



# الامتحان الوطني الموحد للبكالوريا الدورة العادية 1020 الدورة العادية الموضوع



| 7 | المعامل:        | NS22 | الرياضيات                                                       | المـــادة:             |
|---|-----------------|------|-----------------------------------------------------------------|------------------------|
| 3 | مدة<br>الإنجاز: | کیها | شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلأ | الشعب(ة)<br>أو المسلك: |

## معلومات عامة

-يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؛

-مدة إنجاز موضوع الامتحان: 3 ساعات ؟

- عدد الصفحات : 3 صفحات <sub>( الصفحة الأولى تتضمن معلومات والصفحتان المتبقيتان تتضمنان تمارين الامتحان )؟</sub>

- يمكن للمترشح إنجاز تمارين الامتحان في الترتيب الذي يناسبه ؟

-ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؟

-بالرغم من تكرار بعض الرموز في أكثر من تمرين فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

#### معلومات خاصة

-يتكون الموضوع من خمسة تمارين مستقلة فيما بينها و تتوزع حسب المجالات كما يلي :

| النقطة الممنوحة | المجال                   | التمرين        |
|-----------------|--------------------------|----------------|
| 3 نقط           | الهندسة الفضائية         | التمرين الأول  |
| 3 نقط           | الأعداد العقدية          | التمرين الثايي |
| 3 نقط           | حساب الاحتمالات          | التمرين الثالث |
| 3 نقط           | المتتاليات العددية       | التمرين الرابع |
| 8 نقط           | دراسة دالة وحساب التكامل | التمرين الخامس |

-بالنسبة للتمرين الرابع ( السؤال الثالث ) ، In يرمز لدالة اللوغاريتم النبيري .

الامتحان الوطني الموحد للبكالوريا -الدورة العادية • 10 على الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

## الموض\_\_\_وع

التمرين الأول (3ن)

1

1

1

0.5

0.25

1.25

1

1

B(3,0,0) و A(-1,0,3) النقط  $\left(O,\vec{i}\,,\vec{j},\vec{k}\,
ight)$  النقط معلم متعامد ممنظم مباشر وي الفضاء المنسوب إلى معلم متعامد ممنظم مباشر

$$x^2 + y^2 + z^2 - 6x - 2y - 15 = 0$$
 : التي معادلتها (S) والفلكة (C(7,1,-3) و الفلكة

. 
$$(ABC)$$
 واستنتج أن  $3x+4z-9=0$  واستنتج أن  $\overrightarrow{AB} \wedge \overrightarrow{AC} = 3\overrightarrow{i} + 4\overrightarrow{k}$  بين أن  $\overrightarrow{AB} \wedge \overrightarrow{AC} = 3\overrightarrow{i} + 4\overrightarrow{k}$ 

$$\Omega(3,1,0)$$
 بين أن  $\Omega(S)$  هي الفلكة التي مركزها  $\Omega(3,1,0)$  وشعاعها 5  $\Omega(S)$ 

. (ABC) ليكن ( $\Delta$ ) المستقيم المار من النقطة  $\Omega$  والعمودي على المستوى ( $\Delta$ 

. (
$$\Delta$$
) هو تمثیل بارامتري للمستقیم  $\begin{cases} x=3+3t \\ y=1 \end{cases}$  ( $t\in IR$ ) : 0.5  $z=4t$ 

. F(0,1,-4) و E(6,1,4) في النقطتين ( $\Delta$ ) يقطع الفلكة ( $\Delta$ ) يقطع الفلكة المستقيم ( $\Delta$ )

التمرين الثاني (3ن)

- .  $z^2 6z + 10 = 0$ : Ihasic C المعادلة (1) حل في مجموعة الأعداد العقدية
- نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم مباشر  $\left(O,\overrightarrow{e_1},\overrightarrow{e_2}\right)$  ، النقط A و B و C التي ألحاقها على (2 c=7-3i و b=3+i و a=3-i التوالى هي :

.  $\frac{\pi}{2}$ ليكن z لحق نقطة M من المستوى و z' لحق النقطة M صورة M بالدوران z' الذي مركزه z' وزاويته

. 
$$z' = iz + 2 - 4i$$
 : ا - ابین أن

c'=5+3i هو R ب - تحقق من أن لحق النقطة C' صورة النقطة C بالدوران

. 
$$BC=2BC'$$
 ثم استنتج أن المثلث  $BCC'$  قائم الزاوية في  $B$  و أن  $\frac{c'-b}{c-b}=\frac{1}{2}i$  : ج - بين أن

التمرين الثالث (3ن)

يحتوي صندوق على عشر كرات خمس كرات بيضاء وثلاث كرات حمراء وكرتين سوداوين (لا يمكن التمييز بين الكرات باللمس) .

نُسحب عشوائياً وفي آن واحد أربع كرات من الصندوق.

