# Ciclos Eulerianos e o Problema do Carteiro Chinês 5189-32

Rodrigo Calvo rcalvo@uem.br

Departamento de Informática – DIN Universidade Estadual de Maringá – UEM

1° semestre de 2016

### Introdução

- Século XVIII cidade de Königsberg (Prússia, atual Kaliningrado Rússia)
- O rio Pregel com duas ilhas passava pela cidade. Havia uma pontee entre as duas ilhas
- A primeira ilha possuía 4 pontes (2 para cada margem do rio).
- A segunda ilha possuía 2 (1 para cada margem do rio)
- Durante um desfile, os habitantes não gostariam de passar mais de uma vez sobre cada ponte --> "As Sete Pontes de "Königsberg"
- O matemático Leonhard Euller foi chamado para resolver o problema.

#### Problema das 7 pontes

 É possível encontrar um trajeto (caminho) que passa em cada uma das 7 pontes de Königsberg exatamente uma vez ?



#### Problema das 7 pontes

- Leonhard Euler abstraiu o problema e gerou uma topologia para representar os pontos de interesse da cidade
- Euler provou que era impossível encontrar uma solução, pois, ao transformar o mapa em um grafo, onde as ilhas e o continente são os vértices e as pontes arestas, notou que os vértices possuíam grau ímpar.



#### Ciclo e caminho eulerianos

- Um ciclo euleriano (caminho euleriano) é um ciclo (caminho) que usa cada aresta do grafo exatamente uma vez
- Um grafo que contém um ciclo euleriano é chamado de grafo euleriano
- Um grafo que contém um caminho euleriano, mas não contém um ciclo euleriano é chamado de grafo semi-euleriano

#### Ciclo e caminho eulerianos





#### Ciclo e caminho eulerianos





Ciclo Euleriano: A, C, D, E, C, B, A

Caminho Euleriano: A, B, D, E, B, C, E, A, C

- Lema 1
  - Dado um grafo não orientado conexo G = (V, E) com todos os vértices de grau par, então qualquer par de vértices u, v ∈ G faz parte de um ciclo sem arestas repetidas.

- Prova (por contradição)
  - Suponha que exista um par de vértices u, v ∈ G que não admita um ciclo em comum. Como o grafo é conexo, então existe um caminho p tal que u <sup>p</sup> v. Isto implica que deve existir uma aresta (x, y) no caminho p cuja a remoção torna o grafo desconexo, caso contrário existiria um outro caminho alternativo u v disjunto de p. A remoção da aresta (x, y) gera duas componentes, sendo que x e y pertencem a componentes distintas. Desta forma, x e y são os únicos vértices de grau ímpar na sua componente, mas isto é uma contradição, pois o número de vértices de grau ímpar em um (sub)grafo deve ser par.

- Teorema 1
  - Um grafo não orientado conexo G é um grafo euleriano se e somente se todo vértice de G tem grau par.

- Prova (ida)
  - Seja G = (V, A) um grafo euleriano e seja p um ciclo euleriano de G. Cada ocorrência de um vértice  $v \in V$  em p, implica uma aresta que chega em v e uma aresta que sai de v. Como todas as arestas de A fazem parte de p, o número de arestas incidentes em cada vértice é par.

- Prova (volta)
  - Seja G = (V, A) um grafo com todos os vértices de grau par. Na construção de um caminho em G sempre é possível chegar e sair de um vértice por arestas ainda não utilizadas. Ou seja, é possível construir um ciclo arbitrário C a partir de um vértice qualquer v (Lema 1). Se C contém todas as arestas de G, temos um ciclo euleriano. Senão, construímos um grafo G', tal que G'A = GA - GAarestas de C. Em G' todos os vértices tem grau par, e pelo menos um vértice de C está em G'.V e tem grau maior que 0 (senão o grafo não seria conexo). Recomeçamos este processo para o grafo G', começando com um vértice  $v' \in C$  com grau maior que 0 e construímos um ciclo C'. Os ciclos C e C' podem ser unidos para formar um único ciclo. Continuando este processo até acabar as arestas do grafo, obteremos necessariamente um ciclo único que contém todas as arestas de G.

#### Algoritmo de Hierholzer

```
hierholzer-1(G)

1 G' = (G.V, G.A)

2 v<sub>0</sub> = um vértice de G

3 C = caminho contendo apenas v<sub>0</sub>

4 while G'.A ≠ Ø

5    u = vértice em C tal que degree(u) > 0 em G

6    U = ciclo em G' que contém u

7    C = C substituindo u por U

8    G'.A = G.A - arestas de U

9 return C
```

•O procedimento **hierholzer-1** foi derivado diretamente da prova do Teorema 1, e por isto, podemos verificar facilmente que ele é correto. No entanto, a sua implementação é um pouco trabalhosa.







Ciclo atual: A
Ciclo criado: A, B, C, A
Junção dos ciclos: A, B, C, A



Vértice selecionado: C Ciclo atual: A, B, C, A Ciclo criado: C, E, D, C Junção dos ciclos: A, B, C, E, D, C, A

#### Algoritmo de Hierholzer

```
hierholzer-2(G)
1 C = \emptyset
2 E = G.A
3 v = vértice qualquer de G.V
4 C = C \cup \{v\}
5 while E \neq \emptyset
6 if não existe nenhuma aresta (v, w) em E
      escolha um vértice v \in C tal que exista (v, w) \in E
8 escolha uma aresta (v, w) \in E
9 \quad C = C \cup \{w\}
10 \quad v = w
11 E = E - (v, w)
12 return C
```

•Claramente, o consumo de tempo do algoritmo **hierholzer-2** é proporcional ao número de arestas do grafo *G*.



$$C = (c$$



$$C = (c, a)$$



$$C = (c, a, d)$$



$$C = (c, a, d, f)$$



$$C = (c, a, d, f, c)$$



$$C = (c,a,d,f,c)$$



$$C = (c, a, b, d, f, c)$$



$$C = (c,a,b,f,d,f,c)$$



$$C = (c,a,b,f,e,d,f,c)$$



$$C = (c,a,b,f,e,a,d,f,c)$$

#### Problema do Carteiro Chinês

- Forte relação com o problema das 7 pontes
- Dado um grafo conexo com peso nas arestas, o problema do carteiro chinês consiste em encontrar um ciclo de peso mínimo que passe por cada aresta pelo menos uma vez
- Aplicações
  - Entrega de correspondência
  - Coleta de lixo
  - Nebulização no combate a dengue

#### Problema do Carteiro Chinês

- Grafo euleriano
  - Aplicar o algoritmo de Hierholzer

#### Problema do Carteiro Chinês

- Grafo não euleriano
  - Transformar o grafo em euleriano adicionando arestas artificiais e aplicar o algoritmo de Hierholzer
  - Se o grafo for semi-euleriano, adicionar uma aresta artificial que representa o caminho mínimo entre os dois vértices de grau ímpar (o caminho mínimo pode ser encontrado usando o algoritmo de Dijkstra)
  - Se o grafo tiver 4 ou mais vértices de grau ímpar
    - Montar um grafo completo com os vértices de grau ímpar, onde cada aresta representa o menor caminho entre o par de vértices (algoritmo de Floyd-Warshall)
    - Encontrar a melhor combinação de pares de vértices (emparelhamento perfeito, algoritmo de Edmonds de complexidade polinomial)

### Bibliografia

Caminho euleriano. Wikipédia.
 https://en.wikipedia.org/wiki/Eulerian\_path

Problema do carteiro chinês. Wikipédia.
 https://en.wikipedia.org/wiki/Route inspection problem