

### **ECE 68000: MODERN AUTOMATIC CONTROL**

Professor Stan Żak

Constructing performance indices

#### Optimal control problem

- Motivation
- Constructing a performance index
- Combining different performance indices
- General performance indices
- Linear quadratic regulator (LQR) problem
- Index for optimal tracking a desired state trajectory

#### **Motivation**

- One of the essential elements of the control problem is a means of testing the performance of any proposed control law
- Whenever we use the term "best" or "optimal" to describe the effectiveness of a given control strategy, we do so with respect to some numerical index of performance called the performance index, or cost function, or penalty function
- We assume that the value of the performance index decreases as the quality of the given admissible control law increases
- The admissible controller that ensures the completion of the system objective and at the same time minimizes the performance index is called an *optimal controller* for the system

### Constructing a performance index

- Constructing a performance index, that is, choosing a means to measure the system performance, can be considered as a part of the system modeling
- Suppose that the objective is to control a linear dynamical system model,

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t), \quad \boldsymbol{x}(t_0) = \boldsymbol{x}_0$$
  
 $\boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t)$ 

on a fixed interval  $[t_0, t_f]$  so that the components of the state vector are "small"

• A suitable performance index to be minimized would be

$$J_1 = \int_{t_0}^{t_f} oldsymbol{x}(t)^ op oldsymbol{x}(t) dt = \int_{t_0}^{t_f} \|oldsymbol{x}(t)\|^2 dt$$

• Obviously, if  $J_1$  is small, then the state vector norm,  $\|\boldsymbol{x}(t)\|$ , is small in the sense of the above performance index

#### Examples of performance indices

• If the objective is to control the system so that the components of the output, y(t), are to be small, then we could use the performance index

$$J_2 = \int_{t_0}^{t_f} \mathbf{y}(t)^{\top} \mathbf{y}(t) dt$$

$$= \int_{t_0}^{t_f} \mathbf{x}(t)^{\top} \mathbf{C}^{\top} \mathbf{C} \mathbf{x}(t) dt$$

$$= \int_{t_0}^{t_f} \mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) dt$$

where the weight matrix  $\mathbf{Q} = \mathbf{C}^{\top} \mathbf{C}$  is symmetric positive semi-definite

#### Inputs "not too large"

• If we wish to control the system in such a manner that the components of the input,  $\boldsymbol{u}(t)$ , are "not too large," a suitable performance index to be minimized is

$$J_3 = \int_{t_0}^{t_f} \boldsymbol{u}(t)^\top \boldsymbol{u}(t) dt$$

or

$$J_4 = \int_{t_0}^{t_f} \boldsymbol{u}(t)^{\top} \boldsymbol{R} \boldsymbol{u}(t) dt$$

where the weight matrix R is symmetric positive definite

#### Inputs "not too large"—contd.

- There is no loss of generality in assuming the weight matrix  $\mathbf{R}$  to be symmetric in  $J_4 = \int_{t_0}^{t_f} \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) dt$
- For if R was not symmetric, we could represent the quadratic term  $u^{\top}Ru$  equivalently as

$$u^{\top}Ru = u^{\top}\left(\frac{R+R^{\top}}{2}\right)u$$

where the matrix  $\frac{1}{2} (\mathbf{R} + \mathbf{R}^{\top})$  is symmetric

### Combining different performance indices

- Cannot simultaneously minimize the performance indices because minimization of  $J_1$  requires large control signals, while minimization of  $J_3$  requires small control signals
- To solve the dilemma, could compromise between the two conflicting objectives by minimizing the performance index that is a convex combination of  $J_1$  and  $J_3$

$$J = \lambda J_1 + (1 - \lambda)J_3$$
  
= 
$$\int_{t_0}^{t_f} (\lambda \mathbf{x}(t)^{\top} \mathbf{x}(t) + (1 - \lambda)\mathbf{u}(t)^{\top} \mathbf{u}(t)) dt,$$

where  $\lambda$  is a parameter in the range [0, 1]

- If  $\lambda = 1$ , then  $J = J_1$
- If  $\lambda = 0$ , then  $J = J_3$
- By trial and error, select  $\lambda$  from the interval [0, 1] to compromise between the two extremes

#### General performance indices

• A generalization of the performance index

$$J = \int_{t_0}^{t_f} \left( \boldsymbol{x}(t)^{\top} \boldsymbol{Q} \boldsymbol{x}(t) + \boldsymbol{u}(t)^{\top} \boldsymbol{R} \boldsymbol{u}(t) \right) dt$$

- In certain applications, may wish the final state  $x(t_f)$  to be as close as possible to  $\mathbf{0}$
- A possible performance measure to be minimized is

$$\boldsymbol{x}(t_f)^{\top} \boldsymbol{F} \boldsymbol{x}(t_f)$$

where F is a symmetric positive definite matrix

 Combine the performance measures when our control aim is to keep the state "small," the control "not too large," and the final state as near to 0 as possible

## The linear quadratic regulator (LQR) problem

The resulting performance index

$$J = \frac{1}{2} \boldsymbol{x}(t_f)^{\top} \boldsymbol{F} \boldsymbol{x}(t_f) + \frac{1}{2} \int_{t_0}^{t_f} \left( \boldsymbol{x}(t)^{\top} \boldsymbol{Q} \boldsymbol{x}(t) + \boldsymbol{u}(t)^{\top} \boldsymbol{R} \boldsymbol{u}(t) \right) dt$$

where the factor 1/2 is to simplify subsequent algebraic manipulations

 Minimizing *J* is called the *linear quadratic regulator*, or the LQR problem for short

# Index for optimal tracking a desired state trajectory

- In some cases, the controller's goal is to force the system state to track a desired state trajectory,  $\mathbf{x}_d(t)$ , throughout the interval  $[t_0, t_f]$  while maintaining the deviations of the actual state  $\mathbf{x}(t)$  "small" from the desired trajectory with the control effort  $\mathbf{u}(t)$  "not too large" and the final state  $\mathbf{x}(t_f)$  being as near as possible to some desired state  $\mathbf{x}_d(t_f)$
- A suitable performance index to be minimized

$$J = \frac{1}{2} (\mathbf{x}(t_f) - \mathbf{x}_d(t_f))^{\top} \mathbf{F} (\mathbf{x}(t_f) - \mathbf{x}_d(t_f))$$
$$+ \frac{1}{2} \int_{t_0}^{t_f} ((\mathbf{x}(t) - \mathbf{x}_d(t))^{\top} \mathbf{Q} (\mathbf{x}(t) - \mathbf{x}_d(t))$$
$$+ \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t)) dt$$