6.1. Intensity of diffracted intensities

By P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O'Keefe and B. T. M. Willis

6.1.1. X-ray scattering (By E. N. Maslen, A. G. Fox, and M. A. O'Keefe)

6.1.1.1. Coherent (Rayleigh) scattering

An electromagnetic wave incident on a tightly bound electron is scattered coherently. For an incident wave of unit amplitude with the electric vector normal to the plane of the reflection x0y containing the incident and diffracted beams (Fig. 6.1.1.1), the amplitude of the scattered wave at a distance r is

$$r_e/r,$$
 (6.1.1.1)

where $r_e = (\mu_0/4\pi)(e^2/m)$ is the classical radius of the electron $(2.818 \times 10^{-15} \, \mathrm{m})$.

For a wave with the electric vector parallel to the plane x0y, the amplitude of the scattered wave is

$$\frac{r_e}{r}\cos 2\theta. \tag{6.1.1.2}$$

For unpolarized incident radiation with unit mean amplitude, the amplitude of the scattered wave is given by the Thomson formula

$$\frac{r_e}{r} \left\{ \frac{1 + \cos^2 2\theta}{2} \right\}^{1/2}.$$
 (6.1.1.3)

The corresponding intensity of scattering per unit solid angle is

$$I_e = I_o r_e^2 \left[\frac{1 + \cos^2 2\theta}{2} \right] \tag{6.1.1.4}$$

for an unpolarized incident beam of intensity I_o .

6.1.1.2. Incoherent (Compton) scattering

For scattering from a free electron, the quantum nature of the radiation must be considered. Under the impact of a photon with energy hc/λ , momentum h/λ , the recoil of an electron, initially at rest, results in a change in wavelength of

$$\Delta \lambda = \frac{2h}{mc} \sin^2 \theta, \qquad (6.1.1.5)$$

a geometry similar to that in Fig. 6.1.1.1 being assumed. There is no fixed relationship between the phases of the incident and scattered beams – *i.e.* the scattering is incoherent. The intensity I_e predicted by the Thomson formula is modified by the correction factor $\left[\lambda/(\lambda+\Delta\lambda)\right]^3$.

6.1.1.3. Atomic scattering factor

For scattering by atomic electrons there are both coherent and incoherent components, with total intensity given by the

Fig. 6.1.1.1. Scattering by an electron. \mathbf{k}_0 and \mathbf{k} are the incident and scattered wavevectors, respectively.

Thomson formula. The phase for coherent scattering is by convention related to that of a free electron at the nucleus. There is a phase shift of π for scattering from a free electron. The scattering from an element of electron density $\rho(\mathbf{r}_j)$ has a phase difference of $i\mathbf{S} \cdot \mathbf{r}_i$, where

$$S = 2\pi s.$$
 (6.1.1.6)

The total amplitude for coherent scattering from the jth electron is

$$f_i = \int \rho(\mathbf{r}_i) \exp(i\mathbf{S} \cdot \mathbf{r}_i) \, \mathrm{d}\mathbf{r}_i. \tag{6.1.1.7}$$

The intensity of coherent scattering is

$$I_{\rm coh} = I_e f_i^2$$
. (6.1.1.8)

The intensity of Compton scattering from that electron is

$$I_{\text{incoh}} = I_e - I_{\text{coh}} = I_e (1 - f_i^2).$$
 (6.1.1.9)

For an atom with atomic number Z,

$$I_{\text{coh}} = I_e \left(\sum_{i=1}^{Z} f_i\right)^2$$
 (6.1.1.10)

and

$$I_{\text{incoh}} = I_e \left(Z - f_j^2 - \sum_{j,k} f_{jk} \right),$$
 (6.1.1.11)

where the correction term

$$f_{ik} = \int \psi_i^* \psi_k \exp(i\mathbf{S} \cdot \mathbf{r}) \, d\mathbf{r}, \qquad (6.1.1.12)$$

owing to exchange, meets the requirements of the Pauli exclusion principle.

Atomic scattering factors for neutral atoms are listed in Table 6.1.1.1 for the range $0 < (\sin \theta)/\lambda < 6.0 \text{ Å}^{-1}$. The values for hydrogen are calculated from the analytical solution to the Schrödinger equation and are effectively $(\sin \theta)/\lambda > 1.5 \text{ Å}^{-1}$. Those for heavier atoms are for relativistic wavefunctions, based on the calculations of Doyle & Turner (1968) using the wavefunctions of Coulthard (1967) (designated RHF in Table 6.1.1.1), or on those of Cromer & Waber (1968) using the wavefunctions of Mann (1968a) (designated *RHF). The latter are based on a more exact treatment of potential that allows for the finite size of the nucleus, but the effect on the scattering factors is small. The calculations of Cromer & Waber (1968) were originally made for $0 < (\sin\theta)/\lambda < 2.0 \ \text{Å}^{-1}$, but these have been extended to $6 \ \text{Å}^{-1}$ by Fox, O'Keefe & Tabbernor (1989); this has been done because there are increasing numbers of applications for high-angle scattering factors.

For a detailed study of the effect of changes in the electron density due to chemical bonding and lattice formation, a more general procedure is necessary, as described in Subsection 6.1.1.4. The changes due to chemical bonding are small in absolute terms, and are relatively small except in the case of hydrogen.

A more approximate treatment is adequate for many purposes. An isotropic approximation to the scattering factor for bonded hydrogen, based on an analysis of the hydrogen molecule by Stewart, Davidson & Simpson (1965), is listed in Table 6.1.1.2.

Scattering for ionic models of solids may be related to the scattering factors for the corresponding free ions. Values for

Table 6.1.1.1. Mean atomic scattering factors in electrons for free atoms

Methods: E: exact; RHF, *RHF (see text): relativistic Hartree-Fock.

Element Z Method $(\sin \theta)/\lambda \ (\mathring{A}^{-1})$	H	He	Li	Be	B	C	N	O	F	Ne
	1	2	3	4	5	6	7	8	9	10
	E	RHF	RHF	RHF	RHF	RHF	RHF	RHF	RHF	RHF
0.00	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000
0.01	0.998	1.998	2.986	3.987	4.988	5.990	6.991	7.992	8.993	9.993
0.02	0.991	1.993	2.947	3.950	4.954	5.958	6.963	7.967	8.970	9.973
0.03	0.980	1.984	2.884	3.889	4.897	5.907	6.918	7.926	8.933	9.938
0.04	0.966	1.972	2.802	3.807	4.820	5.837	6.855	7.869	8.881	9.891
0.05	0.947	1.957	2.708	3.707	4.724	5.749	6.776	7.798	8.815	9.830
0.06	0.925	1.939	2.606	3.592	4.613	5.645	6.682	7.712	8.736	9.757
0.07	0.900	1.917	2.502	3.468	4.488	5.526	6.574	7.612	8.645	9.672
0.08	0.872	1.893	2.400	3.336	4.352	5.396	6.453	7.501	8.541	9.576
0.09	0.842	1.866	2.304	3.201	4.209	5.255	6.321	7.378	8.427	9.469
0.10	0.811	1.837	2.215	3.065	4.060	5.107	6.180	7.245	8.302	9.351
0.11	0.778	1.806	2.135	2.932	3.908	4.952	6.030	7.103	8.168	9.225
0.12	0.744	1.772	2.065	2.804	3.756	4.794	5.875	6.954	8.026	9.090
0.13	0.710	1.737	2.004	2.683	3.606	4.633	5.714	6.798	7.876	8.948
0.14	0.676	1.701	1.950	2.569	3.459	4.472	5.551	6.637	7.721	8.799
0.15	0.641	1.663	1.904	2.463	3.316	4.311	5.385	6.472	7.560	8.643
0.16	0.608	1.624	1.863	2.365	3.179	4.153	5.218	6.304	7.395	8.483
0.17	0.574	1.584	1.828	2.277	3.048	3.998	5.051	6.134	7.226	8.318
0.18	0.542	1.543	1.796	2.197	2.924	3.847	4.886	5.964	7.055	8.150
0.19	0.511	1.502	1.768	2.125	2.808	3.701	4.723	5.793	6.883	7.978
0.20	0.481	1.460	1.742	2.060	2.699	3.560	4.563	5.623	6.709	7.805
0.22	0.424	1.377	1.693	1.951	2.503	3.297	4.254	5.289	6.362	7.454
0.24	0.373	1.295	1.648	1.864	2.336	3.058	3.963	4.965	6.020	7.102
0.25	0.350	1.254	1.626	1.828	2.263	2.949	3.825	4.808	5.851	6.928
0.26	0.328	1.214	1.604	1.795	2.195	2.846	3.693	4.655	5.685	6.754
0.28	0.287	1.136	1.559	1.739	2.077	2.658	3.445	4.363	5.363	6.412
0.30	0.251	1.060	1.513	1.692	1.979	2.494	3.219	4.089	5.054	6.079
0.32	0.220	0.988	1.465	1.652	1.897	2.351	3.014	3.834	4.761	5.758
0.34	0.193	0.920	1.417	1.616	1.829	2.227	2.831	3.599	4.484	5.451
0.35	0.180	0.887	1.393	1.600	1.799	2.171	2.747	3.489	4.353	5.302
0.36	0.169	0.856	1.369	1.583	1.771	2.120	2.667	3.383	4.225	5.158
0.38	0.148	0.795	1.320	1.551	1.723	2.028	2.522	3.186	3.983	4.880
0.40	0.130	0.738	1.270	1.520	1.681	1.948	2.393	3.006	3.759	4.617
0.42	0.115	0.686	1.221	1.489	1.644	1.880	2.278	2.844	3.551	4.370
0.44	0.101	0.636	1.173	1.458	1.611	1.821	2.178	2.697	3.360	4.139
0.45	0.095	0.613	1.149	1.443	1.596	1.794	2.132	2.629	3.270	4.029
0.46	0.090	0.591	1.125	1.427	1.581	1.770	2.089	2.564	3.183	3.923
0.48	0.079	0.548	1.078	1.395	1.553	1.725	2.011	2.445	3.022	3.722
0.50	0.071	0.509	1.033	1.362	1.526	1.685	1.942	2.338	2.874	3.535
0.55	0.053	0.423	0.924	1.279	1.463	1.603	1.802	2.115	2.559	3.126
0.60	0.040	0.353	0.823	1.195	1.402	1.537	1.697	1.946	2.309	2.517
0.65	0.031	0.295	0.732	1.112	1.339	1.479	1.616	1.816	2.112	2.517
0.70	0.024	0.248	0.650	1.030	1.276	1.426	1.551	1.714	1.956	2.296
0.80	0.015	0.177	0.512	0.876	1.147	1.322	1.445	1.568	1.735	1.971
0.90	0.010	0.129	0.404	0.740	1.020	1.219	1.353	1.463	1.588	1.757
1.00	0.007	0.095	0.320	0.622	0.900	1.114	1.265	1.377	1.482	1.609
1.10	0.005	0.072	0.255	0.522	0.790	1.012	1.172	1.298	1.398	1.502
1.20	0.003	0.055	0.205	0.439	0.690	0.914	1.090	1.221	1.324	1.418
1.30	0.003	0.042	0.165	0.369	0.602	0.822	1.004	1.145	1.254	1.346
1.40	0.002	0.033	0.134	0.311	0.524	0.736	0.921	1.070	1.186	1.280
1.50	0.001	0.026	0.110	0.263	0.457	0.659	0.843	0.997	1.120	1.218
1.60		0.021	0.091	0.223	0.398	0.588	0.769	0.926	1.055	1.158
1.70		0.017	0.075	0.190	0.347	0.525	0.700	0.857	0.990	1.099
1.80		0.014	0.063	0.163	0.304	0.468	0.636	0.792	0.928	1.041
1.90		0.011	0.053	0.139	0.266	0.418	0.578	0.731	0.868	0.984
2.00		0.010	0.044	0.120	0.233	0.373	0.525	0.674	0.810	0.929
2.50 3.00 3.50 4.00 5.00 6.00		0.004 0.002 0.001 0.001	0.021 0.011 0.006 0.004 0.002 0.001	0.060 0.033 0.019 0.012 0.005 0.003	0.126 0.072 0.043 0.027 0.012 0.006	0.216 0.130 0.081 0.053 0.025 0.013	0.324 0.204 0.132 0.088 0.043 0.023	0.443 0.292 0.196 0.134 0.067 0.037	0.564 0.389 0.270 0.190 0.099 0.055	0.680 0.489 0.331 0.254 0.137 0.079

Table 6.1.1.1. Mean atomic scattering factors for free atoms (cont.)

Element	Na	Mg	Al	Si	P	S	Cl	Ar	K	Ca
Z Method $(\sin \theta)/\lambda \ (\mathring{A}^{-1})$	11	12	13	14	15	16	17	18	19	20
	RHF									
0.00	11.000	12.000	13.000	14.000	15.000	16.000	17.000	18.000	19.000	20.000
0.01	10.980	11.978	12.976	13.976	14.977	15.979	16.980	17.981	18.963	19.959
0.02	10.922	11.914	12.903	13.904	14.909	15.915	16.919	17.924	18.854	19.838
0.03	10.830	11.811	12.786	13.787	14.798	15.809	16.820	17.830	18.683	19.645
0.04	10.709	11.674	12.629	13.628	14.646	15.665	16.683	17.700	18.462	19.392
0.05	10.568	11.507	12.439	13.434	14.458	15.484	16.511	17.536	18.204	19.091
0.06	10.412	11.319	12.222	13.209	14.237	15.271	16.306	17.340	17.924	18.758
0.07	10.249	11.116	11.987	12.961	13.990	15.030	16.073	17.116	17.630	18.405
0.08	10.084	10.903	11.739	12.695	13.721	14.764	15.814	16.865	17.332	18.045
0.09	9.920	10.687	11.485	12.417	13.435	14.478	15.533	16.591	17.032	17.685
0.10	9.760	10.472	11.230	12.134	13.138	14.177	15.234	16.298	16.733	17.331
0.11	9.605	10.262	10.978	11.849	12.834	13.865	14.921	15.988	16.436	16.987
0.12	9.455	10.059	10.733	11.567	12.527	13.546	14.597	15.665	16.138	16.655
0.13	9.309	9.864	10.498	11.292	12.223	13.224	14.266	15.331	15.841	16.334
0.14	9.166	9.678	10.273	11.025	11.922	12.902	13.932	14.991	15.543	16.024
0.15	9.027	9.502	10.059	10.769	11.629	12.583	13.597	14.647	15.243	15.723
0.16	8.888	9.334	9.857	10.525	11.345	12.270	13.263	14.301	14.941	15.430
0.17	8.751	9.175	9.667	10.293	11.072	11.964	12.934	13.957	14.638	15.142
0.18	8.613	9.023	9.487	10.074	10.811	11.668	12.611	13.615	14.334	14.859
0.19	8.475	8.876	9.318	9.868	10.563	11.382	12.297	13.279	14.031	14.580
0.20	8.335	8.735	9.158	9.673	10.327	11.109	11.991	12.949	13.728	14.304
0.22	8.052	8.465	8.862	9.319	9.894	10.598	11.413	12.315	13.130	13.760
0.24	7.764	8.205	8.592	9.004	9.510	10.138	10.881	11.721	12.550	13.225
0.25	7.618	8.078	8.465	8.859	9.335	9.927	10.633	11.441	12.268	12.961
0.26	7.471	7.951	8.341	8.722	9.170	9.727	10.398	11.172	11.994	12.701
0.28	7.176	7.698	8.103	8.467	8.869	9.363	9.964	10.671	11.468	12.194
0.30	6.881	7.446	7.873	8.231	8.600	9.039	9.576	10.216	10.977	11.705
0.32	6.588	7.194	7.648	8.011	8.357	8.752	9.231	9.807	10.521	11.240
0.34	6.298	6.943	7.426	7.800	8.134	8.494	8.923	9.441	10.103	10.800
0.35	6.156	6.817	7.316	7.698	8.029	8.376	8.782	9.272	9.908	10.590
0.36	6.015	6.691	7.205	7.597	7.928	8.262	8.649	9.113	9.722	10.388
0.38	5.739	6.442	6.985	7.398	7.733	8.051	8.403	8.820	9.375	10.004
0.40	5.471	6.194	6.766	7.202	7.547	7.856	8.181	8.558	9.061	9.650
0.42	5.214	5.951	6.548	7.008	7.367	7.673	7.979	8.322	8.778	9.324
0.44	4.967	5.712	6.330	6.815	7.190	7.501	7.794	8.110	8.522	9.025
0.45	4.848	5.595	6.222	6.719	7.103	7.417	7.706	8.011	8.403	8.885
0.46	4.731	5.480	6.115	6.622	7.017	7.335	7.621	7.917	8.290	8.752
0.48	4.506	5.253	5.902	6.431	6.845	7.174	7.459	7.739	8.080	8.502
0.50	4.293	5.034	5.692	6.240	6.674	7.017	7.305	7.575	7.889	8.275
0.55	3.811	4.520	5.186	5.769	6.250	6.633	6.941	7.207	7.474	7.788
0.60	3.398	4.059	4.713	5.312	5.829	6.254	6.595	6.875	7.125	7.392
0.65	3.048	3.652	4.277	4.878	5.418	5.877	6.254	6.560	6.814	7.057
0.70	2.754	3.297	3.883	4.470	5.020	5.505	5.915	6.252	6.523	6.762
0.80	2.305	2.729	3.221	3.750	4.284	4.790	5.245	5.639	5.961	6.228
0.90	1.997	2.317	2.712	3.164	3.649	4.138	4.607	5.036	5.406	5.717
1.00	1.784	2.022	2.330	2.702	3.122	3.570	4.023	4.460	4.859	5.209
1.10	1.634	1.812	2.049	2.346	2.698	3.092	3.509	3.931	4.337	4.710
1.20	1.524	1.660	1.841	2.076	2.364	2.699	3.070	3.462	3.855	4.233
1.30	1.438	1.546	1.687	1.872	2.104	2.384	2.704	3.056	3.423	3.791
1.40	1.367	1.459	1.571	1.717	1.903	2.133	2.405	2.713	3.045	3.391
1.50	1.304	1.387	1.481	1.598	1.747	1.935	2.162	2.427	2.722	3.039
1.60	1.247	1.326	1.408	1.505	1.626	1.779	1.967	2.192	2.450	2.733
1.70	1.191	1.270	1.346	1.430	1.530	1.655	1.811	2.000	2.221	2.470
1.80	1.137	1.219	1.292	1.367	1.453	1.557	1.686	1.844	2.033	2.250
1.90	1.084	1.169	1.243	1.313	1.389	1.477	1.585	1.717	1.876	2.063
2.00	1.032	1.120	1.195	1.264	1.333	1.411	1.502	1.614	1.748	1.908
2.50	0.791	0.892	0.979	1.056	1.122	1.182	1.240	1.301	1.367	1.444
3.00	0.591	0.691	0.783	0.867	0.942	1.009	1.069	1.123	1.174	1.225
3.50	0.438	0.527	0.615	0.699	0.777	0.849	0.915	0.974	1.028	1.078
4.00	0.325	0.401	0.478	0.566	0.632	0.705	0.773	0.836	0.895	0.949
5.00	0.183	0.234	0.290	0.349	0.411	0.474	0.536	0.597	0.657	0.715
6.00	0.107	0.141	0.179	0.222	0.268	0.316	0.367	0.419	0.472	0.524

Table 6.1.1.1. Mean atomic scattering factors for free atoms (cont.)

Element	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
Z Method	21 RHF	22 RHF	23 RHF	24 RHF	25 RHF	26 RHF	27 RHF	28 RHF	29 RHF	30 RHF
$(\sin \theta)/\lambda \ (\mathring{A}^{-1})$	KIII	KIII	KIII	KIII	KIII	KIII	KIII	KIII	KIII	KIII
0.00	21.000	22.000	23.000	24.000	25.000	26.000 25.970	27.000 26.972	28.000 27.973	29.000	30.000
0.01	20.962	21.964	22.966	23.971 23.885	24.969 24.876	25.970 25.882	26.972 26.887	27.973 27.892	28.977	29.975
0.02 0.03	20.848 20.665	21.856 21.682	22.864 22.698	23.885	24.876	25.882	26.887	27.892	28.908 28.794	29.900 29.777
0.04	20.422	21.451	22.477	23.558	24.523	25.543	26.562	27.579	28.640	29.609
0.05	20.131	21.171	22.208	23.329	24.274	25.304	26.331	27.356	28.448	29.401
0.06	19.805 19.455 19.091 18.723	20.854	21.902	23.065	23.988	25.026	26.063	27.096	28.223	29.157
0.07 0.08	19.455	20.511 20.150	21.567 21.212	22.772 22.459	23.671 23.331	24.719 24.387	25.764	26.806 26.490	27.971 27.694	28.883 28.583
0.08	19.091	19.781	20.846	22.439	23.331 22.976	24.387	25.440 25.098	26.490	27.694	28.263
0.10	18.356	19.410	20.474	21.789	22.611	23.678	24.744	25.807	27.084	27.927
0.11	17.995	19.041	20.102	21.441	22.240	23.310	24.380	25.448	26.758	27.579
0.12	17.643	18.678 18.322	19.733	21.089	21.868	22.939 22.568	24.011	25.083	26.422	27.222
0.13 0.14	17.301 16.968	18.322 17.974	19.369 19.011	20.734 20.378	21.497 21.128	22.568 22.197	23.641 23.270	24.714 24.344	26.077 25.726	26.859 26.492
0.14	16.645	17.635	18.661	20.022	20.764	21.829	22.900	23.973	25.370	26.124
0.16	16.330	17.304	18.317	19.667	20.404	21.465	22.533	23.604	25.009	25.754
0.17	16.023 15.722	16.980	17.980	19.312	20.049 19.699	21.104	22.168	23.237 22.872	24.645	25.385
0.18 0.19	15.722	16.663	17.649	18.960	19.699	20.748 20.395	21.806	22.872	24.278	25.017
0.19	15.426 15.135	16.351 16.044	17.323 17.003	18.609 18.260	19.354 19.012	20.395	21.448 21.093	22.510 22.150	23.910 23.540	24.649 24.283
0.22 0.24	14.564	15.444	16.376 15.765	17.570 16.893	18.342 17.686	19.359 18.685	20.393 19.704	21.438 20.737	22.798 22.057	23.556 22.836
0.25	14.006 13.732	14.859 14.572	15.465	16.561	17.364	18.354	19.364	20.737	21.687	22.478
0.26	13.462	14.289	15.169	16.232	17.045	18.025	19.027	20.046	21.319	22.122
0.28 0.30	12.933 12.423	13.735 13.198	14.589 14.026	15.588 14.965	16.417 15.806	17.378 16.744	18.361 17.709	19.365 18.696	20.589 19.869	21.417 20.720
0.32 0.34	11.934	12.682 12.187 11.949	13.482 12.959	14.365 13.790	15.211 14.634	16.127 15.527	17.072 16.450	18.040 17.398	19.162 18.472	20.034 19.359
0.35	11.467 11.244	11.949	12.705	13.790	14.353	15.233	16.145	17.398	18.133	19.027
0.36	11.027	11.717	12.458	13.242	14.078	14.945	15.845	16.773	17.799	18.698
0.38 0.40	10.613 10.226	11.271 10.852	11.982 11.530	12.720 12.227	13.543 13.031	14.384 13.845	15.260 14.695	16.165 15.576	17.145 16.514	18.051 17.421
0.42	9.866 9.534	10.459 10.093	11.105 10.705	11.762 11.326	12.543 12.080	13.328 12.835	14.151 13.630	15.008 14.461	15.904 15.318	16.809 16.216
0.44 0.45	9.377	9.920	10.515	11.118	11.858	12.598	13.379	14.196	15.034	15.926
0.46	9.227	9.753	10.332	10.917	11.642	12.367	13.133	13.937	14.757	15.642
0.48 0.50	8.946 8.687	9.438 9.148	9.984 9.660	10.536 10.180	11.228 10.840	11.922 11.502	12.659 12.209	13.435 12.956	14.219 13.707	15.090 14.559
0.55 0.60	8.132 7.682	8.518 8.007	8.952 8.373	9.400 8.756	9.973 9.245	10.557 9.753	11.188 10.309	11.862 10.909	12.533 11.507	13.328 12.235
0.65	7.312	7.588	7.898	8.227	8.639	9.077	9.561	10.090	10.621	11.276
0.70	6.996	7.240	7.506	7.791	8.137	8.512	8.930	9.392	9.861	10.442
0.80 0.90	6.460 5.975	6.676 6.200	6.892 6.406	7.118 6.606	7.368 6.808	7.645 7.023	7.955 7.259	8.301 7.519	8.663 7.799	9.108 8.132
1.00	5.501	5.752	5.972	6.172	6.359	6.545	6.738	6.944	7.166	7.417
1.10	5.030	5.310	5.553	5.768	5.962	6.143	6.318	6.495	6.681	6.879
1.20	4.570	4.872	5.139	5.372	5.586	5.775	5.950	6.118	6.285	6.453
1.30	4.131 3.722	4.445 4.038	4.730 4.333	4.982 4.597	5.215 4.849	5.420 5.070	5.601 5.270	5.776 5.451	5.939 5.617	6.096 5.775
1.40 1.50	3.722	4.038 3.660	4.333 3.956	4.397	4.849 4.490	4.725	5.270 4.939	5.431	5.308	5.775 5.473
1.60	3.023	3.316	3.604	3.874	4.144	4.388	4.611	4.819	5.005	5.180
1.70	2.733	3.006	3.281	3.545	3.814	4.062	4.295	4.511	4.705	4.892
1.80	2.485	2.734	2.992	3.244	3.506	3.753	3.989	4.211	4.413	4.610
1.90 2.00	2.271 2.090	2.496 2.290	2.733 2.506	2.971 2.727	3.221 2.963	3.463 3.195	3.697 3.424	3.922 3.647	4.128 3.855	4.332 4.063
2.50 3.00	1.533 1.279	1.637 1.338	1.756 1.404	1.888 1.479	2.037 1.563	2.197 1.658	2.366 1.763	2.543 1.878	2.721 2.001	2.908 2.135
3.50	1.125	1.171	1.217	1.266	1.319	1.377	1.441	1.512	1.590	1.677
4.00 5.00	0.998 0.770	1.044 0.821	1.087 0.869	1.129 0.914	1.171 0.956	1.213 0.995	1.258 1.033	1.306 1.069	1.358 1.105	1.414 1.140
6.00	0.770	0.821	0.869	0.914	0.956	0.995	0.853	0.892	0.929	1.140 0.964
2.00		=.0 = .	2.0		,0,	2.012	1.000	2.02	/ - /	

Table 6.1.1.1. Mean atomic scattering factors for free atoms (cont.)

Element	Ga	Ge	As	Se	Br	Kr	Rb	Sr	Y	Zr
Z Method	31 RHF	32 RHF	33 RHF	34 RHF	35 RHF	36 RHF	37 RHF	38 RHF	39 *RHF	40 *RHF
$(\sin \theta)/\lambda \ (\mathring{A}^{-1})$	KHF	КНГ	KHF	KHF	KHF	KHF	KHF	KHF	*KHF	*КПГ
0.00	31.000	32.000	33.000	34.000 33.970	35.000 34.971	36.000 35.972	37.000 36.952	38.000 37.946	39.000	40.000
0.01 0.02	30.971	31.970 31.878	32.970 32.879	33.970 33.881	34.971 34.883	35.972 35.886	36.952 36.809	37.946 37.786	38.947 38.792	39.949 39.800
0.02	30.883 30.740	31.729	32.730	33.734	34.883	35.744	36.583	37.780	38.543	39.559
0.04	30.546	31.526	32.527	33.532	34.540	35.549	36.291	37.197	38.212	39.237
0.05	30.308	31.276	32.274	33.280	34.291	35.304	35.948	36.802	37.816	38.847
0.06	30.031 29.724	30.984	31.977	32.982	33.995 33.658	35.011	35.571	36.363	37.369	38.403
0.07 0.08	29.724 29.391	30.657	31.642 31.276	32.645 32.273	33.658 33.284	34.677 34.305	35.171 34.758	35.897 35.418	36.889 36.387	37.921 37.412
0.09	29.040	30.657 30.302 29.926 29.534	30.884	31.872	32.880	33.899	34.336	34.937	35.876	36.887
0.10	28.675	29.534	30.473	31.449	32.450	33.467	33.907	34.458	35.364	36.356
0.11	28.302	29.133	30.049	31.009	32.000	33.011 32.537	33.473	33.986	34.855	35.824
0.12 0.13	27.924 27.543	28.725 28.316	29.616 29.179	30.557 30.099	31.535 31.060	32.537 32.051	33.034 32.588	33.522 33.066	34.354 33.861	35.296 34.775
0.14	27.162	27.908	28.742	29.637	30.578	31.555	32.137	32.616	33.378	34.262
0.15	26.783	27.504	28.307	29.175	30.095	31.055	31.681	32.171	32.904	33.758
0.16	26.406	27.104	27.877	28.718	29.613	30.553	31.220 30.757	31.730	32.437	33.263
0.17 0.18	26.033 25.663	26.709 26.322	27.454 27.039	28.266 27.822	29.136 28.664	30.053 29.558	30.757 30.293	31.292 30.856	31.977 31.523	32.776 32.298
0.19	25.297	25.941	26.633	27.387	28.202	29.070	29.830	30.421	31.075	31.827
0.20	24.935	25.567	26.235	26.962	27.749	28.590	29.368	29.988	30.631	31.363
0.22	24.121	24.839 24.135 23.791 23.452	25.469	26.145	26.876	27.663	28.459	29.128	29.758	30.454
0.24 0.25	23.520 23.174	24.135	24.739	25.372 25.001	26.052 25.658	26.784 26.364	27.576 27.148	28.280 27.863	28.904	29.572
0.25	23.174 22.830	23.452	24.386 24.041	23.001	25.276	25.957	26.729	27.452	28.485 28.071	29.141 28.716
0.28	22.151	22.787	23.370	23.947	24.545	25.181	25.922	26.648	27.263	27.889
0.30	21.481	22.136	22.724	23.288	23.857	24.453	25.158	25.875	26.483	27.092
0.32	20.820	21.498	22.097	22.656	23.206	23.771	24.437	25.135	25.734	26.327
0.34 0.35	20.169 19.847	20.870 20.560	21.486 21.185	22.048 21.751	22.587 22.288	23.128 22.820	23.758 23.432	24.430 24.090	25.018 24.673	25.596 25.243
0.36	19.527	20.253	20.888	21.459	21.995	22.520	23.116	23.760	24.336	24.899
0.38	18.897	19.645	20.301	20.887	21.425	21.941 21.388	22.510	23.125	23.687	24.236
0.40	18.278	19.047	19.725	20.328	20.874		21.934	22.522	23.071	23.606
0.42 0.44	17.673	18.459 17.882 17.598	19.159 18.602	19.780 19.242	20.338 19.816	20.855 20.339	21.386 20.860	21.950 21.404	22.485 21.928	23.008 22.439
0.44	17.083 16.794	17.598	18.326	18.977	19.558	20.339	20.605	21.404	21.928	22.166
0.46	16.508	17.317	18.054	18.713	19.304	19.838	20.354	20.883	21.398	21.899
0.48 0.50	15.950 15.410	16.765 16.227	17.516 16.989	18.193 17.682	18.801 18.307	19.349 18.870	19.866 19.391	20.383 19.902	20.890 20.404	21.384 20.892
0.55	14.142	14.947	15.721	16.444	17.107	17.709	18.252	18.764	19.263	19.745
0.60	12.996	13.770	14.535	15.269	15.958	16.594	17.167	17.696	18.204	18.693
0.65	11.974	12.702	13.440	14.166	14.865	15.524	16.125	16.678	17.203	17.706
0.70 0.80	11.073 9.604	11.745 10.151	12.442 10.741	13.145 11.362	13.837 12.001	14.504 12.645	15.126 13.272	15.702 13.872	16.246 14.443	16.767 14.996
0.90	8.510	8.937	9.411	9.928	10.480	11.057	11.645	12.230	12.798	13.361
1.00	7.702	8.028	8.396	8.809	9.262	9.752	10.270	10.806	11.339	11.883
1.10	7.099	7.348	7.631	7.952	8.312	8.711	9.147	9.612	10.088	10.588
1.20	6.633	6.830	7.050 6.597	7.299 6.795	7.580 7.016	7.898	8.252 7.548	8.640 7.863	9.046	9.486
1.30 1.40	6.254 5.926	6.419 6.076	6.231	6.795	7.016 6.574	7.266 6.773	7.548 6.996	7.863 7.249	8.200 7.523	8.574 7.833
1.50	5.627	5.774	5.917	6.063	6.216	6.380	6.562	6.764	6.985	7.238
1.60	5.342	5.493	5.636	5.775	5.913	6.056	6.210	6.376	6.554	6.760
1.70 1.80	5.065 4.792	5.224 4.961	5.372 5.117	5.511 5.262	5.645 5.398	5.778 5.528	5.913 5.656	6.055 5.785	6.205 5.914	6.375 6.059
1.80	4.792	4.702	4.867	5.020	5.162	5.295	5.420	5.544	5.662	5.790
2.00	4.260	4.447	4.621	4.782	4.932	5.071	5.200	5.323	5.440	5.558
2.50	3.097	3.287	3.475	3.658	3.836	4.007	4.168	4.320	4.460	4.590
3.00 3.50	2.277 1.772	2.428 1.876	2.584 1.988	2.745 2.108	2.909 2.235	3.074 2.369	3.239 2.507	3.401 2.649	3.560 2.780	3.720 2.920
4.00	1.772	1.876	1.621	1.703	1.793	2.369 1.890	1.993	2.103	2.780	2.335
5.00	1.176	1.213	1.251	1.292	1.337	1.384	1.436	1.493	1.550	1.620
6.00	0.998	1.030	1.061	1.092	1.123	1.154	1.186	1.219	1.250	1.285

Table 6.1.1.1. Mean atomic scattering factors for free atoms (cont.)

