Transductive Bounds for the Multi-class Majority Vote Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

University Grenoble Alpes, Grenoble INP LIG, CNRS, Grenoble 38000, France (firstname.lastname@univ-grenoble-alpes.fr)

AAAI, 2019

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Framework

ransductive ounds

Introduction

In many applications, labeling examples is prohibitive while huge number of unlabeled data are available.

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Introduction

Framework

ransductive ounds

Introduction

Problem: Supervised learning is not efficient to use.

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Introduction

Framework

ransductive Bounds

Introduction

Solution: Classifier that pass through the low density regions of **both** labeled and unlabeled examples.

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Introduction

-ramework

ransductive Bounds

Framework

Transductiv Bounds

Application

• We consider the transductive inference. The self-learning algorithm (SLA) is based on this paradigm. In [Amini et al., 2008] it was proposed to find a threshold for the **binary** SLA dynamically using a risk bound.

 PAC-Bayesian theorems [McAllester, 1999] bound risk of Gibbs and Bayes classifiers. Most of study is devoted to the binary framework.
 [Morvant et al., 2012] considers the multi-class case in the supervised setting.

Contribution

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Introduction

Framework

Transductive Bounds

Application

In this work, we propose:

- 1. Transductive bounds of the Bayes classifier,
- 2. A **multi-class** extension of the self-learning algorithm.

Bayes Classifier

$$B_Q(\mathbf{x}) := \operatorname{argmax}_{c \in \mathcal{V}} \left[\mathbb{E}_{h \sim Q} \mathbb{1}_{h(\mathbf{x}) = c} \right]$$

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

.....

Framework

ransductive ounds

Bayes Classifier

$$B_Q(\mathbf{x}) := \operatorname{argmax}_{c \in \mathcal{V}} \left[\mathbb{E}_{h \sim Q} \mathbb{1}_{h(\mathbf{x}) = c} \right]$$

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

.....

Framework

ransductive ounds

Gibbs Classifier

 $G_{\mathcal{O}}(\mathbf{x}) := \operatorname{rand}_{h \sim \mathcal{O}} h(\mathbf{x})$

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

merodacei

Framework

ransductive ounds

Gibbs Classifier

 $G_{\mathcal{O}}(\mathbf{x}) := \operatorname{rand}_{h \sim \mathcal{O}} h(\mathbf{x})$

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

.....

Framework

ransductive

Gibbs Classifier

 $G_{\mathcal{O}}(\mathbf{x}) := \operatorname{rand}_{h \sim \mathcal{O}} h(\mathbf{x})$

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

.....

Framework

ransductive ounds

Margin: Indicator of Confidence

$$m_Q(\mathbf{x},c) = \mathbb{E}_{h\sim Q} \mathbb{1}_{h(\mathbf{x})=c}$$

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Framework

ransductive ounds

Error Measures

$$\bullet \ R_{\mathcal{U}}(B_Q, i, j) := \frac{1}{u_i} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbf{1}_{B_Q(\mathbf{x}') = j} \mathbf{1}_{y' = i},$$

$$\bullet \ R_{\mathcal{U}}(G_Q, i, j) := \frac{1}{u_i} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbb{E}_{h \sim Q} \mathbb{1}_{h(\mathbf{x}') = j} \mathbb{1}_{y' = i},$$

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Framework

Transductive Bounds

Error Measures

$$ullet$$
 $R_{\mathcal{U}}(B_Q, i, j) := \frac{1}{u_i} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbb{1}_{B_Q(\mathbf{x}') = j} \mathbb{1}_{y' = i},$

•
$$R_{\mathcal{U}}(G_Q, i, j) := \frac{1}{u_i} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbb{E}_{h \sim Q} \mathbb{1}_{h(\mathbf{x}') = j} \mathbb{1}_{y' = i},$$

•
$$\mathbf{E}_{\mathcal{U}}(h) := \frac{1}{\mu} \sum_{\mathbf{x}' \in \mathbf{X}_{I,I}} \mathbb{1}_{h(\mathbf{x}') \neq y'},$$
 - error rate

$$\bullet \; \mathbf{C}_h^{\mathcal{U}} := (R_{\mathcal{U}}(h,i,j))_{\substack{i,j=\{1,\ldots,K\}^2,\\i\neq j}}, \; - [\mathsf{Morvant} \; \mathsf{et} \; \mathsf{al.}, \; \mathsf{2012}]$$

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Framework

Fransductive Bounds

$$ullet$$
 $R_{\mathcal{U}}(B_Q, i, j) := \frac{1}{u_i} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbb{1}_{B_Q(\mathbf{x}') = j} \mathbb{1}_{y' = i},$

$$\bullet R_{\mathcal{U}}(G_Q, i, j) := \frac{1}{u_i} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbb{E}_{h \sim Q} \mathbb{1}_{h(\mathbf{x}') = j} \mathbb{1}_{y' = i},$$

