Algorithmically Compressed Data and the Topological Conjecture for the Inner-Core Electrons

Lionello Pogliani[†]

Dipartimento di Chimica, Università della Calabria, 87030 Rende (CS), Italy

Received March 7, 2002

Eight different properties of three classes of compounds, metal halides, halomethanes, and chlorofluorocarbons, have been modeled with the aim to check the validity of the odd complete graph conjecture suggested for encoding the contribution of the inner-core electrons to the molecular connectivity indices. Modeling using this conjecture is compared with modeling using connectivity indices derived by other well-known algorithms. The conjecture of odd complete graph for the inner-core electrons achieves to improve the modeling quality of the molecular connectivity indices and/or of the molecular connectivity terms. The importance of the recently introduced dual molecular connectivity indices and pseudoindices in further refining the modeling quality of the higher-order terms has also been stressed.

INTRODUCTION

It has been said¹ that what is new or different about modern science is the nature of its representations. The graph representation, widely used in computational chemistry,²⁻⁸ uses quite simple tools to encode the structure of a molecule, with the aim to derive, among other things, quantitative structure—activity or structure—property relationships (QSAR/QSPR), and to compress a vast amounts of data into simple algorithms.

Molecular connectivity and its "side-branch" the electrotopological state concept9,10 allow for the use also of a pseudograph representation of molecules to encode multiple bonds and nonbonding electrons. Actually, molecular connectivity uses also atomic concepts, like atomic number, valence electrons, and principal quantum number, to encode the contribution of the inner-core electrons of the higherrow atoms (n > 2) of a molecule. Among the interesting developments that molecular connectivity has undergone recently with the introduction of edge-connectivity indices, line-graph indices, variable descriptors, molecular pseudoconnectivity indices, higher-order connectivity-pseudoconnectivity terms, and finally the dual indices, 11-20 there is none that has achieved in solving the intermingling of graph and atomic concepts that plagues molecular connectivity. Aim of the present study is to propose a solution for this "state of affairs" with the introduction of odd complete graphs to "graph" encode the inner-core electrons of any atom of a molecule whose principal quantum number, n, is equal to or greater than two. For this reason the modeling will here be centered on different physicochemical properties of metal halides, halomethanes, and haloethanes. These classes of compounds have, recently, been the object of many studies. 21,12,22,14,10 The choice of complete graphs goes back to a recent study²³ where their importance was first detected.

METHOD

The Basis Indices. The linear relation used to model a property with a graph-structural descriptor, S, can be written as a dot product: $P = C \cdot S$, where $C = (c_1, c_2, ..., c_0)$, and $S = (S_1, S_2, ..., U_0)$, or as a sum: $P = \Sigma c_i S_i$. Here, c_i and S_i are the single regression parameters and the single structural descriptors, respectively, of the linear or multilinear regression, and $U_0 \equiv 1$. and To avoid negative calculated P values that have no physical or biological meaning it is advantageous to use the modulus equation: $P = |\Sigma c_i S_i|$, where bars stand for absolute value. Here we will be interested only with structural descriptors, S_i , that can be derived with the molecular connectivity theory. The basis descriptors of this theory, β , are the molecular connectivity and pseudoconnectivity indices, χ and ψ , respectively, supplemented by the corresponding dual and soft dual basis indices, β_d .

$$\{\beta\} = \{\{\chi\}\{\psi\}\{\beta_d\}\}$$
 (1)

where

$$\begin{aligned} \{\chi\} &= \{D, {}^{0}\chi, {}^{1}\chi, \chi_{t}, D^{v}, {}^{0}\chi^{v}, {}^{1}\chi^{v}, \chi^{v}_{t}\}, \, \{\psi\} = \\ &\qquad \qquad \{{}^{S}\psi_{I}, {}^{0}\psi_{I}, {}^{1}\psi_{I}, {}^{T}\psi_{I}, {}^{S}\psi_{E}, {}^{0}\psi_{E}, {}^{1}\psi_{E}, {}^{T}\psi_{E}\} \end{aligned}$$

$$\begin{split} \{\beta_{\rm d}\} &= \\ \{{}^{0}\chi_{\rm d}, {}^{1}\chi_{\rm d}, {}^{1}\chi_{\rm s}, {}^{0}\chi_{\rm d}^{\rm v}, {}^{1}\chi_{\rm d}^{\rm v}, {}^{1}\chi_{\rm s}^{\rm v}, {}^{0}\psi_{\rm Id}, {}^{1}\psi_{\rm Id}, {}^{1}\psi_{\rm Is}, {}^{0}\psi_{\rm Ed}, {}^{1}\psi_{\rm Ed}, {}^{1}\psi_{\rm Es}\} \end{split}$$

The dual indices of the other basis indices of subsets $\{\chi\}$ and $\{\psi\}$ are redundant, as they differ only by a constant term. The indices $\{\chi\}$ and $\{\psi\}$ are defined in the following way $^{9,12-14}$

$$D = \Sigma_i \delta_i \tag{2}$$

$${}^{S}\psi_{I} = \Sigma_{i}I_{i} \tag{3}$$

[†] Corresponding author fax: +39-984-492105; e-mail: lionp@unical.it.

$${}^{0}\chi = \Sigma_{i}(\delta_{i})^{-0.5} \tag{4}$$

$${}^{0}\psi_{I} = \Sigma_{i}(I_{i})^{-0.5} \tag{5}$$

$$^{1}\chi = \Sigma(\delta_{i}\delta_{j})^{-0.5} \tag{6}$$

$${}^{1}\psi_{I} = \Sigma (I_{i}I_{j})^{-0.5} \tag{7}$$

$$\chi_{t} = (\delta_{1} \cdot \delta_{2} \cdot \delta_{3} \cdot \dots \cdot \delta_{N})^{-0.5} = (\Pi \delta_{i})^{-0.5}$$
 (8)

$${}^{\mathrm{T}}\psi_{\mathrm{I}} = (I_{1} \cdot I_{2} \cdot I_{3} \cdot \dots \cdot I_{\mathrm{N}})^{-0.5} = (\Pi I_{\mathrm{i}})^{-0.5}$$
(9)

The index χ_t (and χ^v_t) is the total molecular connectivity index, and it has its ψ counterpart in the total molecular pseudoconnectivity index, ${}^T\psi_I$ (and ${}^T\psi_E$). The sums in eqs 2–5 as well as products (Π) in eqs 8 and 9 are taken over all vertices of the hydrogen-suppressed chemical graph. The sums in eqs 6 and 7 are taken over all edges of the chemical graph (σ bonds in a molecule). Replacing in eqs 2, 4, 6, and 8, δ with δ^v gives the subset of valence χ^v indices, { D^v , ${}^0\chi^v$, ${}^1\chi^v$, χ^v_t }, where superscript v stands for valence. Replacing v in eqs 3, 5, 7, and 9 gives the pseudoconnectivity electrotopological (v) v0 gives the pseudoconnectivity electrotopological (v0 gives the subset {v0 gives the pseudoconnectivity electrotopological (v0 gives the pseudoconnectivity electrotopological (v0 gives the pseudoconnectivity of stands for sum and total, the other superscripts follow the established denomination for v0 indices. The dual indices, {v0 gives the following way (subscript v0 stands for dual and v0 for soft dual)

$${}^{0}\chi_{d} = (-0.5)^{N}\Pi_{i}(\delta_{i}) \tag{10}$$

$${}^{0}\psi_{Id} = (-0.5)^{N}\Pi_{i}(I_{i})$$
 (11)

$$^{1}\chi_{\rm d} = (-0.5)^{(N+\mu-1)}\Pi(\delta_{\rm i} + \delta_{\rm j})$$
 (12)

$$^{1}\psi_{\mathrm{Id}} = (-0.5)^{(N+\mu-1)}\Pi(I_{i} + I_{j})$$
 (13)

$$^{1}\chi_{s} = \Pi(\delta_{i} + \delta_{i})^{-0.5}$$
 (14)

$${}^{1}\psi_{Is} = \Pi(I_{i} + I_{i})^{-0.5} \tag{15}$$

In the same way the subsets of dual valence χ^{v}_{d} indices and dual $\psi_{\rm Ed}$ indices are defined. In the first case $\delta^{\rm v}$ replaces δ in eqs 10, 12, and 14, while in the second case S_i replaces I_i in eqs 11, 13, and 15. The exponent μ of eqs 12 and 13 is the cyclomatic number. This number is a molecular descriptor6 that indicates the number of bonds that must be broken in order to obtain a cycle-free structure. Removing an edge is equivalent to opening a ring by breaking a bond in the ring. For acyclic molecules $\mu = 0$, for monocyclic compounds $\mu = 1$, and for bicyclic compounds $\mu = 2$. From these equations, it can be noticed that the dual indices, ${}^{0}\chi_{d}$ and ${}^0\chi^{\rm v}_{\rm d}$, ${}^1\chi_{\rm d}$, and ${}^1\chi^{\rm v}_{\rm d}$ as well as ${}^0\psi_{\rm Id}$ and ${}^0\psi_{\rm Ed}$, ${}^1\psi_{\rm Id}$ and ${}^1\psi_{\rm Ed}$ can have, depending on the number of vertices of the chemical graph, negative values, and that ${}^{1}\chi^{v}_{d}$ and, especially, the rescaled (see later on) ${}^1\psi_{\rm Ed}$ index can assume quite large values even for rather small compounds. From the definitions of the soft dual indices we note that they are always positive and span a smaller range of values. The factor $(-0.5)^{N}$ is not constant throughout classes of nonisomeric compounds as it depends on N, and in this case, the dual indices, ${}^{0}\chi_{d}$, $^0\!\chi^{\rm v}_{\rm d},~^0\!\psi_{\rm Id},$ and $^0\!\psi_{\rm Ed}$ are not related to the total indices, $\chi_{\rm t},~^{\rm T}\!\psi_{\rm I},$ and $^{\rm T}\!\psi_{\rm E}.$

The easiest way to avoid the huge combinatorial problem generated by 28 indices (with 25 indices 33 554 431 different combinations are possible 12) is to use the dual indices at the level of a CI-GTBI, as explained later on. With isomeric and isocyclomatic classes of compounds the factors $(-0.5)^{\rm N}$ and $(-0.5)^{\rm N+\mu-1}$ are constant, and the zeroth-order dual indices as well as the zeroth-order dual pseudoindices are then related to the corresponding total indices

$${}^{0}\chi_{d} = \text{const} \cdot (\chi_{t})^{-2}; {}^{0}\chi^{v}_{d} = \text{const} \cdot (\chi^{v}_{t})^{-2};$$

$${}^{0}\psi_{Id} = \text{const} \cdot ({}^{T}\psi_{I})^{-2}; {}^{0}\psi_{Ed} = \text{const} \cdot ({}^{T}\psi_{E})^{-2}$$
(16)

For deceptively simple graphs made up of two connected points, $\bullet - \bullet$ (here, $\chi_t \equiv {}^1\chi$, and so on), the zeroth-order dual index and the first-order dual and soft dual indices obey the following relations²⁰

$${}^{0}\chi_{d} = (-0.5)^{2} \cdot (\delta_{1} \cdot \delta_{2}) = 0.25 \cdot (\chi_{l})^{-2};$$

$${}^{0}\chi_{d}^{v} = 0.25 \cdot (\chi_{l}^{v})^{-2}; {}^{0}\psi_{Id} = 0.25 \cdot (^{T}\psi_{I})^{-2};$$

$${}^{0}\psi_{Ed} = 0.25 \cdot (^{T}\psi_{E})^{-2}; {}^{1}\chi_{d} = (-0.5) \cdot (\delta_{1} + \delta_{2}) =$$

$$-0.5 \cdot D; {}^{1}\chi_{d}^{v} = -0.5 \cdot D^{v}; {}^{1}\psi_{Id} = -0.5 \cdot ^{S}\psi_{I}; {}^{1}\psi_{Ed} =$$

$$-0.5 \cdot ^{S}\psi_{E}; {}^{1}\chi_{s} = (\delta_{1} + \delta_{2})^{-1/2} = D^{-1/2}; {}^{1}\psi_{Es} = (^{S}\psi_{E})^{-1/2}$$

$$(17)$$

In this case dual and soft dual indices are related.

The Rationale of Basis Indices. Basis χ indices and valence χ^{v} indices are directly based on the δ and δ^{v} connectivity numbers of a hydrogen-suppressed graph and pseudograph, respectively. If the molecule does not contain any higher-row atoms, i.e., atoms with principal quantum number n > 2, then δ and δ^{v} values can be derived from the corresponding chemical graph and pseudograph of a hydrogen-suppressed molecule, respectively. The δ^{v} values for higher-row atoms (n > 2, here: Na, K, Rb, Cs, Mg, Ca, Sr, Cl, Br, and I) can be obtained by the aid of the following algorithm⁹

$$\delta^{v} = [Z^{v} - h]/[Z - Z^{v} - 1]$$
 (18)

Here, Z^{v} = number of valence electrons, Z = atomic number, and h = number of suppressed hydrogen atoms. For n = 2 and h = 0, $\delta^v = Z^v$, as, in this case, $Z = Z^v + 2$. The hydrogen-suppressed pseudograph of a molecule allows self-connections (or loops) that count twice and also multiple connections¹² that model nonbonding electrons and multiple bonds. A pseudograph thus has a wider applicability than the corresponding graph, which allows only single connections thereby encoding only the σ molecular framework. Thus, while the hydrogen-suppressed graph of CH₃F can be represented by two connected points, ●-●, where each vertex has $\delta = 1$, the hydrogen-suppressed pseudograph of CH₃F is shown in Figure 1, overlooking, for the moment being, what is shown in the inner-circle. Here, the first vertex that represents C has $\delta^{v} = 1 = \delta$, while the fluorine vertex has $\delta^{\rm v} = 7$ (each loop counts twice, plus the singleconnection). Equation 18 tells us that only second-row atoms can be encoded by the aid of graph-theoretical concepts only.