Element	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn
Z Method $(\sin \theta)/\lambda \ (\mathring{A}^{-1})$	41	42	43	44	45	46	47	48	49	50
	*RHF	RHF	*RHF	*RHF	*RHF	*RHF	RHF	RHF	RHF	RHF
0.00	41.000	42.000	43.000	44.000	45.000	46.000	47.000	48.000	49.000	50.000
0.01	40.956	41.958	42.955	43.960	44.961	45.968	46.964	47.962	48.957	49.955
0.02	40.824	41.831	42.821	43.842	44.847	45.874	46.857	47.848	48.828	49.821
0.03	40.610	41.625	42.603	43.649	44.660	45.718	46.681	47.660	48.618	49.601
0.04	40.323	41.346	42.308	43.386	44.405	45.503	46.440	47.404	48.332	49.303
0.05	39.970	41.003	41.945	43.061	44.088	45.232	46.139	47.085	47.980	48.934
0.06	39.565	40.606	41.526	42.681	43.717	44.908	45.786	46.710	47.570	48.504
0.07	39.116	40.164	41.059	42.254	43.299	44.535	45.385	46.287	47.112	48.022
0.08	38.634	39.686	40.557	41.789	42.842	44.119	44.944	45.822	46.614	47.498
0.09	38.128	39.181	40.028	41.292	42.351	43.663	44.469	45.324	46.086	46.942
0.10	37.606	38.656	39.480	40.770	41.834	43.172	43.964	44.797	45.534	46.361
0.11	37.073	38.117	38.921	40.229	41.296	42.651	43.435	44.248	44.964	45.764
0.12	36.535	37.569	38.355	39.674	40.741	42.105	42.886	43.683	44.383	45.155
0.13	35.994	37.016	37.787	39.108	40.173	41.538	42.322	43.104	43.793	44.541
0.14	35.454	36.461	37.221	38.536	39.597	40.954	41.744	42.517	43.199	43.924
0.15	34.916	35.907	36.658	37.959	39.015	40.357	41.157	41.923	42.603	43.309
0.16	34.382	35.355	36.100	37.381	38.429	39.750	40.563	41.325	42.006	42.696
0.17	33.854	34.806	35.548	36.803	37.841	39.137	39.964	40.726	41.410	42.088
0.18	33.331	34.263	35.003	36.228	37.254	38.520	39.361	40.126	40.817	41.486
0.19	32.814	33.725	34.466	35.655	36.668	37.902	38.758	39.527	40.226	40.891
0.20	32.305	33.195	33.936	35.088	36.086	37.286	38.154	38.930	39.639	40.302
0.22	31.310	32.157	32.900	33.971	34.937	36.064	36.955	37.746	38.478	39.145
0.24	30.348	31.153	31.897	32.886	33.815	34.868	35.774	36.581	37.337	38.016
0.25	29.881	30.665	31.409	32.356	33.267	34.283	35.192	36.007	36.774	37.462
0.26	29.424	30.188	30.930	31.837	32.728	33.708	34.619	35.440	36.218	36.915
0.28	28.538	29.263	29.998	30.829	31.680	32.592	33.498	34.329	35.125	35.841
0.30	27.692	28.382	29.104	29.866	30.675	31.523	32.416	33.251	34.059	34.794
0.32	26.888	27.543	28.250	28.949	29.717	30.505	31.378	32.210	33.025	33.775
0.34	26.126	26.749	27.435	28.079	28.807	29.540	30.387	31.210	32.025	32.786
0.35 0.36	25.760 25.404	26.368 25.998	27.042 26.660	27.662 27.257 26.480	28.370 27.944 27.130	29.077 28.628 27.769	29.910 29.444 28.551	30.725 30.252 29.338	31.538 31.060	32.303 31.828
0.38 0.40	24.721 24.077	25.289 24.620	25.925 25.229	25.749	26.363	26.961	27.707	28.468	30.134 29.247	30.902 30.011
0.42	23.468	23.989	24.571	25.062	25.642	26.202	26.911	27.644	28.401	29.154
0.44	22.892	23.394	23.949	24.415	24.964	25.491	26.163	26.865	27.596	28.334
0.45	22.615	23.109	23.651	24.106	24.640	25.153	25.805	26.492	27.209	27.938
0.46	22.346	22.832	23.361	23.807	24.327	24.825	25.459	26.129	26.832	27.551
0.48	21.829	22.300	22.806	23.235	23.729	24.201	24.800	25.436	26.108	26.805
0.50	21.336	21.796	22.280	22.696	23.167	23.617	24.181	24.784	25.425	26.096
0.55	20.195	20.638	21.080	21.476	21.900	22.307	22.795	23.320	23.881	24.482
0.60	19.156	19.595	20.012	20.403	20.798	21.177	21.607	22.063	22.552	23.081
0.65	18.187	18.635	19.042	19.438	19.820	20.186	20.575	20.978	21.405	21.868
0.70	17.268	17.732	18.142	18.551	18.932	19.296	19.661	20.027	20.408	20.815
0.80 0.90	15.533 13.915	16.036 14.448	16.477 14.925	16.922 15.405	17.326 15.845	17.711 16.266 14.893	18.069 16.651 15.316	18.405 17.000	18.736 17.329	19.073 17.646
1.00 1.10	12.427 11.098	12.968 11.621	13.466 12.116	13.968 12.620	14.440 13.107	13.580	14.035	15.698 14.451	16.053 14.840	16.384 15.201
1.20	9.945	10.430	10.900	11.385	11.866	12.342	12.813	13.253	13.670	14.062
1.30	8.972	9.404	9.833	10.282	10.740	11.200	11.669	12.116	12.548	12.962
1.40	8.169	8.542	8.919	9.323	9.743	10.173	10.623	11.060	11.492	11.913
1.50	7.516	7.831	8.154	8.506	8.880	9.270	9.687	10.101	10.518	10.933
1.60	6.969	7.251	7.521	7.823	8.148	8.492	8.869	9.249	9.639	10.034
1.70	6.564	6.780	7.004	7.258	7.535	7.833	8.165	8.505	8.860	9.227
1.80	6.216	6.397	6.582	6.794	7.028	7.282	7.569	7.867	8.184	8.516
1.90	5.927	6.080	6.234	6.412	6.608	6.824	7.069	7.326	7.603	7.897
2.00	5.680	5.813	5.946	6.097	6.262	6.443	6.651	6.871	7.110	7.367
2.50 3.00 3.50	4.710 3.860	4.827 3.988	4.930 4.110	5.040 4.230	5.140 4.350 3.620	5.240 4.460	5.351 4.566	5.461 4.665	5.577 4.761	5.702 4.853
3.50	3.065	3.217	3.350	3.485	3.620	3.740	3.862	3.977	4.087	4.192
4.00	2.405	2.581	2.690	2.820	2.940	3.080	3.207	3.330	3.449	3.565
5.00	1.690	1.766	1.840	1.925	2.012	2.100	2.206	2.304	2.406	2.509
6.00	1.327	1.373	1.420	1.470	1.520	1.575	1.635	1.698	1.746	1.835

Table 6.1.1.1. Mean atomic scattering factors for free atoms (cont.)

Element	Sb	Te	I	Xe	Cs	Ba	La	Ce	Pr	Nd
Z	51 RHF	52 *RHF	53	54	55 DHE	56	57 *DHE	58 *DHE	59 *DHE	60 *DHE
Method $(\sin \theta)/\lambda \ (\mathring{A}^{-1})$	KHF	*KHF	RHF	RHF	RHF	RHF	*RHF	*RHF	*RHF	*RHF
0.00	51.000	52.000	53.000 52.955	54.000	55.000 54.932	56.000 55.925	57.000 56.926	58.000	59.000	60.000
0.01 0.02	50.955	51.954 51.818	52.955 52.820	53.956 53.821	54.932 54.732	55.925 55.703	56.926 56.708	57.928 57.715	58.929 58.722	59.931 59.728
0.02	50.819 50.596	51.594	52.597	53.601	54.732	55.350	56.360	57.375	58.392	59.404
0.04	50.293	51.594 51.288	52.292	53.297	54.008	54.888	55.900	56.924	57.956	58.977
0.05	49.915	50.906	51.911	52.917	53.527	54.345	55.351	56.385	57.439	58.468
0.06	49.474	50.458	51.460	52.467	52.996	53.743	54.736	55.779	56.861	57.899
0.07 0.08	48.977 48.434	49.951 49.395	50.950 50.387	51.954 51.388	52.430 51.839	53.106 52.450	54.076 53.388	55.127 54.446	56.242 55.599	57.288 56.651
0.09	47.856	48.800	49.781	50.775	51.229	51.786	52.687	53.750	54.943	56.000
0.10	47.250	48.174	49.142	50.125	50.603	51.122	51.982	53.047	54.281	55.342
0.11 0.12	46.625 45.988	47.526 46.863	48.476 47.793	49.447 48.747	49.963 49.309	50.460 49.802	51.278 50.580	52.345 51.646	53.617 52.952	54.680 54.017
0.12	45.344	46.193	47.793	48.033	48.645	49.802	49.888	50.952	52.288	53.354
0.14	44.699	45.519	46.400	47.311	47.971	48.492	49.202	50.263	51.623	52.689
0.15	44.056	44.848	45.702	46.588	47.291	47.839	48.523	49.579	50.957	52.022
0.16	43.419	44.182	45.008	45.868	46.606	47.186	47.849	48.901	50.289	51.353
0.17 0.18	42.789 42.168	43.526 42.879	44.323 43.648	45.155 44.453	45.921 45.237	46.533 45.882	47.182 46.519	48.227 47.557	49.620 48.950	50.682 50.009
0.19	41.556	42.245	42.987	43.763	44.559	45.232	45.862	46.892	48.280	49.334
0.20	40.955	41.623	42.340	43.088	43.888	44.586	45.212	46.233	47.610	48.660
0.22	39.783	40.419	41.091	41.788	42.578	43.309	43.932	44.933	46.278	47.317
0.24 0.25	38.652 38.100	39.267 38.709	39.904 39.333	40.557 39.967	41.320 40.713	42.064 41.456	42.686 42.078	43.663 43.042	44.967 44.323	45.989 45.336
0.25	37.556	38.163	39.333 38.776	39.393	40.713	40.859	42.078	43.042	43.688	44.690
0.28	36.495	37.102	37.702	38.294	38.982	39.702	40.321	41.244	42.448	43.428
0.30	35.465	36.079	36.675	37.251	37.904	38.598	39.212	40.104	41.256	42.210
0.32 0.34	34.464	35.090 34.131	35.690 34.741	36.259 35.310	36.881 35.909	37.546 36.545	38.153 37.145	39.014 37.975	40.113 39.022	41.040 39.920
0.35	33.491 33.016	33.663	34.279	34.850	35.440	36.063	36.659	37.474	38.496	39.379
0.36	32.547	33 202	33.824	34.399	34.981	35.593	36.185	36.985	37.982	38.851
0.38 0.40	31.631 30.745	32.299 31.424	32.936 32.075	33.520 32.671	34.094 33.241	34.685 33.818	35.270 34.397	36.040 35.139	36.989 36.042	37.830 36.854
0.42	29.888	30.575	31.238	31.847	32.419	32.986	33.562	34.277	35.137	35.922
0.44	29.063	29 753	30.427	31.047	31.624	32.187	32.760	33.451	34.269	35.029
0.45	28.663	29.352	30.030	30.656	31.236	31.798	32.370	33.051	33.849	34.596
0.46 0.48	28.270 27.511	29.352 28.959 28.194	29.640 28.877	30.271 29.517	30.854 30.107	31.415 30.670	31.988	32.658 31.893	33.437 32.635	34.171 33.347
0.48	26.784	27.458	28.141	28.785	29.382	29.948	31.243 30.523	31.154	31.862	32.553
0.55	25.113	25.748	26.412	27.054	27.661	28.238	28.817	29.409	30.040	30.683
0.60	23.646	24.226	24.851	25.470	26.072	26.652	27.231	27.791	28.358	28.960
0.65 0.70	22.366 21.253	22.885 21.711	23.459 22.228	24.038 22.758	24.619 23.303	25.189 23.851	25.759 24.401	26.289 24.901	26.803 25.370	27.367 25.899
0.80	19.424	19.783	20.193	20.618	21.072	21.547	22.031	22.469	22.867	23.325
0.90	17.958	18.262	18.599	18.943	19.310	19.701	20.106	20.481	20.824	21.214
1.00	16.696	16.986	17.293	17.591	17.900	18.224	18.561	18.881	19.182	19.513
1.10	15.537	15.841	16.150	16.438	16.722	17.008	17.300	17.583	17.854	18.139
1.20 1.30	14.429 13.355	14.759 13.712	15.090 14.072	15.390 14.396	15.676 14.700	15.953 14.988	16.227 15.265	16.491 15.526	16.745 15.776	17.003 16.024
1.40	12.321	12.698	13.082	13.432	13.759	14.067	14.362	14.633	14.888	15.138
1.50	11.341	11.726	12.125	12.494	12.845	13.175	13.489	13.776	14.042	14.303
1.60	10.431	10.811	11.214	11.592	11.956	12.305	12.636	12.939	13.218	13.493
1.70 1.80	9.602 8.861	9.966 9.201	10.360 9.576	10.736 9.940	11.104 10.303	11.461 10.661	11.807 11.009	12.123 11.333	12.414 11.631	12.704 11.932
1.90	8.208	8.518	8.868	9.212	9.558	9.907	10.253	10.576	10.878	11.185
2.00	7.642	7.921	8.239	8.556	8.881	9.213	9.550	9.868	10.166	10.473
2.50	5.836	5.980	6.142	6.315	6.502	6.704 5.440	6.917	7.117 5.663	7.333	7.567
3.00 3.50	4.945 4.295	5.040 4.390	5.132 4.478	5.229 4.566	5.332 4.651	5.440 4.735	5.550 4.820	5.663 4.910	5.800 5.000	5.930 5.090
4.00	3.678	3.780	3.891	3.991	4.087	4.178	4.270	4.360	4.445	4.525
5.00	2.615	2.722	2.828	2.935	3.041	3.146	3.240	3.340	3.435	3.530
6.00	1.909	1.990	2.067	2.150	2.237	2.325	2.410	2.490	2.580	2.670

Table 6.1.1.1. Mean atomic scattering factors for free atoms (cont.)

Element	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Z Method	61 *RHF	62 *RHF	63 RHF	64 *RHF	65 *RHF	66 *RHF	67 *RHF	68 *RHF	69 *RHF	70 *RHF
$(\sin \theta)/\lambda \ (\mathring{A}^{-1})$	"КПГ	"КПГ	КПГ	*КПГ	"КПГ	"КПГ	"КПГ	"КПГ	"КПГ	тКПГ
0.00	61.000	62.000	63.000	64.000	65.000	66.000	67.000	68.000	69.000	70.000
0.01 0.02	60.932 60.734	61.934 61.740	62.936 62.746	63.936 63.749	64.938 64.755	65.939 65.760	66.940 66.763	67.941 67.769	68.943 68.773	69.944 69.777
0.02	60.417	61.428	62.441	63.447	64.461	65.471	66.476	67.491	68.500	69.509
0.04	59.998	61.017	62.036	63.044	64.071	65.088	66.093	67.120	68.136	69.151
0.05	59.497	60.525	61.552	62.557	63.603	64.627	65.627	66.673	67.696	68.717
0.06	58.936 58.333 57.703	59.972	61.007	62.004	63.073 62.499	64.105	65.096	66.166	67.195	68.223
0.07 0.08	58.333 57.703	59.377 58.753	60.419 59.801	61.400 60.762	62.499 61.894	63.538 62.940	64.513 63.895	65.613 65.028	66.649 66.070	67.684 67.112
0.09	57.057	58.113	59.166	60.102	61.270	62.321	63.251	64.420	65.468	66.516
0.10	56.403	57.463	58.521	59.427	60.634	61.689	62.591	63.798	64.852	65.904
0.11	55.744	56.809	57.869	58.746	59.989	61.049	61.921	63.167	64.224	65.281
0.12 0.13	55.084 54.422	56.151 55.491	57.214 56.555	58.061 57.375	59.340 58.686	60.403 59.752	61.247 60.569	62.528 61.884	63.589 62.948	64.650 64.012
0.13	53.758	54.828	55.893	56.690	58.029	59.097	59.891	61.234	62.301	63.368
0.15	53.091	54.163	55.228	56.005	57.366	58.437	59.212	60.578	61.648	62.718
0.16	52.422 51.749 51.074	53.493 52.821 52.145	54.559	55.321	56.699	57.771	58.532	59.917	60.989	62.062
0.17 0.18	51.749	52.821	53.886 53.210	54.637 53.953	56.028 55.351	57.101 56.425	57.851 57.169	59.249 58.576	60.324 59.653	61.399 60.729
0.18	50.398	52.145 51.467	52.530	53.953	55.351 54.670	55.744	56.486	58.576 57.897	59.653 58.975	60.729
0.20	49.720	50.786	51.847	52.588	53.985	55.059	55.803	57.213	58.292	59.371
0.22	48.367	49.426	50.480	51.227	52.610	53.681	54.435	55.833	56.912	57.992
0.24	47.026	48.074	49.119	49.878	51.234	52.300	53.070	54.445	55.521	56.601
0.25 0.26	46.364 45.710	47.406 46.743	48.444 47.775	49.209 48.546	50.549 49.868	51.611 50.926	52.390 51.714	53.750 53.058	54.825 54.130	55.903 55.206
0.28	44.427	45.443	46.458	47.240	48.523	49.570	50.375	51.683	52.748	53.817
0.30	43.186	44.180	45.176	45.965	47.208	48.240	49.059	50.329	51.384	52.444
0.32	41.991	42.961	43.935	44.729	45.929	46.944	47.772	49.004	50.046	51.095
0.34 0.35	40.844 40.289	41.789 41.221	42.740	43.533 42.951	44.690 44.087	45.686 45.073	46.520 45.908	47.712	48.739 48.099	49.774
0.35	40.289 39.747	40.666	42.160 41.591	42.380	43.496	43.073 44.471	45.305	47.081 46.459	48.099 47.469	49.127 48.488
0.38	38.697	39.589	40.489	41.272	42.346	43.299 42.171	44.131	45.246	46.237	47.239
0.40	37.694	38.559	39.433	40.207	41.241	42.171	42.996	44.075	45.046	46.029
0.42	36.735	37.573	38.421 37.451	39.184	40.179 39.160	41.086 40.042	41.903 40.849	42.945	43.896	44.859
0.44 0.45	35.815 35.370	36.627 36.169	36.980	38.203 37.726	38.665	39.536	40.849	41.857 41.327	42.786 42.246	43.728 43.178
0.46	34.933	35.720	36.519	37.259	38.180	39.039	39.834	40.808	41.715	42.637
0.48	34.085 33.269	34.848	35.623 34.761	36.352 35.479	37.237 36.329	38.073 37.143	38.856	39.797 38.822	40.682	41.583
0.50		34.008					37.914		39.686	40.565
0.55 0.60	31.349 29.581	32.036	32.737 30.877	33.428 31.543	34.199 32.243	34.958 32.953	35.699 33.664	36.531 34.425	37.342 35.187	38.169 35.064
0.65	29.381	30.222 28.547	29.161	29.802	32.243	32.933	33.004	34.423	33.187	35.964 33.929
0.70	26.442	27.002	27.576	28.192	28.772	29.394	30.049	30.688	31.359	32.045
0.80	23.796	24.281	24.781	25.335	25.822	26.366	26.958	27.497	28.086	28.690
0.30 1.00	21.616 19.853	22.030 20.202	22.459 20.565	22.940 20.970	23.353 21.323	23.821 21.721	24.343 22.167	24.800 22.556	25.311 22.995	25.837 23.447
1.10	18.430	18.728	19.035	19.372	19.675	20.011	20.385	20.718	21.089	21.474
1.20	17.262	17.523	17.789	18.072	18.338	18.623	18.934	19.221	19.535	19.860
1.30	16.266	16.507	16.747	16.995	17.234	17.483	17.746	17.998	18.266	18.542
1.40 1.50	15.378 14.551	15.613 14.790	15.841 15.020	16.072 15.247	16.296 15.465	16.522 15.680	16.753 15.895	16.980 16.107	17.215 16.321	17.454 16.536
1.60	13.755	14.005	14.245	14.477	14.697	14.913	15.123	15.329	15.533	15.735
1.70	13.733	13.243	14.245	13.741	13.968	14.913	13.123	13.329	13.333	15.735
1.80	12.220	12.497	12.763	13.022	13.259	13.491	13.718	13.929	14.137	14.338
1.90 2.00	11.481 10.773	11.767 11.064	12.044 11.345	12.317 11.631	12.564 11.886	12.808 12.141	13.047 12.392	13.267 12.621	13.483 12.847	13.691 13.064
2.50 3.00	7.817 6.088	8.083 6.250	8.348 6.435	8.683 6.588	8.983 6.775	9.267 6.963	9.533 7.163	9.783 7.375	10.033 7.588	10.267 7.788
3.50	5.180	5.280	5.378	5.490	5.610	5.720	5.850	5.980	6.110	6.250
4.00 5.00	4.600 3.625	4.675 3.720	4.750 3.812	4.830 3.905	4.915 3.990	5.000 4.075	5.090 4.155	5.180 4.235	5.280 4.310	5.380 4.380
6.00	2.770	2.865	2.965	3.903	3.990	3.270	3.355	3.440	3.520	3.600

Table 6.1.1.1. Mean atomic scattering factors for free atoms (cont.)

Element	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg
Z	71 *RHF	72 *DHE	73 *DHE	74 *DUE	75 *DHE	76 *DIE	77 *DUE	78 *DHE	79	80 RHF
Method $(\sin \theta)/\lambda \ (\mathring{A}^{-1})$	*KHF	*RHF	*RHF	*RHF	*RHF	*RHF	*RHF	*RHF	RHF	KHF
0.00	71.000	72.000	73.000	74.000	75.000	76.000	77.000	78.000	79.000	80.000
0.01 0.02	70.944 70.778	71.945 71.783	72.946 72.788	73.948 73.793	74.949 74.797	75.950 75.801	76.951 76.806	77.955 77.820	78.957 78.826	79.556 79.819
0.02	70.778	71.783	72.788	73.539	74.797	75.538	76.567	77.599	78.609	79.595
0.04	70.148	71.161	72.177	73.194	74.209	75.225	76.240	77.295	78.311	79.286
0.05	69.707	70.723	71.745	72.767	73.788	74.810	75.832	76.914	77.936	78.899
0.06	69.202	70.217	71.242	72.269	73.295	74.323 73.772	75.352	76.462	77.491	78.439
0.07 0.08	68.646 68.051	69.656 69.052	70.680 70.072	71.711 71.103	72.740 72.132	73.772	74.806 74.206	75.946 75.373	76.981 76.414	77.913 77.330
0.09	67.429	68.416	69.428	70.455	71.482	72.518	73.558	74.751	75.797	76.696
0.10	66.789	67.757	68.758	69.778	70.799	71.832	72.872	74.086	75.135	76.018
0.11	66.137	67.083	68.069	69.078	70.091	71.119	72.156	73.386	74.437	75.303
0.12 0.13	65.477 64.813	66.400 65.711	67.367 66.658	68.363 67.637	69.365 68.625	70.384 69.634	71.416 70.658	72.656 71.902	73.706 72.950	74.559 73.790
0.14	64.146	65.019	65.944	66.906	67.878	68.874	69.887	71.130	72.173	73.001
0.15	63.478	64.326	65.229	66.172	67.126	68.107	69.108	70.343	71.380	72.198
0.16	62.807	63.634 62.942 62.251	64.515	65.437	66.372	67.337	68.324	69.546	70.575	71.385
0.17 0.18	62.134 61.460	62.942 62.251	63.802 63.090	64.703 63.972	65.619 64.868	66.566 65.797	67.538 66.752	68.742 67.934	69.761 68.941	70.564 69.740
0.18	60.783	61.560	62.382	63.243	64.121	65.031	65.969	67.125	68.119	68.914
0.20	60.103	60.870	61.675	62.519	63.378	64.269	65.189	66.317	67.296	68.088
0.22	58.739	59.492	60.271	61.082	61.906	62.761	63.645	64.709	65.657	66.447
0.24 0.25	57.369 56.683	58.119	58.880 58.189	59.663 58.961	60.457 59.742	61.278 60.548	62.127 61.380	63.125 62.344	64.039 63.241	64.828 64.029
0.25	55.998	57.434 56.752	57.502	58.265	59.034	59.825	60.641	61.571	62.452	63.239
0.28	54.634	55.396	56.141	56.888	57.637	58.403	59.189	60.056	60.902	61.687
0.30	53.282	54.054	54.799	55.536	56.270	57.013	57.773	58.582	59.395	60.177
0.32	51.950	52.733	53.479	54.210	54.932 53.627	55.658	56.395	57.152	57.935	58.711
0.34 0.35	50.642 49.998	51.435 50.796	52.185 51.548	52.912 52.274	52.986	54.339 53.692	55.056 54.401	55.769 55.094	56.523 55.835	57.292 56.600
0.36	49.363	50.164	50.918	51.644	52.354	53.055	53.756	54.432	55.160	55.920
0.38 0.40	48.117 46.906	48.924 47.717	49.683 48.479	50.408 49.205	51.114 49.910	51.807 50.596	52.496 51.274	53.141 51.897	53.846 52.581	54.595 53.318
0.42 0.44	45.731 44.593	46.543 45.405	47.308 46.171	48.036 46.900	48.739 47.603	49.422 48.283	50.091 48.946	50.697 49.540	51.363 50.191	52.088 50.902
0.45	44.038	44.849	45.615	46.344	47.048	47.726	48.387	48.977	49.622	50.326
0.46	43.492	44.301	45.068	45.797	46.501	47.179	47.837	48.424	49.063	49.761
0.48 0.50	42.427 41.398	43.232 42.197	43.998 42.962	44.728 43.691	45.432 44.396	46.109 45.072	46.765 45.726	47.347 46.308	47.976 46.929	48.661 47.601
0.55	38.970	39.752	40.508	41.236	41.940	42.617	43.269	43.860	44.469	45.113
0.60	36.733	37.494	38.238	38.960	39.662	40.340	40.994	41.601	42.207	42.829
0.65	34.666	35.404	36.132	36.846	37.544	38.222	38.878	39.502	40.110	40.718
0.70 0.80	32.752 29.334	33.465 29.992	34.175 30.658	34.878 31.327	35.569 31.993	36.244 32.654	36.901 33.305	37.539 33.958	38.153 34.581	38.753 35.176
0.90	26.413	27.008	27.618	28.238	28.865	29.495	30.125	30.766	31.387	31.980
1.00	23.950	24.473	25.016	25.576	26.148	26.732	27.323	27.930	28.530	29.112
1.10	21.902	22.352	22.823	23.313	23.821	24.345	24.882	25.437	25.998	26.554
1.20 1.30	20.219 18.842	20.598 19.159	20.998 19.494	21.418 19.847	21.856 20.219	22.314 20.610	22.789 21.019	23.281 21.445	23.789 21.892	24.303 22.354
1.40	18.842	19.139	19.494	19.847	18.864	19.194	19.541	19.902	20.287	20.692
1.50	16.759	16.988	17.228	17.478	17.742	18.019	18.312	18.616	18.943	19.290
1.60	15.939	16.145	16.356	16.575	16.801	17.038	17.287	17.545	17.821	18.116
1.70 1.80	15.208 14.534	15.403 14.727	15.598 14.916	15.796 15.104	15.998 15.293	16.206 15.483	16.422 15.678	16.644 15.875	16.880 16.081	17.131 16.298
1.90	13.894	14.727	14.910	13.104	14.653	14.835	15.018	15.202	15.388	15.581
2.00	13.277	13.481	13.679	13.871	14.057	14.239	14.418	14.595	14.770	14.949
2.50	10.500	10.733	10.950	11.167	11.383	11.583	11.783	11.983	12.168	12.360
3.00 3.50	8.013 6.400	8.238 6.560	8.480 6.740	8.706 6.900	8.938 7.080	9.163 7.270	9.400 7.460	9.620 7.650	9.826 7.878	10.049 8.081
4.00	5.490	5.600	5.710	5.840	5.960	6.080	6.210	6.340	6.489	6.644
5.00	4.450	4.520	4.585	4.650	4.715	4.788	4.860	4.935	5.010	5.090
6.00	3.680	3.755	3.825	3.900	3.970	4.035	4.105	4.175	4.244	4.310

Table 6.1.1.1. Mean atomic scattering factors for free atoms (cont.)

Element	Tl	Pb	Bi	Po	At	Rn	Fr	Ra	Ac	Th
Z Method	81 *RHF	82 RHF	83 RHF	84 *RHF	85 *RHF	86 RHF	87 *RHF	88 *RHF	89 *RHF	90 *RHF
$(\sin \theta)/\lambda \ (\mathring{\mathbf{A}}^{-1})$	·KIII	KHF	КПГ	·KHF	·KHF	КПГ	·KHF	·KIII	·KHF	кпг
0.00	81.000	82.000	83.000	84.000	85.000 84.944	86.000	87.000 86.922	88.000	89.000	90.000
0.01 0.02	80.950 80.799	81.949 81.792	82.947 82.784	83.944 83.778	84.944 84.776	85.945 85.777	86.922 86.694	87.915 87.664	88.915 88.664	89.916 89.669
0.02	80.553	81.792	82.518	83.506	84.776	85.502	86.332	87.263	88.260	89.269
0.04	80.217	81.186	82.154	83.134	84.125	85.123	85.854	86.734	87.723	88.735
0.05	79.798	80.750	81.700	82.669	83.654	84.649	85.286	86.104	87.077	88.085
0.06	79.305	80.237	81.167	82.121	83.098	84.087	84.647	85.397	86.346	87.344
0.07 0.08	78.748 78.134	79.656 79.018	80.563 79.901	81.501 80.819	82.466 81.770	83.448 82.742	83.955 83.222	84.638 83.845	85.553 84.719	86.533 85.672
0.09	77.473	78.332	79.189	80.086	81.020	81.979	82.457	83.030	83.859	84.779
0.10	76.773	77.607	78.438	79.312	80.226	81.169	81.666	82.202	82.985	83.867
0.11	76.042	76.851	77.657	78.506	79.398	80.322	80.852	81.368	82.105	82.946
0.12 0.13	75.284 74.507	76.071 75.274	76.852 76.032	77.677 76.831	78.545 77.674	79.448 78.554	80.018 79.167	80.528 79.685	81.225 80.348	82.025 81.107
0.13	73.715	74.464	75.202	75.976	76.794	77.648	78.303	78.839	79.474	80.196
0.15	72.912	73.645	74.365	75.117	75.908	76.737	77.430	77.990	78.605	79.294
0.16	72.101	72.822	73.527	74.257	75.023	75.826	76.550	77.138	77.739	78.400
0.17 0.18	72.101 71.285 70.467	72.822 71.997 71.172	72.689	73.400 72.549	74.143 73.269	74.920 74.021	75.667	76.285	76.879	77.516
0.18 0.19	70.467 69.648	71.172 70.349	71.855 71.026	72.549	73.269 72.405	74.021	74.785 73.907	75.431 74.578	76.023 75.172	76.642 75.777
0.19	68.830	69.530	70.203	70.871	71.553	72.258	73.035	73.728	74.326	74.922
0.22	67.205	67.907	68.578	69.232	69.885	70.552	71.320	72.043	72.654	73.242
0.24 0.25 0.26	65.600	66.310 65.523 64.743	66.987	67.634	68.269	68.907	69.653	70.389	71.014	71.602
0.25	64.807 64.022	65.523	66.204 65.430	66.852 66.080	67.481 66.706	68.109 67.325	68.841 68.043	69.576 68.775	70.208 69.412	70.798 70.005
0.28	62.478	63.210	63.430	64.567	65.193	65.802	66.491	67.210	67.855	68.454
0.30	60.970	61.712	62.425	63.093	63.725	64.332	64.996	65.696	66.345	66.951
0.32	59.503	60.253	60.977	61.658	62.301	62.912	63.556	64.235	64.884	65.497
0.34 0.35	58.079 57.383	58.833 58.138	59.566 58.875	60.260 59.575	60.915 60.236	61.535 60.862	62.167 61.489	62.826 62.140	63.473	64.091
0.35	56.698	57.453	58.193	58.899	59.566	60.862	60.823	62.140	62.785 62.110	63.405 62.731
0.38	55.362	56.116	56.859	57.573	58.253	58.898	59.520	60.151	60.792	61.416
0.40	54.072	54.820	55.563	56.283	56.974	57.631	58.256	58.879	59.517	60.143
0.42	52.826	53.567	54.306	55.029	55.728	56.397	57.026	57.646	58.282	58.910 57.713
0.44 0.45	51.625 51.041	52.356 51.766	53.089 52.495 51.910	53.811 53.215	54.515 53.921	55.194 54.604	55.829 55.242	56.448 55.862	57.084 56.497	57.713 57.127
0.46	50.467	51.766 51.187	51.910	52.629	53.335	54.021	54.663	55.284	55.919	56.550
0.48	49.352	50.058	50.771	51.483	52.189	52.879	53.527	54.151	54.787	55.419
0.50	48.276	48.969	49.669	50.373	51.075	51.767	52.420	53.048	53.684	54.317
0.55 0.60	45.753 43.442	46.411 44.069	47.077 44.700	47.752 45.343	48.435 45.997	49.119 46.659	49.777 47.310	50.413 47.948	51.050 48.580	51.684 49.211
0.65	41.313	41.914	42.517	43.127	43.750	44.384	45.017	45.646	46.268	46.889
0.70	39.337	39.921	40.501	41.085	41.678	42.281	42.891	43.504	44.110	44.716
0.80	35.755	36.322	36.879	37.430	37.980	38.533	39.095	39.664	40.229	40.795
0.90 1.00	32.561 29.687	33.127 30.252	33.680 30.805	34.220 31.344	34.751 31.872	35.277 32.389	35.804 32.900	36.335 33.408	36.863 33.912	37.391 34.413
1.10	27.109	27.662	28.208	28.744	29.271	29.787	30.292	30.790	31.283	31.770
1.20	24.824	25.350	25.875	26.397	26.915	27.426	27.926	28.418	28.906	29.387
1.30	22.827	23.313	23.804	24.298	24.794	25.291	25.779	26.263	26.744	27.219
1.40 1.50	21.110 19.652	21.546 20.034	21.992 20.429	22.446 20.836	22.909 21.256	23.379 21.689	23.845 22.123	24.312 22.564	24.779 23.008	25.244 23.454
1.60 1.70	18.424 17.394	18.754 17.674	19.097 17.969	19.453 18.277	19.826 18.602	20.215 18.944	20.608 19.295	21.014 19.660	21.427 20.036	21.846 20.421
1.80	16.524	16.764	17.017	17.281	17.562	17.859	18.165	18.488	18.823	19.170
1.90 2.00	15.780 15.131	15.989 15.317	16.207 15.510	16.435 15.711	16.677 15.922	16.934 16.143	17.199 16.377	17.481 16.623	17.776 16.880	18.083 17.149
2.50 3.00	12.530 10.270	12.724 10.482	12.896 10.690	13.060 10.900	13.230 11.090	13.386 11.282	13.550 11.460	13.700 11.640	13.860 11.815	14.020 11.980
3.50	8.290	8.495	8.704	8.910	9.120	9.329	9.530	9.730	9.930	10.130
4.00	6.800	6.973	7.145	7.320	7.500	7.686	7.878 5.755	8.070 5.870	8.255	8.440
5.00 6.00	5.175 4.374	5.260 4.441	5.351 4.505	5.440 4.567	5.540 4.630	5.650 4.702	5.755 4.768	5.870 4.840	5.933 4.910	6.118 4.982
5.55						52	50		, 10	

Table 6.1.1.1. Mean atomic scattering factors for free atoms (cont.)

