

第7章

网络安全

7.1	网络安全问题概述
7.2	两类密码体制
7.3	鉴别
7.4	密钥分配
7.5	互联网使用的安全协议
7.6	系统安全: 防火墙与入侵检测
7.7	一些未来的发展方向

7.1 网络安全问 题概述

7.1.1	计算机网络面临的安全性威胁
7.1.2	安全的计算机网络
7.1.3	数据加密模型

7.1.1 计算机网络面临的安全性威胁

两大类威胁:被动攻击和主动攻击。

被动攻击

- 指攻击者从网络上窃听他人的通信内容。
- 通常把这类攻击称为截获。
- 攻击者只是观察和分析某一个协议数据单元 PDU,以便了解所交换 的数据的某种性质,但不干扰信息流。
- 这种被动攻击又称为流量分析 (traffic analysis)。

主动攻击

主要有:

- 1. 篡改:故意篡改网络上传送的报文。这种攻击方式有时也称为<mark>更改报</mark> 文流。
- 2. <mark>恶意程序</mark> (rogue program): 种类繁多,主要包括: 计算机病毒、 计算机蠕虫、特洛伊木马、逻辑炸弹、后门入侵、流氓软件等。
- 3. 拒绝服务 DoS (Denial of Service): 指攻击者向互联网上的某个服务器不停地发送大量分组,使该服务器无法提供正常服务,甚至完全瘫痪。

分布式拒绝服务 DDoS

- 若从互联网上的成百上干的网站集中攻击一个网站,则称为分布式拒 绝服务 DDoS (Distributed Denial of Service)。
- 有时也把这种攻击称为网络带宽攻击或连通性攻击。

计算机网络通信安全的目标

- 对于主动攻击,可以采取适当措施加以检测。
- 对于被动攻击,通常是检测不出来的。
- 计算机网络通信安全的目标:
 - 1. 防止分析出报文内容和流量分析。
 - 2. 防止恶意程序。
 - 3. 检测更改报文流和拒绝服务。
- 对付被动攻击:加密技术。
- 对付主动攻击:加密技术 + 鉴别技术。

- 网络的安全性是不可判定的。
- 一个安全的计算机网络应达到四个目标:
 - 1. 保密性
 - 2. 端点鉴别
 - 3. 信息的完整性
 - 4. 运行的安全性

- 只有信息的发送方和接收方才能懂得所发送 信息的内容。
- 是网络安全通信的最基本的内容, 也是对付 被动攻击必须具备的功能。
- 需要使用各种密码技术。

- 网络的安全性是不可判定的。
- 一个安全的计算机网络应达到四个目标:
 - 1. 保密性
 - 2. 端点鉴别
 - 3. 信息的完整性
 - 4. 运行的安全性

- 鉴别信息的发送方和接收方的真实身份。
- 在对付主动攻击中是非常重要的。

- 网络的安全性是不可判定的。
- 一个安全的计算机网络应达到四个目标:
 - 1. 保密性
 - 2. 端点鉴别
 - 3. 信息的完整性
 - 4. 运行的安全性

- 信息的内容未被篡改过。
- 在应对主动攻击中是必不可少的。
- 信息的完整性与端点鉴别往往是不可分割的。
- 鉴别同时包含了端点鉴别和报文完整性。

- 网络的安全性是不可判定的。
- 一个安全的计算机网络应达到四个目标:
 - 1. 保密性
 - 2. 端点鉴别
 - 3. 信息的完整性
 - 4. 运行的安全性

- 系统能正常运行并提供服务。
- 访问控制 (access control) 对计算机系统 的安全性是非常重要的。
- 必须对访问网络的权限加以控制,并规定每个用户的访问权限。

7.1.3 数据加密模型

密钥

- 加密和解密用的<mark>密钥 K (key) 是一串秘密的字符串(即比特串)。</mark>
- 明文通过加密算法 E 和加密密钥 K 变成密文 Y:

$$Y = E_{\kappa}(X)$$

(7-1)

接收端利用解密算法 D 运算和解密密钥 K 解出明文 X。解密算法是加密算法的逆运算。

$$D_{K}(Y) = D_{K}(E_{K}(X)) = X$$

(7-2)

- 加密密钥和解密密钥可以一样,也可以不一样。
- 密钥通常由密钥中心提供。
- 当密钥需要向远地传送时,一定要通过另一个安全信道。

一些重要概念

- 密码编码学 (cryptography):密码体制的设计学。
- 密码分析学 (cryptanalysis): 在未知密钥的情况下从密文推演出明 文或密钥的技术。
- 密码编码学与密码分析学合起来即为密码学 (cryptology)。

一些重要概念

- 如果不论截取者获得了多少密文,但在密文中都没有足够的信息来唯一地确定出对应的明文,则这一密码体制称为无条件安全的,或称为理论上是不可破的。
- 如果密码体制中的密码不能被可使用的计算资源破译,则这一密码体制称为在计算上是安全的。

7.2 两类密码体 制 7.2.1 对称密钥密码体制

7.2.2 公钥密码体制

7.2.1 对称密钥密码体制

加密密钥与解密密钥都使用相同密钥的密码体制。

数据加密标准 DES

- DES 属于对称密钥密码体制,是一种分组密码。
- 在加密前, 先对整个明文进行分组。每一个组长为 64 位。
- 然后对每一个 64 位 二进制数据进行加密处理,产生一组 64 位密文数据。
- 最后将各组密文串接起来,即得出整个的密文。
- 使用的密钥为64位(实际密钥长度为56位,有8位用于奇偶校验)。

