Machine Learning Workshop

Mentor: Nicolas Känzig

Email: nkaenzig@gmail.com

Workshop Repository: https://github.com/nkaenzig/ml-workshop

Contenido

Modulo 1

- Introducción ML
- Python crashcourse

Modulo 2

- Análisis de datos
- Preprocesamiento de datos
 - Ejemplo ML

Modulo 3

- Modelos de ML
- Técnicas de evaluación
 - Ejemplos ML

Análisis exploratorio de datos

Análisis exploratorio de datos

Crear visualizaciones y calcular medidas estadísticas para mejor entender los datos

Instrumentos

Programación

Liberarías

seaborn

IDEs

Numpy

- Liberaría para computación científica
- Algebra Lineal:
 - Objetos para vectores/matrices (i.e. arrays)
- Estadistica:
 - Operaciones básicas: e.g. mean, median, std, percentiles, ...
- Muchas de las operaciones son implementados en C
 - → Mucho mas rápido que Python sin Numpy

Pandas

DataFrame class

- "Una Tabula con Index y Columna"
- Valores son un numpy.array

	Α	В	С	D
0	1.283449	0.405647	0.633235	-0.633953
1	-0.137045	-0.498740	-0.966406	-0.720781
2	-1.066049	0.458651	-1.384483	-0.174038
3	-0.823852	0.250134	0.973628	-0.174436
4	0.762657	-0.056813	1.097659	-0.449781
5	0.755400	-1.310918	0.146741	-0.315770
6	-0.523010	-0.438491	-1.010650	0.097777

- Viene con muchas funciones útiles para análisis y preprocesamiento de datos
 - read_csv(), read_excel(), ...
 - Encontrar missing data: isna()
 - Borrar filas/columnas donde faltan valores: dropna()
 - Llenar valores que faltan: fillna()
 - Slicing, reshaping, sampling, shuffling, concatenating, ...
 - Tiene funciones de matplotlib ya integrado: plot.scatter

- Simple line plot:
 - plt.plot()

- Histograms:
 - plt.hist()
 - Útil para visualizar distribuciones

- Scatter plot:
 - plt.scatter()
 - Útil para visualizar correlaciones

- Boxplots
 - plt.boxplot()

Seaborn

- Pairplots
 - sns.pairplot()

- 0.8

- 0.6

- 0.4

-0.2

Seaborn

- Heatmap
 - sns.heatmap(df.corr().abs())

Estadística

La media

$$\mu=rac{1}{n}\left(\sum_{i=1}^n x_i
ight)=rac{x_1+x_2+\cdots+x_n}{n}$$

Desviación estándar

$$\sigma = \sqrt{rac{1}{N}\sum_{i=1}^{N}(x_i-\mu)^2},$$

Estadística

Distribución normal

$$f(x \mid \mu, \sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\!\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$

- μ : La media (valor promedio)
- σ : Desviación estándar

Estadística v.s. ML/Data Science

- Estadística
 - Pocos datos
 - Difícil tomar conclusiones sobre la distribución original
 - → Pruebas de hipótesis, Intervalos de confianza, resultados significantes, ...
- Data Science / Machine Learing
 - Muchos datos
 - Mucho mas fácil tener confianza que los resultados obtenidos son validos para la distribución original