强化学习与博弈论

Reinforcement Learning and Game Theory

陈旭

计算机学院

Chapter 1: Simple Decisions Models

Some definitions

Definition

argmax is defined by the following equivalence:

$$x^* \in argmax_{x \in X} f(x) \iff f(x^*) = \max_{x \in X} f(x)$$

A choice of behavior in a single-decision problem is called an *action*. The set of alternative actions available will be denoted as \mathbf{A} . This will either be discrete set, e.g., $\{a_1, a_2, \dots, \}$, or a continuous set, .e.g., the unit interval [0, 1].

More...

Definition

A *payoff* is a function $\pi : \mathbf{A} \to \mathbf{R}$ that associates a numerical value with every action $a \in \mathbf{A}$.

Definition

An action a* is an optimal action if

$$\pi(a^*) \geq \pi(a) \qquad \forall a \in A.$$

or equivalently, $a^* \in argmax_{a \in A}\pi(a)$.

An affine transformation changes payoff $\pi(a)$ into $\pi'(a)$ as

$$\pi'(\mathbf{a}) = \alpha \pi(\mathbf{a}) + \beta$$

where α, β are constants independent of a and $\alpha > 0$.

Theorem

The optimal action is unchanged if payoffs are altered by an affine transformation.

Proof

because $\alpha > 0$, we have

$$argmax_{a \in \mathbf{A}}\pi'(a) = argmax_{a \in \mathbf{A}}[\alpha\pi(a) + \beta]$$

= $argmax_{a \in \mathbf{A}}\pi(a)$.

The Convent Fields Soup Company needs to determine the price *p*. The demand function is:

$$Q(p) = \left\{ egin{array}{ll} Q_0 \left(1 - rac{p}{p_0}
ight) & ext{if } p < p_0, \ 0 & ext{if } p \geq p_0. \end{array}
ight.$$

The payoff is $\pi(p) = (p - c)Q(p)$ where c is the unit production cost.

- Solving, we have $p^* = \frac{1}{2}(p_0 + c)$.
- Now, let say we need to consider a fixed cost to build the factory, the payoff function is $\pi(p) = (p c)Q(p) B$, where B is a constant. What is p^* ?

Uncertainty

Modeling uncertainty

- If uncertainty exists, we compare the expected outcome for each action.
- Let X be the set of states with P(X = x).
- Payoff for adopting action a is:

$$\pi(a) = \sum_{x \in X} \pi(a|x) P(X = x)$$

An optimal action is

$$a^* \in argmax \ a \in A \sum_{x \in X} \pi(a|x)P(X = x).$$

- An investor has \$1000 to invest in one year. The available actions

 (1) put the money in the bank with 7% interest per year; (2) invest in stock which returns \$1500 if the stock market is good or returns \$600 if the stock market is bad.
- P(Good) = P(Bad) = 0.5.
- Expected payoff:
 - **1** $\pi(a_1) = \$1070;$
 - 2 $\pi(a_2) = 1500/2 + 600/2 = $1050.$
- So a_1^* and we should put the money in the bank.

Let $\Omega = \{\omega_1, \omega_2, \ldots\}$ be the set of possible outcomes.

- We say $\omega_i \succ \omega_j$ if an individual *strictly prefers* outcome ω_i over ω_j .
- If the individual is indifferent: $\omega_i \sim \omega_i$.
- Either prefer or indifferent: $\omega_i \succeq \omega_i$.

Definition

An individual will be called rational under certainty if his preference for outcomes satisfy the following conditions:

- (Completeness) Either $\omega_i \succeq \omega_i$ or $\omega_i \succeq \omega_i$.
- (Transitivity) If $\omega_i \succeq \omega_j$ and $\omega_j \succeq \omega_k$, then $\omega_i \succeq \omega_k$.