DES 的保密性

- 仅取决于对密钥的保密,其算法是公开的。
- 严重问题: DES 密钥长度较短。
- 现在已经设计出搜索 DES 密钥的专用芯片。56 位 DES 已不再认为 是安全的了。

三重 DES

- 使用两个 56 位的密钥。
- 把一个 64 位明文用一个密钥加密,再用另一个密钥解密,然后再使用第一个密钥加密,即

$$Y = DES_{K_1}(DES^{-1}_{K_2}(DES_{K_1}(X)))$$
 (7-3)

高级加密标准 AES

- 2002 年成为美国政府加密标准。现在是 ISO/IEC 18033-3 标准。
- 高级加密标准 AES (Advanced Encryption Standard) 是一种分组密码,分组长度为 128 位。
- 有三种加密标准,其密钥分别为 128 位、192 位和 256 位。
- 加密步骤复杂,运算速度比 3DES 快得多,安全性也大大加强。

7.2.2 公钥密码体制

- 又称为公开密钥密码体制。
- 使用不同的加密密钥与解密密钥。
- 这种加密体制又称为非对称密钥密码体制。
- 公钥密码体制产生的主要原因:
 - 1. 对称密钥密码体制的密钥分配问题。
 - 2. 对数字签名的需求。
- 典型: RSA 体制, 一种基于数论中的大数分解问题的体制。

公钥密码体制

加密密钥与解密密钥

- 加密密钥 PK (public key, 即公钥): 公开。
- 解密密钥 SK (secret key, 即私钥或秘钥):需要保密。
- 加密算法 E 和解密算法 $D: \Delta T$ 。
- 虽然私钥 SK 是由公钥 PK 决定的,但却不能根据 PK 计算出 SK。

公钥算法的特点

● (1) 密钥对产生器产生出接收者 B 的一对密钥:

加密密钥 PK_B 和 解密密钥 SK_B。

加密密钥 PKB 就是接收者 B 的公钥,向公众公开。

解密密钥 SK_B 就是接收者 B 的私钥,对其他任何人都保密。

(2) 发送者 A 用 B 的公钥 PK_B 对明文 X加密 (E运算), 然后发送给 B。

$$Y = E_{\mathrm{PK}_{\mathrm{B}}}(X)$$

(7-3)

接收者 B 用自己的 Λ 钥 SK_B解 $\overline{\mathbf{x}}$ (D运算),即可恢复出明文:

$$D_{SK_{R}}(Y) = D_{SK_{R}}(E_{PK_{R}}(X)) = X$$

(7-4)

公钥算法的特点

- (3) 从已知的 PK_B 实际上不可能推导出 SK_B, 即从 PK_B 到 SK_B 是 "计算上不可能的"。
- (4) 加密密钥是公开的,但不能用来解密,即:

$$D_{\mathrm{PK}_{\mathrm{R}}}(E_{\mathrm{PK}_{\mathrm{R}}}(X)) \neq X$$

(7-5)

(7-6)

● (5) 加密和解密运算可以对调,即加密和解密是互逆的:

$$E_{PK_{R}}(D_{SK_{R}}(X)) = D_{SK_{R}}(E_{PK_{R}}(X)) = X$$

公开密钥与对称密钥的区别

- 使用对称密钥:
 - ◆ 在通信信道上可以进行一对一的双向保密通信。
 - ◆ 这种保密通信仅限于持有此密钥的双方。
- 使用公开密钥:
 - ◆ 在通信信道上可以是多对一的单向保密通信。
 - ◆ 例如:很多顾客都向同一个网站发送各自的信用卡信息。

注意

任何加密方法的安全性取决于密钥的长度,以及攻破密文所需的计算量。

公钥加密算法的开销较大,不会使传统密码体制被弃用。

7.3 鉴别

7.3.1报文鉴别7.3.2实体鉴别

7.3.1 报文鉴别

- 鉴别 (authentication) 是网络安全中一个很重要的问题。
- 鉴别包括:

实体鉴别

- 鉴别发信者,防止冒充者。
- ·实体:发信的人或进程。
- 也常称为端点鉴别。

鉴别报文的完整性

• 报文未被他人篡改过。

报文鉴别通常包含:鉴别报文的发送者,鉴别报文的完整性。

7.3.1 报文鉴别

鉴别与加密不同

- 加密可以实现鉴别。
- 但许多报文不需要加密,但需要鉴别。

鉴别与授权不同

· 授权 (authorization) 涉及的问题是:所进行的过程是否被允许(如是否可以对某文件进行读或写)。

关键: 没有其他人能够持有 A 的私钥 SK_A。

可保证机密性的数字签名

- 先后进行两次 D运算和两次 E运算,运算量太大,花费非常多的 CPU 时间。 目前普遍使用开销小得多的对称密钥加密。
- 要实现数字签名必须使用公钥密码,但一定要设法减小公钥密码算法的开销。

