

## SEQUENCE LISTING

| 5  | (1) GENERAL INFORMATION:                                                                                                                                                                        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | (i) APPLICANT: Brodeur, Bernard R<br>Martin, Denis<br>Hamel, Josee<br>Rioux, Clement                                                                                                            |
|    | (ii) TITLE OF INVENTION: PROTEINASE K RESISTANT SURFACE PROTEIN OF NEISSERIA MENINGITIDIS                                                                                                       |
| 15 | (iii) NUMBER OF SEQUENCES: 26                                                                                                                                                                   |
| 20 | <ul> <li>(iv) CORRESPONDENCE ADDRESS:</li> <li>(A) ADDRESSEE: Goudreau Gage Dubuc &amp; Martineau Walker</li> <li>(B) STREET: 800 Place Victoria, Suite 3400, Tour de la Eourse</li> </ul>      |
| -0 | (C) CITY: Montreal (D) STATE: Quebec (E) COUNTRY: Canada (F) ZIP: H4Z 1E9                                                                                                                       |
| 25 | (1) 211. 142 125                                                                                                                                                                                |
|    | <ul> <li>(v) COMPUTER READABLE FORM:         <ul> <li>(A) MEDIUM TYPE: Floppy disk</li> <li>(B) COMPUTER: IBM PC compatible</li> <li>(C) OPERATING SYSTEM: PC-DOS/MS-DOS</li> </ul> </li> </ul> |
| 30 | (D) SOFTWARE: PatentIn Release #1.0, Version #1.25                                                                                                                                              |
|    | (Vi) CURRENT APPLICATION DATA:  (A) APPLICATION NUMBER:  (B) FILING DATE:                                                                                                                       |
| 35 | (C) CLASSIFICATION:                                                                                                                                                                             |
| 40 | <ul><li>(vii) PRIOR APPLICATION DATA:</li><li>(A) APPLICATION NUMBER: US 08/406,362</li><li>(B) FILING DATE: 17-MAR-1995</li></ul>                                                              |
|    | <pre>(vii) PRIOR APPLICATION DATA:     (A) APPLICATION NUMBER: US (PROVIS)60/001,983     (B) FILING DATE: 04-AUG-1995</pre>                                                                     |
| 45 | <pre>(viii) ATTORNEY/AGENT INFORMATION:     (A) NAME: Leclerc/Dubuc/Prince, Alain/Jean/Gaetan     (C) REFERENCE/DOCKET NUMBER: EIOVAC-1 PCT</pre>                                               |
| 50 | (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 514-397-7400 (B) TELEFAX: 514-397-4382                                                                                                       |
| 55 | (2) INFORMATION FOR SEQ ID NO:1:                                                                                                                                                                |
|    | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 830 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: double                                                                                     |
| 60 | (D) TOPOLOGY: linear                                                                                                                                                                            |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                               |



|            |            | (111              | ) HY       | POTH                   | ETIC       | AL:        | NO                |            |            |            | •          |                   |            |            |                  |                       |     |
|------------|------------|-------------------|------------|------------------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------------|-----------------------|-----|
| •          |            | (iv               | ) AN       | TI-S                   | ENSE       | : NO       |                   |            |            |            |            |                   |            |            |                  |                       |     |
| 5          |            | (vi               | (          | IGIN<br>A) O<br>B) S   | RGAN       | ISM:       | Nei               | sser<br>)  | ia m       | enin       | giti       | dis               |            |            |                  |                       | •   |
| 10         |            | (ix               | (.         | ATUR<br>A) N<br>B) L   | AME/       |            |                   | 66         | 7          |            |            |                   |            |            |                  |                       |     |
| 15         |            | (ix               | (.         | ATUR<br>A) N<br>B) L   | AME/       |            |                   |            | tide<br>9  |            |            |                   |            |            |                  |                       |     |
| 20         |            | (ix               | €.         | ATURI<br>A) NI<br>B) L | AME/       |            |                   |            | tide<br>7  |            |            |                   |            |            |                  |                       | •   |
|            |            | (xi               | ) SE       | QUEN                   | CE -DI     | ESCR:      | IPTI(             | : : MC     | SEQ :      | ID N       | 0:1:       |                   |            |            |                  |                       |     |
| 25         | TCG        | GCAA              | AGC A      | AGCC                   | GGAT!      | AC C       | GCTA(             | CGTA!      | T CT       | rgaa(      | GTAT       | TGA               | AAAT.      | ATT .      | ACGA'            | TGCAAA                | 60  |
|            | AAA        | GAAA              | ATT '      | TAAG'                  | TATA       | A TA       | CAGC              | AGGA'      | T TC       | TTA.       | ACGG       | ATT               | CTTA       | ACA .      | ATTT             | TTCTAA                | 120 |
| 80         | CTG        | ACCA!             | raa .      | AGGAZ                  | ACCA       | AA A       |                   | t Ly:      |            |            |            | u Ala             |            |            |                  | T GCC<br>e Ala<br>-10 | 172 |
| 15         |            |                   |            |                        |            |            |                   |            |            |            |            |                   |            |            | TTT<br>Phe       | TAC<br>Tyr            | 220 |
|            |            |                   |            | Asp                    |            |            |                   |            |            |            |            |                   |            |            | GGT<br>Gly       | TCT<br>Ser            | 268 |
| 0          |            |                   |            |                        |            |            |                   |            |            |            |            |                   |            |            | AAC<br>Asn       |                       | 316 |
| 5          |            |                   |            |                        |            |            |                   |            |            |            |            |                   |            |            | GCC<br>Ala       |                       | 364 |
| 0          |            |                   |            |                        |            |            |                   |            |            |            |            |                   |            |            | TAC<br>Tyr<br>70 |                       | 412 |
| i <b>5</b> |            |                   |            | CAA<br>Gln<br>75       |            |            |                   |            |            | TAT<br>Tyr |            |                   |            |            | TTG<br>Leu       |                       | 460 |
|            |            |                   |            |                        |            |            |                   |            |            |            |            |                   |            |            | AGC<br>Ser       |                       | 508 |
| 60         | ACC<br>Thr | TCC<br>Ser<br>105 | ATC<br>Ile | GGC<br>Gly             | CTC<br>Leu | GGC<br>Gly | GTA<br>Val<br>110 | TTG<br>Leu | ACG<br>Thr | GGC<br>Gly | GTA<br>Val | AGC<br>Ser<br>115 | TAT<br>Tyr | GCC<br>Ala | GTT<br>Val       | ACC<br>Thr            | 556 |

