SEQUENCE LISTING

<110>	Pecker, Iris Vlodavsky, Israel Feinstein, Elena	
<120>	POLYNUCLEOTIDE ENCODING A POLYPEPTIDE HAVING HEPARANASE ACTIVITY AND EXPRESSION OF SAME IN GENETICALLY MODIFIED CELLS	
<130>	27674	
<160>	52	
<170>	PatentIn version 3.5	
<210> <211> <212> <213>	27	
<220> <223>	Synthetic oligonucleotide	
<400> ccatcc	1 taat acgactcact atagggc	27
<210><211><211><212><213>	24 DNA	
<220> <223>	Synthetic oligonucleotide	
<400> gtagtg	2 atgc catgtaactg aatc	24
<210><211><211><212><213>	23	
<220> <223>	Synthetic oligonucleotide	
<400> actcac	3 tata gggctcgagc ggc	23
<210> <211> <212> <213>	22 DNA	
<220> <223>	Synthetic oligonucleotide	
<400> gcatct	4 tagc cgtctttctt cg	22
<210> <211> <212> <213>	5 15 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	

<400> 5 tttttttttt ttttt	15
<210> 6 <211> 23 <212> DNA <213> Artificial sequence	
<220> <223> Synthetic oligonucleotide	
<400> 6 ttcgatccca agaaggaatc aac	23
<210> 7 <211> 24 <212> DNA <213> Artificial sequence	
<220> <223> Synthetic oligonucleotide	
<400> 7 gtagtgatgc catgtaactg aatc	24
<210> 8 <211> 9 <212> PRT <213> Artificial sequence	
<220> <223> Peptide derived from tryptic digestion of human hepare	nase
<400> 8	
Tyr Gly Pro Asp Val Gly Gln Pro Arg 1 5	
<210> 9 <211> 1721 <212> DNA <213> Homo sapiens	
<400> 9 ctagagettt cgaeteteeg etgegeggea getggegggg ggageageea ggtgag	ccca 60
agatgctgct gcgctcgaag cctgcgctgc cgccgccgct gatgctgctg ctcctg	gggc 120
cgctgggtcc cctctcccct ggcgccctgc cccgacctgc gcaagcacag gacgtc	gtgg 180
acctggactt cttcacccag gagccgctgc acctggtgag cccctcgttc ctgtcc	gtca 240
ccattgacgc caacctggcc acggacccgc ggttcctcat cctcctgggt tctcca	aagc 300
ttcgtacctt ggccagaggc ttgtctcctg cgtacctgag gtttggtggc accaag.	acag 360
acttectaat tttegateee aagaaggaat caacetttga agagagaagt taetgg	caat 420
ctcaagtcaa ccaggatatt tgcaaatatg gatccatccc tcctgatgtg gaggag.	aagt 480
tacggttgga atggccctac caggagcaat tgctactccg agaacactac cagaaa	aagt 540
tcaagaacag cacctactca agaagctctg tagatgtgct atacactttt gcaaac	tgct 600
caggactgga cttgatcttt ggcctaaatg cgttattaag aacagcagat ttgcag	tgga 660
acagttctaa tgctcagttg ctcctggact actgctcttc caaggggtat aacatt	tctt 720

gggaactagg caatgaacct aacagtttcc ttaagaaggc tgatattttc atcaatgggt 780 cgcagttagg agaagattat attcaattgc ataaacttct aagaaagtcc accttcaaaa 840 atgcaaaact ctatggtcct gatgttggtc agcctcgaag aaagacggct aagatgctga 900 agagetteet gaaggetggt ggagaagtga ttgatteagt tacatggeat cactactatt 960 tgaatggacg gactgctacc agggaagatt ttctaaaccc tgatgtattg gacattttta 1020 tttcatctgt gcaaaaagtt ttccaggtgg ttgagagcac caggcctggc aagaaggtct 1080 ggttaggaga aacaagctct gcatatggag gcggagcgcc cttgctatcc gacacctttg 1140 cagctggctt tatgtggctg gataaattgg gcctgtcagc ccgaatggga atagaagtgg 1200 tgatgaggca agtattcttt ggagcaggaa actaccattt agtggatgaa aacttcgatc 1260 ctttacctga ttattggcta tctcttctgt tcaagaaatt ggtgggcacc aaggtgttaa 1320 tggcaagcgt gcaaggttca aagagaagga agcttcgagt ataccttcat tgcacaaaca 1380 ctgacaatcc aaggtataaa gaaggagatt taactctgta tgccataaac ctccataacg 1440 tcaccaagta cttgcggtta ccctatcctt tttctaacaa gcaagtggat aaataccttc 1500 taagaccttt gggacctcat ggattacttt ccaaatctgt ccaactcaat ggtctaactc 1560 taaagatggt ggatgatcaa accttgccac ctttaatgga aaaacctctc cggccaggaa 1620 gttcactggg cttgccagct ttctcatata gtttttttgt gataagaaat gccaaagttg 1680 ctgcttgcat ctgaaaataa aatatactag tcctgacact g 1721

<210> 10 <211> 543

<212> PRT

<213> Homo sapiens

<400> 10

Met Leu Leu Arg Ser Lys Pro Ala Leu Pro Pro Pro Leu Met Leu Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Leu Gly Pro Leu Gly Pro Leu Ser Pro Gly Ala Leu Pro Arg Pro 20 25 30

Ala Gln Ala Gln Asp Val Val Asp Leu Asp Phe Phe Thr Gln Glu Pro 35 40 45

Leu His Leu Val Ser Pro Ser Phe Leu Ser Val Thr Ile Asp Ala Asn 50 55 60

Leu Ala Thr Asp Pro Arg Phe Leu Ile Leu Leu Gly Ser Pro Lys Leu 65 70 75 80

Arg Thr Leu Ala Arg Gly Leu Ser Pro Ala Tyr Leu Arg Phe Gly Gly 85 90 95

Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Lys Lys Glu Ser Thr Phe 100 105 110

Glu Glu Arg Ser Tyr Trp Gln Ser Gln Val Asn Gln Asp Ile Cys Lys 115 120 125

Tyr Gly Ser Ile Pro Pro Asp Val Glu Glu Lys Leu Arg Leu Glu Trp 130 135 140

Pro Tyr Gln Glu Gln Leu Leu Leu Arg Glu His Tyr Gln Lys Lys Phe 145 150 155 160

Lys Asn Ser Thr Tyr Ser Arg Ser Ser Val Asp Val Leu Tyr Thr Phe 165 170 175

Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe Gly Leu Asn Ala Leu Leu 180 185 190

Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile Ser Trp Glu Leu Gly Asn 210 220

Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp Ile Phe Ile Asn Gly Ser 225 230 230 240

Gln Leu Gly Glu Asp Tyr Ile Gln Leu His Lys Leu Leu Arg Lys Ser 245 250 255

Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro Asp Val Gly Gln Pro Arg 260 265 270

Arg Lys Thr Ala Lys Met Leu Lys Ser Phe Leu Lys Ala Gly Gly Glu 275 280 280

Val Ile Asp Ser Val Thr Trp His His Tyr Tyr Leu Asn Gly Arg Thr 290 295 300

Ala Thr Arg Glu Asp Phe Leu Asn Pro Asp Val Leu Asp Ile Phe Ile 305 310 315 320

Ser Ser Val Gln Lys Val Phe Gln Val Val Glu Ser Thr Arg Pro Gly 325 330 335

Lys Lys Val Trp Leu Gly Glu Thr Ser Ser Ala Tyr Gly Gly Gly Ala 340 345 350

Pro Leu Leu Ser Asp Thr Phe Ala Ala Gly Phe Met Trp Leu Asp Lys 355 360 365

Leu Gly Leu Ser Ala Arg Met Gly Ile Glu Val Val Met Arg Gln Val 370 375 380

Phe Phe Gly Ala Gly Asn Tyr His Leu Val Asp Glu Asn Phe Asp Pro 385 390 395 400

Leu	Pro	Asp	Tyr	Trp 405	Leu	Ser	Leu	Leu	Phe 410	Lys	Lys	Leu	Val	Gly 415	Thr		
Lys	Val	Leu	Met 420	Ala	Ser	Val	Gln	Gly 425	Ser	Lys	Arg	Arg	Lys 430	Leu	Arg		
Val	Tyr	Leu 435	His	Cys	Thr	Asn	Thr 440	Asp	Asn	Pro	Arg	Tyr 445	Lys	Glu	Gly		
Asp	Leu 450	Thr	Leu	Tyr	Ala	Ile 455	Asn	Leu	His	Asn	Val 460	Thr	Lys	Tyr	Leu		
Arg 465	Leu	Pro	Tyr	Pro	Phe 470	Ser	Asn	Lys	Gln	Val 475	Asp	Lys	Tyr	Leu	Leu 480		
Arg	Pro	Leu	Gly	Pro 485	His	Gly	Leu	Leu	Ser 490	Lys	Ser	Val	Gln	Leu 495	Asn		
Gly	Leu	Thr	Leu 500	Lys	Met	Val	Asp	Asp 505	Gln	Thr	Leu	Pro	Pro 510	Leu	Met		
Glu	Lys	Pro 515	Leu	Arg	Pro	Gly	Ser 520	Ser	Leu	Gly	Leu	Pro 525	Ala	Phe	Ser		
Tyr	Ser 530	Phe	Phe	Val	Ile	Arg 535	Asn	Ala	Lys	Val	Ala 540	Ala	Cys	Ile			
<210 <211 <212 <213	.> : !> !	l1 l721 DNA Homo	sapi	ens													
<220 <221 <222	.> (CDS (63).	(16	591)													
<400 ctag		ll ctt (cgact	ctc	g ct	gcgc	ggca	a gct	ggc	gggg	ggag	gcago	cca ç	ggtga	agccca	6	0
ag a	let 1	ctg d Leu I	ctg o Leu <i>P</i>	gc targ S	er I	ag c Lys E	cct o	gcg (Ala I	Leu E	ccg o Pro I LO	ccg c Pro I	ecg o	ctg a Leu N	let 1	ctg Leu 15	10	7
ctg Leu	ctc Leu	ctg Leu	G1y ggg	ccg Pro 20	ctg Leu	ggt Gly	ccc Pro	ctc Leu	tcc Ser 25	cct Pro	ggc Gly	gcc Ala	ctg Leu	ccc Pro 30	cga Arg	15	5
			gca Ala 35													20	3
			ctg Leu													25	1
			acg Thr													29	9

ctt cgt acc ttg gcc aga ggc ttg tct cct gcg tac ctg agg ttt ggt

Leu 80	Arg	Thr	Leu	Ala	Arg 85	Gly	Leu	Ser	Pro	Ala 90	Tyr	Leu	Arg	Phe	Gly 95	
		-		-		cta Leu			-		-	-	•			395
						tgg Trp										443
						cct Pro										491
						ttg Leu 150										539
						tca Ser										587
						ctg Leu										635
						cag Gln										683
						aag Lys										731
						ctt Leu 230										779
						tat Tyr										827
						aaa Lys										875
						atg Met										923
						aca Thr										971
						ttt Phe 310										1019
						gtt Val										1067
						gga Gly										1115
						acc Thr										1163

				tg gtg atg agg al Val Met Arg 380	
			s Leu Val A	at gaa aac tto sp Glu Asn Phe 95	
		Leu Ser Le		ag aaa ttg gtg ys Lys Leu Val	
				ag aga agg aag ys Arg Arg Lys 430	Leu
			r Asp Asn P	ca agg tat aaa ro Arg Tyr Lys 445	
gga gat tta Gly Asp Leu 450	act ctg tat Thr Leu Tyr	gcc ata aa Ala Ile As 455	c ctc cat a n Leu His A	ac gtc acc aag sn Val Thr Lys 460	tac 1451 Tyr
			n Lys Gln V	tg gat aaa tac al Asp Lys Tyr 75	
cta aga cct Leu Arg Pro 480	ttg gga cct Leu Gly Pro 485	cat gga tt His Gly Le	a ctt tcc a u Leu Ser L 490	aa tct gtc caa ys Ser Val Glr	ctc 1547 Leu 495
aat ggt cta Asn Gly Leu	act cta aag Thr Leu Lys 500	atg gtg ga Met Val As	t gat caa a p Asp Gln T 505	cc ttg cca cct hr Leu Pro Pro 510	Leu
atg gaa aaa Met Glu Lys	cct ctc cgg Pro Leu Arg 515	cca gga ag Pro Gly Se 52	r Ser Leu G	gc ttg cca gct ly Leu Pro Ala 525	ttc 1643 Phe
tca tat agt Ser Tyr Ser 530	ttt ttt gtg Phe Phe Val	ata aga aa Ile Arg Ass 535	t gcc aaa g n Ala Lys V	tt gct gct tgc al Ala Ala Cys 540	atc 1691 Ile
tgaaaataaa a	atatactagt c	ctgacactg			1721
<210> 12 <211> 543 <212> PRT <213> Homo	sapiens				
<400> 12					
Met Leu Leu 1	Arg Ser Lys 5	Pro Ala Le	u Pro Pro P: 10	ro Leu Met Leu 15	Leu
Leu Leu Gly	Pro Leu Gly 20	Pro Leu Se: 25		la Leu Pro Arg 30	Pro
Ala Gln Ala 35	Gln Asp Val	Val Asp Let	u Asp Phe Pl	he Thr Gln Glu 45	Pro

Leu His Leu Val Ser Pro Ser Phe Leu Ser Val Thr Ile Asp Ala Asn 50 55 60

Leu Ala Thr Asp Pro Arg Phe Leu Ile Leu Leu Gly Ser Pro Lys Leu

65. 70 75 8

Arg Thr Leu Ala Arg Gly Leu Ser Pro Ala Tyr Leu Arg Phe Gly Gly 85 90 95

Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Lys Lys Glu Ser Thr Phe 100 105 110

Glu Glu Arg Ser Tyr Trp Gln Ser Gln Val Asn Gln Asp Ile Cys Lys 115 120 125

Tyr Gly Ser Ile Pro Pro Asp Val Glu Glu Lys Leu Arg Leu Glu Trp 130 135 140

Pro Tyr Gln Glu Gln Leu Leu Leu Arg Glu His Tyr Gln Lys Lys Phe 145 150 155 160

Lys Asn Ser Thr Tyr Ser Arg Ser Ser Val Asp Val Leu Tyr Thr Phe 165 170 175

Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe Gly Leu Asn Ala Leu Leu 180 185 190

Arg Thr Ala Asp Leu Gln Trp Asn Ser Ser Asn Ala Gln Leu Leu 195 200 205

Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile Ser Trp Glu Leu Gly Asn 210 215 220

Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp Ile Phe Ile Asn Gly Ser 225 230 235 240

Gln Leu Gly Glu Asp Tyr Ile Gln Leu His Lys Leu Leu Arg Lys Ser 245 250 255

Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro Asp Val Gly Gln Pro Arg 260 265 270

Arg Lys Thr Ala Lys Met Leu Lys Ser Phe Leu Lys Ala Gly Gly Glu 275 280 285

Val Ile Asp Ser Val Thr Trp His His Tyr Tyr Leu Asn Gly Arg Thr 290 295 300

Ala Thr Arg Glu Asp Phe Leu Asn Pro Asp Val Leu Asp Ile Phe Ile 305 310 315 320

Ser Ser Val Gln Lys Val Phe Gln Val Val Glu Ser Thr Arg Pro Gly 325 330 335

Lys Lys Val Trp Leu Gly Glu Thr Ser Ser Ala Tyr Gly Gly Ala 340 345 350

Pro	Leu	Leu 355	Ser	Asp	Thr	Phe	Ala 360	Ala	Gly	Phe	Met	Trp 365	Leu	Asp	Lys	
Leu	Gly 370	Leu	Ser	Ala	Arg	Met 375	Gly	Ile	Glu	Val	Val 380	Met	Arg	Gln	Val	
Phe 385	Phe	Gly	Ala	Gly	Asn 390	туг	His	Leu	Val	Asp 395	Glu	Asn	Phe	Asp	Pro 400	
Leu	Pro	Asp	Tyr	Trp 405	Leu	Ser	Leu	Leu	Phe 410	Lys	Lys	Leu	Val	Gly 415	Thr	
Lys	Val	Leu	Met 420	Ala	Ser	Val	Gln	Gly 425	Ser	Lys	Arg	Arg	Lys 430	Leu	Arg	
Val	Tyr	Leu 435	His	Cys	Thr	Asn	Thr 440	Asp	Asn	Pro	Arg	Туг 445	Lys	Glu	Gly	
Asp	Leu 450	Thr	Leu	Tyr	Ala	Ile 455	Asn	Leu	His	Asn	Val 460	Thr	Lys	Tyr	Leu	
Arg 465	Leu	Pro	Tyr	Pro	Phe 470	Ser	Asn	Lys	Gln	Val 475	Asp	Lys	Tyr	Leu	Leu 480	
Arg	Pro	Leu	Gly	Pro 485	His	Gly	Leu	Leu	Ser 490	Lys	Ser	Val	Gln	Leu 495	Asn	
Gly	Leu	Thr	Leu 500	Lys	Met	Val	Asp	Asp 505	Gln	Thr	Leu	Pro	Pro 510	Leu	Met	
Glu	Lys	Pro 515	Leu	Arg	Pro	Gly	Ser 520	Ser	Leu	Gly	Leu	Pro 525	Ala	Phe	Ser	
Tyr	Ser 530	Phe	Phe	Val	Ile	Arg 535	Asn	Ala	Lys	Val	Ala 540	Ala	Сув	Ile		
<210 <211 <212 <213	L> 6 ?> [l3 324 DNA Mus n	nusci	ılus												
<400			atct	aat.t	a ac	agag	acaa	act	.cago	rtta	caat	aacı	rat (TC 2 CC	cttgc	60
															ccaga	120
													_	-	agtgg	180
															ggtag	240
gtcc	cago	ggt g	gttac	etgto	a aç	gagto	jaaaç	g gcc	caga	cag	gago	caaac	etc o	gagt	gtatc	300
tcca	ctgo	ac t	aacç	gtcta	at ca	ccca	cgat	ato	agga	agg	agat	ctaa	ct c	tgta	tgtcc	360
tgaa	cctc	ca t	aatç	gtcac	cc aa	gcac	ttga	agç	tacc	gcc	tcc	gttgt	tc a	ıggaa	accag	420
tgga	taco	jta c	ctto	tgaa	ag co	ttcc	gggc	cgg	gatgg	att	actt	tcca	aa t	ctgt	ccaac	480
tgaa	cggt	ca a	atto	tgaa	g at	ggto	gato	ago	agac	cct	gcca	gctt	tg a	caga	aaaac	540

