Package 'Publish'

March 27, 2019

Type Package

Title Format Output of Various Routines in a Suitable Way for Reports and Publication
Description A bunch of convenience functions that transform the results of some basic statistical analyses into table format nearly ready for publication. This includes descriptive tables, tables of logistic regression and Cox regression results as well as forest plots.
Version 2018.04.17
Maintainer Thomas A. Gerds <tag@biostat.ku.dk></tag@biostat.ku.dk>
Depends prodlim (>= 1.5.4)
Imports survival (>= 2.38), data.table (>= 1.10.4), lava (>= 1.5.1), multcomp (>= 1.4)
Suggests lme4 (>= 1.1), mets (>= 1.1.1), pec (>= 2.4.4), riskRegression (>= 1.4.3), testthat, smcfcs (>= 1.3.0), rms (>= 5.1), mitools (>= 2.3), nlme (>= 3.1-131)
License GPL (>= 2)
RoxygenNote 6.0.1
NeedsCompilation no
Author Thomas A. Gerds [aut, cre], Christian Torp-Pedersen [ctb], Klaus K Holst [ctb], Brice Ozenne [aut]
Repository CRAN
Date/Publication 2018-04-17 21:24:49 UTC
R topics documented:
Publish-package
ci.mean
CiTable
coxphSeries
Diabetes
fixRegressionTable

2 Publish-package

blish-packag	re P	ublisi	h no	ncki	100									
K														59
univariate'	Table				•		 	 	 •	 	•	 •		 55
Units							 	 	 	 				 54
trace							 	 		 				 53
table2x2.							 	 		 				 53
summary.ı	univariateTab	le .					 	 		 				 51
summary.ı	regressionTal	ole .					 	 		 				 49
	ci													
-	.lrm													
1 0	me													
_	gram													
·														
	Table													
	rvdiff													
	mmary.aov													
	core													
	kRegression													
-	Iresult													
-	atrix													
	est													
-	m													
	xph													
	auseSpecificC													
	t													
_	ariateTable													
	2x2													
	lence												 •	 17
	ssionTable .													
C	actionTerms													
•														
	Coding													
-														
i i i i i														9

Description

This package processes results of descriptive statistcs and regression analysis into final tables and figures of a manuscript

ci.mean 3

ci.mean

Compute mean values with confidence intervals

Description

Compute mean values with confidence intervals

Usage

```
ci.mean(x, ...)
```

Arguments

x object passed to methods... passed to methods

Details

Normal approximation

Value

a list with mean values and confidence limits

ci.mean.default

Compute mean values with confidence intervals

Description

Compute mean values with confidence intervals

Usage

```
## Default S3 method:
ci.mean(x, alpha = 0.05, normal = TRUE, na.rm = TRUE,
    statistic = "arithmetic", ...)
```

Arguments

X	numeric vector
alpha	level of significance
normal	If TRUE use quantile of t-distribution else use normal approximation and quantile of normal approximation. Do you think this is confusing?
na.rm	If TRUE remove missing values from x.
statistic	Decide which mean to compute: either "arithmetic" or "geometric"
•••	not used

4 CiTable

Details

Normal approximation

Value

a list with mean values and confidence limits

Author(s)

Thomas Gerds

CiTable

CiTable data

Description

These data are used for testing Publish package functionality.

Format

A data frame with 27 observations on the following 9 variables.

Drug

Time

Drug.Time

Dose

Mean

SD

n

HazardRatio

lower

upper

p

```
data(CiTable)
labellist <- split(CiTable[,c("Dose","Mean","SD","n")],CiTable[,"Drug"])
labellist
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")], labels=labellist)</pre>
```

coxphSeries 5

coxphSeries	Run a series of Cox regression models	

Description

Run a series of Cox regression analyses for a list of predictor variables and summarize the results in a table. The Cox models can be adjusted for a fixed set of covariates

This function runs on coxph from the survival package.

Usage

```
coxphSeries(formula, data, vars, ...)
```

Arguments

formula	The fixed part of the regression formula. For univariate analyses this is simply Surv(time, status)~1 where Surv(time, status) is the outcome variable. When the aim is to control the effect of vars in each element of the series by a fixed set of variables it is Surv(time, status)~x1+x2 where again Surv(time, status) is the outcome and x1 and x2 are confounders.
data	A data.frame in which the formula gets evaluated.
vars	A list of variable names, the changing part of the regression formula.
	passed to publish.coxph

Value

matrix with results

Author(s)

Thomas Alexander Gerds

```
library(survival)
data(pbc)
## collect hazard ratios from three univariate Cox regression analyses
pbc$edema <- factor(pbc$edema,levels=c("0","0.5","1"),labels=c("0","0.5","1"))
uni.hr <- coxphSeries(Surv(time,status==2)~1,vars=c("edema","bili","protime"),data=pbc)
uni.hr

## control the logistic regression analyses for age and gender
## but collect only information on the variables in `vars'.
controlled.hr <- coxphSeries(Surv(time,status==2)~age+sex,vars=c("edema","bili","protime"),data=pbc)
controlled.hr</pre>
```

6 Diabetes

Diabetes

Diabetes data of Dr John Schorling

Description

These data are courtesy of Dr John Schorling, Department of Medicine, University of Virginia School of Medicine. The data consist of 19 variables on 403 subjects from 1046 subjects who were interviewed in a study to understand the prevalence of obesity, diabetes, and other cardiovascular risk factors in central Virginia for African Americans. According to Dr John Hong, Diabetes Mellitus Type II (adult onset diabetes) is associated most strongly with obesity. The waist/hip ratio may be a predictor in diabetes and heart disease. DM II is also agssociated with hypertension - they may both be part of "Syndrome X". The 403 subjects were the ones who were actually screened for diabetes. Glycosolated hemoglobin > 7.0 is usually taken as a positive diagnosis of diabetes.

Format

A data frame with 205 observations on the following 12 variables.

id subject id

chol Total Cholesterol

stab.glu Stabilized Glucose

hdl High Density Lipoprotein

ratio Cholesterol/HDL Ratio

glyhb Glycosolated Hemoglobin

location a factor with levels (Buckingham, Louisa)

age age (years)

gender male or female

height height (inches)

height.europe height (cm)

weight weight (pounds)

weight.europe weight (kg)

frame a factor with levels (small,medium,large)

bp.1s First Systolic Blood Pressure

bp.1d First Diastolic Blood Pressure

bp.2s Second Diastolic Blood Pressure

bp.2d Second Diastolic Blood Pressure

waist in inches

hip hip in inches

time.ppn Postprandial Time when Labs were Drawn in minutes

AgeGroups Categorized age

BMI Categorized BMI

Source

http://192.38.117.59/~tag/Teaching/share/data/Diabetes.html

fixRegressionTable 7

References

Willems JP, Saunders JT, DE Hunt, JB Schorling: Prevalence of coronary heart disease risk factors among rural blacks: A community-based study. Southern Medical Journal 90:814-820; 1997 Schorling JB, Roach J, Siegel M, Baturka N, Hunt DE, Guterbock TM, Stewart HL: A trial of church-based smoking cessation interventions for rural African Americans. Preventive Medicine 26:92-101; 1997.

Examples

data(Diabetes)

fixRegressionTable

Expand regression coefficient table

Description

Expand regression coefficient table

Usage

```
fixRegressionTable(x, varnames, reference.value, reference.style = NULL,
  factorlevels, scale = NULL, nmiss, intercept)
```

Arguments

x object resulting from 1m, glm or coxph.

varnames Names of variables

reference.value

Reference value for reference categories

reference.style

Style for showing results for categorical variables. If "extraline" show an

additional line for the reference category.

factorlevels Levels of the categorical variables.
scale Scale for some or all of the variables

nmiss Number of missing values

intercept Intercept

Details

This function expands results from "regressionTable" with extralines and columns

For factor variables the reference group is shown. For continuous variables the units are shown and for transformed continuous variables also the scale. For all variables the numbers of missing values are added.

Value

a table with regression coefficients

8 followupTable

Author(s)

Thomas Alexander Gerds <tag@biostat.ku.dk>

followupTable Summary tables for a given followup time point.

Description

Summarize baseline variables in groups defined by outcome at a given followup time point

Usage

```
followupTable(formula, data, followup.time, compare.groups, ...)
```

Arguments

formula Formula A formula whose left hand side is a Hist object. In some special cases

it can also be a Surv response object. The right hand side is as in utable.

data A data.frame in which all the variables of formula can be interpreted.

followup.time Time point at which to evaluate outcome status.

compare.groups Method for comparing groups.

... Passed to utable. All arguments of utable can be controlled in this way except

for compare.groups which is set to "Cox". See details.

Details

If compare.groups!=FALSE, p-values are obtained from stopped Cox regression, i.e., all events are censored at follow-up time. A univariate Cox regression model is fitted to assess the effect of each variable on the right hand side of the formula on the event hazard and shown is the p-value of anova(fit), see anova.coxph.

Value

Summary table.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

univariateTable

```
library(survival)
data(pbc)
pbc$edema <- factor(pbc$edema,levels=c("0","0.5","1"),labels=c("0","0.5","1"))
pbc$sex <- factor(pbc$sex,levels=c("m","f"),labels=c("m","f"))
followupTable(Hist(time,status)~age+edema+sex,data=pbc,followup.time=1000)</pre>
```

formatCI 9

formatCI	Formatting confidence intervals	
----------	---------------------------------	--

Description

Format confidence intervals

Usage

```
formatCI(x, lower, upper, show.x = FALSE, handler = "sprintf",
  format = "[1;u]", degenerated = "asis", digits = 2, nsmall = digits,
  trim = TRUE, sep = "", reference.pos, reference.label = "", ...)
```

Arguments

X	not used (for compatibility with format)
lower	Numeric vector of lower limits
upper	Numeric vector of upper limits
show.x	Logical. If TRUE show value of x in front of confidence interval.
handler	Function to format numeric values. Default is sprintf, also supported are format and prettyNum $$
format	Character string in which 1 will be replaced by the value of the lower limit (argument lower) and u by the value of the upper upper limit. For example, (1,u) yields confidence intervals in round parenthesis in which the upper and lower limits are comma separated. Default is [1;u].
degenerated	String to show when lower==upper. Default is '-'
digits	If handler format or prettyNum used format numeric vectors.
nsmall	If handler format or prettyNum used format numeric vectors.
trim	Used to aligning resulting intervals. Also, if handler format or prettyNum used format numeric vectors $\boldsymbol{.}$
sep	Field separator
reference.pos	Position of factor reference
reference.labe	1
	Label for factor reference
	passed to handler

Details

The default format for confidence intervals is [lower; upper].