reference Light



|           | Pro<br>120 | Ası        | r GT<br>n Va | C GA!<br>l Ası    | r TIC        | GAT<br>1 Asp<br>125  | Ala        | GGG<br>Gly | TAC<br>Y Tyr  | C CGC             | TAC<br>1 Ty: | r As:      | C TA      | C ATG      | G GG<br>G G1        | C AAA<br>Y Lys<br>135 | •                   |
|-----------|------------|------------|--------------|-------------------|--------------|----------------------|------------|------------|---------------|-------------------|--------------|------------|-----------|------------|---------------------|-----------------------|---------------------|
| 5         | GTC<br>Val | AAC<br>Ası | AC:          | r GTC<br>r Val    | Lys<br>140   | : Asn                | GTC<br>Val | CGT<br>Arg | TCC<br>J Sei  | GGG<br>Gly<br>145 | / Glu        | A CTO      | TC        | C GTC      | GGG<br>L Gly<br>150 | C GTG<br>/ Val        | 652                 |
| 10        | CGC        | GTC<br>Val | Lys          | TTO<br>Phe<br>155 | :            | TATG                 | cgc        | CTT        | ATTC          | RGC A             | AACO         | CGCCC      | GA GO     | CTTC       | CGCC                | 3                     | 704                 |
| 15        |            | CGGC       |              |                   |              |                      |            |            |               |                   |              |            |           |            |                     | CGAA                  | TG 764<br>CA<br>830 |
| 20        | (2)        | INF        | ORMA         | TION              | FOR          | SEQ                  | ID:        | NO : 2     | :             |                   |              |            |           |            |                     |                       |                     |
| 25        |            | ,          | (i)          | (A<br>(B          | ) LE<br>) TY | CHA<br>NGTH<br>PE: 6 | : 17       | 4 am       | inc<br>id     |                   | S.           |            |           | ÷          |                     |                       |                     |
| 30        |            |            |              |                   |              | TÝP:<br>DES          | -          |            |               | Ç ID              | NO:          | 2:         |           |            |                     |                       |                     |
|           | Met<br>-19 | Lys        | Lys          | Ala               | Leu<br>-15   | Ala                  | Thr        | Leu        | Ile           | Ala<br>-10        | Leu          | Ala        | Leu       | Pro        | Ala<br>-5           | Ala                   |                     |
| 35        | Ala        | Leu        | Ala          | Glu<br>1          | Gly          | Ala                  | Ser        | Gly<br>5   | Phe           | Tyr               | Val          | Gln        | Ala<br>10 |            | Ala                 | Ala                   |                     |
|           | His        | Ala<br>15  | Lys          | Ala               | Ser          | Ser                  | Ser<br>20  | Leu        | Gly           | Ser               | Ala          | Lys<br>25  | Gly       | Phe        | Ser                 | Pro                   |                     |
| 40        | Arg<br>30  | Ile        | Ser          | Ala               | Gly          | Tyr<br>35            | Arg        | Ile        | Asn           | Asp               | Leu<br>40    | Arg        | Phe       | Ala        | Val                 | Asp<br>45             |                     |
| 45        | Tyr        | Thr        | Arg          | Tyr               | Lys<br>50    | Asn                  | Tyr        | Lys        | Ala           | Pro<br>55         | Ser          | Thr        | Asp       | Phe        | Lys<br>60           | Leu                   |                     |
| 40        | Tyr        | Ser        | Ile          | Gly<br>65         | Ala          | Ser                  | Ala        | Ile        | <b>Tyr</b> 70 | Asp               | Phe          | Asp        | Thr       | Gln<br>75  | Ser                 | Pro                   |                     |
| 50        | Val        | Lys        | Pro<br>80    | Tyr               | Leu          | Gly                  | Ala        | Arg<br>.85 | Leu           | Ser               | Leu          | Asn        | Arg<br>90 | Ala        | Ser                 | Val                   |                     |
|           | Asp        | Leu<br>95  | Gly          | Gly               | Ser          | Asp                  | Ser<br>100 | Phe        | Ser           | Gln               | Thr          | Ser<br>105 | Ile       | Gly        | Leu                 | Gly                   |                     |
| <b>55</b> | Val<br>110 | Leu        | Thr          | Gly               | Val          | Ser<br>115           | Tyr        | Ala        | Val           | Thr               | Pro<br>120   | Asn        | Val       | Asp        | Leu                 | <b>Asp</b> 125        |                     |
| 60        | Ala        | Gly        | Tyr          | Arg               | Tyr<br>130   | Asn                  | Tyr        | Ile        | Gly           | Lys<br>135        | Val          | Asn        | Thr       | Val        | Lys<br>140          | Asn                   |                     |
| <b>50</b> | Val        | Arg        | Ser          | Gly<br>145        | Glu          | Leu                  | Ser        | Val        | Gly<br>150    | Val               | Arg          | Val        | Lys       | Phe<br>155 |                     |                       |                     |

