Chapter 11 Notes - MC

John Yang

August 6, 2021

Contents

L1	Parametric Equations and Polar Coordinates	1
	11.1 Curves Defined by Parametric Equations	1
	11.2 Calculus with Parametric Curves.	
	11.3 Polar Coordinates	
	11.4 Areas and Lengths in Polar Coordinates	
	11.5 Conic Sections.	
	11.6 Conic Sections in Polar Coordinates.	

11 Parametric Equations and Polar Coordinates

11.1 Curves Defined by Parametric Equations

• Parameter - 3rd variable that x and y are both a function of:

$$x = f(t)$$
 and $y = g(t)$

- Points along the curve (x,y) = (f(t),g(t))
- Graphing calculators can be used to produce parametric curves that you wouldn't be able to make by hand.
- Equation 1: parametric equations for a cycloid:

$$x = r(\theta - \sin \theta)$$
 $y = r(1 - \cos \theta)$ $\theta \in \mathbb{R}$

11.2 Calculus with Parametric Curves

• Equation 1: first derivative of a parametric equation:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \qquad \text{if} \quad \frac{dx}{dt} \neq 0$$

• Second derivative of a parametric equation:

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} \neq \frac{\frac{d^2}{dt^2}}{\frac{d^2x}{dt^2}}$$

• Equation 2: arc length of a curve:

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

• Equation 3/Theorem 5: arc length of a parametric curve:

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

 \bullet Equation 6: surface area of a rotated parametric curve about the x axis:

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

11.3 Polar Coordinates

- polar coordinates (r, θ)
- Theta is always ccw
- Equations 1 and 2: polar coordinates:

$$x = r \cos \theta$$
 $y = r \sin \theta$
$$r^2 = x^2 + y^2$$

$$\tan \theta = \frac{y}{r}$$

• Derivative of a polar curve:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

11.4 Areas and Lengths in Polar Coordinates

- Equation 1: area of a sector of a circle: $A = \frac{1}{2}r^2\theta$
- Equations 3 and 4: polar area:

$$A = \int_a^b \frac{1}{2} [f(\theta)]^2 d\theta = \int_a^b \frac{1}{2} r^2 d\theta$$

• Equation 5: polar arc length:

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

11.5 Conic Sections

• Equation 1: vertical parabola with focus (0, p) and directrix y = -p:

$$x^2 = 4py$$

• Equation 2: horizontal parabola with focus (p,0) and directrix x=-p:

$$y^2 = 4px$$

• Equation 3: general form of an ellipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

• Equation 4: horizontal ellipse with foci $(\pm c, 0)$, verticies $(\pm a, 0)$, where $c^2 = a^2 - b^2$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad a \ge b > 0$$

• Equation 5: vertical ellipse with foci $(0,\pm c)$, verticies $(0,\pm a)$, where $c^2=a^2-b^2$

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \qquad a \ge b > 0$$

• Equation 6: general form of a hyperbola:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

• Equation 7: hyperbola with horizontal transverse axis, with foci $(\pm c, 0)$, verticies $(\pm a, 0)$, asymptotes $y = \pm \frac{b}{a}x$, where $c^2 = a^2 + b^2$:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

• Equation 8: hyperbola with vertical transverse axis, foci $(0, \pm c)$, verticies $(0, \pm a)$, asymptotes $y = \pm \frac{a}{b}x$, where $c^2 = a^2 + b^2$:

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

11.6 Conic Sections in Polar Coordinates

• Theorem 1: Let F be a fixed point (called the focus) and l be a fixed line (called the directrix) in a plane. Let e be a fixed positive number (called the eccentricity). The set of all points P in the plane such that

$$\frac{|PF|}{|Pl|} = e$$

is a conic section. (That is, the ratio of the distance from F to the distance from l is the constant e). The conic is:

- (a) an ellipse if e < 1
- a parabola if e=1
- a hyperbola if e > 1
- Theorem 6: A polar equation of the form

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 or $r = \frac{ed}{1 \pm e \sin \theta}$

represents a conic section with eccentricity e. The conic is an ellipse if e < 1, parabola if e = 1, or a hyperbola if e > 1

- Kepler's laws:
 - 1 A planet revolves around the sun in an elliptical orbit with the sun at one focus.
 - -2 The line joining the sun to a planet sweeps out equal areas in equal times.

- 3 The square of the period of revolution of a planet is proportional to the cube of the length of the major axis of its orbit.
- Equation 7: The polar equation of an ellpise with focus at the origin, semimajor axis a, eccentricity e, and directive x = d can be written in the form:

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

• Equation 8: The perihelion distance from a planet to the sun is a(1-e) and the aphelion distance is a(1+e)