Αρχιτεκτονική Διάλεξη 6

Address : Διεύθυνση μνήμης όπου βρίσκονται τα δεδομένα της εντολής

- Address → Παράγοντας
 Εντολή ενος παράγοντα
- ΟΡCODE: Κωδικός εντολής.
 Δείχνει την εντολή προς εκτέλεση
- Data Bus: μεταφέρουμε δεδομένα από την μνήμη είτε δίνουμε δεδομένα
- Address Bus: πρώτα ζητάμε την διεύθυνση από την μνήμη ωστε να πάρουμε τα δεδομένα
- 1) Εντολές ενός παράγοντα
- 2) Εντολές 2 παραγόντων
- 3) Εντολές 3 παραγόντων
- 4) Εντολές 0 παραγόντων
- 5) Εντολές σε αρχιτεκτονική με 2 διαύλους

8 εντολές CPU		Ι. D. Α.: Φορσώνου στου Α. C. σο σορομόνισμο στο θάστιο
Εντολή	OPCODE	LDA: Φορτώνει στον ACC τα περιεχόμενα της θέσης μνήμης Α
LDA	000	
STA	001	STA: Φορτώνει στη θέση μνημης Α τα περιεχόμενα τον ACC
ADD	010	
AND	011	ΙΝCΑ: Αυξάνω τα περιεχόμενα της θέσης μνήμης Α κατά 1
ADD_A	100	Εδω εχουμε μόνο 6 Εντολές συνολικά ειναι 8 με την τελικη να εχει ΟΡC 111
INCA	101	

Κώδικας	Γλώσσα Μηχανής
int A; A=A+1;	1)Όρισε θέση μνήμης για την μεταβλητή Α 2) Έστω η θέση που γράφεται Α είναι η 188 3) Διαβάζεται η θέση μνήμης Α 4) Τα περιεχόμενα της στέλνονται στον ALU 5) Γίνεται η πράξη 6) Το αποτέλεσμα επιστρέφει στην Α

Ανάκληση:
ο PC δείχνει την διεύθυνση της επόμενης προς εκτέλεση εντολής Έστω X η εντολή τότε : \rightarrow PC=X

Τι γίνεται στην ανάκληση?

T0 MAR \leftarrow PC, Z \leftarrow PC+1

T1 MDR \leftarrow M[MAR], PC \leftarrow Z

T2 IR←MDR[OPCODE]

- $\bullet~$ Ο Pc ξέρει ότι θα πρέπει να ξεκινήσει από το X
- Πρέπει η εντολή που βρίσκεται στην διέυθηνση X, νά μεταφερθεί στην CPU, ωστε ο IR να πάρει το OPCODE

T0: MAR \leftarrow PC, Z \leftarrow PC+1

Στο T0 ο PC δίνει τη διεύθυνση X στον MAR για να ζητηθεί η ανάγνωση της , απο το σήμα σελίδα $1 \rightarrow$

Όποτε θέλουμε να διαβάσουμε να γράψουμε από τη διεύθυνση μνήμης η διεύθυνση πρέπει να δοθεί από τον MAR

Μετά ο MAR \leftarrow X, $Z\leftarrow$ X+1 \rightarrow Αυτό γίνεται ωστε να ζέρω την επομενη εντολή που θα δείζει ο PC

T1: MDR \leftarrow M[MAR], PC \leftarrow Z

Ο MDR λαμβάνει μέσο του διάυλου δεδομένων την λέξη μνήμης MDR←M[X] PC←Z (Z=x+1)

T1: MDR
$$\leftarrow$$
 101 188, PC \leftarrow X+1

T2:

Ο IR διαβάζει απο το MDR το OPCODE δηλαδή το 101 \rightarrow IR Εδώ πλέον ξέρει η CPU τι να κάνει

Η CPU λέει στην μονάδα ελέγχου ότι πρέπει να εκτελεστεί η INC

Εξήγηση

https://github.com/IliasChatzi

Ilias Chatzichristidis Architecture Notes

(1) ο MAR να πάρει την διέυθυνση Α, για να ζητήσει απο την μνήμη (αποκωδικοποίηση) . Τα περιεχόμενα της θέσης μνήμης Α→MDR Εκτέλεση

MAR←MDR(Address)

 $MDR \leftarrow M[MAR]$

 $(2)(3) Z \leftarrow MDR+1$

ΔΕΝ ΓΡΆΦΩ ALU \leftarrow MDR ΓΙΑΤΙ ΔΕΝ ΕΙΝΑΙ ΚΑΤΑΧΩΡΗΤΉΣ Η ALU ΟΥΣΙΑΣΤΙΚΑ Η ALU ΕΙΝΑΙ ΤΟ "+" ΣΤΟ $Z \leftarrow$ MDR+1

(5) Δίνουμε την διεύθυνση Α στο ΜΑΚ

 $M[MAR] \leftarrow MDR$:

 $MDR \leftarrow M[MAR] \quad M[188]=11$

Ανάγνωση από θέση μνήμης στην οποία δείχνει ο ΜΑΚ

- 1) Ενημέρωση του ΜΑΚ
- 2) MDR←M[MAR]

Εγγραφή:

- 1) Ενημέρωση ΜΑΚ
- 2) $M[MAR] \leftarrow MDR$

Εντολή ΙΝΟ
T0: MAR←PC, Z ←PC+1
T1: MDR \leftarrow M[MAR], PC+Z
T2: IR \leftarrow MDR (OPCODE)
T3: MAR← MDR(ADDRESS)
T4: $MDR \leftarrow M[MAR]$
T5: Z← MDR+1
T6: MDR \leftarrow Z
T7: M[MAR]← MDR

ΛΤΣΤΑ ΕΝΤΟΛ<math>ΩN:

• LDA/LOAD: OPCODE=000

Διαβάζει μια λέξη μνήμης Α και την φορτώνει στο Accumulator(ACC)

Ανάκληση:

T0: MAR \leftarrow X+Z, Z=X+3

T1: $MDR \leftarrow 000|A$ PC=X+3

T2:IR:000

Αφου ΙR=000 ξέρουμε οτι θα

εκτελεστεί η LDA

T3: MAR \leftarrow MDR(Address) | MAR \leftarrow A

T4: $MDR \leftarrow M[MAR] \qquad | MDR \leftarrow M[A]$

T5: ACC ← MDR | ACC ← "Καλημέρα"

• STA/Store OPCODE= 001

Φορτώνει στην Α τα περιεχόμενα του ΑСС

T3: $MAR \leftarrow MDR(Address)$

T4: MDR ← ACC

T5:M[MAR]← MDR

• **ADD** OPCODE= 010

Προσθέτει τα περιεχόμενα της διεύθυνσης μνήμης Α με τα περιεχόμενα του ΑСС και αποθηκεύει τα αποτελέσματα στον ΑСС

Εντολές 2 παραγόντων:

OPCODE A B 64 bit Expanded OPCODE

Swap A,B : Αντιστρέφει τα περιεχόμενα των θέσεων μνήμης A και B, χρησιμοποιώντας ως ενδιάμεση μνήμη τον ACC.

- 1)Φέρνω την Α στον MDR(χρήση MAR)
- 2) Αποθηκεύω προσωρινά στην ΑСС
- 3)Φέρνω την Β στον ΜDR(χρήση ΜΑR)
- 4)Στέλνω την Β στην Α →ΜΑΚ
- 5)Φέρνω την Α στον MDR
- 6)Στέλνω την Α στην Β →ΜΑΡ

