## Knowledge representation and reasoning (KRR)

First-order logic: syntax and semantics

Resolution-based inference procedure

Next: Planning

Reading: Chap 10

\*Slides based on those of Hector Levesque and Sheila McIlraith

#### What is KRR?

Symbolic encoding of propositions believed by some agent and their manipulation to produce representations of propositions that are believed by the agent but not explicitly represented

#### An example

- Explicitly represented beliefs: GradStu(Ann), GradStu(Bob),  $\forall x(Student(x) \rightarrow GradStu(x))$
- Implicitly represented beliefs: Student(Ann), Student(Bob),  $\forall x(\neg GradStu(x) \rightarrow \neg Student(x))$

### We need knowledge to answer questions

Could a crocodile run a steeplechase?

[Levesque 88]

- Yes
- No

**The intended thinking:** short legs, tall hedges  $\Rightarrow$  No!

#### Yet another example

#### Consider a question about materials:

The large ball crashed right through the table because it was made What was made of XYZZY?

- the large ball
- the table

Now suppose that you learn some facts about XYZZY.

- 1. It is a trademarked product of the Dow Chemical Company.
- 2. It is usually white, but there are green and blue varieties.
- 3. It is ninety-eight percent air, making it lightweight and buoyant.
- 4. It was first discovered by a Swedish inventor, Carl Georg Munters.

**Ask**: At what point does the answer stop being just a guess?

Intro to Al

# Why KRR?

- KR hypothesis: any artificial intelligent system is knowledge-based
- Knowledge-based system: system with structures that
  - can be interpreted propositionally and
  - determine the system behavior

such structures are called its knowledge base (KB)

- Knowledge-based system most suitable for open-ended tasks
- Hallmark of knowledge-based system: cognitive penetrability, i.e., actions depend on beliefs, including implicitly represented beliefs

## KRR and logic

Logic is the main tool for KRR, because logic studies

- How to formally represent agent's beliefs
- Given the explicitly represented beliefs, what are the implicitly represented beliefs

There are many kinds of logics. In this course, we will use first-order logic (FOL) as the tool for KRR

## A blocks world example



- Given the scene, human can easily draw the conclusion "there is a green block directly on top of a non-green block"
- How can a machine do the same?

Intro to Al

#### Formalization in FOL



- $\bullet \ S = \{On(a,b), On(b,c), Green(a), \neg Green(c)\}$
- $\alpha = \exists x \exists y [Green(x) \land \neg Green(y) \land On(x, y)]$
- $\bullet$  S logically entails  $\alpha$



Y. Liu

#### An example

- Tony, Mike, and John belong to the Alpine Club.
- Every member of the Alpine Club who is not a skier is a mountain climber.
- Mountain climbers do not like rain, and anyone who does not like snow is not a skier.
- Mike dislikes whatever Tony likes, and likes whatever Tony dislikes.
- Tony likes rain and snow.
- Is there a member of the Alpine Club who is a mountain climber but not a skier?

## An example (cont'd)

- Intelligence is needed to answer the question
- Can we make machines answer the question?
- A possible approach
  - First, translate the sentences and question into FOL formulas
    - Of course, this is hard, and we do not have a good way to automate this step
  - Second, check if the formula of the question is logically entailed by the formulas of the sentences
    - We will show that there are ways to automate this step

#### **Alphabet**

- Individuals (constants or 0-ary functions):
  - tony, mike, john
  - rain, snow
- Types (unary predicates):
  - A(x) means that x belongs to Alpine Club
  - $\bullet$  S(x) means that x is a skier
  - ullet C(x) means that x is a mountain climber
- Relationships (binary predicates):
  - ullet L(x,y) means that x likes y

#### Basic facts

- Tony, Mike, and John belong to the Alpine Club. A(tony), A(mike), A(john)
- Tony likes rain and snow. L(tony, rain), L(tony, snow)

Y. Liu Intro to AI 12 / 86

### Complex facts

 Every member of the Alpine Club who is not a skier is a mountain climber.

$$\forall x (A(x) \land \neg S(x)) \to C(x)$$

 Mountain climbers do not like rain, and anyone who does not like snow is not a skier.

$$\forall x (C(x) \to \neg L(x, rain)) \forall x (\neg L(x, snow) \to \neg S(x))$$

 Mike dislikes whatever Tony likes, and likes whatever Tony dislikes.

$$\forall x (L(tony, x) \to \neg L(mike, x))$$
$$\forall x (\neg L(tony, x) \to L(mike, x))$$

• Is there a member of the Alpine Club who is a mountain climber but not a skier?