The first that it that the first that was



| WO 96/29412 | `, |  |
|-------------|----|--|

| 5              |                  | i)         | • (              | (A) I<br>(B) I<br>(C) S | ENGT<br>YPE:<br>TRAN | H: 7             | 10 h<br>leic<br>ESS: | RISTI<br>base<br>aci<br>dou<br>lear | pair<br>d         | s                |                  |                  |                  |                  |                  |                     | •   |
|----------------|------------------|------------|------------------|-------------------------|----------------------|------------------|----------------------|-------------------------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------|-----|
| 10             |                  | (ii        | ) MÇ             | LECU                    | LE I                 | YPE:             | DNA                  | (ge                                 | nomi              | c)               |                  |                  |                  |                  |                  |                     |     |
|                |                  | (iii       | ) HY             | POTH                    | ETIC                 | AL:              | МО                   |                                     |                   |                  |                  |                  |                  |                  |                  |                     |     |
| 15             |                  | (iv        | ) AN             | TI-S                    | ENSE                 | : NO             | )                    |                                     |                   |                  |                  |                  | ,                |                  |                  |                     | •   |
|                |                  | (vi        |                  | A) 0                    | RGAN                 |                  | Nei                  | sser                                | ia m              | enin             | giti             | dis              |                  |                  |                  |                     |     |
| 20             |                  | (ix        |                  | A) N                    | AME/                 | KEY:             |                      | 64                                  | 3                 |                  |                  |                  |                  |                  |                  |                     |     |
| 25             |                  | (1)        |                  | A) N.                   | AME/                 |                  |                      | _pep                                |                   |                  |                  |                  |                  |                  |                  |                     |     |
| 30             |                  | ,          |                  | A) N.                   | AME/                 |                  |                      | _pep                                |                   |                  |                  |                  |                  | •                |                  |                     |     |
|                |                  | (xi        | ) SE             | QUEN                    | CE D                 | ESCR:            | IPTI:                | ON:                                 | SEQ :             | ID, N            | 0:3:             |                  |                  |                  |                  |                     |     |
| 35             | GTA:             | rcrry      | GAG (            | GCAT.                   | IGAA                 | AA T             | ATTA                 | CAAT                                | G CA              | AAÁA             | GAAA             | ATT              | TCAG             | TAT .            | AATA             | CGGCAG              | 60  |
| <del>1</del> 0 | GAT.             | rctt       | TAA (            | CGGA'                   | TTCT                 | TA A             | CCAT                 | İTTT                                | C TC              | CTG              | ACCA             | TAA              | AGGA             | ATC .            | AAGA'            | T ATG<br>Met<br>-19 | 118 |
| +0             | AAA<br>Lys       | AAA<br>Lys | GCA<br>Ala       | CTT<br>Leu<br>-15       | GCC<br>Ala           | GCA<br>Ala       | CTG<br>Leu           | ATT<br>Ile                          | GCC<br>Ala<br>-10 | CTC<br>Leu       | GCC<br>Ala       | CTC<br>Leu       | CCG<br>Pro       | GCC<br>Ala<br>-5 | GCC<br>Ala       | GCA<br>Ala          | 166 |
| <b>1</b> 5     | CTG<br>Leu       | GCG<br>Ala | GAA<br>Glu<br>1  | GGC<br>Gly              | GCA<br>Ala           | TCC<br>Ser       | GGC<br>Gly<br>5      | TTT<br>Phe                          | TAC<br>Tyr        | GTC<br>Val       | CAA<br>Gln       | GCC<br>Ala<br>10 | GAT<br>Asp       | GCC<br>Ala       | GCA<br>Ala       | CAC<br>His          | 214 |
| 50             | GCC<br>Ala<br>15 | AAA<br>Lys | GCC<br>Ala       | TCA<br>Ser              | AGC<br>Ser           | TCT<br>Ser<br>20 | TTA<br>Leu           | GGT<br>Gly                          | TCT<br>Ser        | GCC<br>Ala       | AAA<br>Lys<br>25 | GGC<br>Gly       | TTC<br>Phe       | AGC<br>Ser       | CCG<br>Pro       | CGC<br>Arg<br>30    | 262 |
| 55             | ATC<br>Ile       | TCC<br>Ser | GCA<br>Ala       | GGC                     | TAC<br>Tyr<br>35     | CGC<br>Arg       | ATC<br>Ile           | AAC<br>Asn                          | GAC<br>Asp        | CTC<br>Leu<br>40 | Arg              | TTC<br>Phe       | GCC<br>Ala       | GTC<br>Val       | GAT<br>Asp<br>45 | TAC<br>Tyr          | 310 |
| 50             | ACG<br>Thr       | CGC<br>Arg | TAC<br>Tyr       | AAA<br>Lys<br>50        | AAC<br>Asn           | TAT<br>Tyr       | AAA<br>Lys           | CAA<br>Gln                          | GTC<br>Val<br>55  | CCA<br>Pro       | TCC<br>Ser       | ACC<br>Thr       | GAT<br>Asp       | TTC<br>Phe<br>60 | AAA<br>Lys       | CTT                 | 358 |
| 'n             | TAC<br>Tyr       | AGC<br>Ser | ATC<br>Ile<br>65 | GGC<br>Gly              | GCG<br>Ala           | TCC<br>Ser       | GCC<br>Ala           | ATT<br>Ile<br>70                    | TAC<br>Tyr        | GAC<br>Asp       | TTC<br>Phe       | GAC<br>Asp       | ACC<br>Thr<br>75 | CAA<br>Gln       | TCC<br>Ser       | CCC<br>Pro          | 406 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | A        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|
| <u>च्यम्बद्धाः वर्गम्बर</u> ूत                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 | G<br>V   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | G<br>A   |
| 1 mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 | G<br>V   |
| de france                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | G        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 | C        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 |          |
| The state of the s | `  |          |
| <b>*1</b><br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Me<br>-: |
| # <b>J</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 | A.       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |          |

