

Computer Architecture

Keivan Navi

Cal Poly Pomona University

knavi@cpp.edu

Office hours: Tu/Th 5:25 Pm to 6:55 Pm

Office: 8-49

Computer Architecture

Synchronous Counter

Synchronous counter

- A Synchronous counter is the counter in which the clock input with all the flip-flops uses the same source and produces the output at the same time.
- Asynchronous Counter: Also known as a ripple counter, where flip-flops are triggered by the output of the preceding flip-flop. Each flip-flop changes state sequentially. Synchronous Counter: All flip-flops are triggered simultaneously by a common clock signal, ensuring that all state changes occur at the same time.

Synchronous counter (continued)

- Synchronous counters eliminate the cumulative flip-flop delay seen in ripple counter. Each flip-flop is clocked by the same clock signal. Each gate selectively controls when each more significant bit flip-flop is to change state (toggle) on the next clock transition. Some times we use "state Diagram" to design a sequential circuit. A state diagram is used in computer science and related fields to describe the behavior of systems.
- The main disadvantage of a synchronous counter is, it needs a lot of additional logic to execute. They need large components & circuitry. This counter uses a complex logic circuit & the increasing number of states.

Asynchronous or Synchronous

- Synchronous circuits are digital circuits that are synchronized by clock signals. Asynchronous circuits are digital circuits that do not rely on clock signals.
- So many wonderful asynchronous circuits can be designed. We can design and even publish a good scientific paper but sometimes when it is supposed to be mass produced, it may be hard to sell them. The noise is a serious issue.
- That's why even some researchers love asynchronous designing, they prefer synchronous approach.

Synchronous Counters (1,2,3 bits)

- 1 bit synchronous Counter:
- State Diagram

• 2 bits synchronous Counter:

3 bits synchronous Counter:

How to design with T Flip-Flop

One bit Up counter:

2 bits Up Counter:

Q1	Q0	Q1+	Q0+	T1	T0
0 0 1 1	0 1 0 1	0 1 1 0	1 0 1 0	0 1 0 1	1 1 1

Q2	Q1	Q0	Q2 ⁺	Q1+	Q0+	Т2	T1	T0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

- Is it OK?
- State Diagram:

Q1	Q0	Q1+	Q0+	T1	T0
0	0	1	0	1	0
1 1	0 1	0 0	0	1	1 1

- Is it OK?
- State Diagram:

Q1	Q0	Q1+	Q0+	T1	T0
0	0	0	1	0	1
0	1	1	1	1	0
1	0	0	0	1	0
1	1	1	0	0	1

- Does it work? It seems that something is going wrong. But that is not true. Why?
- What is the state Diagram?

Q1	Q0	Q1+	Q0+	T1	T0
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	1	1

