

第3章 集成运算放大器

- 3.1 多级放大电路
- * 3.2 差分放大电路
 - 3.3 功率放大电路
 - 3.4 集成运算放大器

学习指导

- 1、多级放大电路的基本概念以及多级放大电路的耦合 方式;
 - 2、多级放大电路的动态分析;
 - 3、直接耦合放大电路的零点漂移现象;
- 4、掌握差分放大电路的共模信号、差模信号、共模放大倍数、差模放大倍数、共模抑制比的概念。
- 5、差分放大电路的组成、抑制零点漂移的原理以及四种接线方式分析方法。
 - 6、掌握互补输出级的正确接法和输入输出关系。

3.1 多级放大电路

- 3.1.1 多级放大电路的级间耦合方式
- 3.1.2 多级放大电路的动态分析
- 3.1.3 多级放大电路的频率特性
- •3.1.4 多级直接耦合放大电路的零点漂移现象

3.1.1 多级放大电路的极间耦合方式

当单级放大电路不能满足多方面的性能要求(如 $A_{\rm u}$ = 10^4 、 $R_{\rm i}$ =2 $M\Omega$ 、 $R_{\rm o}$ = 100Ω)时,应考虑采用多级放大电路。组成多级放大电路时首先应考虑如何"连接"几个单级放大电路,耦合方式即连接方式。

常见耦合方式有:直接耦合、阻容耦合、变压器耦合、光电耦合等。

放大电路的级间耦合必须要保证信号的传输 且保证各级的静态工作点正确。

一、阻容耦合

利用电容连接信号源与放大电路、放大电路的前后级、放大电路与负载,为阻容耦合。

Q点相互独立。不能放大变化缓慢的信号,低频特性差,不能集成化。

二、直接耦合

特点:

- (1) 可以放大交流和 缓慢变化及直流信号;
 - (2) 便于集成化。

- (3)各级静态工作点互相影响;基极和集电极电位会随着级数增加而上升;
 - (4)零点漂移。

解决合适静态工作点的几种办法

改进电路—(a)

电路中接入 R_{e2},保证第一级集电极有 较高的静态电位,但 第二级放大倍数严重 下降。

改进电路—(b)

稳压管动态电阻 很小,可以使第二级 的放大倍数损失小。 但集电极电压变化范 围减小。

改进电路—(c)

可获得合适的工 作点。为经常采用的 方式。

3.1.2 多级放大电路的动态分析

- 1、 前一级的输出电压是后一级的输入电压。
- 2、 后一级的输入电阻是前一级的交流负载电阻。
- 3、 总电压放大倍数=各级放大倍数的乘积

$$\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{\dot{U}_{o1}}{\dot{U}_{i}} \cdot \frac{\dot{U}_{o2}}{\dot{U}_{i2}} \cdot \dots \cdot \frac{\dot{U}_{o}}{\dot{U}_{in}} = \prod_{j=1}^{n} \dot{A}_{uj}$$

4、 总输入电阻为第一级的输入电阻

$$R_{\rm i} = R_{\rm i1}$$

5、 总输出电阻为最后一级的输出电阻

$$R_{\rm o} = R_{\rm on}$$

对电压放大电路的要求: R_i 大, R_o 小, A_u 的数值大,最大不失真输出电压大。

分析举例

分析举例

$$\dot{A}_{u1} = -\frac{\beta (R_3 /\!\!/ R_{i2})}{r_{be1}}$$

$$\dot{A}_{u2} = \frac{(1+\beta_2)(R_6 /\!\!/ R_L)}{r_{be2} + (1+\beta_2)(R_6 /\!\!/ R_L)}$$

$$\dot{A}_u = \dot{A}_{u1} \cdot \dot{A}_{u2}$$

$$R_{i2} = R_5 // [r_{be2} + (1 + \beta_2)(R_6 // R_L)]$$

$$R_{\rm i} = R_{\rm l} // R_{\rm 2} // r_{\rm bel}$$

$$R_{\rm o} = R_6 // \frac{R_3 // R_5 + r_{\rm be2}}{1 + \beta}$$

3.1.4 直接耦合放大电路的零点漂移现象

一. 什么是零点漂移现象: $\Delta u_1 = 0$, $\Delta u_0 \neq 0$ 的现象。

二、产生原因:

