13. előadás

TÖBBSZÖRÖS INTEGRÁLOK 2.

Kettős integrálok kiszámítása integráltranszformációval

A helyettesítéssel való integrálást illetően idézzük fel a valós-valós függvényekre vonatkozó állításokat. Először a határozatlan integrálokkal kapcsolatos *második helyettesítési szabályra* emlékeztetünk:

Legyenek $I, J \subset \mathbb{R}$ nyílt intervallumok. Tegyük fel, hogy $f: I \to \mathbb{R}$, $g: J \to I$, $\mathcal{R}_g = I$, $g \in D(J)$, g' > 0 J-n (vagy g' < 0 J-n) és az $(f \circ g) \cdot g': J \to \mathbb{R}$ függvénynek van primitív függvénye. Ekkor az f függvénynek is van primitív függvénye és

$$\int f(x) dx = \int_{x=g(t)} \int f(g(t)) \cdot g'(t) dt \Big|_{t=g^{-1}(x)} \qquad (x \in I).$$

Tegyük fel, hogy egy $\int f(x) dx$ alakú határozatlan integrált akarunk kiszámítani. Olyan g-t keresünk, amelyre az $\int f(g(t)) \cdot g'(t) dt$ integrált ki tudjuk számítani. E cél érdekében általában olyan g függvényt próbálunk választani, amelyre $f \circ g \cdot g'$ egyszerűbb, mint f.

A Newton–Leibniz-formulából következik a helyettesítéssel való integrálás (vagyis az integráltranszformációs formula) határozott integrálokra vonatkozó alábbi változata: Tegyük fel, hogy az $f \in R[a,b]$ függvénynek van primitív függvénye [a,b]-n, és $g:[\alpha,\beta] \to [a,b]$ olyan folytonos bijekció, ami differenciálható (α,β) -n. Ekkor

(*)
$$\int_{\alpha}^{\beta} f \circ g \cdot g' = \int_{g(\alpha)}^{g(\beta)} f.$$

A feltételek szerint g szigorúan monoton $[\alpha, \beta]$ -n.

Ha $g \uparrow [\alpha, \beta]$ -n, akkor $g(\alpha) = a$ és $g(\beta) = b$, ezért (*)-ból következik, hogy

$$\int_{a}^{b} f = \int_{\alpha}^{\beta} f \circ g \cdot g'.$$

Ha viszont $g \downarrow [\alpha, \beta]$ -n, akkor $g(\alpha) = b$ és $g(\beta) = a$, ezért (*)-ból azt kapjuk, hogy

$$\int_{\alpha}^{\beta} f \circ g \cdot g' = \int_{b}^{a} f = -\int_{a}^{b} f, \quad \Longrightarrow \quad \int_{a}^{b} f = \int_{\alpha}^{\beta} f \circ g \cdot \left(-g'\right).$$

Összefoglalva a következő állítás igaz:

Tegyük fel, hogy $f \in R[a,b], g: [\alpha,\beta] \to [a,b]$ folytonosan deriválható bijekció és $g'(t) \neq 0$ $(t \in [\alpha,\beta])$. Ekkor

$$\int_{a}^{b} f = \int_{\alpha}^{\beta} f \circ g \cdot \left| g' \right|.$$

Az előző állítás általánosítása többszörös integrálokra már jóval bonyolultabb. Valós-valós esetben az f és a g függvények intervallumokon értelmeztük. Többdimenziós esetben olyan H halmazok kerülnek szóba, amelyeknek "van mértékük", és így érdemes ezeken az integrált értelmezni. Emlékezzünk arra, hogy egy $H \subset \mathbb{R}^2$ korlátos síkidomnak, akkor van területe, ha a konstans 1 függvény Riemann-integrálható H-n, és ekkor a területét a

$$t(H) := \iint\limits_{H} 1 \, dx \, dy$$

kettős integrállal értelmezzük. Hasonlóan járunk el egy $H\subset\mathbb{R}^3$ téridom térfogatának értelmezésekor hármas integrállal. Általánosan, akkor mondjuk, hogy a $H\subset\mathbb{R}^n$ $(n\in\mathbb{N}^+)$ korlátos halmaz Jordan-mérhető, ha a konstans 1 függvény Riemann-integrálható H-n, és ekkor a H halmaz Jordan-mértéke a

$$\mu(H) := \int\limits_H 1$$

integrállal értelmezzük.

