Lithofacies classification using machine learning

Xin Zhao

Problem statement

 An accurate identification of rock class is critical in oil and gas industry

- This is a **Classification** problem:
 - Target: rock facies
 - Features: log measurements

Data used for this research

Real well logs from GitHub

Features				
1	Gamma ray (GR)			
2	Resistivity (ILD_log10)			
3	Photoelectric effect (PE)			
4	Neutron-density porosity difference (DeltaPHI)			
5	Average neutron-density porosity (PHIND)			
6	Non-marine/marine indicator (NM_M)			
7	Relative position (RELPOS)			

Target					
Facies	Rock class	Label	Adjacent Facies		
1	Non-marine sandstone	SS	2		
2	Non-marine coarse siltstone	Csis	1, 3		
3	Non-marine fine siltstone	Fsis	2		
4	Marine siltstone and shale	SiSh	5		
5	Mudstone	MS	4, 6		
6	Wackestone	WS	5, 7, 8		
7	Dolomite	D	6, 8		
8	Packstone-grainstone	PS	6, 7, 9		
9	Phylloid-algal bafflestone	BS	7, 8		

Supervised learning experiment

- Total 9 wells:
 - 8 → modelling
 - 1 \rightarrow blind test
- Classification algorithms:
 - Support vector machine (SVM)
 - Gradient boosting (GB)
 - Random forest (RM)
 - Nearest neighbors (KNN)

- Significance in difference of prediction accuracy
 - 1. Repeat each algorithm 100 times using randomly split training data
 - 2. Get the 100 F1 scores of prediction on the blind data
 - 3. T-test
 - 4. Choose the best model

Algorithm evaluation

P-values

	RF
GB	1.3e-14
KNN	1.3e-92
SVM	0.09

There is 95% confidence to accept the difference in accuracy between RF and GB/KNN is significant.

All four algorithms did not predict BS, which is true for the blind test well.

RF is better than SVM

RF							
Facies	precision	recall	f1-score	support			
SS	0.38	0.06	0.1	89			
CSiS	0.36	0.79	0.49	89			
FSiS	0.85	0.63	0.73	117			
SiSH	0.07	0.14	0.09	7			
MS	0.38	0.16	0.22	19			
WS	0.67	0.65	0.66	71			
D	0.92	0.71	0.8	17			
PS	0.53	0.62	0.57	40			
avg	0.57	0.53	0.5	449			

SVM							
Facies	precision	recall	f1-score	support			
SS	0.3	0.08	0.12	89			
CSiS	0.36	0.72	0.48	89			
FSiS	0.62	0.54	0.58	117			
SiSH	0.25	0.29	0.27	7			
MS	0.17	0.11	0.13	19			
WS	0.66	0.54	0.59	71			
D	0.71	0.29	0.42	17			
PS	0.41	0.6	0.49	40			
avg	0.47	0.46	0.43	449			

RF has overall better precision in prediction than SVM - 6.5:1.5 RF has overall better recall in prediction than SVM - 6:2

Random forest is the most optimal algorithm

Lithofacies classification accuracy

 Current best prediction is from random forest, the F1 score is 0.53

■ The F1 score *0.87* if considering the adjacent facies prediction

More thinks...

- Some facies are not well precited as others
 - More well information could help
- Labeling the importance of rocks