

Conteúdo Revisar envio do teste: Segundo teste

Revisar envio do teste: Segundo teste

Utilizador	Carlos Miguel Passos Ferreira .
Curso	[20-21] Análise Complexa [MIEFIS]
Teste	Segundo teste
Iniciado	26-01-2021 10:01
Enviado	26-01-2021 12:01
Data do vencimento	26-01-2021 12:30
Status	Necessita Nota
Resultado da tentativa	Avaliação não disponível.
Tempo decorrido	2 horas, 0 minuto de 2 horas
Resultados exibidos	Todas as respostas, Respostas enviadas

Pergunta 1 0 em 0 pontos

Declaro, por minha honra, que o conteúdo relativo à resolução de este teste é da minha integral autoria. Em nenhuma resposta tive ajuda de pessoa alguma ou software.

Resposta Selecionada: Verdadeiro Respostas: Verdadeiro

Falso

Pergunta 2

É necessária uma avaliação

Determine a solução da equação de onda

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0$$

na reta real com condições iniciais

$$u(x,0) = \begin{cases} 1 & \text{se } |x| \le 1 \\ 0 & \text{se } |x| > 1 \end{cases} \quad \text{e} \quad \frac{\partial u}{\partial t}(x,0) = e^{-x^2}$$

Resposta Pelo método de separação de variáveis temos que a equação de onda se iguala Selecionada: a X * T'' = X'' * T, com c=1. Temos assim que

Pergunta 3

É necessária uma avaliação

A temperatura de um condutor de comprimento π satisfaz a equação de calor

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0$$

com condições de fronteira nulas $u(0,t)=u(\pi,t)=0$ para todos os tempos t>0. Sabendo que a temperatura inicial é $u(x,0)=\sin(2x)$, determine o menor tempo t>0 tal que a temperatura de todos os pontos do condutor seja inferior a 0.1

Resposta Selecionada: Pelo método de separação de variáveis temos que X * T' = X'' * T, onde $X'' = k \cdot X \cdot e \cdot T' = k \cdot T$, onde $X'' = k \cdot X \cdot e \cdot T' = k \cdot T$, onde $X'' = k \cdot X \cdot e \cdot T' = k \cdot T$, onde $X'' = k \cdot X \cdot e \cdot T' = k \cdot T$, onde $X'' = k \cdot X \cdot e \cdot T' = k \cdot T$. Resolvendo as duas expressões e como $X'' = k \cdot X \cdot e \cdot T' = k \cdot T$. Resolvendo as duas expressões e como $X'' = k \cdot X \cdot e \cdot T' = k \cdot T$. Resolvendo as duas expressões e como $X'' = k \cdot X \cdot e \cdot T' = k \cdot T$. Resolvendo as duas expressões e como $X'' = k \cdot X \cdot e \cdot T' = k \cdot T$. Resolvendo as duas expressões e como $X'' = k \cdot X \cdot e \cdot T' = k \cdot T \cdot e \cdot T' = k$

Pergunta 4

É necessária uma avaliação

Considere o problema de resolver a equação de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

para um campo escalar u(x,y), definido no retângulo $[0,\pi] \times [0,1]$, com condições de fronteira $u(0,y) = u(\pi,y) = 0$ para todos os $y \in [0,1]$. Determine as soluções separáveis.

Resposta Selecionada: [Sem Resposta]

Pergunta 5

É necessária uma avaliação

Calcule a série de Fourier da função periódica de período 2π definida, no intervalo $[-\pi,\pi]$, por

$$f(x) = \begin{cases} 1 & \text{se } |x| \le \pi/2 \\ 0 & \text{se } |x| > \pi/2 \end{cases}$$

Resposta Analisando o gráfico da função f(x), reparamos que f(-x)=f(x), pelo que a função é Selecionada: par e a série de Fourier será uma série de cosenos. Será, então necessário calcular 0 0 0 0 n. Sabemos que

$$a_0 = \frac{2}{\pi} * \sum_{0}^{\pi} f(x) dx = \frac{2}{\pi} * \sum_{0}^{\pi/2} 1 dx = 1 \text{ e que}$$

$$a_n = \frac{2}{\pi} * \sum_{0}^{\pi/2} 1 * \cos(nx) dx = \frac{4}{\pi^2} * sen(n\frac{\pi}{2})$$
, logo teremos que a

série de fourier de f(x) será igual a $\frac{1}{2} + \sum_{n=1}^{\infty} \frac{4}{\pi^2} * sen(n\frac{\pi}{2}) * cos(nx)$.