Value

String vector with confidence intervals

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

10 glmSeries

See Also

plot.ci ci.mean

Examples

```
x=ci.mean(rnorm(10))
formatCI(lower=x[3],upper=x[4])
formatCI(lower=c(0.001,-2.8413),upper=c(1,3.0008884))
# change format
formatCI(lower=c(0.001,-2.8413),upper=c(1,3.0008884),format="(1, u)")
# show x
formatCI(x=x\$mean,lower=x\$lower,upper=x\$upper,format="(1, u)",show.x=TRUE)
# if the first lower limit is shorter than the second (missing negative sign),
# then, option trim will make a difference:
formatCI(lower=c(0.001,-2.8413),upper=c(1,3.0008884),format="l--u",trim=FALSE)
formatCI(lower=c(0.001,-2.8413),upper=c(1,3.0008884),format="l--u",trim=TRUE)
# change of handler function
1 < c(-0.0890139, 0.0084736, 144.898333, 0.000000001)
u \leftarrow c(0.03911392, 0.3784706, 3338944.8821221, 0.00001)
\label{lower} cbind(format=formatCI(lower=1, upper=u, format="[1;u)", digits=2, nsmall=2, handler="format"), and the sum of the su
            prettyNum=formatCI(lower=1, upper=u, format="[1;u)", digits=2, nsmall=2, handler="prettyNum"),
            sprintf=formatCI(lower=1,upper=u,format="[1;u)",digits=2,nsmall=2,handler="sprintf"))
```

glmSeries

Run a series of generalized linear regression analyses

Description

Run a series of generalized linear regression analyses for a list of predictor variables and summarize the results in a table. The regression models can be adjusted for a fixed set of covariates.

Usage

```
glmSeries(formula, data, vars, ...)
```

Arguments

formula	The fixed part of the regression formula. For univariate analyses this is simply y^1 where y is the outcome variable. When the aim is to control the effect of vars in each element of the series by a fixed set of variables it is $y^x_1+x_2$ where again y is the outcome and x_1 and x_2 are confounders.
data	A data.frame in which we evaluate the formula.
vars	A list of variable names, the changing part of the regression formula.
	passed to glm

Value

Matrix with regression coefficients, one for each element of vars.

labelUnits 11

Author(s)

Thomas Alexander Gerds

Examples

labelUnits

labelUnits

Description

Label output tables

Usage

```
labelUnits(x, ...)
```

Arguments

x A matrix obtained with univariateTable.

... not used

Details

Modify labels and values of variables in summary tables

Value

The re-labeled matrix

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

univariateTable

12 lazyFactorCoding

Examples

lazyFactorCoding

Efficient coding of factor levels

Description

This function eases the process of generating factor variables with relevant labels. All variables in a data frame with less than a user set number of levels result in a line which suggests levels and labels. The result can then be modified for use.

Usage

```
lazyFactorCoding(data, max.levels = 10)
```

Arguments

data Data frame in which to search for categorical variables.

max.levels Treat non-factor variables only if the number of unique values less than max.levels.

Defaults to 10.

Details

The code needs to be copy-and-pasted from the R-output buffer into the R-code buffer. This can be customized for the really efficiently working people e.g. in emacs.

Value

R-code one line for each variable.

Author(s)

Thomas Alexander Gerds

```
data(Diabetes)
lazyFactorCoding(Diabetes)
```

org 13

org

Wrapper function for publish with output format org

Description

```
Wrapper for publish(...,org=TRUE)
```

Usage

```
org(x, ...)
```

Arguments

x object to format as orgpassed to publish

Value

See publish

Author(s)

Thomas Alexander Gerds

parseInteractionTerms Parse interaction terms

Description

Parse interaction terms for regression tables

Usage

```
parseInteractionTerms(terms, xlevels, units, format.factor, format.contrast,
  format.scale, format.scale.unit, sep = ": ", ...)
```

Arguments

terms Terms of a formula

xlevels Factor levels corresponding to the variables in terms

units named list with unit labels. names should match variable names in formula.

format.factor For categorical variables. A string which specifies the format for factor labels.

The string should contain the keywords "var" and "level" which will be replaced by the name of the variable and the current level, respectively. Default is

"var(level)".

format.contrast

For categorical variables. A string which specifies the format for constrast statements. The string should contain the keywords "var", "level" and "ref" which will be replaced by the name of the variable, the current level and the reference level, respectively.

14 parseInteractionTerms

format.scale For continuous variables. For categorical variables. A string which specifies the format for factor labels. The string should contain the keywords "var" and "level" which will be replaced by the name of the variable and the current level, respectively. Default is "var(level)".

format.scale.unit

For continuous variables which have a unit. A string which specifies the format for factor labels. The string should contain the keywords "var" and "unit" which will be replaced by the name of the variable and the unit, respectively. Default is "var(unit)".

sep a character string to separate the terms. Default is ": ".

... Not yet used

Details

Prepare a list of contrasts which combines regression coefficients to describe statistical interactions.

Value

List of contrasts which can be passed to lava::estimate.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

lava::estimate

```
tt <- terms(formula(SBP~age+sex*BMI))</pre>
xlev <- list(sex=c("male", "female"), BMI=c("normal", "overweight", "obese"))</pre>
parseInteractionTerms(terms=tt,xlevels=xlev)
parseInteractionTerms(terms=tt,xlevels=xlev,format.factor="var level")
parseInteractionTerms(terms=tt,xlevels=xlev,format.contrast="var(level:ref)")
tt2 <- terms(formula(SBP~age*factor(sex)+BMI))</pre>
xlev2 <- list("factor(sex)"=c("male", "female"))</pre>
parseInteractionTerms(terms=tt2,xlevels=xlev2)
parseInteractionTerms(terms=tt2,xlevels=xlev2,units=list(age="yrs"))
data(Diabetes)
fit <- glm(bp.2s~age*factor(gender)+BMI,data=Diabetes)</pre>
parseInteractionTerms(terms=terms(fit$formula),xlevels=fit$xlevels,
                       format.scale="var -- level:ref",units=list("age"='years'))
parseInteractionTerms(terms=terms(fit$formula),xlevels=fit$xlevels,
                       format.scale.unit="var -- level:ref",units=list("age"='years'))
it <- parseInteractionTerms(terms=terms(fit$formula),xlevels=fit$xlevels)</pre>
ivars <- unlist(lapply(it,function(x)attr(x,"variables")))</pre>
lava::estimate(fit,function(p)lapply(unlist(it),eval,envir=sys.parent(-1)))
```

plot.ci 15

-			
nl	ot.	ci	
ν_{\perp}	ωс.	. Ст	

Plot confidence intervals

Description

Function to plot confidence intervals

Usage

```
## S3 method for class 'ci'
plot(x, xlim, xlab = "", labels, ...)
```

Arguments

X	List, data.frame or other object of this form containing point estimates (first element) and the corresponding confidence intervals as elements lower and upper.
xlim	Limit of the x-axis
xlab	Label for the y-axis
labels	labels
	Used to transport arguments to plotConfidence.

Details

Function to plot means and other point estimates with confidence intervals

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

```
data(Diabetes)
x=ci.mean(bp.2s^AgeGroups,data=Diabetes)
plot(x,title.labels="Age groups",xratio=c(0.4,0.3))
x=ci.mean(bp.2s/500~AgeGroups+gender,data=Diabetes)
plot(x,xratio=c(0.4,0.2))
plot(x,xratio=c(0.4,0.2),
     labels=split(x$labels[,"AgeGroups"],x$labels[,"gender"]),
     title.labels="Age groups")
## Not run:
plot(x, leftmargin=0, rightmargin=0)
plotConfidence(x, leftmargin=0, rightmargin=0)
data(CiTable)
with(CiTable,plotConfidence(x=list(HazardRatio),
                               lower=lower,
                               upper=upper,
                               labels=CiTable[,2:6],
                               factor.reference.pos=c(1,10,19),
                               format="(u-1)",
                               points.col="blue",
```

16 plot.regressionTable

plot.regressionTable Plotting regression coefficients with confidence limits

Description

Plotting regression coefficients with confidence limits

Usage

```
## S3 method for class 'regressionTable'
plot(x, xlim, xlab, style = 1, ...)
```

Arguments

X	regression table obtained with regressionTable
xlim	Limits for x-axis
xlab	Label for x-axis
style	Determines how to arrange variable names and their corresponding units
	passed to plotConfidence

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

regressionTable

```
## linear regression
data(Diabetes)
f <- glm(bp.1s~AgeGroups+chol+gender+location,data=Diabetes)
rtf <- regressionTable(f,factor.reference = "inline")
plot(rtf,cex=1.3)</pre>
```

```
## logistic regression
data(Diabetes)
f <- glm(I(BMI>25)~bp.1s+AgeGroups+chol+gender+location,data=Diabetes,family=binomial)
rtf <- regressionTable(f,factor.reference = "inline")</pre>
plot(rtf,cex=1.3)
## Poisson regression
data(trace)
fit <- glm(dead ~ smoking+ sex+ age+Time+offset(log(ObsTime)), family = poisson,data=trace)</pre>
rtab <- regressionTable(fit,factor.reference = "inline")</pre>
plot(rtab,xlim=c(0.85,1.15),cex=1.8,xaxis.cex=1.5)
## Cox regression
library(survival)
data(pbc)
coxfit <- coxph(Surv(time,status!=0)~age+log(bili)+log(albumin)+factor(edema)+sex,data=pbc)</pre>
pubcox <- publish(coxfit)</pre>
plot(pubcox,cex=1.5,xratio=c(0.4,0.2))
```

plotConfidence

Plot confidence intervals

Description

Function to plot confidence intervals with their values and additional labels. One anticipated use of this function involves first the generation of a regression object, then arrangement of a result table with "regressionTable", further arrangement of table with with e.g. "fixRegressionTable" and various user defined changes - and then finally table along with forest plot using the current function.

