Valued fields

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

March 18, 2016

1 Absolute values

Let F be a field. An **absolute value on** F is a function $|\cdot|: F \to \mathbb{R}_{\geq 0}$ such that (i) |x| = 0 implies x = 0, (ii) $|x + y| \leq |x| + |y|$, and (iii) |xy| = |x||y|. The pair F and $|\cdot|$ is called a **valued field**. An absolute value is called **nonarchimedean** if

$$|x+y| \le \max(|x|, |y|),$$

and archimedean otherwise. Because |xy| = |x||y|, $x \mapsto |x|$ is a group homomorphism $F^* \to \mathbb{R}_{>0}$. The **trivial absolute value** is |x| = 0 for x = 0 and |x| = 1 for $x \neq 1$, which is nonarchimedean.

The **value group** of F is the image of F^* under $x \mapsto |x|$; it is a subgroup of $\mathbb{R}_{>0}$. If the subspace topology on the value group inherited from $\mathbb{R}_{>0}$ is discrete, then the absolute value is called **discrete**. For example, it is a fact that the value group of $(\mathbb{Q}_p, |\cdot|_p)$ is $\{p^n : n \in \mathbb{Z}\}$, which is discrete.

If $|\cdot|$ is an absolute value on a field F, let d(x,y) = |x-y|. This is a metric on F, and with the topology induced by d, F is a topological field. We call the valued field F complete if d is a complete metric.

If $(F, |\cdot|_F)$ and $(K, |\cdot|_K)$ are valued fields, a homomorphism of valued fields from F to K is a field homomorphism $\phi : F \to K$ such that $|\phi(x)|_K = |x|_F$ for all $x \in F$. If ϕ is onto then ϕ is called an **isomorphism of valued fields**.

If F is a field with a nontrivial absolute value $|\cdot|_F$, then there is a complete valued field $(K, |\cdot|_K)$ and a homomorphism of valued fields $\iota : F \to K$ such that $\iota(F)$ is dense in K.² We call $(K, |\cdot|_K)$ a **completion of** F, and if F is nonarchimedean then it has a nonarchimedean completion. Completions of valued fields have the following **universal property**: if $\iota : (F, |\cdot|_F) \to (K, |\cdot|_K)$ is a completion of the valued field F, if $(L, |\cdot|_L)$ is a complete valued field, and if $\phi : F \to L$ is a homomorphism of valued fields, then there is a unique homomorphism of valued fields $\Phi : K \to L$ such that $\phi = \Phi \circ \iota$.³ It is often

¹Anthony W. Knapp, Advanced Algebra, p. 334, Proposition 6.13; the proof is straightforward

²Anthony W. Knapp, *Advanced Algebra*, p. 342, Theorem 6.24; W. H. Schikhof, *Ultrametric calculus: An introduction to p-adic analysis*, p. 15, Theorem 6.3.

³Anthony W. Knapp, Advanced Algebra, p. 343, Theorem 6.25.

permissible to talk **the completion** $(K, |\cdot|_K)$ of a valued field $(F, |\cdot|_F)$ and $F \subset K$ where the restriction of $|\cdot|_K$ to F is $|\cdot|_F$, rather than $\iota : F \to K$; for some arguments it is necessary to speak about $\iota : F \to K$ rather than $F \subset K$.

2 Nonarchimedean valued fields

Let F be a field with a nontrivial nonarchimedean absolute value $|\cdot|_F$. For $a \in F$ and r > 0 let

$$B_{\leq r}(a) = \{x \in F : |x - a|_F \le r\}, \qquad B_{\leq r}(a) = \{x \in F : |x - a|_F < r\}.$$

We now prove that $B_{\leq 1}(0)$ is a local ring whose unique maximal ideal is $B_{<1}(0)$.⁴ (A commutative ring R is a **local ring** if it has a unique maximal ideal.)

Lemma 1. $B_{\leq 1}(0)$ is a local ring and $B_{<1}(0)$ is the unique maximal ideal in $B_{<1}(0)$.

