Teorema d'extensió de Carathéodory.

En aquesta nota recordem les nocions de teoria de la mesura relatives al teorema d'extensió de Carathéodory, així com una demostració del resultat.

1. Recordatori de conceptes

En moltes situacions el que sí sabem fer és definir una "mesura" sobre una estructura més feble que una σ -àlgebra (on les coses poden ser més sencilles), i el que ens agradaria és ampliar aquesta "mesura" a una estructura més complicada mantenint aquesta "mesura" en la restricció. Això és el que passa, per exemple, amb la mesura de Lebesgue: sabem construir una "mesura" sobre els intervals, però aquests no defineixen una σ -àlgebra. Dit d'altra manera: la mesura de Lebesgue extèn la "mesura" sobre els intervals a la seva σ -àlgebra generada. Aquest és l'objectiu del teorema d'extensió de Carathéodory. En el que seguirà farem la descripció en general, però es bo tenir en ment l'exemple de \mathbb{R} . Ho discutirem un cop demostrat tots els teoremes.

Definició 1 (Àlgebra de conjunts). Una àlgebra de conjunts sobre X és un subconjunt A de $\mathcal{P}(X)$ pel qual és compleixen els axiomes següents:

- $(A1) \emptyset \in \mathcal{A},$
- (A2) Si $A \in \mathcal{A}$ aleshores $\overline{A} \in \mathcal{A}$,
- (A3) Per a tota familia finita de conjunts $A_1, \ldots, A_n \in \mathcal{A}$ es compleix que $\bigcup_{r=1}^n A_r \in \mathcal{A}$.

Noteu que (A3) és la gran diferència comparat amb la definició de σ -àlgebra, ja que només permitim unions finites.

Definició 2 (Mesura sobre una àlgebra). *Donada una àlgebra de conjunts* \mathcal{A} , una mesura (o premesura) sobre \mathcal{A} és una aplicació $\mu: \mathcal{A} \to \mathbb{R}^*$ que compleix:

- $(\mu 1) \ \mu(\emptyset) = 0,$
- $(\mu 2)$ Si $A \in \mathcal{A}$ aleshores $\mu(A) \geq 0$,
- $(\mu 3)$ Per a tota familia $\{A_i\}_{i\geq 1}$ d'elements disjunts de \mathcal{A} pels quals $\bigcup_{i\geq 1} A_i \in \mathcal{A}$ es compleix que

$$\mu\left(\cup_{i\geq 1} A_i\right) = \sum_{i\geq 1} \mu(A_i).$$

Noteu que en la condició (μ 3) és necessari que la unió infinita pertanyi a \mathcal{A} : en un àlgebra això no sempre està assegurat.

El nostre objectiu és ampliar la mesura μ a una mesura sobre $\sigma(\mathcal{A})$. Per a fer-ho definirem l'anomenada mesura exterior, que és una definició natural del que hauriem de fer si volem definir una extensió de μ més enllà de \mathcal{A} :

Definició 3 (Mesura exterior). Donada una àlgebra \mathcal{A} sobre X i una mesura μ sobre \mathcal{A} , la mesura exterior associada a (X, \mathcal{A}, μ) és una funció $\mu^* : \mathcal{P}(X) \to \mathbb{R}^*$ definida com:

$$\mu^*(B) = \inf_{B \subseteq \bigcup_{i \ge 1} A_i} \{ \sum_{i > 1} \mu(A_i) \}.$$

Aquesta funció està ben definida perquè sempre podem triar en l'ínfim la familia $\{X, \emptyset, \emptyset, \dots\}$. Com ara $\mathcal{P}(X)$ és una σ -àlgebra, en el millor dels móns μ^* seria una mesura sobre $\mathcal{P}(X)$. Malauradament això no és així degut a que no es compleix la σ -additivitat: com a molt podem assegurar (prova per al lector) que si tenim una successió $\{B_i\}_{i>1}$ en $\mathcal{P}(X)$ aleshores es compleix que

$$(P\mu) \ \mu^*(\cup_{i\geq 1} B_i) \leq \sum_{i\geq 1} \mu^*(B_i).$$

En particular, no podem assegurar pas la σ -additivitat.

