TreadMill

COA Lab Project (2016-17) The LNMIIT, Jaipur

Khushboo Baheti (15UCS168) Smriti Jha (15UCS142) Shreya Rajput (15UCS134) Sakshi Goyal (15UCS116)

Introduction

- We are designing a 16-bit Treadmill Machine.
- Includes functions that can measure and analyse procedures or the levels of an activity that can properly attribute performance factor.

Example:

- CaloriesBurnt: It will tell the amount of calories burnt during a particular run for a particular time.
- VO2Consumption: which will tell the amount of oxygen consumed in a run.

Functions

- VO2Consumption: Vo2 measurement represents the rate of oxygen consumption in that activity, which is, VO2(ml/(kg*min))=[(0.2*speed(m/min))+(0.9*speed*% grade)+3.5
- 2. setGrade: This function is used to initialise the inclination of the treadmill floor in terms of tan theta taken as input.
- 3. MET: Metabolic Equivalent of Task, 1 met is the energy equivalent expended by an individual while seated at rest.(1MET=3.5ml/(kg*min))

 MET(mets)=VO2/3.5
- 4. CaloriesBurnt: This can be derived from the relation Calories burnt: Time spent running(min)*[MET value*3.5*weight of body (in kg)/ 200]
- 5. CalculateDistance:Given the speed(m/min) and the time (min), Distance(m) = speed/time.

- 6. SetSpeed: This function is used to initialise the speed of machine (in m/min).
- 7. Settime: This function starts the treadmill by taking time of running (in minutes) as an argument. It starts the timer accordingly.
- 8. SpeedInc: This will increment the current speed by 1.
- 9. SpeedDec:This will decrement the current speed by 1.
- 10. SetWeight: This function will initialise the weight as the weight given by the user(in kgs).

Memory Model

- We are using Little Endian model, where word is made up of 16 bits(2 bytes).
- Our memory is word addressable memory.
- We are using an Aligned memory model.

Registers

 Ro-R6 are general purpose registers which will be used to store key local variables and immediate results of calculations.

```
Ro 0000
R1 0001
```

Special Registers:

0101

rGRD	0111
rWGT	1000
rTME	1001
rSPD	1010
rIN	1011
rOUT	1100
rPC	1101
rlR	1110
rFR	1111

- Special-purpose registers control various caches, memory, I/O devices and other hardware features.
- IN/OUT registers will be used to take input & display output.
- GRD(Grade), WGT(Weight), TME(Time), SPD(Speed), PC(Program Counter), IR(Instruction register), FR(Flag register) are special purpose registers.

Instruction Format

2 - Address Instructions:

Immediate Address Instruction:

opcode	im	m	reg	
Example- setspe	ed	imm	n R1	
settim	ie	imm	n R1	
setwe	ight	imm	n R1	
setgra	de	imm	n R1	

1- Address Instructions:

o-Address Instructions:

In our instructions, second operand will be the destination register in which the result will be stored.

Instruction Design

4 bits: setspeed oooo

settime 0001

setweight 0010

setgrade 0011

sjump 0100

8 bits: Caldist 01010000

Caloxygen 01010001

12 bits: caloburnt 010100100000

calmet 010100100001

cspdinc 010100100010

cspddec 010100100011

16 bits: hlt 010100100100000

- RISC due to faster clock speeds.
- Fixed length instructions because of easy decoding.

Instruction Types

- Data Movement:
 Register to Register = Caldist
 Immediate to Register = setspeed
- Dyadic Instructions:

```
Caldist op1 op2 settime op1 op2
Caloxygen op1 op2 setweight op1 op2
setspeed op1 op2 setgrade op1 op2
```

Monodic Instructions:

```
caloburnt op1 cspdinc op1 calmet op1 sjump label
```

Branching:

```
sjump label
```

Data Types

We are using only Unsigned Integers and floats.