Proof. If $x, y \in B_{\leq 1}(0)$ then $|x + y|_F \leq \max(|x|_F, |y|_F) \leq 1$ so $x + y \in B_{\leq 1}(0)$. $|-x|_F = |x|_F \leq 1$ so $-x \in B_{\leq 1}(0)$. $|xy|_F = |x|_F |y|_F \leq 1$ so $xy \in B_{\leq 1}(0)$. $|1|_F = 1$ so $1 \in B_{<1}(0)$. Therefore $B_{<1}(0)$ is a subring of K.

For $x, y \in B_{<1}(0)$, $|x + y|_F \le \max(|x|_F, |y|_F) < 1$ so $x + y \in B_{<1}(0)$. For $x \in B_{<1}(0)$ and $y \in B_{\le 1}(0)$, $|xy|_F = |x|_F |y|_F < 1$ so $xy \in B_{<1}(0)$ and therefore $B_{<1}(0)$ is an ideal in the ring $B_{\le 1}(0)$. Now, if $|x|_F = 1$ then $x^{-1} \in F$ satisfies $|x^{-1}|_F = 1$. Therefore, $B_{<1}(0)$ is the set of elements in $B_{\le 1}(0)$ which do not have an inverse in $B_{\le 1}(0)$. Generally, if R is a commutative ring and the set M of noninvertible elements is an ideal, then R is a local ring with unique maximal ideal M.

The **residue class field of** F is the field

$$B_{\leq 1}(0)/B_{\leq 1}(0)$$
.

It can be proved that a complete nonarchimedean field is locally compact if and only if its residue class field is finite and the absolute value is discrete.⁵

3 Algebraic closures

Let $(F, |\cdot|_F)$ be a nonarchimedean valued field and let K be a field containing F. It can be proved that there is a nonarchimedean absolute value on K whose restriction to F is equal to $|\cdot|_F$.⁶ Furthermore, if F is complete and K is algebraic over F then this absolute value on K is unique.⁷

 $^{^4\}mathrm{W.~H.}$ Schikhof, Ultrametric calculus: An introduction to p-adic analysis, p. 25, Proposition 11.1.

 $^{^5\}mathrm{W.\,H.\,Schikhof},\, \textit{Ultrametric calculus: An introduction to p-adic analysis, p. 29, Corollary 12.2.}$

⁶W. H. Schikhof, *Ultrametric calculus: An introduction to p-adic analysis*, p. 34, Theorem 14.1.

 $^{^7\}mathrm{W.~H.}$ Schikhof, Ultrametric calculus: An introduction to p-adic analysis, p. 35, Theorem 14.2.

If $(F, |\cdot|_F)$ is a complete nonarchimedean valued field and K is an algebraic closure of F, then by the above there is a unique nonarchimedean absolute value $|\cdot|_K$ on K such that $|x|_K = |x|_F$ for $x \in F$. If $(K, |\cdot|_K)$ is not complete, then we have stated earlier that it has a completion $(L, |\cdot|_L)$. It can in fact be proved that the field L is algebraically closed.⁸

Let \mathbb{Q}_p^a be an algebraic closure of \mathbb{Q}_p . Then there is a unique nonarchimedean absolute value on \mathbb{Q}_p^a whose restriction to \mathbb{Q}_p is equal to $|\cdot|_p$. One proves that the valued field \mathbb{Q}_p^a is not complete.⁹ Let \mathbb{C}_p be the completion of the valued field \mathbb{Q}_p^a , which by what we have said is an algebraically closed nonarchimedean valued field. $\mathbb{Q}_p \subset \mathbb{C}_p$, and $|x|_{\mathbb{C}_p} = |x|_p$ for $x \in \mathbb{Q}_p$. One further proves that the residue class field of \mathbb{C}_p is the algebraic closure of \mathbb{F}_p , and hence \mathbb{C}_p is not locally compact. The value group of \mathbb{C}_p is $\{p^r : r \in \mathbb{Q}\}$. Finally, \mathbb{C}_p is a separable metric space.

It turns out to be fruitful to work with functions $\mathbb{Z}_p \to \mathbb{C}_p$, and because \mathbb{C}_p is an occult object it is useful to become familiar with it before working out this machinery.

⁸W. H. Schikhof, *Ultrametric calculus: An introduction to p-adic analysis*, p. 45, Theorem 17.1.

 $^{^9\}mathrm{W.~H.}$ Schikhof, Ultrametric calculus: An introduction to p-adic analysis, p. 43, Theorem 16.6.