Part II. 통계적 추론 (Statistical Inference)

- IV. 확률표본(Random Sample)
 - A. 어떤 특정한 분포로부터의 '크기가 n 인 확률표본'은 n 개의 동일한 특정 분포를 갖는 서로 확률적으로 독립인 확률변수 $X_1, X_2, ... X_n$ 들의 모음
 - i. 통계량(a statistic): (미지의 모수에 의존하지 않는) 확률표본의 변환(transformation) — 원칙적으로 확률표본의 값들이 관찰될 경우 그 값들에 대응하는 통계량의 값을 계산할 수 있으며, 이를 통계치(a statistic)라고 함
 - 1. 표본평균(Sample mean): $\bar{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$, n 에 의존함을 강조시 \bar{X}_{n} 로 표기

$$E(X_i) = \mu$$
, $Var(X_i) = \sigma^2 \implies E(\overline{X}) = \mu$, $Var(\overline{X}) = \frac{\sigma^2}{n}$

2. 표본분산(Sample variance): $S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$ 또는

$$S^{*2} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$$

$$E(S^2) = \sigma^2, E(S^{*2}) = \frac{n-1}{n}\sigma^2$$

- B. $N(\mu, \sigma^2)$ 로부터의 확률표본
 - i. 표본평균(Sample mean):

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

ii. 표본분산(Sample variance):

$$\frac{n-1}{\sigma^2}S^2 = \frac{n}{\sigma^2}S^{*2} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2} \sim \chi_{n-1}^2 : 자유도가 n-1 인 카이제곱분포$$

iii. $\bar{X} \perp S^2$: 즉 표본평균과 표본분산은 확률적으로 독립이다.

- V. 극한분포이론 (Limiting Distribution Theory)
 - A. 대수의 (약)법칙 ((Weak) Law of Large Number) =확률적 수렴(Convergence in Prob.)
 - i. $X_1, X_2, ... X_n \sim \text{i.i.d.}$ with $E(X_i) = \mu < \infty$, $V(X_i) = \sigma^2 < \infty$,
 - \Rightarrow 임의의 양의 실수 ε 에 대해, $P(|\bar{X}_n \mu| > \varepsilon) \to 0$ as $n \to \infty$.
 - \Rightarrow \bar{X}_n 가 μ 로 확률적으로 수렴함. 또는 $\bar{X}_n \overset{p}{ o} \mu$ 또는 $\underset{n \to \infty}{\min} \bar{X}_n = \mu$
 - ii. $X_1,X_2,...X_n$ ~ 서로독립적이지도 않고, 동일한 분포를 하지도 않음. 다만 $m_n=Eigg(\sum_{i=1}^n X_iigg)<\infty,\ V_n=Vigg(\sum_{i=1}^n X_iigg)<\infty,\ rac{V_n}{n^2} o 0$ as $n o\infty$.

$$\Rightarrow p \lim_{n \to \infty} \overline{X}_n = \lim_{n \to \infty} \frac{m_n}{n}$$

- B. 중심극한 정리 (Central Limit Theorem)
 - i. 분포수렴: 확률변수 X_n 의 분포함수의 값이 연속적인 모든 점에서 $n \to \infty$ 에 따라 확률변수 Y의 분포함수의 값으로 수렴할 때 확률변수 X_n 가 확률변수 Y로 분포수렴한다고 함 $\Rightarrow X_n \xrightarrow{D} Y$

$$X_1, X_2, ... X_n \sim \text{i.i.d.}$$
 $E(X_i) = \mu < \infty, \ V(X_i) = \sigma^2 < \infty$

$$\Rightarrow \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \xrightarrow{D} N(0, 1) \text{ as } n \to \infty. : 중심극한정리$$

iii. $X_1, X_2, ... X_n \sim$ 서로독립적이지도 않고, 동일한 분포를 하지도 않음. 다만 $\lim_{n \to \infty} nV(\bar{X}_n) = \sigma^2 < \infty$, $\Rightarrow \frac{\bar{X}_n - E(\bar{X}_n)}{\sqrt{V(\bar{X}_n)}} \xrightarrow{D} N(0,1)$ as $n \to \infty$.:(좀 더 일반화된) 중심극한정리

VI. 점추정 (Point Estimation)

- A. 추정량 (Estimator)
 - i. 모수 θ 의 추정을 위해 적절히 고안된 통계량 $\hat{\theta}(X_1, X_2, ... X_n)$ 을 추정량, 관측된 표본 값에 대응되는 해당 통계량의 값을 추정치(Esitimate)라 함
 - 1. $\hat{ heta}(X_1, X_2, ... X_n)$ 를 줄여서 $\hat{ heta}$ 또는 $\hat{ heta}_n$ 으로 표기
- B. 추정량에 요구되는 성질
 - i. 불편성(Unbiasedness) 또는 점근적 불편성(Asymptotic Unibiasedness) $E(\hat{\theta}) = \theta$ (불편추정량) 또는 $\lim_{n \to \infty} E(\hat{\theta}_n) = \theta$ (점근적 불편추정량)
 - ii. 일치성(Consistency)

$$\hat{\theta}_n \xrightarrow{p} \theta$$
 (일치추정량) \leftarrow (점근적) 불편추정량이고, $\lim_{n \to \infty} V(\hat{\theta}_n) = 0$