2. 密码散列函数

- 散列函数(又称为杂凑函数,哈希函数)在计算机领域中广泛使用。
- 符合密码学要求的散列函数又常称为密码散列函数 (cryptographic hash function)。
- 密码散列函数 *H(X)* 应具有以下<mark>四个特点:</mark>
 - 1. 结果的长度应较短和固定。
 - 2. 应具有很好的抗碰撞性,避免不同的输入产生相同的输出。
 - 3. 应是单向函数(one-way function),不能逆向变换。
 - 4. 其他特性:输出的每一个比特都与输入的每一个比特有关;仅改动输入的一个比特,输出也会相差极大;包括许多非线性运算等。

密码散列函数是单向的

实用的单向密码散列函数

- MD5: Message Digest 5, 报文摘要的第 5 个版本。
- SHA-1: Secure Hash Algorithm,安全散列算法。
- SHA-1 比 MD5 更安全,但计算起来却比 MD5 要慢些。
- 1995 年发布的新版本 SHA-1 [RFC 3174] 在安全性方面有了很大的改进。

MD5 算法

● MD5 的设计者 Rivest 曾提出一个猜想:

根据给定的 MD5 报文摘要代码,要找出一个与原来报文有相同报文摘要的另一报文,其难度在计算上几乎是不可能的。

基本思想:用足够复杂的方法,使报文摘要代码中的每一位都与原来报文中的每一位有关。

MD5 算法计算步骤

- 1. 附加: 把任意长的报文按模 264 计算其余数 (64位) , 追加在报文的后面。
- 2. 填充: 在报文和余数之间填充 1~512 位,使得填充后的总长度是 512 的整数倍。填充的首位是 1,后面都是 0。

MD5 算法计算步骤

- 3. 分组:把追加和填充后的报文分割为多个 512 位的数据块,每个 512 位的报文数据再分成 4 个 128 位的数据块。
- 4. 计算: 将 4 个 128 位的数据块依次送到不同的散列函数进行 4 轮计算。每一轮又都按 32 位的小数据块进行复杂的运算。一直到最后计算出 MD5 报文摘要代码(128 位)。

在2004年,中国学者王小云发表了轰动世界的密码学论文,证明可以用系统的方法找出一对报文,这对报文具有相同的 MD5 报文,而这仅需 15 分钟,或不到 1 小时。MD5 的安全性就产生了动摇。随后,又有许多学者开发了对MD5 实际的攻击。MD5 最终被安全散列算法 SHA 标准所取代。

安全散列算法 SHA-1

- 安全散列算法 SHA (Secure Hash Algorithm): 由美国标准与技术协会 NIST 提出的一个散列算法系列。
- 和 MD5 相似,但其散列值的长度为 160 位。
- SHA-1 也是先把输入报文划分为许多 512 位长的数据块,然后经过复杂运算后得出散列值。

但 SHA-1 后来也被证明其实际安全性并未达到设计要求,并且也曾被王小云教授的研究团队攻破。谷歌也宣布了攻破 SHA-1 的消息。许多组织都已纷纷宣布停用 SHA-1。

安全散列算法 SHA-1

- SHA-1 已被 SHA-2、SHA-3 所替代。
- SHA-2 的多种变型:
 SHA-224, SHA-256, SHA-384, SHA-512。
- SHA-3 的多种变型:
 SHA3-224, SHA3-256, SHA3-384, SHA3-512。
- SHA-3 采用了与 SHA-2 完全不同的散列函数。

目前,密码学家尚无法把一个任意已知的报文 X,篡改为具有同样 MD5 或 SHA-1 散列值的另一报文 Y。

3. 用报文鉴别码实现报文鉴别

● 散列函数问题:可以<u>防篡改,但不能防伪造,不能真正实现报文鉴别</u>。

3. 用报文鉴别码实现报文鉴别

● 解决方法:采用报文鉴别码 MAC。

把双方共享的密钥 K与报文 X进行拼接,然后进行散列运算。 散列运算得出的结果为固定长度的 H(X + K),称为报文鉴别码 MAC (Message Authentication Code)。

用报文鉴别码 MAC 鉴别报文

- 只要入侵者不掌握密钥 K, 就无法伪造 A 发送的报文 (因为无法伪造 A 的 MAC)。
- 鉴别过程并没有执行加密算法,消耗的计算资源少。

这样的报文鉴别码称为数字签名或数字指纹。

HMAC 与 MAC 不同

MAC

- ・把密钥 K作为计算 MAC 的参数。
- ·可以使用多种计算 MAC 的算法。

HMAC (Hashed MAC)

- ・把密钥 K拼接在明文后面。
- 使用密码散列算法对其进行运算。
- · 得出的散列值就是 HMAC

使用已签名的报文鉴别码 MAC 对报文鉴别

问题:如何分发共享密钥 K?解决:采用公钥系统。

- 没有对报文进行加密,而是对很短的散列 H(X) 进行 D运算。
- 入侵者没有 A 的私钥, 因此不可能伪造出 A 发出的报文。

使用已签名的报文鉴别码 MAC 对报文鉴别

● 问题:如何分发共享密钥 K? 解决:采用公钥系统。

- 没有对报文进行加密,而是对很短的散列 *H(X)* 进行 *D* 运算。
- 入侵者没有 A 的私钥,因此不可能伪造出 A 发出的报文。

7.4.2 实体鉴别

- 实体鉴别与报文鉴别不同。
- 报文鉴别:对每一个收到的报文都要鉴别报文的发送者。
- 实体鉴别:在系统接入的全部持续时间内,对和自己通信的对方实体只需验证一次。

