第十一讲:有限与无限

姓名: 丁保荣 学号: <u>171860509</u>

2017年12月13日

请独立完成作业,不得抄袭。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

第一部分 作业

题目 (UD:20.4)

- (a) Show that the positive rationals \mathbb{Q}^+ and the negative rationals \mathbb{Q}^- are equivalent.
- (b) Show that the even and odd integers are equivalent.

解答:

(a) Define $f: \mathbb{Q}^+ \to \mathbb{Q}^-$ by f(x)=-x

Firstly, we can easily note that it is well-defined.

Then, for every $y \in \mathbb{Q}^-$, there is one and only one $x \in \mathbb{Q}^+$ that satisfies f(x)=-x. Therefore f is bijective.

- \therefore the positive rationals \mathbb{Q}^+ and the negative rationals \mathbb{Q}^- are equivalent.
- (b) Define $f: \{2k|k\in\mathbb{Z}\} \rightarrow \{2k-1|k\in\mathbb{Z}\}$ by f(x)=x+1

Firstly, we can easily note that it is well-defined.

Then, for every $y \in \mathbb{Q}^-$, there is one and only one $x \in \mathbb{Q}^+$ that satisfies f(x)=-x Therefore f is bijective.

: the even and odd integers are equivalent.

题目 (UD:20.8)

Prove Theorem 20.6 working with the outline given in the text.

解答:

Firstly, for every $x \in A \cup B$, $x \in A$ or $\in B$ (but not both), therefore there exists only one y that satisfies H(x)=y for every $x \in A \cup B$

 \therefore H(x) is well-defined.

Then, for every $y \in C \cup D$, $y \in C$ or $\in D$ (but not both). We just illustrate the case that $y \in C$, for $y \in D$, it is similar

- \therefore f is bijective and $A \cap B = \emptyset$
- \therefore for every $y \in C$, there is one and only one $x \in A$ that satisfies f(x) = y and there is no $x \in B$ that satisfies f(x) = y.
- \therefore H(x) is bijective.
- \therefore H(x) is well-defined and bijective.
- $\therefore A \cup B \approx C \cup D.$

题目 (UD:20.9)

- (a) Suppose that A and B are nonempty finite sets and A \cap B= \emptyset . Show that there exist integers n and m such that $A \approx \{1,2,\ldots,n\}$ and $B \approx \{n+1,\ldots,n+m\}$.
- (b) Prove Corollary 20.8.

解答:

- (a) Since A is a nonempty finite set, we can define f: $A \rightarrow \{1,2,3,\ldots,n\}$ for some ninN
- \therefore A \approx {1,2,3,...,n} for some n \in N

Similarly, we can define g: $B \rightarrow \{1,2,3,\ldots,m\}$ for some $m \in \mathbb{N}$

Then we define a bijective function h: $\{1,2,3,\ldots,m\} \to \{n+1,n+2,\ldots,n+m\}$ by f(x)=x+n By Theorem 15.6, the comosition hog: $B \to \{n+1,n+2,\ldots,n+m\}$ for some n and $m \in \mathbb{N}$ is bijective.

- $\therefore B \approx \{n+1, \dots, n+m\}.$
- (b) let $C = \{1, 2, 3, ..., n\}$, $D = \{n+1, n+2, ..., n+m\}$ Therefore $C \cap D = \emptyset$

Define

$$H(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}$$

By Theorem 20.6, we can have $A \cup B$ is finite.

题目 (UD:20.10)

Prove Theorem 20.14 below. We suggest that you start by working Problem 15.14 if you have not already done so.

Theorem 20.14.

Let A,B,C and D be nonempty sets with A \approx C and B \approx D. Then A \times B \approx C \times D.

解答:

- ∵ A≈B and C≈D
- \therefore there exist a bijective function f: A \rightarrow B and a bijective function g: C \rightarrow D

Define H: $A \times C \to B \times D$ by H(a,c) = (f(a),g(c)).

According to Problem 15.14, we can conclude that H is bijective.

 $\therefore A \times B \approx C \times D$

题目 (UD:21.7)

Show that \mathbb{Q} is infinite.

解答:

We know that $N\subsetneq Z$, adn Theorem 21.3 tells us that N is infinite. Since Corollary 20.11 says that every subset of a finite set is finite, or set Q must be infinite.

题目 (UD:21.9)

Let A be a set, and suppose that B is an infinite subset of A. Show that A must be infinite.

解答:

If A is finite, by Corollary 20.11, we have B is finite. It contradicts with that B is infinite. Therefore A must be infinite.