Usage

```
plotConfidence(x, y.at, lower, upper, pch = 16, cex = 1, lwd = 1,
    col = 4, xlim, xlab, labels, title.labels, values, title.values,
    section.pos, section.sep, section.title = NULL, section.title.x,
    section.title.offset, order, leftmargin = 0.025, rightmargin = 0.025,
    stripes, factor.reference.pos, factor.reference.label = "Reference",
    factor.reference.pch = 16, refline = 1, title.line = TRUE, xratio,
    y.offset = 0, y.title.offset, digits = 2, format,
    extremearrows.length = 0.05, extremearrows.angle = 30, add = FALSE,
    layout = TRUE, xaxis = TRUE, ...)
```

Arguments

Х

Either a vector containing the point estimates or a list whose first element contains the point estimates. Further list elements can contain the confidence intervals and labels. In this case the list needs to have names 'lower' and 'upper' to indicate the values of the lower and the upper limits of the confidence intervals, respectively, and may have an element 'labels' which is a vector or matrix or list with labels.

y.at

Optional vector of y-position for the confidence intervals and corresponding values and labels.

Lower confidence limits. Used if object x is a vector and if x is a list lower

overwrites element x\$lower. upper Upper confidence limits. Used if object x is a vector and if x is a list upper overwrites element x\$upper. Symbol for points. pch cex Defaults size of all figures and plotting symbol. Single elements are controlled separately. See lwd Default width of all lines Single elements are controlled separately. See col Default colour of confidence intervals. xlim Plotting limits for the confidence intervals. See also xratio on how to control the layout. xlab Label for the x-axis. labels Vector or matrix or list with labels. Used if object x is a vector and if x is a list it overwrites element x\$labels. To avoid drawing of labels, set labels=FALSE. title.labels Main title for the column which shows the labels. If labels is a matrix or list title.labels should be a vector with as many elements as labels has columns or elements. values Either logical or vector, matrix or list with values. If values=TRUE values are constructed according to format from lower and upper overwrites constructed values. If values=FALSE do not draw values. title.values Main title for the column values. If values is a matrix or list title.labels should be a vector with as many elements as values has columns or elements. Vector with y-axis posititions for section.titles. section.pos Amount of space between paragraphs (applies only if labels is a named list) section.sep

Intermediate section headings. section.title.x

section.title

lower

x-position for section.titles

section.title.offset

Y-offset for section.titles

order Order of the three columns: labels, confidence limits, values. See examples.

leftmargin Percentage of plotting region used for leftmargin. Default is 0.025. See also

Details.

Percentage of plotting region used for rightmargin. Default is 0.025. See also rightmargin

Details.

Vector of up to three Logicals. If TRUE draw stripes into the background. The stripes

first applies to the labels, the second to the graphical presentation of the confi-

dence intervals and the third to the values. Thus, stripes

factor.reference.pos

Position at which factors attain reference values.

factor.reference.label

Label to use at factor.reference.pos instead of values.

factor.reference.pch

Plotting symbol to use at factor.reference.pos

Position of a vertical line to indicate the null hypothesis. Default is 1 which refline

would work for odds ratios and hazard ratios.

title.line Position of a horizontal line to separate the title line from the plot

One or two values between 0 and 1 which determine how to split the plot window xratio

in horizontal x-direction. If there are two columns (labels, CI) or (CI, values) only one value is used and the default is 0.618 (goldener schnitt) which gives the graphical presentation of the confidence intervals 38.2 graph. The remaining 61.8 If there are three columns (labels, CI, values), xratio has two values which default to fractions of 0.7 according to the relative widths of labels and values, thus by default only 0.3 are used for the graphical presentation of the confidence

intervals. The remaining 30 confidence intervals. See examles.

Either a single value or a vector determining the vertical offset of all rows. If it y.offset

> is a single value all rows are shifted up (or down if negative) by this value. This can be used to add a second set of confidence intervals to an existing graph or to

achieve a visual grouping of rows that belong together. See examples.

y.title.offset Numeric value by which to vertically shift the titles of the labels and values.

digits Number of digits, passed to pubformat and formatCI.

format Format for constructing values of confidence intervals. Defaults to '(u;l)' if there

are negative lower or upper values and to '(u-l)' otherwise.

extremearrows.length

Length of the arrows in case of confidence intervals that stretch beyond xlim.

extremearrows.angle

Angle of the arrows in case of confidence intervals that stretch beyond xlim.

Logical. If TRUE do not draw labels or values and add confidence intervals to add

existing plot.

layout Logical. If FALSE do not call layout. This is useful when several plotConfidence

results should be combined in one graph and hence layout is called externally.

Logical. If FALSE do not draw x-axis. xaxis

Used to control arguments of the following subroutines: plot: Applies to plot-. . .

ting frame of the graphical presentation of confidence intervals. Use arguments of plot, e.g., plot.main="Odds ratio". points, arrows: Use arguments of points and arrows, respectively. E.g., points.pch=8 and arrows.lwd=2. refline: Use arguments of segments, e.g., refline.lwd=2. See segments. labels, values, title.labels, title.values: Use arguments of text, e.g., labels.col="red" or title.values.cex=1.8. xaxis: Use arguments of axis, e.g., xaxis.at=c(-0.3,0,0.3) xlab: Use arguments of mtext, e.g., xlab.line=2.

stripes: Use arguments of stripes. See examples. See examples for usage.

Details

Function to plot means and other point estimates with confidence intervals, their values and additional labels. Horizonal margins as determined by par()\$mar are ignored. Instead layout is used to divide the plotting region horizontally into two or three parts plus leftmargin and rightmargin.

When values is FALSE there are only two parts. The default order is labels on the left confidence intervals on the right. When no labels are given or labels is FALSE there are only two parts. The default order is confidence intervals on the left values on the right.

The default order of three parts from left to right is labels, confidence intervals, values. The order can be changed as shown by the examples below. The relative widths of the two or three parts need to be adapted to the actual size of the text of the labels. This depends on the plotting device and the size of the font and figures and thus has to be adjusted manually.

Oma can be used to further control horizontal margins, e.g., par(oma=c(0,4,0,4)).

If confidence limits extend beyond the range determined by xlim, then arrows are drawn at the x-lim borders to indicate that the confidence limits continue.

Value

List of dimensions and coordinates

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

```
library(Publish)
data(CiTable)
## A first draft version of the plot is obtained as follows
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper","p")],
          labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")])
## if argument labels is a named list the table is subdivided:
labellist <- split(CiTable[,c("Dose","Mean","SD","n")],CiTable[,"Drug"])</pre>
labellist
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")], labels=labellist)
## The graph consist of at most three columns:
##
## column 1: labels
## column 2: printed values of the confidence intervals
## column 3: graphical presentation of the confidence intervals
## NOTE: column 3 appears always, the user decides if also
         column 1, 2 should appear
##
## The columns are arranged with the function layout
## and the default order is 1,3,2 such that the graphical
## display of the confidence intervals appears in the middle
##
## the order of appearance of the three columns can be changed as follows
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               order=c(1,3,2))
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               order=c(2,3,1))
\#\# if there are only two columns the order is 1, 2
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               values=FALSE,
               order=c(2,1)
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               values=FALSE,
               order=c(1,2))
```

```
## The relative size of the columns needs to be controlled manually
## by using the argument xratio. If there are only two columns
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
              labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               xratio=c(0.4, 0.15))
## The amount of space on the left and right margin can be controlled
## as follows:
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               xratio=c(0.4, 0.15),
               leftmargin=0.1,rightmargin=0.00)
## The actual size of the current graphics device determines
## the size of the figures and the space between them.
## The sizes and line widths are increased as follows:
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               xlab="Hazard ratio",
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               points.cex=3,
               cex=2,
               1wd=3,
               xaxis.lwd=1.3,
               xaxis.cex=1.3)
## Note that 'cex' of axis ticks is controlled via 'par' but
## cex of the label via argument 'cex' of 'mtext'.
## The sizes and line widths are decreased as follows:
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
              labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               cex=0.8,
               1wd=0.8,
               xaxis.lwd=0.8,
               xaxis.cex=0.8)
## Another good news is that all figures can be controlled separately
## The size of the graphic device can be controlled in the usual way, e.g.:
## Not run:
   pdf("~/tmp/testCI.pdf",width=8,height=8)
   plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
                   labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")])
   dev.off()
## End(Not run)
## More control of the x-axis and confidence intervals that
## stretch outside the x-range end in an arrow.
## the argument xlab.line adjusts the distance of the x-axis
## label from the graph
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               xlab="Hazard ratio",
               xlab.line=1.8,
               xaxis.at=c(0.8,1,1.3),
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               xlim=c(0.8,1.3))
```

```
## log-scale
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               xlab="Hazard ratio",
               xlab.line=1.8,
               xaxis.at=c(0.8,1,1.3),
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               xlim=c(0.8,1.3),plot.log="x")
## More pronounced arrows
## Coloured xlab expression
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               xlab=expression(HR[1](s)),
               xlab.line=1.8,
               xlab.col="darkred",
               extremearrows.angle=50,
               extremearrows.length=0.1,
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               xlim=c(0.8,1.3))
## Controlling the labels and their titles
## and the values and their titles
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               xlab="Hazard ratio",
               title.values=expression(bold(HR (CI[95]))),
               title.labels=c("Drug/Time","Dose","Mean","St.dev.","N"),
               factor.reference.pos=c(1,10,19),
               factor.reference.pch=16,
               cex=1.3.
               xaxis.at=c(0.75,1,1.25,1.5,2))
## For factor reference groups, one may want to replace the
## confidence intervals by the word Reference, as in the previous example.
## To change the word 'Reference' we use the argument factor.reference.label:
## To change the plot symbol for the reference lines factor.reference.pch
## To remove the plot symbol in the reference lines use 'NA' as follows:
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               xlab="Hazard ratio",
               factor.reference.label="Ref",
               title.values=expression(bold(HR (CI[95]))),
               title.labels=c("Drug/Time","Dose","Mean","St.dev.","N"),
               factor.reference.pos=c(1,10,19),
               factor.reference.pch=NA,
               cex=1.3,
               xaxis.at=c(0.75,1,1.25,1.5,2))
## changing the style of the graphical confidence intervals
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               xlab="Hazard ratio",
               factor.reference.pos=c(1,10,19),
               points.pch=15,
               points.col=rainbow(27),
               points.cex=2,
               arrows.col="darkblue",
```

