Modelos Matemáticos II

Antonio Gámiz Delgado Universidad de Granada

28 de febrero de 2020

1. Cálculo de variaciones

1.1. Herramientas previas y repaso

Necesitaremos recordar algunas nociones y teoremas básicos sobre derivabilidad:

Definición 1.1. Sea $f: X \longrightarrow Y$ con X, Y espacios normados. Se dice que f es **diferenciable** en un punto $a \in A$, si existe una aplicación lineal continua $T: X \longrightarrow Y$ verifiando:

$$\lim_{x \to a} \frac{\|f(x) - f(a) - T(x - a)\|}{\|x - a\|}$$

T se denota por Df(a) y se llama diferencial de f.

Teorema 1.2 (derivada de una integral respecto de un parámetro). Sea $X \subset \mathbb{R}^n$ $y(X, \mathcal{A}, \mu)$ un espacio medible, I un intervalo cerrado y sea $f: I \times X \longrightarrow \mathbb{R}$ tal que:

- (a) $\forall t \in I, x \mapsto f(t,x)$ es integrable.
- (b) $\forall x \in X$, la función $t \mapsto f(t, x)$ es derivable en $t \in I$.
- (c) Existe $g: X \longrightarrow \mathbb{R}$ integrable tal que

$$\left| \frac{\partial f}{\partial t}(t, x) \right| \le |g(x)| \quad \forall x \in X \ \forall t \in I$$

Entonces la función $F(t) = \int_X f(t,x)dx$ es derivable en t_0 y la derivada es

$$F'(t_0) = \int_X \frac{\partial f}{\partial t}(t_0, x) dx$$

1.2. Problema general del cálculo de variaciones

Primeramente definimos un tipo de funciones llamadas funciones test o funciones de la clase de Swartz, junto con algunos resultados que usaremos bastante para trabajar con ellas.

Definición 1.3. Dado I intervalo, se llama espacio de funciones test al conjunto:

$$\mathcal{D} = \{ \phi \in C^{\infty}(a, b) : \exists J \subset (a, b) \text{ compacto: } \phi(x) = 0 \text{ si } x \in J \}$$

Lema 1.4. Dado $x_0 \in (a, b)$ $y \in > 0$ tal que $[x_0 - \varepsilon, x_0 + \varepsilon] \subset (a, b)$, existe $\phi \in \mathcal{D}(a, b)$ tal que $\phi(x) > 0$ si $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$ $y \phi(x) = 0$ en otro caso.

Demostración. La demostración la vamos a hacer por construcción. Sea $g: \mathbb{R} \longrightarrow \mathbb{R}$ definida por:

$$g(x) = \begin{cases} e^{1/x} & x < 0\\ 0 & x \ge 0 \end{cases}$$

Tenemos que lím g(x)=0, luego g es continua. Veamos que de hecho $g\in C^\infty$. Su derivada es:

$$g'(x) = \begin{cases} e^{1/x} \left(-\frac{1}{x^2}\right) & x < 0\\ 0 & x > 0 \end{cases}$$

Mediante un proceso iterativo llegamos a:

$$g^{n)}(x) = \begin{cases} e^{1/x} \frac{R(x)}{x^{2n}} & x < 0\\ 0 & x > 0 \end{cases}$$

donde R(x) es un cierto polinomio que no nos interesa calcular. Queremos ver que $\lim_{x\to 0^-} g^{n)}(x) = 0$. Haciendo el cambio $y = -\frac{1}{x}$, el anterior límite equivale a

$$\lim_{y \to +\infty} \frac{y^{2n}}{e^y} = 0 \Longrightarrow g \in C^{\infty}$$

Con lo anterior, solo nos queda definir la función buscada de forma que sea una función test, es decir, la definimos como:

$$\phi(x) = g(x - (x_0 + \varepsilon))g((x_0 - \varepsilon) - x) \quad \varepsilon > 0$$

Teorema 1.5. Sea $f \in C[a, b]$ tal que

$$\int f(x)\phi(x)dx = 0 \qquad \forall \phi \in \mathcal{D}(a,b)$$

Entonces $f(x) = 0 \ \forall x \in [a, b].$

Demostración. Sea $\bar{x} \in (a, b)$ y supongamos por reducción al absurdo que $f(\bar{x}) \neq 0$. Podemos suponer $f(\bar{x}) > 0$. Aplicando el teorema de conservación del signo, obtenemos $\varepsilon > 0$ f(x) > 0 si $(\bar{x} - \varepsilon, \bar{x} + \varepsilon)$.