ctctccccgc agga	aagtgca ctaagcct	gc ctgcctttt	ctatggtttt	tttgtcataa	600
gaaatgccaa aato	cgctgct tgtatatg	aa aataaaaggo	atacggtacc	cctgagacaa	660
aagccgaggg gggt	tgttatt cataaaac	aa aaccctagtt	taggaggcca	cctccttgcc	720
gagttccaga gct	tcgggag ggtggggt	ac acttcagtat	tacattcagt	gtggtgttct	780
ctctaagaag aata	actgcag gtggtgac	ag ttaatagcad	tgtg		824
<210> 14 <211> 1899 <212> DNA <213> Homo sag	piens				
<400> 14	200220t 200200	aa aaaaaaaaa			
	aggaagt aggagaga				60
	gcagaag aggagtgg				120
	cggagga aaggagaa				180
	ctccgct gcgcggca				240
	cgaagee tgegetge				300
	cccctgg cgccctgc				360
	cccagga gccgctgc				420
attgacgcca acct	tggccac ggacccgc	gg ttcctcatco	tcctgggttc	tccaaagctt	480
cgtaccttgg ccac	gaggett gteteetg	cg tacctgaggt	ttggtggcac	caagacagac	540
ttcctaattt tcga	atcccaa gaaggaat	ca acctttgaag	agagaagtta	ctggcaatct	600
caagtcaacc agga	atatttg caaatatg	ga tccatccctc	ctgatgtgga	ggagaagtta	660
cggttggaat ggc	cctacca ggagcaat	tg ctactccgag	aacactacca	gaaaaagttc	720
aagaacagca ccta	actcaag aagctctg	ta gatgtgctat	acacttttgc	aaactgctca	780
ggactggact tgat	tctttgg cctaaatg	cg ttattaagaa	cagcagattt	gcagtggaac	840
agttctaatg ctca	agttgct cctggact	ac tgctcttcca	aggggtataa	catttcttgg	900
gaactaggca atga	aacctaa cagtttcc	tt aagaaggctg	atattttcat	caatgggtcg	960
cagttaggag aaga	attatat tcaattgc	at aaacttctaa	gaaagtccac	cttcaaaaat	1020
gcaaaactct atg	gtcctga tgttggtc	ag cctcgaagaa	agacggctaa	gatgctgaag	1080
agcttcctga aggo	ctggtgg agaagtga	tt gattcagtta	catggcatca	ctactatttg	1140
aatggacgga ctg	ctaccag ggaagatt	tt ctaaaccctg	atgtattgga	catttttatt	1200
tcatctgtgc aaaa	aagtttt ccaggtgg	tt gagagcacca	ggcctggcaa	gaaggtctgg	1260
ttaggagaaa caag	gctctgc atatggag	gc ggagcgccct	tgctatccga	cacctttgca	1320
gctggcttta tgtg	ggctgga taaattgg	gc ctgtcagccc	gaatgggaat	agaagtggtg	1380
atgaggcaag tatt	tctttgg agcaggaa	ac taccatttag	tggatgaaaa	cttcgatcct	1440
	ggctatc tcttctgt				1500
	gttcaaa gagaagga			_	1560
	ataaaga aggagatt		_	•	1620
					_ •

accaagtact tgcggttacc ctatccttt tctaacaagc aagtggataa ataccttcta 1680
agacctttgg gacctcatgg attactttcc aaatctgtcc aactcaatgg tctaactcta 1740
aagatggtgg atgatcaaac cttgccacct ttaatggaaa aacctctccg gccaggaagt 1800
tcactgggct tgccagcttt ctcatatagt ttttttgtga taagaaatgc caaagttgct 1860
gcttgcatct gaaaataaaa tatactagtc ctgacactg 1899

<210> 15

<211> 592

<212> PRT

<213> Homo sapiens

<400> 15

Met Glu Gly Ala Val Gly Gly Val Arg Arg Arg Asn Gly Ala Glu Glu 1 5 10 15

Arg Arg Lys Gly Arg Trp Gly Ser Ala Gly Gly Ser Ala Arg Ala Leu $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Asp Ser Pro Leu Arg Gly Ser Trp Arg Gly Glu Gln Pro Gly Glu Pro 35 40 45

Lys Met Leu Leu Arg Ser Lys Pro Ala Leu Pro Pro Pro Leu Met Leu 50 60

Leu Leu Leu Gly Pro Leu Gly Pro Leu Ser Pro Gly Ala Leu Pro Arg 65 70 75 80

Pro Ala Gln Ala Gln Asp Val Val Asp Leu Asp Phe Phe Thr Gln Glu 85 90 95

Pro Leu His Leu Val Ser Pro Ser Phe Leu Ser Val Thr Ile Asp Ala 100 105 110

Asn Leu Ala Thr Asp Pro Arg Phe Leu Ile Leu Leu Gly Ser Pro Lys 115 120 125

Leu Arg Thr Leu Ala Arg Gly Leu Ser Pro Ala Tyr Leu Arg Phe Gly 130 135 140

Gly Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Lys Lys Glu Ser Thr 145 150 155 160

Phe Glu Glu Arg Ser Tyr Trp Gln Ser Gln Val Asn Gln Asp Ile Cys 165 170 175

Lys Tyr Gly Ser Ile Pro Pro Asp Val Glu Glu Lys Leu Arg Leu Glu 180 185 190

Trp Pro Tyr Gln Glu Gln Leu Leu Leu Arg Glu His Tyr Gln Lys Lys 195 200 205

- Phe Lys Asn Ser Thr Tyr Ser Arg Ser Ser Val Asp Val Leu Tyr Thr 210 215 220
- Phe Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe Gly Leu Asn Ala Leu 225 230 240
- Leu Arg Thr Ala Asp Leu Gln Trp Asn Ser Ser Asn Ala Gln Leu Leu 245 250 255
- Leu Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile Ser Trp Glu Leu Gly 260 265 270
- Asn Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp Ile Phe Ile Asn Gly 275 280 285
- Ser Gln Leu Gly Glu Asp Tyr Ile Gln Leu His Lys Leu Leu Arg Lys 290 295 300
- Ser Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro Asp Val Gly Gln Pro 305 310 315 320
- Arg Arg Lys Thr Ala Lys Met Leu Lys Ser Phe Leu Lys Ala Gly Gly 325 330 335
- Glu Val Ile Asp Ser Val Thr Trp His His Tyr Tyr Leu Asn Gly Arg 340 345 350
- Ile Ser Ser Val Gln Lys Val Phe Gln Val Val Glu Ser Thr Arg Pro 370 375 380
- Gly Lys Lys Val Trp Leu Gly Glu Thr Ser Ser Ala Tyr Gly Gly Gly 385 390 395 400
- Ala Pro Leu Leu Ser Asp Thr Phe Ala Ala Gly Phe Met Trp Leu Asp 405 410 415
- Lys Leu Gly Leu Ser Ala Arg Met Gly Ile Glu Val Val Met Arg Gln 420 425 430
- Val Phe Phe Gly Ala Gly Asn Tyr His Leu Val Asp Glu Asn Phe Asp 435 440 445
- Pro Leu Pro Asp Tyr Trp Leu Ser Leu Leu Phe Lys Lys Leu Val Gly 450 455 460
- Thr Lys Val Leu Met Ala Ser Val Gln Gly Ser Lys Arg Arg Lys Leu 465 470 475 480
- Arg Val Tyr Leu His Cys Thr Asn Thr Asp Asn Pro Arg Tyr Lys Glu
 485 490 495

Gly Asp Leu Thr Leu Tyr Ala Ile Asn Leu His Asn Val Thr Lys Tyr 500 505 510	
Leu Arg Leu Pro Tyr Pro Phe Ser Asn Lys Gln Val Asp Lys Tyr Leu 515 520 525	
Leu Arg Pro Leu Gly Pro His Gly Leu Leu Ser Lys Ser Val Gln Leu 530 535 540	
Asn Gly Leu Thr Leu Lys Met Val Asp Asp Gln Thr Leu Pro Pro Leu 545 550 555 560	
Met Glu Lys Pro Leu Arg Pro Gly Ser Ser Leu Gly Leu Pro Ala Phe 565 570 575	
Ser Tyr Ser Phe Phe Val Ile Arg Asn Ala Lys Val Ala Ala Cys Ile 580 585 590	
<210> 16 <211> 1899 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (94)(1869)	
<400> 16	
gggaaagcga gcaaggaagt aggagagagc cgggcaggcg gggcggggtt ggattgggag	g 60
gggaaagcga gcaaggaagt aggagagagc cgggcaggcg gggcggggtt ggattggga cagtgggagg gatgcagaag aggagtggga ggg atg gag ggc gca gtg gga ggg Met Glu Gly Ala Val Gly Gly 1 5	g 60 114
cagtgggagg gatgcagaag aggagtggga ggg atg gag ggc gca gtg gga ggg Met Glu Gly Ala Val Gly Gly	
cagtgggagg gatgcagaag aggagtggga ggg atg gag ggc gca gtg gga ggg Met Glu Gly Ala Val Gly Gly 1 5 gtg agg agg cgt aac ggg gcg gag gaa agg aga aaa ggg cgc tgg ggc Val Arg Arg Arg Asn Gly Ala Glu Glu Arg Arg Lys Gly Arg Trp Gly	114
cagtgggagg gatgcagaag aggagtggga ggg atg gag ggc gca gtg gga ggg Met Glu Gly Ala Val Gly Gly 1 5 gtg agg agg cgt aac ggg gcg gag gaa agg aga aaa ggg cgc tgg ggc Val Arg Arg Arg Asn Gly Ala Glu Glu Arg Arg Lys Gly Arg Trp Gly 10 15 20 tcg gcg gga gga agt gct aga gct ctc gac tct ccg ctg cgc ggc agc Ser Ala Gly Gly Ser Ala Arg Ala Leu Asp Ser Pro Leu Arg Gly Ser	114
cagtgggagg gatgcagaag aggagtggga ggg atg gag ggc gca gtg gga ggg Met Glu Gly Ala Val Gly Gly 1 5 gtg agg agg cgt aac ggg gcg gag gaa agg aga aaa ggg cgc tgg ggc Val Arg Arg Arg Asn Gly Ala Glu Glu Arg Arg Lys Gly Arg Trp Gly 10 15 20 tcg gcg gga gga agt gct aga gct ctc gac tct ccg ctg cgc ggc agc Ser Ala Gly Gly Ser Ala Arg Ala Leu Asp Ser Pro Leu Arg Gly Ser 25 30 35 tgg cgg ggg gag cag cca ggt gag ccc aag atg ctg ctg cgc tcg aag Trp Arg Gly Glu Gln Pro Gly Glu Pro Lys Met Leu Leu Arg Ser Lys	114 162 210
cagtgggagg gatgcagaag aggagtggga ggg atg gag ggc gca gtg gga ggg Met Glu Gly Ala Val Gly Gly 1 5 gtg agg agg cgt aac ggg gcg gag gaa agg aga aaa ggg cgc tgg ggc Val Arg Arg Arg Asn Gly Ala Glu Glu Arg Arg Lys Gly Arg Trp Gly 15 20 tcg gcg gga gga agt gct aga gct ctc gac tct ccg ctg cgc ggc agc Ser Ala Gly Gly Ser Ala Arg Ala Leu Asp Ser Pro Leu Arg Gly Ser 25 30 35 tgg cgg ggg gag cag cca ggt gag ccc aag atg ctg ctg cgc tcg aag Trp Arg Gly Glu Gln Pro Gly Glu Pro Lys Met Leu Leu Arg Ser Lys 40 45 50 55 cct gcg ctg ccg ccg ccg ctg atg ctg ctg ctc ctg ggg ccg ctg ggt Pro Ala Leu Pro Pro Pro Leu Met Leu Leu Leu Gly Pro Leu Gly	114 162 210 258
cagtgggagg gatgcagaag aggagtggga ggg atg gag ggc gca gtg gga ggg ggc gag gtg gga ggg ggt aag agg agg agg agg	114 162 210 258 306

ttc ctc atc ctc ctg ggt tct cca aag ctt cgt acc ttg gcc aga ggc

Phe 120	Leu	Ile	Leu	Leu	Gly 125	Ser	Pro	Lys	Leu	Arg 130	Thr	Leu	Ala	Arg	Gly 135	
			gcg Ala													546
			ccc Pro 155													594
			gtc Val													642
			gag Glu													690
			gaa Glu													738
aga Arg	agc Ser	tct Ser	gta Val	gat Asp 220	gtg Val	cta Leu	tac Tyr	act Thr	ttt Phe 225	gca Ala	aac Asn	tgc Cys	tca Ser	gga Gly 230	ctg Leu	786
gac Asp	ttg Leu	atc Ile	ttt Phe 235	ggc Gly	cta Leu	aat Asn	gcg Ala	tta Leu 240	tta Leu	aga Arg	aca Thr	gca Ala	gat Asp 245	ttg Leu	cag Gln	834
tgg Trp	aac Asn	agt Ser 250	tct Ser	aat Asn	gct Ala	cag Gln	ttg Leu 255	ctc Leu	ctg Leu	gac Asp	tac Tyr	tgc Cys 260	tct Ser	tcc Ser	aag Lys	882
			att Ile													930
aag Lys 280	aag Lys	gct Ala	gat Asp	att Ile	ttc Phe 285	atc Ile	aat Asn	Gly ggg	tcg Ser	cag Gln 290	tta Leu	gga Gly	gaa Glu	gat Asp	tat Tyr 295	978
att Ile	caa Gln	ttg Leu	cat His	aaa Lys 300	ctt Leu	cta Leu	aga Arg	aag Lys	tcc Ser 305	acc Thr	ttc Phe	aaa Lys	aat Asn	gca Ala 310	aaa Lys	1026
ctc Leu	tat Tyr	ggt Gly	cct Pro 315	gat Asp	gtt Val	ggt Gly	cag Gln	cct Pro 320	cga Arg	aga Arg	aag Lys	acg Thr	gct Ala 325	aag Lys	atg Met	1074
ctg Leu	aag Lys	agc Ser 330	ttc Phe	ctg Leu	aag Lys	gct Ala	ggt Gly 335	gga Gly	gaa Glu	gtg Val	att Ile	gat Asp 340	tca Ser	gtt Val	aca Thr	1122
tgg Trp	cat His 345	cac His	tac Tyr	tat Tyr	ttg Leu	aat Asn 350	gga Gly	cgg Arg	act Thr	gct Ala	acc Thr 355	agg Arg	gaa Glu	gat Asp	ttt Phe	1170
cta Leu 360	aac Asn	cct Pro	gat Asp	gta Val	ttg Leu 365	gac Asp	att Ile	ttt Phe	att Ile	tca Ser 370	tct Ser	gtg Val	caa Gln	aaa Lys	gtt Val 375	1218
ttc Phe	cag Gln	gtg Val	gtt Val	gag Glu 380	agc Ser	acc Thr	agg Arg	cct Pro	ggc Gly 385	aag Lys	aag Lys	gtc Val	tgg Trp	tta Leu 390	gga Gly	1266
gaa Glu	aca Thr	agc Ser	tct Ser 395	gca Ala	tat Tyr	gga Gly	ggc Gly	gga Gly 400	gcg Ala	ccc Pro	ttg Leu	cta Leu	tcc Ser 405	gac Asp	acc Thr	1314

ttt gca gct ggc ttt atg tgg ctg gat aaa ttg ggc ctg tca gcc cga Phe Ala Ala Gly Phe Met Trp Leu Asp Lys Leu Gly Leu Ser Ala Arg 410 415 420	1362
atg gga ata gaa gtg gtg atg agg caa gta ttc ttt gga gca gga aac Met Gly Ile Glu Val Val Met Arg Gln Val Phe Phe Gly Ala Gly Asn 425 430 435	1410
tac cat tta gtg gat gaa aac ttc gat cct tta cct gat tat tgg cta Tyr His Leu Val Asp Glu Asn Phe Asp Pro Leu Pro Asp Tyr Trp Leu 440 445 450 455	1458
tct ctt ctg ttc aag aaa ttg gtg ggc acc aag gtg tta atg gca agc Ser Leu Leu Phe Lys Lys Leu Val Gly Thr Lys Val Leu Met Ala Ser 460 465 470	1506
gtg caa ggt tca aag aga agg aag ctt cga gta tac ctt cat tgc aca Val Gln Gly Ser Lys Arg Arg Lys Leu Arg Val Tyr Leu His Cys Thr 475 480 485	1554
aac act gac aat cca agg tat aaa gaa gga gat tta act ctg tat gcc Asn Thr Asp Asn Pro Arg Tyr Lys Glu Gly Asp Leu Thr Leu Tyr Ala 490 495 500	1602
ata aac ctc cat aac gtc acc aag tac ttg cgg tta ccc tat cct ttt Ile Asn Leu His Asn Val Thr Lys Tyr Leu Arg Leu Pro Tyr Pro Phe 505 510 515	1650
tct aac aag caa gtg gat aaa tac ctt cta aga cct ttg gga cct cat Ser Asn Lys Gln Val Asp Lys Tyr Leu Leu Arg Pro Leu Gly Pro His 520 525 530 535	1698
gga tta ctt tcc aaa tct gtc caa ctc aat ggt cta act cta aag atg Gly Leu Leu Ser Lys Ser Val Gln Leu Asn Gly Leu Thr Leu Lys Met 540 545 550	1746
gtg gat gat caa acc ttg cca cct tta atg gaa aaa cct ctc cgg cca Val Asp Asp Gln Thr Leu Pro Pro Leu Met Glu Lys Pro Leu Arg Pro 555 560 565	1794
gga agt tca ctg ggc ttg cca gct ttc tca tat agt ttt ttt gtg ata Gly Ser Ser Leu Gly Leu Pro Ala Phe Ser Tyr Ser Phe Phe Val Ile 570 575 580	1842
aga aat gcc aaa gtt gct gct tgc atc tgaaaataaa atatactagt Arg Asn Ala Lys Val Ala Ala Cys Ile 585 590	1889
cctgacactg	1899
<210> 17 <211> 592 <212> PRT <213> Homo sapiens	
<400> 17	
Met Glu Gly Ala Val Gly Gly Val Arg Arg Arg Asn Gly Ala Glu Glu 1 5 10 15	
Arg Arg Lys Gly Arg Trp Gly Ser Ala Gly Gly Ser Ala Arg Ala Leu 20 25 30	
Asp Ser Pro Leu Arg Gly Ser Trp Arg Gly Glu Gln Pro Gly Glu Pro 35 40 45	

