FORM PTO-1390

Disk with Sequence Listing

TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US)

U.S. APPLICATION NO. (If known, see 37 CFR 1.5)

CONCERNING A FILIN	U9/914549							
INTERNATIONAL APPLICATION NO.	ATIONAL APPLICATION NO. INTERNATIONAL FILING DATE							
PCT/DE00/00583	CT/DE00/00583 28 February 2000							
TITLE OF INVENTION								
PROTEIN (TP) THAT IS INVOLV	ED IN THE DEVELOPMENT OF T	HE NERVOUS SYSTEM						
APPLICANT(S) FOR DO/EO/US								
Annemarie Poustka and Johannes C	Oy Designated/Elected Office (DO/EO/US) the follo	owing items and other information:						
 This is a FIRST submission of items This is a SECOND or SUBSEQUE 	This is a FIRST submission of items concerning a filing under 35 U.S.C. 371. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).							
3. This express request to begin nat								
 examination until the expiration of the expiration of	of the applicable time limit set in 35 U.S.C. a lall Preliminary Examination was made by the	e 19th month from the earliest claimed						
5. A copy of the International Applicat	tion as filed (35 U.S.C. 371(c)(2))	•						
a. is transmitted herewith	(required only if not transmitted by the Internatio	nal Bureau).						
b. An has been transmitted by c. is not required, as the a	the International Bureau. pplication was filed in the United States Receivin	g Office (RO/US).						
6. A translation of the International Ap	oplication into English (35 U.S.C. 371(c)(2)).							
a. are transmitted herewith b. have been transmitted be	ternational Application under PCT Article 19 (35 h (required only if not transmitted by the Internation the International Bureau. owever, the time limit for making such amendmend will not be made.	ional Bureau).						
8. A translation of the amendments to	the claims under PCT Article 19 (35 U.S.C. 371((c)(3)).						
9. An oath or declaration of the invent	tor(s) (35 U.S.C. 371(c)(4)).*(Unsigned)							
10. A translation of the annexes to the (35 U.S.C. 371(e)(5)).	International Preliminary Examination Report uno	der PCT Article 36						
Items 11. to 16. below concern other documents. An Information Disclosure Statements.								
12. An assignment document for record	ding. A separate cover sheet in compliance with	37 CFR 3.28 and 3.31 is included.						
13. A FIRST preliminary amendment. A SECOND or SUBSEQUENT pr	eliminary amendment.							
14. A substitute specification.	•							
15. A small entity statement.								
16. Other items or information: EPO	Search Report and International Preliminary Exar	nination Report in German, Computer Readable						

NOTE: This application is being filed with an unsigned Oath or Declaration under the provisions of 37 CFR § 1.53 in order that applicant may secure a filing date of August 24, 2001. Upon receipt of a "Notice to File Missing Parts - Filing Date Granted," a executed Declaration and Power of Attorney will be forwarded. The undersigned agent affirmatively states that she has been duly authorized and appointed to file this application on behalf of the applicants and applicants' assignee, and that the Declaration and Power of Attorney to be filed hereafter will confirm the undersigned agent's authorization and appointment. Applicants are considered a small entity and assignce Deutsches Krebsforschungszentrum is also considered a small entity within the meaning of 37 CFR § 1.9.

17. X The following	g fees are submitted:		\'	CAL	CULATIONS	PIO USE ONLY
	al Fee (37 CFR 1.492(a)(1)-(5)): O or JPO	\$860.00	09/91454		
•		aid to USPTO (37 CFR 1.	•			
No International pr	eliminary examination fo	ee paid to USPTO (37 CF (37 CFR 1.445(a)(2))	\$0.00 R 1.482)		g: ~	
Neither internation	al preliminary examinati	on fee (37 CFR 1.482) no	r		•	
International prelin	ninary examination fee p	aid to USPTO (37 CFR 1 Article 33(2)-(4)	.482)			
		RIATE BASIC FI		\$	860.00	
Surcharge of \$130.00 for months from the earliest			20 30	\$		
Claims	Number Filed	Number Extra	Rate			
Total Claims	38-20 =	18	X \$18.00	\$	324.00	
Independent Claims	12-3=	9	X \$80.00	\$	720.00	
Multiple dependent clai	m(s) (if applicable)		+ \$000.00	\$		
TOTAL OF ABOVE CALCULATIONS =					1904.00	
Reduction by 1/2 for fil also be filed. (Note 37		plicable. Verified Small l		\$	952.00	
			SUBTOTAL =	\$	952.00	
-	00 for furnishing the Eng at claimed priority date (glish translation later than 37 CFR 1.492(f)).	20 30 +	\$		
		TOTAL NA	TIONAL FEE =	\$	952.00	
~	•	CFR 1.21(h)). The assignation CFR 3.28, 3.31). \$40.00		\$		
		TOTAL FEI	E ENCLOSED =	\$	430.00	
				Amount to be: refunded		\$
				Cha	rged	\$522.00
b. Please ch A duplic	narge my Deposit Accorate copy of this sheet in	0.00 to cover part of the ount No. $08-3284$ in this enclosed. The output of the ou	he amount of \$522.00 additional fees which	0 to co	be required, or c	
		it under 37 CFR 1.494 d to restore the applic			met, a petition	to revive (37 CFR
SEND ALL CORRES	SPONDENCE TO:		74	lau	and Tru	er
Steven J. Hultqu	rist		MARI Regis	anne Strati	, ruiekek on No. 39,98	3
	perty/Technology	Law	110510			_
1	gle Park, NC 277	09				
1						

4121-129 PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Poustka, et al.

Application No.:

New U.S. National Stage Application of

PCT International Application No.

PCT/DE00/00583

International Filing Date:

28 February 2000

Priority Date Claimed:

26 February 1999 (German Appl. No. 199 048

423.8)

U.S. National Phase Filing Date:

Date of mailing identified below

Title:

PROTEIN (TP) THAT IS INVOLVED IN THE DEVELOPMENT OF THE NERVOUS

SYSTEM

EXPRESS MAIL CERTIFICATE

I hereby certify that I am mailing the attached documents to the Commissioner for Patents on the date specified, in an envelope addressed to the Commissioner for Patents, Box Patent Application, Washington, DC 20231, and Express Mailed under the provisions of 37 CFR 1.10.

Blake Crouch
Name of Person Mailing This Document

Subbe Crouch
Signature

August 24, 2001
Date

EL831358276US

Express Mail Label Number

PRELIMINARY AMENDMENT

Commissioner for Patents BOX PATENT APPLICATION Washington, D.C. 20231

Sir:

Prior to examination of the above-identified new national phase patent application, please amend the application, as follows:

In the Claims

Please amend claims 1-38 to read as follows:

- 1. A DNA sequence coding for a protein which is involved in the development of the nervous system, in particular the CNS, and is expressed in a tissue-specific and development-specific manner, wherein the DNA sequence comprises the following DNA sequences:
 - (a) the DNA sequence of figure 1, figure 2, figure 3, figure 4, figure 5, figure 6, figure 7 or figure 8;
 - (b) the DNA sequence of figure 9 or figure 10;
 - (c) the DNA sequence of figure 11;
 - (d) the DNA sequence of figure 12 or figure 13;
 - (e) the DNA sequence of figure 14 or figure 15;
 - (f) the DNA sequence of figure 16;
 - (g) the DNA sequence of figure 17 or 18;
 - (h) the DNA sequence of figure 19;
 - (i) a DNA sequence hybridizing with (a), (b), (c), (d), (e), (f), (g) or (h)
 - (j)fragments, variants, functional equivalents, derivatives or precursors of the

DNA sequence of (a), (b), (c), (d), (e), (f), (g), (h) or (i); or

- (k) a DNA sequence which differs from the DNA sequence of (a), (b), (c),
 (d), (e), (f), (g), (h), (i) or (j) due to the degeneration of the genetic code.
- 2. The DNA sequence according to claim 1, which codes for a protein or peptide comprising the amino acid sequence of figure 1, figure 9, figure 11, figure 12, figure 13, figure 14, figure 15, figure 16, figure 17, figure 18 or figure 19, wherein the protein or peptide has the biological activity defined in claim 1.
- 3. An antisense RNA, characterized in that it is complementary to the DNA sequence of claim 1 and can reduce or inhibit the synthesis of the protein encoded by this DNA sequence.
- 4. A ribozyme, characterized in that it is complementary to the DNA sequence of claim 1 and can bind specifically to the RNA transcribed by this DNA sequence and can cleave it so as to reduce or inhibit the synthesis of the protein encoded by this DNA sequence.
- An expression vector, containing the DNA sequence selected from the group consisting of the protein according to claim 1 the antisense RNA according to claim 3 or the ribozyme according to claim 4.
- 6. The expression vector according to claim 5, which comprises additionally the promoter of the human T gene or an ortholog of the T gene.
- 7. An expression vector according to claim 6, which codes for a protein selected from the group consisting of T, T2, T3 proteins or for fragments thereof in the form of a reporter fusion protein.
- 8. A host cell which is transformed with an expression vector selected from the

4121-128

group consisting of the expression vector of claim 5, claim 6 and claim 7.

- 9. A protein which is encoded by the DNA sequence according to claim 1 and which is involved in the development of the nervous system and is expressed in tissue-specific and development-specific manner, or fusion proteins, fragments, variants, derivatives or precursors of the protein
- 10. Protein according to claim 9, which has one of the following motives:

Motive 1:

(A,T)(I,P,V)(L,T)(G,A,Q)(L,V)XXX(L,V)

Motive 2:

IYTDQWAN

Motive 3:

Motive 4:

SXXXXDX (12,20) KX (17, 22)AXXXXXXXXXL

Motive 5:

IYTDWANXXLX (K, R)

Motive 6:

KX(18,21)AXXXXXXXXXXLX(15,24) S

Motive 7:

NX (3,11) SXXXAXXXXXXXL

wherein

X every amino acid

(A,T) = amino acid A or T at this site

X(number 1, number 2) = number 1 to number 2

Xs at this site.

- 11. A method of producing the protein according to claim 9, which comprises culturing the host cell according to claim 8 under suitable conditions and obtaining the protein from the cell or the culture medium.
- 12. Antibody which is directed against the protein according to claim 9 or fragment

thereof.

- 13. Antibody according to claim 12, which is obtained by immunizing animals with a peptide having the sequence "EKGEDPETRRMRTVKNIADI".
- 14. A method for preventing or treating diseases of the nervous system by using a member selected from the group consisting of the DNA sequence according to claim 1, the antisense RNA according to claim 3, the ribozyme according to claim 4, the expression vector according to any of claims 5 to 7, the protein according to claim 9 and the antibody or the fragment thereof according to claim 12 or 13 for preventing or treating diseases of the nervous system, in particular of the CNS.
- 15. The method according to claim 14, wherein the disease of the nervous system is a tumoral disease of the CNS.
- 16. The method according to claim 14, wherein the treatment of diseases of the nervous system are the promotion of the neuronal regeneration in the case of injuries of the nervous system and degenerative diseases of the nervous system.
- 17. The method according to claim 14, wherein the treatment of diseases of the nervous system are the regeneration of the neuronal linkages and the regeneration of the innate and acquired malfunctions of the nervous system.
- 18. The method according to claim 15 for inhibiting the growth and spreading of tumor cells.
- 19. Diagnostic method for detecting a disturbed expression of the protein according to claim 9 or for detecting a changed form of this protein, in which a sample is contacted with a member selected from the group consisting of the DNA sequence according to claim 1. the DNA sequence according to claim 2, the

antibody or the fragment thereof according to claim 12, and the antibody or the fragment thereof of claim 13 and then it is determined directly or indirectly whether the concentration of the protein and/or its amino acid sequence differs from a protein obtained from a healthy patient.

- 20. Diagnostic kit for carrying out the method according to claim 19, which contains at least one member selected from the group consisting of the DNA sequence according to claim 1, the DNA sequence according to claim 2, the antibody or the fragment thereof according to claim 12, and the antibody or the fragment thereof according to claim 13.
- 21. Non-human mammal whose naturally occurring T, T2 or T3 gene comprises a change in the gene structure or the gene sequence.
- 22. Non-human mammal, wherein a change of the gene structure of the T, T2 or G3 gene is achieved in the mammal by introducing a deletion in place of which a homologous or heterologous sequence is introduced.
- 23. Non-human mammal, wherein a change of the gene structure of the T, T2 or C3 gene is achieved by inserting a homologous or heterologous sequence in the corresponding gene naturally occurring in the mammal.
- 24. Non-human mammal according to claim 22, wherein the heterologous sequence is the selection marker sequence.
- Non-human mammal according to claim 24, wherein the selection marker sequence conveys resistance to neomycin.
- 26. A method of producing a non-human mammal selected from the group consisting of the non-human mammal according to claim 21, claim 22, claim 23, claim 24 and claim 25, characterized by the steps of:
 - (a) producing a DNA fragment, in particular a vector, containing a changed

- T, T2 or G3 gene, the T, T2 or T3 gene having been modified by inserting a heterologous sequence, in particular a selectable marker;
- (b) preparing embryonal stem cells from a non-human mammal (preferably a mouse);
- (c) transforming the embryonal stem cells from step (b) with the DNA fragment from step (a), the T gene in the embryonal stem cells being changed by homologous recombination with the DNA fragment from (a)
- (d) culturing the cells from step (c),
- (e) selecting the cultured cells from step (d) for the presence of the heterologous sequence, in particular the selectable marker,
- (f) producing chimeric non-human mammals from the cells of step (e) by injecting these cells into mammalian blastocysts (preferably mouse blastocysts), transferring the blastocysts to pseudo-pregnant female mammals (preferably mouse) and analyzing the resulting offspring for a change of the T, T2 or T3 gene.
- 27. Transgenic cell or tissue which is capable of expressing a T protein or part of the T protein or an ortholog thereof.
- 28. A method for the analysis of the function of the T gene family by using a member selected from the group consisting of the non-human mammal according to claim 21, claim 22, claim 23, claim 24, claim 25 the transgenic cell of claim 27 or the transgenic tissue according to claim 27.
- 29. A method for identifying inhibitors and enhancers of the T gene family by using the non-human mammal according to claim 21, claim 22, claim 23, claim 24, claim 25, the transgenic cell according to claim 27 or the transgenic tissue according to claim 27.
- 30. Vertebrate gene and functional equivalent, derivative or a bioprecursor thereof, which code for a protein having a statistically significant amino acid sequence homology to the T gene, T2 gene or T3 gene according to any of the following

figures selected from the group consisting of: figure 1, figure 9, figure 11, figure 12, figure 13, figure 14, figure 15, figure 16, figure 17, figure 18 or figure 19.

- 31. T gene and its vertebrate orthologs and vertebrate paralogs which code for a nuclear pore protein.
- 32. Vertebrate protein which has an amino acid sequence according to figure 1 or an amino acid sequence which differs from the amino acid sequence in figure 1 by one or more amino acids.
- 33. Vertebrate T, T2 or T3 gene and the protein encoded therein in all of its naturally occurring allelic and mutated forms.
- 34. Medicament containing a protein according to claim 9 or a functional equivalent, a fragment or a bioprecursor thereof in combination with a pharmaceutically acceptable carrier.
- 35. The method of identifying substances which has an enhancing or inhibiting influence on the effect of T protein, T2 protein or T3 protein, by means of determining the bi-directional transport through the nuclear pores,
 - determining the binding to filaments of the cell (e.g. actin filaments and microtubuili) or

determining the increased or reduced transcription of cellular or reporter genes.

- 36. Method of identifying substances which have an enhancing or inhibiting influence on the effect of proteins which are functionally linked to the T protein in direct or indirect way, or represent parallel signal or functional pathways, by means of
 - determining the bi-directional transport through the nuclear pores,

- determining the phosphorylation and the dephosphorylation of proteins,
- determining the binding of the T protein to filaments of the cell (e.g. actin filaments and microtubuli), or
- determining the increased or reduced transcription of cellular or reporter genes.
- 37. The method according to claim 35, wherein the modified transcription with reporter molecules, preferably the occurrence of certain mRNAs or the EGEP protein, is detected.
- 38. The method of identifying further proteins which play a role in the development and function of the nervous system and/or are a nuclear pore protein, wherein the method comprises the steps of:
 - (a) producing an antibody against a protein according to claim 9,
 - (b) contacting a cell extract with the antibody and identifying the antibody/protein complex,
 - (c) analyzing the complex to identify a protein which has bound to the protein of the complex and is no antibody, and
 - (d) optionally repeating steps (a) to (c) to identify further proteins of this function.

REMARKS

A marked-up version of amended paragraph in the specification and amended claims 1-38 are included herewith in Appendix A.

It is requested that the examination and prosecution of this application proceed on the basis of the English translation of the PCT International application included herewith and these amended claims 1-38.

Respectfully submitted,

Marianne Fuierer

Registration No. 39,983

Attorney for Applicants

INTELLECTUAL PROPERTY/ TECHNOLOGY LAW P. O. Box 14329 Research Triangle Park, NC 27709 Phone: (919) 419-9350 Fax: (919) 419-9354 Attorney File: 4121-129

APPENDIX A

- 1. <u>A</u> DNA sequence coding for a protein which is involved in the development of the nervous system, in particular the CNS, and is expressed in a tissue-specific and development-specific manner, wherein the DNA sequence comprises the following DNA sequences:
 - (a) the DNA sequence of figure 1, figure 2, figure 3, figure 4, figure 5, figure 6, figure 7 or figure 8;
 - (b) the DNA sequence of figure 9 or figure 10;
 - (c) the DNA sequence of figure 11;
 - (d) the DNA sequence of figure 12 or figure 13;
 - (e) the DNA sequence of figure 14 or figure 15;
 - (f) the DNA sequence of figure 16;
 - (g) the DNA sequence of figure 17 or 18;
 - (h) the DNA sequence of figure 19;
 - (i) a DNA sequence hybridizing with (a), (b), (c), (d), (e), (f), (g) or (h)
 - (j) fragments, variants, functional equivalents, derivatives or precursors of the DNA sequence of (a), (b), (c), (d), (e), (f), (g), (h) or (i); or
 - (k) a DNA sequence which differs from the DNA sequence of (a), (b), (c), (d), (e), (f), (g), (h), (i) or (j) due to the degeneration of the genetic code.

- 3. An antisense RNA, characterized in that it is complementary to the DNA sequence of claim 1 [or 2] and can reduce or inhibit the synthesis of the protein encoded by this DNA sequence.
- 4. A ribozyme [Ribozyme], characterized in that it is complementary to the DNA sequence of claim 1 [or 2] and can bind specifically to the RNA transcribed by this DNA sequence and can cleave it so as to reduce or inhibit the synthesis of the protein encoded by this DNA sequence.
- 5. An expression [Expression] vector, containing the DNA sequence selected from the group consisting of the protein according to claim 1 [or 2 or coding for] the antisense RNA according to claim 3 or the ribozyme according to claim 4.
- 7. An expression [Expression] vector according to claim [5 or] 6, which codes for a protein selected from the group consisting of [for the] T, T2, [or] T3 proteins or for fragments thereof in the form of a reporter fusion protein.
- 8. A host [Host] cell which is transformed with [the] an expression vector selected from the group consisting of the expression vector of claim 5, claim 6 and claim 7. [according to any of claims 5 to 7.]
- 9. A protein [Protein] which is encoded by the DNA sequence according to claim 1 [or 2] and which is involved in the development of the nervous system and is expressed in tissue-specific and development-specific manner, or fusion proteins, fragments, variants, derivatives or precursors of the protein
- 11. A method [Method] of producing the protein according to claim 9, which comprises culturing the host cell according to claim 8 under suitable conditions and obtaining the protein from the cell or the culture medium.

- 14. A method for preventing or treating diseases of the nervous system by using a member selected from the group consisting of [Use of]the DNA sequence according to claim 1 [or 2], the antisense RNA according to claim 3, the ribozyme according to claim 4, the expression vector according to any of claims 5 to 7, the protein according to claim 9 and [or] the antibody or the fragment thereof according to claim 12 or 13 for preventing or treating diseases of the nervous system, in particular of the CNS.
- 15. The method [Use] according to claim 14, wherein the disease of the nervous system is a tumoral disease of the CNS.
- 16. The method [Use] according to claim 14, wherein the treatment of diseases of the nervous system are the promotion of the neuronal regeneration in the case of injuries of the nervous system and degenerative diseases of the nervous system.
- 17. The method [Use] according to claim 14, wherein the treatment of diseases of the nervous system are the regeneration of the neuronal linkages and the regeneration of the innate and acquired malfunctions of the nervous system.
- 18. The method [Use] according to claim 15 for inhibiting the growth and spreading of tumor cells.
- Diagnostic method for detecting a disturbed expression of the protein according to claim 9 or for detecting a changed form of this protein, in which a sample is contacted with a member selected from the group consisting of the DNA sequence according to claim 1. the DNA sequence according to claim 2, [or 2 or] the antibody or the fragment thereof according to claim 12, and the antibody or the fragment thereof of claim [or] 13 and then it is determined directly or indirectly whether the concentration of the protein and/or its amino acid sequence differs from a protein obtained from a healthy patient.

- 20. Diagnostic kit for carrying out the method according to claim 19, which contains at least one member selected from the group consisting of the DNA sequence according to claim 1, the DNA sequence according to claim [or] 2, [and/or] the antibody or the fragment thereof according to claim 12, and the antibody or the fragment thereof according to claim [or] 13.
- 24. Non-human mammal according to claim 22 [or 23], wherein the heterologous sequence is the selection marker sequence.
- 26. A method of producing a non-human mammal selected from the group consisting of the non-human mammal according to claim 21, claim 22, claim 23, claim 24 and claim 25, to any of claims 21 to 25, characterized by the steps of:
 - (a) producing a DNA fragment, in particular a vector, containing a changed T, T2 or G3 gene, the T, T2 or T3 gene having been modified by inserting a heterologous sequence, in particular a selectable marker;
 - (b) preparing embryonal stem cells from a non-human mammal (preferably a mouse);
 - (c) transforming the embryonal stem cells from step (b) with the DNA fragment from step (a), the T gene in the embryonal stem cells being changed by homologous recombination with the DNA fragment from (a)
 - (d) culturing the cells from step (c),
 - (e) selecting the cultured cells from step (d) for the presence of the heterologous sequence, in particular the selectable marker,
 - (f) producing chimeric non-human mammals from the cells of step (e) by injecting these cells into mammalian blastocysts (preferably mouse blastocysts), transferring the blastocysts to pseudo-pregnant female mammals (preferably mouse) and analyzing the resulting offspring for a change of the T, T2 or T3 gene.
- 28. A method for the analysis of the function of the T gene family by using a member selected from the group consisting of the [Use of the] non-human mammal

according to [any of claims] <u>claim</u> 21, <u>claim</u> 22, <u>claim</u> 23, <u>claim</u> 24, <u>claim</u> [to] 25[or] the transgenic cell <u>of claim</u> 27 or the transgenic tissue according to claim 27. [for the analysis of the function of the T gene family.]

- 29. A method for identifying inhibitors and enhancers of the T gene family by using [Use of] the non-human mammal according to claim 21, claim 22, claim 23, claim 24, claim 25, [to any of claims 21 to 25 or] the transgenic cell according to claim 27 or the transgenic tissue according to claim 27. [for identifying inhibitors and enhancers of the T gene family.]
- 30. Vertebrate gene and functional equivalent, derivative or a bioprecursor thereof, which code for a protein having a statistically significant amino acid sequence homology to the T gene, T2 gene or T3 gene according to any of the following figures selected from the group consisting of: figure 1, figure 9, figure 11, figure 12, figure 13, figure 14, figure 15, figure 16, figure 17, figure 18 or figure 19.
- 37. The method according to claim 35 [or 36], wherein the modified transcription with reporter molecules, preferably the occurrence of certain mRNAs or the EGEP protein, is detected.

JCOS Rec'd PCT/PTO , O 4 JAN 2002

JAN 0 4 2002

4121-129 PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Poustka, et al.

Application No.:

09/914,549

23448

International Application No.:

PCT/DE00/00583

ATENT_TRADEMARK OFFI

Priority Date Claimed:

28 February 2000 and 26 February 1999

(German Appl. No. 199 048 423.8)

Title:

PROTEIN (TP) THAT IS INVOLVED IN THE

DEVELOPMENT OF THE NERVOUS

SYSTEM

FIRST CLASS MAIL CERTIFICATE

I hereby certify that I am mailing the attached documents to the Commissioner for Patents on the date specified, in an envelope addressed to the Commissioner for Patents, Washington, DC 20231, and First Class Mailed under the provisions of 37 CFR

1.8.

Lee Ann Brown

November 14, 2001

Date of Mailing

SECOND SUPPLEMENTAL PRELIMINARY AMENDMENT IN U.S. PATENT APPLICATION NO. 09/914,549

Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to examination of the above-identified national phase patent application, please amend the application, as follows:

In the Specification

Please insert on page 1 between the title of the application and the first paragraph the following new paragraph:

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is filed under the provisions of 35 U. S.C. §371 and claims the priority of International Patent Application No. PCT/DE00/00583 filed February 28, 2000, which in turn claims priority of German Patent Application No. 199 048 423.8 filed on February 26, 1999.

REMARKS

This claim to priority is being filed before the above-identified application meets all the requirements under 35 U.S.C. §371(b).

Respectfully submitted,

Marianne Fuierer

Registration No. 39,983 Attorney for Applicants

INTELLECTUAL PROPERTY/ TECHNOLOGY LAW P. O. Box 14329 Research Triangle Park, NC 27709 Phone: (919) 419-9350 Fax: (919) 419-9354 Attorney File: 4121-129 K 3008

124 pr/s

Protein (TP) That is Involved in the Development of the Nervous System

The present invention relates to a protein (T protein) and to proteins related thereto which are involved in the development of the nervous system and are expressed in a tissue-specific and development-specific manner, below described variants of these proteins and to DNA sequences coding for these proteins. The present invention antibodies directed against further relates to proteins or to fragments thereof as well as to antisense RNAs or ribozymes directed against the expression of these Finally, the present invention proteins. medicaments and diagnostic methods in which the abovementioned compounds are used.

Mutations in genes playing a part in the development and maintenance of the nervous system are of utmost scientific and economic significance, since diseases of the nervous system, in particular CNS, occur frequently, are often characterized by a severe, partly fatal disease process and can be treated only to a limited extent thus far. The increase in the life expectancy is accompanied by a drastic increase in neurological and psychic diseases. The latter greatly limit the quality of life of the affected persons and cause considerable costs for both the affected person and the public.

Isolating and analyzing genes specific to the nervous system offer a good possibility of studying diseases, such as schizophrenia, Alzheimer's disease, autism, manic depression

and mental retardation, and eventually of also being able to treat them.

The present invention is thus based on the technical problem of providing products by means of which disturbances in the development and function of the nervous system can be diagnosed and optionally be treated.

The solution to this technical problem is achieved by providing the embodiments characterized in the claims.

The subject matter of the present invention is thus a DNA sequence coding for a protein which is involved in the development and function of the nervous system, in particular the CNS, and is expressed in tissue-specific and development-specific manner, the DNA sequence comprising the following DNA sequences:

- (a) the DNA sequence of figure 1, figure 2, figure 3, figure 4, figure 5, figure 6, figure 7 or figure 8;
- (b) the DNA sequence of figure 9 or figure 10;
- (c) the DNA sequence of figure 11;
- (d) the DNA sequence of figure 12 or figure 13;
- (e) the DNA sequence of figure 14 or figure 15;
- (f) the DNA sequence of figure 16;
- (g) the DNA sequence of figure 17 or 18;
- (h) the DNA sequence of figure 19;
- (i) a DNA sequence hybridizing with (a), (b), (c),(d), (e), (f), (g) or (h);
- (j) variants, derivatives, precursors or fragments of the DNA sequence of (a), (b), (c), (d), (e), (f),(q), (h) or (i); or

(k) a DNA sequence differing from the DNA sequence of (a), (b), (c), (d), (e), (f), (g), (h), (i) or (j) due to the degeneration of the genetic code.

The present invention is based on the isolation of a human DNA sequence (referred to as gene "T" or T gene; see figures 1 to 8, which codes for protein TP), it turning out that the protein encoded by this DNA sequence is required in the nervous system. In this connection, the expression of the gene encoding this protein is increased in the nervous system. A sequence analysis showed that it is a new gene. Moreover, further genes could be isolated which homologies to this gene (murine gene "T", figures 9 and 10; human gene "T2", figure 16; human gene "T3", figures 17 and 18; murine gene T2, figures 12 and 13; murine gene T3, figure 19). The T gene, T2 gene and T3 gene are members of (gene) family, as shown below, and preferably from vertebrates, such as man, mouse or rat. Defects in these genes limit the functions of the nervous system, in particular the CNS. These genes also perform an important function in the control of cell growth, changes in these genes or their expression result in defects regarding the control of cell growth, e.g. also in tumor formation, in particular of the neuroblastoma. children up to the age of 8 are affected almost exclusively by this cancerous disease. The first symptoms already occur within the first 12 months of life in 25 to 30 percent of the cases. In the case of the neuroblastoma very young cells of the autonomous nervous system degenerate. Since these nerves extend along the rear side of the abdominal region and the chest, neuroblastomas usually occur in the regions of the stomach, pelvis, chest and neck. More than half the diseases start from the suprarenal marrow which is also formed by nerve cells. Symptoms which may refer in small

children to a neuroblastoma are nodes, swellings, bone pain, limping, tiredness, fever, paleness, sweating, obstinate persistentcough, hematomas around the eye. Α neuroblastoma can be diagnosed by a physician by means of blood tests, urine analyses and ultrasonic examinations and by the removal of biopsies from the tumor and an examination of bone marrow. As soon as the accurate location of the tumor is diagnosed, it is removed by means of an operation. early formation of metastases creates However, the problem. By isolating and analyzing the T gene it is now possible to develop novel measures of diagnosing treating the neuroblastoma. Due to this, it is possible to diagnose the cancerous disease early and establish forms of therapy promising better chances of recovery.

Mutations in genes of the T gene family also lead to a disturbed development and differentiation of the nervous system, in particular the brain. In many cases, this results in mental diseases, e.g. mental retardations or Alzheimer's disease. The T gene also plays an important role in the interconnection of individual regions of the brain, e.g. forebrain and midbrain. Mutations in this gene lead in some cases to schizophrenic diseases and syndromes of autism. By means of the human and murine genes it is possible to draw important fundamental conclusions as to the development of the nervous system and in particular the approaches offer themselves as regards the research of pathologic changes of the nervous system and in particular the brain.

Patients can be examined more simply for possible mutations by means of the genomic sequences. The genomic sequences of the T gene are of advantage in particular when little (tumor) material is available for the analysis. By this it

is possible, for example, to examine even minute tumors for mutations in this gene. This also provides the possibility of checking a therapy (in particular radiation therapy and/or chemotherapy) for its being successful, since it is possible to detect tumor cells circulating in the blood by genomic primers which are specific to the genomic DNA using a PCR reaction.

The term "hybridizing" used in the present invention relates to conventional hybridization conditions, preferably to 5xSSPE, hybridization conditions which use where solution and as the solution 1xDenhardt's are between 35°C and hybridization temperatures hybridization, washing 65°C. Following preferably preferably carried out using first 2xSSC, 1 % SDS and then 0.2xSSC at temperatures between 35°C and 70°C, preferably of 65°C (regarding a definition for SSPE, SSC and Denhardt's Molecular Cloning: al., Sambrook et solution see 2^{nd} Cold edition, Spring Manual, Laboratory Spring Harbor, (1989)). N.Y. Laboratory Press, Cold particularly are conditions hybridization Stringent preferred, as described in Sambrook et al., supra, for example.

The terms "variants" or "fragment" used in the present invention comprise DNA sequences which differ from the figures by deletion(s), indicated in the sequences insertion(s), substitution(s) and/or other modifications known in the art or comprise a fragment of the original nucleic acid molecule, the protein or peptide encoded by still having the above-mentioned these DNA sequences properties. Therefore, functional equivalents, derivatives, (bioprecursors) among counted are precursors Derivatives are understood to mean e.g. mutation derivatives è

(produced by deletions or insertions, for example), fusions, allel variants, muteins and splicing variants. Two select examples of such splicing variants are shown in figures 14 and 15. Methods of producing the above changes in the nucleic acid sequence are known to a person skilled in the art and are described in standard works of molecular biology, e.g. in Sambrook et al., supra. The person skilled in the art is also capable of determining whether a protein encoded by a nucleic acid sequence modified in such a way still has the above-mentioned properties.

In a preferred embodiment, the present invention relates to a DNA sequence which encodes a protein comprising the amino acid sequence of figure 1, figure 9, figure 11, figure 12, figure 13, figure 14, figure 15, figure 16, figure 17, figure 18 or figure 19, the protein having the above-defined biological activity.

By lowering or inhibiting the expression of the above is possible to reduce or described DNA sequences it eliminate the synthesis of the proteins encoded by them, e.g. the T protein, which is desirable for certain states of Therefore, another disease, for example. embodiment of the present invention relates to antisense RNA, which is characterized in that it is complementary to the above DNA sequences and can reduce or inhibit the synthesis of the protein encoded by these DNA sequences and to a ribozyme, which is characterized in that it can bind specifically to part of the above DNA sequences and to the RNA transcribed by these DNA sequences and can cleave them so as to reduce or inhibit the synthesis of the protein encoded by these DNA sequences. These antisense RNAs and ribozymes are preferably complementary to a coding region of the mRNA. Based on the disclosed DNA sequences, the person

skilled in the art can produce and use suitable antisense RNAs. Suitable methods are described in EP-B1 0 223 399 or EP-A1 0 458, for example. Ribozymes are RNA enzymes and consist of а single RNA strand. They can intermolecularly other RNAs, e.g. the mRNAs transcribed by DNA sequences according to the invention. in principle, have two domains: ribozymes must, catalytic domain and (2) a domain which is complementary to the target RNA and can bind thereto, which is a precondition for a cleavage of the target RNA. Based on the methods described in the literature, it is meanwhile possible to construct specific ribozymes which excise a desired RNA at a certain pre-select site (see e.g. Tanner et al., Antisense Research and Applications, CRC Press, Inc. (1993), 415-426).

The DNA sequences according to the invention or the DNAs encoding the above described antisense RNAs or ribozymes may also be inserted in a vector or expression vector. Thus, the present invention also comprises vectors or expression vectors containing these DNA sequences. The term "vector" relates to a plasmid (e.g. pUC18, pBR322, pBlueScript), to a another suitable vehicle. Ιn а preferred embodiment, the DNA molecule according to the invention is functionally linked in the vector to regulatory elements allowing the expression thereof in prokaryotic or eukaryotic host cells. Along with the regulatory elements, e.q. a promoter, such vectors contain typically a replication origin and specific genes which allow the phenotypic selection of a transformed host cell. The lac, trp promoter or the T7 promoter are counted among the regulatory elements for the expression in prokaryotes, e.g. E. coli, those for the expression in eukaryotes comprise the AOX1 or GAL1 promoter in yeast, and those for the expression in animal

cells include the CMV, SV40, RVS40 promoter, CMV or SV40 enhancer. Further examples of suitable promoters are the metallothionein I promoter and the polyhedrin promoter. In a preferred embodiment the vector contains the promoter of the human T gene or an ortholog of the T gene. Suitable expression vectors for E. coli are e.g. pGEMEX, derivatives, pGEX-2T, pET3b and pQE-8, the latter being preferred. Suitable vectors for the expression in yeast comprise pY100 and Ycpadl, and suitable vectors for the expression in mammalian cells include pMSXND, pKCR, pEFBOS, cDM8 and pCEV4. Vectors derived from baculovirus expression in insect cells, e.g. pAcSGHisNT-A, are also counted among the expression vectors according to the invention.

General methods known in the art can be used for constructing expression vectors which contain the DNA sequences according to the invention and suitable control sequences. These methods e.g. comprise inrecombination techniques, synthetic methods, and in vivo recombination techniques, as described in Sambrook et al., supra, for example. The DNA sequences according to the invention can also be inserted in combination with a DNA coding for another protein or peptide, so that the DNA sequences according to the invention can be expressed in the form of a fusion protein, for example. These other DNAs are preferably reporter sequences which code for a reporter molecule comprising a detectable protein, e.g. a stain or coloring matter, an antibiotic resistance, ß-galactosidase substances detectable by spectrophotometric, spectrofluorometric, luminescent or radioactive assays.

The present invention also relates to host cells containing the above described vectors. These host cells comprise

bacteria (e.g. the $E.\ coli$ strains HB101, DH1, x1776, JM101, JM109, BL21 and SG13009), fungi, e.g. yeasts, preferably $S.\ cerevisiae$, plant cells, insect cells, preferably sf9 cells, and animal cells, preferably cells from vertebrates or mammals. Preferred mammalian cells are CHO, VERO, BHK, HeLa, COS, MDCK, 293 or WI38 cells. Methods of transforming these host cells for the phenotypic selection of transformants and for the expression of the DNA molecules according to the invention using the above-described vectors are known in the art.

The genes belonging to the sequences according to the invention can be amplified by suitable primer sequences. The primer sequences indicated in figure 20 are particularly suited for amplification of genes T2 and T3.

The present invention also relates to the proteins encoded by the DNA sequences according to the invention and to of producing the protein encoded by the DNA sequences according to the invention. The person skilled in the art is familiar with conditions of culturing transformed or transfected host cells. The method according to the invention comprises the culturing of the above described host cells under conditions which allow the expression of protein) (preferably stable (or fusion protein expression) and the collection of the protein from the from the host cells. Suitable purification chromatography, affinity methods (e.q. preparative e.g. immunoaffinitychromatography, chromatography, etc.) are generally known.

The proteins according to the invention preferably comprise the amino acid sequences shown in figure 1, figure 9, figure 11, figure 12, figure 13, figure 14, figure 15, figure 16,

figure 17, figure 18 or figure 19 or represent fusions, fragments, derivatives or precursors (bioprecursors) thereof, the above mentioned properties being maintained within the meaning of functional equivalents. As to the definitions of these terms, reference is made to the respective explanations above. Derivatives are understood to mean in particular the changed proteins or peptides which differ from the sequences shown in the figures conservative amino acid substitutions contain or conserved amino acid substitutions that do not change the function of the T proteins to a substantial degree.

The following amino acid motives have been identified by Inventors. They are suited to identify formerly unknown proteins which belong to the T/T2/T3 family according to the invention and a protein superfamily from pore membrane proteins and filament-binding proteins.

Motive 1:

(A, T) (I, P, V) (L, T) (G, A, Q) (L, V) XXX (L, V)

Motive 2:

TYTDWAN

Motive 3:

Motive 4:

SXXXXDX (12,20) KX (17,22) AXXXXXXXL

Motive 5:

IYTDWANXXLX(K,R)

Motive 6:

KX(18,21)AXXXXXXXXLX(15,24)S

Motive 7:

NX(3,11)SXXXAXXXXXXL

X(2,4) denotes two to four Xs at this site

Another preferred embodiment of the present invention relates to antibodies against the above described proteins according to the invention or to a fragment thereof. These antibodies may be monoclonal, polyclonal or synthetic antibodies or fragments thereof. In this connection, the term "fragment" means all parts of the monoclonal antibody (e.g. Fab, Fv or "single chain Fv" fragments) which have an epitope specificity the same as that of the complete antibody. The person skilled in the art is familiar with the production of such fragments.

The antibodies according to the invention are preferably monoclonal antibodies. The antibodies according to the invention can be produced according to standard methods, the protein encoded by the DNA sequences according to the invention or a synthetic fragment thereof serving as an immunogene. Methods of obtaining monoclonal antibodies are known to the person skilled in the art and comprise e.g. as a first step the production of polyclonal antibodies using the proteins according to the invention or fragments thereof (synthetic peptides, for example) as an immunogene for immunizing suitable animals, e.g. rabbits or chickens, and the collection of the polyclonal antibodies from the serum or egg yolk.

For example, cell hybrids from cells producing antibodies and tumor cells from bone marrow are then produced and cloned. Thereafter, a clone is selected which produces an antibody specific to the antigen used. This antibody is then produced. Examples of cells producing antibodies are spleen cells, lymph node cells, B lymphocytes, etc. Examples of animals which can be immunized for this purpose are mice,

rats, horses, goats and rabbits. The myeloma cells can be obtained from mice, rats, humans or other sources. The cell fusion can be carried out by the generally known method developed by Köhler and Milstein, for example. hybridomas obtained by cell fusion are screened using the antigen according to the enzyme-antibody method or according to a similar method. Clones are obtained with the boundary dilution method, for example. The resulting clones implanted intraperitoneally into BALB/c mice, for example, the mouse ascites is removed after 10 to 14 days, and the monoclonal antibody is purified by known methods (e.g. ammonium sulfate fractionation, PEG fractionation, exchange chromatography, gel chromatography or affinity chromatography).

In a particularly preferred embodiment, said monoclonal antibody is an antibody originating from an animal (e.g. mouse), a humanized antibody or a chimeric antibody or a fragment thereof. Chimeric antibodies similar to human antibodies or humanized antibodies have a reduced potential antigenicity, however, their affinity is not lowered over The production of chimeric and humanized antibodies or of antibodies similar to human antibodies has been described in detail (see e.g. Queen et al., Proc. Natl. Acad. Sci., U.S.A. 86 (1989), 10029, and Verhoeyan et al., Science, 239 (1988), 1534). Humanized immunoglobulins have variable framework regions which originate substantially immunoglobulin (designated from human immunoglobulin) and the complementarity of the determining regions which originate substantially from a non-human immunoglobulin (e.g. from a mouse) (designated immunoglobulin). The constant region(s) originate(s), available, also substantially from a human immunoglobulin. When administered to human patients, humanized (and the

antibodies have а number οf human) advantages over antibodies from mice or other species: (a) the human immune system should not regard the framework or the constant region of the humanized antibody as foreign and therefore the antibody response to such an injected antibody should be less than to that to a completely foreign mouse antibody of partially foreign chimeric antibody; (b) since effector region of the humanized antibody is human, it might interact better with other parts of the human immune system, and (c) injected humanized antibodies have a half life which is substantially equivalent to that of human antibodies occurring in nature, which permits the administration of doses smaller and less frequent as compared to antibodies of other species.

The antibodies according to the invention can be used for the immunoprecipitation of the above discussed proteins, for the isolation of related proteins from cDNA expression libraries or for the below indicated purposes (diagnosis/therapy), for example.

The present invention also relates to a hybridoma which produces the above described monoclonal antibody.

In a preferred embodiment, the present invention relates to antibodies against the peptides of genes T2 and T3 listed separately (cf. figure 20).

It has been found that the below peptide can be used specifically for generating antibodies against the T protein. The amino acid sequence of the suitable peptide reads as follows:

EKGEDPETRRMRTVKNIAD

The present invention makes possible to study disturbances in the development and function of the nervous system on a genetic level. These disturbances comprise inter alia psychiatric diseases neurological and (inter alia Alzheimer's disease, Parkinson's disease, schizophrenia, manic-depressive diseases, autism, mental retardations), injuries of the nervous system, innate damage of the nervous system or degenerative diseases of the nervous system. The invention also enables the treatment of cancer, inter alia of tumors of the nervous system, such as neuroblastoma, astrocytoma, glioblastoma, medulloblastoma. This diagnosis cannot only be made postnatally but already prenatally. It can be detected by means of the DNA sequence according to the invention or probes or primers derived therefrom whether mammals, in particular humans, contain a gene which codes for and/or expresses the protein according to the invention or whether this gene results in a mutated form of protein which is no longer biologically active. For this purpose, the person skilled in the art can carry out common methods, such as reverse transcription, PCR. hybridization and sequencing. The antibodies according to the invention are also suited e.g. for diagnosis, i.e. for detecting in a sample the presence and/or concentration of the protein according to the invention, a shortened or extended form of the protein, etc. The antibodies can be bound e.g. in immunoassays in liquid phase or to a solid carrier. In this case, the antibodies can be labeled in various ways. Suitable markers and labeling methods are known in the art. Examples of immunoassays are ELISA and RIA.

Thus, the present invention also relates to a diagnostic method for detecting a disturbed expression of the protein

according to the invention or for detecting a changed form of this protein, in which a sample is contacted with the DNA sequences according to the invention or the antibody according to the invention or the fragment thereof and then it is determined directly or indirectly whether the concentration of the protein and/or its amino acid sequence differs from a protein obtained from a healthy patient.

The present invention also allows to carry out therapeutic in connection with the above discussed measures disturbances. i.e. the above described inventive sequences, antisense RNAs, ribozymes and antibodies can also be used for producing a medicament, e.g. for controlling the expression of the protein according to the invention, or for exchanging a mutated form of the gene by a functional form and thus also for the production of a medicament for preventing or treating diseases of the nervous system, in particular tumoral diseases of the CNS. For example, the protein according to the invention can be introduced into mammals, in particular humans, by common measures. For this purpose, it may be favorable to link the protein to a protein which is not considered foreign by the respective body, e.g. transferrin or bovine serum albumin (BSA). An inventive DNA sequence, antisense RNA or ribozyme can also be introduced into mammals, in particular humans, and expressed. By means of an antibody according to the invention it is possible to control and regulate the expression of the protein (TP) according to the invention or the related proteins.

Thus, the present invention also relates to a medicament which contains the above described DNA sequences, antisense RNA, the ribozyme, the expression vector, the protein according to the invention or the antibody or the fragment

thereof. This medicament contains, optionally in addition, a pharmaceutically compatible carrier. Suitable carriers and the formulation of such medicaments are known to the person skilled in the art. Suitable carriers are e.g. phosphate-buffered common salt solutions, water, emulsions, e.g. oil-in-water emulsions, wetting agents, sterile solutions, etc. The medicaments can be administered orally or parenterally. The topical, intra-arterial, intra-muscular, subcutaneous, intramedullary, intrathekal, intraventricular, intravenous, intraperitoneal or intranasal administration are counted among the methods for the parenteral administration. The suitable dose is determined by the attending physician and depends on various factors, e.g. on the age, sex and weight of the patient, the stage of the disease, the kind of administration, etc.

The above described nucleic acids are preferably inserted in a vector suitable for gene therapy and introduced into the cells under the control of a tissue-specific vector, for example. In a preferred embodiment, the vector containing the above described nucleic acids is a virus, adenovirus, vaccinia virus or adenovirus. Retroviruses are particularly preferred. Examples of suitable retroviruses are MoMuLV, HaMuSV, MuMTV, RSV or GaLV. For the purposes of gene therapy, the nucleic acids according to the invention can also be transported to the target cells in the form of They comprise liposomes dispersions. colloidal lipoplexes, for example (Mannino et al., Biotechniques 6 (1988), 682).

Finally the present invention relates to a diagnostic kit for carrying out the above described diagnostic method, which contains a DNA sequence according to the invention or the above described antibody according to the invention or a

fragment thereof. Depending on the kind of the kit, the DNA sequence or the antibody or the fragment thereof can be immobilized.

Sequences of the T genes can be applied to nylon membranes or glass carriers and hybridized with complex cDNA samples from tumors and pertinent normal tissues or diseased and pertinent healthy tissue. This enables the (fully automated) detection of the expression of these genes. The sequences used for this purpose can be e.g. the entire cDNA sequence or short sequence segments, e.g. 10-15 bp oligomers (see inter alia figure 20). Having determined the expression of the T genes, the therapy, inter alia the cancer therapy, can be selected deliberately according to the respective individual situation of the patient or can be adapted thereto. Genes whose changed expression influence already now the treatment of the patient are the N-myc gene in the for example. By detecting neuroblastoma, expression of the T genes it is thus possible to adapt the treatment very quickly and efficiently to the respective requirements and in this way it contributes essentially to the improved therapy.

The isolation and characterization of the human gene according to the invention and in particular of the mouse homologues thereof also allow to establish an animal model, which is very valuable for the further study of diseases of the nervous system and of cancerous diseases on a molecular level. The subject matter of the present invention thus also relates to a non-human mammal whose T gene or T2 or T3 gene is changed, e.g. by inserting a heterologous sequence, in particular a selection marker sequence.

The expression "non-human mammal" comprises any mammal whose T gene or T2 or T3 gene can be changed. Examples of such mammals are mouse, rat, rabbit, horse, cattle, sheep, goat, monkey or ape, pig, dog and cat, with mouse being preferred.

The expression "T gene or T2 or T3 gene which is changed" signifies that a change of the gene structure or the gene carried out by standard methods sequence is corresponding gene occurring naturally in the non-human mammal. This can be achieved inter alia by introducing a deletion of about 1-2 kb, at the place of which sequence, e.g. a construct for mediating heterologous antibiotic resistance (e.g. a "neo cassette") is introduced. Heterologous sequences allowing to carry out time-specific and tissue-specific deletions in vivo can also be inserted in the T gene. Furthermore, heterologous sequences allowing to track the expression of the T gene in vivo can be introduced into the T gene. This can be done inter alia by inserting a sequence coding for the GFP (green fluorescent protein) protein inside an exon or as an independent exon. These methods are generally described by Schwartzberg et al., Proc. Natl. Acad. Sci., U.S.A., Vol. 87, pages 3210-3214, 1990, to which reference is made herein.

In particular, the modification can be described and carried out as follows. Figure 9 represents part of the cDNA sequence of the T gene of a mouse. Illustration 10 shows an intron sequence of the T gene of a mouse, which is flanked by two exons. These murine sequences can then be used for the deliberate change of the murine T gene. For example, the splicing sequences of the intron can be deleted or changed such that the T gene is no longer spliced correctly. By incorporating a splicing acceptor sequence of another exon of the murine T gene into the intron sequence it is possible

to insert in this intron a sequence which is recognized as exon and is spliced to the T gene exon upstream thereof. This inserted sequence may be an exon, for example, which encodes the EGFP protein (EnhancedGreenFluorescentProtein). As a result, the original murine T gene becomes a fusion protein comprising the EGFP protein. Thus, a mouse can preferably be generated, which allows to expression of the T gene in vivo. The inserted sequence can be designed at its end (e.g. PolyA signal, splicing signals, etc.) such that no further exons of the T gene are spliced to the inserted exon or the spliced exon can no longer be translated. As a result, a deletion of the murine T protein forms on the C-terminal end or a premature discontinuance of the reading frame, and an (at least partial) inactivation of the protein function of the murine T gene can be achieved. is also possible to insert, as new exon sequences, sequences which yield an mRNA sequence where this new mRNA sequence is localized at the 3' end. By suitable sequences it is then possible to achieve a change in the stability of mRNA or a changed localization in the cell. The accompanying phenotypes of the thus modified mice can then result in important conclusions drawn on the function of the T gene. These mice can then also be used for detecting new active substances compensating the functional loss of the T gene.

In another preferred embodiment, the sequence of figure 13 is used for the production of a knock-out mouse. Figure 13 describes a murine sequence of gene T2. The elimination of the murine T2 genes can in this connection be achieved in different ways. For example, the splicing sequence (GT, underlined in figure 13) can be deleted or changed such that the T2 gene is no longer spliced correctly. In addition, by incorporating a splicing acceptor sequence of another exon

of the murine T2 gene into the following intron sequence it is possible to insert in this intron a sequence which is detected as exon and spliced to the T2 gene exons upstream thereof. This inserted exon may be e.g. an exon which codes for the EGFP protein. Due to this, the original murine T2 gene becomes a fusion protein which carries the EGFP protein at the C terminus. In this way, a mouse can be generated which allows to track the expression of the T2 gene in vivo. The inserted sequence can be designed at its end (e.g. PolyA signal, etc.) such that no further exons are spliced to the inserted exon by the T2 gene. A deletion of the murine T2 protein forms at the C-terminal end and an (at least partial) inactivation of the protein function of the murine T2 gene can be achieved. Such sequences can also be inserted as new exon sequences which yield an mRNA sequence in which at the 3' end this new mRNA sequence is localized. By means of suitable sequences it is then possible to achieve a the stability of the mRNA in or a localization in the cell. The accompanying phenotypes of the thus changed mice can then lead to important conclusions as to the function of the T2 gene. These mice can also be used for detecting new active substances which compensate the functional loss of the T gene.

Furthermore, a mammal can be generated comprising a change in the T3 gene. The sequence in figure 19 represents part of the murine cDNA sequence of the T3 gene. Deliberate changes in the T3 gene of a mouse can be achieved by deletions or insertions. The inserted sequence can be an exon, for example, which codes for the EGFP protein. As a result, the original murine T3 gene becomes a fusion protein which carries the EGFP protein at the C terminus. Thus, a mouse can be generated which allows to track the expression of the T3 gene in vivo. The inserted sequence can be designed at

its end (e.g. PolyA signal, etc.) such that no further exons are spliced from the T3 gene to the inserted exon. deletion of the murine T3 protein thus forms on the Cterminal end and an (at least partial) inactivation of the protein function of the murine T3 gene can be achieved. It is also possible to insert, as new exon sequences, sequences which yield an mRNA sequence where this new mRNA sequence is localized at the 3' end. By suitable sequences it is then possible to achieve a change in the stability of the mRNA or changed localization in the cell. The accompanying phenotypes of the mice changed in this way can then lead to important conclusions as to the function of the T3 gene. These mice can then also be used for discovering new active substances which compensate the functional loss of the T3 gene.

Another subject matter of the present invention are cells which are obtained from the above non-human mammal. These cells can be present in any form, e.g. in a primary or long-term culture.

A non-human mammal according to the invention can be provided by common methods. A method is favorable which comprises the steps of:

- (a) producing a DNA fragment, in particular a vector, containing a changed T, T2 or G3 gene, the gene having been modified by inserting a heterologous sequence, in particular a selectable marker;

- (c) transforming the embryonal stem cells from step (b) with the DNA fragment from step (a), the T gene in the embryonal stem cells being changed by homologous recombination with the DNA fragment from (a);
- (d) culturing the cells from step (c);
- (e) selecting the cultured cells from step (d) for the presence of the heterologous sequence, in particular the selectable marker;
- (f) producing chimeric non-human mammals from the cells from step (e) by injecting these cells into mammalian blastocysts (preferably mouse blastocysts), transferring the blastocysts to pseudo-pregnant female mammals (preferably mouse) and analyzing the resulting offspring for a change of the T gene.

In step (c), the mechanism of homologous recombination (cf. R.M. Torres, R. Kühn, Laboratory Protocols for Conditional Gene Targeting, Oxford University Press, 1997) is used to transfect embryonal stem cells. The homologous recombination between the DNA sequences present in a chromosome and new added cloned DNA sequences enable the insertion of a cloned gene in the genome of a living cell in place of the original gene. Using embryonal germ cells, animals which are homozygous for the desired gene or the desired gene portion or the desired mutation can be obtained via chimeras by this method.

The expression "embryonal stem cells" comprises any embryonal stem cells of a non-human mammal, suited to mutate the T gene. The embryonal stem cells originate preferably from a mouse, in particular the cells E14/1 or 129/SV.

The expression "vector" comprises any vector which by recombination with the DNA of embryonal stem cells enables a change of the T, T2 or G3 gene. The vector preferably has a marker by means of which selection can be made for existing stem cells in which the desired recombination has been made. Such a marker is the loxP/tk neo cassette, for example, which can be removed by means of the Cre/loxP system from the genome again.

The person skilled in the art also knows conditions and materials serving for carrying out steps (a) - (f).

By means of the present invention a non-human mammal is provided whose T, T2 or T3 gene is changed. This change may elimination of the gene expression-regulating function. Using such a mammal or cells therefrom it is to study selectively the gene expressioncontrolling function of the TP protein. It is also possible by this to find substances, medicaments and approaches by which selective influence on the controlled function is The present invention therefore possible. provides basis for influencing the differing most diseases. Such diseases are e.g. limitations of the CNS functions which cover mental retardations or the induction of cancer resulting from deficiencies in the control of cell proliferation.

Inventors found out in the sequence analysis that the T2 gene in the coding region of the cDNA sequence contains CGG trinucleotides which are known to be sensitive to methylation. The T2 gene thus has in the coding region (N-terminal region of the protein which has no homology to the T protein or T3 protein) a methylation-sensitive and

unstable sequence which results in the failure of the gene accompanied by a mental retardation and uncontrolled cell growth, such as cancer.

All the three genes of the T family play a major role in the case of tumors. The T gene is affected in many tumors by genomic rearrangements. For example, in neuroblastomas genomic changes in the DNA of tumors can be found as compared to the DNA of the accompanying healthy tissue. The expression of the T gene, e.g. in tumors of the brain, is also changed. A strongly changed expression can be found inter alia in the advanced stages of glioblastomas. Tumor-specific changes of the expression of the T gene and the occurrence of the T protein can also be detected in meningiomas.

In many tumoral diseases, the T2 gene also undergoes genomic rearrangements, and a changed expression can be detected in tumors. For example, in melanomas and lung tumors genomic rearrangements of the T2 gene can be detected. Expression differences are also detectable in gliomas, glioblastomas, astrocytomas and PNETs (Primitive Neuro-Ectodermal Tumors), for example.

gene also undergoes genomic tumors, the T3 rearrangements and expression changes. Rearrangements can be example. colon carcinomas, for detected gliomas, detectable inter alia in differences are (Primitive Neuroastrocytomas and PNETs glioblastomas, Ectodermal Tumors).

By isolating and accurately analyzing the T gene, Inventors now have found that the T protein has a certain relationship to proteins which perform completely different functions in

the cell. The sequence analysis of these proteins showed that the genes coding for these proteins are likely due to a gene common precursor or to similar precursor genes. Proteins such as the POM121 protein (Hallberg et al., J. Biol. 122, pages 513-522, 1993) belong to superfamily. It is one of two known nuclear pore membrane proteins in vertebrates. The CLIP-170 protein which binds vesicles and other organelles within the cell to microtubuli (Pierre et al., Cell 70, pages 887-900, 1992) also belongs to this family. The unexpected discovery that genes which perform such different tasks inside the cell belong to a common protein superfamily is extremely surprising and even inconsistent at first sight. However, when the functions of the individual genes are analyzed, two main functions of these proteins can be derived. The CLIP-170 protein binds to microtubuli, the newly isolated T proteins and the POM121 protein are localized in the nuclear core complex. Due to the properties of these proteins, Inventors propose that this protein superfamily be referred to as POMIC protein superfamily. POMIC shall, in this connection, stand for pores and/or microtubuli-binding protein. Based on isolation and analysis of the T gene, two paralogs of the T gene could be isolated, namely the T2 and T3 genes which are described in more detail above. As regards evolution and function, the family of the T proteins is between the CLIP (cytoplasmic linker protein-170) and the POM121 protein. This intermediate position is also supported by the sequence analysis and the putative protein structure. The nuclear pore membrane protein POM121 has no marked coiled-coil structure whereas the CLIP-170 protein shows a very distinct coiled-coil structure between the N-terminus and C-terminus (cf. figure 29). Coiled-coil structures exist in the family of T proteins, however, they are clearly less marked than in CLIP-170. A similar intermediate position is adopted by the

family of T proteins with respect to the occurrence of hydrophobic domains. The POM121 protein has a hydrophobic domain at the N-terminus which is introduced into nuclear membrane, and the protein is positioned in CLIP-170 The protein has no distinct nuclear pore. hydrophobic domain. The T protein and the Т3 however, have a hydrophobic domain with three hydrophobic partial regions (cf. figure 30). The exchange of the Nterminus in the T2 protein as compared to the evolutionary basic form resulted in a loss of this distinct hydrophobic domain. Yet all three T proteins have in common the very similar structure of the C-terminus. The T3 protein is most similar to the T protein within the T protein family. However, the T3 protein also has undergone a change in the course of evolution. The N-terminus was changed as compared to the T protein by insertion of about 400 amino acids. This insertion resulted in another coiled-coil structure compared to the otherwise very similar T protein. The T protein and the T3 protein perform functions in the nuclear membrane-localized form, which are similar to those POM121. However, it is interesting that in the course of evolution there was a loss of part of the C-terminus in the POM121 protein. As compared to the POM121 protein, the T proteins have a longer C-terminus. Due to this longer Cterminus many interactions with other proteins are possible. In this connection, it is also worth mentioning that a leucine-zipper structure was discovered in the T protein, which facilitates interactions with other proteins. family of T protein plays an important role in the mediation of interactions between cell organelles and filaments, inter alia microtubuli. Microtubuli play an important role e.g. in nerve cells; in the case of axons, for example, the plus ends of the microtubuli face away from the cell body whereas the microtubuli of dendrites have both orientations.

cell polarity is of major importance for the functioning of being. Microtubuli also provide living efficient organelle transport, and they are of essential significance for the general organization οf structures in a cell. The T proteins perform an important between function membrane structures mediator microtubuli. The T gene and the T3 gene perform their function in particular as a membrane protein in the nuclear whereas the T2 protein acts particularly cytoplasmic protein.

Due to the findings of Inventors the T gene and the T3 gene are part of the nuclear pore complex. Nuclear pore complexes (NPCs) are extremely complicated structures which mediate the bi-directional transport of macromolecules between the The nuclear pore complex is nucleus and the cytoplasm. embedded in the nuclear envelope and encases a central channel with a structure only defined insufficiently thus far. Peripheral structures, short cytoplasmic filaments and a basket-like structure are attached on both sides of the central nuclear pore complex. This basket-like structure interacts with molecules which pass through the nuclear pore complex. The mechanism of synthesizing nuclear complexes is hardly understood thus far. In addition, it has been found when observing cells passing through mitosis that the nuclear envelope is dissolved deliberately and their components, including the nuclear pore proteins, distributed over the mitotic cytoplasm. Αt the end mitosis, all these components are used again to form the nuclear envelope of the daughter cells. Due to the detailed analysis of the gene T, Inventors found that the N-terminal half of the T protein is weakly homologous to the pore membrane protein POM121. The homology covers the entire region of the POM121 protein and has an identity of about 18 % on a protein level so that the DNAs underlying these proteins should not hybridize with one another, even under hardly stringent conditions. As regards the formation and structure of the nuclear pore, the T protein according to the invention plays a very fundamental role. In a detailed analysis of the protein, a lipophilic domain could be detected at the N-terminus of the T protein. However, this sequence has no homology to the lipophilic sequence of the POM121 protein. There is also a short segment of amino acids which might serve as a signal sequence before the lipophilic domain in the T protein. In order to find out whether this putative signal sequence and the lipophilic domain are involved in vivo in the incorporation into the nuclear membrane, various constructs of the T gene were produced. Various parts of the N-terminus of the T protein were fused with the EnhancedGreenFluorescentProtein (EGFP). The EGFP was here fused to the C-terminus of the T protein. The fusion protein which comprised the unchanged N-terminus of the T protein (putative signal sequence with lipophilic membrane domain) was actually incorporated into the nuclear membrane. However, the fusion construct from which the putative signal sequence and the lipophilic domains lack, was not incorporated into the nuclear membrane accumulated in the cytoplasm. This showed that the Nterminus of the T protein is necessary and suffices to result in a localization within the nuclear membrane. order to show that the T protein is actually localized in the nuclear membrane, antibodies were generated against a T protein. Immunohistochemical peptide sequence of the studies of tissues of man, mouse and rat were carried out with these antibodies. It showed that the antibody detects a protein which is localized in the nuclear membrane. Since it is difficult to differentiate by means of a light microscope whether the protein is localized in the nuclear membrane or

the nucleus itself, further analyses were made using the high-resolution method of electron microscopy. By this it was possible to clearly show that the T protein is localized in the nuclear membrane. As a detection reaction a second antibody was used here to which the enzyme horseradish peroxidase was coupled and which resulted in a color reaction (DAB). The stain or coloring formed can be seen in the electron-microscopic pictures only on the cytoplasmic the nuclear membrane. This indicates that side of antibody recognizes an epitope of the T protein which is accessible from the cytoplasmic side for the antibody. The analysis of the immunohistochemical sections also showed that the antibody recognizes very specific neurons (cf. figure 24). The results of the analysis of the expression on protein level by means of the antibody are highly consistent with the results of the analysis of the RNA expression. The mouse ortholog of the T gene was used in the RNA in situ analyses. Using the human T gene cDNA clones, murine cDNA clones of the mouse ortholog were initially isolated and sequenced for this purpose. The sequence analysis confirmed that the isolated cDNA clones was the mouse ortholog. Such a murine cDNA clone of the T gene was then used for the RNA in situ hybridization (cf. figures 25, 26, 27, 28). An expression analysis of the T gene of the mouse was then possible by means of this technique. accurate analysis of the spatial-temporal expression profile showed that the T gene plays a decisive role generation, formation and maintenance of the nervous system in vertebrates. No expression can be detected during the early mouse embryogenesis on day 9.5 post conceptionem (pc = post conceptionem). On day 10.5 pc, it is possible to detect an expression in the ventral mesencephalon and In this stage there is also telencephalon. expression in the connecting region of the mesencephalon and telencepalon (forebrain-midbrain). An expression of the T gene in the telencephalon, in the ventral mesencephalon and in the myelencephalon can be detected on day 11.5 pc. An expression in neurons of the mantle zone of the developing brain and in the nuclei of the peripheral nerves is visible on day 12.5 pc. Furthermore, there is an expression in the spinal cord and spinal ganglia. A minor myelencephalon, in the mesencephalon is detectable and expression is telencephalon. No expression detectable e.g. in proliferating neurons in the subventricular layer or in the migrating neurons of the 'intermediate' zone. On day 14.5 pc, an expression in mesenchymal tissues, e.g. around the vertebra or in the region of developing bones, is also visible. A strong expression in all parts of the brain and the peripheral nervous system (e.g. spinal ganglia and nerve fibers of the tail) can be detected on day 16.5 pc. expression in differentiating neurons of the mantle zone of the telecephalons can also be detected. Furthermore, expression in neurons of the spinal cord and the spinal ganglia can be detected. When the brain develops after the birth, an expression in the olfactory bulb, in the cerebral cortex and in the developing hippocampus can be detected above all. A minor expression is found however in developing cerebellum. Α similar coliculus and the expression pattern exists in the fully developed brain.

Northern blots (cf. figure 23) were carried out to find out where the T gene or T2 or T3 gene are expressed. The T gene is expressed predominantly in the brain, hardly or not at all in the heart, lungs, placenta, liver, skeletal muscle, kidney or pancreas (irrespective of adult or fetal tissue). However, the T2 gene is virtually not expressed in the brain but strongly expressed in the heart (adult and fetal), adult liver, adult skeletal muscle and adult kidney. The T3 gene

is expressed in all tested tissues (adult and fetal heart, brain, liver, kidney: placenta, adult skeletal muscle, adult pancreas), except in fetal lungs.

Because of the discovery of the T gene and the detailed analysis of this gene with the information therefrom a basis has been created for the development of fully novel medicaments and medicament compound classes. The bi-directional transport of molecules through the nuclear membrane is of decisive significance for the function of each eukaryotic cell. The information which is stored in the form of DNA (chromosomes) in the nucleus is transcribed into mRNA. However, the information is only translated into protein in the cytoplasm. If the transcribed information (mRNA) does not reach the cytoplasm, the information will be lost and dramatic disturbances may occur within the cell. This transport is, however, no one-way street. likewise important that certain substances and proteins reach the nucleus so as to maintain the function of the cell. If a transcription factor, for example, which - like the other proteins - is formed in the cytoplasm does not reach the cell nucleus, it cannot trigger the transcription of the other genes. Dramatic disturbances of the events in the cell, which may even comprise the dying of the cell or the organism, are often accompanied by this. This shows clearly that nuclear pore proteins perform an extremely important function within the cell. The analysis of the T gene has now shown that the T protein is also incorporated into the nuclear membrane. It is interesting that the T protein is almost twice as large as the POM121 protein, i.e. it has a much greater binding capacity than the POM121 protein. The T protein is therefore very well suited to isolate possible binding partners which attach to the T protein, in particular to the C-terminus of the T protein.

tissue-specific expression of Т the gene shows strikingly that nuclear core proteins (in particular nuclear pore membrane proteins) do not have to be expressed in all cells and at all times like 'housekeeping' predominant expression of the T gene in the nervous system shows that the T protein in the nervous system performs a very specific function. The predominant expression of the T the nervous system can now be used development of new medicaments and new medicament compound classes. New substances can now be isolated by means of the T protein, which influence deliberately the bi-directional transport in nuclear pores of the nervous system. localization of the T protein within the nuclear membrane is in this case of major advantage. Chemical compounds can be tested by means of automated tests. Many pharmaceutical companies have suitable screening methods in which more than 200,000 chemicals can be tested. For this purpose, proteins, assays (e.g. GFP fusion reporter substances, etc.) can be used which show the successful transport of a molecule into the nucleus or into the By this, new active substances can then be isolated which deliberately influence the transport molecules into nuclear pores, in particular those of the nervous system.

Identifying and analyzing interactions between the T proteins according to the invention (T, T2, T3 protein) or peptides or fragments thereof and possible binding partners which may represent active substances within the abovementioned meaning, can happen e.g. with the "yeast-two-hybrid system" (Fields, Nature 340, pages 245-247, (1989)). This system is based on the discovery that cellular transcription activators, such as GAL4 or lexA from yeast,

can be separated into two independent functional domains. Both domains are usually part of a protein in the cell nucleus of the yeast cell, which binds to certain activating different target genes and regulates sequences of transcription thereof. In this connection, one domain, the DNA binding domain (BD), binds specifically to a certain DNA (upstream activating sequence) sequence vicinity of the target promoter. The other domain, activation domain (AD), increases the transcription rate of gene by interaction with the transcription target initiation complex which is bound to the promoter of the "yeast-two-hybrid system", gene. Ιn the target structure is used by the transcription factors in modified The DNA binding domain (BD) of GAL4 or lexA expressed there as fusion protein with a "bait protein or peptide" (here: T, T2 or T3 protein/peptide) in yeast cells. This fusion also has a nuclear localization signal by which it is transported into the cell nucleus of the yeast. The bait fusion protein binds therein to a target sequence (UAS) which is located in the employed yeast strain in the vicinity of the promoters of two reporter genes (e.g. auxotrophic marker (HIS3) and enzymatic marker (lac2). By this a constellation results in which the bait protein or exposed in direct spatial vicinity of the peptide is reporter gene promoter. Then, a second fusion protein is additionally expressed in the same yeast cell. It consists of the activation domain (AD) of GAL4 or lexA and a prey protein or peptide. It also has a nuclear localization signal. The prey fusion protein is thus also transported into the cell nucleus of the yeast. If the prey protein and the bait protein exposed on the UAS physically interact with each other, it becomes more likely statistically that the activation domain is located in the vicinity of the reporter gene promoter. This results in an increase of the

transcription of the reporter genes whose extent is proportional to the strength of interaction between bait and prey protein. In this case, e.g. a cDNA library and also a combinatorial peptide library are in consideration as the prey proteins.

invention also relates to а process identifying inhibitors or enhancers of the T protein family according to the invention. For this purpose, the nucleic acid sequences or parts of these sequences, which are part of the T gene or the paralogs or orthologs thereof, are inserted in suitable vectors and used for transfecting or transforming cells, tissues or organisms. These changed cells, tissues or organisms are then used for identifying inhibitors or enhancers of the T protein or its paralog or ortholog proteins (e.g. T2 and T3) or proteins which interact directly or indirectly with these proteins. The inhibitors or enhancers identified by this approach can be used for pharmaceutical active substances or medicaments or for the production thereof and for the treatment of diseases such as cancer, neurological and psychiatric diseases and injuries of the nervous system. In the case of injuries of the nervous system, innate damage of the nervous system or the degenerative diseases of the nervous system, possible to support deliberately by this treatment inter neuronal regeneration interconnection of individual nervous regions Parkinson's alia Alzheimer's disease, disease, autism, schizophrenia, manic-depressive diseases, retardation). The present invention provides the possibility of testing the substances or therapeutic agents suitable to enhance or reduce the effect of the T protein or the family of the T proteins. In particular, the changed nuclear pore properties which are influenced by the proteins T and T3 can

detected by suitable screening methods. The latter include e.g. visualization of the bi-directional transport through the nuclear pore or the detection of a modified transcription of cellular or reporter genes. Substances or therapeutic agents can also be identified which inhibit or promote the effect of proteins which are directly or indirectly involved in the effect of the T protein or the family of the T proteins. Substances or therapeutic agents which show an enhancement or reduction of the effect of the T protein (or T2 or T3) in the above-mentioned screening methods, can be used to determine whether the enhancement or the reduction of the effect of the T protein results in therapeutically desired effects. Above all the inhibition of the growth or spreading of tumor cells or the support of neuronal regeneration, e.g. after injuries of the nerves (inter alia paraplegia and head-brain trauma), are counted thereamong. The identified substances can then be used as medicaments or for the production of these medicaments. Due to these medicaments it is then possible to inhibit or block spreading of the disease-inducing cells and thus control or clear up the disease on the whole. An important application of these medicaments is inter alia preventing the growth and addition thereto, spreading of tumor cells. In identified active substances are used as medicaments which stimulate deliberately the growth of certain cells. By this it is then possible to regenerate cells or structures of the nervous system damaged by injury or degenerative processes. The T protein (or T2 or T3) can also be used in screening methods allowing not only to detect the changed nuclear pore properties but also to identify prior or subsequent or parallel signal cascades. By this it is possible to identify or tyrosine phosphatases tyrosine kinases regulate proteins which in turn influence directly or indirectly the action of the T protein (or T2 or T3). As a result, suitable targets for the positive influence of the events in the cells can be recognized and characterized. Furthermore, the T protein, although it occurs as a nuclear pore protein, is significant for the interactions with filaments of the cell, e.g. microtubuli and actin. These interactions can now be studied, e.g. by fusion proteins of the T protein with the EGFP protein. Cells which were stably or transiently transformed or transfected with constructs for such fusion-reporter proteins, can be incubated with pharmaceutical preparations to or substances which enhance or reduce the interaction of the T protein with filaments such as the actin filaments or the microtubuili. As a result, it is possible to isolate active substances which positively influence inter alia the growth of nerve cells or the inhibition of the growth of tumor cells. For example, immunoprecipitation has to be mentioned as a method of identifying such possible active substances. Proteins can be isolated by this which bind to the T protein family. Further immunoprecipitations can then be carried out with these proteins to isolate new proteins which then no longer interact directly with the T protein.

The present invention also relates to a method of identifying further proteins which play a role in the development and function of the nervous system and/or are a nuclear pore protein, the method comprising the steps of:

- (a) producing an antibody against a protein of the T family(T, T2 or T3 protein),
- (b) contacting a cell extract with the antibody and identifying the antibody/protein complex,

- (c) analyzing the complex to identify a protein which has bound to the protein of the complex and is no antibody, and
- (d) optionally repeating steps (a) to (c) to identify further proteins of this function.

The invention is described in more detail by means of the figures, which show:

Figure 1: human cDNA sequence (gene T) and derived amino acid sequence

Figure 2: human genomic DNA sequence (gene T)

Figure 3: human genomic DNA sequence (gene T)

Figure 4: human genomic DNA sequence (gene T)

Figure 5: human genomic DNA sequence (gene T)

Figure 6: human genomic DNA sequence (gene T)

Figure 7: human genomic DNA sequence (gene T)

Figure 8: human genomic DNA sequence (gene T)

Figure 9: partial murine cDNA sequence (gene T) and derived amino acid sequence

Figure 10: partial murine genomic DNA sequence (gene T)

Figure 11: partial human cDNA sequence (gene T2) and derived amino acid sequence

- Figure 12: partial murine cDNA sequence (gene T2) and derived amino acid sequence
- Figure 13: partial murine cDNA sequence (gene T2) and derived amino acid sequence
- Figure 14: splicing variant of the human T gene with derived amino acid sequence
- Figure 15: splicing variant of the human T gene with derived amino acid sequence
- Figure 16: partial human cDNA sequence (gene T2) with derived amino acid sequence
- Figure 17: partial human cDNA sequence (gene T3; protein isoform 1) with derived amino acid sequence
- Figure 18: partial human cDNA sequence (gene T3; protein isoform 2) with derived amino acid sequence
- Figure 19: partial murine cDNA sequence with derived amino acid sequence (gene T3)
- Figure 20: oligonucleotide and peptides (T gene)
- Figure 21: sequence comparison within the T family
- Figure 22: protein alignment of POM121 protein and T protein
- Figure 23: Northern blot analysis

- Figure 24: immunohistochemical studies and electron-microscopic pictures
- Figure 25: in situ hybridization with embryonal RNA
- Figure 26: in situ hybridization with RNA from brain
- Figure 27: in situ hybridization with RNA from fetal brain
- Figure 28: in situ hybridization with RNA from nerve tissues of mouse
- Figure 29: comparison of the coiled-coil regions between CLIP protein, T protein and POM121
- Figure 30: hydrophobicity blot for POM121, T protein and T3 protein.

The following clones were deposited with the DSMZ (Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH) [Germantype collection of microorganisms and cell cultures], Mascheroder Weg 1b, Braunschweig, according to the Budapest treaty on August 18, 1998:

- clone JFC277 (DSM12371); human cDNA; represents the human cDNA sequence of Bp 1218-3690
- clone JFC405 (DSM12372); human cDNA; represents the human cDNA sequence of Bp 1-1891
- clone JFC601 (DSM12373); murine cDNA; represents the murine cDNA sequence of Bp 225-3026
- clone JFC950 (DSM12374); human genomic clone; represents human genomic sequence

- clone JFC955 (DSM12375); human genomic clone; represents human genomic sequence; comprises start of the cDNA sequence
- clone JFC N2112 (DSM12376); human genomic clone; was fully sequenced. The sequence is shown in figure 2 and contains the sequence of Bp 1756-4228 of the human cDNA sequence.

The following clone was deposited with DSMZ according to the Budapest treaty on February 2, 1999:

- clone JFC-BN27 (DSM 12659); contains the sequence of Bp 4370-8690 of the human cDNA sequence.

The following clone was deposited with the DSMZ according to the Budapest treaty on February 19, 1999:

- clone JFC-BN20 (DSM 12698); contains the sequence of Bp 2025-6280 of the human cDNA sequence

The following clone was deposited with the DSMZ according to the Budapest treaty on February 1, 2000.

- cDNA clone pL70 (DSM13270); represents essential parts of the gene T3.

The sequences shown in figures 2 to 8 originates from clones JFC955 (DSM 12375) and JFC950 (DSM 12374). The sequence shown in figure 1 originates from clones JFC277 (DSM 12371), JFC405 (DSM 12372) and JFC-BN27 (DSM 12659) and JFC-BN20 (DSM 12698). The sequence shown in figure 9 originates from the clone JFC610 (DSM12373).

The invention is further described by means of the following embodiment.

EXAMPLES

As to the methods employed reference is also made to Sambrook, J., Fritsch, E.F. and Maniatis, T. (Molecular Cloning; A Laboratory Manual; second edition; Cold Spring Harbor Laboratory Press, 1989) and Current Protocols in Molecular Biology (John Wiley and Sons, 1994-1998), the below techniques, in particular preparation of DNA or RNA or Northern blot, being sufficiently known to, and mastered by, the person skilled in the art.

Before it is described in detail how the experiments are carried out, the operating strategy is to be explained first.

When screening for genes triggering diseases of the CNS (e.g. neurodegenerative diseases, mental retardations, tumoral diseases of the CNS) in the mutated state, 23 cDNA clones were isolated from a human fetal brain cDNA library (Stratagene company, Heidelberg). A human fetal brain cDNA library was used as a starting material, since it was assumed that genes which play a role in the development of the CNS and in particular of the brain are prsent in a fetal cDNA library. However, since what is housekeeping genes (genes expressed in most tissues) are also expressed in the CNS, it was tested whether the select cDNA clones originate from genes having a CNS-specific expression. For this purpose, the cDNA pieces ('inserts') contained in the individual cDNA clones were isolated and used for hybridization with Northern blots. The employed Northern blots comprised polyA RNA from different human tissues (e.g. brain, skeletal muscle, liver and kidney) and various development stages (fetal and adult tissues). Since as mentioned above not only brain-specific genes are expressed in the brain, the hybridization with the Northern blots was used to identify cDNA clones which are expressed above all in the brain and not so much in other tissues. Due to this differential analysis it was possible to identify a cDNA clone which has a brain-specific expression pattern. Using this cDNA clone, the entire mRNA sequence for the new protein encoded therein could be isolated and deciphered (gene T with protein TP encoded therein) by repeated hybridization of the fetal cDNA library.

EXAMPLE 1: Identification of the T genes

Titration of the cDNA libraries

In order to ensure an effective infection, it was initially necessary to produce phage-competent bacteria in an overnight culture. The magnesium ions contained in the medium induce the maltose receptor of the bacteria to which the phage binds to infect the bacterium.

Performance:

Charge 50 μ l *E. coli* XL1-Blue in 50 ml LB broth, the medium being admixed with MgSO₄ in a concentration of 10 mM. Incubate overnight at 30°C and 220 rpm. Centrifuge off the bacteria at 4°C and 1000 xg for 10 min. Resuspend in 25 ml 10 mM MgSO₄. The thus produced phage-component bacteria could be stored at 4°C for up to one week.

2. Culturing the cDNA libraries

For culturing the library, Baltimore Biological Lab. (BBL) agar plates and BBL top agarose had to be prepared. The phages (human or murine cDNA library, Stratagene company) were mixed with SM medium to a dilution of $1:10^3$ and $1:10^4$ to obtain individual plaques after the culturing.

Performance:

For the BBL agar (pH 7.2) 10 g BBL trypticase, 5 g NaCl and 10 g Select agar were weighed and filled to 1 l with H_2O . The agar is dissolved by autoclaving. After cooling to about 60° pour the plates. The plates are preheated to 37°C prior to their use to avoid premature solidification of the top agarose. The BBL top agarose (pH 7.2) was prepared with 10 g BBL trypticase, 5 g NaCl, 6.5 g agarose and 10 ml 1 M MgSO₄ solution. Dissolve by autoclaving and provide in the water bath to 41°C. Add 15 µl of the above indicated dilute phage solution and 250 µl of the competent XL-1 bacteria in a 15 ml Falcon tube. Incubate at room temperature for 20 minutes. Add 10 ml BBL top agarose, swivel and place on the heated agar plate. The top agarose layer is solid after about 20 minutes and the plates can be stacked with the agar side up. Incubation is carried out overnight at 37°C. The plates can be stored at 4°C after expired incubation time or can be used directly for transferring the phage plaques. Carefully close the plates for storing them together chloroform-soaked cloth in plastic bags. The chloroform prevents the growth of cryophilic bacteria and fungi.

3. In vivo excision

The employed cDNA libraries (human and murine fetal brain cDNA library; Stratagene company, Heidelberg) were cloned in the vector λ -ZAPII. Due to this there was the possibility of circumventing the subcloning of the phage insert in a plasmid vector. This protocol permits to transfer cDNA which

is located as insert in the λ -ZAPII vector into an insert in simple way by an *in vivo* preparation which is now found in the plasmid Bluescript SK(-). In principle, this preparation serves for introducing by a helper phage information for proteins which permit DNA amplification only in the region of the phage genome, which have the genetic information for the plasmid with cDNA insert. For the most part, the method was carried out in accordance with the protocol of the manufacturer (Stratagene).

In particular, culturing was made such that individual phage plaques were on the plate. Then, the in vivo excision protocol was carried out with these individual plaques. The plasmid DNA and its plasmid inserts were isolated from the bacterial clones and subsequently hybridized with Northern blots. The selection of further clones to be studied was based on the expression pattern in the Northern blots.

Performance:

Mix 100 μ l of a single phage λ -ZAPII clone with 200 μ l XL1 bacteria and 2 µl helper phages (contained in the Stratagene kit). Shake for 15 min. at 37°C and 80 rpm, the specific attachment of both phage types to the host bacterium taking place. Add 3 ml LB broth. Incubate for 2 h at 37°C and 200 rpm. The DNA replication of the plasmid contained in the λ its circularization and the packing ZAPII, proteins take place and discharge from the bacterium occur during this time. Heat to 70°C for 20 minutes. Thereafter, centrifuge at 4000 g for 15 minutes. This kills the still remaining bacteria and separates their fragments from the plasmids existing in the phage coat, which are found in the supernatant. Add 1 μ l thereof to 200 μ l SOLR host cells, incubate at 37°C for 15 minutes. Plate 100 µl onto LB/Amp plates. Store at 37°C overnight. The then grown bacterial clones contain the plasmid with the corresponding cDNA insert. A mini-prep DNA preparation was carried out each.

4. "random primed" DNA labeling

The radioactive labeling of the double-stranded insert DNA of the cDNA clone was carried out as follows for the further isolation of overlapping cDNA clones:

Performance:

Dissolve 100 ng DNA in a volume of 12 μ l H_2O for a typical labeling batch. 10-minute heating to 95°C effects the denaturation of the DNA into single strands. Store the preparation on ice to prevent reassociation of the two complementary DNA strands. Complete the reaction batch by 4 μ1 OLG (oligo-labelling buffer), 1 μ1 Klenow (1U) and 2.5 μ1 a-³²P-dCTP 2.5 μl a-³²P-dATP. Incubate and temperature overnight. Based on the hexanucleotides attached to a single strand, the formation of the complementary strand takes place during this time by the Klenow fragment the E. coli DNA polymerase I. The DNA is labeled radioactively by incorporating $a^{-32}P-dCTP$ and the $a^{-32}P-dATP$.

5. Separation of non-incorporated radioactive nucleotides

The non-incorporated nucleotides were separated by means of a personally prepared sephadex G-50 column. The separation principle of the column is based on the exclusion chromatography. The smaller non-incorporated nucleotides fit into small pores of the column material while the DNA is locked out. The volume in which the nucleotides may move is thus greater than the volume available to the DNA. If a mixture of DNA and nucleotides is placed on the column, the DNA runs through the column faster than the nucleotides. This permits the separation of non-incorporated nucleotides.

Performance:

A Pasteur pipette was closed with a small glass bead. Fill the Pasteur pipette with sephadex G-50 ("fine") dissolved in water until the filling material is 5 cm below the top edge of the Pasteur pipette. Rinse the column 2 times with TE. Apply the above radioactive labeling batch. Add 320 μ l TE. Discard the solution which has run through the column. Place an Eppendorf tube below the column. Add 350 μ l TE. Collect the radioactive solution run through the column.

6. Plaque "blot"

The plaque "blot" was made to analyze the cDNA library to make accessible the cDNA in the phage clones to hybridization.

Performance:

provided with labeled hybond-N membrane inscription in air bubble-free manner on the plate with the The labeling pattern was phage plaques for one minute. a Whatman paper soaked with transferred. Place it on denaturing solution (0.5 M NaOH; 1.5 M NaCl) for 10 minutes. Neutralize in 50 mM phosphate buffer for 10 minutes. The rests of the bacterial layer are wiped off with slight pressure using a phosphate buffer-soaked Kleenex cloth. The room temperature for at filters are spread Thereafter, the filters were baked at 90°C for 1 h.

7. Hybridization

The hybridization is based on the binding of complementary, single-stranded nucleic acids. For this purpose, the DNA to be studied was immobilized on a membrane and hybridized with a radioactively labeled probe. The complementary binding is maintained even after washing off the non-specifically adhering probes and can be made visible by means of

autoradiography. Single-stranded molecules were incubated hybridization under salt and temperature the during conditions which support the formation of base-paired double strands. decisive factor in the association and dissociation kinetics are the hydrogen bridge bonds between the base pairs G-C and A-T. The hybridization reaction is influenced by changing the temperature and the salt and sample concentrations.

Performance:

DNA filters in hybridization First, prehybridize the solution (0.5 M NaPi (pH 7.2); 7 % SDS; 0.2 % BSA; 0.2 % PETG 6000; 0.05 % polyvinyl pyrrolidone 360000; 0.05 % Ficoll 70000; 0.5 % dextrane sulfate) with a 0.1 ml/cm² at 65°C. For this purpose, incubate the filters in a plastics box in a shaking water bath at 65°C for a period of at least Discard the prehybridization solution. Place radioactively labeled sample (see above items 4. and 5.) with 0.5 ml/cm² of hybridization solution (65°C) filters. The activity of the sample should not drop below 50 cpm, measured at a distance of 40 cm. The hybridization takes place overnight at 65°C (human cDNA library) or 55°C (interspecies hybridizations man-mouse and for isolating the homologous genes). Wash the filters two times for 30 minutes with about 500 ml wash buffer in a shaking bath at 65°C (55°C). Autoradiography was then carried out.

8. Autoradiography

The filters were packed in plastic foodwrap. The autoradiography was made at -80°C in an X-ray cassette containing a reinforcing film made of calcium tungstate. The exposure is 30 minutes to several days, depending on the strength of the signal.

The complete mRNA which codes for the protein of the T gene could be isolated by means of the above mentioned techniques. Furthermore, using cDNA clones of this newly isolated T gene it was possible to isolate two further genes (T2 and T3) which have distinct homologies with this gene. For this purpose, the above mentioned techniques were used again. For isolating the related genes T2 and T3, the hybridization temperature was lowered to 55°C.

EXAMPLE 2: Northern blot

The 'multiple tissue Northern blots' were purchased from the CLONTECH company (Palo Alto, California, U.S.A.) and used in accordance with the instructions from the manufacturer. The respective DNA samples of the genes T, T2 and T3 were labeled radioactively and hybridized with the Northern blots. The sequence of bp 1-4200 of figure 1 was used for the analysis of the expression pattern on a Northern blot level. For the gene T3 the sequence of bp 1310-4870 of figure 17 was used for hybridization. The sequence of bp 3120-4230 of figure 16 was used for the gene T2. The "random priming" method was used for the radioactive labeling of double-stranded DNA.

a) Random priming:

Dissolve 100 ng DNA in a volume of 12 μ l for a typical labeling batch. 10-minute heating to 95°C effects the denaturation of the DNA into single strands. Store the batch on ice to prevent reassociation of the two complementary DNA strands. Complete the reaction batch by 4 μ l OLB, 1 μ l Klenow (1U) and 2.5 μ l a- 32 P-dCTP and 2.5 μ l a- 32 P-dATP. Incubate at room temperature overnight. Based on the hexanucleotides attached to a single strand, the formation of the complementary strands takes place during this time by

the Klenow fragment of the $E.\ coli$ DN polymerase I. The DNA is labeled radioactively by the incorporation of the $a-^{32}P-$ dCTP and the $a-^{32}P-$ dATP.

The non-incorporated nucleotides were separated by means of a personally prepared sephadex G-50 column. The separation principle of the column is based on the chromatography. The smaller non-incorporated nucleotides fit into small pores of the column material while the DNA is locked out. The volume in which the nucleotide may move is thus greater than the volume available to the DNA. If a mixture of DNA and nucleotides is placed on the column, the DNA runs through the column faster than the nucleotides. This permits the separation of non-incorporated nucleotides. For this purpose, a Pasteur pipette is closed with a small glass bead. Fill the Pasteur pipette with sephadex G-50 ("fine") dissolved in water until the filling material is 5 cm below the top edge of the Pasteur pipette. Rinse the column 2 times with TE. Apply the above radioactive labeling batch. Add 320 µl TE. Discard the solution which has run through the column. Place Eppendorf tube below the column. Add 350 ul TE. Collect the radioactive solution run through the column.

b) Hybridization:

The Northern blots were hybridized as described below. First, the Northern blots were prehybridized at 65°C in 10 ml hybridization solution (350 ml 20 % SDS, 500 ml 1 M phosphate buffer, pH 7.2; 150 ml distilled water). For this purpose, the Northern blots were incubated in a glass tube in a hybridization roll-over-type furnace at 65°C for a period of 6 h.

The prehybridization solution was discarded. The radioactively labeled sample was placed with 10 ml hybridization solution (65 $^{\circ}$ C) on the filters.

The hybridization was carried out at 65°C overnight. The filters were then washed two times for 30 min. with about 500 ml wash buffer (80 ml 1 M phosphate buffer, pH 7.2; 100 ml 20 % SDS, 1820 ml distilled water) at 65°C in a shaking bath.

c) Autoradiography

The filters were welded into plastic film. The autoradiography was made at -80° C in an X-ray cassette which contained a reinforcing film of calcium tungstate. Exposure was 1 to 4 days depending on the strength of the signal.

The results of the Northern blots carried out are shown in figure 23.

EXAMPLE 3: RNA in situ hybridization

Embryos in various development stages were isolated from pregnant NMRI mice. The embryos and other tissue samples were fixed overnight with 4 % paraformaldehyde in PBS at 4° C. 10 µm freezing sections of the embryos were transferred to slides coated with 3-aminopropyl triethoxysilane. Sense strand ("sense") and antisense strand ("antisense") samples were produced by transcription with a^{-35} S-UTP with a specific activity of $>10^{9}$ decays per minute/µg. For this purpose, the linearized mouse T gene cDNA clone from figure 9 was transcribed with T7 or Sp6-RNA polymerase. The sample length was reduced by alkaline lysis to 150 to 200 nucleotides. The slides were prehybridized at 54° C in a solution containing 50 % formamide, 10 % dextrane sulfate, 0.3 M NaCl, 10 mM Tris, 10 mM sodium phosphate, pH 6.8, 20

mM dithiothreitol, 0.2 % Denhardt's solution, 0.1 Triton Xand $0.1\,$ mM non-100, 0.1 mg/ml Escherichia coli RNA radioactive a-S-UTP. The $^{35}\text{S-labeled}$ sample (8 x 10^4 decays per minute per ml) were added to the hybridizing mixture for the hybridization and the hybridization was then continued for 16 h at $54\,^{\circ}\text{C}$ in a humid chamber. The slides were then washed in the hybridization solution for 2 hours. remaining non-hybridized RNA sample was then digested using RNase A. Thereafter, the slides were washed for 30 minutes at 37°C with 2x SSC, 0.1 % SDS and for 30 minutes with 0.1x SSC, 0.1 % SDS. Then, the slides were dehydrated increasing ethanol concentrations. The slides were covered with Ilford K5 autoradiography emulsion. After 1 to 2 weeks of exposure at 4°C, the slides were incubated in Kodak D19b developer and dyed with Giemsa. The sections were analyzed in dark field and bright field illumination with a Zeiss SV8 stereomicroscope and an Axiophot microscope and photographed with an Agfa ortho black-and-white film.

The results of the RNA $in\ situ$ hybridization are shown in figures 25, 26, 27 and 28.

Figure 25: expression of the murine T gene during the mouse embryogenesis. Bright field (a,c,e,g) and dark field pictures (b, d, f, h) of horizontal (a,b) and sagittal sections (c-h) through a 10.5 (a,b), 12.5 (c,d), 14.5 (e,f) and 16.5 (g,h) dpc embryo (dpc = days post conceptionem) which were hybridized with an antisense ribo sample of the murine T gene. Dec = decidua, g = guts, he = heart, lab = labyrinth, li = liver, me = myelcephalon, sc = spinal cord, sga = spinal ganglia, sb = tooth bud, te = telencephalon. Bar = 1 mm.

Figure 26: Expression of the murine T gene in the postnatal brain. Bright field (a,d) and dark field pictures (b,c,e,f) of horizontal sections through an 1 wpn (weeks post natalis) and 6 wpn head, which were hybridized with a T gene antisense (b,e) and a sense sample (c,f). cd = cerebellum, cor = cortex, cos = colliculus, ey = eye, hi = hippocampus, ne = nasal epithelium, ob = olfactory bulb, bar = 1 mm.

Figure 27: Greater enlargement of the 10.5 dcp embryo of figure 25 a,b. The arrows point to a region of little expression in the somites (arrows in b). An intense expression can be seen in the region between mesencephalon and telencephalon ("forebrain-midbrain junction"). And = aorta dorsalis, me = mesencephalon, sc = spinal cord, te = telencephalon. Bar = 100 μ m.

Figure 28: Expression of the T gene during the development of the nervous system. Expression of the T gene in neurons of the mantle zone of the developing brain and in nuclei of peripheral nerves (arrow in b). No expression is visible in proliferating neurons in the subventricular layer or in migrating neurons of the intermediate zone (c,d). On day 16.5, an intense expression is visible in differentiating neurons of the mantle zone of the telencephalon (e,d). A minor expression is also visible in neurons of the spinal cord and the spinal ganglia (g,h). Furthermore, a minor expression is visible in an individual layer below the skin (g,h). iz = intermediate zone, mz = mantle zone, sc = spinal cord, sga = spinal ganglia, sk = skin, svl = subventricular layer, vn = ventricle. Bar = 100 µm.

EXAMPLE 4: Production of antibodies

Using a synthetically produced peptide of the sequence "EKGEDPETRRMRTVKNIAD" animals are immunized to produce antibodies against the T protein as follows:

Immunization protocol for polyclonal antibodies in rabbits 600 µg purified KLH-linked peptide in 0.7 ml PBS and 0.7 complete or incomplete Freund's adjuvant are used per immunization:

Day 0: 1st immunization (complete Freund's adjuvant)

Day 14: 2nd immunization (incomplete Freund's adjuvant; icFA)

Day 28: 3rd immunization (icFA)

Day 56: 4th immunization (icFA)

Day 80: bleeding to death.

The rabbit serum is tested in an immunoblot. For this purpose, the protein used for the immunization is subjected to SDS polyacrylamide gel electrophoresis and transferred to a nitrocellulose filter (cf. Khyse-Andersen, J., J. Biochem. (1984), 203-209). The Western Meth. 10 analysis was carried out as described in Bock, C.-T. et al., Virus Genes 8, (1994), 215-229. For this purpose, nitrocellulose filter is incubated with a first antibody at 37°C for one hour. This antibody is the rabbit serum (1:10000 in PBS). After several wash steps using PBS, the nitrocellulose filter is incubated with a second antibody. This antibody is an alkaline phosphatase-coupled monoclonal goat anti-rabbit IgG antibody (Dianova company) (1:5000) in 30 minutes of incubation at 37°C are followed PBS and subsequently by the several wash steps using alkaline phosphatase detection reaction with developer solution (36 μM 5'-bromo-4-chloro-3-indolylphosphate, 400 μM nitro blue tetrazolium, 100 mM Tris-HCl, pH 9.5, 100 mM NaCl, 5 mM MgCl₂) at room temperature until bands become visible.

It shows that polyclonal antibodies according to the invention can be prepared.

Immunization protocol for polyclonal antibodies in chickens

100 µg of purified KLH-linked peptide in 0.8 ml PBS and 0.8 ml of complete or incomplete Freund's adjuvant are used per immunization.

Day 0: 1st immunization (complete Freund's adjuvant)

Day 28: 2nd immunization (incomplete Freund's adjuvant; icFA)

Day 50: 3rd immunization (icFA)

Antibodies are extracted from egg yolk and tested in a Western blot. Polyclonal antibodies according to the invention are detected.

Immunization protocol for monoclonal antibodies in mice

250 μ g of purified KLH-coupled peptide in 0.25 ml PBS and 0.25 ml of complete or incomplete Freund's adjuvant are used per immunization. The peptide is dissolved in 0.5 ml (without adjuvant) in the 4th immunization.

Day 0: 1st immunization (complete Freund's adjuvant)

Day 28: 2nd immunization (incomplete Freund's adjuvant; icFA)

Day 56: 3rd immunization (icFA)

Day 84: 4th immunization (PBS)

Day 87: fusion.

Supernatants of hybridomas are tested in a Western blot. Monoclonal antibodies according to the invention are identified.

EXAMPLE 5: immunohistochemical studies

The immunohistochemical studies shown in figure 24 were made with an affinity-purified polyclonal rabbit antibody, produced above, against the T protein (referred to as first antibody below). Mouse brain was removed and treated as follows:

1st day

section thickness 6-10 $\mu\text{m}\text{,}$ common fixation on slides, storage at -80°C for up to about 2 months

Take out the sections the evening before and allow them to dry at room temperature overnight

Rinse slides in PBS, pour off, rinse once again, thereafter allow to stand in PBS for 10 min.

Take out slides and wipe off the liquid around the tissue using a cloth.

Encircle using PAP-PEN (protein-glycerol; Dako company) so that no more liquid can flow out.

Add 100 μl peroxidase blocking solution (Dako company, Hamburg), incubate for 20 minutes.

Rinse slides in PBS, pour off, rinse again, thereafter allow to stand in PBS for 10 min.

Take out slides and wipe off the liquid around the tissue using a cloth.

Prepare an 1:10 dilution of normal (sheep) serum in PBS (e.g. sheep Dako X0503, Dako company, Hamburg), add 100 μ l thereof and incubate for 20 minutes.

Rinse slides in PBS, pour off, rinse again, thereafter allow to stand in PBS for 10 minutes.

Take out slide and wipe off the liquid around the tissue using a cloth.

Add first antibody in a dilution of 1:100.

Add 100 μl of the first antibody (in PBS) and incubate in a refrigerator in a humid chamber overnight. Control: without first antibody.

2nd day

Take humid chamber out of the refrigerator and allow to stand at room temperature. Rinse slide in PBS, pour off, rinse again, thereafter allow to stand in PBS for 10 minutes, when many slides are analyzed wash two times with PBS.

Take out slides and wipe off the liquid around the tissue using a cloth.

Prepare a 1:100 dilution of second antibody "antirabbit biotinylated" (Amersham company, Braunschweig) in PBS and add 100 ul thereof.

Incubate in a humid chamber at room temperature for 45 minutes.

Rinse slides in PBS, pour off, rinse again, thereafter allow to stand in PBS for 10 minutes.

Take out slide and wipe off the liquid around the tissue using a cloth.

Prepare a 1:100 dilution of streptavidine peroxidase (streptavidine horseradish) (Amersham company, Braunschweig) with PBS and add 100 µl thereof.

Incubate in a humid chamber at room temperature for 45 minutes.

Rinse slides in PBS, pour off, rinse again, thereafter allow to stand in PBS for 10 minutes.

Take out slides and wipe off the liquid around the tissue using a cloth.

<u>Staining:</u> Add one drop chromogen per ml buffer just before the use. Vortex and place in the dark.

Add 100 μ l staining solution (Dako company, Hamburg). Finally, stain the control. Incubate for about 2 minutes. Incubate slides in water. Inspect under a microscope.

Place 1-2 drops of crystal Mount on the section. If there is an air bubble, suck it off with a paper handkerchief.

The rest of the slide is wiped doff using HCl-EtOH to remove the stain.

Place a line of adhesive (Eukitt) on the cover glass. Press the cover glass onto the slide without producing air bubbles.

The enzyme in the second antibody results in a dye formation (DAB) so that the T protein can be detected.

Figure 24 (a-d): Light-microscopic pictures which show that the T protein is localized in or at the nucleus of the cell. The electron-microscopic picture in \underline{e} shows that the T protein is not localized in the nucleus but in the membrane. The pictures are highly consistent with a function as a membrane-terminal nuclear pore protein. The arrows in \underline{e} show the stain formed which can be seen on the cytoplasmic side of the nuclear membrane.

. . .

Claims

- 1. DNA sequence coding for a protein which is involved in the development of the nervous system, in particular the CNS, and is expressed in a tissue-specific and development-specific manner, wherein the DNA sequence comprises the following DNA sequences:
 - (a) the DNA sequence of figure 1, figure 2, figure 3, figure 4, figure 5, figure 6, figure 7 or figure 8;
 - (b) the DNA sequence of figure 9 or figure 10;
 - (c) the DNA sequence of figure 11;
 - (d) the DNA sequence of figure 12 or figure 13;
 - (e) the DNA sequence of figure 14 or figure 15;
 - (f) the DNA sequence of figure 16;
 - (g) the DNA sequence of figure 17 or 18;
 - (h) the DNA sequence of figure 19;
 - (i) a DNA sequence hybridizing with (a), (b), (c),(d), (e), (f), (g) or (h);
 - (j) fragments, variants, functional equivalents,
 derivatives or precursors of the DNA sequence of
 (a), (b), (c), (d), (e), (f), (g), (h) or (i); or
 - (k) a DNA sequence which differs from the DNA sequence of (a), (b), (c), (d), (e), (f), (g), (h), (i) or(j) due to the degeneration of the genetic code.
- 2. The DNA sequence according to claim 1, which codes for a protein or peptide comprising the amino acid sequence of figure 1, figure 9, figure 11, figure 12, figure 13, figure 14, figure 15, figure 16, figure 17, figure 18 or figure 19, wherein the protein or peptide has the biological activity defined in claim 1.

- 3. An antisense RNA, characterized in that it is complementary to the DNA sequence of claim 1 or 2 and can reduce or inhibit the synthesis of the protein encoded by this DNA sequence.
- 4. Ribozyme, characterized in that it is complementary to the DNA sequence of claim 1 or 2 and can bind specifically to the RNA transcribed by this DNA sequence and can cleave it so as to reduce or inhibit the synthesis of the protein encoded by this DNA sequence.
- 5. Expression vector, containing the DNA sequence according to claim 1 or 2 or coding for the antisense RNA according to claim 3 or the ribozyme according to claim 4.
- 6. The expression vector according to claim 5, which comprises additionally the promoter of the human T gene or an ortholog of the T gene.
- 7. Expression vector according to claim 5 or 6, which codes for the T, T2 or T3 proteins or for fragments thereof in the form of a reporter fusion protein.
- 8. Host cell which is transformed with the expression vector according to any of claims 5 to 7.
- 9. Protein which is encoded by the DNA sequence according to claim 1 or 2 and which is involved in the development of the nervous system and is expressed in tissue-specific and development-specific manner, or fusion proteins, fragments, variants, derivatives or precursors of the protein.

10. Protein according to claim 9, which has one of the following motives:

Motive 1:

(A,T) (I,P,V) (L,T) (G,A,Q) (L,V) XXX (L,V)

Motive 2:

IYTDOWAN

Motive 3:

AXXXXXXXXGXXXXXXXXXXXXXXXXXXXXXXXX

Motive 4:

SXXXXDX (12,20) KX (17,22) AXXXXXXXL

Motive 5:

IYTDWANXXLX (K, R)

Motive 6:

Motive 7:

NX(3,11)SXXXAXXXXXXL

wherein X = every amino acid

(A,T) = amino acid A or T at this site

X(number 1, number 2) = number 1 to number 2

Xs at this site

- 11. Method of producing the protein according to claim 9, which comprises culturing the host cell according to claim 8 under suitable conditions and obtaining the protein from the cell or the culture medium.
- 12. Antibody which is directed against the protein according to claim 9 or fragment thereof.
- 13. Antibody according to claim 12, which is obtained by immunizing animals with a peptide having the sequence "EKGEDPETRRMRTVKNIAD".

- 14. Use of the DNA sequence according to claim 1 or 2, the antisense RNA according to claim 3, the ribozyme according to claim 4, the expression vector according to any of claims 5 to 7, the protein according to claim 9 or the antibody or the fragment thereof according to claim 12 or 13 for preventing or treating diseases of the nervous system, in particular of the CNS.
- 15. Use according to claim 14, wherein the disease of the nervous system is a tumoral disease of the CNS.
- 16. Use according to claim 14, wherein the treatment of diseases of the nervous system are the promotion of the neuronal regeneration in the case of injuries of the nervous system and degenerative diseases of the nervous system.
- 17. Use according to claim 14, wherein the treatment of diseases of the nervous system are the regeneration of the neuronal linkages and the regeneration of the innate and acquired malfunctions of the nervous system.
- 18. Use according to claim 15 for inhibiting the growth and spreading of tumor cells.
- 19. Diagnostic method for detecting a disturbed expression of the protein according to claim 9 or for detecting a changed form of this protein, in which a sample is contacted with the DNA sequence according to claim 1 or 2 or the antibody or the fragment thereof according to claim 12 or 13 and then it is determined directly or indirectly whether the concentration of the protein

- and/or its amino acid sequence differs from a protein obtained from a healthy patient.
- 20. Diagnostic kit for carrying out the method according to claim 19, which contains the DNA sequence according to claim 1 or 2 and/or the antibody or the fragment thereof according to claim 12 or 13.
- 21. Non-human mammal whose naturally occurring T, T2 or T3 gene comprises a change in the gene structure or the gene sequence.
- 22. Non-human mammal, wherein a change of the gene structure of the T, T2 or G3 gene is achieved in the mammal by introducing a deletion in place of which a homologous or heterologous sequence is introduced.
- 23. Non-human mammal, wherein a change of the gene structure of the T, T2 or G3 gene is achieved by inserting a homologous or heterologous sequence in the corresponding gene naturally occurring in the mammal.
- 24. Non-human mammal according to claim 22 or 23, wherein the heterologous sequence is the selection marker sequence.
- 25. Non-human mammal according to claim 24, wherein the selection marker sequence conveys resistance to neomycin.
- 26. A method of producing a non-human mammal according to any of claims 21 to 25, characterized by the steps of:
 - (a) producing a DNA fragment, in particular a vector, containing a changed T, T2 or G3 gene, the T, T2

- or T3 gene having been modified by inserting a heterologous sequence, in particular a selectable marker;
- (b) preparing embryonal stem cells from a non-human mammal (preferably a mouse);
- (c) transforming the embryonal stem cells from step (b) with the DNA fragment from step (a), the T gene in the embryonal stem cells being changed by homologous recombination with the DNA fragment from (a)
- (d) culturing the cells from step (c),
- (e) selecting the cultured cells from step (d) for the presence of the heterologous sequence, in particular the selectable marker,
- (f) producing chimeric non-human mammals from the cells of step (e) by injecting these cells into mammalian blastocysts (preferably mouse blastocysts), transferring the blastocysts to pseudo-pregnant female mammals (preferably mouse) and analyzing the resulting offspring for a change of the T, T2 or T3 gene.
- 27. Transgenic cell or tissue which is capable of expressing a T protein or part of the T protein or an ortholog thereof.
- 28. Use of the non-human mammal according to any of claims 21 to 25 or the transgenic cell or the transgenic tissue according to claim 27 for the analysis of the function of the T gene family.
- 29. Use of the non-human mammal according to any of claims 21 to 25 or the transgenic cell or the transgenic

tissue according to claim 27 for identifying inhibitors and enhancers of the T gene family.

- 30. Vertebrate gene and functional equivalent, derivative or a bioprecursor thereof, which code for a protein having a statistically significant amino acid sequence homology to the T gene, T2 gene or T3 gene according to any of the following figures: figure 1, figure 9, figure 11, figure 12, figure 13, figure 14, figure 15, figure 16, figure 17, figure 18 or figure 19.
- 31. T gene and its vertebrate orthologs and vertebrate paralogs which code for a nuclear pore protein.
- 32. Vertebrate protein which has an amino acid sequence according to figure 1 or an amino acid sequence which differs from the amino acid sequence in figure 1 by one or more amino acids.
- 33. Vertebrate T, T2 or T3 gene and the protein encoded therein in all of its naturally occurring allelic and mutated forms.
- 34. Medicament containing a protein according to claim 9 or a functional equivalent, a fragment or a bioprecursor thereof in combination with a pharmaceutically acceptable carrier.
- 35. The method of identifying substances which has an enhancing or inhibiting influence on the effect of T protein, T2 protein or T3 protein, by means of
 - determining the bi-directional transport through the nuclear pores,

- determining the binding to filaments of the cell (e.g. actin filaments and microtubuili) or
- determining the increased or reduced transcription of cellular or reporter genes.
- 36. Method of identifying substances which have an enhancing or inhibiting influence on the effect of proteins which are functionally linked to the T protein in direct or indirect way, or represent parallel signal or functional pathways, by means of
 - determining the bi-directional transport through the nuclear pores,
 - determining the phosphorylation and the dephosphorylation of proteins,
 - determining the binding of the T protein to filaments of the cell (e.g. actin filaments and microtubuli), or
 - determining the increased or reduced transcription of cellular or reporter genes.
- 37. The method according to claim 35 or 36, wherein the modified transcription with reporter molecules, preferably the occurrence of certain mRNAs or the EGFP protein, is detected.
- 38. The method of identifying further proteins which play a role in the development and function of the nervous system and/or are a nuclear pore protein, wherein the method comprises the steps of:
 - (a) producing an antibody against a protein according to claim 9,
 - (b) contacting a cell extract with the antibody and identifying the antibody/protein complex,

- (c) analyzing the complex to identify a protein which has bound to the protein of the complex and is no antibody, and
- (d) optionally repeating steps (a) to (c) to identify further proteins of this function.

Abstract of the Disclosure

The invention relates to a protein (TP) and to proteins related thereto, which are involved in the development of the nervous system, especially the central nervous system, and are expressed in a tissue-specific and development-specific manner as well as to DNA sequences coding for these proteins. The invention also relates to antibodies directed against these proteins or fragments thereof and to antisense RNA or ribozymes which are directed against the expression of said protein. Finally the invention concerns medicaments and diagnostic processes in which the above mentioned compounds are used. The invention further relates to a non-human mammal whose TP-coding gene is modified.

Human cDNA sequence

CCTAGCAAAATCAGGCCACAAGCGGCTGATCAAGGACTTGCAAGAAGTTGCAGGAGTACTCCTAGCAGAAATCATCCAGATTATTGCAAATGAAAAAGTTGAAGATATCATGG L a k s g h k r l i k d l g q d i a d g v l l a b i i q i i a n b k v b d i n g DEGAATACCAGACACAGCAACTTCCCGGGACATCCAGAGGGGTTCACGATGTGACAGTGGATGCAGACAGCTGGGATGACAGCAGTTCA R I P D T A T S R D I I Q R G V B D V T V D A D S W D D S S S AGACGAGACCTGGGATAGTCCTGAGGAACTGAAAAAACCAGAAGATTTTGACAGGCGATGGGGATGCTGGTGGCAAGTGGAAGAC D E T W D S P E E L K K P E E D F D S 11 G D A G G K W K T ATGTCCTAGAAGTCAGTCTCAGATGATGAAATGTTGATGCTGCCTTAGTTCTTCTAGCAGCGGGGGGGTAAATGTTCA. C P R S Q S Q M I E N V D V C L S F L A A R G V N V Q TGAAGAG E D 1801 1921 1561 1081 1201 1321 961 361 601 841 121 241 481 721

Fia.

