Chapter 1

Let the prime factorization of an integer n be written as follows:

$$n = \prod_{p \text{ prime}} p_i^{x_i},$$

where p_i is the i^{th} prime and $x_i \geq 0$.

For problems 1 through 6, lowercase latin letters a, b, \ldots, y, z represent integers.

1.) Claim: If (a, b) = 1, and $c \mid a$ and $d \mid b$, then (c, d) = 1.

Proof: Since (a,b) = 1, there exist x and y where ax + by = 1. We also know that $c \mid a$ and $b \mid d$, so there exists m and n where a = cm and b = dn, thus ax + by = c(mx) + d(ny) = 1, thus (c,d) = 1.

2.) Claim: If (a, b) = (a, c) = 1, then (a, bc) = 1.

Proof: Since (a, b) = (a, c) = 1, there exist x_1, x_2, y_1 , and y_2 where $ax_1 + by_1 = 1$ and $ax_2 + cy_2 = 1$. We can see that

$$1 = (ax_1 + by_1)(ax_2 + cy_2) = (a^2x_1x_2 + abx_2y_1 + acx_1y_2 + bcy_1y_2)$$
$$= a(ax_1x_2 + bx_2y_1 + cx_1y_2) + bc(y_1y_2),$$

so
$$(a, bc) = 1$$
.

3.) Claim: If (a,b) = 1, then $(a^n, b^k) = 1$ for all n and k.

Proof: We can take the prime factorizations of a and b:

$$a = \prod p_i^{x_i}$$
 and $b = \prod p_i^{y_i}$,

where p_i are the primes, and x_i and y_i are integers that depend on p_i . Further, the prime factorizations for a^n and b^k are

$$a^n = \left(\prod p_i^{x_i}\right)^n = \prod p_i^{x_i^n}$$

and

$$b^k = \left(\prod p_i^{y_i}\right)^k = \prod p_i^{y_i^k}$$

Since (a,b) = 1, we know that min $\{x_i, y_i\} = 0$ for all i, thus min $\{x_i^n, y_i^k\} = 0$, thus $(a^n, b^k) = 1$.

4.) Claim: If (a,b) = 1, then (a+b,a-b) is either 1 or 2.

Proof: Let d = (a+b, a-b), then $d \mid a+b$ and $d \mid a-b$, so a+b = dm and a-b = dn for some m and n. We have a+b = a-b+2b = dn+2b, so $d \mid dn+2b$, and thus $d \mid 2b$. Suppose b is even, then a is odd, since (a,b) = 1, thus a+b is odd, thus d divides an odd number. But b is even, so 2b is even, thus d divides an even number too, thus d = 1. Finally, suppose b is odd. If a is even we are done as before, but if a is odd ***

- 5.) ***
- 6.) Claim: If (a, b) = 1 and $d \mid a + b$, then (a, d) = (b, d) = 1.

Proof: Since (a,b) = 1, we know that ax + by = 1 for some x and y, and since $d \mid a+b, a+b = dm$ for some m. We have $a+b = dm \implies b = dm-a$, thus ax + by = ax + (dm-a)y = ax + dmy - ay = a(x-y) + d(my) = 1, thus (a,d) = 1. A similar argument shows that (b,d) = 1 as well.

- 7.) ***
- 8.) Claim: Every integer can be represented as a^2b , where a and b are unique positive integers and b is squarefree.

Proof: We obtain the unique prime factorization of n as follows:

$$n = \prod_{\text{primes}} p_i^{x_i} \prod_{\text{primes}} p_j^{x_j},$$

where powers x_i of p_i are all odd, and powers x_j of p_j are all even. From this we can see that

$$n = p_i \prod_{\text{primes}} p_i^{x_i - 1} \prod_{\text{primes}} p_j^{x_j}$$

- 9.) ***
- 10.) ***
- 11.) ***
- 12.) ***
- 13.) ***
- 14.) ***
- 15.) ***
- 16.) ***
- 17.) ***
- 18.) ***
- 19.) ***
- 20.) ***
- 21.) ***
- 22.) ***
- 23.) ***
- 24.) ***

- 25.) ***
- 26.) ***
- 27.) ***
- 28.) ***
- 29.) ***
- 30.) ***