50 55 6

Leu Leu Leu Gly Pro Leu Gly Pro Leu Ser Pro Gly Ala Leu Pro Arg 65 70 75 80

Pro Ala Gln Ala Gln Asp Val Val Asp Leu Asp Phe Phe Thr Gln Glu 85 90 95

Pro Leu His Leu Val Ser Pro Ser Phe Leu Ser Val Thr Ile Asp Ala 100 105 110

Asn Leu Ala Thr Asp Pro Arg Phe Leu Ile Leu Leu Gly Ser Pro Lys 115 120 125

Leu Arg Thr Leu Ala Arg Gly Leu Ser Pro Ala Tyr Leu Arg Phe Gly 130 135 140

Gly Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Lys Lys Glu Ser Thr 145 150 155 160

Phe Glu Glu Arg Ser Tyr Trp Gln Ser Gln Val Asn Gln Asp Ile Cys 165 170 175

Lys Tyr Gly Ser Ile Pro Pro Asp Val Glu Glu Lys Leu Arg Leu Glu 180 185 190

Trp Pro Tyr Gln Glu Gln Leu Leu Arg Glu His Tyr Gln Lys Lys 195 200 205

Phe Lys Asn Ser Thr Tyr Ser Arg Ser Ser Val Asp Val Leu Tyr Thr 210 220

Phe Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe Gly Leu Asn Ala Leu 225 230 240

Leu Arg Thr Ala Asp Leu Gln Trp Asn Ser Ser Asn Ala Gln Leu Leu 245 250 255

Leu Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile Ser Trp Glu Leu Gly 260 265 270

Asn Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp Ile Phe Ile Asn Gly 275 280 280 285

Ser Gln Leu Gly Glu Asp Tyr Ile Gln Leu His Lys Leu Leu Arg Lys 290 295 300

Ser Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro Asp Val Gly Gln Pro 305 310 315 320

Arg Arg Lys Thr Ala Lys Met Leu Lys Ser Phe Leu Lys Ala Gly Gly 325 330 335

Glu Val Ile Asp Ser Val Thr Trp His His Tyr Tyr Leu Asn Gly Arg 340 345 350

Thr Ala Thr Arg Glu Asp Phe Leu Asn Pro Asp Val Leu Asp Ile Phe 355 360 365

Ile Ser Ser Val Gln Lys Val Phe Gln Val Val Glu Ser Thr Arg Pro 370 375 380

Gly Lys Lys Val Trp Leu Gly Glu Thr Ser Ser Ala Tyr Gly Gly Gly 385 390 395 400

Ala Pro Leu Leu Ser Asp Thr Phe Ala Ala Gly Phe Met Trp Leu Asp
405 410 415

Lys Leu Gly Leu Ser Ala Arg Met Gly Ile Glu Val Val Met Arg Gln
420 425 430

Val Phe Phe Gly Ala Gly Asn Tyr His Leu Val Asp Glu Asn Phe Asp 435 440 445

Pro Leu Pro Asp Tyr Trp Leu Ser Leu Leu Phe Lys Lys Leu Val Gly 450 455 460

Thr Lys Val Leu Met Ala Ser Val Gln Gly Ser Lys Arg Arg Lys Leu 465 470 470 480

Arg Val Tyr Leu His Cys Thr Asn Thr Asp Asn Pro Arg Tyr Lys Glu 485 490 495

Gly Asp Leu Thr Leu Tyr Ala Ile Asn Leu His Asn Val Thr Lys Tyr 500 505 510

Leu Arg Leu Pro Tyr Pro Phe Ser Asn Lys Gln Val Asp Lys Tyr Leu 515 520 525

Leu Arg Pro Leu Gly Pro His Gly Leu Leu Ser Lys Ser Val Gln Leu 530 535 540

As Gly Leu Thr Leu Lys Met Val Asp Asp Gln Thr Leu Pro Pro Leu 545 550 555 560

Met Glu Lys Pro Leu Arg Pro Gly Ser Ser Leu Gly Leu Pro Ala Phe 565 570 575

Ser Tyr Ser Phe Phe Val Ile Arg Asn Ala Lys Val Ala Ala Cys Ile 580 585 590

<210> 18

<211> 594

<211> 534 <212> DNA

<213> Homo sapiens

<400> 18

attactatag ggcacgcgtg gtcgacggcc cgggctggta ttgtcttaat gagaagttga

17

```
taaagaattt tgggtggttg atctctttcc agctgcagtt tagcgtatgc tgaggccaga
                                                                          120
ttttttcagg caaaagtaaa atacctgaga aactgcctgg ccagaggaca atcagattt
                                                                          180
ggctggctca agtgacaagc aagtgtttat aagctagatg ggagaggaag ggatgaatac
                                                                          240
tccattggag gctttactcg agggtcagag ggatacccgg cgccatcaga atgggatctg
                                                                          300
ggagtcggaa acgctgggtt cccacgagag cgcgcagaac acgtgcgtca ggaagcctgg
                                                                          360
tccgggatgc ccagcgctgc tccccgggcg ctcctccccg ggcgctcctc cccaggcctc
                                                                          420
ccgggcgctt ggatcccggc catctccgca cccttcaagt gggtgtgggt gatttcgtaa
                                                                          480
gtgaacgtga ccgccaccgg ggggaaagcg agcaaggaag taggagagag ccgggcaggc
                                                                          540
ggggcggggt tggattggga gcagtgggag ggatgcagaa gaggagtggg aggg
                                                                          594
<210> 19
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 19
ccccaggagc agcagcatca g
                                                                           21
<210> 20
<211> 21
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 20
Ala Gly Gly Cys Thr Thr Cys Gly Ala Gly Cys Gly Cys Ala Gly Cys
Ala Gly Cys Ala Thr
<210> 21
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 21
gtaatacgac tcactatagg gc
                                                                           22
<210> 22
<211> 19
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
```

<400> 22

actata	gggc acgcgtggt	19
<210> <211> <212> <213>	23 21 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> cttggg	23 ctca cctggctgct c	21
<210> <211> <212> <213>	24 23 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> agctct	24 gtag atgtgctata cac	23
<210> <211> <212> <213>	25 22 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> gcatct	25 tagc cgtctttctt cg	22
<210> <211> <212> <213>	26 23 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> gagcag	26 ccag gtgagcccaa gat	23
<210> <211> <212> <213>	27 23 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> ttcgat	27 ccca agaaggaatc aac	23
<210> <211> <212> <213>		
<220>	Symphotic olicensologida	

<400> agctct	28 gtag atgtgctata cac	23
<210> <211> <212> <213>	29 24 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> tcagat	29 gcaa gcagcaactt tggc	24
<210> <211> <212> <213>	30 22 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> gcatct	30 tagc cgtctttctt cg	22
<210> <211> <212> <213>	31 24 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> gtagtg	31 atgc catgtaactg aatc	24
<210> <211> <212> <213>	32 22 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> aggcac	32 ccta gagatgttcc ag	22
<210> <211> <212> <213>	33 24 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> gaagat	33 ttct gtttccatga cgtg	24
<210> <211> <212> <213>	34 25 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	

<400> ccacac	34 tgaa tgtaatactg aagtg	25
<210> <211> <212> <213>	35 22 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> cgaagc	35 tctg gaactcggca ag	22
<210> <211> <212> <213>	36 22 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> gccagc	36 tgca aaggtgttgg ac	22
<210> <211> <212> <213>	37 23 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> aacacc	37 tgcc tcatcacgac ttc	23
<210> <211> <212> <213>	38 22 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> gccagg	38 ctgg cgtcgatggt ga	22
<210> <211> <212> <213>	39 22 DNA Artificial sequence	
<220> <223>	Synthetic oligonucleotide	
<400> gtcgate	39 ggtg atggacagga ac	22
<210><211><211><212><213>	40 22 DNA Artificial sequence	
<220>		

<223>	Synthetic oligo	nucleotide				
<400> gtaata	40 cgac tcactatagg	gc				22
<210> <211> <212> <213>	41 19 DNA Artificial sequ	ience				
<220> <223>	Synthetic oligo	nucleotide				
<400> actata	41 gggc acgcgtggt					19
<210><211><211><212><213>	42 27 DNA Artificial sequ	ience				
<220> <223>	Synthetic oligo	nucleotide				
<400> ccatcci	42 taat acgactcact	atagggc				27
<210> <211> <212> <213>	43 23 DNA Artificial sequ	ence				
<220> <223>	Synthetic oligo	nucleotide				
<400> actcact	43 tata gggctcgagc	ggc				23
<210> <211> <212> <213>	44 44848 DNA Homo sapiens					
<400>	44					
	iggc tcactgcaat					60
	ggat tataggtctg					120
	ctt gggctctagt					180
	gcca tcacacccgg					240
	acta tttagaaaac				-	300
	ggta tgactgggca					360
	gacg ggcagatcac					420
	ctc tactaaaaat					480
	act cgggaggctg					540
	gag atggtgccac				•	600
	aaa aaagaaagaa					660
adadrad	ggt gtaagattaa	tytcatgaca	aatgtggaaa	agaaacttct	gtttttccaa	720

ctccacgtct gctaccatat tattacactc ttctggtagt gtggtgttta tgtgtgaatt 780 ttttttcata tgtatacagt aattgtagga tatgaacctg attctagttg caaaactcac 840 tatgagetta gettttaagt tgettaagaa taggtagate tatgeaaata atgataatta 900 ttattattat tttaagagag ggtctcactt tgtcacccag gctggagtgc agtggtgtga 960 ttaagggtca ctgcaacctc cacctcccag gctcaaataa acctcccacc tcagcctccc 1020 cagtagctgg aaccacaggc acgggccacc acgcctggct aattttttgt attttttgta 1080 gagatggggt ttcatcatgt tgcccaggct gttcttgaat tcctcggctc aagcaatcct 1140 cccaccttgg cctcccaaaa tgctggcatc acaggcatga tggcatcact ggcatcacat 1200 accatgcctg gcctgattta tgcaaattag atatgcattt caaaataatc tattttatt 1260 tgttgcctta ttggtggtac aatctcaagt ggaaaaatct aagggttttg gtgttatttg 1320 cttactcaac caatatttat tagactctta ctaagcacca acatgatcac atgcctgagc 1380 tatggctagc atagcgtgtg agacaaactt aatctctgtt ttggtggagc atataatcta 1440 gtagatgaag ccaatgttga gcaacatcac aatactaaca aattgaggat gctacgagag 1500 tgtctaacaa attgaggatg ctacgagagt gtctaacaaa ttgaggatgc tatgagagtg 1560 tgtcatggag agctgcctgg agattgagag aaagcttcct tgagggaagt tacatttcag 1620 ctgaaacaca ctgccatctg ctcgaggttt tgtaactgca ttcacatccc gattctgaca 1680 etteacatee egattetgae actteaceea gttactgtet cagagettgg gteegeatgt 1740 gtaaaacaag gacagtatgc acttggcagg gttgtgagaa gggaagagaa cacaagtaaa 1800 gcacctgtat caggcataca gtaggcacta agcgtgcgat gcttgctatg attatacatc 1860 agtgtaagca tcaaggaaaa gctgaagaaa agtctgacca acagcgaaag ataaatgcgc 1920 agaggagaaa tttggcaaag gctccaaatt caggggcagt ccgtactcta cactttgtat 1980 gggggcttca ggtcctgagt tccagacatt ggagcaacta accctttaag attgctaaat 2040 attgtcttaa tgagaagttg ataaagaatt ttgggtggtt gatctctttc cagctgcagt 2100 ttagcgtatg ctgaggccag atttttcaa gcaaaagtaa aatacctgag aaactgcctg 2160 gccagaggac aatcagattt tggctggctc aagtgacaag caagtgttta taagctagat 2220 gggagaggaa gggatgaata ctccattgga ggttttactc gagggtcaga gggatacccg 2280 gcgccatcag aatgggatct gggagtcgga aacgctgggt tcccacgaga gcgcgcagaa 2340 cacgtgcgtc aggaagcctg gtccgggatg cccagcgctg ctccccgggc gctcctcccc 2400 gggcgctcct ccccaggcct cccgggcgct tggatcccgg ccatctccgc acccttcaag 2460 tgggtgtggg tgatttcgta agtgaacgtg accgccaccg aggggaaagc gagcaaggaa 2520 gtaggagaga gccgggcagg cggggcgggg ttggattggg agcagtggga gggatgcaga 2580 agaggagtgg gagggatgga gggcgcagtg ggaggggtga ggaggcgtaa cggggcggag 2640 gaaaggagaa aagggcgctg gggctcggcg ggaggaagtg ctagagctct cgactctccg 2700 ctgcgcggca gctggcgggg ggagcagcca ggtgagccca agatgctgct gcgctcgaag 2760 cetgegetge egeegeeget gatgetgetg etectgggge egetgggtee eeteteeet 2820

ggcgccctgc cccgacctgc gcaagcacag gacgtcgtgg acctggactt cttcacccag 2880 gageegetge acetggtgag eccetegtte etgteegtea ceattgaege caacetggee 2940 acggaccege ggtteeteat ecteetgggg taagegeeag ecteetggte etgteeeett 3000 tcctgtcctc ctgacaccta tgtctgcccc gccagcggct ctccttcttt tgcgcggaaa 3060 caacttcaca coggaacete ecogoctyte tetececace ecaetteecy ceteteatte 3120 teeeteteee teeettaete teagaceeea aacegetttt tggggggtat catttaaaaa 3180 atagatttag gggttacaag tgcagttctg ttccatgggt atattgcatt gtggtggcat 3240 ctgggctctt agtgtaactg tcacccgaat gttgtacatt gtatctaata ggtaatttct 3300 catccctcat ccctctccca ccctcccacc ttttggagtc tccagtgtct actattccac 3360 taagtccatg tgtacacatt gtttagcgcc cactctaaat gagccttttt gtttcattca 3420 ttctgtaagt gttgaatagg caccacctaa ggtcaggtat aagtggaaat ttgaaaaaga 3480 aactgcccac ttgccccagt acttccctag ccaagaggag ggaaaccagg caggtgcacc 3540 tgaaggcctg tgagtgcttg atttgctgtg cagtgtagga caagtaagat tgtgcatagc 3600 3660 tottttottt tttttttta ggcagatgaa aagggogtca cagaacagga ataaaaatot 3720 aaatattcaa taaatgagac ctaggagact actgcagtga cttacaaagt cctaataaaa 3780 agatgtetet ecaaaatggg getgeaaaat gtggtgetge ettateaget etaagttttt 3840 teettacetg agaaagaagg aacetgatge aggtteaggg eteetgeece atgaatgeag 3900 gctgactcca agatggggag ctacagggac aatcccaggt cttctaggcc tcttatttag 3960 gccctgggag cctccagaga tggccacatc ttgaccagcc cagatagagg gaaagatcac 4020 cattatetea cetetgtgte aaatacetag atgetgteet ceetgageee acactatagt 4080 tgccagcgct aatttaatgg gtagtgtact ggttaagaga tggacagacc atcctggctt 4140 gactctcagc tctggcaaag atgagtgact tggtttttcc atatctcttg gccacaccaa 4200 ccttgatttc ttcagctgta gaatggaatt tctcaagctt gcctcaagga ttattgcccg 4260 aggatttgat gatatggtaa gagcttctca gtgtttgacc catagtaagt gtttgacgtt 4320 tcaaacgaat tgtttctttc taggacatgg tgagcatttg gtagccattc accggttttc 4380 tgtttctttg gatcatagtt aacctctcct tttccttctg gcactacaat tttctggtqq 4440 ggaagaatcc ttactttctg cccttcccct taaggatagg aagctgatac taggcagcaa 4500 ctagttgggg gataggaaga ttgttccaga gaaatgctga accatagggc tccaqatcac 4560 aggaccccag tcttagcttg ctggggtgtg gggtgggggg gggcggttac tgaacatggg 4620 tatgaagtag atgtccattt actgaaatgt gaggacctga ggcctcttct attgctgtag 4680 ccagcatatt ccccaacctc tccccaagaa aggacagatg ggggttcccc cctggagtaa 4740 caggtccaaa agaaaaaaca tacagtggga cttccaggat ctgggcctga tcacccagca 4800 gtcaagctcc ccgcaattga ctaacaccc cctaacacgt agaaattcca atctgcaatt 4860 tagtgaggat gatacettta ttettettaa atacatetet teattteeca gageaceett 4920 ttttcccctc ctctgcacct ttttgttaaa gactggagta taatgaaata ccaagagagc 4980

ataacatgtg atacataaaa cttttttct ggtttacaaa acagttcatt cttgtccata 5040 cgtgcttctc tccaaggctg gctgctgtct gttccagccc gcttcgcttg gagaggccat 5100 ctgccatacc tgctccccag acgcatcgac aagcacaccc agagtgttat ctgctaagac 5160 ctaaaagagg gaggaacccc ctctcctcat ctaagaccta gcttctaaat tagagtgtga 5220 gggtccatct ccccaggagg ggcacagggc ccaaacagcc cagccatctc agaagacaac 5280 actaagcttt gtaggggtcc acagtagagg agagtaagac gcctgttgtt taatttatta 5340 cagttcctca aaagtgaaga tgtgtgggcg ggatggcaag agctgagcag acgaaagctg 5400 aaggaataag gaaagagag aggacacaaa cagctgacac ttcctcagtt cttgtcattt 5460 gcctggccct gttctaagca ccttctaggt attaatccat ttagtcttgg ctacaacact 5520 gtgagtaact agttttgtca cccccatttt aaaaatgaag aaagtgaggc tcagggaggt 5580 taagtaactt ggccacagtt tgaaactaga ctctgatcac atgagataat agtgcccata 5640 aaaagggaaa gcagattata ttttttaaag gaaagagagt aggatatggt agaaaaagat 5700 tgtttggaaa ggaattgaga gattgatata atgaaaagaa gcattcacat gagagtaaca 5760 gtatcagggc ccaaaccttc atctaaggta cttcaaagag gcctaagcaa acttagtcac 5820 tggcgtggtt ctagtctcca tgatggcaaa tacattgtgt acagcccaac tccacacaaa 5880 acttaaatac caatgataga gcaatctaaa atttgaaaga aaaaatcttt caatttgtcq 5940 tetteccaga gggaettaat caagaaacca atcaaaatac ttectaagce taactgtgtg 6000 6060 gtgggcctca tatgcaaggt catatgtaat tttaaatttt ctagtagcca tattaaaaag 6120 gtaaaaagaa acaagtgaaa ttaattttaa taattttatt tagttcaata gatccaaaat 6180 gttttctcag catgtaatca atataaaaat attaatgagg tatttattat tccttttctc 6240 aaaccaagtc tattctataa tctggcgtgt attatttaca gcacttctca gactatattt 6300 ctttctttct ttttttttc cgagacaatt ttgctcttgt cacccaagct agagtacaat 6360 ggcgttacct cggctcactg caacctccgc ctcccgggtt caagttattc tcctgcctca 6420 gtctcccaag tagctgggac tagaggcatg caccaccacg cctggctaat tgtgtatttt 6480 tagtagagac agggtttcac catgttggcc aggctaatct caaactcctg agctcaggtg 6540 atatgcccac ctcggcctcc caaagtgttg ggattacagg cgtgagccac tgcacccggc 6600 ctcagattaa ctatatttca agcgttcagt agccacatgt agctagtgct atggtagtgg 6660 acagtacaga tctgcatttc aattaagaca cgtatacaag catagttcac taatgcacgq 6720 taaaaaaaag tatagtgctg agtcggtggt agaaatccta aatactgcag agcaaaagtg 6780 gtacgaacag caatctcagt gataatgcaa ccatgcttgc ttttcattgc aatttgctta 6840 ttttccttca gcaaagttca tccatttttg ccaattcaat aaatatttac tgataaaaac 6900 tttcaatatt agattcttgc atcttcatag acagagttgc ttttcacatt tagaaaatta 6960 cttatcaatg ttaaacacac gttttgataa ccagtgttgg aaagaggtgc agactcccca 7020 tgtgcctatt gatggcagaa atattcacag ccaaagggaa acaaagggct ggggacaatc 7080

