Bit Sequence Compression

Swanith Upadhye (23/04/2024)

Outline

- Motivation
- Shannon's Source Coding theorem
- Huffman Coding
- Examples
- Alternatives and Scope?

References

- Matthew V. Mahoney, "Text Compression as a Test for Artificial Intelligence",
 AAAI/IAA, 1999(https://api.semanticscholar.org/CorpusID:1023392)
- https://en.wikipedia.org/wiki/Shannon%27s_source_coding_theorem
- https://en.wikipedia.org/wiki/Huffman_coding
- https://chat.openai.com/

Introduction

"Degree" of randomness of a sequence of bits.(Disorder)

- Flip side, large compression → better info.
- Especially text compressors⁽¹⁾:
 - Human text-prediction tests 1.3 bits/char
 - Best algorithms 1.87 bits/char
- AI Test

Shannon's Source Coding

- Lossless Compression
- N iid random variable, each with entropy H if compressed into fewer than NH (for large N) bits guarantees loss of information.
- Theoretical limit to lossless compressibility
- Insight to the proof:, and
- Problems arise: as discussed in class.
- Incompressability → Randomness

RLE Technique

For a sequence:

111110000111...

Compressed:

$$(5) \times 1$$
, $(4) \times 0$, $(3) \times 1$,.....

- Example:code
- Problems? Merits?

H1)Huffman Coding

- Highly compressibility
- How to?
 - Give smallest bit seq. to most frequent character
 - Prefix code to avoid overlapping messages:
- Prefixing Eg: suppose $a \rightarrow 0$, $b \rightarrow 1$, $c \rightarrow 01$

Then 0101: either abab or abc or cab or cc.

H2) Example

Input (A, W)	Symbol (a_i)	а	b	С	d	е	Sum
	Weights (w _i)	0.10	0.15	0.30	0.16	0.29	= 1
Output C	Codewords (c_i)	010	011	11	00	10	
	Codeword length (in bits) (l_i)	3	3	2	2	2	
	Contribution to weighted path length $(l_i \ w_i)$	0.30	0.45	0.60	0.32	0.58	L(C) = 2.25
Optimality	Probability budget (2^{-l_i})	1/8	1/8	1/4	1/4	1/4	= 1.00
	Information content (in bits) $(-\log_2 w_i) \approx$	3.32	2.74	1.74	2.64	1.79	
	Contribution to entropy (-w _i log ₂ w _i)	0.332	0.411	0.521	0.423	0.518	H(A) = 2.205

H3) Prefix tree

https://demo.tinyray.com/huffman

H4)Huffman Bit Seq

Problem?

- https://demo.tinyray.com/huffman
- How to approach? → Repeating Pattern naming maybe?

Closing Remarks

- Compression problem → Pattern Recognition problem(AI)
 - Eg: Arithmetic (N point correlator)
- Some methods more suited to particular bit seq
- Randomness dispute: Unsettled
 - (Hidden patterns? Other techniques?)