

Univ. of York, June 9, 2014

Virtual Analog Synthesis and Audio Effects

Vesa Välimäki Aalto University, Dept. Signal Processing and Acoustics (Espoo, FINLAND)

Outline

Signal processing techniques for modeling analog audio systems used in music technology

- Introduction
- 1. Reduction of digital artifacts
- · 2. Introducing analog 'feel'
- 3. Emulation of analog systems
- · Case studies:

Virtual analog oscillators and filters, guitar pickups, spring reverb, ring modulator, carbon mic, antiquing

Introduction

- Virtual analog modeling = Imitate analog systems with digital ones
- Digitization, a current megatrend of turning everything digital
 - ✓ CD, MP3, DAFX, digital music studios, laptop music...
- Analog music technology is getting old and expensive
 - ✓ Software emulation is cheaper and nicer, if it sounds good...
- Examples: virtual analog filters and synthesizers, electromechanical reverb emulations, guitar amplifier models, and virtual musical instruments

© 2013-2014 Vesa Välimäk

Three Different Goals

- 1. Reduce digital artifacts
- 2. Add analog 'feel'
- 3. Emulate

Ref: Julian Parker, PhD thesis, 2013

© 2013-2014 Vesa Välimäki

1. Reduce Digital Artifacts

- · Digital signal processing has limits and undesirable side-effects
 - Quantization noise
 - Discrete time (unit delays)
 - Aliasing, imaging (periodic frequency domain)
 - Frequency warping (caused by, e.g., bilinear transformation)
 - Instabilities under coefficient modulation (time-variance)
- · Solutions take us closer to analog
 - ❖ Use more bits (24 bits) or floating-point numbers
 - Oversampling
 - Interpolated delay lines
 - Antialiasing techniques

© 2013-2014 Vesa Välimäki

Digital Flanging Effect

- The delay-line length must vary smoothly to avoid clicks
 ✓ Interpolation (fractional delay filter)
- Otherwise "zipper noise" is produced

© 2013-2014 Vesa Välimäki

Flanging Effect with Fractional Delay

• Use FIR or allpass fractional delay filter to vary delay smoothly (Laakso *et al.* 1996)

© 2013-2014 Vesa Välimäki

7

Digital Subtractive Synthesis

- Emulation of analog synthesizers of the 1970s
- One or more oscillators, e.g., an octave apart or detuned
- · Second- or fourth-order resonant lowpass filter
- At least two envelope generators (ADSR)

Oscillators in Subtractive Synthesis

- Usually periodic waveforms
 - All harmonics or only odd harmonics of the fundamental
- Digital implementation must suppress aliasing

S-89.3540 Audio Signal Processing **Lecture #4: Digital Sound Synthesis**

No Aliasing

- Additive synthesis of the sawtooth signal
- Contains harmonics below the Nyquist limit only

Video by Andreas Franck, 2012

Differentiated Parabolic Wave Algorithm

- A method to produce a sawtooth wave with reduced aliasing (Välimäki, 2005)
 - 2 parameters: fundamental frequency f and sampling frequency f_s

Aalto University
School of Electrical
Engineering

Compare Sawtooth Wave Algorithms

- A scale at high fundamental frequencies
 - Trivial sawtooth (modulo counter signal)
 - DPW sawtooth
 - Ideal sawtooth (additive synthesis)

 $f_{\rm s} = 44.1 \; {\rm kHz}$

© 2013-2014 Vesa Välimäki

4.5

Higher-order DPW Oscillators

 Trivial sawtooth can be integrated multiple times (Välimäki et al., 2010)

Polynomial	Polynomial
order	function
N = 1	x
N = 2	x^2
N = 3	x^3-x
N = 4	$x^4 - 2x^2$
N = 5	$x^5 - 10x^3/3 + 7x/3$
N = 6	$x^6 - 5x^4 + 7x^2$

The polynomial signal must be **differenced** N-1 times and **scaled** to get the sawtooth wave

© 2013-2014 Vesa Välimäki

Efficient Polynomial Transition Region Algorithm (EPTR)

