e1-6 Vertex Correction, Selection

M. Ungaro, K. Joo

June 22, 2023

Abstract

This document describes the track vertex correction and selection procedure. The track vertices of all particles are corrected. A selection on the electron and proton z-vertexes and their differences is applied.

Contents

1	Ver	tex Correction, Selection	2
	1.1	Beam Offset	2
	1.2	Vertex Correction, Cut	3

1 Vertex Correction, Selection

In the reconstruction software the track vertex (x, y, z) is calculated from its intersection with the sector midplane¹ of the corresponding sector. This procedure involve the assumption that the beam is centered along the z-axis. During the e1-6 experiment however the beam was not centered at (x, y) = (0, 0) thus a sector-dependent offset is introduced in the vertex calculation.

1.1 Beam Offset

The displacement of the beam can be seen in Fig. 1, where the events on the window² downstream of the target were selected to fix the z position as reference. The calculated displacement [1] for the beam position is:

$$x_0 = 0.090$$
 cm
 $y_0 = -0.345$ cm

Figure 1: Top: y versus x position of the vertex at the window. Upper right: same as upper left, except plotted logarithmically. One can see that the beam spot was slightly shifted from (0,0). Bottom: the x (left) and y (right) distributions which led to the calculation: $(x_0,y_0) = (0.09, -0.345)cm$

¹The midplane of a sector is defined by the plane that divide that sector in half and contains the beamline (0,0,z).

 $^{^{2}}$ A window was placed at z = +0.5 cm to help these kind of studies and to be a z-position reference.

1.2 Vertex Correction, Cut

To correct the vertex position it is sufficient to shift the midplanes so that they contain the correct beamline (0.09, -0.345, z) and recalculate the intersection of the tracks with the new planes. This is illustrated in Fig.2.

Figure 2: The vertex correction. The dashed plane is the original midplane containing the wrong beamline (0,0,0). The point v is the intersection of the track (straight line along momentum \vec{p}) with this plane. The solid blue plane represents the corrected midplane containing (0.09, -0.345, z). The correction algorithm simply intersects the same track with the corrected midplane.

The effect of the correction on the electrons and protons z position is shown in Fig. 3. After this correction, the vertex position resolution is good enough to introduce a cut on the z vertex of electron and protons in order to select events inside the target cell as follows:

$$-8\,cm \le z \le -0.8\,cm\tag{1}$$

The electron and proton vertices are also required to be coincident along the z axis within the reconstruction resolution, so an additional cut on $\Delta z = z_{electron} - z_{proton}$ is applied:

$$|\Delta z| < 3 \, cm \tag{2}$$

The effect of the corrections and the values of the cuts are illustrated in Fig. 3 and Fig. 4.

Figure 3: The effect of the correction on the electrons and protons z distributions for each sector. Top row: electron and proton z vertices, uncorrected. Bottom row: same distributions after the vertex correction. Vertical red lines: cuts of eq.1.

UCONN/JLAB 4 M. Ungaro, K. Joo

Figure 4: Top left: Δz versus $\phi_{electron}$, uncorrected. The typical sinusodial behaviour as a function of sector is indicative of the beam displacement. Bottom left: same distributions, after the vertex correction. Top right: Δz versus $VZ_{electron}$, uncorrected. Bottom right: same distributions, after the vertex correction. Vertical red lines: cuts of eq.1. Horizontal red lines: cuts of eq.2.

UCONN/JLAB 5 M. Ungaro, K. Joo

e1-6 analysis REFERENCES

References

 $[1] \ \ Valeri \ Koubarovski, \ Private \ Communication.$