acacacctca tgtctcctaa ctcctgggaa gtgctgtccc tctgattgag ctcttattat 7140 tgccttcccc actaaccctg tccactgtgc cctggagccc tttgcagggt tacctgctct 7200 gtcctcctca cagaatatct cctctacctc cttgtccaag ctacaacttg gctattctct 7260 gatgacactg tottocotgt agocottttg agtaatggot goatattoto coatagtoca 7320 gttcttttcc tgttctccag tctggcttct ggatgacagc ccactagttt gaactccata 7380 ctgctatagt tcaagtccct tttgacttgt taccttgggc aaattacctc cttttgttca 7440 ggttccttgt ttgtaaaatg acgataataa tgccatttgc ttcagtgggt tattttgaaa 7500 ttgagtgaaa gaaggcgggt agcttcccta cacgctcagt gtagactagc ctgatgtgca 7560 ttacgggtga tgccatgact cagtgtgttt tcctcatctc cacatctggc tctcatccag 7620 tgctcctgct tacggcactc tgtccccctc ttacttactc ccccttatta actgaagact 7680 ggcactgatc tcacagtttc ctctccactt cctagtctca ccatcatcct agatgacttc 7740 aagtcaccta gataaactgt ctcagtttct tcactcacat ttttttataa cagataatgt 7800 tacactcaag ttgtaacaga accagcttat ccagctcatg aaatgtatgc atttcatctc 7860 aactctgtat tcagtgacat cctgtgggta tctggaaatc agccatggtg agaatattta 7920 ccatggaaat tggcaaatac taaaaagcag agcacctttt tttctgagag ccagaccata 7980 gctcttctac tccatagcac ccatcataac aatttttaaa tacctccact gaacagcttc 8040 ttcctctctc tacttcttcc atatctgatt tgagcttctt aatttatcat gtgaaccact 8100 cttgtaataa taaccccaaa tccctgttcc attgttcttc ctgctaaaat actaaacctg 8160 gtttagtcca accatatttt ctctctttgg aatctacagg gtggcccaaa aacctggaaa 8220 tggaaaaata ttacttatta attttaatgt atattaataa gccattttaa tgcttcattt 8280 ccagtctcag tggccaccct gtatagctgg gctattgagc tcttgcggga ggagggagtg 8340 gacagtotoc cagocacaca gactgatgtt gcaccaaaca ttttttagct tocagactto 8400 cctggccctt agtgttaccc ttaactctcc atttctctgc ctttcacatt ctctactttt 8460 taaaaaatctc tgactccacc ttcaccttat cattcttagc acatgaccat acttctgctt 8520 cccaaagaaa atgagcaatt acttcctttt ccttttcctc ctgtcatcaa atctgcagac 8580 atgtcatgcc taagtccagc tttcctcctt tctctgatct cagtctgctt cttccatttc 8640 tgccctgaat cccgtcccct ccccaacccc caaggacttc gctctatcag tcacctcttc 8700 cctctcctgt atcttcaact cctcccattt tactggcttc ttcctcaagc ctttccccaa 8760 gcctttccca tctcaattac ctcctcgcac atgcctctgc agaaaccacc ccgtttcttc 8820 cctcccctcg gcagcctgtt cttcctgttc tgccctcatg atggcaccat cattgtgtca 8880 ctaaaatcaa tctctccgac atcatcaatg gccttccttt gttgggaaac ctaataaaca 8940 ctttatctta tttggtcttt gttatgggtt gaatgaggtt accccgaaat ccatattaga 9000 agtoctaacc cocagtacct cagaatgtga ctttatttgg gaatagggtc attgcagacg 9060 ttattagtta ggatgaggtc atactggaat gtgatgggct gcttatctaa tatgactgat 9120 gtccttataa caaggagaaa tttggagaca gacacgcaca tagggagaat accatgtgat 9180 gacaggagtt atggagttgg agtcaaaaag ctatgggaac ttaggagaaa gacctggaac 9240

aaatcctttc ctgcgcctag agagggagta tggccctgcc actaccttga attcaacgtt 9300 tcggcttttc aaaactgtaa gacaatacat ttctgttgtt caaaccaatt agtttgcagt 9360 actictgcgac tgcagcccta acaaactaat acagtitett ggaggcattt ggcaaggttg 9420 acaatggaag cactttetta eccetttagg tetgtegeet ttettgttgg ggggtgtttt 9480 ctaacaattc ctctccatct ctctctctc agtttgtctt aaacattggt gttcttcaga 9540 cttctgacct aggccttctt ttcacttcac atattcccct gggtggtctc acccacttcc 9600 agaaattact taaattactg ctcatgcagt actgtgctgg aaactgttta acaactggct 9660 ctctgggaag aggggagact ggttgatggt ttttgctgat ttctgtggtg taaatactcc 9720 ctccatggcc aattccaaac tgccaacagt ttaacaactg gctcacaaat tttctccaaa 9780 tttaacattt ggctttcaca ggccaacaac gtggtacagc caactccagc acacctctgc 9840 9900 gccccctttt tttccttaac aaactgctct agaaatagaa tagctgaagc ttcttttatg 9960 cattcatctg ttatttccat gtcactgtgg tggtgggatt atttttcctt tattttctt 10020 gtatatggtt gaaatactgt acctttgatc agttttagtt ttatggcatg ttttgcaccc 10080 atattaaatc tagtttttgt cagagggcgt caatattatt ttctcaaaac aagaaaatat 10140 ttcattgcaa aggagacaaa caaaaaggtc cttaatacca aaactttgaa atgtgatttc 10200 ttgtacttgg Cagtgtccaa gtggtaaacc caaacagtat tgggttttca ttttgttcag 10260 gaaagtettt gtetggcage gaettaeeet tacateagge gggeettget eatteattea 10320 cttaagtatt tattaaacac cagcggtgtg ccaagtactt atctaggtat cgggtagatt 10380 ctgataagtc agtcaggtcc ctgctctcag ggagcttgca gcagagatgg gggctgcaat 10440 agagagtaag ccaaggaaat gaaaaaggaa gttgatttca gagagtgatg aatgctatga 10500 agaaaatgaa ggcagcgcag tgtgatggag agtgacccaa ggtggtacag tttgtacctc 10560 taaggaccag actgtgaccc aggtcactca cagatgcccg tcatgtgatg ccacaqcaac 10620 ttttccaggt gctcgtttcc tcccacttcc cagtctcttg cccagccgcg actgcttaca 10680 aatacagcta gaggaatcta aatgaggttc ctctatcatc aaacccaatc aaaatgccaa 10740 ggaacagaat cagtgcctgg ctgaaggcag tggaacaggg ccagcctgga gtggttctct 10800 ctgaggaagt tcctcatctt ggttttaggg ccataccttg tgacctgtga gctaggggtt 10860 gccagtccct gacatttcta ctgaggactc gcctgtctat attcccggcc tgtatgtgtc 10920 tcctgagttc cagacacaca gggcgaagcg cctgatggat ggaagtatgt tttttggtgt 10980 tocattggta totcaaatto tacaaaactt agtgcccctt ctcctccctg ttcctcccca 11040 tottoagtot atcacotgtt cotoatocag caaatgatat taccatotto caaggagott 11100 cccaggagta atccttgact cctcctcaac atccaattaa taatcaaatc taggccaggt 11160 acaatagete acgeetataa teecageact ttgggagget gaggeaggtg gateatttga 11220 ggccaggagt tcaagaccag cctggccaac aaggtgaaac ctgtctcatt taaaaaaagt 11280 tattttaaaa actcaaatct attatttcta cctctaagtg tgtcttgaat ttatccatct 11340

11400 ctctccatct ctgagctgtt accttacctc agtccatcac gttttgtcta cgttaacatg accagagtet tgttettagt etggtgaggt cactecaget getteagate ettecatgge 11460 tcaccgttgc cctcatataa agttggcact cctggacatg tggcttacgg ggccctccgt 11520 gatgtggccc tatttgcttc tccattctgt tctctcccag cctctctgcc cccatctcta 11580 ggcaccaacc acaccettet getegteaat ggtgccaget tetettetat etetggtett 11640 tggacagact tttcccttca cctggaatgc tttcttcaat cctaccccac tctctttaat 11700 ctagataagg tttattcttt ttgaatgtct agcagtgaaa ccatttcccc tgaaaaacct 11760 tetetaacea accecetace etcageceaa ggtetagatt aggagteeet etgaatgttt 11820 ccatagcatt tttaaagaat tgcctattta cttgttcgta tctatcacta aactacaaat 11880 tgtatgagaa cagccactat ctctgcctgg ttcaccattc atctccagca actagcataa 11940 tgcctggcag agtcagcctg caacaaatat ttgttgaata aattaacaga tggctttatc 12000 tccttaagta aatcttgctt ttttcaccta ttaaaacaga cgcacaggcc aggtgtggtg 12060 gcccatgcct gtaatcccag cactttggca ggctgaggtg ggcggatcac ctgaggtcag 12120 gagttcaaga ccagcctggc caacatggtg aaaccccatc tctaataaaa atacaaaaat 12180 tagctgggca tggtgggg tgcgtatagt cccagctact agggaggctg aggcaagaga 12240 atcgcttgaa cccaggaggc agaggtggca gtgagccgag atcatgccac tgtactccag 12300 12360 cacacacaca cacacacac aagttgtata atttaaaata taacgtgctt gttatggaac 12420 acttgtaaaa tacaggaaag taatgaaaaa gtctaccatc tagctcacca cataatgacc 12480 attgctatca tcctggcata attctctcct gtatataaat atatattctt ttattgttaa 12540 aattacacta tgagtactat ttatttattt tactgtggca aaatgcgcaa aacataaaat 12600 cttgccattt taaggtatgc agtttggtgc attcaccaca ctcacattgt tgtgcaaata 12660 tcaccactat ctatctcaga acttcttcgt cttcccaaac tgaaactctg tacccattaa 12720 acaatagtgc atcctctgtt ttcccctccc tacaatttat ttttatttgg gtttgtacca 12780 aactgaaaat agctgcttct tccttactta gttcagatta gcatttccat ttatttagcc 12840 gtggttttga ggatgccatg acagatgcca tccttcctag agctctttgg ggctgtcagg 12900 tatttcagtc agggtgaatt cgggttgata acattttaaa atctcacttt attctgaggt 12960 tcctagtgtc agagcccacc gtatttttag ggactcccaa gttacaaaca aaaatatggt 13020 gaggaggaat cactgaagtt ttaacacaag agacttacat tttgttcaat ttctatcttt 13080 tagtttattt cctaagcata aagaaatact ttgaaaattt tacatagcat tatacatatt 13140 taattaagca tgagcacatc ttaaaacttt aaattttaga tcagatcttt aattcctagg 13200 atattaagag gtactggcaa tttggccagg tgtggtggtt cacgcctata atcccaacac 13260 tttgggaggg tgaagtgggc gaattgctag agcccaggag gtggaggctg caatggcctg 13320 agatcacgcc atcgtactcc agcctggatg atgagaatga aatcctgtct caaaaaaaaa 13380 aaaaaaaaa aaaagaagaa gaagaagtat tggcaatcag tgctccagga ataatttcct 13440 gacttgaaat aaacctacat gtagacaaac taattaggcc attccaagag ttgctagcat 13500

tggtttaata tgttttcaga gcattccagg aagcagtgtg gccagcattg catgtttgat 13560 acttcagaaa tgtatgacag gtgtttctct tacccaggtc ttctgttttc ttagttttgc 13620 tcatgtaaat atttatgaac atcctcatct ttttgaggga agggattata gatcattcta 13680 attccatttt ctagcatttg gtaccattct aagcacatga taggcaccca tttggagcat 13740 ttttggcttg acagaatatg catttagaat tgttcaaatt agaggtgtca gtgatgggaa 13800 ttagaatact atataattct aagtcatttg acttaaatac aaaagaatga ttttccttgg 13860 tggggaatgg tgaagggagg caggagttaa gaagaggaga agagatccta agtcatttat 13920 aaacttctct ggaaagacag gtgtgtgaag actttttaaa aagtcattca ccaaattgtg 13980 tgtgtgtgtg tgtgtgtt ttaaatagac tttattttt agagcagttt taggttcaca 14040 gcaaaattga atgcaaggac agagatttcc cataaacccc ctgcccacac acatgcatag 14100 cctccctcat tatcaacatc cccaccagag aggtgtttgt tctagttgat gaacctacac 14160 tgacacatca ttatcaccca aagtccatag ttcacggcag ggttcactgt cggtgtacat 14220 tctatgggtt tgagcaaatg tataatgaca tgtatccacc attatagtaa catacagagt 14280 attttcagtg ccctgcaaat cccctgttct ccacctattc atccctcct ctctgcattt 14340 ccaccccag cccctggtaa ccgctgatct ttttactgtc ccatagtttc ggacgatcta 14400 tttttcagac agacacagag ctgtctttcc cttagtttct attctatcat ttctttctcc 14460 ccatccatca taaaaggcta tgagtttttt ttaagtgttg aacaccatcc tacttgtcaa 14520 gttaaaacat aagctcctgg ctgggtacag tggctcatgc ctgtaatctc agcattttgg 14580 gaggctgtgg cagaagcatc acttgaagcc agaagtttga gaccagcctg ggcaacatag 14640 14700 cacacacaca cacaaaaaca agctcttgcc agaattagag ctacaaattg ccctcaggtt 14760 cctagaagat cagtccttca attagattca gattgagatg cttcctcttt taaacaatga 14820 ttccctttct atcatgccca ataagaaaac aaataaaaat taaacaatac tgcctgtaat 14880 ctcagctacc caggaggcag aagcagaact gcttcaaccc ggcaagcaga agttgcagtg 14940 aagtgagatc gcgccactgc actccagcct gggaaacaga gcaagattct gtctcaaaaa 15000 caaaacaatg tgatttcctc ctctaagtcc tgcacaggga aatgttaaga aataggtcca 15060 ccaggaaaga aggaagtaag aatgtttgac tagattgtct tggaaaaaat agttatactt 15120 tcttgcttgt cttcctaaca gttctccaaa gcttcgtacc ttggccagag gcttgtctcc 15180 tgcgtacctg aggtttggtg gcaccaagac agacttccta attttcgatc ccaagaagga 15240 atcaaccttt gaagagagaa gttactggca atctcaagtc aaccagggtg aaaattttta 15300 aagattcact ctatatttta attaacgtca gtccgtcatg agaatgcttt gagaaaactg 15360 ttatttctca cacctaacaa ttaatgagat taacttcctc tcccctcatc tgacctgtgg 15420 aggaatctga acaagaggag gaggcagtgg gcaggtttcc ttatcatgat gtttgtcatg 15480 ttcagtgtga ggcctcacaa aaaaaaaaaa aaaaaaaaa ggcgtcctgg atataactga 15540 gagctcattg tacagtaaat attaataaaa cagtgattgt agctgaagga tagaactgct 15600

tggagggagc	aagtgggtag	aatcgcgtca	aactaaagag	catttctagc	caaagacaca	15660
atgatagatt	gaaggatatt	tattctaaat	atagaatatg	ggtgaacgag	atctgtggac	15720
ttctgggctc	caacgttaga	ttctgatttt	agcaagcttg	tcaggggatt	ctgatattga	15780
aaggctgtgg	ccttcacctg	agaaacctgc	cctagggggc	catgaaaatt	tgtcctgtct	15840
ttcagaagtg	ctatcagaca	tcaaatggaa	gttaaatcgt	atcttaacaa	ttactaggat	15900
gggcgcagtg	actcacacct	gtaatcccaa	cactttggga	ggctgaggca	ggaggatcac	15960
ttgagcccag	gagttcggga	ccagcctggg	caacatagag	agacgttgtc	tctatttttt	16020
aataatttaa	agagaaaaaa	atactgaaaa	tattgtatac	accactgaat	tataataatg	16080
tgtatataat	gtatatattc	attatgagga	atatttgatt	atttcatata	ttatatcttt	16140
tccttctgtt	tattttatcc	agttatgaag	tatttagaac	aattcatcag	taattggggc	16200
taaattgaca	gaatagtaat	cagagaaaat	agaaaaagac	agatgggtta	tctttgaata	16260
ccaggttgga	gttgtttatg	ggtttgttt	ttgttttggg	ggcgttttt	tagacagagt	16320
cccactctgt	tgcccaggct	ggagtgcagt	ggcacaagca	tggcccactg	catccttgac	16380
ctcttgggct	caagcaatct	tcccacctta	gcctcctgag	tagctgggac	cacaggtgca	16440
tgtcaccaca	cccagctaat	ttttttattt	tttgtagaga	cagtctttct	atgttatcca	16500
ggctgatctc	aaactcctgc	actcaagtga	tcccctgcc	ttggcgtccc	aaagtattgg	16560
gattataggc	atagccacca	cacccaacct	agtttctatt	tagacttggc	cctttcccac	16620
cagtcatttg	tgtccaaaag	atctcataaa	tgtagacagg	aaactgtcct	ttgctcatca	16680
gttttcttca	tcctgtgtct	agggggatgg	tcggtggggg	aaactggggt	tatgcaagtt	16740
cctctgaaac	atcctctgtg	agcccaggga	tggatgaggc	accagccgcc	agcgagtcag	16800
tgtgcagctt	tccagaaagg	aagtcatcag	ccagtcagcc	ggccctggca	gccagcaccc	16860
ggcaaccctg	ctgtcttgtg	ataaagaaat	ggtctgcctg	acaggatggt	gtggatttt	16920
ctttttctt	tttttttt	ttgagacagg	gtctggctct	gtcgcccagg	ctggagtgca	16980
atggcgggat	cttggctcac	tgcagcctct	gcctcccagg	ctcaaggcat	cctcccacct	17040
cggtctcccg	agtagctggg	accacaggca	cacaccacca	cgcccaacta	agttttcgta	17100
tttttagtag	aggcagggtt	ttactatgtt	gtccaggcta	gtctcaaact	cctgagctca	17160
agctatccat	ctgccttggc	ctcccaaaga	gctggaatta	caagcgtgag	ccactgtgcc	17220
tgaccagggt	ggatttttc	aagtgcacat	gttgtggtcc	cagaagctct	gatggtacca	17280
aattccaagc	gaaaaaaagt	caatggttcc	cacccatcct	acctcccatg	atggcaagag	17340
gaaatcacca	cactgcagat	acagtccatg	taaaacaaat	tgctatggat	tttgaaagtg	17400
aaccttaaga	gaactgcact	atgttttctt	cattagagtt	ctctggtaat	ttccagcttt	17460
tttttttt	ttttttagac	agtgtctcgc	tttgtcgccc	agtgtcaccc	aggctggagt	17520
gcagtgacgt	gatctcggct	cactgcaacc	tccgcctcgt	gggttgaagt	gattctcctg	17580
cctcagcctc	ctgagtagct	gtattttagt	agagacgagg	tttcaccatt	tggccaggct	17640
ggtctcgaac	tcctgacctc	aagtgattcg	cccatctcag	cctcccaaag	tgctgggatt	17700
acaggtgtga	gccactgcac	ccggccagta	atttcaagct	tctgaggagc	cctttgaatt	17760

