```
In [1]: import pandas as pd
   import pandas as pd
   import numpy as np
   import seaborn as sns
   import plotly.express as px
   import plotly.graph_objects as go
   from sklearn.model_selection import train_test_split
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.linear_model import LogisticRegression
   from sklearn.metrics import f1_score, recall_score,precision_score,confusion_matr
   from sklearn import tree
   from sklearn.metrics import roc_auc_score
```

In [2]: loan_data=pd.read_csv("loan_data.csv")

In [3]: loan_data

Out[3]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplic
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	

614 rows × 13 columns

In [4]: loan_data.head()

Out[4]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplican
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
4								>

In [5]: loan_data.isnull().sum()

Out[5]: Loan_ID 0 Gender 13 Married 3 15 Dependents 0 Education Self_Employed 32 ApplicantIncome 0 0 CoapplicantIncome LoanAmount 22 Loan_Amount_Term 14 Credit_History 50 Property_Area 0 Loan_Status 0 dtype: int64

In [6]: loan_data.dtypes

Out[6]: Loan ID object object Gender Married object Dependents object Education object Self_Employed object ApplicantIncome int64 CoapplicantIncome float64 LoanAmount float64 float64 Loan_Amount_Term Credit_History float64 object Property_Area Loan Status object

dtype: object

```
loan_data.nunique()
In [7]:
 Out[7]: Loan_ID
                               614
         Gender
                                 2
                                 2
         Married
         Dependents
                                 4
         Education
                                 2
         Self_Employed
                                 2
         ApplicantIncome
                               505
         CoapplicantIncome
                               287
         LoanAmount
                               203
         Loan_Amount_Term
                                10
         Credit_History
                                 2
         Property_Area
                                 3
         Loan_Status
                                 2
         dtype: int64
 In [8]: loan_data.isnull().sum()
Out[8]: Loan_ID
                                0
         Gender
                               13
         Married
                                3
         Dependents
                               15
         Education
                                0
         Self Employed
                               32
                                0
         ApplicantIncome
                                0
         CoapplicantIncome
                               22
         LoanAmount
         Loan_Amount_Term
                               14
                               50
         Credit History
                                0
         Property Area
                                0
         Loan_Status
         dtype: int64
 In [9]: loan_data['Loan_Status'].value_counts()
Out[9]: Y
               422
               192
         Name: Loan Status, dtype: int64
In [10]: loan_data['Credit_History'].value_counts()
Out[10]: 1.0
                 475
         Name: Credit_History, dtype: int64
In [11]: loan_data['Dependents'].value_counts()
Out[11]: 0
                345
         1
                102
         2
                101
                 51
         Name: Dependents, dtype: int64
```

```
loan_data['Gender'].value_counts()
In [12]:
Out[12]: Male
                    489
         Female
                    112
         Name: Gender, dtype: int64
         loan_data['Loan_Amount_Term'].value_counts()
In [13]:
Out[13]: 360.0
                   512
         180.0
                    44
         480.0
                    15
         300.0
                    13
         240.0
                     4
         84.0
                     4
         120.0
                     3
         60.0
                     2
                     2
         36.0
         12.0
                     1
         Name: Loan_Amount_Term, dtype: int64
In [14]: loan_data['Self_Employed'].value_counts()
Out[14]:
         No
                 500
         Yes
                 82
         Name: Self_Employed, dtype: int64
In [15]:
         loan_data['Gender'].value_counts()
Out[15]: Male
                    489
         Female
                    112
         Name: Gender, dtype: int64
 In [ ]:
```

```
In [16]: fig = px.bar(data_frame=loan_data, x=loan_data['Gender'].value_counts().index, y=
    fig.update_layout(title='Number of Males and Females',xaxis_title='Gender',yaxis_
    fig.show()
```

Number of Males and Females


```
In [17]: fig = px.bar(data_frame=loan_data, x=loan_data['Married'].value_counts().index, y
fig.update_layout(title='Number of Married and Unmarried',xaxis_title='Marital st
fig.show()
```

