- - 12

CLAIMS

What is claimed is:

1	1. A method comprising:
2	determining a processor state of a processor upon expiration of a system
3	management interrupt (SMI) timer, the processor state being one of an operational state
4	and a low power state;
5	loading the SMI timer with a timer value based on the processor state, the timer
6	value being one of a first value and a second value; and
7	transitioning the processor to one of the operational state and the low power state
8	according to the processor state.
1	2. The method of claim 1 wherein loading the SMI timer comprises:
2	loading the SMI timer with the first value if the processor state is the operational
3	state; and
4	loading the SMI timer with the second value if the processor state is the low power
5	state.
1	3. The method of claim 2 wherein transitioning comprises:
2	transitioning the processor to the operational state if the processor state is the low
3	power state; and
4	transitioning the processor to the reduced power state if the processor state is the
5	operational state.
1	4. The method of claim 1 further comprising:
2	disabling the SMI timer if throttling is disabled; and
3	enabling the SMI timer if throttling is enabled.
1	5. The method of claim 1 further comprising:
2	generating a SMI access to a throttling state in response to an input/output (I/O)
3	trap;

4	updating the throttling state if the access is a write; and
5	returning the throttling state if the access is a read.
1	6. The method of claim 5 wherein generating the SMI access comprises:
2	reporting the throttling state at a dummy address; and
3	generating the I/O trap by an SMI handler using the dummy address, the I/O trap
4	generating the SMI access.
1	7. The method of claim 6 wherein generating the I/O trap comprises:
2	invoking the SMI handler to trap on the dummy address;
3	booting a power management OS;
4	loading the dummy address by the power management OS;
5	accessing the throttling state at the dummy address by the power management OS;
6	and
7	generating the I/O trap by a chipset in response to accessing the throttling state by
8	the power management OS.
1	8. The method of claim 4 wherein booting the power management OS
2	comprises:
3	booting an Advanced Configuration and Power Interface (ACPI) OS.
1	9. The method of claim 3 wherein transitioning the processor to the low power
2	state comprises:
3	transitioning the processor to one of a first power state, a second power state, a
4	third power state, and a sleep state.
1	10. The method of claim 1 wherein loading the SMI timer comprises:
2	loading the SMI timer in a chipset.
1	11. A computer program product comprises:
2	a machine useable medium having computer program code embedded therein, the
3	computer program product having:

4	computer readable program code to determine a processor state of a
5	processor upon expiration of a system management interrupt (SMI) timer, the
6	processor state being one of an operational state and a low power state;
7	computer readable program code to load the SMI timer with a timer value
8	based on the processor state, the timer value being one of a first value and a second
9	value; and
10	computer readable program code to transition the processor to one of the
11	operational state and the low power state according to the processor state.
1	12. The computer program product of claim 11 wherein the computer readable
1	-
2	program code to load the SMI timer comprises: computer readable program code to load the SMI timer with the first value if the
3	•
4	processor state is the operational state; and computer readable program code to load the SMI timer with the second value if the
5	-
6	processor state is the low power state.
1	13. The computer program product of claim 12 wherein the computer readable
2	program code to transition comprises:
3	computer readable program code to transition the processor to the operational state
4	if the processor state is the low power state; and
5	computer readable program code to transition the processor to the reduced power
6	state if the processor state is the operational state.
1	14. The computer program product of claim 11 further comprising:
2	computer readable program code to disable the SMI timer if throttling is disabled;
3	and
4	computer readable program code to enable the SMI timer if throttling is enabled.
	•
1	15. The computer program product of claim 11 further comprising:
2	computer readable program code to generate a SMI access to a throttling state in
3	response to an input/output (I/O) trap;
4	computer readable program code to update the throttling state if the access is a
5	write: and

