REDES, COMUNICACIONES Y LABORATORIO

Mauricio Vásquez Esquivel

Ingeniero Telemático - CSCO13372231

BIBLIOGRAFÍA

RECORDEMOS...

Nivel de			
aplicación	Inicia o acepta una petición		
Nivel de	Agrega información de formato, presentación y	Samuel et a e	
presentación	codificación al paquete		
Nivel de	Agrega información de flujo de tráfico para determinar	Servicios	
sesión	cuándo se enviará el paquete		
Nivel de			
transporte	Agrega información sobre el control de errores		
	Agrega al paquete información sobre dirección y		Enlaces
Nivel de red	secuencia		Diamonitimon
Nivel de	Agrega información de comprobación de errores y	Infraestructura	Dispositivos
enlace	prepara los datos para la conexión física		Comunicación
Nivel físico	Envía los paquetes como una secuencia de bits		

- Explique la funcionalidad y los servicios de la capa de red de Internet
- Explique el concepto de tunelización
- Describa el enrutamiento entre redes
- Describa el protocolo IPv4
- Aplique la API de Java NetworkInterface para obtener información de los dispositivos de acceso a la red

- Encargada del enrutamiento de los paquetes en una red
- Debe conocer la topología de la red y decidir las rutas apropiadas
- Es la capa más baja que maneja la transmisión de extremo a extremo
- Provee el mecanismo para la conexión entre dos o más redes (interred)

- Los servicios de la capa deben estar orientados a cumplir los siguientes objetivos:
 - Los servicios deben ser independientes de la tecnología del enrutador
 - Las direcciones de red disponibles para la capa de transporte deben manejar una numeración uniforme

Figura 5-1. El entorno de los protocolos de la capa de red.

- Interconexión de redes
 - Diferentes tamaños de redes (PAN, LAN, MAN, WAN), tipos (Ethernet y 802.11) y tecnologías de transmisión (guiados y no guiados) generan problemas de heterogeneidad y escalabilidad
 - Se unifican las redes con una sola tecnología para lograr mayor simplicidad

Aspecto	Algunas posibilidades	
Servicio ofrecido.	Sin conexión vs. orientado a conexión.	
Direccionamiento.	Distintos tamaños, plano o jerárquico.	
Difusión.	Presente o ausente (también multidifusión).	
Tamaño de paquete.	Cada red tiene su propio valor máximo.	
Ordenamiento.	Entrega ordenada y desordenada.	
Calidad del servicio.	Presente o ausente; muchos tipos distintos.	
Confiabilidad.	Distintos niveles de pérdida.	
Seguridad.	Reglas de privacidad, cifrado, etcétera.	
Parámetros.	Distintos tiempos de expiración, especificaciones de flujo, etcétera.	
Contabilidad.	Por tiempo de conexión, paquete, byte o ninguna.	

Figura 5-38. Algunas de las diversas formas en que pueden diferir las redes.

- Tunneling: Técnica para encapsular un protocolo de red en otro
- Existen los enrutadores multiprotocolo
- Se introduce el concepto de VPN

Figura 5-40. Tunelización de un paquete de Paris a Londres.

- Enrutamiento de redes
 - El enrutador se encarga de definir la mejor opción al momento de escoger una ruta para los paquetes
 - Una red puede tener múltiples algoritmos de enrutamiento. Esto ocasiona problemas de uniformidad en interredes
 - Algunos enrutadores pueden involucrar funcionalidades adicionales:
 - ACL
 - DHCP
 - Firewall

```
C:\Users\Maove>ipconfig /all
Configuración IP de Windows
  Nombre de host. . . . . . . : Maove-Desktop
 Sufijo DNS principal . . . . :
 Tipo de nodo. . . . . . . : híbrido
  Enrutamiento IP habilitado. . . : no
  Proxy WINS habilitado . . . . : no
Adaptador de Ethernet Ethernet:
 Sufijo DNS específico para la conexión. . :
 Descripción . . . . . . . . . . . . . . . Killer E2200 Gigabit Ethernet Controller
  DHCP habilitado . . . . . . . . . . . sí
 Configuración automática habilitada . . . : sí
 Vínculo: dirección IPv6 local. . . : fe80::b556:9855:e9b9:4850%15(Preferido)
 Dirección IPv4. . . . . . . . . . . . . . . . . 192.168.1.54(Preferido) ◀
  Concesión obtenida.....: miércoles, 11 de septiembre de 2019 23:10:02
 La concesión expira . . . . . . . . . : jueves, 19 de septiembre de 2019 11:23:53
  Puerta de enlace predeterminada . . . . : 192.168.1.254
  Servidor DHCP . . . . . . . . . . . . . . . . . . 192.168.1.254
  Servidores DNS. . . . . . . . . . . . . . . . . . 190.248.0.1
                             200.31.208.101
 NetBIOS sobre TCP/IP. . . . . . . . : habilitado
```


• Pregunta:

¿Qué pasaría si no existiese IP?

- Se define el concepto del sistema autónomo (AS Autonomous System)
- Actualmente, existen
 - Protocolos de puerta de enlace interior (IGP)
 - Protocolos de puerta de enlace exterior (EGP)

- Entidades reguladoras:
 - IANA
 - IETF
 - RFC 1958

- Internet Protocol (IP)
 - No orientado a conexión
 - Mecanismo de mejor esfuerzo (best-effort protocol)
 - Unifica las redes, permitiendo la comunicación interred
 - Busca la conexión de extremo a extremo
 - Protocolo enrutado, como AppleTalk e IPX

Internet Protocol

APPENDIX A: Examples & Scenarios

Example 1:

This is an example of the minimal data carrying internet datagram:

Example Internet Datagram

Figure 5.

Note that each tick mark represents one bit position.

This is a internet datagram in version 4 of internet protocol; the internet header consists of five 32 bit words, and the total length of the datagram is 21 octets. This datagram is a complete datagram (not a fragment).

RFC 791

Referencia:

https://tools.ietf.org/html/rfc791

- Protocolos de enrutamiento
 - Estático
 - Dinámico
 - Vector-distancia
 - RIP
 - IGRP
 - Estado del enlace
 - OSPF
 - ISIS
 - Híbrido
 - EIGRP

- Próxima clase
 - IPv4
 - Packet Tracer

Material utilizado	Arboleda, L. (2012). Programación en Red con Java. Harold, E. (2004). Java network programming. " O'Reilly Media, Inc.". Tanenbaum, A. S. (2003). Redes de computadoras. Pearson educación. Reese, R. M. (2015). Learning Network Programming with Java. Packt Publishing Ltd.
Actividades DESPUÉS clase	A1. Leer del libro 3, la página 305-307, la secciones 5.5.3 y 5.5.4, 374-379 - Revisado A2. Leer del libro 2 las páginas 107-116

