Tema 2. Descripción de dos variables.

Eva Romero Ramos evarom03@ucm.es

Universidad Complutense de Madrid

Outline

1 Tabla de correlación y tablas de contigencia.

Covarianza

Regresión y correlación

Outline

1 Tabla de correlación y tablas de contigencia.

Covarianza

3 Regresión y correlación

Motivación

Supongamos que queremos estudiar dos variables a la vez: Ejemplo 1:

X/Y	1	2	3	4	n _i .
5	1	2	1	3	7
10	2	1	3	2	8
15	3	2	1	2	8
n.j	6	5	5	7	23

Ejemplo 2:

	Emplead@	Desemplead@	Total
Mujer	105	15	120
Hombre	122	8	130
Total	227	23	250

Tablas de correlación

X/Y	<i>y</i> ₁		Уј		Уk	n _x
<i>x</i> ₁	n_{11}		n_{1j}		n_{1k}	n_1 .
:	:	٠.,	:	٠.,	:	:
xi	n_{i1}		n _{ij}		n _{ik}	n_i .
•	:	•	:	٠.,	:	:
x_h	n_{h1}		n_{hj}		n_{hk}	n_h .
n_y	<i>n</i> . ₁		$n_{\cdot j}$		$n_{\cdot k}$	N

Por ejemplo, n_{11} muestra el número de veces que x_1 aparece conjuntamente con y_1 ; n_{12} es la frecuencia conjunta de x_1 y y_2 , etc. En el caso de datos cualitativos, la llamaremos tabla de contingencia.

Distribuciones Marginales

- A partir de la distribución bidimensional, podría interesarnos estudiar solo una variable. En este sentido, de la distribución bidimensional se obtienen 2 distribuciones unidimensionales (la de X y la de Y).
- Para el *i*-ésimo valor de X, la frecuencia marginal es:

$$n_{i\cdot} = n_{i1} + n_{i2} + \cdots + n_{ij} + \cdots + n_{ik} = \sum_{j=1}^{k} n_{ij}$$

ullet Del mismo modo, la frecuencia marginal del j-ésimo valor de Y es:

$$n_{ij} = n_{1j} + n_{2j} + \cdots + n_{ij} + \cdots + n_{hj} = \sum_{i=1}^{h} n_{ij}$$

Distribuciones condicionales

- Nos pueden interesar obtener otras distribuciones unidimensionales para una variable asociadas a una condición en relación con la otra variable.
- Por ejemplo, la distribución de X condicional a que Y tome el valor
 y₂. Los valores y frecuencias de esta distribución son:

$X/Y = y_2$	n_{y_2}
x_1	n_{12}
:	:
x_i	n_{i2}
:	:
x_h	n_{h2}
	<i>n</i> . ₂

Distribuciones condicionales

En general:

$X/Y = y_j$	n_{y_j}
x_1	n_{1j}
: :	•
x_i	n _{ij}
:	•
x_h	n _{hj} n. j
	$n_{\cdot j}$

$Y/X = x_i$	n_{x_i}
<i>y</i> ₁	n _{i1}
•	:
y_j	n _{ij}
:	:
y_k	n _{ik}
	n_i .

Las <u>frecuencias relativas</u> de la distribución condicional de X dado algún valor de Y, y la distribución condicional de Y dado algún valor de X son respectivamente:

$$f_{i|j} = \frac{n_{ij}}{n_{\cdot j}}$$

$$f_{j|i} = \frac{n_{ij}}{n_{i}}$$

Relaciones de dependencia

- Dependencia funcional:
- Y depende funcionalmente de X si existe una función que relaciona los elementos de X y los elementos de Y: Y = f(X)
- Dependencia estadística:

Y depende estadísticamente de X si las variables están relacionadas, pero la relación no puede expresarse mediante una función matemática

La dependencia estadística puede medirse gradualmente, ya que puede haber relaciones más débiles o más fuertes. Llamamos a esta relación correlación entre variables cuantitativas y contingencia entre variables cualitativas.

• Independencia:

Dos variables X y Y son independientes cuando no existe ninguna relación entre ellas.

Independencia estadística

 Dos variables son <u>estadísticamente independientes</u> cuando su freciencia relativa conjunta es igual al producto de las frecuencias relativas marginales:

$$\frac{n_{ij}}{N} = \frac{n_{i.}}{N} \cdot \frac{n_{.j}}{N} \qquad \forall i, j$$

 En este caso, las frecuencias relativas condicionales son iguales a las frecuencias relativas marginales:

$$f_{i|j} = \frac{n_{ij}}{n_{\cdot j}} = \frac{(n_i, n_{\cdot j}) / N}{n_{\cdot j}} = \frac{n_{i \cdot}}{N} = f_i.$$

Outline

Tabla de correlación y tablas de contigencia.

