Задача 1.

Let Z is a random variable with mean $\mu = E(Z)$ and variance $\sigma^2 = V(Z)$. Let we have a sample of size 2, $z_1 = 0$ and $z_2 = 4$ from this distribution.

We are interested in the parameter $\theta = \mu^2$

- (a) Let the estimator is $\hat{\theta} = \overline{z}^2 = \left(\frac{z_1 + z_2}{2}\right)^2 = \frac{1}{4}(z_1 + z_2)^2 = 4$. Find bias of this estimator.
- (b) Explain how you would find a bootstrap-bias-corrected estimator, $\hat{\theta}_{Boot}$ and calculate its bias.
- (c) Formulate the condition when the bias of $\hat{\theta}_{Boot}$ is in absolute value smaller than the bias of $\hat{\theta}$. parameters.

Решение:

(a)
$$E(\hat{\theta}) = \frac{1}{4}E(Z_1^2 + Z_2^2 + 2Z_1Z_2) = \frac{1}{4}E(2(\mu^2 + \sigma^2) + 2\mu^2) = \mu^2 + \frac{1}{2}\sigma^2$$
,
 $Bias(\hat{\theta}) = E(\hat{\theta}) - \mu^2 = \frac{1}{2}\sigma^2$

(b)
$$\hat{\theta}_{Root} = 2\hat{\theta} - \overline{\hat{\theta}}^*$$
;

$$\overline{\hat{\theta}}^* = \frac{1}{B} \sum_{b=1}^B \hat{\theta}_b^* \; ; \; E\left(\overline{\hat{\theta}}^*\right) = E\left(\hat{\theta}_1^*\right), \text{ where } \; \hat{\theta}_1^* = \frac{1}{4} \left(Z_1^{*2} + Z_2^{*2}\right) \text{ has a discrete distribution:}$$

$$\hat{\theta}_{1}^{*} = \begin{cases} 0, & p = 0.25, \\ 4, & p = 0.50, \text{ Thus, } E(\hat{\theta}^{*}) = E(\hat{\theta}_{1}^{*}) = 0.25 + 4.0.50 + 16.0.25 = 6. \\ 16, & p = 0.25. \end{cases}$$

Mathematical expectation of the bootstrap-bias-corrected estimator is

$$E\left(\hat{\theta}_{Boot}\right) = E\left(2\hat{\theta} - \overline{\hat{\theta}}^*\right) = 2\left(\mu^2 + \frac{1}{2}\sigma^2\right) - 6 = 2\mu^2 + \sigma^2 - 6, \text{ and its bias is } Bias\left(\hat{\theta}_{Boot}\right) = \mu^2 + \sigma^2 - 6.$$

(c) The condition is
$$|\mu^2 + \sigma^2 - 6| < \frac{1}{2}\sigma^2$$
, or $-\frac{1}{2}\sigma^2 < \mu^2 + \sigma^2 - 6 < \frac{1}{2}\sigma^2$, or

$$\max\left\{0, 6 - \frac{3}{2}\sigma^2\right\} < \mu^2 < \max\left\{0, 6 - \frac{1}{2}\sigma^2\right\}$$

Задача 2.

Данные по пропускам занятий в 2018 г.

calc1 calculus, 1st year (0–100) stat1 statistics, 1st year (0–100)

mid2 оценка по мидтерму 2 (2-го года) (0–100)

na1 число пропусков семинаров до mid1

na2 число пропусков семинаров от mid1 до mid2

na12 = na1 + na2

lcalc1 = ln(1+calc1)

lstat1 = ln(1+stat1)

lmid2 = ln(1+mid2)

Ниже приведены оценки нескольких моделей.

(a) По модели 1 найдите прогноз оценки по второму мидтерму студента с calc1=55, na12=7 и 95%-ный доверительный интервал прогноза. Как изменится оценка при уменьшении количества пропусков на 1?

- **(6)** По модели 2 найдите прогноз оценки по второму мидтерму студента с calc1=55, na12=7. Как изменится оценка при уменьшении количества пропусков на 1?
- **(в)** По модели 3 найдите вероятность того что студент с calc1=55, na12=7 получит оценку больше 35 (проходной балл). Как изменится эта вероятность при уменьшении количества пропусков на 1?
- (г) По модели 4 найдите вероятность того что студент с calc1=55, na12=7 получит оценку больше 35 (проходной балл). Как изменится эта вероятность при уменьшении количества пропусков на 1?
- (д) Интерпретируйте результаты модели 5.

