Hidden Agenda

- Intro
- Evolution
- C&C history
- Launch Processing System overview
- Core System Overview
- Checkout & Launch Control System Overview
- Commercial-Off-The-Shelf guidelines
- Panel Discussions

In the early days of computing, primitive machines were hard to use and had minimal capability

 The usefulness of computers was unclear

Could anyone figure out "Software"?

<doe.j@example.</pre>

ew JButton("Hello, wor stener(new HelloBtnList

type until support for t
is finished
v JFrame("Hello Button"
frame.getContentPane();

isplay the fra

KENNEDY SPACE CENTER CONTROL SYSTEM HERITAGE

Core/TCMS Description

CLCS Description

CLCS SYSTEM ARCHITECTURE

CLCS Architecture Overview

CLCS Console layout

Operations Control Room Console grouping

CLCS Goals

- Deliver safe, reliable, dependable system that meets shuttle checkout needs
- Deliver system which enables increased checkout efficiency
- Deliver system with long useful life
 - Allow upgrades to keep pace with technology
 - Provide expansion room for future needs
- Reduce development & O & M costs
 - Use COTS where practical
 - Build on previous designs

COTS

- · COTS Commercial-Off-the-Shelf:
 - Available product requiring no new development for use
 - · Standard product in current vendor's catalog

Options to COTS

- Develop it yourself
 - Incur full development cycle costs
 - Sign up for long term sustaining and maintenance
- Use modified COTS
 - Incur some initial development costs
 - · Pay continuing sustaining/maintenance costs

COTS Downside

- · Won't match all requirements exactly
- · Requires upgrades at vendor's convenience
- Upgrades must be synchronized with other COTS products
- Will require updates to non-COTS products interfacing with COTS
- May drop features in new versions
- Won't be newest ideas
- May not be fastest or biggest
- · Little in depth knowledge of inner workings of product

COTS Upside

- Development costs shared across large customer base
- Large market base providing product quality feedback to vendor
- Trained workforce available
- May include features beyond basic requirements
- Compatibility with other COTS products

COTS Selection Risk

COTS "No-Brainers"

- Standard multi-vendor supplied with large established market:
 - Oscilloscopes, Voltmeters
 - Memory modules, standard interface boards, networks

COTS "Brainers"

- Single vendor supplied products with large established market:
 - Isolated in system with few interfaces
 - Business case driven-savings in development worth risk of replacement
 - Database software, network analyzers

COTS HIGH RISK AREAS

- Single vendor supplied products with no standard interface and small market:
 - Critical to system success
 - · No second source conversion available

Take precautions: Escrow agreements, budget reserve

CLCS EXPERIENCE: NETWORKS

- Asynchronous Transfer Mode network selected due to high capacity and projected commercial support
 - Support did not materialize for real time multicast techniques
 - · Switched to high speed ethernet with minimal rework
- Fiber Data Distributed Interface network selected due to wide support and failover techniques
 - Support dropped by vendors
 - · Switched to high speed ethernet with minimal rework

CLCS EXPERIENCE: OPERATING SYSTEMS

- Unix selected due to multivendor support and standardization
 - Switched vendor platforms
 - Experienced significant rework even though POSIX standards were mostly followed
 - · Threads implementation different
 - · Library structure and content different

CLCS EXPERIENCE: DISPLAY BUILDER

- Used for increased productivity in building operator displays
 - Portable across different vendor platforms
 - Remained stable through development life cycle
 - Support has continued to be good

SUMMARY

- Use of COTS can save development time and provide benefits of large use base for testing, user groups and skills availability
- Under the wrong conditions, COTS can cause major down-the-road expense and loss of support

CHOOSE WISELY!

Summary for C&C

?

