CONTENTS

			Page	
1.0	SU	MMARY	. 1	1/A9
2.0	INT	RODUCTION	. 2	1/A10
3.0	SY	MBOLS AND NOMENCLATURE	3	1/A11
4.0	ENG	GINEERING DESCRIPTION	. 6	1/A14
	4.1	Summary of Theoretical Development	. 6	1/A14
		4.1.1 Equations		1/A14
		4.1.2 Solution Method	. 7	1/B1
	4.2	Application	. 9	1/B3
		4.2.1 Modeling Idealizations	. 9	1/B3
		4.2.2 Limitations	. 12	1/86
5.0	PR	OGRAM STRUCTURE AND DESCRIPTION	. 13	1/87
	5.1	Program L216	. 14	1/B8
	5.2	Program Initial	. 15	1/B9
	5.3	Program PRT2	. 15	1/B9
	5.4	Program GEWSSL	. 15	1/B9
	5.5	Program GEQ	. 15	1/B9
	5.6	Program AMSOL	. 15	1/B9
	5.7	Program AICSUB	. 15	1/89
	5.8	Program GIN	. 16	1/B10
	5.9	Program SAMODE	. 17	1/B11
6.0	co	MPUTER PROGRAM USAGE	. 18	1/812
	6.1	Control Cards	. 18	1/B12
	6.2	Resource Estimates	. 19	1/B13
		6.2.1 Field Length	. 19	1/B13
		6.2.2 Execution Time	. 20	1/B14
		6.2.3 Printed Output	. 20	1/B14
		6.2.4 Tape Drives	. 21	1/01
		6.2.5 Disk Storage	21	1/01
	6.3	Input Data	21	1/01
		6.3.1 Format of Card Input Data	. 21	1/01
		6.3.2 Card Input Data Specifications		1/01
		6.3.3 Summary of Card Input Data		1/013
		6.3.4 Magnetic Files Input Data		1/E3
	6.4	Output Data		1/E3
		6.4.1 Printed Output Data	. 50	1/E4
		6.4.2 Magnetic Files Output Data		1/E4

CONTENTS (Concluded)

				Page	
	6.5	Restri	ctions	58	1/E12
	6.6	Diagn	ostics	 58	1/E12
		6.6.1	L216 Error Codes	 62	1/F2
		6.6.2	READTP Error Codes	 64	1/F4
		6.8.3	WRTETP Error Codes		
7.0	SA!	MPLE I	ROBLEM	 66	1/F6
			Data		
			Parameters and Geometry		
			Modal Data		
	7.2		e Problem Input and Output		
REI	ERE	NCES		118	2/F1

830- A-14

NAS 1.26:2849

COMPLETED

NASA Contractor Report 2849

OCT 1 7 879

ORIGINAL

A Program To Compute Three-Dimensional Subsonic Unsteady Aerodynamic Characteristics Using the Doublet Lattice Method, L216 (DUBFLX)

Volume I: Engineering and Usage

M. Richard and B. A. Harrison

CONTRACT NAS1-13918 OCTOBER 1979

MASA

NASA Contractor Report 2849

A Program To Compute Three-Dimensional Subsonic Unsteady Aerodynamic Characteristics Using the Doublet Lattice Method, L216 (DUBFLX)

Volume I: Engineering and Usage

M. Richard and B. A. Harrison Boeing Commercial Airplane Company Seattle, Washington

Prepared for Langley Research Center under Contract NAS1-13918

Scientific and Tachnical Information Branch

1979

Blank Page

CONTENTS

		Pa	ge
1.0	SU	MMARY	1
2.0	INT	RODUCTION	2
3.0	SYI	MBOLS AND NOMENCLATURE	3
4.0	EN	GINEERING DESCRIPTION	6
	4.1		6
		4.1.1 Equations	6
		4.1.2 Solution Method	7
	4.2	Application	9
		4.2.1 Modeling Idealizations	9
		4.2.2 Limitations	12
5.0	PRO	OGRAM STRUCTURE AND DESCRIPTION	13
	5.1	Program L216	14
	5.2		15
	5.3	•	15
	5.4		15
	5.5		15
	5.6		15
	5.7		15
	5.8	Program GIN	16
	5.9	Program SAMODE	17
6.0	co	MPUTER PROGRAM USAGE	18
	6.1		18
	6.2	Resource Estimates	19
			19
		6.2.2 Execution Time	20
		6.2.3 Printed Output	20
		6.2.4 Tape Drives	21
		6.2.5 Disk Storage	21
	6.3	Input Data	21
			21
			21
			47
			49
	6.4	Output Data	49
			50
		6.4.2 Magnetic Files Output Data	50

CONTENTS (Concluded)

																									Pag	ţe
	6.5	Restri	ctions	 				* *								*										58
	6.6	Diagn	ostics	 9 9	9 0	0 0	0 0	0 0	0 0	9 0				6	0 0	9 1	0 0	0 1	0 0	0 (9 9	9	9 0	9	. 5	8
		6.6.1	L216 Error Codes	 					0.0								0 0	0 1		0 1					. 6	52
		6.6.2	READTP Error Codes	 	0 5									9			0 0	0 (0 9	0 1		9		0	. 6	34
		6.6.3	WRTETP Error Codes	 												0		0 0	9 0	0 (0 0	0		ø	. 6	4
7.0	SAN	APLE F	ROBLEM	 									9 9		0 0	0		0 (9 9	9 (. (36
	7.1	Input	Data	 						6 :	9	0 0		9	9 9		0.0	2.1		9.1	2 0				. (66
			Parameters and Geometry																							56
			Modal Data																							59
	7.2	Samp	e Problem Input and Output	 														0	. 0	0 1					. 1	70
REI	FERE	NCES																							. 11	18

TABLES

No.		Page
2.	Chord Division-Reduced Frequency Relationship	. 11
2.		
3.	Number of M. crices Stored on NAETP	
4.	Sample Problem Panel Geometry	
	FIGURES	
No.		Page
1.	Displacement Sign Convention for DUBFLX	. 8
2.	Examples of Aerodynamic Modeling	
3.	Overlay Structure of Program L216	
4.	External Data File Communication	
5.	L216 Card Input Data Flow	
6.	Panel Geometric Nomenclature	
7.	Slender Body Geometric Nomenclature	_
8.	Radial Origin Definition	
9.	Map of Magnetic File SATAP	
10.	Geometry Definition Tape "NGETP"	
11.	Geometry Control Matrix [MPC]	
12.	Body Table Matrix [BODTAB]	
13.	Primary Lifting Surface Geometry Matrix [MPSG]	
14.	Interference Lifting Surface Geometry Matrix [MISG]	
15.	Slender Body Geometry Matrix [MSBG]	
16.	Interference-Surface/Slender-Body Correlation Matrix [MSBC]	
17.	Aerodynamics Results Matrix (IAERO=1)	. 59
18.	Aerodynamic Results Matrix (IAERO=2)	
19.	Aerodynamic Results Control Matrix	
20.	Configuration for Example Problem	

1.0 SUMMARY

This document describes the computer program L216 (DUBFLX), and contains the following:

- Summary of analytical development
- Outline of the program structure
- Specification of information necessary for execution of the program
 - Control cards
 - Required resources
 - Input data
- Description of program output
- Listing of program restrictions
- Listing of error diagnostics
- Description of sample problem

Program L216 computes three-dimensional, subsenic, unsteady aerodynamic characteristics for arbitrary configurations that can be modeled as combinations of lifting surfaces and slender bodies. Input to the program consists of configuration geometry and aerodynamic condition specifications read from cards, and modal data, which may be either read directly from cards or interpolated from arrays of modal coefficients read from an externally developed magnetic file.

Computations are based on a finite constant pressure panel concept, the doublet lattice method. The primary function of the program is to evaluate the kernel expression in the integral equation relating pressure and normalwash on lifting surfaces. If modal data is supplied, the geometric normalwash may be determined and pressures and generalized air forces calculated. The pressures may be integrated with appropriate weighting factors to produce normal forces, moments, and stability derivatives.

Optionally the user may file for subsequent utilization, geometric data, matrices of normalwash factors (used in aerodynamic influence coefficient-type calculations), and/or pressures and generalized force arrays.

2.0 INTRODUCTION

Computer program L216 (DUBFLX) may be used as either a standalone program or a module of the program system DYLOFLEX (ref. 1). Program L216 is a modification, accomplished under contract NAS1-13918 to satisfy contract requirements developed in reference 2, of the program described in reference 3. The theoretical formulation and the equation solution method is that of reference 3.

Modifications necessary to satisfy the requirements of DYLOFLEX included:

- Addition of modal interpolation routines
- Modification of input and output (contents and formats)
- Improvement of internal documentation (commenting)

3.0 SYMBOLS AND NOMENCLATURE

The following list contains items that appear in this document except section 6.3 (card input).

input).	
Engineering notation	Definition
A	Reference area (length ²).
c,c _f	Local, reference chord length.
c_n, c_m	Section normal force, moment coefficients.
$c_{\boldsymbol{z}}, c_{\boldsymbol{v}}$	Normal, side force coefficients.
cm, cn, cl	Pitching, yawing, rolling moment coefficients.
$\Delta C_{\mathbf{P}}$	Pressure difference coefficient.
$\Delta C_Z,\Delta C_Y$	Slender body pressure coefficients.
D _{rs}	Element of matrix of normalwash factors-lifting surface on lifting surface.
•	Element semiwidth.
F _{rs}	Element of matrix of normalwash factors-slender body on lifting surface.
f	Mode shape.
ď	Slender body off the plane-of-symmetry factor.
h	Modal displacement.
i	√- <u>1</u> .
k	Reduced frequency ($\omega c_T/V_T$) (radians).
$K(\mathbf{x},\mathbf{y},\mathbf{x},\boldsymbol{\omega},\mathbf{M})$	Kernel function.
м	Mach number.
q	Generalized soordinate.
Q	Generalized force.
$R_0(x)$	Radius of slender body (length).

Reference semispan (length).

V_T Aircraft velocity (length/sec).

w(x,y,z) Normalwash.

w_B(x,y,z) Normalwash induced by slender bodies.

wg Augmented normalwash.

x.y.2 Surface coordinates; receiving point coordinates.

Ax Element length.

y Element dihedral angle (radian).

8 Symmetry factor (Y = 0).

Symmetry factor (Z = 0).

ξ,η,ς Element coordinates; sending point coordinates.

Streamwise coordinate.

σ Spanwise coordinate.

7 Radial coordinate.

Modal translational deflection.

6' Streamwise derivative of the modal translational deflection =

dø/dx.

Subscripts

Axial line element.

Slender body.

Modal degree of freedom.

j,k,f Strip, box, line doublet elements.

le Leading edge.

r,s Receiving, sending elements.

R Reference.

Superscripts

(f) Slender body.

Differentiation, d/dx.

Matrix Symbols

[] Diagonal matrix.

[] Rectangular matrix.

{ } Column matrix.

4.0 ENGINEERING DESCRIPTION

A complete theoretical development is contained in reference 3. Pertinent equations and solution methods are discussed in this document in section 4.1 and applications in section 4.2.

4.1 SUMMARY OF THEORETICAL DEVELOPMENT

4.1.1 EQUATIONS

Consider a linearized representation of three-dimensional subsonic unsteady compressible flow. Given these assumptions, the velocity normal to an oscillating surface is related to the lifting pressure by the integral equation:

$$\mathbf{w}(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{1}{8\pi} \iint_{LS} \mathbf{K}(\mathbf{x} \cdot \boldsymbol{\xi},\mathbf{y} \cdot \boldsymbol{\eta},\mathbf{z} \cdot \boldsymbol{\zeta}, \boldsymbol{\omega}, \mathbf{M}) \Delta \mathbf{C} \mathbf{p} \, d\boldsymbol{\xi} \, d\sigma \tag{1}$$

Discretizing the expression (i.e., assuming that the lifting surfaces can be approximated by segments of planes that are divided into small trapezoidal elements), the integral equation may be approximated as:

$$w(x,y,z) = \frac{1}{8\pi} \sum \Delta C_{P_g} \iint K(x-\ell,y-\eta,z-\zeta,\omega,M) \text{ if } d\sigma \qquad (2)$$

A further approximation in the doublet lattice method is that the integration of the kernel expression in the streamwise direction is accomplished by lumping the effect at the 1/4 chord of each element:

$$\mathbf{w}(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{1}{8\pi} \sum_{\mathbf{z}} \Delta \mathbf{C}_{\mathbf{P}_{\mathbf{z}}} \Delta \xi \int_{\mathbf{z}} \mathbf{K}(\mathbf{x} \cdot \xi_{\mathbf{1}_{\mathbf{z}}},\mathbf{y} \cdot \eta, \mathbf{z} \cdot \zeta, \omega, \mathbf{M}) \, d\sigma \qquad (3)$$

A set of linear algebraic equations may be formed from the relationships above and written in matrix form:

$$\{\mathbf{w}\} = [D] \{\Delta C_{\mathbf{p}}\}$$

where a typical element of [D] is:

$$D_{rs} = \frac{\Delta \ell}{8\pi} \int_{S} K(\mathbf{x} \cdot \ell_{1}/4, \mathbf{y} \cdot \eta, \mathbf{z} \cdot \zeta, \omega, \mathbf{M}) d\sigma$$
 (4)

If slender body interference effects are to be considered, the incremental normalwash on lifting surfaces in the presence of slender bodies is calculated using Woodward's method of interference surfaces to determine lifting surface/slender body interaction effects. Proceeding analogously as with the preceding equations:

$$\begin{split} \mathbf{w}_{\mathbf{B}}(\mathbf{x},\mathbf{y},\mathbf{z}) &= \frac{1}{2\pi} \sum_{\mathbf{S}} \Delta \mathbf{C}_{\mathbf{Z}_{\mathbf{B}}} \mathbf{R}_{\mathbf{0}_{\mathbf{S}}} \Delta \xi_{\mathbf{S}} \mathbf{K}_{\mathbf{Z}_{\mathbf{S}}}(\mathbf{x} - \xi_{\mathbf{a}_{\mathbf{S}}}, \mathbf{y} - \eta_{\mathbf{a}}, \mathbf{z} - \zeta_{\mathbf{a}}, \omega, \mathbf{M}) \\ &+ \frac{1}{2\pi} \sum_{\mathbf{S}} \Delta \mathbf{C}_{\mathbf{Y}_{\mathbf{S}}} \mathbf{R}_{\mathbf{0}_{\mathbf{S}}} \Delta \xi_{\mathbf{S}} \mathbf{K}_{\mathbf{Y}_{\mathbf{S}}}(\mathbf{x} - \xi_{\mathbf{a}_{\mathbf{S}}}, \mathbf{y} - \eta_{\mathbf{a}}, \mathbf{z} - \zeta_{\mathbf{a}}, \omega, \mathbf{M}) \end{split}$$

$$(5)$$

This system of equations may be written in matrix form:

$$\{\mathbf{w_B}\} = \{\mathbf{F_Z}\}\{\Delta \mathbf{C_Z}\} + \{\mathbf{F_Y}\}\{\Delta \mathbf{C_Y}\}$$

where typical elements of the [F] are:

$$\mathbf{F}_{rs} = \frac{1}{2\pi} \mathbf{R}_{0_s} \Delta \xi_s \mathbf{K}_{rs} \tag{6}$$

where ΔC_{Y} and ΔC_{Z} are components of $\Delta C_{P}^{(f)}$, determined using slender body theory:

$$\Delta C_{\mathbf{p}}^{(\mathbf{f})} = 2\pi (R'_{0}\mathbf{w}^{(\mathbf{f})} + \mathbf{w}^{(\mathbf{f})'}R_{0}/\mathbf{Z} + ik_{\mathbf{f}} \mathbf{w}^{(\mathbf{f})}R_{0}/c_{\mathbf{f}})$$
 (7)

Then, for lifting surfaces with the effect of axial singularities introduced:

$$\{\mathbf{w}_{\mathbf{R}}\} = \{\mathbf{w} \cdot \mathbf{w}_{\mathbf{B}}\} = [\mathbf{D}]\{\Delta \mathbf{C}_{\mathbf{P}}\}$$
(8)

Equation (8) is the form used to determine pressure differences on lifting surfaces considering the interference effects of slender bodies.

4.1.3 SOLUTION METHOD

Procedure

- Matrices of normalwash factors [D] and [F] are determined using equations (4) and (6), respectively.
- Geometric normalwash for slender bodies is specified and ΔCp^(f) determined using equation (7).
- Normalwash induced on lifting surfaces by slender bodies is calculated using equation (5).

- Geometric normalwash for lifting surfaces is specified and combined with induced normalwash to form the augmented normalwash on lifting surfaces, wp.
- Pressures on lifting surfaces are obtained by direct solution of equation (8).

Evaluation of the Kernel Function Expression

Landahl's expression for a complemar kernel function is used. In order to achieve increased accuracy, the kernel is separated into two parts: the steady component which may be integrated directly, and the unsteady increment which is evaluated approximately by fitting the kernel expression with a parabolic function and integrating analytically. In steady flow, the line of doublets is equivalent to a horseshow vortex whose bound portion lies on the 1/4-chord line of the element.

Normalwash Boundary Condition

The boundary condition is merely the substantial derivative of the surface deformation, and for head nice motion:

$$\{\mathbf{w}\} = -\left[\left[\phi'\right] + \frac{i\omega}{V_T}\left[\phi\right]\right]\left\{\mathbf{q}\right\} \tag{9}$$

where

- [φ] = mode shapes which define translational displacements in the y or z direction
- $[\phi']$ = the streamwise derivative of the mode shapes = d/dx $[\phi]$

The displacement sign convention used in DUBFLX is shown in figure 1

Figure 1.-Displacement Sign Convention for DUBFLX

For lifting surface elements, the translational displacement used in equation (9) must be normal to the surface. Slender body translational displacements can be either in the z or y direction depending upon the type of doublets associated with the slender body. The normalwash control points for slender body line elements are the midpoint locations; numerical experimentation indicates that the Kutta condition will be satisfied for lifting surfaces if the normalwash control point is chosen as the element midspan 3/4-chord point.

A slender body does not induce normalwash on the particular interference lifting surface associated with itself. An interference lifting surface does not produce lift due to its own motion; only the normalwash induced on these surfaces by other aerodynamic elements produces lift.

When using doublet lattice in the DYLOFLEX system, the modal data used in equation (9) may be input in either one of three ways:

- Defining a set of polynomials
- Using modal interpolation arrays
- Tabulating the displacements and slopes on cards

The polynomials define the displacements as functions of the x and y coordinate of the surface. They are described by the user inputting on cards the order of the polynomial and the coefficients of each term of the polynomial. The modal interpolation (SA) arrays are generated by L215(INTERP) (ref.). These arrays are read from magnetic file and used with the DUBFLX geometry data to determine the needed displacements and slopes. Finally, the tabular modal input consists of inputting via cards the displacements and slopes at each control point. In all cases, the modal displacements must be defined consistant with the sign convention shown in figure 1.

When using DUBFLX independent from the DYLOFLEX system, an alternate method does exist in L216 to describe the mode shapes. The doublet lattice program has a set of internally defined modes which the user may choose to use. However, the modes are inconsistant with the DYLOFLEX sign convention and are only defined for box costrol points.

4.2 APPLICATION

4.2.1 MODELING IDEALIZATIONS

Arbitrary configurations are idealized as primary lifting surfaces (wing, tail, nacelle duct, control surface, etc.), slender bodies (fuselage, store, etc.), and, associated with individual slender bodies, interference lifting surfaces (see fig. 2).

Primary lifting surfaces are represented by a series of planar segments, each of which is a collection of small trapezoidal elements arranged in strips parallel to the free stream; the pressure is constant over each element, and the resultant force is assumed to act at the midspan 1/4-chord location. Slender bodies, axially symmetric bodies with linearly varying radii, are represented with a system of line doublets located on the centerline of

Figure 2. - Examples of Aerodynamic Modeling

revolution; the resultant force is assumed to act at the midpoint location. Interference lifting surfaces are considered as surfaces of revolution with constant cross-sectional shapes discretized just as primary lifting surfaces are.

A comprehensive list of rules governing the discretization of the basic aerodynamic components (lifting surfaces, slender bodies, and interference surfaces) is presented on pages 49 and 50 of reference 3. A brief summary follows.

