Why generate features?

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

Feature Engineering

House A is a **two** bedroomed house **2000** sq. ft brownstone.

House B is **1500** sq. ft with **one** bedroom.

House	Bedrooms	sq. ft
A	2	2000
В	1	1500
•••	•••	•••

Different types of data

- Continuous: either integers (or whole numbers) or floats (decimals)
- Categorical: one of a limited set of values, e.g. gender, country of birth
- Ordinal: ranked values, often with no detail of distance between them
- Boolean: True/False values
- Datetime: dates and times

Course structure

- Chapter 1: Feature creation and extraction
- Chapter 2: Engineering messy data
- Chapter 3: Feature normalization
- Chapter 4: Working with text features

Pandas

```
import pandas as pd

df = pd.read_csv(path_to_csv_file)
print(df.head())
```

Dataset

```
SurveyDate
     2018-02-28 20:20:00
     2018-06-28 13:26:00
    2018-06-06 03:37:00
3
    2018-05-09 01:06:00
    2018-04-12 22:41:00
                              FormalEducation
     Bachelor's degree (BA. BS. B.Eng.. etc.)
     Bachelor's degree (BA. BS. B.Eng.. etc.)
     Bachelor's degree (BA. BS. B.Eng.. etc.)
     Some college/university study ...
     Bachelor's degree (BA. BS. B.Eng.. etc.)
```


Column names

```
print(df.columns)
```

Column types

```
print(df.dtypes)
```

```
SurveyDate object
FormalEducation object
ConvertedSalary float64
...
Years Experience int64
Gender object
RawSalary object
dtype: object
```


Selecting specific data types

```
only_ints = df.select_dtypes(include=['int'])
print(only_ints.columns)
```

```
Index(['Age', 'Years Experience'], dtype='object')
```

Lets get going!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Dealing with Categorical Variables

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

Encoding categorical features

Index	Country
1	'India'
2	'USA'
3	'UK'
4	'UK'
5	'France'
•••	•••

Encoding categorical features

Index	Country
1	'India'
2	'USA'
3	'UK'
4	'UK'
5	'France'
***	•••

Index	C_India	C USA	CIIV	C France
Index	C_India	C_USA	C_UK	C_France
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	1	0
5	0	0	0	1
•••	•••	•••	•••	•••

Encoding categorical features

- One-hot encoding
- Dummy encoding

One-hot encoding

	C_France	C_India	C_UK	C_USA
0	0_1141100	1	0_5R	0_007
1	0	9	0	1
2	0	0	1	0
3	0	0	1	0
4	1	0	0	0
•	· ·	O	3	J

Dummy encoding

	C_India	C_UK	C_USA
0	1	0	0
1	0	0	1
2	0	1	0
3	0	1	0
4	0	0	0

One-hot vs. dummies

- One-hot encoding: Explainable features
- Dummy encoding: Necessary information without duplication

Index	Sex
0	Male
1	Female
2	Male

Index	Male	Female
0	1	0
1	0	1
2	1	0

Index	Male
0	1
1	0
2	1

Limiting your columns

```
counts = df['Country'].value_counts()
print(counts)
```

```
'USA' 8
'UK' 6
'India' 2
'France' 1
Name: Country, dtype: object
```

Limiting your columns

```
mask = df['Country'].isin(counts[counts < 5].index)

df['Country'][mask] = 'Other'

print(pd.value_counts(colors))</pre>
```

```
'USA' 8
'UK' 6
'Other' 3
Name: Country, dtype: object
```

Now you deal with categorical variables

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Numeric variables

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

Types of numeric features

- Age
- Price
- Counts
- Geospatial data

Does size matter?

	Resturant_ID	Number_of_Violations
0	RS_1	0
1	RS_2	0
2	RS_3	2
3	RS_4	1
4	RS_5	0
5	RS_6	0
6	RS_7	4
7	RS_8	4
8	RS_9	1
9	RS_10	0

Binarizing numeric variables

Binarizing numeric variables

	Resturant_ID	Number_of_Violations	Binary_Violation
0	RS_1	0	0
1	RS_2	0	0
2	RS_3	2	1
3	RS_4	1	1
4	RS_5	0	0
5	RS_6	0	0
6	RS_7	4	1
7	RS_8	4	1
8	RS_9	1	1
9	RS_10	0	0

Binning numeric variables

```
import numpy as np

df['Binned_Group'] = pd.cut(
    df['Number_of_Violations'],
    bins=[-np.inf, 0, 2, np.inf],
    labels=[1, 2, 3]
)
```

Binning numeric variables

	Resturant_ID	Number_of_Violations	Binned_Group
0	RS_1	0	1
1	RS_2	0	1
2	RS_3	2	2
3	RS_4	1	2
4	RS_5	0	1
5	RS_6	0	1
6	RS_7	4	3
7	RS_8	4	3
8	RS_9	1	2
9	RS_10	0	1

Lets start practicing!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Why do missing values exist?

