2章 終結式

定義 2.1

$$f(X) = a_0 X^m + a_1 X^{m-1} + \dots + a_m \ a_0 \neq 0$$
 $g(X) = b_0 X^n + b_1 X^{m-1} + \dots + b_n \ (b_0 \neq 0) \in K[X]$ に対して

$$\begin{pmatrix} a_0 & \cdots & 0 & b_0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_0 & 0 & 0 & b_0 \\ a_m & 0 & 0 & b_n & 0 & 0 \\ 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_m & 0 & 0 & b_n \end{pmatrix}$$

を $f \times g$ のシルベスター行列と呼び、その行列式を f と g の終結式 (resultant) とよび、 R(f,g) で表す

証明
$$f(X)$$
 と $g(X)$ が共通因子を持つ ⇔ $^{\exists}h(X), t(X) \in K[X]$ deg $h <$ deg g deg $t <$ deg f $f(X)h(X) = g(X)t(X)$ ⇔ $^{\exists}h(X) = C_0X^{n-1} + \cdots + C_{n-1} \neq 0$ $t(X) = d_0X^{m-1} + \cdots + d_{m-1} \neq 0$ $f(X)h(X) = g(X)t(X)$ ⇔ $^{\exists}(C_0, \dots, C_{n-1}, d_0, \dots, d_{m-1}) \neq \vec{0}$ 共通因子を $s(X)$ とすると
$$a_0C_0 = b_0d_0 \qquad \qquad X^{m+n-1} \text{ Of }$$
 祭数 $a_1C_0 + a_0C_1 = b_1d_0 \qquad \qquad X^{m+n-2} \text{ Of }$ 条数 $a_2C_0 + a_1C_1 + a_0C_2 = b_2d_0 + b_1d_1 + b_0d_2 \qquad X^{m+n-3} \text{ Of }$ 祭数 $a_mC_{n-1} + a_{m-1}C_{n-1} = b_nd_{m-2} + b_{n-1}d_{m1} \qquad X \text{ Of }$ 条数 $a_mC_{n-1} = b_nd_{m-1}$

定理 2.2

 $R(f,g)\in \langle f(X),g(X)\rangle$ 実は $R(f,g)=h(X)f(X)+t(X)g(X)\ h(X),t(X)$ の係数は $a_0,\ldots,a_m,b_0,\ldots,b_n$ の整式 (整数係数多項式)

証明 R(f,g)=0 なら h(X)=t(X)=0 とおけばよい $R(f,g)\neq 0$ とする。

$$\begin{pmatrix} a_0 & \cdots & 0 & b_0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_0 & 0 & 0 & b_0 \\ a_m & 0 & 0 & b_n & 0 & 0 \\ 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_m & 0 & 0 & b_n \end{pmatrix} \begin{pmatrix} C_0 \\ \vdots \\ C_{n-1} \\ d_0 \\ \vdots \\ d_{n-1} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

の解 $(C_0,\ldots,C_{n-1},d_0,\ldots,d_{m-1})$ に対し、 $h'(X)=C_0X^{n-1}+\cdots+C_{n-1},t'(X)=d_0X^{m-1}+\cdots+d_{m-1}$ とおくとh'(X)f(X)+t'(X)g(X)=1 がなりたつことにほかならない $R(f,g)\neq 0$ なので、解はただひとつ存在して、それは Clamer の公式によって $C_i=\frac{1}{R(f,g)}$

よって、各
$$C_j$$
, d_j に $R(f,g)$ をかけたものは、 $a_0,\ldots,a_m,b_0\ldots,b_n$ の整式になる

よって
$$h(X) = h'(X)R(f,g)$$
 とおけばよい $t(X) = t'(X)R(f,g)$

定理 2.3 (拡張定理)

- K:代数的閉体
- $I \subset K[X_1, \ldots, X_n]$: $\forall \vec{r} \in X$

$$\mathbf{V}_k(I \cap K[X_1, \dots, X_{n-1}]) \ni (C_1, \dots, C_{n-1})t_0(C_1, \dots, C_{n-1}) \neq 0 \Rightarrow {}^{\exists}C_n \in K(C_1, \dots, C_N) \in \mathbf{V}_k(I)$$

