5. ETHERNET LAN SWITCHING: PART 1

What is a LAN?

- A LAN (Local Area Network) is a network contained in a relatively small area.
- Routers are used to connect separate LANs.

Structure of an Ethernet Frame

Jeremy's IT Lab

Ethernet Frame

Ethernet Frame:

Ethernet Header | Packet | Ethernet Trailer

Ethernet Header Fields (26 bytes total):

- 1. Preamble:
 - o Length: 7 bytes (56 bits).
 - Alternating 1s and 0s: 10101010 (repeated 7 times).
 - Allows devices to synchronize receiver clocks.
- 2. SFD (Start Frame Delimiter):
 - o Length: 1 byte (8 bits).
 - o Value: 10101011.
 - Marks the end of the preamble and start of the frame.
- 3. Destination and Source Address:
 - o Layer 2 Address (MAC Address).
 - o 6 bytes (48 bits) each for source and destination.
 - Represents the physical address of devices.
- 4. Type/Length Field:
 - o Length: 2 bytes (16 bits).
 - Determines either:
 - Length of the encapsulated packet (if ≤ 1500).
 - **Type** of the encapsulated packet (if ≥ 1536).
 - o Examples:

- IPv4 = 0×0800 (2048 in decimal).
- IPv6 = 0×86 DD (34525 in decimal).

Ethernet Trailer Field

- 1. FCS (Frame Check Sequence):
 - o Length: 4 bytes (32 bits).
 - Used for error detection via CRC (Cyclic Redundancy Check).
 - o Detects corrupted data in the frame.

MAC Address

- Length: 6 bytes (48 bits).
- Also known as the Burned-In Address (BIA).
- Globally unique for every device.
- Structure:
 - o First 3 bytes: OUI (Organizationally Unique Identifier).
 - o Last **3 bytes**: Unique to the device.
- Represented in **hexadecimal**: e.g., E8:BA:70:11:28:74.

Hexadecimal

DEC.	HEX.	DEC.	HEX.	DEC.	HEX.	DEC.	HEX.
0	0	8	8	16	10	24	18
1	1	9	9	17	11	25	19
2	2	10	Α	18	12	26	1 A
3	3	11	В	19	13	27	1 B
4	4	12	С	20	14	28	1 C
5	5	13	D	21	15	29	1 D
6	6	14	Е	22	16	30	1E
7	7	15	F	23	17	31	1F

Interface Names

- Common format: F0/1, F0/2, F0/3...
 - **F**: Indicates *Fast Ethernet* (100 Mbps interfaces).

MAC Address Table

Dynamic MAC Address Table:

- A switch learns MAC addresses dynamically using the Source MAC Address from incoming frames.
- Stored MAC addresses allow efficient frame forwarding to the correct destination.

Frame Forwarding Logic

1. Unknown Unicast Frame:

- When the **Destination MAC Address** is not found in the MAC Address Table.
- The frame is **flooded**: sent out on all interfaces except the one it was received on. Only devices that sent out frames will have their MAC Address learnt in the table.

2. Known Unicast Frame:

 If the Destination MAC Address is recognized, the frame is forwarded to the appropriate interface.

MAC Address Table Timeout

Dynamic MAC addresses are removed from the MAC Address Table after 5 minutes of inactivity.

MAC Addresses