Number of Married and Unmarried


```
In [18]: fig = px.bar(data_frame=loan_data, x=loan_data['Self_Employed'].value_counts().ir
fig.update_layout(title='Number of Self_Employed or Not',xaxis_title='Employed',y
fig.show()
```

Number of Self_Employed or Not


```
In [19]: fig = px.bar(data_frame=loan_data, x=loan_data['Credit_History'].value_counts().i
fig.update_layout(title='Number of Credit_History',xaxis_title='Credit_History',y
fig.show()
```

Number of Credit_History

In [20]:	loan_data.dtypes	
Out[20]:	Loan_ID	object
	Gender	object
	Married	object
	Dependents	object
	Education	object
	Self_Employed	object
	ApplicantIncome	int64
	CoapplicantIncome	float64
	LoanAmount	float64
	Loan_Amount_Term	float64
	Credit_History	float64
	Property_Area	object
	Loan_Status	object
	dtype: object	

```
In [21]: fig = px.bar(data_frame=loan_data, x=loan_data['Dependents'].value_counts().index
fig.update_layout(title='Number of Dependents',xaxis_title='Dependents',yaxis_tit
fig.show()
```

Number of Dependents

Number of Graduate and Not Graduate


```
In [23]: fig = px.bar(data_frame=loan_data, x=loan_data['Property_Area'].value_counts().ir
fig.update_layout(title='Number of Property Areas',xaxis_title='Property Areas',y
fig.show()
```

Number of Property Areas


```
In [24]: fig=px.histogram(data_frame=loan_data,x='ApplicantIncome',text_auto=True,nbins=20
fig.update_layout(width=900,height=500)
fig.show()
```



```
In [25]: fig=px.box(data_frame=loan_data,x='ApplicantIncome')
    fig.update_layout(width=800,height=500)
    fig.show()
```


In [26]: fig=px.box(data_frame=loan_data,x='ApplicantIncome',y='Education',orientation='h'
fig.update_layout(title='Applicant Income',width=800,height=500)
fig.show()

Applicant Income

In [27]: fig=px.histogram(data_frame=loan_data,x='CoapplicantIncome',text_auto=True,nbins=
fig.update_layout(title='Coapplicant Income',width=800,height=500)
fig.show()

Coapplicant Income


```
In [28]: fig=px.box(data_frame=loan_data,x='CoapplicantIncome')
    fig.update_layout(width=800,height=400)
    fig.show()
```


In [29]: fig=px.histogram(data_frame=loan_data,x='LoanAmount',text_auto=True,nbins=20)
fig.update_layout(title='Loan Amount',width=800,height=500)
fig.show()

Loan Amount


```
In [30]: fig=px.box(data_frame=loan_data,x='LoanAmount',orientation='h', )
    fig.update_layout(title='Loan Amount',width=800,height=500)
    fig.show()
```

Loan Amount

In [31]: fig=px.box(data_frame=loan_data,x='LoanAmount',y='Gender',orientation='h', color=
fig.update_layout(title='Loan Amount',width=800,height=500)
fig.show()

Loan Amount

Out[32]:

	Gender	Loan_Status	Count
0	Female	N	37
1	Female	Υ	75
2	Male	N	150
3	Male	Υ	339

In [33]: Married_vise_Loan_Status= loan_data.groupby(['Married', 'Loan_Status']).size().re
Married_vise_Loan_Status

Out[33]:

	Married	Loan_Status	Count
0	No	N	79
1	No	Υ	134
2	Yes	N	113
3	Yes	Υ	285

In [34]: loan_data.dtypes

Out[34]: Loan ID object Gender object Married object Dependents object Education object Self_Employed object ApplicantIncome int64 CoapplicantIncome float64 LoanAmount float64 float64 Loan_Amount_Term Credit_History float64 Property_Area object Loan_Status object dtype: object

In [35]: Dependents_vise_Loan_Status= loan_data.groupby(['Dependents', 'Loan_Status']).siz
 Dependents_vise_Loan_Status

