

Sungkyunkwan University

Event Prediction: Datasets

2022-02-16 09:30AM (KST), 2022-02-15 07:30PM (EST)

Huigyu Yang

Sungkyunkwan University

huigyu @skku.edu

Presentation Outline

Event Time Prediction

Datasets in Papers

Dataset in Kaggle

Event Time Prediction

- Event time prediction can be categorized into three types:
- Event occurrence; simplest type of event time prediction task
 - ► This can be formulated as a binary classification problem whether the event will occur or not
- Discrete-time prediction
 - Approximate time prediction of future events through time-slot based data composition
- Continuous-time prediction
 - Continuous-time prediction extends discrete-time prediction by increasing granularity of discretization
 - ► Regression, Point processes

Datasets in Papers (1/9)

- Event dataset from Social Media Platforms (SMP) [1]
 - Offline frameworks on event detection and predictions

					•		
Author	Year	Application area	SMP	Techniques applied	Model/ Frameworks	Features	Gap/Future direction
Vanetik N et al. [39]	2019	Event detection	Twitter	Uses text and wavelet analysis	TWIST (Twitter event summarizer and Trend detector)	Solve challenges in processing the large volume of data.	-
Nolasco et al. [40]	2019	Event detection	Twitter	LDA, TF	Candidate selection algorithm, Score Ranking, Label Selection	Model identifies subevent, labels the subevent from collection, tags the subevent with suitable labels	Close representation od sub-event, addition of external resources to improve results
Fedoryszak et al. [41]	2019	Event detection	Full Twitter Firehose	Minimum similarity threshold, Louvain clustering resolution, Time window	Similarity based temporal event detection	Tracks important trends, achieves good performance with minimum similarity more than 0.4	Many duplicates in subevent detection
Abbasi et al. [25]	2019	Adverse event prediction	Twitter	Signal detection based on Genetic algorithm, Sentiment analysis to reduce false positives	GASD framework for VOC (voice of customer) platform	Detection of events with accuracy more than 50–80% ,	Timeliness, testing on multiple platforms, trying with different thresholds ,use of machine learning
Fan et al. [26]	2019	Disaster disruption detection on people and land	Twitter	Weighted graph, Time series analysis, cosine similarity	Graph based approach	Better results with graph based approach than clustering and topic modelling, Retweets does not add value to results	Improvements needed in algorithms on burst prediction and vectorising of tweets, need of new algorithm on identification of

[1] Poonam Tijare, Jhansi Rani Prathuri, "A Survey on Event Detection and Prediction Online and Offline Models using Social Media Platforms," Materials Today: Proceedings, 2021

Datasets in Papers (2/9)

- Event dataset from Social Media Platforms (SMP)
 - Offline frameworks on event detection and predictions

Author	Year	Application area	SMP	Techniques applied	Model/ Frameworks	Features	Gap/Future direction
Yang et al. [27]	2019	Cross platform event detection	Flickr images from different sources	Shared data formats learning with dictionary learning	SMDR (Shared multi-view data representation model)	Model discovers heterogeneous events from crossdomains, incorporates shared dictionary and reconstruction error feature	Geolocalization can be added to improve quality, scaling up to big datasets, more platforms need to be explored
Saeed et al. [3]	2019	Event detection	Twitter	Graph analysis, KL- divergence	Enhanced Heartbeat Graph (EHG)	Low complexity approach, transforms the data into EHG and then detect events	Addition of temporal information, rank the detected events and application on live stream
Roy et al. [28]	2019	Natural disaster event	Twitter, New York taxi trip data	Location time series, normalized per userdisplacement	Quantifying mobility using resilience metrics by using geotagged information	Mobility information is studied based on disaster affected area	Better mobility data and infrastructure to conduct such experiments

Datasets in Papers (3/9)

- Event dataset from Social Media Platforms (SMP)
 - Online frameworks on event detection and predictions