| 5  |            |            |                   |                   | CTC<br>Leu        |            |            |                   |                   |                   |            |            |                   |                   |                   |            | 454              |
|----|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------------|
| J  |            |            |                   |                   | AGC<br>Ser        |            |            |                   |                   |                   |            |            |                   |                   |                   |            | 502              |
| 10 | GTA<br>Val | TTG<br>Leu | GCG<br>Ala        | GGC               | GTA<br>Val<br>115 | AGC<br>Ser | TAT<br>Tyr | GCC<br>Ala        | GTT<br>Val        | ACC<br>Thr<br>120 | CCG<br>Pro | AAT<br>Asn | GTC<br>Val        | GAT<br>Asp        | TTG<br>Leu<br>125 | GAT<br>Asp | 550 <sup>-</sup> |
| 5  | GCC<br>Ala | GGC<br>Gly | TAC<br>Tyr        | CGC<br>Arg<br>130 | TAC<br>Tyr        | AAC<br>Asn | TAC<br>Tyr | ATC<br>Ile        | GGC<br>Gly<br>135 | AAA<br>Lys        | GTC<br>Val | AAC<br>Asn | ACT<br>Thr        | GTC<br>Val<br>140 | AAA<br>Lys        | AAT<br>Asn | 598              |
| 20 | GTC<br>Val | CGT<br>Arg | TCC<br>Ser<br>145 | GGC<br>Gly        | GAA<br>Glu        | CTG<br>Leu | TCC<br>Ser | GCC<br>Ala<br>150 | GGC<br>Gly        | GTA<br>Val        | CGC<br>Arg | GTC<br>Val | AAA<br>Lys<br>155 | TTC<br>Phe        | TGAT              | ATACGO     | 650              |
|    | GTTA       | TTCC       | GC A              | AACC              | GCCG              | A GÇ       | CTTI       | CGGC              | GGT               | TTTC              | TTT        | TCCG       | CCGC              | ca c              | AACI              | 'ACACA     | 71C              |
| :5 | (2)        | TNIEC      |                   | .T.O.1            | 505               | 550        | TD 1       |                   |                   |                   |            |            |                   |                   |                   |            |                  |

- 2) INFORMATION FOR SEQ ID NO:4:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 175 amino acids
      (B) TYPE: amino acid

    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

et Lys Lys Ala Leu Ala Ala Leu Ile Ala Leu Ala Leu Pro Ala Ala

- la Leu Ala Glu Gly Ala Ser Gly Phe Tyr Val Gln Ala Asp Ala Ala 1 5 10
- His Ala Lys Ala Ser Ser Ser Leu Gly Ser Ala Lys Gly Phe Ser Pro
  15 20 25 45
- Arg Ile Ser Ala Gly Tyr Arg Ile Asn Asp Leu Arg Phe Ala Val Asp 30 40 45
- Tyr Thr Arg Tyr Lys Asn Tyr Lys Gln Val Pro Ser Thr Asp Phe Lys
  50 55 60 50
  - Leu Tyr Ser Ile Gly Ala Ser Ala Ile Tyr Asp Phe Asp Thr Gln Ser
- Pro Val Lys Pro Tyr Leu Gly Ala Arg Leu Ser Leu Asn Arg Ala Ser
- Val Asp Phe Asn Gly Ser Asp Ser Phe Ser Gln Thr Ser Thr Gly Leu
  - Gly Val Leu Ala Gly Val Ser Tyr Ala Val Thr Pro Asn Val Asp Leu 110 115 120 125

ŧ[] m

W

Ē

m





Asp Ala Gly Tyr Arg Tyr Asn Tyr Ile Gly Lys Val Asn Thr Val Lys

Asn Val Arg Ser Gly Glu Leu Ser Ala Gly Val Arg Val Lys Phe

|      | (2) INFO | RMATION FOR SEQ ID NO:5:                                                                                                   |
|------|----------|----------------------------------------------------------------------------------------------------------------------------|
| 10   | . (i)    | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 850 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear |
| 15 . | (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                               |
|      | (iii)    | HYPOTHETICAL: NO                                                                                                           |
| 20   | (iv)     | ANTI-SENSE: NO                                                                                                             |
| 25   | (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Neisseria meningitidis (B) STRAIN: 24063                                                    |
|      | (ix)     | FEATURE: (A) NAME/KEY: CDS                                                                                                 |
|      |          | (B) LOCATION: 208732                                                                                                       |
| 30   | (ix)     | FEATURE: (A) NAME/KEY: sig_peptide                                                                                         |
|      |          | (B) LOCATION: 208264                                                                                                       |
| 35   | (ix)     | FEATURE: (A) NAME/KEY: mat_peptide                                                                                         |
| ~~   |          | (W) MARCHELL MACTICE                                                                                                       |

(A) NAME/KEY: mat\_peptide (B) LOCATION: 265..732

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

40 CACCCATCCG CCGCGTGATG CCGCCACCAC CATTTAAAGG CAACGCGCGG GTTAACGGCT TTGCCGTCGG CAAAGCAGCC GGATACCGCT ACGTATCTTG AAGTATTAAA AATATTACGA 120 TGCAAAAAGA AAATTTAAGT ATAATAAAGC AGAATTCTTT AACGGATTCT TAACAATTTT 180

TCTAACTGAC CATAAAGGAA CCAAAAT ATG AAA AAA GCA CTT GCC ACA CTG Met Lys Lys Ala Leu Ala Thr Leu -19

50 ATT GCC CTC GCT CTC CCG GCC GCC GCA CTG GCG GAA GGC GCA TCC GGC Ile Ala Leu Ala Leu Pro Ala Ala Ala Leu Ala Glu Gly Ala Ser Gly -10

