Posplošena diskriminantna analiza z uporabo posplošenega singularnega razcepa

Jernej Banevec

Mentor: izred. prof. dr. Marjeta Knez

Fakulteta za matematiko in fiziko kratka predstavitev diplomskega dela

8.11.2017

Pregled vsebine

- Posplošena diskriminantna analiza
- Posplošena diskriminantna analiza kot optimizacijski problem
- 3 Posplošen singularni razcep
- Zgled
- Viri

Posplošena diskriminantna analiza

- Posplošitev linearne diskriminantne analize
- Ena zelo uporabljenih statističnih metod
- Oblike podatkov:
 - Združeni v matriki $A \in \mathbb{R}^{m \times n}$
 - m . . . dimenzija posamezne meritve
 - n . . . število meritev oz. podatkov
 - Podatki grupirani v k razredov oz. gruč

Posplošena diskriminantna analiza

Iščemo preslikavo

$$G: \mathbb{R}^m \to \mathbb{R}^\ell$$

kjer je
$$\ell$$
 ≤ $m-1$

- Cili:
 - Ohraniti razporejenost razredov
 - Zmanjšati razpršenost podatkov znotraj razredov
 - Povečati razlike med razredi

Primerjava dobra proti slabi preslikavi

Definicije

- Centroid i-tega razreda: $c^{(i)} = \frac{1}{n_i} \sum_{j \in N_i} a_j$
- Centroid celotnih podatkov: $c = \frac{1}{n} \sum_{j=1}^{n} a_j$
- Matrika razpršenosti podatkov znotraj razreda:

$$S_W = \sum_{i=1}^k \sum_{j \in N_i} (a_j - c^{(i)}) (a_j - c^{(i)})^T$$

Matrika razlik med razredi:

$$S_B = \sum_{i=1}^k n_i (c^{(i)} - c)(c^{(i)} - c)^T$$

Matrika celotne razpršenosti:

$$S_M = S_W + S_B$$

• Tu so vse matrike elementi $\mathbb{R}^{m\times m}$

Definicije

• Preslikava S_W na prostor dimenzije ℓ :

$$S_W^{\ell} = GS_WG^T$$

• Preslikava S_B na prostor dimenzije ℓ :

$$S_B^\ell = GS_BG^T$$

• Preslikava S_M na prostor dimenzije ℓ :

$$S_M^\ell = GS_MG^T$$

- Tu so vse matrike elementi $\mathbb{R}^{\ell \times \ell}$
- $A^{\ell} = GA$

Posplošena diskriminantna analiza kot optimizacijski problem

- $sled(S_W) = \sum_{i=1}^k \sum_{j \in N_i} ||a_j c^{(i)}||_2^2$
- $sled(S_B) = \sum_{i=1}^k n_i ||c^{(i)} c||_2^2$
- Želimo:
 - ullet povečati $sled(S^\ell_B)$
 - ullet zmanjšati $sled(S_W^\ell)$
- Dobimo optimizacijski problem, pri katerem iščemo takšno preslikavo G, ki maksimizira

$$sled(\mathit{GS}_B\mathit{G}^\mathsf{T})/sled(\mathit{GS}_W\mathit{G}^\mathsf{T}) \approx sled((\mathit{S}_W^\ell)^{-1}\mathit{S}_B^\ell)$$

ullet Uporabno le ko je S_W^ℓ nesingularna oz. obrnljiva

Posplošeni singularni razcep

Originalna definicija posplošenega singularnega razcepa (Van Loan)

Izrek (Posplošeni singularni razcep)

Za matriki $K_A \in \mathbb{R}^{p\times m}$ z $p \geqslant m$ in $K_B \in \mathbb{R}^{n\times m}$ obstajata ortogonalni matriki $U \in \mathbb{R}^{p\times p}$ in $V \in \mathbb{R}^{n\times n}$ ter nesingularna matrika $X \in \mathbb{R}^{m\times m}$, da velja

$$U^T K_A X = diag(\alpha_1, ..., \alpha_m)$$
 in $V^T K_B X = diag(\beta_1, ..., \beta_q)$

kjer
$$q = min(n, m)$$
, $\alpha_i \geqslant 0$ za $1 \leqslant i \leqslant m$ in $\beta_i \geqslant 0$ za $1 \leqslant i \leqslant q$.

Pozneje dodatno posplošimo singularni razcep

Zgled - roža Iris

- Precej poznan zgled
- Trije razredi:
 - Iris setosa
 - Iris versicolor
 - 3 Iris virginica

Zgled - roža Iris

Podatki:

$$A = \begin{bmatrix} a_{1_{\text{sepal length}}} & a_{2_{\text{sepal length}}} & \cdots & a_{150_{\text{sepal length}}} \\ a_{1_{\text{sepal width}}} & a_{2_{\text{sepal width}}} & \cdots & a_{150_{\text{sepal width}}} \\ a_{1_{\text{petal length}}} & a_{2_{\text{petal length}}} & \cdots & a_{150_{\text{petal length}}} \\ a_{1_{\text{petal width}}} & a_{2_{\text{petal width}}} & \cdots & a_{150_{\text{petal width}}} \end{bmatrix}, Y = \begin{bmatrix} \omega_{\text{sitosa}} \\ \omega_{\text{sitosa}} \\ \vdots \\ \omega_{\text{versicolor}} \\ \vdots \\ \omega_{\text{virginica}} \end{bmatrix}$$

- Na teh podatkih uporabimo posplošeno diskriminantno analizo
 - Računanje centroidov
 - 2 Računanje matrik razpršenosti podatkov
 - **3** Lastni razcep $(S_W^{\ell})^{-1}S_B^{\ell}$
 - Urejanje lastnih vrednosti (po parih z vektorji)
 - **⑤** Transformiranje na nov podprostor

Zgled - roža Iris

- Slikamo na 2-dimenzionalen (pod)prostor
- Dobimo sledečo sliko:

Viri

- Howland P. in Park H., Generalizing discriminant analysis using the generalizen singular value decomposition. TPAMI. 2004, 26, 8, 995-1006
- Jieping Ye, Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems.
 Journal of Machine Learning Research. 2005, 6, 483–502