OBJECTIFS 3

- Développer (par simple et double distributivités), factoriser, réduire des expressions algébriques simples.
- Factoriser une expression du type $a^2 b^2$ et développer des expression du type (a + b)(a b).
- Résoudre algébriquement différents types d'équations.

Calcul littéral

EXEMPLE •

L'aire \mathscr{A} d'un carré de côté c est donnée par $\mathscr{A} = c \times c$. Il s'agit-là d'une expression littérale.

1. Réduction

EXEMPLE 🔋

$$5x + 1 + x + 3 = 5x + x + 1 + 3$$
$$= (5+1)x + (1+3)$$
$$= 6x + 4$$

EXEMPLE 🕴

$$2y \times 5y \times 7y = 2 \times 5 \times 7 \times y \times y \times y$$
$$= 70 \times y^{3}$$
$$= 70y^{3}$$

EXERCICE 1

Compléter en réduisant les expressions suivantes.

- 1. -2x + 5 4x + 3 =
- **2.** $-5x + 4x + 3 = \dots$
- **3.** $x^2 + x + 3x + 5x^2 + 1 = \dots$
- **4.** $6x^2 3 + 5x 7x^2 + 4 2x = \dots$
- **F** 2....2...2...2...2...4...
- **5.** $-3x \times 3x + 2x + 3x^2 4x = \dots$
- **6.** $2 \times (3x^2) (4x) \times x + x^2 = \dots$

Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/calcul-litteral-equations/#correction-1.

2. Développement

À RETENIR 50

EXEMPLE **9**

$$5(3a-1) = 5 \times 3a + 5 \times (-1)$$

= $5 \times 3a - 5$
= $15a - 5$

EXEMPLE 🔋

$$(2x+3)(5x+7) = 2x \times 5x + 2x \times 7 + 3 \times 5x + 3 \times 7$$
$$= 10x^{2} + 14x + 15x + 21$$
$$= 10x^{2} + 29x + 21$$

EXERCICE 2

Compléter en développant et en réduisant les expressions suivantes.

- 1. $3 \times (2x + 4) = \dots$
- **2.** $(2x-1)x = \dots$
- 3. $(x+3)(x+2) = \dots$
- **4.** $(1+x)(x-9) = \dots$
- 5. $(-2x+8)(4-x) = \dots$

Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/calcul-litteral-equations/#correction-2.

EXERCICE 3

Soit x, un nombre positif. On considère le triangle ABC ci-contre.

1. Le triangle ABC est-il rectangle pour x = 0? Justifier.

.....

B

Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/calcul-litteral-equations/#correction-3

3. Factorisation

EXEMPLE 🔋

$$85r + 15r = (85 + 15)r$$
$$= 100r$$

EXEMPLE \$

$$57(b+1) - 4(b+1) = (57-4)(b+1)$$

= $53(b+1)$

EXERCICE 4

Compléter en factorisant les expressions suivantes.

1. $7z + 9z = \dots$

2. $10x - 10y = \dots$

3. $11a + 11b - 11c = \dots$

4. 4x(y-6)+5(y-6)=

5. (x-1)5x+3(x-1)=

ÀRETENIR **

EXEMPLE 🔋

$$x^{2} - 4 = x^{2} - 2^{2}$$
$$= (x - 2)(x + 2)$$

EXERCICE 5

Factoriser l'expression $x^4 - 9$.

II Équations

1. Rappels

ÀRETENIR **

EXEMPLE 🔋

On veut résoudre l'équation x - 7 = 2. On ajoute 7 à chacun des deux membres.

$$x - 7 + 7 = 2 + 7$$
$$x = 9$$

Donc 9 est la solution de cette équation.

EXEMPLE \$

On veut résoudre l'équation 3x = -1. On divise par 3 chacun des deux membres.

$$\frac{3x}{3} = \frac{-1}{3}$$
$$x = -\frac{1}{3}$$

Donc $-\frac{1}{3}$ est la solution de cette équation.

2. Équations produit nul

À RETENIR 99

EXEMPLE \$

On veut résoudre l'équation (3x + 4)(2x - 3) = 0. C'est une équation de type « produit nul », qui peut se traduire par :

$$3x + 4 = 0$$
$$3x = -4$$
$$x = -\frac{4}{3}$$

$$2x - 3 = 0$$
$$2x = 3$$
$$x = \frac{3}{2}$$

Donc $-\frac{4}{3}$ et $\frac{3}{2}$ sont les solutions de cette équation.

EXERCICE 6

Résoudre les équations suivantes.

1.
$$x(7x+2) = 0$$

2.
$$(x+3)^2 = 0$$

3.
$$x^2 = 2x$$

3. Équations du type $x^2 = a$

EXEMPLE 🔋

L'équation $x^2 = 9$ a deux solutions : -3 et 3.

EXEMPLE •

L'équation $x^2 = -1$ n'a pas de solution.

EXERCICE 7

Résoudre, si possible, l'équation $-5x^2 = -125$.

.....

Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/calcul-litteral-equations/#correction-7.