Formale Sprachen und Komplexitätstheorie

WS 2019/20

Robert Elsässer

Inhaltsangabe

Gibt es einen Algorithmus HALTE, der

- als Eingabe einen beliebigen Algorithmus ALG und eine Eingabe w für ALG erhält und
- entscheidet, ob ALG bei Eingabe w hält?

Satz von Turing:

Einen solchen Algorithmus kann es nicht geben.

Turingmaschine

- Arbeitet auf unbeschränktem Band
- Eingabe steht zu Beginn am Anfang des Bands
- Auf dem Rest des Bandes steht t (Blank)
- Position auf dem Band wird durch den sog. Lesekopf beschrieben

Turingmaschine

- Der jeweils nächste Rechenschritt ist eindeutig festgelegt durch den aktuellen Zustand und das aktuell gelesene Zeichen.
- Der Rechenschritt überschreibt das aktuelle Zeichen, bewegt den Kopf nach rechts oder nach links und verändert den Zustand.

Definition

Eine (deterministische 1-Band) Turingmaschine (DTM) wird beschrieben durch ein 7-Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$.

Dabei sind Q, Σ , Γ endliche, nichtleere Mengen und es gilt:

- Σ ist Teilmenge von Γ
- t in $\Gamma \setminus \Sigma$ ist das *Blanksymbol* (auch \sqcup)
- *Q* ist die *Zustandsmenge*
- Σ ist das Eingabealphabet
- Γ ist das Bandalphabet
- q₀ in Q ist der Startzustand
- q_{accept} in Q ist der akzeptierende Endzustand
- q_{reject} in Q ist der ablehnende Endzustand
- $\delta: Q \setminus \{q_{accept}, q_{reject}\} \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ ist die (partielle) Übergangsfunktion. Sie ist für kein Argument aus $\{q_{accept}, q_{reject}\} \times \Gamma$ definiert.

- Initial:
 - Eingabe steht links auf dem Band
 - Der Rest des Bands ist leer
 - Kopf befindet sich ganz links
- Berechnungen finden entsprechend der Übergangsfunktion statt
- Wenn der Kopf sich am linken Ende befindet und nach links bewegen soll, bleibt er an seiner Position
- Wenn q_{accept} oder q_{reject} erreicht wird, ist die Bearbeitung beendet

Momentaufnahme einer Turingmaschine:

- Bei Bandinschrift uv (dabei beginnt u am linken Ende des Bandes und hinter v stehen nur Blanks)
- Zustand q
- Kopf auf erstem Zeichen von v

Konfiguration C = uqv

- Gegeben: Konfigurationen C_1 , C_2
- Wir sagen: Konfiguration C_1 führt zu C_2 , falls die TM von C_1 in einem Schritt zu C_2 übergehen kann

Formal:

- Seien a, b, c in Γ, u, v in Γ^* und Zustände q_i, q_j gegeben
- · Wir sagen:
 - uaq_ibv führt zu uq_jacv , falls $\delta(q_i,b)=\left(q_j,c,L\right)$ und
 - uaq_ibv führt zu $uacq_jv$, falls $\delta(q_i,b) = (q_j,c,R)$

- Startkonfiguration:
 - $-q_0w$, wobei w die Eingabe ist
- Akzeptierende Konfiguration:
 - Konfigurationen mit Zustand q_{accept}
- Ablehnende Konfiguration:
 - Konfigurationen mit Zustand q_{reject}
- Haltende Konfiguration:
 - akzeptierende oder ablehnende Konfigurationen

Definition

Eine Turingmaschine M akzeptiert eine Eingabe w, falls es eine Folge von Konfigurationen $C_1, C_2, ..., C_k$ gibt, sodass

- 1. C_1 ist die Startkonfiguration von M bei Eingabe w
- 2. C_i führt zu C_{i+1}
- 3. C_k ist eine akzeptierende Konfiguration

- Die von M akzeptierten Worte bilden die von M akzeptierte Sprache L(M).
- Eine Turingmaschine entscheidet eine Sprache, wenn jede Eingabe in einer haltenden Konfiguration C_k resultiert.

Definition

- Eine Sprache L heißt rekursiv aufzählbar,
 falls es eine Turingmaschine M gibt, die L akzeptiert.
- Eine Sprache L heißt rekursiv oder entscheidbar, falls es eine Turingmaschine M gibt, die L entscheidet.

- Eine Mehrband- oder k-Band Turingmaschine (k-Band DTM) hat k Bänder mit je einem Kopf.
- Die Übergangsfunktion ist dann von der Form $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$
- Zu Beginn steht die Eingabe auf Band 1, sonst stehen überall Blanks. Die Arbeitsweise ist analog zu 1-Band-DTMs definiert.

Satz

Zu jeder Mehrband-Turingmaschine gibt es eine äquivalente 1-Band-Turingmaschine.

Beweis

Idee:

Simuliere Mehrband-DTM M auf 1-Band-DTM S.

