Attorney Docket No.: 350601-1010

CLAIMS

What is claimed is:

1	 A modular multiple-mode gas-fueled assembly, comprising:
2	a base grate; and
3	a holder arranged to rest within the base grate, the holder comprising:
4	a hollow distribution frame having an inlet port and a plurality of outlet
5	ports, wherein each of the outlet ports are at the distal end of a respective upright
6	column forming part of the distribution frame; and
7	a plurality of support plates each having an aperture for contacting the
8	outer surface of a respective column of the distribution frame.
1	2. The assembly of claim 1, wherein the interior diameter of each
2	respective column of the hollow distribution frame is smaller than the interior
3	diameter of the inlet port.
1	The assembly of claim 1, wherein the exterior diameter of each
2	respective upright column forming part of the distribution frame is smaller at the
3	outlet port than at the end of the upright column closest to the inlet port.
1	4. The assembly of claim 1, further comprising a plurality of imitation
2	candles each having a passage along a major axis for encompassing a substantial
3	portion of a respective upright column.
1	5. The assembly of claim 1, wherein the distribution frame comprises a
2	plurality of appendages and the base grate comprises receiving depressions for
3	receiving each respective appendage.
1	6. The assembly of claim 1, wherein the distribution frame comprises a
2	plurality of compression fasteners arranged to engage the base grate.
1	7. The assembly of claim 1, wherein each of the respective columns
2	comprises a fuel distribution plate proximal to the outlet port.

1	8.	The assembly of claim 7, wherein the fuel distribution plate comprises
2	a plurality of	spatially arranged openings.
1	9.	The assembly of claim 7, wherein each respective column comprises a
2	flame distribu	itor.
1	10.	The assembly of claim 1, further comprising:
2	a gas	valve coupled to the inlet port, the gas valve responsive to a solenoid
3		oupled to a control circuit.
1	11.	The assembly of claim 10, wherein the control circuit comprises a
2	plurality of se	ensors arranged in close proximity to each respective outlet port.
1	12.	The assembly of claim 11, wherein the control circuit closes the gas
2	valve when o	one of the sensors indicates that a flame is not present at an outlet port.
1	13.	The assembly of claim 12, wherein the control circuit comprises an
2		ight switch, wherein when the switch is closed the gas valve remains
3	open regardl	ess of the absence of a flame as indicated by the sensor at an outlet.
1	14.	The assembly of claim 10, wherein the control circuit converts light
2		electrical energy when a flame is present and converts heat energy into
3	electrical en	ergy to energize the solenoid.
	1.7	The assembly of claim 1, wherein the hollow distribution frame is
1	15.	
2	configured v	with a coupler configured to engage a connector of a gas supply.

1	16. A modular multiple-mode gas-fueled assembly, comprising:
2	a base grate comprising:
3	a plurality of support members each having a first end suited for
4	contacting the floor of a fire box and an upper end; and
5	a frame coupled to the upper end of the support members;
6	a holder arranged to rest within the base grate, the holder comprising a
7	plurality of longitudinally spaced, transversely disposed cradle members coupled to a
8	hollow distribution frame, the hollow distribution frame having an inlet port and a
9	plurality of outlet ports; and
10	a coupler configured to engage a gas supply.
1	17. The assembly of claim 16, wherein the holder comprises a plurality of
2	appendages and the base grate comprises a plurality of receiving depressions for
3	receiving each respective appendage.
1	18. The assembly of claim 16, wherein the holder comprises a plurality of
2	compression fasteners arranged to engage the base grate.
1	19. The assembly of claim 16, further comprising:
2	imitation logs arranged to rest on the holder, the imitation logs further
3	arranged to define a void for substantially encompassing the hollow distribution
4	frame.
1	20. The assembly of claim 16, further comprising:
2	a gas valve coupled to the inlet port, the gas valve responsive to a solenoid
3	electrically coupled to a control circuit.
1	21. The assembly of claim 20, wherein the control circuit comprises a
2	plurality of sensors arranged in close proximity to each respective outlet port.
1	22. The assembly of claim 21, wherein the control circuit closes the gas
2	valve when one of the sensors indicates that a flame is not present at an outlet port.

