DATENBANKSYSTEME / TUTORIUM 4 / FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND STATISTIK

Tutorium 6 – Datenbanksysteme

SQL

Tupelkalkül/ Bereichskalkül

milleem

07.11.2022 – Finn Kapitza

1. Wiederholung – Tupel- und Bereichskalkül

Relationenkalkül

- Zur Erinnerung: Relationale Algebra war prozedurale Sprache: wie wird etwas berechnet
- Relationenkalkül ist deklarative Sprache: was wird berechnet
- Kalkül: logischer Formalismus zur Ableitung von Ergebnissen
- Aufbau von jedem Kalkül:
 - 1. Syntax: Wie sind die Ausdrücke aufgebaut?
 - 2. Semantik: Was bedeuten die Ausdrücke?

=> Tupelkalkül und Bereichskalkül

Tupelkalkül – Formeln

- Es dreht sich alles um Tupel
- *t* ist eine Tupelvariable bzgl. Schema S = Schema(*t*)
- Kleinste Bestandteile einer Formel im Tupelkalkül sind die Atome:
 - R(t), $t.A\theta s.B$, $t.A\theta c$ ($\theta \in \{<, \leq, \geq, >, =, \neq\}$) (wobei t und s Tupelvariablen, A und B Relationen und c Konstanten sind)
- Formeln im Tupelkalkül sind Induktiv definiert:
 - Jedes Atom ist eine Formel
 - φ_1 und φ_2 Formeln $\varphi_1 \wedge \varphi_2$, $\varphi_1 \vee \varphi_2$, $\neg \varphi_1$ auch Formeln
 - φ Formel und t frei in $\varphi \Rightarrow \exists t \varphi$ und $\forall t \varphi$ auch Formel

Tupelkalkül – Ausdrücke

- Es gibt zwei verschiedene Alternativen Ausdrücke zu formulieren
- 1. $\{t \mid \varphi(t)\}\$, wobei t einzige freie Tupelvariable in φ ist.
- 2. $\{[t_1, A_1, ..., t_n, A_n] | \varphi(t_1, ..., t_n)\}$, wobei $t_1, ..., t_n$ die einzigen freiene Tupelvariablen in φ sind
- \Rightarrow Die Schemata von t und t_1, \dots, t_n müssen explizit angegeben warden

 $\mathsf{Bsp.:}\ \mathsf{Schema}(t) = \mathsf{Schema}(Angestellter); \{[\mathsf{t.Name}] | \mathsf{t} \in Angestellter\}$

-> Namen aller Angestellten zurück

Bereichskalkül - Formeln

- Es dreht sich um die einzelnen Bereiche von Relationen (Domänen)
- Bereichsvariablen $x_1: D_1, ..., x_k: D_k$ für einzelne Attribute
- Kleinste Bestandteile sind wieder die Atome:
 - $R(x_1, ..., x_k)$, $x\theta y$, $(\theta \in \{<, \le, >, =, \ne\})$, x, y sind Bereichsvariablen|Konstanten

Induktive Definition analog zum Tupelkalkül

Bereichskalkül – Ausdrücke

- Ausdrücke:
 - $\{x_1, ..., x_k | \varphi(x_1, ..., x_k)\}$, wobei $x_1, ..., x_k$ die einzig freien Variablen in φ ist
- Syntaxerweiterung:
 - Ein Unterstrich als Platzhalter genutzt werden, falls ein Attribut einer Relation nicht benötigt wird

Bsp.: $\{land \mid \exists nr, st: Filiale(nr, st, land)\} = \{land \mid Filiale(_,_, land)\}$

-> alle Länder wo Filialen sind

Aufgabe 6.1 – Tupel- und Bereichskalkül

Die folgenden Anfragen im Tupel- und Bereichskalkül formulieren

Angestellter (Nummer, Name, Gehalt, Abteilung, Geburtsjahr, Einstellungsdatum)

Abteilung (Nummer, Name, Filiale, Stock, Leiter Angestellter)

Filiale (Nummer, Stadt, Land)

Lieferant (Nummer, Name, Stadt, Land)

Artikel (Nummer, Name, Abteilung, Preis, Bestand, Lieferant)

Verkauf (Nummer, Datum, Abteilung, Artikel, Anzahl, Angestellter, Betrag)

Für die Attribute gelten dabei folgende Wertebereiche:

Nummer : Integer

Einstellungsdatum : Date

Stadt : String

Bestand : Integer

Betrag : Decimal

Gehalt: Decimal(10,2) Geburtsjahr: Integer

Name : String

Land : String

Datum : Date

Stock: Integer

Preis: Decimal

Anzahl: Integer

Aufgabe 6.1.a – Tupelkalkül: Bestimmen Sie die Namen aller Angestellten mit einem Gehalt von weniger als 2000

