CAPÍTULO 4

Conceptos básicos de Vectores en \mathbb{R}^n

4.1. Vectores en \mathbb{R}^n

Definición 4.1.1 Llamamos vector de \mathbb{R}^n a una lista ordenada de n números reales, la cual denotamos como

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Aquí x_k lo llamamos k-ésima componente del vector x.

El vector nulo o vector cero en \mathbb{R}^n viene dado por

$$\mathbf{0} = \left(\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \end{array}\right).$$

Ejemplo 4.1.1 El vector
$$\mathbf{x} = \begin{pmatrix} 5 \\ 10 \\ 3 \\ 5 \end{pmatrix}$$
 es un vector de \mathbb{R}^4 y su primera, segunda, tercera y cuarta componentes son 5, 10, -3 y 5, en ese orden.

Los vectores

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \cdots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

son vectores de \mathbb{R}^n . A estos vectores los llamamos vectores canónicos de \mathbb{R}^n .

Definición 4.1.2 (Igualdad de vectores) Dos vectores x, $y \in \mathbb{R}^n$ son iguales si y solo si $x_i = y_i$ $\forall i \in 1, ..., n$. Es decir,

$$m{x} = m{y} \quad \Leftrightarrow \quad \left(egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight) = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array}
ight) \quad \Leftrightarrow \quad x_i = y_i orall i \in 1, \ldots, n.$$

Definición 4.1.3 Dados $u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \end{pmatrix} y \ v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$, se define la suma de vectores por

$$oldsymbol{u}+oldsymbol{v}=\left(egin{array}{c} u_1+v_1\ u_2+v_2\ dots\ v_1+v_2 \end{array}
ight).$$

Definición 4.1.4 Dados $u=\begin{pmatrix}u_1\\u_2\\\vdots\\u_n\end{pmatrix}$ $y\;\lambda\in\mathbb{R},\;se\;define\;el\;producto\;por\;escalar\;por$

$$\lambda \boldsymbol{u} = \begin{pmatrix} \lambda u_1 \\ \lambda u_2 \\ \vdots \\ \lambda u_n \end{pmatrix}$$

Definición 4.1.5 Se define la resta de vectores $\mathbf{u} - \mathbf{v}$ por

$$\boldsymbol{u} - \boldsymbol{v} = \boldsymbol{u} + (-\boldsymbol{v}).$$

En la siguiente figura se muestra el significado gráfico de la suma, la resta, el producto por

escalar de vectores.

Definición 4.1.6 Sean u, v y w vectores de \mathbb{R}^n y sean α , β dos números reales. Entonces

1. $u + v \in \mathbb{R}^n$ (Ley clau. para +).

- 2. (u + v) + w = u + (v + w) (Ley asoc. para +).
- 3. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (Ley conm. para +).
- 4. Existe un único vector $z \in \mathbb{R}^n$ tal que u + z = z + u = u(z = 0). (Elemento neutro para la suma).
- 5. Para cada u, existe un único vector $-u \in \mathbb{R}^n$ tal que u+(-u)=(-u)+u=0 (Existencia del opuesto para suma).

6. $\alpha \mathbf{u} \in \mathbb{R}^n$ (Ley clausura para el producto por escalar).

- 7. $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$ (Ley dist. del producto por escalar resp +).
- 8. $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$ (Ley dist. del producto por escalar respecto a + de escalares).
- 9. $(\alpha\beta)\mathbf{u} = \alpha(\beta\mathbf{u}) = \beta(\alpha\mathbf{u})$ (Ley asoc. respecto al producto por escalares).
- 10. $\alpha \mathbf{u} = \mathbf{0}$, si y solo si, $\alpha = 0$ ó $\mathbf{u} = 0$.

Ejercicio 4.1 1. Calcule
$$(2u - 3v + w) - (5u - 2v) + 7u$$
.