Per a assegurar-nos doncs la σ -additivitat ens caldrà prendre un conjunt \mathcal{A}^* , que contingui a \mathcal{A} i que estigui contingut en $\mathcal{P}(X)$, per al qual poguem tenir una noció additiva de la mesura. A tal efecte, la definició clau és la condició de Carathéodory:

Definició 4 (Condició de Carathéodory). Sigui \mathcal{A} una àlgebra sobre X amb mesura μ i mesura exterior μ^* . Direm que un conjunt B en $\mathcal{P}(X)$ és μ^* -mesurable si compleix la condició de Carathéodory: per tot element C de $\mathcal{P}(X)$ és compleix que

$$\mu^*(C) = \mu^*(C \cap B) + \mu^*(C \cap \overline{B}).$$

Al conjunt de conjunts μ^* -mesurables el denotarem per \mathcal{A}^* .

A grans trets, el que ens diu aquesta condició és que si ens restringuim a \mathcal{A}^* aleshores la condició de Caratheódory ens diu que la additivitat de la mesura es preserva quan usem elements de \mathcal{A}^* per a descomposar qualsevol element de $\mathcal{P}(X)$.

Finalment, abans de demostrar el teorema d'extensió de Carathéodory el que veurem en la següent proposició és que \mathcal{A}^* és de fet una σ -àlgebra.

Proposició 5. A^* és una σ -àlgebra.

Demostraci'o. Cal verificar els tres axiomes d'una σ -àlgebra. Que el conjunt buit sigui de \mathcal{A}^* és trivial. Similarment, és sencill veure que \mathcal{A}^* és tancat segons el complement. La propietat que ens portarà més de feina és la de les unions numerables.

Comencem veient que si B_1 i B_2 són de \mathcal{A}^* , aleshores la seva intersecció també és un element de \mathcal{A}^* . Si veiem això, aleshores (usant que \mathcal{A}^* és tancat per intersecció i per complementari) també serà cert que $B_1 \cup B_2$ serà un element de \mathcal{A}^* , i doncs tota unió finita és de \mathcal{A}^* . Veguem-ho: com $B_1 \in \mathcal{A}^*$ sabem que per tot $C \in \mathcal{P}(X)$ es compleix que

$$\mu^*(C) = \mu^*(C \cap B_1) + \mu^*(C \cap \overline{B_1}).$$

Ara anem a usar que B_2 també és un element de \mathcal{A}^* : novament és té que per a tot $C \in \mathcal{P}(X)$ es compleix que $\mu^*(C \cap B_1) = \mu^*(C \cap B_1 \cap B_2) + \mu^*(C \cap B_1 \cap \overline{B_2})$. Usant ara aquesta igualtat en la igualtat anterior, tenim que

(1)
$$\mu^*(C) = \mu^*(C \cap B_1 \cap B_2) + \mu^*(C \cap B_1 \cap \overline{B_2}) + \mu^*(C \cap \overline{B_1}).$$

Observeu que el primer terme de la dreta de la igualtat anterior ja és el que ens interessa per a la condició de Carathéodory. Anem ara a ficar $B_1 \cap B_2$ dins d'aquestes igualtats:

$$\mu^*(C \cap \overline{(B_1 \cap B_2)}) = \mu^*(C \cap \overline{(B_1 \cap B_2)} \cap B_1) + \mu^*(C \cap \overline{(B_1 \cap B_2)} \cap \overline{B_1}) = \mu^*(C \cap \overline{B_2} \cap B_1) + \mu^*(C \cap \overline{B_1}).$$

Substituint ara aquesta identitat en l'Equació (1), concloem que per a tot $C \in \mathcal{P}(X)$ es compleix que $\mu^*(C) = \mu^*(C \cap (B_1 \cap B_2)) + \mu^*(C \cap \overline{(B_1 \cap B_2)})$, i per tant $B_1 \cap B_2$ també és un element de \mathcal{A}^* .

Segons el que hem discutit abans, \mathcal{A}^* és tancat per unions finites (perquè ho és per interseccions de dos elements). Falta veure doncs que unions numerables (infinites) també són de \mathcal{A}^* . Caldrà doncs fer un pas al límit d'alguna manera.

Sigui doncs $\{B_i\}_{i\geq 1}$ un conjunt infinit d'elements de \mathcal{A}^* , i volem veure que la seva unió també és un element de \mathcal{A}^* . Observeu que podem supossar que els B_i són disjunts dos a dos: en efecte, si definim inductivament $b_1 := B_1$, $b_2 = B_2 - b_1$, i en general $b_n := B_n - (\bigcup_{i=1}^{n-1} b_i)$, aleshores els $\{b_i\}_{i\geq 1}$ són disjunts dos a dos i $\bigcup_{i\geq 1} b_i = \bigcup_{i\geq 1} B_i$. Per tant, si sabem que la unió numerable de disjunts dos a dos és de la σ -àlgebra, aleshores també serà cert per unions no pas disjuntes.

