Credit One
Analysis of Customer
Defaults

Jennifer Brosnahan

R Framework for Analysis

Practical Data Science with R (Zumel and Mount)

- Define the goals
- Collect and manage data
- Build the model
- Evaluate and critique the model
- Present results and document
- Deploy and maintain the model

Why R Framework?

- Method starts with clear understanding of business goals
- Efficient data analysis remains focused on business goals
- Actionable insights achieved through sound data science structure

Definition of goals

Business Problem

- O Credit One has seen an increase in customers defaulting on loans in the past year
- O Rising defaults leads to revenue loss for business clients and potential loss of clients for Credit One

Project Goals

- Identify and understand differences in customer features by default versus no default
- Find out if we can predict credit limits with 80% or higher level of certainty of not defaulting

Definition of goals

Resources needed

- O Project team: Stakeholder, Senior Data Scientist, Data Science lead, Operations manager
- Credit One historical customer data
- Python data analysis software and associated libraries
- O Kick-off and mid-point project meeting, weekly touch bases with Senior Data Scientist

Project deployment plan

- If goals are achieved, predictive model will be deployed by Data Science and Operations team
- Enhancements and bug fixes to occur weekly following model deployment

Collect and Manage Data

- OData available: Historical dataset of credit card customers
 - 30,000 total observations
 - 25 variables:
 - O ID
 - O Limit balance
 - Sex
 - O Education
 - Marriage
 - O Age
 - PAY_0 PAY_6 (prior 6 month repayment status)
 - BILL_AMT1 BILL_AMT6 (prior 6 month billing statements)
 - PAY_AMT1 PAY_AMT6 (prior 6 month payments)
 - Default status

Collect and Manage Data

- Is the data quality good enough?
 - O Initial review shows no missing or duplicate data
 - Further analysis is needed to determine if data quality is good enough to achieve goals
- Are there any known issues with data? If so, how will they be addressed?
 - Variable names can be changed to make more understandable
 - O Must convert variables with word values to number values so software can analyze data
 - O Remove unnecessary rows (header definitions) and columns (ID) irrelevant for data analysis
- Exploratory data analysis (EDA) will be conducted to:
 - Identify and understand differences in customer features by default versus no default
 - Identify relationships between variables to determine datapoints most useful for modeling

Predictive Modeling

Modeling techniques

- A minimum of 3 models will be built to determine best performing model
- O Feature selection (keeping impactful variables) will occur to optimize model performance
- Models will be tuned to enhance accuracy
- Validation steps will be implemented to minimize error
- O Models will be evaluated to determine if accurate enough to meet stakeholder needs

Model Evaluation

- O Is the model accurate enough to meet stakeholders' needs?
 - O Stakeholders' want to reverse the trend of rising customer defaults
 - Current data reveals that 22% of Credit One customers have defaulted on loans
 - Model accuracy of 80-90% is generally considered successful.
 - Further analysis is needed to determine if model meets stakeholders' needs
- O Does it perform better than the obvious guess?
 - Further analysis is needed to determine if models perform better than obvious guess
- Do the results of the model make sense in the context of the realworld problem domain?
 - To be determined

Present Results and Document

Present key findings and opportunities to stakeholders by May 23, 2020

- O How should stakeholders interpret the model?
- O How confident should they be in its predictions?
- When should they potentially overrule the model's predictions?

Simple Outline

- Objective
- Background
- Scope
- Approach
- Recommendations
- Key insights with impact
- Next steps

Deploy and Maintain the Model

Implement process to ensure model runs smoothly

- O How is the model to be handed off to "production?"
- O How often, and under which circumstances, should the model be revised?

Visualization of R Framework (Zumel & Mount)

Potential pitfalls (and solutions)

- Business goals are unclear (ask questions in the beginning to clarify)
- Data quality not good enough (recommend additional data variable collection)
- Data is not good enough to meet goals (revisit project design and goal defining stage)
- Model does not solve problem (return to data collection/management and model building stage)
- Recommendations are vague (recommendations should be actionable and have positive impact)

