

Дискретная математика: множества и логика.

Примеры решения задач.

1 Выполнено ли равенство для любых множеств A, B и C?

$$(A \backslash C) \cup (B \backslash C) = (A \cup B) \triangle C.$$

Если равенство верно, то докажите его. Если не выполнено, то приведите контрпример.

Решение. Равенство не выполнено. В качестве контрпримера подходят, например, множества $A = \{1,2\},\ B = \{2,3\},\ C = \{3,4\}.$ Для таких множеств элемент 4 множества C содержится в множестве, соответствующей правой части равенства, но не лежит в левой части равенства.

Действительно,
$$4 \in C$$
 и $4 \notin (A \cup B) \Longrightarrow 4 \in (A \cup B) \triangle C$. Но $4 \notin (A \setminus C)$ и $4 \notin (B \setminus C) \Longrightarrow 4 \notin (A \setminus C) \cup (B \setminus C)$.

Комментарий к решению. Понять, как может выглядеть контрпример, можно построив диаграммы Эйлера-Венна.

2 Для какого из названий животных ложно высказывание: «Заканчивается на согласную букву \wedge (В слове 7 букв $\rightarrow \neg$ (Третья буква согласная))»?

- 1) верблюд
- 2) crpayc
- 3) кенгуру
- 4) леопард

Решение. Упростим высказывание. Для этого выведем вспомогательную формулу

$$a \to \neg b = \neg (a \land b).$$
 (*)

Формула (*) следует из таблицы истинности:

a	b	$a \rightarrow \neg b$	$\neg(a \wedge b)$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Обозначим высказывания

а=«Заканчивается на согласную букву»,

b=«В слове 7 букв»,

с=«Третья буква согласная».

Получаем формулу $a \land (b \rightarrow \neg c)$. Из (*) следует:

$$a \wedge (b \rightarrow \neg c) = a \wedge \neg (b \wedge c).$$

Нам необходимо указать те слова, для которых это высказывание ложно. Высказывание $a \wedge \neg (b \wedge \neg c)$ ложно когда его отрицание $\neg (a \wedge \neg (b \wedge \neg c))$ истинно. Используя законы де Моргана (были на занятии)

$$\neg(a \land \neg(b \land c)) = \neg a \lor \neg \neg(b \land c) = \neg a \lor (b \land c).$$

Иными словами, подходят те слова, для которых верно или $\neg a$, или $(b \land c)$.

Поскольку $\neg a = \neg$ «Заканчивается на согласную букву» = «Заканчивается на гласную букву», то осталось найти те слова, у которых последняя буква гласная, или те, в которых 7 букв и третья согласная.

Такими являются 1) верблюд и 3) кенгуру.

Ответ: 1) верблюд и 3) кенгуру.

 $\boxed{\mathbf{3}}$ Пусть $A = \{x \mid x = k^2, \ k \in \mathbb{Z}\}$ (множество всех целых чисел), $B = \{12, 0, 4, 2, 6, 8, 10\}, C = \{3, 1, 9, 7, 5, 11\}$. Для каких $x \in A$ предикат «¬ $(x \in B) \rightarrow (x \in C)$ » обращается в истину?

Решение. Упорядочим множество $B = \{12, 0, 4, 2, 6, 8, 10\} = \{0, 2, 4, 6, 8, 10, 12\}$ и $C = \{3, 1, 9, 7, 5, 11\} = \{1, 3, 5, 7, 9, 11\}$. Нетрудно заметить, что B – множество четных чисел в промежутке от 0 до 12, а C – множество нечетных чисел в промежутке от 0 до 12.

Теперь упростим предикат «¬ $(x \in B) \to (x \in C)$ » = ¬ $b(x) \to c(x)$, где b(x) и (x) обозначают предикаты $(x \in B)$ и $(x \in C)$.

Согласно формуле (*) из предыдущего задания и законам де Моргана

$$\neg b(x) \rightarrow c(x) = \neg (\neg b(x) \land \neg c(x)) = b(x) \lor c(x).$$

Как известно (было на занятии), предикату $b(x) \lor c(x)$ соответствует множество $B \cup C$. Таком образом, осталось найти элементы из A, которые удовлетворяют предикату (вопрос задачи), т.е. лежат в $B \cup C$. Иными словами, найти множество $A \cap (B \cup C)$.

Множество A — полные квадраты (числа, которые являются квадратами целого числа: $0, 1, 4, 9, 16, \ldots$). Множество $B \cup C$ — объединение четных и нечетных чисел в промежутке от 0 до 12, т.е. все натуральные числа от 0 до 12. Получаем, что предикату удовлетворяют в точности все квадраты, не превосходящие 12, а именно 0, 1, 4, 9.

Ответ: 0, 1, 4, 9.