print.ci 23

```
cex=1.3,
               order=c(1,3,2),
               xaxis.at=c(0.75,1,1.25,1.5))
## the values column of the graph can have multiple columns as well
## to illustrate this we create the confidence intervals
## before calling the function and then cbind them
## to the pvalues
HR <- pubformat(CiTable[,6])</pre>
CI95 <- formatCI(lower=CiTable[,7],upper=CiTable[,8],format="(1-u)")</pre>
pval <- format.pval(CiTable[,9],digits=3,eps=10^{-3})</pre>
pval[pval=="NA"] <- ""</pre>
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               values=list("HR"=HR,"CI-95"=CI95,"P-value"=pval),
               cex=1.2.
               xratio=c(0.5,0.3))
## Finally, vertical columns can be delimited with background color
## NOTE: this may slow things down and potentially create
         large figures (many bytes)
col1 <- rep(c(prodlim::dimColor("green",density=22),</pre>
              prodlim::dimColor("green")),length.out=9)
col2 <- rep(c(prodlim::dimColor("orange",density=22),</pre>
              prodlim::dimColor("orange")),length.out=9)
col3 <- rep(c(prodlim::dimColor("blue",density=22),</pre>
              prodlim::dimColor("blue")),length.out=9)
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               stripes=c(1,0,1),
               stripes.col=c(col1,col2,col3))
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               stripes=c(1,1,1),
               stripes.col=c(col1,col2,col3))
threegreens <- c(prodlim::dimColor("green",density=55),</pre>
                 prodlim::dimColor("green",density=33),
                 prodlim::dimColor("green",density=22))
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
               labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
               values=FALSE,
               xlim=c(0.75,1.5),
               stripes=c(1,1,1),
               xratio=c(0.5, 0.15),
               stripes.horizontal=c(0,9,18,27)+0.5,
               stripes.col=threegreens)
```

24 print.ci

Description

Print confidence intervals

Usage

```
## S3 method for class 'ci'
print(x, se = FALSE, print = TRUE, ...)
```

Arguments

X	Object containing point estimates and the corresponding confidence intervals
se	If TRUE add the standard error.
print	Logical: if FALSE do not actually print confidence intervals but just return them invisibly.

... passed to summary.ci

Details

This format of the confidence intervals is user-manipulable.

Value

A string: the formatted confidence intervals

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

```
ci plot.ci formatCI summary.ci
```

```
library(lava)
m <- lvm(Y~X)
m <- categorical(m, Y~X,K=4)
set.seed(4)
d <- sim(m,24)
ci.mean(Y~X,data=d)
x <- ci.mean(Y~X,data=d)
print(x,format="(1,u)")</pre>
```

print.table2x2 25

print.table2x2

print results of 2x2 contingency table analysis

Description

print results of 2x2 contingency table analysis

Usage

```
## S3 method for class 'table2x2'
print(x, digits = 1, ...)
```

Arguments

```
x object obtained with table2x2digits rounding digits... not used
```

Value

invisible x

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

table2x2

Examples

```
 \begin{array}{l} table2x2(table("marker"=rbinom(100,1,0.4),"response"=rbinom(100,1,0.1))) \\ table2x2(matrix(c(71,18,38,8),ncol=2),stats="table") \\ table2x2(matrix(c(71,18,38,8),ncol=2),stats=c("rr","fisher")) \end{array}
```

print.univariateTable Printing univariate tables

Description

Print function for univariate tables

Usage

```
## S3 method for class 'univariateTable'
print(x, ...)
```

26 pubformat

Arguments

x An object obtained with univariateTable

... Passed to summary.univariateTable

Details

This function is simply calling summary.univariateTable

Value

The result of summary.univariateTable(x)

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

univariateTable

pubformat

Format numbers for publication

Description

Format numbers according to a specified handler function. Currently supported are sprintf, format and prettyNum.

Usage

```
pubformat(x, digits = 2, nsmall = digits, handler = "sprintf", ...)
```

Arguments

x numeric vector
digits number of digits
nsmall see handler

handler String specififying the name of the function which should perform the format-

ting. See sprintf, format and prettyNum.

... Passed to handler function if applicable, i.e., not to sprintf.

Value

Formatted number

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

publish 27

See Also

```
sprintf, format, prettyNum
```

Examples

```
\label{eq:pubformat} $$ pubformat(c(0.000143,12.8,1)) $$ pubformat(c(0.000143,12.8,1),handler="format") $$ pubformat(c(0.000143,12.8,1),handler="format",trim=TRUE) $$ pubformat(c(0.000143,12.8,1),handler="prettyNum") $$
```

publish

Publishing tables and figures

Description

Publish provides summary functions for data and results of statistical analysis in ready-for-publication design

Usage

```
publish(object, ...)
```

Arguments

object object to be published
... Passed to method.

Details

Some warnings are currently suppressed.

Value

Tables and figures

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

publish.CauseSpecificCox publish.ci publish.coxph publish.glm publish.riskRegression publish.survdiff

```
publish.CauseSpecificCox
```

Tabulizing cause-specific hazard ratio from all causes with confidence limits and Wald test p-values.

Description

Publish cause-specific Cox models

Usage

```
## S3 method for class 'CauseSpecificCox'
publish(object, cause, confint.method, pvalue.method,
  factor.reference = "extraline", units = NULL, print = TRUE, ...)
```

Arguments

```
object
                  Cause-specific hazard model obtained with CSC.
                  Show a table for this cause. If omitted, list all causes.
cause
confint.method See regressionTable
pvalue.method
                  See regressionTable
factor.reference
                  See regressionTable
                  See regressionTable
units
                  If TRUE print the table(s).
print
                  passed on to control formatting of parameters, confidence intervals and p-values.
. . .
                  See summary.regressionTable.
```

Details

The cause-specific hazard ratio's are combined into one table.

Value

Table with cause-specific hazard ratios, confidence limits and p-values.

Author(s)

Thomas Alexander Gerds <tab@biostat.ku.dk>

publish.ci 29

pu			
Du			

Publish tables with confidence intervals

Description

Publish tables with confidence intervals

Usage

```
## S3 method for class 'ci'
publish(object, format = "[u;l]", se = FALSE, ...)
```

Arguments

object Object of class ci containing point estimates and the corresponding confidence

intervals

format A string which indicates the format used for confidence intervals. The string

is passed to formatCI with two arguments: the lower and the upper limit. For example '(1;u)' yields confidence intervals with round parenthesis in which

the upper and the lower limits are separated by semicolon.

se If TRUE add standard error.

... passed to publish

Details

This function calls summary.ci with print=FALSE and then publish

Value

table with confidence intervals

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

summary.ci

```
data(Diabetes)
publish(ci.mean(chol~location+gender,data=Diabetes),org=TRUE)
```

30 publish.coxph

publish.coxph

Tabulize hazard ratios with confidence intervals and p-values.

Description

Tabulize the part of the result of a Cox regression analysis which is commonly shown in publications.

Usage

```
## S3 method for class 'coxph'
publish(object, confint.method, pvalue.method, print = TRUE,
   factor.reference = "extraline", units = NULL, probindex = FALSE, ...)
```

Arguments

```
object A coxph object.

confint.method See regressionTable

pvalue.method See regressionTable

print If FALSE do not print results.

factor.reference
See regressionTable

units See regressionTable

probindex Logical. If TRUE show coefficients on probabilistic index scale instead of hazard ratio scale.

... passed to summary.regressionTable and also to labelUnits.
```

Details

Transforms the log hazard ratios to hazard ratios and returns them with confidence limits and p-values. If explanatory variables are log transformed or log2 transformed, a scaling factor is multiplied to both the log-hazard ratio and its standard-error.

Value

Table with hazard ratios, confidence intervals and p-values.

Author(s)

Thomas Alexander Gerds

publish.glm 31

```
## forest plot
plot(publish(fit),cex=1.3)
publish (\texttt{fit,ci.digits=2,pvalue.eps=0.01,pvalue.digits=2,pvalue.stars=TRUE)}
publish(fit,ci.digits=2,ci.handler="prettyNum",pvalue.eps=0.01,
        pvalue.digits=2,pvalue.stars=TRUE)
publish(fit, ci.digits=2, ci.handler="sprintf", pvalue.eps=0.01,
        pvalue.digits=2,pvalue.stars=TRUE, ci.trim=FALSE)
fit2 = coxph(Surv(time, status!=0)~age+sex+edema+log(bili, base=2)+log(albumin)+log(protime),
    data=na.omit(pbc))
publish(fit2)
# with cluster variable
fit3 = coxph(Surv(time, status!=0)~age+cluster(sex)+edema+log(bili, base=2)
                                     +log(albumin)+log(protime),
    data=na.omit(pbc))
publish(fit3)
# with strata and cluster variable
fit4 = coxph(Surv(time,status!=0)~age+cluster(sex)+strata(edema)+log(bili,base=2)
                 +log(albumin)+log(protime),
    data=pbc)
publish(fit4)
```

publish.glm

Tabulize regression coefficients with confidence intervals and p-values.

Description

Tabulate the results of a generalized linear regression analysis.