TTT TAC GTC CAA GCC GAT GCC GCA CAC GCA AAA GCC TCA AGC TCT TTA Phe Tyr Val Gln Ala Asp Ala Ala His Ala Lys Ala Ser Ser Ser Leu 327

GGT TCT GCC AAA GGC TTC AGC CCG CGC ATC TCC GCA GGC TAC CGC ATC 375 Gly Ser Ala Lys Gly Phe Ser Pro Arg Ile Ser Ala Gly Tyr Arg Ile

| 10 |
|----|
| 15 |
| 20 |
| 25 |
| 30 |
| 35 |
|    |

then that that it that was that the

ä <u>|</u> £2. Įħ Ü

|    |      |            |       |      |      |      |      | GAT<br>Asp<br>45  |       |      |       |      |      |      |      |            | 423 |
|----|------|------------|-------|------|------|------|------|-------------------|-------|------|-------|------|------|------|------|------------|-----|
| 5  |      |            |       |      |      |      |      | CTT<br>Leu        |       |      |       |      |      |      |      |            | 473 |
| 10 |      |            |       |      |      |      |      | CCC<br>Pro        |       |      |       |      |      |      |      |            | 519 |
| 15 |      |            |       |      |      |      |      | GTC<br>Val        |       |      |       |      |      |      |      |            | 567 |
| 20 |      |            |       |      |      |      |      | GGC<br>Gly        |       |      |       |      |      |      |      | GCC<br>Ala | 615 |
| -0 |      |            |       |      |      |      |      | GAT<br>Asp<br>125 |       |      |       |      |      |      |      |            | 663 |
| 25 |      |            |       |      |      |      |      | AAC<br>Asn        |       |      |       |      |      |      |      |            | 711 |
| 30 |      | GTG<br>Val |       |      |      |      | TGAT | TATGO             | ec c  | TATT | TTCTG | C AA | ACC  | CCGA |      |            | 759 |
|    | GCCI | TCGG       | icg g | TTTT | GTTI | T CI | GCCA | CCGC              | : AAC | TAÇA | CAA   | GCCG | GCGG | TT I | TGTA | CGATA      | 819 |
| 35 | ATCC | CGAA       | TG C  | TGCG | GCTI | C TO | CCGC | CCTA              | Ť     |      |       |      |      |      |      |            | 850 |
|    |      |            |       |      |      |      |      |                   |       |      |       |      |      |      |      |            |     |

- (2) INFORMATION FOR SEQ ID NO:6:
- 40 (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 174 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Met Lys Lys Ala Leu Ala Thr Leu Ile Ala Leu Ala Leu Pro Ala Ala 50
  - Ala Leu Ala Glu Gly Ala Ser Gly Phe Tyr Val Gln Ala Asp Ala Ala 1 10
- His Ala Lys Ala Ser Ser Ser Leu Gly Ser Ala Lys Gly Phe Ser Pro
  15 20 25
- Arg Ile Ser Ala Gly Tyr Arg Ile Asn Asp Leu Arg Phe Ala Val Asp 30 40 45 60
- Tyr Thr Arg Tyr Lys Asn Tyr Lys Ala Pro Ser Thr Asp Phe Lys Leu 50 55 60

25

40

50

-19

an aigh dia

| Tyr | Ser | Ile       | Gly<br>65 | Ala | Ser | Ala | Ile       | Tyr<br>70 | Asp | Phe | Asp | Thr       | Gln<br>75 | Ser | Pro |
|-----|-----|-----------|-----------|-----|-----|-----|-----------|-----------|-----|-----|-----|-----------|-----------|-----|-----|
| Val | Lys | Pro<br>80 | Тут       | Leu | Gly | Ala | Arg<br>85 | Leu       | Ser | Leu | Asn | Arg<br>90 | Ala       | Ser | Val |

Asp Leu Gly Gly Ser Asp Ser Phe Ser Gln Thr Ser Thr Gly Leu Gly 100

Val Leu Ala Gly Val Ser Tyr Ala Val Thr Pro Asn Val Asp Leu Asp

Ala Gly Tyr Arg Tyr Asn Tyr Ile Gly Lys Val Asn Thr Val Lys Asn

15 Val Arg Ser Gly Glu Leu Ser Ala Gly Val Arg Val Lys Phe 150

## 20 (2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 810 base pairs
- (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: linear
    - (ii) MOLECULE TYPE: DNA (genomic)
- 30 (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE: 35
  - (A) ORGANISM: Neisseria gonorrhoeae
    - (B) STRAIN: b2
  - (ix) FEATURE:
  - (A) NAME/KEY: CDS
    (B) LOCATION: 241..765
  - (ix) FEATURE:
    - (A) NAME/KEY: sig\_peptide
    - (B) LOCATION: 241..297
- 45 (ix) FEATURE:
  - (A) NAME/KEY: mat\_peptide
  - (B) LOCATION: 298..765

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

-15

CCCCGCCTTT GCGGTTTTTT CCAAACCGTT TGCAAGTTTC ACCCATCCGC CGCGTGATGC

- CGCCGTTTAA GGGCAACGCG CGGGTTAACG GATTTGCCGT CGGCAAAGCA GCCGGATGCC 120
  - GCCGCGTATC TTGAGGCATT GAAAATATTA CGATGCAAAA AGAAAATTTC AGTATAATAC 180
- GGCAGGATTC TITAACGGAT TATTAACAAT TTTTCTCCCT GACCATAAAG GAACCAAAAT 240 ATG AAA AAA GCA CTT GCC GCA CTG ATT GCC CTC GCA CTC CCG GCC GCC Met Lys Lys Ala Leu Ala Ala Leu Ile Ala Leu Ala Leu Pro Ala Ala

