Plane_Edge_SLAM

Sun Qinxuan

November 14, 2017

OUTLINE

• 实验一: 平面参数估计方法

• **实验二**: *w_{pk}*加权

实验三: Visual Odometry (no final optimization)

实验四: Loop Closing and Map Optimization

实验五: VO runtime

实验六: Real scene experiment (尝试)

Table: 实验一: 平面参数估计方法; 指标: ATE(Absolute Trajectory Error) RMSE; 参数设置: $\alpha=1,\beta=1$ \circ

	LS	LS(noise)
fr1/desk	0.064m	0.035m
fr1/plant	0.061m	0.049m
fr2/desk	0.106m	0.071m
fr3/office	0.069m	0.051m
fr3/str_tex_near	0.052m	0.057m

Table: 实验二: w_{pk} 加权;指标: ATE(Absolute Trajectory Error) RMSE, RPE(Relative Pose Error) RMSE; 参数设置: $\alpha=1,\beta=1$ \circ

	weight	no-weight
fr1/xyz	0.031m	0.058m
	0.006m/0.68deg	0.008m/0.69deg
fr1/desk	0.035m	0.062m
	0.009m/1.04deg	0.012m/1.28deg
fr1/plant	0.049m	0.066m
	0.008m/0.94deg	0.009m/1.08deg
fr1/floor	0.085m	0.068m
	0.009m/0.53deg	0.008m/0.50deg
fr2/desk	0.071m	0.103m
	0.005m/0.50deg	0.009m/0.79deg
fr3/office	0.051m	0.094m
	0.004m/0.42deg	0.010m/0.65deg
fr3/str	0.052m	0.061m
	0.005m/0.61deg	0.006m/0.81deg
fr3/cabinet	0.063m	0.079m
	0.006m/0.91deg	0.007m/0.95deg

Table: 实验三(a): Visual Odometry (no final optimization);指标: ATE(Absolute Trajectory Error) RMSE;参数设置: $\alpha=1,\beta=1$; 对比算法: (1)CPA-SLAM² (no optimization), (2)STING-SLAM (no optimization).

	Plane-Edge	CPA-SLAM	STING-SLAM
fr1/desk	0.035m	0.030m	
fr1/plant	0.049m	0.073m	
fr2/desk	0.071m	0.095m	0.098m
fr3/office	0.051m	0.076m	

¹ CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM, ICRA, 2016.

²CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM, ICRA, 2016. ▶ 《 ♣ ▶ 《 ♣ ▶ 《 ♣ ♥ ○ ○ ○

Table: 实验三(b): Visual Odometry (no final optimization);指标: RPE(Relative Pose Error) RMSE;参数设置: $\alpha=1,\beta=1$; 对比算法: (1)Semi-Dense VO⁴, (2)STING-SLAM.

	Plane-Edge	Semi-Dense VO	STING-SLAM
fr1/xyz	0.006m/0.68deg	0.041m/1.53deg	0.022m/0.77deg
fr1/floor	0.009m/0.53deg	0.012m/0.74deg	•
fr2/xyz	0.002m/0.21deg	0.004m/0.32deg	
fr2/rpy	0.002m/0.20deg	0.004m/0.35deg	
fr2/desk	0.005m/0.50deg	0.012m/0.56deg	0.048m/1.57deg
fr3/cabinet	0.006m/0.91deg	0.034m/2.69deg	0.011m/1.02deg
fr3/office	0.004m/0.42deg	0.010m/0.67deg	

 $^{^3}$ Semi-Dense Visual Odometry for RGB-D Cameras Using Approximate Nearest Neighbour Fields, ICRA, 2017.

⁴Semi-Dense Visual Odometry for RGB-D Cameras Using Approximate Nearest Neighbour Fields, ICRA, 2017.

Loop Closing

 For our application we chose a metrical nearest neighbour search, because we operate in space restricted indoor environments and our visual odometry is sufficiently accurate. We search loop closure candidates in a sphere with predefined radius around the keyframe position

Map Optimization

 We represent the map as a graph of camera poses, where every vertex is a pose of a keyframe. The edges represent relative transformations between the keyframes. Valid loop closures become new edges in the graph. Afterwards, the error can be corrected by solving a non-linear least squares optimization problem. The error correction is distributed over the edges in the loop.

Ref.

- 3-D Mapping With an RGB-D Camera, TRO, 2014.
- Dense Visual SLAM for RGB-D Cameras, IROS, 2013.

(a)fr3/office: Results of VO.

(c)fr1/desk: Results of VO.

(b)fr3/office: After map optimization.

(d)fr1/desk: After map optimization.

Figure:

Table: 实验四: SLAM结果对比;指标: ATE(Absolute Trajectory Error) RMSE;参数设置: $\alpha=1,\beta=1$;对比算法: (1)CPA-SLAM 7 , (2)ElasticFusion 8 , (3)STING-SLAM $_{\circ}$

	Plane-Edge	CPA-SLAM	ElasticFusion	STING-SLAM
fr1/xyz	0.010m	0.011m	0.011m	0.011m
fr1/desk	0.021m	0.018m	0.029m	
fr1/plant	0.013m	0.029m	0.022m	
fr2/xyz	0.008m	0.014m	0.011m	
fr2/desk	0.032m	0.046m	0.071m	0.053m
fr3/office	0.015m	0.025m	0.017m	

⁵CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM, ICRA, 2016.

⁶ElasticFusion: Real-Time Dense SLAM and Light Source Estimation, IJRR, 2016.

⁷CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM, ICRA, 2016.

⁸ ElasticFusion: Real-Time Dense SLAM and Light Source Estimation, IJRR, 2016 @ > < \(\) > < \(\) > < \(\) > < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\

Figure: 实验五: Average runtime of VO.

Figure: 实验六: Real scene experiment.