1. Аналіз похибок заокруглення

1.1. Види похибок

Нехай необхідно розв'язати рівняння

$$Au = f. (1)$$

За рахунок неточно заданих вхідних даних насправді ми маємо рівняння

$$\tilde{A}\tilde{u} = \tilde{f}$$
. (2)

Означення: Назвемо $\delta_1=u- ilde{u}$ неусувною похибкою.

Застосування методу розв'язання (2) приводить до рівняння

$$\tilde{A}_h \tilde{u}_h = \tilde{f}_h, \tag{3}$$

де h>0 — малий параметр

Означення: Назвемо $\delta_2 = ilde{u} - ilde{u}_h$ похибкою методу.

Реалізація методу на ЕОМ приводить до рівняння

$$\tilde{A}_h^{\star} \tilde{u}_h^{\star} = \tilde{f}_h^{\star}. \tag{4}$$

Означення: Назвемо $\delta_3 = ilde{u}_h - ilde{u}_h^\star$ похибкою заокруглення.

Означення: Тоді *повна похибка* $\delta = u - \tilde{u}_h^\star = \delta_1 + \delta_2 + \delta_3$

Означення: кажуть, що задача (1) *коректна*, якщо

- $\forall f \in F : \exists ! u \in U;$
- Задача (1) *стійка*, тобто $\forall \varepsilon > 0$: $\exists \delta > 0$:

$$|A - \tilde{A}| < \delta, |f - \tilde{f}| < \delta \implies |u - \tilde{u}| < \varepsilon.$$
 (5)

Якщо задача (1) некоректна, то або розв'язок її не існує, або він неєдиний, або він нестійкий, тобто $\exists \varepsilon > 0$: $\forall \delta > 0$:

$$|A - \tilde{A}| < \delta, |f - \tilde{f}| < \delta \implies |u - \tilde{u}| > \varepsilon.$$
 (6)

https://csc-knu.github.io/numerical-analysis/lectures/1.htm

1.3. Підрахунок похибок обчислення значення функції

Нехай задана функція $y=f(x_1,\dots,x_n)\in C^1(\Omega)$. Необхідно обчислити її значення при наближеному значенні аргументів $\vec{x}^*=(x_1^*,\dots,x_n^*)$, де $|x_i-x_i^*|\leq \Delta x_i$ та оцінити похибку обчислення значення функції $y^\star = f(x_1^\star, \dots, x_n^\star)$. Маємо

$$|y - y^{\star}| = |f(\vec{x}) - f(\vec{x}^{\star})| =$$

$$= \left| \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} (\vec{\xi}) \cdot (x_{i} - x_{i}^{\star}) \right| \leq$$

$$\leq \sum_{i=1}^{n} B_{i} \cdot \Delta x_{i},$$
(12)

де $B_u = \max_{ec{x} \in U} \left| rac{\partial f}{\partial x_i} (ec{x})
ight|.$

27.05.2019

$$U = \left\{ \vec{x} = (x_1, \dots, x_n) : |x_i - x_i^{\star}| \le \Delta x_i \right\} \subset \Omega,$$
 (13)

для $i=\overline{1,n}$. Отже з точністю до величин першого порядку малості по

$$\Delta x = \max \Delta x_i,\tag{14}$$

$$\Delta y = |y - y^*| \prec \sum_{i=1}^{n} b_i \cdot \Delta x_i, \tag{15}$$

де $b_i = \left| rac{\partial f}{\partial x_i} (ec{x}^\star)
ight|$ та « \prec » означає приблизно менше.

Розглянемо похибки арифметичних операцій.

• Сума: $y = x_1 + x_2$, $x_1, x_2 > 0$:

$$\Delta y \leq \Delta x_1 + \Delta x_2,$$
 (16)

$$\delta y \le \frac{\Delta x_1 + \Delta x_2}{x_1 + x_2} \le \max(\delta x_1, \delta x_2). \tag{17}$$

ullet Різниця: $y=x_1-x_2$, $x_1>x_2>0$

$$\Delta y \le \Delta x_1 + \Delta x_2,\tag{18}$$

$$\Delta y \le \Delta x_1 + \Delta x_2,$$

$$\delta y \le \frac{x_2 \delta x_1 + x_1 \delta x_2}{x_1 - x_2}.$$

$$(18)$$

При близьких x_1 , x_2 зростає відносна похибка (за рахунок втрати вірних цифр).

