UNCLASSIFIED

AD NUMBER AD352807 CLASSIFICATION CHANGES TO: UNCLASSIFIED FROM: CONFIDENTIAL LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; 18 MAY 1964. Other requests shall be referred to Bureau of Naval Weapons, Washington, DC.

AUTHORITY

NOL ltr 29 Aug 1974; NOL ltr 29 Aug 1974

TIME ASSITED

AD 3 5 28 0 7

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA VIRGINIA

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION

AFFECTING THE NATIONAL DEFENSE OF

THE UNITED STATES WITHIN THE MEAN
ING OF THE ESPIONAGE LAWS, TITLE 1°,

U.S.C., SECTIONS 118 and 7 the THE

TRANSMISSION OR THE REVELATION OF

ITS CONTENTS IN ANY MANNER TO AN

UNAUTHORIZED PERSON IS PROHIBITED

BY LAW.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

CONFIDENTIAL

NOLTR 63-47

3 5 2 8 0 7

STATIC AND DYNAMIC STABILITY STUDIES ON SEVERAL LAZY DOG CONFIGURATIONS AT SUBSONIC AND TRANSONIC SPEEDS (U)

RELEASED TO DDC

BY THE NIVAL OFFICATOR LABORATORY

[] Without restrict or .
[] For Release to / 1 and Government

As percentage for release

[] Approvation of the pured for all subsequent research.

18 MAY 1964

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

NOTICE: This material contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18. U.S.C. Sections 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

Downgraded at 3 Year Intervals
Declassified after 12 Years. DOD Dir 5200.10

NOLTR 63-47

Aerodynamics Research Report 191

STATIC AND DYNAMIC STABILITY STUDIES ON SEVERAL LAZY DOG CONFIGURATIONS AT SUBSONIC AND TRANSONIC SPEEDS

Prepared by:
J. B. Eades, Jr.
C. Powers

ABSTRACT: A summary is presented of the investigations conducted in the Naval Ordnance Laboratory's Supersonic Tunnel No. 1 on several of the Navy's Lazy Dog weapon configurations. Lazy Dog is a free-fall missile employing a 50 caliber bullet or its core as the basic aerodynamic body.

Static stability tests were conducted on six configurations over a Mach number range from 0.3 to 1.3. Dynamic stability tests were made using the more promising configurations. In addition to these tests, ballistics range firings were conducted.

As a consequence of the information obtained in this investigation, two alternate configurations have been proposed.

U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, MARYLAND

CONFIDENTIAL

NOLTR 63-47

18 May 1964

STATIC AND DYNAMIC STABILITY STUDIES ON SEVERAL LAZY DOG CONFIGURATIONS AT SUBSONIC AND TRANSONIC SPEEDS

The purpose of this investigation was to determine the aero-dynamic characteristics of several Lazy Dog configurations. This work was performed at the request of the Bureau of Naval Weapons under Task Number RMMO-42-005/212-1/F008-09-01.

The contributions of W. D. Piper, V. L. Schermerhorn, F. J. Regan, I. Shantz and P. A. Cerreta are gratefully acknowledged.

R, E, ODENING Captain, USN Commander

K. R. ENKENHUS
By direction

CONTENTS

Introdu	ction	Page 1
Aerodyna Models, Discussi	amic Symbols	1 3 6 17
Appendix Appendix	« A.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A-1 B-1 C-1
	TABLES	
Table	Title	Page
1 2	Configurations and Test Conditions Tabulated Data	18 19
	ILLUSTRATIONS	
Figure	Title	
1 2 3	50 Caliber Bullet 50 Caliber Steel Core Lazy Dog Configuration 1	
4	Lazy Dog Configuration 2	
5 6	Lazy Dog Configuration 3 Lazy Dog Configuration 4	
7	Lazy Dog Configuration 5	
8	Lazy Dog Configuration 6	
9 10	Lazy Dog Configuration 7 Lazy Dog Configuration 8	
11	A 2.92 Scale, 50 Caliber Core Model	
12	The 2.50 Scale Models of Configurations 1, 2 and	3
13	The 2.92 Scale Models of Configurations 4 and 5	
14	A 2.92 Scale Model of Configuration 6	
15 16	The 2.92 Scale, Pitch Damping Model of Configura Axes Systems, Body Rotated Through an Angle of Programme	
17	Center of Pressure (X _{CP}) and Center of Gravity (X	
	Locations for 50 Caliber Bullet Core with Rectang	
18	Normal Force Coefficient, C_N , as a Function of Ar	igle
19	of Attack, α , for Configurations 1, 4 and 6 at a Stream Mach Number of 0.49 Normal Force Coefficient, $C_{\rm N}$, as a Function of Ar	
	of Attack, α , for Configurations 2, 3 and 5 at a Stream Mach Number of 0.49	

Figure	Title
20	Normal Force Coefficient, C _N , as a Function of Angle
	of Attack, α , for Configurations 1, 4 and 6 at a Free-Stream Mach Number of 0.80
21	Normal Force Coefficient, C_N , as a Function of Angle
22	of Attack, a, for Configurations 2, 3 and 5 at a Free- Stream Mach Number of 0.80
22	Normal Force Coefficient, C _N , as a Function of Angle
23	of Attack, a , for Configurations 1, 4 and 6 at a Free-Stream Mach Number of 0.94 Normal Force Coefficient, C_N , as a Function of Angle
	of Attack, a, for Configurations 2, 3 and 5 at a Free-
24	Stream Mach Number of 0.94 Normal Force Coefficient, C _N , as a Function of Angle
	of Attack, α, for Configurations 1, 4 and 6 at a Free-
0.5	Stream Mach Number of 1.05
25	Normal Force Coefficient, C _N , as a Function of Angle
	of Attack, α, for Configurations 2, 3 and 5 at a Free-Stream Mach Number of 1.05
26	Normal Force Coefficient, C _N , as a Function of Angle
07	of Attack, a, for Configurations 1, 4 and 6 at a Free- Stream Mach Number of 1,15
27	Normal Force Coefficient, C _N , as a Function of Angle
28	of Attack, a, for Configurations 2, 3 and 5 at a Free-Stream Mach Number of 1.15 Normal Force Coefficient, C _N , as a Function of Angle
	of Attack, a, for Configurations 1, 4 and 6 at a Free-
29	Stream Mach Number of 1.26 Normal Force Coefficient, C _N , as a Function of Angle
	of Attack, a, for Configurations 2, 3 and 5 at a Free-
30	Stream Mach Number of 1.26 Normal Force Coefficient, C _N , as a Function of Angle
	of Attack, a, for the 50 Caliber Bullet Core at a Free-Stream Mach Number of 0.30
31	Normal Force Coefficient, C _N , as a Function of Angle
20	of Attack, a, for the 50 Caliber Bullet Core at a Free-Stream Mach Number of 0.50
32	Normal Force Coefficient, C _N , as a Function of Angle
33	of Attack, α , for the 50 Caliber Bullet Core at a Free-Stream Mach Number of 0.70 Slope of the Normal Force Coefficient-Angle of Attack Curve, Measured at Zero Angle of Attack, C_N , as a Function of Free-Stream Mach Number for α Configurations 1 Through 6

Figure	Title
34	Slope of the Normal Force Coefficient-Angle of Attack Curve, Measured at Zero Angle of Attack, C_{N} , as a
35	Function of Free-Stream Mach Number for the 50 Caliber Bullet Core Pitching Moment Coefficient, $C_{\rm m}$, as a Function of
36	Angle of Attack, α , for Configurations 1, 4 and 6 at a Free-Stream Mach Number of 0.49 Pitching Moment Coefficient, $C_{\rm m}$, as a Function of
37	Angle of Attack, α , for Configurations 2, 3 and 5 at a Free-Stream Mach Number of 0.49 Pitching Moment Coefficient, C_m , as a Function of
38	Angle of Attack, α , for Configurations 1, 4 and 6 at a Free-Stream Mach Number of 0.80 Pitching Moment Coefficient, C_m , as a Function of
39	Angle of Attack, α , for Configurations 2, 3 and 5 at a Free-Stream Mach Number of 0.80 Pitching Moment Coefficient, C_m , as a Function of
40	Angle of Attack, α, for Configurations 1, 4 and 6 at a Free-Stream Mach Number of 0.94 Pitching Moment Coefficient, C _m , as a Function of
41	Angle of Attack, α, for Configurations 2, 3 and 5 at a Free-Stream Mach Number of 0.94 Pitching Moment Coefficient, C _m , as a Function of
42	Angle of Attack, α , for Configurations 1, 4 and 6 at a Free-Stream Mach Number of 1.05 Pitching Moment Coefficient, C _m , as a Function of
43	Angle of Attack, α, for Configurations 2, 3 and 5 at a Free-Stream Mach Number of 1.05 Pitching Moment Coefficient, C _m , as a Function of
44	Angle of Attack, α , for Configurations 1, 4 and 6 at a Free-Stream Mach Number of 1.15 Pitching Moment Coefficient, C_m , as a Function of
45	Angle of Attack, α , for Configurations 2, 3 and 5 at a Free-Stream Mach Number of 1.15 Pitching Moment Coefficient, C_m , as a Function of
46	Angle of Attack, α , for Configurations 1, 4 and 6 at a Free-Stream Mach Number of 1.26
10	Pitching Moment Coefficient, $C_{\rm m}$, as a Function of Angle of Attack, α , for Configurations 2, 3 and 5 at a Free-Stream Mach Number of 1.26

Figure	Title
47	Pitching Moment Coefficient, C_m , as a Function of
48	Angle of Attack, α , for the 50 Caliber Bullet Core at a Free-Stream Mach Number of 0.30 Pitching Moment Coefficient, C_m , as a Function of Angle of Attack, α , for the 50 Caliber Bullet Core
49	at a Free-Stream Mach Number of 0.50 Pitching Moment Coefficient, $C_{\rm m}$, as a Function of
50	Angle of Attack, α , for the 50 Caliber Bullet Core at a Free-Stream Mach Number of 0.70 Slope of the Pitching Moment Coefficient-Angle of Attack Curve, Measured at Zero Angle of Attack, C
51	as a Function of Free-Stream Mach Number for Configurations 1 Through 6 Slope of the Pitching Moment Coefficient-Angle of Attack Curve, Measured at Zero Angle of Attack, C
52	as a Function of Free-Stream Mach Number for the 50 Caliber Bullet Core Distance from the Moment Reference Center (X _{RC}) to
53	the Center of Pressure (X_{CP}) as a Function of Free-Stream Mach Number for Configurations 1 Through 6. Distance from the Moment Reference Center (X_{RC}) to
54	the Center of Pressure (X_{CP}) as a function of Free-Stream Mach Number for the 50 Caliber Bullet Core Axial Force Coefficient at Zero Angle of Attack, $C_{A_{CP}}$,
55	as a function of Free-Stream Mac: Number for Configurations 1 Through 6 Total Pitch Damping Coefficient, $C_{n_{A}} + C_{n_{A}}$, as a Func-
56	tion of Free-Stream Maca Number for Configuration 6 Pitch Damping Coefficient, $C_{m_{\hat{\theta}}^{+}} \stackrel{+}{\sim} C_{m_{\hat{\alpha}}^{+}}^{+}$, as a Function
57	of Mean Angle of Attack, \tilde{w} , for Coefiguration 6 at a Free-Stream Mach Number of 0.30 Pitch Damping Coefficient, $C_{m,\gamma} + C_{m,\gamma}$, as a Function
58	of Mean Angle of Attack, π , for Configuration 6 at a Free-Stream Mach Number of 0.50 Pitch Damping Coefficient, $C_{m_3} + C_{m_3}$, as a Function
	of Mean Angle of Attack, %, for Configuration 6 at a Free-Stream Mach Number of 0.70

Figure	Title
59	Pitch Damping Coefficient, $C_{\mathfrak{m}_{\hat{\theta}}^{+}}C_{\mathfrak{m}_{\hat{\sigma}}^{-}}$, as a Function
60	of Mean Angle of Attack, $\overline{\alpha}$, for Configuration 6 at a Free-Stream Mach Number of 0.90 Pitching Moment Coefficient, $C_{\rm m}$, as a Function of
61	Angle of Attack, α , for Configuration 6 at a Free-Stream Mach Number of 0.30 as Obtained from Pitch Damping Data Pitching Moment Coefficient, $C_{\rm m}$, as a Function of
62	Angle of Attack, α , for Configuration 6 at a Free-Stream Mach Number of 0.50 as Obtained from Pitch Damping Data Pitching Moment Coefficient, $C_{\rm m}$, as a Function of
•	Angle of Attack, α , for Configuration 6 at a Free-Stream Mach Number of 0.70 as Obtained from Pitch Damping Data
63	Roll Damping Coefficient, C, , as a Function of Free-
64	Stream Mach Number, for Configuration 6 at Constant Angles of Attack of 0, 5, 10 and 15 Degrees Roll Damping Coefficient, C, , as a Function of Angle
65 66	of Attack for Configuration 6 at Free-Stream Mach Numbers of 0.30, 0.50, 0.80, 0.95, and 1.30 Fin Span, b, Versus Chord Length, c, for the 50 Cali- ber Bullet Core with Rectangular Fins for a Model with the Center of Pressure 1.54 Inches Aft of the Nose Velocity at Impact (V _{im}) for Several Launch Altitudes
	and Initial Horizontal Launch Velocities (Vin) for a
	Particle Having a Fixed W/Cn of 0.25
67	Velocity at Impact (V or Several Launch Altitudes
	and Initial Horizontal Launch Velocities (Vin) for a
	Particle Having a Fixed W/CD of 0.50
68	Velocity at Impact (Visc) for Several Launch Altitudes
	and Initial Horizontal Launch Velocities (Vin) for a
60	Particle Having a Fixed W/C _D of 0.75
69	Velocity at Impact (V _{im}) for Several Launch Altitudes
	and Initial Horizontal Launch Velocities (V_{in}) for a Particle Having a Fixed W/C_{D} of 1.00
	2 D 02 1100

INTRODUCTION

Lazy Dog is the name of a project established by the Bureau of Naval Weapons to develop an antipersonnel weapon from the existing surplus of 50 caliber bullets. The modified bullets are to be dropped, in quantity, from high speed, low flying aircraft. Concentrations of ground troops will be the principal targets. In order to accomplish its mission, Lazy Dog must have a concentrated mass and possess a relatively high kinetic energy at impact.

This report describes and summarizes the testing program, and the subsequent evaluation, for several Lazy Dog configurations. In those cases where the 50 caliber bullet served as the basic body, the unloaded shell casing was retained attached to the projectile. Various stabilizing afterbodies were produced by cutting and forming the shell casing. Other configurations were formed by attaching a finned afterbody to the bullet core.

The principal result is the recommendation that the steel core of the 50 caliber bullet be utilized as the basic missile body. An afterbody with stabilizing fins is added to form a low drag, fin stabilized weapon. The fins provide the stabilization which is normally realized by spin in the conventional application of the bullet.

This report represents a significant contribution to the aerodynamics of the 50 caliber bullet. It appears that prior to these tests very little aerodynamic data had been gathered on the bullet. A literature search led to the belief that no systematic studies of this sort had been conducted. Therefore, it is presumed that this report contains the majority of the aerodynamic data on this ballistic shape.

