☐ xfrolk03 / Digital-electronics-1-2021

Digital-electronics-1-2021 / Labs / 05-counter / README.md

Lab assignment

- 1. Preparation tasks (done before the lab at home). Submit:
 - Figure or table with connection of push buttons on Nexys A7 board,
 - Table with calculated values.
- 2. Bidirectional counter. Submit:
 - Listing of VHDL code of the process p_cnt_up_down with syntax highlighting.
 - Listing of VHDL reset and stimulus processes from testbench file tb_cnt_up_down.vhd with syntax highlighting and asserts,
 - Screenshot with simulated time waveforms; always display all inputs and outputs,
- 3. Top level. Submit:
 - Listing of VHDL code from source file top.vhd with all instantiations for the 4bit bidirectional counter.
 - o Image of the top layer including both counters, ie a 4-bit bidirectional counter from Part 4 and a 16-bit counter with a 10 ms time base from Part Experiments on your own. The image can be drawn on a computer or by hand.

1. Preparation tasks

Figure or table with connection of push buttons on Nexys A7 board

 $BTN_L = 0V$

 $BTN_H = 3.3V$

Button	Pin	
BTNL	P17	
BTNR	M17	
BTNU	M18	
BTND	P18	
BTNC	N17	

Table with calculated values

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1A80"	b"0110_0001_1010_1000_0000"
10 ms	1 000 000	x"F_4240"	b"1111_0100_0010_0100_0000"
250 ms	25 000 000	x"17D_7840"	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2FA_F080"	b"0010_1111_1010_1111_0000_1000_0000"

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
1 sec	100 000	x"5F5_E100"	b"0101_1111_0101_1110_0001_0000_0000"

2. Bidirectional counter.

Listing of VHDL code of the process p_cnt_up_down with syntax highlighting.

Listing of VHDL reset and stimulus processes from testbench file tb_cnt_up_down.vhd with syntax highlighting and asserts

```
p_stimulus : process
begin
    report "Stimulus process started" severity note;

-- Enable counting
s_en <= '1';

-- Change counter direction
s_cnt_up <= '1';
wait for 230 ns;
s_cnt_up <= '0';</pre>
```

```
wait for 230 ns;

-- Disable counting
s_en <= '0';

report "Stimulus process finished" severity note;
wait;
end process p_stimulus;</pre>
```

Screenshot with simulated time waveforms

3. Top level

Listing of VHDL code from source file top.vhd with all instantiations for the 4-bit bidirectional counter

```
architecture Behavioral of top is
    -- Internal clock enable
    signal s_en : std_logic;
    -- Internal counter
    signal s_cnt : std_logic_vector(16 - 1 downto 0);
begin
    -- Instance (copy) of clock_enable entity
    clk en0 : entity work.clock enable
        generic map(
            g_MAX => 100000000
        port map(
                 => CLK100MHZ,
            clk
            reset => BTNC,
            ce o => s en
        );
    -- Instance (copy) of cnt_up_down entity
    bin_cnt0 : entity work.cnt_up_down
        generic map(
```

```
g_CNT_WIDTH => 4
         port map(
              clk => CLK100MHZ,
             reset => BTNC,
             en_i \Rightarrow s_en,
             cnt_up_i \implies SW(0),
             cnt_o => s_cnt
         );
    -- Display input value on LEDs
    LED(3 downto 0) <= s cnt;
    -- Instance (copy) of hex 7seg entity
    hex2seg : entity work.hex_7seg
         port map(
             hex_i => s_cnt,
             seg_o(6) \Rightarrow CA,
             seg_o(5) \Rightarrow CB
             seg_o(4) \Rightarrow CC,
             seg_o(3) \Rightarrow CD,
             seg_o(2) \Rightarrow CE
             seg_o(1) \Rightarrow CF,
             seg o(0) \Rightarrow CG
         );
    -- Connect one common anode to 3.3V
    AN <= b"1111 1110";
end architecture Behavioral;
```

Image of the top layer including both counters, ie a 4-bit bidirectional counter from Part 4 and a 16-bit counter with a 10 ms time base