CPU Scheduling Algorithm - RR

CPU 스케줄링을 위한 RR 알고리즘을 프로그램으로 구현하라. 이번 과제는 실제로 프로세스가 실행되는 과정에 가깝게 흉내내는 것이다. 모든 프로세스는 CPU burst와 I/O burst를 번갈아 가면서 요청하며, 그 횟수는 프로세스마다 다르다. CPU는 시스템 내에 하나 밖에 없어 많은 프로세스가 ready queue에 기다리는 상황이 발생할 수 있다. 하지만 I/O 장치는 충분히 많기 때문에 각 프로세스가 I/O작업에 필요한 자원은 곧바로 할당받아 사용할 수 있다고 가정한다.

각 프로세스에 관해 다음과 같은 정보가 주어진다.

- ① 프로세스가 system에 도착한 시각 (즉, 사용자가 작업을 요청한 시각)
- ② 각각의 CPU burst와 I/O burst의 시간

어떤 프로세스가 ready queue에 들어가는 경우는 아래와 같이 크게 3가지 경우가 있다.

- 1. 이제 막 시작하는 프로세스(즉, ready queue에 처음으로 들어가는 프로세스 또는 사용자가 작업을 요 청한 프로세스)
- 2. 입출력을 완료한 프로세스
- 3. 자기에게 할당된 time slice를 다 소진한 프로세스

방금 언급한 세 가지 종류의 프로세스가 어떤 시각에 동시에 ready queue에 도착했다면 앞에서 언급한 순서대로 우선순위를 갖는다. 즉, 이제 막 시작하는 프로세스가 ready queue에 가장 먼저 들어간다. 만약 동일한 시각에 입출력을 마친 프로세스들이 다수이면 프로세스 ID가 작은 것이 먼저 ready queue에 들어간다.

입력:

입력 파일의 이름은 rr.inp이다. 첫째 줄에는 총 프로세스의 개수 n과 time slice를 나타내는 q값이 주어진다. 이어서 n개의 프로세스에 대한 정보가 차례로 주어진다.

각 프로세스에 관한 정보는 2줄로 구성된다. 첫째 줄에는 두 정수 t와 k가 주어지는데, t는 프로세스가 system에 도착한 시간한 시각, k는 CPU burst와 I/O burst의 총 횟수를 나타낸다. 둘째 줄에는 k개의 정수가 공백으로 구분되어 주어지는데 이는 각각 CPU burst, I/O burst, CPU burst, I/O burst, I/O burst, I/O burst 값이며 따라서 k는 항상 홀수이다.

프로세스가 시스템에 도착한 시각 t는 감소하지 않는 순서로 주어진다.

n의 값은 최대 100이며, 프로세스 ID는 1부터 n까지 입력 순서대로 부여된다. k의 값은 최대 99이다.

출력:

출력화일의 이름은 rr.out이다. n개의 프로세스가 모두 마친 후 각 프로세스가 ready queue에서 대기한 총 시간을 프로세스 번호 순서대로 출력하되, 프로세스 번호와 대기시간을 보여라.

예제:

입력 예	입력 예에 대한 출력
4 5 0 7 3 20 5 25 6 15 5 0 7 7 11 4 18 10 31 3 0 5 10 30 8 20 4 20 5 5 19 10 20 3	1 22 2 27 3 24 4 4

제한조건: 프로그램은 rr.{c,cpp,java}로 한다.