

TOWARDS OPTIMAL TRANSPORT WITH GLOBAL INVARIANCES

David Alvarez-Melis, Stefanie Jegelka & Tommi S. Jaakkola | MIT CSAIL

Summary

- A generalization of the discrete optimal transport problem that allows for global geometric invariances to be encoded
- Solved through alternating minimization. Under simple conditions, problem simplifies drastically
- Recovers ℓ_2 -Gromov-Wasserstein as particular case
- Application to unsupervised word translation yields SOTAlevel performance at a fraction of the computational cost

Motivation

 Many problems in machine learning require correspondences between shapes/collections/point-clouds

• Invariances common, especially on learnt representations

• Example: word embeddings across languages. Can we translate without supervision?

Previous work: parametrize transformation through complex map (e.g., Neural Net; Conneau et al. 2018)

Transporting with Global Geometric Invariances

- Suppose $\exists f : \mathcal{Y} \to \mathcal{Y}$ s.t. $\forall \mathbf{x} \in \mathcal{X}, \exists \mathbf{y} \in \mathcal{Y}$ s.t. $\mathbf{x} \approx f(\mathbf{y})$
- We know invariance class \mathcal{F} , but not actual $f \in \mathcal{F}$
- Goal: find optimal coupling and global transform: min $\min \langle \Gamma, C(\mathbf{X}, f(\mathbf{Y})) \rangle$

 $\Gamma \in \Pi(\mathbf{a}, \mathbf{b})$ $f \in \mathcal{F}$ • We consider invariances classes of the form:

 $\mathcal{F}_p \triangleq \left\{ \mathbf{P} \in \mathbb{R}^{d \times d} \mid ||\mathbf{P}||_p \le k_p \right\} \quad \text{Schatten p-norm} \\ ||\mathbf{P}||_p = ||\sigma(\mathbf{P})||_p$

LEMMA [THE OBJECTIVE SIMPLIFIES]

For the euclidean ℓ_2 cost, if either of these holds: (I) P is angle preserving

(II) Y is **b**-whitened

Then, the problem is equivalent to:

 $\max \langle \mathbf{X} \Gamma \mathbf{Y}^{\mathsf{T}}, \mathbf{P} \rangle$ $\Gamma \in \Pi(\mathbf{a}, \mathbf{b}) \quad f \in \mathcal{F}$ \mathcal{F} -Invariant OT problem Generalized Optimal Transport Procrustes

LEMMA [INNER PROBLEM HAS CLOSED-FORM SOL.] Let $\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}$ be SVD decomposition of $\mathbf{X}\boldsymbol{\Gamma}\mathbf{Y}^{\mathsf{T}}$ and let **s** be such that $\|\mathbf{s}\|_p \leq k$ and $\mathbf{s}^{\mathsf{T}}\sigma = k\|\sigma\|_q$. Then:

 $arg max \langle X\Gamma Y^{\mathsf{T}}, P \rangle = U diag(s) V^{\mathsf{T}}$ $f \in \mathcal{F}_p$

Classic OT

The case $p = \infty$

 Invariance to orthogonal transformations $\max \max \langle \mathbf{X} \Gamma \mathbf{Y}^{\mathsf{T}}, \mathbf{P} \rangle = \max \|\mathbf{X} \Gamma \mathbf{Y}^{\mathsf{T}}\|_{*}$ $\Gamma \in \Pi(\mathbf{a}, \mathbf{b}) \ f \in \mathcal{F}_{\infty}$ $\Gamma \in \Pi(a,b)$

Optimization

- The problem is **not jointly concave**. Can solve by alternating optimization, but sensitive to initialization.
- Entropy regularization (Cuturi, 2013) allows efficient solution of outer problem + controls non-concavity
- Annealing regularization makes algorithm robust to initialization!

Background

Discrete Optimal Transport

min $\langle \Gamma, C(\mathbf{X}, \mathbf{Y}) \rangle$

- ... but requires spaces be globally aligned!

Orthogonal Procrustes Problem

 Given known correspondences, find best rigid (orthogonal) mapping between them:

$$\min_{\mathbf{P} \in \mathfrak{D}(n)} \|\mathbf{X} - \mathbf{PY}\|_F^2$$

- Closed-from solution in terms of SVD of XY¹
- Easily generalized to other norms (Jaggi, 2013)

Synthetic

- Known latent transformation
- S-shape point cloud in \mathbb{R}^3
- Random transform from \mathcal{F}_2 or \mathcal{F}_∞
- Two metrics of interest:
 - Recovery of F
 - Accuracy of matching points

 TLDR: Better recovery if optimizing over correct invariance class.

Experiments

- FastText word embeddings, 6 language pairs
- Invariance: orthogonal transforms
- Evaluation: translation accuracy @1,5,10

Translation Accuracy

ADV + CSLS + REFINEGromov-Wasserstein Self-Learn + Csls None ℓ_{∞} -InvarOt + Csls None 81.3 81.8 82.9 81.6 73.8 71.1 77.7 77.7 41.7 55.4

En-Fr

Schatten-Norm Invariances

Invariance classes are functions of bounded Schatten norm:

- Modeling appeal. Clear interpretation:
- p=1: sparse spectra (projections) [Nuclear norm]
- p=2: radial spectra [Frobenius Norm]
- $p = \infty$: uniform spectra (orthogonal) [Spectral norm]
- Algebraic + Computational convenience:
 - Unitary invariance
 - Submultiplicative
 - Easy characterization via duality

Connection to Gromov-Wasserstein

• Take p = 2 (Frobenius norm invariance)

$$\mathcal{F}_2 = \left\{ \mathbf{P} \in \mathbb{R}^{d \times d} \mid \|\mathbf{P}\|_F \le \sqrt{d} \right\}$$

The problem becomes:

 $\max_{\Gamma \in \Pi(\mathbf{a}, \mathbf{b})} \max_{f \in \mathcal{F}_2} \langle \mathbf{X} \Gamma \mathbf{Y}^{\mathsf{T}}, \mathbf{P} \rangle = \sqrt{d} \max_{\Gamma \in \Pi(\mathbf{a}, \mathbf{b})} \| \mathbf{X} \Gamma \mathbf{Y}^{\mathsf{T}} \|_F$

LEMMA

This is equivalent to computing the Gromov-Wasserstein distance (Memoli, 2011):

$$\min_{\Pi(\mathbf{a},\mathbf{b})} \sum_{i,j,k,l} L(\mathbf{C}_{ik}^x, \mathbf{C}_{jl}^y) \Gamma_{ij} \Gamma_{kl}$$

where \mathbb{C}^x , \mathbb{C}^y are similarity matrices in the ℓ_2 metric, and L is the ℓ_2 loss.

Future Work

- Relaxing assumptions requires inner optimization too, solvable with Frank-Wolfe
- Alternative optimization via level-set methods
- Dual OT view of the problem
- Applications with non-orthogonal invariances

Key References

- Conneau et al. "Word Translation Without Parallel Data", ICLR 2018.
- (2) Cuturi, M. "Sinkhorn distances: Lightspeed computation of optimal transport", NIPS 2014
- (3) Jaggi, M. "Revisiting Frank-Wolfe: Projection-free sparse convex optimization", ICML 2013.
- (4) Memoli, F. "Gromov-Wasserstein distances and the metric approach to object matching", FCM 2011.