дескриптивные статистики

.sum calc1 stat1 mid2 na1 na2 na12 lcalc1 lstat1 lmid2

Variab	ole	Obs	Mean	Std.	dev.	Min	Max
calc1	222	54.572	207	16.0	7249	21.4	97.2
stat1	222	53.468	347	18.8	7363	16	91
mid2	214	39.41	121	20.5	2021	0	95
na1	222	2.1623	162	2.25	9382	0	7
na2	222	3.3063	306	2.65	2729	0	7
na12	222	5.4684	468	4.50	4035	0	14
lcalc1	222	3.9710	025	.317	4502	3.11	4.59
lstat1	222	3.931	568	.375	9945	2.83	4.52
lmid2	214	3.4733	327	.860	5712	0	4.56

Модель 1 . reg mid2 na12 calc1

Source	l SS	df	MS	Number of ob	s =	214
	+			F(2, 211)	=	159.56
Model	53991.0084	2	26995.5042	Prob > F	=	0.0000
Residual	35698.8047	211	169.188648	R-squared	=	0.6020
	+			Adj R-square	ed =	0.5982
Total	89689.8131	213	421.078935	Root MSE	=	13.007
mid2	•			?> t [95%	conf.	interval]
	+					
na12	-1.185705	.2274389	-5.21	0.000 -1.634	049	7373611
na12 calc1		.2274389		0.000 -1.634 0.000 .6751		7373611 .925099
			12.62		.377	

(матрица ковариаций оценок)

. matrix list e(V)

(a) Прогноз оценки при calc1=55, na12=7

 $\hat{m}2 = 1.49 - 1.186 * 7 + 0.80 * 55 = 37.2$

$$V(\hat{m}2) = V(-1.18*b1 + 0.80b2 + 1.19*b3) =$$

$$= 1.18^{2}V(b1) + 0.80^{2}V(b2) + 1.19^{2}V(b3) -$$

$$-2*1.18*0.80*Cov(b1,b2) - 2*1.18*1.19*Cov(b1,b3) + 2*0.80*1.19*Cov(b2,b3) = 42.8 = 6.54^{2}$$

$$CI = 37.2 \pm 1.96 \cdot 6.54 = (34.4,50.0)$$

Эффект от na12 → na12-1 +1.19 к оценке

Модель 2 . reg lmid2 na12 lcalc1

	SS +	df			per of obs	=	214 77.99
Model Residual	67.0495207	2 211 	33.5247604 .429832359	4 Prob 9 R-sc - Adj	211) > F quared R-squared : MSE	= = =	0.0000 0.4251 0.4196
lmid2	Coefficient +				-	nf.	interval]
na12		.0114449 .1623836 .6789243	-4.67 8.05 -2.14	0.000 0.000 0.034	0760397 .9868405 -2.789433	5	0309176 1.627045 1127461

(6)
$$l\hat{m}2 = -1.45 - 0.053*7 + 1.31*ln(1+55) = 3.44$$

 $\hat{m}2 = \exp(3.44) - 1 = 30.0$

Эффект от na12 \rightarrow na12-1 $l\hat{m}2 \rightarrow l\hat{m}2 + 0.053$; $\hat{m}2 + 1 \rightarrow (m2 + 1) * \exp(0.053) = 31.0 * 1.05 = 37.5 +6.5 к оценке$

Модель 3

gen pass= (mid2>35) if year==2018

. probit pass na12 lcalc1

(в)
$$P(pass) = \Phi(-0.063*7 + 2.34*ln(1+55) - 8.81) = \Phi(0.15) = 0.559$$
 Маргинальный эффект $P(pass1) = \Phi(-0.063*6 + 2.34*ln(1+55) - 8.81) = \Phi(0.21) = 0.583$

DeltaP = 0.559 - 0.583 = 0.025 = 2.5%.

Модель 4

gen grade= pass replace grade=grade+1 if (mid2>50)

. tab grade

Cum.	Percent	Freq.	grade
45.95 66.22 100.00	45.95 20.27 33.78	102 45 75	0 1 2
	100.00	222	Total

oprobit grade na12 lcalc1

Ordered probit	5				Number of ob LR chi2(2) Prob > chi2 Pseudo R2	= 89.82 = 0.0000
_	Coefficient				[95% conf.	interval]
na12	0511547 2.347722	.0217157	-2.36	0.018		0085928 3.034291
,		1.45024 1.464066			6.095128 6.762266	11.77996 12.5013

(r)
$$P(grade = 0) = \Phi(\text{cut } 1 - \text{xb}) = \Phi(-0.155) = 0.438 = 1 - 0.561$$

 $P(pass) = 0.561$

Модель 5 . sqreg lmid2 na12 lcalc1, q(.1 .2 .3 .4 .5 .6 .7 .8 .9) reps(200)

		 	Bootstrap				
	lmid2	Coefficient	std. err.	t 	P> t	[95% conf.	interval]
q10		,					
	na12	0838806	.0426027	-1.97	0.050	167862	.0001007
	lcalc1	2.426944 -6.487357	.6571186 2.814974	3.69 -2.30	0.000	1.131586 -12.03643	3.722303 938281
	_cons	-0.40/33/ 	2.014974	-2.30		-12.03643	930201
q20		l					
	na12 lcalc1	0559812 1.641716	.0177183	-3.16 4.97	0.002	0909087 .9911649	0210537 2.292268
	cons	-3.009746	1.396078	-2.16	0.000	-5.761793	2576981
q30	na12	 0354652	.012701	-2.79	0.006	0605024	0104281
	lcalc1	1.49511	.1634331	9.15	0.000	1.172939	1.817281
	_cons	-2.365492	.6855298	-3.45	0.001	-3.716857	-1.014128
		+					
q40	na12	 0307546	.0084764	-3.63	0.000	0474639	0140452
	lcalc1	1.357278	.1743089	7.79	0.000	1.013668	1.700888
	_cons	-1.756461	.7341471	-2.39	0.018	-3.203664	3092587
a50		+ 					
7	na12	0339861	.0096406	-3.53	0.001	0529902	0149819
	lcalc1	1.207537	.1586549	7.61	0.000	.8947857	1.520289

