NATIONAL BUREAU OF STANDARDS REPORT 7093

PRELIMINARY REPORT ON THE THERMODYNAMIC PROPERTIES OF SELECTED LIGHT-ELEMENT AND SOME RELATED COMPOUNDS

(SUPPLEMENT TO NBS REPORTS 6297, 6484, 6645, and 6928)

1 January 1961

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$1.50), available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

0300-11-03419

0302-11-03426

0307-11-03471

0501-11-05496

0903-11-19430

1501-11-15513

1504-11-15491

PRELIMINARY REPORT ON THE THERMODYNAMIC PROPERTIES OF SELECTED LIGHT-ELEMENT AND SOME RELATED COMPOUNDS

(SUPPLEMENT TO NBS REPORTS 6297, 6484, 6645, and 6928)

Fifth Technical Summary Report to the Advanced Research Projects Agency on the Thermodynamic Properties of Light-Element Compounds

Reference: ARPA Order No. 20-61

IMPORTANT NOTICE

NATIONAL BUREAU OF S' uments intended for use wit is subjected to additional duction, or open-literature permission is obtained in w ington 25, D.C. Such permi port has been specifically pro-

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015

r progress accounting docrts is formally published it blicotion, reprinting, reproart, is not authorized unless Bureau of Standards, Woshit agency for which the Reonal copies for its own use.

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

ABSTRACT

This is the fifth report on the current experimental, theoretical, and evaluative program, at the National Bureau of Standards, on the thermodynamic properties of light-element and other compounds of primary interest in high-temperature research. This program has been expanded to include Li, Be, B, Mg, Al, Ti, and Zr, as well as their compounds with H, O, F, Cl, N, and C. The emphasis in the NBS work has been on the simpler compounds, with the aim of including not only the simplest reactants such as metals and alloys, but especially all the substances of these elements which are likely to occur as combustion products. The current report devotes considerable space to (I) a compilation and critical review for some boron compounds and (II) a preliminary review of "mixed" systems (i.e., systems and compounds containing two or more of the above seven metallic elements).

Part I, devoted to a number of boron compounds of interest in the B-O-H-X system (X = halogen), summarizes the results of assembly and review of the available data, including 52 tables, a discussion of the sources of data used, and an indication of the reliability of the values given. The preparation of this material has taken place largely as a part of older programs at the Bureau, some of which have been limited to boron compounds.

Part II, on "mixed" systems, treats (1) alloys and intermetallic compounds, (2) metal borides and boride systems, (3) mixed metal oxides, and (4) mixed metal fluorides and chlorides. Most of the discussion is based on 56 phase diagrams of these systems which have been reproduced from well-known compilations. In addition, we have begun to compile equally important properties, particularly heats of formation and densities. It should be emphasized that at present our coverage of these properties (except for the heats of formation of the borides) is preliminary and incomplete; however, the paucity of data presented reflects the present scarcity of information in this field.

Part III supplements our earlier reports on the program with some new and revised heats of formation and 16 tables of thermodynamic functions of condensed phases (revised tables for Li and LiCl, and new tables for 14 substances and solid solutions containing titanium or zirconium).

Thomas B. Douglas Project Leader

-10 Jood Hoddol

Charles W. Beckett

Chas W Becker

Assistant Division Chief for Thermodynamics Heat Division

TABLE OF CONTENTS

А	bstract						Page i
PART I		CHEMISTRY AND	THERMOD	YNAMTC			
PARI I		ONS OF SOME E					
		lliam H. Evan					
	Ι	iscussion .				• •	1
		Introduction Sources of					1
					· · · · · · · · ·		2
							3
		Boron oxide	es				6
							12
		Boron hydro					14
		Boron halid					17 22
							23
		References					27
	(General tables	3			• •	39
		Table 1. H	Heats of	formation,	, ΔHf°	• •	39
		Table 2. N		constants Les			43
		Table 3. V			ncies		
			ents of i				
		for poly	yatomic n	nolecules		• •	45
		Tables of	Thermody	mamic Fund	ctions:		
Table	Formula	State	Page	Table	Formula	State	Page
4	В	c	49	15	ВН	g	65
5	В	amorph.	50	16	BH ₃	g	67
6	В	Ł	51	17	^B 2 ^H 6	g	69
7	В	g	53	18	B ₅ H ₉	C	71
8	^B 2	g	55 57	19	^B 5 ^H 9	Ł	71
9	В0	g	57	20	^B 5 ^H 9	g	72
10	B ₂ 0 ₂	g	59	21	B ₁₀ H ₁₄	c	74
11	B ₂ O ₃	c	61	22	B ₁₀ H ₁₄	g	75
12	B ₂ O ₃	amorph.,gl.	61	23	НОВО	g	77
13	B ₂ 0 ₃	Ł	62	24	H ₃ BO ₃	c	79
14	B ₂ 0 ₃	g	63	25	H ₃ BO ₃	g	81
				26	(HOBO) ₃	g	83

TABLE OF CONTENTS (Continued)

Table	Formula	<u>State</u>	Page	<u>Table</u>	Formula	<u>State</u>	Page			
27	BF	g	85	40	BFC ^l 2	g	111			
28	BF ₂	g	87	41	BBr	g	113			
29	BF ₃	g	89	42	BBr ₃	g	115			
30	BOF	g	91	43	${}^{\mathrm{B}\mathrm{F}}2^{\mathrm{B}\mathrm{r}}$	g	117			
31	(BOF) ₃	g	93	44	BFBr ₂	g	119			
32	BCl	g	95	45	BC L 2Br	g	121			
33	BCl ₂	g	97	46	BC & Br 2	g	123			
34	BC 13	g	99	47	BI ₃	g	125			
35	B ₂ C _ℓ 4	g	101	48	BS	g	127			
36	BOCL	g	103	49	BN	С	129			
37	(BOCl) ₃	g	105	50	BN	g	131			
38	BFCl	g	107	51	B ₃ N ₃ H ₂ (Borazine)	g	133			
39	BF ₂ Cℓ	g	109	52	B ₄ C	С	135			
PART II. SYSTEMS AND COMPOUNDS CONTAINING TWO OR MORE LIGHT METALS II. 1. ALLOYS AND INTERSTITIAL COMPOUNDS OF BERYLLIUM WITH ALUMINUM, MAGNESIUM, SILICON, TITANIUM, AND ZIRCONIUM										
			as W. Mear			• •	137			
		Lite	erature re	ferences			142			
	II. 2.	SOME BOR			l L. A. Krieger)	• •	145			
		of	e 1: Heats Light Metences			• •	150 151			
	II. 3.	MIXED OX		XIDE-FLUOR	TIES OF SOME	• •	155			
		B. Sc		al Propert	Diagrams	• •	155 159			
		of	Some Oxid			• •	160 161			

TABLE OF CONTENTS (Continued)

	II. 4.	PHASE BEHAVIOR OF BINARY SYSTEMS OF Li, Al, Be, Mg, and Zr FLUORIDES	Page
		AND CHLORIDES (by George T. Furukawa)	163
		References	167
PART II	II. <u>NEW AND</u>	REVISED THERMODYNAMIC PROPERTIES	
	III. 1.	REFERENCES TO RECENT VALUES FOR HEATS OF FORMATION (by George T. Armstrong and Leslie A. Krieger)	169
	III. 2.	A. Aluminum Compounds B. Beryllium Compounds C. Magnesium Compounds D. Lithium Compounds E. Sodium Compounds F. Titanium Compounds G. Carbon H. Boron Compounds I. Zirconium Compounds J. Fluoride THERMODYNAMIC FUNCTIONS OF SOME TITANIUM AND ZIRCONIUM COMPOUNDS. REVISION OF THERMODYNAMIC FUNCTIONS OF LITHIUM AND LITHIUM	169 169 170 170 171 172 172 172 173
		CHLORIDE III. 2a. Analysis of Low-Temperature Heat Capacities and Smooth-	175
		Joining with High-Temperature Enthalpy Measurements (by George T. Furukawa and Martin L. Reilly)	175
		III. 2b. Thermodynamic Functions at High Temperatures (by Thomas B. Douglas and Andrew C. Victor)	180
		References	001 cor

D -		
Pа	ø	0

APPENDIX A.	PHASE	DIAGRAMS	OF	SOME	MIXED	SYSTEMS

Figures 1-56	•			•	•	•			•	•		•	٠	٠	٠	187-225
Cross-Index	of	Pha	ıse	Γ	ia	g	ar	ns			٠					226

APPENDIX B. THERMODYNAMIC FUNCTIONS OF SOLIDS AND LIQUIDS

<u>Table</u>	Formula or Composition	<u>Name</u>	
B-21 (revised) B-26 (revised) B-41 B-42	Li LiCl TiO Ti ₂ O3	Lithium Lithium chloride Titanium monoxide Titanium sesquioxide	227 229 231 233
B-43	Ti ₃ 0 ₅	Titanium tritapentoxide	235
B-44	TiO ₂	Titanium dioxide (rutile)	237
B-45	TiO ₂	Titanium dioxide (anatase)	239
B-46	Zr	Zirconium	241
B-47	$^{\mathrm{ZrH}}$ 0.25		243
B-48	ZrH _{0.50}		244
B -4 9	$\mathrm{ZrH}_{0.75}$	Zirconium hydride	245
B-50	ZrH _{1.00}	(solid solutions)	246
B-51	ZrH _{1.25}		247
B-52	ZrO ₂	Zirconium dioxide	248
B-53	ZrN	Zirconium nitride	250
B-54	ZrC ^l 4	Zirconium tetrachloride	252

APPENDIX C. ERRATA IN PREVIOUS REPORTS

Erratum to Chapter 5 of NBS Report 6928, dated 1 July 1960 (Harold W. Woolley) . . . 255

PART I THERMOCHEMISTRY AND THERMODYNAMIC FUNCTIONS OF SOME BORON COMPOUNDS

(by William H. Evans)

Introduction

The use of boron compounds in high-energy fuels has created a need for thermochemical and thermodynamic data for such compounds and for their combustion products. At the present time a number of sets of such thermodynamic data, selected from various sources and differing more or less among themselves, are in use [1]. As a consequence, calculations of equilibrium composition and performance characteristics made by different laboratories cannot be critically compared, unless it is known that in each case the same basic thermodynamic data were used.

As a part of the program of the National Bureau of Standards on the calculation and compilation of data on the chemical thermodynamic properties of chemical substances, we have assembled and reviewed the available data on the compounds of boron. This report summarizes the results for a number of compounds of interest in the B-O-H-X system, including a discussion of the sources of data used and an indication of the reliability of the values given. To increase the usefulness of the tables, several molecules have been included for which only preliminary experimental or estimated data are available.

Figures in brackets indicate literature references at the end of this paper.

Sources of data and methods of calculation used.

The chemical atomic weights used were taken from Wichers [2]. Spectroscopic data reported for specific isotopic species were adjusted [3,4] to averaged or effective constants, corresponding to the natural isotopic mixture; the molecular constants used are tabulated in tables 2 and 3. Fundamental physical constants were taken from the selected set compiled by Cohen, Crewe, and DuMond [5]. Auxiliary heat-of-formation data, unless indicated otherwise, are taken from [6]. The reference state for bromine, iodine, and sulfur is the diatomic ideal gas.

Thermodynamic functions for the condensed phases were obtained by numerical integration and differentiation of smoothed values read from large-scale plots of C_p or (H-H₀)/T, as appropriate. Thermodynamic functions for the gaseous species were calculated by standard methods [7,8] for the ideal-gas state at a pressure of one atmosphere. The calculations for diatomic molecules include corrections for the effects of vibrational anharmonicity, rotational stretching, and rotational—vibrational interaction. The calculations for the polyatomic molecules are for the rigid-rotator harmonic-oscillator approximation. Entropy due to nuclear spin and natural isotopic mixing is omitted.²

The tabulated thermodynamic functions are, in general, and especially for the gaseous molecules, given to more significant

figures than the absolute accuracy warrants. This is done to preserve the more precise increments in the functions with successive temperatures. For the monatomic and diatomic species for which adequate data exist, the accuracy in the functions will vary from about 0.005 at the lower temperatures to 0.5 at the higher temperatures. The uncertainty in the functions for the polyatomic molecules is from 10 to 100 times as great because of the less accurate RR-HO calculation employed and the lower accuracy of the input data. Where the calculations have been based upon estimated molecular data, the values may be seriously in error. For the condensed phases, the estimated accuracy is 10-50 in the last decimal place given.

In table 1 are summarized the selected "best" values for the heats of formation at 0°K and 298.15°K (25°C). Tables 4-52 give the thermodynamic functions - Gibbs free energy function, enthalpy (heat content) function, entropy, heat capacity at constant pressure, and enthalpy (heat content)—as a function of temperature for each substance.

Boron. Recent x-ray diffraction work on the crystal structures of boron [9] has indicated that the crystalline form of boron used for both the low- and high-temperature calorimetric measurements was probably the β-rhombohedral structure. The thermodynamic functions for both β-rhombohedral crystalline and amorphous boron below 300°K are based upon the heat-capacity measurements by Johnston, Hersh, and Kerr [10].

High-temperature heat-content data have been reported recently by Wise, Margrave, and Altman [11] for both crystalline and amorphous boron. We have combined their data with the low-temperature data, and extrapolated the curves to the melting point. These newer data supercede the values reported by Magnus and Danz [12], Kopp [13], Moissan and Gautier [14],

Regnault [15], Weber [16], and Robertson [17] for poorly characterized, impure material.

The values available for the entropy of amorphous boron contain an additional uncertainty because of the zero-point entropy. For this reason we have chosen the β -rhombohedral crystalline form as the standard state for boron, although the thermochemical measurements which lead to the heats of formation of the boron compounds - the decomposition of B_2H_6 and the chlorination of boron to BCl_3 - were made with amorphous boron. The heat of transition from crystalline to amorphous boron has not been measured; we have selected 0.4 kcal/mole, which is in agreement with some preliminary data on the chlorination [184] and fluorination [18] of the two forms. The uncertainty in this value is relatively unimportant as it will cancel in any reaction not involving elemental boron.

The melting point of boron selected, 2300. ±40°K, is based upon values reported by Cueilleron [19,20], Wisnyi and Pijanowski [21], and Stull [22]. We have estimated the entropy of fusion, based on data for a number of other elements. To extend the tables into the liquid range we have assumed a constant value of 7.3 cal/deg mole for the specific heat.

The thermodynamic functions for gaseous monatomic boron were calculated by direct summation over the spectroscopic levels given by Moore [23]. The sublimation pressure of boron has been measured, using the Khudsen effusion method, by Searcy and Myers [24] between 2100 and 2400°K and by Chupka [25] between 1900 and 2200°K. Their data lead to heats of sublimation, ΔH_0 °, of 137.0 and 128.7 kcal/mole, respectively. Some preliminary effusion data obtained by Thorn [26] indicate a value of about 133 kcal/mole. Robson and Gilles [27] have measured the decomposition pressure of $B_{\mu}C$; their data lead to ΔH_0 ° = 134.0 kcal/mole. We have selected ΔH_0 ° = 134. kcal/mole³ as the "best" value for B(g). Further experimental work is required to establish this value more definitely.

Thermodynamic functions for $B_2(g)$ were calculated from the molecular constants given in Herzberg [3], corrected to the average isotopic species. From spectroscopic data Gaydon [28] has estimated the dissociation energy, D_0 , of $B_2(g)$ as 3.0 ± 0.5 ev, or 69. ± 11 . kcal/mole. Chupka [25] has obtained 65. ± 7 . kcal/mole from mass-spectroscopic data. Adopting the latter value, we have ΔHf_0° $B_2(g) = 200$. ± 8 . kcal/mole.

Uncertainties, unless otherwise indicated, represent our estimates of the over-all uncertainty in the value, with allowance for random and systematic errors.

Boron oxides. One of the most important compounds formed in the combustion of boron-containing compounds is B203. As in the case of other metalloid oxides, crystalline and amorphous states of B203 occur; the amorphous powder is the common form. It is only recently that reliable values for the heat of formation of B2O3 have become available. Direct measurement of the heat of combustion of boron has given values [17,29,30,31, 32,33,34,35] ranging from -281 to 368 kcal/mole; the difficulties in determining the amount of boron burned and the state of the products, particularly if a metal or organic compound is used as an auxiliary material to promote combustion, make this an unsatisfactory method. The indirect method, in which the heat of hydrolysis to aqueous H3BO3 of a compound of known heat of formation, and of B2O3, are measured, gives much better results. Prosen, Johnson, and Pergiel [36] determined the heat of formation of B2O3 by this method, using B2H6; their data lead to ΔHf°_{298} $B_{2}O_{3}(c) = -305.34 \pm 0.33 \text{ kcal/mole.}$ Johnson, Miller, and Prosen [37] have checked this value, using BCl3; their data give -305.9 ±0.5 kcal/mole, in good agreement. Both experiments involved amorphous B203 and the heat of transition discussed below. Nathan [34] and Eckstein and Van Artsdalen [35] have obtained heats of combustion in fair agreement; their data give -310. and -309. kcal/mole, respectively, with rather large uncertainties. Galchenko, Koruilov, Timofiev,

and Skuratov [28] have reported a preliminary value of -303.2 kcal/mole; no details are available as yet.

The heat of transition between crystalline and amorphous B_2O_3 is calculated from the difference in the heats of solution of the two forms, as reported by Southard [39]. The heats of solution he obtained are in good agreement with other measurements [29,30,31,40,41,42,43,44,45,46,47,48,49] on one or the other form; he is the only one to have run both forms in the same apparatus, and we have adopted the difference between his values, thus eliminating systematic errors so far as possible.

Low-temperature specific-heat data have been reported for crystalline B₂O₃ by Kelley [50] and Kerr, Hersh, and Johnston [51]. Southard [39] measured the heat content above room temperature up to the melting point, 723°K. These data were used to calculate the thermal functions, which should be of acceptable accuracy.

The situation with regard to the amorphous (or glassy) B₂O₃ is much less satisfactory. Heat-content measurements, relative to room temperature, have been reported by Southard [39], Neumann [52], Dwald [53], Regnault [54], Samsoen [55], Samsoen and Mondain-Monval [56], and Winkelmann [57]. Specific heats, to 620°K, for quenched, annealed, and slowly cooled samples were reported by Thomas and Parks [58]; the specific heats of the three samples differed markedly, especially in the 500-600°K region, depending upon the previous thermal history of the sample.

Southard's data, which are the only series extensive or precise enough to be of value, have a serious defect. He determined the heat contents, relative to room temperature, by dropping a sample of B2O3 in a sealed container from a known high temperature into the calorimeter. This is essentially a quenching process; the final state of the sample can vary from run to run, depending upon how well the sample at the initial state has reached thermal and chemical equilibrium (especially at temperatures below the melting point) and how fast and to what extent the sample changes, in the calorimeter, into the form stable at room temperature. The specific heats obtained from the data on the liquid should be fairly reliable, as the samples at higher temperatures should have essentially the same thermal history through the glass region and should reach the same final state.

The data for the glass (which appears to be thermally equivalent to the amorphous) and the liquid just above the melting point are much less reliable. We have combined the heat-content data in this region with heat contents obtained by graphical integration of the specific heats obtained by Thomas and Parks to derive the thermal functions tabulated. The uncertainty in these values is high; the uncertainty in the glass region carries over into the high-temperature liquid values of S° and $(H^{\circ}-H_{O}^{\circ})/T_{\circ}$

An additional uncertainty is introduced through the value chosen for the heat of fusion of B₂O₃(c). This is obtained from the heats of solution of the amorphous and crystalline forms at 25°C, and the heat contents of the two forms at 728°K, the melting point. It appears that the amorphous form used for the heat-of-solution measurements, while that usually found at room temperature, may not have been the same as that obtained as the final state in the heat-content experiments. If this is the case, systematic errors of from one to two cal/deg mole will be introduced into the entropy and heat content function for the liquid. Further work on this system would be most desirable.

Earlier calculations [59,60] of the thermodynamic functions for B₂O₃(c) were based on a bipyramidal structure [61]. However, an examination [62] of the isotopic shifts [63,64,61] reported indicates that such a structure is unlikely, and that a "V"- or "W"-shaped structure with C_{2v} symmetry is more probable. This is confirmed by the recent electron-diffraction data reported by Akishin and Spridinov [65]. The present set of thermodynamic functions for gaseous B₂O₃ is based on a O=B-O-B=O, "V"-shaped structure [62,63,64,65,66]. The vibrational frequencies used have been taken from White, Mann, Walsh, and Sommer [66, cf 61, 63,64]. These authors assumed bond lengths of 1.34A for B-O and 1.20A for B=O, and an apex angle of 120°; the recent electron diffraction data reported by Akishin and Spridinov [65] give

1.36A, 1.20A, and 95°, respectively. The tabulated functions are based on the latter structure; the calculated values of the entropy are 0.054 cal/deg mole higher than those based on the 120° structure.

Vapor pressure measurements on liquid B_2O_3 have been reported by Scheer [67], Soulen, Sthapitanonda, and Margrave [65] (see also Soulen and Margrave [69]), Searcy and Myers [24], Speiser, Naiditch, and Johnston [70], Rentzepis and White [71], and Nesmeyanov and Firsova [72]. A third-law treatment of their data gives average values of the heat of sublimation at $O^{\circ}K$, $\Delta H_{O^{\circ}}$, of 96.94, 93.93, 93.79, 94.59, 95.55, and 94.95, respectively. The slope of a log P - 1/T plot of all of the data, $\Delta H^{\circ}1_{4}OO = 83. \pm 5.$ kcal, reduces to $\Delta H_{O^{\circ}} = 96.3$ kcal/mole. As "best" value we have taken $\Delta H_{O^{\circ}} = 94.6 \pm O.5$ kcal/mole, based primarily on the data of [70] and [72]; this gives $\Delta H_{O^{\circ}} = B_2O_3(g) = -209.3 \pm O.6$ kcal/mole.

Thermodynamic functions for B₂O₂(g) were calculated assuming a linear O=B-B=O structure, with the B=O distance 1.20A and B-B distance 1.59A. The frequencies were taken from White, Mann, Walsh, and Sommer [66].

Mass-spectrometric studies [73] of the vapors over a mixture of B and B_2O_3 indicate that B_2O_2 is the major species present. The selected heat of formation of $B_2O_2(g)$ is based on four sets of measurements. Inghram, Porter, and Chupka [73] used a mass spectrometer to study the composition of the vapors

over a B-B203 mixture. The B202 pressures they report, when combined with the present thermal functions in a third-law treatment, give $\Delta Hf_0^{\circ} B_2O_2(g) = -108.4 \pm 2.5 \text{ kcal/mole}$. If the relative pressures of B2O2(g) and B2O3(g) reported are used, $\Delta Hf_0^{\circ} = -111.7 \pm 2.5 \text{ kcal.}$ Scheer [74] has studied the same system in a torsion effusion apparatus; his data lead to $\Delta Hf_0^{\circ} = -112.8 \pm 2.5 \text{ kcal/mole.}$ Searcy and Myers [24] measured the effusion of B2O2 and Mg from a mixture of MgO and B; from these data we calculate AHfo° B2O2(g) = -104.7 ±8. kcal/mole. However, as Rentzepis, White, and Walsh [75] have pointed out, there are serious questions regarding the temperatures and reaction rates. If the point Searcy and Myers feel is "best" is used, $\Delta Hf0^{\circ} B_2O_2(g) = -114.7 \pm 5.$ kcal/mole is obtained. Little weight can be given to this value. Rentzepis. White, and Walsh studied the reduction of Liquid B203 with graphite to give CO(g) and $B_2O_2(g)$; they have corrected for the side reaction of reduction to boron. With their data a third-law treatment gives ΔHf_0° B₂O₂(g) = -110.8 ±2.0 kcal/mole. As the "best" value we have selected the average, -111.8 ±2.0 kcal/mole.

At higher temperatures $B_2O_2(g)$ dissociates into BO(g). Some preliminary mass-spectrometric data obtained by Chupka [25] indicate a dissociation energy of about 115. ± 12 . kcal/mole for $B_2O_2(g)$. This gives $\Delta Hf_0^\circ BO(g) = 2$. ± 10 . kcal/mole. Chupka has also [76] indicated a dissociation energy for BO(g) of 8 volts; this gives ΔHf_0° BO(g) = 7. ±15. kcal/mole. We have taken the average, 5. ±10. kcal/mole. The thermodynamic functions for BO(g) were calculated using molecular constants from Herzberg [3].

Boron hydrides. The boron hydrides are of interest because of their unusual structure and because of their use in preparing various high-energy compounds. Heats of formation of three of them - B_2H_6 , B_5H_9 , and $B_{10}H_{14}$ - have been determined by Johnson and Prosen [77,78] by measurement of the heat of thermal cracking to amorphous boron. The data for B_2H_6 replace the earlier value, obtained by the hydrolysis of B_2H_6 (g), reported by Roth, Börger, and Bertram [29,30,31]. Recently Skinner [79] has reported a preliminary value, obtained by the hydrolysis reaction, of 7.0 \pm 0.5 kcal/mole. Heat capacity data from low temperature to room temperature are available for B_5H_9 [80] and $B_{10}H_{14}$ [81,82]; thermodynamic functions for the solid and liquid were obtained from these data.

The available infrared and Raman spectral data for B_2H_6 [83,84,85,86,87,88] were used to obtain a set of vibrational frequencies, which was used in the calculation of the thermodynamic functions. The molecular structure was obtained from Hedberg and Schomaker [89,90].

The infrared and Raman spectroscopic data [91,92] summarized by Hrostowski and Pimentel [92], and the moments of inertia obtained from microwave spectroscopy by Hrostowski and Myers [93]

were used in the calculation of the thermodynamic functions for $B_5H_9(g)_{\bullet}$

Stewart [94] and Keller and Johnston [95] have reported infrared and Raman data for solid $B_{10}H_{14}$. These data, together with the structural data from Kasper, Lucht, and Harker [96] (as revised by Moore, Dickerson, and Lipscomb [97]), were used to calculate the thermodynamic functions for the gas. The entropy thus calculated at 378° K agrees well with that calculated from the specific heat of the solid and liquid, the heat of vaporization, the heat of fusion, and the vapor pressure (see below).

Vapor pressure data for B₅H₉ have been reported by Johnston, et al. [80], Stock and Kuss [98], and Wirth and Palmer [99]. Their data were fitted by an Antoine equation; this equation, the gas density, as calculated from the Berthelot equation, and the liquid density [99] were used in the Clapeyron equation to obtain the heat of vaporization at 25°C. The vapor pressure data were also used with thermodynamic functions in a third-law treatment. The heats of vaporization obtained by the two methods are in good agreement, 7.31 and 7.29 kcal/mole. This agreement indicates that the thermodynamic functions for the gas are not seriously in error.

The heat of vaporization of liquid $B_{10}H_{14}$ at 378°K, measured by Furukawa and Park [81], was corrected to 25°C with the thermodynamic functions to obtain ΔH_s ° = 18.59 ± 0.3 kcal/mole.

Shepp and Bauer [100] have estimated molecular dimensions and fundamental frequencies for BH₃(g); these were used to calculate the thermodynamic functions, which are thus somewhat uncertain. McCoy and Bauer [101,102] have reported the heat of dissociation of B₂H₆ into 2BH₃ as 28.4 \pm 2.0 kcal/mole at 0°°. This value was obtained from the heat of reaction of trimethylamine with diborane and tetramethyldiborane, and is subject to uncertainty. This leads to Δ Hf₂₉₈° BH₃(g) = 18. \pm 3. kcal/mole.

The thermodynamic functions for BH(g) were calculated with molecular constants from Herzberg [3]. Gaydon [28] has obtained 3.0 ± 0.5 ev, or $69. \pm 10.$ kcal/mole, for D₀ (BH). From this, $\Delta \text{Hf}_0^{\circ}$ BH(g) = $116. \pm 10.$ kcal/mole.

Boron hydroxides. The heat of formation of H₃BO₃(c) is easily obtained from the various values reported for the heat of solution in water [29,30,31,41,42,43,44,45,46,103,104]; all values are in good agreement. The heat of formation of aqueous H₃BO₃ is obtained from the heat of hydrolysis of B₂H₆ and BCl₃ discussed above. The thermal functions for H₃BO₃(c) were calculated from the low-temperature specific heats reported by Johnston and Kerr [105].

Pistorius [106] has reviewed most of the available spectroscopic data on solid boric acid and assigned the fundamental frequencies. This assignment, which is consistent with the data in other papers [107,108,109,110] not considered by Pistorius, was used to calculate the thermodynamic functions. The structure assumed [106] was a C3h planar X(YZ)3, with a B-O distance of 1.36A, a O-H distance of 1.0A, and a B-O-H angle of 120°. There are some questions as to the presence of internal rotation of the OH group and the values of the OH torsion frequencies; further experimental work is necessary before a satisfactory set of thermodynamic functions can be calculated.

Above room temperature H₃BO₃ rapidly loses water to form one of the metaboric acids. By using a water-vapor pressure higher than the dissociation pressure, von Stackelberg, Quatram, and Dressel [43] were able to repress the decomposition and thus measure the vapor pressure of the orthoboric acid. Their data give a heat of sublimation at 25°C of 23.55 ±2.5 kcal/mole.

Metaboric acid, HOBO, is formed in the dehydration of orthoboric acid; three cyrstalline forms are known [111]. From values of the decomposition pressures of H₃BO₃ [112,113,114, 115,116,117,118] and the heats of solution of the various forms in water [43,119,120] or aqueous sodium hydroxide [29,30,31, 119,120] we have calculated the heats of formation of the various crystalline forms.

White, Mann, Walsh, and Sommer [121] have studied the infrared spectrum of gaseous HOBO and selected the fundamentals. We have used their assignment and a structure with a B=O distance of 1.20A, a B=O distance of 1.34A, a O=H distance of 1.0A, a O=B=O angle of 180°, and a B=O=H angle of 120° in calculating the thermodynamic functions. It must be noted that these functions are rather uncertain.

Chupka and Berkowitz [122] have reported equilibrium constants for the reaction

$$H_2O(g) + B_2O_3(liq) = 2HOBO(g)$$

in the temperature range $1140-1420\,^{\circ}$ K. A third-law treatment of their data gives $^{\circ}$ HOBO(g) = $-134.2\,\pm2.0\,$ kcal/mole. From the average value of the slope of a log K - 1/T plot; $^{\circ}$ AH = $80.\,\pm8.\,$ kcal/mole at $1250\,^{\circ}$ K, $^{\circ}$ AHf $_{0}\,^{\circ}$ HOBO(g) = $-134.3\,\pm3.0\,$ kcal/mole. White, Mann, Walsh, and Sommer [121] have obtained from their data a slope, $^{\circ}$ AH = $78.0\,\pm5.0\,$ kcal/mole at $1350\,^{\circ}$ K, for the same reaction; this gives $^{\circ}$ AHf $_{0}\,^{\circ}$ HOBO(g) = $-134.9\,\pm3.0\,$ kcal/mole. As "best" value we have selected $-134.5\,\pm2.5\,$ kcal/mole.

The trimer, $(HOBO)_3$ has been identified with the mass spectrometer as a minor species in the gas phase in the B_2O_3 - H_2O system [122]. White, Mann, Walsh, and Sommer [121] have estimated frequencies and structure, which we have used to obtain the thermodynamic functions tabulated. They have also calculated a tentative value for the heat of formation.

Boron halides. The thermodynamic functions for gaseous BF were calculated using molecular constants from Chrétien [123,124] and Onaka [125]; those for BCl and BBr are based upon data from Herzberg [3]. The dissociation energy of BF, $D_0 = 196 \cdot \pm 6 \cdot \text{kcal/mole}$, was obtained by Gaydon [28] from extrapolation of the A¹TT state; he prefers this to the much lower value obtained from a ground-state extrapolation, because of ionic contributions to the ground state. In a similar way he obtains $D_0 = 117 \cdot \pm 6 \cdot \text{kcal/mole}$ for BCl and $D_0 = 96 \cdot 9 \cdot \pm 5 \cdot \text{kcal/mole}$ for BBr.

The thermodynamic functions for BF₃(g) were calculated using the fundamental frequencies from Lindeman and Wilson [126], McKean [127], Nielsen [128], and Susz and Wuhrmann [129]; a D_{3h} structure with a B-F distance [90, 128,130] of 1.295A was used. The functions for BCl₃(g) were calculated in a similar way, with the frequencies from Lindeman and Wilson [126], Anderson, Lassettre, and Yost [131], Scruby, Lacher, and Park [132], Wagner [133], and Cassie [134], and a D_{3h} structure with a B-Cl distance [90,130,135] of 1.73A. These functions should be reliable, within the limits of the RR-HO approximation.

The vibrational frequencies for BBr₃(g) were based on the measurements of Wentink and Tiensuu [136] and Lindeman and Wilson [126]. The structure was taken as [90] D_{3h}, with a B-Br distance of 1.87A. The frequencies for BI₃(g) are from Wentink and Tiensuu [136]; the B-I distance was estimated as 2.2A based on data for the silanes and aluminum halides [90].

Two preliminary values, obtained by direct fluorination of elemental boron, have recently been reported for the heat of formation of BF3(g). Wise and Hubbard [137] obtained $\Delta \text{Hf}_{298}^{\circ}$ BF₃(g) = -269.94 kcal/mole; Gross, Hayman, Levi, and Stuart [18] give -270.8 and -271.6 kcal/mole for two different boron samples. Enough details are not available to allow us to choose between these two values. The previous value depends upon the heat of solution of BF3(g) in water, as measured by Hammerl [138] and Laubengayer, Sears, and Finlay [139,140], and the heat of solution of B2O3 in aqueous HF (Mulert [141]) or the heat of reaction of H3BO3(aq) with HF(aq) (Thomsen [46]). The analysis of the available data is complicated by the partial hydrolysis of the BF3 to form BF3OH-, BF2(OH)2-, etc., and the formation of BF_{l_1} (see Ryss, et al. [142]); the data reported are not extensive or detailed enough to allow correction for the effects of such reactions, or to permit the various reported heats to be referred to a common basis. If the data of Thomsen [46] for the reaction of equivalent amounts of H3BO3 and HF solutions are used, a heat of formation for BF3(g) of -267.8 kcal/mole is obtained. If his data obtained from experiments involving a 1/3 excess of HF are used, -270.0 kcal/mole is obtained. We have selected -270.0 kcal/mole for the present; more experimental data are required before a definitive value can be selected.

The situation with respect to BCl3(g) is much more satisfactory. Hydrolysis of either the liquid or the gas apparantly proceeds completely to give an aqueous solution of HCl and H₂BO₃. The direct determination of the heat of chlorination of amorphous boron [37] gives AHf298° BCl3(liq) = -102.7 ±0.4 kcal/mole. The value reported by Troost and Hautefeuille [143,144], -103.3 kcal/mole, is in fortuitous agreement; apparently a systematic calibration error compensates for the impure sample used. The values obtained from the heatof-solution measurements reported by Skinner and Smith [145] (-102.5 kcal/mole), Berthelot [146] (-103.6 kcal/mole), and Laubengayer and Sears [139] (-102.4 kcal/mole) are in good agreement; the data reported by Kapustinskii and Samoilov [147] lead to -96.3 kcal/mole and are apparently in error. Lacher. Scruby, and Park [148] measured the heat of the gas-phase chlorination of diborane to yield BCl3 and HCl at about 80°C. Their data, corrected to 25°C, give AHf298° BCl3(liq) = -107.1 kcal/mole.

Berthelot [146] measured the heat of hydrolysis of liquid BBr3; his data lead to ΔHf_{298}° BBr3 (liq) = -52.0 kcal/mole. Pohland [149] studied the same reaction; his data give -54.8 kcal/mole. Skinner and Smith [150] also studied this reaction; their data give -57.45 ± 0.5 kcal/mole. We have taken ΔHf_{298}° BBr3 (liq) = -57.4 ± 0.8 kcal/mole, with Br2 (liq) as the

standard state. Correction to $Br_2(g)$ as the standard state [6,151] gives ΔHf_{298}° BBr₃(liq) = -68.5 ±0.8 kcal/mole. The vapor pressure data reported by Holms [152], Apple and Wartik [153], Pohland [149], and Cueilleron [19] were used to obtain the heat of vaporization, 8.1 kcal/mole. This gives ΔHf_{298}° BBr₃(g) = -60.4 ±0.9 kcal/mole. Koski, Kaufman, and Pachucki [154] have estimated, from appearance potentials, an average B-Br bond energy of 3.77 ±0.1 ev; this gives ΔHf_0° BBr₃(g) = -59.5 kcal/mole, in good agreement with -60.37 kcal/mole at 0°K from the calorimetric data.

The heat of formation of $BI_3(g)$ was calculated from the average bond energy, 2.77 ev, obtained by Koski, Kaufman, and Pachucki [154]; $\Delta Hf_0^\circ BI_3(g) = -5.4 \pm 8.0$ kcal/mole, based on $I_2(g)$ as the standard state.

Spectroscopic data for the mixed gaseous halides, BF₂Cl, BFCl₂, BF₂Br, BFBr₂, BCl₂Br, and BClBr₂ have been reported by Lindeman and Wilson [126]; data for BCl₂Br and BClBr₂ are also available from Goubeau, Richter, and Becher [155]. We have used these frequencies and the bond lengths from BF₃, BCl₃, and BBr₃ to calculate the thermodynamic functions; all molecules are assumed to have a planar C_{2v} structure, with all X-B-X angles equal to 120°.

The equilibrium data reported by Higgins, Leisegang, Raw, and Rossouw [156], and by Gunn and Sanborn [157] involving BFCl₂ and BF₂Cl were used to estimate the deviations from additivity of

average bond energies; the adjustments were about 0.8 kcal/mole. The equilibrium measurements reported by Goubeau, Richter, and Becher [155] for the disproportionation reaction

 $BBr_3 + BCl_3 = BBrCl_2 + BBr_2Cl$

lead to $^{\Delta}\text{H}_{0}^{\circ}$ = 0. \pm 0.5 kcal/mole. Therefore, average bond energies, which assume a zero heat for this type of reaction, were used to estimate the heats of formation of the remaining trihalides.

Thermodynamic functions for the dihalides BF₂, BCl₂, and BFCl, whose existence has been postulated, are based upon estimated frequencies obtained from force constants [158] transferred from the trihalides, and a non-linear structure with an X-B-X angle of 120°. Bond lengths from BCl₃ and BF₃ were used. The electronic multiplicity of the ground state is 2. Heats of formation were estimated from average bond energies. All values are to be regarded as very uncertain.

Thermal functions for B₂Cl₄(g) were calculated from the molecular data reported by Mann and Fano [159]. A 2-fold barrier of 1800 calories was used [160,161] in computing the effects of the internal rotation. At 220°K the statistical calculation gives 79.086 cal/deg mole for the entropy of the gas. Linevsky and Wartik [162] obtained 52.86±0.20 cal/deg mole for the liquid at this temperature from their low-temperature calorimetric measurements. The vapor pressure data reported by Urry, Wartik, Moore, and Schlesinger [163] were used to obtain

the entropy of vaporization at 220°K to the ideal gas state, $S \circ g = S \circ_{1iq} = 26.46 \pm .31 \text{ cal/deg mole.}$ The third law entropy, $79.32 \pm 0.37 \text{ cal/deg mole, agrees within the estimated}$ uncertainty with the statistical calculation. Gunn, Green, and Von Egidy [164] have measured the heat of chlorination of $B_2Cl_4(liq)$ to BCl_3 . Their data, combined with the heat of vaporization [163] give $\Delta Hf_{298} \circ B_2Cl_4(g) = -118.7 \pm 2.0 \text{ kcal/mole.}$

Boron oxyhalides. When BF3 is passed over solid or liquid B203, volatile products are formed. Jones [165], Hildenbrand [166], Farber [167], and White [168] have studied this reaction. Their data lead to -571, -567, -567, and -560 kcal/mole, respectively, for AHf298° of (BOF)3(g). Magee [169] has measured the heat of solution of solid boron oxyfluoride in water and methanol; his data, when combined with the appropriate heats of solution and formation for BF3 and B203, lead to AHf298° $(BOF)_3(c) = -588$. kcal/mole. Decomposition pressure studies on the solid lead to a value of -578. kcal/mole. These give ΔHf_{298}° (BOF)₃(g) = -573. and -563 kcal/mole, respectively. White [168] studied the reaction of liquid B203 with solid MgF2 at high temperatures; his data give AHf_{298°} = -567. kcal/mole. These are all preliminary values; we have taken AHf298° = 567. ±8. kcal/mole as the present "best" value for the gas. Sarner and Warlick [170] have estimated frequencies for this model, assuming a ring of alternating B and O atoms, with D3h symmetry. All angles were assumed to be 120°; bond lengths were taken as B-O, 1.36A, B-F, 1.30A. The frequencies used were selected to agree with the ring frequencies used for (HOBO)3. All data for this material are only tentative.

The monomer BOF has been postulated as a possible species at high temperature. We have estimated the frequencies by analogy with the isoelectronic molecule FCN, and with BF3 and B202 and B203. A linear structure, with a B=0 distance of 1.20A and a B-F distance of 1.28A were used to calculate the thermodynamic functions. The heat of formation was estimated from average bond energies as ΔHf_0° BOF(g) = -140. ± 8 . kcal/mole. White [168] has reported that preliminary data, still unconfirmed, indicate a lower limit of about -144. kcal. All values tabulated for the BOF compounds must be regarded as provisional.

When BCl₃(g) is passed over B₂O₃, (BOCl)₃ is formed [171]. We have estimated the molecular data as was done for (BOF)₃. The functions for the monomer BOCl were estimated as for BOF. The heats of formation are based upon some preliminary transpiration data obtained by Margrave [171]; average bond energy calculations check them. Nevertheless, all data for BOCl and (BOCl)₃ must be regarded as provisional.

Miscellaneous compounds. Thermodynamic functions for BS(g) were calculated from molecular constants given by Zeeman [172]. Gaydon [28] selecte D_0 (BS) = 5.1 ev; based on S_2 (g) as standard state, with a dissociation energy of 3.6 ev for S_2 [8,173], this gives ΔHf_0° BS(g) = 56. ± 12 . kcal/mole.

The thermodynamic functions for BN(g) were calculated with the molecular constants given by Douglas and Herzberg [174]. Gaydon [28] has selected D_0 (BN) = 92. ± 10 . kcal/mole; from this

 $\Delta \text{Hf}_0^{\circ} \text{BN(g)} = 154. \pm 13. \text{ kcal/mole } (D_0 (N_2) = 225. \text{ kcal/mole} [175]).$

Thermodynamic functions for solid BN to 300°K have been calculated from the low-temperature specific-heat data reported by Dworkin, Sasmor, and Van Artsdalen [176]. Recently Westrum [177] has repeated these measurements on a sample of higher purity; at 298.15°K he reports Cp = 4.713 cal/deg mole, S° = 3.357 cal/deg mole, and (H°-H₀°)/T = 2.105 cal/deg mole. The details of this work have not appeared, as yet, and the tabulated functions have not been revised; the differences are not large. Above room temperature, the heat-content data reported by Magnus and Danz [12] and McDonald and Stull [178] were used; the functions have been extrapolated from 1700°K to the approximate melting point of about 3000°C [179].

The heat of combustion of BN(c) in an oxygen bomb has been measured by Dworkin, Sasmor, and Van Artsdalen [176]. Their data give ΔHf_{298}° BN(c) = -60.3 kcal/mole. Galchenko, Koruilov, Temofiev, and Skuratov [38] have reported -60.7 kcal/mole; details are not given and it is not clear if this was obtained by the combustion of boron in nitrogen, by combustion of BN in oxygen, or by some other reaction. Hubbard [137], from combustion of B and BN in F₂ in a bomb, has obtained -60.8 \pm 0.5 kcal/mole. Stull [22] from the combustion of B and BN in NF₃ in a bomb, has obtained -61. \pm 2. kcal/mole. Haldeman [180] has obtained -61. \pm 2. kcal/mole from combustion in an oxygen bomb. These latter three values are only preliminary. Dreger, Dadape, and

Margrave [181] have studied the decomposition pressure of BN in a Langmuir apparatus, using a microbalance over the range 1400-2000°K. There is some question as to the proper value of the accomodation coefficient to be used; they find the most satisfactory fit is obtained with an α of about 5.6 • 10⁻³, which gives ΔHf_{298}° BN(c) = -60.8 \pm 1.7 kcal/mole. Pending completion of the work mentioned above, we have taken ΔHf_{298}° BN(c) = -60.3 \pm 0.5 as the "best" value. All of the values for BN(c) are subject to some revision, as the unpublished data mentioned above become available; such revisions should be relatively minor, however.

Thermodynamic functions for gaseous borazine, $B_3N_3H_6$, were calculated using the spectroscopic assignment of Crawford and Edsall [183]. The molecular symmetry is D_{3h} , a planar hexagon with B-N=1.44A, B-H=1.20A, N-H=1.02A, and all angles 120° [90]. The heat of combustion of liquid $B_3N_3H_6$ has been determined by Kilday, Johnson, and Prosen [183]; their data give ΔHf_2^298 $B_3N_3H_6$ (liq) = -131.1 ± 1.3 kcal/mole. The vapor-pressure data reported by Stock and Pohland [184], Stock, Wiberg, and Martini [185], and Wiberg and Bolz [186] were used to calculate the heat of vaporization, 6.94 kcal/mole. This gives ΔHf_2^298 $B_3N_3H_6$ (g) = -124.2 ± 1.4 kcal/mole.

Thermodynamic functions for $B_{4}C(c)$ are based upon the low-temperature (55 - 255°K) specific heats reported by Kelly [50] and the high-temperature heat-content data obtained by King [187]. Because of the very low specific heat at 50°K, the extrapolation to 0°K, although long, introduces little uncertainty in the tabulated values. The heat of combustion has been measured by Smith, Dworkin, and Van Artsdalen [188]; this gives $\Delta Hf_{298}^{\circ}B_{4}C(c) = -12.2 \pm 2.4 \text{ kcal/mole.}$

References

- 1. JANAF Interim thermochemical tables, The Dow Chemical Company, Midland, Michigan, Dec. 31, 1960.
- 2. E. Wichers, J. Am. Chem. Soc. 80, 4121 (1958).
- 3. G. Herzberg, Molecular spectra and molecular structure. I. Spectra of diatomic molecules, 2nd. ed. (D. Van Nostrand Co., Inc., New York, 1950).
- 4. G. Herzberg, Molecular spectra and molecular structure. II. Infrared and Raman spectra of polyatomic molecules (D. Van Nostrand Co., Inc., New York, 1945).
- 5. E. R. Cohen, K. M. Crowe, and J. W. M. DuMond, The fundamental constants of physics (Interscience Publishers, Inc., New York, 1957).
- 6. F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, and I. Jaffe, Selected values of chemical thermodynamic properties, NBS Circular 500 (U.S. Government Printing Office, Washington, D.C., 1952).
- 7. W. H. Evans, T. R. Munson, and D. D. Wagman, J. Research NBS 55, 147 (1955) RP2614.
- 8. W. H. Evans and D. D. Wagman, J. Research NBS 49, 141 (1952) RP2350.
- 9. J. L. Hoard and A. E. Newkirk, J. Am. Chem. Soc. 82, 70 (1960).
- 10. H. L. Johnston, H. N. Hersh, and E. C. Kerr, J. Am. Chem. Soc. 73. 1112 (1951).
- 11. S. S. Wise, J. L. Margrave, and R. L. Altman, J. Phys. Chem. 64, 915 (1960).
- 12. A. Magnus and H. Danz, Ann. Physik [4] 81, 407 (1926).
- 13. H. Kopp, Trans. Roy. Soc. [London] 155, 71 (1865).
- 14. H. Moissan and H. Gautier, Compt. rend. 116, 924 (1893).

- 15. V. Regnault, Ann. chim. et phys. [3] 63, 5 (1861); Phil. Mag. [4] 23, 103 (1862).
- 16. H. F. Weber, Ann. Physik [2] 154, 367, 553 (1875).
- 17. J. A. Robertson, Ph.D. Thesis, Cornell University, 1944.
- 18. P. Gross, C. Hayman, D. L. Levi, and M. C. Stuart, Fulmer Research Institute, Final Technical Report on Contract DA91-591-EUC-1316, 23 Nov. 1960.
- 19. J. Cueilleron, Ann. chim. [11] 19, 459 (1944).
- 20. J. Cueilleron, Compt. rend. 219, 209 (1944).
- 21. L. G. Wisnyi and S. W. Pijanowski, TID <u>4530</u> [Pt. 1), 46 (1956).
- 22. D. R. Stull, Dow Chemical Company, private communication, 1960.
- 23. C.E. Moore, Atomic energy levels, I, NBS Circular 467 (U. S. Government Printing Office, Washington, D.C., 1949).
- 24. A. W. Searcy and C. E. Myers, J. Phys. Chem. <u>61</u>, 957 (1957).
- 25. W. A. Chupka, Argonne National Laboratory, private communication, 1957.
- 26. R. J. Thorn, Argonne National Laboratory, private communication, 1957.
- 27. H. E. Robson and P. W. Gilles, paper presented at 134th American Chemical Society Meeting, Chicago, 1958.
- 28. A. G. Gaydon, Dissociation energies and spectra of diatomic molecules, 2nd ed. (Chapman and Hall, Ltd., London, 1953).
- 29. W. A. Roth and E. Börger, Ber. 70B, 48 (1937).
- 30. W. A. Roth, E. Börger, and A. Bertram, Ber. <u>70B</u>, 971 (1937).

- 31. W. A. Roth, Z. Naturforsch. 1, 574 (1946).
- 32. B. J. Todd and R. R. Miller, J. Am. Chem. Soc. <u>68</u>, 530 (1946).
- 33. W. Eggersgluess, A. G. Monroe, and W. G. Parker, Trans. Faraday Soc. 45. 661 (1949).
- 34. C. C. Nathan, Ph.D. Thesis, University of Pittsburgh, 1948.
- 35. B. H. Eckstein and E. R. Van Artsdalen, J. Am. Chem. Soc. 80, 1352 (1958).
- 36. E. J. Prosen, W. H. Johnson, and F. Y. Pergiel, J. Research NBS 62, 43 (1959) RP2927.
- 37. W. H. Johnson, R. G. Miller, and E. J. Prosen, J. Research NBS <u>62</u>, 213 (1959) RP2956.
- 38. G. L. Galchenko, A. N. Koruilov, B. I. Timofiev, and S. M. Skuratov, Bull. Chem. Thermo. 2, 32 (1959).
- 39. J. C. Southard, J. Am. Chem. Soc. 63, 3147 (1941).
- 40. J. Smisko and L. S. Mason, J. Am. Chem. Soc. <u>72</u>, 3679 (1950).
- 41. W. C. Blasdale and C. M. Slansky, J. Am. Chem. Soc. 61, 912 (1939).
- 42. E. R. Van Artsdalen and K. P. Anderson, J. Am. Chem. Soc. 73, 579 (1951).
- M. von Stackelberg, F. Quatram, and J. Dressel, Z. Elektrochem. 43. 14 (1957).
- 44. K. Linderstrøm-Lang, Compt. rend. trav. lab. Carlsberg. Ser. chim. 15. No. 4, 65p (1924).
- 45. M. Berthelot, Ann. chim. et phys. [5] 17, 132 (1879).
- 46. J. Thomsen, Thermochemische Untersuchungen I, II, III, IV (Verlag J.-A. Barth, Leipzig, 1882-1886).

- 47. L. Shartsis and E. S. Newman, J. Research NBS 40, 471 (1948) RP1893.
- 48. L. Shartsis and E. S. Newman, J. Am. Ceram. Soc. 31, 213 (1948).
- 49. A. Ditte, Ann. chim. et phys. [5] 13, 68 (1878).
- 50. K. K. Kelley, J. Am. Chem. Soc. 63, 1137 (1941).
- 51. E. C. Kerr, H. N. Hersh, and H. L. Johnston, J. Am. Chem. Soc. 72. 4738 (1950).
- 52. F. Neumann, Ann. Physik [2] 126, 123 (1865).
- 53. R. Ewald, Ann. Physik [4] 44, 1213 (1914).
- 54. V. Regnault, Ann. chim. et phys. [3] 1, 129 (1841).
- 55. M. O. Samsoen, Bull. soc. encour. ind. natl. 128, 185 (1929).
- 56. M. O. Samsoen and P. Mondain-Monval, Compt. rend. <u>182</u>, 967 (1926).
- 57. A. Winkelmann, Ann. Physik [3] 49, 401 (1893).
- 58. S. B. Thomas and G. S. Parks, J. Phys. Chem. 35, 2091 (1931).
- 59. P. C. Sitze, NACA/RM/ES7B14, 25p (April 1957).
- 60. V. N. Huff, S. Gordon, and V. E. Morrell, NACA Rept. 1037, 56p (1951).
- 61. D. A. Dows and R. F. Porter, J. Am. Chem. Soc. <u>78</u>, 5165 (1956).
- 62. W. J. Taylor, J. Chem. Phys. 28, 625 (1958).
- 63. D. White, P. N. Walsh, and D. E. Mann, J. Chem. Phys. 28, 508 (1958).
- 64. J. L. Margrave, University of Wisconsin, private communication, 1958.

- 65. P. A. Akishin and V. P. Spridinov, Doklady Akad. Nauk S.S.S.R. 131, 557 (1960).
- 66. D. White, D. E. Mann, P. N. Walsh, and A. Sommer, J. Chem. Phys. 32, 481 (1960).
- 67. M. D. Scheer, J. Phys. Chem. 61, 1184 (1957).
- 68. J. R. Soulen, P. Sthapitanonda, and J. L. Margrave, J. Phys. Chem. 59, 132 (1955).
- 69. J. R. Soulen and J. L. Margrave, J. Am. Chem. Soc. <u>78</u>, 2911 (1956).
- 70. R. Speiser, S. Naiditch, and H. L. Johnston, J. Am. Chem. Soc. 72, 2578 (1950).
- 71. P. Rentzepis and D. White, Ohio State University, private communication, 1957.
- 72. A. N. Nesmeyanov and L. P. Firsova, Zhur. Fiz. Khim. 24, 1032 (1960).
- 73. M. G. Inghram, R. F. Porter, and W. A. Chupka, J. Chem. Phys. 25, 498 (1956).
- 74. M. D. Scheer, J. Phys. Chem. <u>62</u>, 490 (1958).
- 75. P. Rentzepis, D. White, and P. N. Walsh, J. Phys. Chem. 64. 1784 (1960).
- 76. W. A. Chupka, unpublished data, quoted in J. Berkowitz, J. Chem. Phys. 30, 858 (1959).
- 77. E. J. Prosen, W. H. Johnson, and F. Y. Pergiel, J. Research NBS 61, 247 (1958) RP2901.
- 78. W. H. Johnson, M. V. Kilday, and E. J. Prosen, J. Research NBS 64A, 521 (1960).
- 79. H. A. Skinner, Symposium über Thermodynamik in Fritzen-Wattens, Tirol, 1959. Paper No. 3.
- 80. H. L. Johnston, E. C. Kerr, J. T. Clarke, and N. C. Hallett, Ohio State University Technical Report No. 6, Contract Nonr-225, Task Order IX (July 8, 1949).

- 81. G. T. Furukawa and R. P. Park, J. Research NBS <u>55</u>, 255 (1955) RP2627.
- 82. E. C. Kerr, N. C. Hallett, and H. L. Johnston, J. Am. Chem. Soc. 73, 117 (1951).
- 83. R. C. Lord and E. Nielsen, J. Chem. Phys. 19, 1 (1951).
- 84. A. N. Webb, J. T. Neu, and K. S. Pitzer, J. Chem. Phys. 17, 1007 (1949).
- 85. W. C. Price, J. Chem. Phys. 16, 894 (1948).
- 86. W. E. Anderson and E. F. Barker, J. Chem. Phys. <u>18</u>, 698 (1950).
- 87. D. A. Brown and H. C. Longuet-Higgins, J. Inorg. and Nuclear Chem. 1, 352 (1955).
- 88. R. C. Taylor and A. R. Emery, Spectrochem. Acta 10, 419 (1958).
- 89. K. Hedberg and V. Schomaker, J. Am. Chem. Soc. 73, 1482 (1951).
- 90. H. J. M. Bowen, J. Donohue, D. G. Jenkin, O. Kennard, P. J. Wheatley, D. H. Wiffen, and L. E. Sutton, Tables of interatomic distances and configuration in molecules and ions. Special Publication No. 11 (The Chemical Society, London, 1958).
- 91. W. J. Taylor, C. W. Beckett, J. Y. Tung, R. B. Holden, and H. L. Johnston, Phys. Rev. 79, 234 (1950).
- 92. H. J. Hrostowski and G. C. Pimentel, J. Am. Chem. Soc. 76, 998 (1954).
- 93. H. J. Hrostowski and R. J. Myers, J. Chem. Phys. 22, 262 (1954).
- 94. J. E. Stewart, National Bureau of Standards, private communication, 1957.
- 95. W. C. Keller and H. L. Johnston, J. Chem. Phys. 20, 1749 (1952).
- 96. J. S. Kasper, C. M. Lucht, and D. Harker, Acta Cryst. 3, 436 (1950).

- 97. E. B. Moore, Jr., R. E. Dickerson, and W. N. Lipscomb, J. Chem. Phys. 27, 209 (1957).
- 98. A. Stock and E. Kuss, Ber. 56, 789 (1923).
- 99. H. E. Wirth and E. D. Palmer, J. Phys. Chem. <u>60</u>, 914 (1956).
- 100. A. Shepp and S. H. Bauer, J. Am. Chem. Soc. <u>76</u>, 265 (1954).
- 101. R. E. McCoy and S. H. Bauer, J. Am. Chem. Soc. 78, 2061 (1956).
- 102. S. H. Bauer, A. Shepp, and R. E. McCoy, J. Am. Chem. Soc. 75, 1003 (1953).
- 103. M. V. Kilday, National Bureau of Standards, private communication, 1961.
- 104. C. Katz, M. S. Thesis, Cornell University (1949); quoted in [42].
- 105. H. L. Johnston and E. C. Kerr, J. Am. Chem. Soc. 72, 4733 (1950).
- 106. C. W. F. T. Pistorius, J. Chem. Phys. 31, 1454 (1959).
- 107. R. N. Servoss and H. M. Clark, J. Chem. Phys. <u>26</u>, 1175 (1957).
- 108. D. E. Bethell and N. Sheppard, Trans, Faraday Soc. 51, 9 (1954).
- 109. D. F. Hornig and R. C. Plumb, J. Chem. Phys. <u>26</u>, 637 (1957).
- 110. T. A. Sedorov and N. N. Sobolev, Optika i Spektroskopiya 1, 393 (1956).
- 111. F. C. Kracek, G. W. Morey, and H. E. Merwin, Am. J. Sci. [5] 35A, 143 (1938).
- 112. L. F. Gilbert and M. Levi, J. Chem. Soc. 1927, 527.
- 113. H. Lescoeur, Ann. chim. et phys. [6] 19, 35 (1890).
- 114. S. Bezzi, Gazz. chim. ital. 65, 766 (1935).
- 115. H. Menzel, H. Schulz, and H. Deckert, Z. anorg. u. allgem. Chem. 220, 49 (1934).

- 116. A. Thiel and H. Siebeneck, Z. anorg. u. allgem. Chem. 220, 236 (1934).
- 117. H. Tazaki, J. Science Hiroshima Univ. [A] 10, 37, 109 (1940).
- 118. E. J. Prosen, ARL Tech. Rept. 60-276, 12 (1960).
- 119. M. V. Kilday and E. J. Prosen, ARL Tech. Report 60-276, 1 (1960).
- 120. M. V. Kilday and E. J. Prosen, J. Am. Chem. Soc. 82, 5508 (1960).
- 121. D. White, D. E. Mann, P. N. Walsh, and A. Sommer, J. Chem. Phys. 32, 488 (1960).
- 122. W. A. Chupka and J. Berkowitz, paper presented at 135th American Chemical Society Meeting, Boston, April 1959.
- 123. M. Chrétien and E. Miescher, Helv. Phys. Acta 22, 588 (1949).
- 124. M. Chrétien, Helv. Phys. Acta 23, 259 (1949).
- 125. R. Onaka, J. Chem. Phys. 27, 374 (1957).
- 126. L. P. Lindeman and M. K. Wilson, J. Chem. Phys. 24, 242 (1956).
- 127. D. C. McKean, J. Chem. Phys. 24, 1002 (1956).
- 128. A. H. Nielsen, J. Chem. Phys. 22, 652 (1954).
- 129. B. P. Susz and J. J. Wuhrmann, Helv. Chim. Acta 40, 722 (1957).
- 130. P. W. Allen and L. E. Sutton, Acta Cryst. 3, 46 (1950).
- 131. T. E. Anderson, E. N. Lassittre, and D. M. Yost, J. Chem. Phys. 4, 703 (1936).
- 132. R. E. Scruby, J. R. Lacher, and J. E. Paul, J. Chem. Phys. 19, 386 (1951).
- 133. J. Wagner, Z. physik. Chem. 193, 55 (1943).

- 134. A. B. D. Cassie, Proc. Roy. Soc. (London) [A] 148, 87 (1935).
- 135. H. A. Levy and L. O. Brockway, J. Am. Chem. Soc. <u>56</u>, 2085 (1937).
- 136. T. Wentink, Jr. and V. H. Tiensuu, J. Chem. Phys. 28, 826 (1958).
- 137. S. Wise and W. Hubbard, Argonne National Lab., private communication, 1960.
- 138. H. Hammerl, Compt. rend. 90, 312 (1880).
- 139. A. W. Laubengayer and D. S. Sears, J. Am. Chem. Soc. 67, 164 (1945).
- 140. A. W. Laubengayer and G. R. Finlay, J. Am. Chem. Soc. 65, 884 (1943).
- 141. O. Mulert, Z. anorg. Chem. 75, 198 (1912).
- I. G. Ryss. Zhur. Obshchei Khim. 19, 1836 (1949);
 I. G. Ryss and M. M. Slutskaya, Compt. rend. acad. sci.
 U.R.S.S. 52, 417 (1946); I. G. Ryss and N. P. Bakina,
 Compt. rend. acad. sci. U.R.S.S. 11, 107 (1936);
 I. G. Ryss, Compt. rend. acad. sci. U.R.S.S. 54, 325
 (1946); I. G. Ryss and A. G. El'kenbard, Doklady Akad.
 Nauk S.S.S.R. 91, 865 (1953); I. G. Ryss and
 M. M. Slutskaya, Zhur. Obshchei Khim. 22, 41 (1952);
 I. G. Ryss and M. M. Slutskaya, Doklady Akad. Nauk
 S.S.S.R. 57, 689 (1947); I. G. Ryss and M. M. Slutskaya,
 Zhur. Obshchei Khim. 19, 1827 (1949); I. G. Ryss,
 M. M. Slutskaya, and S. D. Palevskava, Zhur. Fiz. Khim.
 22, 1322 (1948).
- 143. L. Troost and P. Hautefeuille, Compt. rend. 70, 185 (1870).
- 144. L. Troost and P. Hautefeuille, Ann. chim. et phys. [5] 9, 70 (1876).
- 145. H. A. Skinner and N. B. Smith, Trans. Faraday Soc. 49, 601 (1953).
- 146. M. Berthelot, Ann. chim. et phys. [5] 18, 185 (1878).

- 147. A. F. Kapustinskii and O. Ya. Samoilov, Izvest. Akad. Nauk S.S.S.R., Otdel Khim. Nauk 1952 218.
- 148. J. R. Lacher, R. E. Scruby, and J. D. Park, J. Am. Chem. Soc. 74, 5292 (1952).
- 149. E. Pohland, Z. anorg. u. allgem. Chem. 201, 282 (1931).
- 150. H. A. Skinner and N. B. Smith, Trans. Faraday Soc. <u>51</u>, 19 (1955).
- D. R. Stull, J. Am. Chem. Soc. 80, 4129 (1958).
- 152. R. R. Holmes, Ph.D. Thesis, Purdue University, 1954.
- 153. E. F. Apple and T. Wartik, J. Am. Chem. Soc. <u>80</u>, 6158 (1958).
- 154. W. S. Koski, J. J. Kaufman, and C. F. Pachucki, J. Am. Chem. Soc. 81, 1326 (1959).
- 155. J. Goubeau, D. E. Richter, and H. J. Becher, Z. anorg. u. allgem. Chem. 278, 12 (1955).
- 156. T. H. S. Higgins, E. C. Leisegang, C. J. G. Raw, and A. J. Rossouw, J. Chem. Phys. 23, 1544 (1955).
- 157. S. R. Gunn and R. H. Sanborn, J. Chem. Phys. 33, 955 (1960).
- 158. H. W. Woolley, NBS, private communication, 1960.
- 159. D. F. Mann and L. Fano, J. Chem. Phys. 26, 1665 (1957).
- 160. K. S. Pitzer and W. D. Gwinn, J. Chem. Phys. <u>10</u>, 428 (1942).
- 161. J. C. M. Li and K. S. Pitzer, J. Phys. Chem. <u>60</u>, 466 (1956).
- 162. M. J. Linevsky and T. Wartik, J. Phys. Chem. <u>62</u>, 1146 (1958).
- 163. G. Urry, T. Wartik, R. E. Moore, and H. I. Schlesinger, J. Am. Chem. Soc. <u>76</u>, 5293 (1954).

- 164. S. R. Gunn, L. G. Green, and A. I. Von Egidy, J. Phys. Chem. 63, 1787 (1959).
- 165. W. H. Jones, Aeronutronic, private communication, 1960.
- 166. D. L. Hildenbrand, Aeronutronic, private communication, 1961.
- 167. M. Farber, Rocket Power Div., Talco., private communication. 1961.
- 168. D. White, Ohio State University, private communication, 1961.
- 169. E. M. Magee, Esso Research and Engineering Co., private communication. 1960.
- 170. S. F. Sarner and D. L. Warlick, Flight Propulsion Laboratory, General Electric Co., private communication, 1960.
- 171. J. L. Margrave, University of Wisconsin, private communication, 1960.
- 172. P. B. Zeeman, Can. J. Phys. 29, 336 (1951).
- 173. G. St. Pierre and J. Chipman, J. Am. Chem. Soc. <u>76</u>, 4787 (1954).
- 174. A. E. Douglas and G. Herzberg, Can. J. Research <u>18A</u>, 179 (1950).
- 175. A. E. Douglas, J. Phys. Chem. 59, 109 (1955).
- 176. A. S. Dworkin, D. J. Sasmor, and E. R. Van Artsdalen, J. Chem. Phys. 22, 837 (1954).
- 177. E. J. Westrum, Jr., University of Michigan, private communication, 1958.
- 178. R. A. McDonald and D. R. Stull, J. Phys. Chem., in press.
- 179. K. Wentworth, General Electric Co., private communication, 1959.
- 180. R. Haldeman, American Cyanamid Co., Stamford, Conn., private communication, 1961.

- 181. L. H. Dreger, V. V. Dadape, and J. L. Margrave, J. Phys. Chem., in press.
- 182. B. L. Crawford, Jr., and J. T. Edsall, J. Chem. Phys. 7, 223 (1939).
- 183. M. V. Kilday, W. H. Johnson, and E. J. Prosen, NBS, private communication, 1960.
- 184. A. Stock and E. Pohland, Ber. 59, 2215 (1926).
- 185. A. Stock, E. Wiberg, and H. Martini, Ber. 63, 2927 (1930).
- 186. E. Wiberg and A. Bolz, Ber. 73, 207 (1940).
- 187. E. G. King, Ind. Eng. Chem. 41, 1298 (1949).
- 188. D. Smith, A. S. Dworkin, and E. R. Van Artsdalen, J. Am. Chem. Soc. 77, 2654 (1955).

Table 1. Heats of formation, ΔHf° .

	O o K	298.15°K
	kcal/mole	kcal/mole
B(c)	0	0
B(amorphous)		0.4 (defined)
B(g)	133• ±4•	134.22
B ₂ (g)	200. ±9.	201.513
BO(g)	5. ±10.	5.748
B ₂ O ₂ (g)	-108. ±3.	-107.79
B ₂ O ₃ (g)	-209.28 ±0.60	-210.14
(gls)		-300.98 ±0.30
(c)	-303.878	-305.34 ±0.33
BH(g)	116. ±10.	116.762
BH ₃ (g)	18.91	18. ±3.
B ₂ H ₆ (g)	11.352	7.53 ±0.25
B5H9(g)	21.955	15.02 ±0.40
(liq)	11.167(c)	7.74 ±0.42
B ₁₀ H ₁₄ (g)	13.93	2.8 ±1.5
(c)	-5.492	-15.8 ±1.5
HOB=O(g)	-134.5 ±2.0	-135.32
(c,I)		-192.56 ±0.55
(c,II)		-190.65 ±0.65
(c,III)		-189.02 ±0.65
H ₃ BO ₃ (g)	-235.68	-238.6 ±2.5
(c)	-258.929	-262.16 ±0.32

Table 1. Heats of formation, ΔHf° (Continued).

	O°K	298.15°K
	kcal/mole	kcal/mole
(HOBO) ₃ (g)	-537. ±10.	<u>-</u> 541.7
BF(g)	-44.6 ±6.5	-43.867
BF ₂ (g)	-135. ±6.	-134.84
BF ₃ (g)	-269.33	-270.0 ±2.5
BOF(g)	-140. ±8.	-139.9
(BOF)3(g)	-564.7	-567. ±8.
(c)		-582. ±8.
BCl(g)	44.1 ±6.5	44.831
BCl ₂ (g)	-20. ±5.	-19.62
BCl ₃ (g)	-96.892	-97.11 ±0.40
(1iq)		-102.715±0.40
B ₂ Cl ₄ (g)	-118.59	-118.7 ±2.
BOC1(g)	-85. ±5.	-84.8
(BOC1) ₃ (g)	-400. ±20.	-402.0
BFC1(g)	-78. ±6.	-77.81
BF2Cl(g)	-211.1	-211.65
BFCl ₂ (g)	-153.6	-153.97
BBr(g)	58.8 ±6.5	59.498
BBr ₂ (g)	4° ±5°	
BBr ₃ (g)	-60.38	-60.4 ±0.9
(liq)		-68.5 ±0.80

Table 1. Heats of formation, AHfo (Continued).

	O°K	298.15°K
	kcal/mole	kcal/mole
BF2Br(g)	-198.2 ±4.	-198.71
BFBr ₂ (g)	-129.3 ±4.	-129.59
BCl2Br(g)	-84.7 ±4.	-84.87
BClBr ₂ (g)	-72.6 ±4.	-72. 70
BI ₃ (g)	-5.4 ±8.	-5.29
BS(g)	56. ±12.	56.724
BN(g)	153. ±13.	153.749
(c)	-59.614	-60.3 ±0.5
B ₃ N ₃ H ₆ (g)	-118.10	-124.2 ±1.4
(liq)		-131.1 ±1.3
B4C(c)	-12.130	-12.2 ±2.4

All Br compounds based on ΔHf° Br₂(g) = 0.

BI3 based on ΔHf° I2(g) = 0.

BS based on $\Delta Hf^{\circ} S_{2}(g) = 0$ and $D_{0}(S_{2}) = 3.6 \text{ ev } (83.0 \text{ kcal/mole}).$

Table 2. Molecular constants for diatomic molecules.

	Ве	⋖e	(10 ⁶)D _e	$\omega_{\mathrm{e}^{\mathrm{x}}\mathrm{e}}$	ω_{e}	Electronic multiplicity
	cm-1	cm ⁻¹	cm-l	cm-l	cm-l	
B ₂	1.233	0.014	6.62 ⁺	9.56	1060.5	3
ВО	1.7986	0.01673	6.48+	11.89	1895.1	2
ВН	12.036	0.413	1220.	49.	2368.	1
BF*	1.5278	0.0168	7.	11.97	1410.05	1
BCl	0.6907	0.00656	1.79	5.16	843.33	1
$\mathtt{BB}\mathbf{r}$	0.497	0.0036	1.0	3.57	689.04	1
BS	0.80467	0.00616	1.48+	6.39	1187.41	2
BN	1.682	0.025	8.22+	12.4	1522.	6

*
$$\beta_e = -1.5 \cdot 10^{-4}$$
 , $y_e e = 0.057$

Estimated as $D_e = (4B_e^3/w_e^2)$

Table 3. Vibrational frequencies and moments of inertia for polyatomic molecules.

	Frequencies	Moments of inertia			
	cm-l	g cm ² ·10 ⁻³⁹			
(Degene	(Degeneracies, real or apparent, indicated in parentheses.)				
B ₂ O ₂	2000, 1890, 750, 600(2), 300(3)	$[B_0 = 0.1195 \text{ cm}^{-1}]$			
B ₂ O ₃	2045(2), 1418, 877, 310, 764, 744, 1306, 875	22.0397, 5.4330, 24.4727			
BH ₃	2384, 802, 2976(2), 1764(2)	0.33778, 0.33778, 0.67557			
B 2 H6	2526, 2105, 1181, 798, 830, 1763, 1037, 2615, 1177, 950, 369, 2594, 922, 1916, 974, 2522, 1604, 1012	1.051, 4.575, 4.959			
^B 5 ^H 9	799, 985, 1126, 1413, 1844, 2600(3), 500, 1450, 782, 900, 1387, 1870, 470, 1100, 1500, 738, 568(2), 605(2), 700(2), 882(2), 1034(2), 1449(2), 1621(2), 1802(2), 2598(2)	11.836, 11.836, 17.30			
B ₁₀ H ₁ 4	230, 295, 344, 350, 387, 434, 446, 452, 464, 508, 588, 618, 635, 651, 690, 701, 709, 720, 747, 752, 767, 773, 814, 822, 832, 859, 862, 903, 915, 921, 924, 938, 942, 960, 967, 972, 1008, 1037, 1060, 1104, 1160, 1190, 1210, 1250, 1300, 1360, 1390, 1410, 1460, 1500, 1555, 1590, 1620, 1665, 1880(2), 1929(2), 2550(2), 2576(2), 2595(2), 2618(2)	48.940, 57.268, 37.573			
нв0 ₂	3680, 2030, 1420, 1250, 600, 700	9.1052, 9.2207, 0.1155			

Table 3. Vibrational frequencies and moments of inertia for polyatomic molecules (Continued).

	Frequencies	Moments of inertia
1450c2-3c2	cm-1	g cm ² •10-39
H ₃ BO ₃	3250, 881, 1060, 652, 824, 1440(2), 3180(2), 1185(2), 210(2), 544(2)	8,3308, 8,3308, 16,6616
(HBO ₂) ₃	550, 1150, 950, 3500, 1100, 500, 600, 250, 500, 350, 750(2), 900(2), 1300(2), 1000(2), 600(2), 450(2), 3500(2), 350(2), 200(2), 1000(2)	44.397, 44.397, 88.794
BF ₂	1450, 890, 480	0.591, 7.996, 8.587
BF3	888, 696.7, 1463.3(2), 480.7(2)	7.9364, 7.9364, 15.8728
BOF	1000, 420(2), 1900	$[BO = 0.31466 \text{ cm}^{-1}]$
(BOF) ₃	900(3), 400(3), 1050(6), 450(6), 250(3)	45.833, 45.833 91.667
BCl ₂	960, 470, 240	1.166, 26.427, 27.593
BC13	471, 458.5, 960.9(2), 243(2)	26.4275, 26.4275, 52.9550
B ₂ Cl ₄	1131, 401, 225, 730, 291, 917(2), 617(2), 180(2)	163.468, 98.237, 98.237
BOC1	500, 390(2), 1900	$[B0 = 0.17129 \text{ cm}^{-1}]$
(BOC1) ₃	470(3), 390(3), 1050(6), 450(6), 250(3)	96.67, 96.67, 193.34
BFCl	1450, 340, 960	.784, 14.896, 15.680
BF ₂ Cl	1250, 697, 4 29, 1430, 366, 608	7.936, 22.375, 30.311

Table 3. Vibrational frequencies and moments of inertia for polyatomic molecules (Continued).

