Q. Rible

Feuille d'exercices 3 : Ondelettes

Ondelette de Haar

On se place dans $L^2(\mathbb{R})$. On note $\varphi \colon \mathbb{R} \to \mathbb{R}$ l'application valant 1 sur [0;1] et 0 sinon. Pour $j,k \in \mathbb{Z}$ on pose

$$\varphi_{j,k}(x) = 2^{j/2} \varphi(2^j x - k)$$

Exercice 1:

Tracer le graphe des fonctions $\varphi, \varphi_{1,0}, \varphi_{1,1}, \varphi_{2,1}$.

Exercice 2:

Montrer que le support de $\varphi_{j,k}$ est l'intervalle dyadique $I_{j,k} = \left[\frac{k}{2^j}; \frac{k+1}{2^j}\right]$.

Exercice 3:

Montrer que quelque soit $j \in \mathbb{Z}$, montrer que $(\varphi_{j,k})_{k \in \mathbb{Z}}$ est une famille orthonormale. Quel est l'espace engendré par cette famille (en particulier vérifier que ce n'est pas $L^2(\mathbb{R})$).

On pose $V_j = \overline{Vect}((\varphi_{j,k})_{k \in \mathbb{Z}})$ et pour $f \in L^2(\mathbb{R})$ on pose $f_j = proj_{V_j}^{\perp}(f)$ et $c_{j,k}(f) = \langle f, \varphi_{j,k} \rangle$.

Exercice 4:

Montrer que quelque soit $j \in \mathbb{Z}$, $f_j = \sum_{k \in \mathbb{Z}} c_{j,k}(f) \varphi_{j,k}$. On admet dans la suite que

$$\lim_{j \to +\infty} f_j = f$$
$$\lim_{j \to -\infty} f_j = 0$$

Exercice 5: Equation d'échelle

Montrer que $\varphi = \varphi_{0,0} = \frac{1}{\sqrt{2}}\varphi_{1,0} + \frac{1}{\sqrt{2}}\varphi_{0,1}$ (faites un dessin!). En déduire que pour tout $j,k \in \mathbb{Z}$:

$$\varphi_{j,k} = \frac{1}{\sqrt{2}} \varphi_{j+1,2k} + \frac{1}{\sqrt{2}} \varphi_{j+1,2k+1}$$

En déduire que quelque soit $j \in \mathbb{Z}$, $V_j \subset V_{j+1}$ et que pour tout $f \in L^2(\mathbb{R})$, $f \in V_j$ ssi $(x \mapsto f(2x)) \in V_{j+1}$. On pose maintenant $\psi(x) = \varphi(2x) - \varphi(2x-1)$. Comme précédemment pour $j, k \in \mathbb{Z}$ on pose

$$\psi_{j,k}(x) = 2^{j/2}\psi(2^{j}x - k)$$

Exercice 6:

Tracer le graphe des fonctions $\psi, \psi_{1,0}, \psi_{1,1}, \psi_{2,1}$.

Exercice 7:

Soient $j, k \in \mathbb{Z}$, montrer les relations

$$\psi_{j,k} = \frac{1}{\sqrt{2}} \varphi_{j+1,2k} - \frac{1}{\sqrt{2}} \varphi_{j+1,2k+1}$$
$$\varphi_{j+1,2k} = \frac{1}{\sqrt{2}} \varphi_{j,k} + \frac{1}{\sqrt{2}} \psi_{j,k}$$
$$\varphi_{j+1,2k+1} = \frac{1}{\sqrt{2}} \varphi_{j,k} - \frac{1}{\sqrt{2}} \varphi_{j,k}$$

En déduire que $\psi_{j,k} \notin V_j$.

Exercice 8:

Montrer les relations suivantes :

- 1. $\langle \psi_{j,k}, \psi_{j,k'} \rangle = \delta_{k,k'}$ quelque soient $j, k, k' \in \mathbb{Z}$ (i.e. $(\psi_{j,k})_{k \in \mathbb{Z}}$ est une famille orthonormale).
- 2. $\langle \psi_{j,k}, \varphi_{j,k'} \rangle = \delta_{k,k'}$ quelque soient $j, k, k' \in \mathbb{Z}$.

Pour $j \in \mathbb{Z}$ on pose $W_j = \overline{Vect}((\psi_{j,k})_{k \in \mathbb{Z}})$.

