第三章

插值与逼近

- 用简单函数P(x)近似代替函数f(x)是数值计算中的基本概念和方法之一. 近似代替又叫逼近, f(x)叫做被逼近函数, P(x)叫做逼近函数, f(x)-P(x)叫做逼近的误差或余项.
- 逼近函数P(x)的类别选取:多项式;分段多项式,有理式, 三角多项式等这类便于数值计算的函数类(P(x)选择的 函数类不同,逼近的效果也不同.根据实际问题选取恰当 的函数类).
- 逼近程度的度量方式:插值,一致逼近,平方逼近(要求必须提得合理否则无解或许多解),
- 如何构造逼近函数*P*(*x*).
- 逼近的效果.

插值的概念

- 插值是由离散数据来构造一个函数的近似函数的重要方法,插值要求近似函数与被近似函数
 在一些点处取相同的函数值,甚至导数值.
- 已知函数y=f(x)在[a,b]中n+1个互异点 $x_0,x_1,...,x_n$ 上的函数值分别为 $f(x_0),f(x_1),...,f(x_n)$,构造一个简单的函数P(x),满足条件

$$P(x_i) = f(x_i)$$
 (i=0,1,...n) (*)

称这类问题为插值问题,称P(x)为函数f(x)的插值函数,f(x)为被插值函数,点 $x_0, x_1, ..., x_n$ 为插值节点,称(*)为插值条件.

§ 3.1 多项式插值

Lagrange插值公式

■ Lagrange插值问题 已知函数y=f(x)在[a, b]中n+1个互异点 x_0 , $x_1, ..., x_n$ 上的函数值分别为 $f(x_0)$, $f(x_1)$, ..., $f(x_n)$, 记 M_n 为次数≤n的多项式集合,构造一个 $L_n(x)$ ∈ M_n , 满足条件 $L_n(x_i)=f(x_i)$ (i=0,1,...n) (3.1.1)

■ 定理**3.1** 满足插值条件(3.1.1)的多项式 $L_n(x) \in M_n$ 是存在且唯一的.

■ 证 首先构造n次多项式l_i(x) (i=0,1,...n), 满足

$$l_i(x_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

设 $l_i(x) = A(x-x_0)(x-x_1)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)$ 由插值条件 $l_i(x_i) = 1$ 得

$$A = \frac{1}{(x_i - x_0)(x_i - x_1)\cdots(x_i - x_{i-1})(x_i - x_{i+1})\cdots(x_i - x_n)}$$

易知

$$L_n(x) = \sum_{i=0}^n f(x_i)l_i(x) = \sum_{i=0}^n f(x_i) \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$
(3.1.2)

若还有一个次数 $\leq n$ 的多项式 $P_n(x)$ 满足插值条件(3.1.1),则 $r(x)=L_n(x)-P_n(x)$ 是次数 $\leq n$ 的多项式,且 $r(x_i)=0$,($i=0,1,\ldots n$), r(x)有n+1个零点,故必有 $r(x)\equiv 0$,从而 $L_n(x)=P_n(x)$, Lagrange插值问题的解存在且唯一. $\Re l_i(x)$ ($i=1,2,\ldots n$)为Lagrange插值基函数. $\Re (3.1.2)$ 为 Lagrange插值多项式.

• $i \Box p_{n+1}(x) = (x-x_0)(x-x_1) \dots (x-x_n)$

$$L_n(x) = \sum_{i=0}^n \frac{p_{n+1}(x)}{(x - x_i)p'_{n+1}(x_i)} f(x_i)$$

■ 线性插值 (一次插值)

已知函数y=f(x)在两点 x_0 , x_1 上的函数值分别为 $f(x_0)$, $f(x_1)$, 构造一个一次式 $L_1(x)$, 满足条件:

$$L_1(x_0) = f(x_0), L_1(x_1) = f(x_1).$$

一次Lagrange插值多项式为

$$L_1(x) = f(x_0)l_0(x) + f(x_1)l_1(x)$$

其中

$$l_0(x) = \frac{(x - x_1)}{(x_0 - x_1)} \qquad l_1(x) = \frac{(x - x_0)}{(x_1 - x_0)}$$

■ 抛物插值(二次插值)已知函数y=f(x)在三个互异点 x_0, x_1, x_2 上的函数值分别为 $f(x_0), f(x_1), f(x_2)$,构造一个 二次式 $L_2(x)$,满足条件:

$$L_2(x_0) = f(x_0), L_2(x_1) = f(x_1), L_2(x_2) = f(x_2)$$

二次Lagrange插值多项式为

$$L_2(x) = f(x_0)l_0(x) + f(x_1)l_1(x) + f(x_2)l_2(x)$$

其中

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

• Lagrange插值多项式的余项 定理**3.2** 设 $L_n(x)$ 是满足插值条件(3.1.1)的n次 Lagrange插值多项式,若 $f(x) \in C^n[a,b]$,f(x)在 (a,b)内存在n+1阶导数,其中[a,b]是包含点 x_0 , $x_1, ..., x_n$ 的一区间,则对任意给定的 $x \in [a,b]$, 总存在一点 $\xi \in (a,b)$ (依赖于x)使

$$E(x) = f(x) - L_n(x)$$

$$= \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$$

• 证 当x为插值节点 $x_0, x_1, ..., x_n$ 中任一点时,结论显然成立.下面设x异于 $x_0, x_1, ..., x_n$,由于 $E(x)=f(x)-L_n(x)$ 满足 $E(x_i)=0$,故可设 $E(x)=K(x)(x-x_0)(x-x_1)...(x-x_n)$,其中K(x)为待定函数.

固定x,作辅助函数

$$G(t)=f(t)-L_n(t)-K(x)(t-x_0)(t-x_1)...(t-x_n)$$

显然 $G(t)$ 在 $[a,b]$ 上有 $n+2$ 个零点 $x,x_0,x_1,...,x_n$;
利用Rolle定理,知 $G'(t)$ 在 (a,b) 内至少有 $n+1$ 零点;
反复利用Rolle定理: $G''(t)$ 在 (a,b) 内至少有 n 零点;

.

