

Description

The Power MOSFET is fabricated using the advanced planer **VDMOS** technology. The resulting device has low conduction resistance, superior switching performance and high avalanche energy.

Features

- ♦ Low R_{DS(on)}
- ♦ Low gate charge (typ. Q_g =22.5 nC)
- 100% UIS tested
- RoHS compliant

Applications

- Power factor correction.
- Switched mode power supplies.
- LED driver.

Product Summary

 $\begin{array}{lll} V_{DSS} & 500V \\ I_D & 9A \\ R_{DS(on),max} & 0.8\Omega \\ Q_{g,typ} & 22.5 \ nC \end{array}$

Pin Configuration

-220F Schematic

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DSS}	500	V	
Continuous drain current (T _C = 25°C)	ID	9	А	
(T _C = 100°C)		5.2	A	
Pulsed drain current 1)	I _{DM}	36	A	
Gate-Source voltage	V _{GSS}	±30	V	
Avalanche energy, single pulse 2)	Eas	405	mJ	
Power Dissipation (T _C = 25°C)	P _D	30	W	
Operating junction and storage temperature range	T _J , T _{STG}	-55 to +150	°C	
Continuous diode forward current	Is	9	А	
Diode pulse current	I _{S,pulse}	36	A	

Thermal Characteristics

Parameter	Symbol	Value	Unit	
Thermal resistance, Junction-to-case	Rejc	4.1	°C/W	
Thermal resistance, Junction-to-ambient ³⁾	Reja	65	°C/W	

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Tube	
VSM9N50-TF	TO-220F	VSM9N50-TF	50	

Electrical Characteristics T_c = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =0.25 mA	500	-	-	V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =0.25 mA	2	-	4	V
Drain cut-off current	I _{DSS}	V _{DS} =500 V, V _{GS} =0 V,				
		T _j = 25°C	-	-	1	μA
		T _j = 150°C	-		100	
Gate leakage current, Forward	Igssf	V _{GS} =30 V, V _{DS} =0 V	-	-	100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-30 V, V _{DS} =0 V	-	-	-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =4.5A,T _J =25℃	-	0.66	0.8	Ω
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, f=1MHz	-	2.3	-	Ω
Dynamic characteristics						
Input capacitance	C _{iss}	V _{DS} = 25 V, V _{GS} = 0 V,	-	1063	-	
Output capacitance	Coss	f = 1 MHz	-	107	-	pF
Reverse transfer capacitance	C _{rss}		-	4.7	-	
Turn-on delay time	t _{d(on)}	V _{DD} = 250 V, I _D = 9A	-	12.2	-	
Rise time	t _r	R _G = 10 Ω, V _{GS} =15 V	-	11.7	-	ns
Turn-off delay time	t _{d(off)}		-	53.4	-	
Fall time	t _f		-	10.2	-	
Gate charge characteristics	'		'	'		
Gate to source charge	Q _{gs}	V _{DD} =400 V, I _D =9 A,	-	5	-	
Gate to drain charge	Q _{gd}	V _{GS} =0 to 10 V	-	8.7	-	nC
Gate charge total	Qg		-	22.5	-	
Gate plateau voltage	V _{plateau}		-	5	-	V
Reverse diode characteristics		-	·			
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =9 A	-	-	1.5	V
Reverse recovery time	t _{rr}	V _R =400 V, I _F =9 A,	-	294	-	ns
Reverse recovery charge	Qrr	dl _F /dt=100 A/μs	-	2.3	-	μC
Peak reverse recovery current	Irrm	1	-	15.4	-	Α

Notes:

- 1. Pulse width limited by maximum junction temperature.
- 2. VDD=60V,L=10mH, I_{AS} = 9A, Starting T_j = 25°C.
- 3: The value of R_{thJA} is measured by placing the device in a still air box which is one cubic foot.

Electrical Characteristics Diagrams

Figure 1. Typical Output Characteristics

Figure 3. On-Resistance vs. Drain Current

Figure 5. Breakdown Voltage vs. Temperature

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Temperature

Figure 6.Threshold Voltage vs. Temperature

Figure 7.Rds(on) vs. Gate Voltage

Figure 9. Capacitance Characteristics

Figure 11. Continuous Drain Current vs. Temperature

Figure 8.Body-Diode Characteristics

Figure 10. Gate Charge Characteristics

Figure 12. Power Dissipation vs. Temperatur

Figure 14. Transient Thermal Impedance, Junction to Case

Test Circuit & Waveforms

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform

Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Diode Recovery Test Circuit & Waveform

