Chapters 5: Multiple Random Variables

Introduction (5.0)

•	We consider	experiments that	produce a coll	ection of randon	\mathbf{n} variables X_1	X_2	$\cdots X_n$

- o Often interested in the relationship between the RVs (covariance & correlation)
- \circ *Note*: We will mainly focus on n = 2 (bivariate), but results can be generalized to higher n's
- o Probability model is in the *joint cumulative distribution function* (joint PMF or joint PDF)

Joint Cumulative Distribution Function (5.1)

<u>Definition:</u> the *joint cumulative distribution function* of random variables *X* and *Y* is

$$F_{X,Y}(x,y) =$$

- Properties of joint CDF: for random variables X, Y
 a)
 b)
 c)
 - d) e) f)
 - g) If $x \le x_1$ and $y \le y_1$, then

Joint PMF and Joint PDF (5.2,5.4)

Joint PDF and PMF as more commonly used to study probability models.

<u>Definition:</u> the joint probability mass function for discrete RVs X and Y is

<u>Definition:</u> the joint probability density function for continuous RVs X and Y is a function $f_{X,Y}(x,y)$ with the property

- Probability of events: for an event B, $(X, Y) \in B$,
 - o Discrete:
 - o Continuous
- <u>Example</u>:

$$\circ \quad P[x_1 \le X \le x_2, y_1 \le Y \le y_2]$$

$$\circ \quad P[x_1 \le X \le x_2, Y \le y_2]$$

$$\circ \quad P[X+Y\leq 3]$$

$$\circ \quad P[X^2 + Y^2 \le 9]$$

•	Properties of joint PMFs & PDFs: O Axiom 1:
	o Axiom 2:
•	Example: roll 2 dice and define $X = \#$ of die 1 and $Y = \#$ of die 2. Construct the bivariate PMF
•	Example: consider an experiment that can be described by the following bivariate PDF f_{XY} . What is

 $\overline{P[1 \le X} \le 3, 1 \le Y \le 3]?$

•	Example: con	sider the following bivariate PDF f_{XY} . Determine $P[X > Y]$	
	Determin	e the CDF	
•	Marginal CDF o Discrete:	<u>& PDF</u> : individual PMFs & CDFs can be extracted from the <u>joint</u> PMF	s and PDFs
	o Continuo	us	

• Example: find the marginal PDF f_X and f_Y for the previous example

Independent Random Variable (5.6)

<u>Definition</u>: random variables X and Y are independent if and only if

- Discrete: $P_{X,Y}(x,y) =$
- Continuous $f_{X,Y}(x,y) =$
- Example: consider the following joint PDF. Determine of the random variables are independent o $f_{X,Y} = e^{-(x+y)}, x \ge 0, y \ge 0$

$$\circ \quad f_{X,Y}(x,y) = 2e^{-x}e^{-y}, 0 \le y \le x \le \infty$$

<u>Note:</u> the region in which the PDF is defined will play a critical role in the assessment of independence

Recall: integral over dependent variables. E.g., calculate $P[X + Y \le 1]$

$$o f_{X,Y}(x,y) = \frac{1}{4}, -1 \le x, y \le 1$$

$$f_{X,Y}(x,y) = \frac{1}{\pi}, x^2 + y^2 \le 1$$

Expected Value of Function of two RV (5.7)

<u>Definition</u>: for random variables X and Y, the expected value of W=g(X,Y) is

- Discrete: E[W] =
- Continuous: E[W] =

- Expected value of X + Y (Thm 5.11): for two random variables X and Y E[X + Y] =
- Variance of X + Y (Thm 5.12): for two random variables X and Y Var[X + Y] =

Covariance of *X* and *Y* (5.8)

<u>Definition:</u> covariance of two random variables X and Y is Cov[X,Y] =

• By Thm 5.9:

• <u>Note</u>: Cov[X, Y] is a parameter of the joint distribution *Typical calculation*:

•	Example: find the covariance for RVs with the following joint PDF
•	Note: covariance describes the distribution of the random variables about their expected values
•	Note: covariance describes the distribution of the random variables about their expected values
•	Note: covariance describes the distribution of the random variables about their expected values
•	Note: covariance describes the distribution of the random variables about their expected values
•	Note: covariance describes the distribution of the random variables about their expected values
•	Note: covariance describes the distribution of the random variables about their expected values
•	Note: covariance describes the distribution of the random variables about their expected values
•	Note: covariance describes the distribution of the random variables about their expected values