A Hybrid Recommendation Engine for Food Joints

Prototype: APOGEE 2015

Category: Economic Modelling and Finance

By:

Shubham Gupta (2012A7PS086P)

Kapil Singhal (2013A7PS038P)

Prangav Singhal (2014A8PS332P)

Rusheen Rathore (2012A1PS387P)

Shrey Gupta (2012A1PS412P)

Birla Institute of Technology and Science Pilani

innovate

Objective

To create a hybrid recommendation engine which is able to recommend products to customer that complements the items already purchased by them in a restaurant or a food joint

"A lot of times, people don't **know** what they want until you **show** it to them."

- Steve Jobs

What is Recommendation Engine

It is an information filtering system that seek to predict the 'rating' or 'preference' that user would give to an item and therefore is able to **suggest items** to the customers

- Collaborative filtering methods are based on collecting and analysing a large amount of information on users' behaviours, activities or preferences and predicting what users will like based on their similarity to other users.
- Content-based filtering methods are based on a description of the item and a profile of the user's preference.

HYBRID APPROCH

• Hybrid Recommendation Systems is the one combining collaborative filtering and content-based filtering approaches.

ADVANTAGES

- Increased sales
- Greater margins
- Customer Satisfaction

- Menu Management
- Consumer Awareness

Timeline

Data Collection and Pre-Processing

• Designing and developing the recommendation engine

• Integrating the engine with a user application

Testing the output and taking user feedback

Data Sets

- We have a computer generated data of a large food joint with about 3.25 lakhs entries collected over the last two years. It has data that is categorised under the following variables:-
 - Customer ID
 - 2. Product Category
 - 3. Product Subcategory
 - 4. Size
 - 5. Mode of Order
 - 6. Net Sales
 - 7. Quantity
 - 8. Gender
 - 9. Zip Code
 - 10. Age Group

Timeline

Data Collection and Pre-Processing

• Designing and developing the recommendation engine

• Integrating the engine with a user application

Testing the output and taking user feedback

Collaborative Approach

Customer Ratings

- CustomerID
- Items
- Ratings

Sample Data (User Ratings)

RATINGS						
	Item 1	Item 2	Item 3	Item 4		
User 1	2	2	1	4		
User 2	0	5	4	0		
User 3	0	1	2	2		
User 4	1	0	3	4		
User 5	1	4	5	3		
User 6	1	0	1	3		
User 7	1	3	2	0		
User 8	5	2	5	2		
User 9	0	0	5	5		
User 10	5	1	5	4		

Recommendation Algo. (Python Code)

```
import numpy import csv
```

@INPUT:

R: a matrix to be factorized, dimension N x M

P: an initial matrix of dimension N x K

Q : an initial matrix of dimension M x K

K: the number of latent features

steps: the maximum number of steps to perform the optimisation

alpha: the learning rate

beta: the regularization parameter

@OUTPUT:

the final matrices P and Q

11 11 11


```
def matrix factorization(R, P, Q, K, steps=5000, alpha=0.0002, beta=0.02):
Q = Q.T
for step in xrange(steps):
   for i in xrange(len(R)):
     for j in xrange(len(R[i])):
        if R[i][j] > 0:
           eij = R[i][j] - numpy.dot(P[i,:],Q[:,j])
           for k in xrange(K):
             P[i][k] = P[i][k] + alpha * (2 * eij * Q[k][j] - beta * P[i][k])
             Q[k][i] = Q[k][i] + alpha * (2 * eij * P[i][k] - beta * Q[k][i])
   eR = numpy.dot(P,Q)
   e = 0
   for i in xrange(len(R)):
     for j in xrange(len(R[i])):
        if R[i][i] > 0:
           e = e + pow(R[i][j] - numpy.dot(P[i,:],Q[:,j]), 2)
          for k in xrange(K):
             e = e + (beta/2) * (pow(P[i][k],2) + pow(Q[k][i],2))
   if e < 0.001:
     break
return P, Q.T
```

```
if __name__ == "__main__":
reader=csv.reader(open("/home/kapil/rating1.csv","rb"),delimiter=',')
x=list(reader)
R=numpy.array(x).astype('int')
R = numpy.array(R)
N = len(R)
M = len(R[0])
K=2
P = numpy.random.rand(N,K)
Q = numpy.random.rand(M,K)
nP, nQ = matrix\_factorization(R, P, Q, K)
nR = numpy.dot(nP, nQ.T)
numpy.savetxt("foo.csv", nR, delimiter=",")
```

Birla Institute of Technology and Science Pilani

Predicted Ratings

RATINGS						
	Item 1	Item 2	Item 3	Item 4		
User 1	1.15	2.52	2.23	2.93		
User 2	1.87	4.95	4.03	4.63		
User 3	1.61	1.25	2.05	1.74		
User 4	1.18	3.61	2.78	4.06		
User 5	2.05	3.47	3.49	4.15		
User 6	0.50	2.48	1.63	2.70		
User 7	0.85	2.92	2.15	3.26		
User 8	4.80	1.30	4.95	2.69		
User 9	3.49	3.88	4.99	4.98		
User 10	4.92	1.73	4.27	3.17		

Content Based Approach

1. Customers Purchase History

- CustomerID
- Products
- No. of Times Purchased
- Quantity

2. Customer Combos

- CustomerID
- All Products purchased together

3. Based on Demographics

- CustomerID
- ZipCode
- AgeGroups
- Gender

4. Product Details

- Products
- NetSales

Timeline

Data Collection and Pre-Processing

Designing and developing the recommendation engine

- Integrating the engine with a user application
- Testing the output and taking user feedback

Scope of the Project

Suggesting Items to the Customers

• Fixing better prices for items

• Scrapping unpopular merchandise

Rewarding Customers with special offers and discounts

Birla Institute of Technology and Science Pilani

