Conjetura de Goldbach y Números Narcisistas

Facultad de Ciencias, Universidad Nacional Autónoma de México Susana Regalado & Katia Rodríguez

12 de febrero de 2021

Resumen

Comprobar si para un número es específico se puede aplicar la Conjetura de Goldbach dando las parejas de números primos, además de saber si ese número es un Número Narcisista.

1 Introducción

Desde la antiguedad han existido todo tipo de preguntas sobre los números, sobre sus propiedades, sus combinatorias, sus aplicaciones. Conforme el tiempo avanzaba las matematicas tambien; surgiendo así una nueva rama conocida como **teoría de números** la cual se encarga de estudiar las propiedades de estos, principalmente sobre los numeros enteros.

Dos temas muy interesantes en esta rama, la conjetura de Goldbach y los números narcisistas o comunmente conocidos como números de Armstrong.

1.1 Conjetura de Goldbach

La conjetura de Goldbach fue propuesta por Christian Goldbach (1690-1764) en una carta a Euler del 7 de junio de 1742, la conjetura plantea que todo número par mayor a 2 se puede representar como suma de dos números primos.

Sin embargo, Euler, no logró demostrar ni refutar dicha conjetura, fue entonces cuando se formó la conjetura débil (ésta conjetura sí ha sido demostrada), nos plantea que **todo** número impar mayor que 5 se puede expresar como la suma de 3 números primos. En la actualidad y gracias al desarrollo tecnológico se ha podido comprobar con la ayuda de las computadoras que la conjetura es cierta para todo número par menor que 10^{18} .

Algunos ejemplos de números que cumplen ésta conjetura son:

$$1. \ 4 = 2 + 2$$

$$2.6 = 3 + 3$$

$$3. 10 = 3 + 7$$

$$4. \ 20 = 7 + 13$$

$$5. 30 = 7 + 23$$

$$6. 100 = 3 + 97$$

$$7. \ 1000 = 3 + 997$$

8.
$$1000000 = 17 + 999983$$

1.2 Números narcisistas

A estos números se les atribuyó su nombre gracias a la analogía con la leyenda de Narciso, quien según la mitología griega, quedó enamorado de su propia imagen; en el concepto de números narcisistas la imagen reflejada sería la suma de las potencias de sus cifras, que al ser el propio número, sería como el enamoramiento de Narciso de su propia imagen reflejada. Estos números fueron definidos por Joseph Madachy en su libro Mathematics on Vacation (Nueva York, Scriber, 1966, pág. 164), según la definición: los números narcisistas son números que son iguales a la suma de las potencias de sus cifras elevadas a la cantidad de cifras que tiene el número.

n	Números Narcisistas (base-10 ")
1	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
3	153, 370, 371, 407
4	1634, 8208, 9474
5	54748, 92727, 93084
6	548834
7	1741725, 4210818, 9800817, 9926315
8	24678050, 24678051, 88593477
9	146511208, 472335975, 534494836, 912985153
10	4679307774
11	32164049650, 32164049651, 40028394225, 42678290603, 44708635679, 49388550606, 82693916578, 94204591914
14	28116440335967
16	4338281769391370, 4338281769391371
17	21897142587612075, 35641594208964132, 35875699062250035
19	1517841543307505039, 3289582984443187032, 4498128791164624869, 4929273885928088826
20	63105425988599693916
21	128468643043731391252, 449177399146038697307
23	21887696841122916288858, 27879694893054074471405, 27907865009977052567814,
	28361281321319229463398, 35452590104031691935943
24	174088005938065293023722, 188451485447897896036875,
	239313664430041569350093
	1550475334214501539088894, 1553242162893771850669378,
25	3706907995955475988644380, 3706907995955475988644381, 4422095118095899619457938
	121204998563613372405438066, 121270696006801314328439376,
27	128851796696487777842012787, 174650464499531377631639254, 177265453171792792366489765
29	14607640612971980372614873089, 19008174136254279995012734740,
	19008174136254279995012734741, 23866716435523975980390369295
31	1145037275765491025924292050346, 1927890457142960697580636236639,
	2309092682616190307509695338915
32	17333509997782249308725103962772
33	186709961001538790100634132976990, 186709961001538790100634132976991
34	1122763285329372541592822900204593
35	12639369517103790328947807201478392, 12679937780272278566303885594196922
37	1219167219625434121569735803609966019
38	12815792078366059955099770545296129367
39	115132219018763992565095597973971522400,
29	115132219018763992565095597973971522401

Figura 1.1: En ésta tabla se muestra una lista con todos los números narcisistas.

Por ejemplo, el número 153 es un número narcisita ya que $153 = 1^3 + 5^3 + 3^3$, así tambien el número 370 ya que $370 = 3^3 + 7^3 + 0^3$. En total hay 88 números narcisistas (en 1985

D. Winter lo probó), el mayor de estos números tiene 39 cifras, estos números solo existen para 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 37, 38, y 39, además de que solo existe un número finito de números narcisistas. Así como se muestra en la Figura 1.1.

