Package 'FPDclustering'

January 30, 2024

Type Package

Version 2.3.1

Title PD-Clustering and Related Methods

Date 2024-01-29		
Author Cristina Tortora [aut, cre, cph], Noe Vidales [aut], Francesco Palumbo [aut], Tina Kalra [aut], and Paul D. McNicholas [fi	nd]	
Maintainer Cristina Tortora <grikris1@gmail.com></grikris1@gmail.com>		
Description Probabilistic distance clustering (PD-clustering) is an iterative, distribution bilistic clustering method. PD-clustering assigns units to a cluster according to the ity of membership, under the constraint that the product of the probability and the tance of each point to any cluster centre is a constant. PD-clustering is a flexible method that can be used with non-spherical clusters, outliers, or noisy data. PD sion of the algorithm for clusters of different size. GPDC and TPDC uses a dissiminative based on densities. Factor PD-clustering (FPDC) is a factor clustering method volves a linear transformation of variables and a cluster optimizing the PD-clustering rion. It works on high dimensional data sets.	ir probabil- dis- OQ is an exte ilarity mea- I that in-	
Depends ThreeWay ,mvtnorm,R (>= 3.5)		
Imports ExPosition, cluster, rootSolve, MASS, klaR, GGally, ggplot2, ggeasy		
License GPL (>= 2)		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2024-01-30 00:10:06 UTC		
R topics documented: ais		2 3 4 4 5 7
1		

2 ais

(outliers																					 					9
]	PDC																					 					10
]	PDQ																					 					11
1	olot.FPI	Oclustei	ring																			 					13
	 Silh																					 					14
	Star																					 					15
5	Students	·																				 					16
5	summar	y.FPDc	luste	erin	g.																	 					17
	ΓPDC .																										
-	FuckerF	actors																				 					19
																											21
													_				_										
				A	ust	ral	iar	ı i	ns	tit	ut	e c	ρf,	spe	or	t a	lai	ta									

Description

Index

ais

Data obtained to study sex, sport and body-size dependency of hematology in highly trained athletes.

Usage

data(ais)

Format

A data frame with 202 observations and 13 variables.

rcc red blood cell count, in

wcc while blood cell count, in per liter

hc hematocrit, percent

hg hemaglobin concentration, in g per decaliter

ferr plasma ferritins, ng

bmi Body mass index, kg

ssf sum of skin folds

pcBfat percent Body fat

lbm lean body mass, kg

ht height, cm

wt weight, kg

sex a factor with levels f m

sport a factor with levels B_Ball Field Gym Netball Row Swim T_400m T_Sprnt Tennis W_Polo

Source

R package DAAG

asymmetric20 3

References

Telford, R.D. and Cunningham, R.B. 1991. Sex, sport and body-size dependency of hematology in highly trained athletes. Medicine and Science in Sports and Exercise 23: 788-794.

Examples

```
data(ais)
pairs(ais[,1:11],col=ais$sex)
```

asymmetric20

Asymmetric data set shape 20

Description

Each cluster has been generated according to a multivariate asymmetric Gaussian distribution, with shape 20, covariance matrix equal to the identity matrix and randomly generated centres.

Usage

```
data(asymmetric20)
```

Format

A data frame with 800 observations on the following 101 variables. The first variable is the membership.

Source

Generated with R using the package sn (The skew-normal and skew-t distributions), function rsn

```
data(asymmetric20)
plot(asymmetric20[,2:3])
```

4 Country_data

asymmetric3

Asymmetric data set shape 3

Description

Each cluster has been generated according to a multivariate asymmetric Gaussian distribution, with shape 3, covariance matrix equal to the identity matrix and randomly generated centres.

Usage

```
data(asymmetric3)
```

Format

A data frame with 800 observations on 101 variables. The first variable is the membership labels.

Source

Generated with R using the package sn (The skew-normal and skew-t distributions), function rsn

Examples

```
data(asymmetric3)
plot(asymmetric3[,2:3])
```

Country_data

Unsupervised Learning on Country Data

Description

Ten vables recorded on 167 countries. The goal is to categorize the countries using socio-economic and health indicators that determine the country's overall development. The data set has been donated by the HELP International organization, an international humanitarian NGO that needs to identify the countries that need aid and asked the analysts to categorize the countries.