Author	Year	Application area	SMP	Techniques applied	Model/Framework	Features	Gap/Future direction
Hasan et al. [44]	2019	Event detection in real time	Twitter	TF-ID, Incremental clustering, cosine similarity	TwitterNews+	Fast processing capability with constant process time, able to detect less bursty event	Temporal summarization of tweets in cluster can be done
Fedoryszak et al. [41]	2019	Event detection in real time	Full Twitter Firehose	Minimum similarity threshold, Louvain clustering resolution, Time window	Similarity based temporal event detection	Model experimented on both offline and online mode,tracks important trends	Model uses precomputed embeddings, dynamic embeddings are suitable
Mukhina et al. [47]	2019	Urban event prediction	Instagram	CNN	Proposed CNN based architecture	Predict user activity with average deviation of 1% compared to Ground Truth with 69.4% recall	Need to decrease in false positives, Need to build hybrid complex models for better accuracy
Hu et al [46]	2020	Event prediction	Twitter	Neural Network	Hierarchical attention- based model	Predicts the next possible event by forming word sequence that describes the event, uses joint learning	Accuracy improvement is needed

■ The datasets collected from SMP are huge and mostly given as natural language based data (i.e., tweets)

Datasets in Papers (4/9)

■ Mobility related datasets: Next-location Prediction

	Reference	Name	Year	DL Modules	Evaluation	Dataset	Code (https://bit.ly/)
	Abideen et al. [1]	DWSTTN	2021	Encoder, Decoder, Attention, FC	Distance	[127]	-
	Tang et al. [186]	CLNN	2021	LSTM, Embedding, FC	Distance	[127]	-
n	Bao et al. [10]	BiLSTM-CNN	2020	Embedding, BiLSTM, CNN	ACC@k	-	
Ħ	Chen et al. [36]	DeepJMT	2020	GRU, FC, Encoder	ACC@k	[218]	-
ijΞ	Yang et al. [217]	Flashback	2020	Attention, RNN	ACC@k	[37]	Flashback-1
J.	Ebel et al. [52]	-	2020	RNN, FC, Embedding	Distance	[127, 147]	-
ī	Rossi et al. [156]	-	2019	Attention, LSTM	Distance	[127, 147, 188]	-
Ę.	Gao et al. [67]	VANext	2019	CNN, GRU, Attention	ACC@k	[37]	-
ca	Kong et al. [103]	HST-LSTM	2018	LSTM	ACC	-	HST-LSTM
Lo T	Lv et al. [122]	T-CONV	2018	CNN, FC	Distance	[127]	T-CONV
Ė	Feng et al. [57]	DeepMove	2018	Attention, GRU, FC	ACC	[57]	DeepMove
Next	Yao et al. [220]	SERM	2017	LSTM	ACC@k	-	SERM-Repo
	Liu et al. [118]	ST-RNN	2016	RNN	Rec@k, F1@k, MAPE, AUC	[37, 181]	STRNN
	De Brébisson et al. [47]	-	2015	FC	Distance	[127]	next-loc-1

■ The data representations of mobility dataset are categorized into GPS trace and check-in based logs

Datasets in Papers (5/9)

Mobility related dataset lists [2]

	Ref.	Name	Items	Time span	Area	Used By	Task	Link (https://bit.ly/)
	[238]	GeoLife	182	4.5 Years	Asia	[58]	Traj. Gen.	Geolife
	[235]	T-Drive	10K	1 Week	Beijing, China	[84]	Flow. Pred.	T-Drive-Data
	[86]	DeepCrowd	-	4 months	Tokyo and Osaka, Japan	[86]	Crowd Flow Pred.	DeepCrowd
es	[230]	ST-ResNet taxis	-	4, 6 months	Beijing, China	[50, 91, 113, 117, 151, 184, 227, 230, 243]	Crowd Flow Pred.	ST-ResNet
traces	[230]	ST-ResNet bikes	-	6 months	New York City, USA	[50, 91, 113, 117, 151, 184, 227, 230, 243]	Crowd Flow Pred.	ST-ResNet
GPS t	[147]	Taxi San Francisco	500	30 days	San Francisco, USA	[52, 156, 224]	Next-Loc., Traj. Gen.	TaxiSF
5	[127]	ECML-PKDD taxi	441	9 months	Porto, Portugal	[47, 52, 122, 156]	Next-Loc.	TaxiPorto
	[188]	Taxi New York City	-	From 2009	New York City	[156, 184, 187]	Next-Loc.	TaxiNYC-2
	[110]	MDC	185	2 years	Lausanne, Switzerland	[108, 133]	Traj. Gen	MDC-2
	[95]	COVID 19 US Flows	-	From 2019	United States	[169]	Flow Gen.	USFlows
	[37]	Gowalla	196K	20 months	California & Nevada, USA	[67, 118, 217]	Next-Loc.	GowallaData
	[37]	Brightkite	58K	30 months	-	[67, 118, 217]	Next-Loc.	Brightkite
18	[219]	Foursquare	800K	10 months	NYC, Tokyo, World	public	Foursquare-Data	
check-ins	[217]	Foursquare	46K	1.5 Years	NYC	Flashback-1		
ecl	[57]	DeepMove	16K	1 Year	New York City	[57]	Next-Loc.	DeepMove
ch	[229]	GMove	1.4M	4 Months	Los Angeles	[220]	Next-Loc.	SERM-Repo
	[16]	New York City bikes	-	from 2013	New York City, USA	[116, 184, 187, 222]	Crowd Flow Pred.	BikeNYCData
_	[17]	Washington DC bikes	-	from 2010	Washington DC, USA	[184]	Crowd Flow Pred.	BikeWashington

