Метод окна Парзена

$$w(i,x)=K\Big(rac{
ho(x,x^{(i)})}{h}\Big)$$
, где h — ширина окна, $K(r)$ — ядро, не возрастает и положительно на $[0,1]$.

Метод парзеновского окна фиксированной ширины:

$$a(x; X^{\ell}, h, K) = \arg \max_{y \in Y} \sum_{i=1}^{\ell} [y_i = y] K\left(\frac{\rho(x, x_i)}{h}\right)$$

Метод парзеновского окна переменной ширины:

$$a(x; X^{\ell}, k, K) = \arg\max_{y \in Y} \sum_{i=1}^{\ell} [y_i = y] K\left(\frac{\rho(x, x_i)}{\rho(x, x^{(k+1)})}\right)$$

Оптимизация параметров — по критерию LOO:

- ullet выбор ширины окна h или числа соседей k
- выбор ядра К слабо влияет на качество классификации

Пример: двумерная выборка, два класса $Y = \{-1, +1\}.$

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

h = 0.05

Пример: двумерная выборка, два класса $Y = \{-1, +1\}$.

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 0.2$$

Пример: двумерная выборка, два класса $Y = \{-1, +1\}$.

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

h = 0.3

Пример: двумерная выборка, два класса $Y = \{-1, +1\}$.

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 0.5$$

Пример: двумерная выборка, два класса $Y = \{-1, +1\}.$

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

h = 1.0

Пример: двумерная выборка, два класса $Y = \{-1, +1\}.$

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 5.0$$

Метод потенциальных функций

$$w(i,x) = \gamma^{(i)} K\left(\frac{\rho(x,x^{(i)})}{h^{(i)}}\right)$$

Более простая запись (без ранжирования объектов):

$$a(x; X^{\ell}) = \arg \max_{y \in Y} \sum_{i=1}^{\ell} [y_i = y] \gamma_i K\left(\frac{\rho(x, x_i)}{h_i}\right),$$

где γ_i — веса объектов, $\gamma_i\geqslant 0$, $h_i>0$.

Физическая аналогия:

 γ_i — величина «заряда» в точке x_i ;

 h_i — «радиус действия» потенциала с центром в точке x_i ;

 y_i — знак «заряда» (в случае двух классов $Y = \{-1, +1\}$);

в электростатике $K(r) = \frac{1}{r}$ или $\frac{1}{r+a}$,

для задач классификации нет таких ограничений на K.

Метод потенциальных функций = линейный классификатор

Два класса:
$$Y=\{-1,+1\}.$$

$$a(x;X^\ell)=\arg\max_{y\in Y}\Gamma_y(x)=\mathrm{sign}\big(\Gamma_{+1}(x)-\Gamma_{-1}(x)\big)=$$

$$=\mathrm{sign}\sum_{i=1}^\ell\gamma_iy_i\,\mathsf{K}\left(\frac{\rho(\mathsf{x},\mathsf{x}_i)}{h_i}\right).$$

Сравним с линейной моделью классификации:

$$a(x) = \operatorname{sign} \sum_{i=1}^{n} \gamma_{i} f_{j}(x).$$

- \bullet функции $f_j(x) = y_j K(\frac{1}{h_i} \rho(x, x_j))$ признаки объекта x
- γ_i веса линейного классификатора
- $n = \ell$ число признаков равно числу объектов обучения

Резюме

- Метрические классификаторы одни из самых простых.
 Качество классификации определяется качеством метрики.
- Что можно обучать:
 - число ближайших соседей k или ширину окна h;
 - веса объектов;
 - набор эталонов (prototype selection);
 - метрику (distance learning, similarity learning);
 - веса признаков;
 - функцию ядра K(r).