gttaaataac ttgtagctat gtccaacata tccatgttca gtgtatgttc gatatttctt 17820 aggaaacctg cccttggttg ttttctttgt ggtaattcat gagccggcaa atttgacatg 17880 tgttacagaa tatacctttt ctctgctctc ctacctcata accagaactt aattatcctg 17940 ctttagtcac ataaatagct aactaaataa atatatgaga tttcagtctg ctcactgtga 18000 aaatagacct totaaatgat otottocact tgcagatatt tgcaaatatg gatocatoco 18060 tcctgatgtg gaggagaagt tacggttgga atggccctac caggagcaat tgctactccg 18120 agaacactac cagaaaaagt tcaagaacag cacctactca agtaagaaat gaaaggcacc 18180 ctagagatgt tccagcccca aagatatttg aataggttgg actcgggcac caatctagca 18240 agtcctacgg aagttgtata aagctgaaaa tactgaagca tttcccaaat gggaaatcct 18300 aaactcaaaa cttgcttttt ggtttttttg tttgtttgtt ttttcttcat ctgacattgc 18360 ttagtagtca cagaatgaaa gataaatcaa tcattcatga tctaacaatg accttcagtg 18420 ctctaaaaaa ctacggagtc aaggaaaaca tgaatatatt cctcatgtaa aattaaaata 18480 cagacatata aagggcaaaa catgaacatc attcatacct tgaggtccgt cccctccca 18540 gaaataaccc ccagtatgcc ttggtttaga gcattaagca ggagggccct gagtcactcc 18600 agacagtett gaccaccaag cagcattete tittigtite etetgigget titigeaaaca 18660 cagggctagc tcagctaccc attagtatgt tttcagtcac taaaacagtc ttccagtctt 18720 caaattagga tgacattgtc acatggggct ttaaagcaag tgaaacaagg aacccccttt 18780 ttttttttt ttgagatgga atctcactct tgtcgcccag cctggagtgc aatggcgcaa 18840 tettggetea etgeaacete caceteceag gtteaagaga tteteetgee ttageeteet 18900 attcattatg aggaatattt gattattcag ttcctgtagg gtaaagatat tacccccgat 18960 catattattg attattgagt agctgagatt acaggtgcct gccaccacga ccggctaatt 19020 ttttgtattt tttagtagag acagggtttc accatgttgg ccaggctcca ggctcgtctc 19080 gaactcctga cctcaggtga tccacccacc tcagcctccc aaagttctgg gattacaggc 19140 gtgagccacc actcctggcc acaatccttt tttaactatg aaatatattt ttatctgaag 19200 tttgatgttt atacccaact gagggatgat gttcccatat ctcagttaaa gaaataacct 19260 gctcagatac ttcaagctct tcttttgact tttgaaaata aatgatcttg aagttactat 19320 actitigting ggttagttaa cattatttaa agtatattat tittaattaat tatcittigta 19380 agattttact gtatactacc tggagttcaa tgtatcagat ggatttcaaa tttatgtaca 19440 ttttttatgt atatggtaca gaaaaaaatg tgatccataa gaaatcagaa aataqcqcat 19500 atgctaatag ctaatgttgt cctctaaaaa acttattttt gcatttttaa gagggggata 19560 tactctgaca ctttaataag tgtaattaat tattgactgg aatttggcat gaggcagggc 19620 catttcagat cccattaaag gaatgacaca taccagagaa ccacagaagt aaggccacat 19680 ttgtaataaa tcattatagc tctgctagga gaagacccag ttgtattagg taattaatgg 19740 atttgctctt aaaacacatg tcccggaaga tataggtgag tcttgggggg ccgcattaaa 19800 cattatacca atgtatctta catttctaag aaagttttac tactttacag gatctttctg 19860

ttaccaaaat ggaaggtttc caactccagg acttggcttt catagttcct acaccagggg 19920 aaatgccttc ctttgctaac tatgcaacca ggttagttag tgtaagtcca gccacctgt 19980 tggcaatgct aaaaggtaca acaaacacag aattttattt gcatttgtaa acatttgatt 20040 tctggctcga aattttcagt tttcatgggc acgtcatgga aacagaaatc ttctgtgttt 20100 agtttgggca cctactcatt gtagtgacaa atatttcaga agccaatagg ggattccaca 20160 aattgttctg aacctgtggc tgagactggt aatggctgag tgacatgggg acataccaca 20220 aaagaagagg tagcaaaagg ctgctgagat aaggacatgt tcattgctta gctagtggcc 20280 tgcaccctta aaacacatgt cccaggctgg gtgctgtggc tcacgcctgt aatcccagca 20340 ctttgggagg ctgaggcggg tggattacct gaggtcagga gttcgagacc aacctggcca 20400 acatagtgaa acctcatttc tactaaaaat acaaaaatta gccaggcatg gtggcgggcg 20460 cctgtagtcc cagctactca ggaggcaggc aggagaatta cttgaatctg ggaggcagag 20520 gttgtggtga gccgagattg cgccaccgca cgctagcctg ggcgacaaag tgagactctg 20580 20640 tatcccagaa gatacaggta agttttctaa cacaggtcct cttgtatggt gcgttccact 20700 taagtagaag atgacaaaaa catttgtcat gagaatatag actcacattt taaacctgtt 20760 tgagcaggaa aaggaagcaa tgttacagat gtaattctgg gtgtgactgc agaaaggatq 20820 actocottat taaagtagto atootgagtg agotaactot ttgtacttoo tottotooto 20880 ctgttcccct catcacccca ttcttccgtt gcctacaccc aggcccacat tggatgctga 20940 catagactta catggtacag tccaagggaa agatctgcca ttttttcaa tgtgtcatct 21000 tggttatctt cattccaagg atctctccac tctttataca gtaagagatg agagtctgga 21060 aaggattggg aataagataa tgaattgtaa gttttaaatt gttcttcgta ttttggggaa 21120 ggagtaggct aggtggtcct tctgtttttt ttttgttttt ttttttaaag tagatgtggc 21180 cagacgtggt ggctcacgcc tgtaatccca gcactttgag aggctgaggc aggtggatca 21240 cttgatgtca ggagttcaag accagcctgg ccaacacagt gaaaccccgt ctttactaaa 21300 aatacaaaaa ctagccgggc ttggtggcgt ccacctgtag tcccagctac tgcagaggtg 21360 gaggcaggag aatcacttga acccgggagg tggaggttgc agtgagccaa gatcatgcca 21420 21480 gaaaaaaaga atggatttga actcagtcgt caatagcctc tattccagga gatgttacag 21540 ttgattatgt tatagggggt gtataataga atttcgagct atgtaaattc caagtgcatt 21600 tggaagaatg aagaaatgga ggaagggtaa agtatgagtg caagcattcc aggttttttg 21660 aaaatgctat aatctttgtt cagggctagt acaaagtgct atttagctgt aagggttttt 21720 tgtgatttac agacagtttt cacatgtgtc atttcaacct tggttttatg gcgaaggcat 21780 gtgatggtgc ttgtcccagg actttagatc catatctgag gttcctgtcg ggcaaagata 21840 ttacccctga tcatattata gtctataagt gggagagttg tgcctggagc tcaagtctta 21900 tgatttctga tccagggcac ttcctacaac atgattttgc aatataaaag cctataatgt 21960 gtgactaaag caggtcactc accccttgta acagactcta gtaatggtac tgccaccaaa 22020

cggctgcgtg	atattgggca	aagacttacc	ttatttgaat	ctcagtttcc	tcctagaaaa	22080
atgagggtgg	aggttaagca	taggctgatg	atcctaaagc	ctccatactg	ccctaaactg	22140
tggctctaag	atccagtaga	atgctgggtc	acaggactct	agggagcttt	tcaaacccaa	22200
atgtctgtca	ttccttgatg	gtaggcagca	gtttatggaa	gtgggcgaca	cagcaaatat	22260
caaaatacct	aaagcagctt	gcaagagttg	tttctgccta	gtggtcttta	tagttaatat	22320
taaatagtta	attttttt	tttttgagac	agagtcttgc	tctgttaccc	aggctgcagt	22380
gcagtggcac	aatctcggct	cactgcaacc	tccacctccc	gggtttgagc	aattctgtct	22440
cagcctccca	agtagctggg	actacaggtg	catgccactg	cacccagcta	atttttgtat	22500
ttttagtaga	gacggggttt	caccatattg	ggcaggctgg	tctcgaactc	ttgacctcag	22560
gtgatccacc	tgcctcagcc	tcccaaagtg	ctgggattac	aggcatgagc	cactgcaccc	22620
agcttaaata	gctaatattt	aatattattc	tatagttatt	caagtaattc	aggccaaaga	22680
cttagaaaca	aaacaaaaag	ccacttttaa	ggagaaaggg	tgtaagtttg	ccagatagat	22740
agagatcttt	cttttttaac	tacaagagtt	caggaatgaa	ttactcttta	acaaacgact	22800
atagatatac	atgaaaattg	gaaggactta	ttatgcatat	gataatcaat	ttaaagacaa	22860
cacttaaaat	tatattgttg	ccactctcaa	aaagtggtaa	tagaacagct	aatggtttaa	22920
aaagcagagt	acagaagttc	ccaaacttat	ggcaccttaa	tatcgcagaa	aactttttaa	22980
agcatgccta	ggccacaaaa	aatacctgta	ttttgattat	taaattgtaa	ggtctacaca	23040
acctaatagt	aataggtcca	atagtaatgc	tgtccaatag	atgttgatgt	ttttttcctt	23100
gcaaacttaa	aagatcctac	agtgcctctg	taaatagcac	tgcctggtta	gagttgaatt	23160
tcagataaat	aattttttc	atgttaatta	ttttctttt	ctttactttt	ttttttgttt	23220
ttttgtttt	ttgtttttt	ttttgagaca	gggtctcatt	ctgttgccca	ggctgctgtg	23280
caatggcatg	atcatggctc	actgcagcct	tgacctccct	gggctcaggt	gatcctccca	23340
cctcagcctc	ccaagtagct	agctgggact	acaggtgctt	accatcatgc	ccggctaatt	23400
tttgtgtttt	ttgtagagat	gtggttttgc	catgttgccc	aggctggtct	tgaactcctg	23460
ggctcaagtg	atccgcccgc	ctcggcctcc	caaagtgcta	ggatgacagg	catgagccac	23520
tgcacctggc	ccctgggcga	agtatttctt	aatggttaca	taggacatac	actaaacatt	23580
atttattgtc	tatatgaagt	tcaagtttaa	ctaggtgccc	tgcactttta	gttgctaaat	23640
cctgtagctg	tacccatgca	ttcactggtg	ctccccagct	tgccttgcac	agagtttgga	23700
aaccatagtc	ctataactct	aggccaattt	tttaatgtaa	aatttgattc	attttaaatt	23760
aataaataat	aacaggaatt	tttttaaaaa	ttgttttaaa	tataattaaa	attatcaaaa	23820
tatttttaa	ctgaacttgt	gactagagat	atttagatta	tgaagagtgg	ggtttatgct	23880
aactaatgac	agtctggcta	tgcatgtgga	gcactgagct	ataaattgtg	gcttccccaa	23940
ttctcctgat	gtcacttgaa	caaaacctaa	gtgtcagacc	agagcttctg	gtatcttcca	24000
tgggatttca	ttcaacagct	ggagcaaatg	aagtcagatt	gattttttt	aatttgtcca	24060
attttgttgt	ctcaaaaaca	taattataat	catttattag	aactagaatt	tcttcagttt	24120

aacaacagaa	atagttattc	attatgaaaa	gcgaatctgg	aggccttcat	tgtggtgcca	24180
atctaaccat	taaattgtga	cgtttttctt	ttaggaagct	ctgtagatgt	gctatacact	24240
tttgcaaact	gctcaggact	ggacttgatc	tttggcctaa	atgcgttatt	aagaacagca	24300
gatttgcagt	ggaacagttc	taatgctcag	ttgctcctgg	actactgctc	ttccaagggg	24360
tataacattt	cttgggaact	aggcaatggt	gagtacccca	gggaacaatt	cattaataag	24420
gagattcccc	actagcatta	tttcttttct	tttcttttc	ttttcttttt	tttttttt	24480
gagacagagt	ctcgcactgc	tgcccaggct	ggagtgcagt	ggcgccacct	cggctcactt	24540
gaagctctgc	ctcccaaaac	gccattctcc	tgcctcagcc	tcccgagtag	ctgggactac	24600
aggcacccgc	caccgcgccc	ggctaatttt	tttttttt	tttttttt	ttttttgca	24660
tttttagtag	agacggggtt	tcaccgtgtt	agccaggatg	gtcttgatct	cctgacctcg	24720
tgatctgccc	tcctcggcct	cccaaagtgc	tgggattaca	ggcgtgagcc	accaggcccg	24780
gctagcatta	tttcttatga	cactttttt	tttttttga	gacggagtct	cgctctgtcg	24840
cccaggctgg	agtgcagtgg	cgccatctcg	gctcactgca	agctccacct	cccaggttca	24900
cgccattctc	ctgcctcagc	ctcccgagta	gctgggacta	cacgcacccg	ccaccacgcc	24960
cggctaattt	ttttgtattt	ttagtagaga	cggggtttca	ccgtgttagc	caggatggtc	25020
tctatatcct	gaccccatga	tctgcccgcc	teggeeteee	aaagtggtgg	gattacaggc	25080
gtgagccact	gcgcccggcc	aacactcttt	ttattattag	caaatatact	tctgcctggg	25140
cacattcttg	caagtgctca	acaatgcaac	ttttggaagt	gcatgtggca	gaaactcctg	25200
ctgtatttat	tccagaacct	attattgcta	atcccagttt	atgttacatt	tgaagtgaga	25260
accagttgga	gccagcaacg	ttcccagctc	caaagttccc	ttgagatttt	cagaatcact	25320
taaccctatt	atgcttggca	acctggactc	agcaaaactg	ggaagtcagc	agtttgttt	25380
attcatccct	tcctttctca	gtttctcaaa	tgtgtcagtt	aatctcagta	accccattgc	25440
aaccttcatt	acctgcccaa	gcggtctaga	acttgccagt	atagaatcct	acgtgggtca	25500
agctcctgac	tgtctccttc	ttcactcttt	ttttgcaaag	aacttgtaaa	ttttaactat	25560
aagtattcat	gattcgccac	atttattcaa	aacatagagt	gctttttcca	catatcagcc	25620
aatggaaata	aggattaaat	gggaaatgaa	atgtagtaat	aggataagca	caagtcttct	25680
tcctgctcaa	acttttttt	tttttttt	cagacaagat	cttgctctgt	tacccaggct	25740
ggagtgcagt	ggcgtgttca	tagctcaatg	taacctccaa	ctcctgggct	catgcaatct	25800
ctcacacctc	agccccctga	ttagctagga	ctacactatg	cctagccaat	tttttttctt	25860
ttgtctggtt	gtgttgccca	ggctgtctcg	atctcctggc	ctcaagtaat	cctcctgcct	25920
cggccttcta	aagtgctggg	attataggca	tgagccactg	tgcccggtct	caaacctttt	25980
tttccaaagt	aaatgaagtt	attagatatg	gaatatagtc	tagttcccag	atatccatat	26040
ccattggttt	attaccctca	ttattaactt	caaattgttt	aatagaccct	catatctcag	26100
ttatacagtt	aaaatttttg	ttttgtttt	ctggagtatc	ttatttataa	ctatgagttt	26160
tactttactt	atttatttta	ttttttgaga	cagacgcttg	ctctgtcact	caggctggag	26220
tgcggttgcg	tgatcatggc	tcactatggc	ctcgaccttc	tgggctcaag	tgatcctctc	26280