- Lifting surface trapezoidal elements (boxes) are arranged in strips paralled to the freestream.
- Aspect ratio of the boxes should not be large; for the unsteady case an aspect ratio of order unity is recommended.
- Surface intersections and edges, fold lines, and hinge lines should coincide with box boundaries.
- streamwise box length should be small relative to the basic wave length (see table 1).
- Boxes should be concentrated in regions where span loading changes rapidly or where normalwash boundary conditions are discontinuous.
- For planar or almost-planar wing tail problems, spanwise boundaries on the tail must align with those on the wing.
- The radial distance between a normalwash control point and a box edge may not approach zero.

Table 1.-Chord Division-Reduced Frequency Relationship

Chord divisions
4
8

Note: Condivisions based on relationship

$$\frac{\Delta x}{c} = \frac{g}{25 \, k_r}$$

4.2.2 LIMITATIONS

The doublet lattice method is subject to the limitations (common to other subsonic lifting surface methods) involved in formulation of the basic theoretical aerodynamic equations and of the kernel function expression. Accordingly, with these limitations, the theoretical modeling is restricted to a linear representation of inviscid subsonic flow, and behavior of the kernel function deteriorates at high subsonic Mach numbers as flow approaches the transonic range.

In addition, within this context two further approximations are made in the doublet lattice method. One is concerned with the approximate evaluation of the kernel function using a parabolic curve fit; this procedure, utilizing only a second order function, is less exact than that developed in the kernel function methods using higher order functions. It appears that this is not a major limitation. More significant is the assumption that an aerodynamic surface can be represented by a system of line segments of acceleration potential doublets for the purpose of calculating lift distributions. Practical problems associated with application of the doublet lattice method primarily involve this approximation; i.e., it is apparent that aircraft idealization is a critical factor governing the validity and accuracy of computed results.

5.9 PROGRAM STRUCTURE AND DESCRIPTION

Program L216 (DUBFLX) is constructed as an overlay system consisting of a main overlay and eight primary overlays.

(L216.0.0) L216

(L216.1.0) INITIAL

(L216.2.0) PRT2

(L216,3,0) GEWSSL

(L216,4,0) GEQ

(L216,5,0) AMSOL

(L216.6.0) AICSUB

(L216,7.0) GIN

(L216.8.0) SAMODE

The main overlay, program L216, performs file addition and deletion, and calls the primary overlays as requested. Primary overlays INITIAL, PRT2, GEQ, AMSOL, GIN, and SAMODE are called for the typical problem. Primary overlays INITIAL, PRT2, GEWSSL, AMSOL, and AICSUB are called for the AIC problem.

This program requires subroutines that are not part of the L216 code. Some are sutomatically obtained from the standard FORTRAN library when the program is loaded. Others are stored in the DYLOFLEX alternate subroutine library, which must be declared at the time of loading. When the program is run as a standalone program, it is the responsibility of the user to generate input data in the format required by L216. Schematics of the L216 overlay structure and file communications are presented in figures 3 and 4. The following is brief description of each overlay.

Figure 3. - Overlay Structure of Program L216

Figure 4. - External Data File Communication

5.1 PROGRAM L216

This program intializes and deletes scratch files, reads input data, and calls the required primary overlays for solution and output data generation. The following keywords are used; the underlined characters are required.

SDUBLAT Indicates that input data following is for use by L216

\$TITLE Printed and ignored \$QUIT Terminates execution

5.2 PROGRAM INITIAL

This program reads card input data for geometric and modal definitions, computes detailed geometric data, processes modal input, and stores geometric data for subsequent use in DYLOFLEX. The following keywords are used.

REDUCED PREQUENCIES Introduces k-value array

GEOMETRY Introduces geometric data set

PANEL Defines lifting surface geometric/modal data

BODY Defines slender body geometric/modal data

MODES Indicates model data set

8.3 PROGRAM PRT2

This program evaluates the kernel function to form the matrix of normalwash factors, [D], for lifting surface elements, modifies the factors for symmetry, and writes the matrix of normalwash factors on scratch tape for later use. The kernel function expression is defined in reference 4 (appendices A, B and C).

5.4 PROGRAM GEWSSL

This program computes normalwash column vectors, $\{w_{AIC}\}$, for each of the preselected AIC modes, combines these column vectors with the matrix of normalwash factors, [D], to form the augmented matrix of normalwash factors, $[D|w_{AIC}]$, and writes the matrix on scratch tape for subsequent use. The preselected AIC modes option is described in reference 4 (sections 2.5, 2.6, and appendix D). The program generates AIC's for lifting surfaces only; slender body elements are ignored.

5.5 PROGRAM GEQ

This program computes the normalwash matrix for all non-AIC analyses. If slender bodies are considered, matrix of induced normalwash factors, [P], slender body pressure coefficients, ΔC_P , and the induced normalwash, Δw_B , are calculated. The augmented normalwash, $[w_R]$, is determined and the augmented matrix of normalwash factors $[D|w_R]$ formed. The augmented normalwash and normalwash factors matrices are stored for subsequent use.

5.6 PROGRAM AMSOL

This program uses the quasi-inverse method to solve the simultaneous set of equations for the pressure on lifting surface elements.

8.7 PROGRAM AICSUB

This program calculates and prints the stability derivatives and pressure coefficients for the AIC option. Additionally, for this option, the program computes and prints harmonic gust coefficients. Analytic development of the gust matrix is described in reference 4, section 2.5.

5.8 PROGRAM GIN

This program computes and prints the pressure coefficients, section normal force and moment coefficients, total lift and moment coefficients, and generalized forces. Aerodynamic results required for later use in the DYLOFLEX system are stored on file.

Section coefficients on strip j per mode i:

$$c_{n_{ji}} = \frac{1}{C_j} \sum_{\mathbf{k}} \Delta C_{\mathbf{p}_{\mathbf{k}i}} \Delta \mathbf{z}_{\mathbf{k}}$$

$$c_{m_{ji}} = \frac{1}{C_j^2} \sum_{\mathbf{k}} \Delta C_{\mathbf{p}_{\mathbf{k}i}} \Delta \mathbf{z}_{\mathbf{k}} (\mathbf{x}_{\mathbf{c}/\mathbf{4}_{\mathbf{k}}} \cdot \mathbf{z}_{\mathbf{l}e_j})$$
(10)

Force coefficients on body f per mode i:

$$C_{Z_{i}}^{(f)} = \frac{2}{A_{I}^{2}} R_{0I} \Delta x_{I} \Delta C_{P_{I}}^{Z}$$

$$C_{Y_{i}}^{(f)} = \frac{2}{A_{I}^{2}} R_{0I} \Delta x_{I} \Delta C_{P_{I}}^{Y}$$
(11)

Total force and moment coefficients per mode is

$$\begin{split} C_{Z_{i}} &= (1+\delta) \left[\frac{1}{A_{j}^{c}} \; 2e_{j} \; \cos \gamma_{j} c_{j} c_{n_{ji}} \; + \; \sum_{f} g^{(f)} \; C_{Z_{i}}^{(f)} \right] \\ C_{Y_{i}} &= (1-\delta) \left[-\frac{1}{A} \sum_{j} \; 2e_{j} \sin \gamma_{c_{j}} c_{n_{ji}} \; + \; \sum_{f} g^{(f)} \; C_{Y_{i}}^{(f)} \right] \\ c_{m_{i}} &= \frac{(1+\delta)}{Ac_{f}} \; \sum_{j} \left[c^{2} \; c_{m_{ji}} \; - cc_{n_{ji}} \; (x_{1}e_{j} - x_{R}) \right] \; 2e_{j} \; \cos \gamma_{j} \\ & - \sum_{f} g^{(f)} \; \sum_{f} \; 2R_{0g} \Delta x_{f} C_{p} e_{i}^{Z} \; (x_{1}e_{g} - x_{R}) \\ c_{n_{i}} &= \frac{(1-\delta)}{Ac_{f}} \; \sum_{j} \left[c^{2} \; c_{m_{ji}} \; - cc_{n_{ji}} (x_{1}e_{j} - x_{R}) \right] \; 2e_{j} \; \sin \gamma_{j} \\ & + \sum_{f} g^{(f)} \sum_{f} \; 2R_{0g} \Delta x_{f} \Delta C_{p} e_{i}^{Y} \; (x_{1}e_{j} - x_{R}) \\ c_{g_{i}} &= -\frac{(1-\delta)}{2a} \; \frac{1}{A} \; \sum_{j} \; cc_{n_{ji}} \; 2e_{j} \; (y_{j} \; \cos \gamma_{j} + z_{j} \; \sin \gamma_{j}) \\ & + \sum_{f} g^{(f)} \; (C_{Z_{i}} \; C_{Z_{i}} \; C_{F_{i}} \; 2e_{j} \; (y_{j} \; \cos \gamma_{j} + z_{j} \; \sin \gamma_{j}) \\ & + \sum_{f} g^{(f)} \; (C_{Z_{i}} \; C_{F_{i}} \; C_{F_{i}} \; 2e_{j} \; (y_{j} \; \cos \gamma_{j} + z_{j} \; \sin \gamma_{j}) \\ & + \sum_{f} g^{(f)} \; (C_{Z_{i}} \; C_{F_{i}} \; C_{F_{$$

Generalized force coefficients (half airplane):

$$Q_{i}k = \frac{\lambda}{s^{2}} \sum_{k} 2\Delta C_{P_{k_{0}}} f_{ki} \Delta z_{i}P_{k}$$

$$+ \sum_{f} e^{(f)} \sum_{g} 2\Delta C_{P_{g}} f_{g} \Delta x_{g} R_{0g}$$
(13)

where:

e^(f)

1-Bodies on the plane of symmetry

= 2-Bodies off the plane of symmetry

The generalized aerodynamic forces defined by equation (13) are calculated on the right hand side of the equations of motion as defined in L217 (EOM) (ref. 5).

5.9 FROGRAM SAMODE

This program uses the SA (interpolation) arrays generated by L215 (INTRFP) to determine required modal data. For each lifting surface and slender body, the program reads the SA array, interpolates, calculates the modal displacements and slopes, and computes the generalized force integration matrix [BQ]. The modal data and integration matrix are stored on a random access file for subsequent use.

The following is the element of integration matrix (box k/line element &, mode i).

$$B_{k_{i}} = \frac{1}{s^{3}} (2e_{k} \Delta x_{k} h_{c}/4_{ki}) \qquad h_{ki} = s\phi_{ki}q_{i}$$

$$P_{\ell_{i}} = \frac{1}{s^{3}} \left(R_{0} \ell_{i}^{\Delta x} \ell_{i}^{h} \left[\frac{\Delta x}{2} \right]_{\ell_{i}} \right) \qquad s = 1.0$$
(14)

6.0 COMPUTER PROGRAM USAGE

The program was designed for use on the CDC 6500. The machine requirements to execute L216 are:

Card reader

To read control cards and card input data

Printer

To print standard output information, optional intermediate

calculations, and diagnostic messages

Disk storage

All sequential magnetic files not specifically defined as magnetic tapes are assumed to be disk files. The scratch random access file

is always a disk file.

Tape drive

For "permanent" storage of data, magnetic files are copied to and from magnetic tapes with control cards before and after program

execution

The program L216 is written in FORTRAN IV and complied with the "FTN" compiler. L216 may be executed on the KRONOS 2.1 operating system.

6.1 CONTROL CARDS

The following list is z typical set of control cards used to execute L216 using the absolute binaries from the program's master tape.

Job card Account card REQUEST(MASTER, F=1,LB=KL,VSN=6 6XXXX) Retrieve the REWIND(MASTER) program from its SKIPF(MASTER) master tape COPYBF(MASTER L216) RETURN(MASTER) Prepare optional . input data files L216. Execute L216 (DUBFLX) Save optional output data files EXIT. DMP(0,field length) --- End-of-record Card input date

--- End-of-file

The following list is a typical set of control cards used to execute L218 using the relocatable bingries from the program's master tape.

Job card Account card REQUEST(MASTER, F=1,LB=KL,VSN=66XXXX) (Retrieve the program REWIND(MASTER) from its master tape SKIPF(MASTER 2) COPYBF MASTER, REL216) RETURN(MASTER) Prepare optional input files and retrieve DYLIB, the DYLOFLEX alternate subroutine library LDSET(LIB-DYLIB. PRESET=INDEF) Load and Execute LOAD(REL216) L216(DUBFLX) NOGO RETURN(REL216,DYLIB) 1.216. Save optional output data files EXIT DMP(0.field length) --- End-of-record Card Input Data --- End-of-file

6.2 RESOURCE ESTIMATES

The computer resources utilized (core requirements, types, printed output, time, etc.) are a function of problem size. Table 2 shows examples of resources used for some problems of varying size.

6.2.1 FIELD LENGTH

Program L216 requires a field length of 76 000 octal words to load; execution requires a minimum of 132 000 octal words.

During computation of the inverse of the kernel function matrix, partitions are formed whose size depends on the core available in blank common. The number of input/output operations varies as the number of partitions. There is a trade-off between central processor time and field length for cases involving a large number of aerodynamic elements.

Table 2.-Examples of Resource Utilization

			Example		
	1	2	3	4	
Number of reduced treouericies	2	2	i	1	1
Number of lifting surface boxes	32	52	102	162	225
Number of slendur body elements	6	10	0	0	
Number of modal degrees of freedom	3	3	1	,	,
CPU seconds	13	24	23	67	157
Disk requests	469	590	349	582	845
Disk sectors	8184	9150	7344	8942	14836
Required core	143000	149000	162000	178000	197000
Printed lines (NPFM = 1)	1827	2180	1697	2095	3096

An equation to determine the recommended field length is:

where NTOT is the total number of aerodynamic elements (lifting surface boxes and slender body line elements).

6.2.2 EXECUTION TIME

The time required to compute unsteady aerodynamic characteristics per specified reduced frequency value depends primarily on the number of aerodynamic elements, secondarily on the field length. Problem computational time increases roughly as the square of the number of elements. Table 2 includes the CPU times for some variously sized problems.

6.2.3 PRINTED OUTPUT

The number of lines of printed output varies with problem size and specified print options. The maximum number of lines printed per reduced frequency is approximately 10 000 when the checkout print option is specified. Table 2 includes the line count for some examples.

6.2.4 TAPE DRIVES

A magnetic tape drive is required if the program is accessed from a master tape. One tape drive may be needed for modal input, two for saved aerodynamic and geometric data files.

6.2.5 DISK STORAGE

L216 uses internal scratch files. Two of these are random access files (TAPE8 and TAPE9); the others are sequentia!

6.3 INPUT DATA

Input data for program L216 chiefly consists of card input data from file INFIL (TAPE5) optionally supplemented by modal data from file SATAP.

A summary of the card input data is given at the end of this section. This summary, a quick reference for the necessary card input, is included for the convenience of users having attained familiarity with the program.

The alternative forms of unsteady aerodynamic results specified for output have an impact on the input card sequence. The order in which cards are input is shown in figure 5.

6.3.1 FORMAT OF CARD INPUT DATA

Card data is read in fixed fields and specific columns of the cards as indicated on the pages following. The following conventions, with the exceptions noted, are general throughout the program.

- 1. Floating point variables are read with format E10.0.
- With the exceptions of cards 13.1, 13.2, and 15.1, integer variables are read with format 15.
- 3. Hollerith variables (keywords, etc.) are read with format A10.

Only the first five characters of keywords are checked for recognition.

6.3.2 CARD INPUT DATA SPECIFICATIONS

All card sets must be present except as noted. Unspecified columns on any card may be used for comments. The underlined five characters in keywords must be present.

Figure 5. - L216 Card Input Data Flow

Figure 5. - (Continued)

Figure 5. - (Concluded)

Card Set 1.0-L216 Data Set Initiation

	RETWORD/ VARIABLE	PORMAT	DESCRIPTION
1-10	<u>\$DUBL</u> AT	A10	Introduces L216 card input data set - must be the first card read by L216
11-70			Available for comments

The following cards (2.0 through 17.4) are repeated for each data case.

Card Set 2.0-Title

VARIABLE	PORMAT	DESCRIPTION
TITLE	A10	Introduces case title and comments
		Available for comments. Intended as case title and label for printed output. Printed at beginning of output listing for current case
-	71712	

Card Set 3.0-Case Identification

cous.	REYMORD/ VARIABLE	PORMAT	DESCRIPTION
1-10	CASE	A10	Introduces input data for current case.
11-15	ICASE	15	Case number for current data set (1 < ICASE < 36)
16-20			Not used
21-39	CHECKOUT	A10	Requests checkout printing This option overides all print flags and a large amount of intermediate data is printed. Generally not exercised.
31-35	ICOND	15	Condition number (- Case number)
36-70			Available for comments

Card Set 4.0-Condition and Configuration Constants

cols.	RETWORD/ VARIABLE	PORMAT	SYSCRIPTION
1-10	PHACH	E10.0	Mach number, [0 < PHACH < 1.0)
11-20	ACAP	E10.0	Reference area (length ²)
			Used in calculation of stability derivatives
21-30	REPCHD	E10.0	Reference chord (length)
			Used in calculation of section coefficients and stability
			desivatives
31-46	REFSPN	E10.0	Reference semission (length)
			Used as normalizing factor for generalized force coefficients.
			also appears in expression for rolling moment coefficient.
			If model input is via SATAP or if output serodynamic data is
			intended for subsequent use in DYLOFLE, value must be unity
			(• - 1.0).
41-45	MDELT	75	Symmetry flag (Plane Y = 0)
			- 1 symmetric
			1 anti-symmetric
			- 0 non-symmetric
46-50	237	15	Number of panels on all lifting (primary and interference)
			surfaces, (0 <u>4 MP 4 40)</u>
51-55	MB	15	Number of elender bodies (0 < ND < 20)
			If a body has motion in both Y and E directions (e.g., nacelle),
			It is represented with two geometrically identical slender
			bodies, each to simulate motion in one of the two directions.
56-60	HRF	15	Number of reduced frequency values for which serodynamic
			characteristics are required, (0 4 MRF 4 20)

Card Set 5.0-Options and Tape Identification

COLS.	RETWORD/ VARIABLE	PORMAT	DESCRIPTION
1-5	MDSV	15	Flog to save geometric and serodynamic data on files WGETP and MAETP - 0 Do not save - 1 Save
6-10	MAIC	15	Flag indicating form of model data SA array from tape, tabular input, or Polynomial (card set 14) 1 Preselected AIC modes (card set 13)
11-15	NDATA	15	Flog to print matrix of downwash factors [D] - 0 Do not print - 1 Print
16-20	***	15	Pleg to print metrim(cem) of elender body induced downwash factors[APZ], [APY], and body induced downwash. {wm} Do not print 1 Print
21-25	MDBG	15	Pleg to control printout 1 input geometry, and model data, and downwesh matrix results are printed 2 Computed geometry and model data are printed in addition to the data specified above 3 Intermediate results associated with the analysis are printed in addition to the data specified above. This option is equivalent to the keyword CHECKOUT on card set 3.
26-30			Not used

^{*}NAIC must be equal to 0 when DUBFLX is used in DYLOFLEX.

31-40	SAETP	Alo	File name of the aerodynamic results to be stored. The file name must begin in column 31 with an alphabetic character and may contain up to seven characters. Each logical file contains all the serodynamic results for one case. The first matrix of each logical file contains the contro' matrix for the serodynamic data for the current case.
41-50	NGETP	Alo	File name of the geometric results to be saved. The file name must begin in column 41 with an alphabetic character and may contain up to seven characters. Each logical file contains all the geometric data for each case. The first matrix contains the control matrix for the geometric data for the current case.

Card Set 6.0-AIC Data Flags and Other Options

COLS.	REYWORD/ VARIABLE	PORMAT	DESCRIPTION
1-5	MSTRIP	15	Total number of strips on all lifting (primary and inter-
			ference) panels.
			Q - MSTRIP - 70)
6-10	MBF	15	Sequence number of the first strip.
			Omit if MAIC ≠ 1 (card set 5)
11-15	MBL	15	Sequence number of the last strip. Usually - MSTRIP
			Omit if MAIC # 1
16-20	MPR1	15	Flog to print all AIC solution matrices [D-1WAIC]
			- 0 Do not print
			- 1 Print
21-25	MPR2	15	Flag to print ATC dimensional matrix [Ch]
			• 0 Do not print
			- 1 Print
26-30	NPR3	15	Flag to print AIC pressure coefficients and stability
			derivatives
			- 0 Do not print
			- 1 Print static stability derivatives
			- 3 Print static and dynamic stability derivatives
			If MPR3 - 3, MRF must be 2 2 and RFREQ(1) must be 0.0
31-35			Not used
36-40	MGUST	15	Flag to compute generalised guet force matrix*
			- 0 Do not compute
			- 1 Compute
			This option is evallable only if MAIC - 1.

