In this activity, you will learn:

- How to write a simple program
- Understanding the serial operations
- Printing time as serial output
- Connecting to WiFi
- LED Blink project

Displaying 'Hello World' - serial output

Write the following code in Arduino IDE

```
void setup()

void setup()

Serial.begin(115200);

void loop()

void loop()

Serial.println("Hello World!");
delay(1000);
}
```

The delay() function accepts a single integer (or number) argument. This number represents the time (measured in milliseconds).

- a. Choose the board, ESP32, COM port, hold down the BOOT button, click upload and keep your finger on the BOOT button pressed.
- b. When the Arduino IDE starts sending the code, you can release the button and wait for the flashing process to be completed.
- c. The ESP32 is flashed with the new firmware.

Open the Arduino serial monitor from the icon on the top right or from the tools menu and select Tools > Serial Monitor

- Q1. What is baud rate?
- Q2. Change the code and display 'Hello World' after every 5 milliseconds
- Q3.Modify the code above by including the following lines before the delay() function

 Serial.print("Counter Value = ");

 Serial.println(Counter++);

Determine the output.

Using the serial plotter

Write the following code in Arduino IDE

- a. Choose the board, ESP32, COM port, hold down the BOOT button, click upload and keep your finger on the BOOT button pressed.
- b. When the Arduino IDE starts sending the code, you can release the button and wait for the flashing process to be completed.
- c. Display the Sine wave using the option displayed below.

Printing the Time

```
#include <WiFi.h>
#include "time.h"
          #Include "time.h" = "Enter your NETWORKSSID";
const char* ssid = "Enter your NETWORKSSID";
const char* password = "Enter your NETWORKPASSWORD";
const char* ntpServer = "pool.ntp.org";
const long gmtOffset_sec = 18000; /*GMT OFFSET +5 HOURS(18000 SEC)*/
const int daylightOffset_sec = 3600; /*1 hour daylight offset*/
6
7
8
9
10
11
12
13
14
15
16
17
          void printLocalTime()
             struct tm timeinfo;
if(!getLocalTime(&timeinfo)) {
   Serial.println("Failed to obtain time");
              Serial.println(&timeinfo, "%A, %B %d %Y %H:%M:%S");
18
19
              Serial.begin(115200);
20
21
              //connect to WiFi
Serial.printf("Connecting to %s ", ssid);
             WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
22
24
25
                 delay(500);
Serial.print(".");
26
27
              Serial.println(" CONNECTED");
28
29
              configTime(gmtOffset_sec, daylightOffset_sec, ntpServer);
30
31
             printLocalTime();
//disconnect WiFi as it's no longer needed
32
33
              WiFi.disconnect(true);
              WiFi.mode(WIFI_OFF);
34
35
36
37
          void loop()
              delay(1000);
              printLocalTime();
```

Q4. Determine the output.

Connecting to WiFi

Write the following code in Arduino IDE

```
#include <WiFi.h>
const char* ssid = "Enter your NetworkName";
const char* password = "Enter your NetworkPassword";

evoid setup(){
    Serial.begin(115200);
    delay(1000);

    WiFi.mode(WIFI_STA); //Optional
    WiFi.begin(ssid, password);
    Serial.println("Nconnecting");

while(WiFi.status() != WL_CONNECTED){
    Serial.println("\nConnecting");
    delay(100);
}

Serial.println("\nConnected to the WiFi network");
    Serial.println("Local ESP32 IP: ");
    Serial.println(WiFi.localIF());

void loop(){}
```

Connect your ESP32 kit to WiFi using your Mobile data connection Hotspot Q5. Determine the output if your module gets connected

LED Blink Project

Following is the pinout of your ESP32 WROOM based MCU Kit

In the next class we will discuss in detail the kit specifications. However, we will use the *GPIO23* and *GND* pins to blink an external LED for understanding how to interface ESP32.

a. Use your breadboard and place a LED and 220 Resistor as follows (the figure may have different connections-use the one mentioned above):

b. Write the following program

```
// Set our LED Pin to the GPIO Pin
const int ledPin = 23;

void setup()

// setup ledPin AS output
pinMode(ledPin, OUTPUT);

void loop()

// Turn on our LED
digitalWrite(ledPin, HIGH);
// Delay for some time
delay(500);
// Turn off our LED
digitalWrite(ledPin, LOW);
// Delay for some time
delay(500);
// Turn off our LED
digitalWrite(ledPin, LOW);
// Delay for some time
delay(500);
// Turn off our LED
digitalWrite(ledPin, LOW);
// Delay for some time
delay(500);
```

- Q6. Determine the output and record the video.
- Q7. Now write a program that flipflops onboard LED and external LED with a delay of 10secs