

Pattern QUBOs

Pattern QUBOS: The Idea

Pattern QUBOs: Clause types

Observation

All permutations of the variables within a clause are equal, i.e.:

$$(a \lor b \lor -c) = (b \lor -c \lor a)$$

thus

Assume that **negated** variables are **always at the end** of the clause

Clause Types

Type 0:
$$(a \lor b \lor c)$$

Type 1:
$$(a \lor b \lor -c)$$

Type 2:
$$(a \lor -b \lor -c)$$

Type 3:
$$(-a \lor -b \lor -c)$$

Pattern QUBOs: Transform Clauses to QUBO

Conditions

All 7 satisfying assingments of a clause need to correspond to the lowest energy of a QUBO representing the clause

The one non-satisfying assingment of a clause needs to have a higher energy than all satisfying assignments

Goal

Find 4 x 4 QUBOs that satisfy these 2 conditions.

	а	b	С	Ancilla
а	Q_1	Q_2	Q_3	Q_4
b		Q_5	Q_6	Q ₇
С			Q ₈	Q_9
Ancilla				Q ₁₀

Why 4 x 4? It is not possible to satisfy these conditions with a 3 x 3 QUBO.

Pattern QUBOs: Energy of an assignment

A clause has 3 variables.

$$(a \lor b \lor c)$$

A QUBO for this clause has at least 4 variables:

	а	b	С	Ancilla
а	Q_1	Q_2	Q_3	Q_4
b		Q_5	Q_6	Q ₇
С			Q ₈	Q ₉
Ancilla				Q ₁₀

Each 3-SAT variable assignment corresponds to **multiple** QUBO bit strings.

Example:

The 3-SAT variable assignment: a = 0, b = 0, c = 0 corresponds to

QUBO bit string 1:
$$a = 0$$
, $b = 0$, $c = 0$, Ancilla = 0
QUBO bit string 2: $a = 0$, $b = 0$, $c = 0$, Ancilla = 1

Energy of an assignment:

Minimum Energy of all the corresponding QUBO bit strings.

Pattern QUBOs: Transform Clauses to QUBOs

Example

Type 0 clause: $(a \lor b \lor c)$

Satisfying assignments:

1.
$$a = 0, b = 0, c = 1$$

2.
$$a = 0, b = 1, c = 0$$

3.
$$a = 0, b = 1, c = 1$$

4.
$$a = 1, b = 0, c = 0$$

5.
$$a = 1, b = 0, c = 1$$

6.
$$a = 1, b = 1, c = 0$$

7.
$$a = 1, b = 1, c = 1$$

Must have the same (minimal) energy

(Condition 1)

Not Satisfying assignment

8.
$$a = 0, b = 0, c = 0$$

Must have a higher energy (Condition 2)

Algorithm Input/Output

1. Set of values to choose: {-2, 1}

2. Result:

	а	b	С	Ancilla
а	-2	1	1	1
b		-2	1	1
С			-2	1
Ancilla				-2

- ✓ All satisfying assignments have energy: -3
- ✓ The only non-satisfying assignment has energy: 0

Create new 3SAT-to-QUBO transformations

New transformation: 4-Tuple (R_0 , R_1 , R_2 , R_3 ,). R_i is one (arbitrarily chosen) QUBO representation from the set of QUBO representations of the respective clause type.

Pattern QUBOS: Apply Type 0-4 QUBOs

Type 0 clause QUBOs $(a \lor b \lor c)$

		а	b	С	Ancilla
	а	-2	1	1	1
Qubo 0 =	р		-2	1	1
	С			-2	1
	Ancilla				-2

		а	b	С	Ancilla
	а		2		-2
Qubo 1 =	b				-2
	С			-1	1
	Ancilla				1

Type 1 clause QUBOs $(a \lor b \lor -c)$

		а	b	С	Ancilla
Qubo 3 =	а		2		-2
	b				-2
	С			1	-1
	Ancilla				2

Valid transformations: (QUBO 0, QUBO2), (QUBO 0, QUBO 3), (QUBO 1, QUBO2), (QUBO 1, QUBO 3)

