第九章 拟阵与组合最优化

9.2 拟阵与组合最优化问题

拟阵有一个最为基本的优化性质: 极大独立集一定是最大独立集合——表示为拟阵的 Greedy 算法。记号:

设 $M = M(E, \mathcal{I})$ 是拟阵

- (1) R^E 表示定义在 E 上的全体实函数(若 |E|=m, R^E 可以看作 R^m)。
- (2)每个映射 $c \in R^E$ 称为拟阵的一个权函数。
- (3) 对于子集 $X \subseteq E$,记 $c(X) = \sum_{e \in X} c(e)$,约定 $c(\phi) = 0$ 。
- (4) 对于每个子集 $J \subseteq E$,令 x_J 为J的特征函数,即

$$x_{J}(E) = \begin{cases} 1, e \in J \\ 0, e \notin J \end{cases}$$

显然 $c(J) = c^T x_J$ 。

(5) 若 $x = (x_1, x_2, \dots, x_n)^T$, $y = (y_1, y_2, \dots, y_n)^T$, 且 $x_i \le y_i (i = 1, 2, \dots, n)$, 则记为 $x \le y_i$ 。

一、Greedy 算法和最大权独立集问题

定义 9.6 对于给定权函数 c 的拟阵 M ,拟阵的最大权独立集问题是: 求一个确定的子集 $J \subseteq E(M)$,使得 $J \in \mathcal{G}(M)$ 并且 $c(J) = \max\{c(J): I \in \mathcal{G}(M)\}$ 。

拟阵最大权独立集的性质启发了下面的 Greedy 算法(Greedy Algorithm)。 **拟阵最大权独立集的 Greedy 算法:**

给定E上的拟阵M和E上的实值函数c,以及一个查询时间为O(|E|)的权独立集查询子程序,Greedy 算法步骤如下:

(i) 对于E(M)中的元素重新标号,使得 $E(M) = \{e_1, e_2, \dots, e_m\}$ 满足

$$c(e_1) \ge c(e_2) \ge \cdots \ge c(e_m)$$

- (ii) 置*J* ≔ ø
- (iii) 对i=1到m,若 $J \cup \{e_i\} \in \mathcal{J}(M)$,则置 $J := J \cup \{e_i\}$

定理 9.16 拟阵最大权独立集的 Greedv 算法得到拟阵最大权独立集问题的最

有解。若对任意的 $x, y \in E(M)$, 当 $x \neq y$ 时总有 $c(x) \neq c(y)$, 则算法得到问题的 唯一最优解。

证明: 反证法。

例 9.10: MWF (最大森林问题)

 $G = (V, E), \forall e \in E, w(e) \ge 0$.

问题: 求G的权重最大的一个森林(G的无圈图)。

子集系统: $M = (E, \mathcal{J})$ 是一个拟阵

其中 f: E中所有的森林——无圈图的集合

组合优化问题: 求 4 中权重最大者

Greedv 算法能够得到问题的最优解

例 9.11: 设 E 是一个有限集合, $\forall e \in E$,定义 $w(e) \geq 0$ Π 是 E 的一个划分,即 $\Pi = \{E_1, E_2, \cdots, E_p\}$ 为 E 的不相交子集的集合,并且覆盖 E 。定义子集系统 $M_{\Pi} = (E, \mathcal{J})$

其中E的一个子集I是独立的($I \in \mathcal{S}$) $\Leftrightarrow I$ 中任何两个元素不在 Π 的同一个集合里,即 $|I \cap E_i| \le 1$ ($j = 1, 2, \cdots, p$)。

子集系统 $M_{\Pi} = (E, \mathcal{J})$ 是一个拟阵——**称为划分拟阵**

组合优化问题: 求 4 中权重最大者

Greedy 算法能够得到问题的最优解

例 9.12: G = (V, A), $\forall a \in A$, 定义 $w(a) \ge 0$.

问题:找出A的一个最大权的子集B,使得B任何两条弧都没有公共终点。子集系统: (A, \mathcal{S}) 是一个拟阵

其中 $B \subseteq A$, $B \in 𝑼$ ⇔ B 中任何两条弧都没有公共终点

组合优化问题: 求。五中权重最大者

Greedy 算法能够得到问题的最优解

注: $B \subseteq A$, $B \in \mathcal{B} \Leftrightarrow B$ 中任何两条弧都没有公共终点,等价于把弧集合 A 进行划分,使得指向同一个节点 ν_i 的弧之集合定义为 E_i 。因此,这个子集系统

是一个划分拟阵 M_{Π} ,并称其为**有向图**G = (V, A) **的入弧划分矩阵**。当然也可以 等定义**有向图**G = (V, A) **的出弧划分矩阵。**

例 9.13: $G = (V, E), \forall e \in E, w(e) \ge 0$

子集系统: $M = (E, \mathcal{J})$

其中 $f: I \subset E$, $I \in \mathcal{I} \Leftrightarrow I$ 是一些不交路之并集

组合优化问题: 求 4 中权重最大者

关于子集系统(*E*, *S*)的上述组合优化问题,是一个变了形的 TSP 问题,TSP 是一个环游,而此处为路,与 TSP 问题等价 它不是一个拟阵 Greedy 算法不能得到问题的最优解