 $G^{(n+1)}(t)$ 在(a,b)内至少有1零点;即存在一点 $\xi \in (a,b)$,使 $G^{(n+1)}(\xi) = 0$. 由于 $G^{(n+1)}(t) = f^{(n+1)}(t) - (n+1)! K(x)$,从而 $K(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}$

所以

$$E(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$$

$$|R(x)| = |f(x) - L_n(x)| \le \frac{|p_{n+1}(x)|}{(n+1)!} \max_{x \in [a,b]} |f^{(n+1)}(x)|$$

• 线性插值多项式的余项

$$E(x) = f(x) - L_1(x) = \frac{f''(\xi)}{2!} (x - x_0)(x - x_1)$$

$$|E(x)| = |f(x) - L_1(x)| \le \frac{(x_1 - x_0)^2}{8} \max_{a \le x \le b} |f''(x)|$$

■ 抛物插值多项式的余项

$$E(x) = f(x) - L_1(x) = \frac{f^{(3)}(\xi)}{3!} (x - x_0)(x - x_1)(x - x_2)$$

Lagrange插值公式为

$$f(x) = \sum_{i=0}^{n} f(x_i) l_i(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0) (x - x_1) \cdots (x - x_n)$$

例 设 $f(x)=\ln x$, 给出如下函数表, 试估计 $\ln 0.6$ 的值。

X	0.4	0.5	0.7	0.8
f(X)	-0. 916291	-0. 693147	-0. 356675	-0. 223144

解 取 $x_0 = 0.4, x_1 = 0.5, x_2 = 0.7, x_3 = 0.8$

可算出
$$l_0(0.6) = -\frac{1}{6}$$
, $l_1(0.6) = \frac{2}{3}$, $l_2(0.6) = \frac{2}{3}$, $l_3(0.6) = \frac{1}{6}$

因此, $\ln(0.6) \approx \sum_{j=0}^{3} f(x_j) l_j(0.6) \approx -0.509975$

真值ln0.6=-0.510826, 由余项表达式得到

$$E(0.6) = \frac{1}{4!} \cdot \frac{-6}{\zeta^4} \cdot p_4(0.6) = -0.0001 \cdot \frac{1}{\zeta^4}$$

在区间 (0.4, 0.8) 上, $10^4/4096 < \frac{1}{\zeta^4} < 10^4/256$

因此,
$$-\frac{1}{256} < E(0.6) < -\frac{1}{4096}$$

可见近似值与真实值的差在这个误差之内。

Newton插值公式

■ Newton插值问题

已知函数y=f(x)在[a, b]中n+1个互异点 x_0 , x_1 , ..., x_n 上的函数值分别为 $f(x_0)$, $f(x_1)$, ..., $f(x_n)$, 构造一个多项式 $N_n(x) \in M_n$, 满足条件

$$N_n(x_i) = f(x_i)$$
 $(i=0,1,...n)$

■ 差商的定义

规定 $f(x_i)$ 为f(x)在点 x_i 处的零阶差商.

$$f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_i - x_i}$$

称为函数f(x)在点 x_i , x_i 处的一阶差商;

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_k] - f[x_i, x_j]}{x_k - x_j}$$

称为函数f(x)在点 x_i , x_j , x_k 处的二阶差商; 一般地,

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_0, x_1, \dots, x_{k-2}, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_{k-1}}$$

称为函数f(x)在点 $x_0, x_2, ..., x_k$ 处的k阶差商.

■ 差商表

X_i	$f(x_i)$	一阶差商	二阶差商	 n阶差商
x_0	$f(x_0)$			
x_1	$f(x_1)$	$f[x_0,x_1]$		
x_2	$f(x_2)$	$f[x_0,x_2]$	$f[x_0,x_1,x_2]$	
x_3	$f(x_3)$	$f[x_0,x_3]$	$f[x_0,x_1,x_3]$	
X_n	$f(x_n)$	$f[x_0,x_n]$	$f[x_0,x_1,x_n]$	$f[x_0,x_1,x_2,\ldots,x_n]$

■ 差商的性质

1. 差商关于所含节点是对称的,即与节点位置无关, $\mathbb{P}[f[x_0, x_1, \dots, x_n] = \sum_{f^{(n)}(\xi)^{i=0}}^{\infty} \frac{f(x_i)}{p'_{n+1}(x_i)}.$ $2. f[x_0, x_1, \dots, x_n] = \frac{f^{(n)}(\xi)^{i=0}}{\sum_{j=0}^{\infty} \frac{f(x_i)}{p'_{n+1}(x_i)}}.$

$$2. f[x_0, x_1, ..., x_n] = \frac{f^{(n)}(\xi)}{n!} , \quad \xi \in (a, b)$$

3. n次多项式P(x)的k阶差商

$$P[x_0,x_1,...,x_{k-1},x_1]$$

当k≤n时为一个n-k次多项式; 当 k > n时恒为零.

由均差的定义

$$f(x)=f(x_0)+f[x_0,x](x-x_0)$$

$$f[x_0,x]=f[x_0,x_1]+f[x_0,x_1,x](x-x_1)$$

$$f[x_0,x_1,x]=f[x_0,x_1,x_2]+f[x_0,x_1,x_2,x](x-x_2)$$

• • • • • •

 $f[x_0,x_1,...,x_{n-1},x]=f[x_0,x_1,...,x_n]+f[x_0,x_1,...,x_n,x](x-x_n)$ 反复将后一式代入前一式得

$$f(x)=f(x_0)+f[x_0,x_1](x-x_0)+f[x_0,x_1,x_2](x-x_0)(x-x_1) + \dots + f[x_0,x_1,\dots,x_n](x-x_0)(x-x_1)\dots(x-x_{n-1}) + f[x_0,x_1,\dots,x_n,x](x-x_0)(x-x_1)\dots(x-x_n)$$

$$i \exists N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$f(x) - N_n(x) = f[x_0, x_1, \dots, x_n, x](x - x_0)(x - x_1) \dots (x - x_n)$$

显然, $N_n(x)$ 为次数 $\leq n$ 的多项式,且满足插值条件

$$N_n(x_i) = f(x_i)$$
 $(i=0,1,...n)$

松 $N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$ $+...+f[x_0,x_1,...,x_n](x-x_0)(x-x_1)...(x-x_{n-1})$ 为Newton插值多项式.

