Bayesian Regression

ESS 575 Models for Ecological Data

N. Thompson Hobbs

March 3 2019

Where are we?

Where are we?

Deterministic models

general linear nonlinear differential equations difference equations auto-regressive occupancy state-transition integral-projection

univariate and multivariate

Types of data

real numbers
non-negative real numbers
counts
0 to 1
0 or 1
counts in categories
proportions in categories
ordinal categories

Where are we?

Roadmap

- Today
 - Overview of simple Bayesian models
 - Exercise in writing regression models
 - ► Multi-level models
- Thursday: Introduction to hierarchical models
- Next two weeks: Practice writing models, learning JAGS
- Tuesday after spring break: debrief model writing problems
- Thursday after spring break: Nuts and bolts of regression
 - Standardizing
 - Interpreting coefficients
 - Matrix notation
 - Missing data
 - Some coding tricks

Learning outcomes for regression models

- Be able to write proper Bayesian, regression models for all types of data.
- Appreciate one-to-one relationship between math and JAGS code.
- Be able to interpret coefficients of general linear models.
- Know how and why to center or standardize data.
- Be able to translate scalar linear equations into matrix equations.
- Understand options for dealing with missing data
- Understand how to formulate multi-level models for slopes and intercepts (aka "random effects")

A great follow-up

This book should be in your library:

Bayesian regression models are buildig blocks for more complex models

Continent-wide Adélie penguin population dynamics

$$g(\beta, z_{i,t}) = \log(z_{i,t-1}e^{(\beta_{0,i} + \beta_1 \mathrm{wsic}_{i,t} + \beta_2 \mathrm{ssic}_{i,t} + \beta_3 \mathrm{krill}_{i,t})\Delta t})$$

$$y_{i,t} \sim \mathsf{Poisson}(z_{i,t})$$
 $z_{i,t} \sim \mathsf{lognormal}(z_{i,t} \mid g(\beta_{0,i}, \beta_1, \beta_2, \beta_3, z_{i,t-1}), \sigma^2_{\mathsf{process}})$ $\beta_{0,i} \sim \mathsf{normal}(\mu_{\mathsf{site}}, \varsigma^2_{\mathsf{site}})$

The general Bayesian set-up

Recall that the posterior distribution of the unobserved quantities conditional on the observed ones is proportional to their joint distribution:

$$[\theta|y] \propto [\theta, y].$$

The joint distribution can be factored into a likelihood and priors for simple Bayesian models:

$$[\theta, \sigma^2] = [y \mid \theta, \sigma^2][\theta][\sigma^2]$$

A deterministic model of an ecological process is embedded in the likelihood like this. . .

$$[\boldsymbol{\theta}, \sigma^2] \propto [y \mid g(\boldsymbol{\theta}, x), \sigma^2] [\boldsymbol{\theta}] [\sigma^2]$$

Simple Bayesian regression models

As always, we start with a deterministic model,

$$\mu_i = \underbrace{g(\beta, x_i)}_{\text{deterministic model}}$$

where β is a vector of regression coefficients and \mathbf{x}_i is a vector or predictor variables corresponding to observation y_i . We use likelihood to connect the predictions of our model to data:

$$\underbrace{[y_i \mid \mu_i, \sigma^2]}_{\text{tochastic model}}$$

$$[\boldsymbol{\beta}, \sigma^2 \mid \mathbf{y}] \propto \prod_{i=1}^n [y_i \mid g(\boldsymbol{\beta}, x_i), \sigma^2] [\boldsymbol{\theta}] [\sigma^2]$$

We choose appropriate deterministic functions (linear or non-linear) and appropriate probability distributions to compose a specific model. Simple and flexible.

Identical notation

$$y_i = g(\beta, x_i) + \epsilon_i$$

 $\epsilon_i \sim \text{normal}(0, \sigma^2)$

is the same as

$$y_i \sim \text{normal}(g(\beta, x_i), \sigma^2),$$

but the second notation is much more flexible because it doesn't require additive errors.

You don't have to be normal!

Data (y-values)	Distribution	Mean function	Link
continuous, real valued	normal	$\mu = \beta_0 + \beta_1 x$	NA
discrete, strictly positive	Poisson	$\mu = \mathrm{e}^{eta_0 + eta_1 \mathrm{x}}$	$\log(\mu) = \beta_0 + \beta_1 x$
0 or 1	Bernoulli	$\mu = \frac{\exp(\beta_0 + \beta_1 x)}{\exp(\beta_0 + \beta_1 x) + 1}$	$\operatorname{logit}\left(\mu\right) = \operatorname{log}\left(\frac{\mu}{1-\mu}\right) = \beta_0 + \beta_1 x$
0 – 1	beta	$\mu = \frac{\exp(\beta_0 + \beta_1 x)}{\exp(\beta_0 + \beta_1 x) + 1}$	$\operatorname{logit}\left(\mu\right) = \operatorname{log}\left(\frac{\mu}{1-\mu}\right) = \beta_0 + \beta_1 x$
continuous, strictly positive	lognormal or gamma	$\mu = \mathrm{e}^{\beta_0 + \beta_1 x}$	$\log\left(\mu\right) = \beta_0 + \beta_1 x$

N. Thompson Hobbs Bayesian Regression March 3 2019 12 / 12