Element	Pa	U	Np	Pu	Am	Cm	Bk	Cf	
Z Method	91 *DIE	92 DHE	93	94 *DHE	95 *DHE	96 *DIE	97 *DHE	98 *DHE	
$(\sin \theta)/\lambda \ (\mathring{A}^{-1})$	*RHF	RHF	*RHF	*RHF	*RHF	*RHF	*RHF	*RHF	
0.00	91.000	92.000	93.000	94.000	95.000	96.000	97.000	98.000	
0.01 0.02	90.919	91.922	92.922 92.691	93.924	94.926	95.926	96.928	97.929	
0.02	90.678 90.290	91.687 91.307	92.691	93.701 93.340	94.706 94.352	95.708 95.354	96.713 96.365	97.718 97.375	
0.04	89.772	90.798	91.817	92.857	93.877	94.877	95.895	96.912	
0.05	89.144	90.180	91.208	92.271	93.299	94.294	95.320	96.344	
0.06	88.427	89.474	90.510	91.601 90.866	92.638	93.623	94.656	95.688	
0.07 0.08	87.644 86.813	88.699 87.874	89.742 88.923	90.866	91.910 91.131	92.879 92.081	93.920 93.129	94.961 94.176	
0.09	85.950	87.014	88.067	89.261	90.315	91.241	92.294	93.347	
0.10	85.066	86.130	87.186	88.413	89.470	90.371	91.429	92.486	
0.11 0.12	84.170 83.269	85.232	86.288 85.380	87.547	88.605 87.723	89.479 88.573	90.540 89.635	91.601	
0.12	83.269 82.366	84.326 83.417	83.380 84.467	86.665 85.772	86.829	88.373 87.656	89.033 88.718	90.699 89.783	
0.14	81.463	82.505	83.550	84.870	85.924	86.731	87.793	88.858	
0.15	80.563	81.595	82.632	83.961	85.011	85.802	86.862	87.926	
0.16 0.17	79.665 78.771	80.685 79.779	81.715 80.799	83.044 82.123	84.090 83.163	84.869	85.926 84.988	86.989 86.048	
0.18	77.881	78.875	79.885	81.198	82.231	83.934 82.998	84.047	85.103	
0.19	76.995	77.975	78.973	80.271	81.296	82.062	83.105	84.157	
0.20	76.115	77.080	78.066	79.343	80.360	81.126	82.163	83.210	
0.22 0.24	74.375	75.308	76.267	77.493	78.490	79.263 77.419	80.285 78.421	81.318	
0.24	72.668 71.829	73.568 72.712	74.496 73.624	75.663 74.759	76.636 75.719	76.507	78.421 77.498	79.437 78.504	
0.26	71.001	71.866	72.763	73.865	74.811	75.603	76.582	77.577	
0.28 0.30	69.380 67.810	70.211 68.607	71.074 69.436	72.110 70.408	73.027 71.293	73.824 72.091	74.777 73.016	75.749 73.960	
0.32	66.294	67.058	67.853	68.763	69.615	70.409	71.303	72.219	
0.34	64.832	65.564	66.326	67.178	67.997	68.783	69.645	70.531	
0.35 0.36	64.121 63.423	64.838 64.126	65.584 64.857	66.409 65.655	67.212 66.441	67.991 67.214	68.838 68.045	69.707 68.898	
0.38	62.066	62.742	63.443	64.193	64.947	65.705	66.503	67.325	
0.40	60.758	61.409	62.083	62.789	63.513	64.254	65.020	65.810	
0.42	59.495	60.125	60.775	61.442	62.137	62.859	63.595	64.354	
0.44 0.45	58.274 57.679	58.886 58.283	59.514 58.901	60.147 59.518	60.816 60.175	61.519 60.869	62.226 61.562	62.954 62.276	
0.46	57.093	57.689	58.298	58.901	59.546	60.231	60.910	61.610	
0.48 0.50	55.948 54.836	56.531 55.410	57.124 55.989	57.702 56.544	58.325 57.148	58.992 57.798	59.646 58.430	60.319 59.078	
0.55 0.60	52.191 49.719	52.748 50.268	53.303 50.808	53.819 51.302	54.385 51.842	54.998 52.427	55.581 52.974	56.176 53.528	
0.65	47.405	47.950	48.483	48.967	49.490	50.052	50.574	51.098	
0.70 0.80	45.241 41.333	45.784 41.869	46.312 42.390	46.794 42.879	47.307 43.380	47.850 43.894	48.354 44.380	48.858 44.859	
0.90	37.930	38.454	38.966	39.465	39.958	40.449	40.926	41.395	
1.00	34.946	35.458	35.961	36.465	36.952	37.426	37.898	38.361	
1.10 1.20	32.292 29.897	32.794 30.391	33.289 30.879	33.793 31.379	34.276 31.858	34.740 32.318	35.209 32.786	35.671 33.247	
1.30	27.714	28.199	28.680	29.172	29.648	30.106	30.572	31.033	
1.40 1.50	25.720 23.905	26.192 24.360	26.662 24.813	27.142 25.275	27.611 25.733	28.068 26.184	28.530 26.639	28.989 27.093	
1.60 1.70	22.266 20.807	22.699 21.207	23.128 21.609	23.566 22.019	24.006 22.435	24.446 22.857	24.889 23.281	25.332 23.708	
1.80	19.518	19.886	20.253	20.630	21.018	21.415	21.815	22.221	
1.90 2.00	18.394 17.423	18.723 17.713	19.055 18.012	19.398 18.319	19.754 18.640	20.121 18.975	20.496 19.315	20.872 19.665	
2.50 3.00	14.180 12.150	14.341 12.294	14.503 12.475	14.664 12.656	14.826 12.838	14.988 13.019	15.150 13.200	15.311 13.381	
3.50	10.320	10.495	10.695	10.895	11.095	11.295	11.495	11.695	
4.00 5.00	8.630 6.250	8.823 6.378	9.008 6.489	9.193 6.602	9.378 6.713	9.563 6.825	9.748 6.937	9.933 7.049	
6.00	5.055	5.136	5.206	5.275	5.345	5.414	5.484	5.553	

Table 6.1.1.2. Spherical bonded hydrogen-atom scattering factors from Stewart, Davidson & Simpson (1965)

$(\sin\theta)/\lambda \ (\mathring{A}^{-1})$	f	$(\sin\theta)/\lambda (\mathring{A}^{-1})$	f
0.0000 0.0215	1.0000 0.9924	0.7729 0.8158	0.0254 0.0208
0.0429	0.9704	0.8588	0.0208
0.0644 0.0859	0.9352 0.8892	0.9017 0.9447	0.0140 0.0116
0.1073	0.8350	0.9447	0.0096
0.1288 0.1503	0.7752 0.7125	1.0305 1.0735	0.0080 0.0066
0.1718	0.6492	1.1164	0.0056
0.1932 0.2147	0.5871 0.5277	1.1593 1.2023	0.0047 0.0040
0.2576	0.4201	1.2452	0.0035
0.3006 0.3435	0.3301 0.2573	1.2882 1.3311	0.0031 0.0027
0.3864	0.1998	1.3740	0.0025
0.4294 0.4723	0.1552 0.1208	1.4170 1.4599	0.0022 0.0020
0.5153	0.0945	1.5029	0.0018
0.5582 0.6011	0.0744 0.0592	1.5458 1.5887	0.0016 0.0015
0.6441	0.0474	1.6317	0.0013
0.6870 0.7300	0.0383 0.0311	1.6746 1.7176	0.0011 0.0010
1			

some of the more chemically significant ions are listed in Table 6.1.1.3. For H⁻, Li⁺ and Be²⁺ these are based on the correlated electron calculations of Thakkar & Smith (1992). For other ions lighter than rubidium, values are based on the Hartree–Fock calculations of Cromer & Mann (1968), using the wavefunctions of Mann (1968b). For the heavier ions, the calculations are by Cromer & Waber (1968), based on relativistic Dirac–Slater wavefunctions, which are a good approximation to the corresponding relativistic Hartree–Fock wavefunctions. If ionic scattering factors are required for values of $(\sin\theta)/\lambda$ greater than those shown in Table 6.1.1.3, the free-atom scattering factors of Table 6.1.1.1 can be used because high-angle scattering is dominated by core electrons and is therefore very little affected by ionicity.

6.1.1.3.1. Scattering-factor interpolation

A general treatment of interpolation is complicated by possible difficulties resulting from singularities in tabulated functions. The interpolation of scattering factors does not involve such problems, however, and a more restricted treatment suffices.

An iterative method, applicable to a function f(x) tabulated at arbitrary values x_0, x_1, \ldots, x_n is due to Aitken. $f(x|x_0, x_1, \ldots, x_k)$ is the polynominal that coincides with the tabulated values at x_0, x_1, \ldots, x_k .

$$f(x|x_0, x_1) = \frac{1}{x_1 - x_0} \begin{vmatrix} f_0 x_0 - x \\ f_1 x_1 - x \end{vmatrix}$$

$$f(x|x_0, x_1, x_2) = \frac{1}{x_2 - x_1} \begin{vmatrix} f(x|x_0, x_1) & x_1 - x \\ f(x|x_0, x_2) & x_2 - x \end{vmatrix}$$

$$f(x|x_0, x_1, x_2, x_3) = \frac{1}{x_3 - x_2} \begin{vmatrix} f(x|x_0, x_1, x_2) & x_2 - x \\ f(x|x_0, x_1, x_3) & x_3 - x \end{vmatrix}.$$

$$(6.1.1.13)$$

Iteration is continued until increasing k does not change the interpolated value significantly.

Another interpolation formula, due to Lagrange, is

$$f(x) = \sum_{i=0}^{n} l_i(x) f_i + R_n(x),$$

where

$$l_i(x) = \frac{\pi_n(x)}{(x - x_i)\pi'_n(x_i)}$$

and

$$R_n(x) = \pi_n(x)[x_0, x_1, \dots, x_n, x].$$
 (6.1.1.14)

 $\pi_n(x)$ is $(x-x_0)(x-x_1)\dots(x-x_n)$ and $\pi'_n(x)$ is its derivative, so that

$$\pi'_n(x_k) = (x_k - x_0)(x_k - x_1) \dots (x_k - x_{k-1}) \times (x_k - x_{k+1}) \dots (x_k - x_n)$$

while

$$[x_0, x_1] = \frac{f_0 - f_1}{x_0 - x_1}$$
$$[x_0, x_1, x_2] = \frac{[x_0, x_1] - [x_1, x_2]}{x_0 - x_2}$$
$$[x_0, x_1 \dots x_n] = \sum_{k=0}^{n} \frac{f_k}{\pi'_n(x_k)}.$$

For the scattering factors of Tables 6.1.1.1 and 6.1.1.3, the expansion

$$f(\sin \theta/\lambda) = \sum_{i=1}^{4} a_i \exp(-b_i \sin^2 \theta/\lambda^2) + c \qquad (6.1.1.15)$$

has been found to be particularly effective. The coefficients listed in Table 6.1.1.4 give a close fit to the atomic scattering curves over the range $0<(\sin\theta)/\lambda<2.0~\text{Å}^{-1}$. Table 6.1.1.4 also contains the maximum and minimum deviations from the true curve, and the mean of the magnitude of the deviation. For $2.0~\text{Å}^{-1}<(\sin\theta)/\lambda<6.0~\text{Å}^{-1}$, Fox *et al.* (1989) have shown that (6.1.1.15) is highly inaccurate, and they produced a 'logarithmic polynomial' curve-fitting routine based on the equation

$$\ln\{f[(\sin\theta)/\lambda]\} = \sum_{i=0}^{3} a_i s^i$$
 (6.1.1.16)

for these high angles. The a_i values listed in Table 6.1.1.5 give a close fit to the atomic scattering factor curves over the range $2.0 < (\sin\theta)/\lambda < 6.0\,\text{Å}^{-1}$. Because f varies slowly with $(\sin\theta)/\lambda$ at these high angles, four parameters are all that is necessary for accurate fitting. Confirmation of this is given in Table 6.1.1.5 where the correlation coefficients, C, associated with each fit are also shown, and it can be seen that these are close to 1.0 in every case.

6.1.1.4. Generalized scattering factors

For bound atoms, it may be necessary to account for the perturbation of the electron density by interaction with other atoms, and to analyse its effect on the scattering.

The generalized scattering factor is obtained from the Fourier transform of a perturbed atomic electron-density function. The exponential factor in the transform may be written as an expansion in terms of Legendre polynomials $P_l(\cos\theta)$.†

[†] Special functions are as given in Abramowitz & Stegun (1964), unless defined otherwise in the text.

Table 6.1.1.3. Mean atomic scattering factors in electrons for chemically significant ions

Methods: C: correlated; HF: non-relativistic Hartree-Fock; RHF: relativistic Hartree-Fock; *DS: modified Dirac-Slater.

Element	H^{1-}	Li ¹⁺	Be ²⁺	C_{val}	O ¹⁻	F ¹⁻	Na ¹⁺	Mg ²⁺ 12	Al ³⁺	Si _{val}
Z	1	3 C	4	6	8	9	11	12	13	14
Method $(\sin \theta)/\lambda (\mathring{A}^{-1})$	С	C	С	HF	HF	HF	RHF	RHF	HF	HF
0.00	2.000	2.000	2.000	6.000	9.000	10.000	10.000	10.000	10.000	14.000
0.01	1.983	1.999	1.999	5.989	8.986	9.988	9.995	9.997	9.997	13.973
0.02	1.933	1.997	1.999	5.956	8.945	9.953	9.981	9.986	9.989	13.894
0.03	1.857	1.994	1.997	5.903	8.878	9.895	9.958	9.969	9.976	13.766
0.04	1.763	1.990	1.995	5.829	8.785	9.816	9.925	9.945	9.957	13.593
0.05	1.659	1.984	1.992	5.738	8.670	9.716	9.883	9.914	9.933	13.381
0.06	1.550	1.977	1.988	5.629	8.534	9.597	9.833	9.876	9.904	13.138
0.07	1.442	1.968	1.983	5.507	8.381	9.461	9.773	9.832	9.870	12.870
0.08	1.338	1.959	1.978	5.372	8.211	9.309	9.705	9.782	9.831	12.586
0.09	1.238	1.948	1.973	5.227	8.029	9.144	9.630	9.725	9.787	12.293
0.10	1.145	1.936	1.966	5.074	7.836	8.967	9.546	9.662	9.738	11.995
0.11	1.058	1.923	1.959	4.916	7.635	8.781	9.455	9.594	9.684	11.700
0.12	0.978	1.909	1.952	4.754	7.429	8.586	9.357	9.519	9.625	11.410
0.13	0.904	1.894	1.944	4.591	7.218	8.386	9.253	9.440	9.563	11.130
0.14	0.836	1.877	1.935	4.428	7.005	8.181	9.142	9.355	9.495	10.862
0.15	0.773	1.860	1.925	4.267	6.792	7.973	9.026	9.265	9.424	10.608
0.16	0.715	1.842	1.915	4.109	6.579	7.762	8.904	9.171	9.349	10.368
0.17	0.661	1.823	1.905	3.954	6.368	7.551	8.777	9.072	9.270	10.143
0.18	0.612	1.804	1.894	3.805	6.160	7.341	8.647	8.969	9.187	9.933
0.19	0.567	1.783	1.882	3.661	5.956	7.131	8.512	8.862	9.101	9.737
0.20	0.526	1.762	1.870	3.523	5.756	6.924	8.374	8.751	9.011	9.553
0.22	0.452	1.718	1.845	3.266	5.371	6.517	8.089	8.521	8.823	9.222
0.24	0.390	1.671	1.817	3.035	5.008	6.126	7.795	8.280	8.623	8.931
0.25	0.362	1.647	1.803	2.930	4.836	5.937	7.646	8.156	8.520	8.798
0.26	0.337	1.623	1.788	2.831	4.670	5.753	7.496	8.030	8.414	8.671
0.28	0.291	1.573	1.758	2.651	4.357	5.399	7.195	7.774	8.198	8.435
0.30	0.253	1.523	1.726	2.495	4.068	5.067	6.894	7.513	7.975	8.214
0.32	0.220	1.471	1.692	2.358	3.804	4.756	6.597	7.251	7.747	8.005
0.34	0.192	1.419	1.658	2.241	3.564	4.467	6.304	6.987	7.515	7.803
0.35	0.179	1.394	1.641	2.188	3.452	4.330	6.160	6.856	7.399	7.704
0.36	0.168	1.368	1.623	2.139	3.345	4.199	6.018	6.725	7.282	7.606
0.38	0.147	1.316	1.587	2.050	3.147	3.951	5.739	6.465	7.047	7.410
0.40	0.129	1.265	1.551	1.974	2.969	3.724	5.471	6.210	6.813	7.215
0.42	0.113	1.215	1.514	1.907	2.808	3.514	5.212	5.959	6.581	7.021
0.44	0.100	1.165	1.476	1.849	2.663	3.322	4.964	5.715	6.350	6.826
0.45		1.141		1.822	2.597	3.233		5.595	6.237	6.729
0.46	0.089	1.117	1.439	1.798	2.533	3.147	4.728	5.477	6.124	6.632
0.48	0.079	1.069	1.401	1.752	2.417	2.987	4.503	5.247	5.901	6.437
0.50	0.070	1.023	1.364	1.711	2.313	2.841	4.290	5.025	5.683	6.244
0.55	0.0526	0.914	1.270	1.624	2.097	2.531	3.808	4.508	5.162	5.766
0.60	0.0401	0.814	1.179	1.552	1.934	2.288	3.395	4.046	4.681	5.303
0.65	0.0311	0.724	1.091	1.488	1.808	2.096	3.046	3.641	4.243	4.865
0.70	0.0243	0.643	1.007	1.428	1.710	1.945	2.753	3.288	3.851	4.455
0.80	0.0155	0.507	0.852	1.315	1.567	1.729	2.305	2.724	3.195	3.734
0.90	0.0102	0.400	0.717	1.204	1.463	1.585	1.997	2.315	2.693	3.150
1.00	0.0070	0.317	0.602	1.096	1.376	1.481	1.785	2.023	2.319	2.691
1.10	0.0049	0.253	0.505	0.992	1.296	1.397	1.635	1.813	2.041	2.338
1.20	0.0036	0.203	0.424	0.894	1.219	1.322	1.524	1.662	1.837	2.069
1.30	0.0026	0.164	0.357	0.802	1.143	1.252	1.438	1.548	1.685	1.867
1.40 1.50	0.0020 0.0015	0.133 0.109	0.301 0.255	0.718 0.642	1.067 0.994	1.184 1.117	1.367 1.304	1.460 1.388	1.570 1.479	1.713 1.595
				0.042	0.994	1.11/			1.4/9	1.393
1.60	0.0012	0.090	0.216				1.246	1.326		
1.70	0.0009	0.075	0.184				1.191	1.270		
1.80	0.0008	0.062	0.157				1.137	1.218		
1.90	0.0006	0.053	0.135				1.084	1.168		
2.00	0.0005	0.044	0.116				1.032	1.119		

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

Element	Si ⁴⁺	Cl ¹⁻	K ¹⁺	Ca ²⁺	$\frac{8 \text{ Jacobs Je}}{\text{Sc}^{3+}}$	Ti ²⁺	Ti ³⁺	Ti ⁴⁺	V ²⁺	V ³⁺
Z	14	17	19	20	21	22	22	22	23	23
Method $(\sin \theta)/\lambda (\mathring{A}^{-1})$	HF	RHF	RHF	RHF	HF	HF	HF	HF	RHF	HF
$(\sin\theta)/\lambda(A)$										
0.00	10.000	18.000	18.000	18.000	18.000	20.000	19.000	18.000	21.000	20.000
0.01	9.998	17.972	17.986	17.989	17.991	19.988	18.990	17.992	20.988	19.990
0.02	9.991	17.888	17.943	17.955	17.963	19.951	18.962	17.969	20.952	19.961
0.03	9.981	17.751	17.872	17.899	17.917	19.891	18.914	17.930	20.892	19.913
0.04	9.966	17.563	17.774	17.821	17.853	19.807	18.848	17.877	20.808	19.846
0.05	9.947	17.330	17.649	17.721	17.771	19.701	18.764	17.808	20.702	19.760
0.06	9.924	17.057	17.499	17.601	17.672	19.572	18.662	17.725	20.573	19.657
0.07	9.896	16.750	17.325	17.462	17.556	19.423	18.543	17.628	20.424	19.536
0.08	9.865	16.415	17.129	17.303	17.424	19.253	18.407	17.516	20.255	19.398
0.09	9.829	16.058	16.912	17.127	17.278	19.065	18.255	17.392	20.066	19.244
0.10	9.790	15.685	16.677	16.935	17.116	18.860	18.089	17.255	19.861	19.075
0.11	9.747	15.301	16.426	16.727	16.941	18.639	17.909	17.106	19.639	18.892
0.12	9.700	14.911	16.160	16.506	16.754	18.404	17.716	16.946	19.402	18.695
0.13	9.649	14.519	15.882	16.272	16.555	18.156	17.510	16.775	19.152	18.485
0.14	9.595	14.130	15.594	16.028	16.345	17.896	17.294	16.593	18.890	18.265
0.15	9.537	13.747	15.297	15.774	16.126	17.626	17.067	16.403	18.618	18.033
0.16	9.476	13.371	14.994	15.512	15.898	17.348	16.832	16.205	18.336	17.793
0.17	9.411	13.006	14.688	15.244	15.662	17.062	16.589	15.998	18.047	17.544
0.18	9.343	12.653	14.378	14.970	15.421	16.771	16.339	15.785	17.751	17.287
0.19	9.272	12.313	14.069	14.692	15.173	16.475	16.083	15.566	17.450	17.025
0.20	9.199	11.987	13.760	14.412	14.922	16.176	15.822	15.342	17.146	16.757
0.22	9.043	11.379	13.150	13.850	14.410	15.574	15.291	14.881	16.529	16.210
0.24	8.877	10.832	12.560	13.292	13.893	14.972	14.752	14.408	15.910	15.653
0.25	8.790	10.580	12.275	13.017	13.634	14.673	14.482	14.170	15.602	15.373
0.26	8.701	10.343	11.997	12.745	13.377	14.377	14.213	13.930	15.296	15.093
0.28	8.518	9.908	11.467	12.217	12.869	13.797	13.680	13.452	14.694	14.537
0.30	8.327	9.524	10.972	11.713	12.374	13.236	13.157	12.979	14.107	13.989
0.32	8.131	9.184	10.515	11.235	11.896	12.697	12.650	12.515	13.541	13.455
0.34	7.929	8.884	10.097	10.787	11.438	12.184	12.162	12.064	12.998	12.938
0.35	7.827	8.746	9.901	10.575	11.218	11.938	11.926	11.844	12.736	12.687
0.36	7.724	8.616	9.715	10.370	11.004	11.698	11.696	11.628	12.481	12.441
0.38	7.516	8.377	9.369	9.984	10.595	11.242	11.254	11.211	11.991	11.967
0.40	7.306	8.162	9.056	9.629	10.212	10.815	10.837	10.815	11.530	11.517
0.42	7.095	7.965	8.773	9.303	9.855	10.417	10.446	10.439	11.096	11.092
0.44	6.884	7.785	8.518	9.006	9.524	10.047	10.080	10.086	10.692	10.692
0.45	6.779	7.699	8.399	8.867	9.368	9.873	9.907	9.917	10.500	10.502
0.46	6.674	7.616	8.287	8.734	9.218	9.706	9.740	9.754	10.315	10.318
0.48	6.465	7.457	8.077	8.487	8.937	9.391	9.426	9.445	9.965	9.969
0.50	6.259	7.305	7.886	8.262	8.678	9.102	9.135	9.158	9.641	9.645
0.55	5.755	6.945	7.474	7.781	8.121	8.477	8.503	8.529	8.935	8.936
0.60	5.277	6.600	7.125	7.389	7.670	7.972	7.990	8.012	8.359	8.354
0.65	4.830	6.259	6.814	7.058	7.298	7.560	7.571	7.588	7.889	7.878
0.70	4.418	5.920	6.523	6.764	6.982	7.216	7.222	7.234	7.501	7.485
0.80	3.701	5.248	5.962	6.231	6.445	6.656	6.658	6.664	6.892	6.870
0.90 1.00	3.124 2.673	4.608 4.024	5.406 4.859	5.719 5.209	5.961 5.488	6.179 5.728	6.182 5.734	6.189 5.745	6.407 5.973	6.384 5.950
1.00	2.073	4.024	4.039	3.209	3.400	3.128	3.73 4	3.143	3.713	J.7JU
1.10	2.326	3.509	4.336	4.710	5.017	5.282	5.291	5.306	5.553	5.531
1.20	2.063	3.070	3.854	4.232	4.556	4.840	4.852	4.870	5.137	5.116
1.30	1.864	2.705	3.423	3.790	4.115	4.411	4.425	4.443	4.727	4.705
1.40	1.712 1.595	2.405	3.045	3.390	3.706	4.004	4.017	4.035	4.330	4.307
1.50	1.393	2.162	2.722	3.038	3.335	3.626	3.638	3.655	3.952	3.929
1.60		1.968	2.449	2.732					3.600	
1.70		1.811	2.221	2.470					3.278	
1.80		1.686	2.033	2.250					2.989	
1.90		1.585	1.877	2.064					2.731	
2.00		1.502	1.749	1.909					2.505	

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

	23 HF	24 HF	24	Mn ²⁺ 25	Mn ³⁺ 25	Mn ⁴⁺ 25	26	26	Co ²⁺ 27	Co ³⁺
$\frac{(\sin \theta)/\lambda (\mathring{\mathbf{A}}^{-1})}{0.00}$	HF	HE								27
			HF	RHF	HF	HF	RHF	RHF	RHF	HF
	18.000	22.000	21.000	23.000	22.000	21.000	24.000	23.000	25.000	24.000
	17.993	21.988	20.990	22.988	21.990	20.992	23.989	22.991	24.989	23.990
	17.974	21.952	20.961	22.953	21.961	20.968	23.954	22.962	24.954	23.962
	17.941	21.892	20.913	22.894	21.913	20.927	23.895	22.914	24.897	23.914
	17.895	21.808	20.845	22.812	21.846	20.871	23.814	22.848	24.818	23.848
0.05	17.837	21.702	20.759	22.707	21.760	20.799	23.711	22.763	24.716	23.764
	17.766	21.574	20.655	22.581	21.656	20.712	23.587	22.660	24.593	23.661
	17.682	21.425	20.534	22.433	21.534	20.610	23.441	22.539	24.450	23.541
	17.587	21.256	20.395	22.266	21.395	20.493	23.276	22.401	24.287	23.404
	17.480	21.067	20.240	22.080	21.240	20.363	23.091	22.247	24.104	23.250
0.10	17.362	20.861	20.069	21.875	21.070	20.218	22.889	22.078	23.904	23.081
	17.234	20.638	19.884	21.654	20.884	20.061	22.669	21.893	23.687	22.896
	17.095	20.400	19.685	21.418	20.684	19.891	22.435	21.695	23.455	22.698
	16.946	20.148	19.474	21.167	20.472	19.710	22.185	21.483	23.207	22.486
	16.789	19.884	19.250	20.904	20.247	19.517	21.923	21.258	22.946	22.261
0.15	16.622	19.609	19.016	20.629	20.011	19.315	21.648	21.023	22.673	22.024
0.16	16.448	19.324	18.772	20.344	19.765	19.102	21.363	20.776	22.389	21.777
0.17	16.266	19.030	18.519	20.050	19.509	18.881	21.068	20.521	22.095	21.520
0.18	16.078	18.729	18.258	19.748	19.246	18.652	20.765	20.256	21.791	21.253
	15.883	18.423	17.991	19.440	18.975	18.415	20.455	19.984	21.481	20.978
0.20	15.683	18.112	17.718	19.126	18.697	18.172	20.140	19.705	21.164	20.696
0.22	15.268	17.481	17.157	18.488	18.127	17.669	19.494	19.130	20.514	20.114
	14.839	16.845	16.585	17.841	17.543	17.149	18.838	18.538	19.850	19.513
	14.620	16.527	16.297	17.517	17.247	16.884	18.508	18.238	19.516	19.207
	14.399	16.210	16.008	17.193	16.951	16.617	18.178	17.937	19.180	18.899
	13.955	15.584	15.431	16.551	16.357	16.079	17.520	17.331	18.510	18.280
0.30	13.509	14.972	14.862	15.920	15.768	15.540	16.871	16.727	17.845	17.659
0.32	13.067	14.378	14.303	15.304	15.187	15.005	16.234	16.130	17.191	17.043
	12.631	13.805	13.759	14.707	14.619	14.477	15.614	15.543	16.550	16.435
	12.417	13.528	13.494	14.417	14.341	14.217	15.312	15.254	16.236	16.135
	12.205	13.257	13.234	14.132	14.068	13.961	15.014	14.970	15.927	15.838
	11.792	12.734	12.730	13.581	13.536	13.458	14.436	14.414	15.324	15.258
0.40	11.392	12.238	12.248	13.055	13.024	12.972	13.881	13.877	14.743	14.694
0.42	11.010	11.770	11.790	12.556	12.536	12.504	13.352	13.361	14.186	14.151
	10.644	11.330	11.357	12.083	12.072	12.057	12.848	12.868	13.653	13.629
0.45	10.469	11.121	11.150	11.857	11.848	11.841	12.606	12.630	13.396	13.376
	10.298	10.918	10.950	11.638	11.632	11.630	12.370	12.398	13.146	13.129
0.48	9.970	10.533	10.567	11.219	11.216	11.225	11.919	11.953	12.664	12.652
0.50	9.662	10.174	10.210	10.827	10.826	10.843	11.494	11.531	12.207	12.200
0.55	8.973	9.386	9.419	9.954	9.956	9.982	10.542	10.581	11.176	11.171
0.60	8.396	8.737	8.764	9.229	9.223	9.252	9.737	9.772	10.293	10.286
0.65	7.915	8.205	8.224	8.626	8.615	8.641	9.063	9.092	9.546	9.534
0.70	7.515	7.766	7.779	8.128	8.111	8.132	8.501	8.523	8.917	8.900
0.80	6.888	7.091	7.095	7.365	7.341	7.352	7.640	7.651	7.948	7.921
0.90	6.399	6.578	6.580	6.808	6.779	6.785	7.023	7.026	7.257	7.224
1.00	5.968	6.143	6.145	6.360	6.330	6.334	6.546	6.548	6.739	6.703
1.10	5.556	5.738	5.742	5.963	5.933	5.938	6.144	6.145	6.320	6.283
1.20	5.147	5.341	5.348	5.585	5.555	5.562	5.775	5.778	5.951	5.913
1.30 1.40	4.741	4.949 4.564	4.958 4.573	5.213	5.183	5.193	5.419	5.423	5.605 5.268	5.566 5.228
1.40 1.50	4.344 3.965	4.564 4.191	4.573 4.202	4.846 4.487	4.815 4.454	4.826 4.467	5.068 4.722	5.074 4.729	5.268 4.936	5.228 4.895
1.60				4.140			4.384	4.392	4.609	
1.70				3.810			4.058	4.066	4.009	
1.80				3.502			3.749	3.757	3.985	
1.90				3.218			3.459	3.467	3.694	
2.00				2.960			3.192	3.199	3.421	