Usage

```
## $3 method for class 'glm'
publish(object, confint.method, pvalue.method, digits = c(2, 4),
    print = TRUE, factor.reference = "extraline",
    intercept = ifelse((is.null(object$family) || object$family$family ==
    "gaussian"), 1L, 0L), units = NULL, ...)
```

Arguments

```
object A glm object.

confint.method See regressionTable.

pvalue.method See regressionTable.

digits A vector of two integer values. These determine how to round numbers (first value) and p-values (second value). E.g., c(1,3) would mean 1 digit for all numbers and 3 digits for p-values. The actual rounding is done by summary.regressionTable.

print If FALSE do not print results.

factor.reference
```

Style for showing results for categorical. See regressionTable.

32 publish.glm

intercept See regressionTable.
units See regressionTable.

... passed to summary.regressionTable and also to labelUnits.

reference Style for showing results for categorical variables. If "extraline" show an

additional line for the reference category.

Details

The table shows changes in mean for linear regression and odds ratios for logistic regression (family = binomial).

Value

Table with regression coefficients, confidence intervals and p-values.

Author(s)

Thomas Alexander Gerds <tag@biostat.ku.dk>

```
data(Diabetes)
## Linear regression
f = glm(bp.2s~frame+gender+age,data=Diabetes)
publish(f)
publish(f,factor.reference="inline")
publish(f,pvalue.stars=TRUE)
publish(f,ci.format="(1,u)")
### interaction
fit = glm(bp.2s~frame+gender*age,data=Diabetes)
summary(fit)
publish(fit)
Fit = glm(bp.2s~frame*gender+age,data=Diabetes)
publish(Fit)
## Logistic regression
Diabetes$hyper1 <- factor(1*(Diabetes$bp.1s>140))
lrfit <- glm(hyper1~frame+gender+age,data=Diabetes,family=binomial)</pre>
publish(lrfit)
### interaction
lrfit1 <- glm(hyper1~frame+gender*age,data=Diabetes,family=binomial)</pre>
publish(lrfit1)
lrfit2 <- glm(hyper1~frame*gender+age,data=Diabetes,family=binomial)</pre>
publish(lrfit2)
## Poisson regression
data(trace)
trace <- Units(trace,list("age"="years"))</pre>
fit <- glm(dead ~ smoking+sex+age+Time+offset(log(ObsTime)), family="poisson",data=trace)</pre>
rtf <- regressionTable(fit,factor.reference = "inline")</pre>
summary(rtf)
```

publish.htest 33

```
publish(fit)
## gls regression
library(nlme)
library(lava)
m <- lvm(Y ~ X1 + gender + group + Interaction)</pre>
distribution(m, ~gender) <- binomial.lvm()</pre>
distribution(m, ~group) <- binomial.lvm(size = 2)</pre>
constrain(m, Interaction ~ gender + group) <- function(x)\{x[,1]*x[,2]\}
d <- sim(m, 1e2)
d$gender <- factor(d$gender, labels = letters[1:2])</pre>
d$group <- factor(d$group)</pre>
e.gls <- gls(Y ~ X1 + gender*group, data = d,
              weights = varIdent(form = ~1|group))
publish(e.gls)
## 1me
library(nlme)
fm1 <- lme(distance ~ age*Sex,</pre>
            random = ~1|Subject,
             data = Orthodont)
res <- publish(fm1)</pre>
```

publish.htest

Pretty printing of test results.

Description

Pretty printing of test results.

Usage

```
## S3 method for class 'htest'
publish(object, title, ...)
```

Arguments

object Result of t.test or wilcox.test
title Decoration also used to name output

... Used to transport arguments ci.arg and pvalue.arg to subroutines format.pval

and formatCI. See also prodlim::SmartControl.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

```
data(Diabetes)
publish(t.test(bp.2s~gender,data=Diabetes))
publish(wilcox.test(bp.2s~gender,data=Diabetes))
publish(with(Diabetes,t.test(bp.2s,bp.1s,paired=TRUE)))
publish(with(Diabetes,wilcox.test(bp.2s,bp.1s,paired=TRUE)))
```

publish.matrix

publish.matrix Publishing a matrix in raw, org, latex, or muse form	publish.matrix	Publishing a r	matrix in raw,	org, latex, o	or muse forma
---	----------------	----------------	----------------	---------------	---------------

Description

This is the heart of the Publish package

Usage

```
## S3 method for class 'matrix'
publish(object, title, colnames = TRUE, rownames = TRUE,
  col1name = "", digits = 4, sep = " ", endhead, endrow, style,
  inter.lines, latex = FALSE, wiki = FALSE, org = FALSE,
  markdown = FALSE, tabular = TRUE, latex.table.format = NA,
  latex.hline = 1, latex.nodollar = FALSE, ...)
```

Arguments

latex.hline

2	5022202			
	object	Matrix to be published		
	title	Title for table, only in wiki and muse format		
	colnames	If TRUE show column names		
	rownames	If TRUE show row names		
	col1name	Name for first column		
	digits	Numbers are rounded according to digits		
	sep	Field separator when style is "none"		
	endhead	String to be pasted at the end of the first row (header)		
	endrow	String to be pasted at the end of each row		
	style	Table style for export to "latex", "org", "markdown", "wiki", "none". Overwritten by argments below.		
	inter.lines	A named list which contains strings to be placed between the rows of the table. An element with name "0" is used to place a line before the first column, elements with name " r " are placed between line r and $r+1$.		
	latex	If TRUE use latex table format		
	wiki	If TRUE use mediawiki table format		
	org	If TRUE use emacs orgmode table format		
	markdown	If TRUE use markdown table format		
	tabular	For style latex only: if TRUE enclose the table in begin/end tabular environement.		
	latex.table.format			
		For style latex only: format of the tabular environement.		

For style latex only: if TRUE add hline statements add the end of each line.

Used to transport arguments. Currently supports wiki.class.

latex.nodollar For style latex only: if TRUE do not enclose numbers in dollars.

publish.MIresult 35

Examples

publish.MIresult

Present logistic regression and Cox regression obtained with mitools::MIcombine based on smcfcs::smcfcs multiple imputation analysis

Description

Regression tables after multiple imputations

Usage

```
## S3 method for class 'MIresult'
publish(object, confint.method, pvalue.method,
  digits = c(2, 4), print = TRUE, factor.reference = "extraline",
  intercept, units = NULL, fit, data, ...)
```

Arguments

object Object obtained with mitools::MIcombine based on smcfcs::smcfcs multiple im-

putation analysis

confint.method No options here. Only Wald type confidence intervals.

pvalue.method No options here. Only Wald type tests.

digits Rounding digits for all numbers but the p-values.

print If FALSE suppress printing of the results

factor.reference

Style for showing results for categorical. See regressionTable.

intercept See regressionTable.
units See regressionTable.

fit One fitted model using the same formula as object. This can be the fit to the

complete case data or the fit to one of the completed data. It is used to get

xlevels, formula and terms. For usage see examples. is used to fit

data Original data set which includes the missing values

... passed to summary.regressionTable, labelUnits and publish.default.

Details

Show results of smcfcs based multiple imputations of missing covariates in publishable format

36 publish.MIresult

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

```
## Not run:
## continuous outcome: linear regression
# lava some data with missing values
library(riskRegression)
set.seed(7)
d=sampleData(78)
## generate missing values
d[X1==1,X6:=NA]
d[X2==1,X3:=NA]
d=d[,.(X8,X4,X3,X6,X7)]
sapply(d,function(x)sum(is.na(x)))
# multiple imputation (should set m to a large value)
library(smcfcs)
library(mitools)
set.seed(17)
f= smcfcs(d,smtype="lm",
           smformula=X8~X4+X3+X6+X7,
           method=c("","","logreg","norm",""),m=3)
ccfit=lm(X8~X4+X3+X6+X7,data=d)
mifit=MIcombine(with(imputationList(f$impDatasets),
                lm(X8~X4+X3+X6+X7)))
publish(mifit,fit=ccfit,data=d)
publish(ccfit)
## binary outcome
# lava some data with missing values
library(riskRegression)
set.seed(7)
db=sampleData(78,outcome="binary")
## generate missing values
db[X1==1,X6:=NA]
db[X2==1,X3:=NA]
db=db[,.(Y,X4,X3,X6,X7)]
sapply(db,function(x)sum(is.na(x)))
# multiple imputation (should set m to a large value)
library(smcfcs)
library(mitools)
set.seed(17)
fb= smcfcs(db,smtype="logistic",
           smformula=Y~X4+X3+X6+X7,
           method=c("","","logreg","norm",""),m=2)
\texttt{ccfit=glm}(Y^{\sim}X4+X3+X6+X7,\texttt{family="binomial"},\texttt{data=db})
mifit=MIcombine(with(imputationList(fb$impDatasets),
                glm(Y~X4+X3+X6+X7,family="binomial")))
publish(mifit,fit=ccfit)
publish(ccfit)
```

publish.riskRegression

37

```
## survival: Cox regression
library(smcfcs)
library(mitools)
library(survival)
# lava some data with missing values
library(riskRegression)
set.seed(7)
ds=sampleData(78,outcome="survival")
## generate missing values
ds[X5==1,X6:=NA]
ds[X2==1,X3:=NA]
ds=ds[,.(time,event,X4,X3,X6,X7)]
sapply(ds,function(x)sum(is.na(x)))
set.seed(17)
fs= smcfcs(ds,smtype="coxph",
           smformula="Surv(time,event)~X4+X3+X6+X7",
           method=c("","","","logreg","norm",""),m=2)
ccfit=coxph(Surv(time,event)~X4+X3+X6+X7,data=ds)
mifit=MIcombine(with(imputationList(fs$impDatasets),
                coxph(Surv(time,event)~X4+X3+X6+X7)))
publish(mifit,fit=ccfit,data=ds)
publish(ccfit)
## competing risks: Cause-specific Cox regression
library(survival)
library(smcfcs)
library(mitools)
# lava some data with missing values
library(riskRegression)
set.seed(7)
dcr=sampleData(78,outcome="competing.risks")
## generate missing values
dcr[X5==1,X6:=NA]
dcr[X2==1,X3:=NA]
dcr=dcr[,.(time,event,X4,X3,X6,X7)]
sapply(dcr,function(x)sum(is.na(x)))
set.seed(17)
fcr= smcfcs(dcr,smtype="compet",
           smformula=c("Surv(time,event==1)~X4+X3+X6+X7",
                       "Surv(time, event==2)~X4+X3+X6+X7"),
           method=c("","","","logreg","norm",""),m=2)
ccfit2=coxph(Surv(time,event==2)~X4+X3+X6+X7,data=dcr)
mifit2=MIcombine(with(imputationList(fcr$impDatasets),
                coxph(Surv(time,event==2)~X4+X3+X6+X7)))
publish(mifit2,fit=ccfit2,data=dcr)
publish(ccfit2)
## End(Not run)
```

