REAL ANALYSIS: HOMEWORK SET 1 DUE WED. SEP. 19

Exercise 1. Show that if $\mathcal{M}_{\alpha}, \alpha \in I$ is a collection of σ -algebras then the intersection $\mathcal{M} = \bigcap_{\alpha \in I} \mathcal{M}_{\alpha}$ is also a σ -algebra.

Exercise 2. Let \mathcal{A} be an algebra. Show that \mathcal{A} is a σ -algebra if and only if for any $\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{A}$ with $E_j \subseteq E_{j+1}$ also $\bigcup_j E_j \in \mathcal{A}$ (that is, \mathcal{A} is closed under countable increasing unions).

Exercise 3. Let μ denote a finitely additive measure on a σ -algebra \mathcal{M} . Show that μ is a measure if and only if

$$\mu(\bigcup_{j} E_{j}) = \lim_{j \to \infty} \mu(E_{j}),$$

for any countable nested collections $E_1 \subseteq E_2 \subseteq \ldots$ in \mathcal{M} .

Exercise 4. Let μ^* denote an outer measure on X and $\{A_j\}_{j=1}^{\infty}$ a sequence of disjoint μ^* -measurable sets. Show that for any $E \subseteq X$,

$$\mu^*(E \cap \bigcup_j A_j) = \sum_j \mu^*(E \cap A_j).$$

Exercise 5. In this exercise we will show that we can't replace the countable covers in the construction of an outer measure by a finite cover. Define the outer Jordan content of a set $A \subseteq \mathbb{R}$ as

$$J^*(A) = \inf\{\sum_{j=1}^N |I_j| : N \in \mathbb{N}, \ A \subseteq \bigcup_j I_j\}.$$

where each $I_j = (a_j, b_j)$ is an open interval, and $|I_j| = b_j - a_j$ is the length of the interval.

- Show that $J^*(A) = J^*(\overline{A})$ where \overline{A} is the closure of A
- Give an example of a countable set $A \subset [0,1]$ with $J^*(A) = 1$.
- Conclude that J^* is not countably sub-additive

Exercise 6. Let $\mathbb{B}_{\mathbb{R}}$ denote the Borel σ -algebra on \mathbb{R} (that is, the algebra generated by open sets).

- Show that any open set $\mathcal{O} \subseteq \mathbb{R}$ can be written as a disjoint union of countably many open intervals.
- Show that $\mathbb{B}_{\mathbb{R}}$ is generated by the set \mathcal{E}_1 of open intervals.
- ullet Show that $\mathbb{B}_{\mathbb{R}}$ is generated by the set \mathcal{E}_2 of closed intervals.

ullet Show that $\mathbb{B}_{\mathbb{R}}$ is generated by the set \mathcal{E}_3 of open rays

$$\mathcal{E}_3 = \{(a, \infty) | a \in \mathbb{R}\}.$$

Exercise 7. Let μ^* denote the outer measure on \mathbb{R} generated by the length function on open intervals, that is,

$$\mu^*(A) = \inf\{\sum_{j=1}^{\infty} |I_j| : A \subseteq \bigcup_j I_j\}.$$

- Show that any open ray (a, ∞) is μ^* -measurable.
- Conclude that any Borel set is μ^* -measurable.
- Show that a set $A \subseteq \mathbb{R}$ is μ^* -measurable if and only if for any $\epsilon > 0$ there is an open set $\mathcal{O} \supseteq A$ with $\mu^*(\mathcal{O} \setminus A) < \epsilon$.