Addressing Modes

Immediate Addressing Modes:

setspeed value R1
settime value R1
setweight value R1
setgrade value R1

Register Addressing Modes:

Caloxygen Ro R1 Caldist Ro R1

Flow of Control Handling

Sequential flow of control and Branching are checked in which LABEL provides the name for a particular address where jump statements are used to change or control the flow of program.

ALU

ALU DESIGN

CONTROL-UNIT

CONTROL UNIT (Microprogrammed)

1. Fetch Cycle:

```
[MAR] ← [PC]
[PC] ← [PC] + 2
Read, WMFC
```

 $[IR] \leftarrow [MDR]$

<u>Control Signals:</u>

- 1. PC_{out}, R=B, MAR_{in}, Read, IncPC
- 2. WMFC
- 3. MDR_{out}, R=B, IR_{in}

0	1		Read	3	2	1	S	Cycle no.
0	0		WMFC	0	0	0	Ď	PC in
0	1		INC PC	0	0	1	Σ	MAR in
0	0		Offset	1	0	o	≃	IR in
0	0		Imm IR out B	0	0	0	δ	rSPD in
0	1		PC out B	0	0	0	F	rTME in
0	0		MDR out B	C	C	C	2	rWGT in
0	0		IR out B) () () (ē	rGRD in
0	0		rSPD out A	0 (0 (0 (2	ii Qi
0	0		rTME out A	0	0	0	7 2	2.
0	0		rGRD out A	0	0	0	_ (
0	0		rWGT out A	0	0	0	2	rz ın
0	0		r0 out A	0	0	0	ღ	r3 in
		12	r1 out A	0	0	0	ក	r5 in
			r2 out A	0	0	0	Š	Select 0.2
			r3 out A	0	0	0	Š	Select 0.9
			Z Surt A	0	0	0	Š	Select 3.5
0	0		0000	C	C	O	Se	select A
0	0		rsPD out B)))	۵	ν-0
0	0		rTME out B	0	0	0	Ė	Ę.
0	0		rGRD out B	1	0	1	æ	R=B
0	0		rWGT out B	0	0	0	Š	Select 1
0	0	775	r0 out B	0	0	0	Š	Select 2
0	0		r1 out B	0	0	0	S	Select 200
0	0		r2 out B	0	0	0	AC	Add
0	0		r3 out B	0	0	0	เร	Sub
0	0		r5 out B	0	0	0	Σ	Mul
0	0		END	0	0	0	à	>

2. setspeed:

[rSPD] ←[Imm value IR]

Control Signals:

Immediate value of IR_{outB}, R=B, rSPD_{in}, END

Cycle no	PC in	MAR in	-					27			= .: :	Z .	El C		Select 0.9	Select 3.5	select A		R=B	Select 1	Select 2	Select 200	Add	Sub	Mul	NiQ
1	0			Imm IR out B	PC out B	MDR out B	IR out B	rSPD out A	rTME out A	rGRD out A	rWGT out A	o o	o o	o O	ontA	o o	o rSPD out B	rTME out B	rGRD out B	rWGT out B	o o	ut B	r2 out B	r3 out B	r5 out B	0
o Read	OWMFC	O INC PC	Offset	1	o PC	O	O	o	O	o	O	o ro out A	o r1 out A	o r2 out A	o r3 out A		O	O	O	O	o r0 out B	o r1 out B	0 12 01	0 130	0 57	1 1

3. Caldist:

 $[R_3] \leftarrow [rSPD] \times [rTME]$

Control Signals:

rSPD_{outA}, rTME_{outB}, select A, mul, R3_{in}, END

			150 (83)
0	WMFC	1	Cycle no
0	INC PC	0	PC in
0	Offset	0	MAR in
0	Imm IR out B	0	IR in
0	PC out B	0	rSPD in
0	MDR out B	0	rTME in
0	IR out B	0	rWGT in
1	rSPD out A	0	rGRD in
0	rTME out A	0	r0 in
0	rGRD out A	0	n L
0	rWGT out A	0	r2 in
0	r0 out A	1	r3 in
0	r1 out A	0	r5 in
C	D out A	0	Select 0.2
)	C 000 2	0	Select 0.9
0	r3 out A	0	Select 3.5
0	r5 out A	1	colort A
0	rSPD out B	0	R=A
1	rTME out B	0	R=B
0	rGRD out B	0	Select 1
0	rWGT out B	0	Select 2
0	r0 out B	0	Select 200
0	r1 out B	0	Add
0	r2 out B	0	Sub
0	r3 out B	1	Mul
0	r5 out B	0	Div
1	END	0	Read

