Réseau de neurones à L couches

- On note a_j l'activité du $j^{\rm e}$ « neurone », incluant les neurones d'entrée et de sortie. Donc on aura $a_i=x_i$
- On note in_i l'activité du j^e neurone avant la non-linéarité logistique, c'est à dire

$$a_j = Logistic(in_j) = Logistic(\Sigma_i \ w_{i,j}a_i)$$

Dérivation de la règle d'apprentissage

La dérivation de la règle d'apprentissage se fait encore avec les gradients

$$w_{i,j} \leftarrow w_{i,j} - \alpha \frac{\partial}{\partial w_{i,j}} Loss(y_t, h_{\mathbf{w}}(\mathbf{x}_t)) \quad \forall i, j$$

- Calculer ces dérivées partielles peut paraître ardu
- Le calcul est grandement facilité en utilisant la règle de dérivation en chaîne

Dérivation en chaîne

• Si on peut écrire une fonction f(x) à partir d'un résultat intermédiaire g(x)

$$\frac{\partial f(x)}{\partial x} = \frac{\partial f(x)}{\partial g(x)} \frac{\partial g(x)}{\partial x}$$

• Si on peut écrire une fonction f(x) à partir de résultats intermédiaires $g_i(x)$, alors on peut écrire la dérivée partielle

$$\frac{\partial f(x)}{\partial x} = \sum_{i} \frac{\partial f(x)}{\partial g_i(x)} \frac{\partial g_i(x)}{\partial x}$$

Dérivation de la règle d'apprentissage

La dérivation de la règle d'apprentissage se fait encore avec les gradients

$$w_{i,j} \leftarrow w_{i,j} - \alpha \frac{\partial}{\partial w_{i,j}} Loss(y_t, h_{\mathbf{w}}(\mathbf{x}_t)) \ \forall i, j$$

Par l'application de la dérivée en chaîne, on a:

$$w_{i,j} \longleftarrow w_{i,j} - \alpha \frac{\partial}{\partial i n_j} Loss(y_t, h_{\mathbf{w}}(\mathbf{x}_t)) \frac{\partial}{\partial w_{i,j}} i n_j$$

gradient de la perte p/r gradient de la à la somme des entrées du neurone

somme p/r au poids $w_{i,j}$

- Par contre, un calcul naïf de toutes ces dérivées serait très inefficace
 - on utilise la procédure de rétropropagation des gradients (ou erreurs)

Rétropropagation des gradients

Utiliser le fait que la dérivée pour un neurone à la couche l peut être calculée à partir de la dérivée des neurones connectés à la couche l+1

$$\frac{\partial Loss}{\partial in_j} = \frac{\partial Loss}{\partial a_j} \frac{\partial a_j}{\partial in_j}$$

k itère sur les neurones cachés de la couche l+1

$$= \left(\sum_{k} \frac{\partial Loss}{\partial in_{k}} \frac{\partial in_{k}}{\partial a_{j}}\right) \frac{\partial g(in_{j})}{\partial in_{j}}$$

$$= \left(\sum_{k} \frac{\partial Loss}{\partial in_{k}} w_{j,k}\right) g(in_{j})(1 - g(in_{j}))$$

où
$$in_k = \sum w_{i,k} a_i$$
 et

où $in_k = \sum_i w_{i,k} a_i$ et $\underbrace{Logistic(\cdot) \equiv g(\cdot)}_{\text{(pour simplifier notation)}}$

Hugo Larochelle et Froduald Kabanza

Visualisation de la rétropropagation

L'algorithme d'apprentissage commence par une propagation avant

Hugo Larochelle et Froduald Kabanza

Visualisation de la rétropropagation

Ensuite, le gradient sur la sortie est calculé, et le gradient rétropropagé

$$x_{1} = \boxed{1} \underbrace{\begin{array}{c} w_{1,3} \\ w_{1,4} \end{array}} = \boxed{3} \underbrace{\begin{array}{c} w_{3,5} \\ w_{3,6} \end{array}} = \boxed{5} \underbrace{\begin{array}{c} w_{5,7} \\ w_{5,7} \end{array}} = \underbrace{\begin{array}{c} \partial \\ \partial in_{7} \end{array}} Loss$$

$$x_{2} = \boxed{2} \underbrace{\begin{array}{c} w_{2,3} \\ w_{2,4} \end{array}} = \underbrace{\begin{array}{c} d \\ din_{j} \end{array}} Loss = g(in_{j})(1 - g(in_{j})) \sum_{k} w_{j,k} \frac{\partial}{\partial in_{k}} Loss$$

Visualisation de la rétropropagation

• Peut propager $-\frac{\partial}{\partial in_i}Loss=\Delta[j]$ aussi (décomposition équivalente du livre)

$$\Delta[j] = g(in_j)(1 - g(in_j)) \sum_k w_{j,k} \Delta[k]$$

Retour sur la règle d'apprentissage

La dérivation de la règle d'apprentissage se fait encore avec les gradients

$$w_{i,j} \longleftarrow w_{i,j} - \alpha \frac{\partial}{\partial i n_j} Loss(y_t, h_{\mathbf{w}}(\mathbf{x}_t)) \frac{\partial}{\partial w_{i,j}} i n_j$$
$$-\Delta[j] \qquad a_i$$

Donc la règle de mise à jour peut être écrite comme suite:

$$w_{i,j} \leftarrow w_{i,j} + \alpha \ a_i \ \Delta[j]$$

```
function BACK-PROP-LEARNING(examples, network) returns a neural network
  inputs: examples, a set of examples, each with input vector x and output vector y
           network, a multilayer network with L layers, weights w_{i,j}, activation function g
  local variables: \Delta, a vector of errors, indexed by network node
    for each weight w_{i,j} in network do
        w_{i,j} \leftarrow a small random number
   repeat
       for each example (x, y) in examples do
           /* Propagate the inputs forward to compute the outputs */
           for each node i in the input layer do
               a_i \leftarrow x_i
           for \ell = 2 to L do
               for each node j in layer \ell do
                   in_j \leftarrow \sum_i w_{i,j} a_i
                   a_i \leftarrow q(in_i)
           /* Propagate deltas backward from output layer to input layer */
           for each node j in the output layer do
               \Delta[j] \leftarrow y_j - a_j \quad (= -\partial Loss/\partial in_j)
           for \ell = L - 1 to 1 do
               for each node i in layer \ell do
                   \Delta[i] \leftarrow g(in_i)(1 - g(in_i)) \sum_{i} w_{i,j} \Delta[j]
           /* Update every weight in network using deltas */
           for each weight w_{i,j} in network do
              w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]
  until some stopping criterion is satisfied
  return network
```

 $Logistic(\cdot) \equiv g(\cdot)$ (pour simplifier notation)