

СЧЕТЧИК АКТИВНОЙ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ОДНОФАЗНЫЙ МНОГОТАРИФНЫЙ СЕ 102

ИНЕС.411152.094 РЭ Руководство по эксплуатации

Предприятие-изготовитель: ОАО "Концерн Энергомера" Россия, 355029, г. Ставрополь, ул. Ленина, 415, тел. (8652) 35-75-27, факс 56-66-90

Настоящее руководство по эксплуатации предназначено для изучения счетчика активной электрической энергии однофазного многотарифного СЕ 102 (в дальнейшем – счетчика) и содержит описание его принципа действия, а также сведения, необходимые для правильной эксплуатации.

К работе со счетчиком допускаются лица, специально обученные для работы с напряжением до 1000 В и изучившие настоящее руководство по эксплуатации.

1. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 1.1 По безопасности эксплуатации счетчики удовлетворяют требованиям безопасности по ГОСТ 22261-94 и ГОСТ Р 51350-99.
- 1.2 По способу защиты человека от поражения электрическим током счетчики соответствуют классу II по ГОСТ Р 51350-99.
- 1.3 Сопротивление изоляции между корпусом и электрическими цепями не менее:
 - 20 МОм в условиях п. 2.1.4;
- 7 МОм при температуре окружающего воздуха 40 ± 2 °C при относительной влажности воздуха 93%.

2 ОПИСАНИЕ СЧЕТЧИКА И ПРИНЦИПА ЕГО РАБОТЫ

2.1 Назначение

2.1.1 Исполнения счетчиков (СЕ 102), тип корпуса (S7 – для установки на щиток, R8 – для установки на рейку), класс точности (1 или 2), номинальное фазное напряжение 230В (4), базовый и максимальный токи 5-60 А (5) и 10-100 А (8), наличие инфракрасного порта (О), испытательного выходного устройства (К), электронной пломбы (V) приведены в таблице 2.1.

Таблица 2.1

Условное обозначение счетчика	Класс точности	Номи- нальное напряже- ние, В	Базовый (макси- маль- ный) ток, А	ИК-порт	Испыта- тельное выход- ное уст- ройство	Элек- тронная пломба
CE 102 S7 145 AOKSVZ	1	230	5(60)	есть	есть	есть
CE 102 S7 245 AOKSVZ	2	230	5(60)	есть	есть	есть
CE 102 S7 148 AOKSVZ	1	230	10(100)	есть	есть	есть
CE 102 S7 248 AOKSVZ	2	230	10(100)	есть	есть	есть
CE 102 S7 145 OKR2SVZ	1	230	5(60)	есть	есть	есть

CE 102 S7 245 OKR2SVZ	2	230	5(60)	есть	есть	есть
CE 102 S7 148 OKR2SVZ	1	230	10(100)	есть	есть	есть
CE 102 S7 248 OKR2SVZ	2	230	10(100)	есть	есть	есть
CE 102 S7 145 OKR1SVZ	1	230	5(60)	есть	есть	есть
CE 102 S7 245 OKR1SVZ	2	230	5(60)	есть	есть	есть
CE 102 S7 148 OKR1SVZ	1	230	10(100)	есть	есть	есть
CE 102 S7 248 OKR1SVZ	2	230	10(100)	есть	есть	есть
CE 102 S7 145 OKPSVZ	1	230	5(60)	есть	есть	есть
CE 102 S7 245 OKPSVZ	2	230	5(60)	есть	есть	есть
CE 102 S7 148 OKPSVZ	1	230	10(100)	есть	есть	есть
CE 102 S7 248 OKPSVZ	2	230	10(100)	есть	есть	есть
CE 102 R8 145 AOKSSVZ	1	230	5(60)	есть	есть	есть
CE 102 R8 245 AOKSSVZ	2	230	5(60)	есть	есть	есть
CE 102 R8 148 AOKSSVZ	1	230	10(100)	есть	есть	есть
CE 102 R8 248 AOKSSVZ	2	230	10(100)	есть	есть	есть
CE 102 R8 145 AOKSVZ	1	230	5(60)	есть	есть	есть
CE 102 R8 245 AOKSVZ	2	230	5(60)	есть	есть	есть
CE 102 R8 148 AOKSVZ	1	230	10(100)	есть	есть	есть
CE 102 R8 248 AOKSVZ	2	230	10(100)	есть	есть	есть