Por el lema 1.4, existe una función test ϕ tal que $\phi(x) > 0$ si $x \in (\bar{x} - \varepsilon, \bar{x} + \varepsilon)$ y 0 en otro caso. Luego:

$$0 = \int_{x_0}^{x_1} f(x)\phi(x)dx = \int_{\bar{x}-\varepsilon}^{\bar{x}+\varepsilon} f(x)\phi(x)dx > 0 \Rightarrow f(\bar{x}) = 0$$

Como \bar{x} era arbitrario, tenemos que $f(\bar{x}) = 0 \ \forall \bar{x} \in (a, b)$, y por la continuidad de f podemos extenderlo a los extremos también, es decir, f(a) = f(b) = 0.

1.2.1. Cálculo de extremales

Sea $\Omega \subset \mathbb{R}^3$, definamos $F:\Omega \longrightarrow \mathbb{R}$ tal que $(x,y,p) \longmapsto F(x,y,p)$. Supongamos que $F \in C^1(\Omega)$ respecto de las dos últimas variables, es decir, existen $\frac{\partial F}{\partial y}$ y $\frac{\partial F}{\partial p}$, continuas. Usando la función anterior, podemos definir el siguiente funcional:

$$L(y) = \int_a^b F(x, y(x), y'(x)) dx \tag{1}$$

Nuestro objetivo en este apartado será encontrar *extremales* de ese funcional, es decir, máximos o mínimos.

Notación 1.6. Normalmente, a las derivadas parciales las denotaremos por:

$$\frac{\partial F}{\partial x} = F_x$$

Los *extremales* los buscaremos entre los elementos de un conjunto de funciones cumpliendo ciertas propiedades:

Definición 1.7. Sea $\Omega \subset \mathbb{R}^3$ y $F : \Omega \longrightarrow \mathbb{R}$ funcional en las condiciones anteriores. Definimos entonces el siguiente conjunto:

$$D = \{ y \in C(a, b) \cap C^{1}[a, b] : \text{ se cumplen (a),(b) y (c)} \}$$
 (2)

- (a) $(x, y(x), y'(x)) \in \Omega \quad \forall x \in (a, b)$
- (b) y(a) = b e y(a) = b (Condición de contorno)

(c)
$$\int_{a}^{x} F(x, y(x), y'(x)) dx < +\infty \quad \forall x \in (a, b)$$

El siguiente teorema nos proporcionará una condición sobre las derivadas parciales de F, que nos ayudará a buscar *extremales*. Para su demostración necesitaremos el siguiente lema:

Lema 1.8. Sea $\{s_n\} \longrightarrow 0$ una sucesión de números reales $y \phi \in \mathcal{D}(a, b)$, existe $n_0 \in \mathbb{N}$ tal que si $y \in D$, entonces $y + s_n \phi \in D$ $\forall n \geq n_0$.

Demostración. Sea $\phi \in \mathcal{D}(a, b)$ y $K = \text{soporte } \phi$. Tenemos que comprobar que $y + s_n \phi$ cumple las condiciones de la definición 1.7.

(a) Razonemos por reducción al absurdo. Supongamos que existe $x_n \in (a,b)$ tal que $(x_n, y(x_n) + s_n\phi(x_n), y'(x_n) + s_n\phi'(x_n)) \notin \Omega \Rightarrow x_n \in \text{soporte } \phi$, ya que si no estuviera, tendríamos que $\phi(x_n) = 0$, luego $(x_n, y(x_n), y'(x_n)) \in \Omega$. Como el soporte es compacto, podemos suponer que $\{x_n\} \longrightarrow \bar{x} \in \text{soporte } \phi \in (a,b)$. Si tomamos límite:

$$\lim_{n \to +\infty} (x_n, y(x_n) + s_n \phi(x_n), y'(x_n) + s_n \phi'(x_n)) = (x_n, y(x_n), y'(x_n)) \notin \Omega$$

porque el complementario de Ω es cerrado, luego el límite se queda fuera.