CAGCATGATGCGCTCAAACAGCCTCCCAAGACTCTTCCATCCTATGATGACTCCCAGCTTTGTGGGAGTGCCACTTCTGGAGGAAAGACCTCGTGCCATCAGTCATTC S M M R S N S I P A Q D S S F D L Y D D S Q L C G S A T S L E E R P R A I S H S ATTATCACTGGTGTCCAGCACTTCTTTACTCTACAGCTGAAAAAGGCTCATTCAGAGCAAATCCATAAACTLS LVS,STSLXXT AEEKAHSEVT GTCCATTGACCTCCCCTCAGCCATCATGGCTGTCTGGACTGACCACAGGCACTCAGAGGCTGCTCATGAGAACGGGTAGTGTGAGATCTACTCTTCAGAAAGCAT SIDLPLSHHGSL TACGGGCAGCATGGGCAGTGGGCTAAGCGGCAGCAGCAGCAGCCTCTTCAATAAACCCTCAGACTTAACTACAGTTATAAGCTTAAGTCACTCGTTGGCCTCCAGCCCAGC T G S M G S A G G L S G S S S P L F N K P S D, L T T D V I S L S H S L A S S P A GTCAGGTTCCCCCAAATCCAGCCCCACCTCTGCCAGCGCACAAAGGTCTCAGGCAGCCAGGATCCAAGTATCCAGATATTGCTCACCCACATTTCGAAGGTTGTTTGGTGC S G S P K S S P T S A S A C G A Q G L R Q P G S K Y P D I A S P T F R R L F G A ncaangatetecttengatgeaggaaaaageeeeete o r s p s d a k s s g d e g k k p p s GGCAGGGCAGAAAGCTTCCCTGTCTGTTTCACAGGTTCCTGGAGAAGAGGCATGTCTGCCCAAGGAGGGGGGCGCCATCTAGGCAGAAAGCTGGAACAAGTGCACTCAAAACACCCGG a g c k a s l s v s q t g s w r r g m s a q g g a p s r q k a g t s a l k t p g IGCCATGTCATCTTCTGCAGAGAAATACCACTTTCTAACTTGGGGGCCAACAAATTTGTCT A M S S S A A G K Y H F S N L V S P T N L S GCAGCTTGACAGANATACACTAACCCANAANGGGACTNAGATATACCCCATCATCTCTCGGGGCCAACCAAGAAGAGGGCAAAGAGTGGTTGCGTTCT Q L D R N T L P K K G L R Y T P S S R Q A N Q E E G K E W L R S aggcattggaagatcgacygctccttiggctttaagaaaccaagtggagyagtcatctgccatgatcaccaggtagt g i g r s t a t s s f g f k k p s g v g s s a m i t s s IGGICTCGTGTGGGCTGCCAATATGAGGAGTTCC TGAGAAAGGAAAAGCTCCCCTAAAAGGATCATCT EKGKAPLKGSS GGCTCATTCAGAGACAGCATGGAAGATCATGGCTCTTC/ CACTGGCAACCAGTCACCTCTGGTTYTCCCCT'TC' T G N Q S P L V S P S ATCGGTTCACTTTTCACATCAGGT S V H S F T S G GAAAACCGATGATGCCAAAGCTTCT K T D D A K A S 3841 3961 3601 3721 3361 3001 3121 3241 3481 2641 2761 2881 2401 2161

2/ 124

1 X 2 X

Fig. 1 (cont'd)

Fig. 1 (cont'd)

CTCCATAAG S I S ACCAAATCTAGAGCTGCATCACAATTTCAGGTGTATTATGTGCAAATCATACAGAACCAGTGAAAGGCTTTTTAGGCAGATATCTTCGAAGAAAACTCATAGAGATAGAAATTGAAAG GGATGCAATTGCCACTTTTAATGTGGACCACAAGTCAAGTAAGGAATTGCAACAATATCTAGCTTAACCTGGCTGAACAGTGCTGATAATAATGGAGTGGAGCTCCCAGTTGTAAT D A I A T F N V D H K S S K E L Q Q Y L A N L A E Q C S A D N N G V E L P V V I ANTACTGAAAGCTGAAAAGCGGTTGAAGGCAGAAACTGGTAAGCCTAAGCCTACTCGGCCACCGTCAGAATCCTCAAGCACCTCCTCTTCATCTTCCAGGCAGTAATAAG I L K A E N D R L K A E T G N T A K P T R P P S E S S S T S S S S R Q S L G CAAGGGGTATGGTCGAGCAAAGGCCAAAAATCTCAGGCATATTTGATAGGATCCATTGGTGTAGAAAAACCAAGTGGGATGTCTTTAAGGGTGTATAAAAAAA K D Q K S Q A Y L I G S I G V S G K T K W D V L D G V I R R L F K E TGGATACCTTGTTGGAGATAATAACATCACTGACGTCAAAGGGGTAGAAAATAGTTTGGACAGTTTTGTTTTTGATACGTGATACCTAAACCAATTACCCAAAGGTACTT G Y L V G D N N I I T V N L K G V E E N S L D S F V F D T L I P K P I T Q R Y F TCCAGACCATCCTCCCAAAGATCTTCGCATCAGAAGACAGCATTCCTCTTATTTTATCAACAGTGCCACAAGCCATTCCAGTATTGGCAGTGGTAATGATGCGCGACTCCAA P D H P P K D L R I R R Q H S S E S V S S I N S A T S H S S I G S G N D A D S K ACCGGATGCAC R M Q AACTGGACATAAAGATGGCCGCAGT T G H K D G R S TCAGATCCGGGAAGCCATV Q I R E A M rgacatt p i NGCTTCAGCGATCTGTGAANGCACA ACAT'IC' H S TTTCAAACAAGCCTTTGGGAAGAAAAAGTCCACCAAGCC' F K Q A F G K K K S T K P ACTITCICTAAACAAITIGAACAICCAGAGGCIGTAGCICAGAIAITIGCIAGAIGCIGGIGGIGGIGCI L S L N N L N I T E A V S S D I L L D D A G D A × GGCATCCCCCAAGTTACCCCATAATGCTGGTGCTGTGGCTCAGCATCCATGAAGCCCTCACAATC A S P K L P H N A G D C G S A S M K P S Q S GAAGAGCGAGCTCAGAGAAAAGGAATTAACGGATATTGGGCTGGAGGCCCTCAGCTC' K S E L R E K E L K L T D I R L E A L S S ٦ × 4081 5641 4201 4321 4441 4561 4681 4801 4921 5041 5281 5401 5521

TTGCAATGGAAGCTTAACTTTAGTTTATTTCTAAACATTTTTTTATATGGAGTAATAGAAAGCTCCATTACTCAACTGGAAAGGACCCTAATGACAGGGCAACTGAACAGATTGCAC AAGTIGCGACÂGCGAAAGCACCATCAACATTTTTGATTCTTTTTTAATCTTTAAGAGGTGAAAAAAGTTAAGGGAAAAGACTTTGCTTTTAAAAAATGTTTCA S c D S E s t s h h e d i l d s s l e s t l t aaagaaaggtatttcactaaaaccactgtataaaagcaccctgtcaagggccctgacccagagttgtggtctccaaggaggcagcagaaactgaaccgcaagatgctaaa 6241 6361 6001 6121

aataagtacttggtgacatggacttaactggatgatgtatttctattggtttgttctctaggttgggttgtaaaccaggttgcatatttttttggaaatgtggacggtgta acaaaggacaggtittaagtittatgaaacccaagggctaggccatggtatagacttcttctatgagtgtgtgaaaatgtgttacttittaggacgtgtatttggtgctactcttgtgaacc accaatgggtcagttgctatagaacaacaccacgaaacatctgtgcagttttcagagtgtcacaaagtcaataggtccttacacggtgctattgccctaagggaaatccgaactgaa TGTTTTGATTGCTATTGTTGTACATGAGAAATTCAGCATTAAAGAACACTGAAGCGGTAAGGTCACTGTGGAAGGGAAGCGTTTATACTGTAAAAGAAGGTTAGATTTGCACAGTCTAC aagaaaattgctaatctttccctgccattttgagaaacacagtccaaacatgagcataaacagaatttcctgcaatacatcccagtaggtccacctagttfacaacttaaactagtttgt TTTGAGCCTTTTCAGTGAAAGAAGAACATTTCCTATGGTGCTGTCTCACTGCCTTAAAACAGATTTCTATGACAGTTTAACAGTTTAAATCCTAAACCATTGGTAATTTCCACTG aatagategetttgectatecaaaatattaaaataaeecagaaatgetetttgaeegteaettaaaaeetaagaeatgtggegaaatteeatetagetetaagtgaaagagtteeag AAGGCAGGAGAITTTTGAATTATTATCCAGCAGGCTGGAAGCACTAGATGCAGCATGAGCACAACTATTCGGCT"FFCCTTCCCTATTGTTTTTTTTTTTTTTAATGACTTTTTGACGCATGT aatggaattgtgcaaccaccabaaaacactactgtggcaaactggagaagtgccaatttaattctaactgccacgttctcatgatgtgctccaccaactttttagtatatgagtcactg GITTTATAAGGTTGTTTTTACCACAGTGGTCTTTTTAAACCACCTGCCCACTCCCTTAACAAGAGTTTTTATACCAATTATTAGTCAACACTGATAAAAGGCCTTTTTTAGGGGCTTTATTTG TCTGATCTGTCCAACCTCCTTTGTGCCACACGGTGCTGCTGCACAGGGCTTCAGTGTTTTGTGTTTGTGCTCACCCCCATTCCAGAACAAATCCAAGAGGCCAGTCCTCCATAAGCACA TAAATTATTACTTTGCCATTAAAGTGGAATTATTTATTGACAAAAAAA 8401 8521 8641

Fig. 1 (cont'd)

t2t /t

7441

7561

7321

6721 6841 6961 7081 7201

6481 6601 7681 7801 7921 8041 8161 8281

Resident Control

Human genomic sequence

1	GATCAGACTT	${\tt TGAAGAGTGT}$	TTGTACCATG	CTAAAGTTTA	CAGAATTTAT
51	TCCTGCTCTT	TGAGGGTGCA	TTGCAAATCC	AGGCTAGAGG	GAGAGATACC
101	AGTTAGGAXA	GTACAGCAAT	ACTCTACTGG	GAAATGGTGA	GGTGTTTCGT
151	GAAGACAATG	GCAACACAGA	TGAAGACATG	CAGATGGAGG	AAATAAAGAT
201	CCAGTTGAGC	TTGTTGGCCA	GTTGGATAGA	GGTTGAGGTT	ATGCATGATG
251	GAGCAATCTA	GGTTTTTGTC	TTGGGTAGGT	GTTTCCATGA	TAGTACTCAG
301	AATGAATCAT	ATAGTTGTAC	AGGTTGAATC	CCACCCATGT	TTGCACAATA
351	GAGTGACTGT	CTAGCTGAAA	TCCAGATGAC	ACTCTGTATG	CTAAGCTATG
401	CTTCATGGAA	CTGTATAAAG	GCACTTGCTA	CATAGGCTAG	TGGCAGATCT
451	GGAAGTAACC	TATATGGTAT	ATAGGAAATG	AGGTGGCTTT	TGTATAAATC
501	CTACAGATAA	ATTTCATTTC	CTGATCCTAT	TATTTTGACT	CATGTTAGCC
551	CAAGAAGAGT	ATTCAGTACT	TCATATCCCT	GAAGGTAAGA	CAGAGTAGTA
601	TTAGATTCAC	TATTTGGCAA	ATAAAAGGGA	TCAAGTCCTA	AGATCAAGCT
651	GATGAATCAA	CACCTCATAG	GATATGTCCC	AACCAATTAT	ATGGCTTCCC
701	СТАТАААТАА	AATCTAGTTC	TCTTCTCTGG	AGAGGAACAG	TGAAGAATAT
751	CATAACCTAT	GCTACAAACT	GCTTGAGTAG	GAGCTACTTC	TCTCCAAGGC
801	ТТТАТАТСАТ	TCATTCTGGC	AGGCCCCTCT	GTTTGTTCTC	ACCAGCTCCT
851	GGGAAATTTA	TTTCTCCTCT	AGTGATATAA	AAGCTCTCTG	TTTGAGATGA
901	AGGGCTGCCC	AGTTTATCAG	ATCTGTATTA	GTCTGTTCTC	AGGCTGCTAA
951	TAAAGACATA	CCTGAGACTG	AGTAATTTAT	GAAGGAAAGA	GGTTTAATTG
1001	ACTCACAGTT	CCACATGGCT	GGGGAGGCCT	CACAATCATG	GCGAAAGACT
1051	AATAAGGAGO	AAAGTCACAT	CTTACATGGC	TGCAGACAAG	AGAGCATGTG
1101	CAGGGGAACT	GCTCTCCATA	AAACCATCAG	ATCTTGTGAG	ACTTGTTCAC
1151	TATTACAAGA	A ACAACAGACA	GGAAAACCCG	CCCCCTCAAT	TCAATTACCT
1201	GCCACTGGG	A CCCTCCCACA	ACACATGGGG	ATTATGAGAG	CTACAATTCA
1251	AGATGAGAT	TGGGTGGGGA	TACCGCCAAA	CCATATGAAG	TTCTTTCTTT
1301	GTTACTGGG'	r accatatcca	TTCTGTTGAG	GTTCTGAGCC	TTTCCAGTTA
1351	CTGTAACTC	C TCTATCTCCT	GTCTGTGCT	AGACTCAGTG	ACCTCTCTCT
1401	GCCTTGCTT	C TGCTTTGTCC	TGACCCTTTC	TGTGCATGCA	CTCACTCTAG
1451	TTTGCCCAC	C TGAGGTGAGA	GATGGTCCAC	ATTAGCAACA	ACAATCTGTG
1501	GACTAAAAT	C CTCTTTAGGG	AGGAAGCAA	A ATTCAGATGO	ATGTTACTAA
1551	ACAAAGCTC	A GAAACAGAGA	CCAGGGTGT	G GGAAGTAAG(TAGTAGCCTG
1601	AGAGCAGCT	G GCAGTGTTT	AGACCTGGA	G GGAGGTTAGG	G TCATCAGCAA
1651	TGAGGAGAC	T GCCTGGAAA	TCCTAGAAA	A TTAAGACAT	TGGTCAGGCA
1701	AGGTCATAT	C ACCAGCACAC	TTCCCTTTT	C AAGTTGAAT	CCTTTCCTCT

1751	GTTAAGAGGA	TTCAAGTGTC	TTTCTTGCAT	TTTGTCTTCT	CTTCTATATC
1801	CATGCTTGCA	ATATAAGGAG	ACAGCAGTTG	GCTGTTTGTG	CTAGAAAATA
1851	TAAATGGCCA	TTTTGAAAGC	ATGCCAGACA	GGATCTGCGG	CAAGTTTTCA
1901	ATGTTACTGC	TGCCATCTGT	TGTTCTTCAG	TGCTGGGATG	TGAATCTCTT
1951	GGCAAACATC	TCTCTAATTC	TGAACTATCT	TTCACCCCCA	TCTAGAGATA
2001	TTCACTTACT	GAAGTGCCTT	TTTAAAGCAA	TGTTCCTCAC	CAAGGCGATG
2051	TTCTGAATGT	TTTAAAATGG	AAGAATCTGG	AATGTTTTA	ТТАТААТАСА
2101	TTTTGTATAT	CCCAAAGCAA	AAATCAATTT	CTTCATGGTT	AATACTTTTG
2151	TAATTTTGTT	TTTAATAATA	TTTTCCTTTT	AAATATAAGA	AATATTTTAT
2201	TGAATTAATA	CTTTAATGTA	GCTGTTTCAA	GTAAGATAAA	ACAGAACAGA
2251	TTACTGTTTT	CAACCTTGTT	CACAGTTAGC	TCTGTAACTA	AGTTGTTGAG
2301	CTTTATCTAA	GCTTTTTTAT	TTTTACATAA	CGTTTCCCTT	TTCACTTAAC
2351	CTTGAAATTA	TAGTAATTTG	GGAACTTCTA	TTCCTCTGAA	AGAGAAAGCT
2401	AATGCCAAAG	ATATTTCAAG	GGAGAAAGAA	GGTTTTTAAA	AGGAGAGACA
2451	ATTCAGCTCA	GACTTAATAG	CTGTGATTGC	TATTTATTAA	GCAGAACGCC
2501	TATAACTAAA	TTCTCAGATA	TCCAAAAAAC	AGCCTGTACA	TTCTCAAAAG
2551	TGAAGATTAC	ACATTTTCTA	AGTTAAGGTA	AAAGTTTTGT	CTCTGTAGCA
2601	TCTTACTGAT	TTCTATCTTC	TCATTCTGCC	TTAATAATGT	САСТАААТАА
2651	ATGTTTGATG	CACTAATACA	TGAATAAAAC	TATTCATGGT	AATGATTCTT
2701	TAGAAACACA	GCTAAGTTTT	GTAATTTTGT	AAAAATTTTT	TTTAAAAATT
2751	AAATATAAAA	ATGTTTTAA	AAGGCTTGAA	TTTCTTGTTA	AATGTACACA
2801	TTTTAAGTTG	TAGGCTGTCT	TTAAAAATAA	TCTCTCCACA	CACTGTAGTA
2851	тттаааасат	CATGATATTA	CTATAAAACA	ТСААСАААТА	GGGCAGTGGA
2901	AAACATGGTA	ATCACTAAAA	ATGCTCACAT	GTCATATATT	AAGACTTGAT
2951	AAGTAAACCA	CAATAATAAA	TAGAAAAGAA	ATAGTTGTCT	AAAAAGGGAT
3001	TCTCACCTTT	CAAACCTTAC	CATAAAAATG	GAATATAAAA	GAAGGAAGAG
3051	GAGGAGAAAT	CAAATTATAT	САТААААТТТ	TCTGGGCAAA	AATATTACAG
3101	AAGAAAATAA	A GAAAGATTTA	TGGAGTTGAC	TGAAACATTT	TTGAATCCTA
3151	ТАСАТАААА	A TATCGTTAAT	TAAAAGGAAA	AACAAAGAAA	CAGATTTGGG
3201	AAATATTTG/	A AACTGGTTTI	TTTTTAGCAT	TTAAAAATGT	AATACAAATG
3251	GATTATTTA	A ACTCCATTGC	AAAAATACAC	AAAGGACATI	GACAATGTCT
3301					CTCACAATTT
3351					TTTTTACATG
3401					AAGTATCCAG
3451	GGTTTTTTT	r tttttttat?	A ATATTGGCAC	TGTCATATGO	GTGGCAGGAA

Fig. 2 (cont'd 1)

A PARTY CARE

3501	TTGAAGTGAT	GTTGTTTCTT	CAGTTATTAA	GTTGCATCTG	CAGTGTTTCA
3551	AATGTCCAAA	ACCTGTGAGT	CAGTAATTCT	CTTTTTGTAT	ATTTATCCTA
3601	ATACAATAAT	TCTAAACATA	ATCTCAATAT	ATATGTACAA	AGTTATTCAC
3651	TGCAGTGTTA	CTTACAATAG	TTAGAAAATT	GTAAAATGCT	TTATGCATCT
3701	TAAAATATAA	ATTGTTGAAT	ATATAATAGT	CCATATGATA	TAATTATATC
37.51	ATTATTATAA	ATAATGAATT	AGAAAATAAT	TTAAGAGCAT	TAAAATAATT
3801	ATAAGGTAAT	ATGAAGTGAA	TGAATAATGT	ACAGATACTA	TAATCAGCAG
3851	AGTGTTAACT	AGGTAAATTT	TTATGTGTGT	ATATACTACT	TCCTAAAAAT
3901	GACTTGACAG	AAATCATCAA	AATGCTAATG	GTGGTTACTT	CTGGGTGGGA
3951	ATACAGATGA	TTTACTTTGT	TCCTTTTATG	TATTTCTGCA	CTGCCCAGTC
4001	TTCCACAGTG	AGCATATATT	GGTTTTTAAA	TTTATATAAG	ATGGAAAAAG
4051	ATACCAAATG	GTCTTCAATG	AATCCTGGAG	TTAACTTTCA	TGTGTGTCAT
4101	ATGTTATATT	CTAAACTTAT	CACAAATAGA	AGACTTTAAA	TCAACTTGTA
4151	CCTATTTCAA	CTATATAACA	GCATCTTTAA	AATGAGCATT	GAATTAAACT
4201	ACCAAAACCA	ACCATCATGA	GGATTATTCA	AGTAATGTGT	TTAAACAAAA
4251	GAATTTGTAA	TAAAATTACT	TTATCTCCTT	TGTGATTTCA	GCCCATTTAA
4301	AAAAATAGA	TGTTTCTACT	CTCCTTCAGA	TATCATTAAA	ACATAAACTT
4351	GTGCCTGACT	GCATAAATCC	CTTTTAAACT	AATATCACTT	ATTACGTTTA
4401	ACTAAGTCTA	CCTAGGGCTT	CCTTGTATAA	AGAACAAGAG	CTTTCCATTT
4451	TTTGTTTACC	TAGCCCTTTC	TGATGCCACG	ACAGAATAGC	TGTAAATCTT
4501	CATTATTTAT	ATTCTAGAGA	AAATAAAAGC	AAATAAAAAG	GTCAGTGTAT
4551	AAAGTTTATT	GGTTGTTCTC	TTTACTCAAA	ACCCACATGG	TATTAATGTT
4601	AGTCTCTATG	AATATTTCAT	GGATAAAATC	AGAGCATTAA	GTGCATACTA
4651	AAAACAATAA	GAATGGAAAG	ACTTTAACCT	TATGTTTATA	TGAATTTCTA
4701	GGTTATCAAG	AAGTTTATAG	GCTATAGGCT	ATAAAGTCTT	AGGCTATGAT
4751	ATAGTAACCT	AATGTAGACT	TCCCTTGATA	CATGAAAATA	ATGGTACTAA
4801	GTACAAACAG	AAGATGAGCT	TAAAATTATT	CTTTGAGTCC	TCTTGATGGA
4851	TTTTTTCCCC	CACACTTTCC	CCAAAATTGT	TTTATGCCTA	TATTGTAGGA
4901	GACCATGCAA	GAGACCTAGA	GTCTCTTTTT	CTTTCATCAC	TTTCCAATCA
4951	ACAGCAAATC	CTATCATTTT	TACCACAAAA	TATATCTTGA	AACTCCCTTC
5001	TTTTGATTTA	CTTGTAACTC	CCCATCAAAA	ACTGAAGAGT	GTCACAATAC
5051	TTCATTAAGT	TCCCTACTTG	CACTCTACCT	TTATATATT	TGTAGCACTA
5101	AAATGTTTTT	AAAACATATA	TCTGCTTATG	TCATTTTACT	GCTCAATACT
5151	ATCTGATTTT	CTATTGCACT	TCTAAGATAC	TCTAATTTCT	TAGCACTCTA
5201	TATAAAATCC	TTTAAGGGCT	TCCCTGCTCA	CCTTTTCAGA	CTCAGAACTA
5251	TGTATTTCCT	TTTGCCTGCT	GTACTTGTAC	CACTGGATTC	TTGATTTTTG

5301	TTACTTCCAG	GTTTTTACAC	TTATTTTAC	AATAAATGTG	AAATACCCTT
5351	TTTGACAATA	TCTACAAATA	TTTCTTATTT	GTCTTTATTG	CTCTTTCCTG
5401	TAATGTTTAG	TCTTCATTTT	CCTGATAATG	GCTATCTAAA	GTTATCTCCT
5451	CAAAGAAGCA	GTTATTTATT	CACCCAAATC	TTCTAGTCCT	TCTCTGGAGT
5501	TTTCTTCTCA	CTTCATTCCC	TTGGTTTTTG	CCACAATTTG	TAATAATTTG
5551	CAATTTGGAG	TGTTAGAATG	AGGGAATAAA	TCACAGGTAA	TGACTATAGT
5601	TTGTGACTAT	GTAAGATTGG	ATTCGTTATT	GATTTATTCC	ACAAACACTG
5651	AGGCACTGCA	TTTAGCCAAA	TGCCAATCTT	GGGCAGTGAG	ACTCTGAAAG
5701	AGAATCTGCT	TCCCCCACCA	TAAACTACAA	AGTGAAACAA	CTCAGAATGT
5751	АСАТАААТТА	CAGAATGAAA	GCACACTAGA	AGTAAACACA	GATGTGGAAG
5801	AGGTAAAGTG	TCCTTGAAAA	TCATGGAAAG	ATTCATAAAG	GGAATGACAT
5851	TTCAACTGGA	TTCTAAACCA	GTTATTCAAG	CTCCACAAGG	TTGCACAGTA
5901	AATGAGCAGT	GGCAGGATGA	CATACCTTAG	AAAGTAAAAG	GAATCTTTTT
5951	TAAACTGCTA	TAAAAATCAT	TACATATACA	TTTTGTAGGT	CGAGAGTAAG
6001	GTATTTAÀCA	TAAAATCATT	TTAGTATATC	AGTGTTTATA	TAGACTTAGG
6051	TTTTTCTCAT	ТТААААССТС	TTTTAATGAC	TTGTGCTTTT	CTTCATGGTA
6101	ATAAAACATT	TTCCCAGGAA	GTGCTGAATA	AATCTTTCTT	GAAATACGTT
6151	TTATTGCTTT	CTATCAATGA	CCCTGAAGTA	ATACAGAATT	TACACTTCAG
6201	CGGTTGCAAT	GCTCAAACTT	GACAGGTAAT	GCACTGTGTT	TGCTGATATA
6251	AGAGGTATGA	TGTAGGGCTA	AGTGGTTTTG	TGCTCATTTA	GCTTTCAGGA
6301	GAAAATAATT	GACTTAACAT	TTTGATACTA	AAACCCAAAG	CCTAACAGTT
6351	AATTCTTGGT	ATTTTAAATT	ATTATTGCAA	AGATTATTGT	GCCGAATAAT
6401	ATGAAAATAT	TATATATAT	ATTTAAAAAG	TATATCTCTT	TCTTGGTATT
6451	ATTTAAATTA	ССАТАААААТ	GTGCGAAAAA	GTTATACTGA	AATGTGATAG
6501	GATCTTTTAA	AAGTGGTGCC	TTGATTTTGT	TAAGTGTTAC	CTAGTTTTCC
6551	TCTGAAAACA	AGAAACATAC	CCAGAAGTTT	TCACGAAATG	GTCTCATGAA
6601	TATCTAAGGT	TAGTCCGTAG	TCTCATCTGA	GACAAGGAAA	GTCCCTTCCA
6651	CTATGAGCCT	GTAAAATCAC	AAGCAAGĆTA	GTTACTTCCT	AGATACAATG
6701	GGAGTACTGG	TATTGGGTAA	ACACAGCTGT	TTCAAATGGG	AGAAATTGGC
6751	СААААТТААТ	GGGTTACAGG	GCATGCAATI	CCGAAATCCA	TCTGGGCAGT
6801	CAAATTGTAA	A AACTCCAAAA	TGATXTCTTI	TGACTCCATG	TXTCACATCC
6851	AGGACATGCT	r GAXGCAAGAG	ATAGGTTCCC	: ATAATCTTTG	GCAGCTCTGC
6901	CCCTGTGGCT	TTGCAGGGTA	TATCACCCCI	CCCAGCTGCT	TTCACAGGCT
6951	GGCATTGAG	r gtctgtggct	TTCCCAGGA	A CAAGGTGCAA	GCTGTTGGTG
7001	GATCTACCA	r TCTGGGGTTT	GGAGGATGAT	GGCCCTCTTC	TCATAGCTCC

Fig. 2 (cont'd 3)

7051	ACTAGGCCGT	GCTCCAGTAG	AGACTCTGTG	GGGGCTCTGA	CCCCAGATTT
7101	CCCTCCTGCA	CTGCCCTAGC	AGAGATTCTT	CATGAGGGCC	GTGCCCCTGC
7151	AGAAAACTCT	TTCCTGGGCA	TCCAGGCATT	TCCATACATC	TGAAATCTAG
7201	GTGGAGGTTC	CCAAACCTCG	ATTCTTAATT	TCTGTGCACC	TGCAGGCTCT
7251	CTACCACGTG	GAAGCTGCCA	AGGTTTGGGG	CTTGCACCCT	CTGAAACCAC
73.01	AGGCTGAGCT	ATACCTTGGC	CCCTTTTAGC	AATGGCTGGA	GTGACTGGGA
7351	CACAGGGCAC	CAAGTCTCTA	GGCTGCACAC	AGTATGGGCA	CCCTGGGCCC
7401	AGCCCTCAAA	ATCATTTTTT	CCTCCTAGGC	TTCTGGATCA	GTGAAGGGTG
7451	GGGCTGCCAT	GAAGACCTAT	GACATGCCCT	GGAGACATTT	TCCCCATTGT
7501	CTTGGGGATT	AACACTGGCT	CCTTGTTACT	TATGCAGATT	TCTGCAGCCA
7551	GCTGAATTTC	TCCTCAAAAA	ATGGGTTTTT	CTTTTCTACT	GCATTGTCAG
7601	GCTGCAAATT	TTCTGAACTT	TTATGCTGTT	TCCCTTTTAA	AATGCGATGC
7651	TCTAACAACA	CCCGTCACCT	CTTGAATGCT	TTGCTGCTTA	GAAATTTCTT
7701	CTGTCAGATA	CCCTAAATCA	TCTCTCTCAA	GTTCAGAGTT	CCACAAATCT
7751	CTAGGGCAGG	GGCAAAATGC	CACCAGTCTC	TTTGCTAAAA	CATAACAAGA
7801	GTCGCCTTTG	CTCCAGTTCT	CAGCAAGTTC	CTCATCTCCA	TCCGAGACAA
7851	CCTCAGCCTG	GTCCTTATTG	TTTATATCAC	TATAAAAATT	TTTGTCAAAG
7901	CCATTCAACA	AGTCTCTACT	CCAAACTTTC	CCACATTTTC	CTGTCTTCTT
7951	CTGAGCCCTC	CAAATTGTTC	CAGCCTCTGC	CTGATACACA	GTCCCAAAGT
8001	TACTTCCACA	TTTTTGGATA	TCTTTTCAGC	AATGCCCCGC	TCTACTGGTA
8051	CCAACTTACT	TTGTTAGTCC	GTTTTCACAC	TGTTGATAAA	GACATACCCA
8101	AGACTGGAAA	GAAAAAAAGG	TTTAATTGGA	CTTACAGTTC	CACATGGCTA
8151	GGGAGGCTTC	ACAATCATGG	CAGGAGGCAA	AAGGCATTTC	TTACATGATG
8201	GCAGCAAGAG	AAAATGAGGA	AGATGCAAAC	GCAGAAATCC	CTGATAAAAC
8251	CATCGGACCT	TGTAAGACTT	ATTCACTACC	ACTAGGACAG	TATGGGTGAT
8301	ACCACCCCCA	TGATTCAAAT	GATCTCCAAC	CAGGTGCCTC	CCACAACACA
8351	TGGGAATTAT	GGGAATACAA	TTCAAGATGA	GATTTGGGTA	GGGACACAGA
8401	GCCAAACTAT	ATCACATGGA	TTTCTTATAC	TTTTGCTTTT	AATAACACAA
8451	ACAAAAAAAT	ACATCATTAA	AAGGTTAGAA	GTGAGAAGGT	GTTTTTATGG
8501	AAATCAAAAA	TAATATCACC	TTAGTGAACA	GTATTCTTAT	GATTGTAGTT
8551	GAATTAGAGA	GCAGAATACA	TCTAGAAGAT	TCAGTAGTAA	GCATGTTTCT
8601	TCGATTAATG	GAAAATTTGA	ATAGCCTAGC	TGATTGAGAT	TGAGGTTACT
8651	ATTAAATGCC	TGAAGTATAA	GAGTTGGTTG	TTTATGTAAA	CAAAATATCT
8701	GTTTTACATG	TACATGTGTA	AGTAGGACTG	TTGAGCCCCA	GTAACATGAA
8751	ATATCAAAGA	GCATGACTCG	AATACCTGCC	ATATGAAGTG	CTATTACATC
8801	AAAAAAGAGG	CGTGTGCTGA	AAAATTACCT	ACAAATGGCA	TTTTCCTCAA

Fig. 2 (cont'd 4)

0051	A DOLLA A DOMENTA	AATCTTCAGA	ን ሙውሙር ን ሙው ሙ	ተመመመመመ መመል	ጥልር ጥጥል ልጥል ጥ
8851					
8901		CTCATCATAA			
8951		TTTGTTTTCA			
9001		GAACTACAAA			
9051		ATCTAAAAAC			
9101		TTAATTAACC			
9151	GTTTCGCTAG	CTACATTTTT	AATTACTTAA	TATCATGTAA	AATTTGTTTT
9201	ATTATTGTTC	AGTTCTGAAT	TTTGACATAT	GCATCAAGCC	ATGCAACTGC
9251	TACCACAGTC	TTCCTGATCA	CTGATCTGTT	CTAAATCTCT	ATAGCATTTT
9301	TCCTTTTCTT	AAATGTTGCA	TAAATAAAAC	CATACCTTAT	GTGGCCTTTT
9351	GAATCTGGCA	TCTTTAACTT	AATGCGCTTG	AAATTAATCT	ATGTCATTTC
9401	ATGTATCAAT	GGCTCAATCT	TTTTAATTGT	TAAGAAAAA	TGTATGCTGG
9451	GATAAATATC	TTTCTAAATG	AGTTTTTGTT	CACAATGCTG	AGTGTTTGTT
9501	TAGGATAGAG	TCCTAGAAAT	GGTATCACTA	GGTCAAACAT	TCAAATAATT
9551	TTÄAAAATÄ	TGATACATAT	TGCCAAATAA	TCTCAAATTT	TTTACCAATA
9601	TACATTTATG	ACAGTATGGG	ATAAATGTGT	CTTTCTTATA	CCAACTGACA
9651	ACATTAATGA	ТААТАСАТАА	AATATTCTTT	GCTAATTTGA	TGGGACAGAA
9701	ATGTTATATC	CTTATTAGCA	TTTTATTATT	GTGGTTGAAT	GACTGTACTG
9751	TACAGCCAGA	GATATTTGGT	TCAAAATCCA	TCTTCATTAT	TTACTGTATG
9801	TGAAAATTTA	GGTGAGCTAT	TTAATCTCTT	GATGCCTTAG	TCTCCTAATC
9851	TATAAAGTGG	GGATAATTGT	ACCAATCATA	TTAGGTTCCT	GTGAGAATTA
9901	ACTGAATTAC	TATAGAAAAT	GCTTAGAATG	GTATCTAGTC	ACCAGGAAGG
9951	ACTCTCTCTG	TATTACTTGT	TTATTATCTA	ACACGTTTAA	TTATTAATGA
10001	AGCTCAGTTT	CGTTATATGC	TTGGGATATT	TGAAACTTTT	CTTAGTGAAT
10051	TTTCCAATAA	AATTATTTGT	СТАТТТТТСТ	ATGGACAAGT	TGGTATTATT
10101	CTTACTGGTT	TGTTTCAGGT	TCAGTTAGTA	AGAATTTTAA	GGATTTTCTA
10151	TCACATTTTA	GCAAACTTTT	TCTGCATTTT	ATCTTTTTC	TTTCAGATAA
10201	TGTTTGCAAA	ATGTAAAAAA	AACAAAAGGT	TTCTTCATCA	AGTTGGTATC
10251	TTTATCTTT	TTATTGCTTT	GTGATTTGAA	AATTCTTGTC	CTGAGAACCA
10301	АААТАТАТАТ	TTGATGAAAT	AGTTCTCTTC	TTTTACTCAT	TCTGAAGTCA
10351	TTGGAATTGA	ATTTGGCATA	TGATATAAAT	CCTAATTTTA	TATTTTATGA
10401	TATTCAAAAT	TTCTAACAAA	TATTTACTTA	ATAATCTAAT	CCAGGTTTCT
10451					TATTTTTCCT
10501					TATCTGTTAG
10551	, *				ATTTAAATGT
	51 5. 				

Fig. 2 (cont'd 5)

10601	AGAGAGCATA	CAGATTAGCA	AAGAAAAGT	ATAATTGCCT	TTTTTTATAG
10651	TTGACATGAA	CATGTATAAA	GAAAAACCAA	AAAAATCAAT	AAAACAACTA
10701	GAACTTATTA	GTGAATTTAG	CAAGATCATA	GCATACAAAG	CCAAGATTCA
10751	AAATTCCATT	TTATTTATCT	ACTAACAAAA	AATATTTGAA	ATTTGAAAAT
10801	TTAAATATGC	CATTTACAAT	AACATCAAAA	TATTGAACAA	TAAAGTATTT
10851	AGGAATTTAT	AAAATGAAAT	CTCCTATACC	AGGAATTACA	GACCATTGCT
10901	GAAATAAATG	AAAGAAGACC	AATATATGTG	AAGAGATACT	CATTTGTGGA
10951	TTGAGAGACA	ATATTGTTAA	AGTATCAGTA	TTTCCCAAAT	TAATCAATAG
11001	АТТСААТАТА	ATGGTGAACA	GAACACCAGA	AGATGTTCTG	TCGAAGCTGA
11051	CAAGCTATTT	CTATAATTCA	AATGGAAATG	CAAAAGGCAG	TCACTGCCAA
11101	CACCAGCATG	GACTGTCTGG	GTTCCAGTAG	GTTACTTCAC	TACTGCCTCT
11151	TCTGTCAGCC	ACATCACGAC	AGCTGCCCAG	AAGCCAGAGA	AACTCCTCAC
11201	ACCTGGCCCA	CTGCTGCAGC	TACCAGCATC	CAGGCAAGCC	ACCATCAGCC
11251	CACTGGTAAC	TGCCAACAGA	GGTACCACTG	TACACTACCC	TGGGGAACAA
11301	AGATAGGCAT	GTAGTCAGCC	CACCTCTGCC	ACCACTAGGG	CCTGAAGCCT
11351	GGCCCACCTG	ACACTGCAGT	CCTCAGCACA	GCTTCATCAC	AGCTTCTGTT
11401	AATAACCACA	CCCTAACCTA	CCAAGGAAAT	CACAAATGTC	ACTGACACTG
11451	TTTGTAGCCA	AAGAAATCAT	AGAGAGACTA	CATTACTGCA	CACACCCATA
11501	ATCAAAGCCA	CAGTACCCTA	TCCAGACAAC	ATCACAGGTA	TATCTAAAGG
11551	ТТТТААААА	CCCATATGAA	AGCGAATTCA	AATATAGGAA	GAAGCGACTG
11601	TTACAACAGA	TATGCAGATA	AAGCTTCAAC	AATATCCTAC	ATTCAACCAG
11651	AAGAAAGAAT	CTCAGAAGGT	AAAGACAGGT	CTTCTGAAAT	AATCTAGTCA
11701	GACAAAATTA	AAAGAGAATA	ATCAAATCCT	TCCTGACATT	TGGGATAACA
11751	TTAAAGTGAC	CAAATATACG	AATTATAGAT	ACCCCTGAGA	GTGAAAAGAC
11801	AAAGAAAAGA	TTAGAAAACC	CACTTAATTA	ААТААТАТАТ	GAAAACTTCC
11851	TAAGTCTAGC	AAGAGTTTTA	GATATTTGGG	ATGCAGGAGG	CTCAATGGTC
11901	CCCAGGCCGA	TAAAACGCAA	AAAGGTCTTA	TACACAGCAC	ATTACAATCA
11951	GACTGTTTAA	AGTCAAAGAT	AAGGAATAAA	TTCTAAAAAC	AGCAAGAGAA
12001	AGTGTATGAT	AACCTATGAA	GTAAACCTTA	TCAGACTGAC	AGCAAATTTC
12051	TGGCAGAAAC	TTTACAGGCC	AGAAAGAATA	GGACAATATA	TTCAAAGTGC
12101	TTAAAGAAAA	AAAAAACTAT	CAGCCTTAAA	TACTATAGCC	CACAAAATTA
12151	TCCTTCATAA	ATGAAGGAGA	AATAAAAGGT	TTCCCAGACA	CGAAAATGCT
12201	GAGGTAGTTT	GTTACTACTA	GACTGGACCT	ACAATAAATG	CTCAAGGGAG
12251	GTCTGGAAAC	TGGTAGTGAA	AGGACGACAT	TTATCATCAT	GAAAATACAT
12301	GĄĄAGTATAA	AACTCCCTGG	TAAGCAACTA	AAGGGAGGTA	TCAAATGTTA
12351	CCACCAGAGA	AATCTAACTA	ACCACAATGA	CAAACAATAA	GGGAAAAAGA

Fig. 2 (cont'd 6)

12401	AAGGAACAAA	AATATATAAG	ACAACAAATA	AACAACAATA	TAACAGGAAG
12451	CCTCACATAT	CAGTAATCAC	TTTGAATGTA	AATGAATTAC	ATTCTCCACC
12501	TAAACGTTAT	GAAATGCCTG	AATGATAAAA	CTATATGATC	CAAATATATG
12551	CTGATTACAA	GAAACTTACC	AGGCAGACAT	ACATAGGCTG	AAAGTAAAAG
12601	AATGGTAAAA	GATATTCCTT	GCAAATGGAA	AGCAATAGTG	AGCAGGAGTA
12651	GCTATACTTA	AATTAGATCA	TACAGACTTT	AAGTCAAAAA	GAGTAAAATA
12701	AAAAAGACAA	AGGATGTTAT	TATATAATGA	TGAGATTAAC	CCAGCAATGG
12751	GAAATAACAA	CTCTAAATGT	ATATGCATTC	AACACTAGAG	AACTCAGATC
12801	CACAAAGCAA	ATATTAGACC	TAAAGAGAGA	AATAGACTGC	AATACAGTAA
12851	TAGTGGAGAA	CTTCAACACT	CCACTTTCAG	TATTAGACAG	ATAATCTAGG
12901	CAAAAAATCA	ACCAGTAAAT	TTTAGATTTA	AACTAGATTT	TAGACCAAAT
12951	GGACCTAACA	GACATTTACA	AAACATTCCA	TCCAACCACT	GCAAAATGAA
13001	ATTTGTGTCA	TCAGCACATG	AAACAATGTC	CAAGATAGAC	CACCATATGT
13051	TAGGCCACAA	ATCATGTCTC	AGCAATTTTT	TAAAAGTTGA	AATCATATCA
13101	CATATCTTCT	CAGACCACTG	TTGAATAATG	CTAGAAATCA	ATGCCAAGAA
13151	TAACGTTGGA	ААСТАТАСАА	ATACATGCAG	ATTAAACAAC	ATGTTCCTGG
13201	TTGATCACTG	GGACAATAAG	GAAATTAAGC	TGAAAATCAA	AAAATTCTTG
13251	TAACAAATAA	AGATTGAAAC	ATAACATATC	AAAACCAGTG	GCATACAGCA
13301	AAAGCAGTGC	TAAGAGGGAA	GTTTATAGCA	ATAAATGCTT	ACACTGAAAA
13351	AGTAGAAATA	$\mathbf{TTTAAAATT}$	AGCAACCTAA	CAATGTGCCT	GAAGAAACTA
13401	AAAAATCAAG	AACAAATCAA	ACCCAAAATC	AGCAGAAGAA	ACACAAAAAT
13451	AAAGATCAGA	AAAGAACTAA	ATCAAATAGA	GACTAAAAAA	ATACAAATGA
13501	TTAACAAAAC	TAAAATTTGG	TTATTCAACA	AGATAAATAA	AATTGATAAA
13551	CCGCTAGATA	GACTAAACAA	GGAAAAAGAA	TATCCAAATA	AACACAATCA
13601	AAAACGATAA	AGGAGACATT	ACAACAGATG	CCACAGAAAT	AAAAAGGATC
13651	ATCAGAGACT	ATTATTAACA	ACTATATGCT	GAAAAATGGA	AAATATAGAG
13701	AAATAGATAA	ATTCCTAGAA	ACTTACAACC	TACCAAGCTG	TTGCATCAGG
13751	AAGAAATAGA	AAACCTGAAC	ATATCAGTAA	TGATTAGCAA	AATTGAATCA
13801	GTAATAAAAA	ACATCTCCCA	ACTCTTTTAA	AGCTTTGGAC	CAAATAGCAT
13851	CACAGCCTAA	TTCTACCAAT	CATGCAAAGA	AGAATACCAG	TCTTCTTGAT
13901	GCTATTACAA	TAAATCAGAG	GAAGGAATTC	TCTCTGGCTC	ATTCTACATG
13951	ACCAGTGTCA	CCTTGAAACC	AAAACCTGAC	AAGGACACCA	CAAAAAGAAA
14001	ACTACAGGCC	AATAACCATG	ATGAACACAG	ATGCAAAAAT	CATTAACAAA
14051	ATACTGGCAA	ACGGAATCCA	ACAGCACATC	AAAAAAAAA	TATACCACAA
14101	TCCAGAGGGT	TTGTATCAAG	GATACAAGTA	TGACTCAATG	ТАААТАААТС
			Fig. 2	(cont'd 7)

13/ ¹²⁴

14151	AATAAACATG	ATAAGCATCT	TCACAGAATA	TAAGACAAAT	GAATATATGA
14201	TCATCTCAAT	AGATGCAGAA	AAAAATTTTTT	GATAAATTTC	AACATCTCTT
14251	CATGAAAAAA	ATCTCTAAAA	CTCAGCATAG	AAGAAACATA	ССТСААТАТА
14301	ATAAAGGCCA	TATGTGACAA	ACTCAGAGCT	AATATCATAC	AGAATGGGGC
14351	AAAGTTTAAA	GACTTTCCTC	TAAGAACTGG	AACAAGACAA	GGATGCAAAC
14401	TCTCACCACT	CCTATCCACA	TAGTACTAGA	AGTCCTAGCC	AAAACAATCA
14451	GACAAGCAAA	AGAAATAAAA	AGTATCTAAA	TTGAGAAGAG	CAAGTAACAT
14501	TGTTCCTCTT	TGCTGATGAT	ATGGTTTTGT	ATCTGGAAAA	TACTAAAAAC
14551	TCCAGCAAAA	ACCTCTTAGA	TTTGATTAAT	TAATTTAGTA	AAGTTTCAGG
14601	ATACAAAATA	ААААТАСААА	AGTCAGTAGC	ATTTCTATGC	CCCAATAATA
14651	AAATAGCTAG	GAAAGAAATC	AAGAAAGTGA	TCCCATTTAA	ATTAGCTACA
14701	AAAATTAAA	ATACCTGGGA	ATAAATCAAG	GAAGTTAAAG	ATCTCTGCAC
14751	AAAACTACAA	AACACTGATG	AAAGAAATTA	AGGATTAAAC	AAACAAATTG
14801	AGAAACATCC	CATGTTTATG	GATCAAAAGA	ATTAATATCA	TTAAAATGAC
14851	CATACTTCCC	AAAGCAATTT	CCACATTCAA	TGCAATTTCT	ACCAAATTAC
14901	CAATGTCATA	TTTCATAGAA	TTAGAATAAT	CCTAAAATTA	GTATGGAATG
14951	AGAACAGAGC	CCAAATAGCC	AAAGCAATTC	TGAACATAAA	GAACAAATCT
15001	GGTCCTGACT	TAATCACTAT	GCAATCTATG	CATGTAACAA	AATTGAACAT
15051	GGATTTTATC	AATTTGTACA	ААТААААААА	TGTAAAAAAA	GAACAAAGCT
15101	GGAGGCTATA	GTAGCCAAAA	CAGCATGGTA	TTTTTAGACA	AATGGAATGG
15151	AATAGAAAGC	TCAGAAATAA	AGCCATATAT	ATATATTGTG	TGTGTGTGTG
15201	TGTGTATACA	CACATACATG	TATATATAAT	GTGTACATAT	AATGTTTTCT
15251	ACATGTTCTA	ATATTTATAT	TCCATTCCAT	TATACATATT	CCATTTCTGT
15301	ATATAGGTTA	TATAGAATTG	GAAGACTATC	TGCCATTAAA	AAGAATGAAA
15351	TCCTGTGATT	TGCAGCAACA	TGGTTGAAAC	TGGAGTTCAT	TATCTTAAGT
15401	GAAATAATCT	AGGCACAAAA	AGATAAATAT	CACATGTTCT	CACTTATATG
15451	TGGGAGCTAA	TAACTTGATT	ACATGAAGGT	GGAGAATGGA	AAGGTAGGTA
15501	GGAAACAGAG	ACTGGAAAGG	ATGAATGGAG	GGTAGGAGGG	AAGGTGAAGA
15551	GAAGAGAGTT	AAAAGGTGTA	AACATATAGT	TAAAAGAAAT	AAATTCAATG
15601	CTTGATAGCA	GAGTACAGTG	ACTACAGTTA	ACAAAATGTA	TTATACTCAG
15651	GTGATGAACA	CCTAAATACT	TGATCACTAT	GCAATTATAT	ACGTGTAACA
15701	AAATCACTAT	GCACTATATA	CGTGTAAAAT	TAAATGCGTA	САААТААААА
15751	ТААТАААТА	CTAATCCAGT	ATCATTCACT	GACAATGTTA	ACTCAGGTGG
15801	ATAGGCATTA	AGTCAATACT	ACTATAAGAA	CCACTTCTTG	TTTATGTTAA
15851	TGCCATATAG	AATGAAATAA	AATTCACTAA	AATCCAAAAA	ATTAGAAAAA
15901	CTATCAAAAC	TCAATAATAT	TAAGACAACC	CAATAAAAAT	GTGGTCAAAG

15951	GATTTGAACA	TACATGTCAC	СААААААТАТ	ATTCAAATTT	CCAATAAATA
16001	CATGTAACAA	TGTTCGACAT	CGTTAGTCAT	CAGAGAAATA	СААААТАААА
16051	TGGTAATGAG	ATACTACTAG	ATAGGCTTTT	ACAGAGACTG	ACAATACCAA
16101	GTATTGACAA	GGATATGGAG	CAACTGAAAT	TCTCATTCCT	TGTGGTAAGA
16151	ATGTACAATT	ATATAACCAC	ATTGAAAAAA	CAAGTTTTCA	GTTTCTTTAT
16201	TCACCCAAAA	TATATGTCTT	TTGGAAAAA	TTTTTTCCAG	TCTGTGGGTT
16251	GTCTTCTCAT	TCTCTTGATA	TATGTCTTTT	CAAAGAGGCT	GAGCTTTACT
16301	TTAGACAGTG	GTCATCAAAG	TGTGTATATT	TGTGTTTTTA	TAATTTATAT
16351	GCATATATTC	CTGTGAAAAG	ATACTGTATG	CATTGTTCAA	CATGTACAAA
16401	TATAAGAAAG	ATATAGTAAA	GAAATATATA	TTTCTAAATT	TATAAATGTA
16451	TTTATTGGTG	TTCCACGTTG	CAAACTAAAT	AATCTACGTT	GGCTAATTTA
16501	AGGAATTAAA	CTATAGTAGA	AGGTTCTCAT	TTATTGGGAT	GATTAGAACC
16551	AGCCTTTTTG	CAGGCTATTA	GCGAATCATA	GCACTAGGGC	TTCACTGCTA
16601	CCTCCACTGA	CACCTCTGAC	ACTTGAAACT	TGAGGCCAGA	TATCTGCCCA
16651	TGCTGAŤAGA	AAACAACTGA	ATAATTTAAT	TTGCTAGATA	ATAGAAAAGA
16701	ATCAAATGAC	TCTGCCACAT	TGCTTGCCAG	AAGATTGTTT	TTCTCATTTG
16751	TGACCTCTTG	CCTATAAATG	ATAGATAGTC	CCTGTGCTGC	ATGCTATAGG
16801	TGTTCGTAAG	AGAGTCTGGG	AATGTGAGCT	TTTTATATCC	TATTTTTGGG
16851	TGGTAAAGGT	CATTCTATTA	GTCTGTTCTT	AAACTGCTAA	TGAAGACATA
16901	CCCCAAATTG	GGTACTTTAT	GAAAGAAAGA	GGTTTAATTG	ACTCACAGTT
16951	CAACATGACT	GGGGAGGCCT	AAGGAAAGTT	ATAATCATGG	GGGAAGGGGA
17001	AGCACACATG	TCCTTCACAT	GGTAGCAGGA	AGGATAATGA	GTAAAAGGGG
17051	GAAAAGCCCC	TTATAAAACT	ATCAAATCCC	ATGAGAACTC	ACTCTCACAA
17101	GAACACAATT	AGAGTAACTG	CCCCCATGAC	TCAATTACTT	CCCACCAGGT
17151	CCCTCCCACA	ACACATGGGG	CTTATGGGAA	CTACAATTCA	AGATGAGATT
17201	TGGGTGGGGA	CACAGCCACA	CCATTTCATT	CCACCTCTGA	CCCCTCCCAA
17251	ATCTCGTGTT	CTCACAATTC	AAATACAATC	ATGCCCTTCC	AACAGTCCCC
17301	CCAAAGTCTT	AACACATTTC	AGTATTAACA	CAAAAGTCCA	AGTCCAAAGT
17351	CTAATCTGAG	ACAAGGCAAG	TCCCTTCTGC	CTATGAGCCT	GTAAATTCGA
17401	AAGCAAGTTA	GCTACTTCCT	AGATACAATA	GGGTCACAGT	CATTGGGTAA
17451	ATACACACAT	TCCAAACGGG	AGGAATTGAC	CAAAACCAAG	GGGCTACAGG
17501	CCTCATGGAG	GTCCAAAATC	CAATAGGGCC	ATTGTTAAAC	CTTAAAGTTT
17551	CAAAATTATC	TCCTTTGACT	TCATATCTCA	CGTCTAGGTC	ATGATTATGC
17601	AAGAGGTGGG	CTCCCACAGC	TTTGGGCAGC	TCTGCCTCTG	TGGCTTTGCA
17651	GGGTACAGCC	CCACTCCAGG	CTGCTTTTAC	AAGCTAGTGT	TGAGTGCCTG

Fig. 2 (cont'd 9)

17701	CAGCTTTTCC	AGGCACATGG	GTGCAAGCTG	TAGGTGGATC	TACCATTCTG
17751	TGGTCTGGAG	GATGGTGGCC	TTCATCTCAC	AGATCCACTA	GGCAGTACCC
17801	CAGTGGGGAC	TCTGTGTGGG	GGCTCTGATC	CCACATTTCC	CTTCCACACT
17851	GCCCTAGCAG	AGGTTCACCA	TGAGGGCTCC	ACCCCTGCAG	CAAACTTCTG
17901	CCTGAACATC	CAAGCATTTC	CTTACATCCT	CTGGAATCTA	GGCGGAGGTT
17951	TCCAGACCTC	AATTGTTGAC	TTCTCTGCAA	ATGTAGGCTC	AACACCCCAT
18001	GGAAGCTGGC	AAAGCTTGGG	GCTTTCACCT	TCTGAAGCCA	TGGCCTTAGC
18051	TGTACCTTGG	CCCTTATTAG	TTAAAGCTGG	AGCAGCTGGG	TTGCAGGGCA
18101	CCAAGTCCCT	ATGGTGCATA	CAGCAGGGGG	GCCCTGGACC	CAGCCCACAA
18151	AACCAATTTT	CCCTCCTAGG	CTTCTGGGCC	TGCGATGAGT	AGGGTTGCCA
18201	CAAAACTGTC	TGACATGCCT	TGGAGACATT	TTCCCTATTG	TCTTATTAAG
18251	ATTTGGCTCA	TAGTTACTTA	TGCAAATTTC	TGCAGCAGGC	TTGAATTTCT
18301	CCTCAGAAAA	TGAGTTTTTC	TTTTCTATGG	CATCATCAGG	TTGCAAATTT
18351	TTAAAACTTT	TATGCTCTGC	TTCCCTTTTA	CAATTAAGTT	CCAATTCCAA
18401	ACCATATCTT	TCTGGATACA	TAAAACTGAA	TGCTTATAAC	AGCACCCAAA
18451	TCATATCCTG	AACACTTTGC	TTCTCAGAAA	TATCTTCTAC	CAGATACCCT
18501	AAATTATCGC	TCTCAAGTTC	AAAGTACCAC	AGATCTCTAG	GGCAGGGGCA
18551	AAATGCCACC	AGTCTCTTTG	CTAAAGCATA	ACAAGAGTCA	CCTTTGCTCC
18601	AGTTCCCAAC	AAGTTCCTCA	TCTCCATCTG	AGACCACCTT	AGCCTGGATT
18651	TCATTGTCCA	TATCATTATC	AGCATGTTGG	TCAAAGCCAT	TCAACAAGTC
18701	TCTAGGAAGT	TTCAAACTTT	CCCACATCTT	CCTATCTTTT	TCTGAGGCCT
18751	CCAAACTGTT	CCAACTTCTG	CCTGTTACCC	AGTTGCAAAG	TTACTGCCAC
18801	ATTTCTGGGT	ATCTTTACAG	CAGTGCCCCA	CTCCTGGTAC	CAATTTACCA
18851	TATCCATTTA	TTCTCATGCT	GATAATAAAG	ACATACCCAA	GGCTGGGTAG
18901	TTTATAAAGA	AAAAAGAGGT	TTAATTGACT	CACAGTTCAG	CATGGTTGGC
18951	AAGGCCTCAG	GAAACAGAAT	CATGGTGGAA	GGGAAGCAAA	CACATCCTCC
19001	TTCACATGGT	GGCAGGGAGA	AGAATGAGCA	AAACGGGGGA	AAAACCCTTA
19051	TAAAATCATC	AGATCTCATG	AGAACTCACT	CTCTTGAGAA	CAGCATGAGG
19101	GTAACCATGT	CCATGATTCC	ATTACCTCCC	AACGGGTTCC	TCCCATGACA
19151	CGTGAAGATT	ATGGGAACTA	CTACAATTCA	AGAGGAGATT	TGGGTGGGGA
19201	CACAGCCAAA	CCATGTCAGT	CATGATATGA	GAAATTATCA	AATTAAGATG
19251	TAGGGAAGGT	TTTTAAAAGA	TTTGAGCAAC	CACAAATGAC	AGATATGTGC
19301	TATAGTAGTG	CAAAATACCA	TTTTGCTCTT	ATTAAAAATA	TAATTGTTCT
19351	TGATAATCTG	AATTATAAAT	GTCATGGATA	ATTATGATGC	ATTATGCTCT
19401	CAGCAGCTAA	AACTTCAAGC	AAAATACACA	CCTAGAGAGC	AATCAGCCTT
19451	AACAATAATT	CTATAAATTT	AATTTTCTTT	ATTTCTGATA	ATTACATTTT

19501	AGTTGACTTC	ATATGTGATC	TAAATACATT	ACCATTATTT	TGGACTTATG
19551	ATGTAGCTCT	TGAAGTACAT	ATATGATGTA	GCTCTTAAAG	TACATATAGA
19601	AGAGCAGATA	AAGTATCAGT	TCACCATTTC	TTTGTAGTTT	GTGCTTTCAT
19651	GATGAATATT	CTCATCAATG	TACAGATTAT	TTGCAGGAGC	СТТТТАААТС
19701	CATGTGTCCA	TTTTATGAGA	CTTAGCTTTT	GTCTGTATAT	AATGTGTTTA
19751	TTCAGTGTGC	ATGGATTAAT	TTGAGAGAGC	ACAGGTATGG	GTATCTTTAC
19801	AGCAGTGCCC	CACTCCTGGC	ACCAATTTAC	TGTATTAGTT	TATTCTCATG
19851	CTACTAATAA	AGACTATATA	TCACAATAAA	CTGAGAACCA	GCTGGTAAAT
19901	GAGAGAACTG	TGGTCCACCT	TTTCATTGTG	GAGTTCTCAT	TTTCCTTAGC
19951	TTATGCTGCT	TATTCAACAC	TATTTCTGCA	TAATCTAATG	CATTCACTAA
20001	ATGAAGGTGC	TGTGTTAGCC	TCCACATGAT	ATTAATACAG	CCTATTTAAT
20051	TTATCCTTCT	TTAGATTAAA	AATAAATAAG	TAGTCATGTG	CCACAGAATG
20101	ACACTTCAGT	CATTTGGTCA	TTGAAGGACC	ACATCTATTA	CTGTGGTCCA
20151	ATAAGATTAT	AATAACATAT	TTTTCCTGTA	CATTTTCATT	GTTCTGATAT
20201	GTTTTGÀTAC	ATAAATGCTT	ACCATCGTGT	TAGAGTTGCC	TGCAGTATTC
20251	AGTACAGTAA	CATGCTGTAC	ACCTAGGAGC	AACAGGCTAT	ACCACATACC
20301	TTAGGTGTAT	AGTTAGGTTA	TACCATCTAG	GTTTGTATAA	GTACACTCTA
20351	TGATGTTCTC	ACAATGAACA	AAATCACCTA	ATGATGCATT	TCTCAAAACA
20401	TGTCCCTGTC	ATTAATACAG	TATGTAACAA	TACAGTTAGT	ACAATATGTA
20451	ATACATGACT	ATATTCAGAA	TTTTAGCTAT	TTCTCTTATA	TTTCAAATGG
20501	ATTTTCTTAT	GCACTGTGTG	GCACGGGCAT	TTCATTTTAG	TAACCACAGT
20551	CTGGGAAAGG	AGAAGTCTTT	GAAGGATGTT	GAGCAAGGTT	ATGACATGGC
20601	CAGATGTGAA	TTTTTGATCA	GTGACTCCAT	GTTAGCAGAT	AAAGTTGTAT
20651	TGGGAAAGAT	CAAAAGCATG	AAGGCCAGAT	AAGAGGATAC	TGTATGTTAT
20701	CATGGATGGA	AATGTGAGGG	ATGGCAGGAG	AGATGCTATG	ATTGAATGAA
20751	TCTCAATATT	CTTGGTGATC	AAAGAATAAT	GAGACTCATC	CAATAAGACT
20801	CTGTGAATGA	TTGAATGTAG	TTCCTAAGCT	AGGAGGAAGA	ATGAGGAATG
20851	ATTTTCTGGT	TCCTGACTAC	AGCACAAGTT	TTTGATTTT	AGAACAAAGA
20901	ATAAATTTGT	ACATGCTTTA	TGATTCCTGG	TTGAATTTTT	AAGGATAAAA
20951	AAGTCAGCTG	TAATATTATT	CTTTCCTGAT	ACCATGCAGT	ATTTGTATCA
21001	GTGATCTTAT	TCATTCCACA	CACATTCTTC	TTGAACCTGG	ACACTGCTCT
21051	AGACACTGAT	TCTTTCCAAA	TATCAGATAA	GGTTATTCTT	ACGTAGACCC
21101	TCAGTTCATA	TAAATATGAT	TTTCCCAAAA	TGTGAAATAA	GTGACTTTTC
21151	ATAAGATATT	TTTTAAAAGA	ATGTCTTAAT	AATAAATTGT	GAATGTTGCA
21201	TGGAAATGTA	GGTGACTTGC	ATTGTGCATC	CTGTGTTTGA	TTCACTGCTC

Fig. 2 (cont'd 11)

21251	TTGCATGTCT	TGCCTTTAGC	TGGGATGACA	GCAGTTCAGT	GAGCAGTGGT
21301	CTCAGTGACA	CCCTTGATAA	CATCAGCACT	GATGACCTGA	ACACCACATC
21351	CTCTGTCAGC	TCTTACTCCA	ACATCACCGT	CCCCTCTAGG	AAGAATACTC
21401	AGGTGAGAAT	TACCACCTTT	CTTTTTCCAG	TGTTTCTGCC	AGCTTTTTCC
21451	CCAAAATTAC	TTAATATTAG	ATTAAGGTAT	AGCACAAGCC	CTTAATCCAA
21501	AATTATTACA	GAAACTGGAA	AATGCAGAGA	TAATAAGGAC	TCCCTTTGCC
21551	ACTCCTGAAC	CCTGAAGCAT	CTTTCATCTT	AGTCTTTCCT	AAAGCCACAA
21601	CCCTTAGGAG	GAGCAACAAT	GTGCACTGCA	GCCAATTTTG	AATAAACAGA
21651	AGCAGCTTAT	ATATATATAT	TATATATATA	АТАТАТАТАТ	ATATATGATA
21701	TACATTACAT	ATTTATATAT	ATGTAATATA	TGTGCCATAT	AGCCTGGTGG
21751	TATAGTTATC	TATACAAATA	TATTTATTTA	TTGTTAATAT	ATAGAGTATA
21801	TAAATATCTA	TTTATATAAT	AGATATTTAT	ATATATTAAA	ТАТСТАТТТА
21851	TATAATAGAT	ATTTATATAT	ATTAAATATA	ТААААТАТА	ТААСАТАТАА
21901	TAGATATATA	TTTTATATAT	TATATAAATA	TATATTTATA	TATTTAATAT
21951	ATTAATGATG	AATTACTATA	TTTGTATAGA	TAACTACACC	ACCAAGCTAT
22001	ATGGTGTGTA	TATATTAATA	TATAATGTAT	AATTCTATAT	TAATATAATA
22051	GTAACATATC	AATACTTAAT	ATAATATATA	TTCAATTGAT	TACAATCTAA
22101	TTCAGAAAGA	TTTATGTTGC	CATATCTCTC	CTTACAATAT	CGATATGTTT
22151	GTTTAAAAAT	CCAGCAATTA	TTTTCATAGT	CTAATTTTAG	ATAGTTCTTG
22201	ATTAATTTA	TATGATCTCT	GAAATATATC	ACTGGATCTG	TTGTGAATGA
22251	TAAATCAAAA	ATGAAAAATG	GACATTACAT	CATTAAGTTC	TAGCTTGTCT
22301	TACTACTTCT	TATGACATTT	GATATAGAAA	ATTTCTACCT	TTCTGTAGCG
22351	TTTAATTGGT	GTTTTCTGCA	TGTATTTATT	CTGAAATTCT	CTAATATCTG
22401	CAAGTGGGAA	TTATGTGGCT	AAAATTAATA	AAATGTAAGT	GAAGGTAAAT
22451	CAAAATAGAA	TCTTTGGATT	TATCCAGTTA	TCTGAAAGTA	CATTTCATTG
22501	CCTTAATTCA	CACTTTATAA	ATTTTTCTAC	ATAAAGTTTT	TCTGTAATAT
22551	TTGTCTTTAT	AGCTGAGGAC	AGATTCAGAG	AAACGCTCCA	CCACAGACGA
22601	GACCTGGGAT	AGTCCTGAGG	AACTGAAAAA	ACCAGAAGAA	GATTTTGACA
22651	GCCATGGGGA	TGCTGGTGGC	AAGTGGAAGA	CTGTGTCCTC	TGGACTTCCT
22701	GAAGACCCCG	AGAAGGCAGG	GCAGAAAGCT	TCCCTGTCTG	TTTCACAGAC
22751	AGGTTCCTGG	AGAAGAGGCA	TGTCTGCCCA	AGGAGGGGCG	CCATCTAGGC
22801	AGAAAGCTGG	AACAAGTGCA	CTCAAAACAC	CCGGTAGGCT	TGTCGTTTGC
22851	CAGCTGTTAT	GCAAAAGTGC	TTTACTTTAT	TGTTTCCATT	CAATCTTTGT
22901	TTTCTCTAAC	AATAGCATTT	CTAAAATACC	AAATTCTTAT	CCATATTAAA
22951	CATGGAGTCA	AATAGTTAAA	TAGTTTTTCT	GTCTACGTTT	CACAAACTCG
23001	TCATAGAAGC	CCAAGTAGGG	ССТАТАТСТА	GGCATTCTCT	GGAAAGCCTC

			•		
23051	CTCATAAACT	AGGGGTACTG	GATGCCTTAC	CTTGCCAGAG	TTATTTCAGG
23101	TAATGGGGAA	ATAAGATTAG	GTTGCTAAAG	CAACAGTTAA	GTTTTTTTGT
23151	TTTTGTTCTG	CGTTCTTAAT	GAAAGTTTGG	AATTTTTACA	CTAAATATGC
23201	CACTGAATTG	CACTACAGAC	TCTGAGAGGA	ACAAGCAATG	ACACTAATCA
23251	ATTGGAATGC	TGGAGATTTG	AAATATTGTC	TGTGTATTAG	ACTTCATGAA
23301	AGAAGAGAAT	GAAATAGTTC	TTCAAAATTG	TGCCATACTT	TTTTTAAAAA
23351	GACTCTCCCC	GTATTTTAA	AATÄATGCCT	AATTATAAAT	AGTGCCACCT
23401	GAAGCACTAA	TTAACAGGGT	ACTCCAAATA	TAATCATCTC	ACAGATATTC
23451	AAATGAATTC	TTTTTCTAGT	AATTAGCTTG	ATAGGGTTAA	GTGTTACCTT
23501	TTTAAAAAGA	GTTGCAAAAT	ATAAGACATT	AACAAATAGC	AAAACATATG
23551	TTTTCATTTT	ATCTCTTCCA	TCTCTCATAA	TGTTTCTTCT	GACAGCCAAA
23601	TTTTTGTAGC	TATGCACTCA	GTCCTCTCAA	TATATGAGAT	TTTTGATCTA
23651	AGCCAATACA	TTTAGGAAGG	GAAATAATAT	AAAGAAGCAT	TCACATTTTA
23701	CACATTGTTT	CACGAAGTGT	GGTGATATCA	AACTCTACAG	GCACATATAT
23751	TTGTGTAÌTT	CTCCTTAATT	AGGGAAAACC	GATGATGCCA	AAGCTTCTGA
23801	GAAAGGAAAA	GCTCCCCTAA	AAGGATCATC	TCTACAAAGA	TCTCCTTCAG
23851	ATGCAGGAAA	AAGCAGTGGA	GATGAAGGGA	AAAAGCCCCC	CTCAGGCATT
23901	GGAAGATCGA	CTGCCACCAG	CTCCTTTGGC	TTTAAGAAAC	CAAGTGGAGT
23951	AGGGTCATCT	GCCATGATCA	CCAGCAGTGG	AGCAACCATA	ACAAGTGGCT
24001	CTGCAACACT	GGGTAAAATT	CCAAAATCTG	CTGCCATTGG	CGGGAAGTCA
24051	AATGCAGGGA	GAAAAACCAG	TTTGGACGGT	TCACAGAATC	AGGATGATGT
24101	TGTGCTGCAT	GTTAGCTCAA	AGACTACCCT	ACAATATCGC	AGCTTGCCCC
24151	GCCCTTCAAA	ATCCAGCACC	AGTGGCATTC	CTGGCCGAGG	AGGCCACAGA
24201	TCCAGTACCA	GCAGTATTGA	TTCCAACGTC	AGCAGCAAGT	CTGCTGGGGC
24251	CACCACCTCG	AAACTGAGAG	AACCAACTAA	AATTGGGTCA	GGGCGCTĈGA
24301	GTCCTGTCAC	CGTCAACCAA	ACAGACAAGG	AAAAGGAAAA	AGTAGCAGTC
24351	TCAGATTCAG	AAAGTGTTTC	TTTGTCAGGT	TCCCCCAAAT	CCAGCCCCAC
24401	CTCTGCCAGC	GCCTGTGGTG	CACAAGGTCT	CAGGCAGCCA	GGATCCAAGT
24451	ATCCAGATAT	TGCCTCACCC	ACATTTCGAA	GGTAAGGATG	TATAAAATGA
24501	TGCTGGAAAA	ATATAAAGGA	TAAATATGTG	TTAGACACAT	ACATTACATA
24551	TAAATGTGTG	TATATATATA	TTTTAAATAT	GTATAAGGTA	ТАТААТАТАТ
24601	ATATCTTAGA	ATTCTTTAAA	GTACACAGTG	AGCTCTATGA	AGCTTATCAT
24651	ATAAACAGCT	AGCAAAAAA	ATAGTTCTCA	TTTTGAGAAA	CAGTCAAACT
24701	TCAAAGTTTC	ACTGTCATTG	TGATACTAGC	AACACAAACA	TCTAAGAGAC
24751	TTAAAAGCTG	ATGGTAATAC	CTAAGTGTAG	TGATAAGGCA	AAGTAATAGC

Fig. 2 (cont'd 13)

24801	TTGTAAAATT	TCTATAGATT	TCCATTCCTC	CTTTTCACAT	TAAAAATTAA
24851	AACCAAATAG	GTTTTCATGA	CTTTTGGCAT	TCATTTCCAG	TGTCATTTTC
24901	TTGCTGGCTC	TTAATGAGTT	GGTGATCATA	AATGTAGATG	AAGTTGTTTT
24951	CCTTGTAACA	GATTCCATTG	GACAGATTTA	TACAGTGTCA	TATCTTGACA
25001	CATTAAAGAC	AATCAAGATA	TGACATAATT	TGAAACTATT	CCAGTGTTTG
25051	GTACAGTATC	ACAACTGAAG	AGTGGGCTAA	GCTTTCTAAC	TCTTCATCTG
25101	CTTTCTTTGA	CATGACTCTG	GTAAGGATCA	TGACTTGGTT	TCTGTTCCTG
25151	GATTGTTTTT	GGTGTTAAAT	ATGTGAAGTT	CTGCTCTAAG	ATATCACTGT
25201	TTTTAAATAC	CCATGTGTTT	TTAAGTGGTA	GGAAAATAAA	TGCAGTTAAA
25251	AATTGGGGAC	AAATATCTAA	ACCTCTCTGA	GTCTGTTTTC	TCATCTGCAA
25301	AATGGTAGAG	TGTGGTTTAT	AGTTCATTAT	GGGTTCAATA	TTTTTAATGT
25351	TTGTTTTTAT	TCTGTTGACT	AAACCCAGAA	CTTTGATATC	TTGGAAAGGA
25401	AAGATTTTGA	AACATTTATT	TTACAATAAA	GCAATTTCAG	ATACCTGATT
25451	GTTTGAAAAA	CCTAAAGGCT	TTATTCCTCC	GTAGTAATAT	TAATGCTGCA
25501	GAACTGTCTT	TTTAAAATAC	TGATTCTCAT	TGGGAAGAAT	GAATTATGGC
25551	GTATAGGGAG	AGTAAATATT	TCTGTTTCTT	AAGTAAAAGC	CAATAGTGCC
25601	CTCCTGTGGC	CCATTACCTA	TGAAACAATT	TCTCATATTC	GTCATAAAAT
25651	ATTTCACTGT	AGGAAATATG	GATTTCATTG	CAACTCAATT	AGTAATCATT
25701	ATGCCATTAC	TTCATATCAT	TGTATTTCCA	TATTTACATA	AATTTGATTC
25751	TACCATCTGC	TTCATTTACA	AAACTAAAAT	GTTTTCTGAA	CTAAACTCCA
25801	AAATCTAACA	GCACCAGCTC	TGTTTCAAAT	CACTATTAAA	AAATGTATTT
25851	GAATAGCACT	GGCAACTGAC	ATAAAACCCT	TTGGCCTCTG	CTGGGGAAAA
25901	TACAGACAAA	CTGACTTGTT	GCCGACAATA	TCAATATTGT	TTCCAACCAA
25951	CTGCTCCCTG	ACAGTGACTC	AGACCACCAG	ATACTCAACA	CAACTCCCTA
26001	AACTTGCTTT	AAGCGTTCCA	TCTAGATTTT	GAATAAACTG	TTTAAAAATT
26051	TAAAAATAAA	AAAAAAAGAG	AAGAGCTCAT	TTAAGTGTTG	TCTATCGAAT
26101	GCGTAGAAGT	TGTTTCATTA	TAATGGTTCT	GTAAATAGGT	AACAGCAAGT
26151	ATGGTCAAAC	TACTGACTTT	GAGTGAAAGT	CTCATGATCA	CTTAAATTAT
26201	GAAAACCAGG	GGTTTTCATG	TTTGACTTAC	TTTTGTTCCA	CCCACTTCCC
26251	CTCTTTCCCT	AGTAGCAGCT	CAGTACTGAC	CTACCCTTAT	ATGAGAGATT
26301	TTCTGCACTT	GATAAAGAAG	TCCAAGCTTA	TAAAAGTTCA	TTAACATAGA
26351	GACAGGAAGT	GCTTTGTAGT	TCAGTACATC	AAAGCACACT	TGGCTCTGTG
26401	TACTGTAACC	CGAAATATTA	AATGTGGATA	TTAGCTTCTT	GGAACAACTG
26451	AAGTTGTTAT	TTGTTTTTCT	TTTAGGTTGT	TTGGTGCCAA	GGCAGGTGGC
26501	AAATCTGCCT	CTGCACCTAA	TACTGAGGGT	GTGAAATCTT	CCTCAGTAAT
26551	GCCCAGCCCT	AGTACCACAT	TAGCGCGGCA	AGGCAGTCTG	GAGTCACCGT
			F: 0		7.4.\

Roy was the Giffer and was

Fig. 2 (cont'd 14)

26601	CGTCCGGTAC	GGGCAGCATG	GGCAGTGCTG	GTGGGCTAAG	CGGCAGCAGC
26651	AGCCCTCTCT	TCAATAAACC	CTCAGACTTA	ACTACAGATG	TTATAAGCTT
26701	AAGTCACTCG	TTGGCCTCCA	GCCCAGCATC	GGTTCACTCT	TTCACATCAG
26751	GTGGTCTCGT	GTGGGCTGCC	AATATGAGCA	GTTCCTCTGC	AGGCAGCAAG
26801	GATACTCCGA	GCTACCAGTC	CATGACTAGC	CTCCACACGA	GCTCTGAGTC
26851	CATTGACCTC	CCCCTCAGCC	ATCATGGCTC	CTTGTCTGGA	CTGACCACAG
26901	GCACTCACGA	GGTCCAGAGC	CTGCTCATGA	GAACGGGTAG	TGTGAGATCT
26951	ACTCTCTCAG	AAAGGTGAGC	TTTCCTGGAG	GCATTGATAA	CATCTTCCCC
27001	CTCTTCCCTG	CACTATGCCT	AACCCCCACC	CCATTAAATT	CCCTTGATTT
27051	CACTGTGAGT	GCCCCGGTGC	AAAAAGATGT	AAGACTGATG	AAACCGGGCC
27101	TTTCATTTGC	TCTCATTACC	AAATTTACAG	AGGAATAGAA	TCATTAAAGG
27151	TAGGGTGAGT	GGATAATTTT	GTTAATATGA	ATGCATACAT	TTATACCCAG
27201	TAGGCAATGT	GAATAAAATT	CAAGGAATGT	ATTTAGATAT	TGAATGAGGT
27251	CTCCTGAAGA	CATTTTAATG	ATTTGGCTTA	AGCTTCAGAA	CAACACTAGC
27301	TCCTTATGAT	GACTTAAGCA	TTTTGAAAGA	CCAAATTGAA	ATTATTCTAT
27351	AGTTATGCTC	AGAGCAATAT	GTTAAATTTG	TTCCATTTGT	ACTTCTATGA
27401	AAAAATAGCA	GATGGATTGC	TGGGAAATCC	TAGTTGGCCT	GGTTAAAAAA
27451	АААААААА	TCAATTGTCA	GCCATGAATC	ATTAGAGAAA	ATTATAGTGT
2 7 501	CAGTGCCATT	TTCAATAGAC	TGCTTAAAAA	GTAATCATAT	TACAAAGTGT
27551	TTCTCATTGG	CTTTATATAT	АТАТАТАААС	TTAAAGTAGA	GGACATAGCA
27601	AGGCATTTCT	TACCTAATAT	GCTTACTGTG	AAGCATCCCT	TTTGAGCAAA
27651	ATCACTCTAA	ATTTTCTCCT	CAAAGTGATC	CTCTCTTGAT	TATACTGTAC
27701	TGACTCTTAC	CACCAGGAAA	ATGTCTTAAA	ACCACTTCTT	TTTCCTGATA
27751	AATGCAATGC	TATTTGTCTC	TTGACATAAG	TAAAGCTTTA	AACATGGTCT
27801	TGGCCACATG	TGGAAAGAAA	TACTGGTCAC	GTAAAATACC	TGATATATCT
27851	TTCTATGTCT	TCCCCTGTTT	TTTTTATTTT	TTTTTTATTT	ATTTTTTATT
27901	ACTCTGATAT	TGATGATGGC	ATTTATTTC	TAGACCTTCA	GCCTTACTCC
27951	CGGAATGATA	TTTTTAAACA	TCAATTAAAG	CCCTTAGCTA	GACACTCTCT
28001	GCATTACGCC	AGTTTCCCCT	TAATGTAGGA	TGTCCCAATT	TGAAATTCCC
28051	CATTTTCTCT	TGACTTTGTA	AAATACAAAA	CCCAGAGCAA	AACATTGCTT
28101	CTTTCCCTCI	TTACTTCCTA	CTTGCCTAAC	AATGAGACAG	GGACAGCCGT
28151	GCAAATGGGG	CTTTCCGATG	ATAAAGTAAT	ТТТААСАСТА	ACTAAAATAT
28201	TGGTGTTTCC	TATGGTGGGC	TGCTAATTAC	ААААТАСАТТ	TTTCCTCCTA
28251	AAGAAAAAA	CTGGGCCAAG	GCAAACAGCT	CAGTGATAGO	AAATAAAATG
28301	TAACCATTTC	CCTATGGTTT	TGCTGTTATA	. ТССТАТТАТА	GACAGCATAC

<u>/</u>___

Fig. 2 (cont'd 15)

Res 1 Control Andre

28351	GTAAAGACCA	GTAAGGGTTC	ATTTTTCCAC	CTAAAATGTC	GGGCTTCCTG
28401	TAAAATCTTT	GATTCTAGTT	TCAGCACTTC	TAAGGTAAAT	GGGCATCTTC
28451	ACATGTCATT	TATAAAACTT	CTAATGAATG	ATTATATAA	AAATAGATAA
28501	ACAACCTATA	GTTTTAATGA	ATGTATCCTA	GATTGTATGC	TCATATGTAA
28551	GGATTCTAAA	TATCAACTTG	ATAACCAAAC	CAAACATAGT	GCAAATAGGT
28601	TATCATTTAT	TAACCACAAC	CACCTTCCAC	AAAACTGGTC	ATTTTTTAAT
28651	TATTAAGATA	ATCTGCAACA	AGTTGGCCAT	TTAGCCATCA	GCCTATTTCT
28701	TCAGCATTTA	GACATTAATC	CCAGATTCAG	AAATAAAGTC	AAGTAACTAT
28751	TTATAACCAA	GTAACATTCA	AATCAAAACT	AGATGAAAGA	TTGGTTAGTT
28801	GCATAGCTAT	AACCAAAATG	CAGTTTTAAT	ATTTTACTCT	AATCTATATT
28851	TTAACTGAAG	TCAATAAAAT	TTTCACTATG	GAAATACACT	AGAAAATATG
28901	CAATTTCTTA	TTCTTTTAA	GCAGATTTAT	TTATTGTACA	TGTTCAGTCT
28951	TTGAAATAGG	CCAATTTTAT	TTATGTTATG	TTATGTTATT	TATTTGTTTT
29001	GAAATGGAGC	CTCACTCTGT	CGCTCAGGCT	GGAGGGCAGT	GGTGCCATCT
29051	CAGCTCATTG	CGTCCTCTGC	TACCCGAGTT	CAAGCAATTC	TCATGCCTCA
29101	GCCACCTGAG	TAGCTGGGGT	TATAGGAGCG	GACCACCATG	CTGGGCTAAT
29151	TTTTGTATTT	TTTGTAGAGA	TGACGTTTCA	CCATGTTGGC	CAGGCTGGTC
29201	TCGAACTCCT	GACTTCAAGC	GATCTACCCT	CCTTGGCCTC	CCAAAGTGTG
29251	GGGATTACAG	GTGTGAGCCG	TGGCACCAGC	CTGAAATAGG	CCAATTTTTA
29301	AAATGGGAGT	ATTCCTACAT	TAAAATGGCC	AAATAAAGAC	TTTTTCTAAA
29351	ATAAACTTTA	AACTAATTTT	GGATAAATAT	GTTTTGCCTT	TGAGCCTTAA
29401	TAAAATGCAT	TAATGAATAT	TAAGCTGTAA	AAAGTACATG	TTAACTACAT
29451	AGCTATAGTG	ТАТААТАТТА	ATATTAATTA	GTGCCTTCCA	GTAAATTACT
29501	AGATTAAAAT	AAATTTTAAA	ATAAGACACT	GAGCTTTTTG	TTTTCTTGAC
29551	AATAGAACTG	CAAGCAATAG	CAAATTGCTC	TAATCCTTTC	ACGTACATTT
29601	AAGAAAGTTT	ATGACCTATT	GAAGAGAAAA	GTAGATCTAG	TGGGTGATAC
29651	TGGCTTCATT	ATGGTTAATT	AATTGATCAG	TAGAATGTCA	GAAATGCTAA
29701	GAAAACCAAA	GAACTACACC	AGAGAGAAAA	TGTGTTAATG	AATTTTAAAT
29751	GGCAAGTTAA	TTAGCGATAT	ATAATAAAGA	TGTATATAAG	TTCATGATTT
29801	ACCTGTTTGT	CTACAATTTT	AGATGATTT	TTGATACTCA	ТАТТТАААТС
29851	GGTAGCTTTT	CCTATAGATI	TTAATTTTG	TTTAAATTCC	TCTTCGTTAA
29901	ATTAAATAAA	. ATAAAATA	ACACTTTTA	ACAGTTTTCI	CTTCTGCAGC
29951	TGCTCTAGGT	CATTGGTGGC	CATTGAGCCA	TAACTAGTCT	ATATTTGTTT
30001	TGGGTTTTGT	TTCATGTGTC	TGACTCAACT	' AAATTTTTAAA	ATAATTTGTA
30051	GTAACCAACT	TTGCAAATTC	TGGGTTTGTC	TTTAAATGTO	AGATCTGGCA
30101	ACGCTGCCTI	GACATTTCT	CCTAGAAACT	ATTGGCTCTA	GGCAGTCAGT

30151	GTCTGTCTGC	TTCAGACTGT	TGACTGAAAT	CCCCATTCGT	TTTCATGCCC
30201	TATCTGGCCC	TTGCTGGCAT	ATGAGTTTGC	AACCTTTGGT	GATTTGCAGA
30251	AATTGTCTAT	GTTAGAAAAT	CATTAATATC	TAGATTCAAA	CATATTTCTA
30301	AATAAAGCTT	TAAATTATTA	TGGTAACTTT	AAATGTATTT	ATTCTAATTT
30351	TTTTCATTAA	ATTGCTCTTC	ATCATATAAA	TATATAATTT	TTATACAACT
30401	GGATGAGTTT	GGCAGAAGAA	TACCAACTTT	TCATATTCTT	TGTGGCATTA
30451	AACTTTAACT	TGTACACATG	GAAATAAATA	ATCCTTAAAA	TGACTTATGA
30501	CCACATAAAT	GCCTTAGCAC	ATGTGGTTCA	TATTTGGAGA	TTTCTCATAT
30551	TTGTTCAATA	TAATTTATTT	TGTTTGTTTA	TCCACAGTAC	TTAAGAAAAC
30601	TTCTATAGTC	AACATATATA	CTGTAACTGG	CCTCTACACA	GTATAAGCAA
30651	TTACCTTACA	TGGCTATTAC	CGATAAAGTT	AAAGTTGTAT	AAAGCCTTTG
30701	GATGCTTTTG	ATTTCAGTGC	TAAATAATGG	AGTACACATA	GAAGAAAACA
30751	TTTTAGCTTT	GGTTTGAGTG	ATCAAATTTT	AGGTCAGCCT	TTTTACATTC
30801	ATGTTATATC	ATCCCCATTA	TGCGTATCCT	GTGTATTTAA	TTTTGATCAT
30851	TTGATGTCCT	AAAGGAAGAA	AGCTATAATT	CTGCAATTTT	AATTAATTTT
30901	ACACTTTGCT	TATCCACATG	CCAGAGATTA	TAAAAGAAAT	CCCTAAACTT
30951	GTCCCACTTA	GTTGTTGATA	TCCTCTTCCT	GTATTTTAG	AGAGGCCATT
31001	TCTTATTTTC	TCTAGACATA	GCTTTTCATT	CCTTCTTGTT	ACCAATTGTG
31051	AATTCCTTAA	AATAGAGATG	ATAAAATTTA	TAGCCTTTTA	AATACCTAAT
31101	TTATGATTTC	TAAAAGATGG	TATAGCTTAA	TTTCATTAAA	ATATTCAAAT
31151	AAATGATACT	AGAATCAATT	AAGTTTTAAG	CAAACATTCA	TATATCTTTC
31201	TTCACATGTG	TAAATGGGAA	ATAAACATGC	CTTTTTATTA	AAAATAATTT
31251	GAAGACAAAA	GATAAGTATT	AAACAACGTT	TTATACCATC	TCTGTCAATT
31301	GGAAGTTGTC	ACTCTAACTT	AGCCAGAGCA	GATCTATCTC	ATTTTGCATG
31351	TGATATCATA	GCAAAAGTCT	AATCAGTTGC	ATAGGGAAGG	AAAAACTAAG
31401	ATAGTATTTA	ATCAATAGGA	TTCAGAGGAA	AATTATGCTA	ATGTGATTTA
31451	ATCTATTTTC	TAGTAATCCT	ATCACTAAAC	TGTCATTGAA	TTGTACTGCA
31501	TTAGAAAGGA	ACTCAAATAT	GTGTGACGGC	AATGGACATC	TTGTCACCTT
31551	TAGTTGGCCT	TTTTCAATGA	GTTAAGCATT	ATATGTGTGT	TACCAAAAAA
31601	TTATTTTTA	TAGTTCAGAG	AACCATTTTT	GTTGGATGTG	TAATTTGGAA
31651	GTTTTGTTTA	CATTATGTCC	TTAGGGGTTT	TCTTTGTTTT	AACAGCATGC
31701	AGCTTGACAG	АААТАСАСТА	CCCAAAAAGG	GACTAAGGTA	ТАТАТТССТС
31751	TCAGCACAAT	TGCTACCTCT	CTGTTGTTAT	GTAAACTTTG	TGTGCTGTCT
31801	CTCTTCCTTC	TTTGTTTGTT	TGCAATGTAG	CACATGACAT	TGAGGACGAA
31851	ATCACTTTTA	ATTTTGATGG	TTTCTCTGGC	CCGAACAGTT	GGTGAGATAG

MAN WAR CONTRACTOR

31901	CCCCTTAGGT	AGAGATACTA	GTAGAGATTG	AGGCTGTCTC	TCAAATTAAA
31951	талаттссаа	TGTGAATATC	ACTATTTTGA	AGAAATAATA	CTAAACAAAC
32001	AAACAAACAA	AACAAAAACA	AACAAACAAA	AAACTTGTCC	CAGGCATTAC
32051	TTTTTTGGGG	GCAGCAACTT	TGGTAGAATG	CAGAACTCAC	TTCAACAAAT
32101	TAAAATAAAA	TTAACTCTTC	TAACTTTTGC	CTATTAGAGT	CATATGCATG
32151	САААТАТТСА	AAACCCATGC	AGTCTACAGA	TGTGGGCAGT	TAATGTTGAT
32201	AGGTTGAAGG	ATGCTACAAT	CTGAATCAAA	GAAAACATAT	TTTCATCATC
32251	ACAGGACAAA	TGCTGTAATT	AAGGTGTGAT	TTTTATAGAA	TCCTTTTGAT
32301	AAAATCTCAA	AATTGTTTTA	ATTTCTATTT	TGCAGGGGTA	CTGCTATCAG
32351	ATCAATTTAA	ATCTGAATTA	ATCTAATATC	ATTTAATAAT	CTCAAAATAA
32401	TTATTCCATC	САТААТАААА	ААТААААТАА	AAATTTAACT	TATGGCCATC
32451	TTTTACTGTG	TACTTTTATC	TGAGGAAGAG	ATAGAATGAT	CTACTAATAG
32501	AGGTATAACA	CTGTATGTGT	ATGAAAAGTT	GGCTAATTTT	GGTGCTAAGA
32551	ATTTACTTAC	AAAAAGAAAA	AGAATATACT	TAGTTTGGTG	AAACACTGAA
32601	TAATGGCĢAA	ACTAGGTCTT	TCTCCATTAT	TTTTTTTCTC	TCCAATTTTT
32651	CAGCAATAGC	AAATAGCTGG	CAATTATTCC	ATGTTAATAT	TTTGATCCAG
32701	AAATTTATGT	TCCAGTAAAG	CGAGCACATC	TCCCTCCTTA	TTTTTGTAAT
32751	CTAGGCATGA	TGTCAAGTGG	CAGTTTAACA	AAAGAACTGT	TTTTCCTTTA
32801	AAAAAAAA	AAAAACAAAA	GCTGCCAATA	TGTATTCCAT	TTCCCTATGC
32851	CTTCTGTGAC	CATCCTTCAT	TTCCCTTGGC	CCTGGCCCAC	CACTGTCCTC
32901	CATTTGTAGT	CCATGTTTTC	ACCCTCTTTA	CATCCTTTCT	TGCCCTGTGC
32951	TTTTGAGTTC	TCAATTAACT	TGGCTGTCTG	CTCATTGCTT	ATGATTTCCA
33001	ACTGCATATC	TGATAGAAGC	ATAATTTTCT	CCTCAAAACC	CTTTATCTTA
33051	TTTTTTCC	CTATGTGATT	CAAACAGATG	GCGTAAGATC	ATCTGGAAGA
33101					TCATTCTGAA
33151	TAGTAACCTC	CTCTGAATTG	TTTTCCTGTC	CTGGCATTGC	CTTGCCCTTG
33201	TAGATGTGCT	TAAGTGTCAT	AGCTGTGCTG	TTTTGCAGAT	' ATACCCCATC
33251	ATCTCGGCAG	GCCAACCAAG	AAGAGGGCAA	AGAGTGGTTG	CGTTCTCATT
33301	CTACTGGAGG	GCTTCAGGAC	ACTGGCAACC	AGTCACCTCI	GGTTTCCCCT
33351	TCTGCCATG	CATCTTCTG	AGCTGGAAAA	TACCACTTT	CTAACTTGGG
33401	TAAAATATTO	TAAAAT	ATTTTGTTT	GTTTCTTTC?	CCACCCACTC
33451	TCACAGAAA	CCTGGAATC	r CTCCATAACA	CAACACGTTT	T TCATTTAAAG
33501	GGAGGGATA	A AAGCACTTT	A ACAGTACCTI	TCATTTGTGT	r CATTGTTTAC
33551	TCTTCACAG	A AAAATCTCC	A AACATTATGO	TATTTATTG	C TCATGACAAA
33601	TGCTTAACA'	r agattaata	C TGTGGTTGTT	TTCTAGTCT	A GGCTCCAGAG
33651	GCTCAGAAA	G TTCACTTGA	C TTGAAAAAGT	CTTACCATT	A CTAAGGGTTC

33701	AAGGCAGTAA	CCAGTTCAGA	ACATCTGACT	TTAATCCCAG	GGGCCTTTCC
33751	ATTCCATTTA	AGAATCCTCT	TAAAAAACAG	GAAGGCATCT	CCTTATTTAT
33801	TTGTCTGAAA	TATTAAAACA	TCCTTAAAAC	AAAATTAGTA	ATCTTTTGTA
33851	GAAAATAGAA	ACAATTAGGA	AGAAAAAAT	ATGTAATTCC	ATGACTCAAA
33901	GTTAACTTCT	TTTAACACTG	TTAAAGTTAA	AACTCCTTAA	AATTCATACA
33951	AGAATTTCTG	TTAAGACAAT	ACTCTGAACA	ТТТТСАААТА	GATACAATGA
34001	AAAATAAATT	ACCAACTTAG	TCATTGGGTT	ACTTTGTATT	TAACATCATT
34051	TGTATGAAAT	ATAAAATCAT	TTGCATAAAA	TTTCATTAAA	AGCACTCTGA
34101	GTAACAAAAT	AATTAAAGAA	AACTAAACAT	GCCAGATACC	ATTTAATAGA
34151	TTCAATGACT	TTAAAAATAT	ATTTATTTTC	TATAAAGTCA	CATATAAAGT
34201	ATTTTCATTA	TTTTTATGGT	AAATATTTTT	ATTATTAGTT	TATCAGAAAA
34251	ACTTGTACAT	AAAGATGAGT	ATTGATACAT	AATCTTATTA	GAGCCAGAGA
34301	CGATCATTCC	TTCTAGAAAA	ACACATCTCT	GAATTTAGGA	CGGAGGACAA
34351	TGAAACAAGA	AATTTCACTT	TATAATTTAC	CTTTGTCAAA	CTATCCCAGA
34401			AAGTACTCTT		
34451			CCAAAACCTT		
34501			ATTTTTGAAG		
34551			ACCATATACA		
34601			TTCCAGGTTT		
34651			TCTAGTTTGG		
34701			TAAAATATGT		
34751			ACTCCTTAGG		
34801					GAGTTGGACA
34851					GGTTTGATCT
34901					TCCATATTCT
34951				•	CCACAAAAAC
35001					AAGCCTCGAT
35051					AATCCCATAA
35101					ATCATCCAGG
35151					CAGTCCTGAC
35201					TCCAACTTGG
35251					AAACATCCTG
35301					CCTTTGCTTT
35351					TTCTCCAGGT
35401	ACTCCAGCAC	CTCTTTCCAC	GGCTTGGAC#	AAAATACATO	TGTGTTGGCC

Fig. 2 (cont'd 19)

MED TO WAR DONE

35451	AGCATCAGTG	CCAAGGCAGC	AGCCTCCAAG	GGCTCCTGCA	CCCATGGACC
35501	ACATCCACAC	AGAGAAGCAC	CTTGGGTCCT	CAAGTGCCTC	CCTCTTCTTC
35551	CCTTCTCCCA	AACCTGAAGC	CCAGACACTA	AGGGGTCAAA	CCCTCCTGGG
35601	CCCTGAGGGT	TCCAAGGGCC	TCATTACTTT	TTCTTTTTTT	CACTGGAAAA
35651	AAAATTCTAA	TCATGCACCT	ACAGAAGATT	GACATTTTTC	AGTAAGTTGG
35701	ACTTTCCAGC	TTTCAGCCAG	GACAAGACTC	AAGGCTATGT	CTTTTCTATT
35751	GCAACCCTTC	CCACTATATT	GAGTAGGGCT	TTTAGCAATT	GAAAACAATT
35801	ATTTTGGTCA	TGGTTTCATA	TAAGCTAATG	ATTTCATATC	AAACACCAAG
35851	TTTTTGTTTC	CTAACCTATA	TAGTGATAAG	AGAATTTACC	TATAATGCCA
35901	AAGAATGTAT	AGCTTTTATT	TGCTTTAAGA	TGCAGTTGAT	TTTTTAAAAA
35951	AGCGAAAAGC	CTAACACTTT	AACTTCAAAA	AATGAATTTA	AAATGTTTGT
36001	GTAGGTCATA	GGAATATGAA	AAAATTTTAT	ACAACATCTA	AAACACACCC
36051	AAATCACCTA	AAGTGCTATA	AGCTTGCTAA	GTACTTCATG	TCTCCTATCA
36101	ATTCTTTCAT	TAATTGACGT	TAATTTGATT	AGTTGACTCC	TTCTTCTATT
36151	TTTCCTCACC	ATTATTATTC	TGATTAAATC	CACCTTCATT	ATTCCTTAGG
36201	AACAAAAAGA	CTCACCACTT	AACTATGTCT	GACATTGGTG	AAGTCGTTTA
36251	AACTTAATTT	TCTTATCTCT	TGAATGGATA	CATAATACCT	AGGTTATATT
36301	GTAAAGAATG	ACGGATATAG	TGTATGTAAA	GATGGAGAAG	TGTGTAAGAC
36351	TTGACAGATT	CTGCCAAATC	ATTATTTTCA	CTGGAAAGCA	TGTCTTACAC
36401	GATCATAGAG	TAGCATTCAT	CAGATATGCC	TGAGCTTTGT	CTACATTTAA
36451	TTGAGTAGTA	ATTCGCAACA	CAGTAACCAC	AGGATTTTAT	GTAAAAGACA
36501	TTCACAGATT	GTGTTTTTGA	AAGATTGTAT	TTTTGAAGTA	CAAAACTATG
36551	ACATTGTTAT	CAAGGACTCA	TTTACCACAA	ATATCAAATA	TTTGTGCAAA
36601	GATAAGTTTA	TGCTAAGATT	TGCATAAATT	AAAGTTAACA	TGGCAACTGA
36651	AGCTAACATG	TCCATGGTCA	CAATGTGTTA	AAAAATGAAT	GGTTCTGTAG
36701	CACACTTGGG	AATGTATTTT	ATTACATAGT	TTTCAGAGTT	AAAACACAAT
36751 -	TAATAAATGA	AATGTGAATT	ATACTTTTAC	TGACAACAAA	GCTCTCTGTA
36801	GAGCTTTAAT	GTTCTAATGA	ATTAGAAAAC	CACTGATCAA	ATACATCCCT
36851	TACATTTCAT	TGCTATAGAA	ACCAAGTCTG	AAAGGTTAAG	TTTACCTTTC
36901	TAGGATGTGG	GTTTCCCCCC	TTAATCTATT	GTGGTTTATA	TCAGAGATCT
36951	CTCAGCTGTG	TCAGACAGGC	CATGACTTAA	GTGACACTGC	CCTCTTGATT
37001	CTCTTCATAC	TTTTCCAACT	ACAATTCTTT	CTCCTGGGGT	TGCTCATCTT
37051	AACATAGCTG	TATCATTTAT	TGTAGACACA	AGGTCACTTT	TGAGAGTGAA
37101	TGGGACTATA	TTAATAATTG	TTCCAGGTAT	TAGGTGCAAA	CCCTGGGCAA
37151	TGCAATTCAT	CCTCCATCTC	CTCCTTATAT	TTATGTGTTT	ACCAAGTTGT
37201	TTTTCCTGTA	GACTTTTTT	TATCCTAAAC	CCTTTTTCTA	TGTTCTCATT

37251	CACAACTTTA	ATTCTAATCT	CTCAAATCAA	CATTTCACTT	TCTGTCTGAG
37301	ACCTTTTTCA	GCTCTAAAAC	талалтссса	TCAGTGTGCT	AGACCATATA
37351	GCCACCTGAA	ATCAAAGTCT	TTTCTTAAGT	TCTTTTCTTC	TATTTGTCTT
37401	ATAATTTCAT	GTATCATCCT	TCTCTCTACT	CTAGCACAAA	ATCTGTGTAA
37451	TCAATAGTCT	TACTTGAAAC	TGTGCTCTTC	ATATTGTACA	TTTTCAATAG
37501	ACAGGAACCT	GTGATTTTAT	CTTCAGAATA	TCTCCTACAT	CTGTCTCTCA
37551	TTTTCAGGGA	CATTGTCCTT	GCTGAAGCTT	TTTTAACTAT	AGACAATTGC
37601	AGCAGATTTT	AAACTGATCT	TACTCTGTCG	ACTCCCTTAT	GTTTCAACAT
37651	TTTCACCCAT	TGGAAGGTAT	AAAAGAAGAT	ATTCCTGTCC	GTGTCAACAT
37701	AATCTCATGT	ACCTCTCCAG	ATCTTAGAAA	CACGTATGGC	TTCAAATCAG
37751	GCATTTGGAG	ATCTTTATGC	TGTATGGTTT	CAGAGTGGAA	AAAATGATTG
37801	ATTCAAAAAC	ATAATATTTA	AAGAGTTTTT	ATTGTATTTA	CAGTTCACCT
37851	GAACCTCTGT	TCATTGGGCA	AGAAAATGAG	TACTCTTAAA	ATGCAATAAT
37901	AAATTAAAGT	TACTTTATTA	TTAAATTTA	ATATATATA	TATATACTTA
37951	CCTTAAATAT	GTCCTCTTGT	TGTCTTTTAG	CATCACCCAT	TTTTGATTTG
38001	ACCATTATCT	TTTCTGAATA	ATCAGTAAGA	TACAGGATTA	TTATTAATGT
38051	TCAAAAGTTG	CAGTATTCAT	GTTTTCTTTA	TTCTTTCTAC	CAATTAAAAT
38101	GTGTTAATAT	ATAAAATTT	TAGAAATTTT	ACTATAAAAA	ATCACAACAT
38151	ATATTAGAAA	ATTAAGATCA	CTACAATATG	TCATATTTAG	TAGACTACTG
38201	TGAGCTACTG	CCACAGTAAA	CTATGGTTCG	TGTGTCGTTC	CCAGCATGCT
38251			CCATTCAAGA		
38301	TACATAAATC	AAAAAGTCTT	TGGATGAAAC	TTCATTTGGG	AAAATAACCC
38351	AATCGCTACC	CTTCAATTTT	TTATGAATGA	AAAAATGGAA	GAATAAAGGC
38401			CAGGAGACAC		
38451			GTTCTTGTGA		
38501			TGCATGATAA		
38551	TCATCTTGCC	ACAAGGGTTA	CATGCAGGAA	CATTAATGTC	AACCTGTCAC
38601	TTCTAATATC	CATCTAATAT	TCTCTAAATT	CGATGGATCC	TTTTGCATAT
38651			GCATAGGAAC		
38701	CAAATCTTCC	TCTACCTTGA	ATCCTTTCCC	ATCTTCGTGT	TCAACCTTCA
38751			TGTCTTCTAT		
38801					TCTTATGTAA
38851					TGACAGAAAC
38901					' AAGAGATCAA
38951	ATAAAATTTT	CCTGAATCTT	CACCTATTGT	TCCTAGTTAT	ATATATCCAG

Fig. 2 (cont'd 21)

39001			GTTAGATTGC		
39051			ACTAGTTAAT		
39101			ATTTAAAAAC		
39151	GGATCATGCC	TGTAATACCA	GCAGCACTCA	GGAGGCTGGG	GCAAGAGGAT
39201	CCCTTGTCCA	GGAGTTACAG	GCTACAGTGA	GCTATGATCG	TGGCACTGCA
39251	TACTCCAGCC	TGGAAGACAG	AGTGAGACCC	TGTCTCACAA	TAATAGTATT
39301	TAATAATATC	ATAAAAACCC	AGTCCACATT	TATATAGGAT	CCTGTTTTCC
39351	TCAAGTTACT	ACAAATAAAT	ATATAATCTT	AATAAAAGGT	TAGTGGCTTT
39401	GCCAAGATAG	TGGCTTGGCT	ATGCAAATGC	AATTTAAGAC	AAAGTTGGTA
39451	GCCCTCTTTT	TCCTAATACA	TTGCCATATC	TGTTTCTCTT	CTATTTGGAA
39501	ATTCTTGTGT	GTCTCTTGGC	TTCGAATGGA	TCTTATAGTC	CTTTTATTCT
39551	TCCATTTTTT	AGTCATAAAA	AAACTGAAGG	GTAGTGATTG	GGTTATTTGC
39601	CCAAAGCAGA	TGGAAAGCAA	AACTACCACT	AGAAGCTCTT	TACCAATTTG
39651	TGTTCCATTC	AAAAAATTAT	CTTTGTATGT	CTTACATTTG	TCTTCTACTG
39701	TATAGTTTTT	CTTGTTCTAT	TTTACATATT	AACTTTTCTC	CTTCTTCAGA
39751	CATCTGCCCT	ACTGGCTACT	CTTGAAATCA	GAGACTGTGT	CATATTTTTC
39801	CTTCTATTCA	ACTACAACAT	CTAAAAGCAG	ATCTGTCATA	GTTATTAACT
39851	TAATTGAACA	СТСТТАААТА	GTTAGGTGTA	ATTTCCAATG	CAGAAGCTAT
39901	CAAAAGGGTT	TGTAAATGCA	AACTATTCCC	TTTAAAATCT	ATCCTAATCC
39951	TCATTAATGT	TTCATCTTGA	TAGAGCTAAG	TATTATGTAT	TGAAATTGTA
40001	GAAGTACACT	TCACTTGGAT	ATCTCTGCAA	TCATTTAGGT	AAGAATTATA
40051	CAAAGCCAAA	AAGCAAATAA	AATATCCTCC	ТААСССТАТА	GATACGTATA
40101	CTAAAATGAT	GCACTTGCAA	ATTTGTTTAA	TACTTCATTA	ATTTAAACAA
40151	GAGTAAATTC	ATACTGTGAA	CCAAGAATAG	GGTGACTTAC	CCCAATCTTG
40201	CCACCTTAAA	CATAAACATT	TTAAGTCTTC	AATGTCCTAC	AGTGTACCTA
40251	CTGGCTGTTG	TCACTAATCA	GACCGAAATG	GTACTAATGG	TCACTGCAGG
40301	- CTGAAGGAAT	ATGCTTGAAA	GATAGGCAGA	TCCTCTCCCT	CTCCCTTTTT
40351	TACTTTTTTC	GCCTTTCCAT	CCTTTCTTCT	TTTTTTCCAA	TAGATTGTGC
40401	ACTTTGGAGA	TTCATATTT	CTTCCTTTTC	CATTACATTT	TAAATATGTG
40451	ATTCTTAGTC	CTATGCTTCC	TTTTACTCCA	ATCAATAACT	GGCTCTATCA
40501	GAGGGTTGTT	CTGTGTGTTA	ATTCGGTTAA	TACCAGGATT	ATCAAGCACA
40551	GTGCCTTCCA	AATGTGAGAT	ACTTCTCTCC	GGTTACCTCT	GGGTTTACTT
40601	TTCCTGTTTT	ACATTGTTT	GAGAGCCAGT	ACTTGTATTA	AGAAGAAGTT
40651	TAGTGCCTGT	GTCACAGAAA	A AAATCTTAGI	AAATTTTGAA	GTGATGTCAG
40701	AĄCAACTCTA	AGCCACTGAC	GGATTCCACA	GGGTTTTGA	AATACTCGTT
40751	AGTTCCCTTT	ATATCTTAAC	G AGGCTCCTGC	CTGCTTTCT	: ATATACCAGT

40801	AACAAACTTG	CTTTTCTTAA	ATATGAGCAT	TTAGAATATC	TTTCTCAATT
40851	TTTCTGTTTT	GCTTTTATTC	CAAATTTCAC	AACTATATTG	TTTTCCAATG
40901	TAGTTGTACA	TACAATCAAC	CAAATCTTTC	CTTAAATTGA	TGACTACCAG
40951	GTGAGGACTC	TTTGGCAATA	AGCAATAAGA	AAATAAATTG	AAAATTATT
41001	TTACAGACTT	AAGATACTTC	TTTGGAAATA	TAACATGTTT	GTGACTTTTG
41051	ACCATCTCAT	CATGATATGC	TCATCTTAAA	CAGAGTAGAA	AATCATTTCA
41101	TATAATTAAC	TTTATGGTGG	GCTGCAGATA	CCATGTATGT	TACATTGTGT
41151	TTAGTTATAA	AAATGTTTAT	TATACACTAT	TTCCTTATAA	TCTAACTTTG
41201	ATAATAATGA	TGGTCCTAAT	CATGAACTTA	CATCAATTAA	GAGCTTGAAG
41251	TGACTGAGAG	TATTTGCCTG	GAAGCATTTA	AAGCCCTTCT	TGGGAAATTT
41301	AGATGTTTTA	TATTTTACTT	TCTTTTTGAT	TTTGCTTTTT	CCATTAAAGT
41351	GATTACTATT	TTTAAAGAGA	AAACCGAAAA	CTCTAGAAAG	ACCATCTTTT
41401	CTTCATAACA	GGTAGCAGAA	AACACCATGT	TATTACATTT	CTAGCAAGAG
41451	CAGTAGAGGT	GACTTGTTGG	TTTTGTGTAC	TGTTGCTTTA	GAAATTGATG
41501	TAAGGCTTCC	CATAAACGTG	CCAGAGGAAA	AGAGGGACGC	AATGGGATCT
41551	GTTATTGAAC	ATTTCAGAGG	CAGACTCTTA	CCTTAAATAG	GGACTCACTA
41601	TACATTCATG	TTTTCATAAG	TATTGGGATC	ATGTTCTTAC	TTTCTATCAA
41651	CCTGCTATTT	TCATCTTTCA	AGCTTAAGAG	TAATAGGCTC	TGTGTGTTTT
41701	GTTTTTCAGT	GAGCCCAACA	AATTTGTCTC	AATTTAACCT	TCCCGGGCCC
41751	AGCATGATGC	GCTCAAACAG	CATCCCAGCC	CAAGACTCTT	CCTTCGATCT
41801	CTATGATGAC	TCCCAGCTTT	GTGGGAGTGC	CACTTCTCTG	GAGGAAAGAC
41851	CTCGTGCCAT	CAGTCATTCG	GGCTCATTCA	GAGACAGCAT	GGAAGAAGGT
41901	AAGCGTTGAG	GGGGATTAAA	GATGAAGTCA	СТТТАТТТАА	ACCCTGAGAG
41951	GGAAACCATC	GTGTCACTCA	CATCACAAAG	ATTCCTGAAG	AGGAAAATAA
42001	ACTAGTGTAA	TTATCATTTG	GGAAACTAGA	AGCTTGAAGA	AGTTTTATTC
42051	TGTATTATCT	TCTATTTCTT	TATGTATTTG	GAAATATGCC	AGAATTTGTT
42101	АТААТТАТАТ	CTTGGCTGTA	GAAGAGTTTA	GACTAAATCT	ACTTTTCCAA
42151	TACAGAAATA	ТАСАТАТААА	CTATTTTCCC	AGGTGCATCA	AATATCAGAG
42201	CAAATGTTTT	GTTTGACATT	TTGGTTAAAG	AGCCATAAAG	ACACACAAAC
42251	CAGAAACATT	ATTTTATGAA	AATACCACAT	GTTGCTGACT	TTTATTCCCA
42301	GGAATTCCCT	CTGGTGCTAA	TTTTTTATTA	ТАТСАТТТА	GAATTCATAT
42351	TGTACCTACT	TTTTTGCTTT	ATAAGTCACT	ATTTCTTCAT	CCAATGGCAA
42401	TAAAATTGTC	ACCTAACCTA	АТАААТАТСТ	TTATAGTTAT	ATAGTTCTAT
42451	GTAAATACTC	CAAATAAATC	AGCTTGAAAA	CCTCAGGAAG	CTGAGTTGAT
42501	GCTCAAATAT	TTTTTTATATA	GTAAACTGTA	GAAGCTCAAA	TGTCAAATTT

Fig. 2 (cont'd 23)

MAN CO. I CASE THE HOLD

42551	AACAATAATT	TGAGAGACTT	TTCTCTTTGA	TTTAATGAAT	TTTTTTAGTA
42601	TCCATAAAGA	AAACTTACAG	САТАСАТАТТ	ATAAAGCATG	TCAGCTAAGG
42651	ATAAAATAAA	ACTAGACATA	САААТТСААА	CTGATTAGAA	TGAAATTATT
42701	AACCCTAATA	ATTATGTTTA	AAAGAAAAGT	CTCCAAATCT	TGAGACATAC
42751	CAGAGTTTAA	GTCTTCAGCC	ATCCATTTAC	TTGTGGTATA	AACTTAGGCA
42801	AGTTTCTTAA	CCTTCTTATC	CCTAAGTTCT	GCATCTGTAA	CTTCTTAGGT
42851	TTGTCĄCAAG	GATGAAATAT	GAGAACAAAG	AATAATTCTG	TTCCATGATC
42901	TTTTCCCTTC	CTACCTTCTT	ATTTAAAGTA	TCTTCTGACT	GAGGGGTTAG
42951	GCAGCAATGA	AAATTGACTC	ATGTTTTTCA	GGTCACCACT	ATGGATTCAA
43001	TATACTGGCA	TTAAATCAGT	AGAGAATAGT	TGTCATTGCC	TTTTGCAATA
43051	TTAACCAAAC	CACTCAGTTC	ACTGTGACAG	ACAGTGAATT	ATATCCAATG
43101	ACTCCACTGA	TTTTTTCCAT	GTAGATAGAC	AAAATATAAC	TACTCTCAAA
43151	TGTAAGGACC	CTGCTTTCTG	AAATGGTTCT	GTTGCTCTCT	TCACAGATAG
43201	GCTTCTTATA	ATACTTTTAA	AATAATTTGC	TAAGCATACA	GATGGCTTTC
43251	TAGAGTGTGG	CATTGACAAA	TAAAGTGATT	TTTATATACT	GGGAAATTCT
43301	GGCCTTCAAT	GTATCAGGAT	TAAATAATCT	GAATTTCTGA	AAGCTAGCCT
43351	AAGTGGGCAA	GATGGCTTTT	TTGTGCTCAC	GCATTGAATA	CTGAACTATT
43401	CTAGTTCTTA	AATGGCGATC	TAGATTCAAG	ACTTATTGAA	CTAGATTGAA
43451	GGGACTTTAT	TGATATCCTA	CCTAATGCTC	ACACTGACAG	ATGAAGAGAC
43501	TGAGCCACAT	GTTCTAAGGT	CATAAACAGA	AAGAATGAGA	ATGAGATGGT
43551	CTAATTAATT	GTCCACCTTT	CCTATGGTAC	ATCAGGGTAA	CACTTTAGTT
43601	TACGAGGGTA	TTATTAGAGA	TAGAAAGAAT	TTTTTTTAA	ATAATTGACT
43651	CAAATACCAA	CATTTTGCAC	ATTACATAGA	GTAATAGCTT	TGCCCAAGTT
43701	AGAAAACTGG	GGGTTCTTCT	TTATTCCTCT	TTTGACCACA	TCTATATACT
43751	CAGTTTTAAA	AAGGTTCTTC	CTGGTATCCT	TCAATTCCAT	CCCCATGTTT
43801	TCATCTACAA	GCCTAGTGCA	GCTATTCCAG	CCGTCTCCTG	ATCAGGTCTT
43851	- AAGCACCTCC	CATATGTCCT	TGTAGTACCC	ACCATATTGA	TCTCAGTAGC
43901	AATCACAGTA	CTCTATTGTA	AATATCTTTT	AAATTATTAA	CTTCTCTTTG
43951	AGCTTTTGGG	ATTTTATCTT	ATTTATTTT	GTAGTTCCAG	GATCTAGCAA
44001	CAGCTTGTCA	CATCGTTCAT	ACTCAACTAA	TGTTTGTTTA	ATGCACAATG
44051	AGCAGAAATA	AACATACTAC	TCCATAGTAA	AAAGAGGATG	AACTTTTCTG
44101	CAAATATTAA	TCAGCACCAT	TTTATCCACC	TTTTGGGTTT	AGTACATTGG
44151	AAGTATAGGA	GTATAAAGCA	GAATGTCCAA	TGTTTACAGT	GATATTTTGA
44201	AATAGATAAA	. AGCCAGTGCG	ACATTTCCAT	TCTCAATTTC	TCTGAGACAT
44251	CĄCCTTGAAA	. АААААААСТА	TTTTTCTCTT	ССТААААТТА	GTAAAGGAAC
44301	AGTAATTCCA	. САТТТАТААС	AGTATGATCA	ACGCATCACA	GATAATGTTG

44351	TAATAACACA	TTAGATAAAA	GTGCTTATTT	TCCTGAAATT	ATATGGAGAA
44401	AAAAATCTGA	AAGTGGACCT	TTGTTGGATA	CAAATGAAAT	AAATAAGGTA
44451	CATACATTTT	TTAAGGTTCG	AAAGTTTATG	GCAACTTTAG	TTTGGGTTTC
44501	CATGCTATTC	TATTTATTAT	ATGGGAATTT	ACTGTAGCTT	TCAACATGTA
44551	CGAAACAGGC	TGGTAGGGCT	CATGCTTGTA	GGCTTCTGTC	TAATAACTTG
44601	GCAACTGAGG	TACTTTAGGG	AGTATGGATG	GGGCTCTTCC	ATGTCTCAAC
44651	GTCCTGACTG	CCAAAAAATT	ATAGCAGGCT	GGTTCTCAGA	ATCTTATAGT
44701	TAGTTGTTAT	TACTTAATTT	CCCTAACCAC	CCGTTCTTTA	CTTTTTCTGT
44751	AAAGGCTGGA	ATTTTTGAGT	AGACCTTATT	GTTTTAACTC	TATTGTTCTG
44801	TTTGTTTTCT	CCAGTTCATG	GCTCTTCATT	ATCACTGGTG	TCCAGCACTT
44851	CTTCTCTTTA	CTCTACAGTA	AGTAATGGCT	GTTAAGAAAA	AGCTTGTGCT
44901	TTTGCCATGC	ACACAGATGA	TGAAATAGAT	CATTTTACTG	TGAACAGATC
44951	ACATTCATCT	ATGACTTGCA	CAGGAGTTGT	GTAGCAAAAT	AACGGCATAC
45001	TCTAAGCTGC	CCAATACCCA	ATAAAGTGCC	AGGTGCTCCA	CCTGCCATTC
45051	TTTGGTCACT	TACATGTGCT	TTCACTTGGC	TTTTGTGCAC	TCATCATAAT
45101	CAATGAGTGG	ATGTAGAATT	CGATTTCATA	AAACCTACTG	AGGTATGACT
45151	TGGAGTCTCT	GAAACCATGT	ATGTAGTCTG	CTATACTATC	ATTTTAGTAA
45201	TGACGAGTTG	TCCATGTTTT	GTTCTTTGAG	CCGTGACTGT	TAATTGTTCT
45251	ATAGTATTTT	CTTCTCATTT	TTTATTTTA	AGTTTATTGT	TGAGAGGATT
45301	ATCGAAGGGT	AAAAGCAGTA	AGGGTAAAGG	GTAAAAGCAT	AAAAGAACCA
45351	GAGATGTTTT	TTTTTAAATA	TACCTTTTGA	AAGAGTGTGA	TTTTTTTAAC
45401	TTTTATTTT	ATTTTATTTT	ATTTATTTAT	TTATTTATTT	TTGAGTCGAG
45451	GTCTTGCTTT	GTCACCCAGG	CTGGAGTACA	ATGACACAAT	CATAGCTCAC
45501	TGCAACCTTG	AACTCCTGGG	CTCAAGTTAT	CCTTCTGCCT	CAGCCTGTCA
45551	AGCAGCTAGG	ACTACAGGCA	CGCACCACCA	TGCCCAGCTA	TAAATTTTTA
45601	TGTTTTAGAG	ACAAGGTCAT	TGCTATATTG	ACCAGACTGA	TCAATACCCA
45651	TGGCTTCAAG	CAATTCCTCC	TGCTTTAGCC	TCCCCAAGTG	CTGGGATTAC
45701	AGGTGTAAGC	CAGCACACTT	AGATAGAAAC	TTTATTTATT	AAGAGAAAAA
45751	TACCAGTGTT	TCAAGTTCTT	TTGCAAACGT	GTGACATTAT	AATTCATTTT
45801	TGACAAGGAG	AGTTTTTCTG	TTTGGTAAAT	ACAATTCTAT	CTTTTTTAAA
45851	AAAGTAGCCT	ACAGGAAGTT	ATATTTTATG	AGTGAGTCTT	TTTAGAGCTA
45901	GGTTAACAGT	GAGGTATATT	TAAAAGCAGC	CTACTGAATC	TCAATGGGAC
45951	TTGAGTACTA	TGAATAAGCC	TTAATCCTGT	ACTGTAAGGT	TCATGAAGAG
46001	TTCATAGCCT	CTGCTGTCAC	TGATCAACTG	AGCATCATGG	GCAGTATTTT
46051	TTTCACTCAT	' TATCATTAGG	TTCAAATGTT	TGTTTGAACC	TTCTCTTTAT

Fig. 2 (cont'd 25)