AERODYNAMIC SYMBOLS

A	reference area (based on maximum bullet or core								
	diameter) (in ²)								
b	span (in)								
c	chord (in)								
CA	axial force coefficient (F_{A}/qA)								
c_{D}	drag force coefficient (Fp/qA)								
C _m	pitching moment coefficient (My/qAd)								

$^{\mathrm{C}}_{\mathrm{m}}{}_{a}$	slope of the curve of pitching moment coefficient versus angle of attack; the stability derivative $(dC_m/d\alpha)$
C _N	normal force coefficient (F _N /qA)
$^{\text{C}}_{\text{N}_{\alpha}}$	slope of the normal force coefficient-angle of attack curve; the stability derivative $(dC_N/d\alpha)$
$C_{\mathbf{m}_{\dot{\theta}}^{\bullet}} + C_{\mathbf{m}_{\dot{\alpha}}^{\bullet}}$	the pitch damping coefficient, $\frac{\partial C_m}{\partial (\frac{\partial d}{2V})} + \frac{\partial C_m}{\partial (\frac{\partial d}{2V})}$
c_{ι}	rolling moment coefficient (M _X /qAd)
c,	roll damping derivative, $\frac{\partial C_{\ell}}{\partial (\frac{pd}{2V})}$
d	reference length (bullet or core maximum diameter) (in)
FA	axial force (lbs)
$\mathbf{F}_{\mathbf{D}}$	drag force (lbs)
$\mathbf{F}_{\mathbf{N}}$	normal force (lbs)
I _{xx}	mass moment of inertia about the longitudinal axis $(slug-in^2)$
I уу	mass moment of inertia about the transverse axis (slug-in ²)
L	rolling moment (in-lbs)
Lp	roll damping moment derivative (in-lbs-sec/rad)
\mathbf{L}_{δ}	induced rolling moment derivative (in-lbs/rad)
m	mass (slugs)
M	Mach number
Ma	slope of the pitching moment-angle of attack curve $(in-lbs/rad)$
Mx	(rolling) moment about the body x-axis (in-lbs)
My	(pitching) moment about the body y-axis (in-lbs)
p	body spin rate (rad/sec)

q	windstream dynamic pressure (psia)						
t	time (sec)						
V	velocity (ft/sec)						
W	model weight (lbs)						
X _{CG}	distance to the center of gravity from the nose measured along the x-axis (calibers)						
X _{CP}	distance to the center of pressure from the nose measured along the x -axis (calibers)						
X _{RC}	distance to the moment reference center from the nose measured along the x-axis (calibers)						
α	angle of attack (deg, rad)						
å	angle of attack angular velocity, $d\alpha/dt$ (rad/sec)						
ä	angle of attack angular acceleration, $d^2\alpha/dt^2$						
	(rad/sec ²)						
$\overline{\alpha}$	$a_0^{\lambda t}$ which is the envelope of the pitch damping						
	trace (deg) (see Appendix A)						
Δα	angle (of attack) difference $(\alpha_p - \alpha_j)$ (rad)						
∆t	time difference $(t_j - t_i)$ (sec)						
$\hat{\boldsymbol{\theta}}$	pitch angle (deg, rad)						
Subscript	s						
С	refers to the 50 caliber bullet core						
F	refers to an afterbody fin						
in	initial conditions						
im	impact conditions						
j	refers to a general point or position						
o	zero angle of atta conditions						
g	peak angle of attack conditions						
t	terminal condition						

MODELS, TEST TECHNIQUES AND DATA REDUCTION

The 50 caliber bullet, the bullet core, and the six flared or finned configurations tested in this program are shown in

Figures 1 through 8, and are listed in Table 1. Figure 1 is a sketch of the 50 caliber bullet, while Figure 2 depicts the core alone. It should be noted that the dimensions on Figure 1 are given in inches, while those on the other model drawings are expressed in calibers.

Configurations 1, 2 and 3 (see Figures 3-6) are flared tail models which were formed by simply cutting and shaping the cartridge case of the 50 caliber round. These three shapes were initially chosen on the basis of their performance as observed during drop tests conducted at the Naval Ordnance Laboratory. Configuration 1 (Figure 3) is the most elementary design, wherein the case has been clipped and the powder charge removed. This design represents a relatively simple aerodynamic shape which, incidentally, was later discarded due to its poor performance. Configurations 2 and 3 (Figures 4 and 5) are more sophisticated split skirt designs.

After the above-mentioned configurations utilizing the bullet and cartridge core were found to have rather poor aerodynamic qualities, several finned designs employing the bullet core were devised, tested and evaluated. Those considered have been designated as Configurations 4, 5 and 6 and are sketched in Figures 6, 7 and 8. Configurations 4 and 6, which were designed by the Naval Ordnance Test Station, are quite similar; they differ only in the planform shape of the uncanted stabilizing fins attached to the basic body. Configuration 5 is comprised of the bullet core fitted with four canted fins, serving to both fin-stabilize the body and provide for an aerodynamically induced spin which produces a degree of gyrodynamic stability. This design, which was suggested by the Bureau of Naval Weapons, was subsequently discarded after testing due to certain undesirable characteristics.

Figures 11 through 14 are photographs of the wind tunnel models tested. Figure 11 shows the 50 caliber core, Figure 12 the three flared configurations, and Figures 13 and 14 the three finned shapes. Once again it is recalled that the configurations employ two different forebodies. Each is fitted with differing aerodynamic stabilizing afterbodies to form the various shapes tested. Configuration 4 in Figure 13 does not have the nose section attached; the nose is in place on Configuration 5. The nose is employed whenever these bodies are being tested.

The initial part of the testing program was concerned with the measuring of static forces and moments on the several configurations, just discussed above, and the 50 caliber bullet core alone. These data were gathered from tests conducted in NOL Supersonic Tunnel No. 1 (reference (1)) with the models

mounted on a six-component, internal strain gage balance (see reference (2)). The data were collected and reduced to to aerodynamic coefficients, with corrections applied to account for sting deflection due to aerodynamic loads.

A brief analysis of the data indicated the overall superior qualities of Configurations 4 and 6, the finned models with zero fin cant angle. As a consequence, Configuration 6 was chosen as the model for further study and evaluation. This configuration was dynamically tested to ascertain its damping capabilities in pitch and in roll. A photograph of the pitch damping apparatus is shown as Figure 15. Highspeed motion pictures were used to obtain the time to damp to half amplitude, which determines the total pitch damping coefficient, $C_{m_0^2} + C_{m_0^2}$. This technique is described in reference (3),

An estimate of the pitching moment coefficient for the model can also be made from these photographic records. This scheme requires that the oscillatory mode be viewed in regard to how the motion, in the vicinity of the peak oscillation, is related to the aerodynamically induced pitching moment. The photographic records are utilized to provide an approximate expression for the angular acceleration; the approximation (see Appendix B) is

$$\frac{\mathrm{d}^2 \alpha}{\mathrm{d}t^2} \approx -\frac{2 \hat{\alpha}}{(\Delta t)^2} \tag{1}$$

where Δa is the difference in (pitch) angle of attack occurring during the time increment Δt . Using equation (1) in the single-degree-of-freedom relationship specialized for peak displacement equation (B-8) gives:

$$\frac{C_{m}}{a_{p}} = -\frac{2\Delta a I_{yy}}{(\Delta t)^{2} q A d}$$
 (2)

where $C_{m}|_{\alpha_{D}}$ is the pitching moment coefficient at the peak

angle of attack, $\alpha_{\rm p}$. A more complete description of this method of analysis is available in Appendix B. Incidentally, this model had three tail fins and was tested in two modes; one with a tail fin placed vertically and the other with a fin horizontally located. This procedure was adopted to see if a difference in damping would be noted.

Roll damping derivatives were obtained for Configuration 6 using the apparatus described in reference (4). Briefly, the

model is driven at a predetermined roll rate, and then the rolling motion allowed to decay with time. The roll rate-time history is recorded and then analyzed to determine the time for the motion to decay to a desired level, etc. This information is then utilized, analogous to the scheme set down above, to calculate values of the roll damping derivatives. See Appendix C for a more complete description of the method employed.

The last phase of testing on Configuration 6 was conducted in the NOL Pressurized Ballistics Range No. 3 and the NOL Aerodynamics Range No. 1. Here full scale models were test-fired down these ranges to ascertain their free-flight behavior. Several shots were made, at high subsonic and transonic Mach numbers, and at initial launch angles of 15, 45 and 90 degrees. No quantitative data were collected from the range firings; the purpose of these shots was to verify the stability evaluations made from the aerodynamic data gathered during the wind tunnel testing program.

A compendium of the wind tunnel and range testing conditions is given in Table 1.

The overall results of this investigation indicate that none of the configurations tested is entirely satisfactory for the purposes intended. As a consequence, two designs have been proposed which should better meet the requirements of the Lazy Dog weapon; these are presented herein as Configurations 7 and 8, and are shown in Figures 9 and 10. These designs were analytically determined employing data gathered during this testing program and other experimental data. It is suggested that models of the configurations be constructed and tested to prove their effectiveness.

DISCUSSION OF RESULTS AND CONCLUSIONS

The data collected, reduced and calculated during this program are set down in Figures 18 through 69. All of the wind tunnel data have been corrected for aeroelastic deformations of the balance sting. It should be recalled that these results have been collected essentially for a family of three body types. These include the basic 50 caliber shell, cut and formed to provide a stabilized configuration; the 50 caliber bullet core with stabilizing fins added; and the bullet core alone.

As mentioned in the preceding section, wind tunnel tests were conducted to ascertain the static and certain dynamic (stability) characteristics of the several configurations. In Figures 18 through 32, normal force data are presented as a

function of angle of attack for several free-stream Mach numbers. The free-stream Mach numbers for these tests varied from approximately 0.3 to 1.26. The corresponding static pitching moment data, for the several bodies, are presented on Figures 35 through 49. The angle of attack range for the stabilized bodies (formed and finned afterbodies) was $-4^{\circ} \le \alpha \le +16^{\circ}$, while for the bullet core alone the range was $-5^{\circ} \le \alpha \le +90^{\circ}$. Figures 33 and 34 show the normal force coefficient slope (C_N) determined in the neighborhood of $\alpha = 0$. The moment

coefficient slope (C_{m}) is presented on Figures 50 and 51.

From these results the static stability margin $(X_{RC} - X_{CP})$ is readily determined; this quantity also serves as a measure of a configuration's static longitudinal stability. For those cases where the margin of stability is positive $(X_{RC} - X_{CP}) > 0$, the body is statically stable; that is, the center of pressure lies aft of the moment reference center. In this regard, when the moment reference center coincides with the center of the mass then the constrained margin of stability (as determined here from wind tunnel data) would ideally be the same as that experienced by a prototype in free flight under similar aerodynamic flight conditions.

Figure 54 presents the drag data (C_{A_0} , axial force or drag coefficient at a=0) for Configurations 1-6, inclusive, over the Mach number range from 0.49 to 1.26. Generally speaking, then, Figures 33, 34, and 50 through 54 summarize the basic (static) aerodynamic characteristics of the bodies tested in the Lazy Dog program.

A study of Figures 18 through 29 indicates that the configurations fitted with stabilizing afterbodies develop a decided nonlinearity of the normal force coefficient in the transonic speed range. This nonlinear influence is most pronounced at the higher angles of attack and after the typical onset of transonic compressible influence. Apparently, these diversities are brought on by local sonic conditions, since they appear at near the drag divergence Mach number and diminish at approximately the upper (Mach number) limit for transonics. It is rather interesting to note that Configurations 2 and 3 (see Figures 4 and 5) show almost identical normal force variations throughout the transonic speed range. This would imply that these body types are essentially equivalent in transverse force capabilities. Configuration 5, with its canted fins, generates the largest normal force. Configuration 1 generates the least.

Special attention is called to the data presented for Configurations 4 and 6, because these are the configurations on which the dynamic stability tests were performed. Configuration 4 is better than 6, with regard to normal forces produced over the entire transonic speed range.

From Figure 33, it is evident that the fin stabilized bodies are more susceptible to transonic influences than are the skirted afterbodies. Configurations 4, 5 and 6 show the typical transonic "hump" in the normal force curve slope ($^{\rm C}_{\rm N}$).

Though the other configurations (1, 2 and 3) show a similar influence, it is not nearly so severe.

The bullet core data, C_N vs. α , for the several Mach numbers, is presented on Figures 30 through 32. Here, a decided nonlinearity, at angles of attack not near zero, is quite apparent. These results, up to approximately 60 degrees angle of attack, are typical for bodies of revolution having an ogival type nose. The rather abrupt rise in slope (C_N) at approxi-

mately 30 degrees angle of attack, and the subsequent reduction in slope at about 60 degrees, is indicative of the influence of body shape and flow separation on $C_{\rm N}$.

Figures 35 through 59 present pitching moment coefficients versus angle of attack for the speed range of the tests. Analogous to those cases just discussed, the nonlinear influence of transonics is quite evident. It should be noted that Configuration 1 is statically unstable over the entire range of angle of attack. The other configurations (2 through 6) are statically stable about their trim angle of attack. A study of these graphs indicates that in general the stable configurations have an increased stability index (C_m) at transonic speeds.

They also experience an increased nonlinearity in $C_{\rm m}$ at these (same) speeds. These effects are most apparent for Configurations 1, 4 and 6 and least evident for the shapes designated as "2" and "3." Actually, near sonic speeds the trend is for the more largely influenced bodies to develop a trim angle outside of the test range; that is, for $\alpha > 16^{\circ}$. This is somewhat disturbing in view of the many launch conditions possible for the Lazy Dog weapon. A second trim angle means that the bomblet might not properly trail.

In terms of the static stability index (C), Configuration 5, with its canted fins, is clearly superior to all others.

Configurations 4 and 6 have the next best stability characteristics, and, as mentioned previously, Configuration 1 is statically unstable (see Figure 50).

On Figures 47 through 49 the static instability of the bullet core alone is described. Once again the phenomena of flow separation and/or compressibility are quite apparent. At least two changes in slope (C_{H}) are indicated, and a sharp

slope reversal is noted at approximately 60 or 70 degrees angle of attack. The need for some sort of stabilizing augmentation is clear. Further, it is apparent that the core possesses a second trim orientation in the vicinity of 100 degrees angle of attack. These conditions imply a need for, say, the spin stabilization of a bullet, and point up the sometimes noted "instability" of nonspinning, projectile—like bodies.

Analogous to the normal force coefficient, the basic stability derivatives (C $_{\rm m}$) for the core alone are only slightly $_{\rm o}$

influenced by Mach number, at least in the speed range of the tests as reported (see Figure 51).

Figures 52 and 53 summarize and give an aerodynamic representation to the data collected and described above. These figures describe the static margin of stability for the various configurations as a function of free-stream Mach number. As mentioned before, a positive value for the term implies a body which exhibits static stability. Also, the larger the magnitudes of this term the more stable is the configuration. This is apparent when one considers that for a wind tunnel model the measured moment is obtained about a moment center, which in turn is produced by the aerodynamically generated normal force. The ratio of the moment to the force is then proportional to the moment arm. This would be the same as the ratio of the linear slopes, Machine and Machine measured the slopes (see

Figures 33 and 50, for example) it is a sample matter to calculate the static margin, which is given here in calibers. The similarity to the curves of $C_{\rm rec}$ and $C_{\rm m}$ is immediately seen;

once again it is evident that Configuration 5 is superior to all others, with Configurations 6, 2 and 4 following on a next-best basis. Typically, Configuration 1 is indicative of the unstable situation where the center of gravity lies aft of the force center, or center of pressure, on the body. It is of interest to note that in the main the stable configurations show an increase in static margin over the transonic speed region, while the unstable Configuration 1 is at best only slightly affected by Mach number.

Figure 54, prepared for the bullet core, also shows the unstable character of this body type but shows a more marked dependence on free-stream Mach number.

In Figure 55 the last of the usual serodynamic wind tunnel data is presented. This graph is a plot of the zero angle of attack axial force, or the drag coefficient at $\alpha=0$, as a function of free-stream Mach number. Recalling that one requisite for Lazy Dog is low drag, then it is evident that the least values of C_A describe the best configurations. A cursory

glance at this figure indicates a choice of either Configuration 4 or 6 in terms of a least basic drag for the speed range considered.

Having the basic data from the wind tunnel measurements, it is now possible to select a configuration which would seem best suited to serve as the Lazy Dog Weapon. From an overall consideration it would appear that either Configuration 4 or 6 should be selected. As a consequence, Configuration 6 was chosen and used in the dynamic stability studies conducted as a part of the weapon's evaluation program. Even though Configuration 5 showed some superior capabilities it was not selected for further evaluation primarily because of the need for a least drag configuration. It should be noted that the canted fins on Configuration 5 would probably introduce an added drag component, when the bomblet was free to rotate, arising from the fin lift increment needed to provide the rotation. Of course, it is likewise apparent that body rotation is a necessary evil for fin stabilized bodies since it would be virtually impossible to mass produce a finned afterbody unit without some fin misalignment. Fin misalignments will produce some trim. Roll produced by fin cant aliminates dispersion due to such asymmetries. However, the phenomenon of pitch-roll resonance may be incurred. When the roll rate equals the natural pitching frequency, there is a large amplification of trim. The trim at resonance depends on the aerodynamic damping. If the damping is low, or if the asymmetry is sufficiently large, very erratic behavior (such as a flat spin) could result. In practice, it is difficult to manufacture fins with the small differential deflection required to keep the terminal roll rate below resonance. Hence, it is common to increase the fin cast to produce a roll rate above resonance. This incurs a papalty in the form of induced drag.