- iii. 유효성(Efficiency) 또는 점근적 유효성
 - 1. 모수 θ 를 불편 추정량 $\hat{\theta}$ 로 추정할 경우 추정량 $\hat{\theta}$ 의 분산의 이론적인 하한을 크래머-라오 하한(CR Lower Bound: CRLB)이라하며, 불편추정량 $\hat{\theta}$ 의 유효성은

$$\begin{pmatrix} \textit{CRLB} / \\ \textit{V}(\hat{\theta}) \end{pmatrix}$$
×100%로 나타냄

- a. 100% 유효성을 갖는 불편추정량을 유효추정량이라고 함
- b. 점근적불편추정량의 분산이 점근적으로 CRLB 에 도달할 경우 점근적 유효추정량이라고 함
 - i. 불편추정량과 점근적불편추정량의 성능(Performance)는 보통 평균제곱오차(Mean Squared Error: MSE)로 비교함 $MSE(\hat{\theta}) = V(\hat{\theta}) + \left\lceil E(\hat{\theta}) \theta \right\rceil^2$
- c. 유효추정량은 최소분산불편추정량(Minimum Variance Unibiased Estimator: MVUE) 임

C. 적률방법 (Method of Moments)

- i. 수학적 적률(보통 추정하고자 하는 모수의 함수)과 표본적률을 등치시키는 식으로부터 추정량을 구하는 방법
- ii. k 번째 (수학적) 적률: $E(X^k) = \frac{\sum_{i=1}^{n} (X_i)^k}{n}$:k 번째 표본적률
- iii. 적률방법추정량은 점근적 불편성과 일치성을 가짐

- D. 최우추정법(Maximum Likelihood Method)
 - i. 우도함수 (Likelihood function) : 표본의 결합확률 분포를 추정하고자 하는 모수의 함수로 볼 때, 이를 우도함수라 함

$$L(\theta_1, \theta_2, ... \theta_k) \equiv \prod_{i=1}^{n} f(x_i | \theta_1, \theta_2, ... \theta_k)$$

- ii. 최우추정법은 우도함수를 극대화 시키는 모수의 값을 해당 모수의 추정치로 삼는 방법이며 이를 확률표본 $X_1, X_2, ... X_n$ 의 함수로 볼 때, 이를 최우추정량(Maximul Likelihood Estimator : MLE)이라고 함
 - 1. 경우에 따라서는 우도함수의 극대화 해(solution)를 찾는 것 보다 우도함수에 자연대수를 취한 $\ln L$ 를 극대화 하는 해를 찾는 것이 용이
- iii. $\hat{\theta}_n = \hat{\theta}(X_1, X_2, ... X_n)$ 을 θ 의 최우추정량이라고 할 때, 이는 다음과 같은 성질을 갖는다.
 - 1. 즉 MLE 는 점근적 불편성, 일치성, 그리고 점근적 유효성을 갖는다
 - a. 점근적 유효성: $nV(\hat{\theta}_{n\sigma}) \rightarrow \sigma(\theta)$ as $n \rightarrow \infty$, 단 $\frac{\sigma(\theta)}{n}$ 은 CRLB.

- 2. 충분히 큰 n 에 대해 $\hat{\theta}_n \sim N\left(\theta, \frac{\sigma^2(\theta)}{n}\right)$ 으로 근사할 수 있다.
 - a. $\sigma(heta)$ 에 대한 추정량을 $\sigma(\hat{ heta}_{\scriptscriptstyle n})$ 라고 하면,
 - b. $\frac{\hat{\theta}_n \theta}{\sigma(\hat{\theta}_n) / \sqrt{n}} \sim N(0,1)$ 또는 $\hat{\theta}_n \sim N\left(\theta, \frac{\sigma^2(\hat{\theta}_n)}{n}\right)$ 으로 근사하여, 사용할 수 있다.

- VII. 신뢰구간 (Confidence Interval: CI) 또는 구간추정(Interval Estimation)
 - A. 모집단이 $N(\mu, \sigma^2)$ 일 때, μ 에 대한 CI
 - i. σ^2 가 알려진 경우 100 ×(1- α)% CI: $\bar{X}\pm z_{\alpha/2}$ σ/\sqrt{n} . 단, $P(Z>z_{\alpha})=\alpha$, $Z\sim N(0,1)$
 - ii. σ^2 를 모르는 경우 $100 \times (1-\alpha)$ %CI: $\bar{X} \pm t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}$. 단, S 는 표본분산의 제곱근. $P(T_{n-1} > t_{\alpha,n-1}) = \alpha$, T_{n-1} 은 자유도 n-1 인 t 분포확률변수.
 - iii. σ^2 를 모르고, n 이 충분히 클 경우 $100 \times (1-\alpha)\%$ CI: $\bar{X} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}$
 - B. 모집단이 $N(\mu,\sigma^2)$ 일 때, σ^2 에 대한 $100 \times (1-\alpha)\%$ CI: $\left(\frac{(n-1)S^2}{\chi^2_{1-\alpha'_2,n-1}},\frac{(n-1)S^2}{\chi^2_{\alpha'_2,n-1}}\right). \ \ \text{단} \ \ P\big(\chi^2_{n-1}>\chi^2_{\alpha,n-1}\big)=\alpha \ , \ \chi^2_{n-1}\ \ \text{은 자유도 n-1 인}$ χ^2 분포 확률변수.
 - i. 표준편차(\sigma)에 대한 CI : $\left(\sqrt{\frac{(n-1)S^2}{\chi^2_{1-\alpha'_2,n-1}}},\sqrt{\frac{(n-1)S^2}{\chi^2_{\alpha'_2,n-1}}}\right)$

