## **CORSO DI:**

### **ELABORAZIONE DI SEGNALI BIOMEDICI**

(LUCIDI DELLE LEZIONI IV)

PROF. SERGIO CERUTTI

Dipartimento di Bioingegneria

Politecnico di Milano

**OTTOBRE 2004** 

### **ECG IN ALTA RISOLUZIONE**

- alta amplificazione: G=10<sup>3</sup>÷10<sup>6</sup>
- risposta in frequenza fino a 500÷1000 Hz

### **Applicazioni**

- Potenziali Ventricolari Tardivi (Ventricular Late Potentials)
- ECG His con tecniche non invasive
- Potenziali tardivi di origine non ventricolare
- Derivazioni transesofagee

### POTENZIALI VENTRICOLARI TARDIVI

### "Ventricular Late Potentials"



# Miglioramento del rapporto segnale/rumore:

## (media sincronizzata)



Singolo battito cardiaco in alta amplificazione (derivazione X)



Scgnale ottenuto mediando 150 battiti cardiaci in alta amplificazione (derivazione X)

### Miglioramento del rapporto segnale/rumore:

### (media sincronizzata)



Tratto isoelettrico del segnale riporato nella figura 4.2 (sinyolo battito cardiaco)



1 Tratto isoelettrico del segnale riportato nella fig. a 4.3 (media sincronizzata su 150 battiti)

### Miglioramento del rapporto segnale/rumore:

### (filtraggio passa-banda)



4.25: Cratteristica in frequenza del modulo di un filtro FIR passa-banda progettato con finestra di Lanczos



4.26: Caratteristica in frequenza del modulo di un filtro FIR passa-banda progettato con finestra di Weber-Cappellini

## TECNICHE NEL DOMINIO DEL TEMPO

### Parametri di Simson

durata del complesso QRS [msec]





- RMS-40 [mV]: il valore quadratico medio del potenziale durante gli ultimi 40 ms del QRS filtrato (N:↑ - P:↓).





McV-40 [msec] :l'intervallo di tempo che intercorre tra la fine del ORS e l'ultimo punto in cui il segnale è sotto i 40 μV (N: ↓ - P: ↑).

Il paziente è considerato positivo al test dei potenziali

Il paziente è considerato positivo al test dei potenziali ventricolari tardivi se almeno due dei tre tests basati sui parametri di Simson risultano positivi

# Calcolo dei parametri dal modulogramma M(t)

## 1. Durata del complesso QRS

## Normale



### Presenza di PVT



### 2. RMS-40

RMS – 40 = 
$$\sqrt{\sum_{t=1}^{N} [M(t) - B(t)]^2}$$
 B(t)= liv. medio rumore



Zona di calcolo dell'RMS-40 in assenza di PVT



4.61: Zona di calcolo dell'RMS-40 in presenza di PVT

### Polinomi di Chebyshev e calcolo del residuo

$$T_0(t) = 1$$

$$T_1(t) = t$$

$$T_2(t) = 2t^2 - 1$$

$$T_3(t) = 4t^3 - 3t$$

.....

$$T_{n+1}(t) = 2t \cdot T_n(t) - T_{n-1}(t)$$
 ,  $n \ge 1$ 

Tali polinomi sono rappresentati in figura da  $T_0(t)$  a  $T_6(t)$ 



$$f_{Chebyshev}(t) = \sum_{k=1}^{M} C_k T_{k-1}(t) - \frac{1}{2} C_1$$
 ,con  $C_k$  coeff. di Chebyshev e

M ordine della funz. di Chebyshev.

$$Residuo(t) = ECG(t) - f_{Chebyshev}(t)$$

## Paziente con infarto miocardico



fig. 5.12 - Confronto tra segnale reale (acquisizione) e sua interpolazione mediante polinomi di Chebishev.



# Calcolo parametri dopo interpolazione con polinomi di Chebyshev

AREA = 
$$\sqrt{\sum_{t=1}^{M} [\text{Residuo}(t)]^2}$$
 [mV]

DELTA = finestra temporale in msec. in cui <math>|Residuo(t)| > soglia



4.62 : DELTA ed AREA in assenza di PVT



4.63 : DELTA ed AREA in presenza di PVT

# Paziente infartuato – Analisi spettrale tempo-variante







# Ripolarizzazione ventricolare Importanza della misura QT



FIGURA 2.16: Dispersione del potenziale d'azione.

A sinistra è mostrata la dispersione normale per un battito normale ed un intervallo QT normale; a destra si ha la dispersione aumentata associata ad un QT prolungato.