On Figures 55 through 59 the total pitch damping capacity (C $_{m_{\mathring{Q}}}$ + C $_{m_{\mathring{Q}}}$) of Configuration 6 is presented. This damping term

is measured as the sum indicated since the rechnique of experimentation used does not permit separation of the derivatives. Figures 56 through 59 are graphs of pitch damping as a function

of the angle α . Each graph represents a particular free-stream Mach number. The Mach number range is $0.3 \le M \le 0.9$. Figure 55 summarizes these data by showing the range of pitch damping as a function of free-stream Mach number. The range of the damping term, at a given Mach number, has been arbitrarily selected to correspond to an α variation of $0^{\circ} \le \alpha \le 10^{\circ}$. Values of the pitch damping derivatives were taken from Figures 56 through 59 for this purpose.

It should be pointed out that on these figures (56 through 59) there is a region of uncertainty connected with each graph. For this reason all curves have been extrapolated to the $\bar{\alpha}=0$ value shown, and the curve plotted as a dashed line in the region of uncertainty.

The damping in pitch of Configuration 6 was expected to depend on its roll orientation because of the triform tail. This expectation was studied by performing two damping tests, one with a fin vertically aligned in the wind tunnel and one with a fin parallel to the tunnel horizontal plane. The experimental results showed no effect of model roll orientation.

Figure 55, representing somewhat of a summary, shows that for the configuration tested there was a continual increase in pitch damping derivative with free-stream Mach number. Generally such results are expected. The damping derivatives arise from the pitching rate and from the heave. In most cases, the pitch rate damping C is the more important trim. It can be en-

hanced by increasing the tin domont arm or the fin area.

It should be mentioued, in connection with tests of this type and those conducted to determine other damping derivatives for other modes of motion, that an Tab yet unaccounted for" source of error is present. This error arises because of the uncertainty in the amount of bearing friction present in the experimental apparatus. It has been tacitly assumed that the magnitude of the moment created by the bearing friction is small compared to the aerodynamic moment.

A development carried out in Appendix A suggests that the pitch camping data can be utilized to determine the static

pitching moment. Two methods appear in the appendix; however, only the method suggested by equation (B-8) was actually utilized in this report. Having measured the time and angle increments, and knowing the characteristics of the body and the windstream, equation (B-8) is solved for a value of $C_{\rm m}$. The calculated values are presented as graphs of $C_{\rm m}$ versus α for the free-stream Mach numbers of the pitch damping tests. These graphs appear as Figures 60, 61 and 62 in this report.

In view of the inevitability of finned configurations having some rolling motion, a series of tests was conducted on Configuration 6 to ascertain its damping in roll. This characteristic of the bomblet could arise from fin cant angle (intentionally or accidentally provided) and could have a decided influence on the free-fall trajectory of the weapon.

Under the controlled testing conditions present in the wind tunnel, and for a precisely constructed model, accurate data have been collected and analyzed. Figures 63 and 64 present the roll damping derivative as a function of free-stream Mach number and angle of attack.

From Figure 63 it is seen that the Mach number influence on C_t is mainly confined to the transonic and supersonic speed p range. Too, it is evident that as the angle of attack is increased the influence of Mach number is reduced in comparison to, say, the $\alpha=0$ case.

A cross plot of these results appears on Figure 64. Here it is apparent that the Mach number influence can be more pronounced as the angle of attack is reduced. Once again the tendency of the body to seek a common level of roll damping, without regard to Mach number or angle of attack, is demonstrated. A diverse occurrence is observed on Figure 64. The general trend is for the roll damping capacity to decrease as the angle of attack is increased; all cases except that for the lowest test Mach number show this characteristic. For a free-stream Mach number of 0.3 the trend is reversed in that the damping capacity increases with increasing angle of attack, reaching a maximum and hinting that at still larger angles the expected decrease in $|\mathsf{C}_t|$ will occur.

The method used to calculate C_{ℓ} from the roll motion time history records is described in Appendix C. The equation used in connection with this report is equation (C-8). This represents the case of no induced roll action. The calculation

requires a knowledge of the roll rate, p(t), and certain properties of the model and the wind tunnel operation conditions. For cases where induced rolling would occur, and a subsequent steady state rolling would follow, the applicable formulation is given by equation (C-6), rather than (C-8).

In addition to the information gathered here, it was decided that several range firings of full scale models should be conducted. These tests were suggested primarily for the purpose of gaining further information on the free-flight behavior of the weapon, especially to observe flight characteristics for launchings at large initial angles of pitch. These tests were carried out in the NOL Pressurized Ballistics Range and the Aerodynamics Range.

The range test shots indicated that pitch damping was not as large as expected; that generally the high angle motion was lightly damped; and that in all probability the models were unstable to varying degrees. This confirms the wind tunnel data which indicated instabilities at large angles of attack and the possibility of relatively large trim angles.

After having completed these last studies, and with a full evaluation of all available test results, it was concluded that no one of the several configurations tests was acceptable. It was felt that Configuration 6 (see Figure 8), though the best of the original designs, in the last analysis did not satisfy all requirements of the Lazy Dog concept. In an effort to find a more optimal configuration, some added criteria were established from which two new designs evolved. These designs were to have the low drag of Configurations 4 and 6, yet they would hopefully have better stability characteristics, both static and dynamic. The criteria on stability suggest that the new configurations must have adequate stability up through angles of attack of 90 degrees, and have adequate damping to reduce pitching (in particular) to a low level within a few oscillations. Such requirements are necessary if the weapon is to properly trail and have a reasonably predictable trajectory. Configurations without fairly large damping and with good lifting capacities have the undesirable tendency of "sailing" rather than "falling" along their free-flight trajectories.

The design analysis, using the bullet core as the basic body, incorporated empirical data from reference (5). Thus, the analysis included several stabilizer configurations. The final selection was made in favor of fins having a rectangular planform. Primarily this selection was made in order to keep the center of pressure aft and to achieve the required static margin, namely, $(X_{RC}-X_{CP})=0.75$ calibers.

The overall center of pressure for the configuration can be estimated from a weighted factor formulation which includes only the known center of pressure locations for the various body elements and neglects interference and interaction effects. The mathematical description for a composite configuration is

$$X_{CP_{(C+F)}} = \frac{C_{N_{\alpha_{(C)}}} X_{CP_{(C)}} + C_{N_{\alpha_{(F)}}} \frac{2A_{(F)}}{A_{(C)}} X_{CP_{(F)}}}{C_{N_{\alpha_{(C)}}} + C_{N_{\alpha_{(F)}}} \frac{2A_{(F)}}{A_{(C)}}}$$
(3)

where subscripts (c) and (f) refer to the "core" and "fin", respectively; $A_{(F)}$ and $A_{(C)}$ are reference areas, and

 $A_{(F)} = \frac{b}{2} \times c$. Incidentally, the factor "2" is introduced into the equation to signify that two of the fins influence the center of pressure location. In view of the fact that the proposed configuration is one having cruciform fins, then (it is assumed that) only two fins would be influenced by a pitching action. Coupled effects, like interference effects, are neglected here.

The particulars of these newest configurations are as follows: It was estimated that the mass center for the core body and cruciform fins would be located 2.8 calibers (1.20 inches) aft of the nose. With the static margin set at 0.75 calibers (0.32 inches), then the overall center of pressure would be located at 3.55 calibers (1.52 inches) aft of the vehicle nose. These specifications, coupled with the aerodynamic data for the core, taken at a free-stream Mach number of 0.50, and data contained in reference (5), account for the calculated fin dimensions. A plot of the required span, as a function of chord length for these conditions, is given on Figure 65. Two configurations, selected from the possible family of solutions and designated as Configurations 7 and 8. are shown as Figures 9 and 10, respectively. It is apparent that these two designs are distinctive by the difference of fin dimensions selected for them. To date, no tests have been made on these configurations. They have been proposed for subsequent evaluation.

In connection with the overall research program, several particle, free-flight trajectories were calculated. These

trajectories do not show the influence of vehicle aerodynamics, except for drag, and only represent the motion in a vertical plane. Also, these particular studies were carried out in terms of a selected fixed parameter (W/CD) for each path. In this regard the variation of $\mathbf{C}_{\mathbf{D}}$ with Reynolds number and Mach number has been neglected. Primarily, the altitudes (and, in general, the velocities) are so low as to neglect the influence of these various dimensionless quantities. The trajectory analyses were conducted and results are included here to illustrate the influence of drag, or specifically $\mathbf{C}_{\mathbf{D}}$, on impact conditions; and to ascertain what launch conditions would be required to have the weapon reach the ground with the required kinetic energy.

The trajectory analysis is summarized on Figures 66 through 69. Each graph will show two reference velocities; one, the lower reference value, corresponding to a selected kinetic energy (at impact) of 58 foot-pounds, and the larger value (marked V_+) corresponding to the sea level terminal velocity for the particle having a value of (W/C_n) prescribed for that figure. Most of the results are similar, and the data of Figure 68, for the case of $(W/C_D) \approx 0.75$, are typical. The bomblet, when released from an altitude of 100 feet with no initial velocity, will strike the ground at a speed of 80 fps. This corresponds to an impact kinetic energy of 13.12 foot-pounds (the bomblet has a mass of approximately 0.0041 g-pounds). Therefore, the weapon would have to be launched from a 100 foot altitude at a speed of 140 fps to have the desired 58 foot-pounds of kinetic energy at impact. In the extreme case of a launching at 800 fps from a 100 foot altitude, the bomblet reaches the ground with an impact speed of 710 fps, corresponding to a kinetic energy of 1033.4 foot-pounds. Apparently, up through altitudes of 1,000 feet, at a launch speed of approximately 425 fps, the bomblet will impact at nearly a fixed speed -- or at essentially a fixed kinetic energy. At an altitude of approximately 5,000 feet, and upward, the launching speed has only a small influence on the impact speed; that is, the bomblet has about the same level of kinetic energy at impact, regardless of the initial speed. Though it is not apparent from the graph, the trajectory data show that for the higher altitudes the weapon's velocity first decreases (due to drag deceleration), passes through a lowest speed, and then accelerates slowly (due to gravity) as it continues to fall along its trajectory.

The above comments are generally true for all graphs of impact speed versus initial speed; the numbers quoted above are necessarily true only for the one case considered. This is evidenced by the differences in drag coefficients for the graphs. For instance, $(W/C_D) = 0.75$ corresponds to a bomblet

with a $\rm C_D\approx 0.176$, while for a (W/C_D) = 0.25 the $\rm C_D\approx 0.528$. It is expected that the proposed designs would have a drag coefficient somewhere between these levels at subsonic speeds. The general picture of drag influence on a trajectory is available from these figures (66 through 69), and a changing drag can be interpreted from a visual interpolation of the graphs.

In conclusion, a final comment is offered on the proposed Lazy Dog designs (Configurations 7 and 8): No attempt has been made to predict any of the dynamic characteristics for these shapes. It is well known that dynamic predictions are mere guesses, particularly at transonic speeds. There is good reason to believe that the suggested designs will be an improvement over the configurations tested; however, the verification of this surmise awaits actual experimental results.

REFERENCES

- (1) Meeks, P. P., "Aeroballistic Research Facilities," NOLR 1233, Unclassified
- (2) Shantz, I., Gilbert, B. D., and White, C. E., "NOL Wind Tunnel Internal Strain-Gage Balance System," NAVORD Rpt 2972, 1953, Unclassified
- (3) Shantz, I., and Groves, R. T., "Subsonic Damping in Pitch Measurements of the EX-10, EX-30 and 6" Test Vehicle," NAVORD Rpt 4025, 1958, Confidential
- (4) Shantz, I., Schermerhorn, V. L., and Groves, R. T., "Roll-Damping Moment Measurements for the Basic Finner at Subsonic and Supersonic Speeds," NAVORD 6652, 1963, Unclassified
- (5) DeJonge, Clark, "The Effect of Low Aspect Ratio Rectangular and Delta Cruciform Fins on the Stability of Bodies of Revolution with Tangent Ogives at Small Angles of Attack Through a Mach Number Range of 0 to 3.5," U. S. Army Ordnance Missile Command Rpt No. RF-TR-62-1, Rev, 1962, Unclassified

CONFIDENTIAL HOLTE 63-47

					N)LTI	LDER	47				10			
		NOTES	-5 TO+15 CNECM TESTS	-5 TO +15 CN CW TESTS	510+15 CN&CM TESTS	-510 +15 CNCCM TESTS	4 - STO+19 CNECM TESTS	-5ro+15 Cu&CuTESTS	PITCH	ROLL	-610+86 CNECM TESTS	PROPOSED	CONFIG'S	A LAUNCH	4: LAUNCH
	S TEST	(DEG.)	510015		510+15	-510+15	-510+15	-510+15	PITCH	95,19,15	-670+B6		\langle	MACH Nº RANGE 0.70 TOLIO 1545,90	90
+	081	x10.68	7.p	9.p 7.p	8.p	8.4	L't	ĽÞ		6.4		1		10	010,500 :20N
TEST.	921	, ×	19.4 TD	9.p	F. b	8.4	3.4	90	-	-		1	/	0 5	0
0.	501	Nº / FOOT										1\	/	10	20
ΣZ	560	/ FC	5.4	5.4	6.4	5.4	5.4	5.4		5.4		\	/	195	Q.
-STREAM MACH N	06:0	0· Z							€.4				X	RA	j,
-STRE	08.0	8	5.4	5,4	5.4	5.4	1.4	0.4	8.6	1.4	6.6	/	1	0 Z	ž
Щ	05.0	OLG							0,6	0.5	1.5	/	1	I	I
FREE	600 060 060 060 060 060 060	REYNOLDS	1.6	1,5	1.5	1.6	0.6	08	961	961	0.5	/	1	MAC	MACH
			-	1	- 1	()	-	S	-			,	-	-	
	CONFIG	ATOR	NOL	100	NOL	NOTS	NOL	NOTS	NOTS	NOTS		NON	200	SE SE	AERODYNAMICS RANGE MODELS)
	8 8	4	2	Z	2	ž	2	2	2	Z		2		RANGE	A A
	WIND	SCALE	2.50	2.50	2.50	0	20	35	26	2	26.2			0	3
	WINDE	SCA	is	2	10	2.92	26.2	2.92	2	2.92	'n	5	5	ZEI	3
-			=	=	=		Ø	00	9	gg	82	8	8	PRESSURIZED MODELS)	MODELS
	SCALE	Z Z	0.511	0.51	0.511	0.428	0.428	245	0.428	0.428	0.428	0.428	0.428	ESS	OD ER
						-		0					- 1	K 2	4 Z
	FULL	32	3.57	2.80	2.85	2.00	2.47	2.00 0428	2.00	2.00	1.87	2.50	71.2	ZW	SCALE
-	" X ;	1	(1)	N	N	N	N	N	N	N	-	N	2	FIRED IN	F 8
	0	CORE				×	×	×	×	×	×	X		3 5	NOT (FULL SCALE
	BASIC DDY, 5	13		-			- †	-			-		-	D I	D I
	BODY, 5	BULL	×	×	×							⊒ /12		Nº (FULL	7 6.
	ш. Ш. VЭ — 1-1	CONFIG BULLET COPPE	-	2	3	4	2	0	O	0	CORE	1	00)	0	0

Nº FOR THAT COLUMN

18 Confidential

TABLE 2

TABULATED DATA

Pages
Normal Force and Pitching
Moment Coefficients20-67
Normal Force and Pitching
Moment Coefficient Slopes and
Center of Pressure Locations68-70
Drag Coefficients71-73
Pitch Damping Coefficients74-76
Roll Damning Coefficients

TABULATED DATA

Normal Force and Pitching Moment Coefficients

WTR	RUN CONFI	lG.
739	21 1	
a(deg)	C _w	C_
- 4.98	-0.4663	-0.1645
-04.07	-0.3826	-0.1464
-02.82	-0.3109	-0.0911
-01.07	-0.1435	-0.0549
00.03	-0.0478	-0.0183
01.08	0.0478	0.0183
01.99	0.1316	0.0364
03.09	0.2272	0.0730
04.03	0.2990	0.1005
05.05	0.3826	0.1464
06.08	0.4783	0.1830
07.15	0.5379	0.2478
08.28	0.6335	0.3123
09.08	0.6933	0.3491
10.03	0.7530	0.3859
11.00	0.8366	0.4578
12.10	0.9202	0.5337
13.07	0.9919	0.5611
14.02	1.0756	0.6071
15.01	1.1473	0.6346
15.83	1.2310	0.6306

