Supporting Training of Expertise with Wearable Technologies: The WEKIT Reference Framework

Bibeg Limbu^a, Mikhail Fominykh^b, Roland Klemke^a, Marcus Specht^a, Fridolin Wild^c

^a Open University of Netherlands, Netherlands
 ^b Europlan UK Ltd, London, UK
 ^c Oxford Brookes University, UK

Abstract. In this chapter, we present a conceptual reference framework for designing augmented reality applications for supporting training. The framework leverages the capabilities of modern augmented reality and wearable technology for capturing the expert's performance in order to train expertise. It has been designed in the context of WEKIT project which intends to deliver a novel technological platform for industrial training. The framework identifies the state-of-art augmented reality training methods which we term as "transfer mechanism" from an extensive literature review. Transfer mechanisms exploit the educational affordances of augmented reality and wearable technology to capture the expert performance and train the novice. The framework itself is based upon Merrienboer's 4CID model which is suitable for training complex skills. The 4CID model encapsulates major elements of apprenticeship models which is a primary method of training in industries. The framework itself complements the 4CID model with expert performance data captured with help of wearable technology which is then, exploited in the model to provide a novel training approach for efficiently and effectively master the skills required. In this chapter, we will give a brief overview of our current progress in developing this framework.

1 Introduction

"In 2016, keeping the skills of your workforce up to date in this fast-changing world will be more important than ever. Harnessing this peer to peer learning can be an efficient and cost effective way of increasing skills, and the knowledge transferred is likely to be relevant because it is delivered by people who understand your organization's culture." [51]

In a 2016 PwC global survey of more than 1,000 CEOs from all major industries, 61 percent of global chief executives and 78 percent of U.S. respondents said that they were somewhat or very concerned about the speed of technological change in their industry. This creates a challenge for the companies to keep the work force up to date with the new knowledge and skills that are ever increasing. Additionally, the experienced employee retires or leaves the company taking along the vast experience that he/she has accumulated overtime. They are then replaced by the new inexperienced employee who needs to be trained, which requires time and investment.

WEKIT (http://wekit.eu/) which stands for: (Wearable Experience for Knowledge Intensive Training), is a European project supported under Horizon 2020 to develop and test within three years a novel way of industrial training enabled by smart Wearable Technology. In WEKIT, thirteen partners representing academia and industry from six countries in Europe are striving actively to meet the highest degree of standards in the delivery. WEKIT is making significant progress towards meeting the demands of industries by exploring and implementing the best of pedagogical and technological opportunities.

The framework identifies two fold approaches to address the above mentioned industrial issue. 1.) To capture the expert's performance by means of Wearable Technology (WT) and sensors 2.) To foster efficient training with the help of expert's performance data using Augmented Reality (AR) and WT. Capturing expert's performance should take into consideration what methodologies may be used to capture certain aspects of the expert in a meaningful manner such that they are useful and shareable to the new trainees. Using AR and WT, the trainees can "wear" the expert's performance and track the differences between their own performance and that of an expert. Therefore, the framework poist great potential for efficient training of skills with the help of captured expert's performance to provide new novel approaches to technology assisted apprenticeship.

2 Concept space: supporting training of expertise with wearable technologies

Expertise may be defined as the knowledge and skills behind an expert performance. In [21] expert performance is defined as consistently superior performance on a specified set of representative tasks for the domain that can be administered to any subject. Representative tasks are structured and managed drills where essential attributes of expert performance naturally occur because of which the consistency of the performance can be replicated and measured. In [19] representative tasks are suggested as an appropriate methodology to correctly evaluate an expert performance under standardized conditions in a controlled setting, such as a laboratory. Also, representative tasks engage the same set of knowledge and skills that are used in real world tasks within a domain ensuring that the expert performance is accurately captured. When the expert performance can be reliably reproduced in a test situation such as the representative task, this performance can then be analyzed to assess its mediating acquisition mechanisms.

The basic underlying of attaining expertise is to collect experience. However, the notion of expertise based on the length of experience in a domain (over ten years), which assumed that the novice progressed orderly to an expert under instruction, training and experience [38], has been observed to be only partially true. The length of experience has been frequently found to be a weak correlate of job performance beyond the first two years [52]. Most novices make large gains at the beginning but fail to push further. Only individuals that indulge in deliberate practice achieve the superior expertise [19]. The notion of deliberate practice dictates that simply executing the skill repeatedly does not account for improved performance. In order to develop expertise, the executions of skills should be aimed at improvement of that particular skill by collecting new experience in every execution.

In [19], Ericson stressed the importance of a mentor for deliberate practice, stating that the apprentice does not engage in deliberate practice spontaneously. An expert mentor would design practice sessions that improve the apprentice's performance gradually which complies with the definition of deliberate practice. By doing so, the mentor "shares" his experience to the apprentice in an explicit manner, ensuring that the apprentice achieves the desired level of performance efficiently. For example, [84] found that throughout the history of the Olympic Games, the best performance for all events has improved—in some cases by more than 50%. This is because the expert's knowledge and skills have been organized in such a way that facilitates efficient attainment of the expertise [19].

In conclusion, an expert is indispensable to the proper efficient training of the trainee. Therefore, the framework, taking the importance of expert into consideration, adapts two fold approach of: (1). Capturing the expert performance (2). Supporting training with the help of expert performance.

3 Background

Experience is the knowledge gained through involvement in or exposure to an event [23]. In vocational trainings, the expert "shares his experience" by demonstrating and mentoring the trainee through hands-on experience rather than from written manuals or textbooks. However, [94] stated that experience may be shared by sharing the environment in which the expert performed the task. Sharing environment involved sharing not only the workplace but also sharing the environmental stimulus perceived by the expert (see [79]). Therefore, in order to share the experience, the expert must not only demonstrate his performance and mentor the trainee but should also be able to share the environmental stimulus. AR and WT have the huge potential to capture and support the re-enactment of the expert's performance and the environment in which he/she performs. The framework leverages on this potential of the technology to envision new training approaches by sharing experience of the expert to the trainee. In the following, we provide review of AR & WT training approaches based on the frameworks two fold approach.

