SinGAN: Learning a Generative Model from a Single Natural Image (CVPR 2019)

Sungwoo Son

Rehman Abdur

Rene Solzbacher

Overview of SinGAN

Reproduced Work (Random Samples)

Reproduced Results

Reproduced Work (Paint to Image)

Reproduced Work (Editing)

SinGAN Example

Reproduced Results

Training

Image

Reproduced Work (Super Resolution)

SinGAN Example

g

Training Image

Input

Output

Reproduced Results

Reproduced Work (Animation)

SinGAN Example

Reproduced Results

- Quality depends on subject
- Not all subjects are suitable

Limitations (Aspect Ratio)

- Only some aspect ratio changes work
- Quality is dependent on subject and image composition
- Some changes may look good but are illogical

Limitations (Paint to Image)

Training Image

Input

Output

Training Image

Input

Paint to Image Improvement

First Generation

Training Image

Second Generation (Using output as input image)

Output at scale 1

Output at scale 2

Output at scale 3

Proposed Work

- x Limited to 250 pixels (longest side)
- x Small images are less useful

Generate high resolution output images with SinGAN

- Increase image dimensions
- Keep comparable image quality
- Keep acceptable training times (currently 40-60 min)
- Change scale distribution
- Try image splicing
- Change hyperparameter
- Modify inner structure of generator

SinGAN Image Size

- SinGAN resizes training image to 250 pixels (longest side)
- Scales are based on resized image dimensions


```
> = 0 = {Tensor: (1, 3, 25, 40)} ten

> = 1 = {Tensor: (1, 3, 32, 51)} ten

> = 2 = {Tensor: (1, 3, 40, 64)} ten

> = 3 = {Tensor: (1, 3, 50, 80)} ten

> = 4 = {Tensor: (1, 3, 63, 100)} ten

> = 5 = {Tensor: (1, 3, 79, 126)} ten

> = 6 = {Tensor: (1, 3, 100, 158)} ten

> = 7 = {Tensor: (1, 3, 125, 199)} ten

> = 8 = {Tensor: (1, 3, 157, 250)} ten
```


Input Image (585 x 366)

Resized Image (250 x 157)

Scale Distribution

- Lower scales (0,1) produce
 major structural changes
- Higher scales produce fine detail
- Scales are linearly implemented
- At each scale, the image is upscaled the same amount
- Anything beyond scale 2/3 produces too little change

Investigate different rescaling strategy that focuses on coarse scales

Author's High-Resolution Proposal

- 1. Train model to generate random samples
- 2. Train super resolution model to up-sample selected image
- ✓ SinGAN super resolution restores much detail
- x Super resolution becomes problematic for large upscaling

Original crop

Down sampled (250px)

SR from 250px crop

High-Resolution (Image Splicing)

Structures largely remain the same towards the image edges

Single generation

- 1. Split image into sections
- 2. Train model for each section
- 3. Generate random sample for each section
- 4. Train high resolution model
- 5. Splice sections together

Individual generation

Values to fine-tune SinGAN

Receptive field size default: 11x11px

Rescaling resolution default: 250px

• Conv kernels default: 32

• Learning rate default: 0.0005

• Epochs per scale default: 2000

- Option to change the behaviour and performance of SinGAN
- SinGAN is optimized for images of 250px size
- We want to optimize it for images of 500px size

741 x 486

400 x 263

741 x 486

400 x 263

741 x 486

400 x 263

- Hyperparameters that can increase quality:
 - Padding size
 - Scaling factor for up/down sampling images
 - Learning rate
 - Reconstruction loss weight (alpha)

Future Work

- Automate hyperparameters to adjust to image size automatically
 - SinGAN is only optimized for 250px images
 - Only basic starting parameters need to be set by user, the rest is automatically scaled for the desired image resolution

Modify Generator Structure

- Up-sampling in the structure and outside the structure
- Use Resnet for conformity to the original training image

Thank you