Out[35]:

	Dependents	Loan_Status	Count
0	0	N	107
1	0	Υ	238
2	1	N	36
3	1	Υ	66
4	2	N	25
5	2	Υ	76
6	3+	N	18
7	3+	Υ	33

In [36]: Education_vise_Loan_Status= loan_data.groupby(['Education', 'Loan_Status']).size(
 Education_vise_Loan_Status

Out[36]:

	Education	Loan_Status	Count
0	Graduate	N	140
1	Graduate	Υ	340
2	Not Graduate	N	52
3	Not Graduate	Υ	82

In [37]: Self_Employed_vise_Loan_Status= loan_data.groupby(['Self_Employed', 'Loan_Status'
Self_Employed_vise_Loan_Status

Out[37]:

	Self_Employed	Loan_Status	Count
0	No	N	157
1	No	Υ	343
2	Yes	N	26
3	Yes	Υ	56

In [38]: Credit_History_vise_Loan_Status= loan_data.groupby(['Credit_History', 'Loan_Statu
Credit_History_vise_Loan_Status

Out[38]:

	Credit_History	Loan_Status	Count
0	0.0	N	82
1	0.0	Υ	7
2	1.0	N	97
3	1.0	Υ	378

In [39]: Property_Area_vise_Loan_Status= loan_data.groupby(['Property_Area', 'Loan_Status'
Property_Area_vise_Loan_Status

Out[39]:

	Property_Area	Loan_Status	Count
0	Rural	N	69
1	Rural	Υ	110
2	Semiurban	N	54
3	Semiurban	Υ	179
4	Urban	N	69
5	Urban	Υ	133

In [40]: bins=[0,2500,4000,6000,81000]
 group=['Low','Average','High','Very high']
 loan_data['Income_Group']=pd.cut(loan_data['ApplicantIncome'],bins=bins,labels=gr
 Income_Group_vise_Loan_Status= loan_data.groupby(['Income_Group', 'Loan_Status'])
 Income_Group_vise_Loan_Status

Out[40]:

	Income_Group	Loan_Status	Count
0	Low	N	34
1	Low	Υ	74
2	Average	N	67
3	Average	Υ	159
4	High	N	45
5	High	Υ	98
6	Very high	N	46
7	Very high	Υ	91

In [41]: fig = px.bar(Income_Group_vise_Loan_Status,x='Income_Group',y='Count',color='Loar
fig.update_layout(xaxis_title='Income Group',yaxis_title='Count',width=800,height
fig.show()

Out[42]:

	CoapplicantIncome_Group	Loan_Status	Count
0	Low	N	99
1	Low	Υ	196
2	Average	N	61
3	Average	Υ	161
4	High	N	32
5	High	Υ	65

```
In [43]: fig = px.bar(CoapplicantIncome_Group_vise_Loan_Status,x='CoapplicantIncome_Group'
fig.update_layout(xaxis_title='CoapplicantIncome_Group',yaxis_title='Count',width
fig.show()
```


In [44]: loan_data['Total_Income']=loan_data['ApplicantIncome']+loan_data['CoapplicantIncome']
bins=[0,2500,4000,6000,81000]
group=['Low','Average','High','Very high']
loan_data['Total_Income_Group']=pd.cut(loan_data['Total_Income'],bins=bins,labels
Total_Income_Group_vise_Loan_Status= loan_data.groupby(['Total_Income_Group', 'Loan_Income_Group_vise_Loan_Status])

Out[44]:

	Total_Income_Group	Loan_Status	Count
0	Low	N	14
1	Low	Υ	10
2	Average	N	32
3	Average	Υ	87
4	High	N	65
5	High	Υ	159
6	Very high	N	81
7	Very high	Υ	166

```
In [45]: fig = px.bar(Total_Income_Group_vise_Loan_Status,x='Total_Income_Group',y='Count'
fig.update_layout(xaxis_title='Income_Group',yaxis_title='Count',width=800,height
fig.show()
```


Out[46]:

LoanAmount_group	Loan_Status	Count
0 Low	N	47
1 Low	Υ	107
2 Average	N	103
3 Average	Υ	255
4 High	N	31
5 High	Υ	49

In [47]: fig = px.bar(LoanAmount_group_vise_Loan_Status,x='LoanAmount_group',y='Count',col
fig.update_layout(xaxis_title='LoanAmount_group',yaxis_title='Count',width=800,he
fig.show()


```
loan_data=loan_data.drop(['Income_Group', 'CoapplicantIncome_Group',
                                                                                     'Total Inco
In [48]:
          loan_data['Dependents'].replace('3+', 3,inplace=True)
In [49]:
          loan_data['Loan_Status'].replace('N', 0,inplace=True)
          loan_data['Loan_Status'].replace('Y', 1,inplace=True)
In [50]:
          loan_data.head()
Out[50]:
              Loan ID Gender Married
                                      Dependents Education Self Employed ApplicantIncome Coapplican
           0 LP001002
                         Male
                                  No
                                               0
                                                   Graduate
                                                                      No
                                                                                   5849
           1 LP001003
                         Male
                                  Yes
                                               1
                                                   Graduate
                                                                      No
                                                                                   4583
             LP001005
                         Male
                                               0
                                                   Graduate
                                                                                   3000
                                  Yes
                                                                     Yes
                                                       Not
             LP001006
                         Male
                                               0
                                                                                    2583
                                  Yes
                                                                      No
                                                   Graduate
```

0

Graduate

No

1.000000

6000

In [51]: Correlation=loan_data.corr(method='pearson')
 print(Correlation)

No

Male

LP001008

	ApplicantIncome	CoapplicantIncome	LoanAmount	\
ApplicantIncome	1.000000	-0.116605	0.570909	
CoapplicantIncome	-0.116605	1.000000	0.188619	
LoanAmount	0.570909	0.188619	1.000000	
Loan_Amount_Term	-0.045306	-0.059878	0.039447	
Credit_History	-0.014715	-0.002056	-0.008433	
Loan_Status	-0.004710	-0.059187	-0.037318	
	Loan_Amount_Term	Credit_History	Loan_Status	
ApplicantIncome	-0.045306	-0.014715	-0.004710	
CoapplicantIncome	-0.059878	-0.002056	-0.059187	
LoanAmount	0.039447	-0.008433	-0.037318	
Loan_Amount_Term	1.000000	0.001470	-0.021268	
Credit_History	0.001470	1.000000	0.561678	

-0.021268

C:\Users\Suyash\AppData\Local\Temp\ipykernel_10128\4188836588.py:1: FutureWarnin
g:

0.561678

The default value of numeric_only in DataFrame.corr is deprecated. In a future v ersion, it will default to False. Select only valid columns or specify the value of numeric only to silence this warning.

Loan Status

In [52]: fig=go.Figure(go.Heatmap(x=Correlation.columns,y=Correlation.columns,z=Correlatio
fig.update_layout(title='Correlation Heatmap',xaxis_title='Variables',yaxis_title
fig.show()

Correlation Heatmap

In [53]:	<pre>loan_data.isnull().</pre>	sum()	
Out[53]:	Loan_ID	0	
	Gender	13	
	Married	3	
	Dependents	15	
	Education	0	
	Self_Employed	32	
	ApplicantIncome	0	
	CoapplicantIncome	0	
	LoanAmount	22	
	Loan_Amount_Term	14	
	Credit_History	50	
	Property_Area	0	
	Loan_Status	0	
	dtype: int64		

```
loan_data['Gender'].fillna(method='ffill', inplace=True)
In [54]:
         loan data['Dependents'].fillna( loan data['Dependents'].mode()[0], inplace=True)
In [55]:
         loan_data['Married'].fillna(loan_data['Married'].mode()[0], inplace=True)
In [56]:
         loan_data['Self_Employed'].fillna(method='ffill', inplace=True)
In [57]:
         loan data['Credit History'].fillna(method='bfill', inplace=True)
In [58]:
         loan_data['LoanAmount'].fillna(loan_data['LoanAmount'].median(), inplace=True)
In [59]:
         loan_data['Loan_Amount_Term'].fillna( loan_data['Loan_Amount_Term'].mode()[0], ir
In [60]:
In [61]:
         loan data.isnull().sum()
Out[61]:
                               0
         Loan ID
         Gender
                               0
         Married
                               0
         Dependents
                               0
         Education
                               0
         Self Employed
         ApplicantIncome
                               0
         CoapplicantIncome
                               0
         LoanAmount
                               0
         Loan_Amount_Term
                               0
         Credit History
                               0
         Property Area
                               0
         Loan Status
         dtype: int64
In [62]: loan data.describe()
Out[62]:
```