1	23. The assembly of claim 20, wherein the control circuit comprises an	
2	override-to-light switch, wherein when the switch is closed the gas valve remains	
3	open regardless of the absence of a flame as indicated by the sensor at an outlet.	
	24. The assembly of claim 20, wherein the control circuit converts light	
1		
2	energy into electrical energy when a flame is present and converts heat energy into	
3	electrical energy to energize the solenoid.	
	· · · · · · · · · · · · · · · · · · · 	
1	25. A method, comprising:	
2	providing a support structure for a gas-fueled holder, the gas-fueled holder	
3	having an inlet port and a plurality of outlet ports;	
4	mounting the gas-fueled holder to the support structure;	
5	coupling the gas-fueled holder to a gas supply;	
6	providing a flammable gas at the inlet port; and	
7	introducing an ignition means at an outlet of the gas-fueled holder.	
	26. The method of claim 25, further comprising substantially surrounding	
1		
2	each of the outlet ports with an imitation candle.	
1	27. The method of claim 25, further comprising substantially surrounding	
2	each of the outlet ports with an imitation log.	
1	28. The method of claim 25, further comprising:	
	determining whether a flame is burning at each of the outlet ports; and	
2	controllably prohibiting the flow of flammable gas into the inlet port when a	
3	flame is not burning at each of the outlet ports.	
4	Traine is not burning at each of the outros posses	
1	29. The method of claim 28, wherein determining whether a flame is	
2	burning at each of the outlet ports comprises converting light energy into electrical	
3	energy and controllably prohibiting the flow of flammable gas into the inlet port	
4	comprises converting heat energy into electrical energy.	

l	30. A noider, comprising.
2	a hollow distribution frame having an inlet port and a plurality of outlet ports,
3	wherein each of the outlet ports are at the distal end of a respective upright column
4	extending from the distribution frame; and
5	a plurality of support plates each having an aperture for contacting the outer
6	surface of a respective column of the distribution frame.
1	31. The holder of claim 30, wherein the interior diameter of each
2	respective column of the hollow distribution frame is smaller than the interior
3	diameter of the hollow distribution frame at the inlet port.
1	32. The holder of claim 30, wherein the exterior diameter of each
2	respective upright column extending from the distribution frame is smaller at the
3	outlet port than where the upright column is attached to the distribution frame.
1	33. The holder of claim 30, further comprising a plurality of imitation
2	candles each having a passage along a major axis for encompassing a substantial
3	portion of a respective column of the distribution frame.
1	34. The holder of claim 30, wherein each of the respective columns
2	comprises a fuel distribution plate proximal to the outlet port.
1	35. The holder of claim 34, wherein the fuel distribution plate comprises
2	plurality of spatially arranged openings.
1	36. The holder of claim 35, wherein each respective column comprises a
2	flame distributor.
1	37. The holder of claim 30, further comprising:
2	a gas valve coupled to the inlet port, the gas valve responsive to a control
3	circuit electrically coupled to the gas valve.

1	38. The holder of claim 37, wherein the control circuit comprises a
2	plurality of sensors arranged in close proximity to each respective outlet port.
1	39. The holder of claim 38, wherein the control circuit closes the gas valve
2	when one of the sensors indicates that a flame is not present at an outlet port.
1	40. The holder of claim 39, wherein the control circuit comprises an
2	override-to-light switch, wherein when the switch is closed the gas valve remains
3	open regardless of the absence of a flame as indicated by a sensor at an outlet.
1	41. The holder of claim 30, wherein the hollow distribution frame is
2	configured with a coupler configured to engage a connector of a gas supply.
1	42. A method, comprising:
2	providing a gas-fueled holder having an inlet port and a plurality of outlet
3	ports;
4	coupling the gas-fueled holder to a gas supply;
5	providing a flammable gas at the inlet port;
6	substantially surrounding each of the outlet ports with an imitation fuel; and
7	introducing an ignition means at an outlet of the gas-fueled holder.
1	43. The method of claim 42, wherein substantially surrounding each of the
2	outlet ports comprises substantially surrounding each of the outlet ports with an
3	imitation candle.
1	44. The method of claim 42, wherein substantially surrounding each of the
2	outlet ports comprises substantially surrounding each of the outlet ports of the gas-
3	fueled holder with imitation logs.
1	45. The method of claim 42, further comprising:
2	determining whether a flame is burning at each of the outlet ports; and
3	controllably prohibiting the flow of flammable gas into the inlet port when a
4	flame is not burning at each of the outlet ports.

1	46. The method of claim 45, wherein determining whether a flame is
2	burning at each of the outlet ports comprises converting light energy into electrical
3	energy and controllably prohibiting the flow of flammable gas into the inlet port
4	comprises converting heat energy into electrical energy.
,1	47. A circuit comprising:
2	a power transistor having an emitter, a base, and a collector;
3	a solenoid coupled to the collector;
4	a plurality of thermocouples coupled between the solenoid and the emitter;
5	and
6	a plurality of photo-sensitive transistors coupled in series between the
7	collector and the base.