Sigui $\{B_i\}_{i\geq 1}\subseteq \mathcal{A}^*$ disjunts dos a dos. Definim ara $D_r=\bigcup_{i=1}^r B_i$ i $B=\bigcup_{i\geq B_i}$. És clar que tots els D_r són també elements de \mathcal{A}^* . El que volem veure és que B és de \mathcal{A}^* , o equivalentment que satisfà la condició de Carathéodory.

Per tot element de $C \in \mathcal{P}(X)$ i per a tot índex finit r es compleix que

$$\mu^*(C) = \mu^*(C \cap D_r) + \mu^*(C \cap \overline{D_r}) = \mu^*(\bigcup_{i=1}^r (C \cap B_i)) + \mu^*(C \cap \overline{D_r}).$$

Observeu que $\mu^*(\bigcup_{i=1}^r (C \cap B_i)) = \sum_{i=1}^r \mu^*(C \cap B_i)$: aquesta relació es demostra directament usant la condició de Carathéodory. Per tant, per a tot valor de r es compleix que

(2)
$$\mu^*(C) = \sum_{i=1}^r \mu^*(C \cap B_i) + \mu^*(C \cap \overline{D_r}) \ge \sum_{i=1}^r \mu^*(C \cap B_i) + \mu^*(C \cap \overline{B}),$$

on hem usat en la última designaltat que $D_r \subseteq B$. Com l'Equació (2) és certa per a tot valor de r, també ho és quan fem el pas al límit:

(3)
$$\mu^*(C) \ge \sum_{i \ge 1} \mu^*(C \cap B_i) + \mu^*(C \cap \overline{B}),$$

Per altra banda, tenim de les propietats de la mesura exterior μ^* que $\mu^*(C \cap B) \leq \sum_{i \geq 1} \mu^*(C \cap B_i)$, i per tant

$$\mu^*(C) \ge \mu^*(C \cap B) + \mu^*(C \cap \overline{B}).$$

Com també sabem que per $(P\mu)$ és té que $\mu^*(C) \leq \mu^*(C \cap B) + \mu^*(C \cap \overline{B})$, concloem que per tot C es verifica que $\mu^*(C) = \mu^*(C \cap B) + \mu^*(C \cap \overline{B})$, i per tant B satisfà la condició de Carathéodory, i doncs és un element de \mathcal{A}^* .

2. La prova del teorema de Carathéodory. Comentaris sobre la unicitat.

Ja podem passar ara a demostrar el teorema d'extensió de Carathéodory. De fet, la part més llarga ja l'hem fet al demostrar la proposició anterior, d'on resultarà immediatament el teorema principal d'aquesta nota:

Teorema 6 (Teorema d'extensió de Carathéodory). Sigui \mathcal{A}^* la σ -àlgebra associada a (X, \mathcal{A}, μ) . Aleshores μ^* defineix una mesura sobre \mathcal{A}^* que restringeix a μ quan es considera sobre \mathcal{A} .

Demostració. Demostrem σ -additivitat de la mesura μ^* (que restringeix correctament surt directament de la mesura exterior) com a conseqüència de la Proposició 5: sigui $\{B_i\}_{i\geq 1} \subseteq \mathcal{A}^*$ disjunts dos a dos, i sigui $B = \bigcup_{i\geq B_i} \in \mathcal{A}^*$ (segons hem vist a la Proposició 5). Aleshores, si usem la condició de Carathéodory prenent C = B en la Equació (3) tenim que:

$$\mu^*(B) \ge \sum_{i>1} \mu^*(B \cap B_i) + \mu^*(B \cap \overline{B}) = \sum_{i>1} \mu^*(B_i).$$

Finalment, la igualtat es dedueix de la propietat $(P\mu)$ de la mesura exterior.

Un comentari final en relació al teorema d'extensió de Carathéodory: la prova no demostra la unicitat de la extensió. En general, per tal de poder afirmar que aquesta extensió és única cal un altre ingredient, que és que la premesura sigui σ -finita: en l'àlgebra \mathcal{A} existeixen $\{A_i\}_{i\geq 1}$ amb $\mu(A_i) < +\infty$ pels quals es té que $\cup_{i\geq 1}A_i = X$. En aquesta situació, l'extensió és única. Aquest és l'anomenat teorema d'extensió de Hahn (veure la prova al llibre de Bartle, pp. 103).