Midterm

Jacob Thielemier

2025 - 03 - 23

Question 1

- The plot below shows pretty consistent behavior between different time points. Most of the subjects follow a similar rise and then fall pattern.
- Most subjects peak at a time period of 25. Several subjects follow each other by rising and falling at the same time periods. But a few outliers exists that show sudden deviations near 10 and 30.

EEG Time Series by Subject

- The heatmap below shows that there is clustering among the subjects.
 - One cluster in the top-left where the subjects are relatively genetically similar. The lighter yellow shades mean smaller distances.

- Another cluster in the bottom-right is darker red. Meaning those are more similar withing their own group, but also more distant from the other cluster.
- The overall distance between the two clusters is far and that suggests there is a high genetic dissimilarity between the subjects in the two clusters.

- We can see in the table below that the Mantel test shows significant genetic-EEG association (RV = 0.459, p < 0.0001).
- Genetic differences among the subjects significantly influence EEG responses.

Table 1: Summary of RV Coefficient Results Between EEG and SNP Data $\,$

Value
0.459
14.51
0.067
7.3e-04
2.354
8.17e-07

Question 4

• In the histogram below, EEG data for each subject is summarized by the mean EEG value across all time points. This provides a single EEG measure per subject.

Histogram of Subject EEG Means

Question 5

Linear mixed model fit by REML ['lmerMod']

Formula: EEG_Mean ~ (1 | Subject)

Data: merged_data

REML criterion at convergence: 75.5

Scaled residuals:

Min 1Q Median 3Q Max -1.13977 -0.26561 -0.07704 0.25669 1.12586

Random effects:

Groups Name Variance Std.Dev.
Subject (Intercept) 0.5819 0.7628
Residual 0.0191 0.1382
Number of obs: 48, groups: Subject, 48

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.67070 0.01995 83.75

Proportion of variance explained by SNPs: 0.968

Approximate 95% CI for proportion explained: 0.948 - 0.977

Question 6

• Based on the Scree plot below we see the elbow takes shape at the second PCA. We should only use two components.

Screeplot of SNP Data

- There is strong evidence (p < 0.0001) that the EEG means are associated with PC1. However, PC2 is not significantly associated with EEG means (p = 0.729). This tell me that at least one genetic principal component (PC1) has a clear relationship with the EEG phenotype.
- The adjusted R-squared is 0.396, meaning that 39.6% of the total variance in EEG means is explained by these genetic principal components.

Table 2: Linear Regression of EEG Means on Genetic Principal Components

	Predictor	Estimate	Std. Error	t-value	p-value
(Intercept)	(Intercept)	1.671	0.091	18.260	1.96e-22
PC1	PC1	-0.028	0.005	-5.741	7.55e-07
PC2	PC2	-0.006	0.017	-0.349	0.729

- PCA-based regression shows that genetic variation significantly influences EEG means:
 - PC1 had a strong association (p < 0.0001); PC2 did not (p = 0.729).
 - Genetic principal components explained 39.6% (adjusted R²) of EEG variability.
 - Scree plot suggested retaining two principal components, with a clear elbow at PC2.
- The variance components analysis provided an overall measure of genetic influence:
 - Genetic relatedness explained a substantial proportion of EEG variance (96.8%, 95% CI: 94.8–97.7%, from Question 5).
 - Mantel/RV coefficient analysis also indicated significant genotype-EEG association (RV = 0.459, p < 0.0001, from Question 3).
- Together, the PCA-based regression and the variance components analysis provide strong evidence that genetics plays a crucial role in shaping EEG phenotypes. The PCA approach identifies a specific genetic factor (PC1) that significantly influences EEG means, explaining almost 40% of their variability. On the other hand, the variance components model quantifies the overall genetic contribution. This tells us that genetic relatedness accounts for over 96% of the EEG variance. By looking at both specific genetic factors and the overall genetic background, we see that genetics has a strong and complex effect on EEG responses.