THE RELEGIOUS STATE

46101	AGATTAATCT CATATATTA CTGCCTTACA TAGTCATTCA AAATCTGACT
46151	GTTATTGGCA GAAGTAATAT TTTTCTAATC TCTCCTTTCA ATGATTAAAA
46201	TTACCCATAG CTTCTAGAAA TTAAGAAATC ACGATTAGTT TTTAGGTAAA
46251	TGTACTTTTT GTGCAAATGG ATAAAGTGAG GAATGTGTAA ACACACATGA
46301	AAAAAACACA TAAAAGAAAT ATATTAAGAC TTAGTGTTCC TCCTGTTGGG
46351	CCAGCACTGC CATTTGTTGG GGAATTGTAT TCTGATTTAA ACCATTGCCA
46401	TTTACATCTA TGTGTAACAT CAAAAGATGT AGCATCATTA TTATTCTAAA
46451	TACATACAAT AATTAATATT TGGATAAAGC TACCTTCATG AAACCTAAGA
46501	AAAACTAAAT TAAAAAGAAA GAAAGAAAGA AAAATACACT TAGATAGAAG
46551	AAATAAGGTC TAGTGATTGG TAGCACAATA GAGTGACTAT AGTTAACAAT
46601	AATTTATTGT ACATTTCAAA ATAGCTAGAA AAGAAGATTT GGAATGTTCC
46651	TAACAGGAAG AAATGATATT CTTCCTAAAT GAAGAATGGG ATATTCCACT
46701	TTCCCAGATT TGATCGTTAC ACAGCATATG TTTGTATAAT ACCACATGCA
46751	CCCCATAAAT ACATACAACT ATTGTGTATC CCAATATTAA AGATTTTTTT
46801	GAAAAATTTA TTCCTCAAGA AAAGGATCAT GAGTTTAAGA AAAAACAGAT
46851	TACTAGTCTA CCAGTGTCCA GTAGACCTTT CTGTGTTAAT AAAAGTGTTC
46901	TGTATCTACA CTATCTAATA TAGTAACTAT GAACCATATG TTGCCATTGA
46951	TTATTTGAAG TATATCTGGC AAAGAGATGA ATTGACTTTT TTATTTTAAT
47001	TAATTTACAT TGAAATAGCC ACATGTGCCT AGCAGCTACT AGATTGGATA
47051	GTGCAAGTTT ATAGAGAACA CAAGGGGTAC ATTTGTAGAT AGGAGTGGGA
47101	TGTCAAAATG ATGAGGATAA TTAGAAAGCA TACATGAGAA ATATTGTTTT
47151	AAGAGTAGAA TATGAAATGG GAACACAGAT TAAAATAGAG TATGTATATA
47201	TATACATATA TATGTGTATA TATATACATA TGTATGTGTA TATATATACA
47251	TATATATGTG TGTGTGTATA TATATATAT TATAGGCCAA TATATGGAGG
47301	TAGGGTATAT CCTAGTGTTA AGTGAGTAAA GAATGGATTA GGTGATCGAG
47351	CCACATGAGA AGGTGATATT ATTAGAAAAT TGAAAGTTGT ATTTGAGATG
47401	ATGAAAATGA TATATTTGAA TTGAAAAGTA AACTGTAGTA AAATAATTCA
47451	AATAAATGAA TATTTGGGGA ACTACTTAAG AGAAAAATCA TAAAACATGA
47501	GGAGTCATTC TTTCCCCAGT CCGCCATGAT CAGGCCTTAG GATTTAATTG
47551	GCAATGAGAA AATACCTATG AAAATGCTTT TTAAACTATC ACATGAAAAA
47601	GCAATTTATT ATTTTTCATG CCTTCTTAAT AACTCTCAAT AGAGATTTAG
47651	TTGATTTGCA TTTTTGCCTG GTTCAATCAA GAAATTATCG CGTGACATCA
47701	GGCAAGTTGC CAAATTTCTT TGGACTATAC CTATAAAATA AAATTTGAAA
47751	ATATTAGCTA GATCTAACCC ATTTGTCTCC GGATGTCTGC AAAGTGGTTG
47801	GĄĄATCACAA GCCTAACCTG ATCTGCAGAG GTGTTACCTT TGGCAAACTT
47851	ATGGTTTTTG TGTTTGTTTT GAAATCTAAG GCCAAGCGCG GTGGCTCATG
	Fig. 2 _(cont'd 26)

in the second

47901	CCGGTAATCT	CAACACTTTG	GGAGGCTGAG	GCGGGTGGAT	CACTTGAGGT
47951	CAGGAGTTCG	AGACCAGCCT	GGCCAACATG	GCAAAACCCC	GTCTCTACTA
48001	AAAATACAGA	AATTAGCCCG	GTGTAGTGGC	ATACGTCTGT	AATCCCAGCT
48051	ATTTGGGAGG	CTGAGGCAGG	AGAATCGCCT	GAACCTGGGA	GGCTGAGGCT
48101	GCTGCAGTGA	GCGCCACTGC	ACTCCAGCCT	GGGCGACAAA	GCCAAACACT
48151	GTCTCAGAAA	АААААААА	AAAAGGAAAA	GAGGGAGAGG	GGAGGGAGAG
48201	GGAGAGGGAA	TCTAAGCCAA	CACTGTGAAA	TATTGTGAAA	TATGGAGCTT
48251	CTACCTAAAA	ATTCAAAATT	TTAAATTCCT	TTTAAAAATA	ATTGGAATAT
48301	CTATGGAATA	TCTAGCAATA	CTAAGATGAA	ATTCCTCTGG	GTTTTCAGTC
48351	ACCTGTAATT	GACACCTTTA	GATGTTGGCA	TGGGCTCTCA	GGAAGCCACA
48401	GCCTCCACCA	ATGCTTTTCT	TCCTGACACT	GAAGCTAAAT	TTGGGTGGCT
48451	AGTTTTCATT	GTGCTGTTGC	TTTCCTCATG	GGAAAGAAAT	ACCCTTTGCT
48501	ATTTATATTG	CTGTCAAATG	GGAAAATGAA	AGACAGCCAA	GGAAGATCAT
48551	GTGACTATTT	AAATACTTCA	AGTCCATTTA	TTCTTTATTA	GCCTTGTCCT
48601	GTTAGGCATT	TAAATTTTTG	ATCCCTGCAA	TAGATGTTTT	TTGATTAACT
48651	GTATATTAAA	AACTATATTT	AACCTGTTTT	GAATTTGAAT	TCTAAATTGT
48701	ATTTTTTCAT	GAGAGCAAGT	GTCATTTTTG	ATTCATTGTG	GATTGTTTAA
48751	CATGTTGCCT	AACAAATAGC	TAATACTAAC	GTCATAACTT	TTTAATTAGT
48801	AAATTTGAAT	GGATAAATGG	CCACTTATTG	GCTTATAGAA	TAAATAAAA
48851	CATTTTTATT	CAGTCAAGTG	TTTCATATTT	TTTATCATCT	CCAGGACATT
48901	GGGCTTGCTC	AAAACCATTG	TTAAAAAAAA	AATGGCAAAT	AATCCAGTTC
48951	CATCATGATA	TCATTAATCC	CACACCTAAG	CTACTGAAAA	ATTATAAAA
49001	ATATTCTGGC	TCATTGCTTT	ATTTTTATGG	TAACACCCAC	CTGGTATTAA
49051	TAACCACAGA	GTACGAAAGA	AGGCAAAGGT	TAAAGCAAAT	AATAGTTTTG
49101	AAAAATTGGT	AGTGAAAAAA	GTCATGCTAT	ACGGTATGTA	TATAATAGAT
49151	ATTTAATGAT	TATGCTTGCT	ACTAGTATAT	GTAACAGGAC	TATTATAGAT
49201	ТААСАААААТ	GCGGTGAGTA	TATTTCTTGA	TTATTTTTTA	AAAGAATAAA
49251	TTATTATTTA	AAAATACATG	TATTTATTAA	TGATTCTTGA	ATCTTTACCA
49301	GCTTTCTATA	ATTCTAGGAA	GCCTAGAAGC	AGAATTGGGC	AGGATAAACT
49351	GGCAAAAAAT	GTAAAAAGTA	GGCCGGGCAC	GGTGGGCTAC	AGTGAGTCGT
49401	GAATGCGCAG	TGCACCTGAG	TGATAGATCA	AGATCCTGTC	TCAAAAAAA
49451	ААААААААА	AAAAGAAAGA	AAGAAAGAAA	AACAACAACA	AAAACAAAAG
49501	CAAAGTACTA	GGGAAAACTA	ATAGACATAG	TTACATAGTT	AATTGTGCCA
49551		GGCAATGAAA			
49601	TATTCAAAAA	CCAAACTGTG	TATAAAACCT	TTATAAAAT	AGGATCTAAA

Fig. 2 (cont'd 27)

49651	AAATAAAATC	TTTCCTTAAA	AATCTAAAAT	TGAGATGTAA	ATTATTCAAG
49701	AGTGCTTTTT	AAAACAGTTT	TCTTATAAAG	GCTATTAGGA	TTCTACCACT
49751	TAGCCACTTT	ATTATTTAGC	CACTATATTA	CTAAGTTTAC	ATTTTTAA
49801	AGGTAGTGAA	AATATAGGGA	AGACAAAGCT	CAGGTTAAAA	GAGTTTCTGG
49851	САААТААААТ	ATATCCTGAT	GGTTAGACTA	CTTTGCTTTA	TGTTTTCTGA
49901	AAGAAAAGCA	GTAAAAAACA	GTTCAGGTAG	TTTTGTGTCA	ATTAATCTAG
49951	AACTATACCA	AAAGTAGACA	TAGAAAACGA	GAGATTGTTT	TTCAGCTTTG
50001	GATCTGCTTA	TGGCAATAAG	CAGACTTGTA	CTATTCAACA	ACATTATGCA
50051	TTCTTCAACT	TTTCCCAGAA	TAAGGGAGCT	TCCCAAATGC	AATGGTGCAC
50101	ATAACTCATT	TTCTGGCATT	TTGCAGCCCA	GCATGAAGAA	GAAAAACAGA
50151	GCTAGGAGTT	TTCTGGAAGT	CAAGTCAAAA	ACACCCTGCA	AATTCCTATG
50201	GCAGTCCTCC	TTTCCATAAG	CTGCATAGCC	AAAAATGTTT	GCCAGACACT
50251	TTTATCACTG	GGTGTTTCAG	TGTTTTCATT	GTTTAAGCGT	TTTGCTGACT
50301	TGTGATAATT	AAAATTATTA	ATAATCATTA	AAGAAAGAAA	AAGTAGAAGT
50351	AAATAATGTT	AATTATCTGT	GGTTATCAGT	AGAGGTCTGT	ATGTTACCCC
50401	AGCTTTATTT	GACATTGTTT	GTGATCAGTA	AATCACAGAA	TAAAATTCTG
50451	ACATCTAAAC	CTTGGCTAGA	GGTCTCTATA	ATTTTATGGA	GTCTGTTTCC
50501	TACAATCTGT	ATGAAAGATA	CTTCAATATT	TTAAGTTTAC	ATGCACCCAT
50551	CTTTTTTAGA	GTATAATTTT	ATAACTATTT	GGTTTATGTT	GCTTATGATT
50601	TACATCTTAG	AGTCTTTTAA	TTCTGTCTTT	TGCTTAAAGG	AATATTATGG
50651	ATCAAATGAC	CTATATTTTA	AGAATACCTT	ATGGTTTATA	TATTAAGAAA
50701	CATTTATATA	AAATTCTAAA	GTAACTTGCT	TGTACTATTT	CAATTGAATA
50751	ACTTAATGTA	TTTCATTCTA	TTCTTCTCAT	AGTAGATAAT	AAAAAGTACA
50801	TCATGATTAT	TGTATTCATT	TATACTTGTG	GAATTAATTG	AAAATAGTTT
50851	TTATAGTTAA	AGTCTTTCTT	TTTATTGTTT	TACAGGCTGA	AGAAAAGGCT
50901	CATTCAGAGG	TAAAAAAAA	TATGCAATAT	TTTAATATTT	TCTATTTTAG
50951 -	TTTGCATTCA	TGATGAAATT	AGTCTTGTGA	CCACTAGAGG	GCTCTGTGAT
51001	ACAATAGCAG	AACTCCACAG	GACTGCTGAA	GTAAGGCAGC	TAATTGATAA
51051	ATGGTCTTTG	ATATTGCCTC	ТТАААААТАА	AATGAAAGGA	AGTTTGTATA
51101	GCAAGCTGTC	CTTTCACATT	CTAGATTGAG	TCTTAGCTCA	ACACCTAATA
51151	AGTTTTCTAT	AATAGTAAGC	ACTCATTAAG	TCATTGATAA	ATGAAGGTCT
51201	ATGGTCTTCC	TATTTTATTA	CAGTCTTTTT	CCCACTCCCT	GTAAGACCAT
51251	CTACACAGGA	TAATGGTTGA	AACTTGGGCA	CCAAGCCTCC	ACAACACAGG
51301	ATACTAGCAT	CTCAGACTAT	CTGTTTTGTG	TCATTATCTT	GTTGCCTCTA
51351	ACTGCCATTT	TATGTGTGGT	GTGTCACCTA	TTGTTCTAAT	CACATATTTC
51401	ACAAATACAT	ATTTGGTTGC	ACTCGTGAGC	AAATCAAACT	GCATTCAGGA

Fig. 2 (cont'd 28)

34/124

51451	AAGAATACTA	TTTTAATTTC	CCTTGGTAAA	ACATTTGTCC	TGGTCAAAGA
51501	GAGCAGGAGG	ACTTTAATTA	TGACTTTATT	CAAGGTGAGG	TAATGGCTGT
51551	TTGATTGGTT	TACACTGAGG	CAATCAGACA	ACAGAGAAAA	AAAATGCCTT
51601	AACAACAGCT	TTTGCAAAAG	TATTCCTTTC	CTTTGAAGTC	TTATTTTATT
51651	AGCCTTTAAA	AATAAAATTT	GTGCTATGTT	TTATAAAAT	TGAAAATTAT
51701	TGATTAAACC	AATTTGTCTT	TATAATCTCT	GAACCAAAGA	GTGGATATGA
51751	TTTTTAAAAA	TCAAAGTGGT	TTTATTTACA	TCACATGGAC	ATGACAAAGC
51801	TTCTAACACT	GATCATAGTA	TAGCTACTGA	AGCATCGAAA	TGCTACATCT
51851	ATTTGCCTTA	GTAGTAGTTA	TTCAACTCCC	CTTTTATCAT	TGATGCTGTA
51901	TCATGAGTTA	TGGTTTAAAA	AAACAATTTC	AATCACTTTA	CAGTTTCCTG
51951	GATTATATTT	TAAAGATACT	GGAATCATGT	AATAGAGACT	ATTTAATTTG
52001	AGAAATGCTC	TTTGAGTTTG	GATTCATTTA	TGAATAAAAT	AGACGCTGTA
52051	TTTTCTGAAA	TCATTCATAG	TCATTATCTT	ATAAATGTAA	AGCAAATGTT
52101	ATTTTAGACT	GGGGTGTATC	TGTTCCGGAA	AAAAAAAA	ACAGGAACGA
52151	AGTAGAATCA	CATTTGGTGA	AATTATATAA	GTGTCTACTG	TTTCCAGCTT
52201	AGAGTTCTCT	ACTTTGTTAG	AGTGTTTGAG	TTGACCACCA	TTTATTTTCA
52251	ACAAAATCTA	ATGCCCGGGG	CAAAAACTAG	ACAGTTAATA	AACTATGTCA
52301	AGAATTCTCT	TTCAAACTGA	GACAGCATTC	CAAAAGTTCA	ACTACAACTA
52351	TAGATAAGAT	TTGTTTTTGA	AGAAATGAGA	AGCATCAAAA	GTAGAATGTT
52401	TAACATCCAA	GTAACTGAAA	TCCCTTGAGA	CTAGATATAT	ACTTATAGAA
52451	CCTAGTGTCA	GATTGTTATA	AATGTTCTAT	CCTTATTAGT	CACAACATGA
52501	GACTTGCAGA	ACAAACTGCA	GAAAGTGCTT	GAATTAAAAC	TTTAAACATG
52551	АТАТААТАТА	TCCTTACCCT	TTTCTGTTTC	AGTTTTATTG	GAGTGTGAAC
52601	TTAACTAAAA	AGAAAGATAC	СТТАСААТАТ	АСАТТАТАТТ	GGTTTATCTA
52651	ATTAGTTGCA	CCTATCATTG	GTTTTTTCCC	CTGATTTTTA	AGATGTGGAT
52701	AAGCTATAAA	GCATCTCTGA	GCTAATAATA	ACTCACTAAA	TAAAGGTCTT
52751	GATAATACAG	ATTTGGGAAG	GCTTCTCTGC	AGTCATTGAA	ACTCCAGCCA
52801	ATAACAATTT	AAATGTGAAC	TGATTAAATG	TTGAATTAAG	CCCAAGTTTT
52851	AGTGATTGCA	GGATATTCCA	TAGCCTTTGA	GAAGTTTTCA	AACTATGAGA
52901	AATTAAAATG	TACAGAGGAA	AAAAAAACCT	AAGATTTTCT	GAAAAAGAAC
52951	ATGGAGTATC	ТТТТАСТААА	AAAGAACAAG	AAAAATATGT	GTGTATATAC
53001	AGTTTTTATA	AAGAAAATAT	TTTTCTACAG	TTTTATTACC	ACAGTTTTTC
53051	TAGAAGGAGA	AGAATCAATA	CAGAGGGTAA	ACTGCTCTTG	AGTCATTTGC
53101	CATTTGAGGG	ATGGCAAATG	GAGCAAGTGA	GCGTACTTTG	ATTTGTAGAT
53151	TAGAGTTTGA	CACATAACAC	TTTGCTTTTG	AATGACATTT	GCTTGTTACT

Fig. 2 (cont'd 29)

4 74760

2000年 新教制

53201	GTGGAGTCAG	TGTTCATATC	CTTTATTTTC	AGGAGTTGCT	GCTGATACAA
53251	TGGGGTTAGA	ATGAGCTAAA	TACAGCATTT	GCTTTCTTGG	TTTGAATTCT
53301	GGGTTTTAAG	ТАААААТСТА	CTTGCCTATT	CCATTGATTT	TTTTAATTGC
53351	ATTCAGCAAA	TCCATAAACT	GCGGAGAGAG	CTGGTTGCAT	CACAAGAAAA
53401	AGTTGCTACC	CTCACATCTC	AGCTTTCAGC	AAATGTAAGT	CACTTCATTT
53451	ТТААААТАТА	TTACAACAAA	TTTTTATAGA	GGAAAATGAA	ATCATTTAG
53501	TAACAAACTT	ACAAATTTTC	AGTGCCTGAT	ACAGACTTAG	ATTACCAACT
53551	AGCAGGACTC	ATAAAAAGTT	AACATTTTTT	GCCTACTCAG	TAATAAAATG
53601	тааатссааа	CTGATGAGAG	GCAGCAATAT	GGTTAAAATG	GCTTGTTGTT
53651	TCTAATAAGA	TTGGAAACAA	TAGTAACAGC	CATATGGGTT	ACTTCTTTTC
53701	TTGTTTGCTA	TTTTTATTAC	TCCTCTTGCA	TAAGATTCCC	TGACAATGTA
53751	AGAGGGGTTG	TTAGTGTTTG	ACTTTGGAAG.	ATAAAATATT	CCTGTGCCCA
53801	GCCTCCTTCA	TCTCAATGTA	TTGAACAATT	TGTTAAGCAT	CCAGTTAATT
53851	CTAAAATATG	AAATTAGGTC	TAAATAGGGA	TAGCTTAGCT	GCACTGTGGA
53901	TGAGATATGG	TTTGCTCAAA	AAACCTTGGC	AGCCTTCTCA	TAGCAATTTA
53951	AAAGGGTACA	CTTTTACTGG	CACCAGAGCA	GCCCAGGATG	GCAGAAATGA
54001	TGACAATGAA	GACCGTCAAT	TAAATTAACA	TTTACTGAAT	ATCTTCCACT
54051	GTGTCAGGGA	GCACTCAGAG	TAGATGCAGA	ATGATAAAGG	AGAAATGTGG
54101	CACTGTTCCC	AGTCCTGAGG	AGCAATGGTG	TTAAGAACAG	CAGTGAGGGG
54151	TAAGGAAATG	CCTGCTATTT	TGCCATATGT	CTTACCTCTC	TCACTCAACA
54201	GTCCTTTGCT	CAGTTCTGCT	GCATAGCTTT	GGGCCTGCTC	TGTGCCTCCC
54251	CACCCCTCCC	ACTGCTCCTC	TACTGAGTTT	TTCTATCTCC	TAGACAAAGC
54301	ATGATATGTC	AAGAGTGAGC	AGGTGCAGAC	CCACAGTGTA	AGACTTGAAT
54351	AAGAGCCATT	TTTAAATTTT	TTTTAAGCTA	TCATTGTGCA	ATATAAATTC
54401	TAAGTATGTG	TATCATTTCA	TTCACAATGT	ATTCATTTTA	GCACTGTATT
54451	TGAATTGATT	TTATTTTCTG	AAATTTGGGA	GAATTAATTT	TGGATTTATT
54501	CTATTTATTT	TTAATAGATG	GTGTTAGGAG	ATTCCTGAAA	ATAATAGCAG
54551	TTTTTAGATA	ATTGTTTAAG	CAATATGAGA	AAATAAGGGT	ATTATTTAAC
54601	CTTGTTGTGT	TTTTAAAGAG	ATAGTCCAGA	GGCAACCGTA	AATTTTTAA
54651	TATAGGCTAC	ATGTATAGAA	GTATGAAATA	TTGTTGTCTA	GGTTCCTGAA
54701	TTTGTACCCA	GAGGAAGTAG	AATAATGTAA	ATGTCAGAAC	CTCCTGGGTT
54751	GTGTTTATCT	GCAATAAGAA	AGGCTCAATG	GCAAACCTTA	TTTATTAGAT
54801	TGTCAGGATA	CTTGCAGATG	TCTTGAATGA	TTACTCAGGG	TTTCATTTTA
54851	TTTTTAATGT	CCCTTGGTTG	AGCTCATCAT	ATAATTCAGA	TATTGGAATA
54901	AŢĀAATGGCT	GCTAGACATA	GTGGAAGATG	GGCTGATACT	TTCCATTTGA
54951	AATGTAATGA	TGCTTATTGT	CTTCAAAAGA	АААААСТААА	ATGGTATTTC

55001	ACATTTTTT	GTTTTTGTTI	TTGTTTTTT	TTCTCTGAG	ATCTCATTCT
55051	TACTCATGAT	TATTGGTTTC	TTGTGTACCA	TTTCAACAT	TTTCTATTAT
55101	ATGCTAATGT	GTATATATAC	TTAATACACA	CGTGCAAAA	G CTTCCACACA
55151	CACACACACA	CACACACACA	CACACACACA	CACACATACA	CACACATACG
55201	GAACCAAATT	CTAACATAGG	GGAATAATCT	TCGGAGTGAZ	CTCTGTGCTG
55251	CTGTTTGAAA	ATGGAGATAT	AATTTTAGAA	AGGTTCCTGC	AGTTGGCTAC
55301	CCACCTCGTC	TGCTCTAATT	ATGCTTGTCA	CACTATTTTC	CACTGATGTGT
55351	TTTCATGACT	TTAGGGCATG	AATTCTCAGC	TGGGTGTTAA	TATGACCAAC
55401	AAAGGGTGAA	AACAGGTTCT	TGCATTTTT	TAAGTACTCT	TTTTATGTGA
55451	AAAGCACAGA	TATGCAGATA	ATACATAACT	GAACATCCAG	CATATCTGTG
55501	GCTTTAAAAT	ATCACGAAGA	AGAGCACAAT	TAGGGAAAAG	AAAACATCTA
55551	TAGTGTTTCC	CTAGGGGAAC	AATCATTTAA	AAAAAAATAA	AAATAAGGAA
55601	CACAGACTAG	AAGCAGCAGT	GCCAAATAGA	TAATTCATGC	TAGTCTTTGT
55651	GTTAATTTAA	AAAGTGCTAG	TCTTGGAGAC	AAACGCCCAA	ATTGCTCTAG
55701	GTTCCACTCA	GCTGTATGTG	TTATCATTAG	TATTAACTTT	TGCACGCTGA
55751	TGGGAGACTG	ATATATATCC	TGTTTTATGT	TCCTTTAAAC	AATTTATAAT
55801	GTAATTTAGA	AACCTTCTCA	AATCACATTA	GATCCACACA	AAAACCTGTA
55851	CATAGCAGCT	TTATTTTTTA	ATAGCCAAAG	AAAGGAAACA	ACCAAAAATA
55901	TCCCTTAATA	GGCCAGTTAA	TAAACAAATT	CTGATACATC	TATATCATGG
55951	ACTACTACTC	AGCAATATAA	AGAAATGACT	ATTGATACGT	GCATCAACTT
56001	GGGTGGATCC	CAGGGGTATT	ATGCTGAGTG	AAAAAAGACA	GTTATAGAAG
56051	GTCAAATTTT	GTATAATTCC	ATTTATATAA	CATTCCAGAA	ATGGCAAAAT
56101	TAAAGAAACA	GAGAACAGAT	TAGTGATTGC	TAAGGGCTAA	GGATGAAGGA
56151	GAGAGAGAGG	TAGTGTGACT	ATAGGAAGAG	GGAGATCTTT	AGTTTTGTAT
56201	TTTGAATGAG	ATGGCCATCA	CATGAATCCA	CATATGTCAA	TCTATTAATG
56251	TAAATCAATA	TTGTATTCCT	GGCTTTGATA	TATAATATAA	TTTTATAAGA
56301	ТАТАТААТСА	TTGGGGGAAA	CTGGATGAAG	GATACAAGGG	ACCTCCCTGT
56351	ACTATCTTTG	CAACTTCTTG	TGTATATAAT	TATAAAATAT	ATAATGTATT
56401	AAAATGTATA	TTATAATAAA	TTAAGTATCA	GATACTGATC	TTTACTCAGT
56451	ATATGAAGTG	ТТСТАТСАТА	ACGTAACATG	CTTTTCCTTT	ATTTGTGGTA
56501	TTTTAGTTTC .	AAACTAAAAT	ATAAATCACC	TAAAGATCTA	CGACAGTTCT
56551	TTTGAAAAAA .	AATCTTGCTT	TTAATTTCCC	AGGAGTTTCA	ACCTTAATCC
56601	TCTCTTTAGT	GTTTCTTTAT	TTGGTAGTGA	TAGGGACTAT	CAAAGCTTCT
56651	TACCATCAAA	TACATTTACT	GACTAAAAAT	AGAAAAATAA	TTTACATTGT
56701	AAAAATGTAC	AAATTGAATG	ACAGTCAAAA	GGTACAGGTA	ATGAAGATAT

56801 TANTGCAGTA TCTGGGATT TATATAANTA GATATGTAT TAAAGACTA TAAATGTCAG TTATATTTA TAAATGACTA TAAATGTCAG TTATATTTTA TAAATTTTAA TAAATTTGTT 56901 ATAACTATG GGGTAAAATT TTGTATATAT CTGAACATT TTGTTCTTAA 56951 GGAAATAATC ATTTTACAT ATCCAGGAT TTGAATTC CTCAAGTCAT 57001 CTATTAATTA CAAGTCATT TGATTCATT CATCAGCAT CAAATAATTT 57101 AGTTAATACT TGATTTTCC TCAGTGTAA ATATCGCAT CAAATAATTT 57201 TATACACATA TTTTTAACAT GATGTACTT ATATTACACATA TTTTTAACAT AAATTATAATA ATATTACACATA ATATTATAA AAATTATAATAA ATATTATAA ATATTATAA TTACACAGTA CAAGTAAACT TTCACATTT AAATTATAATAAATAAAAATAAAAATAAAAAAAAAAA	56751	GCATTAACAT	CTACTTTTAA	AAAAAAGTTT	ATTAAAATTC	TCTTTTAGAC
56901 ATAACTATGG GGGTAAAATT TTGTATATAT CTGAACATTT TTGTTCTTAA 56951 GGAAATAATC ATTTTACAT ATCCAGGAAT TTGAATTACT CTCAAGTCAC 57001 CTATTAATAT CAAGTCATT TGAACTCATT CATTTCTTT GTGTTGCTT 57051 TATAAATCT TTGATTTTCC TCAGTGTAA AAGTGCCT CAAAAAATTT 57151 CATTCAGAAT GTTTCATTC ATCTGAATTA ATGTGTATA ATGTGTATA ATGTATTTA ATGTGTATA ATGTATCTTA ATGTATCTTA ATGTATCTTA ATGTATCTTA ATGTATCTTA ATGTATCTTA ATGTATCTTA ATGTATCTTA ATGTATCATA TTATTTTAA GGATTTTTA ATGTATCATA GGATTTTTAA ATGTTTTAA AGGTTTTTTAA AGGTTTTTTAA ATGTTTAAATT TAGGGATTATTAAAAAATA GGATTATTTAA ATGTTTAAAATAACTA GGATTATTTAAAAAAAAAATAAAAAAAAAAAAAAAAAA	56801	TAATGCAGTA	TCTGGGAATT	TATATAAATA	GATATGTATA	TAAATGACTA
56951 GGAAATAATC ATTITACAT ATCCAGGAAT TIGAATTACT CTCAAGTCAC 57001 CTATTAATTA CAAGTCATTT TGAACTCATT CATTITCTT GTGTTTGCTT 57051 TATAATGTCA TTTTAGATTT CATGCATCAT AATCAGCCAT CAAATAATTT 57151 CATTCAGAAT GTTTCATTTC TCAGTTGTAA GAAGTGCTGT GTTTAAATTT 57151 CATTCAGAAT GTTTCATTTC ATCTGAATTA AATTGTTA ATGTATATAT 57201 TATACACATA TTTTTAACAT GCATGTATA AATTGATTA TAGGGACTTG 57251 GTAAAATTAC TTATTTATAG GATATTTTAA AATTGATTA TAGGGACTTG 57301 AATCTACAGT TCCCATTTGA AAGTAAAAGT AAGTCTTTGT TTACTAGTTT 57310 CCCCACAGTG CAAGTAAACT TTCTACCTTT TGGTTAAATT TAGGGACTTG 57401 CCCCACAGTG AGAAATGTT ATATTAGAAC TCTAATAGCT ATAATTTATA 57501 CAACATTTT AAGTAACAGA TATTCATCTT TACTCAGTAT GTGGTCAGC 57401 CCCCACAGTG AGAAATGTT TTCCTTTATA GAATAAACT TTGGTTTTAA 57501 CAACATTTT AAGTACAGA TATTCATCTT TACTCAGTAT GTGGTCAGC 57501 CAACATTTT AAGTACAGA TATTCATCTT TACTCAGTAT GTGACAGTGTA 57501 CAACATTTT AAGTACAGA TATTCATCTT TACTCAGTAT GTGACACTGTA 57501 CAACAATTA TCGCATATTT AAACTTGGCA TAAATAAACT TATTAGACT 57601 AATTGGTATA TCGCATATTT TAACTTGCCA TAATTACATT TATTAGACT 57601 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAAGCC 57651 CTAAACAATA ACTTGTATTT TAACTTTTAA ATTTGAATG CATCTATGTC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAAGCC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAAGCC 57801 CTTGTTCAGT AGAATGTGT TAAGCCTTC CCTCCCCTTTT GTAAAGGTC 57801 CTTGTTCAGT AGAATGTGT TAAGCCTTC CCTCCCCTTTT GTAAAGGTC 57801 TAGCATGTC TAGAAAGAG ACCACAGGTA AAGTGTTAAG CTGATTCAC 57801 AGGAAAGGCA GAACTAAATA AATGGTAATA AAGTGTTAAC CACCACAAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA CAACAATA AAGTGTTAAC 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA CAACAATA AAGTGTTTAAC 58001 CCTCTGGCCT CTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATGC 58101 TTTGTTTGT TTTTAAACGTA TTTTCTTTAC AAATCTACC CATTTCACT 58201 CTGAATGAAT GTGTAAGAAA CACAAGAC CATTTTTAC AAACCATTT 58201 CTGAATGAAT GTGTAAGAAA CAAAAAGGC CTTTTTGCCT TTCAGCCAGA 58201 CTGAATGAAT GTGTAAGAAA CAAAAAGGC CTTTTTGCCT TTCAGCAGA 58201 CTGAATGAAT TTAATATTTT CATAAAAATT TTTGAGTGG CATTTTTTA AAGACATAT 58301 CTTTGCTTT TTAAAGAGAAA CAAAAAGAGAC C	56851	TTAAACAATT	TTAATGTCAG	TTATATTTA	AACATTTTAA	TAATATTGTT
57001 CTATTAATTA CAAGTCATT TGAACTCATT CATTTTCTTT GTGTTTGCTT 57051 TATAATGTCA TTTTAGATTT CATGCATCAT AATCAGCCAT CAAATAATTT 57101 AGTTAATACT TGATTTTCC TCAGTTGTAA GAAGTGCTG GTTTAAATTT 57101 AGTTAATACT TGATTTTCC TCAGTTGTAA GAAGTGCTG GTTTAAATTT 57101 TATACACATA TTTTAACAT GCATGTACTT AAATTGATTA TAGGGACTTG 57201 TATACACATA TTTTTAACAT GCATGTACTT AAATTGATTA TAGGGACTTG 57251 GTAAAATTAC TTATTTATAG GATATTTTAA ATTATACAA GGATTTTTA 57301 AATCTACAGT TCCCATTTGA AAGTAAAAG AAGTCTTGT TTACTAGTTT 57351 GTCACAGTA CAAGTAAACT TTCTACCTTT TGGTTAAATG TGAGTGCAGC 57401 CCCCACAGTG AGAAATTGTT TATATAGAAC TCTAATAGCT ATAATTTATA 57451 GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAA 57501 CAACATTTT AAGTACAGA TATTCATCTT TACTCAGTAT GTGACACTGTA 57501 CAACATTTT AAGTACAGA TATTCATCTT TACTCAGTAT GTGACACTGTA 57501 CAACATTA TCGCATATTT AAACTTGGCA TAATTACATT TATATAGAC 57601 AATTGGTATA TCGCATATTT TAATTTTTAA ATTTGAAATG CATCTATGTC 57601 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGGCT 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGGCC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGGCC 57701 TCTGTTCAGA AGAATGTGT TTAAGCCTTC CCTCCCTTTT GTAAAGGTCC 57801 CTTGTTCAGT AGAATGTGT TTAAGCCTTC CCTCCCTTTT GTAAAGGTCC 57801 CTGGACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGATTCTAC 57801 TAGGAAGGA GACTAAATA ACCACAGGTA AAGTGTTAAG CTGATTCTAC 57801 TAGGAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCCACAC 58001 TAGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCCACAC 58001 TAGGAATGGC TTTAAAGAAA ACCACAGGTA AAGTGTTAAG CTGATTCTAC 58101 TTTTGTTTCC TTTTAACGTA TTTTCTTTTCC TTTTTCCC TTTGGCC CACCACACACACACACACACACACACACACACACA	56901	ATAACTATGG	GGGTAAAATT	TTGTATATAT	CTGAACATTT	TTGTTCTTAA
57051 TATAATGTCA TTTTAGATT CATGCATCA AATCAGCCAT CAAATAATTT 57101 AGTTAATACT TGATTTTCC TCAGTTGTAA GAAGTGCTGT GTTTAAATTT 57151 CATTCAGAAT GTTCATTCC ACCTGAATTA ATATCTGTAA ATGTAGCAAT 57201 TATACACATA TTTTTAACAT GCATGTACTT AAATTGATTA TAGGGACTTG 57251 GTAAAATTAC TTATTTATAG GATATTTTAA ATTATACAA GGATTTTTA 57301 AATCTACAGT TCCCATTTGA AAGTAAAAGT AAGTCTTTGT TTACTAGGTT 57351 GTCACAGTA CAAGTAAACT TTCTACCTTT TGGTTAAATG TGAGTGCAG 57401 CCCCACAGTG AGAAATTGTT ATATTAGAAC TCTAATAGCT ATAATTATA 57451 GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAA 57501 CAACATTTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACACGTA 57551 CTCTCATAGC TTACGTGCTT TTCCTTTATT TGGGGTGTTT TTTATATATT 57501 CAACATTTT AAGTATCTT TACTCAGTAT GTGACACGTA 57551 CTCTCATAGC TTACGTGCTT TCCCTTTATT TGGGGTGTTT TTTATATATT 57601 AATTGGTATA TCGCATATTT TAAACTTGCC TAAATACATT TATTCAGACT 57601 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGCC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGCC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGCC 57801 CTTGTTCAGT AGAATGTGT TTAAGCCTTC CCCCCTTTT GTAAAGTTG 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGTATTCTC 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGGT CCTGTTTCAC 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA AAGTGTTAAG CTGTATTCAC 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGGTA 58001 TTTGTTTCC TTTTAACGTA TTTTCTTTAC AAAACAATA AGCCAGATA 58001 TTTGTTTCC TTTTAACGTA TTTTCTTTAC AAAACAATA AGCCAGATA 58001 TTTGTTTCC TTTTAACGTA TTTTCTTTAC AAAACAATA AGCCAGAAA 58001 AGGAAAGGCA GAACAAAAAC CTTTTTACCTT TTTGAGAATG GAACAAATA AACAAAAAAC GAAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACAAAAAC TTTTCTTTAC TTTTTCCCT TTCAGCAGAA 58001 TTTGGTAAT ACCAAAAAAC TTTTTTTTAC AAAAATTT AAAAAATTT AAAAAATTT AAAAATTT AAAAAA	56951	GGAAATAATC	ATTTTTACAT	ATCCAGGAAT	TTGAATTACT	CTCAAGTCAC
57101 AGTTAATACT TGATTTTCC TCAGTTGTAA GAAGTGCTGT GTTTAAATTT 57151 CATTCAGAAT GTTTCATTC ATCTGAATTA ATATCTGTAA ATGTATATA 57201 TATACACATA TTTTTAACAT GCATGTACTT AAATTGATTA TAGGGACTTG 57251 GTAAAATTAC TTATTTATAG GATATTTTAA ATGTAATCAA GGATTTTTA 57301 AATCTACAGT TCCCATTTGA AAGTAAAAGT AAGTCTTTGT TTACTAGGTT 57351 GTTCACAGTA CAAGTAAACT TTCTACCTTT TGGTTAAATG TGAGTGCAG 57401 CCCCACAGTG AGAAATTGTT ATATTAGAAC TCTAATAGCT ATAATTTATA 57451 GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAA 575501 CAACATTTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACACGTA 57551 CTCTCATAGC TTACGTGCTT TTCCTTTATT TGGGGTGTTT TTTATATATT 57561 AATTGGTATA TCGCATATTT TAAATTTTTAA AATTGAATT TATATGACT 57661 AATTGGTATA TCGCATATTT TAATCTTTTT TGGGGTGTTT TTTATATATTT 57761 TCTGTTAAAA TGCCATATTT TAATCTTTTA AATTTGAACT 57751 AAGAGAGTCT CTAGTTAGCT CACCTCTCAT TTGACTGGCA GAGTAAAGCT 57751 AAGAGAGTCT CTAGTTAGCT CACCTCTCAT TTGACTGGCA GAGTAAAGCT 57861 CTTGTTCAGT AGAATGTGTG TTAAGCCTTC CCTCCCTTTT GTAAAGTTG 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG 57901 TAGCATGTC TTAGAAAGGA GAGCGGTTAT ATTGACAGGC CCTATTGCC 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAAACAG AAGCCGCACA 58001 TTTGTTTGCC TTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATAC 58101 TTTGTTTGCC TTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATAC 58201 CTGAATGAAT GCAAAAACC TTTTCTTTAC CACAAAACAG CCTGGGTCAG GTGGGATACA 58201 CTGAATGAAT ACCAAAAACC CCTTAAGGCA GCTGGGTCAG CATTACATAA 58201 CTGAATGAAT ACCAAAAACC TTCTTGGGTAT TTTGAGAATG TTTCGCTTTTCCCT TTCAGCAGAA 58201 CTGAATGAAT TTAATATTTT CATAAAAATT TTTGAGAATG CTTTTCCCT TTCAGCAGAA 58201 CTGAATGAAT TTAATATTTT CATAAAAATT TTTGAGAATT TTTGAGAATT TTTGAGAAAATC TTTGAGAAAAACC TTTTGAGAATA TTTTGAGAATA TTTTGAGAATA TTTTTTTT	57001	CTATTAATTA	CAAGTCATTT	TGAACTCATT	CATTTTCTTT	GTGTTTGCTT
57151 CATTCAGAAT GTTTCATTTC ATCTGAATTA ATATCTGTTA ATGTAGAAT 57201 TATACACATA TTTTTAACAT GCATGTACTT AAATTGATTA TAGGGACTTG 57251 GTAAAATTAC TTATTTATAG GATATTTAA ATATAATCAA GGATTTTTA 57301 AATCTACAGT TCCCATTTGA AAGTAAAAGT AAGTCTTGT TTACTAGTTT 57351 GTTCACAGTA CAAGTAAACT TTCTACCTTT TGGTTAAAATG TGAGTGCAGC 57401 CCCCACAGTG AGAAATTGTT ATATTAGAAC TCTAATAGCT ATAATTTATA 57451 GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAA 57501 CAACATTTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACACTTG 57551 CTCTCATAGC TTACGTGCTT TTCCTTTATT TGGGGTGTTT TTTATATATT 57560 AAATTGGTATA TCGCATATTT AAACTTGGCA TAATTACATT TATATGGACT 57601 ATTGGTAAAA ACTTGTATTT TAATTTTAAA ATTTGAAATG CATCTATGTC 57761 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGCC 57761 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGCC 57751 AAGAGAGTC CTAGTTAGCT CACCTCTCAT TTGACTGGCA GAGTAAAGCC 57801 CTTGTTCAGT AGAATGTGT TTAAGCCTTC CCTCCCTTTT GTAAAGATG 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTAAG 57901 TAGCATGTC TTAGAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCC 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATA 58101 TTTGTTTGCC TTTTAACGTA TTTTCTTTAC 58201 CTGGAATGAAT GTGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATGCC 58251 AAGTCTTTA ACCAAAAATC TCTTTGGCT TTAGACAGT TTTCGCTTTTCCCT 58301 CTGGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TCCAGCAGA 58251 AAGTCTTTA ACCAAAAATC TCTTTGGGTAT TTTTGAGATTG TGTTCTACT 58301 CTTGGTTAT TTAATATTTT CATAAAAATTT GCTAGATTAC CTTGCTTTT 58351 TGCATCTCT CTAAGAGAAA ACAAAAGGTC CTTTTTGCCT TCCAGCAGA 58401 CTTGGTTAT TTAATATTTT CATAAAAATTT GCTAGATTAT ATGGAAAACA 58401 CTTCAGTGTT TGAAAAAATC TCTTTGGGTAT TTTGAGATTG TGTTCTACT 58351 TGCATCTCTT CTAAGAGAAA ACAATTAACTTTA ATGAGAAAACA 58401 CTTCAGTGTT TGAACAAATTT TTTGTAGTGG AAAAAAAAACA TAAAAACATAAAAAACA 58401 CTTCAGTGTT TGAAAAAATC TCTTTGGGTA TTTTGAGATTG TGTTCTTCTT 58451 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATAATATTA ATGAGAAAACATAAAAATTTTAAAAAATTTTTTAAAAAAAA	57051	TATAATGTCA	TTTTAGATTT	CATGCATCAT	AATCAGCCAT	CAAATAATTT
57201 TATACACATA TTTTTAACAT GCATGTACTT AAATTGATTA TAGGGACTTG 57251 GTAAAATTAC TTATTTATAG GATATTTAA ATATAATCAA GGATTTTTA 57301 AATCTACAGT TCCCATTTGA AAGTAAAAGT AAGTCTTGT TTACTAGTTT 57351 GTTCACAGTA CAAGTAAACT TTCTACCTTT TGGTTAAATG TGAGTGCAGC 57401 CCCCACAGTG AGAAATTGTT ATATTAGAAC TCTAATAGCT ATAATTATAA 57451 GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAA 57451 GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAA 57501 CAACATTTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACACGTA 57551 CTCTCATAGC TTACGTGCTT TTCCTTTATT TGGGGTGTT TTTATATATT 57601 AATTGGTATA TCGCATATTT AAACTTGGCA TAATTACATT TATATGGACT 57651 CTAAACAATA ACTTGTATTT TAATTTTTAA ATTTGAAATG CATCTATGTC 57651 CTAAACAATA ACTTGTATTT TAATTTTTAA ATTTGAAATG CATCTATGTC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC 57751 AAGAGAGTCT CTAGTTAGCT CACCTCTCAT TTGACTGGCA GAGTAAAGCC 57801 CTTGTTCAGT AGAATGTGT TTAAGCCTTC CCTCCCTTTT GTAAAGATTC 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCC 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58001 CTTTGTCTGC CTCGCCCACA CCTTAAGGCA GCAAAACAATA AGCCAGATAC 58001 TTTGTTTTGC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58101 TTTGTTTGC TTTTAACGTA TTTTCTTTTAC AAATCTCAGC CATTACATAA 58201 CTGAATGAAT GTGTAAAGAAA ACAAAAGGTC CTTTTTGCCT TTCAGCAGAA 58251 AAGTCTTTTA ACCAAAAATC TCTTGGGTAT TTTGGAATTG TGTTCTACTT 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTTAC CTTGCCTTTTT 58351 TGCATCTCT CTAAGAGAAA ACAAATTTTTTTTTTACAGATT TTTTGAGATTG TGTTCTACTT 583611 TGCATCTCT CTAAGAGAAA ACAAATTTTTTTTTTTTACAGATTT TTTTTTTTACAGTTT TTTTTTTTTT	57101	AGTTAATACT	TGATTTTTCC	TCAGTTGTAA	GAAGTGCTGT	GTTTAAATTT
57251 GTAAAATTAC TTATTTATAG GATATTTAA ATATAATCAA GGATTTTTAA 57301 AATCTACAGT TCCCATTTGA AAGTAAAAGT AAGTCTTGT TTACTAGTTT 57351 GTTCACAGTA CAAGTAAACT TTCTACCTTT TGGTTAAATG TGAGTGCAGC 57401 CCCCACAGTG AGAAATTGTT ATATTAGAAC TCTAATAGCT ATAATTTATA 57451 GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAA 57501 CAACATTTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACACTGTA 57501 CAACATTTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACACTGTA 57501 CAACATTATT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACATGTA 57601 AATTGGTATA TCGCATATTT AAACTTGGCA TAATTACATT TATATGACT 57651 CTAAACAATA ACTTGTATTT TAATTTTAA ATTTGAAATG CATCTATGTC 57651 CTAAACAATA ACTTGTATTT TACTTTTAA ATTTGAAATG CATCTATGTC 57651 CTAAACAATA ACTTGTATTT TCCCTTTTAC CAAATGGGGT ATGGTAAGCC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGCC 57801 CTTGTTCAGT AGAATGTGG TTAAGCCTTC CCTCCCTTTT GTAAAGGTC 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGATTCTAC 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGG CCTAATTGCCC 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGAATA 58051 CCTCTGGCCT CTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATGCC 58101 TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTTCCCT TTCAGCAGAA 58251 AAGTCTTTTA ACCAAAAATC TCTTGGGTAT TTTGAGATTG TGTTCTACTT 58351 TGCATCTCT CTAAGAGAAA ACAAAAGTT TTTGAGATTG TTTCAGCTT 58351 TGCATCTCTT CTAAGAGAAA ACAAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAAATTTGGGG CATATTATTA ATGAGAAACG 58401 CTTCAGTGTT TTAATATTTT CATAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAAATTGGTG CATATTATTA ATGAGAAACG 58401 CTTCAGTGTT TTGGACAATTT TTTGTAGTG AAAAAATTT AAGAAATTT AAGAAATTT AAGAAATTT AAGAAAATTT AAGAAATTT AAGAAATTT AAGAAATTT AAGAAAATTT AAGAAATTT AAGAAATTT AAGAAATTT AAGAAAATTT AAGAAATTT AAGAAAATTT AAGAAAATTT AAGAAATTT AAGAAAATTT AAGAAAA	57151,	CATTCAGAAT	GTTTCATTTC	ATCTGAATTA	ATATCTGTTA	ATGTATGTAA
57301 AATCTACAGT TCCCATTTGA AAGTAAAGT AAGTCTTGT TTACTAGTTT 57351 GTTCACAGTA CAAGTAAACT TTCTACCTTT TGGTTAAATG TGAGTGCAGC 57401 CCCCACAGTG AGAAATTGTT ATATTAGAAC TCTAATAGCT ATAATTTATA 57451 GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAA 57501 CAACATTTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACACTGTA 57501 CAACATTTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACACTGTA 57501 CAACATTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACACTGTA 57501 CAACAATTA TCGCATATTT AAACTTGGCA TAATTACATT TATTAGAACT 57601 AATTGGTATA TCGCATATTT TAATTTTTAA ATTTGAAATG CATCTATGTC 57601 TCTGTTAAAA TGCATTTCTT TCCCTTTGC CAAATGGGGT ATGGTAAGCC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGC CAAATGGGGT ATGGTAAGCC 57751 AAGAGAGTCT CTAGTTAGCT CACCTCTCAT TTGACTGGCA GAGTAAAGCC 57801 CTTGTTCAGT AGAATGTGT TTAAGCCTTC CCTCCCTTTT GTAAAGTTGT 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGATTCTAC 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTAAT ATTGGCAGG CCTATTGCCC 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAAAAACA AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAAAAAAA AGCCAGATAA 58051 CCTCTGGCCT CTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATGCC 58101 TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGT CTTTTTTTCCTT TACACAGAA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAAGGT CTTTTTTCCT TTCAGCAGAA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAAGGT CTTTTTTCCT TTCAGCAGAA 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACATTA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACATTA 58401 CTTCAGTGTT TGGACAATTT TTTTGTAGTGG AAAAGAAATG TGAAACATTA 58401 CTTCAGTGTT TGGACAATTT TTTTTTTTTTAAC TAAAATTTT AAAAAATTT AATGAGAAAAC 58401 CTTCAGTGTT TGGACAATTT TTTTTTTTTTAAAAATTT AATGAGAAAAC 58401 CTTCAGTGTT TGGACAATTT TTTTTTTTTTTTTTTTT	57201	TATACACATA	TTTTTAACAT	GCATGTACTT	AAATTGATTA	TAGGGACTTG
57351 GTTCACAGTA CAAGTAAACT TTCTACCTTT TGGTTAAATG TGAGTGCAGC 57401 CCCCACAGTG AGAAATTGTT ATATTAGAAC TCTAATAGCT ATAATTATA 57451 GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAA 57501 CAACATTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACAGTGTA 57501 CTCTCATAGC TTACGTGCTT TTCCTTTATT TGGGGTGTTT TTTAATATT 57501 AAATTGGTATA TCGCATATTT AAACTTGGCA TAATTACATT TATTAGAACT 57601 AATTGGTATA TCGCATATTT TAATTTTAAA ATTTGAAATG CATCTATGTC 57601 CTAAACAATA ACTTGTATTT TAATTTTAAA ATTTGAAATG CATCTATGTC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC 57751 AAGAGAGTCT CTAGTTAGCT CACCTCCAT TTGACTGGCA GAGTAAAGCC 57801 CTTGTTCAGT AGAATGTGT TTAAGCCTTC CCTCCCTTTT GTAAAAGTTCT 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGG CCTGATTCTAC 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGACACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58101 TTTGTTTGCC TTTTAACGTA TTTTCTTTAC AAAACAATA AGCCAGATAC 58101 TTTGGTTGCC TTTTAACGTA TTTTCTTTAC AAAACAATA AGCCAGAATA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAAGGTC CTTTTTGCCC TTCAGCAGAT 58201 CTGAATGAAT GTGTAAGAAA ACAAAAAGGTC CTTTTTTGCCT TTCAGCAGAT 58301 CTTTGCTTAT TTAATATTTT CATAAAAATT GCTAGTTACT CTTGCCTTTTT 58351 TGCATCTCT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTTGCTTAT TTAATATTTT CATAAAAATT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAATG TGAAACATTA 58401 TTTGCAGAGAA TCATTCTTGG TTCAACTAAC TACATATATTA ATGAGAAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG CATATTATTA AATGAGAAACA 58401 TGCTTCAGTGT TTGAACAATTT TTTGTAGTGG CATATTATTA AATGAGAAACA 58401 TGCTTCAGTGT TTGAACTATT TTTTGTAGTGG CATATTATTA AATGAGAAACA 58401 TGCTTCAGTGT TTGAACTATT TTTTTTTTTTT AAAAAAATT TTTTTTTTTAAACATTTT AAAAAATT TTTTTTTT	57251	GTAAAATTAC	TTATTTATAG	GATATTTTAA	ATATAATCAA	GGATTTTTTA
57401 CCCCACAGTG AGAAATTGTT ATATTAGAAC TCTAATAGCT ATAATTATATA 57451 GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAA 57501 CAACATTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACATGTA 57501 CTCTCATAGC TTACGTGCTT TTCCTTTATT TGGGGTGTTT TTTATATATT 57501 AAATTGGTATA TCGCATATTT AAACTTGGCA TAATTACATT TATTAGAATG 57601 AATTGGTATA TCGCATATTT TAATTTTAAA ATTTGAAATG CATCTATGTC 57601 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGCC 57751 AAGAGAGTCT CTAGTTAGCT CACCTCCAT TTGACTGGCA GAGTAAAGCC 57801 CTTGTTCAGT AGAATGGTG TTAAGCCTTC CCTCCCTTTT GTAAAGTTGT 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCCC 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58101 TTTGTTTGCC TTTTAACGTA TTTTCTTTAC AAATCCAGC CATTACATAC 58101 TTTGGTAGAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TTCAGCAGAC 58201 CTGAATGAAT GTGTAAGAAA ACAAAAAGGTC CTTTTTGCCT TTCAGCAGAC 58201 CTGAATGAAT TTAATATTT CATAAAAATT GCTAGTTAC TTCAGCAGAC 58301 CTTTGCTTAT TTAATATTTT CATAAAAATT GCTAGTTACT CTTGCCTTTT 58351 TGCATCTCT CTAAGAGAAA ACAATTTTGCTTTTTTAC 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTTT	57301	AATCTACAGT	TCCCATTTGA	AAGTAAAAGT.	AAGTCTTTGT	TTACTAGTTT
GGGATGAATT TCAATGAGTT TGGTTCTAAG AAATAATCTG TTGGTTTTAAA 57501 CAACATTTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACATGTA 57501 CTCTCATAGC TTACGTGCTT TTCCTTTATT TGGGGTGTTT TTTATATATT 57501 AATTGGTATA TCGCATATTT AAACTTGGCA TAATTACATT TATATAGACT 57601 AATTGGTATA TCGCATATTT TAATTTTAAAATGAATG CATCTATGTC 57651 CTAAACAATA ACTTGTATTT TAATTTTAA ATTTGAAATG CATCTATGTC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC 57701 AAGAGAGTCT CTAGTTAGCT CACCTCTCAT TTGACTGGCA GAGTAAAGCC 57801 CTTGTTCAGT AGAATGTGT TTAAGCCTTC CCTCCCTTTT GTAAAGTTCT 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGG CCTATTGCCC 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58001 ATTGTTTGC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58151 TTTGGAAATG GACACAAGC TAGTTATTAC TAACATTTTT AAAGACATTA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAAGGTC CTTTTTGCCT TTCAGCAGAA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAAGGTC CTTTTTGCCT TTCAGCAGAA 58301 CTTTGCTTAT TTAATATTT CATAAAATTT GCTAGTTATC TTCAGCAGAAC 58301 CTTTGCTTAT TTAATATTT CATAAAATTT GCTAGTTATA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAATG TGAAACTTTA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGT CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAATG TGAAACTTTA 584401 CTTCAGTGTA TGGACAATTT TTTGTAGTGG AAAAGAATG TGAAACTTTA 584401 CTTCAGTGTA TGGACAATTT TTTGTAGTGG AAAAGAATG TGAAACTTTA 584401 CTTCAGTGTT TGGACAATTT TTTGTAGTGT AAAAATTT AAAAAATTT AAAAAATTT AAAAAATTT AAAAAA	57351	GTTCACAGTA	CAAGTAAACT	TTCTACCTTT	TGGTTAAATG	TGAGTGCAGC
CAACATTTT AAGTATCAGA TATTCATCTT TACTCAGTAT GTGACATGTA 57551 CTCTCATAGC TTACGTGCTT TTCCTTTATT TGGGGTGTTT TTTATATATT 57601 AATTGGTATA TCGCATATTT AAACTTGGCA TAATTACATT TATATGGACT 57651 CTAAACAATA ACTTGTATTT TAATTTTAA ATTTGAAATG CATCTATGTC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC 57701 AAGAGAGTCT CTAGTTAGCT CACCTCTCAT TTGACTGGCA GAGTAAAGCC 57801 CTTGTCAGT AGAATGTGTG TTAAGCCTTC CCTCCCTTTT GTAAAGTTGTC 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGATTCTAC 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCCT 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCGCACAC 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGAGTA 58101 TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAC 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TTCAGCAGAC 58201 CTGAATGAAT GTGTAAGAAA ACAAAAAGGTC CTTTTTGCCT TTCAGCAGAC 58251 AAGTCTTTTA ACCAAAAAATC TCTTGGGTAT TTTGAGATTG TGTTCTACTTC 58301 CTTTGCTTAT TTAATATTTT CATAAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACAC 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAATG TGAAACTTTC 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAATG TGAAACTTTC 58451 TGCATCCTTT CTAAGAGAAAA ACAATTGGTG CATATTATTA ATGAGAAACC 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAATG TGAAACTTTC 58451 TGCATCCTTT CTAAGAGAAAA ACAATTGGTG CATATTATTA ATGAGAAACC 58451 TGCATCCTTT CTAAGAGAAAA ACAAATTGGTG CATATTATTA ATGAGAAACC 58451 TGCATCCTTT CTAAGAGAAAA ACAAATTACC TACTAAATTTA AAAAATTA AAAAAA	57401	CCCCACAGTG	AGAAATTGTT	ATATTAGAAC	TCTAATAGCT	ATAATTTATA
57551 CTCTCATAGC TTACGTGCTT TTCCTTTATT TGGGGTGTTT TTTATATATT 57601 AATTGGTATA TCGCATATTT AAACTTGGCA TAATTACATT TATATGGACT 57651 CTAAACAATA ACTTGTATTT TAATTTTAAA ATTTGAAATG CATCTATGTC 57651 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC 57751 AAGAGAGTCT CTAGTTAGCT CACCTCTAT TTGACTGGCA GAGTAAAGCC 57801 CTTGTTCAGT AGAATGTGTG TTAAGCCTTC CCTCCCTTTT GTAAAGTTGT 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGATTCTAC 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCCT 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58051 CCTCTGGCCT CTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATGCT 58101 TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TCCAGCAGAT 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TCCAGCAGAT 58301 CTTTGCTTAT TTAATATTTT CATAAAAATT GCTAGTTAC TCTTGCTTTTT 58351 TGCATCTCT CTAAGAGAAA ACAATTGGTG CATATTATAA ATGAGAAACC 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG CATATTATTA ATGAGAAACC 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTTG CATATTATTA ATGAGAAACC 58451 TGTTGCAGAAA TCATTCTTGG TTCAACCTAAC TACATATATAAAAATTT AAAAAAATTT AAAAAAATTT AAAAAA	57451	GGGATGAATT	TCAATGAGTT	TGGTTCTAAG	AAATAATCTG	TTGGTTTTAA
AATTGGTATA TCGCATATTT AAACTTGGCA TAATTACATT TATATGGACT TOTALACAATA ACTTGTATTT TAATTTTTAA ATTTGAAATG CATCTATGTC TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC AAGAGAGTCT CTAGTTAGCT CACCTCAT TTGACTGGCA GAGTAAAGCC TCTGTTCAGT AGAATGTGTG TTAAGCCTTC CCTCCCTTTT GTAAAGTTGTG TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGATTCTAC TAGCATGTCC TTAGAAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCCT GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACAC S8001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58101 TTTGTTTGC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58151 TTTGGAAATG GACACAAGGC TAGTTATTC TAACATTTTT AAAGACATTA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TCAGCAGAC 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTACT CTTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACAC 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG CATATTATTA ATGAGAAACAC 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAAACTTAAACTTTC TTTGTTGCAGAAA TCATTCTTGG TTCAACCTAAC TACTAAATTT AAAAACTTAAACTTTC TTTGTTGCAGAAA TCATTCTTGG TTCAACCTAAC TACTAAATTT AAAAACATTAAACTTCAACTTAAACTTCAACTTAAACTTCA	57501	CAACATTTTT	AAGTATCAGA	TATTCATCTT	TACTCAGTAT	GTGACATGTA
57651 CTAAACAATA ACTTGTATTT TAATTTTAA ATTTGAAATG CATCTATGTC 57701 TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC 57751 AAGAGAGTCT CTAGTTAGCT CACCTCTCAT TTGACTGGCA GAGTAAAGCC 57801 CTTGTTCAGT AGAATGTGT TTAAGCCTTC CCTCCCTTTT GTAAAGTTGT 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTAAG CTGATTCTAC 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCCT 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58101 TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58151 TTTGGAAATG GACACAAGGC TAGTTATTC TAACATTTT AAAGACATTA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAAGGT CTTTTTGCCT TTCAGCAGA 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTACT TTTGAGATTG 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAAACTTAA	5 7 551	CTCTCATAGC	TTACGTGCTT	TTCCTTTATT	TGGGGTGTTT	TTTATATATT
TCTGTTAAAA TGCATTTCTT TCCCTTTGCC CAAATGGGGT ATGGTAAGTC 57751 AAGAGAGTCT CTAGTTAGCT CACCTCTCAT TTGACTGGCA GAGTAAAGCC 57801 CTTGTTCAGT AGAATGTGT TTAAGCCTTC CCTCCCTTTT GTAAAGTTGT 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGATTCTAC 57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCCT 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGGTAC 58101 TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAAATCTCAGC CATTACATAA 58151 TTTGGAAATG GACACAAGGC TAGTTATTAC TAACATTTTT AAAGACATTA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAAGGTC CTTTTTGCCT TTCAGCAGAC 58301 CTTTGCTTAT TTAATATTTT CATAAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATGGTG CATATTATTA ATGAGAAACC 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTATACATATACATTTT TTTGTAGTGG AAAAGAAATG TGAAACTTTT 58451 TGCATCTCTT TTGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTATACATATACATTTT TTTGTAGTGG AAAAGAAATG TGAAACTTTTTTTTTT	57601	AATTGGTATA	TCGCATATTT	AAACTTGGCA	TAATTACATT	TATATGGACT
57751 AAGAGAGTCT CTAGTTAGCT CACCTCTCAT TTGACTGGCA GAGTAAAGCCCCTTTS TTGATCAGCT AGAATGTGTG TTAAGCCTTC CCTCCCTTTT GTAAAGTTGTG 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGATTCTACCCTTTGTAGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGATTCTACCCTTTGCTGTTCTAGAAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCCCTTTGCTGTTTTGAGAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCCCTTTGCTGTTTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAACT CACCAACAAA GCAAACAATA AGCCAGATAACT CCTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATGCTGTTTTTTTTTT	57651	СТАААСААТА	ACTTGTATTT	TAATTTTTAA	ATTTGAAA T G	CATCTATGTC
57801 CTTGTTCAGT AGAATGTGT TTAAGCCTTC CCTCCTTTT GTAAAGTTGT 57851 TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTAAG CTGATTCTACC 57901 TAGCATGTCC TTAGAAAAGA GAGCGGTTAT ATTGGCAGGT CCTATTGCCT 57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58051 CCTCTGGCCT CTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATGCT 58101 TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAC 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TTCAGCAGAC 58251 AAGTCTTTTA ACCAAAAAATC TCTTGGGTAT TTTGAGATTG TGTTCTACTT 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTTT 58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAAC	57701	TCTGTTAAAA	TGCATTTCTT	TCCCTTTGCC	CAAATGGGGT	ATGGTAAGTC
TCTGAACAGA GCTGCATAAA ACCACAGGTA AAGTGTTAAG CTGATTCTACCAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	57751	AAGAGAGTCT	CTAGTTAGCT	CACCTCTCAT	TTGACTGGCA	GAGTAAAGCC
57901 TAGCATGTCC TTAGAAAGGA GAGCGGTTAT ATTGGCAGGT CCTATTGCCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	57801	CTTGTTCAGT	AGAATGTGTG	TTAAGCCTTC	CCTCCCTTTT	GTAAAGTTGT
57951 GGCGTTTCTG ATCAATAACT CACCAACAAA CAGAAAACAG AAGCCGCACA 58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58051 CCTCTGGCCT CTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATGCT 58101 TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58151 TTTGGAAATG GACACAAGGC TAGTTATTAC TAACATTTTT AAAGACATTA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TTCAGCAGAT 58251 AAGTCTTTTA ACCAAAAATC TCTTGGGTAT TTTGAGATTG TGTTCTACTT 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTTA 58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAAA	57851	TCTGAACAGA	GCTGCATAAA	ACCACAGGTA	AAGTGTTAAG	CTGATTCTAC
58001 AGGAAAGGCA GAACTAAATA AATGGTAATA GCAAACAATA AGCCAGATAC 58051 CCTCTGGCCT CTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATGCT 58101 TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58151 TTTGGAAATG GACACAAGGC TAGTTATTAC TAACATTTTT AAAGACATTA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TTCAGCAGAA 58251 AAGTCTTTTA ACCAAAAATC TCTTGGGTAT TTTGAGATTG TGTTCTACTT 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTTA 58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAAA	57901	TAGCATGTCC	TTAGAAAGGA	GAGCGGTTAT	ATTGGCAGGT	CCTATTGCCT
58051 CCTCTGGCCT CTCGCCCACA CCTTAAGGCA GCTGGGTCAG GTGGGATGCT 58101 TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58151 TTTGGAAATG GACACAAGGC TAGTTATTAC TAACATTTTT AAAGACATTA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TTCAGCAGAA 58251 AAGTCTTTTA ACCAAAAATC TCTTGGGTAT TTTGAGATTG TGTTCTACTT 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTTA 58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAAA	57951	GGCGTTTCTG	ATCAATAACT	CACCAACAAA	CAGAAAACAG	AAGCCGCACA
TTTGTTTGTC TTTTAACGTA TTTTCTTTAC AAATCTCAGC CATTACATAA 58151 TTTGGAAATG GACACAAGGC TAGTTATTAC TAACATTTTT AAAGACATTA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TTCAGCAGAT 58251 AAGTCTTTTA ACCAAAAATC TCTTGGGTAT TTTGAGATTG TGTTCTACTT 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTTA 58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAAA	58001	AGGAAAGGCA	GAACTAAATA	AATGGTAATA	GCAAACAATA	AGCCAGATAG
TTTGGAAATG GACACAAGGC TAGTTATTAC TAACATTTT AAAGACATTA 58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TTCAGCAGAA 58251 AAGTCTTTTA ACCAAAAATC TCTTGGGTAT TTTGAGATTG TGTTCTACTA 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTACT CTTGCTTTTA 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTTA 58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAAA	58051	CCTCTGGCCT	CTCGCCCACA	CCTTAAGGCA	GCTGGGTCAG	GTGGGATGCT
58201 CTGAATGAAT GTGTAAGAAA ACAAAAGGTC CTTTTTGCCT TTCAGCAGATGAGAAAAAAAAAA	58101	TTTGTTTGTC	TTTTAACGTA	TTTTCTTTAC	AAATCTCAGC	CATTACATAA
58251 AAGTCTTTTA ACCAAAAATC TCTTGGGTAT TTTGAGATTG TGTTCTACTT 58301 CTTTGCTTAT TTAATATTTT CATAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACC 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACCTTT 58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAAC	58151	TTTGGAAATG	GACACAAGGC	TAGTTATTAC	TAACATTTTT	AAAGACATTA
58301 CTTTGCTTAT TTAATATTT CATAAAATTT GCTAGTTACT CTTGCTTTTT 58351 TGCATCTCTT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACCT 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTTT 58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAAC	58201	CTGAATGAAT	GTGTAAGAAA	ACAAAAGGTC	CTTTTTGCCT	TTCAGCAGAT
58351 TGCATCTCT CTAAGAGAAA ACAATTGGTG CATATTATTA ATGAGAAACA 58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTT 58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAA	58251	AAGTCTTTTA	ACCAAAAATC	TCTTGGGTAT	TTTGAGATTG	TGTTCTACTT
58401 CTTCAGTGTT TGGACAATTT TTTGTAGTGG AAAAGAAATG TGAAACTTT 58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAA	58301	CTTTGCTTAT	TTTATATTT	САТААААТТТ	GCTAGTTACT	CTTGCTTTTT
58451 TGTTGCAGAA TCATTCTTGG TTCAACTAAC TACTAATTTT AAAACATAA	58351	TGCATCTCTT	CTAAGAGAAA	ACAATTGGTG	CATATTATTA	ATGAGAAACA
ver	58401	CTTCAGTGTT	TGGACAATTI	TTTGTAGTGG	AAAAGAAATG	TGAAACTTTA
58501 GTCTTAAATA TATATAAAGT TTATATGGGT AAATATATAT	58451	TGTTGCAGAA	. TCATTCTTGG	TTCAACTAAC	TACTAATTTT	AAAACATAAA
	58501	GTCTTAAATA	TATATAAAGI	TTATATGGGT	PATATAAAA	TACATATAAT

38/124

58551	ATATGTTTTA	TATTTATACA	TAATATACTA	TATATTTATA	CATGATATAC
58601	TTTTATAAAT	CCCATATAAA	TAATAAAATG	CTCTAGGCAT	ATATGTGTGT
58651	GTGTGTATAT	ATGTATATAT	ATATATACCT	TCATAACATA	САТАТАТААА
58701	ATACTATATT	ATATATACTC	TAGGTATACA	TATATGCCTA	TATATGCACC
58751	ATTATATAT	ТАТАТТАСТА	TATAATAT	AGTATATATT	АСТАТАТАТА
58801	СТАСТАТАТА	ттастатата	ATATATAGTA	TATATATAGT	ATATATTATA
58851	TAGTAATATA	ттастатата	ТАААТАТАТА	ATATGTGTGT	ATATATATAT
58901	ATGCCTAGAG	TGTTTTTAAT	TTGTCAGTGG	GCTGTCTCTG	TAATCTATAT
58951	GAAGAAATAA	AATGTAGACG	TTATGTATAA	TGATATTTCA	TCTTGTTGTG
59001	TGGCATCATA	GTAATTCTCT	TTACATATCT	ATTCAGATTA	CTTTTGCACC
59051	AGCCTAATAC	ATTGTATGAT	TCCAAAACCA	AAGAGAGTAT	GGATTGAAAT
59101	GATATTCCCT	TTACTAATAC	TCAGTCTTGT	CTATTTTATT	ACCTTTATAG
59151	ACTTCACCTA	ACACAAGTCA	GGGGATATTT	ATCATCATAT	TAATACAATT
59201	TTACTCTGAC	CTTAAAATTA	TGCAACTGCT	AAAGGAAAA	TCAGAACCAA
59251	ATAAACTGTC	ATTAACAACC	CCCCTGAAAA	TCCATATTTT	TTAAAAGTCA
59301	TTTTATCAAG	TCTCTCAGAC	AAGATGTGAT	ACCCTATAAG	TTTAATCAGT
59351	TTTACTTTCC	ATTTTCTCTT	CATTAAGGTG	ATAAAGATTA	TCATTAGTAG
59401	AAAAATTTTC	CCTTATTTGC	CTCCTTTTCC	ATTTACCCTA	TTGAGTGAGA
59451	AATTTAGCCT	CTCATAACTT	CTAAAGTAGC	AATGTTAATC	TGATAAACTA
59501	AACCAAGGTG	AGATAAATTT	AAGACAATAT	TTTTTTTCTT	CAACTTTTAA
59551	GTTCTGGCGT	ACATGGGCAG	GATATGCAGG	TTTGTTACAT	GGGTCAACAT
59601	ATGCCATAGT	GATTTGCTGC	ACAGATCAAC	TCATCGCCTA	GATATTAAGC
59651	CCACCATCCA	TTAGCTATTC	TTCCTGATTC	TCTCCCTCCC	CTAACTCCCA
59701	CTGACAGGCC	CTAGTGTGTG	TTGTTCCCCA	CCATGTGCCC	ACGTGTTCTC
59751	ATCGTTCTAC	TCCCACTTAT	AAGTGAGAAG	AAGTGGTGTT	TGGTTTTCTC
59801	TTCCTGTGTT	AGTTTGCTGA	GGATAATGGC	TTCCAGCTCC	ATCCATGTCC
59851	CTÇCAAAGGA	CATGACCTCA	ТТССТТТТТА	TAGCTGCATA	GTATTCCATG
59901	GTGTATATGT	ACCACATTTT	CTTTATCCAG	TTTATCATTG	GCATTTGGGT
59951	TGATTTCATG	TCTTTGCTAT	TGTGACTAGT	GCTGCAGTGA	ACATAATGCA
60001	TGCAGGTATC	ТТТАТААТАС	AATTATTAT	ATTCCTTTGG	GTATATACCC
60051	AGTAATGGGA	TTACTGGGTC	AATTTCTGCT	TCCAGATCTT	TGAGGAATCA
60101	TCACACTGTC	TTCCACATTC	GTTGAACTAA	TTTACTCTCC	CACCAACAGT
60151	GTAAAAGCAT	TCCTTTTTCT	CTGAAACCTC	TGCAGCACCI	GTTATTTCTT
60201	GACTTTAATA	ATCACCATTO	TGACTGCTGT	GAGATGGTAT	° CTCATTGTGG
60251	TTTTGATGTT	ACCCTTTTT	TTATATGTT	GTTGGCTGCA	TGACTGTCTT

6	0301			TCCTGTCTAT		
6	0351			TACTTGCGCA		
6	0401	ACTCTAGATA	TTAGACCTTT	GTCAAATGGA	TAGATTCCAC	AAATGTTCTC
6	0451	CCATTCTGCA	GATTGTCTGT	TCACTCTGAT	GATAGTTTCT	TTTGCTATGC
6	0501	TGAAGGTCTT	TAATTAGATC	CTATTTGTCA	ACTTTTGCTT	TTGTTGCAAT
6	0551	TGCTTTTGGA	GTTTTTGTCA	TAAAATCTTT	GCCCTTACCT	ATGTCTTGAA
6	0601	TAATATTGCC	CAGATTTTGT	TCTAGGGTTT	TTATAGTTTT	TGGATTTTAC
6	0651	TTGTAAGTCT	TTAATCCATC	TTGGGTTAAT	TTTTGTATAA	GGTATAAGGA
6	0701	AGTGGTCCAG	TTTTAATTTT	CTGTATATGG	CTAGTCAGTT	CTACCAGCAC
6	0751	CATTTATTAA	TTGTTTTTTC	AGTTTCCCCA	TTGCTTGTTT	TTGTCAGGTT
ϵ	0801	TGTCGAAGAT	CAGATGGTTG	TAGGTGTTTT	TCACTAACAT	AATCATAACA
ϵ	0851	TACATTTCAT	TGAAAACAAC	ACGACTCAAA	ATGTTCTTTA	GTAACCAGTT
ϵ	0901	ATAAGTTTTT	TTGTGCATAA	TTACAAACTG	CCATTCTAAT	CATAAACATT
ϵ	50951	TTGTGGTTAC	TTATAGCTAG	AAAATGTGAG	TAATATAGTT	TATACAGCAT
6	51001	ACTCTTTACA	ATCCCGATTT	CTTTGTCAAA	СТТТААТТСА	TATTAAATTG
ϵ	51051	ATAAAGTATA	CACAAAGGGT	AAAGGAGAGT	AATTTTCTTC	AAGTTTCACA
6	51101	TTTAAGGATT	CATAGTAGAA	TGATTAAACC	TTACATTTCT	CCACTATAAG
6	51151	GAGAATTAAA	ATGGAAATAT	TGAGTAAAAT	CTTACATTTC	AŢTTAGTAAG
(5 1201	TGCTAATAAA	GGGTTTCTGC	CATAATTTTC	CTTATTTTAA	AAGAAAACAC
(51251	ACAATTTTAG	TTTTAGGTTT	TAGTAACCAA	TTTTATGGGC	ATAGTGGGAA
,	61301	TATTTCTAAC	AGGTTAAACT	GAAGTGACCA	TCATGGGCAT	TATATATATA
•	61351	TTTAAATTCA	CATATATGAA	TACTATACAG	TAAAAACTAA	CTTATGCTAC
,	61401	ATACCACATO	GATGAATCTC	AAAACCCATG	TAAAGCAAAA	GAAAACCACA
	61451	AAAGAATCAT	GCCATTTGAT	TACACTTGGG	TGGTTTTTAA	AACAGGCATA
	61501	TCTAAACATA	GTGCTTTAAA	GTGTAAGCTT	GGGTAGGAAA	AACTATAAAG
	61551	AAAAGCAAGA	AAATAATTAC	CACAGAAGTT	ATGTAGAGGT	TATCTTTGGG
	61601	GAAGGAAGAC	GGAATAATAA	GAGAGGGACA	AAGAAGAGCT	TCTTGGTTCT
	61651	TGÁAATGTCC	TATTTCTTGA	CTTGGCTGGT	GAATGCATGA	ATGTTCACTA
	61701	TGTGATAAGT	CAGGGGGCTC	TTTTCATTTT	GTTCACTTT	ATATATGTGT
	61751	GGATTTTTC	CACAGTTGAA	AGGTAAAGTT	CAGGTGTGGT	GGCTCACACC
	61801	TATAATCCC	GCCAACACT	TGCGGGGCCA	AGGTGGGAAC	AATTACTTGA
	61851	GGCTAGGAG'	r TGGAGAGTA	A CCCAGGCAAC	AGGGTGAGG	ACTGTCTCTA
	61901	CAGAAAATG	AAAAAAAA P	A AAAAAAGTAG	CTGGGCATG'	TGGTACATGC
	61951	CTATAGTTC'	r TGCTACTTG	GAGGCTGAGG	CAAGAGGAT	ACTTTAGCCC
	62001	AGGAGTTTA	A GCCTGCAGT	AACTAGGGTT	GTGGCACTG	CACTCCAGCCT
	62051	GGGTGGCAG	C AAGACACTG	A GTAAAAGAAT	TAAATAAAA	A ATTAAAAGTT

Fig. 2 (cont'd 34)

62101	AAAATATAGG	AAAAAATGAG	CATAGCCTTA	TGCTAATTTT	TCAGTTACTA
62151	GGTCTGATAT	CATCACATTC	CTTGCTTGTC	ATTGAAAATT	TTTTAAACTA
62201	TGATACTTTT	TTTTAGTGGT	ATTTATCCAA	TTAAATCTGC	TAACAAATTT
62251	GGTGTATAAA	TCTCAAGGGT	AAGGGTATGT	GGAGAGTGGG	TGTGTTTGTG
62301	TGAGAGAGAG	AGAGAGAAGA	GGGGGAGGAG	AAAAAGAAGG	AAGAGGGAAG
62351	GAATGGAAAA	AGATAATAAA	GAGTTGTTCT	GATAGATTAA	TCTTTAGTAG
62401	ATGTATTCCC	TACAAATTGT	TTTTCTCCAT	ATTGCAGTGT	CAGGTAAAGA
62451	AAGGCATCCC	AGGATGAATT	CAGAGCTAGG	AACATGCACC	TTTGTATCAT
62501	AATGCTAATG	GAAGGAACAT	GTACATTCTA	ACTGTTACCA	ATAATGGAA T
62551	ATATTTCCGT	TATTAAGTAA	TAAGCTTTAA	TTCTTTGTAT	TTTTGTGATC
62601	CATTTGATAG	TAGGTGCCTC	AGCATTTCCA	CTCTGCTATA	AGTACATGGA
62651	GATATATTT	ATTTAAGTCA	TCTTATTCAT	GTCTTTCAAA	AAGAAATTCA
62701	TTTTTGGCCA	AGGATTTCCA	AATTTTGCCC	CATATATAGG	TATAGTTTAT
62751	TATAGACTTC	GTTTGCAAAA	TATTAAATCC	TTATATCCTT	TTAGGGACAC
62801	TTTAAAATTAA	TATAAGTTTG	AGATAATGTA	CTTGCAGTTC	TACCTCAGGC
62851	CGTGGTGAGA	GATTGAAGTG	CCTCTTCATT	TTAACATTTT	GGGTTCAAGT
62901	TGTTGCATAA	GGGCATGCAA	ATGGAAACTG	GCCTATTTTT	GAGCTTTAAT
62951	AAAATCGTCA	AATACTTCTT	AATCTTAAGA	GTTATAGTTA	TGTACTACAA
63001	TATGTATAAT	TCTCTAATAT	ТТААААСААА	ACCTGAAAGC	CACAAAAGCT
63051	TACTGTGAAA	TAAAATGTGA	TGGAATATTA	TTTCTAACTG	GCTTACCTGT
63101			TATGAAGTAG		
63151	GAGTTTGGAA	AGTAAAGATA	ACTCTTTTCA	ATTCAATTCT	TTGTAAGTAG
63201			TTAGCTGTCA		
63251					AAGGTCATCA
63301					TCAGTGACCT
63351					CTTTATATTC
63401					GAAGGAGTTA
63451					CATTAAATGC
63501					AAAAGATGAA
63551					CTATGATAGT
63601					TTGTAAAATG
63651					CTATGTTTCT
63701					AAGAGCTTAG
63751					GGAACAAAAG
63801	GTATGTTCAC	AAATTGCCA	C TGGAGACTGA	AAGAAGACAG	CAAATTGCAT

63851	AGGATTCTTA	AATAATACCT	GAAGCTCCTT	AAAAATAATA	TTCCAGGCTG
63901	AGTGCAGAGG	CTCATGCCTG	TAATCTCACC	ACTTTGGGAG	ACCAAGGTGG
63951	GTGGATCACT	TAAGGTCAGG	AGTTCGAGAC	CAGCCTGGCC	AACGTGGTAA
64001	AATCCCATCT	CTACTAAAAA	CACACACAAA	AAATTAGCTG	GGCATGGTGG
64051	CGGGTACCTG	TAATCCCAGC	TACGCAGGAG	GCTGAGGCAG	GAGAATCACT
64101	TGAACCCAGG	AGGCAGAGGA	CGCAGTGAGC	CAAGATCACA	CCACTGCACT
64151	CCAGCCTGGG	AGACAGAACA	AAAAAAAGAG	ТААТААТААТ	TATAATAAAA
64201	TCAATTCTAT	ACTAAATTAA	AACAATGATA	ATACCTTTCT	TTTCAGATTT
64251	TAATTTAAAG	ATTTTATCAG	TTTACTCCAT	ATTGGAACAC	ACAAAGGCAA
64301	ACAAAATCCT	TGCTGGGCAG	TCTATTAATT	TACTTCTGGA	TGGAACTAGT
64351	AAAAGAATAC	TGAATGTTAA	GAAAGAGAAA	CAGTCACATA	AGAGAATATT
64401	CTGGGGGCAA	ACTGTTATGC	AGTTGACAAG	AATCACACTT	TGATAAGAAC
64451	TTTCACAAAT	ACATGGTCAC	TAAATCCAGC	TATAGGGCAT	GGCTGTAGGC
64501	TAAGACACAC	AGGAAGGATG	CCTGGGACTC	TGCCAAGTAA	GGGACTTCAG
64551	GTTACAGCAG	CTATGAAACA	AAGGCCAATC	CTGTGTAATT	TTGAAATAAC
64601	AAGAACTAGT	TGCCATCTAG	GGATATCACC	TTTGAAGAAA	AGTCATTTGT
64651	TATATCAAAA	TACTTAAAAT	GAACCTAAAG	GATTTTATGG	TATGAAAGAA
64701	GGTATACCAA	AAAGAAAGGA	ACGGAGAATT	TAGTTCACGA	AGACAAATGT
64751	ATTAAAAAGG	TCCATACTGC	ATAGAAAGCC	TGGTCACCTT	TCCTGTGATG
64801	ACCAGTTAGC	TTACTTCTCT	GCTGTTAGTC	CAGTGGCCTT	AACTTCCTTG
64851	GATAGGTATC	AGAGATAGGT	GAAACCTATA	GAATTCTATG	GAGTGTGTGT
64901	GTGTGTGTGT	GTGCGTGCGT	GTGTGTGTGT	GTGTGTGTAT	GAAAACTGTA
64951	AATGTGCATA	AATGATCAGG	TGTCCAGAGC	TTTCATCTAA	TTCTCAAAGA
65001	GACCCATTAT	ATCAGAAGTT	TTGGGTATTT	TCAAGAATGC	GTTCCTCTAT
65051	CTATCCATAG	GAATGGCTTC	AGTTTTGTCT	TTAGATTCTG	TAAGTTATGT
65101	GATTAGCTTT	ACAAAAGTAG	TATGTATTAC	CAAATTTTGT	CACTTTACAA
65151 -	AAGTTTATTT	TTAAAACAGA	ATGAATAGTT	CAATGAAATC	AAAAGAGTAA
65201	ATCGAATATT	CTTATAATTG	CCAAGTATTA	TTAGCACATT	GTATTCTCTC
65251	TCATATTCTC	CGTATACCCT	GCCCGTGAGA	GAGAATATTA	TCCATTCCTG
65301	GAAAATCTGT	TCTAGCACAG	CTAACAAACT	CCTTTTGAAA	САТАААТТТТ
65351	CCTTTCTTTC	CTCCCTCCCT	CCCTCCTTCC	CTCCCTTCCT	TCCTTTTTCC
65401	TTTTCTTTCC	TTCCTTCCTG	CCTCTTTTCT	ATCCTTCCTT	TCTCCTCCCT
65451	TACACCCTTT	CTTCCTTCTT	TTCCCCCTCT	GTCTCCCTCT	CTTTCTTTTT
65501	TGCTGCAGCT	TGTCACTTCA	CTATGTAATA	TAAGAACCCA	GCAAATAGAA
65551	TTAGAAGGCT	TTTTAGAGCA	GCTGACGGGA	AAGAATAAAA	ACACTGGCCC
65601	CCAGTATTCT	TGAATGAGAA	TTCTGGCTAT	GTCTGTTAAA	AGCTGGGTAA

65651	TCTTGAGCAA	GTTTATCTAA	CCTTTCTTGA	ACCTCAAATT	CACCTTCTTA
65701	AAAGTGGGGA	TGATAATGAC	TACCTTGTAG	GATCACCATG	AGGAGTAAAT
65751	CAGATACTGT	TATCATGTCA	CATGCTAGGG	GCTACCAAAA	AATATTACCT
65801	TCCTTTACAT	TTCTCTTTTT	CCCTTGAAAA	TTATAAGATA	ACACCAAATT
65851	CCTCACTGGG	CATATACCAA	GCATATTGTT	GGAAATGAGT	GTTAGAATTT
65901	AAGTCTCAAT	ATCTTTAATA	AGTCAAAATT	AATAGAATTT	TTGTCCTCCA
65951	CCCAATATTT	TCTTGAACTC	TGTTATATCT	GTAAGTGAAT	TTTCTCATAG
66001	AAACATACAG	AGAATTTTCT	CATATACATA	TAGAAAAAA	TGTAGAGGTA
66051	TGTTAATGTA	TAATGCCTAT	GATTAATGCC	TGAATATTTA	AAAATAATTT
66101	CTATAACATA	AGAGATTTTA	TAATGTGTCŤ	ACATAATCCT	TAAAATAACA
66151	TTGCCAAAAT	TATAAAATTT	TCTCAGAAGA	TATCAGAATG	TCTCATATTG
66201	TCCTTATCAC	TTTTTTAACT	GAAAATAAAA	TCACTTCTTT	TTGAATTGCA
66251	AACTGTATAC	ACACAACAAT	CATGGTTAAC	TAGTTTATTA	ATTTGAGATT
66301	ATAACTTGCC	TATTCTCAAA	GTGATATTTA	AAAGCCTATA	AAATTATTTG
66351	CAATGTGAAA	TGGTATAATT	CAAAGACAGA	ATCTAATTAA	AACCAGTAGA
66401	ATAATGTATA	TAACAATATA	CCTCAGCCTA	GATAATTACT	ACTGCAAGGC
66451	ACTGAAATGA	ATTGAATTTC	AAGGAAGCTA	TGGTACAAAG	GGAGATTGTT
66501	AGGTGTGTTT	TATTCTCATT	TTCTGACCAG	GAGAGCATAA	TTTAGACTGA
66551	GGAGAAAACT	CTTTGGCACT	AAATTCAAGG	ACGAATTTAT	TGCCAAGGTT
66601	TTTAAATTGG	GGTCATGGAA	TAACAAAAGA	CAAAATCACT	GTTCAAATAG
66651	ACATTTCTCT	AAAAGCTAAG	GGCATAACAT	TTAATCATAT	TTCACTAAAG
66701	GCATTTCTTC	AGGGAGCTGA	GATAAAAGGG	TATATTGCTC	TCTGGTGATT
66751	CAACAATCCT	GAGAAAAGGC	TTGTGAAGTA	TAGAGCAGAG	ATTCTTAAAC
66801	TCCCTTCCCC	AAGTTATAAG	TTTCATTTGT	CTATATAGTC	ATTCATCAAG
66851	TTTATATTGA	ATTTGTGCTC	TTCTAATGAC	AAAACAGTAC	AGACAATATA
66901	GATATAGAAT	GATAGATATA	GGTCTATATC	TATAGACATA	CCTATCTACT
66951	AGAACTCTAA	AAGCATATTA	TACATGTATG	TAATATTCCT	CATGGAGTTT
67001	ATATTTCTCA	TATATATCTC	ATATATATGT	ATCTCTTTAT	CATGGAGTTT
67051	ATATTTTAGG	AGGTCACAGA	TGATAATAAA	ATTAATAAA	AAACAGGCCA
67101	GGTGTGGTGA	CTCACACGTG	TAATCCTAGC	ACTTTGAAAG	GCCAAGGCAG
67151	GTGGACTCCC	TGAGATCAGG	AGTTCAAGAC	CAGCCTGGCC	AACATAGTGA
67201	AACCCCATCT	CTACTAGAAA	CAAAAATTAG	CCAGGCCTGG	TGGTGGGCAC
67251	CTGTAGTCCC	AGCTATTCAG	GAGGTTGAGG	CAGGAGAATC	ACTTGAACCT
67301	GGGAGGTGGA	GGTTGCAGTA	AGCCGAGGTC	ATGCCACTGC	ACTCCAGCCT
67351	GĞĞCAACAGA	GCAAGACTCT	GTCTCAAAAA	АТАТАЛАА	ТАТААТАТАТ

Fig. 2 (cont'd 37)

-Hiji Pili

67401	АТАТААТАТА	TATATAATA	TATATATAT	АТААТАТАТА	TATAAATTAC
67451	AATATTTATAA	ATATGTAATT	TATATATATA	TTAATATATA	AAAACATATA
67501	GGATTTCAGG	TGATGATAAG	CACTACTGAA	AAAAGTAAAG	CTGAGAATGA
67551	GGATACTGAG	AAGCTGGTTT	GGAAGCTAAA	ACACAAAGTA	ACAAAGGCCA
67601	AGGTGGTTAC	ATGTTCTTGA	TTACATACTT	TAAAAATGGA	ТАААСТАААТ
67651	TAAGACTCAG	ATTCTAGTCT	TTGGGCTTCA	CAGTGTGATT	TTCAGCAATC
67701	ACATGGCATT	AATAGCCTGA	AACŢACATCA	AAATTGTCAT	TTGATTTATA
67751	GACCAAAATA	ACTCCCTTGA	ATAGAGAGGG	ATTCACTCCT	AACACTTTTC
67801	CTATTTCCAG	ATGCCAAATA	ACACGGAATC	TCTTGCCAAA	TTTGTGTGGC
67851	AGAACACTGG	TTTTATATAC	TTATAGCCTG	GTAAGAAAGA	AAAGACATGT
67901	ATGAATAACT	TAGAAGGCAG	AAAATTATCA	TGCTATTAGA	CTCAGTACAA
67951	TGTCATGTGC	ATTCTCAAAG	GAAACATCTG	CAGAGGCAGG	AGAATTGCTT
68001	GAACCCTGGA	GGTGAAGGTT	GCACTGAGCT	GAGATCATGC	CACTGCACTC
68051	CAGCCTGGGT	GACAGAGAGA	GACTGCATCT	CAAAAAAATA	AAAATTACAA
68101	AAATAAA	TAAAAAATAG	TGATCAATCT	GGCAGCATTT	TCTGAAAGTT
68151	AAGCAGTATT	CCCAATAGCT	GCTAAAAGAA	GACATGTTAT	АТААТАСТАА
68201	GTCTGTAAGT	AGGTAAAAAT	TAAGAGAATT	GTTAATGTGC	TTGCTGGGGA
68251	GTGAAATTAT	CTCTAGGCAT	TACCCTATAC	CTAACCTAGG	ACTCAGTAGA
68301	CTATGATATT	GGCGTAGTTT	GACCAAGAAT	TTTATCCTGA	TTTCAGATCG
68351	TTTTCTCTTC	ACCAGCACTT	CTTCACCAGG	ATTATATGAA	AAAATTAAA
68401	CCTGATGCCC	TGAGGCATCC	ATTATATGTG	CTGAAATAAC	TTCTTTTCTC
68451	ACCATCTAGA	ATGGTACTAG	CTATGTACCA	CTCTTGTCAG	AATCAAGGAA
68501	ATTGCTACTC	AAATCATTGT	GCAGCTTAAT	TTTCTCACAG	AAGGCCAGTT
68551	GAGAAAGGCT	CAACTTCTAG	GAATCCAGCA	AACTATATTT	TTTATAAGTA
68601	ACATTTTTAC	AGAACTACTT	СТАААТССТТ	GTGTTCAAAT	TTACTAAAGC
68651	TATATTCACA	GCTAAATATT	TCAGAATTTA	AAATTTAAAA	GACTTTCAAA
68701	TTAGTTCCCT	GTAGCTGTCA	TGCCAAGGCA	ATTAGAACAT	ATGTTAAGGT
68751	ATGAGGGGTT	TTTCTTGTTA	GAAGGTCAGA	GCAGGGCAGA	GAAGTAGCCC
68801	CTTGTATGAG	TGATGAAGCT	CAGATATTGA	CTCCTATGCT	AACCATAAAG
68851	CCTAGTAGTT	TGCTCATTTG	TTACCTCTCT	GAAACATTTT	TTTGGGTGAC
68901	TACAAAACAG	GAATTGAAAC	CTTCAAAATA	AGGGAATTTG	AAACCAAATC
68951	TTTGAAAATA	GATAATGCTG	СААСТААААА	TTTAGTTGAA	TAAGATTTTT
69001	ACATTAACTC	TCCCTAATTT	ACGTTATGAT	ATTTGCCATC	TAGAAGTGTT
69051	TTTAAAAAAT	ATATTGCTGG	AGTCAGATGA	TGCATCCATT	AATCTTTGGG
69101	GCATAGAATA	ATGTGAATCT	AAAATTTTCA	AATTATTTAC	ACTACTGGTA
69151	TTTGGTCAAT	GTAATTTATT	TGAAACTAGA	TGCAATAGGG	ATGGCCAGGT

69201	TATTTCAGTA	GAACAACTAG	CAAGACTTCA	GATGCATGGT	GGAGTGGGGA
69251	AAGGAGGACC	TGTTTAAGGA	AACTAGAGCT	GGGAAGTGTG	AGATTAACTT
69301	AGTGCCAATG	TGAGGACCTA	AAAAGCAGAT	GTGGTGGAAA	ATTTAAACAG
69351	GCTTGCCTAG	AAGGTCAAGT	TAGTTGATGA	CACTTGATGA	GATTGTCCCA
69401	AGCTTTGGGA	TTCTCAACAA	AGTCTTTGTT	AGTGAGAAAT	TTGGAAAGAG
69451	ATCAGGTATA	GTTAAGAAAC	TGGGTTGGAA	AGGCCACCAG	GAAAGGCGAA
69501	TATTCTGACA	CAAAATTTGA	TCATTTTATT	TGGAAGCATT	TCAAGCCTGA
69551	CCTGAACGAA	TTGTTTAGCC	TCAGATACAT	GCATAAAACT	GTGAAAAGAG
69601	ACATTGACTC	AATTTAGCTT	CTTTAACATG	AGAAACTTTC	GTGGAAAACT
69651	AGAACTTTAC	AAGCTCAGCT	GGTGTTGGGG	GCATCATTAT	CTTGAATAGC
69701	TCACTGGAGG	AAAATGAAAT	CTTAGTTTGG	TTCTCAGGTT	ТТААААТАТС
69751	TATCATTTTT	GAAAAGTGTG	AAGTAACAAA	ATATGATCTG	ATTATCTTAT
69801	TCCTAAAATC	CTTTGCAGAA	TTATCCCAGC	CTCAATCTTC	TCTTTAGTAT
69851	TTAATGAGAA	TAAGAAACTG	GAAATGACTG	AATTGGAAGA	GTAGACTTTA
69901	AATCCATÄTC	TTGATGGCAT	ATACATTTTT	CAGTTTTTT	TCTAAATGAT
69951			TGAGTATCTT		
70001			TTTAAAAATT		
70051			TAATCATGTA		
70101			AATTATTAGT		
70151			. AACCTGAGAA		
70201			' TATGAAGAAG		
70251			GTATCAGTTA		
70301			CTATTGGGAA		
70351			GGTGATTCCA		
70401			ATAAAGTTTT		
70451	/		ACACCCTCCT	•	
70501			TTATGTTATT		
70551					ATATTTATGG
70601					AAACAAACTA
70651					CAGGAAAACA
70701					AGTGAGGAAG
70751					GAAAAGAGAT
70801					A ACTGAAATGA
70851	•				A GTGCAAGTTT
70901	GAACAGATT	A TGTCAATCA	A TGTAGAATTI	GGCTATCTT	TTAATCAAAG

Fig. 2 (cont'd 39)

70951	AAGACTATGG	AATATTTTAT	AGGTGTTTGC	TTATACTCAA	AGTTTTAAAG
71001	AAATAACAGT	ATGAATTTGG	TTGAACTAAT	TTTTTTCATA	GATAGGATTC
71051	TCCCAAGTTA	TATAGCATAT	ATATTTCTTA	ACTAGTTATT	CTTCCTTTTA
71101	CATATATTGT	GCCACATTGA	GTAACAACTA	ACCTGCTAAT	AGCTATTGGT
71151	TTTTAAAAGA	TAATTAATAT	TAGAAAGTGA	TCATTTTTCT	GTTTCATATT
71201	AAACATGATA	TTCTGAAAAA	GCAACATTGC	CTGAATGTTC	TACATTTTAT
71251	CTTTTTGAAA	ACAGGTTTTA	TAAGAGATTT	CTTGTGAAAA	GCTGAACGTT
71301	CTGACACTGA	AATAAGTCAG	CTAACTCAAA	GCTAAGCTTA	ATTTTTTGAC
71351	ACTGTTGGCA	TGAGGTCTCA	TTCCCAATTT	TTTCATTTAA	AGCCACAGGC
71401	AAATGTTTTA	ACAGATTTTA	ATCCGTAGTA	CAAGCATTAT	TGATCTTAAA
71451	TTTAAGGATA	AAAACCTGAT	TTTAATTAGA	ATTTAATATG	CATTCTAGTA
71501	TTTACGTTGT	ATAATTAATA	TTTACATTCC	ATGATTCCAC	TATGTACCAT
71551	TTATTTCTTT	TTGAATAAAT	TTCCAGTAGG	AGCAGAATAA	ATTTTCAGTG
71601	AATATTTTAT	TTCTTGGGGG	ATATTTTTAA	ATGGAAAATA	TATTAAGTTT
71651	CGGTAAAATC	TGTTGCTAAT	TTGGCAGTGG	ACAGAATATA	AAAATTGGAG
71701	AGACTGAGTC	ATTATGATGA	ATTGGGTCTG	ACTTTTGTCA	TGACACTGGA
71751	AATTTCCCAC	AAATATTATA	TTCTTCTTTT	ATAATAATA	TAGTCGAAAT
71801	GAATTGCAGT	CAAGTATTTG	AAGACCCATC	TATAAATTTA	GGCGGTTACT
71851	GTTGATTTTT	CATTATGAGA	GATTCTTCCA	CTCATAAGCT	ACTAAAAGTA
71901	CATAAAGAAG	GTCTGGTTGT	TTGTTTTAAA	TGTGACTGTT	CTCTATCAGG
71951	AAAATGTCAG	GTATCCGATG	AAAATAGATA	TATGAGGTGC	CAGGTATCTA
72001	TTCCAAACTT	GGATATCACT	TCAATTAGCA	TCATCTTTTT	TTTTTTTTAA
72051	AGTGTCTAAG	GTTAGAATAG	TCACCAGATA	TTCCCATGTA	TGAAGCAATT
72101	TTCTGCAAAG	GCCGCTGTGG	ATGATCTTTT	TAAAATATAT	ATTCTGGGAG
72151	ACATTGAGTA	AAGAGAAATT	ATTTACCAGA	GAATGAAGAA	CCGAGGCCCG
72201	ATTCTTTGGC	TTTCTGCCAA	AGATGCTGAA	GGCAGTGATG	AATGACAAAT
72251 -	ACATTACCAA	GGAATTCTCC	CTCTAAGAGG	CTGACAAAGA	TCTGATTTTT
72301	AGGATTATAT	TACCACCAAG	AAGATACCCC	TTGTCACTGA	GCTTCTAATG
72351	GAAATATGGT	CTATACTGAA	ACAATTCTCA	GTTCTTTTTC	TTTCTATCTT
72401	TTTTTGAGTT	ATTTTATCTT	CCAAAAATGA	GTTATTTCTG	TAAAAATA
72451	TCACTTAAAT	AATTATGAAA	GTTCAAATTT	GTGCAAATAT	TTTTATTGGG
72501	ACATCTTAAA	ATTACTCTAA	ATTCAAAAAG	AAAATATATG	СТТТАТТААА
72551	ATTTGATCTG	TAAGCTGCTT	TGTTTGTAAT	ТТААСТАТТА	TTAAAAATAT
72601	GTATAATACA	TATATTTAT	TTACTTTATT	CCTGTGTTGC	TTTGGCTTGG
72651	TGAGACTAGG	TCTCCACATT	AGGAGTTTTA	CTGAATGAAA	AAGTATCAGA
72701	ATGTAACATG	ACTTTGATAT	GGCATCAGAA	TTTAATAAGA	TGACATTTAA

72751	TAGGAATTAG	GGGTAAGTTC	CAGGTTTTAC	ACTTAAATAC	AAATAATCAA
72801	TTTTGCAGGC	ACAAAATACT	TCAAACAAAA	TCTGAAATCA	TTCATTTGAC
72851	AAAACTTCAG	GTTTGCAGTT	GACAATAAAT	ACAATACAAT	GCAACAGTGC
72901	AATAGTGATA	TCTAAATATC	TAATGTAATC	ATAGGTAATA	TTAGTAAGTG
72951	TGTTATCTGA	AATGAGTGGT	GTGATATCCT	GCTTTACTTT	GTACTGGTGA
73001	GTTCTGGGTG	CCACCTTTGA	AAGGAATAAA	GACTATTCAT	ATCTCTTTTA
73051	TAAGACAATA	AGAAAAACAA	ACAÁACAAAC	АААСАААААА	CCACCTCCTT
73101	TACTTTAGCT	GAGAAAGAAG	TTATTAGGTA	CAGCTTGACA	AGTTCAGCTA
73151	AGCATCCAAA	TCTTCCAGGA	GGTTGTTACT	ACATAAAATC	AAACCTTTTT
73201	AATTCAACTA	TGAGCAGGGA	GATTTTATTT	TTCTTTCGGG	TACTAAAGCT
73251	TCCAAACTCT	GTTTATTCCA	CAGGAATCTG	AACTTATAGA	ACTAAGAGAA
73301	ACCATTGAAA	TGCTGAAGGC	TCAGAATTCT	GCTGCCCAGG	CGGCTATTCA
73351	GGGAGCACTG	AATGGTCCAG	ACCATCCTCC	CAAAGGTATA	TTTAGAAATC
73401	ATTTCATTTC	CACCCAATAT	AATAGGCATC	TATTTTATTT	ATTAATTACA
73451	GTAGAACŤGC	ATTTACTCAG	TGTCACTGTG	CATTATTAAT	ACATACTAGT
73501	TGTATTAATA	GTTGTATTAA	TACATACTAG	TAGTATTAAT	ACATACTACG
73551	TTGGTATTAA	TGTGATCAGA	ATCCTAGAAT	TTTAGAACAG	TGACTTCCAT
73601	TATCAGATAA	TTTTTAAACT	GATCTTAAGA	AATTTGGTTC	TATAGTTGTA
73651	TACACATCTC	TCTACTTGAT	TCAGTGGAGA	TGGAGATGGA	GTGGTTGGTT
73701	AATACATGCA	TATCTGACTT	CAGGCAAAAC	AAACCCATTA	ATGAGTATGA
73751	TAATCTAGAT	CTGTATTTAA	AAATGAAATA	GTCAATATGA	TGATATAGTA
73801	AGCAGTGGGC	ATTGGGAACA	ACTTTTCCTG	GATGGAGGCT	ATAAAAAGGT
73851	ACATTTCCTG	TAGATAATTT	TGAAACAATA	AAAACAACGG	GTGAAAGGTA
73901	GCTCTGTTTT	AAATTATTCC	TATGCTTAAG	СААТТСТААА	CAATGAAAGG
73951	GGTATTTCTG	CCACTGCCCC	TACCCCTGGG	TTCACCACTG	AAGAAATGCT
74001	CATTATTAAT	ATCGTGTCAT	TTTTTTCCTT	TACATTGGTT	CTATTTACTC
74051	ATŢTCCTGAC	ACTTTTCAAT	GGCCTTCAGT	GAGCTCAGCT	CTTTCCCAGC
74101	ттаааааатс	CTGTCCTAAA	ACATGAATGC	CTTATTATCT	CTCTTTTCAT
74151	TTCCAGAAGA	ATTCTGAGAA	AAATTTTATG	AAGTCTTTCA	ATGTCTTCAG
74201	CCATCTTTAG	ACCACTGGAG	TGTAGCTCCT	TTTCCCTCCA	CTCCACCAAA
74251	ACAATGCTCT	CCAGGATCAG	CAGAAACTTA	CATGACACTA	AATTCAGTAA
74301	AACGTTTATA	ATTCTTATTG	TATTAGACAG	ACATGGAAAC	AGCATTTGAT
74351	GCTGATATTC	ATTTCTTCCT	ATGTGAAACA	TCCGGTTTTI	CTAATGTTCG
74401	TGACATCATA	CATTCTTGGT	TTTTCTTCTC	TTCCTTTGAA	ATATTTTTC
74451	AATATTTCTT	TTGTAAATTC	ACTCTTTTGT	ATCCATTTG1	TAATTGTTGA

74501	TATCCTAAGC	TCTCTTCCAT	TATGATTCTA	TGCATCCTAT	ATAAAATT
74551	TAGAAAATCA	TCTCATACTC	TAGCTGTAAT	TTTTATTAAT	GTGCTAATAG
74601	CTAATAACTG	TCAAATCTAG	GTCTCCAGGC	CAGGCTCTGT	ATATCCAGCT
74651	ACCAAGAGAG	AACTCCACGT	GGATATCTTT	GGATGTCTGT	TTTGCATCTT
74701	AAACCTAACT	TCTCCAAATT	TGCACTTGTC	TTCTGTCTCA	GACCTGCTGC
74751	TCCTTCAGTG	CTCTTTGCCT	CAGTAGATAG	CACCACCATC	CTTCCATTTA
74801	GCCAGAAATC	TAAGTATTCT	TCATAACTCC	TCCTCTCCTC	ATTGAATAAA
74851	TTACCAAGAT	CCGTTGATCC	CATTCCTTAA	ATATCTCTTG	GATCTGTTAA
74901	CTTTTCTCTG	ATTTTACTCT	TGCCATCCAT	CACCTCTCTC	CTGAACCATG
74951	ACCACAAACC	CCTAAATAGC	CTTCCTCTTC	TTAATCTTAT	CCTGCTTTAC
75001	ACCAGTCTTC	ACGCTGAAGC	CAGAATAGTC	ATTAAGAAAC	ACATCTACAG
75051	GTATCCCATT	CATTGCCTTT	AGAATGGAAT	ACAGACTCCT	CAGCATGACA
75101	TAATCTCTCT	TCACCAGCTT	CATTTATTCA	ACAAATATTT	ATTCATAACC
75151	AATTAAGTGC	CAGATGATGC	ACATATAGAC	TTCTTGTTCT	GTTGTTGCAT
75201	TGCATATTCC	ATATTTCAGC	TATCCTGAAT	TGTTTTCAAT	TATTCATAAG
75251	TTCTTTATGA	ATTGTGTTCA	TTCCATTTGG	AATATTCTAC	CTTGTTTGAT
75301	CAGCATAAAG	ACTTTTCGAG	ACACTGCAGC	AGCAGTGAAC	CTAAATATGT
75351	TTCCTTGACC	CCTACATTGA	ATGACACCCC	CTGTGATATG	TTTCTGGAAG
75401	CAGCAATACT	TCCCTTCTTA	AAATTACATT	ATACTTTGGG	GCTTTTATTT
75451	AAGGTATGTC	TTTCCTGATT	TACAATAGTA	GAGCTTGTTT	TTTCACCCTT
75501	TTGAAAGACA	TCAAGATGCC	CATGATGATG	TCTTGCATGT	AACAGGGGTT
75551	TATTTGAATT	TTTAAAAGAA	GAATAAAGTA	TAAATTTTTA	GAATTTCAAT
75601	TTAAATTTTA	GGAAAACAAT	TATATAAAGT	GAGATATGCT	TAAATTGAAG
75651	GACAAAGTAG	TTCTGTAGGG	GCTACTTCTT	TCAAGACTTT	AGCAACTTTC
75701	CATGTGGGGG	AGTGATTTAT	GTGATGCATG	GAAAATTACT	GCATATTTAA
75751	AGCTTATCTT	AGAGCTATAA	TAAAGCAGCT	TATGTTCTAA	ATCTTCATGT
75801 -	CGTAAATAGG	TCCAGAAGGG	ATTTAAAAAG	CCTTAATCCT	TACTTTAACA
75851	CAGCACAAGT	CACTGAAGTG	AAACTTGCTG	AAAGGATTCC	TTTTATGTTA
75901	GGCAACAGGT	AGCTGAATAT	ATCTACAGAA	ATTGAAAAAT	TGGAATTCTT
75951	TTGCTCAGAA	ATGTGGGAGG	GGTGGAGCTT	AAGGTAAAAA	ATAACAGTTA
76001	$\mathop{\mathtt{ATATCTAAAT}}_{\cdot}$	TGATCAAGAA	ATATGAAAAA	ATAATTTGCT	AGGTTTTAAA
76051	ACTAACAAAA	ACCATGGTTA	TAAAGGTTTG	AATATATATA	GGATAGTTAG
76101	ATTGTATTTC	TGTAATATTA	AAACTCAGCA	AATTTAA	TGAACACAAA
76151	GTGATTCTTA	TCACATTGAC	CATTGACATT	ACATGGAAAA	AATAGTCAGT
76201	TGGACTAATT	ATGTGTCTTT	CCATGGGTTA	TTAAGGTAAT	TGTATGGCAT
76251	TATTTAAATT	ACTGGAAATC	ACATTGAAAT	TCACTTTTAG	AGGCCCTTAA

75

76301	AATATTTCTG	TAATATATAT	TTTTAACATA	TGATCTTAAA	AGATATATTT
76351	GGAATGACAC	AACAGTTTTA	TAGACAGGCC	TGACTATCAC	ACAACCACAC
76401	ACCAATTTGT	GAATGTGTTT	CTATTTCCTC	TAAATTAATG	CATCACATTC
76451	ATTAACAAAG	TTTGATAAAT	GACTATAGTC	TATAATAAAA	TATTTTTGTT
76501	тасааасата	TTTAAACACC	TGCTATTAAG	TATAGGCATT	ATCAGATCTT
76551	AAAATACAAA	GATTTAAAAA	ATTACCCTGT	GGTCATGGAG	CTCACAATCC
76601	ACTGCAAAAA	TAATGTTTGT	GATAAGAAAT	TTGAAAGTTG	AAGGTAATAG
76651	AAAATTTTAC	CTTTATTTTT	CAAAATGTAC	CATTGCTTTC	TAAGTCACTA
76701	CTTCTGTGTA	AATATGGAAT	TGTTTTTCCT	TAAGATATAC	CAAATATAGT
76751	TGGATAACGC	ATGTATTAAA	ATTCTGTCAG	CACTAAGTTG	TTTTTTAGAC
76801	ATAGTGATAG	GCAAACATAG	TTATATTGAA	TGAAAAATTA	GAATCAAATT
76851	TATTAAACAC	TGTGTACTGA	TTGATACCAC	ATGCCATATG	CTTGTATAGC
76901	AATACAAGGT	TTGGAATTTA	TAATGGTAAA	CAAAATAGAT	ACGGTCTTTG
76951	TCTCCATAGA	ACTTTTAGTC	TAGTGGGAGA	GCAGAAGGTA	AAGGAATGTA
77001	TGTGATCATT	GGTGAAGCTG	AACATGTATA	CCCAAACAGT	TATAAGTTCC
77051	AAGATGGACA	ATAATGGGTG	CCATAGGGAA	GGAGGGTACC	AAGGAACCTA
77101	CTGGAGGTTA	CATAGGGAAG	ATTATTCCAA	GGTAGTAATA	TTTAAGTGAA
77151	TATCCAAGGA	ATAATTGTCA	ATCACTTTAT	AAGTACTGAG	GGAGGAGTAT
77201	TTCAAAAGAG	CTTTGAGGCG	GAAAATAAAT	TAGTTCCTTT	ATGGAACTAA
77251	TGTAAGGAAA	ATACTAAGCA	AACATGTAAT	AAGAAGAACA	CGGTTGATGA
77301	GTTAAGAACT	GACAAGATTA	CTGAAGGATT	GTAGGCCATA	TTTAGAAGTT
77351	GGATTTTTTA	TCTATTCTTA	TTAAAGTGAG	AAGTTATTGA	AAGGTCTTAA
77401	GTGGGGGAGT	GATGATGAAG	TTTGCCTTTT	AAAAAGATT	TTTCTAGCTA
77451	TTGTTTATAG	AATGGTTTGA	AGATGAATAA	GTCCAATAGC	TATACTTGCT
77501	GTAAAGGTTA	TGTTGGTAGC	TTGAACTGGG	GCAGTGGTGA	CACAGAGGAT
77551	GGGAGATGGA	AAATGACGAG	TGAACAAACA	CATACCTGAA	AATTTAAGTT
77601	ТАДАААТАСА	CCTCTCCATT	AATTCAGATT	GCTGATATTC	ATTCGGTTAG
77651	CCATTCTTTA	CTGAACTTTA	TGATGCCCCA	TATACTGAAT	ТАААТАСТТА
77701	CAAGCACTAA	AAAAGAAATT	GTTAGGGAAC	AGTAAAATGC	ATTTCCTTCA
77751	TTTCACAATA	TTATTAATAT	TATGGCTTTG	CTAATCTTTA	TTGGTGAATG
77801	CAGTCATAAT	TGAAGGTAAC	TGATACTTCC	AAGGACTACT	TTTGACCTAG
77851	GATTACTATC	TTTTTAAAAA	TTTAGTATTA	AAGAAGTCAA	ACACAATTTA
77901	TTAATTCTGG	AAATAATAAA	AATTCTGAAA	TACTTTAATA	CTTTGTGCTT
77951	TTCTATTTGT	GAAAGTTAAT	TATTAGGAAC	GAGCTAGCAA	ATGCTACTTC
78001	TTTTTCAAAA	AGCTAATGGC	CAATCACAGC	AAAAATTTAA	AGCACTAAGA
				,	40.