| 5          |                   |                  |            |            |            |                   |                   |            |            |            |                   | Gln               |            |            |            |                   | 2.2             |
|------------|-------------------|------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-----------------|
| J          |                   |                  |            |            |            |                   |                   |            |            |            |                   | AAA<br>Lys<br>25  |            |            |            |                   | 38              |
| 10         |                   |                  |            |            |            |                   |                   |            |            |            |                   | CGC<br>Arg        |            |            |            |                   | 43              |
| 15         |                   |                  |            |            |            |                   |                   |            |            |            |                   | ACC<br>Thr        |            |            |            |                   | 48              |
| 20         |                   |                  |            |            |            |                   |                   |            |            |            |                   | GAC<br>Asp        |            |            |            |                   | 528             |
| 25         |                   |                  |            |            |            |                   |                   |            |            |            |                   | AAC<br>Asn        |            |            |            |                   | 57 <del>(</del> |
|            | CAC<br>His        | TTG<br>Leu<br>95 | GGC<br>Gly | GGC<br>Gly | AGC<br>Ser | GAC<br>Asp        | AGC<br>Ser<br>100 | TTC<br>Phe | AGC<br>Ser | AAA<br>Lys | ACC<br>Thr        | TCC<br>Ser<br>105 | GCC<br>Ala | GGC<br>Gly | CTC<br>Leu | GGC<br>Gly        | 624             |
| 30         | GTA<br>Val<br>110 | TTG<br>Leu       | GCG<br>Ala | GGC<br>Gly | GTA<br>Val | AGC<br>Ser<br>115 | TAT<br>Tyr        | GCC<br>Ala | GTT<br>Val | ACC<br>Thr | CCG<br>Pro<br>120 | AAT<br>Asn        | GTC<br>Val | GAT<br>Asp | TTG<br>Leu | GAT<br>Asp<br>125 | 672             |
| 35         |                   |                  |            |            |            |                   |                   |            |            |            |                   | AAC<br>Asn        |            |            |            |                   | 720             |
| <b>4</b> 0 |                   |                  |            |            |            |                   |                   |            |            |            |                   | GTC<br>Val        |            |            | TGAT       | ATACGO            | 77              |
|            | GTTA              | TTCC             | GC A       | AACC       | GCCG       | A GC              | CTTC              | GGCG       | GTI        | TTT        | rG                |                   |            |            |            |                   | 810             |

- 45 (2) INFORMATION FOR SEQ ID NO:8:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 174 amino acids
    - (B) TYPE: amino acid
- 50 (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
  - Met Lys Lys Ala Leu Ala Ala Leu Ile Ala Leu Ala Leu Pro Ala Ala -19 -15 -10 -5
- Ala Leu Ala Glu Gly Ala Ser Gly Phe Tyr Val Gln Ala Asp Ala Ala 60 1 5 10
  - His Ala Lys Ala Ser Ser Ser Leu Gly Ser Ala Lys Gly Phe Ser Pro 15 20 25



|    | Arg<br>30  | Ile       | Ser          | Ala           | Gly                     | Tyr<br>35     | Arg        | Ile                          | Asn        | Asp        | Leu<br>40   | Arg        | Phe       | Ala        | Val        | Asp<br>45  |     |
|----|------------|-----------|--------------|---------------|-------------------------|---------------|------------|------------------------------|------------|------------|-------------|------------|-----------|------------|------------|------------|-----|
| 5  | Tyr        | Thr       | Arg          | Tyr           | Lys<br>50               | Asn           | Tyr        | Lys                          | Ala        | Pro<br>55  | Ser         | Thr        | Asp       | Phe        | Lys<br>60  | Leu        |     |
| 10 | Tyr        | Ser       | Ile          | Gly<br>65     | Ala                     | Ser           | Val        | Ile                          | Тут<br>70  | Asp        | Phe         | Asp        | Thr       | Gln<br>75  | Ser        | Pro        |     |
| 10 | Val        | Lys       | Pro<br>80    | Tyr           | Phe                     | Gly           | Ala        | Arg<br>85                    | Leu        | Ser        | Leu         | Asn        | Arg<br>90 | Ala        | Ser        | Ala        |     |
| 15 | His        | Leu<br>95 | Gly          | Gly           | Ser                     | Asp           | Ser<br>100 | Phe                          | Ser        | Lys        | Thr         | Ser<br>105 | Ala       | Gly        | Leu        | Gly        |     |
|    | Val<br>110 | Leu       | Ala          | Gly           | Val                     | Ser<br>115    | Tyr        | Ala                          | Val        | Thr        | Pro<br>120  | Asn        | Val       | Asp        | Leu        | Asp<br>125 |     |
| 20 | Ala        | Gly       | Tyr          | Arg           | ፒኒፕ<br>130              | Asn           | Tyr        | Val                          | Glý        | Lys<br>135 | Val         | Asn        | Thr       | Val        | Lys<br>140 | Asn        |     |
| 25 | Val        | Àrg       | Ser          | Gly<br>145    | Glu                     | Leu           | Ser        | Ala                          | Gly<br>150 | Val        | Arg         | Val        | Lys       | Phe<br>155 |            |            |     |
|    | (2)        | INFO      | ORMA:        | CION          | FOR                     | SEQ           | ID N       | 10:9                         | :          |            |             |            | ,         |            |            |            |     |
| 30 |            | (i)       | . ( <i>I</i> | A) LI<br>3) T | ENGTI<br>(PE:           | i: 16<br>amir |            |                              |            | 5          |             |            |           |            |            |            |     |
| 35 |            | (ii)      | MOI          | LECUI         | LE TY                   | PE:           | prot       | cein                         |            | •          |             |            |           |            |            |            |     |
|    |            | (vi)      | (2           | 4) OI         | AL SO<br>RGANI<br>TRAIN | SM:           | Neis       | sseri                        | ia me      | ening      | gitio       | lis        |           |            |            |            |     |
| 40 |            |           |              |               |                         |               |            |                              |            |            |             |            |           |            |            |            |     |
|    |            | (xi)      | ) SE         | QUENC         | CE DE                   | ESCRI         | PTI        | ON: 2                        | SEQ :      | ID NO      | 0:9:        |            |           |            |            |            |     |
| 45 |            | Met<br>1  | t Ly:        | s Ly:         | s Ala                   | Let<br>5      | ı Ala      | a Thi                        | r Lei      | ı Ile      | e Ala<br>10 | Le.        | ı Ala     | i Lei      | Pro        | Ala<br>15  | Ala |
|    | (2)        | INFO      | ORMA:        | TION          | FOR                     | SEQ           | ID 1       | NO:10                        | 0:         |            |             |            |           |            |            |            |     |
| 50 |            | (i)       | ()           | A) LI<br>B) T | ENGTI<br>YPE :          | i: 1:<br>amin |            | ISTIC<br>ino a<br>cid<br>ear |            | 5          |             |            |           |            |            |            |     |
| 55 |            | (ii)      | ) MO         | LECUI         | LE T                    | PE:           | pro        | tein                         |            |            |             |            |           |            |            |            |     |
| 60 |            | (vi)      | (,           | A) O          | AL SO<br>RGANI<br>IRAII | ISM:          | Nei        | sser:                        | ia m       | ening      | gitio       | lis        |           |            |            |            |     |



