$$\iint_{R} \left(\partial x^{2} + \partial y^{2} \right) dx dy = \iint_{R} \left(\partial x^{2} + \partial y^{2} \right) dx dy$$

Exercise 15.4

In problems 1 to 8, evaluate the line integral $\int_C f(x, y) ds$ or $\int_C f(x, y, z) ds$.

1.
$$f(x, y, z) = 2x + 3y$$
, C is given by $x = t$, $y = 2t$, $z = 3t$, $0 \le t \le 3$.

2.
$$f(x, y, z) = xy^2z$$
, C is the line segment from $(1, 2, 2)$ to $(2, 3, 5)$.

3.
$$f(x, y) = x^2 - y^2$$
, C is the closed curve $x = 3 \cos t$, $y = 3 \sin t$, $0 \le t \le 2\pi$.

4.
$$f(x, y, z) = 3x + 2z$$
, C is the parabola $y = z^2$, $x = 1$ for $0 \le z \le 4$.

5.
$$f(x, y, z) = x + 2y + z$$
, C is given by $x = 5 \cos t$, $y = 3$, $z = 5 \sin t$, $0 \le t \le \pi$.

6.
$$f(x, y, z) = y + z$$
, C is given by $x = t^2$, $y = t$, $z = 2$, $0 \le t \le 3$.

7.
$$f(x, y, z) = x + y^2 + yz$$
, C is the curve $y = 2x$, $z = 2$ from $(1, 2, 2)$ to $(3, 6, 2)$.

8.
$$f(x, y, z) = x^2 + y + z^2$$
, C is the curve $2x = y = z$ for $2 \le x \le 4$.

In problems 9 to 15, evaluate the line integral $\int_C \mathbf{v} \cdot d\mathbf{r}$.

9.
$$\mathbf{v} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$$
, C is the line segment from $(1, 2, 2)$ to $(3, 6, 6)$.

10.
$$\mathbf{v} = x \mathbf{i} + y \mathbf{j} - z \mathbf{k}$$
, C is the circle $x^2 + y^2 = 9$, $z = 0$ going around once in the anti-clockwise direction.

11.
$$\mathbf{v} = x \mathbf{i} + (\sin y) \mathbf{j} + \mathbf{k}$$
, C is given by $x = t^2$, $y = t$, $z = 2t$, $0 \le t \le 1$.

12.
$$\mathbf{v} = x^2 y \mathbf{i} - xy^2 \mathbf{j}, \ \mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j}, \ 0 \le t \le 3.$$

13.
$$\mathbf{v} = e^x \mathbf{i} + x e^{xy} \mathbf{j} + \mathbf{k}, \ \mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}, \ 0 \le t \le 2.$$

14.
$$\mathbf{v} = z \mathbf{i} + x \mathbf{j} + y \mathbf{k}, \ \mathbf{r}(t) = (\cos t) \mathbf{i} + (\sin t) \mathbf{j} + t \mathbf{k}, \ 0 \le t \le 2\pi$$

15.
$$\mathbf{v} = y \mathbf{i} + x \mathbf{j} + xyz^2 \mathbf{k}$$
, C is the circle $x^2 + y^2 - 2y = 2$, $z = 1$ going around once in the anti-clockwise direction.

In problems 16 to 18, evaluate the line integrals $\int_C f(x, y) dx$ and $\int_C f(x, y) dy$

16.
$$f(x, y) = xy$$
, $x = 3 \cos t$, $y = 3 \sin t$, $0 \le t \le \pi/4$.

17.
$$f(x, y) = x^2 + 2x^2y + 3y^2$$
, $x = t$, $y = 2t^2$, $0 \le t \le 2$

18.
$$f(x, y) = x + y$$
, $x = 2 \cos t$, $y = 3 \sin t$, $0 \le t \le \pi/2$.

In problems 19 to 21, evaluate the line integrals $\int_C f(x, y, z) dx$, $\int_C f(x, y, z) dy$ and $\int_C f(x, y, z) dz$. 19. f(x, y, z) = xyz, $x = 2 \cos t$, $y = 2 \sin t$, z = t, $0 \le t \le \pi/2$.