CE 102 R8 145 OKR2SVZ	1	230	5(60)	есть	есть	есть
CE 102 R8 245 OKR2SVZ	2	230	5(60)	есть	есть	есть
CE 102 R8 148 OKR2SVZ	1	230	10(100)	есть	есть	есть
CE 102 R8 248 OKR2SVZ	2	230	10(100)	есть	есть	есть
CE 102 R8 145 OKR1SVZ	1	230	5(60)	есть	есть	есть
CE 102 R8 245 OKR1SVZ	2	230	5(60)	есть	есть	есть
CE 102 R8 148 OKR1SVZ	1	230	10(100)	есть	есть	есть
CE 102 R8 248 OKR1SVZ	2	230	10(100)	есть	есть	есть
CE 102 R8 145 OKPSVZ	1	230	5(60)	есть	есть	есть
CE 102 R8 245 OKPSVZ	2	230	5(60)	есть	есть	есть
CE 102 R8 148 OKPSVZ	1	230	10(100)	есть	есть	есть
CE 102 R8 248 OKPSVZ	2	230	10(100)	есть	есть	есть

Структура условного обозначения приведена в приложении В.

- 2.1.2 Счетчик удовлетворяет требованиям ГОСТ Р 52322-2005, ГОСТ Р 52320-2005.
- 2.1.3 Счетчик электрической энергии СЕ 102, является счетчиком непосредственного включения и предназначен для многотарифного (до 8-и) учета активной энергии в однофазных цепях переменного тока.

- 2.1.4 Счетчик подключается к однофазной сети переменного тока и устанавливается в местах, имеющих дополнительную защиту от влияния окружающей среды (помещения, стойки) с рабочими условиями применения:
 - температура окружающего воздуха от минус 40 до плюс 70°C;
 - относительная влажность окружающего воздуха 30 98%;
 - атмосферное давление от 70 до 106,7 кПа (537 800 мм рт.ст.);
 - частота измерительной сети 50±2,5 Гц или 60±3 Гц;
- форма кривой напряжения и тока измерительной сети синусоидальная с коэффициентом несинусоидальности не более 12%.
 - 2.2 Технические характеристики
- 2.2.1 Класс точности счетчика 1 или 2 по ГОСТ Р 52322-2005, номинальное напряжение 230 В, базовый ток 5 или 10 А, передаточное число 3200 (для счетчиков с током 5 (60) А) или 800 (для счетчиков с током 10 (100) А) имп/кBт·ч, положение запятой 000000,00.
- 2.2.2 Частота измерительной сети для счетчиков равна $50\pm2,5~\Gamma$ ц или $60\pm3~\Gamma$ ц.
 - 2.2.3 Максимальная сила тока составляет 1000% и 1200% базового.
- 2.2.4 Полная (активная) мощность, потребляемая цепью напряжения счетчика, при номинальном напряжении, нормальной температуре, номинальной частоте не превышает $6.0~\mathrm{B}\cdot\mathrm{A}$ $(1.0~\mathrm{B}\mathrm{T}).$

- 2.2.5 Полная мощность, потребляемая цепью тока, не превышает 0,1 В·А при базовом токе, при нормальной температуре и номинальной частоте сети.
- 2.2.6 Начальный запуск. Счетчик нормально функционирует не позднее чем через 5 с после того, как к его зажимам будет приложено номинальное напряжение.
- 2.2.7 Счетчики имеют 8-разрядный электронный счетный механизм, осуществляющий учет электрической энергии непосредственно в кВт·ч слева от запятой, и в сотых долях кВт·ч справа от запятой.
- 2.2.8 Счетчики имеют инфракрасный порт (ИК-порт). Скорость 9600 бод, формула: 8 бит данных, без контроля четности, 1 стоповый бит. Максимальная дальность работы ИК-порта не менее 1 м.
- 2.2.9 Счетчики могут иметь встроенный модуль последовательного интерфейса RS-485 со скоростью обмена 2400, 4800, 9600, 14400, 19200, 38400 или 57600 бод или модули удаленного доступа: радиомодем или сетевой модем, параметры которых указываются в отдельном паспорте на модуль.

Примечание. Счетчики с модулями радиомодемов со встроенной антенной исполнения R1 обеспечивают меньшую дальность устойчивой связи по сравнению со счетчиками с модулями радиомодемов с внешней антенной исполнения R2, что необходимо учитывать при построении систем АСКУЭ.

Внешняя антенна для счетчиков исполнения R2 не входит в комплект поставки счетчика CE 102 и поставляется по отдельному заказу.