WTR	RUN CONFIC	3.
739	22 2	
a (deg)	C	C
-05.02	-0.4660	0.1(55
-04.00	-0.4062	0.1422
-03.20	-0.3465	0.1189
-02.11	-0.2389	0.0656
-01.01	-0.1434	0.0617
00.02	-0.0837	0.0383
01.04	0.0239	-0.0149
02.03	0.1434	-0.0617
03.11	0.2390	-0,0935
04.06	0.3107	-0.1104
05.03	0.3703	-0.1058
36.10	0.4779	-0.1571
07.06	0.5735	-0.1909
	0.6452	- 1,2358
08.02	0.7408	-0.2676
09.13	0.8364	-0.2994
10.66	0.8961	-0.3228
11.03	0.6751	-0.3612
12.13		-0.3975
13.11	1.0534	-0.4443
14.05	1.1352	-C.4362
15.05	1.2308	- C + 4 - O L

WTR	RUN CONFI	G.
739	33 3	
a(deg)	C	C
-05.06	-0.4090	0.1567
-04.05	-0.3315	0.0921
-03.12	-0.2652	0.0737
-02.15	-0.1379	0.0608
-00.97	-0.1216	0.0424
00.00	-0.0553	0.0240
01.08	0.0442	-0.0037
02.03	0.1106	-0.0480
03.21	0.1878	-0.0349
04.08	0.2542	-0.0792
05.03	0.3205	-0.0377
06.08	0.3868	-0.1161
07.18	0.4753	-0.1751
08.28	0.5526	-0.1880
09.10	0.6189	-0.2064
10.17	0.6742	-0.2304
11.10	0.7627	-0.2895
12.04	0.8400	-0.3023
13.11	0.9054	-0.3207
14.09	0.9727	-0.3392
15.05	1.0279	-c.3373
15.42	1.0743	-0074

WTR	RUN CONFIG	
739	37 4	
a(deg)	C	C
-04.60	-0.5264	0.1390
-03.09	-0.3913	0.0847
-01.98	-0.2795	0.0584
-01.02	-0.1770	0.0200
00.10	-0.0606	0.0009
01.00	0.0419	-0.0241
02.05	0.1444	-0.0585
03.01	0.2009	-0.0873
04.14	0.3960	-0.1250
05.06	0.4705	-0.1254
06.33	0.6149	-0.1838
07.05	0.7313	-0.2409
08.12	0.8198	-0.2746
09.09	0.9823	-C.341:
10.05	1.1040	-0.3950
11.01	1.02)64	-0.4516
12.12	1.3649	-0.5:29
13.07	1.5001	-0.6135
. 14.05	1.5209	-0.6742
15.00	1.7699	-0.7625
15.84	1.8724	-0.0190

WIR	RUN CONFI	G.
7 3 9	09 5	
a(deg)	C _丽	C
-04.44	-0.7262	0.5027
-03.08	-0.5121	0.3502
-01.99	-0.3631	0.2402
-01.04	-0.2281	0.1489
00.02	-0.0792	0.0390
01.04	0.0558	-0.0523
02.03	0.2002	-0.1450
03.27	0.3677	-0.2575
04.04	0.5120	-0.3613
05.00	0.6703	-0.4614
06.23	0.8193	-0.5714
06.99	1.0008	-0.7248
08.05	1.1451	-0.3376
39.04	1.2820	-0.9642
10.10	1.4755	-1.1252
11.09	1.6477	-1.2384
12.17	1.8199	-1.4627
13.14	2.0200	-1.5632
14.08	2.1829	-1.8250
15.07	2.3597	-2.0167
15.46	2.4657	-2.1375

VTR 729	RUN CONF	IG.
a(deg)	C	C
-04.88 -04.02	-0.5340 -0.4577	C.2345
-03.01 -01.98	-0.3362 -0.2527	0.1673
-01.11 00.05	-0.1812 -0.0620	0.0769 0.0439
01.05 02.07.	0.0382	-0.0078 -0.0274
03.08	0.2623 0.3385	-0.0794 -0.1064
05.09	0.4434	-0.1450 -0.1912
07.07	0.6399	-0.2103 -0.2544
09.10 10.10 11.08	0.8487	-0.1048 -0.3356
12.07	1.0156	-0.3873 -0.4333
14.01	1.2310 1.3155 1.3070	-0,4927 -0,55.0 -0,5702
15,70	1.4.,04	-0.6041

WIR	RUN	CONFIG	•
739	20	1	
a(deg)	C	K	C E
-05.09	-0.4	284	-0.1573
-04.10	-0.3	599	-0.1311
-02.89	-0.2	628	-0.1000
-02.04	-0.1	942	-0.0743
-01.10	-0.1	142	-0.0437
00.13	-0.0	114	-0.0177
01.09	0.0	629	0.0174
02,05	0.1	714	0.0523
03.05	0.2	399	0.0785
04.04	0.3	1.42	0.1003
05.05	0.3	942	0.1442
06.00	0.4	456	0.1572
.07.02	0.5	483	0.2232
08.11	0.6	283	0.2671
09.10	0.7	082	0.3111
10.06	0.7	539	0.3419
11,00	0.8		0.3947
12.08	0.9		0.4341
13.02	1.00		0.4781
14.10	1.1		0.5174
15.09	1.1	_	0.5436
15.65	1 • 2.	393	0.5610

M=0.80

WTR 739	RUN CONFIC	3.
a(deg)	C	C BA
-04.79 -04.39 -03.00 -02.15 -01.38 00.03 01.17 02.04 03.05	-0.4568 -0.3997 -0.3083 -0.2341 -0.1256 -0.0228 0.0800 0.1528 0.2399 0.3141	0.2539 0.2098 0.1661 0.1263 0.0652 0.0009 -0.0500 -0.0559 -0.1633 -0.1897
04.10 05.05 06.04 07.05 08.33 09.05 10.04 11.15 12.12 13.23 14.05 15.02	0.4226 0.5025 0.5381 0.6908 0.7422 0.8279 0.9078 0.9991 1.0905 1.1533 1.2333 1.2789	-0.2508 -0.2875 -0.3076 -0.3452 -0.3706 -0.4175 -0.4541 -0.4979 -0.5416 -0.5742 -0.6242 -0.6528

WIR	RUN CONF	IG.
739	3.2 3	
a(deg)	c	C _m
-04.52	-0.3880	0.1790
-04.11	-0.3594	0.1532
-03.10	-0.2795	0.1132
-02.11	-0.2054	0.0837
-01.13	-0.1312	0.0409
00.12	-0.0228	-0.0115
01.09	0.0514	-0.0410
01.89	0.1313	-0.0810
03.03	0.2055	-0.1105
04.02	0.2910	-0.1476
05.03	0.3709	-0.1876
06.01	0.4555	-0.2247
07.03	0.5421	-0.2752
08.03	0.6334	-0.3228
09.09	0.7133	-0.3494
10.13	0.7761	-0.3846
11.08	0.48560	-0.4246
12.05	0.9415	-0.4484
13.02	1.0100	-0.4808
14.11	1.1012	-0.5017
15.22	1.1583	-0.5264

M-0,80

WTR	RUN	COMFIG	•
739	06	4	
a (deg)	C	M	Cal
-04.47	-0.6		0.2547
-04.03	-0.5		0.2101
-03.04	-0.4		0.1495
-02.04	-0.2		0.1038
-00.91	-0.1		0.0506
00.33	-0.0		0.0024
01.08		948	-0.0307
02.06		1132	-0.0719
03.05		1293	-0.1036
04.00		643	-0.1607
05.00		5543	-0.1893
06.12		7131	-0.2512
07.11	0.8	3457	-0.3100
08.00		381	-0.3538
09.17		1110	-0.4389
10.13		2271	-0.5045
11.01		3479	-0.5665
12.00		4758	-0.6401
13.00		6131	-0.7067
14.12		7671	-0.8003
15.11		8950	-0.8740
16.09		0276	-0.9554
16.15	2 .	0394	-0.3148

M-0,80

WIR	RUN	Config	•
739	10	5	
a (dog)	C		C
-04.52	-0.75	594	0.6581
-04.10	-0.68	350	0.5701
-03.07	-0.50	95	0.4392
-01.91	-0.32	293	0.2789
-01.05	-0,21	115	0.1733
00.02	-0.08	389	0.0499
01.12	0.11	370	-0.1026
02.10	0.3	.96	-0.2718
03.02	0 . 4 .	78	-0.3545
03.99	0.60	56	-3.5216
05.01	0.77	737	-0.6608
06.00	0.93	149	-0.8119
07.14	1012	271	-0.9940
08.30	1.31	23	-1e1875
09.09	1.48	176	-1.3432
10.06	1.64	86	-1.4950
11.04	1.85	28	-1,7046
12.15	2.07	87	-1.09315
13.13	2.24	21	-2.0866
14.10	2.47	04	-2,3168
15.10	2.466	02	-2.5071
15.67	2.67	7.0	-2,5181

WIT	RUB	COMPIG	•
739	02	6	
a (deg)	\mathbf{c}_1	Ĭ	C
-04.40	-0.5	321	0.2438
-03.08	-0.3	937	0.1705
-02.05	-0.21	B 6 7	0.1312
-01.06	-0.1	579	0.0657
-00.02	-0.04	462	0.0283
01.01	0.08	326	-0.0372
02.04	0.19	920	-0.0872
03.07	0.3	110	-0.1333
04.08	0040	182	-0.1706
05.09	0.53	346	-0.2313
06.08	0.62	269	-0,2647
07.07	0.73	3 1 4	-0.3108
08.06	0.84	8 C+	-0.3549
09.07	0.94	+04	-0.3971
10.08	1.03	352	-0.4353
11=07	1.13	372	-0.4823
12.08	1.23	393	-0.5235
13.07	1.33	316	-0.5627
14.06	1,44	+10	-0.6069
15.02	1.52	360	-C.6489
15.67	1.60	38	-0.6707

MIB	RUB CONFIG.	
739	19 1	
a(deg)	C ^M	C
-05.07	-0.4529	-0.1621
-04.13	-0.3758	-0.1213
-03.03	-0.2843	-0.0919
-02.05	-0.2024	-0.0550
-01.10	-0:1205	-0.0405
00.11	-0.0193	-0.0074
01.05	0.0826	0.0184
02.01	0.1446	0.0441
03.07	0.2265	0.0698
04.00	0.3084	0.1068
05.10	0.3999	0.1362
06.02	0.4625	0.1545
07.10	0.5589	0.2027
08.06	0.6263	0.2285
09.02	0.7130	0,2954
10.11	C.8045	0.3360
11.03	Q.8316	0.3655
12,00	0.9731	0.3949
13.07	1.0647	0 • 4244
14.06	1.1559	0.4575
15.03	1.3526	0.4682
15.31	1.3153	0.4753

WIR	Run	COMPI	G.
739	24	2	
a(deg)	C	V	C
-05.04	-0.4	765	0.2978
-04.10	-0.4	050	0.2587
-03.09	-0.3	240	0.2137
-02.08	-0.2	383	0.1601
-01.15	-0.1	430	0.1005
00.10	-0.0	286	0.0179
01.05	C.O	620	-0.0443
02.03	0.1	525	-0.1005
03.02	0.2	383	-0.1712
04.08	0.3	336	-0.2308
05.06	0.4	146	-0.2758
06.01	0.50	98	-0.3243
07.13	0.60	003	-0.3641
08:08	0.6	718	-0.4032
09.03	0.74	+32	-0.4423
10.10	0.84	432	-0.4882
11.06	0.92	342	-0.5221
12.03	0.91	356	-0.5612
13.25	1.00	361	-0.6011
14.03	1.615	24	-0.5487
15.11	1.25	74	-0.0945
15.56	1.50	175	-0.7184

M=0.95

ALE	ruh	CONFIC	i.
739	31	3	
a(deg)	C	N	C
-05.09	-0.4	770	0.3352
-04.06	-0.4	000	0.3063
-03.07	-0.3	132	0.2372
-02.04	-0.2	409	0.1833
-01.09	-0.1	446	0.1077
00.02	-0.0	434	0.0346
01.09	0.0	530	-0.0410
02.05	0.1	494	-0.1053
03.16	0.24	457	-0.1584
04.12	0.33	324	-0.2275
05.10	0.40	095	-0.2677
06.05	0 • 4	721	-0,3038
07:25	0.51	781	-0.3633
08.23	0.66	548	-0.4099
09.03	0.71	371	-0.4751
10.08	0.81	141	-0.5040
11.03	0.89	960	-0.5530
12.08	0.98	327	-0.5996
13.00	1.06	94	-0.6462
14.07	1 . 1.5	000	-0.6928
15.01	1.22	283	-C.7241
15.77	1.30)53	-0.7530

WIR	RUH CON	FIG.
739	05 4	
a(deg)	C	C
-04.47	-0.7803	0.4981
-04.02	-0.6485	0.4180
-03.13	-0.5533	0.3299
-02.08	-0.3648	0.2149
-01.00	-0,2088	0.1143
-00.00	-0.0183	0.0008
01.04	0.1257	0.0654
02.09	0.2939	0.1714
03.01	0.4358	-0.2343
04.03	0,5979	-0.3351
05.07	0.7013	-0.3641
06.07	0.8412	0.4382
07.12	0.7932	-0.5225
08.11	1.1472	-0.6053
09.14	1.2770	0.6773
10.03	1.3925	-0.7309
11.00	1.5192	-0.7953
12.01	1.6520	0.8653
13.13	1,7898	~0. 9360
14.11	1,0155	-1.0062
15.76	7.1020	.1.0792

N=0.95

FTR	run con	FIG.
739	12 5	
e(dog)	C	C
-04.47	-0.8749	0.9775
-03.02	-0.6034	0.6745
-02.13	-0.4575	0.4917
-01.13	-0.2615	0.3015
00.02	-0.0603	0.0447
00.96	0.1407	-0.1402
02.26	0.3570	-0.4052
03.01	0.4877	+0.5439
04.00	0.6733	-0.7686
05.04	0.8498	-0.9558
06.04	1.0458	-1.1461
07.04	1.2167	-1.3266
08.05	1.4078	-1.5221
09.08	1.6089	-1.7310
10.09	1.7898	-1.9249
11.11	1.9959	-7.1166
12.11	2.1919	-2.054
13.12	.4120	-2:05057
14.16	2.5141	-2.7037
15.84	1.010	-3.2052

₽-0.95

739	RUM CONFI	G,
e(dog)	C	C
-04.45 -03.10 -02.05 -01.07 00.05 01.09 02.11 03.13 04.12 05.12 06.12 07.11 08.08 09.11	-0.7191 -0.5154 -0.3556 -0.2137 -0.0559 0.0899 0.2357 0.3576 0.4615 0.5934 0.7133 0.8052 0.9211 1.0210 1.1269	0.4808 0.3366 0.2324 0.1402 0.0353 -0.0458 -0.1364 -0.1983 -0.2435 -0.3641 -0.3641 -0.3997 -0.4449 -0.458 -0.5311
11.11 12.08 13.07 14.06 15.06	1.2208 1.3107 1.4067 1.4826 1.5666	-0.5611 -0.5927 -0.6124 -0.6208 -0.5167 -0.6178

M=1.05

WIR 739	EUN COMP	IG.
a(deg)	CM	C
-04.82	-0.4186	-0.1756
-04.04	-0.3569	-0.1510
-03.11	-0.2600	-0.1046
-02.03	-0.1630	-0.0675
-01.10	-0.0881	-0.0440
00.00	-0.0132	-0.0205
00.96	0.0838	0.0063
02.35 03.04	0.1754	0.0151
04.01	0.2645	0.0498
05.01	0.3439	0.0596
06.13	0.5290	0.0899
07.07	2.6128	0.1201
08.06	0.7009	0.1265
09.04	0.7979	0.1499 0. 1768
10.03	0.9861	0.1899
11.03	0,9832	0.1859
12.00	1.0846	0.1784
13.12	1.3170	0.1571
14.11	1.3362	0.1358
15.11	in mark to the	0.1111
16.00	1.0877	C.C1
16.33	1.6230	0.0860