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

F1	Ni ²⁺	Ni ³⁺	Cu ¹⁺	Cu ²⁺	Zn ²⁺	Ga ³⁺	Ge ⁴⁺	Br ¹⁻	Rb ¹⁺	Sr ²⁺
Element Z	28	28	29	29	30	31	32	35	37	38
Method $(\sin \theta)/\lambda (\mathring{A}^{-1})$	RHF	HF	RHF	HF	RHF	HF	HF	RHF	RHF	RHF
0.00	26.000	25.000	28.000	27.000	28.000	28.000	28.000	36.000	36.000	36.000
0.01	25.989	24.991	27.987	26.989	27.989	27.991	27.992	35.961	35.977	35.981
0.02	25.955	24.962	27.946	26.956	27.957	27.964	27.969	35.845	35.908	35.923
0.03	25.899	24.915	27.878	26.901	27.903	27.919	27.931	35.656	35.794	35.827
0.04	25.821	24.850	27.783	26.824	27.828	27.856	27.877	35.398	35.635	35.694
0.05	25.721	24.766	27.663	26.726	27.732	27.776	27.808	35.077	35.435	35.524
0.06	25.600	24.665	27.518	26.608	27.615	27.678	27.724	34.703	35.195	35.320
0.07	25.459	24.546	27.349	26.469	27.479	27.564	27.625	34.282	34.917	35.084
0.08	25.299	24.410	27.157	26.311	27.323	27.433	27.512	33.824	34.605	34.816
0.09	25.119	24.258	26.944	26.134	27.149	27.286	27.386	33.336	34.262	34.520
0.10	24.921	24.090	26.711	25.939	26.958	27.123	27.245	32.827	33.891	34.198
0.11	24.707	23.907	26.459	25.728	26.749	26.946	27.091	32.303	33.496	33.851
0.12	24.477	23.709	26.190	25.500	26.525	26.754	26.924	31.771	33.079	33.484
0.13	24.232	23.498	25.905	25.258	26.286	26.548	26.745	31.236	32.646	33.098
0.14	23.973	23.275	25.606	25.001	26.032	26.330	26.554	30.703	32.199	32.696
0.15	23.702	23.039	25.294	24.732	25.766	26.099	26.351	30.175	31.740	32.281
0.16	23.419	22.792	24.972	24.451	25.488	25.856	26.137	29.657	31.275	31.854
0.17	23.126	22.535	24.639	24.159	25.198	25.603	25.913	29.149	30.805	31.420
0.18	22.824	22.268	24.297	23.857	24.899	25.339	25.680	28.654	30.333	30.979
0.19	22.513	21.993	23.949	23.547	24.591	25.066	25.437	28.172	29.862	30.535
0.20	22.195	21.710	23.594	23.229	24.275	24.784	25.185	27.706	29.393	30.089
0.22	21.543	21.125	22.872	22.574	23.622	24.197	24.658	26.817	28.471	29.198
0.24	20.875	20.518	22.139	21.900	22.949	23.585	24.104	25.988	27.579	28.322
0.25	20.536	20.209	21.770	21.558	22.606	23.270	23.818	25.595	27.147	27.892
0.26	20.197	19.897	21.401	21.214	22.261	22.952	23.526	25.215	26.726	27.469
0.28	19.516	19.268	20.666	20.523	21.566	22.305	22.931	24.491	25.916	26.647
0.30	18.839	18.636	19.939	19.832	20.869	21.649	22.321	23.812	25.150	25.861
0.32	18.169	18.005	19.224	19.146	20.175	20.988	21.702	23.170	24.428	25.113
0.34	17.510	17.380	18.524	18.469	19.488	20.327	21.077	22.559	23.749	24.404
0.35	17.187	17.071	18.180	18.135	19.149	19.997	20.764	22.264	23.424	24.064
0.36	16.867	16.765	17.842	17.805	18.812	19.669	20.451	21.975	23.109	23.734
0.38	16.242	16.164	17.180	17.157	18.150	19.019	19.826	21.412	22.503	23.100
0.40	15.637	15.578	16.541	16.528	17.504	18.379	19.205	20.867	21.929	22.500
0.42	15.054	15.010	15.925	15.919	16.876	17.751	18.593	20.335	21.381	21.931
0.44	14.495	14.463	15.333	15.332	16.269	17.139	17.989	19.816	20.857	21.389
0.45	14.224	14.197	15.047	15.046	15.974	16.839	17.692	19.560	20.603	21.128
0.46	13.959	13.936	14.767	14.767	15.683	16.544	17.398	19.306	20.353	20.872
0.48	13.448	13.432	14.225	14.227	15.120	15.967	16.821	18.806	19.865	20.376
0.50	12.962	12.950	13.710	13.711	14.580	15.409	16.259	18.313	19.391	19.898
0.55	11.854	11.847	12.530	12.526	13.331	14.106	14.929	17.114	18.253	18.765
0.60	10.895	10.887	11.502	11.491	12.227	12.937	13.716	15.964	17.169	17.700
0.65	10.075	10.062	10.614	10.597	11.263	11.902	12.625	14.870	16.127	16.684
0.70	9.378	9.360	9.855	9.831	10.429	10.995	11.656	13.840	15.128	15.707
0.80	8.292	8.265	8.659	8.625	9.097	9.526	10.058	12.002	13.273	13.875
0.90	7.516	7.482	7.797	7.757	8.126	8.441	8.853	10.479	11.645	12.231
1.00	6.944	6.906	7.165	7.123	7.414	7.642	7.956	9.261	10.270	10.805
1.10	6.497	6.457	6.681	6.637	6.879	7.045	7.286	8.311	9.147	9.611
1.20	6.119	6.078	6.285	6.240	6.455	6.582	6.774	7.580	8.251	8.638
1.30	5.776	5.734	5.939	5.892	6.096	6.203	6.365	7.016	7.548	7.862
1.40	5.450	5.407	5.617	5.568	5.775	5.872	6.021	6.573	6.997	7.249
1.50	5.131	5.086	5.307	5.256	5.472	5.569	5.715	6.216	6.561	6.764
0.60	4.816		5.003		5.178			5.913	6.209	6.375
1.70	4.507		4.704		4.890			5.645	5.913	6.056
1.80	4.207		4.411		4.606			5.398	5.656	5.785
1.90	3.918		4.127		4.329			5.162	5.421	5.545
2.00	3.643		3.853		4.059			4.932	5.201	5.324

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

Element	Y ³⁺	Zr ⁴⁺	Nb ³⁺	Nb ⁵⁺	$\frac{g \text{ factors } fo}{\text{Mo}^{3+}}$	Mo ⁵⁺	Mo ⁶⁺	Ru ³⁺	Ru ⁴⁺	Rh ³⁺
Z	39	40	41	41	42	42	42	44	44	45
Method $(\sin \theta)/\lambda (\mathring{\mathbf{A}}^{-1})$	*DS	*DS	*DS	*DS	*DS	*DS	*DS	*DS	*DS	*DS
0.00	36.000	36.000	38.000	36.000	39.000	37.000	36.000	41.000	40.000	42.000
0.01	35.983	35.985	37.981	35.987	38.981	36.986	35.988	40.980	39.983	41.980
0.02	35.933	35.942	37.925	35.948	38.923	36.946	35.954	40.922	39.933	41.922
0.03	35.850	35.869	37.832	35.884	38.827	36.878	35.897	40.824	39.849	41.824
0.04	35.735	35.768	37.702	35.795	38.695	36.783	35.817	40.689	39.733	41.689
0.05	35.588	35.640	37.537	35.681	38.526	36.663	35.715	40.517	39.585	41.516
0.06	35.411	35.484	37.339	35.543	38.323	36.517	35.591	40.309	39.406	41.308
0.07	35.204	35.302	37.109	35.381	38.087	36.347	35.446	40.067	39.197	41.066
0.08	34.970	35.096	36.849	35.197	37.820	36.152	35.280	39.793	38.959	40.791
0.09	34.710	34.865	36.560	34.991	37.523	35.936	35.095	39.489	38.695	40.485
0.10	34.425	34.612	36.246	34.765	37.200	35.697	34.890	39.156	38.404	40.150
0.11	34.118	34.338	35.908	34.519	36.853	35.438	34.667	38.798	38.090	39.789
0.12	33.791	34.045	35.548	34.254	36.483	35.160	34.428	38.416	37.754	39.404
0.13	33.445	33.734	35.170	33.973	36.094	34.865	34.172	38.012	37.397	38.997
0.14	33.082	33.406	34.775	33.675	35.688	34.553	33.900	37.590	37.022	38.569
0.15	32.705	33.064	34.366	33.363	35.266	34.226	33.615	37.151	36.630	38.125
0.16	32.316	32.708	33.945	33.038	34.832	33.886	33.317	36.698	36.223	37.665
0.17	31.916	32.341	33.514	32.701	34.388	33.533	33.006	36.233	35.804	37.193
0.18	31.509	31.964	33.076	32.353	33.936	33.170	32.685	35.758	35.374	36.710
0.19	31.094	31.580	32.632	31.997	33.478	32.798	32.354	35.276	34.934	36.218
0.20	30.675	31.188	32.184	31.632	33.016	32.418	32.015	34.789	34.488	35.720
0.22	29.830	30.392	31.284	30.885	32.086	31.640	31.316	33.804	33.579	34.713
0.24	28.986	29.586	30.388	30.121	31.159	30.847	30.595	32.819	32.659	33.701
0.25	28.567	29.182	29.945	29.736	30.701	30.448	30.229	32.329	32.199	33.198
0.26	28.152	28.781	29.506	29.351	30.246	30.048	29.862	31.844	31.741	32.697
0.28	27.337	27.985	28.646	28.582	29.356	29.252	29.123	30.889	30.833	31.711
0.30	26.548	27.205	27.814	27.821	28.494	28.465	28.387	29.962	29.943	30.751
0.32	25.789	26.447	27.013	27.074	27.664	27.695	27.658	29.067	29.078	29.823
0.34	25.063	25.716	26.248	26.346	26.871	26.944	26.941	28.210	28.242	28.932
0.35	24.712	25.360	25.878	25.990	26.488	26.578	26.589	27.796	27.836	28.500
0.36	24.370	25.012	25.518	25.640	26.115	26.218	26.241	27.392	27.439	28.079
0.38	23.712	24.339	24.824	24.960	25.397	25.518	25.562	26.614	26.671	27.268
0.40	23.086	23.696	24.167	24.306	24.717	24.847	24.904	25.878	25.940	26.499
0.42	22.492	23.083	23.543	23.680	24.073	24.205	24.270	25.181	25.245	25.772
0.44	21.927	22.500	22.953	23.081	23.464	23.592	23.662	24.524	24.586	25.086
0.45	21.654	22.218	22.669	22.792	23.172	23.296	23.366	24.209	24.271	24.757
0.46	21.388	21.944	22.393	22.509	22.888	23.007	23.078	23.904	23.963	24.438
0.48	20.874	21.414	21.861	21.963	22.342	22.450	22.518	23.319	23.374	23.829
0.50	20.382	20.907	21.355	21.442	21.825	21.920	21.983	22.767	22.817	23.254
0.55	19.231	19.731	20.187	20.235	20.638	20.697	20.744	21.516	21.549	21.957
0.60	18.166	18.658	19.128	19.142	19.573	19.599	19.627	20.416	20.434	20.826
0.65	17.163	17.659	18.148	18.137	18.597	18.598	18.608	19.430	19.436	19.824
0.70	16.208	16.716	17.224	17.198	17.685	17.668	17.664	18.528	18.525	18.918
0.80	14.415	14.952	15.492	15.458	15.985	15.955	15.937	16.884	16.872	17.292
0.90	12.784	13.333	13.886	13.858	14.405	14.377	14.357	15.367	15.354	15.807
1.00	11.340	11.873	12.414	12.395	12.939	12.918	12.902	13.939	13.929	14.407
1.10	10.100	10.592	11.099	11.088	11.606	11.593	11.581	12.605	12.597	13.086
1.20	9.067	9.501	9.958	9.951	10.427	10.418	10.411	11.382	11.378	11.859
1.30	8.225	8.595	8.992	8.988	9.410	9.405	9.400	10.291	10.288	10.744
1.40	7.548	7.856	8.193	8.190	8.554	8.551	8.547	9.339	9.338	9.756
1.50	7.008	7.261	7.541	7.539	7.846	7.843	7.841	8.528	8.527	8.899
1.60	6.575	6.782	7.013	7.011	7.267	7.265	7.263	7.847	7.846	8.171
1.70	6.222	6.394	6.584	6.583	6.795	6.793	6.792	7.282	7.282	7.559
1.80	5.927	6.074	6.234	6.233	6.409	6.408	6.407	6.817	6.817	7.051
1.90	5.672	5.802	5.941	5.940	6.090	6.089	6.089	6.433	6.433	6.631
2.00	5.443	5.565	5.689	5.690	5.820	5.820	5.820	6.114	6.114	6.281

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

Element	Rh ⁴⁺	Pd ²⁺	Pd ⁴⁺	Ag ¹⁺	Ag ²⁺	Cd ²⁺	In ³⁺	Sn ²⁺	Sn ⁴⁺	Sb ³⁺
Z	45	46	46	47	47	48	49	50	50	51
Method $(\sin \theta)/\lambda (\mathring{\mathbf{A}}^{-1})$	*DS	RHF	RHF	*DS						
0.00	41.000	44.000	42.000	46.000	45.000	46.000	46.000	48.000	46.000	48.000
0.01	40.983	43.977	41.983	45.974	44.978	45.978	45.981	47.975	45.984	47.978
0.02	40.932	43.909	41.932	45.894	44.911	45.912	45.924	47.898	45.934	47.911
0.03	40.848	43.796	41.847	45.764	44.799	45.802	45.829	47.771	45.852	47.801
0.04	40.730	43.640	41.729	45.582	44.645	45.650	45.697	47.596	45.737	47.647
0.05	40.581	43.441	41.579	45.353	44.448	45.456	45.529	47.373	45.590	47.452
0.06	40.400	43.201	41.396	45.076	44.211	45.222	45.325	47.106	45.411	47.218
0.07	40.188	42.923	41.184	44.757	43.936	44.950	45.087	46.797	45.203	46.945
0.08	39.948	42.608	40.942	44.397	43.624	44.641	44.816	46.449	44.964	46.636
0.09	39.680	42.258	40.671	43.999	43.277	44.298	44.513	46.066	44.698	46.293
0.10	39.385	41.877	40.375	43.567	42.898	43.923	44.181	45.650	44.404	45.920
0.11	39.067	41.467	40.053	43.105	42.490	43.517	43.821	45.206	44.084	45.517
0.12	38.725	41.031	39.708	42.616	42.056	43.085	43.435	44.736	43.739	45.089
0.13	38.363	40.572	39.341	42.103	41.597	42.628	43.024	44.244	43.371	44.638
0.14	37.981	40.092	38.955	41.570	41.117	42.148	42.591	43.733	42.981	44.167
0.15	37.582	39.595	38.551	41.020	40.618	41.649	42.138	43.206	42.572	43.677
0.16	37.168	39.083	38.131	40.457	40.103	41.134	41.667	42.667	42.143	43.172
0.17	36.740	38.558	37.696	39.883	39.575	40.603	41.180	42.117	41.698	42.655
0.18	36.301	38.024	37.249	39.301	39.036	40.061	40.678	41.560	41.237	42.127
0.19	35.852	37.483	36.792	38.713	38.489	39.509	40.165	40.998	40.763	41.590
0.20	35.395	36.936	36.326	38.122	37.935	38.949	39.641	40.431	40.276	41.047
0.22	34.463	35.836	35.374	36.940	36.817	37.816	38.570	39.296	39.274	39.950
0.24	33.518	34.739	34.406	35.768	35.697	36.677	37.481	38.164	38.242	38.847
0.25	33.045	34.195	33.921	35.191	35.141	36.110	36.933	37.604	37.718	38.298
0.26	32.572	33.657	33.435	34.620	34.589	35.545	36.385	37.047	37.192	37.750
0.28	31.635	32.601	32.471	33.503	33.502	34.431	35.295	35.950	36.135	36.668
0.30	30.715	31.577	31.521	32.424	32.445	33.344	34.220	34.878	35.082	35.605
0.32	29.819	30.592	30.594	31.389	31.425	32.291	33.167	33.836	34.041	34.569
0.34	28.951	29.649	29.695	30.400	30.446	31.276	32.145	32.826	33.019	33.561
0.35	28.530	29.194	29.257	29.924	29.973	30.785	31.647	32.333	32.517	33.069
0.36	28.117	28.751	28.828	29.460	29.511	30.305	31.158	31.850	32.023	32.585
0.38	27.318	27.899	27.998	28.569	28.622	29.379	30.209	30.910	31.057	31.643
0.40	26.557	27.093	27.204	27.727	27.780	28.500	29.302	30.008	30.127	30.737
0.42	25.833	26.333	26.450	26.933	26.984	27.667	28.438	29.144	29.235	29.866
0.44	25.148	25.617	25.735	26.186	26.233	26.881	27.618	28.318	28.383	29.031
0.45	24.819	25.275	25.391	25.829	25.874	26.505	27.224	27.920	27.972	28.628
0.46	24.499	24.944	25.057	25.484	25.527	26.140	26.842	27.532	27.571	28.234
0.48	23.886	24.311	24.418	24.825	24.863	25.443	26.109	26.785	26.802	27.472
0.50	23.307	23.716	23.814	24.206	24.239	24.788	25.418	26.075	26.074	26.747
0.55	21.995	22.378	22.450	22.817	22.839	23.319	23.865	24.464	24.430	25.088
0.60	20.850	21.221	21.267	21.623	21.635	22.061	22.533	23.067	23.019	23.634
0.65	19.835	20.205	20.228	20.583	20.588	20.974	21.389	21.859	21.810	22.367
0.70	18.919	19.295	19.300	19.660	19.660	20.021	20.394	20.810	20.767	21.261
0.80	17.282	17.683	17.668	18.051	18.046	18.392	18.724	19.074	19.052	19.433
0.90 1.00	15.795 14.396	16.229 14.859	16.208 14.840	16.622 15.284	16.616 15.278	16.979 15.673	17.315 16.034	17.649 16.386	17.646 16.395	17.957 16.684
1.10	13.078	13.557	13.542	14.006	14.002	14.425	14.818	15.203	15.215	15.516
1.20	11.853	12.331	12.321	12.790	12.788	13.230	13.649	14.063	14.074	14.403
1.30	10.740	11.201	11.194	11.654	11.653	12.099	12.530	12.962	12.970	13.329
1.40	9.754	10.183	10.180	10.616	10.616	11.050	11.479	11.913	11.917	12.300
1.50	8.898	9.288	9.286	9.688	9.688	10.098	10.510	10.932	10.933	11.326
1.60	8.170	8.514	8.513	8.875	8.876	9.251	9.637	10.033	10.033	10.422
1.70	7.559	7.858	7.857	8.176	8.176	8.513	8.864	9.227	9.225	9.599
1.80	7.051	7.307	7.306	7.582	7.582	7.878	8.191	8.515	8.513	8.863
1.90	6.630	6.847	6.847	7.083	7.083	7.339	7.613	7.897	7.896	8.215
2.00	6.281	6.464	6.464	6.665	6.665	6.884	7.122	7.367	7.366	7.652

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

Element	Sb ⁵⁺	I ¹⁻	Cs ¹⁺	Ba ²⁺	La ³⁺	Ce ³⁺	Ce ⁴⁺	Pr ³⁺	Pr ⁴⁺	Nd ³⁺
Z	51	53	55	56	57	58	58	59	59	60
Method $(\sin \theta)/\lambda (\mathring{\mathbf{A}}^{-1})$	*DS	RHF	RHF	*DS						
0.00	46.000	54.000	54.000	54.000	54.000	55.000	54.000	56.000	55.000	57.000
0.01	45.985	53.943	53.963	53.967	53.971	54.972	53.974	55.972	54.975	56.972
0.02	45.940	53.772	53.850	53.869	53.885	54.886	53.897	55.888	54.898	56.889
0.03	45.865	53.493	53.665	53.708	53.742	54.745	53.769	55.748	54.772	56.752
0.04	45.760	53.114	53.408	53.484	53.544	54.549	53.592	55.555	54.597	56.561
0.05	45.627	52.646	53.084	53.200	53.293	54.300	53.366	55.309	54.373	56.318
0.06	45.464	52.101	52.698	52.861	52.991	54.001	53.094	55.013	54.104	56.026
0.07	45.274	51.492	52.254	52.468	52.640	53.654	52.778	54.669	53.791	55.686
0.08	45.057	50.834	51.758	52.027	52.245	53.261	52.420	54.280	53.436	55.302
0.09	44.813	50.136	51.217	51.543	51.808	52.827	52.022	53.850	53.042	54.876
0.10	44.544	49.413	50.635	51.018	51.332	52.355	51.589	53.381	52.612	54.411
0.11	44.251	48.672	50.020	50.460	50.823	51.848	51.122	52.878	52.148	53.911
0.12	43.935	47.924	49.377	49.872	50.284	51.310	50.625	52.343	51.654	53.380
0.13	43.596	47.175	48.714	49.259	49.718	50.745	50.102	51.781	51.133	52.821
0.14	43.237	46.432	48.035	48.627	49.130	50.158	49.555	51.195	50.588	52.237
0.15	42.859	45.698	47.345	47.980	48.524	49.551	48.988	50.589	50.022	51.632
0.16	42.462	44.978	46.651	47.322	47.903	48.928	48.404	49.966	49.439	51.010
0.17	42.049	44.273	45.955	46.657	47.272	48.294	47.807	49.331	48.841	50.374
0.18	41.621	43.585	45.262	45.989	46.633	47.651	47.199	48.686	48.231	49.727
0.19	41.178	42.916	44.575	45.321	45.989	47.002	46.583	48.034	47.613	49.073
0.20	40.723	42.265	43.897	44.657	45.344	46.351	45.963	47.378	46.989	48.414
0.22	39.781	41.019	42.577	43.348	44.061	45.052	44.718	46.066	45.733	47.091
0.24	38.806	39.841	41.312	42.077	42.801	43.771	43.481	44.767	44.481	45.778
0.25	38.309	39.276	40.703	41.459	42.183	43.142	42.871	44.128	43.861	45.129
0.26	37.807	38.726	40.110	40.855	41.576	42.522	42.268	43.497	43.248	44.489
0.28	36.796	37.665	38.971	39.688	40.396	41.315	41.088	42.266	42.046	43.235
0.30	35.780	36.650	37.893	38.579	39.267	40.157	39.950	41.080	40.882	42.025
0.32	34.770	35.676	36.872	37.525	38.190	39.050	38.859	39.945	39.763	40.863
0.34	33.771	34.735	35.902	36.525	37.166	37.996	37.817	38.860	38.692	39.750
0.35	33.278	34.276	35.434	36.043	36.673	37.488	37.314	38.337	38.174	39.213
0.36	32.790	33.824	34.977	35.574	36.192	36.992	36.823	37.826	37.669	38.688
0.38	31.834	32.941	34.091	34.668	35.266	36.037	35.877	36.842	36.693	37.675
0.40	30.905	32.082	33.240	33.802	34.384	35.127	34.977	35.903	35.763	36.708
0.42	30.009	31.248	32.419	32.972	33.541	34.258	34.118	35.007	34.876	35.785
0.44	29.146	30.437	31.625	32.173	32.734	33.427	33.298	34.150	34.028	34.903
0.45	28.729	30.040	31.238	31.785	32.342	33.025	32.901	33.736	33.619	34.476
0.46	28.321	29.650	30.856	31.403	31.959	32.630	32.513	33.329	33.218	34.057
0.48	27.532	28.887	30.110	30.659	31.212	31.863	31.759	32.541	32.440	33.246
0.50	26.782	28.149	29.385	29.939	30.492	31.124	31.034	31.782	31.693	32.465
0.55	25.073	26.418	27.664	28.231	28.789	29.382	29.329	29.996	29.939	30.631
0.60	23.590	24.855	26.074	26.649	27.211	27.771	27.753	28.348	28.323	28.943
0.65	22.310	23.460	24.620	25.189	25.748	26.278	26.290	26.822	26.826	27.380
0.70	21.205	22.227	23.303	23.854	24.398	24.899	24.933	25.411	25.437	25.936
0.80	19.397	20.191	21.071	21.555	22.039	22.479	22.532	22.927	22.976	23.387
0.90	17.947	18.598	19.309	19.709	20.117	20.495	20.543	20.881	20.927	21.275
1.00	16.690	17.292	17.900	18.227	18.568	18.892	18.926	19.222	19.256	19.559
1.10	15.529	16.150	16.721	17.003	17.299	17.585	17.605	17.874	17.895	18.166
1.20	14.416	15.091	15.676	15.941	16.218	16.485	16.495	16.749	16.760	17.012
1.30	13.339	14.072	14.701	14.970	15.249	15.513	15.519	15.769	15.775	16.020
1.40 1.50	12.305 11.328	13.082 12.126	13.760 12.844	14.048 13.154	14.341 13.467	14.614 13.754	14.620 13.763	14.875 14.027	14.880 14.034	15.126 14.288
1.60 1.70	10.422 9.597	11.214	11.956	12.285	12.616 11.791	12.919 12.105	12.931 12.120	13.207	13.217 12.419	13.481
1.70	9.597 8.860	10.360 9.577	11.104 10.302	11.447 10.649	11.791	12.105	12.120	12.407 11.629	12.419 11.644	12.695 11.928
1.90	8.213	9.377 8.868	9.559	9.902	10.997	10.568	10.585	10.881	10.897	11.186
2.00	7.650	8.239	8.882	9.302	9.545	9.860	9.877	10.331	10.897	10.476
2.00	7.030	3.237	3.002	7.213	ノ・ジオン	7.000	7.011	10.1/1	10.107	10.T/U

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

Element	Pm ³⁺	Sm ³⁺	Eu ²⁺	Eu ³⁺	Gd ³⁺	Tb ³⁺	Dy ³⁺	Ho ³⁺	Er ³⁺	Tm ³⁺
Z	61	62	63	63	64	65	66	67	68	69
Method $(\sin \theta)/\lambda (\mathring{A}^{-1})$	*DS									
0.00	58.000	59.000	61.000	60.000	61.000	62.000	63.000	64.000	65.000	66.000
0.01	57.973	58.973	60.970	59.973	60.974	61.974	62.975	63.975	64.975	65.976
0.02	57.891	58.892	60.881	59.894	60.895	61.896	62.898	63.900	64.901	65.903
0.03	57.755	58.759	60.732	59.762	60.765	61.767	62.772	63.775	64.779	65.782
0.04	57.567	58.573	60.527	59.579	60.585	61.588	62.596	63.602	64.608	65.613
0.05	57.328	58.337	60.266	59.347	60.355	61.360	62.373	63.382	64.391	65.399
0.06	57.039	58.052	59.952	59.066	60.077	61.086	62.102	63.115	64.128	65.139
0.07	56.704	57.721	59.587	58.739	59.754	60.766	61.787	62.804	63.821	64.836
0.08	56.324	57.345	59.175	58.368	59.387	60.403	61.429	62.451	63.472	64.491
0.09	55.902	56.929	58.718	57.956	58.980	60.000	61.031	62.058	63.083	64.107
0.10	55.442	56.473	58.222	57.505	58.534	59.559	60.595	61.626	62.657	63.685
0.11	54.947	55.982	57.688	57.019	58.053	59.082	60.124	61.160	62.195	63.228
0.12	54.420	55.460	57.122	56.501	57.539	58.574	59.620	60.660	61.701	62.739
0.13	53.864	54.908	56.527	55.954	56.996	58.036	59.086	60.131	61.176	62.219
0.14	53.284	54.330	55.906	55.380	56.427	57.471	58.525	59.574	60.624	61.671
0.15	52.681	53.731	55.264	54.784	55.834	56.883	57.940	58.993	60.047	61.099
0.16	52.061	53.112	54.604	54.168	55.222	56.274	57.334	58.391	59.448	60.504
0.17	51.425	52.478	53.930	53.536	54.592	55.647	56.710	57.769	58.830	59.889
0.18	50.778	51.831	53.245	52.890	53.948	55.006	56.070	57.132	58.196	59.258
0.19	50.122	51.175	52.552	52.234	53.292	54.353	55.417	56.481	57.547	58.611
0.20	49.461	50.512	51.854	51.570	52.628	53.689	54.754	55.819	56.886	57.953
0.22	48.130	49.175	50.454	50.228	51.283	52.344	53.407	54.471	55.540	56.608
0.24	46.804	47.839	49.062	48.884	49.933	50.989	52.046	53.107	54.174	55.241
0.25	46.148	47.176	48.374	48.216	49.260	50.312	51.366	52.424	53.489	54.554
0.26	45.499	46.519	47.694	47.553	48.591	49.639	50.688	51.742	52.804	53.866
0.28	44.226	45.228	46.361	46.246	47.270	48.306	49.344	50.389	51.442	52.498
0.30	42.993	43.975	45.069	44.973	45.980	47.001	48.025	49.057	50.099	51.145
0.32	41.805	42.764	43.825	43.741	44.728	45.731	46.738	47.755	48.783	49.817
0.34	40.666	41.600	42.629	42.553	43.519	44.501	45.489	46.489	47.501	48.520
0.35	40.115	41.036	42.050	41.977	42.931	43.902	44.880	45.871	46.874	47.884
0.36	39.576	40.484	41.484	41.412	42.354	43.314	44.282	45.263	46.256	47.258
0.38	38.534	39.416	40.387	40.319	41.236	42.172	43.118	44.078	45.052	46.035
0.40	37.540	38.395	39.338	39.271	40.163	41.075	41.998	42.936	43.889	44.853
0.42	36.590	37.418	38.333	38.268	39.135	40.021	40.921	41.837	42.768	43.711
0.44	35.681	36.483	37.371	37.307	38.149	39.010	39.887	40.780	41.689	42.611
0.45	35.241	36.031	36.904	36.842	37.671	38.520	39.385	40.267	41.164	42.075
0.46	34.810	35.587	36.447	36.386	37.203	38.040	38.893	39.764	40.649	41.550
0.48	33.975	34.728	35.560	35.503	36.295	37.108	37.938	38.786	39.649	40.527
0.50	33.172	33.902	34.707	34.653	35.423	36.212	37.019	37.844	38.685	39.542
0.55	31.287	31.965	32.702	32.663	33.379	34.113	34.866	35.637	36.424	37.228
0.60	29.555	30.188	30.861	30.838	31.506	32.191	32.894	33.615	34.352	35.106
0.65	27.955	28.547	29.160	29.155	29.779	30.420	31.078	31.753	32.444	33.151
0.70	26.475	27.029	27.589	27.599	28.183	28.784	29.400	30.032	30.680	31.344
0.80	23.858	24.342	24.811	24.840	25.351	25.876	26.416	26.970	27.540	28.123
0.90	21.681	22.098	22.494	22.528	22.969	23.424	23.892	24.374	24.870	25.380
1.00	19.905	20.260	20.599	20.626	21.003	21.392	21.793	22.207	22.634	23.074
1.10	18.464	18.768	19.061	19.080	19.400	19.730	20.072	20.424	20.787	21.163
1.20	17.277	17.544	17.805	17.815	18.092	18.373	18.666	18.966	19.276	19.595
1.30	16.267	16.512	16.753	16.758	17.004	17.252	17.508	17.768	18.035	18.309
1.40	15.370	15.607	15.839	15.840	16.071	16.298	16.531	16.764	17.000	17.241
1.50	14.538	14.778	15.010	15.011	15.237	15.457	15.678	15.896	16.114	16.332
1.60	13.743	13.993	14.231	14.233	14.463	14.685	14.904	15.118	15.327	15.534
1.70	12.970	13.232	13.480	13.483	13.724	13.953	14.178	14.394	14.604	14.809
1.80	12.215	12.490	12.748	12.753	13.005	13.245	13.479	13.703	13.919	14.127
1.90	11.481	11.765	12.032	12.039	12.302	12.554	12.798	13.032	13.257	13.473
2.00	10.774	11.063	11.336	11.344	11.616	11.878	12.132	12.376	12.610	12.836

