1 Let $F \subseteq K$ be a field extensions, $F[X] \subseteq K[X]$ the corresponding polynomial rings, and $f, g \in F[X]$ nonzero polynomials. Show that $g \mid f$ in F[X] if and only if $g \mid f$ in K[X].

Proof. Since F[X] is a subring of K[X], divisibility in F[X] is simply a special case of divisibility in K[X].

Suppose $g \mid f$ in K[X], i.e., there exists $h \in K[X]$ such that f = gh in K[X]. The result is trivial if any of the three polynomials is zero, so we assume all are nonzero. Suppose a, b, c are the leading coefficients of f, g, h, respectively. We know that $a, b \in F$ and $c \in K$. Since the leading coefficient of the product of polynomials is the product of the leading coefficients, we have a = bc, which implies $c = b^{-1}a \in F$. That is, the leading coefficient of h is in F.

We prove, by induction on the degree of h, that all the coefficients of h must be in F. For the base case, when deg h=0, we have $h=c\in F$. For the inductive step, assume that the result holds whenever the degree of h is less than some n>0, i.e., the following holds:

$$f, g \in F[X], h \in K[X], f = gh \text{ in } K[X], \deg h < n \implies h \in F[X].$$

Assume f, g, h are as in the hypothesis, but $\deg h = n$. Write $h = cX^n + h_0$, where cX^n is the leading term of h and h_0 is the sum of the remaining terms. In particular, $h_0 \in K[X]$ with $\deg h_0 < \deg h = n$. We now have

$$f = gh = g(cX^n + h_0) = cX^ng + gh_0,$$

then define

$$\tilde{f} = f - cX^n g = gh_0.$$

We have shown above that $c \in F$, which implies $\tilde{f} \in F[X]$. Applying the inductive hypothesis to \tilde{f}, g, h_0 , we conclude that $h_0 \in F[X]$. Since the coefficients of h consist of its leading coefficient, c, and the coefficients of h_0 , we conclude all the coefficients of h are in F, hence $h \in F[X]$.

2 Let $a := \sqrt[4]{3} \in \mathbb{R}_{>0}$. Show that

(a) Neither a nor i lies in $\mathbb{Q}(ai)$.

Proof. We first note that it suffices to prove that $a \notin \mathbb{Q}(ai)$, since $i \in \mathbb{Q}(ai)$ implies $a = ai \cdot i^{-1} \in \mathbb{Q}(ai)$.

Denote the polynomial $f = X^4 - 3 \in \mathbb{Q}[X]$, which is irreducible by Eisenstein's criterion. Since f is monic and irreducible with ai as a root, it must be the minimal polynomial of ai over \mathbb{Q} . Therefore,

$$[\mathbb{Q}(ai):\mathbb{Q}] = \deg p_{ai,\mathbb{Q}} = \deg f = 4.$$

By the same argument, $[\mathbb{Q}(a):\mathbb{Q}]=4$.

Assume for contradiction that $a \in \mathbb{Q}(ai)$. Then we have a tower $\mathbb{Q} \subseteq \mathbb{Q}(a) \subseteq \mathbb{Q}(ai)$, so the tower rule gives us

$$[\mathbb{Q}(ai):\mathbb{Q}(a)] = \frac{[\mathbb{Q}(ai):\mathbb{Q}]}{[\mathbb{Q}(a):\mathbb{Q}]} = \frac{4}{4} = 1.$$

It follows that $\mathbb{Q}(a) = \mathbb{Q}(ai)$, but this is a contradiction since the former consists entirely of real elements, while the latter contains the imaginary element ai. We conclude that a does not lie in $\mathbb{Q}(ai)$.

Note that $i \in \mathbb{Q}(ai)$ implies $a = ai \cdot i^{-1} \in \mathbb{Q}(ai)$, so the contrapositive tells us $i \notin \mathbb{Q}(ai)$. \square

(b) The minimal polynomial of a over $\mathbb{Q}(i)$ is $X^4 - 3$.

Proof. Since a is a root of $X^4 - 3$, the minimal polynomial of a over $\mathbb{Q}(i)$ divides $X^4 - 3$, so

$$\deg p_{a,\mathbb{Q}(i)} \le \deg(X^4 - 3) = 4.$$

It remains to prove that $\deg p_{a,\mathbb{Q}(i)} = 4$.

The complex roots of $X^2 + 1$ are $\pm i$; neither is real, so the polynomial is irreducible over \mathbb{R} . In particular, $X^2 + 1$ is irreducible over $\mathbb{Q}(a)$, since $\mathbb{Q}(a)$ is contained in \mathbb{R} . Therefore, $X^2 + 1$ is the minimal polynomial of i over $\mathbb{Q}(a)$ and we calculate

$$[\mathbb{Q}(a,i):\mathbb{Q}(a)] = \deg p_{i,\mathbb{Q}(a)} = \deg(X^2 + 1) = 2.$$

By the same argument, $[\mathbb{Q}(i):\mathbb{Q}]=2$.