Figure 1. a. A nonspecific hydrogen-suppressed pseudograph of a CH₃-X compound, with a blow-up of the X vertex, which shows an odd complete graph for the inner-core electrons of an undefined halogen atom, X. Inner-core electrons of carbon atom are encoded by a K_1 graph. b. The hydrogen suppressed pseudograph of CH₃-Br, with a blow-up of the Br vertex, which shows a K_5 complete graph to encode the inner-core electrons of Br.

Basis ψ indices are indirectly related to δ and δ^v numbers through the intrinsic I-state (ψ_I subset) and the electrotopological S-state (ψ_E subset) atom level indices, ¹⁰ which are defined in eqs 19 and 20

$$I_{i} = [(2/n)^{2} \delta_{i}^{v} + 1] / \delta_{i}$$
 (19)

$$S_{i} = I_{i} + \Sigma_{i} \Delta I_{ii} \tag{20}$$

The intrinsic state index encodes the availability of the atom or group for intermolecular interaction and the manifold of bonds over which adjacent atoms may influence, and be influenced by, its state. The electrotopological state index takes into account the actual state of an atom in a molecule plus the influence of all other atoms in the molecule, which is included in $\Sigma_j \Delta I_{ij}$. The δ_i^{v} parameter of the I-state index can be derived from the pseudograph (ps) of a molecule, i.e, $\delta_i^{\text{v}} = \delta_i^{\text{v}}(\text{ps})$. The inner-core electron contribution for higher-row atoms (n > 2) is encoded by the $(2/n)^2$ factor only, i.e., $\delta^{\text{v}}(F) = \delta^{\text{v}}(\text{ps})$, $\delta^{\text{v}}(Cl) = (2/3)^2 \delta^{\text{v}}(\text{ps})$, $\delta^{\text{v}}(Na) = (2/3)^2 \delta^{\text{v}}(\text{ps})$, $\delta^{\text{v}}(I) = (2/5)^2 \delta^{\text{v}}(\text{ps})$, and so on, where $\delta^{\text{v}}(\text{ps})$ -[F, Cl, Br, I] = 7, and $\delta^{\text{v}}(\text{ps})$ [Li, Na, K, ...] = 1. Equation 19 could be rewritten as follows: $I_i = [\delta_i^{\text{v}} + 1]/\delta_i$ where, δ_i^{v}

= $(2/n)^2 \delta_i^{\text{v}}(\text{ps})$. From this follows that χ^{v} and ψ indices are based on different δ^{v} definitions, i.e., $\delta^{\text{v}} = [Z^{\text{v}} - h]/[Z - Z^{\text{v}} - 1]$ and $\delta^{\text{v}} = (2/n)^2 \delta^{\text{v}}(\text{ps})$, and only for n = 2 the two definitions coincide. This means that a description based on χ^{v} and ψ indices, for higher-row atoms, has a heterogeneous character. As the choice $\delta_i^{\text{v}} = (2/n)^2 \delta_i^{\text{v}}(\text{ps})$ seems optimal for the electrotopological state, 10 the possibility of a so-called homogeneous description remains, where $\chi^{\text{v}} = f[(2/n)^2 \delta_i^{\text{v}}(\text{ps})]$.

In eq 20 the factor ΔI_{ij} equals $(I_i - I_j)/r^2_{ij}$, where r_{ij} counts the atoms in the minimum path length separating two atoms i and j, which equals the graph distance, $d_{ij} + 1$. As highly electropositive atoms have negative S values, 10 to avoid imaginary ψ_E values, a rescaling procedure is mandatory. In this study, S for metal halides, MeHal, has been rescaled to the S value of Ba in BaF2, where $S[Ba(BaF_2)] = -3.083$, S for the halomethanes has been rescaled to the S value of S in SiF_4 , where, $S[Si(SiF_4)] = -6.611$, and S for the chlorofluorocarbons has been rescaled to $S[C(CF_4)] = -5.5$. The rescaling invalidates an important result of the S concept, with the consequence that S in S

The K_p -Odd-Complete-Graphs. The problem of encoding the inner-core electrons of atoms with $n \ge 2$ by the aid of a graph representation could elegantly be solved by the aid of complete graphs and especially of K_p -odd-complete-graphs. If recent results on this topic²³ are confirmed then, the graph representation of a hydrogen-suppressed molecule could be complete. Let us first spend some words about complete graphs to understand what a K_p -odd-complete-graph is. A graph G is complete if every two of its vertices are adjacent. A complete graph of order p is denoted by K_p and is r-regular (p-1=r), where r is its regularity, if it has all vertices with the same degree, where the degree of a vertex is the number of edges incident with it. The p values here used are as follows: p = 1 (r = 0) for the second-row atoms, p = 3 (r = 2) for the third-row atoms, p = 5 (r = 4) for the fourth-row atoms, and p = 7 (r = 6) for fifth-row atoms, and so on. In Figure 1A,B is shown the hydrogen-suppressed pseudograph (ps) together with a zoom of a generic K_p (1A) and K_5 (1B) odd complete graph that encode the inner-core electrons of X (1A) and of Br (1B) of a CH₃-X and CH₃-Br compound. The algorithm chosen to derive δ^{v} by the aid of the K_p -odd-graphs plus the (external) pseudograph is

$$\delta^{v} = \delta^{v}(ps)/[p \cdot r + 1] \tag{21}$$

A clue for this choice is given by eq 18, where the halogen atoms along the series, CH_3-F , CH_3-Cl , CH_3-Br , and CH_3-I , have $\delta^v=7/1$ for F, $\delta^v=7/9$ for Cl, $\delta^v=7/27$ for Br, and $\delta^v=7/45$ for I. Here the numerator can be derived by the aid of the corresponding hydrogen-suppressed pseudograph (ps), and the denominator can fairly be approximated by the following: $1=(n-1)^2$ for F, $9=3^2=n^2$ for Cl, $27\approx 5^2=(n+1)^2$ for Br, and $45\approx 7^2=(n+2)^2$ for I. That is, if the p values are odd, i.e., 1, 3, 5, and 7, algorithm 21 will allow to derive δ^v values (7/1, 7/7, 7/21, 7/43), not tremendously far from the old values, and that could compete with them. The choice of even complete graphs would oblige to start with a p=2 complete graph for the every second row atom (unless to define a rather

strange complete p=0 graph), invalidating the regular method used to model second-row atoms in chemical graphs, i.e., with vertices. These vertices, in fact, can, practically, be thought of as K_1 odd complete graphs, with the advantage that for n=2, $\delta^{\rm v}\equiv\delta^{\rm v}({\rm ps})$ or δ (for simple graphs).

It is well-known that δ and δ^v values can be obtained by the aid of the adjacency matrix either of a graph⁹ or of a pseudograph, ¹² respectively. Actually it is possible to obtain both δ and δ^v values from the adjacency matrix of a pseudograph, as a graph is a special case of pseudograph. ¹² The adjacency matrix of a hydrogen-suppressed pseudograph of a triatomic system inclusive of its K_p -odd-complete-graph is

$$A = (p \cdot r + 1)^{-1} {}_{Kp} \begin{pmatrix} ps_{1,1} & g_{1,2} & g_{1,3} \\ g_{2,1} & ps_{2,2} & g_{2,3} \\ g_{3,1} & g_{3,2} & ps_{3,3} \end{pmatrix}$$
(22)

Here, $g_{i,j}$ can be either 0 or 1. It is one only if vertices i and j are connected, otherwise it is zero; $ps_{i,i}$ is the sum of the self-connections (they count twice) and multiple connections of vertex i (pseudograph characteristics only, ps). The factor $(p \cdot r + 1)^{-l}_{Kp}$ encodes the odd-complete-graph characteristics and depends on the p value of each vertex. I.e. the adjacency matrix for the pseudograph- K_p -odd-complete-graph of CH₂O (K_1 for both C and O), CH₃-I (K_1 for C, and K_7 for I), and MgF₂ (K_1 for F, and K_3 for Mg) are (numbering indicates the row)

$$A(C_1O_2) = \begin{pmatrix} 1/1 & 1/1 \\ 1/1 & 5/1 \end{pmatrix}, A(C_1I_2) = \begin{pmatrix} 0 & 1/1 \\ 1/43 & 6/43 \end{pmatrix},$$

$$A(F_1Mg_2F_3) = \begin{pmatrix} 6/1 & 1/1 & 0 \\ 1/7 & 0 & 1/7 \\ 0 & 1/1 & 6/1 \end{pmatrix}$$

Clearly, now, the adjacency matrices are asymmetric.

The Configuration Interaction of Graph-Type Basis **Indices** (CI-GTBI). To further improve the modeling quality and avoid as much as possible a series of problems that normally arise with linear combinations of basis indices (LCBI), index-interrelation, overfitting, chance correlation, ..., it is advantageous to work, whenever possible, with a modeling equation based on a single powerful structural descriptor, $P = c_1S + c_0U_0$. Quantum methods, like the linear combinations of Gaussians-type orbitals and configuration interaction methods, give us a hint how to derive such powerful descriptors, which have been called either terms or configuration interaction of graph type basis indices (CI-GTBI). Three types of terms will be used: X, Y, and the higher-order mixed term, Z, where $X = f(\chi), Y = f(\psi)$, and Z = f(X,Y) or $f(X, Y, \beta)$, where $\beta = \chi$ or ψ . ^{12–14,19} To avoid a huge combinatorial problem the dual indices are introduced at this level, and they normally give rise to $Z' = f(X,Y, \beta_d)$ or $f(X, Y, \beta, \beta_d)$ terms.²⁰ While the procedure to choose the best basis indices of a LCBI is a search procedure performed on the total combinatorial space described by the basis indices $\{\beta\}$, the procedure used to construct the dominant molecular connectivity terms, X, and Y is a trial-and-error procedure¹² that chooses the basis indices optimizing, then, a series of adjustable parameters. Terms X and Y look like the rational function of eq 23, where β is a basis index, and S = X or Y for $\beta = \chi$ or $\beta = \psi$, respectively. The optimization parameters a-d, m-r can be either negative, zero, or one

$$S = [a(\beta_1)^m + b(\beta_2)^n]^q / [c(\beta_3)^o + d(\beta_1)^p]^r$$
 (23)

The Z terms are derived with a procedure that tries different ways to combine terms X and Y together. ^{14,19} This procedure will also be called a trial-and-error search for terms. ²⁰ The CI-GTBI allows bypassing the combinatorial problem performed on a set of 16 basis indices made up of eight χ and eight ψ indices if ${}^{\rm S}\psi_{\rm I} \neq {}^{\rm S}\psi_{\rm E}$ and 15 if ${}^{\rm S}\psi_{\rm I} = {}^{\rm S}\psi_{\rm E}$.

The statistical performance of the graph-structural molecular connectivity invariant, S, is controlled by a quality factor, Q = r/s, and by the ratio F = $fr^2/[(1-r^2)\nu]$, where r and s are the correlation coefficient and the standard deviation of the estimates, respectively, f is the number of freedom degrees = $n-(\nu+1)$, ν is the number of variables, and n is the number of data. The parameter O has no absolute meaning as it is an "intra" statistical parameter, which is able to compare only the descriptive power of different descriptors for the same property.²⁴ The F ratio, a kind of "inter" statistical parameter, tells us, even if Q improves, which additional descriptor endangers the quality of the modeling. For every structural descriptor, be it a basis index, a LCBI, a term and the unitary descriptor, U₀, the fractional utility, $u_i = |c_i/s_i|$, where s_i is the confidence interval of c_i , and the average fractional utility $\langle u \rangle = \sum u_i/(\nu+1)$ will be given. If the modeling relation is linear, then $\langle u \rangle = (u_1 + u_0)/(u_1 + u_0)$ 2. The utility statistics allows us to detect descriptors that give rise to unreliable coefficient values (c_i), whenever their deviation interval (si) is high. This statistic allows for detection of the paradoxical situation of good predictive equations with bad utility.^{25,12} In modeling studies the value of the standard deviation of the estimate s is critical, 20 thus, to have a direct idea of how much this statistic improves along a series of descriptors, the ratio $s_R = s_0/s_i$ is introduced here, where s_0 is the s value of the best single-index description and s_i refers to the s values of the improved sequential descriptions, that sometimes shows an improved rbut a worse s. We underline then, that (i) all statistical parameters will now grow with improving modeling and that (ii) every modeling will be under the control of all of these statistics, and that (iii) nothing justifies that an improved Q is a good receipt for a good modeling. The richness in statistical parameters can also be used to detect eventual printing errors, as redundancy is very useful in the construction of self-correcting codes. To avoid to bother the reader with the dimensional problems of P in the modeling equations, every property P should be read as P/P° where P° is the unitary value of the property.