भनेत्रका वृक्तितृष्ट्



|            | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:                                                                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 5          | Leu Ala Leu Pro Ala Ala Ala Leu Ala Glu Gly Ala Ser Gly P 1 5 10 1                                                                           |
| ,<br>,     | (2) INFORMATION FOR SEQ ID NO:11:                                                                                                            |
| 10         | <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 15 amino acids</li><li>(B) TYPE: amino acid</li><li>(D) TOPOLOGY: linear</li></ul> |
|            | (ii) MOLECULE TYPE: protein                                                                                                                  |
| 15 .       | <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Neisseria meningitidis</li><li>(B) STRAIN: 608B</li></ul>                                |
| 20         |                                                                                                                                              |
|            | (x1) SEQUENCE DESCRIPTION: SEQ ID NO:11:                                                                                                     |
| 25         | Gly Ala Ser Gly Phe Tyr Val Gln Ala Asp Ala Ala His Ala Ly 1 5 10                                                                            |
|            | (2) INFORMATION FOR SEQ ID NO:12:                                                                                                            |
| 30         | <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 15 amino acids</li><li>(B) TYPE: amino acid</li><li>(D) TOPOLOGY: linear</li></ul> |
|            | (ii) MOLECULE TYPE: protein                                                                                                                  |
| 35         | <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Neisseria meningitidis</li><li>(B) STRAIN: 608B</li></ul>                                |
| <b>1</b> 0 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:                                                                                                     |
|            | Ala Ala His Ala Lys Ala Ser Ser Ser Leu Gly Ser Ala Lys Gl                                                                                   |
| 15         | 1 5 10 15                                                                                                                                    |
| -          | (2) INFORMATION FOR SEQ ID NO:13:                                                                                                            |

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

55

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Neisseria meningitidis
 (B) STRAIN: 608B

60



|     | (xi | ) SEQ    | UENCE | DES   | CRI           | PTIO          | N: 5        | EQ I        | D NO  | :13:  |           |     |     |     |     |           |     |
|-----|-----|----------|-------|-------|---------------|---------------|-------------|-------------|-------|-------|-----------|-----|-----|-----|-----|-----------|-----|
| 5   |     | Gly<br>1 | Ser   | Ala   | Lys           | Gly<br>5      | Phe         | Ser         | Pro   | Arg   | Ile<br>10 | Ser | Ala | Gly | Tyr | Arg<br>15 |     |
| 5   | (2) | INFO     | RMATI | ON F  | OR S          | SEQ :         | ID N        | 0:14        | :     |       |           |     |     |     |     |           |     |
| 10, |     | (i)      | (B)   |       | IGTH:         | : 15<br>amino | ami:        | no a<br>id  |       |       |           |     | Į.  |     |     |           |     |
|     |     | (ii)     | MOLE  | CULE  | TYI           | PE: I         | prot        | ein         |       |       |           |     |     |     |     |           |     |
| 15  | -   | (vi)     | (A)   |       | INA           | 5M: 1         | Neis        | seria       | a mei | ning: | itid:     | is  |     |     |     |           |     |
| 20  |     |          |       |       |               |               |             |             |       |       |           |     |     |     |     |           |     |
| 20  |     | (xi)     | SEQU  | JENCE | DES           | SCF.II        | PTIO        | N: S        | EQ I  | D NO  | :14:      |     |     |     |     |           |     |
| 25  |     | Ser<br>1 | Ala   | Gly   | Tyr           | Arg<br>5      | Ile         | Asn         | Asp   | Leu   | Arg<br>10 | Phe | Ala | Val | Asp | T;~<br>15 |     |
| -5  | (2) | INFÒ     | RMATI | ON F  | OR S          | SEQ :         | ID N        | 0:15        | :     |       |           |     | ,   |     |     |           |     |
| 30  |     |          | (B)   | LEN   | GTH:          | : 16<br>mino  | amii<br>ac: | nc ao<br>id |       |       |           |     |     |     |     |           |     |
|     |     | (ii)     | MOLE  | CULE  | TYI           | PE: I         | prot        | ein         |       | •     |           |     |     |     |     |           |     |
| 35  |     | (vi)     |       |       | INA           | 5M: 1         | Neis        | seri        | a me  | ning: | itid:     | is  |     |     |     |           | -   |
| 40  |     |          |       |       |               |               |             | ٠           |       |       |           |     |     |     |     |           |     |
|     |     | (xi)     | SEQU  | JENCE | DES           | SCRI          | PTIO        | N: S        | EQ I  | D NO  | :15:      |     |     |     |     |           |     |
| 45  |     | Phe<br>1 | Ala   | Val   | Asp           | Tyr<br>5      | Thr         | Arg         | Tyr   | Lys   | Asn<br>10 | Týr | Lys | Ala | Pro | Ser<br>15 | Thr |
|     | (2) | INFO     | RMAT] | ON F  | or :          | SEQ :         | ID N        | 0:16        | :     |       |           |     |     |     |     |           |     |
| 50  |     | (i)      | (B)   |       | IGTH<br>PE: 4 | : 15<br>amin  | ami:        | no a<br>id  |       | :     | -         |     |     |     |     |           |     |
|     |     |          |       |       | - 694         | DE            |             | -:-         |       |       |           |     |     |     |     |           |     |

