In [4]:

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
```

In [5]:

```
df=pd.read_csv(r"C:\Users\chait\Downloads\archive (1).zip")
df
```

Out[5]:

	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.1	0.03760	 -
0	1	0	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	 _
1	1	0	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	 -
2	1	0	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	
3	1	0	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	 -
4	1	0	0.02337	-0.00592	-0.09924	-0.11949	-0.00763	-0.11824	0.14706	0.06637	 -
345	1	0	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622	 -
346	1	0	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606	
347	1	0	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446	
348	1	0	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110	 -
349	1	0	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139	 -

350 rows × 35 columns


```
pd.set_option('display.max_rows',10000000000)
pd.set_option('display.max_columns',10000000000)
pd.set_option('display.width',95)
```

In [7]:

```
print('This DataFrame has %d Rows and %d Columns'%(df.shape))
```

This DataFrame has 350 Rows and 35 Columns

```
In [8]:

df.head()

Out[8]:

1 0 0.99539 -0.05889  0.85243  0.02306  0.83398 -0.37708  1.1  0.03760  0.85243.

0 1 0 1.00000 -0.18829  0.93035 -0.36156 -0.10868 -0.93597  1.00000 -0.04549  0.5087
```

0 1 0 1.00000 -0.18829 -0.36156 -0.10868 -0.93597 1.00000 0.5087 0.93035 -0.04549 **1** 1 0 1.00000 -0.03365 1.00000 0.00485 1.00000 -0.12062 0.88965 0.01198 0.7308 **2** 1 0 1.00000 -0.45161 0.71216 -1.00000 0.00000 1.00000 1.00000 0.00000 0.0000 **3** 1 0 1.00000 -0.02401 0.94140 0.06531 0.92106 -0.23255 0.77152 -0.16399 0.5279 1 0 0.02337 -0.00592 -0.09924 -0.11949 -0.00763 -0.11824 0.14706 0.06637 0.0378

In [9]:

```
features_matrix=df.iloc[:,0:34]
```

In [10]:

```
target_vector=df.iloc[:,-1]
```

In [11]:

```
print('The features matrix Has %d Rows And %d Columns(s)'%(features_matrix.shape))
print('The Target matrix has %d Rows And %d Columns(s)'%(np.array(target_vector).reshape
```

The features matrix Has 350 Rows And 34 Columns(s)
The Target matrix has 350 Rows And 1 Columns(s)

In [23]:

features_matrix_Standardized=StandardScaler().fit_transform(features_matrix)

In [24]:

```
algorithm=LogisticRegression(max iter=1000)
```

In [25]:

Logistic_Regression_Model=algorithm.fit(features_matrix_Standardized,target_vector)

In [26]:

```
observation=[[1,0,0.99539,-0.05889,0.852429999999999,0.02306,0.833979999999999,-0.3770
```

```
In [27]:
predictions=Logistic_Regression_Model.predict(observation)
print('The model predicted The observation To Belong To class %s'%(predictions))
The model predicted The observation To Belong To class ['g']
In [28]:
print('The algorithm was Trained to predict one of the two classes:%s'%(algorithm.classe
The algorithm was Trained to predict one of the two classes:['b' 'g']
In [30]:
print("""The Model says the probability of the observation we passed Belonging To class[
print()
print("""(The Model says The probability of the observation we passed Belonging To class
The Model says the probability of the observation we passed Belonging To
class['b']is 0.008063858534980817
(The Model says The probability of the observation we passed Belonging To
class['g']Is 0.9919361414650192
In [ ]:
```