1. Option:

```
Schema(t) = (Name: String)
{t | (\exists a \in Angestellter)(t. Name = a. Name \land a. Gehalt < 2000)}
```

2. Option:

```
Schema(a) = Schema(Angestellter)
{[a. Name]|a \in Angestellter \lambda a. Gehalt \le 2000)}
```


Aufgabe 6.1.a – Bereichskalkül: Bestimmen Sie die Namen aller Angestellten mit einem Gehalt von weniger als 2000

1. Option:

 $\{name \mid (\exists nr, g, ab, geb, ein): Angestellter(nr, name, g, ab, geb, ein) \land g < 2000)\}$

2. Option:

 $\{name \mid \exists g: Angestellter(_, name, g, _, _, _) \land g < 2000)\}$

Aufgabe 6.1.b – Erstellen Sie eine Liste aller Verkaufsnummern mit Verkaufsdatum, die in den Abteilungen im 3. Stock verkauft wurden und deren Lieferant entweder aus Italien oder Frankreich kommt.

```
Schema(ver) = Schema(Verkauf)
         \{[ver.Nummer, ver.Datum] | ver \in Verkauf \land
          (\exists ab \in Abteilung, art \in Artikel, l \in Lieferant)
(ver.Abteilung = ab.Nummer \land ver.Artikel = art.Nummer \land
                 art.Lieferant = l.Nummer \land
                          ab.Stock = 3 \land
                (l = 'Italien' \lor l = 'Frankreich'))
```


Aufgabe 6.1.b – Erstellen Sie eine Liste aller Verkaufsnummern mit Verkaufsdatum, die in den Abteilungen im 3. Stock verkauft wurden und deren Lieferant entweder aus Italien oder Frankreich kommt.

```
 \{Vnr, Vda \mid \exists abtnr, artnr, lnr: \\ Verkauf(Vnr, Vda, abtnr, artnr, \_, \_, \_) \land \\ Abteilung(abtnr, \_, \_, 3, \_) \land \\ Artikel(artnr, \_, \_, -, lnr) \land \\ (Lieferant(lnr, \_, \_, 'Italien') \lor Lieferant(lnr, \_, \_, 'Frankreich')) \}
```


Aufgabe 6.1.c – Tupelkalkül: Bestimmen Sie für alle Filialen in der Stadt Köln, die Nummern und Namen aller Angestellten sowie die Abteilungsnamen in denen diese Angestellten arbeiten

```
Schema(an) = Schema(Angestellter)
                 Schema(ab) = Schema(Abteilung)
                {[an. Nummer, an. Name, ab. Name]|
Angestellter(an) \land Abteilung(ab) \land an. Abteilung = ab. Nummer \land
                            (\exists f \in Filiale)
                     (ab.Filiale = f.Nummer \land
                        f.Stadt = 'Koeln'
```


Aufgabe 6.1.c – Bereichskalkül: Bestimmen Sie für alle Filialen in der Stadt Köln, die Nummern und Namen aller Angestellten sowie die Abteilungsnamen in denen diese Angestellten arbeiten

```
\{AnNr, AnName, AbName \mid \exists AbNr, FilNr: \ Angestellter(AnNr, AnName, \_, AbNr, \_, \_) \land Abteilung(AbNr, AbName, FilNr, \_, \_) \land Filiale(FilNr, 'Koeln', \_)
```


Aufgabe 6.1.d – Tupelkalkül: Bestimmen Sie die Nummern, Namen, Gehalt und Geburtsjahr aller Angestellten, die am 01.10.2019 etwas Verkauft haben und keine Leiter einer Abteilung sind

```
Schema(an) = Schema(Angestellter) \{[an.Nummer, an.Name, an.Gehalt, an.Geburtsjahr] | Angestellter(an) \land \\ \exists ver \in Verkauf: \\ ver.Angestellter = an.Nummer \land ver.Datum = '01.10.2019' \land \\ \neg \exists ab \in Abteilung:
```

ab.Leiter = an.Nummer

Aufgabe 6.1.d – Bereichskalkül: Bestimmen Sie die Nummern, Namen, Gehalt und Geburtsjahr aller Angestellten, die am 01.10.2019 etwas Verkauft haben und keine Leiter einer Abteilung sind

```
\{nummer, name, gehalt, geburtsjahr \mid Angestellter(nummer, name, gehalt, \_, geburtsjahr, \_) \land Verkauf(\_, '01.10.2019', \_, \_, \_, nummer, \_) \land \neg Abteilung(\_, \_, \_, \_, nummer)\}
```