$$\exists x (A(x) \land C(x) \land \neg S(x))$$



Y. Liu Intro to Al 13 / 86

#### Alphabet<sup>1</sup>

Logical symbols (fixed meaning and use):

- Punctuation: (,),,,.
- Connectives and quantifiers:  $=, \neg, \land, \lor, \forall, \exists$
- Variables:  $x, x_1, x_2, ..., x', x'', ..., y, ..., z, ...$

Non-logical symbols (domain-dependent meaning and use):

- Predicate symbols
  - arity: number of arguments
  - arity 0 predicates: propositional symbols
- Function symbols
  - arity 0 functions: constant symbols



### A blocks world example



#### Language (Syntax)

- Constants: a,b,c,e
  - Functions:
    - No function
- Predicates:
  - on: binary
  - above: binary
  - clear: unary
  - ontable: unary

15 / 86

#### Terms

- Every variable is a term
- If  $t_1, \ldots, t_n$  are terms and f is a function symbol of arity n, then  $f(t_1, \ldots, t_n)$  is a term



Y. Liu Intro to AI 16 / 86

#### **Formulas**

- If  $t_1, \ldots, t_n$  are terms and P is a predicate symbol of arity n, then  $P(t_1, \ldots, t_n)$  is an atomic formula
- ullet If  $t_1$  and  $t_2$  are terms, then  $(t_1=t_2)$  is an atomic formula
- If  $\alpha$  and  $\beta$  are formulas, and v is a variable, then  $\neg \alpha, (\alpha \land \beta), (\alpha \lor \beta), \exists v.\alpha, \forall v.\alpha$  are formulas



Y. Liu Intro to Al 17 / 86

#### Notation

- Occasionally add or omit (,)
- Use [,] and {,}
- Abbreviation:  $(\alpha \to \beta)$  for  $(\neg \alpha \lor \beta)$
- $\bullet \ \, {\sf Abbreviation:} \ \, (\alpha \leftrightarrow \beta) \ \, {\sf for} \, \, (\alpha \to \beta) \land (\beta \to \alpha)$
- Predicates: mixed case capitalized, e.g., Person, OlderThan
- Functions (and constants): mixed case uncapitalized, e.g., john, father,

18 / 86

## Variable scope

- Free and bound occurrences of variables
- e.g.,  $P(x) \wedge \exists x [P(x) \vee Q(x)]$
- A sentence: formula with no free variables
- Substitution:  $\alpha[v/t]$  means  $\alpha$  with all free occurrences of the v replaced by term t
- In general,  $\alpha[v_1/t_1,\ldots,v_n/t_n]$

#### Interpretations

An interpretation is a pair  $\Im = \langle D, I \rangle$ 

- D is the domain, can be any non-empty set
- ullet I is a mapping from the set of predicate and function symbols
- If P is a predicate symbol of arity n, I(P) is an n-ary relation over D, i.e.,  $I(P) \subseteq D^n$ 
  - If p is a 0-ary predicate symbol, *i.e.*, a propositional symbol,  $I(p) \in \{true, false\}$
- If f is a function symbol of arity n, I(f) is an n-ary function over D, i.e.,  $I(f):D^n\to D$ 
  - If c is a 0-ary function symbol, i.e., a constant symbol,  $I(c) \in D$



20 / 86

## Blocks world example

$$\Phi(a) = \underline{A}, \Phi(b) = \underline{B}, \Phi(c) = \underline{C}, \Phi(e) = \underline{E}.$$

$$\Psi(on) = \{(\underline{A},\underline{B}), (\underline{B},\underline{C})\}$$

- Ψ(above) = {(A,B),(B,C),(A,C)}
- Ψ(clear)={<u>A,E</u>}
- Ψ(ontable)={<u>C,E</u>}

#### Environment





#### Denotation of terms

- Terms denote elements of the domain
- $\bullet$  A variable assignment  $\mu$  is a mapping from the set of variables to the domain D
- $\bullet \ \|v\|_{\Im,\mu} = \mu(v)$
- $||f(t_1,\ldots,t_n)||_{\Im,\mu} = I(f)(||t_1||_{\Im,\mu},\ldots,||t_n||_{\Im,\mu})$

#### Satisfaction: atomic formulas

 $\Im, \mu \models \alpha \text{ is read "} \Im, \mu \text{ satisfies } \alpha \text{ "}$ 

• 
$$\Im, \mu \models P(t_1, \dots, t_n) \text{ iff } \langle ||t_1||_{\Im, \mu}, \dots, ||t_n||_{\Im, \mu} \rangle \in I(P)$$

