Σπύρος Φρονιμός - Μαθηματικός

 \boxtimes : spyrosfronimos@gmail.com | \square : 6932327283 - 6974532090

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΟΡΙΣΜΟΙ ΚΑΙ ΘΕΩΡΗΜΑΤΑ $15 \ \text{Invourpiou 2016}$

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β΄ ΛΥΚΕΙΟΥ

ΔΙΑΝΥΣΜΑΤΑ

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΠΡΟΣΘΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ - ΔΙΑΔΟΧΙΚΑ ΔΙΑΝΥΣΜΑΤΑ

Άθροισμα ή συνισταμένη δύο μη μηδενικών διαδοχικών διανυσμάτων \vec{a} και $\vec{\beta}$ ονομάζεται το διάνυσμα $\vec{a}+\vec{\beta}$ το οποίο έχει αρχή, την αρχή του \vec{a} και πέρας, το πέρας του $\vec{\beta}$.

$$\vec{a} + \vec{\beta} = \vec{OA} + \vec{AB} = \vec{OB}$$

- Αν τα διανύσματα \vec{a} και $\vec{\beta}$ δεν είναι διαδοχικά τότε μεταφέρουμε παράλληλα ένα εκ των δύο ώστε η αρχή του να συμπέσει με το πέρας του πρώτου.
- Το άθροισμα των διανυσμάτων είναι ανεξάρτητο από την επιλογή της αρχής O.

ΟΡΙΣΜΟΣ 2: ΠΡΟΣΘΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ - ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ

Άθροισμα ή συνισταμένη δύο μη μηδενικών διανυσμάτων $\vec{a} = \overrightarrow{OA}$ και $\vec{\beta} = \overrightarrow{OB}$ που έχουν **κοινή αρχή**, ονομάζεται το διάνυσμα $\vec{a} + \vec{\beta} = \overrightarrow{OM}$ το οποίο αποτελεί τη **διαγώνιο** του παραλληλογράμμου OAMB που ορίζουν οι διαδοχικές πλευρές OA και OB.

ΟΡΙΣΜΟΣ 3: ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ

Η διαφορά $\vec{a}-\vec{\beta}$ δύο μη μηδενικών διανυσμάτων \vec{a} και $\vec{\beta}$ ορίζεται ως το άθροισμα του διανύσματος \vec{a} με το αντίθετο του $\vec{\beta}$.

- Με τον κανόνα της πρόσθεσης διαδοχικών διανυσμάτων τοποθετούμε στο πέρας του \vec{a} την αρχή του διανύσματος $-\vec{\beta}$.
- Με τον κανόνα του παραλληλογράμμου η διαφορά των δύο διανυσμάτων $\vec{a} = \overrightarrow{OA}$ και $\vec{\beta} = \overrightarrow{OB}$ ορίζεται ως η δεύτερη διαγώνιος \overrightarrow{AB} του παραλληλογράμμου OAMB. Έχει αρχή το πέρας του \vec{a} και πέρας, το πέρας του $\vec{\beta}$.

ΟΡΙΣΜΟΣ 4: ΔΙΑΝΥΣΜΑ ΘΕΣΗΣ

Διάνυσμα θέσης ή διανυσματική ακτίνα ενός σημείου M ονομάζεται το διάνυσμα \overrightarrow{OM} με αρχή ένα τυχαίο σταθερό σημείο O του επιπέδου και πέρας το σημείο M.

- Το σταθερό σημείο Ο ονομάζεται σημείο αναφοράς.
- Το σημείο O είναι αρχή όλων των διανυσματικ΄ ων ακτίνων του ίδιου επιπέδου ή χώρου και η επιλογή του είναι αυθαίρετη.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΙΔΙΟΤΗΤΕΣ ΠΡΟΣΘΕΣΗΣ ΔΙΑΝΥΣΜΑΤΩΝ

Στον παρακάτω πίνακα φαίνονται οι ιδιότητες της πράξης της πρόσθεσης διανυσμάτων.

Ιδιότητα	Συνθήκη
Αντιμεταθετική	$\vec{a} + \vec{\beta} = \vec{\beta} + \vec{a}$
Προσεταιριστική	$\vec{a} + \left(\vec{\beta} + \vec{\gamma}\right) = \left(\vec{a} + \vec{\beta}\right) + \vec{\gamma}$
Ουδέτερο στοιχείο	$\vec{a} + \vec{0} = \vec{a}$
Αντίθετα διανύσματα	$\vec{a} + (-\vec{a}) = \vec{0}$

ΘΕΩΡΗΜΑ 2: ΔΙΑΝΥΣΜΑ ΘΕΣΗΣ

Κάθε διάνυσμα \overrightarrow{AB} του επιπέδου ή του χώρου γράφεται ως η διαφορά της διανυσματικής ακτίνας του πέρατος \overrightarrow{OB} με τη διανυσματική ακτίνα της αρχής \overrightarrow{OA} .

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

ΘΕΩΡΗΜΑ 3: ΜΕΤΡΟ ΑΘΡΟΙΣΜΑΤΟΣ ΔΙΑΝΥΣΜΑΤΩΝ

Το μέτρο του αθροίσματος δύο μη μηδενικών διανυσμάτων \vec{a} και $\vec{\beta}$ είναι μικρότερο ίσο από το άθροισμα των μέτρων τους και μεγαλύτερο ίσο από τη διαφορά τους.

$$\left| |\vec{a}| - |\vec{\beta}| \right| \le \left| \vec{a} + \vec{\beta} \right| \le |\vec{a}| + |\vec{\beta}|$$