© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°06

• La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 ★
ESTP 1977

Soit E un espace vectoriel normé. On note respectivement \mathring{X} et \overline{X} l'intérieur et l'adhérence d'une partie X de E. On note également $\alpha(X) = \mathring{\overline{X}}$ et $\beta(X) = \mathring{\overline{X}}$.

- **1.** Montrer que si X est ouvert, alors $X \subset \alpha(X)$ et que si X est fermé, alors $\beta(X) \subset X$.
- **2.** Montrer que, de manière générale, $\alpha(\alpha(X)) = \alpha(X)$ et $\beta(\beta(X)) = \beta(X)$.
- **3.** Dans cette question, on considère $E = \mathbb{R}$. Déterminer les ensembles $\overline{\mathbb{Q}}$ et $\mathring{\mathbb{Q}}$.
- **4.** Donner un exemple (dans \mathbb{R} si l'on veut), où les ensembles suivants sont tous distincts :

$$X, \mathring{X}, \overline{X}, \alpha(X), \beta(X), \alpha(\mathring{X}), \beta(\overline{X})$$

5. A et B étant deux parties de E, montrer que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Donner un exemple simple où $A \cap \overline{B}$, $\overline{A} \cap \overline{B}$ et $\overline{A} \cap \overline{B}$ sont distincts et un autre où, A n'étant pas ouvert, $\overline{A} \cap \overline{B}$ n'est pas inclus dans $\overline{A} \cap \overline{B}$.

Exercice 2 $\star\star$ CCP MP 2020

On note $GL_n(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.

On pourra utiliser librement dans cet exercice le fait que l'application déterminant est continue sur $\mathcal{M}_n(\mathbb{R})$.

- **1.** L'ensemble $GL_n(\mathbb{R})$ est-il fermé dans $\mathcal{M}_n(\mathbb{R})$?
- **2.** Démontrer que l'ensemble $\mathrm{GL}_n(\mathbb{R})$ est ouvert dans $\mathcal{M}_n(\mathbb{R})$.
- **3.** Soit M un élément de $\mathcal{M}_n(\mathbb{R})$. Justifier que

$$\exists \rho > 0, \ \forall \lambda \in]0, \rho[, \ M - \lambda I_n \in GL_n(\mathbb{R})$$

En déduire que l'ensemble $\mathrm{GL}_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.

4. Application. Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, montrer que AB et BA ont le même polynôme caractéristique.

A l'aide des matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, prouver que le résultat n'est pas vrai pour les polynômes minimaux.

5. Démontrer que $GL_n(\mathbb{R})$ n'est pas connexe par arcs.

Exercice 3 ★★

ENSAM Option T 1996

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose

$$u_n(x) = \frac{x}{n(1+nx^2)}$$

- 1. Etudier la convergence simple de la série $\sum_{n\in\mathbb{N}^*} u_n$.
- 2. Etudier les variations de u_n . Que peut-on conclure pour la convergence de la série $\sum u_n$? La somme S de la série $\sum_{n\in\mathbb{N}^*}u_n$ est-elle continue sur \mathbb{R} ?
- **3.** Montrer que S est de classe C^1 sur \mathbb{R}^* .
- **4.** Pour tout $N \in \mathbb{N}^*$, on pose $S_N = \sum_{n=1}^N u_n$. Montrer que pour tout $N \in \mathbb{N}^*$, il existe un réel $\alpha_N > 0$ tel que pour $0 < |x| \le \alpha_N$, on ait

$$\frac{S(x)}{x} \ge \frac{S_N(x)}{x} \ge \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n}$$

En déduire la limite en 0 de $x \mapsto \frac{S(x)}{x}$. S'est-elle dérivable en 0?

Exercice 4 ★★ E3A PSI 2020

Pour tout entier naturel n, on définit sur l'intervalle $J = [1, +\infty[$, la fonction f_n par :

$$f_n(x) = \frac{(-1)^n}{\sqrt{1 + nx}}$$

1. Déterminer que la série de fonctions $\sum_{n\in\mathbb{N}} f_n$ converge simplement sur J.

On note alors $\varphi(x) = \sum_{n=0}^{+\infty} f_n(x)$ pour tout $x \in J$..

- 2. Montrer que $\sum_{n\in\mathbb{N}} f_n$ ne converge pas normalement sur J.
- **3.** Etudier alors sa convergence uniforme sur J.
- **4.** Déterminer $\ell = \lim_{x \to +\infty} \varphi(x)$.
- 5. Pour $n \in \mathbb{N}^*$, on note $u_n = \frac{(-1)^n}{\sqrt{n}}$.
 - **a.** Justifier la convergence de la série $\sum u_n$. On note $a=\sum_{n=1}^{+\infty}u_n$ sa somme.
 - **b.** Montrer que l'on a au voisinage de l'infini :

$$\varphi(x) = \ell + \frac{a}{\sqrt{x}} + \mathcal{O}\left(\frac{1}{x^{3/2}}\right)$$

© Laurent Garcin MP Dumont d'Urville

Exercice 5 ★ CCP MP 2014

Soit un entier $n \ge 2$ et E un espace vectoriel sur $\mathbb R$ de dimension n. On appelle *projecteur* de E, tout endomorphisme p de E vérifiant $p \circ p = p$.

