Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Automação e Sistemas

Tutorial

LEVITADOR ELETROMAGNÉTICO

Alunos

Denise Albertazzi Gonçalves 11101065 Ígor Assis Rocha Yamamoto 14101045 Luis Felipe Pelison 14101053

Professores
Ricardo Spyrides Boabaid Pimentel Gonçalves
Rodolfo Cesar Costa Flesch

Dezembro de 2016

Sumário

1	Projeto		
	1.1	Descrição	2
2	Modelo Teórico		
	2.1	Princípio de Funcionamento	
	2.2	Equacionamento	3
		2.2.1 Equacionamento da corrente na bobina	3
		2.2.2 Equacionamento das forças	3
3	Parte Mecânica		
	3.1	Montagem física	4
4	Parte Elétrica		
	4.1	Esquema Elétrico do Projeto	5
		4.1.1 Descrição dos Elementos	
5	Cor	ntrole	7
	5.1	Estudo da Dinâmica do Sistema	7
6	Software		8
	6.1	LabView	8
		Arduíno	
7	Ima	agens da Confecção do Projeto	13

1 Projeto

1.1 Descrição

Este projeto tem como objetivo implementar um sistema que permita a levitação de ímãs cilíndricos de neodímio através de um eletroímã para fins didáticos. O projeto é composto por um sistema de medição da posição do ímã através de uma câmera, controle digital implementado em um microcontrolador e acionamento do eletroímã por um transistor.

Existem diversos trabalhos publicados com o tema levitação magnética. Estes trabalhos utilizam diversas abordagens para o levantamento de modelos matemáticos (Hajjaji and Ouladsine, 2001), medição de posição (sensor infravermelho, sensor de efeito hall) e estratégias de controle (Hurley-Wölfle, 1997; Rech, 2013). Todos eles têm como objetivo principal a levitação do objeto magnético dentro de uma faixa de operação. Além do estudo unicamente sobre a teoria magnética ou sobre o controle utilizado, atualmente a levitação magnética vem ganhando força. Isso vem acontecendo pois utilidades para as forças eletromagnéticas estão sendo descobertas, como trens balas - chamados MagLev - que podem chegar a velocidades superiores a $600 \, \mathrm{km/h}$ e mancais flutuantes.

Nesse projeto, pretendemos verificar as leis eletromagnéticas na prática, além do controle e da instrumentação eletrônica desenvolvida durante o curso de Instrumentação realizado dentro do curso de Engenharia de Controle e Automação da Universidade Federal de Santa Catarina.

2 Modelo Teórico

2.1 Princípio de Funcionamento

O objeto é capaz de levitar devido a compensação da força peso com a força eletromagnética exercida pelo eletroímã. Essa força eletromagnética surge a partir do campo magnético gerado pela corrente elétrica que circula pela bobina do eletroímã e é representada na Figura 1. A intensidade do campo magnético e, consequentemente, a força eletromagnética sobre o objeto podem ser controladas pela quantidade de corrente que passa pela bobina.

O objeto levita de maneira estável se existir um controle de sua posição. Sua posição é medida através da imagem de uma câmera, onde um processamento da imagem é feito por um computador. O computador envia a informação da posição do objeto a um microcontrolador, responsável por controlar a posição do objeto levitado.

Figura 1: Campo magnético gerado pelo eletroímã

2.2 Equacionamento

Desenvolveremos as equações abaixo para demonstrar que a compensação das forças peso e eletromagnética deve ser realizada. Assim, trabalharemos em cima da ideia de sempre seguir em rumo ao equilíbrio, sabendo que o processo é altamente não-linear.

2.2.1 Equacionamento da corrente na bobina

Ao aplicar-se uma tensão nos terminais do eletroímã, esta se divide entre a parte resistiva e a parte indutiva do eletroímã, como equacionado abaixo.

$$v(t) = V_R + V_L = R.i(t) + L(h).\frac{di}{dt}$$
(1)

2.2.2 Equacionamento das forças

De acordo com a segunda lei de Newton, a soma das forças resulta na aceleração do corpo multiplicada pela sua massa (Rech, 2013).

$$F_{peso} - |F_{mag}(i,h)| = m \cdot \frac{d^2h}{dt^2}$$
(2)