温度变化,直流电源波动,元器件老化。其中晶体管的特性对温度敏感是主要原因,故也称零漂为温漂。

温漂指标: 温度每升高1度时,输出漂移电压按电压增益折算 到输入端的等效输入漂移电压值。

三. 减小零漂的措施

- •在电路中引入直流负反馈
- •用非线性元件进行温度补偿
- •采用差分式放大电路

13

3.2 差分放大电路

- * 3.2.1 典型长尾式差分放大电路
 - 3.3.2 单端输入的差分放大电路
 - 3.3.3 具有恒流源的差分放大电路

* 3.2.1 典型长尾式差分放大电路

一、电路的组成

参数理想对称:

$$R_{\rm b1} = R_{\rm b2}$$
,

$$R_{c1} = R_{c2}$$
,

$$R_{e1} = R_{e2};$$

 T_1 、 T_2 在任何温度 下特性均相同。

组成特点

典型电路

在理想对称的情况下:

- 1. 克服零点漂移;
- 2. 零输入零输出。

二、工作原理分析

1.Q点: 令 $u_{I1} = u_{I2} = 0$

$$\begin{split} I_{\rm BQ1} &= I_{\rm BQ2} = I_{\rm BQ} \\ I_{\rm CQ1} &= I_{\rm CQ2} = I_{\rm CQ} \\ I_{\rm EQ1} &= I_{\rm EQ2} = I_{\rm EQ} \\ U_{\rm CQ1} &= U_{\rm CQ2} = U_{\rm CQ} \\ u_{\rm O} &= U_{\rm CQ1} - U_{\rm CQ2} = 0 \end{split}$$

晶体管输入回路方程:

$$V_{\rm EE} = I_{\rm BQ}R_b + U_{\rm BEQ} + 2I_{\rm EQ}R_{\rm e}$$

$$I_{\rm EQ} pprox rac{V_{\rm EE} - U_{
m BEQ}}{2R_{
m e}}$$

$$I_{\rm BQ} = \frac{I_{\rm EQ}}{1 + \beta}$$

晶体管输出回路方程:

$$U_{\mathrm{CEQ}} pprox V_{\mathrm{CC}} - I_{\mathrm{CQ}} R_{\mathrm{c}} + U_{\mathrm{BEQ}}$$

2. 动态分析:

1) 信号输入方式

1 共模输入: (common mode) 2 差模输入: (differential mode) u_{i1} 与 u_{i2} 大小等,方向同 u_{i1} 与 u_{i2} 大小等,方向反

$$\mathbf{u_{i1}} = \mathbf{u_{i2}} = \mathbf{u_{ic}}$$

$$u_{i1} - u_{i2} = u_{id}$$

差分的温度漂移、电源电压波动和50HZ工频干扰都可看成是共模输入信号。

共模输入信号一般是无用的 信号,放大电路应抑制。

差模输入信号一般是有 用的信号,是要放大的 信号。

3 比较输入

例1:
$$u_{i1} = 10 \text{ mV}, u_{i2} = 6 \text{ mV}$$

可分解成:
$$u_{i1} = 8 \text{ mV} + 2 \text{ mV}$$

 $u_{i2} = 8 \text{ mV} - 2 \text{ mV}$

例2:
$$u_{i1} = 20 \text{ mV}, u_{i2} = 16 \text{ mV}$$

可分解成:
$$u_{i1} = 18 \text{ mV} + 2 \text{ mV}$$

 $u_{i2} = 18 \text{ mV} - 2 \text{ mV}$

共模信号 差模信号

这种输入常作为比较放大来应用,在自动控制系统中是常见的。

$$u_0 = A_c u_{ic} + A_d u_{id} = A_d u_{id}$$

2) 抑制共模信号

共模信号:数值相等、极性相同的

输入信号,即

$$u_{\rm I1} = u_{\rm I2} = u_{\rm Ic}$$

$$\Delta i_{\rm B1} = \Delta i_{\rm B2}$$

$$\Delta i_{\rm C1} = \Delta i_{\rm C2}$$

$$\Delta u_{\rm C1} = \Delta u_{\rm C2}$$

$$u_{\rm O} = u_{\rm C1} - u_{\rm C2} = (u_{\rm CQ1} + \Delta u_{\rm C1}) - (u_{\rm CQ2} + \Delta u_{\rm C2}) = 0$$

