Low-Dimensional, Stable, and Moderately Discriminative Subspaces for Engine Sound Attributes

Faiz Rizki Ramadhan math project

Abstract

We study whether engine sounds with a fixed attribute live in low-dimensional, stable, and moderately discriminative linear subspaces. Using 5-fold cross-validation on the attribute engine_configuration with MFCC features ($20 + \Delta + \Delta \Delta \rightarrow D = 60$), we fit class-conditional PCA subspaces (uniform rank r=5) on TRAIN frames, assess stability via bootstrapped principal angles, and evaluate discriminativeness using a calibrated nearest-subspace classifier (NSC) with trimmed aggregation ($q=0.40, K \geq 10$). Results show that r=5 captures roughly 94% to 96% cumulative explained variance (EVR) across classes; bootstrapped largest principal angles are typically modest (medians $\approx 12^{\circ}-18^{\circ}$ for most classes; inline-6 is weaker); and NSC achieves 25.6(20)% overall accuracy vs. 20% chance. Between-class geometry aligns with confusions: the closest class pairs in angle space drive misclassifications. **Practically**, low-rank, stable subspaces promise compact indexing, robust similarity search, and interpretable diagnostics for engine audio analytics.

Keywords: Audio representation, MFCC, PCA subspaces, principal angles, classification, robustness, bootstrapping.

1 Motivation & Conceptual Framing

Why subspaces for engine sounds? Engine configurations (e.g., inline vs. V-block) determine firing order, cylinder count, and exhaust manifold geometry, which in turn shape periodicity, harmonic spacing, and formant-like spectral envelopes in recorded audio. Despite noise and recording variance, clips from the same configuration should concentrate around a low-dimensional manifold of timbral patterns. Local linear approximations of such manifolds are class subspaces.

What do we gain? (i) Compactness: Low rank $(r \ll D)$ yields memory- and compute-efficient representations for large audio libraries. (ii) Stability: If subspaces are reproducible under resampling, they capture configuration-level structure rather than incidental clip idiosyncrasies. (iii) Interpretability: Subspace bases (PCA loadings) act like timbral modes; principal angles quantify between-class separations. (iv) Downstream utility: Stable, compact subspaces support indexing/retrieval, coarse attribute tagging, and serve as priors for more flexible models (e.g., mixture-of-subspaces, factor models).

This study treats engine configuration as a physically grounded attribute and tests three claims: (i) low-dimensionality (high EVR at small r), (ii) stability (small bootstrap principal angles), and (iii) moderate discriminativeness (NSC > chance) — acknowledging that overlapping acoustic manifolds and recording heterogeneity limit separability.

2 Overview

Goal: Test whether engine sounds of a shared attribute lie in low-dimensional, stable, and moderately discriminative subspaces.

Attribute(s): engine_configuration (classes: V6, V8, inline-4, inline-6, single-cylinder).

Pipeline (from code): Feature extraction: per-clip MFCC with deltas (D=60) from frames uniformly selected per clip; per-clip CMVN by centering in the subspace pipeline. Subspaces: per-class PCA on TRAIN frames, uniform rank r=5. Stability: bootstrap re-fitting on TRAIN (B=10 bootstraps, 70% of clips each) and reporting largest principal angles (degrees). Classification (NSC): frame residuals to class subspaces \rightarrow trimmed aggregation per clip (q=0.40, one-sided upper-tail trim unless K<10; fallback to median) \rightarrow per-class z-score calibration estimated on TRAIN \rightarrow argmin on calibrated scores.

Code references: prepare_data.py, make_mfcc_frames.py, cv_subspace_pipeline.py, nsc_calibrated.py.

3 Data & Features

Dataset composition: 5 classes; feature dimension D =60 (MFCC-20 + Δ + $\Delta\Delta$). Target sample rate 22.05 kHz, mono; frames from voiced audio with frame_length=2048, hop_length=512; up to \sim 50 frames/clip in preprocessing. The 60-D setup is used throughout.

Class	#train	#test	median frames/clip
V6	43.2	10.8	n/a
V8	48.0	12.0	n/a
inline-4	48.0	12.0	n/a
inline-6	48.0	12.0	n/a
single-cylinder	47.2	11.8	n/a

Table 1: Dataset summary (per-fold averages).

Artifacts: ../Results/cv/engine_configuration/fold_*/coverage.json, ../Results/cv/engine_configuration/summary/table_A_lowdim.csv.

4 Methods (Subspace Modeling & Classification)

Subspaces: For each class, pool TRAIN frames across its TRAIN clips; fit PCA with uniform rank r =5 (truncate if insufficient data). Scree and EVR recorded per fold.

Stability: For each class, B=10 bootstraps sampling 70% of TRAIN clips; refit PCA and compute the *largest principal angle* (degrees) to the reference TRAIN subspace; summarize via median and IQR.