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

How gaps in data occur

- Data not being collected properly
- Collection and management errors
- Data intentionally being omitted
- Could be created due to transformations of the data

Why we care?

- Some models cannot work with missing data (Nulls/NaNs)
- Missing data may be a sign of a wider data issue
- Missing data can be a useful feature

Missing value discovery

```
print(df.info())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 999 entries, 0 to 998
Data columns (total 12 columns):
SurveyDate
                             999 non-null object
StackOverflowJobsRecommend
                            487 non-null float64
VersionControl
                             999 non-null object
                              693 non-null object
Gender
RawSalary
                              665 non-null object
dtypes: float64(2), int64(2), object(8)
memory usage: 93.7+ KB
```


Finding missing values

```
print(df.isnull())
```

```
StackOverflowJobsRecommend VersionControl ... \
                                    False
                     True
                                    False
                    False
                                    False
                    False
                                    False
                     True
                                    False ...
                    False
Gender
       RawSalary
False
            True
           False
False
 True
          True
False
           False
False
           False
```


Finding missing values

```
print(df['StackOverflowJobsRecommend'].isnull().sum())
```

512

Finding non-missing values

```
print(df.notnull())
```

```
StackOverflowJobsRecommend VersionControl ... \
                     False
                                       True
                      True
                                       True
                      True
                                       True
                     False
                                       True
                      True
                                      True
Gender
        RawSalary
  True
            False
  True
             True
False
            False
 True
             True
  True
             True
```


Go ahead and find missing values!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Dealing with missing values (I)

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

Listwise deletion

```
SurveyDate
                   ConvertedSalary
                                        Hobby ... \
2/28/18 20:20
                                NaN
                                          Yes ...
6/28/18 13:26
                           70841.0
                                          Yes ...
  6/6/18 3:37
                                           No ...
                                NaN
  5/9/18 1:06
                           21426.0
                                          Yes ...
4/12/18 22:41
                           41671.0
                                          Yes ...
```


Listwise deletion in Python

```
# Drop all rows with at least one missing values
df.dropna(how='any')
```

Listwise deletion in Python

```
# Drop rows with missing values in a specific column
df.dropna(subset=['VersionControl'])
```

Issues with deletion

- It deletes valid data points
- Relies on randomness
- Reduces information

Replacing with strings

```
# Replace missing values in a specific column
# with a given string
df['VersionControl'].fillna(
   value='None Given', inplace=True
)
```

Recording missing values

```
# Record where the values are not missing
df['SalaryGiven'] = df['ConvertedSalary'].notnull()

# Drop a specific column
df.drop(columns=['ConvertedSalary'])
```


Practice time

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Fill continuous missing values

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan

Director of Data Science,
Ordergroove

Deleting missing values

Can't delete rows with missing values in the test set

What else can you do?

- Categorical columns: Replace missing values with the most common occurring value or with a string that flags missing values such as 'None'
- Numeric columns: Replace missing values with a suitable value

Measures of central tendency

- Mean
- Median

Calculating the measures of central tendency

```
print(df['ConvertedSalary'].mean())
print(df['ConvertedSalary'].median())
```

92565.16992481203 55562.0

Fill the missing values

```
df['ConvertedSalary'] = df['ConvertedSalary'].fillna(
         df['ConvertedSalary'].mean()
)
```

Rounding values

```
df['ConvertedSalary'] = df['ConvertedSalary'].fillna(
    round(df['ConvertedSalary'].mean())
)
```

Let's Practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Dealing with other data issues

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

Bad characters

```
print(df['RawSalary'].dtype)
```

```
dtype('0')
```

Bad characters

```
print(df['RawSalary'].head())
```

```
0 NaN

1 70,841.00

2 NaN

3 21,426.00

4 41,671.00

Name: RawSalary, dtype: object
```

Dealing with bad characters

```
df['RawSalary'] = df['RawSalary'].str.replace(',', '')

df['RawSalary'] = df['RawSalary'].astype('float')
```

Finding other stray characters

Finding other stray characters

```
print(df[coerced_vals.isna()].head())
```

```
0 NaN
2 NaN
4 $51408.00
Name: RawSalary, dtype: object
```

Chaining methods

```
df['column_name'] = df['column_name'].method1()
df['column_name'] = df['column_name'].method2()
df['column_name'] = df['column_name'].method3()
```