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

Element	Yb ²⁺	Yb ³⁺	Lu ³⁺	Hf ⁴⁺	$\frac{8 \text{ Jacobs Jo}}{\text{Ta}^{5+}}$	W ⁶⁺	Os ⁴⁺	Ir ³⁺	Ir ⁴⁺	Pt ²⁺
Z	70	70	71	72	73	74	76	77	77	78
Method	*DS	*DS	*DS	*DS	*DS	*DS	*DS	*DS	*DS	*DS
$(\sin \theta)/\lambda (\mathring{\mathbf{A}}^{-1})$										
0.00	68.000	67.000	68.000	68.000	68.000	68.000	72.000	74.000	73.000	76.000
0.01	67.973	66.976	67.976	67.979	67.981	67.982	71.976	73.972	72.975	75.968
0.02	67.892	66.904	67.905	67.915	67.922	67.929	71.904	73.889	72.902	75.874
0.03	67.759	66.785	67.788 67.624	67.809	67.826	67.840	71.784 71.617	73.752	72.780	75.717
0.04 0.05	67.573 67.337	66.619 66.407	67.624 67.415	67.661 67.472	67.691 67.519	67.716 67.557	71.617 71.404	73.561 73.318	72.611 72.395	75.499 75.222
0.03	07.337	00.407	07.413	07.472	07.319	07.337	71.404	73.316	12.393	13.222
0.06	67.051	66.151	67.161	67.243	67.309	67.365	71.147	73.024	72.133	74.889
0.07	66.719	65.851	66.866	66.976	67.065	67.139	70.847	72.682	71.828	74.502
0.08	66.342	65.511	66.529	66.670	66.785	66.881	70.506	72.294	71.481	74.065
0.09	65.922	65.131	66.154	66.329	66.471	66.592	70.125	71.863	71.094	73.580
0.10	65.464	64.714	65.741	65.953	66.126	66.272	69.707	71.392	70.669	73.052
0.11	64.968	64.262	65.294	65.544	65.749	65.923	69.254	70.883	70.208	72.485
0.12	64.439	63.777	64.814	65.103	65.343	65.546	68.769	70.339	69.715	71.881
0.13	63.879	63.262	64.303	64.634	64.908	65.142	68.253	69.764	69.190	71.245
0.14	63.292	62.719	63.765	64.138	64.448	64.713	67.711	69.162	68.638	70.582
0.15	62.679	62.151	63.201	63.616	63.963	64.260	67.143	68.534	68.060	69.894
0.16	62.046	61 561	62.615	62.071	62 155	62 705	66 EFO	67.884	67.460	60 10 5
0.16 0.17	62.046 61.393	61.561 60.950	62.615	63.071 62.505	63.455 62.926	63.785 63.290	66.552 65.942	67.884 67.215	67.460 66.839	69.185 68.459
0.17	60.724	60.321	62.008	62.505	62.926	63.290	65.313	66.530	66.200	68.459 67.719
0.18	60.043	59.678	60.742	61.319	61.812	62.773	64.670	65.832	65.546	66.968
0.20	59.350	59.022	60.088	60.703	61.231	61.693	64.014	65.123	64.879	66.210
0.20	37.330	37.022	00.000	00.703	01.231	01.075	04.014	03.123	04.077	00.210
0.22	57.943	57.679	58.749	59.433	60.028	60.553	62.671	63.684	63.515	64.679
0.24	56.521	56.312	57.382	58.127	58.783	59.367	61.302	62.228	62.124	63.144
0.25	55.809	55.624	56.693	57.465	58.149	58.760	60.612	61.500	61.423	62.381
0.26	55.098	54.935	56.002	56.799	57.509	58.146	59.920	60.773	60.721	61.621
0.28	53.687	53.560	54.622	55.460	56.216	56.901	58.537	59.328	59.319	60.121
0.30	52.297	52.198	53.253	54.123	54.917	55.643	57.164	57.905	57.927	58.652
0.32	50.937	50.858	51.903	52.796	53.620	54.381	55.809	56.510	56.555	57.220
0.34	49.611	49.548	50.580	51.487	52.334	53.122	54.478	55.148	55.209	55.830
0.35	48.962	48.904 48.270	49.930	50.842	51.696	52.496	53.823	54.481	54.548	55.151
0.36	48.323	48.270 47.030	49.288 48.032	50.203 48.947	51.064 49.817	51.873 50.641	53.175	53.823 52.538	53.894	54.483
0.38 0.40	47.076 45.871	47.030	46.813	48.947	49.817	49.430	51.906 50.671	52.538	52.613 51.369	53.182 51.925
0.40	43.671	43.626	40.613	47.723	40.391	49.430	30.071	31.293	31.309	31.923
0.42	44.707	44.667	45.633	46.534	47.406	48.244	49.473	50.089	50.163	50.714
0.44	43.585	43.545	44.491	45.381	46.247	47.086	48.312	48.926	48.995	49.545
0.45	43.038	42.999	43.935	44.818	45.681	46.518	47.745	48.359	48.425	48.977
0.46	42.502	42.463	43.389	44.265	45.122	45.957	47.187	47.802	47.865	48.419
0.48	41.458	41.419	42.325	43.184	44.031	44.860	46.099	46.717	46.773	47.333
0.50	40.450	40.412	41.297	42.140	42.974	43.795	45.046	45.668	45.717	46.286
									46.5	
0.55	38.080	38.046	38.880	39.680	40.479	41.271	42.562	43.197	43.227	43.820
0.60	35.901	35.874	36.658	37.419	38.181	38.942	40.270	40.918	40.932	41.549
0.65	33.890	33.873	34.610	35.335	36.064	36.793	38.147	38.805	38.807	39.443
0.70 0.80	32.029 28.709	32.022 28.722	32.716 29.335	33.409 29.970	34.106 30.612	34.806 31.258	36.172 32.602	36.835 33.261	36.830 33.249	37.479 33.005
0.80	25.880	25.904	29.333 26.442	29.970	27.605	28.199	32.602 29.471	30.104	33.249	33.905 30.732
1.00	23.501	23.527	23.994	24.506	25.033	25.572	26.734	27.324	27.317	27.918
1.00	25.501	23.321	2 0.22∓	21.500	25.055	_3.312	20.137	27.527	21.511	2
1.10	21.528	21.551	21.952	22.396	22.858	23.336	24.368	24.902	24.898	25.447
1.20	19.908	19.926	20.267	20.645	21.042	21.456	22.350	22.821	22.820	23.307
1.30	18.580	18.591	18.883	19.202	19.538	19.890	20.652	21.057	21.058	21.481
1.40	17.480	17.486	17.738	18.009	18.293	18.592	19.234	19.579	19.581	19.942
1.50	16.550	16.553	16.777	17.011	17.255	17.510	18.054	18.347	18.348	18.654
1.60	15.740	15.741	15.947	16.158	16.374	16.597	17.066	17.315	17.317	17.578
1.70	15.009	15.010	15.208	15.406	15.605	15.808	16.225	16.443	16.444	16.670
1.80	14.330	14.330	14.528	14.722	14.914	15.106	15.493	15.691	15.691	15.893
1.90	13.681	13.682	13.884	14.081	14.274	14.463	14.838	15.024	15.024	15.211
2.00	13.051	13.053	13.263	13.467	13.666	13.858	14.234	14.417	14.416	14.597

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

Element	Pt ⁴⁺	Au ¹⁺	Au ³⁺	Hg ¹⁺	$\frac{8 \text{ Jacobs Jo}}{\text{Hg}^{2+}}$	Tl ¹⁺	Tl ³⁺	Pb ²⁺	Pb ⁴⁺	Bi ³⁺
Z	78	79	79	80	80	81	81	82	82	83
Method	*DS	*DS	*DS	*DS	*DS	*DS	*DS	*DS	*DS	*DS
$(\sin\theta)/\lambda(\mathring{\mathbf{A}}^{-1})$										
0.00	74.000	78.000	76.000	79.000	78.000	80.000	78.000	80.000	78.000	80.000
0.01	73.975	77.964	75.972	78.962	77.968	79.961	77.975	79.966	77.975	79.969
0.02	73.901	77.855	75.888	78.850	77.875	79.845	77.891	79.864	77.899	79.878
0.03	73.778	77.676	75.750	78.664	77.719	79.653	77.753	79.695	77.774	79.727
0.04	73.606	77.428	75.557	78.406	77.503	79.388	77.560	79.461	77.599	79.516
0.05	73.387	77.113	75.311	78.080	77.229	79.052	77.314	79.164	77.376	79.249
0.06	72 122	76.736	75.015	77.689	76.897	78.650	77.017	70 007	77 106	79.026
0.06	73.123 72.814	76.736 76.299	73.013 74.669	77.238	76.897 76.512	78.030 78.186	77.017 76.670	78.807 78.392	77.106 76.790	78.926 78.550
0.07	72.462	75.807	74.009	76.731	76.076	77.665	76.276	77.924	76.430	78.124
0.08	72.402	75.264	73.839	76.173	75.591	77.003	75.836	77.406	76.028	77.651
0.10	71.639	74.676	73.361	75.570	75.062	76.474	75.355	76.843	75.586	77.134
0.10	, 1,000	7	70.001	70.070	701002		701000	701010	761666	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.11	71.173	74.046	72.843	74.925	74.492	75.814	74.833	76.238	75.106	76.577
0.12	70.673	73.380	72.290	74.245	73.884	75.119	74.275	75.597	74.590	75.983
0.13	70.141	72.683	71.705	73.535	73.243	74.394	73.683	74.922	74.041	75.355
0.14	69.581	71.958	71.089	72.798	72.571	73.644	73.060	74.220	73.461	74.698
0.15	68.995	71.211	70.448	72.041	71.874	72.873	72.409	73.493	72.853	74.014
0.16	68.386	70.446	69.783	71.266	71.153	72.085	71.733	72.745	72.220	73.308
0.17	67.756	69.665	69.097	70.477	70.413	71.286	71.035	71.981	71.563	72.581
0.18	67.107	68.874	68.395	69.679	69.658	70.477	70.319	71.204	70.885	71.839
0.19	66.443	68.075	67.678	68.874	68.889	69.663	69.586	70.417	70.190	71.083
0.20	65.766	67.271	66.949	68.065	68.111	68.847	68.841	69.623	69.479	70.317
0.22	64.380	65.658	65.466	66.445	66.536	67.214	67.320	68.023	68.020	68.764
0.24	62.968	64.054	63.965	64.836	64.952	65.597	65.776	66.425	66.527	67.199
0.25	62.256	63.260	63.213	64.040	64.162	64.797	65.001	65.631	65.772	66.416
0.26 0.28	61.543 60.119	62.472 60.923	62.462 60.969	63.251 61.698	63.376 61.821	64.005 62.448	64.226 62.685	64.841 63.284	65.015 63.501	65.636 64.090
0.28	58.707	59.413	59.499	60.184	60.296	60.931	61.163	61.759	61.995	62.569
0.50	50.707	37.113	37.177	00.101	00.270	00.551	01.105	01.757	01.775	02.30)
0.32	57.315	57.947	58.058	58.714	58.810	59.458	59.670	60.275	60.509	61.081
0.34	55.951	56.529	56.653	57.290	57.367	58.031	58.214	58.833	59.052	59.631
0.35	55.281	55.839	55.965	56.596	56.663	57.335	57.502	58.128	58.336	58.922
0.36	54.619	55.161	55.288	55.914	55.972	56.651	56.800	57.436	57.629	58.223
0.38	53.323	53.841	53.967	54.586	54.625	55.318	55.432	56.085	56.247	56.858
0.40	52.065	52.571	52.689	53.306	53.327	54.032	54.110	54.781	54.908	55.538
0.42	50.847	51.348	51.457	52.073	52.079	52.792	52.837	53.523	53.614	54.263
0.44	49.669	50.172	50.269	50.885	50.879	51.596	51.613	52.309	52.367	53.033
0.45	49.095	49.600	49.691	50.308	50.296	51.015	51.018	51.719	51.762	52.435
0.46	48.531	49.040	49.124	49.742	49.725	50.444	50.435	51.140	51.167	51.847
0.48	47.431	47.950	48.021	48.640	48.615	49.332	49.304	50.013	50.014	50.704
0.50	46.370	46.899	46.958	47.578	47.548	48.261	48.217	48.927	48.905	49.602
0.55	43.871	44.432	44.464	45.085	45.050	45.742	45.677	46.377	46.318	47.018
0.53	43.871	44.432	44.464	43.083	43.030	43.429	43.364	46.377	40.318	44.653
0.65	39.447	40.062	40.060	40.679	40.656	43.429	41.241	41.888	41.822	42.481
0.70	37.470	38.103	38.093	38.709	38.696	39.311	39.275	39.895	39.844	40.473
0.80	33.885	34.534	34.518	35.131	35.133	35.718	35.714	36.293	36.278	36.857
0.90	30.713	31.352	31.338	31.944	31.952	32.523	32.538	33.096	33.108	33.657
1.00	27.905	28.513	28.504	29.090	29.100	29.659	29.679	30.227	30.249	30.784
1 10	25 440	26,000	25 006	26.540	26 557	27 007	27 114	27 640	27 660	28 104
1.10 1.20	25.440 23.305	26.000 23.807	25.996 23.806	26.549 24.315	26.557 24.319	27.097 24.828	27.114 24.839	27.648 25.349	27.669 25.364	28.194 25.871
1.30	23.303	23.807	23.800	22.378	24.319	24.828	24.839	23.349	23.304	23.811
1.40	19.945	20.322	20.325	20.723	20.722	21.139	21.138	23.525	23.552	22.009
1.50	18.658	18.978	18.981	19.324	19.322	19.686	19.682	20.062	20.058	20.453
1.60	17.580	17.853	17.856	18.148	18.146	18.460	18.454	18.784	18.778	19.124
1.70	16.672	16.907	16.909	17.160	17.157	17.426	17.420	17.705	17.697	17.997
1.80	15.894	16.101	16.102	16.320	16.319	16.550	16.546	16.790	16.784	17.043
1.90	15.211	15.401	15.401	15.597	15.596	15.800	15.797	16.010	16.005	16.229
2.00	14.596	14.777	14.777	14.958	14.958	15.143	15.141	15.332	15.329	15.527

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

Element	Bi ⁵⁺	Ra ²⁺	Ac ³⁺	Th ⁴⁺	U^{3+}	U ⁴⁺	U ⁶⁺	Np ³⁺	Np ⁴⁺	Np ⁶⁺
Z	83	88	89	90	92	92	92	93	93	93
Method $(\sin \theta)/\lambda (\mathring{\mathbf{A}}^{-1})$	*DS									
0.00	78.000	86.000	86.000	86.000	89.000	88.000	86.000	90.000	89.000	87.000
0.01	77.977	85.957	85.961	85.965	88.961	87.965	85.970	89.962	88.965	86.970
0.02	77.908	85.829	85.846	85.860	88.846	87.860	85.881	89.847	88.860	86.881
0.03	77.793	85.616	85.655	85.686	88.654	87.686	85.733	89.657	88.687	86.733
0.04	77.633	85.323	85.390	85.444	88.389	87.444	85.527	89.393	88.446	86.527
0.05	77.428	84.951	85.054	85.137	88.051	87.137	85.264	89.058	88.140	86.265
0.06	77.180	84.506	84.651	84.767	87.646	86.766	84.947	88.654	87.770	85.947
0.07	76.889	83.993	84.183	84.337	87.175	86.335	84.577	88.185	87.340	85.577
0.08	76.558	83.417	83.656	83.851	86.643	85.847	84.157	87.656	86.853	85.157
0.09	76.187	82.783	83.074	83.313	86.054	85.305	83.689	87.069	86.312	84.688
0.10	75.778	82.099	82.441	82.725	85.414	84.714	83.176	86.430	85.721	84.174
0.11	75.333	81.371	81.765	82.094	84.727	84.077	82.622	85.744	85.084	83.618
0.12	74.854	80.605	81.048	81.423	83.998	83.399	82.029	85.015	84.405	83.023
0.13	74.342	79.808	80.298	80.717	83.233	82.685	81.401	84.249	83.688	82.392
0.14	73.800	78.985	79.519	79.981	82.436	81.938	80.741	83.449	82.939	81.729
0.15	73.231	78.142	78.716	79.218	81.612	81.163	80.052	82.623	82.160	81.036
0.16	72.635	77.285	77.895	78.433	80.766	80.364	79.339	81.773	81.357	80.318
0.17	72.016	76.418	77.059	77.631	79.903	79.546	78.605	80.904	80.533	79.578
0.18	71.376	75.546	76.213	76.815	79.027	78.712	77.852	80.021	79.693	78.818
0.19	70.716	74.673	75.362	75.990	78.142	77.866	77.084	79.129	78.840	78.043
0.20	70.039	73.803	74.508	75.158	77.253	77.013	76.305	78.230	77.977	77.255
0.22	68.643	72.080	72.805	73.488	75.471	75.294	74.722	76.426	76.237	75.652
0.24	67.204	70.396	71.125	71.827	73.705	73.578	73.125	74.634	74.497	74.032
0.25	66.474	69.572	70.300	71.006	72.834	72.727	72.327	73.748	73.634	73.221
0.26	65.739	68.762	69.485	70.193	71.972	71.884	71.532	72.872	72.776	72.413
0.28	64.260	67.184	67.893	68.598	70.286	70.227	69.957	71.154	71.089	70.810
0.30	62.781	65.663	66.355	67.050	68.654	68.616	68.413	69.489	69.447	69.236
0.32	61.312	64.200	64.873	65.554	67.081	67.057	66.908	67.882	67.856	67.701
0.34	59.863	62.791	63.446	64.112	65.569	65.555	65.448	66.337	66.322	66.209
0.35	59.149	62.105	62.753	63.410	64.835	64.825	64.736	65.587	65.576	65.482
0.36	58.442	61.432	62.072	62.722	64.117	64.109	64.036	64.853	64.845	64.767
0.38	57.055	60.120	60.748	61.384	62.723	62.720	62.672	63.429	63.426	63.374
0.40	55.706	58.850	59.470	60.094	61.383	61.384	61.357	62.062	62.063	62.032
0.42	54.398	57.619	58.235	58.850	60.095	60.099	60.090	60.749	60.753	60.739
0.44	53.134	56.424	57.037	57.646	58.854	58.861	58.867	59.487	59.492	59.493
0.45	52.518	55.839	56.452	57.059	58.251	58.259	58.271	58.873	58.880	58.887
0.46	51.914	55.262	55.875	56.481	57.657	57.667	57.686	58.271	58.279	58.292
0.48	50.740	54.130	54.746	55.350	56.501	56.513	56.544	57.097	57.108	57.133
0.50	49.611	53.028	53.647	54.252	55.381	55.397	55.439	55.964	55.978	56.013
0.55	46.974	50.396	51.023	51.633	52.725	52.749	52.815	53.283	53.305	53.363
0.60	44.584	47.932	48.561	49.176	50.251	50.282	50.364	50.795	50.823	50.898
0.65	42.407	45.632	46.255	46.869	47.938	47.972	48.062	48.474	48.507	48.591
0.70	40.409	43.490	44.100	44.706	45.774	45.807	45.895	46.306	46.338	46.423
0.80	36.830	39.649	40.220	40.794	41.860	41.882	41.942	42.384	42.408	42.472
0.90	33.663	36.318	36.851	37.387	38.443	38.449	38.468	38.958	38.966	38.992
1.00	30.807	33.389	33.896	34.402	35.443	35.435	35.419	35.948	35.943	35.933
1.10	28.219	30.771	31.264	31.753	32.776	32.762	32.724	33.272	33.259	33.227
1.20	25.890	28.404	28.890	29.370	30.373	30.357	30.314	30.861	30.846	30.805
1.30	23.821	26.256	26.734	27.206	28.184	28.170	28.132	28.665	28.651	28.612
1.40 1.50	22.011 20.449	24.314 22.574	24.777 23.015	25.238 23.456	26.183 24.357	26.173 24.352	26.146 24.335	26.652 24.810	26.642 24.803	26.612 24.784
1.60 1.70	19.117	21.033	21.443 20.058	21.858	22.703 21.219	22.701 21.220	22.695 21.221	23.133 21.621	23.130 21.621	23.121
1.70	17.989	19.685 18.516	20.058 18.849	20.439 19.194	19.902	21.220 19.904	21.221 19.910	20.272	20.274	21.620 20.278
1.90	17.035 16.223	17.510	18.849	19.194 18.111	19.902	19.904	19.910	19.080	19.083	19.090
2.00	15.523	17.510	17.804	18.111	18.745	18.748 17.740	18.736	18.036	18.039	18.047
2.00	13.323	10.040	10.904	1/.1/4	17.730	17.740	17.748	10.030	10.039	10.04/

Table 6.1.1.3. Mean atomic scattering factors for chemically significant ions (cont.)

Спетис	cally signifi	cani ions (com.)
Element	Pu ³⁺	Pu ⁴⁺	Pu ⁶⁺
Z	94	94	94
Method	*DS	*DS	*DS
$(\sin \theta)/\lambda (\mathring{\mathbf{A}}^{-1})$	20	20	20
(51110)/70(11			
0.00	91.000	90.000	88.000
0.01	90.962	89.965	87.970
0.02	90.848	89.861	87.881
0.03	90.660	89.689	87.734
0.04	90.398	89.450	87.528
0.05	90.066	89.145	87.267
0.03	20.000	07.143	07.207
0.06	89.665	88.777	86.950
0.07	89.199	88.349	86.580
0.08	88.673	87.863	86.160
0.09	88.089	87.324	85.692
0.10	87.453	86.734	85.178
0.10	07.133	00.751	05.170
0.11	86.769	86.098	84.621
0.12	86.041	85.419	84.025
0.12	85.275	84.703	83.393
0.13	84.475	83.952	82.727
0.14	83.646	83.171	82.032
0.13	03.040	05.1/1	02.032
0.16	82.794	82.365	81.310
0.17	81.921	81.537	80.565
0.17	81.033	80.691	79.800
0.19	80.134	79.832	79.019
0.20	79.227	78.962	78.224
0.20	17.221	76.702	70.224
0.22	77.403	77.204	76.604
0.24	75.587	75.441	74.963
0.25	74.688	74.565	74.140
0.26	73.797	73.695	73.320
0.28	72.048	71.979	71.690
0.30	70.351	70.305	70.088
0.50	70.551	70.303	70.000
0.32	68.711	68.683	68.522
0.34	67.133	67.116	66.999
0.35	66.367	66.354	66.256
0.36	65.616	65.607	65.525
0.38	64.161	64.157	64.102
0.40	62.765	62.765	62.731
0.10	02.705	02.702	02.751
0.42	61.425	61.428	61.411
0.44	60.138	60.143	60.140
0.45	59.513	59.519	59.522
0.46	58.900	58.907	58.916
0.48	57.708	57.717	57.736
0.50	56.557	56.569	56.598
		02	
0.55	53.845	53.864	53.915
0.60	51.337	51.363	51.430
0.65	49.004	49.034	49.113
0.70	46.828	46.860	46.942
0.80	42.898	42.922	42.989
0.90	39.463	39.474	39.506
1.00	36.445	36.443	36.440
			· · · -
1.10	33.763	33.752	33.724
1.20	31.346	31.331	31.293
1.30	29.142	29.128	29.090
1.40	27.121	27.109	27.078
1.50	25.264	25.257	25.235
1.60	23.567	23.564	23.552
1.70	22.030	22.029	22.025
1.80	20.650	20.651	20.653
1.90	19.424	19.427	19.433
2.00	18.346	18.349	18.357
	-	-	

Table 6.1.1.4. Coefficients for analytical approximation to the scattering factors of Tables 6.1.1.1 and 6.1.1.3

		a_1	b_1	a_2	b_2	a_3	b_3	a_4	b_4	c	Maximum error	$\sin \theta / \lambda$ (Å ⁻¹)	Mean error
H	SDS	0.493002	20.6593	0.322912	26.1257	0.140191	3.14236	0.040810	57.7997	0.003038	0.000	0.00	0.000
H	HF	0.489918		0.262003	7.74039	0.196767	49.5519	0.049879	2.20159	0.001305	0.000	0.17	0.000
H ¹⁻	HF	0.897661		0.565616	15.1870	0.415815	186.576	0.116973	3.56709	0.002389	0.002	0.09	0.001
He	RHF	0.873400		0.630900	3.35680	0.311200	22.9276	0.178000	0.982100	0.006400	0.001	1.01	0.000
Li	RHF	1.12820		0.750800	1.05240	0.617500	85.3905	0.465300	168.261	0.037700	0.005	2.00	0.001
Li ¹⁺ Be Be ²⁺ B	RHF	0.696800	4.62370	0.788800	1.95570	0.341400	0.631600	0.156300	10.0953	0.016700	0.001	1.78	0.000
	RHF	1.59190	43.6427	1.12780	1.86230	0.539100	103.483	0.702900	0.542000	0.038500	0.003	0.56	0.001
	RHF	6.26030	0.002700	0.884900	0.831300	0.799300	2.27580	0.164700	5.11460	-6.1092	0.001	1.97	0.000
	RHF	2.05450	23.2185	1.33260	1.02100	1.09790	60.3498	0.706800	0.140300	-0.19320	0.002	0.75	0.001
$\begin{array}{c} C_{val} \\ N \\ O \\ O^{1-} \end{array}$	RHF HF RHF RHF HF	12.2126 3.04850 4.19160	22.6907 0.005700 13.2771 12.8573	2.28680 1.63969	10.2075 0.656665 9.89330 5.70110 4.17236	1.58860 1.05075 2.01250 1.54630 1.52673		0.865000 0.839259 1.16630 0.867000 -20.307	51.6512 55.5949 0.582600 32.9089 -0.01404	0.250800 21.9412	0.006 0.001 0.007 0.001 0.011	2.00 0.16 0.11 0.22 1.50	0.001 0.000 0.002 0.000 0.004
F F^{1-} Ne Na Na^{1+} Mg Mg^{2+} Al Al^{3+}	RHF RHF RHF RHF RHF RHF RHF	3.63220 3.95530 4.76260 3.25650 5.42040 3.49880 6.42020 4.17448	10.2825 5.27756 8.40420 3.28500 2.66710 2.82750 2.16760 3.03870 1.93816	2.64120 3.51057 3.11250 3.17360 3.93620 2.17350 3.83780 1.90020 3.38760	4.29440 14.7353 3.42620 8.84220 6.11530 79.2611 4.75420 0.742600 4.14553	1.51700 1.26064 1.45460 1.26740 1.39980 1.22690 1.32840 1.59360 1.20296	0.261500 0.442258 0.230600 0.313600 0.200100 0.380800 0.185000 31.5472 0.228753	1.02430 0.940706 1.12510 1.11280 1.00320 2.30730 0.849700 1.96460 0.528137	26.1476 47.3437 21.7184 129.424 14.0390 7.19370 10.1411 85.0886 8.28524	0.277600 0.653396 0.351500 0.676000 0.404000 0.858400 0.485300 1.11510 0.706786	0.001 0.003 0.002 0.009 0.001 0.015 0.001 0.018 0.000	0.01 0.09 0.25 0.13 0.70 0.08 1.34 2.00 1.50	0.000 0.001 0.001 0.002 0.000 0.003 0.000 0.005 0.000
$\begin{array}{c} \mathrm{Si}_{\nu} \\ \mathrm{Si}_{\mathrm{val}} \\ \mathrm{Si}^{4+} \\ \mathrm{P} \\ \mathrm{S} \\ \mathrm{Cl} \\ \mathrm{Cl}^{1-} \end{array}$	RHF HF HF RHF RHF RHF	6.29150 5.66269 4.43918 6.43450 6.90530 11.4604 18.2915	2.43860 2.66520 1.64167 1.90670 1.46790 0.010400 0.006600	3.03530 3.07164 3.20345 4.17910 5.20340 7.19640 7.20840	32.3337 38.6634 3.43757 27.1570 22.2151 1.16620 1.17170	1.98910 2.62446 1.19453 1.78000 1.43790 6.25560 6.53370	0.678500 0.916946 0.214900 0.526000 0.253600 18.5194 19.5424	1.54100 1.39320 0.416530 1.49080 1.58630 1.64550 2.33860	81.6937 93.5458 6.65365 68.1645 56.1720 47.7784 60.4486	1.14070 1.24707 0.746297 1.11490 0.866900 -9.5574 -16.378	0.009 0.001 0.000 0.003 0.005 0.007 0.007	2.00 0.53 1.50 0.65 0.67 0.78 0.76	0.002 0.001 0.000 0.001 0.002 0.003 0.003
Ar	RHF	7.48450		6.77230	14.8407	0.653900	43.8983	1.64420	33.3929	1.44450	0.029	2.00	0.006
K	RHF	8.21860		7.43980	0.774800	1.05190	213.187	0.865900	41.6841	1.42280	0.011	0.90	0.005
K ¹⁺	RHF	7.95780		7.49170	0.767400	6.35900	-0.00200	1.19150	31.9128	-4.9978	0.011	0.91	0.005
Ca	RHF	8.62660		7.38730	0.659900	1.58990	85.7484	1.02110	178.437	1.37510	0.016	0.99	0.006
Ca ²⁺	RHF	15.6348		7.95180	0.608900	8.43720	10.3116	0.853700	25.9905	-14.875	0.017	2.00	0.004
$\begin{array}{c} Sc \\ Sc^{3+} \\ Ti \\ Ti^{2+} \\ Ti^{3+} \end{array}$	RHF	9.18900	9.02130	7.36790	0.572900	1.64090	136.108	1.46800	51.3531	1.33290	0.014	1.07	0.006
	HF	13.4008	0.298540	8.02730	7.96290	1.65943	-0.28604	1.57936	16.0662	-6.6667	0.002	1.50	0.000
	RHF	9.75950	7.85080	7.35580	0.500000	1.69910	35.6338	1.90210	116.105	1.28070	0.014	2.00	0.006
	HF	9.11423	7.52430	7.62174	0.457585	2.27930	19.5361	0.087899	61.6558	0.897155	0.006	1.50	0.001
	HF	17.7344	0.220610	8.73816	7.04716	5.25691	-0.15762	1.92134	15.9768	-14.652	0.001	0.00	0.000
Ti^{4+} V V^{2+} V^{3+} V^{5+}	HF	19.5114	0.178847	8.23473	6.67018	2.01341	-0.29263	1.52080	12.9464	-13.280	0.002	1.50	0.000
	RHF	10.2971	6.86570	7.35110	0.438500	2.07030	26.8938	2.05710	102.478	1.21990	0.014	2.00	0.005
	RHF	10.1060	6.88180	7.35410	0.440900	2.28840	20.3004	0.022300	115.122	1.22980	0.015	2.00	0.004
	HF	9.43141	6.39535	7.74190	0.383349	2.15343	15.1908	0.016865	63.9690	0.656565	0.004	1.50	0.001
	HF	15.6887	0.679003	8.14208	5.40135	2.03081	9.97278	-9.5760	0.940464	1.71430	0.000	0.34	0.000
Cr	RHF	10.6406	6.10380	7.35370	0.392000	3.32400	20.2626	1.49220	98.7399	1.18320	0.011	2.00	0.004
Cr ²⁺	HF	9.54034	5.66078	7.75090	0.344261	3.58274	13.3075	0.509107	32.4224	0.616898	0.002	1.50	0.000
Cr ³⁺	HF	9.68090	5.59463	7.81136	0.334393	2.87603	12.8288	0.113575	32.8761	0.518275	0.002	1.50	0.000
Mn	RHF	11.2819	5.34090	7.35730	0.343200	3.01930	17.8674	2.24410	83.7543	1.08960	0.009	2.00	0.004
Mn ²⁺	RHF	10.8061	5.27960	7.36200	0.343500	3.52680	14.3430	0.218400	41.3235	1.08740	0.009	2.00	0.002
$\begin{array}{c} Mn^{3+}\\ Mn^{4+}\\ Fe\\ Fe^{2+}\\ Fe^{3+} \end{array}$		9.84521 9.96253 11.7695 11.0424 11.1764	4.91797 4.84850 4.76110 4.65380 4.61470	7.87194 7.97057 7.35730 7.37400 7.38630	0.294393 0.283303 0.307200 0.305300 0.300500	3.56531 2.76067 3.52220 4.13460 3.39480	10.8171 10.4852 15.3535 12.0546 11.6729	0.323613 0.054447 2.30450 0.439900 0.072400	24.1281 27.5730 76.8805 31.2809 38.5566	0.393974 0.251877 1.03690 1.00970 0.970700	0.001 0.001 0.011 0.008 0.008	1.50 1.50 0.08 2.00 2.00	0.000 0.000 0.004 0.002 0.002
Co	RHF	12.2841	4.27910	7.34090	0.278400	4.00340	13.5359	2.34880	71.1692	1.01180	0.013	0.08	0.004
Co ²⁺	RHF	11.2296	4.12310	7.38830	0.272600	4.73930	10.2443	0.710800	25.6466	0.932400	0.006	2.00	0.001
Co ³⁺	HF	10.3380	3.90969	7.88173	0.238668	4.76795	8.35583	0.725591	18.3491	0.286667	0.000	1.50	0.000
Ni	RHF	12.8376	3.87850	7.29200	0.256500	4.44380	12.1763	2.38000	66.3421	1.0341	0.014	0.08	0.004
Ni ²⁺	RHF	11.4166	3.67660	7.40050	0.244900	5.34420	8.87300	0.977300	22.1626	0.861400	0.003	2.00	0.001
Ni ³⁺ Cu Cu ¹⁺ Cu ²⁺ Zn	HF	10.7806	3.54770	7.75868	0.223140	5.22746	7.64468	0.847114	16.9673	0.386044	0.000	0.57	0.000
	RHF	13.3380	3.58280	7.16760	0.247000	5.61580	11.3966	1.67350	64.8126	1.19100	0.015	0.08	0.005
	RHF	11.9475	3.36690	7.35730	0.227400	6.24550	8.66250	1.55780	25.8487	0.89000	0.003	0.24	0.001
	HF	11.8168	3.37484	7.11181	0.244078	5.78135	7.98760	1.14523	19.8970	1.14431	0.001	0.26	0.000
	RHF	14.0743	3.26550	7.03180	0.233300	5.16520	10.3163	2.41000	58.7097	1.30410	0.016	0.08	0.005
Zn ²⁺	RHF	11.9719	2.99460	7.38620	0.203100	6.46680	7.08260	1.39400	18.0995	0.780700	0.001	0.62	0.000
Ga	RHF	15.2354	3.06690	6.70060	0.241200	4.35910	10.7805	2.96230	61.4135	1.71890	0.025	0.08	0.008
Ga ³⁺	HF	12.6920	2.81262	6.69883	0.227890	6.06692	6.36441	1.00660	14.4122	1.53545	0.008	1.45	0.000
Ge	RHF	16.0816	2.85090	6.37470	0.251600	3.70680	11.4468	3.68300	54.7625	2.13130	0.024	0.08	0.008
Ge ⁴⁺	HF	12.9172	2.53718	6.70003	0.205855	6.06791	5.47913	0.859041	11.6030	1.45572	0.000	0.32	0.000