4. <u>settime:</u>

[rTME] ←[Imm value IR]

<u>Control Signals:</u>

Immediate value of IR_{outB}, R=B, rTME_{in}, END

0	Read	1	Cycle no
0	WMFC	0	PC in
0	INC PC	0	MAR in
0	Offset	0	IR in
1	Imm IR out B	0	rSPD in
0	PC out B	1	rTME in
0	MDR out B	0	rWGT in
0	IR out B	0	rGRD in
0	TSPD out A	0	r0 in
0	TIME out A	0	r1 in
0 (rokD out A	0	r2 in
0 0	ro out A	0	r3 in
0 0	r1 out A	0	r5 in
0	r2 out A	0	Select 0.2
) (r3 out A	0	Select 0.9
0	r5 out A	0	Select 3.5
0	rSPD out B	0	select A
0	rTME out B	0	R=A
0	rGRD out B	1	R=B
0	rWGT out B	0	Select 1
0	r0 out B	0	Select 2
0	r1 out B	0	Select 200
0	r2 out B	0	Add
0	r3 out B	0	Sub
0	r5 out B	0	Mul
1	END	0	Div

5. <u>setweight:</u>[rWGT] ←[Imm value IR]

Control Signals:

Immediate value of $IR_{outB'}$ R=B, rWGT_{in'} END

Cycle flo	PC in	MAR in	Rin	rSPD in	rTME in	rWGT in	rGRD in	i Qi	. E		i :	<u> </u>	E 2	Select 0.2	Select 0.9	Select 3.5	select A	R=A	R=B	Select 1	Select 2	Select 200	Add	Sub	Mul	ViQ
1	0	0	0) () () :	1 () (0 (0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Read	WMFC	INC PC	Offset	Imm IR out	PC out B	MDR out B	IR out B	rSPD out A	rTME out A	rGRD out A	rWGT out A	r0 out A	r1 out A	r2 out A	r3 out A	r5 out A	rSPD out B	rTME out B	rGRD out B	rWGT out B	r0 out B	r1 out B	r2 out B	r3 out B	r5 out B	END
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

6. Caloxygen:

- $[Ro] \leftarrow [rSPD] \times [0.2]$
- $\overline{[R5]} \leftarrow [\overline{rGRD}] \times [0.9]$
- $[R_5] \leftarrow [R_5] \times [rSPD]$
- $[Ro] \leftarrow [Ro] + [R5]$
- $[Ro] \leftarrow [Ro] + [3.5]$

Control Signals:

- 1. rSPD_{outB}, select o.2, mul, Ro_{in}
- 2. rGRD_{outB}, select 0.9, mul, R_{5in}
- 3. R_{5_{outA}, rSPD_{outB}, select A, mul, R_{5_{in}}}
- 4. Ro_{outA}, R5_{outB}, select A, add, Ro_{in}
- 5. Ro_{outB}, select 3.5, add, Ro_{in}, END

