Emission Sources - Maximum Allowable Emission Rates

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Emission Point Source Name (2) Air Contaminant		Emission	n Rates
No. (1)		Name (3)	lbs/hour	TPY (4)
Emission Cap	Combustion Units, Cooling Towers, Flares/Vapor Combustor, Fugitives (5),	VOC	397.68	1025.33
	Loading, Process Vents, Storage Tanks, and Wastewater	Benzene	18.41	37.28
Emission Cap	Combustion Units, Flares/Vapor Combustor,	NO _x	254.11	537.84
	and Process Vents	СО	534.26	775.50
		SO ₂	189.76	237.01
Emission Cap	Combustion Units, Cooling Towers, and Process Vents	PM/PM ₁₀	54.84	155.27
Emission Cap	Combustion Units, Flares/Vapor Combustor, Fugitives, Process Vents, and Storage Tanks	H₂S	3.35	12.60
F-028	DHT/ASU (5)	NH ₃	0.01	0.01
F-100	No. 1 Crude (5)	NH ₃	0.01	0.02
F-500	No. 1 Reformer	NH ₃	0.01	0.01
F-850	South Merox Unit (5)	NH ₃	0.01	0.01
F-1000	POU (5)	NH ₃	0.01	0.01
F-1400	Vacuum (5)	NH ₃	0.01	0.01
F-1500	HCU (5)	NH ₃	0.01	0.02
F-2000	ROSE Unit (5)	NH ₃	0.01	0.01
F-2200	DOT/Reformate Splitter (5)	NH ₃	0.17	0.76

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 2 $\,$

			1	
F-2300	ATS (5)	NH ₃	0.01	0.01
F-2300	SWS (5)	NH ₃	0.01	0.04
F-2400	FCCU (5)	NH ₃	0.04	0.17
F-2400	FCCU Gas Con (5)	NH ₃	0.01	0.01
F-2400	FCCU Merox (5)	NH ₃	0.01	0.01
F-3700	HCU (5)	NH ₃	0.01	0.01
F-3800	No. 2 HDU (5)	NH ₃	0.01	0.02
F-3900	LEU (5)	NH ₃	0.01	0.01
F-4000	No. 1 and No. 2 SRU (5)	NH ₃	0.01	0.04
F-5400	BTX Unit Fugitives	NH ₃	0.05	0.22
H-028	Crude Charge Heater 1	NO _x	11.18	23.41
		СО	14.61	44.41
		VOC	1.10	4.80
		SO ₂	6.17	7.56
		PM/PM ₁₀	1.51	6.63
H-036	Crude Charge Heater 1	NO _x	11.18	31.56
		СО	14.61	55.54
		VOC	1.10	4.80
		SO ₂	7.95	9.23
		PM/PM ₁₀	1.51	6.63

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 3 $\,$

H-016	Vacuum Unit Charge	NO _x	4.95	21.66
	Heater			
		СО	10.16	21.70
		VOC	0.76	3.34
		SO ₂	6.82	6.75
		PM/PM ₁₀ /PM _{2.5}	1.05	4.62
H-021	ROSE "DAGO" Heater	NO _x	1.90	8.31
		СО	2.69	4.71
		VOC	0.24	0.84
		SO ₂	1.18	1.60
		PM/PM ₁₀	0.33	1.17
H-022	Asphalt Heater	NO _x	0.98	4.28
		СО	1.96	3.96
		VOC	0.15	0.64
		SO ₂	1.09	1.38
		PM/PM ₁₀	0.20	0.89
H-020	Isostripper Reboiler Heater	NO _x	1.99	4.90
	Ticator	СО	3.12	3.83
		VOC	0.27	0.75
		SO ₂	0.47	1.16
		PM/PM ₁₀	0.37	1.04