Usage

```
data(Country_data)
```

FPDC 5

Format

A data frame with 167 observations and 10 variables.

country country name

child_mort Death of children under 5 years of age per 1000 live births

exports Exports of goods and services per capita. Given as %age of the GDP per capita

health Total health spending per capita. Given as %age of GDP per capita

imports Imports of goods and services per capita. Given as %age of the GDP per capita

income Net income per person

inflation The measurement of the annual growth rate of the Total GDP

life_expec The average number of years a new born child would live if the current mortality patterns are to remain the same

total_fer The number of children that would be born to each woman if the current age-fertility rates remain the same.

gdpp The GDP per capita. Calculated as the Total GDP divided by the total population.

Source

https://www.kaggle.com/datasets/rohan0301/unsupervised-learning-on-country-data/metadata?resource=download

References

R. Kokkula. Unsupervised learning on country data. kaggle, 2022. URL https://www.kaggle.com/datasets/rohan0301/unsuperlearning-on-country-data/metadata?resource=download

Examples

```
data(Country_data)
pairs(Country_data[,2:10])
```

FPDC

Factor probabilistic distance clustering

Description

An implementation of FPDC, a probabilistic factor clustering algorithm that involves a linear transformation of variables and a cluster optimizing the PD-clustering criterion

Usage

```
FPDC(data = NULL, k = 2, nf = 2, nu = 2)
```

6 FPDC

Arguments

data A matrix or data frame such that rows correspond to observations and columns

correspond to variables.

k A numerical parameter giving the number of clusters

nf A numerical parameter giving the number of factors for variables
nu A numerical parameter giving the number of factors for units

Value

A class FPDclustering list with components

label A vector of integers indicating the cluster membership for each unit

centers A matrix of cluster centers

probability A matrix of probability of each point belonging to each cluster

JDF The value of the Joint distance function

iter The number of iterations explained The explained variability

data the data set

Author(s)

Cristina Tortora and Paul D. McNicholas

References

Tortora, C., M. Gettler Summa, M. Marino, and F. Palumbo. *Factor probabilistic distance clustering (fpdc): a new clustering method for high dimensional data sets.* Advanced in Data Analysis and Classification, 10(4), 441-464, 2016. doi:10.1007/s11634-015-0219-5.

Tortora C., Gettler Summa M., and Palumbo F.. Factor pd-clustering. In Lausen et al., editor, *Algorithms from and for Nature and Life, Studies in Classification*, Data Analysis, and Knowledge Organization DOI 10.1007/978-3-319-00035-011, 115-123, 2013.

Tortora C., Non-hierarchical clustering methods on factorial subspaces, 2012.

See Also

PDC

```
## Not run:
# Asymmetric data set clustering example (with shape 3).
data('asymmetric3')
x<-asymmetric3[,-1]
#Clustering
fpdas3=FPDC(x,4,3,3)</pre>
```

GPDC 7

```
#Results
table(asymmetric3[,1],fpdas3$label)
Silh(fpdas3$probability)
summary(fpdas3)
plot(fpdas3)
## End(Not run)
## Not run:
# Asymmetric data set clustering example (with shape 20).
data('asymmetric20')
x<-asymmetric20[,-1]
#Clustering
fpdas20=FPDC(x,4,3,3)
#Results
table(asymmetric20[,1],fpdas20$label)
Silh(fpdas20$probability)
summary(fpdas20)
plot(fpdas20)
## End(Not run)
## Not run:
# Clustering example with outliers.
data('outliers')
x<-outliers[,-1]
#Clustering
fpdout=FPDC(x,4,5,4)
#Results
table(outliers[,1],fpdout$label)
Silh(fpdout$probability)
summary(fpdout)
plot(fpdout)
## End(Not run)
```

GPDC

Gaussian PD-Clustering

Description

An implementation of Gaussian PD-Clustering GPDC, an extention of PD-clustering adjusted for cluster size that uses a dissimilarity measure based on the Gaussian density.

