

AI/ML in the Era of Climate Change

Group 10
Project 2: Presentation

Vienna, 11.01.2023

Research Objective

Experiment Results

Research Objective

Experiment Results

The models were selected to cover a wide range of regression model types

×	Model 1: Linear Regression	<pre>lr = LinearRegression()</pre>
X	Model 2: Linear SVR	<pre>lsvr = LinearSVR(max_iter=100)</pre>
X	Model 3: Random Forest	<pre>rf = RandomForestRegressor(n_estimators=10)</pre>
*	Model 4: XGBoost	<pre>xgb = XGBRegressor(n_estimators=10)</pre>
**	Model 5: Neural Net	nn = NeuralNet()
×	Model 6: Deep Neural Net	dnn = DeepNeuralNet()

The experiment was done using the LamaH-CE data set

Data:

LamaH-CE

(Hydrology and Environmental Sciences Data for Central Europe)

- Total Size: 859 gauged catchments (100 used)
- Time span: >35 years
- Target variable: precipitation

Research Objective

Experiment Results

The results show that Model 3 (RF) scored the lowest RMSE the test data and was therefore further optimized

		RMSE
*	Model 1: Linear Regression	4.92
**	Model 2: Linear SVR	7.91
*	Model 3: Random Forest	2.14
*	Model 4: XGBoost	4.03
*	Model 5: Neural Net	3.23
360	Model 6: Deep Neural Net	3.63

The results show that Model 3 (RF) scored the lowest RMSE the test data and was therefore further optimized

The random forest model shows the **heavy weight of the first two features**, followed by a long tail of the remaining ones

The RF Regressor was tried to further optimize using randomized search cross-validation

Model 7: Random Forest

OPTIMIZED

- Started with grid search, switched to **randomized** search (runtime reasons)
- Optimized for three parameters:
 - Parameter 1: **n_estimators**
 - Parameter 2: max_depth
 - Parameter 3: **bootstrap**

The overview shows that the further optimized random forest regressor could not be further improved

		RMSE
**	Model 1: Linear Regression	4.92
*	Model 2: Linear SVR	7.91
*	Model 3: Random Forest	2.14
*	Model 4: XGBoost	4.03
36	Model 5: Neural Net	3.23
**	Model 6: Deep Neural Net	3.63
*	Model 7: Random Forest	2.14

Research Objective

Experiment Results

Conclusion

The experiment once again showed how important model selection can be: **great differences in performance** could be observed and **the complex models did not perform best**

Big range in performance

Different models' performance can vary greatly which once again underlines the importance of selecting the right model

Simplicity (sometimes) wins

Though sometimes more complex models (such as neural nets) perform best, very often simpler models actually work better - and should be preferred

Thank you for your attention - any questions?