(b) Evidente, ya que $\phi(a) = \phi(b) = 0$.

(c) Tomando $n \ge n_0$, tenemos:

$$\int_{a}^{b} \left| F(x_n, y(x_n) + s_n \phi(x_n), y'(x_n) + s_n \phi'(x_n)) \right| dx =$$

$$= \int_{(a,b)\backslash K} \left| F(\ldots) \right| dx + \int_{K} \left| F(\ldots) \right| dx < +\infty$$

El primer término es finito ya que $F(x_n, y_n, y'_n) \in D(a, b)$ y el segundo término porque es la integal de una función continua en un compacto.

Lo que nos asegura este lema es que podamos sumar una perturbación pequeña a nuestro extremal sin salirnos de D.

Teorema 1.9. Si $\bar{y} \in D$ es un extremal, entonces:

$$\int_a^b F_y(x, \bar{y}(x), \bar{y}'(x))\phi(x)dx + \int_a^b F_p(x, \bar{y}(x), \bar{y}'(x))\phi'(x)dx = 0 \quad \forall \phi \in \mathcal{D}(a, b)$$

 $A \ \bar{y} \ se \ le \ suele \ llamar \ función \ crítica.$

Demostración. Sean $\bar{y} \in D$ extremal y $\phi \in \mathcal{D}(a, b)$. Definimos el funcional $g : \mathbb{R} \longrightarrow \mathbb{R}$ tal que $g(s) = L(\bar{y} + s\phi)$.

Por el lema anterior, existe $\varepsilon > 0$ tal que g está bien definida en $(-\varepsilon, \varepsilon)$.

Ahora queremos derivar g respecto de s, pero necesitamos que esté definida en un intervalo cerrado (por el teorema 1.2). Para ello, tomamos un intervalo cerrado J de forma que $(-\varepsilon, \varepsilon) \subset \operatorname{soporte}(\phi) \subset J \subset [a, b]$.

Derivamos q respecto de s:

$$g'(s) = \left(\int_{J \setminus [a,b]} F(x,\bar{y},\bar{y}') dx \phi(x) + \int_{[a,b]} F(x,\bar{y}+s\phi(x),\bar{y}'+s\phi'(x)) dx \right)' =$$

$$= \int_{[a,b]} \left(F_y(x,\bar{y}+s\phi(x),\bar{y}'+s\phi'(x)) \phi(x) + F_p(x,\bar{y}+s\phi(x),\bar{y}'+s\phi'(x)) \phi'(x) \right) dx =$$

Si evaluamos ahora g' en 0 y usamos que \bar{y} es extremal, tenemos:

$$g'(0) = \int_{a}^{b} \left(F_{y}(x, \bar{y}, \bar{y}') \phi + F_{p}(x, \bar{y}, \bar{y}') \phi' \right) dx = 0$$

El teorema anterior da pie a la siguiente definición:

Definición 1.10. Sea $\Omega \subset X$ un abierto de un espacio de Banach, X. Sean $L : \Omega \longrightarrow \mathbb{R}$, $y \in \Omega$, $\phi \in X$, se define la *derivada de Gateaux* como:

$$Dg(L(\bar{y}))(\phi) = \frac{d}{ds}\Big|_{s=0} L(\bar{y} + s\phi)$$

1.2.2. Ecuación de Euler

Usando el teorema anterior vamos a llegar a una ecuación diferencial de segundo orden que nos ayudará a resolver este problema. Supongamos que tenemos $y \in C^2$, función crítica y $F \in C^2(\Omega)$, definimos $Z(x) = F_p(x, y(x), y'(x))$. Nuestro objetivo ahora es imponer condiciones suficientes para que $Z(x) \in C^1(a, b)$, para poder derivarla y obtener una ecuación diferencial en y'.

