抽象代数笔记

副标题

Zhang Liang

2025年4月12日

前言标题

前言内容

2025年4月12日

目录

第一章	域	0
1.1	域的定义	0
	1.1.1 域	0
	1.1.2 域的性质	0
1.2	域的同态	2
1.3	域的特征	3
	1.3.1 域的特征的定义	3
	1.3.2 域的特征的性质	4
1.4	域的扩张	5
	1.4.1 域的扩张的定义	5
	1.4.2 有限扩张	5
	1.4.3 有限生成扩张	6
	1.4.4 代数扩张	7
1.5	代数闭包	10
第二章	环、模	12
2.1	环的定义	12
	2.1.1 环的定义	12
	2.1.2 环的性质	13
	2.1.3 整环	13
	2.1.4 子环	13
2.2	环的同态	14
	2.2.1 定义	14

	2.2.2 同态的核、像	15
2.3	环的理想	16
	2.3.1 理想的定义	16
	2.3.2 理想的性质	16
2.4	商环	17
	2.4.1 商环的定义	17
2.5	同态基本定理	18
	2.5.1 同态基本定理	18
	2.5.2 同构基本定理	19
2.6	模	21
	2.6.1 模的定义	21
	2.6.2 模的同态	23
	2.6.3 商模	23
第三章	Galois 理论	24
	Galois 群	
3.1	Galois 群	24
第四章	附录	2 5
4.1	一些典型的域	25
	4.1.1 F_p	25
	412 M	26

第一章 域

1.1 域的定义

1.1.1 域

定义 1.1.1: 域

设 F 是一个集合,如果存在两个运算 $+: F \times F \to F$ 和 $\cdot: F \times F \to F$,分别称为加 法和乘法,并且满足:

- ① (加法单位元存在) 存在一个元素 $0_F \in F$, 称为零元, $\forall x \in F, x + 0_F = 0_F + x = x$
- ② (加法逆存在) $\forall x \in F, \exists (-x) \in F, \text{s.t.} x + (-x) = (-x) + x = 0_F, \ (-x)$ 称为 x 的加法逆元
- ③ (加法交换律) $\forall x, y \in F, x + y = y + x$
- ④ (加法结合律) $\forall x, y, z \in F, (x + y) + z = x + (y + z)$
- ⑤(乘法单位元存在)存在一个元素 $1_F \in F, 1_F \neq 0_F$,称为一元, $\forall x \in F, x \cdot 1_F = 1_F \cdot x = x$
- ⑥(乘法逆存在) $\forall x \in F 0_F, \exists x^{-1} \in F, \text{s.t. } x \cdot x^{-1} = x^{-1} \cdot x = 1, \ x^{-1}$ 称为 x 的乘法 逆元
- ②(乘法交换律) $\forall x, y \in F, x \cdot y = y \cdot x$
- \otimes (乘法结合律) $\forall x, y, z \in F, (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- ⑨ (乘法分配律) $\forall x, y, z \in F, x \cdot (y+z) = x \cdot y + x \cdot z$

1.1.2 域的性质

1.

命题 1.1.1. 加法和乘法的单位元是唯一的。

1.1 域的定义 第一章 域

证明: 先考虑加法的单位元。假设命题不成立,那么我们不妨假设 $0_1, 0_2$ 都是 F 的零元, $0_1 \neq 0_2$

那么 $0_1 = 0_1 + 0_2 = 0_2$,于是有 $0_1 = 0_2$,与假设矛盾。于是加法的单位元唯一。

同理可证, 乘法的单位元也是唯一的。

2.

命题 1.1.2. $\forall a$, 加法的逆 -a 是唯一的。

如果还有 $a \neq 0$,那么乘法的逆 a^{-1} 也是唯一的。

证明: 先考虑加法逆,不妨假设命题不成立,那么 $\exists b, c, a+b=0, a+c=0, b\neq c$ 于是,b=b+0=b+(a+c)=(a+b)+c=0+c=c,这与假设矛盾。于是加法逆唯一。

同理可证,乘法逆也是唯一的。

3. 证明: $a \cdot 0 = 0$

证明: $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$

$$\Rightarrow a \cdot 0 + (-a \cdot a) = a \cdot 0 + a \cdot 0 + (-a \cdot 0)$$

$$\Rightarrow 0 = a \cdot 0$$

立即有以下推论:

推论 1.1.1

$$ab = 0 \Rightarrow a = 0 \lor b = 0$$

证明: 假设 $a \neq 0$,那么 $b = a^{-1} \cdot 0 = 0$,命题得证

4.

命题 **1.1.3.** $-a = (-1) \cdot a$

证明: $a + (-a) = 0 = (1 + (-1)) \cdot a = 1 \cdot a + (-1) \cdot a = a + (-1) \cdot a$

$$\Rightarrow (-a) + a + (-a) = (-a) + a + (-1) \cdot a$$

$$\Rightarrow -a = (-1) \cdot a$$

随后我们即可得出以下推论

推论 1.1.2

$$(-1) \cdot (-x) = x$$

1.2 域的同态 第一章 域

证明: 我们只需证明: (-1)(-1) = 1

因为
$$(-1)(-1) + (-1) \cdot 1 = 0$$

$$\Rightarrow (-1)(-1) + (-1) = 0 \Rightarrow (-1)(-1) = 1$$

那么,
$$(-1)(-x) = (-1)(-1) \cdot x = 1 \cdot x = x$$

推论 1.1.3

$$(-x)(-x) = x \cdot x$$

证明: 运用前面的推论中的结果, $(-x)(-x) = x \cdot (-1)(-1) \cdot x = x \cdot 1 \cdot x = x \cdot x$

1.2 域的同态

定义 1.2.1: 域的同态

 F_1, F_2 是两个域,如果存在一个映射 $\varphi: F_1 \to F_2$,满足:

②
$$\varphi(1_{F_1}) = 1_{F_2}$$

$$\Im \varphi(x+y) = \varphi(x) + \varphi(y)$$

$$\ \, \mathfrak{P}(x\cdot y)=\varphi(x)\cdot\varphi(y)$$

值得注意的是,与我们之前了解到的线性空间同构不同,域的同态完全没有对映射的满 射性、单射性作任何限制。但是,

以下定理证明,两个域如果同态,那么同态映射是一个单射

定理 1.2.1: 域同态的单射性

若 $\varphi: F_1 \to F_2$ 是 F_1 到 F_2 的同态,那么 φ 是单射

证明: 不妨假设命题不成立。于是, $\exists x_1 \neq x_2$ s.t. $\varphi(x_1) = \varphi(x_2)$

那么有:
$$\varphi(x_1-x_2)=\varphi(x_1)-\varphi(x_2)=0_{F_2}$$

因为我们已经假设了 $x_1 \neq x_2$,于是 $(x_1 - x_2)^{-1}$ 存在。将上式乘以 $\varphi((x_1 - x_2)^{-1})$ 得:

$$1_{F_2} = \varphi(1_{F_1})\varphi\left((x_1 - x_2)^{-1}(x_1 - x_2)\right) = \varphi\left((x_1 - x_2)^{-1}\right)\varphi\left((x_1 - x_2)\right) = 0_{F_1}$$

与
$$0_{F_2} \neq 1_{F_2}$$
 矛盾,于是命题得证。

在证明这一点后,我们可以类似地引入域的同构:

1.3 域的特征 第一章 域

定义 1.2.2: 域的同构

设 $\varphi: F_1 \to F_2$ 是 F_1 到 F_2 的同态

如果 φ 还是个满射,那么我们称 φ 是一个同构;

特别地,如果有 $F_1 = F_2$,我们称 φ 是一个自同构。

并且引入自同构的不动域的概念:

定义 1.2.3: 自同构域的不动域

设 $\sigma: F \to F$ 是 F 的自同构,那么我们称集合

 $\{x \in F | \sigma(x) = x\}$ 为 F 的不动域

"不动域"这一名称是合理的,因为利用域同构的定义容易证明不动域是一个域,而且是F的一个子域。

1.3 域的特征

1.3.1 域的特征的定义

定义 1.3.1: 域的特征

设 F 是一个域, 定义以下映射 $N: \mathbb{N} \ni n \mapsto n_F \in F$, 满足:

 $N(0) = 0_F, N(n+1) = n_F + 1_F$

那么,如果 N 是一个单射,我们称 F 的特征为 0,记作 Char F = 0;

否则,我们将满足 $N(p) = 0_F, p > 0$ 的最小正整数称为 F 的特征,记作 $\operatorname{Char} F = p$ 。

我们首先需要证明的是,任何一个域都是具有特征的,因为对于定义中的第二种情形,我们并不知道这样的 p 是否一定存在。

定理 1.3.1: 域特征的存在性

任何域 F 的特征 Char F 均存在

证明: 我们只需要证明第二种情形。

容易证明,N(m+n)=N(m)+N(n)。(仿照 Peano 公理下证明加法性质的方式即可)于是,因为 N 不是单射,于是一定有 $a,b\in\mathbb{N},a>b,N(a)=N(b)$

1.3 域的特征 第一章 域

于是有 $N(a-b) = N(a) - N(b) = 0_F$ 。

那么 $\{m|N(m)=0_F\}\neq\emptyset$, 因此这样的最小整数 Char F 存在

接下来考虑几个性质

1.3.2 域的特征的性质

命题 1.3.1. 设 F 是一个域, 那么或者 Char F = 0, 或者 Char F = p 是素数

证明: 我们只需要证明当 Char F = p > 0 时, p 是素数

不妨假设命题不成立,那么一定有1 < q < p, 1 < r < p, p = qr

容易证明,N(qr) = N(q)N(r)。(仿照 Peano 公理下证明乘法性质的方式即可)

但是,因为 N(qr)=0,于是 N(q)=0 \vee N(r)=0,这与定义中 p 是使 N(x)=0 成立的最小正整数矛盾。

于是命题得证。

定理 1.3.2: 同态域的特征相等

设 $\varphi: E \to F$ 是域 E 到域 F 的同态

那么有: Char E = Char F

证明: 我们不妨假设结论不成立。

首先我们证明,不可能 Char E = 0, Char F = p, p 为素数。

此时, $\varphi(N_E(p))=N_F(p)=0_F$,此处 N_E,N_F 分别是 N 在对应 E,F 的情况下的映射那么按照同态的定义,一定有 $N_E(p)=0_E$,但是这与 Char E=0 矛盾。

那么只需要考虑当 Char E = p, Char F = q, p, q 为素数, $p \neq q$

那么,有 $\varphi(N_E(q)) = N_F(q) = 0_F$

那么按照同态的定义,一定有 $N_E(q) = 0_E$,这说明 $p \mid q$,这与 q 是素数矛盾。

所以假设不成立, 命题得证。

1.4 域的扩张

1.4.1 域的扩张的定义

定义 1.4.1: 子域

设 E, F 是两个域, $E \subseteq F$

如果 $0_F, 1_F \in E$, 并且 F 中的加法和乘法对 E 形成一个域,

那么我们称 $E \neq F$ 的一个子域, 并称 $F \neq E$ 的一个域扩张,

记作 $F \setminus E$

如果 $E \setminus F$, $F \cong G$, 那么我们也称: 在同构意义下 $E \setminus G$ 。

此后我们所说的子域,默认指的是同构意义下的子域。

借助域的扩张的概念,我们可以证明一些比较简单的结论

命题 1.4.1. 域 F 如果有 $Char\ F=0$,那么 $\mathbb Q$ 是它的子域; 如果有 $Char\ F=p$,那么 F_p 是它的子域

证明: 如果 Char F=0,那么 F 是无限集。因为 $0_F, 1_F \in F$,那么一定也有 $n_F \in F, n \in \mathbb{N}$ 。

那么, $-n_F \in F$; 进一步地,一定有 $a \cdot b^{-1} \in F$, $a, b \in \{\pm n_F\}$ 。

那么,一定有 $F\setminus \mathbb{Q}$ 。

如果 Char F=p, p 是素数。那么, $\{0_F,\cdots,(p-1)_F\}$ 由映射 N 的性质一定是一个域。那么,一定有 $F\backslash F_p$

1.4.2 有限扩张

从域的定义容易看出,F 也可以视为 E 上的一个线性空间。

定义 1.4.2: 域的扩张次数

如果 $F \setminus E$,那么我们记 $[F:E] := dim_E F$,并称 $F \notin E$ 由 [F:E] 次扩张得到的。 如果 [F:E] 有限,我们称 $F \notin E$ 的有限扩张,反之称它是无限扩张。