例

$$K = \mathbf{C} \ X = X_1, Y = X_2, Z = X_3$$

$$I = \langle ZX - 1, X - Y \rangle \subset \mathbf{C}[X, Y, Z]$$

$$I \cap \mathbf{C}[Y, Z] = \langle X - Y \rangle$$

$$(C_1, C_2) \in \mathbf{V}_{\mathbf{C}}(I \cup \mathbf{C}[Y, Z]) = \mathbf{V}_{\mathbf{C}}(\langle X - Y \rangle) = \{(c, c) \mid \in \mathbf{C}\}$$

証明 $I(C_1,\ldots,C_{n-1})=\{f(C_1,\ldots,C_{n-1},X_n)\in K[X_n]\mid f\in I\}$ とおく明らかにこれは $K[X_n]$ のイデアル (I がイデアル \Leftrightarrow

- 1. $I \neq \emptyset$
- 2. $I \ni p, q \Rightarrow p + q \in I$
- 3. $I \ni p \Rightarrow {}^{\forall} h \in K[X_1, \dots, X_n] \ hp \in I$

)

$$I(C_1,\ldots,C_{n-1})=\langle 0\rangle$$
 C_n は任意にとれる

$$I(C_1,\ldots,C_{n-1})=\langle f(C_1,\ldots,C_{n-1},X_n) \rangle \ \mathrm{deg} \ f(C_1,\ldots,C_{n-1},X_n) \geq 1$$
 K は代数的閉体なので $\exists C_n \in K \ f(C_1,\ldots,C_{n-1},C_n)=0$

$$I(C_1,\ldots,C_{n-1})=\langle f(C_1,\ldots,C_{n-1},X_n)\rangle=\langle 1\rangle$$
 $f(C_1,\ldots,C_{n-1},X_n)=a$ は 0 でない定数

$$f = S_0(X_1, \dots, X_{n-1})X_n^M + S_1(X_1, \dots, X_{n-1})X_n^{M-1} + \dots + S_M(X_1, \dots, X_{n-1})$$

とすると

$$S_0(C_1, \dots, C_{n-1}) = 0, \dots, S_{M-1}(C_1, \dots, C_{n-1}) = 0, S_M(C_1, \dots, C_{n-1}) = a \neq 0$$

$$g = t_0(X_1, \dots, X_{n-1})X_n^N + t_1(X_1, \dots, X_{n-1})X_n^{N-1} + \dots + t_N(X_1, \dots, X_{n-1})$$

とする

$$R(g, f, X_n) \in I \cap K[X_1, ..., X_{n-1}]$$
 (: 定理 2.2) $f, g \in I$

$$\det \begin{pmatrix} t_0 & s_0 \\ \vdots & \ddots & \vdots & \ddots \\ \vdots & t_0 & \vdots & s_0 \\ t_N & S_M & \vdots & \vdots \\ & t_N & S_m \end{pmatrix} = h(X_1, \dots, X_n)$$

矛盾、よってケース3はおこらない

3章 Hilbert の零点定理

定理3.1 (HIlbertの零点定理 弱系)

K: 代数的閉体

 $I \subset K[X_1, \ldots, X_n]$: $\forall \vec{r} \gamma \nu$

 $\mathbf{V}_K(I) = \emptyset \Rightarrow I \ni 1$ (どんな K に対しても常になりたつ)

Claim 1

$$f'(Y_1,\ldots,Y_n,Y_{n+1})=$$
 $f(Y_1+a_1Y_{n+1},\ldots,Y_n+a_nY_{n+1},Y_{n+1})=h(a_1,\ldots,a_n)Y_{n+1}^N+t$ $h(Y_1,\ldots,Y_n)$ は 0 でない n 変数多項式 t は Y_{n+1} に関して次数 N 未満の式と表される

