NYELVFÜGGETLEN PROGRAMOZÁS

2. forduló

A kategória támogatója: SAP Hungary Kft.

Ismertető a feladatlaphoz

Kérjük, hogy a feladatlap indítása előtt mindenképp olvasd el az alábbi útmutatót:

Helyezéseket a 4. forduló után mutatunk, százalékos formában: adott kategóriában a TOP 20-40-60%-hoz tartozol.

A feltűnően rövid idő alatt megoldott feladatlapok kizárást vonnak maguk után, bármilyen más gyanús esetben fenntartjuk a jogot a forduló érvénytelenítésére!

A letöltendő fájl(ok) miatt nem javasolt a mobilon való feladatmegoldás!

Jó versenyzést kívánunk!

Az első feladatban adott tulajdonságú összefüggő részsorozatot kell keresni egy tömbben, a másodikban pedig egy speciális adatszerkezetet kell hatékonyan implementálni.

Az indítás után elérhető zip fájl mérete viszonylag nagy (kb. 40MB), letöltése internetsebességtől függően emiatt hosszabb időt igénybe vehet.

1. feladat 1 pont

Összeg

Adott egész számoknak egy sorozata. Szeretnénk eldönteni, hogy léteznek-e olyan i és j indexek, hogy a sorozat i-ediktől j-edikig terjedő elemeit (a j-edik elemet is beleértve) összeadva pontosan annyi lesz az eredmény, mint a sorozat j+1-edik eleme.

A bemenet egyetlen sorból áll, melyben szóközökkel elválasztva N db egész szám található, a sorozat elemei. Ha nem létezik a megadott tulajdonsággal rendelkező összefüggő részsorozat, akkor a kimenet a NINCS szó legyen (csupa nagybetűvel). Ha létezik ilyen összefüggő részsorozat, akkor a kimenet ennek a részsorozatnak az első ill. utolsó elemének indexe legyen (azaz i és j értéke), szóközzel elválasztva. (Az elemeket 0-tól N-1-ig számozzuk.) Ha több megfelelő részsorozat is van, akkor annak az első ill. utolsó indexét kell kiírni, amely legelőbb kezdődik (azaz kezdőindexe a lehető legkisebb); és ha több ilyen is van, ugyanazzal a kezdőindexszel, akkor ezek közül azt kell választani, amely a legelőbb végződik (azaz utolsó indexe a lehető legkisebb).

Az osszeg1.in.txt-hez tartozó megoldás:

Válaszok			

2. feladat 1 pont

Az osszeg2.in.txt-hez tartozó megoldás:

Válaszok

3. feladat 1 pont

Az osszeg3.in.txt-hez tartozó megoldás:

1. feladat 2 pont		
sz osszeg4.in.txt-hez tartozó megoldás:		
/álaszok		
/dluszok		
Foloolot Occup		
5. feladat 3 pont		
z osszeg5.in.txt-hez tartozó megoldás:		
Válaszok		

6. feladat 1 pont

Adat

Móricka egy olyan adatszerkezetet implementál, amely két műveletet tud:

push_back(x), ahol x egy egész szám: x-et beszúrja a lista végére, x lesz az új utolsó elem (mint C++-ban az std::vector::push_back)

pop_middle(): ha N elem van, akkor a floor(N/2) indexűt (0-tól számozzuk az elemeket!) eltávolítja, és ezzel az eltávolított értékkel tér vissza. Ha N=0: return 0.

Kész is lett a kóddal, és persze írt is hozzá teszteseteket is. Minden teszteset egy szövegfájl, melyben K db sor található. Mindegyik sor vagy egy egész szám (amit push_back-elni kell), vagy egy p betű, mely esetben a pop_middle kerül meghívásra.

Számoljuk ki, hogy az adott tesztesetre mennyi a pop_middle műveletek által visszaadott számok összege!

Az adat1.in.txt-hez tartozó megoldás:

7. feladat 1 pont			
Az adat2.in.txt-hez tartozó mego	oldás:		
Válasz			
8. feladat 1 pont			
Az adat3.in.txt-hez tartozó mego	oldás:		
Válasz			
9. feladat 2 pont			
	oldás:		
Az adat4.in.txt-hez tartozó mego			
Az adat4.in.txt-hez tartozó mego			
Az adat4.in.txt-hez tartozó mego Válasz			

10. feladat 3 pont

Az adat5.in.txt-hez tartozó megoldás:

Válasz			

Megoldások beküldése