有限扩张的概念可以让我们立即得出以下结论

定理 1.4.1: 域的元素个数仅可能无限或者是 p^k

一个域的元素个数,或者是无限,或者是 p^k ,其中 p 是一个素数,k 是正整数

证明: 事实上, 我们只需要证明有限域 F 的个数只可能是 p^k

设 Char F = p, 那么一定有 $F \setminus F_n$

因为 F 是有限域,所以一定有 $[F:F_p]=d$ 有限,那么此时 $|F|=p^d$ 。因为 p 一定为素数,因此命题得证。

1.4.3 有限生成扩张

定义 1.4.3: 域的生成扩张

设 E, F 是两个域, $E \setminus F$, 集合 $S \subseteq E$

那么我们定义包含 F,S 中全部元素的最小域,即

$$F(S) := \bigcap_{(F \cup S) \subset K, E \backslash K} K$$

称为在 F 上由 S 生成的 E 的子域

定义 1.4.4: 有限生成与无限生成

设 E, F 是两个域, $E \setminus F$

如果存在一个集合 $S \subseteq E, F(S) = E$, 那么我们称 $E \neq F$ 的有限生成扩张;

如果对于任意的有限集 $S \subseteq E, F(S) \neq E$, 那么我们称 $E \neq F$ 的无限生成扩张

显然有以下性质

命题 1.4.2. 有限扩张都是有限生成扩张

证明: 设 $E \setminus F$, $[E:F] = n < +\infty$.

那么 $E \in F$ 上的一个线性空间,我们取它的一组基 $\{\alpha_1, \dots, \alpha_n\}$

于是 $E = \operatorname{span}_{E}(\alpha_{1}, \dots, \alpha_{n})$ 。由线性生成的性质,那么有

 $E = F(\alpha_1, \dots, \alpha_n)$ 。于是命题得证。

值得注意的是,这个命题如果反过来则不成立,比如说:

例 1.4.1. $\mathbb{Q}(e)$ 是 \mathbb{Q} 的有限生成扩张, 但是不是 \mathbb{Q} 的有限扩张

证明:不妨假设命题不成立,那么有 $[\mathbb{Q}(e):\mathbb{Q}] = n < +\infty$

那么,因为线性空间中,数量多于维数的一组向量一定线性相关,那么 $1, e, \dots, e^n$ 线性相关

$$\Rightarrow \exists a_0, \cdots, a_n \in \mathbb{Q}, a_0 + a_1 e + \cdots + a_n e^n = 0$$

但是,这与 e 是超越数矛盾。于是命题得证

1.4.4 代数扩张

我们首先提出代数元的概念

定义 1.4.5: 代数元

设 $E \setminus F$ 是一个域扩张, $u \in E$ 如果满足:

 $\exists p(x) \in F[x], p(u) = 0$, 那么我们称 $u \in F$ 上的代数元

我们如下定义代数扩张

定义 1.4.6: 代数扩张和超越扩张

设 E\F 是一个域扩张

如果 $\forall u \in E$, $u \in F$ 的代数元, 那么我们称 $E \in F$ 的代数扩张;

反之,如果 $\exists u \in E$, u 不是 F 的代数元,那么我们称 E 是 F 的超越扩张。

接下来我们考虑代数、有限、有限生成三种扩张之间的联系

1. 有限扩张都是代数扩张

定理 1.4.2: 有限扩张都是代数扩张

任何有限扩张都是代数扩张

证明: 设 E, F 是两个域, $[E:F] = n < +\infty$

取 $\forall \alpha \in E$,考虑集合 $\{1, \alpha, \dots, \alpha^n\}$

因为这个集合有 n+1>[E:F] 个元素,因此它一定线性相关;这代表着

 $\exists a_0, \cdots, a_n$ 不全为 $0, a_0 + a_1 \alpha + \cdots + a_n \alpha^n = 0$

因此 α 是多项式 $\sum_{k=0}^{n} a_k x^k \in F[x]$ 的一个根

所以 α 是 F 的代数元,于是命题得证。

2. 有限扩张的组合和拆分也是有限的

命题 1.4.3. 设 E, K, F 是三个域, $E \setminus K, K \setminus F$, 并且 $E \setminus F$ 是有限扩张。

那么, $E \setminus K, K \setminus F$ 是有限扩张, 并且有 $[E:F] = [E:K] \cdot [K:F]$

证明: 我们首先证明 $E \setminus K, K \setminus F$ 是有限扩张。

显然, $K \setminus F$ 一定是有限扩张,因为 K 是 E 在 F 上的线性子空间,而 [E:F] 有限。

我们不妨假设 $E \setminus K$ 不是有限的,那么一定可以取一组无限基 $\{e_{\alpha} | \alpha \in A\}$

考虑 F 上的线性组合 $\sum_{i=1}^{\infty} a_i e_{\alpha_i}, \alpha_i \in A$

我们可以断言: 这个线性组合在 $\exists a_i \neq 0$ 时不为零,因为 $F \subseteq K$,所以这个线性组合也可以视为 K 上的,

而线性无关向量组的子向量组也是线性无关的;

但是,这是不可能的:因为我们知道 [K:F] 有限,一个无限集不可能线性无关。所以 [E:K] 一定有限。

接下来证明 $[E:F] = [E:K] \cdot [K:F]$

假设 [E:K]=m, [K:F]=n,取 E 在 K 上的一组基 $\{\alpha_1, \cdots, \alpha_m\}$, K 在 F 上的一组基 $\{\beta_1, \cdots, \beta_n\}$

 $\forall \eta \in E, \exists a_1, \cdots, a_m, \eta = a_1\alpha_1 + \cdots + a_m\alpha_m$

对系数作展开,有:

$$\begin{split} &\exists b_{ij}, \eta = (b_{11}\beta_1 + \dots + b_{1n}\beta_n)\alpha_1 + \dots + (b_{m1}\beta_1 + \dots + b_{mn}\beta_n)\alpha_m \\ &= \sum_{i=1,j=1}^{i=m,j=n} b_{ij}\alpha_i\beta_j \\ &= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} b_{ij}\beta_j\right)\alpha_i \end{split}$$

令 $\eta=0$,因为 $\{\alpha_1,\cdots,\alpha_m\}$ 线性无关,一定有 $\sum_{i=1}^n b_{ij}\beta_j=0$

但是, $\{\beta_1, \cdots, \beta_n\}$ 线性无关,所以一定有 $b_{ij} = 0$ 。所以 $\{\alpha_i \beta_j\}$ 是 E 在 F 上的一组基所以 $[E:F] = mn = [E:K] \cdot [K:F]$,命题得证