- **1.** Soit *p* un projecteur de E.
 - a. Démontrer que les sous-espaces vectoriels Ker(p) et Im(p) sont supplémentaires dans E.
 - **b.** En déduire que la trace de p (notée tr(p)) est égale au rang de p (noté rg(p)).
 - **c.** Un endomorphisme u de E vérifiant tr(u) = rg(u) est-il nécessairement un projecteur de E?
- **2.** Donner un exemple de deux matrices A et B de $\mathcal{M}_3(\mathbb{R})$ de rang 1 telles que A soit diagonalisable et B ne soit pas diagonalisable. Justifier la réponse.
- **3.** Soit u un endomorphisme de E de rang 1.
 - **a.** Démontrer qu'il existe une base $\beta = (e_1, \dots, e_n)$ de E telle que la matrice $\max_{\beta}(u)$ de u dans β soit de la forme :

$$\operatorname{mat}_{\beta}(u) = \begin{pmatrix} 0 & \cdots & 0 & a_1 \\ 0 & \cdots & 0 & a_2 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & a_n \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

où a_1, \ldots, a_n sont n nombres réels.

- **b.** Démontrer que *u* est diagonalisable si, et seulement si, la trace de *u* est non nulle.
- **c.** On suppose que tr(u) = rg(u) = 1. Démontrer que u est un projecteur.
- **d.** Soit la matrice $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Démontrer que A est la matrice d'un projecteur de \mathbb{R}^3

dont on déterminera l'image et le noyau.

EM Lyon 2022 – Symétries anticommutant

Exercice 6 ★★

Dans tout ce problème, E est un \mathbb{R} -espace vectoriel de dimension finie n. L'application identité de E est notée Id. Si f est un endomorphisme de E, pour toute valeur propre λ de f on note $E_{\lambda}(f) = \operatorname{Ker}(f - \lambda \operatorname{Id})$ le sous-espace propre de f relatif à λ .

1. Dans cette question seulement, E est un \mathbb{R} -espace vectoriel de dimension n=4. On le munit d'une base $\mathcal{B}=(b_1,b_2,b_3,b_4)$ et on considère les endomorphismes u et v représentés dans la base \mathcal{B} par les matrices

$$U = \begin{pmatrix} 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 0 & -5 & 0 \\ 2 & 0 & 2 & -1 \end{pmatrix} \text{ et } V = \begin{pmatrix} 3 & 1 & 6 & 3 \\ -2 & 0 & -3 & 0 \\ -2 & -1 & -4 & -2 \\ 2 & 1 & 3 & 1 \end{pmatrix}$$

- **a.** Montrer que u et v sont des symétries, et vérifier rapidement que $u \circ v = -v \circ u$.
- **b.** Calculer tr(u) et tr(v); montrer que cela permet de déterminer la dimension des sous-espaces propres de u et de v (sans avoir à déterminer ces derniers explicitement).
- c. Déterminer une base (e_1, e_2) de $E_1(u)$. Montrer que la famille (e_3, e_4) définie par $e_3 = v(e_1)$ et $e_4 = v(e_2)$ est une base de $E_{-1}(u)$. Si l'on pose $\mathcal{E} = (e_1, e_2, e_3, e_4)$, justifier que \mathcal{E} est une base de E et déterminer la matrice représenta-

tive de u et de v dans la base \mathcal{E} .

On revient au cas général; n est maintenant supposé quelconque. Soient u et v deux endomorphismes de E

- **2.** Montrer que $tr(u \circ v) = 0$.
- 3. Montrer que tr(u) = tr(v) = 0.

vérifiant $u^2 = v^2 = \text{Id et } u \circ v + v \circ u = 0.$

- **4.** Montrer que $E = E_1(u) \oplus E_{-1}(u)$ et expliciter, pour tout vecteur $x \in E$, la décomposition de x dans cette somme directe.
- **5.** Montrer que la dimension de E est paire. On notera n = 2k, avec k un entier naturel.
- **6.** Montrer que $v(E_1(u)) = E_{-1}(u)$ et que $v(E_{-1}(u)) = E_1(u)$.
- 7. Montrer qu'il existe une base $\mathcal{C}=(e_1,\ldots,e_k,e_{k+1},\ldots,e_{2k})$ de E dans laquelle les matrices de u et de v s'écrivent, par blocs :

$$\operatorname{mat}_{\mathcal{C}}(u) = \left(\begin{array}{c|c} \operatorname{I}_k & 0 \\ \hline 0 & -\operatorname{I}_k \end{array}\right) \text{ et } \operatorname{mat}_{\mathcal{C}}(v) = \left(\begin{array}{c|c} 0 & \operatorname{I}_k \\ \hline \operatorname{I}_k & 0 \end{array}\right)$$