

# **Expectation-Maximization Based Defense Mechanism** for Distributed Model Predictive Control



Rafael Accácio Nogueira, Romain Bourdais, Simon Leglaive, Hervé Guéguen

IETR-CentraleSupélec, Rennes, France

rafael-accacio.nogueira @centralesupelec.fr

### 1. Challenge - False Data injection in dMPC exchange

- ▶ Decomposable quadratic objective  $\sum_{i=1}^{M} J_i$
- lacksquare Coupling constraint  $\sum_{i=1}^{M} \Gamma_i \boldsymbol{U}_i \leq \boldsymbol{U}_{\max}$





Coordinator allocates  $\theta_i$ Agent has dissatisfaction  $\lambda_i$ 

What happens if an agent lies about  $\lambda_i$ ?



### 2. Attack and consequences

- $\triangleright \lambda_i$  is the dissatisfaction of i to allocation  $\theta_i$
- ► Attacker increases  $\lambda_i$  using function  $\gamma(\cdot)$
- $ightharpoonup \uparrow$  dissatisfaction ==  $\uparrow$  allocation

#### Remark

Attacker says it is satisfied only when it is

#### Assumption

Attacker chooses an *invertible linear function* 

$$\lambda_i = \gamma_i(\lambda_i) = T_i[k]\lambda_i,$$

- $\blacktriangleright$  Effects of cheating matrix  $T_i[k]$ 
  - Increase on global objective
  - Destabilization

# Example $T_1[k] = \tau_1 I$



# Can we mitigate the effects?

YES! If we estimate  $T_i[k]$  and invert it But how?

## 3. Estimating cheating matrix $T_i[k]$

Local problems (A) are QP

Explicit Solution with PWA form w.r.t  $\theta_i$ :

 $\boldsymbol{\lambda}_i[k] = -P_i^n \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^n[k], \text{ if } G_i^n[k] \boldsymbol{\theta}_i[k] \preceq \boldsymbol{b}_i^n[k]$  (B) with  $n \in \{1:N\}$ .  $G_i^n[k]$  and  $\boldsymbol{b}_i^n[k]$  define regions. Remark

Sensibilities  $P_i^n$  are time invariant.

#### Another assumption

In Region 1 local constraints are active:

$$\lambda_i[k] = -P_i^1 \theta_i[k] - s_i^1[k]$$
, if  $G_i^1[k] \theta_i[k] \preceq b_i^1[k]$  (C) and  $\theta_i = \mathbf{0}$  belongs to it

Attacker modifies sensibility  $\tilde{P}_i[k] = T_i[k]\bar{P}_i$ 

If we can know **nominal**  $\bar{P}_i^1$ ,

by estimating  $\tilde{P}_i[k]$ , we can find  $T_i[k]^{-1}$ :

$$\widehat{T_i[k]}^{-1} = \bar{P}_i^1 \widehat{\tilde{P}_i^1[k]}^{-1} \tag{D}$$

### But how can we estimate the $P_i^1[k]$ ?

**Enter Expectation Maximization** 

- Classify data in regions (latent variables)
- Estimates parameters using weighted LS

EM needs minimally excited inputs  $\theta_i$  and  $\lambda_i$ .

- During negotiation (time dependence)
- ► Solution: estimate in a separate phase
  - ► Generate independent points near  $\theta_i = 0$ **Artificial Scarcity Sampling**

### 4. Expectation Maximization

- ▶ Regions are indexed by  $z \in \mathcal{Z} = \{1 : Z\}$
- ► Gaussian mixture (mean (B) and  $\Sigma \to 0$ )
- ▶ Parameters  $\mathcal{P} = \{\mathcal{P}^z \mid z \in \mathcal{Z}\}$ , with
- $\mathcal{P}^z = (P^z, \widetilde{\mathbf{s}}^z, \pi^z)$ .
- ▶ Observations  $o \in \mathcal{O} = \{1 : O\}$  of  $(\theta_i, \lambda_i)$

Algorithm 1: Expectation Maximization Initialize parameters  $\mathcal{P}_{\text{new}}$ 

repeat

 $|\mathcal{P}_{ ext{cur}} \leftarrow \mathcal{P}_{ ext{new}}|$ 

E step:

Evaluate  $\zeta_{zo}(\mathcal{P}) = \mathbb{P}(\underline{z}_o = z | \underline{\lambda}_o, \underline{\theta}_o; \mathcal{P})$ 

M step:

Reestimate parameters using:

 $\mathcal{P}_{\text{new}} = \arg \max_{\mathcal{P}} \mathbb{E}_{\zeta_{zo}(\mathcal{P}_{\text{cur}})} \left[ \ln \mathbb{P}(\underline{\Theta}, \underline{\Lambda}, \underline{Z}; \mathcal{P}) \right]$ 

until  $\mathcal{P}_{cur}$  converges to a local maximum

#### 5. Secure dMPC

Modified negotiation (some additional steps):

- 1. Detection Phase
- 1.1 Estimate sensibility  $\tilde{P}_i^1[k]$ 
  - Artificial Scarcity Sampling + EM
- 1.2 Detect attack if  $\|\tilde{P}_i^1[k] \bar{P}_i^1\|_F \ge \epsilon_P$
- 2. Negotiation Phase
- 2.1 If detected reconstruct  $\lambda_i$

$$oldsymbol{\lambda}_{i ext{rec}} = \widehat{T_i[k]}^{-1} \widetilde{oldsymbol{\lambda}}_i$$
 (E

**2.2** Use adequate  $\lambda_i$  to update  $\theta_i$ 

# 6. Example: distributed control for a heating network under power scarcity