利用这个命题可以得出以下推论

推论 1.4.3: 素数次扩张不存在平凡子域

若 $E \setminus F$ 是一个有限扩张, [E:F] = p 为素数

那么 E, F 没有非平凡的中间域, 即 $E \setminus K \setminus F \Leftrightarrow E = K \vee F = K$

证明: 这是显然的,因为素数的因子仅有 1 和自身;而 [K:F]=1 当且仅当 K,F 在 同构意义下相等。

推论 1.4.4: 单代数扩张一定是有限扩张

设 E, F 是两个域, E = F(u), u 是 F 的代数元

那么 E=F(u) 是一个有限扩张,并且 $[E:F]=\deg f(x)$,其中 f(x) 是 u 的极小多项

证明: 取 u 的极小多项式 $f(x) \in F[x]$, 设 $f(x) = \sum_{k=0}^{n} a_k x^k, a_n = 1$

因为 f(u)=0,所以有 $x^n=-\sum\limits_{k=0}^{n-1}a_kx^k$

于是,任意的 α^k 均可以由 $1,\alpha,\cdot,\alpha^{n-1}$ 线性表出,这表示

$$E = F(u) = \{a_0 + \dots + a_{n-1}u^{n-1}\}$$

于是 E 中任意一个元素可由 $\{1, \dots, u^{n-1}\}$ 线性表出。但是 u 的极小多项式的次数为 n,所以这个集合一定线性无关,也就是它是 E 的基

所以
$$[E:F]=n<+\infty$$

3. 有限生成的代数扩张是有限扩张

定理 1.4.5: 有限生成的代数扩张是有限扩张

 $E \setminus F$ 是有限扩张 $\Leftrightarrow E = F(u_1, \dots, u_n)$ 其中 u_1, \dots, u_n 是 F 的代数元

证明: 首先证明充分性。

取 E 在 F 上的一组基 $\{u_1, \dots, u_n\}$

我们说,一定有 $E = F(u_1, \dots, u_n)$, 因为:

 $E=\operatorname{span}_F(u_1,\cdots,u_n)\subseteq F(u_1,\cdots,u_n)$

但是,同时也有 $F(u_1, \dots, u_n) \subseteq E$,因为 E 是一个域,而 $u_1, \dots, u_n \in E$

所以只需要证明 u_1, \dots, u_n 是 F 的代数元。但是,有限扩张都是代数扩张,按照代数扩张的定义可知这是成立的。

接下来证明必要性。这是更加显然的,因为我们已经证明了单代数扩张有限,那么有 $[F(u_1, \cdots, u_n) : F] = [F(u_1, \cdots, u_n) : F(u_1, \cdots, u_{n-1})] \cdots [F(u_1) : F] < +\infty$ \square

4. 代数扩张的复合也是代数扩张

1.5 代数闭包 第一章 域

定理 1.4.6: 代数扩张的复合也是代数扩张

设 $E\backslash K\backslash F$,

如果 $E \setminus K$, $K \setminus F$ 都是代数扩张, 那么 $E \setminus F$ 也是代数扩张

证明: 取 $\forall \alpha \in E$

因为 $E \setminus K$ 是代数扩张, 所以 $\exists f(x) \in K[x], f(\alpha) = 0$

设 $f(x)=a_0+\cdots+a_nx^n$,取 $R=F(a_0,\cdots,a_n)$

因为 $a_0, \dots, a_n \in K$,而 $K \setminus F$ 是代数扩张,所以 a_0, \dots, a_n 是 F 的代数元

那么,按照前面的定理,一定有 $[R:F]<+\infty$

接下来考虑 $R(\alpha)$, 因为 $a_0, \cdots, a_n \in R$, 所以 α 是 R 的代数元, 那么就有 $[R(\alpha):R]<\infty$

所以 $[R(\alpha):F] = [R(\alpha):R] \cdot [R:F] < +\infty$

但是, $R \setminus F$,所以一定也有 $[F(\alpha):F] < +\infty$,又因为有限扩张都是代数扩张,所以 α

是 F 的代数元,于是命题得证。

Infinite extension $\overbrace{ifinfinite-generate}^{is} \text{ Algebratic extension }$

三种扩张的关系可以用以下图示概括

Infinite-generate extension

1.5 代数闭包

定义 1.5.1: 相对代数闭包

设 $E \setminus F$ 是一个域扩张,那么我们称

 $K = \{\alpha \in E | \alpha \in E | \alpha \in F \}$ 是 $F \in E$ 上的相对代数闭包

定义 1.5.2: 代数闭域

如果域 K 没有真代数扩张,即 K 的任意一个代数扩张 $K'\backslash K$ 都有 K'=K 那么我们称 K 是一个代数闭域

定义 1.5.3: 绝对代数闭包

如果 $\overline{F}\setminus F$ 是一个代数扩张,且 \overline{F} 是一个代数闭域 那么我们称 \overline{F} 是 \overline{F} 的绝对代数闭包,记作 \overline{F} 1.5 代数闭包 第一章 域

我们早就发现,似乎代数扩张并不能无限的扩张,而是会有一个终点,这个终点其实就是代数闭包,以下命题指出了这个事实。

命题 1.5.1. 如果 $K \neq F$ 在 E 上的代数闭包,

那么如果 $E\backslash K'\backslash K$ 且 $K'\backslash K$ 是代数扩张, 那么 K'=K

证明: 因为 $K \setminus F$, $K' \setminus K$ 都是代数扩张, 所以 $K' \setminus F$ 也是代数扩张

因为代数闭包即是全部可以通过代数扩张得到的元素的集合,所以必定有 K' = K \square 显然绝对代数闭包的定义和以下等价

命题 1.5.2. 如果 K 是 F 在 E 上的相对代数闭包,且 E 是一个代数闭域,那么 K 是 F 的绝对代数闭包

证明: 只需证明 K 是一个代数闭域

没法证,得用商环 ………

定理 1.5.1: 绝对代数闭包的存在性

任意一个域 F 的绝对代数闭包 \overline{F} 都存在,并且在同构意义下唯一

证明: 要用 Zorn 引理······

第二章 环、模

2.1 环的定义

2.1.1 环的定义

定义 2.1.1

R 是一个集合,如果存在两个运算 $+: R \times R \to R$ 和 $\cdot: R \times R \to R$

分别称为加法和乘法,满足下列条件:

① (加法单位元存在)存在一个元素 $0_R \in R$,称为加法单位元,使得对于任意 $x \in R$,

有 $x + 0_R = 0_R + x = x$ 。

- ② (加法交換律) $\forall x, y \in R, x + y = y + x$
- ③ (加法结合律) $\forall x, y, z \in R, (x + y) + z = x + (y + z)$
- ④ (加法逆存在) $\forall x \in R, \exists -x \in R$,称为加法逆,使得 $x + (-x) = 0_R$
- ⑤ (乘法结合律) $\forall x,y,z \in R, (x\cdot y)\cdot z = x\cdot (y\cdot z)$
- ⑥ (左分配律) $\forall x, y, z \in R, x \cdot (y+z) = x \cdot y + x \cdot z$

(右分配律) $\forall x, y, z \in R, (y+z) \cdot x = y \cdot x + z \cdot x$

那么我们称 $(R,+,\cdot)$ 是一个环, 简称为环 R。

相比域的定义,环的定义仅涉及6条性质,去除了单位元存在、可交换、可逆三条性质。在研究环时,我们有时也会考虑存在单位元和可交换的环,因此有以下定义:

定义 2.1.2: 交换环、幺环

如果环 R 满足: $\forall x, y \in R, x \cdot y = y \cdot x$, 那么我们称 R 是一个交换环;

如果环 R 满足: $\exists 1_R \in R, \forall x \in R, 1_R \cdot x = x \cdot 1_R = x$,称为乘法单位元,

2.1 环的定义 第二章 环、模

2.1.2 环的性质

2.1.3 整环

定义 2.1.3: 零因子

设 R 是一个环,如果 $\exists x,y \in R, x,y \neq 0_R$,使得 $x \cdot y = 0_R$,那么我们称 x,y 是 R 的零因子。

定义 2.1.4: 整环

如果环 R 是一个交换幺环,并且不包含零因子,那么我们称 R 是一个整环。

定理 2.1.1: 循环的整环必有素零因子

设 R 是一个整环,

我们定义: $N: \mathbb{Z} \ni n \mapsto n_R \in R$,满足 $(n+1)_F = n_F + 1_F$

如果 $\exists a \in R, a \neq 0, \exists n \in \mathbb{N}_+, n_F a = 0_R$

那么存在素数 p, $\forall b \in R, p_B b = 0_B$

证明: 取 $\forall b \in R$,

 $0_R = 0_R \cdot b = (n_R a)b = a(n_R b)$

因为 $a \neq 0$, 而 R 是整环, 所以一定有 $n_R b = 0$, 因此, $\{k \in \mathbb{N}_+ | k_R b = 0\}$ 不是空集。

取 p 为使 $p_B b = 0$ 的最小正整数。如果 p 是素数, 命题成立;

如果 p 不是素数,那么只需要对 p 作唯一分解,那么有 $\left(\prod_{i=1}^q p_{iR}\right)b=0$ 那么,一定存在一个 $p_{iR}b=0$,此时命题也是成立的。

2.1.4 子环

我们也类似地提出后续我们会提及的子环的概念。

定义 2.1.5: 子环

设 R 是一个环, 集合 $S \subseteq R$,

如果 S 对 R 上的加法和乘法也构成一个环,那么我们称 S 是 R 的子环。

2.2 环的同态

我们类似于域的同态, 定义出环的同态。

2.2.1 定义

定义 2.2.1: 环同态

设 R, S 是两个环, 如果映射 $\varphi: R \to S$ 满足:

 $\forall a, b \in R, \varphi(a+b) = \varphi(a) + \varphi(b), \varphi(ab) = \varphi(a)\varphi(b)$

并且如果 R, S 均是幺环, $\varphi(1_R) = 1_S$

那么我们称 φ 是一个 R 到 S 的环同态。

显然, 同态一定将零元映射到零元

命题 2.2.1. 设 $\varphi: R \to S$ 是一个环同态, 那么 $\varphi(0_R) = 0_S$

证明: $\varphi(0_R) = \varphi(0_R + 0_R) = \varphi(0_R) + \varphi(0_R)$

$$\Rightarrow -\varphi(0_R) + \varphi(0_R) = -\varphi(0_R) + \varphi(0_R) + \varphi(0_R)$$

$$\Rightarrow \varphi(0_R) = 0_S$$

并且把逆元映射到逆元

命题 2.2.2. 设 $\varphi:R\to S$ 是一个环同态,那么 $\varphi(-a)=-\varphi(a)$

证明: 注意到, $0_S=\varphi(0_R)=\varphi(a+(-a))=\varphi(a)+\varphi(-a)\Rightarrow \varphi(-a)=-\varphi(a)$

定义 2.2.2: 单同态、满同态、同构

假设有环同态 $\psi: R \to S$

如果 ψ 是单射,那么称它是一个单同态;

如果 ψ 是满射,那么称它是一个满同态;

如果 ψ 是双射, 称它是一个同构, 记作 $R \cong S$;

同构是最严格的同态,表示两个环在结构上是完全相同的,有以下显而易见的事实:

命题 2.2.3. 如果 $\psi: R \to S$ 是一个环同构, 那么 $\psi^{-1}: S \to R$ 也是一个环同构

证明: $\psi(\psi^{-1}(a) + \psi^{-1}(b)) = \psi(\psi(a)) + \psi(\psi(b)) = a + b$

2.2 环的同态 第二章 环、模

因为 ψ 是双射,所以有 $\psi^{-1}(a) + \psi^{-1}(b) = \psi(a+b)$

同理,
$$\psi\left(\psi^{-1}(a)\psi^{-1}(b)\right)=\psi\left(\psi(a)\right)\psi\left(\psi(b)\right)=ab$$

$$\Rightarrow \psi^{-1}(a)\psi^{-1}(b) = \psi(ab)$$
,于是命题得证

2.2.2 同态的核、像

定义 2.2.3: 环同态的核、像

设 $\psi: R \to S$ 是一个环同态,我们定义:

 $\ker \psi = \{a \in R | \psi(a) = 0_S \}$,称为 ψ 的核

Im $\psi = \{\psi(a) | a \in R\}$, 称为 ψ 的像

与域的同态不同,环的同态的核并不是平凡的,因为域同态未必是单射。因此,我们需要研究环同态的核与像。

但是,受限于目前的知识,我们暂时无法证明核与像的一些进阶性质,我们仅仅证明一 些简单的性质。

命题 2.2.4. 设 $\psi: R \to S$ 是一个环同态, 那么 $\ker \psi$ 是一个 R 的子环

证明: 取 $\forall a, b \in \ker \psi$, 那么有 $\psi(a) = \psi(b) = 0$

我们注意到: $\psi(0_R) = 0_S \Rightarrow 0_R \in \ker \psi, a + 0_R = a$

$$\psi(a+(-a))=0_S\Rightarrow \psi(a)+\psi(-a)=0_S\Rightarrow \psi(-a)=0_S\Rightarrow -a\in\ker\psi, a+(-a)=0_R$$
加法的交换律、结合律,乘法的结合律,左、右分配律是显然成立的。