Aufgabe 6.1.e – Tupelkalkül: Bestimmen Sie die Nummer und Namen der Lieferanten, welche die Kaufhauskette mit mindestens 3 unterschiedlichen Artikeln beliefern

```
Schema(l) = Schema(Lieferant)
               \{[l.Nummer, l.Name] | Lieferant(l) \land
          \exists art1 \in Artikel, art2 \in Artikel, art3 \in Artikel:
  art1.Lieferant = l.Nummer \land art2.Lieferant = l.Nummer \land
                   art3.Lieferant = l.Nummer \land
art1.Nummer \neq art2.Nummer \land art1.Nummer \neq art3.Nummer \land
                  art2.Nummer \neq art3.Nummer
```


Aufgabe 6.1.e – Bereichskalkül: Bestimmen Sie die Nummer und Namen der Lieferanten, welche die Kaufhauskette mit mindestens 3 unterschiedlichen Artikeln beliefern

```
\{lNr, lName \mid Lieferant(lNr, lName, \_, \_) \land \\ \exists art1, art2, art3: \\ Artikel(art1, \_, \_, \_, lNr) \land Artikel(art1, \_, \_, \_, lNr) \land Artikel(art1, \_, \_, \_, lNr) \land \\ art1 \neq art2 \land art1 \neq art3 \land art2 \neq art3\}
```


Aufgabe 6.2 – Tupel- und Bereichskalkül

Stellen Sie die folgenden in Relationaler Algebra angegebenen Operationen sowohl im Tupel- als auch im Bereichskalkül dar.

Für Anfragen im Tupelkalkül soll darüber hinaus das Schema aller freier Variablen angegeben werden.

6.2.a - Selektion

Relationale Algebra (RelAlg):

$$\sigma_{A=x}R(A,B,C)$$

Tupelkalkül (TK):

$$Schema(t) = Schema(R)$$
$$\{t \mid R(t) \land t. A = x\}$$

Bereichskalkül (BK):

$$\{a, b, c \mid R(a, b, c) \land a = x\}$$

6.2.b – Projektion

RelAlg:

$$\Pi_{A,B}R(A,B,C)$$

TK:

$$Schema(t) = Schema(R)$$

 $\{[t.A, t.B] | R(t)\}$

$${a,b|R(a,b,_)}$$

6.2.c - Natural Join

RelAlg:

$$R(A,B,C)\bowtie S(C,D,E)$$

TK:

$$Schema(r) = Schema(R)$$

$$Schema(s) = Schema(S)$$

$$\{[r.A,r.B,r.C,s.D,s.E] | R(r) \land S(s) \land r.C = s.C\}$$

$$\{a,b,c,d,e|R(a,b,c) \land S(c,d,e)\}$$

6.2.d – Vereinigung

RelAlg:

$$R(A, B, C) \cup S(A, B, C)$$

TK:

$$Schema(t) = Schema(R)$$

 $\{t|R(t) \lor S(t)\}$

$$\{a,b,c|R(a,b,c)\vee S(a,b,c)\}$$

6.2.e - Durchschnitt

RelAlg:

$$R(A, B, C) \cap S(A, B, C)$$

TK:

$$Schema(t) = Schema(R)$$
$$\{t|R(t) \land S(t)\}$$

$$\{a,b,c|R(a,b,c) \land S(a,b,c)\}$$

6.2.f – Differenz

RelAlg:

$$R(A,B,C) - S(A,B,C)$$

TK:

$$Schema(t) = Schema(R)$$
$$\{t|R(t) \land \neg S(t)\}$$

$$\{a,b,c|R(a,b,c) \land \neg S(a,b,c)\}$$

6.2.g – Kartesisches Produkt

RelAlg:

$$R(A,B,C) \times S(D,E,F)$$

TK:

$$Schema(t) = (A: dom(R.A), B: dom(R.B), C: dom(R.C), D: dom(S.D), E: dom(S.E), F: dom(S.F))$$
 $\{t | \exists r \in R, s \in S: (t.A = r.A \land t.B = r.B \land t.C = r.C \land t.D = s.D \land t.E = s.E \land t.F = s.F)\}$

$${a,b,c,d,e,f|R(a,b,c) \land S(d,e,f)}$$

Aufgabe 6.2.h - Quotient

RelAlg:

$$R(A,B) \div S(A)$$

TK:

$$Schema(t) = (B: dom(R.B))$$

$$\{t \mid \forall s \in S : \exists r \in R: s. A = r. A \land t. B = r. B\}$$

$$\{b|\forall a:S(a)\Rightarrow R(a,b)\}$$