- Ambrits and Bank (Budapest Univ. Tech. & Econ.) proposed an improvement (SMC-2013, Aug. 2013)
 - ✓ Eliminates the 0.5-sample delay and the constant offset
 - ✓ Reduces the computational load by 30% (first-order polyn. case)
 - ✓ Extends the PTR method to asymmetric triangle waveform synthesis

© 2013-2014 Vesa Välimäki

21

BLEP Method

- BLEP = Bandlimited step function (Brandt, ICMC'01), which is obtained by integrating a sinc function
 - Must be oversampled and stored in a table

BLEP residual samples are added around every discontinuity

Aalto University
School of Electrica
Engineering

© 2013-2014 Vesa Välimäki

BLEP Method Example

- A shifted and sampled BLEP residual is added onto each discontinuity
- The shift is the same as the fractional delay of the step
- The BLEP residual is inverted for downward steps
- The ideal BLEP function is the sine integral (Matlab function sinint)

(Välimäki et al., 2012)

© 2013-2014 Vesa Välimäki

Polynomial BLEP Method (PolyBLEP)

The BLEP residual table can be replaced with a polynomial approximation

(Välimäki et al., 2012)

Lagrange polynomials can be integrated and used for approximating the sinc function 0.5

Low-order cases are of interest:

N = 1 (Välimäki and Huovilainen, 2007)

N = 2 (Välimäki et al., 2012)

N = 3 (Välimäki *et al.*, 2012)

Lagrange pol. -2-1 0 1 2

(g)

Time (samples)

(b) 0.5 0 -2-1 0 1 2

-2-1 0 1 2

0.5

Integrated Lagr.

0.5 -2-10 1 (h)

-0.5

-2-1 0 1

Time (samples)

Time (samples)

Residual

-2-1 0 1 2

(c)

0 -2 - 1

0.5

0

Aalto University School of Electri Engineering

Goals

- 1. Reduce digital artifacts
- 2. Add analog 'feel'
- 3. Emulate

© 2013-2014 Vesa Välimäki

0.5

2. Digital Versions of Analog 'Feel'

- · Digital systems are too good
 - ➤ Analog systems are noisy and change when they warm up, produce distortion when input amplitude gets larger, ...
- Solutions
 - √ Simulated parameter drift
 - ✓ Nonlinearities (Rossum, ICMC-1992, ...)
 - ✓ Additional noises
 - ✓ Imperfect delays (Raffel & Smith, DAFX-2010)

© 2013-2014 Vesa Välimäki

Biquad Filter with a Nonlinearity

• Dave Rossum III proposed to insert a saturating nonlinearity inside a 2nd-order IIR filter (Rossum, ICMC 1992)

Figure: D. Rossum, Proc. ICMC 1992.

© 2013 Vesa Välimäki

2-

Audio Antiquing*

- Render a new recording to sound aged
 - For example, imitate the lo-fi sound of LP, gramophone, or phonograph recordings

- Simulate degradations with signal processing techniques (González, thesis 2007; Välimäki et al., JAES 2008)
 - Local degradations: clicks and thumps (low-frequency pulses)
 - ❖ Global degradations: hiss, wow, distortion, limited dynamic range, frequency band limitations, resonances
 - * Thanks to Perry Cook!

© 2013-2014 Vesa Välimäki

Audio Antiquing Example #1: Phonograph

- 1. CD (original)
- 2. Phonograph cylinder (new best quality)
- 3. Phonograph cylinder (worn)

© 2013-2014 Vesa Välimäki

20

Audio Antiquing Example #2: Vinyl LP

- 1. CD (original)
- 2. LP (new best quality)
- 3. LP (worn)

© 2013-2014 Vesa Välimäki

Vinyl LP Simulation Algorithm

- · Adjust parameters or skip processing steps for better quality
- For thumps and tracking errors, time of revolution: 60/33 sec = 1.8 sec

© 2013-2014 Vesa Välimäki

- 1. Reduce digital artifacts
- 2. Add analog 'feel'

Aalto University
School of Electrical
Engineering

© 2013-2014 Vesa Välimäki

3:

Black and White-Box Models

- Black-box models attempt to imitate the analog system based on its input-output relationship
- Swept-sine methods (Farina, 2000; Novák et al., 2010; Pakarinen, 2010)
- Volterra filters (for weakly nonlinear systems) (Hélie, DAFX 2006, 2010)
- Grey-box models use some information about the system structure, then use black-box techniques
- White-box methods are physical models of the circuitry
 - ✓ Also antiquing can be based on physical modeling

© 2013-2014 Vesa Välimäki

Moog Ladder Filter Bob Moog introduced an analog resonant lowpass filter design, which became famous Four lowpass transistor ladder stages and a differential pair Aalto University School of Electrical Engineering School of Electrical Engineering © 2013-2014 Vesa Välimäki

Magnetic Induction in Guitar Pickup

- String proximity increases the magnetic flux
- The change causes an alternating current in the winding

Pickup Nonlinearity

- Sensitivity is different for the vertical and horizontal polarizations
- · 2-D FEM simulations using Vizimag

Ref. Paiva et al., JAES, 2012.

Aalto University
School of Electrical
Engineering

Pickup Nonlinearity

- String displacement in the vertical direction leads to harmonic asymmetric distortion (all harmonics)
- b) String displacement in the horizontal direction leads to harmonic symmetric distortion (even harmonics)

Ref. Paiva et al., JAES, 2012.

© 2013-2014 Vesa Välii

Spring Reverberation

Spring reverberators are an early form of artificial reverberation

- Reminiscent of room reverberation, but with distinctly different qualities
- Recent research characterizes the special sound of the spring reverberator, and models it digitally (Abel, Bilbao, Parker, Välimäki...)

Aalto University
School of Electrical
Engineering

Parametric Spring Reverberation Model

- Many (e.g. 100) allpass filters produce a chirp-like response
- A feedback delay loop produces a sequence of chirps
- Random modulation of delay-line length introduces smearing

© 2013-2014 Vesa Välimäki

Interpolated Stretched Allpass Filter

Carbon Microphone Modeling

 The sandwich structure is used (Välimäki et al., DAFX book 2e, 2011)

© 2013-2014 Vesa Välimäki

Carbon Microphone Modeling

- Pre-filter consists of 2 or 3 EQ filters
- Nonlinearity is a polynomial waveshaper (order 2...5)

Aalto University
School of Electrical
Engineering

Ring Modulator

 BBC Research implemented Parker's ring modulator: http://webaudio.prototyping.bbc.co.uk/ring-modulator/

© 2013-2014 Vesa Välimäki

Simulation of Analog Synth Waveforms

- · For example, the Moog Voyager analog music synthesizer
- Waveform can be imitated using phase distortion synthesis or by filtering a sawtooth oscillator signal
- Alternatively, use a wave digital filter model of the osc. circuit (De Sanctis & Sarti, IEEE ASL 2010)

Ref. Pekonen, Lazzarini, Timoney, Kleimola, Välimäki, JASP 2011

© 2013-2014 Vesa Välimäk

55

Novel Audio DSP Algorithms Inspired by Virtual Analog Research

- · Same tools, different uses
- The integration-differentiation idea (DPW) for wavetable and sampling synthesis (Geiger, DAFX-06; Franck & Välimäki, DAFX-12; JAES 2013)
- Linear dynamic range reduction with dispersive allpass filters (Parker & Välimäki, IEEE SPL, 2013)

© 2013-2014 Vesa Välimäki

Integrated Wavetable and Sampling Synthesis

- The integration-differentiation idea helps pitch-shifting in wavetable and sampling synthesis (Geiger, DAFX-06; Franck & Välimäki, DAFX-12; JAES 2013)
- Transient problems in the time-varying case
- · How about real-time implementation?