• 
$$\Im, \mu \models (t_1 = t_2) \text{ iff } ||t_1||_{\Im, \mu} = ||t_2||_{\Im, \mu}$$



Y. Liu Intro to Al 23 / 86

## Satisfaction: propositional connectives

- $\Im, \mu \models \neg \alpha \text{ iff } \Im, \mu \not\models \alpha$
- $\bullet \ \Im, \mu \models (\alpha \land \beta) \ \text{iff} \ \Im, \mu \models \alpha \ \text{and} \ \Im, \mu \models \beta$
- $\Im, \mu \models (\alpha \lor \beta)$  iff  $\Im, \mu \models \alpha$  or  $\Im, \mu \models \beta$



#### Satisfaction: quantifiers

 $\mu\{d;v\}$  denotes a variable assignment just like  $\mu,$  except that it maps v to d

- $\Im, \mu \models \exists v. \alpha \text{ iff for some } d \in D, \Im, \mu\{d; v\} \models \alpha$
- $\bullet \ \Im, \mu \models \forall v. \alpha \ \text{iff for all} \ d \in D \text{, } \Im, \mu\{d; v\} \models \alpha$

Let  $\alpha$  be a sentence. Then whether  $\Im, \mu \models \alpha$  is independent of  $\mu$ . Thus we simply write  $\Im \models \alpha$ 

Y. Liu Intro to Al 25 / 86

## Blocks world example

- D = {<u>A</u>, <u>B</u>, <u>C</u>, <u>E</u>}
- $\Phi(a) = \underline{A}, \Phi(b) = \underline{B}, \Phi(c) = \underline{C}, \Phi(e) = \underline{E}.$
- $\Psi$ (on) = {(<u>A,B</u>),(<u>B,C</u>)}
- Ψ(above) = {(<u>A,B</u>),(<u>B,C</u>),(<u>A,C</u>)}
- Ψ(clear)={<u>A,E</u>}
- Ψ(ontable)={<u>C,E</u>}

 $\forall X,Y. on(X,Y) \rightarrow above(X,Y)$ 

 $\forall X,Y. above(X,Y) \rightarrow on(X,Y)$ 

◆ロ > ← 日 > ← 目 > ← 目 → り へ ○

### Blocks world example

$$\Phi(a) = \underline{A}, \Phi(b) = \underline{B}, \Phi(c) = \underline{C}, \Phi(e) = \underline{E}.$$

$$\Psi(on) = \{(\underline{A},\underline{B}), (\underline{B},\underline{C})\}$$

- Ψ(above) = {(<u>A,B),(B,C),(A,C)</u>}
- Ψ(clear)={<u>A,E</u>}
- Ψ(ontable)={<u>C,E</u>}

# $\forall X \exists Y. (clear(X) \lor on(Y,X))$

- ✓ X=A
- ✓ X=<u>C</u>, Y=B
- ✓ ..

# $\exists Y \forall X.(clear(X) \lor on(Y,X))$

- x Y=<u>A</u> ? No! (X=<u>C</u>)
- × Y=<u>C</u>? No! (X=<u>B</u>)
- x Y=<u>E</u>? No! (X=<u>B</u>)
- $\times$  Y= $\underline{B}$ ? No! (X= $\underline{B}$ )

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

### Satisfiability

- $\bullet$  Let S be a set of sentences
- $\Im \models S$ , read  $\Im$  satisfies S, if for every  $\alpha \in \Im$ ,  $\Im \models \alpha$
- If  $\Im \models S$ , we say  $\Im$  is a model of S
- We say that S is satisfiable if there is  $\Im$  s.t.  $\Im \models S$ , and
- $\bullet$  e.g., is  $\{\forall x(P(x) \rightarrow Q(x)), P(a), \neg Q(a)\}$  satisfiable?

Y. Liu Intro to AI 28 / 86

## Blocks world example



### Logical entailment

- $S \models \alpha$  iff for every  $\Im$ , if  $\Im \models S$  then  $\Im \models \alpha$
- $S \models \alpha$  is read: S entails  $\alpha$  or  $\alpha$  is a logical consequence of S
- A special case:  $\emptyset \models \alpha$ , simply written  $\models \alpha$ , read " $\alpha$  is valid"
- Note that  $\{\alpha_1, \dots, \alpha_n\} \models \alpha$  iff  $\alpha_1 \wedge \dots \wedge \alpha_n \to \alpha$  is valid iff  $\alpha_1 \wedge \dots \wedge \alpha_n \wedge \neg \alpha$  is unsatisfiable
- Alpine Club example
  - $\bullet$  Let KB be the set of sentences, and  $\alpha$  be the question
  - We want to know if  $KB \models \alpha$ ?