- **1. Tétel (Integráltranszformáció).** Legyen $U \subseteq \mathbb{R}^n$ $(n \in \mathbb{N}^+)$ egy nem üres nyílt halmaz, és $H \subset U$ egy nem üres, Jordan-mérhető és zárt halmaz. Tegyük fel, hogy
 - a) $g: U \to \mathbb{R}^n$ egy folytonosan differenciálható függvény,
 - b) a g függvény injektív a H halmaz belsejében, azaz $g_{|_{\mathrm{int}\,H}}$ invertálható.

Ekkor a g[H] halmaz is Jordan-mérhető, illetve az $f: g[H] \to \mathbb{R}$ korlátos függvény akkor és csak akkor integrálható, ha a

$$H \ni t \mapsto f(g(t)) \cdot |\det g'(t)|$$

függvény is integrálható, és

$$\int_{g[H]} f(x) dx = \int_{H} f(g(t)) \cdot \left| \det g'(t) \right| dt.$$

Bizonyítás. A tételt nem bizonyítjuk.

Megjegyzés. Az alkalmazások szempontjából az integráltranszformációra két okból is szükség lehet. Egyrészt, ha H olyan tartomány, amelyen az integrált csak "körülményesen" lehet kiszámolni, akkor kereshetünk olyan g-t, amely már egy "egyszerűbb" halmazon van értelmezve (pl. téglalapon), ezért a jobb oldali integrált könnyebb kiszámolni. Másrészt előfordulhat az is, hogy sikerül olyan g függvényt találni, amelyre $f \circ g \cdot |\det g'|$ egyszerűbb, mint f.

A következőben néhány nevezetes integráltranszformációt fogjuk bemutatni.

Síkbeli polárkoordináta-transzformáció:

Sok esetben a sík Descates-féle derékszögű koordinátarendszere helyett/mellett célszerű **polárkoordináta-rendszert** bevezetni a következő módon. Kiválasztunk a síkon egy rögzített O pontot (pólus) és egy ebből kiinduló félegyenest (polártengely). A pólustól különböző P pont polárkoordinátáin az (r, φ) számpárt értjük, ahol $r = \overline{OP}$ és φ az \overrightarrow{OP} félegyenesnek a polártengellyel bezárt szöge.

Világos, hogy r és φ egyértelműen meghatározza a P pont helyzetét, ezzel szemben a P pont csak r-et határozza meg egyértelműen, a φ szöget csak 2π egész számú többszörösétől eltekintve. Az O pont polárszöge határozatlan.

A vizsgálataink során gyakran egymás mellett használjuk a Descates-féle derékszőgű és a polárkoordináta-rendszert. Ha a kétféle koordinátarendszer kezdőpontja, valamint a polártengely és az x tengely pozitív fele egybeesik, akkor a következő összefüggések állnak fenn az (x,y) derékszögű és az (r,φ) polárkoordináták között:

$$x = r\cos\varphi$$

$$y = r\sin\varphi$$

$$\longleftrightarrow \qquad r = \sqrt{x^2 + y^2}, \quad \varphi = \begin{cases} \operatorname{arc}\operatorname{tg}\frac{y}{x} & \operatorname{ha}\ x > 0,\ y \geq 0 \\ 2\pi + \operatorname{arc}\operatorname{tg}\frac{y}{x} & \operatorname{ha}\ x > 0,\ y < 0 \\ \pi + \operatorname{arc}\operatorname{tg}\frac{y}{x} & \operatorname{ha}\ x < 0, \\ \pi/2 & \operatorname{ha}\ x = 0,\ y > 0 \\ 3\pi/2 & \operatorname{ha}\ x = 0,\ y < 0. \end{cases}$$

Síkbeli polárkoordináta-transzformációról beszélünk, ha a

$$g(r,\varphi) := (r\cos\varphi, r\sin\varphi) \qquad ((r,\varphi) \in \mathbb{R}^2)$$

leképezést alkalmazzuk. Világos, hogy $g \in C^1(\mathbb{R}^2)$, illetve

$$g'(r,\varphi) = \begin{pmatrix} \partial_r(r\cos\varphi) & \partial_\varphi(r\cos\varphi) \\ \partial_r(r\sin\varphi) & \partial_\varphi(r\sin\varphi) \end{pmatrix} = \begin{pmatrix} \cos\varphi & -r\sin\varphi \\ \sin\varphi & r\cos\varphi \end{pmatrix} \qquad \Big((r,\varphi) \in \mathbb{R}^2\Big).$$