cctcagcctc ccaagctgag actacaggca tgcaccacca catctagcta attttttt 26340 ttccccatgg aacaaggctt tactatgtta cccagagtgg tctcaaactc ctggcctcag 26400 gggatcctcc tgtctcagcc taccaaaatg ctgggattac aggcatgagc catagcgcca 26460 gacctggttt tacttttctt gactttgaat tacaagtttt tgtaatttgg aaaatgtttt 26520 gttgctttta aatactgctg tatgtttgct tttaaataca acatttctcg atatatattt 26580 tgagaattgc tgtctttcag aacctaacag tttccttaag aaggctgata ttttcatcaa 26640 tgggtcgcag ttaggagaag attttattca attgcataaa cttctaagaa agtccacctt 26700 caaaaatgca aaactctatg gtcctgatgt tggtcagcct cgaagaaaga cggctaagat 26760 gctgaagagg taggaactag aggatgcaga atcactttac ttttcttctt tttccttttg 26820 agacagagtc tcactctgtc agccagactg gagtgcagtg gtacaatcat ggctcactgc 26880 aacttcgacc tcccaggctc aagcaatcct cccatctcag tcccacaaat agctgggact 26940 acaggtgcac atcaccacac ctggctactt taaaaaaaatt tttttgtaga gatggggtct 27000 ccctgtgttg cccaggctgg tctcttgaat tcctgtgctc aagccatcct tccacctcag 27060 cctcccagag tgccaggatt acaggcatga gccaccacac ccagccacca cttttcttaa 27120 aaaaaaaaa agattetete tggtagacaa teeteaatag teeacatgtt attaaacaat 27180 ctgctgcctg aatacatgat ttaccaaaaa aaggaaattt tgacgggttc agaatatcaa 27240 gggatctgag gcaaatgtca cctatgataa aatttgctat caaaattagg aagtttgtgt 27300 ttacctgatc ctaaagcagt aaccagccca tttctaggga ataaaactct catgcgtata 27360 ttgtgCatat atatgtatta tatgactgag tgataataaa attttttttc taqcttcctq 27420 aaggctggtg gagaagtgat tgattcagtt acatggcatc agtaagtatg tctcctattc 27480 ttaatactag gaaagtaagg ctagctttat ttattaccta gtattcaaaa agttagttca 27540 tttaactgcc aattgactgc agttcaaata agaaacaaat agtgtctcaa gtagcactgt 27600 actccaattt taatattaat aaaaaaaatt ttaagttatt ttaaataatg tagtgqtttc 27660 tataaagatc actttataca gaagaacagt gccaattaac ccatggaaca tataagtagc 27720 taaaaccaat tgcttgccaa agaaccagta acccaggagt acatgtcctt gccactgtgt 27780 tttttcaaga cagagtaact gatttctagt tacttgcata gaatggactc ctcctcataa 27840 ctcccttcca tcttggtctt tccctagtag aacttctacc tttttttagt aacaggtgag 27900 tgggagaggt aagaaggaga ataaggtcag caattaacct aaaagcagaa agtaaaattt 27960 gttatttttt ttctgaatat tttctgtgta atttagctac tatttgaatg gacggactgc 28020 taccagggaa gattttctaa accctgatgt attggacatt tttatttcat ctgtgcaaaa 28080 agttttccag gtaatagtct ttttaaactt tttaatgtaa aaccagaatc cttattttat 28140 agtctagcta gttctaaatt ctataggtat gtatatttac atgtttttct aattttagag 28200 aacaagcact atgacttatc cactgttagt tttcccctta gcattgggtc ttaccccatg 28260 tacgtgatta gaaatttgaa atatttccaa tagcctttag tagaattaac tcacatagat 28320 gataagaatg ggttggttca cttcatgttc cttccacagc ctactatttc aataaaagaa 28380

agtttcccaa gacctaaatg actatgaaca tattttataa ctatatagga ggggtgggtc 28440 taggaataca aagttttgaa tgctgttaat cttcaacacc acagttgaaa ccacaggtca 28500 gcttttttgc aattaccatg gatacttttc tgttctatag gtggttgaga gcaccaggcc 28560 tggcaagaag gtctggttag gagaaacaag ctctgcatat ggaggcggag cgcccttgct 28620 atccgacacc tttgcagctg gctttatgtg agtgaagcag cgctggcctt aggggtcaga 28680 gtgcagctct tctccatcct tctattctgc tgaaatagct ccccagccaa aaagcagatc 28740 aaagaccgtt tcagtggctg agccccaaaa ttcatgccag attttgcaag aaaatgattt 28800 actaaagctt gagggacatc tttaacaagt gttccaaatt aatcactata aggatgaatt 28860 gtttcagaaa ttttggcctt taattatggc ccataaatat gtcaagtagt ccttactcta 28920 aagaagtaca ctgtaaaaga atgcatatag ccggatatgg tagttccctg taatcccaat 28980 actttgggag gccaaggtgg gaggattgct tgagcccagg agtttgaggc tgcagtgagt 29040 tatgatggtg ccactgcact ctagactggg caacagagtg agactgtctt ttttttccc 29100 ctctgtcacc cagactggag ggcagtggca cgatctcacc tcactgcaac ctctgcctcc 29160 cggattgaag cgattctcct gcctcagcgt cctgagtagc tgggactaca ggagtatcac 29220 cgcactgggc taatttttgt atttttagta gagacggggt tttgacatgt tgcccaggct 29280 ggtctgaaac ccatgagctc aagtgatctg cctacctcag ccttccaaaa tgctgggatt 29340 29400 ttagagcata ttacagcttt gtctctcagg aggatactta gtgtatgtag ctataattca 29460 tagattccca agaagtttag agcctaaagt atgaggtccc accagagggg ctatcattaa 29520 atttaaagat ttgttaaatc atctcattgt ccaacaccac aaacttgatt gctttaaaat 29580 actggtttag ttacatttag taactctatt agtgctttta atctatactg ctatatcctc 29640 acattgagat tttttttctt ttctcttcca tcttcattct tttttctctc atcctcattc 29700 ttataagcct agaatacatc acaaatcctt tatgcccatg gaagcaagag gaataaagaa 29760 tggagatgtt tgttttgcca ttaactaaag atctggggtg tcgggggagaa gggggataga 29820 gaaggagaag tgggaagagg tgtccataat agcttaggtg caattctgct tattttacat 29880 tttacccccg ctgactgcca ctttttcttc agccctcaca cattgtttgt gcagggacct 29940 cataggacca ggaattgtct atagaggtgg gaatttgtct caccctgaaa gggatacctc 30000 tagcatggta atagtettet aggatttgtt ateatatgga aagatgtaaa gggagggatt 30060 ctgctgctgc tgctgctgct gcatgcagtt gccatttcat ttaaatgact tatttataat 30120 tgatgacact tttctggctt cctgttaatt cctccctcaa agatcaataa accagaacca 30180 ggcatggtgg catgcacttg tggtcctgta accacccaac aggttcacct tgcctgctgt 30240 ctagatagag ccaattatca agacagggga attgcaaagg agaaagagta atttatgcag 30300 agccagctgt gcaggagacc agagttttat tattactcaa atcagtctcc ccqaacattc 30360 gaggatcaga gcttttaagg ataatttggc cggtaggggc ttaggaagtg gagagtgctg 30420 gttggtcagg ttggagatgg aatcacaggg agtggaagtg aggttttctt gctgtcttct 30480 gttcctggat gggatggcag aactggttgg gccagattac cggtctgggt ggtctcaaat 30540

gatccaccca gttcagggtc tgcaagatat ctcaagcact gatcttaggt tttacaacag 30600 tgatgttatc cccaggaaca atttggggag gttcagactc ttggagccag aggctgcatt 30660 atccctaaac cgtaatctct aatgttgtag ctaatttgtt agtcctgcaa aggtagactt 30720 gtccccaggc aagaaggggg tcttttcaga aaagggctat tatcattttt gtttcagagt 30780 caaaccatga actgaatttc ttcccaaagt tagttcagcc tacacccagg aatgaagaag 30840 gacagettaa aggttagaag caagatggag teaatgaggt etgatetett teaetgteat 30900 aatttootoa gttataattt ttgcaaaggo ggtttoagto ocagotactt gggaggotga 30960 gacaggagga ttaatggagc ccaggagttt gaggttgcag agagctatga tcacgccact 31020 gcactccagc ctgggtgaca gagtgagacc ctgtctctaa ataaataaat aagtaaataa 31080 ataaatacat aaataaaatc aagatggtgt gcaattagaa ttgagcgatt ttgtttccaa 31140 acctcaagaa agettggtet tgetetgtee caggtggetg gataaattgg geetgteage 31200 ccgaatggga atagaagtgg tgatgaggca agtattcttt ggagcaggaa actaccattt 31260 agtggatgaa aacttcgatc ctttacctgt aagtgaccat tattttccta attctagtgg 31320 agtagattaa agtcaactca ggacctctgg tgttaacctc ctatgaacag tcagtcctct 31380 cagtaactag ccaaatcatg agatgatgaa ttagaaggag ccttagatag catccaatct 31440 aacatttttt tgtgtgtttg aagagaagaa atcaagagct aggaataact ttttaaaggt 31500 aagccatttg cagtatagtg tggattttgt ttaaaaagggg ataatttgaa attttatgac 31560 tcattataca agacaaaata agttggattt tcaaatgttt tacaaagtaa atcaaagtta 31620 taattgccta cagtacgcaa agcttcaaaa cattttttat gttatgaaat tgtaatttat 31680 ttaaccttaa aatgagccag taccatgtgt ttgcttaaaa atctcatgct aagaatttac 31740 tatgttgtta ataatcttca agatatttat gaataaagtc ttatttctaa tccttcctcc 31800 aactgtatct ggtgctaaat caggaaatgt ttcttcccaa aaagcctcgt ggaagatctg 31860 tatgtctaaa tatatgtcag ggataataca gatgtagccc tgcgaagcat gaccttgatt 31920 tttatagtct aaaatgtcat ttgcagatat ctattttcta agaataattc ctaaaagaat 31980 tatttgaatg ttgtaggaaa gctaagaaat tttgcaaaga gcgtacgtga aaatataagc 32040 taggettttg tggtttgtgg atagaettee caacaaaatt getttttate tatagtgate 32100 caagettgtg gaacatatta gteatetttt tttagaaaat tettagaaaa gtgatettge 32160 aaaaatggaa tttatctttc cccaagtata ttctgtcatg tatagagtta aactaagcat 32220 agtaatttca ccagacaaac attcaaaatc tactcctgac ctttttatct catccaaatt 32280 ttcccagggc ccagacataa acctttgcct tacgaactct ttgtatatgc actaaatatg 32340 cttctccttc aaggttctca gtcagctaga aaaatgtgca agagtaaatg gtacccttct 32400 cacttgtaga tccaagagaa ttagacttaa actcactcta catgtctgtg actttatttt 32460 atttgcatga cagtcctgtg aggtggcaag gcaggtatct tggatccatt ttttagataa 32520 ggaagttcaa attgagaaga ggttgcatga tttacaggaa gccatactgt agtcctatgt 32580 tactcttaaa aatcccattc aaatcctgct tctgaggcct gcatactttc taccctacca 32640

gtcattgacc catgcttatg tctcctttga aaacattgat tccactcttg tctccagtga 32700 aaaagtggaa tttaagcaga gaaacaaaag ccatttgtct tgttaagtct actttccctc 32760 32820 ttttaaaaat tgatacaagg tcttactgta ttgtgcaggc tggtctcaaa ctcctqqqct 32880 caagtgatca teccaectca geeteccagt gttgggatta cageatgaac cattgtgeee 32940 accaccgatc cgcagttttt taagaaaaac ttttactata gaaaatttta atcataca 33000 aaatacagag gaaagtatat gaacccactt taggagacta gaatatgcca ccccaaaata 33060 tgccactttg gcataaggat tatttcgagc taaaggcaac tgggaagaaa cacatagaag 33120 aaaagttctc tgtccttctc catttgccta aaagcaggac atgaatctta aaagtccccc 33180 tccttccctt tctaccagga aaaacaagag ttaatcactg aagataactt cagaccctta 33240 tcagtgtaga gatggcacta gaagaatcta tattacatac tcatttattt tccttcccac 33300 aacttgccac cccagagact aaaaatcctt ttcctttgtc atgtctcttg tccaaaaatt 33360 tgctctataa gctggagttc taagccacct ctttgagaat tacttgttcc ctqqtatttt 33420 ctgttaacat acatgtatta atatacatgt taacaagctt ctgtttgttt ttctcctgtt 33480 ttctgtcttg ttacagaggt ccatcccaac taagaactaa agagtaggag gaaaatataa 33540 tttcctcctg catactttga tcttgtttaa tccgtaaccc ttcccacttt tcacctccta 33600 cctattagat tactttgaag caaatttcag atatattact ttatctataa atatttcagt 33660 atgtgctagg tgtggtggct cacacctgta atcccaacac tttgggaagc tgaggcagga 33720 ggatcacttg agcccaggag ttcaagacca gctacggcaa caaaaaatca aaaacttatc 33780 tgggcatggt ggcacatgcc tgtggtccca gctacatgag aggctgaggc aggaggatcg 33840 ctttagccca ggaggttgag gctgcagtaa gctgcattca caccactgca ctccagcctg 33900 ggtgacagag taagaccatg tctcaaaaaa atacatattt tagtatgtat cctttttgta 33960 aaaacacaat acttttatca tactttaaat aataacaata attccttagt atcaccaaat 34020 attttgtcag tgtctcacat tttccttatt gtctaaaata ttgttgatag ttattcaaat 34080 cagaatccaa acaaggtcca tatattacat ttggttgaca agtctcttaa gtttgttcat 34140 ctttaagttc ttcctccctc tctttcatct cttgtaattt attaatgtga aaaaacaggt 34200 aatttgttct atagtatttc ctacattata gagtttgcta catttattcc ctatgatatc 34260 atttagcatg ttcctctgtc ccctgtgttt cctgtaaact ggtagttata cctagaagct 34320 tgagtttatt caggttttta attgtatttt ttttgcaaga attctttatt atctgcttct 34380 ggaagcacag aatgtctggt tgtgtctggt tttgatcttg acagctactg atgaccattg 34440 34500 gattttttta actgttattt tgagacagtg tctcatttcg tttcccaggc tqqaqtqcag 34560 tggcacaatc acggctcact gcagccttga cctcctggga tcaggtgatc ttctcacctc 34620 agcctcctgg gtacctggaa ctacaggtgc acaccaccac acctggctaa ttttttgtat 34680 tttgtgtaca gaaggggttt catcatgttt cccagactgg tcttgaactc ctqqqttcaa 34740 gtgatctacc cacttcagct tcccaaaatc ctgggattac actttggcca ccgtgcctgg 34800

cctaaatgaa attatttgtc tctaaacaga cagaagtttt actttaaaaa tttgtctttg 34860 34920 aattottgga tgaacaataa ccaagaatac ttaaactotg atcattottg acagatatoo 34980 cctacaggct atggcctttt gaattgtgtc ctccagtgat aaaaagcagc aagcacgata 35040 ctgctctcag attcatggtg gtcacatgtg aggtgaaaaa aaaaaaaaag atgaatccta 35100 tttaaatgcc cccaggataa cagtgatact ctttgtagga taactatttg cttgccactg 35160 gtttcattaa ataaggacat aagtaaagat ctatttttgt ctctttctcc ccaaccacca 35220 caactaggat tattggctat ctcttctgtt caagaaattg gtgggcacca aggtgttaat 35280 ggcaagcgtg caaggttcaa agagaaggaa gcttcgagta taccttcatt gcacaaacac 35340 tgacaagtaa gtatgaaaca caccetttac caatcatcaa gttttagtgg gtaageetgt 35400 aactttactc aaacaccctg ttgcatgtgt ctatacattg cataagtata ggcagttgca 35460 35520 ttttgttgtt gttgtttttt gagacggggc ctcgctcgtc acccaggctg gagtgcagtg 35580 gtgcaatctc agctcactgc aacctccgcc tcccgggttc aagtgattct tgaagaggag 35640 aacaataata acaacaatat tattttcaaa agttgtgacc gcagtttctg gagttgagaa 35700 gacatcgaga tttttgtagc ctcatactct tgctttaggt agcaaaaaat gttcctaaat 35760 ctcaggaata ttctctagat aggtttcaat ctatcattcc tgataagatg atgctgaaat 35820 actaattcta gccaaaaaag accagctacc atttccgatt gttggggact gggaactctg 35880 gatagtgagg accccagtag gaagtagcga ggggaatggt ttgaatggat aaattcataa 35940 aaaatgtcag tagatttaat tttcttatac atttcagtct ttttataagg ctaggaaaag 36000 cccctgtttt tatggtttat aatttgaatt cacatgaacc cacaaaattt gccttttacc 36060 ttcctatgtc tgaaaatgga tagtctggct ggcctcttaa caacccagct ggcagagctg 36120 tgaggatete agtgtgetet ageceagaea ttggtageat gaaeggeaae atttttaatt 36180 gtgttttcaa aataggagca cactagcggt ctaaaacgat cataaaagaa ggatactaag 36240 agggcccact gtcattatgg atcctaatac ttaggatgca ttatggattg tcattatgga 36300 tactaatact taggatcaca tttgtaattg agtttttaat tgcttaaatt agatacatat 36360 ttctattaag ttaacctctt tgcttttagt ccaaggtata aagaaggaga tttaactctg 36420 tatgccataa acctccataa tgtcaccaag tacttgcggt taccctatcc tttttctaac 36480 aagcaagtgg ataaatacct tctaagacct ttgggacctc atggattact ttccaagtaa 36540 gtaattttcc ttgttcattc caaactttca ataaatttat tggtgtttat cagaatagag 36600 agtttggaca gggagcaaaa gacaaagtca actatatcaa gttctaataa ttcttaatat 36660 tcaggaaatt tatgtatgaa tacttactaa tatgagtata actcatccta agagtctaaa 36720 gcaaaaggat gtgaacacaa actagcagtt atcttagaga ataagtttgc atttcaaaat 36780 aacttgacat atcaagatcc actcaacgca tttaaattat ttactctaaa aagacataat 36840 tcttggtaac acattcacta aagcaaaata tacctttata taattgctat caaaggtatg 36900

