1

Importance Sampling Examples

Siva Gorantla Email: sgorant2@illinois.edu

I. EXPONENTIAL RV

Problem: For an exponential random variable $X \sim \exp(1)$, compute the probability of the event that $X \geq \frac{1}{\epsilon}$. Measure Transformation: Define $A_{\epsilon} = \{x : x \geq \frac{1}{\epsilon}\}$. Let $\mathbb P$ and $\mathbb Q$ be two measures such that "X under measure $\mathbb P$ " is $\exp(1)$ and "X under measure $\mathbb Q$ " is $\exp(\epsilon)$. Then,

$$\mathbb{E}^{\mathbb{P}}\left[A_{\epsilon}\right] = \mathbb{E}^{\mathbb{Q}}\left[A_{\epsilon}\frac{d\mathbb{P}}{d\mathbb{Q}}\right] = \mathbb{E}^{\mathbb{Q}}\left[A_{\epsilon}\frac{e^{-(1-\epsilon)X}}{\epsilon}\right]$$

For ease of notation, lets denote "X under measure \mathbb{Q} " by Y. Thus Y is an $\exp(\epsilon)$ r.v. Let $\{\xi_i\}_{i=1}^N$ be realizations of Y generated using a computer program. The following term gives the required probability,

$$\Xi_N = \frac{1}{N} \sum_{i=1}^{N} 1_{\{\xi_i > \frac{1}{\epsilon}\}} \frac{e^{-(1-\epsilon)\xi_i}}{\epsilon}$$

Results: —

Num of samples	Num of	Num of	estimate of $\mathbb{P}(X > \frac{1}{\epsilon})$	estimate of $\mathbb{P}(X > \frac{1}{\epsilon})$
generated	$X > \frac{1}{\epsilon}$	$Y > \frac{1}{\epsilon}$	using X	using Y
10	0	2	0	0.0
10^{2}	0	37	0	1.517×10^{-44}
10^{3}	0	356	0	1.85×10^{-44}
10^{4}	0	3618	0	3.96×10^{-44}
10^{5}	0	36937	0	3.774×10^{-44}
10^{6}	0	368007	0	3.767×10^{-44}

TABLE I

Calculating $\mathbb{P}(X>\frac{1}{\epsilon})$ where $X\sim \exp(1)$ by simulating i) X directly ii) $Y\sim \exp(\epsilon)$ and taking a measure transformation. For $\epsilon=0.01$, actual value of $\mathbb{P}(X>\frac{1}{\epsilon})=3.72\times 10^{-44}$. Simulating Y gives a good estimate within 10^6 simulations as seen above.

II. Brownian Motion - Minimum energy path

Problem: For a stochastic process $X_t = \epsilon W_t$, find the probability that X_t hits 1 in $t \in [2, 5]$ where W_t is a standard brownian motion.

Measure Transformation: Instead of simulating $X_t = \epsilon W_t$, simulate Y_t on the minimum energy path $Y_t = \frac{1}{5}t + \epsilon W_t$ and take measure transformation

$$\mathbb{P}(X_t \le 1 \le X_{t+\delta}) = \mathbb{E}^{\mathbb{Q}} \left[1_{\{Y_t \le 1 \le Y_{t+\delta}\}} \left(\frac{d\mathbb{P}}{d\mathbb{Q}} \right)_t \right]$$
 (1)

$$\left(\frac{d\mathbb{P}}{d\mathbb{Q}}\right)_t = \exp\left(-\frac{1}{5\epsilon}W_t + \frac{1}{50\epsilon^2}t\right) \tag{2}$$

This measure transform is obtained using the following result: Let W_t is a standard Brownian Motion under measure \mathbb{P} , then $\tilde{W}_t = W_t - \theta t$ is a standard Brownian Motion under measure \mathbb{Q} if

$$\left(\frac{d\mathbb{P}}{d\mathbb{Q}}\right)_t = \exp\left(\theta \tilde{W}_t + \frac{1}{2}\theta^2 t\right)$$