Table 6.1.1.4. Coefficients for analytical approximation to scattering factors (cont.)

		a_1	b_1	a_2	b_2	a_3	b_3	a_4	b_4	c	Maximum error	$\frac{\sin\theta/\lambda}{(\mathring{\mathbf{A}}^{-1})}$	Mean error
As Se Br Br ¹⁻ Kr	RHF RHF RHF RHF	16.6723 17.0006 17.1789 17.1718 17.3555	2.63450 2.40980 2.17230 2.20590 1.93840	6.07010 5.81960 5.23580 6.33380 6.72860	0.264700 0.272600 16.5796 19.3345 16.5623	3.43130 3.97310 5.63770 5.57540 5.54930	12.9479 15.2372 0.260900 0.287100 0.226100	4.27790 4.35430 3.98510 3.72720 3.53750	47.7972 43.8163 41.4328 58.1535 39.3972	2.53100 2.84090 2.95570 3.17760 2.82500	0.019 0.016 0.012 0.016 0.008	0.09 2.00 2.00 2.00 2.00	0.008 0.006 0.004 0.006 0.002
Rb Rb ¹⁺ Sr Sr ²⁺ Y	RHF RHF RHF RHF *RHF	17.1784 17.5816 17.5663 18.0874 17.7760	1.78880 1.71390 1.55640 1.49070 1.40290	9.64350 7.65980 9.81840 8.13730 10.2946	17.3151 14.7957 14.0988 12.6963 12.8006	5.13990 5.89810 5.42200 2.56540 5.72629	0.274800 0.160300 0.166400 24.5651 0.125599	1.52920 2.78170 2.66940 -34.193 3.26588	164.934 31.2087 132.376 -0.01380 104.354	3.48730 2.07820 2.50640 41.4025 1.91213	0.028 0.002 0.021 0.008 0.028	0.12 1.99 0.13 2.00 0.07	0.008 0.001 0.005 0.002 0.006
$\begin{array}{c} Y^{3+} \\ Zr \\ Zr^{4+} \\ Nb \\ Nb^{3+} \end{array}$	*DS *RHF *DS *RHF *DS	17.9268 17.8765 18.1668 17.6142 19.8812	1.35417 1.27618 1.21480 1.18865 0.019175	9.15310 10.9480 10.0562 12.0144	11.2145 11.9160 10.1483 11.7660 1.13305	1.76795 5.41732 1.01118 4.04183 11.0177		-33.108 3.65721 -2.6479 3.53346 1.94715	-0.01319 87.6627 -0.10276 69.7957 28.3389	40.2602 2.06929 9.41454 3.75591 -12.912	0.005 0.035 0.004 0.042 0.006	2.00 0.07 2.00 0.08 2.00	0.001 0.008 0.001 0.011 0.002
Nb ⁵⁺ Mo Mo ³⁺ Mo ⁵⁺ Mo ⁶⁺	*DS	17.9163 3.70250 21.1664 21.0149 17.8871	1.12446 0.277200 0.014734 0.014345 1.03649	17.2356 18.2017 18.0992		10.7990 12.8876 11.7423 11.4632 6.57891	9.28206 11.0040 9.53659 8.78809 0.058881	0.337905 3.74290 2.30951 0.740625 0.000000	25.7228 61.6584 26.6307 23.3452 0.000000	-6.3934 4.38750 -14.421 -14.316 0.344941	0.007 0.046 0.009 0.010 0.014	2.00 0.08 2.00 2.00 0.00	0.003 0.012 0.003 0.003 0.006
Tc Ru Ru ³⁺ Ru ⁴⁺ Rh	*RHF *RHF *DS *DS *RHF	19.1301 19.2674 18.5638 18.5003 19.2957	0.864132 0.808520 0.847329 0.844582 0.751536	12.9182 13.2885 13.1787	8.14487 8.43467 8.37164 8.12534 8.21758	4.64901 4.86337 9.32602 4.71304 4.73425	21.5707 24.7997 0.017662 0.36495 25.8749	2.71263 1.56756 3.00964 2.18535 1.28918	86.8472 94.2928 22.8870 20.8504 98.6062	5.40428 5.37874 -3.1892 1.42357 5.32800	0.061 0.041 0.013 0.014 0.021	2.00 2.00 2.00 2.00 2.00 2.00	0.011 0.006 0.004 0.004 0.004
Rh ³⁺ Rh ⁴⁺ Pd Pd ²⁺ Pd ⁴⁺	*DS *DS *RHF *DS *DS	18.8785 18.8545 19.3319 19.1701 19.2493	0.764252 0.760825 0.698655 0.696219 0.683839	13.9806 15.5017 15.2096	7.84438 7.62436 7.98929 7.55573 7.14833	3.32515 2.53464 5.29537 4.32234 2.89289	21.2487 19.3317 25.2052 22.5057 17.9144	-6.1989 -5.6526 0.605844 0.000000 -7.9492	-0.01036 -0.01020 76.8986 0.000000 0.005127	11.8678 11.2835 5.26593 5.29160 13.0174	0.014 0.014 0.012 0.011 0.014	2.00 2.00 1.08 2.00 2.00	0.004 0.003 0.005 0.004 0.003
$\begin{array}{c} Ag\\ Ag^{1+}\\ Ag^{2+}\\ Cd\\ Cd^{2+} \end{array}$	RHF *DS *DS RHF *DS	19.2808 19.1812 19.1643 19.2214 19.1514	0.644600 0.646179 0.645643 0.594600 0.597922	15.9719 16.2456 17.6444	7.47260 7.19123 7.18544 6.90890 6.80639	4.80450 5.27475 4.37090 4.46100 4.47128	24.6605 21.7326 21.4072 24.7008 20.2521	1.04630 0.357534 0.000000 1.60290 0.000000	99.8156 66.1147 0.000000 87.4825 0.000000	5.17900 5.21572 5.21404 5.06940 5.11937	0.016 0.012 0.011 0.020 0.014	1.14 1.13 1.14 2.00 1.17	0.007 0.005 0.005 0.008 0.007
In In ³⁺ Sn Sn ²⁺ Sn ⁴⁺	RHF *DS RHF RHF	19.1624 19.1045 19.1889 19.1094 18.9333	0.547600 0.551522 5.83030 0.503600	18.5596 18.1108 19.1005	6.37760 6.32470 0.503100 5.83780 0.465500	4.29480 3.78897 4.45850 4.56480 3.41820	25.8499 17.3595 26.8909 23.3752 14.0049	2.03960 0.000000 2.46630 0.487000 0.019300	92.8029 0.000000 83.9571 62.2061 -0.75830	4.93910 4.99635 4.78210 4.78610 3.91820	0.027 0.022 0.032 0.032 0.016	2.00 2.00 2.00 2.00 2.00 2.00	0.009 0.007 0.009 0.009 0.004
Sb Sb ³⁺ Sb ⁵⁺ Te I	RHF *DS *DS *RHF RHF	19.6418 18.9755 19.8685 19.9644 20.1472	5.30340 0.467196 5.44853 4.81742 4.34700	19.0455 18.9330	0.460700 5.22126 0.467973 0.420885 0.381400	5.03710 5.10789 2.41253 6.14487 7.51380	27.9074 19.5902 14.1259 28.5284 27.7660	2.68270 0.288753 0.000000 2.52390 2.27350	75.2825 55.5113 0.000000 70.8403 66.8776	4.59090 4.69626 4.69263 4.35200 4.07120	0.035 0.028 0.030 0.038 0.037	2.00 2.00 2.00 2.00 2.00 2.00	0.009 0.007 0.008 0.009 0.009
I ¹⁻ Xe Cs Cs ¹⁺ Ba	RHF RHF RHF RHF	20.2332 20.2933 20.3892 20.3524 20.3361	4.35790 3.92820 3.56900 3.55200 3.21600	18.9970 19.0298 19.1062 19.1278 19.2970	0.381500 0.344000 0.310700 0.308600 0.275600	10.2821	29.5259 26.4659 24.3879 23.7128 20.2073	2.88680 1.99000 1.49530 0.961500 2.69590	84.9304 64.2658 213.904 59.4565 167.202	4.07140 3.71180 3.33520 3.27910 2.77310	0.038 0.038 0.032 0.037 0.032	2.00 2.00 2.00 2.00 2.00 2.00	0.009 0.009 0.010 0.009 0.009
Ba ²⁺ La La ³⁺ Ce Ce ³⁺	*DS *RHF *DS *RHF *DS	20.1807 20.5780 20.2489 21.1671 20.8036	3.21367 2.94817 2.92070 2.81219 2.77691	19.1136 19.5990 19.3763 19.7695 19.5590	0.283310 0.244475 0.250698 0.226836 0.231540	11.3727 11.6323 11.8513	20.0558 18.7726 17.8211 17.6083 16.5408	0.77634 3.28719 0.336048 3.33049 0.612376	51.7460 133.124 54.9453 127.113 43.1692	3.02902 2.14678 2.40860 1.86264 2.09013	0.029 0.032 0.028 0.026 0.023	2.00 2.00 2.00 2.00 2.00	0.007 0.009 0.007 0.008 0.005
$\begin{array}{c} Ce^{4+} \\ Pr \\ Pr^{3+} \\ Pr^{4+} \\ Nd \end{array}$	*DS *RHF *DS *DS *RHF	20.3235 22.0440 21.3727 20.9413 22.6845	2.65941 2.77393 2.64520 2.54467 2.66248	19.8186 19.6697 19.7491 20.0539 19.6847	0.218850 0.222087 0.214299 0.202481 0.210628	12.3856 12.1329 12.4668	15.7992 16.7669 15.3230 14.8137 15.8850	0.144583 2.82428 0.975180 0.296689 2.85137	62.2355 143.644 36.4065 45.4643 137.903	1.59180 2.05830 1.77132 1.24285 1.98486	0.026 0.021 0.019 0.021 0.024	2.00 0.12 2.00 2.00 0.13	0.007 0.007 0.004 0.005 0.007
$\begin{array}{c} Nd^{3+}\\ Pm\\ Pm^{3+}\\ Sm\\ Sm^{3+} \end{array}$	*DS *RHF *DS *RHF *DS	21.9610 23.3405 22.5527 24.0042 23.1504	2.52722 2.56270 2.41740 2.47274 2.31641	19.9339 19.6095 20.1108 19.4258 20.2599	0.199237 0.202088 0.185769 0.196451 0.174081	13.1235 12.0671 13.4396	14.1783 15.1009 13.1275 14.3996 12.1571	1.51031 2.87516 2.07492 2.89604 2.71488	30.8717 132.721 27.4491 128.007 24.8242	1.47588 2.02876 1.19499 2.20963 0.954586	0.015 0.026 0.012 0.029 0.009	2.00 0.13 2.00 0.13 2.00	0.003 0.008 0.002 0.009 0.002
$Eu \\ Eu^{2+} \\ Eu^{3+} \\ Gd \\ Gd^{3+}$	RHF *DS *DS *RHF *DS	24.6274 24.0063 23.7497 25.0709 24.3466	2.38790 2.27783 2.22258 2.25341 2.13553	19.0886 19.9504 20.3745 19.0798 20.4208	0.194200 0.173530 0.163940 0.181951 0.155525	13.7603 11.8034 11.8509 13.8518	13.7546 11.6096 11.3110 12.9331 10.5782	2.92270 3.87243 3.26503 3.54545 3.71490	123.174 26.5156 22.9966 101.398 21.7029	2.57450 1.36389 0.759344 2.41960 0.645089	0.031 0.004 0.006 0.036 0.004	0.14 2.00 2.00 0.15 2.00	0.010 0.002 0.001 0.011 0.001

Table 6.1.1.4. Coefficients for analytical approximation to scattering factors (cont.)

The "RHF 25.8976 2.34256 18.2185			a_1	b_1	a_2	b_2	a_3	b_3	a_4	b_4	c	Maximum error	$\sin \theta / \lambda$ (Å ⁻¹)	Mean
TD* PB* 24.9599														
Dy														
Dy-+ 196														
He														
Hot	•													
Fig.	Ho^{3+}	*DS	26.1296	1.91072	20.0994	0.139358	11.9788		4.93676	18.5908	0.852795	0.003	0.00	0.001
The West Fig. 28,1819 2,02859 15,8851 0,23849 15,1542 10,9975 2,98706 10,961 6,75621 0,041 0,15 0,016 1,016	Er													
The "best PS 27,3083 1,78711 19,320 0.16974 12,3339 7,96778 5,9848 1,7922 1,69790 0.003 0.00 0.00 Yeb "PS 28,1209 1,74850 17,4801 0,16647 2,98691 100,417 7,56672 0,003 0,00 0,00 Yeb "PS 28,1209 1,78503 17,6873 10,81879 12,3335 8,18304 5,14674 10,3353 0,000 0,003 Le "RWI 28,446 1,9162 15,2208 9,9819 15,1000 0,26103 3,71614 14,822 2,4474 16,1853 2,97573 0,044 0,14 0,000 HF RWI 29,4411 1,83205 15,1750 9,9990 1,4528 0,7238 4,9017 1,63298 2,97573 0,044 0,14 0,000 Tari "RHF 20,4411 1,83205 15,1750 9,9990 1,4528 2,7338 4,9017 2,43444 1,78555 0,002 0,00 Well F 20,818 1,7020 1,4321 1,4322 1,4322 1,4322 1,4322 1,4322 </td <td>Er^{3+}</td> <td></td>	Er^{3+}													
Yeb **HIF 28 6641 198890 15.4445 0.2571/9 15.0867 2.98651 10.4477 75.6562 0.042 0.15 0.01 Yeb ¹ *Ph *Ph 275 278.07 17.3272 18.7644 0.1387991 13.335 2.26001 3.0983 0.00 0.003 Yeb ¹ *Ph 27.84176 1.01822 12.2899 9.1981 15.1000 0.01003 2.0101 0.003 0.00 0.003 Leb ⁺ *Ph 28.4038 1.68216 18.1210 0.142292 12.4499 7.33727 5.9415 1.63333 2.297373 0.004 0.147 0.00 Leb ⁺ *Ph 2.921244 1.73333 15.2939 9.7906 1.47586 0.224497 7.33727 5.9415 1.6333 2.297373 0.004 0.14786 0.001 Tell *Ph 2.91174 1.73333 1.22939 9.7906 1.47586 0.35490 1.24424 0.002 0.00 0.007 *************														
Year Post 28, 1209 1,78691														
γρh* γρh γρh </td <td></td>														
Lu														
Lub														
Hif* NS														
Hif*	Hf	*RHF	29.1440	1.83262	15.1726	9.59990	14.7586	0.275116	4.30013	72.0290	8.58154	0.047	0.08	0.016
Tab* vals 29.1887 1.50711 18.4807 0.116741 12.8268 6.31524 5.38605 12.4244 1.78555 0.002 2.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.000 0.001 0.00 0.000 0.001 0.00 0.000 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001<														
w **RHF 29.0818 1.72029 15.4300 9.22590 14.4327 5.31763 5.05412 11.1972 1.10172 0.001 0.00														
Web* POS 29.94966 1.42755 19.3763 0.104621 13.0544 5.99667 5.06412 11.1972 1.01074 0.001 0.00 0.00 Cs* ************************************														
Re Rall F 8.7811 I 18.7941 I 1.57189 J 9.09227 J 14.5564 J 0.350500 J 5.41179 J 22.0861 J 10.4720 J 0.092 J 0.09 J 0.017 O 0.5 ***RIIF Z 28.1894 I 1.6297 J 6.2376 J 6.84706 J 14.7458 J 0.16519 J 5.60795 J 18.0030 J 0.006 J 0.09 D 0.017 J 1.6***** T 7.309 J 1.5297 J 16.7256 S 6.84706 J 14.7458 J 0.16519 J 5.83177 J 5.0011 J 1.4722 J 0.000 D 0.001 D 1.6************************************														
Os. * *BLIF 28.1894 1.62903 16.1550 8.97948 14.9305 0.382661 5.67589 48.1647 11.0005 0.051 0.99 0.017 Cs.** **** *** *** *** *** *** *** *** **														
Osh** *DS 30.4190 1.37113 15.2637 6.8760 14.7458 0.165191 5.06795 18.0030 6.49804 0.006 0.29 0.003 Ish** *PIS 23.04156 1.34323 15.8620 7.10909 13.6145 0.204633 5.82008 20.3254 8.27930 0.009 0.28 0.004 Ft*** *PIS 30.0758 1.30293 15.5129 16.77639 8.81174 15.7131 0.424593 5.78370 38.6103 11.6883 0.066 0.29 0.000 Pt*** *PIS 9.82429 1.52297 16.7224 1.32133 1.262307 15.7234 2.29460 0.8353 0.014 0.00 0.016 Pt*** *DS 2.94292 1.32297 16.7224 1.32153 0.26237 16.23237 16.23237 0.93522 0.014 0.00 Pt*** *DS 3.08612 1.014100 18.9338 0.36652 6.88071 2.08237 0.32324 1.22989 0.023 0.12														
In														
Institute														
Irl+														
Pi ²⁺ PiSS 29,8429 1,32927 16,7224 7,38979 13,2153 0,263297 6,35234 22,9426 9,83329 0,014 0,00 0,006 Au PiF+** PISS 30,9612 1,24813 15,9892 6,60834 13,7348 0,168640 5,29004 16,9819 0,006 0,14 0,003 0,12 0,00 Aul*** PISS 28,0109 1,33521 1,7800 7,73951 0,35657 6,80807 26,4080 0,06886 1,21990 16,9029 6,82872 12,7801 0,21967 6,5254 18,6590 9,0680 0,009 0,14 0,00 Hg**** POS 29,5641 1,21152 18,0600 7,05630 12,8374 0,284738 6,88912 20,7482 10,6686 0,013 0,00 0,00 Hg**** POS 21,9385 1,47110 20,4722 0,57394 18,7448 0,48373 0,88912 20,7482 10,6686 0,133 0,00 0,00 Hg**** <th< td=""><td>Ir^{4+}</td><td>*DS</td><td></td><td>1.30923</td><td></td><td></td><td>14.2326</td><td>0.167252</td><td>5.53672</td><td>17.4911</td><td>6.96824</td><td>0.006</td><td>0.29</td><td>0.003</td></th<>	Ir^{4+}	*DS		1.30923			14.2326	0.167252	5.53672	17.4911	6.96824	0.006	0.29	0.003
Pch** DSS 30,9612 12,4813 15,9829 6,68634 13,7348 0,168640 5,92034 16,9392 7,39534 0,006 0,14 0,003 Au*** PDS 28,0109 1,35321 17,8204 7,73950 14,3359 0,356782 6,58077 26,4043 11,2299 0,023 0,12 0,009 Au***** PDS 31,0688 1,21990 16,0029 6,82872 12,7891 0,212867 6,52354 18,6590 9,00880 0,009 0,14 0,000 Hg***** PDS 25,0853 1,39507 18,4738 7,65105 1,6883 0,443378 6,48216 28,2262 12,0080 0,046 0,10 0,01 0,01 0,01 0,01 0,01 0,00														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{llllllllllllllllllllllllllllllllllll$														
$\begin{array}{llllllllllllllllllllllllllllllllllll$														
$ \begin{array}{c} \mathrm{Hg} \\ \mathrm{hg} $	Au 3+													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c} {\rm Hg}^{2+} & {\rm PS} \\ {\rm I} \\ {\rm FRHF} \\ {\rm I} \\ {\rm I} \\ {\rm I} \\ {\rm FRHF} \\ {\rm I} $														
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		*DS	29.5641	1.21152	18.0600	7.05639	12.8374	0.284738	6.89912	20.7482	10.6268	0.013	0.00	0.006
$ \begin{array}{llllllllllllllllllllllllllllllllllll$														
Pb RHF 31.0617 0.690200 13.0637 2.35760 18.4420 8.61800 5.96960 47.2579 13.4118 0.060 2.00 0.021 Pb ²⁺ *DS 21.7886 1.33660 19.5682 0.488383 19.1406 6.77270 7.01107 23.8132 12.44734 0.020 2.00 0.008 Bi *PbS 32.1244 1.00566 18.8003 6.10926 12.0175 0.147041 6.96886 14.7140 8.08428 0.005 0.01 0.000 Bi* *BS 33.3689 0.704000 12.9510 2.92380 16.5877 8.79370 6.46920 48.0093 13.5782 0.065 2.00 0.000 Bi** *BS 21.8033 3.5364 0.916540 25.0946 0.39042 19.2497 5.71414 6.9155 12.8285 -6.7994 0.003 0.00 0.001 Ro *RIFI* 35.65631 0.636100 21.2816 4.06910 8.00370 14.0422 7.44330 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{llllllllllllllllllllllllllllllllllll$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							16 5877							
$\begin{array}{llllllllllllllllllllllllllllllllllll$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.916540	25.0946									
Rn RHF 35.5631 0.663100 21.2816 4.06910 8.00370 14.0422 7.44330 44.2473 13.6905 0.054 2.00 0.012 Fr *RHF 35.9299 0.646453 23.0547 4.17619 12.1439 23.1052 2.11253 150.645 13.7247 0.055 2.00 0.0112 Ra²+ *PS 35.2150 0.604909 21.6700 3.57670 7.91342 12.6010 7.65078 29.8436 13.5431 0.029 2.00 0.006 Ac *RHF 35.56597 0.589092 23.1032 3.65155 12.5977 18.5990 4.08655 117.020 13.5266 0.030 0.06 0.009 Ac³+ *DS 35.1736 0.559689 22.1112 3.41437 8.19216 12.9187 7.05545 25.9443 13.4637 0.021 2.00 0.004 Th** *RHF 35.5645 0.563359 23.419 3.46204 12.7473 17.8309 4.80703 99.1722 1	Po	*RHF	34.6726	0.700999	15.4733	3.55078	13.1138	9.55642	7.02588	47.0045	13.6770	0.066	2.00	0.018
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		*RHF	35.3163	0.685870	19.0211	3.97458				45.4715	13.7108			
$ \begin{array}{c} Ra & *RHF & 35.7630 & 0.616341 & 22.9064 & 3.87135 & 12.4739 & 19.9887 & 3.21097 & 142.325 & 13.6211 & 0.037 & 2.00 & 0.012 \\ Ra^{2+} & *DS & 35.2150 & 0.604909 & 21.6700 & 3.57670 & 7.91342 & 12.6010 & 7.65078 & 29.8436 & 13.5431 & 0.029 & 2.00 & 0.006 \\ Ac & *RHF & 35.6597 & 0.589092 & 23.1032 & 3.65155 & 12.5977 & 18.5990 & 4.08655 & 117.020 & 13.5266 & 0.030 & 0.06 & 0.009 \\ Ac^{3+} & *DS & 35.1736 & 0.579689 & 22.1112 & 3.41437 & 8.19216 & 12.9187 & 7.05545 & 25.9443 & 13.4637 & 0.021 & 2.00 & 0.004 \\ Th & *RHF & 35.5645 & 0.563359 & 23.4219 & 3.46204 & 12.7473 & 17.8309 & 4.80703 & 99.1722 & 13.4314 & 0.031 & 0.07 & 0.008 \\ Th^{4+} & *DS & 35.1007 & 0.555054 & 22.4418 & 3.24498 & 9.78554 & 13.4661 & 5.29444 & 23.9533 & 13.3760 & 0.014 & 2.00 & 0.002 \\ Pa & *RHF & 36.0228 & 0.529300 & 23.4128 & 3.32530 & 14.9491 & 16.9235 & 4.17287 & 105.251 & 13.4287 & 0.033 & 0.06 & 0.010 \\ U^{3+} & *DS & 35.5747 & 0.520480 & 22.5259 & 3.12293 & 12.2165 & 12.7148 & 5.37073 & 26.3394 & 13.3092 & 0.009 & 2.00 & 0.002 \\ U^{4+} & *DS & 35.5747 & 0.520480 & 22.5259 & 3.12293 & 12.2165 & 12.7148 & 5.37073 & 26.3394 & 13.3092 & 0.009 & 2.00 & 0.002 \\ U^{4+} & *DS & 35.5747 & 0.520480 & 22.5326 & 3.05053 & 12.0291 & 12.5723 & 4.79840 & 23.4582 & 13.2671 & 0.007 & 2.00 & 0.001 \\ U^{6+} & *DS & 35.5705 & 0.516598 & 22.5326 & 3.05053 & 12.0291 & 12.5723 & 4.79840 & 23.4582 & 13.2671 & 0.007 & 2.00 & 0.001 \\ Np^{4+} & *DS & 35.5103 & 0.498626 & 22.5787 & 2.96627 & 12.7766 & 11.9484 & 4.92159 & 22.7502 & 13.2116 & 0.005 & 2.00 & 0.001 \\ Np^{4+} & *DS & 35.5103 & 0.498626 & 22.5787 & 2.96627 & 12.7766 & 11.9484 & 4.92159 & 22.7502 & 13.2116 & 0.005 & 2.00 & 0.001 \\ Np^{4+} & *DS & 35.5449 & 0.48938 & 22.7169 & 2.8019 & 14.3884 & 12.3300 & 1.75669 & 22.6581 & 13.1130 & 0.002 & 2.00 & 0.001 \\ Np^{4+} & *DS & 35.6493 & 0.481422 & 2.6460 & 2.89020 & 13.3595 & 11.3160 & 5.18831 & 21.8301 & 13.1555 & 0.003 & 2.00 & 0.001 \\ Pu^{4+} & *DS & 35.6493 & 0.481422 & 2.6460 & 2.89020 & 13.3595 & 11.3160 & 5.18831 & 21.8301 & 13.1555 & 0.003$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c} Ac^{3+} \ *DS \ \ 35.1736 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pa	*RHF				3.41519			4.17287	105.251		0.033	0.06	0.010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								16.0927						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c} Np \\ Np \\ Np^{3} \\ Np^{$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Np ⁴⁺													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Np^{6+}										13.1130			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
Pu ⁶⁺ *DS 35.1736 0.473204 22.7181 2.73848 14.7635 11.5530 2.28678 20.9303 13.0582 0.001 1.36 0.001 Am *RHF 36.6706 0.483629 24.0992 3.20647 17.3415 14.3136 3.49331 102.273 13.3592 0.040 0.07 0.013 Cm *RHF 36.6488 0.465154 24.4096 3.08997 17.3990 13.4346 4.21665 88.4834 13.2887 0.041 0.07 0.013 Bk *RHF 36.7881 0.451018 24.7736 3.04619 17.8919 12.8946 4.23284 86.0030 13.2754 0.042 0.07 0.014		*DS											2.00	0.001
Am *RHF 36.6706 0.483629 24.0992 3.20647 17.3415 14.3136 3.49331 102.273 13.3592 0.040 0.07 0.013 Cm *RHF 36.6488 0.465154 24.4096 3.08997 17.3990 13.4346 4.21665 88.4834 13.2887 0.041 0.07 0.013 Bk *RHF 36.7881 0.451018 24.7736 3.04619 17.8919 12.8946 4.23284 86.0030 13.2754 0.042 0.07 0.014														
Cm *RHF 36.6488 0.465154 24.4096 3.08997 17.3990 13.4346 4.21665 88.4834 13.2887 0.041 0.07 0.013 Bk *RHF 36.7881 0.451018 24.7736 3.04619 17.8919 12.8946 4.23284 86.0030 13.2754 0.042 0.07 0.014														
Bk *RHF 36.7881 0.451018 24.7736 3.04619 17.8919 12.8946 4.23284 86.0030 13.2754 0.042 0.07 0.014														
	Cf	*RHF	36.7881			3.04619	17.8919	12.8946	4.23284 4.24391	86.0030	13.2754	0.042	0.07	0.014

Table 6.1.1.5. Coefficients for analytical approximation to the scattering factors of Table 6.1.1.1 for the range $2.0 < (\sin\theta)/\lambda < 6.0 \, \mathring{A}^{-1}$ [equation (6.1.1.16)]

		2.0	$< (sin \theta)/$	$\lambda < 6.0 A^{-}$	- _L equation	t (6.1.1.16)]	
	Z	Symbo	ol a_0	a_1	a_2 (×10)	a_3 (×100)	С
	2	He	0.52543	-3.43300	4.80070	-2.54760	1.0000
	3	Li	0.89463	-2.43660	2.32500	-0.71949	1.0000
	4	Be	1.25840	-1.94590	1.30460	-0.04297	1.0000
	5	В	1.66720	-1.85560	1.60440	-0.65981	1.0000
	6	C	1.70560	-1.56760	1.18930	-0.03761 -0.42715	1.0000
	7	N	1.54940	-1.20190	0.51064	0.02472	1.0000
	8	0	1.30530	-0.83742	-0.16738	0.02472	1.0000
	9	F	1.16710	-0.63742 -0.63203	-0.10738 -0.40207	0.47300	1.0000
١.	10	Ne	1.09310	-0.03203 -0.50221	-0.40207 -0.53648	0.60957	0.9995
	11	Na	0.84558	-0.30221 -0.26294	-0.33048 -0.87884	0.76974	1.0000
	12	Mg	0.84338	-0.20294 -0.13144	-0.87884 -1.20900	0.70374	1.0000
	13	Al	0.67975	-0.13144 -0.08756	-0.95431	0.72294	1.0000
	14	Si	0.70683	-0.09888	-0.98356	0.72234	1.0000
	15	P	0.70083	-0.03660 -0.21262	-0.37390	0.33031	1.0000
	16	S	1.10400	-0.21202 -0.40325	0.20094	-0.26058	1.0000
	17	Cl	1.42320	-0.40323 -0.63936	0.84722	-0.26036 -0.76135	0.9995
	18	Ar	1.82020	-0.03736 -0.92776	1.59220	-0.70133 -1.32510	0.9995
	19	K	2.26550	-0.32770 -1.24530	2.38330	-1.91290	0.9990
	20	Ca	2.71740	-1.55670	3.13170	-2.45670	0.9990
	21	Sc	3.11730	-1.81380	3.71390	-2.45070 -2.85330	0.9990
	22	Ti	3.45360	-2.01150	4.13170	-2.03330 -3.11710	0.9995
	23	V	3.71270	-2.13920	4.34610	-3.22040	0.9995
	24	Ċr	3.87870	-2.19000	4.38670	-3.17520	1.0000
	25	Mn	3.98550	-2.18850	4.27960	-3.02150	1.0000
	26	Fe	3.99790	-2.11080	3.98170	-2.71990	1.0000
	27	Co	3.95900	-1.99650	3.60630	-2.37050	1.0000
	28	Ni	3.86070	-1.88690	3.12390	-1.94290	1.0000
	29	Cu	3.72510	-1.65500	2.60290	-1.49760	0.9995
3	30	Zn	3.55950	-1.45100	2.03390	-1.02160	0.9995
1	31	Ga	3.37560	-1.23910	1.46160	-0.55471	0.9995
3	32	Ge	3.17800	-1.02230	0.89119	-0.09884	0.9995
3	33	As	2.97740	-0.81038	0.34861	0.32231	0.9995
3	34	Se	2.78340	-0.61110	-0.14731	0.69837	0.9995
3	35	Br	2.60610	-0.43308	-0.57381	1.00950	0.9995
	36	Kr	2.44280	-0.27244	-0.95570	1.27070	0.9995
	37	Rb	2.30990	-0.14328	-1.22600	1.45320	1.0000
	38	Sr	2.21070	-0.04770	-1.41100	1.55410	1.0000
	39	Y	2.14220	0.01935	-1.52240	1.59630	1.0000
	40	Zr	2.12690	0.08618	-1.49190	1.51820	1.0000
	41	Nb	2.12120	0.05381	-1.50070	1.50150	1.0000
	42 42	Mo	2.18870	-0.00655	-1.25340	1.24010	1.0000
	43 44	Tc	2.25730 2.37300	-0.05737 -0.15040	-1.07450 -0.77694	1.06630 0.79060	1.0000 0.9995
	45	Ru Rh	2.50990	-0.15040 -0.25906	-0.77094 -0.44719	0.79000	0.9995
	46	Pd	2.67520	-0.23700 -0.39137	-0.05894	0.15404	0.9995
	1 7	Ag	2.88690	-0.56119	0.42189	-0.25659	0.9990
	48	Cd	3.08430	-0.71450	0.84482	-0.60990	0.9990
	19	In	3.31400	-0.89697	1.35030	-1.03910	0.9990
	50	Sn	3.49840	-1.02990	1.68990	-1.29860	0.9990
4	51	Sb	3.70410	-1.18270	2.08920	-1.61640	0.9990
4	52	Te	3.88240	-1.30980	2.41170	-1.86420	0.9990
4	53	I	4.08010	-1.45080	2.76730	-2.13920	0.9990
	54	Xe	4.24610	-1.56330	3.04200	-2.34290	0.9990
	55	Cs	4.38910	-1.65420	3.25450	-2.49220	0.9995
	56	Ba	4.51070	-1.72570	3.41320	-2.59590	0.9995
	57	La	4.60250	-1.77070	3.49970	-2.64050	0.9995
	58	Ce	4.69060	-1.81790	3.60280	-2.70670	0.9995
	59	Pr	4.72150	-1.81390	3.56480	-2.65180	0.9995
	50 51	Nd	4.75090	-1.80800	3.51970	-2.59010	1.0000
	51 52	Pm Sm	4.74070	-1.76600 -1.71410	3.37430	-2.44210	1.0000
	52 53	Sm Eu	4.71700 4.66940	-1.71410 -1.64140	3.20800 2.98580	-2.28170 -2.07460	1.0000 1.0000
	53 54	Eu Gd	4.61010	-1.64140 -1.55750	2.73190	-2.07460 -1.84040	0.9995
	5 4	Tb	4.52550	-1.35730 -1.45520	2.73190	-1.57950	0.9995
	55 56	Dy	4.45230	-1.45320 -1.36440	2.17540	-1.37550 -1.34550	0.9990
1 `		- 1		1.20110		1.0 1000	3.,,,,

Table 6.1.1.5. Coefficients for analytical approximation to scattering factors (cont.)