VIII. 가설검정 (Hypothesis Testing)

- A. 가설검정의 구성요소
 - i. 귀무가설(null hypothesis)과 대립가설(alternative hypothesis)
 - 1. 귀무가설(H_0)는 검정 결과 그것을 기각해야 하는 증거가 나타나기 전까지는 사실로 받아들여야 하는 가설
 - 2. 대립가설(H_1)은 검정결과 귀무가설을 기각하는 경우 사실로 받아들여야 하는 가설이며, 따라서 증거로부터 우리가 보이고자하는 새로운 사실이나 관계를 설명하는 내용을 통상적으로 대립가설로 둠

ii. 검정통계량(Test Statistic)

- 1. 검정통계량은 귀무가설하에서 (적어도 근사적으로라도) 그 확률 분포가 알려진 통계량 $T \equiv T(X_1, X_2 ... X_n)$
- 2. 검정통계량의 대립가설하의 분포는 알려져 있을 필요는 없으나 귀무가설하의 분포와 구별되는 분포를 해야 함

iii. 기각역(Rejection Region)

1. 검정통계량의 값이 이 구간에 포함되면 귀무가설을 기각함 (R)

- B. 제 1 형 오류와 제 2 형 오류
 - i. 제 1 형 오류: 모집단에서 귀무가설이 옮음에도 불구하고 표본으로부터 귀무가설을 기각하는 경우
 - 제 1 형 오류를 범할 확률을 검정의 크기(size) 또는 유의수준(significance level)이라고 함 (α)

$$\alpha = P(T(X_1, X_2...X_n) \in R | H_0 \text{ is true})$$

- 2. 보통 유의수준은 1%, 5%, 10% 등으로 주어짐
- ii. 제 2 형 오류: 모집단에서 귀무가설이 옳지 않음에도 불구하고 귀무가설을 기각하지 못하는 경우
 - 귀무가설이 옳지 않을 때 귀무가설을 기각할 확률을 검정력(Power of test)이라고 하며, 제 2 형 오류의 확률을 β라 하면, 검정력은 1-β
 - $1-\beta = P(T(X_1, X_2...X_n) \in R | H_0 \text{ is not true})$: 검정력 함수
 - 2. 주어진 유의수준에서 가능하면 검정력이 큰 검정이 좋은 검정임
 - a. 유의수준이 클수록 검정력은 커진다
 - b. 두 가설간의 차이가 뚜렷할수록 검정력은 커진다.

C. CI에 근거한 검정

- i. 각 경우에 있어서의 CI 를 도출하였던 과정을 응용하여 적절한 검정통계량을 고안해낼 수 있음
- ii. 실례: $N(\mu, \sigma^2)$ 일 때, μ 에 대한 $100 \times (1-\alpha)$ % CI 는 $\bar{X} \pm t_{\alpha/2, n-1}$ $\sqrt[S]{n}$

$$\Rightarrow p \left(\left| \frac{\overline{X} - \mu}{S / \sqrt{n}} \right| > t_{\alpha / 2^{n-1}} \right) = 1 - \alpha \quad \Rightarrow \quad \frac{\overline{X} - \mu}{S / \sqrt{n}}$$
가 자유도 n-1 인 t 분포를 하는

것을이용하여, μ와 관련된 가설검정의 검정통계량으로 이용

- 1. $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$ (양측검정의 경우) : $\frac{\overline{X} \mu_0}{S / \sqrt{n}} > t_{\alpha/2, n-1}$ 이거나 $\frac{\overline{X} \mu_0}{S / \sqrt{n}} < -t_{\alpha/2, n-1}$ 이면 유의수준 α 에서 귀무가설을 기각함
- 2. $H_0: \mu = \mu_0$, $H_1: \mu > \mu_0$ (또는 $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$ (단측검정의 경우) : $\frac{\overline{X} \mu_0}{S / \sqrt{n}} > t_{\alpha, n-1}$ 이면 유의수준 α 에서 귀무가설을 기각함
- 3. $H_0: \mu = \mu_0$, $H_1: \mu < \mu_0$ (또는 $H_0: \mu \ge \mu_0$, $H_1: \mu < \mu_0$

$$(단측검정의 경우): \frac{\overline{X}-\mu_0}{S/\sqrt{n}} < -t_{\alpha,n-1}$$
 이면 유의수준 α 에서

귀무가설을 기각함