

Accelerating Systems with Programmable Logic Comp.

High-Speed Serial Transceivers and Busses

April 27, 2020

Sina Borrami
Uppsala University

Sina.borami@physics.uu.se

Outline

- Serial and Parallel
- SERDES
- PCle
- CCIX, CXL, OpenCAPI

Intro to Parallel and Serial interface

Parallel interface example

Serial interface example

Which one is better

• Serial or Parallel ???

Problems with Parallel Interface

- Skew
- Cross talk
- Inefficient
- Limited BW

- ISA
- PCI

Solution is Serial

- USB 3.x
- Ethernet
- HDMI
- Display Port
- Aurora
- Fiber Optic
- Fiber channel
- SATA
- NVME
- Thunderbolt
- PCI-express
- Infiniband

SERDES

Physical Coding Sublayer

Physical Medium Attachment

Line codes

- NRZ
 - 58Gbps
- PAM4
 - 112Gbps

• 8b/10b encoding

8

Line codes

- NRZ
 - 58Gbps
- PAM4
 - 112Gbps

• 8b/10b encoding

9

Overview

ZynqBoard

- Zynq-SOC
- 4 SFP Cage
- 1 Gigabit Ethernet
- UART USB
- 512MB DDR

ADC Board

- 64 Channel
 - 80 MSPS
 - 14-bit resolution
- 2 FPGA
- 2 SFP Cage

Custom Protocol

Item	Config	Rate		
1	Transceiver speed	2Gbps		
2	Encoding	8b/10b		
3	PCS internal data width	40-bit		
4	TX-RX buffers for synchronization			
5	Comma value	K 28.5		
6	Comma alignment	Four Byte Boundaries		
7	Four-byte Clock correction sequence	00000BC		
8	K character	ВС		

ADC Data Format

Internal Design

Block Design

FPGA is not just logic cells

- PLL
- SERDER #4-96 (6-112Gbps)
- Buffers
- BRAM
- HBM2
- DSP engine
- Al engine
- Memory controller(DDR4/5/6)
- Security engine
- Video decoder
- Multiple CPU cores (SOC) RISC-V, ARM(R,A)

Lane

What connector is this?

USB-C

PCI express

PCI Express version	Introduce d	Line code	Transfer rate[i][ii]	Throughput ^{[i][iii]}				
				x1	x2	x4	x8	x16
1.0	2003	<u>8b/10b</u>	2.5 <u>GT</u> /s	250 <u>MB</u> /s	0.500 GB/ s	1.00 <u>GB</u> /s	2.0 GB/s	4.0 GB/s
2.0	2007	8b/10b	5.0 GT/s	500 MB/s	1.000 GB/ s	2.00 GB/s	4.0 GB/s	8.0 GB/s
3.0	2010	<u>128b/130</u> <u>b</u>	8.0 GT/s	984.6 MB/ s	1.969 GB/ s	3.94 GB/s	7.88 GB/s	15.75 GB/ s
4.0	2017	128b/130 b	16.0 GT/s	1969 MB/s	3.938 GB/ s	7.88 GB/s	15.75 GB/ s	31.51 GB/ s
5.0	2019	128b/130 b	32.0 GT/s ^{[i}	3938 MB/s	7.877 GB/ s	15.75 GB/ s	31.51 GB/ s	63.02 GB/ s
6.0 (planned)	2021	128b/130 b	64.0 GT/s	7877 MB/s	15.754 GB /s	31.51 GB/ s	63.02 GB/ s	126.03 GB /s

Deskew in PCIe(channel bonding)

PCle architecture

PCle architecture

Memory Coherency

- PCle gen5 PHY
- NUMA
- No driver
- Complex logic
- Cache coherency

Good for autonomous driving

CXL (2019)

- PCle gen5 PHY
- CPU to accelerator
- Basic logic
- Root complexity is in CPU
- Server level

OpenCAPI

- Bluelink
- POWER9-10
- Summit super computer
- 3.0 memory coherency
- 4.0 cache coherecy
- P2P CPU to accelerator

Acronix accelerator

Xilinx accelerator

- Gen4x8 with CCIX
- 8GB HBM2
- 2x QSFP28 (100GbE)
- 2x 16GB 72b DIMM DDR4
- API: OpenCL

V100 GPU for HPC

- 300GB/S NVLINK 2.0 cache coherent
- Summit super computer
- 7.8 DTFLOPS
- 15.7 STFLOPS
- 32GB HBM2
- API: CUDA, OpenCL,...

Usage

- Edge computing
- Storage
- Database
- Load balancing
- Firewall
- Smart NIC
- Cryptography
- HPC
- Al