

Grammatik - Definition

Definition

Eine Grammatik G ist ein Viertupel $\underline{G} = (N, \Sigma, P, S)$. Sie besteht aus

- dem endlichen Nonterminalalphabet (auch Variablenmenge) N,
- dem endlichen Terminalalphabet Σ mit $\Sigma \cap N = \emptyset$,
- der endlichen Regelmenge (auch Produktionsmenge) P und
- der Startvariablen S mit $S \in N$.

Jede Regel hat die Form $I \rightarrow r$ mit

- 1∈ (N∪Σ)+\Σ+ → mindlesters ein Nt
- $r \in (N \cup \Sigma)^*$.

Prof. Dr. Barbara Staehle | WS 2020/2021

heoretische Informatik | II Formale Spra

215

Ich bin eine Tafel

$$3) A \rightarrow \alpha A$$

N = {S, A} S={a} Ableitung Far "a" Z

 $S \stackrel{2}{\Rightarrow} \alpha \checkmark$

<u>QOQQ</u>

→ groß A ist nicht in der Sprache, weil es nicht terminal ist.

S. 23:

Ableitung eines Wortes

Gegeben: Grammatik $G = (N, \Sigma, P, S)$, Worte $x, y \in (N \cup \Sigma)^*$ der Form $x = l\mathbf{u}r$ und $y = l\mathbf{v}r$ mit $l, r, v \in (N \cup \Sigma)^*$, $u \in (N \cup \Sigma)^+$ (x und y sind bis auf die Teilworte \mathbf{u} und \mathbf{v} gleich).

Ableitung durch Anwendung der Regeln

- $x \Rightarrow y$, falls y in **einem** Schritt aus x abgeleitet werden kann, durch Anwendung der **einen** Regel $\mathbf{u} \to \mathbf{v} \in P$
- x ⇒* y, falls y in null oder endlich vielen Schritten aus x abgeleitet werden kann (durch Anwendung mehrerer Regeln hintereinander)

→ L(Gxy) sind alle Worte die man durch die Sprache ableiten kann

→ Beobachtung für L(x1) ist dass wenn man mit 0 startet, dann kann man nur mit 0 enden. Und wenn man mit 1startet kann man dann nur mit 1 enden.

ightharpoonup Für L(x2) kann nur Worte bilden, die eine gerade Anzahl an 1 hat.