8 GPDC

Usage

```
GPDC(data=NULL, k=2, ini="kmedoids", nr=5, iter=100)
```

Arguments

data A matrix or data frame such that rows correspond to observations and columns

correspond to variables.

k A numerical parameter giving the number of clusters

ini A parameter that selects center starts. Options available are random ("random"),

kmedoid ("kmedoid", by default), and PDC ("PDclust").

nr Number of random starts when ini set to "random"

iter Maximum number of iterations

Value

A class FPDclustering list with components

label A vector of integers indicating the cluster membership for each unit

centers A matrix of cluster means

sigma A list of K elements, with the variance-covariance matrix per cluster

probability A matrix of probability of each point belonging to each cluster

JDF The value of the Joint distance function

iter The number of iterations

data the data set

Author(s)

Cristina Tortora and Francesco Palumbo

References

Tortora C., McNicholas P.D., and Palumbo F. A probabilistic distance clustering algorithm using Gaussian and Student-t multivariate density distributions. SN Computer Science, 1:65, 2020.

C. Rainey, C. Tortora and F.Palumbo. *A parametric version of probabilistic distance clustering*. In: Greselin F., Deldossi L., Bagnato L., Vichi M. (eds) Statistical Learning of Complex Data. CLADAG 2017. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham, 33-43 2019. doi.org/10.1007/978-3-030-21140-0_4

See Also

PDC, PDQ

outliers 9

Examples

```
#Load the data
data(ais)
dataSEL=ais[,c(10,3,5,8)]

#Clustering
res=GPDC(dataSEL,k=2,ini = "kmedoids")

#Results
table(res$label,ais$sex)
plot(res)
summary(res)
```

outliers

Data set with outliers

Description

Each cluster has been generated according to a multivariate Gaussian distribution, with centers c randomly generated. For each cluster, 20% of uniform distributed outliers have been generated at a distance included in $\max(x-c)$ and $\max(x-c)+5$ form the center.

Usage

```
data(outliers)
```

Format

A data frame with 960 observations on the following 101 variables. The first variable corresponds to the membership

Source

generated with R

```
data(outliers)
plot(outliers[,2:3])
```

10 PDC

ı	П	\neg	^
	г.	IJ	l

Probabilistic Distance Clustering

Description

Probabilistic distance clustering (PD-clustering) is an iterative, distribution free, probabilistic clustering method. PD clustering is based on the constraint that the product of the probability and the distance of each point to any cluster centre is a constant.

Usage

```
PDC(data = NULL, k = 2)
```

Arguments

data A matrix or data frame such that rows correspond to observations and columns

correspond to variables.

k A numerical parameter giving the number of clusters

Value

A class FPDclustering list with components

label A vector of integers indicating the cluster membership for each unit

centers A matrix of cluster centers

probability A matrix of probability of each point belonging to each cluster

JDF The value of the Joint distance function

iter The number of iterations

data the data set

Author(s)

Cristina Tortora and Paul D. McNicholas

References

Ben-Israel C. and Iyigun C. Probabilistic D-Clustering. *Journal of Classification*, **25**(1), 5-26, 2008.

```
#Normally generated clusters
c1 = c(+2,+2,2,2)
c2 = c(-2,-2,-2,-2)
c3 = c(-3,3,-3,3)
n=200
x1 = cbind(rnorm(n, c1[1]), rnorm(n, c1[2]), rnorm(n, c1[3]), rnorm(n, c1[4]) )
```

PDQ 11

```
x2 = cbind(rnorm(n, c2[1]), rnorm(n, c2[2]), rnorm(n, c2[3]), rnorm(n, c2[4]) )
x3 = cbind(rnorm(n, c3[1]), rnorm(n, c3[2]), rnorm(n, c3[3]), rnorm(n, c3[4]) )
x = rbind(x1,x2,x3)

#Clustering
pdn=PDC(x,3)

#Results
plot(pdn)
```

PDQ

Probabilistic Distance Clustering Adjusted for Cluster Size

Description

An implementation of probabilistic distance clustering adjusted for cluster size (PDQ), a probabilistic distance clustering algorithm that involves optimizing the PD-clustering criterion. The algorithm can be used, on continous, count, or mixed type data setting Euclidean, Chi square, or Gower as dissimilarity measurements.

