Signals and Systems unit 1

Orthogonality in Vectors

Orthogonality in Vectors:

A vector is specified by magnitude and direction. We shall denote all vectors by boldface type and their magnitudes by lightface type, for example, \mathbf{A} is a certain vector with magnitude A. Consider two vectors \mathbf{V}_1 and \mathbf{V}_2 as shown in Fig. Let the component of \mathbf{V}_1 along \mathbf{V}_2 be given by $C_{12}V_2$. How do we interpret physically the component of one vector along the other vector? Geometrically the component of a vector \mathbf{V}_1 and \mathbf{V}_2 is obtained by drawing a perpendicular from the end of \mathbf{V}_1 on the vector \mathbf{V}_2 , as shown in fig. The vector \mathbf{V}_1 can now be expressed in terms of vector \mathbf{V}_2 .

Figure 1.1

$$V_1 = C_{12}V_2 + V_e$$

However, this is not the only way of expressing vector V_1 in terms of vector V_2 . Figure illustrates two of the infinite alternate possibilities. Thus, in fig

Figure 1.2

$$V_1 = C_1 V_2 + V_{e1}$$

and in fig.

$$V_1 = C_2 V_2 + V_{e2}$$

For convenience, we define the dot product of two vectors **A** and **B** as

$$A \cdot B = AB \cos \theta$$

where θ is the angle between vectors **A** and **B**. It follows from the definition that

$$A \cdot B = B \cdot A$$

According to this notation,

The component of **A** along **B** =
$$A \cos \theta \frac{A \cdot B}{B}$$

and

The component of **B** along
$$\mathbf{A} = B \cos \theta \frac{A \cdot B}{A}$$

similarly

The component of
$$V_1$$
 along $V_2 = \frac{V_1 \cdot V_2}{V_2}$

Therefore

$$C_{12} = \frac{V_1 \cdot V_2}{V_2^2} = \frac{V_1 \cdot V_2}{V_2 \cdot V_2}$$

Note that if V_1 and V_2 are orthogonal then

$$V_1 \cdot V_2 = 0$$

and

$$C_{12} = 0.$$