二、两个拟阵的交

二部图的匹配问题

 $B = (V, U, E), \forall e \in E, w(e) \ge 0$

问题: 求B的最大匹配

 $M=(E,\mathcal{M})$

 \mathcal{M} : E中所有的匹配($E = \{e_1, e_2, \dots, e_n\}$ 的一些子集组成的集合)

组合优化问题: 求 4 中权重最大者

算法:不能用 Greedy 算法

所以, $M = (E, \mathcal{M})$ 不是一个拟阵。但是, \mathcal{M} 有比较好的性质,它是两个拟阵的交。即:

 \mathcal{M} 是两个拟阵 $M = (E, \mathcal{F})$ 和 $N = (E, \mathcal{K})$ 的公共独立子集的集合,即 $\mathcal{M} = \mathcal{F} \cap \mathcal{K}$,其中 M 和 N 都是划分拟阵。

M 是 $B_1 = (V, E)$ 的划分拟阵 $M_{\Pi_V} = (E, \mathcal{F}_V)$,其中 $E_{vj} \in \Pi_V \Leftrightarrow E_{vj}$ 是 V 中第 v_j 个节点所关联的所有边的集合;

N 是 $B_2 = (U, E)$ 的划分拟阵 $M_{\Pi_U} = (E, \mathcal{F}_U)$,其中 $E_{ui} \in \Pi_U \Leftrightarrow E_{ui}$ 是 U 中第 u_i 个节点所关联的所有边的集合;

所以:

二部图的匹配问题的子集系统 $M = (E, \mathcal{M})$ 满足:

 $I \subseteq E$ 是一个匹配($I \in \mathcal{M}$) $\Leftrightarrow I$ 在拟阵 $M_{\Pi_v} = (E, \mathcal{F}_V)$ 中是独立集($I \in \mathcal{F}_V$,即 I 中任何两条边在V 中没有公共端点)且 I 在拟阵 $M_{\Pi_U} = (E, \mathcal{F}_U)$ 中是独立集($I \in \mathcal{F}_U$,即 I 中任何两条边在U 中没有公共端点)。

所以: $\mathcal{M}=\mathcal{F}_V\cap\mathcal{F}_U$

所以,二部图的匹配问题可以变为求两个拟阵的最大公共独立子集问题。

一般的,我们假设 $M_1 = (E, \mathcal{G}_1)$ 和 $M_2 = (E, \mathcal{G}_2)$ 是定义在同一个集合上的两个拟阵,且 $r_1 = r_{M_1}$, $r_2 = r_{M_2}$ 分别表示 M_1 和 M_2 的秩函数。

定义 9.7 给出定义在同一个集合上的两个拟阵 $M_1=(E,\mathcal{S}_1)$ 和 $M_2=(E,\mathcal{S}_2)$,最大公共独立集问题是找出一个E的元素最多的子集X,满足 $X\in\mathcal{G}(M_1)\cap\mathcal{G}(M_2)$ 。

下面只讨论不带权拟阵的最大公共独立集问题。

定理 9.16 设 $J \in \mathcal{J}(M_1) \cap \mathcal{J}(M_2)$,则

- (i) 对任意的 $X \subseteq E$, $|J| \leq r_1(X) + r_2(E X)$ 。
- (ii) 若有 $X \subseteq E$,使得 $|J| = r_1(X) + r_2(E X)$,则 J 必是一个最大公共独立集。

证明:

- (i) 由于 $J = (J \cap X) \cup (J \cap (E X))$,根据秩函数的定义, $|J| = |J \cap X| + |J \cap (E X)| \le r_1(X) + r_2(E X)$ 。
- (ii) 设J'是一个最大公共独立集,则有 $|J| \le J' \le r_1(X) + r_2(E X) = |J|$,从 而|J| = |J'|,即J也是一个最大公共独立集。

问题: 寻找最大公共独立集是否等价于寻找满足定理 9.16 中(ii)的子集J和 X? 下面的著名定理回答了这个问题。

定理 9.17 (Edmonds)对 E 上的两个拟阵 $M_1 = (E, \mathcal{J}_1)$ 和 $M_2 = (E, \mathcal{J}_2)$,定义 $k_1 = \max\{|J|: J \in \mathcal{J}(M_1) \cap \mathcal{J}(M_2)\}$ 和 $k_2 = \min\{r_1(X) + r_2(E - X): X \subseteq E\}$,则恒

有 $k_1 = k_2$ 。

上述定理满足定理 9.16 中(ii)的子集 J 和 X 的存在性,但不能从上述定理的证明中把 J 构造出来。因此,需要讨论拟阵交算法(Matroid Intersection Algorithm: MIA)。

二部图的匹配问题是两个拟阵交的特殊情况,求两个拟阵 $M = (E, \mathcal{F})$ 和 $N = (E, \mathcal{F}_a)$ 的最大公共独立子集的算法是基于二部图的匹配的增广路算法。