1) نعتبر الحدثين التاليين:

A: " الحصول على كرة حمراء واحدة فقط B: " و B: " الحصول على كرة بيضاء على الأقل A: B

. 
$$P(B) = \frac{41}{42}$$
 و  $P(A) = \frac{1}{2}$  بين أن

- X نعتبر المتغير العشوائي X الذي يربط كل سحبة بعدد الكرات الحمراء المسحوبة X
- X أ تحقق من أن القيم التي يأخذها المتغير العشوائي X هي 0 و 1 و 2 و 3 0.25

. 
$$P(X=0) = \frac{1}{6}$$
 و  $P(X=2) = \frac{3}{10}$  ب - بین أن

X ج – حدد قانون احتمال المتغير العشوائي X

التمرين الرابع (3ن)

NS22

الامتحان الوطني الموحد للبكالوريا -الدورة العادية • 10 على الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

$$u_{n+1}=rac{3u_n-1}{2u_n}$$
 .  $u_0=2$  : نعتبر المتتالية العددية  $u_n$  المعرفة بما يلي $u_0=2$ 

- . IN من  $u_n > 1$  : این بالترجع أن (1 0.75
- . IN نعتبر المتتالية العددية  $v_n = \frac{u_n 1}{2u_n 1}$  : المعرفة بما يلي المعرفة (2

. 
$$IN$$
 من  $v_n = \frac{1}{3} \left(\frac{1}{2}\right)^n$  ا من  $v_n = \frac{1}{3} \left(\frac{1}{2}\right)^n$ 

$$u_n = \frac{v_n - 1}{2v_n - 1}$$
 نام استنتج أن  $u_n = \frac{v_n - 1}{2v_n - 1}$  بين أن

. 
$$I\!N$$
 من  $w_n = \ln(u_n)$  : احسب  $w_n = \ln(u_n)$  هي المتتالية العددية المعرفة بما يلي  $w_n = \ln(u_n)$  لكل المتالية العددية المعرفة بما يلي (3  $w_n = 1$ 

التمرين الخامس (8ن)

- $g(x) = 1 + 4xe^{2x}$ : نعتبر الدالة العددية g المعرفة على الله الله  $g(x) = 1 + 4xe^{2x}$ 
  - . IR کن x کا  $g'(x) = 4(2x+1)e^{2x}$  : بین أن (1 0.5
- .  $\left]-\infty,-\frac{1}{2}\right]$  المجال وتناقصية على المجال المجال والمجال  $\left[-\frac{1}{2},+\infty\right]$  وتناقصية على المجال g

$$g\left(-\frac{1}{2}\right) > 0$$
 أ- بين أن  $g\left(-\frac{1}{2}\right) = 1 - \frac{2}{e}$  ثم تحقق من أن  $g\left(-\frac{1}{2}\right) = 1 - \frac{2}{e}$  0.5

- . IR نک g(x) > 0 نک بنتیج آن : 0.25
- .  $f(x) = (2x-1)e^{2x} + x + 1$  يلي : IR يما يلي : IR يما يلي :  $f(x) = (2x-1)e^{2x} + x + 1$  . ( $\|\vec{i}\| = \|\vec{j}\| = 2cm$ ) المنحنى الممثل للدالة f(x) = 1 في معلم متعامد ممنظم (f(x) = 1) المنحنى الممثل للدالة f(x) = 1
  - . (  $\lim_{u\to\infty}ue^u=0$  : نذکر أن )  $\lim_{x\to\infty}f(x)=-\infty$  أند $\lim_{x\to\infty}f(x)$  احسب (1)
  - . IR من f'(x) = g(x) تزایدیهٔ قطعا علی f'(x) = g(x) بین أن f'(x) = g(x) لکل کم من f'(x) = g(x)
    - . واستنتج أن (C) يقبل فرعا شلجميا في اتجاه محور الأراتيب  $\lim_{x \to +\infty} \frac{f(x)}{x}$  احسب  $\frac{f(x)}{x}$
- $-\infty$  ب احسب  $\int_{\infty}^{\infty} \left[ f(x) (x+1) \right]$  واستنتج أن المستقيم ( $\Delta$ ) الذي معادلته y = x+1 مقارب للمنحنى (y = x+1) بجوار y = x+1
- (C) ج حدد زوج إحداثيتي نقطة تقاطع المستقيم ( $\Delta$ ) والمنحنى ( $\Delta$ ) ثم بين أن المنحنى ( $\Delta$ ) يوجد تحت المستقيم ( $\Delta$ ) على المجال  $\frac{1}{2},+\infty$  و فوق المستقيم ( $\Delta$ ) على المجال  $\frac{1}{2},+\infty$  و فوق المستقيم ( $\Delta$ ) على المجال المجال على المجال أحد ( $\Delta$ ) على المجال المحال أحد ( $\Delta$ ) على المجال أحد ( $\Delta$ ) على المجال المحال أحد ( $\Delta$ ) على المجال أحد ( $\Delta$ ) على المحال أحد ( $\Delta$ )
  - . O في النقطة y=x أ بين أن y=x أي معادلة للمستقيم (T) مماس المنحنى y=x
  - 0.25 ب بين أن للمنحنى (C) نقطة انعطاف أفصولها  $rac{1}{2}$  (تحديد أرتوب نقطة الانعطاف غير مطلوب )
    - .  $\left(O,\vec{i}\,,\vec{j}\,\right)$  في المعلم (C) و (D) و ( $\Delta$ ) انشئ المستقيمين ( $\Delta$ ) في المعلم ( $\Delta$ )
      - $\int_{0}^{1} (2x-1)e^{2x}dx = 1$ : باستعمال مكاملة بالأجزاء بين أن  $\int_{0}^{1} (2x-1)e^{2x}dx = 1$
  - (C) ب احسب ب  $cm^2$  مساحة حيز المستوى المحصور بين المنحنى (C) و المستقيم  $cm^2$  مساحة حيز المستوى المحصور بين المنحنى x=0 و المستقيمين اللذين معادلتاهما x=0 و x=0