^{*}This option can not be used in DYLOFLEX.

41-45	JSPECS	25	Symmetry flog (Plane S = 0)
			• 0 Bon-symmetric
			- 1 Symmetric (biplane or jet)
			1 Anti-symmetric (ground effect)
46-50	MPC	15	Mode selector for AIC generation
			 0 Alternative 1 - (plunging, pitching, control
			surface and tab rotation)
			- 1 Alternative 2 - (three cambering modes, control
			surface and tab rotation)
			Conte if MASC # 1
51-55	REV	15	Total number of strips on all vertical panels that lie on
			the plane of symmetry Y = 0. Data for vertical panels lying
			on the plane T . 0 must be input before data for other panels.
56-60	MBV	15	Total number of boxes on vertical panels lying on the plane
			Y - 0.
61-65	NYAM	15	Flag to control stability derivative calculations
			- 0 Fitch coefficients calculated
			- 1 Yaw coefficients calculated
			If on card set 4:
			MDELT - 0; MYAM - 0 or 1
			MDELT - 1; MYAM - 0
			MDELT1; MYAM - 1

MPR1, MPR2 and MPR3 must be 0 if MAIC # 1. Strips are numbered consecutively from inboard to outboard per panel for all panels in the input order.

Card Set 7.0-Gust Data Set

Omit card set 7.0 if NGUST = 0 (card set 6.0). This option can not be used in DYLOFLEX.

COLS.	VALUE	PORMAT	DESCRIPTION
1-10	GUST	A10	Introduces quet epecification data
11-20	GERO	E10.0	Guet reference plane dihedral angle (degrees) If GERO = 0.0, guet velocities are in vertical direction
21-30	2290	E10.0	Gust reference point, location at which sinusoidal quat velocity is unity.
31-40	AET	E10.0	Aircraft velocity (length/sec)
41-50	WG	E10.0	Vertical gust velocity at XZRO (length/sec)

Card Set 8.0-Strip-Box Correlation

cous.	VARIABLE	PORMAT	DESCRIPTION
1-5	LIM(I,1)	15	Number of first box on strip I
6-10	LIM(1,2)	15	Number of last box on strip I
11-70		1215	Repost LIM 1 and 2 for all MSTRIP values using as many cards as necessary. Each card contains values for seven strips.

Boxes are numbered consecutively from leading edge to trailing edge per strip, spanwise per panel for all panels in the input order.

Card Set 9.0-Reduced Frequency Data Set

coas.	VARIABLE	PORMAT	DESCRIPTION
1-20	REDUCED PREOTENCIES	A10	Introduces array of reduced frequencies
21-70			Available for comments

Card 9.1-Array of Reduced Frequency Values

COLS.	VARIABLE	PORMAT	DESCRIPTION		
1-10	MPRED	E10.0	Reduced frequency k - me ₂ /2V (radians)		
11-70		6E10.0	Sepont NYMEQ for all MMF values using as many cards as neces- eary. Each card contains up to seven values.		

Geometric arrangements and nomenclature for lifting surfaces and slender bodies are illlustrated in figures 6 and 7, respectively.

The geometry data of cards 10.0 through 12.3 is defined in the reference axis system. If used in DYLOFLEX, this reference axis system should be the same as that used in INTERP, L215 (ref. 5). Proper serodynamic modeling may require surfaces to be moved up or down, forward or back, or inboard or outboard from their actual location (fig. 6). When using the interpolation (SA) arrays from INTERP, control and force point locations on a surface, are transformed from the reference axis system to the surface's local axis system. To insure the proper transformation of these points, any shifting of the surface must be taken into account using the variables XSHIFT, YSHIFT, ZSHIFT on card set 11.0.

Card Set 10.0-Geometry Data Set

cols.	KEYWORD/ VARIABLE	PORMAT	DASCRIPTION
1-10	COLUMN TAY	A10	Introduces geometric input data set.
11-70			Available for comments.

Omit Cards 11.0 through 11.4 if no panels are defined. Repeat all panel data (cards 11.0 through 11.4) for each panel. All the panels on a lifting surface must be input consecutively. The data for the surfaces must be in the following order.

- Primary lifting surface panels (e.g., wings, tails, etc.); panels on the Y = plane must appear first
- 2. Interference lifting surface panels

Figure 6. - Panel Geometric Nomenclature

Figure 7.- Slender Body Geometric Nomenclature

Card Set 11.0-Panel Geometric Definition

cols.	KEYMORD/ VARIABLE	PORMAT	DESCRIPTION
1-10	PANEL	A10	Introduces data for epecific panel
11-15	IPN	15	Panel number Panels are numbered consecutively as input: Applicable only to primary lifting surface panels.
16-20	IDSURF	15	Logical file number of the SATAP file containing the modal data for the surface including this panel. For interference surface lifting panels IDSURF = 0.
21-25			Not used
26-30	ITYPE	A5	Indicates type of lifting surface PRINE - primary lifting surface INTER - interference lifting surface
31-40	XSHIFT	E10.0	Shift of surface along X axis
41-50	TSHIFT	E10.0	Shift of surface along Y axis
51-60	ZSHIFT	E10.0	Shift of surface along I axis

Card 11.1-Panel Planform Definition

cols.	KEYWORD/ VARIABLE	PORMAT	DESCRIPTION
1-10	x1	E10.0	X coordinate of panel inboard leading edge corner
11-20	X2	E10.0	X coordinate of panel inboard trailing edge corner
21-30	хз	E10.0	X coordinate of panel outboard leading edge corner
31-40	X4	E10.0	X coordinate of panel outboard trailing edge corner
41-50	¥1	E10.0	Y coordinate of panel inboard edge
51-60	¥2	E10.0	Y coordinate of panel outboard edge

Card 11.2-Panel Planform Definition (Cont.)

coLs.	REYWORD/ VARIABLE	PORMAT	DESCRIPTION
1-10	21	E10.0	E coordinate of panel imboard edge
11-20	22	E10.0	2 -wordinate of panel outboard edge
21-25	BC.	15	Number of chordwise division boundaries
26-30	MS	15	Number of spanwise division boundaries
31-40	CORFF	E10.0	Scale factor for panel deflection modes Default: COEFF = 1.0

Cerd 11.3-Array of Panel Chordwise Division Boundaries

COLS.	VARIABLE	PORMAT	DESCRIPTION
1-10	TH	E10.0	Chordwise division boundary
11-70		6E10.0	Repeat TH for all NC values using as many cards as necessary. Each card contains seven values.
	onal values	beginning	with 0.0 at the panel leading edge, ending with 1.0 at panel

Card 11.4-Array of Panel Spanwise Division Boundaries

COLS.	VARIABLE	PORMAT	DESCRIPTION
1-10	TAU(I)	E10.0	Spanwise division boundary
11-70		6E10.0	Repeat TAU for all N5 values using as many cards as neces- sary. Each card contains seven values.
	onal values nel outboard		with 0.0 at the panel inboard edge, ending with 1.0 at

Omit cards 12.0 through 12.3 if no slender bodies are defined. Repeat all slender body data (cards 12.0 through 12.3) for each slender body. Slender bodies with Y doublets must appear first.

Card Set 12.0-Slender Body Geometric Definition

COLS.	KEYWORD/ VARIANLE	PORMAT	DESCRIPTION
1-10	BODY	A10	Introduces Asta for specific slender body
11-15	IBN	15	Body number, (1 < IBN < 20)
16-20	IDSURF	15	File number of the SATAP file containing the data for this slender body.
21-70			Available for comments.

Card 12.1-Body Axis and Motion Specification

cols.	VARIABLE	PORMAT	DESCRIPTION
1-10	ac ac	E10.0	I coordinate of slander body axis
11-20	YC	E10.0	Y coordinate of elender body axis
21-30	COEFF	E10.0	Scale factor for slender body deflection modes Default: COEFF - 1.0
31-35	NT	15	Number of elender body element endpoints, (2 ≤ MP ≤ 20)
36-40	W2	15	Flag to specify 2 doublets (upwash) • 0 No 2 doublets • 1 2 doublets
41-45	NY	15	Flag to specify Y doublets (sidewash) - 0 No Y doublets - 1 Y doublets
46-50	MISB1	15	Number of first box on the interference lifting surface associated with this slender body
51-55	MISB2	15	Number of last box on the interference lifting surface associated with this slender body

If a body has both I and Y motion (e.g., nacelle), it is represented with two bodies, one having I doublets, one having Y doublets. A single interference lifting surface is associated with both bodies.

Card 12.2-Array of Body Element Endpoints

COLS.	VARIABLE	PORMAT	DESCRIPTION
1-10	,	E10.0	X coordinates of elender body element endpoints.
11-70		6E10.0	Repeat P for all NF values using as many cards as necessary. Each card may contain seven values.

Card 12.3-Array of Radii at Body Element Endpoints

cols.	VARIABLE	PORMAT	DESCRIPTION
1-10	RAD	E10.0	Slender body must be closed, i.e., RAD(1) - RAD(NF) - 0.0
11-70		6E10.0	Repeat NAD for all N° values using as many cards as necessary. Each card may contain seven values.

Modal data may be input in any one of three forms:

Coefficients used in polynomial definitions of modal displacements and slopes are input on cards. Equations will be written to define the variables. For panels (lifting surfaces) the deflections will be normal to the surface, while for bodies the deflections will be in the Z- (if any) and Y- (if any) directions. For the "NR" panel or body, the deflections in the "NQ" mode are calculated as follows:

(f)
$$\frac{(NR)}{NQ} = COEF^{(NR)}$$

$$\sum_{N=0,1,\dots M=0,1,\dots} \sum_{m=0,1,\dots} \left(\frac{x}{s}\right) \left(\frac{\tau}{s}\right)^{m} ARQ_{(NR,NQ,N,M)}$$
(15)

where τ is in a radial direction. The origin of the radius is either at the origin of coordinates, when N8 = 0, or at the inboard edge (for the panel) or the axis (for a body) if N8 is set to 1 (fig.8).

- Modal deflections, slopes, etc. for each aerodynamic element are input directly on cards.
- 3. Arrays of modal coefficients are read from input file SATAP and routines within L216 implement an appropriate interpolation scheme to determine the required modal data at the aerdynamic element control points, defined by geometric data previously input. This option requires previous use of the interpolation program L215 (INTERP) defined in reference 5, in order to form the modal coefficient arrays contained on SATAP. The interpolation routines are defined in the reference.

Card Set 13.0-Modal Data Set

cols.	FEYWORD/ VARIABLE	PORMAT	DESCRIPTION	
1-10	MODES	A10	Introduces model data input set	
11-70			Available for comments	

$$\tau = \sqrt{\left\{ y - (N8) Y_1^{(NR)} \right\}^2 + \left\{ z - (N8) Z_1^{(NR)} \right\}^2} \quad \text{for panels}$$

$$\tau = \sqrt{\left\{ y - (N8) Y_C^{(NR)} \right\}^2 + \left\{ z - (N8) Z_C^{(NR)} \right\}^2} \quad \text{for bodies}$$

Since each panel is planar, τ is a spanwise distance in the plane measured from its inboard edge or from the origin y=z=0; τ is a radial distance only in the sense that each panel may have a different dihedral. The use of this radial distance is not meant to imply that the panels are curved.

Figure 8. - Radial Origin Definition

Omit cards 13.1 through 13.4 if NAIC = 0 (card set 5.0). Omit card 13.1 if NPC = 1 (card set 6.0). Omit card 13.2 if NPC = 0.

Card Set 13.1-AIC Panel Mode Selection

COLS.	KEYWORD/ VARIABLE	PORMAT	DESCRIPTION
1-3	MOP	13	Panel number
4	ISl	11	• 1 Select plunging code
5	IS2	11	- 1 Select pitching mode
6	153	11	- 1 Select control surface rotation
7	154	11	- 1 Select tab rotation
•	185	11	- 1 Select control surface plunging
9	156	11	- 1 Select tab plunging
10			Not used
11-70			Repeat columns 1 to 10 for each panel; i.e. 7 panels per card. There are MP (card set 4) panels.

Card 13.8-AIC Panel Mode Selection (Alternative 2)

COLS.	REYMORD/ VARIABLE	PORMAT	DESCRIPTION
1-3	MOP	13	Panel number
4	181	11	Select lot cambering mode (-1)
5	152	11	Select 2nd cambering mode (-1)
6	183	11	Select 3rd cambering mode (-1)
7	184	11	Select control surface rotation (-1)
•	185	11	Select tab rotation (-1)
,	186	11	Select control surface plunging (-1)
10	187	11	Select tab planging (*1)
11-70			Repeat columns 1 to 10 for each panel defined, (that is, 7 panels per card). There are MP (card set 4) panels.

Repeat cards 13.3 and 13.4 as pairs for all panels.

Card 13.3-Array of Reference Axis Locations at Panel Inboard Edge

COLS.	VARIABLE	PORMAT	DESCRIPTION	
1-10	INI (1)	#10.0	Electic axis	
11-20	EEI (2)	\$10.0	Control surface leading edge	
21-30	MEI (3)	B10.0	Control surface rotation point	
31-40	II I (4)	B10.0	Tab loading odge	
41-50	EXI (5)	E10.0	Tab rotation point	

Card 13.4-Array of Reference Axis Locations at Panel Outboard Edge

COLS.	RETWORD/ VARIABLE	PORMAT	DESCRIPTION	
1-10	130(1)	B10.0	Electic axis	
11-20	EBO(2)	E10.0	Control ourface leading edge	
21-30	XBO(3)	E10.0	Control surface rotation point	
31-40	XHO(4)	E10.0	Tab leading edge	
41-50	XXX (5)	B10.0	Tab rotation point	
Procti	onal value	of .veal	chord at the outboard panel edge	

Omit cards 14.0 through 17.4 if NAIC = 1 (card set 5.0).

Card Set 14.0-Modal Data Flags and Options

COLS.	SETWORD/ VARIABLE	PONUAT	DESCRIPTION
1-5	NMD	15	Total number of modes (1 < NMD < 70)
6-10	WTA	15	Total number of ARQ values for polynomial mode input
			Quit if MEDIN # 0
11-15	IAERO	15	Flag to save serodynamic data on file HAETP
			• 0 Do not save
			- 1 Save [D] and [7] matrices (5 is the quasi-inverse
			- 2 Save [0] and [Cp] morrison
			- 3 Save [D], [r], [Q], [Ep]matrices
16-20	SMDIN	15	Type of model input*
			• 0 Polynomial
			- 1 Integration matrix [8], deflections [h/s],
			first derivative [d(h/s)/d(x/s)] and second
			derivative [d'(h/s)/d(x/s)']from cardi.
			- 2 Input SA arrays from file HTPSA
21-25	MPFH	15	Plag to compute and print pressure coefficients, section
			coefficients, stability derivatives and generalised force
			coefficients
			- 0 Do not compute and print
			• 1 Compute and print
			If IAERO > 1 and MPRM = 0, the results are computed but not
			printed.
26-30	mer?	15	Number of ANQ coefficients for all lifting surface panels
			Omit if MMDIN # 0
31-35	10Th	15	Number of ANG coefficients for all siender bodies
			Coalt if MMDIN - 0
36-45	WTPSA	A10	Name of file containing the SA arrays. File name must begin
			in column 36 with an alphabetic character and may contain
			up to seven characters. Omit if MMDIN # 2

^{*}h is defined positive in the positive z or y direction (fig. 1)

Omit cards 15.0 through 17.4 if NMDIN = 2 (card set 14.0).

Omit cards 15.0 through 15.2 if NMDIN = 1.

Omit cards sets 16 through 17.4 if NMDIN = 0.

Repeat cards 15.0 through 15.2; once for panel data, once for slender body data.

Card Set 15.0-Polynomial Mode Input Data Set

COLS.	PARTIFILE	PORMAT	DESCRIPTION
1-10	PANEL or BOOT	A10	Indicates polynomial modal data for specific panels, bodies
11-70			Available for comments

Card 15.1-Polynomial Mode Specifications

COLS.	VARIABLE	FORMAT	DESCRIPTION
1-2	10	12	Panel/body number
3~4	NQ	13	Node number
5-6	NA	13	Number of ARQ coefficients for mode MQ for panel/body NR.
7-8	**	13	Padial origin flag - 0 Use R axis - 1 Use panel imboard adge/body axis
9-10			Not used
11-70		3012	Repeat the four items in column 1-10 for all ((NP/NB)*NHD) values using as many cards as necessary. Each card may contain seven sets of four items.

Ordering is required to be {[Panels(1-NP)], Mode(1)} -- {Panels(1-NP)], Mode(NMD)} or equivalently for elender bodies. The set of numbers must be specified regardless of whether or not the panel/body is in motion.

Card 15.2-Constant Coefficients for Definition of Polynomial Mode Shapes

Note sign convention shown in figure 1.

COLS.	RETWORD/ VARIABLE	PONUAT	DESCRIPTION
1-5	LANG(E)	15	Exponent of E/S in the expression defining polynomial modes
6-10	LARQ(21	15	Exponent of T/S
11-20	ARQ	E10.0	Coefficient in the expression defining polynomial modes
21-60			Repeat to INA - three sets per card - number of cards as necessary

If NMDIN = 1, cards 15.0 through 15.2 are replaced by card sets 16.0 through 17.4.

Repeat cards 16.0 through 16.3 for each mode.

Card Set 16.0-Tabular Modal Data for Panels

KEYWORD/ VARIABLE	PORMAT	DESCRIPTION						
PAREL MODE	A10	Introduces tabular model data set for lifting surface panels						
INMD	15	Mode number, (1 < INVD < MP(D)						
MBOX	It.	Total number of boxes on all panels						
IPLAG	15	Plag describing form of input for generalised force integration matrix - 0 Integration matrix (BQ) input on cards - 1 [BQ] calculated internally from normalised box c/4 displacements input on cards						
	PANEL MODE INMD MBOX	PAREL MODE A10 INMD 15 MBOX I						

Card 16.1-Box Integration Matrix

	COLS. VARIABLE FORMAT DESCRIPTION							
1-10	BQ	E10.0	Generalised force integration matrix data					
11-70		6E10.0	Repeat BQ for all MBOX values, using as many cards as necessary. Each card contains seven values.					
Form of	0 Input m		nt on IFLAG (card set 16.0) () with elements defined by (a)					

Card 16.2-Box Displacements

Note sign convention shown in figure 1.

COLS.	VARIABLE	PORMAT	DESCRIPTION
1-10		Eau.0	Normalized box 3c/4 displacements [h3c/4]
11-70		6E10.0	Repeat E for all MBOX values using as many carss as necessary. Each card contains seven values.

Values for boxes on interference lifting surfaces may be input as zero, since interference surfaces carry no lift due to their own motion.

Card 16.3-Derivatives of Box Displacements

cous.	VARIABLE	PORMAT	DESCRIPTION
1-10	DH	E10.0	Derivative of normalized box $3c/4$ displacement $d(h3c/4/a)/d(\pi/a)$
11-70		6E10.0	Repeat DH for all HBOX values using as many cards as necessary. Each card contains seven values.

Card Set 17.0-Tabular Modal Data for Bodies

COLS.	VARIABLE	PORMAT	DESCRIPTION					
1-10	200M_M002	A10	Introduces tabular model data set for elender bodies					
1-15	INNO	15	Node number, (1 ± INFD ± MFD)					
6-20	MBE	15	Total number of line elements on all slender bodies					

Card 17.1-Body Element Integration Matrix

COLS. RETWORD/ VARIABLE FORMAT		FORMAT	DESCAIPTION				
1-10	BQ	E10.0	Generalized force integration matrix data				
11-70		6E10.0	Repeat BQ for all MSE values using as many cards as necessary Each card contains seven values.				
Form o	f date is de	pendent or	171AG (cord oot 16.0)				
IFLAG	- 0 Input	metris ([BQ] with elements defined by				
		∞ _{ℓ1} - 1.	[n. e me (n. m./2) es]				
			• • • • • • • • • • • • • • • • • • • •				

Card 17.2-Line Element Displacement

Note sign convention shown in figure 1.

cous.	REYWORD/ VARIABLE	PORMAT	DESCRIPTION					
1-10		E10.0	Normalized line element midchord displacement [htm/2]					
11-70		6E30.0	Repeat I for all MBE values using as many cards as necessary. Each contains seven values.					