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan _.
count	614.000000	614.000000	614.000000	614.000000	614.00000	614.
mean	5403.459283	1621.245798	145.752443	342.410423	0.84202	0.
std	6109.041673	2926.248369	84.107233	64.428629	0.36502	0.
min	150.000000	0.000000	9.000000	12.000000	0.00000	0.
25%	2877.500000	0.000000	100.250000	360.000000	1.00000	0.
50%	3812.500000	1188.500000	128.000000	360.000000	1.00000	1.
75%	5795.000000	2297.250000	164.750000	360.000000	1.00000	1.
max	81000.000000	41667.000000	700.000000	480.000000	1.00000	1.
4						•

In [63]: loan_data

Out[63]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplic
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	

614 rows × 13 columns

In [64]: loan_data['NormLoanAmount']=np.log(loan_data['LoanAmount'])

In [65]: loan_data

Out[65]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplic	
0	LP001002	Male	No	0	Graduate	No	5849	_	
1	LP001003	Male	Yes	1	Graduate	No	4583		
2	LP001005	Male	Yes	0	Graduate	Yes	3000		
3	LP001006	Male	Yes	0	Not Graduate	No	2583		
4	LP001008	Male	No	0	Graduate	No	6000		
609	LP002978	Female	No	0	Graduate	No	2900		
610	LP002979	Male	Yes	3	Graduate	No	4106		
611	LP002983	Male	Yes	1	Graduate	No	8072		
612	LP002984	Male	Yes	2	Graduate	No	7583		
613	LP002990	Female	No	0	Graduate	Yes	4583		
614 r	614 rows × 14 columns								

```
loan_data=loan_data.drop('Loan_ID',axis=1)
In [66]:
          loan_data=loan_data.drop('LoanAmount',axis=1)
In [67]:
          X = loan_data.drop(labels='Loan_Status',axis=1)
In [68]:
          Y = loan_data['Loan_Status']
In [69]:
          X
Out[69]:
                Gender Married Dependents
                                             Education Self_Employed ApplicantIncome CoapplicantIncome
             0
                   Male
                             No
                                          0
                                               Graduate
                                                                   No
                                                                                  5849
                                                                                                      0.0
              1
                                           1
                                                                                  4583
                   Male
                            Yes
                                               Graduate
                                                                   No
                                                                                                   1508.0
             2
                   Male
                            Yes
                                          0
                                               Graduate
                                                                  Yes
                                                                                  3000
                                                                                                      0.0
                                                   Not
              3
                   Male
                            Yes
                                          0
                                                                   No
                                                                                  2583
                                                                                                   2358.0
                                               Graduate
              4
                                          0
                                               Graduate
                                                                                  6000
                                                                                                      0.0
                   Male
                             No
                                                                   No
            609
                 Female
                             No
                                          0
                                               Graduate
                                                                   No
                                                                                  2900
                                                                                                      0.0
                                          3
            610
                   Male
                            Yes
                                               Graduate
                                                                   No
                                                                                  4106
                                                                                                      0.0
                                               Graduate
                                                                                                    240.0
            611
                   Male
                            Yes
                                           1
                                                                   No
                                                                                  8072
                                          2
            612
                   Male
                                               Graduate
                                                                                  7583
                                                                                                      0.0
                            Yes
                                                                   No
            613 Female
                             No
                                               Graduate
                                                                  Yes
                                                                                  4583
                                                                                                      0.0
          614 rows × 11 columns
In [70]:
Out[70]:
          0
                   1
           1
                   0
           2
                   1
           3
                   1
           4
                   1
                  . .
          609
                   1
          610
                   1
          611
                   1
                   1
          612
          613
          Name: Loan_Status, Length: 614, dtype: int64
```

```
In [71]: columns = X.columns
          cat_col= [col for col in X.columns if X[col].dtypes=='0']
          cat_col
Out[71]: ['Gender',
           'Married',
           'Dependents',
           'Education',
           'Self_Employed',
           'Property_Area']
In [72]:
          dummy = pd.get_dummies(X[cat_col])
          dummy.shape
Out[72]: (614, 15)
In [73]:
          dummy
Out[73]:
               Gender_Female Gender_Male Married_No Married_Yes Dependents_3 Dependents_0 Dependents
                                                               0
             0
                           0
                                        1
                                                   1
                                                                             0
                                                                                          1
             1
                           0
                                        1
                                                   0
                                                               1
                                                                             0
                                                                                          0
             2
                                        1
                                                   0
                                                               1
                           0
                                                                                          1
                                                                                          1
             3
                           0
                                        1
                                                   0
                                                               1
                                                                             0
                                        1
                                                               0
                                                                                          1
                           0
                                                   1
                                                                             0
           609
                           1
                                        0
                                                   1
                                                               0
                                                                             0
                                                                                          1
           610
                           0
                                        1
                                                                                          0
                                                   0
                                                               1
           611
                           0
                                        1
                                                   0
                                                               1
                                                                                          0
           612
                           0
                                        1
                                                   0
                                                               1
                                                                                          0
           613
                                        0
                                                   1
                                                               0
                                                                             0
                                                                                          1
          614 rows × 15 columns
          final = pd.concat([X,dummy],axis=1)
In [74]:
          final.shape
Out[74]: (614, 26)
In [75]: final.drop(cat_col,inplace=True,axis=1)
```

