	4,2	99581,75549	-84,265583	-20,007173	-20,0071712
25118,86432	4,4	157826,4464	-86,3745443	-23,9809976	-23,9809958
39810,71706	4,6	250138,0604	-87,7106534	-27,9705329	-27,9705311
63095,73445	4,8	396442,1092	-88,5550571	-31,9663598	-31,966358
100000	5	628318,4	-89,0881863	-35,9646973	-35,9646955
158489,3192	5,2	995817,5549	-89,4246552	-39,9640353	-39,9640335
251188,6432	5,4	1578264,464	-89,6369747	-43,9637717	-43,9637699
398107,1706	5,6	2501380,604	-89,7709446	-47,9636668	-47,963665
630957,3445	5,8	3964421,092	-89,8554754	-51,963625	-51,9636232
1000000	6	6283184	-89,908811	-55,9636084	-55,9636066

Otros datos experimentales:

Frecuencia (Hz)	ω	Vi (volt)	Vo (volt)
20	125,6	9,5	9,4
40	251,2	9,5	9,4
70	439,6	9,5	9,4
100	628	9,5	9,4
200	1256	9,5	9,4
400	2512	9,5	9,2
700	4396	9,5	8,6
1000	6280	9,5	8,1
2000	12560	9,5	6,1
4000	25120	9,5	3,5
7000	43960	9,5	2,16
10000	62800	9,5	1,53
20000	125600	9,5	0,78
40000	251200	9,5	0,42
70000	439600	9,5	0,225
100000	628000	9,5	0,161
200000	1256000	9,5	0,083
500000	3140000	9,5	0,04

Demuestra teóricamente que el valor en decibelios del módulo de la función de transferencia para la frecuencia de corte es -3 dB. Demuestra asimismo que la tensión pico a pico de salida es 0.7 veces la tensión pico a pico de la entrada para la misma frecuencia.

Sabemos que:

$$T(\omega) = 1 / (1 + (\omega RC)^2)^0.5$$

 $\omega_0 = 1 / R * C$

Por tanto, si calculamos la función de transferencia para ω_0 obtenemos que:

$$T(\omega_0) = 1 / (2)^0.5 \approx 0.7$$

De este modo, tenemos que, para ω_0 , Vo = 0,7*Vi

Así, si calculamos:

$$20log_{10}(0.7) = -3dB$$

Representación gráfica del Diagrama de Bode

En la práctica 3 se introducía una señal cuadrada y veíamos en la salida una señal típica de carga y descarga del condensador. En esta práctica introducimos EN EL MISMO CIRCUITO señales de entrada de tipo seno ¿de qué tipo son las señales de salida que se observan en la práctica? ¿Por qué en la práctica 3 no veíamos que la salida era otra señal cuadrada? Razona tu respuesta.

Las señales de salida son, al igual que las de entrada, de tipo senoidal.

En la práctica 3 no veíamos que la salida también era cuadrada debido a que un condensador es incapaz de cargarse de forma inmediata y por tanto la señal de salida no puede ser cuadrada.