题目 (UD:21.10)

Suppose that A is an infinite set, B is a finite set and $f: A \to B$ is a function. Show that there exists $b \in B$ such that $f^{-1}(\{b\})$ is infinite.

解答:

Let we suppose for all $b \in B$, we have $f^{-1}(\{b\})$ is finite.

By Theorem 20.12, we have $\bigcup_{b\in B} f^{-1}(\{b\})$ is finite.

And because $\bigcup_{b \in B} f^{-1}(\{b\}) = A$

Therefore A is finite, but it contradcits with that A is infinite.

Therefore what we suppose is wrong.

Therefore there exists $b \in B$ such that $f^{-1}(\{b\})$ is infinite.

题目 (UD:21.11)

Let X be an infinite set, and A and B be finite subsets of X. Answer each of the following, giving reasons for your answers:

- (a) Is $A \cap B$ finite or infinite?
- (b) Is A\B finite or infinite?
- (c) Is $X \setminus A$ finite or infinite?
- (d) Is $A \cup B$ finite or infinite?
- (e) If $f: A \to X$ is a one-to-one function, is f(A) finite or infinite?

解答:

- (a) $A \cap B$ is finite.
- ∴ A and B are finite
- \therefore A \therefore A \cup B is finite.

- $:: A \cap B \subseteq A \cup B$
- \therefore A \cap B is finite.
- (b) A\B is finite.
- \therefore A is finite
- $\therefore A \backslash B \subseteq A$
- \therefore A\B is finite.
- (c) $X \setminus A$ is infinite

Let we suppose $X \setminus A$ is finite

- \therefore A is finite
- \therefore X=A \cup (X\A) is finite, but it contradicts with that X is infinite.
- \therefore what we suppose is wrong.
- $\therefore X \setminus A$ is infinite
- (d) $A \cup B$ is finite.

By Theorem 20.12, we can conclude that.

- (e) f(A) is finite.
- \therefore A is one-to-one.
- $\therefore A \rightarrow f(A)$ is bijective

By Theorem 21.6, there is a unique positive integer n such that $A \approx \{1, \dots, n\}$.

- \therefore f(A) $\approx \{1, \dots, n\}$
- \therefore f(A) is finite.

题目 (UD:21.16)

- (a) Suppose that A is a finite set and $B\subseteq A$. We showed that B is finite. Show that $|B|\leq |A|$.
- (b) Suppose that A is a finite set and $B\subseteq A$. Show that if $B\neq A$, then |B|<|A|.
- (c) Show that if two finite sets A and B satisfy $B\subseteq A$ and $|A| \le |B|$, then A=B.

解答:

- (a) $A=B\cup(B\setminus A)$
- (i) if (B\A) $\neq \emptyset$ According to Problem 20.9, we can have B \approx {1,2,...,n}, (B\A)={n+1,...,n+m} and A={1,...,n+m}
- $|A| = |B| + |(B \setminus A)|$
- (ii) if $(B\backslash A)=\emptyset$, then A=B and $|(B\backslash A)|=0$
- $|A| = |B| + |(B \setminus A)|$
- $|(B\backslash A)| \ge 0$
- $\therefore |B| \leq |A|$.
- $(b)A=B\cup(B\setminus A)$
- ∴ B \neq A
- ∴ (B\A)≠∅
- \therefore According to Problem 20.9, we can have $B\approx\{1,2,\ldots,n\}$, $(B\setminus A)=\{n+1,\ldots,n+m\}$ and

```
A = \{1, ..., n+m\}
```

- $|A| = |B| + |(B \setminus A)|$
- $:: |(B \backslash A)| > 0$
- $\therefore |B| < |A|$.
- (c)
- \therefore B satisfy B \subseteq A
- $\therefore |B| \le |A| \text{ and } A = B \cup (B \setminus A)$
- $\therefore |A| \leq |B|$
- |A| = |B|
- $\therefore |(B \backslash A)| = 0$
- $(B\backslash A)=\emptyset$
- ∴ A=B

题目 (UD:21.17)

Suppose that A and B are finite sets and $f: A \rightarrow B$ is one-to-one. Show that $|A| \leq |B|$.