#### الامتحان الوطني الموحد للبكالوريا

#### الدورة العادية 2010

عناصر الإجابة



| 7 | المعامل:        | NR22 | الرياضيات                                                       | المــــادة:            |
|---|-----------------|------|-----------------------------------------------------------------|------------------------|
| 3 | مدة<br>الإنجاز: | کیها | شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلك | الشعب(ة)<br>أو المسلك: |

```
<u>التمرين الأول ( 3 ن )</u>
                                                           0.5 للجداء المتجهى و 0.5 لمعادلة المستوى
                                                                                                                 1
                                                 0.25 لكتابة المعادلة المختصرة و 0.25 للشعاع والمركز
                                                                                                           (2
                                                                                                                0.5
                                            أو (0.25 للكتابة M=5 و 0.25 للتوصل إلى معادلة الفلكة)
                                                                           أ – 0.5 للتمثيل البارامتري
                                                                                                           (3
                                                                                                                1.5
                                      ب- 0.5 للتوصل إلى المعادلة 1=t^2 و 0.25 لكل نقطة من النقطتين
أو (0.5) للتحقق من أن E تنتمى إلى المستقيم وإلى الفلكة و 0.5 للتحقق من أن F تنتمى إلى المستقيم وإلى الفلكة E
                                                                                          <u>التمرين الثاني (</u> 3 ن )
                     0.5 لكل حل من الحلين ( تمنح 0.25 في حالة حساب المميز دون التوصل إلى الحلين )
                                                                                                                 1
                                                                                         0.5 - 1
                     - 0.25 ج - 0.75 لكل استتتاج
                                                                                                                 2
                                                                                                           (2
                                                                                         التمرين الثالث (3 ن)
                                                           P(B) و 0.5 لحساب P(A)
                                                                                                                 1
                   P(X = 0) ب P(X = 2) و 0.5 حساب P(X = 2)
                                                                                       0.25 - 1
                                                                                                                 2
                                                                                                           (2
                                  P(X=3) و 0.5 لحساب P(X=1) و 0.25 حساب
                                                                                         التمرين الرابع (3 ن)
                                                                                             0.75
                                                                                                           (1
                                                                                                                0.75
                                                                                                           (2
                                                                                                                1.75
                                              v_n أ- 0.25 للمتتالية هندسية و 0.25 لحساب v_0 و 0.5
                                                        ب- 0.5 لكتابة u_n بدلالة v_n و 0.25 للنهاية
                                ( \ln فقط عند تحديد النهاية دون الإشارة إلى اتصال الدالة 0.25
                                                                                                                0.5
                                                                                        <u>التمرين الخامس ( 8 ن )</u>
                                                                                                      (1 - I)
                                                                                                                0.5
                                                           0.25 لرتابة و على كل مجال من المجالين
                                                                                                       (2
                                                                                                                0.5
                                                       اً – 0.25 لحساب g\left(-\frac{1}{2}\right) و g\left(-\frac{1}{2}\right)
                                  ب - 0.25
                                                                                                       (3
                                                                                                                0.75
                                                                                      0.5 لكل نهاية
                                                                                                      (1 –II
                                                                                                                1
                                                                   0.5 للمتساوية و 0.25 للاستتتاج
                                                                                                       (2
                                                                                                                0.75
                                                          أ - 0.5 لحساب النهاية و 0.25 للاستنتاج
                ب - 0.25 لحساب النهاية و 0.25 للاستنتاج
                                                                                                       (3
                                                                                                                1.75
                                 ج - 0.25 لنقطة التقاطع و 0.25 للوضع النسبي
                                              ب - 0.25 لتحديد الأفصول
                                                                                         0.25 - 1
                                                                                                       (4
                                                                                                                0.5
                                                                                             0.75
                                                                                                       (5
                                                                                                                0.75
                                              أ – 0.75 للتوصل إلى الدالة الأصلية و 0.25 للحساب
                                                                                                       (6
                                                                                                                1.5
                              8cm^2 ب 0.25 لحساب التكامل (f(x)-x)dx و 0.25 للمساحة تسا وي
```