AMENDMENTS TO THE CLAIMS:

The following listing of claims replaces all prior listings, and all prior versions, of claims in the above-identified application.

LISTING OF CLAIMS:

- 1. (Withdrawn) An adhesive film for semiconductor use, the adhesive film being used in a method in which, after the adhesive film for semiconductor use is laminated to one side of a metal sheet, the metal sheet is processed to give a wiring circuit, a semiconductor die is mounted and molded, and the adhesive film is then peeled off, the adhesive film comprising a support film and a resin layer A formed on one side or both sides of the support film, the 90 degree peel strength between the resin layer A and the metal sheet prior to the processing of the metal sheet laminated with the adhesive film for semiconductor use to give the wiring circuit being 20N/m or greater at 25°C, and the 90 degree peel strengths, after molding with a molding compound the wiring circuit laminated with the adhesive film for semiconductor use, between the resin layer A and the wiring circuit and between the resin layer A and the molding compound both being 1000 N/m or less at at least one point in the temperature range of 0°C to 250°C.
- 2. (Previously presented) The method according to Claim 19, wherein the 90 degree peel strengths between the resin layer A and the wiring circuit and between the resin layer A and the molding compound after molding with the molding compound are both 1000 N/m or less at at least one point in the temperature range of 100°C to 250°C.
- 3. (Previously presented) The method according to Claim 19, wherein the 90 degree peel strengths between the resin layer A and the wiring circuit and

between the resin layer A and the molding compound are both 1000 N/m or less at a temperature at which, after molding with the molding compound, the adhesive film for semiconductor use is peeled off from the wiring circuit and the molding compound.

- 4. (Previously presented) The method according to Claim 19, wherein the resin layer A has a glass transition temperature of 100°C to 300°C.
- 5. (Previously presented) The method according to Claim 19, wherein the temperature at which the resin layer A shows a 5 wt % loss is 300°C or greater.
- 6. (Previously presented) The method according to Claim 19, wherein the resin layer A has a elastic modulus at 230°C of 1 MPa or greater.
- 7. (Previously presented) The method according to Claim 19, wherein the resin layer A comprises a thermoplastic resin having an amide group, an ester group, an imide group, an ether group, or a sulfone group.
- 8. (Previously presented) The method according to Claim 19, wherein the resin layer A comprises a thermoplastic resin having an amide group, an ester group, an imide group, or an ether group.
- 9. (Previously presented) The method according to Claim 19, wherein the material of the support film is selected from the group consisting of an aromatic polyimide, an aromatic polyamide, an aromatic polyamide, an aromatic polysulfone, an aromatic polyethersulfone, a polyphenylene sulfide, an aromatic

Docket No. 1204.44601X00 Serial No. 10/519,713

<u>September 17, 2007</u>

polyetherketone, a polyarylate, an aromatic polyetheretherketone, and a

polyethylene naphthalate.

10. (Previously presented) The method according to Claim 19, wherein the

ratio (A/B) of the thickness (A) of the resin layer A to the thickness (B) of the support

film is 0.5 or less.

11. (Previously presented) The method according to Claim 19, wherein the

resin layer A, which has adhesion, is formed on one side of the support film, and a

resin layer B having no adhesion and an elastic modulus at 230°C of 10 MPa or

greater is formed on the opposite side thereof.

12. (Previously presented) The method according to Claim 19, wherein the

thickness of the adhesive film is 200 µm or less.

13. (Withdrawn) A metal sheet laminated with the adhesive film having the

adhesive film for semiconductor use according to Claim 1 laminated thereto.

14. (Withdrawn) A wiring circuit laminated with the adhesive film obtained

by processing the metal sheet laminated with the adhesive film according to Claim

13 to give a wiring circuit.

15. (Withdrawn) The wiring circuit laminated with the adhesive film

according to Claim 14, wherein the wiring circuit is laminated so that one side thereof

is in contact with the resin layer A of the adhesive film for semiconductor use.

4

- 16. (Withdrawn) A semiconductor device laminated with the adhesive film employing the adhesive film for semiconductor use according to Claim 1.
- 17. (Withdrawn) The semiconductor device laminated with the adhesive film according to Claim 16, wherein it comprises the adhesive film for semiconductor use, the wiring circuit that is laminated so that one side thereof is in contact with the resin layer A of the adhesive film for semiconductor use, a semiconductor die electrically connected to an exposed surface of the wiring circuit, and the molding compound that molds the semiconductor die.
- 18. (Withdrawn) A semiconductor device obtained by peeling off the adhesive film for semiconductor use from the semiconductor device according to Claim 17.
- 19. (Currently Amended) A method for producing a semiconductor device, the method comprising:
- (a) a step of laminating <u>directly</u> to one side of a metal sheet an adhesive film for semiconductor use,
 - (b) a step of processing the metal sheet to give a wiring circuit,
- (c) a step of electrically connecting a semiconductor die onto an exposed surface of the wiring circuit,
- (d) a step of molding the semiconductor die and the exposed surface of the wiring circuit with a molding compound, and
- (e) a step of peeling off the adhesive film for semiconductor use from the wiring circuit and the molding compound,

wherein said adhesive film for semiconductor use comprises a support film and a resin layer A formed on one side or both sides of the support film, the 90 degree peel strength between the resin layer A and the metal sheet prior to the processing of the metal sheet laminated with the adhesive film for semiconductor use to give the wiring circuit being 20 N/m or greater at 25°C, and the 90 degree peel strengths, after molding with the molding compound the wiring circuit laminated with the adhesive film for semiconductor use, between the resin layer A and the wiring circuit and between the resin layer A and the molding compound, both being 1000N/m or less at at least one point in the temperature range of 0°C to 250°C.