WTR	eun comp	IG.
739	25 2	
a(deg)	C	C
-05.13	-0.4855	0.2677
-04.11	-0.4155	0.2342
-02.98	-0.3193	0.1843
-02.00	-0.2302	0.1374
-01.09	-0.1356	0.0797
00.00	-0.0219	0.0086
00.91	0.0569	-0.0611
02.01	C.1619	-0.1268
03.09	0.2713	-0.1900
04.04	0.3413	-0.2338
05.03	0.4244	-0.2806
06.13	0.5163	-0.3329
07.08	0.5994	-0.3798
08.20	0.6781	-0.4035
09.03	0.7392	-0.4263
10.10	0.8310	-0.4582
11.0%	0.9054	-0.4791
12.03	0.9840	-0.5079
13.09	1.0671	-0.5240
14.16	1.1545	-0.5625
15.09	1,2333	-0.0074
16.09	1,3205	-0.6574

WIR	RUN CONF	IG.
739	30 3	
a (deg)	$\mathbf{c}^{\mathbf{M}}$	C
-04.57	-0.4066	0.1845
-04.03	-0.3541	0.1393
-03.06	-0.2710	0.0992
-02.08	-0.1923	0.3671
-01.15	-0.1093	0.0372
00.03	-0.0131	0.0036
01.02	0.0700	-0.0365
02.10	0.1618	-0.0722
02.92	0.2230	-0.1233
04.04	0.3018	-C.1759
05.03	0.3893	-0.2343
06.00	0.4724	-0.2846
07.26	0.5687	-0.3591
08.22	0.6562	-0.4175
09.06	0.7262	-0.4847
10.01	0.8137	-0.5329
11.11	0.9029	-0.5971
12.08	0.9930	-0.6372
13.02	1.0761	-0.6376
14.11	1.1502	-0,7277
15.04	1.2510	-0.7737
15.66	1.3035	-0.7882

M=1.05

WTR	RUN CONF	IG.
739	03 4	
a(deg)	C	C
-04.58	-0.8972	0.6872
-04.01	-0.7741	0.5646
-03.09	-0.6380	0.4604
-02.01	-0.4027	0.2816
-01.02	-0.2151	0.1414
-00.01	-0.0588	0.0349
01.08	0.1305	-0.0995
02.22	0.3255	-0.2254
03.08	0.4615	-0.3077
04.06	0.6289	-0.4235
05.08	0.8017	-0.5352
06.06	0.9819	-0.6589
07.21	1.0996	-0.6936
08.10	1,2192	-0.7532
09.13	1.3442	-0.9174
10.12	1.4711	-0.8758
11.00	1.5723	-0.9185
12.00	1.6716	-0.9494
12.99	1.7875	-0.9898
14.00	. 8960	-1.0225
14.99	7017	-1.0430
15.33	3837	-1.0-43

vir	RUN CONFIG.	
739	13 5	
a(deg)	CM	C _m
-04.64	-0.9568	0.2872
-03.72	-0.7346	0.7550
-03.02	-0.6075	0.6070
-02.09	-0.4126	0.4004
-00.95	-0.2358	0.2288
00.03	-0.0317	0.0316
01.19	0.1768	-0.1716
02.07	0.3718	0.3674
03.05	0.5441	-0.5545
04.02	0.7346	-0.7443
05.13	0.9341	-0.9569
06.07	1.1337	-1.1596
07.05	1.3378	-1.3991
08.03	1.5464	-1.6239
09.02	1.7505	-1.8042
10.02	1.9709	-2.1206
11.00	2.1995	-2.3670
11.99	2.4172	-2.5931
13.11	2,6803	-2.8778
14.12	2.8934	-3.1106
15.10	3.1292	-3,3610
16.08	3.3878	-3.05.24

TTR 739	RUN CONFI	G.
a(deg)	C	C wa
-04.86 -04.12 -03.06 -02.01 -01.13 00.01 01.03 02.04 03.08 04.08	-0.7775 -0.6556 -0.5097 -0.3435 -0.2142 -0.0406 0.1127 0.2770 0.3971 0.5227	0.5985 0.5141 0.3994 0.2707 0.1760 0.0325 -0.0880 -0.2087 -0.2762 -0.3284
05.08 06.08 07.05 08.05 09.04 10.03 11.04 12.01 13.00 14.12 15.00 15.64	0.6539 0.7702 0.8755 0.9642 1.0530 1.1472 1.2359 1.3080 1.3857 1.3657 1.5557	-0.4004 -0.4562 -0.4087 -0.5125 -0.5176 -0.5326 -0.5342 -0.5193 -0.5023 -0.4034 -0.4044 -0.4693

-04.19 -0.3833 -0.1034 -03.11 -0.2802 -0.0886 -01.91 -0.1854 -0.0758 -01.00 -0.0988 -0.0571 00.03 -0.0041 -0.0166 02.02 0.1773 0.0342 04.11 0.3628 0.0811 05.04 0.4411 0.0876 05.04 0.4411 0.0876 07.03 0.6349 0.1120 08.08 0.7255 0.1622 09.02 0.8162 0.1777 10.09 0.9275 0.2154 11.01 1.0142 0.1757 12.06 1.1297 0.1652 13.09 1.2617 0.1652 14.14 1.3855 0.1550	WTR	RUN CONF	IG.
-05.04	739	17 1	
-04.19	a(deg)	C	C
-03.11	-05.04	-0.4534	-0.1062
-01.91	-04.19	-0.3833	-0.1034
-01.00	-03,11	-0.2802	-0.0880
00.03 -0.0041 -0.0166 01.10 0.0866 -0.0005 02.02 0.1773 0.0342 03.07 0.2638 0.0625 04.11 0.3628 0.0811 05.04 0.4411 0.0870 06.07 0.5442 0.1120 07.03 0.6349 0.1179 08.08 0.7255 0.1622 09.02 0.8162 0.1777 10.09 0.9275 0.2154 11.01 1.0142 0.1757 12.06 1.1207 0.1726 13.09 1.2617 0.1653 14.14 1.3855 0.1550	-01.91	-0.1854	-0.0758
01.10 0.0866 -0.0005 02.02 0.1773 0.0342 03.07 0.2638 0.0625 04.11 0.3628 0.0811 05.04 0.4411 0.0870 06.07 0.5442 0.1120 07.03 0.6349 0.1179 08.08 0.7255 0.1622 09.02 0.8162 0.1777 10.09 0.9275 0.2154 11.01 1.0142 0.1757 12.06 1.1207 0.1726 13.09 1.2617 0.1653 14.14 1.3855 0.1550	-01.00	-0.0988	-0.0571
02.02 0.1773 0.0342 03.07 0.2638 0.0625 04.11 0.3628 0.0811 05.04 0.4411 0.0870 06.07 0.5442 0.1120 07.03 0.6349 0.1179 08.08 0.7255 0.1622 09.02 0.8162 0.1777 10.09 0.9275 0.2154 11.01 1.0142 0.1757 12.06 1.1207 0.1726 13.09 1.2617 0.1652 14.14 1.3855 0.1550	00.03	-0.0041	-0.0160
03.07 0.2638 0.0625 04.11 0.3628 0.0811 05.04 0.4411 0.0870 06.07 0.5442 0.1120 07.03 0.6349 0.1179 08.08 0.7255 0.1622 09.02 0.8162 0.1777 10.09 0.9275 0.2154 11.01 1.0142 0.1757 12.06 1.1297 0.1726 13.09 1.2617 0.1652 14.14 1.3855 0.1550	01.10	0.0856	-0.0005
04.11 0.3628 0.0811 05.04 0.4411 0.0870 06.07 0.5442 0.1120 07.03 0.6349 0.1179 08.08 0.7255 0.1622 09.02 0.8162 0.1777 10.09 0.9275 0.2154 11.01 1.0142 0.1957 12.06 1.1297 0.1726 13.09 1.2617 0.1653 14.14 1.3855 0.1550		0.1773	0.0342
05.04	03.07	0.2638	0.0625
06.07	04.11	0.3628	0.0811
07.03	05.04	0.4411	0.0870
08.08		0.5442	0.1120
09.02 0.8162 0.1777 10.09 0.9275 0.2154 11.01 1.0142 0.1757 12.06 1.1297 0.1726 13.09 1.2617 0.1653 14.14 1.3855 0.1550	07.03	0.6349	0.1179
10.09 0.9275 0.2154 11.01 1.0142 0.1757 12.06 1.1297 0.1726 13.09 1.2617 0.1653 14.14 1.3855 0.1550		0.7255	0.1622
11.01 1.0142 0.1757 12.06 1.1297 0.1726 13.09 1.2617 0.1653 14.14 1.3855 0.1550		0.8162	0.1777
12.06 1.1207 0.1726 13.09 1.2617 0.1653 14.14 1.3855 0.1550		0.9275	0.2154
13.09 1.2617 0.1653 14.14 1.3855 0.1550		1.0142	0.1757
14.14 1.3855 0.1550		1.1297	0.1726
16.00		1.2617	0.1653
15.09 1.5/22 0 2//4			0.1550
		1.5092	0.1/46
16.32 1.6908 0.1082	16.32	1.5708	0.1082

739	RUN CONFIC	
a(deg)	C	C
-05.08	-0.4987	0.3166
-04.12	-0.4287	C.2872
-03.33	-0.3463	0.2357
-02.24	-0.2473	0.1739
-01.03	-0.1278	0.1040
00.03	-0.0083	0.0148
01.21	0.0550	-0.0509
02.10	0.1731	-0.1179
03.17	0.2762	-0.1871
04.13	0.3677	-0.2364
05.07	0.4534	-0.2930
00.13	0.5440	-0.3.01
07.74	0.6306	-0.3797
08.11	7274	-0.4753
09.15	0.8377	-0.4664
10.08	B.8860	-0.5009
11.00	0500	-0.5206
12.05	1.00,34	-) 654/2
13.08	1-1-31	-0.5734
14.13	1.2278	-0.5042
15.07	1 + 2 1 2 4	-0.6220
16.5		-0.5616

WIR	RIVIN	CONFIG.	
739	29	5	
a(deg)	C	H	C
-04.89	-0.4		0.1917
-04.05	C • 3	542	0.1498
-03.37	-0.2	965	0.1209
-02.00	-C • 1	853	0.0708
-01.09	-0.1	030	0.0447
00.03	-0.0	165	0.0014
01.14	0.0	783	-0.0474
02,22	0.1	524	-0.0777
03.04	0.2	104	-0.1120
04.04	0.2	884	-0.1443
05.04	0.3	273	-0.2007
06.17	0.4	82C	-0.24)5
07.01	0.5	645	-0.3045
08.04	2.5	592	-0.3630
09.10	0.7	540	-0.4214
10.14	^ . 8 ·	488	-0.4505
11.29	0.9		-0.5170
12.05	11.0	1-3	-0.5450
13.39	1.00	277	-0.5719
14.00	1.1	742	-0.056
15.21	'	₹ ? e	-0.6755
15.67	11.35	£ 4	-0.6977

M=1.15

WTR	RUH CONFI	G.
739	02 4	
a(deg)	C _N	C.
-04.62	-0.8507	0.6561
-04.07	-0.7433	0.5547
-03.05	-0.5822	0.4315
-02.00	-0.3621	0.2700
-00.91	-0.1698	0.1207
00.02	-0.0295	0.0151
01.03	0.1334	-0.0860
02.10	0.3154	-0.2224
03.06	0.46.7	-0.3105
04.14	0.6221	-0.4101
05.06	0.7711	-0.5092
06.00	0.9184	-0.c014
07.10	1.0969	-0.7156
08.03	1.2371	-0.8045
09.01	1.3880	-0.9066
10.03	1.5578	-1.0150
11.03	1.7059	-1,1050
18.11	- 1.8767	-1 - 2 1 4 2
13.05	2.0257	-1.092
14.02	2.1678	-1.4218
15.08	2256	-1.4079
15.83	2.3845	-1.6492

COEFIDERTIAL NOLTE 63-47

M-1.15

WIR	eve comp	IG.
739	14 5	
a(deg)	$\mathbf{c}_{\mathtt{N}}$	C
-04.87	-1.0200	1.1068
-04.08	-0.8521	0.9133
-03.02	-0.6455	0.6834
-02.18	-0.4949	0.5282
-01.01	-0.2411	0.2913
00.02	-0.0560	0.0645
01.12	0.1635	-0.1673
01.94	0.3400	-0.3621
03.02	0.5337	-0.5901
04.08	0.7790	-0.3462
05.03	0.9511	-1.0455
06.05	1.1750	-1.3036
07.00	1.3859	-1.5341
08.04	1.6054	-1.7864
09.12	1.8421	-2.0412
10.05	2.0487	4-2.2967
11.12	2.2812	-2.5663
12.02	1.5007	-2.3084
13.09	2.7374	-3.0734
14.04	2.9741	-3.3202
15.25	1.24. 2	-1.149
15.72	3.3873	-3.1778

WIR	RUN	CONFIC	}.
739	35	٤	
a(deg)	C	n	C
-04.78	-0.7	408	0.5995
-04.04	-0.6	165	0.4917
-03.04	-0.4	5 د 6	0.5031
-02.04	-0.3	367	C.2635
-01.C3	-C.1	848	0.1500
-00.02	-0.0	276	0.0262
01.00	0.1	123	-J.C796
02.00	0.2	487	-0.1745
03.02	0.3	920	-0.2749
04.02	0.5	250	-0.3629
05.02	€.5	373	-0.4260
06.01	0.7	7:5	-9.7038
07.00	<u></u> S	712	-0.5738
07.99	1,00	1:0	-0.015
29.01	1.1		-0.7271
10.16	1.2	702	-0.8172
11.12	4	-	-0.0087
12.10	, o -	147	-0.7106
13.10	4.0	1, 4	უე"ისხნ
14.00			-1.0130
15.06	1.63		-1.00567
10.60	i o ?.		-10077.0

COMFIDENTIAL WOLTE 63-47

WTR	rue comp	IG.
739	16 1	
a(deg)	CM	C
-04.57	-0.4287	-0.1177
-04.05	-0.3771	-0.1026
-03.53	-0.3295	-0.0937
-03.04	-0.2977	-0.0815
-02.52	-0.2461	-0.0664
-02.00	-0.1945	-0.0605
-01.50	-0.1588	-0.0422
-01.01	-0.1111	-0.0333
-00.47	-0.0675	-0.0212
-00.02	-0.0278	-0.0153
00.57	0.0238	0.0091
01.08	0.0794	0.0211
01.60	0.1151	0.0302
02.00	0.1429	0.0362
02,49	2.1985	0.0482
03.03	0,2501	0.0633
03.53	0.2898	0.0785
C4.07	0.3414	0.0843
04.45	0.3732	0.0872
05.00	0.4248	0.1022

M-1.26

WTR	RUN CONFIC	3.
739	16 1	
$\alpha(\deg)$	$\mathbf{c}^{\mathbf{M}}$	C
05.50	0.4545	0.1083
06.03	0.5200	0.1295
06.67	0.5577	0.1446
07.09	0.6193	0.1536
07.46	0.6511	0.1565
08.54	0.7543	0.1775
09.06	0.8059	0.1926
09.59	0.8975	0.1984
10.10	0.9891	0.2136
10.48	0.7528	0.2164
11.04	1.0005	0.2151
11.53	1.0640	0.2219
12.07	1.1236	0.2215
12.57	1.1832	0.2213
13.12	1 * 2467	0.2269
13.51	1.2904	0.2298
14.01	1.3540	0.2170
14.55	1.4175	0.2321
15.24	1.5049	0.2284
15 . c 1	1.5645	0.2373

M-1,26

WTR 739	EUN CONF : 27 2	IG.
a(deg)	CN	C
-04.54	-0.4405	0.2800
-03.33	-0.3413	0.2226
-02.04	-0.2143	0.1525
-01.65	-0.1826	0.1234
-00.99	-0.1231	0.1001
00.11	-0.0159	0.0192
01.14	0.0794	-0.0496
02.08	0.1667	-0.1135
03.21	0.2461	-0.1631
04.05	0.3413	-0.2226
05.00	0.4127	-0.2580
06.00	0.5119	-0.3061
27.08	2.6111	-0.3542
08.23	0.7261	-0.4029
09.00	3.7855	-0.4169
10.01	0.8648	-0.4387
11.05	0.9520	-0.4561
12.09	1.0392	-0.4643
12.78	1.1105	-0.4718
14.03	1.7016	-0.4592
15.07	1.3008	-0.4887
15.66	1.2300	-0.5012