RESULTS AND DISCUSSION

Methal Halides, MeHal. Concerning the possibility to represent inorganic salts with a graph or a pseudograph the reader is referred to papers 12, 26, and 27 where interesting considerations are drawn about purely ionic and purely covalent bonds in these compounds. The lattice enthalpy, ΔH_L^{\varnothing} (kJ mol⁻¹), of metal halides, MeHal, at 298.15 K, together with the corresponding molecular connectivity and pseudoconnectivity values are collected in Tables 1 and 2. The valence molecular connectivity values are those obtained by encoding the inner-core electrons of Me and Hal with the K_P graphs, where P_L 1, 3, 5, 7, and 9 for P_L 2, 3, 4,

Table 1. Lattice Enthalpies, ΔH_L^{\varnothing} (kJ mol⁻¹), at 298.15 K, Corresponding Calculated Values, ΔH_L^{\varnothing} (C), Percent Residual, $\Delta \%$, Molar Masses, M, and Odd- K_p -Graph Valence Molecular Connectivity Indices for 20 MeHal Metal Halides

MeHal	$\Delta H_{\rm L}^{\varnothing}$	$\Delta H_L^{\varnothing}(\mathbb{C})$	$\Delta\%$	M	D ^v	$^{0}\chi^{\mathrm{v}}$	¹ χ ^v
LiF	1037	1038	0.06	25.94	8	1.37796	0.37796
NaF	926	903	2.5	41.99	7.14	3.05058	1.01015
KF	821	836	1.9	50.10	7.048	4.94232	1.72516
RbF	789	796	0.9	104.47	7.023	6.97177	2.49222
CsF	750	772	2.9	151.90	7.014	8.82951	3.19438
LiCl	852	874	2.6	42.39	2	2	1
NaCl	786	764	2.7	58.44	1.143	3.64443	2.64443
KCl	717	723	0.9	74.55	1.048	5.56435	4.56435
RbCl	695	700	0.8	120.92	1.023	7.59380	6.59380
CsCl	678	686	1.2	168.36	1.014	9.45154	8.45154
LiBr	815	804	1.3	86.85	1.333	2.73292	1.73292
NaBr	752	709	5.7	102.89	0.476	4.37735	4.58258
KBr	689	679	1.5	119.00	0.381	6.29727	7.90965
RbBr	668	663	0.7	165.37	0.356	8.32672	11.4265
CsBr	654	654	0.04	212.81	0.347	10.1845	14.6458
LiI	761	770	1.2	133.85	1.163	3.47689	2.47689
NaI	705	684	3.0	149.89	0.306	5.12132	6.54995
KI	649	658	1.3	166.00	0.211	7.04124	11.3054
RbI	632	645	2.0	212.372	0.186	9.07069	16.3321
CsI	620	638	2.8	259.81	0.177	10.9284	20.9335

Table 2. Molecular Pseudoconnectivity, ψ -I_S, Indices of 24 Metal Halides^a

MeHal	$^{ ext{S}}\psi_{ ext{I}}$	$^0\psi_{ m I}$	$^1\psi_{ m I}$	$^{ ext{S}}\psi_{ ext{E}}$	$^0\psi_{ m E}$	$^1\psi_{ m E}$
LiF	10	1.06066	0.25	16.166	0.81020	0.14893
NaF	9.444	1.18573	0.29422	15.611	0.86870	0.16495
KF	9.25	1.24798	0.31623	15.417	0.89469	0.17205
RbF	9.16	1.28203	0.32827	15.326	0.90791	0.17567
CsF	9.111	1.30228	0.33543	15.277	0.91548	0.17774
LiCl	6.111	1.20031	0.34875	12.277	0.82841	0.16861
NaCl	5.555	1.32538	0.41043	11.722	0.86559	0.18151
KCl	5.361	1.38763	0.44113	11.527	0.88132	0.18694
RbCl	5.271	1.42168	0.45793	11.437	0.88921	0.18966
CsCl	5.222	1.44193	0.46792	11.388	0.89365	0.19118
LiBr	4.75	1.31013	0.42718	10.917	0.85947	0.18418
NaBr	4.194	1.43520	0.50182	10.36	0.89084	0.19659
KBr	4	1.49745	0.53936	10.166	0.90400	0.20174
RbBr	3.91	1.53150	0.55989	10.077	0.91052	0.20428
CsBr	3.861	1.55175	0.57211	10.027	0.91430	0.20574
LiI	4.12	1.39391	0.48564	10.286	0.88201	0.19447
NaI	3.564	1.51898	0.57154	9.731	0.91042	0.20665
KI	3.37	1.58123	0.61430	9.537	0.92240	0.21170
RbI	3.28	1.61528	0.63768	9.446	0.92844	0.21423
CsI	3.231	1.63553	0.65159	9.397	0.93182	0.21565

 a The rescaling procedure for $\psi_{\rm E}$ indices has been done on the S[Ba(BaF2)]= -3.083.

5, and 6, respectively. As the graph of metal halides are deceptively simple graphs, actually K_2 graphs: $\bullet - \bullet$, the only subsets of meaningful indices are as follows: $\{\chi^v\} = \{D^v, {}^0\chi^v, {}^1\chi^v\}$ and $\{\psi\} = \{{}^S\psi_I, {}^0\psi_I, {}^1\psi_I, {}^S\psi_E, {}^0\psi_E, {}^1\psi_E\}$. The lattice enthalpy of metal halides has already been modeled with $\chi^v = f[Z^v/(Z-Z^v-1)]$ indices. 21,12 The obtained results were

$$\{^{0}\chi^{v}\}$$
: Q = 0.013, F = 36, r = 0.815, s₀ = 62.3, n = 20

$$X = [(D^{v})^{0.5} + 0.2]/[D^{v} + 4.2 \cdot {}^{0}\chi^{v}]$$
Q = 0.037, F = 281, r = 0.969, s_R = 2.60, n = 20,

$$\mathbf{u} = (17, 65), \langle \mathbf{u} \rangle = 41$$

The only χ^v description based on odd complete graphs, which offers a superior alternative to the previous ones is

Figure 2. Plot of the calculated lattice enthalpy values vs their corresponding experimental values for 20 metal halides.

the following CI-GTBI, which is the best description for this property

$$\begin{split} X(K_p) &= [(D^v)^{0.5}/(D^v + 13.3 \cdot (^0\chi^v)^{0.9}]^{0.6} \\ Q &= 0.056, F = 654, r = 0.987, s_R = 3.54, n = 20, \\ \mathbf{u} &= (26, 74), \langle \mathbf{u} \rangle = 50, \mathbf{C} = (1730.77, 577.713) \end{split}$$

Pseudoconnectivity basis indices which, up to now, have never been used with these compounds, provide the singlebasis and multi-basis-index descriptions for this property

$$\{^{0}\psi_{I}\}: Q = 0.028, F = 159, r = 0.948, s_{R} = 1.82,$$

$$\mathbf{u} = (13, 23), \langle \mathbf{u} \rangle = 19$$

$$\{^{0}\psi_{I}, {}^{1}\psi_{I} \}$$
: Q = 0.041, F = 170, r = 0.976,
 $s_{R} = 2.60, \mathbf{u} = (8.2, 4.4, 16), \langle u \rangle = 9.7$

$$\{^{S}\psi_{I}, {}^{0}\psi_{I}, {}^{1}\psi_{I}\}: Q = 0.062, F = 263, r = 0.990,$$

 $s_{R} = 3.87, \mathbf{u} = (4.7, 13, 7.8, 20), \langle \mathbf{u} \rangle = 11$

$$C = (23.1614, -1625.86, 1713.29, 1957.71)$$

Figure 2 has been obtained with this last correlation vector, while with the correlation vector of the $X(K_p)$ term, $\mathbf{C}=(1730.77,\ 577.713)$, the calculated lattice enthalpy values, $\Delta H_L{}^{\varnothing}(\mathbf{C})$, and the percent residual, $\Delta\%=[\Delta H_L{}^{\varnothing}-\Delta H_L{}$

Halomethanes, CH_nX_{4-n}. In the following paragraphs, the modeling of five properties of halomethanes, 26 shown in Table 3, will be undertaken. The corresponding basis descriptors are shown in Tables 4–7. The valence molecular connectivity basis indices, χ^{v} , have been calculated in three different ways.

Table 3. Physical Properties of Halomethanes, CH_nX_{4-n} : Molar Mass, M/amu, Dipole Moment, μ/D, Molar Refraction, R_m/cm³ mol^{−1}, Boiling Points, BP/K, Ionization Potential, IP/ev, and Parachor, Do

raraciioi, 2	/ · ·					
CH_nX_{4-n}	M/amu	μ /D	R_m/cm^3mol^{-1}	BP/K	IP/ev	D ^a
CH ₃ F	34	1.85	6.7	195	12.85	78
CH_2F_2	52	1.97	6.6	221		87
CHF ₃	70	1.65	6.5	189		96
CF_4	88	0	6.4	144		105
CH ₃ Cl	51	1.87	11.7	249	11.3	
CH_2Cl_2	85	1.80	16.6	313	11.35	
$CHCl_3$	119	1.01	21.5	335	11.4	
CCl_4	154	0	26.4	349	11.4	221
CFCl ₃	137	0.45	21.4	297	12.9	192
CF_2Cl_2	121	0.51	16.4	243	12.3	163
$CHFCl_2$	102	1.29	16.4	282	12.4	
CHF_2Cl	86	1.42	11.5	233	12.45	
CF ₃ Cl	104	0.50	11.4	192	11.8	134
CH ₂ FCl	68	1.82	11.6	264		
CH ₃ Br	95	1.81	14.6	277	10.5	
CH_2Br_2	174	1.43	22.4	370		
$CHBr_3$	253	0.99	30.2	422		
CBr_4	332	0	38.0	462		277
CF_3Br	149	0.65	14.3	214		
CF_2Br_2	210	0.66	22.2	298		
$CFBr_3$	271	0.58	30.1	381		
CCl ₃ Br	198	0.21	29.3	378		
CCl_2Br_2	243		32.2	408		
$CClBr_3$	287		35.1	433		
CH ₂ FBr	113		14.5	291		
CH ₂ ClBr	129		19.5	342	10.8	
CHFClBr	147		19.4	309		
CHF_2Br	131	1.60	14.4	259		
$CHFBr_2$	192		22.3	338		
CHCl ₂ Br	164		24.4	361	10.9	
$CHClBr_2$	208		27.3	394		
CFCl ₂ Br	182		24.3	326		
$CFClBr_2$	226		27.2	353		
CF ₂ ClBr	165		19.3	269		

^a The dimensions of \mathcal{L} are not given in the original paper (ref 26), they can be derived from the corresponding equation (see Discussion section).

(1) Odd- K_p -Graph Algorithm for $\delta^v = \delta^v(ps)/(p \cdot r + 1)$, Where p = 1 (F), 3 (Cl), 5 (Br), and r = p-1. Molar Refraction, R_m . The molar refraction values, $R_m = (M/\rho)$ - $(n^2-1)/(n^2+2)$, where n is the refractive index, of 34 halomethane are shown in Table 3. To a good approximation molar refractions are the sums of contributions from the individual groups making up a molecule or solid and are nearly independent of temperature. The molar mass, M, shown in the same table, is a rather good descriptor for this property, with Q = 0.303, F = 217, r = 0.934, $s_R = 0.55$, n = 34. The connectivity indices but, especially, the two- ψ -index combination show an optimal modeling power

$${}^{0}\chi^{v}$$
}: Q = 0.572, F = 773, r = 0.980, s₀ = 1.71,
 ${}^{s}_{R}$ = 1, n = 34, **u** = (28, 1.0), $\langle u \rangle$ = 14

{
$$^{S}\psi_{I}$$
, $^{1}\psi_{I}$ }: Q = 4.439, F = 23314, r = 0.9997,
 s_{R} = 7.43, n = 34, **u** = (130, 204, 85), $\langle u \rangle$ = 139

$$\mathbf{C} = (-0.78866, 17.07997, 10.6894)$$

Note the consistent improvement in every statistic in going from $\{{}^{0}\chi^{v}\}$ to $\{{}^{S}\psi_{I},{}^{1}\psi_{I}\}$ and in the utility of the unitary

descriptor, U_0 , from $c_0 = 1.0$ to $c_0 = 85$. The interesting X'-type term, where $X = ({}^{0}\chi^{v} + \chi_{t})^{0.6}$, cannot be compared with the $\{{}^{\rm S}\psi_{\rm I},{}^{\rm I}\psi_{\rm I}\}$ combination

$$X' = [X - 10^{-4} \cdot {}^{1}\chi^{v}_{d}], Q = 0.732, F = 1269,$$

 $r = 0.988, s_{R} = 1.27, n = 34, \mathbf{u} = (36, 18), \langle \mathbf{u} \rangle = 27$

Boiling Point, BP. The molar mass, M, is a deceiving descriptor for this property, with Q = 0.019, F = 190, r =0.837, $s_R = 0.70$, n = 34. The two-mixed-index linear combination shows, instead, an optimal modeling for this property

{¹
$$\chi^{v}$$
}: Q = 0.031, F = 190, r = 0.925, s₀ = 29.9,
n = 34, **u** = (14, 10), $\langle u \rangle$ = 12

$$\{^{0}\chi, {^{0}}\psi_{I}\}: Q = 0.115, F = 1319, r = 0.994,$$

 $s_{R} = 3.47, n = 34, \mathbf{u} = (41, 50, 6.6), \langle \mathbf{u} \rangle = 33$

With the boiling points a fine model uses a combination of three basis indices made up of the best combination for R_m , $\{{}^S\psi_I, {}^1\psi_I\}$, and a χ_t basis index

$${}^{S}\psi_{I}, {}^{1}\psi_{I}, \chi_{t}$$
: Q = 0.183, F = 2202, r = 0.998,
 s_{R} = 5.47, n = 34, **u** = (52, 19, 12, 26), $\langle u \rangle$ = 27
C = (-11.3773, 87.2807, -227.493, 519.035)

Comparison with the optimal basis index combination, $\{{}^{0}\chi, {}^{0}\psi_{\rm I}\}$, indicates an interesting improvement in nearly any statistical parameter and especially in the c_0 utility of U_0 (from 6.6 to 41). For the boiling points no optimal CI-GTBI of any type could be found.

