Foundations of Artificial Intelligence Exercise Sheet 3

Robin Vogt, Riccardo Salvalaggio, Simon Lempp, Josephine Bergmeier May 7, 2021

Exercise 3.1

- a) We have a heuristic (for example negated Manhattan distance to the goal). In the hill climbing method we always chose one of the neighbours with a higher or equal quality measure until we're at our goal or stuck at a local maxima.
- b) Grid with Manhattan distance as quality measure:

c) Simulated annealing has a low probability of escaping local maxima at later time steps, because the probability of taking a step in a direction with lower utility decreases with time. By that, if a local maximum occurs close to the goal, the probability to escape it is rather low.

yes, but there still exists a certain probability.

Exercise 3.2

Exercise 3.3

i	Assign	A	B	C	D
0	-	1,2,3,4	1, 2, 3, 4	1, 2, 3, 4	1, 2, 3, 4
1	A = 1	1	3, 4	2, 3, 4	1, 2, 3, 4
2	B=3	1	3	/	12,4
3	B = 4	1	Ĵ	2	1,2,3
4	C= 2	1	J	2	/
5	A = 2	2	J	1,3,4	1,2,3,4
6	B=4	2	J	1	1,2,3
7	C = 1	2	J	1	3