Card 17.3-First Derivative of Line Element Displacement

COLS.	KEYHORD/ VARIABLE	PORRAT	DESCRIPTION
1-10	DW1	E10.0	Derivative of normalized line element midchord displacement $d(\frac{hd\pi/2}{4})/d(\frac{\pi}{4})$
11-70		6E10.0	Repeat DW1 for all NBS values using as many cards as necessary Each contains seven values.

Card 17.4-Second Derivative of Line Element Displacement

COLS.	KETWORD/ VARIABLE	FORMAT	PESCHAPTION
1-10	DH2	E10.0	Second derivative of normalized line element midchord displacement $d^2\left(\frac{hd\pi/2}{4}\right)/d\left(\frac{\pi}{4}\right)^2$
11-70		6E10.0	Repeat DE2 for all MBE values using as many cards and a sary. Each contains seven values.

Card Set 18.0-L216 Data Set Termination

COLS.	VARIABLE	PORMAT	DESCRIPTION
1-20	BOUIT DUBLAT DATAGET	A10,10E	Terminates L216 card input data.

Requirements or function			tey W	ends and/	or Kariabl	**		Card Format	Reference Card Set (CS)
	SOUTH.							A10	1.0
	STITL		A10	2.0					
	CASE	ICASE CHEC	100					A18,15. A10,15	3.0
Condition, Configuration Specs.	PRO	KW	REFCRO	RU SA	MOELT	٠,		4510.0,415	4.0
Detions MOSF MOATA MONG MAETP MGETP								525,51,2810	5.0
AIC Specs., Options								675.51,675	6.0
Gust; MG/57-1	QUST .	6290	X2M0	WEL.	•			A10,4E10.0	7.0
Strip-Box Correlation	LIM(1,1) , Repeat to I - WSTRIP LIM(1,2)							1015	8.0
	MEDIC							ADD	9.0
t values	SFEED , Report to MAY							M10.0	9.1
								A30	10.0
Fanel Specs.	PAREL.	199	OF STY	KSHIFT Y	TSHIFT	ZSHIFT		A10,215,51. A5,3210.0	11.0
Fanel Flanform	g1	112	13	24	*1	*2	Report	6010.0	81.1
Definition	21	25	MC MS	COEFF			-	2010.0,215 010.0	11.2
Chordelse Divisions	TH	, Repeat	to K					7E10.0	37.3
Spanwise Divisions	TAU	, Repeat	to KS				J	7(16.0	31.4

	equirements r Function	Ray Words and/	or Variables		Card Format	Reference Card Set (CS)
	Stender Body Specs. 900Y 18N 10SURF			1	A10,215	12.0
	ody axis, motion pecs.	ZC YC COEFF NF N2	NY MISB2 MISB1	Repeat	¥10.0,515	12.1
	ody Element nápolnts	F , Repeat to NF		-	7E16.0	12.2
	ody Radii at ndpoints	RAD , Repeat to NF		J	7E10.0	12.3
		MODES			A10	13.0
	AIC Specs. I MPC = 0	[MOP,151,152,153,154,155,156], Repeat	to MP		7(13,611)	13.1
:	AIC Specs. II	[NOP,151,152,153,154,155,156,157], Repeat to MP			7(13,711)	13.2
ž	Ref. Axis, Inbd.	XM11 XM12 XH13 XH14	xHt5	Report	5€10.0	13.3
	Ref. Axis,Outbd.	XH01 XH02 XH03 XH04	XH05	to	5E10.0	13.4
	odal Data Specs. nd Options	NPD TAERD NPFM NPFTB NTA NPDIN SPITP NTPSA			715,A10	14.0
•		PANEL/BODY Repost			Alo	15.0
i	Poly. Mode Specs.				412.21,3012	15.1
2	Coefficients	LARQ1 ARQ . Repeat to NA LARQ2		Bodies	215,£10.0	15.2
	Box Tabular Modal Specs. 9 Options	PANEL 2MMD NFLG	Report		A10,315	16.0
	Box Integ. Matrix	BO , Repeat tr MSOX			7E10.0	16.1
	Box H3c/4/s	H . Repeat to MBOX			7€10.0	16.2
-[Box 643c/4/s/dx/s	DH . Repeat to NBOX			7E10.0	16.3
	Body Tabular Model Specs.	NOT INFO			A10,215	17.0
-	Line Integ. Metrix	DQ , Repeat to NSE	Repeat		7€10.0	17.1
	Line Hc/2/s	H , Repeat to MBE	te		7E10.0	17.2
	Line dic/2/s/dx/s	CM1 , Repeat to MBC	-		7E10.0	17.3
	Line 4"Hc/2/s/dx/5	DH2 , Repeat to MBC			7E10.0	17.4
		SOUTT			A10	18.0

MICROFILMED FROM BEST AVAILABLE COPY

6.3.4 MAGNETIC FILES INPUT DATA

Program L216 utilizes one magnetic file (disk or tape) for modal data input. Interpolation arrays composed of modal deflections and slopes are input on file SATAP. This file must have been created after previous execution of the program described in reference 5. Order and format of the matrices on file SATAP are shown in figure 9.

Note:

 $\theta_{\mathbf{X}}, \theta_{\mathbf{Y}}, \theta_{\mathbf{Z}}$ are in degrees

NNODES = number of nodes

NTMODE = number of nodes

Figure 9. -Map of Magnetic File SATAP

6.4 OUTPUT DATA

Output data from program L216 consists of printed results, and geometric and aerodynamic data saved on magnetic files NGETP and NAETP at the user's request. Saved files are used subsequently in DYLOFLEX.

6.4.1 PRINTED OUTPUT DATA

The specific data and the extent of printed output are dependent on user specified options. The major blocks of printed output are described below.

- 1. Echo print of input options, flags, title, file names, etc.
- 2. Geometric data input for lifting surfaces
- 3. Geometric data input for slender bodies
- 4. Modal data
 - Normalwash due to primary lifting surface motion
 - Normalwash induced by slender bodies
 - Augmented normalwash
- 5. Aerodynamic characteristics/per mode
 - Pressure difference coefficients
 - Section normal force and moment coefficients
 - Slender body forces
 - Stability derivatives
 - Generalized airforce coefficients
- 6. Intermediate geometric and aerodynamic data (optional)

6.4.2 MAGNETIC FILES OUTPUT DATA

Selected geometric and aerodynamic data can be saved at the user's request on files "NGETP" and "NAETP", respectively, for subsequent use in DYLOFLEX. Except for the quasi-inverse matrix (D⁻¹), the files are writen in READTP/WRTETP format¹; an end-of-file terminates the matrices stored for a case. The quasi-inverse matrix is written with binary READ/WRITE format in multiple records terminated by a one word record containing (10HQUASI-END.).

¹Clemmons, R.E.: Programming Specifications for Modules of the Dynamic Loads System to Interface with FLEXSTAB. NASA contract NAS 1-13918, BC8-G0701, September 1975. (internal document)

Saved Geometry Tape NGETP

The format of all geometric data matrices on file NGETP is described in figure 10. Contents of the first matrices on file are shown in figures 11 through 15. The interference surface-slender body correlation matrix is described in figure 16.

SIZE	MATRIX NO.		DESCRIPTION
15	1	MPC	Geometry control matrix (See Figure II)
8°NTB	2	BODTAB	Body table matrix (See Figure 12)
N1	3	MPSG	Primary lifting surface geometry matrix (See Figure 13)
N2	4	MISG	Interference lifting surface geometry matrix (See Figure 4)
N3	5	MSBG	Slender body geometry matrix (See Figure 15)
NBOX each	6,7,8	EV PV ZV	Arrays of X,Y, and Z coordinates of the 1/4 chord points of all boxes
NBOX each	9,10,11	X Y ZZ	Arrays of X,Y, and Z coordinates of the 3/4 chord points of all boxes
NTOT	12	MBA	Aerodynamic element area
NTOT	13	MDA	Dihedral angles of aerodynamic elements
NTOT	14	MSBC	Interference surface box-slender body line element correlation (See Figure 16)
NBE	15	SDELX	Body element lengths
NBE	16	x	Body element midpoint X location
NBE	17	RO	Body element midpoint radius
NBE	18	ROP EOF	Slope of midpoint radius

Figure 10.-Geometry Definition Tape "NGETP"

SIZE = 15

NO.	ITEM	DESCRIPTION
1	ICASE	Case Number
2	ICOND	Condition Number
3	IGEOM	Geometric data successfully saved (=1)
•	REPCHD	Peference chord
5	REFSPN	Reference semispan
6	ACAP	Reference Area
7	PHACH	Mach Number
	NTBB	Number of boxes on thin bodies (primary lifting
		surfaces)
•	NIBB	Number of boxes on interference surfaces
10	NBE	Number of slender body elements
11	NTB	Number of panels on thin todies (primary
		lifting surfaces)
12	NB	Number of slender bodies
13	NPLS	Number of thin bodies (primary lifting
		surfaces)
14	NPES	Number of interference lifting surfaces
15		Not Used

Figure 11.—Geometry Control Matrix [MPC]

SIZE . 8.NTS

The matrix contains one column for each body I. Elements in a column are specified below.

		DESCRIPTION
(1,1)	ITYPE	= 1, Slender Body
		= 3, Thin Body
(2,I)	IPOS	 0. Off plane of symmetry
		= 1, on plane of symmetry
(3,I)	x _o	Origin of local axis system
(4,1)	Y.	for this body (Reference
(5,I)	Z _o	axis coordinate)
(6,1)	γo	Dihedral angle for this body
(7,1)	IFIRST	Pointers to this body's first and
(8, I)	LAST	last boxes/segments in the total array
		of structural boxes/segments

NOTE: A thin body corresponds to a lifting surface panel.

Figure 12.—Body Table Matrix [BODTAB]

No.	Item	Description
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ICASE ICOND NLIFS NBXL NSUBL(1,1) NSUBL(2,1) NSUBL(2,1) NSUBL(3,1) NSUBL(4,1) NSUBL(5,1) IPN X1 X2 X3 X4 Y1 Y2 Z1 Z2	Case number Condition number Number of primary lifting surfaces Number of boxes on all primary lifting surfaces File number of SA array for first surface Number of panels on first surface First box number on first surface Last box number on first surface Flat = 1 if surface on Y = 0 plane Panel number Panel coordinates (see fig. 5)
		Elements from 10 through 18 are repeated for each of the NSUBL(2,1) panels Elements 5 through (9*NSUBL(2,1) + 9) are repeated for all NLIFS surfaces

Figure 13. - Primary Lifting Surface Geometry Matrix [MPSG]

Figure 14. -Interference Lifting Surface Geometry Matrix [MISG]

No.	Item	Description
1 2 3 4 5 6 7 8 9 10 11 12 13 14	ICASE ICOND NSBOS NBE NSUBL (1,1) NSUBL (2,1) NSUBL (3,1) NSUBL (4,1) NSUBL (5,1) IBN XBLE YC ZC MRK (1,1) MRK (1,2)	Case number Condition number Number of slender bodies Number of body elements File number of SA array for first body Element = 1 First element number on this body Last element number on this body Flag indicating body on Y = 0 plane Body number Body leading-edge X location Body leading-edge X location Body leading-edge Z location First interference box number for this body Last interference box number for this body Elements 10 through 15 are repeated for all NSUBL (2,1) bodies
		Elements 5 through (9 + 6+NSUBL (2,1)) are repeated for all NSBDS bodies

Figure 15. -Slender Body Geometry Matrix (MSBG)

Size - NTOT The column matrix conta

The column matrix contains one element for each aerodynamic element.

	Element	Der	cription	
(1)	MSBC (II)	-,	nt (I) is a thin body box, or nt (I) is a slender body line	
		- IBN1 and	possibly IBN2 (see note)	
Note:	which it is ass body having r slender bodie	ociated will appe motion in both Z s, each having mo high the interfere	terference surface box, the lar in the rightmost 30 bits and Y directions is being re stion in one direction, the s nce surface is associated wi	of MSBC(I). If a slender epresented by two econd slender body
	MSBC(I)	-	IBN2	IBN1
		1	30	00

Figure 16. -Interference-Surface/Slender-Body Correlation Matrix [MSBC]

Seved Aerodynamics Tape NAETP

Contents of the aerodynamic data file NAETP are dependent on the user specification of IAERO (card set 14.0). The number of matrices written on NAETP in each instance is shown in table 3. The formats of these matrices for the cases when IAERO = 1 or IAERO = 2 are the shown in figures 17 through 19. If IAERO = 3, the result is equivalent to requesting both IAERO = 1 and IAERO = 2.

Table 3. - Number of Matrices Stored on NAETP

IAERO	Number of matrices
0	None
1	(2-NBOX + N + 4) NRF
2	(NMD + 2) NRF
3	(2118OX + N + NMD + 6) NRF

ote: For IAERO = 3, the matrices for IAERO = 1 are followed by the matrices for IAERO = 2 for each reduced frequency. The matrix sizes and contents are described in figures 16 through 18.

6.5 RESTRICTIONS

Restrictions on the theoretical development and on idealization of configurations have been previously discussed in section 4.2. Restrictions on program variable sizes have been defined in section 6.3. The aerodynamic influence coefficient formulation (AIC) is obtained for strips on lifting surfaces only-slender body elements have been ignored. The AIC option in this program does not produce results that are suitable for subsequent use in DYLOFLEX.

6.6 DIAGNOSTICS

Errors detected by L216 generate diagnosite messages. Fatal errors cause the current case to be terminared and a new case to be initiated. Thirty-three fatal error messages exist in the program, poling. The first line of a fatal error reads:

***** FATAL ERROR **

and the last line is:

CURRENT CASE WILL BE TERMINATED

IAERO = 1

NO.	SIZE		DESCRIPTION
1	(14+NKVAL)	MAC	Aerodynamic Control Matrix See Figure 19
2	(2*NBE)	[F] ₁	lst row of the induced downwash factors matrix
(NBOX+1)	(2*NBE)	[F] _{NBOX}	Last row of the induced downwash factors matrix
(NBOX+2)	VARIABLE	[5][1]	lst record of the L matrix portion of the quasi-inverse matrix
		:	
(NBOX+2+N)	VARIABLE	[D][]N	Last record of the L matrix portion of the quasi-inverse matrix
(NBOX+3+N)	(2*NBOX+1)	[D] _{T,1}	lst record of the trapezoidal section of the quasi-inverse matrix
		:	
(2*NBOX+3+N)	3	[D]T, NBOX	Last record of the trapezoidal section of the quasi-inverse matrix
(2*NBOX+4+N)	1	PEND	Record to terminate the quasi-inverse matrix. DEND = (10HQUASI-END.)
			Matrice: 2 through (2*NBOX+N+4) are repeated for all NKVAL reduced frequencies
			EOF

Figure 17. - Aerodynamics Results Matrix (IAERO=1)

IAFRO = 2

110	SIZE		DESCRIPTION
1	(14+NKVAL)	MAC	Aerodynamic data control matrix (see Fig. 19)
2	2* (NBOX+NBE)	(&C _p),	Column of pressure coefficients for the first mode
NMD+1	2*(NBOX+NBE)	{AC _p } _{NMD}	Column of pressure coefficients for the NMD mode
NMD+2	2*NMD*NMD	[0]	Generalized airforces [Q]
			Matrices 1 through (NMD+2) are repeated for all NKVAL reduced frequencies
			EOF

Figure 18.—Aerodynamic Results Matrix (IAERO=2)

SIZE = 14 * Number of reduced frequencies

NO.	ITEM	DESCRIPTION
1	ICASE	Case Number
2	ICOND	Condition number
3	IAERO	Flag for saving aerodynamic data
4	FMACH	Mach number
5	NKVAL	Number of reduced frequencies
6	NBOX	Number of lifting surface boxes
7	NBE	Number of slender body elements
3	NMD	Number of aerodynamic modes
9	REFCHD	Reference chord
10	REFSPN	Reference semi-span
11	ACAP	Peference area
12	BR	Reference length
13		Not used
14		Not used
15	RFREQ (1)	1st reduced frequency
•	.	•
•	•	•
•	•	•
14+NKVAL	RFREQ (NKVAL)	Last reduced Frequency

Figure 19. - Aerodynamic Results Control Matrix

6.6.1 L216 ERROR CODES

Code	Example message
1	PREMATURE END-OF-FILE FOUND ON FILE nnn EXECUTION TERMINATED
2	UNRECOGNIZED KEYWORD assas IMPROPER INITIALIZATION OR TERMINATION
	Valid 5-character keywords are \$DUBL, CASE and \$QUIT. See card input description (sec. 6.3) for proper intialization or termination of data sets.
3	TOO MANY CASES DEFINED MAX ALLOWED IS 36 EXECUTION TERMINATED
4	FATAL ERROR FOUND IN OVERLAY nnn EXECUTION TERMINATED FOR CASE nn FIND NEXT CASE
5	INVALID NUMBER OF REDUCED FREQUENCIES nonnon
6	INVALID REFERENCE CHORD nnnnnnnnnnnnnn
7	INVALID REFERENCE SEMISPAN anananananan
8	INVALID REFERENCE AREA nnnnnnnnnnn
9	NO. PANEL OR BODY DEFINED - CHECK DATA
10	NO. OF PANELS nnnn EXCEEDS MAXIMUM (40) ALLOWED
11	NO. OF BODIES nnnn EXCEEDS MAXIMUM (20) ALLOWED
12	NO. OF STRIPS nnnn EXCEEDS MAXIMUM (70) ALLOWED
13	INVALID SYMMETRY OPTION NDELT = nnnnnn
14	INVALID MACH NUMBER (MIN = 0.0, MAX = 0.9952)
15	INVALID YAW MOTION FLAG NYAW = nnn
16	KEYWORD MISSING FOR MODAL INPUT DATA
17	INVALID X-COORDINATES FOR PANEL nnnnn
18	SPANWIDE OR CHORDWISE BOUNDARIES EXCEED MAXIMUM (30)

19	NUMBER OF BOXES	DEFINED EXCEEDS 400
20	NUMBER OF BODY D	IVISIONS EXCEEDS MAX (20) ALLOWED
21	INVALID BODY ENDE	POINTS FOR BODY nanna
22	INVALID CAMBER M STRIP nnnnn	ODE AXIS DEFINED FOR AIC MODE nnnnn FOR
23	WRONG NUMBER OF PROGRAM FOUND no	BOXES SPECIFIED nnnnn
24	WRONG NUMBER OF PROGRAM FOUND no	BODY ELEMENTS nannn
25		= nnnnn FOUND WHILE DEFINING SA ARRAY R CODE INTERPRETATION
	= 1 ILLEGAL TA	PE NAME OR NUMBER
	= 2 BUFFER TOO	SMALL
	= 3 TOO MANY F	FILES (MAX 49)
26	FETAD ERROF CODE	= nnnnn FOUND WHILE DEFINING NTPQ
27	READTP ERROR IRR ARRAY	- nnnnn WHILE READING 1ST MATRIX OF SA
28	NUMBER OF MODES NUMBER OF MODES	
29	ERROR FOUND IN CO AINTG ERROR CODE	MPUTING MODAL DATA FROM SA ARRAY WORD IS *
	*ABCDEFGXX	MEANS ERROR NO. XX IN ROUTINE ABCDEFG
	*AINTG 1	MEANS INTERPOLATION COEFFICIENT ARRAY TYPE UNRECOGNIZABLE
30	WRTETP ERROR ENC	OUNTERED IN WRITING THE nnnTH MATRIX
	ERROR CODE IRR = n	nnnn
31	PANELS ON SURFACE	E nnn WERE NOT INPUT CONSECUTIVELY

*

- FLAG WAS SET TO SAVE AERODYNAMIC RESULTS INVALID TAPE
 [SUMBER (NAETP) = assess WAS GIVEN]
- 33 INVALID FILE NAME

6.6.2 READTP ERROR CODES

Code	Description
0	No errors are detected during reading.
1000 + I	An FSF error occurred, where I is the number of file marks remaining to be skipped when an end-of-information was encountered.
2	The number of matrices or files to be skipped before reading starts is less than zero.
3	The dimensioned number of rows in the matrix is less than zero.
3000 + 1	An FSR error occurred, wi are I is the number of records remaining to be skipped when either an end-of-file or end-of-information was encountered.
4	Number of rows in the matrix is greater than the dimensioned row size in the program.
5	The name check failed.
6	The number of rows in the matrix (M) times the number of columns (N) is greater than the buffer size, or M * N < 0.
7	An end-of-file was read. If it occurs while reading the matrix ID, no information is stored in the user's area. If it occurs while reading the matrix, the ID information will be stored. Note that the records will always be in pairs, and an end-of-file should always be encountered with the ID record.

