Combinatorică

Definim $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$ si citim "n factorial ".

Deci,
$$4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$$
.

Definim 0! = 1.

Permutări

Fie n un numar natural. Aranjamentele celor n obiecte, se mumese "permutari de n", pe care le notam cu P_n

Formula de calcul pentru $P_n = n!$

Exemplu:

$$P_5 = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$$

Aranjamente

Fie n si k 2 numere naturale, astfel incat $n \geq k$. Perechile ordonate formate din k elemente din n, se numesc "aranjamente de n luate cate k", pe care le notam cu A_n^k

Formula de calcul pentru $A_n^k = rac{n!}{(n-k)!}$

Exemplu:

$$A_5^2 = \frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3} = 3 \cdot 4 = 12$$

Combinări

Fie n si k 2 numere naturale, astfel incat $n \ge k$. Perechile neordonate formate din k elemente din n, se numesc "combinari de n luate cate k", pe care le notam cu C_n^k

Formula de calcul pentru
$$C_n^k = rac{n!}{(n-k)! \ k!}$$

Exemplu:

$$C_5^2 = \frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2} = \frac{4 \cdot 5}{1 \cdot 2} = 10$$

Exerciții

-Preluate din modele de bac-

1.

5p 4. Determinați numărul submulțimilor cu 10 elemente ale unei mulțimi cu 12 elemente.

$$C_{12}^{10} = \frac{12!}{(12-10)!10!} = \frac{12!}{2!10!} = \frac{12 \cdot 11 \cdot 10!}{2 \cdot 10!} = \frac{12 \cdot 11}{2} = 66$$

2.

5p 4. Determinați numărul de elemente ale unei mulțimi, știind că aceasta are exact 45 de submulțimi cu două elemente.

n este numărul de elemente al mulțimii $n \in \mathbb{N}$, $n \ge 2$

$$C_n^2 = 45$$

$$C_n^2 = \frac{n!}{(n-2)! \ 2!} = \frac{n!}{2 \cdot (n-2)!} = \frac{(n-2)! \ (n-1) \ n}{2 \cdot (n-2)!} = \frac{n(n-1)}{2} = 45$$

$$n(n-1) = 45 \cdot 2 = 90$$

$$n = 10$$

3

5p | 4. Determinați numărul de elemente ale unei mulțimi, știind că aceasta are exact 32 de submulțimi.

$$2^n = 32$$

$$n = 5$$