Image Enhencement in the Frequency D

Homework Report

Technical description

Fourier 轉換是說任何週期性重複的函數都可以表示成不同頻率的 sin 或 cos 的和,且每個會乘上不同的係數,稱之為 Fourier series。

(最底下的是上面四個 function 的總合)

就算不是週期性的函數(曲線下的面積是有限的)也可以藉由一個加權的 function 來表達成 sin 或 cos 相乘的積分合,在此情況下形成的結果就是 Fourier transform。

Fourier transform function 可以經由相反的處理(inverse)來完全重建回原本的樣子,而不會有資訊的喪失,這是 Fourier transform 的特色之一·如此便可以在 Fourier 值域上進行操作,並且毫無損失的回到原始的值域。

本次作業要用是二維的 DFT(discrete fourier transform),去轉換原圖到 frequency domain 上做處理。

一個 MXN 大小的影像 f(x,y)的 DFT 由下列式子表示:

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)},$$

同理·F(u,v)也可以用 inverse 轉換回 f(x,y):

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M+vy/N)},$$

for $x = 0, 1, 2, ..., M-1$ and $y = 0, 1, 2, ..., N-1$.

上述為 Fourier transform pair · 變數 u 和 v 是 transform 或 frenquency variable · 而 x 和 y 是 spatial 或 image variable ·

一個常用的做法是在計算 Fourier transform 前把輸入影像乘上

 $(-1)^{x+y}$:

$$\Im[f(x,y)(-1)^{x+y}] = F(u-M/2,v-N/2)$$

此式描述 $f(x,y)(-1)^{x+y}$ 之 Fourier transform 的原點,即是 F(0,0)位於 u=M/2 和 v=N/2,由 2-D 的 DFT 所佔據 MXN 區域的中心,我們稱此頻率區域為一個頻率矩形,為了確保這些位移過的座標為整數,我們需要 M,N 為偶數。

在(u,v) = (0,0), 套用上式可得到:

$$(4.2-16), F(0,0) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y),$$

可以看出這個結果就是 f(x,y)的平均,也就是說 f(x,y)這個影像的平均灰階等於該影像做完 Fourier tramsform 到 frequency domain 中,原點 F(0,0)的值。

假如 f(x,y)為實數,則 Fourier transform 是共軛對秤的

$$F(u,v) = F^*(-u,-v) = |F(u,v)| = |F(-u,-v)|$$

說明 Fourier 的頻譜是對稱的。

F(u,v)的每一項都包含 f(x,y)的所有值,並依**指數項**的值來修改, 最慢變化的頻率 u=v=0 相當於影像的平均灰階,而頻率與速率 改變有關,故 Fourier transform 的頻率高低和影像中灰階強度 變化有所關聯。低頻對應到影像變化較慢的成分,高頻對應到影 像越來越快的灰階變化(像是影像中的邊界、雜訊等等)。

上圖中透過 Fourier transform 可以清楚觀察到較強的灰階變化 出現在影像中何處。

在 frequency domain 上的基本濾波步驟圖:

H(u,v)為 filter function,它抑制轉換中的某些頻率,同時讓其他的不變。輸出影像的 Fourier transform 為:

G(u,v) = F(u,v) H(u,v)

F 的組成是複數,但通常 filter 通常是常數,在此情形下,H 的每一個成分乘上所對應的 F 成分的實部和虛部,這樣的 filter 稱為 zero-phase-shift filter,經過 filtered 的影像可以由取得 G(u,v) 的 inverse Fourier transform 獲得:

Filtered Image = $\mathfrak{I}^{-1}[G(u,v)]$

最後的影像是取 Filtered image 的實部並乘上 $(-1)^{x+y}$ 來抵銷一開始對輸入影像乘 $(-1)^{x+y}$ 的結果。

總而來講就是由經過某個 filter function H(u,v),以某種形式修改影像的 Fourier transform,然後再取其 inverse Fourier

transform 得到 spatial domain 中的 filter h(x,y)·原始影像 f(x,y) 再和 h(x,y)做相應的處理得到 enhanced image g(x,y)。

◇ low-pass filter: 衰減高頻,通過低頻,使影像模糊平滑

♦ high-pass filter: 衰減低頻,通過高頻,使影像銳利清晰

Laplacian in frequency domain

$$\Im\left[\frac{d^n f(x)}{dx^n}\right] = (j2\pi u)^n F(u),$$

$$\Im\left[\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}\right] = (j2\pi u)^2 F(u,v) + (j2\pi v)^2 F(u,v)$$

$$= -4\pi^2 (u^2 + v^2) F(u,v).$$

Laplacain of f(x,y) has the result in frequency domain:

$$\Im[\nabla^2 f(x,y)] = -4\pi^2 (u^2 + v^2) F(u,v),$$

故推導出 Laplacian 可以使用以下 filter function 來實現:

$$H(u,v) = -4\pi^2(u^2 + v^2).$$

filter function 也需要被 shift 到中心點

$$H(u,v) = -4\pi^{2} \left[(u - M/2)^{2} + (v - N/2)^{2} \right].$$

藉由 inverse Fourier transform 可以得到在 spatial domain 的 Laplacian filter:

$$\nabla^2 f(x, y) = IDFT\{H(u, v)F(u, v)\}$$

將原始影像減去 Laplacian filter 來獲得 Sharpened image

$$g(x,y) = f(x,y) - \nabla^2 f(x,y),$$

可以推導出:

$$g(x,y) = IDFT\{F(u,v) - H(u,v)F(u,v)\} = IDFT\{[1 - H(u,v)]F(u,v)\} = IDFT\{[1 + 4\pi^2D^2(u,v)]F(u,v)\}$$

Experimental results

Disscussions

實作過程中因為對 frequency domain 不熟悉,故只要結果有錯也很難看出是錯在哪,需要對 Fourier transform 的機制有一定程度的瞭解才行,像是如果沒有做位移到 center 的動作,跑出來的結果就會非常詭異,而只在 Fourier transform 之前做一次位移,最後 inverse 之後沒有相對位移回來結果也一樣詭異。而 laplacian filter 取得的方式跟在 spatial domain 不太一樣,在 frequency domain 上是取得 laplacian filter 的頻域。

有了上次在 spatial domain 作 Laplacian 的 image sharpening 的經驗,對於如何應用 laplacian 處理銳化,已有基本的概念,影像在 spatial domain 作 filtering 的時候需要做 convolution 的計算,實作上比較麻煩一點,而轉換到 frequency domain 只要直接相乘即可,省下不少力氣。所以事實上只是換個方式去做 laplacian filter,結果和上次沒什麼差,故可以發現若沒有先做高斯濾波先去除雜訊,銳化後的 image 還是有雜訊變強的問題。

References and Appendix

http://ppt.cc/vfkf

http://ppt.cc/7gHi

http://ppt.cc/A2xL

http://ppt.cc/d6ZA