6.6.3 WRTETP ERRGR CODES

Code	Description	
0	No errors are detected during writing	
1000 + 1	An FSF error occured, where I is the number of file marks remaining to be skipped when an end-or-information was encountered.	
2	The number of matrices or files to be skipped, before writing starts, is less than zero.	

- 3 The dimensioned number of rows in the matrix is less than or equal to zero.
- 3000 + I The actual number of rows is greater than the dimensioned number of rows in the matrix
- 6 The number of rows in the matrix (M: times the number of columns (N: is greater than the buffer size.

7.0 SAMPLE PROBLEM

The configuration chosen for the example problem is illustrated in figure 20; included are a wing, strut, nacelle, and fuselage. There are three modes of motion: plunge, pitch, and roll. The wing is represented by two panels, one having nonzero dihedral. The nacelle is idealized as two slender bodies to accumodate both Z and Y motions. Each half of the interference shells is represented with three panels. The polynomial modal input option is utilized. The idealization is entirely demonstrational and is not to be regarded as an optimum one.

7.1 INPUT DATA

7.1.1 PARAMETERS AND GEOMETRY

k	-	0, 0.5	Α .	- 6.4
M	-	0.85	c _r ·	= 1.5
8		1.0		- 1.0
	-	0		

Nacelle, Slender Body 1

$Y_c = 2.0, Z_c = -0.5,$	Y doublets
Element endpoints	2.0, 2.5, 3.25, 4.5
Radii at endpoints	0.0, 0.5, 0.5, 0.0
Nacelle, Slen	nder Body 2
$Y_c = 2.0, Z_c = 0.5,$	Z doublets
Element endpoints	2.0, 2.5, 3.25, 4.0

Fuselage, Slender Body 3

0.0, 0.5, 0.5, 0.0

$Y_c = 0.0, Z_c = 0.0,$	Z doublets
Element endpoints	0.0, 2.0, 4.0, 6.0
Radii at endpoints	0.0, 1.0, 1.0, 0.0

The panel geometry is summarized in table 4.

Radii at endpoints

Figure 20.—Configuration for Example Problem

Table 4. - Sample Problem Panel Geometry

Panel		x,	x ₂	x ₃	×4	٧,	Y2	z ₁	22	Chordwise	Spanwise
Wing	1	2.0	4.0	2.5	4.0	0.866	2.0	0.5	0.5	0.0, 0.5, 1.0	0.0, 0.5, 1.0
	2	2.5	4.0	3.0	4.0	2.0	3.0	0.5	1.0	0.0, 0.5, 1.0	0.0, 0.5, 1.0
Strut	3	2.5	4.0	2.5	4.0	2.0	2.0	0.5	0.0	0.0, 0.5, 1.0	0.0, 1.0
	4	2.5	4.0	2.5	4.0	2.0	2.443	0.0	-0.25	0.0, 0.5, 1.0	0.0, 1.0
Nacelle	5	2.5	4.0	2.5	4.0	2.433	2.433	-0.25	-0.75	0.0, 0.5, 1.0	0.0, 1.0
interference	6	2.5	4.0	2.5	4.0	2.433	2.0	-0.75	-1.0	0.0, 0.5, 1.0	0.0, 1.0
surface	7	2.5	4.0	2.5	4.0	2.0	1.567	-1.0	-0.75	0.0, 0.5, 1.0	0.0, 1.0
	8	2.5	4.0	2.5	4.0	1.567	1.567	-0.75	-0.25	0.0, 0.5, 1.0	0.0, 1.0
	9	2.5	4.0	2.5	4.0	1.567	2.0	-0.25	0.0	0.0, 0.5, 1.0	0.0, 1.0
Fuselage	10	2.0	4.0	2.0	4.0	0.0	0.866	1.0	0.5	0.0, 0.5, 1.0	0.0, 0.5, 1.0
interference	11	2.0	4.0	2.0	4.0	0.866	0.866	0.5	-0.5	0.0, 0.5, 1.0	0.0, 0.5, 1.0
surface	12	2.0	4.0	2.0	4.0	0.866	0.0	-0.5	-1.0	0.0, 0.5, 1.0	0.0, 0.5, 1.0

7.1.2 MODAL DATA

Plunge, Mode 1

Panels¹ ARQ_{NR,1,0,0}
$$\simeq$$
 $^2\cos\gamma_{NR}$
Bodies ARQ_{1,1,N,M} \simeq 0.0

$$ARQ_{2,1,0,0} = ARQ_{3,1,0,0} = 1.0$$

Pitch, Mode 2 (About x = 0)

Panels 1 ARQ_{NR,2,1,0} =
$$\cos \gamma_{NR}$$

Bodies ARQ_{1,2,N,M} = 0.0
ARQ_{2,2,1,0} = ARQ_{3,2,1,0} = 1.0

Roll, Mode 3

$$^{2}y = tan^{-1}\frac{Z_{2} \cdot Z_{1}}{Y_{2} \cdot Y_{1}}$$

Boeing Commercial Airplane Company P.O. Box 3707 Seattle, Washington 98124 May 1977

¹Except NR = 3, 5, 8, 11

³NR = 1 to 9

SOUTH, AT						
97174	*****	1710 300014	PROBLEM WING.	STPUT, MECELLI	. PUSELAGE	
4717LE						
67 174.6		Of Indiantal	6.1-1880T.4-MEE	TTE COLEMAN	KCE.	
971744	p-70361.00					
	E-016 St		-			

971745	SENTATER		4-1. luttl-1. lets		BENCE.	
		OF INTERPRET				
87 174.6						
671745	THE TY S	-			PERENCE.	
STEPLE						
	MINE LEN	E ELEMENTS I		0011		
STITLE						
STEFLE	\$100 E \$100	PLUMEE.PI	NEM- POLL!			
	*11C# #6	, s-0, soli	*** * * * * * * * *			
971744	POL PROPE	AL MODE INFO				
CASE			1.00			
0.450	*00	0 7	1.00 1 Severy Severo	12 1		3.0
.;		: : .				-
• • • • • • • • • • • • • • • • • • • •	2 1	: : :		10 11 17		
		10 10 20		25 25 26		
2.		N 11 14				*.0
	REQUESC 155					9.0
0.50	0.50					9.4
64 C= £14	•					10-0
PAREL		**1				11.0
2.00	•.00	2-50	4.00 0.000	5.00		80-1
0.50	0.50	, ,	1.00			11-2
0.00	0.50	1-00				11.3
0.00	0.50	1.00				11.
PANEL						11.0
2.50	4.00	3.00	*-00 2.00	3.00		11-1
0.10	0.12	1.00	1.00			11.3
0.00	0.10	1.00				11.4
PROFIL		PRINT				11.0
2.90	4.00	4.50	4.00 2.00	2.00		11.1
0.10	0.00	1 4		****		15-4
0.00	0.50	1.00				11.9
0.00	1.00					11.4
PRNEL		INTER				85.0
2.50	4.00	2.50	4.00 2.00	2-433		11-1
0.00	-0.258	3 1	1.00			11-8
0.00	0.50	1.00				11.3
0.00	1.00					11.4
PANEL		1415				11.0
2.50	4.00	2.50	4.00 2.433	2.433		11-1
-4-25	-0.750		1.00			11-5
	8.58	1.60				11.9

0.00	8.00		
PROCE		1 10 10 10 10 10 10 10 10 10 10 10 10 10	
2.50	4.90	2.50 4.00 2.415 2.00	
-0.75	-1.00	3 2 1.00	
0.00	0.50	1.00	
0.00	1.00		
PROFE		19769	
8.90	*-00	2.50 4.60 2.00 1.567	
-1-30	-0.75	3 4 1.00	
0.00	0.50	1.46	
6.50 F8554	1.00	1-222	
2.50		[6768	
-0.75	-0.75	2.50 4.00 1.347 1.347	
0.00	0.10	1.00	
0.00	1.00	1.00	
PROCL	1.00	1277	
2-10	4.00		
-0.45	0.00	3 2 1.00	
0.00	0.50	1.00	
0.00	1.00	****	
PASEL		19779	
2.00	4.00	2.00 4.00 0.000 0.000	
1.00	0.50	1 1 1.00	
0.00	0.59	1.00	
0.90	0.50	1.00	
PRINEL		18759	
2.00	4.00	2.00 4.00 0.644 0.644	
0.50	-0.30	1 1 1.00	
6.00	0.50	1.00	
0.00	0.50	1.00	
PROFIL		14114	
2.00	4.00	2.00 4.00 8.644 8.000	
-0.50	-1.00	3 3 1.00	
0.00	0.10	1.00	
0.00	0.50	11.00	
9004 -0-500		4 WOLLOW PREEFFE	
4.0	4.00	1.00 4 0 1 11 22	
0.00	9-10	0.50 0.05	
800Y	****	A MOTEUM MACELLE	
-0.100	4.00	1.00 1 0 11 22	
4.0	4.50	3.43 4.30	
0.00	0.50	0.50 0.00	
8007		FUSELAGE	
0.20	0.00	1.00 4 1 0 23 34	
0.00	2.00	1.00 1.00	
0.00	1.00	1,60 0,60	
MIDE'S		PROPER COEFFICIENTS	
	+0)	0 1 34 4	
PANEL			
		310 411 310 411	7 8 8
		10 1 1 11 10 12 1 1 1 2 1	4 4 1
3 2 0		110 011 111 010	
10 / 1	11 7 0	18 4 1 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	
, , ,		7 7 2 1	44 9 0

85.0 81-1 44-2 86-8 11.0 88.8 88-2 11.9 11.0 11.0 88.4 16.2 10.0 11.0 11.0 85-5 11-2 11.3 11-4 81.0 11-1 88 -2 11.3 16.4 11.0 14-1 \$0.2 11.3 88-4 11.0 88.5 11-2 18.9 11.0 1: 0 14.2 12.0 62.4 10.0 67-6 20.0 42 3 14.0 15.0 15-1 13-1 15-1 19-1

45-4

BLANK PAGE

Brank Page

12 3 0							15-1
	0-1-0		0-0.894	0	0-0.886		15.2
	0 0.866		0 0.966	0	0-0.866		15-2
0	0-0-844		0 0.866	i	0-1-0		15-2
0	0-0.694	1	0-0.856	i	0 0.866		15.2
8	0 0.266	1	0-0.886		0-0.466		19-2
1	0 0.800		0-0.866	0	1-1.0		15-2
0	0-2.012		1-1-0	0	0 0.5		15.2
0	1-1-0		0-1.732		1-1.0		15-2
	0-0-25	•	1-1-0		0 1.732		85.2
0	1-1.0		0 2.232		1-1.0		15.7
	0 0.75		1-1.0		0-1-232		15-2
0	1-1-0						13-2
BODY							15.0
110	2 1 1		1 2 0	2 2 1	3 2 1	1 7 1	15-1
2 3 1	3 3 0						15-1
	0-1-0		0-1.0		0-1-0		15-2
!	0-1.0	0	0-0.5		0-2-0		15.2

7.3 OUTPUT LISTING

PROGRAM LZIGAL WERSION APR 28, 77 NOW PUNNING.

THE PROGRAM IS PART OF THE DYLOFLE SYSTEM

DIVELOPED FOR MASA UNDER CONTRACT NASI-13418.

DATE OF PUN IS 77/09/17.

167034.65 PROGRAM 1216 SAMPLE PROGLEM . WING. STRUT. NACELLE, PUSELAGE THEL OF PARTY 17-4186.1-STRUT, 4-MACRILLE INTERFERENCE. 4 3-FUSILACE INTERFERENCES SHAFF SETADIA BUDIES IN-MACELLE . F-MACELLE . FUSELAGES SEVENTER STRIPS IN-MING. 1-STRUT, 0-MACELLE INTERFERENCE. 4.4.11.6 e-fusiliace interferects 4 47 1 TLE THINTY FOUR BOATS ER-WING, 2-STRUT, L2-NACELLE INTERFERENCE. 12-FUSELAGE INTERFERENCE! NINE LINE ELIMINES 13-EACH SLENGER BEDTE THE EE DOT IPLUNGE, PITCH. ROLL! . STITLE . STITLE FITCH PEF 2-0. ADLL MEF T . D. 2 . D CATETAL. POLYMORIAL MODE ENPUT CATETLE I CASE .

CPU TEME I SECONDSI . . . 151

INPUT PARAMETERS

. 8500 MACH NUMBER SETA . 5268 BEFLEENCE CHURD 1.5000 REFERENCE SEMI-SPAN 1.0000 ATEL SOMESMENT 4.4000 .5000f +00 PEDUCED FAFOUENCIES TUTAL NUMBER OF PARELS 3.2 Tutal humate of Bubles TOTAL NUMBER OF STRIPS NUMBER OF VERTICAL PANEL STATES ON THE PLANE NUMBER OF VENTICAL PARTE BOXES ON YOU PLANT

MOTION IS STARFTRIC

GEOMETRY DATA WILL BE SAVED ON TAPE SAVEED

ING CATA WILL BE SAVED ON TAPE SAVARS

GOMETT DE

***** GO4197

71 - IMPORTO LEROIRG EDGE E COORDINATE 82 - IMPORTO TRAILING EDGE E COORDINATE 83 - CUTBORTO TRAILING EDGE E COORDINATE 94 - OUTBORTO TRAILING EDGE E COORDINATE 92 - OUTBORTO Y COORDINATE 81 - IMPORTO Z COORDINATE 81 - IMPORTO Z COORDINATE 82 - OUTBORTO Z COORDINATE 82 - OUTBORTO Z COORDINATE

*** PAREL NO. 1 IMPUT VALUES ***

3 CHORDWISE DIVISION BOUNDABLES FOR PANEL L IN PRACTION OF CHORD

0. .50000+00 .10000+01

3 SPANUISE DIVISION BOUNDABIES FOR PANEL 1 IN FRACTION OF SPAN

0. .5000f-00 .1000f-01

COOPDINATES OF BOX COMMENS

9 BOX COPNERS FOR PANEL I

•

```
. PRODUC + $1
                            . BLA COE + DO
                                             . Smacar + 56
           . BOOCO: +01
                            . ****** DE * DE
                                             . 9-0 000F + DB
           *************************
                            . BARDDE = 50
                                             . 5.0008f + 68
           . 22 5000 + BI
                            . 14 7 946 - 04
                                             .900004 +98
           . N.250F + 04
                            -1-35DF +D1
                                             . S.D.D.D.E + D.O.
           - *90*96 * DI
                            *147306*01
                                             . 500006 +86
           - P5000E + 01
                            - 2 0 0 0 0 0 F BY
                                             . $1' DODE + 60
           . N2500E+B1
                            . 2000 OF - SI
                                             . 51-0006 + 50
           . ********
                            - 20000E+01
                                             . 50-0006 + 00
      STREP L.F. CENTERLINE E-COURDINATES
           -21250E+01
                            . 237984 - 01
      AVERAGE CHOPOLENGTH OF STRIPS
           - 18 PS OF + D1
                            - 14250E+ /L
THE PARTY NO. 2 IMPUT VALUE & ***
        2.500000 84 *
                             *.000000 Ti *
                                                  2.000000 21 *
                                                                        .100000
                                                  3.000000 II .
                             4.056000 F2 *
                                                                       1-900004
 3 CHORDWISE DIVISION SOUNDARIES FOR PANEL 2 IN FRACTION OF CHORD
                        .10008-00 .10008-01
      SPANNISE DIVISION SOUNDABLES FOR PANEL I IN FRACTION OF SPAN
         .
                        .50000+00 .10000+01
                 COORDINATES OF BOX CORNERS
                    9 BOX COMMENS FOR PANEL &
                                .
                                                 .
           . 25000E+01
                            . Proco#+61
                                             . 9-90006 - 00
           . 325006+01
                            . /5-0st +51
                                             . $8000EF + 00
                                             · $00001 + 08
           . 400000 + 01
                            * 20000F+84
           . 275006 + 64
                            . 25000E+G
                                             . P50005+00
           . 33750E + G1
                            .239900+81
                                             . PS000E+00
```

. 250006 + 84

. \$80000 . 61

. 300006+01

. 40000F +01

. 390006 +01

. Phonos + no

.100006+01

. 100006 +01

```
************************
                         . DESCRIPTION - DI
                                        - 1 BURDE - B1
      STREP L.C. CENTERLINE a-CHINDRATES
                         -28750(+4)
          - 24.756E+Si
      AVERAGE CHEMOLENGIN OF STRUCK
          - LB PROE + DL
                         - 552 SEE+P1
2.500000 12 .
                          *-0000000 *i * 2-000000 fi *
                                                               . 500000
        2-570000 ** *
                          4.000000 17 ·
                                            2.000000 /2 . 0.000000
  5 CHORDWISE STRISEDS BOUNDARIES FOR PARKS. 3 IN FRACTION OF CHORD
                     .5008-09 .10007-01
  2 SPANNISE DIVISION BOUNDARIES FOR PAREL S IN FRACTION OF SPAN
                     .16006+01
               COURSINATES OF BOX COPMERS
                  . OUR TERMENS FOR PARK. 3
             .
                            .
                                        . $50000 + 00
          . Phocon +91
                         . 2000 NE + 91
          . 121606 - 01
                         · 200001+01
                                        . $556 OF + 95
                         · 207006 +91
          **DEEGE * 01
                                        . 100005 - 00
          . 250006 +01
                         * $50000 + 91
          . $2500E+G1
                         . PROCOT+01
                         * FROCOS * 01
          - 400COF + 65
      STREET LAL CENTERLINE #-COURSINATES
          . FREEM + 01
      SWIFEGE CHERCLENGTH OF STRIPS
```

. 150005+01

CONTENTS

			Page	
1 0	SU	MMARY	1	1/A9
2.0	INT	RODUCTION	2	1/A10
3.0	SY	MBOLS AND NOMENCLATURE		1/A11
4 0	EN	GINEERING DESCRIPTION	. 6	1/A14
	4.1	Summary of Theoretical Development	. 6	1/A14
		4.1.1 Equations		1/A14
		4.1.2 Solution Method	7	1/B1
	4.2	Application	. 59	1/B3
		4.2.1 Modeling Idealizations	. 9	1/B3
		4.2.2 Limitations	. 12	1/B6
5.0	PR	OGRAM STRUCTURE AND DESCRIPTION		1/87
	5.1	Program L216		1/B8
	5.2	Program Initial	. 15	1/B9
	5.3	Program PRT2		1/B9
	5.4	Program GEWSSL	15	1/B9
	5.5	Program GEQ	. 15	1/B9
	5.6	Program AMSOL	. 15	1/B9
	5.7	Program AICSUB	15	1/B9
	5.8	Program GIN		1/B10
	5.9	Program SAMODE	. 17	1/B11
6.0		MPUTER PROGRAM USAGE		1/812
		Control Cards		1/812
	6.2	Resource Estimates	. 19	1/B13
		6.2.1 Field Length	. 19	1/B13
		6.2.2 Execution Time	. 20	1/B14
		6.2.3 Printed Output		1/B14
		6.2.4 Tape Drives		1/01
		6.2.5 Disk Storage		1/01
	6.5	Input Data		1/01
		6.3.1 Format of Card Input Data	. 21	1/01
		6.3.2 Card Input Data Specifications	. 21	1/01
		6.3.3 Summary of Card Input Data		1/013
		6.3.4 Magnetic Files Input Data		1/E3
	6.4	Output Data		1/E3
		6.4.1 Printed Output Data	. 50	1/E4
		6.4.2 Magnetic Files Output Data	. 50	1/E4

CONTENTS (Concluded)

				Page	
	6.5	Restri	ctions		1/E12
	6.6	Diagn	ostics	58	1/E12
		6.6.1	L216 Error Codes	62	1/F2
		6.6.2			
		6.6.3			
7.0	SAN	APLE I	PROBLEM	66	1/F6
			Data		1/F6
			Parameters and Geometry		1/F6
			Modal Data		1/F9
	7.2		e Problem Input and Output		1/F1(
REI	FERE	NCES		118	2/F11

... PANEL NO. 4 INPUT VALUES ...

