Recent progress in MPC-in-the-Head protocols

Emmanuela Orsini

imec-COSIC, KU Leuven

MPC-in-the-Head

MPC-in-the-Head framework [Ishai, Kushilevitz, Ostrovsky, Sahai, 2007]

- Honest majority, information-theoretic secure MPC
- Completeness, soundness and ZK derived from the security of MPC

MPC in the head – Description

MPC in the head – Description

Efficient MPCitH protocols

- ZKBoo (Giacomelli, Madsen, Orlandi, USENIX Security, 2016), ZKB++ (Chase, Derler, Goldfeder, Orlandi, Ramacher, Rechberger, Slamanig, Zaverucha, ACM CCS 2017)
- KKW (Katz, Kolesnikov, Wang, ACM CCS 2018)
- **BN** (Baum, Nof, *PKC 2020*)
- Ligero, Ligero++ (Ames, Hazay, Ishai, Venkitasubramaniam, ACM 2017, ACM 2020),
 BooLigero (Yaron Gvili, Sarah Scheffler, Mayank Varia) FC2021

Efficient MPCitH protocols

- ZKBoo (Giacomelli, Madsen, Orlandi, USENIX Security, 2016), ZKB++ (Chase, Derler, Goldfeder, Orlandi, Ramacher, Rechberger, Slamanig, Zaverucha, ACM CCS 2017)
- KKW (Katz, Kolesnikov, Wang, ACM CCS 2018)
- **BN** (Baum, Nof, *PKC 2020*)
- Ligero, Ligero++ (Ames, Hazay, Ishai, Venkitasubramaniam, ACM 2017, 2020),
 BooLigero (Yaron Gvili, Sarah Scheffler, Mayank Varia) FC2021

Efficient MPCitH protocols – Common features

- Linear prover and communication*
- Post-quantum security
- Great flexibility**
- Possibility of streaming
- Stackable⁺ (Eprint 2021/422, A. Goel, M. Green, M. Hall-Andersen, G. Kaptchuk)

Limbo: MPCitH-based zk-IOP

* C. de Saint Guilhem, E. Orsini, T. Tanguy, Limbo: Efficient Zero-knowledge MPCitH-based Arguments, ACM CCS 2021.

Highlights:

- Naturally works over any fields
- More efficient in computation compared to other MPCitH protocols
- Concretely small linear proof size

Limbo: General construction

- Describe a general MPC model with arbitrary number of rounds
- 2. Compile our general MPC protocol into a zk-IOP
- 3. Instantiate the MPC model with an actual MPC protocol
- 4. Compile the resulting zk-proof system to obtain an interactive or non-interactive argument

- P_S knows the entire input of the computation
- P_S sends at most one message at the beginning of each phase
- The servers only communicate with each other via broadcast
- 1. P_S sends $\mathbf{m_i^1}, \forall i$ (Phase 1)
- 2. For each $j \in [2, \rho 1]$
 - Pi call RandomCoin
 - $-P_S$ sends \mathbf{m}_i^j (Phase j)
- 3. P_i call RandomCoin and, according to the received las message, output (Phase ρ)

- P_S knows the entire input of the computation
- P_S sends at most one message at the beginning of each phase
- The servers only communicate with each other via broadcast
- 1. P_S sends $\mathbf{m_i^1}, \forall i$ (Phase 1)
- 2. For each $j \in [2, \rho 1]$
 - Pi call RandomCoin
 - $-P_S$ sends \mathbf{m}_i^j (Phase j)
- 3. P_i call RandomCoin and, according to the received las message, output (Phase ρ)

- P_S knows the entire input of the computation
- P_S sends at most one message at the beginning of each phase
- The servers only communicate with each other via broadcast
- 1. P_S sends $\mathbf{m_i^1}$, $\forall i$ (Phase 1)
- 2. For each $j \in [2, \rho 1]$
 - $-P_i$ call RandomCoin
 - P_S sends $\mathbf{m_i^j}$ (Phase j)
- 3. P_i call RandomCoin and, according to the received last message, output (Phase ho)

- P_S knows the entire input of the computation
- P_S sends at most one message at the beginning of each phase
- The servers only communicate with each other via broadcast
- 1. P_S sends $\mathbf{m_i^1}, \forall i$ (Phase 1)
- 2. For each $j \in [2, \rho 1]$
 - $-P_i$ call RandomCoin
 - P_S sends $\mathbf{m_i^j}$ (Phase j)
- 3. P_i call RandomCoin and, according to the received last message, output (Phase ho)

- P_S knows the entire input of the computation
- P_S sends at most one message at the beginning of each phase
- The servers only communicate with each other via broadcast
- 1. P_S sends $\mathbf{m_i^1}$, $\forall i$ (Phase 1)
- 2. For each $j \in [2, \rho 1]$
 - $-P_i$ call RandomCoin
 - $-P_S$ sends $\mathbf{m_i^j}$ (Phase j)
- 3. P_i call RandomCoin and, according to the received last message, output (Phase ho)

- P_S knows the entire input of the computation
- P_S sends at most one message at the beginning of each phase
- The servers only communicate with each other via broadcast
- 1. P_S sends $\mathbf{m_i^1}, \forall i$ (Phase 1)
- 2. For each $j \in [2, \rho 1]$
 - $-P_i$ call RandomCoin
 - P_S sends $\mathbf{m_i^j}$ (Phase j)
- 3. P_i call RandomCoin and, according to the received last message, output (Phase ρ)

