Матанализ. Неофициальный конспект

Лектор: Сергей Витальевич Кисляков Конспектировал Леонид Данилевич

II семестр, весна 2023 г.

Оглавление

	0.1	Вокруг формулы Тейлора
		0.1.1 Достаточное условие существования локального экстремума
		0.1.2 Ряд Ньютона
		0.1.3 Формула Тейлора с остатком в интегральной форме 4
1	Вве	дение в многомерный анализ 6
		1.0.1 О геометрии пространства \mathbb{R}^n
		1.0.2 О скалярных функциях $F:(U\subset\mathbb{R}^n)\to\mathbb{R}$
		1.0.3 Замечания про градиент
	1.1	Теорема об обратной функции
	1.2	Гладкие многообразия
		1.2.1 Касательные векторы
		1.2.2 Многообразия, вложенные в n -мерное евклидово пространство
		1.2.3 Теорема о неявной функции
	1.3	Длина пути
		1.3.1 Длина гладкого пути
	1.4	Естественная параметризация
	1.5	Про комплексные числа
		1.5.1 Простое вращение
		1.5.2 Формулы Тейлора и ряд Тейлора для функций $\Gamma, \sin, \cos \ldots 32$
		1.5.3 Обратные тригонометрические функции
		1.5.4 Формула Эйлера
	1.6	Дифференцирование высших порядков
	1.7	Формула Тейлора функции нескольких переменных
		1.7.1 Независимость частных производных от порядка дифференцирования 37
2	Hec	обственные интегралы и компания 39
	2.1	Одна из ситуаций
	2.2	Сравнение рядов и интегралов
		2.2.1 Частичные суммы гармонического ряда и постоянная Эйлера — Маскерони 41
		2.2.2 Формула Стирлинга
	2.3	Суммируемые семейства
		2.3.1 Применения
	2.4	Степенные ряды
		2.4.1 Признак Коши сходимости ряда
		2.4.2 Аналитические функции
	2.5	Дифференцировании по комплексному аргументу. Голоморфные функции 48
		2.5.1 Связь комплексного дифференцирования и двумерного дифференцирования 48
	2.6	Суммирование последовательностей и рядов
		2.6.1 Метод Чезаро
		2.6.2 Матричные методы суммирования. Метод Тёплица 51
		2.6.3 Метод Абеля — Пуассона
	2.7	Перестановка предельных переходов
		2.7.1 Применение

3	Вып	туклые и вогнутые функции	59
	3.1	Бесконечные произведения	63
		3.1.1 О сходящихся произведениях	64

Лекция I

14 февраля 2023 г.

0.1 Вокруг формулы Тейлора

В данном разделе будет небольшое количество фактов, касающихся формулы Тейлора.

0.1.1 Достаточное условие существования локального экстремума

Пусть $I = \langle a, b \rangle, f : I \to \mathbb{R}, x_0 \in (a, b).$

Как известно, если у f в x_0 локальный экстремум, то $f'(x_0) = 0$ (если производная в x_0 вообще существует).

Иногда непонятно, экстремум является локальным максимумом или минимумом.

Теорема 0.1.1. Если функция f дифференцируема в некоторой окрестности $x_0 \in (a,b)$, причём $\exists f'(x_0) = 0$ и $\exists f''(x_0)$, то

- если $f''(x_0) > 0$, то f имеет локальный минимум в x_0 ;
- если $f''(x_0) < 0$, то f имеет локальный максимум в x_0 .

Доказательство. Запишем формулу Тейлора для f в точке x_0 :

$$f(x) = f(x_0) + \underbrace{f'(x_0)}_{0}(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2) = f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \alpha(x)$$

Запишем определение о-маленького:

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in \overset{\circ}{U}_{\delta}(x_0) : |\alpha(x)| < \varepsilon \cdot (x - x_0)^2$$

Рассмотрим случай $f''(x_0)>0$. Получаем $f(x)\geqslant f(x_0)+\left(\frac{1}{2}f''(x_0)-\varepsilon\right)(x-x_0)^2$ при $x\in \overset{o}{U}_{\delta}(x_0)$. Приняв $\varepsilon=\frac{1}{4}f''(x_0)$ получаем, что f(x) в достаточно маленькой проколотой окрестности x_0 больше $f(x_0)$, откуда x_0 — действительно точка локального минимума.

0.1.2 Ряд Ньютона

Рассмотрим формулу Тейлора для $h(x)\coloneqq (1+x)^r$ в окрестности 0, где $r\in\mathbb{R}$. Можно считать, что h определена на всех x>-1.

$$h^{(n)}(x) = r \cdot (r-1) \cdot \dots \cdot (r-n+1)(1+x)^{r-n} \Rightarrow h^{(n)}(0) = r \cdot \dots \cdot (r-n+1)$$

Запишем формулу Тейлора до x^k с остаточным членом в форме Лагранжа.

$$h(x) = \sum_{n=0}^k \frac{r \cdot \ldots \cdot (r-n+1)}{n!} x^n + \frac{r \cdot \ldots \cdot (r-k)}{(k+1)!} (1+\xi)^{r-k-1} \cdot x^{k+1}, \text{ где } \xi \in [0,x]$$

Для краткости обозначим $\binom{r}{n} \stackrel{def}{=} \frac{r \cdot \ldots \cdot (r-n+1)}{n!} x^n$, что согласуется с определением биномиальных коэффициентов для натуральных чисел.

В таком случае формула упрощается до

$$h(x) = \sum_{n=0}^{k} {r \choose n} x^n + {r \choose k+1} (1+\xi)^{r-k-1} \cdot x^{k+1}$$

Откинув остаточный член, получим $p n \partial$ Hью mона — pяд Тейлора для функции $(1+x)^r$ в окрестности $0:\sum_{n=0}^{\infty} \binom{r}{n} x^n$.

Факт 0.1.1. Если |x| < 1, то ряд Ньютона сходится (к какому-то числу). Более того, для произвольного $b \in (0,1)$, ряд сходится равномерно при $x \in [-b,b]$.

Доказательство. Оценим числа $|\binom{r}{r}|$. Из определения видно, что

$$\binom{r}{n+1} = \binom{r}{n} \cdot \frac{r-n}{n+1} = \binom{r}{n} \left(\frac{r+1}{n+1} - 1\right)$$

- 1. $n \leqslant r$. Первые несколько слагаемых ряда, на сходимость не влияют.
- 2. $n > r \geqslant 0$. Здесь $\left| \frac{r+1}{n+1} 1 \right| < 1$, откуда $\left| \binom{r}{n} \right| \leqslant C_r^+$, где C_r^+ максимальный биномиальный коэффициент $\binom{r}{n}$ для $n \leqslant r$.
- 3. r<0. Для любого $\delta>0$: $\left|\frac{r+1}{n+1}-1\right|<1+\delta$ при достаточно большом n. Зафиксируем δ и назовём эту границу n_0 . В этом случае, обозначив за C_r^- максимальный биномиальный коэффициент $\binom{r}{n}$ при $n\leqslant n_0$, получаем

$$\sum_{n=n_0}^{\infty} \left| \binom{r}{n} \right| \cdot |x|^n \leqslant \sum_{n=n_0}^{\infty} C_r^{-} (1+\delta)^{n-n_0} \cdot b^n$$

Выбрав настолько маленькое δ , что $(1+\delta)b < 1$, получаем равномерную сходимость — ряд оценивается сверху геометрической прогрессией.

0.1.3 Формула Тейлора с остатком в интегральной форме

Теорема 0.1.2. Пусть I — отрезок, $f:I\to \mathbb{R}$ n+1 раз непрерывно дифференцируема на I. Для произвольных $l,h\in I$:

$$f(h) = \underbrace{f(l) + \frac{f^{(1)}(l)}{1!}(h-l) + \frac{f^{(2)}(l)}{2!}(h-l)^2 + \dots + \frac{f^{(n)}(l)}{n!}(h-l)^n}_{\text{стандартные слагаемые}} + \underbrace{\frac{1}{n!} \int\limits_{l}^{h} f^{(n+1)}(t) \cdot (h-t)^n \, \mathrm{d}t}_{\text{остаток в интегральной форме}}$$

Доказательство. Индукция по n.

<u>База:</u> $n=0,\ f$ 1 раз непрерывно дифференцируема. Формула Тейлора обращается в $f(h)=f(l)+\int\limits_{l}^{h}f'(t)\,\mathrm{d}t$ — очевидно верно.

<u>Переход:</u> Доказываем для n+1, считая, что для n уже доказано. $f \in C^{(n+2)}(I)$. Запишем остаток в интегральной форме для формулы Тейлора порядка n.

$$s := \frac{1}{n!} \int_{l}^{h} f^{(n+1)}(t) \cdot (h-t)^{n} dt = -\frac{1}{n!} \int_{l}^{h} f^{(n+1)}(t) \cdot d\left((h-t)^{n+1} \cdot \frac{1}{n+1}\right) =$$

проинтегрируем по частям

$$= -\frac{1}{(n+1)!} f^{(n+1)}(t) \cdot (h-t)^{n+1} \Big|_{t=1}^{t=h} + \frac{1}{(n+1)!} \int_{1}^{h} (h-t)^{n+1} f^{(n+2)}(t) dt$$

Видим, что если подставить пределы интегрирования, то как раз и получится необходимое:

$$s = \frac{1}{(n+1)!} f^{(n+1)}(l) \cdot (h-l)^{n+1} + \frac{1}{(n+1)!} \int_{1}^{h} (h-t)^{n+1} f^{(n+2)}(t) dt$$

Оценим остаток в интегральной форме, заменив переменную под интегралом:

$$\frac{1}{n!} \int_{l}^{h} f^{(n+1)}(t) \cdot (h-t)^{n} dt =$$

$$\left\| t = l + (h-l)w = hw + l(1-w); \qquad h - t = (h-l)(1-w) \right\|$$

$$= \frac{(h-l)^{n}}{n!} \int_{0}^{1} f^{(n+1)}(hw + l(1-w)) \cdot (1-w)^{n} dw$$

В частности, при l=0, формула упрощается до $s=\frac{h^n}{n!}\int\limits_0^1 f^{(n+1)}(hw)(1-w)^n\,\mathrm{d}w.$

Теорема 0.1.3. Ряд Ньютона сходится к $(1+x)^r$ на (-1,1). Если r>0, то в точке x=1 сходимость тоже наблюдается.

Доказательство. Применим формулу Тейлора с интегральным остатком к $(1+x)^r$:

$$(1+x)^r = \left(\sum_{k=0}^n \binom{r}{k} x^k\right) + s \qquad \text{ где } s = \frac{1}{n!} \cdot (r \cdot \ldots \cdot (r-n)) \int\limits_0^1 (1+xw)^{r-n-1} (1-w)^n \, \mathrm{d}w$$

Для доказательства теоремы необходимо и достаточно показать $s \underset{n \to \infty}{\longrightarrow} 0.$

1. Пусть $x \in [0,1], n > r$. В таком случае $(1+xw)^{r-n-1} < 1$ и интеграл можно оценить сверху:

$$\int_{0}^{1} (1+xw)^{r-n-1} (1-w)^{n} dw \le \int_{0}^{1} (1-w)^{n} dw = -\frac{1}{n+1} (1-w)^{n+1} \Big|_{0}^{1} = \frac{1}{n+1}$$

- (a) Если здесь $r\geqslant 0$, то $\left|\frac{r\cdot\ldots\cdot(r-n)}{n!}\right|\leqslant C_r^+$, и действительно $s\underset{n\to\infty}{\longrightarrow}0$.
- (b) Если здесь r<0, то считаем, что $x\in[0,1)$, тогда $\left|\frac{r\cdot\ldots\cdot(r-n)}{n!}\right|\leqslant C_r^-\cdot(1+\delta)^n$, где $\delta>0$ можно выбирать сколь угодно близким к нулю. Выбрав δ так, что $x(1+\delta)<1$, мы тоже увидим, что $s \underset{n\to\infty}{\longrightarrow} 0$.
- 2. Теперь пусть $x \in (-1, 0]$.

Обозначим
$$I = \int_0^1 (1+xw)^{r-n-1} (1-w)^n dw = \int_0^1 (1+xw)^{r-1} \cdot \left(\frac{1-w}{1+xw}\right)^n dw.$$

Для данного r оценим $\left|(1+xw)^{r-1}\right|\leqslant C_r(x)$. Тогда $|I|\leqslant C_r(x)\cdot\int\limits_0^1\left(\frac{1-w}{1+xw}\right)^n\,\mathrm{d}w$. Воспользуемся тем, что $\left(\frac{1-w}{1+xw}\right)\leqslant 1-w(1-|x|)$ (проверка раскрытием скобок):

$$1-w\leqslant (1-|x|w)(1-w(1-|x|))=1-|x|w-w+|x|w^2+w|x|-w^2|x|^2=1-w+|x|(1-|x|)w^2$$
 Таким образом

$$|I| \leqslant C_r(x) \int_0^1 (1 - w(1 - |x|))^n dw = C_r(x) \cdot \frac{-1}{1 - |x|} \cdot \frac{1}{n+1} \cdot (1 - w(1 - |x|))^{n+1} \Big|_{w=0}^{w=1} = \frac{1}{n+1} \cdot C_r(x) \frac{1 - |x|^{n+1}}{1 - |x|}$$

Опять получаем $s \underset{n \to \infty}{\longrightarrow} 0$.

Глава 1

Введение в многомерный анализ

Лекция II

17 февраля 2023 г.

Пусть $G \subset \mathbb{R}^n$ — открытое подмножество, дана некоторая функция

$$f:G\to\mathbb{R}^m$$

Рассмотрим некую точку $x \in G$.

Определение 1.0.1 (f дифференцируема в точке x). $\exists L : \mathbb{R}^n \to \mathbb{R}^m$ — линейное отображение (оператор), такое, что

$$f(y) - f(x) = L(y - x) + o(|y - x|)$$

1.0.1 О геометрии пространства \mathbb{R}^n

 $\mathbb{R}^n = \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ раз}}.$ $\mathbb{R}^n = \{(x_1, \dots, x_n) | x_j \in \mathbb{R}\}$ — состоит из *точек* или *векторов*. Сумма векторов,

умножение вектора на число понятны; рассмотрим скалярное произведение двух элементов $x,y\in\mathbb{R}^n$

$$\langle x, y \rangle \stackrel{def}{=} x_1 y_1 + \dots + x_n y_n$$

Свойства:

- $\bullet \ \langle x, y \rangle = \langle y, x \rangle.$
- Линейность по каждому аргументу: $\langle \alpha x_1 + \beta x_2, y \rangle = \alpha \langle x_1, y \rangle + \beta \langle x_2, y \rangle$.
- $\langle x, x \rangle = x_1^2 + \dots + x_n^2$. Число не меньше 0, равенство достигается, когда все координаты нулевые.

Определение 1.0.2 (Длина вектора).

$$|x| \stackrel{def}{=} \sqrt{\langle x, x \rangle}$$

• Неравенство Коши — Буняковского — Шварца (КБШ)

$$\langle x, y \rangle \leqslant |x| \cdot |y|$$

Доказательство. Рассмотрим $t \in \mathbb{R}$. Запишем $\langle x + ty, x + ty \rangle \geqslant 0$.

$$\langle x, x \rangle + 2t \langle x, y \rangle + t^2 \langle y, y \rangle \geqslant 0$$

Если y=0, то исходное неравенство очевидное; иначе выше написан квадратный трёхчлен, который неотрицателен, то есть его дискриминант не превышает $0: \langle x,y \rangle^2 \leqslant \langle x,x \rangle \cdot \langle y,y \rangle$. \square

Следствие 1.0.1 (Неравенство треугольника для длины). $\forall x, y \in \mathbb{R}^n : |x+y| \leq |x| + |y|$.

Доказательство.

$$|x+y|^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle \leqslant |x|^2 + |y|^2 + 2|x||y| = (|x|+|y|)^2$$

• Введём метрику: d(x,y) = |x-y|. Несложно проверить всё три свойства, которым функция должна удовлетворять, чтобы быть метрикой. В том числе неравенство треугольника:

$$d(x,y) = |x - y| = |(x - z) + (z - y)| \le |x - z| + |z - y|$$

• Метрика инвариантна относительно сдвига; при домножении всех координат на одно и то же число, метрика тоже умножается на это число.

Факт 1.0.1. Пусть $u, u^{(k)} \in \mathbb{R}^n$ (где $k \in \mathbb{N}$).

Условие

$$\left| u - u^{(k)} \right| \underset{k \to \infty}{\longrightarrow} 0$$

означает покомпонентную сходимость.

Доказательство. Несложно оценить из неравенства $x-y\leqslant |x_i-y_i|$ — расстояние хотя бы разность координатных проекций.

Стандартный базис векторов в $\mathbb{R}^n : e_j = (0, 0, \dots, \underbrace{1}_i, \dots, 0).$

Определение 1.0.3 $(x, y \in \mathbb{R}^n \text{ ортогональны}). \langle x, y \rangle = 0.$

Лемма 1.0.1. Если $u_1, \ldots, u_m \in \mathbb{R}^n$ все ненулевые и попарно ортогональны, то они линейно независимы.

Доказательство. Рассмотрим вещественные числа $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$.

$$x \coloneqq \sum_{i=1}^{n} \alpha_i u_i$$

Заметим, что $\langle u_i, x \rangle = \alpha_i |u_i|^2$.

Таким образом, если $x \in \langle u_1, \dots, u_m \rangle$, то его коэффициенты в линейной комбинации равны $\frac{\langle x, u_j \rangle}{|u_j|^2}$.

Если векторы u_j имеет единичную длину, то эти коэффициенты равны $\langle x, u_j \rangle$.

Определение 1.0.4 (Система векторов называется ортонормированной). $\langle u_i, u_j \rangle = \delta_{i,j}$.

Теорема 1.0.1. Пусть E — линейное подпространство в \mathbb{R}^n , $d = \dim(E)$. Тогда в E существует ортонормированная система из d векторов.

 $\ \ \, \mathcal{L}$ оказательство. Будем действовать по индукции. Пусть на k-м шаге построена ортонормированная система из k векторов u_1,\ldots,u_k .

Если k < d, то $\exists v \in E \setminus E_k$, где $E_k = \langle u_1, \dots, u_k \rangle$.

Тогда вектор $\widetilde{v}=v-(\langle v,u_1\rangle u_1+\cdots+\langle v,u_k\rangle u_k)\in E\setminus E_k$ тоже; несложно проверить, что \widetilde{v} ортогонален всякому вектору из u_1,\ldots,u_k .

Теперь возьмём пропорциональный ему вектор, длины 1, и добавим в ортонормированную систему.

Построенная система — линейно независима, называется ортонормированным базисом пространства.

Если рассмотреть разложение векторов x,y по ортонормированному базису, то скалярное произведение будет вычисляться по прежней формуле. Линейное подпространство евклидового пространство евклидово.

Пусть L_1, L_2 — линейные пространства. Отображение $T: L_1 \to L_2$ называется линейным оператором, если оно линейно.

Ортогональный проектор на подпространство

Теорема 1.0.2. Пусть E — линейное подпространство в \mathbb{R}^n . Для всякого $x \in \mathbb{R}^n : \exists ! a, b \in \mathbb{R}^n : a \in E, b \perp E \wedge x = a + b$.

Доказательство.

- Единственность: вычтем соответствующие разложения, если они вдруг не единственны. Получим с одной стороны вектор из *E*, а с другой стороны — ему перпендикулярный.
- Разложим по ортонормированному базису с помощью скалярных произведений.

Определение 1.0.5 (Ортогональный проектор). Отображение, сопоставляющее вектору x этот самый вектор $a \in E$.

Лекция III 21 февраля 2023 г.

Можно рассмотреть такое определение проектора: линейное отображение $T:L\to L$, такое что T(L)=R и $T\Big|_R=\mathrm{id}_R.$

Отсюда сразу получается $T^2 = T$, что тоже можно взять за определение, а не за свойство.

Таким свойствам удовлетворяет, например, ортогональный проектор $P:\mathbb{R}^n \to E$, такой, что $(x-Px) \perp Px$.

Для подпространства $E \subset \mathbb{R}^n$ можно определить ортогональное дополнение $E^\perp \stackrel{def}{=} \{y \in \mathbb{R}^n | y \perp E\} = \operatorname{Ker} P$.

Очевидно, что (I-P) — ортогональный проектор на E^{\perp} , где I — тождественный оператор.

Пусть $G \subset \mathbb{R}^n$ — открытое множество, а $F: G \to \mathbb{R}^m$ — произвольное отображение.

Для точки $x\in G$ говорят, что F дифференцируема в точке x, если $\exists T:\mathbb{R}^n\to\mathbb{R}^m$ — линейный оператор, такой, что F(y)-F(x)=T(x-y)+o(|x-y|).

Для пущей строгости можно записать

$$F(y) - F(x) = T(x - y) + \alpha(x - y)$$

где $\alpha: U_0 \to \mathbb{R}^m$ для некой окрестности нуля U_0 , причём $|\alpha(v)| = o(|v|)$. Так как теперь $|\alpha(v)|$ и |v| — скалярные величины, то записывать o-малое точно корректно.

Оператор T называют дифференциалом (дифференциальным отображением) F и записывают $\mathrm{d}F(x,\cdot)=\mathrm{d}F_x(\cdot)$. Заметим, что определение полностью согласуется с определением одномерного дифференциала.

Прежде всего рассмотрим несколько свойств линейных операторов.

Пусть $T:\mathbb{R}^n \to \mathbb{R}^m$ — линеен. Обозначим $\{e_j\}_{j=1}^n$ — ортонормированный базис пространства \mathbb{R}^n , а $\{g_k\}_{k=1}^m$ — ортонормированный базис \mathbb{R}^m .

По определению базиса $x = \sum_{j=1}^{n} x_j e_j$, откуда конечно же по линейности $Tx = \sum_{j=1}^{n} x_j \cdot Te_j$.

С другой стороны $Te_j = \sum_{k=1}^m a_{k,j} g_k$, как разложения Te_j по стандартному базису g.

Итого получаем $Tx=\sum\limits_{k=1}^m\left(\sum\limits_{j=1}^na_{k,j}x_j\right)g_k$, где $a_{k,j}$ — матрица отображения T.

Следствие 1.0.2. T — непрерывное (покомпонентная сходимость) отображение $\mathbb{R}^n \to \mathbb{R}^m$.

На самом деле выполняется условие, намного более сильное, чем просто непрерывность:

Предложение 1.0.1. T удовлетворяет условию Липшица: $\exists A \in \mathbb{R} : \forall u,v \in \mathbb{R}^n : |Tu - Tv| \leqslant A|u - v|$.

Эквивалентная запись: $\forall x \in \mathbb{R}^n : |Tx| \leqslant A|x|$.

Доказательство.
$$|Tx|^2 = \sum\limits_{k=1}^m \left(\sum\limits_{j=1}^n a_{k,j} x_j\right)^2 \leqslant \sum\limits_{\text{KBIII}}^m \left(\sum\limits_{j=1}^n a_{k,j}^2\right) \left(\sum\limits_{j=1}^m x_j^2\right) = |x|^2 \sum\limits_{k,j} a_{k,j}^2.$$

Теперь видно, что условие Липшица действительно выполняется, для $A = \sqrt{\sum\limits_{k,j} a_{k,j}^2}.$

Полученная константа A редко бывает самой плотной оценкой, а плотная оценка очень интересна, хотя и сложно вычислима.

Определим её. Пусть $T: \mathbb{R}^n \to \mathbb{R}^m$ — линейный оператор.

Определение 1.0.6 (Норма оператора T). $||T|| \stackrel{def}{=} \inf \Big\{ A \in \mathbb{R} \Big| \forall x \in \mathbb{R}^n : |Tx| \leqslant A|x| \Big\}.$

Предложение 1.0.2.
$$||T|| = \sup \{|Tx| \Big| |x| \leqslant 1\} = \sup \{|Tx| \Big| |x| = 1\}.$$

Доказательство. Очевидно, супремумы достигаются из компактности и теоремы Вейерштрасса. Обозначим $\alpha = \sup \left\{ |Tx| \Big| |x| \leqslant 1 \right\}; \quad \beta = \sup \left\{ |Tx| \Big| |x| = 1 \right\}; \quad \gamma = \|T\|.$

Заметим, что в определении нормы можно inf заменить на min, так как в нестрогом неравенстве можно перейти к пределу.

Несложно видеть из определения, что $\beta \leqslant \alpha \leqslant \gamma$. Докажем, что $\gamma \leqslant \beta$.

Докажем, что $\forall x \in \mathbb{R}^n : |Tx| \leqslant \beta |x|$.

- Если x = 0, то неравенство очевидно верно.
- ullet Если x
 eq 0, то $\left| rac{x}{|x|} \right| = 1$, и можно применить к нему определение eta :

$$T\left(\frac{x}{|x|}\right) \leqslant \beta \quad \Rightarrow \quad Tx \leqslant \beta|x|$$

Факт 1.0.2. Из линейности T можно брать супремум (но он уже не будет достигаться) и по открытому шару тоже: $\|T\| = \sup \Big\{ |Tx| \Big| |x| < 1 \Big\}.$

Доказательство. Рассмотрим точку x на сфере, где равенство выполняется с точностью до ε , немного отступим от неё.

Теорема 1.0.3 (Свойства нормы).

- 1. $||T|| = 0 \iff \forall x : Tx = 0.$
- 2. $||aT|| = |a| \cdot ||T||$
- 3. $||T_1|| + ||T_2|| \ge ||T_1 + T_2||$.

Доказательство.

$$||T_1 + T_2|| = \sup_{|x| \le 1} |(T_1 + T_2)(x)| = \sup_{|x| \le 1} |T_1(x) + T_2(x)| \le \sup_{|x| \le 1} |T_1(x)| + |T_2(x)| \le ||T_1|| + ||T_2||$$

Введём метрику $\rho(T_1, T_2) = ||T_1 - T_2||$.

Эта метрика задаёт отнюдь не новую топологию на пространстве линейных операторов. Чтобы это увидеть, перейдём к матрицам линейных отображений.

Воспользовавшись оценкой $\|T\| \leqslant \sqrt{\sum_{k,j} (a_{k,j})^2}$ мы сразу видим, что поэлементная сходимость матриц влечёт стремление $\sqrt{\sum_{k,j} (a_{k,j}-b_{k,j})^2} \longrightarrow 0$, то есть нормы близких матриц близки. Обратное тоже верно — если норма разности операторов стремится к нулю, то их матрицы покомпонентно сходятся

$$Te_j = \sum\limits_{k=1}^m a_{k,j} g_k$$
, откуда можно извлечь коэффициенты матрицы: $a_{k,j}(T) = \langle Te_j, g_k \rangle$.

Обозначим
$$|||T||| = \sqrt{\sum_{k,j} a_{k,j}(T)^2}.$$

Факт 1.0.3. $|a_{k,j}(T)| \leq ||T|| \leq |||T|||$.

Теорема 1.0.4. $T_s, T: \mathbb{R}^n \to \mathbb{R}^m$ (где $s \in \mathbb{N}$) — линейные операторы. Следующие условия эквивалентны:

- $|||T_s T||| \longrightarrow 0.$
- $||T_s T|| \longrightarrow 0$.
- $\forall k, j : a_{k,j}(T_s T) \longrightarrow 0.$

Доказательство. Собрать факты выше.

Так как |||T||| — длина вектора в \mathbb{R}^{nm} , то можно считать, что пространство операторов тоже евклидово.

Предложение 1.0.3. Пусть $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m \xrightarrow{S} \mathbb{R}^l$, где T, S — линейные операторы. Тогда $\|S \circ T\| \le \|S\| \cdot \|T\|$.

Доказательство.
$$\forall x \in \mathbb{R}^n : |(S \circ T)(x)| \leq ||S|| \cdot |Tx| \leq ||S|| \cdot ||T|| \cdot |x|.$$

Замечание. В будущем часто при композиции линейных операторов будет записываться, как произведение, в том числе слитно (ST).

Оценим снизу норму инъективных линейных операторов.

 $T: \mathbb{R}^n \to \mathbb{R}^m$ — линейный оператор — инъективен, если $\operatorname{Ker} T = \{0\}$. Очевидно, необходимым условием является $m \geqslant n$.