(Tratta da E. Neil Moore, "Mechanisms and Models to Predict a Q $T_c$  Effect", Am J Card 1993, Vol. 72, pag. 5B)

## Metodi di misura della durata della ripolarizzazione



## Artefatti del segnale ECG

Segnale ECG



### Effetto del rumore distribuito sulla misura RT



## Effetto dell'oscillazione della linea di base sulla misura



### Effetto delle modulazioni sulla misura RT



## Segnali di variabilità RR e RT



### Relazione RT-RR: convenzioni



Formula di Bazett

$$QT_C = \frac{QT(i)}{\sqrt{RR(i)}}$$

### **SVANTAGGI**

• Relazione statica (non tiene conto della natura del sistema

### VANTAGGI

• E' semplice da applicare (molto usata in clinica)

## Modello dinamico della relazione RT-RR (classe ARXAR)



$$rt(i) = A_{11} \cdot rr(t) + A_{12} \cdot rr(i) + w_{rr}(i)$$

$$rr(i) = A_{22} \cdot rr(t) + w_{rr}(i)$$

## Decomposizione spettrale

## Spettro RT



Spettro RT parziale dipendente da RR



Spettro RT parziale indipendente da RR



Spettro RT totale

## Stima della funzione di trasferimento H<sub>rt-rr</sub>

$$H_{rt-rr} \neq \frac{A_{12}}{1 - A_{11}}$$



Funzione di trasferimento RT-RR

> Coerenza RT-RR

## **VALUTAZIONE DIAGNOSTICA**

### Metodi di valutazione diagnostica:

- Deterministici
- Pobabilistici
- Fuzzy-sets
- Sistemi esperti
- Reti neurali

Cond.

Decis.

|                                              | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|----------------------------------------------|---|---|---|---|---|---|---|---|---|
| O AMP > 25" . R AMP<br>IN TWO OF LZ, LJ, AVF | Ý | Y | Υ |   | Γ | Γ | Γ | Γ | Γ |
| O DUA > 0 0 1 SEC<br>IN TWO OF L2 L3, AVF    |   |   |   |   |   | Γ |   |   |   |
| ST AMF > 0 10 MV<br>IN TWO OF LT. LS. AVF    | Y | N | N |   |   | Γ |   |   |   |
| TAMP < + 0.10 MV<br>IN TWO OF LZ, LJ, AVF    |   | Υ | N |   |   |   |   |   |   |
| AGUTE INFERIOR<br>INFARCTION                 | × |   |   |   | Г |   |   |   |   |
| RECENT INFERIOR<br>INFARCTION                |   | x |   |   |   |   |   |   |   |
| ÖLÖ INFERIOR<br>INFARÇTION                   |   |   | x |   |   |   |   |   |   |
|                                              |   |   |   |   |   |   |   |   | - |

Metodo deterministico (tabella della verità)

FIG. 9. Conditions and rules for diagnosing inferior infarction.

Metodo probabilistico (distribuzioni)



FIG. 10. Diagram to illustrate frequency distribution curve for the Q duration in lead aVF; N represents normal subjects and MI represents subjects with inferior myocardial infarction.

### **Teorema di Bayes**

N Diagnosi 
$$\{ D_1, D_2, D_3, ..., D_i, ..., D_N \}$$

M Sintomi 
$$\{ S_1, S_2, S_3, ..., S_k, ..., S_M \}$$

$$P(D_i) \rightarrow \text{probabilità assoluta}$$
 Dati  $P(S/D_i) \rightarrow \text{probabilità condizionale}$ 

$$P(D_i/S) = \frac{P(D_i) \cdot P(S \mid D_i)}{\sum_{j=1}^{N} P(S/D_j)P(D_j)}$$

Fattore normalizzante C

$$P(D_i/S) = C_I \cdot P(D_i) \cdot P(S/D_i)$$

dove 
$$C_I = \frac{1}{C}$$

### Parametri ricavati dalla tabella della verità

#### Stato del paziente

Risultato dell'indagine

Pos. Neg.

| Pos. | Neg. |  |  |  |  |
|------|------|--|--|--|--|
| TP   | FP   |  |  |  |  |
| FN   | TN   |  |  |  |  |

n=TP+TN+FP+FN

Sensitivity (TP ratio)

SE = P(T+|D+)=
$$\frac{TP}{TP+FN}$$
  
SP = P(T-|D-)= $\frac{TN}{TN+FP}$ 

Specificity (TN ratio)

$$SP = P(T-|D-) = \frac{TN}{TN + FP}$$

Accuracy of positive test 
$$AP = P(D+|T+) = \frac{TP}{TP + FP}$$

Accuracy of negative test

$$AN = P(D-|T-) = \frac{TN}{TN + FN}$$

Diagnostic accuracy

$$AP = \frac{TP + TN}{n}$$

Error ratio

$$\mathsf{ER} = \frac{\mathit{FP} + \mathit{FN}}{\mathit{TP}}$$

Association index

$$AI = SE + SP - 1$$

Mean performance index

$$MP = \frac{SE + SP}{2}$$

FP ratio

$$FPR = 1 - SP = \frac{FP}{FP + TN}$$

FN ratio

$$FNR = 1 - SE = \frac{FN}{FN + TP}$$

Likelihood ratio

$$L = \frac{SE}{FPR}$$

### SVILUPPI FUTURI

Difficoltà nel valutare le prestazioni dei programmi (dov'è e qual è il golden standard?)

Accordo tra medico e computer 70 ÷ 95% (disaccordo 50% FP e 50% FN)

- Maggiore accordo: normali, difetti di conduzione ventricolare, M.I., ipertrofia ventricolare
- Maggiore disaccordo: aritmie, anomalie P e ST-T Futuro:
- approccio molto orientato (es. nuovo concetto di elettrocardiografo come sistema di acquisizione ed elab.)
- simbiosi tra medico e computer
   Medico: riconoscimento P, analisi aritm., correlaz. Cliniche
   Computer: estrazione dati, pre-elaborazione, calcolo probab., gestione informazioni, confronti