3.1 Capture of Expert Performance

Numerous studies have presented the potential of sensor-based technology and WT [81] for learning. Similarly, [4]) also did a review on affordances of WT and observed that the WT posit new possibilities for supporting trainings. Sensor-based technologies and WT measure the expert's interaction with the physical environment in which he/she demonstrates, enabling the capture of the expert performance. The framework uses the approach defined by [9] who emphasized two important kinds of performance capture: 1.) Capturing of the expert performance and 2.) Capturing of the process in the world. Capturing of the expert performance includes making the cognitive process of the expert explicit to the apprentice while capturing the process involves making invisible

aspects of the task visible. Such an approach would incorporate capturing the physical environment, the expert's interaction with it and the cognitive processes, capturing the essence of a complete process.

However, experts are scarce and becoming an expert is a difficult and time-consuming endeavor. In addition to the shortage of an expert in many domains, an expert struggles when it comes to teaching. In [25], Feldon stated that an expert is unable to explain his/her superior performance because the amount of expertise inhibits his/her explanation skills. This is because an expert typically has more knowledge than he/she can verbalize [68], which impedes the capability of the expert as a teacher. In addition, an expert is unaware of the factors behind his/her superior performance. For example, an expert is able to notice features and meaningful patterns of information without conscious effort that are not noticed by an apprentice. Due to this, an expert tends to underestimate how difficult it can be for the apprentice [36], and thus omits the information an apprentice would find valuable [37]. Therefore, Capturing expert performance at the right level of abstraction, while still retaining all relevant details is complex, even from the technological point of view [24].

Conventional approaches, such as video recording, provide only limited points of view, significantly reducing the wealth of information available from direct experience. In contrary, WT provides a rich multimodal and multisensory medium for the capturing the expert performance as also a multi-perspective opportunity for training. For example, [44] explored different physiological sensors and WT such as eye tracking, EEG sensors and heart rate concluding a strong possibility to use the physiological sensors to be able to record cognitive process. Many recent projects (see [45, 96]) have used WT to explicitly capture expert's performance based on physical attributes such as motor movements to provide guidance and feedback to the trainee using AR. AR complements WT by providing a rich multimodal and multisensory medium for the apprentice to wear the expert performance and collect rich experience from the perspective of the expert. In the following, we elaborate on AR as a suitable platform to train expertise with use of expert's performance data.

3.2 Training of Expertise by Expert Performance

In [3], a review on affordances of AR, it was suggested that AR along with sensors posit a rich versatile educational potential for training skills. In addition, several studies suggest that technical skills acquired in virtual simulators transfer well into real world and improve performance in areas such as laparoscopic surgery [34] and anesthesia [60.] Although the idea to use AR and WT for Training dates back to the early 1990's [10], only a handful of projects have made it successfully into industry. With the technology still new and major works such as STARMATE & ARVIKA [28] focusing on technical aspects, the educational potential of the AR and WT remains unexplored. Now, The WEKIT reference framework aims to exploit the affordances of AR and WT for supporting the pedagogic training approaches to extract the educational potential of the technology.

[97] defined the implementation of AR in terms of three main characteristics: (1) The combination of physical and virtual elements (2) interactive in real time and (3) are registered in three dimensional spaces. For the AR to truly fulfill these requirements it must be equipped with sensors and WT to measure and analyze the data from physical environment. Therefore, AR and WT have the potential to create a truly immersive platform which places the trainee in real world context engaging all of his/her senses. [6] stated that an immersive environment creates perceptual and cognitive immersion by stimulating the sensory organs directly with relevant stimuli and cognitive content. Therefore, AR and WT have the potential to amplify perceptual stimuli based on the captured expert performance to enhance the trainee perceptions which will allow the apprentice to create new experience similar to the expert's experience.

4 The WEKIT Reference Framework

Most industrial tasks are complex real world problems which are ill structured and require more than an algorithmic approach to be solved. Learning such complex task requires complex learning. [76] have emphasized the close relation between complex learning and deliberate practice. In order to practice deliberately, the apprentice needs to indulge in extremely targeted practice where new goals are met and learning path is constantly monitored and adapted [22]. This concept is in close alignment with the principles of 4C/ID model [61]. [76] in their results indicated that the 4C/ID model promoted the development of technical expertise. Therefore, we built the framework upon the 4C/ID model based training methodology by using the captured expert performance to supplement the model, with the help of AR and WT to guide and provide feedback to the trainee. The training will be done in an authentic context with help of AR and WT while supporting the trainee with feedback and scaffolding.

The 4C/ID model is a holistic design model which deals with complex task, without losing sight of the separate elements and the interconnections between them [90]. It is a non-linear and systematic processing model for designing complex learning environment. [54] investigated the effects of 4C/ID in teaching and concluded it to be effective for acquisition and transfer of knowledge. 4C/ID model consists of four components namely: 1). Learning task 2). Supportive information 3). Procedural information and 4). Part task practice.

- 1. Learning Task: Learning Tasks are authentic, whole task experiences that are provided to the trainee in order to promote schema construction for non-recurrent aspects of the task. It also supports rule automation by compilation for recurrent aspects of the task. Instructional methods primarily adapt induction that emphasizes the importance of task modeling through mindful abstraction from the concrete experiences. Task modeling is the construction of cognitive schemata of the task by the trainee. For example, by first demonstrating examples of how a particular concept is used, the expert allows the trainee to come up with the correct solution using the cognitive schemata that he/she created while observing the expert performance.
- **2. Supportive information:** Supportive information is the information provided to support the learning and performance of non-recurrent aspects of learning tasks. Instructional methods for supportive information aim to elaborate the task model by establishing non-arbitrary relationships between new elements and what learners already know.
- **3. Just in Time information:** Just in time information is the prerequisite information to the learning and performance of recurrent aspects of learning tasks in a just in time fashion. Instructional methods primarily aim to embed procedural information in rules such as the condition action pairs.
- **4. Part-task Practice:** The last component of the 4CID model is the part task practice which recognizes that some parts of the task are automatic and recurrent. In order to develop the automation of the skill it is required that the learner practice the task repeatedly. Part-task Practice items are provided to learners in order to promote rule automation for selected recurrent aspects of the whole complex skill.

