1 第16教学周12.19

 $\mathcal{E} \times 1.1$ (order). We say that $u \in \mathcal{D}'(\Omega)$ is of order $N \in \mathbb{N}_0$, if \forall compact $K \subset \Omega$, $\exists C_K > 0$ such that

$$|\langle u, \varphi \rangle| \le C_K \sup_{x \in K, |\alpha| < N} |\partial^{\alpha} \varphi(x)|.$$
 (1.1)

u is said to be of infinite order if it is not of order N for any N; otherwise it is said to be of finite order. The order of u is the smallest N that can be used, resp. ∞ .

1.4 The support of a distribution

定义1.2 (support). Let $u \in \mathcal{D}'(\Omega)$.

1. We say that u is 0 on the open subset $\omega \subset \Omega$ when

$$\langle u, \varphi \rangle = 0$$
 for all $\varphi \in C_c^{\infty}(\omega)$.

2. The support of u is defined as the set

$$\operatorname{supp} u = \Omega \setminus \left(\bigcup \{\omega \mid \omega \ open \ \subset \Omega, u \ is \ 0 \ on \ \omega\}\right).$$

引理1.3. Let $(\omega_{\lambda})_{\lambda \in \Lambda}$ be a family of open subsets of Ω . If $u \in \mathcal{D}'(\Omega)$ is 0 on ω_{λ} for each $\lambda \in \Lambda$, then u is 0 on the union $\bigcup_{\lambda \in \Lambda} \omega_{\lambda}$.

Distribution with compact support.

$$\mathcal{D}'_c(\Omega) := \{ u \in \mathcal{D}'(\Omega) : \text{supp } u \text{ is a compact subset of } \Omega \}.$$
 (1.2)

定理1.4. The spaces $\mathcal{D}'_c(\Omega)$ and $\mathcal{E}'(\Omega)$ are algebraically isomorphic.

ф. $\mathbf{5.}$ If $u \in \mathcal{D}'(\mathbb{R}^d)$ and supp $u \subset \{0\}$, then u has a unique representation of the form:

$$u = \sum_{|\alpha| \le m} C_{\alpha} \partial^{\alpha} \delta_0 \tag{1.3}$$

for some $m \geq 0$ and $C_{\alpha} \in \mathbb{C}$.

The structure theorem.

定理1.6 (structure theorem). Let Ω be open $\subset \mathbb{R}^n$ and let $u \in \mathcal{E}'(\Omega)$. Let V be an open neighborhood of supp u with \overline{V} compact $\subset \Omega$, and let M be an integer > (N+d)/2, where N is the order of u. There exists a system of continuous functions f_{α} with support in V for $|\alpha| \leq 2M$ such that

$$u = \sum_{|\alpha| \le 2M} D^{\alpha} f_{\alpha}$$

Moreover, there exists a continuous function g on \mathbb{R}^d such that $u=(1-\Delta)^Mg$ (and one can obtain that $g\in H^{d/2+1-\varepsilon}\left(\mathbb{R}^d\right)$ for any $\varepsilon>0$).

作业

 P_{291} **13, 15;** P_{299} **19;**