# Blocks world example cont'd



- $\bullet \ S = \{On(a,b), On(b,c), Green(a), \neg Green(c)\}$
- $\alpha = \exists x \exists y [Green(x) \land \neg Green(y) \land On(x,y)]$
- ullet We prove that  $S \models \alpha$



## Logical entailment: examples

- $\bullet \ \forall xA \lor \forall xB \models \forall x(A \lor B)$
- Does  $\forall x(A \lor B) \models \forall xA \lor \forall xB$
- $\exists x(A \land B) \models \exists xA \land \exists xB$
- Does  $\exists x A \land \exists x B \models \exists x (A \land B)$ ?
- $\bullet \ \exists y \forall x A \models \forall x \exists y A$
- Does  $\forall x \exists y A \models \exists y \forall x A$ ?

The only way to prove that  $KB \not\models \alpha$  is to give an interpretation satisfying KB but not  $\alpha$ .



32 / 86

### Alpine Club example cont'd

- Suppose that we had been told that Mike likes whatever Tony dislikes, but we had not been told that Mike dislikes whatever Tony likes.
- Can we still claim that there is a member of the Alpine Club who is a mountain climber but not a skier?
- No. We give an interpretation which satisfies the modified KB but not f as follows: Let  $D = \{T, M, J, R, S\}$ . Let I(tony) = T, I(mike) = M, I(john) = J, I(rain) = R, I(snow) = S. Let  $I(A) = \{T, M, J\}, I(S) = \{T, M, J\}, I(C) = \emptyset, I(L) = \{(T, R), (T, S), (T, T), (M, M), (M, S), (M, J), (J, S)\}$ .

33 / 86

## Logical entailment and knowledge-based systems

- Start with KB representing explicit beliefs, usually what the agent has been told or has learned
- Implicit beliefs:  $\{\alpha \mid KB \models \alpha\}$
- Actions depend on implicit beliefs, rather than explicit beliefs

Intro to Al

#### Inference procedure

- We want a mechanical procedure to check if  $KB \models \alpha$
- Called an inference procedure
- Sound if whenever it says yes, then  $KB \models \alpha$
- Complete if whenever  $KB \models \alpha$ , then it says yes

#### Resolution-based Inference procedure

- Resolution is a rule of inference
- Resolution-based inference procedure: refutation
- We begin with the propositional case
- Then proceed to the first-order case

### Clausal form

- A literal is an atomic formula or its negation, e.g.,  $p, \neg p$
- A clause is a disjunction of literals, written as the set of literals
  - e.g.,  $p \vee \neg r \vee s$ , written  $(p, \neg r, s)$
- A special case: empty clause (), representing false
- A formula is a conjunction of clauses, written as the set of clauses

37 / 86

Y. Liu Intro to Al

### Resolution rule of inference

- From the two clauses  $\{p\} \cup c_1$  and  $\{\neg p\} \cup c_2$ , infer the clause  $c_1 \cup c_2$
- ullet  $c_1 \cup c_2$  is called the resolvent of input clauses wrt the atom p
- e.g., (p) and  $(\neg p)$  resolve to (), (w,r,q) and  $(w,s,\neg r)$  resolve to (w,q,s) wrt r
- Proposition.  $\{p\} \cup c_1, \{\neg p\} \cup c_2 \models c_1 \cup c_2$ Proof:

#### Derivation

A derivation of a clause c from a set S of clauses is a sequence  $c_1, c_2, \ldots, c_n$  of clauses, where  $c_n = c$ , and for each  $c_i$ , either

- $c_i \in S$ , or

We write  $S \vdash c$  if there is a derivation of c from S

Intro to Al

### Soundness of derivations

- Theorem. If  $S \vdash c$ , then  $S \models c$ Proof:
  - Let  $c_1, c_2, \ldots, c_n$  be a derivation of c from S
  - We prove by induction on i that for all  $1 \le i \le n$ ,  $S \models c_i$ .
- However, the converse does not hold in general e.g.,  $(p) \models (p,q)$ , but  $(p) \not\vdash (p,q)$

Y. Liu Intro to Al

## Soundness and completeness of refutations

**Theorem.**  $S \vdash ()$  iff  $S \models ()$  iff S is unsatisfiable

We will not prove the completeness part

# Resolution-based inference procedure: refutation

#### $KB \models \alpha$ iff $KB \land \neg \alpha$ is unsatisfiable

Thus to check if  $KB \models \alpha$ ,

- put KB and  $\neg \alpha$  into clausal form to get S,
- check if  $S \vdash ()$