Fig. 2 (cont'd 43)

78051	AATACCTACA	CATATTCTTC	TATTGCCCAT	TTATATGACT	TCCATAATAG
78101	TTGATTAAAG	GATACCGGAT	TCCTTTATTG	TTGAATTAAA	ACCTCCTACA
78151	TGAAAACCTT	GATTTAGGTT	TAGAAGTTGG	TAATGTTTTG	GCATGCAAAA
78201	CCAGTTAATG	TTCTCATCAT	TACTTTTTAA	AACAATGTTA	AGAGATGAAT
78251	TCTAGGGATT	АТАААААААА	AAAAGCTGTA	TGTGTTTCTT	ССТАТААААТ
783.01	TTTTCAGCAT	GATTGCCTCA	GTAGAAAAAT	TAAGGGACTT	ATTGATATAT
78351	ATGTATATGA	AGGTGAGGAT	ACACATATAC	ACACACACAT	ATATATGTAG
78401	GTAAATACAT	ATATTACATG	TCTATCAATC	CATACATACT	CATTTATTAT
78451	ACGTTTTGAA	AGCAACCAGT	TATAGTTTTG	TTGCCATGGA	TCATTTTTAC
78501	TATTCAGTAA	ATCAGTCAAT	TGAAGAGGCT	TGATTTTATG	GTATTAGTTT
78551	TTTGGAAACT	GTCAGCTTTA	TAGTAAATTT	TGACATCTTA	CAACTTCCAC
78601	TGAGATTTTT	TTGCTTGACT	AATCTGCCTT	GATGCCAATA	AGTATATTAA
78651	CGGAAATGGA	CTAAAAGCAA	ATGTGACTTG	AAGCACAATT	TTGTAAATTT
78701	TCTTAGTGTC	TCAGTAATAC	TTAATACTAG	TGCATTTTAG	GTAGGAAAAT
78751	TTTCAGTTTG	TTTTATTTTA	AATAACTATA	AATCTTATAG	TTGCTTGTAT
78801	AAAAGAAACA	GATACCTTTA	ACATGATTAA	ATATCAAATG	CTATTCTCTT
78851	CAAAATATCT	TAACTAAAGA	AGCACTGCCT	GCTCTTAGAA	GTTAAGCAAG
78901	GCCATACCAT	ATGCTGCGTA	CATGGCTTTT	AACACAATGG	ATATTAGAAA
78951	CAGCCTAAGG	CTGAGCCTGG	CTCCACTATT	TTTCAGCTAT	GTGACCATGT
79001	GAAAGTTACA	TTTAGTAATT	AAACTCATTT	CAGTAGTTTG	CTTTAAGAAT
79051	AAAATTAGGT	ACTCCGGGGG	CATATCAAGC	ATATTGTAAA	ACCTAGTTTG
79101	ATTATTATTT	GTTATTGGTA	TTACTATTAC	TATTCTATAA	TAAGTCATGG
79151	GCAGGCAGTA	GGGGTACATT	GGAAGAATTG	CACTGTCTTA	AATATGTCCT
79201	CTGTTTAACT	CACAAACTCA	GTCTACCTAG	GCTTTCTTTG	GAGGATCTGC
79251	CTTTCATTGG	CTGTTTGACT	TTGGCCAAGT	TACTTAACTT	CTTTTCACTT
79301	CAGTTTCCTC	ATCTGTGAGA	TTATGTGCTT	ACATGACTTC	AGGTTTTGTT
79351 -	TTGGCTCTAA	TATGGTATGA	TTCTATGAAA	TGGAAAGTTA	ATACATTTGG
79401	CTCTAGTAAC	TGTATTTGAA	GCACAAATAT	TAAAAAGCAC	AATTAATTCT
79451	CATTCTGAGT	TTCCATTTAC	TCTTTTAAAT	TAATCATTCA	GAATAAATCA
79501	TTTTGGAAGA	GCTGCTTGAT	CCAGGTATTC	AGTAGAAATC	ACTAGCATAG
79551	CATTTAATTT	TAGACAAAAC	TGAGAACTCA	TTAAACTGCC	AGGGCTATGG
79601	ACTTATATGA	GATTCTCATT	AAATCTTAAT	GTAGATAACT	CAGTTAATTA
79651	AAACAAATAT	GGTTGTACTT	TATTAAACTT	CTAAAGTCAA	AACTGCATTG
79701	AAATTATCTG	TACAAAGCCT	TGTTGACCTT	TATTAGAGAA	CTGCCTCTCA
79751	AĄĄGACCTAA	AAGACTTATT	TGTTCAGATC	GAGACTCTTC	ATGAGCCAAT
79801	GTGATACTCT	CCCTCTATTG	CTAGATCTTC	GCATCAGAAG	ACAGCATTCC

79851	TCTGAAAGTG	TTTCTAGTAT	CAACAGTGCC	ACAAGCCATT	CCAGTATTGG
79901	CAGTGGTAAT	GATGCCGACT	CCAAGAAGAA	GAAAAAGAAA	AACTGGGTAA
79951	GTTACCATCC	TTCATCTAAT	TCAGAAGCTT	ATTAATGCAT	AATGTGTTAG
80001	GCCTTTTTCT	TTGGGGCTTT	AGTGATCTGC	AGTAGTTTAC	AAAGGGTCCC
80051	ATTCAAGCTA	CTGAGACCTC	AAATGCTGCA	CTCATCACCA	AAATTGGAGT
80101	GGCATGTACT	GAAAAGCATA	CATTTTAATG	TTGGGACTAA	ACTTGGGTTT
80151	GAATCACCAC	TATATCTAGA	CCTTTTGAGG	GGCCTGAATT	TTCTAACCAA
80201	TAAAAAGACA	GTTAATAGCA	ACTATATTTA	TTTGTGAATA	TCATTTATTC
80251	ACAGATGTTA	TCTAATTTTT	CTATAGTATA	ACTATACAAA	CTATGTAGTA
80301	TAACTATAGA	GTTATACTAA	AGAAAAATAA	GATAACATCT	GTGAATAAAT
80351	GGCTTAAAAT	AGGGGTTTAT	TGTGGGCATA	GAGATGAAGG	AAAAGTGAAA
80401	AAATGATGAT	GATGGTGATG	ATGATGGTGA	TAGTGGTCTT	GGAGGAAAAG
80451	GAGAATGGGA	GTTAATAAAG	GGAAAGAATA	AACAATGAAA	CTCTCATTCC
80501	ACCTTTGGAA	TCGACAGGGC	TTACCGTGTG	AATAGTTTCA	CCCTAAAAGA
80551	AATCAACCAC	ATTAGTGTCT	GCTTGATGTT	TTTAACCAAG	AGAATATAGC
80601	AGAAATATAG	AAATGCACTT	TAACAGAACT	GTACCTTAAG	TTTGCTAGTG
80651	ATATAATTTA	TGATATTGAT	CAATAGCTAA	ATAGCCCAGG	GGAAGATACT
80701	GTTACTGCGA	AAAATTTAAA	AACAATGGAG	TCAATGATTT	CTTTTAATAC
80751	САААААААА	ATGTAGATTT	TGAGTAAATA	CAACTCTTGA	TGAAATCCAG
80801	ACATAATTAT	CAGAGGATTT	TACTGGAGTG	CTTTCTACAA	ATAATGAAAG
80851	AAATATCTTT	TTATCTTAAA	AAATGTTTAT	ACAGGTAATA	TTTTAAAATA
80901	CTGATCAGCC	TTCATTCCCT	TGATTTGTAA	TTCCACACTC	TTTCATGTTT
80951	CTGCAAGGTG	AACTCTAGAG	GAAGTGAGGT	GAAXATAAAC	CGTGGACAAT
81001	TTGGCATGGA	TXTATAAAAA	AACCCTACCT	TGGCATGAAT	GCTATCCATT
81051	TTGGCAGTAG	GCTTTTATAC	: СТТТТААААС	AGATTACCTT	GTATGTCTTT
81101	TCTTTGTGTC	TTTTCATTT	AATCTCAAAT	TTTAAAGAGA	TGTAAAACCA
81151	CTTTCTGAAT	AGAGCTGTAG	GGGATACCAA	TTCTGGTTTI	GAGTAGTCTG
81201	GGGTTGGAAA	ATTTGAATAG	AAAAATCACA	ATTAATGAAG	TGTTAGGTGA
81251	ATTTGATTTC	ATTTTGCTTT	TTAAGTTTGT	' ACTGTCAGCA	GGACATGACT
81301	TGATTGTAGC	GCTAAAGTGC	CCATTTAAAA	CAAATTGCCT	TGAAGAGAGA
81351	AGCATTGGGA	ATGGAGATC			

Fig. 2 (cont'd 45)

Human genomic sequence

	11 04200	,			
1	GAATTCCTGG	TGGAGAACAG	CACATGTACA	GATGGGGTGA	GAACAGCATA
51	CGTACAGGTA	GGGGTAAGCT	GGTGCTATAT	GAGAAAGCAT	GGAATAAGTT
101	ATTAAGTTTG	ACCTGCTTGG	GAACTGAGGG	GCAGGTGTGA	GGGATGAAGC
151	AGGAGTAGGT	AGGGGCTAGA	TCACAAAAGA	TCTATGCCAG	TGTTTCTCAC
201	AGTGTGATTC	CCAGCCCAGT	AGCATGATAT	CACTTGGGAT	CTTGTTAGAA
251	ATACAAATTC	TTATACATCA	CCCTGGACTA	GACCACCTGA	ATAAGAAAAG
301	TTGGGCATGA	GGCCTACAAA	TTTTTAAAAA	AGTCATACAG	GTGATTGCAA
351	TGCATGCTAA	AGTTTGAGAA	ACACTCTTTG	CTGTGGTTTG	AATATTTGTG
401	TCCTTCCAAA	ATTCATGTAG	AAACCATCTC	CAATGTTATA	GTATTAAGAG
451	GAGGGACCCT	TGGGAGCTGA	TCAGATCATG	AAGTCTCCTT	TCTTATAAAG
501	GGGATTAAAA	GCCTTGGCCC	${\tt TTTTACCCTT}$	TGTCCATGTA	AGGACACAGT
551	GTTGGAAGCA	GGGACTGGGT	TCTCACCAGA	AACAGAACCT	GCCAGCCTCT
601	TGGTCTTGGA	CTTCTCAGCC	TCCACAATTG	TGAGAAATAA	GTTTCTGTTG
651	TTTATAAGTT	AACCAGTCTC	AGGTATTTTG	TAATGGCAGC	ACAAAGGGGC
701	TAAGAAACTG	TTCTATGCCC	TAACAAGAAA	TGTGGTCACT	TTCCTGAAGG
751	AAATGGGGAT	ATATATAAAG	ATGTTATATA	AGACTCGTAA	TATTTATTTG
801	GAAGGCTTGC	TCTGCAAGCA	AGGTGGAAGA	GCAACATGAA	GGAAGCGTGG
851	TGGAGGTGAG	AGGACTGGAG	GTTAAGTTGG	TAGGGAGATA	CAGGAAAGAA
901	GCTTATGACA	CTTGAGTTAA	AATGTAGCAT	CCTTCCTATG	TGTAGGGCTC
951	ATAAAAATGT	ATAGTCTAAG	ATAGAACACA	GAATACTCTA	TGAATCCTGC
1001	CCACAAGGTG	TTGGTAATCT	AGATTCACTT	TTTTTTTCTG	ATAATGCCAT
1051	CCATATGTAT	GGAGCGTCTA	CTACTGTATG	CCAGAGTGAC	TCTGGAATCG
1101	GTTTGGTTGA	TCTAGACAAG	ACCATAAGGA	GAGTCCCCTT	ACTACCTCTT
1151	CTCCAGGGGA	GGGATTCAAG	TTGAACTAGT	ACTTCAGAGA	CTGTTTAGTA
1201	ATATCATGCA	TGAAAGGTGA	TGGTTAGGAC	AGAAAAATAA	ATGGATTGCA
1251	TCATAATTCC	TCAGGTTCTC	CAAATATGTG	GTGGTCTCAA	ACCATGTGAA
1301	TTGGTCTGCA	CATCCTGTTT	GGGTTGCGTG	TCAGCAGTTG	AGATCTGAGC
1351	CTTATTTGTA	ACAGTGAAAC	AGTGAGAGAC	CTGCCCTTCA	AGAGCTGTTT
1401	TTCAGCTAGG	AATAGAAAAG	GGCCAGGCTA	GACTCCTCTT	TCTGCTGGAT
1451	CTTGCTTCTT	CTCAGCAATA	GAAGTAGACC	TGCCTTCCTA	GCTGTAGAGA
1501	AAAGGTGCCG	GTAGGCGGGC	AGGTGAGCCT	GTGGATAATC	CTGGAGTAAA
1551	GGTTCAATAG	ACCTTCAAGT	CTATCCTACA	GGATTCGGAG	TGAGGGGAGA
1601	GAAAAGGAGA	CGCTTCTCTG	GCTGAGAGAG	GAAGAGAAAA	AAAAATCCCA
1651	GATATCTGAC	AGCTATATCT	TCCCATCACC	ACCTTCCTCT	AAACCCATGC
1701	CTCTCTGTTT	AGTAGGACAT	AAAATGAAGA	GTGACCCACC	CCCCACCCC

1751		CCGTTTGTAG			
1801	CATGGACGGA	AACTAGAGCA	GCTGAAAATA	GATGCAAGAC	TTGTTGAGCA
1851	TACAAATCAT	TTCCCCCTTA	GTCTCCAAGG	GAGGAAAAA	AATCCCTCTT
1901	ACTCTCCTTG	CAGCCTGTGT	TCTGCATTCT	GGAGAGGAAG	CTGAGGCTGG
1951	TCCTCAGGCG	CTCCTCCCGC	CGTTCCCGCA	GGAAACTTTT	CTCGCAGGGC
2001	CCGCTCCGTC	CATCCCGCGC	GGTTCCAAGA	CGGTGGGCCT	CCCGTGGGCT
2051	CCTCTCCTGG	GCAAGGGCCC	AGACCCCGCG	ACGCGCCTGT	CTCTTTAAAT
2101	TCCAGCTGCG	CGGCTGGGAA	ACAGCGCCAC	TCGCCGCCCA	GGCCGGCTGG
2151	AGGCTGAAGA	GCGAGCTCGC	GCTTTCGCTC	CCGGCTGCGC	GCCGCGGAGA
2201	GCTGGGCTCG	GCCCGCGGGC	TGCTAGGTGG	CGGCGGCGCG	GGGCGGGGAG
2251	GCGCGGCCCG	GCGGAGGAGG	GAAGAAAGAG	CGAGCCGGGC	CGGGAGAGGC
2301	GCCGCGCCCG	GTCCCGCGCC	CGGTCCCGCA	CCCGCTCTCA	GCGGCCCAAG
2351	CAGTTTCTTT	CTGGGTGACA	AGAATGTGCC	TCGGTTGGTT	TTTCTTTTTT
2401	TTCTCCATCT	CCTTAAGACG	ATTTCCATAG	TAACCTGATC	AAGTGGCTCA
2451	AAATCGCÄAA	CCTGAGGATT	TCCGCGGCCC	GCCGGCAAGA	CCTCGGCCAG
2501	GTAACGCTGC	GATCTCCTCC	TCTTCCATTG	CAAACCGCTG	CGCTCCTTGC
2551	AAAGTTCCTT	TTGTGGAAAA	TCGCCCAGCC	CAAGGGAGCC	CGGGGTATTT
2601	GCAACAGCGT	GTTCATTTCC	AGGTGCCTGT	CACGGGTCTC	CTCCCTGCTG
2651	CTTCTCCAGG	ACCCATGATG	AGATTATTTT	TAAAAATTGT	TTTTGGTCGT
2701	CTCCCCCGCC	CCCTCCCCTT	CTTTATTTTT	TTCCTCTTCG	CTGCACTCTT
2751	CTCGGCTTTT	CCCCTGACAC	TACTGATGGG	GGTGCGGGGG	GACGTCGGGG
2801	ATGGGGGTGG	CCAGCGCGGT	CCTGGGAGTG	GCGGGTTCGG	ATGGGCTGGC
2851	TGCGGTGGGC	CACTTTGGGC	ATCTCGGCGT	GGCCTGCGCC	GGGGTCACGG
2901	GGAGGGCTGT	CAGCGCCAGG	GCGGCGGAAC	CCGAGGTCTC	CAGACGAGTG
2951	AGGGAGGGAT	GCAGGCTTGG	GGGTGATGGA	GCGCTTGGCT	GGTGGCTGGT
3001	GAGCGTCCAT	ACATCATAGC	TCTCCTTCCC	ACTCCCCCCC	CCCTCTTCGG
3051	GATTCTCTCT	TTCTCTTTCC	CCGTCCTCAT	TTCTTTCTTC	CTTTACTCAC
3101	CACTCGCTTC	ATTCTCTTCC	TTCCATTTCC	TCTTTTTTC	TCCCCTCATT
3151	TCCTTTTTTT	CCTTTCCCTT	TTAAAGAAAG	GGGAATCGTT	TGTAACCCTT
3201	TCGTTCTACC	AACGTGGAAT	AGCTGTGAAA	CCTGCAGCGT	GGTCACCTCA
3251	GCCTGGTCGT	TTTCAGACCC	GTCCTCATCC	ATCAACATAT	TTGTTTCCCG
3301	AGTCTATTGA	TCTCCCTGAA	TTCTACAGAA	ATGCATTCTA	AGCTAGGCGC
3351	CTGTATGTCA	GAATCAGTTC	TGCAGGTAGC	TTCCGTGCTC	CAAGTATGAC
3401	ATGTATTGTA	AGGGCTGCAT	CTGTTTTAAA	CCCACATAAG	CCATGGGTAT
3451	AAATAAATGT	AGCTTTGAAA	AAAAATCTGG	CCTTATTCTA	GATAAACTTC

Fig. 3 (cont'd 1)

53/ 124

3501	CCTCTTAAAT	TACTGATATA	CTCTTCTCCC	TCTTTGACAT	TTAATTTTAG
3551	GAAAGTTGGG	AGACAGGTTC	TTGTCCTCCA	GTTTTTAAGG	AGCAGGCAAC
3601	TTCTATTATC	TTAATTTTCT	CGTCTTTGAA	CATCACTCAC	GTTTGCACTA
3651	CCCAGTCAGT	GGAACGAGTG	GGTCATAATT	AA	

Fig. 3 (cont'd 2)

Human genomic sequence

1	CCTGCATTAT	TGTTTTTATC	TGACTTCCAA	TTTTGGTGTT	CCCTGGGTGG
51	GTGGGTTTTC	CTGACACATT	TACAAGATGC	TTTTGGCAGG	TTGGCTGGAA
101	TTTGAAGGCA	CATTTAATTG	TAGGTGCAAT	AAAATATTCA	TTTTCTCTTG
151	TTCTTGGTTT	GAGATGTCAT	GCCCTTTTGG	TCACTTATAT	TTTGGTGTGA
201	CTGTGTGTGT	GTGTGTATGT	GTTTGTGTGA	AGGATTTAAC	AAAGTCTGTT
251	CTAACTGTCA	TGTGATTTGA	AGTTAAAAGG	TATGTTAGTG	ACAAGCCACA
301	AATTTCTCTT	ATTTATAGTA	CATTGATCCT	GAAACCATTT	TTTCCCTTGT
351	GATTTCTTCT	GTGCATGGAT	CATTTAACGA	AAGGTTGGCA	ATGATGAGCT
401	ATTTTTTAT	AATAGGAAAA	AAATTCCTCA	AGTTTACTTA	CCAAGTCATA
451	TTTTTATACA	GAGGGATTAG	CAAATATTTC	TGATCTAATA	TTTTAATAGA
501	CTGAATTGCT	GACCACTGCT	AATTACCAAG	AATATATTT	CTTAATTCTG
551	AAATTGCTGT	ACCTCTCAAG	TTGTCTGGAG	GACTCCAAGT	GACCCAACTT
601	GTAACTCATG	GCAACAGGAA	GTGGTTGTTC	TGGGTGCAAG	CTGAAGTGTG
651	CACATGGACC	CGTACTTTGT	TAGCACTCGG	GGACTTGATA	TGGAAAGAAT
701	TAATGTACTG	GCTTTTTTGT	ATAGATGAAT	GTTAACTTTC	TGACATTAGT
751	CAGAACTACA	TCTCCCAAGC	CTTGTTTTGC	AGTGTCTGTC	CCTTTGCTCT
801 (TCACTTACAG	TAAGTCCTTA	CTTAACTGAC	TTGATAGGTT	CTTGGAAACT
851	GCAACTTTAA	GCAAAAGGAA	GTATAATGAA	ACACTTTTAT	CACAGGCTAA
901	TTGGTAGAAA	CAAGACTTAA	GTTCCCATGG	CATATTTCTG	GTCACAAAAA
951	CATTTCCAAA	CTTCTCAAAA	CACTTCAATA	TTAAGCATTC	AAATACATGT
1001	AAACTATGTA	TATATGTAAG	AAAGGTTACT	ATAAACCAGA	ТСААТАТТТА
1051	CCCAATTATT	TAAGTTCAGG	GTCTTAGGTG	GCTGGAGCCT	ATCCGAGTAG
1101	CTCAGGGCAC	AAGGCGGGAA	CCAGCCCTAG	ACAGGACACC	ATCCTGTTGC
1151	AGGGCACGTT	CACACATGCC	CACACGCAGG	CTGGGACCAT	TTACATGTGC
1201	CAATTCACCT	ACCATGCACA	TCTTTGAGAC	GTGGCAGGAA	GCAAGAGTAC
1251	CTGGAGAAAA	TCCATACAGA	TATGGGGAGA	ATGTACAAAC	TCCACCCAGA
1301	CAGTGGACCC	AGCCAGGAAT	CAACATTTGG	GCAACATTAT	AATGAAACGA
1351	AGTTGAATGA	AATGATGTCG	TTCCACGACC	TGCTGTACTT	GAGGGGTGTT
1401	ATAAAATTCT	CAGAAGACAG	AGGTTTAATG	CTATCTTTTT	AATAGAAAAT
1451	AACTTATAGA	GAAGTGTGCA	CATGTGACTT	TGTGTGTAGC	AGGAATCATT
1501	AGGATGAGAA	TCAGACGTAA	GAGGTGGTGC	CAACATGAGG	AATGTTGAGA
1551	TTCAGGGAGC	TGTGGATGGA	AGTAGAAGCC	AGAAGGCCAG	GGTTAGGTTC
1601	СТАСТТСТТА	CTGTTTCAGT	TATTGCAGTG	TTGGCCTGTT	TATTCACAGA
1651	TGTCACCTAG	CTTTGTTTTC	TCAAGAAGAA	AAATGAGCAT	AATCTTTCCT
1701	GTTATGAATT	CTTAAACACA	CAGGACATAA	CCACAGACAC	AGAGGTGCAC

1751	ATATGTAGCA	GTAATGGATA	CTAAATGATA	CACTCGGAGG	AAACAGAAAA
1801	GACTTCTGAA	TAGAGACTGG	AGATACTTCC	TTGGACCATT	GATGAATGGG
1851	CAATGATGCA	TTTTTGTCTT	CCATTCAGAA	GGCTAATATA	TTGCTCTCTA
1901	TGTTCTATGG	ATAAAGGCAG	TATATGCTCA	AGGATGAATC	ACATAATATG
1951	САТААТАААТ	CCAGCAAGCA	TTACCCTTTT	ACTTATGTGA	CTGCAAGTAG
2001	GAATACATTT	CCCCCACTCT	AACCATGTAA	GATTTCTTTC	CCTTCTCCCA
2051	TTTTGTAAGC	AAAAGTAAGT	TCCTGAAAGG	TTAAATGGAC	CTCAGGATGG
2101	GAAAAATCCC	CAGAGCTATC	TTTCTGCACA	GACTTCATTT	TTTCTCCCAA
2151	GTCTGACTGT	CAACTGCGAT	ATCTGATATG	AGGCTCTGGT	GCTGATGTTT
2201	CCATAGGTCA	TCATCCTTCG	GTGTCCCAGA	TGAAGTCTCA	GGTCGAACAT
2251	TGCAATAGCA	CAGATTCTGA	ATTTAATGCA	TCATTAAAGT	TGGTTATGTA
2301	ACCCAATGGC	CTTGTTAAAC	TCCAGATTTT	ТААААТТАТА	TGTATTTACT
2351	ATTCTCTTAT	TTTAGAATGA	TCTCACAATG	TTCACAAGAA	ATAAGCCCAG
2401	TCCCTGCAAA	GACTTTAAAA	GCTGCTTGTT	CACATCATTA	GATTGTACAA
2451	CGCTTGTACA	ATGACACTTT	TTGCTAATCT	ATGCAACATT	TTTGTAACAA
2501	TTGTGCACAT	TTTAACTACT	TCAGATAATC	AGGACCTAGA	GACTTCAAGA
2551	TCTGGAAGCA	TTGCTGGTGA	CATAGAGCAA	AAACTTTCTT	GAGAATAGGA
2601	AGTCAGTGTT	TTGACAAGTG	ATTTATAACA	GTTCAGGTAT	AGCCAGGAAG
2651	GTTTGAAACA	AACCTTAAGT	ATTATTTCTT	TCATCTTGAT	TAGTATATAT
2701	TTATATGTGA	TCTATTTATG	ТАТАТТААТА	GATTTTTGGG	TCTTATAGCC
2751	AGCTTTCATT	TTTCTCTATT	GGAAAAGATC	TAAGTCCCCA	TCCTTCCTTG
2801	GTGGCTTTTG	GTAGGTTTGT	AGACAAAACA	TTGAAGAATC	AATGGTACCT
2851	TTTATACATT	AATACTGCCA	ATATGACCAT	AAAATCATAT	TTTTTGGGAA
2901	TTTATTCCCC	CGATCAAAAG	AAGCATTTGT	TATTGAACAC	AGTCTTATGC
2951	TACCTTATTA	AGATGTATCA	AACACCCTGA	TTGATCAAAA	ACACCTCAGT
3001	CCATTTTAAG	GCAGTATTGC	CCAGCAATTA	AAGATGTAGC	TTCTGGAGGA
3051	GTCTTTCTGA	GTTTGAATTC	AGTACTCTTC	CACGTACTAT	ATAGGTGATC
3101	TTGGGTAAAC	TTCTTGAGTC	TCAGTATCCC	CATCTGTAAA	ATTGTTGTAG
3151	AGAAGAATTT	TTGTGATGAT	TAGGTGAGAG	AATATATTAA	TGTAATATTT
3201	AGGAGAGCAA	CCAGCATGTA	GCATATATTC	ATTACATATC	AATTTCTATA
3251	TTATTGATGT	TCATACTGCT	GATGTTGAAA	TGCACAGGAA	GGCCACAGTT
3301	ATTTTCTGTT	TAGATTGATT	TTTCTTTTAA	AGTCTGAACA	TAAACTGTAA
3351	TACTGTGCTT	ATTTATGTAG	GAACTGTGAT	CTCGTCTCCT	CCTTTTCCCA
3401	TCTCCCCCTC	TCTACCTTAG	TTTTTCCTTA	TAGTCTCAAG	CTGAAAACAA
3451	TGACCAGGTG	CCTAAGAGAT	AAGAATACTC	TTTCTTTTGA	ACTCATGGCA

Fig. 4 (cont'd 1)

<u>.</u> _

09914549

56/124

3501	TTAGCAGTGA	CCTGGATGAG	ATTGGAGGCT	ATTATTCTAA	GTGAAATAGC
3551	TCAGGAATGG	AAAACCAAGC	ATTGTATGTT	CTTACTTATA	AGTGGGAGCT
3601	AAGCTATGAG	GATACAAAGG	CATAAGAATG	ACACAACAGA	CTTTGGAGAC
3651	TTGGGGAAAG	GGTGGGAAGG	GGGTGAGGGA	TAAAAGACTA	CAAATAGGGT
3701	GCAGTGTATA	CTGCTTGGGT	GGTGGGTGCA	CCAAAATCTC	ACAAATCACC
3751	ACCAAAGAAC	TTACTCATGT	AACCAAACAC	CACCTGTTCC	CCAGTAACCT
3801	ATGGATATAA	AAAAATTAAA	AAAAAGAAAA	AAAGAAAACT	CTTTTTTGCA
3851	GGGGGCAGGT	AAAGGGTAAG	AGGGCATCCC	ATTTTTGAGT	TTCTAGAAAA.
3901	GCTT				

Fig. 4 (cont'd 2)

Human genomic sequence

1	CTGCAGGAAG	CAGCAGCAAG	GTCCAGGGAG	CCTCTAATTT	AAATAGGAGA
51	AGTCAGAGCT	TTAACAGCAT	TGACAAAAAC	AAGCCTCCAA	ATTATGCAAA
101	TGGAAACGAA	AAAGGTAAGT	GTTTGTTACA	TCATTATGAC	ACAAGTCCAA
151	CATGAGTCTT	GTGAATTGCA	TGCTAAATCT	AATATTTGAG	CAGCGTAACA
201	ACTTTGGGCC	TAGAGATGTT	ATCAGTGGAG	TTTCTTTATG	TTTCCTAACT
251	GTCCCCTCCT	GACTGCCAGC	TTTCTTATCT	GAAGAACATT	TTAAACAAAT
301	AAACTCATTC	ATTTTAAAGT	AGTTAGTTAT	ATATGCAAGT	ACAAATACTG
351	TTTCTCAAAA	ACAGGTCCTT	CCAAATGCAT	GTAAATCACA	TTTTCTTATG
401	TCTTTTTATG	TTTTTGAAAA	TGTATCCTGA	AATCATAAAG	CCATATTGAA
451	TTTATCTGAA	TCCTTAACTT	CAGTTAAGGT	AAGAGCCATA	AGTGTTTTTG
501	ACAATTAAGG	TTGGAGCATC	AAAATTTGAA	ACATAATTAC	AGTAGGTTTT
551	TATCTTTGCA	AGCAGCAGAT	CCCAGAGATA	TTATGACCTC	AGTTTTCCCC
601	AAAAGACAAA	TTATTCATAT	TTGTTTTGTT	TTCTTGAATT	AGTGCATAAT
651	ATAAATATCA	AATCACAAAA	TCAAGGACAT	TAAATGAAAG	TGTCTGTTAA
701	AGGCATATTA	TAAATGAATC	ATAAGCCACA	CAGTTCTCTG	TGATGTACGA
751	AGTGGGCATT	TAAAGAGGTG	CTGATTTGAT	GCTTGTCACT	GAGTAGCAGA
801	GAGGACGGGG	ATGAGTATGT	GTAGTTTACA	CCTCAATCAT	GAGGAAGTGA
851	AGAACTTGTG	CTGTTATAAG	TAGTATGGCT	GTGTGAGGAA	CTAGGGTGTT
901	CTGCTGGATT	TTGAGGAAGT	ATTTTCAAAT	CAATAGAACT	TCAAACTTTT
951	CTTCAGAGTG	TTGGGCTCTA	CATGGAAAAA	CACATGAAAT	TAAAAAGTGG
1001	CACAAATGTT	TAGTTAGTAG	AACATCTGGC	TAATTGGGAT	CAAATAATTC
1051	AACCATGTGG	GAACGTTTTT	GCTCAAAATA	GATAATTGTG	AATTGTTTCA
1101	TATAGGCAAA	TGATTAGACA	ACTTCCTCTT	CCTCAAATGT	GAACGGACAG
1151	ATGTGATCTA	GAAGCAAGAC	ACTCTTTTGT	GTAAATATTC	CCTTTGGCCT
1201	AAAGCAAAAG	TGGACAGACT	TTAAACACCT	GAGAGCAGAG	CAGTGTGTGT
1251	TAAGATTGCA	ATATCTTAAG	CTCTTGAGTT	AAATGGAAAA	TGAAAAACAA
1301	AAGTGTATAT	TTGGAAGTTA	GGAATGTTTT	CTTTAAAATA	AAAATAAAAT
1351	TTTTAGATTT	AAGATCACAA	GAAATATTAC	TGAAGACTTA	TACTCTTCCT
1401	GGGGCTAAGG	GAGGTGACAG	TCGCTCATCA	GAAAAAAAA	AATGCCCTCA
1451	TTTCCTAACT	TTTCTAAAAA	ATATAATACA	AGTTCAGGCT	AATACTTCCT
1501	GTATATGTGG	GAAATTTCTA	GGGGAAGCTA	ACAGGCTTAG	AAATAAAGAT
1551	GTGTTAAATA	GACTACCAAA	GTGTCCAATT	AAGCAACACG	ATACCACCGT
1601	TATTGATATT	CTAGCAAGAA	ATTACTAGCA	ATGTTTGTAA	ATAGACTTAG
1651	AAATGCATTT	GATGAATTAA	CACTTTTATA	TCTTAATTTA	TCTGAATTTT
1701	TCTGTAATGT	GAAAATGTTT	TATTTAACTT	ATTTCTGGCA	TCTATTAGTA

1751	AAATTCTGAT	GATATACAAG	CATTAATATT	TTTCCATGGC	CACTCAATTC
1801	ATACATACCT	TCCCTATCTA	TGCTTAGAAG	GCAGTGCAAA	ATTAGATAGT
1851	AGCAATATTG	ATTATAACCA	CAAGGTGGAG	ACAGATGTCA	TGTAATATGC
1901	AGTCTGCTCA	TATAAAGCAC	ATTTTCTTAG	ACAAGAGTTT	TCATACGATA
1951	TAATAAAGAC	ATCTGGAATT	TGTCTTGTAT	GCAATATGAA	ATTTGCTATT
2001	AAACGTGGAG	TTAAAACTTT	ATGTCAATAG	ATCCAATAAC	AATGTTCATA
2051	AATTAATCAT	TATGTCATGC	TGTATTTCCA	AAATACTATC	TTAAATTATA
21 01	AGAGCAAACG	АССТААТАА		•	

Fig. 5 (cont'd)

Human genomic sequence

1	GTACATTTTT	TAATAAAGAT	GTTTGTTTTA	ACTTTTTGAA	TATGAAGATT	
51	TCTAGTTCTA	GAATAATGTT	TATAAAAATA	TACAAATCCA	TCTGGTGATG	
101	AGTTGACCTC	TATCACAACT	AGTTTGCATA	TATAACTTGG	GTGTGACCAA	
151	GCAAGGTGAG	AGTTAAGAAC	ТТТТААААСТ	TACTGTATTA	TATTGATAGA	
201	ACTCAGAAAG	TACTAACTTG	AATATTATTA	TTCTAATTGC	TTTTCCCTTT	-
251	TAGTTATTAA	AAATAAGAAT	ACTTAAATTA	ATAACAAGAT	CTTTTACTGG	
301	CAGGATTAAC	CAAATTATCT	GTAATGTGTT	CCTCGAATGC	TTTTAAGTGG	
351	AAATATACTT	TATACATTCT	TTAACAACTC	TGAGAGGATG	AGTTACATAA	
401	ATCAGTTCAG	GAATCTATAG	AATCTGTAAT	ACATAGTAAA	GGTTTATTCA	
451	CAATTAAAAC	AATTTCACTT	СТАТАТТААА	AAAACAAATT	GTTGAAAGTA	
501	CAGTGGCTTT	TCATATGTAT	GATTTGTAAA	ACAAATTAGC	TTTTTTAAAG	
551	TGATGTGACG	CTTAATGAGA	AGAAATCAGT	AGAGAATTAC	AAACTGCACT	
601	TCAAAAGATA	CATCTAATAT	CATTTTAATA	ATGAAATTTG	AAAAAATAGT	
651	GTGCTCGTTT	TACAGTCTCA	TTAAATGAAT	TAAAATATCA	GCACACATTG	
701	TAGTAGGTTA	TCATTGGCAG	AGAAGGCTGA	AATAGAAACG	TTACAATGGG	
751	ATGCACTGCC	ATCTGAACAT	TATGTCGAAG	TGGAACGCGG	AAACATATTT	
801	CTCAGAACAA	GTGGTAAAAT	GAAAACAGCA	TCATTTGTAA	AGCATTTCTT	
851	TTGAGAGTGC	TTCAGTTTCT	TCTCCTGATG	ACCTGCCATT	CAGAAACTGA	
901	CAATGAATAA	TACACTCTGA	CACCAGCATT	TGTCAATTTG	CCCAGAACCA	
951	TATGAGAGTA	CTCTAGACAG	ATATATGTTC	CGAAGTAAAC	CGAATACCTG	
1001	TTAACTGTAA	ATCAAATCTT	GTAGAAACCA	TGCCATGGTT	CCTTTGGACA	
1051	TATACTTTGC	ATGCCTGAAG	CAAGTTACCT	TAAGAAATCA	TTCTTTTGTT	
1101	TTACAAAACT	TGTATTAAAA	AATTAAAAAT	GCAAAAAAGC	TTAATATTAT	
1151	TAGGAATTTA	TCCATAGCTT	TATTTGGAAT	CCAGTTTCTT	TATTATGATC	
1201	TATAAACATG	CATCATTTGA	TGGAGTTCCT	TAGTGGAGAG	GTGTTTTTCC	
1251	ATGTTGCTAA	GAAACATGCC	CCAGCACCAG	AAGGGATACT	ACCTACCATC	
1301	TTTTTGCCAT	TTCTCACCGT	GATTCTTACA	TTGTACCTGT	TTACTCACTG	
1351	AACAGGGCTT	CCTTCTCTTT	GTCTAGATTC	TAATCAGGTG	TCTTCTGGTG	
1401	TGGAAGCTTT	GGCTTTTATT	ŢACACĄCĄĄC	ACAGAATTAA	TAAGATAGAT	
1451	GCCAAGGATT	TAGCAACATT	TTAATTCAAC	ATTATACAGG	TATCAGAGTT	
1501	AATGAGAATT	ATGCATTAGT	CTTTAAATTT	GGGCAGCTTA	TTCAGCTAAA	
1551	ACATAGATGT	CTAGCTCTTA	AACACTTTGT	$\mathbf{TTTAATT}$	ACTCTGAAAT	
1601	TACAATAAAG	TCAAAGAACT	GAACTGTTTT	CTTTTCAAGC	CAGTGCAAAT	
1651	GTGCTTTAGT	TATTATTTTA	CTGGTGATCT	AATTATGCAT	TTTAATGCTT	

1701	TATTACTTAA	TACTTATATA	AGCCTAAAAT	ACGTTGTTAA	TGTCATAATT
1751	TCAGGGATTT	TAGTATTCTT	TCCATGAGTT	ACCATAACTA	GGTGCATATG
1801	TGTAAATATA	CGTATATATC	TATATCTATA	TATTTATATC	TATGTATATA
1851	TCAATTTATA	AGACTAAATA	GACTTGGCCA	TATGTGTTGT	TGGTTTATGC
1901	ATACATGCAC	AAATATTGAG	GTGTCCACAA	AGTATATATG	CCTGTACATA
1951	AATTACATAC	TGGCTGGTGA	GTGAATGTAA	GCTTCTCTAA	ATTGTACAAC
2001	TCTCCACAGA	GTGGCACTCT	AATATTGCAA	AGGTACAATA	TAAGCATGTG
2051	CAGAATGAAC	AGCTCTTCTA	GGATCCCTAT	AAAACTCCAC	CCCATGTTTC
2101	TGT				

1

Fig. 6 (cont'd)

Human genomic sequence

1	AAGCTTCATC	CCAGAGGGGC	ACTTGCCAGA	TGCCTGCTAG	AGCTCTCCTG
51	TATGAGGAGT	CTATCAACAC	CTGCTGGGAG	GTGTCTCCTC	GTCAGGAGGC
101	ACGGGGGTCA	GGGACCCACT	TGAGGAGGCT	GTCTGTCCCT	TAGCGGAGCT
151	AGAACACTGT	GCTCGGAGAT	CCGCTGCTCT	CTTCAGAGCT	GGCAGGCAAG
201	AGTGTTTTAG	TCTGCTGAGC	CTGCGCCCAC	AGCCGCCCCT	TCCCCCAGGT
251	GCTCTGTCCC	AGGGAGATGA	GAGTTTTATC	TGTAAGCCCC	TGACTGGGGC
301	TGCTACCTTT	CTTTCAGATA	TGCCCCGCCC	AGAGAGGAGG	AATCTAGAGA
351	GGCAGTCTGG	CTACAGCAGC	TTTGCCAAGC	TGCAGTGGGC	TCTGCCCAGT
401	CCAAAATTCC	CAGCGGGTTT	GTTTACATTG	TGAGGGGAAA	AGCACCTACT
451	CAAGCCTCAG	TTATGGCAGT	TGCCCCTCCC	CCCACCAAGC	TCCAGGGTCC
501	CAGGTGTCCT	TCAGACTGCT	GTGCTGGCAA	TGAGAATTTC	AAGCCAGTGG
551	ATCTTAGCTT	GCTGGGCTCC	ACAGGGGTGG	GATCCACTGA	GCTAGACCAC
601	TTAGCTCCCT	GGCTTCAGCC	CCCTTTCCAG	GTGAGTGGAT	GGTTCTGTCT
651	CACTGGCATT	CCAGGTGCTA	CTGGGGTATG	AAAAAAAAA	CTCCTGCAGC
701	TAGCTTGGTG	TCTGCCCAGT	TTTGTGCTTG	AAACTCAGGC	CCTTGGTGGT
751	GTGGACACCC	AATGGAATCT	CCTGGTGTGC	ATGTTGTGAA	GACTGTGGGA
801	AAAGCATAGT	ATCTGGGCTG	GATAGCTCCG	TCCTTCAAGG	CACAGTCCCT
851	CATGACTTCC	CTTGGCTAGG	GGAGGGAGTT	CCCCAACCCT	TTGCACTTCC
901	CAGGTGAGGC	AACACCCCAC	CCTGCTTCTG	CTCACCCTCT	GTGGGCTGCA
951	CCCACTGTCT	AATCAGTCAC	TGTGAGATGA	GCCTGGTACC	TCAGTTGGAA
1001	ATGCAGAAAT	CACCTGCCTT	CTGTGTTGAT	CTCACTGGGA	GCAGCAGACT
1051	GGAGCTGTTC	CTATTCAGCC	ATCTTTCTCA	GGTCATAATC	ATAGATTTTT
1101	AATTGATCCC	AGCAACATGG	ATTAGTAAAC	AGCATATTTC	CAAGTGATTT
1151	TTTTTTTTT	TAAGGTCAAA	TCTACAAAAT	ATTATAGTGT	TATCACCACT
1201	TAAAATTATT	ACTGGTGATA	CTATGTTTGT	CTCTATTCAC	ATTTTATTGC
1251	TAGAAAGAAT	TATAATTTGT	AGATAATAAT	AGTTATTTGA	AATGTATTAC
1301	ATATCCTTTT	ACTTTTAAGA	AGAGGTGACT	ТААТТАТСТА	GGTATACAAT
1351	TATTTTGAGG	ATACTAAATG	TCATGAATAG	CAAATTTATC	ATATTGCTTT
1401	CCTAGGTGAA	GACCCTGAAA	CAAGAAGAAT	GAGAACAGTT	AAAAACATAG
1451	CAGACTTGAG	GCAGAATTTA	GAAGAGACTA	TGTCCAGTCT	TCGTGGGACT
1501	CAGATAAGCC	ACAGGTTTTT	TTCAATTTTG	CATATATTTG	AGCCAATAAA
1551	GAAAAAATAA	TTACAAACAA	ACATTTAACT	TTTCTTATAA	TGACAGAGAT
1601	GGGATTTCAG	TTTCCCCTTA	CTATTTTCTC	CCTTGTTTTA	TATCAAATTG
1651	ATTGGTAATT	ATCCTTAAAC	TGAGAATTCA	CAGTATATAC	CTATTTATCT
1701	TTTATCTCTA	TCTCTATCTG	CTATTTATGT	CTTTTTCAGT	ATAATTTCCA

1751	GTACTGCAAC	TACCACCATC	ACTGTTAAGT	GGATTTGTAA	TACCTGTCCT
1801	AGAAAACAGT	GGCACAAGTT	GCACTTGAAA	TGCATCTGGG	CAGGGTAGTA
1851	GGGAGACATT	CAAACATAAT	TGTAGTTAAC	TTTCAGAATA	GGTCTGGGAA
1901	GGTTACAGTG	AGTTAAGGAT	TTGTTGAAAA	TGTAAAACAA	TATGTTGTTT
1951	TACCCAAGGT	GTACTGATGG	CCTTTCTTTT	GAAAACAAAC	GAAAAGCTAT
2001	AAAATGTATG	CCCCTTTCCA	CAATTTGACC	TCAAAATGAA	TATAGAGTTT
2051	AGCTTTCGGG	AAGATGACGT	GTTTATAAGA	GATGACCCTC	AACTCCAGCC
2101	TTTTCTGTCT	TCATGCATTC	TAGATTATGG	CCCTAAGTGA	ACCAGAGTAT
2151	AGTTATTTCT	CCATTTTATT	TGACAGCACC	CTGGAGACAA	CATTTGACAG
2201	CACTGTGACA	ACAGAAGTTA	ATGGAAGGAC	CATACCCAAC	TTGACAAGTC
2251	GACCCACCCC	CATGACCTGG	AGGTTGGGCC	AGGCATGTCC	GCGACTTCAG
2301	GCGGGAGATG	CTCCCTCCCT	GGGTGCTGGC	TATCCTCGCA	GTGGTACCAG
2351	TCGATTCATC	CACACAGACC	CCTCGAGGTT	CATGTATACC	ACGCCTCTCC
2401	GTCGAGCTGC	TGTCTCTAGG	CTGGGAAACA	TGTCACAGAT	TGACATGAGT
2451	GAGAAAGCAA	GCAGTGACCT	GGACATGTCT	TCTGAGGTCG	ATGTGGGTGG
2501	ATATATGAGT	GATGGTGATA	TCCTTGGGAA	AAGTCTCAGG	ACTGATGACA
2551	TCAACAGTGG	GTAAGTAACC	CTGTTCTCCG	TCAGCATTGT	GTGAAGAGGG
2601	GAGGTGGTCT	ACTATAATGC	ATTCACTATA	AACAAATGTG	TAAGTTTGCC
2651	CAGAAAGTCA	TGAGAACATA	TGAGATATCT	GAGGTTATTC	AGAGTGTTGA
2701	AGGGCCCTTC	CTCTGCTCAT	TCATGGAGAG	TAAAGAATCC	AAGATTTCTA
2751	TAAATTCATT	ATAAGCCGCT	AAGTTTTTCT	GTTGTTGAGA	GAAACACATG
2801	TGGCTTCTGT	TTTTCAGAGT	GATTTTCACA	TGCTTCTTAA	GTAACAGATT
2851	TTGTAGTTAA	GGACGTGGGA	AGGAGACAGG	AGGAGTTTTG	CTGATTTGCT
2901	TGATTTTTT	TTTCTTTTTT	AGCTTGTTAG	AAGCGGCCTG	TAACTGCTTT
2951	GAGAAACAAA	TATTTTCTTA	CTGTCTTCAA	TTATGCATCC	CCAATTTAAC
3001	TTGAGGGAAA	AATCACTTTG	GAGTTGAAAG	TTTCACTCTA	TTCATTTTCT
3051	TTTGATGGTA	TCAGATTTCA	ATACATCTCA	GACCCTGTTT	TTCTTCTGTG
3101	TCCTATTACA	TTCCAAAACA	TGTTGTGATT	GTAAAACTCT	TAGAGTATAT
3151	TAACAATTTG	GGATATTTGG	CATAATCAGA	GAATAGGTCC	AAAAGGAGGC
3201	AATAGGATAT	TCTATTAATA	ATTGTAATTG	CCATTTTTAG	CATTTCCTGT
3251	TATGTACTAT	GCTCTTGTCA	AGTGCTTTGA	AGATAGTGTT	TTACTTTTCC
3301	TTCCCACCAC	CAGCAATGTT	TATGAGGTAG	ATGTTTTTAT	ACATGTTCTA
3351	TGGATAAGGA	AACTGAGTCT	AATTGGCCCC	GGCTGGGAAC	TAACGCTAGG
3401	GAAACGGCAG	ACCTGCATTA	GAACTCAGCT	ATGTCTGACT	TCAAACACAG
3451	GCTCAGTAAT	ATGTGGAAAA	GCTTCCCAAT	TAACTTTGTC	TATAAACTTT

3501	GTGTGAGTCT	GGATTTTGAC	TTACTCTTTG	TCTTTACGCA	TCTGAGAGGA
3551	CCCATGTAGG	AAATAATTCT	TCTATATAAG	TGACCCTTCC	TGACTTCATT
3601	CATGAAAAGC	TTATGTTTGA	AGGGTGACAC	GACCTAAAAA	AGAGTACAAA
3651	ATAGCTTTTG	ATTACATTTA	TAGCTTTGCT	CTGATATCCT	AATACCTACT
3701	AGTCCATTCC	TGGTATCCAC	CCTACCTGAC	TTTCTAAAAA	TTTAGAATTA
3751	TAGAGACTAA	TTATGATTAA	TTAAGATAGG	TTGTTGTTCA	GTTGCCACTG
3801	GATTCAGAGT	GCCTAGTTTG	AATCTCTCCC	ATTCACTATC	TGTGGACCCC
3851	TTCGGAACCT	AACGTATCCA	AATTAGTTTT	TGTCATCTAG	AATAAGGATA
3901	AAATTGTACC	ATCTTCATGA	AGTTGTTAGG	ATCATCCACA	AATTTTAGTT
3951	TGCGCAATGC	TTGGCATGAT	ACAAGCACTC	ATTAAATTA	TCATCTTCCT
4001	CTTTATCATC	ACTATTACAT	TTATTATCAT	TAATAACCAT	ACCAATTTTT
4051	GGTTGTTGTT	AGTTATAATT	ATCATTTTTG	TATGTATTTA	ACATAGCCTA
4101	GGAGGCAATG	CCCAGTTCAG	AAAACATAAT	GGCAAAGCAA	GAGTGTCTAA
4151	GGCACACTCT	TTCTCCCATC	TCTCTCTTCT	TTCTTCTCCA	TTCTTTCCAC
4201	TCTATCCCCT	CTTCTCTTTT	TTTTCTCAAT	CTCCTTAGAT	GTGGACATAT
4251	GTGTGAATTC				

Fig. 7 (cont'd 2)

.

Human genomic sequence

Kith the state of the state of

1	TGTGGGTGTG	GGTGTGAAGC	ATGTGTATGT	GTGTGTGA	AGCATCTCCC
51	CACCTGTAAT	GTAAGTCCAT	GAGTGCAGAA	TTTTTGACAT	ATTCTTTACG
101	TGTTGAGTTT	TAACAAATGT	TTGTGGAGTG	AATGAACAAA	TTAATGAATA
151	TAGGCTATTT	ATTAATTAGG	CAATATAGTC	ACATAGGCTG	GCAATCGCAT
201	СТААТТАААТ	AGAGTGGTAA	ATGAGTTCCA	GAAAGAACTA	AGGTACTACA
251	AGGATGTTAT	GAAAGAGAAA	AATGAGTTAT	GTGAAAAATA	GGAGACAGTG
301	ATAAGAGGGA	AAGAATCCCA	AAGTGTGGGC	CACATTTTGA	AACTAATGAC
351	СТАТТАТТСТ	ATTATTGTTA	GCTGAAAGTA	GAAAACGTCA	TGGGAGGGAA
401	TATCTGCTAG	TTTTTGGTAA	AGGATGTTGT	GATGGCAGAA	CCAAGAAATG
451	AACACAAGGT	GACTTTGGTT	TGGGGACAGT	GGGATAATCA	ACTCTCCTTG
501	CTCCATCAGG	GCCCCAGACT	GGGCTCTGGC	AGAGGAACTC	AGAACAACGT
551	AAAGACCTAG	ATAGGTATCT	AATAAATTGG	GACCTGTGAA	AACAGTGCCT
601	CTTAAAGTGT	GGTACCTGGA	CCAGCAGCAG	CAGCAGCAGC	AGCCATTGAA
651	ACTTCATAGA	AAGACAGATT	CTCAGCTTCA	TCCAAGACTT	ACTGAATTAG
701	AATATCTCAA	GGTAAGGCCT	GGTAATCTGA	GCTTTAACTA	GCCCTCAAGG
751	TGATTCTTAA	GTTCAAGCAT	CACTATATTA	AGTTGAACAA	ATAGATGCCA
801	GGCCTATAAA	TACATGTAAC	GCCTAGCATA	AATATTTCAA	САТТАААААТ
851	GACATTTCAT	AGTTCTTATT	TACCCTATTA	GCTGTGTTCT	GTCAAGATAA
901	TGAGAATATT	GATATGTTAG	AATACACTGA	TGCACTAATT	TTTAAATTAG
951	ATCAAATAAT	GACTTGTTAT	ACCTGAAATA	AATTGGTTCA	GCTTGGTAGA
1001	TGCAGTTTTT	GAGAATTATA	TAAGTCATTT	TTAAAAGAAT	AATTTTAACT
1051	TGAGCTGCTT	GCATAAATTA	AATTGCAAAA	AGGTCATAGT	ATAAATCCTC
1101	CTATTAGCAG	AGATAGAAGG	TTTTTAAAAA	AATTACAGAT	AAGTCTGAAG
1151	GTCTTTTAAA	ATCTTATATT	CAGGAAGTGA	CTCGGGATGT	ATATCATTTT
1201	AAAATACATG	GTCTTAAATG	TTGTAGTTGT	ATGACTCTTT	CAGTTAATTT
1251	AAAATACTTC	CTTCTATGAA	AAATTGTTTC	AAAAATTTTT	CTAAATTCTG
1301	TTATCCATTT	CAAGTAGGAT	AGGCAAGAAC	AGATATAAGA	TACTACTTTT
1351	TTGTTCATGT	TTACTAAAAA	AAAAATTACT	GTAATTGAGA	TCATGTAAAA
1401	ACATGTTTCC	TGTCTATTTG	TCTTAACCTT	TTAATCCTGG	CACCTTAAAT
1451	TTGACATAGT	AGGAATTAGA	AGACAATTGC	AGAAAATGTC	AACTGGGGAA
1501	ATTTTATTCT	ACTAAAAACT	ATGTCCATAC	AACATAGCAA	ATCACATTTT
1551	AAAGGCCAAA	AAGTCTTTCA	TAGCAATTTT	TCAGATTATT	TTCAAAGCAT
1601	ATCTTCTCTC	TGCTCCTGCA	GCATGCCGTT	GATTTTTCTG	TTATGCAGTC
1651	ACATAAGTAA	TTACATGTTT	ACATGTCTAT	TTCACTCATA	GAACACGAAA
1701	CAGTTAAATG	TAGAATAATA	TCCAATCCAT	CTTTTTATCA	CCAGTAGCTA

1751	GCATACTGTA	GGAACTCAAT	AAATATATCA	GATAAATTGT	GGAAATAACC
1801	ATATCAGCTT	ATAACATATA	GAAATGTGAG	TTTAAAAAGA	AAACAATTAT
1851	ACATATGAAA	AAATTTTTAT	ACCATTTTTT	TAAAGACCTT	TCAGATGTCA
1901	TACAGTTTGG	ACTTTTCCAG	TGTTTCTTGT	ATCATGAGAC	AATAGTAGAC
1951	ATTGTAAATC	AAAAATAGTT	TTCTGGGGTT	GTGTACATTT	GAAAAAACTG
2001	AATATCATAT	CTGTTCTTAG	AGAGTAATGA	TGGATATTAA	CATATCAAAG
2051	GTACAGAGAA	GTCTTAAAGT	TCAAAGTAAC	ATCTGCTTAA	TTGTATTTAA
2101	TTCAGTGCTC	CATGAGCTTT	TTTATCACTG	ATTCCCTCCC	TTTTTTCTCT
2151	TATGATAATA	ATTAACTTGT	TCCTGTAGCA	TTTTAAGAAA	TGTTGATTTA
2201	GTTGAATGCC	TTCACTTCTC	СААТАТААТА	GCAGAAACTC	AGAAATATTT
2251	ATTTACCCAG	AATCATGCAG	CTAATAGTAC	AAGGATTCAG	GTCTTTTACT
2301	TCCTATTTTG	TGGTTCCCAA	CTACTTTTGC	CAAAGGTCTT	TTAAATAATA
2351	TGAAACATAT	TAGTGATTGA	TTCATTATAG	TAAATGGGTA	AATGATAAGG
2401	CTTGCAATAA	TTCACTGACA	AGAAAGCTT		

Fig. 8 (cont'd)

• . • —

Murine cDNA sequence

 $\left(\frac{\partial f}{\partial x}\right)^{-1} = \frac{1}{2} \left(\frac{\partial f}{\partial x}\right)^{-1} \left(\frac{\partial f}{\partial x}\right)^{-$

1	AAGCCACAGCACCCTGGAGACAACCTTTGATACGACTGTGACAACTGAAGTGAATGGAAG S H S T L E T T F D T T V T T E V N G R
61	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
121	CCCTCGTCTACAGGCTGGAGATGCCCCCTCCATGGGCGCTGGATATTCTCGAAGCGGTAC PRLQAGDAPSMGAGYSRSGT
181	CAGCCGATTCATCCACACGGATCCCTCCAGGTTTATGTATACCACGCCTCTCCGCCGAGC S R F I H T D P S R F M Y T T P L R R A
241	TGCTGTCTCGCGTCTGGGAAACATGTCACAAATAGATATGAGCGAGAAAGCAAGC
301	CCTGGATGTGTCTTCTGAAGTGGATGTTGGTGGTGATATCCTTGG L D V S S E V D V G G Y M S D G D I L G
361	GAAGAGTCTGAGAGCGGATGATATCAACAGTGGGTACATGACAGATGGTGGGCTCAACCT KSLRADDINSGYMTDGGLNL
421	ATATACCAGAAGTCTTAACCGAGTCCCGGACACAGCAACTTCCAGAGATGTCATACAGAG Y T R S L N R V P D T A T S R D V I Q R
481	AGGCGTTCACGATGTGACAGTGGACGCAGACAGCTGGGATGACAGCAGTTCTGTGAGCAG G V H D V T V D A D S W D D S S S V S S
541	TGGCCTCAGTGACACACTTGATAACATTAGCACAGATGACCTCAACACCACGTCCTCCAT G L S D T L D N I S T D D L N T T S S I
601	CAGTTCTTACTCCAACATCACTGTCCCCTCCAGGAAGAACACTCAGCTGAAAACAGATGC S S Y S N I T V P S R K N T Q L K T D A
661	GGAGAAACGTTCGACAACAGATGAGACCTGGGATAGTCCTGAGGAGCTGAAGAAAGCCGA E K R S T T D E T W D S P E E L K K A E
721	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
781	TGCTGAAGACTCGGAGAAGACAGGGCAGAAAGCCAGCCTGTCTGT
841	CTGGAGGAGAGCATGTCTGCCCAGGGAGAAACTCCAGCTACAGCTAGGCAGAAAACCAG WRRGMSAQGGTPATARQKTS
901	CACAAGTGCACTCAAGACCCCTGGGAAGACAGATGATGCCAAAGCTTCCGAGAAAGGGAA T S A L K T P G K T D D A K A S E K G K
961	AACTCCTCTCAAAGGATCATCCTTGCAAAGGTCTCCTTCAGATGCAGGGAAAAGCAGCGG T P L K G S S L Q R S P S D A G K S S G
1021	GGATGAAGGGAAAAAGCCACCGTCAGGCATTGGAAGATCGACAGCCAGC
1081	ATACAAGAAGCCAAGTGGTGTAGGGGCTTCCACTATGATTACCAGCAGCGGTGCCACCAT Y K K P S G V G A S T M I T S S G A T I
1141	CACAAGCGGTTCAGCTACACTGGGGAAAATCCCCAAATCCGCTGCCATTGGTGGGAAGTC T S G S A T L G K I P K S A A I G G K S
1201	CAATGCAGGAAGGAAAACCAGCCTGGACGGGTCCCAGAATCAAGATGATGTTGTCCTGCA N A G R K T S L D G S Q N Q D D V V L H
1261	CGTGAGCTCGAAGACCACCCTCCAGTACCGTAGTTTGCCCCGCCCTTCTAAGTCCAGCAC V S S K T T L Q Y R S L P R P S K S S T
1321	CAGCGGAATCCCTGGGAGAGGTGGCCACAGGTCGAGCACCAGCAGCATTGATTCCAATGT S G I P G R G G H R S S T S S I D S N V

1381	CAGCAGCAAGTCAGCTGGGGCCACCACCTCCAAACTGAGAGAACCGACTAAGATCGGCTC S S K S A G A T T S K L R E P T K I G S
1441	AGGGCGCTCGAGTCCAGTCACTGTCAACCAAACAGACAAAGAGAAGGAGAAAGTAGCAGT G R S S P V T V N Q T D K E K E K V A V
1501	GTCAGATTCAGAGAGCGTTTCCTTGTCAGGTTCCCCCAAATCCAGCCCCACCTCTGCCAG S D S E S V S L S G S P K S S P T S A S
1561	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1621	CACATTTCGAAGGTTGTTCGGTGCCAAGGCAGGCGGCAAATCTGCCTCCGCACCTAATAC T F R R L F G A K A G G K S A S A P N T
1681	TGAGGGGGCGAAGTCCTCCTCAGTAGTGCTCAGCCCTAGTACCTCTTTAGCCCGACAAGG E G A K S S S V V L S P S T S L A R Q G
1741	CAGTCTGGAGTCACCGTCCGGTACGGGAAGCATGGGCAGTGCTGGTGGGCTGAGTGG S L E S P S S G T G S M G S A G G L S G
1801	CAGCAGCAGCCCTCTCTCAATAAACCCTCAGACCTAACTACAGATGTTATAAGCTTAAG S S P L F N K P S D L T T D V I S L S
1861	TCACTCCTTGGCTTCAGCCCAGCGTCGGTTCACTCTTTCACATCCGGTGGGCTTGTGTGH S L A S S P A S V H S F T S G G L V W
1921	GGCTGCCAATCTGAGCAGTTCCTCTGCCGGCAGCAAGGACACTCCAAGTTACCAGTCCAT A A N L S S S S A G S K D T P S Y Q S M
1981	GACTAGTCTCCATACGAGCTCTGAGTCCATTGACCTGCCCTCAGCCATCATGGCTCCCT T S L H T S S E S I D L P L S H H G S L
2041	GTCTGGACTGACCACAGGCACTCACGAGGTGCAGAGCCTGCTCATGAGAACGGGTAGTGT S G L T T G T H E V Q S L L M R T G S V
2101	GAGATCTACTCTCAGAAAGATACACCCCATCATCTCGGCAGGCCAACCAA
2161	CAAAGAGTGGCTGCGATCGCATTCCACTGGCGGGCTGCAGGATACTGGCAACCAGTCTCC K E W L R S H S T G G L Q D T G N Q S P
2221	CTTGGTCTCCCCTTCTGCCATGTCATCGTCAGCCACCGGAAAATATCACTTTTCCAACTT L V S P S A M S S S A T G K Y H F S N L
2281	GGTGAGTCCCACCAACCTCTCCCAGTTTAACCTGCCTGCACCCAGTATGATGCGCTCCAG V S P T N L S Q F N L P A P S M M R S S
2341	CAGTATCCCCGCCCAGGACTCCTCCTTCGACCTCTATGATGATGCCCAGCTTTGCGGTAG S I P A Q D S S F D L Y D D A Q L C G S
2401	TGCAACTTCCCTGGAGGAAAGGCCACGGGCCGTTAGCCACTCCGGCTCATTCAGAGACAG A.T.S.L.E.E.R.P.R.A.V.S.H.S.G.S.F.R.D.S
2461	CATGGAGGAAGTTCATGGCTCTTCACTGTCATTGGTCTCCAGCACATCATCCCTTTACTC M E E V H G S S L S L V S S T S S L Y S
2521	TACGGCTGAAGAGGAGCTCATTCAGAGCAAATCCATAAGCTACGGAGAGAACTGGTTGC T A E E K A H S E Q I H K L R R E L V A
2581	CTCCCAGGAGAAAGTCGCTACCCTCACGTCTCAGCTGTCAGCAAATGCTCACCTTGTAGC S Q E K V A T L T S Q L S A N A H L V A
2641	AGCTTTTGAAAAGAGTTTAGGGAATATGACTGGCCGTTTGCAAAGTCTAACCATGACAGC A F E K S L G N M T G R L Q S L T M T A
2701	GGAACAAAAGGAATCTGAGCTTATCGAACTGCGGGAAACCATTGAAATGTTGAAGGCCCA E.Q K E S E L I E L R E T I E M L K A Q

Fig. 9 (cont'd 1)

2761 GAACTCTGCTGCCCAAGCAGCCATTCAGGGAGCACTGAATGGCCCAGACCACCCTCCCAA
N S A A Q A A I Q G A L N G P D H P P K

2821 AGATCTCCGCATCAGAAGACAGCACTCCTCTGAAAGTGTTTCTAGTATCAACAGCGCAAC
D L R I R R Q H S S E S V S S I N S A T

2881 GAGCCATTCCAGCACTTGGCAGTGGTAATGATGCTGACTCCAAGAAA
S H S S I G S G N D A D S K K

Fig. 9 (cont'd 2)

<u>.</u> _

Murine genomic sequence

			_		
1	GGGATGAAGG	GAAAAAGCCA	CCGTCAGGCA	TTGGAAGATC	GACAGCCAGC
51	AGTTCTTTTG	GATACAAGAA	GCCAAGTGGT	GTAGGGGCTT	CCACTATGAT
101	TACCAGCAGC	GGTGCCACCA	TCACAAGCGG	TTCAGCTACA	CTGGGGAAAA
151	TCCCCAAATC	CGCTGCCATT	GGTGGGAAGT	CCAATGCAGG	AAGGAAAACC
201	AGCCTGGACG	GGTCCCAGAA	TCAAGATGAT	GTTGTCCTGC	ACGTGAGCTC
251	GAAGACCACC	CTCCAGTACC	GTAGTTTGCC	CCGCCCTTCT	AAGTCCAGCA
301	CCAGCGGAAT	CCCTGGGAGA	GGTGGCCACA	GGTCGAGCAC	CAGCAGCATT
351	GATTCCAATG	TCAGCAGCAA	GTCAGCTGGG	GCCACCACCT	CCAAACTGAG
401	AGAACCGACT	AAGATCGGCT	CAGGGCGCTC	GAGTCCAGTC	ACTGTCAACC
451	AAACAGACAA	AGAGAAGGAG	AAAGTAGCAG	TGTCAGATTC	AGAGAGCGTT
501	TCCTTGTCAG	GTTCCCCCAA	ATCCAGCCCC	ACCTCTGCCA	GTGCCTGTGG
551	GACTCAAGGG	CTCAGACAGC	CAGGGTCCAA	ATATCCAGAT	ATTGCCTCGC
601	CCACATTTCG	AAGGTAAGGG	TATGTAAAGA	GATGTTGGGA	AAACATAAAA
651	GGTAGTATAT	AGCATGTATT	TATTCTGTAC	GAAACTATTT	TCATGTATTC
701	TAAATATTCT	AAGATTCTGT	ATCTTATACT	TGTCTAAAAT	ATAGTGATTT
751	TATTTTGCTG	ATTGCACCTG	TTGCTAGTGT	AAAAGCATTG	CTCATTTAGA
801	GAGTGGTTAG	CCTTTCAGCT	ATACAGCCAG	TGTGACACTA	AAATACAGAT
851	ACCACTTGTA	GCGGGCATAA	AACCACATGA	CTGACTATTC	ATAGAAATAA
901	AGTGATAGCT	TGTAAAGATA	TTTAGTGATT	TCCACCTCTC	CTTTCCAGAA
951	TTAAAAAAAG	CAAATTGCAT	AGATCTTTAT	AAACACATTT	ACTTCTAGTG
1001	TATGTTATCT	TGTTGACTCT	TAATGAAATG	GCAGTTATGA	ATATAGATGA
1051	TATATTCTTT	CTAACAGTTT	ATAAGAGACC	AATTTATACA	GTACCAGATC
1101	TTAACATAGT	AACAATAACA	GCAACAAAAA	CAACCCAAAA	AGCTATCAAA
1151	GTATGGTCTG	ATTGCAGAAT	TTGAAAACAT	TTACATGTTT	GACATAGGAC
1201	AAGAACTCAG	GAGTGAGGTG	ACTTTTTATA	AGTCTTCATC	AATGTCCTTT
1251	TACAGGAACC	AGGAAGCATA	TCTGATATAT	GTGTCAGGAT	TATCACTTTA
1301	TTAATTATGT	GAAATTCTGT	TTAGAAATCT	ACCTGATTTT	AAATACTTTA
1351	ATATAGTAGG	GGTCAAAATT	AGTTAATGAG	TTAAGACAAG	TTGTTAAATA
1401	ATCCTGGCTC	TGTTTTCTCA	TCTTCAAAAT	GATAGAGTAT	AATTTATCAC
1451	CTCTTGTTAA	ATATTTCAGG	TTTGTGTTTTA	TTCTCTTGAT	AACTTTGATC
1501	TCTTAGAAGA	GTCTTGAAGA	ATTTACATTA	AGTAATCTTA	GAAACATAAC
1551	TATTTGAGAA	ACAGTAGTCA	AATTTTGTCA	TTAGAAGTAT	TAACTCTGAA
1601	GAATGATTTG	AAGTGACAGT	TCTTAGAAAG	TATTAAATTAA	AGCTTGTAGC
1651	AAGAGTAAAT	ATTTTCACTG	CTTGTGTGAG	AGCCAAGAGC	GCCCTCTTGT
1701	GGCCCATTAC	CTATGAAACA	ATTTCTCATA	TTCGCCCTAG	AAATCTTCCA

CTGCAGGAAA	TAATGGATTT	CATTGCCTCT	GAATTAGTAA	CCATTCTGCC
ATTTCTTCAT	ACCATTTTAT	TTCCATACTT	GCATAAATTT	GATTATGTCA
TCTGCTTCAT	TTACAAAACT	AAAATGTTTT	CTGAGCTAAA	CTCCAGTAGC
TAACTTAGTA	CAAATGGTAT	TTTTAAATCA	CTGCTATAAG	ТАТАТАТАТТ
TGAATAGCTC	TGGCAACGGA	CGGAAATCCC	TATGGTCTTT	CCATGGGAAG
ATACAAACCA	ATCCATAAGT	TGTCCAGCAA	TATCCAATAT	TTCCAGCCCA
GCCAGTCAGG	CCTCTTAAAC	ATTACCTTAC	ATATTTGAAC	CTTTCCTTAA
ATGTCCCCTT	TAGACAATCT	ATTTTTTAAA	AAGATGAAAA	TCCATTTAAG
CATCATATAT	CGAATGCGTA	GAAGTTGTTT	CATTATAATG	GTTCTGCAGA
TAGGTAATGC	CAAAACGGCC	AAAATATTTG	ATCACTAGAA	GCGTAAAAGT
CAAGTACAAT	CATGTTGACT	TTTTTTCCAA	GGTGGGTTCA	CTGCTGCCCA
CCTTGGTTCC	AGGCCAGTGC	TTACTTAAGA	TATCGTAAGT	GATTTTTTT
TAATTTTTAA	TTTTTTAGTA	GTTGGTTAAT	CAAAAGCCAG	TCATGTCACC
TTCAGGAACA	TAGAGGCTGG	ACGTGCTTGG	CAGCTCACGA	CTCCAAAGCA
CACTTGGCTC	TGTGGACTGA	AACCCTAGGA	AACGTGGATG	TGAGTCTCTT
GGAACAACTC	AAGTTGTTAT	TTGTTTTTCT	TTTAGGTTGT	TCGGTGCCAA
GGCAGGCGGC	AAATCTGCCT	CCGCACCTAA	TAC	
	ATTTCTTCAT TCTGCTTCAT TAACTTAGTA TGAATAGCTC ATACAAACCA GCCAGTCAGG ATGTCCCCTT CATCATATAT TAGGTAATGC CAAGTACAAT CCTTGGTTCC TAATTTTAA TTCAGGAACA CACTTGGCTC GGAACAACTC	ATTTCTTCAT ACCATTTAT TCTGCTTCAT TTACAAAACT TAACTTAGTA CAAATGGTAT TGAATAGCTC TGGCAACGGA ATACAAACCA ATCCATAAGT GCCAGTCAGG CCTCTTAAAC ATGTCCCCTT TAGACAATCT CATCATATAT CGAATGCGTA TAGGTAATGC CAAAACGGCC CAAGTACAAT CATGTTGACT CCTTGGTTCC AGGCCAGTGC TAATTTTTAA TTTTTAGTA TTCAGGAACA TAGAGGCTGG CACTTGGCTC TGTGGACTGA GGAACAACTC AAGTTGTTAT	ATTTCTTCAT ACCATTTAT TTCCATACTT TCTGCTTCAT TTACAAAACT AAAATGTTTT TAACTTAGTA CAAATGGTAT TTTTAAATCA TGAATAGCTC TGGCAACGGA CGGAAATCCC ATACAAACCA ATCCATAAGT TGTCCAGCAA GCCAGTCAGG CCTCTTAAAC ATTTTTAAA ATGTCCCCTT TAGACAATCT ATTTTTAAA CATCATATAT CGAATGCGTA GAAGTTGTT TAGGTAATGC CAAAACGGCC AAAATATTTG CAAGTACAAT CATGTTGACT TTTTTCCAA CCTTGGTTCC AGGCCAGTGC TTACTTAAGA TAATTTTAA TTTTTAGTA GTTGGTTAAT TTCAGGAACA TAGAGGCTGG ACGTGCTTGG CACTTGGCTC TGTGGACTGA AACCCTAGGA GGAACAACTC AAGTTGTTAT TTGTTTTCT	CTGCAGGAAATAATGGATTTCATTGCTTCTGAATTAGTAAATTTCTTCATACCATTTTATTTCCATACTTGCATAAATTTTCTGCTTCATTTACAAAACTAAAATGTTTTCTGAGCTAAATAACTTAGTACAAATGGTATTTTTAAAATCACTGCTATAAGTGAATAGCTCTGGCAACGGACGGAAATCCCTATGGTCTTTATACAAACCAATCCATAAGTTGTCCAGCAATATCCAATATGCCAGTCAGGCCTCTTAAACATTATCTACATATTTGAACATGTCCCCTTTAGACAATCTATTTTTAAAAAGATGAAAACATCATATATCGAATGCGTAGAAGTTGTTTCATTATAATGTAGGTAATGCCAAAAACGGCCAAAATATTTGATCACTAGAACCTTGGTTCCAGGCCAGTGCTTTCTTAAGATATCGTAAGTTAATTTTTAATTTTTTAGTAGTTGGTTAATCAAAAAGCCAGTTCAGGAACATAGAGGCTGAACCCTAGGAAACCGTGGATGCACTTGGCTCTGTGGACTGAAACCCTAGGAAACGTGGATGGGAACAACTCAAATCTGCTCCGCACCTAATTTAGGTTGT

Fig. 10 (cont'd)

ξ ·

T2HC

Homologous human cDNA

1	GGAT D			rcge R	GAG E	ACC T	CATO M	SCA(H	CAAC N	CATC M	Q Q	L	E E	V	D D	L	L	K	A	E
		~			_	_														
61	GAAT N	D	R	L	K	V	A	P	G	P	S	S	G	S	Т	Р	G	Q	V	Pa
121	TGG	ATC	ATC:	rgc <i>i</i>	ATT?	YTC.	rrc	ccc	ACG	cce	CTC	CCTA	AGGC	CTC	GCZ	CTC	CAC(CCA! H	rtco S	CTT F
	G	_							R										_	_
181	CGG(CCC P	CAGʻ S	rct: L	rgc <i>i</i> A	AGA(D	CAC.	AGA D	CCT(L	STC.	ACC(P	CATO M	GAT D	rgg(G	I I	CAG: S	rac' T	rtg: C	rgg: G	rcc P
241	AAA	GGA	GGA.	AGT(GAC	CCT	CCG	GGT	GGT	GGT	GAG	GAT(GCC(ccc	GCAC	GCA(CAT	CAT	CAA	AGG
212	K	E	E	V	T	L	R	V	V	V	R	М	Р	Р	Q	н	Τ	1	K	G
301	GGA D	CTT L	GAA K	GCA(Q	GCA(Q	GGA. E	ATT F	CTT F	CCT L	GGG G	CTG' C	rago S	CAA(K	GT(V	CAG' S	rgg: G	AAA. K	AGT' V	TGA(D	CTG W
361	GAA	GAT	GCT	GGA'	TGA	AGC'	TGT	$ ext{T} ext{T}$	CCA	AGT	GTT	CAA	GGA	CTA!	TAT	rTC'	TAA	AAT	GGA	CCC
301	K			D		A	V	F	Q	V	F	K	D	Y	Ι	S	K	M	D	P
421	AGC	CTC	TAC	CCT	GGG.	ACT	AAG	CAC	TGA	GTC	CAT	CCA'	rgg	CTA	CAG	CAT	CAG	CCA	CGT	GAA
	A		3																V	
481	ACG R				TGC. A		GCC P	CCC P	CGA E	GAT M	GCC P	TCC' P	TTG C	CCG' R	TCG. R	AGG G	TGT V	CAA N	TAA N	CAT I
541	ΔΨC	'АСТ	стс	CCT	CAA	AGG	TCT	'GAA	GGA	.GAA	ATG	CGT	CGA	CAG	CCT	GGT	GTT	CGA	GAC	GCT
241	S	V	S	L	K	G	Γ	K	E	K	С	V	D	S	L	V	F	E	Т	L
601	GAT I	CCC P	CAA K	GCC P	GAT M	GAT M	GCA Q	GCA H	CTA Y	CAT I	AAG S	CCT L	CCT L	GCT L	GAA K	GCA H	.CCG R	GCG R	CCT L	CGT V
661	CCT	ירייר	'GGG	CCC	:CAG	CGG	CAC	GGG	CAA	GAC	СТА	CCT	GAC	CAA	TCG	СТТ	GGC	CGA	GTA	CCT
001		s			S		Т	G	K	\mathbf{T}	Y	L	Т	N	R	L	A	E	Y	L
721	GGT	GGA	AGCC	CTC	TGG	CCG	TGA	AGGT	CAC	AGA	.GGG	CAT	CGT	CAG	CAC	CTT	'CAA	CAI	GCA	CCA
	V	E	R	S	G	R	E	V	T	E	G	Ι	V	S	T	F.	N	М	н	Q
781	GCA	GTC	TTC	CAP	AGGA	тст	rgc <i>i</i>	AAC'	rgta	ATCI	TTC	CAA	CCI	AGC	CAA	CCA	GAT	'AGA	DD27	GGA E
																			R	
841	AA T	CAGO G	AAE I	TTGC G	GGA D	TG7 V	rgco P	CCC.	rgg7 V	rgan I	TCI L	TTAT L	GGA D	TGA D	L L	'GAC S	TGA E	AAGC A	CAGC G	CTC S
901	CA:	rca s	STG2 E	AGTT L	rggi V	CAZ N	ATG(G	GGG A	CCCT L	rcac T	CTC C	CA.F K	GTA Y	TCA H	TAA K	ATC C	TCC P	CCTA Y	rate I	TAT' I
0.61																				CAG
961	G	\mathbf{T}	\mathbf{T}	N	Q	P	V	K	M	\mathbf{T}	Р	N	Н	G	ъ	Н	П	5	r	К
1021		TGT'	TGA	CCT	rctc	CCA	ACA	ACG'	TGG	AGC(CAG(CCA?	ATGO	CTT: F	CCT T.	GG: V	PTCO R	TTE Y	ACCT L	rgag R
	M																			
1081	GA R	GGA K	AGC L	TGG' V	TAGA E	AGT S	CAG. D	ACA S	GCG. D	ACA' I	rca. N	ATG(A	CCAI N	ACA. K	AGG <i>I</i> E	AAGA E	AGC' L	rGC'	rrcc R	GGT V
1141	GC	TCG	ACT	GGG'	TAC	CCA	AGC	TGT	GGT.	ATC.	ATC'	rccz	ACA	CCT	rcç:	rTG.	AGA.	AGC.	ACA(GCAC
	Γ	Ď	W	V	P	K	L	W	Y	Н	ᅩ	Н	.1,	F.	L	£	V	n	۵	T

1201	CTC	AGA	C.J.J.C	CTU	ATC										CAI.		LAI.			
	S	D	F	L	1	G	P	С		F			C		Ι	G	I	E	D	F
1261	CCG	GAC	CTG	STT	CAT	rga(CCTC	GTG(SAAC	CAAC	TTC'	TAT	CAT'	rcc	CTA'	rct.	ACA	GGA.	AGG?	AGC
2002	R	T	W	F	I	D	L	W	N	N	S	Ι	I	Ρ	Y	L	Q	E	G	A
1321	CAA	GGA'	TGG	SATA	AAA	GTC	CCAT	rgg	ACAC	GAA	AGC'	TGC	TTG	GGA	GGA	CCC	AGT	GGA.	ATG	GGT
1021	K	D	G	I	K	V	Н	G	Q	K	A	A	W	E	D	P	V	E	W	V
1381	CCG	GGA	CAC	ACT	rcco	CTG	GCC <i>I</i>	ATC	AGC	CCA	ACA	AGA	CCA	ATC	AAA	GCT	GTA(CCA	CCT	GCC
1301	R	D	T	L	P	W	P	S	A	Q	Q	D	Q	S	K	L	Y	Н	L	P
1441	CCC.	ACC	CAC	CGT	GGG	ccc	rcac	CAG	CAT	rgc	CTC.	ACC	TCC	CGA	GGA'	rag	GAC	AGT	CAA	AGA
TAAT	P	P	Т	V	G	Р	H	S	I	A	S	P	P	E	D	R	\mathbf{T}	V	K	D
1501	CAG	C 2 C	ccci	AAG	הטיים	rcmo	GAC	CTC	AGAr	rcc	тст	GAT	GGC	САТ	GCT	CT	GAA	ACT	rca:	AGA
1301	S	T	P	S	S	L	D	S	D	P	L	M	A	М	L	L	K	L	Q	E
1561	AGC	ጥርር	ממח	ጉጥA	CATT	rgad	GTC	rcc	AGA	rcg.	AGA	AAC	CAT	ССТ	GGA	ccc	CAA	CCT	гса	GGC
1501	A	A	N	Y	Ι	E	S	P	D	R	E	T	I	L	D	P	N	L	Q	A
1621	AAC. T	ACT L	ATT *	AGG	3TT(CGG	CAA!	rca(CTG!	rca(CCC	CCG	GAC.	AGC	AGA	ACG ⁽	CTG	GCA'	rca(GCT
1681	ATC	TTA	GCT	CCT	CCT	CTC	ccc.	rcT(CCT	CTT'	ГСА	GAG	CAC'	rgg	CTC'	rcc.	AGC	CCC	AGG2	AGG
1741	AGA	ACA	GGÀ(GGG2	AGG/	AGG	AGA!	TGA.	AAGZ	AGG.	AGG	GAC	'AGG'	TTC	TTG	GTG	CTG'	rac(CTT'	TGA
1801	GAA	CTT	CCT	AGG	AAG	GAA'	TGG'	rgg	GT(GGC	GTT	TGG	GAA	CTT	GTG	CCC	CCT	AAA	CAC	ATT
1861	TAC	TGG	CCT	CCT	CTAZ	ATG	ACT:	r r g(GGG2	AAA	AGA	TGA	TTC'	TGG	GTC'	TTT(CCC'	PTG.	ACT'	TCT
1921	TGT	TTC.	AAT	raca)AAA	CTC	CTG	GGC'	r r r(CTG	GGG.	AGG	GGT'	TCA	GAA	AAC.	ATC	A.A.A	ACA(CTG
1981	CAG	CAG	TTC	CTA	AAT(GA'T'	rct(CAC	AAG	CAA	CCC	TGA	GAG.	AGA	CAG'	PCT'	rg T(GAG(3GA(GAT
2041	CTG	GGG	GAG	GCA(GGA2	AGC'	rcc:	rca(GAT'	TTT(CTC	ACA	.GAC	CCT	TCC	CAA'	TTC	CAT	CAC	CAC
2101		-													AAA					
2161	AAA		011												_					
2221	AAA																			
2281	GCC																			
2341	AGT																			
2401	ጥርጥ	ACC	כיתכי	יבביד	ተጥጥ?	DAA	ል ል ጥር	GCA	TAAG	GAG	TCA	ΑTA	AAC	CCT	ACT'	ጥጥጥ	TTA	AAA.	AAA.	AAA

Fig. 11 (cont'd)

Homologous murine cDNA sequence

1	E L W E K E M K L T D I R L E A L N S A
61	CACCAGCTGGACCAGCTTCGGGAGACCATGCACAATATGCAGTTGGAGGTGGACCTGCTGHQLDQLDQLRETMHNMQLEVDLL
121	AAAGCAGAGAATGACCGGCTGAAGGTTGCCCCCGGCCCCTCCTCAGGCTGCACTCCAGGGKA A E N D R L K V A P G P S S G C T P G
181	CAGGTCCCTGGGTCATCGGCTCTGTCGTCCCTCGACGTTCCCTGGGCCTTGCACTCAGC Q V P G S S A L S S P R R S L G L A L S
241	CATCCTTTCAGTCCTAGTCTCACAGACACAGACCTCTCACCCATGGATGG
301	TGTGGTTCAAAGGAAGAGGTGACCCTGCGGGTGGTGGTCCGGATGCCGCCCCAGCACATC C G S K E E V T L R V V V R M P P Q H I
361	ATCAAAGGGGACTTAAAGCAGCAGGAGTTCTTCCTGGGTTGCAGCAAGGTCAGTGGCAAAIK G D L K Q Q E F F L G C S K V S G K
421	GTTGACTGGAAGATGCTGGATGAAGCCGTTTTCCAAGTGTTCAAGGACTACATTTCTAAA V D W K M L D E A V F Q V F K D Y I S K
481	ATGGACCCAGCCTCAACCCTGGGACTGAGCACTGAGTCCATACATGGCTATAGCCTCAGC M D P $_{ m A}$ S T L G L S T E S I H G Y S L S
541	CACGTGAAACGAGTGCTGGATGCTGAGCCCCCAGAGATGCCTCCTTGCCGCCGAGGTGTC H V K R V L D A E P P E M P P C R R G V
601	AATAACATATCAGTCGCTCTCAAAGGTCTGAAAGAGAAGTGTGTCGACAGCCTGGTGTTCNNISVALKGLKEKCVDSLVF
661	GAGACGCTTATCCCCAAGCCCATGATGCAGCACTACATCAGCCTCCTGCTCAAGCACCGG E T L I P K P M M Q H Y I S L L K H R
721	CGCCTGGTGCTCTCCGGCCCAGTGGCACCGGCAAGACCTACTTGACCAATCGGCTAGCC R L V L S G P S G T G K T Y L T N R L A
781	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
841	ATGCACCAGCAGTCTTGCAAGGATCTGCAACTGTACCTCTCCAACCTAGCCAACCAGATA M H Q Q S C K D L Q L Y L S N L A N Q I
901	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
961	GCAGGCTCCATCAGTGAGCTGGTCAATGGGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAAATGTCCCAAGGCCCTCACCTGCAAGTATCACAAAATGTCCCAAGGCCCTCACCTGCAAGGTATCACAAAATGTCCCAAGGCCCTCACCTGCAAGGTATCACAAAATGTCCCAAGGCCCTCACCTGCAAGGTATCACAAAATGTCCCAAGGCCCTCACCTGCAAGGTATCACAAAATGTCCCAAGGCCCTCACCTGCAAGGTATCACAAAATGTCCCAAGGTATCACAAAATGTCCCAAGGTATCACAAAATGTCACAAGGCCCTCACAAGGTATCACAAAATGTCCCAAGGTAAGAAGTATCACAAAAATGTCCCAAGGTAAGAAAAAAAA
1021	TACATTATAGGTACCACCAATCAGCCTGTAAAAATGACACCCAACCATGGCTTGCACTTG Y I I G T T N Q P V K M T P N H G L H L
1081	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1141	TACCTGCGGAGGAAGTTGGTAGAGTCAGACAGTGACGTCAATGCTAACAAGGAAGAGCTGYLRR KLVESDSDVNANKEELL
1201	CTTCGGGTGCTGGACTGGGTGCCCAAGCTGTGGTATCACCTCCACACCTTCCTGGAGAAG L R V L D W V P K L W Y H L H T F L E K
1261	CACAGCACCTCGGACTTCCTCATTGGCCCTTGCTTCTTCCTGTCCTGTCCCATTGGCATC H S T S D F L I G P C F F L S C P I G I
1321	GAGGACTTCCGGACCTGGTTCATTGACCTGTGGAACAATTCCATCATCCCCTATCTACAG

Part of the second of the seco

1381	GAAGGAGCCAAGGATGGGATCAAGGTTCATGGACAGAAAGCTGCTTGGGAAGACCCGGTG
	E G A K D G I K V H G Q K A A W E D P V
1441	GAATGGGTCCGAGACACTCTTCCCTGGCCGTCGGCCCAACAAGACCAATCAAAGCTCTAC E W V R D T L P W P S A Q Q D Q S K L Y
1501	CACCTGCCCCGCCTTCTGTGGGCCCCCACAGCACTGCCTCACCCCCGGAGGACAGGACA
1561	GTCAAAGACAGCACTCCAAACTCCCTCGACTCAGATCCCCTGATGGCCATGCTACTGAAA
1621	CTCCAAGAAGCTGCCAACTACATTGAGTCACCAGATCGAGAGACTATCCTGGACCCCAAC
1681	CTCCAGGCGACACTCTGAGGGCCCGGCAGTCACTGTCACCCTGGAGGGCAGAAGGCTGGCL Q A T L \star
1741	TTCAGCATCATTAGCTCTCCTCTGCCCTCTTCCTTCATAGCTCTGGCTCACCAGCCTCGC
1801	CAAGAGAACAGGAGGAAGAAGAGGGCAGGAGGAGGATGGGTTCTCGGTGCTGAACCTT
1861	TGAGAACTTCCTACTAGGAATTGGAGGGGGTGGAGTTTGAGAACTCCGTGCCCCTTAACT
1921	ACATTTGCTGGCCTCCTCTTACGACTTAGGAGAAAAGATGATTCTGGTCTTTTCTTCAAG
1981	TTTTGTTTCACCTACAAACTCTTGGGCTTTCTGGGGAGGGA
2041	CAAACAAAÀACAAACAAACCAACTACAGCAGTTCCAAGCTCGTTCTCACAAACACCTCTG
2101	AGACAGTCACATGTGGGCAAATCTAAGGGAGGCAGGAAGCTCTACAGACTTTCTTGCAAA
2161	CCCTTCCCAGTTCTGTCGACACTGCCAACAACCTCCCCGCCAGAGACCTGGCCAGAGCCA
2221	AGAAAAGAGAAGCATGTGGTTTAACAGAAAAACAAAACA
2281	TGTAAATCAACCTGTAGAAGGTAAAAACGGCAATGGAAAAGATGAAGCTGGAAGGAGGGG
2341	CCCAGTTGCCAAGATGGAACGAGAGCTGCCAGATCTTGCCTTCTGGATGACAAGAGGGGGA
2401	CATTGCAAGATGGCTGCCAGTCTAAAACGTCACCAGACCACAAGAGTAACATCACAGCCT
2461	TCGAAGAAAGGCCACAAGCTGTCTTTCTGCCCTCTAACTGAACATGCATG
2521	AAACCCTACTTTTAATTTTTAAAAAAAAAAAAAAAAAAA

Fig. 12 (cont'd)

T2 Murine cDNA with following intron

	_																				CAGC	
a	1																s			N	+ S	60 -
	61																				GAAG	120
a		I		s		s		I							D					к		_
	-				=																, GTTG	
a.	121		s		-+-			+	- - -			+			-+-			+			+	180
	181																				GTGT	240
	241																				TATT +	300
	301																				ATAC	360
	361																				AAGG	420
	421																				CCAA +	480
	481																				GGAA +	540
	541	_	-																		GTGG +	600
	601																				GGTG +	660
	661																				CTGT +	720
	721																				TGTG	780
	781																				TCTT +	840
		TT	CAT	TGT'	TTT	TTT	TTT"	PTT'	TTC	TTT	CCT	TTT.	ATT	TCC	TTC.	AAA	ATG	CTG.	ACC	TCA	AATC	
	901																				TTCT +	960
	961					_	_														AAAA - +	102
	1021		AAA		25															100		*

splicing variant 1 (JFC410)

1	AGCGAGTTACTCACGCTTCCCCTCCATCGGAAGCCAGGCCAGGCCAAAACCCAGCAAGA	ΓA M
61	TGCAGTCCAGTCTGGCAGCCAGATATGCAACTCAGTCTAATCACAGTGGAATTGCAACC	CA
121	GTCAAAAAAAGCCTACTAGGCTTCCAGGGCCCTCTAGGGTGCCTGCTGCAGGAAGCAGC	CA S
181	GCAACCTCCACCCACCTCTAATTTAAATAGGAGAAGTCAGAGCTTTAACAGCATTGAGK V Q G A S N L N R R S Q S F N S I D	CA K
241	AA	

bp 1 corresponds to bp 914 of THC

underlined sequence represents further splicing form and is not shown in the THC sequence $% \left(1\right) =\left(1\right) +\left(1\right) +$

Fig. 14

<u>.</u> _

splicing variant 2

GGCACTCACGAGGTCCAGAGCCTGCTCATGAGAACGGGTAGTGTGAGATCTACTCTCTCAGG T H E V Q S L L M R T G S V R S T L S

GAAAGATATACCCCATCATCTCGGCAGGCCAACCAAGAAGAGGGGCAAAGAGTGGTTGCGT E R Y T P S S R Q A N Q E E G K E W L R

121 TCTCATTCTACTGGAGGGCTTCAGGACACCAGCAACCAG S H S T G G L Q D T G N Q

bp 1 corresponds to bp 3300 of THC

underlined base pairs \rightarrow position of the differentially spliced exon which lacks here but is shown in the THC sequence

Fig. 15

T2-cDNA sequence and T2 protein encoded therein

,			GGC'																		
1			A																		-
61	CGC		GCC																		120
_			P																		
			CGG																		
121			G																		180 -
	CCT	CCC	TCG	CTC'	TCT	CCC	CCT	TCT	CTC	CCC'	TTC'	TTC	CTC	GGT	TTC'	TTC	CGT	CCT	CTC'	rct	
181			R																		240
	CCC	CCT	CCT	CCT	CCC	CCG	CCT	CCT	CCT	CCT	GCG.	CTC	CCG	CCC	CCT	GCC	ccc'	rcc	CCC(CGT	
241			 Ъ																		
			- AGA																		
301				+			-+-			+				+			-+-			+	
			D																		_
361		GAG	CGT	GCA +						GAG(+											420
	K	s	V	Q	P	Е	V	E	L	S	s	G	G	G	D	E	G	A	D	Е	-
421			GGG																		480
	P	R	G	A	G	R	K	A	A	Α	A	D	G	R	G	M	L	P	K	R	-
481			GGC																		540
101			Α																		
	C TTTT							G	G	M	A	K	А	S	A	А	E,	Li	K	•	
541			GTC					CAG	CCG	TGT	CCC	CGG	CGG	GCC	GCC	CGC(CTC	CAA	CCT	GCG	
				+			-4-	CAG	CCG'	TGT:	CCC	CGG	CGG	GCC	GCC	CGC(CTC(- + -	CAA(CCT(GCG +	600 -
	 F	 К		+ G	 s	v	-+- D	CAG S	CCG R	TGT + V	CCC P	CGG G	CGG G	GCC + P	GCC P	CGC(A	CTC -+- S	CAA N	CCT L	GCG + R	-
601	F CAA	K GCA	S GAA	+ G GTC +	s ACT	V CAC	-+- D CAA	CAG S CCT	CCG R R CTC	TGT + V TTT	CCC P TCT	CGG G CAC	CGG G GGA	GCC + P CTC +	GCC P CGA	CGC A GAA	CTC -+- S AAA	CAA N GCT	CCT L GCA	GCG + R GCT +	- 660
601	F CAA K	K GCA Q	S GAA	+ G GTC + S	S ACT L	V CAC T	-+- D CAA -+- N	CAG S CCT L	CCG R R CTC	TGT + V TTT + F	CCC P TCT L	CGG G CAC	CGG G G GGA 	GCC + P CTC + S	GCC P CGA E	CGC A GAA K	CTC(-+- S AAA(-+- K	CAA N GCT L	CCT(L GCA(GCG R GCT + L	- 660
	F CAA K TTA	K .GCA Q .TGA	GAA GAA K	+ G GTC + S CGA +	S ACT L L	V CAC T GAG	-+- D CAA -+- N CGA	CAG S CCT L CGA	CCG R CTC S	TGT V TTT + F GGC	CCC P TCT L CAA	CGG G CAC T GGC	CGG GGA D GCC	GCC + P CTC + S CAA +	GCC P CGA E AGG	CGC A GAA K CTT	CTC -+- S AAA -+- K AGG	CAA(N GCT(L CAA(CCTC L GCA Q Q	GCG+ R GCT+ L GGG	- 660 - 720
	F CAA K TTA Y	K GCA Q TGA	GAAG GCC GCC	+ G GTC + S CGA + E	ACT L ATG	CAC T GAG	CAA -+- N CGA	CAG S CCT L CGA	CCG R CTC S TAT M	TGT V TTT F GGC +	CCC P TCT L CAA	CGG GC T GGC A	CGG GGA D GCC P	GCC + P CTC + S CAA +	GCC P CGA E E AGG	CGC A GAA K CTT	CTCC -+- S AAAC -+- K AGG	CAA(N GCT(L CAA(K	CCTC L GCAC Q GGTC	GCG R GCT + L GGG + G	- 660 - 720
661	F CAA K TTA Y GTC	GCA Q TGA E	GAAGGCC	+ G GTC + S CGA + E	ACT L ATG	CAC T GAG	CAA -+- N CGA -+- D TCC	CAG S CCT L CGA D GCT	CCG R CTC S TAT M GAT	TGT' V TTTT F GGC+ A GTC	P TCT L CAA K CAA	CGG G CAC T T GGC A	CGG GGA D GCC P	GCC P CTC + S CAA + K	GCC P CGA E AGG G	CGCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	CTCCS S AAAA K AGGG-+- G GGA	N GCTO	L GCA Q Q GGT V	GCG R GCT+ L GGG+ G GCT+	- 660 - 720 -
661	F CAA K TTA Y GTC	K GCA Q TGA E CAA	GAAG GCC GCC P	GTC GGTC S CGA + E CCG	S ACT L ATG W TGA	V CAC T GAG S AGC	CAAA N CGAA TCC P	CAG S CCT L CGA D GCT L	CCGGR R CTCCSSTAT	TGT+ V TTTT+ F GGC+ A GTC+ S	P TCT L CAA K CAA K	CGGG GC T GGGC A GAC T	CGGG GGA D GCC P GCT L	GCCC + P CTC + S CAA + K	GCC P CGA E AGG G CAA	CGCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	CTCC -+- S AAAA K AGGG G GGA	CAAA N GCTC CAAA K GCA H	L GCA Q Q GGT V CTC S	GCG R GCT L GGG G-+ G GCT L L	- 660 - 720 -
661 721	F CAA K TTA Y GTC S CTT	K GCAA E CCAA K	S GAAAAA GCCC P GGGG GGCC	+ G GTC + S CGA + E CCG R CAA	S ACT L ATG W TGA E	V CAC	CAAA -+- N CGAA -+- D CGAA -+- P CCCC	CAG S CCT L CGA D GCT L	CCG R CTC S TAT M GAT M GGG	TGT+ V TTTT+ F GGC+ S CGG+	CCCC P TCT L CAA K CAA K CAA	CGGG G CAC T GGC A GAC T T CCAA	CGG GGA D GCC P GCT L GAC	GCCC PCTCCS SCAA+	GCC P CGA E AGG G CAA K	CGCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	CTCC S AAAA K AGGG -+- G GGA -+- E	CAA(N GCT(CAA(K GCA H GCT	CCTC CTC S CGCC	GCG R GCT L GGG GCT L GCC+ L	- 660 - 720 - 780 -

841				+			-+-		- ·	+			- .	+			-+-		-	+	900
	N	L	G	K	Þ	S	R	1	Р	R	G	Р	Y	A	E	٧	K	P	Ľ	S	-
901	CAA																				960
	K	A	P	E	A	A	V	S	E	D	G	K	S	D	D	E	L	L	S	s	_
0.63	CAA	-																			7.000
961														A					_	R	1020
	CGC	CTT	CCT	CAA	GGT	GGA(CCC	CGA	GCT	GGT	GGT	GAC	CGT	GCT	3GG2	AGA(CCT	GGA	3CAC	ЭСТ	
1021														Ь,							1080
1081	GCT																				1140
1081														R							-
	GGA'																				
1141														+ R							1200
	CAG	CTC	CCT	GGA	GAT	GAC	CTG	CTA	CGA	CAG	CGA	TGA	TGC	CAA	CCC.	ACG	CAG	CGT	GTC	CAG	
1201					 M									+						+ S	1260 -
	CCT																			зса	
1261				+			-+-			+				+			-+-				
														Q							-
1321	GGC																				1380
	A	G	D	A	P	S	V	G	G	S	С	R	S	Е	G	Т	P	A	W	Y	-
1381	CAT																				1440
1301					R									M				S			<u>ن</u>
														CTC							1500
1441														s							
														CAT							
1501														+ M							1560 -
	"CAC																				
1561				+			-+-			4							-+-			+	1620
e.												-	-								
1621				- +			-+-										-+-			+	1680
¥.														S							
1681														ACTC							1740
- -														s							

to I have be

								1/12															
	AGA	AΑ	GT	GGG	CTG	AGC	TGG	rtt.	AGT	GAZ	ATC	ΑGA	GGA	GAA	AAG	CCC	CTA.	AAA	AA	CTG	GAC	STA	
1741		 S	; (+ 3	- 	 S	 W :	+ F -	- S	 E	s	-	 Е		-+- A	- Р	 К	+ K		 L	Ê`	Y	1800
	CGA	с₽	GT(GGT	AGC	CTG	AAG.	ATG	GAA	.CC	rgg	GAC	TTC	'TAI	AGT	GGC	GGA	GGG	AG	CGC	GCC.	rga	1960
1801	D	- -	·	+ G	s S	 L	K	+ - - M	E	P	- - +	Т	s	K	W	R	R	+ E	-	R	Р	E	-
	GAG	:CI	rgt	GAI	GAT	TCA	TCC	AAG	GGT	GG	AGA.	ACI	GAA	.AA	AGC	CCA	TCA	GCC	CTG	GG	CCA	CCC	
1861		 C]	+ D	D	-	s	+ - - K	G G	G	+ E	 L	K	K	-+- P	I	s		+	G	Н	P	1920 -
r.	TGG	3T.	rcc	CTG	BAAG	AAC	GGC	AAG	ACC	CC.	ACC	TGT	rggo	CTG'	TAA	.CTT	ccc	CCA	ATC	'AC'	TCA	CAC	1980
1921	G		- 5	4 L	K	K	G	+ K	T	P	+ P	V	A	V	T	S	F		I	Т	H	Ţ	-
7.001	AGO	CC	CAG	AGT	rgcc	CTC	CAAA	.GTC	GCI	AGG	CAA +	ACC	CTG2	AGG	GC <i>P</i> -+-	AAG	CTA	CAC	GAC +	:AA:	GGG	TAA +	2040
1961	A	(Q	S	A	L	K	V	Α	G	K	P	E	G	F	C P			D	K	G	K	-
	GC:	гт	GCP	GT	CAAC	'AAE	raci	GGG	CT	CCA	ACG	CT	CCT	CCT	CTC	TAE	CTC	GT	CGG	3GA 	CCG	CCT	2100
2041	L		-	V	K	N	T	G	L	Q	R	s	s	S	Ī) <i>I</i>	<i>A</i> (3	R	D	R	L	-
	GA	GT	GA?	rGC'	TAA(AAE	GCC	ccc	CTC	GGG	CAT	TG	CTC	GCC	CC.	rcci	ACT:	rcg	GGI +-	ATC	CTT:	TGG	2160
2101	s		D	A	+· K	K	Р	P	s	G	I	A	R	P	,	3 5	г :	3	G	s	F	G	-
	СТ	AC	'AA'	AAE	GCC'	rcc	TCC'	rgc	CAC	AGG	CAC	CAG	CCA	CTG	TC	ATG	CAA	ACT	'GG'	rge	TTC	AGC	2220
2161	Y		K	к	+ Р	P	P	A	T	G	Т	Α	T	Ţ	7	M (Ç '	Г	G	G	s	A	
	CA	.CT	CT	CAG	CAA	GAT	CCA	GAA	GTC	CT	CAG	GCA	TCC	CTC	3TC.	AAG	CCA	GTA	AA.	TGC	GCC	3CAA	2280
2221	T	•	L	s	+- - К	I	Q	ĸ	s	s	G	I	F	, 1	J	K	P	V	N	G	R	K	-
2281			-		+			-+-		- -		+		- - -	+				- + -			GTTC	- 2340
2201	Г	:	s																			S	
2241					- - -		. -	-+-			- - -	+	- - -		+				-+-				1 2400
2341	ī	1	I	Q	Y	R	s	L	P	R	P	P	A I	ζ :	S	s	S	М	S	V	T	G	-
2403	,					. .		-+-				+		-	+				-+-			CCA	+ 2460
210.	(3	R	G	G	P	R	P	V	S	S	5	3 :	Ι	D	Р	S	ь	ы	S	1	K	-
246	_											+-		- - -		٠ -			-+-			GGA	+ 2520
246	•	Q	G	G	L	Т	P	S	R	I	, F		Е	P	Т	K.	V	A	5	G	·	. 1	_
	C	AC	TC	CAG	CCC	CTG'	TCA	ATC	AGA	CAC	TA	CGG	GAA	AAG	GA	AAE	GGC(CAA	AG	CCA	AGC	CAG	T + 2580
252	1 -	 T	P	 A	-+- P	 V	N	Q	 T	I) I	-+-	- - -	ĸ	E	K	A	K	A	F	ζ 2	A A	+ 2580
	G	GC	CT	TGG	ACT	CAG	ACA.	ACA'	тст	CC.	ΓΤG	AAG	AGT	'ATT	rgg 	CTC	CCC.	AGA	AA.	GT <i>I</i>	ACT	CCCA	A + 2640
258	1 -	 A	L	D	-+- s	- - -	N	+ I	s]	<u>_</u>	К	S	I	G	s	Р	E	S	-	r j	<u> </u>	c -
	1	Fi	g.	16	((co	nt'	d	2)								-						

ું _સ્કૃષ્ટી કે.