#1 • 2.500000 #2 • 4.000000 V1 • 2.000000 21 • 0.000000

#3 . 2.500000 #4 . 4.000000 Y2 . 2.433000 L2 . -.250000

3 CHORDHISE DIVISION BOUNDARIES FOR PANEL 4 IN FRACTION OF CHORD

0. .5000E+00 .1000E+01

2 SPANUISE DIVISION BOUNDARIES FOR PANEL 4 IN FRACTION OF SPAN

0. .1000f +01

CODPOINATES OF BUX CORNERS

& BOX COPNERS FOR PANEL 4

	•	2
. 25000E+01	.200C0F+01	0.
. 32500E+01	. 200 00t + 01	0.
. 40000E+01	. 20000E + 01	0.
. 25000E + 01	.24330E+01	25000E+00
. 32500E+01	. 24330E + 01	25000E+00
+0000F+01	- 24330F + 01	25000F+00

STRIP L.E. CENTEPLINE M-COORDINATES

. 25000E+01

AVERAGE CHOPOLENGTH OF STRIPS

. 15000F+31

... PANEL NO. 5 INPUT VALUES ...

- #1 . 2.500000 #2 . 4.000000 VI . 2.433000 E1 . -.250000
- x3 . 2.500000 x4 . 4.0000000 v2 . 2.433000 t2 . -.750000
 - 3 CHORDWISE DIVISION BOUNDARIES FOR PANEL 5 IN FRACTION OF CHORD
 - . .50C0E+00 .1000E+01

2 SPANNISE DIVISION BOUNDABIES FOR PANEL 5 IN FRACTION OF SPAN
0. .1000E+01

COORDINATES OF BOX CORNERS

6 BOX CORNERS FOR PANEL 5

	*	ı
. 250CDE +01	.243326+01	25000E+30
. 325006+01	.2+3305+01	250005+00
. +000005 + 01	.24330E+01	25000E+00
. 25CUDE +01	.24330E+01	75000E+00
.32500E+01	.24330E+01	75000E+00
. 40000E + 01	.24330f +01	75000E+00

STRIP L.E. CENTERLINE E-CODADINATES

. 25000E +01

AVERAGE CHORDLENGTH OF STRIPS

.15000E+01

... PANEL NO. & INPUT VALUES ...

- #1 * 2.500000 #2 * 4.000000 V1 * 2.433000 21 * -.750000
- #3 . 2.500000 #4 . 4.000000 72 . 2.000000 E2 . -1.009000
- 3 CHORDWISE DIVISION BOUNDABLES FOR PANEL & IN FRACTION OF CHOPD
 - 0. .50C0E+00 .1000E+01
- 2 SPANNISE DIVISION BOUNDABIES FOR PANEL & IN FRACTION OF SPAN

0. .10006+01

COGRDINATES OF BOX CORNERS

& BOX CORNERS FOR PANEL &

. 2 . 29000£ +01 .243306+01 -. F5000E+00 .32500E+01 .2+330[+01 -. 75000E+00 -. 750006 +00 . 40COCE + 01 .243301 -01 . 25000E+01 . 20000E+01 -. 100000[+01 -.10000f +01 . 125001 . 01 10+100005. . 40000E +01 . 200000 + 01 -- 100000[+01 STATP L.E. CENTERLINE #-COORDINATES . 25000E+01

AVERAGE CHOPOLENGTH OF STRIPS

. 150006 + 01

... PANEL NO. 7 INPUT VALUES ...

#1 - 2.500000 #2 - 4.000000 71 - 2.000000 £1 - -1.000000 #3 - 2.500000 #4 - 4.000000 72 - 1.557000 £2 - -.750000

- 3 CHORDWISE DIVISION BOUNDAPIES FOR PANEL I IN FRACTION OF CHORD
 - 0. .5000E+00 .1000E+01
- 2 SPANNISE DIVISION BOUNDABLES FOR PAREL 7 IN FRACTION OF SPAN
 - 0. .10006 +01

CODEDINATES OF BUT COMMERS

& BOX CORNERS FOR PANEL 7

. . . . 210005 +01 . 2000001 + 01 -. 100000f +01 -.100006.01 . 325CCE +01 . 2C 0 00F + 01 . 2000001 . 61 -.100006+31 . 250006 + 01 . 150 706 . 01 -. 75000E +00 .156707.01 . 32 5006 + 01 -. 75000E +00 . 40C006 + 01 -154 FOF + 01 -. 75000F+00

STAIP L.F. CENTEPLINE N-COOPDINATES

. 25000E+01

AVERAGE CHOPOLENGTH OF STRIPS

... PANEL NO. . INPUT VALUES ...

- #1 2.500000 #2 4.000000 V1 1.567000 £1 -.750000 #3 - 2.500000 #4 - 4.000000 V2 - 1.567000 £2 - -.250000
- 3 CHONDUISE DIVISION SOUNDANIES FOR PANEL 8 IN FRACTION OF CHORD
 - 0. .5000[+00 .1000[+0]
- 2 SPANNISE DIVISION BOUNDARIES FOR PANEL 8 IN FRACTIUM OF SPAN
 0. .1000F-01

CUCFOINATES OF BOX COMERS

. BOE CORNERS FOR PAREL .

	•	ı
.250001+01	. 154 708 +01	75000E+00
. \$2500E+01	. 154 705 - 01	. 75000E + 00
. 400000E + 01	. 150 701 - 01	TS000E + 00
. 25000f +01	-154706-01	25000f + 00
. 125006 +01	-134 705 -01	25000f +00
- 40C00F+01		250006 +00

STATE L.E. CENTERLINE N-COORDINATES

. 250006 +01

AVERAGE CHORDLENGTH OF STRIPS

. 150000 +01

... PAREL NO. 9 IMPUT VALUES ***

- #1 . 2.500000 #2 . 4.000000 Vi . 1.567000 E1 . -.250000
- E3 2.500000 R4 4.000000 T2 2.000000 E2 0.000000

- 3 CHEROKISE DIVISION BOUNDARIES FOR PAREL 9 IN FRACTION OF CHORD
 - 0. .*0000:-00 .10000:-01
- 2 SPANULSE DIVISION BOUNDARIES FOR PANEL 9 IN FRACTION OF SPAN
 - 0. .10006+01

COUPDINATES OF BOX CORNERS

& BOX COPNERS FOR PANEL 9

STRIP L.E. CENTEPLINE E-COORDINATES

. 230006+01

AVERAGE CHORDLENGTH OF STRIPS

- 13000E+01

... PANEL NO. 10 INPUT VALUES ...

#1 - 2.300000 #2 - 4.000000 V1 - 0.000000 /1 - 1.000000

- 3 CHORDWISE DIVISION BOUNDARIES FOR PANEL 10 IN FRACTION OF CHORD
 - 0. .50000-00 .10000+01
- 3 SPANNISE DIVISION BOUNDARIES FOR PAREL 10 IN FRACTION OF SPAN
 - 0. .50C0E+00 .1000E+01

COOPSINATES OF BOX COPNERS

9 BOX CORNERS FOR PANEL 10

t . 20000E + 01 .10000E+01 . 3C000# +01 .1000006 *01 . +000001 +01 .10000E+01 .200001+01 .433CGE+50 . 75000E +00 . 30CGCE + 01 .43330E+00 . 750005 +00 . +COCCE + 01 .43300E+04 . P\$000E+00 . 200005 +01 .50000E+05 . 30000E+61 . #66005 - 30 . 400006 +01 . B&&COF - DO .500006 - 00

STATP L.E. CENTERLINE #-COORDINATES

.200004 + 01 . 200004 + 01

AVERAGE CHORDLENGTH OF STRIPS

.200006+01 .200006+01

*** PANEL NO. 11 INPUT VALUES ***

- 3 CHOPOWISE DIVISION BOUNDANIES FOR PAREL 11 IN FRACTION OF CHORD

0. .50000+00 .;9000+01

3 SPANNISE DIVISIO: BOUNDARIES FOR PANEL LL IN FRACTION OF SPAN

0. .50000.00 .10000.01

COOPDINATES OF BOX COPNERS

. BOX CORNERS FOR PANEL 11

. .

```
.50000E+00
.50000E+00
* $0000£ *01
                   . #66CUE +00
. 40000E + 01
                    . 86400[ +00
. 20000E . 01
                   .00.100110
                   . 866706+00
. 30000E + 01
. 40000F +01
                    . 866006 + 00
                                    -.50000E+00
-.50000E+00
10+300005.
                    . 866 006 + 00
                   .866006.00
. 40000E+01
```

STRIP L.E. CENTERLINE E-COORDINATES

.20000E+01 .20000E+01

AVERAGE CHOPDLENGTH OF STRIPS

.20000E+01 .20000E+01

... PANEL NO. 12 INPUT VALUES ...

- x1 2.000000 x2 4.000000 v1 .866000 Z1 -.500000
- #3 2.000000 #4 4.000000 12 0.000000 22 -1.000000
- 3 CHORDWISE DIVISION BOUNDABLES FOR PANEL 12 IN FRACTION OF CHORD
 - 0. .5000E+00 .1000E+01
- 3 SPANNISE DIVISION BOUNDABLES FOR PANEL 12 IN FRACTION OF SPAN
 - 0. .5000f+C0 .1000f+01

COORDINATES OF BOX CORNERS

9 BOX CORNERS FOR PAREL 12

	•	
. 200006 + 01	. 86600[+00	59000E+30
. 300C OE + 01	. REA DOE + 00	50000E +00
. 40000E+01		\$0000E +00
. 200000£ + 01	.433C0E+00	75000E +00
10000F+01	.43300E+00	T5000E +00
. **************	.433COE+00	75000E +00
. 200000 +01	0.	10000E+01
. 3000CE +01	0.	100000E+01
. 40000E + 01	0.	10000E+01

STRIP L.E. CENTERLINE X-COURDINATES

.200006.01 .200006.01

AVERAGE CHOPDLENGTH OF STRIPS

.200005.01 .200006.01

PANEL DATA

APPAY OF CUMULATIVE BUT NUMBERS FOR ALL PAVELS

. . 10 12 1- 10 16 20 22 26 90 3-

DIMEDIAL ANGLES FOR ALL PARELS

0.00 28.57 270.00 330.00 270.00 230.00 150.00 90.00 30.00 330.00 270.00 210.00

• 5141P DATA •

	CENTERLINE			FRACTION OF
*	1	DELYS	DEL/S	PANEL SPAN
-1149506 +01	.500000(+00	.5670C0E+00	0.	.2500not +00
. 1 714 > OF + O1	. 5000 CUE + 05	.5670CUL+00	0.	. #5000081 . 00
.225Ct C[+01	. 625000F + 00	.5000COE .00	.2:000006:00	.250000F .00
. 27500'H . 01	.47500E +00	.5000044 • 00	.2503006.93	. P\$3003E +60
. 2000cook •01	.2500cCE .00	0.	.\$0070CE .00	.9030ouf •00
.221 et of +01	1.75-00-F +00	. 4 110000[+03	. 4507031 +03	.500000E+00
10. 1001 6.5	500C00F • CO	0.	• 5:00 Year 000	.5030 ont •60
. 221 e 50f +01	4 PSC COE . CO	. * 33000F * 00	.2507304.00	.512030f *D0
-178350F +91	87500001 - 00	.433GOOL+00	.2>0130f +00	.5330004 .00
. 150 fulf +01	*000COE * DD	٥.	.5002005+00	.5000000 +CO
. 17435OE +OL	1250COF + 00	. 4 130 DOF + 00	.2107006.00	•500000€ •00
.2165005 .00	.475000F + 00	110000 .00	.2900002.00	.290000f •00
.64 V50 W .00	. 625000F • CO	. +330001 +00	.250000t +35	. 1501 041 .00
	.2500000 .00	0.	.5003301.003	. 25000ut •60
	2500005 .00	0.	. \$000300 (*00	. 7500004 +60
.449500[+00		.4330006 +00	. 2500001 . 00	.25000001 .00
-210500E+00	875000E +00	.43300001+00	.2503006.00	.750000E+00

. BOX GEOMETRY

PART L COORDINATES OF BOX EDGES AT 1/4 CHORD PCINTS

1*804*D		QU18040D				
	•	ı		•	4	MD.
. 2250[+0]		. 50005 + 30	.24491+01	.14336+01	.5000F+00	
. 32501 +01		. 3000E + 90	. 33++* +01	.14335.01	.5000f+63	2
. 2469[+01	. 1433[+0]	. 50006 + 00	. 24885 + 91	.20001+01	.\$550f +00	3
. 33+46 +01	. 14336 + 01	. 5000f • 30	. 3+) mf + 01	.20001-01	. 50001 +00	
. 247 85 +01	- 2000f + 01	. 5000F • 00	.290uf +01	.250CE+01	.7500E+00	3
. 34306 +01	. 2000f + 01	. \$0006 - 00	- 35 3 LE + 01	.25001+01	.7500E+00	
. 290+[+0]	. 2:001 . 01	. 7500E + 00	. 31 25E v 01	.30006+01	.100001-01	,
. 35316+01	- 25001 +01	. 75 COL - 90	. 30256 + 01	.30006+01	.100006+01	
. Zb=0[+01	. 20001 + 01	. 5000E 10	. 20041 - 01	.2000E+01	0.	
. 34386 + 01	. 20COF +01	. \$0006 - 00	. 34 3 08 + 01	.20006.01	0.	19
.2460[+0]	. 20cor +01	0.	. 2L+0E+01	-2+336+01	2500E+00	11
. 34306 + 01	. 20001 • 01	0.	. 34 300 +01	.24335.01	2500F+00	12
. 2400[+01	. 2433f +01	250nf · 00	. 24 Bet + 01	.24336.01	75001 +00	1.3
. 34 301 +01	. 24336+01	250M+C0	. 34 3 86 + 01	.24336+01	7500t + 00	1.
. 2000E . DI	. 24336 + 01	7590L + 00	. 20606 . 01	.20096+01	1000[+01	15
. 34306+01	. 24336 + 01	7300f + 00	.343mf+01	.20001+01	10001+01	
. 2 . 0 o E . D1	. 2000f + 01	1000E+01	-2×08E+01	.1567[+0]	7500E+00	1.7
. 34346 +01	- SOCO! + 01	100001 - 01	.34386+01	. 15675+01	7500E+00	1.0
. 20001 . 01	. 15077 . 01	7500t + 30	. 24001 +01	. 1567E+01	2500E+00	19
. 343 66 + 01	. 15471 +01	7500K + 00	. 34 3 00 + 01	. 1567[+01	2500E+00	20
. 2400[+01	. 15e 7f + 01	2500E · CO	. 24865 + 01	. 2000f +01	0.	21
. 34306 +01	- 15476+01	2500f + 00	. 3+386+01	.2000[+0]	0.	22
.22504.01	0.	.1C00x + 01	.2250t -01	.4330t+00	.75006 +00	23
. 3250[+01	•.	.1000/+01	. 325 LE + 01	. 433CF+00	.75001+00	2 4.
10+30655	.43306+00	. 750LF + 00	.2250s +OI		. 500001 +00	25
. 32501 +01	.433CE+00	. 7500E . CO	. 32 5 05 + 01		.5000[+00	2.0
. 2250F+01	. 84 40[+00	. \$000F • 00	. 22501 - 01	0 00	0.	27
. 32501 +01		. 50004 + 00	. 32 506 + 01	DE+00	0.	20
. 22506 + 01		0.	. 22506 +01		50001+00	29
. 32506 +01		0.	. 32506+01		5000[+00	30
. 22501 +01		5000E + 00	.22506 +01	.43306+00	7500E . 00	31
. 32506+01	. BLLCE + 00	5000E + CO	. 32 5 06 + 01	.4330[+00	7500t +00	32
. 22506 - 01	. 4330E + 00	7500E+C0	. 22501 - 01	0.	1000E+01	33
. 32506+01	. 4330[+00	75006+00	. 32 506 + 01	0.	10006 -01	34

P & R T 2 COOPDINATES OF BUX SENDING AND PECESVING POINTS

1/4 CHOPD POINTS			3/4	3/4 CHOPD POINTS				
	•					⊷.		
. 235% +01	. 11505 +01	.500FE+00	.20706+01	.1150[+01	.909.1.00			
. 32775 +01	-11501+01	. \$0005 + 00	. 37644 . 01	.1159F+01	.50008+33	2		
. 2578E + DI	. 17176 - 01	. 5000E - 00	.29845 +01	.17176-01	.50004 +30			
. 33914 +01	. 1 71 78 . 01	. \$-00CE + 00	. 37975 + 01	. 1 71 76 - 01	.90009-93			
. 27976 . 01	. 22500 . 01	. \$250f + 00	. 31+16+01	.22501.01	. \$2508 · 38	9		
. besef +01	. 22501 + 01	- 4250F + 90	. 382 of + 01	.22501+01	.02508 - 00			
. 30.04 - 01	.27501 + 01	. # 750" + 60	. 32 9 PE + 31	.27501+01				
. 35 Pot . 01	. 27736 + 01	. ****01 * 89	. 34595 + 61	.27501+01	. # PSU(+ DA			
. 2 m m = E + C 1	.2000** 04	.2500 20	. 30a3f +01	*50001-01	.25006.00			
. 34386 +01	. 20001 • CL	.25001.00	-30136+01	10.30003.	.25008.03	8.0		
-300FE+C1	. 221 M . D1	1250F - 00	. 504 36 +01	.22175.01	1250f + DO	8.6		
. 3+10!+01	. 22177 . 01	1250E + CO	. 381 3E + 01	. ZZ178 * 01	1250E+00	1.2		
. 24006 . 01	-24336 +61	SFOUR + 64	. 30636 • 01	.24331-01	50701 +03	13		
. 34305 - 01	.2433F +C1	\$000F • 00	. \$6136 +01	. 24335-01	500JE-05	1.0		
. 24-001 - 01	. 221 77 . 01	# TSUE . 05	. 1Ge 3F + 01	.22176.01	87501 -00	1.5		
. 343ef + 01	. 221 PE + 01	# F50E - CO	. 301 36 + 61	.22176 + 01	# 75 DE + 00	10		
. 240sf +01	. 17846 - 01	075 CF + CO	. \$5a 36 + D1	. 178-1-31	0 F5 08 + 33	1.7		
. 343EE+0!	. 170-4 - 01	07501 · 00	. 361 35 + 01	.17046-01	0750f +00	1.0		
. 20001 +01	- 15e FF + 01	500m + 00	. 304 36 + 01	. 15676 - 01	500*[• 90	19		
. 3+3# ! + 01	. 15e FF + 91	*. 50 DDF * 00	. 361 35 + 91	. 15676 - 31	5050E+GD	2.0		
. 24986 . 01	. 1704(+01	12508+60	. 506 36 - 91	.17845.01	1250f +00	21		
. 34345 +01	. 17646 + 01	125CE + 00	. BHI 35 + DI	. 1.78 - 6 - 51	12501.00	2.2		
. 225vt +01	. 214 56 + 6 0	. 07505 + 00	.2750t +01	.21456.00		23		
. 3.501 .01	. Z14 SF + DQ	. #750E + Gu	. 375 DE + 01	.21657+00	.8750E * 00	24		
.2450E+01	.64557 +00	.02505.00	.2750f + 01	****56*00	-6750E * 90	25		
. 32506 + 01		.6250F • CO	.3750[+01	.64956+30	250E.00	24		
. 2250E . DI		.2500E+00	.27506 -01	. 86601 +00	.25008 .09	27		
* 32505 * DI		. 25006 + 00	. 3750F + 01	. 0540[+09	*55-304 *30	2.0		
. 2250f +01	CE + CO	2500E + 00	. 2750E + 01		25006 -00	29		
. 32501 . 01		2500E + 08	. 375-06 + 01		2500E * DO	90		
. 22506 +01	. 6495E+00	4750 -00	.27506 .01		2500 .00	94		
. 3250E+01		4250F + 60	. 37500 + 01	.44951-00	2508-00	3.2		
. 22506 + 01	-21456+00	87506 - 00	. 27506 + 01	.21454-00	\$750E + 05	33		
. 32506 +01	-21094-00	87506+00	.37506+01	.2145E+00	47506+00			

....