- 2.2.10 Счетчики могут иметь встроенные реле сигнализации, предназначенные для коммутации внешних цепей. Нагрузочная способность реле $0.1~\mathrm{A}$, напряжение $230~\mathrm{B}$.
- 2.2.11 Счетчики обеспечивают первоначальное задание через ИК-порт или дополнительный интерфейс, отсчет и отображение на жидкокристаллическом индикаторе (далее ЖКИ или дисплей):
 - значений текущего времени (часы, минуты, секунды);
 - текущей даты (число, месяц, год);
 - адреса счетчика;
 - а также отображение на дисплее:
- значений электрической энергии, накопленной по задействованным тарифам;
- номера действующего тарифа и признака действующей тарифной программы (рабочая, субботняя, воскресная или особая);
- значений потребленной электроэнергии на конец месяца нарастающим итогом за тринадцать прошедших месяцев по каждому тарифу и суммарно;
 - текущей мощности (с усреднением за последний минутный интервал);
 - версии встроенного программного обеспечения.

Отображение информации на ЖКИ обеспечивается только при включенном питании.

- 2.2.12 Счетчики обеспечивают задание и получение через ИК-порт или дополнительный интерфейс и хранение:
- величины установленной автоматической суточной коррекции хода часов (в секундах в сутки);
- до 16 значений времени начала действия тарифных зон (тарифных программ) отдельно для рабочих, субботних и воскресных дней для каждого месяца;
- до 16 значений времени начала действия тарифных зон отдельно для особой тарифной программы;
- дат (число, месяц) 32-х произвольно устанавливаемых потребителем особых дней с признаком рабочей, субботней, воскресной или особой тарифной программы;
- признака отключения отдельной тарификации для субботних, воскресных и особых дней;
 - признака отключения перехода на летнее, зимнее время;
 - абонентского номера, сетевого адреса и паролей счетчика;
- времени автоматической смены индикации накопленной информации по тарифам, и текущего времени;

- времени ресурса батареи;
- лимитов по потреблению электрической энергии по каждому тарифу за месяп:
- лимитов по потреблению электрической энергии, суммарной по тарифам за месяц;
- признаков действия лимита по потреблению электрической энергии (срабатывание реле и отображение превышения лимита на дисплее или только отображение на дисплее);
 - лимита по потребляемой мощности по каждому тарифу;
- признака действия лимита по потребляемой мощности (срабатывание реле и отображение превышения лимита на дисплее или только отображение на дисплее);
- признака настройки реле сигнализации (срабатывание реле по команде по ИК-порту или дополнительному интерфейсу или по превышению одного из лимитов):
- интервала времени усреднения графиков активной мощности (15, 30 или 60 минут).
- 2.2.13 Счетчики обеспечивают получение через инфракрасный порт (ИКпорт) или дополнительный интерфейс:

- значений потребленной электроэнергии на конец месяца нарастающим итогом за тринадцать прошедших месяцев по каждому тарифу и суммарно;
- значений потребленной электроэнергии за сорок пять суток по каждому тарифу и суммарно;
 - текущей мощности (с усреднением за последний минутный интервал);
 - текущей получасовой мощности;
- значений активной мощности, усредненной на заданном интервале 15, 30 или 60 минут, за 31, 62 и 124 дня соответственно;
- максимальных значений активной мощности, усредненной на интервале 30 минут за текущие и прошлые сутки
- информации о событиях с фиксацией времени (журналы событий) в соответствии с таблицей, приведенной в приложении Γ .
- 2.2.14 Счетчики обеспечивают средний суточный ход часов не более ± 1 с в нормальных условиях, и не более ± 3 с в рабочих условиях применения (при введении автоматической суточной коррекции).
- 2.2.15 Счетчики обеспечивают возможность установки автоматической коррекции счета времени в пределах от минус 5,35 до плюс 10,7 с/сутки.
- 2.2.16 Счетчики обеспечивают возможность установки времени автоматической смены индикации (в диапазоне от 5 с до 255 с) электроэнергии по тарифам и текущего времени.

- 2.2.17 Запоминающее устройство счетчиков обеспечивает сохранение накопленной информации в течение срока службы, а хода часов при отключении от измерительной сети в течение не менее 10 лет.
- 2.2.18 В счетчики устанавливаются 12 месячных тарифных программ отдельно для рабочих, субботних и воскресных дней (всего 36 программ).
- 2.2.19 В счетчики устанавливаются 1 тарифная программа для особых дней.
- 2.2.20 В субботу и воскресенье счетчики автоматически переходят к соответствующим тарифным программам (при соответствующей настройке). Дискретность установки интервала действия тарифной зоны не менее 30 мин.
- 2.2.21 Максимальный устанавливаемый интервал действия тарифной зоны 24 ч.
- 2.2.22 Счетчики обеспечивают защиту от несанкционированного сбора накопленной информации и изменения настроек счетчика с помощью паролей на чтение (9 цифр) и запись (два варианта по 9 цифр) с возможностью включения функции блокировки обмена по ИК-порту или дополнительному интерфейсу до конца текущих суток при трехкратном обращении к счетчику с неправильным паролем.
- 2.2.23 Исполнения счетчиков с электронной пломбой обеспечивают дополнительную защиту от несанкционированного доступа к клеммной колодке

счетчика. При этом производится фиксирование времени вскрытия крышки клеммной колодки в журнале событий.