2. Determine el vector \mathbf{x} tal que $2\mathbf{x} - 4\mathbf{v} = 3\mathbf{u}$.

Definición 4.1.7 Diremos que dos vectores \mathbf{u} y \mathbf{v} son paralelos si y solo si $\mathbf{u} = \lambda \mathbf{v}$, para algún $\lambda \in \mathbb{R}$.

Definición 4.1.8 (Combinación Lineal) Dados v_1, v_2, \ldots, v_k vectores de \mathbb{R}^n y $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R}$, al vector

$$\boldsymbol{v} = \lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + \ldots + \lambda_k \boldsymbol{v}_k$$

lo llamamos combinación lineal de los vectores v_1, v_2, \dots, v_k . A los escalares $\lambda_1, \lambda_2, \dots, \lambda_k$ los llamamos coeficientes de la combinación lineal.

Ejercicio 4.2 Sean $\boldsymbol{u} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ y $\boldsymbol{v} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ y $\boldsymbol{w} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. Calcule la combinación lineal de ellos dada

por
$$3\mathbf{u} - \mathbf{v} + 2\mathbf{w}$$
. ¿los vectores $\begin{pmatrix} -1\\4\\0 \end{pmatrix}$ $y \begin{pmatrix} 2\\0\\-1 \end{pmatrix}$ son combinaciones lineales de $\begin{pmatrix} 1\\0\\-2 \end{pmatrix}$ $y \begin{pmatrix} -5\\2\\2 \end{pmatrix}$?

Definición 4.1.9 (Conjunto Generado y Conjunto Generador) Al conjunto de todas las combinaciones lineales de los vectores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ lo representamos por

$$V := \operatorname{Gen} \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \} = \{ \lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + \dots + \lambda_k \boldsymbol{v}_k, \operatorname{con} \lambda_i \in \mathbb{R} \}$$

El conjunto V es generado por el conjunto $\{v_1, v_2, \dots, v_k\}$ a este conjunto lo llamamos conjunto generador de V.

El conjunto generado es único mientras que el conjunto generador NO es único.

Ejemplo 4.1.2 El siguiente conjunto representa la solución de un sistema de ecuaciones lineales

$$V = \left\{ \begin{pmatrix} 3r - s \\ r + 5s \\ r \end{pmatrix}, r, s \in \mathbb{R} \right\}.$$

Note que los elementos de V se escriben

$$\begin{pmatrix} 3r - s \\ r + 5s \\ r \end{pmatrix} = r \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} -1 \\ 5 \\ 0 \end{pmatrix},$$

lo cual indica que V está siendo generado por el conjunto

$$\left\{ \left(\begin{array}{c} 3\\1\\1 \end{array}\right), \left(\begin{array}{c} -1\\5\\0 \end{array}\right) \right\}.$$

Definición 4.1.10 (Conjunto l.i.) Un conjunto de vectores $\{v_1, v_2, \dots, v_k\}$ es linealmente independiente si los únicos escalares $\lambda_1, \lambda_2, \dots, \lambda_k$ tales que

$$\lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + \dots + \lambda_k \boldsymbol{v}_k = \boldsymbol{0}$$

son todos cero.

Ejercicio 4.3 Muestre que

$$\left\{ \left(\begin{array}{c} 1\\3\\-2 \end{array}\right), \left(\begin{array}{c} -1\\-5\\4 \end{array}\right), \left(\begin{array}{c} 1\\-2\\0 \end{array}\right) \right\},\right.$$

es un conjunto l.i. y que

$$\left\{ \left(\begin{array}{c} 1\\3\\-2 \end{array}\right), \left(\begin{array}{c} -1\\2\\3 \end{array}\right), \left(\begin{array}{c} 2\\1\\-5 \end{array}\right) \right\},\right.$$

es un conjunto l.d.

Note que todo conjunto de \mathbb{R}^n que contenga al vector nulo es un conjunto l.d.