Usage

```
PDQ(data=NULL,k=2,ini='kmd',dist='euc',cent=NULL,
ord=NULL,cat=NULL,bin=NULL,cont=NULL,w=NULL)
```

Arguments

data	A matrix or data frame such that rows correspond to observations and columns correspond to variables.
k	A numerical parameter giving the number of clusters.
ini	A parameter that selects center starts. Options available are random ("random"), kmedoid ("kmd", by default"), center ("center", the user inputs the center), and kmode ("kmode", for categoriacal data sets).
dist	A parameter that selects the distance measure used. Options available are Eucledean ("euc"), Gower ("gower") and chi square ("chi").
cent	User inputted centers if ini is set to "center".
ord	column indices of the x matrix indicating which columns are ordinal variables.
cat	column indices of the x matrix indicating which columns are categorical variables.
bin	column indices of the x matrix indicating which columns are binary variables.
cont	column indices of the x matrix indicating which columns are continuous variables.
W	numerical vector same length as the columns of the data, containing the variable weights when using Gower distance, equal weights by default.

12 PDQ

Value

A class FPDclustering list with components

label A vector of integers indicating the cluster membership for each unit

centers A matrix of cluster centers

probability A matrix of probability of each point belonging to each cluster

JDF The value of the Joint distance function

iter The number of iterations

jdfvector collection of all jdf calculations at each iteration

data the data set

Author(s)

Cristina Tortora and Noe Vidales

References

Iyigun, Cem, and Adi Ben-Israel. *Probabilistic distance clustering adjusted for cluster size*. Probability in the Engineering and Informational Sciences 22.4 (2008): 603-621. doi.org/10.1017/S0269964808000351.

Tortora and Palumbo. *Clustering mixed-type data using a probabilistic distance algorithm.* submitted.

See Also

PDC

```
#Mixed type data
sig=matrix(0.7,4,4)
diag(sig)=1###creat a correlation matrix
x1=rmvnorm(200,c(0,0,3,3))## cluster 1
x2=rmvnorm(200,c(4,4,6,6),sigma=sig)## cluster 2
x=rbind(x1,x2)# data set with 2 clusters
l=c(rep(1,200),rep(2,200))#creating the labels
x1=cbind(x1,rbinom(200,4,0.2),rbinom(200,4,0.2))#categorical variables
x2=cbind(x2,rbinom(200,4,0.7),rbinom(200,4,0.7))
x=rbind(x1,x2) ##Data set
#### Performing PDQ
pdq_class<-PDQ(data=x,k=2, ini="random", dist="gower", cont= 1:4, cat = 5:6)
###Output
table(1,pdq_class$label)
plot(pdq_class)
summary(pdq_class)
```

plot.FPDclustering 13

```
###Continuous data example
# Gaussian Generated Data no overlap
x < -rmvnorm(100, mean=c(1,5,10), sigma=diag(1,3))
y<-rmvnorm(100, mean=c(4,8,13), sigma=diag(1,3))
data<-rbind(x,y)</pre>
#### Performing PDQ
pdq1=PDQ(data,2,ini="random",dist="euc")
table(rep(c(2,1),each=100),pdq1$label)
Silh(pdq1$probability)
plot(pdq1)
summary(pdq1)
# Gaussian Generated Data with overlap
x2 < -rmvnorm(100, mean=c(1,5,10), sigma=diag(1,3))
y2<-rmvnorm(100, mean=c(2,6,11), sigma=diag(1,3))
data2<-rbind(x2,y2)</pre>
#### Performing PDQ
pdq2=PDQ(data2,2,ini="random",dist="euc")
table(rep(c(1,2),each=100),pdq2$label)
plot(pdq2)
summary(pdq2)
```

plot.FPDclustering

Plots for FPDclusteringt Objects

Description

Probability Silhouette plot, Scatterplot up to MaxVar variables, and parallel coordinate plot up to MaxVar variables, for objects of class FPDclustering.