	TGC																				
3541																	-+- I				3600
3601	TÇG																				3660
3001																	Q				-
3661	CAA																				3720
	N	A	N	L	V	A	Α	F	Е	Q	s	L	V	N	M	Т	s	R	L	R	-
3721	ACA		-																		3780
																	R				=
3781	AGA																				3840
3/01																	A				-
																	AGA'				
3841	s			•													D			s	3900
3901	AAG																				3960
3901																	A				
3961	AAA																				4020
																	S				
4021	GGG																				4090
4021																	P				
4081																	ACC				4140
4001																	P				
		-															TCA				4200
4141																	H				4200
4201																	.GGA				4260
4201																	E				
	-GCI																				
4261																	L				4320
																	GCA				4390
4321																	Q				4380
	_																CTC				
	 D																				4440

																			AGGC		
4441																			Ğ		
4501	GGC																				4560
4501																			D		
4561																			GCC		4620
4561																			P		
4621																			CAAC		4680
	Q																				
4681																			GGAC		4740
4001																			D		
4741																			TGG		4800
																			G		
4801																			TTG		4860
																			С		•••
4861			-	+		-	-+-			+				+			-+-			+	4920
																			D		-
4921				+			-+-			+				+			-+-			+	4980
																			L		-
4981		-		+	. -		-+-					-		+			-+-			+	5040
																			T CCT		_
5041				+			-+-							+			+-		V	+	5100
																			CCT.		
5101				+		. -	+-					·		- +	- - -		+-		 L	+	5160
																			rgga		
5161		- - -		- +	- -		+-				·			-+			+-		D	+	5220
												-							\GTA		
5221				-+-		- -	+	- - -			+			-+			+		Y	+	5280
	TA	TAA	GTC	CCT	ATA!	rta:	TAG	GTA	CCA	CCA	ATC.	AGC	CTG'	TAA	'AAA	TGA	CAC	CCAZ	ACCA	TGG	;
5281				-+			+		-		+			-+-			+		₹- Ĥ.	+	5340

5341	CTT																				E 4 0 0
5341																				F	
5401	CCT																				5460
																			N		-
5461	GGA																			_	5520
	E	E	L	L	R	V	L	D	W	V	P	K	L	W	Y	H	L	Н	Т	F	-
5521	CCT																				5580
	L	E	K	Н	S	Т	S	D	F	L	Ι	G	P	C_	F	F	L	s	С	P	-
5581	CAT																				5640
	I	G	Ι	E	D	F	R	Т	W	F	Ι	D	L	W	N	N	S	Ι	Ι	P	-
5641				+			-+-			+				+			-+-			+	
	Y	L	Q	Е	G	Α	K	D	G	I	K	V	Н	G	Q	K	A	A	W	Е	-
5701			- .	+			-+-			+				+			-+-			+	
	D	P	V	E	W	V	R	D	Т	L	P	W	P	S	A	Q	Q	D	Q	S	-
5761				+			-+-			+				+		-	-+-			+	5820
																			P		-
5821				+			-+-		-	+				+			- + -			+	5880
	GCT																				
5881				+			-+-			+				+			-+-				
																				~ AGC	
5941				+-~			-+-			+											6000
											CCT	'CTC	:ccc	TCT	CCT	CTT	'TCA	.GAG	CAC	TGG	
6001																					6060
6061																			AGG		6120
	TTG	GTG	CTG	TAC	CTT	TGA	.GAA	CTI	CCI	'AGG	:AAG	GAF	TGG	TGG	GGT	'GGC	GTI	TGG	GAA	CTT	
6121				+	-		-+-			+				+			-+-			+	6180
6181																				TGG +	6240
																				TCA	
6241				+	<u>-</u>		-+-	-						+			-+-		~ ₹ - - - -	+	6300

6301	GAAAACATCAAAACACTGCAGCAGTTCCTAAATGATTCTCACAAGCAACCCTGAGAGAGA	6360
6361	CAGTCTTGTGAGGGAGATCTGGGGGAGGCAGGAAGCTCCTCAGATTTTCTCACAGACCCT	6420
6421	TCCCAATTCCATCACCACTGCCAACAACTCCTCCCCCAGAGATCTGGCTGG	6480
6481	AAAGAAGCATGTGGTTTAAAAAATGTTTAAATCAATCTGTAAAAGGTAAAAATGAAAAAC	6540
6541	AAAAACAAGCAAACAAAAAAAAACAATGGAAAAGATGAAGCTGGAGAGAGGAACCAG	6600
6601	TTGCCAAGGTAGAGAGCTGCCCGCTCCTGCCCTCTGGATGACATAGGGGACATCAACAAG	6660
6661	ACGGCTGCCAACCTGAGAAGTCACCAAAACCACAAAAATAACCTTACAGCCTTCAGGGAAA	6720
6721	GACTACCAGCTCTGTCTTTCTACCCTCTAATTTAACAATGCATAAGAGTCAATAAACCCT	6780
6781	ACTTTTTAAAAAAAAAAAAAAAG	

Fig. 16 (cont'd 7)

T3-cDNA sequence and T3 protein encoded therein (protein isoform 1)

																			GGGG		CO
T				•															G		-
61	GGG																		CTAC		120
01			P																	Т	-
121																			TCTC		180
121	D																		L		-
181																			TGAA		240
101																			E		
241																			AGAT		300
241	I																		D		
301																			AGA(360
301			N																	I	
361																			CAA		420
301																			K		
421		.GCA	.GCA															1	ATC		480
101		^	0		P																_
	Q	Ų	~																J	-	
481	GGT	'GGC	:CGG	GGC			CCA			.GGC	TGG	CAC	:CCC		.GCA	.GCA	GGT	'GCC	AGT	CAC	540
481	GGT	GGC	CGG	GGC +			CCA		-	.GGC	TGG	CAC	ccc	+	GCA	.GCA	.GGT	GCC	AGT	CAC	
	GGT V	GGC A	CGG G AGC	GGC + A	P GTG	s S	CCA -+- Q	C TCA	Q ACCA	.GGC + A .GCC	TGG G	CAC T	P ACA	+ Q .TCA	.GCA Q .GCA	.GCA Q Q	GGT -+- V V	GCC P	AGTO V	CAC + T AGC	-
	GGT V	GGC A	CGG G AAGC	+A	P GTG	s GCCA	CCA -+- Q .GCC	C	Q	.GGC A A .GCC	TGG G	T	P P	+~~ Q .TCA	GCA Q Q	GCA Q Q	GGT V V	GCC P	AGTO V	CAC T T AGC	600
541	GGT V TCC	A A CCA C	G AAGC A	GGCC A CCCC + P	P CGTG C	S SCCA Q Q	CCA Q Q GCC -+- P	C TCA H	Q ACCA Q Q	AGCC + PCTAC	TGG G SAGC A	T CGCC	P ACA H	+ Q TCA + Q	GCA Q .GCA Q	GCA Q GTC S	GGT V CAAA K	P AAGC	AGT(VACA)	CAC T AGC + A	600
541	GGT V TCC	A CCA Q	CGGG	GGCC + A CCCC + P	P CGTG C	S SCCA Q Q	CCA Q GCC P TCC	C TCA H	Q ACCA Q Q	GGC A A GCC + P	G CAGC	T CGCC P	P CACA H	Q TCA + Q	GCA Q .GCA Q	GCA Q GTC S	CAGC	P AAGC A	AGT(VACA)	CAC T AGC+ A GGC	600
541	GGT V TCC P TGA	AAAC	G AGCA	GGGC + P LGTC + S	P CCAC R	SCCA Q GACT	CCA Q GCC P CTCC P	C TAC	Q ACCA Q STCC	AGCC+ P CTAC	G AGC	T CGAC	P P CACA H GGGT V	+ Q TCA + Q TATC	GCA Q GCA Q CCGC	GCA Q GTC S CTGC A	V ZAAA K CAGO	PAGCAG	AGTO V ACA Q CGA E	CAC T AGC+ A GGC+ A	600 - 660 -
541	GGT V TCC P TGA	A CCA Q AAAT M	G AGCA	A CCCCCP P S GCCCCCCCCCCCCCCCCCCCCCCCCCCC	P CGTG C CCAG	S GCCA Q SACT L	Q GCCA P TTCC P	C TAC	Q ACCA Q GTCC P	GGC A A GCC TAC TTAC	TGG G A A CGG A	T CGCC	P EACA H V	Q TCA Q TATC + S	GCA Q GCA Q CCGC	GCA Q GTC S TTGC A	CAGO	AAGCAG	AGTO V ACA Q CGA E	TAGC+ A GGC+ A CTA	600 - 660 -
541 601 661	GGT V TCC P TGA E CAA	ATAA	GCAACG	GGGC A CCCC P GGCGG S GCGGG CCCAA	P CGTG C CCAG	S GCCA Q GACT L S CAGTC	CCA	C TCA	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	AGCC TTACTAA	TGG G A CCGG	T CGCCC R	P FACA H V V FACCOCC	+ Q TCA + Q TATC + S GCAC	GCA Q GCA Q GCA A GCCA Q GCA A GCCA GCCA	GCA Q GTC S GTGC A AGAC	GGTT GGCTT F	P AGAA	AAGA	CAC AGC AGC A CTA Y GCC	600 - 660 - 720
541 601 661	GGT V TCC P TGA E CAA K TGA	AAAAC	GCGGAAAATO	GGGC A CCCC P GGCGG S GCGGG GCCA	P CGTG	S GCCA Q GACT L S CAGT	CCA	C CTCA	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	AGCC TTAC	G A A CAA	T CGCCC	P FACA H V V FACCOCCO	+ Q TCA + Q TATC + S GCAC S CAAC	GCA Q GCA Q GCGC A GCCA Q GCCA	GCA Q GTC S GTGC A AGAC	GGTT GGCTT F	P LAGCO	AAGA	CAC AGC AGC A CTA Y GCC +	600 - 660 - 720 -
541 601 661 721	GGT V TCC P TGA E CAA K TGA TTTT	GGCCA CCCA Q LAAT M LAAC T K CGGG	CGGGAACGAACGAACGAACGAACGAACGAACGAACGAAC	GGGC A CCCCC P GGCGC GCCCA K	P CGTG	S GCCA Q GEACT L S CAGT V	CCA	C C C C C C C C C C C C C C C C C C C	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	GGCC+ P CTAC T N CACC P	G CCCC	T CGCC R R CACC	P P P P P P P P P P P P P P P P P P P	+ Q TCA + Q FATC S GCAC S CAAC ACAA	GCA Q GCA A GCCA A GCCA A GCCA A GCCA A GCCA A GCCA A	GCA Q GTC S GTC A A AGAC S GCCA H	GGTTGGGCTGG	P AAGCACACACACACACACACACACACACACACACACACA	CACAA NAGA	GGC+ Y GCC+ P GGGA	600 - 660 - 720 - 780

¥4,131

	GAG	700	~ N C	CAC	CTC	רא ריו		ייא מיי		ጥጥር	റമദ	ጥልሮ	רידירי	רידירי	360	רמידי	מפפ	CCN.	ccc	700	
841																					900
	S	G	s	s	S	Т	P	Т	N	С	S	Т	S	S	A	Ι	Р	Q	P	G	-
007	TGC																				0.00
901																			v		-
	CAT																				
961																				+ K	1020
	GCC	GGC	CCC	CAA	CAA	TCA	GAA	GTC	CAT	GCT	GGA	AAA	GCT	GAA	ACT	${f T}{f T}$	CAA	CAG	TAA	AGG	
1021																		 S		~-+ G	
	-	**	•			×		_			_			-	_	-		_		•	
1087	GGG	-																			1140
1001																			E		-
	TCT	GCC	CAG	CTT	CGA	AGA	GAG	CGA	GGA	GCT	GGA	GGC	CGC	CAG	TCG	CAT	GCT	CAC	CAC	CGT	
1141																				+ V	
	ь	Р	5	r	E	E	٥	ь	E,	יד	ь	A	A	3	K	1-1	11	1	1	v	-
1201	GGG																				1260
1201																			F		-
	CCG	GGC	ACT	GAC	CAA	CAA	GAA	GAG	TTC	TCT	GAA	AGG	CAA	TGA	GAA	AGA	.GAA	.GGA	GAA.	ACA	
1261				+			-+-			+				+			-+-			+	1320
	R	Α	L	т	N	K	K	S	S	L	K	G	N	Е	K	Е	ĸ	Е	K.	Q	-
	ACA																				1380
1321					D															E	
	GAG	GCT	GGA	CCT	'CAA	GGA	GGA	.GCC	'AAA	AGA	AGA	.ccc	CAG	TGG	AGC	AGC	TGT	'GCC	CGA	GAT	
1381		-		+			-+-			+				+			-+-			+	1440
	R	L	D	Ь	K	Е	E	P	K	E	D	Р	5	G	A	A	V	P	E	М	-
																			CAG		1500
1441																				Α	
	מאא	<i>ር</i> አ አ	CCA	.c.cc	יראיד	יממר	יכככ	"ጥጥር	ייירם	CAG	TGG	דממ:	יארר	מממי	ልሮር	' ል ርር	דממ	ממטי	GAG	САТ	
1501				+			-+-	- 		+	. – – –	- - -		+			-+-			+	1560
	K	K	Е	P	M	A	P	s	H	S	G	Ι	P	К	Р	G	M	K	S	М	-
																				TGG	1.500
1561																				+ G	1620 -
1621																				TTC	1680
																				S	
																				CAG	
1681					A:																1740 -
	٥	ت	.	п	A	J	ی	IJ	0	14	J	_	•	•	•	•			-	. =	

	CATO	7 N C C	7 N C 7 (7070	3 N C'	rara		38/:		TCTT	raai	GAC	ግልሮ	ררא	32 <i>C</i> (מארי:	NGG:	አክርረ	י ת תי	ኮ አ C	
1741		- -	 -	+			-+-			+				+							1800
	1	s	S	Q	Т	V	S	G	S	V	G	Т	Т	Q	T	Т	G	S	Й	Т	-
	CGT																				
1801														+ H							1860
1861	TGC																				1920
														N							_
	CTC	AAC	AGG'	TGT:	GAG	CGT	GGA	GCC	CAG	CCA	СТТ	CAC	CAA	GAC	TGG	ACA	GCC	TGC'	TCT	GGA	
1921				+	- 		-+-			+		-		+	- 		-+-			+	1980
	S	T	G	٧	S	٧	E	Р	5	н	r	1	K	Τ.	G	Q	P	A	ь	ь.	-
1981	AGA																				2040
1981	E													T							-
	TCT	aca.	GCA	GAA	ተጥጥ	GGA	GGA	AAC	CAT	GTC	CAG	TTT	AAG	GGG	AAC	TCA	GGT	TAC	ACA	CAG	
2041				+			-+-			+				+			-+-			+	2100
	L	R	Q	N	L	Е	Е	Т	М	s	S	L	R	G	Т	Q	٧	Т	н	s	-
	CAC	ATT																			2160
2101		 L		•	T									M						L	2160 -
	CAG	amm	~	א כי כי	CAC	ccc	ירי א רי	יאכר	יידירייםי	יכידר	יכינים	:G D G	מריד	'GGG	CCA	GTC	ראה	ררר	ጥሮና	GCT.	
2161				4		<u> </u>	-+-			+	. -	-		+			-+-			+	2220
	S	L	Т	G	R	P	Т	Р	L	S	W	R	L	G	Q	s	S	P	R	L	_
														:CCC				5			2280
2221																				R	
,																				'GGC	
2281				+	- -		-+-			4				+			-+-			+	2340
	F	I	N	T	E	S	G	R	Y	V	Y	s	Α	P	L	R	R	Q	L	A	-
	CTC	CCG	GGG	CAC	PAT	TGT	CTC	CCA	\CG1	GG <i>P</i>	ACGT	CTC	AGF	ACAF	AGGC	AGG	AGA	TGA	GAT	GGA	0400
2341	 S	 R	 G	+ S	 s	v	C +-	н	v	D	v	s	D	-+ K	A	G	D	E	M	D	2400 -
2401			- 	+		. – – -	- + -					,		-+			+-			CAA	2460
	L	E	G	Ι	s	M	D	A	P	G	Y	M	s	D	G	D	V	L	S	K	-
	GA <i>I</i>	CAI	cce	GAC	CCGI	ATGA	ACA!	OATT	CAAC	3CG(GAT!	ACAT	GAG	CTGI	ATGO	TGC	BACT	TGC	GC2	CTA	
2461	, '·		 D	+			- + - T	- -	- -		+ + V	. – – . М	 т	D -+-	 G	. .	+· L	 G	 L	Y	2520 -
2521	TAC	ccc	TCC	CC:	rga.	ACCO	3GC'	rcc	CTG	ATG(3GA' +	rgg(TG:	rgg: -+-	raco	3GG2	4GA(+	CCC'.	rgc	\ACG	2580
2321	Т	R	R	, r	И	R	L	P	D	G	M	A	V	V	R	E	\mathbf{T}	L	Q	R	-
	AA	ATAC	CCTC	CCC	TGG	GCC:	TCG(GAG:	ACG	CTG	ACA	GCT	GGG.	ACG	ACA	GCA	GCT	CCG'	rca(GCAG	1
2581			-	-+-			+				+			-+-			+	 ν		+	2640
	Й	Т	S	Ь	G	Ъ	G	ע	А	ט	5	W	ע	D	٥	3	٦	v	, m	_S	

Programme and the second

2641	CGGG																				2700
2011																			<u>S</u>		
2701				 -			-+-			+				+			-+-			-+	2760
	S																		D		-
2761			- -	+			-+-			+				+			-+-			-+	2820
	AGA	CGG	AGG	CTC	AGA	CAG	CGG	CAT	AAA	AAT	GGA(GCC.	AGG	TTC	CAA	GTG	GAG	GCG	GAAT	CC	
2821																			N		
2881																			CATC		2940
2001																			Ι		
2941		 -		+			-+-			+				+			-+-			-+	
	_																		R CGAC		_
3001		<u>-</u>		+			-+-			+			-	+			- + -			-+	
																			CCCI		
3061																			P		
3121																			TAGO		3180
	D	A	G	R	S	s	G	D	E	s	K	K	P	L	P	S	S	S	R	Т	
3181				+			-+-			+				+	-		-+-		GGG(+	3240
																			CAA		
3241		_		+		- 	-+-			4	. – –			+			-+-		к	+	3300
	CCC	AAA	GTC	'ATC	TGC	CACI	CGI	CAG	TCG	GTC	TGC	CTGC	TCG	GAA	GTC	'AAC	TAT	GGA	TGG	GGC	3360
3301	P	к	s	s	A	L	V	s	R	s	Α	G	R	K	s	s	М	D	G	A	-
3361	7	- 		+			-+-				- - -			- +			+ -		CCG	+	3420
																			R SCAC		
3421				-+			+-				 -			-+			+		т	+	3480
	CAG	GCA:	raga	TTA	CCA?	ACA!	TAC	3CA(GCA	4GT(CCG(CAG	GCC.	rgc	CAG'	rgc	CCA	AAC:	rgag	GGA	
3481	s	I	D	-+- S	Ŋ	I	+ S	s	K	s	+ - ~ A	G	L	-+- P	V	 P	+ K	L	Ŕ	E	3540

3541		TTC																			3600
3541		s																			-
3601		AGG																			3660
3601		G																			-
3661		AGC																			2720
3001																				P	
3721		TGT																			3780
3/21		V																			-
3781		CGC																			3840
3701		A																			-
3841		CTCA																			3900
3041																				S	
3901	-	TCC																			3960
3701		P																			-
3961		CAGC																			4020
																				S	
4021		CAGT																			4080
	A	V	s	K	D	G	L	G	F	Q	s	V	s	S	L	H	Т	S	С	E	-
4081		CCAT																			4140
	s	I	D	Ι	S	L	s	s	G	G	V	P	s	H	N	S	s	Т	G	L	-
4141				+			-+-			+		-		+			- + -	- - -		+	4200
																				Т	-
4201				+		- 	+-			+				+			-+-			+	4260
																				Т	
4261	•		- 	+			+-	- - -		+				+			+-				4320
																				G	
4321			 -	-+			+ •			+				-+			+-				4380
																				R	
4381				- + -			+			4				-+-			+		·		4440
	S	Н	S	A	G	G	L	Q	D	Т	A	Α	N	S	P	F	S	S	Ġ	S	-

							9	11/1	.24												
	CAG	CGT	GAC:	rtc:	rcc	CTC	CGG	AAC	AAG	ATT	CAA	CTT'	TTC	CCA	GCT'	rgc(GAG'	TCC	CAC	CAC	
4441		v																			4500 -
		CAC																			
4501		т																	N	A	4560 -
		TGG																			
4561		G																	L		4620
	TGA	GAA	GAG	CAG!	AAC	CATO	GAG	CCG'	TTC	AGG	CTC	TTA	CCG	GGA'	TGG	GTT	TGA	AGA	AGTI	rca	
4621		к																			4680
1607		ATC																			4740
4681		s																	E	K	-
		CCA																			
4741																					
	AGC	TTT	GAC	CAC	CCA	3CT(GAC.	AGC	AAA'	TGC'	TCA	CCT	TGT	GGC'	TGC	CTT'	TGA.	ACA	GAGT	ГСТ	
4801		 L																			4860 -
	TGG	TAA	CAT	GAC	TAA	CAG	GCT	CCA	GAG'	TCT	GAC	CAT	GAC	'AGC'	TGA	GCA	GAA	GGA	TTC	AGA	
4861														+ A						+ E	4920 -
		'GAA'																			
4921		N																	Q		
4001		CAT	TAA'	rggi																	5040
4981		I	N	G			-														-
E041		TGC																			5100
3041		A																			
5101		CAC																			5160
3101		T																			
E161		GAA																			5220
3101		N																			
500 .		AAA																			5280
5221		K																			
F00°		CACC																			5340
5281		P																			

09914549

	CTC	(1 N N)	amar	rem:	יים א	יייירי 7	אכיא ז		ርን ተነ		רא כי	TC A	AGC"	ኮር አር	בארים	тст	ግ ል ጥ	CCA	മരസ	ירת	
5341																					5400
	S	N	S	ь	I	S	E	С	M	D	S	E	A	Ε	Т	V	М	Q	Ļ	R	-
	AAA	TGA	GTT	AAG	AGA	CAA	GGA(GAT(GAA	GCT	GAC	AGA'	TAT	CCG	CTT	AGA	AGC	тст	CAG'	TTC	
5401																					
	N	E	ь	R	ע	K	E	IvI	K	יו	1	ע	1	R	П	E	А	ь	5	s	-
	TGC																				5500
5461				+ L																+ К	-
						_~~		a a m		ama		ama	m.c.a	7	33 G	maa	ama	a	aaa	aaa	
5521				TGA(+																	5580
				E																	-
	TCC	TTC	CCA	AGT	GTC	CAT	CTC	TGC	CTC	CCC	GAG	GCA	GTC	CAT	GGG	CCT	CTC	CCA	.GCA	CAG	
5581				+			-+-			+				+			-+-			+	
	P	s	Q	V	S	Ι	S	Α	S	Р	R	Q	S	M	G	ь	S	Q	н	s	~
				CAC																	
5641				+ T																	5700
5701																				GAA +	5760
5701				E															М	K	-
	GTG	a a D:	GGA	GGA	TTC	'CAG	ACC	ACA	TCT	CTT	TCT	'TAT	TGG	CTG	CAT	TGG	AGI	'T'AG	TGG	CAA	
5761		. – – –		+			-+-			+				+			-+-			+	5820
	W	K	E	D	S	R	P	Н	L	F	L	Ι	G	С	1	G	V	S	G	K	-
	GAG	CGAP																		TCA	F000
5821				•																+ Н	5880 -
5881	TG	rcga	ACCC	'AGT	GAC	TCA	GCT	'AGC	GCT	GAA		AGA	CAG	+			-+-			TGG +	5940
5001				v																	-
	AG	רממנ	CAZ	GCG	CAG	CAA	CAC	TTC	CCGA	AAC	CACC	GGA	GCI	GCI	TCC	TTC	TGC	SCTA	ATCI	GGT	
5941				+			-+-			4	- -			+-~			-+-			+	6000
	E	1	K	R	s	N	Т	s	E	Т	Р	E	Ь	Ъ	Р	C	G	Y	L	V	-
	TG	GAG	AGAI	ACAC	CGAC	CCAT	CTC	CAGI	rgac	TGT	'GA	AAGC	GCT	CGC	AGF	AAA	ACA	GCC	rgga	ACTC	6060
6001	·	 	- -	- - + - Т	 ጥ	 T	+- S	v	- - -	v	 К	Ġ	. – – - L	 A	E	- .	-+- S	 L	D	s	6060 -
C061	AC'	TGG'	rgt:	rtg <i>i</i>	AGT	CCTI	rgan	TCC	CAA	AGC(CCA:	rcci	rgc <i>i</i>	\GC0	CT <i>I</i>	4CG'.	+-		ree.	FGAT +	6120
6061	L	v	F	E	S	L	ï	P	K	P	I	L	Q	R	Y	V	s	L	L	I	-
	- N.C	אמם:	א כי כי י	3 .	בכי זי	רר בי	יייתיי	יריייי	стес	ፈ ሮሮር	CCAC	acca	GCAC	CTGO	GA/	AA.	CĊT	ACC'	TGG	CCAA	.
6121				-+-			+-		- -		+			-+	- - -		+			+	6180
	E	Н	R	R	I	I	L	S	G	P	S	G	т	G	K	Т	Y	L	A	N	-
	CC	GGC	TGT	CTG	AGT	ATA:	rag:	rgc'	TTC	GAG	AGG	GAC	GGG/	AGT	rga(CAG	ACG	GGG	TTA'	rcgc	:
6181	L - -			-+- E			+ 17	т	 D	 E	+	 D	 u	- + - · T.	 Т	ם	+ ج	 V		+ A	- 6240 -
	R	L	5	E	ĭ	1	V	'n	А	12	J	K	-		•	_	J	•	-		

6241																			CCTT		6300
6241			N																L		-
	TGA																		GGAC		6360
6301	D		C	•										L				L		N .	-
6361																			GTAC		6420
P30T								CCC	GCT(CATG		-
											_		_				-		CCŤG		
6421				+			-+-			+				+			-+-			-+	6480
	K	C	P		I		G			N					s			N		Q	-
6481																			GGGI		6540
6481	CGA	AGT	GGT.	ATT				CCA	CGA.		ACG	GTT					ACA		CCCA		_
	L		Н	N	_												-		GCGC		
6541				+			-+-	- 	- - -	+	- 			+			-+-			- +	6600
				F																N	-
cc01	GGAACCGGCTAAGGACTCCTCCTTCGAGTACCTTTGTCTCTAGTCACCCGCCCACGCGTT L G R F L R R K L M E T E I S G R V R N TATGGAGCTGGTAAAAATCATTGACTGGATTCCCAAGGTCTGGCATCACCGCTT ATACCTCGACCATTTTTAGTAACTGACCTAAGGGTTCCAGACCGTAGTGGAGTTGGCGAA																6660				
6601	ATA	ACCI	CGA		TTT	TTA	GTA	ACT	GAC	CTA	AGG		CCP	GAC		'AG'I					_
	М	E																	ATG		
6661										+											6720 -
	L	E																	TAT(
6721		- - -		+			-+-			+	. -			- +			-+-				6780 -
	I																		CTG		
6781				+			-+-							-+			-+-			+	6840
																			 .GCA		
6841			-	+			-+-							- +		- - -	-+-	-		+	6900
																			CAT		
6901				+			-+-			4	- - -			-+-			- + -		. — — — М	+	6960
																			CGCT		
6961			- -	-+			-+-	. .			+	-		-+-		- .	+		-	+	7020
																			L ATGA		
7021				- +			+-	- - -			+			-+-			+			+	7080
	· N	M	T.	M	к	Li	Q	E	A	A	. 101	ĭ	5	٥	P	Q	ی	1	Ď.	-	
	F	ig.	17	(c	ont	:'d	7)								-						

	CGA											7140
7081											+ L	
7141	GTG. 											7200 -
7201	CCC.		 									7260
7261	GGA		 									7320
7321	GCC											7380
7381	TTG											7440
7441	CAT	_										7500
7501	GCT											7560
7561			CAC									7620
7621			CAC									7680
7681			TGG									7740
7741			GTG						783			

Fig. 17 (cont'd 8)

T3-cDNA sequence and T3 protein encoded therein (isoform 2)

									3000												
1									P											s	-
61																				GGTG +	120
-									R												-
121																				CGTG	180
									С												-
181		CCG																		ATCC	240
		R	G	N	С	Т	Q	I	Y	Т	D	W	A	N	Н	Y	L	A	K	s	-
241																				GGCC +	300
	G	Н	K	R	L	I	K	D	L	Q	Q	D	V	Т	D	G	V	L	L	A	-
301																				GAAC	360
																				N	-
361																				AATA +	
									D												-
421				-+-			+	. -	-		+			-+-			1			AGGC	480
																				G	
481		. -		-+-	-		4				+			-+-			+			CCTC	540
									K												-
541	TC	CCTC	CACC	TC7	rgco	CGC	CCGC	CG1	ATC	CCA	\GGT · +	GGC	CCGC	• + -	CCC	CCTC	CCC	AGTO	GCCI	AGGCT	600
	S								s												-
601	GC	GCAC	CCC	CTCA	AGCI	AGC	AGGT	rgco	CAGI	CAC	TCC	CCZ	AAGO	CCC(CGT	GCC2	AGC	CTC# +	ACC	AGCCA +	660
	~		-	_	_	_	3.7	D	3.7	T.	то	\circ	7.	D	C	0	P	н	0	P	_

Fig. 18

The second of th

96/124 T3 murine cDNA

2	ATGA																				60
T								R													
<i>-</i> 1	ATGG																				120
φ 1								Ś												Ķ	
101	AATG																				180
121								· L													
101	AATG																				180
141	С	Q	s	E	I	R	ĸ	L	R	R	D	V	D	A	s	Q	E	K	V	s	-
181	CTGC																				240
101								Α													
241	TGGG																				300
211								Q													
301	AACT							CAT													360
J -		N	E	L	R	K	Т	I	E	L	L	K	ĸ	Q	И	A	A	A	Q	A	-
361	CTGC																				420
	A	Τ	N	G	V	I	N	Т	P	Е	L	N	С	K	G	N	G	S	Α	R	-
421	GGCT																				480
	L	Q	T	Y	A	s	A	A	Т	L	L	R	Q	С	L	Q	Y	Q	*	R	-
481	GCC						•	501	-						:						
	н	0	P	Τ,	К	C		_													

Fig. 19

CAGCCTCTCCAACCGCTCGTA S L S N R S

AGCCTCTCCAACCGCTCGTAC
S L S N R S Y

GECTCTCCAACCGCTCGTACC S L S N R S Y

CCTCTCCAACCGCTCGTACCC L S N R S Y

CTCTCCAACCGCTCGTACCCT L S N R S Y P

TCTCCAACCGCTCGTACCCTC L S N R S Y P

CTCCAACCGCTCGTACCCTCT S N R S Y P

TCCAACCGCTCGTACCCTCTG
S N R S Y P L

CCAACCGCTCGTACCCTCTGT S N R S Y P L

CAACCGCTCGTACCCTCTGTC N R S Y P L

AACCGCTCGTACCCTCTGTCA N R S Y P L S

ACCGCTCGTACCCTCTGTCAT
N R S Y P L S

CCGCTCGTACCCTCTGTCATG
R S Y P L S

CGCTCGTACCCTCTGTCATGG R S Y P L S W

GCTCGTACCCTCTGTCATGGC
S Y P L S W

CTCGTACCCTCTGTCATGGCG S Y P L S W

TCGTACCCTCTGTCATGGCGC S Y P L S W R

CGTACCCTCTGTCATGGCGCT

GTACCCTCTGTCATGGCGCTA
Y P L S W R

TACCCTCTGTCATGGCGCTAT
Y P L S W R Y

ACCCTCTGTCATGGCGCTATG Y P L S W R Y CCTCCTCCACCTACTCCTCAC
A S S T Y S S

97/124

S S T Y S S

TCCTCCACCTACTCCTCACAA
S S T Y S S Q

CCTCCACCTACTCCTCACAAA S S T Y S S Q

CTCCACCTACTCCTCACAAAT
S T Y S S Q

TCCACCTACTCCTCACAAATC
S T Y S S Q I

CCACCTACTCCTCACAAATCC S T Y S S Q I

CACCTACTCCTCACAAATCCG T Y S S Q I

ACCTACTCCTCACAAATCCGG
T Y S S Q I R

CCTACTCCTCACAAATCCGGA T Y S S Q I R

CTACTCCTCACAAATCCGGAA Y S S Q I R

TACTCCTCACAAATCCGGAAG
Y S S Q I R K

 $\begin{array}{cccccccc} \texttt{ACTCCTCACAAATCCGGAAGC} \\ \texttt{Y} & \texttt{S} & \texttt{S} & \texttt{Q} & \texttt{I} & \texttt{R} & \texttt{K} \\ \end{array}$

CTCCTCACAAATCCGGAAGCT S S Q I R K

TCCTCACAAATCCGGAAGCTT
S S Q I R K L

CCTCACAAATCCGGAAGCTTC S S Q I R K L

CTCACAAATCCGGAAGCTTCG S Q I R K L

TCACAAATCCGGAAGCTTCGT S Q I R K L R

CACAAATCCGGAAGCTTCGTA S Q I R K L R

ACAAATCCGGAAGCTTCGTAG Q I R K L R AGAAGAAAAAAAGAGTTGGC K K K K S W

GAAGAAAAAAAGAGTTGGCT K K K K S W

AAGAAAAAAAGAGTTGGCTT K K K K S W L

AGAAAAAAAGAGTTGGCTTC K K K K S W L

GAAAAAAAGAGTTGGCTTCG K K K S W L

AAAAAAAAGAGTTGGCTTCGA K K K S W L R

AAAAAAAGAGTTGGCTTCGAA K K K S W L R

AAAAAAGAGTTGGCTTCGAAG K K S W L R

AAAAAGAGTTGGCTTCGAAGT K K S W L R S

AAAAGAGTTGGCTTCGAAGTT K K S W L R S

AAAGAGTTGGCTTCGAAGTTC K S W L R S

AAGAGTTGGCTTCGAAGTTCC
K S W L R S S

AGAGTTGGCTTCGAAGTTCCT K S W L R S S

GAGTTGGCTTCGAAGTTCCTT S W L R S S

AGTTGGCTTCGAAGTTCCTTC S W L R S S F

GTTGGCTTCGAAGTTCCTTCA S W L R S S F

TTGGCTTCGAAGTTCCTTCAA W L R S S F

TGGCTTCGAAGTTCCTTCAAC
W L R S S F N

GGCTTCGAAGTTCCTTCAACA W L R S S F N

GCTTCGAAGTTCCTTCAACAA L R S S F N

3

CTCCATCAAGTCCTCCACCTC	AGTTGGAGGTGGACCTGCTGG	ATGACACCCAACCATGGCTTT
S I K S S T	L E V D L L	M T P N H G F
TCCATCAAGTCCTCCACCTCG	GTTGGAGGTGGACCTGCTGGA	TGACACCCAACCATGGCTTTC
S I K S S T S	L E V D L L	M T P N H G F
CCATCAAGTCCTCCACCTCGT	TTGGAGGTGGACCTGCTGGAA	GACACCCAACCATGGCTTTCA
S I K S S T S	L E V D L L E	T P N H G F
CATCAAGTCCTCCACCTCGTC I K S S T S	$\begin{array}{cccc} {\tt TGGAGGTGGACCTGCTGGAAG} \\ {\tt L} & {\tt E} & {\tt V} & {\tt D} & {\tt L} & {\tt E} \end{array}$	ACACCCAACCATGGCTTTCAC T P N H G F H
ATCAAGTCCTCCACCTCGTCC I K S S T S S	GGAGGTGGACCTGCTGGAAGC E V D L L E	CACCCAACCATGGCTTTCACT T P N H G F H
TCAAGTCCTCCACCTCGTCCT I K S S T S S	GAGGTGGACCTGCTGGAAGCA E V D L L E A	ACCCAACCATGGCTTTCACTT PNHGFH
CAAGTCCTCCACCTCGTCCTC	AGGTGGACCTGCTGGAAGCAG	CCCAACCATGGCTTTCACTTG
K S S T S S	E V D L L E A	P N H G F H L
AAGTCCTCCACCTCGTCCTCC	GGTGGACCTGCTGGAAGCAGA	CCAACCATGGCTTTCACTTGA
K S S T S S S	V D L E A	P N H G F H L
AGTCCTCCACCTCGTCCTCCG	GTGGACCTGCTGGAAGCAGAG	CAACCATGGCTTTCACTTGAG
K S S T S S S	V D L L E A E	N H G F H L
GTCCTCCACCTCGTCCTCCGT	TGGACCTGCTGGAAGCAGAA	AACCATGGCTTTCACTTGAGC
S S T S S S	V D L L E A E	N H G F H L S
TCCTCCACCTCGTCCTCCGTG SSTSSSV	GGACCTGCTGGAAGCAGAA D L L E A E	ACCATGGCTTTCACTTGAGCT N H G F H L S
CCTCCACCTCGTCCTCCGTGG	GACCTGCTGGAAGCAGAAT	CCATGGCTTTCACTTGAGCTT
S S T S S S V	D L L E A E N	H G F H L S
CTCCACCTCGTCCTCCGTGGG	ACCTGCTGGAAGCAGAATG	CATGGCTTTCACTTGAGCTTC
S T S S S V	D L L E A E N	H G F H L S F
TCCACCTCGTCCTCCGTGGGC S T S S S V G	CCTGCTGGAAGCAGAATGA L L E A E N	ATGGCTTTCACTTGAGCTTCA H G F H L S F
CCACCTCGTCCTCCGTGGGCA	CTGCTGGAAGCAGAGAATGAC	TGGCTTTCACTTGAGCTTCAG
T S S S V G	L L E A E N D	G F H L S F
CACCTCGTCCTCCGTGGGCAC	TGCTGGAAGCAGAATGACC	GGCTTTCACTTGAGCTTCAGG
T S S S V G	L L E A E N D	G F H L S F R
ACCTCGTCCTCCGTGGGCACT	GCTGGAAGCAGAATGACCG	GCTTTCACTTGAGCTTCAGGA
T S S S V G G	L E A E N D	G F H L S F R
CCTCGTCCTCCGTGGGCACTG	CTGGAAGCAGAATGACCGA L E A E N D R	CTTTCACTTGAGCTTCAGGAT F H L S F R
CTCGTCCTCCGTGGGCACTGA S S S V G G	TGGAAGCAGAATGACCGAC L E A E N D R	TTTCACTTGAGCTTCAGGATG F H L S F R M
TCGTCCTCCGTGGGCACTGAT	GGAAGCAGAATGACCGACT	TTCACTTGAGCTTCAGGATGT
S S S V G G T	E A E N D R	F H L S F R M
CGTCCTCCGTGGGCACTGATG S S S V G G T	GAAGCAGAGAATGACCGACTG E A E N D R L	$ exttt{TCACTTGAGCTTCAGGATGTT} $ $ exttt{H}$ $ exttt{L}$ $ exttt{S}$ $ exttt{F}$ $ exttt{R}$ $ exttt{M}$

TAAAAGGTAAAAATGAAAAAC AAAAGGTAAAAATGAAAAACA AAAGGTAAAAATGAAAAACAA AAGGTAAAAATGAAAAAACAAA AGGTAAAAATGAAAAACAAAA GGTAAAAATGAAAAACAAAAA GTAAAAATGAAAAACAAAAAC TAAAAATGAAAAACAAAAACA AAAAATGAAAAACAAAAACAA AAAATGAAAAACAAAAACAAG AAATGAAAAACAAAAACAAGC AATGAAAAACAAAACAAGCA ATGAAAAACAAAAACAAGCAA TGAAAAACAAAACAAGCAAA GAAAAACAAAAACAAGCAAAC AAAAACAAAACAAGCAAACA AAAACAAAACAAGCAAACAA AAACAAAAACAAGCAAACAAA AACAAAACAAGCAAACAAAC ACAAAAACAAGCAAACAAACA

99/124

T2

ATTTAACAATGCATAAGAGTCAATAAACCCTACTTTTTTAAAAAAA CAATGCATAAGAGTCAATAAACCCTACTTTTTTAAAAAAA AATGCATAAGAGTCAATAAACCCTACTTTTTTAAAAAAA ATGCATAAGAGTCAATAAACCCTACTTTTTTAAAAAAAA TGCATAAGAGTCAATAAACCCTACTTTTTTAAAAAAA GCATAAGAGTCAATAAACCCTACTTTTTTAAAAAAAA CATAAGAGTCAATAAACCCTACTTTTTTAAAAAAAA ATAAGAGTCAATAAACCCTACTTTTTTAAAAAAAA TAAGAGTCAATAAACCCTACTTTTTTAAAAAAAA

Fig. 20 (cont'd 2)

Т3

CGGCCACAAGCGTCTCATCAG

тз

ACTGGGCCAATCATTACCTAG WANHYL CTGGGCCAATCATTACCTAGC WANHYL TGGGCCAATCATTACCTAGCC WANHYLA GGGCCAATCATTACCTAGCCA WANHYLA GGCCAATCATTACCTAGCCAA ANHYLA GCCAATCATTACCTAGCCAAA ANHYLAK CCAATCATTACCTAGCCAAAT ANHYLAK CAATCATTACCTAGCCAAATC NHYLAK AATCATTACCTAGCCAAATCC NHYLAKS ATCATTACCTAGCCAAATCCG NHYLAKS TCATTACCTAGCCAAATCCGG HYLAKS CATTACCTAGCCAAATCCGGC H Y L A K S G ATTACCTAGCCAAATCCGGCC HYLAKSG TTACCTAGCCAAATCCGGCCA YLAKSG TACCTAGCCAAATCCGGCCAC Y L A K S G H ACCTAGCCAAATCCGGCCACA YLAKSGH CCTAGCCAAATCCGGCCACAA L A K S G H CTAGCCAAATCCGGCCACAAG LAKSGHK TAGCCAAATCCGGCCACAAGC LAKSGHK

AGCCAAATCCGGCCACAAGCG

GCCAAATCCGGCCACAAGCGT

AKSGHKR

AKSGHK

GHKRLI GGCCACAAGCGTCTCATCAGG GHKRLIR GCCACAAGCGTCTCATCAGGG GHKRLIR CCACAAGCGTCTCATCAGGGA H K R L I R CACAAGCGTCTCATCAGGGAT H K R L I R D ACAAGCGTCTCATCAGGGATC H K R L I R D CAAGCGTCTCATCAGGGATCT KRLIRD AAGCGTCTCATCAGGGATCTC KRLIRDL AGCGTCTCATCAGGGATCTCC K R L I R D L GCGTCTCATCAGGGATCTCCA RLIRDL CGTCTCATCAGGGATCTCCAG R L I R D L Q GTCTCATCAGGGATCTCCAGC R L I R D L Q TCTCATCAGGGATCTCCAGCA LIRDLQ CTCATCAGGGATCTCCAGCAA L I R D L Q Q TCATCAGGGATCTCCAGCAAG L I R D L Q Q CATCAGGGATCTCCAGCAAGA IRDLQQ ATCAGGGATCTCCAGCAAGAT I R D L Q Q D TCAGGGATCTCCAGCAAGATG I R D L Q Q D CAGGGATCTCCAGCAAGATGT RDLOOD AGGGATCTCCAGCAAGATGTG RDLQQDV GGGATCTCCAGCAAGATGTGA

Fig. 20 (cont'd 3)

CTGAAATGCAGTCCAGACTTC E M Q S R L

TGAAATGCAGTCCAGACTTCC E M Q S R L

GAAATGCAGTCCAGACTTCCA E M Q S R L P

AAATGCAGTCCAGACTTCCAG E M Q S R L P

AATGCAGTCCAGACTTCCAGG M Q S R° L P

ATGCAGTCCAGACTTCCAGGT M Q S R L P G

TGCAGTCCAGACTTCCAGGTC
M Q S R L P G

GCAGTCCAGACTTCCAGGTCC Q S R L P G

CAGTCCAGACTTCCAGGTCCT Q S R L P G P

AGTCCAGACTTCCAGGTCCTA Q S R L P G P

GTCCAGACTTCCAGGTCCTAC
S R L P G P

TCCAGACTTCCAGGTCCTACC
S R L P G P T

CCAGACTTCCAGGTCCTACCG S R L P G P T

CAGACTTCCAGGTCCTACCGC R L P G P T

GACTTCCAGGTCCTACCGCGA R L P G P T A

ACTTCCAGGTCCTACCGCGAG L P G P T A

CTTCCAGGTCCTACCGCGAGG
L P G P T A R

TTCCAGGTCCTACCGCGAGGG

TCCAGGTCCTACCGCGAGGGT
P G P T A R

CCAGGTCCTACCGCGAGGGTA
P G P T A R V

- ·

GGGGCAGTAGTGTCTGCCACG RGSSVCH

GGGCAGTAGTGTCTGCCACGT g s s v c H

GGCAGTAGTGTCTGCCACGTG g s s v c h v

GCAGTAGTGTCTGCCACGTGG g s s v c h v

CAGTAGTGTCTGCCACGTGGA s s v c H v

AGTAGTGTCTGCCACGTGGAC s s v c H v D

GTAGTGTCTGCCACGTGGACG S S V C H V D

AGTGTCTGCCACGTGGACGT s v c H v D

AGTGTCTGCCACGTGGACGTC s v c h v b v

GTGTCTGCCACGTGGACGTCT S V C H V D V

TGTCTGCCACGTGGACGTCTC V C H V D V

GTCTGCCACGTGGACGTCTCA V C H V D V S

TCTGCCACGTGGACGTCTCAG v c h v d v s

CTGCCACGTGGACGTCTCAGA CHVDVS

TGCCACGTGGACGTCTCAGAC CHVDVSD

GCCACGTGGACGTCTCAGACA C H V D V S D

CCACGTGGACGTCTCAGACAA HVDVSD

CACGTGGACGTCTCAGACAAG H V D V S D K

ACGTGGACGTCTCAGACAAGG H V D V S D K

CGTGGACGTCTCAGACAAGGC v d v s d k

101/124

TCACCATGCCAAGGACGAAGG T M P R T K

CACCATGCCAAGGACGAAGGC TMPRTK

ACCATGCCAAGGACGAAGGCT TMPRTKA

CCATGCCAAGGACGAAGGCTT TMPRTKA

CATGCCAAGGACGAAGGCTTC MPRTKA

ATGCCAAGGACGAAGGCTTCA M P R T K A S

TGCCAAGGACGAAGGCTTCAG M P R T K A S

GCCAAGGACGAAGGCTTCAGC PRTKAS

CCAAGGACGAAGGCTTCAGCC P R T K A S A

CAAGGACGAAGGCTTCAGCCC PRTKASA

AAGGACGAAGGCTTCAGCCCC RTKASA

AGGACGAAGGCTTCAGCCCCG R T K A S A P

GGACGAAGGCTTCAGCCCCGG R T K A S A P

GACGAAGGCTTCAGCCCCGGC T K A S A P

ACGAAGGCTTCAGCCCCGGCA T K A S A P A

CGAAGGCTTCAGCCCCGGCAG T K A S A P A

GAAGGCTTCAGCCCCGGCAGG K A S A P A

AAGGCTTCAGCCCCGGCAGGC K A S A P A G

AGGCTTCAGCCCCGGCAGGCG K A S A P A G

GGCTTCAGCCCCGGCAGGCGC ASAPAG

GCTTCAGCCCCGGCAGGCGCA A S A P A G A

AGAAGCAGAGTGGTTCCGCCA K Q S G S A

GAAGCAGAGTGGTTCCGCCAC K Q S G S A

AAGCAGAGTGGTTCCGCCACC K Q S G S A T

AGCAGAGTGGTTCCGCCACCG KQSGSAT

GCAGAGTGGTTCCGCCACCGG Q S G S A T

CAGAGTGGTTCCGCCACCGGC Q S G S A T G

AGAGTGGTTCCGCCACCGGCC Q S G S A T G

GAGTGGTTCCGCCACCGGCCT SGSATG

AGTGGTTCCGCCACCGGCCTG S G S A T G L

GTGGTTCCGCCACCGGCCTGG SGSATGL

TGGTTCCGCCACCGGCCTGGC G S A T G L

GGTTCCGCCACCGGCCTGGCC G S A T G L A

GTTCCGCCACCGGCCTGGCCA GSATGLA

TTCCGCCACCGGCCTGGCCAT SATGLA

TTCCGCCACCGGCCTGGCCAT SATGLA

TCCGCCACCGGCCTGGCCATG S A T G L A M

CCGCCACCGGCCTGGCCATGA SATGLAM

CGCCACCGGCCTGGCCATGAT ATGLAM

GCCACCGGCCTGGCCATGATC ATGLAMI

CCACCGGCCTGGCCATGATCA TGLAMI

CACCGGCCTGGCCATGATCAC TGLAMI

ACCGGCCTGGCCATGATCACA T G L A M I T

GGTCTGGTCAACCAAACAGAC GLVNOTD GTCTGGTCAACCAAACAGACA G L V N Q T D TCTGGTCAACCAAACAGACAA LVNQTD CTGGTCAACCAAACAGACAAG L V N Q T D K TGGTCAACCAAACAGACAAGG L V N Q T D K GGTCAACCAAACAGACAAGGA V N Q T D K GTCAACCAAACAGACAAGGAG V N O T D K E TCAACCAAACAGACAAGGAGA VNQTDKE CAACCAAACAGACAAGGAGAA N Q T D K E CCAAACAGACAAGGAGAAA N Q T D K E K ACCAAACAGACAAGGAGAAAG NOTDKEK CCAAACAGACAAGGAGAAAGG Q T D K E K CAAACAGACAAGGAGAAAGGC Q T D K E K G AAACAGACAAGGAGAAAGGCA QTDKEKG AACAGACAAGGAGAAAGGCAT TDKEKG ACAGACAAGGAGAAAGGCATC T D K E K G I CAGACAAGGAGAAAGGCATCT TDKEKGI ACAAGGAGAAAGGCATCTC D K E K G I GACAAGGAGAAAGGCATCTCA DKEKGIS ACAAGGAGAAAGGCATCTCAT DKEKGIS

CAAGGAGAAAGGCATCTCATC

KEKGIS

TTCATGGATCCTCACTCTCCT H G S S L S TCATGGATCCTCACTCTCCTT H G S S L S CATGGATCCTCACTCTCCTTG HGSSLSL ATGGATCCTCACTCTCCTTGG H G S S L S L TGGATCCTCACTCTCCTTGGT G S S L S L GGATCCTCACTCTCCTTGGTT G S S L S L V GATCCTCACTCTCCTTGGTTT G S S L S L V ATCCTCACTCTCCTTGGTTTC S S L S L V TCCTCACTCTCCTTGGTTTCC S S L S L V S CCTCACTCTCCTTGGTTTCCA S S L S L V S CTCACTCTCCTTGGTTTCCAG S L S L V S TCACTCTCCTTGGTTTCCAGC SLSLVSS CACTCTCCTTGGTTTCCAGCA SLSLVSS ACTCTCCTTGGTTTCCAGCAC L S L V S S CTCTCCTTGGTTTCCAGCACA LSLVSST TCTCCTTGGTTTCCAGCACAT L S L V S S T CTCCTTGGTTTCCAGCACATC SLVSST TCCTTGGTTTCCAGCACATCG SLVSSTS CCTTGGTTTCCAGCACATCGT S L V S S T S CTTGGTTTCCAGCACATCGTC LVSSTS TTGGTTTCCAGCACATCGTCA L V S S T S S

ፐ 3

102/124

CTCCTTGGTTTCCAGCACATC SLVSST TCCTTGGTTTCCAGCACATCG S L V S S T S CCTTGGTTTCCAGCACATCGT SLVSSTS CTTGGTTTCCAGCACATCGTC L V S S T S TTGGTTTCCAGCACATCGTCA LVSSTSS TGGTTTCCAGCACATCGTCAG LVSSTSS GGTTTCCAGCACATCGTCAGT VSSTSS GTTTCCAGCACATCGTCAGTT VSSTSSV TTTCCAGCACATCGTCAGTTT V S S T S S V TTCCAGCACATCGTCAGTTTA SSTSSV TCCAGCACATCGTCAGTTTAT SSTSSVY CCAGCACATCGTCAGTTTATT S S T S S V Y CAGCACATCGTCAGTTTATTC S T S S V Y AGCACATCGTCAGTTTATTCT S T S S V Y S GCACATCGTCAGTTTATTCTA S T S S V Y S CACATCGTCAGTTTATTCTAC T S S V Y S ACATCGTCAGTTTATTCTACA T S S V Y S T CATCGTCAGTTTATTCTACAC T S S V Y S T ATCGTCAGTTTATTCTACACC S S V Y S T TCGTCAGTTTATTCTACACCA S S V-Y S T P CGTCAGTTTATTCTACACCAG SSVYSTP

09914549

GGAAGAACTGGGTCAATGAGTTACGCAGCTCC K N W V N E L R S S 173

103/124

Т3

TCTCTAATTTCAGAATGCATGGATA

т3

AGGAGATGAAGCTGACAGATATCCGCTTAGAAGCTCT

тз

GATTCCAGACCACACGTCTTTCTTATCG

Fig. 20 (cont'd 6)

<u>.</u>

Alignment of the T protein family

Note: The N-terminus of protein T2 was omitted in the alignment, since it has no significant homology to the T protein and the T3 protein.

Т Т3	MDLSSEMNRHGKNPVSHKLEDQKKIYTDWANHYLAKSGHKRLIKDLQ NQPERLNSQVLQGLQEPAGEGLPLRKSGSVENGFDTQIYTDWANHYLAKSGHKRLIRDLQ	60
T2	* * * * .* .* .**************	
Т Т3	QDIADGVLLAEIIQIIANEKVEDINGCPRSQSQMIENVDVCLSFLAARGVNVQGLSAEEI QDVTDGVLLAQIIQVVANEKIEDINGCPKNRSQMIENIDACLNFLAAKGINIQGLSAEEI	120
T2	**. ***** ***. **** **** * ** ** ** ** *	
Т Т3	RNGNLKAILGLFFSLSRYKQQQ-HHQQQYYQSLVELQQRVT RNGNLKAILGLFFSLSRYKQQQQQPQKQHLSSPLPPAVSQVAGAPSQCQAGTPQQQVPVT	180
T2	*********************	
T3	HASPPSEASQAKTQQDMQSRLPGP-SRVPAAGSSSKVQGASNLNRRSQSFNSIPQAPCQPHQPAPHQQSKAQAEMQSRLPGPTARVSAAGSEAKTRGGSTTANNRRSQSFNNY	240
Т2	.* *. *.*.****** .* * * * * * * * * * *	
T _T3	DKNKPP	300
Т2	** * **	
Т Т3	AATKPWRSKSLSVKHSATVSMLSVKPPGPEAPRPTPEAMKPAPNNQKSMLEKLKLFNSKG	360
Т2	*	
T T3 T2	GSKAGEGPGSRDTSCERLETLPSFEESEELEAASRMLTTVGPASSSPKIALKGIAQRTFS	420
T T3	YANGNEKRALTNKKSSLKGNEKEKEKQQREKDKEKSKDLAKRASVTERLDLKEEPKEDPSGAAVPEM	480
T 2	* ***	
T T3 T2	PKKSSKIASFIPKGGKLNSAKKEPMAPSHSGIPKPGMKSMPGKSPSAPAPSKEGERSRSG	540
T T3	KLSSGLPQQKPQLDGRHSSSSSSLASSEGKGPGGTTLNHSISSQTVSGSVGTTQTTGSNT	600
T2	KT22GTb O C C C C C C C C C C C C C C C C C C	
	Fig. 21	

\mathbf{T}		990
Т3	VSVQLPQPQQQYNHPNTATVAPFLYRSQTDTEGNVTAESSSTGVSVEPSHFTKTGQPALE	
	~	
T2		
	- ea-	
m	GEDPETRRMRTVKNIADLRQNLEETMSSLRGTQISHSTLETTFDSTVTTEVNGRTIP	720
${f T}$		
Т3	ELTGEDPEARRLRTVKNIADLRQNLEETMSSLRGTQVTHSTLETTFDTNVTTEMSGRSIL	
Т2	DPESQRKRTVQNVLDLRQNLEETMSSLRGSQVTHSSLEMTCYDSDDANPRSVS	
1.2	***** * *** * * ********* * * * *	
	****** ****. ***^^^	
т	NLTSRPTPMTWRLGQACPRLQAGDAPSLGAGYP-RSGTSRF1HTDPSRFMYTTPLRRAAV	780
T		
Т3	SLTGRPTPLSWRLGQSSPRLQAGDAPSMGNGYPPRANASRFINTESGRYVYSAPLRRQLA	
T2	SLSNRSYPLSWRYGQSSPRLQAGDAPSVGGSCRSEGTPAWYMHGERAHYSHTMPMRSP	
	* * * * . ** ** . *******	
Т	SRLGNMSQIDMSEKA-SSDLDMS-SEVDVGGYMSDGDILGKSLRTDDINSGYMTDGGLNL	840
	SRGSSVCHVDVSDKA-GDEMDLEGISMDAPGYMSDGDVLSKNIRTDDITSGYMTDGGLGL	
Т3		
T2	SKLSHISRLELVESLDSDEVDLKSGYMSDSDLMGKTMTEDDDITTG	
	. ** * * . **	
Т	YTRSLNRIPD-TATSRDIIQRGVHDVTVDADSWDDSSSVSSGLSDTLDNISTDDLNTTSS	900
-	YTRRLNRLPDGMAVVRETLQRNTSLGLGDADSWDDSSSVSSGISDTIDNLSTDDINTSSS	
Т3		
T2	WDESSSISSGLSDASDNLSSEEFNASSS	
	.*.**. **.*. * * *	
		0.50
T	VSSYSNITVPSRKNTQLRTDSEKRSTTDETWDSPEELKKPEEDFDSHGDAG-	960
Т3	ISSYANTPASSRKNLDVQTDAEKHSQVERNSLWSGDDVKKSDGGSDSGIKMEPG-	
T2	LNSLPSTPTASRRNSTIVLRTDSEKRSLAESGLSWFSESEEKAPKKLEYDSGSLKMEPGT	
	. * **.***.* . * . * *	
	DOVACTENI VTD.	1020
${f T}$	GKWKTVSSGLPEDPEK-AGQKASLSVSQTGSWRRGMSAQGGAPSRQKAGTSALKTP-	1020
Т3	SKWRRNPSDVSDESDKSTSGKKNPVISQTGSWRRGMTAQVGITMPRTKASAPAGALKTPG	
	SKWRRERPESCDDSSKGGELKKPISLGHPGSLKKGKTPPVAVTSPITHTAQSALKVAG	
T2		
	** * * ** * * **	
\mathbf{T}	-GKTDDAKASEKGKAPLKGSSLQRSPSDAGKSSGDEGKKPPSGIGRSTATSSFGFKKP	1080
Т3	TGKTDDAKVSEKGRLSPKASQVKRSPSDAGRSSGDESKKPLPSSSRTPTANANSFGFKKQ	
T2	KPEGKATDKGKLAVKNTGLQRSSSDAGRDRLSDAKKPPSGIARPSTSGSFGYKKP	
	. * . *	
	. * ··^^·	
\mathbf{T}	SG-VGSSAMITSSGATITSGSATLGKIPKSAAIGGKSNAGRKTSLDGSQNQDDVVLHVSS	1140
T 3	SGSATGLAMITASGVTVTSRSATLGKIPKSSALVSRS-AGRKSSMDGAQNQDDGYLALSS	
T2	PP-ATGTATVMQTGGSATLSKIQKSSGIPVKPVNGRKTSLDVSNSAEPGFLAPGA	
	* * *** ** ** *** . * *	
T	KTTLQYRSLPRPSKSSTSGIPGR-GGHRSSTSSID-SNVSSKSAGATTSKLREPTKIGSG	1200
T3	RTNLQYRSLPRPSKSNSRNGAGNRSSTSSID-SNISSKSAGLPVPKLREPSKTALG	
	ALICA CONTROLL AND	
T2	RSNIQYRSLPRPAKSSSMSVTGGRGGPRPVSSSIDPSLLSTKQGGLTPSRLKEPTKVASG	
	******** * * * * * * * * * * * * *	
${f T}$	RSSPVTVNQTDKEKEKVAVSDSESVSLSG-SPKSSPTSASACG-AQGLRQPGSKYPDIAS	T590
Т3	SSLPGLVNQTDKEKGISSDNESVASCN-SVKVNPAAQPVSSPAQTSLQPGAKYPDVAS	
	COLL GEVING TOWNS TO THE TOTAL PARTY TO THE TOTAL P	
T2	RTTPAPVNQTDREKEKAKAKAVALDSDNISLKSIGSPESTPKNQASHPTATKLAELP	
	* **** **	
		1222
${f T}$	PTFRRLFGAKAGGKSASAPNTEGVKSSSVMPSPSTTLARQGSLESPSSGTGSMGSAGGLS	1320
тз	PTLRRLFGGKP-TKQVPIATAENMKNSVVISNPHATMTQQGNLDSPS-GSGVLS	
	PTPLRAT-AKSFVKPPSLANLDKVN-SNSLDLPSSSDTTHASKVPDLHATSSAS	
T2		
	** * * * * * *	•
	₹.	

gar.

T T3 T2	GSSSPLFNKPSDLTTDVISLSHSLASSPASVHSFTSGGLVWAANMSSSSAGSKDTPSYQS GSSSPLYSKNVDLNQSPLASSPSSAHSAPSNSLTWGTNASSSSAVSKDGLGFQSGGPLPSCFTPSPAPILNINSASFSQGLELMSGFSVPKETRMYPK ** ** ** * * * * * * * * *	1380
T T3 T2	MTSLHTSSESIDLPLSHHGSLSGLTTGTHEVQSLLMRTGSVRSTLSESVSSLHTSCESIDISLSSGGVPSHNSSTGLIASSKDDSLTPFVRTNSVKTTLSESPLLSGLHRSMESLQMPMSLPSAFPSSTPVPTPPAPPAAPTEEETEELTWSGSPRAGQLDS** * * * * *	1440
T T3 T2	SQLDRNTLPKKGLRYTPSSRQANQEEGKEWLRSHSTGGL SSPAASPKFCRSTLPRKQDSDPHLDRNTLPKKGLRYTPTSQLRTQEDAKEWLRSHSAGGLNQRDRNTLPKKGLRYQLQSQEETKERRHSHTIGGL . ********* * **. ** .**. ***	1500
T T3 T2	QDTGNQSPLVSPSAMSSSAAGKYHFSNLVSPTNLSQFNLPGPSMMRSNSIPAQDSSFDLY QDTAANSPFSSGSSVTSPSGTRFNFSQLASPTTVTQMSLSNPTMLRTHSLSNADGQYDPY PESDDQSELPSPPALPMSLSAKGQLTNIVSPTAATTPRITRSNSIPTHEAAFELY* *	1560
T T3 T2	DDSQLCGSATSLEERPRAISHSGSFRDSMEEVHGSSLSLVSSTSSLYSTAEEKAHSEQIH TDSRFRNSSMSLDEKSRTMSRSGSFRDGFEEVHGSSLSLVSSTSSVYSTPEEKCQSE-IR SGSQMG-STLSLAERPKGMIRSGSFRDPTDDVHGSVLSLASSASSTYSSAEERMQSEQIR *. *. ** * ***** ** *	1620
T T3 T2	KLRRELVASQEKVATLTSQLSANAHLVAAFEKSLGNMTGRLQSLTMTAEQKESELIELRE KLRRELDASQEKVSALTTQLTANAHLVAAFEQSLGNMTIRLQSLTMTAEQKDSELNELRK KLRRELESSQEKVATLTSQLSANANLVAAFEQSLVNMTSRLRHLAETAEEKDTELLDLRE ***** .*******.**.***.** *** *** **. *.	1680
T T3 T2	TIEMLKAQNSAAQAAIQGALNGPDHPPKDLRIRRQHSSESVSSINSATSHSS TIELLKKQNAAAQAAINGVINTPELNCKGNGTAQSADLRIRRQHSSDSVSSINSATSHSS TIDFLKKKNSEAQAVIQGALNASETTPKELRIKRQNSSDSISSLNSITSHSS **. ** .*. *** * .* . * . * . * . * . *	1740
T T3 T2	IGSGNDADSKKKKKKNWLRSSFKQAFGKKKSTKPPSSHSDIEELTDSSLPASPKL VGSNIESDSKKKKRKNWVNELRSSFKQAFGKKKSPKSASSHSDIEEMTDSSLPSSPKL IGSSKDADAKKKKKKSWLRSSFNKAFSIKKGPKSASSYSDIEEIATPDSSAPSSPKL .***.*** * . *** .** * * * * **** *** *.***	1800
T T3 T2	PHNAGDCGSASMKPSQSASAICECTEAEAEIILQLKSELRE PHNGSTGSTPLLRNSHSNSLISECMDSEAETVMQLRNELRD QHGSTETASPSIKSSTSSSVGTDVTEGPAHPAPHTRLFHANEEEEPEKKEVSELRSELWE *. *	1860
T T3 T2	KELKLTDIRLEALSSAHHLDQIREAMNRMQNEIEILKAENDRLKAETGNTAKPTRPPSES KEMKLTDIRLEALSSAHQLDQLREAMNRMQSEIEKLKAENDRLKSES-QGSGCSRAPSQV KEMKLTDIRLEALNSAHQLDQLRETMHNMQLEVDLLEAENDRLKVAPGPSSGSTPGQV **.**********************************	1920
T T3 T2	SSSTSSSSSRQSLGLSLNNLNITEAVSSDILLDDAGDATGHKDG-RSVKIIVSISKGYGR SISASPRQSMGLSQHSLNLTESTSLDMLLDDTGECSARKEGGRHVKIVVSFQEEMKW PGSSALSSPRRSLGLALTHSFGPSLADTDLSPMDGISTCGPKEE-VTLRVVVRMPPQHII * *.*.**. *	1980

T T3 T2	AKDQKSQAYLIGSIGVSGKTKWDVLDGVIRRLFKEYVFRIDTSTSLGLSSDCIASYCIGD KEDSRPHLFLIGCIGVSGKTKWDVLDGVVRRLFKEYIIHVDPVSQLGLNSDSVLGYSIGE KGDLKQQEFFLGCSKVSGKVDWKMLDEAVFQVFKDYISKMDPASTLGLSTESIHGYSISH * * . *	2040
T T3 T2	LIRSHNLEVPELLPCGYLVGDNNIITVNLKGVEENSLDSFVFDTLIPKPITQRYFNLLME IKRSNTSETPELLPCGYLVGENTTISVTVKGLAENSLDSLVFESLIPKPILQRYVSLLIE VKRVLDAEPPEMPPCRRGVNNISVSLKGLKEKCVDSLVFETLIPKPMMQHYISLLLK . * * **. ** *	2100
T T3 T2	HHRIILSGPSGTGKTYLANKLAEYVITKSGRKKTEDAIATFNVDHKSSKELQQYLANLAE HRRIILSGPSGTGKTYLANRLSEYIVLREGRELTDGVIATFNVDHKSSKELRQYLSNLAD HRRLVLSGPSGTGKTYLTNRLAEYLVERSGREVTEGIVSTFNMHQQSCKDLQLYLSNLAN *.*********************************	2160
T T3 T2	QCSADNNGVELPVVIILDNLHHVGSLSDIFNGFLNCKYNKCPYIIGTMNQGVSSSPNLEL QCNSENNAVDMPLVIILDNLHHVSSLGEIFNGLLNCKYHKCPYIIGTMNQATSSTPNLQL QIDRETGIGDVPLVILLDDLSEAGSISELVNGALTCKYHKCPYIIGTTNQPVKMTPNHGF * ****** * ** *.******** ** .**	2220
T T3 T2	HHNFRWVLCANHTEPVKGFLGRYLRRKLIEIEIERNIRNNDLVKIIDWIPKTWHHLNSFL HHNFRWVLCANHTEPVKGFLGRFLRRKLMETEISGRVRNMELVKIIDWIPKVWHHLNRFL HLSFRMLTFSNNVEPANGFLVRYLRRKLVESDSDINANKEELLRVLDWVPKLWYHLHTFL * ***. ** *** *.****.*	2280
T T3 T2	ETHSSSDVTIGPRLFLPCPMDVEGSRVWFMDLWNYSLVPYILEAVREGLQMYGKRTPWED EAHSSSDVTIGPRLFLSCPIDVDGSRVWFTDLWNYSIIPYLLEAVREGLQLYGRRAPWED EKHSTSDFLIGPCFFLSCPIGIEDFRTWFIDLWNNSIIPYLQEGAKDGIKVHGQKAAWED * **.** *** ** ** ** ** ** *** *** ***. ** ***	
T T3 T2	PSKWVLDTYPWSSATLPQESPALLQLRPEDVGYESCTSTKEATTSKHIPQTDTEGDPLMN PAKWVMDTYPWAASPQQHEWPPLLQLRPEDVGFDGYSMPREGSTSKQMPPSDAEGDPLMN PVEWVRDTLPWPSAQQDQSKLYHLPPPTVGPHSIASPPEDRTVKDSTPSSLDSDPLMA * ** ** ** * .* * ** * ***	
Т Т3 Т2	MLMKLQEAANYSSTQSCDSESTSHHEDILDSSLESTL MLMRLQEAANYSSPQSYDSDSNSNSHHDDILDSSLESTL MLLKLQEAANYIESPDRETILDPNLQATL	

Fig. 21 (cont'd 3)

Alignment	of	the	Т	protein	with	the	POM121	protein
-----------	----	-----	---	---------	------	-----	--------	---------

J J	10	20	30	40	50	60
	•	•	-	•	•	•
T-Protein POM121	MDLSSEMNRHGKI	NPVSHKLEDQKKI		AKSGHKRLIK	DLQQDIADG	VLLAEII
T-Protein POM121	QIIANEKVEDING		PLGVREGI		PAGAAALGL	
T-Protein POM121	SLSRYKQQQHHQ YLV *		PAA	**		
T-Protein M121	SKVQGASNLNRR RGL6SFVRE .* * *	SRRHPRI				
T-Protein POM121	SLRGTQISHSTL PLGGPDPAELLL					
T-Protein POM121	GYPRSGTSRFIH PPSSSTAQRVHH * . * *					
T-Protein POM121	SDGDILGKSLRT SRFVITPR-RRY	DDINSGYMTDGG PIQQAQYSLLGA * *	LPTVCWNGGH	KKAVLSARNS	_	
Pom121	DSSSVSSG L SDT SKL *	LDNISTDDLNTT: FRSPMPEQILST		-		
T-Protein POM121	EELKKPEEDFDS LHLDGQENKRRR * *	HGDAGGKWKTVS HDSSGS	GHSAFEPLVA	NGVPAAFVPF	-	ASQSSDDH
T-Protein POM121		PGKTDDAKASEK ELTSTCTGGIPSS *				
T-Protein POM121		GVGSSAMITSSG TREEEPCHQSSSS				-
T-Protein POM121	~	TLQYRSLPRPSK RGDQLTLPPP .** *			LDMERR	

Fig. 22

097974549

109/124

T-Protein POM121	EPTKIGSGRSSPVTVNQTDKEKEKVAVSDSESVSLSGSPKSSPTSASACGAQGLRQPGSK WFNKVLEDKTDDASTPATDTSPATSPPFTLTLPTVGPAASPASLPAPSS** .
T-Protein POM121	YPDIASPTFRRLFGAKAGGKSASAPNTEGVKSSSVMPSPSTTLARQGSLESPSSGTGSMGNPLLESLKKMQESPAPSSSEPPEAATVAAPSPPKTPSLLAPLVSP * * * *** * * **
T-Protein POM121	SAGGLSGSSPLFNKPSDLTTDVISLSHSLASSPASVHSFTSGGLVWAANMSSSSAGSKDLTGPLASTSSDSKPTTTFLGLASASSATPLTDTKAPGVSQAQLCVSTPAATAP *.* ** ** * *
T-Protein POM121	TPSYQSMTSLHTSSESIDLPLSHHGSLSGLTTGTHEVQSLLMRTGSVRSTLSESMQLDRN SPTPASTLFGMLSPPASSSSLATPGPACASPMFKPIFPATPKSESDN .*
T-Protein OM121	TLPKKGLRYTPSSRQANQEEGKEWLRSHSTGGLQDTGNQSPLVSPSAMSSSAAGKYHFEN PLPTSSSAATTTPASTALPTTATATAHTFKPIFESVEPFAAMP * * * * * * * * * * * * * * * *
T-Protein POM121	LVSPTNLSQFNLPGPSMMRSNSIPAQDSSFDLYDDSQLCGSATSLEERPRAISHSGSFRD LSPPFSLKQTTAPATTAATSAPLLTGGTATSTVATGTTAS * * * * * . * . * . * . * . * . * . *
T-Protein POM121	SMEEVHGSSLSLVSSTSSLYSTAEEKAHSEQIHKLRRELVASQEKVATLTSQLSANAHLV ASKPVFGFGVTTAASTASTIASTSQSILFGGAPPVTASSSAPALASIFQFGKPLA . * * ** . * . * . * . * . * . *
T-Protein POM121	AAFEKSLGNMTGRLQSLTMTAEQKESELIELRETIEMLKAQNSAAQAAIQGALNGPDHPP PAASVAGTSFSQSLASSAQTAASNSSGGFSGFGGTLTTSTSAPATTSQPTLTFSNTVT * * * * * * * * * . * * . * . * . * . *
Protein	KDLRIRRQHSSE-SVSSINSATSHSSIGSGNDADSKKKKKNWLRSSFKQAFGKKKSTK- PTFNIPFSASAKPALPTYPGANSQPTFG-ATDGATKPALAPSFGSSFTFGNSVAS * * * . * . * . * . * . * . * . *
T-Protein POM121	PPSSHSDIEELTDSSLPASPKLPHNAGDCGSASMKPSQSASAICECTEAEAEIILQLKSE APSAAPAPAAFGGAAQPAFGGLKASASTFGTPASTQPAFGSTTSVFSFGSA **
T-Protein POM121	LREKELKLTDIRLEALSSAHHLDQIREAMNRMQNEIBILKAENDRLKAETGNTAKPTRPP TTSGFGAAAATTQTTHSGSSSSLFGSSTPS-PF . * * * . *
T-Protein POM121	SESSSTSSSSRQSLGLSLNNLNITEAVSSDILLDDAGDATGHKDGRSVKIIVSISKGY TFGGSAAPAGGGGFGLSATPGTGSTSGTFSFGSGQSGTTGTTTSFGGSLSQNT . * *
T-Protein POM121	GRAKDQKSQAYLIGSIGVSGKTKWDVLDGVIRRLFKEYVFRIDTSTSLGLSSDCIASYCI LGAPSQSSPPAFSVGSTPESKPVFGGTSTPTFGQSAPAPGV
	Fig. 22 (cont'd 1)

T-Protein POM121	GDLIRSHNLEVPELLPCGYLVGDNNIITVNLKGVEENSLDSFVFDTLIPKPITQRYFNLL GTTGSSLSFGAPSTPAQGFVGVGPFGSGAPSFSIGAGSKTPGARQRLQAR
	* * * *
T-Protein POM121	MEHHRIILSGPSGTGKTYLANKLAEYVITKSGRKKTEDAIATFNVDHKSSKELQQYLANL RQHTRKK
T-Protein POM121	AEQCSADNIGVELPVVIILDNLHHVGSLSDIFNGFLNCKYNKCPYIIGTMNQGVSSSPNL
T-Protein POM121	ELHHNFRWVLCANHTEPVKGFLGRYLRRKLIEIEIERNIRNNDLVKIIDWIPKTWHHLNS
T-Protein	FLETHSSSDVTIGPRLFLPCPMDVEGSRVWFMDLWNYSLVPYILEAVREGLQMYGKRTPW
T-Protein POM121	EDPSKWVLDTYPWSSATLPQESPALLQLRPEDVGYESCTSTKEATTSKHIPQTDTEGDPL
T-Procein POM121	MNMLMKLQEAANYSSTQSCDSESTSHHEDILDSSLESTL

Fig. 22 (cont'd 2)

```
対にには発
              云二四四五
                       25ににぬ法
4.4 ▶
2.4
1.35 ▶
   PARTITARE PARTITARE PARTITARE
b
9.5
7.5
4.4
2.4
1.35 ▶
   С
2.4
1.35 ▶
```

Expression of the T gene family.

- a fetal tissue: left: T gene; middle: T2 gene; right: T3 gene.
 He = heart; Br = brain; Lu = lungs; Li = liver; Ki = kidney
- b adult tissue: left: T gene; middle: T2 gene; right: T3 gene.

 He = heart; Br = brain; Pl = placenta; Lu = lungs; Li = liver; Mu = skeletal muscle; Ki = kidney; Pa = pancreas
- c adult brain regions: Left: T gene; middle: T2 gene; right: T3 gene.

 Cer = cerebellum; Cor = cerebral cortex; Med = medulla; Sco = spinal cord; Opo = occipital pole; Flo = frontal lobe; Tlo = temporal lobe;

 Put = putamen

Fig. 24

Fig. 24

3

Figure legend of immunohisto and electron microscopy:

- a = brain stem. CG central grey = central grey of the brain stem
- b = hippocampus. dg = dental gyrus; CA3 cornu ammonis 3, both subregions
 of the hippocampus formation
- c = electronmicroscopic picture. N = nucleus, Hc heterochromatime

-

Fig. 26

117/124

--

Call to be

Fig. 28

i.

į.

Fig. 30

	ľ	ï	Ħ.	ŧ		Ï		Ä,	I	Ċ	۸		Ï	ï	í	ö	i	ÿ		1	ı	N	Ť	Ϊ	ì		p	ï	'n	Ň	ij	Ŷ.	H	Ü	Ř	ť	'n	7	٨	1	١	٦		ľ	ť	Э	ï	2	۲	Ĵ	K	ď	Ÿ	
8	w				×			88		-		80			80					8			90	ж	88		50		0		×	×			×			82			ं		8		8	ø			ò					
ĺ	K	ï	8	ì	₹	ä	Р	y	Ľ	I	1	F.	Ţ,	V.	1			ŧ.	1	7	ł		I		ı	ľ	3	٩		r	Ĭ	ť	ì	ř	ø				ő															

ATTORNEY DOCKET NO. 412

	Ì																																																							
-	-	•	-	-	•	•	•	•	_	-	-	_	-	_	•	_	•	-	-	_	_	_	_	-	-	_	-	_	•	~	•	•	_	-	_	_	-	•	-	•	•	~	•	-	-	_	•	•	-	•	_	-	_	_	-	-

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plura names are listed below) of the subject matter, which is claimed and for which a patent is sought on the invention entitled:

PROTEIN (TP) THAT IS INVOLVED IN THE DEVELOPMENT OF THE NERVOUS SYSTEM

the specification of which is attached hereto unless the following box is checked:

(X) was filed on August 24, 2001 as US Application Serial No. 09/914,549 or PCT International Application and was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amende by any amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as define

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119(a-d) or 365(b) of any foreign application(s) for patent or inventor(s) certificate, or 365(a of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below any foreig application for patent or inventor(s) certificate having a filing date before that of the application on which priority is claimed:

COUNTRY	APPLICATION NUMBER	DATE FILED	PRIORITY CLAIMED UNDER 35 U.S.C. 119
Germany	199 08 423.8	26 February 1999	YES:_X NO:
PCT	PCT/DE00/00583	28 February 2000	YES: X NO:

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claim of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application an the national or PCT international filing date of this application:

APPLICATION SERIAL NUMBER	FILING DATE	STATUS(patented/pending/abandoned)

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business in the Patent and Trademar Office connected therewith.

Steven J. Hultquist, Reg. No. 28.021

Marianne Fuierer, Reg. No. 39,983

Send Correspondence to: Direct Telephone Calls To:	
Steven J. Hultquist Steven J. Hultquist	
Steven J. Hultquist Intellectual Property/Technology Law (919) 419-9350	
P.O. Box 14329	
P.O. Box 14329 Research Triangle Park, NC 27709	

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of th United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full Name of Inventor: Annemarie Poustka	Citizenship; Austrian
Residence: Westernesse 36, D-69120 Heidelberg, Germany J. Jadenlou	rger Sto. 41 At 20, 12,01
Post Office Address: Same	
Alle mul	3 0. Okt. 01
1 / ANC SUMM	D. 4
Inventor's Signature	Date

ATTORNEY DOCKET NO. 4121-129

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION	ATTORNEY DOCKET NO. 4121-129
Full Name of Inventor: Johannes Coy Residence: In den Schwarzen Garten 1, D-63762 Grossostheim, Germany	Citizenship: <u>German</u>
Post Office Address: Same Monte Congress	30. 10. 01

518 Rec'd PCT/PTO 2 4 AUG 2001

SEQUENCE LISTING

<110> Poustka, et al.	
<120> Protein (TP) That is Involved in the Development of the Nervous System	
<130> 4121-129	
<140>	
<141>	
<150> PCT/DE00/00583	
<160> 39	
<170> PatentIn Ver. 2.0	
<210> 1 <211> 242 <212> DNA <213> Homo sapiens	
<220> <221> CDS <223> (3)(242)	
<400> 1	
ag cga gtt act cac gct tcc cct cca tcg gaa gcc agc cag gcc aaa Arg Val Thr His Ala Ser Pro Pro Ser Glu Ala Ser Gln Ala Lys 1 5 10 15	1 7
acc cag caa gat atg cag tcc agt ctg gca gcc aga tat gca act cag Thr Gln Gln Asp Met Gln Ser Ser Leu Ala Ala Arg Tyr Ala Thr Gln 20 25 30	95
tct aat cac agt gga att gca acc agt caa aaa aag cct act agg ctt Ser Asn His Ser Gly Ile Ala Thr Ser Gln Lys Lys Pro Thr Arg Leu 35 40 45	1 3
cca ggg ccc tct agg gtg cct gct gca gga agc agc agc aag gtc cag Pro Gly Pro Ser Arg Val Pro Ala Ala Gly Ser Ser Lys Val Gln 50 55 60	91
gga gcc tct aat tta aat agg aga agt cag agc ttt aac agc att gac Gly Ala Ser Asn Leu Asn Arg Arg Ser Gln Ser Phe Asn Ser Ile Asp 65 70 75	3 9
	42

80

Asp Thr Gly Asn Gln

50

<210> 2 <211> 80 <212> PRT <213> Homo sapiens <400> 2 Arg Val Thr His Ala Ser Pro Pro Ser Glu Ala Ser Gln Ala Lys Thr 1.0 Gln Gln Asp Met Gln Ser Ser Leu Ala Ala Arg Tyr Ala Thr Gln Ser Asn His Ser Gly Ile Ala Thr Ser Gln Lys Lys Pro Thr Arg Leu Pro 35 Gly Pro Ser Arg Val Pro Ala Ala Gly Ser Ser Ser Lys Val Gln Gly Ala Ser Asn Leu Asn Arg Arg Ser Gln Ser Phe Asn Ser Ile Asp Lys 75 <210> 3 <211> 159 <212> DNA <213> Homo sapiens <220> <221> CDS <223> (1)..(159) <400> 3 ggc act cac gag gtc cag agc ctg ctc atg aga acg ggt agt gtg aga 48 Gly Thr His Glu Val Gln Ser Leu Leu Met Arg Thr Gly Ser Val Arg 10 tot act oto toa gaa aga tat aco oca toa tot ogg cag goo aac caa 96 Ser Thr Leu Ser Glu Arg Tyr Thr Pro Ser Ser Arg Gln Ala Asn Gln 20 gaa gag ggc aaa gag tgg ttg cgt tct cat tct act gga ggg ctt cag 144 Glu Glu Gly Lys Glu Trp Leu Arg Ser His Ser Thr Gly Gly Leu Gln 45 40 35 159 gac act ggc aac cag

<211> 53 <212> PRT <213> Homo sapiens	
<400> 4	
Gly Thr His Glu Val Gln Ser Leu Leu Met Arg Thr Gly Ser Val Arg 1 5 10 15	
Ser Thr Leu Ser Glu Arg Tyr Thr Pro Ser Ser Arg Gln Ala Asn Gln 20 25 30	
Glu Glu Gly Lys Glu Trp Leu Arg Ser His Ser Thr Gly Gly Leu Gln 35 40 45	
Asp Thr Gly Asn Gln 50	
<210> 5 <211> 2461 <212> DNA <213> Homo sapiens	
<220> <221> CDS <223> (2)(1627)	
<400> 5	
g gat cag ctt cgg gag acc atg cac aac atg cag ttg gag gtg gac Asp Gln Leu Arg Glu Thr Met His Asn Met Gln Leu Glu Val Asp	46
ctg ctg aaa gca gag aat gac cga ctg aag gta gcc cca ggc ccc tca Leu Leu Lys Ala Glu Asn Asp Arg Leu Lys Val Ala Pro Gly Pro Ser	94
tca ggc tcc act cca ggg cag gtc cct gga tca tct gca tta tct tcc Ser Gly Ser Thr Pro Gly Gln Val Pro Gly Ser Ser Ala Leu Ser Ser	142
cca cgc cgc tcc cta ggc ctg gca ctc acc cat tcc ttc ggc ccc agt Pro Arg Arg Ser Leu Gly Leu Ala Leu Thr His Ser Phe Gly Pro Ser	190
ctt gca gac aca gac ctg tca ccc atg gat ggc atc agt act tgt ggt Leu Ala Asp Thr Asp Leu Ser Pro Met Asp Gly Ile Ser Thr Cys Gly	238
cca aag gag gaa gtg acc ctc cgg gtg gtg gtg agg atg ccc ccg cag Pro Lys Glu Glu Val Thr Leu Arg Val Val Val Arg Met Pro Pro Gln	286

<210> 4

cac His	atc Ile	atc Ile	aaa Lys	ggg Gly	gac Asp	ttg Leu	aag Lys	cag Gln	cag Gln	gaa Glu	ttc Phe	ttc Phe	ctg Leu	ggc Gly	tgt Cys	334
agc Ser	aag Lys	gtc Val	agt Ser	gga Gly	aaa Lys	gtt Val	gac Asp	tgg Trp	aag Lys	atg Met	ctg Leu	gat Asp	gaa Glu	gct Ala	gtt Val	382
ttc Phe	caa Gln	gtg Val	ttc Phe	aag Lys	gac Asp	tat Tyr	att Ile	tct Ser	aaa Lys	atg Met	gac Asp	cca Pro	gcc Ala	tct Ser	acc Thr	430
ctg Leu	gga Gly	cta Leu	agc Ser	act Thr	gag Glu	tcc Ser	atc Ile	cat His	ggc Gly	tac Tyr	agc Ser	atc Ile	agc Ser	cac His	gtg Val	478
aaa Lys	cga Arg	gtg Val	ttg Leu	gat Asp	gca Ala	gag Glu	ccc Pro	ccc Pro	gag Glu	atg Met	cct Pro	cct Pro	tgc Cys	cgt Arg	cga Arg	526
ggt Gly	gtc Val	aat Asn	aac Asn	ata Ile	tca Ser	gtc Val	tcc Ser	ctc Leu	aaa Lys	ggt Gly	ctg Leu	aag Lys	gag Glu	aaa Lys	tgc Cys	574
gtc Val	gac Asp	agc Ser	ctg Leu	gtg Val	ttc Phe	gag Glu	acg Thr	ctg Leu	atc Ile	ccc Pro	aag Lys	ccg Pro	atg Met	atg Met	cag Gln	622
cac His	tac Tyr	ata Ile	agc Ser	ctc Leu	ctg Leu	ctg Leu	aag Lys	cac His	cgg Arg	cgc Arg	ctc Leu	gtc Val	ctc Leu	tcg Ser	ggc Gly	670
ccc Pro	agc Ser	ggc Gly	acg Thr	ggc Gly	aag Lys	acc Thr	tac Tyr	ctg Leu	acc Thr	aat Asn	cgc Arg	ttg Leu	gcc Ala	gag Glu	tac Tyr	718
ctg Leu	gtg Val	gag Glu	cgc Arg	tct Ser	ggc	cgt Arg	gag Glu	gtc Val	aca Thr	gag Glu	ggc Gly	atc Ile	gtc Val	agc Ser	acc Thr	766
ttc Phe	aac Asn	atg Met	cac His	cag Gln	cag Gln	tct Ser	tgc Cys	aag Lys	gat Asp	ctg Leu	caa Gln	ctg Leu	tat Tyr	ctt Leu	tcc Ser	814
aac Asr	cta Leu	gcc Ala	aac Asn	cag Gln	ı ata ı Ile	gac Asp	cgg Arg	gaa Glu	aca Thr	. gga · Gly	att Ile	ggg Gly	gat Asp	gtg Val	ccc Pro	862
cto	g gtg l Val	g att . Ile	cta Leu	ı tt <u>c</u> ı Lev	gat ı Asp	gac Asp	ctg Leu	agt Ser	gaa Glu	gca Ala	ggc Gly	tcc Ser	ato Ile	agt Ser	gag Glu	91
ttg	g gto	aat	. ggg	g gcc	c ctc	acc Thr	tgo Cvs	aag Lvs	tat Tyr	cat His	aaa Lys	tgt Cys	ccc Pro	tat	att	95

ata	ggt	acc	acc	aat	cag	cct	gta	aaa	atg	aca	ccc	aac	cat	ggc	ttg	1006
Ile	Gly	Thr	Thr	Asn	Gln	Pro	Val	Lys	Met	Thr	Pro	Asn	His	Gly	Leu	
cac	ttg	agc	ttc	agg	atg	ttg	acc	ttc	tcc	aac	aac	gtg	gag	cca	gcc	1054
His	Leu	Ser	Phe	Arg	Met	Leu	Thr	Phe	Ser	Asn	Asn	Val	Glu	Pro	Ala	
aat	ggc	ttc	ctg	gtt	cgt	tac	ctg	agg	agg	aag	ctg	gta	gag	tca	gac	1102
Asn	Gly	Phe	Leu	Val	Arg	Tyr	Leu	Arg	Arg	Lys	Leu	Val	Glu	Ser	Asp	
agc	gac	atc	aat	gcc	aac	aag	gaa	gag	ctg	ctt	cgg	gtg	ctc	gac	tgg	1150
Ser	Asp	Ile	Asn	Ala	Asn	Lys	Glu	Glu	Leu	Leu	Arg	Val	Leu	Asp	Trp	
gta	ccc	aag	ctg	tgg	tat	cat	ctc	cac	acc	ttc	ctt	gag	aag	cac	agc	1198
Val	Pro	Lys	Leu	Trp	Tyr	His	Leu	His	Thr	Phe	Leu	Glu	Lys	His	Ser	
acc	tca	gac	ttc	ctc	atc	ggc	cct	tgc	ttc	ttt	ctg	tcg	tgt	ccc	att	1246
Thr	Ser	Asp	Phe	Leu	Ile	Gly	Pro	Cys	Phe	Phe	Leu	Ser	Cys	Pro	Ile	
ggc	att	gag	gac	ttc	cgg	acc	tgg	ttc	att	gac	ctg	tgg	aac	aac	tct	1294
Gly	Ile	Glu	Asp	Phe	Arg	Thr	Trp	Phe	Ile	Asp	Leu	Trp	Asn	Asn	Ser	
atc	att	ccc	tat	cta	cag	gaa	gga	gcc	aag	gat	gly	ata	aag	gtc	cat	1342
Ile	Ile	Pro	Tyr	Leu	Gln	Glu	Gly	Ala	Lys	Asp	ggg	Ile	Lys	Val	His	
gga	cag	aaa	gct	gct	tgg	gag	gac	cca	gtg	gaa	tgg	gtc	cgg	gac	aca	1390
Gly	Gln	Lys	Ala	Ala	Trp	Glu	Asp	Pro	Val	Glu	Trp	Val	Arg	Asp	Thr	
ctt	ccc	tgg	cca	tca	gcc	caa	caa	gac	caa	tca	aag	ctg	tac	cac	ctg	1438
Leu	Pro	Trp	Pro	Ser	Ala	Gln	Gln	Asp	Gln	Ser	Lys	Leu	Tyr	His	Leu	
ccc	cca	ccc	acc	gtg	ggc	cct	cac	agc	att	gcc	tca	cct	ccc	gag	gat	1486
Pro	Pro	Pro	Thr	Val	Gly	Pro	His	Ser	Ile	Ala	Ser	Pro	Pro	Glu	Asp	
agg	aca	gto	aaa	gac	agc	acc	cca	agt	tct	ctg	gac	tca	gat	cct	ctg	1534
Arg	Thr	Val	Lys	Asp	Ser	Thr	Pro	Ser	Ser	Leu	Asp	Ser	Asp	Pro	Leu	
atg	gcc	ato	ctg	g ctg	ı aaa	ctt	caa	gaa	ı gct	gcc	aac	tac	att	gag	tct	1582
Met	Ala	Met	Leu	Lev	ı Lys	Lev	Gln	Glu	ı Ala	Ala	Asn	Tyr	Ile	Glu	Ser	
cca Pro	gat Asp	cga Arg	ı gaa g Glu	aco ı Thi	ato	cto Lev	gac Asp	ccc Pro	aac Asr	ctt Lev	caç ıGlr	g gca n Ala	aca Thr	ctt Leu	L	1627

taagggttcg	gcaatcactg	tcacccccgg	acagcagaac	gctggcatca	gctatcttag	1687
ctcctcctct	cccctctcct	ctttcagagc	actggctctc	cagccccagg	aggagaacag	1747
gagggaggag	gagatgaaag	aggagggaca	ggttcttggt	gctgtacctt	tgagaacttc	1807
ctaggaagga	atggtggggt	ggcgtttggg	aacttgtgcc	ccctaaacac	atttactggc	1867
ctcctctaat	gactttgggg	aaaagatgat	tctgggtctt	tcccttgact	tcttgtttca	1927
attacaaact	cctgggcttt	ctggggaggg	gttcagaaaa	catcaaaaca	ctgcagcagt	1987
tcctaaatga	ttctcacaag	caaccctgag	agagacagtc	ttgtgaggga	gatctggggg	2047
aggcaggaag	ctcctcagat	tttctcacag	accettecca	attccatcac	cactgccaac	2107
aactcctccc	ccagagatct	ggctggagcc	cagaaaaaga	agcatgtggt	ttaaaaaatg	2167
tttaaatcaa	tctgtaaaag	gtaaaaatga	aaaacaaaaa	caagcaaaca	aacaaaaaac	2227
aatggaaaag	atgaagctgg	agagagagga	accagttgcc	aaggtagaga	gctgcccgct	2287
cctgccctct	ggatgacata	ggggacatca	acaagacggc	tgccaacctg	agaagtcacc	2347
aaaccacaaa	aataacctta	cagccttcag	ggaaagacta	ccagctctgt	ctttctaccc	2407
tctaatttaa	caatgcataa	gagtcaataa	accctacttt	tttaaaaaaa	aaaa	2461

<211> 542

<212> PRT

<213> Homo sapiens

<400> 6

Asp Gln Leu Arg Glu Thr Met His Asn Met Gln Leu Glu Val Asp Leu 1 5 10 15

Leu Lys Ala Glu Asn Asp Arg Leu Lys Val Ala Pro Gly Pro Ser Ser 20 25 30

Gly Ser Thr Pro Gly Gln Val Pro Gly Ser Ser Ala Leu Ser Ser Pro 35 40 45

Arg Arg Ser Leu Gly Leu Ala Leu Thr His Ser Phe Gly Pro Ser Leu 50 55 60

Ala Asp Thr Asp Leu Ser Pro Met Asp Gly Ile Ser Thr Cys Gly Pro 65 70 75 80

Lys Glu Glu Val Thr Leu Arg Val Val Val Arg Met Pro Pro Gln His
85 90 95

Ile Ile Lys Gly Asp Leu Lys Gln Gln Glu Phe Phe Leu Gly Cys Ser

			100					105					110		
Lys	Val	Ser 115	Gly	Lys	Val	Asp	Trp 120	Lys	Met	Leu	Asp	Glu 125	Ala	Val	Phe
Gln	Val 130	Phe	Lys	Asp	Tyr	Ile 135	Ser	Lys	Met	Asp	Pro 140	Ala	Ser	Thr	Leu
Gly 145	Leu	Ser	Thr	Glu	Ser 150	Ile	His	Gly	Tyr	Ser 155	Ile	Ser	His	Val	Lys 160
Arg	Val	Leu	Asp	Ala 165	Glu	Pro	Pro	Glu	Met 170	Pro	Pro	Cys	Arg	Arg 175	Gly
Val	Asn	Asn	Ile 180	Ser	Val	Ser	Leu	Lys 185	Gly	Leu	Lys	Glu	Lys 190	Cys	Val
Asp	Ser	Leu 195	Val	Phe	Glu	Thr	Leu 200	Ile	Pro	Lys	Pro	Met 205	Met	Gln	His
Tyr	Ile 210	Ser	Leu	Leu	Leu	Lys 215	His	Arg	Arg	Leu	Val 220	Leu	Ser	Gly	Pro
Ser 225	Gly	Thr	Gly	Lys	Thr 230	Tyr	Leu	Thr	Asn	Arg 235	Leu	Ala	Glu	Tyr	Leu 240
Val	Glu	Arg	Ser	Gly 245		Glu	Val	Thr	Glu 250	Gly	Ile	Val	Ser	Thr 255	Phe
Asn	Met	His	Gln 260		Ser	Cys	Lys	Asp 265	Leu	Gln	Leu	Tyr	Leu 270	Ser	Asn
Leu	Ala	Asn 275		Ile	Asp	Arg	Glu 280		Gly	Ile	Gly	Asp 285	Val	Pro	Leu
Val	Ile 290		Leu	. Asp	Asp	Leu 295		· Glu	Ala	Gly	Ser 300	· Ile	e Ser	Glu	Leu
Val 305		Gly	Ala	Leu	Thr 310		Lys	туг	His	315	Cys	Prc	Tyr	Ile	11e 320
Gly	Thr	Thr	Asn	Glr 325		Val	Lys	Met	Thr 330	Pro	Asr	n His	Gly	335	His
Leu	Ser	Phe	arç 340		: Leu	Thr	Phe	Ser 345		n Asr	n Val	. Glu	350	Alā	a Asr
Gly	' Ph∈	Leu 355		Arç	д Туг	Leu	a Arg 360		g Lys	s Lei	ı Val	l Glu 365	ı Ser	. Asp	Se1
Asp	370		n Ala	a Ası	n Lys	375		ı Leı	ı Lev	ı Arç	g Va:	l Leu	ı Asp	Trp	y Val
Pro 385		s Lev	i LLÌ	р Ту	r His		ı His	s Thi	r Phe	e Lei 39!	ı Glı 5	ı Ly:	s His	s Sei	t Thi
Sei	c Asr	o Phe	e Lei	ı Ile	e Gly	y Pro	э Су:	s Phe	e Phe	e Le	u Se	r Cy	s Pro	o Ile	e Gl

				405					410					415		
Ile	Glu	Asp	Phe 420	Arg	Thr	Trp	Phe	Ile 425	Asp	Leu	Trp	Asn	Asn 430	Ser	Ile	
Ile	Pro	Tyr 435	Leu	Gln	Glu	Gly	Ala 440	Lys	Asp	Gly	Ile	Lys 445	Val	His	Gly	
Gln	Lys 450	Ala	Ala	Trp	Glu	Asp 455	Pro	Val	Glu	Trp	Val 460	Arg	Asp	Thr	Leu	
Pro 465	Trp	Pro	Ser	Ala	Gln 470	Gln	Asp	Gln	Ser	Lys 475	Leu	Tyr	His	Leu	Pro 480	
Pro	Pro	Thr	Val	Gly 485	Pro	His	Ser	Ile	Ala 490	Ser	Pro	Pro	Glu	Asp 495	Arg	
Thr	Val	Lys	Asp 500	Ser	Thr	Pro	Ser	Ser 505	Leu	Asp	Ser	Asp	Pro 510	Leu	Met	
Ala	Met	Leu 515	Leu	Lys	Leu	Gln	Glu 520	Ala	Ala	Asn	Tyr	Ile 525	Glu	Ser	Pro	
Asp	Arg 530	Glu	Thr	Ile	Leu	Asp 535	Pro	Asn	Leu	Gln	Ala 540	Thr	Leu			
<21 <21	0 > 7 1 > 2 2 > D 3 > m	568														
	1> C	DS 1)	(169	5)												
<40	0> 7															
gaa Glu	cta Leu	tgg Trp	gaa Glu	aaa Lys	ı gaçı Glu	ı atg ı Met	aag Lys	cto Leu	acg Thr	gat Asp	ato Ile	c cgg e Arg	ttg Leu	gag Glu	gcc Ala	48
cto Leu	aac Asn	tct Ser	gcc Ala	cac His	c cag s Glr	g ctg n Leu	gac Asp	cag Glr	g ctt Lev	cgg Arg	gaq Glu	g acc ı Thr	atc Met	cac His	aat Asn	96
ato Met	g cag	g ttg Lei	g gag ı Glı	g gtg ı Val	g gad l Asp	ctg Lev	g ctg Lev	g aaa 1 Lys	gca s Ala	ı gag ı Glu	g aat i Asi	gac n Asp	c cgc Arg	g ctg g Lev	g aag 1 Lys	144
gtt Val	gco . Ala	c ccc	gg Gly	c cco	c tcc	c tca c Ser	ggo Gly	tgo Cys	c act	c cca c Pro	a ggg	g cág y Glr	g gto 1 Val	c cct L Pro	gly ggg	192

													gca Ala			240
			_							_			ccc Pro	-	-	288
													cgg Arg			336
_		_	_		_						_		aag Lys	_	_	384
			_		_	_	_	_	_			_	gac Asp		_	432
													att Ile			480
													ata Ile			528
	_		_				_		_	_	_		ccc Pro		_	576
_				_	_								gct Ala			624
	_			_	_	-	-	_	_				acg Thr			672
													aag Lys			720
													tac Tyr			768
													gag Glu			816
													tgc Cys			864

ctg	caa	ctg	tac	ctc	tcc	aac	cta	gcc	aac	cag	ata	gac	cgg	gaa	aca	912
Leu	Gln	Leu	Tyr	Leu	Ser	Asn	Leu	Ala	Asn	Gln	Ile	Asp	Arg	Glu	Thr	
ggg	ata	gly	gat	gtg	ccc	ttg	gtg	atc	ctc	ctg	gat	gat	ctg	agt	gaa	960
Gly	Ile	aaa	Asp	Val	Pro	Leu	Val	Ile	Leu	Leu	Asp	Asp	Leu	Ser	Glu	
gca	ggc	tcc	atc	agt	gag	ctg	gtc	aat	Gly	gcc	ctc	acc	tgc	aag	tat	1008
Ala	Gly	Ser	Ile	Ser	Glu	Leu	Val	Asn	aaa	Ala	Leu	Thr	Cys	Lys	Tyr	
														aaa Lys		1056
aca	ccc	aac	cat	ggc	ttg	cac	ttg	agc	ttc	agg	atg	ctg	acc	ttc	tcg	1104
Thr	Pro	Asn	His	Gly	Leu	His	Leu	Ser	Phe	Arg	Met	Leu	Thr	Phe	Ser	
aac	aat	gtg	gaa	cca	gcc	aat	ggc	ttt	ctg	gtc	cgt	tac	ctg	cgg	agg	1152
Asn	Asn	Val	Glu	Pro	Ala	Asn	Gly	Phe	Leu	Val	Arg	Tyr	Leu	Arg	Arg	
aag	ttg	gta	gag	tca	gac	agt	gac	gtc	aat	gct	aac	aag	gaa	gag	ctg	1200
Lys	Leu	Val	Glu	Ser	Asp	Ser	Asp	Val	Asn	Ala	Asn	Lys	Glu	Glu	Leu	
ctt	cgg	gtg	ctg	gac	tgg	gtg	ccc	aag	ctg	tgg	tat	cac	ctc	cac	acc	1248
Leu	Arg	Val	Leu	Asp	Trp	Val	Pro	Lys	Leu	Trp	Tyr	His	Leu	His	Thr	
ttc	ctg	gag	aag	cac	agc	acc	tcg	gac	ttc	ctc	att	ggc	cct	tgc	ttc	1296
Phe	Leu	Glu	Lys	His	Ser	Thr	Ser	Asp	Phe	Leu	Ile	Gly	Pro	Cys	Phe	
ttc	ctg	tcc	tgt	ccc	att	ggc	atc	gag	gac	ttc	cgg	acc	tgg	ttc	att	1344
Phe	Leu	Ser	Cys	Pro	Ile	Gly	Ile	Glu	Asp	Phe	Arg	Thr	Trp	Phe	Ile	
gac	ctg	tgg	aac	aat	tcc	atc	atc	ccc	tat	cta	cag	gaa	gga	gcc	aag	1392
Asp	Leu	Trp	Asn	Asn	Ser	Ile	Ile	Pro	Tyr	Leu	Gln	Glu	Gly	Ala	Lys	
gat	gly	atc	aag	gtt	cat	gga	cag	aaa	gct	gct	tgg	gaa	gac	ccg	gtg	1440
Asp	ggg	Ile	Lys	Val	His	Gly	Gln	Lys	Ala	Ala	Trp	Glu	Asp	Pro	Val	
gaa	tgg	gtc	cga	gac	act	ctt	ccc	tgg	ccg	tcg	gcc	caa	caa	gac	caa	1488
Glu	Trp	Val	Arg	Asp	Thr	Leu	Pro	Trp	Pro	Ser	Ala	Gln	Gln	Asp	Gln	
tca	aag	ctc	tac	cac	ctg	ccc	ccg	cct	tct	gtg	ggc	ccc	cac	agc	act	1536
Ser	Lys	Leu	Tyr	His	Leu	Pro	Pro	Pro	Ser	Val	Gly	Pro	His	Ser	Thr	

acc tca ccc	r cca asa a	ac agg aca	gtc aaa gac	agc act cca	aac tcc	1584
Ala Ser Pro	Pro Glu A	sp Arg Thr	Val Lys Asp	Ser Thr Pro	Asn Ser	
ctc gac tca Leu Asp Ser	a gat ccc c Asp Pro L	tg atg gcc eu Met Ala	atg cta ctg Met Leu Leu	aaa ctc caa Lys Leu Gln	gaa gct Glu Ala	1632
gcc aac tac Ala Asn Tyr	c att gag t c Ile Glu S	ca cca gat er Pro Asp	cga gag act Arg Glu Thr	atc ctg gac Ile Leu Asp	ccc aac Pro Asn	1680
ctc cag gcg Leu Gln Ala		gagggcccg (gcagtcactg to	caccctgga gg	gcagaagg	1735
ctggcttcag	catcattago	tctcctctg	c cctcttcctt	catagetetg	gctcaccagc	1795
ctcgccaaga	gaacaggagg	gaagaagag	g gcaggaggag	ggatgggttc	teggtgetga	1855
acctttgaga	acttcctact	aggaattgga	a gggggtggag	tttgagaact	ccgtgcccct	1915
taactacatt	tgctggcctc	ctcttacga	c ttaggagaaa	agatgattct	ggtcttttct	1975
tcaagttttg	tttcacctac	aaactcttg	g getttetggg	gagggattcg	gaagatataa	2035
acagacaaac	aaaaacaaac	aaaccaacta	a cagcagttcc	aagctcgttc	tcacaaacac	2095
ctctgagaca	gtcacatgtg	ggcaaatct	a agggaggcag	gaagctctac	agactttctt	2155
			c caacaacctc			2215
			c agaaaaacaa			2275
			a aacggcaatg			2335
			g ctgccagatc			2395
			a aacgtcacca			2455
			t totgoodtot			2515
						2568
tcaataaacc	ctacttttta	i attittaaa	a aaaaaaaaaa	aaaaaaaddd	ada	2500

<211> 565

<212> PRT

<213> mouse

<400> 8

Glu Leu Trp Glu Lys Glu Met Lys Leu Thr Asp Ile Arg Leu Glu Ala 1 5 10

Leu Asn Ser Ala His Gln Leu Asp Gln Leu Arg Glu Thr Met His Asn 20 25 30

- Met Gln Leu Glu Val Asp Leu Leu Lys Ala Glu Asn Asp Arg Leu Lys
 35

 Val Ala Pro Gly Pro Ser Ser Gly Cys Thr Pro Gly Gln Val Pro Gly
 50

 50

 60
- Ser Ser Ala Leu Ser Ser Pro Arg Arg Ser Leu Gly Leu Ala Leu Ser 65 70 75 80
- His Pro Phe Ser Pro Ser Leu Thr Asp Thr Asp Leu Ser Pro Met Asp 85 90 95
- Gly Ile Ser Thr Cys Gly Ser Lys Glu Glu Val Thr Leu Arg Val Val
 100 105 110
- Val Arg Met Pro Pro Gln His Ile Ile Lys Gly Asp Leu Lys Gln Gln
 115 120 125
- Glu Phe Phe Leu Gly Cys Ser Lys Val Ser Gly Lys Val Asp Trp Lys
 130 135 140
- Met Leu Asp Glu Ala Val Phe Gln Val Phe Lys Asp Tyr Ile Ser Lys 145 150 155 160
- Met Asp Pro Ala Ser Thr Leu Gly Leu Ser Thr Glu Ser Ile His Gly 165 170 175
- Tyr Ser Leu Ser His Val Lys Arg Val Leu Asp Ala Glu Pro Pro Glu 180 185 190
- Met Pro Pro Cys Arg Arg Gly Val Asn Asn Ile Ser Val Ala Leu Lys 195 200 205
- Gly Leu Lys Glu Lys Cys Val Asp Ser Leu Val Phe Glu Thr Leu Ile 210 215 220
- Pro Lys Pro Met Met Gln His Tyr Ile Ser Leu Leu Leu Lys His Arg 225 230 235 240
- Arg Leu Val Leu Ser Gly Pro Ser Gly Thr Gly Lys Thr Tyr Leu Thr 245 250 255
- Asn Arg Leu Ala Glu Tyr Leu Val Glu Arg Ser Gly Arg Glu Val Thr 260 265 270
- Asp Gly Ile Val Ser Thr Phe Asn Met His Gln Gln Ser Cys Lys Asp 275 280 285 .
- Leu Gln Leu Tyr Leu Ser Asn Leu Ala Asn Gln Ile Asp Arg Glu Thr 290 295 300
- Gly Ile Gly Asp Val Pro Leu Val Ile Leu Leu Asp Asp Leu Ser Glu 305 310 315 320
- Ala Gly Ser Ile Ser Glu Leu Val Asn Gly Ala Leu Thr Cys Lys Tyr

325 330 335 His Lys Cys Pro Tyr Ile Ile Gly Thr Thr Asn Gln Pro Val Lys Met 345 Thr Pro Asn His Gly Leu His Leu Ser Phe Arg Met Leu Thr Phe Ser 360 Asn Asn Val Glu Pro Ala Asn Gly Phe Leu Val Arg Tyr Leu Arg Arg 375 Lys Leu Val Glu Ser Asp Ser Asp Val Asn Ala Asn Lys Glu Glu Leu Leu Arq Val Leu Asp Trp Val Pro Lys Leu Trp Tyr His Leu His Thr Phe Leu Glu Lys His Ser Thr Ser Asp Phe Leu Ile Gly Pro Cys Phe 425 Phe Leu Ser Cys Pro Ile Gly Ile Glu Asp Phe Arg Thr Trp Phe Ile Asp Leu Trp Asn Asn Ser Ile Ile Pro Tyr Leu Gln Glu Gly Ala Lys 455 Asp Gly Ile Lys Val His Gly Gln Lys Ala Ala Trp Glu Asp Pro Val 475 Glu Trp Val Arg Asp Thr Leu Pro Trp Pro Ser Ala Gln Gln Asp Gln Ser Lys Leu Tyr His Leu Pro Pro Pro Ser Val Gly Pro His Ser Thr 505 Ala Ser Pro Pro Glu Asp Arg Thr Val Lys Asp Ser Thr Pro Asn Ser Leu Asp Ser Asp Pro Leu Met Ala Met Leu Leu Lys Leu Gln Glu Ala 535 Ala Asn Tyr Ile Glu Ser Pro Asp Arg Glu Thr Ile Leu Asp Pro Asn 555 Leu Gln Ala Thr Leu 565

<210> 9

<211> 1025

<212> DNA

<213> mouse

<220>

<221> CDS

<223> (1)..(129)

<400> 9

cca ata gaa Pro Ile Glu	ctc cgg atc Leu Arg Ile	aag agg cag a Lys Arg Gln A	at tcc tca gat ag Asn Ser Ser Asp Se	c atc tcc 48 r Ile Ser
			gc atc ggc agc ag Ser Ile Gly Ser Se	
	aag aag aaa Lys Lys Lys		gt tgg gtatgtaaag Ger Trp	gcttggggat 149
cggcctgtgc	taggagtcac tc	accctgtt gcag	gggaact gacccctttc	aggatcaaca 209
aagagggtcc	cttctaacag ga	tgccagtg ttgt	gacatc tgctggggac	aaaaattcac 269
taagttccca	ttcctctatc ca	ttgtctat tctc	cttacc accgccctgc	acatataccc 329
cagcccccca	ccgtccctgc at	cctttata cat <u>c</u>	jtetget atcetgggge	tctacctact 389
gatgaggtca	aatgtatttg gc	cgtagaag gago	tgagaa aattattcat	gggtgggaga 449
gtggggcatg	tggagagaat tt	gtaagcca agca	agggtac tctagacgct	cctggggctg 509
ttgctttagt	ttgggtgagg ag	gctgtgga acgt	ccccat cgctccaaag	cctgcttttg 569
tctggtccag	aggtgggttt gt	tctgtgtg gtat	ccccc tgtaactcta	aactggcttt 629
gggtgagctt	tctacaatct gt	acgcaggt gtag	ggcact geetgaetga	ctgaaaggga 689
			ctgctga ggagggctgg	
			gaagcag ctgtgtgaaa	
			cattgtt ttttttttt	
			cattttt tttccaggtt	
			ceetttg cacacetteg	g- 35
	ctcttaaaaa aa			1025
ucaducacci.	LLLLaaaad dd	uuuaaaaa aaac	444	1044

Ser Leu Asn Ser Ile Thr Ser His Ser Ser Ile Gly Ser Ser Lys Asp

<210> 10

<211> 43

<212> PRT

<213> mouse

<400> 10

Pro Ile Glu Leu Arg Ile Lys Arg Gln Asn Ser Ser Asp Ser Ile Ser 1 5 10 15

20 25 30

Ala Asp Ala Lys Lys Lys Lys Lys Ser Trp 35 40

<210> 11 <211> 8690 <212> DNA <213> Homo sapiens <220> <221> CDS <223> (503)..(6187)

<400> 11

ctctcagcgg cccaagcagt ttctttctgg gtgacaagaa tgtgcctcgg ttggttttc 60 ttttttttct ccatctcctt aagacgattt ccatagtaac ctgatcaagt ggctcaaaat 120 180 cqcaaacctg aggatttccg cggcccgccg gcaagacctc ggccaggttt acaggaaatc 240 tqtcattttt tattaaaatq qaaaactgtg aagaaagaaa aagatagcag ttgaagtcaa 300 aattctcgga tgactatttt gcttttgagg agtcagcatt taaaaacgat atgctgattt ggaaggteet gggagtaaae tgeaaaettt attttteea tteaateaat ggattttta 360 atcattcctt ggagtcgatg aagttcggaa acggtgtgtg atggggaacg tggcgggcca 420 gtgtgttcct agaaattgca tcttggatta gtttgctgct tttttgaaga gattccattt 480 tgaagggcaa gaacctaatg tg atg gat tta tct tca gaa atg aac aga cat 532 Met Asp Leu Ser Ser Glu Met Asn Arg His qqq aaq aat cca gtg agt cac aag cta gaa gat cag aag aat tac 580 Gly Lys Asn Pro Val Ser His Lys Leu Glu Asp Gln Lys Lys Ile Tyr act gac tgg gcc aac cac tac cta gca aaa tca ggc cac aag cgg ctg 628 Thr Asp Trp Ala Asn His Tyr Leu Ala Lys Ser Gly His Lys Arg Leu 676 atc aag gac ttg caa caa gac att gca gat gga gta ctc cta gca gaa Ile Lys Asp Leu Gln Gln Asp Ile Ala Asp Gly Val Leu Leu Ala Glu atc atc cag att att gca aat gaa aaa gtt gaa gat atc aat gga tgt 724 Ile Ile Gln Ile Ile Ala Asn Glu Lys Val Glu Asp Ile Asn Gly Cys 772 cct aga agt cag tct cag atg att gaa aat gtt gat gtc tgc ctt agt Pro Arg Ser Gln Ser Gln Met Ile Glu Asn Val Asp Val Cys Leu Ser

ttt Phe	cta Leu	gca Ala	gcc Ala	aga Arg	Gly 999	gta Val	aat Asn	gtt Val	caa Gln	ggt Gly	cta Leu	tct Ser	gct Ala	gaa Glu	gaa Glu	820
							_						ttc Phe			868
													tat Tyr			916
_		_			_	_				_			cca Pro	_	_	964
													ctt Leu			1012
					_	_		_	_		_	_	cag Gln			1060
													gac Asp			1108
_												_	gac Asp		-	1156
	_	_	_	_		_				_	_	_	agg Arg			1204
													agc Ser			1252
	_						-		_				gtt Val			1300
agg Arg	acc Thr	ata Ile	ccc Pro	aac Asn	ttg Leu	aca Thr	agt Ser	cga Arg	ccc Pro	acc Thr	ccc Pro	atg Met	acc Thr	tgg Trp	agg Arg	1348
Leu	Gly	Gln	Ala	Cys	Pro	Arg	Leu	Gln	Ala	Gly	Asp	Ala	ccc Pro	Ser	Leu	1396
													cac His			1444

ccc Pro	tcg Ser	agg Arg	ttc Phe	atg Met	tat Tyr	acc Thr	acg Thr	cct Pro	ctc Leu	cgt Arg	cga Arg	gct Ala	gct Ala	gtc Val	tct Ser	1492
agg Arg	ctg Leu	gga Gly	aac Asn	atg Met	tca Ser	cag Gln	att Ile	gac Asp	atg Met	agt Ser	gag Glu	aaa Lys	gca Ala	agc Ser	agt Ser	1540
gac Asp	ctg Leu	gac Asp	atg Met	tct Ser	tct Ser	gag Glu	gtc Val	gat Asp	gtg Val	ggt Gly	gga Gly	tat Tyr	atg Met	agt Ser	gat Asp	1588
ggt Gly	gat Asp	atc Ile	ctt Leu	gly aaa	aaa Lys	agt Ser	ctc Leu	agg Arg	act Thr	gat Asp	gac Asp	atc Ile	aac Asn	agt Ser	Gly 999	1636
tac Tyr	atg Met	aca Thr	gat Asp	gga Gly	gga Gly	ctt Leu	aac Asn	cta Leu	tat Tyr	act Thr	aga Arg	agt Ser	ctg Leu	aac Asn	cga Arg	1684
ata Ile	cca Pro	gac Asp	aca Thr	gca Ala	act Thr	tcc Ser	cgg Arg	gac Asp	atc Ile	atc Ile	cag Gln	aga Arg	999 Gly	gtt Val	cac His	1732
gat Asp	gtg Val	aca Thr	gtg Val	gat Asp	gca Ala	gac Asp	agc Ser	tgg Trp	gat Asp	gac Asp	agc Ser	agt Ser	tca Ser	gtg Val	agc Ser	1780
agt Ser	ggt Gly	ctc Leu	agt Ser	gac Asp	acc Thr	ctt Leu	gat Asp	aac Asn	atc Ile	agc Ser	act Thr	gat Asp	gac Asp	ctg Leu	aac Asn	1828
acc Thr	aca Thr	tcc Ser	tct Ser	gtc Val	agc Ser	tct Ser	tac Tyr	tcc Ser	aac Asn	atc Ile	acc Thr	gtc Val	ccc Pro	tct Ser	agg Arg	1876
aag Lys	aat Asn	act Thr	cag Gln	ctg Leu	agg Arg	aca Thr	gat Asp	tca Ser	gag Glu	aaa Lys	cgc Arg	tcc Ser	acc Thr	aca Thr	gac Asp	1924
gag Glu	acc Thr	tgg Trp	gat Asp	agt Ser	cct Pro	gag Glu	gaa Glu	ctg Leu	aaa Lys	aaa Lys	cca Pro	gaa Glu	gaa Glu	gat Asp	ttt Phe	1972
gac Asp	agc Ser	cat His	gjà aaa	gat Asp	gct Ala	ggt Gly	ggc Gly	aag Lys	tgg Trp	aag Lys	act Thr	gtg Val	tcc Ser	tct Ser	gga Gly	2020
ctt Leu	cct Pro	gaa Glu	gac Asp	ccc Pro	gag Glu	aag Lys	gca Ala	gly ggg	cag Gln	aaa Lys	gct Ala	tcc Ser	ctg Leu	tct Ser	gtt Val	2068
tca Ser	cag Gln	aca Thr	ggt Gly	tcc Ser	tgg Trp	aga Arg	aga Arg	ggc	atg Met	tct Ser	gćc Ala	caa Gln	gga Gly	gly	gcg Ala	2116

cca Pro	tct Ser	agg Arg	cag Gln	aaa Lys	gct Ala	gga Gly	aca Thr	agt Ser	gca Ala	ctc Leu	aaa Lys	aca Thr	ccc Pro	gly ggg	aaa Lys	2164
acc Thr	gat Asp	gat Asp	gcc Ala	aaa Lys	gct Ala	tct Ser	gag Glu	aaa Lys	gga Gly	aaa Lys	gct Ala	ccc Pro	cta Leu	aaa Lys	gga Gly	2212
tca Ser	tct Ser	cta Leu	caa Gln	aga Arg	tct Ser	cct Pro	tca Ser	gat Asp	gca Ala	gga Gly	aaa Lys	agc Ser	agt Ser	gga Gly	gat Asp	2260
gaa Glu	gly aaa	aaa Lys	aag Lys	ccc Pro	ccc Pro	tca Ser	ggc Gly	att Ile	gga Gly	aga Arg	tcg Ser	act Thr	gcc Ala	acc Thr	agc Ser	2308
tcc Ser	ttt Phe	ggc Gly	ttt Phe	aag Lys	aaa Lys	cca Pro	agt Ser	gga Gly	gta Val	61 ⁷ 333	tca Ser	tct Ser	gcc Ala	atg Met	atc Ile	2356
acc Thr	agc Ser	agt Ser	gga Gly	gca Ala	acc Thr	ata Ile	aca Thr	agt Ser	ggc Gly	tct Ser	gca Ala	aca Thr	ctg Leu	ggt Gly	aaa Lys	2404
att Ile	cca Pro	aaa Lys	tct Ser	gct Ala	gcc Ala	att Ile	ggc Gly	Gly aaa	aag Lys	tca Ser	aat Asn	gca Ala	999 Gly	aga Arg	aaa Lys	2452
acc Thr	agt Ser	ttg Leu	gac Asp	ggt Gly	tca Ser	cag Gln	aat Asn	cag Gln	gat Asp	gat Asp	gtt Val	gtg Val	ctg Leu	cat His	gtt Val	2500
agc Ser	tca Ser	aag Lys	act Thr	acc Thr	cta Leu	caa Gln	tat Tyr	cgc Arg	agc Ser	ttg Leu	ccc Pro	cgc Arg	cct Pro	tca Ser	aaa Lys	2548
tcc Ser	agc Ser	acc Thr	agt Ser	ggc Gly	att Ile	cct Pro	ggc Gly	cga Arg	gga Gly	ggc	cac His	aga Arg	tcc Ser	agt Ser	acc Thr	2596
agc Ser	agt Ser	att Ile	gat Asp	tcc Ser	aac Asn	gtc Val	agc Ser	agc Ser	aag Lys	tct Ser	gct Ala	gly aaa	gcc Ala	acc Thr	acc Thr	2644
tcg Ser	aaa Lys	ctg Leu	aga Arg	gaa Glu	cca Pro	act Thr	aaa Lys	att Ile	gly ggg	tca Ser	gly	cgc Arg	tcg Ser	agt Ser	cct Pro	2692
gtc Val	acc Thr	gtc Val	aac Asn	caa Gln	aca Thr	gac Asp	aag Lys	gaa Glu	aag Lys	gaa Glu	aaa Lys	gta Val	gca Ala	gtc Val	tca Ser	2740
gat Asp	tca Ser	gaa Glu	agt Ser	gtt Val	tct Ser	ttg Leu	tca Ser	ggt	tcc Ser	ccc	aaa Lys	tcc Ser	ago Ser	ccc Pro	acc Thr	2788

tct Ser	gcc Ala	agc Ser	gcc Ala	tgt Cys	ggt Gly	gca Ala	caa Gln	ggt Gly	ctc Leu	agg Arg	cag Gln	cca Pro	gga Gly	tcc Ser	aag Lys	2836
tat Tyr	cca Pro	gat Asp	att Ile	gcc Ala	tca Ser	ccc Pro	aca Thr	ttt Phe	cga Arg	agg Arg	ttg Leu	ttt Phe	ggt Gly	gcc Ala	aag Lys	2884
gca Ala	ggt Gly	ggc Gly	aaa Lys	tct Ser	gcc Ala	tct Ser	gca Ala	cct Pro	aat Asn	act Thr	gag Glu	ggt Gly	gtg Val	aaa Lys	tct Ser	2932
tcc Ser	tca Ser	gta Val	atg Met	ccc Pro	agc Ser	cct Pro	agt Ser	acc Thr	aca Thr	tta Leu	gcg Ala	cgg Arg	caa Gln	ggc Gly	agt Ser	2980
ctg Leu	gag Glu	tca Ser	ccg Pro	tcg Ser	tcc Ser	ggt Gly	acg Thr	ggc Gly	agc Ser	atg Met	ggc Gly	agt Ser	gct Ala	ggt Gly	ggg Gly	3028
cta Leu	agc Ser	ggc Gly	agc Ser	agc Ser	agc Ser	cct Pro	ctc Leu	ttc Phe	aat Asn	aaa Lys	ccc Pro	tca Ser	gac Asp	tta Leu	act Thr	3076
aca Thr	gat Asp	gtt Val	ata Ile	agc Ser	tta Leu	agt Ser	cac His	tçg Ser	ttg Leu	gcc Ala	tcc Ser	agc Ser	cca Pro	gca Ala	tcg Ser	3124
gtt Val	cac His	tct Ser	ttc Phe	aca Thr	tca Ser	ggt Gly	ggt Gly	ctc Leu	gtg Val	tgg Trp	gct Ala	gcc Ala	aat Asn	atg Met	agc Ser	3172
agt Ser	tcc Ser	tct Ser	gca Ala	ggc Gly	agc Ser	aag Lys	gat Asp	act Thr	ccg Pro	agc Ser	tac Tyr	cag Gln	tcc Ser	atg Met	act Thr	3220
agc Ser	ctc Leu	cac His	acg Thr	agc Ser	tct Ser	gag Glu	tcc Ser	att Ile	gac Asp	ctc Leu	ccc Pro	ctc Leu	agc Ser	cat His	cat His	3268
ggc Gly	tcc Ser	ttg Leu	tct Ser	gga Gly	ctg Leu	acc Thr	aca Thr	ggc	act Thr	cac His	gag Glu	gtc Val	cag Gln	agc Ser	ctg Leu	3316
ctc Leu	atg Met	aga Arg	acg Thr	ggt Gly	agt Ser	gtg Val	aga Arg	tct Ser	act Thr	ctc Leu	tca Ser	gaa Glu	agc Ser	atg Met	cag Gln	3364
ctt Leu	gac Asp	aga Arg	aat Asn	aca Thr	cta Leu	ccc Pro	aaa Lys	aag Lys	gga Gly	cta Leu	aga Arg	tat Tyr	acc Thr	cca Pro	tca Ser	3412
tct Ser	cgg Arg	cag Gln	gcc Ala	aac Asn	caa Gln	gaa Glu	gag Glu	ggc Gly	aaa Lys	gag Glu	tgg Trp	ttg Leu	cgt Arg	tct Ser	cat His	3460
tct	act	gga	ggg	ctt	cag	gac	act	ggc	aac	cag	tca	cct	ctg	gtt	tcc	3508

