ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320911791

The Accuracy of Monitoring Stress from Wearable Devices Background and Objective References

Poster · November 2017 DOI: 10.13140/RG.2.2.36211.63527

CITATIONS

Some of the authors of this publication are also working on these related projects:

Strengthening Human Adaptive Reasoning and Problem-solving (SHARP) View project

Risk information avoidance - theoretical groundwork and research framework development with a special focus on genetic health risk information / Unikanie informacji o ryzyku - podstawy teoretyczne oraz rozwój metod badawczych... View project

READ 1

The Accuracy of Monitoring Stress from Wearable Devices

Maciej Kos, MA, MS, Christine M. Gordon, MPH, Xuan Li, MFA, Iman Khaghani-Far, Ph.D., Misha Pavel, Ph.D., and Holly B. Jimison, Ph.D., FACMI

College of Computer and Information Science & Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States

Background and Objective

distort subsequent frequency analysis.

Continuous monitoring of behaviors as well as physiological and mental states is increasingly considered to be a key prerequisite for optimizing health interventions.

For example, since stress has important implications for a wide variety of health conditions, there is a clear need for new tools to monitor stress in real time to provide tailored and timely interventions.

New, affordable wearable sensors may enable continuous and unobtrusive assessment of individuals' health and stress in ambulatory settings. However, data captured by such sensors is typically very noisy. Traditional data cleaning approaches, e.g., simple outlier removal, are inappropriate for such data because they strongly

The focus of this work is on assessing the quality of data collected by two wearable wrist sensors and investigating a new algorithm to improve it enough for these sensors to be valuable for ambulatory stress monitoring.

Study design

Participants: 8 males, 1 female (ages 18 – 52)

Relaxation:

- Calming music
- International Affective Picture System Dark room physical activity (marching with arms swinging and stationary biking with arms held still)
 - Stroop task,

Stressors:

 Mental arithmetic with distracting background noise

 $\hat{r}(t_i)$

Equipment

FirstBeat - ECG sensor - "gold standard"

Microsoft Band 2 - PPG sensor - "consumer grade"

Measurements (both sensors)

- RR intervals
- Accelerometers (x,y,z)

Proposed data cleaning algorithm

1. Compute mean and standard deviation using robust estimation of mean and variance.

3. Removal of "long" RR intervals and data imputation.

variance (> 85%)

Proposed data cleaning algorithm (continued)

Generalization of Poincare's method to more than two dimensions

• Each principal component may account for a particular orthogonal

input to HR including noise and activity-related disturbance

• Useful for smoothing the RR signal and ultimately for imputing missing

4. Singular Spectrum Smoothing (SSA)

4.1 Start with a raw RR interval data sequence

4.3 Compute principal components of A.

data and outliers

4.2 Generate Toeplitz matrix

4.5 Reconstruct the cleaned, smooth RR sequence using those

 $R = \left[..., r_{i-1}, r_i, r_{i+1}, r_{i+2}, ..., r_{i+K}\right]$

Evaluation

Our algorithm significantly improves agreement between ECG and wrist PPG signals

The algorithm removes motion artifacts without using motion data

- **CCC**(ECG, **RAW** SIGNAL) = -.942 * RMSA + ε R² = .236
- CCC(ECG, CLEAN SIGNAL) = $-.109 * RMSA + E R^2 = .003$

RMSA explains less variance in CCC between ECG and clean signal (eq. 1) than between ECG and raw signal (eq. 2).

Summary of results

- 1. Coherence between optimally aligned ECG and wrist PPG data is 0.283.
- 2. We detected that RMSA has a large, negative impact on the agreement between PPG and ECG signals. 3. We developed an algorithm to clean RR data. The algorithm uses Singular Spectrum Smoothing to generalize
- Poincare's Method to more than one two dimensions.
- 4. Our algorithm removes most motion artifacts and can be used to improve the quality of RR data.

Future work

- 1. Accelerometry data as a trigger for the algorithm.
- 2. Near real-time implementation of our data cleaning the algorithm to enable just-in-time interventions based on reliable data.

References

1. Alonso, F. J., Del Castillo, J. M., & Pintado, P. (2005). Application of singular spectrum analysis to the smoothing of

- raw kinematic signals. Journal of biomechanics, 38(5), 1085-1092. 2. Berntson, G. G., Quigley, K. S., Jang, J. F., & Boysen, S. T. (1990). An approach to artifact identification: Application
- to heart period data. Psychophysiology, 27(5), 586-598. 3. Kos, M., Li, X., Khaghani-Far, I., Gordon, C. M., Pavel, M., & Jimison, H. B. (2017, July). Can accelerometry data improve estimates of heart rate variability from wrist pulse PPG sensors?. In Engineering in Medicine and Biology
- Society (EMBC), 2017 39th Annual International Conference of the IEEE (pp. 1587-1590). IEEE. 4. Peltola, M. A. (2012). Role of editing of R-R intervals in the analysis of heart rate variability. Frontiers in physiology, 3.

Acknowledgements

RR [ms]

Research supported by the National Institute of Disability, Independent Living, and Rehabilitation Research (Grant # 90RE5023-01-00) and the National Institute of Nursing Research (Grant # P20NR015320).

The authors would like to thank Binod Thapa-Chhetry for sharing his expertise in processing accelerometer data.