	0	0	0	0	0	Read	5	3	2	1	Cycle no
U	0	0	0	0	0	WMFC	0	0	0	0	PC in
U	0	0	0	0	0	INC PC	0	0	0	0	MAR in
U	0	0	0	0	0	Offset	0	0	0	0	Rin
U	0	0	0	0	0	Imm IR out B	0	0	0	0	rSPD in
U	0	0	0	0	0	PC out B	0	0	0	0	rTME in
U	0	0	0	0	0	MDR out B	0	0	0	0	rWGT in
U	0	0	0	0	0	IR out B	0	0	0	0	rGRD in
U	0	0	0	0	0	rSPD out A		0	T	1	ni Or
U	0	0	0	0	0	rTME out A				C	2 2
U	0	0	0	0	0	rGRD out A			T) (. C
U	0	0	0	0	0	rWGT out A				0	11 7 6
U	0	1	0	0	0	r0 out A	0	0	0	0	3 :
0	0	0	0	0	0	r1 out A	0	1	1	0	ri Şin
0	0	0	0	0	0	r2 out A	0	0	0	1	Select 0.2
U	0	0	0	0	0	r3 out A	0	0	1	0	Select 0.9
0	0	0	1	0	0	r5 out A	0	0	0	0	Select 3.5
0	0	0	1	0	1	rSPD out B	0	1	0	0	select A
U	0	0	0	0	0	rTME out B	0	0	0	0	R=A
	0	0	0	1	0	rGRD out B	0	0	0	0	R=B
0	0	0	0	0	0	rWGT out B	0	0	0	0	Select 1
	1	0	0	0	0	r0 out B	0	0	0	0	Select 2
U	0	0	0	0	0	r1 out B	0	0	0	0	Select 200
U	0	0	0	0	0	r2 out B	1	0	0	0	Add
U	0	0	0	0	0	r3 out B	0	0	0	0	Sub
U	0	1	0	0	0	r5 out B	0	1	1	1	Mul
	1	0	0	0	0	END	0	0	0	0	Div

7. **calmet:**[R1] ←[R0] / [3.5]

Control Signals:

Ro_{outB}, select 3.5, div, R1_{in}, END

0	Read	1	Cycle no
0	WMFC	0	PCin
0	INC PC	0	MAR in
0	Offset		. <u></u>
0	Imm IR out B	0	N CPD in
0	PC out B	0 (TMT.
0	MDR out B	0	III NIC III
0	IR out B	0	rwel in
0	rSPD out A	0	rGRD in
0	rTME out A	0	E .
0	rGRD out A	1	E .
0	rWGT out A	0	r2 in
0	r0 out A	0	r3 in
0	r1 out A	0	r5 in
0	r2 out A	0	Select 0.2
0	r3 out A	0	Select 0.9
0	r5 out A	1	Select 3.5
0	rSPD out B	0	select A
0	rTME out B	0	R=A
0	rGRD out B	0	R=B
0	rWGT out B	0	Select 1
1	r0 out B	0	Select 2
0	r1 out B	0	Select 200
0	r2 out B	0	Add
0	r3 out B	0	Sub
0	r5 out B	0	Mul
1	END	1	Div

8. caloburnt:

$$[R1] \leftarrow [R1] \times [rWGT]$$

$$[R1] \leftarrow [R1] \times [3.5]$$

$$[R1] \leftarrow [R1] \times [rTME]$$

$$[R2] \leftarrow [R1] / [200]$$

Control signals:

- 1. R₁_{outA}, rWGT_{outB}, select A, mul, R₁_{in}
- 2. R1_{outB}, select 3.5, mul, R1_{in}
- 3. R_{1_{outB}, rTME_{outA}, select A, mul, R₁}
- 4. R1_{outB}, select 200, div, R2_{in}, END

9. <u>setgrade:</u>[rGRD] ←[Imm value IR]

Control Signals: Immediate value of IR_{outB}, R=B, rGRD_{in}, END

U	0	Read	1	Cycle ño
U	0	WMFC	0	PCin
J	0	INC PC	0	MAR in
J	0	Offset	0	IRin
	1	Imm IR out) (rSPD in
U	0	PC out B	0	TWE
0	0	MDR out B	0	
U	0	IR out B	0	rwg1 in
	0	rSPD out A	1	rGRD in
	0	rTME out A	0	r0 in
U	0	rGRD out A	0	11 in
	0	rWGT out A	0	r2 in
	0	r0 out A	0	r3 in
	0	r1 out A	0	ri Li
	0	r2 out A	0	Select 0.2
	0	r3 out A	0	Select 0.9
	0	r5 out A	0	Select 3.5
	0	rSPD out B	0	select A
	0	rTME out B	0	R=A
	0	rGRD out B	1	R=B
-	0	rWGT out B	0	Select 1
	0	r0 out B	0	Select 2
0	0	r1 out B	0	Select 200
	0	r2 out B	0	Add
U	0	r3 out B	0	Sub
U	0	r5 out B	0	Mul
	1	END	0	Div