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 4 $\,$

B-007	"BTX" Boiler	NO _x	12.33	34.16
		СО	18.02	27.76
		VOC	1.26	4.70
		SO ₂	0.13	0.44
		PM/PM ₁₀	1.74	6.49
H-043	H043 BTX Reboil Heater	NO _x	4.27	9.86
		СО	5.10	5.90
		VOC	0.38	0.89
		SO ₂	3.43	1.90
		PM/PM ₁₀ /PM _{2.5}	0.53	1.22
H-044	BTX Reboil Heater	NO _x	1.83	5.75
		СО	3.65	4.93
		VOC	0.28	0.89
		SO ₂	1.50	1.68
		PM/PM ₁₀	0.39	1.22
B-004	Boiler 6F1-A & Boiler 6F1-B	NO _x	25.97	72.43
		СО	9.28	12.94
		VOC	0.80	2.23
		SO ₂	3.79	4.77
		PM/PM ₁₀	1.11	3.08

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 5 $\,$

B-006	East Plant Boiler Emissions	NO _x	13.07	49.82
	LITIISSIOTIS	СО	7.83	12.98
		VOC	0.59	2.24
		SO ₂	3.67	4.52
		PM/PM ₁₀	0.81	3.09
H-041	DOT H2 Recycle Furnace	NO _x	3.40	5.70
		СО	3.50	2.92
		VOC	0.27	0.44
		SO ₂	2.34	0.78
		PM/PM ₁₀ /PM _{2.5}	0.36	0.60
H-039	No. 1 SRU Hot Oil Heater	NO _x	0.69	1.60
		СО	0.50	2.17
		VOC	0.04	0.16
		SO ₂	0.33	0.31
		PM/PM ₁₀	0.05	0.23
H-047	No. 2 SRU Hot Oil Heater	NO _x	1.84	6.58
		СО	2.46	4.38
		VOC	0.18	0.65
		SO ₂	1.65	1.30
		PM/PM ₁₀ /PM _{2.5}	0.26	0.91

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 6 $\,$

H-015A	Lubr. Oil Crude			
110134	Atmospheric Heater (H-	NO _x	0.69	2.60
	1001)	СО	1.23	2.15
		VOC	0.11	0.49
		SO ₂	0.01	0.05
		PM/PM ₁₀	0.16	0.68
H-015B	Lubr. Oil Crude Atmospheric Heater (H-	NO _x	0.38	1.41
	1002)	СО	0.67	1.17
		VOC	0.06	0.27
		SO ₂	0.01	0.03
		PM/PM ₁₀	0.08	0.37
H-037	HDU Charge Heater 2	NO _x	2.68	6.72
		СО	3.28	4.39
		VOC	0.26	0.66
		SO ₂	1.34	0.24
		PM/PM ₁₀	0.36	0.91
H-038	HDU Reboiler Heater 2	NO _x	1.85	4.65
		СО	2.88	4.18
		VOC	0.25	0.63
		SO ₂	0.88	0.99
		PM/PM ₁₀	0.34	0.87

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 7 $\,$

		1	
Naphtha Splitter Reboiler	NO _x	4.16	13.11
	СО	4.60	6.05
	VOC	0.34	1.09
	SO ₂	1.96	2.09
	PM/PM ₁₀	0.48	1.50
Glycol Contactor Heater	NO _x	0.33	1.30
	СО	0.24	1.04
	VOC	0.02	0.08
	SO ₂	0.16	0.17
	PM/PM ₁₀	0.02	0.11
H.C.U. Recycle Heater	NO _x	3.47	11.24
	СО	4.99	7.02
	VOC	0.37	1.21
	SO ₂	2.40	2.24
	PM/PM ₁₀	0.52	1.67
H.C.U. Debutanizer	NO _x	3.39	11.67
Treboner Fredrei	СО	6.08	9.26
	VOC	0.46	1.57
	SO ₂	4.09	2.81
	PM/PM ₁₀ /PM _{2.5}	0.63	2.17
	H.C.U. Recycle Heater	CO	CO

