

NETWORK INFORMATION HIDING: A COURSE ON STEGANOGRAPHY AND COVERT CHANNELS

Prof. Dr. Steffen Wendzel Worms University of Applied Sciences

https://www.wendzel.de (EN) | https://www.hs-worms.de/wendzel/ (DE)
Online Class: https://github.com/cdpxe/Network-Covert-Channels-A-University-level-Course/

Introducing myself

Prof. at Worms Univ. of Appl. Sciences, Germany

Primary research interests:

- Network Information Hiding/Covert Channels
 - cleaning up the terminology, taxonomy, methodology
 - developing countermeasures and new hiding techniques
 - cf. https://ih-patterns.blogspot.com
- IoT/Smart Home/Smart Building Security
 - network-level security, e.g. traffic normalization, anomaly detection, communication protocols

also:

- Operating Systems (+Security) / Linux & BSD, author of some German Linux books
- Methodology of Information Security (IWSMR) & Scientometrics
- Retro Computing ©

Photo: Elonicate Photography, https://www.instagram.com/elocinate/

Overview of this Course

- 1. Introduction to steganography and covert channels
- 2. Introduction to local covert channels
- 3. Fundamental countermeasures (not network-specific)
- 4. Fundamental network information hiding techniques
- 5. Getting the big picture: hiding patterns
- 6. Staying under the radar: sophisticated hiding methods
- 7. Selected countermeasures
- 8. Replicating experiments for scientific advancement
- 9. OMG! I found a new hiding method. How to get famous?!1! a.k.a. How to describe a new hiding method in a paper?
- 10. My smart fridge does strange things ... a.k.a. Steganography in the Internet of Things (IoT)
- 11. Overall conclusion

NETWORK INFORMATION HIDING

CH. 1: INTRODUCTION

Prof. Dr. Steffen Wendzel Worms University of Applied Sciences

https://www.wendzel.de (EN) | https://www.hs-worms.de/wendzel/ (DE)
Online Class: https://github.com/cdpxe/Network-Covert-Channels-A-University-level-Course/

Introduction

Several content of this lecture is based on our book on Information Hiding in Communication Networks (Wiley-IEEE, 2016).

- Book should be **freely downloadable via IEEEXplore if you are an IEEE member** (or: if your university is a member ©)
- Community agreed on common understanding of many things to find a good basis for this book.
- Based on several years of research of the authors.
- Please note: the chapters on traffic obfuscation and network flow watermarking are not part of this course.
- After >10 years of active research in network information hiding, my co-authors and me published quite a lot of work. If my name appears in a citation, you will find the paper linked on my website.

What is "Information Hiding"? Two different examples:

Fundamental Taxonomy on Information Hiding by Petitcolas et al. [1]

Note: I will later show two taxonomies specific to Network Information Hiding

^[1] Petitcolas, F. A., Anderson, R. J., & Kuhn, M. G. (1999). Information hiding-a survey. *Proceedings of the IEEE*, 87(7), 1062-1078.

^[2] Mazurczyk, W. et al.: Information Hiding in Communication Networks, Wiley-IEEE, 2016.

... it appeared in ancient Greece.

499 BC: **Histiaeus** (ruler of Miletus) tattooed a message on the head of one of his slaves to send a message to Aristagoras (his son-in-law) to instruct him to revolt against the Persians.

(Several more cases of Steganography in ancient Greece are known.)

Image taken from Google Maps.

Another example:

1978 World Championship in chess between
 Viktor Korchnoi (CH/RU) and Anatoly Karpov (RU)

Officials "limited Karpov to consumption of only one type of yogurt (violet) at a fixed time during the game." [1]

Fig.: private photo

Another example: Microdots; used during WW2, e.g. by German spies in Mexico.

NSA photo of microdots used by German spies, source: Wikipedia, author: unknown

Another Example: Printer Watermarking

Fig. source/attribution: F. Heise/Wikipedia/BBC

Final example: fontcode (works with digital and printed documents)

Video: https://youtu.be/dejrBf9jW24

History of Information Hiding

Fig.: W. Mazurczyk, S. Wendzel, S. Zander et al.: Information Hiding in Communication Networks, Wiley-IEEE, 2016

History of Information Hiding

Covert Data Storage & Communication

Fig.: W. Mazurczyk, S. Wendzel: Information Hiding: Challenges for Forensic Experts, Comm. ACM, 2018.

Application of Hiding Techniques

Okay, so what is the big difference between digital media and network carriers?

of the carrier	Digital media	Network traffic
Method's capacity/ bandwidth	Limited by the type of the digital media and the size of a file	Limited by the type of the traffic and the length of a transmission
Hidden data embedding	Cannot exceed file capacity	Can be slow but continuous over longer period of time
Data hiding application	Covert storage	Covert communication
Nature	Permanent	Ephemeral
Clues for forensic analysis	Can be available for forensic experts after transmission	Often not available when transmission ends
Method's detectability	Easy only if an original file is available	Hard due to different forms of acceptable traffic and varying network conditions
Cost of applying data hiding	Decrease in digital media quality	Increased delays, raised packet loss level, reduced feature set of protocols and/or affected user transmission quality
Robustness (secret data resistance to modifications)	Typically cannot survive conversion to another format	Typically vulnerable to dynamically changing network conditions

Fig.: W. Mazurczyk, S. Wendzel: Information Hiding: Challenges for Forensic Experts, Comm. ACM, 2018.

