

МИРЭА – Российский технологический университет Кафедра вычислительной техники

Теория автоматов

Практическая работа №2:

Проектирование синхронных цифровых автоматов

Автоматы распознавания языков. Дефинитный язык

Старший преподаватель: Боронников Антон Сергеевич antboronnikov@mail.ru

- 1) **Алфавитом** называется конечное непустое множество $A = \{a_1, ..., a_n\}$. Его элементы a_t называются **символами.**
- 2) **Словом** (цепочкой, строкой, кортежем) в алфавите А называется конечная последовательность \tilde{a}_{t} =(a_{t1} ,..., a_{tm}) элементов А.
- 3) Множество всех слов в алфавите А обозначается **A***. Множество всех непустых слов в алфавите А обозначается **A+**.
- 4) Слово ã − **префикс** (начало) **слова** ỹ (обозначение ã \sqsubset ỹ, если ỹ = ãũ. Пример: $\epsilon \sqsubset$ baa, b \sqsubset baa, ba \sqsubset baa, baa \sqsubset baa).
- Слово \tilde{a} **суффикс** (конец) слова \tilde{y} (обозначение $\tilde{y} \supset \tilde{a}$, \tilde{a} = Suf(\tilde{y}), если \tilde{y} = \tilde{u} \tilde{a} .
- Слово \tilde{a} **подслово** слова \tilde{y} , если \tilde{y} = $\tilde{u}\tilde{a}\tilde{v}$.
- 5) Если L \subset A*, то L называется **языком** (формальным языком) над алфавитом А.

- 1) Автомат можно рассматривать как устройство, распознающее некоторый язык над входным алфавитом.
- 2) Язык, распознаваемый конечным автоматом D, это язык L(D), состоящий из меток всех успешных путей (то есть из всех допускаемых данным автоматом слов). Будем также говорить, что автомат D распознаёт язык L(D). Если орграф конечного автомата содержит цикл, то количество слов в таком языке бесконечно.
- **3) Язык L** называется **автоматным**, если существует конечный автомат, распознающий этот язык. Каждый конечный язык является автоматным.

Автоматы. Дефинитный язык

Дефинитный (определенный) язык может быть представлен как конкатенация $A^*\Omega$, где A — входной алфавит, Ω — конечное множество слов ограниченной длины. Этот язык является бесконечным языком из слов, заканчивающихся словами $\tilde{\omega} \in \Omega$.

Проектируя автомат, распознающий дефинитный язык, удобно сопоставить состояниям автомата все различные **префиксы** (начала) распознаваемых слов. При поступлении нового символа автомат переходит в состояние, которое соответствует одному из префиксов, совпадающему с суффиксом нового слова, если таких совпадений более одного, то выбирается самое длинное. Одно из состояний должно соответствовать пустому началу. Будем его обозначать символом λ .

Пример 1

Задание: Спроектировать автомат, который устанавливает на выходе 1, если последние 4 такта это последовательность 0110.

Автомат должен распознать в последовательности символов следующее слово: 0110

Префиксы:

λ

0

01

011

Пример 1. Автомат Мура

Автомат Мура задается следующей автоматной таблицей:

Nº	Q	0	1	Υ
S0	λ	0	λ	0
S1	0	0	01	0
S2	01	0	011	0
S3	011	0110	λ	0
S4	0110	0	01	1

Граф переходов состояний автомата

Префиксы: Обозначения:

 λ Q — текущее состояние

0 А – вход (значение: 0 или 1)

01 Y — выход

011

Пример 1. Автомат Мили

Автомат Мили задается следующей автоматной таблицей:

Nº	Q	0	1
S0	λ	0	λ
S1	0	0	01
S2	01	0	011
S3	011	0/1	λ

Граф переходов состояний автомата

Префиксы: Обозначения:

λ Q – текущее состояние

0 А – вход (значение: 0 или 1)

01 Y — выход

Пример 2

Задание: Спроектировать автомат, который устанавливает на выходе 1, если последние 4-е такта это последовательность 0110 или 1001.

Автомат должен распознать в последовательности символов следующие слова: 0110 или 1001.

Префиксы:

λ

) 1

01 10

011 100

Пример 2. Автомат Мура

Автомат Мура задается следующей автоматной таблицей:

Nº	Q	0	1	Υ
S0	λ	0	1	0
S1	0	0	01	0
S2	1	10	1	0
S3	01	10	011	0
S4	10	100	01	0
S 5	011	0110	1	0
S6	100	0	1001	0
S7	0110	100	01	1
S8	1001	10	011	1

Префиксы:

λ

0 1

01 10

011 100

0110 1001

Обозначения:

Q – текущее состояние

А – вход (значение: 0 или 1)

Ү – выход

Пример 2. Автомат Мили

Автомат Мили задается следующей автоматной таблицей:

Nº	A	0	1
S0	λ	0	1
S1	0	0	01
S2	1	10	1
S3	01	10	011
S4	10	100	01
S5	011	10 /1	1
S6	100	0	01 /1

Префиксы:

λ

) :

01 10

011 100

Обозначения:

Q – текущее состояние

А – вход (значение: 0 или 1)

Ү – выход