解答:

- : A and B are finite sets
- $\therefore \{1,\ldots,n\} \approx A \text{ for some } n \in \mathbb{N} \text{ and } B \approx \{1,\ldots,m\} \text{ for some } m \in \mathbb{N}$
- \therefore Define g: $\{1,\ldots,n\}\to A$ is bijective and h: $B\to\{1,\ldots,m\}$ is bijective and \therefore f is one-to-one,
- \therefore hofog: $\{1,\ldots,n\} \rightarrow \{1,\ldots,m\}$ is one-to-one.
- \therefore we can easily conclude that $\{1,\ldots,n\}\subseteq\{1,\ldots,m\}$
- ∴ n≤m
- $\therefore |A| \leq |B|$.

题目 (UD:21.18)

Let A and B be sets with A finite. Let $f: A \rightarrow B$. Prove that $|ran(f)| \leq |A|$.

解答:

Let we suppose $|\operatorname{ran}(f)| > |A|$

- : there exists an x which relates to at least two different y's
- : it contradicts with f is a well-defined function
- : what we suppose is not right.
- $\therefore |\operatorname{ran}(f)| \leq |A|$.

题目 (UD:21.19)

Let A be a finite set. Show that a function $f: A \rightarrow A$ is one-to-one if and only if it is onto. Is this still true if A is infinite?

解答:

(a) $f: A \rightarrow A$ is one-to-one.

Let we suppose f is not onto.

- $\therefore \operatorname{ran}(f) \subsetneq A$
- $\therefore |\operatorname{ran}(f)| < |A|$
- \therefore we can note that g: $A \rightarrow ran(f)$ is also one-to-one
- $\therefore |A| \leq |ran(f)|$
- $|A| \le |ran(f)| < |A|$, but it contradicts
- \therefore what we suppose is not right
- ∴ f is onto
- (b) $f: A \rightarrow A$ is onto.

Let we suppose f is not one-to-one

- \therefore there exist one $y \in A$ that there are at least two x's $\in A$ that satisfy f(x)=y, we define them x_1 and x_2
- \therefore we define F: A\{x_1\} is still onto.
- $\therefore |A| \leq |A \setminus \{x_1\}| = |A| -1,$
- \therefore it contradicts
- ... what we suppose is wrong
- .. f is one-to-one
- $\therefore f \colon A \rightarrow A$ is one-to-one if and only if it is onto.
- (c) it is not true if A is infinite.

题目 (UD:22.1)

Give an example, if possible, of each of the following:

- (a) a countably infinite collection of pairwise disjoint finite sets whose union is countably infinite; (See Problem 8.11 for the definition of pairwise disjoint.)
- (b) a countably infinite collection of nonempty sets whose union is finite;
- (c) a countably infinite collection of pairwise disjoint nonempty sets whose union is finite.

解答:

- (a) $\bigcup_{I \in N} \{I\}$
- (b) not exist
- (c) not exist

题目 (UD:22.2)

Which of the following sets are finite? countably infinite? uncountable? (Be carefuldon't apply theorems for finite sets to infinite sets!) Give reasons for your answers for

each of the following:

- (a) $\{1/n: n \in \mathbb{Z} \setminus \{0\}\};$
- (b) $\mathbb{R} \setminus \mathbb{N}$;
- (c) $\{x \in \mathbb{Z}: |x-7| < |x|\};$
- (d) $2\mathbb{Z} \times 3\mathbb{Z}$;
- (e) the set of all lines with rational slopes;
- (f) $\mathbb{Q} \setminus \{0\}$;
- (g) $\mathbb{N} \setminus \{1,3\}$.

解答:

- (a) countably infinite.
- As \mathbb{Q} is countably infinite and the asked set is a subset of it.
- (b) uncountable, the proof is similar to Theorem 22.12.
- (c) countably infinite. The set is $\{4,5,6,\dots\}$ and we can easily prove that $\{4,5,6,\dots\}\approx$ N.
- (d) countably infinite. By Corollary 22.10
- (e) uncountable, let y=ax+b, b can be irrational number.
- (f) countably infinite.
- As \mathbb{Q} is countably infinite and the asked set is a subset of it.
- (g) countably infinite.

As \mathbb{N} is countably infinite and the asked set is a subset of it.

题目 (UD:22.3)

Is the set of all infinite sequences of 0's and 1's finite, countably infinite, or uncountable? Guess and then prove, please.

解答:

We can easily note that this set is not finite.

Let us suppose this set is countably infinite. And we have shown that \mathbb{Z}^+ is countably infinite, there exists a bijective function $f: \mathbb{Z}^+ \to (0,111111...)$. We list the values of f using the sequence of 1 or 0

- $f(1) = a_{11}a_{12}a_{13}...$
- $f(2) = a_{21}a_{22}a_{23}...$
- $f(3) = a_{31}a_{32}a_{33}...$

. . .