Definición 4.1.11 (Producto escalar)
$$Dados \ \boldsymbol{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} y \ \boldsymbol{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} de \ \mathbb{R}^n$$
, $definimos$

 $oldsymbol{u}\cdotoldsymbol{v}$ el producto escalar entre $oldsymbol{u}$ y $oldsymbol{v}$, como el escalar dado por

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i.$$

Ejercicio 4.4
$$Dados \left\{ \begin{pmatrix} 2\\1\\-5 \end{pmatrix}, \begin{pmatrix} 1\\3\\0 \end{pmatrix}, \begin{pmatrix} -2\\-1\\-1 \end{pmatrix} \right\}$$
. $Calcule \ \boldsymbol{u} \cdot \boldsymbol{v}, \boldsymbol{u} \cdot \boldsymbol{w}, \boldsymbol{v} \cdot \boldsymbol{w}, (3\boldsymbol{u}) \cdot \boldsymbol{v}, (\boldsymbol{u} + \boldsymbol{v}) \cdot \boldsymbol{w} + \boldsymbol{v} \cdot \boldsymbol{v}$.

Teorema 4.1.1 Sean u, v y w vectores de \mathbb{R}^n y sea $\alpha \in \mathbb{R}$. Entonces

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (Ley conmutativa para ·)
- 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$. (Distributividad de · respecto de +)
- 3. $\alpha(\boldsymbol{u} \cdot \boldsymbol{v}) = (\alpha \boldsymbol{u}) \cdot \boldsymbol{v} = \boldsymbol{u} \cdot (\alpha \boldsymbol{v}).$
- 4. $\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$, si y solo si, $\mathbf{u} = \mathbf{0}$.

Note que no tiene sentido la prop. asociativa para ·.

Definición 4.1.12 1. $v, w \in \mathbb{R}^n$, v es ortogonal a w si $v \cdot w = 0$.

- 2. un subconjunto $\{v_1, \dots, v_n\} \subseteq \mathbb{R}^n$ es un conjunto ortogonal si $v_i \cdot v_j = 0 \quad \forall i \neq j$.
- 3. un subconjunto $\{v_1, \ldots, v_n\} \subseteq \mathbb{R}^n$ es un conjunto ortonormal si es un conjunto ortogonal $y ||v_i|| = 1 \quad \forall i = \{1, \ldots, n\}.$

Ejercicio 4.5 Encuentre α y β de forma que los vectores

$$\begin{pmatrix} 1 \\ -\alpha \\ 2 \\ 3 \end{pmatrix} y \begin{pmatrix} 4 \\ 5 \\ -2\beta \\ 7 \end{pmatrix}$$

sean ortogonales.

Definición 4.1.13 (Norma) Definimos la norma de un vector u de \mathbb{R}^n , ||u||, como

$$\|\boldsymbol{u}\| = \sqrt{u_1^2 + \dots + u_n^2} = \sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}.$$

Ejercicio 4.6 Dados
$$\mathbf{u} = \begin{pmatrix} 2 \\ 1 \\ -5 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$. Calcule $\|\mathbf{u}\|$, $\|\mathbf{v}\| \ y \ \|\mathbf{w}\|$.

Teorema 4.1.2 Dados los vectores $u, v \in \mathbb{R}^n$, $y \lambda \in \mathbb{R}$ tenemos que

- (a) $\|\lambda \boldsymbol{u}\| = |\lambda| \|\boldsymbol{u}\|$
- (b) $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2(\mathbf{u} \cdot \mathbf{v})$
- (c) $\|\mathbf{u} \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 2(\mathbf{u} \cdot \mathbf{v})$
- (d) $|\mathbf{u} \cdot \mathbf{v}| \leq ||\mathbf{u}|| ||\mathbf{v}||$ (Designal dad de Cauchy-Schwarz). La ignal dad se obtiene, si y solo si, $\mathbf{u} = \lambda \mathbf{v}$ para algún $\lambda \in \mathbb{R}$.
- (e) $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (Designal and triangular). La ignal dad se cumple, si y solo si, $\mathbf{u} = \lambda \mathbf{v}$ con $\lambda \ge 0$.