The 4C/ID model is acknowledged as an effective instructional design model for designing powerful training environments that facilitate the acquisition of integrated sets of knowledge and skills [76]. Evidence about the effectiveness of training environments designed in line with specifications of the 4C/ID model for the acquisition of expertise in training contexts has been documented by [91] and [57]. This framework aims to guide the design and development of training applications based on 4C/ID model and the expert in order to train expertise.

After an extensive review of different prototypes designed for training which were identified from the literature from major databases such as SpringerLink, ScienceDirect and SAGE, we identified and extracted instructional methods used by them. We use the term "Transfer Mechanisms" to describe the instructional strategies or methods that exploit AR and WT technology for training purposes. However, only those methods that support or embellish the expert-trainee relationships in a technological platform have been selected. After analyzing the Transfer mechanisms we have further defined the transfer mechanisms to have 3 general characteristics which are portrayed in Table 1. Each transfer mechanism possesses attributes that answer questions such as what is the type of skill being trained. The other characteristics include requirements for recording such as hardware and software and requirements for enacting by the apprentice which may include

Table 1. Descriptors

Transfer Mechanism

Attributes

How can the features be described?

What skills are being addressed?

Requirements for recording

How is the mechanism enabled during the recording?

What types of sensors are required?

Requirements for enactment

How is this feature enabled by/for the learner?

Which conditions need to be me to allow this feature to be present?

Which interaction means does the learner have?

What type of sensor/display technology does the learner require?

Table-2 below provides the list of the transfer mechanisms that were identified from the review of studies that exploited AR for training of expertise. We have selected studies performed after 2010 to date to understand the state-of-art in AR and WT based expertise training.

 Table 2. List of Transfer Mechanisms

Transfer Mech- anism	Attribute	Requirements for recording	Requirements for enacting
Augmented paths	Augmenting virtual information atop the physical world in a way which allows the trainee to guide his motion with precision	 Tracking of expert's hand motion Motion sensors Depth camera 	 Visualizing guidance paths using AR Provide haptic or visual feedback Comparison to expert data by capturing apprentice movement with sensor
Augmented Mirror	Augmented display where the apprentice can track his/her body similar to dance rooms	 Record and track body postures Posture sensor such as Kinect 	 Large display where the apprentice can see himself/herself Posture tracker to provide visual feedback
Highlight Object of Interest	Highlight physical objects in the focus area indicating to the trainee that the ex- pert found that object of interest	 Eye Tracker Video recording Record Gaze behavior of the expert 	 Eye Tracker for Formative feedback AR display to highlight the image
Directed focus	visual aids for objects outside the visual area	 Eye Tracker and video recording Record Gaze behavior of the expert Record the procedure 	Eye Tracker for Formative feedbackAR displayVisual Indicator
Point of view video	Stream/save video data Provides unique trainee/expert point of view scope	Head mounted camera Interaction Mechanism to initiate, stop recording and Zoom into subject	Interaction and inference mechanism Zoom into video
Audio Instructions	Stream/save audio Capture of peripheral sound from the environment	 Think aloud protocol to record expert explanations Microphones Reduce unnecessary noise 	 Audio headphones Interaction and inference mechanism Amplify the sound
Cues & clues	Cues and clues are pivots that trigger solution search	 Take a picture save video & audio or text Use a physical object in real world as anchor	Display on demand Inference mechanism

Annotations	Allow a physical object to be tagged with virtual information	 Methods to tag media into physical object. Manual annotation or done by expert on the fly 	 AR display mechanism to read the annotations Mechanism for unobtrusive relay of information
Object Enrichment	Provide information about the physical artifact	 Use a physical object in real world as anchor Tags or infrared light emitters and camera 	 Object recognition Control over information displayed Camera with image recognizer
Contextual information	Provide information about the process that is frequently changing	Knowledge of procedure information that depends on the context and required for the task	Method to know when and where to provide the information
3D models and animation	 Assist in Spatial ability Complex mental simulation of a phenomena 	 Modeling 3d object Creating 3d animation Defining Interaction Mechanism	 AR display Interaction mechanism such as gestures
Interactive Virtual Objects	Manipulate to practice on virtually objects with physical interactions	Realistic 3d objectsSensors for motion recording	 Haptic and visual feedback Detecting collision between physical and virtual entity
Haptic feedback	Force feedback relating to the perception and manipulation of objects	 Fine motor tracking Defining of criteria for errorless operation Inertial sensors 	 Tracking the trainee motion with inertial sensor Motors for providing haptic feedback
Xray vision	Visualizing the internal process or mechanism not visible to the eye.	Simulation of the Phenomena Interaction Mechanism	 Visualization of the phenomena Interaction mechanisms Object recognition
Feedback	Provide summative and formative feed- back	Mechanism to infer mistakes in process based on expert data Mechanism to assess the overall performance	 Measure of performance Mechanism to evaluate the overall performance

With an aim to support the design and development of the AR and WT based platforms to integrate the 4C/ID model for training, the framework classifies the Transfer Mechanism according to the 4 components of the 4C/ID model. The first component Learning task encapsulates the notion of task modeling along with other attributes such as task scaffolding. Task modeling entails methods for scheme construction by the trainee about the task being performed. Table 3 maps the transfer mechanism that support learning task against the performance attributes they aim to train.