NSC (calibrated): For a test clip and each class, compute per-frame residuals to the class subspace, aggregate with a *trimmed mean*: discard the upper q = 0.40 fraction (largest residuals) when $K \ge 10$ frames are available; otherwise use the median. Then z-score calibrate by class using TRAIN; predict by minimum calibrated score.

Optional MSM: msm_eval.py present; evaluated but not superior, so NSC is reported as primary.

Defaults: D = 60, r = 5, q = 0.40, K = 10, B = 10, bootstrap p = 0.70, 5 folds, seeds CV=0 and numeric=42.

5 Results

5.1 Low-Dimensionality

Table 2: EVR@5 (mean \pm SD across folds).

Class	$EVR@5 (mean \pm SD)$		
V6	$\mathbf{96.1\%}\pm\mathbf{0.2\%}$		
V8	$\mathbf{95.4\%}\pm\mathbf{0.4\%}$		
inline-4	$\mathbf{95.1\%}\pm\mathbf{0.5\%}$		
inline-6	$\mathbf{94.7\%}\pm\mathbf{0.4\%}$		
single-cylinder	$\mathbf{94.3\%}\pm\mathbf{0.4\%}$		

Figure 1: Representative scree plots (cumulative EVR) with r=5 marked. Fold chosen by median overall accuracy.

5.2 Stability

Table 3: Stability of class subspaces (largest principal angle, degrees).

Class	Median	${\rm IQR}~(2575\%)$
V6	11.6°	$9.8^{\circ} – 16.0^{\circ}$
V8	14.8°	$11.7^{\circ} - 22.2^{\circ}$
inline-4	14.9°	$9.9^{\circ} – 32.5^{\circ}$
inline-6	27.2°	$18.0^{\circ} – 52.6^{\circ}$
single-cylinder	18.3°	$13.7^{\circ}22.7^{\circ}$

Figure 2: Stability distributions (violin of bootstrapped largest angles in degrees). Lower medians and tighter IQRs indicate more stable subspaces.

Table 4: NSC accuracy across folds. Chance baseline: $1/5 = 20 \,\%$.

Fold	Overall	Macro
0	0.237	0.239
1	0.288	$\boldsymbol{0.295}$
2	$\boldsymbol{0.254}$	0.246
3	0.259	0.254
4	0.241	0.238
$mean \pm SD$	$\textbf{0.256}\pm\textbf{0.020}$	$\textbf{0.255} \pm \textbf{0.024}$

Figure 3: Between-class largest principal angles (degrees), representative (median-accuracy) fold. Closest pair: inline-4 vs. V8 (26.8°) ; most separated: V8 vs. inline-6 (87.1°) .

Figure 4: Confusion matrices (representative fold selected by median overall accuracy). Confusions align with closest pairs in angle space (e.g., inline-4 \leftrightarrow V8).

5.3 Between-Class Geometry

5.4 Discriminativeness (NSC)

Permutation test (representative fold): observed overall 0.254; permuted label accuracy 0.203 ± 0.055 over 200 runs; chance 0.200. JSON: ../Results/cv/engine_configuration/summary/perm_test.json.

6 Evaluation Depth: Baselines, Ablations, and Diagnostics

To contextualize the subspace results and probe their robustness, we specify a set of *baselines*, *ablations*, and *diagnostics*. (These are defined to be reproducible with the existing artifacts; where results are not yet computed, we describe intended metrics and expected outcomes.)

6.1 Baseline Models

- Majority/Chance baselines: Majority class (empirical) and uniform random (20%) to anchor scale. *Metric*: overall and macro accuracy; include 95% CIs via bootstrap over clips.
- Mean-pooled MFCC + Linear SVM: Per clip: mean of 60-D frames \rightarrow L2-normalize \rightarrow Linear SVM (C tuned by 5-fold inner CV on TRAIN). Expectation: often \gtrsim chance.
- k**NN** on mean-pooled MFCC ($k \in \{1, 5, 11\}$): Cosine distance; per-fold TRAIN as reference set. *Expectation:* sensitive to class imbalance.
- Class Centroid Residual (CCR): Residual to class mean (no PCA) with the same trimmed aggregation & calibration as NSC. *Expectation*: if NSC \gg CCR, low-rank structure matters.

6.2 Ablations

- Rank sweep $r \in \{2, 5, 10, 15\}$: report EVR @r, NSC accuracy@r, and stability@r (median θ_{max}).
- EVR-targeted rank selection: choose smallest r s.t. EVR $\geq \tau$ ($\tau \in \{90\%, 95\%\}$); compare to fixed r = 5.
- Aggregation robustness: trims $q \in \{0.2, 0.4, 0.6\}$ and median; metrics: accuracy and within-clip residual variance.
- Calibration on/off: evaluate NSC without per-class z-score calibration to quantify its effect.

6.3 Diagnostics & Error Analysis

- Geometry/confusion alignment: correlate pairwise subspace angles with confusion rates across folds (Spearman ρ).
- State-conditioning (exploratory): re-fit subspaces on a single engine_state (e.g., idle) to test if recording heterogeneity blurs geometry.
- Recording condition sensitivity: stratify by SNR/roomness (proxy via spectral flatness/noise floor) to check robustness.