tgggttggta taaaatatca taccatgtga gatcagtgtg attcctttac agcattaatt 36960 tttattggtt agagtaagaa aaagaatagc tagagtatat ttcttaagta gattctcata 37020 cactttggtt tcaaaaacca attattgact acatcttata aaagcctgta ttcaatggag 37080 tgccaaaaaa tgactatgag tcttaaagag ttaggcatat aaatatttta aggtttctgt 37140 tcaatgtatg ttggaaggag ttcctttctc atgactattc tcatattgga gcataaaaag 37200 agtttacagg cttggcgcag tggctcatgc ctgtaatccc aatactttgg gaagctgaag 37260 caggcagatc acttcagccc aggagtttga gaccagcctg ggcaatatgg caaaactctc 37320 tctacaaaat ataccaaaat tagccaggcg tggtggtaca tgcctgtagt cccaqctact 37380 tgggaagctg aggtgggagg attgcttgag cccagggggg tcatggctgc agtgagctgt 37440 gatggtgcct ctgtcaccca gcctgggtga cagagtgaga ccctgtctca aaaaaataaa 37500 taaataaaaa ttaagagttt acaaaattct caccatctcc tcccatcttt gcaaatgcca 37560 cataagtgat gtgttccagg actattagcc tcggaacctg aggcagtaca gtaagcacgc 37620 tttctccaaa gtcctgtccc ccacagacaa acattattta cactgggtac tgctctttta 37680 ttttttcccc tctatgcttt attttactat aactataatc atataacatg taataggaaa 37740 aaggcagggt cgggggagag atccagaagt cttcccaaga gcctttccaa catagcctct 37800 gtagacattt tttctttctt ctttttttt ttttttttt ttctgagaca gagtctcact 37860 ctgttgtcca ggctagagtg cagtggcgtg atctaggctc actgcaacct ccgcctcctg 37920 ggttcaagca attctcccac ctcagcctcc ctagtagctg ggattagagg catgcatcac 37980 cacgcctggc taatttttgt atttttagta gagatgaggt ttcaccatgt gggccaggct 38040 ggtcttgaac tcctgacctc aagtgatcca cctgccttag cctcccaaag tgctaggatt 38100 acacgagtga gccaccgtgc cctgccccta ttacattctg atcacacatt tcatgtttta 38160 taattggaaa actggtgaaa ttatagacaa tgttttgttc ccctaaattc tctttgatga 38220 gtatatatta cttacactct tctgtcttta aaattttgca aaatagtatc ctagataagt 38280 ttatgagtgc acagtctgta cgcttactca tattaatgac ctcggagagt taaacaacag 38340 tcacctttaa aaattattac tatcattatc attatttttg aggcgggggt ctcattctgt 38400 ctcccaggct ggagagtagt ggtgcggtca cagctcactg cagccaccgc tacctgggct 38460 caagtgatcc ttcctcctca gccttctgag tagctgagac cacaggctta tgctaccaca 38520 cctggctaat tttttaactt tttgtagaga cgatgtctca ttatgttgcc caggctggtc 38580 tcaaactcct aagctcaagt gatcttcctc agcctcccaa agtgctggga ttacaggcat 38640 gaaaaactgc acccagccct aaaaattatt agggtcctgc atagtaagac tttaataaat 38700 atttaaatga acatctggtt tttttaaaaaa aaaaatagag acaaggtctc actatattgc 38760 ccaagctggt ctcgaactcc tggactcacg caatcctgct gccttagccg cccaaagtgc 38820 tgggattaca ggcatgaccc acctcatctg ggctgagtga acatatttt aacataaagg 38880 ccgtatttta tatttatctc atacattttg cccagcatcc ccatttccgc cgaatctgtt 38940 gcttgctaat tccttccagc ttcatttcat ctgaaatttg acaaacatct tctatttctt 39000 tgtcgtcatg ttattgactt cagaatataa aataaaacac tatacccaaa ttaaacccca 39060 ccctcattgc ccagcctgat gtgaaaataa tcagcataca ttaagcttac ccttgatata 39120 tgtgtagcat cttttagata aatatacagc tgattaagca atatagcctg atggtataat 39180 atcttgccca tgtacctcat cttatctcca gcaggattaa ttcacagtga tcagatttac 39240 ctttaaactt tgtagcaaaa tatcctctcc aaaagcatat ctaaaacttt tgtgtgtact 39300 cttgcaagtt tcttaatttc atgcagaaca ggctcttacc actgttagct ggagatattt 39360 tcaagaccta tttttgtttg tggtttcctg atgatggtca tggcatttcc cccttcactc 39420 catctaaaaa ttgaggtgat acaggctttt aaacaaaacc aactcatata gactgagtac 39480 aactgcaatg caggcatgct aacctctgct acaatcatgg gcgtgctatt gatatgtctt 39540 aagttacaga acacagggct gagcgtctca ttaggtcaaa atgtaaacca gtttttctgc 39600 tcactgatgc ttaatgagga cagggtgtga gagatttctt taaggaaaac aaatatataa 39660 taatgctaca tggaaaaata tctaacatta gagaattaag taaataaact aatatactca 39720 caccatggaa tcttgtgcag acattaaaat tatgtagtgg atggatgttt aatggtgtga 39780 gaaaaagtta ggatgtgctg gggtgggggg aagaatcaag ttttaagaaa atacagtata 39840 cccatactta agtaaaaaaa aaaaaaaagg tatgtacagt catgtgttgc ttaatgatgg 39900 ggatacattc cgagaaatgt gtcgataggt gatttcatcc ttgtgtgaac atcatagagt 39960 gaacttacac aaacctagat ggtctagcct actatgtatc taggctatat gactagcctg 40020 ttgctcctag gctacaaacc tgtaaagcat gttactgtag cgaatataca aatacttaac 40080 acaatggcaa gctatcattg tgttaagtag ttgtgtatct aaacatatct aaaacataga 40140 aaactaatgt gttgtgctac aatgttacaa tgactatgac attgctaggc aataqqaatt 40200 ataattttat ccttttatgg aaccacactt atatatgcgg tccatggtgg accaaaacat 40260 ccttatgtgg catatgactg tatacatgta cacaaaaaat agatgaaaga atgaatatac 40320 atcaaaatat ttaaaatggt tataatgact taggttactt ttatttatct tagtaataat 40380 aatgatgata gataatactt ttatagtgtt tactatataa aagacactgt tataagtgtt 40440 ctacatactt tacatgtatt acctaaatga tataaatata actctgacag taactaatct 40500 tatacgttct cttttctttt ttttttttt ctttttttag acagaatctt gctctaccag 40560 gctggagtgc agggtgcaat ctcggctcac tgcaacctcc gcctcccaqq ttcaaacqat 40620 teteatgtet cageeteetg agtagetggg actacaggea cacaceacea tgeeeggeta 40680 atttttgtat ttttgggtag agatggagtt ttgccatgtt ggccaggctg atcttgaact 40740 cctggcctca agtgatctgc ctgcctcagc ctcccaaagt gctgggatta caggtgtgaa 40800 ccactgtgct cggcctaatc ttacaagttt tcaatattta aagagtgcta actttgttga 40860 caatataaaa catatttgag aaaaagagat ataagcatct tatttagaat tatgaaaata 40920 tcaatagacc tacagccgac taaagctttt cttcataagc tcttgcctat attgattcgc 40980 tcctgtgaat atgcattaat ttgatttaaa taataagtat gtataagaaa taacactttt 41040 ccttaatttt taagaacgtt caacagtttt taatttgaat tccaatagtg aaatacatag 41100 aaaatataaa attttctgta gtttagccaa attgtttttg tttcaccaca gcattctacc 41160

aaaatttctt aataacagta agaaaatgaa tgcatacctc ctqcagggag aggggagtta 41220 ggcagtttat gggcatagtt acaagtgaga aatttcattg gctaccattt acgctaaatt 41280 cataaaaact gcattcaatt ctatatatct attttcttta cataaaaaag gtttcaatta 41340 ttggccatta aataaaatag ccaccattcc agaagttgtg tcatgtttat cctttttata 41400 ccaccatcat attgcctatt atatagattg tgtgtgttcc attttctgta atgggccaga 41460 cagtaagtat ttctggcttt ggagtccata tggtctctat cataactact catctctgcc 41520 attgtagctt aaagattatc taggtcaaat gcctaagtga tatagtgttg aaatacaagt 41580 tatataatat aggetgeeac aaaaaaaaat ttatttqqte taaaaaaqat tteatqaett 41640 ttgtagcagc atgggtgggg catgcaccac ttggttaact cggtgtatct ttctcctttg 41700 cagatotyto caactoaaty ytotaactot aaayatyyty yatyatoaaa cottycoaco 41760 tttaatggaa aaacctctcc ggccaggaag ttcactgggc ttgccagctt tctcatatag 41820 tttttttgtg ataagaaatg ccaaagttgc tgcttgcatc tgaaaataaa atatactagt 41880 41940 gcagatacct tgcaaagcaa ctagtgggtg cttgagagac actgggacac tgtcagtgct 42000 agatttagca cagtattttg atctcgctag gtagaacact gctaataata atagctaata 42060 ataccttgtt ccaaatactg cttagcattt tgcatgtttt acttttatct aaaqttttqt 42120 tttgttttat tatttatta tttatttatt ttgagacaga atctctctct qtcacccaqq 42180 ctggagtgcc atggtgcgat cttggctcac tgcaacttta agcaattctc ctgcctcagc 42240 ttcctgagta gctgggatta taggcgtgtg ccaccacgcc cagctacttt ctatattttt 42300 tgtagagatg gagtttcgcc atattggcca agctggtctc gaactcctgt cctcgaactc 42360 ctgtcctcaa gtgatccacc cgcctcagcc tctcaaagtg ctgggattac aggtgtgagc 42420 caccacaccc agcagtgttt tatttttgag acagggtatc attctgttgc ccaggcttga 42480 gtgcagtggt gcaatcatag atcactgcag ccttttaact cctgggctca agtcatcctc 42540 ctgcttagcc tcccaagtag ctaggaccac agacacatgc catcacactt qqctattttt 42600 aaaaaaatttt ttgtagagat ggggtctcgc tatgttaccc aaactggtcc tgaactcctg 42660 gactcaattg atcctcccac cttggccttc caggtgctgg gatttctttg ggagtacagc 42720 atggtacagc aggagatcat ttgatgttac ctctgtgcag tgttgctagt cagcgaaaga 42780 ctataatacc tgtggggaca gcgattagcc accacaacca gtctttattt aaagttatta 42840 aaaatggctg ggcgcagtgg ctcacacctg taatcctagc actttgggag gccgaggcag 42900 atggatcacc tgacgtgagg aatttgagac cagcctggcc aacatggtga aaccccatct 42960 ctactaaaaa atacaaaaat tagctgggtg tggtcctgta gtcccagcta cttgggaggc 43020 tggggcagga gaattacttg aacccaggag gcagaggttg cagtgagccg agattgtgcc 43080 actgcactcc agcctgggtg acagagagag attccatctc aaaaaaacaa gttattaaaa 43140 atgtatatga atgctcctaa tatggtcagg aagcaaggaa gcgaaggata tattatgagt 43200 tttaagaagg tgcttagctg tatatttatc tttcaaaatg tattagaaga ttttagaatt 43260 ctttccttca tgtgccatct ctacaggcac ccatcagaaa aagcatactg ccqttaccgt 43320

gaaactggtt	gtaaaagaga	aactatctat	ttgcacctta	aaagacagct	agattttgct	43380
gattttcttc	tttcggtttt	ctttgtcagc	aataatatgt	gagaggacag	attgttagat	43440
atgatagtat	aaaaaatggt	taatgacaat	tcagaggcga	ggagattctg	taaacttaaa	43500
attactataa	atgaaattga	tttgtcaaga	ggataaattt	tagaaaacac	ccaatacctt	43560
ataactgtct	gttaatgctt	gctttttctc	tacctttctt	ccttgtttca	gttgggaagc	43620
ttttggctgc	aagtaacaga	aactcctaat	tcaaatggct	taagcaataa	ggaaatgtat	43680
attcccacat	aactagacgt	tcaaacaggc	caggctccag	cacttcagta	cgtcaccagg	43740
gatctgggtt	cttcccagct	ctctgctctg	ccatctttag	cgctggcttc	attctcagac	43800
tctggtagca	tgatggctgt	agctgtttca	tgggcccctt	caaacctcat	agcaaccaga	43860
ggaagaaaat	gagccatttt	ttgagtctcc	ttcatagact	tgaataactc	tttttcagag	43920
cttctcacag	caaacctctc	ctcatgtctc	ctcatgtctt	attgttcaga	aatgggtaat	43980
gtggccattt	caccagtcac	tgccaacaac	aacgaggttc	ctataattgt	ctctgagtaa	44040
ccctttggaa	tggagagggt	gttggtcagt	ctacaaactg	aacactgcag	ttctgcgctt	44100
tttaccagtg	aaaaaatgta	attattttcc	cctcttaagg	attaatattc	ttcaaatgta	44160
tgcctgttat	ggatatagta	tctttaaaat	tttttatttt	aatagcttta	ggggtacaca	44220
ctttttgctt	acaggggtga	attgtgtagt	ggtgaagact	cggcttttaa	tgtacttgtc	44280
acctgagtga	tgtacattgt	acccaatagg	taatttttca	tccattaccc	tccttccgcc	44340
ctcttccctt	ctgagtctcc	aacatccctt	ataccactgt	gtatgttctt	gtgtacctac	44400
agctaagctt	ccacttataa	gtgagaacat	gcagtatttg	gttttccatt	cctgagttac	44460
ttcccttagg	ataacagccc	ccagttccgt	ccaagttgct	gcaaaataca	ttattcttct	44520
ttatggctga	gtaatagtcc	atggtacata	tataccacat	tttctttatc	cacttatcag	44580
ttgatggaca	cttaggttaa	ttccattcaa	tttcattcaa	tttaagtata	tttgtaagga	44640
gctaaagctg	aaaattaaat	tttagatctt	tcaatactct	taaattttat	atgtaagtgg	44700
tttttatatt	ttcacatttg	aaataaagta	atttttataa	ccttgatatt	gtatgactat	44760
tcttttagta	atgtaaagcc	tacagactcc	tacatttgga	accactagtg	tgttgtttca	44820
ccccttgtta	tactatcagg	atcctcga				44848
<210> 45 <211> 2396	5			•		
<212> DNA						
	musculus					
<400> 45 tttctagttg	cttttagcca	atgtcggatc	aggtttttca	agcgacaaag	agatactgag	60
atcctgggca	gaggacatcc	tagctcggtc	agatttgggc	aggctcaagt	gaccagtgtc	120
ttaaggcaga	agggagtcgg	ggtagggtct	ggctgaaccc	tcaaccgggg	cttttaactc	180
agggtctagt	cctggcgcca	aatggatggg	acctagaaaa	ggtgacagag	tgcgcaggac	240
accaggaagc	tggtcccacc	cctgcgcggc	tcccgggcgc	tccctcccca	ggcctccgag	300

gatcttggat tctggccacc tccgcaccct ttggatgggt gtggatgatt tcaaaagtgg

420 cggggaggg agggcgctag ggagggactc ccgggagggg tgggagggat ggagcgctgt 480 gggagggtac tgagtcctgg cgccagaggc gaagcaggac cggttgcagg gggcttgagc 540 cagcgcgccg gctgccccag ctctcccggc agcgggcggt ccagccaggt gggatgctga 600 ggctgctgct gctgtggctc tgggggccgc tcggtgccct ggcccagggc gccccgcgg 660 ggaccgcgcc gaccgacgac gtggtagact tggagtttta caccaagcgg ccgctccgaa 720 gegtgagtee etegtteetg tecateacea tegaegeeag eetggeeace gaeeegeget 780 tcctcacctt cctgggctct ccaaggctcc gtgctctggc tagaggctta tctcctgcat 840 acttgagatt tggcggcaca aagactgact tccttatttt tgatccggac aaggaaccga 900 cttccgaaga aagaagttac tggaaatctc aagtcaacca tgatatttgc aggtctgagc 960 cggtctctgc tgcggtgttg aggaaactcc aggtggaatg gcccttccag gagctgttgc 1020 tgctccgaga gcagtaccaa aaggagttca agaacagcac ctactcaaga agctcagtgg 1080 acatgctcta cagttttgcc aagtgctcgg ggttagacct gatctttggt ctaaatgcgt 1140 tactacgaac cccagactta cggtggaaca gctccaacgc ccagcttctc cttgactact 1200 gctcttccaa gggttataac atctcctggg aactgggcaa tgagcccaac agtttctgga 1260 agaaagctca cattctcatc gatgggttgc agttaggaga agactttgtg gagttgcata 1320 aacttctaca aaggtcagct ttccaaaatg caaaactcta tggtcctgac atcggtcagc 1380 ctcgagggaa gacagttaaa ctgctgagga gtttcctgaa ggctggcgga gaagtgatcg 1440 actotottac atggcatcac tattacttga atggacgcat cgctaccaaa gaagattttc 1500 tgagctctga tgcgctggac acttttattc tctctgtgca aaaaattctg aaggtcacta 1560 aagagatcac acctggcaag aaggtctggt tgggagagac gagctcagct tacggtggcg 1620 gtgcaccett gctgtccaac acetttgcag ctggctttat gtggctggat aaattgggcc 1680 tgtcagccca gatgggcata gaagtcgtga tgaggcaggt gttcttcgga gcaggcaact 1740 accacttagt ggatgaaaac tttgagcctt tacctgatta ctggctctct cttctgttca 1800 agaaactggt aggtcccagg gtgttactgt caagagtgaa aggcccagac aggagcaaac 1860 tccgagtgta tctccactgc actaacgtct atcacccacg atatcaggaa ggagatctaa 1920 ctctgtatgt cctgaacctc cataatgtca ccaagcactt gaaggtaccg cctccgttgt 1980 tcaggaaacc agtggatacg taccttctga agccttcggg gccggatgga ttactttcca 2040 aatctgtcca actgaacggt caaattctga agatggtgga tgagcagacc ctgccagctt 2100 tgacagaaaa acctctcccc gcaggaagtg cactaagcct gcctgccttt tcctatggtt 2160 tttttgtcat aagaaatgcc aaaatcgctg cttgtatatg aaaataaaag gcatacggta 2220 cccctgagac aaaagccgag gggggtgtta ttcataaaac aaaaccctag tttaggaggc 2280 cacctccttg ccgagttcca gagcttcggg agggtggggt acacttcagt attacattca 2340 gtgtggtgtt ctctctaaga agaatactgc aggtggtgac agttaatagc actgtg 2396