Ezért

$$\det g'(r,\varphi) = r\cos^2\varphi + r\sin^2\varphi = r(\cos^2\varphi + \sin^2\varphi) = r.$$

Adott R > 0, legyen

$$H \subseteq [0,R] \times [0,2\pi]$$

egy nem üres, Jordan-mérhető, zárt halmaz. $g_{|_{\mathrm{int}\,H}}$ invertálható, azaz

$$(r_1, \varphi_1), (r_2, \varphi_2) \in \operatorname{int} H$$

$$g(r_1, \varphi_1) = g(r_2, \varphi_2) \Longrightarrow (r_1, \varphi_1) = (r_2, \varphi_2),$$

hiszen nem nehéz igazolni, hogy

$$0 < r_1, r_2 < R, \ 0 < \varphi_1, \varphi_2 < 2\pi$$

$$r_1 \cos \varphi_1 = r_2 \cos \varphi_2, \ r_1 \sin \varphi_1 = r_2 \sin \varphi_2$$

$$\Rightarrow r_1 = r_2, \ \varphi_1 = \varphi_2.$$

Ekkor az integráltranszformációról szóló tétel feltételei teljesülnek, és így az

$$x = r\cos\varphi, \quad y = r\sin\varphi$$

transzformációval

(*)
$$\iint\limits_{g[H]} f(x,y) \, dx \, dy = \iint\limits_{H} f(r\cos\varphi, r\sin\varphi) \cdot r \, dr \, d\varphi,$$

hiszen det $g'(r,\varphi) = r \ge 0$, ha $H \subseteq [0,R] \times [0,2\pi]$.

Polárkoordináta-transzformációval egy téglalapot körgyűrűcikkbe képezhetünk. Ezt szemlélteti az alábbi ábra, ahol a téglalap:

$$H := \{ (r, \varphi) \in \mathbb{R}^2 : 0 \le r_1 < r_2, \ 0 \le \varphi_1 < \varphi_2 \le 2\pi \}.$$

Példa. Számítsuk ki a

$$\iint\limits_T x^2 y \, dx \, dy$$

kettős integrált, ahol T az

$$1 \le x^2 + y^2 \le 4, \ y \ge 0, \ x \ge 0$$

egyenlőtlenségekkel meghatározott korlátos síkrész!

Megoldás. Az ábra a T-vel jelölt integrálási tartományt szemlélteti.

Az integrandus folytonos, következésképpen integrálható a T halmazon. Az integrál kiszámításához az

$$x = r \cos \varphi, \quad y = r \sin \varphi$$

 $\left(1 \le r \le 2, \ 0 \le \varphi \le \pi/2\right)$

$$\iint_{T} x^{2} y \, dx \, dy = \iint_{[1,2] \times [0,\pi/2]} (r \cos \varphi)^{2} \cdot (r \sin \varphi) \cdot r \, dr \, d\varphi = \iint_{[1,2] \times [0,\pi/2]} r^{4} \cdot (\sin \varphi) \cdot \cos^{2} \varphi \, dr \, d\varphi =$$

$$= \left(\int_{1}^{2} r^{4} \, dr \right) \cdot \left(\int_{0}^{\pi/2} \sin \varphi \cos^{2} \varphi \, d\varphi \right) = \left[\frac{r^{5}}{5} \right]_{r=1}^{r=2} \cdot \left[-\frac{\cos^{3} \varphi}{3} \right]_{\varphi=0}^{\varphi=\pi/2} =$$

$$= \left(\frac{2^{5}}{5} - \frac{1}{5} \right) \cdot \left(-\frac{\cos^{3}(\pi/2)}{3} + \frac{\cos^{3}(0)}{3} \right) = \frac{31}{5} \cdot \frac{1}{3} = \frac{31}{15}.$$

P'elda. Kettős integrállal határozzuk meg az R sugarú kör területét!