For each dataset, we provide a reference to the paper introducing it, the number of items (users or points) in the dataset (symbol "-" indicates that the dataset is aggregated, that the number is not available, or that the dataset is continuously updated), its time span, the geographic area covered, the list of selected papers that use it, the mobility tasks the dataset is used for, and the link to download it.

[2] Massimiliano Luca, Gianni Barlacchi, Bruno Lepri, and Luca Pappalardo. "A Survey on Deep Learning for Human Mobility." ACM Computing Survey, Article 7. Nov. 2021

8/13

Datasets in Papers (6/9)

■ Check-in based log dataset

```
[37] Gowalla 196K 20 months California & Nevada, USA [67, 118, 217] Next-Loc. GowallaData [37] Brightkite 58K 30 months - [67, 118, 217] Next-Loc. Brightkite
```



```
[user] [check-in time]
                            [latitude]
                                           [longitude]
                                                         [location id]
196514 2010-07-24T13:45:06Z 53.3648119
                                          -2.2723465833 145064
196514 2010-07-24T13:44:58Z
                            53.360511233 -2.276369017
                                                         1275991
196514 2010-07-24T13:44:46Z 53.3653895945 -2.2754087046 376497
196514 2010-07-24T13:44:38Z 53.3663709833 -2.2700764333
196514 2010-07-24T13:44:26Z
                            53.3674087524 -2.2783813477 1043431
196514 2010-07-24T13:44:08Z 53.3675663377 -2.278631763
                                                         881734
196514 2010-07-24T13:43:18Z 53.3679640626 -2.2792943689 207763
196514 2010-07-24T13:41:10Z
                            53.364905
                                           -2.270824
                                                         1042822
```

🍕 Example of check-in information

```
[latitude]
                                          [longitude]
[user] [check-in time]
                                                         [location id]
                            39.633321
58186 2008-12-03T21:09:14Z
                                          -105.317215
                                                         ee8b88dea22411
                          39.633321
                                          -105.317215
58186 2008-11-30T22:30:12Z
                                                     ee8b88dea22411
58186 2008-11-28T17:55:04Z
                           -13.158333
                                          -72.531389 e6e86be2a22411
                                          -105.317215
       2008-11-26T17:08:25Z
                            39.633321
                                                         ee8b88dea22411
58187 2008-08-14T21:23:55Z
                          41.257924
                                          -95.938081 4c2af967eb5df8
58187 2008-08-14T07:09:38Z
                                          -95.938081 4c2af967eb5df8
                            41.257924
                                                     f3bb9560a2532e
58187 2008-08-14T07:08:59Z
                           41.295474
                                          -95.999814
                                       -95.999814
58187 2008-08-14T06:54:21Z
                          41.295474
                                                     f3bb9560a2532e
58188 2010-04-06T06:45:19Z
                                                     ddaa40aaa22411
58e12bc0d67e11
                                       14.854444
                            46.521389
       2008-12-30T15:30:08Z
                                       14.849618
58188
                           46.522621
58189 2009-04-08T07:36:46Z
                          46.554722
                                        15.646667
                                                       ddaf9c4ea22411
58190 2009-04-08T07:01:28Z
                            46.421389
                                          15.869722
                                                         dd793f96a22411
```


Datasets in Papers (7/9)

■ Check-in based log dataset: <u>Foursquare Dataset</u> (by Dingqi YANG)

