ИДЗ 3

Вариант 23

Залание 1

Даны длины двух оснований равнобочной трапеции а и b и высота h. Найти:

- длину боковой стороны трапеции;
- площадь трапеции;
- периметр трапеции;
- длины диагоналей;
- радиус описанной окружности.

Задание 2

Описать функцию f(x,y,c), (при реализации включить обработку исключительных ситуаций):

$$f(x, y, z) = \frac{c^5 + \sin^4(y - c)}{\sin^3(x + y) + |x - y|}$$

Посчитать значения функции для:

a)
$$x = e^2$$
, $y = 5.01$, $c = 1.6$;

$$x = 0, y = 0, c = \frac{\pi}{2}$$

с) вывести таблицу значений функции f(x,y,c), состоящей из N=27 строк, в точках (x_i,y_i,c_i) , i=1...N. ГЛЕ

$$x_i = 1 - \frac{i^2}{\sqrt{i}}, y_i = \tan\left(\frac{i-1}{i+1} \cdot \frac{\pi}{6}\right), c_i = \frac{\log_5(i^2)}{\log_2(i)}$$

Таблицу вывести в следующем виде (использовать форматный вывод), все числа в таблице (кроме номера) вывести с 5 знаками после запятой:

N пп	X	y	c	f(x,y,c)
1	•••		•••	•••

Пояснение. Если при вычислении значение функции получается по модулю больше, чем 1000000, то вывести символ бесконечности (использовать оператор if)

Задание 3

Известны координаты N точек на плоскости:

	1	2	3	4	5	6	7	8
X	-1.4	0.8	2.4	4.9	7.3	-4.1	9.0	6.3
y	-4.3	3.0	-6.4	-0.9	-5.4	4.1	8.7	2.8

Вычислить:

• длины отрезков, соединяющих заданные точки с началом координат по формуле(сформировать вектор):

$$r_i = \sqrt{{x_i}^2 + {y_i}^2}$$

• величины углов в градусах, которые образуют эти отрезки с осью ОХ по формуле(сформировать вектор):

$$\alpha_i = \arctan \frac{y_i}{x_i}$$

- указать точки(точку), расположенные на максимальном расстоянии от центра координат;
- указать номер отрезка, который образует минимальный угол с осью ОХ.

Задание 4

Даны квадратная матрица A, размером N на N, и вектор B, размером N (N = 5), элементы которых определены следующим образом:

$$a_{ij} = \tan \left(\frac{i+1}{j+2}\right), \qquad \quad b_i = \sin \left(\frac{\sqrt{3} \cdot \pi \cdot i}{2} + 1\right).$$

Выполнить следующие действия:

• вычислить матричное выражение:

$$A^3 \cdot B + \det(A) \cdot (A^{-1})^2 \cdot B$$

- вычислить произведение элементов 0 строки и 2 столбца матрицы А и сумму элементов вектора В:
- получить новый вектор С, каждый элемент которого определяется как:

$$c_i = b_i + \max_{j=0..N-1} a_{ij} - \max_{j=0..N-1} a_{ji}$$

- найти сумму векторов В и С;
- вывести количество максимальных элементов вектора В.

Задание 5

Дана функция:

$$f(x) = \sqrt{3} \sqrt{\frac{x}{x-2}}$$

Найти:

- 1. уравнение касательной в точке $\mathbf{x_0} = -0.9$ (если точка не принадлежит области определения, то выбрать произвольную точку, которая области определения принадлежит);
- 2. область определения функции;
- 3. точки пересечения с осями (если они есть);
- 4. уравнения вертикальных и наклонных асимптот (если они есть);
- 5. точки экстремума функции (если они есть);
- 6. интервалы возрастания и убывания.

На одной области построения отобразить:

- график функции;
- касательную к графику, обозначить точку касания;
- точки пересечения с осями;
- асимптоты функции;
- точки экстремумов функции.