Exercice 9:

Déduire de l'exercice précédent que W_j est le supplémentaire orthogonal de V_j dans V_{j+1} , dit autrement $V_{j+1} = V_j \oplus^{\perp} W_j$.

On note désormais $g_j = proj_{W_j}^{\perp}(f)$ et $d_{j,k}(f) = \langle f, \psi_{j,k} \rangle$.

Exercice 10:

Montrer que quelque soit $j \in \mathbb{Z}$, $g_j = \sum_{k \in \mathbb{Z}} d_{j,k}(f) \psi_{j,k}$.

Exercice 11:

Montrer que $d_{j,k}(f) = \frac{1}{\sqrt{2}}(c_{j+1,2k}(f) - c_{j+1,2k+1}(f)).$

Exercice 12:

Montrer que $f_{j+1} = f_j + g_j$.

Exercice 13:

Déduire des exercices précédents la décomposition

$$f = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} d_{j,k}(f) \psi_{j,k}$$

Dit autrement $(\psi_{j,k})_{j,k\in\mathbb{Z}}$ est une base hilbertienne de $L^2(\mathbb{R})$ (c'est la base de Haar). Les coefficients $d_{j,k}(f)$ sont appellés coefficients d'ondelette de la fonction f.

Exercice 14:

Soit $f \in L^2(\mathbb{R})$, montrer la formule :

$$||f||^2 = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |d_{j,k}(f)|^2$$

Quelques décompositions dans la base de Haar

Exercice 15:

Montrer que si $f \in L^2(\mathbb{R})$ est à support dans [0;1] alors les seuls coefficients d'ondelettes pouvant être non nuls sont les $d_{j,k}(f)$ avec $0 \le k \le 2^j - 1$.

Exercice 16:

Exprimer $c_{j,k}(f)$ en fonction de la moyenne de f sur l'intervalle dyadique $I_{j,k}$. En déduire une expression de $\psi_{j,k}$ en fonction de ces moyennes.

Exercice 17:

Calculer la décomposition en ondelettes de la fonction $f \in L^2(\mathbb{R})$ valant 1 sur [0; 1/3] et 0 sinon.

Exercice 18:

Calculer la décomposition en ondelettes de la fonction $f \in L^2(\mathbb{R})$ valant x en $x \in [0;1]$ et 0 sinon.

Algorithmes de Mallat

Exercice 19:

A partir de l'équation d'échelle, montrer qu'il existe une fonction m_0 telle que $\forall \xi \in \mathbb{R}, \hat{\varphi}(\xi) = \hat{\varphi}(\xi/2)m_0(\xi/2)$. On cherchera m_0 sous forme d'une série de Fourier $m_0(\xi) = \sum_{k \in \mathbb{Z}} \frac{1}{2} a_k e^{-2i\pi\xi}$ dont on explicitera les coefficients.

Exercice 20:

Montrer qu'il existe une fonction m_1 telle que $\forall \xi \in \mathbb{R}, \hat{\psi}(\xi) = \hat{\varphi}(\xi/2)m_0(\xi/2)$. On cherchera m_1 sous forme d'une série de Fourier $m_1(\xi) = \sum_{k \in \mathbb{Z}} \frac{1}{2} b_k e^{-2i\pi\xi}$ dont on explicitera les coefficients. En particulier vérifier que $b_k = (-1)^k \overline{a_{1-k}}$ quelque soit $k \in \mathbb{Z}$.

Les fonctions m_0 et m_1 sont les filtres associés à la fonction mère et à l'ondelette.

Exercice 21: Filtres miroirs en quadrature

Vérifier les relations suivantes pour $\xi \in \mathbb{R}$:

- 1. $|m_0(\xi)|^2 + |m_0(\xi + 1/2)|^2 = 1$
- 2. $|m_1(\xi)|^2 + |m_1(\xi + 1/2)|^2 = 1$
- 3. $m_0(\xi)\overline{m_1(\xi)} + m_0(\xi + 1/2)\overline{m_1(\xi + 1/2)} = 0$

Exercice 22:

Appliquer l'algorithme de décomposition pour calculer la décomposition en ondelettes des échantillons (2, 1, 8, 3, 4, -5, 2, 7).

Exercice 23:

Appliquer l'algorithme de reconstruction pour retrouver l'échantillon dont les coefficients d'ondelettes sont $c_{0,0} = 2$, $d_1 = (-1,2)$, $d_2 = (4,-2,0,1)$.