 $E(x)=f(x)-N_n(x)=f[x_0,x_1,...,x_n,x](x-x_0)(x-x_1)...(x-x_n)$ 为Newton插值多项式的余项.

由定理1知:

相同插值节点的Lagrange插值多项式和Newton插值多项式是同一个多项式,故它们的余项相等,即

$$f[x,x_0,x_1,...,x_n](x-x_0)(x-x_1)...(x-x_n)$$

$$= \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n)$$

从而
$$f[x_0,x_1,...,x_n] = \frac{f^{(n)}(\xi)}{n!}$$
 , $\xi \in (a,b)$

比较Lagrange插值多项式和Newton插值多项式首项系数得证差商性质1.

● 一次Newton插值多项式

$$N_1(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

■ 二次Newton插值多项式

$$N_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

- Lagrange插值多项式形式对称,易于编程,但 无继承性。
- Newton插值多项式则具有继承性。

例 已知x=0, 2, 3, 5对应的函数值为y=1, 3, 2, 5, 作三次Newton插值多项式.如再增加x=6时的函数数值为6, 作四次Newton插值多项式.

■解 首先构造差商表

$$x_i$$
 $f(x_i)$ 一阶差商 二阶差商 三阶差商

0 1

2 3 1

3 2 1<u>/3</u> <u>-2/3</u>

5 5 4/5 -1/15

<u>3/10</u>

三次Newton插值多项式为

$$N_3(x) = 1 + x - \frac{2}{3}x(x-2) + \frac{3}{10}x(x-2)(x-3)$$

• 增加 $x_a=6$, $f(x_a)=6$ 作差商表

 x_i $f(x_i)$ 一阶差商 二阶差商 三阶差商 四阶差商

3 2 1<u>/3</u>

<u>-2/3</u>

5 5 4/5

-1/15

3/10

6 6 5/6

-1/24

5/24

-11/120

四次Newton插值多项式为

$$N_4(x) = 1 + x - \frac{2}{3}x(x-2) + \frac{3}{10}x(x-2)(x-3) - \frac{11}{120}x(x-2)(x-3)(x-5)$$

例设 $f(x) \in C^2[a,b]$,且f(a) = f(b) = 0, 求证: $\max_{a \le x \le b} |f(x)| \le \frac{(b-a)^2}{8} \max_{a \le x \le b} |f''(x)|$

■ 证 以a, b为插值基点进行线性插值,其线性插值多项式为 $L_1(x) = \frac{x-b}{a-b} f(a) + \frac{x-a}{b-a} f(b) = 0$ 线性插值余项为

$$f(x) - L_1(x) = \frac{f''(\xi)}{2!}(x-a)(x-b) \quad \xi \in (a,b)$$

由于|(x-a)(x-b)| 在(a+b)/2 处取最大值,故

$$\max_{a \le x \le b} |f(x)| \le \frac{1}{2} \max_{a \le x \le b} |f''(x)| \cdot \max_{a \le x \le b} |(x-a)(x-b)| = \frac{1}{8} (b-a)^2 \max_{a \le x \le b} |f''(x)|$$

- Exp $f(x) = x^7 + x^4 + 3x + 1$,
- $f[2^0, 2^1, \dots, 2^7]$ \mathcal{K} $f[2^0, 2^1, \dots, 2^8]$.
- 解 由差商与导数之间的关系

$$f[x_0, \dots, x_n] = \frac{1}{n!} f^{(n)}(\xi) \quad \mathbb{X} f^{(7)}(x) = 7!, \text{ } \mathbb{\Pi} f^{(8)}(x) = 0$$

$$f[2^{\circ}, 2', \dots, 2^{7}] = \frac{f^{(7)}(\xi)}{7!} = \frac{7!}{7!} = 1$$

$$f[2^{\circ}, 2', \dots, 2^{8}] = \frac{f^{(8)}(\xi)}{8!} = \frac{0}{8!} = 0$$

插值多项式的收敛性和稳定性

- 收敛性
- 设 $y_n(x)$ 为n+1个插值节点的插值多项式,如果 $\forall \varepsilon > 0$,存在正整数N,当n>N时,对所有 $x \in [a,b]$,有

$$|f(x)-y_n(x)|<\varepsilon$$

成立,则称 $y_n(x)$ 一致收敛于f(x).

Runge现象

给定函数

$$f(x) = \frac{1}{1 + 25x^2} \qquad -1 \le x \le 1$$

取等距插值基点

取等距插值基点
$$x_i = -1 + \frac{2}{10}i \quad (i = 0,1,2,\dots,10)$$
 建立10次插值多项式

$$y_{10}(x) = \sum_{i=0}^{10} f(x_i) l_i(x)$$

- (1) 节点的不断加密,构造出的高次插值多项式并不一定能很好地逼近函数f(x),所以,在实际应用中,高次多项式很少被采用。
- (2)如果不是在[-1,1]区间上直接构造插值多项式,而是将区间[-1,1]等分为若干个小区间, 在每一个小区间上分别作低次插值来避免 Runge现象,这就是分段插值的思想.
- (3)既然*L_a(x)* 发生激烈的变化,是否应该考虑修改插值条件. 对插值函数的导数进行限制, 这便是Hermite插值的思想.

插值多项式的敛散性

• 定理(Faber) 设给定了位于区间[a,b]上的插值节点无穷 三角阵

其中 $x_0^{(n)} = a, x_n^{(n)} = b, n = 1, 2,$ 令 $\delta_n = \max_i |x_{i+1}^{(n)} - x_i^{(n)}|$ 假设当 $n \to \infty$ 时, $\delta_n \to 0$,则总存在一个在[a,b]上连续的函数f(x)和[a,b]上的一个点x,当 $n \to \infty$ 时,它的插值多项式序列{ $y_n(x)$ }不收敛于f(x).

