Serie 8

Besprechung: Donnerstag, 14.5

8.1. Sei $A \in \mathbb{R}^{d \times d}$ und $\omega > s(A) := \max\{\operatorname{Re} \lambda \mid \lambda \in \sigma(A)\}$. Zeigen Sie: Es gibt ein $M \ge 1$, so daß

$$|e^{tA}| \le Me^{\omega t}, \qquad t \ge 0.$$

Warum gilt diese Aussage nicht, wenn lediglich $\omega \geq s(A)$ gefordert wird?

8.2. Betrachten Sie eine skalare ODE y' = f(t, y) mit $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ stetig und lokal Lipschitz im 2. Argument. Sei $t \mapsto y(t)$, $t \geq t_0$ die Lösung des AWP $y(t_0) = y_0$. Es seien $t \mapsto y_1(t)$ und $t \mapsto y_2(t)$ zwei differenzierbare Funktionen $\mathbb{R} \to \mathbb{R}$, für die gilt

$$y_1(t_0) \le y_0, \quad y_1' \le f(t, y_1), \ t \ge t_0$$

und

$$y_2(t_0) \ge y_0, \quad y_2' \ge f(t, y_2), \ t \ge t_0.$$

a) Zeigen Sie, dass für $t \ge t_0$ gilt

$$y_1(t) \le y(t) \le y_2(t).$$

Hinweis: Verwenden Sie Aufgabe 3.3 und die stetige Abhängigkeit von AWPs von der rechten Seite f.

b) Zeigen Sie damit, dass für die Lösung des AWP

$$y' = -y^3 + \sin t$$
, $y(0) = y_0$, $-2 \le y_0 \le 2$

gilt
$$-2 \le y(t) \le 2$$
 für $t \ge 0$.

- c) Zeigen Sie, dass diese ODE eine 2π periodische Lösung hat. Hinweis: Brouwerscher Fixpunktsatz
- 8.3. Eine skalare ODE der Form

$$y' = g(t)y + h(t)y^2 + k(t)$$

heißt Riccatigleichung¹. Sei y_1 eine Lösung dieser Gleichung.

a) Überprüfen Sie, daß jede Lösung x der Bernoullischen ODE

$$x' = (g(t) + 2y_1(t)h(t))x + h(t)x^2$$

eine Lösung $y = y_1 + x$ der Riccatischen Gleichung erzeugt.

b) Geben Sie die allg. Lösung der ODE

$$y' = 3\left(2(t+1)^2 - \frac{1}{t+1}\right)y - 3(t+1)y^2 - 3(t+1)^3 + 4$$

an. Hinweis: versuchen Sie ein lineares Polynom als spezielle Lösung.

- **8.4.** (Gradientensysteme)
 - a) Sei d = 1 und $f \in C(\mathbb{R}; \mathbb{R})$. Zeigen Sie: die autonome ODE y' = f(y) hat eine Ljapunovfunktion. Ist die von Ihnen angegebene Funktion eine strikte Ljapunovfunktion?
 - b) Sei d > 1 und $f \in C(\mathbb{R}^d; \mathbb{R}^d)$. Die ODE y' = f(y) heißt heißt Gradientensystem, falls es $F \in C^1(\mathbb{R}^d; \mathbb{R})$ gibt mit $\nabla F = f$. Zeigen Sie: Die ODE hat eine strikte Ljapunovfunktion.

 $^{^1\}mathrm{Nota}$ im Fall k=0erhält man die Bernoullische Gleichung

8.5. Sei $H:C^2(\mathbb{R}^{2d};\mathbb{R})$. Das zu H gehörende Hamiltonsche System ist gegeben durch

$$q' = \partial_p H(q, p)$$

$$p' = -\partial_q H(q, p)$$

Zeigen Sie, daß H eine Ljapunov
funktion für das System ist. Geben Sie an, welche Ruhelagen des Systems stabil und welche asymptotisch stabil sind.

Geben Sie die stabilen und asymptotisch stabilen Ruhelagen für die konkrete Funktion

$$H(p,q) = \frac{1}{2}p^2 + (1 - \cos q)$$

an.

8.6. Das folgende Beispiel zeigt, daß man im Fall nichtautonomer linearer ODEs

$$y' = A(t)y$$

von den Eigenwerten der Matrix A(t) nicht auf die Stabilität der Ruhelage y=0 schließen kann. Es sei

$$A(t) = \begin{pmatrix} -1 + \frac{3}{2}\cos^2 t & 1 - \frac{3}{2}\sin t\cos t \\ -1 - \frac{3}{2}\sin t\cos t & -1 + \frac{3}{2}\sin^2 t \end{pmatrix}.$$

Zeigen Sie:

a) die Eigenwerte $\lambda_{1,2}(t)$ von $A(t),\,t\in\mathbb{R}$ haben negativen Realteil.

b)

$$y(t) = e^{t/2} \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}$$

ist eine Lösung der ODE.

c) Die Lösung y = 0 ist instabil.