- 2.2.24 Счетчики обеспечивают различные варианты учета электроэнергии в зависимости от настройки:
- наличие /отсутствие отдельных тарифных программ в субботние, воскресные дни и особые даты;
 - разрешение /запрет перехода на зимнее /летнее время;
- количество индицируемых тарифных накопителей (выбирается по наличию в тарифной программе).

Настройка, как и занесение тарифных программ и особых дат, возможна через ИК-порт путем подключения компьютера через адаптер ИК-порта или дополнительного интерфейса и запуска программы обслуживания. Рекомендуемый тип адаптера IRmate 210 фирмы "Tekram". Допускается использование адаптеров других производителей, подключаемых к СОМ-порту компьютера.

- 2.2.25 Счетчики обеспечивают автоматический переход на летнее и зимнее время. Переходы происходят в 02.00 в последнее воскресенье марта (на 1 час вперед) и в 03.00 в последнее воскресенье октября (на 1 час назад). Счетчики также обеспечивают автоматический учет високосных лет.
- 2.2.26 В счетчике имеется гальванически изолированное от измерительных цепей испытательное выходное устройство.

- 2.2.27 Счетчики имеют орган управления механическую (корпус S7) или оптическую (корпус R8) кнопку для просмотра накопленной информации;
 - 2.2.28 Счетчики имеют световой индикатор функционирования.
- 2.2.29 Стартовый ток. Счетчик включается и продолжает регистрировать показания при токе $0,01~\rm A$ с базовым током $5~\rm A$ и при токе $0,02~\rm A$ с базовым током $10~\rm A$.
- 2.2.30 Предел допускаемого значения основной погрешности в процентах указан в таблице 2.2.

Таблица 2.2

таолица 2.2			
Значение тока	Коэффициент мощности	Пределы допускаемой основной погрешности, %, для счетчиков класса точности	
		1	2
$0.05I_{\tilde{6}} \le I < 0.10I_{\tilde{6}}$	1,00	±1,5	±2,5
$0,10I_{\tilde{o}} \leq I \leq I_{\text{Makc}}$	1,00	±1,0	±2,0
$0.10I_{\tilde{o}} \le I < 0.20I_{\tilde{o}}$	0,5 (инд)	±1,5	±2,5
$0,10I_{\tilde{\theta}} \leq I < 0,20I_{\tilde{\theta}}$	0,8 (емк)		-
0.201 < 1 < 1	0,5 (инд)	±1,0	±2,0
$0,20I_{\tilde{o}} \leq I \leq I_{\text{макс}}$	0,8 (емк)		-

- 2.2.31 Отсутствие самохода. При отсутствии тока в цепи тока и значении напряжения равном 1,15 номинального испытательный выход создает не более одного импульса, в течение времени наблюдения равного 13 мин 40 с для счетчика класса точности 1, и 10 мин 50 с для счетчика класса точности 2.
- 2.2.32 При напряжении ниже $0.75\,U_{\scriptscriptstyle HOM}$ погрешность находится в пределах от 10 до минус 100%.
- 2.2.33 Средняя наработка до отказа счетчика с учетом технического обслуживания, регламентируемого в настоящем РЭ, не менее 160000 ч.

Средняя наработка до отказа устанавливается для условий п. 2.1.4

- 2.2.34 Средний срок службы счетчика 24 года.
- 2.2.35 Габаритные размеры СЕ 102 в корпусе S7 200×110×73 мм.
- 2.2.36 Габаритные размеры СЕ 102 в корпусе R8 143×113×72,5 мм.
- 2.2.37 Общий вид счетчика, габаритные и присоединительные размеры показаны в приложении А.
 - 2.2.38 Масса счетчиков не более 1 кг.
 - 2.3 Устройство и работа прибора.
- 2.3.1 Принцип действия счетчика основан на перемножении входных сигналов тока и напряжения по методу сигма-дельта модуляции с последующим преобразованием сигнала в частоту следования импульсов, пропорцио-

нальную входной мощности. Суммирование этих импульсов отсчетным устройством дает количество активной энергии. Счетчик также имеет в своем составе испытательный выход для подключения к системам автоматизированного учета потребленной электроэнергии или для поверки.

