What is claimed is:

6

7

8

9

10 .

- 1 1. A temperature detecting circuit comprising:
- a first, second and third voltage divider, each of

 which comprises resistors having temperature
 dependent resistances, outputting a first, second

 and third voltage; and
 - a voltage comparator comparing the first voltage with the second voltage, and the first voltage with the third voltage and respectively outputting a first and second signal according to the comparison results.
- The circuit as in claim 1, wherein the voltage
 comparator comprises:
- a first transistor of a first type having a source coupled to receive a first voltage;
- a second transistor of the first type having a gate

 coupled to a gate of the first transistor, a

 source coupled to receive the first voltage and a

 drain outputting a first bit of a temperature

 detection signal;
- a third transistor of the first type having a gate

 coupled to the gate of the first transistor, a

 source coupled to receive the first voltage and a

 drain outputting a second bit of the temperature

 detection signal;
- a fourth transistor of a second type having a drain coupled to a drain of the first transistor;

17	a fifth transistor of the second type having a drain
18	coupled to the drain of the second transistor and
19	a source coupled to a source of the fourth
20	transistor;
21	a sixth transistor of the second type having a drain
22	coupled to the drain of the third transistor and
23	a source coupled to the source of the fourth
24	transistor; and
25	a seventh transistor of the second type having a drain
26	coupled to the drain of the fourth transistor, a
27	gate coupled to receive an enable signal and a
28	source coupled to receive a second voltage.
1	3. The circuit as in claim 2, wherein the voltage
2	divider comprises:
3	a first resistor coupled between the gate of the fourth
4	transistor and the source of the first
5	transistor;
6	a second resistor coupled between the gate of the
7	fourth transistor and the source of the seventh
8	transistor;
9	a third resistor coupled between the gate of the fifth
10	transistor and the source of the first
11	transistor;
12	a fourth resistor coupled between the gate of the fifth
13	transistor and the source of the seventh
14	transistor;
15	a fifth resistor coupled between the gate of the sixth
16	transistor and the source of the first
17	transistor, and

- a sixth resistor coupled between the gate of the sixth transistor and the source of the seventh transistor.
 - 1 4. The circuit as in claim 2, wherein the first and 2 second types are P and N type, respectively.
 - 1 5. The circuit as in claim 2, wherein the first and 2 second voltages are Vdd and a ground voltage, respectively.
 - 6. The circuit as in claim 3, wherein the first,
 fourth, fifth and sixth resistors are made of poly-silicon.
 - 7. The circuit as in claim 3, wherein the second and third resistors are parasitic resistances of an N well.
 - 8. A circuit for controlling a self-refresh period of
 a semiconductor memory device, comprising:
 - a pulse generating circuit which outputs a periodic pulse train in response to an external control signal;
- a frequency-dividing circuit which outputs a plurality
 of pulse trains having different periods from
 each other by frequency-dividing said periodic
 pulse train output by said pulse generating
 circuit;
- a temperature detecting circuit which detects an

 ambient temperature of said memory device and

 outputs a temperature detection signal when said

 ambient temperature reaches a predetermined

 temperature level, the temperature detection

 circuit comprising:

Client Ref.: TSMC2003-0135 Our ref: 0503-10002-US/final/Vincent/Steve/McClure

17	a first transistor of a first type having a source
18	coupled to receive a first voltage;
19	a second transistor of the first type having a
20	gate coupled to a gate of the first
21	transistor, a source coupled to receive the
22	first voltage and a drain outputting a first
23	bit of the temperature detection signal;
24	a third transistor of the first type having a gate
25	coupled to the gate of the first transistor,
26	a source coupled to receive the first
27	voltage and a drain outputting a second bit
28	of the temperature detection signal;
29	a fourth transistor of a second type having a
30	drain coupled to a drain of the first
31	transistor;
32	a fifth transistor of the second type having a
33	drain coupled to the drain of the second
34	transistor and a source coupled to a source
35	of the fourth transistor;
36	a sixth transistor of the second type having a
37	drain coupled to the drain of the third
38	transistor and a source coupled to the
39	source of the fourth transistor;
40	a seventh transistor of the second type having a
41	drain coupled to the drain of the fourth
42	transistor, a gate coupled to receive an
43	enable signal and a source coupled to
44	receive a second voltage; and
45	six resistors respectively coupled between the
46	gate of the fourth transistor and the source