Claim 2

$$h(1,\ldots,a_n)\neq 0$$
 なる $a_1,\ldots,a_n\in K$ が存在する

Claim 3

$$I' = \{f(Y_1 + a_1Y_{n+1}, \dots, Y_n + a_nY_{n+1}, Y_{n+1}) \mid f \in I\} \subset K[Y_1, \dots, Y_{n+1}]$$
 とおくと I' はイデアルである

定理 3.2

Kを無限体とするとき、

$$f(X_1,\ldots,X_n) \in K[X_1,\ldots,X_n] \, \mathcal{D}^{\mathfrak{T}} c_1,\ldots,c_n \in K \, f(c_1,\ldots,c_n) = 0 \Rightarrow f(X) = 0$$

注意1

K が有限体なら成り立たない

注意 2

K が代数的閉体なら K は無限体

定理 3.3 Hilbert の零点定理 (強形)

K: 代数的閉体 とするとき

$$f_1(X_1,\ldots,X_n),\ldots,f_S(X_1,\ldots,X_n),g(X_1,\ldots,X_n)\in K[X_1,\ldots,X_n]$$
 に対して $g\in \mathbf{I}(\mathbf{V}_K(\{f_1,\ldots,f_l\}))$ ⇒ $\exists m\in\mathbf{N}\ g^m\in\langle f_1,\ldots,f_l\rangle$

これの意味

$$\mathbf{V}_K$$
 は連立方程式 $egin{cases} f_1=0 \ dots & \textit{o}\ K$ における解全体の集合 $f_l=0$

gが連立方程式のすべての解に対して0になるようなgをm乗した g^m がイデアル $\langle f_1,\ldots,f_l \rangle$ に属する

注意 実は弱形は強形の特殊な場合である。

強形を論理式のみで書くと

$$\forall \bar{c} \in K^n (f_1(\bar{c}) = 0 \land \cdots \land f_s(\bar{c}) = 0 \rightarrow f(\bar{c}) = 0) \rightarrow \exists m \in \mathbf{N} \ f^m \in \langle f_1, \dots, f_s \rangle$$
 会 $\neg^{\forall} \bar{c} \in K^n (\neg (f_1(\bar{c}) = 0 \land \cdots \land f_s(\bar{c}) = 0)) \lor \exists m \in \mathbf{N} \ f^m \in \langle f_1, \dots, f_s \rangle$ $f(\bar{X}) = 1$ に対してももちろんなりたつ、 $\forall f_1, \dots, f_s \in K[\bar{X}]$ $\neg^{\forall} \bar{c} \in K^n (\neg (f_1(\bar{c}) = 0 \land \cdots \land f_s(\bar{c}) = 0)) \lor \exists m \in \mathbf{N} \ 1^m \langle f_1, \dots, f_s \rangle$

4章 連立代数方程式の解の個数

定理 4.1

K: 代数的閉体

 $I \subset K[X] = K[X_1, \dots, X_n]$ に対して $\mathbf{V}_K(I)$ が有限集合 $\Leftrightarrow \forall i = 1, \dots, n^{\exists} h_i(X_i) \in K[X_i] \ h_i(X_i) \in I$

定義 4.1

 $I \subset K[\bar{X}]$: イデアル $f, g \in K[\bar{X}]$ に対して

 $f \sim g \stackrel{\text{def}}{\Leftrightarrow} f - g \in I$ で \sim を定義すると \sim は同値関係になる。 ~の同値類上に

- $[f]_{\sim} + [g]_{\sim} = [f+g]_{\sim}$
- $[f]_{\sim} \cdot [g]_{\sim} = [fg]_{\sim}$

で + と · を自然に定義すると同値類は可換環になる。これを $K[\bar{X}]$ の I による剰余環とよび、 $K[\bar{X}]$ で表す。

(+ と・ \acute{n} well-defined になることは示さないといけない。 すなわち、 $f \sim f', g \sim g'$ ならば、 $f + g \sim f' + g', f \cdot g \sim f' \cdot g'$ を示す必要がある。)

定義 4.2

 $K[\bar{X}]/I$ は K 上の線形空間で I もその部分空間とみなせる。 $K[\bar{X}]/I$ は線形空間としてのその商空間ともみなせる。 その次元を $\dim K[\bar{X}]/I$ で表す