© 2013-2014 Vesa Välimäki

67

Dynamic Range Reduction using an Allpass Filter Chain

- Dispersive allpass filters, like in spring reverb models (Parker & Välimäki, IEEE SPL, 2013)
- Use golden-ratio coefficients for the allpass filters ($g = \pm 0.618$)
- Delay-line lengths of 3 AP filters are adjusted by trial and error

Aalto University
School of Electrical
Engineering

© 2013-2014 Vesa Välimäki

Dynamic Range Reduction using an Allpass Filter Chain • About 2.5 dB (even 5 dB) reduction in amplitude Input Output Supply Supply Sehool of Electrical Engineering Supply Supp

Future Work

- Automatic modeling of nonlinear analog audio systems
- Alias reduction in nonlinear audio processing systems
- Subjective evaluation of virtual analog models how to compare?
- Modeling of all electronic musical instruments and devices

© 2013-2014 Vesa Välimäki

Conclusion

- Virtual analog modeling provides software versions of analog hardware
 - Sound quality is improving
- Many successful examples from the past 15 years, e.g. virtual analog synths, virtual effects processing, guitar amp models
- Create also something new: novel signal processing methods, new effects?

© 2013-2014 Vesa Välimäki

0.4

Thanks to All My Collaborators in Virtual Analog Research

- Julian Parker
- Sami Oksanen
- Stefano D'Angelo
- Rafael de Paiva
- Jari Kleimola
- Jussi Pekonen
- Heidi-Maria Lehtonen
- Ossi Kimmelma
- Jukka Parviainen
- Sira González
- Antti Huovilainen

- Victor Lazzarini (NUIM, Ireland)
- Joe Timoney (NUIM, Ireland)
- Jonathan Abel (CCRMA, USA)
- Julius O. Smith (CCRMA, USA)
- Juhan Nam (CCRMA)
- Leonardo Gabrielli (Università Politecnica delle Marche, Ancona, Italy)
- Andreas Franck (Fraunhofer IDMT, Germany)

© 2013-2014 Vesa Välimäki

Recommended Reading

- S. Bilbao, Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics. Wiley, 2009.
- J. Pakarinen and D.T. Yeh, "A review of digital techniques for modeling vacuum-tube guitar amplifiers," Computer Music J., 33(2), pp. 85-100, 2009.
- J. O. Smith, Physical Audio Signal Processing, Dec. 2010.
- T. Stilson, "Efficiently-Variable Non-Oversampled Algorithms in Virtual Analog Music Synthesis—A Root-Locus Perspective." Ph.D. dissertation, Stanford Univ., June 2006.
- V. Välimäki, S. Bilbao, J. O. Smith, J. S. Abel, J. Pakarinen & D. P. Berners, "Virtual analog effects," in U. Zölzer (ed.), DAFX: Digital Audio Effects, 2nd Ed. Wiley, 2011.

© 2013-2014 Vesa Välimäki

References

- D. Ambrits and B. Bank, "Improved polynomial transition regions algorithm for alias-suppressed signal synthesis," in *Proc. Sound and Music Computing Conf.*, Stockholm, Sweden, 2013.

 S. Bilbao and J. Parker, "A virtual model of spring reverberation," *IEEE Transactions on Audio*,
- Speech, and Language Processing, vol. 18, no. 4, pp. 799-808, May 2010.
- S. Bilbao and J. Parker, "Perceptual and numerical aspects of spring reverberation modeling," in Proc. Int. Symp. Music Acoust., Sydney, Australia, Aug. 2010.
- E. Brandt, "Hard sync without aliasing," in Proc. Int. Comput. Music Conf., Havana, Cuba, 2001, pp. 365-368.
- S. D'Angelo & V. Välimäki, "An improved virtual analog model of the Moog ladder filter," in Proc. IEEE ICASSP-13, pp. 729-733, Vancouver, Canada, May 2013.
- A. Farina, "Simultaneous measurement of impulse response and distortion with a swept-sine technique," in Proc. AES 108th Conv., Paris, France, 2000.
- A. Franck & V. Välimäki, "Higher-order integrated wavetable synthesis," in *Proc. Int. Conf. Digital* Audio Effects (DAFx-12), pp. 245-252, York, UK, 2012. Extended version: J. Audio Eng. Soc., 2013.
- G. Geiger, "Table lookup oscillators using generic integrated wavetables," in Proc. 9th Int. Conf. Digital Audio Effects (DAFx-06), Montreal, Canada, Sept. 2006, pp. 169-172.
- T. Hélie, "Volterra series and state transformation for real-time simulations of audio circuits including saturations: Application to the Moog ladder filter," IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 4, pp. 747–759, May 2010.

