PrefixTreeESpan 算法实验报告

算法选择: PrefixTreeESpan

挖掘子图: embedded substructure

代码实现: Python

数据集:

CSlog: 59691 trees D10: 99999 trees F5: 100000 trees T1M: 1000000 trees

算法描述

主要思想:

- 1. 频繁子树的推导子树一定是频繁的
- 2. 频繁子树总是可以通过其前缀树增长得到
- 3. 利用深度优先搜索的思想通过递归迭代不断对前缀树进行增长,统计频繁的增长因子,从而得到更多的频繁子树

伪代码:

Algorithm PrefixTreeESpan

Input: A tree database D, minimum support threshold min_sup

Output: All frequent subtree patterns

Methods:

- 1) Scan D and find all frequent label b.
- 2) For each frequent label b
- 3) Output pattern tree <b -1>;
- Find all Occurrences of b in Database D, and construct <b −1>-projected database through collecting all corresponding Project- Instances in D;
- 5) **call** Fre(<b-1>, 1, ProDB(D,<b-1>), min sup).

Function Fre(S, n, ProDB(D,S), min_sup)

Parameters: S: a subtree pattern; n: the length of S; ProDB(D,S): the <S>-projected database; min_sup : the minimum support threshold.

Methods:

- 1) Scan ProDB(D,S) once to find all frequent GEs b.
- 2) For each GE b
- 3) extent S by b to form a subtree pattern S', and output S'.
- Find all Occurrences of b in ProDB(D,S), and construct < S' > -projected database through collecting all corresponding Project-Instances in ProDB(D,S);
- 5) call Fre(S', n+1, ProDB(D, S'), min sup).

Fig .5. Algorithm PrefixTreeESpan

定义了四个 class: Node、Tree、Project、PrefixTreeESpan,下面进行详细说明:

class Node:

```
"""Node in a tree
```

Attributes:

label: 节点的标签

range end:标识着以该节点为根节点的子树的范围,为该节点对应的-1节点

的下标。

class Tree:

"""class of a tree

Attributes:

nodes: 该树对应的所有节点的集合

......

class Project:

"""projected database 类

Attributes:

tree_id: 该 projected database 存储的子树源自的原树的 ID

start_index_list: 该 projected database 存储的每个子树对应的起始下标的集合

end_index_list: 该 projected database 存储的每个子树对应的结束

下标的集合

.....

class PrefixTreeESpan:

.....

PrefixTreeESpan 算法的实现

Attributes:

in_path: 输入文件路径 out_path: 输出文件的路径

min_propotion: 算作频繁嵌入子树结构出现的树占树的总数量的比例

tree_list: 所有输入的树的集合

fre_pre_tree: 频繁嵌入子树(即结果)的集合

min_support : min support

length_one_patterns: 存储了第一步获取的长度为1的频繁子树的集合

t_start : 程序开始的时间 t_stop : 程序结束的时间

methods:

def read_tree(self):

读入文件并存储树结构

def get_fre(self, pre_tree, n, proj_db):

根据第 n 级的频繁子树和和 projection database 来生成第 n+1 级的频繁子树,这是一个递归的过程

def run(self)

首先获取长度为 1 的频繁子树的集合,然后生成对应的 projection database,调用 get_pre,来生成不同级的频繁子树。

def output_result(self):

输出结果到文件

1111111

参数说明:

下面表格中的 min_propotion 表示应当算作频繁嵌入子树结构出现的树占树的总数量的比例。比如说,对于 T1M 数据集来说,如果 min_propotion = 0.1,那么 min_support = 1000000*0.1 = 100000

运行时间

如下表(单位:s):

0.1	0.05	0.02
4.8444	5.7097	16.1403
3.1476	3.9258	9.1301
4 5799	6 8828	9.6244
		60.5043
	4.8444	4.8444 5.7097 3.1476 3.9258 4.5799 6.8828

实验结果

对于不同 min_propotion 不同数据集挖掘出的频繁子树的个数如下表(单位:个数):

1 294.			
min_propotion			
数据集	0.1	0.05	0.02

	I		
CSlog (59691 trees)	2	6	73
D10 (99999 trees)	6	11	104
F5 (100000 trees)	16	33	87
T1M (1000000 trees)	6	8	38