In [76]: final.shape

Out[76]: (614, 20)

In [77]: final

Out[77]:

	ApplicantIncome	CoapplicantIncome	Loan_Amount_Term	Credit_History	NormLoanAmount	Gŧ
0	5849	0.0	360.0	1.0	4.852030	
1	4583	1508.0	360.0	1.0	4.852030	
2	3000	0.0	360.0	1.0	4.189655	
3	2583	2358.0	360.0	1.0	4.787492	
4	6000	0.0	360.0	1.0	4.948760	
609	2900	0.0	360.0	1.0	4.262680	
610	4106	0.0	180.0	1.0	3.688879	
611	8072	240.0	360.0	1.0	5.533389	
612	7583	0.0	360.0	1.0	5.231109	
613	4583	0.0	360.0	0.0	4.890349	

- 4

614 rows × 20 columns

```
In [78]: X=final X
```

Out[78]:

	ApplicantIncome	CoapplicantIncome	Loan_Amount_Term	Credit_History	NormLoanAmount	Gŧ
0	5849	0.0	360.0	1.0	4.852030	
1	4583	1508.0	360.0	1.0	4.852030	
2	3000	0.0	360.0	1.0	4.189655	
3	2583	2358.0	360.0	1.0	4.787492	
4	6000	0.0	360.0	1.0	4.948760	
609	2900	0.0	360.0	1.0	4.262680	
610	4106	0.0	180.0	1.0	3.688879	
611	8072	240.0	360.0	1.0	5.533389	
612	7583	0.0	360.0	1.0	5.231109	
613	4583	0.0	360.0	0.0	4.890349	

614 rows × 20 columns

```
In [79]:
Out[79]: 0
                 1
                 0
          2
                 1
          3
                 1
                 1
          609
                 1
          610
          611
                 1
          612
                 1
          613
          Name: Loan_Status, Length: 614, dtype: int64
```

