Question 1 (Repeat example 35.1)

```
\begin{split} &m=200;\ A=2*eye(m)+0.5*randn(m)/sqrt(m);\\ &b=ones(m,1);\\ &[V,\sim]=eig(A);\\ &plot(V,\'k.')\\ &tol=10^{\circ}(-12);\\ &maxit=20;\\ &[x,\ flag,\ relres,\ iter,\ resvec]=gmres(A,b,[],tol,maxit);\\ &figure\\ &semilogy(0:maxit,\ resvec/norm(b),\ '-o');\\ &xlabel('Iteration\ number');\\ &ylabel('Relative\ residual'); \end{split}
```



```
Question 2
(a)
A = [8 4 2 1; 4 8 4 2; 2 4 8 4; 1 2 4 8];
v = [1 \ 1 \ 1 \ 1]'./2;
n = 10;
lambda1 = []; lambda2 = []; lambda3 = [];
format long
for k = 1:n
     w = A * v;
     v = w / norm(w);
     lambda1 = [lambda1 \ v'*A*v];
end
v = [1 \ 1 \ 1 \ 1]'./2;
for k = 1:n
     \mathbf{w} = \mathbf{A} \setminus \mathbf{v};
     v = w / norm(w);
     lambda2 = [lambda2 v'*A*v];
end
v = [1 \ 1 \ 1 \ 1]'./2;
lambda3 = [v'*A*v];
for k = 1:n
     w = (A - lambda3(k)*eye(4)) \setminus v;
     v = w / norm(w);
     lambda3 = [lambda3 v'*A*v];
end
lambda1
lambda2
lambda3
```

The answer is as follows:

Note that for both power method and Rayleigh quotient iteration, they compute the eigenvalue with the largest absolute value. Besides, Rayleigh quotient converges faster than power method. And for unshifted inverse iteration, it computes the eigenvalue with the smallest absolute value.

Power	16.672131147	16.683819628	16.684602322	16.684654684	16.684658187
metho	540988	647207	430148	513276	307214
d	16.684658421	16.684658437	16.684658438	16.684658438	16.684658438
	627784	302733	351320	421469	426155
Unshi	14.399999999	7.1351351351	4.5549389567	4.3316645349	4.3164348382
fted	999999	35133	14762	89951	56360
invers	4.3154147026	4.3153464543	4.3153418888	4.3153415834	4.3153415630
e	95185	98972	80736	68831	38203
iterati					
on					
Raylei	16.684615384	16.684658438	16.684658438	16.684658438	16.684658438
gh	615384	426489	426489	426492	426489
quotie	16.684658438	16.684658438	16.684658438	16.684658438	16.684658438
nt	426492	426489	426492	426489	426492

```
(b)
A = [8 \ 4 \ 2 \ 1; \ 4 \ 8 \ 4 \ 2; \ 2 \ 4 \ 8 \ 4; \ 1 \ 2 \ 4 \ 8];
v = [1 \ 1 \ 1 \ 1]'./2;
n = 10;
off_diag_max = [];
format long
max = 0;
for k = 1:n
     [Q,R] = qr(A);
     A = R*Q;
     for i = 1:4
           for j = 1:4
                 if (i \sim = j \& A(i,j) > max)
                      \max = A(i,j);
                 end
           end
     end
     off_diag_max = [off_diag_max max];
end
A
off\_diag\_max
```

For the answer below, note that the off diagonal elements at each step is truly decreasing to zero. And the matrix of A is convergent to somehow tridiagonal matrix.

A=			
16.684650870697748	0.008106965374876	0.000018128314709	0.000000256400930
0.008106965374876	7.999920721769696	0.017888947809786	0.000253015404780
0.000018128314708	0.017888947809787	4.312593875744195	0.060995911929790
0.000000256400932	0.000253015404780	0.060995911929791	3.002834531788368
off_diag_max =			
4.289906995109921	2.659558449077073	1.363329400421118	0.727713493424352
0.394169759053323	0.252862471417951	0.114259089109530	0.125365640161673
0.033176642774905	0.060995911929791		