10. cspdlnc:

$$[rSPD] \leftarrow [rSPD] + [1]$$

Control signals:

rSPD_{outB}, select 1, add, rSPD_{in}, END

0	Read		Ovelano
	72710	1	cycle no
0	WMFC	0	PC in
0	INC PC	0	MAR in
0	Offset		E C
0	Imm IR out B	0 1	SPDin
0	PC out B	1 (TME is
0	MDR out B	0	MINIC III
0	IR out B	0	III 19
	rSPD out A	0	I OKO III
0	rTME out A	0	= 2 T
0	rGRD out A	0	⊑ .
0	rWGT out A	0	LZ III
0	r0 out A	0	r3 in
0	r1 out A	0	r5 in
0	r2 out A	0	Select 0.2
0	r3 out A	0	Select 0.9
0	r5 out A	0	Select 3.5
1	rSPD out B	0	select A
0	rTME out B	0	R=A
0	rGRD out B	0	R=B
0	rWGT out B	1	Select 1
0	r0 out B	0	Select 2
0	r1 out B	0	Select 200
0	r2 out B	1	Add
0	r3 out B	0	Sub
0	r5 out B	0	Mul
1	END	0	Div

11. <u>cspdDec:</u> [rSPD] ←[rSPD] - [1]

Control signals:

rSPD_{outB}, select 1, sub, rSPD_{in}, END

0	Read	1	Cycle no
0	WMFC	0	PC in
0	INC PC	0	MARin
0	Offset	Ř	υ. Ω
0	Imm IR out B	0	ii Coo
0	PC out B	1	TME
0	MDR out B	0	III IME III
0	IR out B	0	III 1900
0	rSPD out A	0	GKD III
0	rTME out A	0	E .
0	rGRD out A	0	E
0	rWGT out A	0	r2 in
0	r0 out A	0	r3 in
0	r1 out A	0	r5 in
0	r2 out A	0	Select 0.2
0	r3 out A	0	Select 0.9
0	r5 out A	0	Select 3.5
1	rSPD out B	0	select A
0	rTME out B	0	R=A
0	rGRD out B	0	R=B
0	rWGT out B	1	Select 1
0	r0 out B	0	Select 2
0	r1 out B	0	Select 200
0	r2 out B	0	Add
0	r3 out B	1	Sub
0	r5 out B	0	Mul
1	END	0	Div

12. <u>sjump</u>:

[PC] ←[offset field IR]

<u>Control signals</u>:

offset field IRoutB, R=B, PCin,END

0	Read	1	Cycle no
0	WMFC	1	PC in
0	INC PC	(MADin
0	Offset)	
0	Imm IR out B	0	= 100 C
0	PC out B	0	rsPD III
0	MDR out B	0	rTME in
) .		0	rWGT in
1	IK out D	0	rGRD in
0	rSPD out A		ć.
0	rTME out A	0	II .
0	rGRD out A	0	= :
0	rWGT out A	0	r2 in
0	r0 out A	0	r3 in
0	r1 out A	0	r5 in
0	r2 out A	0	Select 0.2
0	r3 out A	0	Select 0.9
0	r5 out A	0	Select 3.5
0	rSPD out B	0	select A
0	rTME out B	0	R=A
0	rGRD out B	1	R=B
0	rWGT out B	0	Select 1
0	r0 out B	0	Select 2
0	r1 out B	0	Select 200
0	r2 out B	0	Add
0	r3 out B	0	Sub
0	r5 out B	0	Mul
1	END	0	Div

THANK YOU!!!!