Ser	Thr	Gly	Gly	Leu	Gln	Asp	Thr	Gly	Asn	Gln	Ser	Pro	Leu	Val	Ser	
cct Pro	tct Ser	gcc Ala	atg Met	tca Ser	tct Ser	tct Ser	gca Ala	gct Ala	gga Gly	aaa Lys	tac Tyr	cac His	ttt Phe	tct Ser	aac Asn	3556
ttg Leu	gtg Val	agc Ser	cca Pro	aca Thr	aat Asn	ttg Leu	tct Ser	caa Gln	ttt Phe	aac Asn	ctt Leu	ccc Pro	ggg ggg	ccc Pro	agc Ser	3604
atg Met	atg Met	cgc Arg	tca Ser	aac Asn	agc Ser	atc Ile	cca Pro	gcc Ala	caa Gln	gac Asp	tct Ser	tcc Ser	ttc Phe	gat Asp	ctc Leu	3652
tat Tyr	gat Asp	gac Asp	tcc Ser	cag Gln	ctt Leu	tgt Cys	ggg ggg	agt Ser	gcc Ala	act Thr	tct Ser	ctg Leu	gag Glu	gaa Glu	aga Arg	3700
cct Pro	cgt Arg	gcc Ala	atc Ile	agt Ser	cat His	tcg Ser	ggc Gly	tca Ser	ttc Phe	aga Arg	gac Asp	agc Ser	atg Met	gaa Glu	gaa Glu	3748
gtt Val	cat His	ggc Gly	tct Ser	tca Ser	tta Leu	tca Ser	ctg Leu	gtg Val	tcc Ser	agc Ser	act Thr	tct Ser	tct Ser	ctt Leu	tac Tyr	3796
tct Ser	aca Thr	gct Ala	gaa Glu	gaa Glu	aag Lys	gct Ala	cat His	tca Ser	gag Glu	caa Gln	atc Ile	cat His	aaa Lys	ctg Leu	cgg Arg	3844
aga Arg	gag Glu	ctg Leu	gtt Val	gca Ala	tca Ser	caa Gln	gaa Glu	aaa Lys	gtt Val	gct Ala	acc Thr	ctc Leu	aca Thr	tct Ser	cag Gln	3892
ctt Leu	tca Ser	gca Ala	aat Asn	gct Ala	cac His	ctt Leu	gta Val	gca Ala	gct Ala	ttt Phe	gaa Glu	aag Lys	agc Ser	tta Leu	gly aaa	3940
aat Asn	atg Met	act Thr	ggc Gly	cga Arg	ttg Leu	caa Gln	agt Ser	cta Leu	act Thr	atg Met	aca Thr	gcg Ala	gaa Glu	caa Gln	aag Lys	3988
gaa Glu	tct Ser	gaa Glu	ctt Leu	ata Ile	gaa Glu	cta Leu	aga Arg	gaa Glu	acc Thr	att Ile	gaa Glu	atg Met	ctg Leu	aag Lys	gct Ala	4036
cag Gln	aat Asn	tct Ser	gct Ala	gcc Ala	cag Gln	gcg Ala	gct Ala	att Ile	cag Gln	gga Gly	gca Ala	ctg Leu	aat Asn	ggt Gly	cca Pro	4084
gac Asp	cat His	cct Pro	ccc Pro	aaa Lys	gat Asp	ctt Leu	cgc Arg	atc Ile	aga Arg	aga Arg	cag Gln	cat His	tcc Ser	tct Ser	gaa Glu	4132
agt Ser	gtt Val	tct Ser	agt Ser	atc Ile	aac Asn	agt Ser	gcc Ala	aca Thr	agc Ser	cat His	tcc Ser	agt Ser	att Ile	ggc Gly	agt Ser	4180

ggt Gly	aat Asn	gat Asp	gcc Ala	gac Asp	tcc Ser	aag Lys	aag Lys	aag Lys	aaa Lys	aag Lys	aaa Lys	aac Asn	tgg Trp	ctg Leu	aga Arg	42	228
agt Ser	tct Ser	ttc Phe	aaa Lys	caa Gln	gcc Ala	ttt Phe	ggg ggg	aag Lys	aaa Lys	aag Lys	tcc Ser	acc Thr	aag Lys	cct Pro	cct Pro	42	276
tca Ser	tca Ser	cat His	tct Ser	gac Asp	att Ile	gaa Glu	gag Glu	ctt Leu	act Thr	gat Asp	tca Ser	tcc Ser	ctt Leu	ccg Pro	gca Ala	43	324
tcc Ser	ccc Pro	aag Lys	tta Leu	ccc Pro	cat His	aat Asn	gct Ala	ggt Gly	gac Asp	tgt Cys	ggc Gly	tca Ser	gca Ala	tcc Ser	atg Met	43	372
aag Lys	ccc Pro	tca Ser	caa Gln	tct Ser	gct Ala	tca Ser	gcg Ala	atc Ile	tgt Cys	gaa Glu	tgc Cys	aca Thr	gaa Glu	gct Ala	gag Glu	4	420
gca Ala	gag Glu	ata Ile	att Ile	ctg Leu	cag Gln	ctg Leu	aag Lys	agc Ser	gag Glu	ctc Leu	aga Arg	gaa Glu	aag Lys	gaa Glu	tta Leu	4	468
aaa Lys	tta Leu	acg Thr	gat Asp	att Ile	cgg Arg	ctg Leu	gag Glu	gcc Ala	ctc Leu	agc Ser	tct Ser	gct Ala	cat His	cat His	ctt Leu	4 !	516
gat Asp	cag Gln	atc Ile	cgg Arg	gaa Glu	gcc Ala	atg Met	aac Asn	cgg Arg	atg Met	cag Gln	aat Asn	gaa Glu	att Ile	gaa Glu	ata Ile	4	564
ctg Leu	aaa Lys	gct Ala	gaa Glu	aat Asn	gac Asp	cgg Arg	ttg Leu	aag Lys	gca Ala	gaa Glu	act Thr	ggt Gly	aac Asn	aca Thr	gct Ala	4	612
aag Lys	cct Pro	act Thr	cgg Arg	cca Pro	ccg Pro	tca Ser	gaa Glu	tcc Ser	tca Ser	agc Ser	agc Ser	acc Thr	tcc Ser	tct Ser	tca Ser	4	660
tct Ser	tcc Ser	agg Arg	cag Gln	tca Ser	tta Leu	gga Gly	ctt Leu	tct Ser	cta Leu	aac Asn	aat Asn	ttg Leu	aac Asn	atc Ile	aca Thr	4	708
gag Glu	gct Ala	gtt Val	agc Ser	tca Ser	gat Asp	att Ile	ttg Leu	cta Leu	gat Asp	gat Asp	gct Ala	ggt Gly	gat Asp	gca Ala	act Thr	4	756
gga Gly	cat His	aaa Lys	gat Asp	ggc Gly	cgc Arg	agt Ser	gtg Val	aaa Lys	att Ile	ata Ile	gtc Val	tcc Ser	ata Ile	agc Ser	aag Lys	4	804
ggc Gly	tat Tyr	ggt Gly	cga Arg	gca Ala	aag Lys	gac Asp	caa Gln	aaa Lys	tct Ser	cag Gln	gca Ala	tat Tyr	ttg Leu	ata Ile	gga Gly	4	852

tcc Ser	att Ile	ggt Gly	gtt Val	agt Ser	gga Gly	aaa Lys	acc Thr	aag Lys	tgg Trp	gat Asp	gtc Val	tta Leu	gat Asp	ggt Gly	gta Val	4900
ata Ile	aga Arg	cgt Arg	ctc Leu	ttt Phe	aag Lys	gaa Glu	tat Tyr	gta Val	ttc Phe	cga Arg	att Ile	gat Asp	aca Thr	tcc Ser	act Thr	4948
agc Ser	ctt Leu	ggt Gly	ctg Leu	agc Ser	tct Ser	gac Asp	tgc Cys	att Ile	gct Ala	agc Ser	tac Tyr	tgt Cys	ata Ile	gga Gly	gac Asp	4996
tta Leu	att Ile	aga Arg	tcc Ser	cat His	aac Asn	cta Leu	gaa Glu	gtg Val	cct Pro	gaa Glu	ttg Leu	ctg Leu	cct Pro	tgt Cys	gga Gly	5044
tac Tyr	ctt Leu	gtt Val	gga Gly	gat Asp	aat Asn	aac Asn	atc Ile	atc Ile	act Thr	gtg Val	aac Asn	ctc Leu	aaa Lys	gly gaa	gta Val	5092
gaa Glu	gaa Glu	aat Asn	agt Ser	ttg Leu	gac Asp	agt Ser	ttt Phe	gtt Val	ttt Phe	gat Asp	acg Thr	ctg Leu	att Ile	cct Pro	aaa Lys	5140
cca Pro	att Ile	acc Thr	caa Gln	agg Arg	tac Tyr	ttt Phe	aac Asn	ttg Leu	ttg Leu	atg Met	gag Glu	cat His	cac His	aga Arg	att Ile	5188
ata Ile	ctc Leu	tca Ser	gga Gly	ccg Pro	agt Ser	ggt Gly	act Thr	gga Gly	aag Lys	acc Thr	tat Tyr	ttg Leu	gca Ala	aac Asn	aaa Lys	5236
ctt Leu	gct Ala	gaa Glu	tat Tyr	gta Val	ata Ile	acc Thr	aaa Lys	tct Ser	gga Gly	agg Arg	aaa Lys	aaa Lys	aca Thr	gag Glu	gat Asp	5284
gca Ala	att Ile	gcc Ala	act Thr	ttt Phe	aat Asn	gtg Val	gac Asp	cac His	aag Lys	tca Ser	agt Ser	aag Lys	gaa Glu	ttg Leu	caa Gln	5332
caa Gln	tat Tyr	cta Leu	gct Ala	aac Asn	ctg Leu	gct Ala	gaa Glu	cag Gln	tgc Cys	agt Ser	gct Ala	gat Asp	aat Asn	aat Asn	gga Gly	5380
gtg Val	gag Glu	ctc Leu	cca Pro	gtt Val	gta Val	ata Ile	att Ile	ctt Leu	gat Asp	aat Asn	ctt Leu	cat His	cat His	gtg Val	ggc Gly	5428
tct Ser	ctg Leu	agt Ser	gat Asp	atc Ile	ttc Phe	aat Asn	ggt Gly	ttt Phe	ctc Leu	aat Asn	tgt Cys	aaa Lys	tac Tyr	aac Asn	aaa Lys	5476
tgt Cys	cca Pro	tat Tyr	att Ile	att Ile	gga Gly	aca Thr	atg Met	aat Asn	cag Gln	gga Gly	gtt Val	tct Ser	tca Ser	tca Ser	cca Pro	5524

aat Asn	cta Leu	gag Glu	ctg Leu	cat His	cac His	aat Asn	ttc Phe	agg Arg	tgg Trp	gta Val	tta Leu	tgt Cys	gca Ala	aat Asn	cat His		5572
aca Thr	gaa Glu	cca Pro	gtg Val	aaa Lys	ggc Gly	ttt Phe	tta Leu	ggc Gly	aga Arg	tat Tyr	ctt Leu	cga Arg	aga Arg	aaa Lys	ctc Leu		5620
ata Ile	gag Glu	ata Ile	gaa Glu	att Ile	gaa Glu	agg Arg	aac Asn	att Ile	cgc Arg	aat Asn	aat Asn	gac Asp	cta Leu	gtc Val	aaa Lys		5668
att Ile	ata Ile	gat Asp	tgg Trp	att Ile	ccg Pro	aag Lys	acg Thr	tgg Trp	cat His	cat His	ctc Leu	aac Asn	agt Ser	ttt Phe	ttg Leu		5716
gaa Glu	aca Thr	cac His	agt Ser	tct Ser	tct Ser	gac Asp	gtt Val	acc Thr	att Ile	ggt Gly	ccc Pro	cga Arg	cta Leu	ttc Phe	ctt Leu		5764
cct Pro	tgc Cys	ccc Pro	atg Met	gat Asp	gta Val	gaa Glu	ggt Gly	tct Ser	aga Arg	gta Val	tgg Trp	ttc Phe	atg Met	gat Asp	ctc Leu		5812
tgg Trp	aac Asn	tat Tyr	tct Ser	tta Leu	gta Val	cct Pro	tat Tyr	att Ile	ctg Leu	gag Glu	gca Ala	gtg Val	aga Arg	gag Glu	ggt Gly		5860
ctt Leu	cag Gln	atg Met	tat Tyr	ggg ggg	aaa Lys	cgc Arg	aca Thr	cca Pro	tgg Trp	gaa Glu	gat Asp	cct Pro	tca Ser	aag Lys	tgg Trp		5908
gtg Val	ctt Leu	gac Asp	aca Thr	tat Tyr	cca Pro	tgg Trp	agc Ser	tca Ser	gca Ala	act Thr	ctg Leu	cct Pro	cag Gln	gag Glu	agc Ser		5956
cca Pro	gcc Ala	tta Leu	ctt Leu	cag Gln	ctg Leu	cga Arg	cca Pro	gaa Glu	gat Asp	gtt Val	gly aaa	tat Tyr	gaa Glu	agc Ser	tgc Cys		6004
aca Thr	tcc Ser	act Thr	aag Lys	gaa Glu	gcc Ala	aca Thr	acc Thr	tca Ser	aag Lys	cac His	att Ile	cca Pro	caa Gln	act Thr	gac Asp		6052
aca Thr	gaa Glu	gga Gly	gat Asp	ccc Pro	ctg Leu	atg Met	aat Asn	atg Met	cta Leu	atg Met	aaa Lys	ctc Leu	caa Gln	gaa Glu	gca Ala		6100
gcc Ala	aat Asn	tac Tyr	tcg Ser	agc Ser	aca Thr	caa Gln	agc Ser	tgc Cys	gac Asp	agc Ser	gaa Glu	agc Ser	acc Thr	agt Ser	cac His		6148
cat His	gaa Glu	gac Asp	att Ile	ttg Leu	gat Asp	tca Ser	tct Ser	ctt Leu	gaa Glu	tct Ser	acc Thr	ctc Leu	tag	aggg	tga		6197
aaa	aagt	taa	ggga	aaag	ac t	ttgc	tttt	a aa	aaaa	tgtt	tca	aaag	aaa	ggta	ttttc	a	6257

ctaaaccact	gccagtataa	aagcaccctg	tcaagggccc	tgacccagag	ttgtggtctc	6317
caaggaggca	gcagaactaa	gtctgaaccg	ccaagatgct	aaattgcaat	ggaagcttaa	6377
ctttagttta	tttctaaaca	ttttttatat	ctgtggagta	atagaaagct	ccattactca	6437
actggaaagg	accctaatga	cagggcaact	gaacagattg	cacatgggat	agccaaactg	6497
gactttcttt	gtttcctctt	taaaagttta	caatgcagac	cattttttgt	cccttccttt	6557
tgtttcctct	gaggggctgt	tegececagg	cagggtccat	ctttctgatc	tgtccaacct	6617
cctttgtgcc	acacggtgct	ggtcacaggg	cttcagtagt	gtttgtgttg	tgcgctcacc	6677
ccattccaga	acaaatccaa	gaggccagtc	ctccataagc	acaaatggaa	ttgtgcaacc	6737
accagaaaaa	cactactgtg	gcaaactgga	gaagtgccaa	tttaattcta	actgccacgt	6797
tctcatgatg	tgctccacca	actttttagt	atatgagtca	ctggttttat	aaggttgttt	6857
ttaccacagt	ggtcttttta	aaccacctgc	ccactccctt	aacaagagtt	ttataccaat	6917
tattagtcaa	cactgataaa	aggcttttt	agggctttat	ttgtttgagc	cttttcagtg	6977
aaagaaggaa	catttcctat	ggtgctgtct	cactgcctta	aaacagattt	ctatgacagt	7037
ttaacagttg	gtttaaatcc	taaaccattg	gtaatttcca	ctgtcttttc	atttacaacc	7097
aagcaacacc	agttaacata	gtagcctcat	ctctatatat	ctttctcttt	tttttttt	7157
tgaagaaatg	gataggagaa	agatcagtat	ttttagcctt	gtgaatagat	cgctttgcct	7217
atcctccaaa	atattaaaat	aacccagaaa	tgctctttga	ccgtcactta	aaacctaaga	7277
catgtggcga	aattccatcc	agttctaagt	gaaagagttt	cagaaggcag	gagattttga	7337
attattatcc	agcagggctg	gaagcactag	atgcagcatg	agcacaacta	ttcggctttc	7397
cttccctatt	gtttttgttt	ttttaatgag	ttttgacgca	tgttgttttg	attgctattg	7457
ttgtacatga	gaaattcagc	attaaagaac	actgaagcgg	taaggtcact	gtggaagagg	7517
aagcgtttat	actgtaaaag	aaggttagat	ttgcacagtc	tactgggtag	gtattgtaaa	7577
taataatttt	taaaacttgc	acaaatcaaa	acaaacacaa	acaaaattgt	attttatcct	7637
gttggtgtta	agaggtgttt	cacttgctga	gatttcctgt	acattgcaaa	caaatacaga	7697
atgcaaaccc	tcaaagctgt	attatctggt	gtgtttgtcc	tgtatttaca	gttgtttttg	7757
actatgcagg	agctatcagt	gctagagtga	gcatgcttca	aaactgtaca	tgaagccaat	7817
atatttttgg	ataagtaaaa	ctgtctgaaa	gtacatctgt	catggcaggc	tttaaagaga	7877
gtgcatgaaa	actgatcagt	cattggagaa	gttaccacca	cacacaaagg	acaggtttta	7937

•	agtttatgaa	acccaagggc	taggccatgg	tatagacttc	ttctatgagt	gtgtgaaaat	7997
•	gtgttacttt	taggacgtgt	atttggtgct	actctctgtg	accaccaatg	ggtcagttgc	8057
	tatagaacaa	caacaccacg	aaacatctgt	gcagttttca	gagtgtcaca	aagtcaatag	8117
,	gtccttacac	ggtgctattg	ccctaaggga	aatccgaact	gaatttatgc	acatagaatt .	8177
	gtcaccctga	ctttgaagcc	tcaaacatgg	atcaaatctg	ttgtgaaaca	tcaatatatg	8237
	tagctggatg	agtgactagt	ttcccttgta	taatatgtga	tctaagaaaa	ttgctaatct	8297
	ttccctgcca	ttttgagaaa	cacagtccaa	acatgagcat	aaacagaatt	tootgoaata	8357
	catcccagta	ggtccaccta	gtttacaact	taaactagtt	tgtgaaacat	ttgtctgtat	8417
	acattttata	ttttgtacat	tttgatgtaa	catatcatgt	aaataggcag	aaacagtgaa	8477
	ataaatcatc	tgaaaagttt	tgtagtcttt	gtaaagcccc	aacaataagt	acttggtgtc	8537
	aatggactta	actggatgat	gtattttcta	ttggtttatt	gttcctctag	cttgtaaacc	8597
	agcttgcata	tatttttttg	caaatgtgca	ccctgtatct	gtctaaatta	ttactttgcc	8657
	attaaagtgg	aattatttat	tgacaaaaaa	aaa			8690

<211> 1895

<212> PRT

<213> Homo sapiens

<400> 12

Met Asp Leu Ser Ser Glu Met Asn Arg His Gly Lys Asn Pro Val Ser 1 5 10 15

His Lys Leu Glu Asp Gln Lys Lys Ile Tyr Thr Asp Trp Ala Asn His 20 25 30

Tyr Leu Ala Lys Ser Gly His Lys Arg Leu Ile Lys Asp Leu Gln Gln 35 40 45

Asp Ile Ala Asp Gly Val Leu Leu Ala Glu Ile Ile Gln Ile Ile Ala 50 55 60

Asn Glu Lys Val Glu Asp Ile Asn Gly Cys Pro Arg Ser Gln Ser Gln 65 70 75 80

Met Ile Glu Asn Val Asp Val Cys Leu Ser Phe Leu Ala Ala Arg Gly 85 90 95

Val Asn Val Gln Gly Leu Ser Ala Glu Glu Ile Arg Asn Gly Asn Leu 100 105 110

Lys Ala Ile Leu Gly Leu Phe Phe Ser Leu Ser Arg Tyr Lys Gln Gln

		115					120					125			
Gln	His 130	His	Gln	Gln	Gln	Tyr 135	Tyr	Gln	Ser	Leu	Val 140	Glu	Leu	Gln	Gln
Arg 145	Val	Thr	His	Ala	Ser 150	Pro	Pro	Ser	Glu	Ala 155	Ser	Gln	Ala	Lys	Thr 160
Gln	Gln	Asp	Met	Gln 165	Ser	Arg	Leu	Pro	Gly 170	Pro	Ser	Arg	Val	Pro 175	Ala
Ala	Gly	Ser	Ser 180	Ser	Lys	Val	Gln	Gly 185	Ala	Ser	Asn	Leu	Asn 190	Arg	Arg
Ser	Gln	Ser 195	Phe	Asn	Ser	Ile	Asp 200	Lys	Asn	Lys	Pro	Pro 205	Asn	Tyr	Ala
Asn	Gly 210	Asn	Glu	Lys	Gly	Glu 215	Asp	Pro	Glu	Thr	Arg 220	Arg	Met	Arg	Thr
Val 225	Lys	Asn	Ile	Ala	Asp 230	Leu	Arg	Gln	Asn	Leu 235	Glu	Glu	Thr	Met	Ser 240
Ser	Leu	Arg	Gly	Thr 245	Gln	Ile	Ser	His	Ser 250	Thr	Leu	Glu	Thr	Thr 255	Phe
Asp	Ser	Thr	Val 260	Thr	Thr	Glu	Val	Asn 265	Gly	Arg	Thr	Ile	Pro 270	Asn	Leu
Thr	Ser	Arg 275	Pro	Thr	Pro	Met	Thr 280	Trp	Arg	Leu	Gly	Gln 285	Ala	Cys	Pro
Arg	Leu 290	Gln	Ala	Gly	Asp	Ala 295	Pro	Ser	Leu	Gly	Ala 300	Gly	Tyr	Pro	Arg
Ser 305	Gly	Thr	Ser	Arg	Phe 310	Ile	His	Thr	Asp	Pro 315	Ser	Arg	Phe	Met	Tyr 320
Thr	Thr	Pro	Leu	Arg 325	Arg	Ala	Ala	Val	Ser 330	Arg	Leu	Gly	Asn	Met 335	Ser
Gln	Ile	Asp	Met 340	Ser	Glu	Lys	Ala	Ser 345	Ser	Asp	Leu	Asp	Met 350	Ser	Ser
Glu	Val	Asp 355		Gly	Gly	Tyr	Met 360	Ser	Asp	Gly	Asp	11e 365		Gly	Lys
Ser	Leu 370	Arg	Thr	Asp	Asp	11e 375	Asn	Ser	Gly	Tyr	Met 380	Thr	Asp	Gly	Gly
Leu 385		Leu	Tyr	Thr	Arg 390		Leu	Asn	Arg	Ile 395		Asp	Thr	Ala	Thr 400
Ser	Arg	Asp	Ile	Ile 405		Arg	Gly	Val	His 410		Val	Thr	Val	Asp 415	
Asp	Ser	Trp	Asp	Asp	Ser	Ser	Ser	Val	Ser	Ser	Gly	Leu	Ser	Asp	Thr

			420					425					430		
Leu	Asp	Asn 435	Ile	Ser	Thr	Asp	Asp 440	Leu	Asn	Thr	Thr	Ser 445	Ser	Val	Ser
Ser	Tyr 450	Ser	Asn	Ile	Thr	Val 455	Pro	Ser	Arg	Lys	Asn 460	Thr	Gln	Leu	Arg
Thr 465	Asp	Ser	Glu	Lys	Arg 470	Ser	Thr	Thr	Asp	Glu 475	Thr	Trp	Asp	Ser	Pro 480
Glu	Glu	Leu	Lys	Lys 485	Pro	Glu	Glu	Asp	Phe 490	Asp	Ser	His	Gly	Asp 495	Ala
Gly	Gly	Lys	Trp 500	Lys	Thr	Val	Ser	Ser 505	Gly	Leu	Pro	Glu	Asp 510	Pro	Glu
Lys	Ala	Gly 515	Gln	Lys	Ala	Ser	Leu 520	Ser	Val	Ser	Gln	Thr 525	Gly	Ser	Trp
Arg	Arg 530	Gly	Met	Ser	Ala	Gln 535	Gly	Gly	Ala	Pro	Ser 540	Arg	Gln	Lys	Ala
Gly 545	Thr	Ser	Ala	Leu	Lys 550	Thr	Pro	Gly	Lys	Thr 555	Asp	Asp	Ala	Lys	Ala 560
Ser	Glu	Lys	Gly	Lys 565	Ala	Pro	Leu	Lys	Gly 570	Ser	Ser	Leu	Gln	Arg 575	Ser
Pro	Ser	Asp	Ala 580	Gly	Lys	Ser	Ser	Gly 585	Asp	Glu	Gly	Lys	Lys 590	Pro	Pro
Ser	Gly	Ile 595	Gly	Arg	Ser	Thr	Ala 600	Thr	Ser	Ser	Phe	Gly 605	Phe	Lys	Lys
Pro	Ser 610	Gly	Val	Gly	Ser	Ser 615	Ala	Met	Ile	Thr	Ser 620	Ser	Gly	Ala	Thr
Ile 625	Thr	Ser	Gly	Ser	Ala 630	Thr	Leu	Gly	Lys	Ile 635	Pro	Lys	Ser	Ala	Ala 640
Ile	Gly	Gly	Lys	Ser 645	Asn	Ala	Gly	Arg	Lys 650	Thr	Ser	Leu	Asp	Gly 655	Ser
Gln	Asn	Gln	Asp 660	Asp	Val	Val	Leu	His 665	Val	Ser	Ser	Lys	Thr 670	Thr	Leu
Gln	Tyr	Arg 675	Ser	Leu	Pro	Arg	Pro 680	Ser	Lys	Ser	Ser	Thr 685	Ser	Gly	Ile
Pro	Gly 690	Arg	Gly	Gly	His	Arg 695		Ser	Thr	Ser	Ser 700	Ile	Asp	Ser	Asn
Val 705	Ser	Ser	Lys	Ser	Ala 710	Gly	Ala	Thr	Thr	Ser 715	Lys	Leu	Arg	Glu	Pro 720

Thr Lys Ile Gly Ser Gly Arg Ser Ser Pro Val Thr Val Asn Gln Thr 730 Asp Lys Glu Lys Glu Lys Val Ala Val Ser Asp Ser Glu Ser Val Ser 745 Leu Ser Gly Ser Pro Lys Ser Ser Pro Thr Ser Ala Ser Ala Cys Gly 760 Ala Gln Gly Leu Arg Gln Pro Gly Ser Lys Tyr Pro Asp Ile Ala Ser Pro Thr Phe Arg Arg Leu Phe Gly Ala Lys Ala Gly Gly Lys Ser Ala Ser Ala Pro Asn Thr Glu Gly Val Lys Ser Ser Ser Val Met Pro Ser 810 Pro Ser Thr Thr Leu Ala Arg Gln Gly Ser Leu Glu Ser Pro Ser Ser 825 Gly Thr Gly Ser Met Gly Ser Ala Gly Gly Leu Ser Gly Ser Ser Pro Leu Phe Asn Lys Pro Ser Asp Leu Thr Thr Asp Val Ile Ser Leu 855 860 Ser His Ser Leu Ala Ser Ser Pro Ala Ser Val His Ser Phe Thr Ser 870 875 Gly Gly Leu Val Trp Ala Ala Asn Met Ser Ser Ser Ala Gly Ser 885 890 Lys Asp Thr Pro Ser Tyr Gln Ser Met Thr Ser Leu His Thr Ser Ser Glu Ser Ile Asp Leu Pro Leu Ser His His Gly Ser Leu Ser Gly Leu Thr Thr Gly Thr His Glu Val Gln Ser Leu Leu Met Arg Thr Gly Ser 935 Val Arq Ser Thr Leu Ser Glu Ser Met Gln Leu Asp Arg Asn Thr Leu 950 Pro Lys Lys Gly Leu Arg Tyr Thr Pro Ser Ser Arg Gln Ala Asn Gln 970 Glu Glu Gly Lys Glu Trp Leu Arg Ser His Ser Thr Gly Gly Leu Gln Asp Thr Gly Asn Gln Ser Pro Leu Val Ser Pro Ser Ala Met Ser Ser 1000 Ser Ala Ala Gly Lys Tyr His Phe Ser Asn Leu Val Ser Pro Thr Asn 1020 1010 1015

- Leu Ser Gln Phe Asn Leu Pro Gly Pro Ser Met Met Arg Ser Asn Ser 1025 1030 1035 1040
- Ile Pro Ala Gln Asp Ser Ser Phe Asp Leu Tyr Asp Asp Ser Gln Leu 1045 1050 1055
- Cys Gly Ser Ala Thr Ser Leu Glu Glu Arg Pro Arg Ala Ile Ser His 1060 1065 1070
- Ser Gly Ser Phe Arg Asp Ser Met Glu Glu Val His Gly Ser Ser Leu 1075 1080 1085
- Ser Leu Val Ser Ser Thr Ser Ser Leu Tyr Ser Thr Ala Glu Glu Lys 1090 1095 1100
- Ala His Ser Glu Gln Ile His Lys Leu Arg Arg Glu Leu Val Ala Ser 1105 1110 1115 1120
- Gln Glu Lys Val Ala Thr Leu Thr Ser Gln Leu Ser Ala Asn Ala His 1125 1130 1135
- Leu Val Ala Ala Phe Glu Lys Ser Leu Gly Asn Met Thr Gly Arg Leu 1140 1145 1150
- Gln Ser Leu Thr Met Thr Ala Glu Gln Lys Glu Ser Glu Leu Ile Glu 1155 1160 1165
- Leu Arg Glu Thr Ile Glu Met Leu Lys Ala Gln Asn Ser Ala Ala Gln 1170 1175 1180
- Ala Ala Ile Gln Gly Ala Leu Asn Gly Pro Asp His Pro Pro Lys Asp 1185 1190 1195 1200
- Leu Arg Ile Arg Arg Gln His Ser Ser Glu Ser Val Ser Ser Ile Asn 1205 1210 1215
- Ser Ala Thr Ser His Ser Ser Ile Gly Ser Gly Asn Asp Ala Asp Ser 1220 1225 1230
- Lys Lys Lys Lys Lys Asn Trp Leu Arg Ser Ser Phe Lys Gln Ala 1235 1240 1245
- Phe Gly Lys Lys Ser Thr Lys Pro Pro Ser Ser His Ser Asp Ile 1250 1255 1260
- Glu Glu Leu Thr Asp Ser Ser Leu Pro Ala Ser Pro Lys Leu Pro His 1265 1270 1275 1280
- Asn Ala Gly Asp Cys Gly Ser Ala Ser Met Lys Pro Ser Gln Ser Ala 1285 1290 1295
- Ser Ala Ile Cys Glu Cys Thr Glu Ala Glu Ala Glu Ile Ile Leu Gln 1300 1305 1310
- Leu Lys Ser Glu Leu Arg Glu Lys Glu Leu Lys Leu Thr Asp Ile Arg

1315	1320	1325
------	------	------

- Leu Glu Ala Leu Ser Ser Ala His His Leu Asp Gln Ile Arg Glu Ala 1330 1335 1340
- Met Asn Arg Met Gln Asn Glu Ile Glu Ile Leu Lys Ala Glu Asn Asp 1345 1350 1355 1360
- Arg Leu Lys Ala Glu Thr Gly Asn Thr Ala Lys Pro Thr Arg Pro Pro 1365 1370 1375
- Ser Glu Ser Ser Ser Ser Thr Ser Ser Ser Ser Ser Arg Gln Ser Leu 1380 1385 1390
- Gly Leu Ser Leu Asn Asn Leu Asn Ile Thr Glu Ala Val Ser Ser Asp 1395 1400 1405
- Ile Leu Leu Asp Asp Ala Gly Asp Ala Thr Gly His Lys Asp Gly Arg 1410 1415 1420
- Ser Val Lys Tle Ile Val Ser Ile Ser Lys Gly Tyr Gly Arg Ala Lys 1425 1430 1435 1440
- Asp Gln Lys Ser Gln Ala Tyr Leu Ile Gly Ser Ile Gly Val Ser Gly
 1445 1450 1455
- Lys Thr Lys Trp Asp Val Leu Asp Gly Val Ile Arg Arg Leu Phe Lys 1460 1465 1470
- Glu Tyr Val Phe Arg Ile Asp Thr Ser Thr Ser Leu Gly Leu Ser Ser 1475 1480 1485
- Asp Cys Ile Ala Ser Tyr Cys Ile Gly Asp Leu Ile Arg Ser His Asn 1490 1495 1500
- Leu Glu Val Pro Glu Leu Leu Pro Cys Gly Tyr Leu Val Gly Asp Asn 1505 1510 1515 1520
- Asn Ile Ile Thr Val Asn Leu Lys Gly Val Glu Glu Asn Ser Leu Asp 1525 1530 1535
- Ser Phe Val Phe Asp Thr Leu Ile Pro Lys Pro Ile Thr Gln Arg Tyr 1540 1545 1550
- Phe Asn Leu Leu Met Glu His His Arg Ile Ile Leu Ser Gly Pro Ser 1555 1560 1565
- Gly Thr Gly Lys Thr Tyr Leu Ala Asn Lys Leu Ala Glu Tyr Val Ile 1570 1575 1580
- Thr Lys Ser Gly Arg Lys Lys Thr Glu Asp Ala Ile Ala Thr Phe Asn 1585 1590 1595 1600
- Val Asp His Lys Ser Ser Lys Glu Leu Gln Gln Tyr Leu Ala Asn Leu 1605 1610 1615

- Ala Glu Gln Cys Ser Ala Asp Asn Asn Gly Val Glu Leu Pro Val Val 1620 1630
- Ile Ile Leu Asp Asn Leu His His Val Gly Ser Leu Ser Asp Ile Phe 1635 1640 1645
- Asn Gly Phe Leu Asn Cys Lys Tyr Asn Lys Cys Pro Tyr Ile Ile Gly 1650 1655 1660
- Thr Met Asn Gln Gly Val Ser Ser Pro Asn Leu Glu Leu His His 1665 1670 1675 1680
- Asn Phe Arg Trp Val Leu Cys Ala Asn His Thr Glu Pro Val Lys Gly 1685 1690 1695
- Phe Leu Gly Arg Tyr Leu Arg Arg Lys Leu Ile Glu Ile Glu Ile Glu 1700 1705 1710
- Arg Asn Ile Arg Asn Asn Asp Leu Val Lys Ile Ile Asp Trp Ile Pro 1715 1720 1725
- Lys Thr Trp His His Leu Asn Ser Phe Leu Glu Thr His Ser Ser Ser 1730 1740
- Asp Val Thr Ile Gly Pro Arg Leu Phe Leu Pro Cys Pro Met Asp Val 1745 1750 1755 1760
- Glu Gly Ser Arg Val Trp Phe Met Asp Leu Trp Asn Tyr Ser Leu Val 1765 1770 1775
- Pro Tyr Ile Leu Glu Ala Val Arg Glu Gly Leu Gln Met Tyr Gly Lys 1780 1785 1790
- Arg Thr Pro Trp Glu Asp Pro Ser Lys Trp Val Leu Asp Thr Tyr Pro 1795 1800 1805
- Trp Ser Ser Ala Thr Leu Pro Gln Glu Ser Pro Ala Leu Leu Gln Leu 1810 1815 1820
- Arg Pro Glu Asp Val Gly Tyr Glu Ser Cys Thr Ser Thr Lys Glu Ala 1825 1830 1835 1840
- Thr Thr Ser Lys His Ile Pro Gln Thr Asp Thr Glu Gly Asp Pro Leu 1845 1850 1855
- Met Asn Met Leu Met Lys Leu Gl
n Glu Ala Ala Asn Tyr Ser Ser Thr $1860 \hspace{1.5cm} 1865 \hspace{1.5cm} 1870$
- Gln Ser Cys Asp Ser Glu Ser Thr Ser His His Glu Asp Ile Leu Asp 1875 1880 1885
- Ser Ser Leu Glu Ser Thr Leu 1890 1895

<211> 3682

<212> DNA

<213> Homo sapiens

<400> 13

gaattcctgg	tggagaacag	cacatgtaca	gatggggtga	gaacagcata	cgtacaggta	60
ggggtaagct	ggtgctatat	gagaaagcat	ggaataagtt	attaagtttg	acctgcttgg	120
gaactgaggg	gcaggtgtga	gggatgaagc	aggagtaggt	aggggctaga	tcacaaaaga	180
tctatgccag	tgtttctcac	agtgtgattc	ccagcccagt	agcatgatat	cacttgggat	240
cttgttagaa	atacaaattc	ttatacatca	ccctggacta	gaccacctga	ataagaaaag	300
ttgggcatga	ggcctacaaa	tttttaaaaa	agtcatacag	gtgattgcaa	tgcatgctaa	360
agtttgagaa	acactctttg	ctgtggtttg	aatatttgtg	tccttccaaa	attcatgtag	420
aaaccatctc	caatgttata	gtattaagag	gagggaccct	tgggagctga	tcagatcatg	480
aagtctcctt	tcttataaag	gggattaaaa	gccttggccc	ttttaccctt	tgtccatgta	540
aggacacagt	gttggaagca	gggactgggt	tctcaccaga	aacagaacct	gccagcctct	600
tggtcttgga	cttctcagcc	tccacaattg	tgagaaataa	gtttctgttg	tttataagtt	660
aaccagtctc	aggtattttg	taatggcagc	acaaaggggc	taagaaactg	ttctatgccc	720
taacaagaaa	tgtggtcact	ttcctgaagg	aaatggggat	atatataaag	atgttatata	780
agactcgtaa	tatttatttg	gaaggcttgc	tctgcaagca	aggtggaaga	gcaacatgaa	840
ggaagcgtgg	tggaggtgag	aggactggag	gttaagttgg	tagggagata	caggaaagaa	900
gcttatgaca	cttgagttaa	aatgtagcat	ccttcctatg	tgtagggctc	ataaaaatgt	960
atagtctaag	atagaacaca	gaatactcta	tgaatcctgc	ccacaaggtg	ttggtaatct	1020
agattcactt	tttttttctg	ataatgccat	ccatatgtat	ggagcgtcta	ctactgtatg	1080
ccagagtgac	tctggaatcg	gtttggttga	tctagacaag	accataagga	gagtcccctt	1140
actacctctt	ctccagggga	gggattcaag	ttgaactagt	acttcagaga	ctgtttagta	1200
atatcatgca	tgaaaggtga	tggttaggac	agaaaaataa	atggattgca	tcataattcc	1260
tcaggttctc	caaatatgtg	gtggtctcaa	accatgtgaa	ttggtctgca	catcctgttt	1320
gggttgcgtg	tcagcagttg	agatctgagc	cttatttgta	acagtgaaac	agtgagagac	1380
ctgcccttca	agagctgttt	ttcagctagg	aatagaaaag	ggccaggcta	gactcctctt	1440
tctgctggat	cttgcttctt	ctcagcaata	gaagtagacc	tgccttccta	gctgtagaga	1500

aaaggtgccg	gtaggcgggc	aggtgagcct	gtggataatc	ctggagtaaa	ggttcaatag	1560
accttcaagt	ctatcctaca	ggattcggag	tgaggggaga	gaaaaggaga	cgcttctctg	1620
gctgagagag	gaagagaaaa	aaaaatccca	gatatctgac	agctatatct	tcccatcacc	1680
accttcctct	aaacccatgc	ctctctgttt	agtaggacat	aaaatgaaga	gtgacccacc	1740
ccccaccccc	agcccatccc	ccgtttgtag	gtgtgctttc	aatgaaaata	agtcggtgtt	1800
catggacgga	aactagagca	gctgaaaata	gatgcaagac	ttgttgagca	tacaaatcat	1860
ttccccctta	gtctccaagg	gaggaaaaaa	aatccctctt	actctccttg	cagcctgtgt	1920
tctgcattct	ggagaggaag	ctgaggctgg	tcctcaggcg	ctcctcccgc	cgttcccgca	1980
ggaaactttt	ctcgcagggc	ccgctccgtc	catcccgcgc	ggttccaaga	cggtgggcct	2040
cccgtgggct	cctctcctgg	gcaagggccc	agaccccgcg	acgcgcctgt	ctctttaaat	2100
tccagctgcg	cggctgggaa	acagcgccac	tegeegeeca	ggccggctgg	aggctgaaga	2160
gcgagctcgc	gctttcgctc	ccggctgcgc	gccgcggaga	gctgggctcg	gcccgcgggc	2220
tgctaggtgg	cggcggcgcg	gggcggggag	gegeggeeeg	gcggaggagg	gaagaaagag	2280
cgagccgggc	cgggagaggc	gccgcgcccg	gtcccgcgcc	cggtcccgca	cccgctctca	2340
gcggcccaag	cagtttcttt	ctgggtgaca	agaatgtgcc	tcggttggtt	tttcttttt	2400
ttctccatct	ccttaagacg	atttccatag	taacctgatc	aagtggctca	aaatcgcaaa	2460
cctgaggatt	teegeggeee	gccggcaaga	cctcggccag	gtaacgctgc	gatctcctcc	2520
tcttccattg	caaaccgctg	cgctccttgc	aaagttcctt	ttgtggaaaa	tcgcccagcc	2580
caagggagcc	cggggtattt	gcaacagcgt	gttcatttcc	aggtgcctgt	cacgggtctc	2640
ctccctgctg	cttctccagg	acccatgatg	agattatttt	taaaaattgt	ttttggtcgt	2700
ctcccccgcc	ccctcccctt	ctttatttt	ttcctcttcg	ctgcactctt	ctcggctttt	2760
cccctgacac	tactgatggg	ggtgcggggg	gacgtcgggg	atgggggtgg	ccagcgcggt	2820
cctgggagtg	gcgggttcgg	atgggctggc	tgcggtgggc	cactttgggc	atctcggcgt	2880
ggcctgcgcc	ggggtcacgg	ggagggctgt	cagcgccagg	gcggcggaac	ccgaggtctc	2940
cagacgagtg	agggagggat	gcaggcttgg	gggtgatgga	gcgcttggct	ggtggctggt	3000
gagcgtccat	acatcatagc	tctccttccc	actcccccgc	ccctcttcgg	gattetetet	3060
ttctctttcc	ccgtcctcat	ttctttcttc	ctttactcac	cactcgcttc	attctcttcc	3120
ttccatttcc	tcttttttc	tcccctcatt	tcctttttt	cctttccctt	ttaaagaaag	3180
gggaatcgtt	tgtaaccctt	tcgttctacc	aacgtggaat	agctgtgaaa	cctgcagcgt	3240

ggtcacctca	gcctggtcgt	tttcagaccc	gtcctcatcc	atcaacatat	ttgtttcccg	3300
agtctattga	tctccctgaa	ttctacagaa	atgcattcta	agctaggcgc	ctgtatgtca	3360
gaatcagttc	tgcaggtagc	ttccgtgctc	caagtatgac	atgtattgta	agggctgcat	3420
ctgttttaaa	cccacataag	ccatgggtat	aaataaatgt	agctttgaaa	aaaaatctgg	3480
ccttattcta	gataaacttc	cctcttaaat	tactgatata	ctcttctccc	tctttgacat	3540
ttaattttag	gaaagttggg	agacaggttc	ttgtcctcca	gtttttaagg	agcaggcaac	3600
ttctattatc	ttaattttct	cgtctttgaa	catcactcac	gtttgcacta	cccagtcagt	3660
ggaacgagtg	ggtcataatt	aa				3682

<211> 3904

<212> DNA

<213> Homo sapiens

<400> 14

cctgcattat	tgtttttatc	tgacttccaa	ttttggtgtt	ccctgggtgg	gtgggttttc	60
ctgacacatt	tacaagatgc	ttttggcagg	ttggctggaa	tttgaaggca	catttaattg	120
taggtgcaat	aaaatattca	ttttctcttg	ttcttggttt	gagatgtcat	gcccttttgg	180
tcacttatat	tttggtgtga	ctgtgtgtgt	gtgtgtatgt	gtttgtgtga	aggatttaac	240
aaagtctgtt	ctaactgtca	tgtgatttga	agttaaaagg	tatgttagtg	acaagccaca	300
aatttctctt	atttatagta	cattgatcct	gaaaccattt	tttcccttgt	gatttcttct	360
gtgcatggat	catttaacga	aaggttggca	atgatgagct	attttttat	aataggaaaa	420
aaattcctca	agtttactta	ccaagtcata	tttttataca	gagggattag	caaatatttc	480
tgatctaata	ttttaataga	ctgaattgct	gaccactgct	aattaccaag	aatatatttt	540
cttaattctg	aaattgctgt	acctctcaag	ttgtctggag	gactccaagt	gacccaactt	600
gtaactcatg	gcaacaggaa	gtggttgttc	tgggtgcaag	ctgaagtgtg	cacatggacc	660
cgtactttgt	tagcactcgg	ggacttgata	tggaaagaat	taatgtactg	gcttttttgt	720
atagatgaat	gttaactttc	tgacattagt	cagaactaca	tctcccaagc	cttgttttgc	780
agtgtctgtc	cctttgctct	tcacttacag	taagtcctta	cttaactgac	ttgataggtt	840
cttggaaact	gcaactttaa	gcaaaaggaa	gtataatgaa	acacttttat	cacaggctaa	900
ttggtagaaa	caagacttaa	gttcccatgg	catatttctg	gtcacaaaaa	catttccaaa	960

cttctcaaaa	cacttcaata	ttaagcattc	aaatacatgt	aaactatgta	tatatgtaag	1020
aaaggttact	ataaaccaga	tcaatattta	cccaattatt	taagttcagg	gtcttaggtg	1080
gctggagcct	atccgagtag	ctcagggcac	aaggcgggaa	ccagccctag	acaggacacc	1140
atcctgttgc	agggcacgtt	cacacatgcc	cacacgcagg	ctgggaccat	ttacatgtgc	1200
caattcacct	accatgcaca	tctttgagac	gtggcaggaa	gcaagagtac	ctggagaaaa	1260
tccatacaga	tatggggaga	atgtacaaac	tccacccaga	cagtggaccc	agccaggaat	1320
caacatttgg	gcaacattat	aatgaaacga	agttgaatga	aatgatgtcg	ttccacgacc	1380
tgctgtactt	gaggggtgtt	ataaaattct	cagaagacag	aggtttaatg	ctatcttttt	1440
aatagaaaat	aacttataga	gaagtgtgca	catgtgactt	tgtgtgtagc	aggaatcatt	1500
aggatgagaa	tcagacgtaa	gaggtggtgc	caacatgagg	aatgttgaga	ttcagggagc	1560
tgtggatgga	agtagaagcc	agaaggccag	ggttaggttc	ctacttctta	ctgtttcagt	1620
tattgcagtg	ttggcctgtt	tattcacaga	tgtcacctag	ctttgttttc	tcaagaagaa	1680
aaatgagcat	aatctttcct	gttatgaatt	cttaaacaca	caggacataa	ccacagacac	1740
agaggtgcac	atatgtagca	gtaatggata	ctaaatgata	cactcggagg	aaacagaaaa	1800
gacttctgaa	tagagactgg	agatacttcc	ttggaccatt	gatgaatggg	caatgatgca	1860
tttttgtctt	ccattcagaa	ggctaatata	ttgctctcta	tgttctatgg	ataaaggcag	1920
tatatgctca	aggatgaatc	acataatatg	cataataaat	ccagcaagca	ttaccctttt	1980
acttatgtga	ctgcaagtag	gaatacattt	ccccactct	aaccatgtaa	gatttctttc	2040
ccttctccca	ttttgtaagd	aaaagtaagt	tcctgaaagg	ttaaatggac	ctcaggatgg	2100
gaaaaatccc	: cagagetate	tttctgcaca	gacttcattt	tttctcccaa	gtctgactgt	2160
caactgcgat	atctgatatg	aggctctggt	gctgatgttt	ccataggtca	tcatccttcg	2220
gtgtcccaga	ı tgaagtctca	ggtcgaacat	: tgcaatagca	cagattctga	atttaatgca	2280
tcattaaagt	tggttatgta	acccaatggo	cttgttaaac	tccagatttt	: taaaattata	2340
tgtatttact	attctcttat	: tttagaatga	a tctcacaatg	ttcacaagaa	ataagcccag	2400
tecetgeaaa	a gactttaaaa	gctgcttgtt	cacatcatta	gattgtacaa	a cgcttgtaca	2460
atgacactt	t ttgctaatct	atgcaacatt	tttgtaacaa	ttgtgcacat	tttaactact	2520
tcagataat	c aggacctaga	a gacttcaaga	a tctggaagca	ttgctggtga	a catagagcaa	2580
aaactttct	t gagaatagga	a agtcagtgt!	ttgacaagtg	g atttataaca	a gttcaggtat	2640

agccaggaag gtttgaaac	a aaccttaagt	attatttctt	tcatcttgat	tagtatatat	2700
ttatatgtga tctatttat	g tatattaata	gatttttggg	tcttatagcc	agctttcatt	2760
tttctctatt ggaaaagat	c taagtcccca	tccttccttg	gtggcttttg	gtaggtttgt	2820
agacaaaaca ttgaagaat	c aatggtacct	tttatacatt	aatactgcca	atatgaccat	2880
aaaatcatat tttttggga	a tttattcccc	cgatcaaaag	aagcatttgt	tattgaacac	2940
agtcttatgc taccttatt	a agatgtatca	aacaccctga	ttgatcaaaa	acacctcagt	3000
ccattttaag gcagtattg	c ccagcaatta	aagatgtagc	ttctggagga	gtctttctga	3060
gtttgaattc agtactctt	c cacgtactat	ataggtgatc	ttgggtaaac	ttcttgagtc	3120
tcagtatccc catctgtaa	a attgttgtag	agaagaattt	ttgtgatgat	taggtgagag	3180
aatatattaa tgtaatatt	t aggagagcaa	ccagcatgta	gcatatattc	attacatatc	3240
aatttctata ttattgatg	t tcatactgct	gatgttgaaa	tgcacaggaa	ggccacagtt	3300
attttctgtt tagattgat	t tttcttttaa	agtctgaaca	taaactgtaa	tactgtgctt	3360
atttatgtag gaactgtga	t ctcgtctcct	ccttttccca	tctcccctc	tctaccttag	3420
tttttcctta tagtctcaa	g ctgaaaacaa	tgaccaggtg	cctaagagat	aagaatactc	3480
tttcttttga actcatggo	a ttagcagtga	cctggatgag	attggaggct	attattctaa	3540
gtgaaatagc tcaggaatg	g aaaaccaago	attgtatgtt	cttacttata	agtgggagct	3600
aagctatgag gatacaaaq	g cataagaatg	acacaacaga	ctttggagac	ttggggaaag	3660
ggtgggaagg gggtgaggg	ga taaaagacta	caaatagggt	gcagtgtata	ctgcttgggt	3720
ggtgggtgca ccaaaatc	c acaaatcacc	accaaagaac	ttactcatgt	aaccaaacac	3780
cacctgttcc ccagtaacc	t atggatataa	aaaaattaaa	aaaaagaaaa	aaagaaaact	3840
cttttttgca gggggcagg	gt aaagggtaag	g agggcatccc	atttttgagt	ttctagaaaa	3900
gctt					3904

<211> 2119

<212> DNA

<213> Homo sapiens

<400> 15

ctgcaggaag cagcagcaag gtccagggag cctctaattt aaataggaga agtcagagct 60 ttaacagcat tgacaaaaac aagcctccaa attatgcaaa tggaaacgaa aaaggtaagt 120

gtttgttaca	tcattatgac	acaagtccaa	catgagtctt	gtgaattgca	tgctaaatct	180
aatatttgag	cagcgtaaca	actttgggcc	tagagatgtt	atcagtggag	tttctttatg	240
tttcctaact	gtcccctcct	gactgccagc	tttcttatct	gaagaacatt	ttaaacaaat	300
aaactcattc	attttaaagt	agttagttat	atatgcaagt	acaaatactg	tttctcaaaa	360
acaggtcctt	ccaaatgcat	gtaaatcaca	ttttcttatg	tctttttatg	tttttgaaaa	420
tgtatcctga	aatcataaag	ccatattgaa	tttatctgaa	tccttaactt	cagttaaggt	480
aagagccata	agtgtttttg	acaattaagg	ttggagcatc	aaaatttgaa	acataattac	540
agtaggtttt	tatctttgca	agcagcagat	cccagagata	ttatgacctc	agttttcccc	600
aaaagacaaa	ttattcatat	ttgttttgtt	ttcttgaatt	agtgcataat	ataaatatca	660
aatcacaaaa	tcaaggacat	taaatgaaag	tgtctgttaa	aggcatatta	taaatgaatc	720
ataagccaca	cagttctctg	tgatgtacga	agtgggcatt	taaagaggtg	ctgatttgat	780
gcttgtcact	gagtagcaga	gaggacgggg	atgagtatgt	gtagtttaca	cctcaatcat	840
gaggaagtga	agaacttgtg	ctgttataag	tagtatggct	gtgtgaggaa	ctagggtgtt	900
ctgctggatt	ttgaggaagt	attttcaaat	caatagaact	tcaaactttt	cttcagagtg	960
ttgggctcta	catggaaaaa	cacatgaaat	taaaaagtgg	cacaaatgtt	tagttagtag	1020
aacatctggc	taattgggat	caaataattc	aaccatgtgg	gaacgttttt	gctcaaaata	1080
gataattgtg	aattgtttca	tataggcaaa	tgattagaca	acttcctctt	cctcaaatgt	1140
gaacggacag	atgtgatcta	gaagcaagac	actcttttgt	gtaaatattc	cctttggcct	1200
aaagcaaaag	tggacagact	ttaaacacct	gagagcagag	cagtgtgtgt	taagattgca	1260
atatcttaag	ctcttgagtt	aaatggaaaa	tgaaaaacaa	aagtgtatat	ttggaagtta	1320
ggaatgtttt	ctttaaaata	taaaataaaa	ttttagattt	aagatcacaa	gaaatattac	1380
tgaagactta	tactcttcct	ggggctaagg	gaggtgacag	tcgctcatca	gaaaaaaaaa	1440
aatgccctca	tttcctaact	tttctaaaaa	atataataca	agttcaggct	aatacttcct	1500
gtatatgtgg	gaaatttcta	ggggaagcta	acaggcttag	aaataaagat	gtgttaaata	1560
gactaccaaa	gtgtccaatt	aagcaacacg	ataccaccgt	tattgatatt	ctagcaagaa	1620
attactagca	atgtttgtaa	atagacttag	aaatgcattt	gatgaattaa	cacttttata	1680
tcttaattta	tctgaatttt	tctgtaatgt	gaaaatgttt	tatttaactt	atttctggca	1740
tctattagta	aaattctgat	gatatacaag	cattaatatt	tttccatggc	cactcaattc	1800
atacatacct	. tccctatcta	tgcttagaag	gcagtgcaaa	attagatagt	agcaatattg	1860

1140

attataacca o	caaggtggag	acagatgtca	tgtaatatgc	agtctgctca	tataaagcac	1920
attttcttag a	acaagagttt	tcatacgata	taataaagac	atctggaatt	tgtcttgtat	1980
gcaatatgaa a	atttgctatt	aaacgtggag	ttaaaacttt	atgtcaatag	atccaataac	2040
aatgttcata	aattaatcat	tatgtcatgc	tgtatttcca	aaatactatc	ttaaattata	2100
agagcaaacg	aggtaataa					2119
<210> 16 <211> 2103 <212> DNA <213> Homo <400> 16	sapiens					
gtacattttt	taataaagat	gtttgtttta	actttttgaa	tatgaagatt	tctagttcta	60
gaataatgtt	tataaaaata	tacaaatcca	tctggtgatg	agttgacctc	tatcacaact	120
agtttgcata	tataacttgg	gtgtgaccaa	gcaaggtgag	agttaagaac	ttttaaaact	180
tactgtatta	tattgataga	actcagaaag	tactaacttg	aatattatta	ttctaattgc	240
ttttcccttt	tagttattaa	aaataagaat	acttaaatta	ataacaagat	cttttactgg	300
caggattaac	caaattatct	gtaatgtgtt	cctcgaatgc	ttttaagtgg	aaatatactt	360
tatacattct	ttaacaactc	tgagaggatg	agttacataa	atcagttcag	gaatctatag	420
aatctgtaat	acatagtaaa	ggtttattca	caattaaaac	aatttcactt	ctatattaaa	480
aaaacaaatt	gttgaaagta	cagtggcttt	tcatatgtat	gatttgtaaa	acaaattagc	540
ttttttaaag	tgatgtgacg	cttaatgaga	agaaatcagt	agagaattac	aaactgcact	600
tcaaaagata	catctaatat	cattttaata	atgaaatttg	aaaaaatagt	gtgctcgttt	660
tacagtctca	ttaaatgaat	taaaatatca	gcacacattg	ı tagtaggtta	tcattggcag	720
agaaggctga	aatagaaacg	ttacaatggg	atgcactgcc	atctgaacat	tatgtcgaag	780
tggaacgcgg	aaacatattt	ctcagaacaa	gtggtaaaat	gaaaacagca	tcatttgtaa	840
agcatttctt	ttgagagtgc	ttcagtttct	teteetgate	g acctgccatt	: cagaaactga	900
caatgaataa	tacactctga	caccagcatt	tgtcaatttc	g cccagaacca	tatgagagta	960
ctctagacag	atatatgtto	: cgaagtaaac	c cgaataccto	g ttaactgtaa	a atcaaatctt	1020
gtagaaacca	tgccatggtt	cctttggaca	a tatactttgo	c atgcctgaaq	g caagttacct	1080

taagaaatca ttottttgtt ttacaaaact tgtattaaaa aattaaaaat gcaaaaaagc

ttaatattat	taggaattta	tccatagctt	tatttggaat	ccagtttctt	tattatgatc	1200
tataaacatg	catcatttga	tggagttcct	tagtggagag	gtgtttttcc	atgttgctaa	1260
gaaacatgcc	ccagcaccag	aagggatact	acctaccatc	tttttgccat	ttctcaccgt	1320
gattcttaca	ttgtacctgt	ttactcactg	aacagggctt	ccttctcttt	gtctagattc	1380
taatcaggtg	tcttctggtg	tggaagcttt	ggcttttatt	tacacacaac	acagaattaa	1440
taagatagat	gccaaggatt	tagcaacatt	ttaattcaac	attatacagg	tatcagagtt	1500
aatgagaatt	atgcattagt	ctttaaattt	gggcagctta	ttcagctaaa	acatagatgt	1560
ctagctctta	aacactttgt	ttttttaatt	actctgaaat	tacaataaag	tcaaagaact	1620
gaactgtttt	cttttcaagc	cagtgcaaat	gtgctttagt	tattattta	ctggtgatct	1680
aattatgcat	tttaatgctt	tattacttaa	tacttatata	agcctaaaat	acgttgttaa	1740
tgtcataatt	tcagggattt	tagtattctt	tccatgagtt	accataacta	ggtgcatatg	1800
tgtaaatata	cgtatatatc	tatatctata	tatttatatc	tatgtatata	tcaatttata	1860
agactaaata	gacttggcca	tatgtgttgt	tggtttatgc	atacatgcac	aaatattgag	1920
gtgtccacaa	agtatatatg	cctgtacata	aattacatac	tggctggtga	gtgaatgtaa	1980
gcttctctaa	attgtacaac	tctccacaga	gtggcactct	aatattgcaa	aggtacaata	2040
taagcatgtg	cagaatgaac	agctcttcta	ggatccctat	aaaactccac	cccatgtttc	2100
tgt						2103

<211> 4260

<212> DNA

<213> Homo sapiens

<400> 17

aagetteate ecagaggge acttgecaga tgeetgetag ageteteetg tatgaggagt 60 etateaacae etgetgggag gtgteteete gteaggagge acgggggtea gggacecaet 120 tgaggagget gtetgteet tageggaget agaacaetgt geteggagat ecgetgetet 180 etteagaget ggeaggeaag agtgttttag tetgetgage etgegeecae ageegeecet 240 teececaggt getetgteee agggagatga gagttttate tgtaageece tgaetgggge 300 tgetacett ettteagata tgeecegee agaaggagg aatetagaga ggeagtetgg 360 etacageage tttgeeaage tgeagtggge tetgeecagt ecaaaattee eageggttt 420

gtttacattg	tgaggggaaa	agcacctact	caagcctcag	ttatggcagt	tgecectece	480
cccaccaagc	tccagggtcc	caggtgtcct	tcagactgct	gtgctggcaa	tgagaatttc	540
aagccagtgg	atcttagctt	gctgggctcc	acaggggtgg	gatccactga	gctagaccac	600
ttagctccct	ggcttcagcc	ccctttccag	gtgagtggat	ggttctgtct	cactggcatt	660
ccaggtgcta	ctggggtatg	aaaaaaaaa	ctcctgcagc	tagcttggtg	tctgcccagt	720
tttgtgcttg	aaactcaggc	ccttggtggt	gtggacaccc	aatggaatct	cctggtgtgc	780
atgttgtgaa	gactgtggga	aaagcatagt	atctgggctg	gatagctccg	tccttcaagg	840
cacagtccct	catgacttcc	cttggctagg	ggagggagtt	ccccaaccct	ttgcacttcc	900
caggtgaggc	aacaccccac	cctgcttctg	ctcaccctct	gtgggctgca	cccactgtct	960
aatcagtcac	tgtgagatga	gcctggtacc	tcagttggaa	atgcagaaat	cacctgcctt	1020
ctgtgttgat	ctcactggga	gcagcagact	ggagctgttc	ctattcagcc	atctttctca	1080
ggtcataatc	atagattttt	aattgatccc	agcaacatgg	attagtaaac	agcatatttc	1140
caagtgattt	ttttttattt	taaggtcaaa	tctacaaaat	attatagtgt	tatcaccact	1200
taaaattatt	actggtgata	ctatgtttgt	ctctattcac	attttattgc	tagaaagaat	1260
tataatttgt	agataataat	agttatttga	aatgtattac	atatcctttt	acttttaaga	1320
agaggtgact	taattatcta	ggtatacaat	tattttgagg	atactaaatg	tcatgaatag	1380
caaatttatc	atattgcttt	cctaggtgaa	gaccctgaaa	caagaagaat	gagaacagtt	1440
aaaaacatag	cagacttgag	gcagaattta	gaagagacta	tgtccagtct	tcgtgggact	1500
cagataagcc	acaggttttt	ttcaattttg	catatatttg	agccaataaa	gaaaaaataa	1560
ttacaaacaa	acatttaact	tttcttataa	tgacagagat	gggatttcag	tttcccctta	1620
ctattttctc	ccttgtttta	tatcaaattg	attggtaatt	atccttaaac	tgagaattca	1680
cagtatatac	ctatttatct	tttatctcta	tctctatctg	ctatttatgt	ctttttcagt	1740
ataatttcca	gtactgcaac	taccaccatc	actgttaagt	ggatttgtaa	tacctgtcct	1800
agaaaacagt	ggcacaagtt	gcacttgaaa	tgcatctggg	g cagggtagta	gggagacatt	1860
caaacataat	tgtagttaac	tttcagaata	ggtctgggaa	ggttacagtg	agttaaggat	1920
ttgttgaaaa	tgtaaaacaa	tatgttgttt	tacccaaggt	gtactgatgg	cctttctttt	1980
gaaaacaaac	gaaaagctat	aaaatgtatg	cccctttcca	caatttgacc	tcaaaatgaa	2040
tatagagttt	agctttcggg	aagatgacgt	gtttataaga	a gatgaccctc	aactccagcc	2100

ttttctgtct	tcatgcattc	tagattatgg	ccctaagtga	accagagtat	agttatttct	2160
ccattttatt	tgacagcacc	ctggagacaa	catttgacag	cactgtgaca	acagaagtta	2220
atggaaggac	catacccaac	ttgacaagtc	gacccacccc	catgacctgg	aggttgggcc	2280
aggcatgtcc	gcgacttcag	gcgggagatg	ctccctccct	gggtgctggc	tatcctcgca	2340
gtggtaccag	tcgattcatc	cacacagacc	cctcgaggtt	catgtatacc	acgcctctcc	2400
gtcgagctgc	tgtctctagg	ctgggaaaca	tgtcacagat	tgacatgagt	gagaaagcaa	2460
gcagtgacct	ggacatgtct	tctgaggtcg	atgtgggtgg	atatatgagt	gatggtgata	2520
tccttgggaa	aagtctcagg	actgatgaca	tcaacagtgg	gtaagtaacc	ctgttctccg	2580
tcagcattgt	gtgaagaggg	gaggtggtct	actataatgc	attcactata	aacaaatgtg	2640
taagtttgcc	cagaaagtca	tgagaacata	tgagatatct	gaggttattc	agagtgttga	2700
agggcccttc	ctctgctcat	tcatggagag	taaagaatcc	aagatttcta	taaattcatt	2760
ataagccgct	aagtttttct	gttgttgaga	gaaacacatg	tggcttctgt	ttttcagagt	2820
gattttcaca	tgcttcttaa	gtaacagatt	ttgtagttaa	ggacgtggga	aggagacagg	2880
aggagttttg	ctgatttgct	tgatttttt	tttcttttt	agcttgttag	aagcggcctg	2940
taactgcttt	gagaaacaaa	tattttctta	ctgtcttcaa	ttatgcatcc	ccaatttaac	3000
ttgagggaaa	aatcactttg	gagttgaaag	tttcactcta	ttcattttct	tttgatggta	3060
tcagatttca	atacatctca	gaccctgttt	ttcttctgtg	tcctattaca	ttccaaaaca	3120
tgttgtgatt	gtaaaactct	tagagtatat	taacaatttg	ggatatttgg	cataatcaga	3180
gaataggtcc	aaaaggaggc	aataggatat	tctattaata	attgtaattg	ccatttttag	3240
catttcctgt	tatgtactat	gctcttgtca	agtgctttga	agatagtgtt	ttacttttcc	3300
ttcccaccac	cagcaatgtt	tatgaggtag	atgtttttat	acatgttcta	tggataagga	3360
aactgagtct	aattggcccc	ggctgggaac	taacgctagg	gaaacggcag	acctgcatta	3420
gaactcagct	atgtctgact	tcaaacacag	gctcagtaat	atgtggaaaa	gcttcccaat	3480
taactttgtc	tataaacttt	gtgtgagtct	ggattttgac	ttactctttg	tctttacgca	3540
tctgagagga	cccatgtagg	aaataattct	tctatataag	tgacccttcc	tgacttcatt	3600
catgaaaagc	ttatgtttga	agggtgacac	gacctaaaaa	agagtacaaa	atagcttttg	3660
attacattta	tagctttgct	ctgatatcct	aatacctact	agtccattcc	tggtatccac	3720
cctacctgac	tttctaaaaa	tttagaatta	tagagactaa	ttatgattaa	ttaagatagg	3780
ttgttgttca	gttgccactg	gattcagagt	gcctagtttg	aatctctccc	attcactatc	3840

tgtggacccc	ttcggaacct	aacgtatcca	aattagtttt	tgtcatctag	aataaggata	3900
aaattgtacc	atcttcatga	agttgttagg	atcatccaca	aattttagtt	tgcgcaatgc	3960
ttggcatgat	acaagcactc	aataaattta	tcatcttcct	ctttatcatc	actattacat	4020
ttattatcat	taataaccat	accaatttt	ggttgttgtt	agttataatt	atcatttttg	4080
tatgtattta	acatagccta	ggaggcaatg	cccagttcag	aaaacataat	ggcaaagcaa	4140
gagtgtctaa	ggcacactct	ttctcccatc	tctctcttct	ttcttctcca	ttctttccac	4200
tctatcccct	cttctctttt	ttttctcaat	ctccttagat	gtggacatat	gtgtgaattc	4260

<210> 18

<211> 2429

<212> DNA

<213> Homo sapiens

<400> 18

tgtgggtgtg	ggtgtgaagc	atgtgtatgt	gtgtgtgtga	agcatctccc	cacctgtaat	60
gtaagtccat	gagtgcagaa	tttttgacat	attctttacg	tgttgagttt	taacaaatgt	120
ttgtggagtg	aatgaacaaa	ttaatgaata	taggctattt	attaattagg	caatatagtc	180
acataggctg	gcaatcgcat	ctaattaaat	agagtggtaa	atgagttcca	gaaagaacta	240
aggtactaca	aggatgttat	gaaagagaaa	aatgagttat	gtgaaaaata	ggagacagtg	300
ataagaggga	aagaatccca	aagtgtgggc	cacattttga	aactaatgac	ctattattct	360
attattgtta	gctgaaagta	gaaaacgtca	tgggagggaa	tatctgctag	tttttggtaa	420
aggatgttgt	gatggcagaa	ccaagaaatg	aacacaaggt	gactttggtt	tggggacagt	480
gggataatca	actctccttg	ctccatcagg	gccccagact	gggctctggc	agaggaactc	540
agaacaacgt	aaagacctag	ataggtatct	aataaattgg	gacctgtgaa	aacagtgcct	600
cttaaagtgt	ggtacctgga	ccagcagcag	cagcagcagc	agccattgaa	acttcataga	660
aagacagatt	ctcagcttca	tccaagactt	actgaattag	aatatctcaa	ggtaaggcct	720
ggtaatctga	gctttaacta	gccctcaagg	tgattcttaa	gttcaagcat	cactatatta	780
agttgaacaa	atagatgcca	ggcctataaa	tacatgtaac	gcctagcata	aatatttcaa	840
cattaaaaat	gacatttcat	agttcttatt	taccctatta	gctgtgttct	gtcaagataa	900
tgagaatatt	gatatgttag	aatacactga	tgcactaatt	tttaaattag	atcaaataat	960
gacttgttat	acctgaaata	aattggttca	gcttggtaga	tgcagttttt	gagaattata	1020

taagtcattt tta	aaagaat	aattttaact	tgagctgctt	gcataaatta	aattgcaaaa	1080
aggtcatagt ata	aatcctc	ctattagcag	agatagaagg	tttttaaaaa	aattacagat	1140
aagtctgaag gto	cttttaaa	atcttatatt	caggaagtga	ctcgggatgt	atatcatttt	1200
aaaatacatg gto	cttaaatg	ttgtagttgt	atgactcttt	cagttaattt	aaaatacttc	1260
cttctatgaa aaa	attgtttc	aaaaattttt	ctaaattctg	ttatccattt	caagtaggat	1320
aggcaagaac aga	atataaga	tactactttt	ttgttcatgt	ttactaaaaa	aaaaattact	1380
gtaattgaga tca	atgtaaaa	acatgtttcc	tgtctatttg	tcttaacctt	ttaatcctgg	1440
caccttaaat ttg	gacatagt	aggaattaga	agacaattgc	agaaaatgtc	aactggggaa	1500
attttattct act	taaaaact	atgtccatac	aacatagcaa	atcacatttt	aaaggccaaa	1560
aagtetttea tag	gcaatttt	tcagattatt	ttcaaagcat	atcttctctc	tgctcctgca	1620
gcatgccgtt ga	tttttctg	ttatgcagtc	acataagtaa	ttacatgttt	acatgtctat	1680
ttcactcata ga	acacgaaa	cagttaaatg	tagaataata	tccaatccat	ctttttatca	1740
ccagtagcta gc	atactgta	ggaactcaat	aaatatatca	gataaattgt	ggaaataacc	1800
atatcagctt at	aacatata	gaaatgtgag	tttaaaaaga	aaacaattat	acatatgaaa	1860
aaattttat ac	catttttt	taaagacctt	tcagatgtca	tacagtttgg	acttttccag	1920
tgtttcttgt at	catgagac	aatagtagac	attgtaaatc	aaaaatagtt	ttctggggtt	1980
gtgtacattt ga	aaaaactg	aatatcatat	ctgttcttag	agagtaatga	tggatattaa	2040
catatcaaag gt	acagagaa	gtcttaaagt	tcaaagtaac	atctgcttaa	ttgtatttaa	2100
ttcagtgctc ca	tgagcttt	tttatcactg	attccctccc	ttttttctct	tatgataata	2160
attaacttgt to	ctgtagca	ttttaagaaa	tgttgattta	gttgaatgcc	ttcacttctc	2220
caatataata gc	agaaactc	agaaatattt	atttacccag	aatcatgcag	ctaatagtac	2280
aaggattcag gt	cttttact	tcctattttg	tggttcccaa	ctacttttgc	caaaggtctt	2340
ttaaataata tg	gaaacatat	tagtgattga	. ttcattatag	taaatgggta	aatgataagg	2400
cttgcaataa tt	cactgaca	agaaagctt				2429

<210> 19

<211> 2926

<212> DNA

<213> mouse

<220>

<221> CDS

<222> (2)...(2926)

<400> 19

					eu Gi											46
					gcc Ala											94
					ggt Gly											142
gcc Ala	ccc Pro	tcc Ser	atg Met	ggc Gly	gct Ala	gga Gly	tat Tyr	tct Ser	cga Arg	agc Ser	ggt Gly	acc Thr	agc Ser	cga Arg	ttc Phe	190
					tcc Ser											238
					ctg Leu											286
aaa Lys	gca Ala	agc Ser	agt Ser	gac Asp	ctg Leu	gat Asp	gtg Val	tct Ser	tct Ser	gaa Glu	gtg Val	gat Asp	gtt Val	ggt Gly	gga Gly	334
					gat Asp											382
					atg Met											430
					ccg Pro											478
_		_		_	gtg Val			_	-	_	_		_			526
agt Ser	tct Ser	gtg Val	agc Ser	agt Ser	ggc Gly	ctc Leu	agt Ser	gac Asp	aca Thr	ctt Leu	gat Asp	aac Asn	att Ile	agc Ser	aca Thr	574
					acg Thr										act Thr	622

					aac Asn										670
_			_		acc Thr	 _	_				_	_		_	718
					agc Ser										766
					gct Ala										814
_	_				cag Gln					_		_		_	862
					gct Ala										910
					aag Lys										958
					gga Gly		_						_	_	1006
					gat Asp										1054
_	_		~	_	agt Ser				_	_		_			1102
					att Ile										1150
					aaa Lys										1198
					aaa Lys										1246
					gtg Val										1294
_		_			aag Lys	_		_					_	ggt Gly	1342

ggc Gly	cac His	agg Arg	tcg Ser	agc Ser	acc Thr	agc Ser	agc Ser	att Ile	gat Asp	tcc Ser	aat Asn	gtc Val	agc Ser	agc Ser	aag Lys	139	∌ 0
			gcc Ala													143	38
			tcg Ser													148	36
			gca Ala													153	34
ccc Pro	aaa Lys	tcc Ser	agc Ser	ccc Pro	acc Thr	tct Ser	gcc Ala	agt Ser	gcc Ala	tgt Cys	Gly 999	act Thr	caa Gln	gly ggg	ctc Leu	158	32
aga Arg	cag Gln	cca Pro	glà aaa	tcc Ser	aaa Lys	tat Tyr	cca Pro	gat Asp	att Ile	gcc Ala	tcg Ser	ccc Pro	aca Thr	ttt Phe	cga Arg	163	30
agg Arg	ttg Leu	ttc Phe	ggt Gly	gcc Ala	aag Lys	gca Ala	ggc Gly	ggc Gly	aaa Lys	tct Ser	gcc Ala	tcc Ser	gca Ala	cct Pro	aat Asn	16	78
act Thr	gag Glu	gly ggg	gcg Ala	aag Lys	tcc Ser	tcc Ser	tca Ser	gta Val	gtg Val	ctc Leu	agc Ser	cct Pro	agt Ser	acc Thr	tct Ser	172	26
tta Leu	gcc Ala	cga Arg	caa Gln	ggc Gly	agt Ser	ctg Leu	gag Glu	tca Ser	ccg Pro	tcg Ser	tcc Ser	ggt Gly	acg Thr	gga Gly	agc Ser	17	74
atg Met	ggc Gly	agt Ser	gct Ala	ggt Gly	Gly aaa	ctg Leu	agt Ser	ggc Gly	agc Ser	agc Ser	agc Ser	cct Pro	ctc Leu	ttc Phe	aat Asn	183	22
aaa Lys	ccc Pro	tca Ser	gac Asp	cta Leu	act Thr	aca Thr	gat Asp	gtt Val	ata Ile	agc Ser	tta Leu	agt Ser	cac His	tcc Ser	ttg Leu	18	70
gct Ala	tcc Ser	agc Ser	cca Pro	gcg Ala	tcg Ser	gtt Val	cac His	tct Ser	ttc Phe	aca Thr	tcc Ser	ggt Gly	Gly 999	ctt Leu	gtg Val	19	18
			aat Asn													19	56
agt Ser	tac Tyr	cag Gln	tcc Ser	atg Met	act Thr	agt Ser	ctc Leu	cat His	acg Thr	agc Ser	tct Ser	gag Glu	tcc Ser	att Ile	gac Asp	20	14

ctg Leu	ccc Pro	ctc Leu	agc Ser	cat His	cat His	ggc Gly	tcc Ser	ctg Leu	tct Ser	gga Gly	ctg Leu	acc Thr	aca Thr	ggc Gly	act Thr	2062
cac His	gag Glu	gtg Val	cag Gln	agc Ser	ctg Leu	ctc Leu	atg Met	aga Arg	acg Thr	ggt Gly	agt Ser	gtg Val	aga Arg	tct Ser	act Thr	2110
ctc Leu	tca Ser	gaa Glu	aga Arg	tac Tyr	acc Thr	cca Pro	tca Ser	tct Ser	cgg Arg	cag Gln	gcc Ala	aac Asn	caa Gln	gaa Glu	gaa Glu	2158
ggc Gly	aaa Lys	gag Glu	tgg Trp	ctg Leu	cga Arg	tcg Ser	cat His	tcc Ser	act Thr	ggc Gly	Gly aaa	ctg Leu	cag Gln	gat Asp	act Thr	2206
ggc Gly	aac Asn	cag Gln	tct Ser	ccc Pro	ttg Leu	gtc Val	tcc Ser	cct Pro	tct Ser	gcc Ala	atg Met	tca Ser	tcg Ser	tca Ser	gcc Ala	2254
acc Thr	gga Gly	aaa Lys	tat Tyr	cac His	ttt Phe	tcc Ser	aac Asn	ttg Leu	gtg Val	agt Ser	ccc Pro	acc Thr	aac Asn	ctc Leu	tcc Ser	2302
cag Gln	ttt Phe	aac Asn	ctg Leu	cct Pro	gca Ala	ccc Pro	agt Ser	atg Met	atg Met	cgc Arg	tcc Ser	agc Ser	agt Ser	atc Ile	ccc Pro	2350
gcc Ala	cag Gln	gac Asp	tcc Ser	tcc Ser	ttc Phe	gac Asp	ctc Leu	tat Tyr	gat Asp	gat Asp	gcc Ala	cag Gln	ctt Leu	tgc Cys	ggt Gly	2398
agt Ser	gca Ala	act Thr	tcc Ser	ctg Leu	gag Glu	gaa Glu	agg Arg	cca Pro	cgg Arg	gcc Ala	gtt Val	agc Ser	cac His	tcc Ser	ggc Gly	2446
tca Ser	ttc Phe	aga Arg	gac Asp	agc Ser	atg Met	gag Glu	gaa Glu	gtt Val	cat His	ggc Gly	tct Ser	tca Ser	ctg Leu	tca Ser	ttg Leu	2494
gtc Val	tcc Ser	agc Ser	aca Thr	tca Ser	tcc Ser	ctt Leu	tac Tyr	tct Ser	acg Thr	gct Ala	gaa Glu	gag Glu	aag Lys	gct Ala	cat His	2542
												gcc Ala				2590
aaa Lys	gtc Val	gct Ala	acc Thr	ctc Leu	acg Thr	tct Ser	cag Gln	ctg Leu	tca Ser	gca Ala	aat Asn	gct Ala	cac His	ctt Leu	gta Val	2638
Ala	Ala	Phe	Glu	Lys	Ser	Leu	Gly	Asn	Met	Thr	Gly	cgt Arg	Leu	Gln	Ser	2686
cta	acc	atg	aca	gcg	gaa	caa	aag	gaa	tct	gag	ctt	atc	gaa	ctg	cgg	2734

Leu	Thr	Met	Thr	Ala	Glu	Gln	Lys	Glu	Ser	Glu	Leu	Ile	Glu	Leu	Arg	
				atg Met												2782
att	cag	gga	gca	ctg Leu	aat	ggc	cca	gac	cac Hie	cct	cec Pro	aaa	gat Asn	ctc	cgc Ara	2830
TIE	GIII	GIY	Ата	Бец	ASII	Gly	FLO	тэр	1115	110	110	цуб	пор	Lou	**** 5	
				cac His												2878
iie	arg	Arg	GIII	птъ	ser	ser	Giu	261	vai	Ser	DCI	110	ADII	SCI	AIu	
				agc Ser												2926
+111	DCI	****	~~			1		1		-1-				1	-	

<210> 20

<211> 975

<212> PRT

<213> Mouse

<400> 20

Ser His Ser Thr Leu Glu Thr Thr Phe Asp Thr Thr Val Thr Thr Glu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Asn Gly Arg Ala Ile Pro Asn Leu Thr Ser Arg Pro Ser Pro Met 20 25 30

Thr Trp Arg Leu Gly Gln Ala Cys Pro Arg Leu Gln Ala Gly Asp Ala 35 40 45

Pro Ser Met Gly Ala Gly Tyr Ser Arg Ser Gly Thr Ser Arg Phe Ile 50 55 60

His Thr Asp Pro Ser Arg Phe Met Tyr Thr Thr Pro Leu Arg Arg Ala 65 70 75 80

Ala Val Ser Arg Leu Gly Asn Met Ser Gln Ile Asp Met Ser Glu Lys 85 90 95

Ala Ser Ser Asp Leu Asp Val Ser Ser Glu Val Asp Val Gly Gly Tyr
100 105 110

Met Ser Asp Gly Asp Ile Leu Gly Lys Ser Leu Arg Ala Asp Asp Ile 115 120 125

Asn Ser Gly Tyr Met Thr Asp Gly Gly Leu Asn Leu Tyr Thr Arg Ser 130 135 140

Leu Asn Arg Val Pro Asp Thr Ala Thr Ser Arg Asp Val Ile Gln Arg 145 150 155 160

Gly Val His Asp Val Thr Val Asp Ala Asp Ser Trp Asp Asp Ser Ser Ser Val Ser Ser Gly Leu Ser Asp Thr Leu Asp Asn Ile Ser Thr Asp Asp Leu Asn Thr Thr Ser Ser Ile Ser Ser Tyr Ser Asn Ile Thr Val 200 Pro Ser Arg Lys Asn Thr Gln Leu Lys Thr Asp Ala Glu Lys Arg Ser 215 Thr Thr Asp Glu Thr Trp Asp Ser Pro Glu Glu Leu Lys Lys Ala Glu 225 230 Gly Asp Cys Asp Ser His Gly Asp Gly Ala Ala Lys Trp Lys Gly Ala 250 Thr Ser Gly Leu Ala Glu Asp Ser Glu Lys Thr Gly Gln Lys Ala Ser Leu Ser Val Ser Gln Thr Gly Ser Trp Arg Arg Gly Met Ser Ala Gln 280 Gly Gly Thr Pro Ala Thr Ala Arg Gln Lys Thr Ser Thr Ser Ala Leu 295 Lys Thr Pro Gly Lys Thr Asp Asp Ala Lys Ala Ser Glu Lys Gly Lys 310 315 Thr Pro Leu Lys Gly Ser Ser Leu Gln Arg Ser Pro Ser Asp Ala Gly Lys Ser Ser Gly Asp Glu Gly Lys Lys Pro Pro Ser Gly Ile Gly Arg 345 Ser Thr Ala Ser Ser Ser Phe Gly Tyr Lys Lys Pro Ser Gly Val Gly 355 360 Ala Ser Thr Met Ile Thr Ser Ser Gly Ala Thr Ile Thr Ser Gly Ser 375 Ala Thr Leu Gly Lys Ile Pro Lys Ser Ala Ala Ile Gly Gly Lys Ser 390 395 Asn Ala Gly Arg Lys Thr Ser Leu Asp Gly Ser Gln Asn Gln Asp Asp Val Val Leu His Val Ser Ser Lys Thr Thr Leu Gln Tyr Arg Ser Leu 425 Pro Arg Pro Ser Lys Ser Ser Thr Ser Gly Ile Pro Gly Arg Gly Gly

His Arg Ser Ser Thr Ser Ser Ile Asp Ser Asn Val Ser Ser Lys Ser

	450					455					460				
Ala 465	Gly	Ala	Thr	Thr	Ser 470	Lys	Leu	Arg	Glu	Pro 475	Thr	Lys	Ile	Gly	Ser 480
Gly	Arg	Ser	Ser	Pro 485	Val	Thr	Val	Asn	Gln 490	Thr	Asp	Lys	Glu	Lys 495	Glu
Lys	Val	Ala	Val 500	Ser	Asp	Ser	Glu	Ser 505	Val	Ser	Leu	Ser	Gly 510	Ser	Pro
Lys	Ser	Ser 515	Pro	Thr	Ser	Ala	Ser 520	Ala	Cys	Gly	Thr	Gln 525	Gly	Leu	Arg
Gln	Pro 530	Gly	Ser	Lys	Tyr	Pro 535	Asp	Ile	Ala	Ser	Pro 540	Thr	Phe	Arg	Arg
Leu 545	Phe	Gly	Ala	Lys	Ala 550	Gly	Gly	Lys	Ser	Ala 555	Ser	Ala	Pro	Asn	Thr 560
Glu	Gly	Ala	Lys	Ser 565	Ser	Ser	Val	Val	Leu 570	Ser	Pro	Ser	Thr	Ser 575	Leu
Ala	Arg	Gln	Gly 580	Ser	Leu	Glu	Ser	Pro 585	Ser	Ser	Gly	Thr	Gly 590	Ser	Met
Gly	Ser	Ala 595	Gly	Gly	Leu	Ser	Gly 600	Ser	Ser	Ser	Pro	Leu 605	Phe	Asn	Lys
Pro	Ser 610	Asp	Leu	Thr	Thr	Asp 615	Val	Ile	Ser	Leu	Ser 620	His	Ser	Leu	Ala
Ser 625	Ser	Pro	Ala	Ser	Val 630	His	Ser	Phe	Thr	Ser 635	Gly	Gly	Leu	Val	Trp
Ala	Ala	Asn	Leu	Ser 645	Ser	Ser	Ser	Ala	Gly 650	Ser	Lys	Asp	Thr	Pro 655	Ser
Tyr	Gln	Ser	Met 660	Thr	Ser	Leu	His	Thr 665	Ser	Ser	Glu	Ser	Ile 670	Asp	Leu
Pro	Leu	Ser 675	His	His	Gly	Ser	Leu 680	Ser	Gly	Leu	Thr	Thr 685	Gly	Thr	His
Glu	Val 690	Gln	Ser	Leu	Leu	Met 695	Arg	Thr	Gly	Ser	Val 700	Arg	Ser	Thr	Leu
Ser 705	Glu	Arg	Tyr	Thr	Pro 710	Ser	Ser	Arg	Gln	Ala 715	Asn	Gln	Glu	Glu	Gly 720
Lys	Glu	Trp	Leu	Arg 725	Ser	His	Ser	Thr	Gly 730	Gly	Leu	Gln	Asp	Thr 735	Gly
Asn	Gln	Ser	Pro 740	Leu	Val	Ser	Pro	Ser 745	Ala	Met	Ser	Ser	Ser 750	Ala	Thr

Gln 785	Asp	Ser	Ser	Phe	Asp 790	Leu	Tyr	Asp	Asp	Ala 795	Gln	Leu	Cys	Gly	Ser 800		
Ala	Thr	Ser	Leu	Glu 805	Glu	Arg	Pro	Arg	Ala 810	Val	Ser	His	Ser	Gly 815	Ser		
Phe	Arg	Asp	Ser 820	Met	Glu	Glu	Val	His 825	Gly	Ser	Ser	Leu	Ser 830	Leu	Val		
Ser	Ser	Thr 835	Ser	Ser	Leu	Tyr	Ser 840	Thr	Ala	Glu	Glu	Lys 845	Ala	His	Ser		
Glu	Gln 850	Ile	His	Lys	Leu	Arg 855	Arg	Glu	Leu	Val	Ala 860	Ser	Gln	Glu	Lys		
Val 865	Ala	Thr	Leu	Thr	Ser 870	Gln	Leu	Ser	Ala	Asn 875	Ala	His	Leu	Val	Ala 880		
Ala	Phe	Glu	Lys	Ser 885	Leu	Gly	Asn	Met	Thr 890	Gly	Arg	Leu	Gln	Ser 895	Leu		
Thr	Met	Thr	Ala 900	Glu	Gln	Lys	Glu	Ser 905	Glu	Leu	Ile	Glu	Leu 910	Arg	Glu		
Thr	Ile	Glu 915	Met	Leu	Lys	Ala	Gln 920	Asn	Ser	Ala	Ala	Gln 925	Ala	Ala	Ile		
Gln	Gly 930	Ala	Leu	Asn	Gly	Pro 935	Asp	His	Pro	Pro	Lys 940	Asp	Leu	Arg	Ile		
Arg 945	Arg	Gln	His	Ser	Ser 950	Glu	Ser	Val	Ser	Ser 955	IJlе	Asn	Ser	Ala	Thr 960		
Ser	His	Ser	Ser	Ile 965	Gly	Ser	Gly	Asn	Asp 970	Ala	Asp	Ser	Lys	Lys 975			
<21 <21	0 > 2 1 > 2 2 > D 3 > m	583 NA															
<40	0> 2	1															
ggg	atga	agg	gaaa	aagc	ca c	cgtc	aggc	a tt	ggaa	gatc	gac	agcc	agc	agtt	cttttg	6	50
gat	acaa	gaa	gcca	agtg	gt g	tagg	ggct	t cc	acta	tgat	tac	cagc	agc	ggtg	ccacca	12	2 (
tca	caag	cgg	ttca	gcta	ca c	tggg	gaaa	a tc	ccca	aatc	cgc	tgcc	att	ggtg	ggaagt	18	3 (

Gly Lys Tyr His Phe Ser Asn Leu Val Ser Pro Thr Asn Leu Ser Gln

Phe Asn Leu Pro Ala Pro Ser Met Met Arg Ser Ser Ser Ile Pro Ala

760

770 775 780

ccaatgcagg	aaggaaaacc	agcctggacg	ggtcccagaa	tcaagatgat	gttgtcctgc	240
acgtgagctc	gaagaccacc	ctccagtacc	gtagtttgcc	ccgcccttct	aagtccagca	300
ccagcggaat	ccctgggaga	ggtggccaca	ggtcgagcac	cagcagcatt	gattccaatg	360
tcagcagcaa	gtcagctggg	gccaccacct	ccaaactgag	agaaccgact	aagatcggct	420
cagggcgctc	gagtccagtc	actgtcaacc	aaacagacaa	agagaaggag	aaagtagcag	480
tgtcagattc	agagagcgtt	tccttgtcag	gttcccccaa	atccagcccc	acctctgcca	540
gtgcctgtgg	gactcaaggg	ctcagacagc	cagggtccaa	atatccagat	attgcctcgc	600
ccacatttcg	aaggtaaggg	tatgtaaaga	gatgttggga	aaacataaaa	ggtagtatat	660
agcatgtatt	tattctgtac	gaaactattt	tcatgtattc	taaatattct	aagattctgt	720
atcttatact	tgtctaaaat	atagtgattt	tattttgctg	attgcacctg	ttgctagtgt	780
aaaagcattg	ctcatttaga	gagtggttag	cctttcagct	atacagccag	tgtgacacta	840
aaatacagat	accacttgta	gcgggcataa	aaccacatga	ctgactattc	atagaaataa	900
agtgatagct	tgtaaagata	tttagtgatt	tccacctctc	ctttccagaa	ttaaaaaaag	960
caaattgcat	agatctttat	aaacacattt	acttctagtg	tatgttatct	tgttgactct	1020
taatgaaatg	gcagttatga	atatagatga	tatattcttt	ctaacagttt	ataagagacc	1080
aatttataca	gtaccagatc	ttaacatagt	aacaataaca	gcaacaaaaa	caacccaaaa	1140
agctatcaaa	gtatggtctg	attgcagaat	ttgaaaacat	ttacatgttt	gacataggac	1200
aagaactcag	gagtgaggtg	actttttata	agtcttcatc	aatgtccttt	tacaggaacc	1260
aggaagcata	tctgatatat	gtgtcaggat	tatcacttta	ttaattatgt	gaaattctgt	1320
ttagaaatct	acctgatttt	aaatacttta	atatagtagg	ggtcaaaatt	agttaatgag	1380
ttaagacaag	ttgttaaata	atcctggctc	tgttttctca	tcttcaaaat	gatagagtat	1440
aatttatcac	ctcttgttaa	atatttcagg	tttgtgttta	ttctcttgat	aactttgatc	1500
tcttagaaga	gtcttgaaga	atttacatta	agtaatctta	gaaacataac	tatttgagaa	1560
acagtagtca	aattttgtca	ttagaagtat	taactctgaa	gaatgatttg	aagtgacagt	1620
tcttagaaag	aataaattat	agcttgtagc	aagagtaaat	attttcactg	cttgtgtgag	1680
agccaagagc	gccctcttgt	ggcccattac	ctatgaaaca	atttctcata	ttcgccctag	1740
aaatcttcca	ctgcaggaaa	taatggattt	cattgcctct	gaattagtaa	ccattctgcc	1800
atttcttcat	accattttat	ttccatactt	gcataaattt	gattatgtca	tctgcttcat	1860
ttacaaaact	aaaatgtttt	ctgagctaaa	ctccagtagc	taacttagta	caaatggtat	1920

ttttaaatca ctgctataag	tatatatatt	tgaatagctc	tggcaacgga	cggaaatccc	1980
tatggtcttt ccatgggaag	atacaaacca	atccataagt	tgtccagcaa	tatccaatat	2040
ttccagccca gccagtcagg	cctcttaaac	attaccttac	atatttgaac	ctttccttaa	2100
atgtcccctt tagacaatct	attttttaaa	aagatgaaaa	tccatttaag	catcatatat	2160
cgaatgcgta gaagttgttt	cattataatg	gttctgcaga	taggtaatgc	caaaacggcc	2220
aaaatatttg atcactagaa	gcgtaaaagt	caagtacaat	catgttgact	ttttttccaa	2280
ggtgggttca ctgctgccca	ccttggttcc	aggccagtgc	ttacttaaga	tatcgtaagt	2340
gattttttt taattttaa	ttttttagta	gttggttaat	caaaagccag	tcatgtcacc	2400
ttcaggaaca tagaggctgg	acgtgcttgg	cagctcacga	ctccaaagca	cacttggctc	2460
tgtggactga aaccctagga	aacgtggatg	tgagtctctt	ggaacaactc	aagttgttat	2520
ttgtttttct tttaggttgt	tcggtgccaa	ggcaggcggc	aaatctgcct	ccgcacctaa	2580
tac				,	2583

- <210> 22
- <211> 37
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> CDS
- <222> (2)..(34)
- <400> 22
- c cgc ggg gct tcc atc ctt cct ttg act gat ttt taa Arg Gly Ala Ser Ile Leu Pro Leu Thr Asp Phe *

37

- <210> 23
- <211> 6768
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> CDS
- <222> (1)..(5928)
- <400> 23

Ile	Leu	Ile	Cys	Ile	Phe	Pro	Ala	Ala	Pro	Pro	Leu	Phe	Leu	Arg	Pro	
cgc Arg	cct Pro	atc Ile	gct Ala	ccc Pro	cgg Arg	ctt Leu	ccc Pro	tgc Cys	tct Ser	ttc Phe	ctt Leu	ttt Phe	ccc Pro	ggc Gly	ttc Phe	96
ctt Leu	cct Pro	cgc Arg	gtt Val	tct Ser	ttc Phe	ccc Pro	tgc Cys	gcc Ala	ctc Leu	ggc Gly	ttg Leu	cct Pro	ctc Leu	tcc Ser	ctc Leu	144
			tct Ser													192
gtc Val	ctc Leu	tct Ser	ctc Leu	ccc Pro	ctc Leu	ctc Leu	ctc Leu	ccc Pro	cgc Arg	ctc Leu	ctc Leu	ctc Leu	ctg Leu	cgc Arg	tcc Ser	240
cgc Arg	ccc Pro	ctg Leu	ccc Pro	cct Pro	ccc Pro	ccc Pro	gtg Val	cct Pro	gca Ala	gac Asp	gcg Ala	cgg Arg	atc Ile	gtc Val	cat His	288
gcg Ala	ctc Leu	ctc Leu	gcg Ala	ggc Gly	aga Arg	atg Met	ctg Leu	ggc Gly	agc Ser	agc Ser	gtc Val	aag Lys	agc Ser	gtg Val	cag Gln	336
ccc Pro	gag Glu	gtg Val	gag Glu	ctg Leu	agc Ser	agc Ser	ggc Gly	ggc Gly	ggc Gly	gac Asp	gag Glu	ggc Gly	gcg Ala	gac Asp	gaa Glu	384
ccg Pro	cgg Arg	ggc Gly	gcc Ala	ggc Gly	agg Arg	aag Lys	gcg Ala	gca Ala	gcg Ala	gcg Ala	gac Asp	ggc Gly	aga Arg	ggc Gly	atg Met	432
ctg Leu	ccc Pro	aag Lys	cgc Arg	gcc Ala	aag Lys	gcg Ala	ccc Pro	ggc Gly	ggc Gly	ggc Gly	ggc Gly	ggc Gly	atg Met	gcc Ala	aag Lys	480
gcc Ala	agc Ser	gcg Ala	gct Ala	gag Glu	ctg Leu	aag Lys	gtc Val	ttc Phe	aag Lys	tcc Ser	ggc Gly	agc Ser	gtg Val	gac Asp	agc Ser	528
cgt Arg	gtc Val	ccc Pro	ggc Gly	Gly 999	ccg Pro	ccc Pro	gcc Ala	tcc Ser	aac Asn	ctg Leu	cgc Arg	aag Lys	cag Gln	aag Lys	tca Ser	576
			ctc Leu													624
tat Tyr	gag Glu	ccc Pro	gaa Glu	tgg Trp	agc Ser	gac Asp	gat Asp	atg Met	gcc Ala	aag Lys	gcg Ala	ccc Pro	aaa Lys	ggc Gly	tta Leu	672
ggc Gly	aag Lys	gtg Val	gly aaa	tcc Ser	aag Lys	ggc Gly	cgt Arg	gaa Glu	gct Ala	ccg Pro	ctg Leu	atg Met	tcc Ser	aag Lys	acg Thr	720

ctg Leu	tcc Ser	aag Lys	tcg Ser	gag Glu	cac His	tcg Ser	ctc Leu	ttc Phe	cag Gln	gcc Ala	aag Lys	ggc Gly	agc Ser	ccg Pro	gcg Ala	768
ggc Gly	ggc Gly	gcc Ala	aag Lys	acc Thr	ccc Pro	ctg Leu	gct Ala	ccg Pro	ctc Leu	gcg Ala	ccc Pro	aac Asn	ctg Leu	gga Gly	aag Lys	816
ccg Pro	agc Ser	cgg Arg	atc Ile	cct Pro	cga Arg	gga Gly	ccc Pro	tat Tyr	gcg Ala	gag Glu	gtc Val	aag Lys	ccg Pro	ctc Leu	agc Ser	864
aag Lys	gcg Ala	cct Pro	gaa Glu	gcg Ala	gcc Ala	gtg Val	agc Ser	gaa Glu	gat Asp	ggc Gly	aaa Lys	tcg Ser	gac Asp	gac Asp	gag Glu	912
ctg Leu	ctc Leu	tcc Ser	agc Ser	aag Lys	gcc Ala	aag Lys	gcg Ala	caa Gln	aag Lys	agc Ser	tct Ser	Gly 999	cct Pro	gtc Val	ccc Pro	960
tct Ser	gcc Ala	aag Lys	ggc Gly	cag Gln	gag Glu	gag Glu	cgc Arg	gcc Ala	ttc Phe	ctc Leu	aag Lys	gtg Val	gac Asp	ccc Pro	gag Glu	1008
ctg Leu	gtg Val	gtg Val	acc Thr	gtg Val	ctg Leu	gga Gly	gac Asp	ctg Leu	gag Glu	cag Gln	ctg Leu	ctc Leu	ttc Phe	agc Ser	cag Gln	1056
atg Met	ctg Leu	gac Asp	cca Pro	gag Glu	tcc Ser	cag Gln	aga Arg	aag Lys	agg Arg	aca Thr	gtg Val	cag Gln	aat Asn	gtc Val	ctg Leu	1104
gat Asp	ctc Leu	cgg Arg	cag Gln	aac Asn	ctg Leu	gaa Glu	gag Glu	acc Thr	atg Met	tcc Ser	agc Ser	ctg Leu	cga Arg	gjå aaa	tcc Ser	1152
cag Gln	gtg Val	act Thr	cac His	agc Ser	tcc Ser	ctg Leu	gag Glu	atg Met	acc Thr	tgc Cys	tac Tyr	gac Asp	agc Ser	gat Asp	gat Asp	1200
gcc Ala	aac Asn	cca Pro	cgc Arg	agc Ser	gtg Val	tcc Ser	agc Ser	ctc Leu	tcc Ser	aac Asn	cgc Arg	tcg Ser	tac Tyr	cct Pro	ctg Leu	1248
tca Ser	tgg Trp	cgc Arg	tat Tyr	ggc Gly	cag Gln	tcc Ser	agt Ser	ccg Pro	cgg Arg	ctg Leu	cag Gln	gct Ala	ggt Gly	gac Asp	gcg Ala	1296
ccc Pro	tct Ser	gtg Val	ggt Gly	gly ggg	agc Ser	tgc Cys	cgc Arg	tcg Ser	gag Glu	gly ggg	acg Thr	ccc Pro	gcc Ala	tgg Trp	tac Tyr	1344
atg Met	cac His	ggc Gly	gaa Glu	cgg Arg	gcc Ala	cac His	tac Tyr	tcc Ser	cac His	acc Thr	atg Met	ccc Pro	atg Met	cgc Arg	agc Ser	1392

ccc	agc	aag	ctc	agc	cat	atc	tcc	cgc	ctg	gag	ctg	gtc	gaa	tcc	ctg	1440
Pro	Ser	Lys	Leu	Ser	His	Ile	Ser	Arg	Leu	Glu	Leu	Val	Glu	Ser	Leu	
gac	tcg	gat	gag	gtg	gac	ctc	aag	tcc	ggc	tac	atg	agc	gac	agt	gac	1488
Asp	Ser	Asp	Glu	Val	Asp	Leu	Lys	Ser	Gly	Tyr	Met	Ser	Asp	Ser	Asp	
ctc	atg	ggc	aag	acc	atg	acg	gag	gat	gat	gac	atc	act	acc	ggc	tgg	1536
Leu	Met	Gly	Lys	Thr	Met	Thr	Glu	Asp	Asp	Asp	Ile	Thr	Thr	Gly	Trp	
gat	gaa	agc	agc	tcc	atc	agt	agt	gga	ctc	agc	gat	gcc	tca	gac	aat	1584
Asp	Glu	Ser	Ser	Ser	Ile	Ser	Ser	Gly	Leu	Ser	Asp	Ala	Ser	Asp	Asn	
ctc	agt	tca	gaa	gaa	ttc	aat	gcc	agc	tcc	tca	ctc	aac	tcc	ctc	cca	1632
Leu	Ser	Ser	Glu	Glu	Phe	Asn	Ala	Ser	Ser	Ser	Leu	Asn	Ser	Leu	Pro	
agt	act	ccc	act	gct	tct	cgc	agg	aac	tca	aca	ata	gtg	cta	cgc	aca	1680
Ser	Thr	Pro	Thr	Ala	Ser	Arg	Arg	Asn	Ser	Thr	Ile	Val	Leu	Arg	Thr	
gac	tca	gag	aag	cgc	tca	ctg	gca	gaa	agt	gly	ctg	agc	tgg	ttt	agt	1728
Asp	Ser	Glu	Lys	Arg	Ser	Leu	Ala	Glu	Ser	aaa	Leu	Ser	Trp	Phe	Ser	
gaa	tca	gag	gag	aaa	gcc	cct	aaa	aaa	ctg	gag	tac	gac	agt	ggt	agc	1776
Glu	Ser	Glu	Glu	Lys	Ala	Pro	Lys	Lys	Leu	Glu	Tyr	Asp	Ser	Gly	Ser	
ctg	aag	atg	gaa	cct	gly	act	tct	aag	tgg	cgg	agg	gag	cgg	cct	gag	1824
Leu	Lys	Met	Glu	Pro	ggg	Thr	Ser	Lys	Trp	Arg	Arg	Glu	Arg	Pro	Glu	
agc	tgt	gat	gat	tca	tcc	aag	ggt	gga	gaa	ctg	aaa	aag	ccc	atc	agc	1872
Ser	Cys	Asp	Asp	Ser	Ser	Lys	Gly	Gly	Glu	Leu	Lys	Lys	Pro	Ile	Ser	
ctg	ggc	cac	cct	ggt	tcc	ctg	aag	aag	ggc	aag	acc	cca	cct	gtg	gct	1920
Leu	Gly	His	Pro	Gly	Ser	Leu	Lys	Lys	Gly	Lys	Thr	Pro	Pro	Val	Ala	
gta	act	tcc	ccc	atc	act	cac	aca	gcc	cag	agt	gcc	ctc	aaa	gtc	gca	1968
Val	Thr	Ser	Pro	Ile	Thr	His	Thr	Ala	Gln	Ser	Ala	Leu	Lys	Val	Ala	
ggc	aaa	cct	gag	ggc	aaa	gct	aca	gac	aag	ggt	aag	ctt	gca	gtg	aag	2016
Gly	Lys	Pro	Glu	Gly	Lys	Ala	Thr	Asp	Lys	Gly	Lys	Leu	Ala	Val	Lys	
aat Asn	act Thr	gly	ctc Leu	caa Gln	cgc Arg	tcc Ser	tcc Ser	tct Ser	gat Asp	gct Ala	ggt Gly	cgg Arg	gac Asp	cgc Arg	ctg Leu	2064

agt Ser	gat Asp	gct Ala	aag Lys	aag Lys	ccc Pro	ccc Pro	tcg Ser	ggc Gly	att Ile	gct Ala	cgc Arg	ccc Pro	tcc Ser	act Thr	tcg Ser	2112
gga Gly	tcc Ser	ttt Phe	ggc Gly	tac Tyr	aag Lys	aag Lys	cct Pro	cct Pro	cct Pro	gcc Ala	aca Thr	ggc Gly	aca Thr	gcc Ala	act Thr	2160
gtc Val	atg Met	caa Gln	act Thr	ggt Gly	ggt Gly	tca Ser	gcc Ala	act Thr	ctc Leu	agc Ser	aag Lys	atc Ile	cag Gln	aag Lys	tcc Ser	2208
tca Ser	ggc Gly	atc Ile	cct Pro	gtc Val	aag Lys	cca Pro	gta Val	aat Asn	gly aaa	cgc Arg	aag Lys	act Thr	agc Ser	tta Leu	gat Asp	2256
gtt Val	tcc Ser	aac Asn	agt Ser	gca Ala	gag Glu	cca Pro	gga Gly	ttc Phe	ctg Leu	gct Ala	cct Pro	gga Gly	gcc Ala	cgt Arg	tct Ser	2304
aac Asn	atc Ile	cag Gln	tac Tyr	cgc Arg	agc Ser	ctg Leu	ccc Pro	cgg Arg	cca Pro	gcc Ala	aag Lys	tca Ser	agt Ser	tct Ser	atg Met	2352
agc Ser	gtg Val	acc Thr	ggc Gly	gly aaa	cgg Arg	ggt Gly	gga Gly	cct Pro	cgc Arg	cct Pro	gtg Val	agc Ser	agc Ser	agc Ser	att Ile	2400
gac Asp	ccc Pro	agt Ser	ctc Leu	ctc Leu	agc Ser	acc Thr	aag Lys	cag Gln	gga Gly	ggc Gly	ctt Leu	acg Thr	cct Pro	tcc Ser	aga Arg	2448
ctg Leu	aag Lys	gag Glu	cct Pro	acc Thr	aag Lys	gta Val	gcc Ala	agt Ser	gly ggg	cgg Arg	acc Thr	act Thr	cca Pro	gcc Ala	cct Pro	2496
gtc Val	aat Asn	cag Gln	aca Thr	gat Asp	cgg Arg	gaa Glu	aag Lys	gag Glu	aag Lys	gcc Ala	aaa Lys	gcc Ala	aag Lys	gca Ala	gtg Val	2544
gcc Ala	ttg Leu	gac Asp	tca Ser	gac Asp	aac Asn	atc Ile	tcc Ser	ttg Leu	aag Lys	agt Ser	att Ile	ggc	tcc Ser	cca Pro	gaa Glu	2592
agt Ser	act Thr	ccc Pro	aag Lys	aac Asn	caa Gln	gca Ala	agc Ser	cac His	ccc Pro	aca Thr	gcc Ala	acc Thr	aag Lys	ctg Leu	gca Ala	2640
gag Glu	ctg Leu	cca Pro	cca Pro	acc Thr	cct Pro	ctc Leu	agg Arg	gcc Ala	aca Thr	gcg Ala	aag Lys	agc Ser	ttt Phe	gtc Val	aaa Lys	2688
					aat Asn											2736
cta Leu	cca Pro	tca Ser	tcc Ser	agt Ser	gat Asp	acc Thr	acc Thr	cat His	gct Ala	tca Ser	aag Lys	gtc Val	cca Pro	gat Asp	ctg Leu	2784

cat	gct	aca	agc	tca	gca	tct	Gly	ggc	cct	ctc	cct	tcc	tgc	ttc	acc	2832
His	Ala	Thr	Ser	Ser	Ala	Ser	999	Gly	Pro	Leu	Pro	Ser	Cys	Phe	Thr	
ccc	agt	ccg	gca	ccc	atc	ctc	aat	att	aac	tca	gcc	agc	ttc	tcc	cag	2880
Pro	Ser	Pro	Ala	Pro	Ile	Leu	Asn	Ile	Asn	Ser	Ala	Ser	Phe	Ser	Gln	
ggc	ctg	gag	cta	atg	agt	ggt	ttc	agt	gtg	cca	aaa	gag	acc	cgc	atg	2928
Gly	Leu	Glu	Leu	Met	Ser	Gly	Phe	Ser	Val	Pro	Lys	Glu	Thr	Arg	Met	
tac	ccc	aaa	ctc	tca	ggc	ctg	cac	agg	agc	atg	gag	tcc	ctc	cag	atg	2976
Tyr	Pro	Lys	Leu	Ser	Gly	Leu	His	Arg	Ser	Met	Glu	Ser	Leu	Gln	Met	
cca	atg	agc	ctc	ccc	agt	gcc	ttc	ccc	agc	agt	act	ccc	gtc	ccc	acc	3024
Pro	Met	Ser	Leu	Pro	Ser	Ala	Phe	Pro	Ser	Ser	Thr	Pro	Val	Pro	Thr	
cca	cct	gct	ccc	cct	gct	gct	ccc	aca	gaa	gaa	gag	acg	gaa	gag	ctg	3072
Pro	Pro	Ala	Pro	Pro	Ala	Ala	Pro	Thr	Glu	Glu	Glu	Thr	Glu	Glu	Leu	
act	tgg	agt	gga	agc	ccc	aga	gct	Gly	caa	ctg	gac	agt	aat	cag	cgg	3120
Thr	Trp	Ser	Gly	Ser	Pro	Arg	Ala	999	Gln	Leu	Asp	Ser	Asn	Gln	Arg	
gat	cgg	aac	act	ctt	ccc	aag	aaa	999	ctc	agg	tac	cag	ctt	cag	tcc	3168
Asp	Arg	Asn	Thr	Leu	Pro	Lys	Lys	999	Leu	Arg	Tyr	Gln	Leu	Gln	Ser	
cag	gag	gag	acc	aag	gag	agg	cga	cat	tcc	cat	acc	att	ggt	ggg	ctg	3216
Gln	Glu	Glu	Thr	Lys	Glu	Arg	Arg	His	Ser	His	Thr	Ile	Gly	Gly	Leu	
cct	gaa	tcc	gat	gac	cag	tca	gag	ctg	cct	tct	ccc	cct	gca	ctt	ccc	3264
Pro	Glu	Ser	Asp	Asp	Gln	Ser	Glu	Leu	Pro	Ser	Pro	Pro	Ala	Leu	Pro	
atg Met	tct Ser	ctg Leu	agt Ser	gca Ala	aag Lys	ggc	caa Gln	ctt Leu	acc Thr	aac Asn	ata Ile	gtg Val	agt Ser	ccc Pro	act Thr	3312
gcg	gcc	acc	acg	cca	aga	atc	acc	cgc	tcc	aac	agc	atc	ccc	acc	cac	3360
Ala	Ala	Thr	Thr	Pro	Arg	Ile	Thr	Arg	Ser	Asn	Ser	Ile	Pro	Thr	His	
gag	gcg	gcc	ttc	gag	ctg	tac	agc	ggc	tcc	caa	atg	ggg	agc	acc	ctg	3408
Glu	Ala	Ala	Phe	Glu	Leu	Tyr	Ser	Gly	Ser	Gln	Met	Gly	Ser	Thr	Leu	
tcc	ctg	gcc	gag	aga	ccc	aag	gga	atg	att	cgg	tca	gga	tcc	ttc	cga	3456
Ser	Leu	Ala	Glu	Arg	Pro	Lys	Gly	Met	Ile	Arg	Ser	Gly	Ser	Phe	Arg	
gac	ccc	acg	gac	gat	gtt	cac	ggc	tca	gtg	ctg	tcc	ctg	gcc	tcc	agt	3504
Asp	Pro	Thr	Asp	Asp	Val	His	Gly	Ser	Val	Leu	Ser	Leu	Ala	Ser	Ser	
gcc	tcc	tcc	acc	tac	tcc	tca	gct	gag	gag	agg	atg	caa	tct	gag	caa	3552
Ala	Ser	Ser	Thr	Tyr	Ser	Ser	Ala	Glu	Glu	Arg	Met	Gln	Ser	Glu	Gln	
atc	cgg	aag	ctt	cgt	agg	gaa	ctg	gaa	tca	tcc	cag	gaa	aaa	gtg	gcc	3600
Ile	Arg	Lys	Leu	Arg	Arg	Glu	Leu	Glu	Ser	Ser	Gln	Glu	Lys	Val	Ala	
acc	ttg	acg	tct	cag	ctt	tct	gcc	aat	gct	aat	ctg	gtg	gct	gct	ttt	3648
Thr	Leu	Thr	Ser	Gln	Leu	Ser	Ala	Asn	Ala	Asn	Leu	Val	Ala	Ala	Phe	
gag Glu	cag Gln	ago Ser	ctg Leu	gtg	aat Asn	atg Met	aca Thr	tcc Ser	cgc Arg	ctg Leu	cga Arg	cac	ctg Leu	gca Ala	gag Glu	3696

acg Thr	gcc Ala	gag Glu	gag Glu	aag Lys	gac Asp	act Thr	gag Glu	ctg Leu	ctg Leu	gat Asp	ttg Leu	cga Arg	gaa Glu	acc Thr	ata Ile	3744	
gac Asp	ttt Phe	ctg Leu	aag Lys	aaa Lys	aag Lys	aac Asn	tct Ser	gag Glu	gcc Ala	cag Gln	gca Ala	gtc Val	att Ile	cag Gln	gga Gly	3792	
gcc Ala	ctt Leu	aat Asn	gcc Ala	tca Ser	gaa Glu	acc Thr	aca Thr	ccc Pro	aaa Lys	gaa Glu	ctt Leu	cgg Arg	atc Ile	aag Lys	aga Arg	3840	
caa Gln	aac Asn	tcc Ser	tca Ser	gat Asp	agc Ser	atc Ile	tca Ser	agc Ser	ctc Leu	aac Asn	agc Ser	atc Ile	act Thr	agc Ser	cat His	3888	,
tcc Ser	agc Ser	atc Ile	ggc Gly	agc Ser	agc Ser	aag Lys	gat Asp	gct Ala	gat Asp	gcg Ala	aaa Lys	aag Lys	aag Lys	aaa Lys	aaa Lys	3936	,
aag Lys	agt Ser	tgg Trp	ctt Leu	cga Arg	agt Ser	tcc Ser	ttc Phe	aac Asn	aaa Lys	gcg Ala	ttc Phe	agt Ser	ata Ile	aaa Lys	aag Lys	3984	:
ggg ggg	ccc Pro	aag Lys	tca Ser	gct Ala	tcc Ser	tca Ser	tac Tyr	tcg Ser	gat Asp	ata Ile	gag Glu	gag Glu	att Ile	gct Ala	aca Thr	4032	:
ccc Pro	gac Asp	tct Ser	tca Ser	gcc Ala	ccc Pro	tca Ser	tcc Ser	ccc Pro	aaa Lys	cta Leu	cag Gln	cat His	ggt Gly	tct Ser	aca Thr	4080)
gag Glu	act Thr	gct Ala	tca Ser	ccc Pro	tcc Ser	atc Ile	aag Lys	tcc Ser	tcc Ser	acc Thr	tcg Ser	tcc Ser	tcc Ser	gtg Val	ggc Gly	4128	}
act Thr	gat Asp	gtc Val	acc Thr	gag Glu	ggc Gly	cct Pro	gct Ala	cac His	cca Pro	gcc Ala	ccc Pro	cac His	act Thr	agg Arg	ctg Leu	4176	5
ttc Phe	cat His	gca Ala	aat Asn	gag Glu	gag Glu	gag Glu	gag Glu	cca Pro	gag Glu	aag Lys	aag Lys	gag Glu	gta Val	tcg Ser	gag Glu	4224	ŀ
ctg Leu	cgc Arg	tct Ser	gag Glu	cta Leu	tgg Trp	gag Glu	aag Lys	gaa Glu	atg Met	aag Lys	ctt Leu	aca Thr	gac Asp	atc Ile	cgc Arg	4272	2
ttg Leu	gag Glu	gcc Ala	ctc Leu	aac Asn	tct Ser	gcc Ala	cac His	caa Gln	ctg Leu	gat Asp	cag Gln	ctt Leu	cgg Arg	gag Glu	acc Thr	4320)
atg Met	cac His	aac Asn	atg Met	cag Gln	ttg Leu	gag Glu	gtg Val	gac Asp	ctg Leu	ctg Leu	gaa Glu	gca Ala	gag Glu	aat Asn	gac Asp	4368	3
cga Arg	ctg Leu	aag Lys	gta Val	gcc Ala	cca Pro	ggc Gly	ccc Pro	tca Ser	tca Ser	ggc Gly	tcc Ser	act Thr	cca Pro	gly ggg	cag Gln	4416	5
gtc Val	cct Pro	gga Gly	tca Ser	tct Ser	gca Ala	tta Leu	tct Ser	tcc Ser	cca Pro	cgc Arg	cgc Arg	tcc Ser	cta Leu	ggc	ctg Leu	4464	1
gca Ala	ctc Leu	acc Thr	cat His	tcc Ser	ttc Phe	ggc Gly	ccc Pro	agt Ser	ctt Leu	gca Ala	gac Asp	aca Thr	gac Asp	ctg Leu	tca Ser	451	2
ccc Pro	atg Met	gat Asp	ggc Gly	atc Ile	agt Ser	act Thr	tgt Cys	ggt Gly	cca Pro	aag Lys	gag Glu	gaa Glu	gtg Val	acc Thr	ctc Leu	456	0
cgg Arg	gtg Val	gtg Val	gtg Val	agg Arg	atg Met	ccc Pro	ccg Pro	cag Gln	cac His	atc Ile	atc lle	aaa Lys	ggg Gly	gac Asp	ttg Leu	460	8

aag Lys	cag Gln	cag Gln	gaa Glu	ttc Phe	ttc Phe	ctg Leu	ggc Gly	tgt Cys	agc Ser	aag Lys	gtc Val	agt Ser	gga Gly	aaa Lys	gtt Val	4	656
gac Asp	tgg Trp	aag Lys	atg Met	ctg Leu	gat Asp	gaa Glu	gct Ala	gtt Val	ttc Phe	caa Gln	gtg Val	ttc Phe	aag Lys	gac Asp	tat Tyr	4	704
att Ile	tct Ser	aaa Lys	atg Met	gac Asp	cca Pro	gcc Ala	tct Ser	acc Thr	ctg Leu	gga Gly	cta Leu	agc Ser	act Thr	gag Glu	tcc Ser	4	752
atc Ile	cat His	ggc Gly	tac Tyr	agc Ser	atc Ile	agc Ser	cac His	gtg Val	aaa Lys	cga Arg	gtg Val	ttg Leu	gat Asp	gca Ala	gag Glu	4	800
ccc Pro	ccc Pro	gag Glu	atg Met	cct Pro	cct Pro	tgc Cys	cgt Arg	cga Arg	ggt Gly	gtc Val	aat Asn	aac Asn	ata Ile	tca Ser	gtc Val	4	848
tcc Ser	ctc Leu	aaa Lys	ggt Gly	ctg Leu	aag Lys	gag Glu	aaa Lys	tgc Cys	gtc Val	gac Asp	agc Ser	ctg Leu	gtg Val	ttc Phe	gag Glu	4	1896
acg Thr	ctg Leu	atc Ile	ccc Pro	aag Lys	ccg Pro	atg Met	atg Met	cag Gln	cac His	tac Tyr	ata Ile	agc Ser	ctc Leu	ctg Leu	ctg Leu	4	1944
aag Lys	cac His	cgg Arg	cgc Arg	ctc Leu	gtc Val	ctc Leu	tcg Ser	ggc Gly	ccc Pro	agc Ser	ggc Gly	acg Thr	ggc Gly	aag Lys	acc Thr	4	1992
tac Tyr	ctg Leu	acc Thr	aat Asn	cgc Arg	ttg Leu	gcc Ala	gag Glu	tac Tyr	ctg Leu	gtg Val	gag Glu	cgc Arg	tct Ser	ggc Gly	cgt Arg	Ē	5040
gag Glu	gtc Val	aca Thr	gag Glu	ggc Gly	atc Ile	gtc Val	agc Ser	acc Thr	ttc Phe	aac Asn	atg Met	cac His	cag Gln	cag Gln	tct Ser	ţ	5088
tgc Cys	aag Lys	gat Asp	ctg Leu	caa Gln	ctg Leu	tat Tyr	ctt Leu	tcc Ser	aac Asn	cta Leu	gcc Ala	aac Asn	cag Gln	ata Ile	gac Asp	į	5136
cgg Arg	gaa Glu	aca Thr	gga Gly	att Ile	gly	gat Asp	gtg Val	ccc Pro	ctg Leu	gtg Val	att Ile	cta Leu	ttg Leu	gat Asp	gac Asp	į	5184
ctg Leu	agt Ser	gaa Glu	gca Ala	ggc Gly	tcc Ser	atc Ile	agt Ser	gag Glu	ttg Leu	gtc Val	aat Asn	gly aaa	gcc Ala	ctc Leu	acc Thr	į	5232
tgc Cys	aag Lys	tat Tyr	cat His	aaa Lys	tgt Cys	ccc Pro	tat Tyr	att Ile	ata Ile	ggt Gly	acc Thr	acc Thr	aat Asn	cag Gln	cct Pro	!	5280
gta Val	aaa Lys	atg Met	aca Thr	ccc Pro	aac Asn	cat His	ggc Gly	ttt Phe	cac His	ttg Leu	agc Ser	ttc Phe	agg Arg	atg Met	ttg Leu	!	5328
acc Thr	ttc Phe	tcc Ser	aac Asn	aac Asn	gtg Val	gag Glu	cca Pro	gcc Ala	aat Asn	ggc Gly	ttc Phe	ctg Leu	gtt Val	cgt Arg	tac Tyr		5376
ctg Leu	agg Arg	agg Arg	aag Lys	ctg Leu	gta Val	gag Glu	tca Ser	gac Asp	agc Ser	gac Asp	atc Ile	aat Asn	gcc Ala	aac Asn	aag Lys		5424
gaa Glu	gag Glu	ctg Leu	ctt Leu	cgg Arg	gtg Val	ctc Leu	gac Asp	tgg Trp	gta Val	Pro	aag Lys	ctg Leu	tgg Trp	tat Tyr	cat His		5472
ctc	cac	acc	ttc	ctt	gag	aag	cac	agc	acc	tca	gac	tto	ctc	ato	ggc		5520