共模放大倍数 $A_{c} = \frac{\Delta u_{Oc}}{\Delta u_{Ic}}$, 参数理想对称时 $A_{c} = 0$

2) 抑制共模信号 : $R_{\rm e}$ 的共模负反馈作用

共模放大倍数 $A_{\rm c} = \frac{\Delta u_{\rm Oc}}{\Delta u_{\rm Ic}}$

参数理想对称时 $A_c = 0$

对于每一边 电路, $R_e=?$

R。的共模负反馈作用:温度变化所引起的变化等效为共模信号

如
$$T(^{\circ}C)$$
 $\uparrow \rightarrow I_{C1}$ \uparrow I_{C2} $\uparrow \rightarrow U_{E}$ $\uparrow \rightarrow I_{B1}$ $\downarrow I_{B2}$ $\downarrow \rightarrow I_{C1}$ \downarrow I_{C2} \downarrow

抑制了每只差分管集电极电流、电位的变化。

研究共模翰入信号的意义

当温度变化或电源电压 波动时,都将使集电极电流产 生变化,且变化趋势是相同的。 其效果相当于在两个输入端加_{u₁c}。 入了共模信号。

差分放大电路对共模信号有很强的抑制作用。

3) 放大差模信号

差模信号:数值相等,极性相反的输入信号,即

$$u_{I1} = -u_{I2} = u_{Id} / 2$$

$$\Delta i_{B1} = -\Delta i_{B2}$$

$$\Delta i_{C1} = -\Delta i_{C2}$$

$$\Delta u_{C1} = -\Delta u_{C2}$$

$$\Delta u_{O} = 2\Delta u_{C1}$$

 $\triangle i_{E1} = -\Delta i_{E2}$, $i_{E} = i_{E1} + i_{E2} = 0 \longrightarrow R_e$ 上交流压降为0。 Re 对差模信号无反馈作用。

画交流通路时,Re可视为短路,即两管的发射极直接接地

差模信号作用时的动态分析

 R_L 的中点应是地电位,即每管对地的负载电阻为 $R_L/2$ 。

差模放大倍数

$$A_{\rm d} = \frac{\Delta u_{\rm Od}}{\Delta u_{\rm Id}}$$

$$A_{\rm d} = -\frac{\beta (R_{\rm c} // \frac{R_{\rm L}}{2})}{R_{\rm b} + r_{\rm be}}$$

与单管 增益相 同

$$R_{\rm i} = 2(R_{\rm b} + r_{\rm be})$$
, $R_{\rm o} = 2R_{\rm c}$

$$\Delta u_{\rm Id} = \Delta i_{\rm B} \cdot 2(R_{\rm b} + r_{\rm be})$$

$$\Delta u_{\rm Od} = -\Delta i_{\rm C} \cdot 2(R_{\rm c} // \frac{R_{\rm L}}{2})$$

差分电路不需画出整个电路微变等效电路,太复杂!

差模放大倍数 A_d =?转化为求单边电路的 A_d 。

$$A_{\rm d} = \frac{u_{\rm od}}{u_{\rm id}} = \frac{u_{\rm od1} - u_{\rm od2}}{u_{\rm i1} - u_{\rm i2}} = \frac{2u_{\rm od1}}{2u_{\rm i1}} = A_{d1}$$
, 只需求解左半边电路的放大倍数。

第2章 三极管放大电路

差模电压放大倍数:
$$A_d = A_{d1} = -\frac{\beta i_{b1} R_C}{i_{b1} \times (R_B + r_{be1})} = -\frac{\beta R_C}{R_B + r_{be1}}$$

接
$$R_L$$
后, $A_d = -\frac{\beta R_C \parallel \frac{R_L}{2}}{R_R + r_{hal}}$

3.动态参数: $A_{\rm d}$ 、 $R_{\rm i}$ 、 $R_{\rm o}$ 、 $A_{\rm c}$ 、 $K_{\rm CMR}$

共模抑制比K_{CMR}: 综合考察差分放大电路放大差模信号的能力 和抑制共模信号的能力。

$$K_{\mathrm{CMR}} = \left| \frac{A_{\mathrm{d}}}{A_{\mathrm{c}}} \right|$$
 在参数理想对称的情况下, $K_{\mathrm{CMR}} = \infty$ 。