稳定性

设f(x)在节点 x_i 的精确值为 $f(x_i)$,计算值为 $f(x_i)$

$$\begin{aligned} \left| f(x_j) - \overline{f}(x_j) \right| &\leq \varepsilon, j = 0, 1, 2, \cdots, n \\ y(x) &= \sum_{j=0}^{n} f(x_j) l_j(x) & \overline{y}(x) &= \sum_{j=0}^{n} \overline{f}(x_j) l_j(x) \\ \eta(x) &= y(x) - \overline{y}(x) &= \sum_{j=0}^{n} [f(x_j) - \overline{f}(x_j)] l_j(x) \end{aligned}$$

(1)线性插值
$$x \in [a,b], a = \min_{0 \le i \le n} x_i, b = \max_{0 \le i \le n} x_i,$$

$$|\eta(x)| \le \sum_{j=0}^{1} |f(x_j) - \overline{f}(x_j)| |l_j(x)| \le \varepsilon \sum_{j=0}^{1} |l_j(x)| = \varepsilon \sum_{j=0}^{1} l_j(x) = \varepsilon$$

$$\max_{x \in [a,b]} |\eta(x)| \le \varepsilon$$

线性插值是数值稳定的.

(2) n(≥2)次插值

$$\left| \eta(x) \right| \le \varepsilon \sum_{j=0}^{n} \left| l_j(x) \right|, \quad x \in [a, b]$$

$$\sum_{j=0}^{n} \left| l_j(x) \right| \ge \left| \sum_{j=0}^{n} l_j(x) \right| = 1,$$

随着n的增大, $\sum_{j=0}^{n} |l_j(x)|$ 也增加, $\max_{x \in [a,b]} |\eta(x)|$ 可能很大, 可见高次插值是数值不稳定的.

分段插值

分段线性插值

设在区间[a, b]上给定n+1个插值节点 $a=x_0<$ $x_1<...<x_n=b$ 上的函数值 $f(x_0), f(x_1),..., f(x_n)$,求作一个插值函数 $\varphi(x)$,具有性质

 $1^{\circ}\varphi(x_{i})=f(x_{i})$ (i=0,1,2,...n); $2^{\circ}\varphi(x)$ 在每个小区间[x_{i},x_{i+1}] (i=0,1,...,n-1) 上 是线性函数.

$$\phi(x) = f(x_i) \frac{x - x_{i+1}}{x_i - x_{i+1}} + f(x_{i+1}) \frac{x - x_i}{x_{i+1} - x_i}, x \in [x_i, x_{i+1}]$$

• 解 设 $f(x)=\cos x$ 是一个以 2π 为周期的函数,只要给出一个周期内的数据即可.

取等距节点 $x_i=ih$, $0 \le i \le 2 \times 180 \times 60$,则任给 $x \in [0,2\pi]$, 一定存在i使得 $x \in [x_i,x_{i+1}]$

以 x_i , x_{i+1} 为插值基点作f(x)的一次插值多项式

$$L_{1}(x) = f(x_{i}) \frac{x - x_{i+1}}{x_{i} - x_{i+1}} + f(x_{i+1}) \frac{x - x_{i}}{x_{i+1} - x_{i}}$$

$$\max_{x \in [x_{i}, x_{i+1}]} |f''(x)| \le 1 \quad \max_{x \in [x_{i}, x_{i+1}]} |(x - x_{i})(x - x_{i+1})| \le \frac{1}{4}h^{2}$$

由于

■因而

$$|f(x) - L_1(x)| \le \frac{1}{2} \max_{x \in [x_i, x_{i+1}]} |f''(x)| \cdot \max_{x \in [x_i, x_{i+1}]} |(x - x_i)(x - x_{i+1})| \le \frac{1}{8} h^2$$

$$= \frac{1}{8} \times \left(\frac{\pi}{180 \times 60}\right)^2 = 0.10576993 \times 10^{-7}$$

§ 3.4 最佳平方逼近

预备知识

- 定义 若 $\rho(x)$ 为有限或无限区间[a,b]上的函数,且满足
- (1) $\rho(x) \ge 0, x \in [a, b];$
- (2) 対k=0,1,2,..., $\int_{a}^{b} \rho(x) x^{k} dx$ 都存在;
- (3)对非负的 $f(x) \in C[a, b]$, 若 $\int_a^b \rho(x) f(x) dx = 0$,

 $有f(x) \equiv 0$

则称 $\rho(x)$ 为[a,b]上的权函数.

■ 定义 设 $f(x), g(x) \in C[a, b], \rho(x)$ 为[a, b]上的权函数, 若内积

$$(f,g) = \int_a^b \rho(x)f(x)g(x)dx = 0$$

则称f(x)与g(x)在[a,b]上带权 $\rho(x)$ 正交.

■ 定义 若函数序列 $\{\varphi_i\}_{i=0}^{\infty}$ 在[a,b]上带权 $\rho(x)$ 两两正交即

$$(\varphi_i, \varphi_j) = \int_a^b \rho(x)\varphi_i(x)\varphi_j(x)dx = \begin{cases} 0 & i \neq j \\ A_j > 0 & i = j \end{cases}$$

则称 $\{\varphi_i\}_{i=0}^{\infty}$ 是区间[a,b]上带权 $\rho(x)$ 的正交函数系.

若 $\varphi_n(x)$ 是首项系数非零的n次多项式,则称 $\{\varphi_i\}_{i=0}^{\infty}$ 是区间 [a,b]上带权 $\rho(x)$ 的正交多项式系;称 $\varphi_n(x)$ 是区间[a,b]上带权 $\rho(x)$ 的n次正交多项式.

