

HF Tasarsız Ağlarda Rotalama

Makbule Gülçin Özsoy TUBITAK-BILGEM/G227

Gündem

- Tasarsız Ağlar
- Rotalama Algoritmaları
- Proaktif Rotalama Algoritmaları
 - Optimized Link State Routing Protocol (OLSR)
 - Destination-Sequenced Distance Vector Routing Protocol (DSDV)
- Reaktif Rotalama Algoritmaları
 - Dynamic Source Routing (DSR)
 - Ad-Hoc on Demand Distance Vector Routing (AODV)
- HF Ortamında Rotalama

- Mobil ve dağıtık haberleşme kavramı
- Amaç: Varolan bir altyapıyı kullanmadan; düğümlerin, topolojinin ve bağlantı durumunun sabit olmadığı ağlar yaratmak.

Tarihi gelişimi

- 1970'ler:
 - ALOHA, University of Hawaii: Tek atlamalı paket yayılımının mümkün olduğu gösterilmiştir.
- 1980'ler:
 - PRNET, DARPA: Çok atlamalı Paket Radyo Ağı (Packet Radio Network) sistemi. Sistem bir kısmı mobil olan 50 düğümden oluşmaktadır.
 - SURAN (Survivable Adaptive Networks), ABD Ordusu: Elektronik karşı ataklarda paket radyo ağı operasyonlarının sürekliliğini sağlamak hedeflenmiştir. Gerçeklenen sistem ABD Ordusu tarafından kullanılmıştır.
- 1990'lar ve sonrası:
 - Askeri ve ticari uygulamalar

• Temel özellikleri:

- Otonom ve altyapısız ağ kurma
- Kendi kendine konfigure olabilme
- Esnek olma
- Konuşlandırması kolay olma
- Dinamik ağ topolojisine sahip olma
- Kısıtlı bant genişliğine sahip olma
- Değişken kapasiteli bağlantılara sahip olma
- Heterojen cihaz dağılımının bulunması

Kullanım Alanları

- Askeri uygulamalar:
 - Otonom topolojilerde sağlam(robust) ve IP-tabanlı data servis desteği
- Acil durum senaryoları:
 - Hızla konuşlandırılabilen, sürdürülebilir, verimli ve dinamik haberleşme ortamları
- Endüstriyel/Ticari uygulamalar:
 - Mobil veri paylaşımı

Application	Possible scenarios/services		
Tactical networks	Military communication and operations Automated battlefields		
Emergency services	Search and rescue operations Disaster recovery Replacement of fixed infrastructure in case of environmental disasters Policing and fire fighting Supporting doctors and nurses in hospitals		
Commercial and civilian environments	E-commerce: electronic payments anytime and anywhere Business: dynamic database access, mobile offices Vehicular services: road or accident guidance, transmission of road and weather conditions, taxi cab network, inter-vehicle networks Sports stadiums, trade fairs, shopping malls Networks of visitors at airports		
Home and enterprise networking	Home/office wireless networking Conferences, meeting rooms Personal area networks (PAN), Personal networks (PN) Networks at construction sites		
Education	Universities and campus settings Virtual classrooms Ad hoc communications during meetings or lectures		
Entertainment	Multi-user games Wireless P2P networking Outdoor Internet access Robotic pets Theme parks		
Sensor networks	Home applications: smart sensors and actuators embedded in consumer electronics Body area networks (BAN) Data tracking of environmental conditions, animal movements, chemical/biological detection		
Context aware services	Follow-on services: call-forwarding, mobile workspace Information services: location specific services, time dependent services Infotainment: touristic information		
Coverage extension	Extending cellular network access Linking up with the Internet, intranets, etc.		

- Temel problemler/zorluklar
 - Rotalama (tek/çok atlamalı)
 - Adresleme
 - Güvenlik
 - Multicast haberleşme
 - QoS desteği

Rotalama Algoritmaları

- Tasarsız ağlarda:
 - Düğümler hareketlidir.
 - Topoloji değişkendir.
- Amaç: Düğümler arası haberleşme yollarını bularak, haberleşmeyi sürdürebilmek.