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor -x_4) \land (x_1 \lor x_2 \lor x_4)$$

Choose: (QUBO 0, QUBO 2) as transformation

$$(x_1 \lor x_2 \lor x_3)$$

	X ₁	x ₂	X ₃	Ancilla
X ₁	-2	1	1	1
x ₂		-2	1	1
X ₃			-2	1
Ancilla				-2

$$(x_1 \lor x_2 \lor -x_4)$$

	X ₁	x ₂	X ₄	Ancilla
x ₁	-1	1	0	1
x ₂		-1	0	1
X ₄			0	1
Ancilla				-1

$$(x_1 \lor x_2 \lor x_4)$$

	X ₁	x ₂	X ₄	Ancilla
x ₁	-2	1	1	1
x ₂		-2	1	1
X ₄			-2	1
Ancilla				-2

	X ₁	x ₂	X ₃	A1
x_1	-2	1	1	1
x_2		-2	1	1
x ₃			-2	1
A1				-2
	X ₁	x ₂	X ₄	A2
x_1	-1	1	0	1
x_2		-1	0	1
X ₄			0	1
A2				-1
	X ₁	x ₂	X ₄	A3
x_1	-2	1	1	1
x ₂		-2	1	1
X ₄			-2	1
A3				-2

	x ₁	x ₂	x ₃	X ₄	A1	A2	A3
x ₁	-2 <mark>-1 -2</mark>	1+1+1	1	0 + 1	1	1	1
x_2		-2 -1 -2	1	0 + 1	1	1	1
X_3			-2		1		
X_4				0 -2		1	1
A1					-2		
A2						-1	
A3							-2

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor -x_4) \land (x_1 \lor x_2 \lor x_4)$$

Choose: (QUBO 1, QUBO 2) as transformation

$$(x_1 \lor x_2 \lor x_3)$$

	X ₁	x ₂	X ₃	Ancilla
x ₁		2		-2
x ₂				-2
x ₃			-1	1
Ancilla				1

$$(x_1 \lor x_2 \lor -x_4)$$

	X ₁	x ₂	X ₄	Ancilla
X ₁	-1	1	0	1
x ₂		-1	0	1
X ₄			0	1
Ancilla				-1

$$(x_1 \lor x_2 \lor x_4)$$

	X ₁	x ₂	X ₄	Ancilla
x ₁		2		-2
x ₂				-2
X ₄			-1	1
Ancilla				1

	X ₁	x ₂	X ₃	A1
x ₁		2		-2
x ₂				-2
X ₃			-1	1
A1				1
	X ₁	x ₂	X ₄	A2
x_1	-1	1	0	1
x ₂		-1	0	1
X ₄			0	1
A2				-1
	X ₁	x ₂	X ₄	A3
x_1		2		-2
X ₂				-2
X ₄			-1	1
А3				1

	x ₁	x ₂	X ₃	X ₄	A1	A2	A3
x ₁	-1	2 -1 +2		0	-2	1	-2
x ₂		-1	0		-2	1	-2
X ₃			-1		1		
X ₄				0 -1		1	1
A1					1		
A2						-1	
A3							1

Comparison

Both QUBOs can be used to calculate solutions for the 3SAT-formula:

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor -x_4) \land (x_1 \lor x_2 \lor x_4)$$

They differ however in the amount of non-zero couplers and in their magnitude of the linear/quadratic values.

May have an impact on the solution quality.

	X ₁	x ₂	X ₃	X ₄	A1	A2	A3
X ₁	-2 - <mark>1 -2</mark>	1+1+1	1	0 + 1	1	1	1
x ₂		-2 - 1 - 2	1	0 + 1	1	1	1
X ₃			-2		1		
X ₄				0 -2		1	1
A1					-2		
A2						-1	
A3							-2

	x ₁	x ₂	x ₃	x ₄	A1	A2	A3
X_1	-1	2 -1 +2		0	-2	1	-2
X ₂		-1	0		-2	1	-2
X ₃			-1		1		
X ₄				0 -1		1	1
A1					1		
A2						-1	
A3							1

Let's get into the code ...

Let's get into the code ... after the break