Parachor, *L*. This property, which is also an additive function of atoms and groups in a molecule and is approximately independent of temperature, is a function of the molecular volume with a suitable correction for the cohesive forces of the liquid.²⁸ The empirical equation $\sigma = M\gamma^{1/4}$ $(\rho_1 - \rho_v)$ shows that the parachor is related to the surface tension γ and to the densities of the liquid and of the vapor, ρ_1 and ρ_v , respectively. As expected, the molar mass is a rather good descriptor for this property of nine halomethanes as follows: Q = 0035, F = 46, r = 0.931, $s_R = 0.57$, and n = 9. The modeling improve with a single valence χ^{v} index and, especially, with a two- ψ -basis-index descriptor, which is the same descriptor for R_m, and, practically, for BP, if a zero is added in the correlation vector ${\bf C}$ of R_m and ${\mathscr L}$ that zeroes the correlation parameter for χ_t

$${}^{0}\chi^{v}$$
}: Q = 0.065, F = 157, r = 0.978. s_{0} = 15.1, s_{R} = 1, n = 9, \mathbf{u} = (13, 4.2), $\langle \mathbf{u} \rangle$ = 8

$${}^{S}\psi_{I}, {}^{1}\psi_{I}$$
: Q = 0.395, F = 2915, r = 0.9995,
 s_{R} = 5.97, n = 9, **u** = (31, 73, 28), $\langle u \rangle$ = 44

$$\mathbf{C} = (-3.6285, 110.4638, 86.86556)$$

A trial-and-error procedure discovers the following X'type CI-GTBI but neither an Y-type term nor a Z-type term.

Table 4. Molecular Connectivity Indices for Halomethanes^a

CH_nX_{4-n}	D	$^{0}\chi$	¹ χ	$\chi_{\rm t}$	D ^v	$^{0}\chi^{\mathrm{v}}$	$^{1}\chi^{\mathrm{v}}$	χ_{t}^{v}
CH ₃ F	2	2	1	1	8	1.37796	0.37796	0.37796
CH_2F_2	4	2.70711	1.41421	0.70711	16	1.46304	0.53452	0.10102
CHF_3	6	3.57735	1.73205	0.57735	24	1.71124	0.65465	0.03117
CF_4	8	4.5	2	0.5	32	2.01186	0.75593	0.01020
CH ₃ Cl	2	2	1	1	2	2	1	1
CH_2Cl_2	4	2.70711	1.41421	0.70711	4	2.70711	1.41421	0.70711
$CHCl_3$	6	3.57735	1.73205	0.57735	6	3.57735	1.73205	0.57735
CCl_4	8	4.5	2 2	0.5	7.12	5.02911	2.26455	0.82183
$CFCl_3$	8	4.5	2	0.5	14	3.87796	1.68898	0.18898
CF_2Cl_2	8	4.5	2	0.5	20	3.25593	1.37796	0.07143
$CHFCl_2$	6	3.57735	1.73205	0.57735	12	2.95531	2.37292	0.21822
CHF ₂ Cl	6	3.57735	1.73205	0.57735	18	2.33328	1.01379	0.08248
CF ₃ Cl	8	4.5	2	0.5	26	2.63389	1.06695	0.027
CH ₂ FCl	4	2.70711	1.41421	0.70711	10	2.08507	0.97437	0.26726
CH_3Br	2	2	1	1	1.33	2.74078	1.74078	1.74078
CH_2Br_2	4	2.70711	1.41421	0.70711	2.52	4.26943	2.77350	2.71964
$CHBr_3$	6	3.57735	1.73205	0.57735	3.99	5.79968	3.01511	3.04557
CBr_4	8	4.5	2	0.5	5.33	7.43953	3.46583	4.52946
CF ₃ Br	8	4.5	2 2 2 2 2	0.5	25.33	3.37467	1.43734	0.047
CF_2Br_2	8	4.5	2	0.5	18.66	4.73784	2.11874	0.21645
$CFBr_3$	8	4.5	2	0.5	12.00	6.07672	2.78836	0.98346
CCl ₃ Br	8	4.5	2	0.5	7.33	5.23292	2.36646	0.86646
CCl_2Br_2	8	4.5	2	0.5	6.67	5.96583	2.73292	1.50150
$CClBr_3$	8	4.5	2	0.5	6.00	6.69875	3.09938	2.60198
CH ₂ FBr	4	2.70711	1.41121	0.70711	9.33	2.81799	1.49262	0.46314
CH ₂ ClBr	4	2.70711	1.41121	0.70711	3.33	3.44002	1.93246	1.22536
CHFClBr	6	3.57735	1.73205	0.57735	11.33	3.68823	1.79607	0.37815
CHF_2Br	6	3.57735	1.73205	0.57735	17.33	3.06620	1.43694	0.14293
$CHFBr_2$	6	3.57735	1.73205	0.57735	10.66	4.42115	2.21922	0.65931
CHCl ₂ Br	6	3.57735	1.73205	0.57735	5.33	4.31027	2.15520	1.00050
$CHClBr_2$	6	3.57735	1.73205	0.57735	4.66	5.04319	2.57835	1.73378
CFCl ₂ Br	8	4.5	2	0.5	13.33	4.61088	2.05544	0.32749
$CFClBr_2$	8	4.5	2 2	0.5	12.67	5.34380	2.42190	0.56751
CF ₂ ClBr	8	4.5	2	0.5	19.33	3.98885	1.74442	0.12378

^a Here, the algorithm for δ^v depends on the odd- K_p -graph: $\delta^v = \delta^v(ps)/[p + 1]$: $\delta^v(F) = 7$, $\delta^v(Cl) = 1$, $\delta^v(Br) = 0.33$.

Table 5. Dual and Soft Dual Molecular Connectivity Indices for Halomethanes^a

CH_nX_{4-n}	$^{0}\chi_{\mathrm{d}}$	$^{1}\chi_{\mathrm{d}}$	$^{1}\chi_{\mathrm{s}}$	$^0\chi^{ m v}{}_{ m d}$	$^{1}\chi^{v}_{d}$	$^{1}\chi^{v}_{s}$
CH ₃ F	0.25	-1	0.70711	1.75	-4	0.35355
CH_2F_2	-0.25	2.25	0.33333	-12.25	20.25	0.11111
CHF ₃	0.18750	-8	0.125	64.3125	-125	0.03162
CF_4	-0.125	39.0625	0.04	-300.125	915.063	0.00826
CH ₃ Cl	0.25	-1	0.70711	0.25	-1	0.70711
CH_2Cl_2	-0.25	2.25	0.33333	-0.25	2.25	0.33333
CHCl ₃	0.18750	-8	0.125	0.18750	-8	0.125
CCl_4	-0.125	39.0625	0.04	-0.04627	36.6281	0.04377
$CFCl_3$	-0.125	39.0625	0.04	-0.875	85.9375	0.02697
CF_2Cl_2	-0.125	30.0625	0.04	-6.125	189.063	0.01818
$CHFCl_2$	0.18750	-8	0.125	1.31250	-40	0.05590
CHF ₂ Cl	0.18750	-8	0.125	9.18750	-50	0.05
CF ₃ Cl	-0.125	39.0625	0.04	-42.875	415.938	0.01296
CH ₂ FCl	-0.25	2.25	0.33333	-1.75	6.75	0.19245
CH ₃ Br	0.25	-1	0.70711	0.08250	-0.665	0.86711
CH_2Br_2	-0.25	2.25	0.33333	-0.01690	1.27690	0.44248
$CHBr_3$	0.18750	-8	0.125	0.00674	-4.61575	0.16456
CBr_4	-0.125	30.0625	0.04	-0.00152	22.0310	0.05326
CF_3Br	-0.125	39.0625	0.04	-14.1488	360.202	0.01317
CF_2Br_2	-0.125	39.0625	0.04	-0.66701	141.789	0.021
$CFBr_3$	-0.125	39.0625	0.04	-0.03231	55.9292	0.03343
CCl ₃ Br	-0.125	39.0625	0.04	-0.04163	33.8516	0.04297
CCl_2Br_2	-0.125	39.0625	0.04	-0.01386	29.3358	0.04616
$CClBr_3$	-0.125	39.0625	0.04	-0.00462	25.4224	0.04958
CH_2FBr	-0.25	2.25	0.33333	-0.58275	5.24925	0.21823
CH ₂ ClBr	-0.25	2.25	0.33333	-0.08325	1.74975	0.37799
CHFClBr	0.18750	-8	0.125	0.43706	-16.665	0.08661
CHF_2Br	0.18750	- 8	0.125	3.05944	-41.6625	0.05478
$CHFBr_2$	0.18750	- 8	0.125	0.14554	-13.8861	0.09488
CHCl ₂ Br	0.18750	- 8	0.125	0.06244	-6.666	0.13694
CHClBr ₂	0.18750	- 8	0.125	0.02079	-5.55444	0.15002
CFCl ₂ Br	-0.125	30.0625	0.04	-0.29138	74.4734	0.02897
$CFClBr_2$	-0.125	30.0625	0.04	-0.09703	64.5387	0.03112
CF ₂ ClBr	-0.125	30.0625	0.04	-2.03963	163.8416	0.01953

 $[^]a$ Here the algorithm for $\delta^{\rm v}$ depends on the odd- $K_{\rm p}$ -graph (see Table 4, headings).

Table 6. Molecular Pseudoconnectivity Indices for Halomethanes^a

CH_nX_{4-n}	$^{ ext{S}}\psi_{ ext{I}}$	$^0\psi_{ m I}$	$^1\psi_{ m I}$	$^{ ext{T}}\psi_{ ext{I}}$	$^{ ext{S}}\psi_{ ext{E}}$	$^0\psi_{ m E}$	$^1\psi_{ m E}$	$^{\scriptscriptstyle \mathrm{T}}\psi_{\scriptscriptstyle \mathrm{E}}$
CH_3F	10	1.06066	0.25	0.25	23.22	0.62425	0.09347	0.09347
CH_2F_2	17.50	1.52360	0.57735	0.10206	37.34	0.94990	0.22512	0.02793
CHF_3	25.33	1.92777	0.91971	0.03832	51.84	1.32628	0.43336	0.00886
CF_4	33.25	2.30864	1.27837	0.01398	66.31	1.93991	0.94038	0.00357
CH ₃ Cl	6.11	1.20037	0.34879	0.34879	19.38	0.64928	0.10465	0.10465
CH_2Cl_2	9.72	1.80302	0.80550	0.19866	29.61	0.97555	0.22699	0.03361
$CHCl_3$	13.66	2.34690	1.28314	0.10407	40.06	1.30162	0.36705	0.01073
CCl_4	17.69	2.86748	1.76475	0.05295	50.60	1.63191	0.52981	0.00344
$CFCl_3$	21.58	2.72777	1.63979	0.03795	54.62	1.64110	0.56935	0.00326
CF_2Cl_2	25.47	2.58794	1.51472	0.0272	58.53	1.66997	0.62811	0.00315
$CHFCl_2$	17.56	2.20609	1.16059	0.07449	44	1.29723	0.38215	0.00994
CHF_2Cl	21.44	2.06644	1.03963	0.05340	47.89	1.30238	0.40275	0.00931
CF ₃ Cl	29.36	2.44835	1.38987	0.01950	62.41	1.74087	0.72630	0.00318
CH ₂ FCl	13.61	1.66325	0.69137	0.14238	33.44	0.96129	0.22562	0.03066
CH₃Br	4.75	1.31013	0.42640	0.42640	17.97	0.66822	0.11152	0.11152
CH_2Br_2	7	2.02254	0.98473	0.29691	26.83	1.00855	0.235	0.03779
$CHBr_3$	9.58	2.67618	1.56866	0.19014	36.04	1.34350	0.36685	0.01258
CBr_4	12.25	3.30652	2.15744	0.11827	43.31	1.67844	0.50828	0.00418
CF ₃ Br	28	2.55811	1.48804	0.02384	61.05	1.72679	0.69680	0.00328
CF_2Br_2	22.75	2.80758	1.71118	0.04066	55.74	1.68061	0.60157	0.00347
$CFBr_3$	17.50	3.05705	1.93431	0.06934	50.56	1.67207	0.54611	0.00378
CCl₃Br	16.33	2.97706	1.86276	0.06471	49.39	1.64222	0.52339	0.0036
CCl_2Br_2	14.97	3.08688	1.96099	0.07912	48.03	1.65445	0.51814	0.00379
$CClBr_3$	13.61	3.19670	2.05921	0.09673	46.67	1.66653	0.51309	0.00398
CH ₂ FBr	12.25	1.77307	0.78104	0.17408	32.08	0.97800	0.23164	0.03255
CH ₂ ClBr	8.36	1.91272	0.89507	0.24284	28.19	0.99270	0.23142	0.03571
CHFClBr	16.19	2.31591	1.25570	0.09108	48.80	1.25194	0.35625	0.00844
CHF_2Br	20.08	2.17626	1.13475	0.06529	46.53	1.31375	0.40183	0.00983
$CHFBr_2$	14.83	2.42573	1.35082	0.11135	41.28	1.32501	0.38191	0.01111
CHCl ₂ Br	12.31	2.45556	1.37666	0.12705	38.75	1.31555	0.36703	0.01131
$CHClBr_2$	10.94	2.56538	1.47178	0.15534	37.39	1.32980	0.36705	0.01194
CFCl ₂ Br	20.22	2.83741	1.73786	0.04639	53.28	1.65077	0.56091	0.00342
$CFClBr_2$	18.86	2.94723	1.83608	0.05671	51.91	1.66127	0.55323	0.00360
CF ₂ ClBr	24.11	2.69776	1.61294	0.03325	57.17	1.67333	0.61356	0.00330

 $^{^{}a}$ $\psi_{\rm E}$ indices have been rescaled to the S value of Si, $S[Si(SiF_4)] = -6.611$ (see method section).