• Добуток: $y = x_1 \cdot x_2$, $x_1, x_2 > 0$:

Означення: Абсолютна похибка $\Delta x \leq |x-x^\star|$.

27 05 2019

Означення: *Відносна похибка* $\delta x \leq \Delta x/|x|$, або $\Delta x/|x^\star|$.

Означення: Значущими цифрами називаються всі цифри, починаючи з першої ненульової зліва

Означення: Вірна цифра — це значуща, якщо абсолютна похибка за рахунок відкидання всіх молодших розрядів не перевищує одиниці розряду цієї цифри.

Тобто, якщо $x^\star=lpha_n\dotslpha_0.$ $lpha_{-1}\dotslpha_{-p}\dots$, то $lpha_{-p}$ вірна, якщо $\Delta x\leq 10^{-p}$ (інколи $\Delta x \leq w \cdot 10^{-p}$, де $1/2 \leq w < 1$ наприклад, w = 0.55).

1.2. Підрахунок похибок в ЕОМ

Підрахуємо відносну похибку заокруглення числа x на ЕОМ з плаваючою комою. В eta-ічній системі числення число представляється у вигляді

$$x = \pm (\alpha_1 \beta^{-1} + \alpha_2 \beta^{-2} + \ldots + \alpha_t \beta^{-t} + \ldots) \cdot \beta^p, \tag{7}$$

де $0 \leq lpha_k < eta$, $lpha_1
eq 0$, $k = 1, 2, \ldots$

Якшо в EOM t розрядів, то при відкиданні молодших розрядів ми оперуємо з наближеним значенням

$$x^* = \pm (\alpha_1 \beta^{-1} + \alpha_2 \beta^{-2} + \ldots + \alpha_t \beta^{-t}) \cdot \beta^p$$
 (8)

і відповідно похибка заокруглення

$$x - x^* = \pm \beta^p \cdot (\alpha_{t+1} \beta^{-t-1} + \ldots). \tag{9}$$

Тоді її можна оцінити так

$$|x - x^*| \le \beta^{p-t-1} \cdot (\beta - 1) \cdot (1 + \beta^{-1} + \ldots) \le$$

$$\le \beta^{p-t-1} \cdot (\beta - 1) \cdot \frac{1}{1 - \beta^{-1}} = \beta^{p-t}.$$

$$(10)$$

Якщо в представлені (7) взяти $lpha_1=1$, то $|x|\geq eta^p\cdot eta^{-1}$. Звідси остаточно

$$\delta x \le \frac{\beta^{p-t}}{\beta^{p-1}} = \beta^{-t+1}. \tag{11}$$

При більш точних способах заокруглення можна отримати оцінку $\delta x \leq \frac{1}{2} \cdot \beta^{-t+1} = \varepsilon$ Число arepsilon називається «машинним іпсилон». Наприклад, для eta=2, t=24, $arepsilon=2^{-24}pprox 10^{-7}$

https://csc-knu.github.io/numerical-analysis/lectures/1.htm

27.05.2019

$$\Delta y \prec x_2 \Delta x_1 + x_1 \Delta x_2,\tag{20}$$

$$\delta y \le \delta x_1 + \delta x_2. \tag{21}$$

ullet Частка $y=x_1/x_2$, $x_1,x_2>0$:

$$\Delta y \prec \frac{x_2 \Delta x_1 + x_1 \Delta x_2}{x_2^2},\tag{22}$$

$$\delta y \le \delta x_1 + \delta x_2. \tag{23}$$

При малих x_2 зростає абсолютна похибка (за рахунок зростання результату ділення).

Означення: *Пряма задача* аналізу похибок: обчислення Δy , δy по заданих Δx_i , $i = \overline{1, n}$

Означення: *Обернена задача*: знаходження Δx_i , $i=\overline{1,n}$ по заданих Δy , δy . Якщо n>1, маємо одну умову

$$\sum_{i=1}^{n} b_i \cdot \Delta x_i < \varepsilon \tag{24}$$

для багатьох невідомих Δx_i

Вибирають їх із однієї з умов:

$$\forall i: b_i \cdot \Delta x_i < \frac{\varepsilon}{n}$$
 (25)

або

$$\Delta x_i < \frac{\varepsilon}{\sum_{i=1}^{n} b_i}.$$
 (26)