差放的特点:输入无差别,输出就不动; 输入有差别,输出就变动。

4.差分放大电路四种接法

在实际应用时,信号源需要有"接地"点,以避免干扰;或负载需要有"接地"点,以安全工作。

根据信号源和负载的接地情况,差分放大电路有四种接法: 双端输入双端输出

双端输入单端输出 单端输入双端输出 单端输入单端输出

双端输入双端输出

双端输入单端输出

单端输入双端输出

单端输入单端输出

双端输入单端输出

(1)) 差模信号作用下的分析

$$A_{\rm d1} = \frac{u_{\rm o}}{u_{\rm i}} = \frac{u_{\rm od1}}{2u_{\rm i1}} = -\frac{1}{2} \cdot \frac{\beta (R_{\rm c} // R_{\rm L})}{R_{\rm b} + r_{\rm be}}$$

$$R_{\rm i} = 2(R_{\rm b} + r_{\rm be}), R_{\rm o} = R_{\rm c}$$

C1为反向输出端,C2为同向输出端

$$A_{d2}(\stackrel{\cancel{=}}{=}) = \frac{u_{od2}}{u_{id}} = \frac{-u_{od1}}{2u_{i1}} = +\frac{\beta(R_C//R_L)}{2(R_b + r_{be})}$$

双端输入单端输出

(2) 共模信号作用下的分析

$$A_{\rm d} = -\frac{1}{2} \cdot \frac{\beta \left(R_{\rm c} // R_{\rm L} \right)}{R_{\rm b} + r_{\rm be}}$$

$$A_{\rm c} = -\frac{\beta (R_{\rm c} /\!/ R_{\rm L})}{R_{\rm b} + r_{\rm be} + 2(1+\beta)R_{\rm e}}$$

$$K_{\text{CMR}} = \frac{R_{\text{b}} + r_{\text{be}} + 2(1+\beta)R_{\text{e}}}{2(R_{\text{b}} + r_{\text{be}})}$$

为了提高共模抑制比应加大Re

双端输入单端输出

(3) 问题讨论

$$A_{\rm d} = -\frac{1}{2} \cdot \frac{\beta (R_{\rm c} // R_{\rm L})}{R_{\rm b} + r_{\rm be}}$$

$$K_{\text{CMR}} = \frac{R_{\text{b}} + r_{\text{be}} + 2(1+\beta)R_{\text{e}}}{2(R_{\text{b}} + r_{\text{be}})}$$

$$R_{\rm i} = 2(R_{\rm b} + r_{\rm be}), R_{\rm o} = R_{\rm c}$$

- (1) T_2 的 R_c 可以短路吗?
- (2) 什么情况下 A_d 为"+"?
- C1为反向输出端,
- C2为同向输出端
- (3) 双端输出时的 A_d 是单端输出时的2倍吗?

7. 具有恒流源的差分放大电路

R_e越大,共 模负反馈越强, 差分放大电路的 性能越好。

3.3 劝率放大电路

- 3.3.1 功率放大电路的特点
- 3.3.2 提高功率放大电路效率的方法
- 3.3.3 互补对称功率放大电路

*

功率放大器的作用:做放大电路的输出级, 以驱动执行机构。如使扬声器发声、继 电器动作、仪表指针偏转等。

扩音系统 执行机构

3.3.1 功率放大电路的主要特点

对功放的主要要求: (音响)声音大、省电、高保真

1. 根据负载要求,提供所需要的输出功率。

$$P_{o} == U_{o}I_{o}; U_{o}, I_{o}$$
足够大。

- **2.** 具有较高的效率 $\eta = \frac{P_0}{P_V}$
- 3. 尽量减小非线性失真。 分析方法: 图解法

功放的电路形式: 互补对称式电路

3.3.2 提高功率放大电路效率的方法

1. 静态工作点与放大电路工作状态的关系

三极管根据正弦信 号整个周期内的导通情 况,可分为以下几个工 作状态:

甲类: 一个周期内均导通

乙类: 导通角等于180°

甲乙类: 导通角大于180°

1. 静态工作点与放大电路工作状态的关系

甲类:静态Ic最大

乙类: 静态Ic= 0

甲乙类:静态Ic处于两者之间

2. 提高效率的途径

降低静态功耗,即减小静态电流。

#用哪种组态的电路作功率放大电路最合适?

