In the claims:

1. An N-[(piperazinyl)hetaryl]arylsulfonamide compound of the general formula I

$$R^{1}-N \longrightarrow N-Q-R-SO_{2}-Ar$$
 (I)

5 in which

10

15

- R is oxygen, a group N-R³ or a group CR^{3a}R^{3b};
- Q is a bivalent, 6-membered heteroaromatic radical which possesses 1 or 2 N atoms as ring members and which optionally carries one or two substituents R^a which is/are selected, independently of each other, from halogen, CN, NO₂, CO₂R⁴, COR⁵, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, NH₂, NHR⁶, NR⁶R⁷ and C₁-C₄-haloalkoxy;
- Ar is phenyl or a 6-membered heteroaromatic radical which possesses 1 or 2 N atoms as ring members and which optionally carries one or two substituents R^b, which is/are selected from halogen, NO₂, CN, CO₂R⁴, COR⁵, NH₂, NHR⁶, NR⁶R⁷, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkyl and C₁-C₄-haloalkyl, with it also being possible for two radicals R^b which are bonded to adjacent C atoms of Ar to be together C₃-C₄-alkylene;
 - n is 0, 1 or 2;
- 20 $R^1 \qquad \text{is hydrogen, } C_1\text{-}C_4\text{-alkyl, } C_1\text{-}C_4\text{-haloalkyl, } C_3\text{-}C_6\text{-cycloalkyl, } C_3\text{-}C_6\text{-cycloalkyl-} \\ C_1\text{-}C_4\text{-alkyl, } C_1\text{-}C_4\text{-hydroxyalkyl, } C_1\text{-}C_4\text{-alkoxy-}C_1\text{-}C_4\text{-alkyl, } C_3\text{-}C_4\text{-alkenyl or } C_3\text{-} \\ C_4\text{-alkynyl;}$
- 25 R^2 is C_1 - C_4 -alkyl or, together with R^1 , is C_2 - C_5 -alkylene or, in the case of n = 2, the two radicals R^2 can together be C_1 - C_4 -alkylene;
 - R^3 is hydrogen or C_1 - C_4 -alkyl;
- 30 R^{3a} , R^{3b} are, independently of each other, hydrogen or C_1 - C_4 -alkyl;

- R⁴ is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_2 - C_4 -alkenyl C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl- C_1 - C_4 -alkyl, phenyl or benzyl; and
- R^5 is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_2 - C_4 -alkenyl C_3 - C_6 -cycloalkyl- C_1 - C_4 -alkyl, phenyl or benzyl;
 - R⁶, R⁷ are each independently selected from C₁-C₄-alkyl, C₁-C₄-haloalkyl or together with the nitrogen to which they are bound form a saturated 3-, 4-, 5- or 6-membered heterocycle, which additionally may comprise an oxygen atom or an additional nitrogen atom as a ring member and which may carry 1, 2, 3 or 4 C₁-C₄ alkyl groups;

the N-oxides thereof and the physiologically tolerated acid addition salts of these compounds;

- with the exception of the compounds: 4-methyl-N-[6-(4-methylpiperazin-1-yl)pyridin-3-yl)benzenesulfonamide and 4-chloro-N-[6-(4-methylpiperazin-1-yl)pyridin-3-yl)benzenesulfonamide.
 - 2. The compound as claimed in claim 1, wherein R is N-R³ with R³ being H or C₁-C₄-alkyl.
 - 3. The compound as claimed in claim 2, wherein

5

10

- Q is a bivalent, 6-membered heteroaromatic radical which possesses 1 or 2 N atoms as ring members and which optionally carries one or two substituents R^a which is/are selected, independently of each other, from halogen, CN, NO₂, CO₂R⁴, COR⁵, C₁-C₄-alkyl and C₁-C₄-haloalkyl and
- Ar is phenyl or a 6-membered heteroaromatic radical which possesses 1 or 2 N at25 oms as ring members and which optionally carries one or two substituents R^b,
 which is/are selected from halogen, NO₂, CN, CO₂R⁴, COR⁵, C₁-C₆-alkyl, C₂-C₆alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyl-C₁-C₄-alkyl and C₁-C₄haloalkyl, with it also being possible for two radicals R^b which are bonded to adjacent C atoms of Ar to be together C₃-C₄-alkylene.
- 30 4. The compound as claimed in claim 1, in which the piperazine ring is bonded to the heteroaromatic radical Q in the para position in relation to the group R-SO₂-Ar.
 - 5. The compound as claimed in one of the preceding claims, in which Q is a radical of the formula

$$- A_{\overline{1}} A_{2}$$

$$- A_{3} (R^{a})_{a}$$

5

20

in which A_1 , A_2 and A_3 are, independently of each other, N or CH, one or two of the variables A_1 , A_2 and A_3 can also be C-R^a, k = 0 or 1 and R^a is selected from halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, NH₂, NHR⁶, NR⁶R⁷ and C_1 - C_4 -haloalkoxy, with A_1 , A_2 and A_3 not simultaneously being N or simultaneously being selected from CH and C-R^a.

- 6. The compound as claimed in claim 5, in which A_3 is nitrogen, A_2 is CH and A_1 is N or CH and wherein the piperazine radical is located in the 2 position.
- 7. The compound as claimed in claim 6, in which Q is pyridin-2,5-diyl which carries the piperazine radical in the 2 position.
 - 8. The compound as claimed in claim 6, in which Q is a radical of the formula

$$- \bigwedge_{N}^{A_1 = A_2}$$

in which A_1 and A_2 are, independently of each other, N or CH and R^a is selected from , C_1 - C_4 -alkoxy, NH₂, NHR⁶, NR⁶R⁷ and C_1 - C_4 -haloalkoxy.