Теорема 1.0.5. Следующие условия эквивалентны:

- 1. Ker $T = \{0\}$.
- 2. $\exists m > 0 : \forall x \in \mathbb{R}^n : |Tx| \geqslant m|x|$.

Доказательство.

⇐. Очевидно.

 \Rightarrow . Рассмотрим единичную сферу $S=\{x\in\mathbb{R}^n||x|=1\}$. Она компактна, так как ограничена и замкнута.

Введём непрерывную функцию $\phi:S \to \mathbb{R}; \phi(x)=|Tx|.$ Очевидно, $\forall x \neq 0: \phi(x)>0.$

По теореме Вейерштрасса ϕ где-то достигает своё наименьшее значение. Пусть $m = \min_{x \in S} \phi(x)$,

причём
$$m=\phi(x_0)$$
. Тогда $\left|T\left(\frac{x}{|x|}\right)\right|\geqslant m\Rightarrow |Tx|\geqslant m|x|$.

Другой вариант доказательства. Пусть $E=T(\mathbb{R}^n)\subset\mathbb{R}^m$ — евклидово подпространство.

E само евклидово, можно считать, что $T: \mathbb{R}^n \to \mathbb{R}^n$ — биекция. Тогда обратное к T — тоже линейный оператор, значит, у него есть норма, то есть $\forall y \in E: \exists C \in \mathbb{R}: |T^{-1}y| \leqslant C|y|$.

Собственно, это и требовалось доказать.

Лекция IV 28 февраля 2023 г.

В терминах ε и δ дифференцируемость можно записать так:

Для функции $F:U\to\mathbb{R}^m$, заданной на открытом множестве U и точки $x_0\in U$:

$$\exists A$$
 — линейный оператор, такой, что $\forall x \in U : F(x) = F(x_0) + A(x - x_0) + o(|x - x_0|)$

Определим $\phi(x) = F(x) - F(x_0) - A(x - x_0)$, определённую на U.

Необходимым и достаточным условием является $\forall \varepsilon > 0: \exists \delta: \forall x \in U: |x-x_0| < \delta \Rightarrow |\phi(x)| \leqslant \varepsilon \cdot |x-x_0|.$

Факт 1.0.4. Если F дифференцируема в точке x_0 , то F непрерывна в точке x_0 . Более того, выполняется локальное условие Липшица:

$$\exists C \in \mathbb{R}: |F(x) - F(x_0)| \leqslant C|x - x_0|$$
 при достаточно малом $x - x_0$

Доказательство.

$$F(x) - F(x_0) = A(x - x_0) + \phi(x) \Rightarrow |F(x) - F(x_0)| \le ||A|| \cdot |x - x_0| + \varepsilon \cdot |x - x_0| = (||A|| + \varepsilon) \cdot |x - x_0|$$

Предложение 1.0.4. У данной функции $F:U\to \mathbb{R}^m$ в данной точке $x_0\in U$ существует не более одного дифференциала.

Доказательство. От противного: нашлись $A,B:\mathbb{R}^n \to \mathbb{R}$ — дифференциалы F в x_0 .

$$F(x) - F(x_0) = A(x - x_0) + o(|x - x_0|)$$

$$F(x) - F(x_0) = B(x - x_0) + o(|x - x_0|)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad (B - A)(x - x_0) = o(|x - x_0|)$$

Положим C=B-A. Если $C\neq 0$, то $\exists h\in\mathbb{R}^n:C(h)\neq 0$.

Рассмотрев $t \in \mathbb{R}$, получаем $C(h) = \frac{C(t \cdot h)}{t \cdot |h|} \underset{t \to 0}{\longrightarrow} 0$, противоречие.

Примеры (Простейшие дифференцируемые отображения).

- Постоянное отображение (дифференциал 0).
- Линейное отображение (дифференциал совпадает с самим отображением).

Теорема 1.0.6 (О композиции дифференцируемых отображений). Пусть $U \in \mathbb{R}^n, V \in \mathbb{R}^m$ — открытые множества.

При данных отображениях $F:U\to\mathbb{R}^m$ и $G:V\to\mathbb{R}^k$, таких, что $F(U)\subset V$, выберем точки $x_0\in U$ и $y_0=F(x_0)$.

При сделанных предположениях, если F дифференцируема в x_0 с дифференциалом A, G дифференциалом B, то $G \circ F$ дифференцируема в x_0 с дифференциалом BA.

Доказательство.

$$F(x) = F(x_0) + A(x-x_0) + \phi(x), \qquad |\phi(x)| = o(|x-x_0|)$$

$$G(y) = G(y_0) + B(y-y_0) + \psi(y), \qquad |\psi(y)| = o(|y-y_0|)$$
 подставим $y \coloneqq F(x), \ y_0 \coloneqq F(x_0)$ (область определения позволяет)
$$(G \circ F)(x) = (G \circ F)(x_0) + B(F(x) - F(x_0)) + \psi(F(x))$$

$$(G \circ F)(x) = (G \circ F)(x_0) + BA(x-x_0) + B(\phi(x)) + \psi(F(x))$$

Покажем, что $\gamma(x) \coloneqq B(\phi(x)) + \psi(F(x)) = o(|x - x_0|)$

$$\gamma(x)\leqslant \underbrace{\lfloor B(\phi(x))\rfloor}_{\leqslant \|B\|\cdot\phi(x)=o(|x-x_0|)} + \underbrace{\lfloor \psi(F(x))\rfloor}_{o(|x-x_0|) \text{ из-за локальной липшицевости }F}$$

Теорема 1.0.7. Если $U \subset \mathbb{R}^n$ — открытое множество, а $F_1, F_2 : U \to \mathbb{R}^m$ — дифференцируемы в точке x_0 , то для $\alpha, \beta \in \mathbb{R}$:

$$d(\alpha F_1 + \beta F_2)(x_0, \cdot) = \alpha \cdot dF_1(x_0, \cdot) + \beta \cdot dF_2(x_0, \cdot)$$

Пусть $F:U \to \mathbb{R}^m$ — отображение.

Определение 1.0.7 (Координатные проекции F). Разложим F(x) по стандартному базису: $F(x) = \sum_{i=1}^{m} a_i e_i$. Тогда координатными проекциями называются функции $F_j : \mathbb{R}^m \to \mathbb{R}$; $F_j(x) = a_j$.

Теорема 1.0.8. Пусть $U \in \mathbb{R}^n$ открыто. Утверждается, что $F: U \to \mathbb{R}^m$ дифференцируема в $x_0 \in U$ если и только если $\forall j = 1..m: F_j$ дифференцируема в x_0 .

Более того, $dF(x_0, h) = (dF_1(x_0, h), \dots, dF_m(x_0, h))$

Доказательство.

- \Rightarrow . Рассмотрим линейный оператор $T_j:\mathbb{R}^m \to \mathbb{R}$, сопоставляющий $y \in \mathbb{R}^m$ его j-ю координату в разложении по стандартному базису. $F_j = T_j \circ F$ дифференцируема, как композиция. Утверждение про матрицу дифференциала F следует из того, что матрица дифференциала T_j это $(0,\cdots, 1,\cdots, 0)$
- \Leftarrow . Если все F_j дифференцируемы, то $F_j(x) F_j(x_0) = A_j(x x_0) + o(|x x_0|)$, откуда $F(x) F(x_0) = \begin{pmatrix} A_1(x x_0), & \dots, & A_m(x x_0) \end{pmatrix} + \begin{pmatrix} \phi_1(x), & \dots, & \phi_m(x) \end{pmatrix}$

Несложно видеть, что это дифференцируемость F по определению.

1.0.2 О скалярных функциях $F:(U\subset\mathbb{R}^n)\to\mathbb{R}$

Замечание. Пусть $G:U\to\mathbb{R}$ — скалярная функция, дифференцируемая в $x_0\in U$, то есть

$$G(x) - G(x_0) = A(x - x_0) + o(|x - x_0|)$$

где $A: \mathbb{R}^n \to \mathbb{R}$ — линейный функционал.

Разложим $A(y) = A(y_1e_1 + \dots + y_ne_n) = y_1A(e_1) + \dots + y_nA(e_n)$. Положим $\xi_j = A(e_j) \in \mathbb{R}$, тогда $A(y) = \langle y, \xi \rangle$.

Пусть F дифференцируема в $x_0 \in U$, тогда $\exists \xi: F(x) - F(x_0) = \langle x - x_0, \xi \rangle + o(|x - x_0|)$. Таким образом, дифференциальный оператор для F — скалярное произведение $\langle x - x_0, \xi \rangle$, где ξ называется $\operatorname{\it zpaduehmom} F$ в точке x_0 . Обозначается $\operatorname{grad}_{x_0} f$, или (иногда) $\operatorname{grad} f(x_0)$ (имея в виду $(\operatorname{grad} f)(x_0)$).

Лекция V

3 марта 2023 г.

Пусть $I \subset \mathbb{R}$ — открытый отрезок I = (a, b).

Рассмотрим $g:I\to U$, дифференцируемую в точке $t_0\in(a,b)$. Как и раньше, $U\subset\mathbb{R}^n$. Функцию g такого вида называют векторнозначная функция.

Рассмотрим координатные функции $g(x) = (g_1(x), \ldots, g_n(x))$. g дифференцируема в $t_0 \in (a,b) \iff$ все g_j дифференцируемы в t_0 .

Ho $g_j:\mathbb{R} o \mathbb{R}$ дифференцируема, если $\exists g_j'(t) = \lim_{t o t_0} rac{g_j(t) - g_j(t_0)}{t - t_0}.$

Найдём дифференциал функции g:

$$g(t) - g(t_0) = (g_1(t) - g_1(t_0), \dots, g_n(t) - g_n(t_0)) = (g'_1(t_0), \dots, g'_n(t_0)) (t - t_0) + o(|t - t_0|)$$

Таким образом

$$(g'_1(t_0), \ldots, g'_n(t_0)) = \lim_{t \to t_0} \frac{g(t) - g(t_0)}{t - t_0}$$

Определение 1.0.8 (Производная векторнозначной функции g). Соответствующий вектор $(g_1'(t_0), \ldots, g_n'(t_0))$.

В частности, если $g: \mathbb{R} \to \mathbb{R}^3$ — координата частицы в зависимости от времени, то её производная — трёхмерный вектор, вектор скорости частицы.

В случае функции g такого вида её дифференциал $dg(t_0,h) = g'(t_0) \cdot h$.

Теперь рассмотрим композицию $F = f \circ g$, где $f: U \to \mathbb{R}$ и $g: I \to U$ рассмотрены выше.

Пусть g дифференцируема в t_0 , $x_0 = g(t_0)$, f дифференцируема в x_0 . Тогда согласно (теорема 1.0.6) F дифференцируема в t_0 , её дифференциал равен композиции дифференциалов f и g.

Но $F:I\to\mathbb{R}$ — одномерная функция, дифференцируемость означает существование одномерного предела. Отсюда $F'(t_0)=\langle g'(t_0),\operatorname{grad}_{x_0}f\rangle.$

Пусть $e \in \mathbb{R}^n$, $g: I \to U$. Определим $g(t) = x_0 + t \cdot e$, где I — настолько маленький интервал (содержащий 0), что $g(I) \subset U$.

В таком случае F'(0) записывается более явно: $F'(0) = \langle e, \operatorname{grad}_{x_0} f \rangle$. С другой стороны, $F'(0) = \lim_{t \to 0} \frac{f(x_0 + te) - f(x_0)}{t}$.

Мы проверили, что если f дифференцируема, то предел выше существует (и равен $\langle e, \operatorname{grad}_{x_0} f \rangle$). Этот предел называется производной f по направлению e.

Выберем в качестве e стандартный орт: $e \in \{e_j\}_{j=1}^n = (0, \cdots, 0, \underbrace{1}_i, 0, \cdots, 0)$

Определение 1.0.9 (Частная производная f по j-й координате). Производная f по направлению e_j . Обозначается $\frac{\partial f}{\partial x_j}(x_0)$

Тем самым.

$$\operatorname{grad}_{x_0} f = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x_0) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x_0) \end{pmatrix}$$

Теперь рассмотрим более общий случай: $h:U\to\mathbb{R}^m$ дифференцируема в $x_0\in U$. Как известно, $h=(h_1,\ldots,h_m)$, где h_j — соответствующие координатные функции.

Запишем дифференциал h в виде столбца:

$$dh(x_0, u) = \begin{pmatrix} dh_1(x_0, u) \\ \vdots \\ dh_m(x_0, u) \end{pmatrix} = \begin{pmatrix} \langle \operatorname{grad}_{x_0} h_1, u \rangle \\ \vdots \\ \langle \operatorname{grad}_{x_0} h_m, u \rangle \end{pmatrix} = \begin{pmatrix} \frac{\partial h_1}{\partial x_1}(x_0), & \dots, & \frac{\partial h_1}{\partial x_n}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial h_m}{\partial x_1}(x_0), & \dots, & \frac{\partial h_m}{\partial x_n}(x_0) \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

Получили следующий результат: матрицы дифференциала отображения h в точке x_0 выглядит так:

$$\left(rac{\partial h_k}{\partial x_j}(x_0)
ight)_{j=1..n}^{k=1..m}$$
 где k — номер строки, а j — номер столбца

При этом, если h дифференцируема в x_0 , то существуют все частные производные.

Контример (Если частные производные в x_0 в направлении всех ортов существуют, то совсем не обязательно отображение дифференцируемо). Например,

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Очевидно, $\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0$, но сужение функции на прямую y=x претерпевает в нуле разрыв: $f(t,t)=\frac{1}{2}$ при $t\neq 0$.

Также можно найти недифференцируемую функцию, у которой есть частные производные по всем направлениям.

«Но жить-то как-то надо»

Теорема 1.0.9. Пусть $f: U \to \mathbb{R}$, где $U \subset \mathbb{R}^n$.

При условии, что в некоторой окрестности точки $x_0 \in U$ частные производные $\frac{\partial f}{\partial x_j}(x)$ существуют, причём непрерывны в точке x_0 , f дифференцируема в x_0 .

 $\ \ \, \mathcal{L}$ оказательство. Для удобства доказательства выберем n=2. Утверждается, что при больших n всё то же самое, но писанины больше.

При n=2 обозначим $x_0=(u_0,v_0), x=(u,v).$

Из непрерывности производных

$$\forall \varepsilon > 0 : \exists \delta > 0 : |x - y| < \delta \Rightarrow \left| \frac{\partial f}{\partial x_j}(x) - \frac{\partial f}{\partial x_j}(y) \right| < \varepsilon, \qquad j = 1, 2$$

Запишем

$$f(x) - f(x_0) = f(u, v) - f(u_0, v_0) = \left(f(u, v) - f(u_0, v)\right) + \left(f(u_0, v) - f(u_0, v_0)\right)$$

Применим к данным двум разностям формулу Лагранжа.

$$f(x)-f(x_0)=\frac{\partial f}{\partial u}(\theta_v,v)\cdot(u-u_0)+\frac{\partial f}{\partial v}(u_0,\eta)\cdot(v-v_0) \text{ где }\theta_v\text{ между }u\text{ и }u_0,\ \eta\text{ между }v\text{ и }v_0$$

Преобразуем выражение, прибавив и вычтя ожидаемое изменение функции — произведение производной и изменение аргумента.

$$f(x) - f(x_0) = \left(\frac{\partial f}{\partial u}(u_0, v_0) \cdot (u - u_0) + \frac{\partial f}{\partial v}(u_0, v_0) \cdot (v - v_0)\right) + \underbrace{\left(\frac{\partial f}{\partial u}(\theta_v, v) - \frac{\partial f}{\partial u}(u_0, v_0)\right) (u - u_0) + \left(\frac{\partial f}{\partial v}(u_0, \eta) - \frac{\partial f}{\partial u}(u_0, v_0)\right) (v - v_0)}_{R}$$

Первая пара скобок содержит $\langle \operatorname{grad}_{x_0} f, x - x_0 \rangle$, докажем, что остальное мало.

Зафиксируем некий $\varepsilon>0$, выберем $|x-x_0|<\frac{\delta}{2}$, где δ — функция от ε из непрерывности производных.

Тогда все точки $(u_0, v_0), (u_0, \eta), (\theta_v, v)$ находятся на расстоянии меньше δ друг от друга.

Применяя КБШ, получаем, что
$$|R| \leqslant \sqrt{\varepsilon^2 + \varepsilon^2} \cdot |x - x_0| \leqslant \sqrt{2} \cdot \varepsilon |x - x_0|$$
.

Определение 1.0.10 (Путь). Непрерывное отображение $\gamma:[a,b]\to\mathbb{R}^n$. Образ пути $\gamma([a,b])$ называется *носителем* пути.

Интересный факт. Кривая Пеано — путь, у которого носитель — квадрат $[0,1] \times [0,1]$.

Пусть γ дифференцируема на (a,b), и U — открытое множество, такое, что $\gamma([a,b]) \subset U$.

Рассмотрим скалярную функцию $f:U\to\mathbb{R}$, дифференцируемую везде на U.

Зададим $\phi = f \circ \gamma$. Несложно видеть, что ϕ непрерывна на [a,b], дифференцируема на (a,b).

Запишем производную ϕ :

$$\phi'(t) = \langle \operatorname{grad}_{\gamma(t)} f, \gamma'(t) \rangle$$

Применим формулу Лагранжа: $c, d \in [a, b] \Rightarrow \exists \xi \in [\min(c, d), \max(c, d)]$:

$$\phi(d) - \phi(c) = \phi'(\xi)(d - c)$$

Обозначим $y = \gamma(c), x = \gamma(d)$, тогда $f(y) - f(x) = \langle \operatorname{grad}_{\gamma(\xi)}(f), \gamma'(\xi) \rangle (d-c)$

Получился многомерный вариант формулы Лагранжа.

Лекция VI

7 марта 2023 г.

Рассмотрим частный вариант формулы выше: $[\alpha, \beta] = [0, 1], U$ — шар с центром в a, содержащий b. Зададим путь прямолинейно: $\gamma(t) = a + t(b - a), t \in [0, 1]$.

Запишем:

$$f(b) - f(a) = \langle \operatorname{grad}_u f, b - a \rangle = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(u)(b_j - a_j)$$

Факт 1.0.5. Если функция f дифференцируема на всём открытом множестве G, а точки a, b — концы некоего отрезка, содержащегося в G целиком, то на этом отрезке найдётся точка u, удовлетворяющая условиям.

Следствие 1.0.3.
$$|f(b)-f(a)| \leqslant \sup_{u \in [a,b]} |grad_u f| \cdot |b-a|$$
, $\varepsilon \partial e \ [a,b] = \{a+t(b-a)|t \in [0,1]\}$.

Теорема 1.0.10 (Векторный вариант предыдущей). Пусть $U \subset \mathbb{R}^n$ — открытое множество, $F: U \to \mathbb{R}^m$ дифференцируемо во всех точках U.

Если
$$[a,b] \subset U$$
, то $\exists u \in [a,b] : |F(b) - F(a)| \leq |dF(u,b-a)|$.

Доказательство.

Лемма 1.0.2 (О двойственности). Пусть $x \in \mathbb{R}^k$, тогда $|x| = \max\{\langle x,y \rangle | y \in \mathbb{R}^k, |y| \leqslant 1\}$.

Доказательство леммы.

Согласно КБШ $\langle x, y \rangle \leqslant |x|$.

Если x=0, то доказывать нечего, иначе при $y=\frac{x}{|x|}$ достигается равенство. \square

Согласно лемме, $\exists e \in \mathbb{R}^m : |e| = 1$, причём $|F(b) - F(a)| = \langle F(b) - F(a), e \rangle$.

Рассмотрим скалярную функцию $f:U\to\mathbb{R}; \qquad x\mapsto \langle F(x),e\rangle.$ f дифференцируема, как линейная комбинация координатных функций F.

Применив для f формулу Лагранжа, получаем: $\exists u \in [a,b]: f(b)-f(a)=\langle \operatorname{grad}_u f,b-a \rangle$.

Совместив всё полученное:

$$|F(b) - F(a)| = \langle F(b) - F(a), e \rangle = |f(b) - f(a)| = |\langle \operatorname{grad}_u f, b - a \rangle|$$

Посчитаем градиент. Для этого разложим F, e по базису: $F(x) = (f_1(x), \dots, f_m(x)), e = (e_1, \dots, e_m)$. Тогда получаем явное представление $f(x) = \sum_{j=1}^m f_j(x)e_j$. Отсюда $\frac{\partial f}{\partial x_k}(x) = \sum_{j=1}^m \frac{\partial f_j}{\partial x_k}(x) \cdot e_j$.

Продолжим оценку:

$$\left| \left\langle \operatorname{grad}_{u} f, b - a \right\rangle \right| = \left| \sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}}(u) \cdot (b_{k} - a_{k}) \right| = \left| \sum_{j=1}^{m} \sum_{k=1}^{n} \frac{\partial f_{j}}{\partial x_{k}}(u)(b_{k} - a_{k})e_{j} \right| = \left| \left\langle \operatorname{d}F(u, b - a), e \right\rangle \right| \leqslant \left| \operatorname{d}F(u, b - a) \right|$$

Контрпример (Равенства, вообще говоря, может не быть). n=1, m=2 — отображение из прямой в плоскость.

 $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}^2; \qquad f: t \mapsto (\cos(t), \sin(t))$

Рассмотрим $f\left(\frac{\pi}{2}\right) - f(0) = (0,1) - (1,0) = (-1,1)$.

$$|f\left(\frac{\pi}{2}\right) - f(0)| = \sqrt{2}$$

Предположим, что нашлась точка $\theta \in \left(0, \frac{\pi}{2}\right): \sqrt{2} = \left|f'(\theta)\frac{\pi}{2}\right|$. Но $|f'(\theta)| = \left|\left(-\sin\theta,\cos\theta\right)\right| = 1$, и равенство не выполняется: всегда $\sqrt{2}_{\approx 1.41} < \frac{\pi}{2}_{\approx 1.57}$

Следствие 1.0.4. $|F(b) - F(a)| \le \| dF(u, \cdot) \| \cdot |b - a|$.

1.0.3 Замечания про градиент

1. Необходимое условие существования локального экстремума.

Пусть X — топологическое пространство, $g: X \to \mathbb{R}$ — функция, $x_0 \in X$;

Определение 1.0.11 (g имеет локальный максимум в точке x_0). Существует окрестность $\overset{o}{U}_{\varepsilon}(x_0): \forall x \in \overset{o}{U}_{\varepsilon}(x_0): g(x) \leqslant g(x_0).$

Также бывают строгие локальный минимум и максимум.

Пусть $U \subset \mathbb{R}^n, f: U \to \mathbb{R}$, причём f имеет локальный экстремум в точке $x_0 \in U$.

Теорема 1.0.11. Если f дифференцируема в точке x_0 , то $\operatorname{grad}_{x_0} f = (0, \dots, 0)$.

Доказательство. Пусть $v = \operatorname{grad}_f(x_0) \neq (0, \ldots, 0)$, то есть $\langle v,v \rangle > 0$. Рассмотрим малое t, при котором в частности $x_0 + tv \in U$, при нём $f(x_0 + tv) - f(x_0) = \langle v,tv \rangle + \phi(tv)$, где $|\phi(h)| = o(h)$. Таким образом, если $v \neq (0, \ldots, 0)$, то найдётся малое t, такое, что $f(x_0 + tv) > f(x_0)$.

Условие, разумеется, не является достаточным (даже в одномерной теории).

2. Про скорость роста в разных направлениях. Пусть $U \subset \mathbb{R}^n$, $f: U \to \mathbb{R}$.

Если f дифференцируема в $x_0 \in U$, то для единичного вектора e определена в окрестности 0 одномерная функция $\phi_e(t) = f(x_0 + te)$.

По определению $\frac{\partial f}{\partial e} = \phi'_e(0) = \langle \operatorname{grad}_f(x_0), e \rangle$.

Замечание. Из КБШ видно, что f растёт быстрее всего в направлении $e_0 = \frac{\operatorname{grad}_f(x_0)}{|\operatorname{grad}_f(x_0)|}$ (если $\operatorname{grad}_f(x_0) \neq 0$).

Кроме того, f убывает быстрее всего в направлении против градиента.

Лекция VII

10 марта 2023 г.

1.1 Теорема об обратной функции

Докажем теорему, аналогичную одномерной теореме про производную обратного отображения.

Пусть G — открытое множество в \mathbb{R}^n , а $F:G\to\mathbb{R}^n$ — отображение, дифференцируемое во всех точках G.

Выберем $x_0 \in G$, такую, что F непрерывно дифференцируема в x_0 , то есть $\|\mathrm{d}F(x_0,\cdot)-\mathrm{d}F(x,\cdot)\| \underset{x\to x_0}{\longrightarrow} 0$.

Иными словами, $\forall j,k: \frac{\partial f_k}{\partial x_j}(x) \underset{x \to x_0}{\longrightarrow} \frac{\partial f_k}{\partial x_j}(x_0).$

Положим A — матрица $\mathrm{d}F(x_0,\cdot)$ — матрица линейного отображения. Пусть $\mathrm{Ker}\,\mathrm{d}F(x_0,\cdot)=\{0\}$, то есть $\mathrm{det}\,A\neq 0$. Здесь существенно, что F действует из пространства размерности n в пространство той же размерности.

Теорема 1.1.1 (Об обратной функции). При сделанных предположениях $\exists U$ — окрестность точки x_0 , такая, что $F\Big|_U$ — биекция между U и F(U).

Утверждается, что F(U) содержит V — некоторую окрестность точки $y_0 \coloneqq F(x_0)$, причём на V существует обратное к F отображение.

Утверждается, что F^{-1} дифференцируема в точке y_0 и $dF^{-1}(y_0,\cdot) = A^{-1}$.

Доказательство.

Лемма 1.1.1 (Лемма о билипшицевости). Пусть $G \subset \mathbb{R}^n$ — открыто, $H: G \to \mathbb{R}^m$ — отображение.

Предположим, что H дифференцируема в G, причём в $x_0 \in G$ дифференцируемость непрерывная.

Тогда $\exists U \ni x_0$, $\exists C \in \mathbb{R} : \forall x_1, x_2 \in U : |H(x_1) - H(x_2)| \leqslant C|x_1 - x_2|$.

Более того, если $\operatorname{Ker} dF(x_0,\cdot) = \{0\}$, то можно выбрать эту окрестность U вместе так, что ещё и $\exists c \in \mathbb{R} : \forall x_1, x_2 \in U : |H(x_1) - H(x_2)| \geqslant c|x_1 - x_2|$.

Доказательство леммы.

Обозначим $A=\mathrm{d}F(x_0,\cdot)$ — матрица дифференциала. Положим $H_1(x)=H(x)-Ax$. Тогда $\mathrm{d}H_1(x,\cdot)=\mathrm{d}H(x,\cdot)-A$.

Из непрерывности дифференциала в x_0 следует $\forall \varepsilon > 0: \exists \delta: |x-x_0| \leqslant \delta \Rightarrow \| dH(x,\cdot) - A\| \leqslant \varepsilon.$

Таким образом, $\forall u,v \in \overline{B}_{\delta}(x_0): \underbrace{|H_1(u)-H_1(v)|}_{|(H(u)-H(v))-A(u-v)|} \leqslant \varepsilon \cdot |u-v|$ — здесь мы пользуемся

неравенством Коши — Лагранжа для дифференциала на пути.

Раскрыв модуль, получаем $|A(u-v)| - \varepsilon |u-v| \leqslant |H(u)-H(v)| \leqslant |A(u-v)| + \varepsilon |u-v|$.

Выбрав $\varepsilon=1$ получаем оценку сверху — липшицевость функции H. Теперь надо доказать билипшицевость — липшицевость H^{-1} .

Это правда, так как (теорема 1.0.5) $\exists m > 0 : \forall w \in \mathbb{R}^n : |Aw| \geqslant m|w|$, выберем $\varepsilon = m/2$. \square

Лемма 1.1.2. Рассмотрим матрицы линейных отображений A и $\{A_k\}_{k\in\mathbb{N}}: \mathbb{R}^n \to \mathbb{R}^n$. Предположим, что A обратима, и $\|A_k - A\| \underset{h \to \infty}{\longrightarrow} 0$.

