ÁRBOLES

Árbol Libre o Árbol No Orientado es un grafo conexo y acíclico

Bosque es un conjunto de árboles:

<u>Definició</u>n: un subgrafo **S** de G que goce de una propiedad P se llama **Minimal** respecto de **P** si ningún subgrafo estrictamente menor que S (es decir con menos vértices y/o aristas) goza de la propiedad P.

Ejemplo: Supongamos que P es la propiedad "tener un solo ciclo" y consideremos el siguiente grafo:

Ambos subgrafos verifican la propiedad P pero, S2 es minimal

<u>Definició</u>n: un subgrafo **S** de G que goce de una propiedad P se llama **Maximal** respecto de **P** si ningún subgrafo estrictamente mayor que S (es decir con más vértices y/o aristas) goza de la propiedad P.

Definición: Un subgrafo S de G se denomina COBERTOR si contiene a TODOS los vértices de G

<u>Definición</u>: Si $G = (V, A, \varphi)$ es un grafo conexo, se llama número cíclico de G al número natural:

$$\gamma(G) = |A| - |V| + 1$$
, donde $|A|$ es el número de aristas de G y $|V|$ es el número vértices de G

: Si $G = (V, A, \varphi)$ es un grafo con k componentes conexas será: $\gamma(G) = |A| - |V| + k$

Si $\gamma(G) = 0 \rightarrow G$ es acíclico

Si $\gamma(G) = 1 \rightarrow G$ tiene un solo ciclo

Si $\gamma(G) \ge 2 \to G$ tiene más de un ciclo

Teorema: Si $G = (V, A, \varphi)$, con |V| = n, es un grafo conexo, el número de aristas que deben suprimirse para obtener un árbol maximal **T** es el número cíclico:

Fuente: GRAFOS - Prof. Norma Enia de Campias - Publicación Didáctica

<u>Demostración</u>: Por ser T cobertor, tiene todos los vértices de G, luego |V| = n y por ser árbol (grafo conexo y Acíclico), el número de aristas será: |A| = |V| - 1 (porque:0 = |A| - |V| + 1)

El número de aristas que hay que suprimir para obtener T será la diferencia entre el número de aristas de G y el número de aristas de T, es decir:

$$|A| - (|V| - 1) = |A| - |V| + 1 = \gamma(G)$$

Ejemplo:

$$|A| = 6; |V| = 5 \rightarrow \gamma(G) = 6 - 5 + 1 = 2$$

- Todo vértice distinto de v₁ es extremo terminal de un solo arco
- G no tiene circuitos
- La raíz v₁ no es extremo terminal de ningún arco.

Una vez determinada la raíz (v_1) ningún arco podrá llegar a v_1 $(v_1$ está ubicado en el **Nivel Cero**), pero sí podrán salir arcos de ella.

Los vértices donde terminan los arcos que salen de v₁ se denominan vértices de **Nivel Uno**.

Ningún vértice del Nivel 1 podrá tener otros arcos que lleguen a él, pero sí pueden tener arcos que salgan de cada uno de ellos.

Los arcos que salen de un vértice del nivel 1 terminan en vértices que pertenecen al Nivel Dos.

Los vértices de los cuales no salen otros arcos reciben el nombre: Hojas o Vértices Pendientes del árbol.

Árboles con raíz ordenados: Son los árboles en los cuales las aristas están ordenadas.

Sea T un árbol ordenado, \mathbf{a} y \mathbf{a} dos aristas que parten de un vértice \mathbf{v}_1 y van a los vértices \mathbf{v}_2 y \mathbf{v}_3 ; si \mathbf{a} precede a \mathbf{a} en el orden de T dibujamos la arista \mathbf{a} a la izquierda de la arista \mathbf{a} y, por lo tanto, se establece el mismo orden con los vértices: \mathbf{v}_2 precede a \mathbf{v}_3 .

Los árboles que cumplen dichas características se emplean, por ejemplo, para representar operaciones aritméticas.

Ejemplos: 1) $\frac{x+y}{(x.z)+w}$

Fuente: GRAFOS - Prof. Norma Enia de Campias - Publicación Didáctica

 $3x^2 + 5y$

Empleamos los siguientes símbolos para las operaciones:

- ♣ potencia: ↑
- multiplicación: *
- división: /
- 🔸 suma: +
- 🖶 raíz: √