CS 11: Introduction to Computer Science

Separate Compilation Organizing Programs into Multiple Source Files

Mark Sheldon Tufts University

Email: msheldon@cs.tufts.edu

Web: http://www.cs.tufts.edu/~msheldon

Noah Mendelsohn Tufts University

Email: noah@cs.tufts.edu

Web: http://www.cs.tufts.edu/~noah

Goals for this session

- Understand why we'd want to break a program into multiple source files
- Understand how to do it!

The largest C++ programs are millions of lines long...

Some problems with that:

- …a million line .cpp file would be somewhat inconvenient
- …it's hard for 50 programmers to edit the same file at once
- ...recompiling a 10 million line .cpp file might take awhile
- ...where's the modularity?
- ...etc, etc.

Reasons to break up even small programs

Modularity

- Keeping separate things that don't need to be tangled together
- Easier to reason about
- Easier to test and debug
- I don't want to include many thousands of lines of C++ in my program just to call sqrt

Sharing

– I want to reuse the same little pieces in many different progams!

Interfaces

Our client programmer need not know how to compute the area of a rectangle...just how to call the function!

The rectangle_area function "keeps the secret" of how to compute areas.

double
rectangle_area(double width, double height)

```
Our client programmer need not know how to compute the area of a rectangle...just how to call the function!
```

INTERFAC

The rectangle_area function "keeps the secret" of how to compute areas.

double
rectangle area(double width, double height)

```
Our client programmer need not
know how to compute the area
of a rectangle...just how to call
the function!
```

```
#include "rectangle.h"
main()
  double w=3;
  double h=4;
  cout << rectangle area(w, h);</pre>
```

double

rectangle.h

We declare the function interface in rectangle.h, which both files include!

```
#include "rectangle.h"
                                double
                                rectangle area (double width,
                                                   double height)
                                  return width * height;
rectangle area (double width, double height);
```

Client / Interface / Impleme

cout << rectangle area(w, h);</pre>

Our client programmer need not know how to compute the area of a rectangle...just how to call the function!

main()

double w=3;

double h=4;

#include "rectangle.h"

As we compile, the C++ compiler *includes* the contents of rectangle.h, as if it were in the .cpp being compiled.

INTERFACE

```
double
rectangle_area(double width, double height);
rectangle.h
```

We could use rectangle_area again in a totally different application.

INTERFACE

rectangle.cpp

double rectangle_area(double width, double height) rectangle.h

How To Compile With Multiple Files

Compiling

g++ -Wall -Wextra -Werror -o test_rectangle testrectangle.cpp rectangle.cpp

Compiling

Build executable program named:

test_rectangle

g++ -Wall -Wextra -Werror -o test_rectangle testrectangle.cpp rectangle.cpp

Compiling

Using these *two .cpp files*

g++ -Wall -Wextra -Werror -o test_rectangle testrectangle.cpp rectangle.cpp

Later we will learn some fancier ways to avoid recompiling all the pieces all the time, but for now this is simple and it works.

Summary

Building Programs from Multiple Source Files

- Modularity
- Ease of maintenance
- Sharing
- Etc.
- Common interface goes into .h file #included by both implementation and user
- User does not see implementation details, which can be replaced