Тогда для достаточно больших $k:A_k$ обратима, причём $\|A_k^{-1}-A^{-1}\|\underset{k\to 0}{\longrightarrow} 0.$

Доказательство леммы.

Согласно (теорема 1.0.5) $\exists m > 0 : \forall w \in \mathbb{R}^n : |Aw| \geqslant m|w|$.

Заметим, что

$$|A_k w| \ge |Aw| - |(A - A_k)w| \ge (m - ||A - A_k||) \cdot |w|$$

Так как A_k стремится к A по норме, то при достаточно больших k: $m-\|A-A_k\|>\frac{m}{2}$.

Это показывает, что A_k обратимы, начиная с некоторого места. Сходимость A_k^{-1} к A^{-1} можно показать покомпонентно, можно следующей выкладкой:

$$||A^{-1} - A_k^{-1}|| = ||A^{-1} \cdot (A_k - A) \cdot A_k^{-1}|| \leq \underbrace{||A^{-1}||}_{\text{const}} \cdot \underbrace{||A_k - A||}_{\underset{k \to \infty}{\longrightarrow} 0} \cdot \underbrace{||A_k^{-1}||}_{\leqslant 3m/2}$$

Из леммы о билипшицевости получаем $\exists \rho, c, C > 0 : \forall u, v \in \overline{B}_{\rho}(x_0)$:

$$c|u-v| \leq |F(u)-F(v)| \leq C|u-v|$$

В частности, F инъективна.

Найдём такое η , что $\overline{B}_{\eta}(y_0) \subset F(\overline{B}_{\rho}(x_0))$.

Рассмотрим $y \in \overline{B}_{\eta}(y_0)$, решим уравнение F(x) = y, где x надо найти в $\overline{B}_{\rho}(x_0)$. Для решения заведём $\Phi : \overline{B}_{\rho}(x_0) \to \mathbb{R} : \Phi(x) \coloneqq |F(x) - y|^2$. По теореме Вейерштрасса она где-нибудь достигает своего наименьшего значения, пусть в точке $z \in \overline{B}_{\rho}(x_0)$.

Покажем, что для достаточно малого η решение лежит не на границе: $|x_0-z|<\rho$. Докажем это от противного.

Пусть $|z-x_0|=\rho$, оценим

$$\Phi(z) \leqslant \Phi(x_0) = |y_0 - y|^2 \leqslant \eta^2$$

Ешё оценим

$$|F(z) - y| \ge |F(z) - F(x_0)| - |y_0 - y| \ge c|z - x_0| - \eta = c\rho - \eta$$

Выберем η настолько маленьким, что $c\rho - \eta > \eta$. Тогда $|F(z) - y|^2 \geqslant \eta^2$, противоречие.

А раз решение лежит не на границе шара, то F(z) = y — иначе можно пойти против градиента и уменьшиться ещё сильней. Получается, градиент нулевой.

Для любого $\varepsilon > 0$ при выборе достаточно маленького $\rho : \forall z \in \overline{B}_{\rho}(x_0) : \| dF(z, \cdot) - A \| \leqslant \varepsilon$, то есть $dF(z, \cdot)$ обратимо. Запишем

$$\frac{\partial \Phi}{\partial x_k}(z) = 2\sum_{j=1}^n \frac{\partial f_j}{\partial x_k}(z) \cdot (f_j(z) - y_j)$$

Из обратимости $\mathrm{d}F(z,\cdot)$ следует невырожденность матрицы $\frac{\partial f_j}{\partial x_k}$ (это та же, но транспонированная), откуда при домножении матрицы на вектор f(z)-y не получится нуля — единственным решением зануления градиента является f(z)=y.

Таким образом, при $\eta < \frac{c\rho}{2}$ все решения уравнений F(x) = y лежат внутри $\overline{B}_{\rho}(x_0)$. Часть про выбор окрестности $V \subset F(U)$ доказана.

$$\begin{split} F(x) - F(x_0) &= A \cdot (x - x_0) + \phi(x), \text{ где } |\phi(x)| = o(|x - x_0|) \\ \forall y \in \overline{B}_{\eta}(y_0) : \exists x \in \overline{B}_{\rho(x_0)} : F(x) = y \\ y - y_0 &= A(F^{-1}(y) - F^{-1}(y_0)) + \phi(F^{-1}(y)) \\ B &\coloneqq A^{-1} \\ F^{-1}(y) - F^{-1}(y_0) &= B(y - y_0) - B\phi(F^{-1}(y)) \end{split}$$

Осталось показать, что $B\phi(F^{-1}(y))=o(|y-y_0|)$. Применение линейного оператора B на маленькость не влияет, он билипшицев. Также билипшицевы F и F^{-1} , так как $\phi(x)=o(|x-x_0|)$, то $B\phi(F^{-1}(y))=o(|y-y_0|)$.

Лекция VIII

14 марта 2023 г.

В предыдущей лекции мы показали следующее. Рассмотрим открытое $G \subset \mathbb{R}^n, F: G \to \mathbb{R}^n$, такие, что F непрерывно дифференцируема всюду.

Если в некой точке $x_0 \in G$ наблюдается невырожденный оператор $dF(x_0, \cdot)$, то при x, близких к x_0 , $dF(x, \cdot)$ тоже невырождены, функция F^{-1} существует и дифференцируема вблизи $F(x_0)$.

В частности, использовалась лемма, близкая к следующей.

Лемма 1.1.3. Пусть $T: \mathbb{R}^n \to \mathbb{R}^m$ — линейный оператор, такой, что $\operatorname{Ker} T = \{0\}$.

Тогда $\exists \varepsilon > 0$, такой, что для любого линейного оператора $\forall S : \mathbb{R}^n \to \mathbb{R}^m : \|S - T\| < \varepsilon \Rightarrow \operatorname{Ker} S = \{0\}.$

Доказательство. Воспользуемся тем, что $\exists m>0: |Tx|\geqslant m|x|$. Тогда $|Sx|\geqslant |Tx|-|(S-T)x|\geqslant (m-|\varepsilon|)x$.

Следствие 1.1.1. Если $F: G \to \mathbb{R}^n$ — непрерывно дифференцируемое отображение, такое, что $\mathrm{d}F(x,\cdot)$ невырождено для $x \in U$, то F(U) открыто в \mathbb{R}^n .

1.2 Гладкие многообразия

1.2.1 Касательные векторы

Пусть $x_0 \in A \subset \mathbb{R}^n$, где A — произвольное множество.

Определение 1.2.1 (Касательный к A вектор $e \in \mathbb{R}^n$). Для $t \in \mathbb{R} : \mathrm{dist}(x_0 + te, A) = o(|t|)$ при $t \to 0$.

Замечание. Для x_0 — внутренней точки A — все векторы — касательные.

Теорема 1.2.1. Пусть $F:(U\subset\mathbb{R}^n)\to\mathbb{R}$ дифференцируема, $x_0\in U,\ A\subset\mathbb{R}^n.$

Пускай $F\Big|_{A\cap U}$ имеет локальный экстремум в x_0 . Тогда для касательного к A вектора $e\in\mathbb{R}^n$: $\mathrm{d}F(x_0,e)=0$.

Доказательство. Пусть $e \in \mathbb{R}^n$ — касательный вектор к A в x_0 . Пойдём от противного: $d := \mathrm{d} F(x_0, e) \neq 0$.

Посмотрим на $F(x_0 + te) - F(x_0)$. Для любого $t \in \mathbb{R} : \exists x_t \in A : |x_0 + te - x_t| \leq 2 \operatorname{dist}(x_0 + te, A)$ по определению расстояния.

Запишем определение дифференцируемости F в x_0 .

$$F(x_t) - F(x_0) = dF(x_0, x_t - x_0) + \underbrace{\phi(t)}_{o(|t|)} = dF(x_0, te) + dF(x_0, x_t - x_0 - te) + \underbrace{\phi(t)}_{o(|t|)}$$

Так как $|dF(x_0, x_t - x_0 - te)| \le ||dF(x_0, \cdot)|| \cdot |x_t - x_0 - te| \le 2||dF(x_0, \cdot)|| \cdot |dist(x_0 + te, A)| = o(t)$, то

$$F(x_t) - F(x_0) = dF(x_0, te) + o(|t|) = t \cdot d + o(|t|)$$

Получили, что $F\Big|_{A\cap U}$ не имеет локального экстремума в x_0 , противоречие. \Box

Пускай $\Phi: (U \subset \mathbb{R}^n) \to \mathbb{R}^m$, где $m \geqslant n$.

Предположим, что Φ дифференцируема в U и непрерывно дифференцируема в $x_0 \in U$. Также предположим, что Φ билипшицева на своей области определения.

Положим $A = \Phi(U)$, предположим, что $\operatorname{Ker} d\Phi(x_0, \cdot) = \{0\}$ (что следует из билипшицевости).

Теорема 1.2.2. При сделанных предположениях множество касательных векторов к A в точке $y_0 := \Phi(x_0)$ есть $d\Phi(x_0, \mathbb{R}^n)$.

Доказательство. Обозначим $L:=\mathrm{d}\Phi(x_0,\cdot)$.

 \Rightarrow . Пусть $x \in \mathbb{R}^n$, назначим e = Lx, докажем, что e — касательный вектор. Ну, в самом деле, $\mathrm{dist}(A,y_0+te) \leqslant |\Phi(x_0+tx)-(y_0+te)| = |\Phi(x_0+tx)-\Phi(x_0)-tLx|$. Точка $\Phi(x_0+tx)$ была подобрана таким хитрым образом, что

$$\Phi(x_0+tx)-\Phi(x_0)-tLx=L(tx)+\psi(t)-tLx=\psi(t),$$
 где $|\psi(t)|=o(|t|)$

 \Leftarrow . Пусть e — касательный вектор A в точке x_0 . Найдём $x \in \mathbb{R}^n : e = Lx$.

По определению касательного вектора.

$$\alpha(t) := \operatorname{dist}(y_0 + te, A) = o(|t|)$$

Выберем $y_t \in A: |y_0 + te - y_t| \leqslant 2 \operatorname{dist}(y_0 + te, A) = 2\alpha(t)$. Отсюда $|y_t - y_0| \leqslant C_1|t|$ для некой константы $C_1 \in \mathbb{R}$.

 $y_t = \Phi(x_t)$ для некоего x_t вблизи x_0 . Ввиду билипшицевости

$$|y_t - y_0| = |\Phi(x_t) - \Phi(x_0)| \geqslant C_2|x_t - x_0| \Rightarrow |x_t - x_0| \leqslant C_3|t|$$

Запишем

$$te + y_t - (y_0 + te) = y_t - y_0 = \Phi(x_t) - \Phi(x_0) = L(x_t - x_0) + \beta(x_t)$$

где $|\beta(x_t)| = o(|x_t - x_0|)$, или же (см. C_3) $\beta(x_t) = o(|t|)$. Поделим равенство на t:

$$e + \underbrace{\frac{y_t - (y_0 + te)}{t}}_{o(1)} = L\left(\frac{x_t - x_0}{t}\right) + \underbrace{\frac{\beta(x_t)}{t}}_{o(1)}$$

Заметим, что $\left|\frac{x_t-x_0}{t}\right|\leqslant C_3$ — точки $\frac{x_t-x_0}{t}$ лежат в замкнутом шаре. Выбрав последовательность $t_n\to 0$, так, что будет сходимость (всегда можно выбрать сходящуюся подпоследовательность), получим $\frac{x_{t_n}-x_0}{t_n}\underset{t\to 0}{\longrightarrow} x$, где вектор $x\in\mathbb{R}^n$ — искомый: переходя к пределу сразу получаем e=L(x).

1.2.2 Многообразия, вложенные в n-мерное евклидово пространство

Определение 1.2.2 (n-мерное многообразие). Хаусдорфовое, со счётной базой, топологическое пространство X, у каждой точки которого есть окрестность, гомеоморфная B^n .

Пускай $F:(U\subset\mathbb{R}^n) o\mathbb{R}^m$ — отображение.

Определение 1.2.3 (F непрерывно дифференцируема k раз). Все частные производные всех координатных функций до порядка k включительно существуют и непрерывны.

Пишут $F \in C^{(k)}$.

Определение 1.2.4 (Карта (локальная)). Отображение $h: B^n \to X$, являющееся гомеоморфизмом на свой образ.

Определение 1.2.5 (Атлас). Семейство локальных карт $\{h_{\alpha}\}_{{\alpha}\in\Lambda}$, таких, что $\bigcup_{{\alpha}\in\Lambda}h_{\alpha}(B_n)=X$

Такое семейство карт позволяет в каждой маленькой области X ввести свои координаты, параметризовать X.

Пусть $U_{\alpha}=h_{\alpha}(B^n)$, $U_{\alpha\beta}=U_{\alpha}\cap U_{\beta}$. Если $U_{\alpha\beta}\neq\varnothing$, то возникает дилемма — координаты какого шара использовать?

Функцию $\phi_{\alpha\beta} = h_{\beta}^{-1} \circ h_{\alpha}$, переводящую координаты h_{α} в координаты h_{β} , называют *отображением* nepexoda.

Определение 1.2.6 (X — гладкое многообразие класса $C^{(k)}$). Многообразие с фиксированным атласом, в котором все отображения перехода принадлежат классу $C^{(k)}$.

Пример. Рассмотрим в качестве X график модуля $X := \{(x, |x|) | x \in \mathbb{R}\}.$

X гомеоморфно \mathbb{R} . Если рассмотреть атлас, состоящий из $(a,b) \mapsto ((a,|a|),(b,|b|))$, то все функции перехода будут тождественными, то есть $X \in C^{(\infty)}$.

Это противоречит интуиции (ведь модуль далеко не гладок в нуле), скоро мы определим гладкость многообразия в соответствии с объемлющим пространством.

Лекция IX 17 марта 2023 г.

Пусть $F:(G\subset\mathbb{R}^n)\to\mathbb{R}^m$, где m>n (можно также рассматривать случай m=n, но в таком случае ничего интересного не будет). По-прежнему дифференцируема в некоторой окрестности x_0 , непрерывно дифференцируема в x_0 .

Рассмотрим $x_0 \in G$, считаем, что F — билипшицева на всё множестве G.

Обозначим $D = dF(x_0, \cdot)$, предположим, что он невырожден. Параметризуем множество F(G).

 $L\coloneqq D(\mathbb{R}^n)\subset \mathbb{R}^m$ — касательное подпространство к F(G) в точке $y_0\coloneqq F(x_0)$. Заметим, что $\dim L=n$.

Положим $N\coloneqq L^\perp$. Таким образом, $\mathbb{R}^m=L\oplus N$. Введём ортогональный проектор $P:\mathbb{R}^m\to L$.

Выделим из F составляющую $F_1: \mathbb{R}^n \to L; \quad F_1(x) = PF(x)$. Её дифференциал $\mathrm{d}F_1(x_0,\cdot) = PD$, что равно D, так как $D(\mathbb{R}^n) = L$ — проектор ничего не меняет.

В V — некоторой окрестности точки Py_0 — существует обратное отображение $\phi = F_1^{-1}; \quad \phi: V \to G$.

Введём $H:V\to \mathbb{R}^m; \quad H(u)=(F\circ \phi)(u). \ H(V)$ — кусок множества $F(G),\ H$ — его локальная карта.

Произвольный вектор $u \in V$ после применения H раскладывается в пару H(u) = (a,b), где \mathbb{R}^m рассматривается, как $L \oplus N$ и $a \in L, b \in N$. $a = PH(u) = PF\phi(u) = u$, так как ϕ — обратная к PF. Таким образом, первая компонента вектора H(u) — просто u. Вторая компонента вектора $\psi(u) \coloneqq (\mathrm{id} - P)H(u)$, какая-то гладкая функция.

Получили «новую параметризацию» F(G). Локальной картой $y_0 \in F(G)$ является $H(u) = (u, \psi(u))$, где $u \in V$.

Таким образом, локально многообразие F — график какого-то непрерывного отображения ψ . Найдём его дифференциал: $\mathrm{d}\psi(y_0,\cdot)=(\mathrm{id}-P)\,\mathrm{d}H(y_0,\cdot)=(\mathrm{id}-P)\,\mathrm{d}(F\circ\phi)(y_0,\cdot)=(I-P)D\,\mathrm{d}\phi(y_0,\cdot).$ Получается 0, так как (I-P)D=0 — D проектирует на L, после чего I-P отображает в нуль.

Таким образом, L — касательное подпространство (иногда говорят касательная плоскость) к F(G) в точке y_0 . Любопытно заметить, что чтобы найти обратную к H функцию, надо спроектировать H(u) на касательную плоскость.

1.2.3 Теорема о неявной функции

Рассмотрим уравнение $x^2+y^2+z^2=1$. Оно задаёт сферу в \mathbb{R}^3 , которая является многообразием: $\forall (x_0,y_0,z_0)\in S$. Если x близок к $x_0>0$, то $x=\sqrt{1-y^2-z^2}$ и получаем локальную карту. Аналогично для $x_0<0$. Если же x_0 неотделим от нуля, то надо выражать другую координату.

Обобшим.

Пусть задано отображение $f:(U\subset\mathbb{R}^{n+m})\to\mathbb{R}^n$, непрерывно дифференцируемое всюду в U. В продолжении теоремы векторы $z\in\mathbb{R}^{n+m}$ будем раскладывать на две компоненты $(x,y)\in X\oplus Y$, где $\dim X=n,\dim Y=m$ (необязательно $X\perp Y$).

Пусть $c \in \mathbb{R}^n$. Для примера со сферой выше m+n=3, n=1.

Рассмотрим множество точек $\{(a,b)\in\mathbb{R}^n\oplus\mathbb{R}^m|f(a,b)=c\}$ — найдём подпространства уровня f. Пусть оно непусто: $\exists a_0,b_0:f(a_0,b_0)=c$.

Найдём функцию $h:\left(\overset{o}{U}_{\delta}(b_0)\subset\mathbb{R}^m\right) o\mathbb{R}^n$, такую, что $\forall y\in\overset{o}{U}_{\delta}(b_0):f(h(y),y)=c.$

Обозначим $D=\mathrm{d}f((a_0,b_0),\cdot)$. Обозначим $D\Big|_X=A,D\Big|_X=B$. Предположим, что $D\Big|_X$ невырожден.

Теорема 1.2.3 (О неявной функции). При сделанных предположениях $\exists \overset{\circ}{U}_{\delta}(b_0) \subset \mathbb{R}^m : \exists ! h : \overset{\circ}{U}_{\delta}(b_0) \to \mathbb{R}^n : f(h(y), y) = c.$

Более того, полученная функция h непрерывно дифференцируема.

Доказательство. Введём $F:U\to\mathbb{R}^n\oplus\mathbb{R}^m; \quad F(x,y)=(f(x,y),y).$ Найдём дифференциал:

$$F(x,y) - F(a_0,b_0) = (f(x,y) - f(a_0,b_0), y - b_0) =$$

$$= (D(x,y) + \underbrace{\phi(x,y)}_{o(|b_0-y|)}, y - b_0) = (a_0(x - a_0) + b_0(y - b_0), y - b_0) + o(|b_0 - y|)$$

Таким образом $\forall (u, v) \in \mathbb{R}^{n+m} : dF((a_0, b_0), (u, v)) = L(u, v) = (Au + Bv, v).$

Если L(u,v)=0, то v=0, откуда Bv=0, откуда $Au=0 \Rightarrow u=0$, так как A невырожден. Таким образом, L невырожден, к F применима теорема об обратном отображении.

$$F(a_0, b_0) = (f(a_0, b_0), b_0) = (c_0, b_0)$$

Рассмотрим W — окрестность (a_0, b_0) , такую, что $\exists G = F^{-1}$, заданная на W, причём G непрерывно дифференцируема в этой окрестности.

Так как G(u,v)=(*,v), то $\exists \psi:W\to\mathbb{R}^n,\;\psi$ непрерывно дифференцируема на W. Таким образом $\forall (u,v)\in W:F(\psi(u,v),v)=(u,v).$

Определим $h(v) := \psi(c, v)$. В самом деле, видим, что h определена на некоторой окрестности b_0 , причём h(y) = c.

Лекция Х

21 марта 2023 г.

Продолжим теорему, доказанную на предыдущей лекции: найдём дифференциалы.

Мы показали, что существует формула для отображения ϕ в точке b. $D=\mathrm{d}\phi(b,\cdot)$. Так как $f(\phi(y),y)\equiv c$ при y, близких к b, то

$$0 = d(f(\phi(y), y)) = AD + B$$

Так как A обратима, то $D = -A^{-1}B$.

Пример. $\mathbb{R}^2 = \mathbb{R} \oplus \mathbb{R}$. На плоскости задана кривая соотношением f(x,y) = c, где $f: \mathbb{R}^2 \to \mathbb{R}$.

Если f(a,b)=c, то (при условии $\frac{\partial f}{\partial x}(a,b)\neq 0$) $\exists \phi(y): f(\phi(y),y)\equiv 0$ при $|y-b|<\delta$.

Производная этой функции $\phi'(b) = -rac{rac{\partial f}{\partial y}(a,b)}{rac{\partial f}{\partial x}(a,b)}.$

Пусть $U \subset \mathbb{R}^k$; $f: U \to \mathbb{R}^n$; $(a,b) \in U$, где k > n. Предположим, что $\forall u \in U$ ранг матрицы Якоби равен n, то есть максимально возможный.

$$\operatorname{rk} \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(u) & \dots & \frac{\partial f_1}{\partial x_k}(u) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(u) & \dots & \frac{\partial f_n}{\partial x_k}(u) \end{pmatrix} = n$$

Рассмотрим множество решений относительно u уравнения f(u) = c. Решения называются множествами уровня отображения f. $L_c = \{u | f(u) = c\}$.

Пусть $f(u_0) = c$.

Выберем минор матрицы порядка n с ненулевым определителем. Переупорядочим столбцы так, чтобы первые n были линейно независимы.

Обозначим за X пространство, натянутое на первые n координат, за Y — последние k-n координат.

 $\mathbb{R}^k = X \oplus Y$, окрестность точки u_0 описывается локальной картой вида $H(y) \coloneqq (\phi(y), y), y \in Y$, причём y близко к проекции u_0 на Y.

V — окрестность точки u_0 на L_c , которая накрывается локальной картой H. $H^{-1}(z)=Qz$, где Q — ортогональный проектор на Y.

Покажем гладкость отображения переходами между картами. $H_1(y) = (\phi_1(y), y), H_2(y) = (\phi_2(y), y).$

Посмотрим на $H_2^{-1}H_1$, где задано. Это QH_1 , что несомненно является гладким отображением, как композиция.

Таким образом, $L_c - (k - n)$ мерное гладкое многообразие.

Займёмся описанием касательной плоскости — ${\rm Im}\, {\rm d}\phi(u_0,\cdot)$ не очень удобно, так как ϕ вполне может не быть задана явно.

Теорема 1.2.4. При сделанных предположениях об f (матрица Якоби — максимального ранга), если $L_c \neq \varnothing$, то

$$\forall u_0: f(u_0) = c \Rightarrow \operatorname{Ker}(\operatorname{d} f(u_0, \cdot))$$
 — касательное подпространство к L_c в точке u_0

Доказательство. Пусть N — касательное подпространство к L_c в точке u_0 . $\dim N = k - n = m$.

Обозначим оператор $D \coloneqq \mathrm{d} f(u_0,\cdot).$ $D: \mathbb{R}^k \to \mathbb{R}^n$ — сюръекция. Тогда $\dim \mathrm{Ker}\, D = m.$

Покажем, что $N \subset \operatorname{Ker} D$. Так как их размерности совпадают, то мы докажем совпадение.

Пусть $x \in N$, то есть $\alpha(t) \coloneqq \mathrm{dist}(u_0 + tx, L_c) = o(|t|)$. Для всякого достаточно маленького t > 0: $\exists x_t \in L_c : \mathrm{dist}(u_0 + tx, x_t) \leqslant 2\alpha(t)$.

Запишем

$$0 = f(x_t) - f(u_0) = D(x_t - u_0) + \phi(x_t)$$
, где $\phi(y) = o(|y - u_0|)$

Так как $|x_t - u_0| \le |tx + x_t - u_0| + |tx| \le C|t|$ при t, близких к 0. Тем самым, $\phi(y_t) = o(|t|)$.

$$0 = D(x_t + tx - u_0) - D(tx) + \phi(x_t)$$

Так как $D(x_t + xt - u_0) \leqslant \|D\| \cdot |x_t + tx - u_0| \leqslant 2\|D\|\alpha(t) = o(|t|)$, то поделив на t последнее равенство, получаем

$$0 = \frac{D(x_t + tx - u_0)}{t} - Dx + \frac{\phi(x_t)}{t} \xrightarrow[t \to 0]{} -Dx$$

Отсюда действительно получается Dx = 0.

Теорема 1.2.5 (О множителях Лагранжа). Пусть $f_1, \ldots, f_n : (U \subset \mathbb{R}^k) \to \mathbb{R}$, где по-прежнему $k \geqslant n$. Пусть все f_j непрерывно дифференцируемы.

Рассмотрим L — множество тех $x \in U: f_1(x) = c_1, f_2(x) = c_2, \dots, f_n(x) = c_n$.

Пусть $x_0 \in L$, а ещё произвольная функция $f: U \to \mathbb{R}$ — тоже непрерывно дифференцируема. Пусть векторы $\operatorname{grad}_{f_i}(x_0)$ линейно независимы, а $f\Big|_{L}$ имеет локальный экстремум в точке x_0 ..

При сделанных предположениях $\exists \{\lambda_i\}_{i=1}^n$ — множители Лагранжа, такие, что $\operatorname{grad}_f(x_0) = \sum_{i=1}^n \lambda_i \operatorname{grad}_{f_i}(x_0)$

Доказательство. Положим $F=\begin{pmatrix}f_1\\\vdots\\f_n\end{pmatrix}$. Матрица Якоби F получается $J\coloneqq\begin{pmatrix}\operatorname{grad}_{f_1}(x)\\\vdots\\\operatorname{grad}_{f_n}(x)\end{pmatrix}$. Линейная независимость строчек при $x=x_0$ означает, что матрица имеет ранг n.

Для
$$c=\begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
 получается $L=\{x|F(x)=c\}.$

Для N — касательного подпространства к L в точке x_0 выполнено условие $\operatorname{grad}_{x_0} f \perp N$, $\operatorname{grad}_{x_0} f \in N^{\perp}$.

Заметим, что $Ju=0\iff \forall j: \langle u,\operatorname{grad}_{f_j}(x_0)\rangle=0\iff u\in\operatorname{Lin}\{\operatorname{grad}_{f_j}(x_0)\}^\perp.$

Так как $\operatorname{grad}_f(x_0) \perp N = \operatorname{Ker} J$, то $\operatorname{grad}_f(x_0) \in \operatorname{Lin}\{\operatorname{grad}_{f_j}(x_0)\}.$

Пусть $\langle a,b \rangle \subset \mathbb{R}$ — промежуток общего вида, $g:\langle a,b \rangle \to \mathbb{R}^n$ — векторнозначная функция.

Если g дифференцируема в точке $x_0, g = \begin{pmatrix} g_1 & \dots & g_n \end{pmatrix}^t$, то $\mathrm{d}g(x_0,h) = \begin{pmatrix} g_1'(x_0) & \dots & g_n'(x_0) \end{pmatrix}^t \cdot h$.

 Φ ункцию g можно рассматривать, как описание движения материальной точки, например.

Вектор $g'(x_0) = \left(g'_1(x_0), \dots, g'_n(x_0)\right)$ называют *производной* функции g. Заметим, что определение $g'(x_0) = \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h}$ по-прежнему выполняется.

Также выполняется неравенство Лагранжа: $\forall t_1, t_2 : \exists c \text{ между } t_1, t_2 : |g(t_1) - g(t_2)| \leq |g'(c)| \cdot |t_1 - t_2|$.

