MarshalkoMV 26012025-091902

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.520	-110.9	25.458	110.7	0.026	52.1	0.535	-56.9
2.1	0.478	-153.8	13.250	84.8	0.037	50.9	0.314	-79.8
3.2	0.483	-175.4	8.691	69.9	0.049	51.6	0.256	-98.9
4.3	0.496	170.1	6.452	57.8	0.063	50.5	0.234	-110.7
5.4	0.503	159.3	5.055	46.8	0.078	48.1	0.209	-121.6
6.5	0.519	146.6	4.214	35.5	0.092	42.5	0.186	-138.4
8.6	0.601	127.5	3.048	14.5	0.120	31.7	0.151	157.8

Найти точку (см. рисунок 1), соответствующую s_{11} на частоте 5.4 $\Gamma\Gamma$ ц.

Рисунок 1 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Найти точку (см. рисунок 2), соответствующую коэффициенту отражения от нормированного импеданса $z=0.73\text{-}0.27\mathrm{i}$.

Рисунок 2 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.7	0.366	-178.0	7.524	78.6	0.060	65.9	0.211	-80.4
1.8	0.370	-179.8	7.119	77.2	0.063	65.7	0.202	-83.2
1.9	0.373	177.7	6.731	75.2	0.066	65.3	0.194	-85.6
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
2.2	0.379	173.2	5.762	71.6	0.075	64.2	0.176	-93.6
2.4	0.378	170.1	5.218	68.9	0.082	63.1	0.168	-98.4
2.6	0.383	167.5	4.815	66.9	0.087	62.4	0.162	-102.9
2.8	0.385	164.6	4.463	64.4	0.094	61.3	0.158	-106.9
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
3.5	0.393	156.3	3.544	57.2	0.115	57.7	0.151	-118.9
4.0	0.398	150.6	3.099	52.1	0.130	54.7	0.147	-125.9

и частоты $f_{\rm h}=2.2$ ГГц, $f_{\rm b}=3.5$ ГГц. **Найти** неравномерность усиления в полосе $f_{\rm h}...f_{\rm b}$, используя рисунок 3.

Рисунок 3 - Частотная характеристика усиления

- 1) 4.2 дБ
- 2) 2.1 дБ
- 3) 7.7 дБ
- 4) 1.2 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
1.6	0.343	-174.9	8.358	80.5	0.055	67.5	0.248	-67.9
1.7	0.346	-177.1	7.877	79.1	0.057	67.3	0.235	-69.7
1.8	0.350	-179.0	7.456	77.7	0.060	67.1	0.225	-71.8
1.9	0.352	178.5	7.048	75.7	0.064	66.6	0.215	-73.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
2.2	0.360	173.8	6.033	72.1	0.072	65.5	0.194	-80.2
2.4	0.359	170.7	5.465	69.5	0.078	64.4	0.185	-84.2
2.6	0.364	168.0	5.044	67.3	0.084	63.6	0.176	-88.0
2.8	0.366	165.1	4.673	64.9	0.090	62.5	0.171	-91.5
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0

и частоты $f_{\scriptscriptstyle \rm H}=2$ ГГц, $f_{\scriptscriptstyle \rm B}=2.2$ ГГц.

Найти модуль s_{22} в дБ на частоте $f_{\rm H}$.

- 1) -23.6 дБ
- 2) 16.4 дБ
- 3) -9 дБ
- 4) -13.7 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.349	-165.3	10.751	87.4	0.045	67.0	0.283	-68.4
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.236	-75.3
1.8	0.370	-179.8	7.119	77.2	0.063	65.7	0.202	-83.2
2.2	0.379	173.2	5.762	71.6	0.075	64.2	0.176	-93.6
2.8	0.385	164.6	4.463	64.4	0.094	61.3	0.158	-106.9
4.0	0.398	150.6	3.099	52.1	0.130	54.7	0.147	-125.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
7.0	0.450	121.5	1.795	23.0	0.214	34.4	0.093	166.3
8.5	0.527	110.3	1.457	9.2	0.247	23.2	0.166	112.6

и частоты $f_{\text{\tiny H}}=1.2$ $\Gamma\Gamma\textsubscript{\textsc{I}}{\textsc{I}},$ $f_{\text{\tiny B}}=7$ $\Gamma\Gamma\textsubscript{\textsc{I}}{\textsc{I}}.$

Найти обратные потери по входу на $f_{\scriptscriptstyle \mathrm{B}}.$

- 1) 4.6 дБ
- 2) 13.9 дБ
- 3) 6.9 дБ
- 4) 9.1 дБ

Задан двухполюсник на рисунке 4, причём R1 = 38.59 Ом.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать $unde\kappa c$ выбранной полуокружности.