Pergunta 6 1 em 1 pontos

Se f(x) é uma função do espaço de Schwartz, então também a sua transformada de Fourier está no espaço de Schwartz.

Resposta Selecionada: Verdadeiro Respostas: Verdadeiro

Falso

Pergunta 7

É necessária uma avaliação

Calcule a transformada de Fourier de

$$f(x) = \begin{cases} 1 & \text{se } -1 \le x \le 0 \\ 0 & \text{se } x < -1 \text{ ou } x > 0 \end{cases}$$

Resposta Pela expressão que permite a obtenção da transformada de Fourier temos que : Selecionada: $F(\xi) = \int_{-\infty}^{+\infty} f(x) \cdot e^{-2\pi i \xi x} \, dx = \int_{-1}^{0} 1 \cdot e^{-2\pi i \xi x} \, dx = \frac{1}{-2\pi i \xi} - \frac{e^{2\pi i \xi}}{-2\pi i \xi} = \frac{e^{2\pi i \xi} - 1}{2\pi i \xi}$

, sendo esta última parcela a resposta final.

Pergunta 8

É necessária uma avaliação

Considere a família de gaussianas, dependente do parâmetro $t \geq 0$, definidas por

$$g_t(x) = \frac{1}{\sqrt{t}} e^{-\pi x^2/t}$$

Calcule o produto de convolução

$$(g_{2t}^*g_{3s})(x)$$

Resposta Selecionada: Sabemos que

Pergunta 9 0 em 1 pontos

As soluções estacionárias da equação de calor são funções harmónicas.

Resposta Selecionada: Falso Respostas: Verdadeiro

Falso

Pergunta 10

0 em 1 pontos

Existe, no máximo, uma função harmónica numa região conexa $\Omega \subset \mathbb{C}$ do plano que se anula na fronteira $\partial \Omega$.

26/01/2021

Resposta Selecionada: Verdadeiro Respostas: Verdadeiro

Falso

Pergunta 11

É necessária uma avaliação

Determine uma função harmónica conjugada de

$$u(x,y) = e^{-x}\cos(y)$$

Resposta Selecionada: Através das equações de Cauchy-Riemann sabemos que $u_x = v_y$ e $u_y = -v_x$.

Sabemos daqui que $V_y = -e^{-x}$. cos(y) e que $V_x = e^{-x}$. sen(y).

Integrando $V_X \in V_V$ conseguimos que a função harmónica conjugada de

u(x,y) será do tipo $v(x,y) = -2.e^{-x}$. sen(y).

Pergunta 12

1 em 1 pontos

As transformações de Moebius

$$f(z) = \frac{az + b}{cz + d}$$

com $ad-bc \neq 0$, enviam circunferências da esfera de Riemann em circunferências da esfera de Riemann.

Resposta Selecionada: Verdadeiro Respostas: Verdadeiro

Falso

Pergunta 13

0 em 2 pontos

A função $f(z) = e^{z}$ define uma equivalência conforme entre a região

$$B = \{x + iy \in \mathbb{C} : x < 0 \ e \ 0 < y < \pi \} e$$

Resposta Selecionada: C. o semi-disco unitário $D_+ = \{z = x + iy \in \mathbb{C} : |z| < 1 \text{ e } y > 0\}$

Respostas:

A. o semi-plano superior $H = \{x + iy \in \mathbb{C} : y > 0\}$.

В.

a interseção entre o semi-plano superior e o disco unitário, ou seja,

 $F = \{z = x + iy \in \mathbb{C} : |z| < 1 \text{ e } y > 0\}$

C. o semi-disco unitário $D_+ = \{z = x + iy \in \mathbb{C} : |z| < 1 \text{ e } y > 0\}$

Terça-feira, 26 de Janeiro de 2021 12H01m GMT

← OK