	Frequencies	Moments of inertia
	cm ⁻¹	g cm ² ·10 ⁻³⁹
BFCl ₂	1320, 554, 266, 1000, 339, 528	26.427, 11.875, 38.302
BBr ₃	279, 374, 825.7(2), 151(2)	69.595, 69.595, 139.190
BF ₂ Br	1215, 633, 330, 1426, 346, 572	7.936, 28.943, 36.879
BFBr ₂	1309, 418, 183, 869, 283, 496	69.595, 14.846, 84.441
BBrCl ₂	885, 405, 958, 218, 208, 433	26.427, 47.234, 76.661
BBr ₂ Cl	924, 343, 165, 834, 195, 408	36.564, 69.595, 104.159
BI ₃	190, 339, 710(2), 100(2)	152.97, 152.97, 305.94
B ₃ N ₃ H ₆	851, 938, 2535, 3450, 800, 1100, 415, 1650, 622, 1098, 525(2), 717(2), 917(2), 1466(2), 1610(2), 2519(2), 3400(2), 288(2), 798(2), 107((2)	16.0899, 16.0899, 32.1798

Table	e 4. B(crys	stal)			
T	- (F°-H°)	(H°-H°) T	S°	C° p	(H°-H°)
۰K	cal/°mole	cal/omole	cal/°mole	cal/°mole	cal/mole
0. 50. 100. 150. 200. 250. 300. 350. 400. 450. 500. 600. 700. 800. 900. 1100. 1200. 1300. 1400. 1500. 1600. 1700. 1800. 2000. 2100. 2200. 2300. 273.15 298.15		0.0 0.004 0.061 0.206 0.430 0.701 0.984 1.27 1.54 1.80 2.05 2.48 2.85 3.17 3.44 3.68 3.89 4.38 4.24 4.39 4.53 4.65 4.77 4.87 4.97 5.06 5.15 5.23 5.30 0.832 0.974	0.0 0.008 0.008 0.081 0.275 0.587 0.984 1.418 1.87 2.34 2.80 3.25 4.09 4.87 5.59 6.25 6.87 7.44 7.97 8.47 8.94 9.39 9.81 10.59 10.59 11.30 11.63 11.63 11.96 12.27 1.181 1.402	0.0 0.018 0.256 0.772 1.447 2.107 2.667 3.24 3.72 4.10 4.40 4.87 5.22 5.51 5.74 5.92 6.07 6.19 6.30 6.40 6.48 6.56 6.63 6.70 6.70 6.82 6.88 6.94 7.00 2.376 2.650	0.0 0.2 6.1 30.9 86.0 175.2 295.2 444. 616. 810. 1025. 1488. 1995. 2536. 3096. 3680. 4279. 4896. 5512. 6146. 6795. 7440. 8109. 8766. 9443. 10120. 10815. 11506. 12190. 227.3 290.4
270013	0 4 72 0	00714	10702	2.000	27004

Table 5. B(amorphous) (x is the zero-point entropy)						
T	-(F°-H ₀)	(H°-H°)	S°	C°	(H°-H ₀)	
	T	T				
οK	cal/omole	cal/°mole	cal/°mole	cal/°mole	cal/mole	
0. 50. 100. 150. 200. 250. 300. 350. 400. 450. 500. 600. 700. 800. 900. 1100. 1200. 1300. 1400. 1500. 1600. 1700. 1800. 1900. 2000. 2100.	X 0.016+X 0.044 0.107 0.211 0.350 0.516 0.70 0.90 1.11 1.33 1.75 2.17 2.58 2.98 3.37 3.73 4.08 4.42 4.85 5.16 5.47 5.77 6.05 6.32 6.59 6.85	0.0 0.015 0.088 0.252 0.490 0.769 1.066 1.36 1.64 1.90 2.13 2.55 2.91 3.50 3.74 3.96 4.16 4.34 4.50 4.65 4.78 4.90 5.01 5.12 5.21 5.30	X 0.031+X 0.132 0.359 0.701 1.119 1.582 2.06 2.54 3.01 3.46 4.30 5.08 5.81 6.48 7.11 7.69 8.24 8.76 9.35 9.81 10.25 10.67 11.06 11.44 11.80 12.15	0.0 0.041 0.330 0.860 1.549 2.218 2.879 3.39 3.78 4.11 4.40 4.88 5.26 5.57 5.83 6.05 6.24 6.39 6.53 6.65 6.75 6.83 6.90 6.96 7.02 7.07 7.11	0.0 0.7 8.8 37.8 98.0 192.2 319.8 476. 656. 855. 1065. 1530. 2037. 2584. 3150. 3740. 4356. 4992. 5642. 6300. 6915. 7648. 8330. 9018. 9728. 10420. 11130.	
2200. 2300. 273.15 298.15	7.09 7.33 0.424 0.510	5.39 5.47 0.905 1.054	12.48 12.80 1.329 1.564	7.15 7.19 2.523 2.858	11858. 12581. 247.2 314.3	

Table 6. B(liquid)						
T	-(F°-H°)	(H°-H°)	S°	C°	(H°-H%)	
	T	T				
۰K	cal/°mole	cal/°mole	cal/°mole	cal/°mole	cal/mole	
2300.	6.97	7.50	14.47	7.3	17250•	
2400.	7.27	7.49	14.76	7.3	17250.	
2500•	7.58	7 • 48	15.06	7.3	18700•	
2600•	7.86	7 • 48	15.34	7.3	19448•	
2700.	8.15	7.47	15.62	7.3	20169.	
2800.	8.42	7.46	15.88	7.3	20888.	
2900.	8 • 6.8	7.46	16.14	7.3	21634.	
3000.	8.94	7.45	16.39	7.3	22350.	
3100.	9.18	7.45	16.63	7.3	23095.	
3200.	9.42	7.44	16.86	7.3	23808•	
3300.	9.64	7 • 44	17.08	7.3	24552.	
3400.	9.86	7.44	17.30	7.3	25296.	
3500.	10.08	7.43	17.51	7.3	26005.	
3600.	10.29	7.43	1,7 • 72	7.3	26748•	
3700.	10.50	7.42	17.92	7.3	27454.	
3800.	10.70	7.42	18.12	7.3	28196.	
3900.	10.89	7.42	18.31	7.3	28938•	
4000.	11.08	7.41	18.49	7.3	29640•	
4100.	11.26	7.41	18.67	7.3	30381.	
4200.	11.44	7.41	18.85	7.3	31122.	
4300.	11.61	7.41	19.02	7.3	31863.	
4400.	11.79	7.40	19.19	7.3	32560•	
4500.	11.95	7.40	19.35	7.3	33300.	

Table 7. B(gas)

T	-(F°-H°)	(H°-H°)	S•	(H°-H°)	.C.
	T	T	7/2 7	- 7 / 7.	- 7/07-
o K	cal/omole	cal/omole	cal/omole		
50 • 75 •	22.250	5 • 479 5 • 331	27.729	273.9 399.8	5.072 5.013
	24.441	5.249	29.772	524.9	4.993
100. 125.	25.962 27.127	5.197	31.211 32.324	649.6	4.984
150.	28.071	5.161	33.232	774.1	4.979
175.	28 • 865	5.135	34.000	898.6	4.976
200•	29 • 549	5.115	34.664	1022.9	4.976
225 •	30.151	5.099	35 • 25 0	1147.3	4.973
250.	30.687	5.086	35 • 774	1271.6	4.972
275	31.171	5.076	36.247	1395.9	4.971
300•	31.613	5.067	36.680	1520.2	4.971
325.	32.018	5.060	37.078	1644.4	4.970
350•	32.393	5 • 053	37.446	1768.7	4.970
375.	32.741	5.048	37.789	1892.9	4.970
400.	33.067	5.043	38.110	2017.2	4.970
425.	33.372	5.039	38.411	2141.4	4.969
450 •	33 • 660	5.035	38.695	2265.6	4.969
475 •	33.932	5.031	38.964	2389.9	4.969
500•	34.190	5.028	39.219	2514.1	4.969
550•	34.669	5.023	39.692	2762.6	4.969
600•	35.106	5.018	40 • 125	3011.0	4.969
650•	35.508	5.015	40.522	3259•4	4.969
700•	35 • 879	5.011	40.891	3507.9	4.969
750 • 800•	36 • 225 36 • 548	5.008 5.006	41.233 41.554	3756.3 4004.7	4•969 4•969
850.	36.851	5.004	41.855	4253.1	4.968
900•	37.137	5.002	42.139	4501.6	4.968
950•	37.408	5.000	42 • 408	4750.0	4.968
1000•	37.664	4.998	42.663	4998•4	4.968
1050.	37.908	4.997	42.905	5246.8	4.968
1100•	38 • 140	4.996	43 • 136	5495.3	4.968
1150.	38 • 363	4.994	43 • 357	5743.7	4.968
1200•	38.575	4.993	43.568	5992.1	4.968
1250•	38 • 779	4.992	43.771	024000	4 • 968
1300•	38 • 975	4.991	43.966	6488.9	4.968
1350•	39.163	4.991	44.154	6737.3	4.968
1400•	39.345	4.990	44.334	6985.7	4.968
1450.	39.520	4.989	44.509	7234.2	4.968
1500.	39.689	4.988	44.677	7482.6	4.968
1550•	39 • 852	4.988	44.840	7731.0	4.968
1600.	40.011	4•987 4•98 7	44•998 45•151	79 79. 4 82 27. 8	4•968 4•968
1650.	40•164 40•313	4.986	45.299	8476.2	4.968
1700 • 1750 •	40 • 457	4.986	45 • 443	8724.6	4.968
1800•	40.598	4.985	45.583	8973.0	4.968
1850.	40.734	4.985	45.719	9221•4	4.968
1900•	40.867	4.984	45.852	9469.9	4.968
1950•	40.997	4.984	45.981	9718.3	4.968
2000.	41.123	4.983	46.106	9966.7	4.968
2050•	41.246	4.983	46.229	10215.1	4.968
	***	53 -			

Table 7. B(gas) [Continued]

T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C° p
	T	T			•
o K	cal/omole	cal/omole	cal/omole	cal/mole	cal/omole
2100•	41.366	4.983	46.349	10463.5	4.968
2150	41.483	4.982	46 • 466	10711.9	4.968
2200•	41.598	4.982	46.580	10960.3	4.968
2250•	41.710	4.982	46.692	11208.7	4.968
2300 • 2350 •	41.819 41.927	4.981 4.981	46.801 46.908	11457.1 11705.6	4.968
2400	42.031	4.981	47.012	11954.0	4•968 4•9 6 8
2450.	42.134	4.981	47.115	12202.4	4.968
2500.	42.235	4.980	47.215	12450.8	4.968
2600.	42.430	4.980	47.410	12947.6	4.968
2700.	42.618	4.979	47.597	13444.5	4.968
2800.	42.799	4.979	47. 7 78	13941.3	4.969
2900.	42 • 974	4.979	47.952	14438.2	4.969
3000.	43.143	4.978	48.121	14935.0	4.969
3100.	43.306	4.978	48 • 284	15431.9	4.969
3200•	43 • 464	4.978	48 • 442	15928.9	4.970
3300.	43.617	4.978	48.595	16425.9	4.970
3400•	43.766	4.977	48.743	16923.0	4.971
3500.	43.910	4.977	48.887	17420.1	4.972
3600.	44.050	4.977	49 • 027	17917•4	4.973
3700 • 3800 •	44.186 44.319	4•977 4•977	49•163 49•296	18414.9 18912.4	4.975 4.977
3900	44 • 448	4.977	49 • 425	19410 • 2	4.979
4000	44 • 574	4.977	49.552	19908•3	4.982
4100	44.697	4.977	49.675	20406.6	4.985
4200•	44.817	4.977	49.795	20905.3	4.988
4300•	44.934	4.978	49.912	21404.3	4.993
4400 •	45 • 049	4.978	50.027	21903.8	4.997
4500•	45.161	4.979	50.139	22403.8	5.002
4600.	45.270	4.979	50.249	22904.3	5.008
4700•	45 • 377	4.980	50 .357	23405.5	5.015
4800•	45 • 482	4.981	50.463	23907.3	5 • 022
4900•	45 • 585	4.982	50.566	24409.9	5.030
5000.	45 • 685	4.983	50.668	24913.3	5.039
5100•	45.784	4•984 4•985	50.768	25417.6 25922.9	5 • 048
5200 • 5300 •	45•881 45•976	4.987	50•866 50•963	26429.3	5 • 058 5 • 069
5400	46 • 069	4.988	51.057	26936.7	5.081
5500	46.161	4.990	51.151	27445 • 4	5.093
5600	46 • 251	4.992	51.243	27955.4	5.107
5700	46.339	4.994	51.333	28466.8	5.121
5800.	46 • 426	4.996	51.422	28979.6	5.136
5900.	46.511	4.999	51.510	29494.0	5.152
6000•	46.595	5.002	51.597	30010•0	5 • 168
273.15	31.137	5.077	36.214	1386.7	4.971
298 • 15	31.581	5.068	36.649	1511.0	4.971
	-	54 -			

T	-(F°-H ₀)	(H°-H ₀)	S°	(H°-H8)	C° P
	T	T			
o K	cal/°mole	cal/omole	cal/omole		cal/omole
50•	28.793	6.933	35.726	346.6	6.957
75.	31.606	6.941	38.546	520.6	6.957
100•	33.603	6 • 945	40.548	694.5	6.958
125. 150.	35 • 153 36 • 420	6•948 6•950	42 • 10 1 43 • 37 0	868.5 1042.6	6•960 6•968
175 •	37 • 492	6 • 954	44.446	1217.0	6 • 988
200•	38 • 421	6.960	45 • 381	1392.1	7.023
225.	39.241	6.970	46.211	1568.3	7.076
250.	39.976	6.984	46.960	1746.0	7 • 143
275.	40.643	7.002	47.644	1925.5	7.221
300•	41.253	7.024	48.276	2107.1	7.308
325.	41.816	7.049	48 • 865	2290.9	7 • 398
350•	42 • 339	7.077	49.417	2477.0	7.490
375 • 400 •	42•829 43•288	7.108 7.140	49•936 50•4 28	2665.4 2856.0	7•580 7•668
425	43.722	7.140	50.896	3048.8	7.752
450	44.133	7.208	51.341	3243.6	7.832
475.	44.524	7 • 243	51.767	3440.3	7.907
500•	44.896	7 • 278	52 • 174	3638.9	7.977
550•	45.593	7 • 347	52 • 940	4041•0	8.104
600•	46 • 235	7.415	53.650	4449•0	8 • 213
650.	46 • 831	7 • 480	54.312	4862.1	8.308
700•	47 • 388	7.542	54.930	5279.6	8 • 390
750•	47•910 48•403	7•601 7 •657	55•512 56•060	5700•9 6125•6	8 • 462 8 • 524
8 ₀₀ • 85 ₀ •	48 • 869	7.710	56 • 578	6553•2	8 • 579
900•	49 • 311	7 • 759	57.070	6983•4	8 • 627
950•	49.732	7 • 806	57.538	7415.8	8 • 670
1000•	50 • 1 3 3	7 • 850	57.983	7850•3	8.708
1050•	50.517	7 • 892	58 • 409	8286.6	8 • 743
1100•	50•885	7 •931	58.817	8724.5	8 • 774
1150•	51 • 239	7.969	59 • 207	9164.0	8 • 8 0 2
1200•	51.578	8.004	59.582	9604.7	8 • 8 2 8
1250•	51•906 52•222	8 • 037	59.943	10046.8	8 • 852 8 • 874
1300 • 135 ₀ •	52 • 527	8•069 8•099	60•291 60•626	10409.9	8 • 8 9 5
1400•	52 • 822	8.128	60.950	11379.4	8.914
1450•	53.108	8.156	61.263	11825.5	8.932
1500•	53 • 385	8.182	61.566	12272.6	8 • 949
1550.	53.653	8.207	61.860	12720•4	8.965
1600•	53.914	8.231	62.145	13169.0	8.980
1650•	54.168	8 • 254	62.421	13618.4	8 • 995
1700•	54 • 415 54 • 655	8 • 276 8 307	62.690	14068.5	9 • 0 0 8
1750 • 1800 •	54∙655 54∙889	8 • 297 8 • 317	62•951 63•206	14519•2 14970•6	9 • 0 2 2 9 • 0 3 4
1850•	55.117	8.337	63 • 45 3	15422.7	9 • 047
1900•	55.339	8.355	63.695	15875.3	9.059
1950.	55.557	8.374	63.930	16328.6	9.070
2000•	55.769	8.391	64.160	16782•4	9.082
2050•	55•976	8 • 408	64.385	17236 .7	9.093

Table 8. B2(gas) [Continued]

T	- (F°-H°)	(H°-H°)	S°	(H°÷H8)	C°
• K	cal/°mole	cal/°mole	cal/omole	cal/mole	cal/amole
2100•	56 • 179	8 • 425	64 • 604	17691.6	. 9.103
2150•	56 • 378	8 • 440	64•818	18147.0	9 • 114
2200•	56 • 572	8 • 456	65 • 028	18603.0	9 • 124
2250•	56.762	8 • 471	65 • 233	19059•4	9 • 134
2300•	56 • 948	8 485	65 • 434	19516.4	9 • 144
2350•	57.131	8.500	65 • 630	19973.8	9 • 154
2400 • 2450 •	57•310 57•486	8•513 8•527	65•823 66•012	20431•8 20890•2	9 • 163 9 • 173
2500•	57 • 658	8 • 5 4 0	66 • 198	21349•1	9 • 182
2600•	57 • 994	8 • 5 6 5	66 • 558	22268•2	9 • 201
2700•	58.317	8.589	66 • 906	23189.2	9.219
2800•	58 • 630	8 • 611	67 • 241	24112.0	9 • 237
2900•	58 • 933	8.633	67.566	25036.6	9 • 255
3000•	59.226	8 • 654	67.880	25962.9	9.272
3100•	59.510	8.675	68.184	26891.0	9.290
3200•	59.7 85	8.694	68.479	27820.9	9.307
3300.	60.053	8.713	68.766	28752.4	9.324
3400.	60.314	8.731	69.045	29685.7	9.342
3500•	60.567	8.749	69.316	30620.7	9.359
3600.	60.814	8.766	69.580	31557.5	9 • 376
3700.	61.054	8.783	69.837	32495.9	9.393
3800•	61.289	8.799	70.088	33436.1	9 • 411
3900•	61.517	8.815	70.332	34378.1	9 • 428
4000•	61.741	8 • 830	70.571	35321.7	9 • 445
4100. 4200.	61•959 62•172	8 • 846 8 • 861	70.805 71.033	36267•2 37214•3	9 • 463 9 • 480
4300•	62.381	8.875	71.055	38163.3	9 • 498
4400	62.585	8.890	71.475	39113.9	9.516
4500•	62.785	8.904	71.689	40066.4	9.534
4600•	62.981	8.918	71.898	41020.7	9.552
4700•	63.173	8.931	72.104	41976.7	9.570
4800•	63.361	8.945	72.306	42934.6	9.588
4900•	63.546	8.958	72.504	43894.3	9.606
5000•	63.727	8.971	72.698	44855.8	9.624
5100.	63.904	8.984	72.889	45819.2	9.643
5200•	64.079	8 • 997	73.076	46784•4	9.661
5300•	64.251	9.010	73 • 260	47751.5	9 • 680
5400•	64 • 419	9.022	73 • 441	48720•4	9 • 699
5500•	64 • 585	9 • 035	73.619	49691.3	9.718
5600•	64.748	9 • 047	73 • 795	50664.0	9.737
5700•	64.908	9.059	73.967	51638.7	9.756
5800•	65 • 066	9 • 0 7 2	74 • 137	52615.3	9.776
5900	65.221	9.084	74 • 304	53593.9	9.795
6000•	65.373	9.096	74 • 469	54574.4	9.815
273.15	40.595	7.000	47.596	1912.2	7.215
298.15	41.209	7.022	48.231	2093.6	7.301
-,0012	. 1 , 1 ,		, 0 0 2 3 1	-0,500	, , , ,

T	-(F°-H°)	(H°-H ₀)	S°	(H°-H ₀)	C°
• K	cal/omole	cal/ºmole	cal/omole	cal/mole	cal/omole
50.	27.885	6.921	34.807	346.1	6.956
75.	30.694	6.933	37.627	520.0	6.956
100.	32.689	6.939	39.628	693.9	6.957
125.	34 • 238	6.942	41.181	867.8	6.957
150.	35.504	6 • 945	42.449	1041.7	6.957
175.	36.575	6.947	43.521	1215.7	6.957
200 • 225 •	37.503 38.321	6•948 6•949	44•451 45•270	1389.6 1563.6	6•958 6•960
250.	39.053	6.950	46.004	1737.6	6.963
275.	39.716	6.952	46.668	1911.8	6.969
300.	40.321	6.954	47.274	2086.1	6.979
325.	40.877	6.956	47.833	2260.08	6.994
350.	41.393	6.960	48 • 352	2435.8	7.014
375.	41.873	6.964	48.837	2611.5	7.038
400•	42.323	6.970	49.292	2787.8	7.069
425.	42.746	6.976	49.722	2964.9	7.103
450.	43.145	6.984	50.129	3143.0	7.142
475	43.522	6.994	50.516	3322.1	7 • 185
500• 550•	43•881 44•550	7.005 7.029	50.886 51.580	3502•3 3866•2	7.230
600•	45.163	7.058	52.222	4235 • 1	7•327 7• 428
650•	45 • 729	7.091	52.820	4609.0	7 • 5 2 9
700•	46.256	7.126	53.382	4987.9	7.628
750•	46.749	7.162	53.911	5371.7	7.722
800•	47.212	7.200	54.412	5760.0	7.811
850.	47.650	7.238	54.888	6152.7	7.894
900•	48 • 065	7 • 277	55.342	6549.4	7.972
950•	48 • 459	7.316	55.775	6949.8	8 • 044
1000.	48 • 836	7.354	56.189	7353.6	8.110
1050•	49 • 195	7.4391	56.586	7760.7	8 • 171
1100 · 1150 ·	49•540 49•8 7 1	7•428 7•464	56•968 57•335	8170.6 8583.3	8 • 227 8 • 278
1200•	50 • 189	7.499	57.688	8998•4	8 • 326
1250•	50 • 496	7.533	58.029	9415.8	8-370
1300•	50.792	7.566	58.358	9835.3	8.410
1350•	51.078	7.598	58 • 676	10256.8	8 • 4 4 8
1400•	51.355	7.629	58.984	10680•1	8 • 482
1450•	51.623	7.659	59.282	11105.0	8.514
1500•	51.883	7.688	59.571	11531.5	8 • 5 4 4
1550•	52.136	7.716	59.852	11959.4	8 • 572
1600•	52.381	7.743	60.124	12388.6	8.598
1650 • 1700 •	52 • 620 52 • 852	7 • 769	60.389	12819.1	8 • 622
1750•	53.079	7•795 7•819	60•647 60•898	13250.8 13683.5	8 • 644 8 • 665
1800.	53.299	7.843	61.142	14117.3	8 • 685
1850.	53 • 5 15	7.866	61.380	14552.0	8.704
1900.	53.725	7.888	61.613	14987.7	8.721
1950.	53.930	7.910	61.840	15424.1	8.738
2000.	54.130	7.931	62.061	15861.4	8.753
2050•	54.326	7.951	62.277	16299.5	8.768

Table	9.	BO (gas)	[Continued]
-------	----	----------	-------------

T	-(F°-H°)	(H°-H ₀)	S°	(H°-H ₀)	c _p
	T	T		,	
• K	cal/omole	cal/omole	cal/omole	cal/mole	cal/omole
2100•	54.518	7.971	62.489	16738.2	. 8.782
2150•	54.706	7.990	62.696	17177.7	8.795
2200•	54.890	8.008	62.898	17617.8	8.808
2250•	55.070	8 • 026	63.096	18058•5	8 • 8 2 0
2300•	55.247	8.043	63.290	18499.8	8 • 832
2350 • 2400 •	55 • 420 55 • 590	8 • 0 6 0 8 • 0 7 7	63•480 63•6 6 6	18941•6 19384•0	8 • 843 8 • 853
2450•	55 • 756	8.093	63 • 849	19826.9	8 • 863
2500•	55 • 920	8 • 108	64 • 028	20270•3	8 • 873
2600•	56 • 239	8.138	64 • 376	21158.5	8.891
2700•	56.546	8.166	64.712	22048.4	8.908
2800•	56.844	8.193	65.037	22940.0	8 • 923
2900•	57.132	8.218	65.350	23833•1	8 • 938
3000•	57.411	8.243	65.653	24727.6	8.952
3100.	57.681	8.266	65.947	25623.4	8.965
3200•	57•944 58•199	8 • 288	66 • 232	26520.6	8 977
3300 • 3400 •	58 • 448	8•30 9 8•329	66•508 66•777	27418.9 28318.4	8 • 989 9 • 000
3500	58 • 690	8 • 348	67.038	29219.0	9.011
3600•	58 • 925	8.367	67.292	30120.6	9.022
3700•	59.154	8.385	67.539	31023.3	9.032
3800.	59.378	8.402	67.780	31926.9	9.041
3900.	59.597	8.418	68.015	32831.5	9.051
4000•	59.810	8 • 434	68•244	33737•1	9.060
4100.	60.019	8 • 450	68.468	34643.5	9.069
4200	60 • 222	8 • 464	68.687	35550.8	9.077
4300 • 4400 •	60 • 422 60 • 617	8 • 479 8 • 493	68•901 69•109	36458•9 37367•9	9 • 086 9 • 094
4500•	60.808	8.506	69.314	38277.7	9.102
4600•	60 • 995	8.519	69.514	39188.3	9.110
4700.	61.178	8.532	69.710	40099.7	9.118
4800 •	61 • 358	8 • 544	69.902	41011.9	9 • 126
4900.	61.534	8.556	70.090	41924.9	9.133
5000.	61.707	8.568	70.275	42838.6	9 • 141
5100.	61.877	8.579	70.456	43753.0	9 • 148
5200	62 • 044	8.590	70.634	44668.2	9 • 156
5300 • 5400 •	62.207	8 • 60 l	70 • 808	45584•1 46500•8	9 • 163
5500	62•368 62•526	8.611 8.621	7 ₀ •98 ₀ 71•148	47418.1	9 • 170 9 • 177
5600•	62 • 682	8 • 631	71.313	48336.2	9 • 184
5700•	62 • 835	8 • 641	71 • 476	49255.0	9 • 191
5800•	62.985	8.651	71.636	50174.5	9.198
5900•	63 • 133	8 • 660	71.793	51094.7	9 • 205
6000•	63.279	8 • 669	71.948	52015•6	9.212
272 1E	30 ((0	6 053	4.6. 6.22	1000 0	6 060
273 • 15 298 • 15	39•669 40•278	6 • 952 6 • 954	46•620 47•231	1898•9 2073•2	6•969 6•978
7 30 0 I J	70 0 2 10	0 0 7 7 4	414231	201902	0 + 3 1 0

Т	-(F°-H°)	(H°-H°)	S°	(H°-H8)	C°p
• K	cal/omole	cal/omole	cal/omole	cal/mole	cal/omole
50•	33.921	6.959	40.881	348.0	7.008
75.	36.753	7.027	43.780	527.0	7.380
100•	38 • 795	7.193	45.988	719.3	8 • 028
125.	40•425 41•805	7•434 7•720	47•858 49•525	929•2 1158•0	8 • 771 9 • 532
150• 175•	43.018	8.032	51.050	1405.6	10.273
200•	44.112	8.356	52.468	1671.3	10.970
225.	45.115	8.683	53.798	1953.7	11.611
250•	46 • 046	9 • 005	55.051	2251.3	12.188
275.	46.919	9.318	56.238	2562.6	12.705
300•	47•743 48•525	9•620 9•909	57•363 58•434	2886.0 3220.4	13.165 13.578
325 • 350 •	49.269	10 • 185	59 • 45 4	3564.6	13.950
375.	49.981	10.447	60.428	3917.7	14.289
400.	50.663	10.697	61.360	4278.8	14.600
425.	51.319	10.935	62.254	4647.5	14.888
450.	51.950	11.162	63 • 113	5023.0	15 • 156
475.	52.560	11.379	63.939	5405 • 1	15 • 408
500 • 550 •	53.149 54.272	11.587 11.976	64.735 66.247	5793.3 6586.7	15•645 16•083
600•	55.329	12.335	67.664	7400.9	16.478
650.	56.330	12.668	68.997	8233.9	16.836
700.	57.280	12.977	70.257	9084.0	17.161
750•	58 • 185	13.266	71 • 451	9949.5	17.456
800•	59.050	13.536	72.587	10829.1	17.722
850 • 900 •	59•879 60•674	13.790 14.028	73.668, 74.701	11721.3 12625.1	17•964 18•183
950•	61.438	14.020	75.690	13539.3	18.381
1000.	62.174	14.463	76.637	14462.9	18.560
1050.	62.885	14.662	77.547	15395.1	18.723
1100.	63.571	14.850	78.421	16335.0	18.871
1150.	64 • 236	15.028	79.263	17281.9	19.005
1200 •	64 • 879	15.196	80.075	18235.3 19194.5	19.128
1250 • 1300 •	65.502 66.108	15.356 15.507	80 _• 858 81 _• 615	20159.1	19.239 19.341
1350.	66 • 695	15.651	82.346	21128.5	19.434
1400•	67 • 267	15.787	83 • 055	22102•4	19.520
1450.	67.823	15.918	83.741	23080.4	19.598
1500•	68 • 365	16.041	84.407	24062.1	19.670
1550•	68 • 893	16.160	85 • 053	25047.3	19.737
1600•	69•408	16.272	85.680	26035•7	19.798
1650•	69.910	16.380	86.290	27027.1	19 • 855
1700.	70.401	16.483	86 • 884 87 • 462	28021.1 29017.7	19.907 19.956
1750 • 1800 •	70•880 71•349	16.582 16.676	87•462 88•024	30016.6	20.001
1850	71.807	16.766	88.573	31017.7	20.043
1900.	72 • 255	16.853	89.108	32020.9	20.082
1950•	72 • 694	16.936	89.630	33025.9	20.118
2000•	73•124 73•545	17.016	90 • 140	34032.7	20 • 152
2050•	150545	17.093	90.638	35041.1	20.184

Tabl	e 10. B ₂ O ₂	(gas) [Cont	cinued]		
T	-(F°-H°)	(H°-H8)	S°	(H°-H°) C°
	T	T			•
• K	cal/°mole	cal/omole	cal/omole	cal/mole	cal/ºmole
2100.	73.958	17.167	91.125	36051.0	20.214
2150 • 2200 •	74.362 74.759	17.238 17.307	91.601 92.066	37062.4 38075.2	20 • 242 20 • 268
2250.	75.149	17.373	92.522	39089.2	20.293
2300.	75.532	17.437	92.968	40104.4	20.316
2350	75.907	17.498	93.406	41120.8	20.338
2400 • 2450 •	76 • 276 76 • 639	17.558 17.615	93•834 94•254	42138.2 43156.6	20•358 20•378
2500	76.995	17.670	94.666	44175.9	20.396
2600.	77.691	17.776	95.466	46217.3	20.430
2700•	78 • 363	17.875	96.238	48261.8	20 • 460
2800 • 2900 •	79•015 79•647	17•968 18•055	96•983 97•702	50309•2 52359•2	20•487 20•512
3000	80.261	18.137	98.398	54411.6	20.535
3100•	80.857	18.215	99.071	56466.0	20.555
3200•	81.436	18.288	99.724	58522.5	20.573
3300 • 3400 •	82•000 82•549	18.358 18.424	100.358 100.973	60580•7 62640•5	20•590 20•606
3500	83 • 084	18.486	101.570	64701.8	20.620
3600•	83.605	18.546	102.151	66764.5	20.633
3700	84.114	18.602	102.717	68828.4	20.645
3800 • 3900 •	84•611 85•09 6	18.656 18.708	103.267 103.804	70893 .5 72959 . 7	20 • 657 20 • 667
4000	85.571	18.757	104.327	75026.9	20.677
4100.	86.034	18.804	104.838	77095.0	20.686
4200•	86.488	18.849	105.337	79164.0	20.694
4300 • 4400 •	86•932 87•367	18.892 18.933	105.824	81233.8 83304.3	20.702 20.709
4500	87.793	18.972	106.765	85375.6	20.716
4600.	88.210	19.010	107.221	87447.5	20.722
4700•	88.619	19.047	107.666	89520.0	20.728
4800 • 4900 •	89•021 89•415	19.082 19.116	108 • 103 108 • 530	91593•1 93666•7	20•734 20•739
5000	89.801	19.148	108.949	95740.9	20.744
5100.	90.181	19.180	109.360	97815.5	20.749
5200•	90.553	19.210	109.763	99890.6	20.753
5300 · 5400 ·	90•920 91 •27 9	19.239 19.267		101966•1 104042•1	20•757 20•761
5500	91.633	19.294		106118.4	20.765
5600.	91.981	19.321		108195.0	20.769
5700.	92.323	19.346		110272.1	20.772
5800. 5900.	92.660 92.991	19.371 19.394		112349.4 114427.1	20.775 20.778
6000	93 • 318	19.418		116505.0	20.781
273.15	46 • 856	9•296	56.152	2539•1	12.668
298•15 0•	47.684	9•598	57.282	2861•7	13 • 133

Table	e 11. B ₂ O ₃	(crystal)			
T	-(F°-H°)	(H°-H°)	S°	C° p	(H°-H°)
	T	T			
• K	cal/°mole	cal/°mole	cal/omole	cal/°mole	cal/mole
0.	0.0	0.0	0.0	0.0	0.0
50.	0.132	0.380	0.512	1.45	19.0
100.	0.809	1.817	2.626	4.99	181.7
150.	1.844	3.379	5.223	7.93	506.8
200.	3.019	4.842	7.861	10.48	968.2
250.	4.247	6.208	10.455	12.85	1552.0
300.	5.495	7.503	12.998	15.12	2250.9
350.	6.75	8.76	15.51	17.0	3066.
400.	7.99	9.89	17.88	18.6	3956.
450.	9.22	10.93	20.15	19.9	4918.
500.	10.42	11.82	22.24	21.0	5912.
600·	12.71	13.43	26.14	23.2	8058.
700.	14.91	15.14	30.05	28.4	10598.
723.	15.39	15.59	30.98	30.2	11272.
273.15	4.825	6.315	11.640	13.89	1861.6
298.15	5.449	7.456	12.905	15.04	2223.1

Table	e 12. B ₂ O ₃	(amorphous,	glass)		
T	-(F°-H _O)	(H°-H°)	S°	C°	(H°-H°)
	T	T		-	
• K	cal/omole	cal/omole	cal/°mole	cal/°mole	cal/mole
298.15	-3.55	22.10	18.55	14.6	6589.
300.	-3.39	22.05	18.66	14.7	6615.
350.	-0.08	21.09	21.01	16.3	7382.
400.	2.70	20.60	22.30	17.9	8240.
450.	5.11	20.36	25.47	19.1	9162.
500.	7.26	20.33	27.59	21.7	10165.
600.	11.10	22.05	33.15	32.2	13230.
700.	14.62	23.49	38.11	32.1	16443.
723.	15.39	23.76	39.15	32.0	17178.

Based on B203(c) at 0°K

Tabl	e 13. B ₂ O ₃	(liquid)			
T	-(F°-H _O °)	(Ho-H ₀)	S°	C° p	(H°-H°)
	T	T		•	
• K	cal/°mole	cal/°mole	cal/°mole	cal/°mole	cal/mole
723.	15.39	23.76	39.15	32.0	17178.
800.	17.84	24.55	42.39	31.8	19640.
900.	20.77	25.34	46.11	31.3	22806.
1000.	23.47	25.91	49.38	30.8	25910.
1100.	25.95	26.34	52.29	30.6	28974.
1200.	28.25	26.69	54.94	30.4	32028
1300.	30.41	26.97	57. 38	30.2	35061.
1400.	32.42	27.20	59.62	30.0	38080
1500.	34.31	27.39	61.70	30.1	41085
1600.	36.08	27.57	63.65	30.4	44112.
1700.	37.74	27.75	65.49	30.6	47173.
1800.	39.33	27.91	67.24	30.8	50238.
1900.	40.84	28.07	68.91	31.0	53333.
2000.	42 • 28	28.22	70.50	31.1	56440. 59556.
2100.	43.66 44.98	28.36 28.49	72.02 73.47	31.2 31.3	62678.
2300	46.25	28.61	74.86	31.4	65803.
2400.	47.47	28.73	76.20	31.5	68952
2500.	48.65	28.84	77.49	31.6	72100
2600.	49.78	28.95	78.73	31.6	75270
2700.	50.87	29.05	79.92	31.7	78435
2800	51.93	29.14	81.07	31.7	81592
2900.	52.95	29.23	82.18	31.8	84767.
3000.	53.94	29.32	83.26	31.8	87960.
310C.	54.90	29.40	84.30	31.8	91140.
3200.	55.83	29.48	85.31	31.9	94336.
3300.	56.74	29.55	86.29	31.9	97515.
3400.	57.62	29.62	87.24	31.9	100708.
3500.	58.48	29.68	88.16	31.9	103880.
3600.	59.32	29.74	89.06	32.0	107064.
3700.	60.14	29.80	89.94	32.0	110260.
3800.	60.93	29.86	90.79	32.0	113468.
3900.	61.71	29.91	91.62	32.0	116649.
4000.	62.46	29.97	92.43	32.1	119880.

Tabl	le 14. B ₂ 0 ₃	(gas)			
T	-(F°-H°)	(Ho-Ho)	S°	(H°-H°)	C.º
	T	T		O	P
o K	cal/°mole	cal/°mole	cal/omole	cal/mole	cal/°mole
50.	40.119	7.949	48.068	397.5	7.970
75 •	43.346	7.979	51.325	598.4	8.134
100.	45.651	8.053	53.703	805.3	8-428
125.	47.459	8.162	55.620	1020.2	8.773
150.	48 • 958	8 • 295	57.254	1244.3	9.162
175 • 200 •	50 • 248 51 • 388	8 • 450 8 • 626	58.699 60.014	1478.8 1725.3	9.610 10.117
225.	52-415	8 • 822	61.238	1985.0	10.669
250.	53.356	9.036	62.392	2259.0	11.251
275.	54.227	9.264	63.492	2547.7	11.845
300.	55.044	9.504	64.548	2851.2	12.439
325.	55.814	9.752	65.567	3169.5	13.024
350.	56 • 546	10.007	66.553	3502-3	13.594
375.	57.245	10.264	67.510	3849.1	14.146
400.	57.916	10.524	68.440	4209•4	14.677
425 • 450 •	58.562	10.783 11.041	69.345 70.227	4582•7 4968•6	15 • 187 15 • 675
475	59•186 59•789	11.297	71.087	5366.3	16.140
500.	60.375	11.551	71.926	5775.4	16.584
550.	61.500	12.046	73.546	6625.5	17.408
600.	62.568	12.525	75.093	7514.9	18.152
650.	63.589	12.984	76.573	8439.5	18.821
700.	64.568	13.423	77.990	9395.9	19.422
750.	65.508	13.841	79.349	10380.7	19.961
800.	66.414	14-239	80.653	11391.1	20.445
850.	67•289 68•135	14.617	81.906 83.110	12424.4	20.879
900 • 950 •	68.953	15.316	84.270	14550.6	21.619
1000.	69.747	15.640	85.387	15639.5	21.934
1050.	70.518	15.946	86.464	16743.5	22.218
1100.	71.266	16.237	87.504	17860.9	22.475
1150.	71.994	16.514	88.508	18990.6	22.707
1200.	72.703	16.776	89 • 479	20131.3	22.918
1250.	73.393	17.026	90.418	21282.0	23.109
1300.	74 • 065	17.263	91.328	22441.9	23.283
1350. 1400.	74•721 75•361	17.489 17.704	92.210 93.065	23 61 0 . 1 24785 . 9	23.442
1450.	75.986	17.909	93.895	25968.6	23.720
1500.	76.596	18.105	94.701	27157.7	23.842
1550.	77.193	18.292	95 • 485	28352.7	23.954
1600.	77.777	18.471	96.247	29553.0	24.058
1650.	78.348	18.641	96.989	30758.3	24.153
1700.	78.907	18.805	97.711	31968.2	24.241
1750.	79 • 454	18.961	98.415	33182.3	24.323
1800.	79.990	19.111	99.102	34400.4	24.399
1850.	80.516	19.255	9.9 • 771	35622.1	24 • 469
1900 • 1950 •	81.031 81.537	19.393	100.424	36847.2	24.534
2000	82.033	19.526 19.653	101.062	38075.4 39306.6	24.595 24.652
2050.	82.519	19.776	102.295	40540.6	24.705
- 3000					5.4.38
		- 63 -			

Table	14. B ₂ O ₃	(gas) [Con	ntinued]		
T	-(F°-H ₀ °)	(H°-H°)	So	(H°-H°)	C° p
	T	T			
• K	cal/omole	cal/omole	cal/ºmole	cal/mole	cal/omole
2100.	82.997	19.894	102.891	41777-1	24.755
2150. 2200.	83 • 467 83 • 928	20.007 20.117	103.474	43016.0	24.801 24.845
2250e	84.381	20.222	104.604	45500.5	24.886
2300.	84.827	20.324	105.151	46745.7	24.925
2350	85 • 26 5	20 •423	105.588	47992.9	24.961
2400 • 2450 •	85 • 69 6 86 • 1 20	20- 517 20- 609	106.213	50492.4	24.9 95 25.0 27
2500.	86.537	20.698	107-235	51744.5	25.058
2600.	87.352	20-867	108.219	54253.1	25.114
2700.	88.143 88.910	21.025 21.174	109.168	56767+1	25 • 164
2900.	89-656	21.313	110.084	59285.8	25 • 209 25 • 250
3000	90.381	21.445	111.826	64335.7	25.287
3100.	91.086	21.570	112.655	66866.2	25.321
3200 · 3300 ·	91 •772 92 •442	21.687 21.799	113.460 114.240	69399.8 71936.4	25 • 352
3400.	93.094	21.905	114.998	74475.7	25 • 380 25 • 405
3500.	93.730	22.005	115.735	77017.4	25.429
3600.	94.352	22.100	116.452	79561.4	25.451
3700.	94 •958 95•5 51	22.191	117.150 117.829	82107.5 84655.5	25.471
38 00.	96.131	22.278 22.360	118.491	87205.3	25 • 489 25 • 506
4000.	96.698	22.439	119.137	89756.7	25.522
4800.	97 • 253	22.515	119.768	92309.7	25.537
4200. 4300.	97.797 98.329	22.587 22.656	120.383 120.985	94864.1 97419.8	25.551
4400.	98 • 850	22.722	121.572	99976.7	25 •564 25 •576
4500.	99.362	22.786	122.147	102534.9	25.587
4600.	99.863	22.847	122.710	105094.1	25.597
4700.	100.355	22.905	123.260	107654.3	25.607
4900 .	100.838 101.312	22.962 23.016	123.800 124.328	110215.5	25.616 25.625
5000.	101.778	23.068	124.846	115340.5	25.633
5100.	102.235	23.118	125.353	117904.2	25.641
5200. 5300.	102.684 103.126	23.167 23.214	125 • 851 126 • 340	120468.6	25 • 648 25 • 655
54 00.	103.560	23.259	126.820	125599.6	25.662
5500.	103.988	23.303	127.291	128166.1	25.668
9600.	104.408	23.345	127.753	130733.2	25 • 674
\$700. \$800.	104.821 105.228	23 •386 23•426	128.208 128.654	133300.8	25.679 25.684
5900.	105-629	23.464	129.093	138437.7	25.689
6000.	106.024	23.501	129.525	141006.9	25.694
273.15	54.165	9.247	63.412	2525.8	11.801
298.15	54.985	9.486	64.471	2828.3	12.395
723.00	65.005	13.618	78.622	9845.5	19.678

	/70	/***		(_
T	- (F°-H°)	(H°-H°)	S°	(H°-H°)	Сp°
	T	T			
• K	cal/°mole	cal/omole	cal/°mole	cal/mole	cal/°mole
50.	21.888	6.725	28.614	336.3	6.963
75.	24.632	6.805	31.437	510.4	6.961
100.	26.596	6.844	33.440	684.4	6.961
125.	28 • 126	6.867	34.993	858.4	6.962
150.	29.379	6.883	36.262	1032.5	6.963
175.	30•441 31•362	6 • 895 6 • 903	37.336	1206.6 1380.7	6•964 6•965
200 • 225 •	32.176	6.910	38•266 39•086	1554.8	6.967
250.	32 • 904	6.916	39 • 820	1729.0	6.968
275.	33.564	6.921	40 • 485	1903.3	6.971
300.	34 • 166	6.925	41.091	2077.6	6.974
325.	34.721	6.929	41.650	2252.0	6.980
350.	35.234	6.933	42.167	2426.6	6.988
375.	35.713	6.937	42.650	2601.4	6.999
400 •	36.161	6.941	43.102	2776.6	7.014
425.	36.581	6.946	43.528	2952.1	7.032
450•	36.979	6.952	43.930	3128.2	7.053
475.	37.355	6.958	44.312	3304.8	7.079
500	37.712	6•964 6• 980	44.676	3482•2 3839•2	7 • 108
5 5 0•	38•376 38•984	7.000	45•357 45•984	4199.8	7•175 7•251
650•	39.546	7.022	46.568	4564.4	7.335
700•	40.067	7.048	47.114	4933.3	7.422
750	40.554	7.075	47.629	5306.6	7.511
800	41.012	7.105	48 • 117	5684.4	7.599
850.	41 • 443	7.137	48.580	6066.5	7.686
900•	41.852	7 • 170	49.022	6452.9	7.770
950.	42.241	7.204	49.444	6843.5	7.851
1000•	42 • 611	7.238	49.849	7238•0	7.929
1050•	42 • 965	7.273	50 • 238	7636.3	8 • 0 0 2
1100 •	43 • 304	7 • 3 0 7	50.612	8038 • 2	8 • 072
1150 •	43 • 630	7 • 342	50 • 972	8443•4 8851•9	8 • 138
1200 • 1250 •	43•943 44•245	7•377 7•411	51•320 51•655	9263.3	8 • 200 8 • 258
1300•	44.536	7.444	51.980	9677.6	8.314
1350•	44.818	7 • 478	52 • 295	10094.6	8 • 366
1400•	45.090	7.510	52.600	10514.2	8 • 415
1450•	45.354	7.542	52.896	10936.1	8 • 461
1500•	45 • 611	7.574	53 • 184	11360•3	8 • 505
1550•	45 • 859	7.604	53 • 464	11786.6	8 • 547
1600•	46 • 101	7.634	53.736	12214.9	8.587
1650.	46.337	7.664	54.000	12645.2	8.624
1700.	46.566	7.693	54.258	13077.3	8.660
1750.	46.789	7.721	54.510	13511.2	8.694
1800.	47.007	7 • 748	54 • 755 54 • 005	13946.7	8 • 726 8 • 757
1850• 1900•	47 • 220	7•775 7•801	54•995 55•229	14383.8 14822.4	8 • 757 8 • 787
1950•	47•428 47•630	7.827	55.457	15262.4	8•787 8•815
2000•	47.829	7.852	55 • 681	15703.9	8 • 8 4 3
2050•	48.023	7.876	55.900	16146.7	8.869
	. 5 - 5 - 5				,

Table 15. BH(gas) [Continued]						
T	-(F°-H°)	(H°-H°)	So	(H°-H°)	Cp	
	T	T		. 0	Р	
• K	cal/°mole		cal/omole	col/mole	cal/°mole	
	48.213	7.900	•	•	•	
2100 • 2150 •	48 • 399	7 • 900 7 • 924	56•114 56•323	16590•8 170 3 6•1	8•894 8•919	
2200•	48 • 582	7 • 947	56.528	17482.6	8 • 942	
2250•	48 • 761	7.969	56.730	17930•3	8 • 965	
2300	48 • 936	7.991	56.927	18379•1	8 • 987	
2350	49.108	8.012	57.121	18829.0	9.009	
2400 •	49.277	8.033	57.310	19280.0	9 • 030	
2450 •	49.443	8 • 0 5 4	57.497	19731.9	9.050	
2500•	49.606	8.074	57.680	20184.9	9.070	
2600•	49.923	8.113	58.036	21093.8	9.108	
2700.	50 • 230	8.151	58.381	22006.4	9.144	
2800•	50.527	8.187	58.714	22922.6	9.179	
2900•	50.815	8.221	59.037	23842.3	9.213	
3000	51.094 51.366	8 • 255 8 • 288	59•350 59•653	24 7 65•3 25691•5	9 • 246 9 • 278	
31 ₀₀ . 32 ₀₀ .	51.629	8.319	59.948	26620.8	9.309	
3300.	51.886	8.349	60.235	27553•3	9.340	
3400.	52.135	8.379	60.514	28488.7	9.369	
3500.	52.379	8.408	60.786	29427.1	9.399	
3600.	52.616	8 • 436	61.052	30368.5	9.428	
3700.	52.847	8.463	61.310	31312.7	9.456	
3800.	53.074	8.489	61.563	32259.7	9.484	
3900.	53 • 294	8.515	61.810	33209.5	9.512	
4000.	53.510	8.541	62.051	34162.1	9.540	
4100.	53.721	8.565	62.287	35117.5	9.567	
4200.	53.928	8.589	62.518	36075.6	9.595	
4300.	54.131	8.613	62.744	37036.4	9.622	
4400.	54 • 329	8 • 636	62.965	38000.0	9 • 649	
4500 • 4600 •	54•523 54•714	8 • 659 8 • 682	63•182 63•395	38966.3 39935.3	9 • 67 6 9 • 7 04	
4700.	54.901	8.704	63.604	40907.0	9.731	
4800.	55.084	8.725	63 • 809	41881.4	9.758	
4900•	55 • 264	8.747	64.011	42858.5	9.785	
5000•	55.441	8.768	64.209	43838.4	9.812	
5100.	55 • 615	8.788	64 • 403	44820•9	9 • 839	
5200.	55.786	8 • 809	64.595	45806.2	9 • 866	
5300.	55 • 954	8 • 829	64.783	46794•2	9 • 8 9 4	
5400•	56 • 119	8 • 849	64.968	47784.9	9.921	
5500	56 • 282	8 • 869	65 • 15 0	48778•3	9 • 948	
5600•	56 • 442	8 • 888	65 • 330	49774•6	9 • 976	
5700•	56 • 599	8 • 908	65 • 50 7	50773.5	10.004	
5800•	56.754	8 • 927	65 • 681	51775 • 3	10.031	
5900 •	56 • 907 57 • 057	8 • 946	65 • 853	527 7 9•8	10.059	
6000•	57 • 057	8.965	66 • 0 2 2	53787•1	10.087	
273.15	33.517	6.921	40.438	1890•4	6.970	
298.15		6.925	41.048	2064.7	6.974	
			5 -	-		

BH3 (gas) Table 16. (H°-H°) (Ho-Ho) S۰ cal/omole cal/omole cal/mole cal/omole ۰K cal/omole 50. 22.604 7.868 30.472 393.4 7.951 75 . 25.801 7.895 592.2 7.950 33.696 790.9 7.952 100. 28.074 7.909 35.983 989.9 125 . 37.759 29.840 7.919 7.966 150. 1189.4 31.285 7.929 39.214 8.003 175. 32.508 7.944 40.452 1390.2 8.068 200. 33.570 7.965 41.535 8.159 1593.0 225 34.510 7.993 42.502 1798.4 8 . 269 250. 35.354 8.026 8.393 43.380 2006.6 275. 36.120 8.066 44.186 2218.1 8.527 300. 36.824 8.110 44.934 2433.0 8 . 668 325. 37 • 475 8.159 45 . 634 2651.6 8.817 350. 38.082 8.211 8.973 46.293 2873.9 375 . 38.650 8.267 46.917 3100.3 9.135 400 · 39.185 8.327 47.512 3330.7 9.305 425 . 39.692 8.390 9.482 48.082 3565.6 450. 40.174 8.455 48.629 3804.9 9.665 475 . 40.633 8.524 49.156 4048.9 9.854 500. 41.072 8.595 49.667 4297.7 10.049 550. 41.898 8.746 50.643 4810.1 10.451 600. 42.665 8.905 51.570 5342.9 10.864 5896.6 650. 43.385 9.072 52.456 11.283 700. 44.063 9.245 53.308 6471.2 11.700 44.707 750. 9.422 54.129 7066.5 12.111 45.321 54.924 800. 9.603 7682.1 12.511 8317.4 850. 45.909 9.785 55.694 12.898 900. 46.473 9.968 56.442 8971.6 13.269 47.017 10.152 57.169 9644.0 13.623 950. 47.542 10.334 57.876 10333.6 13.959 1000. 1050. 48.051 10.514 58.565 11039.6 14.277 48.544 10.692 59.236 11761.0 14.576 1100. 1150. 49.023 10.867 59.890 12496.9 14.858 11.039 1200. 49.489 60.528 13246.5 15.123 1250. 49.943 11.207 14009.0 15.371 61.151 1300. 50.386 11.372 61.758 14783.4 15.604 1350. 50.818 11.533 62.351 15569.1 15.822 1400. 51.241 11.690 62.930 16365.4 16.027 1450. 51.654 11.842 63.496 17171.6 16.218 1500. 52.058 11.991 64.049 17987.0 16.397 1550. 52.453 12.136 64.589 18811.1 16.565 1600. 52.841 12.277 65.118 19643.3 16.722 1650. 53.221 12.414 20483.1 65.635 16.869 1700. 53.593 12.547 66.140 21330.0 17.007 1750. 53.959 12.676 66.635 22183.7 17.137 1800. 54.318 12.802 67.120 23043.6 17.259 67.594 17.373 54.670 12.924 23909.4 1850.

68.059

68.514

68.961

69.398

24780.8

25657.4

26538.9

27425.1

17.481 17.582

17.678

17.768

13.043

13.158

13.269

13.378

55.016

55.357

55.691

56.020

1900.

1950.

2000.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Table	e 16. BH ₃ (gas) [Conti	inued]		
T T ** Cal/*mole cal/*mole cal/*mole cal/mole cal/*mole	T	-(F°-H°)	(Ho-Ho)	S°	(H°-H°)	Co
°K cal/°mole cal/°mole cal/°mole cal/°mole cal/°mole 2100. 56.344 13.484 69.827 28315.6 '17.852 2150. 56.662 13.586 70.248 29210.3 17.933 2200. 56.976 13.686 70.662 30108.8 18.008 2300. 57.588 13.877 71.465 31011.0 18.080 2300. 57.888 13.968 71.856 3225.7 18.212 2400. 58.183 14.057 72.240 33737.8 18.272 2450. 58.474 14.144 72.618 34552.9 18.330 2500. 59.321 14.390 73.712 37414.4 18.486 2700. 59.867 14.689 75.088 41129.6 18.578 2800. 60.917 14.827 75.744 42999.5 18.578 2800. 60.917 14.827 75.744 42999.5 18.736 3100. 61.422 14.959 <td></td> <td>- m</td> <td></td> <td></td> <td>U</td> <td>P</td>		- m			U	P
2100. 56.344	o V		_	001/9molo	201/molo	221/9m212
2150		•				
2200						
2250						
2350				_		
2400						18.147
2450. 58.474						
2500	-		_			
2600. 59.321 14.390 73.712 37414.4 18.486 2700. 59.867 14.5544 74.411 39267.6 18.578 2800. 60.399 14.689 75.088 41129.6 18.661 2900. 60.917 14.827 75.744 42999.5 18.736 3000. 61.422 14.959 76.381 44876.6 18.805 3100. 61.914 15.084 76.998 46760.4 18.868 3200. 62.395 15.203 77.598 48650.1 18.979 3400. 63.324 15.425 78.749 52445.7 19.028 3500. 63.772 15.529 79.301 54350.8 19.073 3600. 64.211 15.628 79.839 56260.2 19.114 3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.900 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 68.495 16.484 84.979 77473.6 19.418 4800. 68.495 16.484 84.979 77473.6 19.418 4800. 68.495 16.484 84.979 77473.6 19.418 4900. 69.851 16.604 85.789 81360.7 19.453 5000. 69.851 16.6717 86.568 85254.5 19.484 5200. 70.496 16.822 87.318 89154.2 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.603 17.140 89.743 102841.7 19.550	_				_	
2700. 59.867 14.544 74.411 39267.6 18.578 2800. 60.399 14.689 75.088 41129.6 18.661 2900. 60.917 14.827 75.744 42999.5 18.736 3000. 61.422 14.959 76.381 44876.6 18.805 3100. 61.914 15.084 76.998 46760.4 18.868 2200. 62.395 15.203 77.598 48650.1 18.926 3300. 62.865 15.317 78.181 50545.4 18.979 3400. 63.324 15.425 78.749 52445.7 19.028 3500. 63.772 15.529 79.301 54350.8 19.073 3600. 64.211 15.628 79.839 56260.2 19.114 3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.900 81.373 62011.1 19.221 4000. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.843 16.545 84.562 75532.8 19.378 4800. 69.851 16.604 84.562 75532.8 19.378 4800. 69.851 16.604 84.562 75532.8 19.378 4800. 68.843 16.545 85.388 79416.3 19.445 3900. 69.851 16.717 86.568 85254.5 19.484 9900. 69.851 16.717 86.568 85254.5 19.484 9900. 69.851 16.717 86.568 85254.5 19.484 9900. 69.851 16.717 86.568 85254.5 19.484 9900. 69.851 16.717 86.568 85254.5 19.484 9900. 69.851 16.717 86.568 85254.5 19.484 9900. 69.851 16.717 86.568 85254.5 19.484 9900. 69.851 16.717 86.568 85254.5 19.484 9900. 70.176 16.770 86.946 87203.7 19.453 5000. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.603 17.140 89.743 102841.7 19.590						
2800. 60.399 14.689 75.088 41129.6 18.661 2900. 60.917 14.827 75.744 42999.5 18.736 3000. 61.422 14.959 76.381 44876.6 18.805 3100. 61.914 15.084 76.998 46760.4 18.868 3200. 62.395 15.203 77.598 48650.1 18.926 3300. 62.865 15.317 78.181 50545.4 18.979 3400. 63.324 15.425 78.749 52445.7 19.028 3500. 63.772 15.529 79.301 54350.8 19.073 3600. 64.211 15.628 79.839 56260.2 19.114 3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.900 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71.657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77.473.6 19.418 4800. 68.845 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 4900. 69.851 16.717 86.568 85254.5 19.484 5200. 70.476 16.822 87.318 89154.2 19.512 5400. 70.496 16.822 87.318 89154.2 19.512 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 70.496 16.822 87.318 89154.2 19.512 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 36.066 8.063 44.129 2202.3 8.516				_		
2900. 60.917 14.827 75.744 42999.5 18.736 3000. 61.422 14.959 76.381 44876.6 18.805 3100. 61.914 15.084 76.998 46760.4 18.868 3200. 62.395 15.203 77.598 48650.1 18.926 3300. 62.865 15.317 78.181 50545.4 18.979 3400. 63.324 15.425 78.749 52445.7 19.028 3500. 63.772 15.529 79.301 54350.8 19.073 3600. 64.211 15.628 79.839 56260.2 19.114 3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.900 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.6272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.851 16.717 86.568 85254.5 19.448 4900. 69.851 16.617 86.568 85254.5 19.448 4900. 69.851 16.677 86.966 8720.7 19.453 5000. 70.476 16.822 87.318 89154.2 19.552 5500. 70.476 16.822 87.318 89154.2 19.552 5500. 70.476 16.822 87.318 89154.2 19.552 5500. 70.476 16.822 87.318 89154.2 19.552 5500. 70.476 16.822 87.318 89154.2 19.552 5500. 70.476 16.822 87.318 89154.2 19.552 5500. 70.476 16.822 87.318 89154.2 19.552 5500. 71.121 16.920 88.041 93.059.3 19.538 5600. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.603 17.140 89.743 102841.7 19.590						
3100. 61.914 15.084 76.998 46760.4 18.868 3200. 62.395 15.203 77.598 48650.1 18.926 3300. 62.865 15.317 78.181 50545.4 18.979 3400. 63.324 15.425 78.749 52445.7 19.028 3500. 63.772 15.529 79.301 54350.8 19.073 3600. 64.211 15.628 79.839 56260.2 19.114 3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.990 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.453 5000. 69.521 16.661 86.182 83.306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.426 16.967 88.393 95013.6 19.549 5700. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.2603 17.140 89.743 102841.7 19.590						
3200. 62.395 15.203 77.598 48650.1 18.926 3300. 62.865 15.317 78.181 50545.4 18.979 3400. 63.324 15.425 78.749 52445.7 19.028 3500. 63.772 15.529 79.301 54350.8 19.073 3600. 64.211 15.628 79.839 56260.2 19.114 3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.900 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.664 85.789 81360.7 19.459 5000. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.558 5500. 71.426 16.967 88.393 95013.6 19.549 5700. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.0315 17.099 89.414 100883.2 19.588	3000.	61.422	14.959		44876.6	
3300. 62.865 15.317 78.181 50545.4 18.979 3400. 63.324 15.425 78.749 52445.7 19.028 3500. 63.772 15.529 79.301 54350.8 19.073 3600. 64.211 15.628 79.839 56260.2 19.114 3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.900 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.441 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.453 5000. 69.851 16.717 86.568 85254.5 19.484 5200. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.0315 17.099 89.414 100883.2 19.581						
3400. 63.324 15.425 78.749 52445.7 19.028 3500. 63.772 15.529 79.301 54350.8 19.073 3600. 64.211 15.628 79.839 56260.2 19.114 3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.900 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.453 5000. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590		-			-	
3500. 63.772 15.529 79.301 54350.8 19.073 3600. 64.211 15.628 79.839 56260.2 19.114 3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.900 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.2315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590						
3600. 64.211 15.628 79.839 56260.2 19.114 3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.900 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 72.023 17.056 89.080 98925.6 19.571 5900. 72.0315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590						
3700. 64.641 15.723 80.363 58173.5 19.153 3800. 65.061 15.813 80.874 60090.6 19.188 3900. 65.473 15.900 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.459 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td>			_	_		
3800						
3900. 65.473 15.900 81.373 62011.1 19.221 4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590						
4000. 65.877 15.984 81.860 63934.7 19.252 4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.453 5000. 69.185 16.604 85.789 81360.7 19.453 5000. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td>		-				-
4100. 66.272 16.064 82.336 65861.4 19.281 4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 72.023 17.056 89.080 98925.6 19.571 5900. 72.023 17.056 89.080 98925.6 19.571 5900. 72.603 17.140 89.743 102841.7 19.590						
4200. 66.660 16.141 82.801 67790.8 19.307 4300. 67.041 16.215 83.256 69722.8 19.332 4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	-			-		
4400. 67.415 16.286 83.700 71657.2 19.356 4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.727 17.012 88.739 96969.1 19.549 5700. 71.727 17.012 <td>4200.</td> <td></td> <td>16.141</td> <td></td> <td>67790.8</td> <td>19.307</td>	4200.		16.141		67790.8	19.307
4500. 67.781 16.354 84.135 73593.9 19.378 4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
4600. 68.141 16.420 84.562 75532.8 19.398 4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.603 17.140 89.743 102841.7 19.590 273.15 36.066 <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>				_		
4700. 68.495 16.484 84.979 77473.6 19.418 4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.920 88.041 93059.3 19.538 5600. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
4800. 68.843 16.545 85.388 79416.3 19.436 4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590						
4900. 69.185 16.604 85.789 81360.7 19.453 5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590						
5000. 69.521 16.661 86.182 83306.8 19.469 5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590						
5100. 69.851 16.717 86.568 85254.5 19.484 5200. 70.176 16.770 86.946 87203.7 19.499 5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590						
5300. 70.496 16.822 87.318 89154.2 19.512 5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590 273.15 36.066 8.063 44.129 2202.3 8.516						
5400. 70.811 16.872 87.683 91106.1 19.525 5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590 273.15 36.066 8.063 44.129 2202.3 8.516	5200.	70.176	16.770	86.946	87203.7	19.499
5500. 71.121 16.920 88.041 93059.3 19.538 5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590 273.15 36.066 8.063 44.129 2202.3 8.516						
5600. 71.426 16.967 88.393 95013.6 19.549 5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590 273.15 36.066 8.063 44.129 2202.3 8.516						
5700. 71.727 17.012 88.739 96969.1 19.560 5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590 273.15 36.066 8.063 44.129 2202.3 8.516				_		
5800. 72.023 17.056 89.080 98925.6 19.571 5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590 273.15 36.066 8.063 44.129 2202.3 8.516		_				_
5900. 72.315 17.099 89.414 100883.2 19.581 6000. 72.603 17.140 89.743 102841.7 19.590 273.15 36.066 8.063 44.129 2202.3 8.516						
6000			_			
	272 15	36.066	9.063	66.120	2202 2	9.516

Table 17. B2H6 (gas) -(F°-H°) (H°-H°) (H°-H°) S° င္ပစ္ cal/omole cal/omole cal/mole cal/omole cal/omole ۰K 50. 31.105 7.939 39.044 397.0 7.955 596.5 75. 34.326 7.954 42.280 8.033 100. 36.619 7.997 44.616 799.7 8.235 125. 38 • 411 8.072 46.483 1009.0 8.525 150. 39.892 8.177 48.069 1226.6 8.898 175. 41.162 8.313 49.475 1454.8 9.379 200. 42.283 8.483 50.766 1696.6 9.986 225 . 43.294 8.689 51.983 1955.1 10.713 44.221 8.932 53.154 2233.1 250. 11.539 275. 45.085 9.210 54.295 2532.6 12.435 9.517 55.417 2855.2 300. 45.900 13.376 9.851 325. 46 . 675 56.526 3201.6 14.338 350. 47.418 10.206 57.624 3572.1 15.305 58.712 375 . 48.134 10.578 3966.8 16.264 400. 48.829 10.963 59.792 4385.2 17.207 11.358 4827.0 425 • 49.506 60.863 18.130 450 · 50.166 11.759 61.925 5291.5 19.028 12.165 5778.2 475. 50.813 62.977 19.901 500. 51.447 12.573 64.020 6286.3 20.746 550. 52.684 13.390 66.073 7364.3 22.354 14.200 600. 53.884 68.083 8519.9 23.854 650. 55.052 14.997 70.048 9747.9 25 . 247 700. 56.192 15.776 71.967 11042.9 26.538 16.533 750. 57.306 73.840 12400.1 27.732 17.268 800. 58.397 75.665 13814.6 28.834 17.979 850. 59.465 77.444 15282.0 29.849 900. 60.512 18.665 79.177 16798.1 30.783 950. 61.539 19.325 80.864 18359.0 31.641 62.547 19.961 82.508 19961.1 1000. 32.431 1050. 63.536 20.572 84.108 21601.0 33.156 1100. 64.506 21.160 85.666 23275.7 33.823 1150. 65.459 21.724 87.183 24982.4 34.436 66.395 22.265 26718.5 35.000 1200. 88.661 22.785 35.520 67.315 90.100 28481.7 1250. 68.218 23.284 91.503 30269.8 35.999 1300. 1350. 69.106 23.764 92.870 32080.9 36.440 1400. 69.979 24.224 94.203 33913.3 36.848 24.666 95.502 1450. 70.837 35765.3 37.226 71.680 25.090 37.575 1500. 96.770 37635.4 1550. 72.509 25.498 98.008 39522.3 37.898 73.325 41424.8 1600. 25.891 99.216 38.199 1650. 74.128 26.268 100.395 43341.8 38.478 1700. 74.917 26.631 101.548 45272.3 38.737 26.980 47215.3 1750. 75.694 102.674 38.979 1800. 76.459 27.317 103.776 49169.9 39.205 77.212 27.641 51135.5 1850. 104.853 39.415 77.953 27.953 53111.2 1900. 105.907 39.612 28.255 1950. 78.683 106.938 55096.5 39.796 28.545 57090.6 2000. 79.402 107.948 39.968

108 • 937

28.826

59093.1

40.130

2050.