Table 3. Transfer Mechanisms that support Learning task component

Learning Task	Performance attributes			Literature	
Transfer mechanism		Cognitive motor skills	Collaborative skills	Perceptual motor Skills	1. Juanes et al. 2015 2. Hahn et al 2015 3. Meleiro et al. 2014 4. Ke et al. 2016 5. Lok et al. 2014 6. Roads et. al 2016 7. Jarodzka et al, 2013 8. Henderson & Fernie, 2011 9. Milazzo et al. 2016 10. Djajadiningrat, 2016 11. Gallegos-Nieto et al. 2016 12. Haug et al. 2014 13. Nilsson et al., 2011 14. Chia & Saakes., 2014 15. Jang et al., 2014 16. Radu et al. 2015 17. Datcu et al., 2015 18. Rozenblit et al., 2014 19. Chang et al., 2015 20. Chinthammit et. al., 2014 21. Bordegoni et al., 2014 22. Sand et al., 2016
Augmented path					
Augmented Mirror	14	3,25			
Interactive Virtual Objects		4,16	5,13,17		
Highlight Object of Interest		2,22		6	
Directed focus		7,33		8	
Point of view Videos		10,11	17,20		

Table 4 depicts all the transfer mechanisms that have been identified in order to provide supportive information. Supportive information deal with non-recurrent aspect of the task. Supportive information can be declarative information that can be found in books and other resources. Supportive information can be on demand depending on the context or information required for the whole subtask.

Table 4. Transfer Mechanisms that support Supportive information component

Supportive Information				e attributes	Literature	
Transfer mech- anism	1	•		-	23. Martin-Gutierrez et al., 2010 24. Freschi et al., 2015	
Object Enrichments	30			22	25. Kwon et al., 201426. Manuri et al., 2014	
3D models and an- imation		1,25	26	16,28	27. Wang & Duston., 201128. Buń et al., 2015	
Xray vision	24	23,27 ,29		23	29. de Ravé et al., 2016	
Setting Cues and Clues	30	32,19			 30. Condino et al., 2016 31. Allain et al., 2015 32. See et al., 2016 33. Webel et al., 2011 34. Sanfilippo et al. 2016 	

The following table 5 maps the transfer mechanisms that support the Just-in-time component. This component deals with procedural information required to perform the recurrent task which must be provided in a just in time fashion. The information can be presented as a step by step instructions or a feedback. It requires the condition action pairs to be identified, that drives the routine behaviors and the prerequisite knowledge involved in the step.

Just-in-time Information				Literature	
Transfer mechanism Annotation	motor skills	Cognitive motor skills	Collaborative skills	Fine mo- tor skills	35. Yarnall et al. 2014 36. Poelman et al., 2012 37. Sano et al., 2014 38. Matassa & Morreale., 2016 39. Lahanas et. al., 2014
Contextual information	24	34,10,47	13,36		
Haptic feedback	43,46,29	18,36,38		37	40. Funk et al. 2016
Feedback	37	39,40		34,41	41. Chang et al., 2015
Audio instructions	33				42. Zao et al., 2016 43. Perlini et al., 2014 44. Wei et al., 2014 45. Sousa et al., 2016 46. Stunt et al., 2014 47. Asadipour et al., 2016 48. Zhu et al., 2014 49. Jang et al., 2014 50. Chia & Saakes., 2014 51. Meleiro et al., 2014

Table 5. Transfer Mechanisms that support Just-in-time information component

The last component of the 4CID model is the part task practice which recognizes that some parts of the task are automatic and recurrent. In order to develop the automation of the skill it is required that the learner practice the task repeatedly. As such there is no transfer mechanism identified that supports this component, which may be for a simple fact that it's straight forward.

5 Conclusion

The presented reference framework for training expertise with AR and WT delivers methodologies that enable efficient and effective training of industrial skills. The reference framework combines the state-of-art transfer mechanism identified in the literature with the 4C/ID model for supporting the design and development of training applications. By classify transfer mechanisms the framework supports the instructional designers to design effective expertise training applications using AR and WT. The framework may have non significant limitations such as, zero recorded transfer mechanism to support automation. It also helps in identifying gaps in the literature, for example, on certain transfer mechanisms there are several or no studies. It may be argued for the fact that it is a simple matter of practice; however various factors such as motivation have to be accounted. Thus, the framework is also a great starting point to explore how the boundaries of expertise development can be further pushed back.

The framework is an ongoing task and new transfer mechanisms will be documented as work progresses. However, as the framework stands now, it is sufficient to inform any training application designers with the technological and pedagogic overview he/she may need in order to design and develop an effective training platform. The framework is the conceptual support for the WEKIT project design and development. Further task involving the framework includes documentation of guidance and recommendations to hand-pick the transfer mechanism that cater the instructional designer needs. The framework needs to be evaluated in terms of what

52. Liu et al., 2016

makes out an optimal set of transfer mechanisms. Therefore, we believe the framework is a significant step in merging the best of the AR and WT with Technology enhanced learning approaches.