38 publish.Score

Description

Preparing a publishable table from riskRegression results

Usage

```
## S3 method for class 'riskRegression'
publish(object, digits = c(2, 4), print = TRUE,
...)
```

Arguments

```
object object of class riskRegression as obtained with functions ARR and LRR.

digits Number of digits for regression coefficients

print If FALSE do not print the results

passed to publish.matrix
```

Value

Table with regression coefficients, confidence intervals and p-values

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

ARR LRR

Examples

```
library(prodlim)
library(riskRegression)
library(lava)
library(survival)
set.seed(20)
d <- SimCompRisk(20)
f <- ARR(Hist(time, event)~X1+X2, data=d, cause=1)
publish(f)
publish(f,digits=c(1,3))</pre>
```

publish.Score

Publish predictive accuracy results

Description

Write output of riskRegression::Score in tables

```
## $3 method for class 'Score'
publish(object, metrics, score = TRUE, contrasts = TRUE,
  level = 3, ...)
```

publish.summary.aov 39

Arguments

object	Object obtained with riskRegression::Score
metrics	Which metrics to put into tables. Defaults to object\$metrics.
score	Logical. If TRUE print the score elements, i.e., metric applied to the risk prediction models.
contrasts	Logical. If TRUE print the contrast elements (if any). These compare risk prediction models according to metrics.
level	Level of subsection headers, i.e., ** for level 2 and *** for level 3 (useful for emacs org-users). Default is plain subsection headers no stars. A negative value will suppress subjection headers.
	Passed to publish

Details

Collect prediction accuracy results in tables

Value

Results of Score in tabular form

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

Examples

```
library(riskRegression)
library(survival)
learn = sampleData(100)
val= sampleData(100)
f1=CSC(Hist(time,event)~X1+X8,data=learn)
f2=CSC(Hist(time,event)~X1+X5+X6+X8,learn)
xs=Score(list(f1,f2),data=val,formula=Hist(time,event)~1)
publish(xs)
```

publish.summary.aov

Format summary table of aov results

Description

Format summary table of aov results

```
## $3 method for class 'summary.aov'
publish(object, print = TRUE, handler = "sprintf",
   digits = c(2, 4), nsmall = digits, ...)
```

40 publish.survdiff

Arguments

object glm object

print Logical. Decide about whether or not to print the results.

handler see pubformat

digits see pubformat

nsmall see pubformat

... used to transport further arguments

Examples

```
data(Diabetes)
f <- glm(bp.1s~age+chol+gender+location,data=Diabetes)
publish(summary(aov(f)),digits=c(1,2))</pre>
```

publish.survdiff

Alternative summary of survdiff results

Description

Alternative summary of survdiff results

Usage

```
## S3 method for class 'survdiff'
publish(object, digits = c(2, 4), print = TRUE, ...)
```

Arguments

object Object obtained with survival::survdiff.

digits Vector with digits for rounding numbers: the second for pvalues, the first for all

other numbers.

print If FALSE do not print results.

... Not (yet) used.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

```
library(survival)
data(pbc)
sd <- survdiff(Surv(time,status!=0)~sex,data=pbc)
publish(sd)
publish(sd,digits=c(3,2))</pre>
```

regressionTable 41

table	
-------	--

Description

Tabulate the results of a regression analysis.

Usage

```
regressionTable(object, param.method = "coef", confint.method = c("default",
   "profile", "robust", "simultaneous"), pvalue.method = c("default", "robust",
   "simultaneous"), factor.reference = "extraline", intercept = 0L,
   units = NULL, noterms = NULL, probindex = 0L, ...)
```

Arguments

object Fitted regression model obtained with lm, glm or coxph.

param.method Method to obtain model coefficients.

confint.method Method to obtain confidence intervals. Default is 'default' which leads to

Wald type intervals using the model based estimate of standard error. 'profile' yields profile likelihood confidence intervals, available from library MASS for lm and glm objects. 'robust' uses the sandwich form standard error to construct Wald type intervals (see lava::estimate.default). simultaneous calls

multcomp::glht to obtain simultaneous confidence intervals.

pvalue.method Method to obtain p-values. If 'default' show raw p-values. If 'robust' use p-

value corresponding to robust standard error as provided by lava::estimate.default.

If 'simultaneous' call multcomp::glht to obtain p-values.

factor.reference

Style for showing results for categorical variables. If 'extraline' show an additional line for the reference category. If 'inline' display as level vs. ref-

erence.

intercept Logical. If FALSE suppress intercept.

units List of units for continuous variables. See examples.

noterms Position of terms that should be ignored. E.g., for a Cox model with a cluster(id)

term, there will be no hazard ratio for variable id.

probindex Logical. If TRUE show coefficients on probabilistic index scale instead of hazard

ratio scale.

... Not yet used

Details

The basic use of this function is to generate a near publication worthy table from a regression object. As with summary(object) reference levels of factor variables are not included. Expansion of the table with such values can be performed using the "fixRegressionTable" function. Forest plot can be added to the output with "plotRegressionTable".

regressionTable produces an object (list) with the parameters deriveds. The summary function creates a data frame which can be used as a (near) publication ready table.

The table shows changes in mean for linear regression, odds ratios for logistic regression (family = binomial) and hazard ratios for Cox regression.

42 regressionTable

Value

List of regression blocks

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

```
# linear regression
data(Diabetes)
f1 <- glm(bp.1s~age+gender+frame+chol,data=Diabetes)</pre>
summary(regressionTable(f1))
summary(regressionTable(f1,units=list("chol"="mmol/L","age"="years")))
## with interaction
f2 <- glm(bp.1s~age*gender+frame+chol,data=Diabetes)</pre>
summary(regressionTable(f2))
#Add reference values
summary(regressionTable(f2))
f3 <- glm(bp.1s~age+gender*frame+chol,data=Diabetes)</pre>
publish(f3)
regressionTable(f3)
# logistic regression
Diabetes$hyp1 <- factor(1*(Diabetes$bp.1s>140))
11 <- glm(hyp1~age+gender+frame+chol,data=Diabetes,family="binomial")</pre>
regressionTable(11)
publish(11)
plot(regressionTable(l1))
## with interaction
12 <- glm(hyp1~age+gender+frame*chol,data=Diabetes,family="binomial")</pre>
regressionTable(12)
13 <- glm(hyp1~age*gender+frame*chol,data=Diabetes,family="binomial")</pre>
regressionTable(13)
# Cox regression
library(survival)
data(pbc)
pbc$edema <- factor(pbc$edema,levels=c("0","0.5","1"),labels=c("0","0.5","1"))
c1 <- coxph(Surv(time,status!=0)~log(bili)+age+protime+sex+edema,data=pbc)</pre>
regressionTable(c1)
# with interaction
c2 <- coxph(Surv(time, status!=0)~log(bili)+age+protime*sex+edema, data=pbc)</pre>
regressionTable(c2)
\verb|c3| < - coxph(Surv(time, status!=0) | - cdema*log(bili) + age+protime + sex+edema + edema: sex, data=pbc)|
regressionTable(c3)
## gls regression
library(nlme)
library(lava)
m <- lvm(Y ~ X1 + gender + group + Interaction)</pre>
distribution(m, ~gender) <- binomial.lvm()</pre>
distribution(m, ~group) <- binomial.lvm(size = 2)</pre>
constrain(m, Interaction ~ gender + group) <- function(x)\{x[,1]*x[,2]\}
```

SpaceT 43

SpaceT

A study was made of all 26 astronauts on the first eight space shuttle flights (Bungo et.al., 1985). On a voluntary basis 17 astronauts consumed large quantities of salt and fluid prior to landing as a countermeasure to space deconditioning, while nine did not.

Description

A study was made of all 26 astronauts on the first eight space shuttle flights (Bungo et.al., 1985). On a voluntary basis 17 astronauts consumed large quantities of salt and fluid prior to landing as a countermeasure to space deconditioning, while nine did not.

Format

A data frame with 52 observations on the following 4 variables:

Status Factor with levels Post (after flight) and Pre (before flight)

HR Supine heart rate(beats per minute)

Treatment Countermeasure salt/fluid (1= yes, 0=no)

ID Person id

References

Altman, Practical statistics for medical research, Page 223, Ex. 9.1. Bungo et.al., 1985

Examples

```
data(SpaceT)
```

spaghettiogram

Spaghettiogram

Description

A spaghettiogram is showing repeated measures (longitudinal data)

```
spaghettiogram(formula, data, xlim, ylim, xlab = "", ylab = "",
axes = TRUE, col, lwd, lty, pch, legend = FALSE, add = FALSE,
background = TRUE, ...)
```

44 specialFrame

Arguments

formula	A formula which specifies the variables for the spaghettiograms. If $Y \sim X + id(Z)$ then for each value of Z the spaghettiogram is the graph (X,Y) in the subset defined by the value of Z . Data are expected to be in the "long" format. Y is a numeric vector and X is a factor whose levels define the X -axis. Each level of the id-vector corresponds to one line (spaghetti) in the plot.
data	data set in which variables X, Y and Z are defined.
xlim	Limits for x-axis
ylim	Limits for y-axis
xlab	Label for x-axis
ylab	Label for x-axis
axes	Logical indicating if axes should be drawn.
col	Colors for the spaghettiograms
lwd	Widths for the spaghettiograms
lty	Type for the spaghettiograms
pch	Point-type for the spaghettiograms
legend	If TRUE add a legend. Argument A of legend is controlled as legend.A. E.g., when legend.cex=2 legend will be called with argument cex=2.
add	If TRUE add to existing plot device.
background	Control the background color of the graph.
•••	used to transport arguments which are passed to the following subroutines: "plot", "lines", "legend", "background", "axis1", "axis2".