of the first transistor, the gate of the 47 fourth transistor and the source of the 48 seventh transistor, the gate of the fifth 49 transistor and the source of the first 50 transistor, the gate of the fifth transistor 51 52 and the source of the seventh transistor, the gate of the sixth transistor and the 53 source of the first transistor, the gate of 54 the sixth transistor and the source of the 55 seventh transistor; 56 a voltage detection circuit which detects a power 57 supply voltage applied to said memory device and 58 outputs a voltage detection signal when said 59 power supply voltage reaches a predetermined 60 voltage level; and, 61 a pulse selection circuit which outputs a self-refresh 62 master clock by selecting one of said pulse 63 trains in response to said temperature detection 64

9. The circuit as in claim 8, wherein the first and second type are P and N type, respectively.

65

signal and said voltage detection signal.

- 1 10. The circuit as in claim 8, wherein the first and 2 second voltages are Vdd and a ground voltage, respectively.
- 1 11. The circuit as in claim 8, wherein the first,
 2 fourth, fifth and sixth resistors are made of poly-silicon.
- 1 12. The circuit as in claim 8, wherein the second and 2 third resistors are parasitic resistances of an N well.

1	13. A circuit for controlling a self-refresh period of
2	a semiconductor memory device, comprising:
3	temperature detecting circuit outputting a temperature
4	detection signal, comprising:
5	a first transistor of a first type having a source
6	coupled to receive a first voltage;
7	a second transistor of the first type having a
8	gate coupled to a gate of the first
9	transistor, a source coupled to receive the
10	first voltage and a drain outputting a first
11	bit of the temperature detection signal;
12	a third transistor of the first type having a gate
13	coupled to the gate of the first transistor,
14	a source coupled to receive the first
15	voltage and a drain outputting a second bit
16	of the temperature detection signal;
17	a fourth transistor of a second type having a
18	drain coupled to a drain of the first
19	transistor;
20	a fifth transistor of the second type having a
21	drain coupled to the drain of the second
22	transistor and a source coupled to a source
23	of the fourth transistor;
24	a sixth transistor of the second type having a
25	drain coupled to the drain of the third
26	transistor and a source coupled to the
27	source of the fourth transistor;
28	a seventh transistor of the second type having a
29	drain coupled to the drain of the fourth

transistor, a gate coupled to receive an 30 enable signal and a source coupled to 31 receive a second voltage; and 32 six resistors, with each resistor respectively 33 coupled between the gate of the fourth 34 transistor and the source of the first 35 transistor, the gate of the fourth 36 transistor and the source of the seventh 37 transistor, the gate of the fifth transistor 38 and the source of the first transistor, the 39 gate of the fifth transistor and the source 40 of the seventh transistor, the gate of the 41 42 sixth transistor and the source of the first 43 transistor, the gate of the sixth transistor and the source of the seventh transistor; 44 an internal period selector receiving a plurality of 45 signals representing different periods and 46 outputting one of the signals according to the 47 temperature detection signal from the temperature 48 detecting circuit; 49 a plurality of timers, each generating one of the 50 signals representing the different periods; and 51 52 a self-refresh controller determining a refresh period according to the signal output from the internal 53 period selector. 54

1 14. The circuit as in claim 13, wherein the first and 2 second type are P and N type, respectively.

- 1 15. The circuit as in claim 13, wherein the first and
- 2 second voltages are Vdd and a ground voltage, respectively.
- 1 16. The circuit as in claim 13, wherein the first,
- 2 fourth, fifth and sixth resistors are made of poly-silicon.
- 1 17. The circuit as in claim 13, wherein the second and
- 2 third resistors are parasitic resistances of an N well.