正交多项式系的生成

■ 只要给定区间[a, b]及权函数 $\rho(x)$, 可由线性无关的幂函数族{ x^n },利用正交化方法构造出正交多项式系序列 { φ_i } $_{i=0}^{\infty}$

$$\varphi_0(x)=1$$
,

$$\varphi_n(x) = x^n - \sum_{k=0}^{n-1} \frac{(x^n, \varphi_k)}{(\varphi_k, \varphi_k)} \varphi_k(x), \quad n = 1, 2, \dots$$

- 得到的正交多项式序列具有以下性质:
- $1.\varphi_n(x)$ 是最高次项系数为1的n次多项式;
- 2.任意n次多项式均可表示为 $\varphi_0(x), \varphi_1(x), ..., \varphi_n(x)$ 的线性组合;

3. 当 $k\neq j$ 时, $(\varphi_i,\varphi_k)=0$,且 $\varphi_k(x)$ 与任意次数小于k的 多项式正交:

4.成立递推关系式:

$$\varphi_0(x)=1, \ \varphi_1(x)=x-\alpha_0,$$

$$\varphi_{n+1}(x)=(x-\alpha_n)\varphi_n(x)-\beta_n\varphi_{n-1}(x), \ n=1,2,...$$

$$\alpha_{n} = \frac{(x\varphi_{n}, \varphi_{n})}{(\varphi_{n}, \varphi_{n})}, n = 0, 1, \dots; \quad \beta_{n} = \frac{(\varphi_{n}, \varphi_{n})}{(\varphi_{n-1}, \varphi_{n-1})}, n = 1, 2, \dots;$$

$$\beta_{n} = \frac{(\varphi_{n}, \varphi_{n})}{(\varphi_{n-1}, \varphi_{n-1})}, n = 1, 2, \dots;$$

5.若 $\{\varphi_i\}_{i=0}^{\infty}$ 是在[a,b]上带权 $\rho(x)$ 的正交多项式系,则 $\varphi_n(x)$ ($n \ge 1$)的n个根都是区间(a, b)内的单重实根.

常用的正交多项多有Chebyshev多项式,Legendre多项式,Laguerre多项式和Hermite多项式,第二类Chebyshev多项式. 将它们归纳为下表:

正交多项式 $g_n(x)$ 的名称	区间	权函数	记号与表示式	首次系数	$A_n = (g_n, g_n)$	三项递推公式
Chebyshev (切比雪夫)正交 多项式	[-1,1]	$\frac{1}{\sqrt{1-x^2}}$	$T_n(x) = \cos(n\arccos x)$	2 ⁿ⁻¹	$\frac{\pi}{2}$ 或 π	$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$
Legendre (勒让德)正交多 项式	[-1,1]	1	$P_0(x) = 1$ $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$	$\frac{(2n)!}{2^n(n!)^2}$	$\frac{2}{2n+1}$	$p_{n+1}(x) = \frac{2n+1}{n+1} x p_n(x) - \frac{n}{n+1} p_{n-1}(x)$
第二类 Chebyshev (切比雪夫)正 交多项式	[-1,1]	$\sqrt{1-x^2}$	$s_n(x) = \frac{\sin[(n+1)\arccos x]}{\sqrt{1-x^2}}$		$\frac{\pi}{2}$	$S_{n+1}(x) = 2xS_n(x) - S_{n-1}(x)$
Laguerre (拉盖尔)正交多 项式	[0,∞]	e^{-x}	$L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x})$	(-1) ⁿ	(n!) ²	$L_{n+1}(x) = (1+2n-x)L_n(x) - n^2L_{n-1}(x)$
Hermite (埃尔米特)正交 多项式	$(-\infty,+\infty)$	e^{-x^2}	$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$	2 ⁿ	$2^n(n!)\sqrt{\pi}$	$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$

连续函数的最佳平方逼近

■ 问题 设 $f(x) \in C[a, b]$, $\varphi_0(x)$, $\varphi_1(x)$, ..., $\varphi_n(x)$ 为 [a, b]上的一组线性无关的函数,

 Φ =Span{ $\varphi_0(x), \varphi_1(x), ..., \varphi_n(x)$ },则对任意 $\varphi(x) \in \Phi$,

有

$$\varphi(x) = \sum_{i=0}^{n} a_i \varphi_i(x)$$

寻求一个 $\varphi(x) \in \Phi$ 逼近 $f(x) \in C[a, b]$,满足

$$||f - \varphi||_2^2 \stackrel{\text{def}}{=} \int_a^b \rho(x) [f(x) - \varphi(x)]^2 dx = \min$$

最佳平方逼近函数

■ 定义 设 $f(x) \in C[a, b]$, $\varphi_0(x)$, $\varphi_1(x)$, ..., $\varphi_n(x)$ 为 [a, b]上的一组线性无关的函数,

Φ=Span{ $\varphi_0(x), \varphi_1(x), ..., \varphi_n(x)$ },若存在 $\varphi^*(x) \in \Phi$, 使得

$$\|f - \varphi^*\|_2^2 = \min_{\varphi \in \Phi} \|f - \varphi\|_2^2 = \min_{\varphi \in \Phi} \int_a^b \rho(x) [f(x) - \varphi(x)]^2 dx$$

则称 $\varphi^*(x)$ 是f(x)在 Φ 中的最佳平方逼近函数.

最佳平方逼近函数的构造

■ $\mathbf{x}\varphi^*(x)\in\Phi$, 等价于求多元函数

$$F(a_0, a_1, \dots, a_n) = \int_a^b \rho(x) \left[\sum_{i=0}^n a_i \varphi_i(x) - f(x) \right]^2 dx$$

的极小值, 由多元函数极值的必要条件有

$$\frac{\partial F}{\partial a_k} = 2\int_a^b \rho(x) \left[\sum_{i=0}^n a_i \varphi_i(x) - f(x) \right] \varphi_k(x) dx = 0, k = 0, 1, \dots, n$$

$$\sum_{i=0}^n (\varphi_i, \varphi_k) a_i = (f, \varphi_k), \quad k = 0, 1, \dots, n$$
(*)

 $\varphi_0(x), \varphi_1(x), ..., \varphi_n(x)$ 线性无关,法方程(*)的系数矩阵非奇异,方程组有唯一解 $a_i = a_i^*, i = 0, 1, ..., n$.

$$\varphi^*(x) = \sum_{i=0}^n a_i^* \varphi_i(x)$$

可证明 $\forall \varphi(x) \in \Phi$, $||f-\varphi^*||_2^2 \le ||f-\varphi||_2^2$, $\varphi^*(x)$ 是问题的解.