2.3.2 Конструктивно счетчик выполнен в пластмассовом корпусе. В корпусе размещена печатная плата, на которой расположена вся схема счетчика. В качестве датчика входного тока используется шунт, соединенный с контактами колодки. Зажимы для подсоединения счетчика к сети, испытательный выход закрываются пластмассовой крышкой.

3 ПОДГОТОВКА И ПОРЯДОК РАБОТЫ

- 3.1 Распаковывание
- 3.1.1 После распаковывания произвести наружный осмотр счетчика, убедиться в отсутствии механических повреждений, проверить наличие пломб.
 - 3.2 Порядок установки
- 3.2.1 Подключить счетчик для учета электроэнергии к однофазной сети переменного тока. Для этого снять крышку и подключить подводящие провода,

закрепив их в зажимах колодки по схеме включения, нанесенной на крышке колодки и приведенной в приложении Б.

- 3.2.2 Подать питание на счетчик. При подключении нагрузки светодиод на лицевой панели счетчика должен мигать (изменяется яркость свечения), и на индикаторе счетного механизма должны меняться показания (32 или 8 периодов мигания светодиода на единицу младшего разряда, в зависимости от постоянной счетчика).
- 3.2.3 Проверить работу механической (тип корпуса S7) кнопки, нажав на нее, не прилагая больших усилий, или оптической кнопки (тип корпуса R8), прикоснувшись к лицевой прозрачной панели счетчика над излучателем и приемником оптической кнопки (область срабатывания оптической кнопки обозначена на щитке счетчика знаком (т)).
- 3.2.4 Убедившись в нормальной работе счетчика, опломбировать счетчик посредством соединения отверстия крышки и отверстия винта проволокой пломбировочной и навешиванием пломбы.

ВНИМАНИЕ! Наличие на счетном механизме показаний является следствием поверки счетчика на предприятии-изготовителе, а не свидетельством его износа или эксплуатации.

3.2.5 Указания по подключению импульсного выходного устройства

3.2.5.1 Испытательное выходное устройство реализовано на транзисторе с открытым коллектором, для обеспечения его функционирования необходимо подать питающее напряжение по схеме, приведенной на рисунке 1. Форма сигнала $F_{\text{вых}}$ – прямоугольные импульсы с амплитудой, равной поданному питающему напряжению.

Рисунок 1 – Подключение к выходному испытательному устройству

3.2.5.2 Величина электрического сопротивления R в цепи нагрузки основного передающего устройства определяется по формуле

$$R = \frac{U}{I}$$

где U – напряжения питания, B;

I – сила тока, мА.

- 3.2.5.3 Предельно допустимое напряжение на выходных зажимах передающего устройства в состоянии «разомкнуто» не более 24 В.
- 3.2.5.4 Предельное допустимое значение тока, которое должна выдерживать выходная цепь передающего устройства в состоянии «замкнуто», не более 30 мА.
 - 3.2.6 Использование реле сигнализации (см. п. 2.2.10)
- 3.2.6.1 Реле сигнализации допускает подключение к цепям постоянного и переменного тока.
- 3.2.6.2 Возможны исполнения счетчиков как с одним реле сигнализации, так и с двумя.
- 3.2.6.3 Для счетчиков в корпусах S7 контактам реле сигнализации соответствуют клеммы «9» и «10», для счетчиков в корпусах R8 клеммы «12»,

«13» (для первого реле – исполнение S) и «14», «15» (для второго реле – только в исполнении SS).

- 3.2.6.4 Управление коммутацией реле сигнализации осуществляется по любому из (ф)едусмотренных интерфейсов с помощью специализированного программного обеспечения, доступного по адресу www.energomera.ru. При замыкании контактов реле сигнализации на индикаторе счетчика появляется знак
 - 3.2.7 Постоянная счетчика указана на щитке:
 - для счетчиков с диапазоном токов 5-60 A-3200 имп./кBт·ч
 - для счетчиков с диапазоном токов 10-100A 800 имп./кBt-ч
- 3.2.8 При подаче напряжения на счетчик происходит тестовое включение всех сегментов дисплея счетчика. Общий вид дисплея счетчика в режиме теста приведен на рисунке 2.

Рисунок 2 – Общий вид дисплея счетчика в режиме теста

Назначения цифр, знаков и указателей (слева направо):

Цифра **18** − указание глубины просмотра накопленных значений на начало месяца.