Para poder probarlo suponemos que tomamos un número con n cifras, ese número siendo mayor que 10^n -1 y menor que 10^n . Y por otro lado, la suma de las potencias de sus cifras elevadas a la cantidad de cifras del número van a alcanzar como mucho el valor de $9^n + \ldots + 9^n$ (sumado n veces) $= n \cdot 9^n$.

Curiosamente resulta que para n > 60, se tiene que $n \cdot 9^n$ n-1, así podemos saber que la suma de las potencias de las cifras del número elevadas a la cantidad de cifras, nunca podrán alcanzar al número. Es decir, no existen números narcisistas en base 10 con más de 60 cifras.

2 Desarrollo del código

En este proyecto decidimos comprobar mediante un código la Conjetura de Goldbach, asi como los números narcisistas. Con el código sabremos si un número proporcionado por el usuario cumple con la conjetura de Goldbach que plantea que todo número par mayor a 2 se puede representar como suma de dos números primos. Además podremos revisar si el mismo número proporcionado por el usuario es un número narcicista, es decir, si el número es igual a la suma de las potencias de sus cifras elevadas a la cantidad de cifras que tiene el número.

Así mismo iremos explicando la realización y funcionamiento del código en base a la Conjetura de Goldbach, asi como la aplicación de la definición de los Números Narcisistas.

Primero, para comprobar la conjetura de Goldbach debemos definir una función, que como se ve en la Figura 2.1, es para definir a un número primo (mayor a 2) ocupamos un ciclo while.

```
1  def is_prime(n):
2     i = 2
3     isprime = True
4
5     while i < n:
6         if n % i == 0:
7         isprime = False
         break
9         else:
10         i = i + 1
11         return isprime
12
13
14     i = 2</pre>
```

Figura 2.1: Código: Definimos en una función qué es un número primo.

El usuario deberá ingresar un número mayor que dos. Así como se muestra en la Figura 2.2

```
num = int(input('Ingrese un número par mayor que 2: '))
```

Figura 2.2: Código: Número ingresado.

En la Figura 2.3 definimos un programa con ayuda de un ciclo for para encontrar la pareja de números primos que sumados nos dan como resultado un número par mayor a dos, imprimiendo las parejas posibles. Ademas de agregar una variable por si hubiera un número par que no cumpla la condición; si es un número no par, es decir impar, entonces se imprimirá que no es un número valido.

```
if num % 2 == 0 and num > 2:
    encontrado = False
    for a in range(2, num):
        if is_prime(a):
        b = num - a
        if is_prime(b):
        encontrado = True
        if a <= b:
        print('Primos', a, b)
    if not encontrado:
        print('No se ha encontrado nunguna pareja')
    else:
        print('No es un número válido ')</pre>
```

Figura 2.3: Código: Comprobar conjetura de Goldbach.

Ahora bien, como se muestra en la Figura 2.4 para revisar si el número ingresado es o no un Número Narcisista debemos de revisar cuántos digitos son del número ingresado para calcular la suma del cubo de cada dígito del número, para esto debe ser el número mayor a cero y de base diez. Imprimirá si es o no un Número Narcisista.

Figura 2.4: Código: Comprobar si es o no un Número Narcisista.

3 Resultados

El proyecto se realizó exitosamente, logramos realizar un código que uniera ambos problemas sobre teoría de números, cuando el usuario introduce un número al programa éste arroja la pareja de números primos si es que cumple la Conjetura de Goldbach y nos dice si es o no un Número Narcisista.

```
Este programa revisará si el número ingresado en un Número
de Armstrong y si cumple con la Conjetura de Goldbach
Ingrese un número par mayor que 2: 8
Primos 3 5
8 es un número de Armstrong
```

Figura 3.1: Compilado: Cumple la conjetura de Goldbach y es un Número Narcisista.

```
Ingrese un número par mayor que 2: 67
No es un número válido
67 no es un número de Armstrong
```

Figura 3.2: Compilado: No cumple la conjetura de Goldbach y no es un Número Narcisista.

Referencias

- [1] Ibáñez, R. (2013). "La conjetura de Goldbach". Recuperado de: https://culturacientifica.com/2013/06/26/laconjetura-de-goldbach/
- [2] Morales, M. (2009). "La conjetura de Goldbach". Recuperado de: https://www.gaussianos.com/laconjetura-de-goldbach/
- [3] Cilleruelo, J. (s.a). "La conjetura de Goldbach". La Gaceta: El diablo de los números. Departamento Matemáticas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid. PDF.
- [4] Weisstein, E. (s.a) "Número narcisista". Recuperado de MathWorld: https://mathworld.wolfram.com/NarcissisticNumber.html
- [5] Programa Spyder para escribir y compilar el código.