Value

List with data of each subject

Examples

specialFrame	Special frame
opeciain rame	Special frame

Description

Extract data and design matrix including specials from call

```
specialFrame(formula, data, unspecials.design = TRUE, specials,
  specials.factor = TRUE, specials.design = FALSE, strip.specials = TRUE,
  strip.arguments = NULL, strip.alias = NULL, strip.unspecials = NULL,
  drop.intercept = TRUE, response = TRUE, na.action = options()$na.action)
```

specialFrame 45

Arguments

formula Formula whose left hand side specifies the event history, i.e., either via Surv() or Hist().

data Data frame in which the formula is interpreted

unspecials.design

Passed as is to model.design.

specials Character vector of special function names. Usually the body of the special

functions is function(x)x but e.g., strata from the survival package does treat

the values

specials.factor

Passed as is to model.design.

specials.design

Passed as is to model.design

strip.specials Passed as specials to strip.terms

strip.arguments

Passed as arguments to strip.terms

strip.alias Passed as alias.names to strip.terms

strip.unspecials

Passed as unspecials to strip.terms

drop.intercept Passed as is to model.design

 $\begin{tabular}{ll} response & If FALSE do not get response data. \end{tabular}$

na.action Decide what to do with missing values.

Details

Obtain a list with the data used for event history regression analysis. This function cannot be used directly on the user level but inside a function to prepare data for survival analysis.

Value

A list which contains - the response - the design matrix (see model.design) - one entry for each special (see model.design)

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

model.frame model.design Hist

46 splinePlot.lrm

```
X3=c(1,1,1,1,0,0,1),
                 X4=c(44.69, 37.41, 68.54, 38.85, 35.9, 27.02, 41.84),
                 X1=factor(c("a","b","a","c","c","a","b"),
levels=c("c","a","b")))
## define special functions prop and cluster
prop <- function(x)x</pre>
cluster <- function(x)x</pre>
## We pass a formula and the data
e <- specialFrame(y~prop(X1)+X2+cluster(X3)+X4,
                   data=d,
                   specials=c("prop","cluster"))
## The first element is the response
e$response
## The other elements are the design, i.e., model.matrix for the non-special covariates
e$design
## and a data.frame for the special covariates
e$prop
## The special covariates can be returned as a model.matrix
e2 <- specialFrame(y~prop(X1)+X2+cluster(X3)+X4,</pre>
                    data=d,
                    specials=c("prop","cluster"),
                    specials.design=TRUE)
e2$prop
## and the non-special covariates can be returned as a data.frame
e3 <- specialFrame(y~prop(X1)+X2+cluster(X3)+X4,
                    data=d,
                    specials=c("prop","cluster"),
                    specials.design=TRUE,
                    unspecials.design=FALSE)
e3$design
```

 ${\tt splinePlot.lrm}$

Plot predictions of logistic regression

Description

Plotting the prediction of a logistic regression model with confidence bands against one continuous variable.

Usage

```
splinePlot.lrm(object, xvar, xvalues, xlim = range(xvalues), ylim,
  xlab = xvar, ylab = scale[[1]], col = 1, lwd = 3, confint = TRUE,
  newdata = NULL, scale = c("risk", "odds"), add = FALSE, ...)
```

Arguments

object Logistic regression model fitted with rms::1rm
xvar Name of the variable to show on x-axis

xvalues Sequence of xvar values

xlim x-axis limits ylim y-axis limits stripes 47

xlab	x-axis labels
ylab	y-axis labels
col	color of the line
lwd	line width
confint	Logical. If TRUE show confidence shadows
newdata	How to adjust
scale	Character string that determines the outcome scale (y-axis). Choose between "risk" and "odds".
add	Logical. If TRUE add lines to an existing graph
	Further arguments passed to plot. Only if add is FALSE.

Details

Function which extracts from a logistic regression model fitted with rms::lrm the predicted risks or odds.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

Examples

```
data(Diabetes)
Diabetes$hypertension= 1*(Diabetes$bp.1s>140)
library(rms)
uu <- datadist(Diabetes)
options(datadist="uu")
fit=lrm(hypertension~rcs(age)+gender+hdl,data=Diabetes)
splinePlot.lrm(fit,xvar="age",xvalues=seq(30,50,1))</pre>
```

stripes

Background and grid color control.

Description

Some users like background colors, and it may be helpful to have grid lines to read off e.g. probabilities from a Kaplan-Meier graph. Both things can be controlled with this function. However, it mainly serves plot.prodlim.

```
stripes(xlim, ylim, col = "white", lwd = 1, gridcol = "gray77",
  fill = "white", horizontal = NULL, vertical = NULL, border = "black",
  xpd = FALSE)
```

48 summary.ci

Arguments

xlim	Limits for the horizontal x-dimension. Defaults to par("usr")[1:2].
ylim	Limits for the vertical y-dimension.
col	Colors use for the stripes. Can be a vector of colors which are then repeated appropriately.
lwd	Line width
gridcol	Color of grid lines
fill	Color to fill the background rectangle given by par("usr").
horizontal	Numerical values at which to show horizontal grid lines, and at which to change the color of the stripes.
vertical	Numerical values at which to show vertical grid lines.
border	If a fill color is provided, the color of the border around the background.
xpd	From help(par): A logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE, all plotting is clipped to the figure region, and if NA,

all plotting is clipped to the device region. See also clip.

Author(s)

Thomas Alexander Gerds <tag@biostat.ku.dk>

Examples

```
plot(0,0)
backGround(bg="beige",fg="red",vertical=0,horizontal=0)

plot(0,0)
stripes(col=c("yellow","green"),gridcol="red",xlim=c(-1,1),horizontal=seq(0,1,.1))
stripes(col=c("yellow","green"),gridcol="red",horizontal=seq(0,1,.1))
```

summary.ci

Summarize confidence intervals

Description

Summarize confidence intervals

```
## S3 method for class 'ci'
summary(object, format = "[u;1]", se = FALSE, print = TRUE,
...)
```

Arguments

object	Object of class ci containing point estimates and the corresponding confidence intervals
format	A string which indicates the format used for confidence intervals. The string is passed to formatCI with two arguments: the lower and the upper limit. For example '(1;u)' yields confidence intervals with round parenthesis in which the upper and the lower limits are separated by semicolon.
se	If TRUE add standard error.
print	Logical: if FALSE do not actually print confidence intervals but just return them invisibly.
	used to control formatting of numbers

Details

This format of the confidence intervals is user-manipulable.

Value

Formatted confidence intervals

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

ci plot.ci format.ci

Examples

```
library(lava)
m <- lvm(Y~X)
m <- categorical(m,Y~X,K=4)
set.seed(4)
d <- sim(m,24)
ci.mean(Y~X,data=d)
x <- summary(ci.mean(Y~X,data=d),digits=2)
x
x <- summary(ci.mean(Y~X,data=d),format="(u,l)",digits=2)
x <- summary(ci.mean(Y~X,data=d),format="(u,l)",digits=1,se=TRUE)
x <- summary(ci.mean(Y~X,data=d),format="(u,l)",digits=1,handler="format")
x <- summary(ci.mean(Y~X,data=d),format="(u,l)",digits=1,handler="format")
x <- summary(ci.mean(Y~X,data=d),format="(u,l)",digits=1,handler="prettyNum")</pre>
```

summary.regressionTable

Formatting regression tables

Description

Preparing regression results for publication

Usage

```
## S3 method for class 'regressionTable'
summary(object, show.missing = "ifany",
    print = TRUE, ...)
```

Arguments

object obtained with regressionTable or summary.regressionTable.

show.missing Decide if number of missing values are shown. Either logical or character. If

'ifany' then number missing values are shown if there are some.

print If TRUE print results.

... Used to control formatting of parameter estimates, confidence intervals and p-

values. See examples.

Value

List with two elements:

- regressionTable: the formatted regression table (a data.frame)
- rawTable: table with the unformatted values (a data.frame)

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

publish.glm publish.coxph

```
summary.univariateTable
```

Preparing univariate tables for publication

Description

Summary function for univariate table

Usage

```
## S3 method for class 'univariateTable'
summary(object, n = "inNames",
   drop.reference = FALSE, pvalue.stars = FALSE, pvalue.digits = 4,
   show.missing = c("ifany", "always", "never"), show.pvalues, show.totals,
   ...)
```

Arguments

object	univariateTable object as obtained with function univariateTable.
n	If not missing, show the number of subjects in each column. If equal to "inNames" show the numbers in parentheses in the column names. If missing the value object\$n is used.
drop.reference	Logical or character (vector). Decide if line with reference level should be suppressed for factors. If TRUE or "all" suppress for all categorical factors. If 'binary' suppress only for binary variables. Can be character vector in which case reference lines are suppressed for variables that are included in the vector.
pvalue.stars	If TRUE use symnum to parse p-values otherwise use format.pval.
pvalue.digits	Passed to format.pval.
show.missing	Decides if number of missing values are shown in table. Defaults to "ifany", and can also be set to "always" or "never".
show.pvalues	Logical. If set to FALSE the column p-values is removed. If missing the value object\$compare.groups[[1]]==TRUE is used.
show.totals	Logical. If set to FALSE the column Totals is removed. If missing the value object\$show.totals is used.
	passed on to labelUnits. This overwrites labels stored in object\$labels

Details

Collects results of univariate table in a matrix.

Value

Summary table

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

52 sutable

Examples

sutable

Fast summary of a univariate table

Description

First apply univariateTable then call summary.

Usage

```
sutable(...)
```

Arguments

. . .