References (Page 2)

- A. Huovilainen, "Nonlinear Digital Implementation of the Moog Ladder Filter." in *Proc. International Conference on Digital Audio Effects*, Naples, Italy, 2004, pp. 61–64.
- J. Kleimola and V. Välimäki, "Reducing aliasing from synthetic audio signals using polynomial transition regions," *IEEE Signal Processing Letters*, vol. 19, no. 2, pp. 67–70, Feb. 2012.
- T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine, "Splitting the unit delay—Tools for fractional delay filter design," *IEEE Signal Processing Magazine*, vol. 13, no. 1, pp. 30–60, Jan. 1996.
- A. Novák, L. Simon, and P. Lotton, "Analysis, Synthesis, and Classification of Nonlinear Systems Using Synchronized Swept-Sine Method for Audio Effects," EURASIP J. Advances in Signal Processing, vol. 2010, 2010.
- S. Oksanna, V. Välimäki, "Modeling of the carbon microphone nonlinearity for a vintage telephone sound," in *Proc. DAFx-11*, pp. 27–30, Paris, France, Sept. 2011.
- R. C. D. Paiva, J. Pakarinen & V. Välimäki, "Acoustics and modeling of pickups," J. Audio Eng. Soc., vol. 60, no. 10, pp. 768–782, Oct. 2012.
- J. Pakarinen, "Distortion Analysis Toolkit A Software Tool for Easy Analysis of Nonlinear Audio Systems," *EURASIP Journal on Advances in Signal Processing*, vol. 2010, 2010,
- J. Parker & V. Välimäki, "Linear dynamic range reduction of musical audio using an allpass filter chain," *IEEE Signal Processing Letters*, vol. 20, no. 7, July 2013.
- J. Pekonen, V. Lazzarini, J. Timoney, J. Kleimola & V. Välimäki, "Discrete-time modelling of the Moog sawtooth oscillator waveform," *EURASIP J. Advances in Signal Processing*, 15 pages, 2011.

© 2013-2014 Vesa

References (Page 3)

- C. Raffel and J. Smith, "Practical modeling of bucket-brigade device circuits," in *Proc. DAFX-10*, Graz, Austria, Sept. 2010
 D. Rossum, "Making digital filters sound analog," in *Proc. International Computer Music*
- D. Rossum, "Making digital filters sound analog," in Proc. International Computer Music Conference, San Jose, CA, pp. 30–33.
- J. O. Smith, "Signal Processing Libraries for Faust," in *Proc. Linux Audio Conf.*, CA, April 2012.
- V. Välimäki, "Discrete-time synthesis of the sawtooth waveform with reduced aliasing," *IEEE Signal Processing Letters*, vol. 12, no. 3, pp. 214–217, March 2005.
 V. Välimäki & A. Huovilainen, "Oscillator and filter algorithms for virtual analog synthesis,"
- V. Välimäki & A. Huovilainen, "Oscillator and filter algorithms for virtual analog synthesis,"
 Computer Music J., vol. 30, no. 2, pp. 19-31, summer 2006.
- V. Välimäki, S. González, O. Kimmelma & J. Parviainen, "Digital audio antiquing—Signal processing methods for imitating the sound quality of historical recordings," *J. Audio Eng. Soc*, vol. 56, pp. 115–139, Mar. 2008.
- V. Välimäki, J. Parker & J. S. Abel, "Parametric spring reverberation effect," *J. Audio Eng. Soc.*, vol. 58, no. 7/8, pp. 547–562, July/Aug. 2010.
- V. Välimäki, J. D. Parker, L. Savioja, J. O. Smith & J. S. Abel, "Fifty years of artificial reverberation," *IEEE Trans. Audio, Speech, and Lang. Process.*, vol. 20, pp. 1421–1448, July 2012.
 V. Välimäki, J. Pekonen & J. Nam, "Perceptually informed synthesis of bandlimited classical
- V. Välimäki, J. Pekonen & J. Nam, "Perceptually informed synthesis of bandlimited classical waveforms using integrated polynomial interpolation," *J. Acoustical Society of America*, vol. 131, no. 1, pt. 2, pp. 974–986, Jan. 2012.

© 2013-2014 Vesa Välimäki