WTR	RUN CONF	IG.
739	28 3	
a(deg)	CH	C
-04.51	-0.3846	0.1501
-03.99	-0.3410	0.1164
-03.07	-0.2736	0.0946
-02.00	-0.1784	0.0588
-01.08	-0.0872	0.0211
-00.02	-0.3119	0.0033
01.01	0.0555	-0.0278
02.06	0.1428	-0.0675
03.01	0.2142	-0.0966
04.02	0.3054	-0.1250
05.01	0.4164	-0.1713
06.00	8854.0	-0.1931
07.08	0.5750	-0.2401
08.10	0.6583	-0.2813
09.00	C.7416	-0.3235
10.01	0.8288	-0.3447
11.07	0.7082	-0.3791
12.07	0.7953	-0.3909
13.00	1.0786	-3.4048
14.15	1.177	-3.4473
15.37	1.2768	-0,4-15
15.73	1.487	-0.5014

M=1.26

WIR	RUU	COMFIG	•
739	01	4	
a(deg)	c,	ı	C
-04.61	-0.7	834	0.5659
-04.21	-0.60	950	0.4850
-03.96	-0.6	567	C.4581
-03.53	-0.58	B 6 7	0.4072
-03.04	-0.50	034	0.3464
-02.63	-0.4.	334	0.2955
-02.08	-0.34	184	0.2359
-01.59	-0.23	500	0.1749
-01.04	-0.1	784	0.1129
-00.51	-0.10	133	0.0657
00.02	-0.03		0.0036
00.55	0.0	717	-0.0497
01.24	2.1	717	-0.1130
02.04	0.27		-0.1939
02.89	0.3.		-0.2495
04.03	0.51		-0.3895
25.20	0.71		-0.4598
06.04	0.84		-0.5630
06.57	3.35		-0.6075
07.12	1 - 1 4		-0.6538
08.7%	1.17		-0.7419
01.11	1.		-0,7272
10.0:	. 0 1		-C -= 1. 4
11.16	. 0		-1.000:4
12.04	7 -		-1.5
13.11			-1415 : 3
14.00	2.05		-1.2006
1.5	7.13		-1.
157	3.	1.0	4.17

COMPIDENTIAL NOLTE 63-47

M-1.26

FTR	run conf	IG.
739	15 5	
a(deg)	c ^M	C
-04.62	-0.8953	3.0455
-03.97	-0.7544	2.7910
-03.43	-3.5632	0.6088
-03.06	-7.6:51	0.6212
-02.39	-0.4808	0.5044
-02.C1	-0.4187	0.4509
-01.31	-0.3192	0.3476
-00.99	-0.2280	0.2553
-00.45	-0.1337	0.1575
00.03	-0.0374	0.0696
00.59	0.0562	-0.0393
00+98	001112	-0.1304
01.51	0.2163	-0.171
02.03	0.8108	-0.3247
02.42	0.4051	-0 · 2 c 48
03.11	7.5253	-).5259
03,43	0 0 : 5 1	-0.6015
04,03	3.7004	-0.7002
04.55	2.725,8	-0.8158
05.12	0.7.01	-0.1337
05,62	1	-1.0303

WIR	RUE	COMFIC	
737	15	5	
a (deg)	C	H	C
06.02	1.0	983	-1.1225
06.54	1.2	020	-1.2413
07.09	1.3	097	-1.3458
07.59	1 . 4	051	-1,4634
08.03	1.5	005	-1.5612
08.55	1.6	165	-1.6965
09.08	1.7	078	-1.7986
09.59	1.8	2 79	-1.9198
10.14	1.9	398	-2.0299
10.52	2.0	269	-2.1265
11,59	2.2	549	-2.3621
11.97	2.3	460	-2.4445
12.52	2.4	496	-2.5533
13.04	2.5	782	-2.6954
13.46	2,60	552	-2.7723
13.99	2.7	995	-2,9089
14.51	2.9	180	-3.0411
15.06	3.0	133	-3,1857
15.48	3.1	377	-3.2656
16.08	3.2	356	-3.4624

胤-1.26

WIR	BUN COMF	IG.
739	07 6	
a(deg)	C ^M	C
-04.96	-0.6734	0.5119
-04.06	-0.5789	0.4182
-02.07	-0.4296	0.3184
-02.09	-0.3085	0.2392
-01.09	-0.1808	0.1349
00.02	-0.0265	0.0371
01.02	0.1045	-0.0580
02.02	0.2372	-0.1445
03.02	0.3633	-0.2218
03.99	0.4927	-0.2978
05.11	0.6255	-0.3685
06.07	0.7366	-0.4358
07.05	0.8528	-0.5011
08.01	0.9788	-0.5704
08.99	1.0900	-0.6259
10.13	1.2277	-0.6907
11.09	1.3389	-0.7422
12.07	1.4567	-0.7792
13.03	1.5679	-0.8228
14.14	1.6957	-0.8559
15.05	1.8052	-0.8804
15.81	1.8516	-0.8980

M-0.30

50 CALIBER CORE

a(deg)	C	C
-C5.35	-0.0539	-0.4007
-04.15	-0.0558	-0.2736
-02.31	-0.0373	-0.1750
-01.10	-0.0380	-0.0882
00.13	-0.0192	0.0159
01.99	0.0377	0.1165
03.23	Q.0565	0.1999
04.99	0.0746	0.3440
06.19	0.0933	0.4184
08.55	0.1501	0.5750
10.34	0.1693	0.7079
12.07	C.2445	0.8561
14.38	0.2621	0.9567
15.54	0.3011	1.0450
16.69	0.3006	1.1015
17.84	0.3583	1.1490
19.52	0.3965	1.2090
20.04	0.4542	1.2556

M-0.30 50 CALIBER CORE

a (deg)	$\mathbf{c}^{\mathbf{M}}$	C _m
22.22		1.4063
24.06	0.8207	1.4166
25.90	0.8979	1.4518
28.33	1.1493	1.4885
30.18	1.3038	1.5306
32.02	1.5360	1.5513
35.13	1.9422	1.6018
38.22	2.3568	1.7529
40.04	2.5401	1.8674
42.53	2.7908	1,9888
45.53	3.0987	2.2143
47.95	3.4076	2.3268
50.36	3.6006	2.4006
52.76	3.7936	2,4744
55.14	4.0058	2.5641

M=0.30 50 CALIBER CORE

a(deg)	CM	C
58.51	4.0047	2.5350
61.94	4.1587	2.6335
64.82	4.1964	2.7500
67.15	4.1577	2.7465
70.11	4.2159	2.7376
72.97	4.1395	2.6177
75.83	4.0633	2.4695
77.54	4.0061	2.3655
78.10	3.7379	2.0305
79.23	3.4517	1.5385
82.03	3.4918	1.3725
84.34	3.4156	1.2243
87.71	3.4180	0.9418
89.42	3.4583	0.7476
90.13	3.4011	0.6435

M=0.50 50 CALIBER COME

a(deg)	$c_{\mathbf{n}}$	C _m
-05.57	-0.0596	-0.3959
-03.71	-0.0293	-0.2553
-02.46	-0.0144	-0.1621
-00.58	0.0158	-0.0101
00.01	→0.0233	0.0308
01.93	0.0613	0.1893
03.17	0.0684	0.2876
04.98	0.0909	0.4217
07.47	0.1288	0.5916
09.90	0.1823	0.7745
12.94	0.2356	0.9803
15.33	0.2973	1.1236
19.45	0.4055	1.3631

M-0.50 50 CALIBER CORN

a (deg)	C _N	C
22.21	0.5129	1.5183
24.59	0.6299	1.6032
27.60	0.8252	1.7066
30.00	1.0998	1.7025
33.60	1.6175	1.7145
36.03	2.0403	1.8096
37.81	2.2980	1.9530
40.16	2.6020	2.1922
42.55	2.8984	2.4020
45.53	3.2497	2.6110
47.86	3.4946	2.7644
50.18	3.6320	2.8572
52.50	3.8894	3.0464
54.32	4.0612	3.1305

M-0.50 50 CALIBER CORE

a(deg)	$\mathbf{c}_{\mathbf{N}}$	C
56.34	4.2430	1.0958
58.00	4.2079	2.0750
59.66	4.3606	3.1006
52.40	4.4542	3.1779
65.51	4.5243	3.2356
66.99	4.5242	3.2471
69.25	104247	2.1091
710 +7	694	2.3325
72.58		. 7444
73.12	3.3200	2.0056
74.22	7.7355	1.3756
76.42	7.7369	1.6753
78.65	3.7459	1.5443
81.41	7472 د	1.3839
84.10	3.74C9	1.2057
86.36	₹.7577	1.0697
57.47	5.1432	0.3309
38.55	1.7:16	0.8177
20.22	3.7062	0.6582

M-0.70 50 CALIBER CORE

$\alpha(\deg)$	$\mathbf{c}^{\mathtt{M}}$	C
-05.46	-0.0628	-0.4135
-04.24	-0.0587	-0.3336
-03.02	-0.0406	-0.2421
-01.17	-0.0134	-0.1014
-00.53	0.0050	-0.0376
00.05	0.0048	-0.0030
01.90	C.0319	0.1446
03.09	0.0500	0.2430
04.30	0.0681	0.3483
05.49	0.0864	0.4259
07.21	0.1089	0.5627
08.37	0.1350	0.6482
10.12	0.1733	0.7828
12.43	0.2147	0.9213
14.16	0.2705	1:0507
16.45	0.3356	1.1810
18.74	0.4102	1.3190
20.33	0.4710	1.4100

M=0.70 50 CALIBER CORE

a(deg)	C	C
22.19	0.5537	1.5250
23.88	0.6333	1.6045
25.04	0.7130	1.5772
27.84	0.9006	1.8250
30.07	1.1215	1,5447
32.38	1.4414	2.0707
34.65	1.8005	2.2004
36.36	2.1618	2.2963
38.03	2.4578	2.4010
39.14	2.6790	2.5425
40.22	2.3107	2.6586
42.47	3.1284	2.1284
44.10	3.3258	3.1017
45,73	3.5274	3.2709
47.37	3.7289	3.4501
48.97	3.8698	3.5395
50.02	3,9449	3.6004
52.70	4.1514	3.7772
54.27	4.2502	3.8250

M-0.70 50 CALIBER CORE

a(deg)	C _M	C
56.73	4.6594	3.9539
58.95	4.8151	3.9713
60.04	4.8575	3.9785
61.17	4.9048	3.9590
62.80	4.8258	3.8205
63.88	4.7655	3.6876
64.75	4.6630	3.5198
66.05	4.5048	3.2437
67.67	4.1892	2.6018
68.69	4.0971	2.3247
70.32	4.0607	2.1422
74.03	4.0912	1.036
75.54	4.0717	1.6140
78.75	0035	1.::20
80.84	0804	1.4093
33.44	1288	1.519
86.51	7.2075	1.1526
89.07	4.0430	0.0857
90.38	4.0438	0.1037

TABULATED DATA

Normal Force and Pitching Moment Coefficient Slopes and Center of Pressure Locations

	$C_{\mathbf{m}_{\alpha_{\mathbf{Q}}}}$	c _{Na}	X _{RC} -X _{CP}	M
	(per deg)	(per deg)	(calibers)	
CONFIG.	1			
	0.0303 0.0305 0.0274 0.02174 0.0294 0.0253	0.0909 0.0836 0.0833 0.0830 0.0909 0.08888	0.3333 0.3648 0.3289 0.2619 0.3234 0.2846	0.4850 0.8080 0.9350 1.0500 1.1500 1.2600
CONFIG.	2			
	-0.0315 -0.05195 -0.0650 -0.0666 -0.0672 -0.06211	0.0909 0.0907 0.0926 0.0961 0.0952 0.0926	-0.3465 -0.57277 -0.7019 -0.6930 -0.7059 -0.6707	0.4850 0.8080 0.9350 1.0500 1.1500 1.2600
CONFIG.	3			
- - -	-0.0222 -0.0370 -0.0578 -0.0433 -0.0370 -0.03053	0.0714 0.0843 0.0930 0.0843 0.0814 0.0778	-0.3109 -0.4394 -0.6215 -0.5136 -0.4545 -0.3924	0.4850 0.8080 0.9350 1.0500 1.1500 1.2600
CONFIG.	4			
-	0.0280 0.0437 0.0908 0.1136 0.1126 0.1042	0.1062 0.1263 0.1568 0.1732 0.1600 0.1541	-0.2636 -0.3460 -0.5791 -0.6560 -0.7040 -0.6762	0.4850 0.8080 0.9350 1.0500 1.1500 1.2600

	$^{\mathrm{C}}_{^{\mathrm{m}}\alpha}$	$^{\mathrm{C}}{}_{\mathrm{N}_{_{lpha}}}$	XRC-XCP	M
	(per deg)	o (per deg)	(calibers)	
	_			
CONFIG.	5			
	-0,0930	0.1385	-0.6715	0.4850
	-0.1351	0.1449	-0.9317	0.8080
	-0.2024	0.1938	-1.0444	0.9350
	-0.1887	0.1894	-0,9963	1,0500
-	-0.2112	0.1976	-1.0688	1.1500
-	-0.1894	0.1779	-1.0646	1.2600
CONFIG.	6			
	-0.03883	0.1000	-0.3883	0.4850
	-0.0505	0.1152	-0.4387	0.8080
	0.0822	0.1464	-0.5615	0.9350
	0.1160	0.1506	-0.7702	1.0500
	0.1111	0.1416	-0.7846	1.1500
	0.09153	0.13441	-0.6810	1.2600
		- 10-7		
50 CALIE	BER BULLET C	OKR		
			4.267	0.3000
			5.314	0.5000
			5.396	0.7000

TABULATED DATA

Drag Coefficients

C _A o	M
CONFIG. 1	
0.4145 0.4543 0.5836 0.7316 0.8807 1.1132	0.4850 0.7980 0.9350 1.0370 1.1490 1,2540
CONFIG. 2	
1.3362 1.5403 1.9375 2.3543 2.4425 1.9962	0.4850 0.7980 0.9460 1.0470 1.1490 1.2540
CONFIG. 3	
0.7099 0.8460 1.1215 1.5256 1.7326 1.6084	0.5040 0.7980 0.9350 1.0470 1.1490 1.2540
CONFIG. 4	
0.2307 0.2804 0.3617 0.6136 0.8000 0.7608	0.5040 0.3080 0.9350 1.0470 1.1490 1.2540

C _A o	M
CONFIG. 5	
0.4445	0.5040
0.5173	0.7980
0.6529	0.9350
0.9201	1.0470
1.1277	1.1490
1.0259	1.2540
CONFIG. 6	
0,2483	0.4950
0.2778	0.7880
0.3154	0.8960
0.3791	0.9460
0.6001	1.0370
0.7911	1.1490
0.7650	1.2540

TABULATED DATA

Pitch Damping Coefficients

CONFIG. 6

M	Œ	Cm+Cma
0.300	31.4	-39.7
0.300	24.2	-35.4
0.300	19.1	-33 + 1
0.300	15.2	-31.4
0.300	12.4	-29.3
0.300	10.1	-27.9
0.300	08.4	-26.8
0.300	07.0	-27.1
0.300	05.8	-26.3
0.300	04.8	-23.9
0.300	04.2	-20.9
0.300	03.6	-22.3
0.310	03.2	-11.4
0.500	32.8	-33.4
0.500	22.2	-36.2
0.500	15.4	-34.0
0.500	11.1	-19.0
C.500	08.3	-47.0
0.500	J6.4	-22.0
0.500	25.2	-19.7
00000	37.8	-45.0
0.500	25.0	-46.0
0.500	10.0	-34.5
3.500	11.8	-31,0
0.200	38.6	7.1
0.200	35.3	-20.
0.500	24.5	-35.0
0.700	(· · ·	- 4
0.700	13.1	-30.0
0.700	23.1	-35.3

