RESUME DE COURS DU CHAPITRE 4

Rappel : Les deux échelles de température :

La température est une mesure de l'agitation moléculaire de la matière.

La température absolue, notée T, s'exprime en kelvin (K). Elle est liée à la température θ , exprimée en degré Celsius $^{\circ}C$, par la relation :

$$T=\theta+273,15$$

Avec:

T: température en Kelvin (K)

 θ : température en degré Celsius (°C)

Rappel: Les modes de transfert thermique

Le transfert thermique est le passage d'énergie d'un corps chaud vers un corps froid. Il y a 3 modes de transfert thermique :

Conduction

Le transfert de chaleur par conduction se fait de proche en proche sans déplacement de matière. C'est le seul mode de transfert dans les solides.

Convection

Le transfert de chaleur par convection se fait par des mouvements de matière au sein d'un gaz ou d'un liquide (fluide).

Rayonnement

Tout corps porté à une certaine température émet un rayonnement électromagnétique qui se propage même dans le vide.

Rappel: Variation d'énergie interne reçue ou perdue lors d'un transfert thermique

$$Q = \Delta U = m. c. \Delta T$$

Cette relation peut aussi s'écrire :

$$Q = U_{finale} - U_{initiale} = m. c. (T_{finale} - T_{initiale})$$

Avec:

Q : quantité de chaleur reçue (Joule I)

U: énergie interne (I)

T: température (Kelvin K)

c: capacité calorifique massique du matériau $(J. K^{-1}. kg^{-1})$

m: masse du matériaux (kg)

La variation d'énergie interne ΔU , est égale à la quantité de chaleur reçue $m{Q}$.

« La chaleur s'écoule toujours du corps chaud vers le corps froid »

La conductivité thermique

Pour caractériser cette capacité des matériaux à résister à la perte d'énergie thermique, on utilise la conductivité thermique λ du matériau, qui caractérise la manière dont un matériau laisse passer l'énergie thermique.

Elle s'exprime en $W. m^{-1}. K^{-1}$:

Matériau	$\lambda \left(W.m^{-1}.K^{-1}\right)$
Air	0,024
PVC	0,03
Béton	0,10 à 0,85
Verre	1,13
Marbre	3
Fer	72
Aluminium	230

Plus la conductivité est grande, plus le matériau laissera passer l'énergie thermique

Parmi les corps, ceux qui présentent les plus faibles valeurs de conductivité thermique λ , sont les gaz : on se servira donc au maximum des matériaux poreux pour isoler.

La résistance thermique

Pour savoir si un matériau est un bon isolant, on peut aussi utiliser la résistance thermique du matériau qui exprime la capacité du matériau à résister aux changements de température.

Plus la résistance est grande, moins le matériau laissera passer l'énergie thermique.

Elle est notée R_{th} , s'exprime en m^2 . K. W^{-1} et elle dépend de l'épaisseur e du matériau et de la conductivité thermique du matériau λ :

$$R_{th} = \frac{e}{\lambda}$$

Dans le cas d'une paroi composée de plusieurs couches de matériaux différents, la résistance $R_{th\,TOT}$ totale est égale à la somme des résistances thermiques des différents matériaux :

$$R_{th\,TOT} = \Sigma R_{th} = R_{th1} + R_{th2} + R_{th3} + ...$$

Le flux thermique

Le flux thermique est la quantité d'énergie thermique Q transférée par unité de temps à travers une certaine surface. Il s'exprime en watt (W).

$$\Phi = \frac{Q}{\Delta t}$$

Le flux thermique peut aussi s'exprimer en fonction de la manière suivante :

$$\Phi = \lambda \frac{S}{e} \Delta T$$
 ou encore $\Phi = \frac{S}{R_{th}} \cdot \Delta T$

Avec:

S la surface de l'échantillon (m^2) ,

e l'épaisseur de l'échantillon (m),

 ΔT la différence de température entre les deux parois (°C ou K),

 Δt la durée du transfert (s).