Same as:

Go ahead and fix bad characters!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Data distributions

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

Distribution assumptions

Observing your data

```
import matplotlib as plt

df.hist()
plt.show()
```


Delving deeper with box plots

Box plots in pandas

```
df[['column_1']].boxplot()
plt.show()
```


Paring distributions

import seaborn as sns
sns.pairplot(df)

Further details on your distributions

df.describe()

	Col1	Col2	Col3	Col4
count	100.000000	100.000000	100.000000	100.000000
mean	-0.163779	-0.014801	-0.087965	-0.045790
std	1.046370	0.920881	0.936678	0.916474
min	-2.781872	-2.156124	-2.647595	-1.957858
25%	-0.849232	-0.655239	-0.602699	-0.736089
50%	-0.179495	0.032115	-0.051863	0.066803
75%	0.663515	0.615688	0.417917	0.689591
max	2.466219	2.353921	2.059511	1.838561

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Scaling and transformations

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan

Data Scientist

Scaling data

Min-Max scaling

Min-Max scaling

Min-Max scaling in Python

```
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

scaler.fit(df[['Age']])

df['normalized_age'] = scaler.transform(df[['Age']])
```

Standardization

Standardization in Python

Log Transformation

Log transformation in Python

```
from sklearn.preprocessing import PowerTransformer

log = PowerTransformer()

log.fit(df[['ConvertedSalary']])

df['log_ConvertedSalary'] = 
   log.transform(df[['ConvertedSalary']])
```

Final Slide

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Removing outliers

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

What are outliers?

Quantile based detection

Quantiles in Python

```
q_cutoff = df['col_name'].quantile(0.95)

mask = df['col_name'] < q_cutoff

trimmed_df = df[mask]</pre>
```

Standard deviation based detection

Standard deviation detection in Python

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Scaling and transforming new data

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robet O'Callaghan
Director of Data Science,
Ordergroove

Reuse training scalers

```
scaler = StandardScaler()
scaler.fit(train[['col']])
train['scaled_col'] = scaler.transform(train[['col']])
 FIT SOME MODEL
test = pd.read_csv('test_csv')
test['scaled_col'] = scaler.transform(test[['col']])
```

Training transformations for reuse

```
train_mean = train[['col']].mean()
train_std = train[['col']].std()
cut_off = train_std * 3
train_lower = train_mean - cut_off
train_upper = train_mean + cut_off
# Subset train data
test = pd.read_csv('test_csv')
# Subset test data
test = test[(test[['col']] < train_upper) &</pre>
              (test[['col']] > train_lower)]
```

Why only use training data?

Data leakage: Using data that you won't have access to when assessing the performance of your model

Avoid data leakage!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Introduction to Text Encoding

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

Standardizing your text

Example of free text:

Fellow-Citizens of the Senate and of the House of Representatives: AMONG the vicissitudes incident to life no event could have filled me with greater anxieties than that of which the notification was transmitted by your order, and received on the th day of the present month.

Dataset

```
print(speech_df.head())
```

```
Inaugural Address
             Name
                      First Inaugural Address
George Washington
George Washington
                     Second Inaugural Address
                            Inaugural Address
John Adams
                      First Inaugural Address
Thomas Jefferson
                     Second Inaugural Address
Thomas Jefferson
                   Date
                                                      text
Thursday, April 30, 1789
                            Fellow-Citizens of the Sena...
  Monday, March 4, 1793
                            Fellow Citizens: I AM again...
 Saturday, March 4, 1797
                            WHEN it was first perceived...
Wednesday, March 4, 1801
                            Friends and Fellow-Citizens...
   Monday, March 4, 1805
                            PROCEEDING, fellow-citizens...
```


Removing unwanted characters

- [a-zA-Z] : All letter characters
- [^a-zA-Z] : All non letter characters

Removing unwanted characters

Before:

```
"Fellow-Citizens of the Senate and of the House of Representatives: AMONG the vicissitudes incident to life no event could have filled me with greater" ...
```

After:

"Fellow Citizens of the Senate and of the House of Representatives AMONG the vicissitudes incident to life no event could have filled me with greater" ...

Standardize the case

```
speech_df['text'] = speech_df['text'].str.lower()
print(speech_df['text'][0])
```

"fellow citizens of the senate and of the house of representatives among the vicissitudes incident to life no event could have filled me with greater"...