Знак с цифрой ТВ – индикация номера действующего тарифа при индикации текущего времени, или указание соответствующего тарифного накопите-

Знак 🕏 – индикация несанкционированного вскрытия клеммной крышки.

Знак ! – индикация срабатывания реле сигнализации.

Знак (1) – индикатор обмена по интерфейсу.

Знак D – указатель режима индикации даты.

3нак Ф – указатель режима индикации времени.

Знаки * * — указатели статуса действующей тарифной программы:
* — рабочая, * — воскресная, * * — субботняя, мигающие * * — осо-

Знак 🕩 – индикатор необходимости замены батареи.

Знаки **kW-h** – указатели энергии в кВт-час:

kW – мощность в кВт.

бая.

Цифры **8888.8.8** – значения тарифных накопителей, мгновенной мощности, времени или даты в зависимости от режима индикации, обозначаемого соответствующими знаками.

3.2.9 Ввод настроек, тарифной программы и коррекция времени и даты, а также считывание информации, накопленной в энергонезависимой памяти, осуществляются через ИК-порт или дополнительный интерфейс с помощью компьютера, адаптера ИК-порта или дополнительного интерфейса и программы обслуживания. Программа обслуживания размещена на сайте: www.energomera.ru. Рекомендуемый тип адаптера ИК-порта – «IRmate 210» фирмы «Tekram». Допускается использование других адаптеров, подключаемых к СОМ-порту компьютера.

- 3.2.10 Показания тарифных накопителей, их суммы, а также текущего времени на индикаторе счетчика автоматически изменяются через установленный промежуток времени t (см. п.п. 2.2.11, 2.2.16), но не менее чем, через 5 с.
- 3.2.11 Режимы индикации и порядок их смены приведены на рисунке 3. Числовые значения показаний могут отличаться для каждого счетчика. На рисунке 3 знак "прсм" обозначает однократное нажатие на механическую (корпус S7) или оптическую (корпус R8) кнопку. Пунктиром обведены режимы автоматической смены индикации.

Рисунок 3 – Режимы индикации счетчика

На рисунке 3:

- 1 режим индикации времени, при этом индицируется номер действующего тарифа (Т1) и тип тарифной программы (***— субботняя);
 - 2 режим индикации даты в формате день месяц год;
- 3 текущая (усредненная за последний минутный интервал) мощность с единицами измерения (**kW**);
 - 4 адрес счетчика;
 - 5 версия программного обеспечения;
- 6 текущая скорость порта для обмена данными между счетчиком и ЭВМ верхнего уровня. Возможны следующие значения этого параметра: 2400, 4800, 9600, 14400, 19200, 38400, 57600 бод;
 - 7 режим теста ЖКИ (включены все сегменты);
- 8 индикация текущей суммы по задействованным тарифам с указанием единиц измерения (**kW-h**);
- 9 индикация суммы по задействованным тарифам с указанием единиц измерения (**kW-h**) на конец прошлого месяца (1T);
- 10 индикация суммы по задействованным тарифам с указанием единиц измерения (**kW-h**) на конец позапрошлого месяца (2T);

- 11 индикация суммы по задействованным тарифам с указанием единиц измерения (**kW-h**) на конец 13 месяца назад (13T);
- 12 индикация электроэнергии, учтенной по тарифу 1 (T1), с указанием единиц измерения (**kW-h**);
- 13 индикация электроэнергии, учтенной по тарифу 1 на конец прошлого месяца (1Т1), с указанием единиц измерения (**kW-h**);
- 14 индикация электроэнергии, учтенной по тарифу 1 на конец позапрошлого месяца (2T1), с указанием единиц измерения (**kW-h**);
- 15 индикация электроэнергии, учтенной по тарифу 1 на конец 13 месяца назад (13Т1), с указанием единиц измерения (**kW-h**);
- 16 индикация электроэнергии, учтенной по тарифу 2 (Т2), с указанием единиц измерения (**kW-h**);
- 17 индикация электроэнергии, учтенной по тарифу 2 на конец прошлого месяца (1T2), с указанием единиц измерения (**kW-h**);
- 18 индикация электроэнергии, учтенной по тарифу 2 на конец позапрошлого месяца (2T2), с указанием единиц измерения (**kW-h**);
- 19 индикация электроэнергии, учтенной по тарифу 2 на конец 13 месяца назад (13Т2), с указанием единиц измерения (**kW-h**);

