Department of CSE

CS6402- Design and Analysis of Algorithms Department of CSE 2014-2015 UNIT-I / PART-A								
1	Define Algorithm. (June 06,07,May 13)							
2	Define order of an algorithm. (June 07)							
	What are the different criteria used to improve the effectiveness of algorithm? (June 06,07)							
3								
4	What are the features of efficient algorithm?(Dec 07)							
5	What is an algorithm design techniques? (Dec 06)							
6	Mention the most important problem types. (Dec 07,Apr 08)							
7	Write down formula for Space and Time Complexity Calculation? (Dec 13)							
8	List the properties of asymptotic notations. (June 06)							
	UNIT-I / PART-B							
1	Explain the fundamentals of algorithmic problem solving. (OR) Discuss briefly the sequence of steps in designing and analyzing an algorithm. (<i>Dec 06</i>)							
2	Explain the various asymptotic notations of an algorithm in detail. (<i>Dec 07</i>)							
3	a) Solve the recurrence equation of the Fibonacci Series. $T(n) = T(n-1) + T(n-2)$ subject to $T(0) = 0$, $T(1) = 1$.							
	(June 07,May 08)							
	b) Write the general plan for analyzing time efficiency of non recursive algorithms and find the time complexity of							
	element uniqueness problem. (Dec 07)							
4	Design a recursive algorithm to find the number of moves in tower of Hanoi problem and find the time of complexity.							
	(Dec 013) UNIT-II / PART-A							
1	Define Knapsack problem.(Dec 14)							
1								
2	Define divide and conquer design technique. (May 13)							
3	Define Binary Search. (Dec 07)							
4	Define Stassen's matrix multiplication. (Dec 07)							
5	What is Brute Force?							
6	Define Exhaustive search.							
7	What is median-of-three –portioning method?							
8	Define Convex-Hull Problem.							
UNIT-II / PART-B								
1	Write an algorithm for merge sorting. Show the intermediate steps when the numbers							
	310, 285, 179, 652, 351, 423, 861, 254, 450, 520 are sorted using Merge Sort.(Dec 14)							
2	Write an algorithm for binary search using divide and conquer and analyze the time complexity.(June 06,Dec 14)							
3	Sort the following set of elements using quick sort. 12,24,8,71,4,23,6 (<i>June 06</i>)							
4	Write Strassen's matrix multiplication algorithm. Is there any time efficiency improvement compared to ordinary matrix							
	multiplication?							

	UNIT-III / PART-A								
1	Define principle of optin	nality.(Dec 14)							
2	Define Optimal Binary Search Tree (OBST). (June 06)								
3	Define Memory function	techniques. (D	Dec 06)						
4	Define feasible solution.	(Dec 13)							
5	Define optimal solution.	(June 07,Dec 1	(3)						
6	Define minimum spanning	ng tree. (June 0	6,07)						
7	Define Huffman code. (I	Dec 06)							
8	Define binomial coefficient	ent.							
			UNI	T – III /]	PAR'	Г-В			
1	Explain an algorithm to f	find optimal bir	nary search	tree with e	xampl	e.(Dec 0	7,14)		
2	Write an memory function	on algorithm to	solve the f	ollowing kı	apsac	k proble	m. (Dec 0 2	7)	
			iten	n w	eight	value	<u></u>		
			1		2	\$12 \$10			
			2		3	\$20			
			4		2	\$15			
	Knapsack capacity V	V= 5							
3	Explain the method for	finding the mir	nimum sna	nning tree	for a c	onnecte	d oranh us	ing Prim's	algorithm and Kruskal's
	algorithm with own exam	•	-	-	or u c		a grapii a	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	argorium and maskar s
4	Consideer the five character	<u> </u>	•		llowir	o occur	ence proba	hilities and	Loonstruct huffman tree
4	Consideer the rive charac	Character	A	B		C C	D	lonnies and	l
		Probability	A	Б	'			_	
		Trooughity	0.35	0.1	0	.2	0.15		
			UN	IT-IV / P	ART	-A			
1	Define simplex method.								
2	What is the need of maximum-flow problem?								
3	Write the optimization function for maximum-flow problem.								
4	Define Ford-Fulkerson method.								
5	What is mean by bipartite graph? (or) Define 2-colorable in bipartite graph.								
6	What is mean by stable marriage problem?								
7	Prove that the stable marriage algorithm terminates after no more than n ² iterations with a stable marriage output.								
8	What do you mean by maximum weight matching?								
	UNIT-IV/PART-B								
1	Solve the following problem using simplex method:								
	maximize Z = 3x + 5y								
	subject to $x + y \le 4$								
	$x + 3y \le 6$								

	CS6402- Design and A			ıs	Department of CSE	2014-2015				
	$x \ge 0, y \ge 0.$			1						
2	Explain the maximum flow problem with an example.									
3	Explain maximum matching problem in bipartite graphs.									
4	Solve the instance of the stable marriage problem given by the ranking matrix and find the stable and unstable matching.									
	Ranking matrix	An	n Lea	Sue						
		Bob 2,3	1,2	3,3						
		Jim 3,1	ŕ							
		Tom 3,2								
	UNIT-V/PART-A									
1	Define Non Polynomial (NP) problem with an example. (Dec 06)									
2	Mention the relation between		Hard an	d NP Co	omplete Problem					
3	Define backtracking. (Juna	e 06)								
4	Define state space tree. (D	ec 06)								
5	Define Hamiltonian circuit.(June 06, Dec14)									
6	Define Deterministic algorithm and Non-Deterministic algorithm.									
7	Define cost of tour. (Dec 14)									
8	Define Live and Dead nodes. (Dec 14)									
					Γ-B (ANY FOUR)					
1		•	tion of t	he state	space tree and perform backtrackin	g search for a solution to 4-				
2	queens problem. (June 06,Dec07,14)									
2	i)Write a pseudo code for backtracking algorithm and apply backtracking to solve the following instances of the subset sum problem: S= {1, 3, 4,5} d=11 and d=8. (<i>Dec 06</i>)									
	ii) Explain Hamiltonian ci	rcuit in a graph	. Use ba	cktrack	ing to get a Hamiltonian circuit of fol	lowing the graph.(Dec 07)				

3 Solve the following instance of the travelling salesman problem by branch and bound method and explain in detail. (Dec 07)

4 Apply the branch and bound algorithm to solve the following knapsack problem and explain in detail. (*Dec 06*)

Item	Weight	value
1	2	1
2	3	2
3	4	5

The knapsack capacity W is 6.

5 Solve the following assignment problem using branch and bound technique. Explain in detail how branch and bound technique is useful for solving assignment problems.

	job 1	job 2	job 3	job 4	
	۲9	2	7	87	person a
<i>C</i> =	6	4	3	7	person b
C =	5	8	1	8	person c
	_7	6	9	4	person d
				_	