Applying the tower rule to $\mathbb{Q} \subseteq \mathbb{Q}(a) \subseteq \mathbb{Q}(a,i)$, we obtain

$$[\mathbb{Q}(a,i):\mathbb{Q}] = [\mathbb{Q}(a,i):\mathbb{Q}(a)][\mathbb{Q}(a):\mathbb{Q}] = 2 \cdot 4 = 8.$$

Lastly, applying the tower rule to $\mathbb{Q} \subseteq \mathbb{Q}(i) \subseteq \mathbb{Q}(a,i)$ gives

$$\deg p_{a,\mathbb{Q}(i)} = \left[\mathbb{Q}(a,i):\mathbb{Q}(i)\right] = \frac{\left[\mathbb{Q}(a,i):\mathbb{Q}\right]}{\left[\mathbb{Q}(i):\mathbb{Q}\right]} = \frac{8}{2} = 4.$$

We conclude that $X^4 - 3$ is a monic polynomial divisible by and having the same degree as the minimal polynomial $p_{a,\mathbb{O}(i)}$, so in fact $p_{a,\mathbb{O}(i)} = X^4 - 3$.

3 Let $F \subseteq K = F(a)$ be a simple algebraic field extension such that the minimal polynomial of a over F has degree p^m for some odd prime p and some m > 0. Show that $F(a^i) = K$ for all $i = 2, \ldots, p-1$.

Proof. Fix some $i \in \{2, ..., p-1\}$. Since $a^i \in K$, we have a tower $F \subseteq F(a^i) \subseteq K$. Then

$$p^m = \deg p_{a,F} = [K : F] = [K : F(a^i)][F(a^i) : F].$$

Since p is prime, it follows that

$$\deg p_{a^i,F} = [F(a^i) : F] = p^n,$$

for some $0 < n \le m$. Define the polynomial $f = p_{a^i,F}(X^i) \in F[X]$, which has degree ip^n . Then a is a root of f, so $p_{a,F}$ divides f. In particular,

$$p^m = \deg p_{a,F} \le \deg f = ip^n < p^{n+1},$$

so $m \leq n$, hence n = m. We then calculate

$$[K:F(a^i)] = \frac{[K:F]}{[F(a^i):F]} = \frac{p^m}{p^n} = 1,$$

which implies $F(a^i) = K$.

Lemma 1. For nonnegative integers M, N, P with $M \leq N$, we have

$$\frac{N!}{M!} \le \frac{(N+P)!}{(M+P)!}.$$

Proof. We perform induction on P. For the base case, note that $(M+1)/(N+1) \leq 1$, so

$$\frac{N!}{M!} = \frac{(N+1)!/(N+1)}{(M+1)!/(M+1)} = \frac{(N+1)!}{(M+1)!} \cdot \frac{M+1}{N+1} \le \frac{(N+1)!}{(M+1)!}.$$

Assuming the result holds for P-1, we find

$$\frac{N!}{M!} \le \frac{(N+P-1)!}{(M+P-1)!} \le \frac{(N+P)!}{(M+P)!},$$

where the second inequality is an application of the base case.

Let $F \subseteq K$ be a field extension, $f \in F[X]$ a polynomial with degree n > 0, and r the number of distinct roots of f in K. Assume that K is a splitting field for f over F. Show that $[K:F] \leq n!/(n-r)!$.

Proof. Write $K = F(a_1, \ldots, a_r)$, where the a_i 's are the distinct roots of f in K. Let $m_i \in \mathbb{Z}_{>0}$ be the multiplicity of a_i in f, then in K[X] we can write

$$f = \prod_{i=1}^{r} (X - a_i)^{m_i}.$$

To prove the inequality, we perform induction on r.

When r = 1, we have $f = (X - a)^n$ with $a = a_1$. Then a is a root of f, so the minimal polynomial of a over F divides f, thus

$$[K:F] = [F(a):F] = \deg p_{a,F} \le \deg f = n = \frac{n!}{(n-1)!}.$$

For the inductive step, assume the result hold in any case that the number of distinct roots is at most than r-1. Define the polynomial

$$g = \prod_{i=1}^{r-1} (X - a_i)^{m_i} \in K[X],$$

then $f = (X - a_r)^{m_r} g$ in K[X]. Both f and $(X - a_r)^{m_r}$ are in $F(a_r)[X]$, so Problem 1 tells us that g is also in $F(a_r)[X]$. Moreover, g is of degree $n - m_r$ and has r - 1 distinct roots in K, so the inductive hypothesis gives us

$$[K:F(a_r)] \le \frac{(n-m_r)!}{(n-m_r-(r-1))!} \le \frac{(n-1)!}{(n-r)!},$$

where the second inequality is an application of Lemma 1 with $P = m_r - 1$. Similar to the base case, the minimal polynomial of a_r over F divides f, so

$$[F(a_r):F] = \deg p_{a_r,F} \le \deg f = n.$$

Combining these inequalities with the tower rule, we obtain

$$[K:F] = [K:F(a_r)][F(a_r):F] \le \frac{(n-1)!}{(n-r)!} \cdot n = \frac{n!}{(n-r)!}.$$