A utility function is a function $u: \Omega \to \mathbb{R}$ such that

$$u(\omega_i) > u(\omega_j) \iff \omega_i \succ \omega_j$$

 $u(\omega_i) = u(\omega_j) \iff \omega_i \sim \omega_j$

The immediate consequence of this definition is an individual who is rational under certainty should seek to maximize his utility.

Modeling Rational Behavior

What happens when an action does not produce a definite outcome and instead, we allow each outcome to occur with a known probability?

Definition

A simple lottery, λ , is a set of probabilities for the occurrence of every $\omega \in \Omega$. The probability that outcome ω occurs is $p(\omega|\lambda)$. The set of all possible lotteries is denoted as \boldsymbol{A} .

Theorem

Expected Utility Theorem: If an individual is rational, then we can define a utility function $u : \Omega \to \mathbb{R}$ and the individual will maximize the payoff function $\pi(a)$ (or the expected utility) given by

$$\pi(\mathbf{a}) = \sum_{\omega \in \Omega} p(\omega | \lambda(\mathbf{a})) u(\omega)$$

Definition

An individual whose utility function satisfies

- E(u(w)) < u(E(w)), it is said to be risk averse,
- E(u(w)) > u(E(w)), it is said to be risk prone,
- E(u(w)) = u(E(w)), it is said to be risk neutral.

Someone flip a coin. If it is head (tail), you get \$1 (\$1M). Your utility function can be:

- \bullet u(x) = x,
- $u(x) = x^2$,

Classify the above as risk averse, risk prone and risk neutral utility function.

Risk Aversion

https://en.wikipedia.org/wiki/Risk_aversion

Up to now, we assume finding an optimal action a^* from a given set A. But the selection can be *randomized*. Does this allow one to achieve a higher payoff?

Definition

We specify a general behavior β by giving a list of probabilities with which each available action is chosen. We denote the probability that action a is chosen by p(a) and $\sum_{a \in \mathbf{A}} p(a) = 1$. The set of all randomizing behavior is denoted by \mathbf{B} . The payoff of using behavior β is

$$\pi(\beta) = \sum_{a \in \mathbf{A}} p(a)\pi(a).$$

An optimal behavior β^* is one for which

$$\pi(\beta^*) \ge \pi(\beta) \quad \forall \beta \in \mathbf{B}.$$

or
$$\beta^* \in \operatorname{argmax}_{\beta \in \mathbf{B}} \pi(\beta)$$
.

The support of a behavior β is the set $A(\beta) \subseteq A$ of all the actions for which β specifies p(a) > 0.

Theorem

Let β^* be an optimal behavior with support \mathbf{A}^* . Then

$$\pi(a) = \pi(\beta^*) \quad \forall a \in A^*.$$

The consequence of the above theorem is that if a randomized behavior is optimal, then two or more actions are optimal as well. So randomization is not necessary but it may be used to break a tie.

A firm may make one of the marketing actions $\{a_1, a_2, a_3\}$. The profit for each action depends on the state of the economy $\mathbf{X} = \{x_1, x_2, x_3\}$:

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃
a ₁	6	5	3
a_2	3	5	4
a_3	5	9	1

If $P(X = x_1) = 1/2$, $P(X = x_2) = P(X = x_3) = 1/4$. What *are* the optimal behaviors?

A firm may make one of the marketing actions $\{a_1, a_2, a_3\}$. The profit for each action depends on the state of the economy $\mathbf{X} = \{x_1, x_2, x_3\}$:

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃
a_1	6	5	3
a_2	3	5	4
<i>a</i> ₃	5	9	1

If $P(X = x_1) = 1/2$, $P(X = x_2) = P(X = x_3) = 1/4$. What *are* the optimal behaviors?

Answer

Because $\pi(a_1) = \pi(a_3) = 5$ and $\pi(a_2) = 3.75$, optimal randomizing behaviors have support $\mathbf{A}^* = \{a_1, a_3\}$ with $p(a_1) = p$ and $p(a_3) = 1 - p$ (0 < p < 1). Using either a_1 or a_3 with probability 1 is also an optimal behavior.