References

- 1. Asadipour, A., Debattista, K., & Chalmers, A.: Visuohaptic augmented feedback for enhancing motor skills acquisition. In *Visual Computer*, 1–11. http://doi.org/10.1007/s00371-016-1275-3 (2016)
- 2. Allain, K., Dado, B., Gelderen, M. Van, Hokke, O., Oliveira, M., Bidarra, R., ... Kybartas, B.: An audio game for training navigation skills of blind children. 2015 IEEE 2nd VR Workshop on Sonic Interactions for Virtual Environments, SIVE 2015 Proceedings, (March), 49–52. http://doi.org/10.1109/SIVE.2015.7361292 (2015)
- 3. Bacca, J., Fabregat, R., Baldiris, S., Graf, S., Kinshuk, Fabregat, R., & Graf, S.: Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society, 17(4), 133–149. (2014)
- 4. Bower, M., & Sturman, D.: What are the educational affordances of wearable technologies? Computers and Education, 88, 343–353. http://doi.org/10.1016/j.compedu.2015.07.013 (2015)
- 5. Bordegoni, M., Ferrise, F., Carrabba, E., Donato, M. Di, Fiorentino, M., & Uva, A. E.: An application based on Augmented Reality and mobile technology to support remote maintenance. http://doi.org/10.2312/eurovr.20141351. (2014)
- Bjork, S., & Holopainen, J.: Patterns in Game Design (Game Development Series). Game Development Series (1st ed., Vol. 54). Charles River Media. http://doi.org/10.1.1.10.4097 (2004)
- 7. Bourne, L. E., Jr, Kole, J. A., & Healy, A. F.: Expertise: defined, described, explained. Frontiers in Psychology, 5, 186. (2014)
- 8. Buń, P., Górski, F., Wichniarek, R., Kuczko, W., & Zawadzki, P.: Immersive Educational Simulation of Medical Ultrasound Examination. Procedia Computer Science, 75(Vare), 186–194. http://doi.org/10.1016/j.procs.2015.12.237 (2015)
- 9. Collins, A. 'Cognitive apprenticeship and instructional technology', In: Idol, L. & Jones, B.F. (eds), Educational values and cognitive instruction: implications for reform, Lawrence Erlbaum Associates, New Jersey. (1991)
- 10. Caudell, T. P., & Mizell, D. W.: Augmented reality: an application of heads-up display technology to manual manufacturing processes. In *Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences*. https://doi.org/10.1109/hicss.1992.183317 (1992)
- 11. Chang, Y.-J., Kang, Y.-S., Chang, Y.-S., & Liu, H.-H.: ARCoach 2.0: Optimizing a Vocational Prompting System Based on Augmented Reality for People with Cognitive Impairments. Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, 313–314. http://doi.org/10.1145/2700648.2811354 (2015)
- 12. Chinthammit, W., Merritt, T., Pedersen, S., Williams, A., Visentin, D., Rowe, R., & Furness, T.: Ghostman: Augmented reality application for Telerehabilitation and remote instruction of a novel motor skill. BioMed Research International, 2014, 1–7. http://doi.org/10.1155/2014/646347 (2014)
- 13. Crandall, B. W., Kyne, M., Militello, L., & Klein, G. A. Describing expertise in one-on-one instruction (Contract MDA903-91-C-0058 for U.S. Army Research Institute, Alexandria, VA). Fairborn, OH: Klein Associates Inc
- 14. Chia, F.-Y., & Saakes, D.: Interactive Training Chopsticks to Improve Fine Motor Skills, 57:1-57:4. http://doi.org/10.1145/2663806.2663816 (2014)
- 15. Datcu, D., Cidota, M., Lukosch, S., Oliveira, D. M., & Wolff, M. Virtual co-location to support remote assistance for inflight maintenance in ground training for space missions. 15th International Conference on Computer Systems and Technologies, CompSysTech 2014, 883, 134–141. http://doi.org/10.1145/2659532.2659647 (2014)
- 16. Diaper, D.: Understanding task analysis for human-computer interaction. In D. Diaper & N. Stanton (Eds.), The hand-book of task analysis for human-computer interaction (pp. 5–47). Mahwah, NJ: Lawrence Erlbaum Associates. (2004)
- 17. Dreyfus, H. L., & Dreyfus, S. E.: Mind over machine: The power of intuition and expertise in the era of the computer. New York: The Free Press. (1986)
- 18. Djajadiningrat, T.: Virtual Trainer: A Low Cost AR Simulation of a Sudden Cardiac Arrest Emergency, 607–618. http://doi.org/10.1145/2901790.2901914 (2016)
- 19. Ericsson, K. A.: The Cambridge handbook of expertise and expert performance (Chapter). In *The Cambridge Handbook of Expertise and Expert Performance* (pp. 523–538). Cambridge University Press. Retrieved from http://bura.brunel.ac.uk/handle/2438/1475 (2006)
- 20. Ericsson, K. A., & Lehmann, A. C.: Expert and exceptional performance: evidence of maximal adaptation to task constraints. *Annual Review of Psychology*, 47, 273–305. (1996)
- 21. Ericsson, K. A., & Smith, J.: Prospects and limits of the empirical study of expertise: An introduction. In K. A. Ericsson & J. Smith (Eds.), *Toward a general theory of expertise: Prospects and limits* (pp. 1-39). Cambridge, England: Cambridge University Press (1991)
- 22. Ericsson, K. A. K., Krampe, R. R. T., Tesch-Romer, C., Ashworth, C., Carey, G., Grassia, J., ... Tesch-Römer, C.: The Role of Deliberate Practice in the Acquisition of Expert Performance. Psychological Review, 100(3), 363–406. http://doi.org/10.1037/0033-295X.100.3.363 (1993)
- 23. En.wikipedia.org. Experience. [online] Available at https://en.wikipedia.org/wiki/Experience#cite_note-1 [Accessed 9 Jan. 2017]. (2017)
- 24. Fominykh, M., Wild, F., Smith, C., Alvarez, V. & Morozov, M.: An Overview of Capturing Live Experience with Virtual and Augmented Reality. in Davy Preuveneers ed. the Workshop Proceedings of the 11th International Conference