Y. Liu Intro to Al

## Refutation example 1

#### KB

FirstGrade  $\supset$  Child Child  $\land$  Male  $\supset$  Boy Kindergarten  $\supset$  Child Child  $\land$  Female  $\supset$  Girl Female

#### Show that KB = Girl



# Refutation example 2

#### KB

 $\begin{aligned} & \text{(Rain} \vee \text{Sun)} \\ & \text{(Sun} \supset \text{Mail)} \\ & \text{((Rain} \vee \text{Sleet)} \ \supset \ \text{Mail)} \end{aligned}$ 

#### Show KB |= Mail



#### Similarly KB |≠ Rain

Can enumerate all resolvents given  $\neg Rain$ , and [] will not be generated



### The first-order case

#### We need

- A way of converting KB and f (the query) into clausal form
- A way of doing resolution even when we have variables. This needs unification

Intro to Al

### Conversion to Clausal Form

转化成子句形式的八步

- Eliminate Implications.
- **2** Move Negations inwards (and simplify  $\neg\neg$ ).
- Standardize Variables.
- Skolemize.
- Onvert to Prenex Form.
- O Distribute disjunctions over conjunctions.
- Flatten nested conjunctions and disjunctions.
- Convert to Clauses.

### Skolemization

### Consider $\exists y.Elephant(y) \land Friendly(y)$

- This asserts that there is some individual that is both an elephant and friendly.
- To remove the existential, we invent a name for this individual, say a. This is a new constant symbol not equal to any previous constant symbols:
  - $Elephant(a) \wedge Friendly(a)$
- This is saying the same thing, since we do not know anything about the new constant a.
- It is essential that the introduced symbol a is new. Else we might say more than the existential formula.

### Skolemization

Now consider  $\forall x \exists y. Loves(x, y)$ .

- This formula claims that for every x there is some y that x loves (perhaps a different y for each x).
- Replacing the existential by a new constant won't work:  $\forall x.Loves(x,a)$ , because this asserts that there is a particular individual a loved by every x.
- To properly convert existential quantifiers scoped by universal quantifiers we must use functions not just constants.
- In this case x scopes y, so we must replace y by a function of x:  $\forall x.Loves(x, g(x))$ , where g is a new function symbol.
- This formula asserts that for every x there is some individual (given by g(x)) that x loves. g(x) can be different for each x.



# Skolemization examples

- $\forall x, y, z \exists w. R(x, y, z, w) \Longrightarrow \forall x, y, z. R(x, y, z, h_1(x, y, z))$
- $\forall x, y \exists w. R(x, y, g(w)) \Longrightarrow \forall x, y. R(x, y, g(h_2(x, y)))$
- $\forall x, y \exists w \forall z. R(x, y, w) \land Q(z, w) \Longrightarrow \forall x, y, z. R(x, y, h_3(x, y)) \land Q(z, h_3(x, y))$



Y. Liu Intro to Al 49 / 86

## A conversion example

$$\forall x \{P(x) \rightarrow [\forall y (P(y) \rightarrow P(f(x,y))) \land \neg \forall y (\neg Q(x,y) \land P(y))]\}$$

1. Eliminate implications using  $A \to B \Leftrightarrow \neg A \lor B$ 

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \neg \forall y (\neg Q(x,y) \land P(y))] \}$$



Y. Liu Intro to Al 50 / 86

# Move negations inwards

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \neg \forall y (\neg Q(x,y) \land P(y))] \}$$

- 2. Move negations inwards using
  - $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$ ,  $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
  - $\bullet \ \neg \exists x. A \Leftrightarrow \forall x. \neg A, \ \neg \forall x. A \Leftrightarrow \exists x. \neg A, \ \neg \neg A \Leftrightarrow A$

$$\forall x \{ \neg P(x) \vee [\forall y (\neg P(y) \vee P(f(x,y))) \wedge \exists y (Q(x,y) \vee \neg P(y))] \}$$



Y. Liu Intro to Al 51 / 86

### Standardize Variables

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \exists y (Q(x,y) \lor \neg P(y))] \}$$

3. Standardize Variables (Rename variables so that each quantified variable is unique)

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \exists z (Q(x,z) \lor \neg P(z))] \}$$



Y. Liu Intro to AI 52 / 86

### Skolemize

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \exists z (Q(x,z) \lor \neg P(z))] \}$$

4. Skolemize (Remove existential quantifiers by introducing new function symbols)

$$\forall x \{ \neg P(x) \vee [\forall y (\neg P(y) \vee P(f(x,y))) \wedge (Q(x,g(x)) \vee \neg P(g(x)))] \}$$



