# An Accurate Absorption-Based Net Primary Production Model for the Global Ocean

Greg Silsbe
Horn Point Laboratory, UMCES

Mike Behrenfeld, Kim Halsey, Allen Milligan & Toby Westberry
Oregon State University







# Ocean Color Remote Sensing: Science & Challenges

Ocean Color  $(R_{RS}(\lambda))$   $\longrightarrow$  Net Phytoplantkon Production (NPP) Growth Rates ( $\mu$ )





#### NPP Models

- Most published NPP models use Chl a as their central metric of phytoplankton biomass
- Disparate changes in cellular Chl:C in response to light and nutrients confound a direct relationship between Chl a and NPP



#### Traditional Products



Halsey and Jones 2015. Annu. Rev. Mar. Sci. 4:260-280. Also: Laws and Bannister 1980. Marra et al. 2007.

#### NPP Models

- Spectral inversion algorithms now permit retrievals of Inherent Optical Properties (IOPs) from space (Lee et al. 2002; Maritorena et al. 2002; Werdell et al. 2013).
- The Carbon, Absorption, Fluorescence and Euphotic-Resolved (CAFE) model framework seeks to incorporate these products into a mechanistic model of NPP and μ.

$$R_{RS}(\lambda) \sim \frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)}$$





# Phytoplankton Absorption Coefficient ( $a_{\phi}$ ): The New Chlorophyll

• The phytoplankton absorption coefficient  $(a_\phi)$  represents the sum of the product of all photosynthetic and non-photosynthetic pigments and the specific absorbance invivo







#### **Model Parameterization**

Absorption Model: 
$$NPP = E(\lambda) \times a_{\phi}(\lambda) \times \phi_{\mu}$$

Carbon Model: 
$$NPP = C_{Phyto} \times \mu$$

Combined Eqs: 
$$\mu = E(\lambda) \times a_{\phi}(\lambda) \times \phi_{\mu} / C_{Phyto}$$

Where:  $E(\lambda)$  is spectral extrapolation of PAR

 $C_{Phyto}$  is derived from Graff et al. (2015)

 $a_{\phi}(\lambda)$ ,  $b_{bp}(\lambda)$  are from the GIOP-DC

 $\phi_u$  is the quantum efficiency of growth



## **Model Parameterization**

$$\phi_{\mu} = \phi_{\mu}^{max} \times tanh(E_K/E)$$



# Model Parameterization: E<sub>K</sub>

#### Other absorption-based models:

- $E_K$  is globally constant at 116 mmol m<sup>-2</sup> s<sup>-1</sup> (Marra et al. (2007)
- $E_K$  varies with sea-surface temperature (SST) (Antione and Morel 1996; Smyth et al. 2005)

#### **CAFE Model:**

•  $E_K$  varies with Growth Irradiance (Behrenfeld et al. 2015)





Michael J. Behrenfeld<sup>1\*</sup>, Robert T. O'Malley<sup>1</sup>, Emmanuel S. Boss<sup>2</sup>, Toby K. Westberry<sup>1</sup>, Jason R. Graff<sup>1</sup>, Kimberly H. Halsey<sup>3</sup>, Allen J. Milligan<sup>1</sup>, David A. Siegel<sup>4</sup> and Matthew B. Brown<sup>1</sup>

# Model Validation: E<sub>K</sub>





Huot et al. 2007. Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean. *Biogeosciences*. **4**: 853-868.

# Model Parameterization - E<sub>K</sub>



#### Other absorption-based models:

- $\phi_{\mu}^{Max}$  is globally constant: 0.060 mol C (mol photons)<sup>-1</sup> (Smyth et al. 2005; Marra et al. (2007)
- $\phi_{\mu}^{Max}$  is globally variable:  $0.058 \pm 0.038$  mol C (mol photons)<sup>-1</sup> (Antione and Morel 1996)



#### Other absorption-based models:

- $\phi_{\mu}^{Max}$  is globally constant: 0.060 mol C (mol photons)<sup>-1</sup> (Smyth et al. 2005; Marra et al. (2007)
- $\phi_{\mu}^{Max}$  is globally variable: 0.058 ± 0.038 mol C (mol photons)<sup>-1</sup> (Antione and Morel 1996)



#### Other absorption-based models:

- $\phi_{\mu}^{Max}$  is globally constant: 0.060 mol C (mol photons)<sup>-1</sup> (Smyth et al. 2005; Marra et al. (2007)
- $\phi_{\mu}^{Max}$  is globally variable: 0.058 ± 0.038 mol C (mol photons)<sup>-1</sup> (Antione and Morel 1996)





Halsey and Jones 2015. Ann. Rev. Mar. Sci. 7:265-280.