- (ii) MOLECULE TYPE: protein 55
- (vi) ORIGINAL SOURCE:
   (A) ORGANISM: Neisseria meningitidis
   (B) STRAIN: 608B

ina Pan



| (xi)   | SECTIENCE | DESCRIPTION: | SEO | ID | NO-16 |
|--------|-----------|--------------|-----|----|-------|
| ( ** ) | SECUENCE  | DEGCETT TON. | 222 |    | MOLIU |

Tyr Lys Ala Pro Ser Thr Asp Phe Lys Leu Tyr Ser Ile Gly Ala

5 (2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 15 amino acids
- 10 (B) TYPE: amino acid (D) TOPOLOGY: linear

  - (ii) MOLECULE TYPE: protein
- 15 (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Neisseria meningitidis
  - (B) STRAIN: 608B

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Tyr Ser Ile Gly Ala Ser Ala Ile Tyr Asp Phe Asp Thr Gln Ser 10 .

25 (2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 15 amino acids
- (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
- 35 (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Neisseria meningitidis
  - (B) STRAIN: 608B
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Phe Asp Thr Gln Ser Pro Val Lys Pro Tyr Leu Gly Ala Arg Leu

- (2) INFORMATION FOR SEQ ID NO:19:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
  - (B) TYPE: amino acid
- 50 (D) TOPOLOGY: linear.
  - (ii) MOLECULE TYPE: protein
  - (vi) ORIGINAL SOURCE:
- 55 (A) ORGANISM: Neisseria meningitidis
  - (B) STRAIN: 608B
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
- 60 Leu Gly Ala Arg Leu Ser Leu Asn Arg Ala Ser Val Asp Leu Gly 10

45



| (2) | INFORMATION | FOR | SEO | ID | NO: | 2 | 0 |
|-----|-------------|-----|-----|----|-----|---|---|
|-----|-------------|-----|-----|----|-----|---|---|

| (i | ) | SEQUENCE | CHARACTERISTICS: |
|----|---|----------|------------------|
|----|---|----------|------------------|

- (A) LENGTH: 15 amino acids
- (B) TYPE: amino acid (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
- 10 (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Neisseria meningitidis
  - (B) STRAIN: 608B
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Ser Val Asp Leu Gly Gly Ser Asp Ser Phe Ser Gln Thr Ser Ile

- 20 (2) INFORMATION FOR SEQ ID NO:21:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
- (B) TYPE: amino acid (D) TOPOLOGY: linear 25
  - (ii) MOLECULE TYPE: protein
  - (vi) ORIGINAL SOURCE:
- 30 (A) ORGANISM: Neisseria meningitidis
  - (B) STRAIN: 608B
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: 35

Ser Gln Thr Ser Ile Gly Leu Gly Val Leu Thr Gly Val Ser Tyr

- (2) INFORMATION FOR SEQ ID NO:22: 40
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 15 amino acids
    (B) TYPE: amino acid

  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
  - (vi) ORIGINAL SOURCE:
- (A) ORGANISM: Neisseria meningitidis 50 (B) STRAIN: 608B
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
- 55 Thr Gly Val Ser Tyr Ala Val Thr Pro Asn Val Asp Leu Asp Ala



| (i) | SEQUENCE | CHARACTERISTICS: |
|-----|----------|------------------|
|-----|----------|------------------|

- (A) LENGTH: 15 amino acids (B) TYPE: amino acid
- (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
- 10 (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Neisseria meningitidis
  - (B) STRAIN: 608B

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

> Val Asp Leu Asp Ala Gly Tyr Arg Tyr Asn Tyr Ile Gly Lys Val 10

20 (2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 15 amino acids
- 25 (B) TYPE: amino acid (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
- 30 (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Neisseria meningitidis
  - (B) STRAIN: 608B

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

> Tyr Ile Gly Lys Val Asn Thr Val Lys Asn Val Arg Ser Gly Glu-5 10

- 40 (2) INFORMATION FOR SEQ ID NO:25:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 14 amino acids
- 45 (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
- 50 (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Neisseria meningitidis(B) STRAIN: 608B
- 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:
  - Val Arg Ser Gly Glu Leu Ser Val Gly Val Arg Val Lys Phe



| (2) | INFORMATION   | FOR | SEO | TD | NO. | 26 |
|-----|---------------|-----|-----|----|-----|----|
| ,   | THE CHARACTER | LON | JEV |    | 110 | 20 |

| (i) | SEQU | ENCE | CHARACTERISTICS |      |       |  |  |  |
|-----|------|------|-----------------|------|-------|--|--|--|
|     |      |      |                 |      | amino |  |  |  |
|     | (B)  | TYPE | · at            | ninc | acid. |  |  |  |

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

10 (vi) ORIGINAL SOURCE: (A) ORGANISM: Neisseria meningitidis (B) STRAIN: 608B

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: Phe Ala Val Asp Tyr Thr Arg Tyr Lys Asn Tyr Lys Ala Pro Ser Thr 1 5 10 15 20 Asp Phe Lys Leu Tyr Ser Ile Gly Ala 20 25