Rotalama Algoritmaları

- Performans kriterleri
- Niteliksel özellikler:
 - Dağıtık operasyonlar
 - Döngü oluşturmama (Loop-free)
 - Gecikme (Latency)
 - Güvenlik
 - Enerji tasarrufu
 - Tek/Çift yönlü bağlantı

- Niceliksel özellikler:
 - Veri aktarımı ve gecikme (Delay)
 - Rota bulma süresi
 - Data olmayan veri gönderme oranı
 - Verimlilik

Rotalama Algoritmaları

- Rota bulma yöntemlerine göre algoritmalar:
 - Proaktif rotalama algoritmaları: Rota bilgisi sürekli olarak tutulur.
 - Reaktif rotalama algoritmaları: Rota bilgisi ihtiyaç halinde bulunur ve saklanır.

Proaktif Rotalama

- Rota kontrol bilgisi periyodik olarak ve topoloji değiştiğinde değiş-tokuş edilir.
- Literatürdeki proaktif algoritmalar:
 - Optimized Link State Routing Protocol (OLSR)
 - Destination-Sequenced Distance Vector Routing Protocol (DSDV)
 - Wireless Routing Protocol (WRP)

- Proaktif rotalama algoritması
- Link State Routing (LSR) algoritmasının iyileştirilmiş şekli
- LSR:
 - Bağlantı durumunu bildiren paketler periyodik olarak yayınlanır.
 - Herbir düğüm tarafından tüm ağ topolojisi tutulur.

- Periyodik güncellemelerin gönderim biçimi iyileştirilmiştir:
 - Düğümler gruplara ayrılır.
 - Gruplar özelleşmiş düğümler tarafından birbirlerine bağlıdır.

- Periyodik güncellemelerin gönderim biçimi iyileştirilmiştir:
 - Özelleşmiş düğümler: Düğümler arası veri ve bağlantı durumu bilgisinin aktarılmasından sorumludur.
 - Yeni düğümlerin keşfi: Özelleşmiş düğümler aynı grup içinde periyodik "hello" mesajları gönderir.
- LSR'da olduğu gibi rota bulma işlemi topoloji haritaları kullanılarak gerçekleştirilir.

- Döngü oluşturmaz.
- Periyodik güncellemeler bant genişliği kullanımında problem yaratabilir.
- İhtiyaç olmayan rotalar da tutulmaktadır.
- Gecikmenin az olmasının, verimlilikten daha önemli olduğu ortamlar için uygundur.

Destination-Sequenced Distance Vector Routing Protocol (DSDV)

- Proaktif rotalama algoritması
- Bellman-Ford algoritmasını temel alır
- Rotalama için rotalama tabloları kullanılır. (next hop, hop count ve sequence number)

Destination-Sequenced Distance Vector Routing Protocol (DSDV)

- Herbir düğüm komşu düğüme periyodik olarak ve değişiklik olduğunda rota bilgilerini gönderir.
- Rota güncelleme mesajını alan düğüm elindeki bilgilerlerle yeni gelen bilgiyi karşılaştırarak rotalama tablosunu günceller.
- Rotalama tablosunu güncelleyen herbir düğüm komşu düğümlere yeni bilgileri yayınlar.

Destination-Sequenced Distance Vector Routing Protocol (DSDV)

- Döngü oluşturmaz.
- Hem periyodik hem de olaya dayalı güncellemeler yapılması nedeniyle, iletişim yükü oluşturabilir.
- Rotalama bilgilerinin sürekli değişmesi olasıdır.
- Gereksiz güncellemeler oluşabilir, bant genişliğinin kullanımında probleme neden olur.
- Bir hedef düğümle ilgili birden fazla rota bilgisi tutamaz.