Z	Symbo	$1 a_0$	a_1	a_2 (×10)	a_3 (×100)	С
67	Но	4.37660	-1.27460	1.92540	-1.13090	0.9990
68	Er	4.29460	-1.18170	1.67060	-0.91467	0.9990
69	Tm	4.21330	-1.09060	1.42390	-0.70804	0.9990
70	Yb	4.13430	-1.00310	1.18810	-0.51120	0.9990
71	Lu	4.04230	-0.90518	0.92889	-0.29820	0.9990
72	Hf	3.95160	-0.80978	0.68951	-0.09620	0.9990
73	Ta	3.85000	-0.70599	0.41103	0.11842	0.9990
74	W	3.76510	-0.61807	0.18568	0.29787	0.9990
75	Re	3.67600	-0.52688	-0.04706	0.48180	0.9995
76	Os	3.60530	-0.45420	-0.22529	0.61700	0.9995
77	Ir	3.53130	-0.37856	-0.41174	0.75967	0.9995
78	Pt	3.47070	-0.31534	-0.56487	0.87492	0.9995
79	Au	3.41630	-0.25987	-0.69030	0.96224	0.9995
80	Hg	3.37350	-0.21428	-0.79013	1.02850	1.0000
81	Tl	3.34590	-0.18322	-0.84911	1.05970	1.0000
82	Pb	3.32330	-0.15596	-0.89878	1.08380	1.0000
83	Bi	3.31880	-0.14554	-0.90198	1.06850	1.0000
84	Po	3.32030	-0.13999	-0.89333	1.04380	1.0000
85	At	3.34250	-0.15317	-0.83350	0.97641	1.0000
86	Rn	3.37780	-0.17800	-0.74320	0.88510	1.0000
87	Fr	3.41990	-0.20823	-0.64000	0.78354	0.9995
88	Ra	3.47530	-0.25005	-0.50660	0.65836	0.9995
89	Ac	3.49020	-0.25109	-0.49651	0.64340	0.9995
90	Th	3.61060	-0.35409	-0.18926	0.36849	0.9995
91	Pa	3.68630	-0.41329	-0.01192	0.20878	0.9995
92	U	3.76650	-0.47542	0.16850	0.05060	0.9990
93	Np	3.82870	-0.51955	0.29804	-0.06566	0.9990
94	Pu	3.88970	-0.56296	0.42597	-0.18080	0.9990
95	Am	3.95060	-0.60554	0.54967	-0.29112	0.9985
96	Cm	4.01470	-0.65062	0.67922	-0.40588	0.9985
97	Bk	4.07780	-0.69476	0.80547	-0.51729	0.9985
98	Cf	4.14210	-0.73977	0.93342	-0.62981	0.9980

$$\exp(i\mathbf{S}\cdot\mathbf{r}) = \sum_{l=0}^{\infty} (2l+1)i^{l}j_{l}(Sr)P_{l}\left[\cos\left(\frac{\mathbf{S}\cdot\mathbf{r}}{Sr}\right)\right],$$

where j_l is a spherical Bessel function of order l and $S = |\mathbf{S}|$. The addition theorem enables this to be expressed as

$$\exp(i\mathbf{S}\cdot\mathbf{r}) = 4\pi \sum_{l=0}^{\infty} i^l j_l(Sr) \sum_{m=-l}^{l} Y_{lm}(\theta_S, \varphi_S) Y_{lm}^*(\theta, \varphi). \quad (6.1.1.17)$$

The $Y_{lm}(\theta, \varphi)$ are spherical (surface) harmonics

$$Y_{lm}(\theta,\varphi) = \left[\frac{(2l+1)(l+m)!}{4\pi(l-m)!}\right]^{1/2} \frac{(-)^l e^{im\varphi}}{2^l l! (\sin \theta)^m} \times \frac{\mathrm{d}^{l-m}}{\mathrm{d}(\cos \theta)^{l-m}} (\sin \theta)^{2l}$$

$$= \left[\frac{(2l+1)(l-m)!}{4\pi(l+m)!}\right]^{1/2} (-)^m e^{im\varphi} P_l^m(\cos \theta) \quad m \ge 0,$$
(6.1.1.18)

where $P_l^m(\cos \theta)$ is an associated Legendre polynomial. With this definition of the spherical harmonics,

$$Y_{l-m} = (-)^m Y_{lm}^*. (6.1.1.19)$$

Spherical harmonics with alternative phase conventions can be defined. The relationship between those in common use is given by Normand (1980). With the convention given in (6.1.1.18), the spherical harmonics up to fourth order

$$\begin{split} Y_{1\pm 1} &= \mp (3/8\pi)^{1/2} \cos\theta \, e^{\pm i\varphi} \\ Y_{10} &= (3/4\pi)^{1/2} \cos\theta \, \theta \\ Y_{2\pm 2} &= \left(\frac{15}{32\pi}\right)^{1/2} \sin^2\theta \, e^{\pm 2i\varphi} \\ Y_{2\pm 1} &= \mp \left(\frac{15}{8\pi}\right)^{1/2} \sin\theta \cos\theta \, e^{\pm i\varphi} \\ Y_{20} &= \left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1) \\ Y_{3\pm 3} &= \mp \left(\frac{35}{64\pi}\right)^{1/2} \sin^3\theta \, e^{\pm 3i\varphi} \\ Y_{3\pm 2} &= \left(\frac{105}{32\pi}\right)^{1/2} \cos\theta \sin^2\theta \, e^{\pm 2i\varphi} \\ Y_{3\pm 1} &= \mp \left(\frac{21}{64\pi}\right)^{1/2} \sin\theta (4 - 5\sin^2\theta) \, e^{\pm i\varphi} \\ Y_{30} &= \left(\frac{7}{16\pi}\right)^{1/2} \cos\theta (2 - 5\sin^2\theta) \\ Y_{4\pm 4} &= \left(\frac{315}{512\pi}\right)^{1/2} \sin^4\theta \, e^{\pm 4i\varphi} \\ Y_{4\pm 3} &= \mp \left(\frac{315}{64\pi}\right)^{1/2} \cos\theta \sin^3\theta \, e^{\pm 3i\varphi} \\ Y_{4\pm 2} &= \left(\frac{45}{128\pi}\right)^{1/2} \sin^2\theta (6 - 7\sin^2\theta) \, e^{\pm 2i\varphi} \\ Y_{4\pm 1} &= \mp \left(\frac{45}{64\pi}\right)^{1/2} \cos\theta \sin\theta (4 - 7\sin^2\theta) \, e^{\pm i\varphi} \\ Y_{40} &= \left(\frac{9}{256\pi}\right)^{1/2} (3 - 30\sin^2\theta + 35\sin^4\theta). \end{split}$$

The perturbed electron density may be written as a multipole expansion in spherical polar coordinates r, θ, φ , each term having the form

$$\rho_{lm+}(r) = \rho_{lm+}(r)\mathbf{y}(\theta, \varphi),$$
(6.1.1.21)

where **y** is a suitably normalized real function of the polar coordinates. A common choice is the real form of the spherical harmonics

$$Y_{lm\pm(\theta,\varphi)} = \left[\frac{(2l+1)(l-m)!}{2\pi(l+m)!(1+\delta_{0m})}\right]^{1/2} P_l^m(\cos\theta) \frac{\cos m\varphi}{\sin m\varphi},$$
(6.1.1.22)

where m = 0, 1, 2, ...

 $Y_{00} = (4\pi)^{-1/2}$

These harmonics can also be expressed in terms of Cartesian components of a unit vector q_x , q_y , q_z . The normalization in (6.1.1.17) is appropriate to wavefunc-

The normalization in (6.1.1.17) is appropriate to wavefunctions. The physical significance of the normalization for the spherical harmonics depends on the context in which they are utilized. The implications for density functions are not the same as those for wavefunctions. A normalizing condition on the real form of the spherical harmonics that expresses the properties of the functions under integration is

$$\int |y(\theta, \varphi)| \, \mathrm{d}(\cos \theta) \, \mathrm{d}\varphi = 2 - \delta_{l0}. \tag{6.1.1.23}$$

We assume the radial function to be constant in sign, and normalized to unity. The scalar function, with l=0, does not

change sign. Integration over the angular coordinates gives the electron content of the scalar function. The multipole terms with l>0 integrate to zero. Taking the modulus of the angular function, and then integrating, gives twice the electron transfer from the electron-deficient to the electron-enriched volume for that multipole. With this normalization, the angle-dependent factors in the expansion, in terms of the associated Legendre polynomials and in terms of direction cosines, are given in Table 6.1.1.6. For the alternative normalization such that

$$\int |y_{lmp}|^2 d(\cos \theta) d\varphi = 1,$$

the factor multiplying the angle-dependent term is as given in (6.1,1.22).

The site symmetry of the atom restricts multipole terms to those that are invariant under the operations of the relevant point group. The restrictions for the 27 non-cubic crystallographic point groups are given in Table 6.1.1.7.

For the five cubic point groups, the functions allowed are the linear combinations of the $Y_{lmp}(\theta,\varphi)$ known as the cubic harmonics $K_{lj}(\theta,\varphi)$ (Altmann & Cracknell, 1965). These are listed in Table 6.1.1.8. The normalization constant N_{lj}^2 is given by

$$N_{li}^2 = \int K_{li}^2 d(\cos \theta) d\varphi$$
.

The derivation of Tables 6.1.1.7 and 6.1.1.8 is described by Kurki-Suonio (1977).

The generalized scattering factor for a particular multipole involves evaluating the Fourier transform of the density

$$\int \exp(i\mathbf{S} \cdot \mathbf{r}) \rho_{lm\pm}(r) Y_{lm\pm}(\theta, \varphi) \, \mathrm{d}\mathbf{r} = f_{lm\pm}(S) Y_{lm}(\theta_S, \varphi_S),$$

where the right-hand side is obtained by substituting (6.1.1.17) and integrating over the angular coordinates for the direct-space variables. The term

$$f_{lm\pm}(S) = \int_{0}^{\infty} j_l(Sr)\rho_{lm\pm}(r)r^2 dr$$
 (6.1.1.24)

gives the radial variation of the generalized scattering factor.

The density function $\rho_{lm\pm}(r_a)$ may be derived from atomic basis functions, which asymptotically have the form of simple exponential functions $A_n r^n \exp(-\alpha r)$. Expansions in terms of Gaussian functions $B_n r^n \exp(-\beta r^2)$ or of Laguerre functions $C_n r^l L_n^{2l+2} \exp(-\gamma r/2)$, where L is a Laguerre polynomial of order n and degree 2l+2, are also convenient for some purposes. A_n , B_n and C_n are normalizing factors, which, when specified as

$$A_{n} = \frac{\alpha^{l+n+3}}{4\pi(l+n+2)!}, \quad B_{n} = \frac{2^{\beta(l+n+3)/2}}{\Gamma[(l+n+3)/2]},$$

$$C_{n} = \frac{(-)^{n}n!(\gamma/2)^{2l+3}}{4\pi(2l+n+2)!},$$
(6.1.1.25)

impose the normalization condition (Stewart, 1980a)

$$\int_{0}^{\infty} \rho_{lm}(r_a) r_a^{l+2} \, \mathrm{d}r_a = 1. \tag{6.1.1.26}$$

With this normalization, the Fourier-Bessel transforms are, for the simple exponential,

Table 6.1.1.6. Angle dependence of multipole functions, normalized as in equation (6.1.1.23); $\omega = \cos \theta$ and S, D, Q, O, H denote scalar, dipole, quadrupole, octupole, and hexadecapole terms, respectively

Pole	Real spherical harmonic	Cartesian representation
S 1	$\frac{1}{4\pi}P_0^0(\omega)$	$\frac{1}{4\pi}$
D 1 D 2	$\frac{1}{\pi} P_1^1(\omega) \cos \varphi$ $\frac{1}{\pi} P_1^1(\omega) \sin \varphi$	$rac{1}{\pi}q_x \ rac{1}{\pi}q_y \ 1$
D 3	$\frac{1}{\pi}P_1^0(\omega)$	$rac{1}{\pi}q_z$
Q 1 Q 2 Q 3 Q 4 Q 5	$ \frac{\frac{1}{8}P_2^2(\omega)\cos 2\varphi}{\frac{1}{8}P_2^2(\omega)\sin 2\varphi} $ $ \frac{\frac{1}{4}P_2^1(\omega)\cos \varphi}{\frac{1}{4}P_2^1(\omega)\sin \varphi} $ $ \frac{3\sqrt{3}}{4\pi}P_2^0(\omega) $	$\frac{\frac{3}{8}(q_x^2 - q_y^2)}{\frac{3}{4}q_xq_y}$ $\frac{\frac{3}{4}q_xq_z}{\frac{3}{4}q_yq_z}$ $\frac{9\sqrt{2}}{8\pi}(q_z^2 - \frac{1}{3})$
<i>O</i> 1	$\frac{4}{45\pi}P_3^3(\omega)\cos 3\varphi$	$\frac{4}{3\pi}(q_x^2 - 3q_y^2)q_x$
O 2 O 3 O 4	$\frac{4}{45\pi} P_3^3(\omega) \sin 3\varphi$ $\frac{1}{15} P_3^2(\omega) \cos 2\varphi$ $\frac{1}{15} P_3^2(\omega) \sin 2\varphi$	$rac{4}{3\pi}(3q_x^2-q_y^2)q_y \ (q_x^2-q_y^2)q_z \ 2q_xq_yq_z$
0 5	$\frac{2}{3} \left[\tan^{-1} 2 + \frac{14}{5} - \frac{\pi}{4} \right]^{-1} P_3^{1}(\omega) \cos \varphi$	$\left[\tan^{-1}2 + \frac{14}{5} - \frac{\pi}{4}\right]^{-1} (5q_z^2 - 1)q_x$
0 6 0 7	$\frac{2}{3} \left[\tan^{-1} 2 + \frac{14}{5} - \frac{\pi}{4} \right]^{-1} P_3^{1}(\omega) \sin \varphi$ $\frac{20}{13\pi} P_3^{0}(\omega)$	$\left[\tan^{-1}2 + \frac{14}{5} - \frac{\pi}{4}\right]^{-1} (5q_z^2 - 1)q_y$ $\frac{10}{13\pi} (5q_z^2 - 3)q_z$
H 1 H 2 H 3 H 4	$ \frac{\frac{1}{224}P_4^4(\omega)\cos 4\varphi}{\frac{1}{224}P_4^4(\omega)\sin 4\varphi} $ $ \frac{\frac{1}{84}P_4^3(\omega)\cos 3\varphi}{\frac{1}{84}P_4^3(\omega)\sin 3\varphi} $	$\begin{array}{c} \frac{105}{224}(q_x^4 - 6q_x^2q_y^2 + q_y^4) \\ \frac{420}{224}(q_x^2 - q_y^2)q_xq_y \\ \frac{105}{84}(q_x^2 - 3q_y^2)q_xq_z \\ \frac{105}{84}(3q_x^2 - q_y^2)q_yq_z \end{array}$
Н 5	$\left(\frac{7\sqrt{7}}{272+56\sqrt{7}}\right)P_4^2(\omega)\cos 2\varphi$	$\frac{15}{2} \left(\frac{7\sqrt{7}}{272 + 56\sqrt{7}} \right) (7q_z^2 - 1)(q_x^2 - q_y^2)$
H 6	$\left(\frac{7\sqrt{7}}{272+56\sqrt{7}}\right)P_4^2(\omega)\sin 2\varphi$	$\frac{15}{2} \left(\frac{7\sqrt{7}}{272 + 56\sqrt{7}} \right) (7q_z^2 - 1) q_x q_y$
H 7	$\left(\frac{21\sqrt{7}}{256+14\sqrt{7}}\right)P_4^1(\omega)\cos\varphi$ $\left(\frac{21\sqrt{7}}{256+14\sqrt{7}}\right)p_4^1(\omega)\cos\varphi$	$\frac{5}{2} \left(\frac{21\sqrt{7}}{256 + 14\sqrt{7}} \right) (7q_z^2 - 3)q_x q_z$ $5 \left(21\sqrt{7} \right) (7q_z^2 - 3)q_z q_z$
H 9	$\left(\frac{21\sqrt{7}}{256 + 14\sqrt{7}}\right) P_4^1(\omega) \sin \varphi$ $0.55534 P_4^0(\omega)$	$\frac{5}{2} \left(\frac{21\sqrt{7}}{256 + 14\sqrt{7}} \right) (7q_z^2 - 3)q_x q_z$ $\frac{5}{8} (0.55534) (7q_z^4 - 6q_z^2 + \frac{3}{5})$
$^*H_{ m cubic}$	$\frac{160}{27\sqrt{3\pi}} \left[\frac{1}{420} P_4^4(\omega) \cos 4\varphi + \frac{2}{5} P_4^0(\omega) \right]$	$\frac{160}{27\sqrt{3\pi}}(q_x^4 + q_y^4 + q_z^4 - 3/5)$

 $^{^*}H_{\mathrm{cubic}}$ is the fourth-order hexadecapole appropriate to cubic site symmetry.

$$f_{nl}(\alpha, S) = \frac{S}{(2l+1)!![1 + (S/\alpha)^{2}]^{n+2}} \times {}_{2}F_{1}\left[\frac{l-n-1}{2}, \frac{l-n}{2}; l+\frac{3}{2}; -(S/\alpha)^{2}\right];$$
(6.1.1.27)

for the Gaussian function.

$$g_{nl}(\beta, S) = \frac{S^1}{(2l+1)!!} \exp(-S^2/4\beta) {}_1F_1\left[\frac{l-n}{2}; l+\frac{3}{2}; \frac{S^2}{4\beta}\right];$$
(6.1.1.28)

and, for the Laguerre function,

$$h_{nl}(\gamma, S) = \frac{(-)^n n! 2^n S^l}{[2(l+n)+1]!! [1+(2S/\gamma)^2]^{l+2}} P_n^{(l+\frac{3}{2},l+\frac{1}{2})}(t);$$

where the Jacobi polynomial is given by

$$\begin{split} P_n^{(a,b)}(x) &= 2^{-n} \sum_{m=0}^n \binom{n+a}{m} \binom{n+b}{n-m} (x-1)^{n-m} (x+1)^m \\ &= \frac{\Gamma(a+n+1)}{n! \Gamma(a+b+n+1)} \\ &\times \sum_{m=0}^n \binom{n}{m} \frac{\Gamma(a+b+n+m+1)}{2^m \Gamma(a+m+1)} (x-1)^m \\ &= \binom{n+a}{n} {}_2F_1 \binom{n}{n} (x+b+n+a+b+1) + (x+1) + ($$

and

$$t = \frac{[(2S/\gamma)^2 - 1]}{[(2S/\gamma)^2 + 1]}.$$
 (6.1.1.29)

Further details are given by Stewart (1980a).

In the case of Slater-type orbitals, a simpler form of the radial term may be obtained *via* the recurrence relations (Avery & Watson, 1977)

$$(S^{2} + \alpha^{2})f_{\mu+1,\nu} + (\mu + \nu)(\mu - \nu - 1)f_{\mu-1,\nu} = 2\nu\alpha f_{\mu\nu}$$

$$Sf_{\mu,\nu-1} + (\mu - \nu - 1)f_{\mu-1,\nu} = \alpha f_{\mu\nu}.$$

Thus, for the lower-order Slater-type functions, we obtain the values listed in Table 6.1.1.9.

Atomic wavefunctions, in the form of sets of orbital contributions using Slater-type functions, are tabulated by Clementi & Roetti (1974). Basis sets for Gaussian orbitals are described by Veillard (1968), Roos & Siegbahn (1970), Huzinaga (1971), van Duijneveldt (1971), Dunning & Jeffrey-Hay (1977), and by McLean & Chandler (1979, 1980). The application of these basis sets to molecular calculations is reviewed by Ahlrichs & Taylor (1981).

6.1.1.5. The temperature factor

The atoms in a solid vibrate about their equilibrium positions, with an amplitude that increases with temperature. As a result of this vibration, the amplitude for coherent scattering is modulated by the Fourier transform of the probability distribution for the vibrating atom, known as the temperature factor. The reduction in the intensity of the coherent scattering is accompanied by thermal diffuse scattering, for which the phase relationship between the incident and diffracted beams is altered by the thermal wave, or phonon.

Table 6.1.1.7. Indices allowed by the site symmetry for the real form of the spherical harmonics $Y_{lmp(\theta,\phi)}$; λ , μ and j are integers such that $l, m \geq 0$; $(-)^n$ implies p = - for n odd and p = + for n even

Site symmetry	Coordinate axes	Indices
1 1	Any Any	All (l, m, p) $(2\lambda, m, p)$
2 m 2/m	$2 \parallel x$ $2 \parallel y$ $2 \parallel z$ $m \perp x$ $m \perp y$ $m \perp z$ $2 \parallel x, m \perp x$ $2 \parallel y, m \perp y$ $2 \parallel z, m \perp z$	$(l, m, (-)^{l-m})$ $(l, m, (-)^{l})$ $(l, 2\mu, p)$ $(l, m, (-)^{m})$ $(l, m, +)$ $(l, l - 2j, p)$ $(2\lambda, m, (-)^{m})$ $(2\lambda, m, +)$ $(2\lambda, 2\mu, p)$
222 mm2 mmm	$2 \parallel z, 2 \parallel y$ $2 \parallel x, m \perp z$ $2 \parallel y, m \perp z$ $2 \parallel z, m \perp y$ $m \perp z, m \perp y, m \perp z$	$(l, 2\mu, (-)^{l})$ $(l, l - 2j, +)$ $(l, l - 2j, (-)^{l})$ $(l, 2\mu, +)$ $(2\lambda, 2\mu, +)$
$\frac{4}{4}$ $\frac{4}{4}$ $\frac{4}{m}$ $\frac{422}{4mm}$ $\frac{4}{4}$ $\frac{4}{m}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(l, 4\mu, p)$ $(l, 2l - 4j, p)$ $(2\lambda, 4\mu, p)$ $(l, 4\mu, (-)^{l})$ $(l, 4\mu, +)$ $(l, 2l - 4j, (-)^{l})$ $(l, 2l - 4j, +)$ $(2\lambda, 4\mu, +)$
$ \begin{array}{c} 3\\ \overline{3}\\ 32\\ 3m\\ \overline{3}m \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(l, 3\mu, p) (2\lambda, 3\mu, p) (l, 3\mu, (-)^l) (l, 3\mu, (-)^{l-m}) (l, 3\mu, +) (l, 3\mu, (-)^m) (2\lambda, 3\mu, +) (2\lambda, 3\mu, (-)^m)$
6 6 6/m 622 6mm 6m2 6/mmm	$ \begin{array}{c c} 6 & z \\ 6 & z \\ 6 & z, m \perp z \\ 6 & z, 2 & y \\ 6 & z, m \perp y \\ 6 & z, m \perp y \\ 6 & z, m \perp x \\ 6 & z, m \perp z, m \perp y \end{array} $	$(l, 6\mu, p) (m + 2j, 3\mu, p) (2\lambda, 6\mu, p) (l, 6\mu, (-)^l) (l, 6\mu, +) (m + 2j, 3\mu, +) (m + 2j, 3\mu, (-)^l) (2\lambda, 6\mu, +)$

The first term in an expansion of the probability density $\rho(\mathbf{u})$ for displacement \mathbf{u} about an equilibrium position at the origin is

$$\rho_o(\mathbf{u}) = \frac{\det \mathbf{\sigma}_{\mathbf{u}}^{-1/2}}{8\pi^3} \exp(-\frac{1}{2}\mathbf{u}^T \cdot \mathbf{\sigma}_{\mathbf{u}}^{-1} \cdot \mathbf{u}), \tag{6.1.1.30}$$

where σ_u is the dispersion matrix describing the second moments of the displacements about the mean position. The corresponding expression for the temperature factor is

$$T_o(\mathbf{S}) = \exp(-\frac{1}{2}\mathbf{S}^T \cdot \mathbf{\sigma_u} \cdot \mathbf{S}), \tag{6.1.1.31}$$

which is the Fourier transform of $\rho_o(\mathbf{u})$.

Table 6.1.1.8. Cubic harmonics $K_{li}(\theta, \varphi)$ for cubic site symmetries

			\$	Site symm	etry	
$\pmb{K}_{lj}(heta, oldsymbol{arphi})$	$N_{\mathcal{P}_j}$	23	<i>m</i> 3	432	$\bar{4}3m$	m3m
$K_0 = Y_{00+} = 1$	4π	×	×	×	×	×
$K_3 = Y_{32-}$	$\frac{240\pi}{7}$	×			×	
$K_4 = Y_{40+} + \frac{1}{168}Y_{44+}$	$\frac{16\pi}{21}$	×	×	×	×	×
$K_{6,1} = Y_{60+} - \frac{1}{360}Y_{64+}$	$\frac{32\pi}{13}$	×	×	×	×	×
$K_{6,2} = Y_{62+} - \frac{1}{792}Y_{66+}$	$512\pi \cdot 105$	×	×			
$K_7 = Y_{72-} + \frac{1}{1560} Y_{76-}$	$ \begin{array}{cccc} 13 & 11 \\ 256\pi & 567 \end{array} $	×			×	
$K_8 = Y_{80+} + \frac{1}{5940}(Y_{84+} + \frac{1}{672}Y_{88+})$	$ \begin{array}{ccc} 15 & 13 \\ \underline{256\pi} \end{array} $	×	×	×	×	×
$K_{9,1} = Y_{92-} - \frac{1}{2520} Y_{96-}$		×			×	
$K_{9,2} = Y_{94-} - \frac{1}{4080} Y_{98-}$	$\frac{2048\pi}{2048}$ $\frac{243 \cdot 5005}{2005}$	×		×		
$K_{10,1} = Y_{10,0+} - \frac{1}{5460} (Y_{10,4} + \frac{1}{4320} Y_{10,8+})$	$ \begin{array}{ccc} 19 & 17 \\ \underline{512\pi} \cdot \underline{3} \\ \underline{65} \end{array} $	×	×	×	×	×
$K_{10,2} = Y_{10,2+} + \frac{1}{43680} (Y_{10,6+} + \frac{1}{456} Y_{10,10+})$	$ \frac{\overline{21}}{21} \cdot \frac{\overline{65}}{\overline{65}} $ $ \frac{2048\pi}{21} \cdot \frac{4455}{247} $	×	×			

The mean-square displacement of the atom from its mean position in the direction of the vector \mathbf{v} is given by

$$\langle \mathbf{u}^2 \rangle_{\mathbf{v}} = \mathbf{v}^T \mathbf{g}^T \mathbf{\sigma}_{\mathbf{u}} \mathbf{g} \mathbf{v} / (\mathbf{v}^T \mathbf{g} \mathbf{v}),$$
 (6.1.1.32)

where g_{ij} is the covariant metric tensor with the scalar products of the unit-cell vectors $\mathbf{a}_i \cdot \mathbf{a}_i$ as components.

The thermal motion for atoms in crystals is often displayed as surfaces of constant probability density. The surface for the thermal displacement \mathbf{u} is defined by

$$\mathbf{u}^T \mathbf{\sigma}_{\mathbf{u}}^{-1} \mathbf{u} = C^2. \tag{6.1.1.33}$$

The square of the distance from the origin to the equiprobability surface in the direction ${\bf v}$ is

$$C^2 \mathbf{v}^T \mathbf{g} \mathbf{v} / (\mathbf{v}^T \mathbf{\sigma}_{\mathbf{u}}^{-1} \mathbf{v}).$$
 (6.1.1.34)

This is equal to (6.1.1.32) for C unity only if \mathbf{v} coincides with a principal axis of the vibration ellipsoid.

The probability that a displacement falls within the ellipsoid defined by C is

$$(2/\pi)^{1/2} \int_{0}^{C} q^2 \exp(-q^2/2) \,\mathrm{d}q. \tag{6.1.1.35}$$

6.1.1.6. The generalized temperature factor

The Gaussian model of the probability density function (p.d.f.) $\rho_o(\mathbf{u})$ for atomic thermal motion defined in (6.1.1.30) is adequate in many cases. Where anharmonicity or curvilinear motion is important, however, more elaborate models are needed.

In the classical (high-temperature) regime, the generalized temperature factor is given by the Fourier transform of the one-particle p.d.f:

$$\rho(\mathbf{u}) = N^{-1} \exp[-V(\mathbf{u})/kT], \tag{6.1.1.36}$$

where

$$N = \int \exp[-V(\mathbf{u})/kT] \, d\mathbf{u}. \tag{6.1.1.37}$$

In the cases where the potential function $V(\mathbf{u})$ is a close approximation to the Gaussian (harmonic) potential, series expansions based on a perturbation treatment of the anharmonic terms provide a satisfactory representation of the temperature factors. That is, if the deviations from the Gaussian shape are small, approximations obtained by adding higher-order corrections to the Gaussian model are satisfactory.

In an arbitrary coordinate system, the number of significant high-order tensor coefficients for the correction is large. It may be helpful to choose coordinates parallel to the principal axes for the harmonic approximation so that

$$V(\mathbf{u})/kT = 1/2 \sum_{i=1}^{3} (B_i u_i)^2,$$
 (6.1.1.38)

in which case (6.1.1.36) may be written as

$$\rho_o(\mathbf{u}) = \frac{1}{N_0} \exp\left[-1/2\sum_i (B_i u_i)^2\right],$$
(6.1.1.39)

where

$$N_0 = \frac{B_1 B_2 B_3}{8\pi^3}. (6.1.1.40)$$

The harmonic temperature factor is

$$T_o(\mathbf{S}) = \exp\left[-1/2\sum_i (b_i S_i)^2\right],$$
 (6.1.1.41)

where b_i and B_i are related by the reciprocity condition

$$b_i B_i = 1. (6.1.1.42)$$

Table 6.1.1.9. $f_{nl}(\alpha, S) = \int_0^\infty r^n \exp(-\alpha r) j_l(Sr) dr$

n l	1	2	3	4
0	$\frac{1}{(S^2 + \alpha^2)}$	$\frac{2\alpha}{\left(S^2 + \alpha^2\right)^2}$		$\frac{24\alpha(\alpha^2-S^2)}{\left(S^2+\alpha^2\right)^4}$
1		$\frac{2S}{\left(S^2+\alpha^2\right)^2}$	$\frac{8S\alpha}{\left(S^2+\alpha^2\right)^3}$	$\frac{8S(5\alpha^2-S^2)}{\left(S^2+\alpha^2\right)^4}$
2		(*)	$\frac{8S^2}{\left(S^2 + \alpha^2\right)^3}$	$48S^2\alpha$
3				$\frac{48S^3}{\left(S^2 + \alpha^2\right)^4}$

6.1.1.6.1. Gram-Charlier series

In the Gram-Charlier series expansion (Kuznetsov, Stratonovich & Tikhonov, 1960), the general p.d.f. $\rho(\mathbf{u})$ is approximated by

$$\left[1-c^{j}D_{j}+\frac{c^{jk}}{2!}D_{j}D_{k}-\ldots+(-)^{p}\frac{c^{jk\ldots\zeta}}{p!}D_{\alpha}D_{\beta}\ldots D_{\zeta}\right]\rho_{o}(\mathbf{u}).$$
(6.1.1.4)

The operator $D_{\alpha}D_{\beta}\dots D_{\zeta}$ is the pth partial (covariant) derivative $\partial^p/\partial u_{\alpha}\partial u_{\beta}\dots\partial u_{\zeta}$, and $c^{jk\dots\zeta}$ is a contravariant component of the coefficient tensor. The quasi-moment coefficient tensors are symmetric for all permutations of indices. The first four have three, six, ten, and fifteen unique components for site symmetry 1. The third- and fourth-order terms describe the skewness and the kurtosis of the p.d.f., respectively.

The Gram-Charlier series may be rewritten using general multidimensional Hermite polynomial tensors, defined by

$$H_{\alpha\beta...\zeta}(\mathbf{u}) = (-)^{p} \exp(\frac{1}{2}\sigma_{jk}^{-1}u^{j}u^{k}) \times D_{\alpha}D_{\beta}...D_{\zeta} \exp(-\frac{1}{2}\sigma_{ik}^{-1}u^{j}u^{k}).$$
(6.1.1.44)

For $w_j = \sigma_{jk}^{-1} u^k$, and with $\sigma_{jk}^{-1} = \sigma_{kj}^{-1}$ and $w_j w_k = w_k w_j$, the first few general Hermite polynomials may be expressed as

$${}^{0}H(\mathbf{u}) = 1$$

$${}^{1}H_{j}(\mathbf{u}) = w_{j}$$

$${}^{2}H_{jk}(\mathbf{u}) = w_{j}w_{k} - \sigma_{jk}^{-1}$$

$${}^{3}H_{jk}(\mathbf{u}) = w_{j}w_{k}w_{l} - w_{j}\sigma_{kl}^{-1} - w_{k}\sigma_{lj}^{-1} - w_{l}\sigma_{jk}^{-1}$$

$$= w_{j}w_{k}w_{l} - 3w_{(j}\sigma_{kl)}^{-1}$$

$${}^{4}H_{jklm}(\mathbf{u}) = w_{j}w_{k}w_{l}w_{m} - 6w_{(j}w_{k}\sigma_{lm)}^{-1} + 3\sigma_{jk}^{-1}\sigma_{lm}^{-1}.$$

$$(6.1.1.45)$$

Indices in parentheses indicate terms to be averaged over all unique permutations of those indices.