最简单的实体鉴别过程

● 使用共享的<mark>对称密钥 K_{AB} 实现实体鉴别</mark>。

存在明显漏洞:不能抵抗重放攻击。

重放攻击 (replay attack): 入侵者 C 不需要破译报文,而是直接把由 A 加密的报文发送给 B, 使 B 误认为 C 就是 A。B 就会向伪装成 A 的 C 发送许多本来应当发给 A 的报文。

使用不重数进行鉴别

不重数 (nonce): 是一个不重复使用 的大随机数,即 "一次一数"。

B

由于不重数不能重 复使用, 所以 C 在进行重放攻击时 无法重复使用所截 获的不重数。

使用公钥体制进行不重数鉴别

假冒攻击

- C 冒充是 A,发送报文给 B,说:"我是 A"。
- B 选择一个不重数 R_B, 发送给 A, 但被 C 截获了。
- C 用自己的私钥 SK_C 冒充是 A 的私钥,对 R_B 加密,并发送给 B。
- B向A发送报文,要求对方把解密用的公钥发送过来,但这报文也被C 截获了。
- C 把自己的公钥 PK_C 冒充是 A 的公钥发送给 B。
- B 用收到的公钥 PK_C 对收到的加密的 R_B 进行解密, 其结果当然正确。
 于是 B 相信通信的对方是 A, 接着就向 A 发送许多敏感数据, 但都被 C 截获了。

中间人攻击

可见,公钥的分配以及认证公钥的真实性是一个非常重要的问题。

7.4 密钥分配

7.4.1	对称密钥的分配
7.4.2	公钥的分配

7.4 密钥分配

- 安全性:完全基于密钥的安全保护上。
- 密钥管理包括:密钥的产生、分配、注入、验证和使用。
- 密钥分配是密钥管理中最大的问题。
- 密钥必须通过最安全的通路进行分配。
- 网外分配方式:派非常可靠的信使携带密钥分配给互相通信的用户。
- 网内分配方式:密钥自动分配。

7.4.1 对称密钥的分配

- 常用方式:设立密钥分配中心 KDC (Key Distribution Center)。
- KDC 任务: 给需要进行秘密通信的用户临时分配一个会话密钥(仅使用一次)。
- 用户 A 和 B 都是 KDC 的登记用户,并已经在 KDC 的服务器上安装 了各自和 KDC 进行通信的主密钥 (master key) K_A 和 K_B。
- 主密钥可简称为密钥。

KDC 对会话密钥 KAB 的分配

注意: 在网络上传送密钥时, 都是经过加密的。解密用的密钥都不在网上传送。

KDC 对会话密钥 K_{AB} 的分配

- 为防止重放攻击,KDC 还可在报文中加入时间戳。
- 会话密钥 K_{AB} 是一次性的,因此保密性较高。
- KDC 分配给用户的密钥 K_A 和 K_B ,应定期更换,以减少攻击者破译密钥的机会。

对称密钥分配协议: Kerberos

- 目前最出名的是 Kerberos V5。
- 既是鉴别协议,同时也是 KDC,是互联网建议标准。
- 使用比 DES 更加安全的高级加密标准 AES 进行加密。
- 使用两个服务器:
 - ◆ 鉴别服务器 AS (Authentication Server)
 - ◆ 票据授予服务器 TGS (Ticket-Granting Server)。
- 只用于客户与服务器之间的鉴别,不用于人对人的鉴别。

Kerberos 工作原理

Kerberos 工作原理

Kerberos 工作原理

Kerberos 要求"松散的"同步

- Kerberos 要求所有使用 Kerberos 的主机必须在时钟上进行松散的 同步。
- 松散的同步:要求所有主机的时钟误差不能太大,例如,不能超过 5 分钟的数量级。这个要求是为了防止重放攻击。

7.4.2 公钥的分配

- 在公钥密码体制中,如果每个用户都具有其他用户的公钥,就可实现安全通信。
- 但不能随意公布用户的公钥,因为:
 - ◆ 无法防止假冒和欺骗。
 - ◆ 使用者也无法确定公钥的真正拥有者。
- 方法:借助可信任的第三方机构。

认证中心 CA (Certification Authority)

- 可信任的第三方机构。
- 负责签发数字证书。
- 一般由政府出资建立。

数字证书 (digital certificate)

- 有时也简称为证书。
- 是对公钥与其对应的实体 (人或机器) 进行绑定的一个证明,因此它常称为公钥证书。
- 每个证书中写有公钥及其拥有者的标识信息(例如:人名、地址、 电子邮件地址或 IP 地址等)。
- 更重要的是: 证书中有 CA 使用自己私钥的数字签名。
- 把 CA 的数字签名和未签名的 B 的证书放在一起,就最后构成了已签名的 B 的数字证书。
- 证书被 CA 进行了数字签名,是不可伪造的。

数字证书 (digital certificate)

- 任何用户都可从可信任的地方(如代表政府的报纸)获得认证中心CA的公钥,以验证证书的真伪。
- 数字证书是公开的,不需要加密。

已签名的 B 的数字证书的产生过程

核实: A 拿到 B 的数字证书后,使用数字证书上给出的 CA 的公钥,对数字证书中 CA 的数字签名进行 E运算,得出一个数值。再对 B 的数字证书 (CA 数字签名除外的部分)进行散列运算,又得出一个数值。比较这两个数值。若一致,则数字证书是真的。

