

BPP10550(1) 三相全桥驱动模块

李先生: 18279005901 微信同号

特性

- 內置6个500V Rds(on)=1.4Ω(Max)快恢 复 MOSFET
- ▶ 内置高压栅极驱动(HVIC),单电源供 电,包含欠压保护(UVLO)以及 HVIC 温度感测功能(BPP10550)
- ▶ 内置自举二极管 (Bootstrap Diode), 简 化系统设计
- ▶ 高电平有效, 3.3/5V 施密特触发器输入
- ▶ 优化并采用了低电磁干扰设计
- ➤ 绝缘级别 1500V_{rms}/min

功能简介

BPP10550(1)作为新一代的三相电机驱动模块,主要为小功率电机驱动应用提供高效可靠的逆变器解决方案。该模块内置的栅极驱动(HVIC)基于智能驱动技术,采用优化的栅级电阻选项提升 EMI 性能和改善功耗,同时提供欠压保护(UVLO)和温度感测(TS)功能(BPP10550)。内置 6个快恢复MOSFET和3个自举二极管(BSD)简化了 PCB 设计。每一相独立的负直流端子,支持各种保护机制和控制算法。

应用范围

风扇类等小功率三相电机驱动

订购信息

器件	封装形式	包装	数量
BPP10550(1)D	DIP-23	料管	15
BPP10550(1)DS	SOP-23	料管	15

目录

特性	1
应用范围	1
订购信息	
功能简介	
系统框图	
管脚说明	5
最大额定值	
推荐工作条件	
电气特性	
功能描述	8
典型应用	12
封装外形 <u>封装外形</u>	

图 1 管脚定义和系统框图	4
图 2 内置自举二极管特性	
图 3 开关特性及 RBSOA 测试电路(低侧)	g
图 4 开关时间定义	g
图 5 欠压保护时序图(低侧)	10
图 6 欠压保护时序图(高侧)	
图 7 壳温 T _C 检测点	11
图 8 V _{TS} 的温度曲线图	11
图 9 典型应用示意图 (BPP10550)	
表 1 管脚说明	
表 2 最大额定值	
表 3 推荐工作范围	
表 4 电气特性	
表 5 工作	,

系统框图

图 1 管脚定义和系统框图

管脚说明

表1管脚说明

管脚	名称	功能	
1	COM	IC 公共地	
2	VBU	U相位高侧驱动供电电源	
3	VCCU	U相位低侧驱动供电电源	
4	INUH	U相位高侧信号输入	
5	INUL	U相位低侧信号输入	
6	N.C	无连接	
7	VBV	V相位高侧驱动供电电源	
8	VCCV	V相位低侧驱动供电电源	
9	INVH	V相位高侧信号输入	
10	INVL	V相位低侧信号输入	
11	VTS	HVIC 温度检测输出(BPP10550)	
12	VBW	W相位高侧驱动供电电源	
13	VCCW	W相位低侧驱动供电电源	
14	INWH	W相位高侧信号输入	
15	INWL	W相位低侧信号输入	
16	N.C	无连接	
17	P	直流正端输入	
18	U,VSU	U相位输出及U相位高侧驱动浮动地	
19	NU	U相位直流负端	
20	NV	V相位直流负端	
21	V,VSV	V相位输出及V相位高侧驱动浮动地	
22	NW	W相位直流负端	
23	W,VSW	W相位输出及W相位高侧驱动浮动地	