Table 7. Dual and Soft Dual Molecular Pseudoconnectivity Indices for Halomethenes^a

CH_nX_{4-n}	$^0\psi_{ m Id}$	$^1\psi_{ m Id}$	$^1\psi_{ m Is}$	$^0\psi_{ m Ed}$	$^1\psi_{ m Ed}$	$^1\psi_{ m Es}$
CH₃F	4	-5	0.31623	28.6178	-11.6050	0.20757
CH_2F_2	-12	22.5625	0.10526	-160.206	111.303	0.04739
CHF_3	42.56	-101.521	0.03509	795.775	-890.277	0.01185
CF_4	-160	452.612	0.01175	-2448.63	5742.16	0.00330
CH ₃ Cl	2.055	-3.055	0.40456	22.826	-9.69	0.22716
CH_2Cl_2	-3.16727	7.86803	0.17825	-110.628	82.9010	0.05491
CHCl ₃	5.77108	-20.1237	0.07881	542.615	-642.736	0.01395
CCl_4	-11.1462	51.5869	0.03481	-2639.0	4521.22	0.00372
$CFCl_3$	-21.6958	89.0259	0.02650	-2948.49	4587.89	0.00369
CF_2Cl_2	-42.2508	153.693	0.02017	-3143.72	4744.83	0.00363
$CHFCl_2$	11.2641	-34.5754	0.06013	632.028	-693.901	0.01340
CHF ₂ Cl	21.9199	-59.2749	0.04592	721.3087	-769.521	0.01275
CF ₃ Cl	-82.2	265.137	0.01535	-3086.31	5082.97	0.00351
CH ₂ FCl	-6.16650	13.3261	0.13697	-132.991	94.8608	0.05134
CH₃Br	1.375	-2.375	0.45883	20.1028	- 8.985	0.23590
CH_2Br_2	-1.41797	4.51563	0.23529	-87.5477	73.6164	0.05828
$CHBr_3$	1.72874	-8.48966	0.12134	394.882	-571.787	0.01479
CBr_4	-2.23404	16	0.0625	-1786.07	4196.24	0.00386
CF_3Br	-55	197.86	0.01777	-2906.23	4677.38	0.00366
CF_2Br_2	-18.9063	85.5625	0.02703	-2594.58	4245.73	0.00384
$CFBr_3$	-6.49902	37	0.04110	-2183.30	4134.21	0.00389
CCl ₃ Br	-7.46337	38.5192	0.04028	-2410.85	4433.85	0.00375
CCl_2Br_2	-4.99253	28.7403	0.04663	-2177.34	4332.47	0.00380
$CClBr_3$	-3.33969	21.4440	0.05399	-1970.21	4254.99	0.00383
CH_2FBr	-4.125	10.0938	0.1574	-117.970	87.7317	0.05338
CH ₂ ClBr	-2.11973	5.96169	0.20478	-98.0347	77.8062	0.05668
CHFClBr	7.53495	-25.9316	0.06943	877.736	-900.986	0.01178
CHF_2Br	14.6630	-44.4562	0.05303	646.645	-713.886	0.01323
$CHFBr_2$	5.04041	-19.4487	0.08017	506.332	-621.694	0.01418
CHCl ₂ Br	3.87202	-15.1261	0.9091	488.187	-616.240	0.01424
$CHClBr_2$	2.59014	-11.3445	0.10497	438.289	-592.120	0.01453
CFCl ₂ Br	-14.5237	66.4620	0.03067	-2668.52	4403.28	0.00377
$CFClBr_2$	-9.71545	49.5893	0.03550	-2412.05	4252.18	0.00383
CF ₂ ClBr	-28.2631	114.677	0.02335	-2871.96	4471.69	0.00374

 $^{^{}a}$ $\psi_{\rm E}$ indices have been rescaled to the S value of Si, $S[Si(SiF_4)] = -6.611$.

Figure 3. Plot of the calculated R_m , BP, and, \mathscr{L} vs their corresponding experimental values for a total of 77 points.

Here
$$X = ({}^{0}\chi^{v})^{0.3}$$
: $Q = 0.136$, $F = 692$, $r = 0.995$, $s_{R} = 2.06$

$$X' = (X - 3 \cdot 10^{-5.1} \chi_d^v)^{0.8}$$
: $Q = 0.175$, $F = 1153$,
 $r = 0.997$, $s_R = 2.66$, $n = 9$, $\mathbf{u} = (34, 23)$, $\langle \mathbf{u} \rangle = 29$

Practically, vector $\beta = ({}^{S}\psi_{1}, {}^{1}\psi_{1}, \chi_{t}, U_{0})$ can be used to model n=77 points. Figure 3, where the experimental R_{m} , BP, and $\mathscr D$ values have been plotted vs their corresponding calculated values, has been obtained with the β vector and with the three correlation vectors for the three properties: $\mathbf{C}(R_{m}) = (-0.78866, 17.07997, 0, 10.6894)$, $\mathbf{C}(BP) = (-11.3773, 87.2807, -227.493, 519.035)$, and $\mathbf{C}(\mathscr D) = (-3.6285, 110.4638, 0, 86.86556)$. Here the correlation coefficient, \mathbf{c}_{3} , for χ_{t} for R_{m} and $\mathscr D$ is zero.

Dipole Moment, μ . The molar mass is not a good descriptor for the dipole moments of 23 halomethane, as follows: $Q=1.117, F=13, r=0.618, s_R=0.56, n=23$. Even if a similar deterioration, from R_m to μ is detected for the modeling quality of the connectivity and pseudoconnectivity indices, nevertheless the two-mixed basis index combination shows an interesting modeling quality (note all along this modeling the importance of the zeroth-order basis index)

$${}^{0}\chi$$
}: Q = 2.899, F = 87, r = 0.898, s₀ = 0.31,
n = 23, **u** = (8.6, 13), $\langle u \rangle$ = 11

{D^v,
$${}^{1}\psi_{E}$$
}: Q = 5.446, F = 154, r = 0.969,
 s_{R} = 1.72, n = 23, **u** = (8.8, 17, 16), $\langle u \rangle$ = 17

$$\mathbf{C} = (-0.057899, -4.39051, 2.18612)$$

This property should be modeled with the modulus equation, $\mu = |S \cdot \mathbf{C}|$, where $S = ({}^{0}\chi, {}^{0}\psi_{\mathrm{I}}, \mathrm{U}_{0})$, to avoid a negative dipole moment value for CF₄. Here, the following optimal terms could be found

$$X = (^{0}\chi)^{4.5}$$
, $Q = 3.84$, $F = 154$, $r = 0.938$, $s_{R} = 1.29$, $n = 23$

$$Y = (^1\psi_E) \cdot (^1\psi_I)^{1.4}, Q = 4.587, F = 219, r = 0.955,$$

 $s_R = 1.48, n = 23$

Y' = [Y^{0.8}+0.5·(
$$^{1}\chi^{v}_{s}$$
)^{0.3}], Q = 4.992, F = 259,
r = 0.962, s_R = 1.63, n = 23, **u** = (16, 39), $\langle u \rangle$ = 28

Neither a Z- nor a Z'-type term could be detected.

Ionization Potential, *IP*. The description deteriorates further with this property, where the molar mass shows Q = 0.35, F = 0.9, r = 0.274, $s_R = 0.5$, and n = 13. A valence connectivity index and a two-mixed index combination show some descriptive quality

$$\{\chi_t^{\text{v}}\}$$
: Q = 1.899, F = 27, r = 0.844, s₀ = 0.44,
n = 13, **u** = (5.2, 65), $\langle u \rangle$ = 35

$$\{\chi_{t}^{v}, {}^{T}\psi_{E}\}: Q = 2.494, F = 23, r = 0.908,$$

 $s_{R} = 1.22, n = 13, \mathbf{u} = (6.5, 2.5, 79), \langle \mathbf{u} \rangle = 29$

A CI-GTBI discovers neither a Y nor a Z term but a very interesting, X'-type term, where term $X = [\chi_t - 1.2 \cdot (\chi_t^v)^{0.8}]$ has Q = 2.543, F = 49, r = 0.903, $s_R = 1.24$

$$X' = [X + 0.01 \cdot {}^{0}\chi^{v}_{d}]$$

Q = 3.423, F = 88, r = 0.943,
$$s_R = 1.60$$
, n = 13,
 $\mathbf{u} = (9.4, 151), \langle \mathbf{u} \rangle = 80$

$$\mathbf{C} = (1.70258, 11.8899)$$

Note the importance, for IP, of the total connectivity and pseudoconnectivity indices, i.e., of a type of basis indices that describes the overall chemical graph or pseudograph.

Let us, now, try the second type of valence molecular connectivity basis indices, χ^v , i.e, those basis indices that are shown in Table 8 and that have been calculated with the Z-algorithm.

(2) **Z-Algorithm**, $\delta^{v} = \mathbf{Z}^{v}/(\mathbf{Z}-\mathbf{Z}^{v}-1)$, $\mathbf{Z}^{v} = \mathbf{7}$, and **Z**(F) = 9, **Z**(Cl) = 17, **Z**(Br) = 35. *Molar Refraction*, R_{m} . The best single basis index is, like for the preceding R_{m} case (s₀ = 1.71, see previous section)

$${}^{0}\chi^{v}$$
}: Q = 0.442, F = 463, r = 0.967, s_R = 0.78,
n = 34, **u** = (22, 0.2), $\langle u \rangle$ = 11

This descriptor cannot compete, at any statistical level, with the preceding best single $\{^0\chi^v\}$ descriptor for R_m calculated by the aid of the odd- K_p -graphs. The two-basis-index descriptor is always $\{^S\psi_I, ^1\psi_I\}$, and no higher-order terms with the new χ^v indices could be found.

Boiling Point, BP. The best single basis descriptor is even here, as in the preceding BP case ($s_0 = 29.9$)

$$\{^{1}\chi^{v}\}$$
: Q = 0.030, F = 183, r = 0.923, s_R = 0.99,
n = 34, **u** = (14, 11), $\langle u \rangle$ = 12

The descriptive quality is worse than in the preceding BP case, even if the two statistical performances are rather similar. No good two-basis-index combinations and no good terms could be found with these χ^{ν} indices based on a Z-algorithm.