 $\boldsymbol{Megold\acute{a}s}.$ Jelölje H_R az origó középpontú Rsugarú zárt körlapot. Legyen

$$f(x,y) := 1 \quad ((x,y) \in H_R).$$

Mivel $f \in R(H_R)$, ezért a H_R halmaznak van területe, és az egyenlő a

$$\iint\limits_{H_{R}}1\,dx\,dy$$

kettős integrállal. Ezt az

$$x = r \cos \varphi, \quad y = r \sin \varphi$$

 $\left(0 \le r \le R, \ 0 \le \varphi \le 2\pi\right)$

polárkoordinátás helyettesítéssel számoljuk ki. A megismert képlet alapján

$$\iint\limits_{H_R} 1\,dx\,dy = \iint\limits_{[0,R]\times[0,2\pi]} r\,dr\,d\varphi,$$

és ez utóbbi integrált szukcesszív integrálással könnyű kiszámítani:

$$\iint_{[0,R]\times[0,2\pi]} r \, dr \, d\varphi = \left(\int_0^R r \, dr\right) \cdot \left(\int_0^{2\pi} 1 \, d\varphi\right) = \left[\frac{r^2}{2}\right]_0^R \cdot 2\pi = R^2\pi.$$

Az R sugarú kör területére tehát így is megkaphatjuk a jól ismert $R^2\pi$ képletet.

Megjegyzés. Emlékeztetünk arra, hogy az egyváltozós analízisben a félkör területét a

$$\int_{-R}^{R} \sqrt{R^2 - x^2} \, dx$$

határozott integrállal számoltuk ki.

Példa. Kettős integrállal határozzuk meg az R sugarú gömb térfogatát!

Megoldás. Legyen R > 0 adott valós szám és

$$f(x,y) := \sqrt{R^2 - x^2 - y^2} \quad \left(H_R := \left\{ (x,y) \in \mathbb{R}^2 \mid \sqrt{x^2 + y^2} \le R \right\} \right).$$

Az f függvény grafikonja az origó középpontú R sugarú gömb felső féltérbe eső felülete; az ez alatti térrész pedig a félgömb. Mivel $f \in C(H_R)$, ezért $f \in R(H_R)$. Így a félgömbnek van térfogata, és az egyenlő az alábbi kettős integrállal:

$$\iint\limits_{H_R} f = \iint\limits_{H_R} f(x,y) \, dx \, dy = \iint\limits_{H_R} \sqrt{R^2 - x^2 - y^2} \, dx \, dy.$$

Ezt az

$$x = r \cos \varphi, \quad y = r \sin \varphi$$

 $\left(0 \le r \le R, \ 0 \le \varphi \le 2\pi\right)$

polárkoordinátás helyettesítéssel számoljuk ki. A megismert képlet alapján

$$\iint\limits_{H_R} f(x,y) \, dx \, dy = \iint\limits_{[0,R] \times [0,2\pi]} f\Big(r \, \cos \varphi, \, r \, \sin \varphi\Big) \cdot r \, dr \, d\varphi,$$

és ez utóbbi integrált szukcesszív integrálással könnyű kiszámítani:

$$\iint\limits_{[0,R]\times[0,2\pi]} f\Big(r\,\cos\varphi,\,r\,\sin\varphi\Big)\cdot r\,dr\,d\varphi = \iint\limits_{[0,R]\times[0,2\pi]} \sqrt{R^2-r^2}\cdot r\,dr\,d\varphi =$$

$$\left(\int_{0}^{R} \sqrt{R^2 - r^2} \cdot r \, dr\right) \cdot \left(\int_{0}^{2\pi} 1 \, d\varphi\right) = \left[-\frac{1}{3} (R^2 - r^2)^{3/2} \right]_{0}^{R} \cdot 2\pi = \frac{2R^3\pi}{3}.$$

Az R sugarú gömb térfogata tehát $4R^3\pi/3$.

Megjegyzés. Emlékeztetünk arra, hogy az egyváltozós analízisben a gömb (forgástest) térfogatát a

$$\pi \cdot \int_{-R}^{R} \left(\sqrt{R^2 - x^2}\right)^2 dx$$

határozott integrállal számoltuk ki.

Térbeli polárkoordináta-transzformáció:

A síkbeli polárkoordináta-rendszert "térbeli" megfelelője az ábrán található jelölésekkel tudjuk megválósítani. Ha $\overrightarrow{OP}(x,y,z)$ vektor hossza

$$r = \sqrt{x^2 + y^2 + z^2} > 0,$$

akkor a síkbeli polárkoordináták alapján

$$z = r \cos \theta$$

és $\overrightarrow{OP'}$ hossza $r\sin\theta$, ahol $0\leq\theta\leq\pi$. Ha felírjuk a P' pont síkbeli polárkoordinátait, akkor

$$x = r \sin \theta \cos \varphi$$
 és $y = r \sin \theta \sin \varphi$,

ahol $0 \le \varphi < 2\pi$.