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 8 $\,$

H-018	H.C.U. Fractionation	NO _x	4.24	10.52
	Heater	СО	2.82	3.05
		VOC	0.21	0.53
		SO ₂	1.85	0.93
		PM/PM ₁₀	0.29	0.73
H-019	H.C.U. Fractionation Heater	NO _x	2.70	8.02
	Heater	СО	4.30	3.47
		VOC	0.33	0.52
		SO ₂	2.89	1.51
		PM/PM ₁₀ /PM _{2.5}	0.44	0.72
H-030	No. 2 Reformer Charge Heater	NO _x	19.06	34.30
		СО	15.46	31.64
		VOC	2.38	4.28
		SO ₂	11.39	6.24
		PM/PM ₁₀ /PM _{2.5}	3.29	5.92
H-032	No. 2 Reformer Charge Heater	NO _x	12.27	19.78
	Floater	СО	10.31	22.86
		VOC	0.97	2.50
		SO ₂	8.72	4.60
		PM/PM ₁₀ /PM _{2.5}	1.34	3.45

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 9 $\,$

H-033	No. 2 Reformer Stab.	NO _x	2.25	5.95
	Reboiler			
		СО	4.05	5.35
		VOC	0.30	0.80
		SO ₂	2.71	1.03
		PM/PM ₁₀ /PM _{2.5}	0.42	1.11
H-045	DHT Charge Heater	NO _x	2.05	8.98
		СО	2.95	5.53
		VOC	0.22	0.97
		SO ₂	1.93	1.82
		PM/PM ₁₀	0.31	1.34
H-046	Fractionator Feed Heater	NO _x	2.88	12.59
		СО	4.59	9.06
		VOC	0.34	1.51
		SO ₂	2.87	3.11
		PM/PM ₁₀	0.48	2.09
H-023	Tracing Oil Heater	NO _x	0.09	0.27
		СО	0.15	0.22
		VOC	0.01	0.04
		SO ₂	0.08	0.08
		PM/PM ₁₀	0.02	0.06

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 10 $\,$

1			
Lubr. HDS Charge Heater	NO _x	0.41	1.79
	СО	0.88	3.85
	VOC	0.06	0.27
	SO ₂	0.01	0.03
	PM/PM ₁₀ /PM _{2.5}	0.09	0.37
No. 1 HDU Stripper Reboiler Heater	NO_x	0.79	3.44
Tresoner react	СО	1.57	6.88
	VOC	0.12	0.51
	SO ₂	1.06	0.85
	PM/PM ₁₀ /PM _{2.5}	0.16	0.71
No. 1 HDU Reactor Charge Heater	NO _x	1.05	4.59
	СО	2.10	9.18
	VOC	0.16	0.69
	SO ₂	1.41	1.11
	PM/PM ₁₀ /PM _{2.5}	0.22	0.96
No. 1 Ref. Stabilizer	NO _x	0.52	2.26
Treboller Fleater	СО	0.83	3.61
	VOC	0.06	0.27
	SO ₂	0.54	0.59
	PM/PM ₁₀	0.09	0.37
	No. 1 HDU Stripper Reboiler Heater No. 1 HDU Reactor Charge Heater	CO	CO 0.88 VOC 0.06 SO2 0.01 PM/PM ₁₀ /PM _{2.5} 0.09 No. 1 HDU Stripper Reboiler Heater NO _x 0.79 CO 1.57 VOC 0.12 SO2 1.06 PM/PM ₁₀ /PM _{2.5} 0.16 NO. 1 HDU Reactor Charge Heater NO _x 1.05 CO 2.10 VOC 0.16 SO2 1.41 PM/PM ₁₀ /PM _{2.5} 0.22 No. 1 Ref. Stabilizer Reboiler Heater NO _x 0.52 CO 0.83 VOC 0.06 SO2 0.54 SO2 SO2