In [80]: x_train,x_test,y_train,y_test = train_test_split(X,Y, test_size = 0.2)

LogisticRegression

```
In [81]: clf = LogisticRegression()
In [82]: x_train.shape,x_test.shape
Out[82]: ((491, 20), (123, 20))
```

```
In [83]: clf.fit(x_train,y_train)
Out[83]:
         ▼ LogisticRegression
         LogisticRegression()
In [84]: pred = clf.predict(x test)
In [85]:
        pred
Out[85]: array([1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1,
               1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0,
               1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1], dtype=int64)
In [86]: | accuracy_score(y_test,pred)
Out[86]: 0.8048780487804879
In [87]: |f1_score(y_test,pred)
Out[87]: 0.8695652173913043
In [88]: | precision_score(y_test,pred)
Out[88]: 0.8
In [89]: recall_score(y_test,pred)
Out[89]: 0.9523809523809523
In [90]: |confusion matrix(y test,pred)
Out[90]: array([[19, 20],
               [ 4, 80]], dtype=int64)
In [91]:
        from sklearn.metrics import roc curve, auc
         import matplotlib.pyplot as plt
In [92]: | fpr, tpr, thresholds = roc curve(y test,pred)
In [93]:
        roc_auc = auc(fpr, tpr)
        print("ROC AUC:", roc auc)
         ROC AUC: 0.7197802197802198
```

localhost:8888/notebooks/Loan Approval Prediction.ipynb#

Dicision_Tree

```
In [97]: pred = dct.predict(x_test)
In [98]: pred
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
                0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1,
                1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0,
                1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0], dtype=int64)
In [99]: |accuracy_score(y_test,pred)
Out[99]: 0.6829268292682927
In [100]: |f1_score(y_test,pred)
Out[100]: 0.7577639751552795
In [101]: | precision_score(y_test,pred)
Out[101]: 0.7922077922077922
In [102]: recall_score(y_test,pred)
Out[102]: 0.7261904761904762
In [103]: |confusion_matrix(y_test,pred)
Out[103]: array([[23, 16],
                [23, 61]], dtype=int64)
In [104]: roc_auc_score(y_test,pred)
Out[104]: 0.6579670329670331
In [105]: import matplotlib.pyplot as plt
         from sklearn.metrics import RocCurveDisplay
```

```
In [106]:
          fpr, tpr, thresholds = roc_curve(y_test,pred)
          roc_auc = auc(fpr, tpr)
          print("ROC AUC:", roc_auc)
          plt.figure()
          lw = 2
          plt.plot(fpr, tpr, color='darkorange',
                   lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
          plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver Operating Characteristic (ROC) Curve')
          plt.legend(loc="lower right")
          plt.show()
```

ROC AUC: 0.6579670329670331

Random Forest

```
In [107]:
           rfc=RandomForestClassifier()
In [108]:
          rfc.fit(x_train,y_train)
Out[108]:
           ▼ RandomForestClassifier
           RandomForestClassifier()
In [109]:
          pred=rfc.predict(x_test)
In [110]: | accuracy_score(y_test,pred)
Out[110]: 0.7967479674796748
In [111]: | precision_score(y_test,pred)
Out[111]: 0.8105263157894737
In [112]: recall_score(y_test,pred)
Out[112]: 0.916666666666666
In [113]: f1_score(y_test,pred)
Out[113]: 0.8603351955307262
          confusion_matrix(y_test,pred)
In [114]:
Out[114]: array([[21, 18],
                 [ 7, 77]], dtype=int64)
```

```
fpr, tpr, thresholds = roc_curve(y_test,pred)
In [115]:
          roc_auc = auc(fpr, tpr)
          print("ROC AUC:", roc_auc)
          plt.figure()
          lw = 2
          plt.plot(fpr, tpr, color='darkorange',
                   lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
          plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver Operating Characteristic (ROC) Curve')
          plt.legend(loc="lower right")
          plt.show()
```

ROC AUC: 0.7275641025641025