3.3.3 互补对称功率放大电路

一、双电源乙类互补对称功率放大电路

1. 特征:由一对NPN、PNP特性相同的互补三极管组成,采用正、负双电源供电(OCL电路)

2. 静态分析

T₁的输入特性

 $u_i = 0V \rightarrow U_B = U_E = 0$, T_1 、 T_2 均截止, uo = 0V

3. 动态分析

*u*_i正半周, *T*1导通, *T*2截止, 电流通路为

$$+V_{\rm CC}$$
 \to T_1 \to $R_{\rm L}$ \to 地,
 $u_{\rm o} = u_{\rm i}$

*u*_i负半周, *T*1截止, *T*2导通, 电流通路为

地
$$\rightarrow R_{\rm L} \rightarrow T_2 \rightarrow -V_{\rm CC}$$
,
 $u_{\rm o} = u_{\rm i}$

两只管子都只在半个周期内交替工作,两路电源交替供电,双向跟随。

4. 交越失真

消除失真的方法: 设置合适的静态工作点。

二、双电源甲乙类互补对称功率放大电路

使T₁和T₂均处于微导通可克服交越失真

静态: $U_{\text{B1B2}} = U_{\text{D1}} + U_{\text{D2}}$

动态: $u_{b1} H u_{b2} H u_{i}$

。三、输出功率Po和效率

$$P_{o} = U_{o}I_{o} = \frac{U_{om}}{\sqrt{2}} * \frac{U_{om}}{\sqrt{2}R_{L}} = \frac{U_{om}^{2}}{2R_{L}}$$

A、ui幅度较小,T1T2处于 放大状态时,u_{om} ≈ u_{im}

$$\boldsymbol{P_o} = \frac{\boldsymbol{U_{om}}^2}{2\boldsymbol{R_L}} = \frac{\boldsymbol{U_{im}}^2}{2\boldsymbol{R_L}}$$

B、ui幅度足够大,T1、T2进入临界饱和,此时输出达到最大值。则负载(RL)上的电压为?

负载上的最大不失真电压幅值为 $U_{om} = V_{cc} - U_{CES}$

$U_{\rm om} = V_{\rm CC} - U_{\rm CES}$

$$P_{om} = \frac{1}{2} \frac{U_{om}^2}{R_L} = \frac{(V_{CC} - U_{CES})^2}{2R_L}$$

集电极电流幅值 I_{cm}

$$I_{cm} = \frac{U_{om}}{R_{\mathrm{L}}} = \frac{V_{\mathrm{CC}} - U_{CES}}{R_{\mathrm{L}}}$$

$$P_{\rm V} = V_{\rm CC} \times \frac{1}{\pi} \int_0^{\pi} I_{\rm cm} \sin \omega t d(\omega t) = \frac{2V_{\rm CC} I_{\rm cm}}{\pi} = \frac{2V_{\rm CC} U_{om}}{\pi R_{\rm L}}$$

$$\eta = \frac{P_{\text{om}}}{P_{\text{V}}} = \frac{\frac{\frac{1}{2} \frac{U_{\text{om}}}{R_{\text{L}}}}{2V_{\text{CC}}U_{om}}}{\frac{2V_{\text{CC}}U_{om}}{\pi R_{\text{T}}}} = \frac{\pi U_{om}}{4V_{\text{CC}}} \approx \frac{\pi}{4} = 78.5\%$$

四、采用复合管的互补对称功率放大电路

复合管的组成:多只管子合理连接等效成一只管子。 目的:增大β,减小前级驱动电流,改变管子的类型。

1. 晶体管组成的复合管及其电流放大系数

$$egin{aligned} oldsymbol{eta} &= oldsymbol{eta}_1 oldsymbol{eta}_2 \ oldsymbol{r}_{be} &= oldsymbol{r}_{be1} + oldsymbol{eta}_1 oldsymbol{r}_{be2} \end{aligned}$$

构成复合管时注意

- *
- **1.** 前后两个三极管连接关系上,应保证前级输出电流与后级输入电流实际方向一致。
- 2. 外加电压的极性应保证前后两个管子均为发射结正偏,集电结反偏,使管子工作在放大区。

