Applied Statistics

1. Explorating a Multivariate Dataset

- Prediction problem: the model
- Curse of dimensionality
- Bias-Variance trade-off

Geometry of Data

- By columns: mean, variance, covariance, orrelation, Chebyshev, geometrical interpretation
- By rows: mean and covariance for rand. vec. \underline{X} , linear combination of the components of \underline{X} , k-linear combinations of the components of \underline{X}

Estimators

- Estimator for μ : properties of $\underline{\bar{X}}$
- Estimator for Σ : properties of S

Variability in a multivariate sense

- Generalized variance and total variance
- Properties of Det(S) and Tr(S)
- Spectral decomposition
- Induced distance: why Mahalanobis'

2. Principal Component Analysis (PCA)

- Problem: find \underline{a} s.t. $Var(\underline{a}^T X)$ is maximum
- Geometrical Lemma
- Principal components
- Properties of principal components
- Meaning of the PCi's loadings: $Corr(Y_i, X_k)$
- PCA on standardized variables (PCA on ρ)
- PCA on the data (PCA on S)
- Geometrical view of PCA: optimal orthonormal basis and approximation error

3. Multivariate Gaussian Distribution

- General properties of $\underline{X} \sim \mathcal{N}(\mu, \Sigma)$
- Characterization theorem and consequences
- Gaussianity and $X_1 \perp \!\!\! \perp X_2$
- Gaussianity and $\underline{X}_1|\underline{X}_2 = \underline{x}_2$
- Properties of $(\underline{X} \mu)^T \Sigma^{-1} (X \mu)$
- Estimators of μ and Σ for $\underline{X} \sim \mathcal{N}_p(\mu, \Sigma)$
- Distribution and properties of $\underline{\bar{X}}$, S, $\hat{\Sigma}$ (and Whishart's properties)
- LLN, CLT

4. Inference about the mean vector

- large n: pivotal statistics, $CR_{1-\alpha}$, testing, p-value
- small n: Hotelling's theorem, pivotal statistics, $CR_{1-\alpha}$, testing
- $CR_{1-\alpha}$ and correlation between variables

Linear combination of the mean

- One-at-the-time $CI(\mu)$ (and testing)
- Simultaneous $CI(\mu)$: ∞ linear comb. (and testing)
- Bonferroni's method for CI(<u>u</u>): finite linear comb. (and testing)
- False discovery rate (FDR)

Comparing means of gaussian distributions

- Paired data
- Repeated univariate measures

5. Multivariate Analysis of Variance

- Case $p \ge 1$, g = 2goal: inference on $\mu_1 - \mu_2$
- Case p = 1, $g \ge 1$ (ANOVA) $goal: H_0: \mu_1 = \mu_2 = ... = \mu_g \text{ vs. } H_1: \exists \mu_i \ne \mu_j$ $(eq.) \ H_0: \tau_1 = \tau_2 = ... = \tau_g = 0 \text{ vs. } H_1: \exists \tau_j \ne 0$
- $\begin{array}{l} \bullet \ \ \mathrm{Case} \ p \geq 1, \ g \geq 2 \ (\mathrm{MANOVA}) \\ goal : H_0 : \underline{\mu}_1 = \underline{\mu}_2 = \ldots = \underline{\mu}_g \ \mathrm{vs.} \ H_1 : \exists \underline{\mu}_i \neq \underline{\mu}_j \\ (eq.) \ H_0 : \underline{\tau}_1 = \underline{\tau}_2 = \ldots = \underline{\tau}_g = 0 \ \mathrm{vs.} \ H_1 : \exists \underline{\tau}_j \neq \underline{0} \end{array}$
- Two-ways (M)ANOVA