Определение 1.2.7 (Определённый интеграл векторнозначной функции). Для $\alpha, \beta \in (a,b)$:

$$\int_{\alpha}^{\beta} g(x) dt \stackrel{def}{=} \left(\int_{\alpha}^{\beta} g_1(x) dt \dots \int_{\alpha}^{\beta} g_n(x) dt \right)$$

Факт 1.2.1 (Основная оценка интеграла).

$$\left| \int_{\alpha}^{\beta} g(t) \, \mathrm{d}t \right| \leqslant \int_{\alpha}^{\beta} |g(t)| \, \mathrm{d}t \quad \text{u.u.} \quad \left(\sum_{j=1}^{n} \left(\int_{\alpha}^{\beta} g_j(t) \, \mathrm{d}t \right)^2 \right)^{1/2} \leqslant \int_{\alpha}^{\beta} \left(\sum_{j=1}^{n} \left(g_j(t) \right)^2 \right)^{1/2} \, \mathrm{d}t$$

Доказательство. Докажем в предположении, что все g_j кусочно-непрерывны на $[\alpha, \beta]$. В общем случае надо обосновывать, почему |g| интегрируема по Риману, это останется в качестве упражнения.

Пусть $y=\int\limits_{\alpha}^{\beta}g(t)\,\mathrm{d}t\in\mathbb{R}^{n}.$ Рассмотрим $e\in\mathbb{R}^{n},$ такой, что $|e|=1,|y|=\langle y,e\rangle=|y|.$

Введём $\phi:\mathbb{R} \to \mathbb{R}; \phi(t)=\langle g(t),e \rangle=\sum\limits_{j=1}^n g_j(t)\xi_j$, где $e=\begin{pmatrix} \xi_1 & \dots & \xi_n \end{pmatrix}$. Запишем

$$\left| \left\langle \int_{\alpha}^{\beta} g(t) \, dt, e \right\rangle \right| = \left| \int_{\alpha}^{\beta} \phi(t) \, dt \right| \leqslant \int_{\alpha}^{\beta} |\phi(t)| \, dt \leqslant \int_{\alpha}^{\beta} |g(t)| \, dt$$

1.3 Длина пути

Пусть задана кривая. Как найти её длину? Приблизим её ломаной, длина ломаной — сумма длин отрезков. Если приближения разными ломаными имеют тенденцию куда-то стремиться, то это число называют длиной ломаной.

Кривую, вообще говоря, можно определить как множество точек, а можно — как отображение.

Пусть $\gamma:[a,b] \to \mathbb{R}^n$ — непрерывное отображение. Рассмотрим $T:=\{t_i\}_{i=0}^k \subset \mathbb{R}: a \leqslant t_1 < \dots < t_k \leqslant b$. Определим приближение длины ломаной $S(\gamma,T)=|\gamma(t_1)-\gamma(t_0)|+\dots+|\gamma(t_{k-1})-\gamma(t_k)|$.

Определение 1.3.1 (Спрямляемая кривая γ). Числа $S(\gamma,T)$ ограничены сверху. В таком случае супремум этих чисел называют длиной пути γ .

Для $[c,d]\subset [a,b]$ у спрямляемого пути определена длина сужения $l(\gamma,[c,d])$ — длина пути $\gamma\Big|_{[c,d]}$.

Пусть $f:[a,b]\to\mathbb{R}^n$ — произвольное отображение. Здесь определим такую же, как для пути, функцию $S(f,T)=|f(t_1)-f(t_0)|+\cdots+|f(t_{k-1})-f(t_k)|.$

Определение 1.3.2 (f имеет ограниченную вариацию). Все суммы S(f,T) ограничены сверху. В таком случае их супремум называют вариацией V(f,[a,b]).

- 1. Пусть T_1, T_2 два набора точек на [a,b]. Если $T_1 \subset T_2$, то $S(f,T_1) \leqslant S(f,T_2)$. Достаточно понять, что эту выполняется, если $T_2 = T_1 \cup \{pt\}$. В самом деле, $|f(t_j) f(t_{j+1})|$ заменяется на $|f(t_j) f(pt)| + |f(pt) f(t_{j+1})|$, что не меньше.
- 2. Можно ослабить условия на точки, считая, что $t_j \leqslant t_{j+1}$.
- 3. Если f,g функции ограниченной вариации, $c,d\in\mathbb{R}$, то cf+dg тоже функция ограниченной вариации.

Конкретнее, $V(cf + dg, [a, b]) \leq |c|V(f, [a, b]) + |d|V(g, [a, b]).$

$$\sum_{j=1}^{k} |(cf+dg)(t_j) - (cf+dg)(t_{j-1})| \leq |c| \sum_{j=1}^{k} |(f(t_j) - f(t_{j-1}))| + |d| \sum_{j=1}^{k} |(f(t_j) - f(t_{j-1}))|$$

4. Если f — функция ограниченной вариации на $[\alpha, \beta]$ и на $[\beta, \gamma]$, то f — функция ограниченной вариации на $[\alpha, \gamma]$.

$$V(f, [\alpha, \gamma]) = V(f, [\alpha, \beta]) + V(f, [\beta, \gamma])$$

Пусть T — набор точек в $[\alpha, \gamma]$, причём $T_1 = T \cap [\alpha, \beta]$, а $T_2 = T \cap [\beta, \gamma]$. Считаем, что $\beta \in T$. Тогда $S(f,T) = S(f,T_1) + S(f,T_2)$. Переходя к супремуму по T, получаем $V(f,[\alpha,\gamma]) \leqslant V(f,[\alpha,\beta]) + V(f,[\beta,\gamma])$.

Обратное неравенство получается примерно так же.

3амечание. f ограниченной вариации $\Rightarrow f$ ограничена.

Замечание. f постоянна $\iff V(f, [a, b]) = 0$.

Теорема 1.3.1.

- 1. Пусть $f:[a,b]\to \mathbb{R}^n$. Рассмотрим координатные функции $f=(f_1,\dots,f_n)$. Следующие условия эквивалентны:
 - f ограниченной вариации.
 - Все f_i ограниченной вариации.
- 2. Пусть $f:[a,b] \to \mathbb{R}$. Следующие условия эквивалентны:
 - f ограниченной вариации.
 - $f = \phi_1 \phi_2$, где ϕ_1, ϕ_2 возрастают на отрезке [a, b].

Доказательство.

- 1. \Rightarrow . Пусть $t,s \in [a,b]$. $|f_j(t) f_j(s)| \leqslant |f(t) f(s)|$. Таким образом, для всякого конечного набора $T \subset [a,b]: S(f_j,T) \leqslant S(f,T) \leqslant V(f,[a,b])$.
 - \Leftarrow . $f(t) = \sum\limits_{j=1}^n f_j(t) e_j$. Таким образом, f сумма функций ограниченной вариации.
- $2. \ \Leftarrow. \$ Возрастающая функция есть функция ограниченной вариации:

$$S(\phi, T) = \sum_{j=1}^{k} |\phi(t_j) - \phi(t_{j-1})| = \sum_{j=1}^{k} (\phi(t_j) - \phi(t_{j-1})) = \phi(t_k) - \phi(t_0) \Rightarrow V(\phi, [a, b]) = \phi(b) - \phi(a)$$

3начит, f — конечной вариации, как сумма двух функций конечной вариации.

 \Rightarrow . Обозначим $u:[a,b] \to \mathbb{R}; u(t)=V(f,[a,t])$. Докажем, что $v(t)\coloneqq u(t)-f(t)$ возрастает.

Рассмотрим $s < t \in [a,b]$. Заметим. что $f(t) - f(s) \leqslant |f(t) - f(s)| \leqslant V(f,[s,t]) = u(t) - u(s)$. Отсюда $u(t) - f(t) \geqslant u(s) - f(s)$, действительно, v(t) возрастает.

Осталось заметить, что v тоже возрастает, f = u - v.

Замечание. Если f — непрерывная скалярная функция, то получившиеся в доказательство ϕ_1,ϕ_2 тоже непрерывны.

Лекция XI _{24 марта 2023 г.}

Теорема 1.3.2. Пусть $f:[a,b] \to \mathbb{R}^n$ — векторнозначная функция, имеющая ограниченную вариацию.

Введём функцию $V:[a,b] \to \mathbb{R}, V(t) = V(f,[a,t])$. Утверждается, что $\forall x_0 \in [a,b]$: f непрерывна в $x_0 \Rightarrow V$ непрерывна в x_0 .

Доказательство. Докажем, что V непрерывна слева в точке t_0 , где $t_0 > a$. V возрастающая функция. Выберем $\varepsilon > 0$, найдём точку s < t, такую, что $V(s) > V(t) - \varepsilon$.

Так как V(t) — супремум сумм, участвующих в определении вариации V(f,[a,t]), то найдётся последовательность точек $s_0 < \dots < s_k, s_j \in [a,t_0]$, такая, что $\sum_{j=1}^k |f(s_{j-1}) - f(s_j)| > V(t) - \varepsilon/2$.

Из непрерывности: $\exists \delta: \forall u \in (t_0 - \delta; t_0): |f(u) - f(t_0)| < \varepsilon/2$. Добавим точек так, чтобы выполнялись условия $s_k = t_0, s_{k-1} \in (t_0 - \delta, t_0)$. $\sum_{j=1}^k |f(s_{j-1}) - f(s_j)| > V(t) - \varepsilon/2$ по-прежнему выполнено.

Теперь заметим, что $V(f,[a,s_{k-1}])\geqslant \sum\limits_{j=1}^{k-1}|f(s_{j-1})-f(s_{j})|$. Комбинируя неравенства, получаем $V(f,[a,s_{k-1}])\geqslant V(f,[a,t_{0}])-\varepsilon$. Точка s_{k-1} подходит в качестве s.

Замечание. Если f — непрерывная скалярная функция, то во всех точках непрерывности f функции ϕ_1 и ϕ_2 тоже непрерывны.

Вспомним, что носитель пути $\gamma:[a,b]\to\mathbb{R}^n$ — его образ (Im γ). Начало пути — точка $\gamma(a)$, конец пути — точка $\gamma(b)$.

Предположим, что $\gamma:[a,b]\to\mathbb{R}^n$ — путь, $\phi:[c,d]\to[a,b]$ — гомеоморфизм подотрезков \mathbb{R} . Иными словами, непрерывная, строго монотонная функция.

Утверждается, что $f \circ \phi$ имеет ограниченную вариацию $\iff f$ имеет ограниченную вариацию. Более того, в этом случае вариации совпадают.

Доказательство. Всякой сумме $\sum\limits_{j=1}^k |(f\circ\phi)(s_{j-1})-(f\circ\phi)(s_j)|$ соответствует сумма $\sum\limits_{j=1}^k |(f)(\phi(s_{j-1}))-(f(\phi(s_j)))|$. Их супремумы равны, а если точки s_0,\ldots,s_k образуют монотонную последовательность отрезка [a,b] (либо $a\leqslant s_0<\cdots< s_k\leqslant b$, либо $a\leqslant s_k<\cdots< s_0\leqslant b$). Их образ — точки $\phi(s_0),\ldots,\phi(s_k)$ — тоже образуют монотонную последовательность отрезка, причём ϕ обратимо, все разбиения отрезка достигаются.

Определение 1.3.3 (Простая дуга). Такой путь $\gamma:[a,b]\to\mathbb{R}^n$, что γ — инъекция.

Тогда γ — гомеоморфизм между отрезком [a,b] и своим носителем $\gamma([a,b])$. Это следует из того, что компактность прообраза влечёт компактность образа, а замкнутость образа влечёт замкнутость прообраза (плюс и [a,b], и $\gamma([a,b])$ ограничены).

Пусть $\gamma_1:[a,b] \to L, \gamma_2:[c,d] \to L$ — простые дуги, причём $\gamma_1([a,b])=\gamma_2([c,d])=L.$

Тогда оказывается, что длины путей γ_1 и γ_2 равны: для $\phi:\gamma_1^{-1}\circ\gamma_2$ — гомеоморфизма — $\gamma_2=\gamma_1\circ\phi$.

Таким образом, о длине носителя простой дуги можно говорить вне зависимости от пути, параметризующего его.

Рассмотрим простую дугу — верхнюю полуокружность $x^2+y^2=1$, где $y\geqslant 0$. Это простая дуга, так как можно параметризовать в виде $\gamma:[-1,1]\to\mathbb{R}^2; \quad \gamma:x\mapsto \left(x,\sqrt{1-x^2}\right)$.

Определение 1.3.4 (Число π). Длина данной дуги полуокружности.

Пусть $A:\mathbb{R}^n \to \mathbb{R}^n$ — изометрическое отображение. Тогда $V(A\circ f,[a,b])=V(f,[a,b])$ — это видно из взаимнооднозначного соответствия между суммами при подсчёте вариации.

Отсюда следует, что длина нижней полуокружности $x^2 + y^2 = 1, y \leqslant 0$ — тоже π .

1.3.1 Длина гладкого пути

Пусть $\gamma:[a,b] \to \mathbb{R}^n$ — путь, причём $\gamma \in C^{(1)}$. А именно: запишем его через координатные функции, $\gamma(t) = \begin{pmatrix} \gamma_1(t) \\ \vdots \\ \gamma_n(t) \end{pmatrix}$, все производные $\gamma_j'(t)$ существуют и непрерывны при $t \in [a,b]$. Такой путь называется гладким.

Теорема 1.3.3. Всякий гладкий путь спрямляем, причём его длина равна

$$l(\gamma, [a, b]) = \int_a^b |\gamma'(t)| dt = \int_a^b \sqrt{\sum_{j=1}^n (\gamma'_j(t))^2} dt$$

Доказательство. Пусть $a=t_0\leqslant t_1\leqslant\ldots\leqslant t_k=b$. Запишем сумму, получающуюся при вычислении вариации: $\sum\limits_{i=1}^k|\gamma(t_i)-\gamma(t_{i-1})|$.

Пусть I_1,\dots,I_k — попарно непересекающиеся (за исключением, быть может, концов) замкнутые отрезки, $I_i=[t_{i-1},t_i]$. Видим, что всякому разбиению из точек $\{t_i\}_{i=0}^k$ соответствует разбиение из отрезков $\{I_i\}_{i=1}^k$.

Согласно неравенству Лагранжа: $|\gamma(t_{i-1}) - \gamma(t_i)| \leq |\gamma'(\xi)| \cdot |t_i - t_{i+1}|$, где $\xi \in [t_i, t_{i+1}]$.

Продолжим неравенство:

$$|\gamma(t_{i-1}) - \gamma(t_i)| \le |\gamma'(\xi)| \cdot |t_{i-1} - t_i| \le \sup_{u \in [t_i, t_{i+1}]} |\gamma'(u)| \cdot |t_{i-1} - t_i|$$

В правой части неравенства получилось слагаемое из верхней суммы Дарбу для γ' .

Положим $\varepsilon > 0$, выберем такое разбиение $\{t_i\}_{i=0}^k$, что $\sum_{i=1}^k |\gamma(t_i) - \gamma(t_{i-1})| \geqslant l(\gamma, [a, b]) - \varepsilon$.

Измельчим соответствующее разбиение $\{I_i\}_{i=1}^k$, превратив его в разбиение $\{J_j\}_{j=1}^s$, такое, что $\sum_{J_j} \sup_{t \in J_j} |\gamma'(t)| \cdot |J_j| \leqslant \int\limits_a^b \gamma'(t) \, \mathrm{d}t + \varepsilon.$

Теперь в качестве точек $\{t_i\}_{i=1}^k$ рассмотрим концы отрезков $\{J_j\}_{j=1}^s$. $\sum\limits_{j=1}^s |\gamma(t_j) - \gamma(t_{j-1})| \geqslant l(\gamma, [a, b]) - \varepsilon$ по-прежнему верно.

Таким образом, мы доказали, что $l(\gamma,[a,b])\leqslant \int\limits_a^b|\gamma'(t)|\,\mathrm{d}t-\mathrm{c}$ точностью до ε , где ε можно выбрать сколь угодно малым.

Рассмотрим произвольные $x < y \in [a, b]$. Для них верны неравенства

$$|\gamma(y) - \gamma(x)| \le l(\gamma, [x, y]) \le \int_{x}^{g} |\gamma'(t)| dt$$

Поделив это на y - x, получим

$$\left| \frac{\gamma(y) - \gamma(x)}{y - x} \right| \leqslant \frac{l(\gamma, [a, y]) - l(\gamma, [a, x])}{y - x} \leqslant \frac{1}{y - x} \int_{a}^{y} \gamma'(t) dt$$

Обозначим $L(u) \coloneqq l(\gamma, [a, u])$. Устремим $y \to x_+$, получим $|\gamma'(x)| \leqslant L'(x) \leqslant |\gamma'(x)|$, то есть по принципу о двух полицейских наступает равенство. Аналогичным образом получается L'(u).

Тогда очевидно $L(u)=\int\limits_a^u|\gamma'(t)|\,\mathrm{d}t+C$ для некой константы C. Так как L(a)=0, то C=0.

«Если всё хорошо», то для скалярной функции $g:[a,b] \to \mathbb{R}$ должно выполняться $V(g,[a,b]) = \int\limits_a^b |g'(t)| \,\mathrm{d}t.$

Пример (Когда не совсем всё хорошо). Вариация возрастающей функции $g(t) = \sqrt{t}$ равна g(1) - g(0) = 1. При подсчёте по формуле, получаем $V(g, [0, 1]) = \int\limits_0^1 \frac{\mathrm{d}t}{\sqrt{t}}$. Интеграл этот не существует, производная в нуле не определена.

Если посчитать $V(g,[\varepsilon,1])=\int\limits_{\varepsilon}^{1}\frac{\mathrm{d}t}{\sqrt{t}},$ то получится $2-2\sqrt{\varepsilon}.$ Здесь возникает понятие о несобственном интеграле — при стремлении $\varepsilon\to 0.$

Лекция XII 31 марта 2023 г.

1.4 Естественная параметризация

Пусть $\gamma:[a,b]\to\mathbb{R}^n$ — спрямляемый путь.

Выберем $t_0 \in [a,b]$, обозначим $\phi(t) = \begin{cases} l(\gamma,[t_0,t]), & t \geqslant t_0 \\ -l(\gamma,[t,t_0]), & t < t_0 \end{cases}$. Функция ϕ возрастает и непрерывна. Обозначим $\phi([a,b]) = [\alpha,\beta]$.

Определение 1.4.1 (Движение без задержек). Такой путь $\gamma:[a,b] \to \mathbb{R}$, что $\forall [c,d] \subset [a,b]: c < d \Rightarrow l(\gamma,[c,d]) > 0$.

При движении без задержек ϕ строго возрастает, значит, есть биекция $\psi = \phi^{-1} : [\alpha, \beta] \to [a, b].$

Введём $\widetilde{\gamma}: [\alpha, \beta] \to \mathbb{R}^n; \widetilde{\gamma} = \gamma \circ \psi.$

Рассмотрим $[\delta, \rho] \subset [\alpha, \beta]$. Положим $c = \psi(\delta), d = \psi(\rho)$

Заметим, что $\rho - \gamma = \phi(d) - \phi(c) = l(\gamma, [c, d]) = l(\widetilde{\gamma}, [\delta, \rho]).$

При такой параметризации для любого отрезка $I:l(\widetilde{\gamma},I)=|I|$. Отображение ψ называется естественной параметризацией пути $\gamma;\ \widetilde{\gamma}$ — тот же путь, параметризованный естественным образом.

Пусть теперь γ — гладкий путь, то есть $\gamma \in C^{(1)}$. Тогда для ϕ имеется формула:

$$\phi(t) = \int_{t}^{t} |\gamma'(t)| \, \mathrm{d}t$$

Было бы удобно, чтобы путь γ был движением без задержек. Предположим ещё больше: $\gamma'(s) \neq 0$ для любого $s \in [a,b]$. Это называется безостановочным движением.

Отсюда видим $\phi'(t)=|\gamma'(t)|$ по теореме Ньютона — Лейбница, откуда $\psi'(\tau)=\frac{1}{\phi'(\psi(\tau))}$ и наконец

$$\widetilde{\gamma}'(\tau) = \gamma'(\psi(\tau)) \cdot \psi'(\tau) = \frac{\gamma'(\psi(\tau))}{\phi'(\psi(\tau))} = \frac{\gamma'(\psi(\tau))}{|\gamma'(\psi(\tau))|}$$

Таким образом, $|\widetilde{\gamma}'(\tau)|=1$, что и стоило ожидать при условии $\forall I: l(\widetilde{\gamma},I)=|I|.$

Замечание. Пусть $\gamma:[a,b]\to \mathbb{R}^n$ — спрямляемый путь, предположим, что γ' существует и непрерывна на интервале (a,b). Тогда тоже есть функция $\phi(t)=\int\limits_{t_0}^t |\gamma'(t)|\,\mathrm{d}t$, определённая при $t,t_0\in(a,b)$.

Более того, у функции ϕ есть пределы при $t \to a$ или $t \to b$.

$$l(\gamma, [a, b]) = \lim_{\varepsilon \to 0, \delta \to 0} l(\gamma, [a + \varepsilon, b - \delta]) = \lim_{\varepsilon \to 0, \delta \to 0} \int_{a + \varepsilon}^{b - \delta}$$

Пример. Рассмотрим путь $\kappa(t)=\left[t,\sqrt{t}\right]$. Для него $\kappa'(t)=\left(1,\frac{1}{2\sqrt{t}}\right); |\kappa'(t)|=\sqrt{1+\frac{1}{4t}}$.

Тогда

$$l(\kappa, [0, 1]) = \lim_{\varepsilon \to 0} l(\kappa, [\varepsilon, 1]) = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} \sqrt{1 + \frac{1}{4t}} \, \mathrm{d}t$$

Об интеграле $\int\limits_0^1 \sqrt{1+\frac{1}{4t}} \, \mathrm{d}t$ говорят, что он существует в *несобственном смысле*; в данном случае он очевидно существует, так как обе координаты пути монотонны, то есть путь — ограниченной вариации.

1.5 Про комплексные числа

Рассмотрим комплексную плоскость $\mathbb{C}\cong\mathbb{R}^2; x+iy\leftrightarrow(x,y)$. Я буду обозначать вещественную часть $\Re(x+iy)=x$ и мнимую часть $\Im(x+iy)=y$.

Всякую функцию $g:(\langle a,b\rangle\subset\mathbb{R})\to\mathbb{C}$ можно рассматривать, как векторнозначную функцию со значением в \mathbb{R}^2 ; в частности, их можно дифференцировать.

Пусть
$$g(x) = (g_1(x) \quad g_2(x)) = g_1(x) + ig_2(x)$$
. Тогда $g'(x) = (g'_1(x) \quad g'_2(x)) = g'_1(x) + ig'_2(x)$.

Комплекснозначные функции наследуют все свойства векторнозначных функций, но вдобавок тут появляются некоторые дополнительные операции. Так, комплексные числа можно перемножать.

Пусть $q_1, q_2 : \langle a, b \rangle \to \mathbb{C}$ — обе дифференцируемы. Сохраняется формула

$$(g_1 \cdot g_2)'(t) = g_1(t)g_2'(t) + g_1'(t)g_2(t)$$

Это можно видеть, либо проверив вручную, что при перемножении комплексные производные перемножаются соответствующим образом, либо просто повторив доказательство производной произведения:

$$\frac{g_1(t)g(2(t) - g_1(s)g_2(s)}{t - s} = \frac{(g_1(t) - g_1(s))g_2(t) + g_1(s)(g_2(t) - g_2(s))}{t - s} \xrightarrow[s \to t]{} \lim_{s \to t} \left[\frac{g_1(t) - g_1(s)}{t - s} + g_2(s) \frac{g_1(t) - g_1(s)}{t - s} \right]$$

То, что комплексное произведение непрерывно, следует из покоординатной непрерывности, получаем искомое равенство.

Определим для z=a+bi его длину как вектор в \mathbb{R}^2- модуль $|z|=\sqrt{a^2+b^2}$. Определим для z=a+bi его комплексно-сопряжённое $\overline{z}=a-bi$. Можно заметить, что $z\overline{z}=|z|^2$. Также можно заметить, что для $z\neq 0$: $z^{-1}=\frac{\overline{z}}{|z|^2}$.

Теперь изучим производные комплекснозначных функций. $g:\langle a,b\rangle\to\mathbb{C}.$ $(\overline{g})'(t)=\overline{g'(t)}.$

Для $g(t) \neq 0$: $(g'^{-1})(t) = -\frac{g'(t)}{g(t)^2}$. Для доказательства опять же повторим вещественное доказательство:

$$\frac{1}{t-s}\left(\frac{1}{g(t)} - \frac{1}{g(s)}\right) = \frac{1}{t-s} \cdot \frac{g(s) - g(t)}{g(s)g(t)}$$

Введём на комплексной плоскости единичную окружность $\mathbb{T}\stackrel{def}{=}\{z\in\mathbb{C}||z|=1\}$ и единичный круг $\mathbb{D}\stackrel{def}{=}\{z\in\mathbb{C}||z|<1\}$. Замкнутый комплексный круг обозначают $\overline{\mathbb{D}}\stackrel{def}{=}\{z\in\mathbb{C}||z|\leqslant1\}$, что не следует путать с комплексным сопряжением.

Факт 1.5.1. \mathbb{T} — подгруппа в \mathbb{C}^* по умножению.

 \mathcal{L} оказательство. $|z_1z_2|=|z_1|\cdot|z_2|$, что следует из прямой проверки. $z^{-1}=\frac{\overline{z}}{|z|^2}=\overline{z}$ для $z\in\mathbb{T}$. \square

Замечание. Заметим, что для z = a + bi, w = c + di верно:

$$z\overline{w} = (a+bi)(c-di) = ac+bd+i(bc-ad)$$

Таким образом, для точек-векторов комплексной плоскости z,w их скалярное произведение равно $\Re(z\overline{w})$. В частности, $z\perp w\iff z\overline{w}$ чисто мнимое число.

1.5.1 Простое вращение

Определение 1.5.1 (Простое вращение). Отображение $\gamma : \mathbb{R} \to \mathbb{T}$ со следующими свойствами:

- 1. γ всюду дифференцируема (и всюду непрерывна).
- 2. $\forall t \in \mathbb{R} : |\gamma'(t)| = 1$.
- 3. $\gamma(0) = 1, \gamma'(0) = i$.

Теорема 1.5.1. Простое вращение существует и единственно.

Замечание. Пусть $\phi:\langle a,b\rangle \to \mathbb{T}$ — гладкое отображение (класса $C^{(1)}$). Продифференцируем равенство $\phi(t)\cdot \overline{\phi(t)}=1$:

$$\phi(t)\overline{\phi'(t)} + \phi'(t)\overline{\phi(t)} = 0$$

<u>Получили сумму</u> двух комплексносопряжённых чисел, равную 0. Значит, $2\Re(\phi'(t)\overline{\phi(t)})=0$, то есть $\overline{\phi(t)}\perp\phi'(t)$.

Таким образом, $\exists w : \langle a, b \rangle \to \mathbb{R}$, такая, что $\phi'(t)\overline{\phi(t)} = w(t)i$.

Пусть $\forall t: \phi'(t) \neq 0$. Тогда w — непрерывная не обнуляющаяся функция, значит, она сохраняет знак.

Определение 1.5.2 (Движение против часовой стрелки). Движение ϕ по окружности, такое, что w(t)>0. Также говорят о *движении в положительном направлении* (при движении *круг оста-ётся слева*).

Если $|\phi'(t)| = 1$, то |w(t)| = 1. Так как w(t) не меняет знак, то на самом деле w(t) — константа, не зависит от t: всегда либо +1, либо -1.

Из определения простого вращения извлекаем, что w(0) = 1. Таким образом, простое вращение происходит против часовой стрелки.

Так как w=1, то $\phi'(t)=i\phi(t)$.

Если $\phi_1, \phi_2 : \langle a, b \rangle \to \mathbb{T}$ и удовлетворяют выше написанному, то «более-менее они одинаковые».

Лекция XIII

4 апреля 2023 г.

...Пропущена первая пара, доказали $\exists !$ простое вращение, посмотрели на него внимательно.

$$i = \Gamma\left(\frac{\pi}{4}\right)^2 = \Gamma\left(\frac{\pi}{2}\right) \Rightarrow \left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)^2 = \cos\left(\frac{\pi}{4}\right)^2 - \sin\left(\frac{\pi}{4}\right)^2 + 2i\cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right)$$

Так как $\sin\left(\frac{\pi}{4}\right),\cos\left(\frac{\pi}{4}\right)>0$, то уравнение имеет единственное решение $\cos\left(\frac{\pi}{4}\right)=\sin\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$.

