

FCC PART 22H MEASUREMENT AND TEST REPORT

For

Bravo Tech (Shenzhen) Co., Ltd.

No.8 Building, The 3rd Zone, Tangtou Industrial Park, Shiyan, Baoan District, Shenzhen, Guangdong, P. R. of China

FCC ID: WBKMBSC081921-08

Product Type: Report Type: Multi-Band, Multi-Standard, Multi-Carrier Coverage System (CDMA Original Report 800) Werr Zhong **Test Engineer:** Weir Zhong Report Number: RSZ09121101-22H **Report Date:** 2010-05-14 Merry Zhao merry, where **Reviewed By:** EMC Engineer Bay Area Compliance Laboratories Corp. (Shenzhen) Prepared By: 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
ЕИТ Рното	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGYTEST FACILITY	
SYSTEM TEST CONFIGURATION	6
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
CONFIGURATION OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
FCC §1.1307(B)(1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	9
STANDARD APPLICABLE	
MPE Predication	
FCC §2.1047 - MODULATION CHARACTERISTIC	
FCC §2.1046 & § 22.913(A) - RF OUTPUT POWER	11
APPLICABLE STANDARD	11
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	11
FCC §2.1049, §22.917& §22.905 - OCCUPIED BANDWIDTH	19
APPLICABLE STANDARDS	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	19
FCC §2.1051 & §22.917(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	33
APPLICABLE STANDARDS	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1053 & §22.917 - SPURIOUS RADIATED EMISSIONS	36
APPLICABLE STANDARDS	
TEST PROCEDURE	
TEST FROCEDURE TEST AND DETAILS	
TEST DATA	
FCC §22.917(A) - BAND EDGES	30
APPLICABLE STANDARDS	
TEST PROCEDURE	
TEST FROCEDURE TEST EQUIPMENT LIST AND DETAILS	

FCC ID: WBKMBSC081921-08

TEST DATA	39
FCC §2.1055 & §22.355 - FREQUENCY STABILITY	45
APPLICABLE STANDARD	45
Test Procedure	45
TEST EQUIPMENT LIST AND DETAILS	46
TEST DATA	46

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Bravo Tech* (*Shenzhen*) *Co.*, *Ltd*.'s product, model number: *mBSC081921-12* (*FCC ID*: *WBKMBSC081921-08*) or the "EUT" as referred to in this report is a *Multi-Band*, *Multi-Standard*, *Multi-Carrier Coverage System*, which measures approximately: 50 cm L x 25 cm W x 12 cm H, rated input voltage: AC 120V power source.

Frequency Range:

Cellular Band: 869-894 MHz (Downlink)

Transmitter Output Power:

Cellular Band: 46±1 dBm (Downlink)

* All measurement and test data in this report was gathered from production sample serial number: 0912031 (Assigned by BACL). The EUT was received on 2009-12-11.

EUT Photo

Please see additional photos in Exhibit B & C

Objective

This type approval report is prepared on behalf of *Bravo Tech (Shenzhen) Co., Ltd.* in accordance with Part 2, Subpart J, and Part 22 Subpart H of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability, band edge and radiated margin.

Related Submittal(s)/Grant(s)

None.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services

Applicable Standards: TIA/EIA 603-C, ANSI C63.4-2003.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp.(Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 21, 2007. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-C.

The final qualification test was performed with the EUT operating at normal mode.

Equipment Modifications

No modifications were made to the EUT.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
AEROFLEX	Signal Generator	IFR3416	3410051025	N/A
ASTEC	DC Power Supply	JF101B-9000-0000	BY4748	N/A
IBM	Laptop	T400	GTVQC-2KWCD- VXM8V-KPRM9-KKVDB	DoC
Bravo	Host Unit	mBSC081921-12 (Host Unit)	N/A	N/A

External I/O Cable

Cable Description	Length (m)	From/Port	To
Unshielded Detachable AC Cable	7.0	LISN/AC mains	EUT
Unshielded Detachable Fiber Cable	1.2	Host Unit / Fiber Port	Remote Unit (AWS 2100 Unit)
Shielded Detachable Blue RF Cable	1.5	Host Unit / SMA Port	Remote Unit
Shielded Detachable Yellow RF Cable	3.0	Signal Generator / SMA Port	Remote Unit
Unshielded Detachable DC Cable	1.3	DC Supply / DC Port	Host Unit
Unshielded Detachable Network Cable	10.0	Laptop / Network Port	Host Unit

Configuration of Test Setup

For Downlink mode-CDMA Cellular band:

Block Diagram of Test Setup

For Downlink mode-CDMA Cellular Band:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307 (b)(1), §2.1091	Maximum Permissible exposure (MPE)	Compliant
\$2.1046; \$ 22.913 (a)	RF Output Power	Compliant
§2.1047	Modulation Characteristics	N/A
\$2.1049; \$22.905 \$22.917	99% & -26 dB Occupied Bandwidth	Compliant
§2.1051,§22.917 (a)	Spurious Emissions at Antenna Terminal	Compliant
§2.1053, §22.917 (a)	Field Strength of Spurious Radiation	Compliant
§22.917 (a)	Out of band emission, Band Edge	Compliant
§2.1055, §22.355	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant

FCC §1.1307(b)(1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Standard Applicable

According to subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for Occupational/Controlled Exposures

Limits for Occupational/Controlled Exposures				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mw/cm²)	Averaging Time (Minutes)
0.3-3.0	614	1.63	*(100)	6
3.0-30.0	1824/f	4.89/f	*(900/f\2\)	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	f/300	6
1500-100,000	/	/	5.0	6

f = frequency in MHz

MPE Predication

Predication of MPE at a given distance

 $S = PG/4\pi R^2$

Where:

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally *numeric* gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Maximum peak output power at antenna input terminal: 46.41 (dBm) Maximum peak output power at antenna input terminal: 43752.21 (mW)

Prediction safety distance: 400 (cm)
Predication frequency: 872.955 (MHz)
Antenna Gain (typical): 11 (dBi)
Antenna Gain (typical): 12.59 (numeric)

Antenna Gain (typical): 12.59 (numeric) Power density predication frequency at 400 cm: 0.27mW/cm²)

MPE limit for general population exposure at prediction frequency: $\frac{f/300 \text{ (mW/cm}^2)=872.955/300=2.91 \text{ (mW/cm}^2)}{1000 \text{ (mW/cm}^2)=872.955/300=2.91 \text{ (mW/cm}^2)}$

Result: compliant

^{* =} Plane-wave equivalent power density

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC $\S 2.1047(d)$, Part 22H there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC §2.1046 & § 22.913(a) - RF OUTPUT POWER

Applicable Standard

FCC §2.1046, §22.913(a).

Test Procedure

Conducted method:

The RF output of the EUT system was connected to the wireless test set and the EMI test receiver through sufficient attenuation.

Radiated method:

TIA 603-C section 2.2.17

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-24	2010-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Weir Zhong on 2009-12-18 to 2010-04-27.

Cellular Band (Part 22H)

Mode	Channel	Frequency (MHz)	Output Power (dBm)	Result
	One Carrier			
	Low	871.110	45.37	Compliant
	Middle	881.500	45.55	Compliant
	High	892.740	45.24	Compliant
		Two Ca	rriers	
	Low	871.725	45.85	Compliant
	Middle	881.500	45.57	Compliant
Downlink	High	892.125	45.42	Compliant
Downink	Three Carriers			
	Low	872.340	46.04	Compliant
	Middle	881.500	45.75	Compliant
	High	891.510	45.56	Compliant
	Four Carriers		rriers	
	Low	872.955	46.41	Compliant
	Middle	881.500	46.35	Compliant
	High	890.895	45.72	Compliant

Note: The antenna gain for CDMA 800 is less than 11dBi.

Plots of Conducted Output Power

Downlink mode (One carrier):

Low Channel

Date: 18.DEC.2009 10:04:02

Middle Channel

Date: 17.DEC.2009 06:37:32

High Channel

Date: 18.DEC.2009 10:07:15

Downlink mode (Two carriers):

Low Channel

Date: 27.APR.2010 18:46:40

Middle Channel

Date: 27.APR.2010 18:32:54

High Channel

Date: 27.APR.2010 18:56:22

Downlink mode (Three carriers):

Low Channel

Date: 27.APR.2010 19:22:16

Middle Channel

Date: 27.APR.2010 19:08:29

High Channel

Date: 27.APR.2010 19:25:09

Downlink mode (Four carriers):

Low Channel

Date: 18.DEC.2009 10:49:26

Middle Channel

Date: 18.DEC.2009 10:45:25

High Channel

Date: 18.DEC.2009 14:44:46

FCC §2.1049, §22.917& §22.905 - OCCUPIED BANDWIDTH

Applicable Standards

FCC §2.1049, §22.917, §22.905.

Test Procedure

The RF output of the EUT system was connected to the simulator and the EMI test receiver through sufficient attenuation.

The resolution bandwidth of the EMI test receiver was set at 30 kHz (Cellular) and the 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-24	2010-11-23

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

The testing was performed by Weir Zhong on 2010-01-08 to 2010-04-27.

