Trend Following

Algoritmos de *Trend Following* a partir de processos de média móvel são, essencialmente, ferramentas que buscam identificar ciclos para compra ou venda de ativos, ao filtrar ruído, suavizar resultados de séries estocásticas e destacar tendências. Nesse projeto, nosso objetivo foi a implementação prática de modelos de média móvel sobre os valores de fechamento do *iShares Ibovespa Fundo de Índice* (BOVA11), um "ETF" (*Exchange-traded fund*) simulador da carteira proporcional do Ibovespa, principal indicador de desempenho das ações de maior volume negociadas na B3.

Fundamentos

Média Móvel Simples

As médias móveis podem assumir diversos modelos, sendo que o mais simples consta da soma dos últimos n valores divididos pelo próprio n, tal como mostra a seguinte equação:

$$\sum_{\kappa=i}^{n}i/n$$

Em outras palavras, a média móvel simples é uma média aritmética, que, na maioria dos casos, é aplicada sobre os preços de fechamento dos papéis analisados. Vale dizer, entretanto, que outros tipos de dados podem também ser utilizados em cálculos de médias móveis, como, por exemplo, o valor de *midpoint*, encontrado na divisão por dois da soma de máximos e mínimos diários de cotação.

Seu modelo mais simples, no contexto do mercado de ações, gera sinais de compra e venda de ações. Caso o preço de fechamento esteja maior que a média móvel um sinal de compra é indicado, enquanto se o preço de fechamento chegar em um valor menor que a média móvel um sinal de venda é emitido. É possível ver a relação de média móvel com a linha de fechamentos no seguinte gráfico, para a cotação da Tesla de 2017 a 2018:

Núcleo de Finanças e Risco do Insper

Efeito Lag

Vale ressaltar que tudo isso é acompanhado por um *time-lag*, que pode ser reduzido com séries temporais mais curtas. Entretanto, quando se diminui o intervalo para a média movél aumenta-se a exposição para o seguinte *trade-off*: períodos mais curtos captam mais cedo os sinais de tendência, mas também estão mais suscetíveis a falsos sinais.

O gráfico a seguir indica a sequência de preços de fechamento de um papel ao longo de dois anos; a linha verde tracejada representa a média móvel de 10 dias e a vermelha a média móvel de 100 dias. É possível perceber que um maior período suaviza a linha de tendência e faz com que sua mudança de direção seja retardada. Com isso, como já mencionado anteriomente, são evitados grandes erros promovidos por falsos sinais e por movimentos naturais de volatilidade, mas quanto maior for o tamanho da média móvel menor será o aproveitamento de um ciclo, uma vez que as tendências serão percebidas com maiores atrasos.

Gráfico 2 – Média Móvel Simples (Longa Vs. Curta)

Combinação de Mais de Uma Média Móvel

O uso de uma única média móvel pode ser visto como um método fraco e superficial e, por isso, a grande maioria dos analistas prefere o uso de duas ou mais médias simultâneas, com séries temporais de diferentes tamanhos. Há algumas combinações populares, como 5-20 e 10-50 dias, sendo que a escolha dos tamanhos é dependente do mercado em que o analista está operando. Quanto às vantagens

desse método, há uma redução dos falsos sinais, mas com a desvantagem de um *time-lag* invariávelmente maior se comparado ao de uma única média móvel.

Seguem, ainda, gráficos com as médias móveis para 5 e 20 dias (**Gráfico 3**) em comparação com o de uma única média móvel de 20 dias (**Gráfico 4**). É visível que no mesmo período, uma única média gerou uma quantia muito maior de sinais de compra ou venda, e, se olharmos atentamente, suas *calls* sempre se dão antecipadamente, mas com maior risco de falso sinal.

Ainda há quem utilize três médias móveis, método conhecido como *Triple Crossover*, tal como no seguinte gráfico, que utiliza os períodos 4-9-18, combinação popular para o mercado futuro.