#-CODEDT-4 TES OF SENDING POINTS AS FRACTIONS OF SERIF CHIRDLENGTH

* ** * * * * * * * * * * * * * * * * *	* * * * > * * * * * * * * * * * * * * *	\$ 65 3 10 65 x 66	SECTIONS AND
-1253BUE - 20	-6.25 PBD(+03	.12570004.00	-A.79030F +D0
-02 000 W + 02	*1.25@@@(+ 20	.4250804-00	. LENGTOF *BI
-1.750CL1 - DO	- 8-25 DCDE • 20	-1.75000E+00	** \$5000E ***
-B250001+00	- 1.75 0 G OF + 30	-425330E+00	-1.25000F +D0
. 1.75 00 W + 00	* 6.25 DB 07 * 08	. 1.730 Buf + 90	-A250501 +D1
**530E0E+00	+125000E+00	.4.250001+90	
ENGTH OF BOILS			
			*6875001 -04
			. F50∩007 • C8
	_ Thuddaf •00	. 7503004 = 33	. F50030E +00
. F5300'X + 00	. 7500 GBE + 28	. Francia • 00	.7530000 +00
		A P P P P P P P P P	
. 7500G # +00	- 4 300003e + 64	. account *0 a	. 100000E *01
. 75-006-X • 00	* 1 300656 * 61	. 100003t • 31	.1200001 •01
	.825000 # 00 .1250011 * 00 .825000 * 00 .125009 * 00 .825000 * 00	.02500.0 +00 .1250000 -00 .1250000 -00 .255000 +00 .1250000 +00 .1250000 +00 .1250000 +00 .1250000 +00 .1250000 +00 .1250000 +00 .1250000 +00 .1250000 +00 .125000	-82500.0000 00 .825000

900 w107m5

- 54 TODGE +00	. Sa PROSE + US	. 5x 7000E+00	.5a 7000f +00	.999017E+00
. 55-mil N - 56	. 55 90 L R + 00	. 55901 PE+00	. \$000,004 • #4	. 1030001 - 00
. 4 995 858 +00	. 49 99 857 + 00	. 5.30 a Cat + 00	. \$88998E + 20	.4995896 +05
. 4 99 94 W + 00	. 4 9998 M + 00		.5003304 +34	.9030006 +00
. 45558 W +00			. 4899895 -03	
	. 150000E + 00	. 1 00 0 COE + 0 0	. 90000064+00	. \$500000 + 00
******* ****	-: 1998 % + 00		*********	

MIGROFILMED FROM BEST AVAILABLE COPY

BUDY GEOMETRY

*** BODY NO. 1 INPUT VALUES ***

CENTER OF BODY COORDINATES Y ** 2.000000 2 * *- 500000

YFLAG * 1 ZFLAG * 0 ** MODE SHAPE COEFFICIENT ** 1.000000

BODY BOX LIMITS ON INTERFERENCE PANELS FOR THIS BODY ** 11 22

- BODY FLEMENT ENDPOINTS FOR BODY NO. 1
-200000E+01 -250000E+01 -325000E+01 -450000E+01
- 4 BODY PADIT AT ELEMENT ENDPOINTS FOR BODY NO. 1
-500000E+00 -500000E+00 0.
--- BODY NO. 2 INPUT VALUES --
CENTER OF BUDY COORDINATES + 2.000000 2 - --500000

TFLAG - 0 ZFLAG - 1 MODE SHAPE COEFFICIENT - 1.000000

BODY BOX LIMITS ON INTERFERENCE PANELS FOR THIS BODY - 11 22

.200000E+01 .250000E+01 .325000E+01 .450000E+01

4 800Y MADIT AT ELEMENT ENDPOINTS FUR BODY NO. 2

6. .500000E+00 .500000E+00 0.

+** BODY NO. 3 INPUT VALUES ***

CENTER OF BODY COUNDINATES Y = 0.000000 2 = 0.000000

YFLAG = 0 2FLAG = 1 MODE SHAPE COEFFICIENT = 1.000000

BODY BOX LIBITS ON INTERFERENCE PARELS FOR THIS BODY = 23 34

4 BODY ELEMENT ENDPOINTS FOR BODY NO. 2

4 BODY ELEMENT ENOPOINTS FOR BODY NO. 3

0. .20000001+01 .4000001+01 .2000001+01
- 8007 FAD18 AT ELEMENT ENGROSMES FOR 8007 No. 3
0. .1000001+01 .1000001+01 0.

• 8007 AREATS •

SECEIVING POINT		SENDING	LENGTH	496.040105		
	•					₩ 0.
.22306+01	. 2000[+01	50006+00	.22501+01	.5003[+93	.25004.00	25
.2475E+01	. Z0000f + 01	500UE + 00	.28756 + 01	. 75nof +03	.5000F+38	34
. 36756 + 01	. 2000f +01	\$000E+00	. 30 756 + 01	.12501-01	.25006.00	3.7
. 22506 . 04	. 2C00f +01	500UF + 00	.2250E . 01	. \$4000f + 30	-25000 ·00	3.6
. Z#75E+G1	. 200v4 • 01	5000E +00	. 28756 + 01	. 7500f • 50	.50006.00	3.9
. 34756+01	. 20001 - 01	5000E+C0	. 38756 + 01	-1250[+01	.25006.00	43
.100001+01	0.	0.	.10006 +01	.20001-01	.50001-00	•1
. 30006 + 01	0.	0.	. 3000f +01	.20001-01	.100001-01	•4
. 5000E+01	6.	0.	. 5000E+01	.2000f+01	.5000[+00	• 3

END OF GEORETHY DATA

MODAL DATA

PERTNOMIAL DATA FOR MODES DEFINED

PEINT PERSONES AND GEN. FORCES TOTAL NUMBER OF MUDES

TOTAL	NU.		OF	M008 5			
TOTAL	NUM	350	738	COEFFIC	16-1	15	.0
NUMBER !	6.0	CO		ICHESTS !	0.0	PANELS	34
NUMBER	OF	Cal		ICIINTS !	(30)	BGD165	

POLYNOMIAL MODE DEFINITION

PANEL	-006		POWER OF	COEFFICIENT
NO.	ND.	18 / 51	17 / 51	
	1	۰	0	-1.0000
2		•	0	8940
•	1	0	0	6663
	1	0	0	. 61.40
,		0	٥	.9660
•			0	6660
10	1		0	8660
1.2	1	0	0	. *****
	2	1	0	-1.0300
2	2	1	٥	89-0
•	2	1	0	0640
	2		0	
,	2	1	0	. 8600
•	2	1	0	4660
10	2	1		
1.2	2	1	0	.8660
	,	0	0	· . 66 (v)
	3	0		-1.0300
2	,	0	0	-4.61.0
2	3	0	1	-1.0000
	3	6	0	.5000
3	3	0	1	-1.0000
	3	0	0	-1.7320
	3	0	1	-1.0000
•	,	6	0	2500
,	,	0	i	-1.0000

			0	1.7320
•	•	0		-1.0000
,	,	•	0	2.2320
,	3	0		-1.0000
•	3	0	0	. 7500
	3	0	1	-1.0000
•	,		0	-1.2320
•	,	0	4	-1.0000
10	,	0	0	0.0000
10	,		0	0.5600
10	•	0	0	0.0000
10	3			0.0000
10 10 10	3			0.0000
10	,	6	0	0.0000
10	,		0	0.0030
10	3		6	4.0000
10	,	0	0	0.0000
10	3	- 0		0.0000
10	,		a	0.0000

POLYNOMIAL MODE DEFINITION

PANEL	-	Powt #	Q#	POME	DF.	COEFFICIENT
*0.	wo.	** /		17/		
10	,					0.0000
10						0.0000
10						0.8000
10						0.0000
10						0.0000
10						0.0000
10	3					0.0000
10						0.0000
10					6	9,0000
10			ō		ě	0.0000
10					0	0.0000
10						0.0000
10	,					0.0900
10					0	0.0000
10			0			0.0000
10	,					0.0000
10	3		0		0	0.0000
10	3				0	0.0000
10			0		0	0.0000

THE 34 8-MATRIX ELEMENTS FOR MINE NO. 1

3313636 · 00 5313636 · 00 4606886 · 00	44 04 BE + DO	34358b[+00	3. 35 aaf + 00	2811146+00	281116F + 00	0.
· 324743E+00 324743E+00 0.	0.	. 32+7+36+80	.3247436+00	. 3247436+00	. 3247436 + 00	0.
32+743[+00 32+743[+00 432+90[+00		43/9906+00	432990[+60	0.	0.	٥.

THE SA B-MATRIX ELEMENTS FOR MODE NO. 2

THE 34 S-MATRIX ELEMENTS FOR MIDE NO. 3

-.611031f*00 -.611031f*00 -.790770f*00 -.790770f*00 -.883682f*00 -.883682f*00 -.896590f*00 -.896

POLYMONIAL MODE DEFINITION

8097	1004	POWER OF	POME OF	CORPS SC SENS				
MO.	₩.	/ 5.	17 / 51	1489				
•				~1.0000 ~1.0000 ~1.0000 ~1.0000 ~2.0000				
		Teg :						
				.2500004-007500004-00	+250004+00	1000001+01	2000 000 +61	-,1883004+81
		714						
	0.	6.		.5425000+002154256-0;	*.2*21##4*#1	1900001+91	-, +0000000 +01	-, >0000004+01
		fm:		ELEMENTS FOR MORE NO.				
-1230004-00	37500	06+0031	2:404+00 -	.5000006+001500008-01	**1250006+01		Sa .	6,

REDUCED FREQUENCY - 0.

	1 44	3400unus SH W EI	LEMENTS FOR I	400E NG. 1					
0.	0.	0.	0.	0.	0.	0.	0.	0.	٥.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	a.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	C.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.		-
	1 HE	3400040A50 # E1	LEMENTS FOR I	NODE NO. 2					
.1000000 + 01			M • 01 3.	.1000000[+0;	0.	.1000001+01	0.	. #94000f +00	0.
. # 94000£ + DO	0.	. 89+00	2 •00 0.	.89+0006+00	3.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	9.	0.	0.		0.
0.	0.	0.	0.	۵.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.		
	116	34004W445H & E	-	NODE NO. 3					
0.	0.	0.	0.	9.	0.	0.	0.	0.	٥.
0.	0.	0.	0.	0.	0.	0.	0.	0.	
0.	0.	0.	6.	0.	0.	0.	0.	0.	0. 0. 0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0	0.	6.
0.	0.	0.	0.	0.	ō.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	••	
		THE 9 W.		MENTS FOR MODE NO.	4				
0.	0.	0.	0.	0.	0.	0.	0.	0.	٥.
0.	0.	0.	0.	0.	0.	4.	0.		
		1mi 9 m		MENTS FOR MODE NO.					
0.	0.	0.	0.	0.	0.	0.	0.	0.	٥.
0.	0.	0.	0.	0.	0.	0.	0.		
COL. NO. 1			ME COEFFICI						
0.	0.	0.	0.	0.	0.	0.	a.	6.	0.
.0.	0.	0.	6.	0.	0.	0.	0.		

 0. .1000000E+01		.10000000 +01		0. .1000000€+91	0.	.109000E+01		.10000000101	0.
0.	0.	0. 0.	0. 0.	0. 0.	0.	0.	0.	0.	٥.
0. 251327E+01		0. .31+159E+01	0.	0. 0.	o. o.	.628319E+01 314159E+01		0.	٥.
0. 0.		0. 0.	O. O.	0. 0.	0.	0. 0.	0. 2.	6.	0.
0. 0.		0. 0.	0. 0.	0. 0.	3 0. 0.	0.	o. o.	0.	٥.
0. 0.	OF LINE ELEMEN O. O.	O.	OEFFICIENT MA O. O.	0. 0.	0.	0.	0. 6.	e.	0.

ODE NO 1

•				
•	80 x	PEESSURE	DIFFERENCES	
•				

0x 40.	36#	•	•	ı	PRESSURE	DIFFERENCE IMAGINARY
	.12500	2.35938	1.14950	.59000	0.	0.
2	. 6 25 90	3.29688	1.14450	.50000	0.	0.
3	.12500	2.57813	1.71050	.50000	0.	0.
•	. c 25 00	3.39063	1.71050	.50000	0.	0.
5	.12500	2. 79688	2.25030	.42500	0.	0.
	2530	3. +4+34	2.25000	.02500	9.	0.
7	.12500	3.01563	2.75000	. #7500	0.	0.
	.4 25 00	3.57613	2.75000	7500	0.	0.
•	.12500	2.00750	2.00030	.25000	0.	0.
10	.4 25 00	3.43750	2.00000	.25000	0.	0.
	.12590	2.68750	2.21050	12500	0.	0.
12	2500	3.43750	2.21050	12500	0.	0.
13	.12500	2.68750	2.43300	59300	0.	0.
14	.42500	3.43750	2.43300	50000	0.	0.
15	.12500	2.08750	2.21650	87500	0.	0.
10	. 22500	3.+3750	2.21450	07500	0.	0.
17	.12500	2.68750	1. 78 150	67500	0.	0.
10	. 6 25 00	3. 43 750	1.78350	07500	0.	0.
1.	.12500	2.68750	1.56700	50000	0.	0.
20	2500	3.43750	1.50700	50000	0.	0.
21	.12500	2.00750	1.70350	12500	0.	0.
5.5	2503	3.43750	1.76350	12500	0.	0.
23	. 12500	2.25000	.21650	.87500	0.	0.
2.	.62500	3.25000	.21050	.07500	0.	0.
25	.12500	2.25000	.64950	.62500	0.	0.
20	.4 2500	3.25000	. 4.4450	.42500	0.	0.
27	.12530	2.25000	. 900 90	.25002	0.	0.
2.	.625.00	3.25000	00	.25000	ě.	0.
2.	.12500	2.25300	. 86600	25000	0.	0.
30	2500	3.25000		25000	0.	0.
21	.12500	2.23000	. 6 4 9 5 0	62500	0.	0.
32	25 00	3.25000	.04950	62500	0.	0.
33	.12500	2.25000	.21650	07500	0.	0.
34	.4 25 00	3.25000	.21650	67500	0.	0.

PANEL SECTIONAL DESIVATIVES

5701P NO. T			705	LIFT COEFFI	CIENT	MONENT COLFFICIENT		
					1-46	****	1946	
	1.1495	.5000	1.1495	0.000000	0.000000	0.000000	0.000000	
2	1.7105	.5000	1.7105	0.000000	0.000000	0.000000	0,000000	
3	2.2500	250	2.2550	0.000000	0.000000	0.00000	0.000300	
•	2.7500	.0750	2.7540	6.000000	0.000000	0.000000	0.000000	
•	2.0000	.2300	2.0000	0.000000	0.000000	0.000000	0.000300	
•	2.2145	1250	2.2105	0.000000	0.000303	0.000000	0.000060	
,	2.4330	5000	2.4330	0.000000	0.000,000	0.000000	0.200000	
	2.2105	0750	2.2105	0.000300	0.000000	0.000000	0.000000	
•	1.7835	6750	1.7015	0.000000	0.000600	9-300999	0.020000	
10	1.5070	5000	1.5070	0.000000	0.000000	0.000000	0.000000	
11	1.7035	1250	1.7815	0.000000	0.000000	0.000000	0.000000	
1.2	.2145		.2105	0.000000	0.000000	0.000000	0.000300	
13	.4495	.6250	. 4 4 9 5	0.000000	0.000000	0.00000	0.000340	
14		.2500	0	0.000000	0.000000	0.000000	0.000000	
15		2500		0.000000	0.000000	0.000000	0.000000	
10		4250		0.000000	0.000000	0.000000	0.000000	
17	.2145	0750	-2145	0.000000	0.000000	6.000000	0.000000	

BODT SECTIONAL DESIVATIVES

9001	NO.	•		+05	LIFT CORPFI	CHEST	MOMENT COEFFIC	IENT
						1446	PFAL	1 446
		2.0000	5000	2.0000	0.000000	0.000000	0.000000	0.000000
		2.0000	5000	2.0000	0.000000	0.000000	0.000000	0.000000
		0.0000	0.6060	0.0000	0.000000	0.000000	0.000000	0.000000

TOTAL DEPIVATIVES

CI . FORCE COEFFICIENT IN I DIRECTION

	DEFFICIENT COES G MOMENT COES MOMENT COEFF	*ICIENT			
	PEAL	I mail		-	1446
(1 • (1 • (1 • (1 • (1 • (1 • (1 • (1 •	6.000000 6.000000 6.000000	6.000000 8.000000 8.000000	£7:	6.000000	0.000000
GENERAL 1210 A					
### ### ###	DE DEFLEC	710m MODE	CENERAL IZ	ED FORCES	
			-	144614487	
ì		ţ	0. 0.	0. 0.	

MODE NO 2

•				
•	60×	PRESSURE	DIFFERENCES	

801 W.	*00			2	PRESSURE 01	*******
			-	•	****	Imacinary
	.12500	2.35938	1.14950	.59700	.9149434/1+01	0.
2	·4 2500	3.29648	1-1-950	.50000	. 313773+15+01	0.
,	.14500	2.37013	4. F1050	.10000	.113450401+02	0.
•	.4.2500	3. 19063	1.71.090	.50000	. 304473718 -01	0.
•	.12500	2.74088	2.25000		. 7504 90 7 35 + 01	0.
	2500	3.48438	2.29000	2500	.149715215.01	0.
,	1.7500	3.01503	2.75220	7500		0
•	.4 2500	3.57013	2. 75030		.100 7 9 3 2 3 4 - 0 4	0.
•	.14500	2.00750	2.00000	.25000	.513120701-01	0.
10	2500	3.43750	2.00000	.25000	.13097s.Fog .01	0.
**	.12500	2.48750	2.21450	12500	332699946.01	0.
12		3.43750	2-41050	12500	.112049031-01	0.
	. 1 25 00	2.10750	2.43300	50000	114971401+00	0.
1.	. 62500	3.43750	2.43300	%1000	403341176 -00	0.
15	.12590	2.08750	2.21.50	87500	.2.3108001.01	0.
	. 62150	3.43750	2.21000	87500	/04640401+01	0.
17	.12500	2.64750	1.70350	07500	.1540771116 +01	0.
	. 6 25 00	3.43750	1.70350	07500	234317541 +01	0.
1.0	. 12500	2.48750	1.50700	50000	3156-2976 -31	0.
5.0	.42500	3.43730	1.56700	90000	1 15071491 +01	0.
21	. 1 2500	2-68750	1.78350	12900	825 761 354 +04	0
22	.4 2500	3-43/50	1. 78350	17500	2714710721 .00	0.
23	.14500	2-49300	-21450	.07500	.201362521	0.
2.	· 4.2500	3.25000	-21050	7500	.101023001-01	0.
25	. 12500	2-25000	. 64730	2500	.247788145.01	0.
2.	.4.2300	3-25000	. 8 4 9 3 0	.62500	.107353296 .01	0.
27	.15200	2.25000	. *** 00	.25000	424425896 +31	0.
20	.42500	3.25000	. *****	.25000	19506 1347+01	0.
3.	.16300	2.23000		45000		0.
90	-62500	3.25000	. *** 00	25000	167838741+01	0.
21	-12500	2.25000	. 64950	62500	180acflet .01	0.
3.5	.42560	3.29900	. 04950	62900	#94024456+00	0.
**	.12500	2-25000	.21050	7500	1+8+09+25+01	0.
34	2500	3.25000	.21050	07500		0.

PANEL SECTIONAL DESTURTIVES

4006 40 S

\$181P NO. Y			*05	4 187 CHEFF	CERNE	****** COEFF SC SENT		
				BEAL	8ma C	*6*1	1946	
	1.1.75	.5000	4.1495	6-1295bc	6.4075 100	-9.500011	6,900003	
	1.7105	. 5000	1-7105	7.500.500	6-0-0388	-9-441 700	6,95000	
	4-2550	.4253	4-7909	9.937000	0.480 508	*******	6.090000	
	2.7500	. 0750	2.7590	4.013579	0.0"3350	0.778579	6,000004	
9	2.0300	.4900	2.0000	3-1/2519	0-075000	4. 847507	6,00004	
	2-21-5	**1/90	4-2109	-1.059245	0.0 000	0.000710	6,000000	
	2.4330	-,9880	2110	45 75.00	6-01-750	4 9 9 7 9 9 9	9,809900	
	2-2105	679.3	4-7105	-107800	0.000	. 5.03373	0.004003	
	1.7835	·. #F5.5	1.7875	71 29 /	6,000 300	. 64 8444	0.055503	
10	1-5070	·,5000	1-14-FB	-2-25 25 27	F - 2 - 100	-014375	6.000000	
	1.7825	1790	4-7605	-4.208447	0.070309	40.039.79	0.050000	
8.2	. #3.55	.0750	-2105	1-21-230	B - 800 70 8	44 74/7	8,000000	
1.0		. 4.750	. 6495	1-775707	0.000.030	0,095647	9,086000	
14	. 8660	.2500		-1.100447	0.000.000	. # Pa Pa 1	0.000000	
13		2550	.0000	.2.3/14/7	6-000000	. 789775	6,000000	
		6250	. 5493	-1.350344	6.000000	. 352300	8-995550	
17	-2165	8750	-2105	-1-077819	0.000000	. 102111	0. Dy0066	

SECTIONAL SEPTIMATIVES

4006 NG 2

900Y WG.				+65	LIFT CORPFICIENT		MOMENT CONFFICIENT	
					***	1445	****	1 ***
		2.0000 2.0000 0.0000	9000 9000 9.0000	4.1 -00 0.1000	0.000000 .000000 0.000000	0.000000 0.00000 0.00000	0.00000 .103503	6.000000 6.000000

101AL DERIVATIVES

CE . FORCE CORPFICIENT IN 2 DIRECTION

CH . PITCH	COEFFICIENT IN ING NOMENT COEFF G NOMENT COEFF NG NOMENT COEFFI	SCIENT			
	PEAL	1 ***		***	1485
	3.1502-2 -4.2490-0 -6.000000	0.00000 0.00000 0.00000	€ 7 • € 8 ≪	357263 ⁸ 6.000000	0.00000 0.00000
PRESSURE	MODE DEFLECT	110 = = 00£	GENERAL 17ED	FORCES IMAGINARY	
	2 2 2	1	2015#940£+02 41205394£+02 28271777E+02	0. 0.	