Covarianza

Regresión y correlación

Momentos bidimensionales

Momentos con respecto a cero:

$$\alpha_{rs} = \frac{1}{N} \sum_{i=1}^{h} \sum_{j=1}^{k} x_i^r y_j^s n_{ij}$$

• Ejemplos:

$$\boxed{\alpha_{10} = \overline{x}} \qquad \boxed{\alpha_{01} = \overline{y}}$$

Momentos con respecto a la media:

$$m_{rs} = \frac{1}{N} \sum_{i=1}^{h} \sum_{j=1}^{k} (x_i - \overline{x})^r (y_j - \overline{y})^s n_{ij}$$

- $S_x^2 = m_{20} = \alpha_{20} \alpha_{10}^2 \Longrightarrow Varianza de X$
- $S_{
 m v}^2=m_{02}=lpha_{02}-lpha_{01}^2\Longrightarrow {\sf Varianza}$ de Y

Covarianza

Para analizar el grado de relación que presentan dos variables X e Y utilizaremos la covarianza.

Definición - Covarianza

La covarianza es una medida del grado de variación conjunta entre dos variables estadísticas, respecto a sus medias. Se obtiene mediante la siguiente fórmula:

$$COV(X,Y) = m_{11} = S_{XY} = \frac{\sum_{i=1}^{h} \sum_{j=1}^{k} (x_i - \bar{x})(y_j - \bar{y})n_{ij}}{n}$$

También se puede obtener la covarianza en función de los momentos con respecto al origen:

$$S_{xy} = m_{11} = \alpha_{11} - \alpha_{10}\alpha_{01}$$

Covarianza

- El valor de la covarianza en caso de independencia estadística es $S_{xy}=0$
- Lo contrario es no necesariamente cierto, es decir, una covarianza nula no implica necesariamente independencia.
- Si las variables presentan una relación positiva (cuando una crece la otra también crece) la covarianza será positiva. Si la relación entre las variables es negativa, la covarianza también lo será.

Transformaciones lineales

- Consideremos las siguientes características de X e Y: \overline{x} , \overline{y} , S_x^2 , S_y^2 , S_{xy}
- Si les aplicamos transformaciones lineales como las siguientes:

$$x' = a_1 + b_1 x$$
 $y' = a_2 + b_2 y$

- ¿Cómo se comportarán las medias aritméticas, varianzas, desviaciones típicas y la covarianza ante estos cambios?
- Medias aritméticas:

$$\overline{x'} = a_1 + b_1 \overline{x}$$
 $\overline{y'} = a_2 + b_2 \overline{y}$

Varianzas y desviaciones típicas:

$$S_x'^2 = b_1^2 S_x^2$$
 $S_x' = b_1 S_x$
 $S_y'^2 = b_2^2 S_y^2$ $S_y' = b_2 S_y$

Covarianza:

$$S'_{xy} = b_1 b_2 S_{xy}$$

Ejemplo 3: Covarianza

X/Y	1	2	4	n _i .	x _i n _i	$x_i^2 n_i$	$\sum y_j n_{ij}$	$\sum x_i y_j n_{ij}$
5	1	0	2	3	15	75	9	45
10	2	1	0	3	30	300	4	40
15	0	1	3	4	60	900	14	210
n. _i	3	2	5	10	105	1275		295
y _j n. j	3	4	20	27				
				91				

Ejemplo 3: Covarianza

X/Y	1	2	4	n _i .	x _i n _i	$x_i^2 n_i$	$\sum y_j n_{ij}$	$\sum x_i y_j n_{ij}$
5	1	0	2	3	15	75	9	45
10	2	1	0	3	30	300	4	40
15	0	1	3	4	60	900	14	210
n. _j	3	2	5	10	105	1275		295
y _j n. j	3	4	20	27				
$y_j^2 n_{ij}$	3	8	80	91				

$$\alpha_{10} = \frac{105}{10} = 10.5$$

$$\alpha_{01} = \frac{27}{10} = 2.7$$

$$\alpha_{11} = \frac{1}{N} \sum_{i=1}^{h} \sum_{j=1}^{k} x_i^1 y_j^1 n_{ij} = \frac{295}{10} = 29.5$$

 $S_{xy} = \alpha_{11} - \alpha_{10}\alpha_{01} = 1.15$

Outline

Tabla de correlación y tablas de contigencia.

Covarianza

3 Regresión y correlación

Regresión

Definición - Regresión

La regresión pretende encontrar la estructura de dependencia que mejor explique el comportamiento de una variable Y a la que denominaremos (variable dependiente, explicada o endógena) a partir de un conjunto de variables X_1, X_2, \cdots, X_p (variables independientes, explicativas o exógenas) relacionadas con Y.

Definición - Regresión lineal simple

La regresión lineal simple pretende encontrar la recta que mejor explica el comportamiento de la variable dependiente Y a partir del comportamiento de una única variable X.

Regresión

El gráfico de dispersión o nube de puntos representa cada par de valores de X e Y mediante un punto en el espacio eucliedo bidimensional.

Será lo primero que observemos para analizar la estructura que presentan los datos.