B2H6 (gas) [Continued] Table 17. -(F°-H°) (H°-H°) So (Ho-Ho) T o K cal/omole cal/omole cal/omole cal/mole cal/omole 80.809 29.097 109.905 61103.5 2100. 40.282 63121.2 29.359 29.612 40.425 81.496 110.855 2150. 111.786 65145.8 2200. 82.174 112.699 82.842 29.856 67177.0 2250. 40.686 83.501 30.093 113.594 69214.3 2300 • 40.805 2350. 84.151 30.322 114.473 71257.4 40.918 2400 . 84.792 30.544 115.336 73306.0 41.025 2450. 85.424 30.759 116.183 75359.8 41.125 2500. 86.047 30.967 117.015 77418.5 41.220 81549.5 2600 . 87.270 31.365 118.635 41.396 2700. 88.460 31.740 120.200 85697.1 41.555 89.621 32.093 121.714 2800. 89859.9 41.697 2900. 90.753 32.426 123.179 94036.2 41.827 91.858 32.742 124.599 98224.9 41.945 3000. 92.936 33.040 3100. 125.977 102424.8 42.052 3200. 93.990 33.323 127.313 106634.9 42.150 95.019 33.592 128.612 110854.5 42.239 3300. 3400. 96.026 33.848 129.874 115082.6 42.322 119318.6 97.011 34.091 42.397 3500. 131.102 3600. 97.974 34.323 132.297 123561.9 42.467 98.918 34.544 42.532 3700. 133.462 127811.9 34.755 3800. 99.842 134.597 132068.1 42.591 3900. 100.747 34.956 135.704 136330.0 42.647 4000. 101.635 35.149 136.784 140597.3 42.698 102.505 35.334 137.839 144869.5 4100. 42.746 103.359 35.511 4200. 138.870 149146.4 42.791 104.196 35.681 4300. 139.877 153427.5 42.832 4400. 105:018 35.844 140.862 157712.7 42.871 105.826 36.000 42.908 4500. 141.826 162001.7 106.619 36.151 142.769 166294.2 42.942 4600. 107.398 36.296 170589.9 42.974 4700. 143.693 4800. 108.163 36 • 435 144.598 43.004 174888.8 4900. 108.916 36.570 145.485 179190.7 43.032 109.656 36.699 183495.2 5000. 146.355 43.059 5100. 110.384 36.824 147.208 187802.4 43.084 5200. 111.100 36.945 148.045 192112.0 43.108 37.061 196423.9 43.130 5300. 111.805 148.866 5400. 112.499 37.174 149.672 200738.0 43.152 37.283 5500. 113.182 150.464 205054.2 43.172 37.388 43.191 5600. 113.855 151.243 209372.3 114,517 152.007 5700. 37.490 213692.3 43.209 115.170 37.589 152.759 218014.1 43.226 5800. 115.814 37.684 5900. 153.498 222337.5 43.243 116.448 154.225 6000° 37.777 226662.6 43.258 273.15 45.023 9.188 54.211 2509.7 12.367

55.335

49.758

2830.5

1505.0

13.305

9.497

9.494

8.346

298.15

180.32

45.841

Table 18. B ₅ H ₉ (crystal)					
T	-(F°-H°)	(H°-H°)	S°	C°	(H°-H°)
	T	T		r	
• K	cal/°mole	cal/°mole	cal/°mole	cal/°mole	cal/mole
0. 50. 100. 150. 200. 226.34	0.0 1.747 5.172 8.593 12.186 13.919	0.0 3.315 6.646 11.807 13.395 14.728	0.0 5.062 11.818 20.400 25.581 28.647	0.0 7.62 11.93 15.36 21.83 28.11	0.0 165.8 664.6 1771.0 2679.0 3333.5
Table	19. B ₅ H ₉	liquid)			
T	-(F°-H8)	(H°-H°)	S°	C _p °	(H°-H ₀)
	T	T			
• K	cal/°mole	cal/omole	cal/°mole	cal/°mole	cal/mole
226.34 250. 300. 273.15 298.15	13.919 16.070 20.261 17.696 20.114	21.214 22.068 23.995 23.303 23.919	35.133 38.138 44.256 40.999 44.033	29.08 31.33 36.35 33.33 36.12	4801.6 5517.0 7198.5 6365.2 7131.4

T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°p
	T			O	P
• K	cal/omole	cal/omole	cal/emole	cal/mole	cal/ºmole
50.	38 • 148	7.946	46.094	397.3	7.950
75.	41.371	7.952	49.322	596.4	
100.	43.662	7.992	51.654	799.2	8.289
125.	45.457	8.117	53.574	1014.6	9.030
150.	46 • 957	8 • 365	55.322	1254.8	10.258
175.	48.273	8.748	57.021	1530.9	11.891
200•	49.473	9.259	58.732	1851.7	13.811
225 • 250 •	50•599 51•676	9.880 10.592	60.479	2222.9 2648.1	15.911
275.	52.722	11.377	62•268 64•099	3128.8	18.110 20.349
300.	53.747	12.218	65.966	3665.5	22.589
325.	54.760	13.101	67.862	4258.0	24.801
350.	55 • 764	14.015	69.779	4905.2	26.968
375.	56.763	14.949	71.712	5605.9	29.077
400.	57.758	15.896	73.654	6358•5	31.121
425 •	58.750	16.850	75.600	7161.3	33.094
450	59.740	17.806	77.546	8012.6	34.993
475 6	60.729	18.759	79.487	8910.4 9852.9	36.818
500. 550.	61•715 63•681	19.706 21.572	81.421 85.253	11864.5	38.569 41.847
600.	65.636	23.388	89.024	14032.9	44.842
650.	67.578	25.145	92.723	16344.2	47.569
700.	69.504	26.837	96.340	18785.6	50.048
750.	71.411	28.460	99.871	21345.2	52.299
800.	73.298	30.015	103.313	24012.1	54.343
850.	75.163	31.502	106.664	26776.4	56.198
900•	77.004	32.921	109.925	29629.1	57.883
950.	78.820	34.276	113.096	32562.1	59.414
1000	80.611	35.568	116.180	35568.2	60.806
1050.	82.377	36.801	119.177	38640.6 41773.6	62.073 63.228
1100 · 1150 ·	84.116 85.829	37•976 39•097	122.092 124.926	44961.7	64.282
1200.	87.516	40.167	127.683	48200.3	65 • 246
1250.	89.176	41.188	130.364	51484.9	66.128
1300.	90.811	42.163	132.974	54811.8	66.936
1350.	92.420	43.094	135.514	58177.5	67.678
1400.	94 • 003	43.985	137.988	61578.7	68.361
1450.	95.562	44.836	140.398	65012.7	68.990
1500.	97.096	45.651	142.747	68476.8	69.569
1550	98 • 605	46 • 432	145.037	71968.9	70.105
1600.	100.091	47.179	147.271	75486.7	70.601
1650. 1700.	101.554 102.994	47.896 48.584	149.450 151.578	79028.3 82592.1	71.060 71.486
1750.	104.412	49.244	153.656	86176.4	71.4882
1800.	105.808	49.878	155.686	89779.9	72.251
1850.	107.183	50.487	157.670	93401.1	72.594
1900.	108.538	51.073	159.611	97038.9	72.914
1950.	109.872	51.637	161.509	100692.2	73.214
2000.	111.186	52.180	163.366	104359.9	73.494
2050.	112.481	52.703	165.184	108041.3	73.756

Table 20. B5H9(gas) [Continued] -(F°-H°) (H°-H°) (H°-H°) cal/omole cal/omole cal/mole cal/omole ٥K cal/omole 113.757 53.207 166.964 111735.3 74.002 2100. 115.015 53.694 168.708 115441.2 74.233 2150. 116.254 54.163 74.450 2200. 170.417 119158.4 117.477 2250. 54.616 172.093 122886.0 74.655 118.682 55.054 74.847 2300. 173.736 126623.6 119.870 55.477 2350. 175.347 130370.5 75.028 121.043 55.886 75.200 2400. 176.929 134126.3 122.199 75.361 2450. 56.282 178.481 137890.3 75.514 123.340 56.665 180.005 141662.3 2500. 125.577 57.395 149228.1 75.797 2600. 182.972 127.756 58.082 185.838 156820.6 76.050 2700. 129.880 58.728 76.279 2800. 188.608 164437.3 131.952 59.336 172075.7 76.486 2900. 191.288 133.973 59.911 3000. 193.884 179733.9 76.674 196.401 135.946 60.455 187410.0 76.845 3100. 137.874 60.970 198.844 195102.4 77.001 3200. 139.758 77.144 3300 . 61.458 201.215 202809.8 141.599 61.921 77.275 3400. 203.520 210530.9 143.401 62.361 205.762 218264.5 77.396 3500. 145.163 62.780 77.507 207.944 226009.7 3600. 146.889 63.180 233765.6 77.610 3700. 210.069 3800. 148.579 63.561 212.140 241531.4 77.704 249306.3 3900. 150.235 63.925 214.159 77.792 257089.6 77.874 4000. 151.858 64.272 216.130 77.950 153.449 64.605 218.054 264880.9 4100. 155.009 64.924 219.933 272679.5 78.021 4200 · 4300. 156.541 65.229 221.770 280484.9 78.087 4400. 158.044 65.522 223.566 288296.6 78.148 4500. 159.519 65.803 225.322 296114.4 78.206 303937.8 160.969 66.073 227.042 78.260 4600. 66.333 162.392 228.726 311766.3 78.311 4700. 163.792 66.583 319599.9 4800. 230.375 78.359 78.404 4900. 165.167 66.824 231.991 327438.0 5000. 166.519 67.056 233.575 335280.5 78.446 5100. 167.849 67.280 235.129 343127.1 78.486 5200. 169.158 67.496 236.654 350977.6 78.524 5300. 170.446 67.704 358831.8 78.559 238.150 67.905 239.618 5400. 171.713 366689.4 78.593 5500. 172.961 68.100 241.061 374550.3 78.625 174.190 68.288 5600. 242.478 382414.3 78.655 5700 · 175.400 68.470 243.870 390281.2 78.684 5800. 176.592 68.647 245.239 398151.0 78.711 5900. 177.767 68.818 246.585 406023.4 78.737 6000. 178.925 68.983 247.908 413898.3 78.761 52.645 273.15 11.317 63.962 3091.3 20.183 12.155 298.15 53.672 65.827 3623.9 22.424 53.584 296.00 12.081 65 • 665 3575.9 22.232

Table	21. B ₁₀ H ₁	4(crystal)			
T	-(F°-H°)	(H°-H°)	S°	C°	(H°-H8)
	T	T		•	
۰K	cal/°mole	cal/°mole	cal/°mole	cal/omole	cal/mole
0.	0.0	0.0	C • O	0.0	0.0
50.	1.844	3.537	5.381	8.14	176.8
100.	5.509	7.210	12.719	13.28	721.0
150.	8.999	10.247	19.246	19.94	1537.0
200.	12.418	13.808	26.226	29.49	2761.6
250.	15.947	18.080	34.027	40.98	4520.0
300.	19.660	22.862	42.522	52.51	6858.6
350.	23.562	27.925	51.487	64.33	9773.8
371.93	25.328	30.246	55.574	70.15	11249.4
273.15	17.642	20.250	37.892	46.36	5531.3
298.15	19.520	22.681	42.201	52.09	6762.3

Tabl	e 22. B ₁₀ H	14(gas)			
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C _p °
	T	T		U	P
• K	cal/ºmole	cal/omole	cal/°mole	cal/mole	cal/°mole
50.	45.244	7.972	53.216	398.6	8.121
75.	48.503	8.153	56.656	611.5	9.076
100.	50.903	8.605	59.508	860.5	10.996
125 •	52.897	9.343	62.240	1167.9	13.707
150. 175.	54 • 685 56 • 369	10.341 11.570	65.026 67.938	1551•2 2024•7	17.052 20.903
200.	58 • 005	12.997	71.002	2599•4	25.129
225.	59.626	14.591	74.218	3283.1	29.592
250.	61.252	16.320	77.572	4079.9	34.165
275•	62 • 893	18.150	81.043	4991.4	38.744
300 • 325 •	64 • 553 66 • 235	20.055 22.009	84.608 88.244	6016.5 7152.9	43 • 252
350	67.939	23.991	91.930	8396.8	47.633 51.853
375.	69.662	25.984	95.646	9744.0	55.892
400.	71.403	27.975	99.377	11189.8	59.740
425 •	73.158	29.952	103.110	12729.4	63.395
450	74.925	31.907	106.832	14358.0	66.858
475 • 500 •	76•702 78•486	33.833 35.727	110.536 114.213	16070.8 17863.4	70.138 73.240
550.	82.065	39.401	121.466	21670.7	78.947
600.	85.645	42.913	128.558	25748.1	84.052
650.	89.213	46.257	135.470	30067.0	88.622
700.	92.758	49.432	142.190	34602.4	92.721
750. 800.	96•272 99•749	52.443 55.296	148.715 155.044	39332.1 44236.4	96.401 99.713
850.	103.183	57.998	161.180	49297.9	102.697
900.	106.571	60.557	167.128	54501.3	105.390
950.	109.911	62.982	172.892	59832.7	107.826
1000.	113.200	65 • 280	178.480	65280.0	110.032
1050. 1100.	116.438 119.625	67.459 69.528	183.898 189.152	70832.5 76480.3	112.033 113.853
1150.	122.759	71.491	194.250	82215.0	115.509
1200.	125.841	73.357	199.199		117.020
1250.	128.872	75.132	204.004	93914.8	118.400
1300	131.852	76.821	208 • 673	99866.9	119.663
1350. 1400.	134.782 137.662	78.429 79.962	213.211 217.625	105879.4 111947.5	120.822
1450.	140.494	81.425	221.919	118066.6	121.886
1500.	143.278	82.822	226.100	124232.7	123.767
1550.	146.016	84.156	230.172	130442.1	124.600
1600.	148.708	85.432	234.140	136691.6	125.370
1650	151 • 355	86 • 653	238.009	142978.1	126.083
1700. 1750.	153.960 156.522	87.823 88.944	241.783 245.466	149299.0 155651.7	126.744 127.358
1800.	159.043	90.019	249.062	162034.1	127.929
1850.	161.523	91.051	252.574	168444.0	128.461
1900.	163.965	92.042	256.007	174879.6	128.958
1950.	166.368	92.994	259.362	181339.2	129.421
2000 • 2050 •	168.734 171.064	93.911	262.645 265.856	187821.2	129 • 855
20700	1119004	94.792	400.000	194324.2	130.261
		- 75 -			

B10H14 (gas) [Continued] Table 22. (H°-H°) (H°-H°) T ငမ္ cal/omole cal/omole cal/mole cal/omole cal/omole οK 173.358 95.641 269.000 200846.9 130.641 2100. 207388.0 2150. 175.618 96.460 272.078 130.998 97.248 2200 • 177.845 275.093 213946.3 131.334 2250. 180.039 98.009 278.048 220521.0 131.650 182.201 98.744 280.945 227111.0 131.947 2300. 2350. 184.332 99.453 283.786 233715.5 132.228 2400. 186.434 100.139 286.573 240333.5 132.492 2450. 188.505 246964.4 100.802 289.307 132.742 2500. 190.548 101.443 291.991 253607.5 132.978 194.551 297.215 266927.5 133.414 2600. 102.664 198.447 2700. 103.811 302.258 280288.8 133.806 2800. 202.242 104.888 307.131 293687.3 134.159 2900. 205.941 105.903 311.844 307119.4 134.478 134.768 3000. 209.547 106.861 316.408 320582.0 3100. 213.066 107.765 320.831 334072.2 135.032 216.501 108.621 325.122 347587.7 135.273 3200. 3300. 219.856 109.432 361126.2 135.494 329.288 3400 · 223.135 110.202 333.336 374685.8 135.696 3500. 226.340 110.933 337.273 388264.8 135.882 229.475 111.628 341.103 401861.7 136.053 3600. 232.542 112.291 415474.9 3700. 344.833 136.211 3800. 235.545 112.922 348.467 429103.5 136.357 3900. 238.486 113.525 352.011 442746.0 136.493 241.368 4000. 114.100 355.468 456401.7 136.619 4100. 244.192 114.651 358 • 843 470069.4 136.736 115.178 4200° 246.961 362.139 483748.5 136.845 249.677 115.683 497438.1 136.946 4300. 365.361 252.343 137.041 4400. 116.168 368.510 511137.6 4500. 254 • 958 116.632 371.591 524846.2 137.130 257.527 117.079 538563.5 137.214 4600. 374.606 137.292 260.049 117.508 377.558 552288.8 4700. 262.528 117.921 137.366 4800. 380.449 566021.7 579761.8 264.963 118.319 4900. 383.282 137.435 5000. 267.357 118.702 386.059 593508.6 137.500 5100. 269.712 119.071 388.783 6072£1.7 137.561 5200. 272.027 119.427 391.454 621020.7 137.619 137.674 5300. 274.305 119.771 394.076 634785.4 5400. 276.547 120.103 396.650 648555.5 137.726 5500. 278.754 120.424 399.178 662330.6 137.775 280.927 137.822 5600. 120.734 401.661 676110.5 283.066 121.034 689894.9 137.866 5700. 404.100 5800. 285 • 174 121.325 406 • 499 703683.6 137.908 287.250 137.948 5900. 121.606 408 - 856 717476.4 289.296 121.879 6000. 411.175 731273.1 137.986 273.15 62.771 18.012 4920.0 38.407 80.783 298.15 64.430 19.912 84.342 5936.8 42.922 378.00 69.870 26.223 96.093 9912.4 56.364

Table 23. HOBO (gas)

Т	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C _p °
	T	T			
• K	cal/omole	cal/°mole	cal/°mole	cal/mole	cal/°mole
50 · 75 ·	34.330	7.943 7.945	42.273 45.497	397•2 595•9	7.949
100.	37•551 39•837	7.950	47.787	795.0	7•952 7•984
125.	41.613	7.966	49.578	995.7	8.085
150.	43.068	8.000	51.068	1200.0	8.270
175.	44.305	8.056	52.361	1409.8	8.522
200•	45.385	8.132	53.517	1626.4	8.816
225 •	46.348	8.226	54.574	1850.8	9.134
250•	47.220	8 • 333	55.553	2083.2	9.461
275 • 300 •	48•020 48•761	8 • 450 8 • 576	56•470 57•336	2323•8 2572•7	9•791 10•118
325.	49.452	8.707	58.159	2829.7	10.441
350.	50.102	8 • 842	58.944	3094.7	10.757
375 •	50.717	8.980	59.697	3367.5	11.066
400.	51.301	9.120	60.421	3647.9	11.366
425.	51.858	9.260	61.119	3935.7	11.656
450	52 • 392	9.401	61.793	4230.6	11.936
475	52 • 904 52 • 207	9.542	62 • 446	4532.4	12.207
500 • 550 •	53 • 397 54 • 332	9•682 9•957	63•078 64•290	4840.9 5476.5	12•466 12•954
600.	55.210	10.226	65.436	6135.6	13.402
650.	56.039	10.486	66.526	6816.1	13.813
700.	56.826	10.738	67.563	7516.3	14.189
750.	57.575	10.979	68.554	8234.5	14.534
800.	58.291	11.212	69.502	8969.2	14.851
850.	58.977	11.434	70.412	9719.2	15.144
900.	59.637	11.648	71.285	10483.2	15 • 414
950. 1000.	60 • 272 60 • 885	11.853 12.049	72.125 72.935	11260.3 12049.3	15.664 15.896
1050.	61.478	12.238	73.715	12849.5	16.111
1100.	62.051	12.418	74.469	13660.1	16.311
1150.	62.607	12.592	75.199	14480.4	16.498
1200.	63.146	12.758	75.905	15309.7	16.672
1250.	63.671	12.918	76.588	16147.4	16.834
1300.	64.180	13.071	77.252	16992.9	16.986
1350 • 1400 •	64 • 676 65 • 160	13.219	77.895	17845.8 18705.5	17.128
1450.	65.631	13.361 13.498	78•521 79•129	19571.7	17.260 17.385
1500.	66.091	13,629	79.720	20443.9	17.501
1550.	66.540	13.756	80.296	21321.7	17.611
1600.	66.978	13.878	80.856	22204.8	17.713
1650.	67.407	13.996	81.403	23092.9	17.810
1700.	67.827	14.109	81.936	23985.7	17.901
1750.	68.237	14.219	82.456	24882.9	17.986
1800.	68 • 639	14.325	82.964	25784•3	18.066
1850 • 1900 •	69•033 69•419	14.427	83.460	26689 • 5	18 • 142
1950.	69.798	14.525 14.621	83.945 84.419	27598•4 28510•8	18.214
2000.	70.169	14.713	84.882	29426.4	18.281 18.345
2050	70.534	14.803	85 • 336	30345.2	18.405

Table 23. HOBO(gas) [Continued]

T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	Cp
	T	T		Ŭ	•
• K	cal/omole	cal/omole	cal/omole	cal/mole	cal/omole
2100.	70.891	14.889	85.780	31266.9	18.462
2150.	71.243	14.973	86.215	32191.3	18.516
2200.	71.588	15.054 15.132	86.642	33118.4	18.567
2250. 2300.	71.927 72.260	15.209	87.059 87.469	34048.0 34979.9	18.615 18.661
2350	72.588	15.283	87.871	35914.0	18.705
2400	72.911	15.354	88.265	36850.3	18.746
2450	73.228	15.424	88.652	37788.6	18.785
2500.	73.540	15.492	89.032	38728.6	18.823
2600.	74.151	15.621	89.772	40614.6	18.892
2700.	74.742	15.743	90.486	42507.0	18.955
2800.	75.317	15.859	91.176	44405.4	19.012
2900.	75.876	15.969	91.844	46309.3	19.065
3000	76.419	16.073	92.491	48218.2	19.113
3100. 3200.	76•947 77•462	16.172 16.265	93.119 93.728	50131.7 52049.3	19.156
3300	77.964	16.355	94.319	53970.9	19.197 19.234
3400	78 • 454	16.440	94.894	55896.0	19.268
3500.	78.931	16.521	95.453	57824.4	19.300
3600.	79.398	16.599	95.997	59755.8	19.329
3700.	79.854	16.673	96.527	61690.1	19.356
3800.	80.299	16.744	97.043	63627.0	19.381
3900.	80.735	16.812	97.547	65566.2	19.404
4000•	81.162	16.877	98.039	67507.8	19.426
4100.	81.579	16.939	98.518	69451.4	19.447
4200	81.988	16.999	98.987	71397.1	19.466
4300 • 4400 •	82.389 82.781	17.057 17.112	99•446 99•894	73344.5 75293.7	19.483 19.500
4500.	83.167	17.165	100.332	77244.5	19.516
4600.	83.544	17.217	100.761	79196.8	19.530
4700.	83.915	17.266	101.181	81150.5	19.544
4800.	84.279	17.314	101.593	83105.6	19.557
4900.	84.637	17.360	101.996	85061.9	19.569
5000.	84.988	17.404	102.392	87019.5	19.581
5100.	85.333	17.447	102.780	88978.1	19.592
5200	85.672	17.488	103.160	90937.8	19.602
5300.	86 • 006	17.528	103.534	9289865	19.612
5400 • 5500 •	86 • 334 86 • 656	17.567 17.604	103.900	94860.2 96822.8	19.621 19.630
5600.	86 • 974	17.640	104.614	98786.2	19.638
5700.	87.286	17.676		100750.4	19.646
5800.	87.594	17.710		102715.4	19.654
5900.	87.897	17.743		104681.1	19.661
6000.	88.196	17.775		106647.6	19.668
273.15	47.963	8 • 441	56.404	2305.7	9.766
298.15	48.708	8.566	57.274	2554.0	10.094

Table	24. H ₃ BO	(crystal)			
T	-(F°-H°) T	(H°-H°) T	S°	C°	(H°-H°)
• K	cal/°mole	cal/°mole	cal/°mole	cal/°mole	cal/mole
0. 50. 100. 150. 200. 250. 300.	0.0 0.771 2.734 4.824 6.832 8.737 10.566	0.0 1.647 4.206 6.153 7.797 9.315	C.0 2.418 6.940 10.977 14.629 18.052 21.353	0.0 4.42 8.60 11.42 14.05 16.74 19.55	0.0 82.4 420.6 923.0 1559.4 2328.8 3236.1
273.15 298.15		10.000 10.734	19.591 21.233	18.04 19.45	2731.5 3200.3

T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	c°
•		. 0		U	Р
	T	T			
• K	cal/°mole	cal/ºmole	cal/ºmole	cal/mole	cal/omole
50.	37.931	8.003	45.934	400.2	8.295
75 •	41.215	8.238	49.453	617.9	9.153
100.	43.630	8.577	52.207	857.7	10.018
125.	45.583	8.947	54.530	1118.3	10.829
150. 175.	47.248 48.715	9.328 9.720	56.576 58.435	1399.2 1701.0	11.648 12.497
200.	50.039	10.122	60.161	2024.3	13.377
225	51.255	10.533	61.788	2370.0	14.276
250.	52.386	10.953	63.339	2738.2	15.181
275 •	53.450	11.378	64.828	3129.0	16.081
300.	54.459	11.807	66.266	3542.1	16.963
325.	55.421	12.237	67.658	3977.0	17.820
350.	56.343	12.665	69.009	4432.8	18.645
375 •	57.232	13.090	70.322	4908.9	19.434
400 • 425 •	58.090 58.921	13.511 13.924	71.600 72.845	5404•2 5917•7	20.183 20.891
450.	59.729	14.330	74.059	6.448 • 4	21.560
475	60.514	14.727	75.241	6995.4	22.189
500.	61.280	15.115	76.395	7557.6	22.782
550.	62.756	15.862	78.618	8724.3	23.864
600.	64.166	16.570	80.736	9941.9	24.826
650.	65.519	17.239	82.758	11205.1	25 • 686
700•	66 • 820	17.870	84.690	12509.1	26 • 46 1
750. 800.	68•074 69•284	18.467 19.031	86.540 88.314	13850.0 15224.5	27.164 27.807
850.	70.454	19.565	90.018	16629.8	28.397
900.	71.586	20.070	91.657	18063.4	28.941
950.	72.684	20.551	93.235	19523.2	29.444
1000•	73.750	21.007	94.757	21007.2	29.910
1050.	74.786	21.442	96.227	22513.7	30.344
1100.	75.793	21.856	97.648	24041.1	30.747
1150.	76.773	22.250	99.024	25588.0	31.123
1200.	77.728	22.628	100.356	27153.0	31.474
1250•	78•659 79•568	22.988	101.647	28735.0 30332.7	31.801 32.106
1300 • 1350 •	80.454	23.333 23.663	102.900 104.118	31945.2	32.391
1400.	81.321	23.980	105.300	33571.5	32.658
1450.	82.168	24.283	106.451	35210.7	32.907
1500.	82.996	24.575	107.570	36862.0	33.141
1550.	83.806	24.855	108.661	38524.6	33.360
1600.	84.600	25.124	109.723	40197.7	33.565
1650.	85.377	25.382	110.759	41880.8	33.757
1700.	86.138	25.631	111.769	43573.2	33.938
1750. 1800.	86.885 87.617	25.871 26.102	112.756 113.719	45274.4 46983.8	34.107 34.267
1850	88 • 335	26.325	114.660	48700.9	34.417
1900•	89.040	26.540	115.579	50425.3	34.558
1950.	89.732	26.747	116.479	52156.6	34.691
2000.	90.412	26.947	117.359	53894.3	34.817
2050.	91.079	27.141	118.220	55638.1	34.935

H₃BO₃ (gas) [Continued] (Ho-HO) (Ho-Hg) T T Т cal/omole cal/omole cal/mole cal/omole ٥K cal/omole 91.736 27.327 119,063 57387.7 35.047 2100. 27.508 92.381 59142.7 35.153 35.253 2150. 119.889 2200 • 93.015 27.683 120.698 60902.9 93.639 27.852 121.492 62667.9 35 . 347 2250. 94.253 28.016 122.269 64437.5 35.437 2300. 94.857 28.175 35.522 2350. 123.032 66211.5 95.452 28.329 67989.6 35.602 2400. 123.781 2450. 96.038 28 - 478 124.516 69771.7 35 . 679 96.615 28.623 125.238 71557.5 35.752 2500 126.643 97.743 28.900 75139.5 35.886 2600. 98.838 29.161 127.999 78734.3 36.009 2700. 99.903 29.407 2800 • 129.311 82340.8 36.120 85957.9 36.221 100.939 29.641 130.580 2900 • 101.948 29.862 131.810 89584.7 36.313 3000. 102.931 30.071 93220.3 36.397 3100. 133.002 30.270 134.158 96863.9 36 . 475 3200. 103.889 36.546 104.823 30.459 135.282 100515.0 3300. 3400. 105.735 30.639 136.374 104172.9 36.612 106.626 30.811 137.436 107837.2 36.672 3500 · 107.496 30.974 138.470 111507.2 36.728 3600. 31.130 115182.6 36.780 3700. 108.347 139.477 31.280 118863.0 36.828 3800. 109.179 140.459 31.423 36.872 109.993 141.416 122548.1 3900. 4000. 110.790 31.559 142.350 126237.4 36.914 111.571 31.690 143.262 129930.8 36.953 4100. 112.337 31.816 133627.9 36.989 4200. 144.153 4300 • 113.087 31.937 145.023 137328.5 37.023 37.054 113.822 32.053 145 . 875 141032.3 4400. 37.084 114.544 32.164 146.708 144739.3 4500 4600 · 115.252 32.272 147.523 148449.1 37.112 115.947 32.375 148.322 152161.6 37.138 4700 · 32.474 149.104 155876.7 37.163 116.630 4800. 37.186 4900. 117.300 32.570 149.870 159594.2 163313.9 37.208 5000. 117.959 32.663 150.622 5100. 118.607 32.752 151.359 167035.8 37.229 119.244 32.838 152.082 170759.6 37.248 5200. 119.870 32.922 152.792 174485.4 37.267 5300. 33.002 153.489 178212.9 37.284 5400. 120.486 121.092 33.080 154.173 181942.2 37.301 5500. 5600. 121.689 33.156 154.845 185673.1 37.317 122.277 33.229 155.506 189405.5 37.332 5700 · 156.155 37.346 122.855 33.300 193139.4 5800 . 5900. 123.425 33.369 156.794 196874.7 37.359 157.422 6000. 123.986 33.435 200611.3 37.372 3099.3 273.15 53.374 11.347 64.720 16.015 54.386 3510.8 16.899 298.15 11.775 66.161

Tabl	e 26. (HOB	0)3(gas)			
Т	-(F°-H°)		S°	(Ho-HQ)	Cp
	T	T			
• K	cal/°mole	cal/omole	cal/omole	cal/mole	cal/omole
50.	45.169	8.035	53.204	401.7	8.474
75 •	48.489	8.423	56.912	631.7	10.070
100•	51.000	9.106	60.105	910.6	12.319
125. 150.	53.125 55.039	10.004 11.050	63.129 66.089	1250.5 1657.5	14.913 17.655
175.	56.827	12.191	69.019	2133.5	20.423
200.	58.533	13.391	71.924	2678.3	23.148
225•	60.181	14.623	74.804	3290.2	25.789
250•	61.786	15.867	77.653	3966.8	28 • 318
275 •	63.357	17.109	80.466	4705.0	30.716
300 • 325 •	64•898 66•414	18.338 19.545	83 • 236 85 • 959	5501.4 6352.2	32.970 35.072
350.	67.906	20.725	88.631	7253.7	37.022
375.	69.375	21.872	91.247	8202.0	38.822
400.	70.822	22.984	93.806	9193.6	40.477
425.	72.248	24.058	96.307	10224.8	41.997
450.	73.653	25.094	98.747	11292.3	43.389
475 • 500 •	75.037 76.399	26.091 27.049	101.128 103.449	12393.3 13524.7	44.665 45.834
550•	79.063	28.853	107.916	15869.3	47.892
600.	81.646	30.514	112.160	18308.6	49.634
650.	84.150	32.044	116.193	20828.4	51.121
700•	86.577	33.453	120.030	23417.4	52.405
750.	88.930	34.755	123.685	26066.2	53.524
800.	91.212	35.959	127.171	28767.6	54.510
850 • 900 •	93 • 426 95 • 575	37.077 38.116	130.503 133.691	31515.4 34304.6	55.385 56.170
950•	97.662	39.085	136.747	37131.1	56.879
1000•	99.690	39.991	139.681	39991.4	57.522
1050.	101.662	40.840	142.502	42882.4	58.110
1100.	103.580	41.638	145.218	45801.6	58.649
1150.	105.448	42.388	147.836	48746.6	59.144
1200. 1250.	107.267 109.040	43.096 43.765	150.363 152.805	51715.4 54706.2	59.602 60.025
1300.	110.769	44.398	155.167	57717.4	60.418
1350.	112.456	44.998	157.454	60747.6	60.783
1400.	114.103	45.568	159.671	63795.3	61.123
1450.	115.711	46.110	161.821	66859.5	61.440
1500.	117.283	46.626	163.909	69939.0	61.735
1550. 1600.	118.820 120.324	47.118 47.587	165.938 167.911	73032•7 76139•9	62.012 62.270
1650.	121.795	48.036	169.831	79259.5	62.513
1700.	123.235	48.465	171.701	82390.9	62.740
1750.	124.646	48.876	173.522	85533.2	62.953
1800.	126.029	49.270	175.299	88686.0	63.153
1850.	127.384	49.648	177.032	91848.4	63.342
1900.	128.713	50.011	178.723	95020.0	63.519
1950. 2000.	130.016 131.295	50.359 50.694	180.375	98200.2 101388.5	63 • 686 63 • 844
2050•	132.551	51.017		104584.4	63.993
	2264772	22021	7070700	20.00707	934773

(HOBO)3 (gas) [Continued] Table 26. (Ho-H8) -(F°-H₀) T So (H°-H°) င္ပင္စ cal/omole cal/omole cal/mole cal/omole cal/omole ٥K 2100. 133.784 51.327 185.112 107787.6 64.133 134.996 110997.6 2150. 51.627 186.622 64.266 51.916 136.186 188.101 114214.1 2200. 64.392 137.356 52.194 64.511 2250. 189.550 117436.7 2300. 138.506 52.463 190.969 120665.1 64.624 2350. 139.637 52.723 192.360 123899.0 64.730 140.750 52.974 193.724 2400. 127138.0 64.832 141.844 53.217 2450. 195.062 130382.1 64.928 2500. 142.922 53.452 196.374 133630.8 65.020 145.027 53.901 198.928 65.190 2600. 140141.4 147.069 54.322 201.391 65.344 2700. 146668 2 149.052 54.718 153209.7 65.484 203.770 2800. 150.979 2900. 55.091 206.070 159764.6 65.612 152.852 3000. 55.444 208.296 166331.6 65.728 3100. 154.676 55.777 210.453 172909.9 65.835 156.452 56.093 3200. 212.545 179498.3 65.933 56.393 158.183 214.575 186096.2 66.023 3300. 159.870 56.677 216.548 192702.7 66.10,6 3400. 56.948 218.465 3500. 161.517 199317.2 66 • 183 57.205 3600. 163.125 220.330 205939.1 66.254 164.696 57.451 222.147 212567.8 66.319 3700. 166.231 57.685 3800. 223.916 219202.8 66.380 57.909 167.732 225.641 225843.7 66.437 3900 • 169.201 58.123 227.324 232490.1 66.490 4000 4100. 170.639 58.327 228.966 239141.5 66.539 4200 · 172.047 58.523 230.570 245797.8 66.585 173.426 58.711 232.137 252458.5 66.628 4300. 174.778 58.892 233.670 259123.3 66.668 4400. 265792.1 66.706 4500. 176.103 59.065 235.168 4600. 177.403 59.231 236.635 272464.5 66.742 59.392 66.775 4700 · 178.679 238.071 279140.4 179.931 59.546 239.477 285819.5 66.807 4800. 4900 • 181.160 59.694 240.855 292501.6 66.836 182.368 59.837 242.205 299186.6 66.864 5000 • 183.554 59.975 243.529 305874.4 66.890 5100. 184.720 60.109 244.829 312564.7 66.915 5200. 246.103 60.237 319257.4 66.939 5300. 185.866 186 • 993 5400. 60.362 247.355 325952.4 66.961 5500. 188.102 60.482 248.584 332649.6 66.982 249 • 791 60.598 339348.9 67.003 5600. 189 • 193 67.022 190.266 60.711 250.977 346050.1 5700. 191.323 252.143 352753.2 67.040 5800. 60.820 5900. 192.364 60.925 253.289 359458.0 67.057 193.389 254.416 366164.6 67.074 6000. 61.027 273.15 63.242 17.017 80.259 4648.3 30.543 64.785 298.15 18.248 83.033 5440.5 32.808

BF (gas) Table 27. (Ho-Hg) (Ho-Hg) Т -(F°-Hg) So င္ပင္ပ Т Т cal/omole cal/omole cal/mole cal/omole ۰K cal/omole 50. 28 • 522 6.927 35.449 346.3 6.956 6.957 31.333 6.937 520.3 75. 38.270 100. 33.329 6.942 40.271 694.2 6.957 6.958 125. 34.879 6.945 868.1 41.824 1.50 . 36.145 6.947 43.092 1042.1 6.959 44.165 1216.1 6.961 175. 37.216 6.949 38.144 6.951 45.095 1390.2 6.968 200. 6.982 225. 38.963 6.953 45.916 1564.5 6.957 1739.3 7.004 250. 39 . 696 46.653 1914.8 7.035 275. 40.359 6.963 47.322 40.965 6.970 2091.1 7.076 300. 47.936 325. 41.524 6.980 48.504 2268.7 7.125 350. 42.041 6.993 49.034 2447.5 7.182 42.524 7.244 375. 7.007 49.532 2627.8 400 • 42.977 7.024 50.001 2809.7 7.309 425. 7.043 50.446 2993.3 7.377 43 • 403 450. 43.807 7.063 50.870 3178.5 7 . 445 7.514 44.189 7.085 475. 51.274 3365.5 500 • 44.553 7.108 51.662 3554.2 7.582 7.712 45 • 233 7.157 52.390 3936.6 550 • 45 . 858 7.209 53.067 4325.2 7.833 600. 650. 7.261 4719.7 7.943 46 • 437 53.698 7.313 46.977 54.290 5119.3 8.043 700 • 47.483 7.365 54 . 848 5523.8 8 • 133 750. 7.416 5932.5 8 • 213 47.960 55 . 376 800. 7.465 55 . 876 6344.9 8 . 285 850 • 48 • 411 48 • 839 7.512 56 • 351 6760.8 8 • 350 900 • 7.558 950. 49.247 56.804 7179.8 8 • 408 49.635 7.602 57.237 7601.5 8 • 460 10000 7.644 57.651 8025.7 8.507 1050. 50.007 58.048 8452.2 1100. 50.364 7.684 8.550 8.588 1150. 50.706 7.722 58.429 8880.6 7.759 51.036 58.795 9310.9 8.624 1200 .. 1250. 51.353 7.794 59.148 9742.9 8.656 51.660 7.828 59.488 10176.5 8.686 1300 • 51.956 7.860 59.816 8.713 1350. 10611.5 52.242 7.891 1400. 60.133 11047.7 8.738 1450. 52.519 7.921 60.440 11485.2 8.761 1500. 52.788 7.949 60.738 11923.8 8.783 1550. 53.050 7.976 61.026 12363.5 8.803 1600. 53.303 8.003 61.306 12804.1 8.822 1650. 53.550 8.028 61.578 13245.7 8.840 53.790 1700. 8.052 61.842 13688.1 8.857 1750. 54.024 8.075 62.099 14131.3 8 -872 54.251 1800. 8.097 62.349 14575.3 8.887 1850. 54.474 8.119 62.593 15020.1 8.901 1900. 54.690 8 • 140 62.830 15465.5 8 • 915 1950. 54.902 8.160 63.062 15911.5 8.928 2000 • 55 • 109 8.179 63.288 16358.2 8.940

63.509

16805.5

8.198

8.952

55.311

2050 •

Table 27. BF(gas) [Continued]

T	-(F°-H8)	(H°-H°)	S°	(H°-H°)	C.º
	T	T			
• K	cal/°mole	cal/omole	cal/°mole	*	cal/omole
2100 •	55 • 509	8 • 216	63.725	17253 • 4	8 • 963
2150•	55 • 7 02	8.233	63.936	17701.8	8.974
2200•	55 • 892	8 • 250	64.142	18150.7	8 • 984
2250• 2300•	56 • 077 56 • 259	8•267 8•283	64•344 64•542	18600•2 19050•2	8 • 994 9 • 004
2350•	56.438	8 • 298	64 • 736	19500•6	9.014
2400.	56.612	8.313	64.926	19951.5	9.023
2450•	56.784	8.328	65.112	20402.9	9.032
2500	56.952	8.342	65.294	20854.7	9.040
2600.	57.280	8.369	65.649	21759.6	9.057
2700•	5 7 • 596	8.395	65:991	22666.1	9 • 073
2800•	57•9 ₀ 2	8 • 419	66 • 322	23574•2	9 • 089
2900•	58.198	8 • 443	66•641	24483.8	9.103
3000•	58 • 485	8 • 465	66.950	25394.8	9.118
3100•	58.763	8 • 486	67.249	26307.3	9 • 132
3200•	59.032	8.507	67.539	27221.2	9 • 146
3300	59•294 59•549	8 • 5 2 6 8 • 5 4 5	67.821	28136.4	9 • 159
3400 • 3500 •	59 • 797	8.563	68•094 68•360	29053•0 29970•8	9 • 172 9 • 185
3600.	60.039	8.581	68.619	30890.0	9.198
3700.	60 • 274	8.597	68.871	31810.4	9.210
3800.	60.503	8.614	69.117	32732.1	9.223
3900.	60.727	8.629	69.357	33655.0	9.235
4000.	60.946	8 • 645	69.591	34579.1	9 • 247
4100.	61.160	8.660	69.819	35504.5	9 • 260
4200•	61.369	8.674	70.043	36431.0	9.272
4300•	61.573	8.688	70.261	37358.8	9 • 284
4400•	61.773	8 • 702	70 • 475	38287.8	9 • 296
4500•	61.968	8.715	70 • 684	39218.0	9 • 308
4600•	62.160	8.728	70.888	40149•4	9.320
47 ₀₀ • 48 ₀₀ •	62•348 62•532	8•741 8•753	71 _{•0} 89 71 _• 285	41 ₀ 82•0 42 ₀ 15•7	9 • 332 9 • 344
4900•	62.713	8 • 765	71.478	42950.7	9 • 356
5000	62 • 890	8 • 777	71.667	43886.9	9 • 368
5100•	63 • 064	8•789	71 • 853	44824•2	9 • 380
5200•	63 • 235	8 • 801	72.035	45762.8	9 • 392
5300•	63 • 402	8 • 812	72.214	46702.5	9 • 404
5400.	63.567	8.823	72•39 ₀	47643.5	9 • 416
5500•	63•729	8 • 834	72.563	48585.6	9 • 428
5600•	63 • 888	8 • 844	72•733	49529•0	9 • 440
5700•	64 • 045	8 • 855	72•900	50473.6	9 • 452
5800•	64 • 199	8 • 865	73.065	51419•4	9 • 464
5900	64 • 351	8 • 876	73 • 227	52366•4	9 • 476
6000•	64.500	8 • 886	73 • 386	53314.6	9 • 488
273.15	40.312	6.962	47.275	1901.8	7.032
298 • 15	40.922	6.970	47.892	2078.1	7.073
			_		

BF2 (gas) Table 28. Cô (Ho-Ho) -(Fo-Ho) (Ho-Ho) So T ጥ Т cal/omole cal/omole cal/mole cal/omole cal/omole οK 50. 36.074 7.943 44.017 397.1 7.949 7.947 47.242 596.0 7.966 75. 39.295 41.583 7.960 49.543 796.0 8.045 100. 125. 43.362 7.991 51.353 998.9 8.200 44.823 8.043 52.866 1206.4 8.408 150. 46.068 8-112 54.180 1419.5 8 . 644 175. 8.891 200. 47.157 8.193 55.350 1638.7 225 . 48.127 8.285 56.412 1864.1 9.140 2095.7 9.387 250. 49.005 8.383 57.387 275 . 49.808 8.485 58.294 2333.4 9.629 50.551 8.590 59.142 2577.1 9.863 300. 2826.5 51.243 8.697 59.940 10.089 325 . 8.804 3081.5 10.305 51.891 60.696 350 · 52.503 8.911 61.414 3341.7 10.511 375. 9.017 3606.9 10.706 53.081 62.098 400. 53.631 9.122 62.753 3876.9 10.891 425 . 9.225 54.155 63.380 4151.4 11.064 450. 54.657 9.326 4430.0 11.228 63.983 475 . 471206 11.381 55.138 9.425 64.563 500. 9.616 5288.8 11.658 550. 56.045 65.661 9.796 5877.8 11.899 56.889 66.686 600 . 6478.1 57.680 9.966 67.647 12.109 650 . 58 . 425 10.126 68.551 7088.3 12.292 700. 10.276 12.451 750. 59.129 69.405 7707.0 59.796 70.213 8333.1 12.590 10.416 800. 60.432 10.548 70.980 8965.7 12.712 850. 900. 61.038 10.671 71.709 9604.0 12.819 61.618 12.913 950. 10.787 72.405 10247.4 12.996 62.174 10.895 73.070 10895.1 1000. 1050. 62.709 10.997 73.705 11546.8 13.069 12201.9 13.135 1100. 63.222 11.093 74.315 63.717 11.183 74.900 12860.1 13.193 1150. 64.195 11.268 75.463 13521.1 13.245 1200. 76.004 14184.6 13.292 1250. 64.657 11.348 65.103 11.423 76.527 14850.3 13.335 1300. 65.536 11.495 77.031 15518.0 13.373 1350. 11.563 77.518 1400 . 65.955 16187.5 13.408 66.362 11.627 77.989 16858.7 13.439 1450 . 66.757 1500. 11.688 78.445 17531.4 13.468 1550. 67.141 11.745 78.887 18205.5 13.494 1600. 67.515 11.801 79.316 18880.8 13.518 67.879 11.853 79.732 19557.3 13.540 1650. 20234.8 13.561 68.234 11.903 80.136 1700. 20913.3 1750. 68.579 11.950 80.530 13.579 1800. 68.917 11.996 80.913 21592.7 13.597 22273.0 1850. 69.246 12.039 81.285 13.613 12.081 22954.0 1900. 69.568 81.649 13.627 23635.7 1950. 69.882 12.121 82.003 13.641 2000. 70.189 12.159 82.348 24318.1 13.654 70.490 2050. 12.196 82.686 25001.1 13.666

Tab	le 28. BF ₂ (gas) [Conti	inued]		
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°
	T	T			
• K	cal/°mole	·	cal/omole		•
2100. 2150.	70•784 71•072	12.231 12.265	83.015 83.337	25684.6 26368.7	13.677 13.687
2200.	71.355	12.297	83.652	27053.3	13.697
2250.	71.631	12.328	83.960	27738.4	13.706
2300 •	71.903	12.358	84.261	28423.9	13.715
2350 • 2400 •	72.169 72.430	12.387 12.415	84.556 84.845	29109 . 9 29796 . 2	13.723 13.730
2450.	72.686	12.442	85.128	30482.9	13.737
2500.	72.938	12.468	85.406	31169.9	13.744
2600.	73.428	12.517	85.945	32544.9	13.756
2700.	73.901	12.563	86.464	33921.1	13.767
2800.	74.359	12.607	86•965 87•449	35298.3 36676.5	13.777
2900 • 3000 •	74•802 75•231	12.647 12.685	87.916	38055.5	13.786 13.794
3100.	75.648	12.721	88.369	39435.2	13.801
3200.	76.052	12.755	88.807	40815.7	13.808
3300•	76 • 445	12.787	89.232	42196.8	13.814
3400.	76 • 827	12.817	89.645	43578.5	13.819
3500 · 3600 ·	77•199 77•562	12.846 12.873	90.045 90.435	44960.7 46343.4	13.825 13.829
3700.	77.915	12.899	90.814	47726.5	13.834
3800.	78.259	12.924	91.183	49110.1	13.837
3900.	78.595	12.947	91.542	50494.0	13.841
4000.	78.923	12.970	91.893	51878.3	13.845
4100.	79 • 244	12.991	92.235	53262.9	13.848
4200	79•557 79•863	13.011 13.031	92•568 9 2 •894	54647.8 56033.0	13.851 13.853
4300 • 4400 •	80.163	13.050	93.213	57418.5	13.856
4500	80.457	13.068	93.524	58804.2	13.858
4600.	80.744	13.085	93.829	60190.2	13.861
4700.	81.026	13.101	94.127	61576.3	13.863
4800.	81.302	13.117	94.419	62962.7	13.865
4900	81.572	13.133	94.705	64349•3 65736•0	13.867
5000 • 5100 •	81.838 82.098	13.147 13.161	94.985 95.259	67122.9	13.868 13.870
5200.	82.354	13.175	95.529	68510.0	13.871
5300.	82 • 605	13.188	95.793	69897.2	13.873
5400.	82.852	13.201	96.052	71284.6	13.874
5500	83.094	13.213	96.307	72672.1	13.876
5600	83•332 83•566	13.225 13.236	96.557	74059•7 75447•4	13.877 13.878
5700. 5800.	83.797	13.247	96.803 97.044	76835.3	13.879
5900	84.023	13.258	97.281	78223.2	13.880
6000.	84.246	13.269	97.515	79611.3	13.881
273 • 1 298 • 1		8 • 477 8 • 582	58.229 59.081	2315.6 2558.9	9 • 612 9 • 8 4 6

T	-(F°-H°)	(H°-H8)	S°	(H°-H8)	Cp
	T	T			
• K	cal/°mole	cal/omole	cal/°mole		
50∙	36 • 674	7.946	44.620	397.3	7.950
75.	39.897	7.950	47.847	596.3	7.983
100•	42.187	7.976	50.162	797.6	8 • 148
125.	43.973	8.041	52.014	1005.1	8 • 484
150•	45 • 448	8.152	53.600	1222.8	8 • 947
175.	46•715 47•836	8 • 303 8 • 484	55.018 56.220	1453.0 1696.9	9•478 10•030
200• 225•	48.846	8.687	56.320 57.533	1954.5	10.578
250	49.773	8.902	58.675	2225.6	11.107
275	50.632	9.126	59.758	2509.6	11.613
300.	51.435	9.353	60.789	2806.0	12.092
325.	52.193	9.582	61.775	3114.0	12.545
350.	52.911	9.809	62.720	3433.0	12.972
375.	53.596	10.033	63.629	3762.4	13.374
400•	54 • 250	10.254	64.504	4101.5	13.753
425.	54.879	10.470	65 • 349	4449.8	14.108
450	55.483	10.682	66.165	4806.8	14.441
475	56.066	10.888	66 • 954	5171.7	14.753
500•	56.630	11.088	67.718	5544.2	15.045
550•	57•705 58•719	11.473 11.834	69.177	6309•9 7100•3	15.572
600• 650•	59.679	12.172	70.552 71.852	7912.0	16.031 16.430
700	60.593	12.489	73.082	8742.4	16.778
750	61.465	12.785	74 • 250	9589.0	17.080
800.	62.299	13.062	75.361	10449.8	17.345
850•	63.099	13.321	76.420	11323.0	17.577
900•	63.867	13.563	77.431	12207.0	17.780
950.	64.607	13.790	78.397	13100.6	17.959
10000	65 • 320	14.003	79.322	14002.6	18.118
1050•	66 • 008	14.202	80.210	14912.1	18 • 258
1100.	66 • 673	14.389	81.062	15828.2	18.383
1150.	67.316	14.565	81.882	16750 • 2	18.495
1200 • 1250 •	67•940 68•544	14.731 14.888	82.671	17677.5 18609.5	18.595 18.685
1300.	69.131	15.035	83.432 84.166	19545.9	18.766
1350	69.701	15.175	84.876	20486.0	18.840
1400.	70 • 255	15.307	85.562	21429.7	18.906
1450.	70.795	15.432	86.227	22376.6	18.967
1500•	71 • 320	15.551	86.871	23326.3	19.022
1550•	71.832	15.664	87.495	24278.7	19.072
1600•	72.331	15.771	88.102	25233.4	19.118
1650.	72.818	15.873	88.691	26190.4	19.160
1700•	73 • 293	15.970	89.263	27149.4	19.199
1750.	73.757	16.063	89.820	28110.3	19.235
1800.	74.211	16.152	90.363	29072.9	19.268
1850.	74 • 655	16.236	90.891	30037.1	19.299
1900. 1950.	75•089 75•514	16.317 16.395	91•406 91•908	31002.8 31969.8	19.327
2000.	75.930	16.469	92.399	32938.1	19•354 19•378
2050•	76.337	16.540	92.399	33907.6	19.576
_0=0=	. 3 \$ 3 3 .	2000,0	, 2 0 0 1 1	2270.00	270102

Table 29. BF3 (gas) [Continued]

T	-(F°-H ₀)	(H°-H°)	S°	(H°-H ₀)	С _р ̂
	T	T			
۰K	cal/°mole	cal/omole	cal/omole	cal/mole	cal/°mole
2100 · 2150 ·	76.737 77.128	16.609 16.674	93•345 93•802	34878•2 . 35849•8	19 • 423 19 • 442
2200.	77.512	16.737	94.250	36822.4	19.461
2250	77.889	16.798	94.687	37795.9	19.479
2300•	78.259	16•857	95•115	38770.3	19.495
2350 •	78.622	16.913	95.535	39745.4	19.510
2400•	78.979	16.967	95.946	40721.3	19.525
2450•	79.329	17.020	96.349	41697.9	19.539
2500 •	79 • 673 80 • 345	17.07 ₀ 17.166	96•743 97•511	42675•1 44631•5	19•551 19• 57 5
2600 • 2700 •	80.994	17.256	98.250	46590 • 1	19.575
2800	81.623	17.340	98.963	48550•7	19.615
2900•	82.233	17.418	99.652	50513.0	19.632
3000•	82.825	17.492	100.317	52477.1	19.648
3100•	83.400	17.562	100.962	54442.5	19.662
3200•	83.958	17.628	101.586	56409.4	19.674
3300•	84.502	17.690	102.192	58377.4	19.686
3400.	85.031	17.749	102.780	60346.5	19.697
3500. 3600.	85•546 86•048	17•805 17•858	103.351 103.906	62316.7 64287.8	19•707 19•716
3700	86.538	17.908	104.446	66259.8	19.716
3800	87.017	17.956	104.972	68232.6	19.731
3.900 •	87 • 484	18.002	105 • 485	70206.1	19.738
4000.	87.940	18.045	105.985	72180.2	19.745
4100.	88.386	18.087	106.473	74155.0	19.751
4200•	88.822	18.126	106.949	76130•4	19.757
4300.	89.249	18.164	107.414	78106.4	19.762
4400	89.667	18.201	107.868	80082.8	19.767
4500 • 4600 •	90•077 90•478	18.236 18.269	108.312 108.747	82059 _• 8 84037 _• 1	19•772 19•776
4700.	90.871	18.301	109.172	86014.9	19.780
4800	91.257	18.332	109.589	87993.1	19.784
4900.	91.635	18.362	109.997	89971.7	19.787
5000 •	92.006	18.390	110.396	91950.6	19.791
5100.	92.371	18.418	110.788	93929.8	19.794
5200•	92.729	18.444	111.173	95909.3	19.797
5300	93.080	18.470	111.550	97889.2	19.800
5400	93•426 93•765	18.494	111.920	99869.2	19.802
5500• 5600•	94.099	18.518 18.541	112.283 112.640	101849.6	19.805 19.807
5700	94.427	18.563	112.040	105811.0	19.809
5800.	94.750	18.585	113.335	107792.1	19.812
5900.	95.068	18.606	113.674	109773.3	19.814
6000.	95.381	18.626	114.007	111754.8	19.816
273.15	50.570	9.109	59.679	2488.2	11.576
298.15	51 • 378	9.336	60.714	2783.7	12.057
154.50	45.689	8.177	53.866	1263.3	9.039

Table 30. BOF (gas)	Tal	ble	30.	BOF	(gas)
---------------------	-----	-----	-----	-----	-------

T	-(F°-H°)	(H°-H ₀)	S°	(Ho-HQ)	Cp
	T	T			
۰K	cal/°mole	cal/°mole	cal/°mole	cal/mole	cal/°mole
50. 75.	32.908 35.728	6.950 6.962	39.858 42.689	347.5 522.1	6.959 7. 037
100.	37.736	7.010	44.745	701.0	7.302
125.	39.309	7.107	46.417	888.4	7.709
150.	40.617	7.245	47.862	1086.7	8.158
175.	41.746	7.407	49.152	1296.2	8.591
200.	42.746	7.580	50.326	1516.0	8.987
225 •	43.649	7.756	51.405	1745.2	9.344
250.	44.475	7.931	52.407	1982.9	9.665
275.	45.239	8.103	53.342	2228•2	9.957
300.	45.951	8 • 268	54.220	2480.5	10.223
325 • 350 •	46.619 47.250	8.428 8.582	55.048 55.832	2739•2 3003•7	10•467 10•692
375.	47.847	8.730	56.577	3273.6	10.902
400.	48.415	8.872	57.287	3548.7	11.098
425.	48.957	9.008	57.965	3828.4	11.282
450.	49.475	9.139	58.615	4112.7	11.455
475.	49.973	9.265	59.238	4401.1	11.618
500.	50.451	9.387	59.838	4693.5	11.772
550.	51.357	9.617	60.974	5289.3	12.056
600•	52.203	9.831	62.034	5898.6	12-310
650.	52 • 998 53 • 748	10.031 10.217	63.965	6519.9 7151.9	12.537 12.741
700 • 750 •	54.459	10.392	64-851	7793.6	12.924
800.	55.135	10.555	65.690	8444.0	13.088
850.	55.780	10.708	66.488	9102.2	13.235
900.	56.396	10.853	67.248	9767.3	13.367
950.	56.986	10.988	67.974	10438.7	13.486
10000	57.553	11.116	68.669	11115.7	13.592
1050•	58 • 098	11.236	69.334	11797.7	13.688
1100.	58.624	11.349	69.973	12484.3	13.775
1150.	59.131 59.620	11.457 11.558	70.587 71.178	13175.1 13869.5	13.853
1200 • 1250 •	60.094	11.654	71.748	14567.4	13.924 13.989
1300.	60.553	11.745	72.298	15268.3	14.048
1350.	60.998	11.831	72.829	15972.1	14.101
1400.	61.430	11.913	73.343	16678.4	14.150
1450.	61.849	11.991	73.840	17387.0	14.195
1500.	62.257	12.065	74.322	18097.8	14.236
1550.	62 • 654	12.136	74.789	18810.6	14.274
1600.	63 • 040	12.203	75.243	19525.1	14.309
1650.	63.416	12.268	75.684	20241.4	14.341
1700 • 1750 •	63.784 64.142	12.329 12.388	76.113 76.529	20959.2 21678.4	14.370
1800.	64.492	12.444	76.929	22398.9	14.398 14.423
1850.	64.833	12.498	77.331	23120.7	14.447
1900.	65.167	12.549	77.717	23843.6	14.469
1950.	65.494	12.599	78.093	24567.5	14.489
2000.	65.813	12.646	78.460	25292.5	14.508
2050.	66.126	12.692	78.818	26018.3	14.526

BOF (gas). [Continued] Table 30. (Ho-Ho) So T -(F°-H°) (Ho-Ho) T Т cal/omole cal/omole cal/mole cal/omole ۰K cal/omole 2100. 66 . 433 12.736 19.168 26745.0. 14.543 2150. 66.733 12.778 79.511 27472.6 14.558 14.573 2200. 67.027 12.819 79.846 28200.9 2250. 67.316 12-858 80.173 28929.9 14.587 12.895 67.599 80.494 29659.5 2300. 14.600 23500 67.876 124932 80.808 30389.8 14.612 68.149 12.967 81.116 31120.7 24000 14.623 2450. 68.417 13.001 81.418 31852.2 14.634 2500 e 68.680 13.034 81.713 32584.2 14.644 82.288 34049.6 2600. 69.192 13.096 14.663 35516.7 2700. 69.687 13.154 82.842 14.680 70.167 13.209 83.376 36985.5 2800. 14.695 70.631 13.261 2900. 83.892 38455.7 14.709 3000. 710082 13.309 84.391 39927.3 14.721 3100. 71.519 13.355 84.874 41400.0 14.733 3200 • 71.943 13.398 85.342 42873.8 14.743 3300. 72.356 13.439 85.795 44348.6 14.752 3400. 72.758 13.478 86.236 45824.2 14.761 3500. 73.149 13.514 86.664 47300.7 14.769 14.776 3600. 73.531 13.549 87.080 48778.0 3700· 73.902 13.583 87.485 50255.9 14.783 3800. 74.265 13.614 87.879 51734.5 14.789 3900. 74.619 13.645 88.264 53213.7 14.795 74.965 13.673 54693.4 4000 • 88.638 14.800 4100. 75.303 13.701 89.004 56173.7 14.805 75.633 13.727 89.360 57654.4 4200 · 14.810 75.957 4300. 13.752 89.709 59135.6 14.814 76.273 13.777 90.050 60617.2 14.818 4400. 76.583 4500° 13.800 90.383 62099.2 14.822 76.886 13.822 90.708 63581.5 14.825 4600 · 4700 · 77.184 13.843 91.027 65064.2 14.828 4800. 77.476 13.864 91.340 66547.2 14.832 77.762 4900. 13.884 91.645 68030.5 14.834 5000. 78.042 13.903 91.945 69514.1 14.837 5100. 78.318 13.921 92.239 70997.9 14.840 5200. 78.588 13.939 92.527 72482.0 14.842 78.854 13.956 73966.4 14.845 5300. 92.810 5400. 79.115 13.972 93.087 75450.9 14.847 5500. 79.372 13.988 93.360 76935.7 14.849 5600 • 79.624 14.004 93.627 78420.7 14.851 5700. 79.872 14.019 93.890 79905.8 14.853 80.116 14.033 94.149 81391.2 14.854 5800. 82876.7 59000 80.356 14-047 94.403 14.856 80.592 14.060 94.652 84362.4 14.858 60000 273.15 45.185 8.090 2209.8 9.936 53.275

54.156

8.256

298.15

0.

45.900

10.204

Tab	le 31. (BOI				
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°
	T	T			
• K	cal/omole		cal/omole		
50.	44.009	7.982	51.991	399.1	8.194
75 •	47.282	8.227	55.508	617.0	9 • 423
100.	49.717	8.781	58.499	878.1	11.589
125.	51.761	9.602	61.363	1200.2	14.210
150.	53.597	10.593	64.190	1588.9	16.873
175.	55.310	11.672	66.982	2042.6	19.388
200•	56.941 58.511	12•784 13•897	69•725 72•408	2556•7 3126•7	21.713 23.860
225 • 250 •	60.033	14.994	75.026	3748 • 4	25 • 847
275.	61.512	16.065	77.577	4417.9	27.687
300.	62.955	17.105	80.060	5131.6	29 • 388
325.	64.364	18.111	82.475	5886.2	30.957
350.	65.742	19.081	84.823	6678.3	32.397
375.	67.090	20.013	87.104	7505.0	33.717
400.	68.411	20.908	89.319	8363.2	34.922
425.	69.704	21.765	91.469	9250.2	36.021
450•	70.971	22.585	93.557	10163.5	37.022
475 •	72 • 214	23.370	95.583	11100.6	37.933
500•	73 • 432	24.119	97.551	12059.4	38.762
550.	75.797	25.518	101.315	14034.7	40.204
600.	78.073	26.793	104.866	16075.8	41.403
650•	80.264	27.957	108 • 221	18171.8	42 • 405
700.	82.375	29.020	111.395	20313.7	43 • 247
750.	84.411	29.992	114.404	22494.2	43.958
800• 850•	86•376 88•2 7 3	30.885 31.705	117.260 119.978	24707.7 26949.1	44.563 45.081
900.	90.107	32.461	122.568	29214.6	45.527
950	91.881	33.159	125.040	31500.8	45 • 913
1000.	93.599	33.805	127.404	33805.0	46.250
1050.	95.263	34.405	129.667	36125.0	46.544
1100.	96.876	34.963	131.839	38458.9	46.803
1150.	98.442	35.482	133.924	40804.8	47.032
1200.	99.962	35.968	135.930	43161.6	47.235
1250.	101.440	36.422	137.862	45528.0	47.416
1300.	102.877	36.848	139.725	47902.9	47.578
1350.	104.275	37.249	141.524	50285.6	47.724
1400.	105.637	37.625	143.262	52675.1	47.855
1450.	106.963	37.980	144.943	55070.9	47.974
1500.	108 • 256	38.315	146.571	57472.3	48.081
1550.	109.518	38 • 632	148-150	59878.8	48 • 179
1600.	110.749	38.931	149.681	62290.1	48 • 268
1650	111.952	39.215	151.167	64705.6	48 - 350
1700. 1750.	113.126 114.275	39.485 39.742	152.612 154.016	67125.0	48 425
1800.	115.398	39.986	155.383	71974.2	48 • 494 48 • 557
1850.	116.496	40.218	156.715	74403.6	48.615
1900.	117.572	40.440	158.012	76835.7	48 • 669
1950.	118.625	40.651	159.277	79270.4	48.719
2000.	119.657	40.854	160.511	81707.6	48 • 766
2050	120.668	41.047	161.715	84146.9	48.809
3000	220000	00			

(BOF)3(gas) [Continued] Table 31. (Ho-Ho) (H.o-HO) T T T cal/omole cal/omole cal/mole cal/omole οK cal/omole 86588.4 121.660 41.233 162.892 48.849 2100. 164.042 2150. 122.632 41.410 89031.8 48.887 41.580 91477.0 2200 • 123.586 165.166 48.922 2250. 124.522 41.744 166 • 266 93924.0 48 . 955 2300. 125 . 441 41.901 167.342 96372.5 48 . 985 2350. 126.344 42.052 168.396 98822.5 49.014 2400. 127.231 42.197 169.428 101273.8 49 • 041 2450. 128.102 42.337 103726.5 170.440 49.067 128.959 42.472 171.431 49.091 2500. 106180.5 130.630 42.728 111091.8 2600. 173.358 49 . 135 42.966 2700. 132.247 175.213 116007.3 49.174 133.814 43.188 177.002 120926.5 49.209 2800. 2900. 135.333 43.396 178.729 125849.0 49.241 3000. 136.807 43.592 180.399 130774.5 49 . 269 3100. 138.240 43.775 182.015 135702.8 49.295 139.632 43.948 49.319 3200. 183.580 140633.5 140.987 44.111 185.098 145566.5 49.340 3300 · 142.306 150501.5 3400. 44.265 186.572 49.360 3500 · 143.592 44.411 188.003 155438.4 49.378 3600. 144 . 845 44.549 189.394 160377.1 49.394 3700· 146.067 44.680 190.747 165317.3 49.410 3800. 147.260 44.805 192.065 170258.9 49.424 44.924 193.349 3900. 148.426 175202.0 49.437 4000. 149.564 45.037 194.601 180146.2 49.449 4100. 150.678 45.144 195.822 185091.7 49.460 4200 · 151.767 45.247 197.014 190038.2 49.470 49.480 152.833 45.346 194985.7 4300. 198.178 153.876 45.440 4400. 199.316 199934.1 49.489 154.899 45.530 204883.5 49.497 4500 · 200.428 155.900 45.616 201.516 209833.6 49.505 4600 · 4700. 156.882 45.699 202.581 214784.5 49.513 157.845 219736.1 49.520 4800. 45.778 203.623 4900 . 158.790 45.855 224688.4 49.526 204.645 5000. 159.717 45.928 205 . 645 229641.3 49.532 5100. 160.627 45.999 206.626 234594.8 49.538 239548.9 49.543 5200. 161.521 46.067 207.588 5300. 162.399 46.133 208 . 532 244503.5 49.549 163.262 46.196 249458.6 5400. 209 . 458 49.553 5500. 164.110 46.257 210.367 254414.2 49.558 5600. 164.944 46.316 211.260 259370.2 49.562 5700. 165.765 46.373 212.138 264326.6 49.567 5800. 166.572 46.428 213.000 269283.5 49.570 5900. 167.366 46.481 213.847 274240.7 49.574 60000 168.147 46.533 214.680 279198.3 49.578 61.404 15.987 4366.8 27.556 273.15 77.391 298.15 62 . 849 79.879 5077.3 29.267 17.029

Table 32. BCl (gas)					
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C° p
	T	T			•
۰K	cal/°mole	cal/°mole	cal/omole	cal/mole	cal/°mole
50.	31.392	6.943	38.335	347.1	6.956
75 •	34.209	6.947	41.156	521.1	6.957
100.	36.208	6.950	43 • 158	695.0	6.959
125 •	37.759	6.953	44.711	869.1	6.971
150.	39.027	6.958	45.985	1043 .7 1219.4	7.002 7.059
175 • 200 •	40.100 41.031	6.968 6.984	47.068 48.016	1396.9	7.141
225 •	41.855	7.007	48.862	1576.6	7.240
250.	42.595	7.036	49.631	1758.9	7.349
275.	43 • 267	7.069	50.337	1944.1	7.463
300.	43.884	7.107	50.991	2132.1	7.575
325.	44.454	7.147	51.601	2322.8	7.684
350•	44.985	7.189	52 • 175	2516.2	7.786
375.	45.483	7.232	52.715	2712.1	7.881
400•	45.951	7.275	53.227	2910.2	7.968
425 •	46 • 393	7.319	53.712	3110•4	8 • 0 4 8
450•	46 • 813	7.361	54.174	3312.5	8 • 122
475 •	47 • 212	7 • 4 0 3	54.615	3516 • 4	8 • 188
500•	47.593	7.532	55.037	3721.9	8 • 249
550.	48.306	7.522	55.828	4137•1 455 7• 1	8 • 355
600• 650•	48•964 49•574	7 •595 7 •663	56.559 57.238	4981.2	8 • 444 8 • 518
700•	50.145	7.727	57.871	5408.7	8.581
750•	50.680	7.786	58.465	5839.2	8.634
800•	51.184	7.840	59 • 024	6272.1	8.681
850.	51.661	7.891	59.552	6707.1	8.721
900•	52.113	7.938	60.051	7144.0	8 • 756
950•	52.544	7.982	60.525	7582.6	8.787
1000•	52.954	8.023	60.977	8022 .7	8.815
1050.	53 • 346	8.061	61.407	8464.1	8.840
1100.	53.722	8.097	61.819	8906.6	8 • 862
1150.	54 • 083 54 • 430	8 • 131	62.214	9350•2	8 883
1200• 1250•	54•430 54•763	8 • 162 8 • 192	62•592 62•956	9794.9 10240.4	8.902 8.919
1300.	55.085	8.221	63.306	10686.7	8.935
1350.	55.396	8.247	63.643	11133.9	8.950
1400.	55.696	8.273	63.969	11581.7	8.964
1450.	55.987	8.297	64.284	12030.3	8.978
1500.	56.269	8.320	64.588	12479.4	8.990
1550.	56.542	8.341	64.883	12929.3	9.002
1600.	56.807	8.362	65 • 169	13379.7	9.014
1650•	57 • 065	8.382	65 • 447	13830•6	9 • 0 2 5
1700•	57 • 315 57 • 550	8 • 401	65.717	14282.1	9 • 035
1750.	57•559 57•797	8.419 8.437	65.9 7 9 66.234	14734.1 15186.6	9 • 045
18 ₀₀ .	58.028	8 • 454	66.482	15639.6	9 • 05 5 9 • 06 5
1900.	58.254	8 • 470	66.0724	16093.1	9.065
1950.	58 • 474	8.486	66.959	16547.0	9.083
2000•	58 • 689	8.501	67.190	17001.4	9.092
2050•	58.899	8.515	67.414	17456.2	9.101
-					

BCl(gas) [Continued] Table 32. -(F°-H°) (Ho-Ho) (H°-H°) T T cal/omole ۰K cal/omole cal/omole cal/mole cal/omole 59.104 8.529 67.634 17911.5 9 • 109 2100 • 59.305 8.543 67.848 18367.2 2150. 9.118 2200 • 59.502 8.556 68 • 058 18823.3 9.126 59.694 8.569 68.263 19279.8 9.134 2250 • 59.883 8.581 19736.7 2300. 68.464 9.142 9.150 60.067 8.593 2350. 68.660 20194.0 68.853 9.158 2400 • 60.248 8.605 20651.7 21109.8 9.166 2450. 60.426 8.616 69 • 042 8.627 69.227 21568.2 9.173 2500 • 60.600 60.939 8.649 2600. 69.587 22486.3 9.189 61.266 2700. 8.669 69.934 23406.0 9.204 61.581 8.688 24327.1 9.219 2800. 70.269 2900. 61.886 8.707 70.593 25249.7 9.234 26173.8 3000. 62.182 8.725 70.907 9.248 8.742 9.263 3100. 62.468 71.210 27099.4 3200. 62.746 8.758 71.504 28026.5 9.278 8.774 3300. 63.016 71.790 28955.0 9.293 3400. 63.278 8.790 72.068 29885.0 9.307 8.805 72.338 3500. 63.533 30816.4 9.322 63.781 8.819 9.337 3600. 72.600 31749.3 64.023 8.833 72.857 9.351 3700. 32683.7 73.106 33619.6 9.366 3800. 64.259 8.847 64.489 8.861 3900. 73.350 34557.0 9.381 64.713 4000. 8.874 73.587 35495.9 9.396 64.933 8.887 73.819 36436.2 9.411 4100. 65.147 8.900 9.426 4200. 74.046 37378.1 4300 • 65 • 356 8.912 74.268 38321.5 9.441 65.561 8.924 74.486 39266.4 9.457 4400. 65.762 8.936 74.698 40212.8 9.472 4500 • 65.959 8.948 74.907 41160.8 9.487 4600. 42110.3 66 • 151 8 • 960 75.111 9.503 4700 • 4800. 66 • 340 8.971 75.311 43061.3 9.519 4900 • 66.525 8 • 982 75.508 44014.0 9.534 8.994 66.707 75.700 44968.2 9.550 5000 • 66.885 9.005 75.89n 45924 • 0 9.566 5100. 5200 • 67.060 9.016 76 • 076 46881.4 9.582 5300 • 67.232 9.026 76 • 258 47840.4 9.598 5400. 67.401 9.037 76.438 48801.1 9.614 5500. 67.566 9.048 76.614 49763.3 9.631 9.058 5600 • 67.730 76.788 50727.2 9.647 5700. 67.890 9.069 76.959 51692.8 9.664 9.079 77.127 9.681 5800. 68 • 048 52660.0 9.090 77.293 5900. 68.203 53628.9 9.697 77.456 6000. 9.100 54599.5 68.356 9.714

7.067

7.104

50.286

50.944

1930.3

2118.1

7.455

7.567

273.15

298.15

43.219

Table 33. BCl₂(gas)

-	٨				
T	-(Fº-H°)	(H°-H°)	S°	(H°-H°)	C°p
	T	T			
• K	cal/°mole	cal/°mole	cal/°mole	cal/mole	cal/°mole
50.	40.631	7.961	48.592	398.0	8.045
75.	43.872	8.042	51.914	603.2	8.399
100.	46.204	8.188	54.392	818.8	8.854
125 •	48 • 050	8.367	56.417	1045.9	9.306
150.	49.592	8.559	58.151	1283.8	9.722
175.	50.926	8.752	59.678	1531.6	10.096
200•	52.107	8.941	61.049	1788.3	10.431
225 •	53.171	9.124	62.295	2052.9	10.734
250.	54.141	9.299	63.440	2324.7	11.009
275.	55.036	9.466	64.502	2603.1	11.258
300.	55 • 866	9.625	65.491	2887.5	11.484
325 •	56•643 57•372	9•776 9•919	66.418	3177.2	11.689
350•	58.061	10.055	67•292 68•117	3471•7 3770•7	11.874
375 • 400 •	58.714	10.184	68.899	4073.6	12.041 12.192
425 •	59.336	10.306	69.642	4380.2	12.328
450	59.928	10.422	70.350	4689.9	12.450
475	60.494	10.532	71.026	5002.6	12.560
500.	61.037	10.636	71.673	5317.8	12.660
550.	62.060	10.828	72.888	5955.3	12.832
600.	63.010	11.001	74.011	6600.5	12.973
650.	63.897	11.157	75.054	7252.2	13.090
700.	64.729	11.299	76.028	7909.2	13.187
750.	65.513	11.427	76.940	8570.6	13.269
800.	66.254	11.545	77.799	9235.8	13.338
850.	66.957	11.652	78.609	9904.3	13.397
900.	67.626	11.750	79.377	10575.4	13.448
950.	68.264	11.841	80.105	11248.9	13.491
1000.	68.873	11.924	80.798	11924.4	13.529
1050.	69 • 457	12.002	81.459	12601.7	13.562
1100.	70.017	12.073	82.090	13280.6	13.591
1150.	70.555	12.140	82.695	13960.8	13.617
1200.	71.073	12.202	83.275	14642.3	13.640
1250.	71.573	12.260	83 • 832	15324.8	13.660
1300.	72.054	12.314	84.368	16008.2	13.678
1350.	72.520	12.365	84.885	16692.5	13.694
1400.	72.971	12.413	85.383	17377.6	13.709
1450.	73 407	12.458	85.865	18063.4	13.722
1500.	73.830	12.500	86.330	18749.8	13.734
1550.	74.241 74.639	12.540 12.578	86.780	19436.8	13.745
1650.	75.027	12.614	87.217 87.640	20124.3	13.755 13.764
1700.	75 • 404	12.647	88.051	21500.7	
1750.	75.771	12.680	88.451	22189.5	13.772 13.780
1800.	76.129	12.710	88.839	22878.7	13.787
1850.	76 • 477	12.740	89.217	23568•2	13.793
1900.	76.817	12.767	89.585	24258.0	13.799
1950.	77.149	12.794	89.943	24948.1	13.805
2000.	77.474	12.819	90.293	25638.4	13.810
2050.	77.791	12.843	90.634	26329.1	13.815
	., ., .	220013	700054		10000

Tabl					
T	-(F°-H ₀)	(H°-H°)	S°	(H°-H ₀)	C _p °
	T	T			
• K	cal/°mole	cal/omole	cal/omole	cal/mole	cal/°mole
2100.	78.100	12.867	90.967	27019.9	13.819
2150.	78.403	12.889	91.292	27711.0	13.823
2200 •	78.700	12.910	91.610	28402.2	13.827
2250.	78.990	12.931	91.921	29093.7	13.831
2300 •	79.275	12.950	92.225	29785.3	13.834
2350	79.553	12.969	92.522	30477.1	13.837
2400 •	79.827	12.987	92.814	31169.0	13.840
2450.	80.095	13.005	93.099	31861.1	13.843
2500 • 2600 •	80•357 80•869	13.021 13.053	93 •379 93 • 922	32553.4 33938.2	13.846 13.851
2700.	81.362	13.083	94.445	35323.5	13.855
2800	81.838	13.110	94.949	36709.2	13.859
2900•	82.299	13.136	95.435	38095.2	13.862
3000•	82.745	13.161	95.905	39481.6	13.865
3100.	83.176	13.183	96.360	40868.3	13.868
3200.	83.595	13.205	96.800	42255.3	13.871
3300.	84.002	13.225	97.227	43642.5	13.873
3400.	84.397	13.244	97.641	45029.9	13.875
3500•	84.781	13.262	98.043	46417.6	13.877
3600.	85.155	13.279	98.434	47805.4	13.879
3700.	85.519	13.296	98.815	49193.4	13.881
3800.	85.874	13.311	99.185	50581.6	13.882
3900.	86.220	13.326	99.546	51969.9	13.884
4000.	86.557	13.340	99.897	53358.4	13.885
4100.	86.887	13.353	100.240	54747.0	13.886
4200	87.534	13.366	100.575	56135.7	13.888
4300 • 4400 •	87.524 87.831	13.378 13.389	100.901 101.221	57524.5 58913.4	13.889 13.890
4500	88.132	13.401	101.533	60302.4	13.891
4600.	88.427	13.411	101.838	61691.5	13.891
4700	88.715	13.421	102.137	63080.7	13.892
4800	88.998	13.431	102.429	64470.0	13.893
4900•	89.275	13.441	102.716	65859.3	13.894
5000.	89.547	13.450	102.997	67248.7	13.894
5100.	89.813	13.458	103.272	68638.2	13.895
5200•	90.075	13.467	103.542	70027.7	13.896
5300.	90.331	13.475	103.806	71417.3	13.896
5400 •	90.583	13.483	104.066	72807.0	13.897
5500•	90.831	13.490	104.321	74196.7	13.897
5600.	91.074	13.498	104.571	75586.4	13.898
5700.	91.313	13.505	104.817	76976.2	13.898
5800.	91.548	13.511	105.059	78366.0	13-899
5900.	91.779	13.518	105 • 297	79755.9	13.899
6000.	92.006	13.524	105.530	81145.9	13.899
273.15	54.972	9.454	64.426	2582.3	11.240
298.15	55.807	9.613	65.420	2866.2	11.468

Table 34. BCl3 (gas)						
T	-(F°-H°)	(H°-H ₀)	S°	(H°-H ₀)	C°	
	T	T				
• K	cal/°mole	cal/omole	cal/°mole	cal/mole	cal/omole	
50.	41.892	7.974	49.866	398.7	8.129	
75 • 100 •	45 • 149 47 • 525	8.130 8.416	53.279 55.941	609.7 8 41.6	8 • 8 2 4 9 • 7 3 8	
125.	49.441	8.773	58.214	1096.6	10.654	
150.	51.074	9.158	60.232	1373.7	11.495	
175.	52.515	9.547	62.061	1670.7	12.250	
200•	53.815	9.927	63.742	1985.5	12.925	
225 · 250 ·	55.005 56.108	10.295 10.646	65.300 66.755	2316.3 2661.6	13.532 14.081	
275.	57.139	10.982	68.120	3020.0	14.579	
300•	58.108	11.301	69.409	3390.2	15.030	
325.	59.025	11.603	70.628	3771.1	15.439	
350.	59.895	11.891	71.786	4161.8	15.808	
375 • 400 •	60.725 61.518	12.163 12.421	72.888 73.940	4561.2 4968.6	16.141 16.442	
425	62.279	12.666	74.945	5383.1	16.713	
450.	63.009	12.898	75.907	5804.0	16.957	
475 •	63.713	13.117	76.830	6230.7	17.177	
500 • 550 •	64.391 65.679	13.325 13.710	77.716 79.389	6662.7 7540.4	1.7.376 17.719	
600.	66.887	14.056	80.943	8433.6	18.000	
650.	68.025	14.369	82.393	9339.6	18.233	
700.	69.100	14.652	83.752	10256.3	18.428	
750.	70.120	14.909	85.029	11181.9	18.591	
800 • 850 •	71.090 72.014	15.144 15.358	86•233 87•373	12115.0	18.729 18.847	
900.	72.898	15.555	88.453	13999.4	18.948	
950.	73.744	15.736	89.480	14949.0	19.035	
1000.	74.555	15.903	90.458	15902.7	19.111	
1050	75 • 335	16.057	91.392	16859.9	19 • 177	
1100. 1150.	76.085 76.808	16.200 16.333	92.285 93.142	17820•2 18783•2	19.235 19.286	
1200•	77.506	16.457	93.963	19748.7	19.331	
1250.	78.180	16.573	94.753	20716.3	19.372	
1300.	78.832	16.681	95.514	21685.8	19.408	
1350 • 1400 •	79.464	16.783	96.247	22657.0	19.440	
1450.	80.076 80.670	16.878 16.968	96.954 97.638	23629.8 24603.9	19.469 19.496	
1500.	81.247	17.053	98.299	25579.3	19.520	
1550.	81.807	17.133	98.940	26555.9	19.541	
1600.	82.352	17.208	99.561	27533.4	19.561	
165 ₀ .	82.883 83.400	17.280	100.163	28511.9	19.579	
1750.	83.904	17.348 17.412	100.748	30471.5	19.596 19.611	
1800.	84.395	17.474	101.868	31452.4	19.625	
1850.	84.874	17.532	102.406	32434.0	19.638	
1900.	85.343	17.587	102.930	33416.2	19.650	
1950.	85 • 800	17.640	103.441	34398.9	19.661	
2000 · 2050 ·	86 • 248 86 • 685	17.691 17.740	103.939 104.425	35382•2 36366•0	19.671 19.681	
	33332	2.00	-0.0762	200000	274002	

Table 34. BCl3 (gas) [Continued]					
T	-(F°-H°)	(H°-H°)	S°	(H°−H ₀ °)	C°
	T	T		- / -	- / -
• K	cal/°mole	cal/omole		· ·	cal/omole
2100.	87.113	17.786	104-899	37350.3	19.690
2150. 2200.	87.532 87.942	17.830 17.873	105.362 105.815	38335.0 39320.1	19.698 19.706
2250.	88.345	17.914	106.258	40305.5	19.713
2300.	88.739	17.953	106.691	41291.3	19.720
2350•	89.125	17.990	107.116	42277.5	19.726
2400	89.504	18.027	107.531	43263.9	19.732
2450 • 2500 •	89•876 90•242	18.061 18.095	107.938 108.337	44250.6 45237.6	19.737 19.743
2600.	90.953	18.159	109.111	47212.4	19.752
2700.	91.639	18.218	109.857	49188.1	19.761
2800.	92.303	18.273	110.576	51164.6	19.769
2900.	92 • 945	18.325	111.270	53141.8	19.776
3000	93.567	18.373	111.940	55119.7	19.782
3100. 3200.	94.170 94.755	18.419 18.462	112.589 113.217	57098.2 59077.3	19.788 19.793
3300.	95.324	18.502	113.826	61056.8	19.798
3400.	95.877	18.540	114-417	63036.8	19.802
3500.	96 • 415	18.576	114.991	65017.2	19.806
3600.	96.939	18.611	115.549	66998.0	19.810
3700 · 3800 ·	9 7 • 449 97 • 947	18.643 18.674	116.092 116.621	68979•1 70960•6	19•813 19•816
3900.	98.432	18.703	117.135	72942.3	19.819
4000.	98.906	18.731	117.637	74924.3	19.821
4100.	99.369	18.758	118.127	76906.6	19.824
4200 . 4300 .	99.821 100.264	18.783 18.807	118.604 119.071	78889.1 80871.8	19.826 19.828
4400.	100.696	18.831	119.527	82854.8	19.830
4500.	101.120	18.853	119.973	84837.9	19.832
4600.	101.534	18.874	120.408	86821.2	19.834
4700 • 4800 •	101.940 102.338	18.895 18.914	120.835	88804.7 907 88.3	19.836 19.837
4900	102.729	18.933	121.662	92772.1	19.838
5000.	103.111	18.951	122.062	94756.0	19.840
5100.	103.487	18.969	122.455	96740.0	19.841
5200•	103.855	18.985	122.841	98724.2	19.842
5300 · 5400 ·	104.217 104.572	19.002 19.017	123.219	100708.5	19.843 19.844
5500.	104.921	19.032	123.954	104677.4	19.846
5600.	105.264	19.047	124.311	106662.0	19.846
5700.	105.602	19.061	124.663	108646.7	19.847
5800.	105.933	19.074	125.008	110631.5	19.848
5900 •	106.260 106.580	19.088 19.100	125.347 125.681	112616.3	19.849 19.850
0000	100.300	170100	123.001	11400103	170030
273.15	57.065	10.957	68.022	2993.0	14.544
298.15	58.038	11.278	69.316	3362.4	14.998
285.70	57.561	11.120	68.681	3177.0	14.778