Térbeli polárkoordináta-transzformációról beszélünk, ha a

$$g(r, \varphi, \theta) := (r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta)$$
 $(r, \varphi, \theta) \in \mathbb{R}^3$

leképezést alkalmazzuk. Világos, hogy $g \in C^1(\mathbb{R}^3)$, illetve

$$g'(r,\varphi,\theta) = \begin{pmatrix} \partial_r(r\sin\theta\cos\varphi) & \partial_\varphi(r\sin\theta\cos\varphi) & \partial_\theta(r\sin\theta\cos\varphi) \\ \partial_r(r\sin\theta\sin\varphi) & \partial_\varphi(r\sin\theta\sin\varphi) & \partial_\theta(r\sin\theta\sin\varphi) \\ \partial_r(r\cos\theta) & \partial_\varphi(r\cos\theta) & \partial_\theta(r\cos\theta) \end{pmatrix} = \\ = \begin{pmatrix} \sin\theta\cos\varphi & -r\sin\theta\sin\varphi & r\cos\theta\cos\varphi \\ \sin\theta\sin\varphi & r\sin\theta\cos\varphi & r\cos\theta\sin\varphi \\ \cos\theta & 0 & -r\sin\theta \end{pmatrix} \qquad \Big((r,\varphi,\theta) \in \mathbb{R}^3 \Big).$$

Ezért

$$\det g'(r,\varphi,\theta) = \cos\theta \cdot \det \begin{pmatrix} -r\sin\theta\sin\varphi & r\cos\theta\cos\varphi \\ r\sin\theta\cos\varphi & r\cos\theta\sin\varphi \end{pmatrix} - r\sin\theta \cdot \det \begin{pmatrix} \sin\theta\cos\varphi & -r\sin\theta\sin\varphi \\ \sin\theta\sin\varphi & r\sin\theta\cos\varphi \end{pmatrix} =$$

$$= \cos\theta \cdot (r^2\sin\theta\cos\theta) \cdot \det \begin{pmatrix} -\sin\varphi & \cos\varphi \\ \cos\varphi & \sin\varphi \end{pmatrix} - r\sin\theta \cdot (r\sin^2\theta) \cdot \det \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} =$$

$$= -r^2\sin\theta(\cos^2\theta + \sin^2\theta) = -r^2\sin\theta$$

Adott R > 0, legyen

$$H \subseteq [0, R] \times [0, 2\pi] \times [0, \pi]$$

egy nem üres, Jordan-mérhető, zárt halmaz. Nem nehéz igazolni, hogy $g_{|_{\text{int}\,H}}$ invertálható.

Ekkor az integráltranszformációról szóló tétel feltételei teljesülnek, és így az

$$x = r \sin \theta \cos \varphi,$$
 $y = r \sin \theta \sin \varphi,$ és $z = r \cos \theta$

transzformációval

(**)
$$\iiint_{q[H]} f(x,y,z) \, dx \, dy \, dz = \iiint_{H} f(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta) \cdot r^{2} \sin \theta \, dr \, d\varphi \, d\theta,$$

hiszen det $g'(r, \varphi, \theta) = -r^2 \sin \theta \le 0$, ha $H \subseteq [0, R] \times [0, 2\pi] \times [0, \pi]$.

Példa. Számítsuk ki az R sugarú gömb térfogatát!

Megoldás. A gömb térfogatát kiszámíthatjuk az alábbi hármas integrállal:

$$V = \iiint_C 1 \, dx \, dy \, dz$$
, ahol $G := \{x^2 + y^2 + z^2 \le R^2\}$.