#### Other absorption-based models:

- $\phi_{\mu}^{Max}$  is globally constant: 0.060 mol C (mol photons)<sup>-1</sup> (Smyth et al. 2005; Marra et al. (2007)
- $\phi_{\mu}^{Max}$  is globally variable:  $0.058 \pm 0.038$  mol C (mol photons)<sup>-1</sup> (Antione and Morel 1996)



|                             | $E_{\mathbf{k}}$ | P B max | αВ     | ā*     | $\Phi_{ m cmax}$ |
|-----------------------------|------------------|---------|--------|--------|------------------|
| $E_{\mathbf{k}}$            | 1.000            |         |        |        |                  |
| $P_{\text{max}}^{\text{B}}$ | 0.508            | 1.000   |        |        | 1 1              |
| $\alpha^{\mathbf{B}}$       | -0.500           | 0.206   | 1.000  |        | 1 1              |
| ā*                          | 0.177            | 0.193   |        | 1.000  | 1 1              |
| $\Phi_{ m cmax}$            | -0.451           | 0.109   | 0.796  | -0.364 | 1.000            |
| [Chl <i>a</i> ]             |                  | 0.290   |        | -0.301 | 0.214            |
| $f_{micro}$                 |                  | 0.258   |        | -0.214 | 0.106            |
| $f_{nano}$                  | -0.234           |         | 0.229  |        | 0.165            |
| $f_{pico}$                  | 0.116            | -0.231  | -0.176 | 0.261  | -0.247           |
| NPP                         | 0.604            | 0.138   | -0.468 | 0.283  | -0.486           |
| T                           | 0.378            |         | -0.369 | -0.139 | -0.150           |
| [Nut]                       | -0.201           |         | 0.116  | -0.123 | 0.158            |
| $z/Z_{eu}$                  | -0.465           | -0.320  | 0.254  | -0.220 | 0.317            |

Uitz et al. 2008. Relating phytoplankton photophysiological properties to community structure. *Limnol. Oceanogr.* 53: 614-630

# Model Validation: $\phi_{\mu}^{max}$



## **Model Climatology**

Global NPP estimated from MODIS monthly climatology is 53.8 Pg C year-1



## Model Validation – PPARR Approach

- CAFE NPP model results were tested against in-situ NPP measurements at 10 sites (n=1048)
- Data and methods follow PPARR4 (Saba et al. 2011)



| Metadata | Chl   | PAR   | SST   | MLD    | NPP    |
|----------|-------|-------|-------|--------|--------|
| BATS     | 0.097 | 17.8  | 21.78 | 83.26  | 218.98 |
| BATS     | 0.096 | 29.38 | 20.88 | 123.05 | 306.06 |
| BATS     | 0.207 | 32.16 | 20.01 | 125.13 | 799.44 |

## Model Validation – PPARR Approach

$$RMSD = \left(\frac{1}{n} \sum_{i=1}^{n} \Delta(|\log_{10} NPP_{mod} - \log_{10} NPP_{obs}|)^{2}\right)^{0.5}$$

 $Bias = mean(\log_{10}NPP_{mod}) - mean(\log_{10}NPP_{obs})$ 



# Model Validation – PPARR Approach





## Model Validation – Direct Satellite Measurements



## **Future Directions**

- Most phytoplankton biomass is hidden from satellite measurements of ocean color.
- BIO-Argo profiles can help fill in this missing data





## **Future Directions**

Hyperspectral ocean color data (e.g. PACE) will provide improved derivation of IOPs,
 potentially allowing for taxonomic discrimination from space



# Acknowledgements

NASA: The Science of Terra and Aqua

Questions?