Inferencia de Tipos

PLP

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

14 de Febrero de 2018

- Algoritmo de inferencia
- 2 Extensiones
- 3 Extensión Abstracción sobre tuplas
- 4 Extensión Listas
- Extensión Switch
- 6 Extensión Letrec

Algoritmo W

Algoritmo W

Por ejemplo:

Algoritmo W

Queremos $\mathbb{W}(\cdot)$ que dado un término U sin anotaciones verifica:

- Corrección $\mathbb{W}(U) = \Gamma \triangleright M : \sigma$ implica
 - Erase(M) = U y
 - $\Gamma \triangleright M : \sigma$ es derivable

Completitud Si $\Gamma \triangleright M : \sigma$ es derivable y Erase(M) = U, entonces

- $\mathbb{W}(U)$ tiene éxito y
- $\mathbb{W}(U)$ computa un tipo principal ($\Gamma \rhd M : \sigma$ es instancia del mismo)

Casos base

Casos base:

Casos Nat:

- Sea $\mathbb{W}(U) = \Gamma \triangleright M : \tau$
- Sea $S = MGU\{\tau \doteq Nat\}$
- Entonces

```
\mathbb{W}(\operatorname{succ}(U)) \stackrel{\text{def}}{=} S\Gamma \triangleright S \operatorname{succ}(M) : \operatorname{Nat}
   \mathbb{W}(\operatorname{pred}(U)) \stackrel{\text{def}}{=} S\Gamma \triangleright S \operatorname{succ}(M) : \operatorname{Nat}
\mathbb{W}(isZero(U)) \stackrel{\text{def}}{=} S\Gamma \triangleright S succ(M) : Bool
```

$$\frac{\Gamma \cup \{x : \sigma\} \rhd M : \tau}{\Gamma \rhd \lambda x : \sigma M : \sigma \to \tau}$$
(T-Abs)

Sea
$$\mathbb{W}(U) = \Gamma \triangleright M : \rho$$

$$\tau = \begin{cases} \alpha \text{ si } x : \alpha \in \Gamma \\ \text{variable fresca en otro caso.} \end{cases}$$

$$\Gamma' = \Gamma \ominus \{x\}$$

$$\mathbb{W}(\lambda x. U) \stackrel{\text{def}}{=} \Gamma' \rhd \lambda x \colon \tau. M \colon \tau \to \rho$$

$$\frac{\Gamma \rhd M : \sigma \to \tau \quad \Gamma \rhd N : \sigma}{\Gamma \rhd M N : \tau} \text{ (T-APP)}$$

- Sea
 - $\mathbb{W}(U) = \Gamma_1 \triangleright M : \tau$
 - $\mathbb{W}(V) = \Gamma_2 \triangleright N : \rho$
- Sea

$$S = MGU\{\sigma_1 \doteq \sigma_2 \mid x : \sigma_1 \in \Gamma_1 \land x : \sigma_2 \in \Gamma_2\}$$

$$\cup$$

$$\{\tau \doteq \rho \rightarrow t\} \text{ con } t \text{ una variable fresca}$$

Entonces

$$\mathbb{W}(UV) \stackrel{\mathrm{def}}{=} S\Gamma_1 \cup S\Gamma_2 \rhd S(MN) : St$$

Aplicando el algoritmo W

Ejercicio 1

Utilizar el algoritmo $\ensuremath{\mathbb{W}}$ para las siguientes expresiones:

a.
$$\lambda f . \lambda x . f(f x)$$

b.
$$x(\lambda x.x)$$

Algoritmo de Martelli-Montanari

Descomposició

$$\begin{aligned} & \{\sigma_1 \rightarrow \sigma_2 \doteq \tau_1 \rightarrow \tau_2\} \cup \textit{G} \mapsto \{\sigma_1 \doteq \tau_1, \sigma_2 \doteq \tau_2\} \cup \textit{G} \\ & \{\mathsf{Nat} \doteq \mathsf{Nat}\} \cup \textit{G} \mapsto \textit{G} \\ & \{\mathsf{Bool} \doteq \mathsf{Bool}\} \cup \textit{G} \mapsto \textit{G} \end{aligned}$$

- **2** Eliminación de par trivial $\{s \doteq s\} \cup G \mapsto G$
- **3 Swap**: si σ no es una variable $\{\sigma \doteq s\} \cup G \mapsto \{s \doteq \sigma\} \cup G$
- **4 Eliminación de variable**: si $s \notin FV(\sigma)$ $\{s \doteq \sigma\} \cup G \mapsto_{\sigma/s} G[\sigma/s]$
- Falla

$$\{\sigma \doteq \tau\} \cup G \mapsto \texttt{falla}, \text{ con } (\sigma, \tau) \in T \cup T^{-1} \text{ y}$$

 $T = \{(\mathsf{Bool}, \mathsf{Nat}), (\mathsf{Nat}, \sigma_1 \to \sigma_2), (\mathsf{Bool}, \sigma_1 \to \sigma_1)\}$

Occur check: si $s \neq \sigma$ y $s \in FV(\sigma)$ $\{s \doteq \sigma\} \cup G \mapsto falla$

Algoritmo de inferencia Extensiones Extensión Abstracción sobi

Extensiones al algoritmo

En general

- Agregar casos nuevos al algoritmo.
- Menos frecuentemente, modificar casos existentes.

Para incorporar nuevos términos

- Nuevas reglas de tipado \Rightarrow nuevos casos del algoritmo \mathbb{W} .
- Anotar las expresiones con sus tipos.