Reaktif Rotalama

- Sadece iletişim kurulan düğümlerle ilgili rota bilgisi bulunarak, ihtiyaç süresince saklı tutulur.
- Literatürdeki reaktif algoritmalar:
 - Dynamic Source Routing (DSR)
 - Ad-Hoc on Demand Distance Vector Routing (AODV)
 - Temporally Ordered Routing (TORA)
 - Associativity Based Routing (ABR)
 - Signal Stability Based Adaptive Routing (SSAR)
 - Location Aided Routing (LAR)

- Reaktif rotalama algoritması
- Temel iş paketleri:
 - Rota bulma
 - Rota bakımı ve sürdürülebilirliği

Rota bulma

- Kaynak düğüm hedef düğüme ait rota bilgisine sahipse, ilgili rota bilgisini kullanır.
- Kaynak düğüm hedef düğüme ait rota bilgisine sahip değilse, rota isteğini yayınlar.

Rota bulma

- Rota isteğini alan düğümler, hedefe ait rota bilgisine sahipse veya hedef düğüm kendisi ise rota cevabını yayınlar.
- Rota isteğini/cevabını alan düğümler kendi rota bilgilerini de güncellerler.

- Rota bakımı ve sürdürülebilirliği
 - Hedefe verinin gönderilip gönderilemediği,
 "link level protocols (ACKs)" veya zamanaşımı
 bilgisi tutularak tespit edilir.
 - Veri gönderiminde bir aksama oluştuğunda, düğüm kendinden önceki diğer tüm düğümlere hata paketi gönderir.
 - Hata paketini alan düğümler kendi rota bilgilerinden ilgili rotayı çıkarırlar.

- Rota bakımı ve sürdürülebilirliği
 - İlgili rotaya hala ihtiyaç varsa, kaynak düğüm rota bulma prosedürünü yeniden başlatır.
 - Süreci kısaltmak için literatürde önerilen başka bir yöntem de mevcuttur. (packet salvaging)
 - Ara düğüm ilgili hedef düğüme başka bir rota biliyorsa, eldeki rotalama bilgisini silmek yerine hedef düğüme olan rotayı güncelleyerek veriyi iletir.
 - Güncelleme yapan ara düğüm güncellenen rota bilgisini kaynak düğüme bildirir.

- Döngü oluşturmaz.
- Sadece ihtiyaç halinde düşük sayıdaki düğüm haberleşir.
- Herhangi bir hedef düğümle ilgili birden fazla rota bilgisi tutulabilir.
- Her zaman optimal rota kullanıldığı söylenemez.
- Rota bulmak için paketler tüm düğümlere yayınlanması iletişim yükü getirir.
- Rota isteği/cevabı paketlerinde tüm rota taşınır.
 Çok sayıda düğüme sahip ağlarda sınırlı bant genişliği problemlere neden olabilir.

- Reaktif rotalama algoritması
- Dynamic Source Routing (DSR) ve
 Destination-Sequenced Distance Vector
 Routing Protocol (DSDV) algoritmalarını
 temel alır.
 - DSDV: Periyodik uyarı mesajları
 - DSR: Rota bulma yaklaşımı

Rota bulma:

- Herbir hedef düğüm için aktif rota bilgisi rotalama tablosunda tutulur.
- Hedef düğüme ait rota bilgisi mevcut değilse rota isteği yayınlanır.
- Rota isteği paketinde tüm rota bilgisi tutulmaz.
- Düğümler rotalama tablolarında hedefe varmak için ihtiyaç duyulan sonraki düğüm bilgisini tutar.

C Düğümü, rota isteğini alır:

1) S için kayıt oluşturur

Dest: S,

Next hop: A,

HopCount: 2

2) Rota isteğini yayınlar

Rota bulma:

- Rota istek bilgisini alan düğümler, hedefe giden rotayı biliyorlarsa veya hedef düğüme ulaşıldıysa, rota cevabı gönderilir.
- Rota cevabı rota isteğinin takip ettiği yol tersinden takip edilerek kaynak düğüme ulaştırılır.
- Rota cevabını alan ara düğümler kendi rotalama tablolarını uygun biçimde günceller.