Table 35. B ₂ Cl ₄ (gas)							
T	-(F°-H°)	(H°-H°)	S°	(H°−H ₀)	Cp		
	T	T		•			
• K	cal/°mole		cal/°mole	cal/mole	cal/omole		
50.	47.808	9.519	57.327	476.0	10.700		
75.	51.815	10.194	62.009	764.5	12.420		
100.	54•849 57•365	10.968 11.756	65.817 69.121	1096.8 1469.5	14•133 15•649		
125 • 150 •	59.553	12.518	72.072	1877.7	16.990		
175.	61.510	13.246	74.756	2318.0	18.200		
200•	63.298	13.933	77.231	2786.7	19.291		
225.	64.948	14.586	79.534	3281.9	20.294		
250.	66 • 487	15.203	81.690	3800.8	21.203		
275.	67.935	15.786	83.721	4341.2	22.029		
300.	69.303	16.339	85.642	4901.7	22.780		
325 •	70 • 604	16.860	87.465	5479•6	23 • 457		
350•	71 • 843	17.355	89.199	6074•4	24.067		
375 • 400 •	73 • 033 74 • 177	17.821 18.261	90•854 92•437	6682•8 7304•2	24.619 25.116		
425.	75 • 283	18.678	93.961	7938 • 2	25.562		
450.	76 • 339	19.071	95 • 411	8582•1	25.966		
475.	77.357	19.443	96.800	9235.5	26.331		
500•	78.339	19.795	98.134	9897.7	2 6.66 0		
550.	80•196	20.449	100.644	11246.7	27.222		
600•	81.954	21.033	102.986	12619.5	2 7.6 88		
650.	83.615	21.559	105.175	14013.4	28 • 075		
700•	85 • 191	22.036	107 • 227	15425 • 1 16851 • 6	28 • 398		
750 • 800 •	86•689 88•117	22.469 22.864	109.158 110.981	18290.8	28•669 28•898		
850.	89.482	23.225	112.706	19740.8	29.092		
900•	90.787	23.556	114.343	21200.2	29.258		
950.	92.038	23.860	115.898	22666.9	29.403		
1000•	93.239	24.140	117.380	24140.2	29.529		
1050•	94 • 394	24.400	118.794	25619.5	29.639		
1100•	95.506	24.640	120.146	27104.0	29.736		
1150.	96.579	24.864	121.442	28593.0	29.822		
1200 • 125 ₀ •	97•614 98•615	25 • 072 25 • 266	122.686 123.881	30086.1 31582.8	29•8 9 7 29•9 6 5		
1300•	99 • 582	25 • 448	125.031	33083.0	30 • 025		
1350•	100.521	25.619	126.140	34585.7	30.079		
1400•	101.431	25.779	127.211	36091.0	30.128		
1450.	102.315	25.930	128.245	37598.6	30.17 2		
1500•	103 • 174	26.072	129.246	39108 .3	30.212		
1550.	104.009	26.206	130.215	40619.9	30.248		
1600.	104.821	26.333	131.155	42133.2	30.281		
1650 • 1700 •	105.613 106.384	26 • 453 26 • 567	132.066 132.951	43648•1 45164•4	30.311 30.339		
1750.	107.136	26.675	133.811	46682.0	30.365		
1800.	107 • 136	26.778	134.647	48200.9	30.388		
1850.	108 • 586	26.876	135.462	49721.3	30.409		
1900.	109.286	26.970	136.255	51242.3	30.429		
1950.	109.969	27.059	137.028	52764.3	30.448		
2000.	110.638	27.144	137.781	54287.1	30.465		
2050•	111.291	27.225	138.516	55810.7	30.481		

Table	35. B ₂ Cl	4(gas) [Cor	ntinued]		
T	-(F°-H ₀)	(H;-H;)	S°	(H°-H ₀)	Сp
	T	T			
• K	cal/°mole	cal/omole	cal/°mole	cal/mole	cal/omole
2100.	111.931	27.302	139.234	57335.1	30.496
2150.	112.558	27.377	139.935	58660.3	30.510
2200 •	113•172 113•773	27•448 27•517	140.620 141.290	60386.0 61912.4	30 • 5 2 3 30 • 5 3 5
2250 • 2300 •	114.363	27.5517	141.945	63439.4	30.546
2350•	114.942	27.645	142.587	64966.9	30.557
2400 •	115.509	27.706	143.215	66494.9	30.567
2450	116.066	27.765	143.831	68023.4	30.576
2500.	116.613	27.821	144.434	69552.3	30.585
2600•	117.677	27.927	145.605	72611.5	30.601
2700•	118.705	28.027	146.732	75672.1	30.616
2800.	119.699	28.119	147.819	78734.2	30.629
2900 • 3000 •	120•661 121•594	28 • 206 28 • 287	148.867 149.881	81797.4 84861.8	30.640 30.651
3100•	122 • 499	28.363	150 • 861	87924.1	30.660
3200.	123 • 376	28 • 434	151.811	90990.3	30.669
3300.	124.229	28.502	152.731	94057.5	30.677
3400.	125.058	28.566	153.624	97125.4	30.684
3500•	125 • 865	28.627	154.492	100194.1	30.691
3600.	126.650	28.684	155.335	193263.4	30.697
3700.	127.416	28.739	156.155	106333.3	30.702
3800.	128 • 162	28.790	156.953	109403.8	30.708
3900 • 4000 •	128•891 129•602	28•840 28•867	157•730 158•488	112474.8	30.712 30.717
4100.	130.296	28.931	159.227	118618.2	30.721
4200•	130.975	28.974	159.949	121690.5	30.725
4300•	131.638	29.015	160.653	124763.2	30 • 728
4400•	132.288	29.054	161.341	127836.3	30.732
4500 •	132.923	29.091	162 • 014	130909.6	3 ∪ • 735
4600•	133.545	29 • 127	162.672	133983.3	30.738
4700 •	134 • 155	29.161	163.316	137057.3	30.740
4800•	134.753	29.194	163.947	140131.6	30.743
4900.	135 • 338	29.226	164.564	143206.1	30.745
5000 • 5100 •	135.913 136.476	29•256 29•285	165 • 169 165 • 762	146280.8 149355.8	30•748 30•750
5200•	137 • 030	29.314	166.343	152431.0	30.752
5300•	137.573	29.341	166.914	155506.3	30.754
5400•	138.106	29.367	167.473	158581.9	30.755
5500.	138.631	29.392	168.023	161657.6	30.757
5600.	139.146	29.417	168.562	164733.6	30.759
5700•	139.652	29.440	169.092	167809.6	30.760
5800•	140.150	29 • 463	169.613	170885.8	30.762
5900	140.640	29 • 485	170 • 125	173962•2	30.763
6000•	141.122	29.506	170.628	177038•7	30•764
273.15	67.831	15.744	83.575	4300.5	21.971
298.15	69.204	16.299	85.504	4859.6	22.727
220.00	64.627	14.459	79.086	3181.0	20.102

Tabl	e 36. BOC1	(gas)			
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°
				O	Р
	T	T			
• K	cal/°mole	cal/omole	cal/omole	cal/mole	cal/omole
50•	35.029	6.953	41.981	347.6	6.962
75 •	37 • 850	6•971 7•046	44•821 46•911	522•8 704•6	7 • 093 7 • 494
100 • 125 •	39•864 41•451	7.046	48.644	899.1	8 • 085
150.	42.780	7.395	50.175	1109.3	8.724
175•	43.937	7.629	51.565	1335.0	9.322
200•	44.972	7.874	52.845	1574.7 1826.5	9•844 10•285
225 • 250 •	45.913 46.781	8 • 118 8 • 354	54.031 55.134	2088.4	10.654
275	47.587	8.577	56.165	2358.7	10.963
300.	48.343	8.787	57.130	2636.2	11.224
325.	49.054	8.983	58.037	2919.6	11.447
350 • 375 •	49•727 50•365	9.166 9.337	58.893 5 9. 7 02	3208•3 3501•5	11.641 11.812
400.	50.973	9.497	60.469	3798.7	11.966
425.	51.553	9 • 646	61.199	4099.6	12.106
450 •	52.108	9.787	61.895	4403.9	12.235
475. 500.	52.641 53.153	9.919 10.043	62.560 63.196	4711.3 5021.6	12.355 12.468
550.	54.121	10.273	64.394	5650.3	12.675
600•	55 • 024	10.481	65.505	6288.7	12.860
650.	55 • 871	10.671	66.541	6936.0	13.028
700• 750•	56 • 668 57 • 422	10.845 11.005	67.513 68.427	7591.3 8253.8	13.181 13.318
800.	58.137	11.154	69.290	8922.9	13.443
850.	58.817	11.292	70.109	9598.0	13.556
900•	59.466	11.420	70.887	10278.4	13.658
950 • 1000 •	60•087 60•682	11.541 11.653	71.628 72.335	10963.7 11653.3	13.751 13.835
1050	61.253	11.759	73.012	12347.0	13.911
1100.	61.802	11.858	73.661	13044.3	13.980
1150.	62.332	11.952	74.284	13744.9	14.042
1200•	62.842	12.040 12.124	74.882	14448.4	14.099
1250. 1300.	63.335 63.812	12.203	75.459 76.015	15154.7 15863.4	14.151 14.198
1350.	54.274	12.277	76.552	16574.5	14.242
1400•	64.722	12.348	77.070	17287.6	14.281
1450•	65 • 1 5 7	12.416	77.572	18002.5	14.318
1500 • 1550 •	65 • 579 65 • 989	12•480 12• 5 40	78•058 78• 5 29	18719•3 19437•6	14•351 14•382
1600•	66.388	12.598	78.986	20157.5	14 • 411
1650•	66 • 776	12.654	79.430	20878.6	14 • 437
1700	67 • 155	12.707	79 • 861	21601.1	14.461
1750. 1800.	67•524 6 7 •884	12.757 12.805	80•281 80•689	22324.7	14•484 14•505
1850.	68.236	12.851	81.087	23775.2	14.524
1900.	68.579	12.896	81.475	24501.8	14.542
1950.	68.914	12.938	81.852	25229.3	14.559
2000. 2050.	69•242 6 9•563	12.979 13.018	82 • 221 82 • 581	25957.7 26686.8	14.575 14.589
					2.0207
		- 103 -			

Table	e 36. BOC1	(gas) [Cont	inued]		
T	-(F°-H8)	(H°-H°)	S°	(H°-H ₀)	Cp
	T	T			
• K	cal/omole		cal/omole		•
2100•	69 • 878	13.056	82.933	27416.6	14.603
2150•	70 • 185	13.092	83.277	28147•1	14.616
2200 • 2250 •	70•487 70•782	13.126 13.160	83.613 83.942	28878 .2 296 0 9 . 9	14.628 14.640
2300•	71 • 072	13.192	84.264	30342•2	14.650
2350.	71.356	13.223	84.579	31074.9	14.660
2400•	71.634	13.253	84.888	31808.2	14.670
2450•	71.908	13.282	85•190	32541.9	14.679
2500•	72.176	13.310	85.487	33276.1	14.687
2600.	72.700	13.364	86.063	34745.6	14.703
2700•	73 • 205	13.414	86.618	36216.6	14.717
28 0 0• 290 0 •	73.694 74.167	13.460 13.504	87.154 87.671	37689.0 39162.5	14.730 14.741
3000•	74.625	13.546	88.171	40637.2	14.751
3100•	75.070	13.585	88.655	42112.8	14.761
3200•	75.502	13.622	89.124	43589.3	14.769
3300.	75.922	13.657	89.578	45066.6	14.777
3400 •	76.330	13.690	90.019	46544.7	14.784
3500•	76.727	13.721	90•448	48023.5	14.791
3600	77.114	13.751	90.865	49502.9	14.797
3700	77.491	13.779	91.270	50982.9	14.803
3800 • 3900 •	77•859 78•218	13.806 13.832	91•665 92•05 0	52463.4 53944.4	14.808 14.813
4000	78.568	13.856	92.425	55425.9	14.817
4100.	78.911	13.880	92.791	56907.8	14.821
4200•	79.246	13.902	93.148	58390.1	14.825
4300.	79.573	13.924	93 • 497	59872.8	14.829
4400•	79.893	13.945	93 • 8 38	61355.8	14.832
4500 •	80.207	13.964	94.171	62839.2	14.835
4600 • 470 0 •	80 • 514	13.983	94.497	64322.8	14.838
4800.	80.815 81.110	14.001 14.019	94•816 95•129	65806.8 67291.0	14.841 14.843
4900	81.399	14.036	95 • 435	68775.4	14.846
5000.	81.683	14.052	95.735	70260.1	14.848
5100.	81.961	14.068	96.029	71745.1	14.850
5200.	82.235	14.083	96.317	73230.2	14.852
5300.	82.503	14.097	96.600	74715.5	14.854
5400•	82.767	14.111	96.878	76201.0	14.856
5500•	83.026	14.125	97.151	77686.7	14.858
5600	83.280	14.138	97.418	79172.6	14.859
5 7 00• 580 0 •	83•531 83•777	14•151 14•163	97•681 97•940	8 0 658•6 82144•8	14•861 14•862
5900.	84.019	14.175	98 • 1.94	83631.1	14.864
6000•	84.257	14.186	98 • 444	85117.5	14.865
273.15	47.530	8.561	56•091	2338•5	10.942
298.15		8 • 772	57.061	2615•4	11.206
		U . I . W	00 - 1		

Tat	ole 37. (BO	Cl)3(gas)			
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°
	T	T			
o K	cal/omole	cal/omole	cal/°mole	cal/mole	cal/omole
50.	47.148	7.982	55.131	399.1	8.197
75 •	50 • 422	8.237	58.660	617.8	9.506
100.	52.866	8 • 842	61.708	884.2	11.965
125. 150.	54.934 56.815	9.771 10.921	64.705 67.736	1221.4 1638.2	15.067 18.259
175.	58 • 592	12.186	70.778	2132.5	21.237
200•	60.304	13.487	73.792	2697.5	23.906
225.	61.968	14.779	76.747	3325.3	26.270
250.	63.590	16.035	79.625	4008.7	28.366
275.	65.176	17.242	82.418	4741.6	30.231
300•	66.726	18.395	85.121	5518.6	31.898
325 · 350 ·	68•242 69•725	19.493 20.534	87.734 90.259	6335 . 1 7187 . 0	33 • 393 34 • 735
375.	71.176	21.522	92.697	8070.7	35.942
400.	72.595	22.458	95.052	8983.1	37.029
425.	73.983	23.344	97.327	9921.3	38.009
450.	75.341	24.184	99.525	10882.8	38 • 893
475.	76 • 670		101.650	11865.3	39.692
500•	77.971		103.704	12866.7	40.414
550. 600.	80•490 82•905		107•617 111•287	14919.7 17029.3	41.662
650	85 • 223			19185.9	43.548
700.	87.448			21381.7	44.264
750.	89.588		121.069	23610.4	44.867
800.	91.647			25867.0	45 • 380
850.	93.631			28147.2	45.818
900. 950.	95 • 545 97 • 392			3044 7.7 32 765. 7	46 • 194 46 • 520
1000.	99.177			35098.9	46.803
1050.	100.903			37445.4	47.051
1100.	102.574			39803.5	47.269
1150.	104.193			42171.9	47.461
1200.	105.764			44549.3	47.632
1250.	107.288 108.768			46934•7 49327•4	47.784 47.920
1300. 1350.	110.208			51726 . 5	48.042
1400.	111.607			54131.4	48.152
1450.	112.970		-	56541.5	48.252
1500.	114.297			58956.4	48 • 342
1550.	115.591			61375.6	48 • 424
1600.	116.852			63798.6	48 • 499
1650.	118.083			66225•3	48 • 567
1700. 1750.	119.285 120.459			68655•3 71088•2	48.630 48.687
1800.	121.607			73523.9	48.740
1850.	122.729			75962.2	48.789
1900.	123.827	41.265	165.091	78402.8	48.834
1950.	124.901			80845.6	48.876
2000	125.953			83290.4	48.915
2050.	126.984	41.823	168 • 807	85737.0	48 • 951

Table 37. (BOCl)3(gas) [Continued]

T	- (F°-H°)	(H°-H°)	S°	(H°-H°)	Cp
•				Ŭ	r
	T	T			
• K	cal/°mole	cal/°mole	cal/ºmo.	le cal/mole	cal/omole
2100•	127.994	41.993	169.987	88185.5	48 • 985
2150.	128.984	42.156	171.140	90635.5	49.017
2200.	129.955	42.312	172.267	93087.1	49.046
2250.	130.907	42.462	173.370	95540.1	49.073
2300.	131.842	42.606	174.448	97994.4	49.099
2350.	132.760	42.745	175.505	100450.0	49 • 123
2400.	133.661	42.878	176.539	102906.7	49.146
2450.	134.547	43.006	177.553	105364.5	49.167
2500.	135.417	43.129	178.546	107823.4	49.187
2600.	137.113	43 • 363	180.476	112744.0	49 • 224
2700	138.754	43.581	182.334	117668.1	49 • 257
2800	140.342	43.784 43.974	184.126	122595.3 1275253	49.286 49.313
2900 • 3000 •	141.882 143.376	44.153	185 • 856 187 • 528	132457.8	49.337
3100.	144.826	44.320	189.147	137392.6	49 • 35 9
3200	146.236	44.478	190.714	142329.4	49.378
3300.	147.607	44.627	192.234	147268.2	49 • 396
3400.	148.941	44.767	193.709	152208.6	49.413
3500.	150.241	44.900	195.141	157150.6	49.428
3600.	151.508	45.026	196.534	162094.1	49.441
3700.	152.743	45.146	197.889	167038.9	49.454
3800.	153.948	45.259	199.208	171984.9	49.466
3900.	155.125	45.367	200.493	176932.0	49 • 477
4000.	156.275	45.470	201.745	181880.2	49 . 487
4100.	157.399	45.568	202.967	186829.4	49.496
4200•	158 • 499	45.662	204.160	191779.4	49.505
4300•	159.574	45.751	205.325	196730.3	49.513
4400	160.627	45.837	206.464	201682.0	49.520
4500.	161.658	45.919	207.577	206634.4	49.527
4600.	162.668	45.997	208.665	211587.5	49.534
4700	163.658	46.073	209.731	216541.2	49.540
4800.	164.629	46.145	210.774	221495.5	49,546
4900	165.581	46.214	211.795	226450.4	49.552
5000.	166 • 515	46.281	212.796	231405.8	49.557
5100. 5200.	167.432 168.333	46.345	213.778	236361.7	49.561
53004	169.217	46.407 46.467	214.740 215.684	241318.1 246274.9	49.566 49.570
54004	170.087	46.524	216.611	251232.2	49.574
5500	170.941	46.580	217.521	256189.8	49.578
5600.	171.781	46.634	218.414	261147.8	49.582
5700.	172.606	46.685	219.292	266106.1	49.585
5800.	173.419	46.735	220.154	271064.9	49.589
5900.	174.218	46.784	221.002	276023.9	49.592
6000.	175.005	46.831	221.835	280983.2	49.595
273.15	65.059	17.155	82.214	4685.8	30.100
298.15	66.612	18.312	84.924	5459.7	31.781

Table 38. BFC1(gas) (Ho-Ho) - (Fo-Ho) (Ho-Ho) T Ť Т cal/omole cal/omole cal/mole cal/omole cal/omole ٥K 39.812 7.947 47.759 397.3 7.960 50. 75. 43.037 7.966 51.003 597.4 8.074 100. 45.335 8.021 53.356 802.1 8.312 125. 47.134 8.107 55.240 1013.3 8.586 150. 48 • 621 8.208 56.829 1231.2 8 . 8 4 3 49.894 8.316 1455.2 9.073 175 . 58.210 51.011 8.424 200. 59.435 1684.7 9.285 52.010 8.531 1919.4 225 • 60.540 9.487 52.914 61.550 250 • 8.636 2159.0 9.684 53.742 8.740 62.482 2403.6 275 . 9.878 300. 54.507 8.843 63.350 2653.0 10.071 325 . 55.219 8.945 64.164 2907.1 10.261 9.046 350. 55 . 885 64.931 3166.0 10.447 375 . 56.513 9.145 65 • 658 3429.4 10.628 400. 57.106 9.243 66.350 3697.3 10.803 9.340 425. 57.670 67.010 3969.5 10.970 58 - 206 9.435 67.641 4245.8 11.130 450. 58.719 68 • 247 475 . 9.528 4525.9 11.282 500. 59.210 9.620 68.829 4809.8 11.426 60.135 9.796 550. 69.931 5387.8 11.689 60.995 9.964 11.921 600. 70.958 5978.2 61.798 10.122 6579.5 650. 71.921 12.125 62.554 10.272 7190.3 12.303 700. 72.826 63.268 10.413 73.680 7809.4 12.459 750. 63.944 10.545 8435.8 12.596 800. 74.489 64.587 850. 10.669 75 . 256 9068.7 12.715 9707.1 900. 65.200 10.786 75.986 12.821 65.786 10.895 12.914 950. 76.682 10350.6 66.348 10.998 77.346 12.996 1000. 10998.4 66.887 11.095 77.982 1050 . 11650.0 13.069 13.135 67.405 11.187 78.592 1100. 12305.2 67.904 11.272 1150. 79.177 12963.4 13.193 1200. 68.386 11.354 79.739 13624.3 13.245 68.851 11.430 80.281 1250. 14287.8 13.292 69.300 11.503 80.803 14953.4 13.334 1300. 69.736 1350. 11.571 81.307 15621.1 13.372 70.158 1400. 11.636 81.794 16290.6 13.407 11.698 1450. 70.567 82.265 16961.7 13.438 70.965 11.756 1500. 82.721 17634.4 13.467 1550. 71.351 11.812 83.163 18308.4 13.493 11.865 71.727 1600. 83.592 18983.7 13.517 72.093 11.915 1650. 84.008 19660.1 13.539 1700. 72.449 11.963 84.413 20337.6 13.560 72.797 1750. 12.009 84.806 21016.0 13.578 73.136 12.053 85.189 1800. 21695.4 13.596 73.467 12.095 1850. 85.562 22375.6 13.612 73.790 1900. 12.135 85.925 23056.5 13.626 74.105 12.173 1950. 86.279 23738.2 13.640 2000. 74.414 12.210 86.624 24420.5 13.653 2050 • 74.716 12.246 86.962 25103.5 13.665

BFCl(gas) [Continued] Table 38. (Ho-Ho) (Ho-Hc) Cp Sº -(F°-H₀) T Т T cal/omole cal/omole cal/male cal/omole cal/omole ۰K 2100. 75.012 12.280 87.291 25787.0 13.676 75.301 12.312 26471.1 13.686 87.613 2150. 2200. 75.584 12.343 87.928 27155.6 13,696 27840.7 13.705 2250 • 75.862 12.374 88.236 28526.2 88.537 13.714 2300 • 76.134 12.403 76.401 12.431 88.832 29212.1 13.722 2350. 76.663 12.458 89.121 29898.3 13.729 2400. 76.920 12.484 30585.0 13.737 2450. 89.404 2500. 77.173 12.509 89.682 31272.0 13.743 77.664 12.557 13.756 2600. 90.221 32646.9 78.139 12.601 90.740 34023-1 13.767 2700. 78.598 12.643 35400.2 13.777 2800. 91.241 79.043 13.785 2900 • 12.682 91.725 36778.3 38157.3 79.473 12.719 92.192 13.793 3000. 79.891 12.754 39537.0 13.801 92.645 3100. 80.296 12.787 13.807 3200. 93.083 40917.4 80.690 12.818 93.508 42298.5 13.814 3300. 81.073 12.847 93.920 43680.1 13.819 3400. 81.446 12.875 94.321 45062.3 13.824 3500 • 81.809 12.901 94.710 46444.9 13.829 3600. 82.163 12.927 95.089 47828.1 13.833 3700. 82.508 12.950 95.458 49211.6 13.837 3800. 3900. 82.845 12.973 95.818 50595.5 13.841 4000. 83.173 12.995 96.168 51979.7 13.844 4100. 83 • 495 13.016 96.510 53364.3 13.847 4200. 83.808 13.036 96.844 54749.2 13.850 84.115 13.055 56134.4 13.853 43004 97.170 84.416 13.073 97.488 57519.8 13.856 4400. 84.710 58905.5 13.090 97.800 13.858 4500 · 84.998 13.107 60291.5 13.860 4600. 98.104 85.280 13.123 98.403 61677.6 13.862 4700. 85.556 13.138 98.694 4800. 63064.0 13.864 4900. 85.827 13.153 98.980 64450.5 13.866 86.093 13.167 65837.2 5000. 99.260 13.868 86.354 13.181 67224.1 5100. 99.535 13.870 86.610 13.194 13.871 5200. 99.804 68611.1 86 • 861 13.207 69998.4 100.069 13.873 5300 87.108 13.220 100.328 71385.7 13.874 5400. 87.351 13.231 100.583 72773.2 13.875 5500. 5600. 87.590 13.243 100.833 74160.8 13.877 13.254 87.824 101.078 75548.5 5700. 13.878 88.055 13.265 76936.4 5800. 101.320 13.879 5900. 88.282 13.275 101.557 78324.3 13.880 88.505 6000. 13.285 79712.4 101.790 13.881 273.15 53.683 8.733 62.416 2385 63 9.864

63.288

2634,3

10.057

8.836

298.15

54.452

T	Tabl	e 39. BF ₂ C	l(gas)			
***	T	-(F°-H ₀)	(H°-H ₀)	S°	(H°-H8)	C °
50. 41.176 7.948 49.124 397.4 7.956 75. 44.401 7.965 52.366 597.4 8.075 100. 46.700 8.032 54.732 803.2 8.428 125. 48.505 8.163 56.668 10.20.4 8.971 150. 50.009 8.350 58.359 1252.5 9.607 175. 51.313 8.577 59.890 1500.9 10.265 200. 52.475 8.828 61.302 1765.5 10.903 250. 54.501 9.361 63.863 2340.3 12.060 275. 55.406 9.630 65.037 2648.3 12.575 300. 56.256 9.896 66.151 2948.3 13.052 350. 57.820 10.409 68.229 3643.2 13.904 350. 57.820 10.409 68.229 3643.2 13.904 450. 50.242 10.893 70.135 4357.2		T	T			
75.	• K	•	cal/omole	cal/°mole	cal/mole	
100.						
150						
175. 51.313 8.577 59.890 1500.9 10.265 200. 52.475 8.828 61.302 1765.5 10.903 225. 53.529 9.092 62.621 2045.7 11.503 250. 54.501 9.361 63.863 2340.3 12.060 275. 55.406 9.630 65.037 2648.3 12.575 300. 56.256 9.896 66.151 2968.8 13.052 325. 57.058 10.156 67.214 3300.7 13.494 350. 57.820 10.409 68.229 3643.2 13.904 375. 58.546 10.655 69.201 3995.6 14.284 400. 59.242 10.893 70.135 4357.2 14.638 425. 59.909 11.123 71.032 4727.3 14.965 450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 550. 62.908 12.155 75.064 6685.4 16.281 600. 63.982 12.516 76.498 7509.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10.84.7 17.584 800. 67.755 13.712 81.467 10.99.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.670 1150. 72.993 15.125 88.117 17.393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 5.422 89.688 19.277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21.776.0 19.043 1350. 77.662 16.132 93.794 25004.6 19.216 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26.931.4 19.303 1700. 79.65 16.410 95.575 27897.3 19.334 1750. 79.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26.931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 80.167 16.574 96.682 29833.6 19.390 1800. 80.107 16.574 96.682 29833.6 19.390 1800. 80.107 16.574 96.682 29833.6 19.390 1800. 80.107 16.574 96.682 29833.6 19.390 181.869 16.860 98.729 33720.8 19.478						
200. 52.475 8.828 61.302 1765.5 10.903 225. 53.529 9.092 62.621 2045.7 11.503 250. 54.501 9.361 63.863 2340.3 12.060 275. 55.406 9.630 65.037 2648.3 12.575 300. 56.256 9.896 66.151 2968.8 13.052 325. 57.058 10.156 67.214 3300.7 13.494 350. 57.820 10.409 68.229 3643.2 13.904 375. 58.546 10.655 69.201 3995.6 14.284 400. 59.242 10.893 70.135 4357.2 14.638 425. 59.909 11.123 71.032 4727.3 14.965 450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 550. 62.908 12.155 75.064 6685.4 16.281 600. 63.982 12.516 76.498 7509.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.567 1100. 72.324 14.962 87.285 16457.7 18.670 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18.333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.987 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.693 15.921 92.514 2085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1600. 80.107 16.574 96.682 28864.8 19.363 1800. 80.563 16.651 97.213 30803.7 19.414 1900. 81.808 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478						
225. 53.529 9.092 62.621 20.45.7 11.503 250. 54.501 9.361 63.863 2340.3 12.060 275. 55.406 9.630 65.037 2648.3 12.575 300. 56.256 9.896 66.151 2968.8 13.052 325. 57.058 10.156 67.214 3300.7 13.494 350. 57.820 10.409 68.229 3643.2 13.990 375. 58.546 10.655 69.201 3995.6 14.284 400. 59.242 10.893 70.135 4357.2 14.638 425. 59.909 11.123 71.032 4727.3 14.965 450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 550. 62.908 12.155 75.064 6685.4 16.281 600. 63.982 12.516 76.498 7509.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 7700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.555 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.670 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1600. 80.107 16.574 99.823 23720.8 19.478 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1900. 81.869 16.860 98.729 33720.8 19.478						
250. 54.501 9.361 63.863 2340.3 12.060 275. 55.406 9.630 65.037 2648.3 12.575 300. 56.256 9.896 66.151 2968.8 13.052 325. 57.058 10.156 67.214 3300.7 13.494 350. 57.820 10.409 68.229 3643.2 13.904 400. 59.242 10.893 70.135 4357.2 14.638 425. 59.909 11.123 71.032 4727.3 14.965 450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 600. 63.982 12.516 76.498 75.09.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.460 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1100. 72.324 14.962 87.285 16457.7 18.670 1150. 72.939 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18.333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 77.862 16.129 93.149 11.919 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.208 1600. 79.653 16.651 97.213 30803.7 19.414 1900. 81.808 16.724 97.731 31775.0 19.437 1950. 80.563 16.651 97.213 30803.7 19.414						
275. 55.406 9.630 65.037 2648.3 12.575 300. 56.256 9.896 66.151 2968.8 13.052 325. 57.058 10.156 67.214 3300.7 13.494 350. 57.820 10.409 68.229 3643.2 13.904 375. 58.546 10.655 69.201 3995.6 14.284 400. 59.242 10.893 70.135 4357.2 14.638 425. 59.909 11.123 71.032 4727.3 14.965 450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 550. 62.908 12.155 75.064 6685.4 16.281 600. 63.982 12.516 76.498 7509.7 16.6683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.567 1100. 72.324 14.962 87.285 16457.7 18.670 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 77.662 16.132 93.794 25004.6 19.231 1600. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1900. 81.443 16.794 98.236 32747.4 19.458						
300. 56.256 9.896 66.151 2968.8 13.052 325. 57.058 10.166 67.214 3300.7 13.494 350. 57.820 10.409 68.229 3643.2 13.904 375. 58.546 10.655 69.201 3995.6 14.284 400. 59.242 10.893 70.135 4357.2 14.638 425. 59.909 11.123 71.032 4727.3 14.965 450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 600. 63.982 12.516 76.498 75.09.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.567 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.6593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 2864.8 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 2864.8 19.333 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28664.8 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28664.8 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28664.8 19.303 1700. 81.443 16.029 93.164 24044.1 19.191 1550. 79.642 16.494 96.136 28664.8 19.303 1700. 81.443 16.794 96.82 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.869 16.860 98.729 33720.8 19.478						
350. 57.820 10.409 68.229 3643.2 13.904 375. 58.546 10.655 69.201 3995.6 14.284 400. 59.242 10.883 70.135 4357.2 14.638 425. 59.909 11.123 71.032 4727.3 14.965 450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 550. 62.908 12.155 75.064 6685.4 16.281 600. 63.982 12.516 76.498 7509.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.567 1100. 72.324 14.962 87.285 16457.7 18.670 1150. 72.993 15.125 88.117 17.933.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.991 1300. 74.874 15.558 90.432 20.225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 221.29.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.314 1750. 79.662 16.132 93.794 25004.6 19.314 1750. 79.662 16.132 93.794 25004.6 19.314 1750. 79.662 16.132 93.794 25004.6 19.331 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.303 1750. 79.642 16.494 96.136 28864.8 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478					2968.8	
375. 58.546 10.655 69.201 3995.6 14.284 400. 59.242 10.893 70.135 4357.2 14.638 425. 59.909 11.123 71.032 4727.3 14.965 450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 588.2.7 15.814 600. 63.982 12.516 76.498 75.09.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516<		57.058	10.156	67.214		
400. 59.242 10.893 70.135 4357.2 14.638 425. 59.909 11.123 71.032 4727.3 14.965 450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 550. 62.908 12.155 75.064 6685.4 16.281 600. 63.982 12.516 76.498 750.97 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573						
425. 59.909 11.123 71.032 4727.3 14.965 450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 550. 62.908 12.155 75.064 6685.4 16.281 600. 63.982 12.516 76.498 75.99.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.915 14.601 85.516 14601.2 18.452 1000. 70.915 14.601 85.516<				_		
450. 60.551 11.345 71.896 5105.3 15.270 475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 550. 62.908 12.155 75.064 6685.4 16.281 600. 63.982 12.516 76.498 7509.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14.601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.6670 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20.25.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.390 170.62 16.132 93.794 25004.6 19.231 1600. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25.967.1 19.268 1650. 78.676 16.322 94.998 26.931.4 19.303 1700. 79.165 16.410 95.575 278.973 19.334 1750. 79.642 16.494 96.136 28.864.8 19.363 1800. 80.107 16.574 96.682 29.833.6 19.390 1850. 81.869 16.860 98.729 33720.8 19.478						
475. 61.170 11.559 72.729 5490.6 15.552 500. 61.769 11.765 73.534 5882.7 15.814 550. 62.908 12.515 75.064 6685.4 16.281 600. 63.982 12.516 76.498 7509.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.567 1100. 72.324 14.962 87.2						
500. 61.769 11.765 73.534 5882.7 15.814 550. 62.908 12.155 75.064 6685.4 16.281 600. 63.982 12.516 76.498 75.09.7 16.683 650. 64.997 12.850 77.847 8352.8 17.029 700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.567 1100. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 8						
600						
650	550 ·	62.908	12.155	75.064	6685.4	16.281
700. 65.961 13.160 79.120 9211.8 17.327 750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.567 1100. 72.324 14.962 87.285 16457.7 18.670 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686						
750. 66.879 13.446 80.325 10084.7 17.584 800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.567 1100. 72.324 14.962 87.285 16457.7 18.670 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.593 15.921						
800. 67.755 13.712 81.467 10969.7 17.807 850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.567 1050. 71.632 14.787 86.419 15526.7 18.567 1100. 72.324 14.962 87.285 16457.7 18.670 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029						
850. 68.594 13.959 82.553 11865.0 18.002 900. 69.398 14.188 83.586 12769.4 18.171 950. 70.171 14.402 84.573 13681.8 18.320 1000. 70.915 14.601 85.516 14601.2 18.452 1050. 71.632 14.787 86.419 15526.7 18.567 1100. 72.324 14.962 87.285 16457.7 18.670 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029						
900. 69.398						
950						
1050. 71.632 14.787 86.419 15526.7 18.567 1100. 72.324 14.962 87.285 16457.7 18.670 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.642 16.410 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1100. 72.324 14.962 87.285 16457.7 18.670 1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 <td>1000.</td> <td></td> <td></td> <td></td> <td></td> <td>18.452</td>	1000.					18.452
1150. 72.993 15.125 88.117 17393.5 18.762 1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.390 1850. 80.563 16.651 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1200. 73.640 15.278 88.918 18333.7 18.844 1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1250. 74.266 15.422 89.688 19277.8 18.917 1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1300. 74.874 15.558 90.432 20225.3 18.983 1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1350. 75.463 15.686 91.149 21176.0 19.043 1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1400. 76.036 15.807 91.843 22129.5 19.097 1450. 76.593 15.921 92.514 23085.6 19.146 1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478						
1500. 77.134 16.029 93.164 24044.1 19.191 1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478	1400.	76.036	15.807	91.843		
1550. 77.662 16.132 93.794 25004.6 19.231 1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478						
1600. 78.175 16.229 94.405 25967.1 19.268 1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478						
1650. 78.676 16.322 94.998 26931.4 19.303 1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478						
1700. 79.165 16.410 95.575 27897.3 19.334 1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478						
1750. 79.642 16.494 96.136 28864.8 19.363 1800. 80.107 16.574 96.682 29833.6 19.390 1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478						
1800 • 80 • 107 16 • 574 96 • 682 29833 • 6 19 • 390 1850 • 80 • 563 16 • 651 97 • 213 30803 • 7 19 • 414 1900 • 81 • 008 16 • 724 97 • 731 31775 • 0 19 • 437 1950 • 81 • 443 16 • 794 98 • 236 32747 • 4 19 • 458 2000 • 81 • 869 16 • 860 98 • 729 33720 • 8 19 • 478						
1850. 80.563 16.651 97.213 30803.7 19.414 1900. 81.008 16.724 97.731 31775.0 19.437 1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478						
1950. 81.443 16.794 98.236 32747.4 19.458 2000. 81.869 16.860 98.729 33720.8 19.478						
2000 81 869 16 860 98 729 33720 8 19 478		•				
2050 82.286 16.924 99.210 34695.1 19.496						
	2050	82.286	16.924	99.210	34695.1	19.496

Table 39. BF2Cl(gas) [Continued]					
T	- (F°-H°)	(H°-H°)	S°	(H°-H°)	C°
	T	T			
• K	cal/°mole	cal/ºmole	cal/°mole	cal/mole	cal/omole
2100.	82.695	16.986	99.681	35670.4	19.513
2150.	83.095	17.045	100.140	36646.4	19.529
2200 • 2250 •	83.488 83.872	17.101 17.156	100.589	37623.3 38600.9	19.544 19.558
2300.	84.250	17.208	101.458	39579.1	19.571
2350.	84.621	17.259	101.879	40558.0	19.584
2400.	84.985	17.307	102.292	41537.5	19.595
2450.	85.342	17.354	102.696	42517.5	19.606
2500.	85 • 693	17.399	103.092	43498.1	19.617
2600 •	86 • 377	17.485	103.862	45460.7 47425.1	19.635 19.652
2700 · 2800 ·	87.038 87.679	17.565 17.640	104.603 105.318	49391.1	19.668
2900	88.299	17.710	106.009	51358.6	19.681
3000.	88.900	17.776	106.676	53327.3	19.694
3100.	89 • 484	17.838	107.322	55297.3	19.705
3200.	90.052	17.896	107.948	57268.2	19.715
3300 · 3400 •	90.603 91.140	17.952 18.004	108.555 109.144	59240.2 61213.1	19.724 19.733
3500	91.662	18.053	109.144	63186.7	19.740
3600.	92.172	18.100	110.272	65161.1	19.748
3700.	92.668	18.145	1.10.813	67136.2	19.754
3800.	93.153	18.187	111.340	69111.9	19.760
3900.	93.626	18.228	111.853	71088.3	19.766
4000 • 4100 •	94•088 94•539	18.266 18.303	112.354	73065.1 75042.5	19.771 19.776
4200	94.981	18.338	113.319	77020.3	19.780
4300	95.412	18.372	113.784	78998.6	19.785
4400.	95 • 835	18.404	114.239	80977.2	19.789
4500.	96.249	18.435	114.684	82956.3	19.792
4600.	96 • 655	18.464	115.119	84935.7	19.796
4700. 4800.	97.052 97.442	18.493 18.520	115.545 115.962	86915.4 88895.4	19.799
4900	97.824	18.546	116.370	90875.8	19.802 19.805
5000	98.199	18.571	116.770	92856.4	19.807
5100.	98.567	18.596	117.162	94837.3	19.810
5200.	98.928	18.619	117.547	96818.4	19.812
5300.	99.283	18.641	117.924	98799.7	19.815
5400.	99.632	18.663	118.295	100781.3	19.817
5500 • 5600 •	99•974 100•311	18.684 18.704	118.658	102763.1	19.819 19.821
5700	100.642	18.724	119.366	106727.2	19.822
5800.	100.968	18.743	119.711	108709.5	19.824
5900.	101.289	18.761	120.050	110692.0	19.826
6000.	101.604	18.779	120.383	112674.6	19.827
273.15	55.341	9.611	64.952	2625.1	12.538
298.15		9.876	66.071	2944.6	13.018

Table 40. BFCl2(gas)					
T	-(F°-H ₀)	(H°-H°)	S°	(H°-H°)	С°
• K	cal/omole	_	cal/°mole	cal/mole	cal/°mole
50 • 75 •	42.507 45.744	7.956 8.031	50 • 46 3 53 • 77 5	397.8 602.3	8.015 8.407
100.	48.076	8 • 205	56.281	820.5	9.078
125.	49.933	8.457	58.389	1057.1	9.855
150.	51.500	8.755	60.255	1313.3	10.634
175.	52.874	9.077	61.950	1588.4	11.367
200.	54.107	9.405	63.513	1881.1	12.037
225 •	55.234	9.732	64.966	2189.7	12.644
250•	56.276	10.051	66.327	2512.8	13.194
275 •	57.249	10.360	67.609	2849.0	13.694
300 • 325 •	58 • 163 59 • 027	10.657 10.942	68.820 69.969	3197.1 3556.1	14.149 14.566
350.	59.848	11.215	71.063	3925.1	14.947
375.	60.631	11.475	72.106	4303.2	15 • 296
400.	61.379	11.724	73.104	4689.7	15.616
425.	62.097	11.962	74.059	5083.8	15.909
450.	62.788	12.189	74.976	5484.9	16.178
475 •	63.452	12.405	75.858	5892.5	16.425
500.	64.094	12.612	76.706	6306.0	16.651
550.	65 • 314	12.998	78 • 312	7148 • 8	17.049
600•	66 • 461 67 • 542	13.350 13.671	79•810 81•214	8009 _• 9 8886 _• 5	17.385 17.670
650 • 700 •	68.566	13.966	82.532	9776.2	17.912
750.	69.539	14.236	83.775	10677.1	18.119
800.	70.466	14.484	84.950	11587.6	18.297
850.	71.351	14.713	86.064	12506.4	18.450
900.	72.198	14.925	87.123	13432.3	18.584
950.	73.010	15.120	88.131	14364.4	18.700
1000.	73.791	15.302	89.093	15302.0	18.801
1050•	74.541	15.471	90.012	16244.4	18.891
1100. 1150.	75 • 265 75 • 963	15.628 15.775	90.893 91.738	17190.9 18141.2	18.970 19.040
1200•	76.637	15.912	92.549	19094.8	19.103
1250.	77.289	16.041	93.330	20051.4	19.159
1300.	77.921	16.162	94.083	21010.6	19.209
1350.	78.533	16.276	94.809	21972.2	19.254
1400.	79.127	16.383	95.509	22935.9	19.295
1450.	79.703	16.484	96.187	23901.6	19.332
1500.	80.264	16.579	96.843	24869.0	19.365
1550	80 • 809	16.670	97.479	25838.1	19.396
1600 • 1650 •	81•340 81•856	16.755 16.837	98.095 98.693	26808.6 27780.4	19•424 19•449
1700.	82.360	16.914	99 • 274	28753.5	19.473
1750.	82.852	16.987	99.839	29727.7	19.495
1800.	83.331	17.057	100.388	30702.9	19.515
1850.	83.799	17.124	100.923	31679.1	19.533
1900.	84.257	17.187	101.444	32656.2	19.550
1950.	84.704	17.248	101.952	33634.1	19.566
2000.	85 • 142	17.306	102.448	34612.8	19.581
2050.	85.570	17.362	102.932	35592.1	19.594

Table	40. BFCl ₂ (gas) [Conti	inued]		
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°
	T	T			
۰K	cal/°mole	cal/°mole	cal/°mole	cal/mole	cal/omole
2100 •	85•989	17•415	103.404	36572.2	19.607
2150 •	86•399	17•466	103.865	37552.8	19.619
2200 •	86.801	17.515	104.317	38534.0	19.630
2250 •	87.195	17.563	104.758	39515.8	19.640
2300 •	87.582	17.608	105.190	40498.1	19.650
2350 •	87.961	17.651	105.612	41480.8	19.659
2400.	88.333	17.693	106.026	42464.0	19.668
2450 •	88•698	17.734	106.432	43447.6	19.676
2500 •	89•057	17.773	106.829	44431.6	19.684
2600 •	89• 75 5	17.846	107.602	46400.6	19.698
2700 •	90•430	17.915	108.345	48371.0	19.710
2800•	91.083	17.980	109.062	50342.6	19.721
2900 . 3000 .	91•715	18.040	109.755	52315 ₃	19.731
	92•327	18.096	110.424	54288 ₉	19.741
3100 · 3200 ·	92•922	18.149	111.071	56263.4	19.749
	93•499	18.200	111.698	58238.6	19.756
3300.	94.059	18.247 18.292	112.306	60214.6	19.763
3400 · 3500 ·	94.605 95.136	18.334	112.896 113.470	62191.3 641 6 8.5	19.770 19.775
3600 •	95.653	18.374	114.027	6614 6. 3	19•781
3700 •	96.157	18.412	114.569	68124 . 6	19•785
3800 · 3900 ·	96.648	18.448 18.483	115.096 115.611	70103.4 72082.6	19.790 19.794
4000•	97•128 97•596	18.516	116.112	74062.2	19.798
4100 •	98•054	18.547	116.601	76042 . 1	19.801
4200 •	98•501	18.577	117.078	78022 . 4	19.805
4300 •	98•939	18.605	117.544	80003.1	19.808
4400 •	99•367	18.633	117.999	81984.0	19.811
4500.	99.786	18.659	118.445	83965.2	19.813
4600 •	100.196	18.684	118.880	85946.7	19.816
4700 •	100.598	18.708	119.306	87928.4	19.818
4800 •	100.992	18.731	119.724	89910.4	19.821
4900 •	101.379	18.754	120.132	91892.5	19.823
5000.	101.758	18.775	120.533	93874.9	19.825
5100 · 5200 ·	102.130	18.796	120.925	95857.5	19.827
	102.495	18.815	121.310	97840.2	19.828
5300 · 5400 ·	102.853	18.835	121.688	99823.1	19.830
	103.206	18.853	122.059	101806.2	19.831
5500•	103.552	18.871	122.423	103789.4	19.833
5600 •	103•892	18.888	122.780	105772.8	19.834
5700 •	104•226	18.905	123.131	107756.3	19.836
5800 • 5900 •	104.555	18.921	123.476	109739.9	19.837
	104.879	18.936	123.815	111723.6	19.838
6000•	105.197	18.951	124.149	113707.5	19.839
273 • 1		10.338	67.516	2823.7	13.658
298.1	5 58.097	10.635	68.732	3171.0	14.117

T T T T T T T T T T T *K	T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°
50. 34.048 6.947 40.994 347.3 6.957 75. 36.865 6.950 43.815 521.3 6.958 100. 38.865 6.953 45.818 695.3 6.958 125. 40.417 6.959 47.376 869.9 7.006 150. 41.687 6.973 48.660 1045.9 7.083 175. 42.763 6.996 49.759 1224.3 7.192 200. 43.699 7.029 50.728 1405.7 7.322 225. 44.529 7.069 51.598 1590.5 7.460 250. 45.277 7.115 52.391 1778.7 7.597 275. 45.957 7.165 53.122 1970.3 7.726 300. 46.583 7.216 7.322 256.25 8.01 7.872 355. 47.162 7.269 54.431 2362.4 7.954 356.11 2969.4 8.216 425.4 4.936 7.					0	P
50. 34.048 6.947 40.994 347.3 6.957 75. 36.865 6.950 43.815 521.3 6.958 100. 38.865 6.953 45.818 695.3 6.958 125. 40.417 6.959 47.376 869.9 7.006 150. 41.687 6.973 48.660 1045.9 7.083 175. 42.763 6.996 49.759 1224.3 7.192 200. 43.699 7.029 50.728 1405.7 7.322 225. 44.529 7.069 51.598 1590.5 7.460 250. 45.277 7.115 52.391 1778.7 7.597 275. 45.957 7.165 53.122 1970.3 7.726 300. 46.583 7.216 7.322 256.25 8.01 7.872 355. 47.162 7.269 54.431 2362.4 7.954 356.11 2969.4 8.216 425.4 4.936 7.	۰K	cal/°mole	cal/omole	cal/omole	cal/mole	cal/°mole
75. 36.865 6.950 43.815 521.3 6.958 100. 38.865 6.953 45.818 695.3 6.968 125. 40.417 6.959 47.376 869.9 7.006 150. 41.687 6.973 48.660 1045.9 7.083 175. 42.763 6.996 49.759 1224.3 7.192 200. 43.699 7.029 50.728 1405.7 7.322 225. 44.529 7.069 51.598 1590.5 7.460 250. 45.277 7.115 52.391 1778.7 7.597 275. 45.997 7.165 53.122 1970.3 7.726 3300. 46.583 7.216 53.799 2164.9 7.845 325. 47.162 7.269 54.431 2362.4 7.954 350. 47.703 7.322 55.024 2562.5 8.051 375. 48.210 7.373 55.583 2764.9 8.138 400. 48.687 7.423 56.111 2969.4 8.216 425. 49.139 7.472 56.611 3175.6 8.285 45.0 49.567 7.519 57.086 3383.6 8.347 47.5 49.975 7.564 57.539 3592.9 8.402 500. 50.364 7.607 57.971 3803.6 8.452 550.0 50.364 7.607 57.998 60.218 50.887 8.605 550.0 50.364 7.607 57.998 60.218 50.887 8.605 550.0 50.364 7.607 57.998 60.218 50.887 8.605 550.0 50.364 7.607 57.998 60.218 50.887 8.605 550.0 50.364 7.607 57.998 60.200 60.862 550.3 1.707 50. 53.518 7.946 60.862 550.3 1.707 50. 53.518 7.946 60.862 550.3 1.707 50. 53.518 7.946 60.862 550.3 1.707 50. 53.518 7.946 60.862 550.3 1.707 50. 53.518 7.946 60.862 550.3 1.707 50. 50.856 50.208 8.208 60.875 7.700 50.856 50.208 8.208 60.875 7.700 50.856 50.208 8.208 60.875 7.700 50.856 50.208 8.208 60.875	50•	•				
125. 40.417 6.959 47.376 869.9 7.008 150. 41.687 6.973 48.660 1045.9 7.008 175. 42.763 6.996 49.759 1224.3 7.192 200. 43.699 7.029 50.728 1405.7 7.322 225. 44.529 7.069 51.598 1590.5 7.460 250. 45.277 7.115 52.391 1778.7 7.597 275. 45.957 7.165 53.122 1970.3 7.726 300. 46.583 7.216 53.799 2164.9 7.845 325. 47.162 7.269 54.431 2362.4 7.954 350. 47.703 7.322 55.024 2562.5 8.051 375. 48.210 7.373 55.583 2764.9 8.138 400. 48.687 7.423 56.111 2969.4 8.216 425. 49.139 7.472 56.611 3175.6 8.285 45.04 49.597 7.564 57.539 3592.9 8.402 550. 50.364 7.607 57.971 3803.6 8.452 550. 50.364 7.607 57.971 3803.6 8.452 550. 51.093 7.888 58.781 4228.4 8.536 600. 51.765 7.762 59.527 4657.0 8.605 650. 52.389 7.829 60.218 5088.7 8.663 700. 52.972 7.890 60.218 5088.7 8.663 700. 52.727 7.890 60.286 55221 8.710 750. 53.518 7.946 61.464 5959.7 8.751 800. 54.032 7.998 62.030 6398.1 8.786 1000. 55.836 8.166 64.002 8166.2 8.816 900. 54.980 8.088 63.068 7.792.6 8.8452 900. 54.980 8.088 63.068 7.792.6 8.8452 1050. 56.235 8.201 64.436 8811.1 8.906 1100. 55.836 8.166 64.002 8166.2 8.867 1050. 56.235 8.201 64.436 8611.1 8.906 1100. 56.618 8.233 64.851 9056.8 8.924 1250. 57.337 8.292 65.629 9950.7 8.961 1350. 58.318 8.668 66.866 11.96.9 8.993 1400. 58.623 8.391 67.013 11746.8 9.004 1550. 59.203 8.432 67.635 1248.3 9.005 1550. 59.203 8.432 67.032 12197.3 9.015 1500. 59.203 8.432 67.032 12197.3 9.015 1500. 59.203 8.432 67.032 12197.3 9.015 1500. 59.203 8.432 67.035 12197.3 9.015 1500. 59.203 8.432 67.035 12197.3 9.015 1500. 59.203 8.432 67.035 12197.3 9.015 1500. 59.203 8.432 67.035 12197.3 9.015 1500. 60.610 8.520 69.030 14910.7 9.072 1800. 60.626 8.555 5.5588 9.908 1900. 61.212 8.566 69.777 16273.5 9.098 1900. 61.212 8.566 69.777 16273.5 9.098 1900. 61.652 8.592 70.244 17184.0 9.114		36.865	6.950	43.815	521.3	6.958
150						
175.						
200						
225. 44.529 7.069 51.598 1590.5 7.460 250.45.277 7.115 52.391 1778.7 7.597 275.45.957 7.165 53.122 1970.3 7.726 300.46.583 7.216 53.799 2164.9 7.845 325.47.162 7.269 54.431 2362.4 7.554 350.47.703 7.322 55.024 2562.5 8.051 375.48.210 7.373 55.583 2764.9 8.138 400.48.687 7.423 56.111 2969.4 8.216 425.49.139 7.472 56.611 3175.6 8.285 450.49.567 7.519 57.086 3383.6 8.347 475.49.975 7.564 57.539 3592.9 8.402 500.50.364 7.607 57.971 3803.6 8.452 550.51.093 7.688 58.781 4228.4 8.536 600.51.765 7.762 59.527 4657.0 8.605 650.52.389 7.829 60.218 5088.7 8.605 650.52.389 7.829 60.218 5088.7 8.751 800.52.972 7.890 60.862 5523.1 8.710 750.53.518 7.946 61.464 5959.7 8.751 800.54.032 7.998 62.030 6398.1 8.786 900.54.980 8.088 63.068 7279.6 8.843 950.55.418 8.129 63.547 7722.4 8.866 1000.55.836 8.066 64.002 8166.2 8.887 1050.56.235 8.201 64.436 8611.1 8.906 1100.56.618 8.233 64.851 90.56.8 8.924 1150.56.984 8.264 65.248 9503.4 8.940 1200.57.337 8.292 65.629 9950.7 8.954 1250.57.676 8.319 65.995 10.398.8 8.988 1300.58.002 8.344 66.347 10.847.5 8.981 1300.58.623 8.391 67.013 11746.8 9.004 1450.58.318 8.368 66.686 11296.9 9950.7 8.954 1250.57.676 8.319 65.995 10.398.8 8.968 1300.58.623 8.391 67.013 11746.8 9.004 1450.58.318 8.368 66.686 11296.9 9950.7 8.954 1250.59.480 8.452 67.931 13.099.8 9.036 1600.59.748 8.470 68.218 13551.9 9.045 1700.60.263 8.504 68.767 14457.3 9.064 1750.60.510 8.520 69.030 14910.7 9.075 1800.60.750 8.566 69.777 16273.5 9.098 1900.61.212 8.565 69.777 16273.5 9.098 1900.61.652 8.550 70.024 17184.0 9.114						
275. 45.957 7.165 53.122 1970.3 7.726 300. 46.583 7.216 53.799 2164.9 7.845 325. 47.162 7.269 54.431 2362.4 7.954 350. 47.703 7.322 55.024 2562.5 8.051 375. 48.210 7.373 55.583 2764.9 8.138 400. 48.687 7.423 56.111 2969.4 8.216 425. 49.139 7.472 56.611 3175.6 8.285 450. 49.567 7.519 57.086 3383.6 8.347 475. 49.975 7.564 57.539 3592.9 8.402 500. 50.364 7.664 57.539 3592.9 8.402 550. 51.093 7.688 58.781 4228.4 8.536 600. 51.765 7.762 59.527 4657.0 8.605 650. 52.389 7.829 60.218 50.859 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
300						
325. 47.162 7.269 54.431 2362.4 7.954 350. 47.703 7.322 55.024 2562.5 8.051 375. 48.210 7.373 55.583 27.64.9 8.138 400. 48.687 7.423 56.111 2969.4 8.216 425. 49.139 7.472 56.611 3175.6 8.285 450. 49.567 7.519 57.086 3383.6 8.347 475. 49.975 7.564 57.539 3592.9 8.402 500. 50.364 7.607 57.971 3803.6 8.452 550. 51.093 7.688 58.781 4228.4 8.536 600. 51.765 7.762 59.527 4657.0 8.605 650. 52.389 7.829 60.218 50.88.7 8.605 650. 52.389 7.829 60.218 50.88.7 8.700 750. 53.518 7.946 61.464 5959.7 8.751 800. 54.032 7.998 62.030 6398.1 8.786 850. 54.519 8.045 62.564 6838.2 8.816 900. 54.980 8.088 63.068 7279.6 8.843 950. 55.418 8.129 63.547 7722.4 8.866 1000. 55.836 8.166 64.002 8166.2 8.887 1050. 56.235 8.201 64.436 8611.1 8.906 1100. 56.618 8.233 64.851 90.56.8 8.924 1150. 56.984 8.264 65.248 9503.4 8.940 1200. 57.337 8.292 65.629 99.50.7 8.954 1250. 57.676 8.319 65.995 10.398.8 8.968 1300. 58.002 8.344 66.347 10.847.5 8.981 1350. 58.818 8.368 66.686 11.296.9 8.993 1400. 58.623 8.391 67.013 11.746.8 9.004 1450. 58.917 8.412 67.329 12.197.3 9.015 1500. 59.203 8.432 67.635 12.648.3 9.026 1550. 59.480 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14.910.7 9.055 1750. 60.984 8.452 67.635 12.648.3 9.026 1550. 59.748 8.470 68.218 13.551.9 9.045 1650. 60.908 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14.910.7 9.055 1750. 60.984 8.551 69.535 15.818.8 9.089 1900. 61.212 8.565 69.777 16.273.5 9.088 1850. 60.984 8.551 69.535 15.818.8 9.089						
350. 47.703 7.322 55.024 2562.5 8.051 375. 48.210 7.373 55.583 2764.9 8.138 400. 48.687 7.423 56.111 2969.4 8.216 425. 49.139 7.472 56.611 3175.6 8.285 450. 49.567 7.519 57.086 3383.6 8.347 475. 49.975 7.564 57.539 3592.9 8.402 500. 50.364 7.607 57.971 3803.6 8.452 550. 51.093 7.688 58.781 4228.4 8.536 600. 51.765 7.762 59.527 4657.0 8.605 650. 52.389 7.829 60.218 5088.7 8.603 700. 52.972 7.890 60.862 5523.1 8.710 750. 53.518 7.946 61.464 5959.7 8.751 800. 54.932 7.998 62.564 6838.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
375. 48.210 7.373 55.583 2.764.9 8.138 400. 48.687 7.423 56.111 2969.4 8.216 425. 49.139 7.472 56.611 3175.6 8.285 450. 49.567 7.519 57.086 3383.6 8.347 475. 49.975 7.564 57.539 3592.9 8.402 500. 50.364 7.607 57.971 3803.6 8.452 550. 51.093 7.688 58.781 4228.4 8.536 600. 51.765 7.762 59.527 4657.0 8.605 650. 52.389 7.829 60.218 5088.7 8.603 700. 52.972 7.890 60.862 5523.1 8.710 750. 53.518 7.946 61.464 5959.7 8.751 800. 54.032 7.998 62.030 6398.1 8.786 850. 54.980 8.088 63.068 7279.6 8.843 900. 54.980 8.084 63.068 7279.6				_		
400. 48.687 7.423 56.111 2969.4 8.216 425. 49.139 7.472 56.611 3175.6 8.285 450. 49.567 7.519 57.086 3383.6 8.347 475. 49.975 7.564 57.539 3592.9 8.402 500. 50.364 7.607 57.971 3803.6 8.452 550. 51.093 7.688 58.781 4228.4 8.536 600. 51.765 7.762 59.527 4657.0 8.605 650. 52.389 7.829 60.218 50.88.7 8.603 700. 52.972 7.890 60.862 5523.1 8.710 750. 53.518 7.946 61.464 5959.7 8.751 800. 54.032 7.998 62.030 6398.1 8.786 850. 54.519 8.045 62.564 6838.2 8.816 900. 54.980 8.088 63.068 7279.6 8.843 950. 55.418 8.129 63.547 7722.4		_				
450. 49.567 7.519 57.086 3383.6 8.347 475. 49.975 7.564 57.539 3592.9 8.402 500. 50.364 7.607 57.971 3803.6 8.452 550. 51.093 7.688 58.781 4228.4 8.536 600. 51.765 7.762 59.527 4657.0 8.605 650. 52.389 7.829 60.218 5088.7 8.603 700. 52.972 7.890 60.862 5523.1 8.710 750. 53.518 7.946 61.464 5959.7 8.751 800. 54.032 7.998 62.030 63.981 8.786 850. 54.519 8.045 62.564 6838.2 8.816 900. 54.980 8.088 63.068 7279.6 8.843 950. 55.418 8.129 63.547 7722.4 8.866 1000. 55.836 8.166 64.002 8166.2 8.887 1050. 56.984 8.201 64.436 8611.1	400•		7.423	56.111	2969•4	8 • 216
475. 49.975 7.564 57.539 3592.9 8.402 500. 50.364 7.607 57.971 3803.6 8.452 550. 51.093 7.688 58.781 4228.4 8.536 600. 51.765 7.762 59.527 4657.0 8.605 650. 52.389 7.829 60.218 5088.7 8.603 700. 52.972 7.890 60.862 5523.1 8.710 750. 53.518 7.946 61.464 5959.7 8.751 800. 54.032 7.998 62.030 6398.1 8.786 850. 54.519 8.045 62.564 6838.2 8.816 900. 54.980 8.088 63.068 7279.6 8.843 950. 55.418 8.129 63.547 7722.4 8.866 1000. 55.836 8.166 64.002 8166.2 8.887 1050. 56.934 8.201 64.436 8611.1 8.906 1150. 56.984 8.264 65.248 9503.4						
500* 50.364 7.607 57.971 3803.6 8.452 550* 51.093 7.688 58.781 4228.4 8.536 600* 51.765 7.762 59.527 4657.0 8.605 650* 52.389 7.829 60.218 5088.7 8.603 700* 52.972 7.890 60.218 5088.7 8.710 750* 53.518 7.946 61.464 5959.7 8.751 800* 54.032 7.998 62.030 63.98.1 8.786 850* 54.519 8.045 62.564 68.38.2 8.816 900* 54.980 8.088 63.068 7279.6 8.843 950* 55.418 8.129 63.547 7722.4 8.866 1000* 55.836 8.166 64.002 8166.2 8.887 1050* 56.984 8.233 64.851 9056.8 8.924 1150* 56.984 8.264 65.248 950.4						
550. 51.093 7.688 58.781 4228.4 8.536 600. 51.765 7.762 59.527 4657.0 8.605 650. 52.389 7.829 60.218 5088.7 8.603 700. 52.972 7.890 60.862 5523.1 8.710 750. 53.518 7.946 61.464 5959.7 8.751 800. 54.032 7.998 62.030 6398.1 8.786 850. 54.519 8.045 62.564 6838.2 8.816 900. 54.980 8.088 63.068 7279.6 8.843 950. 55.418 8.129 63.547 7722.4 8.866 1000. 55.836 8.166 64.002 8166.2 8.887 1050. 56.235 8.201 64.436 8611.1 8.906 1100. 56.618 8.233 64.851 9056.8 8.924 1250. 57.676 8.319 65.929 950.7 8.954 1250. 57.676 8.319 67.013 11746.8						
600. 51.765 7.762 59.527 4657.0 8.605 650. 52.389 7.829 60.218 5088.7 8.603 700. 52.972 7.890 60.862 5523.1 8.710 750. 53.518 7.946 61.464 5959.7 8.751 800. 54.032 7.998 62.030 6398.1 8.786 850. 54.519 8.045 62.564 6838.2 8.816 900. 54.980 8.088 63.068 7279.6 8.843 950. 55.418 8.129 63.547 7722.4 8.866 1000. 55.836 8.166 64.002 8166.2 8.887 1050. 56.235 8.201 64.436 8611.1 8.906 1100. 56.618 8.233 64.851 9056.8 8.924 1250. 57.676 8.319 65.995 10398.8 8.968 1300. 58.022 8.344 66.347 10847.5 8.981 1400. 58.623 8.391 67.013 11746.8 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		-				
700. 52.972 7.890 60.862 5523.1 8.710 750. 53.518 7.946 61.464 5959.7 8.751 800. 54.032 7.998 62.030 6398.1 8.786 850. 54.519 8.045 62.564 6838.2 8.816 900. 54.980 8.088 63.068 7279.6 8.843 950. 55.418 8.129 63.547 7722.4 8.866 1000. 55.836 8.166 64.002 8166.2 8.887 1050. 56.235 8.201 64.436 8611.1 8.906 1100. 56.618 8.233 64.851 9056.8 8.924 1250. 56.984 8.264 65.248 9503.4 8.940 1250. 57.676 8.319 65.995 10398.8 8.968 1300. 58.023 8.344 66.347 10847.5 8.981 1350. 58.318 8.368 66.686 11296.9		51.765	7.762	59.527		
750. 53.518 7.946 61.464 5959.7 8.751 800. 54.032 7.998 62.030 6398.1 8.786 850. 54.519 8.045 62.564 6838.2 8.816 900. 54.980 8.088 63.068 7279.6 8.843 950. 55.418 8.129 63.547 7722.4 8.866 1000. 55.836 8.166 64.002 8166.2 8.887 1050. 56.235 8.201 64.436 8611.1 8.906 1100. 56.618 8.233 64.851 9056.8 8.924 1250. 57.337 8.292 65.629 9950.7 8.954 1250. 57.676 8.319 65.995 10398.8 8.968 1300. 58.002 8.344 66.347 10847.5 8.981 1350. 58.818 8.368 66.686 11296.9 8.993 1400. 58.623 8.391 67.013 11746.8 9.004 1450. 58.917 8.412 67.329 12197.						
800. 54.032 7.998 62.030 6398.1 8.786 850. 54.519 8.045 62.564 6838.2 8.816 900. 54.980 8.088 63.068 7279.6 8.843 950. 55.418 8.129 63.547 7722.4 8.866 1000. 55.836 8.166 64.002 8166.2 8.887 1050. 56.235 8.201 64.436 8611.1 8.906 1100. 56.618 8.233 64.851 9056.8 8.924 1200. 57.337 8.292 65.629 9950.7 8.954 1250. 57.676 8.319 65.995 10398.8 8.968 1300. 58.002 8.344 66.347 10847.5 8.981 1350. 58.618 8.368 66.686 11296.9 8.993 1400. 58.623 8.311 67.013 11746.8 9.004 1450. 58.917 8.412 67.329 12197.3 9.015 1500. 59.203 8.432 67.635 1264						
850. 54.519 8.045 62.564 6838.2 8.816 900. 54.980 8.088 63.068 7279.6 8.843 950. 55.418 8.129 63.547 7722.4 8.866 1000. 55.836 8.166 64.002 8166.2 8.887 1050. 56.235 8.201 64.436 8611.1 8.906 1100. 56.618 8.233 64.851 9056.8 8.924 1150. 56.984 8.264 65.248 9503.4 8.940 1200. 57.337 8.292 65.629 9950.7 8.954 1250. 57.676 8.319 65.995 10398.8 8.968 1300. 58.002 8.344 66.347 10847.5 8.981 1350. 58.318 8.368 66.686 11296.9 8.993 1400. 58.623 8.391 67.013 11746.8 9.004 1450. 58.917 8.412 67.329 12197.3 9.015 1500. 59.203 8.432 67.635 126						
950						
1000 55.836 8.166 64.002 8166.2 8.887 1050 56.235 8.201 64.436 8611.1 8.906 1100 56.618 8.233 64.851 9056.8 8.924 1150 56.984 8.264 65.248 9503.4 8.940 1200 57.337 8.292 65.629 9950.7 8.954 1250 57.676 8.319 65.995 10398.8 8.968 1300 58.002 8.344 66.347 10847.5 8.981 1350 58.318 8.368 66.686 11296.9 8.993 1400 58.623 8.391 67.013 11746.8 9.004 1450 58.917 8.412 67.329 12197.3 9.015 1500 59.203 8.432 67.635 12648.3 9.026 1550 59.480 8.452 67.931 13099.8 9.036 1600 59.748 8.470 68.218 13551.9 9.045 1650 60.009 8.487 68.497 144004.4 <td>900•</td> <td>54.980</td> <td></td> <td>63.068</td> <td>7279.6</td> <td></td>	900•	54.980		63.068	7279.6	
1050. 56.235 8.201 64.436 8611.1 8.906 1100. 56.618 8.233 64.851 9056.8 8.924 1150. 56.984 8.264 65.248 9503.4 8.940 1200. 57.337 8.292 65.629 9950.7 8.954 1250. 57.676 8.319 65.995 10398.8 8.968 1300. 58.002 8.344 66.347 10847.5 8.981 1350. 58.318 8.368 66.686 11296.9 8.993 1400. 58.623 8.391 67.013 11746.8 9.004 1450. 58.917 8.412 67.329 12197.3 9.015 1500. 59.203 8.432 67.635 12648.3 9.026 1550. 59.480 8.452 67.931 13099.8 9.036 1600. 59.748 8.470 68.218 13551.9 9.045 1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767						
1100. 56.618 8.233 64.851 9056.8 8.924 1150. 56.984 8.264 65.248 9503.4 8.940 1200. 57.337 8.292 65.629 9950.7 8.954 1250. 57.676 8.319 65.995 10398.8 8.968 1300. 58.002 8.344 66.347 10847.5 8.981 1350. 58.318 8.368 66.686 11296.9 8.993 1400. 58.623 8.391 67.013 11746.8 9.004 1450. 58.917 8.412 67.329 12197.3 9.015 1500. 59.203 8.432 67.635 12648.3 9.026 1550. 59.480 8.452 67.931 13099.8 9.036 1600. 59.748 8.470 68.218 13551.9 9.045 1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.286						
1150. 56.984 8.264 65.248 9503.4 8.940 1200. 57.337 8.292 65.629 9950.7 8.954 1250. 57.676 8.319 65.995 10398.8 8.968 1300. 58.002 8.344 66.347 10847.5 8.981 1350. 58.318 8.368 66.686 11296.9 8.993 1400. 58.623 8.391 67.013 11746.8 9.004 1450. 58.917 8.412 67.329 12197.3 9.015 1500. 59.203 8.432 67.635 12648.3 9.026 1550. 59.480 8.452 67.931 13099.8 9.036 1600. 59.748 8.470 68.218 13551.9 9.045 1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14910.7 9.072 1800. 60.750 8.536 69.286						
1250. 57.676 8.319 65.995 10398.8 8.968 1300. 58.002 8.344 66.347 10847.5 8.981 1350. 58.318 8.368 66.686 11296.9 8.993 1400. 58.623 8.391 67.013 11746.8 9.004 1450. 58.917 8.412 67.329 12197.3 9.015 1500. 59.203 8.432 67.635 12648.3 9.026 1550. 59.480 8.452 67.931 13099.8 9.036 1600. 59.748 8.470 68.218 13551.9 9.045 1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14910.7 9.072 1800. 60.750 8.536 69.286 15364.5 9.081 1850. 60.984 8.551 69.535 15818.8 9.089 1900. 61.212 8.565 69.777						
1300. 58.002 8.344 66.347 10847.5 8.981 1350. 58.318 8.368 66.686 11296.9 8.993 1400. 58.623 8.391 67.013 11746.8 9.004 1450. 58.917 8.412 67.329 12197.3 9.015 1500. 59.203 8.432 67.635 12648.3 9.026 1550. 59.480 8.452 67.931 13099.8 9.036 1600. 59.748 8.470 68.218 13551.9 9.045 1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14910.7 9.072 1800. 60.750 8.536 69.286 15364.5 9.081 1850. 60.984 8.551 69.535 15818.8 9.089 1900. 61.212 8.565 69.777 16273.5 9.098 1950. 61.435 8.579 70.014		57.337				
1350. 58.318 8.368 66.686 11296.9 8.993 1400. 58.623 8.391 67.013 11746.8 9.004 1450. 58.917 8.412 67.329 12197.3 9.015 1500. 59.203 8.432 67.635 12648.3 9.026 1550. 59.480 8.452 67.931 13099.8 9.036 1600. 59.748 8.470 68.218 13551.9 9.045 1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14910.7 9.072 1800. 60.750 8.536 69.286 15364.5 9.081 1850. 60.984 8.551 69.535 15818.8 9.089 1900. 61.212 8.565 69.777 16273.5 9.098 1950. 61.435 8.579 70.014 16728.6 9.106 2000. 61.652 8.592 70.244						
1400. 58.623 8.391 67.013 11746.8 9.004 1450. 58.917 8.412 67.329 12197.3 9.015 1500. 59.203 8.432 67.635 12648.3 9.026 1550. 59.480 8.452 67.931 13099.8 9.036 1600. 59.748 8.470 68.218 13551.9 9.045 1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14910.7 9.072 1800. 60.750 8.536 69.286 15364.5 9.081 1850. 60.984 8.551 69.535 15818.8 9.089 1900. 61.212 8.565 69.777 16273.5 9.098 1950. 61.435 8.579 70.014 16728.6 9.106 2000. 61.652 8.592 70.244 17184.0 9.114						
1450. 58.917 8.412 67.329 12197.3 9.015 1500. 59.203 8.432 67.635 12648.3 9.026 1550. 59.480 8.452 67.931 13099.8 9.036 1600. 59.748 8.470 68.218 13551.9 9.045 1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14910.7 9.072 1800. 60.750 8.536 69.286 15364.5 9.081 1850. 60.984 8.551 69.535 15818.8 9.089 1900. 61.212 8.565 69.777 16273.5 9.098 1950. 61.435 8.579 70.014 16728.6 9.106 2000. 61.652 8.592 70.244 17184.0 9.114						
1500. 59.203 8.432 67.635 12648.3 9.026 1550. 59.480 8.452 67.931 13099.8 9.036 1600. 59.748 8.470 68.218 13551.9 9.045 1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14910.7 9.072 1800. 60.750 8.536 69.286 15364.5 9.081 1850. 60.984 8.551 69.535 15818.8 9.089 1900. 61.212 8.565 69.777 16273.5 9.098 1950. 61.435 8.579 70.014 16728.6 9.106 2000. 61.652 8.592 70.244 17184.0 9.114						
1600. 59.748 8.470 68.218 13551.9 9.045 1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14910.7 9.072 1800. 60.750 8.536 69.286 15364.5 9.081 1850. 60.984 8.551 69.535 15818.8 9.089 1900. 61.212 8.565 69.777 16273.5 9.098 1950. 61.435 8.579 70.014 16728.6 9.106 2000. 61.652 8.592 70.244 17184.0 9.114				67.635		
1650. 60.009 8.487 68.497 14004.4 9.055 1700. 60.263 8.504 68.767 14457.3 9.064 1750. 60.510 8.520 69.030 14910.7 9.072 1800. 60.750 8.536 69.286 15364.5 9.081 1850. 60.984 8.551 69.535 15818.8 9.089 1900. 61.212 8.565 69.777 16273.5 9.098 1950. 61.435 8.579 70.014 16728.6 9.106 2000. 61.652 8.592 70.244 17184.0 9.114						_
1700• 60•263 8•504 68•767 14457•3 9•064 1750• 60•510 8•520 69•030 14910•7 9•072 1800• 60•750 8•536 69•286 15364•5 9•081 1850• 60•984 8•551 69•535 15818•8 9•089 1900• 61•212 8•565 69•777 16273•5 9•098 1950• 61•435 8•579 70•014 16728•6 9•106 2000• 61•652 8•592 70•244 17184•0 9•114						
1750. 60.510 8.520 69.030 14910.7 9.072 1800. 60.750 8.536 69.286 15364.5 9.081 1850. 60.984 8.551 69.535 15818.8 9.089 1900. 61.212 8.565 69.777 16273.5 9.098 1950. 61.435 8.579 70.014 16728.6 9.106 2000. 61.652 8.592 70.244 17184.0 9.114						
1850. 60.984 8.551 69.535 15818.8 9.089 1900. 61.212 8.565 69.777 16273.5 9.098 1950. 61.435 8.579 70.014 16728.6 9.106 2000. 61.652 8.592 70.244 17184.0 9.114						
1900. 61.212 8.565 69.777 16273.5 9.098 1950. 61.435 8.579 70.014 16728.6 9.106 2000. 61.652 8.592 70.244 17184.0 9.114						
1950• 61•435 8•579 70•014 16728•6 9•106 2000• 61•652 8•592 70•244 17184•0 9•114						
2000 61 652 8 592 70 244 17184 9 9 114						
2050. 61.864 8.605 70.469 17639.9 9.121					17184.0	
				70.469	17639.9	
- 113 -						