Extensión del lenguaje

Abstracciones sobre pares

$$M ::= \ldots |\lambda\langle x, y\rangle : \langle \sigma \times \tau \rangle . M$$

$$\frac{\Gamma, x \colon \sigma, y \colon \tau \triangleright M \colon \rho}{\Gamma \triangleright \lambda \langle x, y \rangle \colon \langle \sigma \times \tau \rangle. M \colon \langle \sigma \times \tau \rangle \to \rho}$$

Extensión del lenguaje

Abstracciones sobre pares

$$M ::= \ldots |\lambda\langle x, y\rangle : \langle \sigma \times \tau \rangle . M$$

$$M' ::= \ldots |\lambda\langle x, y\rangle.M'$$

$$\frac{\Gamma, x \colon \sigma, y \colon \tau \triangleright M \colon \rho}{\Gamma \triangleright \lambda \langle x, y \rangle \colon \langle \sigma \times \tau \rangle . M \colon \langle \sigma \times \tau \rangle \to \rho}$$

Abstracciones sobre pares

$M ::= \ldots |\lambda\langle x, y\rangle : \langle \sigma \times \tau \rangle. M$

$$M' ::= \ldots |\lambda\langle x, y\rangle.M'$$

$$\frac{\Gamma, x \colon \sigma, y \colon \tau \triangleright M \colon \rho}{\Gamma \triangleright \lambda \langle x, y \rangle \colon \langle \sigma \times \tau \rangle. M \colon \langle \sigma \times \tau \rangle \to \rho}$$

Ejercicio 2

Extender el algoritmo:

$$\mathbb{W}(\lambda\langle x,y\rangle.U)\stackrel{\text{def}}{=}$$
?

Extensiones del lenguaje

$$\begin{split} \sigma &::= \dots \mid [\sigma] \\ M, N, O &::= \dots \mid [\]_{\sigma} \mid M :: N \mid \textit{Case M of } [\] \leadsto N \ ; h :: t \leadsto O \\ \hline \\ \hline \hline \Gamma \rhd [\]_{\sigma} : [\sigma] & \hline \hline \hline \Gamma \rhd M : [\sigma] & \hline \Gamma \rhd N : [\sigma] \\ \hline \hline \hline \Gamma \rhd M : [\sigma] & \hline \Gamma \rhd N : \tau \\ \hline \hline \hline \Gamma \rhd \textit{Case M of } [\] \leadsto N \ ; h :: t \leadsto O : \tau \end{split}$$

Extensiones del lenguaje

Ejercicio 3

$$\begin{split} \sigma &::= \dots \mid [\sigma] \\ M, N, O &::= \dots \mid [\]_{\sigma} \mid M :: N \mid \textit{Case M of } [\] \leadsto N \ ; h :: t \leadsto O \\ \hline \\ \hline \hline \Gamma \rhd [\]_{\sigma} : [\sigma] & \hline \hline \hline \Gamma \rhd M : [\sigma] & \hline \Gamma \rhd N : [\sigma] \\ \hline \hline \Gamma \rhd M : [\sigma] & \Gamma \rhd N : \tau \\ \hline \hline \Gamma \rhd \textit{Case M of } [\] \leadsto N \ ; h :: t \leadsto O : \tau \end{split}$$

$$\mathbb{W}([\])\stackrel{\mathrm{def}}{=}?$$
 $\mathbb{W}(U_1::U_2)\stackrel{\mathrm{def}}{=}?$
 $\mathbb{W}(\mathsf{Case}\ U_1\ \mathsf{of}\ [\] \leadsto U_2\ ; h::t\leadsto U_3)\stackrel{\mathrm{def}}{=}?$

Otra extensión Switch de naturales

 $M = \ldots \mid$ switch M {case $\underline{n_1}$: M_1 ... case $\underline{n_k}$: M_k default : M_{k+1} }

$$\Gamma \triangleright M : Nat \quad \forall i, j (1 \le i, j \le k \land i \ne j \Rightarrow n_i \ne n_j)
\Gamma \triangleright N_1 : \sigma \quad \dots \quad \Gamma \triangleright N_k : \sigma \quad \Gamma \triangleright N : \sigma$$

 $\Gamma \triangleright \text{switch } M \text{ {case }} \underline{n_1} : N_1 \dots \text{ case } \underline{n_k} : N_k \text{ default } : N \} : \sigma$

Ejercicio 4

Extender el algoritmo:

 $\mathbb{W}(\text{switch } U_0 \text{ {case }} \underline{n_1}: U_1 \dots \text{ case } \underline{n_k}: U_k \text{ default }: U_{k+1})) \stackrel{\text{def}}{=} ?$

Otra extensión del lenguaje Letrec

$$M ::= \ldots | \text{ letrec } f = M \text{ in } N$$

$$\frac{\Gamma \cup \{f : \pi \to \tau\} \rhd M : \pi \to \tau \qquad \Gamma \cup \{f : \pi \to \tau\} \rhd N : \sigma}{\Gamma \rhd \mathsf{letrec} \ f = M \ \mathsf{in} \ N : \sigma}$$

Ejercicio 5

Extender el algoritmo:

$$\mathbb{W}(\text{letrec } f = U_1 \text{ in } U_2) \stackrel{\text{def}}{=} ?$$

Algoritmo de inferencia Extensiones Extensión Abstracción sobi

Moraleja

Algunas conclusiones

- Los llamados recursivos devuelven un contexto, un término anotado y un tipo. No podemos asumir nada sobre ellos.
- Cuando la regla tiene tipos iguales o tipos con una forma específica: unificar.
- Si hay contextos repetidos en las premisas, unificarlos.
- Cuando la regla liga variables:
 - Obtener su tipo del Γ obtenido recursivamente.
 - Si no figuran: variable fresca.
 - Sacarlas del Γ del resultado (y del que se vaya a unificar).
- Decorar los términos según corresponda.
- Si la regla tiene restricciones adicionales, se incorporan como posibles casos de falla.

PLP ⊳ fin clase: consultas