- 15 9. The compound as claimed in claim 8, in which A_1 is N or CH and A_2 is CH and wherein the piperazine radical is located in the 2 position.
 - 10. The compound as claimed in one of the preceding claims, in which the radical Ar carries a substituent R^b in the para position and, where appropriate, a further substituent R^b in the meta position or in the ortho position, in each case based on the binding site of the sulfonamide group.
 - 11. The compound as claimed in one of the preceding claims, in which Ar is phenyl or pyridyl, which radicals possess, where appropriate, one or 2 R^b substituents.
 - 12. The compound as claimed in one of the preceding claims, in which R¹ is different from hydrogen and methyl.
- 25 13. The compound as claimed in claim 1 of the general formula la

$$R^{1}-N \longrightarrow N \longrightarrow A_{3} \longrightarrow N-SO_{2} \longrightarrow R^{b}$$

$$(R^{2})_{n} \qquad (R^{a})_{k} \qquad (Ia)$$

in which n, R^1 , R^2 , R^3 , R^a and R^b have the meanings given in claim 1 and in which either

 A_1 , A_2 and A_3 are, independently of each other, N or CH and one or two of the variables A_1 , A_2 and A_3 can also be C-R^a, with A_1 , A_2 and A_3 not simultaneously being N or simultaneously being selected from CH and C-R^a,

X and Y are selected from CH, C-R^{b'} and N, in which R^{b'} is halogen, methyl, CN, difluoromethyl or trifluoromethyl, with X and Y not simultaneously being N or simultaneously being C-R^{b'}, and

10 k is 0 or 1.

5

25

- 14. The compound of the formula Ia as claimed in claim 13, in which k = 0, with A_1 , A_2 and A_3 being, independently of each other, N or CH and A_1 , A_2 and A_3 not simultaneously being N or simultaneously being CH.
- 15. The compound of the formula Ia as claimed in claim 14, in which A_1 is CH or N, A_2 is CH and A_3 is N.
 - 16. The compound of the formula la as claimed in claim 13, in which k is 1, A₁ is CH or N, A₂ is CH and A₃ is N, and R^a is selected from , C₁-C₄-alkoxy, NH₂, NHR⁶, NR⁶R⁷ and C₁-C₄-haloalkoxy and R^a is bound to the carbon atom adjacent to A₃.
- 17. The compound of the formula la as claimed in any of claims 13 to 15, in which n is 0 or 1 and, in the case of n = 1, R² is bonded to the C atom of the piperazine ring which is adjacent to the group R¹-N and is a methyl group having the S configuration.
 - 18. The compound of the formula Ia as claimed in one of claims 13 to 16, in which the radical Ar carries a substituent R^b in the para position and, where appropriate, a further substituent R^b in the meta position or in the ortho position, in each case based on the binding site of the sulfonamide group.
 - 19. The compound of the formula Ia as claimed in one of claims 13 to 17, in which Ar is phenyl or pyridyl, which radicals possess, where appropriate, one or 2 R^b substituents.
 - 20. The compound of the formula la as claimed in one of claims 13 to 18, in which R¹ is different from hydrogen and methyl.

21. The compound of the formula la as claimed in one of claims 13 to 19, of the general formula la.1

$$\begin{array}{c|c}
R^1 - N & N = N - SO_2 & X = Y \\
R^3 & R^3
\end{array}$$
(Ia.1)

5

15

in which n, X, Y, R¹, R², R³, R^a and R^b have the meanings given in claim 13 and q is 0, 1 or 2.

22. The compound of the formula la as claimed in one of claims 13 to 19, of the general formula la.2

$$R^{1} - N \longrightarrow N \longrightarrow N - SO_{2} \longrightarrow R^{b}$$

$$(R^{2})_{n} \qquad (R^{a})_{0} \qquad (Ia.2)$$

in which n, X, Y, R^1 , R^2 , R^3 , R^a and R^b have the meanings given in claim 13 and q is 0 or 1.

- 23. A pharmaceutical composition which comprises at least one N-[(piperazinyl)hetaryl]arylsulfonamide compound as claimed in one of claims 1 to 22 and/or at least one physiologically tolerated acid addition salt of I and/or an N-oxide of I, where appropriate together with physiologically acceptable carriers and/or auxiliary substances.
- 24. The use of at least one N-[(piperazinyl)hetaryl]arylsulfonamide compound of the formula I

$$\begin{array}{c|c}
R^1 - N & N - Q - N - SO_2 - Ar \\
(R^2)_n & R^3
\end{array}$$
(I)

in which Q, Ar, n, R¹, R² and R³ have the previously mentioned meanings, of the N-oxides thereof and of the physiologically tolerated acid addition salts thereof for producing a pharmaceutical composition for treating diseases which respond to influencing by dopamine D₃ receptor antagonists or dopamine D₃ agonists.

- 25. The use as claimed in claim 24 for treating diseases of the central nervous system.
- 26. The use as claimed in claim 24 for treating kidney function disturbances.

5

10

27. A method for treating a medical disorder susceptible to treatment with a dopamine D₃ receptor antagonist or a dopamine D₃ agonist, said method comprising administering an effective amount of at least one compound of the formula I

$$R^{1}-N$$
 $N-Q-N-SO_{2}-Ar$
 (I)
 R^{2}
 R^{3}

in which Q, Ar, n, R¹, R² and R³ have the previously mentioned meanings, or the N-oxides thereof or the physiologically tolerated acid addition salts thereof to a subject in need thereof.

28. The method as claimed in Claim 27, wherein the medical disorder is a disease of the central nervous system.