Отчет о выполнении лабораторной работы 2.2/2.3 "Изучение спектров атома водорода и молекулы йода"

Калашников Михаил, Б03-202

Цель работы: Исследовать спектральные закономерности в оптическом спектре водорода и спектр поглощения паров йода в видимой области.

В работе используются:

- стеклянно-призменный монохроматор-спектрометр УМ-2;
- собирающая линза;
- неоновая лампа;
- ртутная лампа ДРШ;
- водородная лампа;
- лампа накаливания К12;
- кювета с йодом;

1. Теоретические сведения

2. Экспериментальная установка

3. Проведение эксперимента

3.1. Подготовка установки к работе

- 1. Ознакомимся с устройством и принципом работы спектрометра
- 2. Включим неоновую лампу. Отцентрируем оптическую систему
- 3. Расположим конденсор так, чтобы получить резкое изображение источника в центре колпачка, прикрывающего входную щель. Закрепим рейтеры.
- 4. Вращая глазную линзу окуляра, настроимся на рекое изображение кончика указателя.
- 5. Вращая барабан, подведем указатель к одной из ярких линий неона. Перемещая коллиматор, получим четкое изображение линии.
- 6. Установим ширину входной щели так, чтобы получить наиболее резкое изображение спектральных линий.

3.2. Градуировка спектрометра

- 1. Откалибруем спектрометр по спектру неона при помощи таблицы с расположение спектральных линий.
- 2. Проделаем то же самое по спектру ртути с помощью ртутной лампы.

3.3. Спектр водорода

- 1. Установим на скамью водородную лампу и включим ее в сеть.
- 2. Измерим положение линий H_{α} , H_{β} , H_{γ} , H_{δ} .

3.4. Спектр йода

- 1. Установим на лампу накаливания K12 и кювету с йодом. Отцентрируем полученное изображение на колпачке входной щели.
- 2. Настроим установку так, чтобы на ярком фоне непрерывного спектра наблюдались темные полосы поглощения.
- 3. Определим деления барабана монохроматора, соответствующие линиям: $\nu_{1,0}$ самой длинноволновой видимой линии поглощения, $\nu_{1,5}$ шестой по счету длинноволновой видимой линии поглощения и $\nu_{\rm rp}$ границе схождения спектра.

4. Обработка результатов

1.