Table	41.	BBr(gas)	[Continu	led]

T	-(F°-H ₀ °)	(H°-H°)	S°	(H°-H ₀)	С°
	T	T			
۰K	cal/°mole	cal/omole	cal/°mole	cal/mole	cal/omole
2100•	62.072	8.617	70.689	18096.2	9.129
2150.	62 • 275	8.629	70.904	18552.8	9.137
2200•	62.473	8.641	71.114	19009.9	9.144
2250•	62•668 62•858	8 • 652 8 • 663	71•320 71•521	19467.3 19925.1	9 • 152 9 • 159
2300 • 2350 •	63 • 044	8 • 674	71.718	20383•2	9 • 167
2400•	63.227	8 • 684	71.911	20841.7	9.174
2450	63 • 406	8 • 694	72.100	21300.6	9.181
2500•	63.582	8.704	72.286	21759.8	9.189
2600.	63.924	8.723	72.647	22679.4	9.203
2700.	64.253	8.741	72.994	23600.4	9.217
2800.	64.572	8.758	73.330	24522.9	9.232
2900.	64.879	8.775	73.654	25446.8	9.246
3000.	65 • 177	8.791	73.968	26372.1	9.260
3100.	65 • 465	8 • 806	74•271 74•566	27298.8	9 • 274
3200 · 3300 ·	65•745 66•017	8 • 821 8 • 835	74.852	28226.9 29156.5	9 • 289 9 • 303
3400.	66 • 281	8 • 849	75.130	30087.5	9.303
3500•	66 • 538	8 • 863	75 • 400	31020.0	9.332
3600•	66.787	8.876	75 • 664	31953.9	9.346
3700.	67.031	8.889	75.920	32889.2	9.361
3800.	67.268	8.902	76.170	33826.1	9.375
3900•	67.499	8.914	76 • 413	34764.3	9.390
4000•	67 • 725	8 • 926	76 • 651	35704•1	9 • 405
4100•	67 • 946	8.938	76 • 884	36645.3	9.420
4200 • 4300 •	68•161 68•372	8•95 ₀ 8•961	77•111 77•333	37588 • 0 38532 • 2	9 • 435 9 • 450
4400•	68 • 578	8 • 972	77.550	39478•0	9 • 465
4500•	68 • 780	8 • 983	77•763	40425.2	9 • 480
4600•	68.977	8.994	77.972	41374.0	9 • 495
4700•	69•171	9.005	78 • 176	42324.3	9.511
4800•	69•361	9.016	78.377	43276•2	9.526
4900•	69 • 547	9 • 026	78.573	44229.6	9 • 5 4 2
5000•	69.729	9.037	78.766	45184.6	9 • 5 5 8
5100•	69 • 908	9.047	78 • 956	46141.2	9 • 574
5200 • 5300 •	70•084 70•257	9 • 058 9 • 068	79•142 79•324	47099•4 48059•2	9 • 5 9 0
5400	70 • 426	9.008	79.504	49020.6	9•60 6 9•622
5500•	70 • 593	9.088	79 • 681	49983.6	9.638
5600•	70.757	9.098	79.855	50948.3	9 • 655
5700•	70.918	9.108	80.026	51914.6	9.671
5800.	71.076	9.118	80.194	52882.6	9.688
5900•	71 • 232	9 • 127	80•360	53852•2	9.705
6000•	71 • 386	9 • 137	80•523	54823•5	9•722
273•15	45 • 909	7•161	53•070	1956•0	7.717
298.15		7.213	53.751	2150.4	7•717 7•837
2,0417	. 5 5 5 5 5			-120007	1001

T	-(F°-H°)	(H°-H ₀)	S°	(H°-H°)	Cp
	T	T			•
• K	cal/°mole	cal/omole	cal/°mole		cal/°mole
50.	47.092	8.181	55.273	409.1	8.995
75.	50.499	8.683	59.182	651.2	10.362
100.	53.075	9.255	62 • 330	925 . 5 1226 . 4	11.541
125. 150.	55.201 57.035	9.811 10.324	65.011 67.360	1548.6	12.492 13.265
175.	58.662	10.792	69 • 45 4	1888.6	13.916
200.	60.132	11.219	71.351	2243.7	14.485
225.	61.476	11.610	73.086	2612.3	14.993
250.	62.718	11.972	74.690	2993.0	15 • 451
275.	63.875	12.307	76.183	3384.5	15.864
300•	64.960	12.619	77.579	3785.8	16.235
325.	65.981	12.911	78.892	4195.9	16.568
350.	66 • 948	13.183	80.131	4613.9	16.865
375 • 400 •	67.867 68.741	13.437 13.675	81.304 82.417	5038.9 5470.2	17.130 17.367
425	69.577	13.899	83.476	5907.0	17.578
450.	70.378	14.109	84.486	6348.9	17.766
475.	71.146	14.306	85.452	6795.2	17.935
500.	71.884	14.491	86.375	7245.5	18.086
550.	73 • 282	14.830	88.112	8156.4	18.342
600•	74.585	15.131	89.717	9078.9	18.550
650.	75•807 76•958	15.401 15.644	91.209	10010.8	18.721
700 • 750 •	78.045	15.862	92.601 93.907	11896.5	18.861 18.979
800.	79.075	16.060	95 • 135	12848.0	19.077
850.	80.054	16.240	96.294	13804.0	19.161
900.	80.987	16.404	97.391	14763.9	19.232
950.	81.878	16.555	98 • 433	15727.1	19.294
1000.	82.731	16.693	99.424	16693.2	19.347
1050 • 1100 •	83•548 84•333	16.821 16.939	100.369 101.272	17661.7 18632.4	19.393 19.434
1150.	85.089	17.048	101.272	19605.0	19.454
1200.	85.817	17.149	102.966	20579.3	19.501
1250.	86.519	17.244	103.763	21555.0	19.529
1300.	87.197	17.332	104.529	22532.1	19.554
1350.	87.852	17.415	105.267	23510.4	19.576
1400.	88 • 487	17.493	105.980	24489.7	19.597
1450.	89.102	17.566	106.668	25470.0	19.615
1500.	89.699	17.634	107.333	26451.2	19.631
1550. 1600.	90•278 90•841	17.699 17.760	107.977 108.601	27433.1 28415.8	19.646 19.660
1650.	91.388	17.818	109.206	29399.1	19.672
1700.	91.921	17.872	109.794	30383.0	19.684
1750.	92.440	17.924	110.364	31367.4	19.694
1800.	92.946	17.974	110.919	32352.4	19.704
1850.	93.439	18.020	111.459	33337.8	19.712
1900.	93.920	18.065	111.985	34323.6	19.721
1950.	94.390	18.108	112.497	35309.9	19.728
2000 • 2050 •	94•849 95•297	18.148 18.187	112.997 113.484	36296.4 37283.4	19.735 19.742
2000	77 0 2 7 1	100101	1130404	J120304	170142

Table 42. BBr3 (gas) [Continued]					
T	-(F°-H ₀)	(H°-H ₀)	S°	(Ho-HO)	С°
	T	T			
• K	cal/°mole	cal/omole	cal/°mole	cal/mole	cal/omole
2100.	95.736	18.224	113.960	38270.6	19.748
2150.	96.165	18.260	114.425	39258.2	19.754
2200	96.585	18.294	114.879	40246.0	19.759
2250 • 2300 •	96•997 9 7 •400	18.326 18.358	115.323 115.758	41234.0 42222.3	19.764 19.768
2350.	97.795	18.388	116.183	43210.9	19.773
2400.	98.183	18.416	116.599	44199.6	19.777
2450.	98.563	18.444	117.007	45188.5	19.781
2500.	98.935	18.471	117.407	46177.7	19.784
2600.	99.661	18.522	118.183	48156.4	19.791
2700•	100.361	18.569	118.930	50135.8	19.797
2800	101.037 101.691	18.613	119.650	52115.7	19.802 19.807
2900 • 3000 •	102.324	18.654 18.692	120.345 121.016	54096•2 56077•1	19.807
3100.	102.937	18.729	121.666	58058.4	19.815
3200•	103.533	18.763	122.295	60040.0	19.818
3300.	104.110	18.795	122.905	62022.1	19.822
3400.	104.672	18.825	123.497	64004.4	19.825
3500.	105.218	18.853	124.071	65987.0	19.827
3600.	105.750	18.881	124.630	67969.8	19.830
3700	106.267	18.906	125.173	69952.9	19.832
3800. 3900.	106.772 107.264	18.931 18.954	125.702 126.218	71936.2 73919.7	19.834 19.836
4000	107.744	18.976	126.720	75903.4	19.838
4100.	108.213	18.997	127.210	77887.3	19.840
4200.	108.671	19.017	127.688	79871.3	19.841
4300.	109.118	19.036	128.155	81855.5	19.843
4400.	109.556	19.055	128.611	83839.8	19.844
450C •	109.985	19.072	129.057	85824.3	19.845
4600. 4700.	110.404 110.815	19.089 19.105	129.493 129.920	87808•9 89 7 93•6	19.846 19.847
4800	111.217	19.120	130.338	91778.4	19.848
4900.	111.612	19.135	130.747	93763.2	19.849
5000.	111.998	19.150	131.148	95748.2	19.850
5100.	112.378	19.163	131.541	97733.3	19.851
5200.	112.750	19.177	131.927	99718.5	19.852
5300.	113.115	19.189		101703.7	19.853
5400	113 • 474	19.202		103689.0	19.854
5500 • 5600 •	113.827 114.173	19.214 19.225		105674.4 107659.9	19.854 19.855
5700	114.173	19.236		109645.4	19.855
5800.	114.848	19.247		111631.0	19.856
5900.	115.177	19.257		113616.6	19.857
6000•	115.501	19.267		115602.3	19.857
273.15	63.792	12.283	76.076	3355.2	15.835
298.15	64.882	12.597	77.479	3755.8	16.209
_, , , , ,	. , , , , , ,			2.2200	100207

Tabl	e 43. BF ₂ B	r(gas)			
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°
	T	T			
• K	cal/°mole	cal/omole	cal/°mole	cal/mole	cal/°mole
50•	42.890	7.950	50.840	397.5	7.972
75 •	46.118	7.988	54.107	599.1	8.212
100.	48.430	8.106	56.536	810.6	8.742
125.	50.259	8.300	58.559	1037.5	9.423
150.	51.793	8.547	60.340	1282.0	10.140
175.	53.131	8.824	61.956	1544.3	10.832
200.	54.329 55.419	9•116 9•411	63 • 445 64 • 831	1823•2 2117•5	11.474 12.060
225 · 250 ·	56.426	9.703	66.129	2425.8	12.593
275.	57.364	9.988	67.353	2746.8	13.080
300•	58.245	10.265	68.510	3079.5	13.526
325 •	59.078	10.532	69.609	3422.8	13.938
350.	59.868	10.789	70.656	3776.1	14.319
375.	60.620	11.036	71.657	4138.6	14.672
400.	61.340	11.274	72.614	4509.5	14.999
425.	62.031	11.502	73.533	4888.3	15.303
450•	62.694	11.721	74.415	5274.5	15.585
475 •	63.334	11.931	75.265	5667.4	15.847
500•	63.951	12.133	76.084	6066.7	16.090
550 • 600 •	65 • 125 66 • 229	12.513 12.864	77.639 79.093	6882.3 7718.1	16.525 16.898
650•	67.272	13.187	80.459	8571.3	17.220
700	68.260	13.485	81.745	9439.4	17.497
750•	69.200	13.761	82.961	10320.4	17.737
800.	70.097	14.016	84.112	11212.6	17.945
850.	70.953	14.252	85.206	12114.5	18.126
900.	71.774	14.472	86.246	13024.8	18.285
950.	72.562	14.676	87.239	13942.6	18.424
1000.	73.320	14.867	88.187	14866.9	18.546
1050.	74.050 74.754	15.045	89 • 095 89 • 965	15797.0	18.654
1100. 1150.	75 • 433	15.211 15.367	90.800	16732.1 17671.8	18.750 18.836
1200.	76.090	15.513	91.603	18615.5	18.912
1250•	76.726	15.650	92.377	19562.9	18.980
1300•	77.343	15.780	93.122	20513.5	19.042
1350.	77.941	15.901	93.842	21467.0	19.098
1400.	78.521	16.017	94.537	22423.1	19.148
1450.	79.085	16.125	95.210	23381.7	19.194
1500.	79.633	16.228	95.862	24342.5	19.236
1550.	80.167	16.326	96.493	25305.2	19.274
1600. 1650.	80•687 81•193	16.419 16.507	97•105 97•700	26269.8 27236.0	19.308 19.340
1700.	81.687	16.590	98 • 278	28203.8	19.370
1750.	82.170	16.670	98.840	29172.9	19.397
1800.	82.640	16.746	99.387	30143.4	19.421
1850.	83.100	16.819	99.919	31115.0	19.444
1900•	83.550	16.888	100.438	32087.8	19.466
1950.	83 • 989	16.955	100.944	33061.6	19.486
2000•	84.419	17.018	101.437	34036.3	19.504
2050•	84.840	17.079	101.919	35012.0	19.521

BF2Br(gas) [Continued] Table 43. -(Fo-Ho) (Ho=H8) (Ho-HS) So T cal/omole cal/omole cal/mole cal/omole cal/omole o K 85.252 35988.4 19.537 2100. 17.137 102.390 19.552 2150. 85.656 17.193 36965.6 102.850 17.247 19.566 2200 • 86.052 37943.6 103.299 2250 • 86.440 17.299 103.739 38922.2 19.579 86.821 17.348 39901.5 19.591 2300. 104.170 87.195 17.396 104.591 40881.3 19.603 2350. 19.614 2400. 87.561 17.442 105.004 41861.8 87.922 17.487 42842.7 19.624 2450. 105.408 17.530 2500. 88.275 105.805 43824.1 19.633 88.964 17.611 45788.4 19.651 2600. 106.575 17.687 2700. 89.631 107.317 47754.3 19.667 90.275 17.758 49721.7 19:681 2800. 108.033 2900. 90.899 17.824 108.724 51690.5 19.694 91.505 17.887 53660.4 19.705 3000. 109.391 92.092 17.946 55631.5 19.716 3100. 110.038 18.001 57603.6 19.725 3200 • 92.663 110.664 3300. 93.218 18.053 111.271 59576.5 19.734 93.757 18.103 111.860 61550.3 19.742 3400. 94.283 18.150 112.433 63524.9 19.749 3500. 94.795 18.194 112.989 65500.1 19.756 3600. 95.294 18.237 67476.0 113.530 19.762 3700. 95.781 18.277 114.058 69452.5 19.768 3800. 96.256 18.315 114.571 71429.5 19.773 3900. 96.720 18.352 73407.1 4000. 115.072 19.778 4100. 97.174 18.387 115.560 75385.1 19.782 97.617 18.420 77363.5 4200 • 116.037 19.787 98.051 18.452 116.503 79342.4 19.790 4300 • 18.482 81321.6 4400. 98 475 116.958 19.794 83301.2 4500. 98.891 18.511 117.402 19.798 4600. 99.298 18.539 117.838 85281.1 19.801 4700. 99.697 18.566 118.263 87261.4 19.804 4800. 100.088 18.592 118.680 89241.9 19.807 91222.7 4900. 18.617 119.089 100.472 19.809 5000. 100.848 18.641 119.489 93203.7 19.812 5100. 101.218 18.664 119.881 95185.0 19.814 5200. 101.580 18.686 120.256 97166.5 19.816 18.707 99148.3 5300. 101.936 120.644 19.818 18.728 5400. 102.286 121.014 101130.2 19.820 5500. 102.630 18.748 121.378 103112.3 19.822 5600. 102.968 18.767 121.735 105094.7 19.824 18.785 5700 • 103.300 122.086 107077.1 19.826 18-803 5800. 103.627 122.431 109059.8 19.827 5900. 103.949 18.821 122.770 111042.6 19.829 104.265 19.830 6000. 18.838 123.103 113025.5 273.15 57.297 9.968 67.265 2722.6 13.045 298.15 58.182 10.245 68.427 3054.5 13.495

Table 44. BFBr2(gas)						
Т	- (F°-H°)	(H°-H ₀)	S°	(H°-H ₀)	Cp	
	T	T				
• K	cal/°mole	cal/ºmole	cal/omole	cal/mole	cal/omole	
50 • 75 •	46 • 372 49 • 653	8.008 8.218	54.379 57.871	400.4 616.3	8 • 277 9 • 041	
100.	52.059	8.535	60.594	853.5	9.938	
125 •	54.003	8.905	62.908	1113.1	10.823	
150.	55.661	9.294	64 • 954	1394.0	11.637	
175. 200.	57.122 58.440	9.681 10.057	66•804 68•497	1694.2 2011.4	12.361 12.999	
225 •	59.645	10.416	70.061	2343.5	13.563	
250.	60.760	10.756	71.516	2689.0	14.066	
275•	61.801	11.078	72 • 878	3046.4	14.516	
300 • 325 •	62•778 63•700	11.381 11.668	74.159 75.369	3414•4 3792•2	14.923 15.293	
350.	64.575	11.939	76.514	4178.8	15.628	
375 •	65.408	12.196	77.603	4573.4	15.934	
400•	66 • 202	12.438	78.641	4975.3	16.214	
425 • 450 •	66•963 67•694	12.668 12.886	79.631 80.579	5383.9 5798.5	16.469 16.702	
475	68.396	13.092	81.488	6218.8	16.915	
500.	69.073	13.288	82.361	6644.2	17.111	
550•	70.356	13.652	84.008	7508.5	17.454	
600 • 650 •	71.559 72.690	13.981 14.280	85•540 86•970	8388.6 9282.1	17•743 17•987	
700•	73.758	14.553	88.311	10186.8	18 • 195	
750.	74.771	14.801	89.572	11101.1	18.373	
800•	75.733	15.030	90.763	12023.6 12953.2	18.525	
850. 900.	76.651 77.528	15.239 15.432	91.890 92.960	13889.0	18.656 18.770	
950.	78.367	15.611	93.977	14830.0	18.870	
1000.	79.172	15.776	94.947	15775.7	18.957	
1050. 1100.	79•945 80•690	15.929 16.072	95.874 96.761	16725.5 17678.9	19.033 19.101	
1150.	81.407	16.205	97.612	18635.5	19.161	
1200.	82.099	16.329	98.428	19594.9	19.214	
1250.	82.768	16.445	99.214	20556.8	19.262	
1300. 1350.	83 • 415 84 • 042	16.555 16.657	99.970 100.699	21521.0 22487.3	19.305 19.344	
1400.	84.650	16.754	101.403	23455.4	19.379	
1450.	85.239	16.845	102.084	24425.1	19.410	
1500 • 1550 •	85.812 86.368	16.931 17.012	102.743	25396•3 26368•9	19•439 19•465	
1600•	86.910	17.089	103.999	27342.8	19.489	
1650.	87.437	17.162	104.599	28317.8	19.511	
1700 •	87.950	17.232	105.182	29293.9	19.531	
1750. 1800.	88•450 88•939	17.298 17.360	105.748 106.299	30270.9 31248.8	19.550 19.567	
1850.	89.415	17.420	106.835	32227.5	19.582	
1900.	89.880	17.477	107.358	33207.0	19.597	
1950.	90.335	17.532	107.867	34187.2	19.610	
2000 • 2050 •	90•780 91•214	17.584 17.634	108.364 108.848	35168 _• 0 36149 _• 5	19.623 19.635	
-0200	> T A C T 1	1.0054	1000010	2021/02	270000	

-					
T	-(F°-H ₀)	(H°-H°)	S°	(H°-H°)	C _p
				U	P
	T	T			
۰K	cal/°mole	cal/omole	cal/omole	cal/mole	cal/omole
2100.	91.640	17.682	109.322	37131.5	19.646
2150.	92.057	17.727	109.784	38114.0	19.656
2200.	92.465	17.771	110.236	39097.1	19.665
2250.	92.864	17.814	110.678	40080.5	19.674
2300.	93.256	17.854	111.111	41064.5	19.682
2350.	93.641	17.893	111.534	42048.8	19.690
2400.	94.018	17.931	111.949	43033.5	19.698
2450.	94.388	17.967	112.355	44018.5	19.705
2500 •	94.751	18.002	112.753	45003.9	19.711
2600•	95 • 459	18.068	113.526	46975.6	19.723
2700.	96.142	18.129	114.271	48948.5	19.734
2800.	96.802	18.187	114.989	50922.4	19.743
2900.	97.441	18.240	115.682	52897.1	19.752
3000.	98.060	18.291	116.351	54872.7	19.760
3100.	98.661	18.338	116.999	56849.1	19.767
3200.	99.244	18.383	117.627	58826.1	19.773
3300•	99.810	18.425	118 • 236	60803.7	19.779
3400•	100.361	18.465	118.826	62781.9	19.784
3500.	100.897	18.503	119.400	64760.6	19.789
3600.	101.418	18.539	119.957	66739.7	19.794
3700•	101.927	18.573	120.500	68719•4	19.798
3800.	102 • 423	18.605	121.028	70699.4	19.802
3900.	102.906	18.636	121.542	72679.7	19.805
4000•	103 • 378	18.665	122.044	74660.4	19.809
4100.	103.840	18.693	122.533	76641.5	19.812
4200•	104.291	18.720	123.010	78622.8	19.815
4300•	104.731	18.745	123.476	80604.4	19.817
4400.	105.163	18.770	123.932	82586.2	19.820
4500 •	105 • 585	18.793	124.378	84568.3	19.822
4600.	105.998	18.815	124.813	86550.7	19.824
4700.	106 • 403	18.837 18.857	125 • 240	88533.2	19.826
4800.	106.800		125.657	90515.9	19.828
4900.	107.189 107.570	18.877	126.066	92498.8	19.830
5000		18.896	126.467 126.859	94481.9	19.832
5100.	107.945	18.915		96465.1	19.833
5200 • 5300 •	108.312 108.673	18.932 18.949		98448.5 100432.1	19.835 19.836
5400.	109.027	18.966		102415.7	19.837
5500	109.027	18.982		104399.6	19.839
5600.	109.717	18.997		106383.5	19.840
5700	110.054	19.012		108367.5	19.841
5800.	110.385	19.026		110351.7	19.842
5900	110.710	19.040		112336.0	19.843
6000.	111.030	19.053	_	114320.3	19.844
					270017
273.15	61.726	11.055	72.781	3019.5	14.485
298.15	62.707	11.360	74.067	3386.9	14.895
		-			

Table 44. BFBr2(gas) [Continued]

Table 45. BCl2Br(gas) (H°-H°) cal/omole cal/omole cal/omole cal/mole cal/omole oK 53.948 400.1 45.946 8.002 8.281 50. 75 . 49.229 8.237 57.466 617.8 9.188 60.251 860.4 10.220 100. 51.647 8.604 62.637 125. 53.611 9.026 1128.2 11.184 55.295 9.458 64.753 1418.7 12.033 150. 9.880 1728.9 175 • 56.785 66 • 665 12.773 200. 58 • 131 10.283 68.414 2056.6 13 4425 225 • 59.364 10.665 70.029 2399.6 14.006 250. 60.507 11.026 71.532 2756.4 14.528 275. 61.574 11.366 72.940 3125.6 15.000 62.577 11.687 74.263 3506.0 15.425 300· 325 • 63.524 11.989 75.513 3896.5 15.809 350. 64.423 12.275 76.698 4296.1 16.155 375 . 65.279 12.544 77.823 4704.0 16.466 400. 66.097 12.798 78.895 5119.2 16.746 425 • 66.880 13.038 79.918 5541.0 16.997 450. 67.632 13.264 80.896 5968.8 17.223 475 . 68.355 13.478 81.833 6402.0 17.426 69,051 82.731 6840.0 17.609 500. 13.680 7728.6 17.924 550. 70.373 14.052 84.425 600. 71.610 14.386 85.996 8631.4 18.181 18.393 14.686 9545.9 650. 72.774 87.460 18.570 700. 73.872 14.957 88.829 10470.1 74.913 750. 15.203 90.116 11402.4 18.718 800. 75.901 15.427 91.328 12341.6 18.844 92.474 13286.5 850. 76.842 15.631 18.950 77.741 15.818 93.559 14236.3 900. 19.041 78.601 15.990 94.591 15190.4 19.120 950. 79.425 16.148 95.574 16148.2 19.188 1000. 16.294 80.217 96.511 17109.1 19.248 1050. 80.978 1100. 16.430 97.408 18072.8 19.300 81.711 16.556 98.267 19.346 1150. 19039.0 1200. 82.418 16.673 99.091 20007.4 19.387 16.782 99.883 1250. 83.101 20977.7 19.424 1300. 83.761 16.884 100.646 21949.7 19.456 22923.2 1350. 84.400 16.980 101.381 19.485 23898.1 85.020 17.070 102.090 19.511 1400. 1450. 85.620 17.155 102.775 24874.3 19.535 86.203 17.234 25851.6 19.556 1500. 103 • 437 1550. 86.769 17.310 26829.9 19.576 104.079 1600. 87.320 17.381 104.701 27809.2 19.594 28789.2 87.856 17.448 1650. 105.304 19.610 17.512 1700. 88.378 105.890 29770.1 19.625 1750. 88.886 17.572 106.459 30751.7 19.638 1800. 89.382 17.630 107.012 31733.9 19.651 1850. 89.866 17.685 107.551 32716.8 19.662 1900. 90.338 17.737 108.075 33700.2 19.673

108.586

109.085

109.571

17.787

17.834

17.880

34684.1

35668.4

36653.3

19.683

19.692

19.701

1950.

2000.

2050.

90.800

91.251

91.692

Table	45. BCl ₂	Br(gas) [Co	ontinued]		
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°
	T	T			
• K	cal/°mole	cal/°mole	cal/°mole	cal/mole	cal/°mole
2100. 2150. 2200. 2250. 2350. 2350. 2450. 2500. 2600. 2700. 2800. 2900. 3100. 3200. 3100. 3200. 3100. 3200. 3400. 3500. 3600. 3700. 3800. 3900. 4100. 4200. 4300. 4400. 4500.	92.123 92.545 92.959 93.364 93.761 94.150 94.532 94.906 95.274 95.989 96.680 97.347 97.993 98.619 99.225 99.814 100.385 100.941 101.481 102.008 102.520 103.508 103.983 104.448 104.902 105.346 105.780 106.205	17.923 17.965 18.005 18.043 18.080 18.115 18.149 18.181 18.213 18.272 18.328 18.328 18.428 18.516 18.556 18.556 18.556 18.630 18.663 18.663 18.663 18.726 18.754 18.782 18.808 18.833 18.857 18.879 18.901 18.922	110.046 110.510 110.963 111.407 111.840 112.265 112.680 113.088 113.487 114.262 115.008 115.727 116.421 117.092 117.741 118.370 118.979 119.570 120.145 120.703 121.246 121.774 122.289 122.791 123.281 123.759 124.225 124.681 125.127	37638.5 38624.1 39610.1 40596.4 41583.1 42570.0 43557.2 44544.6 45532.4 47508.4 49485.3 51463.0 53441.3 55420.2 57399.6 59379.5 61359.8 65321.7 67303.2 67303.	19.709 19.716 19.723 19.730 19.736 19.741 19.752 19.756 19.756 19.773 19.780 19.780 19.780 19.780 19.801 19.806 19.809 19.813 19.816 19.822 19.825 19.827 19.827 19.829 19.831 19.833 19.835 19.836
4600. 4700. 4800. 4900. 5000. 5100. 5200. 5300. 5400. 5500. 5600. 5700. 5800. 5900.	106.622 107.029 107.429 107.820 108.204 108.581 108.950 109.313 109.670 110.020 110.364 110.702 111.035 111.362 111.684	18.942 18.961 18.979 18.997 19.014 19.030 19.046 19.061 19.075 19.089 19.103 19.116 19.129 19.141 19.153	125.563 125.990 126.408 126.817 127.218 127.611 127.996 128.374 128.745 129.109 129.467 129.818 130.163 130.503 130.836	87131.6 89115.5 91099.5 93083.6 95067.9 97052.3 99036.8 101021.4 103006.1 104990.9 106975.8 108960.7 110945.8 112930.9 114916.1	19.838 19.839 19.841 19.842 19.843 19.844 19.847 19.847 19.847 19.848 19.849 19.850 19.851 19.852
273.15 298.15		11.341 11.664	72.838 74.168	3097 . 9 3477 . 5	14.966 15.395

Table 46. BClBr2(gas)							
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°p		
	T	T					
• K	cal/°mole	cal/°mole	cal/°mole		cal/°mole		
50 • 75 •	47.682 51.017	8.073 8.431	55.755 59.448	403.7 632.3	8.587 9.726		
100•	53.505	8.896	62.401	889.6	10.838		
125.	55.542	9.384	64.926	1173.0	11.807		
150.	57.295	9.858	67.154	1478.7	12.628		
175 •	58 • 849	10.305	69.154	1803.4	13.329		
200•	60.253	10.722	70.975	2144.4	13.941		
225 · 250 ·	61.538 62.728	11.111 11.473	72.649 74.201	2499.9 2868.3	14.487 14.976		
275.	63.837	11.812	75.650	3248 • 3	15.418		
300•	64.879	12.129	77.008	3638 • 8	15.816		
325.	65.862	12.427	78.289	4038.8	16.174		
350.	66.793	12.706	79.499	4447.3	16.496		
375.	67.679	12.969	80.648	4863.3	16.785		
400•	68 • 524	13.216	81.739	5286.3	17.043		
425 •	69.332	13.448	82.780	5715.3	17.275		
450 • 475 •	70•107 70•851	13.666 13.872	83•7 73 84•723	6149.8 65 8 9.2	17.482 17.669		
500.	71.568	14.066	85.634	7033.1	17.836		
550.	72.925	14.422	87.348	7932.3	18.123		
600.	74.194	14.741	88.935	8844.5	18.357		
650.	75 • 386	15.027	90.412	9767.3	18.549		
700.	76 • 509	15.284	91.793	10698.8	18.708		
750 • 800 •	77•571 78•580	15.517 15.728	93•088 94•308	11637.7 12582.7	18.842 18.955		
850.	79.539	15.921	95.460	13532.9	19.050		
900.	80.454	16.097	96.551	14487.5	19.132		
950.	81.329	16.259	97.588	15445.9	19.202		
1000.	82.167	16.408	98.574	16407.6	19.264		
1050.	82.971	16.545	99.515	17372.1	19.317		
1100. 1150.	83•743 84•487	16.672 16.790	100.415 101.277	18339•1 19308•4	19•364 19•405		
1200.	85.204	16.900	102.103	20279.5	19.441		
1250.	85.896	17.002	102.898	21252.4	19.474		
1300•	86 • 565	17.098	103.662	22226.8	19.502		
1350.	87.211	17.187	104 • 399	23202.6	19.528		
1400 • 1450 •	87•838 88•446	17.271 17.350	105.109 105.796	24179.6 25157.7	19.552 19.573		
1500.	89.035	17.425	106.460	26136.9	19.573		
1550.	89.608	17.495	107.102	27116.9	19.609		
1600.	90.164	17.561	107.725	28097.8	19.625		
1650.	90.705	17.624	108.329	29079.4	19.639		
1700•	91.232	17.683	108-916	30061.7	19.653		
1750.	91.746	17.740	109.486	31044.6	19.665		
1800.	92 • 246	17.793	110.040	32028.1	19.676		
1850. 1900.	92•735 9 3• 211	17•844 17•893	110.579 111.104	3 3 012.2 3 3 99 6.7	19.686		
1950.	93.676	17.939	111.616	34981.7	19.696 19.704		
2000.	94.131	17.984	112.115	35967.2	19.713		
2050•	94.576	18.026	112.602	36953.0	19.720		

Table 46. BClBr2(gas) [Continued]					
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C° p
	T	T			-
• K	cal/°mole	cal/°mole	cal/omole	cal/mole	cal/omole
2100.	95.011	18.066	113.077	37939.2	19.727
2150.	95.436	18.105	113.541	38925.7	19.734
2200•	95.853	18.142	113.995	39912.6	19.740
2250.	96.261	18.178	114.439	40899.7 41887.1	19.746 19.751
2300 • 2350 •	96•661 97•053	18 • 212 18 • 245	114.873 115.297	42874.8	19.756
2400.	97.437	18.276	115.713	43862.7	19.761
2450	97.814	18.306	116.121	44850.9	19.765
2500	98.185	18.336	116.520	45839.3	19.770
2600.	98.905	18.391	117.296	47816.6	19.777
2700.	99.600	18.442	118.042	49794.7	19.784
2800.	100.271	18.491	118.762	51773.4	19.790
2900.	100.921	18.535	119.457	53752.7	19.796
3000	101.550	18.578	120.128	55732.6	19.801
3100 · 3200 ·	102.160 102.752	18.617 18.654	120.777 121.406	57712.9 59693.6	19.805 19.809
3300.	103.326	18.689	122.016	61674.8	19.813
3400•	103.885	18.722	122.607	63656.3	19.817
3500.	104.428	18.754	123.182	65638.1	19.820
3600.	104.957	18.783	123.740	67620.2	19.823
3700.	105 • 472	18.812	124.283	69602.6	19.825
3800•	105.974	18.838	124.812	71585.3	19.828
3900.	106.463	18.864	125.327	73568.1	19.830
4000.	106.941	18.888	125.829	75551.3	19.832
4100 • 4200 •	107•408 107•864	18.911 18.933	126.319 126.797	77534.6 79518.1	19.834 19.836
4300	108.310	18.954	127.263	81501.7	19.838
4400	108.746	18.974	127.720	83485.6	19.839
4500.	109.172	18.993	128.165	85469.5	19.841
4600.	109 590	19.012	128.602	87453.7	19.842
4700.	109.999	19.029	129.028	89437.9	19.843
4800.	110.400	19.046	129.446	91422.3	19.844
4900.	110.793	19.063	129.855	93406.8	19.846
5000	111.178	19.078	130.256	95391.4	19.847
5100. 5200.	111.556 111.927	19.093 19.108	130.649 131.035	97376.1 99360.9	19.848 19.849
5300	112.291	19.100	131.413	101345.8	19.849
5400.	112.648	19.135	131.784	103330.8	19.850
5500.	113.000	19.148	132.148	105315.9	19.851
5600.	113.345	19.161	132.506	107301.1	19.852
5700.	113.684	19.173	132.857	109286.3	19.853
5800.	114.018	19.185	133.202	111271.6	19.853
5900.	114.346	19.196	133.542	113257.0	19.854
6000•	114.668	19.207	133.875	115242•4	19.855
273.1	5 63.758	11.788	75.546	3219.8	15.387
298.1	5 64.804	12.107	76.911	3609.6	15.788

T	Tal	ble 47. BI ₃ (gas)			
50. 50.956 8.678 59.634 433.9 10.292 75. 54.627 9.475 64.102 710.6 11.754 100. 57.452 10.181 67.633 1018.1 12.788 125. 59.790 10.784 70.575 1348.0 13.578 150. 61.804 11.306 73.110 1695.9 14.234 175. 63.582 11.766 75.348 2059.1 14.8812 200. 65.180 12.180 77.361 2436.0 15.334 225. 66.637 12.904 80.882 3225.9 16.231 275. 69.223 13.224 82.447 3636.5 16.608 300. 70.387 13.290 83.907 4056.0 16.942 325. 71.480 13.795 85.275 4483.3 17.237 350. 72.512 14.050 86.562 4917.5 17.495 375. 73.489 14.287 87.777 53	Т			S°	(H°-H°)	C° p
75. 54.627 9.475 64.102 710.6 11.754 100. 57.452 10.181 67.633 1018.1 12.788 125. 59.790 10.784 70.575 1348.0 13.578 150. 61.804 11.306 73.110 1695.9 14.234 175. 63.582 11.766 75.348 2059.1 14.812 200. 65.180 12.180 77.361 2436.0 15.334 225. 66.637 12.557 79.194 2825.4 15.807 250. 67.978 12.904 80.882 3225.9 16.231 275. 69.223 13.224 82.447 3636.5 16.608 300. 70.387 13.520 83.907 40.56.0 16.942 325. 71.480 13.795 85.275 4483.3 17.237 350. 72.512 14.050 86.562 4917.5 17.495 375. 73.489 14.287 87.777 5357.8 17.492 425. 75.304 14.715 90.019 62.53.7 18.097 450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 71.66.1 18.389 500. 77.740 15.255 92.995 76.274 18.510 500. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10.45.5 19.011 70.08 85.275 10.445.5 19.011 70.08 86.668 12357.1 19.209 15.560 94.769 8558.2 18.715 650. 81.851 16.070 97.921 10.445.5 19.011 70.08 86.649 10.899 13319.5 19.284 850. 86.263 16.864 10.899 13319.5 19.284 850. 86.263 16.864 10.899 13319.5 19.284 850. 86.263 16.866 17.400 89.027 17.199 10.626 17.198.5 19.446 10.00 90.676 17.440 10.8086 19.50.7 19.284 10.00 90.676 17.440 10.8086 19.50.7 19.299 15.560 94.769 8558.2 18.715 650. 81.851 16.070 97.921 10.455.3 19.011 70.00 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12.357.1 19.209 850. 86.263 16.869 10.899 13319.5 19.284 850. 86.263 16.806 10.907 14.285.3 19.347 900. 87.228 16.949 10.899 13319.5 19.284 850. 86.263 16.806 10.907 14.285.3 19.347 19.521 10.09.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.507 10.90. 90.676 17.440 10.8086 19.505. 19.507 10.90. 90.676 17.440 10.8086 19.505. 19.507 10.908 10.908 10.908 10.908 10.908 10.90	۰K	cal/omole	cal/°mole	cal/omole	cal/mole	cal/omole
75. 54.627 9.475 64.102 710.6 11.754 100. 57.452 10.181 67.633 1018.1 12.788 125. 59.790 10.784 70.575 1348.0 13.578 150. 61.804 11.306 73.110 1695.9 14.234 175. 63.582 11.766 75.348 2059.1 14.812 200. 65.180 12.180 77.361 2436.0 15.334 225. 66.637 12.557 79.194 2825.4 15.807 250. 67.978 12.904 80.882 3225.9 16.231 275. 69.223 13.224 82.447 3636.5 16.608 300. 70.387 13.520 83.907 40.56.0 16.942 325. 71.480 13.795 85.275 4483.3 17.237 350. 72.512 14.050 86.562 4917.5 17.495 375. 73.489 14.287 87.777 5357.8 17.492 425. 75.304 14.715 90.019 62.53.7 18.097 450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 71.66.1 18.389 500. 77.740 15.255 92.995 76.274 18.510 500. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10.45.5 19.011 70.08 85.275 10.445.5 19.011 70.08 86.668 12357.1 19.209 15.560 94.769 8558.2 18.715 650. 81.851 16.070 97.921 10.445.5 19.011 70.08 86.649 10.899 13319.5 19.284 850. 86.263 16.864 10.899 13319.5 19.284 850. 86.263 16.864 10.899 13319.5 19.284 850. 86.263 16.866 17.400 89.027 17.199 10.626 17.198.5 19.446 10.00 90.676 17.440 10.8086 19.50.7 19.284 10.00 90.676 17.440 10.8086 19.50.7 19.299 15.560 94.769 8558.2 18.715 650. 81.851 16.070 97.921 10.455.3 19.011 70.00 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12.357.1 19.209 850. 86.263 16.869 10.899 13319.5 19.284 850. 86.263 16.806 10.907 14.285.3 19.347 900. 87.228 16.949 10.899 13319.5 19.284 850. 86.263 16.806 10.907 14.285.3 19.347 19.521 10.09.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.501 10.90. 90.676 17.440 10.8086 19.505. 19.507 10.90. 90.676 17.440 10.8086 19.505. 19.507 10.90. 90.676 17.440 10.8086 19.505. 19.507 10.908 10.908 10.908 10.908 10.908 10.90	50.	50.956	8.678	59.634	433.9	10.292
100						
125. 59.790 10.784 70.575 1348.0 13.578 150. 61.804 11.306 73.110 1695.9 14.234 175. 63.582 11.766 75.348 2059.1 14.812 200. 65.180 12.180 77.361 2436.0 15.334 225. 66.637 12.557 79.194 2825.4 15.807 250. 67.978 12.904 80.882 3225.9 16.231 275. 69.223 13.224 82.447 36.36.5 16.608 300. 70.387 13.520 83.907 40.56.0 16.942 325. 71.480 13.795 85.275 4483.3 17.237 350. 72.512 14.050 86.562 4917.5 17.495 375. 73.489 14.287 87.777 5357.8 17.722 400. 74.419 14.508 88.927 5803.4 17.922 425. 75.304 14.715 90.019 6253.7 18.097 450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 71.66.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14.285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16.225.2 19.446 1000. 89.227 17.199 106.226 17198.5 19.466 1050. 89.869 17.308 107.177 18173.7 19.521 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.590 109.789 21108.2 19.661 1250. 99.485 17.817 112.810 24052.7 19.577 1250. 94.285 17.817 112.810 24052.7 19.661 1350. 94.285 17.817 112.810 24052.7 19.661 1350. 94.285 17.817 112.810 24052.7 19.661 1350. 94.285 17.817 112.810 24052.7 19.661 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.664 1500. 97.337 18.09 115.446 28975.0 19.717 1650. 97.895 18.818 116.053 29961.1 19.727 1700. 98.483 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.771 32921.9 19.750 1800. 99.481 18.290 117.771 32921.9 19.750 1800. 99.481 18.290 117.771 32921.9 19.775 1800. 99.481 18.290 117.771 32921.9 19.775 1800. 99.481 18.290 117.771 32921.9 19.775 1800. 99.481 18.290 117.771 32921.9 19.775 1800. 99.481 18.290 117.771 32921.9 19.750 1900. 100.472 18.307 118.833 34897.5 19.762 1900. 100.499 18.403 119.853 34897.5 19.762			10.181			
175. 63.582 11.766 75.348 2059.1 14.812 2000. 65.180 12.180 77.361 2436.0 15.334 225.6 66.637 12.557 79.194 2825.4 15.807 250. 67.978 12.904 80.882 3225.9 16.231 275. 69.223 13.224 82.447 3636.5 16.608 300. 70.387 13.520 83.907 40.56.0 16.942 325. 71.480 13.795 85.275 4483.3 17.237 350. 72.512 14.050 86.562 4917.5 17.495 375. 73.489 14.287 87.777 5357.8 17.722 425. 75.304 14.715 90.019 6253.7 18.097 450.0 74.419 14.508 88.927 5803.4 17.922 425. 75.304 14.715 90.019 6253.7 18.097 450.0 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 7166.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 94.98.2 18.878 650. 81.851 16.070 97.921 10.445.5 19.011 700. 83.050 16.284 99.334 11.398.9 19.119 700. 83.050 16.284 99.334 11.398.9 19.119 700. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14.285.3 19.347 19.209 950. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14.285.3 19.347 19.50 11.00. 89.027 17.199 106.226 17.198.5 19.486 100. 89.027 17.199 106.226 17.198.5 19.486 100. 90.676 17.440 108.086 19150.5 19.551 150. 92.919 17.590 109.789 2108.2 19.601 1.500. 92.199 17.590 109.789 2108.2 19.601 1.500. 92.199 17.590 109.789 2108.2 19.601 1.500. 92.199 17.590 109.789 2108.2 19.601 1.500. 92.199 17.590 109.789 2108.2 19.601 1.500. 93.613 17.746 111.360 23070.3 19.640 1.500. 94.934 17.883 112.816 25035.9 19.671 1.500. 94.934 17.883 112.816 25035.9 19.671 1.500. 94.934 17.883 112.816 25035.9 19.671 1.500. 94.934 17.883 112.816 25035.9 19.671 1.500. 94.934 17.883 112.816 25035.9 19.671 1.500. 94.934 18.890 11.415 27.989.4 19.601 1.500. 94.934 17.883 112.816 25035.9 19.671 1.500. 94.934 18.800 11.417 15.500. 94.285 17.817 11.500 11.416 18.437 119.853 38874.3 19.773 19.750 100.949 18.433 11.2816 25035.9 19.671 1.9750 1.500. 94.934 18.800 11.417 15.500. 94.934 17.883 112.816 25035.9 19.671 1.9750 1.500. 94.848 18.290 11.7771 1.500. 94.934 19.671 1.9755 1.500. 94.934 18.290 11.7771 1.500. 94.934 18.290 11.7771 1.500. 94.935 1		59.790		70.575	1348.0	13.578
175. 63.582 11.766 75.348 2059.1 14.812 200. 65.180 12.180 77.361 2436.0 15.334 225. 66.637 12.557 79.194 2825.4 15.807 250. 67.978 12.904 80.882 3225.9 16.231 275. 69.223 13.224 82.447 3636.5 16.608 300. 70.387 13.520 83.907 40.56.0 16.942 325. 71.480 13.795 85.275 4483.3 17.237 350. 72.512 14.050 86.562 4917.5 17.495 375. 73.489 14.287 87.777 5357.8 17.722 400. 74.419 14.508 88.927 5803.4 17.922 425. 75.304 14.715 90.019 6253.7 18.097 450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 7166.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 94.88.2 18.878 650. 81.851 16.070 97.921 10.445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 190. 87.228 16.949 104.177 15254.0 19.400 190. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1000. 90.676 17.410 108.086 19150.5 19.551 1500. 92.199 17.5671 110.8996 2108.2 19.601 1250. 92.199 17.5671 110.8996 2108.2 19.601 1250. 92.199 17.5671 110.8996 2108.2 19.601 1250. 92.199 17.5671 110.8996 2108.2 19.601 1250. 92.199 17.5671 110.590 2088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.664 1500. 97.837 18.109 115.446 28975.0 19.777 1600. 98.438 18.205 116.642 30947.7 19.755 1500. 99.481 18.290 117.771 32921.9 19.675 1500. 99.481 18.290 117.771 32921.9 19.750 1800. 99.481 18.290 117.771 32921.9 19.750 1800. 99.481 18.290 117.771 32921.9 19.750 1800. 99.481 18.290 117.771 32921.9 19.750 1800. 99.481 18.290 117.771 32921.9 19.750 1800. 99.481 18.290 117.771 32921.9 19.750 1800. 99.481 18.290 117.771 32921.9 19.750 1800. 99.481 18.290 117.771 32921.9 19.750 1800. 99.481 18.290 117.771 32921.9 19.750	150.	61.804	11.306	73.110	1695.9	14.234
225. 66.637		63.582	11.766	75 • 348	2059.1	14.812
250. 67.978 12.904 80.882 3225.9 16.231 275. 69.223 13.224 82.447 3636.5 16.608 300. 70.387 13.520 83.907 4056.0 16.942 325. 71.480 13.795 85.275 4483.3 17.237 350. 72.512 14.050 86.562 4917.5 17.495 375. 73.489 14.287 87.777 5357.8 17.722 400. 74.419 14.508 88.927 5803.4 17.922 425. 75.304 14.715 90.019 6253.7 18.097 450. 76.151 4.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 7166.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.600 94.769 8558.2 18.715 600. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 100.0 89.027 17.199 106.226 17198.5 19.551 100. 90.676 17.410 108.086 19150.5 19.551 150. 92.919 17.550 109.789 2108.2 19.601 1250. 92.919 17.671 10.590 22088.8 19.621 1300. 93.613 17.746 110.590 22088.8 19.621 1300. 94.934 17.883 12.816 25035.9 19.671 1450. 95.562 17.945 17.833 12.816 25035.9 19.671 1450. 97.337 18.109 19.460 1350. 94.934 17.883 12.816 25035.9 19.671 1450. 95.562 17.945 17.503 108.056 2128.7 19.651 1400. 94.934 17.883 12.816 25035.9 19.671 1450. 95.562 17.945 11.050 20.088.8 19.621 1300. 93.613 17.746 110.590 22088.8 19.621 1300. 93.613 17.746 110.590 22088.8 19.671 1450. 95.562 17.945 115.507 26019.8 19.671 1450. 95.562 17.945 11.050 20.088.8 19.621 17.945 11.050 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 11.050 23070.3 19.640 1350. 94.285 17.817 11.050 23070.3 19.671 1450. 95.562 17.945 11.550 26019.8 19.671 19.656 19.756 19.656	200.	65.180	12.180	77.361	2436.0	15.334
275. 69.223 13.224 82.447 3636.5 16.608 300. 70.387 13.520 83.907 4056.0 16.942 325. 71.480 13.795 85.275 4483.3 17.237 350. 72.512 14.050 86.562 4917.5 17.495 375. 73.489 14.287 87.777 5357.8 17.2722 400. 74.419 14.508 88.927 5803.4 17.922 425. 75.304 14.715 90.019 6253.7 18.097 450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 7166.1 18.389 500. 77.4740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 94.82 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.027 17.199 106.226 17198.5 19.466 1000. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1500. 91.452 17.503 188.956 20128.7 19.577 1200. 92.199 17.590 109.789 21108.2 19.601 1350. 91.452 17.503 188.956 20128.7 19.577 1200. 92.199 17.671 110.590 2088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1400. 96.763 18.058 114.821 27989.4 19.707 1650. 97.895 18.58 114.821 27989.4 19.707 1650. 97.895 18.58 114.821 27989.4 19.707 1650. 97.895 18.58 114.821 27989.4 19.707 1650. 97.895 18.58 114.821 27989.4 19.707 1650. 97.895 18.58 114.821 27989.4 19.707 1650. 97.895 18.158 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.775 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.775 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.775 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.775 1700. 98.438 18.205 116.642 30947.7 19.775 1700. 98.438 18.205 116.642 30947.7 19.775 1700. 98.438 18.205 116.642 30947.7 19.775 1700. 98.438 18.205 116.642 30947.7 19.775 1700. 98.986 18.248 117.215 31934.6 19.775 19.756 1900. 100.472 18.367 118.						
300. 70.387 13.520 83.907 4056.0 16.942 325. 71.480 13.795 85.275 4483.3 17.227 350. 72.512 14.050 86.562 4917.5 17.495 375. 73.489 14.287 87.777 5357.8 17.722 400. 74.419 14.508 88.927 5803.4 17.922 425. 75.304 14.715 90.019 6253.7 18.097 450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 7166.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10.445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.590 109.789 21108.2 19.601 1250. 92.919 17.590 109.789 2108.2 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.681 1500. 96.772 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.777 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 99.881 18.290 117.771 22929.9 19.756 1850. 99.982 18.329 118.812 33909.6 19.756 1900. 100.472 18.367 118.839 34874.3 19.773						
325. 71.480						
350. 72.512 14.050 86.562 4917.5 17.495 375. 73.489 14.287 87.777 5357.8 17.722 400. 74.419 14.508 88.927 5803.4 17.922 425. 75.304 14.715 90.019 6253.7 18.097 450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 7166.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 94.882 18.878 650. 81.851 16.070 97.921 10.445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.756 1900. 100.472 18.367 118.839 34897.5 19.756						
375. 73.489 14.287 87.777 5357.8 17.722 400. 74.419 14.508 88.927 5803.4 17.922 425. 75.304 14.715 90.019 6253.7 18.097 450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 7166.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.17						
400. 74.419 14.508 88.927 5803.4 17.922 425. 75.304 14.715 90.019 6253.7 18.097 450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 7166.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 94.98.2 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.446 1000. 89.027 17.199 10						
425. 75.304 14.715 90.019 6253.7 18.097 450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 7166.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 <th></th> <th></th> <td></td> <td></td> <td></td> <td></td>						
450. 76.151 14.907 91.058 6708.1 18.252 475. 76.962 15.087 92.048 7166.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 94.98.2 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 13.98.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.869 17.308 107.177						
475. 76.962 15.087 92.048 7166.1 18.389 500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1250. 92.199 17.550						
500. 77.740 15.255 92.995 7627.4 18.510 550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11998.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.577 1200. 92.199 17.671 110.590 2088.8 19.601 1250. 92.919 17.671						
550. 79.209 15.560 94.769 8558.2 18.715 600. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1250. 92.199 17.590 109.789 21108.2 19.601 1250. 92.919 17.671						
600. 80.574 15.830 96.405 9498.2 18.878 650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.590 109.789 21108.2 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
650. 81.851 16.070 97.921 10445.5 19.011 700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.671 110.590 20288.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1650. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.735 1750. 99.982 18.358 116.839 34897.5 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
700. 83.050 16.284 99.334 11398.9 19.119 750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.570 109.789 21108.2 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.						
750. 84.180 16.476 100.656 12357.1 19.209 800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 11.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17						
800. 85.249 16.649 101.899 13319.5 19.284 850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.590 109.789 21108.2 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562						
850. 86.263 16.806 103.070 14285.3 19.347 900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.671 110.590 22088.8 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.763 <td< th=""><th></th><th></th><td></td><td></td><td></td><td></td></td<>						
900. 87.228 16.949 104.177 15254.0 19.400 950. 88.148 17.079 105.227 16225.2 19.446 1000. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.590 109.789 21108.2 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.763 18.058 114.821 27989.4 19.707 1600. 97.895 <t< th=""><th></th><th></th><td></td><td>103.070</td><td>14285.3</td><td>19.347</td></t<>				103.070	14285.3	19.347
1000. 89.027 17.199 106.226 17198.5 19.486 1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.590 109.789 21108.2 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.671 1450. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895		8 7 • 2 28	16.949	104.177	15254.0	19.400
1050. 89.869 17.308 107.177 18173.7 19.521 1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.590 109.789 21108.2 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.671 1450. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438	950.	88.148				
1100. 90.676 17.410 108.086 19150.5 19.551 1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.590 109.789 21108.2 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1650. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966						
1150. 91.452 17.503 108.956 20128.7 19.577 1200. 92.199 17.590 109.789 21108.2 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.982						
1200. 92.199 17.590 109.789 21108.2 19.601 1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472						
1250. 92.919 17.671 110.590 22088.8 19.621 1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472						
1300. 93.613 17.746 111.360 23070.3 19.640 1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416						
1350. 94.285 17.817 112.101 24052.7 19.656 1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416						
1400. 94.934 17.883 112.816 25035.9 19.671 1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
1450. 95.562 17.945 113.507 26019.8 19.684 1500. 96.172 18.003 114.175 27004.3 19.697 1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
1500 96 172 18 003 114 175 27004 3 19 697 1550 96 763 18 058 114 821 27989 4 19 707 1600 97 337 18 109 115 446 28975 0 19 717 1650 97 895 18 158 116 053 29961 1 19 727 1700 98 438 18 205 116 642 30947 7 19 735 1750 98 966 18 248 117 215 31934 6 19 743 1800 99 481 18 290 117 771 32921 9 19 750 1850 99 982 18 329 118 312 33909 6 19 756 1900 100 472 18 367 118 839 34897 5 19 762 1950 100 949 18 403 119 352 35885 8 19 768 2000 101 416 18 437 119 853 36874 3 19 773						
1550. 96.763 18.058 114.821 27989.4 19.707 1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
1600. 97.337 18.109 115.446 28975.0 19.717 1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
1650. 97.895 18.158 116.053 29961.1 19.727 1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773				_		
1700. 98.438 18.205 116.642 30947.7 19.735 1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
1750. 98.966 18.248 117.215 31934.6 19.743 1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
1800. 99.481 18.290 117.771 32921.9 19.750 1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
1850. 99.982 18.329 118.312 33909.6 19.756 1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
1900. 100.472 18.367 118.839 34897.5 19.762 1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773						
1950. 100.949 18.403 119.352 35885.8 19.768 2000. 101.416 18.437 119.853 36874.3 19.773	1900.					
	1950.	100.949			35885.8	
		101.416	18.437	119.853		19.773
2050. 101.871 18.470 120.341 37863.0 19.777	2050.	101.871	18.470	120.341	37863.0	19.777

Table	47. BI ₃ (gas) [Conti	nued]		
T	-(F°-H°)	(H°=H°)	S°	(H°-H°)	C° p
	T	T			•
οĶ	cal/emole	cal/omole	cal/omole	cal/mole	cau/emolie
2100 · 2150 · 22	102 • 317 102 • 753 103 • 179 103 • 596 104 • 406 104 • 798 105 • 183 105 • 561 106 • 296 107 • 004 107 • 688 108 • 349 109 • 609 110 • 211 110 • 794 111 • 361 111 • 912 112 • 449 112 • 971 113 • 480 113 • 976 114 • 460 114 • 933 115 • 845 116 • 287 116 • 718 117 • 140 117 • 554 117 • 959 118 • 356 118 • 745 119 • 502 119 • 870 120 • 231 120 • 585	18.501 18.531 18.531 18.559 18.559 18.613 18.638 18.662 18.686 18.708 18.751 18.790 18.827 18.861 18.893 18.924 18.952 18.979 19.004 19.028 19.050 19.072 19.028 19.050 19.072 19.111 19.130 19.147 19.164 19.180 19.195 19.210 19.224 19.237 19.250 19.262 19.274 19.262 19.277 19.307 19.318 19.327	120 • 818 121 • 283 121 • 738 122 • 618 123 • 044 123 • 461 123 • 869 124 • 269 125 • 046 125 • 794 126 • 515 127 • 211 127 • 883 129 • 163 129 • 773 130 • 365 130 • 940 131 • 499 132 • 043 132 • 572 133 • 590 134 • 080 134 • 558 135 • 928 135 • 928 136 • 364 137 • 209 137 • 619 137 • 209 137 • 619 138 • 020 138 • 020 139 • 773 139 • 548	38852.0 39841.2 40830.6 41820.2 42809.9 43799.9 44789.9 45780.2 46770.5 48751.6 50733.1 52715.1 54697.4 56680.0 58663.0 60646.2 62629.6 64613.3 6597.2 705549.9 74534.4 76519.1 78503.9 82473.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	19.782 19.786 19.786 19.790 19.793 19.797 19.800 19.808 19.813 19.821 19.825 19.821 19.825 19.833 19.833 19.836 19.833 19.840 19.845 19.845 19.845 19.845 19.845 19.851 19.852 19.853 19.853 19.855 19.855 19.855 19.855 19.855 19.855 19.855 19.855 19.855 19.855 19.855 19.855 19.855 19.855 19.855 19.855
5600. 5700.	120.933 121.276	19.337 19.346	140.270 140.622	108286.4 110272.4	19.860 19.860
5800 • 5900 • 6000 •	121.612 121.943 122.269	19.355 19.363 19.372	140.967 141.307	112258.5 114244.5 116230.7	19.861 19.861 19.861
273 • 15 298 • 15		13.201 13.499	82 • 335 83 • 802	3605.8 4024.7	16.582 16.919

Table 48. BS(gas)					
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C _p °
	T	T			
• K	cal/°mole	cal/°moie	cal/°mole	cal/mole	cal/°mole
50.	32 • 240	6.940	39.180	347.0	6.956
75. 100.	35 • 055 37 • 053	6•946 6•948	42.001 44.002	520•9 694•8	6 • 9 5 6 6 • 957
125.	38 • 604	6.950	45.554	868.8	6.957
150•	39.871	6 • 952	46.823	1042.7	6.961
175.	40 • 943	6.953	47.897	1216.8	6.970
200 •	41.872	6.956	48.828	1391.3	6 • 989
225 • 250 •	42•691 43•425	6•962 6•970	49 • 653 50 • 395	1566•4 1742•4	7 • 0 2 0 7 • 0 6 5
275.	44.090	6.981	51.071	1919.7	7.122
300•	44.698	6.995	51.693	2098.6	7.188
325.	45.259	7.013	52.272	2279.2	7.262
350•	45 • 7 79	7.033	52.813	2461.7	7 • 340
375 • 400 •	46 • 265 46 • 7 21	7•057 7•082	53.322 53.803	2646•2 2832•7	7 • 420 7 • 500
400•	47.152	7.109	54.260	3021.2	7.579
450	47.559	7.137	54.696	3211.7	7.656
475.	47.945	7.166	55.112	3404.0	7.730
500•	48.314	7.196	55.510	3598.1	7.800
550•	49.002	7 • 257	56.260	3991.5	7.930
600• 650•	49 • 636 50 • 225	7.318 7.378	56.955 57.603	4390•9 4795•8	8 • 045 8 • 147
700•	50.773	7.436	58.210	5205.3	8.235
750•	51.288	7.492	58.781	5619.1	8.313
800•	51.774	7.546	59.319	6036.5	8.381
850•	52 • 233	7.596	59.829	6457.0	8 • 440
900 • 950 •	52.668 53.083	7.645 7.691	60•313 60•774	6880•4 7306•2	8 • 493 8 • 540
1000•	53 • 478	7.734	61.213	7734.3	8 • 582
1050•	53.857	7.776	61.632	8164.3	8.619
1100•	54.219	7.815	62.034	8596.1	8.652
1150.	54.568	7.852	6.2 • 419	9029.5	8 • 682
1200•	54 • 903	7 • 887	62.789	9464.3	8.709
1250. 1300.	55 • 225 55 • 536	7•920 7•952	63•146 63•489	9900•4 1033 7• 6	8•734 8•757
1350.	55.837	7.982	63.819	10776.0	8.777
1400.	56 • 128	8.011	64.139	11215.3	8.796
1450.	56.410	8.038	64.448	11655.6	8.814
1500.	56 • 683	8.064	64.747	12096.7	8.830
1550. 1600.	56 • 947 5 7 • 205	8.089 8.113	.65 • 0·37 65 • 318	12538•6 12981•2	8 • 845 8 • 859
1650•	57 • 455	8.136	65.591	13424.5	8 • 873
1700.	57.698	8.158	65.856	13868.4	8 • 885
1750.	57.935	8.179	66.113	14313.0	8.897
1800•	58 • 165	8.199	56 • 364	14758.1	8.908
1850 • 1900 •	58•390 58•610	8 • 218 8 • 237	66 • 608 66 • 846	15203•7 15649•9	8 • 918 8 • 928
1900•	58 • 824	8 • 255	67.078	16096.5	8 • 9 3 8
2000•	59 • 033	8 • 272	67 • 305	16543.6	8 • 947
2050•	59 • 237	8 • 288	67.526	16991.2	8 • 955

Table	8. 48. BS(g	as) [Contin	nued]		
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C° p
	T	T			
۰K	cal/omole	cal/omole	cal/°mole	cal/mole	cal/omole
2100.	59.437	8.304	67.742	17439.1	8.964
2150.	59 • 633	8.320	67.953	17887.5	8.972
2200•	59.824	8 • 335	68.159	18336.3	8.979
2250•	60.012	8.349	68.361	18785.4	8.987
2300•	60.196	8 • 363	68.559	19234.9	8 • 994
2350.	60.376	8.377	68.752	19684.8	9.001
2400.	60.552	8.390	68.942	20135.0	9.007
2450.	60.725	8 • 402	69.127	20585.6	9.014
2500•	60.895	8 • 415	69.310	21036.4	9.020
2600•	61.225	8.438	69.664	21939.1	9.033
2700 •	61.544	8.460	70.005	22842.9	9.044
2800.	61.852	8.481	70.334	23747.9	9.056
2900•	62 • 150	8.501	70.652	24654.1	9.067
3000	62•439 62•719	8 • 5 2 0 8 • 5 3 9	70.959	25561 . 3 26469 . 5	9 • 077 9 • 087
3100 · 3200 ·	62.990	8.556	71•257 71•546	27378.7	9.097
3300.	63.254	8.572	71.826	28289.0	9.107
3400	63.510	8.588	72.098	29200•2	9.117
3500	63.759	8 • 604	72.362	30112.3	9.126
3600•	64.001	8 • 618	72.620	31025.4	9 • 136
3700•	64 • 238	8 • 632	72.870	31939•4	9 • 145
3800.	64.468	8.646	73.114	32854.4	9 • 154
3900•	64.693	8.659	73.352	33770.2	9.163
4000•	64.912	8 • 672	73.584	34686.9	9.172.
4100.	65.127	8.684	73.811	35604.5	9.181
4200•	65 • 336	8 • 696	74.032	36523.0	9.189
4300•	65.541	8 • 708	74 • 248	37442•4	9 • 198
4400 •	65 • 741	8 • 719	74 • 460	38362•6	9 • 207
4500•	65 • 937	8 • 730	74 • 667	39283.8	9 • 215
4600 •	66 • 129	8 • 740	74.869	40205.7	9 • 224
4700 • 4800 •	66•317 66•502	8•751 8•761	75•068 75•262	41128.6 42052.3	9 • 233 9 • 241
4900	66 • 682	8.771	75 • 453	42976.9	9 • 250
5000	66 • 860	8.780	75.640	43902.3	9 • 259
5100.	67.034	8 • 790	75 • 823	44828.6	9 • 267
5200	67.204	8 • 799	76.003	45755.7	9 • 276
5300•	67.372	8 • 8 0 8	76.180	46683.8	9.285
5400•	67.537	8.817	76.354	47612.7	9 • 293
5500•	67 • 699	8 • 826	76.524	48542.4	9.302
5600•	67.858	8.834	76.692	49473.0	9.310
5700•	68.014	8.843	76.857	50404.5	9.319
5800.	68.168	8.851	77.019	51336.9	9.328
5900.	68.319	8 • 859	77 • 179	52270.1	9 • 337
6000.	68 • 468	8 • 867	77.336	53204.2	9 • 345
273.15	44.043	6.980	51.023	1906.6	7.117
298.15	44.655	6.994	51.649	2085.3	7.183

Table	49.	BN(crystal)
-------	-----	-------------

T	-(F°-H°)	(H°-H°)	S°	C° p	١	(H°-H8)
	T	T				
۰K	cal/°mole	cal/°mole	cal/°mole	cal/°mole		cal/mole
0.	0.0	0.0	0.0	0.0		0.0
50.	0.071	0.132	0.203	0.396		6.6
100.	0.264	0.483	0.747	1.280		48.3
150. 200.	0.535 0.846	0.883 1.297	1.418 2.143	2.096 2.994		132.4 259.4
250•	1.182	1.728	2.910	3.904		432.0
300.	1.536	2.166	3.702	4.815		649.8
350.	1.90	2.60	4.50	5.59		910.
400.	2.28	3.02	5.30	6.28		1208.
450.	2.65	3,42	6.07	6.89		1539.
500.	3.04	3.79	6.83	7.44		1895.
600.	3.79	4.48	8.27	8.41		2688.
700.	4.53	5.10	9.63	9.19		3570.
800.	5.25	5.65	10.90	9.80		4520.
900.	5.94	6.14	12.08	10.28		5526.
1000.	6.61	6.57	13.18	10.66		6570.
1100.	7.25	6.96	14.21	10.96		7656.
1200.	7.87	7.30	15.17	11.20		8760.
1300.	8.47	7.61	16.08	11.38		9893.
1400.	9.05	7.88	16.93	11.52		11032.
1500.	9.60	8.13	17.73	11.63		12195.
1600.	10.13	8.35	18.48	11.71		13360
1700.	10.64	8.55	19.19	11.77		14535
1800. 1900.	11.14 11.62	8.73 8.89	19.87 20.51	11.82 11.86		15714. 16891.
2000.	12.08	9.04	21.12	11.90		18080.
2100.	12.52	9.18	21.70	11.9		19278
2200.	12.95	9.31	22.26	12.0		20482.
2300.	13.37	9.42	22.79	12.0		21666.
2400.	13.77	9.53	23.30	12.0		22872.
2500.	14.16	9.63	23.79	12.1		24075.
2600.	14.54	9.72	24.26	12.1		25272.
2700.	14.91	9.81	24.72	12.1		26487.
2800.	15.26	9.90	25.16	12.1		27720•
2900.	15.62	9.97	25.59	12.1		28913.
3000.	15.96	10.34	26.00	12.2		30120.
3100.	16.30	10.10	26.40	12.2		31310.
3200.	16.63	10.16	26.79	12.2		32512.
3300.	16.94	10.23	27.17	12.3		33759
	1.344	1,930	3.274	4.326		527.2
298.15	1.523	2.150	3.673	4.783		641.0

Table 50. BN (gas) (H°-H°) -(F°-H°) (Ho-Ho) So T cal/omole cal/omole cal/mole cal/omole cal/omole ۰K 31.352 6.924 50. 38.276 346.2 6.956 6.935 75. 34.162 41.097 520.1 6.957 36.158 6.940 43.098 694.0 6.957 100. 37.707 6.944 44.651 868.0 6.957 125. 38.973 6.946 45.919 1041.9 6.958 150. 6.948 175. 40.044 46.992 1215.9 6.960 40.972 6.950 47.922 1389.9 6.964 200 • 225. 41.791 6.951 48.742 1564.1 6.972 250. 42.523 6.954 49.477 1738.6 6.987 43.186 275. 6.958 50.144 1913.5 7.009 43.792 6.964 50.755 2089.1 7.040 300. 6.971 7.078 325. 44.349 51.320 2265.5 44.866 6.980 51.847 2443.0 7.124 350. 6.991 52.340 7.176 45.348 2621.8 375. 7.005 52.805 2801.9 7.233 400. 45 . 800 7.293 425. 46 • 225 7.020 53.245 2983.5 7.037 53.664 3166.6 7.356 450. 46.627 475 . 47.008 7.055 54.063 3351.3 7.419 47.370 7.075 54.445 3537.5 7.483 500. 48.046 7.118 55.164 3914.8 7.609 550. 48.668 7.164 55.832 4298.3 7.729 600. 49.243 7.212 56.455 4687.6 7.840 650. 700. 49.779 7.260 57.040 5082.2 7.943 750. 50.282 7.309 57.591 5481.7 8.037 5885.7 800. 50.755 7.357 58.112 8.122 58.607 51.203 7.404 850. 6293.8 8.199 51.627 7.451 59.078 6705.5 8.268 900. 52.031 7.495 59.526 7120.5 8.331 950. 7.538 52.417 7538.4 1000. 59.955 8.387 7959.1 52.785 7.580 8.439 1050. 60.366 53.139 7.620 60.759 8382.2 8 • 486 1100. 7.659 53.479 61.137 8807.6 8.528 1150. 53.805 7.696 61.501 9235 • 0 8.567 1200 • 54.120 7.731 1250. 61.852 9664.2 8.603 54 • 424 7.766 62.190 10095.2 8.635 1300 • 54.718 7.798 1350. 62.516 10527.7 8.666 55 • 002 7.830 8.694 62.832 10961.7 1400 • 1450. 55 • 277 7.860 63.137 11397.1 8.719 55 . 544 7.889 63.433 8.743 1500 • 11833.6 1550 • 55 • 8n3 7.917 63.720 12271.4 8.766 1600. 56.055 7.944 12710.2 8.787 63.999 7.970 1650. 56 • 300 64.270 13150.0 8.807 56.538 7.995 1700. 64.533 13590.8 8.825 56.770 8.019 1750. 64.789 14032.5 8.842 1800. 56.997 8.042 14475.1 65.038 8.859 57.217 1850. 8.064 65.281 14918.4 8.875 57.433 8.086 1900. 65.518 15362.5 8.889 57.643 1950 • 8.106 65.749 15807.3 8.904 57.848 8.126 65 . 975 2000 • 16252.9 8.917 2050 • 58 • 049 8.146 66 • 195 16699.0 8.930

Table 50. BN(gas) [Continued]					
T	-(F°-H°)	(H°-H°)	S°	(H°-H°)	C°
	${f T}$	T			
۰K	cal/°mole	cal/omole	cal/omole	cal/mole	cal/omole
2100.	58.246	8.165	66.411	17145.8	8.942
2150.	58.438	8.183	66.621	17593.3	8 • 954
2200.	58.626	8.201	66.827	18041.3	8.966
2250.	58.811	8.218	67.029	18489.8	8.977
2300.	58.992	8 • 234	67.226	18938.9	8.987
2350•	59.169	8 • 250	67.419	19388.6	8 • 998
2400.	59.343	8 • 266	67.609	19838.7	9,008
2450	59.514	8.281	67.795	20289.3	9.017
2500 •	59.681	8 • 296	67.977	20740•4 21644•0	9 • C 27 9 • C 45
2600 • 2700 •	60•007 60•322	8 • 325 8 • 352	68•332 68•673	22549.4	9.049
2800	60.626	8.377	69.003	23456.4	9.079
2900	60.920	8 • 402	69.322	24365.1	9.095
3000	61.205	8.425	69.631	25275.4	9.110
3100•	61.482	8.447	69.930	26187.1	9.125
3200•	61.751	8.469	70.219	27100.4	9.140
3300•	62.011	8.489	70.501	28015.1	9.154
3400•	62,265	8.509	70.774	28931.1	9.168
3500•	62.512	8.528	71.040	29848.6	9 • 181
3600•	62.753	8 • 547	71.299	30767.4	9.195
3700•	62.987	8.564	71.551	31687.6	9.208
3800 • 3900 •	63 • 216 63 • 439	8•581 8•598	71•797 72•03 7	32609·1 33531·8	9 • 221 9 • 234
4000	63.657	8.614	72.271	34455.9	9.247
4100	63.870	8.630	72.499	35381.3	9.260
4200	64 • 078	8.645	72.722	36307.9	9.273
4300.	64.281	8.659	72.941	37235.8	9.285
4400.	64.481	8.674	73.154	38164.9	9.298
4500 •	64.676	8 • 688	73.363	39095.3	9.310
4600.	64.867	8.702	73.568	40026.9	9.323
4700.	65 • 054	8.715	73.769	40959.8	9.335
4800.	65.238	8.728	73.966	41893.9	9.348
4900•	65.418	8.741	74.158	42829.3	9.360
5000 · 5100 ·	65•594 65• 7 68	8•753 8•765	74•348 74•533	43765.9 44703.8	9.372
5200	65.938	8 • 7 7 7	74.716	45642.9	9 • 385 9 • 397
5300	66.106	8.789	74.895	46583.2	9.410
5400.	66.270	8.801	75.071	47524.8	9.422
5500.	66 • 432	8.812	75.244	48467.6	9 • 435
5600.	66.590	8.824	75.414	49411.7	9.447
5700•	66.747	8.835	75.581	50357.1	9.460
5800•	66.900	8 • 845	75.746	51303.7	9.472
5900•	67.052	8 • 856	75 • 908	52251.5	9 • 485
6000•	67.201	8 • 867	76 • 067	53200•6	9 • 498
273.1	5 43 • 139	6.958	50.097	1900.5	7.007
298 • 1		6.963	50.712	2076.0	7.037

Table 51. B ₃ N ₃ H ₂ (gas) Borazine					
T	-(F°-H°)	(H°-H ₀)	S°	(H°-H°)	C °
	T	T			
• K	cal/ºmole	cal/omole	cal/°mole	cal/mole	cal/°mole
50.	39.293	7.956	47.248	397.8	8.020
75•	42.531	8.043	50.574	603.2	8.501
100•	44.872	8 • 264	53.136	826.4	9.414
125 · 150 ·	46.751 48.360	8.611 9.065	55.362 57.424	1076.4 1359.7	10.626 12.078
175.	49.797	9.611	59.408	1682.0	13.736
200.	51.120	10.239	61.360	2047.8	15.551
225•	52.366	10.935	63.301	2460.4	17.467
250•	53.557	11.686	65 • 243	2921.5	19.428
275.	54.707	12.479	67.187	3431.8	21.389
300 • 325 •	55•828 56•926	13.302 14.145	69 • 131 71 • 071	3990•7 4597•1	23.316 25.184
350	58 • 006	14.145	73.003	5249.3	26.977
375.	59.070	15.854	74.924	5945.3	28.689
400.	60.120	16.707	76.827	6683.0	30.314
425 •	61.153	17.554	78.712	7460.3	31.853
450.	62 • 185	18.389	80.574	8274.9	33.308
475 • 500 •	63 • 202 64 • 208	19.211 20.017	82•412 84•224	9125.0 10008.4	34.682 35.980
550.	66 • 189	21.578	87.768	11868.1	38 • 364
600.	68.131	23.068	91.199	13840.6	40.497
650.	70.034	24.484	94.517	15914.3	42 • 415
700•	71.898	25.827	97.725	18079•1	44.147
750.	73.724	27.102	100.826	20326.3	45.718
800 • 850 •	75.512 77.263	28•311 29•458	103 • 822 106 • 721	22648 _• 5 25039 _• 1	47 • 149 48 • 455
900•	78 • 978	30.547	109 • 525	27492.2	49.653
950•	80 • 657	31.582	112.239	30002.8	50.752
1000•	82 • 302	32.566	114.868	32566.0	51.765
1050•	83.914	33.503	117.417	35177.9	52.698
1100 • 1150 •	85•493 87•041	34.395 35.246	119.889 122.287	37834.6 40532.8	53 • 559 54 • 356
1200•	88.559	36.058	124.616	43269.2	55.094
1250•	90.046	36 • 833	126.879	46041.2	55.777
1300.	91.506	37.574	129.080	48846.1	56.412
1350•	92.937	38.283	131.220	51681.6	57.001
1400•	94.342	38.961	133.303	54545.5	57.549
1450• 1500•	95.720	39.611	135 • 331	57435.9 60350.9	58.059
1550.	97•074 98•403	40.234 40.831	137.308 139.234	63288 • 8	58• 534 58•978
1600.	99.708	41.405	141.113	66248.1	59.392
1650.	100.991	41.956	142.947	69227.5	59.779
1700.	102.251	42.486	144.737	72225.6	60.141
1750.	103.490	42.995	146.485	75241.2	60.480
1800.	104.708	43 485	148 • 193	78273•2	60.797
1850. 1900.	105•906 107•085	43.957 44.412	149.863 151.496	81320.6 84382.4	61.096 61.376
1950.	108.244	44.850	153.094	87457.8	61.639
2000•	109.385	45.273	154.658	90546.0	61.887
2050.	110.508	45.681	156.189	93646.3	62.120

BaNaH2 (gas) Borazine [Continued] (Ho-Ho) So cal/omole cal/omole cal/omole cal/mole cal/omole OK 62.340 2100 • 111.613 46.075 157.688 96757.8 62.547 99880.0 2150. 112.702 46.456 159.158 113.774 46.824 160.598 103012.3 62.743 2200. 2250. 114.830 47.180 162.010 106154.2 62 • 929 47.524 109305.0 63.104 2300. 115.871 163.395 47.857 164.754 112464.4 63.270 2350. 116.897 2400. 117.908 48.180 166.088 115631.8 63.427 63.576 2450. 118.904 48.493 167.397 118806.9 121989.3 63.717 2500. 119.887 48.796 168.683 121.812 49.375 128374.3 63.979 2600. 171.187 49.920 2700. 123.686 173.606 134784.2 64.216 2800. 125.511 50.435 175.946 141216.7 64 • 431 127.289 50.921 178.210 147669.7 64.626 2900. 129.024 51.380 180.404 154141.4 64.804 3000. 160630.0 182.532 64.967 130.715 51.816 3100. 52.229 184.597 167134.3 65.116 3200. 132.367 52.622 173652.8 65.253 3300. 133.980 186.602 3400. 135.557 52.995 188.552 180184.5 65.379 3500. 137.098 53.351 190.449 186728.3 65 . 495 65.602 138.606 53.690 192.296 193283.2 3600. 54.013 199848.5 65.702 3700. 140.081 194.095 141.526 54.322 195.848 206423.3 65.794 3800. 54.617 197.558 213007.1 65.879 3900. 142.941 199.227 65.959 4000. 144.327 54.900 219599.0 4100. 145.686 55.170 200.857 226198.7 66.033 147.019 55.430 202.449 232805.5 66.102 4200. 55.679 204.005 239419.0 66.167 4300. 148.326 149.609 55.918 205.527 246038.8 66.228 4400. 4500. 150.868 56.148 207.016 252664.4 66.284 56.369 259295.6 66.338 152.105 208 • 473 4600. 56.581 265931.9 153.319 209.900 66.388 4700. 154.513 56.786 211.299 272573.1 66.435 4800. 56.983 155.686 212.669 279218.8 66.479 4900. 57.174 5000. 156.839 214.012 285868.8 66.521 5100. 157.973 57.357 215.330 292522.9 66.561 216.623 57.535 299180.8 5200. 159.088 66.598 57.706 305842.4 5300 • 160.186 217.892 66.633 161.266 57.872 219.138 312507.4 66.666 5400 • 55000 162 • 3.29 58.032 220.361 319175.6 66.698 58.187 5600. 163.376 221.563 325847 n 66.728 332521.2 58.337 222.745 66.757 5700. 164.408 58.462 5800. 165 • 423 223.906 339198.3 66.784 166 • 424 58.623 345877.9 5900 • 225.048 66.810 167.411 58.760 352560.1 66.834 60000 226 • 171 273.15 54.623 3392.3 12.419 67.043 21.245 298.15 55.746 3947.7 13.241 68.987 23.175 328.40 57.074 14.260 71.334 4683.1 25.432

Table 52. B4C(crystal)					
Т	-(F°-H°)	(H°-H°)	S°	C° p	(H°-H ₀)
	T	T			
•K	cal/°mole	cal/°mole	cal/°mole	cal/°mole	cal/mole
50 100 150 200 250 300 350 400 450 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000	0.0 0.09 0.099 0.323 0.731 1.302 2.006 2.81 3.70 4.64 5.61 7.60 9.57 11.49 13.35 15.15 16.86 18.52 20.10 21.61 23.06 24.46 25.80 27.08 28.32 29.51	0.0 0.028 0.300 0.959 1.976 3.213 4.554 5.95 7.33 8.63 9.82 11.90 13.66 15.17 16.47 17.58 18.55 19.38 20.11 20.75 21.32 21.82 22.27 22.68 23.05 23.39	0.0 0.037 0.39) 1.282 2.707 4.515 6.560 8.76 11.03 13.27 15.43 19.50 23.23 26.66 29.82 32.73 35.41 37.90 40.21 42.36 44.38 46.28 48.07 49.76 51.37 52.90	0.0 0.116 1.214 3.525 6.594 9.718 12.728 15.77 18.09 19.82 21.20 23.37 25.02 26.33 27.28 27.93 28.39 28.72 28.97 29.17 29.32 29.5 29.6 29.7 29.8 29.8	0.0 1.4 30.0 143.8 395.2 803.2 1366.2 2082.5 2932.0 3883.5 4910.0 7140.0 9562.0 12136.0 14823.0 17580.0 20405. 23256. 26143. 29050. 31980. 34912. 37859. 40824. 43795. 46780.
273.15 298.15	1.614	3.826 4.504	5 • 440 6 • 482	11.184	1045 • 1 1342 • 9

PART II SYSTEMS AND COMPOUNDS CONTAINING TWO OR MORE LIGHT METALS

II. 1. ALLOYS AND INTERSTITIAL COMPOUNDS OF BERYLLIUM WITH ALUMINUM, MAGNESIUM, SILICON, TITANIUM, AND ZIRCONIUM

Thomas W. Mears

The alloy and intermetallic compounds of beryllium which may have some interest are discussed in this report. A literature search is underway for alloys and intermetallic compounds of aluminum, lithium, and magnesium with each other, and with silicon, titanium and zirconium. This work will be included in the next Technical Summary Report (July 1, 1961). In Appendix A of the present report phase diagrams of a number of binary metallic systems of interest have been reproduced from a well-known reference source [3].

