5η Εργαστηριακή Ασκηση

Πρακτικός υπολογισμός καθυστερήσεων σε πύλες CMOS VLSI

Ημερομηνία Προφορικής Εξέτασης: -

Ημερομηνία Παράδοσης Αναφοράς: 18/2/2024

1 Τα ζητούμενα της εργαστηριακής άσκησης

- 1. Φτιάξτε τα Φύλλα Δεδομένων (datasheet) όπως δίνεται στον (επόμενο) Πίνακα 3.1, με τη χρήση του MICROWIND, για τρεις (3) δικές σας NAND σε τεχνολογία cmos018 με διαστάσεις: Wn=(1.2μ)×k, Ln=0.2μ και Wp=(1.2μ)×k, Lp=0.2μ για k=1, 3 και 8. Ειδικότερα να υπολογιστούν η χωρητικότητα εισόδου, η ενδογενής ή παρασιτική καθυστέρηση και η κλίση Κ_{load} της καμπύλης που αναπαριστά την καθυστέρηση συναρτήσει της χωρητικότητας φορτίου.
- 2. Φτιάξτε τα Φύλλα Δεδομένων (datasheet) όπως δίνεται στον (επόμενο) Πίνακα 3.1, με τη χρήση του MICROWIND, για τρεις (3) δικές σας NOR σε τεχνολογία cmos018 με διαστάσεις: Wn=(0.6μ)×k, Ln=0.2μ και Wp=(2.4μ)×k, Lp=0.2μ για k=1, 3 και 8. Ειδικότερα να υπολογιστούν η χωρητικότητα εισόδου, η ενδογενής ή παρασιτική καθυστέρηση και η κλίση Κ_{load} της καμπύλης που αναπαριστά την καθυστέρηση συναρτήσει της χωρητικότητας φορτίου.
- 3. Φτιάξτε τα Φύλλα Δεδομένων (datasheet) όπως δίνεται στον (επόμενο) Πίνακα 3.1, με τη χρήση του MICROWIND, για τρεις (3) δικούς σας αναστροφείς σε τεχνολογία cmos018 με διαστάσεις: Wn=(0.6μ)×k, Ln=0.2μ και Wp=(1.2μ)×k, Lp=0.2μ για k=1, 3 και 8. Ειδικότερα να υπολογιστούν η χωρητικότητα εισόδου, η ενδογενής ή παρασιτική καθυστέρηση και η κλίση Κ_{load} της καμπύλης που αναπαριστά την καθυστέρηση συναρτήσει της χωρητικότητας φορτίου. Να τις συγκρίνετε με τις τιμές του Πίνακα 3.1 και να εξάγετε συμπεράσματα.

Cell Description

The INV cell provides the logical inversion of a single input (A). The output (Y) is represented by the logic equation:

$$Y = \overline{A}$$

Functions

Α	Υ
0	1
1	0

Logic Symbol

Cell Size

Drive Strength	Height (μm)	Width (μm)
INVXL	5.04	1.32
INVX1	5.04	1.32
INVX2	5.04	1.98
INVX3	5.04	2.64
INVX4	5.04	2.64
INVX8	5.04	3.96
INVX12	5.04	8.58
INVX16	5.04	11.22
INVX20	5.04	12.54

AC Power

Din				Pov	ver (µW/M	Hz)			
Pin	XL	X1	X2	X3	X4	X8	X12	X16	X20
Α	0.0087	0.0117	0.0218	0.0329	0.0394	0.0773	0.1706	0.2260	0.2820

Pin Capacitance

Din				Сар	acitance ((pF)			
Pin	XL	X1	X2	Х3	X4	X8	X12	X16	X20
Α	0.0027	0.0036	0.0071	0.0104	0.0136	0.0271	0.0068	0.0090	0.0110

Delays at 25°C, 1.8 V, Typical Process

Description				Intrin	nsic Delay	(ns)				
	XL	X1	X2	Х3	X4	X8	X12	X16	X20	
	$A \rightarrow Y \uparrow$	0.0261	0.0253	0.0228	0.0243	0.0206	0.0198	0.1303	0.1276	0.1265
	$A \rightarrow Y \downarrow$	0.0154	0.0146	0.0140	0.0146	0.0125	0.0125	0.1235	0.1232	0.1183

Description				К	_{load} (ns/pl	=)			
	XL	X1	X2	Х3	X4	X8	X12	X16	X20
$A \rightarrow Y \uparrow$	6.2539	4.5257	2.2629	1.5216	1.1447	0.5513	0.3680	0.2760	0.2209
$A \rightarrow Y \downarrow$	3.3414	2.3675	1.2661	0.8247	0.6333	0.3211	0.2194	0.1647	0.1316

TSMC 0.18μm Process SAGE-X™ Standard Cell Library Databook 110

Πίνακας 3.1: Artisan Components INV cell library datasheet