[219]	Foursquare	800K	10 months	NYC, Tokyo, World	public	Foursquare-Data	207
[217]	Foursquare	46K	1.5 Years	NYC	Flashback-1		
[57]	DeepMove	16K	1 Year	New York City	[57]	Next-Loc.	DeepMove

Datasets in Papers (8/9)

■ GPS and Check-in based log dataset: Citi Bike

[16] New York City bikes

Washington DC bikes

- from 2013 - from 2010 New York City, USA Washington DC, USA [116, 184, 187, 222]

[184]

Crowd Flow Pred. Crowd Flow Pred. BikeNYCData BikeWashington

Citi Bike Trip Histories

We publish downloadable files of Citi Bike trip data. The data includes:

- Ride ID
- · Rideable type
- · Started at
- Ended at
- Start station name
- · Start station ID
- · End station name
- · End station ID
- Start latitude
- · Start longitude
- End latitude
- · End Longitude
- Member or casual ride

Datasets in Papers (9/9)

GPS and Check-in based log dataset: Citi Bike

[16] New York City bikes from 2013

New York City, USA

[116, 184, 187, 222]

BikeNYCData

Washington DC bikes

- from 2010

Washington DC, USA

[184]

Crowd Flow Pred. BikeWashington Crowd Flow Pred.

