3

engineering & management examinations, december - 2008 CONTROL SYSTEM SEMESTER - 5

Time: 3 Hours]

1.

[Full Marks: 70

Graph paper and semi-log paper is provided at the end of this booklet.

GROUP - A

(Multiple Choice Type Questions)

Cho	ose th	e correct alternative	s for any ten o	of the	following:	10 :	× 1 = 10	
i)	The	maximum overshoot etion $G(s) = \frac{1}{s(s+1)} &$	ot, for an unit	ty fee ut, is	dback system with o	pen loop (transfer	
	a)	0.14		b)	0.15	· · · · · · · · · · · · · · · · · · ·	•	
	c)	0.16	-	d)	0.17.			
ii)	A linear time invariant system, when subjected to an unit step input, gives a response $c(t)=te^{-t}$. The transfer function of the system is							
	a)	$\frac{1}{(s+1)^2}$		b)	$\frac{1}{s(s+1)^2}$			
*	c)	$\frac{s}{(s+1)^2}$		d)	$\frac{1}{s(s+1)}$.			
iii)	The	The characteristic equation of a system is $s^2 + 3s + 2 = 0$. The system is						
	a)	critically damped	1	b)	underdamped			
	c)	overdamped		d)	none of these.			
iv)	The steady state error can be minimized by							
	a)	increasing gain k						
	b)	decreasing gain k						
	c)	decreasing oscillat	ing frequency					
**************************************	d)	increasing settling	time.					

- xi) If the root locus lies only on the negative real axis, then the time response is
 - a) overdamped

b) critically damped

c) stable

- d) unstable.
- xii) Given that $G(s) = \frac{K}{s^2(s+2)(s+3)}$. The type of the system is
 - a) 1

b) 3

c) 2

d) cannot be determined.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Find the transfer function for the block diagram shown below in figure-1.

Fig. - 1

3. Apply R-H criterion to determine the stability of the system of which characteristic equation is given by: $s^5 + s^4 + 3s^3 + 3s^2 + 6s + 4 = 0$.

55201 (8/12)

 Draw the electrical analogous circuit using force-voltage analogy for the mechanical system shown in figure-2.

Fig. - 2

Find the transfer function of the system shown in figure-3.

6. Define error co-efficients corresponding to step, ramp & parabolic inputs.

A unity feedback closed loop second order system has a transfer function $\frac{81}{s^2+0.6s+9}$ & it is excited by a step input of 10 units. Find out its steady state error.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

7. Sketch the root locus of the system with loop transfer function :

$$G(s)H(s) = \frac{K}{s(s+2)(s^2+s+1)}$$
. Show all relevant steps.

55201 (8/12)

- State and explain Nyquist stability criterion. 8. a)
 - b) The open loop transfer function of a unity negative feedback system is given by $G(s) = \frac{5}{s(s+1)(s+2)}$. Draw the Nyquist diagram & hence find out whether the system is stable or not. 5 + 10

9. a) Sketch the Bode plot of a unity negative feedback closed loop system of which open loop transfer function is given by $\frac{5(s+2)}{s(s+3)(s+10)}$.

> Determine gain margin, phase margin, gain cross-over frequency & phase crossover frequency.

b) Comment on the stability of the system. 8 + 5 + 2

A second order system has the following transfer function: $G(s) = \frac{16}{s(s+6)}$. It is 10. a) connected with a unity feedback arrangement.

Evaluate i) W_n , ii) ξ , iii) W_d , iv) t_p and v) % M_p of the closed loop system.

- Find the steady state error of the system for input $r(t)=1+t+\frac{t^2}{2}$ by static error cob) efficient method. 10 + 5
- 11. Write short notes on any three of the following:

 3×5

- PID controller a)
- b) Servomotors
- c) Polar plots
- d) Speed control of D.C. motor using feedback.

END