1.5.2 Формулы Тейлора и ряд Тейлора для функций Γ, \sin, \cos

Используя основное тождество, получаем $\Gamma^{(n)}(t)=i^n\Gamma(t)$. Значит, записывая формулу Тейлора с остаточным членом в форме Пеано, получаем в нуле

$$\Gamma(t) = 1 + it + \frac{1}{2!}i^2t^2 + \frac{1}{3!}i^3t^3 + \dots + \frac{1}{n!}i^nt^n + o(t^n)$$

Пусть $f:\langle a,b\rangle \to \mathbb{R}^n$ — векторнозначная функция, непрерывно дифференцируемая n+1 раз. Как можно записать для неё формулу Тейлора?

$$f(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_j(t) \end{pmatrix}$$

Выбрав $t_0 \in (a,b)$, можем записать $f_j(t) = \sum_{k=0}^n \frac{f^{(k)}(t_0)}{k!} (t-t_0)^k + \frac{1}{(n+1)!} f_j^{(n+1)} (\xi_j) (t-t_0)^{n+1}$ Эти точки ξ_j зависят от j, поэтому записать формулу Лагранжа прямо не получится.

Для оценки того, сходится ли ряд Тейлора к соответствующей функции, можно оценить $f^{(n+1)}$ по модулю независимо от точки, на всём промежутке (t_0,t) .

Можно пойти по-другому:
$$\exists \xi \in (t_0,t): \left|f(t) - \sum\limits_{k=0}^n \frac{f^{(k)}(t_0)}{k!}(t-t_0)^k \right| \leqslant \frac{1}{(n+1)!} \left|f^{(n+1)}(\xi)(t-t_0)^{n+1}\right|.$$

Доказательство. Такое же, как и в формуле Лагранжа: рассмотрим $u \in \mathbb{R}^n$, такой, что |u|=1 и

$$\left\langle u, f(t) - \sum_{k=0}^{n} \frac{f^{(k)}(t_0)}{k!} (t - t_0)^k \right\rangle = \left| f(t) - \sum_{k=0}^{n} \frac{f^{(k)}(t_0)}{k!} (t - t_0)^k \right|$$

Введём функцию $g(\tau)\coloneqq\langle u,f(\tau)\rangle$ и запишем формулу Лагранжа для неё:

$$g(t) - \sum_{k=0}^{n} \frac{g^{(k)}(t_0)}{k!} (t - t_0)^k = \frac{1}{(n+1)!} g^{(n+1)}(\xi) (t - t_0)^{n+1}, \quad \text{для } \xi \in (t_0, t)$$

$$\downarrow \downarrow$$

$$\left| f(t) - \sum_{k=0}^{n} \frac{f^{(k)}(t_0)}{k!} (t - t_0)^k \right| \leqslant \frac{1}{(n+1)!} |u| \cdot |t - t_0|^{n+1} \left| f^{(n+1)(\xi)} \right|$$

Итак,

$$\left|\Gamma(t) - \sum_{k=0}^n \frac{i^k}{k!} t^k \right| \leqslant \frac{1}{(n+1)!} |t|^{n+1} \cdot |\Gamma^{(n+1)}(\xi)| \leqslant \frac{1}{(n+1)!} |t|^{n+1}, \quad \text{для некой } \xi \in (0,t)$$

Если $|t|\leqslant R$ для некой константы $R\in\mathbb{R}$, то остаточный член равномерно стремится к нулю: $\frac{t^n}{(n+1)!}\leqslant \frac{R^n}{(n+1)!}\underset{n\to\infty}{\longrightarrow} 0.$

Значит, ряд Тейлора сходится для $\Gamma(t)$ на всей вещественной оси: $\Gamma(t) = \sum_{k=0}^{\infty} \frac{i^k}{k!} t^k$. Вспомним, что $e^t = \sum_{k=0}^{\infty} \frac{1}{k!} t^k$.

Взяв вещественную и мнимую часть разложения в ряд Тейлора $\Gamma(t)$, получим разложение в ряд Тейлора косинуса и синуса соответственно:

$$\cos(t) = \Re \sum_{k=0}^{\infty} \frac{i^k}{k!} t^k = \sum_{k=0}^{\infty} \Re \left(\frac{i^k}{k!} t^k \right) = 1 - \frac{t^2}{2} + \frac{t^4}{4!} - \frac{t^6}{6!} + \dots$$
$$\sin(t) = \Im \sum_{k=0}^{\infty} \frac{i^k}{k!} t^k = \sum_{k=0}^{\infty} \Im \left(\frac{i^k}{k!} t^k \right) = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \dots$$

Определение 1.5.3 (Тангенс). Функция $\operatorname{tg}(x) \stackrel{def}{=} \frac{\sin(x)}{\cos(x)}$, заданная везде, где знаменатель не обращается в ноль.

Замечание. Период тангенса — π : $\operatorname{tg}(x+\pi) = \frac{\sin(x+\pi)}{\cos(x+\pi)} = \frac{-\sin(x)}{-\cos(x)} = \operatorname{tg}(x)$.

Тангенс строго возрастает на промежутках определённости:

$$tg'(t) = \left(\frac{\sin t}{\cos t}\right)' = \frac{(\cos t)^2 + (\sin t)^2}{(\cos t)^2} = \frac{1}{(\cos t)^2}$$

1.5.3 Обратные тригонометрические функции

Арксинус

 $\sin' x = \cos x$, что больше нуля на $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Значит, $\sin x$ возрастает на $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, обозначим $\arcsin \stackrel{def}{=} \sin^{-1} : \left[-1, 1\right] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\arcsin'(x) = \frac{1}{\cos(\arcsin x)} = \frac{1}{\cos(\arcsin x)}$$
 так как на $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ косинус положительный $\frac{1}{\sqrt{1-\sin^2(\arcsin x)}} = \frac{1}{\sqrt{1-x^2}}$

Арктангенс

tg возрастает на $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, определим $\operatorname{arctg} \stackrel{def}{=} \operatorname{tg}^{-1} : \mathbb{R} \to \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

$$\operatorname{arctg}'(x) = \frac{1}{\operatorname{tg}'(\operatorname{arctg} x)} = \cos^2(\operatorname{arctg} x) = \dots = \frac{1}{1+x^2}$$

Очевидным следствием является $\arctan x = \int\limits_0^x \frac{\mathrm{d}t}{1+t^2}, t \in \mathbb{R}.$

Запишем $\frac{1-t^{n+1}}{1+t}=1-t+t^2-\cdots+(-1)^nt^n$. Таким образом, $\frac{1}{1+t^2}=1-t^2+t^4-\cdots+(-1)^nt^{2n}+\frac{t^{2(n+1)}}{1+t^2}$.

$$\operatorname{arctg}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{1}{2n+1} x^{2n+1} + \int_0^x \frac{t^{2(n+1)}}{1+t^2} dt$$

Считаем, что $|x| \leq 1$, оценим

$$\left| \int_{0}^{x} \frac{t^{2(n+1)}}{1+t^{2}} dt \right| \le \int_{0}^{|x|} t^{2n+2} dt = \frac{1}{2n+3} |x|^{2n+3}$$

Таким образом, получаем ряд Тейлора для арктангенса:

$$\operatorname{arctg}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{1}{2n+1} x^{2n+1} + \dots$$

Запишем $\arcsin x = \int_{0}^{x} \frac{\mathrm{d}t}{\sqrt{1-t^2}}$ для $|x| \leqslant 1$.

Ряд Ньютона для $\frac{1}{\sqrt{1-t^2}}$ сходится равномерно при $|t| \leqslant x < 1$. Равномерно сходящийся ряд можно проинтегрировать и получить ряд Тейлора для арксинуса.

Ещё раз посмотрим на сходство: $\Gamma(t) = \sum_{k=0}^{\infty} \frac{i^k}{k!} t^k$; $e^t = \sum_{k=0}^{\infty} \frac{1}{k!} t^k$. Если в ряд для экспоненты формально подставить $t \leftarrow it$, то получится простое вращение.

Простое вращение ещё называют мнимой экспонентной. $e^{ix} \stackrel{def}{=} \Gamma(x) = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!}$. В частности, $e^{i\pi} = -1 \iff \Gamma(\pi) = 1$.

Покамест e^{ix} — это только обозначение, не имеющее обозначение к e^x для $x \in \mathbb{R}$, потом мы увидим ещё причины, по которым эта запись естественна.

1.5.4 Формула Эйлера

$$\Gamma(x) = \cos x + i \sin x; \quad \Gamma(-x) = \overline{\Gamma(x)} = \cos x - i \sin x$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}; \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

Определим $e^z\stackrel{def}{=}e^a\cdot e^{ib}=e^a\Gamma(b)$. Основное свойство экспоненты $e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}$ сохраняется.

Для комплексного числа $z \in \mathbb{C}$ определим $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ и $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$.

Заметим также, что $(e^{ax})'=a\cdot e^{ax}$, а $(e^{ibx})'=\Gamma(bx)'=ib\Gamma(bx)=ib\cdot e^{ibx}$, согласованность полная.

1.6 Дифференцирование высших порядков

Рассмотрим скалярную функцию $f:(G\subset\mathbb{R}^n)\to\mathbb{R}$. Для векторнозначных функций это тоже можно делать, но получится много индексов, и в любом случае можно разобрать векторнозначную функцию на координатные скалярные функции.

Пусть $\frac{\partial f}{\partial x_j}$ существуют и непрерывны для j=1..n. При дифференцировании один раз получаем $\mathrm{d}f(x,h)=\sum\limits_{j=1}^n\frac{\partial f}{\partial x_j}(x)\cdot h_j\eqqcolon\phi_h(x),$ где $h=\begin{pmatrix}h_1&\dots&h_n\end{pmatrix}.$

Предположим, что возможно продифференцировать $\phi_h(x)$ по x ещё раз: $\frac{\partial}{\partial x_j}\phi_h(x)=\sum_{s=1}^n\frac{\partial}{\partial x_j}\frac{\partial}{\partial x_s}f(x)\cdot h_s$.

Предположим, что все производные $\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_c} f$ существуют и непрерывны. Тогда

$$d\phi_h(x,k) = \sum_{i=1}^n \sum_{s=1}^n \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_s} f(x) h_s k_j = D^2 f(x,h,k)$$

При каждом x полученный дифференциал $D^2 f(x,\cdot,\cdot)$ — билинейная функция.

По определению $D^r f\left(x,h^{(1)},\dots,h^{(r)}\right)$ — при фиксированном x это r-линейная форма по $h^{(1)},\dots,h^{(r)}$. Раскрыв, получим r-ый дифференциал f-r-линейную форму:

$$D^r f(x,h^{(1)},\ldots,h^{(r)}) \stackrel{def}{=} \sum_{1\leqslant j_1,\ldots,j_r\leqslant n} \frac{\partial}{\partial x_{j_1}} \cdots \frac{\partial}{\partial x_{j_r}} f(x) h^{(1)}_{j_1} \cdots h^{(r)}_{j_r} = \sum_{1\leqslant j_1,\ldots,j_r\leqslant n} \frac{\partial^r f}{\partial x_{j_1} \cdots \partial x_{j_r}} (x) h^{(1)}_{j_1} \cdots h^{(r)}_{j_r}$$

Разумеется, для существования дифференциала мы предполагаем, что существуют и непрерывны все производные вплоть до r- $\ddot{\mathrm{u}}$.

Лекция XIV

11 апреля 2023 г.

Определение 1.6.1 (Полилинейная функция порядка s). Линейное по каждому из s аргументов отображение $L: \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{} \to \mathbb{R}$. Она же - s-линейная функция.

Пусть в функцию L подставили $h^{(1)}, \dots, h^{(s)}$. Разложим их по базису $h^{(j)} = \sum_{k=1}^n h_k^{(j)} e_k$ и воспользуемся линейностью:

$$L(h^{(1)}, \dots, h^{(s)}) = \sum_{1 \leqslant j_1, \dots, j_s \leqslant n} h_{j_1}^{(1)} \dots h_{j_s}^{(s)} \cdot a_{j_1, \dots, j_s}$$

Все полилинейные функции имеют такой вид, причём всякая функция, имеющая такой вид — полилинейна.

s-линейной функции L соответствует s-форма $T(h) = L(h, \ldots, h)$ — сужение L на диагональ. В частности, для s = 2 : T — $\kappa в a \partial \rho a m u u h a \pi$ форма.

Определение 1.6.2 (Симметричная s-линейная форма L). Такая, что она не зависит от перестановки векторов-аргументов.

Теорема 1.6.1. Если все частные производные порядка r от f непрерывны, то они не зависят от порядка дифференцирования.

Доказательство. Позднее.

Теорема 1.6.2. Пусть L-s-линейная функция, T- соответствующая s-форма. Если L симметрична, то L однозначно восстанавливается по T.

Пример (Объяснение). Рассмотрим s = 2.

$$T(x+y) = L(x+y,x+y) = L(x,x) + L(x,y) + L(y,x) + L(y,y) = L(x,x) + 2L(x,y) + L(y,y)$$

$$T(x-y) = L(x-y,x-y) = L(x,x) - L(x,y) - L(y,x) + L(y,y) = L(x,x) - 2L(x,y) + L(y,y)$$

$$L(x,y) = \frac{1}{4}(T(x+y) - T(x-y))$$

Доказательство.

$$L(h^{(1)}, \dots, h^{(s)}) = \frac{1}{2^s s!} \left(\sum_{\varepsilon_1, \dots, \varepsilon_s = \pm 1} (\varepsilon_1 \cdot \dots \cdot \varepsilon_s) \cdot T \left(\varepsilon_1 h^{(1)} + \dots + \varepsilon_s h^{(s)} \right) \right)$$

Проверим истинность формулы: раскроем $T\left(\varepsilon_1 h^{(1)} + \dots + \varepsilon_s h^{(s)}\right)$ в сумму s^s слагаемых вида $(\prod \varepsilon_i) \cdot L\left(\sum \varepsilon_j h^{(j)}\right)$. При фиксированных i_1,\dots,i_s , рассмотрим все слагаемые $\pm L\left(h^{(i_1)},\dots,h^{(i_s)}\right)$. Если i_1,\dots,i_s — перестановка, то слагаемое входит со знаком $1=\left(\varepsilon_1 \cdot \dots \cdot \varepsilon_s\right)^2$, иначе найдётся $j \neq i_1,\dots,i_s$, тогда $\varepsilon_j=\pm 1$ нейтрализуют друг друга, в сумме останется 0.

Дифференциалом порядка r от f обычно считают r-форму

$$d^{(r)}f(x,h) = D^{(r)}f(x,\underbrace{h,\ldots,h}_{r})$$

В дальнейшем все упоминания дифференциала будут относится к $d^{(r)}$.

1.7 Формула Тейлора функции нескольких переменных

 $f: G \to \mathbb{R} - r + 1$ раз непрерывно дифференцируема (нам придётся использовать r + 1-ю производную для записи остатка).

Рассмотрим $x_0 \in G$, $\overline{B_r(x_0)} \subset G$, $x \in B_r(x_0)$.

Выберем настолько маленький $\varepsilon > 0$: $B_{\varepsilon}(x) \subset B_{r}(x_{0})$. Тогда $x_{0} + t(x - x_{0}) \in B_{r}(x_{0})$ для $t \in (-1, 1 + \varepsilon)$.

Продифференцируем $\phi: (-1, 1+\varepsilon) \to \mathbb{R}, \phi(t) = f(x_0 + t(x-x_0)).$

Обозначим $p = x - x_0$, при новом обозначении $\phi(t) = f(x_0 + tp)$.

$$\phi'(t) = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} (x_0 + tp) p_j = \underset{\langle \operatorname{grad}_f(x_0), p \rangle}{=} \operatorname{d} f(x_0 + tp, p)$$
$$\phi^{(2)}(t) = \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^2 f}{\partial x_k \partial x_j} (x_0 + tp) p_k p_j = \operatorname{d}^2 f(x_0 + tp, p)$$

В общем случае $\phi^{(s)}(t) = d^{(s)} f(x_0 + tp; p)$

$$f(x)-f(x_0)=\phi(1)-\phi(0)=rac{\phi'(0)}{1!}+rac{\phi^{(2)}(0)}{2!}+\cdots+rac{\phi^{(r)}(0)}{r!}+rac{\phi^{(r+1)}(\xi)}{(r+1)!},$$
 где $\xi\in[0,1].$

где u лежит на отрезке с концами в точках x_0 и x. Заведомо $u \in B_r(x_0)$.

Предложение 1.7.1. Пусть L-s-линейная функция на \mathbb{R}^n . Тогда $\exists C \in \mathbb{R}$:

$$\left| L\left(h^{(1)}, \dots, h^{(s)}\right) \right| \leqslant C \cdot \left| h^{(1)} \right| \cdot \dots \cdot \left| h^{(s)} \right|$$

Для соответствующей s-формы: $|T(h)| \leq C \cdot |h|$.

Доказательство. Вспомним формулу $L\left(h^{(1)},\dots,h^{(s)}\right) = \sum_{1\leqslant j_1,\dots,j_s \leqslant n} a_{j_1,\dots,j_s} h_j^{(1)} \cdot \dots \cdot h_{j_s}^{(s)}$. Существует такое $A: \forall j_1,\dots,j_s: |a_{j_1,\dots,j_s}| \leqslant A$, так как a- конечно.

$$\left| \sum a_{j_1, \dots, j_s} h_j^{(1)} \cdot \dots \cdot h_{j_s}^{(s)} \right| \leqslant A \sum_{a_{j_1, \dots, j_s}} \left| h_1^{(1)} \right| \cdot \dots \cdot \left| h_s^{(s)} \right| = A \left(\left| h_1^{(1)} \right| + \dots + \left| h_1^{(s)} \right| \right) \cdot \dots \cdot \left(\left| h_n^{(1)} \right| + \dots + \left| h_n^{(s)} \right| \right)$$

i-й множитель оценивается $\sqrt{n} \cdot |h^i|$ согласно КБШ.

Замечание. Пусть $\exists h: T(h) \neq 0$. Тогда $T(th) = t^s T(h)$, то есть оценка в некотором смысле плотная.

Таким образом, в многочлене Тейлора k-е слагаемое оценивается по модулю $\frac{1}{k!}|x-x_0|^k$

Оценим остаточный член в формуле Тейлора: $\mathrm{d}^{(r+1)}f(u,x-x_0)$ есть $\frac{\partial^{r+1}}{\partial x_{j_1}\cdot\ldots\partial x_{j_r}}f(u)$. В этом шаре все производные существуют и непрерывны, значит, ограничены некой константой.

Так как
$$u \in \overline{B_r(x_0)}$$
, то $|d^{(r+1)}f(u,x-x_0)| \leqslant C|x-x_0|^{r+1}$.

Теорема 1.7.1. Пусть f-r+1 раз непрерывно дифференцируема в $G\subset \mathbb{R}^n$, причём $\overline{B_r(x_0)}\subset G, x\in B_r(x_0)$. Тогда

$$f(x) = f(x_0) + \sum_{j=1}^{r} \frac{\mathrm{d}^{(j)} f(x_0, x - x_0)}{j!} + \mathcal{O}\left(|x - x_0|^{r+1}\right)$$

Доказательство. Написано выше.

Теорема 1.7.2 (Единственность многочлена Тейлора). Пусть f-r+1 раз непрерывно дифференцируема в $G \subset \mathbb{R}^n$, причём $\overline{B_r(x_0)} \subset G, x \in B_r(x_0)$.

Пусть
$$f(x) - f(x_0) = \sum_{j=1}^r T_j(x - x_0) + o(|x - x_0|^r)$$
, где T_j — некоторая j -форма.

Тогда непременно $\forall j: T_j(h) = \frac{\mathrm{d}^{(j)} f(x_0,h)}{j!}$.

Доказательство. Аналогично одномерному случаю:

Пусть есть два представления — формула Тейлора, и ещё одно, такое: $f(x) - f(x_0) = \sum_{j=1}^r S_j(x - x_0) + o(|x - x_0|^r)$, где $S_j - j$ -форма.

Вычтем одно из другого. Получим функцию $r:G \to \mathbb{R}, \ r(x) = \sum\limits_{j=1}^r R_j(x-x_0) = o(|x-x_0|^r),$ где R_j — j-форма.

Пусть k — наименьший индекс, такой, что $R_k \not\equiv 0$, то есть найдётся вектор v, такой, что $R_k(v) \not\equiv 0$.

Рассмотрим $t \in \mathbb{R}$ в такой окрестности 0, что $x+tv \in G$. Для них $r(tv)=t^kR_k(v)+o(t^{k+1})$. Получили противоречие.

Лекция XV

14 апреля 2023 г.

Лекция XVI

18 апреля 2023 г.

Упс, была лекция в пятницу, а ещё я опоздал минут на 5. То be deployed...

3. Форма $V\Big|_L$ неопределённая. $\exists u_1, u_2 \in L: V(u_1) > 0, v(u_2) < 0$. Так как $u_1, u_2 \in L$, то $\exists a)1, a_2 \in \mathbb{R}^m: u_1 = \mathrm{d}\Phi(t_0, a_1), u_2 = \mathrm{d}\Phi(t_0, a_2)$, где $\Phi(x_0) = t_0 \in B$.

Запишем

$$F(\Phi(t_0 + \tau u_1)) - F(\Phi(t_0))$$

где $\tau \in (-\delta, \delta)$.

Вычисления с прошлой лекции показывают, что $\tau \mapsto F(\Phi(t_0 + \tau a_1))$ имеет локальный минимум при t=0. При замене a_1 на a_2 получаем локальный максимум.

Значит, нет ни максимума, ни минимума.

1.7.1 Независимость частных производных от порядка дифференцирования

Понятно, что достаточно научиться переставлять два оператора дифференцирования.

Теорема 1.7.3. Пусть $U\subset\mathbb{R}^2$ — открытое множество плоскости, $f:U\to\mathbb{R}$ — функция, такая, что $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial y\partial x}$ существуют и непрерывны.

Тогда $\frac{\partial^2 f}{\partial x \partial y}$ существует и совпадает с $\psi \coloneqq \frac{\partial^2 f}{\partial y \partial x}.$

Доказательство. Докажем в одной точке $(x_0,y_0)\in U.$

Выберем
$$\rho>0:K\coloneqq\Big\{(x,y)\Big||x-x_0|\leqslant \rho,|y-y_0|\leqslant \rho\Big\}\subset U.$$

Выберем последовательность $\{h_n\}_{n\in\mathbb{N}}, (0< h_n\leqslant \rho)$, стремящуюся к нулю. $\phi(x)=\frac{f(x,y_0+h_n)-f(x,y_0)}{h_n}$. $\phi_n(x)\longrightarrow \frac{\partial}{\partial y}f(x,y_0)$ (1).

$$\phi_n'(x) \longrightarrow rac{\partial}{\partial x} rac{\partial}{\partial y} f(\cdot,y_0) = \psi(x,y_0)$$
 (2) поточечно.

Была теорема, что при некоторых условиях тогда что?

Достаточно доказать, что сходимость в (1) и (2) равномерная.

Касательно (2):
$$\exists \xi_n(x)$$
 между y_0+h_n и $y_0: \frac{\frac{\partial}{\partial x}f(x,y_0+h_n)-\frac{\partial}{\partial x}f(x,y_0)}{h_n}=\frac{\partial}{\partial y}\frac{\partial}{\partial x}f(x,\xi_n(x)).$ По теореме Кантора $\forall \varepsilon>0: \exists \delta: |t-t_1|\leqslant \delta, |s-s_1|\leqslant \delta, (t,s), (t_1,s_1)\in K \Rightarrow |\phi(t,s)-\phi(t_1,s_1)|<\varepsilon.$

Заметим, что $|y_0-\xi_n(x)| \leqslant h_n < \delta$ при достаточно больших n. Значит, $\left|\frac{\partial}{\partial x}\frac{\partial}{\partial y}f(x,\xi_n(x)) - \frac{\partial}{\partial x}\frac{\partial}{\partial y}f(x,y_0)\right| < \varepsilon$ при таких n.

Глава 2

Несобственные интегралы и компания

2.1 Одна из ситуаций

 $(\alpha,\beta)\subset\mathbb{R}$ — возможно бесконечный отрезок. $f:(\alpha,\beta)\to\mathbb{R}$. $\forall [a,b]\subset(\alpha,\beta)$ пускай f интегрируема на [a,b] по Риману — Дарбу.

Если f не интегрируема по Риману — Дарбу на (α, β) , но $\exists \lim_{a \to \alpha, b \to \beta} \int\limits_a^b f(x) \, \mathrm{d}x$, то говорят, что f интегрируема по отрезку (α, β) в несобственном смысле.

Определение 2.1.1 (Несобственный интеграл). Выше предложенный предел $\int\limits_{\alpha}^{\beta} f(x) \, \mathrm{d}x \stackrel{def}{=} \lim_{a \to \alpha, b \to \beta} \int\limits_{a}^{b} f(x) \, \mathrm{d}x.$

Обозначение такое же, как и у обычного интеграла, но следует говорить, что интеграл несобственный.

- 1. Предел существует «(несобственный) интеграл сходится».
- 2. Предела нет «(несобственный) интеграл расходится».
- 3. Есть предел $\lim_{b\to\beta-0}\int\limits_a^b|f(x)|\,\mathrm{d} x$ «интеграл сходится абсолютно».

Применение критерия Коши: $\forall \varepsilon > 0: \exists c < \beta: u,v \in [c,\beta) \Rightarrow \left|\int\limits_u^v f(x)\,\mathrm{d}x\right| < \varepsilon.$

Теорема 2.1.1. $f,g:[\alpha,\beta)\to\mathbb{R}$ непрерывны, $\forall b<\beta$ обе интегрируемы по Риману на $[\alpha,b]$ и $|f|\leqslant g$. Если $\int\limits_{\alpha}^{\beta}g(x)\,\mathrm{d}x$ сходится, то $\int\limits_{\alpha}^{\beta}f(x)\,\mathrm{d}x$ сходится абсолютно.

Доказательство.
$$\forall u < v \in [\alpha, \beta) : \left| \int\limits_{u}^{v} f(x) \, \mathrm{d}x \right| \leqslant \int\limits_{u}^{v} |f(x)| \, \mathrm{d}x \leqslant \int\limits_{u}^{v} g(x) \, \mathrm{d}x.$$

Следствие 2.1.1. Интеграл сходится абсолютно ⇒ интеграл сходится.

Примеры.

- $\int\limits_{1}^{\infty} x^{\gamma} \, \mathrm{d}x$ еходится $\iff \gamma < -1$.
- $\int_{1}^{\infty} x^{\rho} dx$ сходится $\iff \rho > -1$.

Пусть нас интересует интеграл $\int_{\alpha}^{\beta} f(x)g(x) dx$, при f,g непрерывных на $[\alpha,\beta)$, f' непрерывна на (α,β) .

Нас интересует предел $b \to \beta$ выражения:

$$\int_{\alpha}^{b} f(x)g(x) dx = \left\| G(x) = \int_{\alpha}^{x} g(t) dt \right\| = \int_{\alpha}^{b} f(x) dG(x) = G(x)f(x) \Big|_{\alpha}^{b} - \int_{\alpha}^{b} G(x)f'(x) dx$$

Сформулируем условия на функции f,g. Предположим, что

- 1. G ограничена константой A.
- 2. $\lim_{\beta \to 0} f = 0$.
- 3. f монотонно убывает на $[\alpha, \beta)$. Тогда производная неположительна, интеграл $\int\limits_{\alpha}^{\beta} G(x) f'(x) \, \mathrm{d}x$ сходится абсолютно: $|G(x)f'(x)| \leqslant A|f'(x)| = -Af'(x)$.

Теорема 2.1.2. При данных условиях интеграл $\int_{\alpha}^{\beta} f(x)g(x) dx$ сходится.

Пример. $\int\limits_0^\infty \frac{\sin x}{x} \, \mathrm{d}x \, \mathrm{cxoдutcs.}$

Заметим, что особенность есть только в ∞ , будем рассматривать $\int\limits_1^\infty \frac{\sin x}{x} \, \mathrm{d}x$. Положим $f(x) = \frac{1}{x}, g(x) = \sin x$. Тогда все условия выполнены.