4	ride id	ridaabla tura	stantad at	anded at	start station name	atout atotion id	and station name	and station id	atout lot	start Inc.	and lat	and Inc	manufact control
2	1589851B36BB0B5C	rideable_type	started_at	ended_at	start_station_name	start_station_id 7738.04	end_station_name	end_station_id 7876.07	start_lat 40.80949535	start_Ing	end_lat 40.81900582	end_lng -73.94476891	member_casual member
2		classic_bike	2022-01-07 12:56	2022-01-07 13:01	Adam Clayton Powell Blvd & W 126 St		Frederick Douglass Blvd & W 139 St			-73.94776493			
3	4C0BB6BD8AFCA917	classic_bike	2022-01-06 16:01		Adam Clayton Powell Blvd & W 126 St	7738.04	Frederick Douglass Blvd & W 139 St	7876.07	40.80949535	-73.94776493	40.81900582	-73.94476891	member
4	765572ACD0D65972	classic_bike	2022-01-31 15:31	2022-01-31 15:36	E 56 St & Madison Ave	6732.01	E 48 St & 5 Ave	6626.01	40.761573	-73.972628	40.75724568	-73.97805914	member
5	86E8E7C4791EA81D	classic_bike	2022-01-21 17:38	2022-01-21 17:46	3 Ave & E 100 St	7414.17	E 85 St & 3 Ave	7212.05	40.7877214	-73.94728331	40.77801203	-73.95407149	member
6	D3B80E976AC4DBCF	classic_bike	2022-01-23 18:37	2022-01-23 18:43	E 88 St & Park Ave	7293.1	E 85 St & 3 Ave	7212.05	40.7814107	-73.95595908	40.77801203	-73.95407149	member
7	283D619884B13025	classic_bike	2022-01-13 12:17	2022-01-13 12:20	E 85 St & York Ave	7146.04	E 85 St & 3 Ave	7212.05	40.77536905	-73.94803392	40.77801203	-73.95407149	member
8	CC02A6C3FA1F2083	classic_bike	2022-01-11 9:09	2022-01-11 9:20	Broadway & Madison St	4483.1	Suydam St & Broadway	4689.03	40.68822	-73.91966	40.69544	-73.93223	member
9	968470449EEB57C0	classic_bike	2022-01-09 12:33	2022-01-09 12:50	Broadway & W 58 St	6948.1	E 85 St & 3 Ave	7212.05	40.76695317	-73.98169333	40.77801203	-73.95407149	member
10	16C601B498A35DBF	classic_bike	2022-01-14 8:28	2022-01-14 8:33	Lenox Ave & W 111 St	7602.05	E 102 St & Park Ave	7488.24	40.7987859	-73.9523	40.7904828	-73.95033068	member
11	7E477AA47C849CE5	classic_bike	2022-01-19 13:27	2022-01-19 13:40	Hancock St & Bedford Ave	4255.05	Suydam St & Broadway	4689.03	40.68216564	-73.95399026	40.69544	-73.93223	member
12	4DC494327327DD7E	classic_bike	2022-01-31 13:17	2022-01-31 13:28	E 97 St & Madison Ave	7393.09	E 85 St & 3 Ave	7212.05	40.787801	-73.953559	40.77801203	-73.95407149	member
13	2FF6406688A54185	classic_bike	2022-01-27 12:45	2022-01-27 12:53	E 97 St & Madison Ave	7393.09	E 85 St & 3 Ave	7212.05	40.787801	-73.953559	40.77801203	-73.95407149	member
14	7BA60209DC4F5607	classic_bike	2022-01-04 6:54	2022-01-04 6:58	5 Ave & E 135 St	7769.06	Park Ave & E 124 St	7682.01	40.812191	-73.937838	40.8045555	-73.9396861	member
15	4E4ADEA1887ACAC3	classic_bike	2022-01-04 18:38	2022-01-04 18:48	E 91 St & 2 Ave	7286.01	Park Ave & E 124 St	7682.01	40.78115276	-73.94963041	40.8045555	-73.9396861	member
16	2DB47657BEC9445B	classic_bike	2022-01-09 14:11	2022-01-09 14:16	E 91 St & 2 Ave	7286.01	E 85 St & 3 Ave	7212.05	40.78115276	-73.94963041	40.77801203	-73.95407149	member
17	B0536F12DE7E5311	classic_bike	2022-01-19 8:44	2022-01-19 8:52	5 Ave & E 135 St	7769.06	Park Ave & E 124 St	7682.01	40.812191	-73.937838	40.8045555	-73.9396861	member
18	6D9D2C2222D7E33A	classic_bike	2022-01-04 13:59	2022-01-04 14:05	5 Ave & E 135 St	7769.06	Park Ave & E 124 St	7682.01	40.812191	-73.937838	40.8045555	-73.9396861	member
19	CD49F9CD64CD6D89	classic_bike	2022-01-23 12:24	2022-01-23 12:28	E 91 St & 2 Ave	7286.01	E 85 St & 3 Ave	7212.05	40.78115276	-73.94963041	40.77801203	-73.95407149	member
20	280A334FE7464EB4	classic_bike	2022-01-20 18:29	2022-01-20 19:20	E 91 St & 2 Ave	7286.01	E 102 St & Park Ave	7488.24	40.78115276	-73.94963041	40.7904828	-73.95033068	member
21	3C96570C77108EA3	classic_bike	2022-01-28 6:28	2022-01-28 6:33	W 41 St & 8 Ave	6602.03	E 48 St & 5 Ave	6626.01	40.75640548	-73.9900262	40.75724568	-73.97805914	member
22	D95AD5F2DAD2C0A6	classic_bike	2022-01-25 8:21	2022-01-25 8:40	Central Park W & W 91 St	7453.01	E 48 St & 5 Ave	6626.01	40.78866499	-73.96680057	40.75724568	-73.97805914	member
23	9C086BDA0F37CB0E	classic_bike	2022-01-02 8:49	2022-01-02 8:52	E 82 St & East End Ave	7049.04	E 85 St & 3 Ave	7212.05	40.7724607	-73.9468208	40.77801203	-73.95407149	member
24	8DCFD9368A79B545	classic_bike	2022-01-03 8:14	2022-01-03 8:18	E 82 St & East End Ave	7049.04	E 85 St & 3 Ave	7212.05	40.7724607	-73.9468208	40.77801203	-73.95407149	member
25	7B7B5A23EEF32F3E	classic_bike	2022-01-06 8:40	2022-01-06 8:50	Old Broadway & W 133 St	7881.09	Park Ave & E 124 St	7682.01	40.818212	-73.955277	40.8045555	-73.9396861	member
26	2DAEA88A2670038E	classic_bike	2022-01-24 15:41	2022-01-24 15:49	3 Ave & E 100 St	7414.17	E 85 St & 3 Ave	7212.05	40.7877214	-73.94728331	40.77801203	-73.95407149	member
27	12BAFFB86A19D6DA	classic_bike	2022-01-23 17:13	2022-01-23 17:20	3 Ave & E 100 St	7414.17	E 85 St & 3 Ave	7212.05	40.7877214	-73.94728331	40.77801203	-73.95407149	member