CDMA 800 Units:

Cellular Band (Part 22H)

Mode	Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Occupied Bandwidth (MHz)
	One Carrier			
	Low	871.11	1.284	1.434
	Mid	881.50	1.284	1.440
	High	892.74	1.278	1.434
			Two Carriers	
	Low	871.725	2.5	2.68
	Mid	881.500	2.5	2.68
Downlink	High	892.125	2.5	2.68
DOWIIIIIK	Three Carriers			
	Low	872.34	3.72	3.93
	Mid	881.50	3.72	3.93
	High	891.51	3.72	3.93
	Four Carriers			
	Low	872.955	4.960	5.200
	Mid	881.500	4.960	5.200
	High	890.895	4.940	5.200

Please refer to the following plots.

Downlink mode (One carrier):

99% Occupied Bandwidth

Date: 8.JAN.2010 11:55:04

Middle Channel

Date: 8.JAN.2010 11:53:39

High Channel

Date: 8.JAN.2010 11:58:07

26 dB Occupied Bandwidth

Low Channel

Date: 8.JAN.2010 11:55:23

Middle Channel

Date: 8.JAN.2010 11:53:08

High Channel

Date: 8.JAN.2010 11:57:49

Downlink mode (Two carriers):

99% Occupied Bandwidth

Low Channel

Date: 27.APR.2010 18:47:35

Middle Channel

Date: 27.APR.2010 18:37:29

High Channel

Date: 27.APR.2010 18:53:45

26 dB Occupied Bandwidth

Low Channel

Date: 27.APR.2010 18:48:10

Middle Channel

Date: 27.APR.2010 18:37:59

High Channel

Date: 27.APR.2010 18:53:14

Downlink mode (Three carriers):

99% Occupied Bandwidth

Low Channel

Date: 27.APR.2010 19:17:39

Middle Channel

Date: 27.APR.2010 19:09:22

High Channel

Date: 27.APR.2010 19:25:49

26 dB Occupied Bandwidth

Low Channel

Date: 27.APR.2010 19:17:03

Middle Channel

Date: 27.APR.2010 19:11:28

High Channel

Date: 27.APR.2010 19:26:50

Downlink mode (Four carriers):

99% Occupied Bandwidth

Low Channel

Date: 8.JAN.2010 12:02:43

Middle Channel

Date: 8.JAN.2010 12:00:51

High Channel

Date: 8.JAN.2010 12:07:35

26 dB Occupied Bandwidth

Low Channel

Date: 8.JAN.2010 12:03:06

Middle Channel

Date: 8.JAN.2010 12:01:20

High Channel

Date: 8.JAN.2010 12:07:06

FCC §2.1051 & §22.917(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standards

FCC §2.1051, §22.917(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in FCC §2.1051.

Test Procedure

The RF output of the EUT system was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at as following table. Sufficient scans were taken to show any out of band emissions up to 10^{th} harmonic.

Frequency	RBW	VBW
9 ~ 150 kHz	1 kHz	3 kHz
150 kHz ~ 30 MHz	10 kHz	30 kHz
30 MHz ~ 1 GHz	100 kHz	300 kHz
Above 1 GHz	1 MHz	3 MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-07-08	2010-07-07
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-24	2010-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Weir Zhong on 2009-12-20 to 2009-12-22.

Downlink mode (worse case):

9 kHz - 150 kHz - Middle Channel

Date: 22.DEC.2009 00:48:56

150 kHz - 30 MHz - Middle Channel

Date: 22.DEC.2009 00:48:28

30 - 1000 MHz - Middle Channel

Date: 22.DEC.2009 00:51:00

1 – 10 GHz - Middle Channel

FCC §2.1053 & §22.917 - SPURIOUS RADIATED EMISSIONS

Applicable Standards

FCC §2.1053, §22.917.

Test Procedure

The EUT system was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = 10 lg (TXpwr in Watts/0.001) - the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052604	2009-05-05	2010-05-04
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2009-03-11	2010-03-11
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-07-08	2010-07-07
HP	Preamplifier	8449B	3008A00277	2009-09-12	2010-09-11
HP	Signal Generator	HP8657A	2849U00982	2009-10-28	2010-10-27
НР	Amplifier	HP8447D	2944A09795	2009-08-02	2010-08-02
НР	Synthesized Sweeper	8341B	2624A00116	2009-11-07	2010-11-06
COM POWER	Dipole Antenna	AD-100	041000	2009-09-25	2010-09-25
A.H. System	Horn Antenna	SAS-200/571	135	2009-05-17	2010-05-17

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Weir Zhong on 2009-12-20 to 2010-4-28.