Nesse caso, quando a média de 4 dias ultrapassa a média de 9 e 18 dias, é emitido um alerta de compra, o qual só é efetivado quando a média de 9 dias ultrapassar a de 18. O interessante é que alguns investidores com perfil de menor aversão ao risco podem aproveitar o período entre o alerta e o sinal de compra para efetivar sua movimentação, assim, pode-se buscar capitalizar mais cedo a tendência. Ademais, em relação ao sinal de venda, ela ocorrerá quando a média de 4 dias ficar abaixo da média de 9 dias, assim, será gerado um alerta de venda, que será confirmado quando a média de 9 dias ficar abaixo da média de 18.

Mesmo com esses usos de múltiplas médias móveis, o modelo simples possui algumas limitações, por so levar em conta um período restrito, por não considerar pesos diferentes entre os dados e por não diferenciar informações novas das que são mais antigas.

Média Móvel Simples Vs. Média Móvel Exponencial

Além do modelo de média móvel simples (MMS), pode-se aplicar o mesmo conceito para médias com pesos lineares, ponderados, cumulativos, adaptativos e exponenciais.

Esta última (MME) é bastante interessante por equilibrar pesos maiores para os dados mais recentes e menores para os mais antigos. Sendo assim, o modelo exponencial é mais sensível às mudanças de tendências, mas, ao mesmo tempo, é mais suscetível a reportar falsos sinais.

Por fim, enquanto a MMS é baseada na soma dos últimos *n* valores divida pelo próprio n, a MME segue a seguinte formulação.

[Valor Atual – Média Anterior] x [2 / (1 + Número de Períodos)] + Média Anterior

Ademais, o gráfico que segue compara linhas de médias móveis simples e exponenciais, ambas de período igual a 10 dias. Nele vemos que a MME é um pouco mais ágil na mudança de direção tendencial.

Envelopes de Porcentagem

O uso de uma média móvel simples pode ser aprimorado ao se adicionar envelopes de porcentagem. No gráfico abaixo temos uma média móvel de 21 dias e um envelope de 3%. Nesse modelo, quando os preços atingem um dos envelopes é indicado que a tendência se estendeu. Com isso, busca-se visualizar quando o mercado chega aos seus extremos, tanto de baixa, quanto de alta.

Bollinger Bands

Uma outra ferramenta para se utilizar juntamente à média móvel são as *Bollinger Bands*, que seguem as seguintes equações:

Upper Band =
$$\frac{\sum_{j=i}^{N} X_i}{N} + 2*\sigma$$

Lower Band =
$$\frac{\sum_{j=i}^{N} X_i}{N} - 2*\sigma$$

Em suma, tratam-se de dois desvios padrão acima e a baixo da média móvel, assim garantindo que uma porcentagem dos *closes* cairão entre essas duas medidas. Já os resultados que passarem a *Upper Band*, serão considerados *overboughts*, indicando a venda do papel, mas se passarem a *Lower Band*, serão chamados de *oversolds*, indicando a *call* de compra do papel.

A diferença das *Bollinger Bands* em relação aos envelopes é de que enquanto os envelopes continuam com uma percentagem fixa, as *Bollinger Bands* se contraem e expandem, dado que são construídas com base na volatilidade do período.

Os Limites da Média Móvel

Os modelos de média móvel podem ser interesantes na tentativa de identificar tendências no mercado e na comparação do preço de um papel com os seus preços anteriores, dentro de determinados períodos. No entanto, deve-se estar em alerta quanto às suas limitações. Além da matemática, e em se tratando de análises sobre ações, classe pertencente ao universo da renda variável, tal indicador estará sempre suscetível a erros, por não considerar outras informações de relevância para a determinação de cotação.

Implementação Prática do Algorítmo

Cruzamento de Duas Médias Móveis

O primeiro algorítmo desenvolvido tratou de cruzamentos de duas médias móveis simples, de diferentes tamanhos (números de dias para cálculo do indicador). Em suma, tal modelo indica pontos de compra e venda, sendo que a *call* compradora se dá quando a curva de média móvel curta passa a ficar acima da de longa e o de venda em situação inversa.

