2. FRICTION

: TEXTUAL QUESTIONS AND ANSWERS :

1. Fill in the blanks.										
(a) Friction opposes t	he	betwee	n the surfa	aces in conta	act with	each	ı ot	her.		
(b) Friction depends of	on the				c	of su	rfac	ces.		
(c) Friction produces										
(d) The sprinkling of powder on the carrom board						friction.				
(e) Sliding friction is .				thai	n the sta	atic f	rict	ion.		
A. (a) relative motion (b)	nature	e (c) heat (d			reduces			(e) less		
2. Four children were asked	to arrange f	forces due	to rolling,	static and						
sliding frictions in decrea	sing order.	Their arrar	gements a	are given bel	ow.					
Choose the correct arrangement.						[С]		
A. rolling, static, sliding		B. roll	ing, sliding,	static						
C. static, sliding, rolling		D. slic	ling, static,	rolling						
3. Alida runs her toy car on	a dry marble	e floor, we	marble flo	or, newspap	er and					
towel spread on the floor.	The force o	of friction a	cting on th	ne car on dif	erent					
surfaces in increasing or	der will be		*			[A]		
A. wet marble floor, dry	marble floor	, newspape	er and towe	I.						
B. newspaper, towel, d	ry marble floo	or, wet mar	ble floor.							
C. towel, newspaper, d	ry marble floo	or, wet mar	ble floor.							
D. wet marble floor, dry	/ marble floor	, towel, nev	wspaper.							
4. Suppose your writing des	k is tilted a	little. A bo	ok kept on	it starts slid	ing dow	n. S	hov	N		
the direction of frictional	force acting	on it.	Direction of friction							
A. (i) Frictional force will act u	pward.									
(ii) i.e., the direction of friction	on is				of motion					
opposite to that of sliding	j book.									
5. You spill a bucket of soar	ov water on a	a marble fl	oor accide	ntally. Woul	d it be e	asie	r or	•		

- more difficult for you to walk on the floor? Why?
- A. (i) We can walk because of friction between our feet and the ground.
 - (ii) Soapy water on the marble floor creates very less friction than normal floor.
 - (iii) We can slip on marble floor with soapy water.
 - (iv) Hence it is very difficult to walk on the marble floor if soapy water is spilled.

6. Explain why sportsmen use shoes with spikes?

- **A.** (i) Spikes increase the friction with the ground.
 - (ii) They give more grip while walking or running.
 - (iii) They reduce slipping on the ground.
 - (iv) Hence sportsmen use shoes with spikes.

7. Iqbal has to push a lighter box and Seema has to push a similar heavier box on the same floor. Who will have to apply a larger force and why?

- A. (i) If the mass of an object increases, then the friction between the object and floor increases.
 - (ii) A heavy object produces more friction.
 - (iii) A lighter object produces less friction.
 - (iv) So Seema will have to apply a larger force to move heavy box.

8. Explain why sliding friction is less than static friction?

- **A.** (i) If there is static friction in between two objects, a greater force is required to break the interlocking between two surfaces.
 - (ii) When there is motion, a smaller force is required to keep the object in motion.
 - (iii) There is no need to break interlocking when they are in motion.
 - (iv) Hence the sliding friction is less than the static friction.
- 9. Give examples to show that friction is both a friend and a foe.
- A. Some points are given below which show that friction is both a friend and a foe:

Friction as a friend:

- (i) It allows us to grip and catch any object.
- (ii) It helps us to walk comfortably on the floor.
- (iii) It helps to minimise the speed or to stop any moving object
- (iv) It helps us to write.
- (v) Due to friction, we can hold the food items and eat with our mouth.

Friction as a foe:

- (i) It causes wear and tears in objects.
- (ii) It causes damage to the parts of machines and tools, which require money to repair.
- (iii) It reduces the speed of moving objects, so more force or fuel is required.
- (iv) It produces hurdles in moving any object freely.
- (v) Due to friction heat is produced and the machines will damage.

10. Explain why objects moving in fluids must have special shapes.

- A. (i) To overcome the fluid friction acting on the objects which are moving in liquids must have a special shape.
 - (ii) Efforts are therefore made to minimise the friction.
 - (iii) So, objects are given a special shape having pointed fronts with little broader middle portion which gets tapered at the back. This is called streamlined.