最大额定值

表 2 最大额定值

	符号	参数	条件	范围	单位
	V _{DSS}	单个 MOSFET 的漏源电压		500	V
逆	^[1] I _{D25}	单个 MOSFET 漏极连续电流	Tc=25 °C	2	A
逆变器模块	$^{[1]}I_{D80}$	单个 MOSFET 漏极连续电流	Tc=80 °C	1.5	A
块	[1]I _{DP}	单个 MOSFET 漏极峰值电流	Tc=25 °C, PW<100μs	5.2	A
	[1] P D	最大功率耗散	Tc=25 °C,单 MOSFET	14	W
栅	Vcc	控制电源电压	VCC 和 COM 之间	20	V
极驱	Was 高侧电源电压 V		VB 和 VS 之间	20	V
动			VIN 和 COM 之间	-0.3~VCC+0.3	V
自	V _{RRMB}	最大反向连续电压	.	600	V
自举二极管	$^{[1]}I_{FB}$	正向导通电流	Tc=25 °C	0.5	A
管	$^{[1]}I_{FPB}$	正向导通电流 (峰值)	Tc=25 °C, PW=1ms	1.5	A
	[2]R ₀ JC	结壳热阻	单个 MOSFET 处于工 作条件下	8.6	°C/W
系统	TJ	工作结温范围		-40~150	°C
统	Tstg	储存温度		-40~125	°C
	Viso	绝缘电压	60Hz,正弦,交流1分钟,引脚与散热片之间	1500	Vrms

备注1:表征计算值或者设计值。

备注 2: 壳温 Tc 的测试点,请参考图 7。

推荐工作条件

表 3 推荐工作范围

符号	参数	条件	最小	典型	最大	单
			值	值	值	位
V_{PN}	供电电压	端口P和N之间	-	300	400	V
V_{CC}	控制电源电压	端口 VCC 和 COM 之间	13.5	15.0	16.5	V
V_{BS}	高侧电源电压	端口 VB 和 VS 之间	13.5	15.0	16.5	V
V _{IN(ON)}	输入开启电压	端口 V _{IN} 和 COM 之间	3.0	-	VCC	V
V _{IN(OFF)}	输入关闭电压		0	-	0.6	V
t _{dead}	防止桥臂直通的 死区时间	VCC 和 VBS=13.5~16.5V, T _J ≤150°C	1	1	-	μs
f _{PWM}	PWM 开关频率	T _J ≤150 °C	. (-)	15	-	kHz

电气特性

表 4 电气特性

(除非特别说明, 否则 T_a=25°C, V_{CC}=V_{BS}=15V。)

特性		符号	测试条件		最小值	典 型 值	最大值	单位
	漏极-源极击穿电压	BV_{DSS}	$V_{IN}=0V, I_D=1 \text{mA}^{[}$	3]	500	-	-	V
	零栅压下漏极漏电 流	I_{DSS}	$V_{IN} = 0V, V_{DS} = 500$)V	-	-	1	mA
) \(\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2	静态导通电阻	R _{DS(ON)}	$V_{IN} = 5V$, $I_D = 1.2A$	4	-	1.0	1.4	Ω
逆变部分 (除非特	漏源二极管的正向 导通电压	VSD	$V_{IN} = 0V$, $I_D = -1.2$	A	-	-	1.4	V
别说明,特		ton			-	850	-	ns
指单个 MOSFET)	开关时间	toff	V_{PN} =300V, V_{CC} =V	-	400	-	ns	
WIOSFE1)		t_{rr}	V _{IN} =0~5V,电感分	-	100	-	ns	
		Eon	'IN 0 0 1, 12.1.7	-	50	-	μJ	
		E _{OFF}			-	4	-	μJ
	反向偏置安全工作 区	RBSOA	$ \begin{array}{c} V_{PN}\!\!=\!\!400V,\!V_{CC}\!\!=\!\!V_{BS}\!\!=\!\!15V,\!I_{D}\!\!=\!\!I_{DP},\\ V_{DS}\!\!=\!\!BV_{DSS},\!T_{J}\!\!=\!\!150~^{\circ}C^{[5]} \end{array} $			全直角		
7		I_{QCC}	V _{IN} =0V	V _{CC} 和 COM 之	-	160	-	μΑ
控制部分 (除非特 别说明,特 指单个 HVIC)	VCC电流	I_{PCC}	V _{IN} =20Khz pulse, 50%duty	间	-	760	-	μΑ
	VBS电流	I_{QBS}	V _{IN} =0V	V _{BU} -U, V _{BV} -V,	-	56	-	μΑ
		I _{PBS}	V _{IN} =20Khz pulse, 50%duty	V _{BW} -W 之间	-	660	-	μА
	任侧是工程站(图 5)	UV_{CCD}			7.4	8.3	9.4	V
	低侧欠压保护(图5)	UV _{CCR}			8.0	9.0	9.8	V

