1. Probar que

$$\lim_{n \to \infty} \int_A f_n(x)g(x) d\mu = \int_A f(x)g(x) d\mu$$

si $\{f_n\}$ es una sucesión de funciones que convergen a f en A, $|f_n(x)| \le \phi(x)$ para todo $x \in A$ y para todo $n \in \mathbb{N}$, donde ϕ es integrable en A, y $|g(x)| \le M$, con M > 0, para casi todo punto en A.

Demostración.

Sea $A' = \{x \in A \mid |g(x)| \le M\}$. Ya que $|f_n(x)| \le \phi(x)$ y $|g(x)| \le M$, para cada $x \in A'$ y para cada $n \in \mathbb{N}$, se tiene que $|f_n(x)g(x)| = |f_n(x)| |g(x)| \le M\phi(x)$, para cada $x \in A'$ y para cada $n \in \mathbb{N}$, por lo que f_ng es integrable en A. Además, la sucesión $\{f_ng\}$ converge a fg y como $M\phi(x)$ es integrable en A, por el Teorema 1, se obtiene que fg es integrable en A' y

$$\lim_{n \to \infty} \int_{A} f_n(x)g(x) d\mu = \lim_{n \to \infty} \int_{A'} f_n(x)g(x) d\mu$$
 (pues $\mu(A \setminus A') = 0$)
$$= \int_{A'} f(x)g(x) d\mu$$

Después, dado que $|f_n(x)g(x)| \leq M\phi(x)$ para casi todo punto en A y para cada $n \in \mathbb{N}$, se da que $|f(x)g(x)| \leq M\phi(x)$ para casi todo punto en A. También se tiene que $M\phi(x)$ es integrable en A, lo cual implica que fg es integrable en A y así $\int_A f(x)g(x) d\mu = \int_{A'} f(x)g(x) d\mu$. Por lo tanto,

$$\lim_{n \to \infty} \int_A f_n(x)g(x) d\mu = \int_A f(x)g(x) d\mu.$$

4. **30.2.** La integral de Lebesgue sobre un conjunto de medida infinita. Hasta ahora, todas nuestras medidas han sido finitas, y por lo tanto, se ha entendido tácitamente que todo lo dicho sobre la integral de Lebesgue y sus propiedades se aplica solo al caso de funciones definidas en conjuntos de medida finita. Sin embargo, a menudo se ocupan funciones definidas en un conjunto X de medida infinita, por ejemplo, la recta real con la medida ordinaria de Lebesgue. Nos limitaremos al caso de mayor interés práctico, donde X puede representarse como

$$X = \bigcup_{n} X_{n},$$

es decir, la unión a lo más numerable de conjuntos, cada uno de medida finita con respecto a alguna medida σ -aditiva μ definida en un σ -anillo de subconjuntos de X (los conjuntos de medida finita). Tal medida se llama σ -finita.

¿Por qué hablamos sobre un σ -anillo en lugar de un σ -álgebra?

Solución.

Si el σ -anillo tuviera unidad E, entonces $X_n \subseteq E$ para cada n, por lo que $X = \bigcup_n X_n \subseteq E$, pero E también es un elemento del σ -anillo, por lo que X = E, lo cual implica que $\mu(X) = \mu(E)$. Sin embargo, la medida de X es infinita, mientras que la de E es finita, por ser elemento del σ -anillo, lo cual no puede ser. Por lo tanto, el σ -anillo no tiene unidad, razón por la cual no puede ser un σ -álgebra.