Y. Liu Intro to Al 53 / 86

## Convert to prenex form

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \lor \neg P(g(x)))] \}$$

5. Convert to prenex form. (Bring all quantifiers to the front – only universals, each with different name)

$$\forall x \forall y \{ \neg P(x) \vee [(\neg P(y) \vee P(f(x,y))) \wedge (Q(x,g(x)) \vee \neg P(g(x)))] \}$$



Y. Liu Intro to Al 54 / 86

# Disjunctions over conjunctions

$$\forall x \forall y \{ \neg P(x) \vee [(\neg P(y) \vee P(f(x,y))) \wedge (Q(x,g(x)) \vee \neg P(g(x)))] \}$$

6. Disjunctions over conjunctions using

$$A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C)$$

$$\forall x \forall y \{ (\neg P(x) \lor \neg P(y) \lor P(f(x,y))) \land (\neg P(x) \lor Q(x,g(x)) \lor \neg P(g(x))) \}$$



Y. Liu Intro to Al 55 / 86

#### Convert to Clauses

$$\forall x \forall y \{ (\neg P(x) \lor \neg P(y) \lor P(f(x,y))) \land (\neg P(x) \lor Q(x,g(x)) \lor \neg P(g(x))) \}$$

8. Convert to Clauses (remove quantifiers and break apart conjunctions).

a) 
$$\neg P(x) \lor \neg P(y) \lor P(f(x,y))$$

b) 
$$\neg P(x) \lor Q(x, g(x)) \lor \neg P(g(x))$$



Y. Liu Intro to AI 56 / 86

### Unification



- Can the clauses  $(P(john), Q(fred), \mathbf{R}(\mathbf{x}))$  and  $(\neg P(y), R(susan), R(y))$  be resolved?
- Once reduced to clausal form, all remaining variables are universally quantified.
- So, implicitly the clause (P(john), Q(fred), R(x)) represents  $(P(john), Q(fred), R(john)), (P(john), Q(fred), R(fred)), \dots$
- So there is a specialization of (P(john), Q(fred), R(x)) that can be resolved with a specialization of  $(\neg P(y), R(susan), R(y))$
- In particular, (P(john), Q(fred), R(john)) can be resolved with  $(\neg P(john), R(susan), R(john))$ , producing (Q(fred), R(john), R(susan))

57 / 86

### Unification

- We want to be able to match conflicting literals, even when they have variables.
- This matching process automatically determines whether or not there is a specialization that matches.
- But, we don't want to over specialize!

### Unification

- $\bullet$  Consider  $(\neg P(x), S(x), Q(fred))$  and (P(y), R(y))
- We need to unify P(x) and P(y). How do we do this?
- Possible resolvants:
  - $(S(john), Q(fred), R(john))\{x = john, y = john\}$
  - $(S(sally), Q(fred), R(sally))\{x = sally, y = sally\}$
  - $\bullet (S(x), Q(fred), R(x))\{y = x\}$
- The last resolvant is most-general, the other two are specializations. We want the most general clause for use in future resolution steps.

Y. Liu Intro to Al 59 / 86

### Substitution

- Unification is a mechanism for finding a most general matching
- A key component of unification is substitution.
- A substitution is a finite set of equations of the form V=t where V is a variable and t is a term not containing V. (t might contain other variables).
- We can apply a substitution  $\sigma = \{V_1 = t_1, \dots, V_n = t_n\}$  to a formula f to obtain a new formula  $f\sigma$  by simultaneously replacing every variable  $V_i$  by term  $t_i$ .
- e.g.,  $P(x,g(y,z))\{x=y,y=f(a)\}\Longrightarrow P(y,g(f(a),z))$  两个代换同时进行
- Note that the substitutions are not applied sequentially, *i.e.*, the first y is not subsequently replaced by f(a).



Y. Liu Intro to Al 60 / 86

# Composition of substitutions

代换组合

- We can compose two substitutions  $\theta$  and  $\sigma$  to obtain a new substitution  $\theta\sigma$
- Let  $\theta = \{x_1 = s_1, x_2 = s_2, \dots, x_m = s_m\}$ ,  $\sigma = \{y_1 = t_1, y_2 = t_2, \dots, y_k = t_k\}$
- Step 1. Get  $S = \{x_1 = s_1 \sigma, x_2 = s_2 \sigma, \dots, x_m = s_m \sigma, y_1 = t_1, y_2 = t_2, \dots, y_k = t_k\}$
- Step 2. Delete any identities, *i.e.*, equations of the form V=V.
- Step 3. Delete any equation  $y_i = s_i$  where  $y_i$  is equal to one of the  $x_j$  in  $\theta$ . Why?