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 11 $\,$

H-012	Reformer Charge Heater	NO _x	5.41	23.72
		СО	7.56	16.86
		VOC	0.57	2.48
		SO ₂	4.94	5.34
		PM/PM ₁₀	0.78	3.43
H-013	No. 1 Stabilizer Reboiler Heater	NO _x	1.86	8.13
	Tieater	СО	1.24	2.71
		VOC	0.09	0.40
		SO ₂	0.83	0.47
		PM/PM ₁₀ /PM _{2.5}	0.13	0.56
S-007, S-008, S-031, S-032, S-033, S-034, S-035, S-036, S-037, S-038, S-039, S-040, S-041, S-042, S-043, S-044, S-102, S-108, S-114, S-115, S-116, S-119, S-120, S-127, S-128, S-129, S-130, S-200, S-201, S-206, S-207, S-208, S-209, S-210, S-211, S-212, S-213, S-214, S-215, S-216, S-217, S-218, S-219, S-220, S-221, S-222, S-233, S-244, S-225, S-300, S-301, S-302, S-303, S-304, S-305, S-306, S-308, S-309, S-310, S-311, S-312, S-313, S-314, S-315, S-316, S-317, S-318, S-319, S-331, S-332, S-333, S-334, S-335, S-336, S-337, S-338, S-339, S-340, S-401 S-402, S-403,	Subcaps for Storage Tanks	VOC	84.69	134.74

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 12 $\,$

S-680-6, S-680-7, S-680-8, S-680-9				
FL-003, FL-004,	Subcaps for Flares	NO _x	16.27	17.32
FL-006, FL-501, FL-005		СО	84.41	90.11
		VOC	74.9	118.63
		SO ₂	5.30	6.42
F-28, F-100 (#1 Crude, Desalter), F- 400, F-500, F-620, F- 660 (EPItFlareE, EPItFlareS, West Plant Flare System), F- 700, F-820, F-830S, F- 850 (S Merox Unit, Tank Farm), F-900, F- 1000, F-1200, F-1400, F-1500, F-2000 (DOT/Ref Splitter, East Plant Alky Splitter), F-2300 (ATS, SWS), F-2400 (FCCU, FCCU Gas Con, FCCU Merox), F-2500, F-2600, F- 2700, F-2800 (EP Cool Twr, EP Utilities), F-3700 (HCU, HCU Hot Oil Drum), F-3800, F- 3900 (LEU, HCU), F- 4000, F-4300, F-5400, F-2600N, F-660N, F- 660 (EPItFlareW), F- 680 (WWTP Tanks), F-680W, F-800E, F-800W, F-830 (RAIL, West Rack), F-830K, F-830N, F-830W, F- 850N, F-850S, F- ROSE	VOC Subcaps for Equipment Fugitives (5)(10)	VOC	133.40	584.67
F-0670	West Plant Cooling Tower	VOC	0.25	1.10

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 13 $\,$

		PM/PM ₁₀	0.36	1.58
F-2810	East Plant Cooling Tower (5)	VOC	1.68	7.36
		PM/PM ₁₀	2.40	10.52
F-3670	No. 2 West Plant Cooling Tower (5)	VOC	0.59	2.57
		PM/PM ₁₀	0.84	3.69
F-0680	F-0680 Open-Top Biotreatment	VOC	23.08	36.23
F-0671	No. 2 API Separator	VOC	0.48	0.95
F-0682	Crude Unit Sump	VOC	3.27	6.50
F-0683	No. 1 Reformer Sump	VOC	1.66	3.31
F-0684	600 Unit Sump	VOC	0.01	0.03
F-0685	R. R. Rack Sump	VOC	0.10	0.20
F-0686	Truck Loading Sump	VOC	0.09	0.18
F-0687	Landfarm	VOC	2.26	4.50
F-0688	Vacuum Unit Sump	VOC	2.08	4.14
F-0689	Crude Unload Sump	VOC	0.24	0.47
F-3110	No. 2 Reformer Sump	VOC	0.59	1.18