Demostración: Para todo $t \in \mathbb{R}$ tenemos que $||t\boldsymbol{u} + \boldsymbol{v}||^2 \ge 0$

$$0 \le ||t\boldsymbol{u} + \boldsymbol{v}||^2 = (t\boldsymbol{u} + \boldsymbol{v}) \cdot (t\boldsymbol{u} + \boldsymbol{v})$$
$$= t^2(\boldsymbol{u} \cdot \boldsymbol{u}) + t(2\boldsymbol{u} \cdot \boldsymbol{v}) + (\boldsymbol{v} \cdot \boldsymbol{v}) = p(t)$$

donde $p(t) = at^2 + bt + c$ es un polinomio cuadrático con $a = \mathbf{u} \cdot \mathbf{u}$, $b = 2\mathbf{u} \cdot \mathbf{v}$ y $c = \mathbf{v} \cdot \mathbf{v}$.

Como $a \ge 0$, la gráfica de p(t) es una parábola cóncava hacía arriba con vértice en el semi-plano superior. Recordando que el vértice de p(t) es $\left(-\frac{b}{2a},c-\frac{b^2}{4a}\right)$ entonces

$$0 \le c - \frac{b^2}{4a} = \|\mathbf{v}\|^2 - \frac{4(\mathbf{u} \cdot \mathbf{v})^2}{4\|\mathbf{u}\|^2}$$

Además, si $\mathbf{u} = \lambda \mathbf{v}$ entonces

$$|\boldsymbol{u} \cdot \boldsymbol{v}| = |\lambda \boldsymbol{v} \cdot \boldsymbol{v}| = |\lambda| ||\boldsymbol{v} \cdot \boldsymbol{v}| = |\lambda| ||\boldsymbol{v}||^2 = |\lambda| ||\boldsymbol{v}|| ||\boldsymbol{v}||$$
$$= ||\lambda \boldsymbol{v}|| ||\boldsymbol{v}|| = ||\boldsymbol{u}|| ||\boldsymbol{v}||.$$

- **Obs:** 1. La distancia euclidiana entre dos vectores \boldsymbol{u} y \boldsymbol{v} es $d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} \boldsymbol{v}\|$.
 - 2. Cuando $\|\boldsymbol{w}\| = 1$, se dice que \boldsymbol{w} es un vector unitario.

Ejercicio 4.7 1. Halle la distancia entre
$$\begin{pmatrix} -1 \\ 2 \\ 3 \\ 0 \end{pmatrix} y \begin{pmatrix} -2 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$
.

2. Halle el vector unitario en la dirección
$$\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

Definición 4.1.14 (Ángulo entre vectores) Dados los vectores no nulos \mathbf{u} y \mathbf{v} de \mathbb{R}^n , definimos el ángulo determinado por \mathbf{u} y \mathbf{v} como el menor giro positivo.

Dados dos vectores \boldsymbol{u} y \boldsymbol{v} no nulos, siempre podemos construir un triángulo como el de la siguiente figura

Al aplicar el Teorema del Coseno a este triángulo, se obtiene

$$\|\boldsymbol{u} - \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2 - 2\|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta$$
$$\|\boldsymbol{u}\|^2 - 2\boldsymbol{u} \cdot \boldsymbol{v} + \|\boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2 - 2\|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta$$

Entonces
$$\cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}.$$

Ejercicio 4.8 Sean
$$\mathbf{u} = \begin{pmatrix} -1 \\ 2 \\ 3 \\ 0 \end{pmatrix}$$
 y $\mathbf{v} = \begin{pmatrix} 0 \\ -1 \\ 5 \\ 4 \end{pmatrix}$. Calcule el ángulo entre ellos.

