Module MA-INF 4203	Autonomous Mobile Systems					
Workload	Credit points	Duration	Freque	ncy		
180 h	6 CP	1 semeste	every y	year		
Module	Prof. Dr. Sven Behnke					
coordinator						
Lecturer(s)	Dr. Dirk Schulz, Prof. Dr. Sven Behnke					
Classification	Programme		Mode	de Semester		
	M. Sc. Computer Science Optional 2.			1 2.		
Technical skills	Profound knowledge of development and test regarding structure					
	and function of learning, autonomous, mobile systems;					
	Knowledge of the computational, mathematical, and technical					
	requirements for the design of autonomous systems for specific					
	applications and for specific functional environments					
Soft skills	The students will be capable to assess applications for					
	autonomous mobile systems. They will be capable to identify					
	what part of the applications might be improved by using state					
	of the art developments. The student will learn how to plan and					
	implement a software project in small working groups.					
Contents	Requirements for the implementation of autonomous mobile					
	systems, e.g. for: map making, dead reckoning, localisation,					
	SLAM-methods, various principles of robot path planning;					
	methods for action planning. Comparison of different learning					
	paradigms for specific applications.					
Prerequisites	Recommended: all of the following:					
	MA-INF 4101 – Theory of Sensorimotor Systems					
	MA-INF 4113 – Cognitive Robotics					
Format	Teaching forms	at G	roup size	h/week	Workload[h]	CP
	Lecture		60	2	30 T / 45 S	2.5
	Exercises	ļ	30	2	30 T / 75 S	3.5
	T = face-to-face teaching; $S = independent study$					
Exam achievements	Oral exam				(graded)	
Study achievements	Successful exercise participation				(not graded)	
Forms of media						
Literature	• J. Buchli: Mobile Robots: Moving Intelligence, Published by					
	Advanced Robotic Systems and Pro Literatur Verlag					
	• Sebastian Thrun, Wolfram Burgard, Dieter Fox: Probabilistic					
	Robotics, MIT Press, 2005					
	• Howie Choset et al.: Principles of Robot Motion, MIT-Press,					
	2005					