## Data warehousing Concepts



- Why data warehouse?
- What's data warehouse?
- What's multi-dimensional data model?
- What's difference between OLAP and OLTP?





**Operational** – The information which is required to run day to day business operation activities. (Producing an invoice, make a shipment, settle a claim, post a withdrawal). **Strategic** – This information is meant for executives and managers who are responsible for keeping the enterprise competitive.



- They need the information to make right decisions at the right time in the right format.
- Retain current customers of the business.
- Add to customer base by atleast 10% over next two years.
- Enhance the market share by 15%
- Launch new and better products in market
- Increase saes in north east region by 10%



- Characteristics of Strategic Information
- Integrated
- Data Integrity
- Accessible
- Timely

#### The Information Crisis



- Reasons –
- Organizations have huge amount of data.
- The Information systems that have are ineffective in turning this into useful strategic information.

"Colossal amounts of data already exist which doubles every 18 months"

#### The Information Crisis



- Reasons –
- The data in corporation resides in various disparate systems and diverse structures.
  - Data needed for making strategic decisions must be available in format that enables executives and managers to analyse trends in order to lead their companies in right direction.

#### The Information Crisis



- Reasons –
- Operation data is event driven (the data which you record in detail and for each and every transactions). This data is not useful for managers until and unless we transform.

#### Inadequate attempts by IT to provide strategic info





### **Decision Support Systems**



- By the **1960s came a DBMS called** *Decisions Support Systems* **(DSS)** which was a collection of software.
- In 1989 and early 1990s there were various such software in use like *Executive Information System* (EIS), *Online Analytical Processes* (OLAP).
- The term Business Intelligence (term used by Howard Dresner of Gartner Group) started getting used as a general term encompassing all such methods and applications.

## Information Systems





| Characteristic         | Operational<br>Support System                 | Decision Support System                                                            |
|------------------------|-----------------------------------------------|------------------------------------------------------------------------------------|
| Data Currency          | Current operations<br>Real-time data          | Historic data, Snapshot, of company data<br>Timecomponent (week/month/year)        |
| Granularity            | Atomic detailed<br>data                       | Summarized data                                                                    |
| Summarization<br>level | Low: some aggregate yields                    | High: many aggregation levels                                                      |
| Data model             | Highly normalized<br>mostly relationl<br>DBMS | Nonnormalized Complex structures Some relational, but mostly multidimensional DBMS |
| Transaction<br>type    | Mostly updates                                | Mostly query                                                                       |
| Transaction<br>volumes | High update volumes                           | Periodic loads and summary calculations                                            |
| Transaction<br>speed   | Updates are critical                          | Retrievals are critical                                                            |
| Query activity         | Low to medium                                 | High                                                                               |
| Query scope            | Narrow range                                  | Broad range                                                                        |

Student

University Table SHITKARA

e gender vear super

counselersity

| <u>matricN</u> | fName | lName | gender | year | super |
|----------------|-------|-------|--------|------|-------|
| <u>um</u>      |       |       |        | reg  | visor |
| 121212         | Mary  | Hill  | F      | 200  | 1234  |
|                | ·     |       |        | 3    |       |
| 232323         | Steve | Gray  | M      | 200  | 1234  |
|                |       |       |        | 5    |       |
| 123456         | Jimm  | Smith | M      | 200  | 1111  |
|                | у     |       |        | 0    |       |

| course<br>code | credit<br>value |
|----------------|-----------------|
| c1             | 120             |
| <b>c</b> 3     | 60              |
| c5             | 60              |

Staff

| staff<br>Num | first<br>Name | last<br>Name | gender |
|--------------|---------------|--------------|--------|
| 1234         | Jane          | Smith        | F      |
| 2323         | Tom           | Green        | M      |
| 1111         | Jim           | Brow         | M      |
|              |               | n            |        |

#### **Enrolled**

| <u>course</u><br><u>code</u> | <u>student</u><br><u>Num</u> |
|------------------------------|------------------------------|
| c1                           | 121212                       |
| <i>c3</i>                    | 121212                       |
| <i>c3</i>                    | 123456                       |
| c1                           | 232323                       |
| Etc etc                      | Etc etc                      |

## Relation Database Theory, cont'd



- The process of normalization generally breaks a table into many independent tables.
- A normalized database yields a flexible model, making it easy to maintain dynamic relationships between business entities.
- A relational database system is effective and efficient for operational databases a lot of updates (aiming at optimizing update performance).

#### **Problems**



- A fully normalized data model can perform very inefficiently for queries.
- Historical data are usually large with static relationships:
  - Unnecessary joins may take unacceptably long time
- Historical data are diverse

## Problem: Heterogeneous Information Sources





- I Different interfaces
- I Different data representations
- Duplicate and inconsistent information CSE601

16

#### Goal: Unified Access to Data





- Provides integrated view, uniform user interface
- Supports sharing

## The Warehousing Approach



Information integrated in advance

 Stored in wh for direct querying and analysis

Monitor

Sour

ce



## Advantages of Warehousing Approach



- High query performance
- But not necessarily most current information
- Doesn't interfere with local processing at sources
  - Complex queries at warehouse
  - OLTP at information sources
- Information copied at warehouse
  - Can modify, annotate, summarize, restructure, etc.
  - Can store historical information
  - Security, no auditing

## What is a Data Warehouse? A Practitioners Viewpoint



"A data warehouse is simply a single, complete, and consistent store of data obtained from a variety of sources and made available to end users in a way they can understand and use it in a business context."

