TERM END EXAMINATIONS (TEE) - December 2023- January 2024

Programme	:	B.Tech.	Semester	:	Fall 2023-24
Course Title/ Course Code	- 50	Calculus and Laplace Transform/ MAT1001	Slot	:	C11+C12+C13
Time	:	3 Hrs.	Max. Marks	:	100

Answer ALL the Questions

Q. No.	Question Description	Marks			
	PART A – (60 Marks)				
1	(a) If $z = f(x, y)$ where $x = e^u \cos v$ and $y = e^u \sin v$, show that $y \frac{\partial z}{\partial u} + x \frac{\partial z}{\partial v} = e^{2y} \frac{\partial z}{\partial y}$	6			
	(b) Expand $\sin xy$ in powers of $(x-1)$ and $\left(y-\frac{\pi}{2}\right)$ as far as terms of second degree.	6			
	Determine the critical points and locate any relative minima, maxima and saddle points of function f defined by	12			
	$f(x,y) = 2x^2 - 4xy + y^4 + 2$				
2	Evaluate $\iint_D (y^2 + 3x) dA$ where D is the region between $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.				
	OR				
	(b) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes $y + z = 4$ and $z = 0$.	12			
3	Using Gauss divergence theorem evaluate $\iint_S \vec{F} \cdot \hat{n} dS$ where $\vec{F} = (x+z)\hat{\imath} + (y+z)\hat{\jmath} + (x+y)\hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy-plane bounded by xy-plane.				
2	Use Green's Theorem to evaluate $\oint xy dx + x^2y^3 dy$, where C is the triangle with vertices $(0, 0)$, $(1, 0)$, and $(1, 2)$ with positive orientation.	6			
	OR				
	(c) Evaluate $\iint_S \vec{F} \cdot \hat{n} dS$ where $\vec{F} = -x\hat{\imath} + 2y\hat{\jmath} - z\hat{k}$ and S is the portion of $y = x^2 + z^2$ that lies behind $y = 1$ oriented in the positive y —axis.	12			
4	(a) At $t=0$ a current of 2 amperes flows in an LCR circuit with resistance $R=3$ ohms inductance $L=0.1$ henrys, and capacitance $C=.01$ farads. Find the current flowing in the				

circuit at t > 0 if the initial charge on the capacitor is 0 coulomb. Assume that E(t) = 0 for

 $Lq'' + Rq' + \frac{1}{C}q = E(t)$ $q(0) = q_0,$ $q'(0) = I_0$

t > 0. The model of the differential equation is

	(b) Find the general solution of the following differential equation using method of undetermined coefficients	6
	$\frac{d^2y}{dx^2} - 4y = 2e^{2x}.$	
	Find the general solution of the following differential equation using method of variation parameters	12
5	Solve using Laplace transform $y'' + 2y' = t e^{-t}, y(0) = 6, y'(0) = -1$	12
	(b) Find the Laplace transform of	6
	$f(t) = \frac{\cos 4t - \cos 5t}{t} + te^{2t} \sin 3t$	
	(c) Find the inverse Laplace transform of	6
	$H(s) = \frac{se^{-s}}{(3s+2)(s-2)}$	
	PART B – (40 Marks)	
6	Show that the equation of the tangent plane to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	8
	at the point (x_0, y_0, z_0) can be written as $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1$	
7	Evaluate the following integral by changing the order of integration	8
	$\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{2x}{\sqrt{x^2+y^2}} dy dx$	
8.	Find the directional derivative of the function $f(x, y, z) = x^2 - y^2 + 2z^2$ at the point $P(1, 2, 3)$ in the direction of the line PQ where Q has coordinates $(5, 0, 4)$. In what direction, it will be maximum and what is its value?	8
کون	Find the general solution of the following Cauchy-Euler equation $x^2 \frac{d^2y}{dx^2} - 7x \frac{dy}{dx} + 16y = x.$	8
10	Find the Laplace transform of the following periodic function $f(t) = \begin{cases} t & 0 \le t < 1 \\ 2 - t & 1 \le t < 2 \end{cases} \qquad f(t+2) = f(t).$	8