When an intermetallic compound is formed between elements, a material more dense than that calculated on a partial atomic volume basis may be formed. Unfortunately, energy is lost as the heat of mixing (formation) of the alloy or interstitial compound. If this loss of energy is offset by the heat of mixing of the combustion products resulting from these alloys, then the volume efficiency of the alloy will be greater than either of the components. However, if these heats of mixing do not cancel out, then there is little advantage to using an alloy or intermetallic compound other than the possible improvement of combustion characteristics.

The data available on the intermetallic compounds of beryllium with aluminum, magnesium, silicon, titanium, and zirconium is rather sparse, being principally microscopic and x-ray data. No heat data are available for beryllium alloys. For some information on beryllium borides, see pp. 146 and 150.

Beryllium-Aluminum system

The complete liquid-solid equilibrium curve for the beryllium-aluminum system has been reported [1,2], and is shown in Fig. 2, Apprndix A. The eutectic temperature has been reported from 644° - 647°C [1,2,4,5] and the composition from 0.5 to 1.4 wt. percent (1.5 to 4.1 atom percent) [1,2,4,5,6,7]. The solid solubility of beryllium in aluminum has been determined by methods that give consistent results. These are hardness [4], lattice parameter [5], and microhardness [8,9]. These values range as follows:

Temp. (°C)	wt. % Be	at. % Be
645°C	0.05 - 0.06	0.15 - 0.17
600 ° C	0.02 - 0.03	0.06 - 0.09
500°C	0.005 - 0.01	0.014-0.03

The solubility is practically zero at lower temperatures. Thermal, microscopic, and hardness data indicate the formation of solid solutions on the beryllium side containing as high as 4-5 wt. % (1.4-1.7 at. %) aluminum [2]. However, paramagnetic and other microscopic studies show a solubility of definitely under 1 wt. % aluminum [10].

Lattice spacings have been determined for aluminum-rich solutions as follows [5,11]:

Wt % Be	Quenching Temp. (°C)	<u>a(A)</u>	$D^{25}(g/ml)$
0	630	4.0493	2.71
0.01	630	4.0488	2.78
0.02	630	4.0478	2.94
0.03	630	4.0473	3.13
0.04	630	4.0471)	
0.05	600	4.0482	2-phase alloy (Al + Be)
0.06	r.t.	4.0493	

For the beryllium-rich side [12]:

Wt % Al	<u>a(A)</u>	c(A)	c/a at 25°C
0	2.2854	3.5829	1.5677
0.62	2.2853	3.5824	1.5677

Beryllium-Magnesium system

All attempts to dissolve beryllium in magnesium have been unsuccessful. These include heating the magnesium to its boiling point, the use of powder compacts, electrolytic deposition of beryllium on fused magnesium, and the reduction of beryllium fluoride with molten magnesium [13,14,15]. The rate of oxidation of high magnesium alloys is reduced by small additions of beryllium, but only traces are actually dissolved [16,17]. By heating magnesium and beryllium to the melting point of beryllium in 100 atmospheres of hydrogen, a microscopically homogeneous phase containing 0.5 wt. % beryllium was obtained. However, x-ray analysis did not indicate any true solubility of beryllium in magnesium [18].

A microscopic investigation indicates a solubility of magnesium in beryllium of up to 0.5 wt. % [12]. Another worker claims magnesium solubility of up to 1 wt. percent in beryllium [19].

An intermetallic compound $Be_{13}Mg$ has been prepared by powder metallurgy methods [20]. This compound has a face-centered cubic $NaZn_{13}(D2_3)$ structure with $a=10.166\pm5A$.

Beryllium-Silicon system

The liquid-solid phase diagram for the beryllium-silicon system has been determined [21], and is plotted in Fig. 10, Appendix A. This shows a eutectic composition of approximately 33 at. % (61 wt. %) silicon and a eutectic temperature of 1090°C. The eutectic data has also been determined [22] as 38.5 at. % (66.1 wt. %) silicon at 1090°C. From microscopic and x-ray work, the solubility of silicon in solid beryllium is negligible [12,23]. From the solid-liquid curve, the existence of a silicide claimed earlier is doubtful.

Beryllium-Titanium system

The existence of two beryllium-titanium compounds was noted earlier in addition to rather restricted terminal solid solutions. More recently, two additional intermetal compounds have been observed [24].

The lattice spacing for an alloy containing 0.73 percent titanium (quenched at 1000°C) is the same as pure beryllium [12]. The solubility of beryllium in β -titanium at 950°C is between 1 and 2 percent, while its solubility in α -titanium is less than 1 percent [25].

Bel2Ti has a disordered hexagonal structure with 48 molecules to the unit cell, a= 29.44 A, c = 7.33 A, D = 2.30 g/cm³ (macroscopic) [26]. However, this material was not observed in the powder patterns on samples prepared at UCRL [24].

Be₂Ti is a face-centered cube of the Cl5 (Mg Cu₂) type, where a = 6.428 A at 66.6 at. % beryllium. The composition is somewhat variable. A molal volume of 20.1 cm³ has been reported for Be₂Ti [27].

Bel7Ti2 exists in two modifications. α -Bel7Ti2 has a rhombohedral lattice of the Nb2Bel7 type: a=7.392 A and c=10.79A. β -Bel7Ti2 also has a rhombohedral lattice but is of the Th2Ni17 type: a=7.36A, and c=7.30A [24].

BegTi has a rhombohedral lattice and is of the NbBeg type: a=4.49A, and c=21.32A [24].

Compounds of the structure BeTi, Be₄Ti, and Be₁₀Ti have been indicated by x-ray diffraction studies of sintered samples showing the appropriate analysis [28].

The data may be summarized as follows:

Compound	Type	Lattice Type	<u>a(A)</u>	<u>c(A)</u>	$D(g/cm^3)$
BeTi		(indicated)			
Be ₂ Ti	MgCu ₂	Face-Centered Cube	6.448		3.3
Be ₃ Ti	NbBe ₃	Rhombohedral	4.49	21.32	
Be ₄ Ti		(indicated)			
Be _{lo} Ti		(indicated)			
Be _{l2} Ti	ThMn ₁₂	disordered hexagonal	29.44	7.33	2.30
α-Be ₁₇ Ti ₂	Nb ₂ Be ₁₇	Rhombohedral	7.392	10.79	
β-Be _{l7} Ti ₂	Th ₂ Ni ₁₇	Rhombohedral	7.36	7.30	

Beryllium-Zirconium system

The liquid-solid phase diagram for the beryllium-zirconium system has been studied by means of microscopic and x-ray techniques [29]. A tentative diagram based on this data is shown in Fig. 11, Appendix A. From this diagram there appear to be four intermediate phases, Be₁₃Zr, Be₂Zr, Be₇Zr, and Be₄Zr. More recently other intermetallic compounds have been observed, such as Be₅Zr [24,30], Be₁₃Zr [31], and Be₁₇Zr₂ [30].

Be₂Zr was shown by x-ray powder patterns to be of the hexagonal (AlB₂) structure, where a = 3.82A, c = 3.24A, U = 41.9A³, and D_{x-ray} = 4.32 g/cm³. [32].

Be₅Zr has a hexagonal structure of the CuZn₅ type, where a = $4.564 \pm 0.002A$, c = $3.485 \pm 0.002A$, and Dx = 3.60 g/cm^3 [30].

 $Be_{13}Zr$ has a face-centered cube with 8 entities per unit cell with a = 10.047A [31]. A density of 2.72 g/cm³ has been calculated.

Be $_{17}\mathrm{Zr}_{2}$ has a rhombohedral cell with a = 5.694 ± 0.005A, α = 83.02 ± 0.02° and Dx = 3.081 g/cm³ [30]. It is isomorphous with Nb₂Be $_{17}$.

The solid solubility of zirconium in beryllium is slight, the lattice spacing for an alloy containing 0.65% zirconium being virtually the same as pure beryllium [12]. There is evidence to indicate some solid solubility of beryllium in zirconium [29]. There is an obvious eutectic at approximately 63 at. % (94 wt. %) zirconium at approximately 980°C [29,33]. This curve would also indicate a eutectic very close to 100% beryllium.

Contraction in Alloy Formation

The contractions of the metals upon the formation of alloys are shown in the following table. In general, this contraction runs about 2-2.5%. The notable exception is Be₂Zr, which shows an expansion on alloying of 5.42%. It should be pointed out that these values are small differences of relatively large numbers and are probably good to only \pm 3%.

Since no heat-of-formation data is available for either the alloys or the rather complex mixtures of combustion products, it is difficult to assess the real worth of these contractions on mixing. If the heats of formation of the final mixtures of combustion products roughly offset the energy lost in the formation of the alloy, then the increase in density will result in an increase in heat of reaction per unit volume.

RELATIVE CONTRACTION ON FORMATION OF BERYLLIUM ALLOYS

<u>Compound</u>	<u>Density</u>	M.W.	Molecular Volume V _M	Sum of atomic volumes $\Sigma V_{ m A}$	Percent increase in volume $\frac{V_{M} - \Sigma V_{A}}{\Sigma V_{A}} \times 100$
Be ₁₃ Mg	1.83	141.49	77.3	77.7	-0.51
Be ₂ Ti	3.3	65.92	20.0	20.4	-1.96
Be _{l2} Ti	2.30	156.06	67.8	69.4	-2.31
Be ₂ Zr	4.32	109.25	25.3	23.9	+5.86
Be ₅ Zr	3.60	136.29	37.9	38.6	-1.81
Be ₁₃ Zr	2.72	208.39	76.6	77.8	-1.54
Be ₁₇ Zr ₂	3.081	335.66	108.9	111.5	-2.33
Ве	1.85	9.013	4.9		
Mg	1.74	24.32	14.0		
Ti	4.507	47.90	10.6		
Zr	6.49	91.22	14.1		

LITERATURE REFERENCES

- [1] Oesterheld, G., Z. anorg. Chem. 97, 9, (1916).
- [2] Losano, L., Alluminio 9, 8 (1940).
- [3] Hansen, M., "Constitution of Binary Alloys," second edition, McGraw-Hill Book Co., Inc., New York, Toronto, and London, 1958.
- [4] Archer, R. S., and Fink, W. L., Trans. Am. Inst. Mining Met. Engr. 78, 616 (1928).
- [5] Micheeva, W.I., Izvest. Akad. Nauk SSSR (Otdel. Khim. Nauk) 775 (1940).
- [6] Kroll, W., Metall u Erg. 613 (1926).
- [7] Hass, M. and Uno, D., Z. Metallkunde 22, 277 (1930).
- [8] Bückle, N., Z. Metallkunde 37, 43 (1946).
- [9] Bückle, N., Comp. rend. 230, 752 (1950).
- [10] Sloman, A.J., J. Inst. Metals 49, 369 (1932).
- [11] Markarov and Tarschisch, Z. fiz. Khim SSSR 9, 350 (1937).
- [12] Kaufmann, Gordon, and Lillie, Trans. Am. Soc. Metals 42, 785-844 (1950).
- [13] Oesterheld, G., Z. anorg. Chem. 97, 14 (1916).
- [14] Kroll, W. and Jesse, E., Wiss. Veröffentl Siemons-Konzern 10, 29 (1931).
- [15] Payne, R.J.M. and Houghton, J.L., J. Inst. Metals 49, 363 (1932).
- [16] Peredelski, K.V., Legkie Metal 5, 39 (1936).
- [17] Sauerwald, F., Z. anorg. Chem. <u>258</u>, 296 (1949).
- [18] Pereslegin, V. A., Trudy. Tsintr. Gosodarst Nauch Issledowatel Inst. 162 (1937).
- [19] Sawyer, C.B. and Kjellgren, B., Metals and Alloys 11, 166 (1940).
- [20] Baker, T. W. and Williams, J., Acta Cryst. 8, 519 (1955).

Literature References (Cont.)

- [21] Massing, G., and Dahl, O., Wiss. Veroffentl. Siemons-Konzern $\underline{8}$, 255 (1929).
- [22] Hajicek, O., Hutnick Listy 3, 265 (1948).
- [23] Sloman, N.A., J. Inst. Metals 49, 365 (1932).
- [24] Zalkin, A., Sands, D. E., Bedford, R. G., and Krikorian, O. H., UCRL No. 5876 (Feb. 1960).
- [25] Craighead, Simmons, and Eastwood, Trans. Am. Inst. Mining Met. Engr. 188, 485 (1950).
- [26] Raeuchle and Rundle, Acta Cryst. 5, 85 (1952).
- [27] Van Arkle, private communication from National Research Corporation, Boston, Mass., (October 1960).
- [28] Ehrlich, Z. anorg. Chem. 259, 1 (1949).
- [29] Hausner, H. H. and Kalish, H. S., Trans. Am. Inst. Mining Met. Engr. 188, 59 (1950).
- [30] Zalken, A., Bedford, R. G., and Sands, D. E., Acta Cryst 12, 700 (1959).
- [31] Baenziger, N. C., and Rundle, R. E., Acta Cryst. 2, 258 (1949).
- [32] Neilson, J. W., and Baenziger, N. C., Acta Cryst 7, 132 (1954).
- [33] Mott, B. W., quoted by P. C. L. Pfeil, Atomic Energy Research Establishment (England), Report MT/N-11 (1952).

II. 2. THERMODYNAMIC PROPERTIES OF SOME BORIDES

George T. Armstrong and L. A. Krieger

The borides of the metals are a group of compounds to which little research activity was devoted for many years, although the existence of several of them has been known for 60 to 100 years. The lack of activity can probably be attributed to the difficulty of preparing and characterizing pure phases or even phases of completely known composition in the boron alloy system. There has been a striking increase in activity in the study of these compounds in recent years, and the growth of the literature has been so rapid as to make reviews both valuable and necessary. A list of ten papers of essentially a review nature, and sources of compiled data on the chemistry and physical properties of borides is given at the beginning of the references for this chapter. An indication of the rapid growth of activity in recent years is given by an examination of the references given in Aronsson [1], whose review is the most recent. Of 192 references only 40 were published prior to 1950. His review is a comprehensive and critical examination of the available information on the preparation, characterization and physical properties of the known borides. A second review by Aronsson [2] contains much of the same, and small amounts of different information. Another comprehensive review of the borides has been provided by Samsonov and Markovskii [3], which is very complete up to 1956. The authors have contributed to much of the recent Russian work in this field. From the relative numbers of references to Russian and American work in these reviews, it appears that the activity in the two countries is comparable in magnitude. Kieffer and Schwarzkopf [5] gave an earlier review (1953). Gmelin [6] provides uncritcal summaries of work on various borides in the appropriate volumes.

In a more specialized paper Brewer and Haraldsen [4] contributed a study of the thermodynamic properties of refractory borides, which has provided most of the thermodynamic data cited in the reviews previously mentioned. The estimates contained in it still remain the largest body of thermodynamic data available for the borides. Other compilations of data provide summaries of special properties of the borides. Hansen and Anderko [7] give phase diagrams and discuss the phase relationships; and Pearson [8] gives the lattice constants and structures of many borides. Reviews of more restricted fields have been given by Markovskii and Kondrashev [9] and by Kohn, Katz and Giardini [10].

No attempt has been made here to evaluate completely the thermodynamic properties of the borides, with the exception of the heats of formation. A selection of best values for the heats of formation is shown in Table 1. Some other thermodynamic data, however, are briefly mentioned in appropriate places in the discussion. In addition densities given by previous reviews are listed in Table 1. The borides will be briefly discussed by element, for Li, Na, Be, Mg, Al, Zr, Ti, C, N. In general heats of formation and other thermodynamic data are very incomplete. This state of affairs reflects the general lack of study of the borides as a group until recent years, and also the difficulty of obtaining samples adequately well characterized for thermodynamic studies to be meaningful.

Lithium

There is no real evidence for the formation of a lithium boride.

Sodium

While there is evidence that a hexaboride might possibly be formed under some conditions [3], no borides of sodium have been prepared.

Beryllium

The compound Be2B has been prepared, its structure has been determined [1,3], but no thermodynamic information has been recorded.

Two compounds BeB2 and BeB6 are reported [1,3] but little information about them has been presented.

Magnesium

An early formula Mg_3B_2 still cited in some reference works is now thought not to occur [2,3].

MgB₂ has been prepared and its crystal structure determined [1,3]. The low temperature heat capacity was determined by Swift and White [11].

MgB4 has been reported by Russel, Hirst, Kanda, and King [12]. The low temperature heat capacity was determined by Swift and White [11].

Two higher borides are reported [12] for which the formulas MgB6 and ${\rm MgB}_{12}$ are proposed.

Aside from the specific heat data of Swift and White, no other thermodynamic data were found for the magnesium borides, although perhaps some estimates could be made of their relative stabilities on the basis of formation and decomposition temperatures.

Aluminum

The synthesis and structure of $A^{\ell}B_2$ are well known. The phase diagram of the low boron range of the $A^{\ell}-B$ system has been given [7] though there is some inconsistency in reported data [3]. Likl and Jenitschek [13] (cited by [3]) claim $A^{\ell}B_2$ is unstable at room temperature with respect to $A^{\ell}B_4$ and the metal. The relationship of the latter phase to $A^{\ell}B_{10}$ reported by Kohn, et al [10] is not clear, as the compound $A^{\ell}B_4$ is not mentioned by them.

No other information has been presented about AlB_4 .

Kohn, et al [10] demonstrate the existence of AlB10 and have determined its structure.

Some confusion has existed about the compound A^lB_{12} for which several structures have been reported. The structures were reviewed by Kohn, et al [10] who designated as $\alpha-A^lB_{12}$ the red-transmitting, tetragonal, pseudocubic form which has been called a graphite-like form. They designated as $\beta-A^lB_{12}$ the amber colored, orthorhombic, pseudo-tetragonal form which has been called diamond-like. A third form, monoclinic A^lB_{12} is stated by Kohn, et al [10] and by Parthé and Norton [14] to be in reality a crystalline form of boron.

The compound AlB_{12} was for a long time known as "crystallized boron". The specific heat of "diamond-like boron" was determined by Weber [15] over the range -40 to +260°C. This data can presumably be attributed to β -AlB₁₂. However, because at the time the work was done, the phases were not well understood, the validity of this assignment must be an open question.

No other measurements of thermodynamic properties have been found for the aluminum borides.

Titanium

Phases as follows have been reported for titanium borides Ti₂B (tetragonal or hexagonal), TiB (orthorhombic), TiB (cubic), TiB₂ (hexagonal), Ti₂B₅ (hexagonal) and TiBx (x ~ 10) [1,3,16]. Of these Aronsson [1] is of the opinion that the phase identified as "Ti₂B" is in reality TiB (orthorhombic) and that the phase identified as TiB (cubic) is in reality a Ti(0,B) phase.

Brewer and Haraldsen [4] have estimated heats of formation, ΔHf_{298}^0 , of the borides of titanium as follows: $\overline{\text{X}}\text{TiB}_{\text{X}}$ (x < 2), ~ -36; $\frac{1}{2}\text{TiB}_{2}$, ~ -36; $\frac{1}{2}\text{TiB}_{2}$, ~ -36; $\frac{1}{2}\text{TiB}_{3}$, < -21 kcal/mole B. These values are based on the relative stabilities of the borides in the presence of graphite and the fact that Ti will reduce Mo and W borides. No other data is known which is applicable to the titanium borides other than TiB2. For TiB2 several experimental measurements have been made of the heat of formation. Samsonov and Markovskii [3] cite the value -70.04 kcal/mole TiB2, without prior reference. This value is also given by Samsonov [17] in an experimental report on the thermodynamic relations between TiO2, TiO, Ti2O3, B4C, TiB2, C and CO. Without translation we have been unable to determine whether or not this quantity was derived from the equilibria studied. Essentially the same value is given by Krestovnikov and Vendrikh [18]. The abstract is obscure, and does not clearly indicate the mode of obtaining the heat of formation.

The heats of combustion of boron and of TiB2 were determined by Epel'baum and Starostina [19] by oxygen-bomb calorimetry. They report $\Delta \text{Hf}_{298}^{\,\,\text{o}} = -66.85 \pm 2.68 \text{ kcal/mole for TiB2}$ and 287.8 ± 2.17 or 289.47 ± 3.1 for B203. Because the heat measurement itself is not given in the abstract, it is not possible to know whether the value reported for the heat of formation of TiB2 is consistent with the value for the heat of formation of TiB2 is consistent with the value for the heat of formation of TiO2 used in these reports (See NBS Report 6645 for example). The heat of combustion of B found by Epel'baum and Starostina is appreciably lower than the accepted heat of formation of B203 (-305.34 $\pm 0.30 \text{ kcal/mole}$ [20]). This fact suggests that the heat measurement may have had an error of method.

Considering the various estimates and measurements, we select $-70.0 \pm 4.0 \text{ kcal/mole}$ as the best value for the heat of formation of TiB₂.

Preliminary vaporization studies on TiB2 have been made by Schissel and Williams [21]. Margrave and co-workers [22] report that they are measuring the heat content of TiB2 at high temperatures. Krestovnikov and Vendrikh [18] tabulate the heat, entropy and free energy of formation of TiB2 between 298° and 3253°K.

Zirconium

Three zirconium borides are currently considered to exist, ZrB, ZrB2 and ZrB12. Of these Aronsson [1] casts doubt on the reality of ZrB. Of the three ZrB2 is the most stable.

Brewer and Haraldsen [4] estimated the heats of formation of the zirconium borides on the basis of their stabilities in the presence of graphite and the fact that Zr will reduce Mo and W borides. They estimate Δ Hf per gram atom of boron to be < -39 kcal/mole for ZrB and ZrB2, and < -10 kcal/mole for ZrB12. Krikorian [26] estimated the heat of formation of ZrB as -47 kcal/mole.

Epel'baum and Starostina [19] found $\Delta \mathrm{Hf}^{\circ} = -75.02 \pm 3.35 \; \mathrm{kcal/mole}$ $\mathrm{ZrB}_{2.05}$ after determining the heat of combustion of B to be $-287.8 \pm 2.17 \; \mathrm{cr} \; -289.47 \pm 3.1 \; \mathrm{kcal/mole}$. Because the value for the heat of combustion for boron appears to be low, the heat of formation of $\mathrm{ZrB}_{2.05}$ may be in error, either because of incomplete combustion or the use of a low value for the heat of formation of $\mathrm{B}_2\mathrm{O}_3$.

Holley, Huber, Head, and Fitzgerald [23] have determined the heat of combustion of relatively impure samples of ZrB2. Because of the relatively large impurities in the samples, the results are not considered to be complete. Values found on two samples were -76.4 ±1.45 kcal/mole and -73.1 ±3.1 kcal/mole.

Leitneker [24] studied the evaporation behavior and vapor pressure of a sample (ZrB1.906) approximating to the composition of ZrB2. They found $\Delta H_0^{\rm O} = 458.3 \pm 6.5$ kcal/mole for the heat of vaporization to the atoms.

$$ZrB_{1.906} = Zr(g) + 1.906 B(g)$$

Using ΔH_0° [Zr(g)] = 145.5 kcal/mole [25] and ΔH_0° B(g) = 133.0 kcal/mole (See Part I.) we calculate ΔH_{10} [ZrB_{1.906}] = -59.3 kcal/mole from Leitneker's data. This deviates significantly from the values cited above, assuming the heat of formation at 298°K is essentially equal to that at 0°K.

Of these measurements, that by Holley, et al [23] on their most nearly pure sample is taken as the best value, $-76.4~\rm kcal/mole$. Because of the uncertainty in their own work, the value by Epel'baum and Starostina, and the estimate by Brewer and Haraldsen the uncertainty is taken as $\pm 5~\rm kcal/mole$.

Walker, Ewing and Miller [27] determined the heat capacity of titanium diboride from 30° to 700°C.

Carbon

There are two boron carbides B_4C and $B_{13}C_2$. The heat of combustion of B_4C was determined by Smith, Dworkin and Van Artsdalen [28] to be $\Delta H_{C298}^{\circ} = -683.8$ kcal/mole. Combined with the heat of formation of B_2O_3 , amorphous, this leads to -12.2 kcal/mole for the heat of formation. The data of Robson and Gilles [29] on the decomposition pressures of B_4C are consistent with this value. Samsonov [3] in his review lists -66.0 kcal/mole for the heat of formation of B_4C . He gives no source, and the source of the number is difficult to find. Samsonov [30] in another article, refers for this value to Markovskii, Orshanskii and Prinishnikov [31]. In the absence of further information indicating its derivation, this heat of formation must be disregarded for the time being.

There are no thermochemical data for B13C2.

Nitrogen

Two forms of boron nitride, BN, are known, the graphite-like form and a diamond-like form. The heat of combustion, -90.2 kcal/mole of the graphite-like form, was determined by Dworkin, Sasmor, and Van Artsdalen [32], leading to a heat of formation of -60.3 kcal/mole. Samsonov [3], without reference to other data gives -33.5 kcal/mole for the heat of formation.

This appears to be based upon early work such as was summarized by Kelley [33]. However, in a more recent paper Galchenko, Kornilov and Skuratov directly determined the heat of reaction of boron and nitrogen and find -60.7 ±0.34 kcal/mole for the heat of formation of BN from crystalline boron and nitrogen. This is slightly lower than the value found by Dworkin, Sasmor and Van Artsdalen. The general agreement of these values, together with others discussed in Part I, indicates that the heat of formation of BN is not uncertain by more than 1 kcal/mole.

Table 1
Heats of Formation of Light Metal Borides

Formula	AHfo 298 kcal/mole	Density g/cm ³
Lithium Boride Sodium Boride Be ₂ B (cubic)	No compounds known No compounds known -	$ \begin{cases} 2.15 & [3] \\ 1.9 & x & [3] \end{cases} $
BeB ₂ (?)	-	-
BeB ₆ (?)	-	-
MgB ₂ (hexagonal)	-	(2.667 (2.48 - 2.67 [3]
MgB ₄	_	- 2.07 [7]
MgB ₆ (?)	_	_
MgB ₁₂ (?)	_	-
AlB (hexagonal)	_	_
AlB, (orthorhombic)	_	-
AlB ₁₀	_	2.537 ±0.003 [10]
$A\ell B_{12}(\alpha)$ (tetragonal)	-	2.547 - 2.660 [3]
$A^{\ell}B_{12}(\beta)$ (orthorhombic)	-	2.49 - 2.59 [3]
Ti ₂ B (?)	~ -36	-
TiB	~ -36	4.56 x [1]
(orthorhombic) TiB (?) (cubic)	~ -36	{5.26 x [3] 5.09 [3]
TiB ₂ (hexagonal)	-70 ±4	(4.478 x [1] 4.52 x [3] 4.45 [3] 4.63 x [1]
Ti ₂ B ₅ (hexagonal) TiB _x	< -105 -	4.63 x [1]
$(x \sim 10)$		
ZrB (cubic)	< -39 [4]	$\begin{cases} 7.03 \times [3] \\ 5.77 \end{cases}$
ZrB ₂ (hexagonal)	< -76.4 ± 5	\5.7 [3] {6.082 x [1] \5.82 [3]
ZrB ₁₂ (cubic)	< -120 [4]	(3.63 x [3] (3.70 [3]
B ₄ C rhombohedral	-12.2	(2.51 [1] (2.52 ±0.01 [3]
B ₁₃ C ₂ rhombohedral	-	2.44 [3]
BN	-60.3	(2.27 x [1] (2.29 ±.03 x [3]
(hexagonal) BN	_	$(2.29 \pm .03 \times [3]$
(cubic)		

x denotes X-ray determination.

References to II-2

(Thermodynamic Properties of Some Borides)

(a) Reviews:

- 1. Borides. Part A: Basic Factors.
 - B. Aronsson, (Institute of Chemistry, University of Uppsala, Uppsala, Sweden) in "Modern Materials. Advances in Developments and Applications." Volume 2. H. H. Hausner, Editor, Academic Press, New York, 1960, pp 143-181, 192 references.
- 2. Borides and Silicides of the Transition Metals.
 - B. Aronsson, (Institute of Chemistry, University of Uppsala, Uppsala, Sweden) Air Force Office of Scientific Research, Technical Note: AFOSR TN-60-683, July, 1960.
- 3. The Chemistry of Borides.
 - G. V. Samsonov (Moscow) and L. Ya. Markovskii (Leningrad) Uspekhi Khim. 25, No. 2, 190-237 (1956). Available in English translation: Translation No. RJ-631, Associated Technical Services, Inc., East Orange, New Jersey. 233 references.
- 4. The Thermodynamic Stability of Refractory Borides.
 - L. Brewer (Department of Chemistry and Chemical Engineering, University of California, Berkeley, California) and H. Haraldsen, (Universitetes Kjemiske Institutt, Blindern, Oslo, Norway) J. Electrochem. Soc. <u>102</u>, 399-406 (1955).

 19 references.
- 5. Hartstoffe und Hartmetalle
 - R. Kieffer and P. Schwartzkopf (Springer-Verlag, Wien, 1953).
- 6. Gmelin's Handbuch der Anorganische Chemie, Achte Auflage Verlag Chemie GMBH, Leipzig-Berlin or Weinheim/Bergstrasse.
- 7. Constitution of Binary Alloys, 2nd Edition, M. Hansen and K. Anderko, (McGraw-Hill Book Company, New York, 1958).
- 8. A Handbook of Lattice Spacings and Structure of Metals and Alloys, W. B. Pearson (Pergamon Press, New York, 1958).
- 9. On the Composition and Properties of the Borides of the Elements of the First and Second Groups of the Periodic Table.

 L. Ya. Markovskii and Yu. D. Kondrashev, Zhur. Neorg. Khim. 2, 34-41 (1957).
- 10. AlB₁₀, a New Phase, and a Critique on the Aluminum Borides, J. A. Kohn, G. Katz, and A. A. Giardini, Z. Kryst. <u>111</u>, 52-63 (1958).

- (b) General References:
- [11] R. M. Swift and D. White, J. Am. Chem. Soc. 79, 3641 (1957).
- [12] V. Russel, R. Hirst, F. A. Kanda, and A. J. King, Acta Cryst. 6, 870 (1953).
- [13] F. Lihl and P. Jenitschek, Z. Metallkunde 44, 414 (1953).
- [14] E. Parthé and J. T. Norton, Z. Kryst. 110, 167 (1958).
- [15] H. F. Weber, Pogg. Ann. <u>154</u>, 560 (1875).
- [16] H. M. Greenhouse, O. E. Accountnis, and H. H. Sisler, J. Am. Chem. Soc. 73, 5086 (1951).
- [17] G. V. Samsonov, Zhur. Priklad. Khim. 28, 1018 (1955).
- [18] A. N. Krestovnikov and M. S. Vendrikh, Izvest. Vysshikh Ucheb. Zavedenii, Tsvetnaya Met. 2, No. 2, 54-7 (1959); C.A. <u>53</u> 18613g (1959).
- [19] V. A. Epel'baum and M. I. Starostina, Bor. Trudy Konf. Khim. Bora i Ego Soedenenii, 1955, 97-101 (Published 1958); C.A. 54,23701C (1960).
- [20] W. H. Evans, D. D. Wagman, and E. J. Prosen, NBS Report 6252, Dec. 1958.
- [21] P. O. Schissel and W. S. Williams, Bull. Am. Phys. Soc. Series II, 4, No. 3, 139 (1959).
- [22] J. L. Margrave, Thermochemical Bulletin, No. 3, B-22 (1960).
- [23] C. E. Holley, Jr., E. J. Huber, Jr., E. L. Head and C. G. Fitzgibbon, private communication, but see Thermochemical Bulletin, No. 3, A-7 (1960).
- [24] J. M. Leitneker, AEC Report LA 2402, Jan. 1960.
- [25] JANAF Interim Thermochemical Tables Volume 2, T. E. Dergazian et al. (Dow Chemical Company, Midland, Michigan, 1960).
- [26] O. L. Krikorian, AEC Report UCRL 2888 (1955).
- [27] B. E. Walker, C. T. Ewing, and R. R. Miller, J. Phys. Chem. <u>61</u>, 1682 (1957).
- [28] D. Smith, A. S. Dworkin and E. R. Van Artsdalen, J. Am. Chem. Soc. 77, 2654 (1955).
- [29] H. E. Robson and P. W. Gilles, 134th American Chemical Society Meeting, Chicago, 1958.
- [30] G. V. Samsonov, Zhur. Priklad. Khim. 28, 1018 (1955).

- [31] L. Ya. Markovskii, D. L. Orshanskii, and V. P. Prinishnikov, Khim. Elektrotermiya, Goshkimiydat 209 (1952).
- [32] A. S. Dworkin, D. J. Sasmor, and E. R. Van Artsdalen, J. Chem. Phys. 22, 837 (1954).
- [33] K. K. Kelley, U. S. Bur. Mines Bull. 407, (1937).
- [34] G. L. Galchenko, A. N. Kornilov, and S. M. Skuratov, Zhur. Neorg. Khim. 5, 2651 (1960).

II. 3. PHASE RELATIONS AND PROPERTIES OF SOME MIXED OXIDE AND OXIDE-FLUORIDE SYSTEMS

R. F. Walker

This chapter summarizes a survey of the published data on the phase relations which exist among the mixed oxides and oxide-fluoride mixtures of Al, B, Be, Li, Mg, Ti, and Zr. Of the large number of binary and multi-phase systems which may be obtained by combining the various oxide and fluoride phases, relatively few have been studied at all, and even then available information is confined to condensed phases under latmosphere pressure of air. A summary of the following pertinent physical properties has also been compiled: density, crystal structure, lattice parameters and heats of formation.

While the survey is not yet exhaustive, it is believed to cover most of the more reliable information.

A. Phase Diagrams

A compilation of selected phase diagrams is given in Appendix A (Figs. 20-45). In general, these diagrams effectively summarize the most reliable information on the behavior of the mixed systems. The abscissae of the diagrams represent weight % of constituents, unless otherwise stated. Some further details on these and other systems are included in the following discussion.

Al203-Be0

The liquidus curve for this system was given by von Wartenberg et al [1], but was probably correct only in terms of its very general shape. The alumina-rich end of the diagram was investigated in some detail by Foster and Royal [2], and again by Lang et al [3]. The diagram of the latter authors (Fig. 20) gives the most complete detail, showing two phases, BeO·Al₂O₃ and BeO·3Al₂O₃, melting congruently at 1870° and 1910°C respectively. The partial diagram of Foster and Royal is in general agreement with that of Lang et al, except the temperatures are 10-30°C higher. It should be noted that both take the Al₂O₃ melting point as 2015°C, which is close to the lower limit of the value recommended in NBS Report No. 6484, viz., 2030 ±20°C.

F = C-P+1.

where C is the number of components and P is the number of phases.

In the interpretation of the condensed systems, the pressure variable is eliminated and the variance (F) of the systems is given by

AlF3-LiF-Al203

Drossbach [4] published a very small portion diagram (Fig. 21), showing a compound 3LiF·AlF3.

Al₂0₃-Be0-Mg0

This system was investigated by Geller, et al [5], who broadly mapped out the single- and multi-phase regions (Fig. 22).

Al₂0₃-Be0-Ti0₂

Figure 23 shows the diagram for this system as determined by Lang, et al. [3].

Al203-Be0-Zr02

Part of this system was investigated by Geller, et al [5], and is shown in Fig. 24.

Al203-Mg0

The liquidus curve of this system was given by von Wartenberg and Reusch [6] and by von Wartenberg and Prophet [7]. The general form of the curves is in agreement with an earlier diagram given by Rankin and Merwin [8] and shown in Fig. 25. A recent modification to the Al₂O₃-rich end of this diagram has been proposed by Osborn [9], and is shown in Fig. 26. Spinel, Al₂O₃·MgO, which melts congruently at 2135°C, is the only known phase in the system apart from the parent phases.

Al203-Mg0-Ti02

This system was investigated by Berezhnoi and Gulko [10]. The liquidus surface for the system is shown in Fig. 27, and the composition diagram for primary phases is given in Fig. 28. The cross-hatched lines in the latter figure indicate solid solutions.

Al203-Ti02

An approximate liquidus curve for this system was given by von Wartenberg and Reusch [6]. The data was in fair agreement with that of Bunting [11], whose diagram shows the compound $A^{l}_{2}O_{3}$ ·TiO₂ melting congruently at 1860°C. The latest diagram, given by Lang et al [3], is shown in Fig. 29. The liquidus curve for this system is probably somewhat uncertain, particularly at the $A^{l}_{2}O_{3}$ -rich end of the composition range.

Al₂0₃-Ti0₂-Zr0₂

The melting isotherms and primary phases for this system, as obtained by Berezhnoi and Gulko [12], are shown in Figs. 30 and 31 respectively.

Be0-Mg0-Zr02

Part of this system was studied by Lang, Maxwell and Geller [13]. No compound formation was reported. Their diagram is shown in Fig. 32.

Be0-T102

The liquidus curve for compositions containing up to 85% BeO was given by von Wartenberg, et al [1]. Limited data or proposals on the TiO2-rich end of the diagram were as published by Lang et al [3], and are shown in Fig. 33. No compound formation has been reported in this system.

Be0-Ti02-Zr02

Lang, Roth and Fillmore [14] presented data on the liquidus surface and the composition diagram of the system at 1550°C. The data are shown in Figs. 34 and 35 respectively.

Li20-B203

An investigation of this system by Mazzetti and de Carli [15] suggested that five phases exist in the compositional range 50-85% B₂O₃, all phases melting congruently. The phases were: Li₂O·B₂O₃; Li₂O·2B₂O₃; Li₂O·3B₂O₃; Li₂O·5B₂O₃. Subsequent investigations by Rollet and Bonazig [16] and by Sastry and Hummel [17] only partially confirmed this picture. The diagrams of the two latter groups of authors are shown in Figs. 36 and 37 respectively. They found two phases only which melted congruently (namely Li₂O·B₂O₃ and Li₂O·2B₂O₃ at 840-849°C and 915-917°C respectively), and did not confirm the existence of an Li₂O·5B₂O₃ phase. However, several other phases were proposed, as shown in the figures.

Mg0-B₂0₃

Davis and Knight [18] identified two phases in this system, 2Mg0°B203 and 3Mg0°B203, which melt congruently at 1340 and 1356°C respectively. Their diagram is shown in Fig. 38.

MgO-TiO2

Von Wartenberg and Prophet [7] studied the system and found two phases having compositions corresponding to 2Mg0·TiO2 and Mg0·2TiO2, both melting congruently. Royster [19] identified a congruent melting phase Mg0·TiO2, but did not report finding the two congruent-melting phases of von Wartenberg and Prophet. Royster's diagram is shown in Fig. 40. The most recent and complete investigation of the system was made by Coughanour and DeProsse [20]. They found the three phases, 2Mg0·TiO2, Mg0·TiO2, and Mg0·2TiO2, which melt congruently at 1732, 1630 and 1652°C respectively, as shown in Fig. 39.

$Mg0-Zr0_2$

Zhirnova [21] sketched out the phase relations believed to occur in this system, as shown in Fig. 41. MgO "stabilizes" the cubic form of ZrO₂ over a fairly wide composition range, and over an ill-defined temperature range. No other new phases have been reported to form in this system. An alternative diagram at the ZrO₂-rich end of the system has been given by Duwez, et al [22], and is shown in Fig. 42.

$\tt MgO-TiO_2-ZrO_2$

Coughanour et al [23] estimated the extent of solid solution in this system over the temperature range 1400-1750°C. Their diagram is shown in Fig. 43.

T102-Zr02

A liquidus curve for this system was published by von Wartenberg and Gurr [24]. Sowman and Andrews [25] investigated the system by quenching and x-ray diffraction techniques, but did not find any new phases beyond the "stabilized", cubic form of ZrO2. Their data is otherwise not grossly different from that of Brown and Duwez [26], and Coughanour et al [27], who show an incongruently melting compound, ZrO2·TiO2. Their suggested diagrams are shown in Figs. 44 and 45, respectively.

$MgO-MgF_2$

This system has recently been investigated by Hing and Kunth [28] and found to be simply eutectic. The eutectic temperature was 1214°C. No solid solution was detected by refractive index or x-ray analysis.

In addition to the publications mentioned above, the following references have been noted, but were seen either in abstract only or too late for inclusion in the foregoing discussion.

System	Reference
BeO-TiO	[29]
BeO-ZrO2	[29]
Be0-Ti02-Zr02	[30]
ZroTio_	[29]
Li ₂ 0-Al ₂ 0 ₃ -Ti0 ₂	[31]
B ₂ 0 ₃ -A ¹ 20 ₃	[32]
A ² 203-Ti02	[31]
Li ₂ 0-Al ₂ 0 ₃	[31]
Li ₂ 0-Ti0 ₂	[31]

B. Some Physical Properties

Thermodynamic data on the mixed oxide and oxide-fluoride systems is scarce. However, the very limited existing data on the heats of formation of the compounds or the heats of mixing of the components has not been completely reviewed yet. The use of phase diagrams to determine the heats of mixing is usually not reliable, owing to the uncertainties in the temperatures of the liquidus curves or of the ideality of the solutions.

A limited amount of data on the crystal structure and densities of some of the mixed oxide systems has been located. These are compared with data for the single-component systems in the following table. The data have not been critically evaluated, but have been selected to be fairly representative of literature values. They are in no sense "best" values. Further data and references on these properties will be given in subsequent reports.

Crystal Structures and Densities of Some Oxide Systems

System	Crystal Structure	Lattice o Constants. A.	Theoretical or Maximum Density ¹
Al ₂ 03	Hex.	a = 4.75 $c = 12.97$	3.96
Be0	Hex.	a = 2.963 $c = 4.370$	3.03
Li ₂ 0	Cub.	a = 4.628	2.01
Mg0	Cub.	a = 4.213	3.58
TiO ₂	Rhomb.	$\begin{cases} a = 4.492 \\ c = 4.893 \end{cases}$	4.17
	Tetrag.	a = 3.73 c = 9.37	4.24
Z r0 ₂	Monoclinic	$99^{\circ} 28^{\circ}$ $a = 5.375$ $b = 5.26$ $c = 5.21$	5.56
	Tetrag.	-	6.10
Al ₂ 0-Ti0 ₂	-	-	3.68
Be0 • A ^l 2 ⁰ 3	Ortho.	a = 5.47 b = 9.39 c = 4.42	3.76
Mg0.Al203	Cub.	a = 8.08	3.58
2Mg0.Ti02	Cub.	a = 8.44	-
MgO·TiO ₂	Hex.	a = 4.99; 5.09 c = 13.70; 14.09	- 3.66
Mg0 • 2Ti0 2	Cub.	-	
Zr0.Al ₂ 03	Cub.	-	4.58

In most cases the densities are approximate theoretical densities calculated from the lattice constants. Some densities are the maxima that have been obtained using ceramic fabrication processes.

References

- [1] H. von Wartenberg, H. J. Reusch, and E. Saran. Part VII. Z. anorg. u. allgem. Chem. 230, 267 (1937).
- [2] W. R. Foster and H. F. Royal, J. Am. Ceram. Soc., 32, 33 (1949).
- [3] S. M. Lang, C. L. Fillmore, and L. H. Maxwell, J. Research Natl. Bur. Standards 48, 301 (1952).
- [4] P. Drossbach, Z. Elektrochem. 42, 65 (1936).
- [5] R. F. Geller and P. J. Yavorsky, B. L. Steierman, and A. S. Creamer, J. Research Natl. Bur. Standards 36, 289 (1946).
- [6] H. von Wartenberg and H. J. Reusch, Z. anorg. u. allgem. Chem. <u>20</u>7, 18 (1932).
- [7] H. von Wartenberg and E. Prophet, Z. anorg. u. allgem. Chem. 208, 379 (1932).
- [8] G. A. Rankin and H. E. Merwin, J. Am. Chem. Soc. 38, 571 (1916).
- [9] E. F. Osborn, J. Am. Ceram. Soc. <u>36</u>, 149 (1953).
- [10] A. S. Berezhnoi and N. V. Gulko, Ukrain. Khim. Zhur. 21, 162 (1955).
- [11] E. N. Bunting, J. Research Natl. Bur. Standards 11, 725 (1933).
- [12] A. S. Berezhnoi and N. V. Gulko, Dopovidi Akad. Nauk Ukr. R.S.R., 1955 (1), 78.
- [13] S. M. Lang, L. H. Maxwell and R. F. Geller, J. Research Natl. Bur. Standards 43, 443 (1949).
- [14] S. M. Lang, R. S. Roth, and C. L. Fillmore, J. Research Natl. Bur. Standards 53, 203 (1954).
- [15] C. Mazzetti and F. de Carli, Gazz. chim. ital. <u>56</u>, 23 (1926).
- [16] A. P. Rollet and R. Bonazig, Compt. Rend. 240, 2418 (1955).
- [17] B. S. R. Sastry and F. A. Hummel, J. Am. Ceram. Soc. 41, 11 (1958).
- [18] H. M. Davis and M. A. Knight, J. Am. Ceram. Soc. 28, 100 (1945).
- [19] P. H. Royster, U.S. Patent 2,471,242 (May 24, 1949).
- [20] L. W. Coughanour and V. A. DeProsse, J. Research Natl. Bur. Standards 51, 87 (1953).

- [21] N. A. Zhirnova, J. App. Chem., (USSR) 12, 1279 (1939).
- [22] P. Duwez, F. Odell, and F. H. Brown, J. Am. Ceram. Soc. 35, 109 (1952).
- [23] L. W. Coughanour, R. S. Roth, S. Marzullo, and F. E. Sennett, J. Research Natl. Bur. Standards 54, 193 (1955).
- [24] H. von Wartenberg and W. Gurr, Z. anorg. u. allgem. Chem. 196, 381 (1931).
- [25] H. G. Sowman and A. I. Andrews, J. Am. Ceram. Soc. 34, 300 (1951).
- [26] F. H. Brown and P. Duwez, J. Am. Ceram. Soc. 37, 132 (1954).
- [27] L. W. Coughanour, R. S. Roth and V. A. DeProsse, J. Research Natl. Bur. Standards 52, 39 (1954).
- [28] W. Hing and P-O. Kunth, Am. Mineral 45, 1198 (1960).
- [29] A. Cocco, Ann. Chim. (Rome) 48, 587 (1958).
- [30] A. Cocco, Ann. Chim. (Rome) 48, 600 (1958).
- [31] K. H. Kim and F. A. Hummel, J. Am. Ceram. Soc. 43, 611 (1960).
- [32] W. R. Foster, Ohio State University Res. Foundation, Columbus 10, Ohio. Unpublished technical reports.

II. 4. PHASE BEHAVIOR OF BINARY SYSTEMS OF Li, Al, Be, Mg, and Zr FLUORIDES AND CHLORIDES

George T. Furukawa

Recently interest has become directed toward mixed inter-metal halides. As a part of the program to determine thermodynamic properties, a survey was made of the phase behavior of inter-metal halide systems in order to obtain information on the existence of inter-metal halide compounds and how they could be prepared. For the present survey only the binary systems of the inter-metal fluorides and chlorides were considered. The compilation entitled Phase Diagrams for Ceramists, Parts I and II [10,9], was consulted to locate references to the original literature and from these to other references. Another compilation entitled Phase Diagrams of Nuclear Reactor Materials [18] was also consulted. No effort was made to review the literature since the above compilations. Phase information has been found on the systems LiF-LiCl, LiF-BeF2, LiF-MgF2, LiF-AlF3, LiF-ZrF4, and BeF2-MgF2. For purposes of illustration and discussion, phase diagrams given in the former compilation were reproduced and new figure numbers assigned. Diagram references to other related systems have also been reproduced from the former compilation. The phase systems are discussed in the order listed above.

LiF-LiCl System

Botschwar [2] investigated phase relationships of several binary lithium halide systems. The LiF-LiCl system, shown in Fig. 46, was found to be completely miscible in the liquid phase and immiscible in the solid phase. The eutectic occurs at about 80 mole percent LiCl and 485°C. The LiCl-LiBr system was found to show continuous solid-solution formation with a minimum at about 75 mole percent LiBr and 520°C. The LiF-LiBr system shows a eutectic at about 90 mole percent LiBr and 453°C. There is shown a slight solid phase solution of LiBr in LiF.

LiF-BeF2 System

Phase studies of the LiF-BeF₂ system have been published by Thilo and Lehmann [17]; Roy, Roy, and Osborn [13]; Novoselova, Simanov, and Jarembash [11]; and Roy, Roy, and Osborn [15]. The comparable ionic radii associated with Fluoroberyllate and silicate tetrahedra have drawn considerable interest and the phase behavior of the two systems has been compared in a number of papers. For example, Thilo and Lehmann [17] have reported a similarity between LiF-BeF₂ and MgO-SiO₂ systems; Roy, Roy, and Osborn [13,15] have indicated that the compound Li₂BeF₄ formed more closely resembles Zn₂SiO₄ than Mg₂SiO₄. A number of fluoroberyllate glasses is also known [8], in particular involving three or more fluorides. Many of the fluoroberyllate glasses as compared to the silicate glasses are not as

water resistant, have lower refractive indices, have higher transmission coefficient for ultraviolet and infrared radiations, and have relatively lower melting temperatures. The phase investigations of Thilo and Lehmann [17] on the LiF-BeF2 system by thermal analysis reveal the formation of the compound Li₂BeF₄ and indicate the existence of the incongruently melting compound LiBeF₃. The possible existence of the compounds Li₃Be₂F₇ and LiBe₂F₅ is indicated. The work by Roy, Roy, and Osborn [13] done about the same time using the quenching technique was primarily in the region of the liquidus and solidus curves. Any subsolidus phase transformations that occurred were not investigated. In a subsequent investigation, Roy, Roy, and Osborn [15] investigated the LiF-BeF2 system more thoroughly using a bombination of quenching, thermal analysis, x-ray, and petrographic methods. The compound Li₂BeF₄ (melting point: 458°C) was observed, but the observed compound LiBeF₃ was not found to be of the incongruently melting type. It is shown to be formed in a subsolidus transformation. The BeF2-Li2BeF4 eutectic was found to occur at about 48 mole percent LiF and 350°C and the LiF-Li2BeF4 eutectic at about 75 mole percent LiF and 455°C. As shown in Fig. 47, several subsolidus transformations have been observed and the compounds LiBeF3 and LiBe2F5 have been obtained. BeF2 is shown to exist in two crystalline forms of the α and β quartz structures, depending upon the temperature. Roy, Roy, and Osborn [13,15] observed only one crystalline form of Li2BeF4; Novoselova, Simanov, and Jarembash [11], however, observed three polymorphic forms:

$$\alpha - \text{Li}_2\text{BeF}_4 \stackrel{178\circ\text{C}}{\Longleftrightarrow} \beta - \text{Li}_2\text{BeF}_4 \stackrel{328\circ\text{C}}{\Longleftrightarrow} \gamma - \text{Li}_2\text{BeF}_4 .$$

The latter investigators observed also three forms of BeF2:

$$\alpha - \text{BeF}_2 \longleftrightarrow \beta - \text{BeF}_2 \longleftrightarrow \gamma - \text{BeF}_2 .$$

In a recent compilation [18] which included some unpublished data, shown in Fig. 48, a peritectic point involving liquid-LiF-Li2BeF4 is given. It seems that additional careful work is needed to establish whether Li2BeF4 is a congruently melting compound.

LiF-MgF2 System

The earlier phase studies of Bergman and Dergunov [1], using the thermal analysis method, show formation of a continuous series of solid solutions between LiF and MgF2 with a minimum at 742°C and 33 mole percent MgF2 (Fig. 49). Thermal analysis work reported even earlier by Tacchini [16] shows an unbroken series of solid solutions in the region of 0 to 60 mole percent MgF2. Above 60 mole percent MgF2, the liquidus curve data only have been reported. A minimum is shown at about 60 mole percent MgF2 and 670°C.

X-ray investigations, however, by Bruni and Levi [3] and by Zintl and Udgard [20] show no change in the crystal constants of LiF and MgF₂ on examination of their cooled mixed meIts. A more recent phase study by Counts, Roy, and Osborn [4], shown in Fig. 50, indicates that the LiF-MgF₂ system forms discontinuous solid-solutions with a eutectic at 735°C and 36 mole percent MgF₂. Exsolution takes place at lower temperatures and at room temperature no appreciable solution exists between LiF and MgF₂. Counts, Roy, and Osborn [4] used a combination of quenching, thermal analysis, x-ray, and petrographic techniques. No compounds of LiF and MgF₂ have been reported.

LiF-AlF3 System

Phase investigations of the LiF-AlF3 system have been published for the range 0 to 37 mole percent AlF3 by Puschin and Baskow [12] and for the range O to 45 mole percent AlF3 by Fedotieff and Timofeeff [6] in connection with their interest in the formation of other cryolitetype compounds by other alkali fluorides. In Fig. 51 is shown the results obtained by Fedotieff and Timofeeff [6]. The melting point of Li3AlF6 was found to be about 790°C. The LiF-Li3AlF6 eutectic occurs around 15 mole percent AlF3 and 715°C. A compound comparable to the incongruently melting compound 5NaF.3AlF3 found by Fedotieff and Iljinsky [5] in the NaF-AlF3 system (Fig. 52) was not observed by Fedotieff and Timofeeff [6], with the LiF-AlF3 system or with the KF-AlF3 system (Fig. 53). Puschin and Baskow [12] have investigated also the systems NaF-AlF3, KF-AlF3, RbF-AlF3 and have stated the possible existence of the compounds 2AlF3.3NaF, 2AlF3.3KF and 2AlF3.3RbF. The upper concentration limit of their investigations was 40 mole percent AlF3. A better interpretation of the results shown would seem to be a possible eutectic rather than a compound formation at about 40 mole percent A^lF_3 . Fedotieff and Timofeeff [6] indicate a eutectic between K3AlF6 and possibly AlF3 at 45 mole percent AlF3 and 565°C and a eutectic between Li3AlF6 and possibly AlF3 at about 36 mole percent AlF3 and 710°C. Because of the relatively high vapor pressure of AlF3, no liquid-solid phase information is available at concentrations greater than 45 mole percent .AlF3. It is expected that the incongruently melting compound 5NaF.3AlF3 observed by Fedotieff and Iljinsky [5], the compounds 2AlF3.3NaF, 2AlF3.3KF, and 2AlF3.3RbF suggested by Puschin and Baskow [12], and the eutectics of K3AlF6 and Li3AlF6 with possibly AlF3 observed by Fedotieff and Timofeeff [6] are very closely related. Careful and precise phase studies in the 40 mole percent AlF3 region may reveal the actual phases present.

LiF-ZrF4 System

Unpublished work on the LiF-ZrF4 system from 0 to 100 mole percent ZrF4 performed by R. E. Moore, F. F. Blankenship, W. R. Grimes, H. A. Friedman, C. J. Barton, R. E. Thoma, and H. Insley [18] at the Oak Ridge National Laboratory during the period 1951 to 1956 is shown in Fig. 54. The heptafluorozirconate Li3ZrF7 is shown to be formed, which through subsolidus transformation becomes LiF and Li2ZrF6 below about 470°C. The incongruently melting compound 3LiF.4ZrF4 is shown which is also unstable below about 466°C. The only stable compound at room temperature between LiF and ZrF4 is shown to be Li2ZrF6 (melting point = 596°C). The LiF-Li3ZrF7 eutectic is located at 21 mole percent ZrF4 and 598°C, the Li3ZrF7-Li2ZrF6 eutectic at 29.5 mole percent ZrF4 and 570°C, and the Li2ZrF6-3LiF.4ZrF4 eutectic at 49 mole percent ZrF4 and 507°C. The liquid-ZrF4-3LiF.4ZrF4 peritectic is located at 51.5 mole percent ZrF4 and 520°C. The melting point of Li3ZrF7 was found to be 662°C. The compound Li4ZrF8 to which reference is found (W. B. Blumenthal, The Chemical Behavior of Zirconium, D. van Nostrand Co., New York, 1958) is not shown.

BeF2-MgF2 System

The earlier phase investigations of Venturello [19] on BeF2-MgF2 by thermal analysis and x-ray methods show (Fig. 55) continuous solid-solution formation with a minimum at about 90 mole percent BeF2. Between 80 and 100 mole percent BeF2, data on only the liquidus curve have been reported. The work of Counts, Roy, and Osborn [4], shown in Figure 56, utilizing the quenching method in the range 50 to 100 mole percent BeF2, does not show any evidence of solid-solution formation. A eutectic at 95 mole percent BeF2 and 528°C has been found. The results do not show any compound formation.

References

- [1] A. G. Bergmann and E. P. Dergunov, Das Schmelz diagramm des Systems LiF-NaF-MgF₂, Compt. rend. acad. sci. U. R. S. S. <u>31</u>, 755-756 (1941).
- [2] A. A. Botschwar, Die Zustandsdiagramme einiger Lithiumsalzschmelzen, Zeit. anorg. u. allgem. Chem. 210, 163 (1933).
- [3] G. Bruni and G. R. Levi, Soluzioni solide fra composti di elementi a valenza diversa, Atti acad. Lincei [5] 33 II, 377-384 (1924).
- [4] W. E. Counts, R. Roy, and E. F. Osborn, Fluoride Model Systems: II, The Binary Systems CaF₂-BeF₂, MgF₂-BeF₂, and LiF-MgF₂, J. Am. Ceram. Soc. <u>36</u>, 12-17 (1953).
- [5] P. P. Fedotieff and W. Iljinsky, Beiträge zur Elektrometallurgie des Aluminiums, Zeit. anorg. Chem. 80, 113-154 (1913).
- [6] P. P. Fedotieff and K. Timofeeff, Schmelzdiagramme der Systeme KF-AlF3 und LiF-AlF3, Zeit. anorg. u. allgem. Chem. 206, 263-266 (1932).
- [7] A. Ferrari, I reticali cristallini dei fluoruri di litio e magnesio e il loro isomorfismo, Atti acad. Lincei [6] 1 I, 664-671 (1925).
- [8] G. Heyne, Über die Darstellung und Eigenschaften einiger Beryllium fluoridgläser, Angew. Chem. 46, 473-477 (1933).
- [9] E. M. Levin and H. F. McMurdie, Phase Diagrams for Ceramists, Part II, Copyright, 1959, The American Ceramic Society.
- [10] E. M. Levin, H. F. McMurdie and F. P. Hall, Phase Diagrams for Ceramists, Copyright, 1956, The American Ceramic Society.
- [11] A. V. Novoselova, Y. P. Simanov, and E. I. Jarembash, Thermal and X-Ray Analysis of the Lithium-Beryllium Fluoride System, Zhur. Fiz. Khim. 26, 1244-58 (1952).
- [12] N. Puschin and A. Baskow, Das Gleichgewicht in binaren Systemen einiger Fluorverbindungen, Zeit. anorg. Chem. <u>81</u>, 347-363 (1913).
- [13] D. M. Roy, R. Roy, and E. F. Osborn, Phase Relations and Structural Phenomena in the Fluoride-Model Systems LiF-BeF₂ and NaF-BeF₂, J. Am. Ceram. Soc. <u>33</u>, 85-90 (1950).
- [14] D. M. Roy, R. Roy, E. F. Osborn, Fluoride Model Systems: III, The System NaF-BeF₂ and the Polymorphism of Na₂BeF₄ and BeF₂, J. Am. Ceram. Soc. <u>36</u>, 185-190 (1953).

- [15] D. M. Roy, R. Roy, and E. F. Osborn, Fluoride Model Systems: IV, The Systems LiF-BeF2 and PbF2 and BeF2, J. Am. Ceram. Soc. 37, 300-305 (1954).
- [16] G. Tacchini, Analisi termica del sistema fluoruro di litiofluoruro di magnesio, Gazz. chim. ital. 54, 777-780 (1924).
- [17] E. Thilo and H. A. Lehmann, Chemische Untersuchungen von Silikaten. XII. Über das System LiF-BeF₂ und seine Beziehungen zum System MgO-SiO₂, Zeit. anorg. Chem. <u>258</u>, 332-355 (1949).
- [18] R. E. Thoma, Phase Diagrams of Nuclear Reactor Materials, ORNL-2548, TID-4500 (15th Edition), November 20, 1959.
- [19] G. Venturello, Studio termico-roentgenografico del sistema BeF2-MgF2, Atti reale accad. sci. Torino, Classe sci. fis., mat., nat. 76 1, 556-63 (1941).
- [20] E. Zintl and A. Udgard, Uber die Mischkristall bildung zwischen einigen salzartigen Fluoriden von verschiedenem Formaltypus, Zeit. anorg. u. allgem. Chem. 240, 150-156 (1939).

PART III

NEW AND REVISED

THERMODYNAMIC PROPERTIES

III. 1. REFERENCES TO RECENT VALUES FOR HEATS OF FORMATION

George T. Armstrong and Leslie A. Krieger

The following section is a compilation of references to papers containing material relevant to the evaluation of heats of formation of compounds listed in these reports, received since NBS Report 6928 was prepared.

A. Aluminum Compounds

- 1. Mass Spectra of Aluminum III Halides and the Heat of Dissociation of Al₂F₆(g) and LiF·AlF₃(g), R. F. Porter and E. E. Zeller, J. Chem. Phys. 33, 858 (1960).
- 2. Dissociation Energies of the Gaseous Monohalides of Boron, Aluminum, Gallium, Indium and Thallium, R. F. Barrow, Trans. Faraday Soc. <u>56</u>, 952-8 (1960).
- 3. Aluminum Monochloride, C.A. <u>54</u>, 19252d (1960) S. A. Semenkovich, Zhur. Priklad. Khim. <u>33</u>, 1281-5 (1960)

Equilibrium constants were determined for the reaction $2Al + AlCl_3 = 3AlCl$.

4. Chemical Reactions of Aluminum Monohalide Vapors, C.A. 54, 20735a (1960), S. A. Semenkovich, Zhur. Priklad. Khim. 33, 552-9 (1960).

Aluminum monofluoride and monochloride reactions with O_2 , H_2O , CO, N_2 , BeO, MgO, CaO, B₂O₃, SiO₂, TiO₂, ZrO₂, $A^{\ell}_2O_3$, W, Mo, Fe, Ni, Cr, Cu, C, SiC, TiC were studied. It is unclear from the abstract whether new reaction equilibria are presented.

- 5. Heating Curves of Aluminum Oxide Trihydrate and the Phase Changes Occurring During the Process of Registration, C.A. <u>54</u>,23680d (1960) A. I. Tsvetkov, E. P. Val[†]yashikhina and A. D. Las[†]kova, Trudy Inst. Geol. Rudnykh Mestorozhdenii, Petrog. Mineral. i Geokhim. <u>1960</u>, No. 42, 21-40.
- 6. Mass Spectra of Vapors in the Al-AlF3 and Al-LiF-AlF3 Systems, R. F. Porter, J. Chem. Phys. 33, 951 (1960).

B. Beryllium Compounds

1. Composition of Vapors in Equilibrium with Salts at High Temperatures, J. Berkowitz and W. A. Chupka, Ann. N.Y. Acad. Sci. 79, Art 11, 1073-8 (1960).

BeF₂, FeC ℓ_2 and the systems BeF₂-LiF and FeC ℓ_2 -LiC ℓ were studied.

2. Beryllium Fluoride. II. Formation of Beryllium Fluorides in Solution, Apurba Kumar Sengupta (Univ. Coll. Sci. Calcutta), J. Indian Chem. Soc. <u>37</u>, 291-4 (1960).

The existence of BeF_4^+ , $BeF_2(ag)$, BeF_4^{-2} and H_2BeF_4 is confirmed. The existence of BeF_3^- , BeF_5^{-3} , BeF_6^{-4} , and $HBeF_3$ was not corroborated.

3. The Electromotive Force Method of Investigating the Thermodynamics of Certain Reactions at High Temperatures, C.A. 54, 19117a (1960, M. V. Smirnov, L. E. Ivanovskii, S. F. Pal'guev, Z. S. Volenkova and L. D. Yushina, Trudy Inst. Khim. Akad. Nauk SSSR, Ural Filial 1958, No. 2, 143-51.

Some reactions studied involved Be, Ca, Th, chlorination of BeO, dilution of BeC $^{l}_{2}$ with alkali metal chlorides, the formation of BeC $^{l}_{1}$, and the reduction of oxides with carbon, forming carbides.

C. Magnesium Compounds

- 1. X-Ray Study of the Factors Causing Variation in the Heats of Solution of Magnesium Oxide, D. K. Thomas and T. W. Baker, Proc. Phys. Soc. (London) 74, Pt. 6, 673-9 (1959).
- 2. Thermodynamic Properties of Water in Aqueous Solutions, C.A. 54, 19102i (1960), K. P. Mishchenko, Termodynam. i Stroenie Rastvorov, Akad. Nauk SSSR Otdel. Khim. Nauk i Khim. Fak. Moskov. Gosudarst. Univ., Trudy Soveshchan., Moscow 1958, 97-105 Publ. 1959).

The heat and entropy of solution of MgCl2 are given.

3. Tensimetric and Thermochemical Study of Aqueous Solutions of the Electrolytes CoC^{ℓ}_{2} , $NH_{4}C^{\ell}$, NaC^{ℓ} , and MgC^{ℓ}_{2} , C.A. 54, 16119h (1960), N. A. Kupina, Trudy Leningrad. Tekhnol. Inst. im. Lensoveta 40, 92-111 (1957).

Vapor pressures and heats of solution of each of the above salts are given.

D. Lithium Compounds

1. Mass Spectrometric Investigation of the Evaporation of Sodium Chloride and Lithium Fluoride with the Use of a Double Effusion Chamber, C.A. <u>54</u>, 18007b (1960), P. A. Akishin, L. N. Gorokhov and L. N. Sidorov, Vestnik Moscov. Univ. Ser., Mat., Mekh., Astron., Fiz. i Khim. <u>1959</u>, No. 6, 194-204.

LiF, (LiF)₂, (LiF)₃, NaF, (NaF)₂, (NaF)₃ were observed and heats of sublimation and dissociation were measured.

- Vapor Pressure Equations for Species Over Solid and Liquid Lif, R. S. Scheffee and J. L. Margrave (Atlantic Research Corp.), J. Chem. Phys. <u>31</u>, 1682-3 (1959).
- 3. See Reference B. 1., Berkowitz and Chupka, LiF-BeF2 and LiCl-FeCl2 systems.
- 4. See Reference A.l., Porter and Zeller, LiF-AlF3 gas.
- 5. See Reference E.2., Schoonmaker.
- 6. See Reference A.6., Porter.
- 7. See Reference E.3., Datz.

E. Sodium Compounds

- 1. See Reference D.1., Akishin, Gorokhov and Sidorov, NaCl, (NaCl)2, NaCl)3 gases.
- 2. Mass Spectrometric and Thermodynamic Study of Gaseous Species in the Vaporization of Alkali Metal Fluorides and Hydroxides from Pure and Mixed Condensed Phases, Richard C. Schoonmaker, Cornell University, Ithaca, N. Y., University Microfilms, Ann Arbor, L.C. Card No. Mic 60-885. Dissertation Abstracts, 20, 3972-3 (1960).

3. Molecular Association in Alkali Halide Vapors, S. Datz, AEC Report ORNL-2933, May 1960.

F. Titanium Compounds

- 1. See Reference A.4., Semenkovich, TiC, TiO2.
- 2. Thermodynamics of Titanium Boride, C.A. <u>55</u>, 91 (1961), A. N. Krestovnikov and M. S. Vendrikh, Izvest. Vysshikh Ucheb. Zavedenii, Tsvetnaya Met. <u>2</u>, No. 2, 54-7 (1959).

Available in English as Henry Brutcher translation #673.

Vibrational frequencies, heat capacity, entropy and heat of formation and free energy of formation are given for TiB,

3. Thermodynamic Properties of TiC at High Temperatures, S. Fujishiro and N. A. Gokcen, J. Phys. Chem. <u>65</u>, 161-163 (1961).

The heat of sublimation of Ti(g) from TiC(c) was determined.

G. Carbon

1. Thermodynamic Properties of C2, Robert L. Altman, J. Chem. Phys. 32, 615-6 (1960)

AH (sublimation) is given for Co as well as other properties.

H. Boron Compounds

1. Determination of the Enthalpy of Formation of Boron Trichloride, G. L. Galchenko, B. I. Timofeev, S. M. Skuratov, Zhur. Neorg. Khim. 5, 2645 (1960).

Amorphous boron was burned in chlorine to form liquid or gaseous BCl_3 . $\Delta Hf(g) = -97.0 \pm 0.7 \text{ kcal/mole}$.

2. Determination of the Enthalpy of Formation of Boron Nitride, G. L. Galchenko, A. N. Kornilov and S. M. Skuratov, Zhur. Neorg. Khim. 5, 2651 (1960).

Amorphous boron was burned in nitrogen to form BN. $\Delta Hf = -60.7 \pm 0.34 \text{ kcal/mole}$.

- 3. See Reference F.2., Krestovnikov and Vendrikh, TiB₂ thermodynamic properties.
- 4. See Reference A.2., Barrow, Dissociation energy of BCl.

I. Zirconium Compounds

1. W. N. Hubbard, Private Communication.

The heat of formation of $ZrF_{L}(c)$ is -456.78 ±0.25 kcal/mole, determined by direct combustion of the metal in fluorine.

2. Heats of Formation of Zirconium Hydrides, T.B. Douglas, Private Communication.

The following values for heats of formation were derived from previous work on the zirconium-hydrogen system. See Part III.2. of this report for a discussion, and Appendix B for tables of thermodynamic functions. These compositions represent solid solutions but do not correspond to definite compounds.

Composition	ΔH _{f298.15} kcal/mole Zr
ZrH _{0.25}	-5.30 ±0.1
ZrH _{0.50}	-10.61 ±0.1
ZrH _{0.75}	-15.91 ±0.1
ZrH _{1.00}	-21.22 ±0.2
ZrH _{1.25}	-26.52 ±0.2

J. Fluoride

1. Relations Between the Thermodynamic Functions of Hydration of Electrolytes, B. Jakuszewski, Lodz. Towarz. Nouk. Wydzial III, No. 4, 1-15 (1960) in English.

 \triangle Hf and \triangle Ff of F⁻(g) are estimated.

III. 2. THERMODYNAMIC FUNCTIONS OF SOME TITANIUM AND ZIRCONIUM COMPOUNDS. REVISION OF THERMODYNAMIC FUNCTIONS OF LITHIUM AND LITHIUM CHLORIDE.

III 2a. ANALYSIS OF LOW-TEMPERATURE HEAT CAPACITIES AND SMOOTH-JOINING WITH HIGH-TEMPERATURE ENTHALPY MEASUREMENTS

George T. Furukawa and Martin L. Reilly

Analysis and computation of thermodynamic functions below about 400°K discussed in National Bureau of Standards Reports 6297 and 6484 dealt with lithium, beryllium, magnesium, aluminum and their compounds with hydrogen, oxygen, nitrogen, fluorine, and chlorine. The results of these analyses were joined smoothly with the available thermodynamic functions at higher temperatures. In NBS Report 6645 and 6928, the survey of thermodynamic data on the carbides and nitrides of elements belonging to the first and second rows of the periodic table was presented along with thermodynamic functions analyzed and computed for Ti, TiC and TiN. In this report the analysis and computation of thermodynamic functions of other titanium compounds and of zirconium metal and zirconium compounds are given. The thermodynamic functions tabulated in the earlier reports for Li and LiCl have been revised in light of new data that have become available. The methods of analysis and calculation of thermodynamic functions are the same as those described in NBS Report No. 6484. The low-temperature values of heat capacity were joined smoothly with the high-temperature values derived from the enthalpy equations that were selected. (See Part III. 2.b.) In the process the lower temperature limit of applicability of the enthalpy equation was in general raised from 298.15°K to about 400°K. The experimental or tabular values of enthalpy, which are considered to be more accurate than the equation values, were used to guide the smoothing process.