OD4 NO 8

•				
	60 ×	PRESSURE	DIFFERENCES	
•				

BOX	*0.	¥9C	•	*		****	DIFFERENCE
		.12500	2.35918	1.14953	.50000	0.	0.
	2	-4.25.00	3-79458	1-1-950	.50000	0.	0.
	3	. 1.25.99	2-57013	4.71450	.50300	0.	0.
		25.00	3. 3 VOs 3	1.74090	.50000	0.	0.
	5	. 1.2500	2. 79288	2.29000	.4.7500	0.	0.
		.0.25.00	3. *** 18	2-29000	.02500	0.	0.
		.12500	3.01563	2. 75.000	.01900	0.	0.
		.4.2500	3.5/613	2. 79000	.87500	0.	0.
		-12500	2-48750	1.000000	.25000	0.	0.
	10	·4.25 90	3-43 750	1.00000	.25000	0.	0.
	8.1	.12500	2-66750	2-21190	12500	0.	0
	1.2	.4.2500	3.43750	2.21000	1/200	0.	0.
	13	.12505	2.00750	2.43700	50000	0.	0.
	1.	·4.25 30	3-43750	2.49300	50000	0.	0.
	8.5	. 1.25.00	2-08750	2.21090	07500	0.	0.
	10	-0.25-00	3-43750	2.21050	87500	0.	0.
		.125.00	2-6 1750	1.78350	87500	0.	0.
		· 4.25 00	3.43750	1.70356	07500	0.	0.
		.14500	2.61750	1.50700	50000	0.	0.
	20	. 6 25 00	3 3/50	1.56700	50000	0.	5.
	21	.12500	2.08750	1.78350	12500	0.	0.
	22	.02500	3 3 750	1.78350	12500	0.	0.
	23	. 1.2500	2.25000	.21050	7500	0.	0.
	2.	. 6 25 00	3.25900	.21050	.87500	0.	0.
	23	-12500	2.25000	. 64 950	.62500	0.	0.
	20	a4.25 00	3.25000	.64950	2500	0.	9.
	27	. 12500	2.25005	. 00000	.25000	0.	0.
	2.	2500	3-45 100	.00000	.25000	0.	0.
	29	.12500	2.25000	. **4.50	25000	0.	0.
	30	.42500	3.25000	.846.00	25000	0.	0.
	31	.12500	2.25000	. 64950	62500	0.	0.
	3.2	.4.2500	3.25000	.44930	62500	0.	0.
	33	.12500	2.25000	.21090	87500	0.	0.
	3.	4.25 00	3-25000	-41450	7500	0.	0.

MGDE NO 3

\$10.0P wo.	*		+05	L101 CDE001C1001		*D## %1 COMPARE 15 15 M	
				*1.44	[*6.	****	1 446
	1.1495	.9000	1.1495	0.000000	0.000000	0,900000	0.00000
2	1. 71.05	.9000	1-7105	0.000000	0.001300	0.000000	6,000000
	2.2500	.4250	2.2900	0.960000	0.00 429	0.900000	0.000003
•	2.7500		4-7500	0.000000	6.00.000	0.000300	8.007024
	2-0700	.2500	2.0000	0.000000	0.00 243	0.000000	6. 907000
	2.2105	1230	2.2105	0.000000	0.000000	0.009000	#.000000
,	2.4330	5000	2-4310	0.000000	0.000, 199	0.000000	0.300000
	2.2165	6750	2-2199	0.009000	0.000,000	0.000000	0.002000
•	1.7435		1.7015	0.000000	6-500 202	9.909000	0.030303
10	1.5670	5000	1-1-10	0.000000	0.60/ 400	0.300000	0.000000
4.4	1.7635	1250	1-7015	0.000000	0.00.000	0.000000	6.09/000
1.2	.2145	. 8 75-0	.2499	0.000000	6.000500	0.00000	0.007020
8.3		. 6250		0.000000	0.000000	0.202200	0.000964
14		.2500		0.000000	0.000000	0.00000	0.000000
15		2500	. 6000	0.000000	0.000300	0.550000	0.000300
10	.4495	6/50		0.00000	0.000030	6.000000	0.000000
17	.2165	8750	.2105	0.000000	0.000000	0.00000	0.000000

BODY SECTIONAL DESIGNATIVES

8001	wo.	•	4 +05		A SET CORFFS	C18**	MOMENT CONFFICIENT	
					P1 4L	1445	***	1986
		2.0000	5000	2.0000	0.000000	0.000000	0.000000	0.000000
	5	0.0000	0.0000	8.0000	0.000000	0.000000	0.00000	6.00000

101aL DIFIVATIVES

CE . POPER CORPFICIENT IN E DIRECTION

CH - FORCE C CH - FERCE CH - FRANCE CL I - FOLLING		FICIENT			
	****	1446		***	E-05
C1 .	4.000000 6.000000	6.000000 6.000000		6.000000	8.800000 8.000000
GE-45-1215 A	10700015				
PESSON NO	DE	710h +00f	CE***** 17	89 F0*C*5	
			PERL		
;		4	0. 0.	0. 9. 0.	

PEDICED PREGUENCY . THE DECORMENSM & ELEMENTS FOR MODE NO. 1 . ***** 77 -00 0. . ceses 75 - 00 0. 75 -00 C. .59+00001+00 8.6.6.6.6.6. .5-0000-00 0. .5940006-00 0. 8. 8. 8. 0. 6, 0. 0. 6. . . 6. . 0. 0. 0. 0. . 10-100001. 10-15-01-7. 10-100001. 10-15-16.1 10-100000. 10-1000000. 00-1000000. 00-1000000. .100036(+0) .1000000+0) .253129(+0) .0040000(+0) .1071018+01. .2300196-01 0. 0. 6. e. . 6. . . . 6. 6. 8. 6. . ٠. . . 6. . 8. 6. . . . ******** ** .1144338-01 0. -1527476-01 . Taa 3335+00 G. 15276 H - 61 0. -. IAAAA 7E + 00 6. -. 16464 7E+GD .1 ******** 6. .1900356-01 0. 9. . 8. 4666 ٠. . ٥. . 6. 6. . . . -..... TE . DO G. ê. W+00 0. - 04444 TF + 00 . . ě. . I OF LIME ELEMENT PRESSOR CORPUTERENT MITTE -. 3490442+00 .414874E+01 -.4461325+00 0. . Descrit. 0 -, Laffat 24-01 -, 4901 328-00 . 1744408-01 -, 154244-01 0.

		6. .1000000 +91	0. . ***********************************	***********	.2003004+01	.1000004 +01	. \$50090! +01 . \$51193! +01	. 1 999967 +91	.1910076-81
	,	4 1	-	100 MOSE NO.	2				
6.	0. - 14444 7 + 90	6.	6. . ***** 75 -00	0. 0.	0. -85848 76-90	6.	. ***** 7F * 7G ***** 7E * 9G		
ca. w.			UEFFICIENT PA	****					
6. 3045706	6. 	0. . 2443466 - 61	0. .+108700+01	6'- 188791-01	**************	.5**!?9E+01 10*5256+6-	.1047201+02 8377381+01	2887134+C3	.29***01*81
	,	-		FCA MODE NO.					
0.	. 3333331 • 00	6.	6. 3333314-00	0. 0.	o.333333H-00	6. 6.	.1333391-01 6.		.1333394-01
	,	-		FCF MIDE NO.	3				
6.		6.	6.	*: *:	0. 0.	6. 6.	e. e.	•.	
COL. 16.		MT PRESSURE C	DEFFICIENT NA	9018					
1745334	00 .20***0(-0)	3+*C+4E+00	:		437758E-00	444132E-00		1394244-81	

•		
•	Pants	
•	SECTIONAL DESIGNATIONS	
•		

\$78 SF 80.		4 400						
Profes and?	*		*85	LBFT CORPFOCSENT		MOMENT CORPEREDENT		
				#7 m	8∞8 €	m9 m1	1445	
	1.1445	. 5000	1.1495	-1.07713/	9.100981	. FRADLA	-1.015799	
	1. /145	.9800	8-7108	-1-177917	2.700/1/	. 891 997	-1.001667	
	2-2700	.4250	4-29.70	052794	2.570 900	3.00645	-, 71 00 57	
•	8-7508	.0759	4.04.50	-, 285545	8-239454	. 255534	*. %a1 *17	
	2.0000	-2900	4.0099	575617	1-00/010	. 283974	-,410519	
	2-2105	m_5298	4-21-5	3.197105	a . Sc 7820	795611	a, 25845#	
	2.4520	·.9889	4-4390	.945 207	2-9765	257942	*. \$555FF	
	0.2165	8758	8-2105	-1.105578	- 507 na @	. 1,7465	. 1 730 21	
	8-7835	8750	8.7805	-9.141790	(0.0033	. THE LET	.770472	
40	4-5678	*. 1860	8.94.79	1-122074	579562	-,455/41	.114976	
6.6	8.7839	1290	4.7***	3-660597	************	-1.100016	.01+0-9	
17	-F185	.0750	-2509	-9-0059	00-917	741 814	**192291	
1.9		.+290	*****	.9.209#S	-21/200	264279	-, 181191	
83		~F900	.0000	1.122000	-2-110/90	-, 750644	.450997	
8.9		~_27900	.8660	-451584	-1-90 Fees		.577804	
9.0	. 0 4 93	6250		.095301	020205	[4900]	.193220	
8.9		750	-2103	-001414	0.878700	007714	. 1 99 X DO	

SECTIONAL TEXTOATIVES

MARKS MAR 1

9007 NO.					ARTH CORPET	E 25 m²	***************************************	
					***	(mag	*6*6	9 440
		2.0000	-, 5000	2.0000	0.000000	0.000000	0.000000	0.000000
		2.0000	9000	2.0000	132649	000000	~ 05e858	. 5 0 6 9 0 9
		0.0000	0.0000	6,8660	292741	0.000988	-110999	.077576

ADAM' BEALMALINES

CA . MERCE COSPFICIENT IN I DIRECTION

CY - FORCE C CM - PITCHIN Ch - YAGING CLI - MOLLING	MOMENT COLF	FICIENT			
	****	1 *46		***	1945
C	167896 .654303 0.600000	1.491562 -1.967475 0.060000	C	. %12%22 0.000000	0.000000
GMPAIND	INFORCES :				
MESSIPE NO	DE DEFLEC	110m mode	GENERAL SZED	*a*ces	
			PE AL	[-4C [-44 F	
i		2 3	.10743960F+01 .62806127E+01 52073026E+01	95446 7116 +01 187 933156 +02 15264 4305 +02	

SECTIONAL DEPTWATIVES

PODE NO 2

5191P NO.	*	,	*06	LIFT COEFFICIENT		*3*1 ** CER ** 1C1****	
				ME ME	1445	0.00	1006
	1.1499	.5000	1.1475	1.990107	12.374177	.174449	-5.151000
	1.7165	.5000	1.7105	1.937919	10.500 729	. 100790	-5-522750
	2.2900	.4750	2-1999	2.054543	9.073698	. 114409	-1.517105
•	2.7500	.8750	2.75.00	2-5-7150	0.222001	.192291	-2-75/74/
•	2.0000	.2500	2.0000	.659373	5.710007	. 9.75 7 79	-2-174439
	2.2165	1/50	2-2109		-79/111	-3.13/902	1 70 0.00
,	2.4330	5000	2-4317	2-841154	-7-4' 1784	-1-190009	. 795.771
	2.2145	·. 6750	2.2105	-3-454551	1.855469	. 94*58/	.90/1/9
•	1.7835	750	1.7035	-9.917127	1-207300	.074136	1.1 50051
10	1.5670	5000	1.9070	8-090544	-9.2019-9	-1.799907	1.999147
11	1. 7835	1/50	1.7835	8-413097	-12.51.509	- 1. 95/10/	1.707005
1.2	-2105	. 6750	-2105	1.984670	-1.1 cc 980	-1.354540	-107016
1.9	. 6 4 9 5	-6250	.6455	1.997944	215599	-1-277711	-,204429
1.		.2500		008968	-8.800074	-1.200906	1,577004
19	. ****0	2500	.8600	544900	-0.107-07	037969	2-4/1053
8.6	. 6495	6250	.6479	-1.041793	-4.744138	.0991?*	1-219317
17	.2103	0750	.2109	910193	-1.747229	079337	. 75.7749

MODY SECTIONAL DESIVATIVES

MODE NO 2

\$007 NO. Y		*85	LIFT COFFFICIENT		MORENT COFFFEEEIGHT			
					***	1486	****	1-46
	;	2.0000 2.0000 0.0000	5000 5000 0.0000	2.0000	0.000000	0.000000 -12500 -232711	0.000000 .352254 .517135	0.050000 .778555 .116755

foral desivatives

CI . FORCE COEFFICIENT IN I DIRECTION

C7 • FGF-C4 C94 CR • F17CM196 CR • 1840946 CL1 • FELL 196	NUMERO COEFF	18C16&7			
	****	1 *45		****	8:00
	.00000	4.745445 -1.395482 6.600000	C# •	6.303003	-2-336 9 67 5-906688
5 GEWIPAL 1280 411					
**************************************	DEPLEC	**************************************	64*E*#1210		
:		1	13-327-44-03 1170-0001-03 42190-01-03	3037-0344-82 70408771(-03 4248122(-62	

PANEL SACTIONS

4001 NO 3

\$783P wa.	* 4		*45	4.807 CHAPPECSENT		STREET CASES	14913
				0 f au	9 ma C	*1 *1	1 986
	1.1.45	.9000	1.1495	51/914	3-73/498	. 199007	-1.104050
	4-7105	. 9.950	1.7105	974619	4-1/7/20	. 961 35 8	-1-4/0387
	2-2500	.4450	1.1500	5 - 6 - 7 1 1	4.789095	.039772	-1-411745
•	4. 5000	. 675.3	4.1500	-1.015468	5-0/5780	. 9799/9	-1-251 704
	2.0000	.2300	2.0000	.05.00.11	. 550/50	.057224	170947
	2.2103	8250	2-21-5	1.55 91 84	-1.970 9-6		. 172999
	2. 4550	5901	8-4980	1-100020	-1-107172	-, 579366	.141999
	4-21-5	#F10	4-1102	1.059679	65/4/9		074393
	1.7625	6 75 0	4-7619	1.000007	?-1155	*******	. 5/ 11+4
10	1.5070	5550	1.5070	4-223372	-1255300	595/99	.211907
0.0	1.7822	1250	1.7615	1.505334	-4-9-1270		. 4.03550
4.2	. 2109	.0750	-1109	. 78 7464	a Sec. Pilip	150172	-, 171 100
8.7	-6-95	.0250	. 0 0 73	.982620	-0.79130	179847	*. +67+75
8.0	. ****	-2500		, 50 4 9 4 7	-1-015/70	291044	. 5950ml
1.5		2509		.1.704.29	-1-202250	150140	. 4 50 131
4.0	. 64.95	6250	.4499	.00250a	670 941	142144	. 554435
	-4103	0750	.2145	043937	*******	087300	. (****)

SECTIONAL DESIGNATIVES

MIDS NO 3

\$507 NO. Y			4	#86	A SPT COSPPICACYT		SOMENI CONFFICIENT	
					*6*4	1486	*6*1	1 446
		2.0000	5000	4.0000	044 323	000000	.0/****	.054454
		2.0000	5000	2.0000	285240		-113795	.217017
	•	6.0000	6.5000	0.0000	0.00000	0.000000	8.000000	0.00000

form, designings

CE . PERCE COEPFICIENT IN & DIRECTION

```
CT - FORCE COEFFECIENT IN * DIRECTION
CR - FITCHING ROMANT COEFFECIENT
Cn - TANING ROMANT COEFFECIENT
CL I - ROLLING ROMANT COEFFECIENT
                      ....
                                       -
                                                                          ....
                                                                                           1845
    G:
                  -. [70044
                                    2-017804
                                                         C# .
                                                                        . 320233
                                                                                         -. 051103
                                   -). substa
1.000000
                                                         C* *
                                                                       0.000000
                                                                                         0.000000
    CL**&LI . 5.000000
. CENTON IZED AIRFORCES
    -
                        MPLECTION POR
                                                     ----
                                                    PER
                                                                         -
                                                  -177191677-01
-767-01-76-01
-667176897-91
```

-

REFERENCES

- Miller, R. D.; Kroll, R. I.; and Clemmons, R. E.: Dynamic Loads Analysis System (DYLOFLEX) Summary. NASA CR-2846-1, 1979.
- Miller, R. D.; Richard, M.; and Rogers, J. T.: Feasibility of Implementing Unsteady Aerodynamics into the FLEXSTAB Computer Program System. HASA CR-132530, October 1974.
- Giesing, J. P.; Kalman, T. P.; and Rodden, W. P.: Subsonic Unsteady Aerodynamics for General Configurations; Part I, Direct Application of the Nonplanar Doublet Lattice Method. AFFDL-TR-71-5, 1971.
- 4. Kroll, R. I.; and Hirayama, M. Y.: Modal Interpolation Program, L215 (INTERP) Volume I: Engineering and Usage. NASA CR-2847, 1979.
- Kroll, R. I.; and Clemmons, R. E.: A Computer Program to Generate Equations of Motion Matrices, L217 (EOM) Volume I: Engineering and Usage. NASA CR-2851, 1979.

NASA CR-2849	2 Government Accession to	3 Man govern v Curtural No
A PROGRAM TO COMPUTE SUBSONIC UNSTEADY AER	THREE- DIMENSIONAL ODYNAMIC CHARACTERISTI	9 Report Date October 1979 CS 6 Performing Dispersion Code
USING THE DOUBLET LAT L216 (DUBFLX) VOL. I: ENG	TICE METHOD.	6 Pertaining Digensylvin Resources
A.morio M. Richard and B. A.	an-easing since contact	D6-44458
Boeing Commercial Airplan P.O. Box 3707		11 Stand Unid No.
Seattle, Washington 98124		NAS1-13918
2 Sponsoring Agency Nume and Address National Aeronautics on	nd Space Administration	May 1975 to May 1977
Washington, DC 20546		
Langley Technical Monit Topical Report	ors: Robert C. Goetz and	Boyd Perry III
the digital computer progressions to compute subset doublet lattice method. Arbitrary aerodynamic components lifting surfaces of the computer	description of the information of the L216 (DUBFLX) on the Conic unsteady serodynamic characteristics may be represent omposed of finite constant present of constant present present of constant present present of constant present present present present present pres	CDC 6600. L216 has the aracteristics based on the sed with combinations of source panel elements, and
Program input consists of cor data; output includes elemen aerodynamic coefficients, str aerodynamic influence coeffi	nfiguration geometry, aerodynaz nt geometry, pressure difference ability derivatives, generalized icient matrices. Optionally, mo- nd certain geometric and aerodyn	nic parameters, and modal e distributions, integrated aerodynamic forces, and dal data may be input on
Documentation consists of t System Design and Maintena	two parts: Volume I, Engineeris	ng and Usage; Volume II.

"For see by the feational flathnood information Service Springfest Virgina 23151

20. Security Classificat for this pages

Unclassified

18 Dietricultion Statement

Unclassified - Unlimited

Subject Category 02

\$6.50

122

17 Key Borth (Suggested by Authorite)

Unsteady aerodynamics

Doublet lattice method Lifting surface Slender body

19 Security Classificati this reports

Unclassified

Aerodynamic influence coefficients

June 15, 1981