Basic Mimicry System [1]

^[1] Vane-Wright, R. I.: A unified classification of mimetic resemblances, Biological Journal of the Linnean Society, 1976.

^[2] W. Mazurczyk, S. Wendzel, S. Zander et al.: Information Hiding in Communication Networks, Wiley-IEEE, 2016

Terminology: Prisoner's Problem (Simmons, 1983)

- Covert Channel definition by Lampson [1]: "...not intended for information transfer at all"
 - A covert channel without intention is a side channel
 - DoD defined it differently: CCs break a security policy (usually in MLS) [2].
- Steganography [3]:
 - "Steganography can be informally defined as the practice of undetectably communicating a **message (a.k.a. steganogram)** in a **cover object**."
- Prisoner's Problem by Simmons [4]:

Terminology

- Remember [1]:
 - "Steganography can be informally defined as the practice of undetectably communicating a message (a.k.a. steganogram) in a cover object."
- Terminology of Pfitzmann [2]:

This process is bijective.

^[1] Fridrich, J.: Steganography in Digital Media, Cambridge University Press, 2010.

^[2] Pfitzmann, B.: Information Hiding Terminology, Proc. 1st Information Hiding Workshop, Springer, 1996.

Terminology

- Walter is referred to as a warden. He performs a so-called steganalysis.
- A warden can be [1]
 - Passive
 - tries to detect the presence (and content) of a hidden message in a cover object and tries to determine who is involved in the steganographic communication
 - Active
 - Modifies the cover object (e.g. removes or replaces steganogram)
 - Malicious
 - Can introduce own messages to fool involved participants (e.g. message spoofing)

DoD Definition of Covert Channels in MLS Context

In classical papers, a covert channel either violates the NRU (no read-up) or the NWD (no write-down) rule of the Bell-LaPadula (BLP) Model.

Is it applied in practice?

Early cases:

- 2002: "Operation Twins" culminated in the capture of criminals associated with the "Shadowz Brotherhood" group, a world-wide Internet pedophile organization.
 - Digital image steganography was used to hide a pornographic file within another innocent-looking one.
- 2008: Unknown person smuggled sensitive financial data out of U.S. Department of Justice using image steganography.
- 2010: Russian spy ring leaked classified information via image steganography from USA to Moscow.
- 2013: Linux Fokirtor malware hides traffic in SSH connections
- Since 2014: heaviy increase in (Network) Information Hiding-capable malware, so-called Stegomalware

Sources:

- Cases 1-3: Zielinska, E., Mazurczyk, W., Szczypiorski, K: Trends in steganography, Comm. ACM, 2014.
- Case 4: Schneier, B.: Fokirtor, https://www.schneier.com/blog/archives/2013/11/fokirtor.html, Nov. 2013.

Is it applied in practice?

cf. W. Mazurczyk, S. Wendzel: Information Hiding. Challenges for Forensic Experts, Communications of the ACM, 2018.

Kabaj et al.: The new threats of information hiding: the road ahead, IEEE IT Prof., Vol. 20(3), 2018 (Tab., r.).

Malware/exploit kit	Information-hiding method	Purpose
Vawtrak/Neverquest	Modification of the least- s Summary) of favicons	Hiding URL to download
Zbot	Appending data at the end of a JPG file	Hiding configuration data
Lurk/Stegoloader		Hiding encrypted HRL for omman dexagor malware components annels for
AdGholas	Data hiding in images, text, and otnets	Hiding encrypted mali- cious JavaScript code
Android/Twitoor.A	Impersonating a pornogra- phy player or an MMS app	Tricking users into installing malicious apps and spreading infection
Fakem RAT	Mimicking MSN and Ya- he Mescovert da conversation traffic	Hiding command and talexistion
Carbanak/Anunak	Abusing Google cloud- based services	Hiding C&C traffic
SpyNote Trojan	• Hiding cor data	Tricking users into in- fidentials app to gain access to confiden- tial data
TeslaCrypt	Data hiding in HTML com- ments tag of the HTTP 404 error message page	Embedding C&C com- mands
Cerber	Image steganography	Embedding malicious ex- ecutable
SyncCrypt	Image steganography	Embedding core components of ransomware
Stegano/Astrum	Modifying the color space of the used PNG image	Hiding malicious code within banner ads
DNSChanger	Modification of the LSBs of PNG files	Hiding malware AES encryption key
Sundown	Hiding data in white PNG files	Exfiltrating user data and hiding exploit code delivered to victims

Some potential scenarios

- Advanced Persistent Threats (APT):
 large-scale sophisticated data leakage, involving techniques such as `spear phishing'
- Malware: e.g. stealthy botnet C&C channels
- Military/secret service: Industrial espionage, stealthy communication
- Citizens: censorship circumvention
- Journalists: freedom of speech ->
 expression of opinions in networks with
 censorship

Fig.: W. Mazurczyk, S. Wendzel: Information Hiding: Challenges for Forensic Experts, Communications of the ACM, 2018. [link]

Classification of IH techniques and their relation to basic attack phases

Figure 1: Classification of hiding techniques and how they are used by malware in the different attack phases

Fig.: K. Cabaj et al.: <u>The New Threats of Information Hiding: the Road Ahead</u>, IT Professional, IEEE, 2018.