Lithium, Li, 6.940

Measurements of the low-temperature heat capacity of lithium reported by Simon and Swain [23] (15° to 300°K) do not show continuity with the heat-capacity values derived from the enthalpy measurements in the range 0° to 900°C reported by Douglas, Epstein, Dever, and Howland [6]. tables of thermodynamic functions given in the earlier NBS reports (6297, 6484, and 6928) on lithium were based on certain adjustments made to the data given by Simon and Swain [23]. Recently Martin [15] completed a series of heat-capacity measurements (20° to 300°K) on lithium and obtained results in close agreement with the adjusted values. A martensitic transformation observed by Martin [15] was, however, not considered in the earlier NBS reports. The new results reported by Martin [15] were joined smoothly with those reported earlier by Roberts [19] (1.5° to 20°K) and by Douglas, Epstein, Dever, and Howland [6] and a revised table of thermodynamic functions has been calculated from the results of the analysis. Earlier measurements by Koref [14] (-192° to 19°C) and by Dewar [4] (20° to 80°K) were not considered in the values finally selected.

Lithium Chloride, LiCl, 42.397

Low-temperature thermodynamic properties of LiCl given in NBS Report No. 6297, 6484, and 6928 were based on rather scattered data reported by Slonim and Hüttig [25] (-188° to 96°C). Recently, Hatton, Sinke, and Stull [11] (12° to 323°K) and Shirley [20] (15° to 325°K) reported new measurements. The results of Hatton, Sinke, and Stull [11] are lower than those of Shirley [20] below about 60°K and higher above this temperature. In the upper range, the two results differ by about two percent. These results were combined and joined smoothly with the high-temperature enthalpy measurements made by Douglas, Harman, and Dever [7] (0° to 900°C). A revised table of thermodynamic properties has been calculated from the results.

Titanium Monoxide, TiO, 63.90

Shomate [21] (52° to 296°K) determined the low-temperature heat capacity of titanium monoxide prepared by heating equimolal amounts of TiO₂ and titanium metal at 1350°C in vacuum. The reported analysis of the sample was 99.2 percent TiO, 0.1 percent TiC, and 0.7 percent silicon. Naylor [17] (298° to 1770°K) reported measurements of the enthalpy relative to 298°K of a sample of TiO having the same analysis as the sample used by Shomate [21]. These two measurements were joined smoothly and combined with heat-capacity values below 50°K obtained from the Debye-Einstein heat-capacity equation C = D (437/T) + E (653/T) given by Shomate [21].

Titanium Sesquioxide, Ti203, 143.80

Low-temperature heat-capacity measurements were reported by Shomate [21] (53° to 296°K). The sample was prepared in vacuum at 1350°C by reducing a finely-ground mixture of TiO₂ and carbon according to the reaction:

$$2 \text{ TiO}_2 + c \rightarrow \text{Ti}_2\text{O}_3 + c\text{O}.$$

The analysis reported for this product was 99.4 percent Ti₂O₃, 0.3 percent TiC, and 0.3 percent SiO₂. X-ray diffraction measurements indicated the product to have a structure similar to Fe₂O₃. High-temperature measurements reported by Naylor [17] (298° to 1750°K) were made on the same sample. These results were combined with the Debye-Einstein heat-capacity equation

$$C = 2D (441/T) + 3E (663/T)$$

given by Shomate [21] to obtain smooth values of heat capacity down to Ook.

Titanium Tritapentoxide, Ti305, 223.70

Shomate [21] (53° to 297°K) measured the low-temperature heat capacity of Ti₃0₅. The sample was prepared by reducing Ti₀2 with carbon according to the reaction:

$$3Ti0_2 + C \rightarrow Ti_30_5 + C0$$
,

by heating a finely-ground mixture in vacuum at 1350°C. Analysis of the product yielded 99.1 percent Ti305, 0.2 percent TiC, and 0.7 percent Si02. X-ray pattern did not indicate presence of Ti02 or Ti203. Naylor [17] (298° to 1340°K) measured the relative enthalpy of the same sample above room temperature. The results show a transition at about 450°K. When the material was heated above this temperature it did not return to the original state on subsequent cooling. The measurements below 450°K were separated into two groups for analysis, those made before heating above 450°K and those made after heating above this temperature. The low-temperature measurements of Shomate [21] were joined with the high-temperature measurements of Naylor [17] obtained before heating above 450°K, and combined with Debye-Einstein heat-capacity equation

$$C = 3D (399/T) + 5E (654/T)$$

given by Shomate [21] to obtain values of heat capacity down to 0°K. The measurements above 450°K were adjusted in accordance with the results that were obtained on the sample below 450°K after heating above this temperature.

Titanium Dioxide (Rutile), TiO2, 79.90

Low-temperature heat-capacity measurements on rutile have been reported by McDonald and Seltz [16] (68° to 298°K); Shomate [22] (52° to 298°K); Dugdale, Morrison, and Patterson [9] (12° to 270°K); and Keesom and Pearlman [12] (1° to 20°K). Heat measurements above room temperature have been reported by Nilson and Pettersson [18] (273° to 713°K) and by Naylor [17] (298° to 1746°K). Measurements on TiO2 reported by Arthur [1] (295° to 1072°K) do not give information on the crystalline nature of the sample; thus they were not considered in the analysis. Measurements of Keesom and Pearlman [12] were on a synthetic single crystal TiO2 and those of Naylor [17] were on naturally occurring rutile that gave a chemical analysis of 97.90 percent TiO2. Other investigators used polycrystalline samples of rutile. Although Dugdale, Morrison, and Patterson [9] made measurements over the range 12° to 270°K, numerical values were available in their publication for the range 20° to 50°K only. Results reported by Shomate [22]; Dugdale, Morrison, and Patterson [9]; Keesom and Pearlman [12]; and Naylor [17] were combined to obtain smooth values of heat capacity.

Titanium Dioxide (Anatase), TiO2, 79.90

Shomate [22] (52° to 296°K) reported low-temperature measurements on anatase. Naylor [17] (298° to 1350°K) reported enthalpy measurements above room temperature. The sample investigated by Shomate [22] was prepared by dissolving high-purity titanium metal in 6-N hydrochloric acid and precipitating with 50-percent KOH. The precipitated TiO₂ was washed, redissolved in HCl, and reprecipitated with NH₄OH. The material was washed, dried at 400°C in vacuum, ground, rewashed, and finally redried at 550°C in vacuum. The analysis reported for the sample was 99.3 percent TiO₂. The sample investigated by Naylor [17] was purchased from J. T. Baker. After drying for 4 hours at 1050°C, the material was analyzed and found to contain 0.30 percent SiO₂ and 0.15 percent CaO. X-ray diffraction measurements showed the material to be anatase. Naylor [17] made measurements actually to 1773°K. X-ray examination of the sample removed from the capsule following the measurements showed, however, that the material had become rutile. Since the four-hour heating at 1050°C did not cause measurable conversion to rutile, Naylor [17] reported only those data obtained below 1050°C.

The results of these two measurements were combined to obtain smoothed values of heat capacity. The values below about 52° K were obtained from the Debye-Einstein heat-capacity function C = D (343/T) + E (497/T) + E (950/T) given by Shomate [22].

Zirconium, Zr, 91.22

Measurements of the low-temperature heat-capacity have been reported by Todd [26] (53° to 297°K); Skinner and Johnston [24] (14° to 298°K); Estermann, Friedberg, and Goldman [10] (1.8° to 4.2°K); Wolcott [27] (1.2° to 20°K); and Burk, Estermann, and Friedberg [2] (20° to 200°K). The sample investigated by Estermann, Friedberg, and Goldman [10] and by Burk, Estermann, and Friedberg [2] is indicated to be 99.5 percent or better. The sample studied by Todd [26] contained among other impurities 2.15 percent of hafnium. A correction of + 1.0 percent was applied assuming zirconium and hafnium to have the same molal heat capacity. Skinner and Johnston's sample [24] contained 0.67 mole percent iron plus 0.28 mole percent of other impurities. The results of Todd [26] and Burk, Estermann, and Friedberg [2] are in close agreement, while those obtained above 130°K by Skinner and Johnston [24] are about 1 percent lower. The sample studied by Wolcott [27] contained about 1 percent of hafnium. Results of these measurements were combined to join smoothly with the high-temperature enthalpy equation:

$$H_{\rm T} - H_{298.15} = 5.334 \, \text{T} + 1.2935 \, (10^{-3}) \, \text{T}^2 - 1705.3$$

derived by Douglas [5] on the basis of experimental data at high temperatures (see III 2b below).

Zirconium Dioxide, Zr02, 123.22

Measurements of the low-temperature heat capacity were made by Kelley [13] (54° to 295°K). Heat measurements above room temperature were made by Arthur [1] (293° to 1265°K) and by Coughlin and King [3] (298° to 1080°K). Values of heat capacity obtainable from the equation given by Arthur [1] are as much as 5 percent lower in the 300°K range than the values of the low-temperature measurements. Since the results of Kelley [13] and of Coughlin and King [3] are in close agreement they were joined smoothly and the results of Arthur [1] were not considered. The values of heat capacity below 54°K were obtained using the Debye-Einstein heat-capacity equation C = D(345/T) + E(513/T) + E(861/T) given by Kelley [13].

Zirconium Nitride, ZrN, 105.228

Low-temperature heat-capacity measurements on zirconium nitride (ZrN) were reported by Todd [26] (53° to 297°K). The material was prepared by treating a mixture, that initially contained 94.8 percent ZrN and 5.2 percent ZrH₂, with a stream of nitrogen and hydrogen of 3 to 1 ratio at 1250°C. Subsequently, the material was heated in vacuum at 1250°C. Hafnium content was estimated to be 1.35 percent. A correction of + 0.7 percent was applied, assuming that the corresponding hafnium compound (HfN) would have the same molal heat capacity. The high-temperature measurements reported by Coughlin and King [3] (298° to 1672°K) were made on the same sample. Results of these two measurements were combined with the Debye-Einstein heat-capacity equation:

$$C = D(360/T) + E(673/T)$$

given by Todd [26] to obtain smooth heat-capacity values down to Ook.

Zirconium Tetrachloride, ZrCl4, 233.048

Low-temperature heat-capacity measurements on zirconium tetrachloride $(\mathbf{Z}\mathsf{rC}^l{}_4)$ have been reported by Todd [26] (52° to 297°K) and the high-temperature measurements on the same sample by Coughlin and King [3] (298° to 567°K). The material was prepared by treating a mixture of carbon black and $\mathbf{Z}\mathsf{rO}_2$ with chlorine at 500°C. The sublimed $\mathbf{Z}\mathsf{rC}^l{}_4$ was purified by resublimation. The sample was estimated to contain 0.75 percent of hafnium. A correction of + 0.35 percent has been applied assuming that the molal heat capacity of the corresponding hafnium compound $(\mathsf{HfC}^l{}_4)$ would be the same. These results were combined with the Debye-Einstein heat-capacity equation:

$$C = D(^{73.0}/T) + 2E(^{167}/T) + 2E(^{414}/T)$$

given by Todd [26] to obtain smooth values of heat capacity down to Ook.

III 2b. THERMODYNAMIC FUNCTIONS AT HIGH TEMPERATURES

Thomas B. Douglas and Andrew C. Victor

Titanium Oxides (TiO, Ti2O3, Ti3O5, TiO2 (Rutile), TiO2 (Anatase)),

Zirconium (Zr), Zirconium Dioxide (ZrO2), Zirconium Nitride (ZrN),

Zirconium Tetrachloride (ZrCl4)

The tables for these nine substances are based on enthalpy-temperature data determined by both low- and high-temperature methods. In most cases the temperature ranges covered by the two methods overlap somewhat (near room temperature). The enthalpy-temperature functions on which the tables are based were smoothed in the respective overlap regions by relatively weighting the competing data according to their apparent relative reliability. (The details are discussed in this chapter under each substance.) For every substance except zirconium (discussed below), the enthalpy-temperature functions were taken from Kelley's recent publication [28]. As indicated earlier (III 2a), the lower temperature limits of applicability of these equations have been raised somewhat (i.e., to above 298.15°K) in the process of smooth-joining.

Zirconium (Zr)

High-temperature enthalpy data taken into consideration have been reported by Coughlin and King (2980-13710K) [3], Douglas and Victor (2730-11730K) [8], Jaeger and Veenstra (2940-10740K) [29], Redmond and Lones (273-1309°K) [30], Scott (363°-1223°K) [31], and Skinner (298°-1800°K) [32]. The data of Douglas and Victor were determined on a sample whose analysis indicated high purity, their data have the vest overall precision in their temperature range, and their heat-capacity curve joins smoothly with the low-temperature curve of Todd [26], but not with that of Skinner and Johnston [24], which is somewhat lower near room temperature. Skinner [32] has argued that the heat-capacity curves of Todd and of Coughlin and King are somewhat too high owing to small amounts of oxygen in their samples. In line with this argument, Douglas and Victor's data indicate a small but definite maximum near 500°K which apparently cannot plausibly be explained in any other way, since it is well established that in zirconium a very small amount of hydrogen, and presumably of oxygen also, produces such an effect owing to the thermal effects of solution and precipitation of slightly soluble solid solutions formed by these impurities. This may be the explanation of the unusually large scatter in the heat capacities reported for zirconium by many authors.

The enthalpy-temperature relation adopted as a compromise in the present report joins smoothly with the average of the low-temperature curves of Todd [26] and of Skinner and Johnston [24] near 298°K, and fits the data of Douglas and Victor [8] from 573° to 1158°K and those of Skinner [32] from 1158° to 1800°K. The enthalpy above 1800°K, the heat of fusion, and the heat capacity of the liquid have been estimated [33]. The following equations represent the adopted high-temperature enthalpy of zirconium (in cal mole-1 at T°K) relative to that of q-Zr at 298.15°K:

Alpha
$$(298^{\circ} - 1136^{\circ}K)$$
: $H_{T}^{\circ} - H_{298.15}^{\circ} = 5.334 \text{ T}$
+ 1.2935 (10^{-3}) $T^{2} - 1705.3$

Transition (1136°K): $\Delta H^{\circ} = 959.5$

Beta (1136° - 2130°K):
$$H_T^{\circ}$$
 - $H_{298.15}^{\circ}$ = 4.859 T + 8.03 (10⁻⁴) T^2 + 426.8

Fusion (2130°K): $\Delta H^{\circ} = 4050$

Liquid (2130° - 3500°K):
$$H_T^{\circ} - H_{298.15}^{\circ} = 9.504 \text{ T} - 4.000 (10^{-4}) \text{ T}^2 + 40.9$$

Zirconium Hydrides (ZrH_{0.25}, ZrH_{0.50}, ZrH_{0.75}, ZrH_{1.00}, ZrH_{1.25})

These hydrides, for which tables of thermodynamic functions are given in this report, are not definite compounds, but representative compositions. This is evident from the Zr-H phase diagram shown in Fig. 19, Appendix A: a hydrogen dissolves in zirconium in continuous amounts (but with miscibility gaps as shown) to form brittle metallic-like solid solutions up to a composition approaching ZrH2. These thermodynamic functions, as well as the standard heats of formation listed elsewhere in this report, were recently calculated from a review paper [34] which critically correlated the available data on various properties of the system. The first-order transition was assumed to be 550°C (823.2°K), but is uncertain by \pm 10°. Below the transition temperature the thermodynamic properties vary linearly with the H/ ${f Z}$ r ratio; at higher temperatures they do not. Most of the phase boundaries have been determined and checked by a variety of physical methods, and are fairly well established. In some cases, however, such properties as the heat capacity are so sensitive to the exact phase boundaries as to be known only approximately. However, within certain limits the tables form an interconsistent representation of all the best available thermodynamic data.

This diagram is identical with that in reference [34], and omits two boundaries above 60 atomic % H for which there is some published evidence. The two dashed boundaries are considerably uncertain. The relative enthalpy was measured several years ago at the National Bureau of Standards [8] at the points shown on the diagram. The phases labeled "γ" have been called "δ" and "ε" by some authors.

It may be noted, however, that decomposition pressures cannot be calculated from the free-energy functions of these tables, since the latter do not include the resulting compositions. For all compositions represented in Fig. 19, Appendix A, the decomposition pressure is negligible at room temperature, but in most cases exceeds one atmosphere above 1200°K.

References

- [1] J. S. Arthur, The Specific Heats of MgO, TiO2, and ZrO2 at High Temperatures, J. Applied Phys. 21, 732-733 (1950).
- [2] D. L. Burk, I. Estermann, and S. A. Friedberg, The Low Temperature Specific Heats of Titanium, Zirconium, and Hafnium, Z. physik. Chem. (Neue Folge, Frankfurt) 16, 183-193 (1958).
- [3] J. P. Coughlin and E. G. King, High-Temperature Heat Contents of Some Zirconium-Containing Substances, J. Am. Chem. Soc. 72, 2262-2265 (1950).
- [4] J. Dewar, Atomic Specific Heats between the Boiling Points of Liquid Nitrogen and Hydrogen. I. The Mean Atomic Specific Heats at 50° Absolute of the Elements a Periodic Function of the Atomic Weights, Proc. Roy. Soc. (London) A89, 158-169 (1913).
- [5] T. B. Douglas, National Bureau of Standards, private communication, January 11, 1961.
- [6] T. B. Douglas, L. F. Epstein, J. L. Dever, and W. H. Howland, Lithium: Heat Content from 0° to 900°C, Triple Point and Heat of Fusion, and Thermodynamic Properties of the Solid and Liquid, J. Am. Chem. Soc. 77, 2144-2150 (1955).
- [7] T. B. Douglas, A. W. Harman, and J. L. Dever, Unpublished Data on Lithium Chloride, National Bureau of Standards.
- [8] T. B. Douglas and A. C. Victor, Heat Content of Zirconium and of Five Compositions of Zirconium Hydride from 0° to 900°C, J. Research NBS 61, 13-23 (1958).
- [9] J. S. Dugdale, J. A. Morrison, and D. Patterson, The Effect of Particle Size on the Heat Capacity of Titanium Dioxide, Proc. Roy. Soc. (London) 224A, 228-235 (1954).
- [10] I. Estermann, S. A. Friedberg, and J. E. Goldman, The Specific Heats of Several Metals between 1.8° and 4.2°K, Phys. Rev. <u>87</u>, 582-588 (1952).
- [11] W. E. Hatton, G. C. Sinke, and D. R. Stull, Low Temperature Heat Capacity and Entropy of Lithium Chloride, private communication, September 24, 1959.
- [12] P. H. Keesom and N. Pearlman, Low-Temperature Heat Capacity of Pure and Reduced Rutile, Phys. Rev. 112, 800-804 (1958).
- [13] K. K. Kelley, Specific Heat of Zirconium Dioxide at Low Temperatures, Ind. Eng. Chem. 36, 377 (1944).
- [14] F. Koref, Messungen der spezifischen Wärme bei tiefen Temperaturen mit dem Kupferkalorimeter, Ann Physik [4] 36, 49-73 (1911).

- [15] D. L. Martin, The Specific Heat of Lithium from 20° to 300°K: the Martensitic Transformation, Proc. Roy. Soc. (London) 254A, 444-454 (1960).
- [16] H. J. McDonald and H. Seltz, The Heat Capacities of Titanium Dioxide from 68° to 298°K. The Thermodynamic Properties of Titanium Dioxide, J. Am. Chem. Soc. 61, 2405-2407 (1939).
- [17] B. F. Naylor, High-Temperature Heat Contents of TiO, Ti2O3, Ti3O5, and TiO2, J. Am. Chem. Soc. 68, 1077-1080 (1946).
- [18] L. F. Nilson and O. Pettersson, Über einige physikalische Konstanten des Germaniums und Titans, Zeit. physik. Chem. <u>1</u>, 27-38 (1887).
- [19] L. M. Roberts, The Atomic Heats of Lithium, Sodium, and Potassium between 1.5 and 20°K, Proc. Phys. Soc. (London) 70B, 744-752 (1957).
- [20] D. A. Shirley, The Heat Capacity of Lithium Chloride from 15 to 325 Degrees Kelvin, J. Am. Chem. Soc. 82, 3841-3843 (1960).
- [21] C. H. Shomate, Specific Heats at Low Temperatures of TiO, Ti₂O₃, Ti₃O₅, and TiN, J. Am. Chem. Soc. <u>68</u>, 310-312 (1946).
- [22] C. H. Shomate, Heat Capacities at Low Temperatures of Titanium Dioxide (Rutile and Anatase), J. Am. Chem. Soc. 69, 218-219 (1947).
- [23] F. Simon and R. C. Swain, Untersuchungen über die spezifischen Wärmen bei tiefen Temperaturen, Z. physik Chem. <u>28B</u>, 189-198 (1935).
- [24] G. B. Skinner and H. L. Johnston, Low Temperature Heat Capacities of Inorganic Solids. VIII. Heat Capacity of Zirconium from 14 to 300°K, J. Am. Chem. Soc. 73, 4549-4550 (1951).
- [25] C. Slonim and G. F. Huttig, Studien zur Chemie des Lithiums. VII. Die spezifischen Warmen, Bildungswärmen, Zursetzungs drucke und Dichten der Lithiumhalogenid hydrate, Z. anorg. Chem. 181, 55-64 (1929).
- [26] S. S. Todd, Heat Capacities at Low Temperatures and Entropies of Zirconium, Zirconium Nitride, and Zirconium Tetrachloride, J. Am. Chem. Soc. 72, 2914-2915 (1950).
- [27] N. M. Wolcott, The Atomic Heats of Titanium, Zirconium, and Hafnium, Phil. Mag. 2, 1246-54 (1957).
- [28] K. K. Kelley, "Contributions to the Data on Theoretical Metallurgy: XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds," U. S. Bur. Mines Bull. 584, U. S. Government Printing Office, Washington, D. C., 1960.

- [29] F. M. Jaeger and W. A. Veenstra, Rec. trav. chim. 53, 917 (1934).
- [30] R. F. Redmond and J. Lones, AEC Report ORNL-1342, Oak Ridge National Lab., Oak Ridge, Tenn., 1952, pp. 3-20.
- [31] J. L. Scott, AEC Report ORNL-2328, Oak Ridge National Lab., Oak Ridge, Tenn., 1957.
- [32] G. B. Skinner, "Thermodynamic and Structural Properties of Zirconium" (Ph.D. Dissertation), The Ohio State Univ., Columbus, 0., 1951.
- [33] "Preliminary Report on the Thermodynamic Properties of Selected Light-Element Compounds," NBS Report 6645, National Bureau of Standards, Washington, D. C., 1 January 1960, pp. 19-31.
- [34] T. B. Douglas, J. Am. Chem. Soc. 80, 5040 (1958).

Fig. 1

Fig. 2

Al-Li

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

<u>Be-Si</u>

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Mg-Ti

Fig. 14

Fig. 15

By permission from CONSTITUTION OF BINARY ALLOYS, 2nd Ed., by Max Hansen. Copyright, 1958. by McGraw-Hill Book Company, Inc.

Fig. 16

By permission from CONSTITUTION OF BINARY ALLOYS, 2nd Ed., by Max Hansen. Copyright, 1958, by McGraw-Hill Book Company, Inc.

Fig. 17

By permission from CONSTITUTION OF BINARY ALLOYS, 2nd Ed., by Max Hansen. Copyright, 1958, by McGraw-Hill Book Company, Inc.

Fig. 18

By permission from CONSTITUTION OF BINARY ALLOYS, 2nd Ed., by Max Hansen. Copyright, 1958, by McGraw-Hill Book Company, Inc.

Fig. 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

 $MgO - Al_2O_3 - TiO_2$ Figure 27

By permission from PHASE DIAGRAMS FOR CERAMISTS, by E. M. Levin, H. F. McMurdie and F. P. Hall. Copyright, 1956, by The American Ceramic Society.

Figure 29

Figure 30

By permission from PHASE DIAGRAMS FOR CERAMISTS: PART II, by E. M. Levin and H. F. McMurdie. Copyright, 1959, by The American Ceramic Society.

Figure 31

·Figure 32

Figure 33

Figure 34

By permission from PHASE DIAGRAMS FOR CERAMISTS, by E. M. Levin, H. F. McMurdie and F. P. Hall. Copyright, 1956, by The American Ceramic Society.

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

By permission from PHASE DIAGRAMS FOR CERAMISTS, by E. M. Levin, H. F. McMurdie and F. P. Hall. Copyright, 1956, by The American Ceramic Society.

Figure 40

Figure 41

By permission from PHASE DIAGRAMS FOR CERAMISTS, by E. M. Levin. H. F. McMurdie and F. P. Hall. Copyright, 1956, by The American Ceramic Society.

Figure 43

 $\operatorname{ZrO}_2 - \operatorname{TiO}_2$

Figure 44

By permission from PHASE DIAGRAMS FOR CERAMISTS, by E. M. Levin, H. F. McMurdie and F. P. Hall. Copyright, 1956, by The American Ceramic Society.

591530

Figure 45

- 216 -

Fig. 46

Fig. 47

Fig. 48

By permission from PHASE DIAGRAMS FOR CERAMISTS: PART II, by E. M. Levin and H. F. McMurdie. Copyright, 1959, by The American Ceramic Society.

Fig. 50

Fig. 51

Fig. 52

Fig. 53

By permission from PHASE DIAGRAMS FOR CERAMISTS: PART II, by E. M. Levin and H. F. McMurdie. Copyright, 1959, by The American Ceramic Society.

Fig. 55

MgF2-BeF2

Fig. 56

For systems containing 0, F, or Cl, the components are given as oxides, fluorides, and chlorides respectively. The components are listed alphabetically, and in all possible orders for a given system. Many of the diagrams are discussed in the text. This index is also convenient for determining those systems of a given component for which no phase diagrams are included in this report.

System	Fig.	Page	System	Fig.	Page	System	Fig.	Page
Al-B	1	187	BeO-MgO-ZrO ₂	32	211	Si-Mg	13	199
Al-Be	2	188	Be0-Ti0 ₂	33	211	Si-Ti	16	202
Al-Li	3	189	Be0-Ti02-Al203	23	207	Si-Zr	17	203
Al-Mg	4	190	BeO-TiO2-ZrO2	34,35	212	Ti-Al	6	192
Al-Si	5	191	BeO-ZrO2-Al203	24	207	Ti-B	8	194
Al-Ti	6	192	BeO-ZrO2-MgO	32	211	Ti-Mg	14	200
Al-Zr	7	193	BeO-ZrOTiO	34,35	212	Ti-Si	16	202
Alf ₃ -Al ₂ 0 ₃ -Lif	21	206	H-Zr	19	205	Ti-Zr	18	204
Alf ₃ -KF	53	222	KF-Alf3	53	222	TiO2-Al203	29	209
Alf ₃ -Lif	51	220	Li-Al	3	189	TiO2-Al2O3-BeO	23	207
Alf ₃ -LiF-Al ₂ 0 ₃	21	206	Li-Mg	12	198	TiO ₂ -Al ₂ O ₃ -MgO	27,28	209
AlF ₃ -NaF	52	221	LiCt-LiF	46	217	Ti02-Al203-Zr02	30,31	210
Al ₂ O ₃ -AlF ₃ -LiF	21	206	LiF-AlF3	51	220	TiO ₂ -BeO	33	211
Al ₂ 0 ₃ -Be0	20	206	LiF-AlF3-Al203	21	206	TiO ₂ -BeO-Al ₂ O ₃	23	207
A ² 20 ₃ -BeO-MgO	22	207	LiF-Al ₂ O ₃ -AlF ₃	21	206	TiO ₂ -BeO-ZrO ₂	34,35	212
Al ₂ 0 ₃ -BeO-TiO ₂	23	207	LiF-BeF	47,48	218	TiO ₂ -MgO	39,40	214
Al ₂ 0 ₃ -Be0-Zr0 ₂	24	207	LiF-LiC ²	46	217	TiO2-MgO-Al2O3	27,28	209
Al ₂ O ₃ -LiF-AlF ₃	21	206	LiF-MgF ₂	49,50	219	Ti0 ₂ -Mg0-Zr0 ₂	43	216
Al ₂ O ₃ -MgO	25,26	208	LiF-ZrF ₄	54	223	TiO ₂ -ZrO ₂	44,45	216
120 ₃ -Mg0-Be0	22	207	Li ₂ 0-B ₂ 0 ₃	36,37	213	TiO2-ZrO2-Al2O3	30,31	210
Al ₂ 0 ₃ -Mg0-Ti0 ₂	27,28	209	Mg-Al	4	190	TiO ₂ -ZrO ₂ -BeO	34,35	212
Al ₂ 0 ₃ -Ti0 ₂	29	209	Mg-Li	12	198	7i0 ₂ -Zr0 ₂ -Mg0	43	216
Al ₂ 0 ₃ -Ti0 ₂ -Be0	23	207	Mg-Si	13	199	Zr-Al	7	193
A ² 20 ₃ -TiO ₂ MgO	27,28	209	Mg-Ti	14	200	Zr-B	9	195
Al ₂ 0 ₃ -Ti0 ₂ -Zr0 ₂	30,31	210	Mg-Zr	15	201	Zr-Be	11	197
2 3 2 2 Al ₂ 0 ₃ -Zr0 ₂ -Be0	24	207	MgF ₂ -BeF ₂	55,56	224-5	Zr-H	19	205
2 3 2 Al ₂ 0 ₃ -Zr0 ₂ -Ti0 ₂	30,31	210	MgF ₂ -LiF	49,50	219	Zr-Mg	15	201
23 2 2 B-Al	1	187	Mg0-Al ₂ 0 ₃	25,26	208	Zr-Si	17	203
B-Ti	8	194	Mg0-Al ₂ 0 ₃ -Be0	22	207	Zr-Ti	18	204
B-Zr	9	195	Mg0-Al ₂ 0 ₃ -Ti0 ₂	27,28	209	ZrF ₄ -LiF	54	223
B ₂ 0 ₃ -Li ₂ 0	36,37	213	Mg0-B ₂ 0 ₃	38	214	Zr0 ₂ -Al ₂ 0 ₃ -Be0	24	207
2 3 2 B ₂ 0 ₃ -Mg0	38	214	MgO-BeO-Al ₂ O ₃	22	207	Zr0 ₂ -Al ₂ 0 ₃ -Ti0 ₂	30,31	210
Be-Al	2	188	MgO-BeO-ZrO	32	211	ZrO ₂ -BeO-Al ₂ O ₃	24	207
Be-Si	10	196	Mg0-Ti0 ₂	39,40	214	ZrO ₂ -BeO-MgO	32	211
Be-Zr	11	197	MgO-TiO ₂ -Al ₂ O ₃	27,28	209	ZrO2-BeO-TiO2	34,35	212
BeF ₂ -LiF	47,48	218	MgO-TiO ₂ -ZrO ₂	43	216	Zr0 ₂ -Mg0	41,42	215
BeF ₂ -MgF ₂	55,56	224-5	Mg0-Zr0 ₂	41,42	215	ZrO2-MgO-BeO	32	211
Be0-Al ₂ 0 ₃	20	206	Mg0-Zr0 ₂ -Be0	32	211	ZrO ₂ -MgO-TiO ₂	43	216
Be0-Al ₂ 0 ₃ -Mg0	22	207	Mg0-Zr0 ₂ -Ti0 ₂	43	216	Zr0 ₂ -Ti0 ₂	44,45	216
Be0-Al ₂ 0 ₃ -Ti0 ₂	23	207	NaF-AlF ₃	52	221	ZrO ₂ -TiO ₂ -Al ₂ O ₃	30,31	210
BeO-Al ₂ O ₃ -ZrO ₂	24	207	Si-Al	5	191	Zr0 ₂ -Ti0 ₂ -Be0	34,35	212
BeO-MgO-Al ₂ O ₃	22	207	Si-Be	10	196		43	216
2 3	22	201	DI-De	10	190	Zr02-Ti02-Mg0	43	210

APPENDIX B

THERMODYNAMIC FUNCTIONS OF SOLIDS AND LIQUIDS

These tables are discussed in Section III 2 of this report. They form an amendment of and addition to the similar tables in Appendix B of the last report (NBS Report 6928), and the table numbers in the two reports form a continuous series.

THERMODYNAMIC FUNCTIONS FOR LITHIUM (LI) SOLID AND LIQUID PHASES

1 CAL=4.1840 ABS J GRAM MOLECULAR WT . = 6 . 940 GRAMS T DEG K = 273.15 + T DEG C $-(\digamma_{\mathsf{T}}^{0} - H_{\mathsf{0}}^{0}) / \mathsf{T} \ (H_{\mathsf{T}}^{0} - H_{\mathsf{0}}^{0}) / \mathsf{T} \ (S_{\mathsf{T}}^{0} - S_{\mathsf{0}}^{0}) \qquad (H_{\mathsf{T}}^{0} - H_{\mathsf{0}}^{0}) \qquad C_{\mathsf{P}}^{0} \qquad -(\digamma_{\mathsf{T}}^{0} - H_{\mathsf{0}}^{0})$ DEG K DEG MOLE DEG MOLE DEG MOLE DEG MOLE (SOLID)

 H_0^0 AND s_0^0 APPLY TO THE REFERENCE STATE OF THE SOLID AT ZERO DEG K

TABLE B-21(CONT.)

THERMODYNAMIC FUNCTIONS FOR LITHIUM (LI) SOLID AND LIQUID PHASES

1 CAL=4.1840 ABS J GRAM MOLECULAR WT .= 6.940 GRAMS T DEG K = 273.15 + T DEG C $-(F_{T}^{0}-H_{0}^{0})/T(H_{T}^{0}-H_{0}^{0})/T(S_{T}^{0}-S_{0}^{0})$ $(H_{T}^{0}-H_{0}^{0})$ C_{P}^{0} DEG K ___CAL___ __CAL___ __CAL___ CAL___ MOLE DEG MOLE MOLE (SOLID) 300.00 3.2613 3.7215 6.983 1116.5 5.916
310.00 3.3845 3.7932 7.178 1175.9 5.971
320.00 3.5060 3.8621 7.368 1235.9 6.024
330.00 3.6259 3.9284 7.554 1296.4 6.076
340.00 3.7441 3.9924 7.736 1357.4 6.130
350.00 3.8607 4.0543 7.915 1419.0 6.188
360.00 3.9758 4.1144 8.090 1481.2 6.255
370.00 4.0893 4.1733 8.263 1544.1 6.330
373.15 4.1248 4.1916 8.316 1564.1 6.355
380.00 4.2014 4.2311 8.432 1607.8 6.411
390.00 4.3120 4.2881 8.600 1672.4 6.497
400.00 4.4213 4.3444 8.766 1737.8 6.586
425.00 4.6888 4.4830 9.172 1905.3 6.820
4.50.00 4.9490 4.6198 9.569 2078.9 7.071
453.70 4.9868 4.6400 9.627 2105.2 7.108 978.38 1049.2 1121.9 1196.5 1273.0 1351.2 1431.3 1513.0 1539.2 1596.5 1681.7 1768.5 1992•8 2227•0 2262.5 (LIQUID)

 $^{0}_{0}$ and $^{0}_{0}$ apply to the reference state of the solid at zero deg K revised

THERMODYNAMIC FUNCTIONS FOR LITHIUM CHLORIDE (LI CL)
SOLID AND LIQUID PHASES

G	RAM MOL	ECULAR WT.=	42•397 GRAM T DEG K	is = 273•15	+ T DEG C	1 CAL=	4.1840 ABS J
	Т	-(F ₀ +H ₀)/T	(HT-HO)/T	(ST-SO)	(H _T -H ₀)	c _p ⁰	-(F ₀ -H ₀)
	DEG K	DEG MOLE	DEG MOLE	DES MOLE	CAL MOLE	DEG MOLE	CAL MOLE
				(SOLID)			
	0.	0.	0.	0.	0.	0.	0.
	5.00	0.0001 0.0012	0.0004 0.0038	0.000	0.002 0.038	0.002 0.015	0.000 0.012
	10.00 15.00	0.0012	0.0125	0.003	0.187	0.050	0.062
	20.00	0.0099	0.0311	0.041	0.623	0.136	0.199
	25.00	0.0203	0.0668	0.087	1.671 3.765	0.298 0.554	0.508 1.117
	30.00 35.00	0.0372 0.0526	0.1255 0.2094	0.163 0.272	7.328	0.883	2.190
	40.00	0.0973	0.3180	0.415	12.721	1.284	3.893
	45.00	0.1422	0.4502	0.592	20.257	1.737	6.398
	50.00 55.00	0.1973 0.2626	0.6025 0.7715	0.800 1.034	30 • 125 42 • 432	2.214 2.712	9.867 14.441
	60.00	0.3374	0.9546	1.292	57.278	3.227	20.247
	65.00	0.4215	1.1491	1.571	74.690	3.736	27.396
	70.00 75.00	0.5140 0.6143	1.3517 1.5592	1.866 2.174	94.619 116.94	4.231 4.691	35.980 46.074
	80.00	0.7216	1.7686	2.490	141.49	5.126	57.730
	85.00	0.8352	1.9783	2.814	168.16	5.538	70 • 98.7
	90.00 95.00	0.9541 1.0779	2.1870 2.3935	3.141 3.471	196.83 227.38	5.926 6.293	85.8 7 2 102.40
	100.00	1.2059	2.5972	3.803	259.72	6.637	120.59
	105.00	1.3375	2.7972	4.135	293.71	6.954	140.43
	110.00	1.4721 1.6094	2.9929 3.1842	4.465 4.794	329 • 22 366 • 18	7.250 7.531	161•93 185•08
	120.00	1.7489	3.3708	5.120	404.50	7.792	209.87
	125.00	1.8902	3.552(5.443	444.08	8.038	236.27
	130.00	2.0330 2.1770	3.7296 3.9018	5.763 6.079	484.85 526.74	8 • 268 8 • 485	264•29 293•89
	140.00	2.3219	4.0691	6.391	569.68	8.687	32:.07
	145.00	2.4676	4.2317	6.699	613.59	8 • 877	357.80
	150.00 155.00	2.6137 2.7501	4.3895 4.5427	7.003 7.303	658.43 704.12	9.055 9.220	392 • 06 427 • 82
	160.00	2.9067	4.6913	7.598	750.61	9.373	465.08
	165.00	3.0533	4.8354 4.9750	7.889 8.175	797.84 845.76	9.516 9.650	503.80 543.96
	170.00 175.00	3.1997 3.3459	5.1104	8.456	894.32	9.774	585.54
	180.00	3.4917	5.2416	8.733	943.49	9.892	628.51
	185.00 190.00	3.6371 3.7819	5.3688 5.4922	9.006 9.274	993•23 1043•5	10.003 10.110	672.86 718.56
	195.00	3.9261	5.6119	9.538	1094.3	10.212	765.59
	200.00	4.0697	5.7282	9.798	1145.6	10.311	813.94
	205.00	4.2125 4.3546	5.8411 5.9508	10.054 10.305	1197•4 1249•7	10.405 10.495	863•57 914•47
	215.00		6.0575	10.553	1302.4	10.581	966.61
	220.00		6.1612	10.798	1355.5	10.662	1020.0
	225.00		6.2621 6.3602	11.038 11.275	1409.0 1462.9	10.739 10.812	1074•6 1130•4
	235.00		6.4557	11.508	1517.1	10.882	1187.3
	240.00		6.5487	11.738	1571.7	10.950	1245 • 4
	245.00 250.00		6.6392 6.7273	11.964 12.188	1626•6 1681•8	11.016 11.079	1304•7 1365•1
	255.00	5.5944	6.8133	12.408	1737.4	11.141	1426.6
	260.00	5.7275	6.8971	12.625	1793•2	11.199	1489.2
	265.00 270.00	5.8597 5.9909	6•9788 7•0584	12.838 13.049	1849•4 1905•8	11.255 11.307	1552•8 1617•5
	273.15		7.1076	13.181	1941.4	11.338	1658.8
	275.00		7.1361	13.257	1962•4	11.355	1683.3
	280.00 285.00		7.2119 7.2857	13.462 13.664	2019•3 2076•4	11.400 11.442	1750•1 1817•9
	290.00	6.5060	7.3577	13.864	2133.7	11.481	1886.7
	295.00		7.4279	14.060	2191•2	11.519	1956.6
	298.15 300.00		7.4713 7.4964	14.183 14.254	2227•6 2248•9	11.542 11.556	2001•0 2027•3

 ${\rm H_0^0}$ and ${\rm S_0^0}$ apply to the keference state of the solid at zero deg K revised

THERMODYNAMIC FUNCTIONS FOR LITHIUM CHLORIDE (LI CL)

SOLID AND LIQUID PHASES

GRAM MOLECULAR WT.=42.397 GRAMS

T DEG K = 273.15 + T DEG C

		T DEG K	= 273.15 +	T DEG C		
Т	$-(F_{T}^{0}-H_{0}^{0})/T$	$(H_0^{T}-H_0^{O})/T$	$(s_1^0 - s_0^0)$	(HT-HO)	c _p ⁰	-(FT,-H0)
DEG K	CAL DEG MOLE	CAL DEG MOLE	DEG MOLE	CAL_ MOLE	DEG MOLE	CAL. MOLE
			(SOLID)	-		
300.00 310.00 320.00 340.00 350.00 360.00 370.00 373.15 380.00 400.00 450.00 450.00 500.00 650.00 700.00 800.00	7.9605 8.1902 8.4165 8.4871 8.6394 8.8590 9.0755 9.6031 10.112 10.605 11.081 11.990 12.846 13.656 14.425 15.157	7.4964 7.6285 7.7546 7.8750 7.9904 8.1010 8.2073 8.3095 8.4079 8.502(8.5945 8.8111 9.0115 9.1984 9.3736 9.6950 9.9856 10.252 10.500 10.732	14.254 14.634 15.005 15.365 15.718 16.061 16.397 16.726 16.828 17.047 17.362 17.670 18.414 19.803 20.455 21.685 22.832 23.908 24.925 25.889 26.809	2248.9 2364.8 2481.5 2598.8 2716.7 2835.3 2954.6 3074.5 112.4 3195.0 3316.1 3437.8 3744.7 4055.2 4369.2 4686.8 5332.3 5991.4 6664.0 7349.9 8049.0 8761.3	11.556 11.627 11.696 11.764 11.830 11.895 11.958 12.020 12.039 12.080 12.140 12.201 12.349 12.491 12.632 12.772 13.046 13.318 13.585 13.851 14.114	2027.3 2171.8 2320.0 2471.8 2627.3 2786.2 2948.5 3114.1 3166.9 3283.0 3455.0 3630.2 4081.3 4556.6 5037.3 5540.5 6594.4 7707.6 8876.4 10097. 11368. 12686.
850.00 885.00	16.527	11.161	27.688 28.282	9486.6 10002.	14.637 14.819	14048 • 15028 •
			(LIQUID)			
885.00 900.00 950.00 1000.00 1150.00 1200.00 1250.00 1350.00 1400.00 1550.00 1600.00 1650.00 1750.00 1750.00 1850.00 1950.00 1950.00	17.260 18.158 19.007 19.812 20.577 21.307 22.003 22.669 23.307 23.920 24.509 25.075 25.621 26.148 26.656 27.148 27.624 28.085 28.532 28.966 29.387 29.796 30.194	16.644 16.628 16.576 16.526 16.477 16.430 16.384 16.339 16.295 16.251 16.209 16.167 16.125 16.084 16.003 15.963 15.963 15.924 15.885 15.846 15.877 15.769	33.625 33.888 34.734 35.533 36.289 37.007 37.691 38.342 38.964 39.559 40.675 41.200 41.705 42.191 42.660 43.112 43.548 43.970 44.378 44.773 45.156 45.527 45.887	14730 • 14965 • 15747 • 16526 • 17301 • 18073 • 18842 • 19607 • 20368 • 21127 • 21882 • 22633 • 23381 • 24126 • 24867 • 25605 • 26340 • 27071 • 27798 • 28523 • 25 243 • 29961 • 30675 • 31386 •	15.696 15.676 15.608 15.540 15.472 15.404 15.336 15.268 15.200 15.132 15.064 14.996 14.928 14.860 14.723 14.655 14.519 14.519 14.315 14.315 14.247 14.179	15028. 15534. 17250. 19007. 20802. 22635. 24503. 26404. 28336. 30299. 32292. 34312. 36359. 36452. 40529. 42650. 44795. 46961. 49149. 51358. 53587. 55835. 58102. 60388.
2050.00 2100.00 2150.00 2200.00 2250.00 2350.00 2400.00 2450.00	30.581 30.958 31.325 31.682 32.031 32.372 32.704 33.029 33.346	15.655 15.617 15.580 15.543 15.506 15.469 15.432 15.355 15.359	46.236 46.575 46.905 47.225 47.537 47.841 48.136 48.424 48.704 48.978	32093. 32797. 33497. 34194. 34888. 35578. 36265. 36948. 37628. 38305.	14.111 14.043 13.975 13.907 13.839 13.771 13.703 13.635 13.567 13.499	62691. 65011. 67348. 69701. 72071. 74455. 76854. 79268. 81697. 84139.

 ${\rm H_0^0}$ and ${\rm S_0^0}$ apply to the reference state of the solid at zero deg k revised

TABLE B-41

1 CAL=4.1840 ABS J

THERMODYNAMIC FUNCTIONS FOR TITANIUM MONOXIDE (TI 0) SOLID PHASES

GRAM MOLECULAR WT. = 63.90 GRAMS

GRAM MOLI	ECULAR WISE	T DEG K	= 273.15 +	T DEG C	I CAL =4	**1040 ADS J			
т	$-(F_{T}^{0}-H_{0}^{0})/T$			(H _T -H ₀)	c _p	-(F _T ⁰ -H ₀ ⁰)			
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE			
SOLID PHASE (ALPHA)									
0.00	0. 0.0000	0. 0.0001	0.000	0. 0.001	0. 0.001	0.000			
10.00	0.0004	0.0015	0.002	0.015	0.006	0.005			
15.00 20.00	0.0016 0.0038	0.0049 0.0113	0.007 0.015	0.074 0.226	0.019 0.044	0.024			
25.00	0.0073	0.0216	0.029	0.540	0.085	0.184			
30.00 35.00	0.0126 0.0198	0.0370 0.0586	0.050 0.078	1.109 2.049	0.147 0.234	0.377 0.692			
40.00	0.0294	0.0873	0.117	3.490	0.347	1.176			
45.00 50.00	0.0417 0.0570	0.1237 0.1682	0.165 0.225	5.566 8.409	0.488 0.654	1.876 2.847			
55.00	0.0754	0.2207	0.296	12.141	0.843	4.146			
60.00 65.00	0.0971 0.1223	0.2812 0.3490	0.378 0.471	16.869 22.686	1.052 1.277	5.827 7.946			
70.00 75.00	0.1508 0.1828	0.4238 0.5047	0.575 0.688	29.663 37.856	1.516 1.763	10.557 13.708			
80.00	0.2181	0.5913	0.809	47.300	2.016	17.447			
85.00 90.00	0.2567 0.2984	0.6826 0.7781	0.939 1.076	58.018 70.024	2.272 2.530	21.815 26.851			
95.00	0.3431	0.8771	1.220	83.323	2.789	32.590			
100.00	0.3906 0.4409	0.9792 1.0838	1.370 1.525	97.915 113.80	3.048 3.305	39•¢62 46•296			
110.00	0.4938	1.1906	1.684	130.96	3.561	54.317			
115.00 120.00	0.5491 0.6067	1.2991 1.4092	1.848 2.016	149.40 169.10	3.814 4.065	63.147 72.806			
125.00	0.6665	1.5203	2.187	190.04	4.312	83.311			
130.00 135.00	0.7283 0.7920	1.6324 1.7450	2.361 2.537	212.21 235.58	4.554 4.792	94.679 106.92			
140.00	0.8575	1.8580	2.716	260.12	5.024	120.05			
145.00 150.00	0.9247 0.9934	1.9711 2.0841	2.896 3.078	285.81 312.61	5 • 250 5 • 470	134.08 149.01			
155.00	1.0636	2.1968	3.260	340.50	5.684	164.86			
160.00 165.00	1.1351 1.2079	2.3090 2.4206	3.444 3.629	369.44 399.40	5.891 6.092	181•62 199•30			
170.00	1.2818	2.5315	3.813	430 • 35	6.287	217.90			
175.00 180.00	1.3568 1.4327	2.6415 2.7506	3.998 4.183	462.26 495.10	6.476 6.658	237.43 257.89			
185.00 190.00	1.5095 1.5872	2.8586 2.9655	4.368 4.553	528.84 563.44	6.835 7.006	279•27 301•57			
195.00	1.6656	3.0712	4.737	598.89	7.171	324.79			
200.00 205.00	1.7447 1.8244	3.1757 3.2790	4.920 5.103	635.15 672.19	7•331 7•485	348•93 373•99			
210.00	1.9046	3.3809	5.286	709.99	7.634	399.97			
215.00 220.00	1.9853 2.0665	3.4815 3.5807	5.467 5.647	748•52 787•75	7•777 7•915	426.85 454.63			
225.00	2.1481	3.6785	5.827	827.67	8.049	483.32			
230.00 235.00	2.2300 2.3122	3.7749 3.8699	6.005 6.182	868•23 909•43	8.177 8.300	512.90 543.37			
240.00	2.3947	3.9634	6.358	951.23	8.419	574.72			
245.00 250.00	2.4773 2.5602	4.0556 4.1462	6.533 6.706	993.61 1036.6	8.534 8.644	606.94 640.04			
255.00	2.6432	4 • 2355	6.879	1080.0	8.751	674.01			
260.00 265.00	2.7263 2.8094	4.3233 4.4097	7.050 7.219	1124.1 1168.6	8 • 853 8 • 953	708 • 83 744 • 50			
270.00 273.15	2.8927 2.9451	4.4947 4.5476	7.387 7.493	1213.6 1242.2	9.049 9.109	781.02 804.45			
275.00	2.9759	4.5784	7.554	1259.1	9.143	818.37			
280.00 285.00	3.0591 3.1423	4.6607 4.7418	7.720 7.884	1305.0 1351.4	9 • 235 9 • 324	856.56 895.57			
290.00	3.2255	4.8215	8.047	1398.2	9.413	935.40			
295.00 298.15	3.3086 3.3609	4.9001 4.9490	8.209 8.310	1445.5 1475.5	9.499 9.553	976.04 1002.1			
300.00	3.3916	4.9775	8.369	1493.2	9.585	1017.5			
_	_								

 $^{{\}sf H}_0^0$ and ${\sf S}_0^0$ apply to the reference state of the solid at zero deg k

TABLE B-41(CONT.)

THERMODYNAMIC FUNCTIONS FOR TITANIUM MONOXIDE (TI O) & SOLID PHASES

GRAM MOLE	CULAR WT.=	63.90 GRAM		T DEC C	1 CAL=4.1840 ABS J	
Ŧ	-(FT-HO)/T		$= 273.15 + (s_T^0 - s_0^0)$	(H ₀ -H ₀)	C _P	-(FT-HO)
DEG K	CAL DEG MOLE		CAL DEG MOLE	CAL MOLE	CAL DEG MOLE	CAL MOLE
	250 11055					
		SOLID	PHASE (ALI	PHAI		
300.00 310.00	3.3916 3.5573	4.9775 5.1288	8.369 8.686	1493.2 1589.9	9•585 9•749	1017.5 1102.8
320.00	3.7225	5.2756	8.998	1688.2	9.905	1191.2
330.00	3.8870	5.4181	9.305	1788.0	10.050	1282.7
340.00	4.0508	5.5564	9.607	1889.2	10.185	1377.3
350.00	4.2138	5.6904	9.904	1991.7	10.312	1474.8
360.00 3 7 0.00	4.3 7 59 4.5372	5.8205 5.9466	10.196 10.484	2095.4 2200.3	10.431 10.543	1575•3 1678•7
373.15	4.5877	5.9856	10.573	2233.5	10.577	1711.9
380.00	4.6974	6.0690	10.766	2306.2	10.650	1785.0
390.00	4.8566	6.1878	11.044	2413.2	10.751	1894.1
400.00	5.0147	6.3031	11.318	2521.2	10.848	2005.9
425.00 450.00	5.4051 5.7884	6.5771 6.8324	11.982 12.621	2795•3 3074•6	11.070 11.2 7 1	229 7。 2 2604。8
475.00	6.1642	7.0709	13.235	3358.7	11.456	2928.0
500.00	6.5327	7.2944	13.827	3647.2	11.626	3266.3
550.00	7.2474	7.7025	14.950	4236.4	11.935	3986.0
600.00	7.9335	8.0670	16.000	4840.2	12.213	4760.1
650.00 700.00	8.5924 9.22 57	8.3959 8.6956	16.988 1 7. 921	545 7. 3 6086.9	12.470 12.710	5585.0 6458.0
750.00	9.8352	8.9709	18.806	6728.2	12.939	7376.4
800.00	10.422	9.2258	19.648	7380.7	13.159	8337.9
850.00	10.989	9.4635	20.452	8044.0	13.373	9340.6
900.00	11.536	9.6865	21.223	8717.8	13.580	10383.
950.00 1000.00	12.066 12.578	9.8968 10.096	21.962 22.674	9402.0 10096.	13.784 13.984	11462. 12578.
1050.00 1050.00	13.076	10.036	23.362	10800.	14.181	13729
1100.00	13.558	10.467	24.026	11514.	14.376	14914.
1150.00	14.027	10.642	24.669	12238.	14.569	16132•
1200.00	14.484	10.809	25.293	12971.	14.761	17381.
1250.00 1264.00	14.928 15.051	10.971 11.016	25.900 26.067	13714. 13924.	14.951 15.004	18661. 19025.
1204.00	13.031	110010	20,007	137246	134004	130236
		SOLID	PHASE (BE	TA)		
1264.00	15.051	11.665	26.716	14744.	15.642	19025•
1300.00	15.381	11.776	27.157	15309.	15.750	19995•
1350.00 1400.00	15.828 16.265	11.926 12.071	27•754 28•335	16100. 16899.	15•900 16•050	21368. 227 7 1.
1450.00	16.691	12.210	28.901	17705	16.200	24202
1500.00	17.107	12.346	29.453	18519.	16.350	25660 •
1550.00	17.514	12.477	29.991	19340.	16.500	27147.
1600.00	17.912	12.606	30.518	20169.	16.650	28659.
1650.00 1700.00	18.302 18.684	12.730 12.852	31.032 31.536	21005. 21849.	16.800 16.950	30198. 31762.
1750.00	19.058	12.971	32.030	22700.	17.100	33352
1800.00	19.425	13.088	32.513	23559.	17.250	34965.
1850.00	19.785	13.203	32.988	24425.	17.400	36603.
1900.00	20.139	13.315	33.454	25299•	17.550	38264
1950.00 2000.00	20.486 20.825	13.426 13.538	33.912 34.363	26180. 27076.	17.700 17.850	39948• 41650•
200000	200025	104000	5.4.6.505	21010	1.0000	11000

 $^{{\}rm H_0^0}$ and ${\rm S_0^0}$ apply to the reference state of the solid at zero deg K

TABLE B-42

THERMODYNAMIC FUNCTIONS FOR TITANIUM SESQUIOXIDE (TI $_2$ O $_3$) SOLID PHASES

GRAM MOLE	ECULAR WT.=:	1 CAL=4	•1840 ABS J			
Т	$-(F_{T}^{0}-H_{0}^{0})/T$	$(H_{T}^{0}-H_{0}^{0})/T$	$(s_{T}^{0}-s_{0}^{0})$	$(H_{0}^{1}-H_{0}^{0})$	c _p ⁰	-(F ₀ -H ₀)
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	<u>CAL</u> MOLE	DEG MOLE	SAL_ MOLE
		50LID	PHASE (ALPH	Α)		
0.00	0.	0.	0.	0.	0.	0 •
5.00	0.0000	0.0002	0.000	0.001	0.001	0.000
10.00	0.0008 0.0031	0.0029 0.0096	0.004 0.013	0.029 0.144	0.012 0.037	0.008 0.046
15.00 20.00	0.0074	0.0220	0.029	0.440	0.085	0.148
25.00	0.0143	0.0421	0.056	1.051	0.165	0.357
30.00	0.0244	0.0720	0.096	2.160	0.286	0.733
35.00 40.00	0.0385 0.0572	0.1140 0.1696	0.152 0.227	3.988 6.782	0•454 0•672	1.348 2.283
45.00	0.0811	0.2399	0.321	10.794	0.941	3.648
50.00	0.1106	0.3255	0.436	16.274	1.259	5.532
55.00 60.00	0.1463 0.1883	0.4265 0.5428	0.573 0.731	23.458 32.567	1.622 2.028	8 • 0 4 5 11 • 2 9 5
65.00	0.2368	0.6740	0.911	43.807	2 • 474	15.391
70.00	0.2920	0.8195	1.111	57.362	2.954	20.438
75.00	0.3539	0.9786	1.332	73.393 92.038	3•463 3•998	26.539 33.794
80.00 85.00	0.4224 0.4976	1.1505 1.3342	1.573 1.832	113.41	4.553	42.299
90.00	0.5794	1.5289	2.108	137.60	5.126	52.142
95.00	0.6675	1.7335	2.401	164.69	5.711	63.408
100.00	0.7618 0.8621	1.9473 2.1693	2•709 3•032	194.73 227.78	6.308 6.913	76 • 177 90 • 523
110.00	0.9683	2.3988	3.367	263.87	7.523	106.51
115.00	1.0801	2.6349	3.715	303.01	8 • 135	124.21
120.00	1.1974 1.3198	2.8768 3.1238	4.074 4.444	345.22 390.48	8•747 9•356	143.68 164.97
130.00	1.4472	3.3752	4.822	438.77	9.960	188.13
135.00	1.5793	3.6301	5.210	490.07	10.557	213.21
140.00	1.7160	3.8880	5.604	54433	11.145	240 • 24
145.00 150.00	1.8570 2.0020	4.1483 4.4103	6.005 6.412	601.50 661.54	11.723 12.292	269•26 300•30
155.C0	2.1509	4.6735	6.825	724.40	12.849	333.39
160.CO	2.3035	4.9375	7.241	790.01	13.394	368.56
165.C0 170.00	2.4595 2.6187	5.2019 5.4662	7.661 8.085	858.32 929.25	13•927 14•446	405•81 445•18
175.00	2.7809	5.7300	8.511	1002.8	14.952	486.66
180.00	2.9460	5.9931	8.939	1078.8	15.443	530 • 29
185.00 190.00	3.1138 3.2841	6.2549 6.5154	9•369 9• 7 99	1157•2 1237•9	15.920 16.382	576•06 623•98
195.00	3.4567	6.7741	10.231	1321.0	16.828	674.05
200.00	3.6314	7.0309	10.662	1406.2	17.260	726 • 29
205.00	3.8082	7.2855	11.094 11.525	1493.5	17.677	780 • 68
210.00	3.9868 4.1671	7•5378 7•7874	11.954	1582•9 1674•3	18•079 18•466	837•22 895•92
220.00	4.3489	8.0344	12.383	1767.6	18.839	956.77
225.00	4.5322	8.2785	12.811	1862-7	19.197	1019.8
230.C0 235.00	4.7168 4.9026	8.5196 8.7577	13.236 13.660	1959•5 2058•1	19.542 19.873	1084•9 1152•1
240.00	5.0895	8.9926	14.082	2158.2	20.193	1221.5
242.00	5.1645	9.0856	14.250	2198.7	20.318	1249.8
242.00	5.1645	9.1004	14.265	2202.3	20.318	1249.8
245.00 250.00	5.2773 5.4668	9•2392 9•4674	14•517 14•934	2263•6 2366•9	20•501 20•799	1292•9 1366•7
255.00	5.6565	9.6925	15.349	2471.6	21.091	1442.4
260.00	5.8468	9.9144	15.761	2577.7	21.368	1520 • 2
265.00 2 7 0.00	6.0378 6.2292	10.133 10.348	16•171 16•578	2685•2 2794•1	21.636 21.897	1600•0 1681•9
273.15	6.3500	10.483	16.833	2863.3	22.058	1734.5
275.00	6.4210	10.561	16.982	2904.2	22.151	1765.8
280.00 285.00	6.6132 6.8056	10.770 10.976	17.383 17.782	3015.6 3128.1	22.394 22.635	1851.7 1939.6
290.00	6.9983	11.179	18.177	3241.9	22.877	2029.5
295.00	7.1911	11.379	18.571	3356.9	23.124	2121.4
298.15 300.00	7.3126 7.3840	11.504 11.577	18.817	3430.0 2473.2	23.282	2180 • 3
500.00	1.0040	11.0/11	18.961	J-1302	23.376	2215•2

 $[\]mathrm{H}_0^0$ and S_0^0 apply to the reference state of the solid at zero deg k

TABLE 8-42 (CONT.)

THERMODYNAMIC FUNCTIONS FOR TITANIUM SESQUIOXIDE (TI $_2$ O $_3$) SOLID PHASES

GRAM MOLECULAR WT.=143.80 GRAMS 1 CAL=4.1840 AI T DEG K = 273.15 + T DEG C									
T - (F _T O-H _O)	$/T (H_{T}^{0} - H_{0}^{0}) / T$	$(s_{T}^{0}-s_{0}^{0})$	$(H_{T}^{0}-H_{0}^{0})$	c _P ⁰	$-(F_{T}^{0}-H_{0}^{0})$				
DEG K DEG MOLI	E DEG MOLE	DEG MOLE	<u>CAL</u> MŌLE	DEG MOLE	CAL MOLE				
SOLID PHASE (ALPHA)									
300.00 7.3840 310.00 7.7700 320.00 8.1560 330.00 8.541 340.00 9.3110 360.00 9.6950 370.00 10.079 373.15 10.199 380.00 10.461 390.00 10.461 390.00 10.461 400.00 11.223 425.00 12.169 450.00 13.108	0 11.966 0 12.347 7 12.722 9 13.090 6 13.452 6 13.810 14.162 14.272 14.510 14.853 15.193 16.028 16.845	18.961 19.736 20.503 21.263 22.017 22.764 23.505 24.241 24.471 24.971 25.696 26.416 28.197 29.953	3473.2 3709.5 3951.2 4198.2 4450.6 4708.3 4971.4 5239.9 5325.5 5513.7 5792.8 6077.3 6812.0 7580.1	23.376 23.898 24.433 24.971 25.507 26.042 26.577 27.112 27.281 27.648 28.183 28.718 30.056 31.394	2215.2 2408.7 2609.9 2818.7 3035.2 3259.1 3490.4 3729.1 3805.9 3975.2 4228.5 4489.1 5171.8 5898.8				
473.00 13.966	17.582 SOLII	31.548 D PHASE (BE	8316.3 TA)	32 • 624	6606 • 0				
473.00 13.966 475.00 14.034 500.00 14.034 500.00 18.631 650.00 20.352 700.00 23.606 800.00 25.145 850.00 26.627 900.00 28.057 750.00 29.439 1000.00 30.772 1050.00 32.063 1100.00 33.312 1150.00 34.522 1200.00 35.696 1250.00 36.834 1300.00 37.941 1350.00 39.017 1400.00 40.062 1450.00 41.081 1500.00 43.981 1650.00 43.981 1650.00 44.902 1700.00 45.800 1750.00 47.535 1850.00 48.375	18.036 18.234 18.866 20.025 21.052 21.962 22.773 23.500 24.155 24.749 25.290 25.784 26.239 26.658 27.046 27.407 27.742 28.057 28.851 28.627 28.888 29.134 29.388 29.799 29.999 30.190 30.373 30.548	32.002 32.268 33.855 36.869 39.683 42.314 44.783 47.106 49.300 51.376 53.347 55.223 57.011 58.721 60.358 61.929 63.438 64.891 66.292 67.644 68.950 70.215 71.440 72.627 73.780 74.901 75.990 77.050 78.083 79.090	8531.3 8661.0 9433.0 11014. 12631. 14275. 15941. 17625. 19324. 21037. 22761. 24495. 26239. 27991. 29751. 31518. 33291. 35071. 36856. 38647. 40444. 42245. 44052. 45863. 47679. 49499. 51324. 53153. 54986. 56823.	30.736 30.777 31.250 32.023 32.627 33.111 33.508 33.842 34.126 34.373 34.591 34.785 34.960 35.120 35.267 35.404 35.532 35.652 35.766 35.875 36.080 36.177 36.362 36.450 36.537 36.537 36.622 36.705	6606.0 6666.3 7494.5 9264.0 11179. 13229. 15407. 17704. 20116. 22633. 25251. 27967. 30772. 33666. 36643. 39700. 42835. 46043. 49324. 52672. 56086. 59567. 63108. 66709. 60369. 74088. 77859. 81684. 85563. 89494.				
1900.00 49.196 1950.00 50.000 2000.00 50.790	30.876 31.031 31.179	80.072 81.031 81.969	58665. 60510. 62358.	36.867 36.947 37.947	93472. 97500. 101580.				

 $[{]m H}_{
m O}^{
m O}$ and ${
m S}_{
m O}^{
m O}$ apply to the reference state of the solid at zero deg K

THERMODYNAMIC FUNCTIONS FOR TITANIUM TRITAPENTOXIDE (TI $_3$ 0 $_5$) SOLID PHASES

GRAM MOLE	CULAR WT.=	T DEG C	1 CAL=4	•1840 ABS J		
т	$-(F_{T}^{0}-H_{0}^{0})/T$	$(H_0^T - H_0^0) / T$	$(s_{T}^{0}-s_{0}^{0})$	(HT-HO)	c _p ⁰	-(FT-H0)
DEG K	DEG MOLE	DEG MOLF	DEG MOLE	CAL_ MOLE	DEG MOLE	CAL_ MOLE
		SOLI	PHASE (ALP	'HA)		
0.00	0.	0 •	0.	0.	0.	0 •
5.00	0.0000	0.0004	0.001	0.002	0.002	0.000
10.00	0.0016	0.0058	0.007	0.058	0.024	0.016
15.00 20.00	0.0063 0.0150	0.0194 0.0445	0.026 0.059	0.292 0.890	0.076 0.173	0.094 0.299
25.00	0.0289	0.0851	0.114	2.128	0.334	0.723
30.00	0.0494	0.1457	0.195	4.372	0.577	1.483
35.00	0.0779	0.2302	0.308	8.059	0.913	2.727
40.00 45.00	0.1156 0.1636	0.3415 0.4810	0.457 0.645	13.661 21.643	1.343 1.864	4.624 7.361
50.00	0.2227	0.6488	0.871	32.437	2.466	11.135
55.00	0.2935	0.8441	1.138	46.426	3.140	16.141
60.00	0.3762	1.0657	1.442	63.944	3.877	22.574
65.00	0.4711	1.3120	1.783 2.159	85.281 110.69	4.667 5.502	30.621
70.00 75.00	0.5780 0.6969	1.5812 1.8715	2.568	140.36	6.373	40 • 463 52 • 2 6 9
80.00	0.8275	2.1808	3.008	174.46	7.272	66.198
85.00	0.9694	2.5072	3 • 477	213.11	8.190	82.399
90.00	1.1223	2.8487 3.2036	3.971 4.489	256.39 304.35	9.122 10.063	101.01 122.15
95.00 100.00	1.2858 1.4594	3.5702	5.030	357.02	11.009	145.94
105.00	1.6427	3.9470	5.590	414.44	11.958	172.48
110.00	1.8351	4.3327	6.168	476.60	12.906	201.87
115.00	2.0364	4.7261	6.763	543.50	13.852	234.18 269.51
120.00 125.00	2.2460 2.4634	5.1259 5.5310	7.372 7.994	615.11 691.38	14.789 15.716	307.93
130.00	2.6883	5.9404	8.629	772.25	16.629	349.48
135.00	2.9202	6.3529	9.273	857.64	17.525	394.23
140.00	3.1587	6.7676	9.926	947.46	18 • 401	442.22
145.00 150.00	3.4035 3.6540	7.1835 7.6000	10.587 11.254	1041.6 1140.0	19.257 20.094	493.50 548.10
155.00	3.9100	8.0162	11.926	1242.5	20.910	606.05
160.00	4.1711	8.4317	12.603	1349.1	21.707	667.37
165.00 170.00	4.4369 4.7071	8 • 8458 9 • 2580	13.283 13.965	1459.5 1573.9	22•483 23•240	732•09 800•20
175.00	4.9814	9.6681	14.649	1691.9	23.977	871.74
180.00	5.2595	10.076	15.335	1813.6	24.693	946.70
185.00	5.5410	10.480	16.021	1938.8	25.387	1025.1
190.00 195.00	5.8259 6.1137	10.881 11.279	16.707 17.393	2067.4 2199.4	26.061 26.713	1106 • \$ 1192 • 2
200.00	6.4042	11.673	18.077	2334.5	27.346	1280 • 8
205.00	6.6972	12.062	18.760	2472.8	27.958	1372.9
210.00 215.00	6.9925 7.2899	12.448 12.829	19.441 20.119	2614•1 2758•3	28.552 29.127	1468•4 1567•3
220.00	7.5892	13.206	20.795	2905.3	29.685	1669.6
225.00	7.8901	13.578	21.468	3055.1	30.226	1775.3
230.00	8.1926	13.946	22.139	3207.6	30.751	1884.3
235.00 240.00	8.4964 8.8014	14.309 14.667	22.805 23.469	3362.6 3520.2	31.261 31.758	1996•7 2112•3
245.00	9.1075	15.021	24.129	3680.2	32.243	2231.3
250.00	9.4145	15.370	24.785	3842.6	32.716	2353.6
255.00	9.7223	15 • 715	25.437	4007.3	33.179	2479•2
260.00 265.00	10.031 10.340	16.055 16.391	26.086 26.731	4174.3 4343.6	33.634 34.082	2608•0 2740•0
270.00	10.649	16.723	27.372	4515.2	34.525	2875.3
273.15	10.844	16.930	27.774	4624.3	34.803	2962.1
275.00 280.00	10.959 11.269	17.050 17.374	28.010 28.644	4688.9 4864.8	34.965 35.405	3013.7
285.00	11.580	17.694	29.274	5042.9	35.846	3155•4 3300•2
290.00	11.890	18.011	29.901	5223.3	36.291	3448.1
295.00	12.201	18.325	30.526	5405.9	36.741	3599•2
298.15 300.00	12.396 12.511	18.521 18.636	30.917 31.147	5522.0 5590.7	37.028 37.197	3696•0 3753•4
				22.00		

 $^{{\}rm H_0^0}$ and ${\rm S_0^0}$ apply to the reference state of the solid at zero deg K

TABLE 8-43(CONT.)

THERMODYNAMIC FUNCTION'S FOR TITANIUM TRITAPENTOXIDE (TI₃0₅) SOLID PHASES

60414 1401		70 6044	· ·	-	1 (1) -4	1040 406 1			
GRAM MOLE	ECULAR WT.=		= 273.15 +	T DEG C		•1840 ABS J			
Т	$-(F_{T}^{0}-H_{0}^{0})/T$	$\{H_{0}^{0}-H_{0}^{0}\}/T$	$(s_{T}^{0}-s_{0}^{0})$	(HT-HO)	c _p	-(F1-H0)			
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	<u>CAL</u> MOLE	DEG MOLE	<u>CAL</u> MOLE			
SOLID PHASE (ALPHA)									
300.00	12.511	18.636	31.147	5590.7	37.197	3753.4			
310.00	13.132	19.249	32.382	5967.3	38.122	4071 • 0			
320.00	13.753	19.854	33.607	6353.2	39.058	4401 • C			
330.00	14.373	20.450	34.823	6748.5	40.002	4743•1			
340.00	14.992	21.039	36.031	7153.3	40.963	5097•4			
350.00	15.611	21.622 22.201	37.233	7567•8 7992•4	41•951 42•974	5463.7			
360.00 370.00	16.228 16.844	22.777	38.429 39.621	8427.4	44.034	5842•0 6232•3			
373.15	17.038	22.958	39.996	8566.7	44.376	6357.7			
380.00	17.459	23.351	40.810	8873.2	45.129	6634.4			
390.00	18.073	23.923	41.996	9330.1	46.262	7048 • 5			
400.00	18.686	24.497	43.182	9798.6	47.447	7474.4			
425.00	20.214	25.941	46.155	11025.	50.765	8591.1			
450.00	21.740	27.433	49.173	12343.	54.924	97829.			
		SOLID	PHASE (BE	TA)					
450.00	21,740	32.938	54.680	14822.	45.200	97829•			
475.00	23.541	33.588	57.129	15954•	45•400	11182.			
500.00	25.279	34.184	59.463	17092.	45.600	12639.			
550.00	28.588	35.240	63.828	19382.	46.000	15723.			
600.00	31.694	36.153	67.848	21692.	46 • 400	19017.			
650.00	34.620	36.957	71.577	24022	46.800	22503•			
700.00	37.386	37.674	75.060	26372	47.200	26170 •			
750.00 800.00	40.008 42.500	38.323 38.915	78.330 81.415	28742. 31132.	47.600 48.000	30006 • 34000 •			
850.00	44.876	39.461	84.337	33542	48.400	38145.			
900.00	47.146	39.969	87.115	35972	48 • 800	42431.			
950.00	49.320	40 • 444	89.764	38422	49.200	46854.			
1000.00	51.406	40.892	92.298	40892.	49.600	51406 •			
1050.00	53.411	41.316	94.728	43382	50.000	56082.			
1100.00	55.343	41.720	97.063	45892.	50.400	60877.			
1150.00	_57.206	42.106	99.312	48422.	50.800	65787.			
1200.00	59.006	42.477	101.48	50972.	51.200	70807.			
1250.00	60.747	42.834	103.58	53542.	51.600	75934•			
1300.00	62.434	43.178	105.61	56132.	52.000	81164.			
1350.00	64.070	43.513	107.58	58742.	52.400	86494•			
1400.00	65.658	43.837	109.50	61372.	52.800	91921.			
1450.00	67.202	44.153	111.35	64022.	53.200	97443.			
1500.00	68.704	44.461	113.16	66692.	53.600	103060.			
1550.00	70.167	44.763	114.93	69382.	54.000	108760•			
1600.00	71.593	45.057	116.65	72092•	54 • 400	114550•			

 $[{]m H}_{
m O}^{
m O}$ and ${
m S}_{
m O}^{
m O}$ apply to the feference state of the solid at zero deg K

TABLE B-44

THERMODYNAMIC FUNCTIONS FOR TITANIUM DIOXIDE (RUTILE) (TI O_2) SOLID PHASE

GRAM MOLE	CULAR WT.=		1S = 273.15 +	T DEG C	1 CAL=4	•1840 ABS J
Т	$-(F_{T}^{0}-H_{0}^{0})/T$		$(s_{T}^{0}-s_{0}^{0})$	(HT-HO)	c_p^0	- (F ₁ -H ₀)
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL_ MOLE	DEG MOLE	CAL_ MOLE
			(SOLID)			
0.00 5.00 10.00 25.00 25.00 25.00 30.00 35.00 40.00 55.00 60.00 65.00 70.00 75.00 80.00 95.00 100.00 15.00 115.00 120.00 125.00 135.00 140.00 155.00 160.00 155.00 165.00 175.00 185.00 165.00 175.00 185.00 185.00 190.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 205.00 225.00 225.00 225.00 230.00 245.00 255.00 255.00 265.00	0.0000 0.0000 0.0002 0.0013 0.0064 0.0131 0.0270 0.0473 0.1463 0.1910 0.24957 0.3551 0.4187 0.4862 0.5573 0.6319 0.7097 0.7996 0.8743 0.9607 1.0496 1.1409 1.2344 1.3301 1.4277 1.5272 1.6284 1.7312 1.8356 1.9413 2.1565 2.2658 2.3760 2.4872 2.5992 2.7119 2.8253 2.9393 3.0539 3.1689 3.2843 3.4000 3.5160 3.6323 3.7488 3.8655 3.9822 4.0951 4.2159	0.0000 0.0000 0.0009 0.0057 0.0224 0.0549 0.1024 0.1649 0.2401 0.3255 0.4196 0.5212 0.6292 0.7427 0.861: 0.9837 1.1099 1.2396 1.3723 1.5079 1.6460 1.7864 1.9289 2.0731 2.2187 2.3655 2.5132 2.6616 2.8103 2.9592 3.1079 3.2563 3.4042 3.55133 3.6975 3.8427 3.8427 3.9866 4.1293 4.2705 4.4103 4.5485 4.6852 4.8203 4.9537 5.075 5.5555 5.3439 5.4705 5.5555 5.3439 5.4705 5.5555 5.7188 5.8403 5.9602 6.0783 6.0783 6.0783		0.000 0.009 0.009 0.086 0.448 1.372 9.602 14.646 20.981 28.666 37.752 48.276 60.276 73.773 88.794 105.36 123.51 143.25 164.60 187.58 212.18 238.40 266.24 295.69 326.72 359.32 393.45 429.08 466.19 504.73 544.67 585.97 628.58 672.47 717.59 8672.47 717.59 8672.47 717.59 763.92 811.40 860.01 909.71 960.47 1012.3 1065.0 1118.8 1173.5 1229.1 1235.6 1342.9 1401.1 1598.4 1598.4	0.000 0.0004 0.0004 0.0034 0.124 0.253 0.434 0.651 0.885 1.136 1.400 1.676 1.960 2.251 2.549 2.851 3.158 3.471 3.788 4.109 4.432 4.757 5.083 5.407 5.729 6.048 6.363 6.673 6.978 7.276 7.566 7.850 8.125 8.392 8.651 8.903 9.832 9.610 9.832 9.610 9.832 9.832 10.047 10.0256 10.458 10.655 10.845 10.655 10.845 10.655 10.845 11.030 11.210 11.384 11.553 11.717 11.876 12.029 12.177 12.320	0.000 0.000 0.002 0.019 0.026 0.809 1.654 2.963 4.823 7.314 10.504 14.455 19.223 24.856 31.399 38.892 47.171 67.424 79.057 120.70 136.90 172.91 192.74 213.81 2259.68 284.51 310.60 337.97 366.60 337.97 366.60 396.51 427.69 460.13 493.85 528.83 565.07 602.57 641.31 681.31 722.57 641.31 681.31 725.50 69.853.60 89.72 947.04 995.56 1045.3 1046.3 10
270.00 273.15	4.4497 4.5233	6•3095 6•3809	10.759 10.904	1703.6 1742.9	12•461 12•548	1201 • 4 1235 • 5
275.00 280.00 285.00	4.5665 4.6832 4.7999	6.4226 6.5341 6.6441	10.989 11.217 11.444	1766.2 1829.5 1893.6	12.599 12.736 12.873	1255 • £ 1311 • 3 1368 • 0
290.00 295.00	4.9164 5.0327	6.7527 6.8599	11.669 11.893	1958.3 2023.7	13.010 13.146	1425.7 1484.6
298.15 300.00	5.1059 5.1489	6.9268 6.9658	12.033 12.115	2065•2 2089•7	13.232 13.282	1522•3 1544•7

 $^{^{0}}_{0}$ and $^{0}_{0}$ apply to the reference state of the solid at zero deg K

TABLE B-44(CONT.)