	_cons	-1.047199	.6704901	-1.56	0.120	-2.368916	.2745188
q60							
	na12	0273181	.0093108	-2.93	0.004	0456722	008964
	lcalc1	1.107011	.1254063	8.83	0.000	.8598014	1.354221
	_cons	5841629	.5314225	-1.10	0.273	-1.63174	.4634146
q70							
-	na12	0224138	.0083664	-2.68	0.008	0389063	0059214
	lcalc1	.9942065	.0839169	11.85	0.000	.8287835	1.159629
	_cons	0789144	.3660945	-0.22	0.830	8005857	.6427569
q80							
	na12	020736	.0090724	-2.29	0.023	0386202	0028517
	lcalc1	.920427	.0986422	9.33	0.000	.7259765	1.114877
	_cons	.323837	.4444675	0.73	0.467	5523287	1.200003
q90							
-	na12	0248994	.0077376	-3.22	0.001	0401522	0096466
	lcalc1	.7533497	.1121907	6.71	0.000	.5321915	.9745079
	_cons	1.162592	.4726978	2.46	0.015	.2307763	2.094407

. grqreg, ci ols olsci reps(200)

(д) начальные условия особенно важны для слабых студентов. Так же и посещение семинаров.

Задача 3.

Below you can find estimation results from a multinomial logit model. The dependent variable is

status = 0, if if enrolled in school; (College)

- = 1, if not in school and not working (Home);
- = 2, if working (Work).

Choice 0 (College) is the base choice in the model. Regressors are number of years of education at the current moment (educ), experience of employment (exper), and its square ($exper^2$), also a race dummy black = 1, if the person is afro American.

Table 1: Multinomial Logit Estimates of School and Labor Market Decisions

Explanatory Variable	Home	Work
	(status=1)	(status=2)
educ	-0.674	-0.315
	(0.070)	(0.065)
exper	-0.106	0.849
	(0.173)	(0.157)
exper ²	-0.013	-0.077
1	(0.025)	(0.023)
black	0.813	0.311
	(0.303)	(0.282)
cons	10.28	5.54
	(1.13)	(1.09)
# of obs	1717	
% correctly predicted	79.6	
Log-likelihood value	-907.86	
Pseudo- R^2	0.243	

- (a) (10 points) Give interpretation of the coefficients at *educ* in both columns of the table (Home, Work). How *educ* influence on the probability to be in school?
- **(b)** (10 points) Calculate the marginal effect $\frac{\partial P(y=0|x)}{\partial educ}$ for a white person with 12 years of schooling and 10 years of experience.
- (c) (5 points) Describe the model for which the property "Independence of irrelevant alternatives" is relevant. What is "Independence of irrelevant alternatives"?

Решение:

(a) Home: With additional year of education, odds ratio P(y=1|x)/P(y=0|x) decreases since the coefficient at educ is negative (-0.674). Work: odds ratio P(y=2|x)/P(y=0|x) also decreases since the coefficient at educ is negative (-0.315). So far as

$$P(y=2|x) + P(y=1|x) + P(y=0|x) \equiv 1$$
, we have $\frac{P(y=2|x)}{P(y=0|x)} + \frac{P(y=1|x)}{P(y=0|x)} + 1 \equiv \frac{1}{P(y=0|x)}$,

hence, the probability of choice 0, P(y=0|x) increases.

(b)
$$\frac{\partial P(y=0 \mid x)}{\partial e duc} = \frac{\partial}{\partial x_1} \frac{1}{1 + \sum_{k=1}^{2} \exp(x'\beta_k)} = \frac{-\left(\exp(x'\beta_1)\beta_{11} + \exp(x'\beta_2)\beta_{21}\right)}{\left(1 + \sum_{k=1}^{2} \exp(x'\beta_k)\right)^2};$$

$$\exp(x'\beta_1) = \exp(-0.168) = 0.845, \ \exp(x'\beta_2) = \exp(2.550) = 12.807.$$

$$\frac{\partial P(y=0 \mid x)}{\partial educ} = -\frac{0.845 \cdot (-0.674) + 12.807 \cdot (-0.315)}{\left(1 + 0.845 + 12.807\right)^2} = 0.021.$$

(c) Under the multinomial logit model, the probability of selecting choice *i* is $P_j = \frac{e^{V_i}}{\sum_{k \in C} e^{V_k}}$,

were random utility $U_i = V_i + \varepsilon_i$. Thus $\frac{P_i}{P_j} = e^{V_i - V_j}$, the ratio of probabilities depends only on choices i and j, but not on any other alternatives. This follows from the assumption of i.i.d. ε_i

.