特性		符号	测试条件		最小值	典 型 值	最 大 值	单位
克伽友氏归牧(网八)		UV_{BSD}			7.4	8.3	9.4	V
控制部分	高侧欠压保护(图6)	UV_{BSR}		8.0	9.0	9.8	V	
(除非特 别说明,特 指单个	HVIC温度检测电压 输 出 (图 8) (BPP10550)	V_{TS}	V _{CC} =15V,T _{HVIC} =	-25°C ^[6]	600	800	1050	mV
HVIC)	导通阈值电压	V_{IH}	逻辑高电平	V _{IN} 和COM之间	2.9	-	-	V
	关断阈值电压	V_{IL}	逻辑低电平	V _{IN} 和COM之间	-	1	0.8	V
自举二极	正向导通电压	V_{FB}	$I_F=0.1A, T_C=25^{\circ}$	C [7]	-	3.9	-	V
管部分	反向恢复时间	t_{rrB}	I _F =0.1A,T _C =25°C		-	100	-	ns

备注 3: BV_{DSS} 是指加在每个功率 MOSFET 漏源之间的极限最高电压。在实际应用中,考虑到杂散电感的影响, V_{PN} 必须足够小于 BV_{DSS} ,以保证在任何时候 MOSFET 两端的 VDS 都不会超过 BV_{DSS} 。

备注 4: ton 和 toff 包括内部 HVIC 的传输延迟时间。列出的值是在实验室环境的测试条件,会随着现场不同的 PCB 板和导线而不同。请参考图 4 的开关时间定义和图 3 的开关测试电路图。

备注 5: 在开关动作时,每个 MOSFET 的尖峰电流和电压都必须包含在安全工作区(SOA)内,RBSOA 的测试电路如图 3 所示。

备注 6: VTS 仅仅只检测模块的温度,不能自动关断 MOSFET。

备注 7: 自举二极管的电阻特性(20欧姆左右)请参考图 2。

功能描述

表 5 工作真值表

HIN	LIN	Output	Note
0	0	Z	高低侧 MOSFET 都关闭
0	1	0	低侧 MOSFET 导通
1	0	VDC	高侧 MOSFET 导通
1	1	禁止	高低侧 MOSFET 直通
Open	Open	Z	高低侧 MOSFET 都关闭

BPP 模块单相示意图 图 3 开关特性及 RBSOA 测试电路(低侧)

图 4 开关时间定义

图 8 Vrs 的温度曲线图

典型应用

图 9 典型应用示意图 (BPP10550)

备注:

- 1) 在 BPP 和 MCU 的输入端增加 RC 滤波电路 (R1 和 C1, R2 和 C2 等)来预防由浪涌噪声引起的不正确的信号输入。
- 2) 低侧 MOSFET 源端和 COM 之间的电阻 R3 阻值会影响低侧开关特性和自举电路。所以该电阻两端压降在稳态时要小于 1V。
- 3) 所有外置的滤波电容(C3, C4, C5, C6等)都应该尽可能靠近 BPP 的管脚。
- 4) 低侧和高侧电源上尽可能放置 Zener 二极管,确保浪涌条件下电源电压不超过正常工作电压。
- 5) 为了防止浪涌损坏,PN 之间除了滤波电容(C7)以外,建议增加一个高频非感性平缓电容(0.1~0.22uF)。 且尽可能靠近模块引脚。

封装外形

DIP-23

SOP-23