Para continuar necesitamos un lema previo:

Lema 1.11. Sea $Z \in C^1(x_0, x_1)$, entonces:

$$\int_{a}^{b} Z(x)\phi'(x)dx = -\int_{a}^{b} Z'(x)\phi(x)dx \quad \forall \phi \in \mathcal{D}(a,b)$$

Demostración. Resolviendo la integal por partes tenemos:

Este lema nos permite «intercambiar la derivada de sitio». Usando ahora el Teorema 1.9 (podemos usarlo porque y es función crítica) y el lema anterior, tenemos:

$$0 = \int_a^b F_y(x, y, y')\phi(x)dx + \int_a^b F_p(x, y, y')\phi'(x)dx =$$

$$= \int_a^b F_y(x, y, y')\phi(x)dx + \int_a^b Z(x)\phi'(x)dx =$$

$$= \int_a^b F_y(x, y, y')\phi(x)dx - \int_a^b Z'(x)\phi(x)dx =$$

$$= \int_a^b \left(F_y(x, y, y') - Z'(x)\right)\phi(x)dx = 0 \quad \forall \phi \in \mathcal{D}(a, b)$$

Y usando ahora el Teorema 1.5 nos queda:

$$F_y(x, y, y') - Z'(x) = 0 \quad \forall x \in (a, b)$$

Que denoteramos por:

$$\frac{d}{dx}F_p - F_y(x, y, y') = 0$$
 (Ecuación de Euler)

Las condiciones sobre F se pueden rebajar con el siguiente teorema:

Teorema 1.12. Si $F \in C^1_{yp}$, $y' \in C^1$, función crítica, entonces:

$$Z(x) = F_p(x, y(x), y'(x)) \in C^1$$

$$Z'(x) = F_y(x, y(x), y'(x))$$

Ya tenemos la ecuación que queremos resolver. La demostración del teorema es consecuencia de los siguientes resultados.

Lema 1.13. Sea $\phi \in \mathcal{D}(a,b)$, entonces:

$$\phi$$
 admite primitiva $\iff \int_a^b \phi(x) dx = 0$

Demostración.

 (\Rightarrow) Por hipótesis, supongamos que existe Ψ tal que $\phi = \Psi'$. Ahora solo tenemos que integrarla y usar que ϕ vale 0 en los extremos por ser una función de soporte compacto:

$$\int_a^b \phi(s)ds = \int_a^b \Psi'(s)ds = \Psi\Big|_a^b = 0$$

 (\Leftarrow) Si $\int_a^b \phi(s)ds = 0$, entonces tenemos la siguiente situación: soporte $\phi \subset [a',b']$ tal que $a < a' \le b' < b$.

Definimos $\Psi(x) = \int_{a'}^{x} \phi(s)ds$ y tenemos $\Psi' = \phi$.

Lema 1.14. Sea $f \in C(a,b)$ tal que $\int f\phi'(x)dx = 0 \quad \forall \phi \in \mathcal{D}(a,b) \Longrightarrow f$ es constante.

Demostración. Sea $x_0 \in (a, b)$, por el lema 1.4, podemos tomar $\phi_{x_0} \in \mathcal{D}(a, b)$, de forma que $\int_a^b \phi_{x_0}(s) ds = 1$ (multiplicándola por cierta constante).

 \Box

Definimos $\Psi(x) = \int_a^x \phi_{x_0}(s) ds$ y tomamos c de forma que:

$$\int_a^b f(s)\Psi'(s) = c \int_a^b \Psi'(s)ds = c\Psi\Big|_a^b = c$$

Tomamos $\phi \in \mathcal{D}(a,b)$ y veamos que la función $\phi - \lambda \Psi'$ tiene primitiva para cierto $\lambda \in \mathbb{R}$. Supongamos que tiene media 0, y despejemos λ :

$$\int_{a}^{b} \phi(s) - \lambda \Psi'(s) = 0 \Longrightarrow \lambda = \int_{a}^{b} \phi(s) ds$$

Haciéndo esa elección de λ , $\phi - \lambda \Psi'$ tiene primitiva por el lema 1.13.

$$0 = \int_a^b f(s)(\phi(s) - \lambda \Psi'(s))ds = \int_a^b f(s)\phi(s)ds - \lambda \int_a^b f(s)\Psi'(s)ds =$$

$$= \int_a^b f(s)\phi(s)ds - c \int_a^b \phi(s)ds = \int_a^b (f(s) - c)\phi(s)ds \Rightarrow f(s) - c = 0 \Rightarrow f \equiv 0$$

Lema 1.15. Sean f,g funciones continuas en (a,b) tales que:

$$\int g\phi + \int f\phi' = 0 \quad \forall \phi \in \mathcal{D}(a, b)$$

Entonces $f \in C^1(a,b)$ y g = f'.