Since f is onto, each sequence of 0's and 1's appears in this list.

The odd thing is that we can construct a number $b=f(1)=b_1b_2b_3...$

that is not in the list.

if $a_{11}=0$, then $b_1=1$ else $b_1=1$, and similarly we relates b_n with a_{nn} by assigning a

different value from \mathbf{a}_{nn} to \mathbf{b}_n

Therefore we construct a b that is not in the list, it contradicts with the assertion that f is onto.

- ... what we suppose is not right
- : this set is not countably infinite and isn't finite.
- : this set is uncoountable.

题目 (UD:22.6)

Prove Corollary 22.4.

解答:

let A be the countable set. There are two cases.

(i) A is finite

According to Corollay 20.11, we can conclude that every subset of A is finite.

Therefore every subset of A is countable.

(ii) A is infinite.

Therefore A is countable infinite.

Therefore A≈N

Therefore we can construct a bijective function $f: N \rightarrow A$

Select an arbitrary subset of A, name it B

Therefore $B \subseteq A$

if B is finite, we can easily note that B is countable.

if B is infinite, we can construct a bijective function g: $N\rightarrow B$

- ∴ B is countable
- : Every subset of a countable set is countable.

题目 (UD:22.9)

There is another way to show that \mathbb{Q} is countable. Turn the outline below into a proof by describing the counting process. (Don't try to find a formula for the function.)

解答:

We can count the elements of Q⁺ in the way illustrated in the grapg below.

And we have proved that $Q^- \approx Q^+$. Then $Q = Q^+ \cup Q^- \cup \{0\}$ is finite and countable, so $Q \approx N$

题目 (UD:23.2)

- (a) In \mathbb{R} , find the distance of the number 1 to the number 3 in the usual metric and in the discrete metric.
- (b) In \mathbb{R}^2 , find the distance of the point (1,3) to the point (2,5) in the usual metric, the taxicab metric, the max metric, and the discrete metric.

图 1: counting solution

解答:

- (a) $d_u(1,3)=2$, $d_d(1.3)=1$
- (b) $d_u((1,3),(2,5)) = \sqrt{5}$
- $d_{tc}((1,3),(2,5))=3$
- $d_m((1,3),(2,5))=2$
- $d_d((1,3),(2,5))=1$

题目 (UD:23.3)

- (a) Sketch the set $\{(x,y) \in \mathbb{R}^2: d_u((x,y),(0,0)<1)\}$, where d_u is the usual metric.
- (b) Sketch the set $\{(x,y) \in \mathbb{R}^2: d_{tc}((x,y),(0,0)<1)\}$, where d_{tc} is the taxical metric.
- (c) Sketch the set $\{(x,y) \in \mathbb{R}^2: d_m((x,y),(0,0)<1)\}$, where d_m is the max metric.
- (d) Sketch the set $\{(x,y) \in \mathbb{R}^2: d_d((x,y),(0,0)<1)\}$, where d_d is the discrete metric.
- (e) Sketch the set $\{(x, y, z) \in \mathbb{R}^3: d_u((x, y, z), (0, 0, 0) < 1)\}$, where d_u is the usual metric. (See Example 23.2 for the definition if you need it.)

图 2: sketching solution

解答:

题目 (UD:23.10)

Let X be the space of polynomials with real coefficients. Define a function d from X×X $\to \mathbb{R}$ by d(p,q) = |p(0), q(0)|. Is d a metric? If so, prove it. If not, why not?

解答:

No, it doesn't satisfy definiteness: let p=x, $q=x^2$, then |p(0)=q(0)|, but $p\neq q$.

第二部分 订正

题目 (UD: 10.5)

Let X be a nonempty set with an equivalence relation \sim on it. Prove that for all elements x and y in X, the equality $E_x=E_y$ holds if and only if $x\sim y$.

错因分析: 简述错误原因(可选)。

订正:

- (1)
- \therefore [x]=[y]
- $\therefore x \in [x] = [y]$
- ∴ x~y
- (2)

for $a \in [x]$

- ∴a~x~y
- ∴а~у
- ∴a∈[y]
- \therefore [x] \subseteq [y]

Similarly, we can have $[y]\subseteq [x]$

 \therefore [x]=[y]

第三部分 反馈

你可以写:

- 对课程及教师的建议与意见
- 教材中不理解的内容
- 希望深入了解的内容
- 等