利用增广路逐步增大匹配等价于逐步增大在两个拟阵 $M = (E, \mathcal{F})$ 和 $N = (E, \mathcal{K}_s)$ 中均独立的集合。

所以, 先复习一下二部图的匹配的增广路算法。

因此,对于公共独立集 $J \in \mathcal{J}(M_1) \cap \mathcal{J}(M_2)$ (即对应于二部图的一个匹配),引进辅助有向图G(J)。

定义 9.8 对子集 $J \in \mathcal{G}(M_1) \cap \mathcal{G}(M_2)$,定义辅助有向图G(J)如下:图G的节点集合为 $E \cup \{s,t\}$,其中s和t是两个在E之外的元素;G(J)的边集则由下列有向边组成

- (i) 对每个 $e \in E J$,若 $J \cup e \in \mathcal{J}(M_1)$,则(e,t)为G(J)中的有向边;
- (ii) 对每个 $e \in E J$,若 $J \cup e \in \mathcal{J}(M_2)$,则(s,e)为G(J)中的有向边;
- (iii) 对每个 $e \in E J$ 和 $f \in J$,若 $(J \cup e) f \in \mathcal{J}(M_1)$,则(e, f)为G(J)中的有向边:
- (iv) 对每个 $e \in E J$ 和 $f \in J$,若 $(J \cup e) f \in \mathcal{J}(M_2)$,则(f,e)为G(J)中的有向边;

定理 9.17 给定 $J \in \mathcal{J}(M_1) \cap \mathcal{J}(M_2)$,令 G = G(J),则

- (i) 若 G 中 有 一 条 s-t 有 向 路 $P = \{s, e_1, f_1, \dots, e_k, f_k, e_{k+1}, t\}$, 则 $J' = (J \cup \{e_1, e_2, \dots, e_{k+1}\}) \{f_1, f_2, \dots, f_k\} \in \mathcal{J}(M_1) \cap \mathcal{J}(M_2) .$
- (ii) 若有子集 $X \subseteq E$,使得在G,没有以节点u为尾,以节点v为头的有向 边 (u,v),满足 $u \in X \cup s$ 和 $v \in (E-x) \cup t$ (即 G 中不存在任何 s-t 有

向路), 则 $|J|=r_1(X)+r_2(E-X)$ 。

算法(拟阵交算法: MIA)

第 1 步: 置 $J = \phi$;

第 2 步: 构造辅助有向图 G = G(J);

第 3 步: 在辅助有向图 G = G(J) 搜索 s - t 有向路:

$$P = \{s, e_1, f_1, \dots, e_k, f_k, e_{k+1}, t\}$$

若不存在s-t有向路,则J为最大公共独立集,算法停止;否则转第4步;

第 4 步: 置 $J := (J \cup \{e_1, e_2, \dots, e_{k+1}\}) - \{f_1, f_2, \dots, f_k\}$,转第 2 步。

定理 9.18 上述拟阵交算法是正确的,并且是多项式算法。 证明:正确性由定理 9.17 直接可得。

利用二部图的增广路算法设计算法:

例 9.14: 求下列二部图的最大匹配

 (e_9, e_2, e_4) 是一个极大匹配。

从未盖点 e_1 开始, $P = [e_1, e_2, e_3, e_4, e_5]$ 是关于匹配 (e_9, e_2, e_4) 的增广路。

 $I \Rightarrow I + e_1 - e_2 + e_3 - e_4 + e_5 \Rightarrow I \oplus P$

因为: 从V中的未盖点 e_1 开始,所以: $I+e_1$ 是M的独立集(从 v_3 出发只

有一条边)

但是: $I + e_1 \pm N$ 中不是独立集(从 u_4 出发有两条边 $e_1 \pm n e_2$,否则 e_1 就是一条增广路),

所以: $I + e_1 \times N$ 中有一个圈 $\{e_1, e_2\}$ (有公共端点 u_4)

所以: 去掉 e_2 ,从而 $I+e_1-e_2$ 在M中和N中都是独立的,但它和I的基数相等,再加上 e_3 ,•••••••••

我们希望得到一个元素 e_k ,使得 $I+e_1-e_2+e_3-e_4+\cdots+e_k$ 在 M 中和 N 中都 是独立的,且比 |I| 多一个。

二、拟阵交问题的某些推广

1. 两个带权拟阵的交问题

更一般地,还可以考虑两个定义在同一个集合上的两个带权拟阵 $M_1 = (E, \mathcal{G}_1)$ 和 $M_2 = (E, \mathcal{G}_2)$,权函数分别为 c_1 和 c_2 。带权拟阵最大公共独立集问题是找出一个E的子集 $X \in \mathcal{G}(M_1) \cap \mathcal{G}(M_2)$,使得 $c_1(X) + c_2(X)$ 最大。

类似于赋权二部图的匹配,可以设计多项式算法。

2. 三个拟阵的交问题

三个拟阵的最大公共独立集问题——NP 完备问题。