Parachor, L. Here the best single basis descriptor is ${}^{1}\chi^{v}$ instead of ${}^{0}\chi^{v}$, but its statistical Q/F performance is nearly half of the corresponding odd complete graph case (here, $s_{0} = 15.1$)

Table 8. Valence Connectivity Indices for Halomethans^a

CH_nX_{4-n}	D^{v}	$^{0}\chi^{\mathrm{v}}$	$^{1}\chi^{\mathrm{v}}$	$\chi_{\mathfrak{t}^{\mathrm{v}}}$	$^{0}\chi^{\mathrm{v}}{}_{\mathrm{d}}$	$^{1}\chi^{\mathrm{v}}_{\mathrm{d}}$	$^{1}\chi^{v}_{s}$
CH ₃ F	8	1.37796	0.37796	0.37796	1.75	-4	0.3535
CH_2F_2	16	1.46304	0.53452	0.10102	-12.25	20.25	0.1111
CHF_3	24	1.71124	0.65465	0.03117	64.3125	-125	0.0316
CF ₄	32	2.01186	0.75593	0.01020	-300.125	915.063	0.0082
CH ₃ Cl	1.78	2.13228	1.13228	1.13228	0.195	-0.890	0.7495
CH_2Cl_2	3.56	2.97166	1.60128	0.90655	-0.15210	1.93210	0.3597
CHCl ₃	5.34	3.97418	1.96116	0.83810	0.08898	-6.75127	0.1360
CCl ₄	7.12	5.02911	2.26455	0.82183	-0.04627	36.6281	0.0437
CFCl ₃	13.34	4.27480	1.88740	0.27433	-0.41523	75.0856	0.0288
CF_2Cl_2	19.56	3.52339	1.51170	0.09181	-3.70736	172.646	0.0190
$CHFCl_2$	11.56	3.22278	1.52734	0.28049	0.79444	-17.8416	0.0837
CHF ₂ Cl	17.78	2.46701	1.09100	0.09351	7.14787	-47.2250	0.0514
CF ₃ Cl	25.78	2.76617	1.13309	0.03057	-33.4425	397.636	0.0125
CH ₂ FCl	9.78	2.21880	1.06893	0.30300	-1.36150	6.25050	0.1999
CH ₃ Br	1.26	2.96116	1.96116	1.96116	0.065	-0.63	0.8908
CH_2Br_2	2.52	4.26943	2.77350	2.71964	-0.01690	1.27690	0.4424
CHBr ₃	3.78	6.46083	3.39683	4.35491	0.00330	-4.33075	0.1698
CBr ₄	5.04	8.35978	3.92989	7.45367	-0.00056	20.5641	0.0551
CF ₃ Br	25.26	3.59505	1.54753	0.05295	-11.1475	354.379	0.0132
CF_2Br_2	18.52	5.17825	2.33913	0.27473	-0.41405	137.241	0.0213
CFBr ₃	11.78	6.77280	3.13640	1.43374	-0.01520	53.1124	0.0343
CCl ₃ Br	6.59	5.86614	2.68307	1.43170	-0.01525	29.0353	0.0464
CCl ₂ Br ₂	6.07	6.69735	3.09868	2.48136	-0.00508	25.8814	0.0491
CClBr ₃	5.56	7.52856	3.51428	4.30061	-0.00169	27.0701	0.0520
CH ₂ FBr	9.26	3.05001	1.65669	0.52515	-0.45325	5.08275	0.2217
CH ₂ ClBr	3.04	3.80578	2.19109	1.57523	-0.05038	1.56888	0.3991
CHFClBr	11.04	4.05399	2.00724	0.48613	0.26447	-15.3906	0.0901
CHF ₂ Br	17.26	3.29822	1.57090	0.16207	2.37956	-40.7375	0.0553
CHFBr ₂	10.52	4.88520	2.48714	0.84254	0.08804	-13.2764	0.0970
CHCl ₂ Br	4.81	4.82124	2.44358	1.46669	0.02905	-5.81458	0.1466
CHClBr ₂	4.30	5.64097	2.92348	2.52726	0.00979	-5.01581	0.1578
CFCl ₂ Br	12.82	5.11037	2.30519	0.47730	-0.13717	66.8456	0.0305
CFClBr ₂	12.30	5.94158	2.72079	0.82724	-0.04567	59.5846	0.0323
CF ₂ ClBr	10.04	4.35460	1.92730	0.15912	-1.23420	153.893	0.0201

^a The δ^{v} algorithm is $\delta^{\text{v}} = Z^{\nu}/(Z-Z^{\nu}-1)$, $\delta^{\text{v}}(F) = 7$, $\delta^{\text{v}}(C1) = 0.78$, $\delta^{\text{v}}(Br) = 0.26$.

$$\{^{1}\chi^{v}\}: Q = 0.046, F = 80, r = 0.959, s_{R} = 0.73,$$

 $n = 9, \mathbf{u} = (8.9, 5.1), \langle u \rangle = 7$

No better or even similar CI-GTBI of any kind could be detected.

Dipole Moment, μ . Here, neither the $^0\chi^{\rm v}$ best index (instead of $^{0}\chi$) nor combinations of basis indices or even higher-order terms could compete, by far, with the preceding descriptors for μ . For sheer curiosity the statistics of the best index, $\{{}^{0}\chi^{v}\}$, are as follows: Q = 1.257, F = 16, r = 0.662, $s_R = 0.58$, $n = 23 (s_0 = 0.31).$

Ionization Potential, IP. This is the only property where the Z-algorithm based χ^{v} indices show interesting results. In fact, we have the following better, single- and two-basisindex descriptions, and X-type term ($s_0 = 0.44$)

$$\{\chi_t^{\text{v}}\}: \ Q = 2.621, F = 52, r = 0.908, s_R = 1.26,$$

 $n = 13, \mathbf{u} = (7.2, 79), \langle \mathbf{u} \rangle = 44$

$$\{\chi_t^{\text{v}}, {}^{\text{T}}\psi_E\}: Q = 2.959, F = 33, r = 0.932, s_R = 1.42, n = 13, \mathbf{u} = (5.8, 1.8, 87), \langle \mathbf{u} \rangle = 31$$

$$X = (\chi_t - 1.2 \cdot \chi_t^{\ v})$$
: $Q = 3.136, F = 74, r = 0.933,$
 $s_R = 1.48, n = 13, \mathbf{u} = (8.6, 135), \langle \mathbf{u} \rangle = 72$

No optimal X'-type term could be found (see preceding case). Note that the type of basis indices does not change, i.e., ionization energies are only modeled by the total type of basis indices, χ_t , χ_t^v , and ${}^T\psi_E$. The end result is that the best description for this property continues to be the preceding one, with the X' term based on valence indices obtained with the odd complete graph algorithm.

(3) Homogeneous-Algorithm, $\delta^{\rm v} = (2/{\rm n})^2 \delta^{\rm v}({\rm ps})$: ${\rm n(F)} =$ 2, n(Cl) = 3, and n(Br) = 4, and $\delta^{v}(ps) = 7$. Molar Refraction, R_m . Comparison with the two preceding cases shows that this is the worst description, in fact, the best single basis descriptor, $\{^1\chi^v\}$, shows

$$\{^{1}\chi^{v}\}$$
: Q = 0.382, F = 345, r = 0.957, s_R = 0.19,
n = 34, **u** = (19, 6.2), $\langle u \rangle$ = 12

The only interesting characteristic, here, being c_o value improves (6.2 instead of 0.2). The s_0 values used all along this section are taken from the first section, here $s_0 = 1.71$. This homogeneous-algorithm case, nevertheless, shows a rather good two-basis-index description, whose statistical values are not that far from the statistical values of the odd complete graph case

{D^v,
$${}^{1}\psi_{I}$$
}: Q = 4.181, F = 20681, r = 0.996,
 s_{R} = 7.13, n = 34, **u** = (123, 196, 72), $\langle u \rangle$ = 130

Better descriptions could not be found with any type of term

Boiling Point, BP. The best single basis descriptor is here, like in the two preceding BP cases, ${}^{1}\chi^{v}$, but here the quality of the description is deceiving (here, $s_0 = 29.9$)

$$\{^{1}\chi^{v}\}: Q = 0.021, F = 84, r = 0.851, s_{R} = 0.72,$$

 $n = 34, \mathbf{u} = (14, 11), \langle \mathbf{u} \rangle = 12$

Instead, a quite satisfactory two-basis-index descriptor could be found

$${}^{0}\chi$$
, D^v}: Q = 0.108, F = 1155, r = 0.993,
 ${}^{8}R = 3.25, n = 34, \mathbf{u} = (41, 47, 3.2), \langle \mathbf{u} \rangle = 30$

The only statistical value that differs consistently from the odd complete graph case is the c_0 value (3.2 instead of 6.6). Like in the two preceding BP cases no improved CI-GTBI could be detected.

Parachor, \mathcal{L} . The best single basis descriptor is again ${}^{0}\chi^{v}$, like in the odd complete graph case. Its statistics are much better than the statistics of the Z-algorithm case and a bit better than the statistics of the odd complete graph case, but with a useless $c_{o} = 0.8$ value (here, $s_{0} = 15.1$)

$${}^{0}\chi^{v}$$
}: Q = 0.069, F = 178, r = 0.981, s_R = 1.06,
n = 9, **u** = (13, 0.8), $\langle u \rangle$ = 7.1

This negative feature is corrected by the two-basis-index descriptor, whose statistics are nevertheless not better than the statistics of the odd complete graph case

{D^v,
$${}^{1}\psi_{I}$$
}: Q = 0.383, F = 2750, r = 0.9995,
 $s_{R} = 5.79$, n = 9, **u** = (30, 72, 27), $\langle u \rangle = 43$

An interesting X'-type CI-GTBI could be detected, where $X = ({}^{0}\chi^{v})^{1.4}$: Q = 0.074, F = 204, r = 0.983, and $s_{R} = 1.13$. Its statistics are, nevertheless, not better than in the K_{p}

$$X' = (X - 6 \cdot 10^{-4.1} \chi_d^{v})$$
: $Q = 0.111$, $F = 462$,
 $r = 0.993$, $s_R = 1.69$, $n = 9$, $\mathbf{u} = (21, 8.5)$, $\langle \mathbf{u} \rangle = 15$

Dipole Moment, μ . Comparison with the preceding Z-algorithm case shows that here the modeling improves but not enough to compete with the modeling achieved by the odd complete graph case. Index ${}^0\chi^{\rm v}$ is, even here, the best single descriptor with the following: Q = 1.257, F = 16, r = 0.662, s_R = 0.58, n = 23 (s₀ = 0.31). This is a rather poor description, indeed. The best two-basis-index combination is as follows: $\{D^{\rm v}, {}^1\psi_E\}$, a combination already detected along the odd complete graph case, but not as good

{D^v,
$${}^{1}\psi_{E}$$
}: Q = 4.105, F = 88, r = 0.947,
 $s_{R} = 1.35$, n = 23, **u** = (6.1, 11, 18), $\langle u \rangle = 12$

Also here an interesting, but not as good, X term could be detected, and this is the only kind of term that can be detected

$$X = ({}^{0}\chi^{v})^{0.01}, Q = 2.029, F = 43, r = 0.819,$$

$$s_{R} = 0.78, \mathbf{u} = (6.5, 6.6) \langle \mathbf{u} \rangle = 6.6$$

Ionization Potential, IP. The χ^{v} indices based on the homogeneous algorithm shows a deterioration of the modeling quality relative to the Z-algorithm, in fact ($s_0 = 0.44$)

$$\{\chi_t^{\text{v}}\}: Q = 0.709, F = 3.8, r = 0.506, s_R = 0.62, n = 13$$

 $\{\chi_t^{\text{v}}, {}^{\text{T}}\psi_E\}: Q = 1.887, F = 13, r = 0.853,$
 $s_R = 0.98, n = 13, \mathbf{u} = (4.8, 4.2, 70), \langle \mathbf{u} \rangle = 26$

$$X' = [X+0.0004 \cdot {}^{0}\chi^{v}_{d}]: Q = 2.528, F = 48,$$

 $r = 0.902, s_{R} = 1.22, n = 13, \mathbf{u} = (6.9, 21), \langle \mathbf{u} \rangle = 14$

Here, $X = [\chi_t - (\chi_t^v)^{0.6}]$: Q = 2.282, F = 39, r = 0.883, $s_R = 1.13$. Only the X' term can positively compare with the preceding X(Z)-term but not with the corresponding term of the odd complete graph case. Noteworthy, is the detected regularity shown all along the three IP cases based on the importance of the total type basis indices, χ_t , χ_t^v , and $^T\psi_E$.

There are some other regularities, concerning R_m , BP, \mathcal{L} , and μ . For R_m , along the best descriptions (K_p and Z algorithm), the best single index is ${}^0\chi^v$, for BP, the best single descriptor is, in any case, ${}^1\chi^v$, for \mathcal{L} the best descriptor along the best cases (K_p and homogeneous case) is ${}^0\chi^v$, and for μ , along the K_p , and homogeneous case, the best descriptor is $\{D^v, {}^1\psi_E\}$.

The Chlorofluorocarbons (CFCs) and the K_p -Odd-Complete-Graph Algorithm. The rates of hydrogen abstraction, logK, that measures the effect of the reactions with the hydroxyl radical and the minimum anesthetic concentration (MAC) measured in units of logMAC of a series of chlorofluorocarbons (CFC) have been studied in the recent past with χ^{v} -Z-algorithm indices and with pseudobasis indices based on the $(2/n)^2 \delta^{v}(ps)$ algorithm. Here, the attention will be centered on χ^v based on the odd complete graph conjecture. The property values are collected in Table 10, and the different K_p connectivity and pseudoconnectivity indices are collected in Tables 11 and 12. For comparison purposes (the previous studies did not consider the dual indices¹⁴) we will here center our attention on the odd complete graph conjecture only. As we shall see, the choice of these two properties of CFCs will also uncover an interesting property of the CI-GTBI.