6	computer readable program code to return the throttling state if the access is a read
1	16. The computer program product of claim 15 wherein the computer readable
2	program code to generate the SMI access comprises:
3	computer readable program code to report the throttling state at a dummy address;
4	and
5	computer readable program code to generate the I/O trap by an SMI handler using
6	the dummy address, the I/O trap generating the SMI access.
1	17. The computer program product of claim 16 wherein the computer readable
2	program code to generate the I/O trap comprises:
3	computer readable program code to invoke the SMI handler to trap on the dummy
4	address;
5	computer readable program code to boot a power management OS;
6	computer readable program code to load the dummy address by the power
7	management OS;
8	computer readable program code to access the throttling state at the dummy address
9	by the power management OS; and
10	computer readable program code to generate the I/O trap by a chipset in response
11	to accessing the throttling state by the power management OS.
1	18. The computer program product of claim 4 wherein the computer readable
2	program code to boot the power management OS comprises:
3	computer readable program code to boot an Advanced Configuration and Power
4	Interface (ACPI) OS.
1	19. The computer program product of claim 3 wherein the computer readable
2	program code to transition the processor to the low power state comprises:
3	computer readable program code to transition the processor to one of a first power
4	state, a second power state, a third power state, and a sleep state.
1	20. The computer program product of claim 11 wherein the computer readable

2 program code to load the SMI timer comprises:

3	computer readable program code to load the SMI timer in a chipset.
1	21. A system comprising:
2	a processor;
3	a memory coupled to the processor to store a throttling emulator, the throttling
4	emulator, when executed, causing the processor to:
5	determine a processor state of the processor upon expiration of a
6	system management interrupt (SMI) timer, the processor state being one of an
7	operational state and a low power state;
8	load the SMI timer with a timer value based on the processor state
9	the timer value being one of a first value and a second value; and
10	transition the processor to one of the operational state and the low
11	power state according to the processor state.
1	22. The system of claim 21 wherein the throttling emulator causing the
2	processor to load causes the processor to:
3	load the SMI timer with the first value if the processor state is the operational stat
4	and
5	load the SMI timer with the second value if the processor state is the low power
6	state.
1	23. The system of claim 22 wherein the throttling emulator causing the
2	processor to transition causes the processor to:
3	transition the processor to the operational state if the processor state is the low
4	power state; and
5	transition the processor to the reduced power state if the processor state is the
6	operational state.
1	24. The system of claim 21 wherein the throttling emulator, when executed,
2	further causes the processor to:
3	disable the SMI timer if throttling is disabled; and
4	enable the SMI timer if throttling is enabled.

1	25. The system of claim 21 wherein the throttling emulator further causes the
2	processor to:
3	generate a SMI access to a throttling state in response to an input/output (I/O) trap;
4	update the throttling state if the access is a write; and
5	return the throttling state if the access is a read.
1	26. The system of claim 25 wherein the throttling emulator causing the
2	processor to generate the SMI access causes the processor to:
3	report the throttling state at a dummy address; and
4	generate the I/O trap by an SMI handler using the dummy address, the I/O trap
5	generating the SMI access.
1	27. The system of claim 26 wherein the throttling emulator causing the
2	processor to generate the I/O trap causes the processor to:
3	invoke the SMI handler to trap on the dummy address;
4	boot a power management OS;
5	load the dummy address by the power management OS;
6	access the throttling state at the dummy address by the power management OS; and
7	generate the I/O trap by a chipset in response to accessing the throttling state by
8	the power management OS.
1	28. The system of claim 24 wherein the throttling emulator causing the
2	processor to boot the power management OS causes the processor to:
3	boot an Advanced Configuration and Power Interface (ACPI) OS.
1	29. The system of claim 23 wherein the throttling emulator causing the
2	processor to transition the processor to the low power state causes the processor to:
3	transition the processor to one of a first power state, a second power state, a third
4	power state, and a sleep state.
1	30. The system of claim 31 wherein the throttling emulator causing the
2	processor to load the SMI timer causes the processor to:

3 load the SMI timer in a chipset.