Improving soundness

Let Π_f a ρ -phase MPC protocol in the client/server model with (0,n-1)-privacy and $(P_S,0)$ -robustness with robustness error δ , the protocol $\Pi_{\rho-{\sf zkIOP}}$ is a ZKIOP with soundness error

$$\frac{1/n}{} + \delta \cdot (1 - 1/n)$$

Amplify soundness: RandomCoin shared across multiple execution

Improving soundness

- Note. Oracle queries are not calls to RandomCoin
- The new soundness is

$$(1/n)^{\tau} + \delta \cdot (1 - (1/n)^{\tau})$$

Instantiating the MPC protocol

- \mathcal{R} an NP relation and C over a finite field: $C(w) = 1 \iff (x, w) \in \mathcal{R}$
- MPC protocol divided in 2 phases:
 - 1. Input/evaluation phase: P_S generates and distributes to P_i an additive sharings of the input and output of each multiplication gate. P_i evaluates the circuit <u>locally</u>.
 - 2. Multiplication check: servers check that the multiplication gates were correctly computed
- Main ideas of the test: 1. check inner-products instead of multiplications 2. use a protocol that allows to reduce the size of the inner product.

Checking multiplication [BBCGI19,BGIN19,GS20]

1. Given m multiplication triples over \mathbb{F} , $\langle z_i \rangle, \langle y_i \rangle, \langle z_i \rangle$

$$\langle \mathbf{x} \rangle = \begin{bmatrix} \langle x_1 \rangle & R \cdot \langle x_2 \rangle & R^2 \cdot \langle x_3 \rangle & \cdots & \cdots & \cdots & R^{m-1} \cdot \langle x_m \rangle \\ \langle \mathbf{y} \rangle = \begin{bmatrix} \langle y_1 \rangle & \langle y_2 \rangle & \langle y_3 \rangle & \cdots & \cdots & \langle y_{m-1} \rangle & \langle y_m \rangle \end{bmatrix} \\ \langle z \rangle = \sum_i R^{i-1} \cdot \langle z_i \rangle$$

- 2. Reduce the dimension of the inner product of a factor k
- 3. Repeat the previous step until a single triple is obtained $\langle \mathbf{x} \rangle * \langle \mathbf{y} \rangle = \langle z \rangle$

If the final triple is correct, the initial m triples are correct except with negligible probability δ_k .

The resulting schemes

• Given an NP relation \mathcal{R} , and a circuit C such that $C(w)=1\iff (x,w)\in\mathcal{R}$, and using the MPC protocol described in the previous slide we obtain an interactive ZK protocol with soundness error

$$\frac{1}{n^t} + \delta_k \cdot (1 - \frac{1}{n^t})$$

and $\lfloor \log_k(m) \rfloor + 2$.

We use standard crypto compilers to get the final schemes

Performance

(Interactive) Limbo over \mathbb{F}_2 , sec=40, $\mathbb{G}=\mathbb{F}_{2^{64}}$

	n	$t_{\mathcal{P}}$	$t_{\mathcal{V}}$	size	
$ C = 2^{20}$		(s)	(s)	(KB)	per mult
Single threaded	8	1.7	1.5	1878	$1.6\mu s$
	64	7.4	6.8	932	
$4\ threads$	8	0.9	0.8		$< 1\mu s$

(Non-interactive) Limbo over \mathbb{F}_2 , sec=128, $\mathbb{G} = \mathbb{F}_{2^{64}}$

	n	$t_{\mathcal{P}}$	$t_{\mathcal{V}}$	size	
$ C = 2^{20}$		(s)	(s)	(KB)	per mult
Single threaded	8	7	5.9	6444	$6.6 \mu s$
	64	31	29	4162	
$4 {\sf threads}$	8	4.3	2.9		$3.8 \mu s$

Optimizations

Beyond the gate-by-gate approach

Proving matrix multiplication $M \times M$ over \mathbb{F}_2

M = 400	$t_{\mathcal{P}}$ (s)	$t_{\mathcal{V}}$ (s)	size (KB)	per mult
Single threaded	62	57	834	$0.969 \mu s$
$4 \ {\sf threads}$	38	32		$0.593 \mu s$

Optmizations

 \star AES: Computation over \mathbb{F}_{2^8}

- Interactive: 170ns (prover computation 1.09ms)

- Non-interactive: 515ns (prover computation 3.3 ms, n=16) or 375ns (n=8)

* Comparison with other schemes (security L1)

	$t_{\mathcal{S}}$	$t_{\mathcal{V}}$	size
Scheme	(ms)	(ms)	(bytes)
Picnic	5.33	4.03	12466
Banquet	6.34	4.84	19776
SPHINCS + fast	14.42	1.74	16976
SPHINCS + -small	239.34	0.73	8080
Limbo-Sign 8	2.4	1.9	21369
Limbo-Sign 16	3.3	3.2	18626
Limbo-Sign 57	8.5	8.5	15728

Next steps

Research topic :

- Different MPC protocols
- Tighter soundness analysis
- Generalization to rings
- Different verification checks and gadgets
- Multi-instance case

Implementation:

- Larger fields
- Streaming