Rates of Hydrogen Abstraction, logK. The previous modeling of this property performed with connectivity indices which were based on the Z-algorithm gave rise to a satisfactory modeling only at the level of the following CI-GTBI¹⁴

$$\begin{split} \mathbf{Y} &= [(^{S}\psi_{E} - 1.1^{S}\psi_{I} - ^{T}\psi_{I})^{0}\psi_{I}]^{6.5} \\ \mathbf{Q} &= 2.07, \, \mathbf{F} = 63, \, \mathbf{r} = 0.852, \, \mathbf{s}_{0} = 0.41, \, \mathbf{n} = 26, \\ & \langle \mathbf{u} \rangle = 24, \, \mathbf{u} = (8.0, 41) \\ \mathbf{X} &= (\chi_{t})^{4} [\mathbf{D}^{v} + 3.5 \cdot (^{0}\chi^{v})^{1.2} + 5.8 \cdot (\chi_{t}^{v})^{0.4} - 5.2 \cdot (^{0}\chi)]^{4.3} \\ \mathbf{Q} &= 3.05, \, \mathbf{F} = 137, \, \mathbf{r} = 0.923, \, \mathbf{s}_{R} = 1.37, \, \mathbf{n} = 26, \\ & \langle \mathbf{u} \rangle = 38, \, \mathbf{u} = (12, 65) \\ \mathbf{Z} &= (\mathbf{X})^{0.5} \cdot (\mathbf{Y})^{0.3} \\ \mathbf{Q} &= 3.41, \, \mathbf{F} = 172, \, \mathbf{r} = 0.937, \, \mathbf{s}_{R} = 1.52, \, \mathbf{n} = 26, \\ & \langle \mathbf{u} \rangle = 33, \, \mathbf{u} = (10, 56) \end{split}$$

The best $X(K_p)$ term, which is here the only satisfactory K_p descriptor, is the following one that resembles strikingly the preceding X descriptor based on the Z-algorithm but which is not as good

Table 9: Valence Connectivity Indices for Halomethenes^a

CH_nX_{4-n}	D ^v	$^{0}\chi^{\mathrm{v}}$	$^{1}\chi^{\mathrm{v}}$	$\chi_{\mathfrak{t}}^{\mathrm{v}}$	$^0\!\chi^{ m v}_{ m d}$	$^{1}\chi^{\mathrm{v}}_{\mathrm{d}}$	$^{1}\chi^{v}_{s}$
CH_3F	8	1.37796	0.37796	0.37796	1.75	-4	0.35355
CH_2F_2	16	1.46304	0.53452	0.10102	-12.25	20.25	0.11111
CHF_3	24	1.71124	0.65465	0.03117	64.3125	-125	0.03162
CF_4	32	2.01186	0.75593	0.01020	-300.125	915.063	0.00826
CH ₃ Cl	4.11	1.56705	0.56705	0.56705	0.77750	-2.0055	0.49326
CH_2Cl_2	8.22	1.84120	0.80193	0.22737	-2.41802	6.52802	0.19569
$CHCl_3$	12.33	2.27849	0.98216	0.10527	5.64004	-28.5124	0.06621
CCl_4	16.44	2.76819	1.13410	0.05170	-11.6937	159.720	0.01978
CFCl ₃	20.33	2.57911	1.03955	0.03446	-26.3202	247.105	0.01590
CF_2Cl_2	24.22	2.38984	0.94492	0.02296	-59.2797	382.408	0.01278
$CHFCl_2$	16.22	2.08923	0.87288	0.07014	12.7028	-46.6804	0.05175
CHF ₂ Cl	20.11	1.90024	0.76377	0.04676	28.5823	-76.3875	0.04045
CF ₃ Cl	28.11	2.20094	0.85047	0.01531	-133.341	591.453	0.01028
CH ₂ FCl	12.11	1.65203	0.66816	0.15153	-5.44425	11.4998	0.14744
CH ₃ Br	2.75	1.75593	0.75593	0.75593	0.43750	-1.375	0.60302
CH_2Br_2	5.5	2.21896	1.06904	0.40406	-0.76563	3.51563	0.26667
$CHBr_3$	8.25	2.84514	1.30931	0.24939	1.00488	-13.3965	0.09660
CBr_4	11.00	3.52372	1.51186	0.16327	-1.17236	68.3206	0.03025
CF ₃ Br	26.75	2.38982	0.94491	0.02041	-75.0313	478.328	0.01143
CF_2Br_2	21.50	2.76779	1.13389	0.04082	-18.7478	250.035	0.01581
$CFBr_3$	16.25	3.14575	1.32288	0.08163	-4.68945	130.700	0.02187
CCl ₃ Br	15.08	2.95680	1.22840	0.06888	-6.58640	129.223	0.02299
CCl_2Br_2	13.72	3.14577	1.32289	0.09184	-3.70498	104.491	0.02446
CClBr ₃	12.36	3.33474	1.41737	0.12245	-2.08413	84.4917	0.02720
CH ₂ FBr	10.75	1.84100	0.80178	0.20203	-3.06250	8.43750	0.17213
CH ₂ ClBr	6.86	2.02999	0.93542	0.30305	-1.36106	4.79156	0.22842
CHFClBr	14.86	1.27820	0.98199	0.09352	7.14558	-36.2841	0.05870
CHF_2Br	18.75	2.08921	0.87287	0.06235	16.0781	-59.3750	0.04588
$CHFBr_2$	13.50	2.46717	1.09109	0.12470	4.01953	-28.2031	0.06657
CHCl ₂ Br	10.97	2.46719	1.09110	0.14029	3.17570	-22.1732	0.07508
$CHClBr_2$	9.61	2.65617	1.20020	0.18705	1.78639	-17.2349	0.08516
CFCl ₂ Br	18.97	2.76781	1.13390	0.04592	-14.8199	199.895	0.01768
$CFClBr_2$	17.61	2.95678	1.22839	0.06123	-8.33651	161.636	0.01966
CF ₂ ClBr	22.86	2.57881	1.03941	0.03061	-33.3460	309.217	0.01422

^a The δ valgorithm is δ v = $(2/n)^2 \delta$ v(ps), δ v(F) = 7, δ v(Cl) = 3.11, δ v(Br) = 1.75.

$$\begin{split} X(K_p) &= (\chi_t)^{3.9} [D^v + 3.7 \cdot (^0\chi^v)^{1.2} + 5.9 \cdot (\chi_t v)^{0.5} - \\ &\quad 4.2 \cdot (^0\chi)]^{4.2} \\ Q &= 2.65, F = 104, r = 0.901, s_R = 1.21, n = 26, \\ &\quad \langle u \rangle = 38, \textbf{u} = (12, 65) \end{split}$$

When this $X(K_p)$ term is used together with the previous Y term to build a mixed higher-order Z_p -type term, two types of Z_p terms can be detected. The first one is very similar to the previous one, while the second one shows the best overall modeling power. No such type of term could be detected with the molecular connectivity indices based on the Z-algorithm.

algorithm.
$$Z_p = [X(K_p)]^{0.5} \cdot (Y)^{0.3}$$

$$Q = 3.42, F = 173, r = 0.937, s_R = 1.52, n = 26,$$

$$\langle u \rangle = 35, \mathbf{u} = (13, 58), \mathbf{C} = (-0.00032, 9.23310)$$

$$Z_p = [(X(K_p))^{0.5} \cdot (Y)^{0.3} - (D^v)^{1.9}]^{0.9}$$

$$Q = 3.64, F = 196, r = 0.944, s_R = 1.58, n = 26,$$

The Minimum Anesthetic Concentration, logMAC. The previous best descriptors based on $\chi^v = f[Z^v/(Z-Z^v-1)]$ are ¹⁴

 $\langle \mathbf{u} \rangle = 34$, $\mathbf{u} = (14, 54)$, $\mathbf{C} = (-0.00093, 9.57433)$

{¹
$$\chi^{v}$$
}: Q = 6.65, F = 200, r = 0.978, s₀ = 0.15,
n = 11, $\langle u \rangle$ = 16, **u** = (14, 17)

$$Z = [(X)^{0.01} + (Y)^{0.9}]^5$$

$$Q = 17.7, F = 1414, r = 0.997, s_R = 2.50, n = 11,$$

$$\langle u \rangle = 38, \mathbf{u} = (38, 39)$$

where $X = ({}^{1}\chi^{v} + 1.2 \cdot \chi_{t})^{0.5}$: Q = 7.84, F = 278, r = 0.981, and $Y = ({}^{1}\psi_{I} + {}^{T}\psi_{I})/{}^{S}\psi_{E}$: Q = 15.3, F = 1065, r = 0.996. The $\chi^{v} = f(K_{p})$ indices instead do not to achieve the same optimal modeling, in fact

where $X(K_p) = (0.9 \cdot 1 \chi^v + \chi_t)^{0.05}$, Q = 5.43, F = 133, r = 0.968, and the Y term is the same of the previous case. But, now, it is possible to detect the following very interesting Z_p term which is formally equal to a very good descriptor found for logK

$$Z_p = [X(K_p)]^{0.5} \cdot (Y)^{0.3}$$

$$Q = 18.0, F = 1460, r = 0.997, s_R = 2.73, n = 11,$$

$$\langle u \rangle = 39, \mathbf{u} = (38, 39), \mathbf{C} = (-52.5598, 20.0485)$$

Figure 4 has been obtained with this Z_p term using once the correlation vector for logMAC and the other time the

Table 10. Rates of Hydrogen Abstraction for n=26 CFCs, logK, Logarithm of the Minimum Anesthetic Concentrations, logMAC, for n=11 Trifluoromethyl Ethanes, Each Followed by Calculated P_{clc} , and by the Percent Residual, $\Delta \% = |(p_{ex} - p_{calc}) \cdot 100/p_{ex}|$

CFC	logK	P_{clc}	$\Delta\%$	CFC	LogMAC	P_{clc}	$\Delta\%$
CH ₃ Cl	7.36	7.65	3.9	CH ₂ ClCF ₃	0.90	0.90	0.001
CH_2Cl_2	8.00	7.98	0.2	$CHCl_2CF_3$	0.43	0.41	0.05
$CHCl_3$	7.80	7.71	1.2	CHClFCF ₃	1.18	1.12	0.05
CH₃F	6.95	6.98	0.4	CHF_2CF_3	1.70	1.73	0.02
CH_2F_2	6.81	6.60	3.1	CH_3CF_3	1.60	1.63	0.02
CHF_3	5.10	5.39	5.7	CH_2BrCF_3	0.45	0.38	0.2
CH ₂ ClF	7.46	7.54	1.1	CH_2ICF_3	0.10	0.07	0.3
CHCl ₂ F	7.30	7.39	1.2	$CHFBrCF_3$	0.70	0.66	0.06
CHClF ₂	6.45	6.62	2.6	CHFICF ₃	0.30	0.36	0.2
CH ₃ CH ₂ Cl	8.37	8.19	2.2	CHClBrCF ₃	-0.10	-0.0003	1.0
CH_3CH_2F	8.14	7.87	3.3	$CHBr_2CF_3$	-0.40	-0.41	0.02
CH_3CHCl_2	8.20	7.93	3.3				
CH_3CHF_2	7.48	7.04	5.9				
CH_2FCH_2F	7.83	7.71	1.5				
CH ₂ ClCHCl ₂	8.28	8.24	0.5				
CH_2FCHF_2	7.47	7.15	4.3				
CH ₂ ClCF ₂ Cl	7.20	7.60	5.7				
CH_2ClCF_3	6.95	7.01	0.9				
CH_2FCF_3	6.70	6.36	5.1				
CHF_2CHF_2	6.50	6.72	3.3				
$CHCl_2CF_3$	7.40	7.23	2.3				
$CHClFCF_3$	6.87	6.66	3.0				
CHF_2CF_3	6.48	6.13	5.4				
CH ₃ CCl ₃	6.80	7.51	11				
CH_3CF_3	5.95	5.82	2.2				
CH ₃ CF ₂ Cl	6.60	6.69	1.3				

Table 11. Molecular Connectivity χ Values for 32 CFCs^a

CFC	D	$^{\mathrm{o}}\!\chi$	$^{1}\chi$	$\chi_{ m t}$	\mathbf{D}^{v}	$^{0}\chi^{\mathrm{v}}$	$^{1}\chi^{\mathrm{v}}$	$\chi_{\mathfrak{t}}^{\mathrm{v}}$
CH ₃ Cl	2	2	1	1	2	2	1	1
CH ₃ F	2	2	1	1	8	1.37796	0.37796	0.37796
CH_2Cl_2	4	2.70711	1.41421	0.70711	4	2.70711	1.41421	0.70711
CH_2F_2	4	2.70711	1.41421	0.70711	16	1.46304	0.53452	0.10102
CH ₂ ClF	4	2.70711	1.41421	0.70711	10	2.08507	0.97437	0.26726
CH ₃ CH ₂ F	4	2.70711	1.41421	0.70711	10	2.08507	0.97437	0.26726
CH ₃ CH ₂ Cl	4	2.70711	1.41421	0.70711	4	2.70711	1.41421	0.70711
CHF_3	6	3.57735	1.73205	0.57735	24	1.71124	0.65465	0.03117
CHCl ₂ F	6	3.57735	1.73205	0.57735	12	2.95531	2.37292	0.21822
CHClF ₂	6	3.57735	1.73205	0.57735	18	2.33328	1.01379	0.08248
CHCl ₃	6	3.57735	1.73205	0.57735	6	3.57735	1.73205	0.57735
CH ₃ CHCl ₂	6	3.57735	1.73205	0.57735	6	3.57735	1.73205	0.57735
CH_3CHF_2	6	3.57735	1.73205	0.57735	18	2.33328	1.01379	0.08248
CH ₂ FCH ₂ F	6	3.41421	1.91421	0.5	18	2.17014	1.03452	0.07143
CH ₂ ClCHCl ₂	8	4.28446	2.27006	0.40825	8	4.28446	2.27006	0.40825
CH_2FCHF_2	8	4.28446	2.27006	0.40825	26	2.41835	1.11195	0.02204
CH ₂ ClCF ₂ Cl	10	5.20711	2.56066	0.35355	22	3.96304	1.93862	0.5051
CH ₂ ClCF ₃	10	5.20711	2.56066	0.35355	28	3.34100	1.62761	0.01909
CH ₂ BrCF ₃	10	5.20711	2.56066	0.35355	27.33	4.07392	2.14586	0.03308
CH_2ICF_3	10	5.20711	2.56066	0.35355	27.16	4.81789	2.67192	0.04728
CH_3FCF_3	10	5.20711	2.56066	0.35355	34	2.71896	1.18776	0.00722
CHF_2CHF_2	10	5.15470	2.64273	0.33333	34	2.66656	1.20620	0.00680
CHCl ₂ CF ₃	12	6.07735	2.94338	0.28868	30	4.21124	2.01032	0.01559
CHClFCF3	12	6.07735	2.94338	0.28868	36	3.58921	1.65119	0.00589
CHF_2CF_3	12	6.07735	2.94338	0.28868	42	2.96717	1.29206	0.00223
CHClBrCF ₃	12	6.07735	2.94338	0.28868	29.33	4.94416	2.43347	0.02701
$CHFBrCF_3$	12	6.07735	2.94338	0.28868	35.33	4.32213	2.07434	0.1021
CHFICF ₃	12	6.07735	2.94338	0.28868	35.16	5.06610	2.50387	0.01459
CHBr ₂ CF ₃	12	6.07735	2.94338	0.28868	28.67	5.67708	2.85662	0.04681
CH ₃ CF ₃	8	4.5	2	0.5	26.0	2.63389	1.06695	0.02700
CH ₃ CF ₂ Cl	8	4.5	2	0.5	20	3.25593	1.37796	0.07143
CH ₃ CCl ₃	8	4.5	2	0.5	8	4.5	2	0.5