Térbeli polárkoordináta-transzformációval

$$H := [0, R] \times [0, 2\pi] \times [0, \pi] \qquad \Longrightarrow \qquad G = g[H],$$

ezért (**) alapján

$$V = \iiint_G 1 \, dx \, dy \, dz = \iiint_H 1 \cdot r^2 \sin \theta \, dr \, d\varphi \, d\theta = \left(\int_0^R r^2 \, dr\right) \cdot \left(\int_0^{2\pi} 1 \, d\varphi\right) \cdot \left(\int_0^{\pi} \sin \theta \, d\theta\right) =$$
$$= \left[\frac{r^3}{3}\right]_{r=0}^{r=R} \cdot \left[\varphi\right]_{\varphi=0}^{\varphi=2\pi} \cdot \left[-\cos \theta\right]_{\theta=0}^{\theta=\pi} = \frac{R^3}{3} \cdot 2\pi \cdot 2 = \frac{4\pi R^3}{3}.$$

A normális eloszlás sűrűségfüggvénye

A valószínűségszámításban nagyon fontos szerepet játszanak azok az $f \colon \mathbb{R} \to \mathbb{R}$ függvények, amikre

$$f(x) \ge 0 \quad (x \in \mathbb{R})$$
 és $\int_{-\infty}^{+\infty} f(x) dx = 1$

teljesül, az ún. *sűrűségfüggvények*. A folytonos eloszlások közül a normális eloszlás központi szerepet tölt be. Ennek sűrűségfüggvénye

$$f(x) := \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}} \qquad (m \in \mathbb{R}, \ \sigma > 0, \ x \in \mathbb{R}).$$

De miért lesz f sűrűségfüggvény? Az $f(x) \geq 0$ tulajdonság nyilván teljesül, de a teljes $\mathbb R$ halmazon vett improprius integrálját ki kellene számítani. Azonban ezt nem tudjuk az improprius integrál fogalma alapján kiszámolni, mert ehhez ismerni kellene f primitív függvényeit, de ezek nem elemi függvények. Más szavakkal, nincs képlet, amivel tudnánk a Newton–Leibniz-formulát alkalmazni, és majd határértéket venni.

Érdekes módon, a többszörös integrálásnál megismert módszerek segítenek megoldani a feladatot. Először számítsuk ki az

$$\int_{-\infty}^{+\infty} e^{-x^2} \, dx$$

ún. Gauss-integrált. Ez úgy értelmezhető, mint az e^{-x^2} függvény alatti terület, amely az alábbi ábrán látható.

Az improprius integrál fogalma szerint

$$\int\limits_{-\infty}^{+\infty} e^{-x^2} \, dx = \int\limits_{-\infty}^{0} e^{-x^2} \, dx + \int\limits_{0}^{+\infty} e^{-x^2} \, dx, \quad \text{ahol} \quad \int\limits_{-\infty}^{0} e^{-x^2} \, dx = \int\limits_{0}^{+\infty} e^{-x^2} \, dx = \lim_{t \to +\infty} \int\limits_{0}^{t} e^{-x^2} \, dx,$$

hiszen az e^{-x^2} függvény páros. A fenti határérték létezik és véges, mert az

$$F(t) = \int_{0}^{t} e^{-x^{2}} dx \qquad (t > 0)$$

integrálfüggvény szigorúan monoton növekvő és korlátos. Valóban, F létezik, mert az e^{-x^2} függvény folytonos, tehát integrálható minden [0,t] intervallumon. F szigorúan monoton növekvő, mert az e^{-x^2} függvény pozitív. F korlátos a [0,1] intervallumon, mert folytonos, illetve minden t>1 esetén

$$F(t) = \int_{0}^{1} e^{-x^{2}} dx + \int_{1}^{t} e^{-x^{2}} dx < \int_{0}^{1} 1 dx + \int_{1}^{t} e^{-x} dx = 1 + \left[\frac{e^{-x}}{-1} \right]_{1}^{t} = 1 - \frac{1}{e^{t}} + \frac{1}{e} < 2.$$

A fentiekből következik, hogy a Gauss-integrál konvergens, azaz

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \int_{-\infty}^{0} e^{-x^2} dx + \int_{0}^{+\infty} e^{-x^2} dx = \lim_{t \to +\infty} \int_{-t}^{0} e^{-x^2} dx + \lim_{t \to +\infty} \int_{0}^{t} e^{-x^2} dx = \lim_{t \to +\infty} \int_{-t}^{t} e^{-x^2} dx$$

egy véges szám.

