2nd Progress Meeting

Yutong Zhao

Department of Physics and Astronomy
University of Manitoba

Outline

- 1. Research and academic progress
- 2. Introduction to dissipative coupling
- 3. Level attraction in metamaterials and its applications
- 4. Broadband nonreciprocal device in cavity magnon polaritons

Coursework

1.	PHYS 7720	Quantum Mechanics 1	(A+))
----	-----------	---------------------	------	---

- 2. PHYS 7510 Condensed Matter Physics 2 (A)
- 3. PHYS 7590 Electromagnetic Theory (A+)
- 4. ECE 7440 Microwave Materials Measurement Techniques (A+)

Publications

1st Author:

Physical Review Applied (received)

Coauthor: (3 paper total)

Nature communications, New Journal of Physics, Communications Physics

Research and academic progress

Course Work:

PHYS 7510

Condensed Matter Physics 2 (A)

PHYS 7590

Electromagnetic Theory (A+)

Course Work:

ECE 7440

Microwave Materials

Measurement Techniques (A+)

2018

2019.04 1st Progress meeting

+ Thesis proposal

2020

2020.06 2nd Progress meeting + Thesis submission

2020.07 Published 1st paper

2020.08 Thesis defense + finial submission

Publications

Course Work:

Quantum Mechanics 1 (A+)

2018.09 Start of the program

PHYS 7720

[1]. Zhao, Y. T., et al. "Broadband nonreciprocity realized by locally controlling the magnon's radiation." Physical Review Applied, 2020, 14(1): 014035.

2019

- [2]. Rao, J. W., et al. "Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device." Nature communications 10.1 (2019): 1-7.
- [3]. Yao, B.M., et al. "Coherent control of magnon radiative damping with local photon states", Communications Physics (2019):0482
- [4]. Rao, J. W., et al. "Level attraction and level repulsion of magnon coupled with a cavity anti-resonance." New Journal of Physics 21.6 (2019): 065001.

Introduction to cavity-magnon-polariton (CMP)

Coupling Mechanics of CMP

Coherent coupling

Level repulsion has been widely studied in CMP

Dissipative coupling

Discovery of level attraction in CMP

My research is focused on dissipative coupling.

Why do we study dissipative coupling?

Level attraction in cavity anti-resonance

On-chip device utilizing level attraction

Physical Review Applied 11.5 (2019): 054023.

Physical Review B 100.1 (2019): 014415.

Cavity mediated level attraction

Nonreciprocal microwave transmission

Physical review letters 123.12 (2019): 127202.

How do we understand CMP?

Coupled photon and magnon

→ Periodic motion

Complex frequency

$$\widetilde{\omega}_1 = \omega_1 + i\gamma_1$$

Resonance (real) + damping (imaginary)

Why do we study?

Physical review letters 104.7 (2010): 077202.

- 1. Spin-Photon interaction.
- 2. Nanosized structural elements
- 3. Quantum information procession

. .

Coherent coupled pendulums

Schematic – Spring

Equation of motion:

$$\ddot{\varphi}_1 + 2\lambda_1 \dot{\varphi}_1 + \omega_1^2 \, \varphi_1 - 2\omega_1 J(\varphi_2 - \varphi_1) = 0$$

$$\ddot{\varphi}_2 + 2\lambda_2 \dot{\varphi}_2 + \omega_2^2 \, \varphi_2 - 2\omega_2 J(\varphi_1 - \varphi_2) = 0$$

Matrix form

$$\begin{bmatrix} \omega - \widetilde{\omega}_1 - J & J \\ J & \omega - \widetilde{\omega}_2 - J \end{bmatrix} \begin{bmatrix} |\varphi_1| \\ |\varphi_2| \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Interpretation:

$$\begin{bmatrix} \text{Pendulum} - 1 & \text{coupling} \\ \text{coupling} & \text{Pendulum} - 2 \end{bmatrix}$$
$$\text{coupling} = \text{Real}$$

→ Conservative force

Dissipative coupled pendulums

Schematic – Dashpot

Equation of motion:

$$\ddot{\varphi}_1 + 2\lambda_1 \dot{\varphi}_1 + \omega_1^2 \, \varphi_1 \, - 2\Gamma(\dot{\varphi}_2 - \dot{\varphi}_1) = 0$$

$$\ddot{\varphi}_2 + 2\lambda_2 \dot{\varphi}_2 + \omega_2^2 \, \varphi_2 \, - 2\Gamma(\dot{\varphi}_1 - \dot{\varphi}_2) = 0$$

Matrix form

$$\begin{bmatrix} \omega - \widetilde{\omega}_1 - i\Gamma & i\Gamma \\ i\Gamma & \omega - \widetilde{\omega}_2 - i\Gamma \end{bmatrix} \begin{bmatrix} |\varphi_1| \\ |\varphi_2| \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Interpretation:

$$\begin{bmatrix} \text{Pendulum} - 1 & \text{coupling} \\ \text{coupling} & \text{Pendulum} - 2 \end{bmatrix}$$

→ Nonconservative force

Dissipative coupling in metamaterials

Transmission transition from 0 to 1

Asymmetry resonance is a typical Fano resonance

We have observed a transition from 0 to 1 in transmission.

 $1 \rightarrow on$

 $0 \rightarrow \text{off}$

Potential to design switching device.

Voltage-controlled level attraction

Varactor loaded split-ring resonator

Ultra-high Quality factor → sensitive detection / sensor design

Nonreciprocity in cavity magnon polariton

Wang, Yi-Pu, et al. "Nonreciprocity and unidirectional invisibility in cavity magnonics." Physical review letters 123.12 (2019): 127202.

Unidirectional transmission

Nonreciprocal

Transmission:

Bandwidth $\sim 0.5 \text{ MHz}$

Limited by magnon linewidth

Local control of magnon damping

Broadband nonreciprocal device

Summary

- These research explores the application of dissipative coupling in microwave frequencies.
- Practical applications on sensitive detection, switch device, and broadband nonreciprocal device.

Timeline