Demostración. Tomamos $x_0 \in (a,b)$ y definimos $\tilde{f}(x) = \int_a^x g(s)ds \Rightarrow \tilde{f} \in C^1$.

$$\int_a^b \tilde{f}(s)\phi'(s) + g(s)\phi(s)ds = \int_a^b \tilde{f}(s)\phi'(s) + \tilde{f}'(s)\phi(s)ds = \int_a^b (\tilde{f}\phi) = \tilde{f}\phi\Big|_a^b = 0$$

Restando la expresión de la hipótesis menos la anterior, obtenemos:

$$0 = \int_a^b f(s)\phi'(s)ds - \int_a^b \tilde{f}(s)\phi'(s)ds = \int_a^b (f - \tilde{f})(s)\phi'(s)ds$$

Y usnado el lema 1.14, tenemos que $f-\tilde{f}$ es constante, luego $f\in C^1$ ya que \tilde{f} también pertenece a C^1 .

1.3. Ejemplos

A continuación veremos un ejemplo teórico y algunos ejemplos más prácticas de la teoría anterior.

1.3.1. Problema de Braquistocrona

Este problema se centra principalmente en averiguar que forma (curva) tenemos que darle a un tobogán para que este sea el más rápido.

A esa curva la vamos a denotar por Y(t) y vamos a suponer que pertenece a $C^1(0,L)$, es decir, que no tenga picos. Además, vamos a suponer que el tobogán tiene altura máximo 1, y mínima 0, es decir, Y(0) = 1 e Y(L) = 0. También necesitamos que el tobogán tenga sentido, es decir, que no tenga subidas ni bajadas muy bruscas, luego necesitamos imponer $Y'(x) < 1 \quad \forall x \in (0,L)$.

Recordemos primero algunas nociones de física. Vamos a denotar por (x(t), y(t)) a la posición de una persona en el tobogán en el instante $t \in [0, L]$, por m a su masa y por g a la gravedad. Recordemos que la expresión de la energía es mgy(t), la de la velocidad es $v(t) = \sqrt{x'(t)^2 + y'(t)^2}$ y la de la energía cinética es $\frac{mv(t)^2}{2}$.

Si hacemos el tobogán suficientemente suave, se tiene que verificar lo siguiente:

$$mgy(t) + \frac{m}{2}(x'(t)^2 + y'(t)^2) \equiv cte$$
 (3)

En el primer momento nos dejamos caer, luego en t = 0, (3) = mg

Tenemos entonces $y(t) = Y(x(t)) \Rightarrow y'(t) = Y'(x(t))x'(t)$, sustituyendo en (3):

$$mgY(x(t)) + \frac{m}{2}x'(t)^2 + \frac{m}{2}(Y'(x(t))x'(t))^2 = mg$$

$$x'(t)^{2} \left(1 + Y'(x(t))^{2}\right) = 2g \left(1 - Y(x(t))\right) \Rightarrow x'(t) = \sqrt{2g} \sqrt{\frac{1 - Y(x(t))}{1 + Y'(x(t))^{2}}}$$

Estamos buscando el tiempo de llegada, T, ¿cómo lo hacemos? Aplicamos un truco típico de ecuaciones diferenciales:

$$T = \int_0^T dt = \int_0^T \frac{x'(t)}{x'(t)} dt = \frac{1}{\sqrt{2g}} \int_0^T \frac{\sqrt{1 + Y'(x(t))^2}}{\sqrt{1 - Y(x(t))}} x'(t) dt$$

