

Human commensals producing novel antibiotics impair pathogen colonization

Andreas Peschel

Interfaculty Institute of Microbiology and Infection Medicine Tübingen
Infection Biology Department

Major ARBPs: the 'ESKAPE' pathogens

- **E:** Enterococcus faecalis/faecium **VRE**
- S: Staphylococcus aureus MRSA
- K: Klebsiella pneumoniae ESBL/CRE
- A: Acinetobacter baumanni ESBL/CRE
 - P: Pseudomonas aeruginosa ESBL/CRE
- **E:** Escherichia coli **ESBL/CRE**

Up to 50% mortality, 700,000 deaths per year

Majority of invasive infections start from microbioms

In microbioms of healthy humans:

- Staphylococcus aureus CA-MRSA
- Klebsielle pneumoniae MDR/XDR
- Escherichia coli MDR/XDR
- Clostridium difficile

In microbioms of hopitalized patients:

- Enterococcus faecium VRE
- Pseudomonas aeruginosa MDR/XDR
- Acinetobacter baumannii MDR/XDR

→ Should risk patients be screened, isolated, decolonized?

Current ARBP decolonization relies on broad-spectrum antibiotics

S. aureus nasal decolonization:

Selective Digestive Decontamination:

With mupirocin

- Increasing mupirocin resistance (30%)
- Damages microbiomes

With non-absorbable antibiotics (e.g. colistin & tobramycin)

- Endangeres antibiotics of last resort
- Amplifies resistance genes
- Damages microiomes

→ How to decolonize in a selective way?

Decolonization drugs

Properties:

- Non-resorbable
- Narrow activity spectrum
- Fast, bactericidal

Economically viable?

- Substantial reduction of ICU costs
- Mupirocin (generic): \$ >120 mio/a
- New compounds would yield substantially higher revenues

→ How to develop decolonization drugs?

New avenues against antibiotic resistance

Consider innovative and integrative approaches

Consider human microbioms as a source

- → for most antibiotic-resistant pathogens
- → for new antimicrobials

S. aureus colonization governed by nasal microbiome

- Major risk factor: nasal colonization (30% of the population)
- Antibiotic resistance (MRSA, CA-MRSA)
- Colonization governed by microbiome

Competition in microbiomes

Nasal commensals:

Firmicutes

Coagulase-negative Staphylococcus (CoNS)

Dolosigranulum

Streptococcus

Actinobacteria Corynebacterium

Propionibacterium

Rothia

Proteobacteria Moraxella

Haemophilus

Bacteriophage lysins for selective decolonization

With Hyglos Inc,, Bernried and Karsten Becker, Münster

Phage lysins:

- Highly selective for one bacterial species
- Act fast and bactericidal
- Hardly prone to resistance

S. aureus-specific phage lysin PRF-119:

TABLE 1. Antimicrobial activity of PRF-119 against S. aureus

Organism ^a (no. of isolates tested)	MIC data (μg/ml)		
	MIC ₅₀	MIC ₉₀	Range
MSSA (398 ^b)	0.098	0.391	0.024-0.780
MRSA (776°)	0.391	0.391	0.024-1.563

Idelevich et al (2011) *Antimicrob Agents Chemother* Idelevich et al (2016) *Antimicrob Agents Chemother*

phage lysine treatment of cotton rat nares

Colonization resistance – roles of bacteriocins?

- > 86% of nasal staphylococcal strains produce bacteriocins
- > Induced by stress (low iron, H2O2,...)
- Most bacteriocins are inactive against staphylococci and most other Firmicutes
- Highly variable in structure and activity spectra

A novel antimicrobial compound from *S. lugdunensis* 28

IVK28 ΔlugD::pRB474/lugD

IVK28 M1

IVK28 ∆lugD

IVK28 wild type

IVK28 wild type

Formula: C₄₀H₆₃N₈O₆S⁺

Mass: 783.03

"Lugdunin"

Lugdunin is a novel cyclic peptide antibiotic

Lugdunin is a promising new antibiotic

Test strain	MIC (μg/ml)
Staphylococcus aureus USA300 (MRSA)	1.5
Staphylococcus aureus MU50 (GISA)	3
Enterococcus faecium BK463 (VRE)	3
Streptococcus pneumoniae ATCC49619	1.5
Pseudominas aeruginosa PAO1	>50
Escherichia coli DH5α	>50

p = 0.0232

p = 0.0168

Zipperer et al (2016) Nature

Lugdunin-positive S. lugdunensis outcompetes S. aureus

Growth competition in vitro

Co-colonization in cotton rat model

Does *S. lugdunensis* shape nasal microbiome composition?

Nasal metagenomes of *S. lugdunensis* carriers / non-carriers

- Low Staphylococcus abundance in S. lugunensis-positive noses
- Tendency of high Corynebacterium and Dolosigranulum counts

ABC transporters confer producer immunity

How about the human nose?

- S. aureus prevalence: 30.4%
- S. lugdunensis prevalence: 7.7%

- All nasal S. lugdunensis contain lugdunin operon
- All nasal S. aureus are susceptible to lugdunin

→ Does S. lugdunensis prevent S. aureus colonization?

5-6-fold reduced incidence of *S. aureus* colonization by *S. lugdunensis*

→ Lugdunin-producing commensals as anti-S. aureus probiotic?

S. lugdunensis nasal persistance

Conclusions:

- Human microbiome is a major reservoir for antibiotic-resistant pathogens
- Elucidation of microbial competition may lead to novel decolonization strategies
- Human microbiome should be considered as a source for novel drugs

Thanks to:

The current team:

Doro Kretschmer Volker Winstel Bernhard Krismer

Ana Jorge
Xuehua Li
Simon Heilbronner
Daniela Janek
Dominik Bloes
Sebastian Kuhn
Christoph Slavetinski
Dennis Hanzelmann

Alexander Zipperer

Cordula Gekeler

Gabriele Hornig Petra Küner

Major collaborators:

Chris Weidenmaier, Friedrich Götz Staphanie Grond (Tübingen) **Guoging Xia** (Manchester) Michael Otto (NIH) Otto Holst (Borstel Michael Lalk (Greifswald) Lee Bok Luel (Pusan) Robert Skov, Hanne Ingmer, et al (Copenhagen)

SCMID eliptany