X.509 数字证书

- 数字证书的格式必须标准化。
- ITU-T 制定了 X.509 协议标准, 描述证书的结构。
- IETF 采用 X.509 V3 作为互 联网的建议标准。
- X.509 又称为互联网公钥基础结构 PKI (Public Key Infrastructure)。

版本号	区分 X.509 不同版本
序列号	CA 发放,唯一
签名算法	签署证书所使用的算法和参数
发行者	签发者的唯一标识符
有效期	包括起始时间和终止时间
主体名 (或主题名)	公钥和数字证书拥有者的唯一标识符
公钥	数字证书拥有者的公钥和使用算法的标识符
发行者 ID	任选,唯一,标识发行者
主体 ID	任选,唯一,标识证书持有者
扩展域	扩充信息
认证机构签名	用 CA 私钥对证书签名

认证系统

- X.509 提出: 把多级认证中 心链接起来的,构成一个树 状的认证系统。
- 末端是用户。
- 最高一级的认证中心都称为根认证中心 (Root CA),是公认可信的认证中心(或无条件信任的),且其公钥是公开的。

可以有不止一个根 CA。 从根 CA 向下的所有链接都称为信任链。

证书链

与信任链对应的是证书链。

最顶层的根证书的数字签名是自签名的(即自己的私钥给自己签名)。

证书撤销与更新

- 证书不是永久有效,它可以过期,也可以被吊销。
- 每一个 CA 应当有一个公布于众的、用本 CA 的私钥签名的证书撤销 名单,并定期更新。
- 有很多原因导致证书被吊销,例如:
 - 1. 用户私钥被盗或遗失。
 - 2. 用户不再被该 CA 认证。
 - 3. CA 签署用户证书的私钥被泄漏。

7.5 互联网使用 的安全协议

7.5.1	网络层安全协议
7.5.2	运输层安全协议
7.5.3	应用层安全协议

网络层安全协议 7.6.1

- IP 几乎不具备任何安全性,不能保证:
 - 数据机密性
 - 数据完整性
 - 3. 数据来源认证
- 由于其在设计和实现上存在安全漏洞,使各种攻击有机可乘。例如: 攻击者很容易构造一个包含虚假地址的 IP 数据报。
- IPsec 提供了标准、健壮且包含广泛的机制保证 IP 层安全。

1. IPsec 协议族概述

- IPsec: IP security, IP 安全。
- IPsec 不是一个单一协议,而是能够在 IP 层提供互联网通信安全的协议族。
- IPsec 是个框架:允许通信双方选择合适的算法和参数(例如,密钥长度)。
- 为保证互操作性, IPsec 还包含了所有 IPsec 都必须实现的一套加密算法。

IPsec 由三部分组成

- 1. IP 安全数据报格式:两个协议
 - 鉴别首部 AH (Authentication Header) 协议
 - 封装安全有效载荷 ESP (Encapsulation Security Payload) 协议
- 2. 加密算法:三个协议
- 3. 互联网密钥交换 IKE (Internet Key Exchange) 协议

IPsec 由三部分组成

- AH 协议提供源点鉴别和数据完整性,但不能保密。
- ESP 协议提供源点鉴别、数据完整性和保密。

AH 协议的功能都已包含在 ESP 协议中。 使用 ESP 协议就可以不使用 AH 协议。

- IPsec 支持 IPv4 和 IPv6。
- 使用 ESP 或 AH 协议的 IP 数据报称为 IP 安全数据报(或 IPsec 数据报)。

IP 安全数据报有两种工作方式

- 在整个<mark>运输层报文段</mark>的前后分别添加若干 控制信息,再加上 IP 首部。
- 适合于主机到主机之间的安全传送。
- 需要使用 IPsec 的主机都运行 IPsec 协议。
- 在原始的 IP 数据报的前后分别添加若干控制信息,再加上新的 IP 首部。
- 需要在 IPsec 数据报所经过的所有路由器上 都运行 IPsec 协议。
- 隧道方式常用来实现虚拟专用网 VPN。

IP 安全数据报的 IP 首部是不加密的

- 无论使用哪种方式,最后得出的 IP 安全数据报的 IP 首部都是不加密的。
- 安全数据报:指数据报的数据部分是经过加密的,并能够被鉴别的。
- 通常把数据报的数据部分称为数据报的有效载荷 (payload)。

2. 安全关联

 在发送 IP 安全数据报之前,在源实体和目的实体之间必须创建一条 网络层的逻辑连接。此逻辑连接叫做安全关联 SA (Security Association)。

> IPsec 把传统互联网无连接的网络层转换为 具有逻辑连接的网络层。

安全关联的特点

- 安全关联是从源点到终点的单向连接,它能够提供安全服务。
- 在安全关联 SA 上传送的就是 IP 安全数据报。
- 如要进行双向安全通信,则两个方向都需要建立安全关联。
- 若 n 个员工进行双向安全通信,一共需要创建 (2 + 2n) 条安全关联 SA。

