Logistic Regression and Perceptron

Instructor: Wei Xu

Some slides adapted from Dan Jurfasky, Brendan O'Connor and Marine Carpuat

Warm Up

Derivative Rules

Common Functions	Function	Derivative
Constant	С	0
Line	×	1
	ax	а
Square	x ²	2x
Square Root	√x	$(\frac{1}{2})x^{-\frac{1}{2}}$
Exponential	e ^x	e ^x
	a ^x	In(a) a ^x
Logarithms	ln(x)	1/x
	log _a (x)	1 / (x ln(a))

Rules	Function	Derivative
Multiplication by constant	cf	cf'
Power Rule	x ⁿ	nx ⁿ⁻¹
Sum Rule	f + g	f' + g'
Difference Rule	f - g	f' – g'
Product Rule	fg	f g' + f' g
Quotient Rule	f/g	$(f' g - g' f)/g^2$
Reciprocal Rule	1/f	-f'/f ²
Chain Rule (as "Composition of Functions")	f ^o g	(f' ° g) × g'
Chain Rule (using ')	f(g(x))	f'(g(x))g'(x)
Chain Rule (using $\frac{d}{dx}$)	$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$	

NB & LR

Both are linear models

$$z = \sum_{i=0}^{|X|} w_i x_i$$

- Training is different:
 - NB: weights are trained independently
 - LR: weights trained jointly

Linear Models

Compute Features:

$$f(d_i) = x_i = \begin{pmatrix} \text{count("nigerian")} \\ \text{count("prince")} \\ \text{count("nigerian prince")} \end{pmatrix}$$

Assume we are given some weights:

$$w = \begin{pmatrix} -1.0 \\ -1.0 \\ 4.0 \end{pmatrix}$$

Linear Models

- Compute Features
- We are given some weights
- Compute the dot product:

$$z = \sum_{i=0}^{|X|} w_i x_i$$

- Intuition: weighted sum of features
- All Linear models have this form

Naïve Bayes as a Log-Linear Model

$$P(\operatorname{spam}|D) \propto P(\operatorname{spam}) \prod_{w \in D} P(w|\operatorname{spam})$$

$$P(\operatorname{spam}|D) \propto P(\operatorname{spam}) \prod_{w \in \operatorname{Vocab}} P(w|\operatorname{spam})^{x_i}$$

$$\log P(\operatorname{spam}|D) \propto \log P(\operatorname{spam}) + \sum_{w \in \operatorname{Vocab}} x_i \cdot \log P(w|\operatorname{spam})$$
 features weights

Logistic Regression

• (Log) Linear Model - similar to Naïve Bayes

Doesn't assume features are independent

Correlated features don't "double count"

Logistic Regression

Compute the dot product:

$$z = \sum_{i=0}^{|X|} w_i x_i$$

• Compute the logistic function:

convert into probabilities between [0, 1]

$$P(\text{spam}|x) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}}$$

exponential/log space

The Logistic function

NB vs. LR

Both compute the dot product

NB: sum of log probabilities

• LR: logistic function

NB vs. LR: Parameter Learning

 NB: Learn conditional probabilities independently by counting

LR: Learn feature weights jointly

LR: Learning Weights

Given: a set of feature vectors and labels

Goal: learn the weights

LR: Learning Weights

Q: what parameters should we choose?

What is the right value for the weights?

- Maximum Likelihood Principle:
 - Pick the parameters that maximize the probability of the y labels in the training data given the observations x.

$$w_{\text{MLE}} = \operatorname{argmax}_{w} \log P(y_1, \dots, y_d | x_1, \dots, x_d; w)$$

$$= \operatorname{argmax}_{w} \sum \log P(y_{i}|x_{i}; w)$$

$$= \underset{i}{\operatorname{argmax}}_{w} \sum_{i} \log \begin{cases} p_{i}, & \text{if } y_{i} = 1 \\ 1 - p_{i}, & \text{if } y_{i} = 0 \end{cases}$$

$$p_i = \sigma(\sum_j w_j x_j)$$

$$= \operatorname{argmax}_{w} \sum_{i=1}^{\mathbb{I}(y_{i}=1)} (1 - p_{i})^{\mathbb{I}(y_{i}=0)}$$

$$= \operatorname{argmax}_{w} \sum_{i} \log p_{i}^{\mathbb{I}(y_{i}=1)} (1 - p_{i})^{\mathbb{I}(y_{i}=0)}$$

$$= \operatorname{argmax}_{w} \sum_{i} y_{i} \log p_{i} + (1 - y_{i}) \log(1 - p_{i})$$

- · Unfortunately there is no closed form solution
 - (like there was with naïve Bayes)

- Solution:
 - Iteratively climb the log-likelihood surface through the derivatives for each weight
- Luckily, the derivatives turn out to be nice

Gradient Ascent

Gradient Ascent

Loop While not converged:

For all features **j**, compute and add derivatives

$$w_j^{\text{new}} = w_j^{\text{old}} + \eta \frac{\partial}{\partial w_j} \mathcal{L}(w)$$

 $\mathcal{L}(w)$: Training set log-likelihood

$$\left(\frac{\partial \mathcal{L}}{\partial w_1}, \frac{\partial \mathcal{L}}{\partial w_2}, \dots, \frac{\partial \mathcal{L}}{\partial w_n}\right)$$
: Gradient vector

LR Gradient

$$w_{\text{MLE}} = \operatorname{argmax}_{w} \sum_{i} y_{i} \log p_{i} + (1 - y_{i}) \log(1 - p_{i})$$

$$\frac{\partial \mathcal{L}}{\partial w_j} = \sum_{i} (y_i - p_i) x_j$$

Exercise

Logistic Regression: Pros and Cons

- Doesn't assume conditional independence of features
 - Better calibrated probabilities
 - Can handle highly correlated overlapping features

NB is faster to train, less likely to overfit

MultiClass Classification

- Q: what if we have more than 2 categories?
 - Sentiment: Positive, Negative, Neutral
 - Document topics: Sports, Politics, Business,
 Entertainment, ...