20.
$$f(x, y, z) = x + y + z$$

20.
$$f(x, y, z) = x + y + z$$
, $x = t$, $y = 2 \sin t$, $z = t$, $0 \le t$.
21. $f(x, y, z) = x^2 - y - z$, $x = t^2$, $1 \le t \le 2$.

21.
$$f(x, y, z) = x^2 - y - z$$
, $x = t$, $y = t$, $z = t^2$, $1 \le t \le 2$.
21. $f(x, y, z) = x^2 - y - z$, $x = t^2$, $y = t$, $z = 2t$, $0 \le t \le 1$.

In problems 22 to 27, evaluate the line integrals $\int_{0}^{\infty} f(x, y) dx + g(x, y) dy.$

22.
$$f(x, y) = y$$
, $g(x, y) = x$, C is $y = 2x^2$ from $(0, 0)$ to $(2, 8)$.

23.
$$f(x, y) = xy$$
, $g(x, y) = x + 2y$. Circle (0, 0) to (2, 8).

23.
$$f(x, y) = xy$$
, $g(x, y) = x + 2y$, C is (i) $y = x - 1$, (ii) $x = y^2 + 1$ from $(1, 0)$ to $(2, 1)$.

24.
$$f(x, y) = y$$
, $g(x, y) = x + 2y$, C is (i) $y = x - 1$, (ii) $x = y^2 + 1$ from 25. $f(x, y) = 2xy^2$, $g(x, y) = 2x + 2y$, G :

25.
$$f(x, y) = 2xy^2$$
, $g(x, y) = 2x + 3y$, C is the parabola $x = y^2$ from $(1, 1)$ to $(3, 5)$.
26. $f(x, y) = y$, $g(x, y) = -2x$, C is given by $x = 3 \cos t$, $y = 2 \sin t$, $0 \le t \le \pi$.

27.
$$f(x, y) = (x + y)/(x^2 + y^2)$$
, $g(x, y) = -(x - y)/(x^2 + y^2)$, C is the circle $x^2 + y^2 = 9$ going around once in the anti-clockwise direction.

In problems 28 to 30, evaluate the line integrals $\int_{C} f dx + g dy + h dz.$

28.
$$f = 2x + y$$
, $g = y^2$, $h = (x + z)$, C is $y^2 = 2x$, $z = x$, $0 \le x \le 2$.

29.
$$f = z$$
, $g = x$, $h = y$, C consists of line segments from $(0, 0, 0)$ to $(1, 2, 3)$ and then from $(1, 2, 3)$

30.
$$f = x/(yz)$$
, $g = y/(xz)$, $h = z/(xy)$, C is given by $x = \cos t$, $y = \sin t$, $z = \cos t$, $\pi/6 \le t \le \pi/3$.

31. Let C be a smooth directed plane curve. Let T and n denote the unit tangent and unit normal fields respectively to C, satisfying
$$\mathbf{n} = \mathbf{T} \times \mathbf{k}$$
. If $\mathbf{u} = f \mathbf{i} + g \mathbf{j}$ and $\mathbf{v} = -g \mathbf{i} + f \mathbf{j}$, show that $\int_C \mathbf{u} \cdot \mathbf{n} \, ds = \int_C \mathbf{v} \cdot \mathbf{T} \, ds$.

In problems 32 to 36, find the work done by the force F in moving a particle from a point P to the point Q.

32.
$$\mathbf{F} = x^2 \mathbf{i} + yz \mathbf{j} + z \mathbf{k}$$
, C is the line segment from $(1, 2, 2)$ to $(3, 4, 2)$.

33.
$$\mathbf{F} = yz \, \mathbf{i} + zx \, \mathbf{j} + xy \, \mathbf{k}$$
, C is the curve with parametric representation $\mathbf{r}(t) = t \, \mathbf{i} + t^2 \, \mathbf{j} + t^3 \, \mathbf{k}$, $1 \le t \le 2$.

34.
$$\mathbf{F} = (2x + y)\mathbf{i} + (4y - x)\mathbf{j}$$
, C is taken once round the triangle with vertices at $(2, 2)$, $(4, 2)$ and $(4, 4)$ taken counter clockwise.

