Comparison of IC Logic Families

Chapter	r · April 2017		
CITATIONS	5	READS	
0		98,139	
1 autho	r:		
0 6	Shree Krishna Khadka		
	Nepal Telecom		
	45 PUBLICATIONS 196 CITATIONS		
	SEE PROFILE		

Comparison of Logic Families

	Logic Family (Sil	licon Technology)	Introduction	Features	Limitations
Transistor Logic Families (Bipolar Transistor Technology)	Saturated Logic Families (ON — Saturation Mode) (OFF — Cut Off Mode)	1. RTL (Resistor Transistor Logic)	 In common use before the development of ICs. Common Emitter Configuration. Logic 1: 1-3.6 V and Logic 0: 0.2V 	- First logic family, require minimum number of transistors.	Low speed, high power dissipationLow fan out, poor noise immunityOperating speed <4MHz.
		2. DCTL	- Direct coupled transistors.	- Simpler than RTL, easy to fabricate.	- Small logic swing, poor noise margin.
		(Direct Coupled Transistor Logic)	- Base resistors of RTL are removed.	- Fewer components hence economical.	- Current hogging
		3. DTL (Diode Transistor Logic)	Use diodes and transistors.Input is fed through diodes followed by transistor at the output side.	 First circuit configuration designed into IC. Very small in size and high reliability at very low price. Greater fan out and improved noise margins. 	- No low and constant output impedance in both states.
		4. TTL (Transistor-Transistor Logic)	- Use all transistors totem pole output.	- Fast switching time, larger fan out.	- Large current spike when switching
			- Function of diodes in DTL is performed	- Reduced silicon chip area.	from low to high.
			by multi-emitter transistor at input	- Easy to interface with other logic families.	- Less noise immunity (0.4V)
		5. IIL (Integrated Injection Logic)	 Merged Transistor Logic (MTL). Both PNP and NPN transistors are used. Designed around multi-collector inverting transistors. 	High component density, less power dissipation.Low metal interconnection.Used in MSI and LSI designs.	- Poor noise immunity.
	Non-Saturated Logic ON — Active Mode OFF — Cut Off Mode	6.ECL (Emitter Coupled Logic)	 Non saturated logic/Current mode logic. Compliment output/eliminates the need of inverter. Logic 1: -0.8 and Logic 0: -1.7 	Fastest logic familyUsed in very high frequency applications.No noise spikes, large fan out.	 Require large silicon area, high power dissipation (high cost). Inconvenient voltage levels. Low noise margins.
	IOS Logic Families or Transistor Technology)	7.MOS Logic (Metal Oxide Semiconductor Logic)	 Use pMOS, nMOS or both with high packaging density. Easy to design and fabricate Less power drawn due to gate dielectric. 	Lower power dissipation.Shorter rise and fall times.Large fan-out.	Larger propagation due to high output impedance.Noise margin is around 1V.

Parameter	RTL	IIL	DTL	HTL	TTL	ECL	MOS	CMOS
Basic Gate	NOR	NOR	NAND	NAND	NAND	OR-NOR	NAND	NOR-NAND
Fan Out	5	Depends on Injector Current	8	10	10-20	25	20	20-50
Power Dissipation	12 mW	6 nW – 70 uW	8-12 mW	55 mW	10 mW	40-55 mW	0.2-10 mW	0.025-1.01 mW
Noise Immunity	Nominal	Poor	Good	Excellent	Very Good	Poor	Good	Very Good
Propagation Delay	12 nSec	25-30 nSec	30 nSec	4 nSec	10 nSec	1-2 nSec	300 nSec	70 nSec
Clock Rate	8 MHz	-	72 MHz	4 MHz	35 MHz	+60 MHz	2 MHz	10 MHz
Speed X Power	144	Less than 1	300	-	100	100	60	70

