Administrativa Week 12

- Assignment 1 marks have been published -> Blackboard
 - check your filled-out marking rubric
- Assignment 2 currently marked
- Self-Reflection Survey
 - This is an integral part of the assignment submission
 if you have not done so, please enter those today
 - We reserve the right to not mark a submission without self-reflection survey..
- Today's tutorials will concentrate Assignment 2 demo
- Assignment 3 has been published since Tuesday in Blackboard

The University of Sydney - COMP5349 "Cloud Computing" 2017 (Roehm)

Admin-6

Assignment 3 Submission

- groupwork; worth 15%
- Use either Spark or Flink, depending on how assigned by Bilal (cf. announcement in Piazza)
- Deadline: Tuesday, 13 June
 - strictly speaking: Friday, 9 June, but without late penalty till 13 June
- Submission details
 - source code
 - documentation
 - measured execution times on small and large data set
 - no demo this time

Assignment 3: Data Mining with Apache Flink/Spark

- Scenario: Gene Expression Study
 - cell samples taken from cohort of patients suffering different diseases
 - analysed with regard to which genes are 'active' in these cells
 - method: gene profiling using DNA microarrays

The University of Sydney - COMP5349 "Cloud Computing" 2017 (Roehm)

[Source: Wikipedia]

Assignment 3 Data

- Source Data

 - PatientMetaData.txt
 meta-data about each patient
 patientid, age, gender, postcode, diseases, drug_response
 - GeneMedatData.txt
 meta-data about each gene, such as location on genome or which other gene is targeted by the produced protein; not used in this assignment

Assignment 3 Tasks

- Task 1: Explorative Data Analysis
 "Number of cancer patients with certain active genes per cancer type"
- Task 2: Frequent Itemset Mining (Apriori Algorithm)
 Iterative algorithm to identify gene combinations which are often active together (active gene -> for the purpose of this assignment, simply genes with an expression value above a given threshold)
- Task 3: Association Rule Generation
 Based on the frequent itemset, create rules some genes => other genes
 which hold in the given data set with some confidence

The University of Sydney - COMP5349 "Cloud Computing" 2017 (Roehm)

Admin-10

Assignment 3: Apriori Algorithm

- Apriori finds frequent itemset among transactional data set
 - "Which items are frequently bought together?"
- In this scenario:
 - transactions = gene expressions
 - items = (strongly) expressed genes
 - itemset = set of strongly expressed genes

patient	gene 1	gene 2	gene 3	gene 4	•••	gene N
patient1	300	-800	2000	1300		2500
patient2	1650	0	1850	1550		500

- What is frequent?
 - any itemset with a minimum support (= count of occurrences)

Assignment 3: Apriori Algorithm (cont'd)

- Apriori is an efficient algorithm to find frequent itemset without the need to brute-force generation of all possible itemsets
- Input:
 - 'transactions' = set of strongly expressed genes per patient sample
 - support threshold (eg. if support threshold of 30%, then minimum support count must be > 0.3 * number of transactions)
- Step 1: Identify frequent 1-itemsets
 - Single genes which have a support count greater than threshold
- Step 2: Iterate
 - in each iteration, try extend current itemsets of size k to extend with any of the frequent 1-itsemsets; if support > threshold, keep as k+1-itemset
- Stop iterating if either no new k+1-itemset found, or after max number of iterations

Assignment 3: Task 3 - Association Rule Generation

- Input:
 - Frequent itemset from Task 2
 - confidence threshold (eg. At least 60% confidence in rules)
- Step 1: Generate all possible subsets of each frequent itemsets
- Step 2: For each subset R of a frequent itemset S check:
 - Calculate confidence of rule $R \Rightarrow (S R)$: confidence(R => (S - R)) = support(S) / support(R)
 - If confidence value is above given threshold, then keep in result

The University of Sydney - COMP5349 "Cloud Computing" 2017 (Roehm)

Admin-14

Example:

- Input:
 - Frequent k-itemset from Task 2:

confidence threshold: 80%

{gene3} {gene4}

{gene3, gene4}

Step 1: Generate all possible subsets of each frequent k-itemsets

{gene3} {gene4}

{gene3} {gene4}

{gene3, gene4}

{gene3} {gene4}

- Step 2: For each subset R of a frequent itemset S check:
 - We can ignore the frequent 1-itemsets

 $\{gene3\} => \{gene4\}$

 $\{gene4\} => \{gene3\}$

Only rules to check hence:

confidence: 2/2 = 100%confidence: 2/3 = 66%

Above confidence threshold of 80%

Calculate confidence of rules:

 $support(\{gene3\}) = 2 \ support(\{gene4\}) = 3 \ support(\{gene3,gene4\}) = 2$