35.
$$\mathbf{F} = 16y \, \mathbf{i} + (3x^2 + 2) \, \mathbf{j}$$
, C is the right half of the ellipse $x^2 + a^2y^2 = a^2$ from $(0, 1)$ to $(0, -1)$.

36.
$$\mathbf{F} = (2x - y - z)\mathbf{i} + (x + y - z^2)\mathbf{j} + (3x - 2y + 4z)\mathbf{k}$$
, C is taken once round the circle $x^2 + y^2 = 16$ in the x-y plane, in the anti-clockwise direction.

37. Find the circulation of
$$\mathbf{F} = e^x[(\sin y) \mathbf{i} + (\cos y) \mathbf{j}]$$
 around the curve C, where C is the rectangle with vertices $(0, 0)$, $(2, 0)$, $(2, \pi/2)$ and $(0, \pi/2)$, taken in that order.

Show that in the problems 38 to 45, the line integrals are independent of path of integration Evaluate the integrals.

38.
$$\int_{P}^{Q} 2xy^2 dx + (2x^2y + 1) dy, P: (-1, 2), Q: (2, 3).$$

39.
$$\int_{P}^{Q} (1 - \sin x \sin y) dx + (1 + \cos x \cos y) dy, P : (\pi/4, \pi/4), Q : (\pi/2, 0).$$

40.
$$\int_{P}^{Q} \frac{-x \, dy + y \, dx}{x^2}$$
, $P: (1, 1), Q: (3, 4)$ on any path not crossing the y-axis.

41.
$$\int_{P}^{Q} (y^3 + 2xy^2) dx + (3xy^2 + 2x^2y + 1) dy, P: (-2, 1), Q: (1, 2),$$

42.
$$\int_{P}^{Q} e^{yz} [\sin y \, dx + (xz \sin y + x \cos y) \, dy + xy \sin y \, dz], \ P: (1, \pi/4, 2), \ Q: (2, \pi/2, 4).$$

43.
$$\int_{P}^{Q} (3x^2 + 2xyz) dx + (1 + x^2z) dy + x^2y dz, P: (1, 1, 1), Q: (-2, -3, -4).$$

44.
$$\int_{P}^{Q} (2xz+y) dx + (x+z) dy + (x^2+y) dz, P: (-1, 2, 3), Q: (2, 2, 4).$$

45.
$$\int_{P}^{Q} yz \cos(x+y-z) (dx+dy-dz) + \sin(x+y-z) (z dy+y dz), P: (\pi/2, 1, 1), Q: (\pi, 2, 1).$$

In problems 46 to 50, find whether the given vector field F is conservative (gradient field). If it is, find the potential function.

46.
$$\mathbf{F} = \cosh(x + y)(\mathbf{i} + \mathbf{j}).$$

47.
$$\mathbf{F} = (2x + ye^{xy})\mathbf{i} + (2y + xe^{xy})\mathbf{j}$$
.

48.
$$\mathbf{F} = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$$
.

49.
$$\mathbf{F} = 2xy\mathbf{i} + (x^2 + 2yz)\mathbf{j} + y^2\mathbf{k}$$
.

50.
$$\mathbf{F} = (y^3 - 3x^2z)\mathbf{i} + 3xy^2\mathbf{j} - x^3\mathbf{k}$$
.

51. Let C be a positively oriented simple closed path enclosing a simply connected region R. Use Green's theorem to show that

area of the region =
$$R = \oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C x \, dy - y \, dx$$
.

In problems 52 to 56, verify Green's theorem by evaluating both integrals.

52. $\oint_C (x+y)dx + x^2dy$, C is the triangle with vertices at (0, 0), (2, 0) and (2, 4), taken in that order.

53. $\oint_C (xy^2 - 2xy) dx + (x^2y + 3) dy$, C is the rectangle with vertices at (-1, 0), (1, 0), (1, 1) and (-1, 1), taken in that order.