 $^{^{}a} \text{ Here, the algorithm for } \delta^{v} \text{ is obtained with the odd complete graph algorithm: } \delta^{v} = \delta^{v}(ps)/[pr+1]; \ \delta^{v}(F) = 7, \ \delta^{v}(Cl) = 1, \ \delta^{v}(Br) = 0.33.$

correlation vector for logK. The calculated values for logMAC and logK (P_{clc}) and the corresponding percent residuals of Table 10 have also been obtained in this way. The leave-one-out values (not shown) show similar results that compare positively with the previous values.¹⁴

CONCLUSION

The modeling of different properties of different classes of compounds to check the computational advantages of using odd complete graphs for the inner-core electrons shows positive and interesting results. The odd complete graph

Table 12. Molecular Pseudoconnectivity Index Values for n = 32 CFCs^a

CFC^a	$^{ ext{S}}\psi_{ ext{I}}$	$^0\psi_{ m I}$	$^1\psi_{ m I}$	${}^{\scriptscriptstyle \mathrm{T}}\psi_{\scriptscriptstyle \mathrm{I}}$	$^{ ext{S}}\psi_{ ext{E}}$	$^0\psi_{ m E}$	$^1\psi_{ m E}$	${}^{\scriptscriptstyle \mathrm{T}}\psi_{\scriptscriptstyle \mathrm{E}}$
CH ₃ Cl	6.11	1.20037	0.34879	0.34879	17.11	0.69281	0.11895	0.11895
CH_2Cl_2	9.72	1.80302	0.80550	0.19866	26.03	1.04637	0.26291	0.04122
CHCl3	13.66	2.34690	1.28314	0.10407	35.68	1.39314	0.42869	0.01386
CH ₃ F	10.00	1.06066	0.25000	0.25000	21.00	0.66645	0.10541	0.10541
CH_2F_2	17.50	1.52360	0.57735	0.10206	34.01	1.03057	0.26552	0.03413
CHF_3	25.33	1.92777	0.91971	0.03832	47.34	1.50947	0.56938	0.01251
CH_2CIF	23.61	1.66331	0.69142	0.14239	30.11	1.03275	0.26350	0.03722
CHCl ₂ F	17.55	2.20719	1.16200	0.07559	39.35	1.40229	0.45671	0.01310
$CHClF_2$	21.44	2.06748	1.04085	0.05346	43.45	1.42839	0.49624	0.01245
CH ₃ CH ₂ Cl	7.61	2.01687	0.98010	0.28479	24.11	1.07743	0.27124	0.04552
CH_3CH_2F	11.50	1.87716	0.86603	0.20412	28.00	1.06714	0.27526	0.04163
CH_3CHCl_2	11.55	2.56074	1.46857	0.14918	33.56	1.42391	0.43028	0.01539
CH_3CHF_2	19.33	2.28132	1.22628	0.07664	41.32	1.44814	0.49327	0.01376
CH_2FCH_2F	19.00	2.34010	1.24402	0.08333	41.00	1.42984	0.44802	0.01357
CH ₂ ClCHCl ₂	15.16	3.16340	1.96617	0.08497	42.67	1.77999	0.58378	0.00534
CH_2FCHF_2	26.83	2.74427	1.60981	0.03129	54.25	1.87126	0.74484	0.00489
CH ₂ ClCF ₂ Cl	23.97	3.86045	2.20669	0.04274	59.48	2.25853	0.99310	0.00191
CH_2ClCF_3	30.86	3.26485	2.08173	0.01592	63.85	2.42448	1.23127	0.00208
CH_2FCF_3	34.75	3.12514	1.96766	0.01141	67.74	2.62825	1.53805	0.00235
CHF_2CHF_2	34.66	3.14843	1.97816	0.01175	67.68	2.41002	1.20063	0.00196
CHCl ₂ CF ₃	34.80	3.80872	2.57968	0.00834	73.28	2.91742	1.63042	0.00083
CHClFCF ₃	38.69	3.66901	2.45853	0.00598	77.79	3.26865	2.19995	0.00104
CHF_2CF_3	42.58	3.52930	2.33739	0.00428	81.10	4.55532	4.38982	0.00210
CH ₃ CCl ₃	15.58	3.08133	1.95602	0.07590	43.08	1.77734	0.61915	0.00525
CH_3CF_3	27.25	2.66219	1.58114	0.02795	54.74	1.98926	0.95756	0.00542
CH ₃ CF ₂ Cl	23.36	2.80190	1.70610	0.03900	50.78	1.85862	0.77775	0.00509
CH_2BrCF_3	29.50	3.37461	2.17315	0.01941	62.14	2.52461	1.32327	0.00245
CH_2ICF_3	28.87	3.45839	2.39975	0.02217	61.88	2.39562	1.14897	0.00217
CHFBrCF ₃	37.33	3.77877	2.55371	0.00731	75.84	3.13653	1.95688	0.00100
CHFICF ₃	36.70	3.86255	2.62635	0.00832	75.22	3.09680	1.87379	0.00100
CHClBrCF ₃	33.44	3.91848	2.67485	0.01020	71.95	2.86487	1.52435	0.00083
$CHBr_2CF_3$	32.08	4.02824	2.77002	0.01246	70.57	2.82553	1.43874	0.00083

 a $\psi_{\rm E}$ values have been obtained with a rescaling procedure (S[C(CF₄)]= -5.5, see Method section).

Figure 4. Plot of the calculated vs the experimental logMAC (bottom, left-side) plus logK (top, right-side).

conjecture, when fails at the level of the single basis indices, or its combinations, seems, nevertheless, to work advantageously at the level of the CI-GTBI, which seems to prefer the K_p -odd-complete-graph valence molecular connectivity indices. The homogeneous description based on the $(2/n)^2\delta^v$ -(ps) algorithm for χ^{v} and ψ indices shows, instead, poor results. In addition to the computational advantage offered by this conjecture, there is a theoretical advantage for the introduction of odd complete graphs, as it gives to the whole theory of molecular connectivity a more coherent character. The K_p conjecture for the inner-core electrons has the advantage to render the molecule, together with the pseudograph and graph concept, a pure "graph object", as, now, the entire molecular framework can be "graphically"

encoded and used for predictive computations. Clearly this finding is only inductive and has only a heuristic value that should be checked further. In fact, other calculations are underway, to detect new applications of the conjecture, i.e., when and how it works.

At the margin of this conjecture there are other significant results of this study: (i) the importance of the ${}^{0}\chi^{v}$ indices, that are atom-based basis indices, in modeling the lattice enthalpies of metal halides, the molar refraction, and the parachor of halomethane, (ii) the importance of the total basis indices and pseudoindices in modeling the ionization potential of halomethane, (iii) the importance of the pseudo basis indices, ψ , in the modeling of R_m , BP, \mathcal{L} , and finally (iv) the interesting contribution of the dual indices in enhancing the descriptive quality of some terms.

The idea of a graph representation of a molecule is surely older than a century, the seminal studies of Harry Wiener are more than half a century old,29 while molecular connectivity is just a bit older than a quarter of a century.^{2,5,9} However the creativity they have engendered suggests the words of Bohren and Craig on another topic "be prepared for a journey, but do not expect a destination".30

ACKNOWLEDGMENT

I would like to thank Prof. R. Bruce King of the University of Georgia, Athens, and an unknown referee for many interesting and helpful suggestions and corrections.

REFERENCES AND NOTES

(1) Hankins, T. L. Blood, Dirt and Nomograms. A particular history of graphs. Isis 1999, 90, 50-80.

- (2) Randić, M.; Trinajstić, N. Notes on some less known early contributions to chemical graph theory. *Croat. Chem. Acta* **1994**, 67, 1–35.
- (3) Balaban, A. T. Applications of graph theory in chemistry. J. Chem. Inf. Comput. Sci. 1985, 25, 334–343.
- (4) Turro, N. J. Geometrical and topological thinking in organic chemistry. Angew. Chem. Int. Ed. Engl. 1986, 25, 882.
- (5) Hansen, P. J.; Jurs, P. C. Chemical applications of graph theory. J. Chem. Ed. 1988, 65, 574–580.
- (6) Trinajstić, N. Chemical Graph Theory; CRC Press: Boca Raton, 1992.
- (7) Temkin, O. D.; Zeigarnik, A. V.; Bonchev, D. Chemical reaction networks, A graph theoretical approach; CRC Press: Boca Raton, 1996
- (8) Klein, D. J.; Brickman, J., Eds. MATCH Commun. Math. Comput. Chem. 2000, 42, 1–290.
- (9) Kier, L. B.; Hall, L. H. Molecular Connectivity in Structure—Activity Analysis; Wiley: New York, 1986.
- (10) Kier, L. B.; Hall, L. H. Molecular Structure Description. The Electrotopological State; Academic Press: New York, 1999.
- (11) QSPR/QSAR Studies by Molecular Descriptors; Diudea, M. V., Ed.; Nova Science: New York, 2001.
- (12) Pogliani, L. From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors. *Chem. Rev.* 2000, 100, 3827–3858.
- (13) Pogliani, L. Modeling with molecular pseudoconnectivity descriptors. A useful extension of the intrinsic E-State concept. J. Phys. Chem. A 2000, 104, 9029–9045.
- (14) Pogliani, L. How far are molecular connectivity descriptors from IS molecular pseudoconnectivity descriptors? J. Chem. Inf. Comput. Sci. 2001, 41, 836–847.
- (15) Gutman, I.; Estrada, E. Topological Indices based on the line graph of the molecular graph. *J. Chem. Inf. Comput. Sci.* **1996**, *36*, 541–543
- (16) Basak, S. C.; Nikolić, S.; Trinajstić, N. QSPR Modeling: graph connectivity indices versus line graph connectivity indices. J. Chem. Inf. Comput. Sci. 2000, 40, 727–933.

- (17) Randić, M.; Pompe, M. The variable molecular descriptor based on distance related matrices. J. Chem. Inf. Comput. Sci. 2001, 41, 575, 581
- (18) Randić, M.; Basak, S. C. On use of the variable connectivity index ¹χ^f in QSAR: toxicity of aliphatic ethers. *J. Chem. Inf. Comput. Sci.* 2001, 41, 614–618.
- (19) Pogliani, L. Mixed Higher-Order Connectivity-Pseudoconnectivity Terms. In *Topology in Chemistry*; King, R. B., Rouvray, D., Eds.; Chichester, UK: Horwood Pub. Lim.: 2002.
- (20) Pogliani, L. Topics in molecular modeling: dual indices, quality of modeling and missing information, truncation. J. Mol. Struct. (THEOCHEM) 2002, 581, 87–109.
- (21) Pogliani, L. Modeling Enthalpy and hydration properties of inorganic compounds. Croat. Chim. Acta 1997, 70, 803–817.
- (22) Laing, M. Boiling points of the family of small molecules, CH_wF_x-Cl_yBr_z: how are they related to molecular mass? *J. Chem. Ed.* 2001, 78, 1544–1550.
- (23) Pogliani, L. Modeling with dual indices and complete graphs. The case of polarizabilities and dipole moments. Submitted for publication.
- (24) For an interesting discussion about Q statistics see the Milano Chemometrics and QSAR research group at http://www.disat.unimib.it/ CHMnews.htm.
- (25) Randić, M. Curve-fitting paradox. Int. J. Quantum. Chem.: Quant. Biol. Symp. 1994, 21, 215–225.
- (26) Gillespie, R. J. Electron densities, atomic charges, and ionic, covalent, and polar bonds. J. Chem. Ed. 2001, 78, 1688–1691.
- (27) Pogliani, L. Higher-level descriptors in molecular connectivity. Croat. Chem. Acta 2002, 75, in print.
- (28) Moore, W. J. Physical Chemistry; Prentice Hall: New Jersey, 1972.
- (29) Gutman, I., Klavzar, S., Mohar, B., Eds. *Match* **1997**, *35*, 1–259 (the entire number is dedicated to the Wiener index).
- (30) Bohren, C. F.; Albrecht, B. A. Atmospheric Thermodynamics; Oxford: Oxford, 1998.

CI020286M