MATH 6480/STAT 9300/AMCS 6481, Fall 2023, Homework 1

1. Let \mathcal{F} be all subsets of the set $\{1, 2, 3, 4\}$. Give an example of two probability measures $\mu \neq \nu$ on \mathcal{F} that agree on a collection of sets \mathcal{C} for which $\sigma(\mathcal{C}) = \mathcal{F}$.

Solution:

 $X=\{1,2,3,4\}, \mathcal{F}=\mathcal{P}(X)$. Take $\mathcal{C}=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\}\}$, where $\sigma(\mathcal{C})=\mathcal{F}$. Define the probability measure μ s.t. $\mu(\{x\})=\frac{1}{4}$ for any $x\in X$, also define ν as $\nu(\{x\})=\frac{1}{8}$ for $x\in\{1,4\},\,\nu(\{x\})=\frac{3}{8}$ for $x\in\{2,3\}$. These two probability measures μ and ν on \mathcal{F} are not equal and agree on \mathcal{C} above for which $\sigma(\mathcal{C})=\mathcal{F}$

2. Let X and Y be random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $X \leq Y$ a.s. If c is a real number, show that $\mathbb{P}(X \leq \lambda) \geq \mathbb{P}(Y \leq \lambda)$. Now suppose C is another random variable. Is it true that $\mathbb{P}(X \leq C) \geq \mathbb{P}(Y \leq C)$? [Note: the assertion $X \leq Y$ a.s. implies that X and Y are defined on the same probability space.]

$\underline{Solution}$:

Given $X \leq Y$ a.s., we have $\mathbb{P}(\omega \in \Omega : X(\omega) \leq Y(\omega)) = 1$, implying $\{\omega \in \Omega : Y(\omega) \leq \lambda\} \subseteq \{\omega \in \Omega : X(\omega) \leq \lambda\}$ a.s., i.e., $\mathbb{P}(\omega \in \Omega : \{\{Y(\omega) \leq \lambda\} \subseteq \{X(\omega) \leq \lambda\}\}) = 1$. We can therefore conclude that $\mathbb{P}(Y \leq \lambda) \leq \mathbb{P}(X \leq \lambda)$ by the monotonicity of probability measure. Let $X_C \equiv X - C$ and $Y_C \equiv Y - C$ be new random variables with the same C, then $X_C \leq Y_C$. From the formal part, we have $\mathbb{P}(Y_C \leq \lambda) \leq \mathbb{P}(X_C \leq \lambda)$ for any constant λ . Take $\lambda = 0$, we thus have $\mathbb{P}(X \leq C) \geq \mathbb{P}(Y \leq C)$.

3. Is it possible to have random variables X,Y and Z for which simultaneously $\mathbb{P}(X>Y)>1/2$, $\mathbb{P}(Y>Z)>1/2$ and $\mathbb{P}(Z>X)>1/2$? Determine with proof the maximum possible value for

$$\min\{\mathbb{P}(X>Y), \mathbb{P}(Y>Z), \mathbb{P}(Z>X)\}.$$

[Hint: Consider the sum $\mathbb{P}(X > Y) + \mathbb{P}(Y > Z) + \mathbb{P}(Z > X)$]. symmetry triangle loop

Solution:

Yes, it's possible to have such X, Y and Z.

For any R.V.s X, Y and Z, at most two out of the three events $\{X < Y\}, \{Y < Z\}, \{Z < X\}$ can occur simultaneously, which implies $\mathbb{E}(\mathbb{1}_{X>Y} + \mathbb{1}_{Y>Z} + \mathbb{1}_{Z>X}) = \mathbb{P}(X > Y) + \mathbb{P}(Y > Z) + \mathbb{P}(Z > X) \le 2$.

Take $a = \min\{\mathbb{P}(X > Y), \mathbb{P}(Y > Z), \mathbb{P}(Z > X)\}, c = \max\{\mathbb{P}(X > Y), \mathbb{P}(Y > Z), \mathbb{P}(Z > X)\}$, and the remaining probability is b, we have $a \le b \le c$. Then $3a \le a + b + c \le 2$ lead to $a \le \frac{2}{3}$. We can thus conclude that the maximum possible value of $\min\{\mathbb{P}(X > Y), \mathbb{P}(Y > Z), \mathbb{P}(Z > X)\}$ is upper bounded by $\frac{2}{3}$.

The following is an example of $\mathbb{P}(X > Y) = \mathbb{P}(Y > Z) = \mathbb{P}(Z > X) = \frac{2}{3}$. Let X, Y and Z be random variables with possible values $\{0,1,2\}$ with assigned probabilities $\mathbb{P}(X=0,Y=1,Z=2) = \mathbb{P}(X=1,Y=2,Z=0) = \mathbb{P}(X=2,Y=0,Z=1) = \frac{1}{3}$, $\mathbb{P}(X=Y) = 0$, $\mathbb{P}(Y=Z) = 0$, $\mathbb{P}(Z=X) = 0$, and all the other arrangements of X,Y and Z have probability 0. Then we have $\mathbb{P}(X < Y) = \frac{2}{3}$, $\mathbb{P}(Y < Z) = \frac{2}{3}$ and $\mathbb{P}(Z < X) = \frac{2}{3}$

4. Let $q_1, q_2, ...$ be an enumeration of the rational numbers in [0, 1] and let f be the function mapping $x \in [0, 1]$ to $\sum_{n=1}^{\infty} 2^{-n} |x - q_n|^{-1/3}$. Note that this sum is equal to $+\infty$ if $x = q_n$ for some n or if the sum diverges. Prove or disprove: the random variable f on $([0, 1], \mathcal{B}, \mathbf{m})$ has finite expectation.

$\underline{Solution}$:

$$\mathbb{E}(f) = \int_{\Omega} f dx = \int_{0}^{1} \sum_{n=1}^{\infty} 2^{-n} |x - q_{n}|^{-1/3} dx = \int_{0}^{1} \lim_{N \to \infty} \sum_{n=1}^{N} 2^{-n} |x - q_{n}|^{-1/3} dx$$

where $2^{-n}|x-q_n|^{-1/3} \ge 0$ for any x and q_n and the sum is monotonic increasing. By MCT and Fubini's theorem,

$$\mathbb{E}(f) = \lim_{N \to \infty} \sum_{n=1}^{N} \int_{0}^{1} 2^{-n} |x - q_{n}|^{-1/3} dx = \lim_{N \to \infty} \sum_{n=1}^{N} 2^{-n} \int_{0}^{1} |x - q_{n}|^{-1/3} dx$$

$$\int_{0}^{1} |x - q_{n}|^{-1/3} dx = \int_{0}^{q_{n}} (q_{n} - x)^{-1/3} dx + \int_{q_{n}}^{1} (x - q_{n})^{-1/3} dx = \frac{3}{2} q_{n}^{-2/3} + \frac{3}{2} (1 - q_{n})^{-2/3}$$

$$= \frac{3}{2} (q_{n}^{-2/3} + (1 - q_{n})^{-2/3}) \le \frac{3}{2} \cdot 2 = 3 \text{ as } q_{n} \in [0, 1]$$

Therefore, $\mathbb{E}(f) = \lim_{N \to \infty} \sum_{n=1}^{N} 2^{-n} \int_{0}^{1} |x - q_n|^{-1/3} dx \le \lim_{N \to \infty} \sum_{n=1}^{N} 3 \cdot 2^{-n} = 3$ is finite.