2.2 Сравнение рядов и интегралов

Пусть $f:[0,\infty) \to \mathbb{R}$ — монотонная функция. Тогда

$$\sum_{j=1}^{n} f(j) \quad \mathsf{и} \quad \int_{1}^{n} f(x) \, \mathrm{d}x$$

вещи близкие.

Лекция XVII 21 апреля 2023 г.

Итак, пусть $f:[0,\infty)\to\mathbb{R}$ — убывающая положительная функция. Предположим (хотя на самом деле для убывающей функции это всегда правда), что для любого $R<\infty$: f интегрируема по Риману — Дарбу на [0,R].

Пусть $A_1 < A_2 < \dots < A_j$ — возрастающая последовательность. Тогда оцениваем

$$\sum_{j=1}^{k} f(A_{j+1})(A_{j+1} - A_j) \leqslant \int_{A_1}^{A_{k+1}} f(x) \, \mathrm{d}x \leqslant \sum_{j=1}^{k} f(A_j)(A_{j+1} - A_j)$$

В частном случае $A_j = j$ получаем

$$\sum_{j=1}^{k} f(j+1) \leqslant \int_{1}^{k+1} f(x) \, \mathrm{d}x \leqslant \sum_{j=1}^{k} f(j)$$

$$\int_{1}^{k+1} f(x) \, \mathrm{d}x \leqslant \sum_{j=1}^{k} f(j) \leqslant \int_{1}^{k+1} f(x) \, \mathrm{d}x + f(1) - f(k+1)$$

Пусть $f(x) \underset{x \to \infty}{\longrightarrow} 0$, тогда при сделанных предположениях ряд $\sum\limits_{j=1}^k f(j)$ сходится $\iff \int\limits_1^{k+1} f(x) \,\mathrm{d}x$ сходится при $k \to \infty$.

Замечание. Пусть $\int\limits_1^\infty f(x)\,\mathrm{d}x$ расходится. Тогда, поделив неравенство, получаем

$$1 \leqslant \frac{\sum_{j=1}^{k} f(j)}{\int_{1}^{k+1} f(x) dx} \leqslant 1 + \frac{f(1) - f(k+1)}{\int_{1}^{k+1} f(x) dx}$$

Таким образом, по принципу двух полицейских, получаем, что $\int\limits_1^{k+1} f(x) \, \mathrm{d}x$ и $\sum\limits_{j=1}^k f(j)$ — эквивалентные бесконечно большие при $k \to \infty$.

Следствие 2.2.1. $1+\frac{1}{2}+\cdots+\frac{1}{k}\sim \log(k+1)$. Кстати, так как $\log(k+1)-\log(k)=\log\left(1+\frac{1}{k}\right)\underset{k\to\infty}{\longrightarrow} 0$, то можно написать и $\log(k)$ вместо $\log(k+1)$.

Давайте теперь возьмём $A_j=2^j$, где $\{A_j\}_{j=0}^k$. Так как $A_{j+1}-A_j=2^j$, то получаем, что сходимость ряда $\sum\limits_{j=1}^\infty f(2^j)2^j$ эквивалентна сходимости интеграла $\int\limits_1^\infty f(x)\,\mathrm{d}x$.

Забавным следствием получается формулирующееся без интегралов утверждение из первого семестра о том, что ряды $\sum\limits_{j=1}^{\infty}f(2^{j})2^{j}$ и $\sum\limits_{j=1}^{\infty}f(j)$ сходятся (или расходятся) одновременно.

Замечание. Аналогичные соображения для возрастающих функций, например, можно получить, что для s>0 : $\sum\limits_{n=1}^{N}n^{s}\sim \frac{1}{s+1}N^{s+1}$.

2.2.1 Частичные суммы гармонического ряда и постоянная Эйлера — Маскерони

Оказывается, есть более сильное условие, чем $1 + \frac{1}{2} + \cdots + \frac{1}{k} \sim \log(k)$.

$$\log(k+1) = \int_{1}^{k+1} \frac{\mathrm{d}x}{x} = \sum_{j=1}^{k} \int_{j}^{j+1} \frac{\mathrm{d}x}{x} = \sum_{j=1}^{k} \frac{1}{j} + \sum_{j=1}^{k} \int_{j}^{j+1} \left(\frac{1}{x} - \frac{1}{j}\right) \mathrm{d}x$$

Оценив $\left|\frac{1}{x}-\frac{1}{j}\right|=\left|\frac{x-j}{xj}\right|\leqslant \frac{1}{j^2}$, получаем, что ряд этих штук сходится и разность

$$\log(k+1) - \sum_{j=1}^{k} \frac{1}{j} \xrightarrow[k \to \infty]{} C$$

стремится к некой постоянной C- постоянной Эйлера — Маскерони (на самом деле, постоянная Эйлера — Маскерони $\gamma \stackrel{def}{=} \lim_{n \to \infty} \sum_{j=1}^n \frac{1}{j} - \log(n)$. Так как $\log(k+1) - \log(k) = \log\left(1 + \frac{1}{k}\right) \stackrel{\longrightarrow}{\underset{k \to \infty}{\longrightarrow}} 0$, то $\gamma = -C$).

2.2.2 Формула Стирлинга

Получим асимптотическую оценку для факториала.

 $\log(n!) = \sum_{i=1}^n \log i$, сравним эту штуку с $\int\limits_1^{n+1} \log x \, \mathrm{d}x$. Как известно, $\int \log x \, \mathrm{d}x = x \log x - x + \mathrm{const.}$

$$\int_{1}^{n+1} \log x \, dx = (n+1)\log(n+1) - (n+1) + 1 = (n+1)\log(n+1) - n$$

Оценим по формуле Тейлора $\log(1+x)=x-\frac{x^2}{2(1+\xi)^2},\ \xi\in[0,x]$, откуда $\log(1+x)=x+\phi(x)$, $|\phi(x)|\leqslant\frac{1}{2}x^2$.

$$\int_{1}^{n+1} \log x \, dx = \sum_{j=1}^{n} \int_{1}^{j+1} \log x \, dx = \sum_{j=1}^{n} \int_{j}^{j+1} (\log x - \log j) \, dx + \sum_{j=1}^{n} \log j$$

Для $x \in [j,j+1]$ получаем $\log x - \log j = \log \left(1 + \left(\frac{x}{j} - 1\right)\right) = \frac{x-j}{j} + \phi\left(\frac{x-j}{j}\right)$, где $\left|\phi\left(\frac{x-j}{j}\right)\right| \leqslant \frac{1}{2}\frac{|x-j|^2}{j^2}$.

Итак,

$$(n+1)\log(n+1) - n = \sum_{j=1}^{n}\log j + \sum_{j=1}^{n}\int_{j}^{j+1}\phi\left(\frac{x-j}{j}\right)\mathrm{d}x + \sum_{j=1}^{n}\frac{1}{j} = \underbrace{\int_{j}^{j+1}(x-j)\,\mathrm{d}x}_{1/2}\sum_{j=1}^{n}\log j + \frac{1}{2}\log(n+1) + \underbrace{v_n}_{\text{СХОДИТСЯ}}$$

$$\left(n+\frac{1}{2}\right)\log(n+1) - n = \log(1) + \dots + \log(n) + v_n$$

$$(n+1)^{n+\frac{1}{2}}\cdot e^{-n} = n!\cdot e^{v_n}$$

$$n^{n+\frac{1}{2}}\underbrace{\left(\frac{n+1}{n}\right)^{n+\frac{1}{2}}}_{\text{стремится к }e}e^{-n} = n!\cdot e^{v_n}$$

$$n! \sim C\sqrt{n}\left(\frac{n}{n}\right)^n$$

Интересный факт. Появившаяся в последней строчке константа $C=\sqrt{2\pi}$

2.3 Суммируемые семейства

Пусть есть множество проиндексированных (быть может комплексных) чисел $\{\xi_{\alpha}\}_{\alpha\in A}$, где A — множество любой природы.

Число a называется суммой этого семейства, если $\forall \varepsilon>0$: \exists конечное подмножество $B\subset A$, такое, что $\forall B\subset C\subset A$: $\left|a-\sum_{\alpha\in C}\xi_{\alpha}\right|<\varepsilon$, где рассматриваются конечные надмножества C.

Определение 2.3.1 (Суммируемое семейство). Семейства, у которого есть сумма. Пишут $a = \sum_{\alpha \in A} \xi_{\alpha}$.

3амечание. Семейство $\{\xi_{\alpha}\}_{\alpha\in A}$ суммируемо $\iff \{\Re(\xi_{\alpha})\}_{\alpha\in A}$ и $\{\Im(\xi_{\alpha})\}_{\alpha\in A}$ оба суммируемы.

Теорема 2.3.1. Следующие условия эквивалентны:

- 1. Семейство $\{\xi_{\alpha}\}_{\alpha\in A}$ суммируемо.
- 2. Суммы $\sum_{\alpha \in C} |\xi_{\alpha}|$ ограничены по всем конечным $C \subset A$.

Лекция XVIII 25 апреля 2023 г.

Ниже все множества E, e, \overline{e} — конечны.

Теорема 2.3.2. Пусть $\{a_{\alpha}\}_{{\alpha}\in A}$ — числовое семейство. Следующие условия эквивалентны:

- 1. Семейство суммируемое.
- 2. Множество $\left\{ \left| \sum_{\alpha \in e} a_{\alpha} \right| \middle| e \subset A, e$ конечно $\right\}$ ограничено.
- 3. Множество $\left\{\sum_{\alpha\in e}|a_{\alpha}|\left|e\subset A,e$ конечно $\right\}$ ограничено.

Доказательство.

 $1\Rightarrow 2$. Положим a — сумма семейства. Выберем $\varepsilon=1$, по определению суммируемого семейства $\exists E\subset A: \forall: e\supset E: \left|\sum_{\alpha\in e} a_{\alpha}-a\right|\leqslant 1.$

Рассмотрим произвольное $\overline{e} \subset A$, положим $e = \overline{e} \cup E$.

$$\left|\sum_{\alpha \in \overline{e}} a_{\alpha}\right| = \left|\sum_{\alpha \in e} a_{\alpha} - \sum_{\alpha \in E \setminus \overline{e}} a_{\alpha}\right| \leqslant \underbrace{\left|\sum_{\alpha \in e} a_{\alpha}\right| + \sum_{\alpha \in E} |a_{\alpha}|}_{\text{ограничено}}$$

 $3 \Rightarrow 2$ Очевидно.

 $2 \Rightarrow 1, 3.$

Лемма 2.3.1. Пусть $\{a_{\alpha}\}_{{\alpha}\in A}$ — множество положительных чисел. Следующие условия эквивалентны:

- Семейство суммируемое.
- Множество $\left\{\sum_{\alpha\in e}a_{\alpha}\bigg|e\subset A,e$ конечно $\right\}$ ограничено.

Если любое из условий выполнено, то $\sum\limits_{\alpha \in e} a_{\alpha} = \sup \left\{ \sum\limits_{\alpha \in e} a_{\alpha} \middle| e \subset A \right\}$.

Доказательство леммы.

 $1 \Rightarrow 2$ уже доказали.

Положим $a = \sup \left\{ \sum_{\alpha \in e} a_{\alpha} \middle| e \subset A \right\}.$

По определению супремума $\exists E \subset A: \sum_{\alpha \in E} a_\alpha > a - \varepsilon.$ Тогда $\forall \overline{e} \supset E: a - \varepsilon \leqslant \sum_{\alpha \in E} a_\alpha \leqslant \sum_{\alpha \in E} a_\alpha \leqslant a.$

Значит, множество суммируемо по определению.

Разложим $a_{\alpha} = b_{\alpha} + ic_{\alpha}$. Понятно, что $\{b_{\alpha}\}, \{c_{\alpha}\}$ удовлетворяют условию (2).

Для $\{u_{\alpha}\}_{{\alpha}\in A}$ рассмотрим $u_{\alpha}=u_{\alpha}^+-u_{\alpha}^-$, теперь $\{u_{\alpha}\}$ разложимо в разность двух неотрицательных семейств $\{u_{\alpha}^+\}$ и $\{u_{\alpha}^-\}$.

Если $\{u_{\alpha}\}$ удовлетворяет условию (2), то так же удовлетворяют условию и $\{u_{\alpha}^+\}$ вместе с $\{u_{\alpha}^-\}$ — можно выбирать в конечное множество только положительные или только отрицательные числа

Тогда $a_{\alpha}=b_{\alpha}^{+}-b_{\alpha}^{-}+i(c_{\alpha}^{+}-c_{\alpha}^{-})\Rightarrow\{a_{\alpha}\}$ суммируемо согласно лемме. Доказали $2\Rightarrow 1$.

Чтобы доказать, $2\Rightarrow 3$ покажем, что $|a_{\alpha}|\leqslant b_{\alpha}^{+}+b_{\alpha}^{-}+c_{\alpha}^{+}+c_{\alpha}^{-}.$

 $\it 3$ амечание. Если $\{u_{\alpha}\}_{\alpha\in A}$ — числовое семейство, $u_{\alpha}\geqslant 0$, то

$$\sum_{\alpha \in A} u_\alpha = \begin{cases} \text{сумма семейства,} & \text{если оно суммируемо} \\ +\infty, & \text{иначе} \end{cases}$$

Теорема 2.3.3. Если семейство $\{a_{\alpha}\}_{\alpha\in A}$ суммируемо, то $\{\alpha\in A|a_{\alpha}\neq 0\}$ не более, чем счётно.

Доказательство. Так как семейство суммируемо, то множество $\left\{\sum_{\alpha \in e} |a_{\alpha}| \ \middle| \ e \subset A, e$ — конечно ограничено неким числом C.

Выберем $n \in \mathbb{N}$, предположим. что нашлось k элементов $a_{\alpha_1}, \ldots, a_{\alpha_k} : |a_{\alpha_i}| \geqslant \frac{1}{n}$.

Тогда $\sum_{i=1}^k |a_{\alpha_i}| \geqslant \frac{k}{n}$. Но так как эти суммы ограничены константой C, то $k \leqslant nC$, то есть $A_n \coloneqq \left\{a_{\alpha_i} | |a_{\alpha_i}| \geqslant \frac{1}{n}\right\}$ конечно.

Тогда
$$\{\alpha||a_{\alpha}|>0\}=\bigcup_{n=1}^{\infty}A_{n}$$
 счётно. \square

Теорема 2.3.4 (О перестановках). Пусть $\phi: A \to A$ — биекция. Тогда семейство $\{a_{\alpha}\}_{\alpha \in A}$ суммируемо \iff семейство $\{a_{\phi(\alpha)}\}_{\alpha \in A}$ суммируемо, причём их суммы совпадают, если есть.

Предложение 2.3.1. Пусть $\{a_n\}$ — числовая последовательность. Тогда следующие условия эквивалентны:

- 1. $\sum_{n=1}^{\infty} a_n$ абсолютно сходится.
- 2. Семейство $\{a_n\}_{n\in\mathbb{N}}$ суммируемо.

При этом если условия верны, то суммы равны.

 \mathcal{A} оказательство. Для всякого конечного $e \subset \mathbb{N}$ найдётся $N \coloneqq \max e$, тогда $\sum\limits_{i \in e} |a_i| \leqslant \sum\limits_{i=1}^N |a_i|$.

Обратно — для всякого $N\in\mathbb{N}$ найдётся $e\coloneqq\{1,\ldots,N\}$, тогда $\sum\limits_{i=1}^N|a_i|\leqslant\sum\limits_{i\in e}|a_i|.$

То, что суммы равны, тоже можно доказать, рассмотрев хвосты с суммой меньше ε .

Следствие 2.3.1. Абсолютно сходящийся ряд сходится к той же сумме после любой его перестановки.

Теорема 2.3.5 (Лейбниц). Пусть $\{a_j\}_{j\in\mathbb{N}}\subset\mathbb{R}$, причём $\sum\limits_{i=1}^\infty a_j$ сходится лишь условно: $\sum\limits_{i=1}^\infty |a_j|=+\infty$.

Пусть $-\infty\leqslant r\leqslant s\leqslant +\infty$. Тогда $\exists \phi:\mathbb{N}\to\mathbb{N}$ — биекция, такая, что

$$\underline{\lim}_{n \to \infty} \sum_{j=1}^{n} a_{\phi(j)} = r \qquad \overline{\lim}_{n \to \infty} \sum_{j=1}^{n} a_{\phi(j)} = s$$

Схема доказательства. Пусть — для удобства доказательства — $-\infty < r \leqslant s < +\infty$. Упорядочим $|a_1| \geqslant |a_2| \geqslant \dots$ Так как $\sum\limits_{j=1}^{\infty} a_j^+$ и $\sum\limits_{j=1}^{\infty} a_j^-$ оба расходятся, то можно брать поочерёдно положительные, то отрицательные числа, бегая от границы к границе.

Пусть $\{a_{\alpha}\}_{\alpha\in A}$ — числовое семейство, $\{B_{\gamma}\}_{\gamma\in\Gamma}$ — разбиение A на непустые множества.

Теорема 2.3.6. Если семейство $\{a_{\alpha}\}_{{\alpha}\in A}$ суммируемо (с суммой a), то все частичные семейства $\{a_{\alpha}\}_{{\alpha}\in B_{\gamma}}$ суммируемы (с суммой b_{γ}), причём семейство их сумм $\{b_{\gamma}\}_{{\gamma}\in \Gamma}$ тоже суммируемо — с суммой a.

Если все
$$a_{\alpha}\geqslant 0$$
 (но необязательно семейство суммируемо), то $\sum\limits_{\alpha\in A}a_{\alpha}=\sum\limits_{\gamma\in\Gamma}\left(\sum\limits_{\alpha\in B_{\gamma}}a_{\alpha}\right)$

Доказательство. Докажем только последнюю строчку, остальное из неё следует, так как семейство можно разбивать на линейную комбинацию неотрицательных составляющих.

Если одно из $b_{\gamma}=+\infty$, то обе суммы равны $+\infty$. Дальше считаем, что все b_{γ} конечны. Покажем, что

$$\sup \left\{ \sum_{\alpha \in e} a_{\alpha} \middle| e \subset A \right\} = \sup \left\{ \sum_{\gamma \in \overline{e}} b_{\gamma} \middle| \overline{e} \subset \Gamma \right\}$$

Можно показать, что $V\leqslant W$, а ещё для любого $\varepsilon>0$: $W-\varepsilon\leqslant V$ — для доказательства второго неравенства суммируем лишь конечное число групп.

Лекция XIX 28 апреля 2023 г.

2.3.1 Применения

Пусть $\sum\limits_{n\geqslant 1}a_n$ и $\sum\limits_{n\geqslant 1}b_n$ — два (быть может условно) сходящихся ряда с суммами a и b соответственно.

Рассмотрим последовательность, проиндексированную парами $\mathbb{N} \times \mathbb{N} : (a_n \cdot b_k)_{n \in \mathbb{N}, k \in \mathbb{N}}$.

Теорема 2.3.7. Если оба ряда сходятся абсолютно, то полученное семейство $(a_n \cdot b_k)_{n \in \mathbb{N}, k \in \mathbb{N}}$ суммируемо, причём его сумма — ab.

Доказательство. Докажем суммируемость $(a_n \cdot b_k)_{n \in \mathbb{N}, k \in \mathbb{N}}$. Для этого рассмотрим семейство модулей $(|a_n \cdot b_k|)_{n \in \mathbb{N}, k \in \mathbb{N}}$. Разобьём его на группы $B_i = \{(i,j)|j \in \mathbb{N}\}$.

Сумма модулей в каждой группе B_i — это $|a_i| \cdot B$, где $B = \sum\limits_{n \geqslant 1} |b_i|$.

Тогда семейство суммируемо, так как сумма сумм групп — это AB, где $A=\sum_{n\geq 1}|a_i|.$

Чтобы показать, что сумма семейства -AB, повторим вычисление уже без модулей. \Box

Теорема 2.3.8. Пары (n,k) всегда можно расположить в последовательность так, чтобы соответствующий ряд сходился к ab.

Доказательство. Подойдёт такой порядок суммирования:

Другим популярным порядком является суммирование по диагонали: $\sum_{N=2}^{\infty} \sum_{k+j=N} a_k b_j$. Как ни стран-

но, если ряды сходились абсолютно, то сумма в таком порядке даёт ab, а если сходились условно — то необязательно сойдётся (но если сойдётся, то к ab: (факт 2.6.2)).

Вспомним, что для комплексного числа z=x+iy по определению $e^z=e^x\cdot e^{iy}$, где $e^{iy}=\Gamma(y)$ — простое вращение.

Экспоненту можно представить рядом: $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}; \quad e^{iy} = \sum_{n=0}^{\infty} \frac{(iy)^n}{n!}$. Ряды сходятся абсолютно, запишем

$$e^z = \sum_{k,n} \frac{x^k \cdot (iy)^n}{k!n!} = \sum_{N=0}^{\infty} \frac{1}{N!} \underbrace{\sum_{k+n=N} \binom{N}{k} x^k \cdot (iy)^n}_{(x+iy)^N} = \sum_{N=0}^{\infty} \frac{z^N}{N!}$$

Доказали, что формула для экспоненты комплексного числа верна для любого $z \in \mathbb{C}$, необязательно вещественного или чисто мнимого.

2.4 Степенные ряды

Определение 2.4.1 (Степенной ряд). Ряд вида $\sum\limits_{n\geqslant 0}a_n(z-z_0)^n$, где $z_0\in\mathbb{C}$ — фиксированная точка, $\{a_n\}_{n\in\mathbb{N}_0}\subset\mathbb{C}, z$ — переменная из \mathbb{C} .

При каких z ряд сходится? Абсолютно сходится?

Теорема 2.4.1. Пусть степенной ряд $\sum\limits_{n\geqslant 0}a_n(z-z_0)^n$ сходится при значении w переменной z. Обозначим $r=|w-z_0|$.

Тогда ряд сходится абсолютно при $|z-z_0| < r$. Более того, для всякого r' < r: в круге $|z-z_0| \leqslant r'$ сходимость равномерная.

 \mathcal{A} оказательство. Из сходимости ряда $\exists A \in \mathbb{R} : \forall n \in \mathbb{N} : |a_n(w-z_0)^n| \leqslant A$. Если $|z-z_0| < r$, то

$$|a_n(z-z_0)^n| = |a_n(w-z_0)^n| \cdot \left| \frac{(z-z_0)^n}{r^n} \right| \leqslant A \left| \frac{(z-z_0)^n}{r^n} \right|$$

Для $|z-z_0| < r$ получаем, что ряд мажорируется убывающей геометрической прогрессией, значит, сходится абсолютно. Если дополнительно $|z-z_0| \leqslant r'$, то можно оценить независимо от z:

$$|a_n(w-z_0)^n| \cdot \left| \frac{(z-z_0)^n}{r^n} \right| \le |a_n(w-z_0)^n| \cdot \left| \frac{r'^n}{r^n} \right|$$

Выберем $R := \sup \{w \in \mathbb{C} | \text{ряд сходится при значении } w$ переменной $z\}$. Из условия теоремы следует, что ряд сходится в открытом круге с центром в z_0 и радиусом R и расходится — за границей круга.

Если R=0, то ряд сходится в одной точке $z=z_0$, если $R=\infty$, то ряд сходится на всей $\mathbb C$.

2.4.1 Признак Коши сходимости ряда

Пусть
$$\sum\limits_{n=0}^{\infty}a_n$$
 — числовой ряд $(a_n\in\mathbb{C}).$

Обозначим за $\sigma = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$.

Теорема 2.4.2 (Признак Коши).

1. Если $\sigma > 1$, то ряд расходится.

2. Если $\sigma < 1$, то ряд сходится абсолютно.

Доказательство.

- 1. $\forall \varepsilon > 0$: найдётся сколь угодно большое n: $\sqrt[n]{|a_n|} > \sigma \varepsilon$. Тогда $|a_n| > (\sigma \varepsilon)^n > 1$, общий член ряда не стремится к нулю.
- 2. Выберем $\varepsilon > 0$ так, что $\sigma + \varepsilon < 1$. Начиная с некоторого места $n_0 \in \mathbb{N} : \forall n > n_0 : \sqrt[n]{|a_n|} \leqslant \sigma + \varepsilon$ и ряд мажорируется геометрической прогрессией.

Замечание. Признак довольно грубый: $\sum\limits_{n\geqslant 0} \frac{1}{n^{\alpha}}$ для любого $\alpha\in\mathbb{R}$ признак оценить не сможет — тут $\sigma=1.$

Тем не менее, для степенных рядов получается неплохо: для ряда $\sum\limits_{n=0}^{\infty}a_n(z-z_0)^n:\sigma=\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}\cdot|z-z_0|$

Таким образом, для радиус сходимости R верно равенство $\frac{1}{R} = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$.

Примеры.

- ullet Ряд $\sum_{n\geq 0} n^n z^n$ сходится в единственной точке: R=0.
- ullet Ряд $\sum_{n\geq 0} rac{1}{n!} z^n$ сходится на всей $\mathbb{C}: R=\infty.$
- ullet Все ряды вида $\sum\limits_{n\geqslant 0}n^{lpha}z^{n}$ сходятся в круге радиуса 1.

2.4.2 Аналитические функции

Пусть $G \subset \mathbb{C}$ — открытое множество.

Рассмотрим функцию $f: G \to \mathbb{C}$.

Определение 2.4.2 (f — аналитическая функция). $\forall z_0 \in G: \exists B_r(z_0) \subset G: \forall z \in B_r(z_0): f(z) = \sum_{n\geqslant 0} a_n (z-z_0)^n$, то есть функция представима некоторым степенным рядом в окрестности любой точки.

Пример (Аналитическая функция). Экспонента: $e^z = e^{z_0} \cdot e^{z-z_0} = e^{z_0} \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{n!}$.

Теорема 2.4.3. Сумма степенного ряда в открытом круге сходимости есть аналитическая функция в том же круге.

$$f(z) = \sum_{n>0} a_n (z - z_0)^n, \qquad D = \left\{ z \in \mathbb{C} \middle| |z - z_0| < R \right\}$$

Рассмотрим $w_0 \in D$, докажем, что найдутся коэффициенты, такие, что $f(z) = \sum_{n\geqslant 0} b_n (z-w_0)^n$ при условии $|z-w_0| < R - |w_0-z_0|$. (Считаем, что R конечно) Запишем

$$f(z) = \sum_{n \geqslant 0} a_n (z - z_0)^n = \sum_{n \geqslant 0} a_n (z - w_0 - (w_0 - z_0))^n = \sum_{n \geqslant 0} a_n \sum_{k+j=n} \binom{n}{k} (z - w_0)^k (w_0 - z_0)^j$$

Проверим, что можно переставить знаки суммирования, что семейство суммируемое. Ну, в самом деле,

$$\sum_{n\geqslant 0} |a_n| \sum_{k+j=n} {n \choose k} |z - w_0|^k |w_0 - z_0|^j = \sum_{n\geqslant 0} |a_n| (|z - w_0| + |w_0 - z_0|)^n$$

что сходится при данных $z:|z-w_0|< R-|w_0-z_0|$. Значит, можно раскрыть скобки, для некоторых коэффициентов получится требуемое.

Лекция XX

2 мая 2023 г.

Определение 2.4.3 (Область). Связное открытое множество

Теорема 2.4.4. Если $f: G \to \mathbb{C}$ — аналитическая функция $f \not\equiv 0$ и G — область, то множество нулей функции не имеет предельных точек внутри G.

Доказательство. Обозначим $Z(f) = \{z \in G | f(z) = 0\}.$

Пусть степенной ряд $g(z) = \sum\limits_{n\geqslant 0} c_n(z-z_0)$ сходится в круге $D\coloneqq D_r(z_0), 0< r\leqslant \infty.$

Из равномерной сходимости степенного ряда получаем, что g непрерывна на D. Заметим, что $c_0 = \lim_{z \to z_0} g(z)$. Если $c_0 \neq 0$, то у g нет других нулей вблизи z_0 .