The Gram-Charlier series is then

$$\rho_o(\mathbf{u}) \left[1 + \frac{1}{3!} c^{jkl} H_{jkl}(\mathbf{u}) + \frac{1}{4!} c^{jklm} H_{jklm}(\mathbf{u}) + \dots \right], \quad (6.1.1.46)$$

in which the mean and the dispersion of $\rho_o(\mathbf{u})$ have been chosen to make c^j and c^{jk} vanish.

The Fourier transform, after truncating at the quartic term, gives an approximation to the generalized temperature factor:

$$T(\mathbf{S}) = T_o(\mathbf{S}) \left[1 + \frac{i^3}{3!} c^{jkl} S_j S_k S_l + \frac{i^4}{4!} c^{jklm} S_j S_k S_l S_m \right], \quad (6.1.1.47)$$

i.e. the Fourier transform of the Hermite polynomial expansion about the Gaussian p.d.f. is a power-series expansion about the

Table 6.1.1.10. Indices nmp allowed by the site symmetry for the functions $H_n(z)\Phi_{mp}(\varphi)$; μ , ν and j are integers such that $m, n \geq 0$; $(-)^n$ implies p = - for n odd and p = + for n even

Site symmetry	Coordinate axes	Indices
1 1	Any Any	All (n, m, p) (n, n+2j, p)
2 m 2/m		$(n, m, (-)^{n})$ $(n, m, (-)^{n-m})$ $(n, 2\nu, p)$ $(n, m, (-)^{m})$ $(n, m, +)$ $(2\mu, m, p)$ $(m + 2j, m, (-)^{m})$ $(m + 2j, m, +)$ $(2\mu, 2\nu, p)$
222 mm2 mmm	$2 \parallel z, 2 \parallel y$ $2 \parallel x, m \perp z$ $2 \parallel y, m \perp z$ $2 \parallel z, m \perp y$ $m \perp z, m \perp y, m \perp z$	$(n, 2\nu, (-)^n) (2\mu, m+) (2\mu, m, (-)^m) (n, 2\nu, +) (2\mu, 2\nu, +)$
$\frac{4}{4}$ $\frac{4}{4}$ $\frac{4}{m}$ $\frac{422}{4mm}$ $\frac{4}{4}$ $\frac{4}{mm}$	$ \begin{array}{c ccccc} 4 & z & \\ \hline 4 & z & \\ 4 & z, m \perp z & \\ 4 & z, 2 & y & \\ 4 & z, m \perp y & \\ \hline 4 & z, m \perp y & \\ \hline 4 & z, m \perp y & \\ 4 & z, m \perp z & \\ 4 & z, m \perp z, m \perp x & \\ \end{array} $	$(n, 4\nu, p)$ $(n, 2n + 4j, p)$ $(2\mu, 4\nu, p)$ $(n, 4\nu, (-)^n)$ $(n, 4\nu, +)$ $(n, 2n + 4j, (-)^n)$ $(n, 2n + 4j, +)$ $(2\mu, 4\nu, +)$
$ \begin{array}{c} 3\\ \bar{3}\\ 32\\ 3m\\ \bar{3}m \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(n, 3\nu, p) (m + 2j, 3\nu, p) (n, 3\nu, (-)^{n-m}) (n, 3\nu, (-)^n) (n, 3\nu, +) (n, 3\nu, (-)^m) (m + 2j, 3\nu, +) (m + 2j, 3\nu, (-)^m)$
6 6 6/m 622 6mm 6m2 6/mmm	$ \begin{array}{c c} 6 & z \\ \hline 6 & z \\ 6 & z, m \perp z \\ 6 & z, 2 & y \\ 6 & z, m \perp y \\ \hline 6 & z, m \perp y \\ \hline 6 & z, m \perp x \\ 6 & z, m \perp z, m \perp y \end{array} $	$(n, 6\nu, p)$ $(2\mu, 3\nu, p)$ $(2\mu, 6\nu, p)$ $(n, 6\nu, (-)^n)$ $(n, 6\nu, +)$ $(2\mu, 3\nu, +)$ $(2\mu, 3\nu, (-)^m)$ $(2\mu, 6\nu, +)$

Gaussian temperature factor with even-order terms real and oddorder terms imaginary.

Because of the symmetry of the relationship between the Fourier transform of a real function and its inverse, the functional form of the p.d.f. and that of the temperature factor can be interchanged. Exchanging the role of the Hermite polynomials and the power series from the Gram-Charlier expansion has been studied by Scheringer (1985), with the objective of obtaining the one-particle potentials more directly.

6.1.1.6.2. Fourier-invariant expansions

When truncated, an expression for a multipole expansion, p.d.f. or temperature factor must retain those terms essential to the accuracy required of the expansion. Some authors (e.g.

Table 6.1.1.11. Indices n_x , n_y , n_z allowed for the basis functions $H_{n_x}(Ax)H_{n_y}(By)H_{n_z}(Cz)$; λ , μ , and ν are non-negative; conditions for other choices of axes are derived by cyclic permutation

Symmetry	Coordinate axes	Allowed indices
$\frac{1}{1}$	Any Any	All (n_x, n_y, n_z) $n_x + n_y + n_z = 2\lambda$
2 m 2/m 222 mm2 mmm	$2 \parallel z$ $m \perp z$ $2 \parallel z, m \perp z$ $2 \parallel z, 2 \parallel y$ $2 \parallel z, m \perp y$ $m \perp z, m \perp y, m \perp z$	$n_x + n_y = 2\lambda$ $n_z = 2\nu$ $n_x + n_y = 2\lambda, n_z = 2\nu$ $n_x, n_y, n_z \text{ all even or all odd}$ $n_x = 2\lambda, n_y = 2\mu$ $n_x = 2\lambda, n_y = 2\mu, n_z = 2\nu$

Stewart, 1980b) strongly favour classes of truncated expansion that retain symmetry properties appropriate to particular classes of transformation, such as rotation or Fourier inversion. Others, emphasizing simplicity, retain the minimum set of terms required to preserve the accuracy needed in the expansion. In either case, it is desirable for the expansion to converge rapidly, and to have a form related to physical theory.

In principle, the one-particle potential may be expanded in any complete set of functions. Harmonic oscillator functions simplify simultaneous interpretation of the probability distribution in real and reciprocal space because their form does not change under Fourier inversion (Kurki-Suonio, Merisalo & Peltonen, 1979).

If both anharmonicity and anisotropy are small, the p.d.f. may be expressed as a rapidly converging expansion in spherical polar coordinates u, θ, φ :

$$\rho(\mathbf{u}) = \rho_o(\mathbf{u}) \frac{N_0}{N} \left[1 - \sum_{n,l,m,p} a_{nlmp} R_{nl}(Bu) Y_{lmp}(\theta, \varphi) \right]$$
(6.1.1.48)

for non-cubic and

$$\rho(\mathbf{u}) = \rho_o(\mathbf{u}) \frac{N_0}{N} \left[1 - \sum_{n,l,j} a_{nlj} R_{nl}(Bu) K_{lj}(\theta, \varphi) \right]$$
(6.1.1.49)

for cubic site symmetry. The radial term may be written as

$$R_{nl}(x) = x^l L_{(n-l)/2}^{l+1/2}(x^2),$$
 (6.1.1.50)

where the associated Laguerre polynomial is

$$L_k^{\alpha}(t) = \sum_{\nu=0}^k {k+\alpha \choose k-\alpha} \frac{(-t)^{\nu}}{\nu!}$$
 (6.1.1.51)

with

$$\binom{p}{q} = \frac{\Gamma(p+1)}{[\Gamma(q+1)\Gamma(p-q+1)]} \tag{6.1.1.52}$$

and the normalizing factor

$$N = \frac{8\pi^3}{B^3} \left[1 - \sum_{\nu} (-)^{\nu} \frac{(2\nu + 1)!}{2^{2\nu} (\nu!)^2} a_{2\nu 00+} \right]. \tag{6.1.1.53}$$

The real spherical harmonics $Y_{lmp}(\theta,\varphi)$ and the cubic harmonics $K_{lj}(\theta,\varphi)$ are as defined in Subsection 6.1.1.4. As in the case of multipole expansions, the non-zero coefficients in these expressions are limited by the site symmetry. The restrictions on the temperature factor are identical to those for the generalized scattering factor listed in Tables 6.1.1.7 and 6.1.1.8.

From the Fourier invariance of harmonic oscillator functions,

$$T(\mathbf{S}) = \frac{N_0}{N} \exp(-b^2 S^2 / 2)$$

$$\times \left[1 - \sum_{n,l,m,p} a_{nlmp} i^n R_{nl}(bS) Y_{lmp}(\theta_S, \varphi_S) \right]$$
(6.1.1.54)

and

$$T(\mathbf{S}) = \frac{N_0}{N} \exp(-b^2 S^2 / 2)$$

$$\times \left[1 - \sum_{n.l.j} a_{nlj} i^n R_{nl}(bS) K_{lj}(\theta_S, \varphi_S) \right]$$
(6.1.1.55)

for non-cubic and cubic site symmetries, respectively. θ_S and φ_S are polar coordinates in reciprocal space.

With an appropriate choice of origin, the first-order (110+) and $(111\pm)$ terms vanish. The isotropic harmonic (200+) and constant (000+) terms have been removed from the summation. If coordinate axes are chosen coincident with the principal axes for the harmonic approximation, $(221\pm)$ and (222-) vanish. (220+) indicates the prolateness and (222+) the non-axiality in the harmonic approximation (Kurki-Suonio, 1977). Terms with $n \ge 2$ describe the anharmonicity.

The approximations in (6.1.1.48) to (6.1.1.55) fail if the anisotropy, indicated by the size of the (220+) and (222+) terms, or the anharmonicity is large. If the anharmonicity and non-axiality are small, one can invoke Fourier-invariant expansions in cylindrical polar coordinates u_r, u_z, φ :

$$\rho(\mathbf{u}) = \rho_o(\mathbf{u}) \frac{N_0}{N} \times \left[1 - \sum_{n,nmp} b_{n_z nmp} H_{n_z}(B_z u_z) \mathbf{P}_{nm}(B_r u_r) \Phi_{mp}(\varphi) \right]$$
(6.1.1.56)

and

(6.1.1.49)
$$T(S) = \frac{N_0}{N} \exp\left[-\frac{1}{2}(b_r^2 S_r^2 + b_z^2 S_z^2)\right]$$

$$\times \left[1 - \sum_{n_z, n, m, p} b_{n_z m n p} H_{n_z}(b_z S_z) \mathbf{P}_{n m}(b_r S_r) \Phi_{m p}(\varphi_S)\right], \quad (6.1.1.57)$$

where S_r , S_z , φ_S are cylindrical coordinates for S.

$$\mathbf{P}_{nm}(x) = x^m L^m_{(n-m)/2}(x^2), \quad \Phi_{m\pm}(\varphi) = \frac{\cos m\varphi}{\sin m\varphi}$$
 (6.1.1.58)

and

$$N = \frac{8\pi^3}{B_r^2 B_z} \left[1 - \sum_{\mu\nu} (-)^{\nu} \frac{(2\mu)!}{\mu!} b_{2\mu2\nu0+} \right]. \tag{6.1.1.59}$$

The indices allowed for the site symmetrical basis are as indicated in Table 6.1.1.10.

Again, the first-order (100+) and (011 \pm) terms vanish with the appropriate choice of origin. For coordinate axes coinciding with the principal axes of the harmonic approximation, (111 \pm) and (022-) vanish. (020+), (200+), and (000+) have been removed from the summation.

Equations (6.1.1.56) and (6.1.1.57) apply accurately to non-cubic symmetries with rotation axes higher than twofold where non-axiality vanishes. Where non-axiality is large, it is preferable to use the Cartesian Fourier invariant expansion

$$\rho(\mathbf{u}) = \frac{N_0}{N} \exp\left[-\frac{1}{2} \sum_{i} B_i^2 u_1^2\right] \times \left[1 - \sum_{n_x, n_y, n_z} c_{n_x n_y, n_z} H_{n_x}(B_x u_x) H_{n_y}(B_y u_y) H_{n_z}(B_z u_z)\right]$$
(6.1.1.60)

and

$$T(\mathbf{S}) = \frac{N_0}{N} \exp\left[-1/2 \sum_{i} b_i^2 u_1^2\right] \times \left[1 - \sum_{n_x, n_y, n_z} c_{n_x n_y, n_z} H_{n_x}(b_x u_x) H_{n_y}(b_y u_y) H_{n_z}(b_z u_z)\right],$$
(6.1.1.61)

where

$$N = \frac{8\pi^3}{B_x B_y B_z} \left[1 - \sum_{\lambda \mu \nu} \frac{(2\lambda)! (2\mu)! (2\nu)!}{\lambda! \mu! \nu!} c_{2\lambda 2\mu 2\nu} \right].$$
 (6.1.1.62)

The indices allowed under the site symmetry are listed in Table 6.1.1.11.

The first-order terms vanish with suitable choice of origin. (110), (101), and (011) vanish if the coordinates coincide with the principal axes for the harmonic approximation, and (200), (020), (002), and (000) are removed from the summation. Only anharmonic terms remain.

6.1.1.6.3. Cumulant expansion

In a cumulant expansion (Johnson & Levy, 1974), the entire series is expressed in exponential form. The cumulant expansion about $\mathbf{S} = 0$ for the generalized temperature factor is

$$T(\mathbf{S}) = \exp\left[1 + i\kappa^{j}S_{j} + \frac{i^{2}}{2!}\kappa^{jk}S_{j}S_{k} + \frac{i^{3}}{3!}\kappa^{jkl}S_{j}S_{k}S_{l} + \frac{i^{4}}{4!}\kappa^{jklm}S_{j}S_{k}S_{l}S_{m} + \dots\right],$$
(6.1.1.63)

where the coefficient tensor $\kappa^{\alpha\beta\dots\zeta}$, a symmetric tensor of order p, is the pth-order cumulant. The inverse Fourier transform is the Edgeworth expansion around the Gaussian p.d.f. Cumulants can be expressed in terms of moments and $vice\ versa$. The pth moment $\mu^{\alpha\beta\dots\zeta}$ (if it exists) of a general p.d.f., $\rho(\mathbf{x})$, is a symmetric tensor defined as

$$\mu^{\alpha\beta\dots\zeta}(\mathbf{x}) = \int_{-\infty}^{\infty} x^{\alpha}x^{\beta}\dots x^{\zeta}\rho(\mathbf{x}) \,\mathrm{d}\mathbf{x}. \tag{6.1.1.64}$$

The relations between the lower-order moments and cumulants are

$$\mu^{j} = \kappa^{j}$$

$$\mu^{jk} = \kappa^{jk} + \kappa^{j}\kappa^{k}$$

$$\mu^{jkl} = \kappa^{jkl} + \kappa^{j}\kappa^{kl} + \kappa^{k}\kappa^{lj} + \kappa^{l}\kappa^{jk} + \kappa^{j}\kappa^{k}\kappa^{l}$$

$$= \kappa^{jkl} + 3\kappa^{(j}\kappa^{kl)} + \kappa^{j}\kappa^{k}\kappa^{l}$$

$$\mu^{jklm} = \kappa^{jklm} + 3\kappa^{j(k}\kappa^{lm)} + 4\kappa^{(j}\kappa^{klm)}$$

$$+ 6\kappa^{(j}\kappa^{k}\kappa^{lm)} + \kappa^{j}\kappa^{k}\kappa^{l}\kappa^{m}$$

$$(6.1.1.65)$$

and, conversely,

$$\kappa^{j} = \mu^{j}
\kappa^{jk} = \mu^{jk} - \mu^{j} \mu^{k}
\kappa^{jkl} = \mu^{jkl} - 3\mu^{(j} \mu^{kl)} + 2\mu^{j} \mu^{k} \mu^{l}
\kappa^{jklm} = \mu^{jklm} - 3\mu^{j(k} \mu^{lm)} - 4\mu^{(j} \mu^{klm)}
+ 12\mu^{(j} \mu^{k} \mu^{lm)} - 6\mu^{j} \mu^{k} \mu^{l} \mu^{m}.$$
(6.1.1.66)

In the Gram-Charlier and Fourier-invariant expansions, the Fourier-transform relationship between the p.d.f. and the temperature factor to given order can be made exact. Each cumulant μ^{jkl} contributes to all higher-order quasi-moment terms and *vice versa*. Hence, a given cumulant expansion is to an extent arbitrarily truncated (Kuhs, 1983). Care is required when interpreting the coefficients (Zucker & Schulz, 1982).

On the other hand, the cumulant expansion has the advantage of yielding tractable expressions for the one-particle potential in the quantum regime (Mair, 1980a). In that regime, equation (6.1.1.36) for the one-particle potential is invalid, and the expressions relating $V(\mathbf{u})$ to $\rho(\mathbf{u})$ in the Gram-Charlier and Fourier-invariant expansions are cumbersome (Mair & Wilkins, 1976).

Coefficients obtained by applying least-squares methods to structure-factor equations related to the truncated cumulant expansions do not necessarily yield non-negative p.d.f.'s nor are the linear-term coefficients necessarily faithful representations of the mean. Caution must be exercised in interpreting the results.

All the methods are satisfactory in the case of rapidly converging potential series. The methods are equivalent up to λ^2 in the van Hove order parameter (Mair, 1980b). Difficulties are encountered with convergence of the series in the case of strong anharmonicity, in which case numerical or alternative analytical models may be necessary. If the anharmonicity is such that the difference between the expansions is significant, it may be preferable to evaluate the Fourier transforms directly, as recommended by Mackenzie & Mair (1985).

6.1.1.6.4. Curvilinear density functions

For groups of atoms moving on the surface of a circle or sphere, perturbation expansions in Cartesian coordinates may converge slowly. Methods of representing curvilinear density functions that are multimodal or have large amplitude are described by Press & Hüller (1973).

For atoms constrained to rotate about a single axis,

$$a(\mathbf{u}) = \frac{1}{2\pi\tau} \delta(r - \tau)\delta(z)f(\varphi), \tag{6.1.1.67}$$

where r, z, φ are cylindrical coordinates for the displacement **u**. Setting

$$f(\varphi) = \sum_{m=0}^{\infty} c_m \exp(im\varphi) + c_m^*(-im\varphi)$$
 (6.1.1.68)

and

$$\exp(i\mathbf{S} \cdot \mathbf{r}) = \exp(iS_z z) \exp[iS_r r \cos(\varphi_S - \varphi)] \qquad (6.1.1.69)$$

and using

$$\exp[iS_r r \cos(\varphi_S - \varphi)] = \sum_{l=0} (2 - \delta_{l0}) i^l J_l(S_r r) \cos[l(\varphi_S - \varphi)]$$

$$(6.1.1.70)$$

yields

$$T(\mathbf{S}) = \sum_{l=0}^{\infty} i^l J_l(S_r \tau) [c_l \exp(il\varphi_S) + c_l^* \exp(-il\varphi_S)]. \quad (6.1.1.71)$$

For atoms moving on the surface and a sphere, the density function may be written

$$\rho(\mathbf{u}) = \sum_{l=0}^{\infty} \sum_{i=1}^{2l+1} a_{lj}(u) K_{lj}(\theta, \varphi),$$
 (6.1.1.72)

where u, θ, φ are spherical polar displacement coordinates and the K_{lj} are cubic harmonics. Thus, for a rigid molecule, the density function for nuclei confined to move on a spherical shell of radius τ is

$$a_{li}(\mathbf{u}) = c_{li}\delta(u - \tau)/u^2.$$
 (6.1.1.73)

Expansion of $\exp(i\mathbf{S} \cdot \mathbf{r})$ in cubic harmonics

$$\exp(i\mathbf{S}\cdot\mathbf{r}) = 4\pi \sum_{l,j} i^l j_l(Sr) K_{lj}(\theta_S, \varphi_S) K_{lj}(\theta, \varphi) \qquad (6.1.1.74)$$

leads to

$$T(\mathbf{S}) = 4\pi \sum_{l,i} i^l c_{lj} j_l(S\tau) K_{lj}(\theta_S, \varphi_S). \tag{6.1.1.75}$$

Equations (6.1.1.71) and (6.1.1.75) are useful when the p.d.f.'s (6.1.1.67) and (6.1.1.72) can be approximated by a limited number of significant terms. They are readily adapted to the case of oscillations about axes of symmetry (Press & Hüller, 1973).

6.1.1.6.5. Model-based curvilinear density functions

For rotational oscillations, which are the curvilinear coordinate analogues of the p.d.f.'s approximating harmonic rectilinear motion, techniques for evaluating the temperature factor are described by Johnson & Levy (1974).

The p.d.f. for an atom in a group of atoms undergoing large-amplitude rotational oscillation (libration) can sometimes be approximated satisfactory by a standard p.d.f. on the circle or on the sphere. The closest analogues of the rectilinear Gaussian p.d.f. are the Brownian-diffusion p.d.f.'s defined on the closed spaces of the circle and the sphere. For statistical analysis, two other p.d.f.'s, the von Mises 'circular normal' and the Fisher 'spherical normal', are often substituted for the Brownian-diffusion density functions because of their simpler forms.

The p.d.f. for Brownian diffusion on a circle, also called the 'wrapped normal' p.d.f. (Feller, 1966; Lévy, 1938), is given by

$$\rho(\theta) = \frac{1}{(2\pi)^{1/2}\sigma} \sum_{n=-\infty}^{\infty} \exp[-(\theta - 2n\pi)^2/2\sigma^2], \qquad (6.1.1.76)$$

which may be transformed (Bellman, 1961) into

$$\rho(\theta) = \frac{1}{2\pi} \sum_{m=0}^{\infty} (2 - \delta_{m0}) \exp(-m^2 \sigma^2 / 2) \cos(m\theta).$$
 (6.1.1.77)

The von Mises p.d.f. (Gumbel, Greenwood & Durand, 1953; Mardin, 1972; von Mises, 1918) is

$$\rho(\theta) = \frac{\exp(k_c \cos \theta)}{2\pi I_o(k_c)} = \frac{1}{2\pi} \sum_{m=0}^{\infty} (2 - \delta_{m0}) \frac{I_m(k_c)}{I_0(k_c)} \cos(m\theta).$$
(6.1.1.78)

 $I_m(x)$ is the *m*th-order Bessel function of the first kind with imaginary argument. The parameter σ^2 is the variance; k_c is a measure of concentration such that when k_c is zero the probability density is uniformly distributed over the circle, and when k_c is large the density is concentrated around the modal vector at $\theta=0$. An approximate relation between σ^2 and k_c can be obtained by equating expressions for the centres of mass of the circular Brownian diffusion and von Mises p.d.f.'s (Stephens, 1963),

$$\exp(-\sigma^2/2) = \frac{I_1(k_c)}{I_0(k_c)}.$$
 (6.1.1.79)

For small σ^2 (large k_c), we find that

$$\sigma^2 \simeq 1/k_c.$$
 (6.1.1.80)

Equations (6.1.1.76) to (6.1.1.78) can be generalized to describe multimodal density functions with modes (maxima) arranged symmetrically about the circle. The p.d.f. for the s-modal Brownian-diffusion p.d.f. with one of the s modes at $\theta = \theta_0$ is

$$\rho(\theta) = \frac{1}{\sqrt{2\pi}s\sigma} \sum_{m=-\infty}^{\infty} \exp[-(\theta - \theta_0 - 2\pi m/s)^2/2\sigma^2]$$

$$= \frac{1}{2\pi} \sum_{m=0}^{\infty} (2 - \delta_{m0}) \exp[-(ms\sigma)^2/2] \cos[ms(\theta - \theta_0)].$$
(6.1.1.81)

The two-dimensional Fourier transform (Chidambaram & Brown, 1973) of the last equation in terms of the polar coordinates (S, θ) of the reciprocal-space vector **S** relative to an origin at the centre of the circle is

$$T(\mathbf{S}) = \sum_{i=0}^{\infty} (2 - \delta_{j0}) i^{js} J_{js}(Sr) \exp[-(js\sigma)^2/2] \cos js\theta_0, \quad (6.1.1.82)$$

where $J_n(x)$ is the Bessel function of the first kind of order n with real argument. Corresponding equations for the von Mises s-modal density function (Atoji, Watanabe & Lipscomb, 1953; King & Lipscomb, 1950; Mardin, 1972) are

$$\rho(\theta) = \frac{1}{2\pi I_o(K_c)} \exp[K_c \cos s(\theta - \theta_0)]$$

$$= \frac{1}{2\pi} \sum_{m=0}^{\infty} (2 - \delta_{m0}) \frac{I_m(K_c)}{I_o(K_c)} \cos ms(\theta - \theta_0)$$
 (6.1.1.83)

and

$$T(\mathbf{S}) = \sum_{i=0}^{\infty} (2 - \delta_{j0}) i^{js} J_{js}(Sr) \frac{I_j(K_c)}{I_0(K_c)} \cos js\theta_0, \qquad (6.1.1.84)$$

where K_c , a measure of concentration over 1/sth of the circle about θ_0 , is substituted for the k_c parameter of the unimodal von Mises density function and K_c is related to k_c approximately by

$$I_1(k_c)/I_0(k_c) = I_s(K_c)/I_0(K_c).$$
 (6.1.1.85)

For symmetrical Brownian diffusion on a sphere (Furry, 1957; Lévy, 1938; Mardin, 1972; Perrin, 1928), the p.d.f. in terms of the angular displacement θ from the pole is

$$\rho(\theta) = \sum_{n=0}^{\infty} \frac{2n+1}{4\pi} \exp[-n(n+1)V] P_n(\cos \theta) \sin \theta, \quad (6.1.1.86)$$

where $P_n(x)$ is the *n*th-order Legendre polynomial. The Fisher (1953) 'spherical normal' p.d.f. (Mardin, 1972) is a similar density function given by

$$\rho(\theta) = \frac{k_s}{4\pi \sinh k_s} \exp(k_s \cos \theta) \sin \theta$$

$$= \sum_{n=0}^{\infty} \frac{(2n+1)}{4\pi} \frac{I_{n+1/2}(k_s)}{I_{1/2}(k_s)} P_n(\cos \theta) \sin \theta.$$
 (6.1.1.87)

The parameters V (variance) and k_s are measures of concentration analogous to those for the circle and may be related (Roberts & Ursell, 1960) by an equation analogous to (6.1.1.79),

$$\exp(-V/2) = \coth k_s - \frac{1}{k_s} = \frac{I_{3/2}(k_s)}{I_{1/2}(k_s)},$$
 (6.1.1.88)

the small V approximation being

$$V \simeq 2/k_c$$
. (6.1.1.89)

Equations (6.1.1.86) and (6.1.1.87) are generalized to place the mode of the density at (r, θ', φ') by replacing $\cos \theta$ by $\cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\varphi - \varphi')$ and by replacing $P_n(\cos \theta)$ by

$$P(\cos\theta)P_n(\cos\theta') + 2\sum_{m=1}^n \frac{(n-m)!}{(n-m)!} \times P_n^m(\cos\theta)P_n^m(\cos\theta')\cos m(\varphi - \varphi').$$

The three-dimensional Fourier transform of the generalized form of (6.1.1.86) in terms of **S** in spherical coordinates (S, θ_S, φ_S) is

$$T(\mathbf{S}) = \sum_{q=0}^{\infty} i^{q} \frac{(2q+1)}{r^{2}} \exp[-q(q+1)V]$$

$$\times \sum_{s=0}^{\infty} \frac{4}{2p+1} Y_{qs+}(\theta', \varphi') Y_{qs+}(\theta_{S}, \varphi_{S}) j_{q}(Sr), \quad (6.1.1.90)$$

where r is the radius of the sphere, and j_n is the nth-order spherical Bessel function of the first kind. The real spherical harmonics Y_{lmp} are normalized as in (6.1.1.22).

The Fourier transform of the generalized form of (6.1.1.87) is identical to (6.1.1.90) except that the term $\exp[-q(q+1)V]$ in (6.1.1.90) is replaced by $I_{\alpha+1/2}(k_s)/I_{1/2}(k_s)$.

(6.1.1.90) is replaced by $I_{q+1/2}(k_s)/I_{1/2}(k_s)$. The foregoing equations describe isotropic distributions on a sphere. The p.d.f. for general anisotropic Brownian diffusion (or rotation) on a sphere is not available in a convenient form. However, some of the results of Perrin (1934) and Favro (1960) on rotational Brownian motion are applicable to thermal motion. For example, the centre of mass of a p.d.f. resulting from anisotropic diffusion on a sphere is given by equation (6.8) of Favro (1960). The following equation valid in Cartesian coordinates is obtained if the diffusion tensor $\bf D$ of Favro's equation is replaced by the substitution $\bf L=2D$

$$\langle \mathbf{x} \rangle = \exp[-\frac{1}{2}(\text{tr}(\mathbf{L})\mathbf{I} - \mathbf{L})]\mathbf{r}$$

= $\mathbf{r} - \frac{1}{2}[\text{tr}(\mathbf{L})\mathbf{I} - \mathbf{L}]\mathbf{r} + \frac{1}{8}[\text{tr}(\mathbf{L})\mathbf{I} - \mathbf{L}]^2\mathbf{r} - \dots, \quad (6.1.1.91)$

where \mathbf{r} is the vector from the centre of the sphere to the mode of the p.d.f. on the sphere and $\langle \mathbf{x} \rangle$ is the vector to the centre of mass. This equation, which is valid for all amplitudes of libration \mathbf{L} , can be used to describe the apparent shrinkage effect in molecules undergoing librational motion.

6.1.1.6.6. The quasi-Gaussian approximation for curvilinear motion

The p.d.f.'s defined by (6.1.1.77), (6.1.1.78), (6.1.1.86) and (6.1.1.87), and their Fourier transforms given in §6.1.1.6.5 may be considered 'inverted series' since zero-order terms describe uniform distributions. The inverted series converge slowly if the density is concentrated near the mode. If σ^2 in (6.1.1.76) is sufficiently small, the cyclic overlap on the circle becomes unimportant and the summation for $n \neq 0$ can be neglected. In this limiting case, the p.d.f. assumes the same form as a one-dimensional rectilinear Gaussian density function except that the variable is the angle φ . A similar relation must exist between the p.d.f. on the sphere and the two-dimensional Gaussian function. This 'quasi-Gaussian' approximation is the basis for a number of structure-factor equations for atoms with relatively small

amplitude components of curvilinear motion (Dawson, 1970; Kay & Behrendt, 1963; Kendall & Stuart, 1963; Maslen, 1968; Pawley & Willis, 1970).

6.1.1.7. Structure factor

The amplitude of coherent scattering from the contents of one unit cell in a crystalline material is the structure factor

$$F(\mathbf{S}) = \int \rho(\mathbf{r}) \exp(i\mathbf{S} \cdot \mathbf{r}) \, d\mathbf{r}, \qquad (6.1.1.92)$$

where the integration extends over the unit cell. If there are N atoms in the cell, this may be expressed as

$$F(\mathbf{S}) = \sum_{j=1}^{N} f_j T_j \exp(i\mathbf{S} \cdot \mathbf{r}_j), \qquad (6.1.1.93)$$

where \mathbf{r}_j is the mean position and T_j is the temperature factor of the *j*th atom. In an ideal model of the scattering process in which (6.1.1.93) is exact, f_j is the atomic scattering factor derived from (6.1.1.7). In practice, there are wavelength-dependent changes to the amplitude and phase of the atom's scattering due to dispersion or resonance. To correct for this, each scattering factor may be written

$$f = f^0 + f' + if'', (6.1.1.94)$$

where f^0 is the kinematic scattering factor and f' and f'' are real and imaginary corrections for dispersion.

6.1.1.8. Reflecting power of a crystal

The reflecting power of a small crystal of volume ΔV , rotated at angular velocity ω through a Bragg reflection, defined as the ratio of ω times the reflected energy to the incident-beam intensity, is

$$r_e^2 \left(\frac{1 + \cos^2 2\theta}{2\sin 2\theta}\right) \lambda^3 \frac{F(\mathbf{S})^2}{V_C^2} \Delta V, \tag{6.1.1.95}$$

where V_c is the unit-cell volume. This expression, which assumes negligible absorption, shows that the integrated intensity is proportional to the crystal volume. The maximum intensity is proportional to $(\Delta V)^2$, but the angular width of the reflecting region varies inversely as ΔV .

In the kinematic theory of diffraction, it is assumed that the crystal is comprised of small domains of perfect crystals for which the intensities are additive. In that case, (6.1.1.95) applies also to finite crystals.

6.1.2. Magnetic scattering of neutrons (By P. J. Brown)

6.1.2.1. Glossary of symbols

 m_n Neutron mass

 m_e Electron mass

 γ Neutron magnetic moment in nuclear magnetons (-1.91)

 μ_B Bohr magneton

 μ_N Nuclear magneton

 r_e Classical electron radius $\mu_B e^2/4\pi m_e$

P_i Electron momentum operator

 S_e Electron spin operator

 S_n Neutron spin operator

 $\mathbf{M}(r)$ Magnetization density operator

k Scattering vector $(H/2\pi)$

k A unit vector parallel to k

 \mathbf{r}_n A lattice vector

g A reciprocal-lattice vector $(h/2\pi)$

Propagation vector for a magnetic structure