- on Intelligent Environments, IOS Press, Series: Ambient Intelligence and Smart Environments, ISSN: 1875-4163, Volume 19, ISBN: 978-1-61499-529-6, pp. 298–305. DOI: 10.3233/978-1-61499-530-2-298. Originally presented in the 1st Immersive Learning Research Network Conference (iLRN), Prague, Czech Republic, July 13–14, 2015. (2015).
- 25. Feldon, D.F.: The implications of research on expertise for curriculum and pedagogy. Educational Psychology Review, 19(2), 91-11 (2007)
- 26. Fitts, P. M., & Posner, M. I.: Human Performance. (1974)
- 27. Freschi, C., Parrini, S., Dinelli, N., Ferrari, M., & Ferrari, V.: Hybrid simulation using mixed reality for interventional ultrasound imaging training. International Journal of Computer Assisted Radiology and Surgery, 10(7), 1109–1115. http://doi.org/10.1007/s11548-014-1113-x (2015)
- 28. Friedrich, W. (2002). ARVIKA-augmented reality for development, production and service. In Proceedings International Symposium on Mixed and Augmented Reality, ISMAR 2002 (pp. 3–4). IEEE Comput. Soc. http://doi.org/10.1109/ISMAR.2002.1115059 (2002)
- Funk, M., Heusler, J., Akcay, E., Weiland, K., & Schmidt, A.: Haptic, Auditory, or Visual? Towards Optimal Error Feedback at Manual Assembly Workplaces. Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments. ACM, 6. http://doi.org/10.1145/2910674.2910683 (2016)
- 30. Grober, E. D., Hamstra, S. J., Wanzel, K. R., Reznick, R. K., Matsumoto, E. D., Sidhu, R. S., & Jarvi, K. A.: The educational impact of bench model fidelity on the acquisition of technical skill: the use of clinically relevant outcome measures. *Annals of Surgery*, 240(2), 374–381. (2004)
- 31. Gallegos-Nieto, E., Medellín-Castillo, H. I., González-Badillo, G., Lim, T., & Ritchie, J.: The analysis and evaluation of the influence of haptic-enabled virtual assembly training on real assembly performance. International Journal of Advanced Manufacturing Technology, pp. 1–18. Springer London. http://doi.org/10.1007/s00170-016-9120-4 (2016, March 5).
- 32. Hubert L. Dreyfus and Stuart E. Dreyfus: Mind Over Machine: The Power of Human Intuition and Expertise in the Era of the Computer Hubert L. Dreyfus and Stuart E. Dreyfus Publisher: Free Press, 866 Third Ave., New York, NY 10022. *Social Science Computer Review*, 6(2), 313–315. (1986)
- 33. Hahn, J., Ludwig, B., & Wolff, C.: Augmented Reality-based Training of the PCB Assembly Process. Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, (Mum), 395–399. http://doi.org/10.1145/2836041.2841215 (2015).
- 34. Haug, T., & Buchenrieder, K.: Movement Analysis in Laparoscopic Surgery Training.
- 35. Healy, A. F., Kole, J. A., & Bourne, L. E., Jr.: Training principles to advance expertise. *Frontiers in Psychology*, 5, 131. (2014).
- 36. Hinds, P. J.: The curse of expertise: The effects of expertise and debiasing methods on prediction of novice performance. *Journal of Experimental Psychology. Applied*, 5(2), 205–221. (1999).
- 37. Hinds, P. J., Patterson, M., & Pfeffer, J.: Bothered by abstraction: The effect of expertise on knowledge transfer and subsequent novice performance. Journal of Applied Psychology, 86, 1232-1243. doi: 10.1037/0021-9010.86.6.1232 (2001)
- 38. Hoffman, R. R. (Ed.): The psychology of expertise: Cognitive research and empirical AI. New York: Springer-Verlag. (1992)
- 39. Henderson, S., & Feiner, S.: Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Transactions on Visualization and Computer Graphics, 17(10), 1355–1368. http://doi.org/10.1109/TVCG.2010.245 (2011)
- 40. Juanes, J. A., Gómez, J. J., Peguero, P. D., & Ruisoto, P.: Practical Applications of Movement Control Technology in the Acquisition of Clinical Skills, 13–17. (2015)
- 41. Jarodzka, H., Van Gog, T., Dorr, M., Scheiter, K., & Gerjets, P.: Learning to see: Guiding students' attention via a Model's eye movements fosters learning. Learning and Instruction, 25, 62–70. http://doi.org/10.1016/j.learninstruc.2012.11.004 (2013)
- 42. Jang, S. A., Kim, H. II, Woo, W., & Wakefield, G.: AiRSculpt: A wearable augmented reality 3D sculpting system. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8530 LNCS, 130–141. http://doi.org/10.1007/978-3-319-07788-8_13 (2014)
- 43. Kokinov, B., Richardson, D. C., Roth-Berghofer, T. R., & Vieu, L.: *Modeling and Using Context: 6th International and Interdisciplinary Conference, CONTEXT* 2007, *Roskilde, Denmark, August* 20-24, 2007, *Proceedings*. Springer. (2007)
- 44. Kim, S.: Understanding Expert-Novice Differences in Geometry Problem-Solving Tasks : A Sensor-based Approach, 1867–1872. (2014)
- 45. Kowalewski, K.-F., Hendrie, J. D., Schmidt, M. W., Garrow, C. R., Bruckner, T., Proctor, T., ... Nickel, F.: Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon. Surgical Endoscopy, 1–11. http://doi.org/10.1007/s00464-016-5213-2 (2016)
- 46. Kwon, Y., Lee, S., Jeong, J., & Kim, W.: HeartiSense: A Novel Approach to Enable Effective Basic Life Support Training Without an Instructor. 32nd Annual ACM Conference on Human Factors in Computing Systems, CHI 2014, 431–434. http://doi.org/10.1145/2559206.2574801 (2014)
- 47. Ke, F., Lee, S., & Xu, X.: Teaching training in a mixed-reality integrated learning environment. Computers in Human Behavior, 62, 212–220. http://doi.org/10.1016/j.chb.2016.03.094 (2016)