Иначе $c_0=0$, но ряд тривиальный $g(z)\not\equiv 0$. Выберем наименьшее $k\in\mathbb{N}$: $c_k\not=0$. Получаем

$$g(z) = (z - z_0)^k \underbrace{(c_k + c_{k+1}(z - z_0) + c_{k+2}(z - z_0)^2 + \dots)}_{h(z)}$$

h(z) сходится в то же круге D, так как $h(z) = \frac{g(z)}{(z-z_0)^k}$, поделили на константу.

Получается, $h(z) \neq 0$ вблизи z_0 , значит и домноженная на $(z-z_0)^k$ — тоже.

Итак, если у функции f есть нуль в точке w, то либо эта точка изолирована, либо $f(z)\equiv 0$ в окрестности w.

Обозначим $A = \{w \in G | f(z) \equiv 0 \text{ в некоторой окрестности } w\}$. A, понятно, открыто.

Мы доказали, что любая предельная точка для Z(f) лежит в A, в частности, любая предельная точка A лежит в A. Тем самым, A замкнуто в G. $f(z) \not\equiv 0$, значит, $A \not= G \Rightarrow A = \varnothing$.

2.5 Дифференцировании по комплексному аргументу. Голоморфные функции

Пусть $\phi:\langle a,b\rangle \to \mathbb{R}, t_0\in\langle a,b\rangle.$ Тогда по определению $\phi'(t_0)=\lim_{t\to t_0} \frac{\phi(t)-\phi(t_0)}{t-t_0}.$

Пусть G — открытое множество в \mathbb{C} , $f:G\to\mathbb{C},z_0\in G$.

Определение 2.5.1 (f дифференцируема в z_0 в комплексном смысле). $\exists \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$.

Данный предел называется $npouseo\partial hoй$, обозначается $f'(z_0)$. Если предел существует, то ещё говорят, что f голоморфна в z_0 .

2.5.1 Связь комплексного дифференцирования и двумерного дифференцирования

• Пусть $h:(G\subset \mathbb{R}^2)\to \mathbb{R}^2$. И область аргументов, и область значений можно отождествить с \mathbb{C} (с его подмножеством). По определению, h дифференцируема в z_0 , если $\exists A:\mathbb{R}^2\to\mathbb{R}^2$ — линейный оператор:

$$h(z) - h(z_0) = A(z - z_0) + o(|z - z_0|)$$

Запишем $h = \begin{pmatrix} h_1 & h_2 \end{pmatrix}$, h_1, h_2 — координатные функции Если A существует, то $A = \begin{pmatrix} \frac{\partial h_1}{\partial x} & \frac{\partial h_1}{\partial y} \\ \frac{\partial h_2}{\partial x} & \frac{\partial h_2}{\partial y} \end{pmatrix}$.

• Теперь пусть $f:(G\subset\mathbb{C})\to\mathbb{C}$. Для неё координатные функции $-u,v:(G\subset\mathbb{C})\to\mathbb{R},$ f(z)=u(z)+if(z).

$$f(z) - f(z_0) = f'(z_0)(z - z_0) + o(|z - z_0|)$$

Умножение на комплексное число — частный случай линейного оператора.

- Таким образом, если f дифференцируема в комплексном смысле, то и в вещественном смысле (как отображение $\mathbb{R}^2 \to \mathbb{R}^2$) тоже: $\mathrm{d} f(z_0,h) = f'(z_0)h$.
- Обратное неверно: пусть $f'(z_0)=\alpha+i\beta,\ h=t+is,$ где $\alpha,\beta,t,s\in\mathbb{R}.$ Тогда

$$f'(z_0)h = (\alpha + i\beta)(t + is) = (\alpha t - \beta s) + i(\beta t + \alpha s)$$
$$\begin{pmatrix} t \\ s \end{pmatrix} \mapsto \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \begin{pmatrix} t \\ s \end{pmatrix}$$

и мы видим, что при комплексном дифференцировании матрица линейного оператора имеет специальный вид, для матриц не такого вида это неверно.

• Если f дифференцируема в z_0 в комплексном смысле, то (считая $z=x_0+iy_0$) необходимо и достаточно условий

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \qquad \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

Эти условия называются уравнения Коши — Римана.

Примеры (Безобидные функции, которые не голоморфны).

- $h(z)=\Re(z); \quad h(x+iy)=x.$ Здесь матрица Якоби $(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}),$ не удовлетворяет условиям Коши Римана. Также несложно видеть, что предела $\lim_{z\to 0} \frac{z}{\Re(z)}$ не существует.
- $h(z)=\overline{z}; \quad h(x+iy)=x-iy.$ Здесь матрица Якоби $\left(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}\right)$, не удовлетворяет условиям Коши Римана.

Факт 2.5.1. Пусть G, U открыты в \mathbb{C} , $f: G \to U, h: U \to \mathbb{C}$ — функции, f голоморфна в z_0 , h голоморфна в $w_0 := f(z_0)$.

Тогда $h \circ f$ голоморфна в z_0 и $(h \circ f)'(z_0) = h'(w_0)f'(z_0)$.

Доказательство. Оператор дифференцирования — домножение на комплексное число.

Факт 2.5.2. Пусть $f,g:G \to \mathbb{C}$ голоморфны в z_0 , тогда $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$.

Доказательство. Всякая голоморфная функция ϕ непрерывна по определению:

$$\phi(z) = \phi(z_0) + \phi'(z)(z - z_0) + o(|z - z_0|) \xrightarrow[z \to z_0]{} \phi(z_0)$$

Тем самым, ϕ ограничена вблизи z_0 .

$$\frac{f(z)g(z) - f(z_0)g(z_0)}{z - z_0} = \frac{f(z) - f(z_0)}{z - z_0}g(z) + \frac{g(z) - g(z_0)}{z - z_0}f(z_0) \xrightarrow[z \to z_0]{} f'(z_0)g(z_0) + g'(z_0)f(z_0)$$

Факт 2.5.3. $(z^n)' = nz^{n-1}$, $n \in \mathbb{N}_0$.

$$\mathcal{A}$$
оказательство. $1'=0; \qquad z'=1: \frac{z-z_0}{z-z_0} \underset{z \to z_0}{\longrightarrow} 1.$ Дальше индукция. \square

Тем самым, дифференцируемы все комплексные многочлены $p(z)=a_0+a_1z+\cdots+a_nz_n$, где $a_n\in\mathbb{C},z\in\mathbb{C}.$ А именно,

$$p'(z_0) = a_1 + 2a_2z_0 + \dots + na_nz_0^{n-1}$$

Интересный факт (Теорема Коши). Следующие условия эквивалентны:

1. f голоморфна в G (в каждой точке).

2. f аналитична в G.

Доказательство. Докажем сильно более простую импликацию $2 \Rightarrow 1$. Обратную докажем в IV семестре.

Рассмотрим степенной ряд $\sum\limits_{n\geqslant 0}a_n(z-z_0)^n$, пусть его радиус сходимости R>0. Положим $D:=D_R(z_0)$.

Докажем, что $f'(z)=\sum\limits_{n=1}^{\infty}na_nz^{n-1}.$ Вспомним определение радиуса сходимости $\frac{1}{R}=\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}.$ Для продифференцированного ряда $\frac{1}{\rho}=\varlimsup_{n\to\infty}\sqrt[n]{|na_{n-1}|},$ это то же самое, значит, $R=\rho.$

Степенной ряд в круге радиуса R' < R сходится равномерно: $S_N(z) \coloneqq \sum_{n=0}^N a_n (z-z_0)^n$ сходятся равномерно к f(z). Более того, $S_n'(z) \coloneqq \sum_{n=1}^N n a_n (z-z_0)^{n-1}$ сходится равномерно к продифференцированному ряду.

Разобьём функцию на координатные функции, изучим вещественные и мнимые части. Частные производные сходятся согласно вещественной теореме, значит, условия Коши — Римана в пределе выполняются, получается, степенной ряд голоморфен.

Рассмотрим ряд $\log(1+z)=x-\frac{x^2}{2}+\frac{x^3}{3}-\ldots$. Он сходится при $x\in(-1,1)$, значит, сходится в круге радиуса 1.

Обозначим $\phi(z)=z-\frac{z}{2}+\frac{z^3}{3}-\dots$ — голоморфная функция при |z|<1.

Интересно, верно ли, что $e^{\phi(z)} = 1 + z$? Да.

Доказательство. $e^{\phi(z)}$ голоморфна. По теореме Коши она аналитична. Тогда разность данных функций аналитична, так как это 0 на (-1,1), то это 0 везде.

Факт 2.5.4. Если f,g голоморфны в точке $z_0, g(z_0) \neq 0$, то для $h(z) = \frac{f(z_0)}{g(z_0)}$ верно:

$$h'(z_0) = \frac{f'(z_0)g(z_0) - f(z_0)g'(z_0)}{g(z_0)^2}$$

Факт 2.5.5. Частное комплексных многочленов $\frac{p(z)}{q(z)}$ голоморфно там, где $q(z) \neq 0$.

Лекция XXI 5 мая 2023 г.

2.6 Суммирование последовательностей и рядов

Пусть последовательность $\{a_n\}_{n\geqslant 0}$ — не сходится.

Сопоставим ей последовательность $\{b_n\}_{n\geqslant 0}$ согласно некоему правилу. Если оказалось, что $b_n \xrightarrow[n\to\infty]{} b$, то говорят, что $\{a_n\}$ суммируется к b данным методом.

2.6.1 Метод Чезаро

 $b_n = rac{a_0 + \cdots + a_n}{n+1}$ — метод средних арифметических.

Определение 2.6.1 (Регулярный метод суммирования). Сумма сходящейся последовательности данным методом — её предел.

Факт 2.6.1. Метод Чезаро регулярен.

Доказательство. См. (следствие 2.6.1).

Замечание. Метод Чезаро, хотя и регулярен, суммирует и расходящиеся последовательности, например, $0, 1, 0, 1, 0, \dots$ суммируется методом Чезаро к 1/2.

2.6.2 Матричные методы суммирования. Метод Тёплица

Пусть $T = \{t_{i,j}\}_{i,j \geqslant 0}$ — матрица с неотрицательными коэффициентами — матрица Тёплица.

Предположим, что $\forall i: \sum_{i=0}^{\infty} t_{i,j} < \infty.$

Положим $b_i := \sum_{j=0}^{\infty} t_{i,j} a_j$.

На данном месте предположим, что $\{a_j\}$ ограничена. Если последовательность сходится, то она уж точна ограничена, а мы хотим немного расширить понятие сходящихся последовательностей. В случае $|a_j| < A$ все b_i корректно определены.

Определение 2.6.2 (Последовательность $\{a_j\}$ суммируется T-методом к b). $b_i \underset{n \to \infty}{\longrightarrow} b$.

Для метода Чезаро

$$T = \begin{pmatrix} 1 & 0 & \ddots & & \\ \frac{1}{2} & \frac{1}{2} & 0 & \ddots & \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & \ddots \\ \vdots & & & \ddots \end{pmatrix}$$

Теорема 2.6.1 (Тёплиц). Следующие условия эквивалентны:

- 1. T-метод регулярен.
- 2. $\forall j : \lim_{i \to \infty} t_{i,j} = 0 \quad \land \quad \lim_{i \to \infty} \sum_{j=0}^{\infty} t_{i,j} = 1.$

Доказательство.

 \Rightarrow . Зафиксируем j, рассмотрим последовательность $\{\delta_{i,j}\}_{i\geqslant 0}$. Она сходится к нулю, но $b_i=t_{i,j}$. Значит, $t_{i,j}\underset{i\to\infty}{\longrightarrow} 0$ — необходимое условие.

Теперь рассмотрим $\{1\}_{i\geqslant 0}$. Она сходится к нулю, но $b_i=\sum\limits_{j=0}^{\infty}t_{i,j}$. Значит, $\sum\limits_{j=0}^{\infty}t_{i,j}\xrightarrow[i\to\infty]{}1$ — тоже необходимое условие.

 \Leftarrow . Пусть $a_j \underset{i \to \infty}{\longrightarrow} a$. Докажем, что b_i сходится туда же.

$$b_i - a = \sum_{j=0}^{\infty} a_j t_{i,j} - a = \sum_{j=0}^{\infty} (a_j - a) t_{i,j} + \underbrace{a \left(\sum_{j=0}^{\infty} t_{i,j} - 1\right)}_{i \to \infty}$$

Докажем, что и первое слагаемое стремится к нулю.

Так как суммы сходятся $\sum\limits_{j=0}^{\infty}t_{i,j} \underset{i \to \infty}{\longrightarrow} 1$, то они ограничены некой константой A. Выберем $\varepsilon>0, \exists N: \forall j>N: |a_j-a|<\varepsilon.$

$$\sum_{j=0}^{\infty} (a_j - a)t_{i,j} = \sum_{j=0}^{N} (a_j - a)t_{i,j} + \sum_{j=N+1}^{\infty} (a_j - a)t_{i,j}$$

Теперь устремим $i \to \infty$, первое слагаемое для достаточно больших i меньше ε — конечная сумма произведений ограниченных и бесконечно малых.

Второе оценивается как εA , получаем оценку $\varepsilon (1+A)$, её можно сделать сколь угодно малой.

Следствие 2.6.1. Метод Чезаро регулярен.

Замечание. Суммирование рядов устроено так же, как и последовательностей — суммируем частичные суммы.

Если в матрице Тёплица бывают отрицательные коэффициенты или даже произвольные комплексные, то что?

Хочется оставить формулу $b_i = \sum\limits_{j=0}^\infty a_j t_{i,j}$. Для этого надо наложить условие $S_i \coloneqq \sum\limits_{j=0}^\infty |t_{i,j}| < \infty$.

Необходимость понятна: рассмотреть в $a_j \coloneqq \frac{\overline{t_{i,j}}}{|t_{i,j}|}.$

Теорема Тёплица в таком случае звучит так:

Интересный факт (Общая теорема Тёплица). Следующие условия эквивалентны:

- Т-метод регулярен.
- 2. $\bullet \ \forall j : \lim_{i \to \infty} t_{i,j} = 0.$
 - $\lim_{i \to \infty} \sum_{j=0}^{\infty} t_{i,j} = 1.$
 - $\sup_{i} S_i < +\infty$.

 $(2)\Rightarrow(1)$ доказывается примерно так же, как доказать, что $\sup S_i<+\infty$ – необходимое условие?

9то можно доказать методом скользящего горба или теоремой Штейнгауза — последнее из функционального анализа.

2.6.3 Метод Абеля — Пуассона

Рассмотрим необязательно сходящийся ряд $\sum\limits_{k=0}^{\infty}a_k$ с ограниченными частичными суммами $S_n\coloneqq a_0+\cdots+a_n.$

Выберем $r \in [0,1)$, составим ряды $\phi(r) = \sum\limits_{k=0}^{\infty} r^k a_k$. Они сходятся.

Если r устремить к единице, то $\phi(r)$ «как бы стремится к исходному ряду, что бы это не значило».

Определение 2.6.3 (Суммируемый методом Абеля — Пуассона ряд). Ряд $\sum_{k=0}^{\infty} a_k$, для которого $\exists \lim_{r \to 1} \phi(r)$.

Пример. Ряд $1-1+1-1+\dots$ имеет сумму 1/2 и методом Абеля — Пуассона тоже: $\frac{1}{1+r}=1-r+r^2-\dots$

Теорема 2.6.2. Если исходный ряд сходится, то он суммируем методом Абеля — Пуассона с той же суммой.

Доказательство. Перепишем метод для последовательностей: рассмотрим $\{d_j\}_{j\geqslant 0}$. Ей соответствует ряд

$$d_0 + (d_1 - d_0) + (d_2 - d_1) + \dots$$

Запишем для $r \in [0,1)$ ряд

$$\phi(r) = d_0 + r(d_1 - d_0) + r^2(d_2 - d_1) + \dots = d_{\text{абсолютная схолимость}} d_0(1 - r) + d_1(r - r^2) + d_2(r^2 - rr^3) + \dots$$

Получили некоторый аналог методу Тёплица, но не дискретный, а непрерывный: в качестве $t_{i,j}$ выступает r^j-r^{j+1} .

Докажем, что если $d_j \underset{j \to \infty}{\longrightarrow} d$, то $\phi(r) \underset{r \to 1_-}{d}$.

Достаточно доказать, что $\phi(r_i) \underset{i \to \infty}{\longrightarrow} d$ для любой последовательности $r_i \in [0,1)$, стремящейся к 1. Это верно из теоремы Тёплица.

Интересный факт. Всё суммируемое методом Чезаро суммируется методом Абеля — Пуассона, но не наоборот.

О произведении рядов

Пусть $\sum\limits_{j=0}^{\infty}\alpha_j=\alpha;$ $\sum\limits_{j=0}^{\infty}\beta_j=\beta,$ быть может, сходящихся условно. Рассмотрим семейство $\{\alpha_i\beta_j\}i,j$ и «просуммируем по диагонали». Положим $\gamma_n:=\sum\limits_{i+j=n}\alpha_i\beta_j.$

Факт 2.6.2. Если $\sum_{n=0}^{\infty} \gamma_n$ сходится κ γ , то обязательно $\gamma = \alpha \beta$.

Доказательство. Рассмотрим для $r\in[0,1)$ два абсолютно сходящихся ряда $\phi(r)\coloneqq\sum_{i=0}^\infty r^i\alpha_i$ и $\psi(r)\coloneqq\sum_{j=0}^\infty r^j\beta_j$.

Запишем

$$\phi(r)\psi(r) = \sum_{n\geqslant 0} \left(\sum_{i+j=n} r^i \alpha_i r^j \beta_j\right) = \sum_{n\geqslant 0} r^n \left(\sum_{i+j=n} \alpha_i \beta_j\right) = \sum_{n=0}^{\infty} r^n \gamma_n \underset{r\to 1_-}{\longrightarrow} \gamma$$

$$\qquad \qquad \square$$
Бекция XXII

12 мая 2023 г.

2.7 Перестановка предельных переходов

Вспомним теорему Стокса — Зайделя: $\{f_n\}$ — последовательность непрерывных функций, $\forall x: f_n(x) \underset{n \to \infty}{\longrightarrow} f(x).$

Хочется, чтобы f была непрерывной, то есть $\lim_{x\to x_0} f(x) = f(x_0)$. Так как $f(x) = \lim_{n\to\infty} f_n(x)$, то мы хотим, чтобы

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = f(x_0)$$

С другой стороны, при переставленных пределах

$$\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = f(x_0)$$

очевидно верно. Теорема Стокса — Зайделя говорит о том, что пределы можно переставлять, если сходимость $f_n(x) \to f(x)$ равномерна.

Запишем этот результат общо.

Теорема 2.7.1. Пусть X, Y — хаусдорфовы топологические пространства, $A \subset X, B \subset Y$. Введём также Z — полное метрическое пространство (с метрикой ρ).

Пусть $a \in \operatorname{Cl} A, b \in \operatorname{Cl} B$, причём $a \notin A, b \notin B$. Пускай $F: A \times B \to Z$ — отображение.

Предположим, что $\forall x \in A: \exists \lim_{y \to b} F(x,y) \eqqcolon \phi(x)$, сходимость не предполагается равномерной.

Предположим, что $\forall y \in B: \exists \lim_{x \to a} F(x,y) =: \psi(y)$, причём сходимость равномерна по y:

$$\forall \varepsilon > 0 : \exists U$$
 — окрестность точки $a : \forall y \in B, \forall x \in U \cap A : \rho(F(x,y),\psi(y)) < \varepsilon$

Тогда $\exists \lim_{x \to a} \phi(x), \exists \lim_{y \to b} \psi(y)$, причём они равны.

Более того, $(a,b) \in \mathrm{Cl}(A \times B)$, и функция F имеет предел (в топологии произведения) в (a,b).

Доказательство.

Лемма 2.7.1 (Критерий Коши для функций). Пусть W- хаусдорфово, Z- полное метрическое. $C \subset W$; $h: C \to Z$, пусть $c \in \operatorname{Cl} C \setminus C$.

Если
$$\forall \varepsilon > 0: \exists U \ni c: \forall u_1, u_2 \in U \cap C: \rho(h(u_1), h(u_2)) < \varepsilon \Rightarrow \exists \lim_{u \to c} h(u).$$

Доказательство леммы.

Выберем $\varepsilon_n=\frac{1}{n}$ для $n\in\mathbb{N}$, подберём $U_n\ni c$, как в условии леммы. Можно считать, что $U_1\supset U_2\supset\dots$ Выберем $u_n\in C\cap U_n$.

Так как пространство Z полное, то $\exists z = \lim_{n \to \infty} h(u_n)$. Эта точка и будет пределом h — согласно определению предела z, посылке леммы и неравенству треугольника.

Выберем $\varepsilon > 0$, для него найдётся $U \ni a$ согласно равномерной сходимости:

$$\forall x_0 \in U \cap A : \forall y \in B : \rho(F(x_0, y), \psi(y)) < \varepsilon$$

Зафиксируем произвольный $x_0 \in U \cap A$.

Найдётся окрестность $V \ni b : \forall y \in V \cap B : \rho(F(x_0, y), \phi(x_0)) < \varepsilon$. Рассмотрим $y, y' \in V \cap B$:

$$\rho(\psi(y), \psi(y')) \leqslant \rho(\psi(y), F(x_0, y)) + \rho(F(x_0, y), F(x_0, y')) + \rho(F(x_0, y'), y') \leqslant 2\varepsilon + \rho(F(x_0, y), F(x_0, y')) \leqslant 2\varepsilon + \rho(F(x_0, y), \phi(x_0)) + \rho(\phi(x_0), F(x_0, y')) \leqslant 4\varepsilon$$

то есть отображение ψ удовлетворяет условию Коши.

По лемме $\exists \lim_{y \to b} \psi(y) =: u.$

Перейдём к пределу $y \to b$ в неравенстве $\rho(F(x_0, y), \psi(y)) < \varepsilon$:

$$\rho(\phi(x_0), u) \leqslant \varepsilon$$

Так как x_0 — произвольная точка из $U\cap A$, то $\lim_{x\to a}\phi(x)=u$.

Теперь докажем существование двойного предела:

$$\begin{split} \forall \varepsilon > 0 : \exists U \ni a : \forall x \in U \cap A, \forall y \in B : \rho(F(x,y),\psi(y)) < \varepsilon \\ \exists V \ni b : \forall y \in V \cap B : \rho(\psi(y),u) < \varepsilon \\ & \qquad \qquad \downarrow \\ (x,y) \in (U \times V) \cap (A \times B) \Rightarrow \rho(F(x,y),u) \leqslant \rho(F(x,y),\psi(y)) + \rho(\psi(y),v) < 2\varepsilon \end{split}$$

Замечание. Хаусдорофовость тут наверно и не нужна, но в анализе нехаусдорфовы пространства крайне редко встречаются. Предположим на всякий случай.

2.7.1 Применение

Возьмём интеграл

$$\int_{0}^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x$$

Как мы уже знаем (раздел 2.1), у него есть особенность на бесконечности, и он сходится лишь условно.

Рассмотрим $F: \mathbb{R}_{\geqslant 0} \to \mathbb{R}; \quad F(a) = \int\limits_0^\infty e^{-ax} \frac{\sin x}{x} \, \mathrm{d}x.$

Запишем несколько фактов, которые вскоре и докажем.

- 1. $F(a) \xrightarrow[a \to \infty]{} 0$.
- 2. $F(a) \xrightarrow[a \to 0]{} F(0) = \int_{0}^{\infty} \frac{\sin x}{x} dx$.
- 3. F дифференцируема при $a>0, F'(a)=-rac{1}{1+a^2}.$

$$\frac{\mathrm{d}}{\mathrm{d}a} \left(\int\limits_0^\infty e^{-ax} \frac{\sin x}{x} \, \mathrm{d}x \right) \underset{\text{неформально}}{=} \int\limits_0^\infty \frac{\mathrm{d}}{\mathrm{d}a} \left(e^{-ax} \frac{\sin x}{x} \right) \mathrm{d}x = -\int\limits_0^\infty e^{-ax} \sin x \, \, \mathrm{d}x \underset{\text{дважды по частям}}{=} -\frac{1}{1+a^2}$$

Тем самым, $F(a) = -\arctan(a) + C$. Из первого пункта получаем $C = \frac{\pi}{2}$, из второго получаем

$$F(0) = \int_{0}^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}$$

Доказательство. Обоснуем пункты. Для начала возьмём интеграл $\int\limits_c^d e^{-at} \sin t \ \mathrm{d}t$ для $0\leqslant c < d, a>0.$

$$\int_{c}^{d} e^{-at} \sin t \, dt = -\int_{c}^{d} e^{-at} \, d\cos t = \left(-e^{-at} \cos t \right) \Big|_{c}^{d} - a \int_{c}^{d} e^{-at} \cos t \, dt =$$

$$= \left(-e^{-at} \cos t \right) \Big|_{c}^{d} - a \int_{c}^{d} e^{-at} \, d\sin t = \left(-e^{-at} \cos t \right) \Big|_{c}^{d} - \left(ae^{-at} \sin t \right) \Big|_{c}^{d} - a^{2} \int_{c}^{d} e^{-at} \sin t \, dt$$

Отсюда получаем

$$\int_{c}^{d} e^{-at} \sin t \, dt = \frac{e^{-ac} \cos c - e^{-ad} \cos d - ae^{-ad} \sin d + ae^{-ac} \sin c}{1 + a^2}$$

Эта штука замечательна тем, что ограничена по всем a, c, d.

Заметим, что при $c \to 0, d \to \infty$ получается $\frac{1}{1+a^2}$, то есть несобственный интеграл

$$\int_{0}^{\infty} e^{-at} \sin t \, \mathrm{d}t = \frac{1}{1+a^2}$$

.

Лемма 2.7.2. Пусть $G: A \times [\alpha, \beta) \to \mathbb{R}$ — функция, такая, что $\forall u \in A; G(u, \cdot)$ интегрируема по Риману на всех отрезках $[\alpha, \beta']$ для $\beta' \in [\alpha, \beta)$. А здесь играет роль индексного множества.

Пусть $g: [\alpha, \beta) \to \mathbb{R}_{\geqslant 0}$, $\int\limits_{\alpha}^{\beta} g(x) \, \mathrm{d}x$ существует в несобственном смысле. Ещё пусть $\forall x \in [\alpha, \beta), u \in A: |G(u, x)| \leqslant g(x)$. Тоеда

$$\lim_{eta' o eta_-} \int\limits_{lpha}^{eta'} G(u,x) \, \mathrm{d}x$$
 существует равномерно по $u \in A$

Доказательство. Пусть $t_1, t_2, \in [\alpha, \beta)$, для определённости считаем, что $t_1 < t_2$.

$$\left| \int_{\alpha}^{t_1} G(u, x) \, \mathrm{d}x - \int_{\alpha}^{t_2} G(u, x) \, \mathrm{d}x \right| = \left| \int_{t_1}^{t_2} G(u, x) \, \mathrm{d}x \right| \leqslant \int_{\alpha}^{t_1} g(x) \, \mathrm{d}x$$

При $t_1 o t_2$ эта штука стремится к 0.

Лекция XXIII

13 мая 2023 г.

1. Выберем $g(x) = e^{-x}$. При $a \geqslant 1$ действительно $\left| e^{-ax} \frac{\sin x}{x} \right| \leqslant g(x)$. Значит, предел $\lim_{R \to \infty} \int\limits_0^R e^{-ax} \frac{\sin x}{x} \, \mathrm{d}x$ существует равномерно по $a \geqslant 1$, и $\forall R: \exists \lim_{a \to \infty} \int\limits_0^R e^{-ax} \frac{\sin x}{x} \, \mathrm{d}x$. Значит, пределы можно переставить, получаем

$$\lim_{a \to \infty} \lim_{R \to \infty} \int_{0}^{R} e^{-ax} \frac{\sin x}{x} dx = \lim_{R \to \infty} \lim_{a \to \infty} \int_{0}^{R} e^{-ax} \frac{\sin x}{x} dx$$

Подпредельное выражение $\int\limits_0^R e^{-ax} \frac{\sin x}{x} \, \mathrm{d}x = 0$, так как подынтегральная функция на отрезке равномерно стремится к нулю.