Que tras el cambio de variable x = x(t) nos queda:

$$T = \frac{1}{\sqrt{2g}} \int_0^L \frac{\sqrt{1 + Y'(x)^2}}{\sqrt{1 - Y(x)}} dx$$

Definimos ahora el conjunto de funciones donde vamos a buscar nuestro mínimo:

$$D = \{ y \in C^1(0, L), y(0) = 1, y(L) = 0, y'(x) < 1 \quad \forall x \in (0, L) \}$$

Y definimos nuestro funcional:

$$L_y = \int_0^L \frac{\sqrt{1 + Y'(x)^2}}{\sqrt{1 - Y(x)}} dx$$

Usando la notación del principio, tenemos una función F tal que $F(x,y,p)=\sqrt{\frac{1+p^2}{1-y}}$ Usando el Teorema 1.12 podemos definir:

$$Z(x) = \frac{\partial F}{\partial p}(x, y, y') = \frac{1}{\sqrt{1 - y(x)}} \frac{y'(x)}{\sqrt{1 + y'(x)^2}} \in C^1(0, T)$$

Ahora, en lugar de despejar y'(x), vamos a ver que $y \in C^2$. Definiendo $\Psi(y') = \frac{y'}{\sqrt{1+y'^2}} = Z(x)\sqrt{1+y'^2}$. Como $\Psi(s) = \frac{s}{\sqrt{1+s^2}}$ tiene inversa de clase 1, tenemos:

$$y'(x) = \Psi^{-1}(Z(x)\sqrt{1 - y(x)}) \Rightarrow y \in C^2$$

En general, tenemos que si F no depende de x, podemos hacer:

$$D(x) = F(y, y') - Z(x)y' \Rightarrow D'(x) = \frac{\partial F}{\partial y}(y, y')y' + \frac{\partial F}{\partial p}(y, y')y'' - Z'(x)y' - Z(x)y'' =$$
$$= y'(Z'(x) - Z'(x)) = 0$$

Es decir, para alguna constante $C \in \mathbb{R}$, tenemos que:

$$F(y, y') - Z(x)y' = C$$

En nuestro caso particular, nos quedaría:

$$\frac{\sqrt{1+y'(x)^2}}{1-y(x)} - \frac{1}{\sqrt{1-y(x)}} \frac{y'(x)^2}{\sqrt{1+y'(x)^2}} = 0 \Rightarrow \frac{1}{\sqrt{1-y(x)}} \frac{1}{\sqrt{1+y'(x)^2}} = C$$

Esa ecuación diferencial, es de variables separadas, deberíamos resolverla con las condiciones iniciales y(0) = 1, y(L) = 0, pero la solución es trascendente, es decir, no tiene expresión explícita, es un cicloide.

Figura 1: Ejemplo de cicloide

1.3.2. Ejercicios prácticos

Ejercicio 1.1. Encontrar la curva en la que el siguiente funcional podría alcanzar su extremo:

$$I(y) = \int_{1}^{2} \left(y'(x)^{2} - 2xy(x) \right) dx$$

con condiciones de contorno y(1) = 0, y(2) = -1.

Solucion:

Definimos $F(x, y, p) = p^2 - 2xy$ y obtenemos:

$$\frac{\partial F}{\partial p} = 2p, \quad \frac{\partial F}{\partial y} = -2x \Rightarrow Z(x) = 2y'(x), \quad Z'(x) = -2x$$

Resolviendo la ultima ecuación, obteniendo:

$$Z(x) = -x^{2} + C \Rightarrow 2y'(x) = -x^{2} + C \Rightarrow y'(x) = \frac{-x^{2} + C}{2} \Rightarrow y(x) = -\frac{x^{3}}{6} + \frac{c}{2}x + D$$

Usando las condiciones de contorno, podemos calcular el valor de C y D, obteniendo:

$$y(x) = \frac{x - x^3}{6}$$

Ejercicio 1.2 (propuesto). Encuentra las curvas que unen (1,3) con (2,5), que puedan ser extremos del funcional:

$$I(y) = \int_{1}^{2} \left(y'(x) + x^{2}y'(x)^{2} \right) dx$$

Solución $y(x) = -\frac{4}{x} + 7$