GEOMETRIA GLOBAL

Andoni Latorre Galarraga

18 de Febrero

Def: $\mathcal{S} \subset \mathbb{R}^3$, decimos que es superficie regular si $\forall p \in \mathcal{S} \exists V$ abierto (con la topología relativa) y $\exists \mathcal{U}(\text{abierto y conexo}) \subset \mathbb{R}^2 \text{ y } \varphi : \mathcal{U} \longrightarrow V \in \mathbb{R}^3 \text{ tal que.}$ i) φ homeomorfismo, $\exists (\varphi)^{-1}$ continua

- ii) φ diferenciable
- iii) $D\varphi$ inyectiva (no confundir diferencial con matriz jacobiana)

(por el teorema de la función inversa $\exists \tilde{V} \subset V t. q \varphi^{-1} : \tilde{V} \longmapsto \tilde{\mathcal{U}}$ diferenciable)

$$\begin{array}{ccc} \alpha: & \mathbb{R} & \longrightarrow & \mathbb{R}^2 \\ & t & \longmapsto & (x(t),y(t)) \end{array}$$
 Cilindro:
$$\varphi: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \\ & (t,z) & \longmapsto & (x(t),y(t),z) \end{array}$$

Def: Sea $\mathcal{S} \subset \mathbb{R}^3$ superficie $\mathcal{A} = \{(u_i, \varphi_i) \mid i \in I\}$ es un atlas local.

- i) $\forall p \in \mathcal{S} \exists V \in \mathcal{N}_{\text{abierto}}, \exists i \in I \text{ t.q} \quad \varphi_i: \quad U_i(\text{conexo}) \longrightarrow V \quad \text{cumple la definición anterior.}$
- $ii) \hat{\mathcal{S}}_i = \bigcup_{i \in I} \varphi(u_i)$
- iii) Compatibilidad entre lass cartas.