Usage

```
## S3 method for class 'FPDclustering'
plot(x, maxVar=30, ... )
```

Arguments

x an object of class FPDclustering

maxVar a scalar indicating the maximum number of variables to display on the parallel

plot, 30 by default

. . . Additional parameters for the function paris

Author(s)

Cristina Tortora

14 Silh

Silh

Probabilistic silhouette plot

Description

Graphical tool to evaluate the clustering partition.

Usage

Silh(p)

Arguments

p

A matrix of probabilities such that rows correspond to observations and columns correspond to clusters.

Details

The probabilistic silhouettes are an adaptation of the ones proposed by Menardi(2011) according to the following formula:

$$dbs_i = (log(p_{im_k}/p_{im_1}))/max_i|log(p_{im_k}/p_{im_1})|$$

where m_k is such that x_i belongs to cluster k and m_1 is such that p_{im_1} is maximum for m different from m_k .

Value

Probabilistic silhouette plot

Author(s)

Cristina Tortora

References

Menardi G. Density-based Silhouette diagnostics for clustering methods. *Statistics and Computing*, **21**, 295-308, 2011.

```
## Not run:
# Asymmetric data set silhouette example (with shape=3).
data('asymmetric3')
x<-asymmetric3[,-1]
fpdas3=FPDC(x,4,3,3)
Silh(fpdas3$probability)
## End(Not run)</pre>
```

Star 15

```
## Not run:
# Asymmetric data set shiluette example (with shape=20).
data('asymmetric20')
x<-asymmetric20[,-1]
fpdas20=FPDC(x,4,3,3)
Silh(fpdas20$probability)

## End(Not run)

## Not run:
# Shiluette example with outliers.
data('outliers')
x<-outliers[,-1]
fpdout=FPDC(x,4,4,3)
Silh(fpdout$probability)

## End(Not run)</pre>
```

Star

Star dataset to predict star types

Description

A 6 class star dataset for star classification with Deep Learned approaches

Usage

```
data(ais)
```

Format

A data frame with 202 observations and 13 variable.

K Absolute Temperature (in K)

Lum Relative Luminosity (L/Lo)

Rad Relative Radius (R/Ro)

Mag Absolute Magnitude (Mv)

Col Star Color (white, Red, Blue, Yellow, yellow-orange etc)

Spect Spectral Class (O,B,A,F,G,K,,M)

Type Star Type (Red Dwarf, Brown Dwarf, White Dwarf, Main Sequence, SuperGiants, Hyper-Giants)

Source

https://www.kaggle.com/deepu1109/star-dataset

16 Students

Examples

data(Star)

Students

Statistics 1 students

Description

Data set collected in 2022 that contains 10 variables recorded on a convenience sample of 253 students enrolled in the first year at the University od Naples FedericoII and attending an introductory Statistics course.

Usage

data(Students)

Format

A data frame with 253 observations and 10 variable.

Sex gender, binary

HS_qual high school type, categorical

Stud_stat prior knowladge of statistics, binary

Course_modality course modality of attendance (in presence, online, mixed), categorical

HE_Parents parents' education degree, categorical

PMP mathematical prerequisits for psychometric, continuous

SAS statistical anxiety sale, continuous

RAI relative authonomy index, continuous

S_EFF self-efficacy, continuous

COG cognitive competence, continuous

References

R. Fabbricatore. Latent class analysis for proficiency assessment in higher education: integrating multidimensional latent traits and learning topics. Ph.D. thesis, University of Naples Federico II, 2023

Examples

data(Students)

summary.FPDclustering 17

summary.FPDclustering Summary for FPDclusteringt Objects

Description

Number of elements per cluster.

