Optimization Project: Support Vector Machine

K. Kamtue & Cl. Réda

ENS Cachan

January 12th, 2017

- 1 Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
 - Cross Validation
 - Coordinate Descent
 - ACCPM
- 4 Demo

- 1 Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
 - Cross Validation
 - Coordinate Descent
 - ACCPM
- 4 Demo

Project

Support Machine Vector

Objective

Classify data

<u>└</u>Project

Project

Support Machine Vector

Objective

Classify data

■ Applied to binary classification $(y_i \in \{1, -1\})$;

Project

Support Machine Vector

Objective

Classify data

- Applied to binary classification $(y_i \in \{1, -1\})$;
- Looking for a hyperplane $f: x \to \omega^T x$ (+b) such as:

$$\forall i, f(x_i) = \begin{cases} <0 & \text{si y=-1} \\ >0 & \text{si y=1} \end{cases} \Leftrightarrow \forall i, y_i \times f(x_i) > 0 \qquad (1)$$

└- Project

Project Support Machine Vector

Figure: Example with two classes (red and blue)

Looking for the optimization problem

Naive optimization problem

 γ : distance between the lines f(x) = 1 and f(x) = -1.

Looking for the optimization problem

Naive optimization problem

 γ : distance between the lines f(x) = 1 and f(x) = -1.

$$\max_{\omega} \ \gamma = \frac{2}{\|\omega\|}$$
 subject to $\forall i, y_i \times f(x_i) > 0$

Looking for the optimization problem

Naive optimization problem

$$\gamma$$
: distance between the lines $f(x) = 1$ and $f(x) = -1$.

$$max_{\omega} \ \gamma = rac{2}{\|\omega\|}$$
 subject to $\forall i, y_i \times f(x_i) > 0$

$$\Leftrightarrow \min_{\omega} \frac{1}{2} ||\omega||^2$$
 subject to $\forall i, y_i \times f(x_i) > 0$

Beware: if the data set is not linearly separable!

Optimization

Looking for the optimization problem

Figure: Example with two classes (red and blue)

Adapting the problem to non-separable sets

Let z_i be $max(0, 1 - y_i \times f(x_i))$ (Hinge loss).

Adapting the problem to non-separable sets

Let z_i be $max(0, 1 - y_i \times f(x_i))$ (Hinge loss).

Having the problem convex and always feasible

Penalty for classification errors with $(z_i)_i$ and C:

$$\begin{aligned} \min_{\omega,z} \ & \frac{1}{2} \|\omega\|^2 + C \sum_{i \leq m} z_i \\ \text{subject to} \\ \forall i, z_i \geq 0 \\ \forall i, y_i \times (\omega^T x_i) \geq 1 - z_i \end{aligned}$$

- 1 Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
 - Cross Validation
 - Coordinate Descent
 - ACCPM
- 4 Demo

Solving the optimization problem

Use Newton's method:

Reminder: Update of x with Newton's method

$$x_{n+1} \leftarrow x_n + s \times \nabla^2 obj(x_n)^{-1} \nabla obj(x_n)$$

(finding step size value s by backtracking line search)

Solving the optimization problem

Use Newton's method:

Reminder: Update of x with Newton's method

$$x_{n+1} \leftarrow x_n + s \times \nabla^2 obj(x_n)^{-1} \nabla obj(x_n)$$

(finding step size value s by backtracking line search)

■ Make the problem independant from dimension;

Solving the optimization problem

Use Newton's method:

Reminder: Update of x with Newton's method

$$x_{n+1} \leftarrow x_n + s \times \nabla^2 obj(x_n)^{-1} \nabla obj(x_n)$$

(finding step size value s by backtracking line search)

- Make the problem independant from dimension;
- Use logarithmic barrier method.

Project description
Implementation

Implementation

Independance from dimension: dual problem

After Lagrangian calculation and minimization in ω :

Independance from dimension: dual problem

After Lagrangian calculation and minimization in ω :

Dual problem

$$\begin{array}{l} \max_{\lambda \in \mathbb{R}^{+m}} - \frac{1}{2} \| \sum_{i} \lambda_{i} y_{i} x_{i} \|_{2}^{2} + \mathbf{1}^{T} \lambda \\ \text{subject to } \forall i, 0 \leq \lambda_{i} \leq C \\ \text{(KKT conditions)} \end{array}$$

Implementation

Independance from dimension: dual problem

After Lagrangian calculation and minimization in ω :

Dual problem

$$\max_{\lambda \in \mathbb{R}^{+m}} - \frac{1}{2} \| \sum_{i} \lambda_{i} y_{i} x_{i} \|_{2}^{2} + \mathbf{1}^{T} \lambda$$
 subject to $\forall i, 0 \leq \lambda_{i} \leq C$ (KKT conditions)

Get primal solution from dual solution

$$\omega^* = \sum_i \lambda_i^* y_i x_i$$

Make the problem independant from dimension

Use the kernel trick:

Dual problem

Let K be X^TX (linear kernel):

$$\max \ -\frac{1}{2}\lambda^T \operatorname{diag}(y) \operatorname{Kdiag}(y) \lambda + \mathbf{1}^T \lambda$$
 subject to $\forall i, 0 \leq \lambda_i \leq C$

Implementation <u>Delete</u> inequality constraints

Use the logarithmic barrier method :

Delete inequality constraints

Use the logarithmic barrier method :

Barrier function

$$\begin{array}{l} \Phi(\lambda) = \sum_{i} (-log(C - \lambda_i) - log(\lambda_i)) \\ = -\sum_{i} log((C - \lambda_i)\lambda_i) \end{array}$$

Delete inequality constraints

Use the logarithmic barrier method :

Barrier function

$$\begin{array}{l} \Phi(\lambda) = \sum_{i} (-log(C - \lambda_i) - log(\lambda_i)) \\ = -\sum_{i} log((C - \lambda_i)\lambda_i) \end{array}$$

Final optimization problem

$$\textit{max} \ - \tfrac{1}{2} \lambda^{\textit{T}} \textit{diag}(y) \textit{K} \textit{diag}(y) \lambda + \mathbf{1}^{\textit{T}} \lambda + \Phi(\lambda)$$

1 Project description

- Project
- Optimization problem
- Implementation

2 Results

- Testing the implementation
- Plotting the classification frontier

3 Extensions

- Cross Validation
- Coordinate Descent
- ACCPM
- 4 Demo

Testing the implementation

Newton's method convergence

Testing the implementation Dependance on the sample size

Table: Time complexity dependance

Set	С	d	n	Iteration number	Time (s)
1	5	40000	10	11	0.315
1	5	40	100	12	0.715
1	5	40	1000	large	> 1,000

Testing the implementation

Performance in function of C

Performed on the same sample set:

Table: Computation time & Performance in function of C

С	Time (s)	Training Error	Val Error	Test Error
1	132.15	6	2	3
10	0.74	6	2	3
100	0.89	1	12	3

1 Project description

- Project
- Optimization problem
- Implementation

2 Results

- Testing the implementation
- Plotting the classification frontier

3 Extensions

- Cross Validation
- Coordinate Descent
- ACCPM
- 4 Demo

Plotting the classification frontier

Plotting the classification frontier

For C = 5, n = 150, d = 200

Normalized points with Gaussian distribution (2D):

Results

Plotting the classification frontier

Plotting the classification frontier

For C = 5, n = 150, d = 200

Normalized points with Gaussian distribution (2D):

Plotting the classification frontier

Pour C = 5, n = 100, d = 2

Generation with Gaussian distribution (2D) (set A) :

Plotting the classification frontier

Pour C = 5, n = 100, d = 2

Generation with Gaussian distribution (2D) (set B) :

1 Project description

- Project
- Optimization problem
- Implementation

2 Results

- Testing the implementation
- Plotting the classification frontier

3 Extensions

- Cross Validation
- Coordinate Descent
- ACCPM
- 4 Demo

Cross Validation

Cross validation (choice of the best value for C);

Cross Validation

Cross validation (choice of the best value for C);

Leave-one-out technique

Having a sample size of size n, for each value of C to test:

- 1 for $i \in [1, n]$
- 2 Leave out sample i
- Train the SVM on other samples
- 4 Test the SVM on sample i
- 5 Get the Mean-Squared Error for the *n* loops
- 6 If it is the minimum MSE computed so far
- 7 Then update the best value of C

- 1 Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
 - Cross Validation
 - Coordinate Descent
 - ACCPM
- 4 Demo

Coordinate Descent

Implementation of Coordinate Descent;

Coordinate Descent

Implementation of Coordinate Descent;

Reminder: Coordinate Descent

for
$$i, j \in [1, d]$$
, and iteration k

$$a_i^{k+1} = argmin_{a_i} f(a_1, a_2, ..., a_i, ..., a_d)$$

 $a_i^{k+1} = a_i^k \text{ for } j \neq i$

Coordinate Descent results

Performed on the same sample set (as in the testing of the original SVM):

Table: Computation time & Performance in function of C

С	Time (s)	Training Error	Val Error	Test Error
1	0.37	11	6	5.33
10	0.34	5	4	3.39
100	0.29	1	8	3.56
10,000	0.29	6	4	2.76

1 Project description

- Project
- Optimization problem
- Implementation

2 Results

- Testing the implementation
- Plotting the classification frontier

3 Extensions

- Cross Validation
- Coordinate Descent
- ACCPM
- 4 Demo

Extensions ACCPM

Implementation of Analytic Center Cutting-Plane Method;

Extensions ACCPM

Implementation of Analytic Center Cutting-Plane Method;

Reminder: ACCPM

- 1 Compute the analytic center of constraint polyhedron
- 2 Compute the objective value and the gradient
- 3 While objective value is evolving greatly enough
- 4 Add an inequality to constraint polyhedron
- 5 Optional: Constraint Dropping

Extensions ACCPM results

Figure: For data of size 8, and dimension 2

- Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
 - Cross Validation
 - Coordinate Descent
 - ACCPM
- 4 Demo

LDemo

Demo of the SVM