S Düğümü, rota cevabını alır:

1) D için kayıt oluşturur

Dest: D,

Next hop: A,

HopCount: 3

2) D Düğümüne veri paketini

gönderir

- Rota bakımı ve sürdürülebilirliği
 - Bağlantıların kırılıp kırılmadığı periyodik "hello" mesajlarıyla kontrol edilir.
 - Bağlantı kopması durumunda ilgili komşular uyarılır.
 - Rota bilgisine hala ihtiyaç varsa, rota bulma prosedürü yeniden başlatılır.

- Döngü oluşturmaz.
- Rota isteği/cevabı paketlerinde tüm rota taşınmaz, sadece sonraki düğüm bilgisi tutulur.
- Her zaman optimal rota kullanıldığı söylenemez.
- Herhangi bir hedef düğümle ilgili birden fazla rota bilgisi tutulmaz.
- Rota bulmak için paketler tüm düğümlere yayınlanması iletişim yükü getirir.

- HF ortamında düğümler genellikle birbirleriyle direk bağlantı kurabilirler.
- Yüksek paket kaybı ve çevresel etkiler sonucu oluşacak olan bağlantı/ağ kopuklukları oluşabilir.
- Bağlantı/ağ kopuklukları nedeniyle rotalamaya ihtiyaç duyulabilir.

- HF ortamının özellikleri
 - Düşük bant genişliği
 - Yüksek hata oranları
 - Bağlantı kopmaları
 - Erişilemeyen düğümler
 - Hareketli düğümler
 - Tek/Çift yönlü bağlantılar
 - Girişim (Interferance)
 - Gecikmeler (Channel acquisition delay)
 - Uzun bağlantı dolaşımı zamanı (Long link turnaround time)

Zorluklar:

- Girişim (Interferance)
- Gecikmeler (Channel acquisition delay)
- Düşük bant genişliği (Low bandwidth)

nedeniyle çok atlamalı rota takibini başarılı bir biçimde gerçekleştirmek zordur.

- Problemli yönler ve ihtiyaçlar:
 - Ek yük (overhead)
 - Yayın ve gruplarla iletişim (broadcast, multicast)
 - QoS desteği
 - Diğer katmanlardan bilgi toplama

	OLSR	DSDV	DSR	AODV
Route computation	Proactive	Proactive	Reactive	Reactive
Periodic broadcast	Yes	Yes	No	Yes
Loop-free	Yes	Yes	Yes	Yes
Multicast capability	No	No	No	Yes
QoS support	No	No	No	No
Security	No	No	No	No
Power conservation	No	No	No	No
Unidirectional link support	No	No	Yes	No
Multipath possibility	No	No	Yes	No

OLSR:

- HF olmayan ortamlarda ağ trafiği daha çok gruplar arası bağlantıyı sağlayan özelleşmiş düğümlerin kendi arasındaki mesajlaşmalarından oluşur.
- HF ortamında özelleşmiş düğüm sayısının az olması beklenir. Ağ trafiği grup içindeki "hello" mesajlarından etkilenir.
- HF ortamında, ağdaki düğüm sayısı arttıkça trafik yükü artacaktır.

DSDV:

- Hem periyodik hem de olaya dayalı güncelleme yapılması nedeniyle iletişim yükü oluşur.
- Aynı nedenle, gereksiz güncellemeler yapılabilir. Bu da bant genişliğinin boşa harcanmasına neden olur.

DSR:

- Sadece ihtiyaç halinde düşük sayıdaki düğüm haberleşir.
- Rota bulmak için paketlerin tüm düğümlere yayınlanması iletişim yükü getirir.
- Tek/Çift yönlü bağlantı kullanabilir.
- Rota bakımı için periyodik mesaj kullanmaz.

AODV:

- Sadece ihtiyaç halinde düşük sayıdaki düğüm haberleşir.
- Rota bulmak için paketlerin tüm düğümlere yayınlanması iletişim yükü getirir.
- Çift yönlü bağlantı kullanabilir.
- Rota bakımı için kullanılan periyodik mesajlar ağ trafiğine yük getirir.

Teşekkürler

