Visualización de Proteínas usando VMD

Descargar e instalar VMD

Descargar PDB

Se descargará una proteína desde el **Protein Data Bank (PDB)**: http://www.rcsb.org/

Código PDB: 1AQ2

Identificar contenido del PDB

- Al descargar una estructura cristalográfica desde PDB, es importante revisar la información contenida en el archivo de extensión .pdb
- Para esto, abrimos el archivo .pdb con nuestro editor de texto favorito (por ejemplo: WordPad o Block de Notas en windows, gedit en linux, o TextEdit en mac).

HEADER	Nombre y fecha de creación del archivo PDB.	
COMPND	Nombre de la molécula.	
SOURCE	Organismo del que se obtuvo la proteína.	
AUTHOR	Lista de los Autores que proporcionaron la estructura molecular al PDB	
REVDAT	Datos de revisión de la estructura de la proteína.	
REMARK	Comentarios en relación a los artículos en donde se publicó la estructura molecular o sobre las características de la molécula.	
SPRSDE	Lista de archivos de coordenadas para la misma estructura.	
SEQRES	Secuencia de los aminoácidos de la proteína.	
FTNOTE	Notas de pie de página. No todos los archivos lo tienen.	
HET & FORMUL	Lista de cofactores, grupos prostéticos, inhibidores y otras sustancias no proteicas presentes.	
HELIX, SHEET & TURN	Lista de los residuos con estructura secundaría en la proteína.	
CRYST1, ORIG & SCALE	Información general sobre los cristales con los que se obtuvo la estructura por Rayos X	
ATOM & HETATM	Contiene la información de la posición espacial en los ejes X,Y y Z de cada uno de los átomos, especificando el residuo y la cadena.	
CONECT	Enlaces formados entre los átomos no proteicos presentes en el PDB.	
MASTER & END	Indican la finalización del archivo.	

Identificar contenido del PDB

Identificar contenido del PDB

 La sección HETATM, al final del archivo .pdb, contiene información correspondiente a todas las moléculas que fueron cristalizadas junto a la proteína y que no poseen estructura secundaria. Por ejemplo: iones, inhibidores, sustratos, agua.

```
31,603
HETATM 4116 MN
                  MN A 543
                                           1.346
                                                   9.663
                                                          1.00 18.20
                                                                                MN
HETATM 4117 MG
                  MG A 544
                                 31.574
                                           4.572
                                                  13.755
                                                          1.00 20.81
                                                                                MG
HETATM 4118
                                 31.346
                                          4.585
                                                  10.377
                                                          1.00 20.40
             PG
                 ATP A 541
             01G ATP A 541
                                 30.803
                                          3.264
                                                  9.987
                                                          1.00 16.32
HETATM 4119
                                                                                 0
                                                  9.328
HETATM 4120
                                 32.195
                                           5.210
                                                          1.00 23.99
             02G ATP A 541
                                                                                 0
HETATM 4121
             03G ATP A 541
                                 32.011
                                          4.534
                                                  11.671
                                                          1.00 28.91
HETATM 4122
                                 29,281
                                           6.154
                                                  11.848
                 ATP A 541
                                                          1.00 21.40
                                           5.856
                                                                                 0
HETATM 4123
             01B ATP A 541
                                 27.860
                                                  11.500
                                                          1.00 23.11
                                           5.577
                                                                                 0
HETATM 4124
             02B ATP A 541
                                 29.873
                                                  13.065
                                                          1.00 26.47
                                           5.752
                                                  10.443
HETATM 4125
             03B ATP A 541
                                 30.179
                                                          1.00 20.62
                                                                                 0
HETATM 4126
             PA ATP A 541
                                 29.655
                                           8.515
                                                  13.133
                                                          1.00 22.39
                                                                                 0
HFTATM 4127
             01A ATP A 541
                                 28,646
                                           8.035
                                                  14.097
                                                          1.00 28.12
HETATM 4128
             02A ATP A 541
                                 31.084
                                           8.462
                                                  13.512
                                                          1.00 22.89
HETATM 4129
             03A ATP A 541
                                 29.488
                                           7.710
                                                  11.749
                                                          1.00 18.02
```

Abrir

Cargar proteína

Se cargará la proteína desde el Protein Data Bank (PDB): http://www.rcsb.org/, o se cargará a partir de la carpeta de destino del archivo .pdb descargado.

VMD Main \rightarrow File \rightarrow New Molecule... \rightarrow Filename: **1AQ2**

Si se dispone de conexión a Internet, automáticamente el programa cargará la información cristalográfica de la proteína señalada.

Visualizar proteína

Para una mejor visualización, ir a Graphics → Representations

- Drawing Method → New Cartoon
- Luego, Coloring Method → Secondary Structure.

Cada método de dibujo tiene sus propios parámetros.

- VDW (van der Waals) → Cada átomo es representado como una esfera, esto permite visualizar la forma y el volumen de la molécula.
- New Cartoon → Permite visualizar de forma simplificada la estructura secundaria de la proteína. Las hélices se visualizan en forma de espiral, laminas β en forma de flechas y las otras estructuras en forma de un tubo delgado. Este método es el de mayor uso en representaciones de sistemas proteicos.
- CPK → Emula los sistemas de bolas de radio variable y tubos utilizados en química para visualizar moléculas.
- Licorice → Representa los átomos como esferas de radio fijo que no puede ser modificado.