命题 2.2.5. 设 $\psi: R \to S$ 是一个环同态, 那么 $Im \psi$ 是一个 S 的子环

证明: 取 $\forall a, b \in \text{Im } \psi$, 那么有 $\exists x, y \in R, \psi(x) = a, \psi(y) = b$

我们注意到: $\psi(0_R) = 0_S \Rightarrow 0_S \in \text{Im } \psi, \psi(x) + \psi(0_R) = \psi(x)$

$$\psi(x)+\psi(-x)=\psi(x+(-x))=\psi(0_R)=0_S \Rightarrow \psi(-x)=-\psi(x)=-a \in \mathrm{Im}\ \psi, a+(-a)=-a \in \mathrm{Im}\ \psi, a+($$

 0_S

加法的交换律、结合律,乘法的结合律,左、右分配律是显然成立的。

2.3 环的理想 第二章 环、模

2.3 环的理想

2.3.1 理想的定义

定义 2.3.1: 理想

设 R 是一个环, R 是 R 的一个子环。

如果 $\forall a \in S, b \in R, ab \in S$, 那么我们称 $S \neq R$ 的一个左理想;

如果 $\forall a \in S, b \in R, ba \in S$, 那么我们称 $S \in R$ 的一个右理想;

如果 S 既是 R 的左理想,又是 R 的右理想,那么我们称 S 是 R 的一个双理想。

显然, $\{0_R\}$, R 都是 R 的理想,我们称之为平凡理想。

我们观察到:一些环,比如说 \mathbb{Z} ,他们有一种特殊的理想,比如说 $\forall m \in \mathbb{Z}, m\mathbb{Z}$ 是 \mathbb{Z} 的一个理想。我们把这种直接由一个元素"生成"的理想叫主理想。

定义 2.3.2: 主理想

设 R 是一个环,如果 R 的一个理想 S 满足:

 $\exists a \in R, S = aR := \{ab | b \in R\}$,那么我们称 S 是由 a 生成的主理想,记作 (a)

2.3.2 理想的性质

1.

命题 2.3.1. 设 $\psi: R \to S$ 是一个环同态, 那么 $\ker \psi$ 是 S 的一个理想

证明: 取 $\forall a \in \ker \psi$,依核的定义, $\psi(a) = 0_S$

那么, $\forall b \in R, \psi(ab) = \psi(a)\psi(b) = 0_S, \psi(ba) = \psi(b)\psi(a) = 0_S$

因此, $ab, ba \in \ker \psi$, 于是命题得证。

2.

命题 2.3.2. 设 R 是一个幺环,S 是 R 的一个双理想,如果 $1_R \in S$,那么 S = R 证明: 依理想的定义, $\forall b \in R, 1_R b = b1_R = b \in S$,所以 $R \subseteq S$,所以必须有 R = S 口 我们可以立即得出,最特殊的幺环——域,也可以应用上述性质

推论 2.3.1: 域没有非平凡理想

域只有平凡理想

第二章 环、模

证明: 设 F 是一个域, S 是 F 的一个理想

因为域中任意元素都有逆元素, 所以 $\forall a \in S, a^{-1} \in F$

而按照理想的概念, $a \cdot a^{-1} = 1_F \in S$

而按照前面的命题, $1_F \in S$,那么一定有 S = F,它是一个平凡理想;

2.4 商环

2.4.1 商环的定义

我们首先定义等价类,随后定义商环

定义 2.4.1: 关于环的理想的等价类

设 R 是一个环, S 是 R 的一个理想

我们定义 $R \times R$ 上的一个等价关系: $\sim_I : \{(x,y)|x-y \in I\} \subseteq R \times R$

并定义 $a \in R$ 关于 \sim 的等价类为: $a + I := \overline{a} := \{x \in R | x \sim a\}$

我们其实还需要验证以上关系的确是一个等价关系:

首先, $\forall a \in R, a \sim a$, 因为 $a - a = 0_R \in I$, 这说明自反性成立;

其次,如果 $a \sim b$,那么有 $a - b \in I$,而 I 是一个理想,所以一定有 $b - a \in I$,所以 $b \sim a$,这说明对称性成立;

最后,如果 $a \sim b, b \sim c$,那么有 $a - b \in I, b - c \in I$,而 I 是一个理想,所以一定有 $(a - b) + (b - c) = (a - c) \in I$,所以 $a \sim c$,这说明传递性成立;

定义 2.4.2: 商环

设 R 是一个环, I 是 R 的一个理想, 那么我们定义:

 $R/I = \{a + I | a \in R\}$, 称为 R 关于 I 的商环

并定义其中的环加法和环乘法为:

 $(a+I) + (b+I) = (a+b) + I, (a+I) \cdot (b+I) = (a \cdot b) + I$

事实上,由于 a+I 是一个等价类,我们还需要验证,如果 $a_1+I=a_2+I$,即同一等价类选取不同单位元下,运算结果是一致的。

命题 2.4.1. 商环的加法和乘法是良定义的 设 R 是一个环, I 是 R 的一个理想, 那么如

2.5 同态基本定理 第二章 环、模

$$\mathbb{R} \ a_1 + I = a_2 + I, b_1 + I = b_2 + I$$

那么
$$(a_1+I)+(b_1+I)=(a_2+I)+(b_2+I), (a_1+I)\cdot(b_1+I)=(a_2+I)\cdot(b_2+I)$$

证明: 对于第一条,只需证明 $(a_1 + b_1) - (a_2 + b_2) \in I$ 。

因为 $(a_1+b_1)-(a_2+b_2)=(a_1-a_2)+(b_1-b_2)$,而 $a_1-a_2\in I,b_1-b_2\in I$,所以 $(a_1+b_1)-(a_2+b_2)\in I$

对于第二条,只需证明 $(a_1 \cdot b_1) - (a_2 \cdot b_2) \in I$ 。

因为
$$(a_1 \cdot b_1) - (a_2 \cdot b_2) = (a_1 \cdot b_1 - a_1 \cdot b_2) + (a_1 \cdot b_2 - a_2 \cdot b_2)$$