- 48. Lahanas, V., Loukas, C., Smailis, N., & Georgiou, E.: A novel augmented reality simulator for skills assessment in minimal invasive surgery. Surgical Endoscopy, 29(8), 2224–2234. http://doi.org/10.1007/s00464-014-3930-y (2015)
- Liu, C., Huot, S., Diehl, J., Mackay, W., & Beaudouin-Lafon, M.: Evaluating the benefits of real-time feedback in mobile augmented reality with hand-held devices. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems CHI '12 (p. 2973). New York, New York, USA: ACM Press. http://doi.org/10.1145/2207676.2208706 (2012).
- 50. Matassa, A., & Morreale, F.: Supporting Singers with Tangible and Visual Feedback. Proceedings of the International Working Conference on Advanced Visual Interfaces AVI '16, 328–329. http://doi.org/10.1145/2909132.2926081 (2016)
- 51. Morrison: A. 10 HR Trends You'll See In 2016 | Huffington Post. Retrieved October 11, 2016, from http://www.huffingtonpost.com/kosta-petrov/10-hr-trends-youll-see-in_b_8888690.html (2015, December 29).
- 52. McDaniel, M. A., Schmidt, F. L., & Hunter, J. E.: Job experience correlates of job performance. Journal of Applied Psychology, 73, 327–330. (1988).
- 53. Matsumoto, E. D., Hamstra, S. J., Radomski, S. B., & Cusimano, M. D.: THE EFFECT OF BENCH MODEL FIDELITY ON ENDOUROLOGICAL SKILLS: *The Journal of Urology*, 1243–1247. (2002)
- 54. Melo, M., Mário, M., & Miranda, G. L.: Applying the 4C-ID Model to the Design of a Digital Educational Resource for Teaching Electric Circuits. In *Proceedings of the 2014 Workshop on Interaction Design in Educational Environments IDEE '14*. https://doi.org/10.1145/2643604.2643605 (2014)
- 55. Mura, M. D., Dini, G., & Failli, F.: An Integrated Environment Based on Augmented Reality and Sensing Device for Manual Assembly Workstations. Procedia CIRP, 41, 340–345. http://doi.org/10.1016/j.procir.2015.12.128 (2016)
- 56. Meleiro, P., Rodrigues, R., Jacob, J., & Marques, T. Natural User Interfaces in the Motor Development of Disabled Children. Procedia Technology, 13, 66–75. http://doi.org/10.1016/j.protcy.2014.02.010 (2014)
- 57. Merrill, M. D.: Hypothesized performance on complex tasks as a function of scaled instructional strategies. In J. Elen & R. E. Clark (Eds.), *Handling complexity in learning environments: Theory and research* (pp. 265–281). Amsterdam: Elsevier (2006)
- 58. Milazzo, N., Farrow, D., & Fournier, J. F.: Effect of Implicit Perceptual-Motor Training on Decision-Making Skills and Underpinning Gaze Behavior in Combat Athletes. Perceptual and Motor Skills, 1–24. http://doi.org/10.1177/0031512516656816 (2016)
- 59. Martín-Gutiérrez, J., Saorín, J. L., Contero, M., & Alcañiz, M.: AR-Dehaes: An educational toolkit based on augmented reality technology for learning engineering graphics. In Proceedings 10th IEEE International Conference on Advanced Learning Technologies, ICALT 2010 (pp. 133–137). IEEE. http://doi.org/10.1109/ICALT.2010.45 (2010)
- 60. Naik, V. N., Matsumoto, E. D., Houston, P. L., Hamstra, S. J., Yeung, R. Y., Mallon, J. S., & Martire, T. M.: Fiberoptic orotracheal intubation on anesthetized patients: do manipulation skills learned on a simple model transfer into the operating room? *Anesthesiology*, 95(2), 343–348. (2001)
- 61. Neelen, M., & Kirschner, P.: Deliberate Practice: What it is and what it isn't. Retrieved February 14, 2017, from https://3starlearningexperiences.wordpress.com/2016/06/21/370/ (2016)
- 62. Nilsson, S., Johansson, B., Jönsson, A., Orn Johansson, B., & Onsson, A. Linköping University Post Print: Using AR to support cross-organisational collaboration in dynamic tasks Using AR to support cross-organisational collaboration in dynamic tasks. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-52588
- 63. Park, K., Kihl, T., Park, S., Kim, M. J., & Chang, J.: Narratives and sensor driven cognitive behavior training game platform. 2016 IEEE/ACIS 14th International Conference on Software Engineering Research, Management and Applications, SERA 2016, 125–131. http://doi.org/10.1109/SERA.2016.7516137 (2016)
- 64. Poelman, R., Akman, O., Lukosch, S., & Jonker, P.: As if Being There: Mediated Reality for Crime Scene Investigation. Proc. ACM 2012 Conf. Comput. Support. Coop. Work CSCW '12, (5), 1267. http://doi.org/10.1145/2145204.2145394 (2012)
- 65. Pathomaree, N., & Charoenseang, S.: Augmented reality for skill transfer in assembly task. In *ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication*, 2005. https://doi.org/10.1109/roman.2005.1513829
- 66. Perlini, S., Salinaro, F., Santalucia, P., & Musca, F.: Simulation-guided cardiac auscultation improves medical students' clinical skills: The Pavia pilot experience. Internal and Emergency Medicine, 9(2), 165–172. http://doi.org/10.1007/s11739-012-0811-z (2014)
- 67. Polanyi, M. Personal knowledge: Towards a post-critical philosophy. Chicago, IL: University of Chicago Press. (1958)
- 68. Patterson, R. E., Pierce, B. J., Bell, H. H., & Gary, K.: Implicit Learning, Tacit Knowledge, Expertise Development, and Naturalistic Decision Making. Journal of Cognitive Engineering and Decision Making, 4(4), 289–303. (2010)
- 69. Quarles, J., John, Q., Samsun, L., Ira, F., Paul, F., & Benjamin, L.: Scaffolded learning with mixed reality. *Computers & Graphics*, 33(1), 34–46. (2009)
- 70. Radu, I., Doherty, E., DiQuollo, K., McCarthy, B., & Tiu, M.: Cyberchase Shape Quest: Pushing Geometry Education Boundaries with Augmented Reality. Proceedings of the 14th International Conference on Interaction Design and Children, 430–433. http://doi.org/10.1145/2771839.2771871 (2015)
- 71. Rauner, F., Felix, R., & Wolfgang, W.: Differences in the Organisation of Apprenticeship in Europe: Findings of a Comparative Evaluation Study. In *Technical and Vocational Education and Training: Issues, Concerns and Prospects* (pp. 243–255). (2012)

