# Circuit Representation: Hardware Description Languages (HDL)

### Virendra Singh

**Professor** 

Computer Architecture and Dependable Systems Lab Department of Computer Science & Engineering Indian Institute of Technology Bombay

http://www.cse.iitb.ac.in/~viren/

E-mail: viren@cse.iitb.ac.in

CS-232 Digital Logic Design & Computer Architecture Lab.



Lecture-VHDL: 12 January 2022 CADSL

# Modeling Digital Systems

- VHDL is for writing models of a digital system,
- Semi-formal representation
- Reasons for modeling
  - requirements specification

  - testing using simulation
  - formal verification
  - synthesis







- most reliable design process, with minimum cost and time
- avoid design errors!



#### What is VHDL?

- Very High Speed Integrated Circuit Hardware Description Language
- Used to describe a desired logic circuit
- Compiled, Synthesized and burned onto a working chip
- Simplifies hardware for large projects





#### VHDL

- VHDL is a programming language that allows one to model and develop complex digital systems in a dynamic environment.
- Object Oriented methodology -- modules can be used and reused.
- Allows you to designate in/out ports (bits) and specify behavior or response of the system.





**CADSL** 

#### **VHDL**

But VHDL is NOT C ...

There are some similarities, as with any programming language, but syntax and logic are quite different; so get over it!!





# HDL Requirements

- Abstraction
- Modularity
- Concurrency
- Hierarchy





#### Input-Output Specification of Circuit





# External Interface: VHDL Entity







### **Built-in Datatypes**

- Scalar (single valued) signal types:
  - bit
  - boolean
  - integer
  - Examples:
    - A: in bit;
    - G: out boolean;
- Aggregate (collection) signal types:
  - bit\_vector: array of bits representing binary numbers
  - signed: array of bits representing signed binary numbers
  - Examples:
    - D: in bit\_vector(0 to 7);
    - E: in bit\_vector(7 downto 0);
    - M: in signed (4 downto 0);--signed 5 bit\_vector binary number





D(7)

# Modeling the Behavior Way

Architecture body

- Entity
- describes an implementation of an entity
- may be several per entity
- Behavioral architecture
  - describes the algorithm performed by the module
  - contains
    - signal assignment statements





## Syntax of the Architecture

```
| architecture <architecture_name > of <entity_identifier > is | [<architecture_declarative_part >] | | begin | <architecture_statement_part > -- The body of the arch. | end [architecture] [<architecture name >];
```

 The word "architecture" in the last line is not supported before the VHDL-93 standard





#### **Entity**

Define inputs and outputs

```
• Example: A: in bit;
B: In bit;
```

```
Entity test is ____
```

```
Port( A,B,C,D: in bit;
E: out bit);
```

End test;







#### **Architecture**

 Define functionality of the chip



- X <= A and B;
- Y <= C and D;
- E <= X or Y;





# Signal

• All internal variables

signal X,Y: bit;





#### **Architecture**

```
architecture behaviour of test is
signal X,Y : bit;
begin
  X \le A and B;
  Y <= C and D;
  E \leq X \text{ or } Y;
end behaviour;
```



#### Final code

```
library IEEE;
entity TEST is
port (A,B,C,D: in bit;
      E : out bit);
end TEST;
architecture BEHAVIOR of TEST is
signal X,Y: bit;
begin
  X \leq A \text{ and } B;
  Y \leq C \text{ and } D;
  E \leq X \text{ or } Y;
end BEHAVIOR;
```



#### **VHDL** Features

- Case insensitive
  - inputa, INPUTA and InputA are refer to same variable
- Comments
  - '--' until end of line
  - If you want to comment multiple lines, '--' need to be put at the beginning of every single line
- Statements are terminated by ';'
- Signal assignment:

- User defined names:
  - letters, numbers, underscores ('\_')
  - start with a letter





#### VHDL Structure

- Library
  - Definitions, constants

c = A and B;

- Entity
  - Interface
- Architecture
  - Implementation, function





#### Port Map

Chip1 : Chip\_A port map (A,B,C,X,Y);

Chip2 : Chip\_B / port map (X,Y,D,E);





#### Final code

```
component Chip B
library IEEE;
                                       port (Q,R,S: in bit;
use ieee.std logic 1164.all;
                                                T : out bit);
                                       end component;
entity TEST is
port (Ă,B,C,D : in bit;
                                       begin
       E : out bit);
end TEST;
                                       Chip1 : Chip_A
                                       port map (A,B,C,X,Y);
architecture BEHAVIOR of TEST is
                                       Chip2: Chip B.
signal X,Y: bit;
                                       port map (X,Y,D,E);
component Chip_A
port (L,M,N : in bit;
                                       end BEHAVIOR;
       Q,P: out bit);
End component;
```



20

# VHDL Design Example Entity Declaration

 As a first step, the entity declaration describes the interface of the component

-input and output ports are declared

```
entity half_adder is
    port(x, y: IN BIT;
        carry, sum: OUT BIT);
end half_adder;
```







## Syntax of the Architecture

```
architecture <architecture_name> of <entity_identifier> is
[<architecture_declarative_part>]
```

#### begin

<architecture\_statement\_part> -- The body of the arch.

end [architecture] [<architecture\_name>];

 The word "architecture" in the last line is not supported before the VHDL-93 standard





# VHDL Design Example Behavioral Specification

```
architecture half adder a of half, adder is
        begin
         result <= x xor y;</pre>
         carry <= x and y;</pre>
    end half adder a;
result = x vorig after ans;
```

CS-232@IITB

23

12 Jan 2022

# Concurrency in VHDL

- Achieved through processes
- Concurrent assignments are also process by itself
- These are non-terminating
- Communicating through signals
- Variables are allowed inside the processes
- Multiple processes are active at the same time





# Thank You