Leu	His	Thr	Phe	Leu	Glu	Lys	His	Ser	Thr	Ser	Asp	Phe	Leu	Ile	Gly	
cct Pro	tgc Cys	ttc Phe	ttt Phe	ctg Leu	tcg Ser	tgt Cys	ccc Pro	att Ile	ggc Gly	att Ile	gag Glu	gac Asp	ttc Phe	cgg Arg	acc Thr	5568
tgg Trp	ttc Phe	att Ile	gac Asp	ctg Leu	tgg Trp	aac Asn	aac Asn	tct Ser	atc Ile	att Ile	ccc Pro	tat Tyr	cta Leu	cag Gln	gaa Glu	5616
gga Gly	gcc Ala	aag Lys	gat Asp	gly ggg	ata Ile	aag Lys	gtc Val	cat His	gga Gly	cag Gln	aaa Lys	gct Ala	gct Ala	tgg Trp	gag Glu	5664
gac Asp	cca Pro	gtg Val	gaa Glu	tgg Trp	gtc Val	cgg Arg	gac Asp	aca Thr	ctt Leu	ccc Pro	tgg Trp	cca Pro	tca Ser	gcc Ala	caa Gln	5712
caa Gln	gac Asp	caa Gln	tca Ser	aag Lys	ctg Leu	tac Tyr	cac His	ctg Leu	ccc Pro	cca Pro	ccc Pro	acc Thr	gtg Val	ggc	cct Pro	5760
cac His	agc Ser	att Ile	gcc Ala	tca Ser	cct Pro	ccc Pro	gag Glu	gat Asp	agg Arg	aca Thr	gtc Val	aaa Lys	gac Asp	agc Ser	acc Thr	5808
cca Pro	agt Ser	tct Ser	ctg Leu	gac Asp	tca Ser	gat Asp	cct Pro	ctg Leu	atg Met	gcc Ala	atg Met	ctg Leu	ctg Leu	aaa Lys	ctt Leu	5856
caa Gln	gaa Glu	gct Ala	gcc Ala	aac Asn	tac Tyr	att Ile	gag Glu	tct Ser	cca Pro	gat Asp	cga Arg	gaa Glu	acc Thr	atc Ile	ctg Leu	5904
			ctt Leu						gggt	tcg q	gcaa	tcac	tg		5948	
tca	cccc	cgg	acag	caga	ac g	ctgg	catc	a gc	tatc	ttag	ctc	ctcc	tct	cccc	tctcct	6008
ctt	tcag	agc	actg	gctc	tc c	agcc	ccag	g ag	gaga	acag	gag	ggag	gag	gaga	tgaaag	6068
agg	aggg	aca	ggtt	cttg	gt g	ctgt	acct	t tg	agaa	cttc	cta	ggaa	gga	atgg	tggggt	6128
ggc	gttt	ggg	aact	tgtg	cc c	ccta	aaca	c at	ttac	tggc	ctc	ctct	aat	gact	ttgggg	6188
aaa	agat	gat	tctg	ggtc	tt t	ccct	tgac	t tc	ttgt	ttca	att	acaa	act	cctg	ggcttt	6248
ctg	ggga	aaa	gttc	agaa	aa c	atca	aaac	a ct	gcag	cagt	tcc	taaa	tga	ttct	cacaag	6308
caa	ccct	gag	agag	acag	tc t	tgtg	aggg	a ga	tctg	aaaa	agg	cagg	aag	ctcc	tcagat	6368
ttt	ctca	cag	acco	ttcc	ca a	ttcc	atca	.c ca	ctgc	caac	aac	tcct	ccc	ccag	agatct	6428
ggc	tgga	.gcc	caga	aaaa	.ga a	gcat	gtgg	t tt	aaaa	aatg	ttt	aaat	caa	tctg	taaaag	6488
gta	aaaa	tga	aaaa	caaa	aa c	aago	aaac	a aa	caaa	aaac	aat	ggaa	aag	atga	agctgg	6548
aga	gaga	.gga	acca	gttg	ıcc a	aggt	agag	ja go	tgcc	cgct	cct	gccc	tct	ggat	gacata	6608
999	gaca	tca	acaa	gacg	ıgc t	gcca	acct	g aç	gaagt	cacc	aaa	ccac	aaa	aata	acctta	6668
cag	cctt	cag	ggaa	agac	ta c	cago	tctg	jt ct	ttct	accc	tct	aatt	taa	caat	gcataa	a 6728
gag	tcaa	ıtaa	acco	ctact	tt t	ttaa	ıaaaa	a aa	aaaa	aaag	ſ					6768

<210> 24

<211> 11 <212> PRT

<213> Homo sapiens

<400> 24

Arg Gly Ala Ser Ile Leu Pro Leu Thr Asp Phe 1 5 10

<210> 25

<211> 1976

<212> PRT

<213> Homo sapiens

<400> 25

Ile Leu Ile Cys Ile Phe Pro Ala Ala Pro Pro Leu Phe Leu Arg Pro 10 15

Arg Pro Ile Ala Pro Arg Leu Pro Cys Ser Phe Leu Phe Pro Gly Phe 20 25 30

Leu Pro Arg Val Ser Phe Pro Cys Ala Leu Gly Leu Pro Leu Ser Leu 35 40 45

Leu Pro Arg Ser Leu Pro Leu Leu Ser Pro Ser Ser Ser Val Ser Ser 50 55 60

Val Leu Ser Leu Pro Leu Leu Leu Pro Arg Leu Leu Leu Leu Arg Ser 65 70 75 80

Arg Pro Leu Pro Pro Pro Pro Val Pro Ala Asp Ala Arg Ile Val His 85 90 95

Ala Leu Leu Ala Gly Arg Met Leu Gly Ser Ser Val Lys Ser Val Gln
100 105 110

Pro Glu Val Glu Leu Ser Ser Gly Gly Gly Asp Glu Gly Ala Asp Glu 115 120 125

Pro Arg Gly Ala Gly Arg Lys Ala Ala Ala Ala Asp Gly Arg Gly Met 130 135 140

Leu Pro Lys Arg Ala Lys Ala Pro Gly Gly Gly Gly Met Ala Lys 145 150 155 160

Ala Ser Ala Ala Glu Leu Lys Val Phe Lys Ser Gly Ser Val Asp Ser

170 175 165 Arg Val Pro Gly Gly Pro Pro Ala Ser Asn Leu Arg Lys Gln Lys Ser 185 Leu Thr Asn Leu Ser Phe Leu Thr Asp Ser Glu Lys Lys Leu Gln Leu 200 Tyr Glu Pro Glu Trp Ser Asp Asp Met Ala Lys Ala Pro Lys Gly Leu Gly Lys Val Gly Ser Lys Gly Arg Glu Ala Pro Leu Met Ser Lys Thr Leu Ser Lys Ser Glu His Ser Leu Phe Gln Ala Lys Gly Ser Pro Ala Gly Gly Ala Lys Thr Pro Leu Ala Pro Leu Ala Pro Asn Leu Gly Lys Pro Ser Arg Ile Pro Arg Gly Pro Tyr Ala Glu Val Lys Pro Leu Ser Lys Ala Pro Glu Ala Ala Val Ser Glu Asp Gly Lys Ser Asp Asp Glu 290 Leu Leu Ser Ser Lys Ala Lys Ala Gln Lys Ser Ser Gly Pro Val Pro Ser Ala Lys Gly Gln Glu Glu Arg Ala Phe Leu Lys Val Asp Pro Glu Leu Val Val Thr Val Leu Gly Asp Leu Glu Gln Leu Leu Phe Ser Gln 345 Met Leu Asp Pro Glu Ser Gln Arg Lys Arg Thr Val Gln Asn Val Leu Asp Leu Arg Gln Asn Leu Glu Glu Thr Met Ser Ser Leu Arg Gly Ser 375 Gln Val Thr His Ser Ser Leu Glu Met Thr Cys Tyr Asp Ser Asp Asp 390 395 400 385 Ala Asn Pro Arg Ser Val Ser Ser Leu Ser Asn Arg Ser Tyr Pro Leu 405 410 Ser Trp Arg Tyr Gly Gln Ser Ser Pro Arg Leu Gln Ala Gly Asp Ala 420 425 Pro Ser Val Gly Gly Ser Cys Arg Ser Glu Gly Thr Pro Ala Trp Tyr 435 Met His Gly Glu Arg Ala His Tyr Ser His Thr Met Pro Met Arg Ser 455

Pro Ser Lys Leu Ser His Ile Ser Arg Leu Glu Leu Val Glu Ser Leu 470 Asp Ser Asp Glu Val Asp Leu Lys Ser Gly Tyr Met Ser Asp Ser Asp 490 Leu Met Gly Lys Thr Met Thr Glu Asp Asp Ile Thr Thr Gly Trp 505 Asp Glu Ser Ser Ser Ile Ser Ser Gly Leu Ser Asp Ala Ser Asp Asn Leu Ser Ser Glu Glu Phe Asn Ala Ser Ser Ser Leu Asn Ser Leu Pro Ser Thr Pro Thr Ala Ser Arg Arg Asn Ser Thr Ile Val Leu Arg Thr Asp Ser Glu Lys Arg Ser Leu Ala Glu Ser Gly Leu Ser Trp Phe Ser 570 Glu Ser Glu Glu Lys Ala Pro Lys Lys Leu Glu Tyr Asp Ser Gly Ser 580 Leu Lys Met Glu Pro Gly Thr Ser Lys Trp Arg Arg Glu Arg Pro Glu Ser Cys Asp Asp Ser Ser Lys Gly Glu Leu Lys Lys Pro Ile Ser Leu Gly His Pro Gly Ser Leu Lys Lys Gly Lys Thr Pro Pro Val Ala 635 Val Thr Ser Pro Ile Thr His Thr Ala Gln Ser Ala Leu Lys Val Ala Gly Lys Pro Glu Gly Lys Ala Thr Asp Lys Gly Lys Leu Ala Val Lys 665 Asn Thr Gly Leu Gln Arg Ser Ser Ser Asp Ala Gly Arg Asp Arg Leu Ser Asp Ala Lys Lys Pro Pro Ser Gly Ile Ala Arg Pro Ser Thr Ser 695 Gly Ser Phe Gly Tyr Lys Lys Pro Pro Pro Ala Thr Gly Thr Ala Thr Val Met Gln Thr Gly Gly Ser Ala Thr Leu Ser Lys Ile Gln Lys Ser 730 Ser Gly Ile Pro Val Lys Pro Val Asn Gly Arg Lys Thr Ser Leu Asp 740 Val Ser Asn Ser Ala Glu Pro Gly Phe Leu Ala Pro Gly Ala Arg Ser 760 755

- Asn Ile Gln Tyr Arg Ser Leu Pro Arg Pro Ala Lys Ser Ser Ser Met Ser Val Thr Gly Gly Arg Gly Gly Pro Arg Pro Val Ser Ser Ser Ile Asp Pro Ser Leu Leu Ser Thr Lys Gln Gly Gly Leu Thr Pro Ser Arg Leu Lys Glu Pro Thr Lys Val Ala Ser Gly Arg Thr Thr Pro Ala Pro Val Asn Gln Thr Asp Arg Glu Lys Glu Lys Ala Lys Ala Lys Ala Val Ala Leu Asp Ser Asp Asn Ile Ser Leu Lys Ser Ile Gly Ser Pro Glu 855 Ser Thr Pro Lys Asn Gln Ala Ser His Pro Thr Ala Thr Lys Leu Ala 870 865 Glu Leu Pro Pro Thr Pro Leu Arg Ala Thr Ala Lys Ser Phe Val Lys 890 Pro Pro Ser Leu Ala Asn Leu Asp Lys Val Asn Ser Asn Ser Leu Asp Leu Pro Ser Ser Ser Asp Thr Thr His Ala Ser Lys Val Pro Asp Leu 920 His Ala Thr Ser Ser Ala Ser Gly Gly Pro Leu Pro Ser Cys Phe Thr 935 Pro Ser Pro Ala Pro Ile Leu Asn Ile Asn Ser Ala Ser Phe Ser Gln 955 950 Gly Leu Glu Leu Met Ser Gly Phe Ser Val Pro Lys Glu Thr Arg Met Tyr Pro Lys Leu Ser Gly Leu His Arg Ser Met Glu Ser Leu Gln Met Pro Met Ser Leu Pro Ser Ala Phe Pro Ser Ser Thr Pro Val Pro Thr 1000
 - Thr Trp Ser Gly Ser Pro Arg Ala Gly Gln Leu Asp Ser Asn Gln Arg 1025 1030 1035 1040

Pro Pro Ala Pro Pro Ala Ala Pro Thr Glu Glu Glu Thr Glu Glu Leu

1015

- Asp Arg Asn Thr Leu Pro Lys Lys Gly Leu Arg Tyr Gln Leu Gln Ser 1045 1050 1055
- Gln Glu Glu Thr Lys Glu Arg Arg His Ser His Thr Ile Gly Gly Leu 1060 1065 1070

1020

- Pro Glu Ser Asp Asp Gln Ser Glu Leu Pro Ser Pro Pro Ala Leu Pro 1075 1080 1085
- Met Ser Leu Ser Ala Lys Gly Gln Leu Thr Asn Ile Val Ser Pro Thr 1090 1095 1100
- Ala Ala Thr Thr Pro Arg Ile Thr Arg Ser Asn Ser Ile Pro Thr His 1105 1110 1115 1120
- Glu Ala Ala Phe Glu Leu Tyr Ser Gly Ser Gln Met Gly Ser Thr Leu 1125 1130 1135
- Ser Leu Ala Glu Arg Pro Lys Gly Met Ile Arg Ser Gly Ser Phe Arg 1140 1145 1150
- Asp Pro Thr Asp Asp Val His Gly Ser Val Leu Ser Leu Ala Ser Ser 1155 1160 1165
- Ala Ser Ser Thr Tyr Ser Ser Ala Glu Glu Arg Met Gln Ser Glu Gln 1170 1180
- Thr Leu Thr Ser Gln Leu Ser Ala Asn Ala Asn Leu Val Ala Ala Phe
 1205 1210 1215
- Glu Gln Ser Leu Val Asn Met Thr Ser Arg Leu Arg His Leu Ala Glu 1220 1230
- Thr Ala Glu Glu Lys Asp Thr Glu Leu Leu Asp Leu Arg Glu Thr Ile 1235 1240 1245
- Asp Phe Leu Lys Lys Lys Asn Ser Glu Ala Gln Ala Val Ile Gln Gly
- Ala Leu Asn Ala Ser Glu Thr Thr Pro Lys Glu Leu Arg Ile Lys Arg 1265 1270 1275 1280
- Gln Asn Ser Ser Asp Ser Ile Ser Ser Leu Asn Ser Ile Thr Ser His 1285 1290 1295
- Ser Ser Ile Gly Ser Ser Lys Asp Ala Asp Ala Lys Lys Lys Lys 1300 1305 1310
- Lys Ser Trp Leu Arg Ser Ser Phe Asn Lys Ala Phe Ser Ile Lys Lys 1315 1320 1325
- Gly Pro Lys Ser Ala Ser Ser Tyr Ser Asp Ile Glu Glu Ile Ala Thr 1330 1335 1340
- Pro Asp Ser Ser Ala Pro Ser Ser Pro Lys Leu Gln His Gly Ser Thr 1345 1350 1355 1366
- Glu Thr Ala Ser Pro Ser Ile Lys Ser Ser Thr Ser Ser Ser Val Gly

1365 1370 1375

Thr Asp Val Thr Glu Gly Pro Ala His Pro Ala Pro His Thr Arg Leu 1380 1385 1390

Phe His Ala Asn Glu Glu Glu Pro Glu Lys Lys Glu Val Ser Glu 1395 1400 1405

Leu Arg Ser Glu Leu Trp Glu Lys Glu Met Lys Leu Thr Asp Ile Arg 1410 1415 1420

Leu Glu Ala Leu Asn Ser Ala His Gln Leu Asp Gln Leu Arg Glu Thr 1425 1430 1435 1440

Met His Asn Met Gln Leu Glu Val Asp Leu Leu Glu Ala Glu Asn Asp 1445 1450 1455

Arg Leu Lys Val Ala Pro Gly Pro Ser Ser Gly Ser Thr Pro Gly Gln
1460 1465 1470

Val Pro Gly Ser Ser Ala Leu Ser Ser Pro Arg Arg Ser Leu Gly Leu 1475 1480 1485

. Ala Leu Thr His Ser Phe Gly Pro Ser Leu Ala Asp Thr Asp Leu Ser 1490 1495 1500

Pro Met Asp Gly Ile Ser Thr Cys Gly Pro Lys Glu Glu Val Thr Leu 1505 1510 1515 1520

Arg Val Val Arg Met Pro Pro Gln His Ile Ile Lys Gly Asp Leu 1525 1530 1535

Lys Gln Glu Phe Phe Leu Gly Cys Ser Lys Val Ser Gly Lys Val
1540 1545 1550

Asp Trp Lys Met Leu Asp Glu Ala Val Phe Gln Val Phe Lys Asp Tyr 1555 1560 1565

Ile Ser Lys Met Asp Pro Ala Ser Thr Leu Gly Leu Ser Thr Glu Ser 1570 1575 1580

Ile His Gly Tyr Ser Ile Ser His Val Lys Arg Val Leu Asp Ala Glu 1585 1590 1595 1600

Pro Pro Glu Met Pro Pro Cys Arg Arg Gly Val Asn Asn Ile Ser Val 1605 1610 1615

Ser Leu Lys Gly Leu Lys Glu Lys Cys Val Asp Ser Leu Val Phe Glu 1620 1625 1630

Thr Leu Ile Pro Lys Pro Met Met Gln His Tyr Ile Ser Leu Leu Leu 1635 1640 1645

Lys His Arg Arg Leu Val Leu Ser Gly Pro Ser Gly Thr Gly Lys Thr 1650 1660

- Tyr Leu Thr Asn Arg Leu Ala Glu Tyr Leu Val Glu Arg Ser Gly Arg 1665 1670 1680
- Glu Val Thr Glu Gly Ile Val Ser Thr Phe Asn Met His Gln Gln Ser 1685 1690 1695
- Cys Lys Asp Leu Gln Leu Tyr Leu Ser Asn Leu Ala Asn Gln Ile Asp 1700 1705 1710
- Arg Glu Thr Gly Ile Gly Asp Val Pro Leu Val Ile Leu Leu Asp Asp 1715 1720 1725
- Leu Ser Glu Ala Gly Ser Ile Ser Glu Leu Val Asn Gly Ala Leu Thr 1730 1735 1740
- Cys Lys Tyr His Lys Cys Pro Tyr Ile Ile Gly Thr Thr Asn Gln Pro 1745 1750 1755 1760
- Val Lys Met Thr Pro Asn His Gly Phe His Leu Ser Phe Arg Met Leu 1765 1770 1775
- Thr Phe Ser Asn Asn Val Glu Pro Ala Asn Gly Phe Leu Val Arg Tyr 1780 1785 1790
- Leu Arg Arg Lys Leu Val Glu Ser Asp Ser Asp Ile Asn Ala Asn Lys 1795 1800 1805
- Glu Glu Leu Leu Arg Val Leu Asp Trp Val Pro Lys Leu Trp Tyr His 1810 1815 1820
- Leu His Thr Phe Leu Glu Lys His Ser Thr Ser Asp Phe Leu Ile Gly 1825 1830 1835 1840
- Pro Cys Phe Phe Leu Ser Cys Pro Ile Gly Ile Glu Asp Phe Arg Thr 1845 1850 1855
- Trp Phe Ile Asp Leu Trp Asn Asn Ser Ile Ile Pro Tyr Leu Gln Glu 1860 1865 1870
- Gly Ala Lys Asp Gly Ile Lys Val His Gly Gln Lys Ala Ala Trp Glu 1875 1880 1885
- Asp Pro Val Glu Trp Val Arg Asp Thr Leu Pro Trp Pro Ser Ala Gln 1890 1895 1900
- Gln Asp Gln Ser Lys Leu Tyr His Leu Pro Pro Pro Thr Val Gly Pro 1905 1910 1915 1920
- His Ser Ile Ala Ser Pro Pro Glu Asp Arg Thr Val Lys Asp Ser Thr 1925 1930 1935
- Pro Ser Ser Leu Asp Ser Asp Pro Leu Met Ala Met Leu Leu Lys Leu 1940 1945 1950
- Gln Glu Ala Ala Asn Tyr Ile Glu Ser Pro Asp Arg Glu Thr Ile Leu 1955 1960 1965

Asp Pro Asn Leu Gln Ala Thr Leu 1970 1975

<210> 26 <211> 7783 <212> DNA <213> Homo sapiens	
<220> <221> CDS <223> (2) (7141)	
<400> 26	
c aac cag cca gaa cgc ctg aac tcg cag gtg ctg cag ggg ctg cag Asn Gln Pro Glu Arg Leu Asn Ser Gln Val Leu Gln Gly Leu Gln	46
gag cca gcg ggg gag ggg ctc ccg ctg cgg aag agc ggc tcg gtg gaa Glu Pro Ala Gly Glu Gly Leu Pro Leu Arg Lys Ser Gly Ser Val Glu	94
aac ggg ttc gat acc cag atc tac aca gac tgg gcc aat cat tac cta Asn Gly Phe Asp Thr Gln Ile Tyr Thr Asp Trp Ala Asn His Tyr Leu	142
gcc aaa tcc ggc cac aag cgt ctc atc agg gat ctc cag caa gat gtg Ala Lys Ser Gly His Lys Arg Leu Ile Arg Asp Leu Gln Gln Asp Val	190
aca gat ggc gtc ctc ctg gcc cag att atc cag gtt gtg gca aat gaa Thr Asp Gly Val Leu Leu Ala Gln Ile Ile Gln Val Val Ala Asn Glu	238
aag att gaa gac atc aat ggc tgt ccg aag aac aga tcc caa atg att Lys Ile Glu Asp Ile Asn Gly Cys Pro Lys Asn Arg Ser Gln Met Ile	286
gaa aac ata gat gcc tgc ttg aat ttc ctg gca gct aag gga ata aac Glu Asn Ile Asp Ala Cys Leu Asn Phe Leu Ala Ala Lys Gly Ile Asn	334
atc cag ggg ctg tct gca gaa gag atc agg aat gga aac ctc aag gcc Ile Gln Gly Leu Ser Ala Glu Glu Ile Arg Asn Gly Asn Leu Lys Ala	382
att cta ggc ctc ttc ttc agc ctc tcc cga tac aag cag cag cag Ile Leu Gly Leu Phe Phe Ser Leu Ser Arg Tyr Lys Gln Gln Gln	430
cag ccc cag aag cag cac etc tcc tca eet etg eeg eee gee gta tee Gln Pro Gln Lys Gln His Leu Ser Ser Pro Leu Pro Pro Ala Val Ser	478

cag	gtg	gcc	gly	gcc	ccc	tcc	cag	tgc	cag	gct	ggc	acc	cct	cag	cag	526
Gln	Val	Ala	ggg	Ala	Pro	Ser	Gln	Cys	Gln	Ala	Gly	Thr	Pro	Gln	Gln	
cag	gtg	cca	gtc	act	ccc	caa	gcc	ccg	tgc	cag	cct	cac	cag	cca	gcg	574
Gln	Val	Pro	Val	Thr	Pro	Gln	Ala	Pro	Cys	Gln	Pro	His	Gln	Pro	Ala	
cca	cat	cag	cag	tca	aaa	gca	caa	gct	gaa	atg	cag	tcc	aga	ctt	cca	622
Pro	His	Gln	Gln	Ser	Lys	Ala	Gln	Ala	Glu	Met	Gln	Ser	Arg	Leu	Pro	
ggt	cct	acc	gcg	agg	gta	tcc	gct	gca	ggc	agc	gag	gcc	aaa	aca	cgc	670
Gly	Pro	Thr	Ala	Arg	Val	Ser	Ala	Ala	Gly	Ser	Glu	Ala	Lys	Thr	Arg	
gga	Gly	tca	act	act	gct	aac	aac	cga	cgc	agc	cag	agc	ttt	aac	aac	718
Gly	aaa	Ser	Thr	Thr	Ala	Asn	Asn	Arg	Arg	Ser	Gln	Ser	Phe	Asn	Asn	
			tcc Ser													766
cac	gag	aaa	gag	cct	ttg	gca	agt	tca	gcc	tcc	tcc	cac	ccc	gga	atg	814
His	Glu	Lys	Glu	Pro	Leu	Ala	Ser	Ser	Ala	Ser	Ser	His	Pro	Gly	Met	
agt	gac	aat	gca	cct	gct	tcc	ttg	gag	agc	ggc	agc	agc	tcc	acc	cct	862
Ser	Asp	Asn	Ala	Pro	Ala	Ser	Leu	Glu	Ser	Gly	Ser	Ser	Ser	Thr	Pro	
act	aat	tgc	agt	acc	tcc	tcg	gcc	atc	ccg	cag	ccc	ggt	gca	gcc	acc	910
Thr	Asn	Cys	Ser	Thr	Ser	Ser	Ala	Ile	Pro	Gln	Pro	Gly	Ala	Ala	Thr	
aag	cct	tgg	cgc	agc	aaa	tcc	ctc	agc	gtg	aag	cac	agt	gcc	acg	gta	958
Lys	Pro	Trp	Arg	Ser	Lys	Ser	Leu	Ser	Val	Lys	His	Ser	Ala	Thr	Val	
tcc	atg	ctc	tcg	gtc	aag	cct	cct	ggg	cct	gag	gcc	ccc	agg	ccc	aca	1006
Ser	Met	Leu	Ser	Val	Lys	Pro	Pro	Gly	Pro	Glu	Ala	Pro	Arg	Pro	Thr	
cct	gaa	gcc	atg	aag	ccg	gcc	ccc	aac	aat	cag	aag	tcc	atg	ctg	gaa	1054
Pro	Glu	Ala	Met	Lys	Pro	Ala	Pro	Asn	Asn	Gln	Lys	Ser	Met	Leu	Glu	
aag	ctg	aaa	ctt	ttc	aac	agt	aaa	ggg	ggc	tca	aag	gca	ggt	gag	ggg	1102
Lys	Leu	Lys	Leu	Phe	Asn	Ser	Lys	Gly	Gly	Ser	Lys	Ala	Gly	Glu	Gly	
ccg	ggg Gly	tcc Ser	cgg Arg	gac Asp	aca Thr	agc Ser	tgt Cys	gag Glu	cgg Arg	ctg Leu	gag Glu	act Thr	ctg Leu	ccc Pro	agc Ser	1150

ttc Phe	gaa Glu	gag Glu	agc Ser	gag Glu	gag Glu	ctg Leu	gag Glu	gcc Ala	gcc Ala	agt Ser	cgc Arg	atg Met	ctc Leu	acc Thr	acc Thr	1198
gtg Val	ggc Gly	cct Pro	gct Ala	tcc Ser	agc Ser	agc Ser	ccc Pro	aag Lys	att Ile	gca Ala	ctc Leu	aag Lys	ggc Gly	att Ile	gcc Ala	1246
cag Gln	agg Arg	act Thr	ttt Phe	agc Ser	cgg Arg	gca Ala	ctg Leu	acc Thr	aac Asn	aag Lys	aag Lys	agt Ser	tct Ser	ctg Leu	aaa Lys	1294
					aag Lys											1342
					gcc Ala											1390
ctc Leu	aag Lys	gag Glu	gag Glu	cca Pro	aaa Lys	gaa Glu	gac Asp	ccc Pro	agt Ser	gga Gly	gca Ala	gct Ala	gtg Val	ccc Pro	gag Glu	1438
atg Met	cca Pro	aaa Lys	aag Lys	tcc Ser	tcc Ser	aag Lys	att Ile	gcc Ala	agc Ser	ttc Phe	atc Ile	ccc Pro	aaa Lys	999 Gly	G] A 333	1486
aag Lys	ctc Leu	aac Asn	agt Ser	gcc Ala	aag Lys	aag Lys	gag Glu	ccc Pro	atg Met	gcc Ala	cct Pro	tcc Ser	cac His	agt Ser	gga Gly	1534
ata Ile	cca Pro	aaa Lys	cca Pro	gga Gly	atg Met	aag Lys	agc Ser	atg Met	ccc Pro	gly ggg	aaa Lys	tcc Ser	cca Pro	agt Ser	gcc Ala	1582
cca Pro	gcg Ala	cct Pro	tcc Ser	aag Lys	gaa Glu	gly ggg	gag Glu	cgg Arg	agc Ser	cgg Arg	agt Ser	Gly 999	aag Lys	ctg Leu	agc Ser	1630
tca Ser	gga Gly	ctc Leu	ccc Pro	cag Gln	cag Gln	aag Lys	ccc Pro	cag Gln	ctg Leu	gac Asp	ggc Gly	aga Arg	cac His	tcc Ser	agt Ser	1678
tcc Ser	tct Ser	tcc Ser	agc Ser	ctg Leu	gcg Ala	tcc Ser	tca Ser	gaa Glu	gga Gly	aaa Lys	ggc Gly	cca Pro	gga Gly	gly aaa	acc Thr	1726
acc Thr	ctg Leu	aac Asn	cac His	agc Ser	atc Ile	agc Ser	agc Ser	cag Gln	act Thr	gtc Val	agt Ser	Gly 999	tct Ser	gtc Val	ggg Gly	1774
acc Thr	acc Thr	cag Gln	acc Thr	aca Thr	gga Gly	agc Ser	aat Asn	acc Thr	gtc Val	agt Ser	gtt Val	cag Gln	cta Leu	cct Pro	cag Gln	1822

ccc Pro	cag Gln	cag Gln	caa Gln	tac Tyr	aac Asn	cat His	ccc Pro	aac Asn	act Thr	gcc Ala	acg Thr	gtt Val	gca Ala	cct Pro	ttc Phe	1870
ctg Leu	tac Tyr	agg Arg	tct Ser	cag Gln	acg Thr	gac Asp	act Thr	gaa Glu	gjà aaa	aat Asn	gtt Val	act Thr	gcc Ala	gag Glu	tca Ser	1918
agc Ser	tca Ser	aca Thr	ggt Gly	gtg Val	agc Ser	gtg Val	gag Glu	ccc Pro	agc Ser	cac His	ttc Phe	acc Thr	aag Lys	act Thr	gga Gly	1966
			ctg Leu													2014
			gtg Val													2062
acc Thr	atg Met	tcc Ser	agt Ser	tta Leu	agg Arg	gga Gly	act Thr	cag Gln	gtt Val	aca Thr	cac His	agc Ser	aca Thr	ttg Leu	gaa Glu	2110
			gac Asp													2158
ctc Leu	agc Ser	ttg Leu	aca Thr	Gly aaa	agg Arg	ccc Pro	aca Thr	cct Pro	ctg Leu	tcc Ser	tgg Trp	aga Arg	ctg Leu	ggc Gly	cag Gln	2206
tcc Ser	agc Ser	cct Pro	cgg Arg	ctc Leu	caa Gln	gca Ala	gga Gly	gac Asp	gcc Ala	ccc Pro	tca Ser	atg Met	ggc Gly	aat Asn	ggg Gly	2254
tat Tyr	ccc Pro	cct Pro	cga Arg	gcc Ala	aac Asn	gcc Ala	agc Ser	agg Arg	ttc Phe	atc Ile	aac Asn	act Thr	gag Glu	tca Ser	ggt Gly	2302
cgc Arg	tat Tyr	gtg Val	tac Tyr	tcc Ser	gcc Ala	cct Pro	ctg Leu	aga Arg	agg Arg	cag Gln	ctg Leu	gcc Ala	tcc Ser	cgg Arg	ggc Gly	2350
agt Ser	agt Ser	gtc Val	tgc Cys	cac His	gtg Val	gac Asp	gtc Val	tca Ser	gac Asp	aag Lys	gca Ala	gga Gly	gat Asp	gag Glu	atg Met	2398
			ggc Gly													2446
gat Asp	gtt Val	ctg Leu	agc Ser	aag Lys	aac Asn	atc Ile	cgg Arg	acc Thr	gat Asp	gac Asp	att Ile	aca Thr	agc Ser	gga Gly	tac Tyr	2494
atg	act	gat	ggt	gga	ctt	ggc	ctc	tat	acc	cgt	cgc	ctg	aac	cgg	ctc	2542

Met	Thr	Asp	Gly	Gly	Leu	Gly	Leu	Tyr	Thr	Arg	Arg	Leu	Asn	Arg	Leu	
cct Pro	gat Asp	gly aaa	atg Met	gct Ala	gtg Val	gta Val	cgg Arg	gag Glu	acc Thr	ctg Leu	caa Gln	cga Arg	aat Asn	acc Thr	tcc Ser	2590
									gac Asp							2638
agc Ser	ggc Gly	atc Ile	agc Ser	gac Asp	acc Thr	ata Ile	gac Asp	aac Asn	ctc Leu	agc Ser	act Thr	gat Asp	gac Asp	atc Ile	aac Asn	2686
									aac Asn							2734
aaa Lys	aac Asn	ctg Leu	gat Asp	gtg Val	cag Gln	act Thr	gat Asp	gct Ala	gag Glu	aag Lys	cac His	tca Ser	cag Gln	gtg Val	gag Glu	2782
									gtc Val							2830
tca Ser	gac Asp	agc Ser	ggc Gly	ata Ile	aaa Lys	atg Met	gag Glu	cca Pro	ggt Gly	tcc Ser	aag Lys	tgg Trp	agg Arg	cgg Arg	aat Asn	2878
									aaa Lys							2926
									tgg Trp							2974
									aag Lys							3022
									aca Thr							3070
									tcc Ser							3118
tca Ser	gat Asp	gca Ala	ggc	cgg Arg	agc Ser	agt Ser	ggt Gly	gac Asp	gaa Glu	tcc Ser	aaa Lys	aag Lys	ccc Pro	ctc Leu	ccc Pro	3166
agc	agc	tct	agg	aca	cct	act	gcc	aat	gcc	aac	agc	ttt	999	ttc	aag	3214

Ser	Ser	Ser	Arg	Thr	Pro	Thr	Ala	Asn	Ala	Asn	Ser	Phe	Gly	Phe	Lys	
			ggt Gly													3262
		_	acc Thr	-					_					_		3310
			gtc Val													3358
			cag Gln													3406
			cgg Arg													3454
			aac Asn													3502
			gca Ala													3550
			ggc Gly													3598
			atc Ile													3646
gtg Val	aaa Lys	gtg Val	aat Asn	ccg Pro	gca Ala	gcc Ala	cag Gln	cct Pro	gtg Val	tcc Ser	agt Ser	ccg Pro	gct Ala	cag Gln	acc Thr	3694
			cct Pro													3742
cgc Arg	aga Arg	ctc Leu	ttt Phe	ggt Gly	Gly ggg	aag Lys	cct Pro	acc Thr	aag Lys	caa Gln	gtg Val	ccc Pro	atc Ile	gcc Ala	aca Thr	3790
			atg Met													3838
_		_	caa Gln				-					_				3886

agc Ser	agt Ser	999 999	agc Ser	agc Ser	agt Ser	cct Pro	ctc Leu	tac Tyr	agc Ser	aag Lys	aat Asn	gtg Val	gac Asp	ctc Leu	aac Asn	3934
_		_		-	tcc Ser			_		_		-				3982
aac Asn	agc Ser	ctc Leu	acc Thr	tgg Trp	ggc	acc Thr	aac Asn	gcc Ala	agc Ser	agc Ser	tcc Ser	tcc Ser	gca Ala	gtt Val	agc Ser	4030
					ttt Phe											4078
					tcc Ser											4126
					atc Ile											4174
					agt Ser											4222
tct Ser	tcc Ser	cct Pro	gct Ala	gct Ala	agc Ser	cct Pro	aag Lys	ttc Phe	tgc Cys	aga Arg	agt Ser	act Thr	ctg Leu	ccc Pro	agg Arg	4270
					ccg Pro											4318
					ccc Pro											4366
Lys	Glu	Trp	Leu	Arg	tcc Ser	His	Ser	Ala	Gly	Gly	Leu	Gln	Asp	Thr	Ala	4414
Ala	Asn	Ser	Pro	Phe	tcc Ser	Ser	Gly	Ser	Ser	Val	Thr	Ser	Pro	Ser	Gly	4462
Thr	Arg	Phe	Asn	Phe	tcc Ser	Gln	Leu	Ala	Ser	Pro	Thr	Thr	Val	Thr	Gln	4510
atg Met	agc Ser	ttg Leu	tcc Ser	aac Asn	ccg Pro	acc Thr	atg Met	ctg Leu	agg Arg	act Thr	cac His	agc Ser	ctc Leu	tcc Ser	aat Asn	4558

gct Ala	gat Asp	gly ggg	cag Gln	tat Tyr	gat Asp	cca Pro	tac Tyr	act Thr	gac Asp	agc Ser	cgc Arg	ttc Phe	cgg Arg	aat Asn	agc Ser	4606
tcc Ser	atg Met	tcc Ser	ctg Leu	gat Asp	gag Glu	aag Lys	agc Ser	aga Arg	acc Thr	atg Met	agc Ser	cgt Arg	tca Ser	gly	tca Ser	4654
ttc Phe	cgg Arg	gat Asp	Gly ggg	ttt Phe	gaa Glu	gaa Glu	gtt Val	cat His	gga Gly	tcc Ser	tca Ser	ctc Leu	tcc Ser	ttg Leu	gtt Val	4702
tcc Ser	agc Ser	aca Thr	tcg Ser	tca Ser	gtt Val	tat Tyr	tct Ser	aca Thr	cca Pro	gaa Glu	gaa Glu	aaa Lys	tgc Cys	cag Gln	tca Ser	4750
gag Glu	att Ile	cgc Arg	aag Lys	ctg Leu	cgg Arg	cgg Arg	gaa Glu	ctg Leu	gat Asp	gcc Ala	tcc Ser	cag Gln	gag Glu	aaa Lys	gtt Val	4798
tca Ser	gct Ala	ttg Leu	acc Thr	acc Thr	cag Gln	ctg Leu	aca Thr	gca Ala	aat Asn	gct Ala	cac His	ctt Leu	gtg Val	gct Ala	gcc Ala	4846
ttt Phe	gaa Glu	cag Gln	agt Ser	ctt Leu	ggt Gly	aac Asn	atg Met	aca Thr	atc Ile	agg Arg	ctc Leu	cag Gln	agt Ser	ctg Leu	acc Thr	4894
atg Met	aca Thr	gct Ala	gag Glu	cag Gln	aag Lys	gat Asp	tca Ser	gaa Glu	ctg Leu	aat Asn	gag Glu	tta Leu	aga Arg	aaa Lys	acc Thr	4942
att Ile	gag Glu	ctg Leu	cta Leu	aag Lys	aaa Lys	cag Gln	aac Asn	gca Ala	gct Ala	gcc Ala	cag Gln	gct Ala	gcc Ala	att Ile	aat Asn	4990
gga Gly	gta Val	att Ile	aac Asn	aca Thr	cct Pro	gag Glu	ctc Leu	aac Asn	tgc Cys	aaa Lys	gga Gly	aac Asn	ggc Gly	act Thr	gcc Ala	5038
cag Gln	tct Ser	gca Ala	gac Asp	ctc Leu	cgc Arg	atc Ile	cgc Arg	agg Arg	cag Gln	cac His	tcc Ser	tca Ser	gac Asp	agc Ser	gtc Val	5086
tcc Ser	agc Ser	atc Ile	aac Asn	agt Ser	gcc Ala	acc Thr	agc Ser	cac His	tcc Ser	agt Ser	gtg Val	ggc Gly	agc Ser	aac Asn	ata Ile	5134
gag Glu	agt Ser	gac Asp	tca Ser	aag Lys	aag Lys	aag Lys	aag Lys	agg Arg	aag Lys	aac Asn	tgg Trp	gtc Val	aat Asn	gag Glu	tta Leu	5182
					caa Gln											5230

gcg Ala	tcc Ser	tct Ser	cat His	tca Ser	gat Asp	att Ile	gag Glu	gag Glu	atg Met	acg Thr	gat Asp	tct Ser	tct Ser	ttg Leu	cct Pro	5278
tcc Ser	tca Ser	cca Pro	aag Lys	tta Leu	cca Pro	cac His	aat Asn	gjå aaa	tcc Ser	aca Thr	ggt Gly	tcc Ser	acc Thr	cca Pro	ctg Leu	5326
ctg Leu	agg Arg	aat Asn	tct Ser	cac His	tcc Ser	aac Asn	tct Ser	cta Leu	att Ile	tca Ser	gaa Glu	tgc Cys	atg Met	gat Asp	agt Ser	5374
gaa Glu	gct Ala	gag Glu	acc Thr	gtc Val	atg Met	cag Gln	ctc Leu	cga Arg	aat Asn	gag Glu	tta Leu	aga Arg	gac Asp	aag Lys	gag Glu	5422
atg Met	aag Lys	ctg Leu	aca Thr	gat Asp	atc Ile	cgc Arg	tta Leu	gaa Glu	gct Ala	ctc Leu	agt Ser	tct Ser	gcc Ala	cac His	cag Gln	5470
ctg Leu	gac Asp	cag Gln	ctc Leu	cgg Arg	gag Glu	gcc Ala	atg Met	aac Asn	agg Arg	atg Met	cag Gln	agt Ser	gaa Glu	ata Ile	gag Glu	5518
aag Lys	ctg Leu	aaa Lys	gct Ala	gag Glu	aat Asn	gat Asp	cgg Arg	ctg Leu	aag Lys	tca Ser	gag Glu	tct Ser	caa Gln	ggc Gly	agt Ser	5566
ggc Gly	tgc Cys	agc Ser	cgg Arg	gct Ala	cct Pro	tcc Ser	caa Gln	gtg Val	tcc Ser	atc Ile	tct Ser	gcc Ala	tcc Ser	ccg Pro	agg Arg	5614
cag Gln	tcc Ser	atg Met	ggc Gly	ctc Leu	tcc Ser	cag Gln	cac His	agc Ser	ttg Leu	aac Asn	ctc Leu	act Thr	gag Glu	tca Ser	acc Thr	5662
agc Ser	ctg Leu	gac Asp	atg Met	ttg Leu	ctg Leu	gat Asp	gac Asp	act Thr	ggt Gly	gaa Glu	tgc Cys	tcg Ser	gct Ala	cgg Arg	aag Lys	5710
gaa Glu	gga Gly	ggc	agg Arg	cat His	gtt Val	aag Lys	ata Ile	gtt Val	gtc Val	agc Ser	ttt Phe	cag Gln	gag Glu	gaa Glu	atg Met	5758
aag Lys	tgg Trp	aag Lys	gag Glu	gat Asp	tcc Ser	aga Arg	cca Pro	cat His	ctc Leu	ttt Phe	ctt Leu	att Ile	ggc	tgc Cys	att Ile	5806
gga Gly	gtt Val	agt Ser	ggc	aag Lys	acg Thr	aag Lys	tgg Trp	gat Asp	gtg Val	ctc Leu	gat Asp	GJA aaa	gtg Val	gtt Val	aga Arg	5854
cgg Arg	ctg Leu	ttc Phe	aaa Lys	gaa Glu	tac Tyr	atc Ile	att Ile	cat His	gtc Val	gac Asp	cca Pro	gtg Val	agt Ser	cag Gln	cta Leu	5902
gly ggg	ctg Leu	aat Asn	tca Ser	gac Asp	agc Ser	gtt Val	ctt Leu	ggc Gly	tac Tyr	agc Ser	att Ile	gga Gly	gaa Glu	atc Ile	aag Lys	5950

					aca Thr										5998
					atc Ile										6046
					gtg Val										6094
_	 _		_		ctc Leu	_	~ ~		_						6142
					Gly ggg										6190
		-		_	gag Glu		 	_		_					6238
					cat His										6286
					cag Gln										6334
_		_			ctg Leu	_					-		_		6382
					ctg Leu										6430
					aac Asn										6478
_					aga Arg			_	_			_			6526
					ggc Gly									-	6574
					gtg Val										6622

gac tgg att ccc	aag gtc tgg	cat cac ctc	aac cgc ttc	ctg gag gct	6670
Asp Trp Ile Pro	Lys Val Trp	His His Leu	Asn Arg Phe	Leu Glu Ala	
cac agt tcc tcg	gac gtc acc	atc ggc ccc	cgg ctc ttc	ctg tca tgc	6718
His Ser Ser Ser	Asp Val Thr	Ile Gly Pro	Arg Leu Phe	Leu Ser Cys	
ccc atc gat gtg	gac ggc tcg	aga gtg tgg	ttc acc gac	ttg tgg aac	6766
Pro Ile Asp Val	Asp Gly Ser	Arg Val Trp	Phe Thr Asp	Leu Trp Asn	
tat tcc att atc	ccc tat ctc	ctg gaa gcc	gtc aga gaa	gga ctc cag	6814
Tyr Ser Ile Ile	Pro Tyr Leu	Leu Glu Ala	Val Arg Glu	Gly Leu Gln	
ctc tat gga agg	cgc gcc ccc	tgg gag gat	cct gcc aag	tgg gtg atg	6862
Leu Tyr Gly Arg	Arg Ala Pro	Trp Glu Asp	Pro Ala Lys	Trp Val Met	
gac aca tat cca	tgg gca gcc	agc cca caa	cag cac gag	tgg cct ccc	6910
Asp Thr Tyr Pro	Trp Ala Ala	Ser Pro Glr	Gln His Glu	Trp Pro Pro	
ctg ctg cag tta	. cgg cct gag	gat gtc ggc	ttc gac ggc	tac tcc atg	6958
Leu Leu Gln Leu	. Arg Pro Glu	Asp Val Gly	Phe Asp Gly	Tyr Ser Met	
cct cgg gag gga	tcg aca agc	aag cag atg	ccc ccc agt	gat gct gaa	7006
Pro Arg Glu Gly	Ser Thr Ser	Lys Gln Met	Pro Pro Ser	Asp Ala Glu	
ggt gac ccg ctg	ı atg aac atg	ctg atg agg	g ctg cag gag	gca gcc aac	7054
Gly Asp Pro Leu	ı Met Asn Met	Leu Met Arg	g Leu Gln Glu	Ala Ala Asn	
tac tcc agc ccc	cag agc tat	gac agc gac	tcc aac ago	aac agc cat	7102
Tyr Ser Ser Pro	Gln Ser Tyr	Asp Ser Asp	Ser Asn Ser	Asn Ser His	
cac gat gac atc His Asp Asp Ile	: ttg gac tcc : Leu Asp Ser	tct ttg gag Ser Leu Gli	g tee act etg a Ser Thr Leu	tgacaggggc	7151
ccggagccca gcgc	cctcct cttct	cctca ccgcat	tcca cctgcat	ccc ccacatcacc	7211
ctgaagatga cttc					7271
accccccgtc cttc	ageete gaeet	gggtg caggca	atece gggecag	ctg cctgcggacc	7331
gcttccttcc acag	gcgagaa ctgca	actacc ttctg	tgta ctttaat	tat tgttttgcct	7391
tgttgctgtg acct	ccctaa gacac	tgaag atact	ctcg ggaaagg	gate ategeegttg	7451
aaatgaaaag agag	gacagag agaga	aaaaa aaaag	agaac ccacato	gaag ctctgaaacc	7511

ć	aacagcatc	ctgccatgag	cttcccagag	acagaagaga	ctggagcaaa	gtcggaaaca	7571
C	cagagaagca	cggcttcccc	tcagcacaga	ccctccagac	tgggtctcag	agccgtgcca	7631
(ccaccctcc	cacacagccg	gccacaggga	gaactggtgc	taaccagggt	gcttgctttg	7691
ç	gtcacgttca	acgcactaca	gagctacgac	acaggggaac	cttaggagca	aataaaccgt	7751
9	gctttcatgt	tttttaaaaa	aaaaaaaaa	aa			7783

<210> 27

<211> 2380

<212> PRT

<213> Homo sapiens

<400> 27

Asn Gln Pro Glu Arg Leu Asn Ser Gln Val Leu Gln Gly Leu Gln Glu

1 10 15

Pro Ala Gly Glu Gly Leu Pro Leu Arg Lys Ser Gly Ser Val Glu Asn 20 25 30

Gly Phe Asp Thr Gln Ile Tyr Thr Asp Trp Ala Asn His Tyr Leu Ala 35 40 45

Lys Ser Gly His Lys Arg Leu Ile Arg Asp Leu Gln Gln Asp Val Thr 50 55 60

Asp Gly Val Leu Leu Ala Gln Ile Ile Gln Val Val Ala Asn Glu Lys 65 70 75 80

Ile Glu Asp Ile Asn Gly Cys Pro Lys Asn Arg Ser Gln Met Ile Glu 85 90 95

Asn Ile Asp Ala Cys Leu Asn Phe Leu Ala Ala Lys Gly Ile Asn Ile 100 105 110

Gln Gly Leu Ser Ala Glu Glu Ile Arg Asn Gly Asn Leu Lys Ala Ile 115 120 125

Leu Gly Leu Phe Phe Ser Leu Ser Arg Tyr Lys Gln Gln Gln Gln Gln 130 135 140

Val Ala Gly Ala Pro Ser Gln Cys Gln Ala Gly Thr Pro Gln Gln Gln 165 170 175

Val Pro Val Thr Pro Gln Ala Pro Cys Gln Pro His Gln Pro Ala Pro 180 185 190

His Gln Gln Ser Lys Ala Gln Ala Glu Met Gln Ser Arg Leu Pro Gly

		195					200					205			
Pro	Thr 210	Ala	Arg	Val	Ser	Ala 215	Ala	Gly	Ser	Glu	Ala 220	Lys	Thr	Arg	Gly
Gly 225	Ser	Thr	Thr	Ala	Asn 230	Asn	Arg	Arg	Ser	Gln 235	Ser	Phe	Asn	Asn	Tyr 240
Asp	Lys	Ser	Lys	Pro 245	Val	Thr	Ser	Pro	Pro 250	Pro	Pro	Pro	Ser	Ser 255	His
Glu	Lys	Glu	Pro 260	Leu	Ala	Ser	Ser	Ala 265	Ser	Ser	His	Pro	Gly 270	Met	Ser
Asp	Asn	Ala 275	Pro	Ala	Ser	Leu	Glu 280	Ser	Gly	Ser	Ser	Ser 285	Thr	Pro	Thr
Asn	Cys 290	Ser	Thr	Ser	Ser	Ala 295	Ile	Pro	Gln	Pro	Gly 300	Ala	Ala	Thr	Lys
Pro 305	Trp	Arg	Ser	Lys	Ser 310	Leu	Ser	Val	Lys	His 315	Ser	Ala	Thr	Val	Ser 320
Met	Leu	Ser	Val	Lys 325	Pro	Pro	Gly	Pro	Glu 330	Ala	Pro	Arg	Pro	Thr 335	Pro
Glu	Ala	Met	Lys 340	Pro	Ala	Pro	Asn	Asn 345	Gln	Lys	Ser	Met	Leu 350	Glu	Lys
Leu	Lys	Leu 355	Phe	Asn	Ser	Lys	Gly 360	Gly	Ser	Lys	Ala	Gly 365	Glu	Gly	Pro
Gly	Ser 370	Arg	Asp	Thr	Ser	Cys 375	Glu	Arg	Leu	Glu	Thr 380	Leu	Pro	Ser	Phe
Glu 385	Glu	Ser	Glu	Glu	Leu 390	Glu	Ala	Ala	Ser	Arg 395	Met	Leu	Thr	Thr	Val 400
Gly	Pro	Ala	Ser	Ser 405	Ser	Pro	Lys	Ile	Ala 410	Leu	Lys	Gly	Ile	Ala 415	Gln
Arg	Thr		Ser 420			Leu						Ser	Leu 430		Gly
Asn	Glu	Lys 435	Glu	Lys	Glu	Lys	Gln 440	Gln	Arg	Glu	Lys	Asp 445	Lys	Glu	Lys
Ser	Lys 450	Asp	Leu	Ala	Lys	Arg 455	Ala	Ser	Val	Thr	Glu 460	Arg	Leu	Asp	Leu
Lys 465	Glu	Glu	Pro	Lys	Glu 470	Asp	Pro	Ser	Gly	Ala 475	Ala	Val	Pro	Glu	Met 480
Pro	Lys	Lys	Ser	Ser	Lys	Ile	Ala	Ser	Phe 490	Ile	Pro	Lys	Gly	Gly 495	Lys

Leu Asn Ser Ala Lys Lys Glu Pro Met Ala Pro Ser His Ser Gly Ile 505 Pro Lys Pro Gly Met Lys Ser Met Pro Gly Lys Ser Pro Ser Ala Pro 520 Ala Pro Ser Lys Glu Gly Glu Arg Ser Arg Ser Gly Lys Leu Ser Ser Gly Leu Pro Gln Gln Lys Pro Gln Leu Asp Gly Arg His Ser Ser Ser Ser Ser Ser Leu Ala Ser Ser Glu Gly Lys Gly Pro Gly Gly Thr Thr Leu Asn His Ser Ile Ser Ser Gln Thr Val Ser Gly Ser Val Gly Thr Thr Gln Thr Thr Gly Ser Asn Thr Val Ser Val Gln Leu Pro Gln Pro Gln Gln Tyr Asn His Pro Asn Thr Ala Thr Val Ala Pro Phe Leu 620 Tyr Arg Ser Gln Thr Asp Thr Glu Gly Asn Val Thr Ala Glu Ser Ser 630 635 Ser Thr Gly Val Ser Val Glu Pro Ser His Phe Thr Lys Thr Gly Gln 650 Pro Ala Leu Glu Glu Leu Thr Gly Glu Asp Pro Glu Ala Arg Arg Leu Arg Thr Val Lys Asn Ile Ala Asp Leu Arg Gln Asn Leu Glu Glu Thr Met Ser Ser Leu Arg Gly Thr Gln Val Thr His Ser Thr Leu Glu Thr 695 Thr Phe Asp Thr Asn Val Thr Thr Glu Met Ser Gly Arg Ser Ile Leu 715 710 Ser Leu Thr Gly Arg Pro Thr Pro Leu Ser Trp Arg Leu Gly Gln Ser Ser Pro Arg Leu Gln Ala Gly Asp Ala Pro Ser Met Gly Asn Gly Tyr Pro Pro Arg Ala Asn Ala Ser Arg Phe Ile Asn Thr Glu Ser Gly Arg Tyr Val Tyr Ser Ala Pro Leu Arg Arg Gln Leu Ala Ser Arg Gly Ser 780 775 Ser Val Cys His Val Asp Val Ser Asp Lys Ala Gly Asp Glu Met Asp 790 795

- Leu Glu Gly Ile Ser Met Asp Ala Pro Gly Tyr Met Ser Asp Gly Asp 805 810 815
- Val Leu Ser Lys Asn Ile Arg Thr Asp Asp Ile Thr Ser Gly Tyr Met 820 825 830
- Thr Asp Gly Gly Leu Gly Leu Tyr Thr Arg Arg Leu Asn Arg Leu Pro 835 840 845
- Asp Gly Met Ala Val Val Arg Glu Thr Leu Gln Arg Asn Thr Ser Leu 850 860
- Gly Leu Gly Asp Ala Asp Ser Trp Asp Asp Ser Ser Ser Val Ser Ser 865 870 875 880
- Gly Ile Ser Asp Thr Ile Asp Asn Leu Ser Thr Asp Asp Ile Asn Thr 885 890 895
- Ser Ser Ser Ile Ser Ser Tyr Ala Asn Thr Pro Ala Ser Ser Arg Lys 900 905 910
- Asn Leu Asp Val Gln Thr Asp Ala Glu Lys His Ser Gln Val Glu Arg 915 920 925
- Asn Ser Leu Trp Ser Gly Asp Asp Val Lys Lys Ser Asp Gly Gly Ser 930 935 940
- Asp Ser Gly Ile Lys Met Glu Pro Gly Ser Lys Trp Arg Arg Asn Pro 945 950 955 960
- Ser Asp Val Ser Asp Glu Ser Asp Lys Ser Thr Ser Gly Lys Lys Asn 965 970 975
- Pro Val Ile Ser Gln Thr Gly Ser Trp Arg Arg Gly Met Thr Ala Gln 980 985 990
- Val Gly Ile Thr Met Pro Arg Thr Lys Ala Ser Ala Pro Ala Gly Ala 995 1000 1005
- Leu Lys Thr Pro Gly Thr Gly Lys Thr Asp Asp Ala Lys Val Ser Glu 1010 1015 1020
- Lys Gly Arg Leu Ser Pro Lys Ala Ser Gln Val Lys Arg Ser Pro Ser 1025 1030 1035 1040
- Asp Ala Gly Arg Ser Ser Gly Asp Glu Ser Lys Lys Pro Leu Pro Ser 1045 1050 1055
- Ser Ser Arg Thr Pro Thr Ala Asn Ala Asn Ser Phe Gly Phe Lys Lys 1060 1065 1070
- Gln Ser Gly Ser Ala Thr Gly Leu Ala Met Ile Thr Ala Ser Gly Val 1075 1080 1085
- Thr Val Thr Ser Arg Ser Ala Thr Leu Gly Lys Ile Pro Lys Ser Ser

1090	1095	1100

Ala Leu Val Ser Arg Ser Ala Gly Arg Lys Ser Ser Met Asp Gly Ala 1105 1110 1115 1120

Gln Asn Gln Asp Asp Gly Tyr Leu Ala Leu Ser Ser Arg Thr Asn Leu 1125 1130 1135

Gln Tyr Arg Ser Leu Pro Arg Pro Ser Lys Ser Asn Ser Arg Asn Gly 1140 1145 1150

Ala Gly Asn Arg Ser Ser Thr Ser Ser Ile Asp Ser Asn Ile Ser Ser 1155 1160 1165

Lys Ser Ala Gly Leu Pro Val Pro Lys Leu Arg Glu Pro Ser Lys Thr 1170 1175 1180

Ala Leu Gly Ser Ser Leu Pro Gly Leu Val Asn Gln Thr Asp Lys Glu 1185 1190 1195 1200

Lys Gly Ile Ser Ser Asp Asn Glu Ser Val Ala Ser Cys Asn Ser Val 1205 1210 1215

Lys Val Asn Pro Ala Ala Gln Pro Val Ser Ser Pro Ala Gln Thr Ser 1220 1225 1230

Leu Gln Pro Gly Ala Lys Tyr Pro Asp Val Ala Ser Pro Thr Leu Arg 1235 1240 1245

Arg Leu Phe Gly Gly Lys Pro Thr Lys Gln Val Pro Ile Ala Thr Ala 1250 1255 1260

Glu Asn Met Lys Asn Ser Val Val Ile Ser Asn Pro His Ala Thr Met 1265 1270 1275 1280

Thr Gln Gln Gly Asn Leu Asp Ser Pro Ser Gly Ser Gly Val Leu Ser 1285 1290 1295

Ser Gly Ser Ser Pro Leu Tyr Ser Lys Asn Val Asp Leu Asn Gln 1300 1305 1310

Ser Pro Leu Ala Ser Ser Pro Ser Ser Ala His Ser Ala Pro Ser Asn 1315 1320 1325

Ser Leu Thr Trp Gly Thr Asn Ala Ser Ser Ser Ser Ala Val Ser Lys 1330 1335 1340

Asp Gly Leu Gly Phe Gln Ser Val Ser Ser Leu His Thr Ser Cys Glu 1345 1350 1355 1360

Ser Ile Asp Ile Ser Leu Ser Ser Gly Gly Val Pro Ser His Asn Ser 1365 1370 1375

Ser Thr Gly Leu Ile Ala Ser Ser Lys Asp Asp Ser Leu Thr Pro Phe 1380 1385 1390

Val Arg Thr Asn Ser Val Lys Thr Thr Leu Ser Glu Ser Pro Leu Ser

1395 1400 1405

Ser Pro Ala Ala Ser Pro Lys Phe Cys Arg Ser Thr Leu Pro Arg Lys Gln Asp Ser Asp Pro His Leu Asp Arg Asn Thr Leu Pro Lys Lys Gly 1430 1435 Leu Arg Tyr Thr Pro Thr Ser Gln Leu Arg Thr Gln Glu Asp Ala Lys 1445 1450 Glu Trp Leu Arg Ser His Ser Ala Gly Gly Leu Gln Asp Thr Ala Ala 1465 Asn Ser Pro Phe Ser Ser Gly Ser Ser Val Thr Ser Pro Ser Gly Thr Arg Phe Asn Phe Ser Gln Leu Ala Ser Pro Thr Thr Val Thr Gln Met 1495 Ser Leu Ser Asn Pro Thr Met Leu Arg Thr His Ser Leu Ser Asn Ala 1505 1510 1515 Asp Gly Gln Tyr Asp Pro Tyr Thr Asp Ser Arg Phe Arg Asn Ser Ser 1525 1530 Met Ser Leu Asp Glu Lys Ser Arg Thr Met Ser Arg Ser Gly Ser Phe 1545 Arg Asp Gly Phe Glu Glu Val His Gly Ser Ser Leu Ser Leu Val Ser Ser Thr Ser Ser Val Tyr Ser Thr Pro Glu Glu Lys Cys Gln Ser Glu Ile Arg Lys Leu Arg Arg Glu Leu Asp Ala Ser Gln Glu Lys Val Ser 1590 1595 Ala Leu Thr Thr Gln Leu Thr Ala Asn Ala His Leu Val Ala Ala Phe 1605 1610

Glu Gln Ser Leu Gly Asn Met Thr Ile Arg Leu Gln Ser Leu Thr Met 1620 1630

Thr Ala Glu Gln Lys Asp Ser Glu Leu Asn Glu Leu Arg Lys Thr Ile 1635 1640 1645

Glu Leu Leu Lys Lys Gln Asn Ala Ala Ala Gln Ala Ala Ile Asn Gly 1650 1655 1660

Val Ile Asn Thr Pro Glu Leu Asn Cys Lys Gly Asn Gly Thr Ala Gln 1665 1670 1675 1680

Ser Ala Asp Leu Arg Ile Arg Arg Gln His Ser Ser Asp Ser Val Ser 1685 1690 1695

- Ser Ile Asn Ser Ala Thr Ser His Ser Ser Val Gly Ser Asn Ile Glu 1700 1705 1710
- Ser Asp Ser Lys Lys Lys Lys Arg Lys Asn Trp Val Asn Glu Leu Arg 1715 1720 1725
- Ser Ser Phe Lys Gln Ala Phe Gly Lys Lys Lys Ser Pro Lys Ser Ala 1730 1735 1740
- Ser Ser His Ser Asp Ile Glu Glu Met Thr Asp Ser Ser Leu Pro Ser 1745 1750 1755 1760
- Ser Pro Lys Leu Pro His Asn Gly Ser Thr Gly Ser Thr Pro Leu Leu 1765 1770 1775
- Arg Asn Ser His Ser Asn Ser Leu Ile Ser Glu Cys Met Asp Ser Glu 1780 1785 1790
- Ala Glu Thr Val Met Gln Leu Arg Asn Glu Leu Arg Asp Lys Glu Met 1795 1800 1805
- Lys Leu Thr Asp Ile Arg Leu Glu Ala Leu Ser Ser Ala His Gln Leu 1810 1815 1820
- Asp Gln Leu Arg Glu Ala Met Asn Arg Met Gln Ser Glu Ile Glu Lys 1825 1830 1835 1840
- Leu Lys Ala Glu Asn Asp Arg Leu Lys Ser Glu Ser Gln Gly Ser Gly 1845 1850 1855
- Cys Ser Arg Ala Pro Ser Gln Val Ser Ile Ser Ala Ser Pro Arg Gln 1860 1865 1870
- Ser Met Gly Leu Ser Gln His Ser Leu Asn Leu Thr Glu Ser Thr Ser 1875 1880 1885
- Leu Asp Met Leu Leu Asp Asp Thr Gly Glu Cys Ser Ala Arg Lys Glu
 1890 1895 1900
- Gly Gly Arg His Val Lys Ile Val Val Ser Phe Gln Glu Glu Met Lys 1905 1910 1915 1920
- Trp Lys Glu Asp Ser Arg Pro His Leu Phe Leu Ile Gly Cys Ile Gly 1925 1930 1935
- Val Ser Gly Lys Thr Lys Trp Asp Val Leu Asp Gly Val Val Arg Arg 1940 1945 1950
- Leu Phe Lys Glu Tyr Ile Ile His Val Asp Pro Val Ser Gln Leu Gly 1955 1960 1965
- Leu Asn Ser Asp Ser Val Leu Gly Tyr Ser Ile Gly Glu Ile Lys Arg 1970 1975 1980
- Ser Asn Thr Ser Glu Thr Pro Glu Leu Leu Pro Cys Gly Tyr Leu Val 1985 1990 1995 2000

Gly Glu Asn Thr Thr Ile Ser Val Thr Val Lys Gly Leu Ala Glu Asn 2005 2010 2015

. .

- Ser Leu Asp Ser Leu Val Phe Glu Ser Leu Ile Pro Lys Pro Ile Leu 2020 2025 2030
- Gln Arg Tyr Val Ser Leu Leu Ile Glu His Arg Arg Ile Ile Leu Ser 2035 2040 2045
- Gly Pro Ser Gly Thr Gly Lys Thr Tyr Leu Ala Asn Arg Leu Ser Glu 2050 2055 2060
- Tyr Ile Val Leu Arg Glu Gly Arg Glu Leu Thr Asp Gly Val Ile Ala 2065 2070 2075 2080
- Thr Phe Asn Val Asp His Lys Ser Ser Lys Glu Leu Arg Gln Tyr Leu 2085 2090 2095
- Ser Asn Leu Ala Asp Gln Cys Asn Ser Glu Asn Asn Ala Val Asp Met 2100 2105 2110
- Pro Leu Val Ile Ile Leu Asp Asn Leu His His Val Ser Ser Leu Gly 2115 2120 2125
- Glu Ile Phe Asn Gly Leu Leu Asn Cys Lys Tyr His Lys Cys Pro Tyr 2130 2135 2140
- Ile Ile Gly Thr Met Asn Gln Ala Thr Ser Ser Thr Pro Asn Leu Gln 2145 2150 2155 2160
- Leu His His Asn Phe Arg Trp Val Leu Cys Ala Asn His Thr Glu Pro 2165 2170 2175
- Val Lys Gly Phe Leu Gly Arg Phe Leu Arg Arg Lys Leu Met Glu Thr 2180 2185 2190
- Glu Ile Ser Gly Arg Val Arg Asn Met Glu Leu Val Lys Ile Ile Asp 2195 2200 2205
- Trp Ile Pro Lys Val Trp His His Leu Asn Arg Phe Leu Glu Ala His 2210 2215 2220
- Ser Ser Ser Asp Val Thr Ile Gly Pro Arg Leu Phe Leu Ser Cys Pro 2225 2230 2235 2240
- Ile Asp Val Asp Gly Ser Arg Val Trp Phe Thr Asp Leu Trp Asn Tyr 2245 2250 2255
- Ser Ile Ile Pro Tyr Leu Leu Glu Ala Val Arg Glu Gly Leu Gln Leu 2260 2265 2270
- Tyr Gly Arg Arg Ala Pro Trp Glu Asp Pro Ala Lys Trp Val Met Asp 2275 2280 2285
- Thr Tyr Pro Trp Ala Ala Ser Pro Gln Gln His Glu Trp Pro Pro Leu

2290 2295 2300 Leu Gln Leu Arg Pro Glu Asp Val Gly Phe Asp Gly Tyr Ser Met Pro Arg Glu Gly Ser Thr Ser Lys Gln Met Pro Pro Ser Asp Ala Glu Gly 2330 Asp Pro Leu Met Asn Met Leu Met Arg Leu Gln Glu Ala Ala Asn Tyr 2345 Ser Ser Pro Gln Ser Tyr Asp Ser Asp Ser Asn Ser Asn Ser His His 2360 Asp Asp Ile Leu Asp Ser Ser Leu Glu Ser Thr Leu 2375 <210> 28 <211> 96 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(93) <400> 28 age agg gag agg ggg agt gtg ceg tet ett etg caa ggg cag tge 48 Ser Arg Glu Arg Gly Gly Ser Val Pro Ser Leu Leu Gln Gly Gln Cys ccc agc ctc agc cac act tct gat ctg cag tcc aac aga cct ttc tag 96 Pro Ser Leu Ser His Thr Ser Asp Leu Gln Ser Asn Arg Pro Phe * <210> 29 <211> 75 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(72) <400> 29 cat gcc aaa gag aac ctg ggg gtg cca ggg ggt cct cag agc tca cac 48 His Ala Lys Glu Asn Leu Gly Val Pro Gly Gly Pro Gln Ser Ser His

tgc act tgt ggc acc cac agc gag tag Cys Thr Cys Gly Thr His Ser Glu * <210> 30 <211> 489 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(489) <400> 30 cca tcc gtg agc cga gga aac tgt aca cag atc tac aca gac tgg gcc Pro Ser Val Ser Arg Gly Asn Cys Thr Gln Ile Tyr Thr Asp Trp Ala aat cat tac cta gcc aaa tcc ggc cac aag cgt ctc atc aag gat ctc 96 Asn His Tyr Leu Ala Lys Ser Gly His Lys Arg Leu Ile Lys Asp Leu cag caa gat gtg aca gat ggc gtc ctc ctg gcc cag att atc cag gtt 144 Gln Gln Asp Val Thr Asp Gly Val Leu Leu Ala Gln Ile Ile Gln Val gtg gca aat gaa aag att gaa gac atc aat ggc tgt ccg aag aac aga 192 Val Ala Asn Glu Lys Ile Glu Asp Ile Asn Gly Cys Pro Lys Asn Arg tcc caa atq att gaa aac ata gat gcc tgc ttg aat ttc ctg gca gct 240 Ser Gln Met Ile Glu Asn Ile Asp Ala Cys Leu Asn Phe Leu Ala Ala aag gga ata aac atc cag ggg ctg tct gca gaa gag atc agg aat gga 288 Lys Gly Ile Asn Ile Gln Gly Leu Ser Ala Glu Glu Ile Arg Asn Gly aac ctc aag gcc att cta ggc ctc ttc ttc agc ctc tcc cga tac aag 336 Asn Leu Lys Ala Ile Leu Gly Leu Phe Phe Ser Leu Ser Arg Tyr Lys 384 cag cag cag cag ccc cag aag cac ctc tcc tca cct ctg ccg Gln Gln Gln Gln Pro Gln Lys Gln His Leu Ser Ser Pro Leu Pro ccc gcc gta tcc cag gtg gcc ggg gcc ccc tcc cag tgc cag gct ggc 432 Pro Ala Val Ser Gln Val Ala Gly Ala Pro Ser Gln Cys Gln Ala Gly acc cct cag cag cag gtg cca gtc act ccc caa gcc ccg tgc cag cct 480 Thr Pro Gln Gln Gln Val Pro Val Thr Pro Gln Ala Pro Cys Gln Pro 489 cac cag cca His Gln Pro

```
<210> 31
<211> 31
<212> PRT
<213> Homo sapiens
```

<400> 31

Ser Arg Glu Arg Gly Gly Ser Val Pro Ser Leu Leu Gln Gly Gln Cys
1 10 15

Pro Ser Leu Ser His Thr Ser Asp Leu Gln Ser Asn Arg Pro Phe 20 25 30

<210> 32 <211> 24 <212> PRT <213> Homo sapiens

<400> 32

His Ala Lys Glu Asn Leu Gly Val Pro Gly Gly Pro Gln Ser Ser His
5 10 15

Cys Thr Cys Gly Thr His Ser Glu

<210> 33 <211> 163 <212> PRT <213> Homo sapiens <400> 33

Pro Ser Val Ser Arg Gly Asn Cys Thr Gln Ile Tyr Thr Asp Trp Ala
5 10 15

Asn His Tyr Leu Ala Lys Ser Gly His Lys Arg Leu Ile Lys Asp Leu 20 25 30

Gln Gln Asp Val Thr Asp Gly Val Leu Leu Ala Gln Ile Ile Gln Val 35 40 45

Val Ala Asn Glu Lys Ile Glu Asp Ile Asn Gly Cys Pro Lys Asn Arg 50 60

Ser Gln Met Ile Glu Asn Ile Asp Ala Cys Leu Asn Phe Leu Ala Ala

65		70		75	80	
Lys Gly Ile	Asn Ile 85	Gln Gly	Leu Ser A	la Glu Glu Ile O	Arg Asn Gly 95	
Asn Leu Lys	Ala Ile 100	Leu Gly	Leu Phe Pi	he Ser Leu Ser	Arg Tyr Lys 110	
Gln Gln Gln 115	Gln Gln	Pro Gln	Lys Gln H 120	is Leu Ser Ser 125	Pro Leu Pro	
Pro Ala Val 130	Ser Gln	Val Ala 135	Gly Ala P	ro Ser Gln Cys 140	Gln Ala Gly	
Thr Pro Gln 145	Gln Gln	Val Pro 150	Val Thr P	ro Gln Ala Pro 155	Cys Gln Pro 160	
His Gln Pro						
<210> 34 <211> 479 <212> DNA <213> mouse						
<220> <221> CDS						
<222> (3)	. (476)					
	. (476)					
<222> (3) <400> 34 at gag aag a	agc cga a	aca atg : Thr Met :	agt cgg tc Ser Arg Se	a ggc tcc ttc o r Gly Ser Phe 2	egg gat ggg Arg Asp Gly	47
<222> (3) <400> 34 at gag aag a Glu Lys S ttt gag gaa	agc cga a Ser Arg '	Thr Met a	Ser Arg Se tcc ctg t	a ggc tcc ttc o r Gly Ser Phe i cc ttg gtt tcc er Leu Val Ser	Arg Asp Gly agc aca tcc	47 95
<222> (3) <400> 34 at gag aag a Glu Lys S ttt gag gaa Phe Glu Glu tcc atc tac	agc cga a Ser Arg ' gtt cat Val His tcc acg	Thr Met and gga tcc Gly Ser cca gaa	Ser Arg Se tcc ctg t Ser Leu S gaa aaa t	r Gly Ser Phe A	agc aca tcc Ser Thr Ser att cga aag	
<222> (3) <400> 34 at gag aag a Glu Lys s ttt gag gaa Phe Glu Glu tcc atc tac Ser Ile Tyr ctg agg cga	agc cga a Ser Arg ' gtt cat Val His tcc acg Ser Thr	gga tcc Gly Ser cca gaa Pro Glu	Ser Arg Se tcc ctg t Ser Leu S gaa aaa t Glu Lys C	r Gly Ser Phe A cc ttg gtt tcc er Leu Val Ser gc cag tca gag	agc aca tcc Ser Thr Ser att cga aag Ile Arg Lys gcg ctg act	95
<222> (3) <400> 34 at gag aag a Glu Lys s ttt gag gaa Phe Glu Glu tcc atc tac Ser Ile Tyr ctg agg cga Leu Arg Arg acc cag ctg	agc cga age Arg ' gtt cat Val His tcc acg Ser Thr gaa ctg Glu Leu act gca	gga tcc Gly Ser cca gaa Pro Glu gat gcc Asp Ala	Ser Arg Se tcc ctg t Ser Leu S gaa aaa t Glu Lys C tcc cag g Ser Gln G	r Gly Ser Phe A cc ttg gtt tcc er Leu Val Ser gc cag tca gag ys Gln Ser Glu aa aag gtg tct	agc aca tcc Ser Thr Ser att cga aag Ile Arg Lys gcg ctg act Ala Leu Thr	95 143
<222> (3) <400> 34 at gag aag a Glu Lys s ttt gag gaa Phe Glu Glu tcc atc tac Ser Ile Tyr ctg agg cga Leu Arg Arg acc cag ctg Thr Gln Leu ctg gga aac	agc cga age Arg ' gtt cat Val His tcc acg Ser Thr gaa ctg Glu Leu act gca Thr Ala	gga tcc Gly Ser cca gaa Pro Glu gat gcc Asp Ala aat gct Asn Ala	Ser Arg Se tcc ctg t Ser Leu S gaa aaa t Glu Lys C tcc cag g Ser Gln G cac ctt g His Leu V	r Gly Ser Phe Acc ttg gtt tcc er Leu Val Ser gc cag tca gag ys Gln Ser Glu aa aag gtg tct lu Lys Val Ser tg gca gcc ttc	agc aca tcc Ser Thr Ser att cga aag Ile Arg Lys gcg ctg act Ala Leu Thr gag cag agt Glu Gln Ser acc gct gag	95 143 191

Gln Lys Asp Ser Glu Leu Asn Glu Leu Arg Lys Thr Ile Glu Leu Leu	
aag aaa cag aat gca gct gcc cag gct gcc att aat gga gtg att aac Lys Lys Gln Asn Ala Ala Ala Gln Ala Ala Ile Asn Gly Val Ile Asn	383
acg cca gag ctc aac tgc aaa gga aat ggc agt gcc agg cta cag acc Thr Pro Glu Leu Asn Cys Lys Gly Asn Gly Ser Ala Arg Leu Gln Thr	431
tac gca tcc gca gca aca ctc ctc cga cag tgt ctc cag tat caa tag Tyr Ala Ser Ala Ala Thr Leu Leu Arg Gln Cys Leu Gln Tyr Gln *	479
<210> 35 <211> 22 <212> DNA <213> mouse <220> <221> CDS <222> (1)(21)	
<400> 35	
cgc cac cag cca ctc aag tgt g Arg His Gln Pro Leu Lys Cys	22
<210> 36 <211> 158 <212> PRT <213> mouse	
<400> 36	
Glu Lys Ser Arg Thr Met Ser Arg Ser Gly Ser Phe Arg Asp Gly Phe 1 5 10 15	
Glu Glu Val His Gly Ser Ser Leu Ser Leu Val Ser Ser Thr Ser Ser 20 25 30	
Ile Tyr Ser Thr Pro Glu Glu Lys Cys Gln Ser Glu Ile Arg Lys Leu 35 40 45	
Arg Arg Glu Leu Asp Ala Ser Gln Glu Lys Val Ser Ala Leu Thr Thr 50 55 60	
Gln Leu Thr Ala Asn Ala His Leu Val Ala Ala Phe Glu Gln Ser Leu 65 70 75 80	
Gly Asn Met Thr Ile Arg Leu Gln Ser Leu Thr Met Thr Ala Glu Gln 85 90 95	

Lys Asp Ser Glu Leu Asn Glu Leu Arg Lys Thr Ile Glu Leu Lys
100 105 110

Lys Gln Asn Ala Ala Ala Gln Ala Ala Ile Asn Gly Val Ile Asn Thr 115 120 125

Pro Glu Leu Asn Cys Lys Gly Asn Gly Ser Ala Arg Leu Gln Thr Tyr 130 135 140

Ala Ser Ala Ala Thr Leu Leu Arg Gln Cys Leu Gln Tyr Gln 145 150 155

<210> 37

<211> 7

<212> PRT

<213> mouse

<400> 37

Arg His Gln Pro Leu Lys Cys 5

<210> 38

<211> 19

<212> PRT

<213> artificial Sequence

<220>

<223> Description of the artificial Sequence: Peptide for production of AK

<400> 38

Glu Lys Gly Glu Asp Pro Glu Thr Arg Arg Met Arg Thr Val Lys Asn 5 10 15

Ile Ala Asp

<210> 39

<211> 81369

<213> DNA

<214> Homo sapiens

<400> 39

gatcagactt tgaagagtgt ttgtaccatg ctaaagttta cagaatttat tcctgctctt 60 tgagggtgca ttgcaaatcc aggctagagg gagagatacc agttaggana gtacagcaat 120

actctactgg	gaaatggtga	ggtgtttcgt	gaagacaatg	gcaacacaga	tgaagacatg	180
cagatggagg	aaataaagat	ccagttgagc	ttgttggcca	gttggataga	ggttgaggtt	240
atgcatgatg	gagcaatcta	ggtttttgtc	ttgggtaggt	gtttccatga	tagtactcag	300
aatgaatcat	atagttgtac	aggttgaatc	ccacccatgt	ttgcacaata	gagtgactgt	360
ctagctgaaa	tccagatgac	actctgtatg	ctaagctatg	cttcatggaa	ctgtataaag	420
gcacttgcta	cataggctag	tggcagatct	ggaagtaacc	tatatggtat	ataggaaatg	480
aggtggcttt	tgtataaatc	ctacagataa	atttcatttc	ctgatcctat	tattttgact	540
catgttagcc	caagaagagt	attcagtact	tcatatccct	gaaggtaaga	cagagtagta	600
ttagattcac	tatttggcaa	ataaaaggga	tcaagtccta	agatcaagct	gatgaatcaa	660
cacctcatag	gatatgtccc	aaccaattat	atggcttccc	ctataaataa	aatctagttc	720
tcttctctgg	agaggaacag	tgaagaatat	cataacctat	gctacaaact	gcttgagtag	780
gagctacttc	tetecaagge	tttatatcat	tcattctggc	aggcccctct	gtttgttctc	840
accagctcct	gggaaattta	tttctcctct	agtgatataa	aagctctctg	tttgagatga	900
agggctgccc	agtttatcag	atctgtatta	gtctgttctc	aggctgctaa	taaagacata	960
cctgagactg	agtaatttat	gaaggaaaga	ggtttaattg	actcacagtt	ccacatggct	1020
ggggaggcct	cacaatcatg	gcgaaagact	aataaggagc	aaagtcacat	cttacatggc	1080
tgcagacaag	agagcatgtg	caggggaact	gctctccata	aaaccatcag	atcttgtgag	1140
acttgttcac	tattacaaga	acaacagaca	ggaaaacccg	cccctcaat	tcaattacct	1200
gccactggga	ccctcccaca	acacatgggg	attatgagag	ctacaattca	agatgagatt	1260
tgggtgggga	taccgccaaa	ccatatgaag	ttctttcttt	gttactgggt	accatatcca	1320
ttctgttgag	gttctgagcc	tttccagtta	ctgtaactcc	tctatctcct	gtctgtgcta	1380
agactcagtg	acctctctct	gccttgcttc	tgctttgtcc	tgaccctttc	tgtgcatgca	1440
ctcactctag	tttgcccacc	tgaggtgaga	gatggtccag	attagcaaca	acaatctgtg	1500
gactaaaatc	ctctttaggg	aggaagcaaa	attcagatgg	atgttactaa	acaaagctca	1560
gaaacagaga	ccagggtgtg	ggaagtaagg	tagtagcctg	agagcagctg	gcagtgtttt	1620
agacctggag	ggaggttagg	tcatcagcaa	tgaggagact	gcctggaaaa	tcctagaaaa	1680
ttaagacatc	tggtcaggca	aggtcatatc	accagcacac	ttcccttttc	aagttgaatc	1740
cctttcctct	gttaagagga	ttcaagtgtc	tttcttgcat	tttgtcttct	cttctatatc	1800

catgcttgca	atataaggag	acagcagttg	gctgtttgtg	ctagaaaata	taaatggcca	1860
ttttgaaagc	atgccagaca	ggatctgcgg	caagttttca	atgttactgc	tgccatctgt	1920
tgttcttcag	tgctgggatg	tgaatctctt	ggcaaacatc	tctctaattc	tgaactatct	1980
ttcaccccca	tctagagata	ttcacttact	gaagtgcctt	tttaaagcaa	tgttcctcac	2040
caaggcgatg	ttctgaatgt	tttaaaatgg	aagaatctgg	aatgtttta	ttataataca	2100
ttttgtatat	cccaaagcaa	aaatcaattt	cttcatggtt	aatacttttg	taattttgtt	2160
tttaataata	ttttcctttt	aaatataaga	aatattttat	tgaattaata	ctttaatgta	2220
gctgtttcaa	gtaagataaa	acagaacaga	ttactgtttt	caaccttgtt	cacagttagc	2280
tctgtaacta	agttgttgag	ctttatctaa	gcttttttat	ttttacataa	cgtttccctt	2340
ttcacttaac	cttgaaatta	tagtaatttg	ggaacttcta	ttcctctgaa	agagaaagct	2400
aatgccaaag	atatttcaag	ggagaaagaa	ggtttttaaa	aggagagaca	attcagctca	2460
gacttaatag	ctgtgattgc	tatttattaa	gcagaacgcc	tataactaaa	ttctcagata	2520
tccaaaaaac	agcctgtaca	ttctcaaaag	tgaagattac	acattttcta	agttaaggta	2580
aaagttttgt	ctctgtagca	tcttactgat	ttctatcttc	tcattctgcc	ttaataatgt	2640
cactaaataa	atgtttgatg	cactaataca	tgaataaaac	tattcatggt	aatgattctt	2700
tagaaacaca	gctaagtttt	gtaattttgt	tttttaaaaa	ttaaaaattt	aaatataaaa	2760
atgtttttaa	aaggcttgaa	tttcttgtta	aatgtacaca	ttttaagttg	taggctgtct	2820
ttaaaaataa	tctctccaca	cactgtagta	tttaaaacat	catgatatta	ctataaaaca	2880
tcaacaaata	gggcagtgga	aaacatggta	atcactaaaa	atgctcacat	gtcatatatt	2940
aagacttgat	aagtaaacca	caataataaa	tagaaaagaa	atagttgtct	aaaaagggat	3000
tctcaccttt	caaaccttac	cataaaaatg	gaatataaaa	gaaggaagag	gaggagaaat	3060
caaattatat	cataaaattt	tctgggcaaa	aatattacag	aagaaaataa	gaaagattta	3120
tggagttgac	tgaaacattt	ttgaatccta	tacataaaaa	tatcgttaat	taaaaggaaa	3180
aacaaagaaa	cagatttggg	aaatatttga	aactggtttt	tttttagcat	ttaaaaatgt	3240
aatacaaatg	gattatttaa	actccattgc	aaaaatacac	aaaggacatt	gacaatgtct	3300
ggaaataaaa	ttagctaagt	aagttataga	aaaactcagt	ctcacaattt	gacaaatgta	3360
actgaaaact	attaatataa	ttagtaacta	tttttacatg	tcaaaatttt	tgaattacta	3420
aaggaaacca	caatgcctga	aagtatccag	ggttttttt	tttttttata	atattggcac	3480
tgtcatatgg	gtggcaggaa	ttgaagtgat	gttgtttctt	cagttattaa	gttgcatctg	3540

cagtgtttca	aatgtccaaa	acctgtgagt	cagtaattct	ctttttgtat	atttatccta	3600
atacaataat	tctaaacata	atctcaatat	atatgtacaa	agttattcac	tgcagtgtta	3660
cttacaatag	ttagaaaatt	gtaaaatgct	ttatgcatct	taaaatataa	attgttgaat	3720
atataatagt	ccatatgata	taattatatc	attattataa	ataatgaatt	agaaaataat	3780
ttaagagcat	taaaataatt	ataaggtaat	atgaagtgaa	tgaataatgt	acagatacta	3840
taatcagcag	agtgttaact	aggtaaattt	ttatgtgtgt	atatactact	tcctaaaaat	3900
gacttgacag	aaatcatcaa	aatgctaatg	gtggttactt	ctgggtggga	atacagatga	3960
tttactttgt	tccttttatg	tatttctgca	ctgcccagtc	ttccacagtg	agcatatatt	4020
ggtttttaaa	tttatataag	atggaaaaag	ataccaaatg	gtcttcaatg	aatcctggag	4080
ttaactttca	tgtgtgtcat	atgttatatt	ctaaacttat	cacaaataga	agactttaaa	4140
tcaacttgta	cctatttcaa	ctatataaca	gcatctttaa	aatgagcatt	gaattaaact	4200
accaaaacca	accatcatga	ggattattca	agtaatgtgt	ttaaacaaaa	gaatttgtaa	4260
taaaattact	ttatctcctt	tgtgatttca	gcccatttaa	aaaaaataga	tgtttctact	4320
ctccttcaga	tatcattaaa	acataaactt	gtgcctgact	gcataaatcc	cttttaaact	4380
aatatcactt	attacgttta	actaagtcta	cctagggctt	ccttgtataa	agaacaagag	4440
ctttccattt	tttgtttacc	tagccctttc	tgatgccacg	acagaatagc	tgtaaatctt	4500
cattatttat	attctagaga	aaataaaagc	aaataaaaag	gtcagtgtat	aaagtttatt	4560
ggttgttctc	tttactcaaa	acccacatgg	tattaatgtt	agtctctatg	aatatttcat	4620
ggataaaatc	agagcattaa	gtgcatacta	aaaacaataa	gaatggaaag	actttaacct	4680
tatgtttata	tgaatttcta	ggttatcaag	aagtttatag	gctataggct	ataaagtctt	4740
aggctatgat	atagtaacct	aatgtagact	tcccttgata	catgaaaata	atggtactaa	4800
gtacaaacag	aagatgagct	taaaattatt	ctttgagtcc	tcttgatgga	ttttttcccc	4860
cacactttcc	ccaaaattgt	tttatgccta	tattgtagga	gaccatgcaa	gagacctaga	4920
gtctcttttt	ctttcatcac	tttccaatca	acagcaaatc	ctatcatttt	taccacaaaa	4980
tatatcttga	aactcccttc	ttttgattta	cttgtaactc	cccatcaaaa	actgaagagt	5040
gtcacaatac	ttcattaagt	tccctacttg	cactctacct	ttaatatatt	tgtagcacta	5100
aaatgttttt	aaaacatata	tctgcttatg	tcattttact	gctcaatact	atctgatttt	5160
ctattgcact	tctaagatac	tctaatttct	tagcactcta	tataaaatcc	tttaagggct	5220

tecetgetea	ccttttcaga	ctcagaacta	tgtatttcct	tttgcctgct	gtacttgtac	5280
cactggattc	ttgatttttg	ttacttccag	gtttttacac	ttatttttac	aataaatgtg	5340
aaataccctt	tttgacaata	tctacaaata	tttcttattt	gtctttattg	ctctttcctg	5400
taatgtttag	tcttcatttt	cctgataatg	gctatctaaa	gttatctcct	caaagaagca	5460
gttatttatt	cacccaaatc	ttctagtcct	tctctggagt	tttcttctca	cttcattccc	5520
ttggtttttg	ccacaatttg	taataatttg	caatttggag	tgttagaatg	agggaataaa	5580
tcacaggtaa	tgactatagt	ttgtgactat	gtaagattgg	attcgttatt	gatttattcc	5640
acaaacactg	aggcactgca	tttagccaaa	tgccaatctt	gggcagtgag	actctgaaag	5700
agaatctgct	tccccacca	taaactacaa	agtgaaacaa	ctcagaatgt	acataaatta	5760
cagaatgaaa	gcacactaga	agtaaacaca	gatgtggaag	aggtaaagtg	tccttgaaaa	5820
tcatggaaag	attcataaag	ggaatgacat	ttcaactgga	ttctaaacca	gttattcaag	5880
ctccacaagg	ttgcacagta	aatgagcagt	ggcaggatga	cataccttag	aaagtaaaag	5940
gaatctttt	taaactgcta	taaaaatcat	tacatataca	ttttgtaggt	cgagagtaag	6000
gtatttaaca	taaaatcatt	ttagtatatc	agtgtttata	tagacttagg	tttttctcat	6060
ttaaaacctc	ttttaatgac	ttgtgctttt	cttcatggta	ataaaacatt	ttcccaggaa	6120
gtgctgaata	aatctttctt	gaaatacgtt	ttattgcttt	ctatcaatga	ccctgaagta	6180
atacagaatt	tacacttcag	cggttgcaat	gctcaaactt	gacaggtaat	gcactgtgtt	6240
tgctgatata	agaggtatga	tgtagggcta	agtggttttg	tgctcattta	gctttcagga	6300
gaaaataatt	gacttaacat	tttgatacta	aaacccaaag	cctaacagtt	aattcttggt	6360
attttaaatt	attattgcaa	agattattgt	gccgaataat	atgaaaatat	tttatataat	6420
atttaaaaag	tatatctctt	tcttggtatt	atttaaatta	ccataaaaat	gtgcgaaaaa	6480
gttatactga	aatgtgatag	gatcttttaa	aagtggtgcc	ttgattttgt	taagtgttac	6540
ctagttttcc	tctgaaaaca	agaaacatac	ccagaagttt	tcacgaaatg	gtctcatgaa	6600
tatctaaggt	tagtccgtag	tctcatctga	gacaaggaaa	gtcccttcca	ctatgagcct	6660
gtaaaatcac	aagcaagcta	gttacttcct	agatacaatg	ggagtactgg	tattgggtaa	6720
acacagctgt	ttcaaatggg	agaaattggc	caaaattaat	gggttacagg	gcatgcaatt	6780
ccgaaatcca	tctgggcagt	caaattgtaa	aactccaaaa	tgatntcttt	tgactccatg	6840
tntcacatcc	aggacatgct	gangcaagag	ataggttccc	ataatctttg	gcagctctgc	6900
ccctgtggct	ttgcagggta	tatcacccct	cccagctgct	ttcacaggct	ggcattgagt	6960

gtctgtggct	ttcccaggaa	caaggtgcaa	gctgttggtg	gatctaccat	tctggggttt	7020
ggaggatgat	ggccctcttc	tcatagctcc	actaggccgt	gctccagtag	agactctgtg	7080
ggggctctga	ccccagattt	ccctcctgca	ctgccctagc	agagattctt	catgagggcc	7140
gtgcccctgc	agaaaactct	ttcctgggca	tccaggcatt	tccatacatc	tgaaatctag	7200
gtggaggttc	ccaaacctcg	attcttaatt	tctgtgcacc	tgcaggctct	ctaccacgtg	7260
gaagctgcca	aggtttgggg	cttgcaccct	ctgaaaccac	aggctgagct	ataccttggc	7320
cccttttagc	aatggctgga	gtgactggga	cacagggcac	caagtctcta	ggctgcacac	7380
agtatgggca	ccctgggccc	agccctcaaa	atcattttt	cctcctaggc	ttctggatca	7440
gtgaagggtg	gggctgccat	gaagacctat	gacatgccct	ggagacattt	tccccattgt	7500
cttggggatt	aacactggct	ccttgttact	tatgcagatt	tctgcagcca	gctgaatttc	7560
tcctcaaaaa	atgggttttt	cttttctact	gcattgtcag	gctgcaaatt	ttctgaactt	7620
ttatgctgtt	tcccttttaa	aatgcgatgc	tctaacaaca	cccgtcacct	cttgaatgct	7680
ttgctgctta	gaaatttctt	ctgtcagata	ccctaaatca	tctctctcaa	gttcagagtt	7740
ccacaaatct	ctagggcagg	ggcaaaatgc	caccagtctc	tttgctaaaa	cataacaaga	7800
gtcgcctttg	ctccagttct	cagcaagttc	ctcatctcca	tccgagacaa	cctcagcctg	7860
gtccttattg	tttatatcac	tataaaaatt	tttgtcaaag	ccattcaaca	agtctctact	7920
ccaaactttc	ccacattttc	ctgtcttctt	ctgagccctc	caaattgttc	cagcetetge	7980
ctgatacaca	gtcccaaagt	tacttccaca	tttttggata	tcttttcagc	aatgccccgc	8040
tctactggta	ccaacttact	ttgttagtcc	gttttcacac	tgttgataaa	gacataccca	8100
agactggaaa	gaaaaaaagg	tttaattgga	cttacagttc	cacatggcta	gggaggette	8160
acaatcatgg	caggaggcaa	aaggcatttc	ttacatgatg	gcagcaagag	aaaatgagga	8220
agatgcaaac	gcagaaatcc	ctgataaaac	catcggacct	tgtaagactt	attcactacc	8280
actaggacag	tatgggtgat	accaccccca	tgattcaaat	gatctccaac	caggtgcctc	8340
ccacaacaca	tgggaattat	gggaatacaa	ttcaagatga	gatttgggta	gggacacaga	8400
gccaaactat	atcacatgga	tttcttatac	ttttgctttt	aataacacaa	acaaaaaaat	8460
acatcattaa	aaggttagaa	gtgagaaggt	gtttttatgg	aaatcaaaaa	taatatcacc	8520
ttagtgaaca	gtattcttat	gattgtagtt	gaattagaga	gcagaataca	tctagaagat	8580
tcagtagtaa	gcatgtttct	tcgattaatg	gaaaatttga	atagcctagc	tgattgagat	8640

tgaggttact	attaaatgcc	tgaagtataa	gagttggttg	tttatgtaaa	caaaatatct	8700
gttttacatg	tacatgtgta	agtaggactg	ttgagcccca	gtaacatgaa	atatcaaaga	8760
gcatgactcg	aatacctgcc	atatgaagtg	ctattacatc	aaaaaagagg	cgtgtgctga	8820
aaaattacct	acaaatggca	ttttcctcaa	atcaatttta	aatcttcaga	atttcatttt	8880
aataattgtt	tagttaatat	ttcagaatcc	ctcatcataa	aaagcaggca	aaaggcaaaa	8940
gtccttgaat	gtataacaca	tttgttttca	aacaagcctg	cctctaactg	tgaatccagg	9000
agtgaatcca	gaactacaaa	ttaactaaga	ttggccccat	cgagttactg	aacgttaaaa	9060
atctaaaaac	taaaaggcat	gcctcaacaa	ttattttctt	cttggaatca	ttaattaacc	9120
tatgtgtatc	caaacaataa	tcttccagca	gtttcgctag	ctacattttt	aattacttaa	9180
tatcatgtaa	aatttgtttt	attattgttc	agttctgaat	tttgacatat	gcatcaagcc	9240
atgcaactgc	taccacagtc	ttcctgatca	ctgatctgtt	ctaaatctct	atagcatttt	9300
tccttttctt	aaatgttgca	taaataaaac	cataccttat	gtggcctttt	gaatctggca	9360
tctttaactt	aatgcgcttg	aaattaatct	atgtcatttc	atgtatcaat	ggctcaatct	9420
ttttaattgt	taagaaaaaa	tgtatgctgg	gataaatatc	tttctaaatg	agtttttgtt	9480
cacaatgctg	agtgtttgtt	taggatagag	tcctagaaat	ggtatcacta	ggtcaaacat	9540
tcaaataatt	ttaaaatatt	tgatacatat	tgccaaataa	tctcaaattt	tttaccaata	9600
tacatttatg	acagtatggg	ataaatgtgt	ctttcttata	ccaactgaca	acattaatga	9660
taatacataa	aatattcttt	gctaatttga	tgggacagaa	atgttatatc	cttattagca	9720
ttttattatt	gtggttgaat	gactgtactg	tacagccaga	gatatttggt	tcaaaatcca	9780
tcttcattat	ttactgtatg	tgaaaattta	ggtgagctat	ttaatctctt	gatgccttag	9840
tctcctaatc	tataaagtgg	ggataattgt	accaatcata	ttaggttcct	gtgagaatta	9900
actgaattac	tatagaaaat	gcttagaatg	gtatctagtc	accaggaagg	actctctctg	9960
tattacttgt	ttattatcta	acacgtttaa	ttattaatga	agctcagttt	cgttatatgc	10020
ttgggatatt	tgaaactttt	cttagtgaat	tttccaataa	aattatttgt	ctatttttct	10080
atggacaagt	tggtattatt	cttactggtt	tgtttcaggt	tcagttagta	agaattttaa	10140
ggattttcta	tcacatttta	gcaaactttt	tctgcatttt	atctttttc	tttcagataa	10200
tgtttgcaaa	atgtaaaaaa	aacaaaaggt	ttcttcatca	agttggtatc	tttatctttt	10260
ttattgcttt	gtgatttgaa	aattcttgtc	ctgagaacca	aaatatatat	ttgatgaaat	10320
agttctcttc	ttttactcat	tctgaagtca	ttggaattga	atttggcata	tgatataaat	10380

cctaatttta	tattttatga	tattcaaaat	ttctaacaaa	tatttactta	ataatctaat	10440
ccaggtttct	attgtttctt	ctgtttcctt	tataatgctt	tttctgaagt	tatttttcct	10500
agacttaaat	attagtataa	tattatcata	gaggaaaaaa	tatctgttag	ctatgaataa	10560
aaggctttca	tcttattgtt	gcattaatat	atttaaatgt	agagagcata	cagattagca	10620
aagaaaaagt	ataattgcct	ttttttatag	ttgacatgaa	catgtataaa	gaaaaaccaa	10680
aaaaatcaat	aaaacaacta	gaacttatta	gtgaatttag	caagatcata	gcatacaaag	10740
ccaagattca	aaattccatt	ttatttatct	actaacaaaa	aatatttgaa	atttgaaaat	10800
ttaaatatgc	catttacaat	aacatcaaaa	tattgaacaa	taaagtattt	aggaatttat	10860
aaaatgaaat	ctcctatacc	aggaattaca	gaccattgct	gaaataaatg	aaagaagacc	10920
aatatatgtg	aagagatact	catttgtgga	ttgagagaca	atattgttaa	agtatcagta	10980
tttcccaaat	taatcaatag	attcaatata	atggtgaaca	gaacaccaga	agatgttctg	11040
tcgaagctga	caagctattt	ctataattca	aatggaaatg	caaaaggcag	tcactgccaa	11100
caccagcatg	gactgtctgg	gttccagtag	gttacttcac	tactgcctct	tctgtcagcc	11160
acatcacgac	agctgcccag	aagccagaga	aactcctcac	acctggccca	ctgctgcagc	11220
taccagcatc	caggcaagcc	accatcagcc	cactggtaac	tgccaacaga	ggtaccactg	11280
tacactaccc	tggggaacaa	agataggcat	gtagtcagcc	cacctctgcc	accactaggg	11340
cctgaagcct	ggcccacctg	acactgcagt	cctcagcaca	gcttcatcac	agcttctgtt	11400
aataaccaca	ccctaaccta	ccaaggaaat	cacaaatgtc	actgacactg	tttgtagcca	11460
aagaaatcat	agagagacta	cattactgca	cacacccata	atcaaagcca	cagtacccta	11520
tccagacaac	atcacaggta	tatctaaagg	aaaaaatttt	cccatatgaa	agcgaattca	11580
aatataggaa	gaagcgactg	ttacaacaga	tatgcagata	aagcttcaac	aatatcctac	11640
attcaaccag	aagaaagaat	ctcagaaggt	aaagacaggt	cttctgaaat	aatctagtca	11700
gacaaaatta	aaagagaata	atcaaatcct	tcctgacatt	tgggataaca	ttaaagtgac	11760
caaatatacg	aattatagat	acccctgaga	gtgaaaagac	aaagaaaaga	ttagaaaacc	11820
cacttaatta	aataatatat	gaaaacttcc	taagtctagc	aagagtttta	gatatttggg	11880
atgcaggagg	ctcaatggtc	cccaggccga	taaaacgcaa	aaaggtctta	tacacagcac	11940
attacaatca	gactgtttaa	agtcaaagat	aaggaataaa	ttctaaaaac	agcaagagaa	12000
agtgtatgat	aacctatgaa	gtaaacctta	tcagactgac	agcaaatttc	tggcagaaac	12060

tttacaggcc	agaaagaata	ggacaatata	ttcaaagtgc	ttaaagaaaa	aaaaaactat	12120
cagccttaaa	tactatagcc	cacaaaatta	tccttcataa	atgaaggaga	aataaaaggt	12180
ttcccagaca	cgaaaatgct	gaggtagttt	gttactacta	gactggacct	acaataaatg	12240
ctcaagggag	gtctggaaac	tggtagtgaa	aggacgacat	ttatcatcat	gaaaatacat	12300
gaaagtataa	aactccctgg	taagcaacta	aagggaggta	tcaaatgtta	ccaccagaga	12360
aatctaacta	accacaatga	caaacaataa	gggaaaaaga	aaggaacaaa	aatatataag	12420
acaacaaata	aacaacaata	taacaggaag	cctcacatat	cagtaatcac	tttgaatgta	12480
aatgaattac	attctccacc	taaacgttat	gaaatgcctg	aatgataaaa	ctatatgatc	12540
caaatatatg	ctgattacaa	gaaacttacc	aggcagacat	acataggctg	aaagtaaaag	12600
aatggtaaaa	gatattcctt	gcaaatggaa	agcaatagtg	agcaggagta	gctatactta	12660
aattagatca	tacagacttt	aagtcaaaaa	gagtaaaata	aaaaagacaa	aggatgttat	12720
tatataatga	tgagattaac	ccagcaatgg	gaaataacaa	ctctaaatgt	atatgcattc	12780
aacactagag	aactcagatc	cacaaagcaa	atattagacc	taaagagaga	aatagactgc	12840
aatacagtaa	tagtggagaa	cttcaacact	ccactttcag	tattagacag	ataatctagg	12900
caaaaaatca	accagtaaat	tttagattta	aactagattt	tagaccaaat	ggacctaaca	12960
gacatttaca	aaacattcca	tccaaccact	gcaaaatgaa	atttgtgtca	tcagcacatg	13020
aaacaatgtc	caagatagac	caccatatgt	taggccacaa	atcatgtctc	agcaattttt	13080
taaaagttga	aatcatatca	catatcttct	cagaccactg	ttgaataatg	ctagaaatca	13140
atgccaagaa	taacgttgga	aactatacaa	atacatgcag	attaaacaac	atgttcctgg	13200
ttgatcactg	ggacaataag	gaaattaagc	tgaaaatcaa	aaaattcttg	taacaaataa	13260
agattgaaac	ataacatatc	aaaaccagtg	gcatacagca	aaagcagtgc	taagagggaa	13320
gtttatagca	ataaatgctt	acactgaaaa	agtagaaata	ttttaaaatt	agcaacctaa	13380
caatgtgcct	gaagaaacta	aaaaatcaag	aacaaatcaa	acccaaaatc	agcagaagaa	13440
acacaaaaat	aaagatcaga	aaagaactaa	atcaaataga	gactaaaaaa	atacaaatga	13500
ttaacaaaac	taaaatttgg	ttattcaaca	agataaataa	aattgataaa	ccgctagata	13560
gactaaacaa	ggaaaaagaa	tatccaaata	aacacaatca	aaaacgataa	aggagacatt	13620
acaacagatg	ccacagaaat	aaaaaggatc	atcagagact	attattaaca	actatatgct	13680
gaaaaatgga	aaatatagag	aaatagataa	attcctagaa	acttacaacc	Taccaagctg	13740
ttgcatcagg	aagaaataga	aaacctgaac	atatcagtaa	tgattagcaa	aattgaatca	13800

gtaataaaaa	acatetecca	actcttttaa	agctttggac	caaatagcat	cacagectaa	13860
ttctaccaat	catgcaaaga	agaataccag	tcttcttgat	gctattacaa	taaatcagag	13920
gaaggaattc	tetetggete	attctacatg	accagtgtca	ccttgaaacc	aaaacctgac	13980
aaggacacca	caaaaagaaa	actacaggcc	aataaccatg	atgaacacag	atgcaaaaat	14040
cattaacaaa	atactggcaa	acggaatcca	acagcacatc	aaaaaaataa	tataccacaa	14100
tccagagggt	ttgtatcaag	gatacaagta	tgactcaatg	taaataaatc	aataaacatg	14160
ataagcatct	tcacagaata	taagacaaat	gaatatatga	tcatctcaat	agatgcagaa	14220
aaaaattttt	gataaatttc	aacatctctt	catgaaaaaa	atctctaaaa	ctcagcatag	14280
aagaaacata	cctcaatata	ataaaggcca	tatgtgacaa	actcagagct	aatatcatac	14340
agaatggggc	aaagtttaaa	gactttcctc	taagaactgg	aacaagacaa	ggatgcaaac	14400
tctcaccact	cctatccaca	tagtactaga	agtcctagcc	aaaacaatca	gacaagcaaa	14460
agaaataaaa	agtatctaaa	ttgagaagag	caagtaacat	tgttcctctt	tgctgatgat	14520
atggttttgt	atctggaaaa	tactaaaaac	tccagcaaaa	acctcttaga	tttgattaat	14580
taatttagta	aagtttcagg	atacaaaata	aaaatacaaa	agtcagtagc	atttctatgc	14640
cccaataata	aaatagctag	gaaagaaatc	aagaaagtga	tcccatttaa	attagctaca	14700
aaaaattaaa	atacctggga	ataaatcaag	gaagttaaag	atctctgcac	aaaactacaa	14760
aacactgatg	aaagaaatta	aggattaaac	aaacaaattg	agaaacatcc	catgtttatg	14820
gatcaaaaga	attaatatca	ttaaaatgac	catacttccc	aaagcaatţt	ccacattcaa	14880
tgcaatttct	accaaattac	caatgtcata	tttcatagaa	ttagaataat	cctaaaatta	14940
gtatggaatg	agaacagagc	ccaaatagcc	aaagcaattc	tgaacataaa	gaacaaatct	15000
ggtcctgact	taatcactat	gcaatctatg	catgtaacaa	aattgaacat	ggattttatc	15060
aatttgtaca	aataaaaaaa	tgtaaaaaaa	gaacaaagct	ggaggctata	gtagccaaaa	15120
cagcatggta	tttttagaca	aatggaatgg	aatagaaagc	tcagaaataa	agccatatat	15180
atatattgtg	tgtgtgtgtg	tgtgtataca	cacatacatg	tatatataat	gtgtacatat	15240
aatgttttct	acatgttcta	atatttatat	tccattccat	tatacatatt	ccatttctgt	15300
atataggtta	tatagaattg	gaagactatc	tgccattaaa	aagaatgaaa	tcctgtgatt	15360
tgcagcaaca	tggttgaaac	tggagttcat	tatcttaagt	gaaataatct	aggcacaaaa	15420
agataaatat	cacatgttct	cacttatatg	tgggagctaa	taacttgatt	acatgaaggt	15480

ggagaatgga	aaggtaggta	ggaaacagag	actggaaagg	atgaatggag	ggtaggaggg	15540
aaggtgaaga	gaagagagtt	aaaaggtgta	aacatatagt	taaaagaaat	aaattcaatg	15600
cttgatagca	gagtacagtg	actacagtta	acaaaatgta	ttatactcag	gtgatgaaca	15660
cctaaatact	tgatcactat	gcaattatat	acgtgtaaca	aaatcactat	gcactatata	15720
cgtgtaaaat	taaatgcgta	caaataaaaa	taataaaata	ctaatccagt	atcattcact	15780
gacaatgtta	actcaggtgg	ataggcatta	agtcaatact	actataagaa	ccacttcttg	15840
tttatgttaa	tgccatatag	aatgaaataa	aattcactaa	aatccaaaaa	attagaaaaa	15900
ctatcaaaac	tcaataatat	taagacaacc	caataaaaat	gtggtcaaag	gatttgaaca	15960
tacatgtcac	caaaaaatat	attcaaattt	ccaataaata	catgtaacaa	tgttcgacat	16020
cgttagtcat	cagagaaata	caaaataaaa	tggtaatgag	atactactag	ataggctttt	16080
acagagactg	acaataccaa	gtattgacaa	ggatatggag	caactgaaat	tctcattcct	16140
tgtggtaaga	atgtacaatt	atataaccac	attgaaaaaa	caagttttca	gtttctttat	16200
tcacccaaaa	tatatgtctt	ttggaaaaaa	ttttttccag	tetgtgggtt	gtcttctcat	16260
tctcttgata	tatgtctttt	caaagaggct	gagctttact	ttagacagtg	gtcatcaaag	16320
tgtgtatatt	tgtgttttta	taatttatat	gcatatattc	ctgtgaaaag	atactgtatg	16380
cattgttcaa	catgtacaaa	tataagaaag	atatagtaaa	gaaatatata	tttctaaatt	16440
tataaatgta	tttattggtg	ttccacgttg	caaactaaat	aatctacgtt	ggctaattta	16500
aggaattaaa	ctatagtaga	aggttctcat	ttattgggat	gattagaacc	agcctttttg	16560
caggctatta	gcgaatcata	gcactagggc	ttcactgcta	cctccactga	cacctctgac	16620
acttgaaact	tgaggccaga	tatctgccca	tgctgataga	aaacaactga	ataatttaat	16680
ttgctagata	atagaaaaga	atcaaatgac	tctgccacat	tgcttgccag	aagattgttt	16740
ttctcatttg	tgacctcttg	cctataaatg	atagatagtc	cctgtgctgc	atgctatagg	16800
tgttcgtaag	agagtctggg	aatgtgagct	ttttatatcc	tatttttggg	tggtaaaggt	16860
cattctatta	gtctgttctt	aaactgctaa	tgaagacata	ccccaaattg	ggtactttat	16920
gaaagaaaga	ggtttaattg	actcacagtt	caacatgact	ggggaggcct	aaggaaagtt	16980
ataatcatgg	gggaagggga	agcacacatg	tccttcacat	ggtagcagga	aggataatga	17040
gtaaaagggg	gaaaagcccc	ttataaaact	atcaaatccc	atgagaactc	actctcacaa	17100
gaacacaatt	agagtaactg	ccccatgac	tcaattactt	cccaccaggt	ccctcccaca	17160
acacatgggg	cttatgggaa	ctacaattca	agatgagatt	tgggtgggga	cacagccaca	17220

ccatttcatt	ccacctctga	cccctcccaa	atctcgtgtt	ctcacaattc	aaatacaatc	17280
atgecettee	aacagtcccc	ccaaagtctt	aacacatttc	agtattaaca	caaaagtcca	17340
agtccaaagt	ctaatctgag	acaaggcaag	tacattatga	ctatgagcct	gtaaattcga	17400
aagcaagtta	gctacttcct	agatacaata	gggtcacagt	cattgggtaa	atacacacat	17460
tccaaacggg	aggaattgac	caaaaccaag	gggctacagg	cctcatggag	gtccaaaatc	17520
caatagggcc	attgttaaac	cttaaagttt	caaaattatc	teetttgaet	tcatatctca	17580
cgtctaggtc	atgattatgc	aagaggtggg	ctcccacagc	tttgggcagc	tctgcctctg	17640
tggctttgca	gggtacagcc	ccactccagg	ctgcttttac	aagctagtgt	tgagtgcctg	17700
cagcttttcc	aggcacatgg	gtgcaagctg	taggtggatc	taccattctg	tggtctggag	17760
gatggtggcc	ttcatctcac	agatccacta	ggcagtaccc	cagtggggac	tctgtgtggg	17820
ggctctgatc	ccacatttcc	cttccacact	gccctagcag	aggttcacca	tgagggctcc	17880
acccctgcag	caaacttctg	cctgaacatc	caagcatttc	cttacatcct	ctggaatcta	17940
ggcggaggtt	tccagacctc	aattgttgac	ttctctgcaa	atgtaggctc	aacaccccat	18000
ggaagctggc	aaagcttggg	gctttcacct	tctgaagcca	tggccttagc	tgtaccttgg	18060
cccttattag	ttaaagctgg	agcagctggg	ttgcagggca	ccaagtccct	atggtgcata	18120
cagcaggggg	gccctggacc	cagcccacaa	aaccaatttt	ccctcctagg	cttctgggcc	18180
tgcgatgagt	agggttgcca	caaaactgtc	tgacatgcct	tggagacatt	ttccctattg	18240
tcttattaag	atttggctca	tagttactta	tgcaaatttc	tgcagcaggc ^r	ttgaatttct	18300
cctcagaaaa	tgagttttc	ttttctatgg	catcatcagg	ttgcaaattt	ttaaaacttt	18360
tatgctctgc	ttccctttta	caattaagtt	ccaattccaa	accatatctt	tctggataca	18420
taaaactgaa	tgcttataac	agcacccaaa	tcatatcctg	aacactttgc	ttctcagaaa	18480
tatcttctac	cagataccct	aaattatcgc	tctcaagttc	aaagtaccac	agatctctag	18540
ggcaggggca	aaatgccacc	agtctctttg	ctaaagcata	acaagagtca	cctttgctcc	18600
agttcccaac	aagttcctca	tctccatctg	agaccacctt	agcctggatt	tcattgtcca	18660
tatcattatc	agcatgttgg	tcaaagccat	tcaacaagtc	tctaggaagt	ttcaaacttt	18720
cccacatctt	cctatctttt	tctgaggcct	ccaaactgtt	ccaacttctg	cctgttaccc	18780
agttgcaaag	ttactgccac	atttctgggt	atctttacag	cagtgcccca	ctcctggtac	18840
caatttacca	tatccattta	ttctcatgct	gataataaag	acatacccaa	ggctgggtag	18900

tttataaaga	aaaaagaggt	ttaattgact	cacagttcag	catggttggc	aaggcctcag	18960
gaaacagaat	catggtggaa	gggaagcaaa	cacatcctcc	ttcacatggt	ggcagggaga	19020
agaatgagca	aaacggggga	aaaaccctta	taaaatcatc	agatctcatg	agaactcact	19080
ctcttgagaa	cagcatgagg	gtaaccatgt	ccatgattcc	attacctccc	aacgggttcc	19140
tcccatgaca	cgtgaagatt	atgggaacta	ctacaattca	agaggagatt	tgggtgggga	19200
cacagccaaa	ccațgtcagt	catgatatga	gaaattatca	aattaagatg	tagggaaggt	19260
ttttaaaaga	tttgagcaac	cacaaatgac	agatatgtgc	tatagtagtg	caaaatacca	19320
ttttgctctt	attaaaaata	taattgttct	tgataatctg	aattataaat	gtcatggata	19380
attatgatgc	attatgctct	cagcagctaa	aacttcaagc	aaaatacaca	cctagagagc	19440
aatcagcctt	aacaataatt	ctataaattt	aattttcttt	atttctgata	attacatttt	19500
agttgacttc	atatgtgatc	taaatacatt	accattattt	tggacttatg	atgtagctct	19560
tgaagtacat	atatgatgta	gctcttaaag	tacatataga	agagcagata	aagtatcagt	19620
tcaccatttc	tttgtagttt	gtgctttcat	gatgaatatt	ctcatcaatg	tacagattat	19680
ttgcaggagc	cttttaaatc	catgtgtcca	ttttatgaga	cttagctttt	gtctgtatat	19740
aatgtgttta	ttcagtgtgc	atggattaat	ttgagagagc	acaggtatgg	gtatctttac	19800
agcagtgccc	cactcctggc	accaatttac	tgtattagtt	tattctcatg	ctactaataa	19860
agactatata	tcacaataaa	ctgagaacca	gctggtaaat	gagagaactg	tggtccacct	19920
tttcattgtg	gagttctcat	tttccttagc	ttatgctgct	tattcaacac	tatttctgca	19980
taatctaatg	cattcactaa	atgaaggtgc	tgtgttagcc	tccacatgat	attaatacag	20040
cctatttaat	ttatccttct	ttagattaaa	aataaataag	tagtcatgtg	ccacagaatg	20100
acacttcagt	catttggtca	ttgaaggacc	acatctatta	ctgtggtcca	ataagattat	20160
aataacatat	ttttcctgta	cattttcatt	gttctgatat	gttttgatac	ataaatgctt	20220
accatcgtgt	tagagttgcc	tgcagtattc	agtacagtaa	catgctgtac	acctaggagc	20280
aacaggctat	accacatacc	ttaggtgtat	agttaggtta	taccatctag	gtttgtataa	20340
gtacactcta	tgatgttctc	acaatgaaca	aaatcaccta	atgatgcatt	tctcaaaaca	20400
tgtccctgtc	attaatacag	tatgtaacaa	tacagttagt	acaatatgta	atacatgact	20460
atattcagaa	ttttagctat	ttctcttata	tttcaaatgg	attttcttat	gcactgtgtg	20520
gcacgggcat	ttcattttag	taaccacagt	ctgggaaagg	agaagtcttt	gaaggatgtt	20580
gagcaaggtt	atgacatggc	cagatgtgaa	tttttgatca	gtgactccat	gttagcagat	20640