- 记 $\delta(x) = f(x) \varphi^*(x)$,由于 $(f \varphi^*, \varphi^*) = 0$, 最佳平方逼近误差 $\|\delta\|_2^2 = \|f - \varphi^*\|_2^2 = (f - \varphi^*, f - \varphi^*)$ $= (f, f) - (\varphi^*, f) = \|f\|_2^2 - \sum_{i=0}^n a_i^*(\varphi_i, f)$
- 均方误差 ||δ||₂
- 特例: 取 $f(x) \in C[0, 1]$, [a, b] = [0, 1], $\rho(x) = 1$, $\varphi_i(x) = x^i$, (i = 0, 1, ..., n), $\Phi = \operatorname{Span}\{1, x, x^2, ..., x^n\}$, 相应 法方程的系数矩阵为Hilbert矩阵 H_n , 当 $n \ge 3$ 时 是病态的,这时可取正交多项式作为 Φ 的基求解最佳逼近多项式.

例3.12 设 $f(x) = \sqrt{1+x^2}$,求[0,1]上的一次最佳平方逼近多项式 $p_1^*(x) = a_0^* + a_1^* x$.

解:由于

$$d_0 = \int_0^1 \sqrt{1 + x^2} dx = \frac{1}{2} \ln\left(1 + \sqrt{2}\right) + \frac{\sqrt{2}}{2} \approx 1.147$$

$$d_1 = \int_0^1 \sqrt{1 + x^2} x dx = \frac{2\sqrt{2} - 1}{3} \approx 0.609$$

于是, 法方程(3.4.29)为

$$\begin{bmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 1.147 \\ 0.609 \end{bmatrix}$$

求得解为:

$$a_0^* = 0.934, \quad a_1^* = 0.426$$

因此得一次最佳平方逼近式为

$$p_1^*(x) = 0.934 + 0.426x.$$

由式 (3.4.27) 得平方误差

$$\|\delta\|_{2}^{2} = (f, f) - (p_{1}^{*}, f)$$

$$= \int_0^1 (1+x^2) dx - a_0^* d_0 - a_1^* d_1 = 0.0026,$$

均方误差:

$$\|\delta\|_{2} = 0.051.$$

最大误差

$$\|\delta\|_{\infty} = \max_{0 \le x \le 1} \left| \sqrt{1 + x^2} - p_1^*(x) \right| = 0.066.$$

由于 H_n 是病态矩阵,在 $n \ge 3$ 时直接解法方程 (3.4.29)误差很大,因此当 $\varphi_j(x) = x^j$ 时,解法方程方法只适合 $n \le 2$ 的情形。

对 $n \ge 3$,可用正交多项式作 Φ 的基求解最佳平方逼近多项式。

用正交函数系做平方逼近

这时

$$a_i^* = \frac{(f, \varphi_i)}{(\varphi_i, \varphi_i)} \quad (i = 0, 1, 2, \dots, n)$$

$$\varphi^*(x) = \sum_{i=0}^n \frac{(f, \varphi_i)}{(\varphi_i, \varphi_i)} \varphi_i(x)$$

■ 当取正交多项式作为 Φ 的基时,即 $\varphi_0(x), \varphi_1(x), \ldots, \varphi_n(x)$ 为正交多项式时,得到最佳逼近多项式 $\varphi^*_n(x)$. 这时

$$\lim_{n\to\infty} \left\| f(x) - \varphi_n^*(x) \right\|_2 = 0$$

• 特例: 取 $f(x) \in C[-1, 1]$, [a, b] = [-1, 1], $\rho(x) = 1$, 这时正交多项式为Legendre多项式 $P_n(x)$, 取 $\Phi = \operatorname{Span}\{P_0(x), P_1(x), ..., P_n(x)\}$, $f(x) \in C[-1, 1]$ 的最佳逼近多项式为

$$\varphi^*(x) = \sum_{i=0}^n a_i^* P_i(x)$$

$$a_i^* = \frac{(f, P_i)}{(P_i, P_i)} = \frac{2i+1}{2} \int_{-1}^1 f(x) P_i(x) \, \mathrm{d}x$$
平方逼近误差 $\|\delta\|_2^2 = \|f\|_2^2 - \sum_{i=0}^n a_i^* (P_i, f) = \|f\|_2^2 - \sum_{i=0}^n \frac{(P_i, f)^2}{\|P_i\|_2^2}$

$$= \int_{-1}^1 f^2(x) \, \mathrm{d}x - \sum_{i=0}^n \frac{2}{2i+1} a_i^{*2}$$

例3.13 用Legendre展开求 $f(x) = e^x$ 在[-1,1]上的最 佳平方逼近多项式(分别取n = 1,3).

解: 先计算

$$(f, P_0) = \int_{-1}^1 e^x dx = e - \frac{1}{e} \approx 2.3504,$$

$$(f, P_1) = \int_{-1}^1 x e^x dx = 2e^{-1} \approx 0.75358,$$

$$(f, P_2) = \int_{-1}^1 \left(\frac{3}{2}x^2 - \frac{1}{2}\right) e^x dx = e - \frac{7}{e} \approx 0.1417,$$

$$(f, P_3) = \int_{-1}^1 \left(\frac{5}{2}x^3 - \frac{3}{2}x\right) e^x dx = 37e^{-1} - 5e \approx 0.02013,$$