路由器 R₁ 到 R₂ 的安全关联 SA

假定公司总部的主机 H₁ 要和分公司的主机 H₂ 通过互联网进行安全通信。 公司总部与分公司之间的安全关联 SA 是在路由器 R₁ 和 R₂ 之间建立的。

主机 H₁ 到 H₃ 之间的通信

假定公司总部的主机 H₁ 要和内部的主机 H₃ 进行通信。 由于都在公司内部,不需要加密,因此不需要建立安全关联。

路由器 R₁ 到主机 H₂ 的安全关联 SA

若公司总部的主机 H₁ 要和某外地业务员的主机 H₂ 进行安全通信,需要在公司总部的路由器 R₁ 和外地业务员的主机 H₂ 建立安全关联 SA。

安全关联 SA 包括的状态信息

- 1. 一个 32 位的连接标识符,称为安全参数索引 SPI (Security Parameter Index)。
- 安全关联 SA 的源点和终点的 IP 地址 (例如路由器 R₁ 和 R₂ 的 IP 地址)。
- 3. 所使用的加密类型(例如,DES 或 AES)。
- 4. 加密使用的密钥。
- 5. 完整性检查的类型 (例如,使用报文摘要 MD5 或 SHA-1 的报文鉴别码 MAC)。
- 6. 鉴别使用的密钥。

3. IP 安全数据报的格式

3. IP 安全数据报的格式

注意: 对于路由器 R_1 到 R_2 的安全关联 SA,在"原始的 IP 首部"中,用主机 H_1 和 H_2 的 IP 地址分别作为源地址和目的地址,而在 IP 安全数据报的"新的 IP 首部"中,用路由器 R_1 和 R_2 的 IP 地址分别作为源地址和目的地址。

4. IPsec 的其他构件

- 安全关联数据库 SAD (Security Association Database)
 - ◆ 存放 SA。
- 安全策略数据库 SPD (Security Policy Database)
 - ◆ 指明什么样的数据报需要进行 IPsec 处理。
- 互联网密钥交换 IKE (Internet Key Exchange)
 - ◆ 为 IP 安全数据报创建安全关联 SA。

互联网密钥交换 IKE

- 非常复杂。互联网的正式标准 [RFC 7296]。
- IKEv2 以另外三个协议为基础:
 - 1. Oakley:密钥生成协议 [RFC 2412]。
 - 2. 安全密钥交换机制 SKEME (Secure Key Exchange Mechanism): 用于密钥交换的协议。它利用公钥加密来实现密钥交换协议中的实体鉴别。
 - 3. 互联网安全关联和密钥管理协议 ISAKMP (Internet Secure Association and Key Management Mechanism): 用于实现 IKE 中定义的密钥交换,使 IKE 的交换能够以标准化、格式化的报文创建安全关联 SA。

7.6.2 运输层安全协议

现在广泛使用以下两个协议:

- 安全套接字层 SSL (Secure Socket Layer)
- 运输层安全 TLS (Transport Layer Security)

1. 协议 TLS 的要点

- 安全套接层 SSL 由 Netscape 于 1994 年开发,广泛应用于基于万维网的各种网络应用(但不限于万维网应用)。
- SSL 作用在端系统应用层的 HTTP 和运输层之间,在 TCP 之上建立 起一个安全通道,为通过 TCP 传输的应用层数据提供安全保障。
- 1999 年, IETF 在 SSL 3.0 基础上设计了 TLS 1.0,为所有基于 TCP 的网络应用提供安全数据传输服务。
- 2018 年 8 月, IETF 发布了经历了 28 个草案后才通过的最新版本 TLS 1.3 [RFC 8446,建议标准](不向后兼容)。
- 2020 年, 旧版本 TLS 1.0/1.1 均被废弃。

协议 TLS 的位置

- 在发送方, TLS 接收应用层的数据, 对数据进行加密, 然后把加密后的数据送往 TCP 套接字。
- 在接收方, TSL 从 TCP 套接字读取数据, 解密后把数据交给应用层。

TLS 与应用层协议独立无关

- TLS 提供了一个简单的带有套接字的应用程序接口 API, 与 TCP 的 API 相似。
- 应用层使用 TLS 最多的就是 HTTP。TLS 可用于任何应用层协议。
- 应用程序 HTTP 调用 TLS 对整个网页进行加密时,网页上会提示用户,在网址栏原来显示 http 的地方,现在变成了 https。
- s 代表 security,表明现在使用的是提供安全服务的 HTTP 协议(TCP 的 HTTPS 端口号是 443,而不是平时使用的端口号 80)。

协议 TLS 具有双向鉴别的功能

- 常用单向鉴别:客户端(浏览器)需要鉴别服务器,确信即将访问的 网站服务器是安全和可信的。
- 两个前提:
 - 1. 服务器需要有一个有效的 CA 证书来证明自己。CA 证书是运输层 安全协议 TLS 的基石。
 - 2. 浏览器应具有一些手段来证明服务器是安全和可信的。
- 建立安全会话两个阶段:
 - 1. 握手阶段: 使用握手协议
 - 2. 会话阶段: 使用记录协议