- 20 индикация электроэнергии, учтенной по тарифу 3 (Т3), с указанием единиц измерения (**kW-h**);
- 21 индикация электроэнергии, учтенной по тарифу 3 на конец прошлого месяца (1Т3), с указанием единиц измерения (**kW-h**);
- 22 индикация электроэнергии, учтенной по тарифу 3 на конец позапрошлого месяца (2Т3), с указанием единиц измерения (**kW-h**);
- 23 индикация электроэнергии, учтенной по тарифу 3 на конец 13 месяца назад (13Т3), с указанием единиц измерения (**kW-h**);
- 24 индикация электроэнергии, учтенной по тарифу 8 (Т8), с указанием единиц измерения (**kW-h**);
- 25 индикация электроэнергии, учтенной по тарифу 8 на конец прошлого месяца (1Т8), с указанием единиц измерения (**kW-h**);
- 26 индикация электроэнергии, учтенной по тарифу 8 на конец позапрошлого месяца (2Т8), с указанием единиц измерения (**kW-h**);
- 27 индикация электроэнергии, учтенной по тарифу 8 на конец 13 месяца назад (13Т8), с указанием единиц измерения (**kW-h**).
- 3.2.12 **ВНИМАНИЕ!** При программировании счетчиков через ИК-порт или дополнительный интерфейс не допускается подача напряжения на два и более счетчика с одинаковыми сетевыми адресами, находящихся в зоне дейст-

вия адаптера ИК-порта (около 3-х метров) или дополнительного интерфейса. Программирование счетчика осуществляется с расстояния не более 1 м. Новая запрограммированная тарифная программа начинает действовать через 3 секунды после программирования последней точки тарифной программы.

4 ПОВЕРКА ПРИБОРА

4.1 Поверка счетчика проводится при выпуске из производства, после ремонта и в эксплуатации по «Счетчик активной электрической энергии однофазный многотарифный СЕ 102. Методика поверки ИНЕС.411152.090 Д1», утвержденной ФГУП «ВНИИМС».

5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

5.1 Техническое обслуживание счетчика в местах установки заключается в систематическом наблюдении за его работой, своевременной замене литиевого элемента и, при необходимости, программирования тарифных программ.

ВНИМАНИЕ! Программирование текущего времени, даты, тарифных программ, может быть осуществлено только уполномоченными специалистами специализированной организации.

- 5.2 Периодическая поверка счетчика проводится в объеме, изложенном в разделе 4 настоящего руководства по эксплуатации, один раз в 16 лет или после среднего ремонта.
- 5.3 При отрицательных результатах поверки ремонт и регулировка счетчика осуществляются организацией, уполномоченной ремонтировать счетчик. Последующая поверка производится в соответствии с п. 5.2.
- 5.4.1 **ВНИМАНИЕ!** При несвоевременной замене литиевого элемента счетчик может прекратить учет текущего времени и даты при сохранении накопленной информации. Выполнение при этом других функций в полном объеме не гарантируется.
 - 5.4.2 Тип литиевого элемента «CR2032» фирмы «Renata».

Для замены литиевого элемента необходимо выполнить следующие операции:

- снять клеммную крышку;
- снять держатель батареи и извлечь из счетчика старый литиевый элемент;

- установить новый элемент;
- установить держатель батареи и клеммную крышку;
- произвести программирование ресурса батареи, даты и времени;
- произвести поверку счетчика по п. 5.2.

При ремонте или перед очередной поверкой замените литиевый элемент (с записью в формуляре).

УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- 6.1 Хранение счетчиков производится в упаковке предприятияизготовителя при температуре окружающего воздуха от 5 до 40°C и относительной влажности воздуха 80% при температуре 25°C.
- 6.2 Счетчики транспортируются в закрытых транспортных средствах любого вида.
 - 6.3 Предельные условия транспортирования:
 - температура окружающего воздуха от минус 50 до 70°С;
 - относительная влажность 98% при температуре $35^{\circ}\mathrm{C}$.

ПРИЛОЖЕНИЕ А

(обязательное)

Внешний вид и установочные размеры счетчика CE 102 S7

Внешний вид и установочные размеры счетчика CE 102 R8

а) для всех исполнений, кроме R2

б) для исполнений R2

приложение б

(обязательное)

Маркировка схемы включения счетчиков Схема включения счетчиков CE102 S7 (тип корпуса S7 исполнения A)

(тип корпуса S7 исполнения R1, P)

(тип корпуса S7 исполнения R2)

Схема включения счетчиков CE102 R8 (тип корпуса R8 исполнения A)

(тип корпуса R8 исполнения R1, P)

(тип корпуса R8 исполнения R2)

ВНИМАНИЕ! Перемычка между контактами 1 и 2 расположена на токовводной колодке счетчика в виде винта в контакте 2. Перед подключением счетчика убедиться в том, что перемычка находится в замкнутом состоянии (винт вкручен). Перемычка между контактами 4 и 6 находится внутри счетчика.