Dataset in Kaggle

■ Event log of hospital

	Α	В	С	D
1	patient	action	org:resource	DateTime
2	patient 0	First consult	Dr. Anna	2017-01-02 11:40:11
3	patient 0	Blood test	Lab	2017-01-02 12:47:33
4	patient 0	Physical test	Nurse Jesse	2017-01-02 12:53:50
5	patient 0	Second consult	Dr. Anna	2017-01-02 16:21:06
6	patient 0	Surgery	Dr. Charlie	2017-01-05 13:23:09
7	patient 0	Final consult	Dr. Ben	2017-01-09 08:29:28
8	patient 1	First consult	Dr. Anna	2017-01-02 12:50:35
9	patient 1	Physical test	Nurse Jesse	2017-01-02 13:59:14
10	patient 1	Blood test	Lab	2017-01-02 14:20:19
11	patient 1	X-ray scan	Team 1	2017-01-06 09:13:40
12	patient 1	Second consult	Dr. Anna	2017-01-06 10:38:04
13	patient 1	Medicine	Pharmacy	2017-01-06 11:47:36
14	patient 1	Final consult	Dr. Anna	2017-01-06 16:49:21
15	patient 2	First consult	Dr. Anna	2017-01-04 10:02:49
16	patient 2	Physical test	Nurse Jesse	2017-01-06 09:05:01
17	patient 2	X-ray scan	Team 2	2017-01-10 08:05:47
18	patient 2	Blood test	Lab	2017-01-10 09:12:09
19	patient 2	Second consult	Dr. Anna	2017-01-12 16:32:00
20	patient 2	Medicine	Pharmacy	2017-01-13 10:32:51
21	patient 2	Final consult	Dr. Ben	2017-01-17 11:54:48
22	patient 3	First consult	Dr. Anna	2017-01-05 16:10:58
23	patient 3	Blood test	Lab	2017-01-06 08:15:00
24	patient 3	X-ray scan	Team 2	2017-01-11 11:36:39
25	patient 3	Physical test	Nurse Corey	2017-01-11 12:38:58
26	patient 3	Second consult	Dr. Anna	2017-01-13 10:48:35
27	patient 3	Medicine	Pharmacy	2017-01-13 13:51:21
	F 31.0.11. 3			

Datasets in Papers

■ Event dataset from Social Media Platforms (SMP)

Author	Year	Dataset	Is dataset Public?
Offline models			
Hu et al. [29]	2017	Twitter, Instagram, Newyork taxi trip data	No
Sangameshwar et al. [30]	2017	Twitter tweets on Natural disaster with lattitude and longitude data	No
Chong et al. [31]	2017	Avenue, Subway and UCSD	Yes
Acharya et al. [32]	2017	Surge in power system blackouts and views on web page	No
Jin et al. [33]	2017	data of Google search, news and twitter from January 1, 2012 to July 31, 2013	No
Rule et al. [34]	2018	Charlottesville rally and torch light march past	No
Garg et al. [35]	2018	First story detection	Yes
Repp et al. [36]	2018	Event 2012	Yes
Feng et al. [37]	2018	ACE 2005	yes
Gupta et al. [38]	2018	6.5 million Tweets on MTV Lady Gaga 2017 event and ICC Championship Trophy 2017	No
Nolasco et al. [40]	2019	Brazil's political protest tweets 2013, Zika virus tweets 2015	No
Fedoryszak et al. [41]	2019	Full Twitter Firehose, English tweets from United states	No
Abbasi et al. [25]	2019	Tweets, forums postings, and search query logs on automotive and pharmaceutical industries.	No
Fan et al. [26]	2019	Hurricane Harvey data in 2017 in Housten	No
Yang et al. [27]	2019	Multi-domain and Multi-modality Event Detection dataset, and MediaEval SED 2014	Yes
Saeed et al. [3]	2019	Football association challenge cup final, US election 2012, Super Tuesday	Yes
Roy et al. [28]	2019	Hurricane Sandy, New York taxi trip data	Yes
Online Models			
Hasan et al. [47]	2016	Event 2012 corpus	Yes
Ranganath S et al. [42]	2016	Nigerian Election	No
Ngyyen et al. [40]	2017	FA cup and Super Tuesday	Yes
Singh et al. [48]	2017	Twitter disaster tweets stream on floods in eastern and southern states, India	No
Hasan et al. [44]	2019	Event 2012 corpus	Yes
Fedoryszak et al. [41]	2019	Full Twitter Firehose	No
Mukhina et al. [45]	2019	Instagram posts on New York	No
Hu et al. [46]	2020	Real world dataset	Yes