Results: —

Num of sample paths	Num of X_t paths	Num of Y_t paths	Prob that X_t hits 1	Prob that X_t hits 1
generated	hitting 1	hitting 1	in $t \in [2, 5]$ using X_t	in $t \in [2, 5]$ using Y_t
10	0	4	0	4.0276×10^{-6}
10^{2}	0	55	0	2.6770×10^{-5}
10^{3}	0	510	0	1.3114×10^{-5}
10^{4}	0	5064	0	1.3634×10^{-5}
10^{5}	0	51319	0	1.4068×10^{-5}
10^{6}	0	513956	0	1.3986×10^{-5}

TABLE II

CALCULATING PROB THAT X_t HITS VALUE 1 DURING $t \in [2,5]$ Where $X_t = \epsilon W_t$ by simulating i) X_t directly ii) Y_t and taking a measure transformation. For $\epsilon = 0.05$, as seen above simulating Y requires fewer simulations than simulating X directly.

Fig. 1. Minimum Energy Path

III. PRICING DEEP OUT-OF-THE MONEY OPTIONS

Problem: Suppose the value of option at t = T is $(S_T - K)^+$. And the stock price S_t follows a log-normal distribution with parameters (μ, σ) under measure \mathbb{P} and has an initial value S_0 at t = 0,

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$$

Then, the discounted price of the option at t = 0 is

$$C_0 = \mathbb{E}^{\mathbb{P}} \left[e^{-rT} (S_T - K)^+ \right]$$

Measure transformation: The price can also be computed as

$$C_0 = \mathbb{E}^{\mathbb{P}} \left[e^{-rT} (S_T - K)^+ \right] = \mathbb{E}^{\mathbb{Q}_{\theta}} \left[e^{-rT} (S_T - K)^+ \frac{d\mathbb{P}}{d\mathbb{Q}_{\theta}} \right]$$

where

$$\left(\frac{d\mathbb{P}}{d\mathbb{Q}_{\theta}}\right)_{t} = \exp\left(\theta \tilde{W}_{t} + \frac{1}{2}\theta^{2}t\right)$$

which results in

$$\frac{dS_t}{S_t} = (\mu + \theta\sigma)dt + \sigma d\tilde{W}_t$$

Method: Implemented the paper "Optimal importance sampling in securities pricing", Yi Su and M.C.Fu. [1]

- *Optimization Step:* Find the optimal measure transform θ^* for which variance in monte-carlo simulation is minimal.
- *Pricing Stage:* Simulate at $\theta = \theta^*$ and price the European/Asian call option.

Results: Asian Call Options: $S_0 = 100$; K = 100; $\sigma = \sqrt{0.2}$; r = 0.05; T = 1.0Yr - Cost = \$7.52. Takes less than 50000 simulations.

Asian Call Options: $S_0 = 100; K = 110; \sigma = \sqrt{0.2}; r = 0.05; T = 1.0Yr$ - Cost = \$2.81. Takes around 10^6 simulations.

Comments: Not able to simulate for higher values of K. The algorithm needs improvements. The programming is done is java. A change of programming environment could lead to faster implementation.

The components of the code and the algorithm are given below:

• Stage I: Optimization stage - Find θ^* that minimizes the variance of MonteCarlo estimate.

Let $V(\theta)$ denote the expected variance.

Initialization: Set $\theta = \theta_0$

Loop: For n=1 to **numIter**

- Estimate $\nabla V(\theta)$ using Monte Carlo simulation.
- $\theta_{n+1} = \theta_n a_n \nabla V(\theta_n)$
- If $a_n \nabla V(\theta_n) < \epsilon$, exit loop.
- Stage II: Pricing Stage Simulate at $\theta = \theta^*$. Loop: For n = 1 to **numSimul**
 - Generate sample path S_t
 - compute C_0 using payoff and $\frac{d\mathbb{P}}{d\mathbb{Q}_a}$

Average of all **numSimul** values gives the final estimate of C_0

REFERENCES

[1] Yi Su and Michael C. Fu. Optimal importance sampling in securities pricing. Journal of Computational Finance, 5:27-50, 2002.

Fig. 2. Components of the code