Live Migration with SR-IOV Pass-through

Weidong Han hanweidong@huawei.com August, 2015

www.huawei.com

- Background
- Prototype
- Evaluation
- Summary

Background

VM live migration is one of the most important feature of virtualization

- SR-IOV migration is required
 - NIC becomes more powerful: 10Gbit -> 40Gbit -> 100Gbit

Live Migration Algorithm

Challenges

- How to migrate hardware state of the assigned device?
 - Some registers of existing NICs are not writable
- Bonding driver (VF and virtio-net) in VM
 - Performance is not consistent
 - CPU consumption is not consistent
 - Hot plugging device increases downtime

- Background
- Prototype
- Evaluation
- Summary

Ideally, Hardware can help

- I/O registers are readable and writable
- NIC Driver provides suspend and resume functions
 - Suspend: save hardware state
 - Resume: restore hardware state

Prototype Overview

Libvirt

Migration check, prepare VM config

QEMU

- Implement savevm handlers (save and load) for assigned device
- Use IProute2 command to notify SR-IOV driver for migration

Iproute2

 Add commands: migrate, cancelmigration, suspend, resume.

PF driver

Notify VF driver for migration operations

VF driver

- DMA dirty page logging
- Suspend and resume VF state

Note: based on a Huawei NIC prototype

Live Migration Algorithm with SR-IOV Pass-through

Iproute2 Migration Commands

- Iproute2 can set VF state from kernel 3.12
 - #ip link set <pf> vf <vf_index> state auto|enable|disable
- Extend iproute VF state set commands
 - #ip link set <pf> vf <vf_index> state auto|enable|disable| migrate|cancelmigration|suspend|resume
- PF driver receives migration commands from iproute2, and passes them to VF driver via mailbox

DMA Dirty Pages Logging

- Memory access by DMA can not be tracked by page table (e.g EPT)
- VF driver uses dummy writes (read and write a byte at the same address) to make it dirty, then the memory can be tracked
- It almost doesn't impact the performance

VF State Migration

VF suspend

- VF driver saves internal hardware states, and down interface
- QEMU saves states of assigned VF via registered savevm handlers

VF resume

- QEMU restores states of assigned VF via registered savevm handlers
- VF driver restores internal hardware states, up interface, and sends ARP.

- Background
- Prototype
- Evaluation
- Summary

Test Environment

Host

- CPU: Huawei RH2288v2 (Xeon CPU E5-2620 v2@2.1Ghz)
- NIC:
 - Huawei smart NIC prototype (for pass-through)
 - Broadcom Corporation NetXtreme BCM5719 Gigabit (VM data transfer for migration)
- Storage: Huawei OceanSpace S5500T, through IPSAN

VM

SLES11 SP3 64bit, 4 CPU, 4GB Memory

Results

VM Migration Time (ms)

VM Downtime (ms)

Note: tested with default qemu max_downtime set, here is not the minimal downtime

 VM migration time and downtime impact of our prototype is little.

Results (cont.)

- Normally the network downtime of VM with VF is a bit of larger than VM with virtio-net
 - Additional time of VF suspend and resume via VF driver: suspend time is about 5ms, resume time is about 20ms (need optimization)
 - The network downtime with 5G workload case is big (need fixing)

- Background
- Prototype
- Evaluation
- Summary

Summary

- Demonstrate a prototype of SR-IOV migration with hardware and driver help
- The evaluation results show it basically performs well
- Need improvements
- Hope more future NICs will be friendly to live migration!

Thank you

www.huawei.com