Примечание. Внешняя антенна для счетчиков исполнения R2 не входит в комплект поставки счетчика CE 102 и поставляется по отдельному заказу.

Схема подключения счетчика к компьютеру через ИК-порт

Схема подключения счетчика к компьютеру через интерфейс RS-485

Схема подключения счетчика к компьютеру через радиомодем

Схема подключения счетчика к компьютеру через PLC-модем

приложение в

Структура условного обозначения

приложение г

Журнал состояний счетчика

Наименование журнала	Объем (коли- чество собы- тий)
1.1 Сообщения о неуспешной самодиагностике	
Самодиагностика прошла успешно	
Сбой EEPROM	
Сбой RTC	40
Сбой І2С	
Ресурс батареи истекает	
1.2 Попытки несанкционированного доступа и нарушения	
защиты	
Неверный ввод пароля	
Блокировка интерфейса, пароль введен неверно более 3 раз	20
Вскрытие пломбы 1	20
Вскрытие пломбы 2	
1.3 Обнуление данных	
Полная очистка EEPROM	
Обнуление тарифных накопителей	
Обнуление накоплений за интервалы, при переключении интер-	20
вала сбора данных	
Сброс паролей	

1.4 Переход на летнее или зимнее время	
Переход на зимнее время	20
Переход на летнее время	20
1.5 Команды управления нагрузкой	
Отключение нагрузки по интерфейсу	
Включение нагрузки	
Отключение нагрузки по превышению лимита энергии по тарифу	20
Отключение нагрузки по превышению лимита мощности по та-	20
рифу	
Отключение нагрузки по превышению лимита по суммарной	
энергии	
1.6 Превышение лимитов	
Превышение лимита по энергии по тарифу	
Превышение лимита по мощности	20
Превышение лимита по суммарной энергии	
2.1 Изменения конфигурации счетчика	
Изменение заводской конфигурации	
Изменение коэффициента коррекции времени	
Изменение коэффициента коррекции	
Изменение коэффициента деления	20
Запись кода, описывающего исполнения счетчика	
Изменение коэффициента трансформации	
Включение интервала усреднения 1 час	

43

Включение интервала усреднения 30 мин	
Включение интервала усреднения 15 мин	20
Изменение количества тарифов	
Изменение времени индикации	
Включение тарификации по тарифной программе	
Включение внешней тарификации	
Выключение тарификации выходных дней	
Включение тарификации выходных дней	
Выключение автоматического перевода времени зима/лето	
Включение автоматического перевода времени зима/лето	
Включение режима отключения нагрузки при превышении лими-	
та по энергии	
Выключение режима отключения нагрузки при превышении ли-	
мита по энергии	
Включение режима отключения нагрузки при превышении лими-	
та по мощности	
Выключение режима отключения нагрузки при превышении ли-	
мита по мощности	
Включение режима отключения нагрузки при превышении лими-	
та по суммарной энергии	
Выключение режима отключения нагрузки при превышении ли-	
мита по суммарной энергии	
Включение режима блокировки по вводу 3-х неверных паролей	
Выключение режима блокировки по вводу 3-х неверных паролей	
Изменение параметров UART	
45	

Изменение параметров реле управления нагрузкой	
2.2 Связь со счетчиком, приведшая к каким-либо изменениям	
данных	
Изменение адреса счетчика	
Изменение заводского номера счетчика	
Изменение абонентского номера счетчика	
Изменение текущего тарифа по интерфейсу	
Запись тарифной программы	
Запись особых дат	
Запись ресурса батареи	20
Изменение пароля 1 (чтение/запись)	
Изменение пароля 2 (чтение/запись)	
Изменение пароля 3 (чтение)	
Запись лимита энергии	1
Запись лимита мощности	1
Запись лимита по суммарной энергии	1
2.3 Коррекция времени	
Коррекция даты/времени	
Коррекция даты	20
Коррекция времени	
Время установлено	

2.4 Изменение текущих значений времени и даты при синхро-	
низации времени	
Запрос синхронизации времени	
Широковещательная коррекция времени	20
Синхронизация произведена	
3.1 Отключение или включение счетчика	
Отключение счетчика	40
Включение счетчика	40
3.2 Перезагрузка счетчика	
Перезагрузка счетчика (MCLR)	
Перезагрузка счетчика (WDT)	20
Перезагрузка счетчика (STK full)	20
Перезагрузка счетчика (STK underflow)	