Em nosso exercício inicial foram obtidos os dados de fechamento do BOVA11 desde o começo de 2020, construídas duas linhas de médias móveis simples, na popular combinação 5-20 de tamanhos, e definidos os *calls* de posição de acordo com a lógica de cruzamentos detalhadas acima. O resultado, ilutrado pelo **Gráfico I**, revela as mudanças de posição (*Long e Short*) em vermelho, os dados de preço (fechamento) em azul e as linhas de média móvel, curta e longa, em verde tracejado e azul tracejado, respectivamente. Caso um investidor tivesse comprado o papel no primeiro dia da implementação da estratégia (20 dias úteis após o início do ano, dado que este é o tamanho da maior média móvel em questão) e mantido até o último dia da coleta de dados (*Buy & Hold*) teria obtido retorno de **-12,63**%, caso tivesse seguido a estratégia o retorno teria sido de **35,36**%.

Nessa aplicação, o modelo contou com uma *win rate* de 63,63%, fez 11 *trades* (trocas), mantendo cada posição em média por 19,1 dias, sendo que o maior periodo

Núcleo de Finanças e Risco do Insper

apresentado foi uma *call* de compra entre os meses 6 e o 8 de 53 dias, tal como ilustrado no gráfico.

Vale ressaltar, no entanto, que o modelo construído é um tanto simplista, dado que desconsidera os custos da estrutura para a compra de uma opção *short* no BOVA11 e considera que essa operação resulte no mesmo retorno de quando se compra o papel e convive com uma apreciação de sua cotação, mas em sentido inverso, ou seja, a porcentagem de desvalorização é multiplicada por -1, tornando um valor positivo. Sendo assim, a posição em BOVA11 é sempre de 1 ou de -1.

O mesmo procedimento foi realizado para uma combinação de médias móveis de tamanhos 10 e 50 dias (**Gráfico II**), outro arranjamento de períodos bastante popular no mercado financeiro, a fim de exercer uma comparação para o cruzamento explicado acima.

Agora, a situação acabou ficando a favor do investidor que segue a mentalidade que chamamos de *Buy & Hold*, estratégia esta que, nesse caso, teria retornado **39,84**%, frente ao algorítmo de cruzamento de períodos 10 e 50, o qual traria um ganho de **2,35**%.

É importante explicar aqui o porquê do *Buy & Hold* ter tido *outcome* tão superior ao do modelo 5-20. Isso ocorre, pois consideramos a possibilidade de qualquer opcão, seja de *long* ou de *short*, apenas após a data do primeiro *call* indicado por nosso algorítmo de média móvel, a qual, nesse caso, só pode ocorrer após 50 dias. Assim, o *Buy & Hold* foi executado quase ao fim da grande curva de queda que podemos ver no **Gráfico I**.

Entre outras importantes informações estatísticas estão o número de trocas, que foi bem menor agora, na ordem de 5, a semelhante win rate de 40%, e a manutenção de cada posição em média de 31,6 dias, sendo que o maior período apresentado foi uma call de compra entre os meses 5 e o 9 de 79 dias, tal como ilustrado no gráfico. Tal nova realidade em termos de posições mais longas e de, consequentemente, um menor número de trades é característica de modelos com médias móveis maiores, as quais suaviazam os resultados das séries de cotações ao longo do tempo.

1.00 100 0.75 0.50 90 0.25 0.00 80 -0.25Close -0.5070 Position (right) -0.75-1.0060

Gráfico II – Cruzamento de Médias Móveis (10 – 50)

Em suma, o primeiro algorítmo apresentou uma *win rate* 20 pontos percentuais superior que a de segunda. Ainda, é coerente dizer que as diferenças entre os modelos se deram, em grande parte, por conta do período analisado, dado que o segundo deles, por acaso, acabou evitando a intensa desvalorização resultante da crise da Covid-19, nos primeiros meses de 2020.