•
$$E_{\mathcal{U}}(h) := \frac{1}{u} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbb{1}_{h(\mathbf{x}') \neq y'},$$

$$\bullet \mathbf{C}_h^{\mathcal{U}} := (R_{\mathcal{U}}(h, i, j))_{\substack{i,j = \{1, \dots, K\}^2, \\ i \neq i}},$$

 $\bullet R_{\mathcal{U} \wedge \theta}(B_Q, i, j) := \frac{1}{n!} \sum_{\mathbf{x}' \in X_J} \mathbf{1}_{B_Q(\mathbf{x}') = j} \mathbf{1}_{y' = i} \mathbf{1}_{m_Q(\mathbf{x}', j) \geq \theta_i},$ - risk to have the conditional error and the margin above θ_i

Transductive Bounds for the Multi-class Majority Vote Classifier

Vasilii Feofanov. Emilie Deviiver. Massih-Reza Amini

Framework

Theorem

 $\forall \ Q \ \text{and} \ \forall \delta \in (0,1], \ \forall \theta \in [0,1]^K \ \text{with prob. at least} \ 1 - \delta$:

$$R_{\mathcal{U}\wedge\theta}(B_Q,i,j) \leq \inf_{\gamma\in[\theta_j,1]} \left\{ I_{i,j}^{(\leq,<)}(\theta_j,\gamma) + \frac{1}{\gamma} \left\lfloor \left(K_{i,j}^{\delta} - M_{i,j}^{<}(\gamma) + M_{i,j}^{<}(\theta_j)\right)\right\rfloor_+ \right\},\,$$

where

- $K_{i,j}^{\delta} = R_u^{\delta}(G_Q, i, j) \varepsilon_{i,j}$
- lacksquare $R_u^\delta(G_Q,i,j)$ is an upper bound that holds with prob. at least $1-\delta$.
- lacktriangle $\varepsilon_{i,j}$ is the average of j-margins in class i and class j is not predicted,
- $I_{i,i}^{(\leq,<)}(\theta_j,\gamma)$ is proportion of obs. from i with margin in interval $[\theta_j,\gamma)$,
- $M_{i,i}^{\leq}(t)$ is the average of j-margins in class i that less than t.

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

' Introduction

Traffiework

Transductive Bounds

A Transductive Bound for the Conditional Risk

Theorem

 $\forall \ Q \ \text{and} \ \forall \delta \in (0,1], \ \forall \theta \in [0,1]^K \ \text{with prob. at least} \ 1 - \delta$:

$$R_{\mathcal{U}\wedge\theta}(B_Q,i,j) \leq \inf_{\gamma\in[\theta_j,1]} \left\{ I_{i,j}^{(\leq,<)}(\theta_j,\gamma) + \frac{1}{\gamma} \left\lfloor (K_{i,j}^{\delta} - M_{i,j}^{<}(\gamma) + M_{i,j}^{<}(\theta_j)) \right\rfloor_+ \right\},\,$$

where

- $K_{i,j}^{\delta} = R_u^{\delta}(G_Q, i, j) \varepsilon_{i,j}$
- lacksquare $R_u^\delta(G_Q,i,j)$ is an upper bound that holds with prob. at least $1-\delta$.
- ullet $\varepsilon_{i,j}$ is the average of j-margins in class i and class j is not predicted,
- $I_{i,i}^{(\leq,<)}(\theta_i,\gamma)$ is proportion of obs. from i with margin in interval $[\theta_i,\gamma)$,
- $M_{i,j}^{\leq}(t)$ is the average of j-margins in class i that less than t.

Proof

- Bound derived from a solution of a linear program where the error is maximized.
- Constraint: connection between $R_{\mathcal{U} \wedge \theta}(B_Q, i, j)$ and $R_{\mathcal{U}}(G_Q, i, j)$.
- The solution of linear program is explicit and is computed in practice.

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Introduction

Framework

Transductive Bounds

Theorem: Remarks

Proposition

Suppose

- The Gibbs conditional risk bound is tight,
- The Bayes classifier makes its mistakes mostly on examples with low margins

 \Rightarrow the bound is **tight**.

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

minoductio

Framework

Transductive Bounds

Suppose

• The Gibbs conditional risk bound is tight,

 The Bayes classifier makes its mistakes mostly on examples with low margins

 \Rightarrow the bound is **tight**.