- 72. Regenbrecht, H., Baratoff, G., & Wilke, W.: Augmented reality projects in the automotive and aerospace industries. *IEEE Computer Graphics and Applications*, 25(6), 48–56. (2005)
- 73. Roads, B., Mozer, M. C., & Busey, T. A.: Using highlighting to train attentional expertise. PLoS ONE, 11(1), e0146266. http://doi.org/10.1371/journal.pone.0146266 (2016)
- Rosenbaum, E., Eric, R., Eric, K., & Judy, P.: On Location Learning: Authentic Applied Science with Networked Augmented Realities. *Journal of Science Education and Technology*, 16(1), 31–45. (2006)
- 75. Rozenblit, J. W., Feng, C., Riojas, M., Napalkova, L., Hamilton, A. J., & Hong, M.: The Computer Assisted Surgical Trainer: Design, Models, and Implementation. (n.d.)
- 76. Sarfo, F. K., & Elen, J.: Technical expertise development in secondary technical schools: Effects of ICT-enhanced 4C/ID learning environments. In Fourth IEEE International Workshop on Technology for Education in Developing Countries, TEDC 2006 (Vol. 2006, pp. 62–65). IEEE. http://doi.org/10.1109/TEDC.2006.25 (2006)
- 77. Sanfilippo, F.: A multi-sensor fusion framework for improving situational awareness in demanding maritime training. Reliability Engineering & System Safety, 161(February 2016), 12–24. http://doi.org/10.1016/j.ress.2016.12.015 (2017)
- 78. Sano, Y., Sato, K., Shiraishi, R., & Otsuki, M.: Sports Support System: Augmented Ball Game for Filling Gap between Player Skill Levels, 361–366.
- 79. Sternberg, R. J., Forsythe, G. B., Hedlund, J., Horvath, J. A., Wagner, R. K., Williams, W. M., ... & Grigorenko, E. L.: Practice Intelligence everyday. New York, Cambridge University Pres. (2000)
- 80. Stunt, J. J., Kerkhoffs, G. M. M. J., Horeman, T., van Dijk, C. N., & Tuijthof, G. J. M.: Validation of the PASSPORT V2 training environment for arthroscopic skills. Knee Surgery, Sports Traumatology, Arthroscopy, 24(6), 2038–2045. http://doi.org/10.1007/s00167-014-3213-0 (2016)
- 81. Schneider, J., Börner, D., van Rosmalen, P., & Specht, M.: Augmenting the senses: a review on sensor-based learning support. Sensors (Basel, Switzerland). Multidisciplinary Digital Publishing Institute. http://doi.org/10.3390/s150204097 2015, February 11)
- 82. Sousa, L., Alves, R., & Rodrigues, J. M. F.: Augmented reality system to assist inexperienced pool players. Computational Visual Media, 2(2), 183–193. http://doi.org/10.1007/s41095-016-0047-3 (2016)
- 83. Schmidt, H. G., & Boshuizen, H. P.: A. On acquiring expertise in medicine. *Educational Psychology Review*, 5(3), 205–221. (1993)
- 84. Schulz, R., & Curnow, C.: Peak performance and age among super-athletes: Track and field, swimming, baseball, tennis, and golf. Journal of Gerontology: Psychological Sciences, 43,113-120. (1988)
- 85. Scott, D. J., Bergen, P. C., Rege, R. V., Laycock, R., Tesfay, S. T., Valentine, R. J., ... Jones, D. B.: Laparoscopic training on bench models: better and more cost effective than operating room experience? *Journal of the American College of Surgeons*, 191(3), 272–283. (2000)
- Sur,: P.-A. 2016 Technology Industry Trends. Retrieved October 11, 2016, from http://www.strategyand.pwc.com/perspectives/2016-technology-industry-trends (2016)
- 87. See, Z. S.: Medical Learning Murmurs Simulation with Mobile Audible Augmented Reality. (2016)
- 88. Tong, Y., Wang, Y., Chen, J., & Chen, C.: A Small Scene Assistant Maintenance System Based on Optical See-through Augmented Reality. Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry Volume 1, 155–158. http://doi.org/10.1145/3013971.3014021 (2016)
- 89. Tokuyasu, T., Okamura, W., Kusano, T., Inomata, M., Shiraishi, N., & Kitanou, S.: Training system for endoscopic surgery by using augmented reality and forceps control devices. Proceedings 2014 9th International Conference on Broadband and Wireless Computing, Communication and Applications, BWCCA 2014, 541–544. http://doi.org/10.1109/BWCCA.2014.113 (2014)
- 90. van Merriënboer, J. J. G., Clark, R. E., & de Croock, M. B. M.: Blueprints for complex learning: The 4C/ID-model. *Educational Technology Research and Development: ETR* & D, 50(2), 39–61. (2002)
- 91. van Merriënboer, J. J. G., & Paas, F.: Powerful learning and the many faces of instructional design: Towards a framework for the design of powerful learning environments. In E. De Corte, L. Verschaffel, N. Entwistle, & J. J. G. van Merriënboer (Eds.), *Powerful learning environments: Unravelling basic components and dimensions* (pp. 3–20). Oxford, UK: Elsevier Science (2003)
- 92. Wei, Y., Yan, H., Bie, R., Wang, S., & Sun, L.: Performance monitoring and evaluation in dance teaching with mobile sensing technology. Personal and Ubiquitous Computing, 18(8), 1929–1939. http://doi.org/10.1007/s00779-014-0799-7 (2014)
- 93. Webel, S., Sabine, W., Uli, B., Timo, E., Matteo, P., Manuel, O., & Carsten, P.: Augmented Reality Training for Assembly and Maintenance Skills. *BIO Web of Conferences*, 1, 00097. (2011)
- 94. Wagner, R. K., & Sternberg, R. J.: Street smarts. Leadership Library of America. (1990)
- 95. William, L. B., & Noble, H.: Studies on the telegraphic language: The acquisition of a hierarchy of habits. *Psychological Review*, 6(4), 345–375. (1899)
- 96. Zhao, Y., Curtin, K., Salunke, S., Huynh, N., Leavitt, A., & Zeagler, C.: E-Archery: Prototype wearable for analyzing archery release. UbiComp 2016 Adjunct Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 908–913. http://doi.org/10.1145/2968219.2968577 (2016)
- 97. Zhou, F., Dun, H. B. L., & Billinghurst, M.: Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR. In Proceedings 7th IEEE International Symposium on Mixed and Augmented Reality 2008, ISMAR 2008 (pp. 193–202). IEEE. http://doi.org/10.1109/ISMAR.2008.4637362 (2008)