= $a_1(b_1 - b_2) + (a_1 - a_2)b_2 \in I$,因为 I 是一个理想。

2.5 同态基本定理

2.5.1 同态基本定理

定理 2.5.1: 同态基本定理

设 R, S 是两个环, $\varphi: R \to S$ 是一个环同态, 那么:

$$R/\ker\varphi\cong\operatorname{Im}\varphi$$
 (2.1)

并且同构映射 ψ 唯一,即 $\psi: R/\ker \varphi \ni a + \ker \varphi \mapsto \varphi(a) \in \operatorname{Im} \varphi$

证明: 我们考虑以下映射:

 $\psi: R/\ker \varphi \ni a + \ker \varphi \mapsto \varphi(a) \in \operatorname{Im} \varphi$

因为 $a + \ker \varphi = b + \ker \varphi \Rightarrow a - b \in \ker \varphi \Rightarrow \varphi(a) - \varphi(b) = 0$,所以它的确是映射。

首先, $\psi((a + \ker \varphi) + (b + \ker \varphi)) = \psi((a + b) + \ker \varphi) = \varphi(a + b) = \varphi(a) + \varphi(b) = \psi(a + \ker \varphi) + \psi(b + \ker \varphi)$

 $\psi\left((a+\ker\varphi)\cdot(b+\ker\varphi)\right)=\psi(ab+\ker\varphi)=\varphi(ab)=\varphi(a)\varphi(b)=\psi(a+\ker\varphi)\cdot\psi(b+\ker\varphi)$ ker φ)

这说明 ψ 是一个同态,我们接下来证明双射性。

首先证明单射性,如果 $\psi(a+\ker\varphi)=\psi(b+\ker\varphi)$,即 $\varphi(a)=\varphi(b)$,那么 $\varphi(a)-\varphi(b)=\varphi(a-b)=0_R$,所以 $a-b\in\ker\varphi$,于是 $a+\ker\varphi=b+\ker\varphi$,单射性成立。

满射性是显然的,因为显然 $\forall b \in \text{Im } \varphi, \exists a \in R, \varphi(a) = b, \psi(a + \ker \varphi) = \varphi(a) = b$ 我们最后证明同构映射唯一性

2.5 同态基本定理 第二章 环、模

我们设 $\chi: R/\ker \varphi \to \operatorname{Im} \varphi$ 是一个同构映射。

那么,一定有 $\varphi = \chi \circ \pi_{\ker \varphi}$,其中 $\pi_{\ker \varphi} : R \ni a \mapsto a + \ker \varphi \in R / \ker \varphi$

我们注意到, $\psi(a+\ker\varphi)=\varphi(a)=\chi\left(\pi_{\ker\varphi}(a)\right)=\chi(a+\ker\varphi)$

所以一定有
$$\psi = \chi$$
,于是命题得证。

2.5.2 同构基本定理

定理 2.5.2: 同构第一基本定理

设 R, S 是两个环, $\varphi: R \to S$ 是一个满同态, 那么:

$$R/\ker\varphi\cong S\tag{2.2}$$

并且同构映射唯一。

证明: 这个定理事实上是同态基本定理的一个特例,因为如果 φ 满,那么一定有 $\operatorname{Im} \varphi = S$

在考虑第二同构定理前, 我们先讨论一个引理

引理 2.5.3

设 R,S 是两个环, $\varphi:R\to S$ 是一个满同态, $I=\ker\varphi$ 是一个理想,那么: 任意一个 R 的子环 $R'\subseteq R$,其在 φ 下的像 $S'=\varphi(R')$ 是 S 的一个子环; 同时,任意一个 S 的子环 S', $R'=\{r\in R|\varphi(r)\in S'\}$ 也是一个包含了 I 的 R 的子环

证明: 首先先证明第一条结论。

$$\forall a, b \in R' = \varphi(a) + \varphi(b) = \varphi(a+b) \in S'$$

$$\varphi(a) \cdot \varphi(b) = \varphi(ab) \in S'$$

$$\varphi(a)+\varphi(0_R)=\varphi(a)\in S', \varphi(a)+\varphi(-a)=\varphi(0_R)=0_S$$

然后证明第二条结论

首先,因为 $\forall r \in \ker \varphi, \varphi(r) = 0$,所以一定有 $\ker \varphi \in R'$

$$\forall a,b \in R', \ \neg \text{定f} \ \varphi(a), \varphi(b) \in S', \ \text{fi} \ \forall \ \varphi(a+b) = \varphi(a) + \varphi(b) \in S' \Rightarrow a+b \in R'$$

$$\varphi(a)\cdot\varphi(b)=\varphi(ab)\in S'\Rightarrow ab\in R'$$

$$\varphi(a)+\varphi(0_R)=\varphi(a)\in S'\Rightarrow a+0_R=a\in R', \\ \varphi(a)+(-\varphi(a))=0_S\in S'\Rightarrow \varphi(-a)\in S'\Rightarrow -a\in R'$$

2.5 同态基本定理 第二章 环、模

值得注意的是,这个引理中,第一个结论中我们没有要求子环包含同态的核,但是我们随后又提出,从 S 反向映射回来后必须包含同态的核。这并不是矛盾的,因为我们没有限定同态是双射。

引理 2.5.4

设 R,S 是两个环, $\varphi:R\to S$ 是一个满同态, $I=\ker\varphi$ 是一个理想 那么对于包含于 I 的任意一个 R 的理想 J,存在唯一的环同态 $\chi:R/J\to S$,使得 $\varphi=\chi\circ\pi_J$,其中 $\pi_J:R\ni a\mapsto a+J\in R/I$ 并且此时 $\ker\chi=I/J$

证明: 我们考虑我们之前曾经构造的映射: $\chi:R/J\ni a+J\mapsto \varphi(a)\in S$ 我们之前已经证明了它是一个同构映射,我们接下来证明 $\ker\chi=I/J$ 因为 $\ker\chi=\{a+J|\chi(a+J)=0_S\}$ 而 $\chi(a+J)=\varphi(a)$,所以 $a+J\in\ker\chi\Rightarrow\varphi(a)=0\Rightarrow a\in I$ 所以 $\ker\chi=I/J$,我们接下来证明 χ 是唯一的,并且 $\varphi=\chi\circ\pi_J$ 我们设 $\psi:R/J\to S$ 是一个同构映射。他显然也满足 $\varphi=\psi\circ\pi_J$ 我们注意到, $\chi(a+J)=\varphi(a)=\psi(\pi_J(a))=\psi(a+J)$ 所以一定有 $\psi=\chi$,于是命题得证。

