Bilancia elettrostatica di Coulomb elaborazione dati

Ali Matteo, Broggi Diana, Cantarini Giulia

parte 1

r (m)		θ	$\bar{\theta} \text{ (deg)}$			
0.04	67	68	68	68	68	67.8 ± 0.2
0.07	34	35	33	35	34	34.2 ± 0.4
0.10	18	19	21	20	18	19.2 ± 0.6
0.13	10	9	10	11	11	10.2 ± 0.4
0.16	7	7	6	6	8	6.8 ± 0.4
0.19	6	5	5	5	4	5.0 ± 0.3

Tabella
1: tabella con i θ corretti

r(m)	θ (deg)
0.04	118.7 ± 0.4
0.07	37.2 ± 0.4
0.10	19.7 ± 0.6
0.13	10.3 ± 0.4
0.16	6.8 ± 0.4
0.19	5.0 ± 0.3

è stato usato il fattore di correzione : $\theta_{corretto}=\frac{\theta}{1-4(\frac{R}{r})^3};\ \sigma_{\theta corretto}=\frac{\sigma_{\theta}}{1-4(\frac{R}{r})^3}$

 $\theta_{corretto}$ in funzione di $\frac{1}{r^2}$

il coefficiente di correlazione lineare $r=\frac{\sum (x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum (x_i-\bar{x})^2\sum (y_i-\bar{y})^2}}$ per i dati riportati nel grafico di $\theta_{\left(\frac{1}{r^2}\right)}$ é: $0.9998\simeq 1$, dunque possiamo affermare che la relazione tra le due misure è lineare.

parte 2a

V (Volt)		θ	$\bar{\theta} \ (\mathrm{deg})$			
2000	3	1	1	3	3	2.2 ± 0.4
2500	5	4	4	4	5	4.4 ± 0.2
3000	5	4	6	6	8	5.8 ± 0.5
3500	1.	1 8	9	8	8	8.8 ± 0.4
4000	11	11	11	13	10	11.2 ± 0.4
4500	15	14	15	15	15	14.8 ± 0.1
5000	18	17	19	17	17	17.6 ± 0.3
5500	22	22	22	22	22	22.0 ± 0
6000	28	28	26	26	26	26.8 ± 0.4

Tabella 2: tabella con i θ corretti

V (Volt)	θ (deg)
2000	2.3 ± 0.4
2500	4.6 ± 0.2
3000	6.1 ± 0.5
3500	9.3 ± 0.5
4000	11.8 ± 0.4
4500	15.6 ± 0.2
5000	18.6 ± 0.3
5500	23.2 ± 0
6000	28.3 ± 0.4

 $\theta_{corretto}$ in funzione di $V_1 = V_2 = V$

parte 2b

V_2 (Volt)		θ	$\bar{\theta} \text{ (deg)}$			
2000	9	8	9	7	8	8.2 ± 0.3
2500	11	12	12	9	11	11.0 ± 0.4
3000	13	14	13	14	14	13.6 ± 0.2
3500	15	17	15	15	15	15.4 ± 0.3
4000	18	18	17	17	19	17.8 ± 0.3
4500	20	21	20	20	19	20.0 ± 0.2
5000	24	23	22	22	22	22.6 ± 0.3
5500	23	24	23	24	23	23.4 ± 0.2
6000	28	27	26	27	27	27.0 ± 0.2

Tabella
3 : tabella con i θ corretti

V_2 (Volt)	θ (deg)
2000	8.7 ± 0.3
2500	11.6 ± 0.4
3000	14.4 ± 0.2
3500	16.3 ± 0.3
4000	18.8 ± 0.3
4500	21.1 ± 0.2
5000	23.9 ± 0.3
5500	24.7 ± 0.2
6000	28.5 ± 0.2

 $\theta_{corretto}$ in funzione di V_2

il coefficiente di correlazione lineare $r=\frac{\sum (x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum (x_i-\bar{x})^2\sum (y_i-\bar{y})^2}}$ per i dati riportati

nel grafico di $\theta_{(V_2)}$ é: 0.997 \simeq 1, dunque possiamo affermare che la relazione tra le due misure è lineare.

parte 3

m (mg)	θ (deg)			$\bar{\theta} \; (\mathrm{deg})$
20	28	22	26	25.3 ± 1.4
40	43	52	40	45.0 ± 2.8
50	71	61	53	61.7 ± 4
70	86	91	99	92.0 ± 2.9
90	116	126	141	127.7 ± 5.6

 θ in funzione di m

da $mg = K_{tor}\theta$ ricavo il valore di K_{tor} in funzione del coefficiente angolare della retta θ_m .

$$B = \frac{N \sum x_i y_i - \sum x_i \sum y_i}{N \sum x_i^2 - (\sum x_i)^2} \pm \sqrt{\frac{N}{\Delta}} \sigma_i = 1352328 \pm 51637$$

$$A = \frac{\sum (x_i)^2 \sum y_i - \sum x_i \sum y_i x_i}{N \sum x_i^2 - (\sum x_i)^2} \pm \sqrt{\frac{\sum (x_i)^2}{\Delta}} \sigma_i = -2.9 \pm 2.1$$

calcolo di ε_0

$$\varepsilon_0 = \frac{K_{tor}\theta r^2}{4\pi a^2 V^2}$$

$$\sigma_{\varepsilon_0} = \sqrt{\left(\frac{\partial \varepsilon_0}{\partial K_{tor}}\sigma_{Ktor}\right)^2 + \left(\frac{\partial \varepsilon_0}{\partial \theta}\sigma_{\theta}\right)^2 + \left(\frac{\partial \varepsilon_0}{\partial r}\sigma_r\right)^2 + \left(\frac{\partial \varepsilon_0}{\partial a}\sigma_a\right)^2 + \left(\frac{\partial \varepsilon_0}{\partial V}\sigma_V\right)^2}$$
 abbiamo considerato : $\sigma_r = 0.001$; $\sigma_a = 0.001$; $\sigma_V = 100$

parte 1

utilizzando i dati della Tabella1 e la formula indicata per ε_0 , ricaviamo 6 stime di ε_0 la cui incertezza dipende dal valore delle varie derivate.

La media pesata delle costandi dielettriche ottenuta da questi risultati è: $8.12\cdot 10^{-12}\pm 4.3\cdot 10^{-13}$

parte 2a

i dati contenuti nella Tabella 2 invece producono 9 risultati, la cui media pesata
è pari a: $7.58\cdot 10-12\pm 3.4\cdot 10^{-13}$

parte 2b

infine, i dati della Tabella
3 danno origine ad una stima di ε_0 pari a
 $7.9710^{-12}\pm4.7\cdot10^{-13}$

La media pesata di questi 3 rus
ltati è: $\varepsilon_0=7.84\cdot 10^{-12}\pm 2.3\cdot 10^{-13}.$ Abbiamo eseguito il test

$$\frac{|x_{osservato} - x_{atteso}|}{\sigma_r}$$

per conoscere il numero di deviazioni standard che occupano la distanza della nostra stima dal valore vero ed esso risulta 4.39.