<210> 46

<211> 535

<212> PRT

<213> Mus musculus

<400> 46

Met Leu Arg Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu 1 5 10 15

Ala Gln Gly Ala Pro Ala Gly Thr Ala Pro Thr Asp Asp Val Val Asp
20 25 30

Leu Glu Phe Tyr Thr Lys Arg Pro Leu Arg Ser Val Ser Pro Ser Phe 35 40 45

Leu Ser Ile Thr Ile Asp Ala Ser Leu Ala Thr Asp Pro Arg Phe Leu 50 60

Thr Phe Leu Gly Ser Pro Arg Leu Arg Ala Leu Ala Arg Gly Leu Ser 65 70 75 80

Pro Ala Tyr Leu Arg Phe Gly Gly Thr Lys Thr Asp Phe Leu Ile Phe 85 90 95

Asp Pro Asp Lys Glu Pro Thr Ser Glu Glu Arg Ser Tyr Trp Lys Ser 100 105 110

Gln Val Asn His Asp Ile Cys Arg Ser Glu Pro Val Ser Ala Ala Val 115 120 125

Leu Arg Lys Leu Gln Val Glu Trp Pro Phe Gln Glu Leu Leu Leu 130 135 140

Arg Glu Gln Tyr Gln Lys Glu Phe Lys Asn Ser Thr Tyr Ser Arg Ser 145 150 155 160

Ser Val Asp Met Leu Tyr Ser Phe Ala Lys Cys Ser Gly Leu Asp Leu 165 170 175

Ile Phe Gly Leu Asn Ala Leu Leu Arg Thr Pro Asp Leu Arg Trp Asn 180 $$185\$

Ser Ser Asn Ala Gln Leu Leu Leu Asp Tyr Cys Ser Ser Lys Gly Tyr 195 200 205

Asn Ile Ser Trp Glu Leu Gly Asn Glu Pro Asn Ser Phe Trp Lys Lys 210 215 220

Ala His Ile Leu Ile Asp Gly Leu Gln Leu Gly Glu Asp Phe Val Glu 225 230 235 240

Leu His Lys Leu Leu Gln Arg Ser Ala Phe Gln Asn Ala Lys Leu Tyr 245 250 255

Gly Pro Asp Ile Gly Gln Pro Arg Gly Lys Thr Val Lys Leu Leu Arg

260 265 270

Ser Phe Leu Lys Ala Gly Gly Glu Val Ile Asp Ser Leu Thr Trp His 275 280 285

His Tyr Tyr Leu Asn Gly Arg Ile Ala Thr Lys Glu Asp Phe Leu Ser 290 . 295 . 300

Ser Asp Ala Leu Asp Thr Phe Ile Leu Ser Val Gln Lys Ile Leu Lys 305 310 315 320

Val Thr Lys Glu Ile Thr Pro Gly Lys Lys Val Trp Leu Gly Glu Thr 325 330 335

Ser Ser Ala Tyr Gly Gly Gly Ala Pro Leu Leu Ser Asn Thr Phe Ala 340 345 350

Ala Gly Phe Met Trp Leu Asp Lys Leu Gly Leu Ser Ala Gln Met Gly 355 360 365

Ile Glu Val Val Met Arg Gln Val Phe Phe Gly Ala Gly Asn Tyr His 370 375 380

Leu Val Asp Glu Asn Phe Glu Pro Leu Pro Asp Tyr Trp Leu Ser Leu 385 390 395 400

Leu Phe Lys Lys Leu Val Gly Pro Arg Val Leu Leu Ser Arg Val Lys
405 410 415

Gly Pro Asp Arg Ser Lys Leu Arg Val Tyr Leu His Cys Thr Asn Val 420 425 430

Tyr His Pro Arg Tyr Gln Glu Gly Asp Leu Thr Leu Tyr Val Leu Asn 435 440 445

Leu His Asn Val Thr Lys His Leu Lys Val Pro Pro Pro Leu Phe Arg 450 455 460

Lys Pro Val Asp Thr Tyr Leu Leu Lys Pro Ser Gly Pro Asp Gly Leu 465 470 475 480

Leu Ser Lys Ser Val Gln Leu Asn Gly Gln Ile Leu Lys Met Val Asp 485 490 495

Glu Gln Thr Leu Pro Ala Leu Thr Glu Lys Pro Leu Pro Ala Gly Ser 500 505 510

Ala Leu Ser Leu Pro Ala Phe Ser Tyr Gly Phe Phe Val Ile Arg Asn 515 520 525

Ala Lys Ile Ala Ala Cys Ile 530 535

<210> 47 <211> 2396 <212> DNA <213> Mus musculus	
<220> <221> CDS <222> (594)(2198)	
<400> 47 tttctagttg cttttagcca atgtcggatc aggtttttca agcgacaaag agatactgag	60
atcctgggca gaggacatcc tagctcggtc agatttgggc aggctcaagt gaccagtgtc	120
ttaaggcaga agggagtcgg ggtagggtct ggctgaaccc tcaaccgggg cttttaactc	180
agggtctagt cctggcgcca aatggatggg acctagaaaa ggtgacagag tgcgcaggac	240
accaggaage tggtcccace cetgegegge tecegggege tecetecca ggccteegag	300
gatcttggat tctggccacc tccgcaccct ttggatgggt gtggatgatt tcaaaagtgg	360
acgtgaccgc ggcggagggg aaagccagca cggaaatgaa agagagcgag gaggggaggg	420
cggggagggg agggcgctag ggagggactc ccgggagggg tgggagggat ggagcgctgt	480
gggagggtac tgagtcctgg cgccagaggc gaagcaggac cggttgcagg gggcttgagc	540
cagegegeeg getgeeceag eteteeegge agegggeggt eeageeaggt ggg atg Met 1	596
ctg agg ctg ctg ctg tgg ctc tgg ggg ccg ctc ggt gcc ctg gcc Leu Arg Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu Ala 5 10	644
cag ggc gcc ccc gcg ggg acc gcg ccg acc gac ga	692
gag ttt tac acc aag cgg ccg ctc cga agc gtg agt ccc tcg ttc ctg Glu Phe Tyr Thr Lys Arg Pro Leu Arg Ser Val Ser Pro Ser Phe Leu 35 40 45	740
tcc atc acc atc gac gcc agc ctg gcc acc gac ccg cgc ttc ctc acc Ser Ile Thr Ile Asp Ala Ser Leu Ala Thr Asp Pro Arg Phe Leu Thr 50 55 60 65	788
ttc ctg ggc tct cca agg ctc cgt gct ctg gct aga ggc tta tct cct Phe Leu Gly Ser Pro Arg Leu Arg Ala Leu Ala Arg Gly Leu Ser Pro 70 75 80	836
gca tac ttg aga ttt ggc ggc aca aag act gac ttc ctt att ttt gat Ala Tyr Leu Arg Phe Gly Gly Thr Lys Thr Asp Phe Leu Ile Phe Asp 85 90 95	884
ccg gac aag gaa ccg act tcc gaa gaa aga agt tac tgg aaa tct caa Pro Asp Lys Glu Pro Thr Ser Glu Glu Arg Ser Tyr Trp Lys Ser Gln 100 . 105 110	932
gtc aac cat gat att tgc agg tct gag ccg gtc tct gct gcg gtg ttg Val Asn His Asp Ile Cys Arg Ser Glu Pro Val Ser Ala Ala Val Leu 115 120 125	980
agg aaa ctc cag gtg gaa tgg ccc ttc cag gag ctg ttg ctg ctc cga Arg Lys Leu Gln Val Glu Trp Pro Phe Gln Glu Leu Leu Leu Arg 130 135 140 145	1028
gag cag tac caa aag gag ttc aag aac agc acc tac tca aga agc tca Glu Gln Tyr Gln Lys Glu Phe Lys Asn Ser Thr Tyr Ser Arg Ser Ser	1076

	150	155		160
gtg gac atg ctc Val Asp Met Leu 165				
ttt ggt cta aat Phe Gly Leu Asn 180	Ala Leu Leu A			
tcc aac gcc cag Ser Asn Ala Gln 195				
atc tcc tgg gaa Ile Ser Trp Glu 210		Glu Pro Asn S		
cac att ctc atc His Ile Leu Ile			Slu Asp Phe Val	
cat aaa ctt cta His Lys Leu Leu 245				
cct gac atc ggt Pro Asp Ile Gly 260	Gln Pro Arg (
ttc ctg aag gct Phe Leu Lys Ala 275				
tat tac ttg aat Tyr Tyr Leu Asn 290		Ala Thr Lys G		
gat gcg ctg gac Asp Ala Leu Asp			In Lys Ile Leu	
act aaa gag atc Thr Lys Glu Ile 325				
tca gct tac ggt Ser Ala Tyr Gly 340	Gly Gly Ala E			
ggc ttt atg tgg Gly Phe Met Trp 355				
gaa gtc gtg atg Glu Val Val Met 370		Phe Phe Gly A		
gtg gat gaa aac Val Asp Glu Asn			yr Trp Leu Ser	
ttc aag aaa ctg Phe Lys Lys Leu 405				
cca gac agg agc Pro Asp Arg Ser 420	Lys Leu Arg V			
cac cca cga tat	cag gaa gga g	gat cta act c	tg tat gtc ctg	aac ctc 1940

cat aat gtc acc aag cac ttg aag gta ccg cct ccg ttg ttc agg aaa His Asn Val Thr Lys His Leu Lys Val Pro Pro Pro Leu Phe Arg Lys 450 455 460 465	1988
cca gtg gat acg tac ctt ctg aag cct tcg ggg ccg gat gga tta ctt Pro Val Asp Thr Tyr Leu Leu Lys Pro Ser Gly Pro Asp Gly Leu Leu 470 475 480	2036
tcc aaa tct gtc caa ctg aac ggt caa att ctg aag atg gtg gat gag Ser Lys Ser Val Gln Leu Asn Gly Gln Ile Leu Lys Met Val Asp Glu 485 490 495	2084
cag acc ctg cca gct ttg aca gaa aaa cct ctc ccc gca gga agt gca Gln Thr Leu Pro Ala Leu Thr Glu Lys Pro Leu Pro Ala Gly Ser Ala 500 505 510	2132
cta agc ctg cct gcc ttt tcc tat ggt ttt ttt gtc ata aga aat gcc Leu Ser Leu Pro Ala Phe Ser Tyr Gly Phe Phe Val Ile Arg Asn Ala 515 520 525	2180
aaa atc gct gct tgt ata tgaaaataaa aggcatacgg tacccctgag Lys Ile Ala Ala Cys Ile 530 535	2228
acaaaagccg aggggggtgt tattcataaa acaaaaccct agtttaggag gccacctcct	2288
tgccgagttc cagagcttcg ggagggtggg gtacacttca gtattacatt cagtgtggtg	2348
ttctctctaa gaagaatact gcaggtggtg acagttaata gcactgtg	2396
<210> 48 <211> 535 <212> PRT <213> Mus musculus	
<400> 48	
<pre><400> 48 Met Leu Arg Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu 1</pre>	
Met Leu Arg Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu	
Met Leu Arg Leu Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu 1 10 15 Ala Gln Gly Ala Pro Ala Gly Thr Ala Pro Thr Asp Asp Val Val Asp	
Met Leu Arg Leu Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu 1 15 Ala Gln Gly Ala Pro Ala Gly Thr Ala Pro Thr Asp Asp Val Val Asp 20 Leu Glu Phe Tyr Thr Lys Arg Pro Leu Arg Ser Val Ser Pro Ser Phe	
Met Leu Arg Leu Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu 15 Ala Gln Gly Ala Pro Ala Gly Thr Ala Pro Thr Asp Asp Val Val Asp 20 Leu Glu Phe Tyr Thr Lys Arg Pro Leu Arg Ser Val Ser Pro Ser Phe 40 Leu Ser Ile Thr Ile Asp Ala Ser Leu Ala Thr Asp Pro Arg Phe Leu	
Met Leu Arg Leu Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu 15 Ala Gln Gly Ala Pro Ala Gly Thr Ala Pro Thr Asp Asp Val Val Asp 20 Leu Glu Phe Tyr Thr Lys Arg Pro Leu Arg Ser Val Ser Pro Ser Phe 45 Leu Ser Ile Thr Ile Asp Ala Ser Leu Ala Thr Asp Pro Arg Phe Leu 50 Thr Phe Leu Gly Ser Pro Arg Leu Arg Ala Leu Ala Arg Gly Leu Ser	
Met Leu Arg Leu Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu 15 Ala Gln Gly Ala Pro Ala Gly Thr Ala Pro Thr Asp Asp Val Val Asp 20 Leu Glu Phe Tyr Thr Lys Arg Pro Leu Arg Ser Val Ser Pro Ser Phe 35 Leu Ser Ile Thr Ile Asp Ala Ser Leu Ala Thr Asp Pro Arg Phe Leu 50 Thr Phe Leu Gly Ser Pro Arg Leu Arg Ala Leu Ala Arg Gly Leu Ser 65 Pro Ala Tyr Leu Arg Phe Gly Gly Thr Lys Thr Asp Phe Leu Ile Phe	

Leu Arg Lys Leu Gln Val Glu Trp Pro Phe Gln Glu Leu Leu Leu 130 135 140

Arg Glu Gln Tyr Gln Lys Glu Phe Lys Asn Ser Thr Tyr Ser Arg Ser 145 150 155 160

Ser Val Asp Met Leu Tyr Ser Phe Ala Lys Cys Ser Gly Leu Asp Leu 165 170 . 175

Ile Phe Gly Leu Asn Ala Leu Leu Arg Thr Pro Asp Leu Arg Trp Asn 180 $$185\ \ \, 190\ \ \, 190\ \ \,$

Ser Ser Asn Ala Gln Leu Leu Leu Asp Tyr Cys Ser Ser Lys Gly Tyr 195 200 205

Asn Ile Ser Trp Glu Leu Gly Asn Glu Pro Asn Ser Phe Trp Lys Lys 210 215 220

Ala His Ile Leu Ile Asp Gly Leu Gln Leu Gly Glu Asp Phe Val Glu 225 230 235 240

Leu His Lys Leu Gln Arg Ser Ala Phe Gln Asn Ala Lys Leu Tyr 245 250 255

Gly Pro Asp Ile Gly Gln Pro Arg Gly Lys Thr Val Lys Leu Leu Arg $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$

Ser Phe Leu Lys Ala Gly Gly Glu Val Ile Asp Ser Leu Thr Trp His 275 280 285

His Tyr Tyr Leu Asn Gly Arg Ile Ala Thr Lys Glu Asp Phe Leu Ser 290 295 300

Ser Asp Ala Leu Asp Thr Phe Ile Leu Ser Val Gin Lys Ile Leu Lys 305 310 315 320

Val Thr Lys Glu Ile Thr Pro Gly Lys Lys Val Trp Leu Gly Glu Thr 325 330 335

Ser Ser Ala Tyr Gly Gly Gly Ala Pro Leu Leu Ser Asn Thr Phe Ala 340 345 350

Ala Gly Phe Met Trp Leu Asp Lys Leu Gly Leu Ser Ala Gln Met Gly 355 360 365

Ile Glu Val Val Met Arg Gln Val Phe Phe Gly Ala Gly Asn Tyr His 370 375 380

Leu Val Asp Glu Asn Phe Glu Pro Leu Pro Asp Tyr Trp Leu Ser Leu 385 390 395 400

Leu Phe Lys Lys Leu Val Gly Pro Arg Val Leu Leu Ser Arg Val Lys

				405					410					415		
Gly	Pro	Asp	Arg 420	Ser	Lys	Leu	Arg	Val 425	Tyr	Leu	His	Суş	Thr 430	Asn	Val	
Tyr	His	Pro 435	Arg	Tyr	Gln	Glu	Gly 440	Asp	Leu	Thr	Leu	Tyr 445	Val	Leu	Asn	
Leu	His 450	Asn	Val	Thr	Lys	His 455	Leu	Lys	Val	Pro	Pro 460	Pro	Leu	Phe	Arg	
Lys 465	Pro	Val	Asp	Thr	Туг 470	Leu	Leu	Lys	Pro	Ser 475	Gly	Pro	Asp	Gly	Leu 480	
Leu	Ser	Lys	Ser	Val 485	Gln	Leu	Asn	Gly	Gln 490	Ile	Leu	Lys	Met	Val 495	Asp	
Glu	Gln	Thr	Leu 500	Pro	Ala	Leu	Thr	Glu 505	Lys	Pro	Leu	Pro	Ala 510	Gly	Ser	
Ala	Leu	Ser 515	Leu	Pro	Ala	Phe	Ser 520	Tyr	Gly	Phe	Phe	Val 525	Ile	Arg	Asn	
Ala	Lys 530	Ile	Ala	Ala	Cys	Ile 535										
<210 <211 <212 <213	L> 3 2> [19 385 DNA Ratti	ıs no	orveç	gicus	3										
<400 cgg		19 Egc t	gcto	gctgt	g go	ctcto	iggg	g egg	gctco	gtg	ccct	gaco	cca a	aggca	actccg	60
gcg	gggad	ccg o	cgccc	jacca	a aç	gacgt	ggtg	ggad	cttgg	gagt	ttta	caco	caa ç	gaggo	ctattc	120
caaa	agcgt	ga ç	gteed	tcgt	t co	etgto	cato	aco	catco	gacg	ccaç	jtcto	ggc o	cacco	gaccct	180
cggt	tcct	ca o	ctto	ctga	g ct	ctcc	cacgo	g ctt	cgag	ccc	tgto	ctaga	agg d	cttat	ctcct	240
gcgt	actt	ga g	gattt	ggcg	g ca	ccaa	gact	gad	cttcc	tta	tttt	tgat	cc o	caaca	acgaa	300
ccca	accto	etg a	agaa	agaa	ig tt	acto	gcaa	tct	caaç	jaca	acaa	tgat	at t	tgc	ggtct	360

<210> 50
<211> 541
<212> DNA
<213> Rattus norvegicus

<220>
<221> misc_feature
<222> (507)..(507)
<223> Any nucleotide
<400> 50

gaccgggtct ccgctgacgt gttga

aaatcaggac atatcettca ettatttgee tettggteat attggaggea tttgtattca 60
tttttaataa eeetcaaaat agtgeatgea aagtgetaag egteatttge eacatggtge 120

385

cattaactgt caccacctgc agtggtctac ttagagaaca ccgcactgga tgttaacact 180 gaagcgcgtg ccccgccctc ccgaggctct ggatccagcg ttgaagcttg ccccgccctc 240 ccgaggetet ggatecagea etggageatg eccegeete ecgaggetet ggagettget 300 aaggagtccg ctccctaccg ctggggtttt gctttattct tatgaatgac acccctgacc 360 gctttcgtct caggggtact gtaatgcctt ttattttcat atacaagctg cgattttggc 420 atttcttatg acaaaaaacc cataggaaaa ggcgggcacg cttagtgagc ttcctgcggg 480 gagaggtttt tctgttagag ctggcanggt ctgctcatcg accatcttca ggcctcgtgc 540 С 541

<210> 51

<211> 126

<212> PRT

<213> Rattus norvegicus

<400> 51

Leu Leu Leu Trp Leu Trp Gly Arg Leu Arg Ala Leu Thr Gln Gly 1 $$ 5 $$ 10 $$ 15

Thr Pro Ala Gly Thr Ala Pro Thr Lys Asp Val Val Asp Leu Glu Phe 20 25 30

Tyr Thr Lys Arg Leu Phe Gln Ser Val Ser Pro Ser Phe Leu Ser Ile 35 40 45

Thr Ile Asp Ala Ser Leu Ala Thr Asp Pro Arg Phe Leu Thr Phe Leu 50 55 60

Ser Ser Pro Arg Leu Arg Ala Leu Ser Arg Gly Leu Ser Pro Ala Tyr
65 70 75 80

Leu Arg Phe Gly Gly Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Asn $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Asn Glu Pro Thr Ser Glu Glu Arg Ser Tyr Trp Gln Ser Gln Asp Asn 100 105 110

Asn Asp Ile Cys Gly Ser Asp Arg Val Ser Ala Asp Val Leu 115 120 125

<210> 52

<211> 44

<212> PRT

<213> Rattus norvegicus

<220>

<221> misc_feature

<222> (9)..(9)

<223> Xaa can be any naturally occurring amino acid

<400> 52

Leu Lys Met Val Asp Glu Gln Thr Xaa Pro Ala Leu Thr Glu Lys Pro

1 5 10 15

Leu Pro Ala Gly Ser Ser Leu Ser Val Pro Ala Phe Ser Tyr Gly Phe 20 30

Phe Val Ile Arg Asn Ala Lys Ile Ala Ala Cys Ile 35