2.6 模 第二章 环、模

定理 2.5.5: 同构第二基本定理

设 R 是一个环,I,J 是 R 的两个理想,并且 $I \subseteq J$ 。

那么 J/I 是 R/I 的理想,并且

$$(R/I)/(J/I) \cong R/J \tag{2.3}$$

证明: 我们考虑满同态 $\varphi: R \ni a \mapsto a + J \in R/J$

注意到: $\ker \varphi = \{a | a + J = 0_{R/J}\} = \{a | a + J = J\} = \{a | a - 0_R \in J\} = J$ 运用前面的引理,那么一定有一个同态 $\chi: R/I \to R/J$,并且 $\ker \chi = J/I$ 接下来运用同构第一基本定理,于是有 $(R/I)/(J/I) \cong R/J$,命题得证。

2.6 模

本节我们研究一种"环上的线性空间",也就是模

2.6.1 模的定义

定义 2.6.1: 左模

设 R 是一个环,M 是一个集合,如果存在两个运算 $+: M \times M \to M, \cdot_R: R \times M \to M$ 分别称为称为加法和纯量乘法,满足下列条件:

- ① $\exists 0_M \in M$,称为加法单位元, $\forall \alpha \in M, 0_M + \alpha = \alpha + 0_M = \alpha$
- ② $\forall \alpha, \beta \in M, \alpha + \beta = \beta + \alpha$
- ④ $\forall \alpha \in M, \exists -\alpha \in M,$ 称为加法逆,使得 $\alpha + (-\alpha) = 0_M$

那么我们称 M 是一个左 R- 模

类似地,我们也有右模的定义:

2.6 模 第二章 环、模

定义 2.6.2: 右模

设 R 是一个环,M 是一个集合,如果存在两个运算 $+: M \times M \to M, \cdot_R: M \times R \to M$ 分别称为称为加法和纯量乘法,满足下列条件:

- ① $\exists 0_M \in M$,称为加法单位元, $\forall \alpha \in M, 0_M + \alpha = \alpha + 0_M = \alpha$
- $2 \forall \alpha, \beta \in M, \alpha + \beta = \beta + \alpha$
- ④ $\forall \alpha \in M, \exists -\alpha \in M,$ 称为加法逆,使得 $\alpha + (-\alpha) = 0_M$
- $<math> \forall a,b \in R, \alpha \in M, (\alpha a)b = \alpha(ab)$
- **6** $\forall a \in R, \alpha, \beta \in M, (\alpha + \beta)a = \alpha a + \beta b$

那么我们称 M 是一个右 R-模

如果 M 兼具左模和右模的特征, 我们称 M 是一个双模:

定义 2.6.3: 双模

如果 M 既是左 R- 模, 又是右 S- 模, 并且满足:

 $(a\alpha)b = a(\alpha b)$

那么我们称 M 是一个 (R,S)— 双模

我们也知道,环不一定有乘法单位元,因此有以下定义:

定义 2.6.4: 幺模

设 R 是幺环, M 是一个 R— 模

如果 $\forall \alpha \in M, 1_R \cdot \alpha = \alpha$, 那么我们称 M 是一个幺模。

在后续中,除非特别做区分,我们都假定我们说的模指的是左模。

2.6 模 第二章 环、模

2.6.2 模的同态

定义 2.6.5: 模同态

设 M, N 是两个 R— 模, 如果映射 $\psi: M \to N$ 满足:

 $\forall \alpha, \beta \in M, \psi(\alpha + \beta) = \psi(\alpha) + \psi(\beta)$

 $\forall a \in R, \alpha \in M, \psi(a\alpha) = a\psi(\alpha)$

那么称 ψ 是一个从 M 到 N 的模同态。

2.6.3 商模

定义 2.6.6: 商模

设M是一个模,N是M的一个子模

第三章 Galois 理论

3.1 Galois 群

定义 3.1.1: Galois 群

设 E,F 是两个域, $E\backslash F$ 是一个扩张,那么称

 $Gal(E \backslash F) = \{ \sigma \in Aut(E) | \sigma|_F = id_F \}$

是 $E \setminus F$ 的 Galois 群

定理 3.1.1: 有限扩张的 Galois 群有限

如果 $E \setminus F$ 是有限扩张,那么 $Gal(E \setminus F)$ 是有限群

第四章 附录

这一部分中,对于正文中因为逻辑结构无法提及的部分,进行补充。

4.1 一些典型的域

4.1.1 F_p

首先约定,这一部分的讨论中,都认为 p 是一个素数。 我们首先讨论的是一个典型的有限域——模 p 剩余类域。

定义 4.1.1: F_p

设 F 是一个域, $CharF \ge p$ 且 p 是一个素数,

我们定义 $F_p = N(\mathbb{Z}_p)$

并定义其中的加法和乘法为:

 $+_F = N^- 1 \circ + \circ N, \cdot_F = N^- 1 \circ \cdot \circ N$

定理 4.1.1: F_p 没有真子域

设 p 是一个素数,那么域 F_p 不存在真子域,即 $F_p\backslash E \to E = F_p$

证明:不妨假设命题不成立,那么一定有真子域 $E \subseteq F_p$

不妨假设 $[F_p:E]=d$,因为 F_p 是有限域,那么 $|E|,|F_p|$ 都是有限的。

但是, $|F_p| = |E|^d$

 $\Rightarrow p = |E|^d$, 但是 p 是素数, 因此只可能 d = 1

于是 $|F_p| = |E|$, 那么只可能 $F_p = E$, 与假设矛盾,于是命题得证。

4.1 一些典型的域 第四章 附录

4.1.2 Q

定理 4.1.2: Q 没有真子域

\mathbb{Q} 不存在真子域, 即 $\mathbb{Q}\backslash E \to E = \mathbb{Q}$

证明: 不妨假设命题不成立, $E \subset \mathbb{Q}$ 是 \mathbb{Q} 真子域。

那么,因为 $0,1 \in E$,由域对加法封闭,那么一定有 $\mathbb{N} \subseteq E$

进一步,因为任意元素的加法逆存在,于是有 $\mathbb{Z} \subseteq E$

于是,由任意非零元素的逆存在,一定有 $\mathbb{Q} \subseteq E$ 。

但是,我们假设 $E \subset \mathbb{Q}$,矛盾。于是命题成立