Understanding Teleparallel Gravity

Your Name

September 10, 2024

Introduction to Teleparallelism

Teleparallel Gravity is an alternative formulation of gravity where the curvature of spacetime is replaced by torsion. In this framework:

- Gravity is encoded in torsion rather than curvature.
- We work within flat Minkowski spacetime.
- This simplifies the mathematical treatment by using a torsion-based description of gravity.

Levi-Civita Connection

The traditional Levi-Civita connection in General Relativity is given by:

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\sigma} \left(\frac{\partial g_{\sigma\mu}}{\partial x^{\nu}} + \frac{\partial g_{\sigma\nu}}{\partial x^{\mu}} - \frac{\partial g_{\mu\nu}}{\partial x^{\sigma}} \right)$$

where:

- $ightharpoonup g_{\mu\nu}$ is the metric tensor.
- $g^{\lambda\sigma}$ is the inverse metric tensor.
- $ightharpoonup rac{\partial g_{\sigma\mu}}{\partial x^{\nu}}$ are the partial derivatives of the metric components.

Weitzenböck Connection

In Teleparallel Gravity, we use the Weitzenböck connection, which involves torsion and is defined as:

$$\overset{\star}{\Gamma}_{\mu\nu}^{\lambda} = \frac{1}{2} \left(\overset{\star}{T}_{\mu\nu}^{\lambda} + \overset{\star}{T}_{\nu\mu}^{\lambda} - \overset{\star}{T}_{\mu\nu}^{\lambda} \right)$$

where $\overset{\star}{T}_{\mu\nu}^{\lambda}$ represents the torsion tensor components.

Connecting Levi-Civita and Weitzenböck Connections

The Levi-Civita connection $(\Gamma^{\lambda}_{\mu\nu})$ involves curvature and is used in

General Relativity. In contrast, the Weitzenböck connection $(\overset{\star}{\Gamma}_{\mu\nu})$ is used in Teleparallel Gravity and involves torsion.

Specifically, the contortion tensor, which relates these connections, is given by:

$$\mathcal{K}^{
ho}_{\mu
u}=rac{1}{2}\left(\mathcal{T}^{
ho}_{
u\mu}+\mathcal{T}^{
ho}_{\mu
u}-\mathcal{T}^{
ho}_{\mu
u}
ight)$$

where:

- \blacktriangleright $K^{\rho}_{\mu\nu}$ is the contortion tensor.
- $ightharpoonup T^{
 ho}_{\mu
 u}$ represents the components of the torsion tensor.

This formula is cited from Page 9 of Aldrovandi and Pereira's book [1].

Physical Interpretation

- ▶ In General Relativity, the Christoffel symbols describe how vectors change in curved spacetime.
- ▶ In Teleparallel Gravity, the Weitzenböck connection in flat spacetime describes gravitational effects using torsion.
- ► This formulation simplifies the equations and helps to visualize gravity as a property of flat spacetime with torsion.

Stereographic Projection

Stereographic projection can be used to illustrate the effects of torsion:

- ► This projection maps a spherical surface to a plane, helping to demonstrate the difference between curvature and torsion.
- ► Geodesic and non-geodesic paths on the sphere can represent the effects of torsion, illustrating how torsion affects trajectories differently compared to curvature.

R. Aldrovandi and J. G. Pereira, *An Introduction to Teleparallel Gravity*, pg. 9.