Unnamed arguments and are passed to univariateTable as well as named arguments that match univariateTable's arguments, other arguments are passed to summary.univariateTable

Value

Summary table

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

summary.univariateTable univariateTable

```
data(Diabetes)
sutable(gender~age+location+Q(BMI)+height+weight,data=Diabetes,BMI="Body mass index (kg/m^2)")
```

table2x2 53

table2x2

2x2 table calculus for teaching

Description

2x2 table calculus for teaching

Usage

```
table2x2(x, digits = 1, stats = c("table", "rd", "rr", "or", "chisq",
    "fisher"))
```

Arguments

x 2x2 table digits rounding digits

stats subset or all of c("table", "rd", "or", "rr", "chisq", "fisher") where rd=

risk difference, rr = risk ratio, or = odds ratio, chisq = chi-square test, fisher=

fisher's exact test and table = the $2x^2$ table

Details

2x2 table calculus for teaching

Value

see example

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

Examples

```
table2x2(table("marker"=rbinom(100,1,0.4),"response"=rbinom(100,1,0.1)))\\ table2x2(matrix(c(71,18,38,8),ncol=2),stats="table")\\ table2x2(matrix(c(71,18,38,8),ncol=2),stats=c("rr","fisher"))
```

trace

trace data

Description

These data are from screening to the TRACE study, a comparison between the angiotensin converting enzyme inhibitor trandolapril and placebo ford large myocardial infarctions. A total of 6676 patients were screened for the study. Survival has been followed for the screened population for 16 years. The current data has been prepared for a poisson regression to examine survival. The data has been "split" in 0.5 year intervals (plitLexis function from Epi package) and then collapsed on all variables (aggregate function).

54 Units

Format

A data frame with 1832 observations on the following 6 variables.

Time Time after myocardial infarction, in 6 months intervals

smoking Smoking status. A factor with levels (Never, Current, Previous)

sex A factor with levels (Female, Male)

age Age in years at the time of myocardial infarction

ObsTime Cumulative risk time in each split

dead Count of deaths

References

Kober et al 1995 Am. J. Cardiol 76,1-5

Examples

```
data(trace)
Units(trace,list("age"="years"))
fit <- glm(dead ~ smoking+sex+age+Time+offset(log(ObsTime)), family="poisson",data=trace)
rtf <- regressionTable(fit,factor.reference = "inline")
summary(rtf)
publish(fit)</pre>
```

Units

Add units to data set

Description

Add variable units to data.frame (or data.table).

Usage

```
Units(object, units)
```

Arguments

object A data.frame or data.table

units Named list of units. Names are variable names. If omitted, show existing units.

Details

If the object has units existing units are replaced by given units.

Value

The object augmented with attribute "units"

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

Examples

```
data(Diabetes)
Diabetes <- Units(Diabetes,list(BMI="kg/m^2"))
Units(Diabetes)
Diabetes <- Units(Diabetes,list(bp.1s="mm Hg",bp.2s="mm Hg"))
Units(Diabetes)</pre>
```

univariateTable

Univariate table

Description

Categorical variables are summarized using counts and frequencies.

Usage

```
univariateTable(formula, data = parent.frame(),
  summary.format = "mean(x) (sd(x))", Q.format = "median(x) [iqr(x)]",
  freq.format = "count(x) (percent(x))", column.percent = TRUE,
  digits = c(1, 1, 3), short.groupnames, compare.groups = TRUE,
  show.totals = TRUE, n = "inNames", outcome = NULL, na.rm = FALSE, ...)
```

Arguments

formula Formula specifying the grouping variable (strata) on the left hand side (can be

omitted) and on the right hand side the variables for which to obtain (descriptive)

statistics.

data Data set in which formula is evaluated

summary.format Format for the numeric (non-factor) variables. Default is mean (SD). If differ-

ent formats are desired, either special Q can be used or the function is called

multiple times and the results are rbinded. See examples.

Q. format Format for quantile summary of numerical variables: Default is median (inter

quartile range).

freq. format Format for categorical variables. Default is count (percentage).

column.percent Logical, if TRUE and the default freq.format is used then column percentages are

given instead of row percentages for categorical variables (factors).

digits Number of digits

short.groupnames

If TRUE group names are abbreviated.

compare.groups Method used to compare groups. If "logistic" and there are exactly two

groups logistic regression is used instead of t-tests and Wilcoxon rank tests to

compare numeric variables across groups.

show.totals If TRUE show a column with totals.

n If TRUE show the number of subjects as a separate row. If equal to "inNames",

show the numbers in parentheses in the column names. If FALSE do not show

number of subjects.

outcome Outcome data used to calculate p-values when compare groups method is 'logistic'

or 'cox'.

na.rm	If TRUE remove missing values from categorical variables when calculating p-
	values.
	saved as part of the result to be passed on to labelUnits

Details

This function can generate the baseline demographic characteristics that forms table 1 in many publications. It is also useful for generating other tables of univariate statistics.

The result of the function is an object (list) which contains the various data generated. In most applications the summary function should be applied which generates a data.frame with a (nearly) publication ready table. Standard manipulation can be used to modify, add or remove columns/rows and for users not accustomed to R the table generated can be exported to a text file which can be read by other software, e.g., via write.csv(table,file="path/to/results/table.csv")

Continuous variables are summarized by means and standard deviations. Deviations from the above defaults are obtained when the arguments summary.format and freq.format are combined with suitable summary functions.

Value

List with one summary table element for each variable on the right hand side of formula. The summary tables can be combined with rbind. The function summary.univariateTable combines the tables, and shows p-values in custom format. The summary tables

Author(s)

Thomas A. Gerds

See Also

summary.univariateTable, publish.univariateTable

```
data(Diabetes)
univariateTable(~age,data=Diabetes)
univariateTable(~gender,data=Diabetes)
univariateTable(~age+gender+ height+weight,data=Diabetes)
## same thing but less typing
utable(~age+gender+ height+weight,data=Diabetes)
## summary by location:
univariateTable(location~Q(age)+gender+height+weight,data=Diabetes)
## continuous variables marked with Q() are (by default) summarized
## with median (IQR) and kruskal.test (with two groups equivalent to wilcox.test)
## variables not marked with Q() are (by default) summarized
## with mean (sd) and anova.glm(...,test="Chisq")
## the p-value of anova.glm with only two groups is similar
## but not exactly equal to that of a t.test
## categorical variables are (by default) summarized by count
## (percent) and anova.glm(...,family=binomial,test="Chisq")
## export result to csv
table1 = summary(univariateTable(location~age+gender+height+weight,data=Diabetes),
show.pvalues=FALSE)
```

```
# write.csv(table1,file="~/table1.csv",rownames=FALSE)
## change labels and values
utable(location~age+gender+height+weight,data=Diabetes,
       age="Age (years)",gender="Sex",
       gender.female="Female",
       gender.male="Male",
       height="Body height (inches)",
       weight="Body weight (pounds)")
## Use quantiles and rank tests for some variables and mean and standard deviation for others
univariateTable(gender~Q(age)+location+Q(BMI)+height+weight,
                data=Diabetes)
## Factor with more than 2 levels
Diabetes$AgeGroups <- cut(Diabetes$age,</pre>
                          c(19,29,39,49,59,69,92),
                          include.lowest=TRUE)
univariateTable(location~AgeGroups+gender+height+weight,
                data=Diabetes)
## Row percent
univariateTable(location~gender+age+AgeGroups,
                data=Diabetes,
                column.percent=FALSE)
## change of frequency format
univariateTable(location~gender+age+AgeGroups,
                data=Diabetes.
                column.percent=FALSE,
                freq.format="percent(x) (n=count(x))")
## changing Labels
u <- univariateTable(location~gender+AgeGroups+ height + weight,</pre>
                     data=Diabetes,
                     column.percent=TRUE,
                     freq.format="count(x) (percent(x))")
summary(u, "AgeGroups"="Age (years)", "height"="Height (inches)")
## more than two groups
Diabetes$frame=factor(Diabetes$frame,levels=c("small","medium","large"))
univariateTable(frame~gender+BMI+age,data=Diabetes)
Diabetes$sex=as.numeric(Diabetes$gender)
univariateTable(frame~sex+gender+BMI+age,
                data=Diabetes,freq.format="count(x) (percent(x))")
## multiple summary formats
## suppose we want for some reason mean (range) for age
## and median (range) for BMI.
## method 1:
univariateTable(frame~Q(age)+BMI,
                data=Diabetes,
                Q.format="mean(x) (range(x))",
                summary.format="median(x) (range(x))")
## method 2:
u1 <- summary(univariateTable(frame~age,</pre>
```

Index

1 4 4	
*Topic datasets	publish.glm, 31
CiTable, 4	publish.htest, 33
Diabetes, 6	publish.matrix, 34, 38
trace, 53	publish.MIresult, 35
*Topic survival	publish.riskRegression, 37
stripes, 47	publish.Score, 38
	publish.summary.aov, 39
anova.coxph, 8	publish.survdiff,40
ci.mean, 3	regressionTable,41
ci.mean.default,3	. 68. 66626111 48226, 11
CiTable, 4	segments, 19
coxphSeries, 5	SpaceT, 43
COMPRISE ICS, 5	Spaghettiogram (spaghettiogram), 43
Diabetes, 6	spaghettiogram, 43
D1450 CC3, 0	specialFrame, 44
fixRegressionTable, 7	splinePlot.lrm, 46
followupTable, 8	
formatCI, 9, 29, 49	strata, 45
101 matc1, 7, 27, 47	strip.terms, 45
glmSeries, 10	stripes, 47
g1m301 103, 10	summary.ci,48
labelUnits, 11	summary.regressionTable,49
lazyFactorCoding, 12	summary.univariateTable, 51
Tazyi actor couring, 12	sutable, 52
model.design, 45	table2x2,53
	trace, 53
org, 13	ti ace, 33
	Units, 54
parseInteractionTerms, 13	univariateTable, 55
plot.ci, 15	utable, 8
plot.prodlim,47	utable (univariateTable), 55
plot.regressionTable, 16	
plotConfidence, 17	
print.ci, 23	
<pre>print.summary.regressionTable</pre>	
(summary.regressionTable),49	
print.table2x2,25	
print.univariateTable, 25	
pubformat, 26	
publish, 27	
Publish-package, 2	
<pre>publish.CauseSpecificCox, 28</pre>	
publish.ci, 29	
publish.coxph, 30	