Матан первая домашка.

Шахматов Андрей, Б02-304

5 февраля 2024 г.

Содержание

1	T1	1
2	T2	4
3	T3	5
4	T5	5
5	$\mathbf{T6}$	5
6	2.39	6
7	T10	6
8	T11	6

1 T1

$$f(x,y) = \sqrt{xy}$$

Тогда область определения $D_f = \{(x,y) \mid (x,y) \in \mathbb{R}^2 \, (x \le 0 \, \land y \le 0) \lor (x \ge 0 \, \land y \ge 0) \}$

Рис. 1: Область определения функции

Область опредлеения будет замкнутым множеством, так как совпадает со своим замыканием. Из рисунка 1 видно, что множество не является выпуклым, однако является линейно свзяным, ведь любые 2 точки можно соединить кривой проходящей через точку (0,0).

$$f(x,y) = \frac{1}{x^4 + y^4 - 1}$$

Область определения данной функции $D_f = \{(x,y) \mid (x,y) \in \mathbb{R}^2 \, x^4 + y^4 \neq 1\}$

Рис. 2: Область определения функции

Областью определения является всё пространство кроме кривой $x^4 + y^4 = 1$. Так как такая кривая является замкнутой, то её дополнение открыто, а значит область определения открыта. Также область определения не является выпуклой, связной или линейно связной, так как разбивается кривой на два открытых непересекающихся множества.

$$f(x,y) = \ln(1 - 2x - x^2 - y^2)$$

Тогда область определения $D_f = \{(x,y) \mid (x,y) \in \mathbb{R}^2 \ x^2 + y^2 < 1 - 2x\}$. Решим полученное неравенство $x^2 + 2x + 1 + y^2 < 2$, что эквивалентво $(x+1)^2 + y^2 < \sqrt{2}^2$, что соответствует открытому шару радиуса $\sqrt{2}$ с центром в точке (-1,0).

Рис. 3: Область определения функции

Так как область определения - открытый шар, то она открыта. Также область определения связна, линейно связна и выпукла.

2 T2

$$M = \{ (e^t \cos t, e^t \sin t) \mid t \in \mathbb{R} \}$$

Данное множество является образом непрерывной кривой, потому оно линейно свзяно (любые две точки можно соединить данной кривой), потому M - связно. Данное множество не является открытым, поскольку содержит некоторые свои граничные точки. При этом замыкание множества содержит точку (0,0), однако сама кривая её не содержит, так как $R=\sqrt{x^2+y^2}=e^t>0$, что означает незамкнутость M.

Рис. 4: График кривой

3 T3

$$M = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1^2 + x_2^2 + x_3^2 < x_4^2$$

Рассмотрим функцию $g: \mathbb{R}^4 \to \mathbb{R}$, $g(x_1, x_2, x_3, x_4) = x_4^2 - x_1^2 + x_2^2 + x_3^2$, такая функция является непрерывной. Рассмотрим прообраз множества $g^{-1}(Q)$, $Q = (0, +\infty)$, при этом прообраз равен исследуемому множеству M. По топологическому определению непрерывности прообраз открытого Q открыт, а значит M - открыто. Также множество M не является линейно свзяным, так как все кривые, соединяющие точки с координатами x_4 разных знаков должны проходить через точку с координатой $x_4 = 0$, которая не содержится в множестве M. Тогда так как M - открыто и не линейно связно, то оно не связно.