Most nézzük meg az

$$I_R := \iint_{H_R} e^{-x^2 - y^2} \, dx \, dy$$

kettős integrált, ahol $H_R:=\left\{(x,y)\in\mathbb{R}^2\colon x^2+y^2\leq R^2\right\}$ az origó középpontú R sugarú zárt körlap, és természetesen R>0. Mivel $f\in C(\mathbb{R}^2)$, ezért a fenti integrál létezik és véges. Az integrál kiszámításához az

$$x = r \cos \varphi, \quad y = r \sin \varphi$$

 $\left(0 \le r \le R, \ 0 \le \varphi \le 2\pi\right)$

polárkoordinátás helyettesítést alkalmazzuk. Azt kapjuk, hogy

$$I_{R} = \iint_{[0,R]\times[0,2\pi]} e^{-r^{2}} \cdot r \, dr \, d\varphi = \left(\int_{0}^{R} e^{-r^{2}} \cdot r \, dr \right) \cdot \left(\int_{0}^{2\pi} 1 \, d\varphi \right) = \left(-\frac{1}{2} \int_{0}^{R} e^{-r^{2}} \cdot (-2r) \, dr \right) \cdot 2\pi =$$

$$= -\pi \cdot \left[e^{-r^{2}} \right]_{r=0}^{r=R} = -\pi \left(e^{-R^{2}} - e^{0} \right) = \pi \cdot \left(1 - e^{-R^{2}} \right).$$

A következő lépésben tekintsük a

$$T_R := [-R, R] \times [-R, R] \qquad (R > 0)$$

téglalapokat. Nem nehéz igazolni, hogy $T_{R/2} \subset H_R \subset T_R$ (lásd a jobb oldali ábrát). Ezért

$$\iint\limits_{T_{R/2}} e^{-x^2-y^2} \, dx \, dy \leq \iint\limits_{H_R} e^{-x^2-y^2} \, dx \, dy \leq \iint\limits_{T_R} e^{-x^2-y^2} \, dx \, dy.$$

Azonban minden R > 0 esetén

$$\iint_{T_R} e^{-x^2 - y^2} \, dx \, dy = \iint_{T_R} e^{-x^2} \cdot e^{-y^2} \, dx \, dy = \left(\int_{-R}^R e^{-x^2} \, dx \right) \cdot \left(\int_{-R}^R e^{-y^2} \, dy \right) = \left(\int_{-R}^R e^{-x^2} \, dx \right)^2.$$

Ennek következtében

$$\left(\int_{-R/2}^{R/2} e^{-x^2} dx\right)^2 \le \pi \cdot \left(1 - e^{-R^2}\right) \le \left(\int_{-R}^{R} e^{-x^2} dx\right)^2.$$

adódik minden R > 0-ra. Tudjuk, hogy a Gauss-integrál konvergens. Ezért a fenti egyenlőtlenségben R-rel plusz végtelenhez tartva azt kapjuk, hogy

$$\left(\int\limits_{-\infty}^{+\infty}e^{-x^2}\,dx\right)^2\leq\pi\leq\left(\int\limits_{-\infty}^{+\infty}e^{-x^2}\,dx\right)^2,$$

tehát

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}.$$

Most térünk vissza az eredeti feladathoz, azaz a normális eloszlás sűrűségfüggvényéhez:

$$f(x) := \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}} \qquad (m \in \mathbb{R}, \ \sigma > 0, \ x \in \mathbb{R}).$$

Minden t > m esetén a következő helyettesítéssel:

$$u = \frac{x - m}{\sqrt{2}\sigma}$$
 \Longrightarrow $x = \sqrt{2}\sigma u + m := g(u) \quad (u > 0)$ \Longrightarrow $g'(u) = \sqrt{2}\sigma > 0$,

azt kapjuk, hogy

$$\int_{m}^{t} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^{2}}{2\sigma^{2}}} dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{m}^{t} e^{-\left(\frac{x-m}{\sqrt{2}\sigma}\right)^{2}} dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{0}^{\frac{t-m}{\sqrt{2}\sigma}} e^{-u^{2}} \cdot \sqrt{2}\sigma du = \frac{1}{\sqrt{\pi}} \int_{0}^{\frac{t-m}{\sqrt{2}\sigma}} e^{-u^{2}} du.$$

Így ha t tart a plusz végtelenhez, akkor

$$\int_{m}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}} du = \frac{1}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-u^2} dx.$$

Hasonlóan igazolható, hogy

$$\int_{-\infty}^{m} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}} du = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{0} e^{-u^2} dx.$$

Ennek következtében

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}} dx = \int_{-\infty}^{m} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}} dx + \int_{m}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}} dx =$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{0} e^{-u^2} du + \frac{1}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-u^2} du = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-u^2} du = 1.$$