THERMODYNAMIC FUNCTIONS FOR TITANIUM DIOXIDE (RUTILE) (TI O_2) SOLID PHASE

GRAM MOLE	ECULAR WT.=		1S = 273.15 +	T DEG C	1 CAL=4	1840 ABS J
Ŧ	$-(F_1^0-H_0^0)/T$	$(H_0^1 - H_0^0) \setminus I$	$(s_1^0 - s_0^0)$	(H _T -H ₀)	c _P ⁰	-(F ₁ -H ₀)
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	<u>CAL</u> MOLE	DEG MOLE	. CAL_ MOLE
			(SOLID)			
300.00 310.00 310.00 320.00 340.00 350.00 360.00 370.00 373.15 380.00 390.00 400.00 425.00 450.00 475.00 500.00 500.00 500.00 500.00 650.00 700.00 800.00 850.00 100.00 1150.00 1250.00 1350.00	5.1489 5.3807 5.6117 5.8418 6.0708 6.2988 6.5257 6.7513 6.8221 6.9757 7.1987 7.4203 7.96679 8.5060 9.0340 9.5519 10.556 11.520 12.444 13.330 14.181 14.997 15.782 16.538 17.265 17.967 18.644 19.298 19.298 19.298 19.31 20.544 21.137 21.713 22.272	6.9656 7.1739 7.3773 7.5762 7.7706 7.9603 8.1452 8.38252 8.3809 8.5004 8.6707 8.8362 9.2298 9.5958 9.9363 10.253 10.824 11.323 11.762 12.151 12.497 12.807 13.087 13.340 13.571 13.782 13.975 14.153 14.471 14.613 14.745 14.869	(SOLID) 12.115 12.555 12.989 13.418 13.841 14.259 14.671 15.077 15.203 15.476 15.869 16.257 17.198 18.102 18.970 19.805 21.381 22.843 24.206 25.481 26.678 27.805 28.869 29.878 30.836 31.748 32.619 33.451 34.249 35.014 35.750 36.458 37.141	2089.7 2223.9 2360.7 2500.1 2642.0 2786.1 2932.3 3080.3 3127.4 3230.2 3381.6 3534.5 3922.7 4318.1 4719.7 5126.6 5953.4 6794.0 7645.5 8505.6 9372.8 10246. 11124. 12006. 12892. 13782. 14674. 15568. 16465. 17365. 18266. 19169. 20073.	13.282 13.551 13.814 14.066 14.301 14.517 14.714 14.896 15.064 15.219 15.363 15.681 15.948 16.175 16.370 16.686 16.930 17.122 17.278 17.407 17.514 17.606 17.685 17.754 17.815 17.869 17.918 17.918 17.918 17.918 17.918 17.918	1544.7 1668.0 1795.7 1927.8 2064.1 2204.6 2349.2 2498.0 2545.7 2650.8 2807.5 2968.1 3386.4 3827.7 4291.2 4775.9 5806.0 6912.1 8088.7 331.3 10636.1 11998.1 13415.1 14884.1 16402.1 17967.1 19576.2 21228.2 2221.2 24652.2 28227.3 30067.5
1400.00 1450.00 1500.00 1550.00	22.815 23.342 23.856 24.356	14.985 15.095 15.198 15.295	37.800 38.437 39.054 39.651	20980. 21887. 22797. 23707.	18.140 18.169 18.197 18.223	31941 • 33847 • 35784 • 37752 •
1600.00 1650.00 1700.00 1750.00	24.843 25.318 25.781 26.233	15.295 15.387 15.474 15.556 15.635	40.230 40.792 41.337 41.868	24619. 25532. 26446. 27361.	18.223 18.248 18.272 18.295 18.318	37752 • 39749 • 41774 • 43828 • 45908 •

 $[{]m H}_0^0$ and ${
m S}_0^0$ apply to the reference state of the solid at zero deg K

THERMODYNAMIC FUNCTIONS FOR TITANIUM DIOXIDE (ANATASE) (TI $^{\mathrm{O}}_{2}$) SOLID PHASE

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GRAM MOL	ECULAR WT.=		1S = 273.15 +	T DEG C	1 CAL=4	•1840 ABS J
CSOLID	T	$-(F_{T}^{0}-H_{0}^{0})/T$	$(H_0^1 - H_0^0) \setminus I$	$(s_{T}^{0}-s_{0}^{0})$	(H ₀ -H ₀)	$c_{\mathbf{p}}^{0}$	$-(F_{T}^{0}-H_{0}^{0})$
0.00 0.000 0.0000 0.0002 0.0004 0.001 0.001 0.001 0.000 10.000 0.0009 0.0030 0.004 0.030 0.013 0.009 15.00 0.0003 0.0103 0.004 0.031 0.001	DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE
5.00				(SOLID)			
10.00 0.0009 0.0030 0.004 0.030 0.004 0.009 20.00 0.0033 0.0103 0.014 0.154 0.040 0.049 20.00 0.0078 0.0234 0.031 0.468 0.091 0.157 30.00 0.0260 0.0762 0.102 2.285 0.299 0.778 35.00 0.0408 0.1196 0.160 4.185 0.468 1.427 40.00 0.0603 0.1760 0.236 7.040 0.681 2.411 45.00 0.0603 0.1760 0.236 7.040 0.681 2.411 45.00 0.1089 0.2457 0.331 11.056 0.932 3.820 45.00 0.1149 0.3262 0.443 16.412 1.215 5.747 55.00 0.1506 0.4227 0.573 23.249 1.523 8.221 60.00 0.1518 0.5279 0.720 31.672 1.848 11.506 65.00 0.2385 0.6423 0.881 41.748 2.83 11.502 70.00 0.2305 0.6423 0.881 41.748 2.83 1.5502 70.00 0.3476 0.8932 1.241 66.987 2.666 26.071 80.00 0.3476 0.8932 1.241 66.987 2.666 26.071 80.00 0.4095 1.0271 1.437 82.170 3.208 32.761 85.00 0.4579 1.1655 1.641 99.064 3.550 40.452 99.00 0.5465 1.3075 1.854 117.67 3.893 49.188 99.00 0.6211 1.4526 2.074 138.00 4.237 59.004 100.00 0.6994 1.6004 2.300 160.04 4.578 69.935 105.00 0.7811 1.7502 2.531 133.77 4.917 82.010 110.00 0.8660 1.9017 2.768 20.919 5.248 99.256 120.00 1.0445 2.2075 3.252 264.99 5.887 125.34 125.00 1.1377 2.3668 3.499 1.510 6.92 1.222 130.00 1.2333 2.5139 3.747 326.80 6.490 160.33 135.00 1.2333 2.5139 3.747 326.80 6.490 160.33 135.00 1.3311 2.6666 3.998 359.99 6.781 179.69 140.00 1.4308 2.8166 4.249 394.61 7.066 200.31 145.00 1.5323 2.9699 4.502 430.64 7.345 22.19 150.00 1.6356 3.1203 4.756 468.05 7.619 245.23 155.00 1.6356 3.4182 5.265 546.92 8.8150 22.49 185.00 2.829 3.9996 6.283 719.39 313 41.091 185.00 2.3898 5.4882 5.265 546.92 8.8150 22.49 185.00 3.4748 4.4145 5.536 766.17 9.362 442.96 180.00 3.4948 4.41415 5.536 766.17 9.362 442.96 180.00 3.4948 4.41415 5.536 766.17 9.362 442.96 180.00 3.4948 6.3488 5.948 8.379 1.144 8.899 3.999 6.229 3.9996 6.283 719.39 3.3550 510.84 185.00 3.4948 4.41415 5.746 8.999 1.144 8.999 3.980 510.84 185.00 3.4948 6.3488 5.9488 8.999 1.144 8.999 3.999 6.229 3.9996 6.283 719.39 3.133 10.91 180.00 3.4948 6.3699 6.622 7.789 10.137 7.049 622.68 225.00 3.3087 5.2179 8.859 8.961 1.182.9 1.1939 8.133 10.91 285.00 4.7949 5.9899 6.283 7.789 10.137 7.00							
20,00							
35,00							
35,00							
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	35.00	0.0408	0.1196	0.160	4.185	0.468	1.427
50.00 0.1149 0.3282 0.443 16.412 1.215 5.747 55.00 0.1506 0.4227 0.573 23.249 1.523 8.281 60.00 0.1918 0.5279 0.720 31.672 1.848 11.506 65.00 0.2385 0.6423 0.881 41.748 2.183 15.502 70.00 0.2905 0.7645 1.055 53.514 2.524 20.336 75.00 0.4095 1.0271 1.437 82.170 3.208 32.761 80.00 0.4095 1.0271 1.437 82.170 3.208 32.761 85.00 0.4095 1.0271 1.437 82.170 3.208 32.761 85.00 0.4759 1.1655 1.641 99.064 3.550 40.452 90.00 0.5465 1.3075 1.854 117.67 3.893 49.188 95.00 0.6211 1.4526 2.074 138.00 4.237 59.004 100.00 0.6994 1.6004 2.300 160.04 4.578 69.935 105.00 0.7811 1.7502 2.531 183.77 4.917 82.010 110.00 0.8660 1.9017 2.768 209.19 5.248 95.261 115.00 0.9539 2.0543 3.008 236.24 5.572 109.69 120.00 1.0445 2.2075 3.252 264.89 5.887 125.34 125.00 1.3311 2.6666 3.998 359.99 6.781 127.32 130.00 1.2333 2.5139 3.747 326.80 6.490 160.33 135.00 1.3311 2.6666 3.998 359.99 6.781 179.69 140.00 1.4308 2.8186 4.249 394.61 7.066 200.31 145.00 1.5323 2.9699 4.502 4.808 3.499 4.95.10 6.192 142.22 130.00 1.6356 3.1203 4.756 468.05 7.619 245.23 155.00 1.6356 3.1203 4.756 468.05 7.619 245.23 155.00 1.6356 3.1203 4.756 468.05 7.619 245.23 155.00 1.6356 3.1203 4.756 468.05 7.619 245.23 155.00 1.6356 3.1203 4.756 468.05 7.619 245.23 175.00 2.1625 3.7116 5.774 630.97 8.859 8.898 380.14 160.00 2.0625 3.7116 5.774 630.97 8.655 350.63 175.00 2.1722 3.8563 6.029 674.85 8.898 380.14 180.00 2.2829 3.9996 6.283 719.93 9.133 410.91 185.00 2.38476 4.6931 7.541 962.09 10.213 583.75 210.00 2.9625 3.7116 5.774 630.97 8.655 350.63 215.00 3.8774 4.9590 8.036 10.662 10.600 661.64 220.00 3.1929 5.0893 8.282 1119.6 10.786 702.44 220.00 3.1929 5.0893 8.282 1119.6 10.786 702.44 220.00 3.4248 5.3448 8.770 122.33 11.141 787.70 235.00 3.4248 5.3448 8.770 122.33 11.141 787.70 255.00 4.4743 6.419 9.489 9.481 140.2 11.660 924.66 220.00 3.1929 5.0893 8.282 1119.6 10.786 702.44 220.00 3.4577 6.2963 10.802 1740.1 12.498 120.4 235.00 3.4586 6.5229 11.14 1826.4 12.700 1285.4 245.00 3.4577 6.2963 10.802 1740.1 12.498 120.4 255.00 4.8236 6.7409 11.564 9.949 11.564 11.509 11							
55,00							
65.00 0.2385 0.6423 0.881 41.748 2.824 2.524 20.336 75.00 0.3476 0.8932 1.0211 1.055 53.514 2.524 20.336 75.00 0.4095 1.0271 1.437 82.170 3.208 32.761 85.00 0.4759 1.1655 1.641 99.064 3.550 40.452 90.00 0.5465 1.3075 1.854 117.67 3.893 49.188 95.00 1.000 0.6211 1.4526 2.074 138.00 4.237 89.188 95.950 105.00 0.6911 1.7502 2.531 133.77 4.917 82.010 110.00 0.6600 1.9017 2.768 209.19 5.248 95.256 115.00 0.9539 2.0543 3.008 236.24 5.572 109.69 125.34 125.00 1.317 2.3608 3.499 495.10 6.192 142.22 130.00 1.2333 2.5139 3.747 326.80 6.490 160.33 135.00 1.3311 2.6666 3.988							
70.00 0.2905 0.7645 1.055 53.514 2.524 20.336 75.00 0.3476 0.8932 1.241 66.987 2.866 26.071 80.00 0.4095 1.0271 1.437 82.170 3.208 32.761 85.00 0.4759 1.1655 1.641 99.064 3.550 40.452 90.00 0.5465 1.3075 1.854 117.67 3.893 49.188 95.00 0.6211 1.4526 2.074 138.00 4.237 59.004 100.00 0.6994 1.6004 2.300 160.004 4.578 90.00 0.7811 1.7502 2.531 183.77 4.917 82.010 110.00 0.8660 1.9017 2.768 20.919 5.248 95.256 115.00 0.9539 2.0543 3.008 236.24 5.572 109.69 120.00 1.0445 2.2075 3.252 264.89 5.887 125.34 125.00 1.317 2.3608 3.499 (79.510 6.192 142.22 130.00 1.2333 2.5139 3.747 326.80 6.490 160.33 135.00 1.3311 2.6666 3.998 359.99 6.761 179.69 140.00 1.4308 2.8186 4.249 394.61 7.066 200.31 145.00 1.5323 2.9699 4.502 430.64 7.345 222.19 150.00 1.6356 3.1203 4.756 468.05 7.619 245.33 155.00 1.3656 3.1203 4.756 468.05 7.619 245.33 155.00 1.7003 3.2698 5.010 506.82 7.888 269.75 160.00 1.8465 3.4182 5.265 546.92 8.150 295.44 165.00 1.9539 3.3655 5.519 588.31 8.406 322.40 170.00 2.0625 3.7116 5.774 630.97 8.655 350.63 175.00 2.1722 3.6563 6.029 674.85 8.898 380.14 180.00 2.2829 3.9996 6.283 719.93 9.133 410.91 180.00 2.5067 4.2818 6.789 813.54 9.585 476.27 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 195.00 3.5744 4.5577 7.291 911.54 10.010 546.67 205.00 2.4476 4.6931 7.541 962.09 10.213 583.75 210.00 2.9623 4.8269 7.789 1013.7 10.409 622.68 225.00 3.9029 5.0893 8.036 1066.2 10.600 661.64 220.00 2.9476 4.9590 8.036 1066.2 10.600 661.64 225.00 3.9599 5.9594 9.251 1342.4 11.478 877.81 245.00 3.5741 5.7515 19.489 11.96 10.786 744.46 250.00 3.4248 5.3448 8.770 1229.3 11.141 787.0 255.00 4.2744 6.9590 10.195 1578.3 12.106 1072.3 265.00 4.2743 6.075 10.802 1740.1 12.998 12.106 273.15 4.4312 6.9705 10.802 1740.1 12.998 12.106 275.00 4.2743 6.0705 10.195 1578.3 12.106 1072.3 265.00 4.2743 6.075 10.802 1740.1 12.998 12.106 275.00 4.2743 6.075 10.802 1740.1 12.998 12.004 285.00 4.7073 6.6325 11.340 11.542 12.994 13.988 295.00 4.9397 6.6482							
75.00 0.3476 0.8932 1.241 66.987 2.866 26.071 80.00 0.4959 1.0271 1.437 82.170 3.208 32.761 85.00 0.4759 1.1655 1.641 99.064 3.550 40.452 90.00 0.5465 1.3075 1.854 117.67 3.893 49.188 95.00 0.6211 1.4526 2.074 138.00 4.237 59.004 100.00 0.6994 1.6004 2.300 160.04 4.578 69.935 105.00 0.7811 1.7502 2.531 133.74 4.917 4.917 110.00 0.8660 1.9017 2.768 209.19 5.248 95.256 120.00 1.0445 2.2075 3.252 264.89 5.887 125.34 125.00 1.3311 2.6666 3.998 359.99 6.781 179.69 140.00 1.4308 2.8186 4.249 394.61 7.345 222.19							
80.00 0.4095 1.0271 1.437 82.170 3.208 32.761 85.00 0.4755 1.1655 1.641 99.064 3.550 40.452 90.00 0.5465 1.3075 1.854 117.67 3.893 49.188 95.00 0.6211 1.4526 2.074 138.00 4.237 59.004 100.00 0.6994 1.6004 2.300 160.04 4.578 69.935 105.00 0.7811 1.7502 2.531 183.77 4.917 82.010 110.00 0.8660 1.9017 2.768 20.919 5.248 95.256 115.00 0.9539 2.0543 3.008 236.24 5.572 109.69 120.00 1.0445 2.2075 3.252 264.89 5.887 125.34 125.00 1.0377 2.3608 3.499 1.951.0 6.192 142.22 130.00 1.2333 2.5139 3.747 326.80 6.490 160.33 135.00 1.3311 2.6666 3.998 359.99 6.781 179.69 140.00 1.4308 2.8186 4.249 394.61 7.066 200.31 145.00 1.5323 2.9699 4.502 430.64 7.345 222.19 150.00 1.6356 3.1203 4.756 468.05 7.619 245.33 155.00 1.7403 3.2698 5.010 506.82 7.888 269.75 160.00 1.8465 3.4182 5.265 546.92 8.150 295.44 165.00 1.9539 3.5655 5.519 588.31 8.406 322.40 170.00 2.0625 3.7116 5.774 630.97 8.655 350.63 175.00 2.1722 3.8563 6.029 674.85 8.898 380.14 180.00 2.2829 3.9996 6.283 719.93 9.133 410.91 180.00 2.5067 4.2818 6.789 813.54 9.588 406 322.40 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 195.00 2.7334 4.1415 6.536 766.17 9.362 442.96 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 195.00 2.7334 4.5577 7.291 911.54 10.010 546.67 195.00 2.9623 4.8269 7.789 1013.7 10.409 622.68 200.00 3.1929 5.0893 8.282 1119.6 10.010 546.67 225.00 2.8476 4.6931 7.541 962.01 9.800 510.84 200.00 3.5411 5.4699 9.011 1285.4 11.312 832.16 240.00 3.6575 5.5934 9.251 1342.4 11.478 877.00 255.00 2.8476 4.6931 7.541 962.00 11.640 924.66 250.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 4.0773 6.6325 10.195 1578.3 12.106 1072.3 265.00 4.248 5.348 81.700 129.3 11.141 787.70 235.00 3.5411 5.4699 9.011 1285.4 11.312 832.16 255.00 4.0744 5.9596 10.657 170.09 11.2498 1210.4 265.00 4.248 5.348 81.700 129.3 11.140.9 12.256 1123.9 265.00 4.248 5.348 81.700 129.3 11.140.9 12.498 1210.4 273.15 4.4312 6.3705 10.802 1740.1 12.498 1210.4 286.00 4.249 6.1858 10.427 1639.2 12.994 1398.8 295.00 4.9397 6.8482 11.788 2020.2 13.142 1457.2							
90.00 0.5465 1.3075 1.854 117.67 3.893 49.188	80.00	0.4095	1.0271	1.437	82.170	3.208	32.761
95.00 0.6211 1.4526 2.074 138.00 4.237 59.004 100.00 0.6994 1.6004 2.300 160.04 4.578 69.935 105.00 0.7811 1.7502 2.531 183.77 4.917 82.010 110.00 0.8660 1.9017 2.768 209.19 5.248 95.256 115.00 0.9599 2.0543 3.008 236.24 5.572 109.69 120.00 1.0445 2.2075 3.252 264.89 5.887 125.34 125.00 1.3377 2.3608 3.499 1.95.10 6.192 142.22 130.00 1.2333 2.5139 3.747 326.80 6.490 160.33 135.00 1.3311 2.6666 3.998 359.99 6.781 179.69 140.00 1.4308 2.8186 4.249 394.61 7.066 200.31 145.00 1.6356 3.1203 4.756 468.05 7.619 245.23 155.00 1.7403 3.2698 5.010 506.82 7.888 269.75 160.00 1.8465 3.4182 5.265 546.92 8.150 295.44 170.00 2.0625 3.7116 5.774 630.97 8.655 350.63 175.00 2.1722 3.8563 6.029 674.85 8.898 380.14 170.00 2.2625 3.7116 5.774 630.97 8.655 350.63 175.00 2.3944 4.1415 6.536 766.17 9.362 42.96 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 195.00 2.6197 4.4206 7.040 862.01 9.800 510.84 200.00 2.7334 4.5577 7.291 911.54 10.010 546.67 205.00 2.9623 4.8269 7.789 1013.7 10.409 622.68 215.00 3.4248 5.3448 8.770 1229.3 11.14 787.70 225.00 3.3087 5.2179 8.527 1174.0 10.966 74.44.86 220.00 3.4248 5.3448 8.770 129.3 11.14 787.70 235.00 3.6575 5.5934 9.251 11.292 11.54 10.010 566.67 255.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 4.24743 6.419 10.886 1763.3 12.553 12.004 273.15 4.4312 6.3705 10.892 11.946 10.786 702.44 245.00 3.6575 5.9536 9.961 1518.2 11.953 10.219 265.00 4.2577 6.2996 10.657 1700.9 12.405 1176.6 273.15 4.4312 6.3705 10.892 11.946 10.956 11.640 924.66 290.00 4.256 6.7409 11.564 1554.9 12.994 1398.8 295.00 4.9397 6.8482 11.908 200.2 13.142 1457.2							
100.00							
110.00							
115.00							
120.00							
130.00							
135.00							142.22
140.00 1.4308 2.8186 4.249 394.61 7.066 200.31 145.00 1.5323 2.9699 4.502 430.64 7.345 222.19 150.00 1.6356 3.1203 4.756 468.05 7.619 245.53 155.00 1.7403 3.2698 5.010 506.82 7.888 269.75 160.00 1.8465 3.4182 5.265 546.92 8.150 295.44 165.00 1.9539 3.5655 5.519 588.31 8.406 322.40 170.00 2.0625 3.7116 5.774 630.97 8.655 350.63 175.00 2.1722 3.8563 6.029 674.85 8.898 380.14 180.00 2.2829 3.9996 6.283 719.33 9:133 410.91 185.00 2.3944 4.1415 6.536 766.17 9.362 442.96 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 195.00 2.6197 4.4206 7.040 862.01 9.800 510.							
145.00							
155.00	145.00	1.5323	2.9699	4.502	430.64	7.345	222.19
160.00 1.8465 3.4182 5.265 546.92 8.150 295.44 165.00 1.9539 3.5655 5.519 588.31 8.406 322.40 170.00 2.0625 3.7116 5.774 630.97 8.655 350.63 175.00 2.1722 3.8563 6.029 674.85 8.898 380.14 180.00 2.2829 3.9996 6.283 719.93 9.133 410.91 185.00 2.3944 4.1415 6.536 766.17 9.362 442.96 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 195.00 2.6197 4.4206 7.040 862.01 9.800 510.84 200.00 2.7334 4.5577 7.291 911.54 10.010 546.67 205.00 2.8476 4.6931 7.541 962.09 10.213 583.75 210.00 2.9623 4.8269 7.789 1013.7 10.409 622.08 215.00 3.0774 4.9590 8.036 1066.2 10.600							
165.00 1.9539 3.5655 5.519 588.31 8.406 322.40 170.00 2.0625 3.7116 5.774 630.97 8.655 350.63 175.00 2.1722 3.8563 6.029 674.85 8.898 380.14 180.00 2.2829 3.9996 6.283 719.93 9.133 410.91 185.00 2.3944 4.1415 6.536 766.17 9.362 442.96 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 195.00 2.6197 4.4206 7.040 862.01 9.800 510.84 200.00 2.7334 4.5577 7.291 911.54 10.010 546.67 205.00 2.8476 4.6931 7.541 962.09 10.213 583.75 210.00 2.9623 4.8269 7.789 1013.7 10.409 622.08 215.00 3.0774 4.9590 8.036 1066.2 10.600 661.64 220.00 3.5428 5.3448 8.770 1229.3 11.41							
175.00 2.1722 3.8563 6.029 674.85 8.898 380.14 180.00 2.2829 3.9996 6.283 719.93 9.133 410.91 185.00 2.3944 4.1415 6.536 766.17 9.362 442.96 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 195.00 2.6197 4.4206 7.040 862.01 9.800 510.84 200.00 2.7334 4.5577 7.291 911.54 10.010 546.67 205.00 2.8476 4.6931 7.541 962.09 10.213 583.75 210.00 2.9623 4.8269 7.789 1013.7 10.409 622.08 215.00 3.0774 4.9590 8.036 1066.2 10.600 661.64 220.00 3.1929 5.0893 8.282 1119.6 10.786 702.44 225.00 3.3087 5.2179 8.527 1174.0 10.966 74.446 230.00 3.4248 5.3448 8.770 1229.3 11.141 <							
180.00 2.2829 3.9996 6.283 719.93 9.133 410.91 185.00 2.3944 4.1415 6.536 766.17 9.362 442.96 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 195.00 2.6197 4.4206 7.040 862.01 9.800 510.84 200.00 2.7334 4.5577 7.291 911.54 10.010 546.67 205.00 2.8476 4.6931 7.541 962.09 10.213 583.75 210.00 2.9623 4.8269 7.789 1013.7 10.409 622.08 215.00 3.0774 4.9590 8.036 10.66.2 10.600 661.64 220.00 3.1929 5.0893 8.282 1119.6 10.786 702.44 225.00 3.3087 5.2179 8.527 1174.0 10.966 744.46 230.00 3.4248 5.3448 8.770 1229.3 11.41 787.70 235.00 3.5411 5.4699 9.011 1285.4 11.312							
185.00 2.3944 4.1415 6.536 766.17 9.362 442.96 190.00 2.5067 4.2818 6.789 813.54 9.585 476.27 195.00 2.6197 4.4206 7.040 862.01 9.800 510.84 200.00 2.7334 4.5577 7.291 911.54 10.010 546.67 205.00 2.8476 4.6931 7.541 962.09 10.213 583.75 210.00 2.9623 4.8269 7.789 1013.7 10.409 622.08 215.00 3.0774 4.9590 8.036 1066.2 10.600 661.64 220.00 3.1929 5.0893 8.282 1119.6 10.786 702.44 225.00 3.3087 5.2179 8.527 1174.0 10.966 744.46 230.00 3.4248 5.3448 8.770 1229.3 11.141 787.70 235.00 3.5411 5.4699 9.011 1285.4 11.478 87.781 240.00 3.6575 5.5934 9.251 1342.4 11.478							
195.00							
200.00 2.7334 4.5577 7.291 911.54 10.010 546.67 205.00 2.8476 4.6931 7.541 962.09 10.213 583.75 210.00 2.9623 4.8269 7.789 1013.7 10.409 622.08 215.00 3.0774 4.9590 8.036 1066.2 10.600 661.64 220.00 3.1929 5.0893 8.282 1119.6 10.786 702.44 225.00 3.3087 5.2179 8.527 1174.0 10.966 744.46 230.00 3.4248 5.3448 8.770 1229.3 11.141 787.70 235.00 3.5411 5.4699 9.011 1285.4 11.312 832.16 240.00 3.6575 5.5934 9.251 1342.4 11.478 877.81 245.00 3.7741 5.7151 9.489 1400.2 11.640 924.66 250.00 3.8908 5.8352 9.726 1458.8 11.978 972.70 255.00 4.0075 5.9536 9.961 1518.2 11.953							
205.00							
215.00							
220.00 3.1929 5.0893 8.282 1119.6 10.786 702.44 225.00 3.3087 5.2179 8.527 1174.0 10.966 744.46 230.00 3.4248 5.3448 8.770 1229.3 11.141 787.70 235.00 3.5411 5.4699 9.011 1285.4 11.312 832.16 240.00 3.6575 5.5934 9.251 1342.4 11.478 877.81 245.00 3.7741 5.7151 9.489 1400.2 11.640 924.66 250.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 4.0075 5.9536 9.961 1518.2 11.953 1021.9 260.00 4.1243 6.0705 10.195 1578.3 12.106 1072.3 265.00 4.2410 6.1858 10.427 1639.2 12.256 1123.9 270.00 4.3577 6.2996 10.657 1700.9 12.405 1176.6 273.15 4.4312 6.3705 10.802 1740.1 12.498 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
225.00							
230.00							
240.00 3.6575 5.5934 9.251 1342.4 11.478 877.81 245.00 3.7741 5.7151 9.489 1400.2 11.640 924.66 250.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 4.0075 5.9536 9.961 1518.2 11.953 1021.9 260.00 4.1243 6.0705 10.195 1578.3 12.106 1072.3 265.00 4.2410 6.1858 10.427 1639.2 12.256 1123.9 270.00 4.3577 6.2996 10.657 1700.9 12.405 1176.6 273.15 4.4312 6.3705 10.802 1740.1 12.498 1210.4 275.00 4.4743 6.4119 10.886 1763.3 12.553 1230.4 280.00 4.5908 6.5229 11.114 1826.4 12.700 1285.4 285.00 4.7073 6.6325 11.340 1890.3 12.847 1341.6 290.00 4.8236 6.7409 11.564 1954.9 12.994	230.00	3.4248	5.3448		1229.3	11.141	787.70
245.00 3.7741 5.7151 9.489 1400.2 11.640 924.66 250.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 4.0075 5.9536 9.961 1518.2 11.953 1021.9 260.00 4.1243 6.0705 10.195 1578.3 12.106 1072.3 265.00 4.2410 6.1858 10.427 1639.2 12.256 1123.9 270.00 4.3577 6.2996 10.657 1700.9 12.405 1176.6 273.15 4.4312 6.3705 10.802 1740.1 12.498 1210.4 275.00 4.4743 6.4119 10.886 1763.3 12.553 1230.4 280.00 4.5908 6.5229 11.114 1826.4 12.700 1285.4 285.00 4.7073 6.6325 11.340 1890.3 12.847 1341.6 290.00 4.8236 6.7409 11.564 1954.9 12.994 1398.8 295.00 4.9397 6.8482 11.788 2020.2 13.14							
250.00 3.8908 5.8352 9.726 1458.8 11.798 972.70 255.00 4.0075 5.9536 9.961 1518.2 11.953 1021.9 260.00 4.1243 6.0705 10.195 1578.3 12.106 1072.3 265.00 4.2410 6.1858 10.427 1639.2 12.256 1123.9 270.00 4.3577 6.2996 10.657 1700.9 12.405 1176.6 273.15 4.4312 6.3705 10.802 1740.1 12.498 1210.4 275.00 4.7473 6.4119 10.886 1763.3 12.553 1230.4 280.00 4.5908 6.5229 11.114 1826.4 12.700 1285.4 285.00 4.7073 6.6325 11.340 1890.3 12.847 1341.6 290.00 4.8236 6.7409 11.564 1954.9 12.994 1398.8 295.00 4.9397 6.8482 11.788 2020.2 13.142 1457.2 298.15 5.0128 6.9152 11.928 2061.8 13.235 1494.6							
260.00	250.00						
265.00							
270.00 4.3577 6.2996 10.657 1700.9 12.405 1176.6 273.15 4.4312 6.3705 10.802 1740.1 12.498 1210.4 275.00 4.4743 6.4119 10.886 1763.3 12.553 1230.4 280.00 4.5908 6.5229 11.114 1826.4 12.700 1285.4 285.00 4.7073 6.6325 11.340 1890.3 12.847 1341.6 290.00 4.8236 6.7409 11.564 1954.9 12.994 1398.8 295.00 4.9397 6.8482 11.788 2020.2 13.142 1457.2 298.15 5.0128 6.9152 11.928 2061.8 13.235 1494.6							
275.00							
280.00							
285.00 4.7073 6.6325 11.340 1890.3 12.847 1341.6 290.00 4.8236 6.7409 11.564 1954.9 12.994 1398.8 295.00 4.9397 6.8482 11.788 2020.2 13.142 1457.2 298.15 5.0128 6.9152 11.928 2061.8 13.235 1494.6							
290.00 4.8236 6.7409 11.564 1954.9 12.994 1398.8 295.00 4.9397 6.8482 11.788 2020.2 13.142 1457.2 298.15 5.0128 6.9152 11.928 2061.8 13.235 1494.6							
298.15 5.0128 6.9152 11.928 2061.8 13.235 1494.6	290.00	4.8236	6.7409	11.564	1954.9	12.994	1398.8

 $^{{\}rm H_0^0}$ and ${\rm S_0^0}$ apply to the reference state of the solid at zero deg K

TABLE B-45(CONT.)

THERMODYNAMIC FUNCTIONS FOR TITANIUM DIOXIDE (ANATASE) (TI $^{\rm O}_{\rm 2}$) SOLID PHASE

GRAM MOL	ECULAR WT.=		IS = 273.15 +	T DEG C	1 CAL=4	•1840 ABS J
T	$-(F_{T}^{0}-H_{0}^{0})/T$	$(H_0^1 - H_0^0) / T$	(s _T -s ₀)	(H ₀ -H ₀)	c _P ⁰	-(F ₀ -H ₀)
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL_ MOLE	DEG MOLE	SÁL_ MOLE
			(SOLID)			
300.00 310.00 320.00 330.00 340.00 350.00 373.15 380.00 390.00 400.00 455.00 455.00 550.00 600.00 650.00 750.00 800.00 850.00 950.00	5.2871 5.5178 5.7476 5.9765 6.2043 6.4311 6.6566 6.7274 6.8809 7.1039 7.3255 7.8731 8.4113 8.9394 9.4574 10.462 11.427 12.351 13.238 14.089 14.907 15.693 16.449 17.178	6.9543 7.1634 7.3683 7.5688 7.7646 7.9556 8.1416 8.3225 8.378! 8.4985 8.6695 8.8357 9.2305 9.5975 9.9388 10.2570 10.829 11.330 11.770 12.161 12.509 12.822 13.104 13.360 13.594 13.808	12.010 12.451 12.886 13.316 13.741 14.160 14.573 14.979 15.106 16.161 17.104 18.009 18.878 19.714 21.292 22.756 24.122 25.399 26.598 27.729 28.797 29.809 30.772 31.688	2086.3 2220.6 2357.8 2497.7 2640.0 2784.5 2931.0 3079.3 3126.4 3381.1 3534.3 3923.0 4720.9 5128.3 5956.0 6797.8 7650.7 8512.6 00258. 11139. 12024. 13808.	13.289 13.580 13.856 14.110 14.341 14.552 14.746 14.925 14.979 15.244 15.386 15.701 15.966 16.193 16.388 16.707 17.317 17.453 17.569 17.670 17.758 17.836 17.836 17.836	1516.7 1639.0 1765.7 1896.7 2032.0 2171.5 2315.2 2463.0 2510.3 2614.8 2770.5 2930.2 3346.1 3785.1 4246.2 4728.7 5754.3 6856.0 8028.3 9266.7 10567. 11925. 13339. 14804. 16319. 17881.
1050.00 1100.00 1150.00 1200.00 1250.00 1300.00	19.215 19.849 20.463 21.059	14.005 14.186 14.355 14.511 14.657 14.794	32.564 33.401 34.204 34.975 35.716 36.430	14705 • 15605 • 16508 • 17413 • 18321 • 19232 •	17.971 18.030 18.085 18.136 18.184 18.230	19487. 21136. 22827. 24556. 26323. 28127.

 $^{{\}rm H_0^0}$ and ${\rm S_0^0}$ apply to the reference state of the solid at zero deg k

TABLE B-46

THERMODYNAMIC FUNCTIONS FOR ZIRCONIUM (ZR) SOLID PHASE

T DEG K = 273.15 + T DEG C GRAM MOLECULAR WT.= 91.22 GRAMS $T = -(F_{T}^{0} - H_{0}^{0})/T + (H_{T}^{0} - H_{0}^{0})/T + (S_{T}^{0} - S_{0}^{0}) + (H_{T}^{0} - H_{0}^{0}) + C_{P}^{0} = -(F_{T}^{0} - H_{0}^{0})$ (SOLID)

HO AND SO APPLY TO THE REFERENCE STATE OF THE SOLID AT ZERO DEG K

TABLE B-46 (CONT.)

THERMODYNAMIC FUNCTIONS FOR ZIRCONIUM (Zr): SOLID AND LIQUID PHASES

Gram Molecular Weight = 91.22 1 cal = 4.1840 abs j

T deg K = 273.15 + T deg C

Т	$-(F_{\mathrm{T}}^{\mathrm{o}}-H_{\mathrm{O}}^{\mathrm{o}})/\mathrm{T}$	$(H_{\mathrm{T}}^{\mathrm{o}}-H_{\mathrm{O}}^{\mathrm{o}})/\mathrm{T}$	$S_{T}^{\circ}-S_{0}^{\circ}$	$H_{\mathbb{T}}-H_{\mathbb{O}}^{\mathbf{o}}$	C°	$-(\mathbf{F}_{\mathtt{T}}^{\mathtt{o}}\mathbf{-H}_{\mathtt{O}}^{\mathtt{o}})$
deg K	cal deg mole	cal deg mole	cal deg mole	cal mole	cal deg mole	cal mole
		(3)	SOLID-ALPHA)		
298.15 300 325 350 375 400 425 450 475 500 650 700 750 800 850 900 950 1000 1050 1100 1136	4.857 4.884 5.245 5.588 5.915 6.227 6.526 6.813 7.089 7.354 7.857 8.769 9.187 9.583 9.959 10.319 10.664 10.994 11.312 11.619 11.915 12.122	4.426 4.436 4.567 4.684 4.790 4.887 4.976 5.059 5.136 5.209 5.344 5.467 5.581 5.688 5.790 5.886 6.069 6.157 6.242 6.325 6.406 6.464	9.283 9.321 9.813 10.272 10.705 11.114 11.502 11.872 12.225 12.563 13.201 13.794 14.351 14.875 15.373 15.846 16.299 16.733 17.151 17.554 17.954 17.954 18.321 18.586	1319.5 1331 1484 1640 1796 1954 2115 2276 2440 2604 2939 3280 3628 3982 4342 4709 5083 5462 5848 6242 6640 7047 7342	6.105 6.110 6.175 6.239 6.304 6.369 6.433 6.498 6.563 6.528 6.757 6.886 7.016 7.145 7.274 7.404 7.533 7.662 7.792 7.921 8.050 8.180 8.273	1448 1465 1705 1956 2218 2491 2774 3066 3367 3677 4321 4996 5700 6430 7187 7967 8771 9598 10444 11312 12200 13106
		(SOLID-BETA)			
1136 1150 1200 1250 1300 1350 1400 1450 1550 1600 1650 1750 1800 1850 1900 1950 2000 2050 21100 2130	12.122 12.212 12.522 12.819 13.103 13.376 13.639 13.893 14.138 14.375 14.605 14.827 15.044 15.254 15.459 15.659 15.853 16.043 16.229 16.410 16.587 16.692	7.308 7.301 7.278 7.260 7.246 7.237 7.230 7.228 7.228 7.228 7.251 7.262 7.274 7.288 7.304 7.320 7.338 7.357 7.377 7.389	19.431 19.513 19.800 20.078 20.613 20.870 21.121 21.366 21.605 21.840 22.070 22.295 22.516 22.733 22.947 23.363 23.567 23.767 23.767 23.767 23.964 24.081	8302 8396 8733 9075 9420 9769 10123 10480 10842 11207 11576 11950 12327 12709 13094 13483 13877 14275 14676 15082 15491 15739	6.683 6.706 6.786 6.866 6.946 7.027 7.107 7.188 7.268 7.348 7.429 7.509 7.589 7.670 7.750 7.830 7.910 7.991 8.071 8.151 8.232 8.280	13770 14044 15026 16024 17034 18058 19095 20145 21207 22281 23368 24464 25575 26694 27826 28969 30121 31284 32458 33640 34833 35554
			(LIQUID)			
2130 2150 2200 2250 2350 2350 2450 2450 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500	16.692 16.779 16.992 17.199 17.401 17.598 17.790 17.798 18.161 18.515 18.853 19.176 19.487 19.784 20.071 20.346 22.611 20.867 21.114	9.291 9.277 9.242 9.209 9.175 9.1143 9.111 9.079 9.048 8.987 8.928 8.870 8.813 8.757 8.703 8.649 8.594 8.594	25.983 26.056 26.234 26.408 26.577 26.741 26.901 27.057 27.209 27.502 27.781 28.046 28.300 28.542 28.774 28.995 29.208 29.411 29.607	19789 19945 20333 20719 21104 211486 21866 22244 22620 23367 24105 24836 25558 26272 26979 27677 28368 29050 29724	7.800 7.784 7.7744 7.604 7.664 7.584 7.594 7.594 7.424 7.344 7.264 7.184 7.104 6.944 6.784 6.784	35554 36075 37382 38698 40022 41355 42696 44046 45402 48139 50903 56512 59352 62220 65107 68016 70948 73899

 $\mathbf{H}_{\mathbf{0}}$ and $\mathbf{S}_{\mathbf{0}}$ apply to the reference state of the solid at zero deg K.

TABLE B-47

THERMODYNAMIC FUNCTIONS FOR A ZIRCONIUM HYDRIDE (ZrHO.25): SOLID PHASES

Т	-(F _T ^o -H ₂₉₈)/T	(H _T °H ₂₉₈)/T	S _T	(H _T ^o -H ₂₉₈)	c°	-(F _T °-H ₂₉₈)
deg K	cal deg mole	cal deg mole	cal deg mole	<u>cal</u> mole	cal deg mole	cal mole
		(SO	LID-"ALPHA	")		
298.15 300 325 350 375 400 425 450 475 500 550 600 650 700 750 800 823.2	9.053 9.054 9.077 9.134 9.215 9.316 9.430 9.556 9.690 9.832 10.130 10.442 10.762 11.089 11.418 11.751 11.907	0.000 0.040 .544 .984 1.376 1.729 2.051 2.348 2.626 2.886 3.366 3.804 4.210 4.594 4.966 5.342 5.523	9.053 9.094 9.621 10.118 10.591 11.044 11.481 11.904 12.316 12.718 13.496 14.246 14.973 15.683 16.385 17.093 17.430	0. 12. 177. 344. 515. 691. 871. 1056. 1247. 1443. 1851. 2282. 2736. 3215. 3724. 4273. 4546.	6.538 6.543 6.642 6.777 6.936 7.113 7.305 7.509 7.723 7.942 8.393 8.850 9.324 9.857 10.532 11.485 12.075	2669. 2716. 2950. 3197. 3456. 3726. 4008. 4300. 4603. 4916. 5571. 6265. 6996. 7762. 8564. 9401. 9802.
		(SO	LID-"BETA")		
823.2 850 900 950 1000 1050 1100 1150	11.907 12.121 12.535 12.955 13.357 13.739 14.102 14.451 14.784	6.457 6.885 7.618 7.817 7.821 7.825 7.829 7.832 7.835	18.364 19.006 20.153 20.772 21.178 21.564 21.931 22.283 22.619	5316. 5852. 6856. 7426. 7821. 8216. 8612. 9007. 9402.	20.074 20.074 20.074 7.906 7.906 7.906 7.906 7.906	9802. 10303. 11282. 12307. 13357. 14426. 15512. 16619. 17741.

 $^{{\}rm H}_{298}^{\rm o}$ (which actually should be read ${\rm H}_{298.15}^{\rm o}$) applies to the reference state of the solid at 298.15 deg K.

THERMODYNAMIC FUNCTIONS FOR A ZIRCONIUM HYDRIDE (ZrHO.50): SOLID PHASES

T	-(F _T ^o -H ₂₉₈)/T	$(H_{\rm T}^{\rm o}-H_{298}^{\rm o})/{\rm T}$	S _T °	(H _T o-H ₂₉₈)	C _o	-(F _T ^o -H ₂₉₈)
deg K	cal deg mole	cal deg mole	cal deg mole	cal mole	cal deg mole	cal mole
		(S	OLID-"ALPH	(nA		
298.15 300 325 350 375 400 425 450 475 500 650 700 750 800 823.2	8.885 8.885 8.909 8.968 9.053 9.159 9.280 9.413 9.557 9.708 10.029 10.367 10.715 11.069 11.427 11.789 11.959	0.000 0.042 0.564 1.026 1.441 1.820 2.171 2.498 2.806 3.097 3.636 4.125 4.573 4.991 5.397 5.821 6.035	8.885 8.926 9.474 9.994 10.495 10.979 11.451 11.912 12.363 12.805 13.665 14.492 15.288 16.060 16.824 17.610 17.994	0. 12. 183. 359. 540. 728. 923. 1124. 1333. 1549. 2000. 2475. 2972. 3493. 4047. 4657. 4968.	6.751 6.761 6.924 7.135 7.378 7.643 7.922 8.206 8.488 8.763 9.274 9.729 10.168 10.701 11.531 12.967 13.956	2642. 2659. 2889. 3133. 3390. 3658. 3939. 4232. 4535. 4850. 5512. 6217. 6962. 7745. 8568. 9428. 9845.
		(SOLID-"BET	A")		
823.2 850 900 950 1000 1050 1100 1200	11.959 12.233 12.734 13.214 13.672 14.111 14.533 14.938 15.329	8.237 8.733 8.821 8.899 8.970 9.034 9.092 9.146 9.194	20.196 20.966 21.555 22.113 22.642 23.145 23.625 24.084 24.523	6781. 7423. 7938. 8454. 8970. 9486. 10002. 10518.	36.800 10.316 10.316 10.316 10.316 10.316 10.316	9845. 10398. 11461. 12553. 13672. 14817. 15986. 17179. 18395.

 $^{{\}rm H}_{298}^{\rm o}$ (which actually should be read ${\rm H}_{298.15}^{\rm o}$) applies to the reference state of the solid at 298.15 deg K.

TABLE B-49

THERMODYNAMIC FUNCTIONS FOR A ZIRCONIUM HYDRIDE (ZrHO.75): SOLID PHASES

T ·	-(F _T ^o -H ₂₉₈)/T	$(H_{\mathrm{T}}^{\mathrm{o}}-H_{\mathrm{298}}^{\mathrm{o}})/\mathrm{T}$	s <mark>°</mark>	(H _T o-H ₂₉₈)	C _p	-(F _T °-H ₂₉₈)
deg K	cal deg mole	cal deg mole	cal deg mole	cal	cal deg mole	cal
		(S	OLID-"ALPH	A")		
298.15 300 325 350 375 400 425 450 475 500 550 600 650 700 750 800 823.2	8.716 8.716 8.741 8.802 8.891 9.001 9.129 9.271 9.423 9.584 9.928 10.292 10.667 11.050 11.436 11.826 12.011	0.000 .043 .585 1.068 1.507 1.912 2.291 2.648 2.987 3.309 3.906 4.446 4.936 5.387 5.827 6.300 6.547	8.716 8.759 9.326 9.870 10.398 10.913 11.420 11.919 12.410 12.893 13.834 14.738 15.603 16.437 17.263 18.126 18.558	0. 13. 190. 374. 565. 765. 974. 1192. 1419. 1654. 2148. 2668. 3208. 3771. 4370. 5040. 5390.	6.966 6.979 7.205 7.492 7.821 8.174 8.538 8.902 9.254 9.584 10.156 10.608 11.011 11.546 12.531 14.450 15.837	2599. 2615. 2841. 3081. 3334. 3601. 3880. 4172. 4476. 4792. 5460. 6175. 6933. 7734. 8577. 9461. 9887.
		(SOLID-"BET	A")		
823.2 850 900 950 1000 1050 1100 1150 1200	12.011 12.289 12.815 13.347 13.854 14.339 14.805 15.251 15.680	8.522 9.153 9.794 9.859 9.918 9.972 10.020 10.065 10.105	20.533 21.442 22.609 23.206 23.772 24.311 24.825 25.316 25.785	7015. 7780. 8814. 9366. 9918. 10470. 11022. 11574. 12126.	30.387 26.801 11.041 11.041 11.041 11.041 11.041 11.041	9887. 10446. 11534. 12680. 13854. 15056. 16286. 17539. 18816.

 $^{^{\}rm H}_{298}^{\rm O}$ (which actually should read $^{\rm H}_{298.15}^{\rm O}$) applies to the reference state of the solid at 298.15 deg K.

TABLE B-50

THERMODYNAMIC FUNCTIONS FOR A ZIRCONIUM HYDRIDE (ZrH1.00): SOLID PHASES

T	-(F _T ^o -H ₂₉₈)/T	$(H_{\rm T}^{\rm o} - H_{\rm 298}^{\rm o})/{\rm T}$	$\mathtt{S}^{\mathbf{o}}_{\mathbf{T}}$	(H _T o-H ₂₉₈)	G _p	-(F _T ^o -H ₂₉₈)
deg K	cal deg mole	cal deg mole	cal deg mole	<u>cal</u> mole	cal deg mole	_cal_ mole
			(SOLID-"AL	PHA")		
298.15 300 325 350 375 400 425 450 475 500 550 600 650 700 750 800 823.2	8.547 8.547 8.573 8.636 8.729 8.845 8.979 9.127 9.289 9.460 9.827 10.216 10.619 11.030 11.445 11.865 12.064	0.000 0.044 0.605 1.109 1.572 2.004 2.411 2.796 3.167 3.520 4.176 4.768 5.298 5.784 6.257 6.778 7.059	8.547 8.591 9.178 9.746 10.301 10.849 11.390 11.926 12.456 12.980 14.003 14.984 15.918 16.814 17.702 18.643 19.123	0. 13. 197. 388. 590. 802. 1025. 1259. 1504. 1760. 2297. 2360. 3444. 4049. 4693. 5423. 5812.	7.180 7.197 7.486 7.850 8.263 8.704 9.155 9.598 10.019 10.405 11.037 11.487 11.854 12.391 13.531 15.932 17.718	2548. 2564. 2786. 3023. 3273. 3538. 3816. 4107. 4412. 4730. 5405. 6130. 6902. 7721. 8584. 9492. 9931.
			(SOLID-"BE	TA")		
823.2 850 900 950 1000 1050 1100 1150 1200	12.064 12.318 12.821 13.339 13.859 14.372 14.837 15.324 15.789	7.812 8.493 9.413 10.029 10.448 10.735 10.931 10.936	19.876 20.811 22.234 23.368 24.307 25.107 25.768 26.260 26.730	6431. 7219. 8472. 9528. 10448. 11272. 12024. 12576. 13129.	31.208 27.626 22.832 19.605 17.338 15.695 11.046 11.046	9931. 10470. 11539. 12672. 13859. 15091. 16321. 17623. 18947.

 $^{{\}rm H}_{298}^{\rm O}$ (which actually should read ${\rm H}_{298.15}^{\rm O}$) applies to the reference state of the solid at 298.15 deg K.

TABLE B-51

THERMODYNAMIC FUNCTIONS FOR A ZIRCONIUM HYDRIDE (ZrH1.25): SOLID PHASES

T	$-(\mathbf{F_{T}^{o}}-\mathbf{H_{298}^{o}})/\mathbf{T}$	$(H_{\mathrm{T}}^{\mathrm{o}}-H_{\mathrm{298}}^{\mathrm{o}})/\mathrm{T}$	S _T	$(H_{T}^{o}-H_{298}^{o})$	C _p	$-(\mathbf{F_{T}^{o}}-\mathbf{H_{298}^{o}})$
deg K	cal	cal	cal	cal	cal	<u>cal</u> mole
	deg mole	deg mole	deg mole	mole	deg mole	mole
298.15	8.378	0.000	8.378	0.	7.394	2498.
300	8.378	0.046	8.424	14.	7.415	2513.
325	8.405	0.625	9.031	203.	7.767	2732.
350	8.471	1.151	9.622	403.	8.208	2965.
375	8.567	1.638	10.205	614.	8.705	3213.
400	8.688	2.096	10.783	838.	9.234	3475.
425	8,828	2.531	11.359	1076. 1327.	9.772	3752. 4043.
450	8.984	2.948	11.933	1590.	10.294	4348.
47 <i>5</i> 500	9.155 9.336	3.348 3.731	12.503 13.067	1866.	11.226	4668.
550	9.726	4.446	14.172	2445.	11.918	5349
600	10.141	5.089	15.230	3053.	12.366	6084.
650	10.571	5.661	16.232	36 80 .	12.697	6871.
700	11.010	6.180	17.190	4326.	13.236	7707.
750	11.454	6.688	18.141	5016.	14.531	8590.
800	11.903	7.257	19.160	5806.	17.414	9522.
850	12.348	7.832	20.180	6657.	28.451	10496.
900	12.815	8.835	21.650	7952.	23.662	11534.
950	13.304	9.525	22.829	9049.	20.440	12639.
1000	13.800	10.012	23.812	10012.	18.179	13800.
1050	14-293	10.359	24.652	10877.	16.541	15008.
1100	14.782	10.611	25.393	11672.	15.324	16260.
1150	15.254	10.795	26.049	12415.	14.402	17542.
1200	15.717	10.930	26.647	13116.	13.694	18860.

 H_{298}^{0} (which actually should read $H_{298.15}^{0}$) applies to the reference state of the solid at 298.15 deg K.

TABLE B-52

THERMODYNAMIC FUNCTIONS FOR ZIRCONIUM DIOXIDE (ZR $^{\mathrm{O}}_{\mathrm{2}}$) SOLID PHASES

GRAM MOLECULAR WT.=123.22 GRAMS T DEG K = 273.15 + T DEG C					1 CAL=4.1840 ABS J			
Т	-(F _T ⁰ -H ₀ ⁰)/T	$(H_0^1 - H_0^0) / T$			c _p ⁰	-(F _T -H ₀)		
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	<u>CÂL</u> MOLĒ		
SOLID PHASE (ALPHA)								
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 65.00 65.00 65.00 65.00 65.00 100.00 110.00 110.00 115.00 120.00 125.00 100.00 125.00 125.00 125.00	0. 0.0000 0.0008 0.0032 0.0077 0.0149 0.0255 0.0401 0.0593 0.0835 0.1131 0.1483 0.2348 0.2348 0.2348 0.2348 0.2368 0.3421 0.4029 0.4681 0.5374 0.6107 0.6876 0.7680 0.8516 0.9382 1.0276 1.1197 1.2141 1.3109 1.4097 1.5105 1.6131 1.7174 1.8232 1.9304 2.0389 2.1486 2.2594 2.3712 2.4839 2.1486 2.2594 2.3712 2.4839 2.1486 2.2594 2.3712 2.4839 2.7117 2.8266 2.9420 3.0580 3.1745 3.2913 3.4085 3.2913 3.4085 3.5260 3.6437 3.7617 3.8979 4.1161 4.2344 4.3527 4.4271	0. 0.0002 0.003(0.0101 0.0230 0.0439 0.0749 0.1177 0.1733 0.2421 0.3236 0.4166 0.5198 0.6319 0.7514 0.8773 1.0086 1.1444 1.2843 1.4276 1.5738 1.7224 1.8730 2.0251 2.1783 2.3322 2.4866 2.64411 2.7956 2.9498 3.1036 3.2567 3.4090 3.5603 3.7106 3.8596 4.0072 4.1535 4.2983 4.4415 4.5831 4.7231 4.8615 5.277 5.6556 5.7818 5.9061 6.1493 6.2687 6.1493 6.2687 6.1493 6.2687 6.1493	0. 0.000 0.000 0.004 0.013 0.031 0.059 0.100 0.158 0.233 0.326 0.437 0.565 0.709 0.867 1.037 1.219 1.411 1.613 1.822 2.038 2.261 2.490 2.725 2.963 3.206 3.452 3.701 3.952 4.460 4.717 4.974 5.232 5.491 5.750 6.086 6.267 6.525 6.782 7.039 7.295 7.550 7.804 8.056 8.308 8.558 8.806 9.054 9.299 9.543 9.786 10.027 10.265 10.738 10.738 10.738 10.6027 10.265 10.738 10.738 10.738 10.738 10.738 10.738	0. 0.001 0.030 0.151 0.460 1.097 2.246 4.118 6.933 10.896 16.179 22.912 31.189 41.071 52.598 65.796 80.684 97.278 115.59 135.62 157.38 180.85 206.03 232.89 261.39 291.53 323.26 356.55 391.38 427.72 465.53 504.78 545.44 587.46 630.80 675.43 721.30 758.40 816.67 866.09 916.62 968.24 1020.9 1074.6 1129.3 1184.9 1241.5 1299.0 1357.4 1416.5 1476.5 1476.5 1537.3 1598.8 1661.1 1724.0 1764.1	0. 0.01 0.012 0.039 0.089 0.172 0.295 0.461 0.671 0.919 1.198 1.499 1.814 2.140 2.472 2.4808 3.148 3.490 3.834 4.524 4.866 5.204 5.537 5.865 6.187 6.503 6.6814 7.118 7.416 7.708 7.992 8.268 8.537 8.798 9.052 9.298 9.537 9.770 9.997 10.430 10.638 10.638 11.584 11.585 11.919 12.078 12.378 12.522 12.663 12.751	0. 0.000 0.008 0.048 0.154 0.173 0.765 1.403 2.371 3.758 5.657 8115.264 20.019 25.657 82.230 39.786 48.369 68.762 80.640 93.675 107.89 123.31 139.96 157.86 157.87 197.36 219.03 241.97 266.19 291.71 318.52 346.62 376.01 406.70 438.68 471.95 506.50 542.33 579.48 617.83 677.48 698.19 740.55 783.96 828.61 874.50 921.61 874.50 921.61 89.93 109.5 109.93 109.5 109.93 109.5 109.93 109.95 109.93 109.95 109.93 109.95 109.93		
275.00 280.00 285.00 290.00	4.4709 4.5890 4.7071 4.8250	6.5008 6.6145 6.7266 6.8371	10.972 11.204 11.434 11.662	1787.7 1852.1 1917.1 1982.8	12.801 12.938 13.072 13.203	1229.5 1284.9 1341.5 1399.3		
2.95.00 298.15 300.00	4.9429 5.0170 5.0605	6.9461 7.0140 7.0536	11.889 12.031 12.114	2049.1 2091.2 2116.1	13.332 13.412 13.458	1458.1 1495.8 1518.2		

 $[{]m H}_0^0$ and ${
m S}_0^0$ apply to the reference state of the solid at zero deg ${
m K}$

TABLE 8-52(CONT.)

THERMODYNAMIC FUNCTIONS FOR ZIRCONIUM DIUXIDE ($2R \circ_2$) SOLID PHASES

GRAM MOLECULAR WT •= 123 • 22 GRAMS								
Т	-(F _T -H _U)/T				c _P ⁰	-(F _T -H ₀)		
DEG K	DEG MÖLE	CAL DEG MOLE	CAL DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE		
SOLID PHASE (ALPHA)								
300.00 310.00 320.00 320.00 330.00 340.00 350.00 360.00 370.00 370.00 400.00 400.00 450.00 600.00 650.00 700.00 850.00 900.00 100.00 100.00 1100.00 1200.00	5.0605 5.2952 5.5291 5.7620 5.9938 6.2244 6.4538 6.6817 6.7533 6.9083 7.1333 7.3568 7.9084 8.4496 8.9800 9.5000 10.506 11.470 12.393 13.278 13.278 14.127 14.942 15.726 16.481 17.209 17.911 18.588 19.243 19.877 20.492	7.0536 7.2642 7.4690 7.6682 7.8617 8.0496 8.2319 8.4087 8.4633 8.5802 8.7465 8.9078 9.2900 9.6445 9.9738 10.280 10.833 11.318 11.748 12.132 12.132 12.132 12.132 12.476 12.789 13.074 13.335 13.576 13.767 13.983 14.179 14.362	12.114 12.559 12.998 13.430 13.856 14.274 14.686 15.090 15.217 15.489 15.880 16.265 17.198 18.094 18.954 19.780 21.339 22.788 24.141 25.410 26.604 27.731 28.800 29.816 30.784 31.697 32.571 33.422 34.240 35.027	2116.1 2251.9 2390.1 2530.5 2673.0 2817.4 2963.5 3111.2 3158.1 3260.5 3411.1 3563.1 3948.3 4340.0 4737.5 5140.0 5958.2 5791.0 7636.2 8492.1 8492.1 8492.1 1113.1 1201.1 12897.1 13787.1 14682.1 15597.1 16516.1	13.458 13.702 13.933 14.148 14.345 14.6527 14.695 14.852 14.899 14.997 15.133 15.260 15.545 15.791 16.006 16.196 16.519 16.787 17.015 17.214 17.214 17.214 17.393 17.555 17.705 17.845 17.978 17.104 18.225 18.342 18.456 18.567	1516.2 1641.5 1769.3 1901.5 2037.9 2178.6 2323.4 2472.2 2520.0 2625.1 2782.0 2942.7 3361.1 3802.3 4265.5 4749.9 5778.4 6882.0 8055.6 9294.7 9994.7 1055.6 11954.1 13367.1 14833.1 16348.1 17911.1 19517.2 22859.2		
1200.00 1250.00 1300.00 1350.00 1400.00 1450.00	20.492 21.089 21.669 22.232 22.780 23.314 23.607	14.699 14.853 15.001 15.141 15.276 15.348	35.027 35.788 36.522 37.233 37.921 38.590 38.955	18373. 19310. 20251. 21198. 22150. 22685.	18.567 18.675 18.781 18.886 18.989 19.090 19.147	24591 • 26361 • 28169 • 30013 • 31892 • 33805 • 34891 •		
1478.00 1500.00 1550.00 1600.00 1650.00 1700.00 1800.00 1800.00 1900.00 1950.00	23.607 23.848 24.383 24.904 25.902 26.381 26.848 27.303 27.746 28.178 28.601	16.309 16.331 16.379 16.423 16.465 16.504 16.541 16.576 16.609 16.640 16.670 16.698	39.916 40.179 40.762 41.327 41.875 42.406 42.922 43.424 43.912 44.386 44.848 45.299	24105. 24497. 25387. 26277. 27167. 28057. 28947. 29837. 30727. 31617. 32507. 33397.	17.800 17.800 17.800 17.800 17.800 17.800 17.800 17.800 17.800 17.800 17.800	34891. 35772. 37794. 39846. 41927. 44033. 46166. 48326. 50510. 52716. 54947. 57201.		

 $[{]m H}_0^0$ and ${
m S}_0^0$ apply to the reference state of the solid at zero deg K

TABLE B-53

THERMODYNAMIC FUNCTIONS FOR ZIRCONIUM NITRIDE (ZR N) SOLID PHASE

1 CAL=4.1840 ABS J GRAM MOLECULAR WT.=105.228GRAMS T DEG K = 273.15 + T DEG C $-(F_{\mathsf{T}}^{0}-H_{0}^{0})/\mathsf{T} \quad (H_{\mathsf{T}}^{0}-H_{0}^{0})/\mathsf{T} \quad (S_{\mathsf{T}}^{0}-S_{0}^{0}) \qquad (H_{\mathsf{T}}^{0}-H_{0}^{0}) \quad C_{\mathsf{P}}^{0} \qquad -(F_{\mathsf{T}}^{0}-H_{0}^{0})$ DEG MOLE DEG MOLE DEG MOLE DEG MOLE (SOLID)

(SO DEG K 0.000 0.042 0.136 0.328 0.674 1.237 2.091 3.314 4.984 7.177 9.964 13.411 17.573 22.502 28.238 34.818 42.268 50.613 59.871 70.058 81.186 93.267 106.31 120.32 135.31 151.27 168.22 186.15 205.07 224.97 245.86 267.73 290.58 314.41 339.22 364.99 391.73 419:43 448.08 477.68 508.23 539.71 572.12 605 • 46 639.71 674.87 710.94 747.90 785.75 824.48 864.09 904.56 945.89 972.37 988.08 1031.1 1075.0 1119.7 1165.2 1194.3 1211.5

HO AND SO APPLY TO THE REFERENCE STATE OF THE SOLID AT ZERO DEG K

TABLE B-53(CONT.)

THERMODYNAMIC FUNCTIONS FOR ZIRCONIUM NITRIDE (ZR N) SOLID PHASE

GRAM MOLECULAR WT .= 105.228GFAMS 1 CAL=4.1840 ABS J T DEG K = 273.15 + T DEG C $-(F_{T}^{0}-H_{0}^{0})/T(H_{T}^{0}-H_{0}^{0})/T(S_{T}^{0}-S_{0}^{0})$ $(H_{T}^{0}-H_{0}^{0})$ C_{P}^{0} $-(F_{T}^{0}-H_{0}^{0})$ DEG K DEG MOLE DEG MOLE DEG MOLE DEG MOLE \$\begin{array}{c} \text{300.00} & 4.0384 & 5.3092 & 9.347 & 1592.7 & 9.693 & 1211.5 \\
310.00 & 4.2148 & 5.4528 & 9.668 & 1690.4 & 9.831 & 1306.6 \\
320.00 & 4.3902 & 5.5917 & 9.982 & 1789.3 & 9.958 & 1404.8 \\
330.00 & 4.3643 & 5.7258 & 10.290 & 1889.5 & 10.075 & 1506.2 \\
340.00 & 4.7371 & 5.8553 & 10.592 & 1990.8 & 10.183 & 1610.6 \\
350.00 & 4.9087 & 5.9804 & 10.889 & 2093.1 & 10.284 & 1718.0 \\
360.00 & 5.0789 & 6.1013 & 11.80 & 2196.5 & 10.378 & 1828.4 \\
370.00 & 5.2476 & 6.2180 & 11.466 & 2300.7 & 10.465 & 1941.6 \\
370.00 & 5.2476 & 6.2180 & 11.466 & 2300.7 & 10.465 & 1941.6 \\
370.00 & 5.4150 & 6.3309 & 11.746 & 2405.7 & 10.547 & 2057.7 \\
380.00 & 5.868 & 6.4400 & 12.021 & 2511.6 & 10.624 & 2176.5 \\
400.00 & 5.7452 & 6.5455 & 12.291 & 2618.2 & 10.697 & 2298.1 \\
425.00 & 6.1496 & 6.7947 & 12.944 & 2887.7 & 10.861 & 2613.6 \\
450.00 & 6.9302 & 7.2378 & 14.168 & 3437.9 & 11.136 & 3291.8 \\
500.00 & 7.3065 & 7.456 & 14.742 & 3717.8 & 11.252 & 3653.3 \\
550.00 & 8.0322 & 7.7920 & 15.824 & 4285.6 & 11.455 & 4417.7 \\
600.00 & 8.7239 & 8.1048 & 16.829 & 4862.9 & 11.630 & 3234.3 \\
500.00 & 7.3888 & 8.3820 & 17.766 & 5448.3 & 11.785 & 6099.4 \\
700.00 & 10.014 & 8.6301 & 18.644 & 6041.1 & 11.925 & 7009.9 \\
750.00 & 10.617 & 8.6542 & 19.472 & 6640.6 & 12.054 & 7963.0 \\
800.00 & 11.195 & 9.0580 & 20.253 & 7246.4 & 12.175 & 8956.3 \\
800.00 & 11.750 & 9.2448 & 20.995 & 7858.0 & 12.290 & 16881 \\
1200.00 & 12.284 & 9.4170 & 11.701 & 8475.3 & 12.400 & 11055 \\
950.00 & 12.284 & 9.4170 & 11.701 & 8475.3 & 12.400 & 11055 \\
950.00 & 12.797 & 9.5768 & 22.374 & 9097.9 & 12.505 & 12157 \\
100.00 & 15.412 & 10.488 & 26.399 & 13596. & 13.182 & 20723 \\
1100.00 & 15.422 & 9.9968 & 24.229 & 10.997. & 12.806 & 15655 \\
1100.00 & 15.421 & 10.488 & 26.399 & 13.596. & 13.182 & 20723 \\
1200.00 & 15.794 & 10.488 & 26.399 & 13.596. & 13.182 & 20723 \\
1200.00 & 15.794 & 10.488 & 26.399 & 13.596. & 13.182 & 20723 \\
1200.00 & 15.794 & 10.488 & 26.399 & 13.596. & 13.182 & 20723 \\
1200.00 & 15.794 & 10.488 & 26.399 & 13.596. (SOLID)

 $[{]m H}_0^0$ and ${
m S}_0^0$ apply to the reference state of the solid at zero deg K

TABLE B-54

THERMODYNAMIC FUNCTIONS FOR ZIRCONIUM TETRACHLURIDE (ZR $\mathsf{CL_4}$) SOLID PHASE

GRAM MOL	ECULAR WT.=;		4S = 273.15 +	T DEG C	1 CAL=4	•1840 ABS J
Т	-(F _T ⁰ -H ₀)/T		(S ₁ -S ₀)		c _P ⁰	$-(F_{T}^{0}-H_{0}^{0})$
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL	DEG MOLE	· CAL
			(SOLID)			
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 55.00 60.00 55.00 60.00 70.00 75.00 80.00 90.00 95.00 100.00 125.00 110.00 125.00 130.00 140.00 155.00 160.00 155.00 160.00 155.00 160.00 155.00 160.00 155.00 160.00 155.00 160.00 165.00 175.00 180.00 175.00 180.00 185.00 175.00 180.00 185.00 175.00 180.00 185.00 175.00 180.00 185.00 175.00 185.00 175.00 185.00 175.00 185.00 175.00 185.00 175.00 185.00 175.00 185.00 195.00	0.0048 0.0897 0.2919 0.5794 0.9260 1.3143 1.7336 2.1767 2.6380 3.1134 3.5992 4.0926 4.5913 5.0993 5.5970 6.1012 6.6048 7.1070 7.6070 8.1044 8.5986 9.0894 9.5764 10.060 10.539 11.014 11.484 11.951 12.412 12.870 13.323 13.771 14.215 14.654 15.089 15.519 15.519 15.945 16.366 16.783 17.196 17.604 18.008 18.408 18.408 18.408 18.408 18.408 18.408 18.408 19.582 19.965 20.344 20.720 21.091 21.459 21.459 21.459 21.459 21.459 22.763 22.893 23.243 23.589 23.932 24.272	0. 0.0256 0.2956 0.7509 1.2817 1.8472 2.4313 3.0256 3.6239 4.2206 4.8109 5.3906 5.9570 6.5082 7.0434 7.5622 8.0647 8.5510 9.0215 9.4766 9.9170 10.344 10.757 11.158 11.548 11.548 11.529 12.649 12.293 12.649 12.994 13.329 13.654 13.969 14.275 14.572 14.859 15.138 15.409 15.672 15.927 16.415 16.648 16.415 16.648 16.875 17.096 17.519 17.722 17.919 18.112 18.299 18.482 18.660 17.519 17.722 17.919 18.112 18.299 18.482 18.660 17.519 17.722 17.919 18.112 18.299 18.482 18.660 19.330 19.487 19.642 19.793 19.941	0.030 0.030 0.0385 1.043 1.861 2.773 3.746 4.759 5.801 6.859 7.924 8.990 10.050 11.100 12.137 13.159 14.166 15.156 16.128 17.084 18.021 18.942 19.847 20.735 21.607 22.464 23.306 24.133 24.945 25.742 26.524 27.292 28.046 28.786 29.513 30.227 30.928 31.617 32.293 32.958 33.611 34.252 34.883 35.504 36.114 36.713 37.304 3	0.128 2.956 11.264 25.634 46.179 72.938 105.90 144.95 189.93 240.54 25.634 46.171 645.18 726.84 811.93 991.70 1(86.1) 1183.3 1283.2 1385.7 1490.7 1598.0 1707.6 1819.2 1932.7 2044.3 22284.0 2404.3 2526.1 2649.2 21932.7 2048.1 2165.2 2284.0 2404.3 3526.1 2649.2 21932.7 25899.3 3026.1 3154.0 3283.0 3441.8 4076.0 4211.1 4346.8 44758.2 4896.6 5035.7 5175.3 5263.6 5355.6 55597.9 5740.0 5882.6	0.146 1.075 2.262 3.490 4.730 5.973 7.207 8.411 9.569 10.667 11.699 12.665 13.571 14.422 15.222 15.974 16.682 17.350 17.982 18.585 19.163 19.717 20.248 20.755 21.235 21.689 22.117 22.519 22.899 22.117 22.519 22.899 23.256 23.592 23.909 24.491 24.758 25.010 25.894 26.475 25.690 25.894 26.677 26.931 27.079 27.493 27.622 27.749 27.873 27.994 28.379 27.873 27.994 28.379 28.3494 28.379 28.3494 28.379	0 * 0 * 0 2 4
298•15 300•00	24.484 24.608	20 • 0 33 20 • 0 86	44.517 44.694	5972•7 6025•7	28 • 645 28 • 685	7299•9 7382•5

 $[{]m H}_0^0$ and ${
m s}_0^0$ apply to the reference state of the solid at zero deg k

TABLE 8-54 (CONT.)

THERMODYNAMIC FUNCTIONS FOR ZIRCUNIUM TETRACHLORIDE (ZR CL₄) SOLID PHASE

GRAM MOLECULAR WT.=233.048GRAMS T DEG K = 273.15 + T DFG C T $-(F_T^0 - H_0^0)/T$ $(H_T^0 - H_0^0)/T$ $(S_T^0 - S_0^0)$ $(H_T^0 - H_0^0)$ C_P^0 $-(F_T^0 - H_0^0)$ DEG K $\frac{CAL}{DEG}$ $\frac{CAL}{MOLE}$ $\frac{CAL}{DEG}$ $\frac{CAL}{MOLE}$ $\frac{CAL}{DEG}$ $\frac{CAL}{MOLE}$ $\frac{CAL}{DEG}$ $\frac{CAL}{MOLE}$ $\frac{CAL}{DEG}$ $\frac{CAL}{MOLE}$ \frac

 $[{]m H}_0^0$ and ${
m S}_0^0$ apply to the reference state of the solid at zero deg K

APPENDIX C ERRATA IN PREVIOUS REPORTS

Our examination of NBS Reports 6297, 6484, 6645, and 6928 for errors is incomplete. Errors are corrected in later reports as we find them or as the result of being called to our attention by readers.

ERRATUM TO CHAPTER 5 OF NBS REPORT 6928, DATED 1 JULY 1960 Harold W. Woolley

In Chapter 5 of NBS Report 6928, the lowest known excited state of AlS was inadvertently listed as $^{2}\pi$ instead of $^{2}\Sigma^{+}$ (at. $T_{e}=23433.79~cm^{-1}$). Also, at the end of that chapter, the centrifugal stretching constant D was listed as having the theoretical value 2.3 x 10^{-7} cm⁻¹ instead of the observed 2.2 x 10^{-7} cm⁻¹. It is noted that Table A-33 of that report was computed for the ground state alone, using the theoretical rather than the observed value of D_A.

We are indebted to a private communication 1 for the pointing out of this error in the excited state and for a table computed with the observed 1

¹ John S. Gordon, private communication to C. W. Beckett, March 2, 1961.

U. S. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary

NATIONAL BURÉAU OF STANDARDS A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Scale. Volumetry and Densimetry.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Analytical Chemistry. Inorganic Chemistry.

Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics'
Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Crystal Growth.
Physical Properties. Constitution and Microstructure.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials, Codes and Safety Standards. Heat Transfer. Inorganic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. Components and Techniques. Digital Circuitry. Digital Systems. Analog Systems. Applications Engineering.

Atomic Physics. Spectroscopy. Radiometry. Solid State Physics. Electron Physics. Atomic Physics.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Molecular Kinetics. Mass Spectrometry. Molecular Structure and Radiation Chemistry.

· Office of Weights and Measures.

BOULDER, COLO.

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction. Ionosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics.

Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time Interval Standards. Electronic Calibration Center. Millimeter-Wave Research. Microwave Circuit Standards.

Radio Systems. High Frequency and Very High Frequency Research. Modulation Research. Antenna Research. Navigation Systems. Space Telecommunications.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