# Composition example

- Let  $\theta = \{x = f(y), y = z\}$ ,  $\sigma = \{x = a, y = b, z = y\}$  Step 1. Get  $S = \{x = f(b), y = y, x = a, y = b, z = y\}$
- Step 2. Delete y = y. Step 3. Delete x = a.
- The result is  $S = \{x = f(b), y = b, z = y\}$

Y. Liu Intro to Al

#### Note on substitutions

- The empty substitution  $\epsilon = \{\}$  is also a substitution, and we have  $\theta \epsilon = \theta$ .
- More importantly, substitutions when applied to formulas are associative:  $(f\theta)\sigma=f(\theta\sigma)$
- Composition is simply a way of converting the sequential application of a series of substitutions to a single substitution.

Y. Liu Intro to Al

### **Unifiers**

- A unifier of two formulas f and g is a substitution  $\sigma$  that makes f and g syntactically identical.
- Note that not all formulas can be unified substitutions only affect variables.
- e.g., P(f(x), a) and P(y, f(w)) cannot be unified, as there is no way of making a = f(w) with a substitution.

无法合一的情况

### **MGU**

A substitution  $\sigma$  of two formulas f and g is a Most General Unifier (MGU) if

- $\bullet$   $\sigma$  is a unifier.
- For every other unifier  $\theta$  of f and g there must exist a third substitution  $\lambda$  such that  $\theta = \sigma \lambda$ .

This says that every other unifier is "more specialized" than  $\sigma$ .

The MGU of a pair of formulas f and g is unique up to renaming.

Y. Liu Intro to Al

# MGU example

- P(f(x),z) and P(y,a)•  $\sigma=\{y=f(a),x=a,z=a\}$  is a unifier, but not an MGU  $\theta=\{y=f(x),z=a\}$  is an MGU  $\sigma=\theta\lambda$ , where  $\lambda=\{x=a\}$



Y. Liu Intro to Al 66 / 86

# Computing MGUs

- The MGU is the "least specialized" way of making atomic formulas with variables match.
- We can compute MGUs.
- Intuitively we line up the two formulas and find the first sub-expression where they disagree.
- The pair of subexpressions where they first disagree is called the disagreement set.
- The algorithm works by successively fixing disagreement sets until the two formulas become syntactically identical.

# Computing MGUs

#### Given two atomic formulas f and g

- **1** k = 0;  $\sigma_0 = \{\}$ ;  $S_0 = \{f, g\}$
- 2 If  $S_k$  contains an identical pair of formulas, stop and return  $\sigma_k$  as the MGU of f and g.
- lacktriangledown Else find the disagreement set  $D_k = \{e_1, e_2\}$  of  $S_k$
- If  $e_1=V$  a variable, and  $e_2=t$  a term not containing V (or vice-versa) then let  $\sigma_{k+1}=\sigma_k\{V=t\}$ ;  $S_{k+1}=S_k\{V=t\}$ ; k=k+1; Goto 2
- Else stop, f and g cannot be unified.



Y. Liu Intro to Al

# Computing MGU examples

- $\ \, \mathbf{P}(a,x,h(g(z))) \,\, \mathrm{and} \,\, P(z,h(y),h(y)) \\$
- P(x,x) and P(y,f(y))

Y. Liu Intro to Al

#### First-order Resolution

From the two clauses  $\{\rho_1\} \cup c_1$  and  $\{\neg \rho_2\} \cup c_2$ , where there exists a MGU  $\sigma$  for  $\rho_1$  and  $\rho_2$ , infer the clause  $(c_1 \cup c_2)\sigma$ 

Theorem.  $S \vdash ()$  iff S is unsatisfiable

### A resolution example

- 1. (P(x), Q(g(x)))
- 2.  $(R(a), Q(z), \neg P(a))$
- 3.  $R[1a.2c]{X=a} (Q(a(a)), R(a), Q(z))$  1a->P(x), 2c->-P(x)
  - "R" means resolution step.
  - "1a" means the 1st (a-th) literal in the first clause: P(x).
  - "2c" means the 3rd (c-th) literal in the second clause:  $\neg P(a)$ .
  - 1a and 2c are the "clashing" literals.
  - $\{X = a\}$  is the MGU applied.