Length of text

```
speech_df['char_cnt'] = speech_df['text'].str.len()
print(speech_df['char_cnt'].head())
```

```
0 1889
1 806
2 2408
3 1495
4 2465
Name: char_cnt, dtype: int64
```

Word counts

```
speech_df['word_cnt'] =
    speech_df['text'].str.split()
speech_df['word_cnt'].head(1)
```

```
['fellow', 'citizens', 'of', 'the', 'senate', 'and',...
```

Word counts

```
speech_df['word_counts'] =
    speech_df['text'].str.split().str.len()
print(speech_df['word_splits'].head())
```

```
0  1432
1  135
2  2323
3  1736
4  2169
Name: word_cnt, dtype: int64
```

Average length of word

```
speech_df['avg_word_len'] =
    speech_df['char_cnt'] / speech_df['word_cnt']
```

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Word Count Representation

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

Text to columns

"citizens of the senate and of the house of representatives"

Index	citizens	of	the	senate	and	house	representatives
1	1	3	2	1	1	1	1

Initializing the vectorizer

```
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer()
print(cv)
```


Specifying the vectorizer

```
from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(min_df=0.1, max_df=0.9)
```

min_df: minimum fraction of documents the word must occur in

max_df: maximum fraction of documents the word can occur in

Fit the vectorizer

```
cv.fit(speech_df['text_clean'])
```


Transforming your text

```
cv_transformed = cv.transform(speech_df['text_clean'])
print(cv_transformed)
```

<58x8839 sparse matrix of type '<type 'numpy.int64'>'

Transforming your text

cv_transformed.to_array()

Getting the features

```
feature_names = cv.get_feature_names()
print(feature_names)
```

```
[u'abandon', u'abandoned', u'abandonment', u'abate',
u'abdicated', u'abeyance', u'abhorring', u'abide',
u'abiding', u'abilities', u'ability', u'abject'...
```


Fitting and transforming

```
cv_transformed = cv.fit_transform(speech_df['text_clean'])
print(cv_transformed)
```

<58x8839 sparse matrix of type '<type 'numpy.int64'>'

Putting it all together

		Counts_aback	Counts_abandoned	Counts_a
ı	0	1	0	
ı	1	0	0	•••
ı	2	0	1	•••
ı	3	0	1	

¹ "out Counts_aback Counts_abandon Counts_abandonment 0 1 0 0 1 0 0 1 2 0 1 0 3 0 1 0 4 0 0 0 "

Updating your DataFrame

(58, 8845)

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Tf-Idf Representation

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

Introducing TF-IDF

```
print(speech_df['Counts_the'].head())
```

```
0 21
1 13
2 29
3 22
4 20
```


TF-IDF

Importing the vectorizer

```
from sklearn.feature_extraction.text import TfidfVectorizer
tv = TfidfVectorizer()
print(tv)
```


Max features and stopwords

max_features : Maximum number of columns created from TF-IDF

stop_words: List of common words to omit e.g. "and", "the" etc.

Fitting your text

```
tv.fit(train_speech_df['text'])
train_tv_transformed = tv.transform(train_speech_df['text']
```

Putting it all together

Inspecting your transforms

```
examine_row = train_tv_df.iloc[0]
```

```
print(examine_row.sort_values(ascending=False))
```

```
TFIDF_government 0.367430

TFIDF_public 0.333237

TFIDF_present 0.315182

TFIDF_duty 0.238637

TFIDF_citizens 0.229644

Name: 0, dtype: float64
```


Applying the vectorizer to new data

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Bag of words and N-grams

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science,
Ordergroove

Issues with bag of words

Positive meaning

Single word: happy

Negative meaning

Bi-gram: not happy

Positive meaning

Trigram: never not happy

Using N-grams

```
[u'american people', u'best ability ',
  u'beloved country', u'best interests' ... ]
```


Finding common words

```
Counts_administration government 12
Counts_almighty god 15
Counts_american people 36
Counts_beloved country 8
Counts_best ability 8
dtype: int64
```


Finding common words

```
print(tv_sums.sort_values(ascending=False)).head()
```

```
Counts_united states 152
Counts_fellow citizens 97
Counts_american people 36
Counts_federal government 35
Counts_self government 30
dtype: int64
```


Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Wrap-up

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan

Director of Data Science,
Ordergroove

- How to understand your data types
- Efficient encoding or categorical features
- Different ways to work with continuous variables

- How to locate gaps in your data
- Best practices in dealing with the incomplete rows
- Methods to find and deal with unwanted characters

- How to observe your data's distribution
- Why and how to modify this distribution
- Best practices of finding outliers and their removal

- The foundations of word embeddings
- Usage of Term Frequency Inverse Document Frequency (Tf-idf)
- N-grams and its advantages over bag of words

Next steps

- Kaggle competitions
- More DataCamp courses
- Your own project

Thank You!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