-- Barry Devlin, *IBM Consultant* 

## What is a Data Warehouse? An Alternative Viewpoint



#### "A DW is a

- subject-oriented,
- integrated,
- time-varying,
- non-volatile

collection of data that is used primarily in organizational decision making."

-- W.H. Inmon, Building the Data Warehouse, 1992

#### A Data Warehouse is...



- Stored collection of diverse data
  - A solution to data integration problem
  - Single repository of information
- Subject-oriented
  - Organized by subject, not by application
  - Used for analysis, data mining, etc.
- Optimized differently from
  - transaction-oriented db
- User interface aimed at executive

#### ... Cont'd



- Large volume of data (Gb, Tb)
  - Non-volatile
    - Historical
    - Time attributes are important
- Updates infrequent
- May be append-only
- Examples
  - All transactions ever at Sainsbury's
  - Complete client histories at insurance firm
  - LSE financial information and portfolios

CSE601 23

#### Generic Warehouse Architecture





## Data Warehouse Architectures: Conceptual View



## Single-layer

Every data element is stored once only

Virtual warehouse

Operational Informational systems

1 y

"Real-time data"

## Two-layer

Real-time + derived data

Most commonly used approach in

industry today



## Three-layer Architecture: Conceptual View



## Transformation of real-time data to derived data really requires two steps



View level
"Particular informational needs"

Physical Implementation of the Data Warehouse

### Data Warehousing: Two Distinct Issues



- (1) How to get information into warehouse "Data warehousing"
- (2) What to do with data once it's in warehouse "Warehouse DBMS"
- Both rich research areas
- Industry has focused on (2)

### Issues in Data Warehousing



- Warehouse Design
- Extraction
  - Wrappers, monitors (change detectors)
- Integration
  - Cleansing & merging
- Warehousing specification & Maintenance
- Optimizations
- Miscellaneous (e.g., evolution)

#### OLTP vs. OLAP



- OLTP: On Line Transaction Processing
  - Describes processing at operational sites
- OLAP: On Line Analytical Processing
  - Describes processing at warehouse

### Warehouse is a Specialized DB



## <u> Warehouse (OLAP)</u> Standard QB

Mostly updates

Queries are long and complex

Many small transactions

Gb - Tb of data

Mb - Gb of data

History

Current snapshot

• Lots of scans

Index/hash on p.k.

Summarized, reconciled data

Raw data

Thousands of users (e.g., clerical users) users (e.g.,

decision-makers, analysts)

30

## **Decision Support**



- Information technology to help the knowledge worker (executive, manager, analyst) make faster & better decisions
- "What were the sales volumes by region and product category for the last year?"
- "How did the share price of comp. manufacturers correlate with quarterly profits over the past 10 years?"
- "Which orders should we fill to maximize revenues?"
- On-line analytical processing (OLAP) is an element of decision support systems (DSS)

## Three-Tier Decision Support Systems



#### Warehouse database server

Almost always a relational DBMS, rarely flat files

#### **OLAP** servers

- Relational OLAP (ROLAP): extended relational DBMS that maps operations on multidimensional data to standard relational operators
- Multidimensional OLAP (MOLAP): special-purpose server that directly implements multidimensional data and operations

#### Clients

- Query and reporting tools
- Analysis tools
- Data mining tooks 100

# The Complete Decision Supports UNIVERSITY



## System



#### Data Warehouse vs. Data Marts



- Enterprise warehouse: collects all information about subjects (customers, products, sales, assets, personnel) that span the entire organization
  - Requires extensive business modeling (may take years to design and build)
  - Data Marts: Departmental subsets that focus on selected subjects
    - Marketing data mart: customer, product, sales
    - Faster roll out, but complex integration in the long run
  - Virtual warehouse: views over operational dbs
  - Materialize sel. summary views for efficient query processing
    - Easy to build but Feduire excess capability on operat. db

### **OLAP for Decision Support**



- OLAP = Online Analytical Processing
  - Support (almost) ad-hoc querying for business analyst
  - Think in terms of spreadsheets
    - View sales data by geography, time, or product
- Extend spreadsheet analysis model to work with warehouse data
  - Large data sets
  - Semantically enriched to understand business terms
  - Combine interactive queries with reporting functions
  - Multidimensional view of data is the foundation of

**OLAP** 

CSE601

#### Approaches to OLAP Servers



- Relational DBMS as Warehouse Servers
- Two possibilities for OLAP servers
- (1) Relational OLAP (ROLAP)
  - Relational and specialized relational DBMS to store and manage warehouse data
    - OLAP middleware to support missing pieces
- (2) Multidimensional OLAP (MOLAP)
  - Array-based storage structures
    - Direct access to array data structures

CSE601

## **OLAP Server: Query Engine Requirements**



- Aggregates (maintenance and querying)
  - Decide what to precompute and when
- Query language to support multidimensional operations
  - Standard SQL falls short
- Scalable query processing
  - Data intensive and data selective queries

37