Math for CS 2015/2019 solutions to "In-Class Problems Week 2, Fri. (Session 4)"

https://github.com/spamegg1

October 20, 2022

Contents

1	Problem 1]
2	Problem 2	4
3	Problem 3	•
	3.1 (a)	,
	3.2 (b)	
	3.3 (c)	
	3.4 (d) \ldots	
	3.5 (e)	
4	Problem 4	
5	Problem 5	
	5.1 (a)	
	5.2 (b)	
	5.3 (c)	
	5.4 (d) \ldots	

1 Problem 1

The inverse, \mathbb{R}^{-1} , of a binary relation, \mathbb{R} , from A to B, is the relation from B to A defined by:

$$bR^{-1}a$$
 iff aRb

In other words, you get the diagram for R^{-1} from R by "reversing the arrows" in the diagram describing R. Now many of the relational properties of R correspond to different properties of R^{-1} . For example, R is total iff R^{-1} is a surjection.

Fill in the remaining entries is this table:

R is	iff	R^{-1} is
total		a surjection
a function		
a surjection		
an injection		
a bijection		

Hint: Explain what's going on in terms of "arrows" from A to B in the diagram for R.

Arrow Properties

Definition. A binary relation R:

is a function when it has the ≤ 1 arrow-out property.

is surjective when it has the ≥ 1 arrows-in property, that is, for every point in the right hand, codomain column has at least one arrow pointing to it.

is total when it has the ≥ 1 arrows-out property.

is injective when it has the ≤ 1 arrow-in property.

is bijective when it has both the = 1 arrow-out property and the = 1 arrow-in property.

Proof.

R is	iff	R^{-1} is
total		a surjection
a function		an injection
a surjection		total
an injection		a function
a bijection		a bijection

2 Problem 2

Let $A = \{a_0, a_1, \dots, a_{n-1}\}$ be a set of size n, and $B = \{b_0, b_1, \dots, b_{m-1}\}$ be a set of size m. Prove that $|A \times B| = mn$ by defining a simple bijection from $A \times B$ to the nonnegative integers from 0 to mn - 1.

Proof. A bijection $f: A \times B \to \{0, 1, \dots, mn-1\}$ can be defined by the rule

$$f(a_k, b_j) ::= jn + k$$

3 Problem 3

Assume $f:A\to B$ is a total function, and A is finite. Replace the * with one of $\leq,=,\geq$ to produce the strongest correct version of the following statements:

3.1 (a)

|f(A)| * |B|.

Proof.
$$|f(A)| \leq |B|$$
.

3.2 (b)

If f is a surjection, then |A| * |B|.

Proof.
$$|A| \geq |B|$$
.

3.3 (c)

If f is a surjection, then |f(A)| * |B|.

Proof.
$$|f(A)| = |B|$$
.

3.4 (d)

If f is an injection, then |f(A)| * |A|.

Proof.
$$|f(A)| = |A|$$
.

3.5 (e)

If f is a bijection, then |A| * |B|.

Proof.
$$|A| = |B|$$
.

4 Problem 4

Let $R:A\to B$ be a binary relation. Use an arrow counting argument to prove the following generalization of the Mapping Rule 1 in the course textbook.

Lemma 1. If R is a function, and $X \subseteq A$, then

$$|X| \ge |R(X)|$$

Proof. 1. Assume $R: A \to B$ is a function and $X \subseteq A$.

- 2. Since R is a function, it has the ≤ 1 arrow-out property.
- 3. So by (2), we have $|X| \ge (\# \text{ arrows from } X)$.
- 4. By definition of R(X), each element of R(X) is the endpoint of an arrow going out from X.

- 5. So by (4) we have (# arrows from X) $\geq |R(X)|$.
- 6. Combining (3) and (5) we get $|X| \ge |R(X)|$.

5 Problem 5

5.1 (a)

Prove that if A surj B and B surj C, then A surj C.

Proof. By definition of surj, there are surjective functions, $F:A\to B$ and $G:B\to C$.

Let $H := G \circ F$ be the function equal to the composition of G and F, that is

$$H(a) := G(F(a))$$

We show that H is surjective, which will complete the proof.

So suppose $c \in C$. Then since G is a surjection, c = G(b) for some $b \in B$. Likewise, b = F(a) for some $a \in A$. Hence c = G(F(a)) = H(a), proving that c is in the range of H, as required.

5.2 (b)

Explain why A surj B iff B inj A.

Proof. (right to left): By definition of inj, there is a total injective relation, $R: B \to A$.

But this implies that R^{-1} is a surjective function from A to B.

(left to right): By definition of surj, there is a surjective function, $F: A \to B$. But this implies that F^{-1} is a total injective relation from A to B.

5.3 (c)

Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.

Proof. From (b) and (a) we have that if C inj B and B inj A, then C inj A, so just switch the names A and C.

5.4 (d)

Explain why A inj B iff there is a total injective function (= 1 out, \leq 1 in) from A to B.

Proof. (left to right) Assume A inj B. By definition of inj, there is a total injective relation $R: A \to B$.

So R has the ≥ 1 arrows-out property and the ≤ 1 arrow-in property. We can modify R into a total injective function F (= 1 out, ≤ 1 in) as follows.

For every $a \in A$ such that R has more than 1 arrows going out from a, remove all but 1 of those arrows. This way the ≥ 1 arrows-out property turns into the = 1 arrow-out property, and we still have the ≤ 1 arrow-in property.

(right to left) Assume there is a total injective function (= 1 out, \leq 1 in) F from A to B. Since every function is also a relation, F is a total injective relation from A to B. This is the definition of inj, therefore A inj B.