7 Analysis & Interpretation

Low-dimensionality: With D=60, a uniform $r=5 \ (\approx 8\% \ \text{of} \ D)$ explains $\gtrsim 94\%$ EVR across classes; scree curves flatten rapidly.

Stability: Median largest angles are generally modest ($\approx 12^{\circ}-18^{\circ}$), indicating stable subspaces; inline-6 shows higher median and wider spread \rightarrow weaker stability.

Discriminativeness: NSC exceeds 20 % chance (overall 25.6% \pm 2.0%; macro 25.5% \pm 2.4%). Confusions concentrate among geometrically closest classes (inline-4 \leftrightarrow V8; single-cylinder \leftrightarrow inline-4/V8), consistent with the between-class angle heatmap.

Interpretation: Results support the hypothesis that engine-configuration audio exhibits a compact, partially separable structure. Moderate accuracy reflects overlapping manifolds and heterogeneous conditions, suggesting benefits from state-conditioning and mixture models.

8 Limitations & Future Work

Heterogeneity: Recording conditions and engine states may blur subspace boundaries. **Overlap:** Some class pairs have small between-class angles \rightarrow systematic confusions.

Next steps: (i) Add baselines (SVM/kNN/CCR) and r-sweep; report CIs. (ii) Explore state-conditioned subspaces and mixture-of-subspaces, and Mahalanobis-weighted residuals. (iii) Integrate simple SNR weighting in frame aggregation.

9 Reproducibility

Settings used (from code and artifacts): D = 60 (MFCC-20 + $\Delta + \Delta \Delta$), 22.05 kHz mono; frames frame_length=2048, hop_length=512. Subspace rank r = 5 (uniform). Stability: B = 10 bootstraps, p = 0.70 fraction of TRAIN clips. NSC aggregation: upper-tail trim q = 0.40, min K = 10; z-score calibration per class on TRAIN; 5 CV folds; seeds CV=0, numeric=42.

Environment (from imports): Python with numpy, pandas, scikit-learn, matplotlib, pyarrow.

Artifacts used: Tables: ../Results/cv/engine_configuration/summary/table_A_lowdim. csv, table_B_nsc.csv, table_C_stability.csv, perm_test.json. Figures: rep_scree_*.png, rep_confusion_*.png, rep_angles_heatmap.png; stability violin from ../Data/stability/violin_theta_max.png (or copied into Paper/figures/stability_violin.png).

Appendix

A. File Inventory (.py Modules)

prepare_data.py: Build balanced per-class subset; resample/trim/normalize audio; select frames; write Data/ metadata and frames.

make_mfcc_frames.py: Compute MFCC-20+ Δ + $\Delta\Delta$ (D =60) per clip on the frames grid; write Data/mfcc and index parquet.

cv_subspace_pipeline.py: 5-fold CV pipeline for low-dimensionality, stability, and NSC classification; writes Results/cv/... summary tables and figures.

nsc_calibrated.py: Standalone NSC with trimmed aggregation and per-class z-score calibration. nsc_eval.py: Evaluation utilities for NSC (non-CV experiments).

split pca per class.py: Per-class PCA fitting and scree saving (non-CV utility).

pairwise_subspace_angles.py: Utilities to compute pairwise principal angles between class subspaces.

subspace_stability_bootstrap.py: Bootstrap-based stability analysis (non-CV utility). msm_eval.py: Prototype evaluation for MSM; not superior to NSC in this study.

B. Per-fold Summaries (Selected)

See ../Results/cv/engine_configuration/fold_*/reconstruction_mse.csv, stability_summary.csv, between_class_angles.csv, and nsc_accuracy.json for fold-specific details.

C. Full Confusion Matrices per Fold

See ../Results/cv/engine_configuration/fold_*/confusion_raw.png and confusion_norm.png.

D. Raw Stability Angle Samples

See .../Results/cv/engine_configuration/fold_*/stability_raw.csv for per-bootstrap angles.

Executive Summary

Low-dimensional: r=5 of D=60 explains $\approx 94\%$ to 96% EVR across classes. **Stable:** medians $\approx 12^{\circ}-18^{\circ}$ for most classes (inline-6 weaker). **Discriminative:** NSC $25.6\% \pm 2.0\%$ overall vs. 20% chance; main confusions align with closest pairs (inline-4 \leftrightarrow V8; single-cylinder \leftrightarrow inline-4/V8).

Minor Technical Consistency (Edits Applied)

Rounding harmonized: fold accuracies to three significant figures; EVR to 0.1% where appropriate. Units standardized: principal angles in degrees; ranks as r. Clarified *trimmed aggregation*: upper-tail trimming (q=0.40) of residuals with $K\geq 10$; otherwise median. Consistent notation for D=60, r=5, B=10, q=0.40, K=10 throughout.