Corollary

Let
$$\mathbf{U}_{m{ heta}}^{\delta}:=(R_{\mathcal{U}}^{\delta}(B_{\mathcal{Q}},i,j))_{\substack{i,j=\{1,\ldots,K\}^2\\i\neq j}}$$
,

where $R_{\mathcal{U}}^{\delta}(B_{Q}, i, j)$ is defined by Theorem. Then, we have:

$$\mathbb{E}_{\mathcal{U}\wedge\boldsymbol{ heta}}(B_Q) \leq \left\| \left(\mathbf{U}_{\boldsymbol{ heta}}^{\delta} \right)^{\mathsf{T}} \mathbf{p} \right\|_1,$$

where **p** =
$$\{u_i/u\}_{i=1}^{K}$$
.

Conditional Bayes Error

We look for θ that minimizes:

$$\mathtt{E}_{\mathcal{U}|\boldsymbol{\theta}}(B_Q) := \frac{\mathtt{E}_{\mathcal{U} \wedge \boldsymbol{\theta}}(B_Q)}{\pi(m_Q(\mathbf{x}', B_Q(\mathbf{x}')) \geq \theta_{B_Q(\mathbf{x}')})}.$$

A trade-off between:

- Transductive error on pseudo-labeled examples (estimated using **Theorem**),
- Proportion of pseudo-labeled examples in $X_{\mathcal{U}}$.

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

.....

Framework

Transductive Bounds

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

IIILIOGUCLIO

-ramework

ransductive Bounds

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Introduction

Framework

ransductive ounds

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

minoductio

-ramework

ransductive ounds

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

IIItroductioi

-ramework

ransductive ounds

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Introduction

Framework

ransductive Sounds

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

IIItioductioi

Framework

ansductive ounds

Experiment Results on Different Data Sets

Data set	Info	Score	RF	LP	OVA-TSVM	FSLA $_{\theta=0.7}$	MSLA
Vowel		ACC F1	.583 ± .026 .572 ± .028	$.577 \pm .027$ $.568 \pm .026$	NA NA	$.516^{\downarrow} \pm .043$ $.493^{\downarrow} \pm .046$	
DNA			$.693^{\downarrow} \pm .072$ $.65^{\downarrow} \pm .109$			$.516^{\downarrow} \pm .09$ $.372^{\downarrow} \pm .096$	
Pendigits	J = 109 u = 10883 d = 16 K = 10	1	$.864^{\downarrow} \pm .022$ $.861^{\downarrow} \pm .025$				
MNIST	I = 175 u = 69825 d = 900 K = 10		$\begin{array}{c} .865^{\downarrow} \pm .018 \\ .863^{\downarrow} \pm .019 \end{array}$		NA NA	$.8^{\downarrow} \pm .059$ $.774^{\downarrow} \pm .077$	
SensIT	I = 49 u = 98479 d = 100 K = 3	ACC F1	.67 ± .0291 .654 ± .045	NA NA	NA NA	$.619^{\downarrow} \pm .037$ $.578^{\downarrow} \pm .068$	

Table: Classification performance on 5 data sets.

 \downarrow : the performance is statistically worse than the best result on the level 0.01 of significance.

NA: the algorithm does not converge.

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

....

Framework

Bounds

Conclusion and Perspectives

- Proposed transductive bounds for the Bayes classifier, which are tight under certain conditions.
- Self-learning with automatic threshold finding shows promising results for semi-supervised tasks.
- Future perspective: self-learning with semi-supervised feature selection.

Transductive Bounds for the Multi-class Majority Vote Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

IIILIOGUCLIOI

Framework

ransductive Jounds

Conclusion and Perspectives

- Proposed transductive bounds for the Bayes classifier, which are tight under certain conditions.
- Self-learning with automatic threshold finding shows promising results for semi-supervised tasks.
- Future perspective: self-learning with semi-supervised feature selection.

The source code:

github.com/vfeofanov/trans-bounds-maj-vote

Transductive Bounds for the Multi-class Majority Vote Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

ramework

ransductive ounds

Conclusion and Perspectives

- Proposed transductive bounds for the Bayes classifier, which are tight under certain conditions.
- Self-learning with automatic threshold finding shows promising results for semi-supervised tasks.
- Future perspective: self-learning with semi-supervised feature selection.

The source code:

github.com/vfeofanov/trans-bounds-maj-vote

References

Amini, M., Laviolette, F., and Usunier, N. (2008).

A transductive bound for the voted classifier with an application to semi-supervised learning. In Advances in Neural Information Processing Systems (NIPS 21), pages 65–72.

McAllester, D. A. (1999).

PAC-bayesian model averaging.

In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, COLT '99, pages 164–170, New York, NY, USA. ACM.

Morvant, E., Koço, S., and Ralaivola, L. (2012).

PAC-Bayesian Generalization Bound on Confusion Matrix for Multi-Class Classification.

In International Conference on Machine Learning (ICML), pages 815–822; Edinburgh, OK. C

Transductive
Bounds for the
Multi-class
Majority Vote
Classifier

Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini

Introduction

-ramework

ounds