CHAPTER 11 CARBOXYLIC ACIDS AND DERIVATIVES

Hussein Semaan

CARBOXYLIC ACID

Definition:

A monocarboxylic acid is a compound which contains one carboxyl group -COOH in its structure

1- General formula: $C_nH_{2n}O_2$

6- Name :

Alkane alkanoic acid

- 2- Structural formula: R OH

 3- Functional group:
- 4- Name of functional group: carboxyl group
- **5- Molar mass :** 14n+32

Ethanoic acid

2-methylpropanoic acid

2-methylbutanoic acid

2,3-dimethylbutanoic acid

7-Isomers:

Write all possible structural formula of carboxylic acid of formula C₄H₈O₂

Butanoic acid: CH3-CH2-CH2-COOH

2-methylpropanoic acid:

Remark:

- Carboxylic acids have skeletal isomer and functional isomers (ester)

8-Reactions of carboxylic acids:

8.1- Reaction With calcium carbonate:

$$2RCOOH + CaCO_3 \rightarrow 2RCOO^{-} + Ca^{2+} + CO_2 + H_2O$$

Remark:

1- carbon dioxide make lime water turbid

2- RCOO is called carboxylate ion and its name is alkanoate ion

Example: CH3COO⁻ ethanoate ion

8.2- reaction with water:

$$RCOOH + H_2O \rightleftharpoons RCOO^{-} + H_3O^{+}$$

8.3-reaction with metal:

$$2RCOOH + Mg \longrightarrow 2RCOO^{-} + Mg^{2+} + H_{2}$$

Remark:

Hydrogen gas give a pop sound

Hussein Semaan

8.4- esterification:

Slow,reversible and athermic

Carboxylic acid + alcohol ← ← ← ← + water

$$R_1$$
— C + HO — R_2 — R_1 — C + H_2O O— R_2

CARBOXYLIC ACID DERIVATIVES

A- acyl chlorides:

 $\textbf{1-General formula}: \ C_nH_{2n\text{-}1}OCl$

6-Name:

Alkane alkanoyl chloride

2-structural formula:

3-Functional group:

4-Name of functional group: acyl chloride group

5-Molar mass: 14n+50,5

$$CH_3-C-Cl$$
: Ethanoyl chloride

$$CH_3 - CH_2 - C - C1$$
: Propanoyl chloride

$$CH_3-CH-C-Cl$$
: 2-methylpropanoyl chloride \parallel \parallel CH_3 O

7- Preparation Of Acyl Chlorides:

$$R = C + SOCl_{2} \rightarrow R + SO_{2} + HCl$$
or
$$R = C + PCl_{5} \rightarrow R + PCl_{3} + HCl$$

SOCl₂: thionyl chloride

PCl₅: phosphorus pentachloride

Hydrolysis Of Acyl Chlorides:

$$RCOCl + H_2O \rightarrow RCOOH + HCl$$

Remark

Acyl chloride is conserved in dry container to avoid it hydrolysis into carboxylic acid

Hussein Semaan

B- acid anhydride:

1- general formula: $C_nH_{2n-2}O_3$

2- structural formula:

3- functional group:

4- name of functional group: acid anhydride group

5- molar mass: 14n+46

6- name:

Alkane alkanoic anhydride

$$CH_3-CH_2-C-O-C-CH_2-CH_3$$
: propanoic anhydride $\parallel \qquad \parallel$ O

$$CH_3-CH_2-C-O-C-CH_2-CH_3$$
: Propanoic 2-methylpropanoic anhydride 0 Q CH_3

7- Preparation Of Acid Anhydrides (dehydration reaction)

$$R - C + R - C \rightarrow R -$$

This reaction took place in presence of a dehydrating agent that eliminate water and make the reaction complete

The dehydrating agent are : P_2O_5 ou P_4O_{10}

Hydrolysis of acid anhydride:

$$R-CO-O-CO-R + H_2O \rightarrow 2R-COOH$$

Acid anhydride should be conserved in a dry container to avoid its hydrolysis into carboxylic acid

Hussein Semaar

C- Ester:

1- general formula: $C_nH_{2n}O_2$

2- structural formula: R—C

Ester

3- functional group: —c

4- name of functional group: ester group

5- molar mass: 14n +32

6- name: alkyl alkanoate

H-COO-CH₃ Methyl methanoate

CH₃- COO- CH₃ Methyl ethanoate

 CH_3 -COO- CH_2CH_3 ethyl ethanoate

$$_{\text{CH}_3}^{\text{O}}$$
 CH₃ $_{\text{CH}_3}^{\text{O}}$ 1-methylethyl ethanoate

7- preparation of an ester:

Direct method: slow, reversible athermic

1- this reaction took place in presence of sulfuric acid as a catalyst

2- this reaction is heated using reflux heating to increase the rate of the reaction and avoid the loose of reactants and products by evaporation

At equilibrium and if the mixture is equimolar

the percentage yield of esterification is

- > 67% if the alcohol is primary
- ▶ 60% if the alcohol is secondary
- > <5 % if the alcohol is tertiary

Butyl butanoate

$$H_3C$$
— CH_2 — CH_2 — CH_3 — CH_2 — CH_3

Propanoic acid

 2 -butanol

 H_3C — CH_2 — CH_2 — CH_3
 H_3C — CH_2 — CH_3 — CH_3 — CH_4

1-methylpropyl propanoate

8- hydrolysis of an ester in acidic medium:

$$R-C < O-R' + H_2O - R-C < O-H + R'OH$$

dussem Semaan

- At equilibrium and if the mixture is equimolar the percentage yield of hydrolysis is
- > 33% if the alcohol is primary
- > 40% if the alcohol is secondary
- >95 % if the alcohol is tertiary

$$H_3C$$
— CH_2 — CH_3 + H_2O

1-methylethyl propanoate

 H_3C — CH_2 — CH_3 + H_3C — CH_3

Propanoic acid 2-propanol

9- preparation of an ester using derivative of carboxylic acids

Using derivatives of carboxylic acids such as acyl chlorides and acid anhydride make the reaction total, fast and exothermic

$$H_3C$$
— CH_2 — CH_2 — CH_2 — CH_3

Propanoyl chloride

 H_3C — CH_2 — CH_3
 H_3C — CH_2 — CH_2 — CH_3
 H_3C — H_3 — HCI

1-methylpropyl propanoate

Propanoic anhydride

2-butanol

$$H_3C$$
— CH_2 — CH_2 — CH_3 — CH_2 — CH_3 — CH_2 — CH_3 —

1-methylpropyl propanoate

Propanoic acid