This practice exam is for review purposes only; the actual exam may differ in format and content. Use it as a study aid, and refer to the syllabus for specific details. Solutions with explanations can be found on my YouTube channel. - Robert Pearce

Name:_

- 1. For f(x) = 4x and g(x) = x + 5, find the following functions:
 - (a) $(f \circ g)(x)$
 - (b) $(g \circ f)(x)$
 - (c) $(f \circ g)(3)$
 - (d) $(g \circ f)(3)$
- 2. For $f(x) = \frac{9}{x+8}$ and $g(x) = \frac{7}{x}$, find:
 - (a) $(f \circ g)(x)$
 - (b) The domain of $f \circ g$

3. Find the inverse $f^{-1}(x)$ of : f(x) = 2x - 3

- 4. Given the function: $f(x) = (x+7)^3$
 - (a) Find the inverse $f^{-1}(x)$

(b) Graph f(x) and $f^{-1}(x)$

- 5. Given the function: $f(x) = x^3 10$
 - (a) Find the inverse $f^{-1}(x)$

(b) Graph f(x) and $f^{-1}(x)$

6. Find the inverse $f^{-1}(x)$ of : $f(x) = (4x - 5)^3$

7. Rewrite $\exp \rightarrow \log: 16 = 4^2$

8. Rewrite $\log \rightarrow \exp: \log_2(16) = 3$

9. Solve for x: $8^{-x+32} = 32^x$

10. Solve for x: $\log_2(4x + 7) = 4$

11. Evaluate the following without using a calculator: $\log_2(2^{63})$

12. Evaluate the following without using a calculator: $3^{\log_3(7)}$

13. Rewrite the expression as one logarithm: $6\log_3(U) + 5\log_3(V)$

14. Solve for x: $\log_2(x) = 3$

15. Solve: $\log(x) + \log(x - 15) = 2$

16.	You place $\$4,000$ in a bank account with 2.5% interest rate compounded monthly. How much will you have in the account after 4 years?
17.	Kryptonite is a radioactive isotope that decays according to the function $A(t) = A_0 e^{-0.0244t}$, where A_0 is the initial amount present and A is the amount present at time t (in years). Assume we have a 400-gram sample of Kryptonite.
a)	What is the decay constant k?
b)	How much Kryptonite is left after 40 years?
c)	When will only 300-grams of the Kryptonite be left?
d)	What is the half-life of the Kryptonite?

18. Solve the system by the addition method:

$$x + y = 5$$

$$x - y = 1$$

19. Solve the system by the substitution method:

$$7x + 9y = -11$$

$$2x - y = 4$$

20. Solve the system by the substitution method:

$$x - y = 3$$

$$(x-2)^2 + (y+3)^2 = 4$$