Математический анализ

19 сентября 2022

Условный экстремум функции

$$D \subset \mathbb{R}^{n+m}, \ f:D \to \mathbb{R}, \quad z \in D$$

 $\Phi:D \to \mathbb{R}^m$ условие $\Phi(z)=0$

Определение. точка $z_0 \in D$ называется условным экстремумом функции f при условии $\Phi = 0$, если $\Phi(z_0) = 0$ и $\exists U$ – окрестность z_0 , $U \subset \mathbb{R}^{n+m} \ \forall z \in D \cap U$: $\Phi(x) = 0$ выполняется условие $f(z) \geq f(z_0)$ (– условный min); $f(z) \leq f(z_0)$ (– условный max)

Пусть
$$D \subset \mathbb{R}^{n+m}$$
, открытое, $f \in C^1(D,\mathbb{R})$, $\Phi \in C^1(D,\mathbb{R}^m)$ z_0 — точка условного экстремума $\operatorname{rank} \Phi'(z_0) = m$ Перенумеруем координаты $\boxed{\Phi'_x \mid \Phi'_y} = \Phi'$ $z = (x,y)$ так, чтобы было $\det \Phi'_y(z_0) \neq 0$ $z_0 = (x_0,y_0)$ По $Th.$ о неявном отображении $\exists U$ — окрестность x_0 :

$$y = \varphi(x), x \in U, \Phi(x, \varphi(x)) = 0$$

Тогда
$$f(x,\varphi(x))$$
 имеет безусловный экстремум в точке x_0 (условие выполняется) $\Rightarrow^{(1)} \underbrace{f_x'(z)}_{1\times n} + \underbrace{f_y'(z)}_{1\times m} \cdot \underbrace{\varphi'(x)}_{m\times n} = 0$ (– это и есть необх. усл. экстремума) $\varphi'(x_0) = -\left(\Phi_y'(z_0)\right)^{-1} \cdot \Phi_x'(z_0)$ (1) HУО: $f_x'(z) - \underbrace{f_y'(z)\left(\Phi_y'\right)}_{=\lambda \text{ (см. след. §)}} \Phi_x'(z) = 0$