Definición 4.1.15 (Proyección ortogonal) Si $u \neq 0$ y v son vectores de \mathbb{R}^n , definimos la proyección ortogonal de v sobre u como el vector

$$\operatorname{proy}_{oldsymbol{u}} oldsymbol{v} = \left(rac{oldsymbol{v} \cdot oldsymbol{u}}{\|oldsymbol{u}\|^2}
ight) oldsymbol{u}$$

Llamamos a $\mathbf{v}_c = \mathbf{v} - \text{proy}_{\mathbf{u}}\mathbf{v}$ es ortogonal a \mathbf{u} .

Ejercicio 4.9 Halle $\text{proy}_{\boldsymbol{u}}\boldsymbol{v}$ y la componente vectorial de \boldsymbol{v} ortogonal a \boldsymbol{u} (esto es \boldsymbol{v}_c), para cada uno de los siguientes casos:

(a)
$$\mathbf{u} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} y \mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
.

$$(b) \mathbf{u} = e_1 \ y \mathbf{v} = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 3 \end{pmatrix}.$$

A continuación se introduce el producto cruz, producto únicamente definido para vectores en \mathbb{R}^3 .

Definición 4.1.16 (Producto vectorial o producto cruz) Sean $\vec{a}=(a_1,a_2,a_3)$ y $\vec{b}=(b_1,b_2,b_3)$ dos vectores. Se llama producto vectorial o producto cruz de \vec{a} y \vec{b} (en ese

orden) al vector,

$$\vec{a} \times \vec{b} = \left(\left| \begin{array}{cc} a_2 & a_3 \\ b_2 & b_3 \end{array} \right|, - \left| \begin{array}{cc} a_1 & a_3 \\ b_1 & b_3 \end{array} \right|, \left| \begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| \right)$$

(

$$ec{a} imes ec{b} = \left| egin{array}{ccc} ec{i} & ec{j} & ec{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{array}
ight|.$$

Propiedades 4.1.1 (Propiedades del producto vectorial) Sean \vec{a} , \vec{b} y \vec{c} vectores en \mathbb{R}^3 y $\alpha \in \mathbb{R}$. Se tienen las siguientes propiedades,

1.
$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$$

2.
$$\vec{a} \times \vec{a} = \theta$$

3.
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

4.
$$(\alpha \vec{a}) \times \vec{b} = \alpha (\vec{a} \times \vec{b}) = \vec{a} \times (\alpha \vec{b})$$

Demostración: Para 2). Sea $\vec{a} = (a_1, a_2, a_3) \in \mathbb{R}^3$, luego

$$\vec{a} imes \vec{a} = \left| egin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{array} \right| = \left(\left| egin{array}{ccc} a_2 & a_3 \\ a_2 & a_3 \end{array} \right|, - \left| egin{array}{ccc} a_1 & a_3 \\ a_1 & a_3 \end{array} \right|, \left| egin{array}{ccc} a_1 & a_2 \\ a_1 & a_2 \end{array} \right|
ight) = \theta.$$

Para 3). Sea $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3) \text{ y } \vec{c} = (c_1, c_2, c_3) \in \mathbb{R}^3$, luego

$$\vec{a} \times (\vec{b} + \vec{c}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix}$$

$$= \left(\begin{vmatrix} a_2 & a_3 \\ b_2 + c_2 & b_3 + c_3 \end{vmatrix}, - \begin{vmatrix} a_1 & a_3 \\ b_1 + c_1 & b_3 + c_3 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 + c_1 & b_2 + c_2 \end{vmatrix} \right)$$

$$= \left(\left| \begin{array}{cc|c} a_2 & a_3 \\ b_2 & b_3 \end{array} \right| + \left| \begin{array}{cc|c} a_2 & a_3 \\ c_2 & c_3 \end{array} \right|, - \left| \begin{array}{cc|c} a_1 & a_3 \\ b_1 & b_3 \end{array} \right| - \left| \begin{array}{cc|c} a_1 & a_3 \\ c_1 & c_3 \end{array} \right|, \left| \begin{array}{cc|c} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| + \left| \begin{array}{cc|c} a_1 & a_2 \\ c_1 & c_2 \end{array} \right| \right)$$

$$= \vec{a} \times \vec{b} + \vec{a} \times \vec{c}.$$

Las otras demostraciones se dejan al lector.

