

Squares and Square Roots Ex 3.6 Q2

Answer:

(i) We have:

$$\frac{\sqrt{80}}{\sqrt{405}} = \sqrt{\frac{80}{405}} = \sqrt{\frac{16}{81}} = \frac{\sqrt{16}}{\sqrt{81}} = \frac{4}{9}$$

(ii) Computing the square roots:

$$\sqrt{441} = \sqrt{(3\times3)\times(7\times7)} = 3\times7 = 21$$

$$\sqrt{625} = \sqrt{(5 \times 5) \times (5 \times 5)} = 5 \times 5 = 25$$

(iii) We have:

$$\frac{\sqrt{1587}}{\sqrt{1728}} = \sqrt{\frac{529}{576}}$$
 (by dividing both numbers by 3)

Computing the square roots of the numerator and the denominator:

$$\sqrt{529} = \sqrt{23 \times 23} = 23$$

$$\sqrt{576} = \sqrt{24 \times 24} = 24$$

$$\therefore \frac{\sqrt{1587}}{\sqrt{1728}} = \frac{23}{24}$$

(iv) We have:

$$\sqrt{72} \times \sqrt{338} = \sqrt{72 \times 338} = \sqrt{2 \times 2 \times 2 \times 3 \times 3 \times 2 \times 13 \times 13}$$

= $\sqrt{2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 13 \times 13} = 2 \times 2 \times 3 \times 13$
= 156

(v) We have:

$$\sqrt{45} \times \sqrt{20} = \sqrt{3 \times 3 \times 5 \times 2 \times 2 \times 5}$$

$$= \sqrt{3 \times 3 \times 2 \times 2 \times 5 \times 5}$$

$$= 30$$

Squares and Square Roots Ex 3.6 Q3

Answer:

The length of one side is the square root of the area of the field. Hence, we need to calculate the value of $\sqrt{80\frac{244}{729}}$

We have

$$\sqrt{80\frac{244}{729}} = \sqrt{\frac{58564}{729}} = \frac{\sqrt{58564}}{\sqrt{729}}$$

Now, to calculate the square root of the numerator and the denominator:

We know that:

 $\sqrt{729} = 27$

Therefore, length of one side of the field = $\frac{242}{27}$ = $8\frac{26}{27}$ m

Squares and Square Roots Ex 3.6 Q4

Answer:

The length of one side is equal to the square root of the area of the field. Hence, we just need to calculate the value of $\sqrt{30\frac{1}{4}}$.

We have:

$$\sqrt{30\frac{1}{4}} = \frac{\sqrt{121}}{\sqrt{4}}$$

Now, calculating the square root of the numerator and the denominator:

$$\sqrt{121} = \sqrt{11 \times 11} = 11$$

$$\sqrt{4} = 2$$

Therefore, the length of the side of the square = $\sqrt{30\,\frac{1}{4}}$ = $\frac{11}{2}$ = $5\,\frac{1}{2}$ m

Squares and Square Roots Ex 3.6 Q5

Answer:

The area of the playground = $72 \times 338 = 24336 \text{ m}^2$

The length of one side of a square is equal to the square root of its area. Hence, we just need to find the square root of 24336.

	24336
1	1
25	143
5	125
306	1836
6	1836
	0

Hence, the length of one side of the playground is 156 metres.

******* END *******