由式(3.4.35)可算出

 $a_0^* = 1.1752, a_1^* = 1.1036, a_2^* = 0.3578, a_3^* = 0.07046$ 于是由式(3.4.34)可求得

$$s_1^*(x) = 1.1752 + 1.1036x,$$

$$s_3^*(x) = 0.9963 + 0.9979x + 0.5367x^2 + 0.1761x^3$$

且

$$\|\delta_3\|_2 = \|e^x - s_3^*(x)\|_2 \le 0.0084,$$

 $\|\delta_3\|_{\infty} = \|e^x - s_3^*(x)\|_{\infty} \le 0.0112.$

曲线拟合的最小二乘法

■ 离散情形最佳平方逼近问题: $\mathbf{x}\varphi^*(x) \in \Phi$, 使

$$||f - \varphi^*||_2^2 = \min_{\varphi \in \Phi} ||f - \varphi||_2^2 = \min_{\varphi \in \Phi} \sum_{i=0}^m \rho(x_i) [f(x_i) - \varphi(x_i)]^2$$

又称之为曲线拟合的最小二乘法。

■ $\mathbf{x}\varphi^*(x) \in \Phi$, 等价于求多元函数

$$F(a_0, a_1, \dots, a_n) = \sum_{i=0}^{m} \rho(x_i) \left[\sum_{j=0}^{n} a_j \varphi_j(x_i) - f(x_i) \right]^2$$

的极小值。

■ 由多元函数极值的必要条件有

$$\frac{\partial F}{\partial a_k} = 2\sum_{i=0}^m \rho(x_i) \left[\sum_{j=0}^n a_j \varphi_j(x_i) - f(x_i) \right] \varphi_k(x_i) = 0, k = 0, 1, \dots, n$$

得法方程

其中

$$\sum_{j=0}^{n} (\varphi_j, \varphi_k) a_j = (f, \varphi_k), k = 0, 1, \dots, n$$

$$\begin{cases} (\varphi_j, \varphi_k) = \sum_{i=0}^m \rho(x_i) \varphi_j(x_i) \varphi_k(x_i) \\ (f, \varphi_k) = \sum_{i=0}^m \rho(x_i) f(x_i) \varphi_k(x_i) \end{cases}$$

求解法方程有 $a_k = a_k^*$,来获得最小二乘逼近函数 $\varphi^*(x)$.

$$\varphi^*(x) = \sum_{k=0}^n a_k^* \varphi_k(x)$$

■ 这里采用线性最小二乘逼近,即

$$\varphi^*(x) = \sum_{i=0}^n a_i \varphi_i(x)$$

非线性模型→线性模型

■ 选取恰当的模型(函数类Φ):模型的选取影响 逼近效果.

常取 Φ =Span $\{1,x,x^2,...,x^n\}$ 获得唯一最小二乘逼近. 但当n较大时,法方程病态,可采用正交多项式.

例 3.14 给定数据 (x_i, y_i) i = 0,1,2,3,4,见表 3.3, 试选择 适当模型, 求最小二乘拟合函数 $\varphi^*(x)$ 。

表 3.3

			7/(2.2			
i	x_i	f_{i}	$Y_i = \ln f_i$	x_i^2	x_iY_i	$y_i = \varphi^*(x_i)$
0	1.00	5.10	1.629	1.000	1.629	5.09
1	1.25	5.79	1.756	1.5625	2.195	5.78
2	1.50	6.53	1.876	2.2500	2.814	6.56
3	1.75	7.45	2.008	3.0625	3.514	7.44
4	2.00	8.46	2.135	4.000	4.270	8.44

解: 根据给定数据选择数学模型(1) $y = ae^{bx}(a > 0)$,取对数得: $\ln y = \ln a + bx$,令 $Y = \ln y$, $A = \ln a$,取 $\varphi_0(x) = 1$, $\varphi_1(x) = x$,要求 Y = A + bx与 $(x_i, Y_i), i = 0, 1, \dots, 4$ 做最小二乘拟合, $Y_i = \ln f_i$. 由于 $(\varphi_0, \varphi_0) = 5$, $(\varphi_0, \varphi_1) = (\varphi_1, \varphi_0) = 7.5$, $(\varphi_1, \varphi_1) = 11.875$,

$$(Y, \varphi_0) = \sum_{i=0}^4 Y_i = 9.404, \quad (Y, \varphi_1) = \sum_{i=0}^4 Y_i x_i = 14.422,$$

由式(3.4.38) 得法方程:

$$\begin{cases}
5A + 7.5b = 9.404 \\
7.5A + 11.875b = 14.422
\end{cases}$$

求解此方程得:A=1.122,b=0.5056, $a=e^A=3.071$,于是得最小二乘拟合曲 线为:

$$y = 3.071e^{0.5056x} = \varphi^*(x)$$

算出 $\varphi^*(x_i)$ 的值列于表3.3最后一列,从结果看到这一模型拟合效果较好。

若选择模型(2):
$$y = \frac{1}{a_0 + a_1 x}$$
,则令 $Y = \frac{1}{y} = a_0 + a_1 x$,

此时 $\varphi_0(x)=1$, $\varphi_1(x)=x$, $(Y,\varphi_0)=0.77436$, $(Y,\varphi_1)=1.11299$,法方程为

$$\begin{cases}
5a_0 + 7.5a_1 = 0.77436 \\
7.5a_0 + 11.875a_1 = 1.11299
\end{cases}$$

求解得:

$$a_0 = 0.27139$$
, $a_1 = -0.07768$

于是得最小二乘拟合曲线:

$$y = \frac{1}{0.27139 - 0.07768x} = \tilde{\varphi}^*(x).$$

可算出 $\tilde{\varphi}^*(x_i)(i=0,1,2,3,4)$ 的值分别为5.16,5.74,6.46,7.38,8.62,结果比指数模型 $y=ae^{bx}$ 差些。

若直接选择多项式模型 (3) $y = a_0 + a_1 x + a_2 x^2$, 结果将更差。

此例表明了求曲线拟合的最小二乘问题选择模型的重要性,目前已有自动选择模型的软件供使用。

用正交多项式做最小二乘拟合

 当数学模型为多项式时,可根据正交性条件,用点集^{{x_i</sub>} 由递 推公式构造正交多项式 {φ_k(x)}

$$\begin{cases} \varphi_0(x) = 1, \, \varphi_1(x) = (x - a_0) \varphi_0(x), \\ \varphi_{k+1}(x) = (x - a_k) \varphi_k(x) - \beta_k \varphi_{k-1}(x), & k = 1, 2, \dots, n-1 \end{cases}$$