TLS 建立安全会话的工作原理

- 协商加密算法。 浏览器 A 向服务器 B 发送浏览器的 TLS 版本号和一些可选的加密算法。 B 从中选定自己所支持的算法(如 RSA),并告知 A, 同时把自己的 CA 数字证书发送给 A。
- 2. 服务器鉴别。 ❸ 客户 A 用数字证书中 CA 的公钥对数字证书进行验证鉴别。
- 生成主密钥。② 客户 A 按照双方确定的密钥交换算法生成主密钥 MS (Master Secret)。 ③ 客户 A 用 B 的公钥 PK_B 对主密钥 MS 加密,得出加密的主密钥 PK_B(MS),发送给服务器 B。

- 4. 服务器 B 用自己的私钥把主密钥解密出来 $⑥: SK_B(PK_B(MS)) = MS 。 这样,客户 A 和服务器 B 都有了为后面数据传输使用的共同的主密钥 <math>MS$ 。
- 5. 生成会话密钥 ② 和 ③。为了使双方的通信更加安全,客户 A 和服务器 B 最好使用不同的密钥。主密钥被分割成 4 个不同的密钥。每一方都拥有这样 4 个密钥(注意:这些都是对称密钥):
 - 客户 A 发送数据时使用的会话密钥 K_A
 - 客户 A 发送数据时使用的 MAC 密钥 Ma
 - 服务器 B 发送数据时使用的会话密钥 K_B
 - 服务器 B 发送数据时使用的 MAC 密钥 M_B

TLS 的会话阶段:保证传送数据的机密性和完整性

- 把长的数据划分为较小的数据块,叫做记录 (record)。对每一个记录进行 鉴别运算和加密运算。
- 记录协议对每一个记录按发送顺序赋予序号,第一个记录作为 0。发送下一个记录时序号就加 1,序号最大值不得超过 2⁶⁴ 1,且不允许序号绕回。
- 序号未写在记录之中,而是在进行散列运算时,把序号包含进去。客户 A 向服务器 B 发送一个明文记录时,对 MAC 密钥 M_A、记录的当前序号和明文记录进行散列运算,鉴别明文记录的完整性(内容和顺序均无误)。使用会话密钥 K_A 进行加解密。

这种对记录加密的方法称为带关联数据的鉴别加密 AEAD (Authenticated Encryption with Associated Data)。

TLS 传送的记录格式

对这部分用 K_A 加密

类型 版本 长度 明 文 记 录 MAC

- 类型字段:指明所传送的记录是握手阶段的报文,还是应用程序传送的报文,或最后要关闭 TLS 连接的报文。
- 长度字段:字节数,用于从 TCP 报文中提取 TLS 记录。

2. 协议 TLS 必须包含的措施

- 握手阶段补充的措施:
 - 1. 客户 A 和服务器 B相互发送不重数,防止重放攻击。
 - 2. 生成预主密钥 PMS (Pre-Master Secret),为下一步生成主密钥使用。
 - 3. 生成主密钥。客户 A 和服务器 B 各自使用同样的(已商定的) 算法,使用预主密钥 PMS、客户的不重数和服务器的不重数, 生成主密钥 MS。
 - 4. 客户 A 向服务器 B 发送的全部握手阶段报文的 MAC。
 - 5. 服务器 B 向客户 A 发送的全部握手阶段报文的 MAC。

2. 协议 TLS 必须包含的措施

- 关闭 TLS 连接:
 - ◆ 关闭 TLS 连接之前, A 或 B 应当先发送关闭 TLS 的记录, 以防 止截断攻击 (truncation attack)。
- 截断攻击:在A和B正在进行会话时,入侵者突然发送TCP的
 FIN报文段来关闭TCP连接。
- 如果 A 或 B 没有事先发送一个要关闭 TLS 的记录,那么 A 或 B 见 到 TCP 的 FIN 报文段时,就知道这是入侵者的截断攻击了。因为入 侵者无法伪造关闭 TLS 的记录。

2. 协议 TLS 必须包含的措施

- TLS 1.3 中使用了更加安全的椭圆曲线密码 ECC (Elliptic Curve Cryptography) 与 AES, 运算速度比 1.2 版本有很大的提高。
- TLS 1.3 还添加了 0-RTT 的功能。
 - ◆ 如果客户之前连接过某服务器, TLS 1.3 通过储存先前会话的秘密信息, 不需要经过 1-RTT 的握手过程, 仅需 0-RTT 即可开始会话阶段, 更加提高了 TLS 的效率。
 - ◆ 必须要防止可能发生的重放攻击。

7.5.3 应用层安全协议

- 仅讨论应用层中有关电子邮件的安全协议。
- 发送电子邮件是个即时行为,是单向报文的安全问题。
 - ◆ 发送方 A 和接收方 B 不会事先建立任何会话。
 - ◆ 接收方 B 读取邮件后,可能会/不会回复邮件。
- 电子邮件安全协议应当为每种加密操作定义相应的算法,以及密钥管理、鉴别、完整性保护等方法。

PGP (Pretty Good Privacy)

- PGP (Pretty Good Privacy) 是一个完整的电子邮件安全软件包,
 包括加密、鉴别、电子签名和压缩等技术。
- 将现有的一些算法如 MD5, RSA, 以及 IDEA 等综合在一起。
- 提供电子邮件的安全性、发送方鉴别和报文完整性。
- 并不是互联网的正式标准。
- PGP 很难被攻破。在目前,可以认为 PGP 是足够安全的。

