

Molecular science and electronic health records: what does the future hold?

Dr Adam Butterworth HDRUK Cambridge 23rd June 2021

The challenge and opportunity

Bridging the gap between genotype and phenotype by linking multiple layers of molecular and other data with e-health records

Understanding Causes of Disease:from molecules to electronic health records

Understanding Causes of Disease:from molecules to electronic health records

Integrating genomes, health records & telomere length in 500,000 people

Observational associations with 123 diseases

Telomere length (standardised)

197 genetic signals for telomere length

Causal associations suggested for 31 diseases

MR = P < 0.05 = P < 4.1e-04

Observational \bigcirc $P \ge 0.05$ \bigcirc P < 0.05 \bigcirc P < 4.1e-04

An atlas of ~2000 genotypeprotein associations

HDRUK Multi-omics Cohorts Consortium

13 cohorts, >800K participants

Integrative analyses of multi-omic, genomic and EHR data

- Multi-disease aetiology
- Therapeutic target prioritisation
- Risk prediction

Testing ~1000 proteins for causal effects on >200 diseases and traits

Genetic signals for ~100 proteins associated with SARS-CoV2 or COVID-19 response

Integrating genomics, transcriptomics, proteomics and COVID-19 outcomes to identify potential treatments

Understanding Causes of Disease:from molecules to electronic health records

Publicly accessible community resources

- 65 billion associations
- ~20,000 users
 from 100 countries
- Millions of database queries
- Cited in 610 papers

Polygenic risk scores

A weighted sum of many diseaseassociated genetic variants

Polygenic risk scores improve prediction of coronary heart disease in UK Biobank

"Polygenic risk scores.....could translate into meaningful clinical benefit if applied at scale, and lead to the prevention of 7% more CVD events than conventional risk factors alone."

	Overall C-index (95%CI)			C-index changes (95% CI)
Conventional risk factors	0.724 (0.715, 0.732)	•		Reference
Plus polygenic risk scores	0.745 (0.737, 0.754)		-	0.022 (0.017, 0.026)
Plus C-reactive protein	0.729 (0.720, 0.737)	-		0.005 (0.003. 0.007)
		0.00 0.01	0.02	0.03
		C-index changes (95% CI) versus reference model		

Combining PGS with proteomics to identify aetiological pathways

HDRUK Health Data Research UK

Polygenic Score Catalog

An open database created in partnership with EMBL-EBI, NHGRI and ClinGen

All published polygenic scores, systematic benchmarking

Meta data about each polygenic score

Score Construction				
PGS Name	metaGRS_CAD			
Variants				
Original Genome Build	hg19			
Number of Variants	1,745,179			
Development Method				
Name	metaGRS			
Parameters	metaGRS log(HR) mixing weights: GRS46K=0.1278, FDR202=0.2359 and 1000Genomes=0.2400			

Score Details

Guidelines for reporting PGS

Reporting standards necessary for PGS reproducibility, translation and public trust

Perspective

Improving reporting standards for polygenic scores in risk prediction studies

https://doi.org/10.1038/s41586-021-03243-6

Received: 20 April 2020

Accepted: 15 January 2021

Published online: 10 March 2021

Hannah Wand^{1,2,31}, Samuel A. Lambert^{3,4,5,6,7,31}, Cecelia Tamburro⁸, Michael A. Iacocca¹,
Jack W. O'Sullivan^{1,2}, Catherine Sillari⁸, Iftikhar J. Kullo⁹, Robb Rowley⁸, Jacqueline S. Dron^{10,11},
Deanna Brockman¹⁰, Eric Venner¹², Mark I. McCarthy^{13,14}, Antonis C. Antoniou¹⁵,
Douglas F. Easton¹⁵, Robert A. Hegele¹¹, Amit V. Khera¹⁰, Nilanjan Chatterjee^{16,17},
Charles Kooperberg¹⁸, Karen Edwards¹⁹, Katherine Vlessis²⁰, Kim Kinnear²⁰,
John N. Danesh^{5,6,21}, Helen Parkinson^{6,7}, Erin M. Ramos⁸, Megan C. Roberts²²,
Kelly E. Ormond^{20,23}, Muin J. Khoury²⁴, A. Cecile J. W. Janssens²⁵, Katrina A. B. Goddard^{26,27},
Peter Kraft²⁸, Jaqueline A. L. MacArthur⁷, Michael Inouye^{3,4,5,6,21,29,32} &
Genevieve L. Wojcik^{30,32}

Genevieve L. Wojcik^{30,32}

Polygenic risk scores (PRSs), which often aggregate results from genome-wide association studies, can bridge the gap between initial discovery efforts and clinical applications for the estimation of disease risk using genetics. However, there is notable heterogeneity in the application and reporting of these risk scores, which hinders the translation of PRSs into clinical care. Here, in a collaboration between the Clinical Genome Resource (ClinGen) Complex Disease Working Group and the

Understanding Causes of Disease:from molecules to electronic health records

Linking genomes and longitudinal EHRs to identify causes of extreme mutation rates

4 with likely genetic explanations

5 with paternal cancer and chemotherapy prior to conception

The future

1. Enhanced diversity

BELIEVE study

Kadoorie Biobank

Mexico City Prospective Study

Million Veteran Program

The future

1. Enhanced diversity

2. Deeper data linkages

Led by Health Data Research UK

The future

1. Enhanced diversity

2. Deeper data linkages

3. Multimorbidity

Acknowledgements

Understanding Causes of Disease theme members

Multi-omics Cohorts Consortium

Polygenic Score Catalog team

HDR UK Cambridge Hub team and Executive committee

Patient and public panels, representatives and Steering Committee members

Study participants

HDRUK team