Test mode: Transmitting

Two tone Intermodulation:

In the band 874-889 MHz, intermodulation products levels as follows, and the max level are less than -13 dBm;

Set the operating frequency to 881.50 MHz, and the other input signal at 882.65 MHz

Date: 28.APR.2010 13:59:42

Downlink mode (worse case)

Indica	ted	Table	Test A	ntenna		Substitu	ted		Absolute		
Frequency (MHz)	S.A. Reading (dBµV)	Angle Degree	Height (m)	Polar (H/V)	Frequency (MHz)	Level (dBm)	Ant. Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
			í.	30 MHz	-10 GHz M	iddle Cl	nannel				
36.25	62.23	345	1.0	V	36.25	-32.3	0	0.20	-32.5	-13	19.5
6667.33	46.13	188	1.5	V	6667.33	-44.0	8.6	1.90	-37.3	-13	24.3
6667.33	46.06	181	1.2	Н	6667.33	-44.2	8.6	1.90	-37.5	-13	24.5
50.05	57.99	175	1.2	V	50.05	-38.8	0	0.24	-39.04	-13	26.04
3581.16	48.11	172	1.3	V	3581.16	-49.7	7.0	1.42	-44.12	-13	31.12
2963.92	48.22	150	1.0	Н	2963.92	-51.5	7.5	1.29	-45.29	-13	32.29
80.08	52.42	62	1.1	V	80.08	-45.3	0	0.25	-45.55	-13	32.55
50.05	49.63	237	1.1	Н	50.05	-46.4	0	0.24	-46.64	-13	33.64
1140.28	48.43	234	1.7	Н	1140.28	-53.1	6.0	0.78	-47.88	-13	34.88
245.95	45.91	182	1.5	Н	245.95	-49.3	0	0.32	-49.62	-13	36.62
87.11	49.07	360	1.6	Н	87.11	-49.7	0	0.25	-49.95	-13	36.95
1140.25	47.54	51	1.1	V	1140.25	-55.7	6.0	0.78	-50.48	-13	37.48

FCC §22.917(a) - BAND EDGES

Applicable Standards

According to FCC §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

Test Procedure

The RF output of the EUT system was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 10 kHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-24	2010-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Weir Zhong on 2010-01-08 to 2010-04-27.

Please refer to the following tables and plots.

Mode	Channel	Frequency (MHz)	Emission (dBm)	Limit (dBm)		
		One C	Carrier			
	Lowest	869.0	-27.61	-13		
	Highest	894.0	-27.65	-13		
	Two Carriers					
	Lowest	869.0	-24.24	-13		
Downlink	Highest	894.0	-28.60	-13		
Downlink	Three Carriers					
	Lowest	869.0	-24.46	-13		
	Highest	894.0	-28.55	-13		
		Four C	Carriers			
	Lowest	869.0	-28.19	-13		
	Highest	894.0	-25.13	-13		

Downlink mode (One carrier), Lowest Channel

Date: 8.JAN.2010 11:56:20

Downlink mode (One carrier), Highest Channel

Date: 8.JAN.2010 11:57:12

Downlink mode (Two carriers), Lowest Channel

Date: 27.APR.2010 18:50:21

Downlink mode (Two carriers), Highest Channel

Date: 27.APR.2010 18:52:02

Downlink mode (Three carriers), Lowest Channel

Date: 27.APR.2010 19:19:29

Downlink mode (Three carriers), Highest Channel

Date: 27.APR.2010 19:27:47

Downlink mode (Four carriers), Lowest Channel

Date: 8.JAN.2010 12:04:27

Downlink mode (Four carriers), Highest Channel

Date: 8.JAN.2010 12:05:37

FCC §2.1055 & §22.355 - FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 (a), §2.1055 (d), §22.355

According to FCC §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency	Tolerance f	for Transm	itters in the	Public M	Iobile Services
-----------	-------------	------------	---------------	----------	-----------------

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
WUHUAN	Temperature & Humidity Chamber	HTP205	20021115	2009-05-09	2010-05-09
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-24	2010-11-23

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Weir Zhong on 2009-12-23.

Middle Channel, f _o = 881.5 MHz				
Temperature (°C)	Power Supplied (Vac) RU Unit	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)
-30	102	22	0.024957	1.5
	120	24	0.027226	1.5
	138	20	0.022689	1.5
-20	102	21	0.023823	1.5
	120	18	0.02042	1.5
	138	24	0.027226	1.5
-10	102	16	0.018151	1.5
	120	27	0.03063	1.5
	138	23	0.026092	1.5
0	102	23	0.026092	1.5
	120	26	0.029495	1.5
	138	24	0.027226	1.5
10	102	25	0.028361	1.5
	120	27	0.03063	1.5
	138	21	0.023823	1.5
20	102	19	0.021554	1.5
	120	25	0.028361	1.5
	138	28	0.031764	1.5
30 12	102	26	0.029495	1.5
	120	30	0.034033	1.5
	138	31	0.035167	1.5
40 120 138	102	28	0.031764	1.5
	120	31	0.035167	1.5
	138	33	0.037436	1.5
50 12	102	27	0.030630	1.5
	120	30	0.034033	1.5
	138	31	0.035167	1.5

***** END OF REPORT *****