6. Classification

Supervised classification

- Supervised model for classification
- Optimality criterion for δ : $ECM(\delta)$
- Optimization problem: $g = 2, g \ge 2$
- Optimal classifier, Bayes classifier, MLE classifier
- Special cases of Bayes classifiers: QDA, LDA
- Fisher's argument for LDA
- Evaluating a classifier by the error rate: $AER(\delta)$
- K-fold cross validation
- Support vector machines

Unsupervised classification

- Dissimilarity function (quantitative, categorical)
- Dissimilarity matrix
- Distance (/dissimilarities) between clusters (/sets)
- Hierarchical agglomerative clustering algorithm: dendrogram, cophenetic dist., CPCC, Ward's method
- Non-hierarchical methods: K-means
- Graphical: multidimensional scaling (MDS)

7. Regression

- Data driven approach: CART
- Parametric approach: linear models
- Fitting the linear model: OLS
- Coefficient of determination: R^2 , R^2_{adi}
- Properties of $\hat{\beta}$, $\hat{\underline{\epsilon}}$
- Model with $\underline{\epsilon} \sim \mathcal{N}_n(\underline{0}, \sigma^2 I)$:
 - \rightarrow properties of $\hat{\beta}$, $\hat{\epsilon}$
 - $\rightarrow CR_{1-\alpha}(\beta), \overline{CI}_{1-\alpha}(\sigma^2), Sim CI_{1-\alpha}(\underline{a}^T\beta)$
 - $\rightarrow Sim CI_{1-\alpha}(\beta_i)$
 - \rightarrow Testing β 's
- Prediction $(Y_0, \text{ not } \mathbb{E}[Y_0|\underline{Z}_0])$
- Generalized Least Squares (GLS) (special case) weighted least squares
- Diagnostic for linear models:
 - \rightarrow Residual analysis
 - → Check for gaussianity
 - \rightarrow Test for autocorrelation
 - \rightarrow Influencial cases: leverages
 - \rightarrow Collinearity: VIF coefficient
- Diagnostic: collinearity and variables selection
 - → Checking all possible models
 - \rightarrow Iterative procedures: forward/backward
 - \rightarrow PCA regression
 - \rightarrow Ridge regression
 - \rightarrow Lasso regression

8. Permutation Tests

- Univariate:
 - \rightarrow Test for 2 independent populations likelihood transformations: units permutations
- Multivariate (*) 1:
 - → Test for 2 independent multivariate populations likelihood transf.s: units permutations
 - → Test for 1 multivariate population: center of symmetry (symmetry assumption) likelihood transf.s: units reflection on center (extension to two paired multivariate populations)
- (M)ANOVA
 - → One-way (M)ANOVA
 likelihood transf.s: lables permutations
 (F-statistics for univariate, Wilks statistics for
 multivariate (*) 2)
 → Two-way ANOVA
 likelihood transf.s: residuals permutations
- Regression
 - ightarrow Test for all the regressors (F-test) likelihood trans.fs: responses permutations or residuals permutations
 - \rightarrow Test for one regressor (t-test) likelihood transf.s: residuals permutations

9. Spatial Data (Geostatistics)

Spatial dependence

- Mean and covariance assumptions
- Second order stationary
- Covariogram, algebraic properties
- Variogram, algebraic and structural properties

Estimate spatial dependence

- Empirical estimate
- Model estimate: parametric family

(Spatial) Prediction

- Predictor for Z_{S_0}
- Ordinary Kriging
- Universal Kriging

10. Functional Data Analysis

- Hilbert space model for functional data
- Smoothing and interpolation of functional data:
 - \rightarrow basis functions
 - \rightarrow least square smoothing
 - → smoothing with penalization
- FDA and dimensionality reduction in Hilbert spaces
- Data alignment and clustering:
 - → phases and amplitude variability
 - → decoupling phase and amplitude variability
 - \rightarrow K-mean alignment

- $(\sp*)$ 1 In the multivariate settings, permutations and reflections are made on units, so by rows, not by columns
- (*) ² The Wilks statistic leads to rejection for small values, contrary of the F-statistic