Usage

```
## S3 method for class 'FPDclustering'
summary(object, ...)
```

Arguments

object an object of class FPDclustering

... Additional parameters for the function paris

Author(s)

Cristina Tortora

TPDC

Student-t PD-Clustering

Description

An implementation of Student-t PD-Clustering TPDC, an extention of PD-clustering adjusted for cluster size that uses a dissimilarity measure based on the multivariate Student-t density.

Usage

```
TPDC(data=NULL,k=2,ini="kmedoids", nr=5,iter=100)
```

Arguments

data	A matrix or data frame such that rows correspond to observations and columns correspond to variables.
k	A numerical parameter giving the number of clusters
ini	A parameter that selects center starts. Options available are random ("random"), kmedoid ("kmedoid", by default), and PDC ("PDclust").
nr	Number of random starts if ini is "random"
iter	Maximum number of iterations

TPDC

Value

A class FPDclustering list with components

label A vector of integers indicating the cluster membership for each unit

centers A matrix of cluster means

sigma A list of K elements, with the variance-covariance matrix per cluster

df A vector of K degrees of freedom

probability A matrix of probability of each point belonging to each cluster

JDF The value of the Joint distance function

iter The number of iterations

data the data set

Author(s)

Cristina Tortora and Francesco Palumbo

References

Tortora C., McNicholas P.D., and Palumbo F. A probabilistic distance clustering algorithm using Gaussian and Student-t multivariate density distributions. SN Computer Science, 1:65, 2020.

C. Rainey, C. Tortora and F.Palumbo. *A parametric version of probabilistic distance clustering*. In: Greselin F., Deldossi L., Bagnato L., Vichi M. (eds) Statistical Learning of Complex Data. CLADAG 2017. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham, 33-43 2019. doi.org/10.1007/978-3-030-21140-0_4

See Also

PDC, PDQ

```
#Load the data
data(ais)
dataSEL=ais[,c(10,3,5,8)]

#Clustering
res=TPDC(dataSEL,k=2,ini = "kmedoids")

#Results
table(res$label,ais$sex)
summary(res)
plot(res)
```

TuckerFactors 19

TuckerFactors	Choice of the number of Tucker 3 factors for FPDC

Description

An empirical way of choosing the number of factors for FPDC. The function returns a graph and a table representing the explained variability varying the number of factors.

Usage

```
TuckerFactors(data = NULL, k = 2)
```

Arguments

data A matrix or data frame such that rows correspond to observations and columns

correspond to variables.

k A numerical parameter giving the number of clusters

Value

A table containing the explained variability varying the number of factors for units (column) and for variables (row) and the corresponding plot

Author(s)

Cristina Tortora

References

Kiers H, Kinderen A. A fast method for choosing the numbers of components in Tucker3 analysis. *British Journal of Mathematical and Statistical Psychology*, **56**(1), 119-125, 2003.

Kroonenberg P. Applied Multiway Data Analysis. Ebooks Corporation, Hoboken, New Jersey, 2008.

Tortora C., Gettler Summa M., and Palumbo F.. Factor pd-clustering. In Lausen et al., editor, *Algorithms from and for Nature and Life, Studies in Classification*, Data Analysis, and Knowledge Organization DOI 10.1007/978-3-319-00035-011, 115-123, 2013.

See Also

T3

```
## Not run:
# Asymmetric data set example (with shape=3).
data('asymmetric3')
xp=TuckerFactors(asymmetric3[,-1], nc = 4)
```

20 TuckerFactors

```
## End(Not run)
## Not run:
# Asymmetric data set example (with shape=20).
data('asymmetric20')
xp=TuckerFactors(asymmetric20[,-1], nc = 4)
## End(Not run)
```

Index

```
ais, 2
asymmetric20, 3
asymmetric3,4
Country_data, 4
FPDC, 5
GPDC, 7
\verb"outliers", 9
PDC, 6, 8, 10, 12, 18
PDQ, 8, 11, 18
\verb|plot.FPDclustering|, 13
Silh, 14
Star, 15
Students, 16
{\it summary}. {\it FPDclustering}, 17
T3, 19
TPDC, 17
TuckerFactors, 19
```