Q: How to easily do Multi-label classification?

Two Types of MultiClass Classification

- Multi-label Classification
 - each instance can be assigned more than one labels

- Multinominal Classification
 - each instance appears in exactly one class (classes are exclusive)

Multinominal Classification

Pretty straightforward with Naive Bayes.

$$P(\operatorname{spam}|D) \propto P(\operatorname{spam}) \prod_{w \in D} P(w|\operatorname{spam})$$

Log-Linear Models

$$P(y|x) \propto e^{w \cdot f(x,y)}$$

$$P(y|x) = \frac{1}{Z(w)} e^{w \cdot f(x,y)}$$

Multinominal Logistic Regression

$$P(y|x) \propto e^{w \cdot f(x,y)}$$

$$P(y|x) = \frac{1}{Z(w)} e^{w \cdot f(x,y)}$$

$$P(y|x) = \frac{e^{w \cdot f(x,y)}}{\sum_{y' \in Y} e^{w \cdot f(x,y')}}$$

Multinominal Logistic Regression

- Binary (two classes):
 - We have one feature vector that matches the size of the vocabulary
- Multi-class in practice:
 - one weight vector for each category

 $w_{
m pos}$ $w_{
m neg}$ $w_{
m neut}$

Can represent this in practice with one giant weight vector and repeated features for each category.

$$w_{\text{MLE}} = \operatorname{argmax}_{w} \log P(y_1, \dots, y_n | x_1, \dots, x_n; w)$$

$$= \operatorname{argmax}_{w} \sum_{i} \log P(y_{i}|x_{i}; w)$$

$$= \operatorname{argmax}_{w} \sum_{i} \log \frac{e^{w \cdot f(x_{i}, y_{i})}}{\sum_{y' \in Y} e^{w \cdot f(x_{i}, y')}}$$

(a.k.a) Softmax Regression

Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Article Talk Read Edit View history Search Wikipedia Q

Not logged in Talk Contributions Create account Log in

Softmax function

From Wikipedia, the free encyclopedia

In mathematics, the **softmax function**, or **normalized exponential function**,^{[1]:198} is a generalization of the logistic function that "squashes" a K-dimensional vector \mathbf{z} of arbitrary real values to a K-dimensional vector $\sigma(\mathbf{z})$ of real values in the range (0, 1) that add up to 1. The function is given by

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for $j = 1, ..., K$.

(a.k.a) Maximum Entropy Classifier

or MaxEnt

- Math proof of "LR=MaxEnt":
 - [Klein and Manning 2003]
 - [Mount 2011]

http://www.win-vector.com/dfiles/LogisticRegressionMaxEnt.pdf

Multiclass LR Gradient

$$\frac{\partial \mathcal{L}}{\partial w_j} = \sum_{i=1}^{D} f_j(y_i, d_i) - \sum_{i=1}^{D} \sum_{y \in Y} f_j(y, d_i) P(y|d_i)$$

Perceptron Algorithm

- Very similar to logistic regression
- Not exactly computing gradient

[Rosenblatt 1957]

http://www.peterasaro.org/writing/neural_networks.html

Perceptron Algorithm

- Very similar to logistic regression
- Not exactly computing gradient

$$P(y=1|x)=1 \text{ if } \mathbf{w} \cdot \mathbf{\varphi}(x) \ge 0$$

 $P(y=1|x)=0 \text{ if } \mathbf{w} \cdot \mathbf{\varphi}(x) < 0$

$$P(y=1|x) = \frac{e^{w \cdot \varphi(x)}}{1 + e^{w \cdot \varphi(x)}}$$

Online Learning

 Update parameters for each training example (when predication is wrong)

```
for / iterations
  for each labeled pair x, y in the data
    phi = create_features(x)
    y' = predict_one(w, phi)
    if y' != y
        UPDATE_WEIGHTS(w, phi, y)
```

Online Learning

- The Perceptron is an online learning algorithm.
- Logistic Regression is not:

$$w_{\text{MLE}} = \operatorname{argmax}_{w} \log P(y_1, \dots, y_d | x_1, \dots, x_d; w)$$

Perceptron Algorithm

- Very similar to logistic regression
- Not exactly computing gradient

```
Initalize weight vector w = 0

Loop for K iterations

Loop For all training examples x_i

if sign(w * x_i) != y_i

w += (y_i - sign(w * x_i)) * x_i
```

Perceptron Notes

 Guaranteed to converge if the data is linearly separable

Only hyperparameter is maximum number of iterations

Parameter averaging will greatly improve performance

Differences between LR and Perceptron

Online learning vs. Batch

Perceptron doesn't always make updates