(a) NPN 型

(b) PNP型

(d) PNP型

复合管的 $\beta \approx \beta 1$ $\beta 2$,复合管的 rbe = rbe1 不同类型的管子复合后,其类型决定于 T_1 管。

*

2、结 论

- 1. 两个同类型的三极管组成复合管,其类型与原来相同。复合管的 $\beta \approx \beta_1 \beta_2$,复合管的 $r_{be} = r_{be1} + (1 + \beta 1)$ r_{be2} 。
- **2.** 两个不同类型的三极管组成复合管,其类型与前级三极管相同。复合管的 $\beta \approx \beta_1 \beta_2$,复合管的 $r_{be} = r_{be1}$ 。
- **3.** 在集成运放中,复合管不仅用于中间级,也常用于输入级和输出级。

例:为获得一只PNP型复合管,可选用下图中的第()电路。

3.采用复合管的互补对称功率放大电路

为了增大**T1**管和**T2**管的电流放大系数,以减小前级驱动电流,常采用复合管结构。为保持输出管的良好对称性,输出管应为同类型晶体管。

VBE电压扩大电路

为更换好地和T1、T2两发射结电位配合,克服交越失真电路中的D1、D2两二极管可以用V_{BE}电压扩大电路替代。

图中 B_1 、 B_2 分别接T1、T2的基极。假设 $I>>I_B$,则

$$\mathbf{V} \approx \mathbf{V}_{\mathsf{BE}} \, \frac{\mathbf{R}_{1} + \mathbf{R}_{2}}{\mathbf{R}_{2}}$$

合理选择R1、R2大小, B_1 、 B_2 间便可得到 V_{BE} 任意倍数的电压。

*

4. OTL 互补对称电路

- (1) 特点:
 - *单电源供电;
 - *输出加有大电容。
- (2) 静态时:

$$\Rightarrow : \mathbf{u}_{i} = \frac{\mathbf{U}_{CC}}{2}$$

T1、T2特性对称,

$$\dot{U}_{A} = \frac{U_{CC}}{2}$$

$$U_{C} = \frac{U_{CC}}{2}$$

(3) 动态时:

设输入端在Ucc/2直流电平基础上加入正弦信号。

ui < $\frac{Ucc}{2}$ 时,T1截止、
T2导通。
(Uc相当于电源)

OTL甲乙类互补对称电路

R、VD₁、VD₂ 为两管提供一小的静态偏置电压,使得在输入信号等于零时,管子微导通,以克服交越失真

OCL计算

$$U_{om} = V_{\rm CC} - U_{\rm CES}$$

$$I_{cm} = \frac{V_{cc} - U_{CES}}{R_{L}}$$

$$P_{om} = \frac{U_{om}^{2}}{2R_{L}} = \frac{(V_{CC} - U_{CES})^{2}}{2R_{L}}$$

$$\eta = \frac{P_{om}}{P_{V}} = \frac{\pi}{4} \cdot \frac{V_{CC} - U_{CES}}{V_{CC}}$$

OTL计算

$$U_{om} = \frac{V_{cc}}{2} - U_{CES}$$

$$I_{cm} = \frac{\frac{V_{cc}}{2} - U_{CES}}{R_{L}}$$

$$P_{om} = \frac{(\frac{V_{CC}}{2} - U_{CES})^{2}}{2R_{L}}$$

$$\eta = \frac{\pi}{4} \cdot \frac{\frac{V_{CC}}{2} - U_{CES}}{\frac{V_{CC}}{2}}$$

3.4 集成运算放大器

- 3.4.1 集成运算放大器的组成和特点
- 3.4.2 通用型集成运算放大器
- 3.4.3 集成运算放大器的电压传输特性和主要参数
- 3.4.4集成运算放大器的使用