A força magnética pode ser detalhada como demonstrado abaixo (Hurley-Wölfle, 1997):

$$|F_{mag}(i,h)| = \frac{i^2(t)}{2} \cdot \frac{dL(h)}{dt}$$
(3)

$$|F_{mag}(i,h)| = \frac{i^2(t)}{2} \cdot \frac{d}{dt} \cdot (L_1 + L_0 \cdot e^{-\frac{h}{2}}) = \frac{i^2(t)}{2 \cdot a} \cdot L \cdot e^{-\frac{h}{a}}$$
 (4)

3 Parte Mecânica

3.1 Montagem física

Figura 2: Esquema de montagem física

O projeto do sistema físico consiste em um par de ímãs cilíndricos de neodímio que levitam através de um eletroímã, situado acima destes. O sistema também conta com um eixo central com a função de bloquear os movimentos transversais do objeto levitado.

Uma câmera (webcam), um microcontrolador arduíno e uma chave ligadesliga também fazem parte da estrutura. Esses, juntamente com uma placa

PCB foram dispostos sobre uma estrutura de acrílico com MDF, como ilustram as Figuras 8, 9, 10 e 11 dispostas na Seção 7.

4 Parte Elétrica

4.1 Esquema Elétrico do Projeto

Figura 3: Esquema Elétrico do Projeto

4.1.1 Descrição dos Elementos

A descrição dos elementos representados na figura 3 é detalhada a seguir:

- Arduino: a plataforma Arduino é utilizada para realizar as funções de controle do sistema, enviando sinais para o eletroímã.
- Eletroímã: eletroímã comercial de diâmetro 20mm (3W, 12V), capaz de gerar uma força eletromagnética de 25N.
- Transistor: o transistor é escolhido de forma a atender a demanda de corrente do eletroímã (I = P/V = 3/12 = 250mA), capaz de desempe-

nhar um funcionamento como chave para que o sinal de controle possa ser enviado via PWM.

- Diodo de roda livre: como o eletroímã é composto por uma bobina com vários enrolamentos, faz-se necessário o uso de um diodo de roda livre devido ao alto fator indutivo da carga. Quando o transistor entra em corte, o diodo de roda livre garante um caminho para a corrente proveniente do indutor, evitando que esta danifique as portas do Arduino.
- Fonte de 12V: Fonte de alimentação de 12V conectada ao eletroímã, conforme a especificação nominal da carga.

Além destes itens, mais alguns componentes também participam do sistema em questão:

- Webcam: uma câmera é utilizada para captar imagens momentâneas do objeto em levitação, a uma taxa de 30 quadros por segundo.
- **PC:** um computador pessoal é utilizado como plataforma para realizar o processamento de imagens captadas pela câmera a fim de determinar a posição momentânea do objeto.

5 Controle

5.1 Estudo da Dinâmica do Sistema

A câmera disponível possui uma taxa de 30 fps (30 frames per second ou quadros por segundo), o que é um valor comercialmente comum. Com essa taxa, obtemos uma amostra (uma imagem) a cada 33.33ms.

Segundo as equações da cinemática, a altura do ímã (considerando um referencial h=0 na altura do eletroímã, crescendo de cima para baixo) é dada por:

$$h(t) = h_0 + v_0 t + \frac{g t^2}{2} \tag{5}$$

Sendo a altura entre a base e o eletroímã aproximadamente igual a 25mm. O tempo de queda livre do ímã da altura do eletroímã atá a base, considerando velocidade inicial nula, é calculada por:

$$t = \sqrt{\frac{2.h}{g}} = \sqrt{\frac{2.0,025m/s}{9,81m/s^2}} = 0.07s \tag{6}$$

A cada 0.07s, 20 amostras representariam uma amostragem ideal, resultando em um tempo de amostragem de 3.55ms, muito inferior à taxa de quadros por segundos da câmera.

Devido a este resultado, a técnica de controle escolhida foi on-off.

O software em Lab View obtém a posição do eletroímã, enquanto que o software no arduíno a compara com um referencial pré estabelecido. Se a posição atual do ímã for inferior à deste referencial, o eletroímã é acionado. Caso contrário, o eletroímã é desligado.

O controle realizado no arduíno está melhor detalhado na Seção 6, que trata do software.