CONFIG. 6

M	Œ	C + C m a
0.700	05.1	-39.1
0.700	03.0	-48.1
0.700	01.6	-49.6
0.700	23.4	-43.5
0.700	13.8	-38.3
0.700	08.8	-31.4
0.700	05.8	-34.4
0.700	03.8	-36.6
0.700	02.4	-29.5
0.700	01.7	-25.5
0.900	11.3	-53.2
0.900	07.0	-49.2
0.900	04.5	-48.2
0.900	03.0	-43.1
0.900	02.1	-34.8

TABULATED DATA

Roll Damping Coefficients

M	α	С,
		$^{\mathrm{c}}{_{\iota_{\mathrm{p}}}}$
0.299	0.0	03.3
0.299	05.0	03.37
0.299	1 C • O	03.48
0.299	15.0	03.50
0.504	0.0	03.16
0.504	05.0	03.24
0.524	10.0	03.19
0.524	15.0	03.20
0.798	00.0	03.49
0.798	05.0	02.42
0.798	10.0	03.27
0.946	0.0	02.87
0.946	35.0	03.59
0.946	15.0	03.35
1.297	00.0	04.20
1.297	05.0	00.70
1.297	10.0	03.65
1.297	15.0	03.50

APPENDIX A

THE METHOD EMPLOYED FOR DETERMINING THE DAMPING IN PITCH

A free oscillation technique is used for the measurement of the damping in pitch coefficient, $C_{m_{\mathring{A}}} + C_{m_{\mathring{A}}}$. In this

technique the model is attached to a transverse rod by means of ball bearings. Because of the constraints imposed by the support rod the model has one degree of freedom, that being in pitch. A mathematical expression relating the inertial to aerodynamic moments is postulated to have the form:

$$I_{yy} \stackrel{..}{\theta} = \sum M_{EXTERNAL} = M_{\alpha} \stackrel{.}{\sigma} + M_{\alpha} \stackrel{.}{\alpha} + M_{\beta} \stackrel{.}{\theta}$$
 (A-1)

Making use of the fact that the support constraints imply that $\alpha = \theta$, it is possible to rearrange equation (A-1) as:

$$\ddot{a} - \frac{(M_{\alpha} + M_{0})}{I_{vv}} \dot{a} - \frac{(M_{\alpha})}{I_{vv}} \alpha = 0$$

or:

$$\ddot{\alpha} = \frac{\begin{pmatrix} C_{m_0^*} + C_{m_{\dot{\alpha}}} \end{pmatrix}_{qAd^3}}{2VI_{yy}} \dot{\alpha} = \begin{pmatrix} C_{m_{\dot{\alpha}}} + C_{m_{\dot{\alpha}}} \end{pmatrix} \dot{\alpha} = 0 \qquad (A-2)$$

where use has been made of the following coefficient definitions:

$$C_{m_{\alpha}} = \frac{M_{\alpha}}{q A d}$$

$$C_{m_{\dot{U}}^{\bullet}} + C_{m_{\dot{\alpha}}^{\bullet}} = \frac{M_{\dot{U}}^{\bullet} + M_{\dot{\alpha}}^{\bullet}}{(qAd)(\frac{d}{2V})}$$

The solution to equation (A-2) may be expressed in the following form:

$$\alpha = \alpha_0 e^{\lambda t} Cos(\omega t + \psi)$$
 (A-3)

where the constants α_0 and ψ depend solely upon the initial conditions. Of importance in the data reduction is the log decrement λ and the frequency ω . These quantities are given, respectively, as:

$$\lambda = \frac{\binom{C_{m_{\hat{\theta}}} + C_{m_{\hat{\alpha}}}}{4VI_{yy}}}{qAd^2}$$
(A-4)

$$\omega = \sqrt{\frac{\frac{C_{m_{\alpha}} qAd}{a}}{I_{yy}}} \sqrt{1 - \frac{\left(\frac{C_{m_{\theta}} + C_{m_{\alpha}}}{a}\right)^{3} qAd^{3}}{16V^{2}I_{yy}}}$$
 (A-5)

Since wind tunnel models are lightly damped (by making I_{yy} as large as possible), the second term in the radicand of equation (A-5) may be neglected to give:

$$\omega = \sqrt{-\frac{C_{m}qAd}{I_{yy}}}$$
 (A-6)

Figure (A-1), below, represents a typical damped pitch oscillation of a wind tunnel model:

FIGURE (A-1)
Typical Pitch Damping Trace

A-2 CONFIDENTIAL

It should be noted in the above figure that the envelope of the damped sinusoid is given as:

$$\overline{\alpha} = \alpha_0 e^{\lambda (t - t_0)}$$
 (A-7)

Using the amplitude record (obtained photographically) one may obtain the envelope, $\overline{\alpha}(t)$. From this envelope, the log decrement, λ , may be obtained. If this is done, and λ is in turn replaced by its equivalent from equation (A-4), one has an expression for the pitch damping coefficient in terms of measurable quantities.

$$C_{m_{\theta}^{*}} + C_{m_{\alpha}^{*}} = \frac{4VI_{yy}}{qAd^{a}(t_{j} - t_{o})} \quad 'n \left(\frac{\ddot{\alpha}_{j}}{\alpha_{o}}\right)$$
 (A-8)

Equation (A-8) is based upon the supposition that aerodynamic damping is a linear phenomenon, i.e., that the coefficients of equation (A-2) are constant. For cases where the amplitude envelope does not support this hypothesis ($\overline{\alpha}(t)$) not exactly exponential), a method of "piecewise" linearization is used. In this approach the amplitude envelope is divided into small time intervals over which intervals the pitch damping is assumed linear. This is accomplished as illustrated in Figure (A-2).

FIGURE (A-2)
Pitch Damping Envelope

A-3 CONFIDENTIAL

Since equation (A-2) is assumed linear over the interval Δt , equation (A-8) may be rewritten as:

$$C_{\mathbf{m}_{\dot{\theta}}^{\bullet}}(\widetilde{\overline{\alpha}_{\mathbf{i}}}) + C_{\mathbf{m}_{\dot{\alpha}}^{\bullet}}(\widetilde{\overline{\alpha}_{\mathbf{i}}}) = \frac{4VI_{yy}}{qAd^{2}\Delta t} \ln\left(\frac{\overline{\alpha}_{\mathbf{i}}}{\overline{\alpha}_{\mathbf{j}}}\right)$$
(A-9)

APPENDIX B

METHODS FOR DETERMINING THE STATIC MOMENT COEFFICIENT FROM PITCH DAMPING RECORDS

In addition to the damping coefficient, $C_{m_{\overset{\bullet}{\theta}}}+C_{m_{\overset{\bullet}{\alpha}}}$, it is also possible to use the pitch damping record to obtain static

also possible to use the pitch damping record to obtain static data. The equation describing the single-degree-of-freedom pitch oscillation (equation (A-2)) has been stated as:

$$\ddot{a} - \left(\frac{\left(C_{m_{\dot{\theta}}} + C_{m_{\dot{\alpha}}}\right) qAd^{2}}{2VI_{yy}}\right) \dot{a} - \left(\frac{C_{m_{\alpha}} qAd}{I_{yy}}\right) \alpha = 0 \quad (B-1)$$

In the vicinity of the oscillation peak, $\alpha = \alpha_p$, equation (B-1) may be simplified as:

$$\ddot{a}_{p} - \left(\frac{C_{m}|_{\alpha}^{qAd}}{I_{yy}}\right) a_{p} = 0$$
(B-2)

where the following statements have been assumed valid in the vicinity of the local maximum of the function a(t):

$$\alpha \mid t = t_p = \alpha_p$$

$$\dot{a}$$
| t=t_p ≈ 0

$$\ddot{a}$$
 | t=t_p $\approx \ddot{a}$ p

Equation (B-2) may be rewritten as a solution for $c_{\rm m}|_{\alpha_{\rm p}}$

$$C_{m \mid \alpha_{p}} = \frac{\ddot{\alpha}_{p} I_{yy}}{q A d}$$
 (B-3)

It now becomes necessary to obtain some approximation to \ddot{a}_p . In Figure (B-1), below, a typical pitch oscillation is shown.

FIGURE (B-1) A Representative Curve of a(t)

The curvature of a(t) in the vicinity of t_p is

$$R = \frac{\left[1 + (\dot{\alpha})^2\right]^{3/2}}{\ddot{\alpha}} \mid t = t_p \stackrel{\sim}{=} \frac{1}{\ddot{\alpha}_p}$$
 (B-4)

where $(\dot{a})^2$ has been assumed negligible compared with unity over the interval, Δt . Over this interval, Δt , the following relationships are held to be valid:

$$-\Delta\alpha = R(1 - \cos\phi) \approx \frac{R\phi^2}{2}$$
 (B-5)

but

$$\phi \simeq \frac{\Delta S}{R} \simeq \sqrt{\frac{1 + (\mathring{\alpha})^2}{R}} \quad \Delta t \simeq \frac{\Delta t}{R}$$
 (B-6)

Combining (B-4), (B-5), and (B-6), one readily obtains:

$$\ddot{a}_{p} = -\frac{2\Delta\alpha}{(\Delta t)^{2}} \tag{B-7}$$

Finally, inserting equation (B-7) into equation (B-3), one obtains:

$$C_{\mathbf{m}|_{\alpha_{\mathbf{p}}}} = -\frac{2\Delta\alpha \mathbf{I}_{\mathbf{y}\mathbf{y}}}{(\Delta \mathbf{t})^{2} \, \mathbf{q} \, \mathbf{A} \mathbf{d}}$$
 (B-8)

An alternate method exists for obtaining essentially the same information. It can readily be shown (equation (A-6)) that the period of oscillation can be expressed as:

$$T = 2\pi \sqrt{-\frac{I_{yy}}{C_{m_{\alpha}}qAd}}$$
 (B-9)

Equation (B-9) may now be solved for the slope of the static pitching moment coefficient, $C_{m_{\alpha}}$, to give:

$$C_{m_{\alpha}} = -\frac{4\pi^2 I_{yy}}{T^2 qAd}$$
 (B-10)

Equation (B-10) is easier to use than equation (B-9); however, since equation (B-10) gives only the slope through the origin, it cannot be used to evaluate nonlinearities in the static pitching moment coefficient, $C_{\rm m}$. For evaluation of $C_{\rm m}(\alpha)$ where it varies nonlinearly it would be necessary to make use of equation (B-8).

APPENDIX C

THE METHOD EMPLOYED FOR THE DETERMINATION OF DAMPING IN ROLL

A free decay technique is used for the measurement of the damping in roll coefficient, C_{t_n} , and the induced rolling

moment coefficient (due to fin cant, $\delta_{\mathbf{f}}$, or control deflection, $\delta_{\mathbf{c}}$), $C_{\ell_{\delta}}$. In this procedure the model is axially mounted

to a rotating sting. The model-sting combination is spun to a high spin rate, decoupled from the drive system, and permitted to decay to either zero spin rate or a steady state spin rate, if any. An analog record of the spin history is obtained from a magnetic tachometer. An identical run is made in a vacuum to provide a tare for the removal of the damping contribution of bearing friction.

Because of the nature of the support and drive system, a first order homogeneous differential equation relating the inertial to aerodynamic moments is presumed to describe the spin decay. This equation may be written as:

$$I_{xx}\dot{p} = \Sigma L_{EXTERNAL} = L_{p}p + L_{\delta}\delta \qquad (C-1)$$

where p is the spin rate, I_{xx} the axial moment of inertia, L_{δ}^{δ} the induced roll moment, and L_{p} the roll damping moment. The solution of equation (C-1) is:

$$\left(p + \frac{L_{\delta}^{\Delta}}{L_{p}}\right) = \left(p_{o} + \frac{L_{\delta}^{\Delta}}{L_{p}}\right) \in \frac{\frac{L_{p}}{I_{xx}}}{(t-t_{o})}$$
 (C-2)

In equation (C-2) the initial conditions are chosen as $p=p_0$ when $t=t_0$. The definition of steady state roll follows from equation (C-1) and may be expressed as:

$$\dot{p} = 0$$
, $p = p_{SS} = -\left(\frac{L_{\delta}}{L_{p}}\right)\delta$

Using the above definition, equation (C-2) may be rewritten as:

$$\frac{L_{p}}{(p-p_{ss}) - (p_{o}-p_{ss})} = \frac{1}{2}xx \qquad (C-3)$$

The roll damping moment derivative, L_p , and the induced rolling moment derivative, L_{δ} , have the following definition in terms of nondimensional quantities:

$$L_{p} = C_{\ell_{p}} \frac{qAd^{2}}{2V}$$
 (C-4)

$$L_{\delta} = C_{\ell_{\delta}} \text{ qAd} \tag{C-5}$$

If equation (C-3) is solved for the roll damping moment derivative, L_p , and then rewritten in terms of the roll damping coefficient, C_{ℓ_p} , from equation (C-4), the result is:

$$C_{\ell p} = -\frac{I_{xx}}{(t-t_0)} \left(\frac{2V}{qAd^2}\right) \ln \left(\frac{p_0 - p_{ss}}{p-p_{ss}}\right)$$
 (C-6)

Definition of the steady state roll and the definition of $C_{\ell_{\delta}}$ from equation (C-5) results in the following expression:

$$C_{\ell_{\delta}} = -\frac{P_{ss}}{\delta} \left(\frac{b}{2v}\right) C_{\ell_{p}} \tag{C-7}$$

Thus it should be noted that both coefficients C $_{\ell p}$ and C $_{\ell \delta}$ may be calculated from measurable quantities.

Where there is no induced roll (C $_{\delta}$ $_{\delta}$ - 0) equation (C-6) becomes:

$$C_{\ell_{p}} = -\frac{I_{xx}}{(t-t_{o})} \left(\frac{2V}{qAd^{a}}\right) \ell_{n} \left(\frac{p_{o}}{p}\right)$$
 (C-8)

FIG. 1 50 CALIBER BULLET

CONFIDENTIAL NOLTR 63-47

FIG.2 50 CALIBER STEEL CORE

FIG.3 LAZY DOG CONFIGURATION I

3. C. G. LOCATED AT 4.05 CALIBERS FROM MODEL BASE

CONFIDENTIAL NOLTR 63-47

NOTE:

- 1. DIMENSIONS GIVEN IN CALIBERS
- 2. I CALIBER = 0.511 IN.
- 3. C.G. LOCATED 2.89 CALIBERS FROM MODEL BASE

FIG.4 LAZY DOG CONFIGURATION 2

FIG.5 LAZY DOG CONFIGURATION 3

2. I CALIBER = 0.511 INCHES
3. C.G. LOCATED 2.89 CALIBERS FROM
MODEL BASE

٠,

CONFIDENTIAL NOLTR 63-47

0.08

NOTE:

- 1. DIMENSIONS GIVEN IN CALIBERS
- 2. I CALIBER = 0.428 INCHES
- C. G. LOCATED 2.18 CALIBERS FROM MODEL BASE

FIG. 6 LAZY DOG CONFIGURATION 4

3 FINS EQUALLY SPACED

0.23

CONFIDENTIAL NOLTR 63-47

NOTE.

I. DIMENSIONS GIVEN IN CALIBERS

2 | CALIBER = 0.428 | N

3. C.G. LOCATED 2.96 CALIBERS FROM MODEL BASE

FIG.7 LAZY DOG CONFIGURATION 5

CONFIDENTIAL NOLTR 63-47

NOTE

- 1. DIMENSIONS GIVEN IN CALIBERS
 - 2. I CALIBER = 0.428 IN.
- 3. C.G. LOCATED 2.18 CALIBERS FROM MODEL BASE

FIG.8 LAZY DOG CONFIGURATION 6

FIG.9 LAZY DOG CONFIGURATION 7

3. C.G. LOCATED AT 3.04 CALIBERS FROM MODEL BASE

2. I CALIBER = 0.428 INCHES

CONFIDENTIAL

FIG. 10 LAZY DOG CONFIGURATION 8

1. DIMENSIONS GIVEN IN CALIBERS

2 | CALIBER = 0.428 | INCHES

C.G. LOCATED 2.27 CALIBERS FROM MODEL BASE

CONFIDENTIAL

FIG. II A 2.92 SCALE, 50 CALIBER CORE MODEL

FIG. 12 THE 2.50 SCALE MODELS OF CONFIGURATIONS 1,2 AND 3

FIG.13 THE 2.92 SCALE MODELS OF CONFIGURATIONS 4 AND 5

CONFIDENTIAL NOLTR 63-47

FIG. 14 A 2.92 SCALE MODEL OF CONFIGURATION 6

FIG IS THE 2 92 SCALE, PITCH-DAMPING MODEL OF CONFIGURATION 6

FIG.16 AXES SYSTEMS, BODY ROTATED THROUGH AN ANGLE OF PITCH.

