

# Visualising high dimensional data using non-linear methods

Alexis Boukouvalas and Magnus
Rattray
Faculty of Biology Medicine and

Faculty of Biology, Medicine and Health

University of Manchester

- Problem with linear PCA
- Other methods in python
- Stochastic Neighborhood embedding
- Gaussian processes
  - Regression
  - Gaussian process latent variable model (GPLVM)



Linearity can be quite restrictive - in 2-D it would be a mess here!

#### **BEYOND PCA IN PYTHON**

- Isomap: maintains geodesic distances between all points. Builds nearest neighbor graph in data space, computes shortest path graph.
- Locally linear embedding (LLE): preserves distances within local neighborhoods.
- Spectral Embedding aka Laplacian Eigenmaps: estimation of graph in data space, minimization of a cost function so points close to each other on the manifold are mapped close to each other in the low dimensional space, preserving local distances.
- Multidimensional scaling (MDS): that distances in the original high-dimensional space are respected by minimizing cost:  $sum_{i < j} d_{ij}(X) \hat{d}_{ij}(X)$
- Independent component analysis (ICA): Linear projection to decompose signal to independent non-Gaussian sources.

## T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE)

- t-distributed Stochastic Neighbor Embedding (t-SNE): minimize the difference between Gaussian joint probabilities in data space and the Student's t-distributions in latent-space. Very populare in single-cell.
- Demo: <a href="http://distill.pub/2016/misread-tsne/">http://distill.pub/2016/misread-tsne/</a>
- One parameter: perplexity to balance preservation of local and global aspects. Low value (e.g. 2) local variation dominates and vice versa for larger values. Should be smaller than number of points.
- Good at picking out clusters of data that lie in separate manifolds -> well separated clusters in latent space.
- Standard implementation limited to 2-D and 3-D latent spaces.
- Multiple restarts needed to avoid local minima using objective to select best one.
- Often run on PCA latent space to preserve global structure (see later example).

#### Single cell RNA-sequencing example

- Differentiation of myeloid and erythroid precursors from hematopoietic stem cells in the mouse bone marrow.
- RNA-seq data with 4423 cells x 2312 genes

#### Principal Components Analysis: How many components to use?



Looking at the elbow? 5 components

#### Color by myeloid gene MPO:



Stacking PCA-> tSNE to reveal global structure but still prone to local minima.



Global structure clearer when PCA->tSNE, not tSNE directly.

Color tSNE latent space by gene expression: HSC gene CD34, myeloid gene MPO and erythroid precursor genes GATA2 and GATA1.



#### GAUSSIAN PROCESS LATENT VARIABLE (GPLVM)

- A probabilistic non-linear dimension reduction method based on Gaussian processes.
- Gaussian process: A prior over functions.
- Defined by the mean function, m(x), and covariance function k(x, x').

### DIFFERENT COVARIANCES=DIFFERENT BELIEFS ON FUNCTION SHAPE: PRIOR





Covariance functions conditioned on 3 points.

#### TYPES OF COVARIANCE FUNCTIONS

- 1. Stationary: covariance between two points only depends on their distance. Can be easier to estimate than non-stationary covariances.
- 2. Not all functions are valid covariance functions: the function must be positive semi-definite to produce valid covariance matrices.
- 3. We can create new covariance functions since the sum or product of any two covariance functions is also a valid covariance function.
- 4. A likelihood can be calculated: how well can the model explain the data?
- 5. A likelihood is a good way to compare models and even select the covariance structure using rules like (3) and evaluating the likelihood -> Automatic statistician

#### WWW.AUTOMATICSTATISTICIAN.COM





1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

smooth function

Uncorrelated noise with linearly increasing standard deviation

#### GAUSSIAN PROCESS LATENT VARIABLE MODEL

- A Gaussian process where we only know Y but not X.
   GP(X) -> Y
- X is not known and has to be estimated the latent space.
- A GPLVM with a linear covariance function is the same as PCA!
- A non-linear covariance function like the ones we have seen so far -> non-linear dimension reduction.



Given 5 points X, Y we learn the model by Gaussian process regression



Where could the 6<sup>th</sup> (X,Y) point appear? More likely close to the curve.



For Y=0.4, where could the X be? Answer depends on initial point.

For higher-dimensional Y, easier!

#### OIL DATASET

- Standard benchmark dataset generated from oil flow data containing three phases.
- Bishop, C. M. and G. D. James (1993). Analysis of multiphase flows using dualenergy gamma densitometry and neural networks. Nuclear Instruments and Methods in Physics Research A327, 580-593

# How well can unsupervised methods separate the three phases without seeing the phase labels?





Other methods cannot separate the three classes.

#### **GPLVM IN COMPUTATIONAL BIOLOGY**

#### Pseudotime inference

A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst. Buettner F1, Theis FJ., Bioinformatics, 2012.

#### Account for confounding factors

Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies Fusi N, Stegle O, Lawrence ND, PLOS Computational Biology, 2012.

#### Incorporating prior information

Pseudotime estimation: deconfounding single cell time series. Reid JE, Wernisch L., Bioinformatics, 2016.

#### Assessing uncertainty

Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference. Campbell KR, Yau C, PLOS Computational Biology, 2016.

#### THE END: GO TRY IT OUT!

Non-probabilistic non-linear methods:

http://scikit-learn.org/stable/modules/ manifold.html

GPLVM:

http://www.nxn.se/valent/some-intuition-about-the-gplvm