- **0.1** Which of the following statements are true? (check all that apply)
 - 1. The height of a binary search tree with n nodes cannot be smaller than $\Theta(\log n)$.
 - 2. All the operations supported by a binary search tree (except OUTPUTSORTED) run in $O(\log n)$ time.
 - 3. The heap property is a special case of the search tree property.
 - 4. Balanced binary search trees are always preferable to sorted arrays.

Only (1) is correct. Let h be the height of the tree. the number of nodes in the tree are at most

$$1+2+3\ldots+2^h = 2^{h+1}-1$$

 $\leq 2^{h+1}$

hence the number of nodes n has the equality

$$\begin{array}{rcl} n & \leq & 2^{h+1} \\ \log n & \leq & h+1 \\ \log n & \leq & 2h \\ \frac{\log n}{2} & \leq & h \end{array}$$

from this we see the height h is at least order of $\log n$, thus $h = \Omega(\log n)$.

- **0.2** You are given a binary tree with *n* nodes. Each node of the tree has a size field, but these fields have not been filled in yet. How much time is necessary and sufficient to compute the correct value for all the size fields?
 - 1. $\Theta(height)$
 - 2. $\Theta(n)$
 - 3. $\Theta(n \log n)$
 - 4. $\Theta(n^2)$
- (2) is correct. Let n be the number of nodes in the tree. Since we are required to compute the size field for every node we must visit all n nodes. Hence we have order of n, thus $\Theta(n)$.