opamp_regulator_1.sqproj

The purpose of a voltage regulator is to provide a constant DC voltage to the load in spite of variations in the input DC voltage or in the load. In the circuit shown in the figure, the "control element" (Q_1) is in series with the load R_L , and this configuration is therefore called a "series mode regulator." The Zener diode provides a reference voltage. The resistor R is selected in order to bias the Zener diode:

$$I_{\text{bias}} = \frac{V_o - V_Z}{R} \,. \tag{1}$$

Assuming the Op Amp to be operating in the linear region, we have

$$V_{+} \approx V_{-} \Rightarrow V_{Z} = \frac{R_{2}}{R_{1} + R_{2}} V_{o}, \qquad (2)$$

i.e.,
$$V_o = V_Z \left(1 + \frac{R_1}{R_2} \right)$$
. (3)

Note that the above equation does not involve the input voltage V_s . If V_s changes from V_s to $(V_s + \Delta V_s)$, the change ΔV_s gets absorbed in the V_{CE} of the transistor. In that sense, the output is isolated from the input by the transistor.

Exercise Set

- 1. For $V_s=15\,V$, $V_Z=2.9\,V$, $R_1=10\,\mathrm{k}\Omega$, $R_2=5\,\mathrm{k}\Omega$, $R=5\,\mathrm{k}\Omega$, $R_L=100\,\Omega$, what is the expected value of V_o ?
- 2. Vary V_s from 13 V to 16 V, keeping the other parameters the same as before, and obtain a plot of V_o , V_{BE} , V_+ , V_- versus V_s by simulation.

3. For a fixed value of V_s (say, 15 V), vary R_L from 100 Ω to 10 k Ω , and obtain a plot of V_o , V_{BE}, V_+, V_- versus $\log R_L$ by simulation.