Launch Site Command and Control System (LSCCS) Proof-of-Concept Discussion

July 2007

LSCCS Architecture Overview

- The architecture and design is based upon the use of mature, industry accepted, hardware and software standards and products for command and control applications.
- The architecture and design leverages agency investments in a common approach for information architecture.
- Specialized Software will be developed only when no suitable industry/government product is available

Timeline of events

Date	Event	Outcome		
June 2005	Exploration Systems Command and Control Tiger Team Formed	Feasibility study for a Exploration Systems Launch Site Command & Control System		
Aug 2005	Senior Review Team Presentation	Recommendation for a Launch Site Command and Control Architectural Trade Study		
Oct 2005	KSC Constellation Program office requested trade study to evaluate candidate launch site C&C architectures	Trade Study Team formed to evaluate C&C architectures based on 1) Legacy C&C Systems 2) Commercial C&C Systems 3) Standards Based C&C System		
June 2006	Ground Ops Project Control Board Review	PCB accepted recommendation to adopt Standards Based Architecture for Launch Site Command and Control System		
Aug 2006	KSC Constellation Program Office requests a Proof-of-Concept study for the Standards Based Architecture	Initial project team formed. Specific goals and objectives for trade study approved, Evaluation H/W and S/W procured.		
June 2007	Completion of Proof-of-Concept Activities	Proof-of-Concept findings and recommendations documented. Prototype demonstrations for Launch Site C&C System (through August)		
August 2007	Ground System Control Board Authority to Proceed Review	3		

Proof-of-Concept - Background

- The main emphasis is to "buy down" risk for GOP associated with the launch site command and control hardware and software development
- ♦ The Proof-of-Concept centers on the highest risk areas in the architecture
 - Fault Tolerance
 - Redundancy Management
 - Data Distribution and closed loop performance
 - Telemetry and command processing functionality
 - Scripting language for applications

The Proof-of-Concept team consisted of:

- NASA Civil Servants from KSC and ARC
- KSC on-site contractors
- Support from JPL and industry field engineers

Proof-of-Concept was completed in June 2007

- An prototype of the critical elements of the LSCCS is an outcome from the Proof-of-Concept
- Demonstrations of the LSCCS prototype are being provided throughout July and August

Summary of POC Activities

Product Group / Component	Demonstration	Prototype	Analysis / Market Survey	RFI
System Software				
Record and Retrieve			Χ	X
System Monitoring and Control	X	X	Χ	X
Command & Telemetry Svcs	X	X	X	100
Data Distribution Svcs	X	X	Χ	177
Common Services	X	X		
Application Framework / Software	X	X	X	
Display Framework	X	Х	Χ	E E
Application Framework	X	X		
Application Software	X	X		W-71
Displays	X	X	X	
Information Architecture	X	X	Χ	
Industrial Controllers	The Market	100		
Hardware	X	X	X	1411
Servers - Gateways, Apps	X	X	Χ	
Networks		X	X	-

LSCCS Proof of Concept Software Trades & Studies

System Monitor and Control

- RFI released to SEWP vendors
- IBM & HP submitted responses and provided onsite demonstration of their tool capabilities
- HP Openview selected for use in Prototype

Command and Telemetry Services

- Performed a Market Survey of 3 commercial toolkits/systems
- Harris OS/Comet selected for use in the prototype
 - Derived from Naval labs common test environment
 - Has many existing aerospace deployments including Iridium Satellite Control
 - Suitable for C3I architecture and interface requirements compliance

Data Distribution Service

- Performed a Market Survey of 2 middleware standards supporting publish/subscribe
- Prismtech Opensplice selected for use in the prototype
 - Has many existing aerospace and DOD deployments

LSCCS Proof of Concept Software Trades & Studies

Domain Specific Languages (DSL)

- Performed Market Survey and engineering assessment of 22 COTS/GOTS languages
- Down selected to and completed detailed assessment of 6 languages
- Python selected for use in the prototype

Information Architecture

- Working closely with the Level 2 representatives
- Developed initial prototype concept ontologies using the ARC selected IA tool set
- Providing feedback/modifications to Constellation Foundation Ontology based on experience gained populating the ontology with legacy shuttle data

Recording and Retrieval

- Considers shared, centralized data recording, retrieval, and archiving for all types of Constellation vehicle processing data.
- RFI has been released to industry, and have received 42 responses
- Evaluated all RFIs, developing requirements for RFP

