SUHU

- > Suhu adalah ukuran yang menyatakan energi panas tersimpan dalam suatu benda.
- > Termometer adalah alat untuk mengukur suhu.
- > Jika suhu meningkat , maka gerakan partikel mempercepat
- > Jika suhu menurun , maka gerakan partikel melambat

Konversi Suhu

AWAL HASIL	Celcius	Reamur	Fahrenheit	Kelvin
Celcius		$C = \frac{5}{4} R$	$C = \frac{5}{9} (F - 32)$	C = K - 273
Reamur	$R = \frac{4}{5} C$		$R = \frac{4}{9} (F - 32)$	$R = \frac{4}{5} (K - 273)$
Fahrenheit	$F = (\frac{9}{5}C) + 32$	$F = (\frac{9}{4} R) + 32$		$F = (\frac{9}{5} (K-273)) + 32$
Kelvin	K = C + 273	$K = (\frac{5}{4}R) + 273$	$K = (\frac{5}{9}(F-32)) + 273$	

Konversi Suhu Antar Termometer

Termometer X Termometer Y

$$\frac{X - X_0}{X_t - X_0} = \frac{Y - Y_0}{Y_t - Y_0}$$

Ket:

X = Suhu yang ditunjuk Termometer

X₀ = Titik tetap bawah Termometer

 $X_t = Titik \ tetap \ atas \ Termometer$

Y = Suhu yang ditunjuk Termometer

 $Y_0 = Titik tetap bawah Termometer$

Y_t = Titik tetap atas Termometer

TERMOMETER RAKSA	TERMOMETER ALKOHOL	
+ Raksa mudah dilihat karena mengkilat	+ Lebih murah daripada termometer raksa	
+ Volume raksa berubah secara teratur ketika terjadi perubahan suhu.	+ Lebih teliti , untuk kenaikkan suhu yang sangat kecil alkohol mengalami perubahan volume yang besar	
+ Raksa tidak membasahi kaca ketika memuai atau menyusut.		
+ Jangkauan suhu raksa cukup lebar (-40°C 350°C)	+ Alkohol dapat mengukur suhu yang sangat dingin (-112°C 78°C)	
+ Raksa dapat terpanasi secara merata sehingga menunjukkan suhu cepat dan tepat.		
 Harganya mahal daripada termometer alkohol 	 Tidak dapat mengukur suhu tinggi, karena titik didihnya rendah (78°C) 	
 Raksa tidak dapat digunakan untuk mengukur suhu yang sangat rendah 	 Membasahi dinding kaca 	
 Air Raksa termasuk zat beracun sehingga berbahaya apabila tabungnya pecah. 	 Alkohol tidak berwarna, sehingga perlu memberi pewarna terlebih dahulu agar dapat dilihat. 	

KALOR

- ➤ Kalor adalah suatu bentuk energi yang berpindah dari benda bersuhu tinggi ke benda bersuhu rendah.
- ➤ Suhu meningkat → Kalor diserap atau diterima
- ➤ Suhu menurun → Kalor dilepas

≻ Kalor Jenis (c)

Kalor jenis adalah kalor yang diperlukan oleh 1 gram zat untuk menaikkan suhunya sebesar 1°C

$$C = \frac{Q}{m \cdot \Delta T}$$

Ket:

C = Kalor jenis zat (J/kg ° C)

Q = Kalor(J)

m = massa zat(kg)

ΔT = Perubahan suhu zat (° C)

Kapasitas Kalor (C)

Kapasitas kalor adalah banyaknya kalor yang diperlukan oleh suau zat untuk menaikkan suhunya sebesar 1° C

$$C = \frac{Q}{\Delta T}$$

Ket:

C = Kapasitas kalor zat (J /° C)

Q = Kalor(J)

 $\Delta T = Perubahan suhu zat (° C)$

≻ Kalor Laten (L)

Kalor laten lebur adalah banyaknya kalor yang diperlukan oleh 1 gram zat untuk mengubah wujudnya dari es menjadi air pada suhu tetap.

Ket:

U = Kalor laten lebur (J /kg)

Q = Kalor(J)

m = massa (kg)

Kalor laten uap adalah banyaknya kalor yang diperlukan oleh 1 gram zat untuk mengubah wujudnya dari air menjadi uap air pada suhu tetap.

$$U = \frac{Q}{m}$$

Ket:

U = Kalor laten uap (J/kg)

Q = Kalor(J)

m = massa (kg)

➤ Menghitung Kalor (Q)

Ket:

Q = Kalor (J)

m = massa (kg)

c = Kalor jenis zat (J/kg° C)

ΔT = Perubahan suhu zat (°C)

Digunakan untuk proses yang

TIDAK mengalami perubahan wujud

$$Q = m \cdot L$$

Ket:

Q = Kalor(J)

m = massa (kg)

L = Kalor laten lebur (J/kg)

Digunakan untuk proses yang **mengalami** perubahan wujud

Q = m . U

Ket:

Q = Kalor(J)

m = massa (kg)

U = Kalor laten uap (J/kg)

Asas Black

"Pada pencampuran dua zat, banyaknya **kalor yang dilepaskan** zat yang suhunya lebih tinggi itu **sama dengan** banyaknya **kalor yang diterima** zat yang mempunyai suhu yang lebih rendah"

$$Q_{lepas} = Q_{terima}$$
 $m_1 \cdot c_1 \cdot (T_1 - T_t) = m_2 \cdot c_2 \cdot (T_t - T_2)$

Ket:

 $\begin{array}{lll} m_1 &= massa\ zat\ 1\ (kg\) \\ c_1 &= kalor\ jenis\ zat\ 1\ (J/kg^\circ C\) \\ T_1 &= Suhu\ zat\ 1\ (^\circ C\) \end{array} \qquad \begin{array}{ll} m_2 &= massa\ zat\ 2\ (kg\) \\ c_2 &= kalor\ jenis\ zat\ 2\ (J/kg^\circ C\) \\ T_2 &= Suhu\ zat\ 2\ (^\circ C\) \end{array}$

 $T_t = \text{Suhu akhir pencampuran zat (°C)} \quad T_t = \text{Suhu akhir pencampuran zat (°C)}$

PEMUAIAN

Pemuaian Panjang

$$\Delta L = \alpha . L_0 . \Delta T$$

$$L = L_0 (1 + \alpha . \Delta T)$$

Ket:

 $\alpha = \text{koefisien muai panjang (/°C atau /K)}$

L₀ = Panjang awal benda (cm)

 $\Delta L = Pertambahan panjang (cm)$

L = Panjang akhir benda (cm)

ΔT = Perubahan suhu (°C atau K)

Pemuaian Luas

$$\Delta A = \beta \cdot A_0 \cdot \Delta T$$

$$A = A_0 (1 + \beta . \Delta T)$$

$$\beta = 2\alpha$$

Ket:

β = koefisien muai luas (/°C atau /K)

 $A_0 = \text{Luas awal benda (cm}^2)$

 $\Delta A = Pertambahan luas (cm²)$

A = Luas akhir benda (cm²)

ΔT = Perubahan suhu (°C atau K)

Pemuaian Volume

$$\Delta V = \gamma . V_0 . \Delta T$$

$$V = V_0 (1 + \gamma . \Delta T)$$

Ket:

γ = koefisien muai volume (/°C atau /K)

 $V_0 = \text{volume awal benda (cm}^3$)

 $\Delta V = Pertambahan volume (cm³)$

V = Volume akhir benda (cm³)

ΔT = Perubahan suhu (°C atau K)

$$\gamma = 3\alpha$$

$$\gamma = 3\beta$$

► Hukum Boyle – Gay Lussac

"Perbandingan antara hasil kali tekanan dan volume gas dengan suhu mutlaknya (satuan Kelvin) adalah konstan"

$$\frac{P \cdot V}{T}$$
 = Konstan

$$\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2}$$

Ket:

 $P_1 = \text{Tekanan gas 1 (N/m}^2)$

 $V_1 = \text{Volume gas 1 (m}^3\text{)}$

 $T_1 = Suhu gas 1 (K)$

 P_2 = Tekanan gas 2 (N/m²)

 V_2 = Volume gas 2 (m^3)

 $T_2 = Suhu gas 2 (K)$

PERPINDAHAN KALOR

➤ Konduksi

Konduksi adalah perpindahan kalor melalui zat perantara dimana partikel-partikel zat perantara tersebut tidak berpindah. Terjadi pertukaran energi kalor secara langsung, contohnya saat ujung paku dipanaskan dengan api dan tangan kita memegang ujung paku yang lain secara langsung, lama-kelamaan ujung paku yang kita pegang menjadi panas.

$$H = \frac{Q}{t} = \frac{k \cdot A \cdot \Delta T}{L}$$

Ket:

H = Jumlah kalor yang merambat (J /s atau watt)

Q = Kalor (J)

t = Selang waktu (sekon)

k = koefisien konduksi (J/ms K)

A = Luas penampang (m²)

 $\Delta T = Perubahan suhu (K)$

L = Panjang batang (m)

Contoh konduksi:

- Benda yang terbuat dari logam akan terasa hangat atau panas jika ujung benda dipanaskan, misalnya ketika memegang kembang api yang sedang dibakar.
- Knalpot motor menjadi panas saat mesin dihidupkan.
- Tutup panci menjadi panas saat dipakai untuk menutup rebusan air.

Konveksi

Konveksi adalah perpindahan panas melalui aliran yang zat perantaranya ikut berpindah. Perpindahan kalor secara konveksi dapat terjadi pada zat cair dan zat gas.

$$H = \frac{Q}{t} = h \cdot A \cdot \Delta T$$

$$H = \text{Jumlah ka}$$

$$Q = \text{Kalor (J)}$$

$$t = \text{Selang wa}$$

$$h = \text{ket:}$$

$$H = \text{Jumlah ka}$$

$$Q = \text{Kalor (J)}$$

$$t = \text{Selang wa}$$

$$h = \text{koefisien}$$

H = Jumlah kalor yang merambat (J /s atau watt)

t = Selang waktu (sekon)

h = koefisien konveksi (J/s m²K)

A = Luas penampang benda (m²)

 $\Delta T = Perubahan suhu (K)$

Contoh konveksi:

- Gerakan naik-turun air ketika dipanaskan.
- Gerakan naik-turun kacang hijau, kedelai, gula, garam, dan lainnya ketika dipanaskan.
- Proses terjadinya angin darat dan angin laut.
- Gerakan gas pada balon udara.
- Asap cerobong pabrik yang membumbung tinggi.

Radiasi

Radiasi adalah perpindahan kalor tanpa melalui zat perantara. Radiasi biasanya disertai cahaya.

$$P = \frac{Q}{t} = e \cdot \sigma \cdot A \cdot T^4$$

P = Daya radiasi (J/s atau watt)

Q = Kalor(J)

t = Selang waktu (sekon)

= Koefisien emisivitas ($0 \le e \le 1$)

 $\sigma = \text{Konstanta Stefan-Boltzmann} (5,67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4)$

A = Luas permukaan benda (m²)

T = Suhu benda(K)

Contoh radiasi:

- Contohnya sinar Matahari yang sampai ke Bumi tidak membutuhkan medium apapun untuk merambat.
- Pakaian menjadi kering ketika dijemur di bawah terik matahari.
- Tubuh terasa hangat ketika berada di dekat api unggun.