54.
$$\oint_C x^3 dy - y^3 dx, C \text{ is the circle } x = 2 \cos \theta, y = 2 \sin \theta, 0 \le \theta \le 2\pi.$$

55.
$$\oint_C (xy^2 + 2xy) dx + x^2 y dy, C \text{ is the boundary of the region enclosing } y^2 = 4x, x = 3.$$

56.
$$\oint_C (x-y) dx + 3xy dy$$
, C is the boundary of the region enclosing $x^2 = 4y$ and $y^2 = 4x$.

In problems 57 to 65, evaluate the line integral using the Green's theorem. The orientation of C is anti-clockwise unless otherwise stated.

57.
$$\oint_C 3x^2y \, dx - 2xy^2 \, dy$$
, C is the boundary of the region $x^2 + y^2 \le 16$, $x \ge 0$, $y \ge 0$.

58.
$$\oint_C y^2 dx + x^2 dy$$
, C is the circle $(x + 1)^2 + (y - 2)^2 = 16$.

59.
$$\oint_C (x^2 + y^2) dx + (5x^2 - 3y) dy$$
, C is the boundary of the region enclosing $x^2 = 4y$, $y = 4$.

60.
$$\oint_C xy^2 dx + 5x^3 dy$$
, C is the rectangle with vertices at (-1, 0), (2, 0), (2, 2) and (-1, 2).

61.
$$\oint_C (x^2 - y^3) dx + (x^3 + y^2) dy, C \text{ is the ellipse } x^2 + 4y^2 = 64.$$

62.
$$\oint_C (y^3 - xy) dx + (xy + 3xy^2) dy$$
, C is the boundary of the region in the first quadrant enclosed by $x = 0$, $y = 1 - x^2$, and $y = x^2$.

63.
$$\oint_C e^x (\sin y \, dx + \cos y \, dy), C \text{ is the ellipse } 4(x+1)^2 + 9(y-3)^2 = 36.$$

64.
$$\oint_C xy \, dx + x^3 dy$$
, C is the boundary of the region enclosed by $y = 0$, $x^2 + y^2 = 4$, $y \ge 0$.

65.
$$\oint_C x^2 y \, dx + y^2 \, dy$$
, C is the boundary of the region enclosed by $y^2 = x$ and $y = x$.

66. Evaluate
$$\int_C x dy - y dx$$
, where C is the line segment joining the points (a_1, b_1) and (a_2, b_2) . Using this result and the result in problem 51, show that the area of a polygon with vertices at (a_1, b_1) , (a_2, b_2) , ..., (a_n, b_n) taken in the anti-clockwise direction is
$$Area = [(a_1b_2 - a_2b_1) + (a_2b_3 - a_3b_2) + ... + (a_{n-1}b_n - a_n b_{n-1}) + (a_nb_1 - a_1b_n)]/2.$$

Use the result of problem 51 to find the area bounded by the given closed curves in problems 67 to 69.

67. Ellipse: $x = a \cos \theta$, $y = b \sin \theta$, $0 \le \theta \le 2\pi$, a and b are positive constants.

68. Circle: $x = a \cos \theta$, $y = a \sin \theta$, $0 \le \theta \le 2\pi$, a is a positive constant.

69. Hypocycloid: $x = a \cos^3 \theta$, $y = a \sin^3 \theta$, a > 0, $0 \le \theta \le 2\pi$.

In problems 70 to 72 evaluate $\int_C (\partial u/\partial n) ds$ using the result given in example 15.38.

70.
$$u = x^2 + y^2$$
, C is the boundary of the region $x^2 + y^2 \le 9$, $x \ge 0$, $y \ge 0$.

71.
$$u = x^3 - xy^2$$
, C is the rectangle with vertices at (1, 1), (3, 1), (3, 4) and (1, 4).

72.
$$u = xy^3 + x^2y^2$$
, C is the circle $x^2 + y^2 = 4$.

In problems 73 and 74, use Green's Theorem to evaluate the double integral in terms of a line integral (choose appropriate functions f or g or f and g).

73.
$$\iint_R y^2 dx dy, R \text{ is the region enclosed by the ellipse } x^2 + 4y^2 = 16.$$

74.
$$\iint_R (y-x) dx dy, R \text{ is the region enclosed by the circle } x^2 + y^2 = 4.$$