发送方 A 的 PGP 处理过程

- **①** 用 A 的私钥 SK_A 对明文邮件 X进行签名。把签名拼接在明文邮件 X后面。
- Θ A 利用随机数生成一次性密钥 K (共享的对称密钥)。
- ❸ 用 A 生成的一次性密钥 K 对已签名的邮件加密。
- 用 B 的公钥 PK_B 对 A 生成的一次性密钥 K进行加密。
- **⑤** 把已加密的一次性密钥和已加密的签名邮件,拼接在一起发送给 B。

接收方 B 的 PGP 处理过程

- B 根据邮件的种类,分离出已加密的一次性密钥和已加密的签名报文。
- Θ 用 B 的私钥 SK_B 解出一次性密钥 K。
- 用 B 手中的 A 的公钥 PK_A 对 A 的数字签名进行解密,即可接着验证邮件的完整性。

7.6 系统安全: 防火墙与入 侵检测 7.6.1 防火墙

7.6.2 入侵检测系统

7.6 系统安全: 防火墙与入侵检测

- 前述基于密码的安全机制不能有效解决以下安全问题:
 - ◆ 用户入侵:
 - 利用系统漏洞进行未授权登录;
 - 授权用户非法获取更高级别权限等。
 - ◆ 软件入侵:
 - 通过网络传播病毒、蠕虫和特洛伊木马。
 - 拒绝服务攻击等。
- 解决方法:
 - ◆ 防火墙:控制进出网络边界的分组。
 - ◆ 入侵检测:深度分析与检测进入的分组,发现疑似入侵行为。

7.6.1 防火墙

- 防火墙 (firewall):
 - 一种访问控制技术,通过严格控制进出网络边界的分组,禁止任何不必要的通信,从而减少潜在入侵的发生,尽可能降低这类安全威胁所带来的安全风险。
- 防火墙是一种特殊编程的路由器,安装在一个网点和网络的其余部分之间,目的是实施访问控制策略。
- 访问控制策略由使用防火墙的单位自行制定。

防火墙在互连网络中的位置

一般把防火墙里面的网络称为"可信的网络"(trusted network), 把防火墙外面的网络称为"不可信的网络"(untrusted network)。

两类防火墙技术: 分组过滤路由器

- 具有分组过滤功能的路由器。根据过滤规则对进出内部网络的分组进行过滤 (转发或者丢弃)。
- 过滤规则:基于分组的网络层或运输层首部信息,例如:源/目的IP地址、源/目的端口、协议类型 (TCP 或 UDP),等等。
- 无状态的:独立地处理每一个分组。
- 有状态的: 跟踪每个连接或会话的通信状态,根据状态信息决定是否转发分组。
- 优点:简单高效,对用户透明。
- 缺点:不能对高层数据进行过滤。例如:不能禁止某个用户对某个特定应用进行某个特定的操作,不能支持应用层用户鉴别等。

两类防火墙技术:应用网关

- 也称为代理服务器 (proxy server)
- 对报文进行中继,实现基于应用层数据的过滤和高层用户鉴别。
- 所有进出网络的应用程序报文都必须通过应用网关。
- 应用网关在应用层打开报文,查看请求是否合法。
 - ◆ 如果合法,应用网关以客户进程的身份将请求报文转发给原始服务器。
 - ◆ 如果不合法,则丢弃报文。
- 缺点:
 - ◆ 每种应用都需要一个不同的应用网关
 - ◆ 在应用层转发和处理报文,处理负担较重。
 - ◆ 对应用程序不透明,需要在应用程序客户端配置应用网关地址。

7.6.2 入侵检测系统

- 入侵检测系统 IDS (Intrusion Detection System) 能够在入侵已经 开始,但还没有造成危害或在造成更大危害前,及时检测到入侵,以 便尽快阻止入侵,把危害降低到最小。
- IDS 对进入网络的分组执行深度分组检查。当观察到可疑分组时,向网络管理员发出告警或执行阻断操作(由于 IDS 的"误报"率通常较高,多数情况不执行自动阻断)。
- IDS 能用于检测多种网络攻击,包括:网络映射、端口扫描、DoS 攻击、蠕虫和病毒、系统漏洞攻击等。

两种入侵检测方法:基于特征的 IDS

- 维护一个所有已知攻击标志性特征的数据库。
- 特征和规则通常由网络安全专家生成,由机构的网络管理员定制并 将其加入到数据库中。
- 只能检测已知攻击,对于未知攻击则束手无策。
- 至今为止,大多数部署的 IDS 主要是基于特征的。

两种入侵检测方法:基于异常的 IDS

- 通过观察正常运行的网络流量,学习正常流量的统计特性和规律。
- 当检测到网络中流量某种统计规律不符合正常情况时,则认为可能 发生了入侵行为。
- 但区分正常流和统计异常流是一个非常困难的。

7.7 一些未来的发展方向

- 1. 椭圆曲线密码 (Elliptic Curve Cryptography, ECC): 已在 TLS 1.3 的握手协议中占据非常重要的地位,现已大量用于电子护照、金融系统。
- 2. 移动安全 (Mobile Security): 例如移动支付安全等。
- 3. 量子密码 (Quantum Cryptography): 量子计算机的到来将使得目前许多使用中的密码技术无效,后量子密码学 (Post-Quantum Cryptography) 的研究方兴未艾。
- 4. 商密九号算法 SM9: 一种标识密码(Identity-Based Cryptography) 算法。在互联网应用上有前景。