aaagttgtat tg	ggaaagat	caaaagcatg	aaggccagat	aagaggatac	tgtatgttat	20700
catggatgga aa	tgtgaggg	atggcaggag	agatgctatg	attgaatgaa	tctcaatatt	20760
cttggtgatc aa	agaataat	gagactcatc	caataagact	ctgtgaatga	ttgaatgtag	20820
ttcctaagct ag	gaggaaga	atgaggaatg	attttctggt	tcctgactac	agcacaagtt	20880
tttgattttt ag	aacaaaga	ataaatttgt	acatgcttta	tgattcctgg	ttgaattttt	20940
aaggataaaa aa	gtcagctg	taatattatt	ctttcctgat	accatgcagt	atttgtatca	21000
gtgatcttat tc	attccaca	cacattcttc	ttgaacctgg	acactgctct	agacactgat	21060
tctttccaaa ta	tcagataa	ggttattctt	acgtagaccc	tcagttcata	taaatatgat	21120
tttcccaaaa tg	tgaaataa	gtgacttttc	ataagatatt	ttttaaaaga	atgtcttaat	21180
aataaattgt ga	atgttgca	tggaaatgta	ggtgacttgc	attgtgcatc	ctgtgtttga	21240
ttcactgctc tt	gcatgtct	tgcctttagc	tgggatgaca	gcagttcagt	gagcagtggt	21300
ctcagtgaca cc	cttgataa	catcagcact	gatgacctga	acaccacatc	ctctgtcagc	21360
tcttactcca ac	atcaccgt	cccctctagg	aagaatactc	aggtgagaat	taccaccttt	21420
ctttttccag tg	tttctgcc	agctttttcc	ccaaaattac	ttaatattag	attaaggtat	21480
agcacaagcc ct	taatccaa	aattattaca	gaaactggaa	aatgcagaga	taataaggac	21540
tccctttgcc ac	tcctgaac	cctgaagcat	ctttcatctt	agtctttcct	aaagccacaa	21600
cccttaggag ga	gcaacaat	gtgcactgca	gccaattttg	aataaacaga	agcagcttat	21660
atatatatat at	atatatat	atatatatat	atatatgata	tacattacat	atttatatat	21720
atgtaatata tg	tgccatat	agcctggtgg	tatagttatc	tatacaaata	tatttattta	21780
ttgttaatat at	agagtata	taaatatcta	tttatataat	agatatttat	atatattaaa	21840
tatctattta ta	taatagat	atttatatat	attaaatata	taaaaatata	taacatataa	21900
tagatatata tt	ttatatat	tatataaata	tatatttata	tatttaatat	attaatgatg	21960
aattactata tt	tgtataga	taactacacc	accaagctat	atggtgtgta	tatattaata	22020
tataatgtat aa	ttctatat	taatataata	gtaacatatc	aatacttaat	ataatatata	22080
ttcaattgat ta	caatctaa	ttcagaaaga	tttatgttgc	catatctctc	cttacaatat	22140
cgatatgttt gt	ttaaaaat	ccagcaatta	ttttcatagt	ctaattttag	atagttcttg	22200
attaatttta ta	tgatctct	gaaatatatc	actggatctg	ttgtgaatga	taaatcaaaa	22260
atgaaaaatg ga	cattacat	cattaagttc	tagcttgtct	tactacttct	tatgacattt	22320

gatatagaaa	atttctacct	ttctgtagcg	tttaattggt	gttttctgca	tgtatttatt	22380
ctgaaattct	ctaatatctg	caagtgggaa	ttatgtggct	aaaattaata	aaatgtaagt	22440
gaaggtaaat	caaaatagaa	tctttggatt	tatccagtta	tctgaaagta	catttcattg	22500
ccttaattca	cactttataa	atttttctac	ataaagtttt	tctgtaatat	ttgtctttat	22560
agctgaggac	agattcagag	aaacgctcca	ccacagacga	gacctgggat	agtcctgagg	22620
aactgaaaaa	accagaagaa	gattttgaca	gccatgggga	tgctggtggc	aagtggaaga	22680
ctgtgtcctc	tggacttcct	gaagaccccg	agaaggcagg	gcagaaagct	tecetgtetg	22740
tttcacagac	aggttcctgg	agaagaggca	tgtctgccca	aggaggggcg	ccatctaggc	22800
agaaagctgg	aacaagtgca	ctcaaaacac	ccggtaggct	tgtcgtttgc	cagctgttat	22860
gcaaaagtgc	tttactttat	tgtttccatt	caatctttgt	tttctctaac	aatagcattt	22920
ctaaaatacc	aaattcttat	ccatattaaa	catggagtca	aatagttaaa	tagtttttct	22980
gtctacgttt	cacaaactcg	tcatagaagc	ccaagtaggg	cctatatcta	ggcattctct	23040
ggaaagcctc	ctçataaact	aggggtactg	gatgccttac	cttgccagag	ttatttcagg	23100
taatggggaa	ataagattag	gttgctaaag	caacagttaa	gtttttttgt	ttttgttctg	23160
cgttcttaat	gaaagtttgg	aatttttaca	ctaaatatgc	cactgaattg	cactacagac	23220
tctgagagga	acaagcaatg	acactaatca	attggaatgc	tggagatttg	aaatattgtc	23280
tgtgtattag	acttcatgaa	agaagagaat	gaaatagttc	ttcaaaattg	tgccatactt	23340
tttttaaaaa	gactctcccc	gtattttaa	aataatgcct	aattataaat	agtgccacct	23400
gaagcactaa	ttaacagggt	actccaaata	taatcatctc	acagatattc	aaatgaattc	23460
tttttctagt	aattagcttg	atagggttaa	gtgttacctt	tttaaaaaga	gttgcaaaat	23520
ataagacatt	aacaaatagc	aaaacatatg	ttttcatttt	atctcttcca	tctctcataa	23580
tgtttcttct	gacagccaaa	tttttgtagc	tatgcactca	gtcctctcaa	tatatgagat	23640
ttttgatcta	agccaataca	tttaggaagg	gaaataatat	aaagaagcat	tcacatttta	23700
cacattgttt	cacgaagtgt	ggtgatatca	aactctacag	gcacatatat	ttgtgtattt	23760
ctccttaatt	agggaaaacc	gatgatgcca	aagcttctga	gaaaggaaaa	gctcccctaa	23820
aaggatcatc	tctacaaaga	tctccttcag	atgcaggaaa	aagcagtgga	gatgaaggga	23880
aaaagccccc	ctcaggcatt	ggaagatcga	ctgccaccag	ctcctttggc	tttaagaaac	23940
caagtggagt	agggtcatct	gccatgatca	ccagcagtgg	agcaaccata	acaagtggct	24000
ctgcaacact	gggtaaaatt	ccaaaatctg	ctgccattgg	cgggaagtca	aatgcaggga	24060

gaaaaa	ccag	tttggacggt	tcacagaatc	aggatgatgt	tgtgctgcat	gttagctcaa	24120
agacta	ccct	acaatatcgc	agcttgcccc	gcccttcaaa	atccagcacc	agtggcattc	24180
ctggcc	gagg	aggccacaga	tccagtacca	gcagtattga	ttccaacgtc	agcagcaagt	24240
ctgctg	gggc	caccacctcg	aaactgagag	aaccaactaa	aattgggtca	gggcgctcga	24300
gtcctg	tcac	cgtcaaccaa	acagacaagg	aaaaggaaaa	agtagcagtc	tcagattcag	24360
aaagtg	tttc	tttgtcaggt	tcccccaaat	ccagccccac	ctctgccagc	gcctgtggtg	24420
cacaag	gtct	caggcagcca	ggatccaagt	atccagatat	tgcctcaccc	acatttcgaa	24480
ggtaag	gatg	tataaaatga	tgctggaaaa	atataaagga	taaatatgtg	ttagacacat	24540
acatta	.cata	taaatgtgtg	tatatatata	ttttaaatat	gtataaggta	tataatatat	24600
atatct	taga	attctttaaa	gtacacagtg	agctctatga	agcttatcat	ataaacagct	24660
agcaaa	aaaa	atagttctca	ttttgagaaa	cagtcaaact	tcaaagtttc	actgtcattg	24720
tgatac	tagc	aacacaaaca	tctaagagac	ttaaaagctg	atggtaatac	ctaagtgtag	24780
tgataa	ıggca	aagtaatagc	ttgtaaaatt	tctatagatt	tccattcctc	cttttcacat	24840
taaaaa	ıttaa	aaccaaatag	gttttcatga	cttttggcat	tcatttccag	tgtcattttc	24900
ttgctg	gctc	ttaatgagtt	ggtgatcata	aatgtagatg	aagttgtttt	ccttgtaaca	24960
gattco	attg	gacagattta	tacagtgtca	tatcttgaca	cattaaagac	aatcaagata	25020
tgacat	aatt	tgaaactatt	ccagtgtttg	gtacagtatc	acaactgaag	agtgggctaa	25080
gctttc	ctaac	tcttcatctg	ctttctttga	catgactctg	gtaaggatca	tgacttggtt	25140
tctgtt	cctg	gattgttttt	ggtgttaaat	atgtgaagtt	ctgctctaag	atatcactgt	25200
ttttaa	atac	ccatgtgttt	ttaagtggta	ggaaaataaa	tgcagttaaa	aattggggac	25260
aaatat	ctaa	acctctctga	gtctgttttc	tcatctgcaa	aatggtagag	tgtggtttat	25320
agttca	attat	gggttcaata	tttttaatgt	ttgtttttat	tctgttgact	aaacccagaa	25380
ctttga	atatc	ttggaaagga	aagattttga	aacatttatt	ttacaataaa	gcaatttcag	25440
atacct	gatt	gtttgaaaaa	cctaaaggct	ttattcctcc	gtagtaatat	taatgctgca	25500
gaacto	gtctt	tttaaaatac	tgattctcat	tgggaagaat	gaattatggc	gtatagggag	25560
agtaaa	atatt	tctgtttctt	aagtaaaagc	caatagtgcc	ctcctgtggc	ccattaccta	25620
tgaaad	caatt	tctcatattc	gtcataaaat	atttcactgt	aggaaatatg	gatttcattg	25680
caacto	caatt	agtaatcatt	atgccattac	ttcatatcat	tgtatttcca	tatttacata	25740

aatttgattc	taccatctgc	ttcatttaca	aaactaaaat	gttttctgaa	ctaaactcca	25800
aaatctaaca	gcaccagctc	tgtttcaaat	cactattaaa	aaatgtattt	gaatagcact	25860
ggcaactgac	ataaaaccct	ttggcctctg	ctggggaaaa	tacagacaaa	ctgacttgtt	25920
gccgacaata	tcaatattgt	ttccaaccaa	ctgctccctg	acagtgactc	agaccaccag	25980
atactcaaca	caactcccta	aacttgcttt	aagcgttcca	tctagatttt	gaataaactg	26040
tttaaaaatt	taaaaataaa	aaaaaagag	aagagctcat	ttaagtgttg	tctatcgaat	26100
gcgtagaagt	tgtttcatta	taatggttct	gtaaataggt	aacagcaagt	atggtcaaac	26160
tactgacttt	gagtgaaagt	ctcatgatca	cttaaattat	gaaaaccagg	ggttttcatg	26220
tttgacttac	ttttgttcca	cccacttccc	ctctttccct	agtagcagct	cagtactgac	26280
ctacccttat	atgagagatt	ttctgcactt	gataaagaag	tccaagctta	taaaagttca	26340
ttaacataga	gacaggaagt	gctttgtagt	tcagtacatc	aaagcacact	tggctctgtg	26400
tactgtaacc	cgaaatatta	aatgtggata	ttagcttctt	ggaacaactg	aagttgttat	26460
ttgtttttct	tttaggttgt	ttggtgccaa	ggcaggtggc	aaatctgcct	ctgcacctaa	26520
tactgagggt	gtgaaatctt	cctcagtaat	gcccagccct	agtaccacat	tagcgcggca	26580
aggcagtctg	gagtcaccgt	cgtccggtac	gggcagcatg	ggcagtgctg	gtgggctaag	26640
cggcagcagc	agccctctct	tcaataaacc	ctcagactta	actacagatg	ttataagctt	26700
aagtcactcg	ttggcctcca	gcccagcatc	ggttcactct	ttcacatcag	gtggtctcgt	26760
gtgggctgcc	aatatgagca	gttcctctgc	aggcagcaag	gatactccga	gctaccagtc	26820
catgactagc	ctccacacga	gctctgagtc	cattgacctc	cccctcagcc	atcatggctc	26880
cttgtctgga	ctgaccacag	gcactcacga	ggtccagagc	ctgctcatga	gaacgggtag	26940
tgtgagatct	actctctcag	aaaggtgagc	tttcctggag	gcattgataa	catcttcccc	27000
ctcttccctg	cactatgcct	aacccccacc	ccattaaatt	cccttgattt	cactgtgagt	27060
gccccggtgc	aaaaagatgt	aagactgatg	aaaccgggcc	tttcatttgc	tctcattacc	27120
aaatttacag	aggaatagaa	tcattaaagg	tagggtgagt	ggataatttt	gttaatatga	27180
atgcatacat	ttatacccag	taggcaatgt	gaataaaatt	caaggaatgt	atttagatat	27240
tgaatgaggt	ctcctgaaga	cattttaatg	atttggctta	agcttcagaa	caacactagc	27300
tccttatgat	gacttaagca	ttttgaaaga	ccaaattgaa	attattctat	agttatgctc	27360
agagcaatat	gttaaatttg	ttccatttgt	acttctatga	aaaaatagca	gatggattgc	27420
tgggaaatcc	tagttggcct	ggttaaaaaa	aaaaaaaaa	tcaattgtca	gccatgaatc	27480

attagagaaa	attatagtgt	cagtgccatt	ttcaatagac	tgcttaaaaa	gtaatcatat	27540
tacaaagtgt	ttctcattgg	ctttatatat	atatataaac	ttaaagtaga	ggacatagca	27600
aggcatttct	tacctaatat	gcttactgtg	aagcatccct	tttgagcaaa	atcactctaa	27660
attttctcct	caaagtgatc	ctctcttgat	tatactgtac	tgactcttac	caccaggaaa	27720
atgtcttaaa	accacttctt	tttcctgata	aatgcaatgc	tatttgtctc	ttgacataag	27780
taaagcttta	aacatggtct	tggccacatg	tggaaagaaa	tactggtcac	gtaaaatacc	27840
tgatatatct	ttctatgtct	tcccctgttt	tttttattt	ttttttattt	ttatttttta	27900
actctgatat	tgatgatggc	atttatttc	tagaccttca	gccttactcc	cggaatgata	27960
tttttaaaca	tcaattaaag	cccttagcta	gacactctct	gcattacgcc	agtttcccct	28020
taatgtagga	tgtcccaatt	tgaaattccc	cattttctct	tgactttgta	aaatacaaaa	28080
cccagagcaa	aacattgctt	ctttccctct	ttacttccta	cttgcctaac	aatgagacag	28140
ggacagccgt	gcaaatgggg	ctttccgatg	ataaagtaat	tttaacacta	actaaaatat	28200
tggtgtttcc	tatggtgggc	tgctaattac	aaaatacatt	tttcctccta	aagaaaaaaa	28260
ctgggccaag	gcaaacagct	cagtgatagc	aaataaaatg	taaccatttc	cctatggttt	28320
tgctgttata	tgctattata	gacagcatac	gtaaagacca	gtaagggttc	atttttccac	28380
ctaaaatgtc	gggcttcctg	taaaatcttt	gattctagtt	tcagcacttc	taaggtaaat	28440
gggcatcttc	acatgtcatt	tataaaactt	ctaatgaatg	aattatatta	aaatagataa	28500
acaacctata	gttttaatga	atgtatccta	gattgtatgc	tcatatgtaa	ggattctaaa	28560
tatcaacttg	ataaccaaac	caaacatagt	gcaaataggt	tatcatttat	taaccacaac	28620
caccttccac	aaaactggtc	attttttaat	tattaagata	atctgcaaca	agttggccat	28680
ttagccatca	gcctatttct	tcagcattta	gacattaatc	ccagattcag	aaataaagtc	28740
aagtaactat	ttataaccaa	gtaacattca	aatcaaaact	agatgaaaga	ttggttagtt	28800
gcatagctat	aaccaaaatg	cagttttaat	attttactct	aatctatatt	ttaactgaag	28860
tcaataaaat	tttcactatg	gaaatacact	agaaaatatg	caatttctta	ttctttttaa	28920
gcagatttat	ttattgtaca	tgttcagtct	ttgaaatagg	ccaattttat	ttatgttatg	28980
ttatgttatt	tatttgtttt	gaaatggagc	ctcactctgt	cgctcaggct	ggagggcagt	29040
ggtgccatct	cagctcattg	cgtcctctgc	tacccgagtt	caagcaattc	tcatgcctca	29100
gccacctgag	tagctggggt	tataggagcg	gaccaccatg	ctgggctaat	ttttgtattt	29160

tttgtagaga	tgacgtttca	ccatgttggc	caggctggtc	tcgaactcct	gacttcaagc	29220
gatctaccct	ccttggcctc	ccaaagtgtg	gggattacag	gtgtgagccg	tggcaccagc	29280
ctgaaatagg	ccaattttta	aaatgggagt	attcctacat	taaaatggcc	aaataaagac	29340
tttttctaaa	ataaacttta	aactaatttt	ggataaatat	gttttgcctt	tgagccttaa	29400
taaaatgcat	taatgaatat	taagctgtaa	aaagtacatg	ttaactacat	agctatagtg	29460
tataatatta	atattaatta	gtgccttcca	gtaaattact	agattaaaat	aaattttaat	29520
ataagacact	gagetttttg	ttttcttgac	aatagaactg	caagcaatag	caaattgctc	29580
taatcctttc	acgtacattt	aagaaagttt	atgacctatt	gaagagaaaa	gtagatctag	29640
tgggtgatac	tggcttcatt	atggttaatt	aattgatcag	tagaatgtca	gaaatgctaa	29700
gaaaaccaaa	gaactacacc	agagagaaaa	tgtgttaatg	taaattttaa	ggcaagttaa	29760
ttagcgatat	ataataaaga	tgtatataag	ttcatgattt	acctgtttgt	ctacaatttt	29820
agatgatttt	ttgatactca	tatttaaatc	ggtagctttt	cctatagatt	ttaatttttg	29880
tttaaattcc	tcttcgttaa	attaaataaa	ataataaaat	acactttta	acagttttct	29940
cttctgcagc	tgctctaggt	cattggtggc	cattgagcca	taactagtct	atatttgttt	30000
tgggttttgt	ttcatgtgtc	tgactcaact	aaatttttaa	ataatttgta	gtaaccaact	30060
ttgcaaattc	tgggtttgtc	tttaaatgtc	agatctggca	acgctgcctt	gacatttctg	30120
cctagaaact	attggctcta	ggcagtcagt	gtctgtctgc	ttcagactgt	tgactgaaat	30180
ccccattcgt	tttcatgccc	tatctggccc	ttgctggcat	atgagtttgc	aacctttggt	30240
gatttgcaga	aattgtctat	gttagaaaat	cattaatatc	tagattcaaa	catatttcta	30300
aataaagctt	taaattatta	tggtaacttt	aaatgtattt	attctaattt	ttttcattaa	30360
attgctcttc	atcatataaa	tatataattt	ttatacaact	ggatgagttt	ggcagaagaa	30420
taccaacttt	tcatattctt	tgtggcatta	aactttaact	tgtacacatg	gaaataaata	30480
atccttaaaa	tgacttatga	ccacataaat	gccttagcac	atgtggttca	tatttggaga	30540
tttctcatat	ttgttcaata	taatttattt	tgtttgttta	tccacagtac	ttaagaaaac	30600
ttctatagtc	aacatatata	ctgtaactgg	cctctacaca	gtataagcaa	ttaccttaca	30660
tggctattac	cgataaagtt	aaagttgtat	aaagcctttg	gatgcttttg	atttcagtgc	30720
taaataatgg	agtacacata	gaagaaaaca	ttttagcttt	ggtttgagtg	atcaaatttt	30780
aggtcagcct	ttttacattc	atgttatatc	atccccatta	tgcgtatcct	gtgtatttaa	30840
ttttgatcat	ttgatgtcct	aaaggaagaa	agctataatt	ctgcaatttt	aattaatttt	30900

acactttgct	tatccacatg	ccagagatta	taaaagaaat	ccctaaactt	gtcccactta	30960
gttgttgata	tectettect	gtatttttag	agaggccatt	tcttattttc	tctagacata	31020
gcttttcatt	ccttcttgtt	accaattgtg	aattccttaa	aatagagatg	ataaaattta	31080
tagcctttta	aatacctaat	ttatgatttc	taaaagatgg	tatagcttaa	tttcattaaa	31140
atattcaaat	aaatgatact	agaatcaatt	aagttttaag	caaacattca	tatatctttc	31200
ttcacatgtg	taaatgggaa	ataaacatgc	ctttttatta	aaaataattt	gaagacaaaa	31260
gataagtatt	aaacaacgtt	ttataccatc	tctgtcaatt	ggaagttgtc	actctaactt	31320
agccagagca	gatctatctc	attttgcatg	tgatatcata	gcaaaagtct	aatcagttgc	31380
atagggaagg	aaaaactaag	atagtattta	atcaatagga	ttcagaggaa	aattatgcta	31440
atgtgattta	atctattttc	tagtaatcct	atcactaaac	tgtcattgaa	ttgtactgca	31500
ttagaaagga	actcaaatat	gtgtgacggc	aatggacatc	ttgtcacctt	tagttggcct	31560
ttttcaatga	gttaagcatt	atatgtgtgt	taccaaaaaa	ttatttttta	tagttcagag	31620
aaccattttt	gttggatgtg	taatttggaa	gttttgttta	cattatgtcc	ttaggggttt	31680
tctttgtttt	aacagcatgc	agcttgacag	aaatacacta	cccaaaaagg	gactaaggta	31740
tatattcctc	tcagcacaat	tgctacctct	ctgttgttat	gtaaactttg	tgtgctgtct	31800
ctcttccttc	tttgtttgtt	tgcaatgtag	cacatgacat	tgaggacgaa	atcactttta	31860
attttgatgg	tttctctggc	ccgaacagtt	ggtgagatag	ccccttaggt	agagatacta	31920
gtagagattg	aggctgtctc	tcaaattaaa	taaattccaa	tgtgaatatc	actattttga	31980
agaaataata	ctaaacaaac	aaacaaacaa	aacaaaaaca	aacaaacaaa	aaacttgtcc	32040
caggcattac	ttttttgggg	gcagcaactt	tggtagaatg	cagaactcac	ttcaacaaat	32100
taaaataaaa	ttaactcttc	taacttttgc	ctattagagt	catatgcatg	caaatattca	32160
aaacccatgc	agtctacaga	tgtgggcagt	taatgttgat	aggttgaagg	atgctacaat	32220
ctgaatcaaa	gaaaacatat	tttcatcatc	acaggacaaa	tgctgtaatt	aaggtgtgat	32280
ttttatagaa	tccttttgat	aaaatctcaa	aattgtttta	atttctattt	tgcaggggta	32340
ctgctatcag	atcaatttaa	atctgaatta	atctaatatc	atttaataat	ctcaaaataa	32400
ttattccatc	cataataaaa	aataaaataa	aaatttaact	tatggccatc	ttttactgtg	32460
tacttttatc	tgaggaagag	atagaatgat	ctactaatag	aggtataaca	ctgtatgtgt	32520
atgaaaagtt	ggctaatttt	ggtgctaaga	atttacttac	aaaaagaaaa	agaatatact	32580

tagtttggtg	aaacactgaa	taatggcgaa	actaggtctt	tctccattat	tttttttctc	32640
tccaattttt	cagcaatagc	aaatagctgg	caattattcc	atgttaatat	tttgatccag	32700
aaatttatgt	tccagtaaag	cgagcacatc	tccctcctta	tttttgtaat	ctaggcatga	32760
tgtcaagtgg	cagtttaaca	aaagaactgt	ttttccttta	aaaaaaaaa	aaaaacaaaa	32820
gctgccaata	tgtattccat	ttccctatgc	cttctgtgac	catccttcat	ttcccttggc	32880
cctggcccac	cactgtcctc	catttgtagt	ccatgttttc	accctcttta	catcctttct	32940
tgccctgtgc	ttttgagttc	tcaattaact	tggctgtctg	ctcattgctt	atgatttcca	33000
actgcatatc	tgatagaagc	ataattttct	cctcaaaacc	ctttatctta	tttttttcc	33060
ctatgtgatt	caaacagatg	gcgtaagatc	atctggaaga	actgagcaat	tataattaga	33120
ttcaatctgt	ttgaaattgt	tcattctgaa	tagtaacctc	ctctgaattg	ttttcctgtc	33180
ctggcattgc	cttgcccttg	tagatgtgct	taagtgtcat	agctgtgctg	ttttgcagat	33240
ataccccatc	atctcggcag	gccaaccaag	aagagggcaa	agagtggttg	cgttctcatt	33300
ctactggagg	gcttcaggac	actggcaacc	agtcacctct	ggtttcccct	tctgccatgt	33360
catcttctgc	agctggaaaa	taccactttt	ctaacttggg	taaaatattc	taaaatattg	33420
attttgttt	gtttctttca	ccacccactc	tcacagaaac	cctggaatct	ctccataaca	33480
caacacgttt	tcatttaaag	ggagggataa	aagcacttta	acagtacctt	tcatttgtgt	33540
cattgtttac	tcttcacaga	aaaatctcca	aacattatgo	tatttattgo	tcatgacaaa	33600
tgcttaacat	agattaatac	tgtggttgtt	ttctagtcta	ggctccagag	gctcagaaag	33660
ttcacttgac	: ttgaaaaagt	cttaccatta	ctaagggtto	: aaggcagtaa	ccagttcaga	33720
acatctgact	ttaatcccag	gggcctttcc	: attccattta	agaatcctct	: taaaaaacag	33780
gaaggcatct	ccttatttat	ttgtctgaaa	a tattaaaaca	tccttaaaac	aaaattagta	33840
atcttttgta	a gaaaatagaa	acaattagga	agaaaaaaat	atgtaattco	c atgactcaaa	33900
gttaacttct	tttaacacto	g ttaaagttaa	a aactccttaa	a aattcataca	a agaatttctg	33960
ttaagacaat	t actctgaaca	a ttttcaaata	a gatacaatga	a aaaataaatt	accaacttag	34020
tcattgggtt	actttgtatt	taacatcatt	tgtatgaaat	t ataaaatcat	ttgcataaaa	34080
tttcattaaa	a agcactctg	a gtaacaaaat	t aattaaagaa	a aactaaacat	gccagatacc	34140
atttaatag	a ttcaatgac	t ttaaaaata	t atttatttt	c tataaagtc	a catataaagt	34200
attttcatt	a tttttatgg	t aaatatttt	t attattagt	t tatcagaaa	a acttgtacat	34260
aaagatgag	t attgataca	t aatcttatt	a gagccagaga	a cgatcattc	c ttctagaaaa	34320

acacatctct	gaatttagga	cggaggacaa	tgaaacaaga	aatttcactt	tataatttac	34380
ctttgtcaaa	ctatcccaga	gcacatcaat	tccatcatga	aagtactctt	ttgacattat	34440
ataaaaaatt	agtaatagaa	aacacacaat	ccaaaacctt	atattttcta	aacttcaagt	34500
taatcatcaa	cttctcttag	atttttgaag	acctgaaaat	aaacataatt	tcaaataaca	34560
gaactcaaac	accatataca	tttgtaatga	ggcacaacag	tcaattttga	gccttgtatt	34620
ttccaggttt	tagctgaata	atcttcactg	ctttcttagc	tttttgccag	tctagtttgg	34680
ggactatttt	gccttactgg	gcctaaacag	agtgtaatat	taaaatatgt	taataagcca	34740
tactgagaat	aagataaatg	caggtttcta	actccttagg	gacacaagtg	gggacaacac	34800
attccatgaa	cacaggtgaa	tgaatgcccc	tagtttctct	gagttggaca	atttcatgcg	34860
atcattttt	tctctgaggc	caaagtctct	ggtttgatct	tcctagcagc	ttccagaaca	34920
gaaagtgagt	ttactttgtc	tccatattct	ttttctccat	gctcgggaat	cccctgcttt	34980
cctgatccca	ccacaaaaac	tcccctgagg	atgaagcctt	ggctttccag	gcttccaggg	35040
aagcctcgat	tcctggctgg	aggtagttgt	accacactcc	cagagggcta	aatcccataa	35100
acatcatctt	ctgtctttgt	agatcataga	actttttatt	atcatccagg	aagatttctc	35160
ttttgaaaca	aggctggaaa	aactttatgt	cagtcctgac	ctgctcttta	atgactgcgt	35220
agagggagat	gcccagctta	tccaacttgg	gttgcagaga	ggacagatct	gcagcccctc	35280
ttgccagaga	aaacatcctg	gcacagccac	aatcacaact	ccattcttct	cccgatagct	35340
cctttgcttt	gaaactcatt	ggttacttct	ccagtgtttt	caggtctata	ttctccaggt	35400
actccagcac	ctctttccag	ggcttggaca	aaaatacatc	tgtgttggcc	agcatcagtg	35460
ccaaggcagc	agcctccaag	ggctcctgca	cccatggacc	acatccacac	agagaagcac	35520
cttgggtcct	caagtgcctc	cctcttcttc	ccttctccca	aacctgaagc	ccagacacta	35580
aggggtcaaa	ccctcctggg	ccctgagggt	tccaagggcc	tcattacttt	ttctttttt	35640
cactggaaaa	aaaattctaa	tcatgcacct	acagaagatt	gacatttttc	agtaagttgg	35700
actttccagc	tttcagccag	gacaagactc	aaggctatgt	cttttctatt	gcaacccttc	35760
ccactatatt	gagtagggct	tttagcaatt	gaaaacaatt	attttggtca	tggtttcata	35820
taagctaatg	atttcatatc	aaacaccaag	tttttgtttc	ctaacctata	tagtgataag	35880
agaatttacc	tataatgcca	aagaatgtat	agcttttatt	tgctttaaga	tgcagttgat	35940
tttttaaaaa	agcgaaaagc	ctaacacttt	aacttcaaaa	aatgaattta	aaatgtttgt	36000

gtaggtcata	ggaatatgaa	aaaattttat	acaacatcta	aaacacaccc	aaatcaccta	36060
aagtgctata	agcttgctaa	gtacttcatg	tctcctatca	attctttcat	taattgacgt	36120
taatttgatt	agttgactcc	ttcttctatt	tttcctcacc	attattattc	tgattaaatc	36180
caccttcatt	attccttagg	aacaaaaaga	ctcaccactt	aactatgtct	gacattggtg	36240
aagtcgttta	aacttaattt	tcttatctct	tgaatggata	cataatacct	aggttatatt	36300
gtaaagaatg	acggatatag	tgtatgtaaa	gatggagaag	tgtgtaagac	ttgacagatt	36360
ctgccaaatc	attattttca	ctggaaagca	tgtcttacac	gatcatagag	tagcattcat	36420
cagatatgcc	tgagctttgt	ctacatttaa	ttgagtagta	attcgcaaca	cagtaaccac	36480
aggattttat	gtaaaagaca	ttcacagatt	gtgtttttga	aagattgtat	ttttgaagta	36540
caaaactatg	acattgttat	caaggactca	tttaccacaa	atatcaaata	tttgtgcaaa	36600
gataagttta	tgctaagatt	tgcataaatt	aaagttaaca	tggcaactga	agctaacatg	36660
tccatggtca	caatgtgtta	aaaaatgaat	ggttctgtag	cacacttggg	aatgtatttt	36720
attacatagt	tttcagagtt	aaaacacaat	taataaatga	aatgtgaatt	atacttttac	36780
tgacaacaaa	gctctctgta	gagctttaat	gttctaatga	attagaaaac	cactgatcaa	36840
atacatccct	tacatttcat	tgctatagaa	accaagtctg	aaaggttaag	tttacctttc	36900
taggatgtgg	gtttccccc	ttaatctatt	gtggtttata	tcagagatct	ctcagctgtg	36960
tcagacaggc	catgacttaa	gtgacactgc	cctcttgatt	ctcttcatac	ttttccaact	37020
acaattcttt	ctcctggggt	tgctcatctt	aacatagctg	tatcatttat	tgtagacaca	37080
aggtcacttt	tgagagtgaa	tgggactata	ttaataattg	ttccaggtat	taggtgcaaa	37140
ccctgggcaa	tgcaattcat	cctccatctc	ctccttatat	ttatgtgttt	accaagttgt	37200
ttttcctgta	gactttttt	tatcctaaac	cctttttcta	tgttctcatt	cacaacttta	37260
attctaatct	ctcaaatcaa	catttcactt	tctgtctgag	acctttttca	gctctaaaac	37320
taaaatccca	tcagtgtgct	agaccatata	gccacctgaa	atcaaagtct	tttcttaagt	37380
tcttttcttc	tatttgtctt	ataatttcat	gtatcatcct	tctctctact	ctagcacaaa	37440
atctgtgtaa	tcaatagtct	tacttgaaac	tgtgctcttc	atattgtaca	ttttcaatag	37500
acaggaacct	gtgattttat	cttcagaata	tctcctacat	ctgtctctca	ttttcaggga	37560
cattgtcctt	gctgaagctt	ttttaactat	agacaattgc	agcagatttt	aaactgatct	37620
tactctgtcg	actcccttat	gtttcaacat	tttcacccat	tggaaggtat	aaaagaagat	37680
attcctgtcc	gtgtcaacat	aatctcatgt	acctctccag	atcttagaaa	cacgtatggc	37740

ttcaaatcag	gcatttggag	atctttatgc	tgtatggttt	cagagtggaa	aaaatgattg	37800
attcaaaaac	ataatattta	aagagttttt	attgtattta	cagttcacct	gaacctctgt	37860
tcattgggca	agaaaatgag	tactcttaaa	atgcaataat	aaattaaagt	tactttatta	37920
ttaaatttta	aatatatata	tatatactta	ccttaaatat	gtcctcttgt	tgtcttttag	37980
catcacccat	ttttgatttg	accattatct	tttctgaata	atcagtaaga	tacaggatta	38040
ttattaatgt	tcaaaagttg	cagtattcat	gttttcttta	ttctttctac	caattaaaat	38100
gtgttaatat	ataaaatttt	tagaaatttt	actataaaaa	atcacaacat	atattagaaa	38160
attaagatca	ctacaatatg	tcatatttag	tagactactg	tgagctactg	ccacagtaaa	38220
ctatggttcg	tgtgtcgttc	ccagcatgct	agccctagta	gaaaccattc	ccattcaaga	38280
aagactaaca	aagtatagct	tacataaatc	aaaaagtctt	tggatgaaac	ttcatttggg	38340
aaaataaccc	aatcgctacc	cttcaatttt	ttatgaatga	aaaaatggaa	gaataaaggc	38400
ctctaagatc	cattcaaagc	caggagacac	acaagaattt	ctaaatagaa	gagaaacaga	38460
agaggtcata	gttcttgtga	gccatctcat	aacctggtga	gactcattgt	catgcctcca	38520
tgcatgataa	caatcgctca	gattcatttt	tcatcttgcc	acaagggtta	catgcaggaa	38580
cattaatgtc	aacctgtcac	ttctaatatc	catctaatat	tctctaaatt	cgatggatcc	38640
ttttgcatat	ggtgattgtt	aaacaccttt	gcataggaac	agtttctatg	cttttgtact	38700
caaatcttcc	tctaccttga	atcctttccc	atcttcgtgt	tcaaccttca	atcttctcag	38760
aatgaactcc	tgtcttctat	tctttcggaa	gcatagaatc	tcacggtcag	aagagaccac	38820
atctggttca	accetteate	tcttatgtaa	aattttatga	catctctagc	ttcttcttta	38880
aacccaccaa	tgacagaaac	tactaaaatc	tagaaataac	acctttgaaa	ttctttcttt	38940
aagagatcaa	ataaaatttt	cctgaatctt	cacctattgt	tcctagttat	atatatccag	39000
attctacaaa	ataagtcaaa	gttagattgc	atatgacagc	tcttcatatt	taaaacaata	39060
taataaactc	actagttaat	gtctagctgt	agatgcaaaa	gtagagagtg	acttggggtt	39120
atttaaaaac	ccagtccagc	cagacacatt	ggatcatgcc	tgtaatacca	gcagcactca	39180
ggaggctggg	gcaagaggat	cccttgtcca	ggagttacag	gctacagtga	gctatgatcg	39240
tggcactgca	tactccagcc	tggaagacag	agtgagaccc	tgtctcacaa	taatagtatt	39300
taataatatc	ataaaaaccc	agtccacatt	tatataggat	cctgttttcc	tcaagttact	39360
acaaataaat	atataatctt	aataaaaggt	tagtggcttt	gccaagatag	tggcttggct	39420

atgcaaatgc	aatttaagac	aaagttggta	gccctctttt	tcctaataca	ttgccatatc	39480
tgtttctctt	ctatttggaa	attcttgtgt	gtctcttggc	ttcgaatgga	tcttatagtc	39540
cttttattct	tccattttt	agtcataaaa	aaactgaagg	gtagtgattg	ggttatttgc	39600
ccaaagcaga	tggaaagcaa	aactaccact	agaagctctt	taccaatttg	tgttccattc	39660
aaaaaattat	ctttgtatgt	cttacatttg	tcttctactg	tatagttttt	cttgttctat	39720
tttacatatt	aacttttctc	cttcttcaga	catctgccct	actggctact	cttgaaatca	39780
gagactgtgt	catattttc	cttctattca	actacaacat	ctaaaagcag	atctgtcata	39840
gttattaact	taattgaaca	ctcttaaata	gttaggtgta	atttccaatg	cagaagctat	39900
caaaagggtt	tgtaaatgca	aactattccc	tttaaaatct	atcctaatcc	tcattaatgt	39960
ttcatcttga	tagagctaag	tattatgtat	tgaaattgta	gaagtacact	tcacttggat	40020
atctctgcaa	tcatttaggt	aagaattata	caaagccaaa	aagcaaataa	aatatcctcc	40080
taaccctata	gatacgtata	ctaaaatgat	gcacttgcaa	atttgtttaa	tacttcatta	40140
atttaaacaa	gagtaaattc	atactgtgaa	ccaagaatag	ggtgacttac	cccaatcttg	40200
ccaccttaaa	cataaacatt	ttaagtcttc	aatgtcctac	agtgtaccta	ctggctgttg	40260
tcactaatca	gaccgaaatg	gtactaatgg	tcactgcagg	ctgaaggaat	atgcttgaaa	40320
gataggcaga	tcctctccct	ctcccttttt	tactttttc	gcctttccat	cctttcttct	40380
ttttttccaa	tagattgtgc	actttggaga	ttcatatttt	cttccttttc	cattacattt	40440
taaatatgtg	attcttagtc	ctatgcttcc	ttttactcca	atcaataact	ggctctatca	40500
gagggttgtt	ctgtgtgtta	attcggttaa	taccaggatt	atcaagcaca	gtgccttcca	40560
aatgtgagat	acttctctcc	ggttacctct	gggtttactt	ttcctgtttt	acattgtttt	40620
gagagccagt	acttgtatta	agaagaagtt	tagtgcctgt	gtcacagaaa	aaatcttagt	40680
aaattttgaa	gtgatgtcag	aacaactcta	agccactgac	ggattccaca	gggttttgaa	40740
aatactcgtt	agttcccttt	atatcttaag	aggctcctgc	ctgctttctc	atataccagt	40800
aacaaacttg	cttttcttaa	atatgagcat	ttagaatatc	tttctcaatt	tttctgtttt	40860
gcttttattc	caaatttcac	aactatattg	ttttccaatg	tagttgtaca	tacaatcaac	40920
caaatctttc	cttaaattga	tgactaccag	gtgaggactc	tttggcaata	agcaataaga	40980
aaataaattg	ttattaaaaa	ttacagactt	aagatacttc	tttggaaata	taacatgttt	41040
gtgacttttg	accatctcat	catgatatgc	tcatcttaaa	cagagtagaa	aatcatttca	41100
tataattaac	tttatggtgg	gctgcagata	ccatgtatgt	tacattgtgt	ttagttataa	41160

aaatgtttat	tatacactat	ttccttataa	tctaactttg	ataataatga	tggtcctaat	41220
catgaactta	catcaattaa	gagcttgaag	tgactgagag	tatttgcctg	gaagcattta	41280
aagcccttct	tgggaaattt	agatgtttta	tattttactt	tctttttgat	tttgcttttt	41340
ccattaaagt	gattactatt	tttaaagaga	aaaccgaaaa	ctctagaaag	accatctttt	41400
cttcataaca	ggtagcagaa	aacaccatgt	tattacattt	ctagcaagag	cagtagaggt	41460
gacttgttgg	ttttgtgtac	tgttgcttta	gaaattgatg	taaggcttcc	cataaacgtg	41520
ccagaggaaa	agagggacgc	aatgggatct	gttattgaac	atttcagagg	cagactctta	41580
ccttaaatag	ggactcacta	tacattcatg	ttttcataag	tattgggatc	atgttcttac	41640
tttctatcaa	cctgctattt	tcatctttca	agcttaagag	taataggctc	tgtgtgtttt	41700
gtttttcagt	gagcccaaca	aatttgtctc	aatttaacct	tecegggeee	agcatgatgc	41760
gctcaaacag	catcccagcc	caagactctt	ccttcgatct	ctatgatgac	tcccagcttt	41820
gtgggagtgc	cacttctctg	gaggaaagac	ctcgtgccat	cagtcattcg	ggctcattca	41880
gagacagcat	ggaagaaggt	aagcgttgag	ggggattaaa	gatgaagtca	ctttatttaa	41940
accctgagag	ggaaaccatc	gtgtcactca	catcacaaag	attcctgaag	aggaaaataa	42000
actagtgtaa	ttatcatttg	ggaaactaga	agcttgaaga	agttttattc	tgtattatct	42060
tctatttctt	tatgtatttg	gaaatatgcc	agaatttgtt	tatattaata	cttggctgta	42120
gaagagttta	gactaaatct	acttttccaa	tacagaaata	tacatataaa	ctattttccc	42180
aggtgcatca	aatatcagag	caaatgtttt	gtttgacatt	ttggttaaag	agccataaag	42240
acacacaaac	cagaaacatt	attttatgaa	aataccacat	gttgctgact	tttattccca	42300
ggaattccct	ctggtgctaa	ttttttatta	tatcatttta	gaattcatat	tgtacctact	42360
tttttgcttt	ataagtcact	atttcttcat	ccaatggcaa	taaaattgtc	acctaaccta	42420
ataaatatct	ttatagttat	atagttctat	gtaaatactc	caaataaatc	agcttgaaaa	42480
cctcaggaag	ctgagttgat	gctcaaatat	atatatttt	gtaaactgta	gaagctcaaa	42540
tgtcaaattt	aacaataatt	tgagagactt	ttctctttga	tttaatgaat	ttttttagta	42600
tccataaaga	aaacttacag	catacatatt	ataaagcatg	tcagctaagg	ataaaataaa	42660
actagacata	caaattcaaa	ctgattagaa	tgaaattatt	aaccctaata	attatgttta	42720
aaagaaaagt	ctccaaatct	tgagacatac	cagagtttaa	gtcttcagcc	atccatttac	42780
ttgtggtata	aacttaggca	agtttcttaa	ccttcttatc	cctaagttct	gcatctgtaa	42840

cttcttaggt	ttgtcacaag	gatgaaatat	gagaacaaag	aataattctg	ttccatgatc	42900
ttttcccttc	ctaccttctt	atttaaagta	tcttctgact	gaggggttag	gcagcaatga	42960
aaattgactc	atgtttttca	ggtcaccact	atggattcaa	tatactggca	ttaaatcagt	43020
agagaatagt	tgtcattgcc	ttttgcaata	ttaaccaaac	cactcagttc	actgtgacag	43080
acagtgaatt	atatccaatg	actccactga	ttttttccat	gtagatagac	aaaatataac	43140
tactctcaaa	tgtaaggacc	ctgctttctg	aaatggttct	gttgctctct	tcacagatag	43200
gcttcttata	atacttttaa	aataatttgc	taagcataca	gatggctttc	tagagtgtgg	43260
cattgacaaa	taaagtgatt	tttatatact	gggaaattct	ggccttcaat	gtatcaggat	43320
taaataatct	gaatttctga	aagctagcct	aagtgggcaa	gatggctttt	ttgtgctcac	43380
gcattgaata	ctgaactatt	ctagttctta	aatggcgatc	tagattcaag	acttattgaa	43440
ctagattgaa	gggactttat	tgatatccta	cctaatgctc	acactgacag	atgaagagac	43500
tgagccacat	gttctaaggt	cataaacaga	aagaatgaga	atgagatggt	ctaattaatt	43560
gtccaccttt	cctatggtac	atcagggtaa	cactttagtt	tacgagggta	ttattagaga	43620
tagaaagaat	tttttttaa	ataattgact	caaataccaa	cattttgcac	attacataga	43680
gtaatagctt	tgcccaagtt	agaaaactgg	gggttcttct	ttattcctct	tttgaccaca	43740
tctatatact	cagttttaaa	aaggttcttc	ctggtatcct	tcaattccat	ccccatgttt	43800
tcatctacaa	gcctagtgca	gctattccag	ccgtctcctg	atcaggtctt	aagcacctcc	43860
catatgtcct	tgtagtaccc	accatattga	tctcagtagc	aatcacagta	ctctattgta	43920
aatatctttt	aaattattat	cttctctttg	agcttttggg	attttatctt	atttatttt	43980
gtagttccag	gatctagcaa	cagcttgtca	catcgttcat	actçaactaa	tgtttgttta	44040
atgcacaatg	agcagaaata	aacatactac	tccatagtaa	aaagaggatg	aacttttctg	44100
caaatattaa	tcagcaccat	tttatccacc	ttttgggttt	agtacattgg	aagtatagga	44160
gtataaagca	gaatgtccaa	tgtttacagt	gatattttga	aatagataaa	agccagtgcg	44220
acatttccat	tctcaatttc	tctgagacat	caccttgaaa	aaaaaaagta	tttttctctt	44280
cctaaaatta	gtaaaggaac	agtaattcca	catttataag	agtatgatca	acgcatcaca	44340
gataatgttg	taataacaca	ttagataaaa	gtgcttattt	tcctgaaatt	atatggagaa	44400
aaaaatctga	aagtggacct	ttgttggata	caaatgaaat	aaataaggta	catacatttt	44460
ttaaggttcg	aaagtttatg	gcaactttag	tttgggtttc	catgctattc	tatttattat	44520
atgggaattt	actgtagctt	tcaacatgta	cgaaacaggc	tggtagggct	catgcttgta	44580

ggcttctgtc	taataacttg	gcaactgagg	tactttaggg	agtatggatg	gggctcttcc	44640
atgtctcaac	gtcctgactg	ccaaaaaatt	atagcaggct	ggttctcaga	atcttatagt	44700
tagttgttat	tacttaattt	ccctaaccac	ccgttcttta	ctttttctgt	aaaggctgga	44760
atttttgagt	agaccttatt	gttttaactc	tattgttctg	tttgttttct	ccagttcatg	44820
gctcttcatt	atcactggtg	tccagcactt	cttctcttta	ctctacagta	agtaatggct	44880
gttaagaaaa	agcttgtgct	tttgccatgc	acacagatga	tgaaatagat	cattttactg	44940
tgaacagatc	acattcatct	atgacttgca	caggagttgt	gtagcaaaat	aacggcatac	45000
tctaagctgc	ccaataccca	ataaagtgcc	aggtgctcca	cctgccattc	tttggtcact	45060
tacatgtgct	ttcacttggc	ttttgtgcac	tcatcataat	caatgagtgg	atgtagaatt	45120
cgatttcata	aaacctactg	aggtatgact	tggagtctct	gaaaccatgt	atgtagtctg	45180
ctatactatc	attttagtaa	tgacgagttg	tccatgtttt	gttctttgag	ccgtgactgt	45240
taattgttct	atagtatttt	cttctcattt	tttatttta	agtttattgt	tgagaggatt	45300
atcgaagggt	aaaagcagta	agggtaaagg	gtaaaagcat	aaaagaacca	gagatgtttt	45360
ttttaaata	taccttttga	aagagtgtga	tttttttaac	ttttatttt	attttattt	45420
atttatttat	ttatttattt	ttgagtcgag	gtcttgcttt	gtcacccagg	ctggagtaca	45480
atgacacaat	catagctcac	tgcaaccttg	aactcctggg	ctcaagttat	ccttctgcct	45540
cagcctgtca	agcagctagg	actacaggca	cgcaccacca	tgcccagcta	atttttaaat	45600
tgttttagag	acaaggtcat	tgctatattg	accagactga	tcaataccca	tggcttcaag	45660
caattcctcc	tgctttagcc	tccccaagtg	ctgggattac	aggtgtaagc	cagcacactt	45720
agatagaaac	tttatttatt	aagagaaaaa	taccagtgtt	tcaagttctt	ttgcaaacgt	45780
gtgacattat	aattcatttt	tgacaaggag	agtttttctg	tttggtaaat	acaattctat	45840
cttttttaaa	aaagtagcct	acaggaagtt	atattttatg	agtgagtctt	tttagagcta	45900
ggttaacagt	gaggtatatt	taaaagcagc	ctactgaatc	tcaatgggac	ttgagtacta	45960
tgaataagcc	ttaatcctgt	actgtaaggt	tcatgaagag	ttcatagcct	ctgctgtcac	46020
tgatcaactg	agcatcatgg	gcagtatttt	tttcactcat	tatcattagg	ttcaaatgtt	46080
tgtttgaacc	ttctctttat	agattaatct	catatattta	ctgccttaca	tagtcattca	46140
aaatctgact	gttattggca	gaagtaatat	ttttctaatc	tctcctttca	atgattaaaa	46200
ttacccatag	cttctagaaa	ttaagaaatc	acgattagtt	tttaggtaaa	tgtacttttt	46260

gtgcaaatgg	ataaagtgag	gaatgtgtaa	acacacatga	aaaaaacaca	taaaagaaat	46320
atattaagac	ttagtgttcc	tcctgttggg	ccagcactgc	catttgttgg	ggaattgtat	46380
tctgatttaa	accattgcca	tttacatcta	tgtgtaacat	caaaagatgt	agcatcatta	46440
ttattctaaa	tacatacaat	aattaatatt	tggataaagc	taccttcatg	aaacctaaga	46500
aaaactaaat	taaaaagaaa	gaaagaaaga	aaaatacact	tagatagaag	aaataaggtc	46560
tagtgattgg	tagcacaata	gagtgactat	agttaacaat	aatttattgt	acatttcaaa	46620
atagctagaa	aagaagattt	ggaatgttcc	taacaggaag	aaatgatatt	cttcctaaat	46680
gaagaatggg	atattccact	ttcccagatt	tgatcgttac	acagcatatg	tttgtataat	46740
accacatgca	ccccataaat	acatacaact	attgtgtatc	ccaatattaa	agatttttt	46800
gaaaaattta	ttcctcaaga	aaaggatcat	gagtttaaga	aaaaacagat	tactagtcta	46860
ccagtgtcca	gtagaccttt	ctgtgttaat	aaaagtgttc	tgtatctaca	ctatctaata	46920
tagtaactat	gaaccatatg	ttgccattga	ttatttgaag	tatatctggc	aaagagatga	46980
attgactttt	ttattttaat	taatttacat	tgaaatagcc	acatgtgcct	agcagctact	47040
agattggata	gtgcaagttt	atagagaaca	caaggggtac	atttgtagat	aggagtggga	47100
tgtcaaaatg	atgaggataa	ttagaaagca	tacatgagaa	atattgtttt	aagagtagaa	47160
tatgaaatgg	gaacacagat	taaaatagag	tatgtatata	tatacatata	tatgtgtata	47220
tatatacata	tgtatgtgta	tatatataca	tatatatgtg	tgtgtgtata	tatatatatt	47280
tataggccaa	tatatggagg	tagggtatat	cctagtgtta	agtgagtaaa	gaatggatta	47340
ggtgatcgag	ccacatgaga	aggtgatatt	attagaaaat	tgaaagttgt	atttgagatg	47400
atgaaaatga	tatatttgaa	ttgaaaagta	aactgtagta	aaataattca	aataaatgaa	47460
tatttgggga	actacttaag	agaaaaatca	taaaacatga	ggagtcattc	tttccccagt	47520
ccgccatgat	caggccttag	gatttaattg	gcaatgagaa	aatacctatg	aaaatgcttt	47580
ttaaactatc	acatgaaaaa	gcaatttatt	atttttcatg	ccttcttaat	aactctcaat	47640
agagatttag	ttgatttgca	tttttgcctg	gttcaatcaa	gaaattatcg	cgtgacatca	47700
ggcaagttgc	caaatttctt	tggactatac	ctataaaata	aaatttgaaa	atattagcta	47760
gatctaaccc	atttgtctcc	ggatgtctgc	aaagtggttg	gaaatcacaa	gcctaacctg	47820
atctgcagag	gtgttacctt	tggcaaactt	atggtttttg	tgtttgtttt	gaaatctaag	47880
gccaagcgcg	gtggctcatg	ccggtaatct	caacactttg	ggaggctgag	gcgggtggat	47940
cacttgaggt	caggagttcg	agaccagcct	ggccaacatg	gcaaaacccc	gtctctacta	48000

aaaatacaga	aattagcccg	gtgtagtggc	atacgtctgt	aatcccagct	atttgggagg	48060
ctgaggcagg	agaatcgcct	gaacctggga	ggctgaggct	gctgcagtga	gcgccactgc	48120
actccagcct	gggcgacaaa	gccaaacact	gtctcagaaa	aaaaaaaaaa	aaaaggaaaa	48180
gagggagagg	ggagggagag	ggagagggaa	tctaagccaa	cactgtgaaa	tattgtgaaa	48240
tatggagctt	ctacctaaaa	attcaaaatt	ttaaattcct	tttaaaaata	attggaatat	48300
ctatggaata	tctagcaata	ctaagatgaa	attcctctgg	gttttcagtc	acctgtaatt	48360
gacaccttta	gatgttggca	tgggctctca	ggaagccaca	gcctccacca	atgcttttct	48420
tcctgacact	gaagctaaat	ttgggtggct	agttttcatt	gtgctgttgc	tttcctcatg	48480
ggaaagaaat	accctttgct	atttatattg	ctgtcaaatg	ggaaaatgaa	agacagccaa	48540
ggaagatcat	gtgactattt	aaatacttca	agtccattta	ttctttatta	gccttgtcct	48600
gttaggcatt	taaatttttg	atccctgcaa	tagatgtttt	ttgattaact	gtatattaaa	48660
aactatattt	aacctgtttt	gaatttgaat	tctaaattgt	attttttcat	gagagcaagt	48720
gtcatttttg	attcattgtg	gattgtttaa	catgttgcct	aacaaatagc	taatactaac	48780
gtcataactt	tttaattagt	aaatttgaat	ggataaatgg	ccacttattg	gcttatagaa	48840
taaataaaaa	catttttatt	cagtcaagtg	tttcatattt	tttatcatct	ccaggacatt	48900
gggcttgctc	aaaaccattg	ttaaaaaaaa	aatggcaaat	aatccagttc	catcatgata	48960
tcattaatcc	cacacctaag	ctactgaaaa	aaatatatta	atattctggc	tcattgcttt	49020
atttttatgg	taacacccac	ctggtattaa	taaccacaga	gtacgaaaga	aggcaaaggt	49080
taaagcaaat	aatagttttg	aaaaattggt	agtgaaaaaa	gtcatgctat	acggtatgta	49140
tataatagat	atttaatgat	tatgcttgct	actagtatat	gtaacaggac	tattatagat	49200
taacaaaaat	gcggtgagta	tatttcttga	ttatttttta	aaagaataaa	ttattattta	49260
aaaatacatg	aattatttat	tgattcttga	atctttacca	gctttctata	attctaggaa	49320
gcctagaagc	agaattgggc	aggataaact	ggcaaaaaat	gtaaaaagta	ggccgggcac	49380
ggtgggctac	agtgagtcgt	gaatgcgcag	tgcacctgag	tgatagatca	agatcctgtc	49440
tcaaaaaaaa	aaaaaaaaaa	aaaagaaaga	aagaaagaaa	aacaacaaca	aaaacaaaag	49500
caaagtacta	gggaaaacta	atagacatag	ttacatagtt	aattgtgcca	tatgttttaa	49560
ggcaatgaaa	cttttatctt	aatattcctt	gcttactttt	tattcaaaaa	ccaaactgtg	49620
tataaaacct	taaaattatt	aggatctaaa	. aaataaaatc	tttccttaaa	aatctaaaat	49680

tgagatgtaa	attattcaag	agtgcttttt	aaaacagttt	tcttataaag	gctattagga	49740
ttctaccact	tagccacttt	attatttagc	cactatatta	ctaagtttac	atatttttaa	49800
aggtagtgaa	aatataggga	agacaaagct	caggttaaaa	gagtttctgg	caaataaaat	49860
atatcctgat	ggttagacta	ctttgcttta	tgttttctga	aagaaaagca	gtaaaaaaca	49920
gttcaggtag	ttttgtgtca	attaatctag	aactatacca	aaagtagaca	tagaaaacga	49980
gagattgttt	ttcagctttg	gatctgctta	tggcaataag	cagacttgta	ctattcaaca	50040
acattatgca	ttcttcaact	tttcccagaa	taagggagct	tcccaaatgc	aatggtgcac	50100
ataactcatt	ttctggcatt	ttgcagccca	gcatgaagaa	gaaaaacaga	gctaggagtt	50160
ttctggaagt	caagtcaaaa	acaccctgca	aattcctatg	gcagtcctcc	tttccataag	50220
ctgcatagcc	aaaaatgttt	gccagacact	tttatcactg	ggtgtttcag	tgttttcatt	50280
gtttaagcgt	tttgctgact	tgtgataatt	aaaattatta	ataatcatta	aagaaagaaa	50340
aagtagaagt	aaataatgtt	aattatctgt	ggttatcagt	agaggtctgt	atgttacccc	50400
agctttattt	gacattgttt	gtgatcagta	aatcacagaa	taaaattctg	acatctaaac	50460
cttggctaga	ggtctctata	attttatgga	gtctgtttcc	tacaatctgt	atgaaagata	50520
cttcaatatt	ttaagtttac	atgcacccat	cttttttaga	gtataatttt	ataactattt	50580
ggtttatgtt	gcttatgatt	tacatcttag	agtcttttaa	ttctgtcttt	tgcttaaagg	50640
aatattatgg	atcaaatgac	ctatatttta	agaatacctt	atggtttata	tattaagaaa	50700
catttatata	aaattctaaa	gtaacttgct	tgtactattt	caattgaata	acttaatgta	50760
tttcattcta	ttcttctcat	agtagataat	aaaaagtaca	tcatgattat	tgtattcatt	50820
tatacttgtg	gaattaattg	aaaatagttt	ttatagttaa	agtctttctt	tttattgttt	50880
tacaggctga	agaaaaggct	cattcagagg	taaaaaaaaa	tatgcaatat	tttaatattt	50940
tctattttag	tttgcattca	tgatgaaatt	agtcttgtga	ccactagagg	gctctgtgat	51000
acaatagcag	aactccacag	gactgctgaa	gtaaggcagc	taattgataa	atggtctttg	51060
atattgcctc	ttaaaaataa	aatgaaagga	agtttgtata	gcaagctgtc	ctttcacatt	51120
ctagattgag	tcttagctca	acacctaata	agttttctat	aatagtaagc	actcattaag	51180
tcattgataa	atgaaggtct	atggtcttcc	tattttatta	cagtctttt	cccactccct	51240
gtaagaccat	ctacacagga	taatggttga	aacttgggca	ccaagcctcc	acaacacagg	51300
atactagcat	ctcagactat	ctgttttgtg	tcattatctt	gttgcctcta	actgccattt	51360
tatgtgtggt	gtgtcaccta	ttgttctaat	cacatatttc	acaaatacat	atttggttgc	51420

actcgtgagc aaatcaaact	gcattcagga	aagaatacta	ttttaatttc	ccttggtaaa	51480
acatttgtcc tggtcaaaga	gagcaggagg	actttaatta	tgactttatt	caaggtgagg	51540
taatggctgt ttgattggtt	tacactgagg	caatcagaca	acagagaaaa	aaaatgcctt	51600
aacaacagct tttgcaaaag	tattcctttc	ctttgaagtc	ttattttatt	agcctttaaa	51660
aataaaattt gtgctatgtt	taaaaatatt	tgaaaattat	tgattaaacc	aatttgtctt	51720
tataatctct gaaccaaaga	gtggatatga	tttttaaaaa	tcaaagtggt	tttatttaca	51780
tcacatggac atgacaaagc	ttctaacact	gatcatagta	tagctactga	agcatcgaaa	51840
tgctacatct atttgcctta	gtagtagtta	ttcaactccc	cttttatcat	tgatgctgta	51900
tcatgagtta tggtttaaaa	aaacaatttc	aatcacttta	cagtttcctg	gattatattt	51960
taaagatact ggaatcatgt	aatagagact	atttaatttg	agaaatgctc	tttgagtttg	52020
gattcattta tgaataaaat	agacgctgta	ttttctgaaa	tcattcatag	tcattatctt	52080
ataaatgtaa agcaaatgtt	attttagact	ggggtgtatc	tgttccggaa	aaaaaaaaa	52140
acaggaacga agtagaatca	catttggtga	aattatataa	gtgtctactg	tttccagctt	52200
agagttctct actttgttag	agtgtttgag	ttgaccacca	tttattttca	acaaaatcta	52260
atgcccgggg caaaaactag	acagttaata	aactatgtca	agaattctct	ttcaaactga	52320
gacagcattc caaaagttca	actacaacta	tagataagat	ttgtttttga	agaaatgaga	52380
agcatcaaaa gtagaatgtt	taacatccaa	gtaactgaaa	tcccttgaga	ctagatatat	52440
acttatagaa cctagtgtca	gattgttata	aatgttctat	ccttattagt	cacaacatga	52500
gacttgcaga acaaactgca	gaaagtgctt	gaattaaaac	tttaaacatg	atataatata	52560
teettaceet tttetgttte	agttttattg	gagtgtgaac	ttaactaaaa	agaaagatac	52620
cttagaatat acattatatt	ggtttatcta	attagttgca	cctatcattg	gttttttccc	52680
ctgattttta agatgtggat	aagctataaa	gcatctctga	gctaataata	actcactaaa	52740
taaaggtctt gataatacag	atttgggaag	gcttctctgc	agtcattgaa	actccagcca	52800
ataacaattt aaatgtgaac	tgattaaatg	ttgaattaag	cccaagtttt	agtgattgca	52860
ggatattcca tagcctttga	gaagttttca	aactatgaga	aattaaaatg	tacagaggaa	52920
aaaaaaacct aagattttct	gaaaaagaac	atggagtatc	ttttactaaa	aaagaacaag	52980
aaaaatatgt gtgtatatac	agtttttata	aagaaaatat	ttttctacag	ttttattacc	53040
acagtttttc tagaaggaga	agaatcaata	cagagggtaa	actgctcttg	agtcatttgc	53100

catttgaggg	atggcaaatg	gagcaagtga	gcgtactttg	atttgtagat	tagagtttga	53160
cacataacac	tttgcttttg	aatgacattt	gcttgttact	gtggagtcag	tgttcatatc	53220
ctttattttc	aggagttgct	gctgatacaa	tggggttaga	atgagctaaa	tacagcattt	53280
gctttcttgg	tttgaattct	gggttttaag	taaaaatcta	cttgcctatt	ccattgattt	53340
ttttaattgc	attcagcaaa	tccataaact	gcggagagag	ctggttgcat	cacaagaaaa	53400
agttgctacc	ctcacatctc	agctttcagc	aaatgtaagt	cacttcattt	ttaaaatata	53460
ttacaacaaa	tttttataga	ggaaaatgaa	atcattttag	taacaaactt	acaaattttc	53520
agtgcctgat	acagacttag	attaccaact	agcaggactc	ataaaaagtt	aacattttt	53580
gcctactcag	taataaaatg	taaatccaaa	ctgatgagag	gcagcaatat	ggttaaaatg	53640
gcttgttgtt	tctaataaga	ttggaaacaa	tagtaacagc	catatgggtt	acttcttttc	53700
ttgtttgcta	tttttattac	tcctcttgca	taagattccc	tgacaatgta	agaggggttg	53760
ttagtgtttg	actttggaag	ataaaatatt	cctgtgccca	gcctccttca	tctcaatgta	53820
ttgaacaatt	tgttaagcat	ccagttaatt	ctaaaatatg	aaattaggtc	taaataggga	53880
tagcttagct	gcactgtgga	tgagatatgg	tttgctcaaa	aaaccttggc	agccttctca	53940
tagcaattta	aaagggtaca	cttttactgg	caccagagca	gcccaggatg	gcagaaatga	54000
tgacaatgaa	gaccgtcaat	taaattaaca	tttactgaat	atcttccact	gtgtcaggga	54060
gcactcagag	tagatgcaga	atgataaagg	agaaatgtgg	cactgttccc	agtcctgagg	54120
agcaatggtg	ttaagaacag	cagtgagggg	taaggaaatg	cctgctattt	tgccatatgt	54180
cttacctctc	tcactcaaca	gtcctttgct	cagttctgct	gcatagcttt	gggcctgctc	54240
tgtgcctccc	cacccctccc	actgctcctc	tactgagttt	ttctatctcc	tagacaaagc	54300
atgatatgtc	aagagtgagc	aggtgcagac	ccacagtgta	agacttgaat	aagagccatt	54360
tttaaatttt	ttttaagcta	tcattgtgca	atataaattc	taagtatgtg	tatcatttca	54420
ttcacaatgt	attcatttta	gcactgtatt	tgaattgatt	ttattttctg	aaatttggga	54480
gaattaattt	tggatttatt	ctatttattt	ttaatagatg	gtgttaggag	attcctgaaa	54540
ataatagcag	tttttagata	attgtttaag	caatatgaga	aaataagggt	attatttaac	54600
cttgttgtgt	ttttaaagag	atagtccaga	ggcaaccgta	aattttataa	tataggctac	54660
atgtatagaa	gtatgaaata	ttgttgtcta	ggttcctgaa	tttgtaccca	gaggaagtag	54720
aataatgtaa	atgtcagaac	ctcctgggtt	gtgtttatct	gcaataagaa	aggctcaatg	54780
gcaaacctta	tttattagat	tgtcaggata	cttgcagatg	tcttgaatga	ttactcaggg	54840

tttcatttta	tttttaatgt	cccttggttg	agctcatcat	ataattcaga	tattggaata	54900
ataaatggct	gctagacata	gtggaagatg	ggctgatact	ttccatttga	aatgtaatga	54960
tgcttattgt	cttcaaaaga	aaaaactaaa	atggtatttc	acatttttt	gtttttgttt	55020
ttgtttttt	ttctctgaga	atctcattct	tactcatgat	tattggtttc	ttgtgtacca	55080
tttcaacatt	tttctattat	atgctaatgt	gtatatatac	ttaatacaca	cgtgcaaaag	55140
cttccacaca	cacacacaca	cacacacaca	cacacacaca	cacacataca	cacacatacg	55200
gaaccaaatt	ctaacatagg	ggaataatct	tcggagtgaa	ctctgtgctg	ctgtttgaaa	55260
atggagatat	aattttagaa	aggttcctgc	agttggctac	ccacctcgtc	tgctctaatt	55320
atgcttgtca	cactattttc	actgatgtgt	tttcatgact	ttagggcatg	aattctcagc	55380
tgggtgttaa	tatgaccaac	aaagggtgaa	aacaggttct	tgcattttt	taagtactct	55440
ttttatgtga	aaagcacaga	tatgcagata	atacataact	gaacatccag	catatctgtg	55500
gctttaaaat	atcacgaaga	agagcacaat	tagggaaaag	aaaacatcta	tagtgtttcc	55560
ctaggggaac	aatcatttaa	aaaaaaataa	aaataaggaa	cacagactag	aagcagcagt	55620
gccaaataga	taattcatgc	tagtctttgt	gttaatttaa	aaagtgctag	tcttggagac	55680
aaacgcccaa	attgctctag	gttccactca	gctgtatgtg	ttatcattag	tattaacttt	55740
tgcacgctga	tgggagactg	atatatatcc	tgttttatgt	tcctttaaac	aatttataat	55800
gtaatttaga	aaccttctca	aatcacatta	gatccacaca	aaaacctgta	catagcagct	55860
ttatttttta	atagccaaag	aaaggaaaca	accaaaaata	tcccttaata	ggccagttaa	55920
taaacaaatt	ctgatacatc	tatatcatgg	actactactc	agcaatataa	agaaatgact	55980
attgatacgt	gcatcaactt	gggtggatcc	caggggtatt	atgctgagtg	aaaaaagaca	56040
gttatagaag	gtcaaatttt	gtataattcc	atttatataa	cattccagaa	atggcaaaat	56100
taaagaaaca	gagaacagat	tagtgattgc	taagggctaa	ggatgaagga	gagagagg	56160
tagtgtgact	ataggaagag	ggagatcttt	agttttgtat	tttgaatgag	atggccatca	56220
catgaatcca	catatgtcaa	tctattaatg	taaatcaata	ttgtattcct	ggctttgata	56280
tataatataa	ttttataaga	tatataatca	ttgggggaaa	ctggatgaag	gatacaaggg	56340
acctccctgt	actatctttg	caacttcttg	tgtatataat	tataaaatat	ataatgtatt	56400
aaaatgtata	aaataatatt	ttaagtatca	gatactgatc	tttactcagt	atatgaagtg	56460
ttctatcata	acgtaacatg	cttttccttt	atttgtggta	ttttagtttc	aaactaaaat	56520

	ataaatcacc	taaagatcta	cgacagttct	tttgaaaaaa	aatcttgctt	ttaatttccc	56580
	aggagtttca	accttaatcc	tctctttagt	gtttctttat	ttggtagtga	tagggactat	56640
	caaagcttct	taccatcaaa	tacatttact	gactaaaaat	agaaaaataa	tttacattgt	56700
	aaaaatgtac	aaattgaatg	acagtcaaaa	ggtacaggta	atgaagatat	gcattaacat	56760
	ctacttttaa	aaaaaagttt	attaaaattc	tcttttagac	taatgcagta	tctgggaatt	56820
	tatataaata	gatatgtata	taaatgacta	ttaaacaatt	ttaatgtcag	ttatatttta	56880
	aacattttaa	taatattgtt	ataactatgg	gggtaaaatt	ttgtatatat	ctgaacattt	56940
	ttgttcttaa	ggaaataatc	atttttacat	atccaggaat	ttgaattact	ctcaagtcac	57000
	ctattaatta	caagtcattt	tgaactcatt	cattttcttt	gtgtttgctt	tataatgtca	57060
	ttttagattt	catgcatcat	aatcagccat	caaataattt	agttaatact	tgatttttcc	57120
	tcagttgtaa	gaagtgctgt	gtttaaattt	cattcagaat	gtttcatttc	atctgaatta	57180
	atatctgtta	atgtatgtaa	tatacacata	tttttaacat	gcatgtactt	aaattgatta	57240
	tagggacttg	gtaaaattac	ttatttatag	gatattttaa	atataatcaa	ggattttta	57300
	aatctacagt	tcccatttga	aagtaaaagt	aagtctttgt	ttactagttt	gttcacagta	57360
	caagtaaact	ttctaccttt	tggttaaatg	tgagtgcagc	ccccacagtg	agaaattgtt	57420
	atattagaac	tctaatagct	ataatttata	gggatgaatt	tcaatgagtt	tggttctaag	57480
	aaataatctg	ttggttttaa	caacattttt	aagtatcaga	tattcatctt	tactcagtat	57540
١	gtgacatgta	ctctcatagc	ttacgtgctt	ttcctttatt	tggggtgttt	tttatatatt	57600
	aattggtata	tcgcatattt	aaacttggca	taattacatt	tatatggact	ctaaacaata	57660
	acttgtattt	taatttttaa	atttgaaatg	catctatgtc	tctgttaaaa	tgcatttctt	57720
	tccctttgcc	caaatggggt	atggtaagtc	aagagagtct	ctagttagct	cacctctcat	57780
	ttgactggca	gagtaaagcc	cttgttcagt	agaatgtgtg	ttaagccttc	cctccctttt	57840
	gtaaagttgt	tctgaacaga	gctgcataaa	accacaggta	aagtgttaag	ctgattctac	57900
	tagcatgtcc	ttagaaagga	gagcggttat	attggcaggt	cctattgcct	ggcgtttctg	57960
	atcaataact	caccaacaaa	cagaaaacag	aagccgcaca	aggaaaggca	gaactaaata	58020
	aatggtaata	gcaaacaata	agccagatag	cctctggcct	ctcgcccaca	ccttaaggca	58080
	gctgggtcag	gtgggatgct	tttgtttgtc	ttttaacgta	ttttctttac	aaatctcagc	58140
	cattacataa	tttggaaatg	gacacaaggc	tagttattac	taacattttt	aaagacatta	58200
	ctgaatgaat	gtgtaagaaa	acaaaaggtc	ctttttgcct	ttcagcagat	aagtctttta	58260

accaaaaatc	tcttgggtat	tttgagattg	tgttctactt	ctttgcttat	ttaatatttt	58320
cataaaattt	gctagttact	cttgcttttt	tgcatctctt	ctaagagaaa	acaattggtg	58380
catattatta	atgagaaaca	cttcagtgtt	tggacaattt	tttgtagtgg	aaaagaaatg	58440
tgaaacttta	tgttgcagaa	tcattcttgg	ttcaactaac	tactaatttt	aaaacataaa	58500
gtcttaaata	tatataaagt	ttatatgggt	aaatatatat	tacatataat	atatgtttta	58560
tatttataca	taatatacta	tatatttata	catgatatac	taaatatttt	cccatataaa	58620
taataaaatg	ctctaggcat	atatgtgtgt	gtgtgtatat	atgtatatat	atatatacct	58680
tcataacata	catatataaa	atactatatt	atatatactc	taggtataca	tatatgccta	58740
tatatgcacc	tatatattta	tatattacta	tataatatat	agtatatatt	actatatata	58800
ctactatata	ttactatata	atatatagta	tatatatagt	atatattata	tagtaatata	58860
ttactatata	atatataaat	atatgtgtgt	atatatatat	atgcctagag	tgtttttaat	58920
ttgtcagtgg	gctgtctctg	taatctatat	gaagaaataa	aatgtagacg	ttatgtataa	58980
tgatatttca	tcttgttgtg	tggcatcata	gtaattctct	ttacatatct	attcagatta	59040
cttttgcacc	agcctaatac	attgtatgat	tccaaaacca	aagagagtat	ggattgaaat	59100
gatattccct	ttactaatac	tcagtcttgt	ctattttatt	acctttatag	acttcaccta	59160
acacaagtca	ggggatattt	atcatcatat	taatacaatt	ttactctgac	cttaaaatta	59220
tgcaactgct	aaaggaaaaa	tcagaaccaa	ataaactgtc	attaacaacc	cccctgaaaa	59280
tccatatttt	ttaaaagtca	ttttatcaag	tctctcagac	aagatgtgat	accctataag	59340
tttaatcagt	tttactttcc	attttctctt	cattaaggtg	ataaagatta	tcattagtag	59400
aaaaattttc	ccttatttgc	ctccttttcc	atttacccta	ttgagtgaga	aatttagcct	59460
ctcataactt	ctaaagtagc	aatgttaatc	tgataaacta	aaccaaggtg	agataaattt	59520
aagacaatat	tttttttctt	caacttttaa	gttctggcgt	acatgggcag	gatatgcagg	59580
tttgttacat	gggtcaacat	atgccatagt	gatttgctgc	acagatcaac	tcatcgccta	59640
gatattaagc	ccaccatcca	ttagctattc	ttcctgattc	tctccctccc	ctaactccca	59700
ctgacaggcc	ctagtgtgtg	ttgttcccca	ccatgtgccc	acgtgttctc	atcgttctac	59760
tcccacttat	aagtgagaag	aagtggtgtt	tggttttctc	ttcctgtgtt	agtttgctga	59820
ggataatggc	ttccagctcc	atccatgtcc	ctccaaagga	catgacctca	ttccttttta	59880
tagctgcata	gtattccatg	gtgtatatgt	accacatttt	ctttatccag	tttatcattg	59940

gcatttgggt	tgatttcatg	tctttgctat	tgtgactagt	gctgcagtga	acataatgca	60000
tgcaggtatc	tttataatag	aattatttat	attcctttgg	gtatataccc	agtaatggga	60060
ttactgggtc	aatttctgct	tccagatctt	tgaggaatca	tcacactgtc	ttccacattg	60120
gttgaactaa	tttactctcc	caccaacagt	gtaaaagcat	tcctttttct	ctgaaacctc	60180
tgcagcacct	gttatttctt	gactttaata	atcaccattc	tgactgctgt	gagatggtat	60240
ctcattgtgg	ttttgatgtt	acccttttt	ttatatgttt	gttggctgca	tgactgtctt	60300
cttgtaagtg	tctattcata	tcctgtctat	tcatgtcttt	gcccactttt	taatggggaa	60360
gtttgttttt	tacttgcgca	tttgttgaag	ttccttgtag	actctagata	ttagaccttt	60420
gtcaaatgga	tagattccac	aaatgttctc	ccattctgca	gattgtctgt	tcactctgat	60480
gatagtttct	tttgctatgc	tgaaggtctt	taattagatc	ctatttgtca	acttttgctt	60540
ttgttgcaat	tgcttttgga	gtttttgtca	taaaatcttt	gcccttacct	atgtcttgaa	60600
taatattgcc	cagattttgt	tctagggttt	ttatagtttt	tggattttac	ttgtaagtct	60660
ttaatccatc	ttgggttaat	ttttgtataa	ggtataagga	agtggtccag	ttttaatttt	60720
ctgtatatgg	ctagtcagtt	ctaccagcac	catttattaa	ttgttttttc	agtttcccca	60780
ttgcttgttt	ttgtcaggtt	tgtcgaagat	cagatggttg	taggtgtttt	tcactaacat	60840
aatcataaca	tacatttcat	tgaaaacaac	acgactcaaa	atgttcttta	gtaaccagtt	60900
ataagttttt	ttgtgcataa	ttacaaactg	ccattctaat	cataaacatt	ttgtggttac	60960
ttatagctag	aaaatgtgag	taatatagtt	tatacagcat	actctttaca	atcccgattt	61020
ctttgtcaaa	ctttaattca	tattaaattg	ataaagtata	cacaaagggt	aaaggagagt	61080
aattttcttc	aagtttcaca	tttaaggatt	catagtagaa	tgattaaacc	ttacatttct	61140
ccactataag	gagaattaaa	atggaaatat	tgagtaaaat	cttacatttc	atttagtaag	61200
tgctaataaa	gggtttctgc	cataattttc	cttattttaa	aagaaaacac	acaattttag	61260
ttttaggttt	tagtaaccaa	ttttatgggc	atagtgggaa	tatttctaac	aggttaaact	61320
gaagtgacca	tcatgggcat	atatatatat	tttaaattca	catatatgaa	tactatacag	61380
taaaaactaa	cttatgctac	ataccacatg	gatgaatctc	aaaacccatg	taaagcaaaa	61440
gaaaaccaca	aaagaatcat	gccatttgat	tacacttggg	tggtttttaa	aacaggcata	61500
tctaaacata	gtgctttaaa	gtgtaagctt	gggtaggaaa	aactataaag	aaaagcaaga	61560
aaataattac	cacagaagtt	atgtagaggt	tatctttggg	gaaggaagag	ggaataataa	61620
gagagggaca	aagaagagct	tcttggttct	tgaaatgtcc	tatttcttga	cttggctggt	61680

gaatgcatga	atgttcacta	tgtgataagt	cagggggctg	ttttcatttt	gttcactttt	61740
atatatgtgt	ggatttttcc	acagttgaaa	aggtaaagtt	caggtgtggt	ggctcacacc	61800
tataatccca	gccaacactt	tgcggggcca	aggtgggaag	aattacttga	ggctaggagt	61860
tggagagtaa	cccaggcaac	agggtgaggc	actgtctcta	cagaaaatga	aaaaaaaaa	61920
aaaaaagtag	ctgggcatgt	tggtacatgc	ctatagttct	tgctacttgg	gaggctgagg	61980
caagaggatc	actttagccc	aggagtttaa	gcctgcagtg	aactagggtt	gtggcactgc	62040
actccagcct	gggtggcagc	aagacactga	gtaaaagaat	aaaataaata	attaaaagtt	62100
aaaatatagg	aaaaaatgag	catagcctta	tgctaatttt	tcagttacta	ggtctgatat	62160
catcacattc	cttgcttgtc	attgaaaatt	ttttaaacta	tgatactttt	ttttagtggt	62220
atttatccaa	ttaaatctgc	taacaaattt	ggtgtataaa	tctcaagggt	aagggtatgt	62280
ggagagtggg	tgtgtttgtg	tgagagagag	agagagaaga	gggggaggag	aaaaagaagg	62340
aagagggaag	gaatggaaaa	agataataaa	gagttgttct	gatagattaa	tctttagtag	62400
atgtattccc	tacaaattgt	ttttctccat	attgcagtgt	caggtaaaga	aaggcatccc	62460
aggatgaatt	cagagctagg	aacatgcacc	tttgtatcat	aatgctaatg	gaaggaacat	62520
gtacattcta	actgttacca	ataatggaat	atatttccgt	tattaagtaa	taagctttaa	62580
ttctttgtat	ttttgtgatc	catttgatag	taggtgcctc	agcatttcca	ctctgctata	62640
agtacatgga	gatatatttt	atttaagtca	tcttattcat	gtctttcaaa	aagaaattca	62700
tttttggcca	aggatttcca	aattttgccc	catatatagg	tatagtttat	tatagacttc	62760
gtttgcaaaa	tattaaatcc	ttatatcctt	ttagggacac	aataaaattt	tataagtttg	62820
agataatgta	cttgcagttc	tacctcaggc	cgtggtgaga	gattgaagtg	cctcttcatt	62880
ttaacatttt	gggttcaagt	tgttgcataa	gggcatgcaa	atggaaactg	gcctattttt	62940
gagctttaat	aaaatcgtca	aatacttctt	aatcttaaga	gttatagtta	tgtactacaa	63000
tatgtataat	tctctaatat	ttaaaacaaa	acctgaaagc	cacaaaagct	tactgtgaaa	63060
taaaatgtga	tggaatatta	tttctaactg	gcttacctgt	atttccttca	ttgaagggaa	63120
tatgaagtag	aaaagccctt	ttattgaaaa	gagtttggaa	agtaaagata	actcttttca	63180
attcaattct	ttgtaagtag	aaaaagagta	aagataatgt	ttagctgtca	gcagatgtct	63240
gacacttgat	ggagcgtatc	attacaatag	agcagctaac	aatatctgca	aaggtcatca	63300
tgaaagtata	aaaatgagga	atatttgtcc	attgaccatt	tcagtgacct	ctttttgggc	63360

tttaagtcta	aaaatcttgg	cagatcagaa	ctttatattc	ggcattttga	gtgtcaaatc	63420
tctacatgat	gtgcaagtca	gaaggagtta	ttacttgcaa	aataccatct	tctttcagaa	63480
gttaaactca	cattaaatgc	caggagactg	aaacactgat	tttaagaaga	caaagtttag	63540
aaaagatgaa	tgaaaatgtg	tgttaaagaa	gagtcaccag	tcagagctaa	ctatgatagt	63600
catagtattt	aaagagttgg	aacacatgaa	attaagcatt	ttgtaaaatg	aaggcttttc	63660
atccatccac	ataagattct	gacatttaaa	ctatgtttct	tccattctgt	tcacaggctc	63720
accttgtagc	agcttttgaa	aagagcttag	ggaatatgac	tggccgattg	caaagtctaa	63780
ctatgacagc	ggaacaaaag	gtatgttcag	aaattgccac	tggagactga	aagaagacag	63840
caaattgcat	aggattctta	aataatacct	gaagctcctt	aaaaataata	ttccaggctg	63900
agtgcagagg	ctcatgcctg	taatctcacc	actttgggag	accaaggtgg	gtggatcact	63960
taaggtcagg	agttcgagac	cagcctggcc	aacgtggtaa	aatcccatct	ctactaaaaa	64020
cacacacaaa	aaattagctg	ggcatggtgg	cgggtacctg	taatcccagc	tacgcaggag	64080
gctgaggcag	gagaatcact	tgaacccagg	aggcagagga	cgcagtgagc	caagatcaca	64140
ccactgcact	ccagcctggg	agacagaaca	aaaaaaagag	taataataat	aaaataatat	64200
tcaattctat	actaaattaa	aacaatgata	atacctttct	tttcagattt	taatttaaag	64260
attttatcag	tttactccat	attggaacac	acaaaggcaa	acaaaatcct	tgctgggcag	64320
tctattaatt	tacttctgga	tggaactagt	aaaagaatac	tgaatgttaa	gaaagagaaa	64380
cagtcacata	agagaatatt	ctgggggcaa	actgttatgc	agttgacaag	aatcacactt	64440
tgataagaac	tttcacaaat	acatggtcac	taaatccagc	tatagggcat	ggctgtaggc	64500
taagacacac	aggaaggatg	cctgggactc	tgccaagtaa	gggacttcag	gttacagcag	64560
ctatgaaaca	aaggccaatc	ctgtgtaatt	ttgaaataac	aagaactagt	tgccatctag	64620
ggatatcacc	tttgaagaaa	agtcatttgt	tatatcaaaa	tacttaaaat	gaacctaaag	64680
gattttatgg	tatgaaagaa	ggtataccaa	aaagaaagga	acggagaatt	tagttcacga	64740
agacaaatgt	attaaaaagg	tccatactgc	atagaaagcc	tggtcacctt	tcctgtgatg	64800
accagttagc	ttacttctct	gctgttagtc	cagtggcctt	aacttccttg	gataggtatc	64860
agagataggt	gaaacctata	gaattctatg	gagtgtgtgt	gtgtgtgtgt	gtgcgtgcgt	64920
gtgtgtgtgt	gtgtgtgtat	gaaaactgta	aatgtgcata	aatgatcagg	tgtccagagc	64980
tttcatctaa	ttctcaaaga	gacccattat	atcagaagtt	ttģggtattt	tcaagaatgc	65040
gttcctctat	ctatccatag	gaatggcttc	agttttgtct	ttagattctg	taagttatgt	65100

gattagcttt	acaaaagtag	tatgtattac	caaattttgt	cactttacaa	aagtttattt	65160
ttaaaacaga	aťgaatagtt	caatgaaatc	aaaagagtaa	atcgaatatt	cttataattg	65220
ccaagtatta	ttagcacatt	gtattctctc	tcatattctc	cgtataccct	gcccgtgaga	65280
gagaatatta	tccattcctg	gaaaatctgt	tctagcacag	ctaacaaact	ccttttgaaa	65340
cataaatttt	cctttctttc	ctccctccct	ccctccttcc	ctcccttcct	tcctttttcc	65400
ttttctttcc	ttccttcctg	cctcttttct	atccttcctt	tctcctccct	tacacccttt	65460
cttccttctt	ttccccctct	gtctccctct	ctttcttttt	tgctgcagct	tgtcacttca	65520
ctatgtaata	taagaaccca	gcaaatagaa	ttagaaggct	ttttagagca	gctgacggga	65580
aagaataaaa	acactggccc	ccagtattct	tgaatgagaa	ttctggctat	gtctgttaaa	65640
agctgggtaa	tcttgagcaa	gtttatctaa	cctttcttga	acctcaaatt	caccttctta	65700
aaagtgggga	tgataatgac	taccttgtag	gatcaccatg	aggagtaaat	cagatactgť	65760
tatcatgtca	catgctaggg	gctaccaaaa	aatattacct	tcctttacat	ttctcttttt	65820
cccttgaaaa	ttataagata	acaccaaatt	cctcactggg	catataccaa	gcatattgtt	65880
ggaaatgagt	gttagaattt	aagtctcaat	atctttaata	agtcaaaatt	aatagaattt	65940
ttgtcctcca	cccaatattt	tcttgaactc	tgttatatct	gtaagtgaat	tttctcatag	66000
aaacatacag	agaattttct	catatacata	tagaaaaaaa	tgtagaggta	tgttaatgta	66060
taatgcctat	gattaatgcc	tgaatattta	aaaataattt	ctataacata	agagatttta	66120
taatgtgtct	acataatcct	taaaataaca	ttgccaaaat	tataaaattt	tctcagaaga	66180
tatcagaatg	tctcatattg	tccttatcac	ttttttaact	gaaaataaaa	tcacttcttt	66240
ttgaattgca	aactgtatac	acacaacaat	catggttaac	tagtttatta	atttgagatt	66300
ataacttgcc	tattctcaaa	gtgatattta	aaagcctata	aaattatttg	caatgtgaaa	66360
tggtataatt	caaagacaga	atctaattaa	aaccagtaga	ataatgtata	taacaatata	66420
cctcagccta	gataattact	actgcaaggc	actgaaatga	attgaatttc	aaggaagcta	66480
tggtacaaag	ggagattgtt	aggtgtgttt	tattctcatt	ttctgaccag	gagagcataa	66540
tttagactga	ggagaaaact	ctttggcact	aaattcaagg	acgaatttat	tgccaaggtt	66600
tttaaattgg	ggtcatggaa	taacaaaaga	caaaatcact	gttcaaatag	acatttctct	66660
aaaagctaag	ggcataacat	ttaatcatat	ttcactaaag	gcatttcttc	agggagctga	66720
gataaaaggg	tatattgctc	tctggtgatt	caacaatcct	gagaaaaggc	ttgtgaagta	66780

tagagcagag	attcttaaac	tecettecee	aagttataag	tttcatttgt	ctatatagtc	66840
attcatcaag	tttatattga	atttgtgctc	ttctaatgac	aaaacagtac	agacaatata	66900
gatatagaat	gatagatata	ggtctatatc	tatagacata	cctatctact	agaactctaa	66960
aagcatatta	tacatgtatg	taatattcct	catggagttt	atatttctca	tatatatctc	67020
atatatatgt	atctctttat	catggagttt	atattttagg	aggtcacaga	tgataataaa	67080
aatataatta	aaacaggcca	ggtgtggtga	ctcacacgtg	taatcctagc	actttgaaag	67140
gccaaggcag	gtggactccc	tgagatcagg	agttcaagac	cagcctggcc	aacatagtga	67200
aaccccatct	ctactagaaa	caaaaattag	ccaggcctgg	tggtgggcac	ctgtagtccc	67260
agctattcag	gaggttgagg	caggagaatc	acttgaacct	gggaggtgga	ggttgcagta	67320
agccgaggtc	atgccactgc	actccagcct	gggcaacaga	gcaagactct	gtctcaaaaa	67380
aaaatatata	tatataatat	atataatata	tatataaata	tatatattat	ataatatata	67440
tataaattac	atatttataa	atatgtaatt	tatatatata	atatataatt	aaaacatata	67500
ggatttcagg	tgatgataag	cactactgaa	aaaagtaaag	ctgagaatga	ggatactgag	67560
aagctggttt	ggaagctaaa	acacaaagta	acaaaggcca	aggtggttac	atgttcttga	67620
ttacatactt	taaaaatgga	taaactaaat	taagactcag	attctagtct	ttgggcttca	67680
cagtgtgatt	ttcagcaatc	acatggcatt	aatagcctga	aactacatca	aaattgtcat	67740
ttgatttata	gaccaaaata	actcccttga	atagagaggg	attcactcct	aacacttttc	67800
ctatttccag	atgccaaata	acacggaatc	tcttgccaaa	tttgtgtggc	agaacactgg	67860
ttttatatac	ttatagcctg	gtaagaaaga	aaagacatgt	atgaataact	tagaaggcag	67920
aaaattatca	tgctattaga	ctcagtacaa	tgtcatgtgc	attctcaaag	gaaacatctg	67980
cagaggcagg	agaattgctt	gaaccctgga	ggtgaaggtt	gcactgagct	gagatcatgc	68040
cactgcactc	cagcctgggt	gacagagaga	gactgcatct	caaaaaaata	aaaattacaa	68100
aaataaaaaa	taaaaaatag	tgatcaatct	ggcagcattt	tctgaaagtt	aagcagtatt	68160
cccaatagct	gctaaaagaa	gacatgttat	ataatactaa	gtctgtaagt	aggtaaaaat	68220
taagagaatt	gttaatgtgc	ttgctgggga	gtgaaattat	ctctaggcat	taccctatac	68280
ctaacctagg	actcagtaga	ctatgatatt	ggcgtagttt	gaccaagaat	tttatcctga	68340
tttcagatcg	ttttctcttc	accagcactt	cttcaccagg	attatatgaa	aaaaattaaa	68400
cctgatgccc	tgaggcatcc	attatatgtg	ctgaaataac	ttcttttctc	accatctaga	68460
atggtactag	ctatgtacca	ctcttgtcag	aatcaaggaa	attgctactc	aaatcattgt	68520

gcagcttaat	tttctcacag	aaggccagtt	gagaaaggct	caacttctag	gaatccagca	68580
aactatattt	tttataagta	acatttttac	agaactactt	ctaaatcctt	gtgttcaaat	68640
ttactaaagc	tatattcaca	gctaaatatt	tcagaattta	aaatttaaaa	gactttcaaa	68700
ttagttccct	gtagctgtca	tgccaaggca	attagaacat	atgttaaggt	atgaggggtt	68760
tttcttgtta	gaaggtcaga	gcagggcaga	gaagtagccc	cttgtatgag	tgatgaagct	68820
cagatattga	ctcctatgct	aaccataaag	cctagtagtt	tgctcatttg	ttacctctct	68880
gaaacatttt	tttgggtgac	tacaaaacag	gaattgaaac	cttcaaaata	agggaatttg	68940
aaaccaaatc	tttgaaaata	gataatgctg	caactaaaaa	tttagttgaa	taagattttt	69000
acattaactc	tccctaattt	acgttatgat	atttgccatc	tagaagtgtt	tttaaaaaat	69060
atattgctgg	agtcagatga	tgcatccatt	aatctttggg	gcatagaata	atgtgaatct	69120
aaaattttca	aattatttac	actactggta	tttggtcaat	gtaatttatt	tgaaactaga	69180
tgcaataggg	atggccaggt	tatttcagta	gaacaactag	caagacttca	gatgcatggt	69240
ggagtgggga	aaggaggacc	tgtttaagga	aactagagct	gggaagtgtg	agattaactt	69300
agtgccaatg	tgaggaccta	aaaagcagat	gtggtggaaa	atttaaacag	gcttgcctag	69360
aaggtcaagt	tagttgatga	cacttgatga	gattgtccca	agctttggga	ttctcaacaa	69420
agtctttgtt	agtgagaaat	ttggaaagag	atcaggtata	gttaagaaac	tgggttggaa	69480
aggccaccag	gaaaggcgaa	tattctgaca	caaaatttga	tcattttatt	tggaagcatt	69540
tcaagcctga	cctgaacgaa	ttgtttagcc	tcagatacat	gcataaaact	gtgaaaagag	69600
acattgactc	aatttagctt	ctttaacatg	agaaactttc	gtggaaaact	agaactttac	69660
aagctcagct	ggtgttgggg	gcatcattat	cttgaatagc	tcactggagg	aaaatgaaat	69720
cttagtttgg	ttctcaggtt	ttaaaatatc	tatcattttt	gaaaagtgtg	aagtaacaaa	69780
atatgatctg	attatcttat	tcctaaaatc	ctttgcagaa	ttatcccagc	ctcaatcttc	69840
tctttagtat	ttaatgagaa	taagaaactg	gaaatgactg	aattggaaga	gtagacttta	69900
aatccatatc	ttgatggcat	atacattttt	cagtttttt	tctaaatgat	taatgaggat	69960
tctcaaaact	tgagtatctt	ctatgtttcc	cttcaacata	aagaaattgt	atgaaaatat	70020
tttaaaaatt	tctaatgatt	ttatagttag	ctatcttggg	aattcatttc	taatcatgta	70080
cctcatccaa	actccccact	atggacaaaa	ataaaataaa	aattattagt	tgcatctgaa	70140
ggccacatta	caatttctat	gcattataga	aacctgagaa	aatgtatctt	aaaaaataaa	70200

tgtgaacaac	taaccataat	tatgaagaag	aaaaatgaaa	actagaaata	aactattgaa	70260
aaatgtctat	gtatcagtta	agtttttatt	ttaaaattct	ttatgtttat	ctctataata	70320
ctattgggaa	agagagaaag	gaaaacctga	ctttgttctc	atccaaagga	ggtgattcca	70380
ctgatttagc	caaaataaga	cttcctggtt	ataataaata	ataaagtttt	tgatgttttt	70440
tatatggtac	cccactcact	aggtgatcag	acaccctcct	gcaaaaaaaa	aaaaaatacg	70500
tatgcaataa	agttaaagtt	ttatgttatt	ctttcaaggg	gagaaacatc	tgtttaacac	70560
agaccagaat	atttcaacaa	agtcatccca	atatttatgg	agatcataaa	tcaagcgaaa	70620
aaatatattc	atcaacaact	aaacaaacta	cattaaatag	tctcaaagca	cattttcact	70680
ttttttctga	caggaaaaca	ggtttcacaa	gtgtggagac	attttaccat	ggcttttaac	70740
agtgaggaag	gatgtttaaa	taaagggaaa	aattatatgg	aaagctcaga	gaaaagagat	70800
gggtgtggct	tgagtgacaa	ggtgagagca	gatctcatta	actgaaatga	gagagaagga	70860
aggaattttg	caaatatgga	aagataacta	gtgcaagttt	gaacagatta	tgtcaatcaa	70920
tgtagaattt	ggctatcttt	ttaatcaaag	aagactatgg	aatattttat	aggtgtttgc	70980
ttatactcaa	agttttaaag	aaataacagt	atgaatttgg	ttgaactaat	ttttttcata	71040
gataggattc	tcccaagtta	tatagcatat	atatttctta	actagttatt	cttcctttta	71100
catatattgt	gccacattga	gtaacaacta	acctgctaat	agctattggt	ttttaaaaga	71160
taattaatat	tagaaagtga	tcatttttct	gtttcatatt	aaacatgata	ttctgaaaaa	71220
gcaacattgc	ctgaatgttc	tacattttat	ctttttgaaa	acaggtttta	taagagattt	71280
cttgtgaaaa	gctgaacgtt	ctgacactga	aataagtcag	ctaactcaaa	gctaagctta	71340
attttttgac	actgttggca	tgaggtctca	ttcccaattt	tttcatttaa	agccacaggc	71400
aaatgtttta	acagatttta	atccgtagta	caagcattat	tgatcttaaa	tttaaggata	71460
aaaacctgat	tttaattaga	atttaatatg	cattctagta	tttacgttgt	ataattaata	71520
tttacattcc	atgattccac	tatgtaccat	ttatttcttt	ttgaataaat	ttccagtagg	71580
agcagaataa	attttcagtg	aatattttat	ttcttggggg	atatttttaa	atggaaaata	71640
tattaagttt	cggtaaaatc	tgttgctaat	ttggcagtgg	acagaatata	aaaattggag	71700
agactgagtc	attatgatga	attgggtctg	acttttgtca	tgacactgga	aatttcccac	71760
aaatattata	ttcttctttt	ataataaata	tagtcgaaat	gaattgcagt	caagtatttg	71820
aagacccatc	tataaattta	ggcggttact	gttgattttt	cattatgaga	gattetteca	71880
ctcataagct	actaaaagta	cataaagaag	gtctggttgt	ttgttttaaa	tgtgactgtt	71940

ctctatcagg	aaaatgtcag	gtatccgatg	aaaatagata	tatgaggtgc	caggtatcta	72000
ttccaaactt	ggatatcact	tcaattagca	tcatcttttt	tttttttaa	agtgtctaag	72060
gttagaatag	tcaccagata	ttcccatgta	tgaagcaatt	ttctgcaaag	gccgctgtgg	72120
atgatctttt	taaaatatat	attctgggag	acattgagta	aagagaaatt	atttaccaga	72180
gaatgaagaa	ccgaggcccg	attctttggc	tttctgccaa	agatgctgaa	ggcagtgatg	72240
aatgacaaat	acattaccaa	ggaattctcc	ctctaagagg	ctgacaaaga	tctgattttt	72300
aggattatat	taccaccaag	aagatacccc	ttgtcactga	gcttctaatg	gaaatatggt	72360
ctatactgaa	acaattctca	gttcttttc	tttctatctt	tttttgagtt	attttatctt	72420
ccaaaaatga	gttatttctg	ataaaataat	tcacttaaat	aattatgaaa	gttcaaattt	72480
gtgcaaatat	ttttattggg	acatcttaaa	attactctaa	attcaaaaag	aaaatatatg	72540
ctttattaaa	atttgatctg	taagctgctt	tgtttgtaat	ttaactatta	tataaaaatt	72600
gtataataca	tatattttat	ttactttatt	cctgtgttgc	tttggcttgg	tgagactagg	72660
tctccacatt	aggagtttta	ctgaatgaaa	aagtatcaga	atgtaacatg	actttgatat	72720
ggcatcagaa	tttaataaga	tgacatttaa	taggaattag	gggtaagttc	caggttttac	72780
acttaaatac	aaataatcaa	ttttgcaggc	acaaaatact	tcaaacaaaa	tctgaaatca	72840
ttcatttgac	aaaacttcag	gtttgcagtt	gacaataaat	acaatacaat	gcaacagtgc	72900
aatagtgata	tctaaatatc	taatgtaatc	ataggtaata	ttagtaagtg	tgttatctga	72960
aatgagtggt	gtgatatcct	gctttacttt	gtactggtga	gttctgggtg	ccacctttga	73020
aaggaataaa	gactattcat	atctctttta	taagacaata	agaaaaacaa	acaaacaaac	73080
aaacaaaaaa	ccacctcctt	tactttagct	gagaaagaag	ttattaggta	cagcttgaca	73140
agttcagcta	agcatccaaa	tcttccagga	ggttgttact	acataaaatc	aaaccttttt	73200
aattcaacta	tgagcaggga	gattttattt	ttctttcggg	tactaaagct	tccaaactct	73260
gtttattcca	caggaatctg	aacttataga	actaagagaa	accattgaaa	tgctgaaggc	73320
tcagaattct	gctgcccagg	cggctattca	gggagcactg	aatggtccag	accatcctcc	73380
caaaggtata	tttagaaatc	atttcatttc	cacccaatat	aataggcatc	tattttattt	73440
attaattaca	gtagaactgc	atttactcag	tgtcactgtg	cattattaat	acatactagt	73500
tgtattaata	gttgtattaa	tacatactag	tagtattaat	acatactacg	ttggtattaa	73560
tgtgatcaga	atcctagaat	tttagaacag	tgacttccat	tatcagataa	tttttaaact	73620

gatcttaaga	aatttggttc	tatagttgta	tacacatctc	tctacttgat	tcagtggaga	73680
tggagatgga	gtggttggtt	aatacatgca	tatctgactt	caggcaaaac	aaacccatta	73740
atgagtatga	taatctagat	ctgtatttaa	aaatgaaata	gtcaatatga	tgatatagta	73800
agcagtgggc	attgggaaca	acttttcctg	gatggaggct	ataaaaaggt	acatttcctg	73860
tagataattt	tgaaacaata	aaaacaacgg	gtgaaaggta	gctctgtttt	aaattattcc	73920
tatgcttaag	caattctaaa	caatgaaagg	ggtatttctg	ccactgcccc	tacccctggg	73980
ttcaccactg	aagaaatgct	cattattaat	atcgtgtcat	ttttttcctt	tacattggtt	74040
ctatttactc	atttcctgac	acttttcaat	ggccttcagt	gagctcagct	ctttcccagc	74100
ttaaaaaaatc	ctgtcctaaa	acatgaatgc	cttattatct	ctcttttcat	ttccagaaga	74160
attctgagaa	aaattttatg	aagtctttca	atgtcttcag	ccatctttag	accactggag	74220
tgtagctcct	tttccctcca	ctccaccaaa	acaatgctct	ccaggatcag	cagaaactta	74280
catgacacta	aattcagtaa	aacgtttata	attcttattg	tattagacag	acatggaaac	74340
agcatttgat	gctgatattc	atttcttcct	atgtgaaaca	tccggttttt	ctaatgttcg	74400
tgacatcata	cattcttggt	ttttcttctg	ttcctttgaa	atatttttc	aatatttctt	74460
ttgtaaattc	actcttttgt	atccatttgt	taattgttga	tatcctaagc	tctcttccat	74520
tatgattcta	tgcatcctat	ttaaaatata	tagaaaatca	tctcatactc	tagctgtaat	74580
ttttattaat	gtgctaatag	ctaataactg	tcaaatctag	gtctccaggc	caggctctgt	74640
atatccagct	accaagagag	aactccacgt	ggatatcttt	ggatgtctgt	tttgcatctt	74700
aaacctaact	tctccaaatt	tgcacttgtc	ttctgtctca	gacctgctgc	tccttcagtg	74760
ctctttgcct	cagtagatag	caccaccatc	cttccattta	gccagaaatc	taagtattct	74820
tcataactcc	tcctctcctc	attgaataaa	ttaccaagat	ccgttgatcc	cattccttaa	74880
atatctcttg	gatctgttaa	cttttctctg	attttactct	tgccatccat	cacctctctc	74940
ctgaaccatg	accacaaacc	cctaaatagc	cttcctcttc	ttaatcttat	cctgctttac	75000
accagtcttc	acgctgaagc	cagaatagtc	attaagaaac	acatctacag	gtatcccatt	75060
cattgccttt	agaatggaat	acagactcct	cagcatgaca	taatctctct	tcaccagctt	75120
catttattca	acaaatattt	attcataacc	aattaagtgc	cagatgatgc	acatatagac	75180
ttettgttet	gttgttgcat	tgcatattcc	atatttcagc	tatcctgaat	tgttttcaat	75240
tattcataag	ttetttatga	attgtgttca	ttccatttgg	aatattctac	cttgtttgat	75300
cagcataaag	acttttcgag	acactgcagc	agcagtgaac	ctaaatatgt	ttccttgacc	75360

cctacattga	atgacacccc	ctgtgatatg	tttctggaag	cagcaatact	tcccttctta	75420
aaattacatt	atactttggg	gcttttattt	aaggtatgtc	tttcctgatt	tacaatagta	75480
gagcttgttt	tttcaccctt	ttgaaagaca	tcaagatgcc	catgatgatg	tcttgcatgt	75540
aacaggggtt	tatttgaatt	tttaaaagaa	gaataaagta	atttttaaat	gaatttcaat	75600
ttaaatttta	ggaaaacaat	tatataaagt	gagatatgct	taaattgaag	gacaaagtag	75660
ttctgtaggg	gctacttctt	tcaagacttt	agcaactttc	catgtggggg	agtgatttat	75720
gtgatgcatg	gaaaattact	gcatatttaa	agcttatctt	agagctataa	taaagcagct	75780
tatgttctaa	atcttcatgt	cgtaaatagg	tccagaaggg	atttaaaaag	ccttaatcct	75840
tactttaaca	cagcacaagt	cactgaagtg	aaacttgctg	aaaggattcc	ttttatgtta	75900
ggcaacaggt	agctgaatat	atctacagaa	attgaaaaat	tggaattctt	ttgctcagaa	75960
atgtgggagg	ggtggagctt	aaggtaaaaa	ataacagtta	atatctaaat	tgatcaagaa	76020
atatgaaaaa	ataatttgct	aggttttaaa	actaacaaaa	accatggtta	taaaggtttg	76080
aatatatata	ggatagttag	attgtatttc	tgtaatatta	aaactcagca	ttaaatttaa	76140
tgaacacaaa	gtgattctta	tcacattgac	cattgacatt	acatggaaaa	aatagtcagt	76200
tggactaatt	atgtgtcttt	ccatgggtta	ttaaggtaat	tgtatggcat	ataaatttat	76260
actggaaatc	acattgaaat	tcacttttag	aggcccttaa	aatatttctg	taatatatat	76320
ttttaacata	tgatcttaaa	agatatattt	ggaatgacac	aacagtttta	tagacaggcc	76380
tgactatcac	acaaccacac	accaatttgt	gaatgtgttt	ctatttcctc	taaattaatg	76440
catcacattc	attaacaaag	tttgataaat	gactatagtc	tataataaaa	tatttttgtt	76500
tacaaacata	tttaaacacc	tgctattaag	tataggcatt	atcagatctt	aaaatacaaa	76560
gatttaaaaa	attaccctgt	ggtcatggag	ctcacaatcc	actgcaaaaa	taatgtttgt	76620
gataagaaat	ttgaaagttg	aaggtaatag	aaaattttac	ctttattttt	caaaatgtac	76680
cattgctttc	taagtcacta	cttctgtgta	aatatggaat	tgtttttcct	taagatatac	76740
caaatatagt	tggataacgc	atgtattaaa	attctgtcag	cactaagttg	ttttttagac	76800
atagtgatag	gcaaacatag	ttatattgaa	tgaaaaatta	gaatcaaatt	tattaaacac	76860
tgtgtactga	ttgataccac	atgccatatg	cttgtatagc	aatacaaggt	ttggaattta	76920
taatggtaaa	caaaatagat	acggtctttg	tctccataga	acttttagtc	tagtgggaga	76980
gcagaaggta	aaggaatgta	tgtgatcatt	ggtgaagctg	aacatgtata	cccaaacagt	77040

tataagttcc aa	agatggaca	ataatgggtg	ccatagggaa	ggagggtacc	aaggaaccta	77100
ctggaggtta ca	atagggaag	attattccaa	ggtagtaata	tttaagtgaa	tatccaagga	77160
ataattgtca at	cactttat	aagtactgag	ggaggagtat	ttcaaaagag	ctttgaggcg	77220
gaaaataaat ta	agttccttt	atggaactaa	tgtaaggaaa	atactaagca	aacatgtaat	77280
aagaagaaca c	ggttgatga	gttaagaact	gacaagatta	ctgaaggatt	gtaggccata	77340
tttagaagtt g	gatttttta	tctattctta	ttaaagtgag	aagttattga	aaggtcttaa	77400
gtgggggagt ga	atgatgaag	tttgcctttt	aaaaaagatt	tttctagcta	ttgtttatag	77460
aatggtttga ag	gatgaataa	gtccaatagc	tatacttgct	gtaaaggtta	tgttggtagc	77520
ttgaactggg go	cagtggtga	cacagaggat	gggagatgga	aaatgacgag	tgaacaaaca	77580
catacctgaa aa	atttaagtt	taaaaataga	cctctccatt	aattcagatt	gctgatattc	77640
attcggttag co	cattcttta	ctgaacttta	tgatgcccca	tatactgaat	taaatactta	77700
caagcactaa aa	aaagaaatt	gttagggaac	agtaaaatgc	atttccttca	tttcacaata	77760
ttattaatat ta	atggctttg	ctaatcttta	ttggtgaatg	cagtcataat	tgaaggtaac	77820
tgatacttcc a	aggactact	tttgacctag	gattactatc	tttttaaaaa	tttagtatta	77880
aagaagtcaa a	cacaattta	ttaattctgg	atataataaa	aattotgaaa	tactttaata	77940
ctttgtgctt t	tctatttgt	gaaagttaat	tattaggaac	gagctagcaa	atgctacttc	78000
tttttcaaaa a	gctaatggc	caatcacagc	aaaaatttaa	agcactaaga	aatacctaca	78060
catattette ta	attgcccat	ttatatgact	tccataatag	ttgattaaag	gataccggat	78120
tcctttattg t	tgaattaaa	acctcctaca	tgaaaacctt	gatttaggtt	tagaagttgg	78180
taatgttttg g	catgcaaaa	ccagttaatg	ttctcatcat	tactttttaa	aacaatgtta	78240
agagatgaat t	ctagggatt	ataaaaaaaa	aaaagctgta	tgtgtttctt	cctataaaat	78300
ttttcagcat g	attgcctca	gtagaaaaat	taagggactt	attgatatat	atgtatatga	78360
aggtgaggat a	cacatatac	acacacacat	atatatgtag	gtaaatacat	atattacatg	78420
tctatcaatc c	atacatact	catttattat	acgttttgaa	agcaaccagt	tatagttttg	78480
ttgccatgga t	catttttac	tattcagtaa	atcagtcaat	tgaagaggct	tgattttatg	78540
gtattagttt t	ttggaaact	gtcagcttta	tagtaaattt	tgacatctta	caacttccac	78600
tgagattttt t	tgcttgact	aatctgcctt	gatgccaata	agtatattaa	cggaaatgga	78660
ctaaaagcaa a	tgtgacttg	aagcacaatt	ttgtaaattt	tcttagtgtc	tcagtaatac	78720
ttaatactag t	gcattttag	gtaggaaaat	tttcagtttg	ttttatttta	aataactata	78780

aatcttatag	ttgcttgtat	aaaagaaaca	gataccttta	acatgattaa	atatcaaatg	78840
ctattctctt	caaaatatct	taactaaaga	agcactgcct	gctcttagaa	gttaagcaag	78900
gccataccat	atgctgcgta	catggctttt	aacacaatgg	atattagaaa	cagcctaagg	78960
ctgagcctgg	ctccactatt	tttcagctat	gtgaccatgt	gaaagttaca	tttagtaatt	79020
aaactcattt	cagtagtttg	ctttaagaat	aaaattaggt	actccggggg	catatcaagc	79080
atattgtaaa	acctagtttg	attattattt	gttattggta	ttactattac	tattctataa	79140
taagtcatgg	gcaggcagta	ggggtacatt	ggaagaattg	cactgtctta	aatatgtcct	79200
ctgtttaact	cacaaactca	gtctacctag	gctttctttg	gaggatctgc	ctttcattgg	79260
ctgtttgact	ttggccaagt	tacttaactt	cttttcactt	cagtttcctc	atctgtgaga	79320
ttatgtgctt	acatgacttc	aggttttgtt	ttggctctaa	tatggtatga	ttctatgaaa	79380
tggaaagtta	atacatttgg	ctctagtaac	tgtatttgaa	gcacaaatat	taaaaagcac	79440
aattaattct	cattctgagt	ttccatttac	tcttttaaat	taatcattca	gaataaatca	79500
ttttggaaga	gctgcttgat	ccaggtattc	agtagaaatc	actagcatag	catttaattt	79560
tagacaaaac	tgagaactca	ttaaactgcc	agggctatgg	acttatatga	gattctcatt	79620
aaatcttaat	gtagataact	cagttaatta	aaacaaatat	ggttgtactt	tattaaactt	79680
ctaaagtcaa	aactgcattg	aaattatctg	tacaaagcct	tgttgacctt	tattagagaa	79740
ctgcctctca	aaagacctaa	aagacttatt	tgttcagatc	gagactcttc	atgagccaat	79800
gtgatactct	ccctctattg	ctagatette	gcatcagaag	acagcattcc	tctgaaagtg	79860
tttctagtat	caacagtgcc	acaagccatt	ccagtattgg	cagtggtaat	gatgccgact	79920
ccaagaagaa	gaaaaagaaa	aactgggtaa	gttaccatcc	ttcatctaat	tcagaagctt	79980
attaatgcat	aatgtgttag	gcctttttct	ttggggcttt	agtgatctgc	agtagtttac	80040
aaagggtccc	attcaagcta	ctgagacctc	aaatgctgca	ctcatcacca	aaattggagt	80100
ggcatgtact	gaaaagcata	cattttaatg	ttgggactaa	acttgggttt	gaatcaccac	80160
tatatctaga	ccttttgagg	ggcctgaatt	ttctaaccaa	taaaaagaca	gttaatagca	80220
actatattta	tttgtgaata	tcatttattc	acagatgtta	tctaattttt	ctatagtata	80280
actatacaaa	ctatgtagta	taactataga	gttatactaa	agaaaaataa	gataacatct	80340
gtgaataaat	ggcttaaaat	aggggtttat	tgtgggcata	gagatgaagg	aaaagtgaaa	80400
aaatgatgat	gatggtgatg	atgatggtga	tagtggtctt	ggaggaaaag	gagaatggga	80460

gttaataaag	ggaaagaata	aacaatgaaa	ctctcattcc	acctttggaa	tcgacagggc	80520
ttaccgtgtg	aatagtttca	ccctaaaaga	aatcaaccac	attagtgtct	gcttgatgtt	80580
tttaaccaag	agaatatagc	agaaatatag	aaatgcactt	taacagaact	gtaccttaag	80640
tttgctagtg	atataattta	tgatattgat	caatagctaa	atageceagg	ggaagatact	80700
gttactgcga	aaaatttaaa	aacaatggag	tcaatgattt	cttttaatac	caaaaaaaa	80760
atgtagattt	tgagtaaata	caactcttga	tgaaatccag	acataattat	cagaggattt	80820
tactggagtg	ctttctacaa	ataatgaaag	aaatatcttt	ttatcttaaa	aaatgtttat	80880
acaggtaata	ttttaaaata	ctgatcagcc	ttcattccct	tgatttgtaa	ttccacactc	80940
tttcatgttt	ctgcaaggtg	aactctagag	gaagtgaggt	gaanataaac	cgtggacaat	81000
ttggcatgga	tntataaaaa	aaccctacct	tggcatgaat	gctatccatt	ttggcagtag	81060
gcttttatac	cttttaaaac	agattacctt	gtatgtcttt	tctttgtgtc	ttttcatttt	81120
aatctcaaat	tttaaagaga	tgtaaaacca	ctttctgaat	agagctgtag	gggataccaa	81180
ttctggtttt	gagtagtctg	gggttggaaa	atttgaatag	aaaaatcaca	attaatgaag	81240
tgttaggtga	atttgatttc	attttgcttt	ttaagtttgt	actgtcagca	ggacatgact	81300
tgattgtagc	gctaaagtgg	ccatttaaaa	caaattgcct	tgaagagaga	agcattggga	81360
atggagatc						81369

United States Patent & Trademark Office Office of Initial Patent Examination -- Scanning Division

Application deficience	cies found during	scanning:	
□ Page(s)	of		were not present
for scanning.		(Document title)	
□ Page(s)present	of		were not
for scanning.		(Document title)	

· Scanned copy is best available. Some figure are very dank