Y. Liu Intro to AI 71/86

# Refutation example 1



Y. Liu Intro to Al 72/86

### The 3 blocks example



73 / 86

### Alpine Club example

```
1. A(tony)
                                                                 2. A(mike)
                                                                 3. A(john)
                                                                 4. L(tony, rain)
                                                                 5. L(tony, snow)
\forall x (A(x) \land \neg S(x)) \rightarrow C(x)
                                                         \Rightarrow 6. (\neg A(\mathbf{x}), S(\mathbf{x}), C(\mathbf{x}))
\forall x(C(x) \rightarrow \neg L(x, rain))
                                                         \Rightarrow 7. (\neg C(\mathbf{y}), \neg L(\mathbf{y}, rain))
\forall x(\neg L(x, snow) \rightarrow \neg S(x))
                                                         \Rightarrow 8. (L(\mathbf{z}, snow), \neg S(z))
                                                         \Rightarrow 9. (\neg L(tony, \mathbf{u}), \neg L(mike, \mathbf{u}))
\forall x (L(tony, x) \rightarrow \neg L(mike, x))
\forall x(\neg L(tony, x) \rightarrow L(mike, x))
                                                         \Rightarrow 10. (L(tony, \mathbf{v}), L(mike, v))
\neg \exists x (A(x) \land C(x) \land \neg S(x))
                                                         \Rightarrow 11. (\neg A(\mathbf{w}), \neg C(\mathbf{w}), S(\mathbf{w}))
```

Note that we must standardize variables.



74 / 86

## Alpine Club example refutation

```
12. R[5, 9a]u = snow \neg L(mike, snow)

13. R[8,12]z = mike \neg S(mike)

14. R[6b, 13]x = mike (\neg A(mike), C(mike))

15. R[2,14a] C(mike)

16. R[8a, 12]z = mike \neg S(mike)

17. R[2,11]w=mike (\neg C(mike), S(mike))

18. R[15, 17] S(mike)

19. R[16,18] ()
```

### Refutation examples

Prove that  $\exists y \forall x P(x,y) \models \forall x \exists y P(x,y)$ 

- $\exists y \forall x P(x,y) \Rightarrow 1.P(x,a)$
- $\neg \forall x \exists y P(x, y) \Leftrightarrow \exists x \forall y \neg P(x, y) \Rightarrow 2. \neg P(b, y)$
- $R[1,2]\{x=b,y=a\}()$

Exercises: Prove

- $\bullet \ \forall x P(x) \lor \forall x Q(x) \models \forall x (P(x) \lor Q(x))$
- $\exists x (P(x) \land Q(x)) \models \exists x P(x) \land \exists x Q(x)$



Y. Liu Intro to AI 76 / 86

#### Answer extraction

- We can also answer wh- questions
- Replace query  $\exists x P(x)$  by  $\exists x [P(x) \land \neg answer(x)]$
- Instead of deriving (), derive any clause containing just the answer predicate

## Alpine Club example answer extraction

- 11.  $(\neg A(w), \neg C(w), S(w), answer(w))$
- The same resolution steps as before give us answer(mike)

### Disjunctive answers



### A problem



Infinite branch of resolvents

We use 0 for zero, 1 for succ(zero), 2 for succ(succ(zero)), ...

# Undecidability in the first-order case

- There can be no procedure to decide if a set of clauses is satisfiable.
- Theorem.  $S \vdash ()$  iff S is unsatisfiable
- However, there is no procedure to check if  $S \vdash ()$ , because
- ullet When S is satisfiable, the search for () may not terminate

### Intractability in the propositional case

- Determining if a set of clauses is satisfiable was shown by Cook in 1972 to be NP-complete.
- Satisfiability is believed by most people to be unsolvable in polynomial time.
- Procedures have been proposed for determining satisfiability that appear to work much better in practice than Resolution.
- They are called SAT solvers as they are mostly used to find a satisfying interpretation for clauses that are satisfiable.

### Implications for KRR

- In knowledge-based systems, actions depend on implicit beliefs, i.e., logical entailments of KB
- However, as we have seen, computing entailments is unsolvable in general
- The hope is that in many practical scenarios, entailments can be efficiently computed
- In case entailments are difficult to compute, we seek for other ways out

### Prolog and resolution

- Resolutions forms the basis of the implementation of Prolog
- When searching for (), Prolog uses a specific depth-first left-right strategy

### Refutation exercise

- Some patients like all doctors.
- No patient likes any quack.
- Therefore no doctor is a quack.

Use predicates: P(x), D(x), Q(x), L(x, y)

#### Refutation exercise

- Whoever can read is literate.
- Dolphins are not literate.
- Flipper is an intelligent dolphin.
- Who is intelligent but cannot read.

Use predicates: R(x), L(x), D(x), I(x)

Y. Liu