北京理工大学 2018-2019 学年第二学期

《工科数学分析》(下)期末试题(A卷)

座号		班级			学号				姓名			
(试卷共6页,十个大题,解答题必须有过程.试卷后面空白纸撕下做草稿纸.试卷不得拆散											「得拆散.)	
题	_	_	Ξ	四	五	六	七	八	九	+	总分	
号												
得												
分												
签												
名												
得分 一、填空题(每小题 4 分, 共 20 分)												
1. 求平行于 z 轴,且过点 M_1 (1,0,1)和 M_2 (2,-1,1)的平面方程是												
2. 函数 $u = xy^2 + yz^3 + 3$ 在点 $P(2-1)$ 处 沿 向量 $l = (1,2)$ 的 方 向 导 数												
为												
3. 交换二次积分的积分次序 $\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy = $												
4. 已知 L 是圆周 $x^2 + y^2 = a^2$ $a>0$ (按逆时针方向绕行), 计算												
$ \oint_L \frac{(x+y)dx - (x-y)dy}{x^2 + y^2} = \underline{\qquad}. $												
5. 已知级数 $\sum_{n=1}^{\infty} \frac{ a ^n n!}{n^n}$ 收敛(a 为非零常数),则 a 的取值范围为												
	得分 二、计算题(每小题5分,共20分)											
1. 求曲线 L : $\begin{cases} 2x^2 + 3y^2 + z^2 = 9 \\ z^2 = 3x^2 + y^2 \end{cases}$ 在点 M (1, -1, 2) 处的切线方程与法平面方												
程												

2. 设
$$z = xf(\frac{y}{x}) + 2yf(\frac{x}{y})$$
, 其中 f 有二阶连续偏导数,求 $x\frac{\partial^2 z}{\partial x^2} + y\frac{\partial^2 z}{\partial x \partial y}$.

3. 计算
$$I = \iint_S (x^2 + y^2) dS$$
, S 是锥面 $z^2 = 3(x^2 + y^2)$ 被平面 $z = 0$ 和平面 $z = 3$ 所截得的部分.

4. 设数量场
$$u(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$$
, 计算 $div(gradu)$.

得分

三、(8 分) 设 f(x) 是 $[0,+\infty)$ 上的单调减少的连续函数,试

证明: 对任意 $t \ge 0$,不等式 $\iint_D (\frac{t^2}{x} - 6y) f(x) dx \ge d$ 都成立,其中 $D = \{(x,y) | 0 \le x \le t, 0 \le y \le x\}.$

得分

四、 $(6 \, \mathcal{G})$ 设半球体 $\Omega_1: 0 \le z \le \sqrt{1-x^2-y^2}$,密度为 1,现

在其底面接上一个同质柱体 $\Omega_2: -h \le z < 0, x^2 + y^2 \le 1(h > 0)$, 试确定 h, 使整个物体 $\Omega = \Omega_1 + \Omega_2$ 的质心恰好在半球的球心处.

得分

五、 $(8 \, f)$ 在经过点 $(2,1,\frac{1}{3})$ 的所有平面中求取一个平面,使

这个平面在第一卦限内与三个坐标平面所围成的四面体体积最小.

得分

六、(8分) 设函数 Q(x,y) 在 xOy 平面上具有一阶连续偏导

数. 已知曲线积分 $\int_{\Gamma} 2xydx + Q(x,y)dy$ 与路径无关,且对任意的t恒有,

$$\int_{(0,0)}^{(t,1)} 2xy dx + Q(x,y) dy = \int_{(0,0)}^{(1,t)} 2xy dx + Q(x,y) dy$$

- (1) 求函数Q(x,y);
- (2) 求 2xydx + Q(x, y)dy 的原函数.

得分 七、(8分) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域及和函数.

得分 八、(8

 \int 八、(8 分) 将 $f(x) = \frac{1}{x^2 + 4x + 3}$ 展开为 x - 1 的幂级数,

并求 $f^{(10)}(1)$ 的值.

得分

九、(8分) 计算曲面积分
$$I = \iint_{\Sigma} \frac{x^2 dy dz + y^2 dz dx + z^2 dx dy}{x^2 + y^2 + z^2},$$
其 中 Σ 为 上 半 球 面

 $z = \sqrt{4 - x^2 - y^2}$ 夹于 z = 0 与 z = 1 之间部分,其法线 \overrightarrow{n} 向内.

导数,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$,证明级数 $\sum_{n=1}^{+\infty} f(\frac{1}{n})$ 绝对收敛.