在半导体制造工艺的基础上,将整个电路中的 元器件制作在一块硅基片上,构成特定功能的电子 电路,称为集成电路。 其体积小,而性能却很好。

集成电路按其功能分,有模拟集成电路和数字 集成电路。模拟集成电路的种类繁多,其中集成运 算放大器(简称集成运放)是应用极为广泛的一种。

3.4.1集成运算放大器的组成和特点

集成运算放大电路,简称集成运放,是一个高性能的直接耦合多级放大电路。因首先用于信号的运算,故而得名。

1. 集成运算放大器的组成

若将集成运放看成为一个"黑盒子",则可等效为一个双端输入、单端输出的差分放大电路。

差动输入级有两个输入UP、UN,当信号从UN输入,输出UO与UN极性相反,称UN为反相输入端;当信号从UP输入,输出UO与UP极性相同,称UP为同相输入端。

集成运放电路四个组成部分的作用

偏置电路: 为各级放大电路设置 会适的静态工作点。采用电流源电路。

输入级:前置级,多采用差分放大电路。要求 R_i 大, A_d 大, A_c 小,输入端耐压高。

中间级:主放大级,多采用共射放大电路。要求有足够的放大能力。

输出级:功率级,多采用准互补输出级。要求 R_0 小,最大不失真输出电压尽可能大。

2. 集成运算放大器的特点

- (1) 直接耦合方式,充分利用管子性能良好的一致性采用差分放大电路和电流源电路。
- (2) 用复杂电路实现高性能的放大电路,因为电路复杂 并不增加制作工序。
- (3)用有源元件替代无源元件,如用晶体管取代难于制作的大电阻。
 - (4) 采用复合管。

3.4.2 型号为F007的通用型集成运放

一、集成运放电路分析

1. 读图方法

己知电路图,分析其原理和功能、性能。

- (1) 了解用途:了解要分析的电路的应用场合、用途和技术指标。
- (2) 化整为零:将整个电路图分为各自具有一定功能的基本电路。
- (3) 分析功能: 定性分析每一部分电路的基本功能和性能。
- (4) 统观整体: 电路相互连接关系以及连接后电路实现的功能和性能。
- (5) 定量计算:必要时可估算或利用计算机计算电路的主要参数。

若在集成运放电路中能够估算出某一支路的电流,则这个电流往往是偏置电路中的基准电流。

偏置电路

一、镜像电流源(电流镜 Current Mirror)

一、镜像电流源(电流镜 Current Mirror) 基准电流
$$I_{REF} = \frac{V_{CC} - U_{BE1}}{R}$$
 由于 VT_1 与 VT_2 参数基本相同,则

由于 VT_1 与 VT_2 参数基本相同,则

$$I_{C2} = I_{C1} = I_{REF} - 2I_{B} = I_{REF} - 2\frac{I_{C2}}{\beta}$$
 VT

所以
$$I_{C2} = I_{REF} \frac{1}{1 + \frac{2}{\beta}}$$
 当满足 $\beta >> 2$ 时,则 $I_{C2} = I_{REF} = \frac{V_{CC} - U_{BE1}}{R}$

$$I_{C2} = I_{REF} = \frac{V_{CC} - U_{BE1}}{R}$$

- 电路特点: 1、是单口网络,没有信号输入端。
 - 2、I_{C2}基本恒定,与负载R_L的大小无关。

二、比例电流源

由图可得

$$U_{\text{BE1}} + I_{\text{E1}}R_1 = U_{\text{BE2}} + I_{\text{E2}}R_2$$

由于 **U**_{BE1} ≈ **U**_{BE2} ,则

$$I_{E1}R_1 \approx I_{E2}R_2$$

$$\therefore I_{\text{C2}} \approx \frac{R_1}{R_2} I_{\text{C1}} \approx \frac{R_1}{R_2} I_{\text{REF}}$$

两个三极管的集电极电流之比近似与发射极电阻的阻值成反比,故称为比例电流源。

三、微电流源

$$I_{C2} \approx I_{E2} = \frac{V_{BE1} - V_{BE2}}{R_{e2}} = \frac{\Delta V_{BE}}{R_{e2}}$$

 $: \Delta V_{RE}$ 值较小,

:用不大的 R_{e2} 就可到得微小的 I_{c2}

- 特点: (1) $I_{C2}与R_L$ 无关,相当于向 R_L 提供恒定的电流。
 - (2) T_1 管对 T_2 管具有温度补偿作用,热稳定性好。

共射极电路

电流源

电流源的作用

一、为放大电路提供稳定的偏置电流。

二、作放大电路有源负载。

特点:

 T_2T_3 组成镜象电流源(R_{1} R_{1} R_{2} R_{2} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{3} R_{4} R_{5} $R_{$

*

找出偏置电路

若在集成运放电路中能够估算出某一支路的电流,则这个电流往往是偏置电路中的基准电流。

双端输入、单端 输出差分放大电 路 以复合管为放大管 、恒流源作负载的 共射放大电路 用U_{BE}倍增电路消除交越失真的准 互补输出级

输入级的分析

T_3 和 T_4 从射极输入、集电极输出

T₃、T₄为横向PNP型管,输入端耐压高。共集形式,输入电阻大,允许的共模输入电压幅值大。共基形式频带宽。

Q点的稳定:

T (°C) $\uparrow \rightarrow I_{C1} \uparrow I_{C2} \uparrow \rightarrow I_{C8} \uparrow$

 I_{c9} 与 I_{c8} 为镜像关系 $\rightarrow I_{c9}$ 个

因为 I_{C10} 不变 $\rightarrow I_{B3} \downarrow I_{B4} \downarrow \rightarrow I_{C3} \downarrow I_{C4} \downarrow \rightarrow I_{C1} \downarrow I_{C2} \downarrow$

T₇的作用: 抑制共模信号 放大差模信号

 T_5 、 T_6 分别是 T_3 、 T_4 的有源负载,而 T_4 又是 T_6 的有源负载。

特点:

输入电阻大、差模放大倍数 大、共模放大倍数小、输入 端耐压高,并完成电平转换 (即对"地"输出)。

中间级的分析

中间级是主放大器, 它所采取的一切措施都是 为了增大放大倍数。

F007的中间级是以复合管为放大管、采用有源负载的共射放大电路。由于等效的集电极电阻趋于无穷大,故动态电流几乎全部流入输出级。

输出级的分析

准互补输出级, U_{BE} 倍增电路消除交越失真。

电流采样电阻

D₁和D₂起过流保护作用, 未过流时,两只二极管均截 止。

$$U_{\rm D1} = U_{\rm BE14} + i_{\rm O}R_9 - U_{R7}$$

 i_0 增大到一定程度, D_1 导通,为 T_{14} 分流,从而保护了 T_{14} 。

特点: 输出电阻小 最大不失真输出电压高

3.4.3 集成运放的符号和电压传输特性 $u_0 = f(u_P - u_N)$

在线性区:

$$u_{\rm O} = A_{\rm od}(u_{\rm P} - u_{\rm N})$$

 $A_{\rm od}$ 是开环差模放大倍数。

线性区,曲线斜率为Aod

由于 A_{od} 高达几十万倍,所以集成运放工作在线性区时的最大输入电压 (u_P-u_N) 的数值仅为几十~一百多微伏。

分析应用电路的工作原理时,首先要分清运放工作在线性区还是非线性区。

 (u_P-u_N) 的数值大于一定值时,集成运放的输出不是 $+U_{OM}$,就是 $-U_{OM}$,即集成运放工作在非线性区。

 $+U_{\mathrm{OM}}$ 为正向输出饱和电压 $-U_{\mathrm{OM}}$ 为负向输出饱和电压 其数值接近运放的正负电源电压

 ∞

集成运放的主要性能指标

指标参数

1.开环差模增益 A_{od}

F007典型值

理想值 106dB

 $201g |A_{\text{od}}| = 201g \left| \frac{\Delta u_{\text{O}}}{\Delta (u_{\text{P}} - u_{\text{N}})} \right|$

2.差模输入电阻 r_{id}

 $2M\Omega$

 ∞

$$r_{\rm id} = \frac{\Delta(u_{\rm P} - u_{\rm N})}{\Delta i_{\rm P}}$$

3.共模抑制比 K_{CMR}

90dB

 ∞

$$K_{\rm CMR} = 20 \lg \left| \frac{A_{\rm od}}{A_{\rm c}} \right|$$

*

集成运放的主要性能指标

	指标参数	F007典型值	理想值
•	开环差模增益 A_{od}	106dB	∞
•	差模输入电阻 r_{id}	$2M\Omega$	∞
•	共模抑制比 K_{CMR}	90dB	∞
•	输入失调电压 U_{10}	1mV	0
•	U _{IO} 的温漂d U _{IO} /dT(℃)	几μV/ ℃	0
•	输入失调电流 $I_{\mathrm{IO}}(\mid I_{\mathrm{B1}}$ - I_{B2}) 20nA	0
•	U _{IO} 的温漂d U _{IO} /dT(℃)	几nA/℃	0
•	最大共模输入电压 U_{Icmax}	$\pm 13V$	
•	最大差模输入电压 U_{Idmax}	$\pm 30V$	
•	-3dB带宽 $f_{ m H}$	10Hz	∞
•	转换速率 $SR(=du_O/dt \mid_{max})$	$0.5V/\mu S$	∞