Regresión

La ecuación del modelo de regresión lineal simple será:

$$Y = a + bX + \epsilon$$

A partir de la información de la muestra tendremos que encontrar los valores de a y b que consiguen minimizar las distancias entre la recta y los valores de las variables

Utilizaremos para ello el método de mínimos cuadrados ordinarios, según el cual:

$$b = \frac{S_{XY}}{S_X^2} = \frac{COV(X, Y)}{VAR(X)} = \frac{m_{11}}{m_{20}}$$

$$a = \bar{y} - b\bar{x}$$

$$a = \bar{y} - b\bar{x}$$

Correlación

 Para medir el grado de dependencia entre dos variables usaremos el coeficiente de correlación lineal:

$$r = \frac{S_{xy}}{S_x S_y}$$

• El coeficiente de correlación lineal toma valores entre -1 y 1, -1 < r < 1

Correlación

- r=1: Indica correlación positiva perfecta y todas las observaciones se sitúan sobre una recta. Es decir, existe una dependencia funcional reflejada en una recta creciente.
- \bullet r = -1: Indica correlación negativa perfecta, pero ahora la recta es decreciente.
- r = 0: Indica correlación nula, es decir, ausencia de relación líneal y aunque X varíe, Y no lo hace.
- Si -1 < r < 0: la correlación es negativa, es decir, las variables se relacionan aproximadamente en una línea recta decreciente, pero las observaciones no se encuentran necesariamente sobre la línea.
- Si 0 < r < 1, la correlación es positiva, es decir, las variables se relacionan aproximadamente en una línea recta creciente, pero las observaciones no se encuentran necesariamente sobre la línea.

Correlación

- Cuando las variables son estadísticamente independientes, su covarianza es cero. Por tanto, si las variables son independientes, también están incorreladas linealmente, es decir, r = 0.
- Sin embargo, dos variables pueden estar incorreladas linealmente y ser (incluso fuertemente) dependientes, ya que cuando r=0 lo único que podemos decir es que la dependencia estadística lineal es nula, pero las variables pueden estar relacionadas mediante otro tipo de función (exponencial, hiperbólica, etc.)
- El valor absoluto del coeficiente de correlación permance invariante ante transformaciones lineales, pero r puede cambiar de signo, si la transformación cambia el sentido de la relación entre las variables.

Coeficiente de determinación

- El coeficiente de determinación se interpreta como el porcentaje de variación de la variable dependiente explicado por el modelo.
- En modelos de regresión lineal simple, se calcula simplemente como el cuadrado de coeficiente de correlación lineal:

$$R^{2} = \frac{(COV(X,Y))^{2}}{VAR(X) \cdot VAR(Y)}$$

Ejemplo 4: Regresión y Correlación

x _i	Уј	n _{ij}	$x_i n_{ij}$	y _j n _{ij}	$x_i^2 n_{ij}$	$y_j^2 n_{ij}$	$x_i y_j n_{ij}$
2	1	6	12	6	24	6	12
2	4	7	14	28	28	112	56
3	2	4	12	8	36	16	24
3	5	2	6	10	18	50	30
5	4	1	5	4	25	16	20
		20	49	56	131	200	142

Ejemplo 4: Regresión y Correlación

x _i	Уј	n _{ij}	$x_i n_{ij}$	y _j n _{ij}	$x_i^2 n_{ij}$	$y_j^2 n_{ij}$	$x_i y_j n_{ij}$
2	1	6	12	6	24	6	12
2	4	7	14	28	28	112	56
3	2	4	12	8	36	16	24
3	5	2	6	10	18	50	30
5	4	1	5	4	25	16	20
		20	49	56	131	200	142

$$\alpha_{10} = \frac{49}{20} = 2.45$$
 $m_{20} = \frac{131}{20} - 2.45^2 = 0.5475$
 $\alpha_{01} = \frac{56}{20} = 2.8$
 $m_{02} = \frac{200}{20} - 2.8^2 = 2.16$
 $\alpha_{11} = \frac{142}{20} = 7.1$
 $S_{xy} = \alpha_{11} - \alpha_{10}\alpha_{01} = 0.24$

$$r = \frac{0.24}{\sqrt{0.5475}\sqrt{2.16}} = 0.22$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Ejemplo 4: Regresión y Correlación

$$\alpha_{10} = \frac{49}{20} = 2.45$$
 $m_{20} = \frac{131}{20} - 2.45^2 = 0.5475$
 $\alpha_{01} = \frac{56}{20} = 2.8$
 $m_{02} = \frac{200}{20} - 2.8^2 = 2.16$
 $\alpha_{11} = \frac{142}{20} = 7.1$
 $S_{xy} = \alpha_{11} - \alpha_{10}\alpha_{01} = 0.24$

$$b = \frac{COX(X, Y)}{var(X)} = \frac{0.24}{0.5475} = 0.4384$$

$$a = \bar{Y} - b\bar{X} = 2.8 - 0.4384 \cdot 2.45 = 1.726$$

$$\hat{y} = 1.726 + 0.4384x$$

$$R^2 = 0.22^2 = 0.0484$$