6 Software

O software do projeto é dividido em duas partes: uma implementada no computador (Labview), responsável por processar as imagens captadas pela webcam de forma a identificar a posição do objeto levitado; enquanto a outra, desenvolvida no Arduíno, é responsável por calcular o sinal de controle e enviá-lo para o circuito de acionamento.

O computador e o arduino trocam dados a partir de uma comunicação serial: identificada a posição do objeto no programa do Labview, esta é enviada para o arduino, que utiliza a informação como parâmetro de entrada para o controle.

6.1 LabView

Primeiramente, a webcam é inicializada. Como esta possui um período inicial de transição com aquisição imperfeita da imagem, uma pequena correção é feita para ignorar este período. Uma vez que a imagem esteja normalizada, features na imagem são lidas. A primeira feature é o ponto da origem para o cálculo da distância entre o objeto e o eletroímã, localizada na superfície inferior do eletroímã. Em seguida, o objeto é representado por um retângulo.

Neste momento, o software entra em um *loop*, onde adquire a imagem, identifica o objeto, calcula sua altura diminuindo sua posição da origem e envia este valor para o Arduíno no formato *char* em ASCII, lido rapidamente pelo arduino.

6.2 Arduíno

O software do Arduíno recebe do software em LabView a posição do ímã. Esta é comparada com um valor de referência pré-estabelecido. Se for superior a este valor, o eletroímã é desligado. Se for inferior, o eletroímã é acionado. No código do software abaixo, é visível a utilização de um LED RGB para melhor visualização do estado atual.

```
const int redPin = 9;
const int greenPin = 10;
const int bluePin = 11;
const int sensorPin = A5;
const int pwmPin = 5;
const int sw = 2;
const int posRef = 100;
const int posMax = 92;
int pos = 1000;
int ini = 1;
void setup(){
  pinMode(redPin, OUTPUT);
  pinMode(greenPin, OUTPUT);
  pinMode(bluePin, OUTPUT);
  pinMode(sensorPin, INPUT);
  pinMode(sw, INPUT);
  Serial.begin(115200);
  analogWrite(pwmPin, 0);
  setColor(0,0,255);
}
void loop(){
  if(digitalRead(sw)){
      if(Serial.available()>0){
        pos = Serial.read();
      control(pos);
  }
  else{
    analogWrite(pwmPin, 0);
    setColor(0,0,255);
}
void control(int pos){
    int u;
    if (pos <= posRef) ini = 0;</pre>
    if (pos < posMax) {</pre>
                                                 //Detectou
      setColor(255,0,0);
      analogWrite(pwmPin, 0);
```

```
}
    else {
                                                 //Não Detectou
      if(ini){
        analogWrite(pwmPin,255);
        setColor(255,50,0);
      }
      else{
          u = map(pos,posMax,105,0,255);
          setColor(0,255,0);
          analogWrite(pwmPin, u);
      }
    }
}
void setColor(int red, int green, int blue)
  analogWrite(redPin, red);
  analogWrite(greenPin, green);
  analogWrite(bluePin, blue);
}
```

O código do Labview comentado está abaixo:

Figura 4: Interface do programa em LabView.

Figura 5: Parte 1 do código implementado em Labview.

Figura 6: Parte 2 do código implementado em Labview.

Figura 7: Parte 3 do código implementado em Labview.

7 Imagens da Confecção do Projeto

Figura 8: Eletroímã fixado no topo da estrutura confeccionada em impressora $3\mathrm{D}$

Figura 9: Câmera captando a posição do objeto preto (imã de neodímio)

Figura 10: Placa de circuito impresso, arduino e switch (usado para ligar/desligar o sistema)

Figura 11: Sistema encapsulado em placas paralelas de acrílico: arduíno e placa de circuito impresso no meio; eletroímã e câmera em cima; programa em LabVIEW no compurtador ao fundo

Referências

- Hajjaji, A. E. and Ouladsine, M. (2001). Modeling and nonlinear control of magnetic levitation systems. *IEEE Transactions on Industrial Electronics*, 48(4):831–838.
- Hurley-Wölfle (1997). Electromagnetic design of a magnetic suspension system. 40.
- Rech, E. (2013). Simulação e controle de um levmag numa plataforma gráfica de desenvolvimento (labview).