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1 Page 14 $\,$

V-006	No. 1 Reformer Regeneration	СО	37.5	1.50
		VOC	1.40	0.06
		Cl ₂	0.40	0.02
V-007	No. 2 Reformer Regeneration	СО	5.00	14.02
		VOC	0.04	0.13
		Cl ₂	0.01	0.04
V-010	FCCU Regeneration Vent	NOx	62.69	28.82
		СО	195.47	184.29
		VOC	6.16	14.51
		SO ₂	43.64	52.65
		PM/PM ₁₀	30.00	69.98
		H ₂ SO ₄	13.69	59.96
		O ₃	7.22	31.62
V-008, V-009	Subcaps for Sulfur Plants	NO _x	6.16	14.12
		СО	29.09	116.32
		VOC	12.21	38.43
		SO ₂	48.13	98.22
		PM/PM ₁₀	0.37	1.58
		TRS	2.26	9.94
V-003	A.T.S. Secondary Absorber	SO ₂	0.09	0.01
L-001	Oil Truck Loading Rack	VOC	0.02	0.02
L-002	Gasoline Truck Loading Rack	VOC	16.20	8.30
L-004	Tank Car Loading Rack	VOC	0.01	0.01
L-005	Aromatic Rail Load Rack	VOC	7.56	2.05

	Fugitives				
VCU-1	Loading Rack Vapor Combustor		NO _x	0.88	0.55
			СО	2.52	1.60
			VOC	9.60	5.92
Planned Maintenand	e, Startup, and Shut	down (I	MSS) Emission Li	mitations	,
Cooling Towers,		VOC (6	5) (8)	4711.24	99.82
Combustion Units, Flares/Vapor		NO _x (6) (8)		305.53	17.71
Combustor Fugitives (5),		CO (6) (8)		1,187.84	42.14
Loading, Process Vents,		SO ₂ (6) (8)		894.13	61.54
Storage Tanks, and Wastewater		PM/PM ₁₀ /PM _{2.5} (6) (8)		3.14	0.57
		H ₂ S (6) (8)		2.65	0.52
		Benzene (6) (8) (9)		90.70	2.90
	CS ₂ (8) COS (8)			0.33	0.02
			3)	1.89	0.11
Standard Permit (SP listed below:) sources incorporat	ted by r	eference. Source	es remain authorize	ed by the SP(s) as
Registration Numbe	r 83511				
B-010	BTX Boiler	N	IO _x	5.10	22.34
		C	O	12.31	53.93
		V	OC	1.83	8.03
		N	IH ₃	1.49	6.55
		S	SO ₂	4.55	19.93
		Р	PM/PM ₁₀ /PM _{2.5}	2.53	11.10

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number (EPN) from a plot plan.

Emission Sources - Maximum Allowable Emission Rates

(2) Specific point source names. For fugitive sources, use an area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

CO - carbon monoxide

SO₂ - sulfur dioxide

PM - particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}

 PM_{10} - particulate matter equal to or less than 10 microns in diameter $PM_{2.5}$ - particulate matter equal to or less than 2.5 microns in diameter

Cl₂ - chlorine

COS - carbonyl sulfide
CS₂ - carbon disulfide
H₂S - hydrogen sulfide
H₂SO₄ - sulfuric acid
NH₃ - ammonia

TRS - total reduced sulfur

O₃ - ozone

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and compliance is demonstrated by meeting the requirements of the applicable special conditions and permit application representations.
- (6) Planned MSS VOC, NO_x, CO, SO₂, PM₁₀, H₂S, and Benzene allowable emissions are NOT included in the Emission Caps (Normal Operations) allowable emissions.
- (7) The MSS emission rates from January 1, 2010 through December 31, 2010, shall be the sum of the monthly MSS emissions for calendar year (CY) 2010. The MSS emissions for this period shall not include the MSS emissions prior to January 1, 2010. Beginning January 1, 2011, MSS emissions shall be based on a rolling 12-month period.
- (8) The MSS emission rates beginning January 1, 2012 through December 31, 2012, shall be the sum of the monthly MSS emissions for CY 2012. The MSS emissions for this period shall not include the MSS emissions prior to January 1, 2012. Beginning January 1, 2013, MSS emissions shall be based on a rolling 12-month period.
- (9) Benzene MSS allowables are included in the VOC allowables.
- (10) Ammonia fugitive allowable emissions are specified by EPN.
- (11) These emission caps have been carried forward from the flexible permit and do not include MSS emissions. The caps have been lowered to equal the sum of the normal operation individual limits and subcaps. The caps do not include emissions from EPN B-010, incorporated by reference from Standard Permit 83511.

Dated: December 14, 2012