STATIC MARGIN = $(\mathbf{X}_{CG})_{C+F}$ — $(\mathbf{X}_{CP})_{C+F}$

FIG 17 CENTER OF PRESSURE (\mathbf{X}_{GP}) and center of gravity (\mathbf{X}_{GG}) locations for the 50 caliber bullet core with rectangular fins.

,,

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL HOLTE 63-41 16 a (deg) SYMBOL COMPIE. FIG. 28 NORMAL POSCE COMPPLEXENT, GW, AS A FUNCTION OF ANGLE OF ATTACK, C. FOR COMPTIGURATIONS 1. 4 AND G AT A FRES-STREAM MAIN MUNICER OF 1.26 COMPARED LAS.

::.i							C	ONFI.	DENT)	AL					. 4	
							N.	OLTR	63-4	7	ļ					
											o,			ZERO		
											0					
														OR		
											0			EAST SER.		
								E						E, M		
An to America of				. : .				0			0			CUEN	3	
														ACK AN H		
						:			A 144 A 144 M		9			A'I'T STIRE		
											ស		· · · · · ·	REK.		
											0			ANGE OF F		
											4. 7			ENT-		
											o		= jř	AS A FUNCTION OF FREE-STREAM MACH NUMBER FOR THE		
											673			AS A F	į	
						:	Í)			•			N A S		
		1 1					1				c)			ATTACE, CA.	S .	:
	Ē		1								0.3			E,	4	:
											pod.			THE MO		
	. 4										6			24		
		4 1										. !		SLOPE OF TEAMSLE OF ALTERE		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		- H		6	7		9	ā			0					
						deg)				• • • • • • • • • • • • • • • • • • • •		,		ආ ස	:	
						0 4			. ,,,,,,,,					PIE PIE		
					O	ě		CONT	FIDEN	TT AT			-	•	7. T	

FIG. 35 PITCHING MOMENT COMPFICIENT, C., AS A PUNCTION OF ANGLE OF ATTACK, α, FOR CONFIGURATIONS 1, 4 AND 6 AT A FREE-STREAM WACH HUMBER OF 0.49

1

FIG. 39 PITCHING MOMENT CORFFICIENT, Cm., AS A FUNCTION OF ANGLE OF ATTACK, a, FOR CONFIGURATIONS 1, 4 AND 6 AT A FREE-STREAM MACH NUMBER OF 0.94

FIG. 41 PITCHING MOMENT COEFFICIENT, $C_{\rm m}$, AS A FUNCTION OF ANGLE OF ATTACK, α , FOR CONFIGURATIONS 1, 4 AND 6 AT A FREE-STREAM MACH NUMBER OF 1.05

FIG. 43 PITCHING MOMENT COEFFICIENT, C_m , AS A FUNCTION OF ANGLE OF ATTACK, α , FOR CONFIGURATIONS 1, 4 AND 6 AT A FREE-STREAM MACH NUMBER OF 1.15

FIG. 45 PITCEING MOMENT CORFFICIENT, C_m , AS A FUNCTION OF ANGLE OF ATTACK, α , FOR CONFIGURATIONS 1, 4 AND 6 AT A FREE-STREAM MACH NUMBER OF 1.26

CONFIDENTIAL

FIG. 60 PITCHING MOMENT COEFFICIENT, C_B, AS A FUNCTION OF ANGLE OF ATTACK, &, FOR COH-FIGURATION 6 AT A FREE-STREAM MACH NUMBER OF 0.30 AS OBTAINED FROM PITCH DAMPING DATA

AFT OF THE NOSE

FIG. 66 VELOCITY AT IMPACT (V_{im}) FOR SEVERAL LAUNCH ALTITUDES AND INITIAL HORIZONTAL LAUNCH VELOCITIES (V_{in}) FOR A PARTICLE HAVING A FIXED W/C_D OF 0.25

FIG. 67 VELOCITY AT IMPACT (V) FOR SEVERAL LAUNCH ALTITUDES AND INITIAL HORIZONTAL LAUNCH VELOCITIES (V) FOR A PARTICLE HAVING A FIXED W/CD OF 0.50

FIG. 68 VELOCITY AT IMPACT (V) FOR SEVERAL LAUNCH ALTITUDES AND INITIAL HORIZONTAL LAUNCH VELOCITIES (V) FOR A PARTICLE HAVING A FIXED W/C OF 0.75

FIG. 69 VELOCITY AT IMPACT (V) FOR SEVERAL LAUNCH ALTITUDES AND INITIAL HORIZONTAL LAUNCH VELOCITIES (V) FOR A PARTICLE HAVING A FIXED W/CD OF 1.00

No. of Copies

Chief, Bureau of Naval Weapons Department of the Navy Washington 25, D. C.

Attn: DII-30
Attn: R-14
Attn: RRRE-4
Attn: RMGA-811
Attn: RMMO-42

Office of Naval Research
Room 2709, T-3
Washington 25, D. C.
Attn. Head, Mechanics Branch
Attn: Head, Fluid Dynamics Branch

Director, David Taylor Model Basin Aerodynamics Laboratory Washington 7, D. C. Attn: Library

Commander, U. S. Naval Ordnance Test Station China Lake, California Attn: Technical Library Attn: Code 406

Director, Naval Research Laboratory Washington 25, D. C. Attn: Code 2027

Commanding Officer
Officer of Naval Research
Branch Office
Box 39, Navy 100
Fleet Post Office
New York, New York

NASA High Speed Flight Station Box 273 Edwards Air Force Base, California Attn: W. C. Williams

NASA Ames Research Center Moffett Field, California Attn Librarian

	No. of Copies
NASA Langley Research Center Langley Field, Virginia Attn: Librarian	3
Attn: C. H. McLellan Attn: Adolf Busemann Attn: Comp. Res. Div. Attn: Theoretical Aerodynamics Division	J
NASA Lewis Research Center 21000 Brookpark Road Cleveland 11, Ohio Attn: Librarian Attn: Chief, Propulsion Aerodynamics Div.	
NASA 600 Independence Avenue, S. W. Washington 25, D. C. Attn: Chief, Division of Research Information Attn: Dr. H. H. Kurzweg, Asst. Director of Research	
Office of the Assistant Secretary of Defense (R&D) Room 3E1065, The Pentagon Washington 25, D. C. Attn: Technical Library	
Research and Development Board Room 3D1041, The Pentagon Washington 25, D. C. Attn: Library	
Defense Documentation Center Cameron Station Alexandria Va 22314	20
Commander, Pacific Missile Range Point Mugu, California Attn: Technical Library	
Commanding General Aberdeen Proving Ground, Maryland Attn: Technical Information Branch Attn: Ballistic Research Laboratory	

No. of Copies Commander, Naval Weapons Laboratory Dahlgren, Virginia Attn: Library Director, Special Projects Department of the Navy Washington 25, D. C. Attn: SP-2722 Director of Intelligence Headquarters, USAF Washington 25, D. C. Attn: AFOIN-3B Headquarters - Aero. Systems Division Wright-Patterson Air Force Base Dayton, Ohio 2 Attn: WWAD Attn: RRLA-Library Commander Air Force Ballistic Systems Division Norton Air Force Base San Bernardino, California 2 Attn: BSRVA Chief, Defense Atomic Support Agency Washington 25, D. C. Attn: Document Library Headquarters, Arnold Engineering Development Center Air Research and Development Center Arnold Air Force Station, Tennessee Attn: Technical Library Attn: AEOR Attn: AEOIM Commanding Officer, Harry Diamond Laboratories Washington 25, D. C. Attn: Library, Room 211, Bldg. 92 Commanding General U. S. Army Missile Command Redstone Arsenal Redstone Arsenal, Alabama Attn. Mr. N. Shapiro (AMSMI-RR) Redstone Scientific Information Center (AMSMI-RB)

No. of Copies NASA George C. Marshall Space Flight Center Huntsville, Alabama Attn: Dr. E. Geissler Attn: Mr. T. Reed Attn: Mr. H. Paul Attn. Mr. W. Dahm Attn: Mr. H. A. Connell Attn: Mr. J. Kingsbury Attn: ORDAB-DA APL/JHU (C/NOw 7386) 8621 Georgia Avenue Silver Spring, Maryland Attn: Technical Reports Group 2 Attn: Mr. D. Fox Attn: Dr. F. Hill Via: INSORD Air Force Systems Command Scientific & Technical Liaison Office Room 3710, Main Navy Department of the Navy Washington 25, D. C. Attn: Alonzo P. Mercier NASA 600 Independence Avenue, S.W. Washington 25, D.C. Attn: I. Shantz P. A. Cerreta

CATALOGING INFORMATION FOR LIBRARY USE

	DESCRIPTORS	CODES		0.6508181085	2200
30ADCE	NOL technical report	NOLTR	SECURITY CLASSIFICATION	Confidential - 33	CØ33
REPORT NUMBER	63-47	630047	CIRCULATION LIMITATION		
PEPORTDATE	18 May 1964	Ø5614	CIRCULATION LIMITATION		
			BIBLIOGRAPHIC (SUPPL., VOL., ETC.)		

		SUBJECT ANALISIS OF REICUS			
OESCPIPTORS	Choes	DESCRIPTORS	CODES	DESCRIPTORS	CODES
Lazy Dog	LAZY	0.3	ØX3Ø	50	8405 pd
Static	STAC	1.0	1X\$%	Caliber	CALB
Dynamic	DYNA	1,25	1125	Bullets	BULT
Stability	STBI	1,5	ǿ5xt.	High speed	HIGS
Subsonic	SUBS	Free fall	FREF	Aircraft	AIRC
Transonic	TENS	Missile	MIST	Air launched	AIRR
Speed	VELC	Aerodynamic	AERD	Fin stabilized	FALS
Wind twnel	MENU	Body	BODY	Low drag	LOWD
Testing	TEST	Ballistic ranges	BALR	Afterbodv	ል ፕሎፑራ
Configuration	COFI	Test facility	TESF	7	
Mach number	MACH	Antipersonnel	ANTO		
Range	RANG	Weapone	WEAP		
PRMC-HUL-5070 78 (5-62)					

1. Missile - Aerodynamics 2. Missiles - Lazy Dog II. Title II. Eades, III. Powers B., ir. III. Powers B., ir. IV. Series V. Project Abstract card is unclassified.	l. Missile Acredyramics 2. Missiles Lazy Dog II. Title II. Sades B. jr. III. Powers B. jr. IV. Series V. Project Abstract pard is unclassified.
Maval Dränance Laboratory, White Dak, MG. (NOL techaloal report 63-7) STATIC AND TYNANIC STABLLITY STULES ON SEVERAL LAFY DOS CONTINUATIONS AT SUBSONIC AND TRANSONIC SPREES (U), by J. B. Rades, in- and G. Powers. 18 Nay 1964. 78p. illus, tables. (Aerodynamics research report 191) Bunkeps task RAMO-42-005/212-1/FOOS-09-01. A suttary is presented of the investigations conducted in the Naval Ordnamoe Laboratory's supersonic tunnel no. 1 on several of the Navy's Lary Dog weapon configurations. Lary Dog is a free-fall missile employing a 50 callber bullet or its core as the basic aero- dynamic body.	Mayal Tranance Laboratory, Thite Dak, Ms. (ENTIC AND TYNALIC STABILITY STUDIES ON ESTREE LATY DG CONTICVACTIONS AT SUBSONIC AND TRANSONIC SPEEDS (U) by J. B. Eades, in- and C. Powers. 18 13 196. Tables. A surmary is presented of the investigations conducted in the Mayal Tranance Laboratory's supersonic tunnel no. 1 on several of the Navy's Lazy Dof Weapon configurations. Lazy of which of the instance Laboratory's supersonic tunnel no. 1 on several of the Navy's Lazy Dof Weapon configurations. Lazy of all missile employing a 50 cellic. Vullet or its core as the basic zero- dynamic roly.
1. Missile Missiles Missiles Tatie Title Tades TIT. Forest TIT. Forest TV. Series V. Preject V. Preject V. Preject V. Preject V. Preject	Abstract part is unclassified.
A summary is presented of the investigations conjucted in the Navel Ordnamos caveral of the investigations supersonic tunnel no. I on several of the Navy's aupersonic tunnel no. I on several of the Navy's asy of weapon conflicurations. Lazy of its a free-fall missile employing a function of the Navy's caliber bullet or its core as the basic sero-iynamic boly.	Laval Finance aloneous, filth and the technical report 6.200 of 1200 o

•

	C.	кħ	·III.
Naval Primance Laboratory, White Cak, M. (1911) technical report 63-47)	STRITT AND STRAIT STREET, STREETS ON STREET AND STREET	C SPEEDS (U	Buneps task RANG-42-CO5/212-1/FOO6-C9-C1.

C NETCHARACTERIA

it. author Series

Project

Bades, James B., Jr.

A survary is presented of the investigations conducted in the Naval organice Laboratory's supersonic tunnel mo. 1 on several of the Navi solary Doff weapon conflicturations. Lazy only is a Zive-fall missile employing a 50 caliber bullet or its core as the basic aerodynamic body.

Acres in a second secon

M55135

Naval rinance Laboratory Thite Jak, Mi. (20), techaical report 65-47)
DIRECT AND TYCKLIC SPATISTY STULES ON SPORT LATT STULES ON SPORT THAILDNS AT SUBSORT AT THAIRDS SPORTS (U) by J. B. Bades, frant St. iowers. 18 Nay 1964, 7°p, 111us., tatles. (Aerodynamics research report 191)
Budeps task RAYO-41-005/212-1/FOOS-09-01.

CHFILENMIA

Powers, Charlotte W.,

II.

jt. author Series

Bades, Janes B., jr.

H.E

A summary is presented of the investigations conducted in the Naval Pronance Laboratory's supersonic tunnel or a several of the Navy's Lazy Dog weapon configurations. Lazy Cog is a free-fall missile employing a 50 caliber builet or its core as the basic serodynamic body.

Naval Ordnance Laboratory, White Oak, Md. (NOI. technical report 63-47)
STATIC AND DYNAMIC STABILITY STUDIES ON
SETERAL LAZY DOC CONFIGURATIONS AT SURSONIC
AND THANSONIC SPEEDS (U), by J. B. Eades, jr.
and C. POWETS. 18 Nay 1964. 78p. illus.
tables. (Aerodynamics research report 191)
BuWeps task RAYO-42-CO5/212-1/FOO5-09-01. Powers, Charlotte W., Missile -Lerodymamics Missiles -Lazy Dog Title

CONFIDENTIAL

II. Bades, James B., jr. III. Powers, Charlotte W.,

H.H

jt. author Series Project

Abstract card is unclassified.

Aerodynamics Massiles -Lazy Dog Title

A surrary is presented of the investigations conducted in the Naval Ordnance Laboratory's supersonic tunnel no. 1 on several of the Supersonic tunnel no. 1 on several of the Surrary of weapon configurations. Lazy of is a free-fall missile employing a 50 calther bullet or its core as the basic aerodynamic body.

abstract cand is

unclassified.

A surrery is presented of the favestigations conducted in the Naval Ordnance Laboratory's supersonic tunnel no. 1 on several of the Navy's Lazy Dof weapon configurations. Lazy Dof is a free-fall missile employing a 50 caliber vullet or its core as the basic aero-Trans of soir.

Abstract card is unclassified.

Charlotte W., Aerodynamics Missiles -Eades, Janes B., ir. Lazy Dog Title Missile Powers, ր Naval Ordnance Laboratory, White Oak, Md. (MOL techaical report 63-47)
STATIC AND OYNALIC STABILITY STUDIES ON STABLE LAZY DOG CONFIGURATIONS AT SUBSONIC AND TEAMSONIC SPEDS (U), by J. B. Eades, jr. and C. Powers. 18 Nav 1964. 78p. illus. tables. (Aerodyazmics research report 191) Buweps task RM/O-42-CO5/212-1/FOOS-09-01.

Abstract card is unclassified.

jt. author Series Project

CONFIDENTIAL