- **Ejemplo 4.1.3** 1. Sean $\vec{a} = 2\vec{i} 1\vec{j} + 3\vec{k} \ y \ \vec{b} = -\vec{i} 2\vec{j} + 4\vec{k}$. Calcular $\vec{a} \times \vec{b} \ y \ \vec{b} \times \vec{a}$.
 - 2. Calcular $\vec{i} \times \vec{j}$, $\vec{j} \times \vec{k}$ y $\vec{k} \times \vec{i}$.
 - 3. Calcular $\vec{i} \times (\vec{i} \times \vec{k})$, $(\vec{i} \times \vec{i}) \times \vec{k}$ y note que en general $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$.

Teorema 4.1.3 Sean \vec{a} y \vec{b} dos vectores no nulos en \mathbb{R} . Se tiene que,

1.
$$\vec{a} \cdot (\vec{a} \times \vec{b}) = 0 \quad \wedge \quad \vec{b} \cdot (\vec{a} \times \vec{b}) = 0.$$

2. $Si \varphi$ es el menor ángulo entre \vec{a} y \vec{b} entonces,

$$||\vec{a} \times \vec{b}|| = ||\vec{a}|| \, ||\vec{b}|| sin(\varphi)$$

Demostración: Para ii). Sean \vec{a} y \vec{b} , luego

$$\begin{split} ||\vec{a} \times \vec{b}||^2 = &(a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2 \\ = &a_2^2b_3^2 + a_3^2b_2^2 - 2a_2a_3b_2b_3 + a_3^2b_1^2 + a_1^2b_3^2 - 2a_1a_3b_1b_3 \\ &+ a_1^2b_2^2 + a_2^2b_1^2 - 2a_1a_2b_1b_2 \\ = &(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2 \\ = &||\vec{a}||^2 ||b||^2 - (||\vec{a}|| ||\vec{b}||cos(\varphi))^2 \\ = &||\vec{a}||^2 ||b||^2 sin^2(\varphi) \end{split}$$

Así, como $0 \le \varphi \le \pi$, entonces $sin(\varphi) \ge 0$

$$||\vec{a} \times \vec{b}|| = ||\vec{a}|| \, ||b|| sin(\varphi).$$

Corolario 4.1.1 Dos vectores no nulos \vec{a} y \vec{b} son paralelos si y sólo si $\vec{a} \times \vec{b} = \theta$.

Observaciones:

1. Si los vectores \vec{a} y \vec{b} son dos lados de un triángulo, entonces el área A del triángulo está dada por,

$$A = \frac{1}{2}||\vec{a} \times \vec{b}||.$$

2. $\vec{a} \times \vec{b}$ es un vector ortogonal a \vec{a} y \vec{b} .

- **Ejemplo 4.1.4** 1. Sean $\vec{a} = 2\vec{i} \vec{j} + 3\vec{k}$ y $\vec{b} = -\vec{i} 2\vec{j} + 4\vec{k}$. Calcular un vector unitario ortogonal \vec{a} \vec{a} y \vec{b} .
 - 2. Hallar el área del triángulo cuyos vértices son los puntos A(1,-1,0), B(2,1,-1) y C(-1,1,2).

Definición 4.1.17 Sean \vec{a} , \vec{b} y \vec{c} tres vectores. Los productos $\vec{a} \cdot (\vec{b} \times \vec{c})$ y $(\vec{a} \times \vec{b}) \cdot \vec{c}$ se llaman producto escalar triple y los productos de la forma $\vec{a} \times (\vec{b} \times \vec{c})$ y $(\vec{a} \times \vec{b}) \times \vec{c}$ se llaman producto vectorial triple.