4 T5

Нужно доказать, что $\bigcap_{n\in\mathbb{N}}^{\infty}B_0\left(\frac{1}{n}\right)=\{0\}$. С одной стороны $\forall k\in\mathbb{N}\ 0\in B_0\left(\frac{1}{k}\right)\Rightarrow\{0\}\subseteq\bigcap_{n\in\mathbb{N}}^{\infty}B_0\left(\frac{1}{n}\right)$. С другой стороны рассмотрим множество $A=\mathbb{R}\setminus\{0\}$, для любого $a\in A$ существует k такое что $\frac{1}{k}<|a|$, а значит $a\not\in B_0\left(\frac{1}{k}\right)\Rightarrow\bigcap_{n\in\mathbb{N}}^{\infty}B_0\left(\frac{1}{n}\right)\not\in A\Rightarrow B_0\left(\frac{1}{k}\right)\Rightarrow\bigcap_{n\in\mathbb{N}}^{\infty}B_0\left(\frac{1}{n}\right)\in\{0\}$. Тогда через двойное включение получаем требуемый факт.

5 T6

Рассмотрим множество значений последовательности Гейне $a_n \to 0$. Данное множество не будет замкнутым, так как его замыкае будет содержать 0, но ни один из членов последовательности не равен 0. А также каждая точка данного множества является членом последовательности a_n и потому изолирована.

6 2.39

Рассмотрим две последовательности Гейне $x_n \to x_0$ и $y_k \to y_0$. Требуется доказать, что при условии

$$\lim_{n \to \infty} f(x_n, y_k) = B(y_k)$$

И

$$\lim_{n \to \infty} f(x_n, y_n) = A$$

следует, что

$$\lim_{k \to \infty} B(y_k) = A$$

. В силу существования первых двух пределов для достаточно больших n, k выполняется:

$$|f(x_n, y_n) - A| < \epsilon$$

$$|f(x_n, y_k) - B(y_k)| < \epsilon$$

$$|f(x_n, y_k) - f(x_k, y_k)| < \epsilon$$

Последнее неравенство выполняется в силу фундаментальности последовательности $f(x_n, y_k)_n$. Рассмотрим $|B(y_k) - A| < |B(y_k) - f(x_n, y_k)| + |f(x_n, y_k) - f(x_k, y_k)| + |f(x_k, y_k) - A| < 3\epsilon$. Что означает

$$\lim_{k \to \infty} B(y_k) = A$$

7 T10

Пусть существует $g:\mathbb{R}^2\to\mathbb{R}$ и g - непрерывна и инъективна. Рассмотрим сужение $g_y:\mathbb{R}\to\mathbb{R}$, $g_y(x)=g(x,y)$. Тогда g_y также непрерывна, а значит он переводит связные множества в связные, из чего следует $g_y(\mathbb{R})=Q(y)$, где Q(y) - отрезок, интервал или полуинтервал. Тогда так как g - инъективна выполняется: $\mathbb{R}=\bigcup_{y\in\mathbb{R}}Q(y)$. Докажем промежуточную лемму: инъёктивная и непрерывная функция монотонна. Предположим противное: $\exists x_1 < x_2 < x_3 \mid f(x_1) < f(x_2) > f(x_3) \lor f(x_1) > f(x_2) < f(x_3)$, строгие знаки получены с учётом инъёктивности. Без ограничения общности рассмотрим первый вариант $f(x_1)< f(x_2)>f(x_3)$. Пусть $f(x_3)>f(x_1)$, тогда по теореме о промежуточных значениях существует $x\in (x_1,x_2)\mid f(x)=f(x_3)$, тогда так как $x< x_3\Rightarrow x\neq x_3$, но $f(x)=f(x_3)$ - противоречие с инъективностью. Тогда оказывается, что каждая из g_y - монотонна. Так как функция g_y монотонна то по теореме об обратной функции обратная f^{-1} - непрерывна, а значит f переводит открытые в открытые. А значит все множества Q(y) - интервалы. Тогда так как из покрытия открытого множества интервалами можно выбрать счётное подпокрытие $\mathbb{R}=\bigcup_{n\in\mathbb{N}}Q(y_n)$. Но тогда мы получили дизъюнктное разбиение действительной прямой непустыми интервалами - противоречие со связностью.

8 T11

$$\{(x,y) \in \mathbb{R} \mid x \le y\}$$