2. Из равномерной сходимости на отрезке получаем $\int\limits_0^R e^{-ax} \frac{\sin x}{x} \, \mathrm{d}x \xrightarrow[a \to 0]{} \int\limits_0^R \frac{\sin x}{x} \, \mathrm{d}x.$

$$\int_{0}^{R} e^{-ax} \frac{\sin x}{x} dx \xrightarrow[R \to \infty]{} \int_{0}^{\infty} e^{-ax} \frac{\sin x}{x} dx$$

Чтобы применить теорему о перестановке пределов надо показать, что один из пределов равномерен: например, при $R \to \infty$ — равномерно по a.

Факт 2.7.1. $\lim_{R \to \infty} \int_{0}^{R} e^{-ax} \frac{\sin x}{x} dx$ существует равномерно по $a \in (0,1)$.

Доказательство. $\int\limits_0^R e^{-ax} \frac{\sin x}{x} \, \mathrm{d}x = \int\limits_0^1 e^{-ax} \frac{\sin x}{x} \, \mathrm{d}x + \int\limits_1^R e^{-ax} \frac{\sin x}{x} \, \mathrm{d}x$, считаем, что R > 1. Первое слагаемое от R не зависит, на равномерность сходимости не влияет. Вторую проинтегрируем по частям:

Положим $h_a(x) = \int\limits_1^x e^{-at} \sin t \ \mathrm{d}t$, заметим, что $\exists C: \forall a, x: |h_a(x)| \leqslant C$.

$$\int\limits_{1}^{R} \frac{1}{x} \, \mathrm{d}h_a(x) = \underbrace{\frac{1}{x} h_a(x) \Big|_{1}^{R}}_{\to -h_a(1) \text{ равномерно по } a} + \underbrace{\int\limits_{1}^{R} \frac{h_a(x)}{x^2} \, \mathrm{d}x}_{\text{существует равномерно по } a \text{ согласно лемми}}$$

Значит, опять же, можно переставить пределы.

3. Теперь докажем, что можно дифференцировать под знаком интеграла, что

$$F'(a) = \int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}a} \left(e^{-ax} \frac{\sin x}{x} \right) \mathrm{d}x$$

Обозначим для краткости производную по второму аргументу ∂_2 .

Лемма 2.7.3. Пускай $I=[\alpha,\beta]$, а ещё есть интервал (c,d). Пусть $H:I\times(c,d)\to\mathbb{R}$ — непрерывная функция, причём $\forall x\in I,t\in(c,d):\exists\partial_2 H(x,t)=:\phi(x,t)$, и данная производная тоже непрерывна на $I\times(c,d)$.

Определим $h(t) \coloneqq \int_{\alpha}^{\beta} H(x,t) \, \mathrm{d}x$ — существует, так как H(x,t) непрерывна (и непрерывна при фиксированном втором аргументе).

Тогда
$$h'(t) = \int_{\alpha}^{\beta} \partial_2 H(x,t) dx$$
.

Доказательство. Пусть $t_0 \in (c,d), t_0 \in \operatorname{Int} \Delta, \Delta \subset (c,d)$. На $\Delta \partial_2 H(x,t) = \phi(x,t)$ равномерно непрерывна.

$$\frac{h(t) - h(t_0)}{t - t_0} = \int_0^\beta \frac{H(x, t) - H(x, t_0)}{t - t_0} dx$$

Давайте применим формулу Лагранжа, но ни в коем случае не под интегралом: еси подставить $\frac{H(x,t)-H(x,t_0)}{t-t_0}=\phi(x,\xi_x)$, то под интегралом может оказаться вообще неинтегрируемая (даже неизмеримая, что бы это не значило) функция.

Воспользуемся равномерной непрерывностью: $\forall \varepsilon > 0: \exists \delta: |t_1 - t_2| < \delta \Rightarrow |\phi(x,t_1) - \phi(x,t_2)| < \varepsilon.$ Выберем $\varepsilon > 0$, считаем, что $t - t_0 < \delta$ — всё равно придётся переходить к пределу. Теперь $|\phi(x,\xi_x) - \phi(x,t_0)| < \varepsilon$, откуда

$$\left| \frac{H(x,t) - H(x,t_0)}{t - t_0} - \phi(x,t_0) \right| \leqslant \varepsilon \Rightarrow \left| \int_{\alpha}^{\beta} \left(\frac{H(x,t) - H(x,t_0)}{t - t_0} - \phi(x,t_0) \right) dx \right| < (\beta - \alpha)\varepsilon$$

Значит, при $t \to t_0$ интегралы становятся равны, что и требовалось.

К сожалению, у нас промежуток бесконечный, теорема неприменима.

Нас интересует интеграл

$$\lim_{a \to a_0} \int_0^\infty \frac{e^{-ax} - e^{-a_0x}}{a - a_0} \frac{\sin x}{x} \, \mathrm{d}x$$

57

Согласно только что доказанной лемме

$$\forall R > 0: \lim_{a \to a_0} \int_0^R \frac{e^{-ax} - e^{-a_0x}}{a - a_0} \frac{\sin x}{x} \, dx = -\int_0^R e^{-a_0x} \sin x \, dx$$

$$\forall a \neq a_0: \exists \lim_{R \to \infty} \int_0^R \frac{e^{-ax} - e^{-a_0x}}{a - a_0} \frac{\sin x}{x} \, dx = \int_0^\infty \frac{e^{-ax} - e^{-a_0x}}{a - a_0} \frac{\sin x}{x} \, dx$$

Докажем, что во втором равенстве предел достигается равномерно по $a \in (U \ni a_0)$. Рассмотрим $a < a_0$.

$$\int_{0}^{R} e^{-a_0 x} \cdot \frac{e^{-(a-a_0)x-1} \sin x}{a-a_0} dx$$

Подынтегральная функция оценивается по модулю как Ce^{-a_0x} , интеграл сходится равномерно, где $|e^{-\xi}-1| < C|\xi|$ или что-то вроде того. При $a>a_0$ тоже что-то пишется, надо понять, как это покороче расписать.

Глава 3

Выпуклые и вогнутые функции

Пусть $a < b \in \mathbb{R}$, все точки отрезка [a,b] имеют вид $a + \lambda(b-a) = (1-\lambda)a + \lambda b, \lambda \in [0,1].$

Определение 3.0.1 (Выпуклая функция $f:(\alpha,\beta) \to \mathbb{R}$). $\forall \alpha < a < b < \beta, \forall \lambda \in [0,1]$:

$$f((1 - \lambda)a + \lambda b) \leq (1 - \lambda)f(a) + \lambda f(b)$$

Hапример, $f(x) = x^2$.

Определение 3.0.2 (Строго выпуклая функция $f:(\alpha,\beta)\to\mathbb{R}$). $\forall \alpha < a < b < \beta, \forall \lambda \in (0,1)$:

$$f((1 - \lambda)a + \lambda b) < (1 - \lambda)f(a) + \lambda f(b)$$

Hапример, $f(x) = -x^2$.

Определение 3.0.3 (f вогнутая). -f выпуклая.

Рассмотрим хорду, соединяющую точки (a,f(a)) и (b,f(b)). Её угловой коэффициент равен $k(a,b)\coloneqq \frac{f(b)-f(a)}{b-a}$.

Теорема 3.0.1. Следующие условия эквивалентны

- 1. Функция $f:(\alpha,\beta)\to\mathbb{R}$ выпукла.
- 2. $\forall a < c < b \in (\alpha, \beta) : k(a, c) \leq k(c, b)$.
- 3. $\forall a < c < b \in (\alpha, \beta) : k(a, b) \leq k(c, b)$.
- 4. $\forall a < c < b \in (\alpha, \beta) : k(a, c) \leq k(a, b)$.
- 5. Пусть u < v. Если $a \leqslant u, b \leqslant v, a < b$, то $k(a,b) \leqslant k(u,v)$.

Доказательство.

 $5 \Rightarrow 2, 3, 4$ Частные случаи.

 $1\Rightarrow 2$ Пусть $c=(1-\lambda)a+\lambda b$. Тогда

$$f(c) \leqslant (1 - \lambda)f(a) + \lambda f(b) \quad \Rightarrow \quad (1 - \lambda)(f(c) - f(a)) \leqslant \lambda(f(b) - f(c))$$

Выразив $\lambda = \frac{c-a}{b-a}$ получаем необходимое неравенство. Заметим, что вычисления обратимы, значит, доказали ещё и $2 \Rightarrow 1$.

 $1 \iff 3, 1 \iff 4$ Аналогично.

$$2, 3, 4 \Rightarrow 5 \ k(a, b) \leqslant k(a, v) \leqslant k(u, v).$$

Следствие 3.0.1. Выпуклая функция на (α, β) непрерывна.

Доказательство. Пусть $x_0 \in (\alpha, \beta)$, x близко к x_0 . Пусть $a < b < x, x_0 < c < d$.

$$\frac{f(b) - f(a)}{b - a} \leqslant \frac{f(x) - f(x_0)}{x - x_0} \leqslant \frac{f(d) - f(c)}{d - c}$$

Значит, $\exists C: |f(x)-f(x_0)| \leqslant C|x-x_0|$, то есть функция липшицева, если она задана где-то на большем замкнутом отрезке.

Следствие 3.0.2. У выпуклой функции $\forall x_0 \in (\alpha, \beta)$ существует односторонняя производная: $\frac{f(x) - f(x_0)}{x - x_0}$ монотонна по x и ограничена. Более того, $\forall x_0 \in (\alpha, \beta) : f'_-(x_0) \leqslant f'_+(x_0)$ и $\forall x_0, x_1 \in (\alpha, \beta) : f'_+(x_0) \leqslant f'_-(x_1)$.

Лекция XXIV

16 мая 2023 г.

Следствие 3.0.3. Если $f:(\alpha,\beta)\to\mathbb{R}$ дифференцируема, то f выпукла $\iff f'$ возрастает.

Доказательство. В одну сторону уже доказано, в другую следует из теоремы Лагранжа:

$$\forall u < v < w \in (\alpha,\beta): \frac{f(v) - f(u)}{v - u} = f'(\xi_1) \leqslant f'(\xi_2) = \frac{f(w) - f(v)}{w - v} \quad \text{для неких } \xi_1 \in (u,v), \xi_2 \in (v,w)$$

Следствие 3.0.4. Если f выпукла на (α, β) , то $\forall x, y \in (\alpha, \beta)$ функция лежит выше касательных:

$$f(x) \geqslant f'_{+}(y)(x-y) + f(y)$$

Доказательство. Неравенство равносильно следующему

$$\frac{f(x) - f(y)}{x - y} \begin{vmatrix} \geqslant f_{\pm}(y), & x > y \\ \leqslant f_{\pm}(y), & x < y \end{vmatrix}$$

Верно и обратное, мы для простоты докажем лишь частичное обращение:

Лемма 3.0.1. Если f дифференцируема на (α, β) и $\forall x, y \in (\alpha, \beta) : f(x) \geqslant f'(y)(x-y) + f(y)$, то f выпукла.

Доказательство. Достаточно проверить, что $\phi(x) \coloneqq \frac{f(y) - f(x)}{y - x}$ возрастает при x < y.

$$\phi'(x) = \frac{-f'(x)(y-x) + f(y) - f(x)}{(y-x)^2}$$

Примеры.

• $f(x) = \sin(x)$, определённая на $[0, \pi/2]$. Производная убывает, функция вогнута (граничные точки отрезка добавляем по непрерывности).

Так как график лежит под любой касательной и над любой секущей, то получаем оценку

$$\frac{2}{\pi}x \leqslant \sin x \leqslant x, \quad x \in [0, \pi/2]$$

ullet e^x — выпуклая функция, производная возрастает. Получается, по определению

$$\forall u, v \in \mathbb{R}, \alpha \in (0,1) : e^{(1-\alpha)u + \alpha v} \leq (1-\alpha)e^u + \alpha e^v$$

Заменим переменные: $e^{(1-\alpha)u}=A, e^{\alpha v}=B, p=\frac{1}{1-\alpha}, q=\frac{1}{\alpha}$. Замена обратима при условии $A,B>0, p,q>1, \frac{1}{p}+\frac{1}{q}=1$ — такие $p,q\in(1,\infty)$ называются conpnжёнными. Неравенство превращается в $nepasencmso\ Hohea$:

$$AB \leqslant \frac{A^p}{p} + \frac{B^q}{q}$$

У неравенства Юнга есть красивый геометрический смысл. Светло серая площадь — площадь под $y=x^{p-1}$, равна $\frac{A^p}{p}$. Тёмно серая площадь — площадь под (ну, точнее слева) кривой $x=y^{q-1}$, равна $\frac{B^q}{q}$ — здесь мы пользуемся тем, что $\frac{1}{p-1}=q-1$.

Рис. 3.1: Геометрический смысл неравенство Юнга

Из рисунка видно, что действительно $AB\leqslant \frac{A^p}{p}+\frac{B^q}{q}.$

Факт 3.0.1 (Неравенство Гёльдера). Пусть 1 < p, q — сопряжённые показатели (1/p + 1/q = 1). Тогда $\forall a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$:

$$\left| \sum_{j=1}^{n} a_{j} b_{j} \right| \leqslant \left(\sum_{j=1}^{n} |a_{j}|^{p} \right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |b_{j}|^{q} \right)^{\frac{1}{q}}$$

Доказательство. Усилим неравенство (докажем частный случай $a_{j}, b_{j} \geqslant 0$):

$$\sum_{j=1}^{n} |a_j| |b_j| \leqslant \left(\sum_{j=1}^{n} |a_j|^p \right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |b_j|^q \right)^{\frac{1}{q}}$$

Можно считать, что $\sum_{j=1}^{n} |a_j|^p = \sum_{j=1}^{n} |b_j|^q = 1$: неравенство однородно, можно все a_j домножить на одно и то же λ . Применим неравенство Юнга к каждому слагаемому, получаем

$$\sum_{j=1}^{n} |a_j| |b_j| \leqslant \sum_{j=1}^{n} \frac{1}{p} |a_j|^p + \frac{1}{q} |b_j|^q = \frac{1}{p} \sum_{j=1}^{n} |a_j|^p + \frac{1}{q} \sum_{j=1}^{n} |b_j|^q = 1$$

Следствие 3.0.5. При p=q=2 неравенство Гёльдера обращается в КБШ.

Факт 3.0.2 (Неравенство Минковского)

$$\left(\sum_{j=1}^{n} |a_j + b_j|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{j=1}^{n} |a_j|^p\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n} |b_j|^p\right)^{\frac{1}{p}}$$

Доказательство. Если p=1, то очевидно.

$$\sum_{j=1}^{n} |a_j + b_j|^p = \sum_{j=1}^{n} |a_j + b_j| \cdot |a_j + b_j|^{p-1} \leqslant \sum_{j=1}^{n} |a_j| \cdot |a_j + b_j|^{p-1} + \sum_{j=1}^{n} |b_j| \cdot |a_j + b_j|^{p-1} \leqslant \left(\sum_{j=1}^{n} |a_j|^p\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |a_j + b_j|^{(p-1)q}\right)^{\frac{1}{q}} + \left(\sum_{j=1}^{n} |b_j|^p\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |a_j + b_j|^{(p-1)q}\right)^{\frac{1}{q}}$$

Воспользуемся тем, что (p-1)q=p, поделив обе части неравенства на $\left(\sum\limits_{j=1}^{n}|a_{j}+b_{j}|^{p}\right)^{\frac{1}{q}}$ получим требуемое неравенство.

Замечание. Неравенства Гёльдера и Минковского также применимы для интегралов, упражнение читателю — подумать, как они выглядит.

Следствие 3.0.6. $d_p(x,y) = \left(\sum_{j=1}^n |x_j - y_j|^p\right)^{\frac{1}{p}}$ — метрика в \mathbb{R}^n (неравенство треугольника — неравенство Минковского).

Факт 3.0.3 (Неравенство Йенсена). Пусть $f:(\alpha,\beta)\to \mathbb{R}$ — выпуклая функция, $x_1,\dots,x_k\in (\alpha,\beta),\lambda_1,\dots,\lambda_k\in [0,1]$, причём $\sum\limits_{j=1}^k\lambda_i=1$. Тогда

$$f\left(\sum_{j=1}^{k} \lambda_j x_j\right) \leqslant \sum_{j=1}^{k} \lambda_j f(x_j)$$

Доказательство. Индукция по k.

База: k = 2, определение выпуклости.

<u>Переход:</u> Если $\lambda_k=0$, то работает индукционное предположение. Если $\lambda_k=1$, то остальные коэффициенты — нули, неравенство обращается в $f(x_k) \leqslant f(x_k)$.

Положим $y\coloneqq \frac{\lambda_1x_1+\cdots+\lambda_{k-1}x_{k-1}}{1-\lambda_k}$, запишем выпуклость:

$$f((1 - \lambda_k)y + \lambda_k x_k) \leq (1 - \lambda_k)f(y) + \lambda_k f(x_k)$$

Применив индукционное предположение $f(y) \leqslant \sum_{j=1}^{k-1} \frac{\lambda_j}{1-\lambda_k} f(x_j)$, получаем искомое неравенство. \square

Следствие 3.0.7. Логарифм — вогнутая функция, так как производная убывает. Применим неравенство Йенсена для $\lambda_j = \frac{1}{k}$, $x_j > 0$:

$$\log\left(\frac{x_1 + \dots + x_k}{k}\right) \geqslant \sum_{i=1}^k \frac{1}{k} \log(x_k)$$

Взяв экспоненту от обеих частей, получаем неравенство о средних арифметическом и геометрическом:

$$\frac{x_1 + \dots + x_k}{k} \geqslant \sqrt[k]{x_1 \cdot \dots \cdot x_k}$$

Лекция XXV

19 мая 2023 г.

Факт 3.0.4 (Неравенство Йенсена для интегралов). Пусть $h:[a,b] \to \mathbb{R}$ — ограниченная функция $(|h| \leqslant M)$ интегрируемая по Риману — Дарбу. Пусть $f:(-M-\varepsilon,M+\varepsilon) \to \mathbb{R}$ — выпуклая функция $(\varepsilon > 0$ — произвольный).

Обозначив $[a,b] = \Delta$, утверждаем, что

$$f\left(\frac{1}{|\Delta|}\int_{\Delta}h(x)\,\mathrm{d}x\right)\leqslant \frac{1}{|\Delta|}\int_{\Delta}(f\circ h)(x)\,\mathrm{d}x$$

Доказательство.

Лемма 3.0.2. Пусть $h:[a,b]\to\mathbb{R}$ — ограниченная функция $(|h|\leqslant M)$ интегрируемая по Риману — Дарбу (всё так же), $\phi:[-M,M]-C$ -липшицева функция. Тогда $\phi\circ h$ тоже интегрируема по Риману.

Доказательство леммы.

Пусть $I \subset \Delta$ — отрезок.

$$\operatorname{osc}_I(\phi \circ h) = \sup_{x,y \in I} |\phi(h(x)) - \phi(h(y))| \leqslant C \sup_{x,y \in I} |h(x) - h(y)| \leqslant C \operatorname{osc}_I h$$

Дальше применяем критерий интегрируемости по Риману — Дарбу.

Так как f задана на большем интервале, то на [-M,M] она липшицева. Тогда согласно лемме существуют оба интеграла.

Выберем $\varepsilon > 0$, так как f равномерно непрерывна, то $\exists \delta > 0: t_1, t_2 \in [-M, M]$ и $|t_1 - t_2| < \delta \Rightarrow |f(t_1) - f(t_2)| < \varepsilon$.

Напишем суммы Дарбу, не особо важно, верхние или нижние, начиная с некоторого места они все

близки. Пусть верхние.
$$\exists \Delta_1, \dots, \Delta_k$$
 — разбиение Δ , такое, что $\frac{1}{|\Delta|} \left| \int\limits_{\Delta} h(x) \, \mathrm{d}x - \sum\limits_{j=1}^k \sup_{x \in \Delta_j} h(x) |\Delta_j| \right| < \delta$

(давайте считать, что колебания f(h(x)) по данному разбиению тоже ε). Таким образом, можно применить f к обеим частям (и неравенство Йенсена), совершив ошибку не более, чем на ε :

$$f\left(\frac{1}{|\Delta|} \int_{\Delta} h(x) \, \mathrm{d}x\right) - \varepsilon \leqslant f\left(\sum_{j=1}^{k} \frac{|\Delta_j|}{|\Delta|} \sup_{x \in \Delta_j} h(x)\right) \leqslant \sum_{j=1}^{k} \frac{|\Delta_j|}{|\Delta|} f\left(\sup_{x \in \Delta_j} h(x)\right)$$

Так как супремума может не существовать, то давайте сделаем оценку: $\exists t_j \in \Delta_j: \sup_{x \in \Delta_j} h(x) \geqslant$

$$\left| h(t) \geqslant \sup_{x \in \Delta_j} h(x) - \delta. \text{ Теперь запишем } \left| f(\sup_{x \in \Delta_j} h(x)) - f(h(t)) \right| < \varepsilon, \text{ то есть } f(\sup_{x \in \Delta_j} h(x)) \leqslant f(h(t)) + \varepsilon \leqslant \sup_{x \in \Delta_j} f(h(x)) + \varepsilon.$$

Теперь можно продолжить неравенство

$$\sum_{j=1}^{k} \frac{|\Delta_j|}{|\Delta|} f\left(\sup_{x \in \Delta_j} h(x)\right) \leqslant \frac{1}{|\Delta|} \sum_{j=1}^{k} |\Delta_j| \sup_{x \in \Delta_j} f(h(x)) + \frac{1}{|\Delta|} \sum_{j=1}^{k} |\Delta_j| \varepsilon$$

Устремляя $\varepsilon \to 0$ получаем искомое неравенство.

3.1 Бесконечные произведения

Пусть $a_1,\ldots,\in\mathbb{C}$. Что логично считать под $\prod\limits_{j=1}^\infty a_j$ — «бесконечным произведением»?

Если бы числа были положительными, то можно было бы их прологарифмировать и просуммировать ряд.

Положим
$$\sigma_n = \prod_{j=1}^n a_j$$
.

Если $\sigma_n \xrightarrow[n \to \infty]{} 0$, то говорят, что *произведение расходится* κ *нулю* — ведь гипотетический ряд логарифмов действительно расходится $\kappa - \infty$.

Если $\sigma_n \underset{n \to \infty}{\longrightarrow} \sigma \neq 0$, то говорят, что *произведение сходится* к σ .

Вспомним, что $e^{a+bi} = e^a \cdot e^{bi}$. Отсюда видно, что $\exp(\mathbb{C}) = \mathbb{C} \setminus \{0\}$.

Логарифм хочется определить, как обратную функцию к $z\mapsto e^z$. Есть одна проблема: $z\mapsto e^z$ не инъективно. А именно, оно периодично с периодом $2\pi i$.

Заметим, что

$$\frac{\mathrm{d}}{\mathrm{d}z}e^z = \frac{\mathrm{d}}{\mathrm{d}z}\sum_{k=0}^{\infty} \frac{z^k}{k!} = \sum_{k=0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}z} \frac{z^k}{k!} = \sum_{k=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}z} \frac{z^{k-1}}{(k-1)!} = e^z$$

Таким образом, $dexp(z_0, h) = e^{z_0} \cdot h$.

Таким образом, $\forall z_0 \in \mathbb{C} \setminus \{0\} \exists \varepsilon, \exists \phi : \forall |z-z_0| < \varepsilon : e^{\phi(z)} = z$. Это отображение дифференцируемо, как обратное к невырожденно дифференцируемому: $\phi'(z_0) = \frac{1}{e^{w_0}} = \frac{1}{z}$, где $w_0 = \phi(z_0)$.

Пусть $w=a+bi, a,b\in\mathbb{R}$. Каким должно быть w, чтобы $e^w=z_0$?

$$e^a \cdot e^{ib} = z_0 \quad \Rightarrow \quad \begin{cases} e^a = |z_0| \\ e^{ib} = \frac{z_0}{|z_0|} =: \zeta \end{cases}$$

Первое уравнение мы умеем решать с помощью вещественного логарифма, решениями второго уравнения являются $\{b+2k\pi|k\in\mathbb{Z}\}$, где b — какое-нибудь решение. Все такие решения называются аргументами.

Множество всех аргументов $\operatorname{Arg}(\zeta)$ пишется с большой буквы. Множество всех обратных к экспоненте обозначают $\operatorname{Log}(z_0) = \log|z_0| + i \operatorname{Arg} \frac{z_0}{|z_0|}$

Пусть $G \subset \mathbb{C}$ — область.

Определение 3.1.1 (Ветвь логарифма). Непрерывная функция $\phi:G o\mathbb{C}$, такая, что $e^{\phi(z)}=z.$

Давайте найдём какие-нибудь большие области, в которых есть ветви логарифма. Например, подойдёт $\{x\in\mathbb{C}|x\leqslant0\}$ — (запись $x\leqslant0$ может быть истинна только если $x\in\mathbb{R}$).

Тогда в качестве $\arg(z)$ (z нормируем делением на |z|) выбираем значения аргумента из $(-\pi,\pi)$. Понятно, что определённая таким образом функция будет непрерывна. Определённая функция $\arg(z)$ — главная ветвь аргумента, ей соответствует главная ветвь логарифма $\log z = \log |z| + i \arg z$.

Вообще говоря, $\log(ab) \neq \log a + \log b$ — сумма значений аргументов a и b может лежать вне $(-\pi,\pi)$. Замечание. Достаточным условием равенства $\log(ab) = \log a + \log b$ является $\Re a, \Re b > 0$.

3.1.1 О сходящихся произведениях

По определению, произведение сходится, если $\exists \sigma: \forall \varepsilon > 0: \exists N: \forall n > N: |\sigma_n - \sigma| < \varepsilon$. Согласно тривиальной части критерия Коши

$$\forall k > n : |a_1 \cdot \ldots \cdot a_k - \sigma| < \varepsilon \Rightarrow |a_1 \cdot \ldots \cdot a_n - a_1 \cdot \ldots \cdot a_k| < 2\varepsilon \Rightarrow |1 - a_{n+1} \cdot \ldots \cdot a_k| < \frac{2\varepsilon}{|a_1 \cdot \ldots \cdot a_k|}$$

Пусть
$$\varepsilon<rac{|\sigma|}{2}$$
, тогда $|1-a_{n+1}\cdot\ldots\cdot a_k|<rac{2\varepsilon}{\sigma-rac{|\sigma|}{2}}\leqslant 4rac{\varepsilon}{|\sigma|}.$

Таким образом, $\forall \rho > 0 : \exists N : \forall k > n > N : |1 - a_{n+1} \cdot \ldots \cdot a_k| < \rho$.

Выбрав $ho < \frac{1}{2}$ видим, что если произведение сходится, то начиная с некоторого места все конечные произведения лежат в круге $B_{1/2}(1)$, в частности, лежат в полуплоскости $\Re z > 0$.

Пускай n>N, k>n. Сходимость исходного произведения $\prod\limits_{j=1}^{\infty}a_j$ эквивалентна сходимости $\prod\limits_{j=n}^{\infty}a_j$ (разумеется, если среди a_1,\ldots,a_{n-1} нет нулей). А это эквивалентно тому, что $\exists \widetilde{\sigma}:a_n\cdot\ldots\cdot a_k \underset{k\to\infty}{\longrightarrow} \widetilde{\sigma}.$

Произведение $a_n\cdot\ldots\cdot a_k$, как и все его 2^k сомножителей лежат в полуплоскости $\Re z>0$, значит, можно расписать $\log(a_n\cdot\ldots\cdot a_k)=\log(a_n)+\cdots+\log(a_k)$. Таким образом, сходимость произведения эквивалентна сходимости ряд $\sum\limits_{j=n}^{\infty}\log a_j$.

Но можно добавить и первые слагаемые, которых конечное число.

Теорема 3.1.1. Пусть $a_j \notin (\infty,0]$. Тогда $\prod\limits_{j=1}^\infty a_j$ сходится $\iff \sum\limits_{j=1}^\infty \log a_j$ сходится.

3амечание. Пусть ряд $\sum\limits_{j=1}^{\infty}a_j$ сходится к s, а $\prod\limits_{j=1}^{\infty}a_j$ сходится к σ .

Тогда $e^s=\sigma$, но равенство $\log\sigma=s$ вполне может не выполняться.