Triple Crossover Method

Ainda no ambito das médias móveis simples, foi montado um modelo de *Triple Crossover*, no clássico agrupamento de períodos 4-9-18. Nesse caso, quando a média de 4 dias ultrapassa a média de 9 e 18 dias é emitido um alerta de compra, o qual é efetivado apenas quando a média de 9 dias ultrapassar a de 18. Em relação ao sinal de venda, este ocorrerá quando a média de 4 dias ficar abaixo da média de 9 dias, sendo confirmado quando a média de 9 dias ficar inferior a média de 18. O resultado desse algorítmo, para o mesmo período aplicado ao exercício anterior (desde o início de 2020), sobre a cotação do BOVA11, está ilustrado pelo gráfico que segue.

Gráfico III – $Triple\ Crossover\ (4-9-18)$

Agora, o resultado que seria obtido em *Buy & Hold* ficou em -12,16%, valor negativo dado que este, assim como o modelo do **Gráfico 1**, compreendeu o período da queda impulsionada pelo Covid-19, enquanto a estratégia rendeu 16,51%. Ademais, no ambito da estratégia, a taxa de *win rate* obtida após 23 trocas ficou em torno de 34,78%. Ainda, com menores períodos e, consequentemente, um maior número de *trades* a média de dias por posição foi de aproximadamente 8,26 dias.

A fim de comparar tal resultado, foi construído um algorítmo análogo, apenas com períodos diferentes para média móvel (2-3-18). Uma vez que o maior tamanho foi o mesmo utilizado no modelo anterior (18), o valor para *Buy & Hold* é o mesmo. Dessa vez, a estratégia rendeu **51,22%**, em um número superior de trocas (38), dados os pequenos périodos das duas menores médias móveis entre as três. Tal *outcome* bastante positivo pode ser explicado como fruto da maior quantidade de trades, que possibilitou que tendências fossem identificadas mais rapidamente, mas asseguradas pela maior média (de tamanho igual a 18). Essa nova realidade garantiu win rate de 52,63%.

Gráfico IV – $Triple\ Crossover\ (2-3-18)$

MMS Vs. MME Vs. MML

A fim de comparar resultados de MMS e MME, montamos dois modelos de médias móveis únicas, para cada tipo de indicador (ambas como período igual a 10 dias), representados nos seguintes gráficos.

Gráfico V – Média Móvel Simples (10)

Gráfico VI – Média Móvel Exponencial (10)

O resultado obtido mostrou que, para o período amostral das cotações, a MMS performaria melhor que a MME, dados os retornos paras as estratégias de **7,6**% e de aproximadamente **-11**%, respectivamente. Tal resultado frustrado para a MME pode ser analisado sob a ótica de um dos seus maiores defeitos já citados, a maior propensão a reportar falsos sinais, levando o algorítmo a *calls* desnecessárias, que não correspondem às reais tendências vigentes.

Ainda foi feito o mesmo exercício para um modelo de média móvel com ponderação linear (MML), a qual segue a seguinte formulação:

Somatória [Close(i) * i, Número de Períodos] / Somatória [i, Número de Períodos]

Dessa vez, o resultado foi pior ainda, na ordem de **-14,68**%. Como pode-se observar no **Gráfico VII**, o algorítmo seguiu um *call* equivocado de compra bem no período de mais intensa queda da cotação do ETF, dado que a MML acabou ficando sempre acima da curva de fechamento nessa época.

Gráfico VII – Média Móvel Linear (10)

Triple Crossover Exponencial

Visto que o maior retorno identificado até então foi o de cruzamento triplo de médias móveis simples em tamanhos 2-3-18, a dupla optou por teslá-lo em MME. O resultado da estratégia superou o do *Buy & Hold*, sendo de **12,85**% frente a uma realidade na casa de **-12**%, mas ficou aquém dos 51,22% obtidos previamente em MMS. Mais uma vez, pode-se dizer que a MME acabou captando alguns falsos sinais de tendência, mas, mesmo assim, ainda retornou positivamente, à um *win rate* de 26,32%.

Gráfico VIII – *Triple Crossover* Exponencial (2 - 3 - 18)

