Test EDP

Disciplina: Ecuatii cu derivate partiale

Tipul examinarii: lucrare partiala

Nume student:

Grupa 301

Timp de lucru: 90 minute

Nu uitati sa va scrieti numele si prenumele in rubrica Nume student.

Acest test contine 3 probleme (toate obligatorii).

Testul este individual. In cazul fraudarii (redactare identica cu a altui coleg) se anuleaza punctajul tuturor partilor implicate.

Pentru redactarea solutiilor incercati sa aplicati urmatoarele reguli:

- Daca folositi o teorema fundamentala, rezultat cunoscut, etc **trebuie sa indicati** acest lucru si sa explicati de ce rezultatul respectiv se poate aplica.
- Pe cat posibil, **organizati-va munca** astfel incat la sfarsitului timpului de lucru sa returnati rezolvarile in ordinea de pe subiecte.
- Va sugerez sa rezolvati mai intai ce stiti sa faceti la prima vedere pentru a nu intra in criza de timp la finalul timpului de lucru!
- Raspunsurile corecte dar argumentate incomplet (din punct de vedere al calculelor/explicatiilor) vor primi punctaj partial.

Punctaj: Problema 1 (2.5 p), Problema 2 (3 p), Problema 3 (3.5 p). Un punct este din oficiu, deci se **pleaca din nota 10**.

Problema 1. (2.5p)

- (a). Calculati $\Delta(x \cdot \nabla(|x|^{\frac{1}{5}})), \quad x \in \mathbb{R}^5 \setminus \{0\}.$
- (b). Integrati problema cu valori initiale

(1)
$$\begin{cases} xu_x(x,y) + 3u_y(x,y) = u+1, & u = u(x,y) \\ u(x,0) = \frac{1}{2}\cos x, & x \in \mathbb{R}. \end{cases}$$

(c). Determinati p numar real astfel incat

$$|\sin|x||^p \in L^1_{loc}(\mathbb{R}^3), \quad x = (x_1, x_2, x_3).$$

(d). Determinati p numar real astfel incat

$$\frac{1}{1+|x|^3}|x|^p \in L^1(\mathbb{R}^3 \setminus \overline{B_1(0)}), \quad x = (x_1, x_2, x_3),$$

unde $B_1(0) \subset \mathbb{R}^3$ reprezinta bila de raza 1 centrata in origine.

Problema 2. (3p) Fie $\Omega := \{(x,y) \in \mathbb{R}^2; x^2 + y^2 < 4\}$ si $\partial \Omega$ frontiera lui Ω . Fie problema

(2)
$$\begin{cases} -\Delta u(x,y) = 2\sin x, & (x,y) \in \Omega \\ u(x,y) = 0, & (x,y) \in \partial\Omega. \end{cases}$$

- (a). Aratati ca problema (2) are cel mult o solutie $u \in C^2(\Omega) \cap C(\overline{\Omega})$.
- (b). Gasiti constanta C astfel incat functia $v(x,y) = C(x^2 + y^2)$ sa verifice $-\Delta v = 2$ in Ω .
- (c). Folosind (eventual) principiul de maxim pentru functii armonice sa se determine solutia problemei

(3)
$$\begin{cases} -\Delta u(x,y) = 2, & (x,y) \in \Omega, \\ u(x,y) = 0, & (x,y) \in \partial \Omega \end{cases}$$

(d). Folosind (eventual) principiul de maxim pentru functii sub/super armonice sa se arate ca solutia problemei (2) verifica

$$|u(x,y)| \le 2, \quad \forall (x,y) \in \overline{\Omega}.$$

Problema 3. (3.5 p) Fie $\epsilon \in (0,1)$ si $\Omega_{\epsilon} := \{x \in \mathbb{R}^2 \mid \epsilon < |x| < 1\}$. Consideram problema Dirichlet

(4)
$$\begin{cases} -\Delta u_{\epsilon} = |x|, & in \ \Omega_{\epsilon} \\ u_{\epsilon} = 0, & pe \ \partial \Omega_{\epsilon}. \end{cases}$$

- (a). Rescrieti problema (4) pentru o functie radiala $g_{\epsilon}: \mathbb{R}_{+} \to \mathbb{R}$ astfel incat $u_{\epsilon}(x) = g_{\epsilon}(|x|)$.
- (b). Rezolvati problema corespunzatoare lui g_{ϵ} si apoi determinati solutia u_{ϵ} a problemei (4).
- (c). Fie $\tilde{u}_{\epsilon}: B_1(0) \to \mathbb{R}$ extinderea lui u_{ϵ} cu 0 pe bila $B_{\epsilon}(0)$. Calculati limita punctuala

$$\tilde{u}(x) := \lim_{\epsilon \searrow 0} \tilde{u}_{\epsilon}(x), \quad \forall x \in B_1(0).$$

Fie problema

(5)
$$\begin{cases}
-\Delta u = |x|, & in B_1(0) \\
u = 0, & pe \partial B_1(0).
\end{cases}$$

- (d). Rescrieti problema (5) pentru o functie radiala $g: \mathbb{R}_+ \to \mathbb{R}$ astfel incat u(x) = g(|x|).
- (e). Rezolvati problema corespunzatoare lui g si apoi determinati solutia u a problemei (5).
- (f). Comparati punctual u si \tilde{u} precum si normele lor L^p , $1 \leq p \leq \infty$.