Simulationstechniken:

- Merken im Zustand
 - Nutzen Zustände als endlichen Speicher
- Markieren von Symbolen
 - Nutzen Bandalphabet zur Markierung von Positionen des Bandes

Im Zustand merken:

$$L := \{ w \mid w = w_1 \dots w_n, \exists i, 2 \le i \le n : w_i = w_1 \}$$

- 1. $\delta(q_0, t) = (q_2, t, R)$
- 2. $\delta(q_0, a) = ([q_0, a], a, R)$ für alle a aus Σ
- 3. $\delta([q_0, a], a) = (q_1, a, R)$
- 4. $\delta([q_0, a], b) = ([q_0, a], b, R)$
- 5. $\delta([q_0, a], t) = (q_2, t, R)$

$$q_{accept} = q_1, q_{reject} = q_2$$

Element-Distinctness:

$$L := \{ \# w_1 \# w_2 \dots \# w_n \mid w_i \text{ aus } \{0,1\}^*, w_i \neq w_j \text{ für alle } i \neq j \}$$

Beispiele:

- #011#001#01#00 ist in L
- #011#001#01#00#001 ist nicht in L

Element-Distinctness:

$$L := \{ \# w_1 \# w_2 \dots \# w_n \mid w_i \text{ aus } \{0,1\}^*, w_i \neq w_j \text{ für alle } i \neq j \}$$

Beispiele:

- #011#001#01#00 ist in *L*
- #011#001#01#00#001 ist nicht in L

Turingmaschine für Element-Distinctness:

- Falls das erste Eingabesymbol nicht # ist, lehne ab – sonst ersetze # durch #'.
 Wenn kein weiteres # gefunden, akzeptiere.
- 2. Finde das nächste # und ersetze es durch #'. Wird kein weiteres # gefunden, akzeptiere.
- 3. Teste, ob die beiden Folgen w_i , w_j rechts der Symbole #' gleich sind. Wenn ja, lehne ab.
- 4. Verschiebe Markierungen für den Vergleich des nächsten Paares von Folgen. Falls dieses Paar nicht mehr existiert, akzeptiere. Sonst gehe zu Schritt 3.

Berechnung, Akzeptieren, Entscheiden, ... k-Band Turingmaschinen

Beispiel: Addition von zwei Binärzahlen

• **Eingabe:** $w_1 # w_2$ für zwei Binärzahlen w_1 und w_2 (z.B. 100#1000 entspricht den Zahlen 4 und 8).

• Ausgabe: das Ergebnis $w_1 + w_2$ auf irgendeinem Band

Strategie:

- Verwende eine 3-Band Turing-Maschine
- w₂ wird zunächst auf Band 2 geschrieben
- w_1 und w_2 werden bitweise auf Band 3 zusammenaddiert. Zum Schluss geht man in q_{accept} .

Church'sche These (1936)

Die im intuitiven Sinne berechenbaren Funktionen und Sprachen sind genau die, die durch Turingmaschinen berechenbar sind.

Warum sind Turingmaschinen ein geeignetes Modell?

- Menschliche Wahrnehmung ist endlich.
- Jeder realisierbare Rechner muss endlicher Natur sein und den physikalischen Gesetzen folgen.

Abschlusseigenschaften

 \overline{L} : Komplementsprache zu $L - \overline{L} = \Sigma^* \setminus L$

Satz

Seien L_1 und L_2 entscheidbare Sprachen. Dann gilt:

- 1. $\overline{L_1}$ ist entscheidbar
- 2. $L_1 \cap L_2$ ist entscheidbar
- 3. $L_1 \cup L_2$ ist entscheidbar

Satz

Seien L_1 und L_2 rekursiv aufzählbare Sprachen. Dann gilt:

- 1. $L_1 \cap L_2$ ist rekursiv aufzählbar
- 2. $L_1 \cup L_2$ ist rekursiv aufzählbar

Abschlusseigenschaften

Satz

Eine Sprache L ist genau dann entscheidbar, wenn L und \overline{L} rekursiv aufzählbar sind.

Universelle Turingmaschinen

- Bislang special purpose Computer:
 eine Sprache eine Turing-Maschine
- Allgemein programmierbare Turing-Maschinen: universelle Turing-Maschinen
- Erhalten als Eingabe die Beschreibung einer Turingmaschine und simulieren diese Maschine
- Benötigen dafür eine einheitliche Beschreibung von Turingmaschinen durch sog. Gödel-Nummern

Standardisierungen

- Betrachten nur 1-Band Turing-Maschinen
- Standardalphabet $\Sigma = \{0,1\}, \Gamma = \{0,1,t\}$
- andere Alphabete können durch Standardalphabete kodiert werden
- Turingmaschinen mit anderen Alphabeten können durch Turingmaschinen mit Standardalphabeten simuliert werden.

Definition Gödelnummern

Sei *M* eine 1-Band-Turingmaschine mit

$$Q = \{q_0, ..., q_n\},$$

$$q_{accept} = q_{n-1},$$

$$q_{reject} = q_n.$$

Sei
$$X_1 = 0, X_2 = 1, X_3 = t, D_1 = L, D_2 = R$$
.

Wir kodieren $\delta(q_i, X_j) = (q_k, X_l, D_m)$ durch $0^{i+1}10^j 10^{k+1} 10^l 10^m$.

 $Code_r$: Kodierung des r-ten Eintrags für δ , $1 \le r \le 4(n-1)$

Gödelnummer $\langle M \rangle = 111Code_111Code_211...11Code_g111$

Definition Universelle Turingmaschine

Eine Turingmaschine M_0 heißt universell, falls für jede 1-Band-Turingmaschine M und jedes x aus $\{0,1\}^*$ gilt:

- M₀ gestartet mit \(\lambda \rangle x \) hält genau dann, wenn M
 gestartet mit \(x \) hält.
- M_0 akzeptiert $\langle M \rangle x$ genau dann, wenn M das Wort x akzeptiert.

Satz

Es gibt eine universelle 2-Band Turingmaschine.