- 20. (Original) The method according to Claim 19, wherein the wiring circuit comprises a plurality of patterns each having a die pad and an inner lead, and the method comprises, after the molding step or after the step of peeling off the adhesive film for semiconductor use, a step of dividing the molded wiring circuit laminated with the adhesive film to give a plurality of semiconductor devices each having one semiconductor die.
- 21. (Previously presented) The method according to Claim 20, wherein the step of electrically connecting the semiconductor die onto an exposed surface of the wiring circuit includes bonding the semiconductor die to the die pad and wire bonding the semiconductor die and the inner lead with wires.
- 22. (Previously presented) The method according to Claim 19, wherein the step of peeling off the adhesive film is performed at a temperature in a range of 0°C to 250°C.

- 23. (Previously presented) The method according to Claim 19, wherein said 90 degree peel strength between the resin layer A and the metal sheet prior to the processing of the metal sheet for semiconductor use to give the wiring circuit is no more than 2000N/m at 25°C.
- 24. (Previously presented) The method according to Claim 19, wherein said 90 degree peel strength between the resin layer A and the metal sheet prior to the processing of the metal sheet for semiconductor use to give the wiring circuit is 150N/m or greater at 25°C.
- 25. (Previously presented) The method according to Claim 19, wherein said 90 degree peel strength between the resin layer A and the metal sheet prior to the processing of the metal sheet for semiconductor use to give the wiring circuit is 70N/m or greater at 25°C.
- 26. (Previously presented) The method according to Claim 19, wherein the 90 degree peel strength at 25°C between the resin layer A and the wiring circuit immediately before carrying out the molding step is 5N/m or greater.
- 27. (Previously presented) The method according to Claim 26, wherein the 90 degree peel strength at 25°C between the resin layer A and the wiring circuit immediately before carrying out the molding step is 50N/m or greater.

- 28. (Previously presented) The method according to Claim 19, including the further step of heating prior to the molding step so as to increase adhesive strength between the resin layer A and the wiring circuit.
- 29. (Previously presented) The method according to Claim 19, wherein the 90 degree peel strengths between the resin layer A and the wiring circuit and between the resin layer A and the molding compound both are no more than 500N/m at at least one point in the temperature range of 0°C to 250°C.
- 30. (Previously presented) The method according to Claim 19, wherein the 90 degree peel strengths between the resin layer A and the wiring circuit and between the resin layer A and the molding compound both are 3N/m or greater at at least one point in the temperature range of 0°C to 250°C.
- 31. (Previously presented) The method according to Claim 19, wherein the 90 degree peel strengths between the resin layer A and the wiring circuit and between the resin layer A and the molding compound both are no more than 800N/m at at least one point in the temperature range of 0°C to 250°C.
- 32. (New) The method according to Claim 19, wherein the resin layer A is a thermoplastic resin selected from the group consisting of aromatic polyamide, aromatic polyester, aromatic polyimide, aromatic polyamideimide, aromatic polyether, aromatic polyetheramideimide, aromatic polyetheramide, and aromatic polyetherimide.

- 33. (New) The method according to Claim 19, wherein the resin layer A is a thermoplastic resin selected from the group consisting of aromatic polyetheramide and aromatic polyetheramide.
- 34. (New) A method for producing a semiconductor device, the method comprising:
- (a) a step of laminating to one side of a metal sheet an adhesive film for semiconductor use,
 - (b) a step of processing the metal sheet to give a wiring circuit,
- (c) a step of electrically connecting a semiconductor die onto an exposed surface of the wiring circuit,
- (d) a step of molding the semiconductor die and the exposed surface of the wiring circuit with a molding compound, and
- (e) a step of peeling off the adhesive film for semiconductor use from the wiring circuit and the molding compound,

wherein said adhesive film for semiconductor use comprises a support film and a resin layer A formed on one side or both sides of the support film, the 90 degree peel strength between the resin layer A and the metal sheet prior to the processing of the metal sheet laminated with the adhesive film for semiconductor use to give the wiring circuit being 20 N/m or greater at 25°C, and the 90 degree peel strengths, after molding with the molding compound the wiring circuit laminated with the adhesive film for semiconductor use, between the resin layer A and the wiring circuit and between the resin layer A and the molding compound, both being 1000N/m or less at at least one point in the temperature range of 0°C to 250°C, and

wherein the resin layer A, which has adhesion, is formed on one side of the support film, and a resin layer B having no adhesion and an elastic modulus at 230°C of 10 MPa or greater is formed on the opposite side thereof.