满足条件

$$(\varphi_{j}, \varphi_{k}) = \sum_{i=0}^{m} \rho_{i} \varphi_{j}(x_{i}) \varphi_{k}(x_{i}) = \begin{cases} 0, & j \neq k, \\ A_{k} > 0, & j = k, \end{cases}$$

其中

$$\begin{cases} \alpha_{k} = \frac{\left(x\varphi_{k}, \varphi_{k}\right)}{\left(\varphi_{k}, \varphi_{k}\right)} = \frac{\sum_{i=0}^{m} \rho_{i} x_{i} \varphi_{k}^{2}(x_{i})}{\sum_{i=0}^{m} \rho_{i} \varphi_{k}^{2}(x_{i})}, & k = 0, 1, \dots, n-1, \\ \beta_{k} = \frac{\left(\varphi_{k}, \varphi_{k}\right)}{\left(\varphi_{k-1}, \varphi_{k-1}\right)} = \frac{\sum_{i=0}^{m} \rho_{i} \varphi_{k}^{2}(x_{i})}{\sum_{i=0}^{m} \rho_{i} \varphi_{k-1}^{2}(x_{i})}, & k = 1, 2, \dots, n-1, \end{cases}$$

用正交多项式做最小二乘拟合

• 若 $\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x)$ 是正交多项式系,得最小二乘逼近多项式

$$\varphi_n^*(x) = \sum_{k=0}^n a_k^* \varphi_k(x)$$

$$a_k^* = \frac{(f, \varphi_k)}{(\varphi_k, \varphi_k)} = \frac{\sum_{i=0}^m \rho_i f_i \varphi_k(x_i)}{\sum_{i=0}^m \rho_i \varphi_k^2(x_i)}, \quad k = 0, 1, \dots, n.$$

• 以 $\|\delta\|_2^2 = \|f - \varphi_n^*\|_2^2 \le \varepsilon$ 控制算法终止或n事先给定.

例3.15 用正交化方法求离散数据表3.4中的最小二乘二次多项式拟合函数。

表3.4

i	0	1	2	3	4
\mathcal{X}_i	0.00	0.25	0.50	0.75	1.00
\mathcal{Y}_i	0.10	0.35	0.81	1.00	1.96

解:在离散点列 $|x_i|_{i=0}^m = \{0,0.25,0.5,0.75,1\}$ 上,按三项递推公式(3.4.42),式(3.4.44)构造正交多项式,权因子 $\{\rho_i\}_0^m = \{1,1,1,1,1\}$ 。

这里n=2,取
$$\varphi_0(x)=1$$
,由此得
$$\varphi_0 = \{\varphi_0(x_i)\}_0^m = (1,1,1,1,1)^T$$

$$(\varphi_0,\varphi_0) = \sum_{i=0}^m \rho_i [\varphi_0(x_i)]^2 = 5$$

$$(x\varphi_0,\varphi_0) = \sum_{i=0}^m \rho_i x_i [\varphi_0(x_i)]^2 = 2.5$$

$$\alpha_0 = \frac{(x\varphi_0,\varphi_0)}{(\varphi_0,\varphi_0)} = 0.5$$

于是 $\varphi_1(x) = x - \alpha_0 = x - 0.5$ 。进一步计算 $\varphi_1 = \{\varphi_1(x_i)\}_{0}^m = (-0.5, -0.25, 0, 0.25, 0.5)^T$ $(\varphi_1, \varphi_1) = \sum_{i=0}^{m} \rho_i [\varphi_1(x_i)]^2 = 0.625$ $(x\varphi_1,\varphi_1) = \sum_{i=0}^{m} \rho_i x_i [\varphi_1(x_i)]^2 = 0.3125$ $\alpha_1 = \frac{\left(x\varphi_1, \varphi_1\right)}{\left(\varphi_1, \varphi_1\right)} = 0.5$ $\beta_1 = \frac{(\varphi_1, \varphi_1)}{(\varphi_2, \varphi_2)} = 0.125$

于是得 $\varphi_2(x) = (x - \alpha_1)\varphi_1(x) - \beta_1\varphi_0(x) = (x - 0.5)^2 - 0.125$ 继续计算

$$\varphi_2 = (0.125, -0.0625, -0.125, -0.0625, 0.125)^T$$

 $(\varphi_2, \varphi_2) = 0.0546875$

$$(y, \varphi_0) = \sum_{i=0}^{m} \rho_i y_i \varphi_0(x_i) = 4.31, \qquad \alpha_0^* = \frac{(y, \varphi_0)}{(\varphi_0, \varphi_0)} = 0.862$$

$$(y, \varphi_1) = \sum_{i=0}^{m} \rho_i y_i \varphi_1(x_i) = 1.115, \qquad \alpha_1^* = \frac{(y, \varphi_1)}{(\varphi_1, \varphi_1)} = 1.784$$

$$(y, \varphi_2) = \sum_{i=0}^{m} \rho_i y_i \varphi_2(x_i) = 0.06625, \quad \alpha_2^* = \frac{(y, \varphi_2)}{(\varphi_2, \varphi_2)} = 1.211428571$$

最后得拟合多项式

$$\varphi^*(x) = \alpha_0^* \varphi_0(x) + \alpha_1^* \varphi_1(x) + \alpha_2^* \varphi_2(x)$$

$$= 0.862 + 1.784(x - 0.5) + 1.2114[(x - 0.5)^2 - 0.125]$$

$$= 0.1214 + 0.5726x + 1.2114x^2$$

并由
$$\|y\|_2^2 = \sum_{i=0}^m \rho_i y_i^2 = 58183$$

求出平方误差 $\|\delta\|_2^2 = 0.0337$