Department of Physics "E. Fermi" University of Pisa

Title Subtitle

Dario Maglio Link to GitHub cafasso.dario@gmail.com

October 15, 2022

Contents

Introduction to Quantum Gravity

Page and Wootters framework

Example section

Conclusion

References

Introduction to Quantum Gravity The role of time

So, which are the underlying structures in our fundamental theories?

Introduction to Quantum Gravity The role of time

So, which are the underlying structures in our fundamental theories?

- ► In General Relativity, space-time has a differential manifold structure determined by the energy distribution of the fields lying on it, via the Einstein Equation.
- ▶ In Quantum Mechanics, the evolution of a system in relation to a laboratory time, i.e. with time as a classical parameter, is governed by its Hamiltonian via the Schrödinger Equation.

Introduction to Quantum Gravity The role of time

So, which are the underlying structures in our fundamental theories?

- ► In General Relativity, space-time has a differential manifold structure determined by the energy distribution of the fields lying on it, via the Einstein Equation.
- ▶ In Quantum Mechanics, the evolution of a system in relation to a laboratory time, i.e. with time as a classical parameter, is governed by its Hamiltonian via the Schrödinger Equation.

Introduction to Quantum Gravity

The role of time

So, which are the underlying structures in our fundamental theories?

- ► In General Relativity, space-time has a differential manifold structure determined by the energy distribution of the fields lying on it, via the Einstein Equation.
- ► In Quantum Mechanics, the evolution of a system in relation to a laboratory time, i.e. with time as a classical parameter, is governed by its Hamiltonian via the Schrödinger Equation.

In both the cases, **we ignore the fact that** clocks measuring time are physical systems and, for precision measures, **they're quantum systems!**

How can we take in account that?

As firstly described by Page and Wootters [1], and then further formalized by Giovannetti and Maccone [2], we may think at the clock as part of the quantum system, with its own Hamiltonian, but subject to a global constraint in the form of a Wheeler-DeWitt Equation as

$$\hat{C} |\Psi\rangle = 0$$
 with $\hat{C} = \hat{H}_T \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S$ (1)

EM shower simulator

Physics and reasons for our work

EM showers develops through bremsstrahlung and pair production processes. Main physical paramaters:

- $ightharpoonup X_0$ = radiation lenght;
- $ightharpoonup \lambda_{\gamma}$ = photon absorption lenght;
- $ightharpoonup R_M = rac{E_S}{E_c} X_0;$

Once installed, it can be used typing:

from bash

\$ simulate-EM-shower -f 10.

from Python

>>> import em_shower_simulator as em

>>> em.simulate([10., 1.],
verbose=0)

D. Maglio | UniPi | Small title

SDE and Fokker-Planck Equation

Forward Fokker-Planck

Equation ?? is more correctly expressed as a stochastic differential equation. Switching to several dimensions, the motion of the particle is described by

$$dq_i = -f_i(q)dt + g_{ij}(q)d\omega_j$$
 (2)

The SDE above is associated to the Fokker-Planck Equation

$$\partial_t P(q, t|q_0, t_0) = \hat{\mathcal{L}} P(q, t|q_0, t_0)$$
(3)

in which $\hat{\mathcal{L}}$ is the differential operator defined as

$$\hat{\mathcal{L}} \equiv \sum_{i} \partial_{q_i} f_i(q) + \frac{1}{2} \sum_{i,j} \partial_{q_i} \partial_{q_j} [g(q)g^{\mathsf{T}}(q)]_{ij}$$
 (4)

The general idea is that, once the solution to the equation 3 is known, the statistical properties of the process are completely defined.

Cfr. section 4.3 of [3]

Conclusion

What we achieved:

something

Conclusion

What we achieved:

something

What we learned:

something else

Conclusion

What we achieved:

something

▶ In the end!

What we learned:

something else

References I

[1] Don N. Page and William K. Wootters.

Evolution without evolution: Dynamics described by stationary observables.

Phys. Rev. D, 27:2885-2892, Jun 1983.

[2] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum time.

Phys. Rev. D, 92:045033, Aug 2015.

Phys. Rev. D, 92:045033, Aug 2015.

[3] Esteban Castro-Ruiz, Flaminia Giacomini, A. Belenchia, and Časlav Brukner.

Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems.

Nature Commun., 11(1):2672, 2020.

Thank you for your attention!