LSCCS Proof of Concept Hardware Trades & Studies

High Reliability Availability and Serviceability Technology

- Networks Capability Testing
 - Testing focused on the applicability of 'best-of-breed' network technologies and ability to meet the performance, fault tolerance, and redundancy management requirements of the LSCSS networks
 - No significant surprises were encountered
- Server Capability Studies
 - Empirical analysis using procured Enterprise class servers provided promising results for meeting the reliability, availability, and serviceability (RAS) requirements.
 - Visit to the IBM facility in Austin TX has facilitate in-depth analysis
 - Planned trip to the Sun Microsystems in Sunnyvale later this summer

Allocation of Control

- Determination of criteria and design guidelines for allocation of command and closed loop control requirements for the GSE has been completed
 - Engineering study has documented approach for balancing the control and monitor functions across the control room and the PLC sub-systems with respect to performance, safety, and situational awareness
 - Engineering data has been modeled and control scenarios investigated using test software

Hardware Architecture Overview

Remote I/O

PLC Controller

- Focused on commercial products for supporting Fault Tolerance and Redundancy Management
- Commercial Network Switches
- Enterprise Class Servers

Command Net

J. Porter

6/19/07

- IBM P5 570
- IBM P5 560

ControlNet

Room 170B

Bora Bora (SMC Server)

LCS Software Architecture Overview

Simulation

GSE/Veh Shuttle Simulation

Industrial Controllers

- PLC application
- GSE math model

Information Architecture

- Data Ontology
- Build Products

System Software

- Data Distribution
- Isolation layers
- Telemetry processing

Application Framework/Software

- User displays
- Application specification

LSCCS Proof-of-Concept Selected Prototype Architecture

BM P-570

Enterprise Class Serve

Industrial Controllers

- Redundant Power
- Redundant Controllers
 - Switchover transparent to software

Gateway Interface Server

- PLC/GSE Data Processing -Harris OS Comet
- Telemetry and Command Processing – Harris OS Comet
- Data Distribution OpenSplice DDS
- Health & Status Monitor HP Openview

Application Server

- Data Distribution OpenSplice DDS
- Application Scripting Engine Python
- Prototype Application LH2 (Script and Tabular based)
- System Monitor and Control IBM/Tivoli and HP Openview
- High Reliability Availability and Serviceability Technology – IBM Hypervisor and Robust N/W Switches

User Workstation

Windows Based Dell Desktop

- Data Distribution OpenSplice
- Display Engine Java
- Prototype Dispalys LH2 and PLC
- Health & Status Monitor Tivoli and HP Openview

Demonstration Scenarios

Demonstrated scenarios will be based upon Shuttle LH2 launch support operations

LSCCS Proof-of-Concept Observations and Findings

Validation of Architectural Approach for LSCCS

- ☑ The proposed architecture for the LSCCS supports Constellation Program operational concepts and element processing requirements.
- ☑ The proposed LSCCS architecture enables an optimized life cycle cost for control system development and sustaining engineering.
- ☑ The proposed LSCCS architecture is robust and flexible to accommodate forthcoming and refined CxP operational support requirements.
- ☑ Commercially available, high availability, high reliability hardware and software are mature technologies and can provide a base for the LSCCS architecture.

Validation of Development Approach for LSCCS

- ☑ Development of launch site command and control check-out system using commercially available products is achievable within the baseline schedules.
- ☑ Development team approach using NASA Civil Servants, supporting contractors, and acquired products is a viable approach for the delivery of the LSCCS to support Constellation operational requirements.

LSCCS Proof-of-Concept Early Observations and Findings

Challenges- Documented Risks

- Compliance with agency level software development documents remains a challenge
 - Expectations of NPR 7150.2 and available evidence of compliance from industry not always directly compatible
 - Capability Maturity Model Integration (CMMI) compliance requirements not consistently viewed across Level II and Level III
- Assuming a great deal of automation on board for CEV check-out and launch operations
 - · Less lines of code needed for ground to flight applications
 - Minimizes tolerances for closed loop control between vehicle and ground
- Although it significantly reduces the development time, integration of COTS hardware and software has been more challenging than expected in some areas,