

Introduction to Machine Learning

Evaluating Model Performance

Performance measures

predicted→ real↓	Class_pos	Class_neg
Class_pos	TP	FN
Class_neg	FP	TN

THINGS GOT REALLY INTERESTING WHEN THE STATISTICIAN STARTED DOING WARD ROUNDS

Which classifier is better?

Algo	Acc	RMSE	TPR	FPR	Prec	Rec	F	AUC
NB	71.7	.4534	.44	.16	·53	.44	.48	.7
C4.5	75.5	.4324	.27	.04	·74	.27	.4	.59
3NN	72.4	.5101	.32	.1	.56	.32	.41	.63
Ripp	71	.4494	.37	.14	.52	.37	.43	.6
SVM	69.6	.5515	·33	.15	.48	·33	.39	.59
Bagg	67.8	.4518	.17	.1	.4	.17	.23	.63
Boost	70.3	.4329	.42	.18	.5	.42	.46	·7
RanF	69.23	·47	.33	.15	.48	·33	.39	.63

Accuracy

predicted→ real↓	Class_pos	Class_neg
Class_pos	TP	FN
Class_neg	FP	TN

P = TP + FN

N = TN+FP

 Accuracy is % correct (fraction correct)

Accuracy = (TP + TN)/(P+N)

Issues with Accuracy

Predict→ True ↓	Pos	Neg
Pos	200	300
Neg	100	400

Predict→ True↓	Pos	Neg
Pos	400	100
Neg	300	200

Issues with Accuracy

Predict→ True↓	Pos	Neg
Pos	200	300
Neg	100	400

Predict→ True↓	Pos	Neg
Pos	400	100
Neg	300	200

Issues with Accuracy

Predict→ True ↓	Pos	Neg
Pos	200	300
Neg	100	400

Predict→ True↓	Pos	Neg
Pos	400	100
Neg	300	200

Discrimination vs detection (spotting)

- Precision: of all the Run activities you found, how many were actually Run?
- Precision = TP/(TP+FP)

- Recall: of all of the Runs that exist, how many did you find?
- Recall = TP/(TP+FN) = TP/P

Precision / Recall curve

ROC curve

F-Measure

•
$$F = \frac{2 \times P \times R}{P + R}$$

• Combines Precision and Recall

	0.0	0.2	0.4	0.6	0.8	1.0
0.0	0.00	0.00	0.00	0.00	0.00	0.00
0.2	0.00	0.20	0.26	0.30	0.32	0.33
0.4	0.00	0.26	0.40	0.48	0.53	0.57
0.6	0.00	0.30	0.48	0.60	0.68	0.74
0.8	0.00	0.32	0.53	0.68	0.80	0.88
1.0	0.00	0.33	0.57	0.74	0.88	1.00

F-Measure

Note that f-measure is designed to evaluate binary classifiers

	0.0	0.2	0.4	0.6	0.8	1.0
0.0	0.00	0.00	0.00	0.00	0.00	0.00
0.2	0.00	0.20	0.26	0.30	0.32	0.33
0.4	0.00	0.26	0.40	0.48	0.53	0.57
0.6	0.00	0.30	0.48	0.60	0.68	0.74
8.0	0.00	0.32	0.53	0.68	0.80	0.88
1.0	0.00	0.33	0.57	0.74	0.88	1.00

Example

Class 1

	Correct Yes	Correct No
Predicted Yes	10	10
Predicted No	10	970

Class 2

	Correct Yes	Correct No
Predicted Yes	90	10
Predicted No	10	890

Micro Average

mioro / trorago		
	Correct Yes	Correct No
Predicted Yes	100	20
Predicted No	20	1860

"But before we move on, allow me to belabor the point even further..."

Cross-Validation

Algorithm 8 CrossValidate(LearningAlgorithm, Data, K)

1: $\hat{\epsilon} \leftarrow \infty$ // store lowest error encountered so far $\hat{\alpha} \leftarrow \text{unknown}$ // store the hyperparameter setting that yielded it

_{3:} **for all** hyperparameter settings α **do**

$$err \leftarrow [\]$$
 // keep track of the K -many error estimates for $k = 1$ to K do

for
$$k = 1$$
 to K do
$$train \leftarrow \{(x_n, y_n) \in Data : n \mod K \neq k - 1\}$$

end for

8:

9:

10:

11:

12:

13:

14:

15:

 $avgErr \leftarrow \text{mean of set } err$

if $avgErr < \hat{\epsilon}$ then

 $\hat{\epsilon} \leftarrow avgErr$

 $\hat{\alpha} \leftarrow \alpha$

end if

16: end for

$$y_n) \in Data$$
 $(y_n) \in Data : y_n$

 $test \leftarrow \{(x_n, y_n) \in Data : n \mod K = k - 1\}$ // test every Kth example

$$test \leftarrow \{(x_n, y_n) \in Data : n \mod K = k - model \leftarrow Run LearningAlgorithm on train$$

$$model \leftarrow Run \ Learning Algorithm \ on \ train$$
 $err \leftarrow err \oplus error \ of \ model \ on \ test$ // add current error to list of errors

every
$$K$$
th ϵ

// remember these settings

// because they're the best so far

Algorithm 9 KNN-Train-LOO(D) 1: $err_k \leftarrow o, \forall 1 \leq k \leq N-1$ _{2:} for $n = \tau$ to N do

 $S_m \leftarrow \langle || x_n - x_m ||, m \rangle, \forall m \neq n$

for k = 1 to N - 1 do

 $\langle dist, m \rangle \leftarrow S_k$

if $\hat{y} \neq y_m$ then

 $\hat{y} \leftarrow \hat{y} + y_m$

 $S \leftarrow \text{sort}(S)$

 $\hat{y} \leftarrow 0$

8:

12:

13: end for

 $err_k \leftarrow err_k + 1$

end if end for

10: 11:

14: **return** argmin_k err_k

// err_k stores how well you do with kNN

// compute distances to other points

// put lowest-distance objects first

// current label prediction

// one more error for kNN

// return the K that achieved lowest error

// let kth closest point vote

Learning curve

Other considerations

Lets try these out

Practical ML | Degining to v on a machine

Beginning to work learning project

Project

- Team
- Every project
 - Experimental results
 - Validate hypothesis/method

- Design of new variation on method
- Implementation of method discussed in class from ground-up
- Application of class techniques to a new problem
- Real working system (app) to solve ML task
- Experimental comparison of alternative techniques

Techniques Not Discussed in Class

- Semi-supervised learning
- Incremental decision tree
- Forecasting (stock market, weather, HAR-based activities)
- Collaborative filtering
- Daume chapters 16-18

Grading criteria (100 points)

- Proposal
 - 10 points
 - Submitted as part of HW #4
- Poster
 - 30 points
 - Presented last week of class
 - Will have google docs signup sheet

- Project
 - 40 points
 - Working code with video demo
 - Due day of final exam
- Extras
 - 20 points
 - Project scope and completeness
 - Creativity
 - Teamwork

Pick a dataset

Pick a dataset

Feature engineering

Transform raw data into features

The algorithms we used are very standard for Kagglers. [...] We spent most of our efforts in feature engineering.

 Xavier Conort, on "Q&A with Xavier Conort" on winning the Flight Quest challenge on Kaggle

Decide on performance measure

Test a few diverse machine learning algorithms

Get creative!

Tell a story

Practical applications