¿Qué queremos visualizar?	¿Cómo lo representamos en VMD?
Proteína	
Esqueleto de la proteína	
Cadenas laterales	
Hélices	
Sábanas beta	
Aminoácidos aromáticos	
Aminoácidos básicos	
Aminoácidos ácidos	
Todo menos la proteína	
Aguas	
iones	
ligandos	

¿Qué queremos visualizar?	¿Cómo lo representamos en VMD?
Proteína	protein
Esqueleto de la proteína	backbone
Cadenas laterales	sidechain
Hélices	helix
Sábanas beta	betasheet
Aminoácidos aromáticos	aromatic
Aminoácidos básicos	basic
Aminoácidos ácidos	acidic
Todo menos la proteína	all and not protein
Aguas	water
iones	ions
ligandos	resname XXX

Para observar residuos cercanos a una selección específica, utilizamos una representación más compleja:

protein and same residue as within 5 of resid 6

Tarea 2: Identificar aminoácidos cercanos al residuo 6

Acciones básicas del teclado

- Tecla 1 → Se obtienen las características de un átomo específico. *
- Tecla 2 → Se obtiene la distancia entre dos átomos específicos. *
- Tecla 3 → Se obtiene el ángulo entre tres átomos específicos. *
- Tecla 4 → Se obtiene el ángulo diedro entre cuatro átomos específicos. *
- Tecla r → Rotar la proteína (estado inicial).
- Tecla t → Traslada la proteína (solo visualmente).
- Tecla s → Aumentar o disminuir la proteína (zoom).

```
* VMD Main → Graphics → Labels...
```

```
Info) resname: HOH
Info) resid: 665
Info) chain: A
Info) segname:
Info) x: 73.081001
Info) v: -2.286000
Info) z: 14.314000
Info) picked atom:
Info) molecule id: 0
Info) trajectory frame: 0
Info) name: PA
Info) type: PA
Info) index: 4124
Info) residue: 536
Info) resname: ATP
Info) resid: 541
Info) segname:
Info) x: 29.655001
Info) y: 8.515000
Info) z: 13.133000
Info) Added new Atoms label ATP541:PA
```

Tk Consola

La **TK consola** nos permite la ejecución de scripts, escritos en formato de programación tcl, para llevar a cabo una tarea. Sin embargo, la programación no es el propósito de este curso, por lo tanto, aplicaremos conceptos básicos para realizar tareas simples pero de gran utilidad.

VMD Main \rightarrow Extensions \rightarrow Tk Console

Tk Consola

• Seleccionar una molécula:

set **todo** [atomselect top "all"] set **proteina** [atomselect top "**protein**"]

todo y **proteina** son variables que guardan la selección que le señalamos.

• Guardar selección:

\$proteina writepdb proteina_sola.pdb

Se antepone el signo \$ a una variable para llamarla (\$proteina).

Contar átomos de la selección:

\$todo num

Localizar la selección (centro):

measure center \$todo

<u>Tamaño del sistema:</u>

measure minmax \$todo

Mover una selección en el eje Z:

\$proteina moveby {0 0 40}

El tamaño final del sistema se calcula mediante la diferencia o distancia entre los vectores:

> X = X2 - X1Y = Y2 - Y1

Z = Z2 - Z1

Dentro de las llaves van las unidades en angstrom que quiero mover en los ejes {x y z}.

Actividad en Clases

INSTRUCCIONES:

Descargar la proteína **PDB ID: 10S1** (Structure of Phosphoenolpyruvate Carboxykinase complexed with ATP,Mg, Ca and pyruvate). Responder las preguntas y enviarlas al correo bioinformatica.unab2016@gmail.com. **Plazo de entrega: Jueves 28 de Julio de 2016 hasta las 23:59 hrs**.

- 1)- Señale el método experimental por el cuál se resolvió la estructura de la proteína 10S1 y la resolución que tiene.
- 2)- Identifique las moléculas cristalizadas en el PDB, (PISTA: proteínas, moléculas orgánicas, ligandos, agua, iones, etc.).
- 3)- Identificar aminoácidos cercanos (4 angstrom) al residuo 20 de la proteína. Señalar código de 3 letras y número de residuo del aminoácido (Ej: Lys45, Val87, etc.)
- 4)- Señale el número de moléculas de agua del sistema si las hubiese.
- 5)- ¿Cuál es el centro de la molécula de ATP?

Actividad en Clases

- 6)- Indique el tamaño (x, y, z) de todo el sistema.
- 7)- ¿Cuáles son los aminoácidos ubicados a 3 Å de la molécula PYR?
- 8)- Señale la distancia entre los carbono alfa (name CA) de los aminoácidos Gln34 y Thr8.
- **9)** Indique la descripción (name, type, index, residue, resname, resid, chain, x, y, z) del átomo "serial 3391"
- **10)** Indique qué ion se encuentra más cercano al ATP y señale las distancias correspondientes (PISTA: Considerar el último fosforo del ATP name PG).