Teorema 4.1.4 Sean \vec{a} , \vec{b} y \vec{c} vectores no nulos.

- 1. $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$
- 2. $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$
- 3. $|\vec{c} \cdot (\vec{a} \times \vec{b})|$ es el volumen del paralelepípedo cuyas aristas son los vectores $\vec{a}, \, \vec{b} \, y \, \vec{c}.$

Demostración: Para 2). Sean $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3), \ y \ \vec{c} = (c_1, c_2, c_3) \in \mathbb{R}^3$ luego

$$ec{a}\cdot(ec{b} imesec{c})=ec{a}\cdot\left(\left|egin{array}{cccc}b_2&b_3\\c_2&c_3\end{array}
ight|,-\left|egin{array}{cccc}b_1&b_3\\c_1&c_2\end{array}
ight|,\left|egin{array}{cccc}b_1&b_2\\c_1&c_2\end{array}
ight|
ight)$$

 $= \vec{c} \cdot \left(\left| \begin{array}{ccc} a_2 & a_3 \\ b_2 & b_2 \end{array} \right|, - \left| \begin{array}{ccc} a_1 & a_3 \\ b_1 & b_2 \end{array} \right|, \left| \begin{array}{ccc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| \right)$

 $= \vec{c} \cdot (\vec{a} \times \vec{b})$ $= (\vec{a} \times \vec{b}) \cdot \vec{c}$

 $= a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1)$ $= a_1b_2c_3 - a_1b_3c_2 + a_2b_3c_1 - a_2b_1c_3 + a_3b_1c_2 - a_3b_2c_1$ $= c_1(a_2b_3 - a_3b_2) - c_2(a_1b_3 - a_3b_1) + c_3(a_1b_2 - a_2b_1)$

Figura 4.1: $|\vec{c}\cdot(\vec{a}\times\vec{b})|$ volumen del paralelepípedo.

Para 3). Sean $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3), y \vec{c} = (c_1, c_2, c_3) \in \mathbb{R}^3$ luego basta notar que

$$\begin{split} h &= \|proy_{\vec{a} \times \vec{b}} \vec{c}\| = \|\frac{\vec{c} \cdot (\vec{a} \times \vec{b})}{\|\vec{a} \times \vec{b}\|^2} (\vec{a} \times \vec{b})\| \\ &= \left|\frac{\vec{c} \cdot (\vec{a} \times \vec{b})}{\|\vec{a} \times \vec{b}\|^2}\right| \|\vec{a} \times \vec{b}\| \\ &= \frac{|\vec{c} \cdot (\vec{a} \times \vec{b})|}{\|\vec{a} \times \vec{b}\|} \end{split}$$

Así

$$V = h \|\vec{a} \times \vec{b}\| = |\vec{c} \cdot (\vec{a} \times \vec{b})|.$$

4.1.1. Otras normas en \mathbb{R}^n

Como generalización de la norma Euclideana (la usada usualmente) o norma-2, están las normas-p, definidas también en \mathbb{K}^n , cuales vienen dadas por:

- 1. Norma-1: $\|\mathbf{v}\|_1 = |v_1| + \cdots + |v_n|$.
- 2. Norma-infinito: $\|\boldsymbol{v}\|_{\infty} = \max\{|v_1|,\ldots,|v_n|\}.$
- 3. Norma $-p: \|\mathbf{v}\|_p = (|v_1|^p + \dots + |v_n|^p)^{1/p}$.

Ejercicio 4.10 Calcular las normas 1, 2 (euclidiana) e ∞ del vector v = (3, 4, -12).

En el siguiente gráfico podemos ver la diferencia entre las 3 normas más usuales en \mathbb{R}^2 . En cada gráfico están representados todos los puntos con norma igual a 1 bajo la norma respectiva.

Figura 4.2: Gráfica de $V=\{(x,y)\in\mathbb{R}^2:||(x,y)||_p=1\}$ con $p=1,2,\infty.$