

DUAL BINARY COUNTER

- HIGH SPEED : f_{MAX} = 79 MHz (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A = 25^{\circ}C$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 393

The M74HC393 is an high speed CMOS DUAL BINARY COUNTER fabricated with silicon gate C²MOS technology.

This counter circuit contains independent ripple carry counters and two 4-bit ripple carry binary counters, which can be cascaded to create a single divide by 256 counter.

Each 4-bit counter is incremented on the high to low transition (negative edge) of the clock input,

ORDER CODES

PACKAGE	TUBE	T & R
DIP	M74HC393B1R	
SOP	M74HC393M1R	M74HC393RM13TR
TSSOP		M74HC393TTR

and each has an independent clear input. When CLEAR is set to low, all four bits of each counter are set to a low level. This enables count truncation and allows the implementation of divide by N counter configurations.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

July 2001 1/11

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 13	1 CLOCK 2 CLOCK	Clock Input Divide by 2 Section (HIGH to LOW Edge-Triggered)
2, 12	1 CLEAR 2 CLEAR	Asynchronous Master Reset Inputs
3, 4, 5, 6	1QA to 1QD	Flip Flop Outputs
11, 10, 9, 8	2QA to 2QD	Flip Flop Outputs
7	GND	Ground (0V)
14	Vcc	Positive Supply Voltage

TRUTH TABLE

INP	INPUTS OUTPUTS								
CLOCK	CLEAR	QD	QC QB						
Х	Н	L	L L L						
ユ	L	COUNT UP							
	L		NO CHANGE						

X : Don't Care

COUNT		OUTPUTS							
COUNT	QD	QC	QB	QA					
0	L	L	L	L					
1	L	L	L	Н					
2	L	L	Н	L					
3	L	L	Н	Н					
4	L	Н	L	L					
5	L	Н	L	Н					
6	L	Н	Н	L					
7	L	Н	Н	Н					
8	Н	L	L	L					
9	Н	L	L	Н					
10	Н	L	Н	L					
11	Н	L	Н	Н					
12	Н	Н	L	L					
13	Н	Н	L	Н					
14	Н	Н	Н	L					
15	Н	Н	Н	Н					

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Ιο	DC Output Current	± 25	mA
I_{CC} or I_{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage	2 to 6	V	
VI	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t _r , t _f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

DC SPECIFICATIONS

		٦	Test Condition	Value							
Symbol	Parameter	v _{cc}		T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}				1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
	6.0				1.8		1.8		1.8		
V _{OH} High Lo	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	voitage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4	_	40	_	80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		Test Condition		Value						
Symbol	Parameter	v _{cc}	1	T _A = 25°	,C	-40 to	85°C	-55 to	125°C	Unit
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0		30	75		95		110	
	Time	4.5		8	15		19		22	ns
		6.0		7	13		16		19	
t _{PLH} t _{PHL}	Propagation Delay Time (CLOCK - QA)	2.0		50	120		150		180	
		4.5		15	24		30		36	ns
		6.0		13	20		26		31	
t _{PLH} t _{PHL}	PLH tPHL Propagation Delay Time (CLOCK - QB)	2.0		70	160		200		240	
		4.5		20	32		40		48	ns
		6.0		17	27		34		41	
t _{PLH} t _{PHL}	Propagation Delay Time (CLOCK - QC)	2.0		90	195		245		295	
		4.5		25	39		49		59	ns
		6.0		21	33		42		50	
t _{PLH} t _{PHL}	H t _{PHL} Propagation Delay Time (CLOCK - QD)	2.0		120	230		290		345	ns
		4.5		30	46		58		69	
		6.0		26	39		49		59	
t _{PHL}	Propagation Delay	2.0		55	150		190		225	
	Time	4.5		18	30		38		45	ns
	(CLEAR - Qn)	6.0		15	26		32		38	
f _{MAX}	Maximum Clock	2.0	8.4	17		6.8		5.6		
	Frequency	4.5	42	67		34		28		MHz
		6.0	50	79		40		33		
t _{W(H)}	Minimum Pulse	2.0		28	75		95		110	
t _{W(L)}	Width (CLOCK)	4.5		7	15		19		22	ns
		6.0		6	13		16		19	
t _{W(H)}	Minimum Pulse	2.0		28	75		95		110	ns
` '	Width (CLEAR)	4.5		7	15		19		22	
		6.0		6	13		16		19	
t _{REM}	Minimum Removal	2.0			25		30		35	
	Time	4.5			5		6		7	ns
		6.0			5		5		6	

CAPACITIVE CHARACTERISTICS

		Test Condition		Value							
Symbol Parameter	V _{CC}	T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit		
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
C _{IN}	Input Capacitance				5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)				35						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/4$ (per FLIP FLOP)

TEST CIRCUIT

 $C_L = 50pF$ or equivalent (includes jig and probe capacitance)

 $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

WAVEFORM: MINIMUM REMOVAL AND PROPAGATION DELAY TIMES, MINIMUM PULSE WIDTH (f=1MHz; 50% duty cycle)

Plastic DIP-14 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	1.39		1.65	0.055		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
Е		8.5			0.335			
е		2.54			0.100			
e3		15.24			0.600			
F			7.1			0.280		
1			5.1			0.201		
L		3.3			0.130			
Z	1.27		2.54	0.050		0.100		

SO-14 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)	•	
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
еЗ		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S			8° (ı	max.)		

TSSOP14 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

