《高等微积分 1》第四周作业

本次作业在第五周星期三上课时间交,希望大家使用订在一起的散页纸.

1 (1) 设 $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = q < 1$. 证明: $\lim_{n\to\infty} a_n = 0$.

利用(1)的结论,求如下极限.

- (2) 给定 a > 0, 求极限 $\lim_{n \to \infty} \frac{a^n}{n!}$.
- (3) 给定 a > 1 与正整数 k, 求极限 $\lim_{n \to \infty} \frac{n^k}{a^n}$.
- (4) 给定 0 < q < e 其中 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$,求极限 $\lim_{n \to \infty} \frac{n!}{(\frac{n}{q})^n}$.
- 2 给定正实数 a,k. 定义数列 $\{x_n\}_{n=0}^{\infty}$ 为

$$x_0 = a$$
, $x_{n+1} = \frac{1}{2}(x_n + \frac{k}{x_n})$, $\forall n = 0, 1, 2, ...$

- (1) 证明: 对正整数 n, 有 $x_n \ge \sqrt{k}$.
- (2) 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 是不增的, 即有 $x_1 \geq x_2 \geq \dots$
- (3) 证明: 数列 $\{x_n\}_{n=0}^{\infty}$ 收敛.
- (4) 求极限 $\lim_{n\to\infty} x_n$.
- 3 给定正实数 a,b. 定义数列 $\{x_n\}_{n=0}^{\infty}, \{y_n\}_{n=0}^{\infty}$ 为

$$x_0 = a, \quad y_0 = b,$$

$$x_{n+1} = \sqrt{x_n y_n}, \quad y_{n+1} = \frac{1}{2}(x_n + y_n), \quad \forall n = 0, 1, 2, \dots$$

(1) 证明: 对正整数 n, 有 $y_n \ge x_n$.

- (2) 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 是不减的, 数列 $\{y_n\}_{n=1}^{\infty}$ 是不增的.
- (3) 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 有上界, 数列 $\{y_n\}_{n=1}^{\infty}$ 有下界.
- (4) 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 与 $\{y_n\}_{n=1}^{\infty}$ 都收敛.
- (5) 证明: $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$.
- 4 (1) 设 $\{a_n\}_{n=1}^{\infty}$ 是不减的数列, 且极限为 A. 证明: 对任何正整数 n, 有 $a_n \leq A$.
 - (2) 令 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. 证明: 对正整数 n, 有

$$(1+\frac{1}{n})^n \le e \le (1+\frac{1}{n})^{n+1}.$$

(3) 利用 (2) 的结论, 证明: 对正整数 n, 有

$$\frac{(n+1)^n}{e^n} \le n! \le \frac{(n+1)^{n+1}}{e^n}.$$

(4) 利用 (3) 的结论, 计算极限

$$\lim_{n\to\infty} \sqrt[n]{\frac{n!}{n^n}}.$$

5 设 a,b 是给定的实数, 定义函数

$$f(x) = \begin{cases} 2x, & \text{m} = x > 0, \\ a\cos x + b\sin x, & \text{m} = x < 0. \end{cases}$$

当 a,b 取哪些值时, 极限 $\lim_{x\to 0} f(x)$ 存在?

- 6 设 $\lim_{x\to a} f(x) = A$.
 - (1) 证明: 对于正奇数 k, 有 $\lim_{x\to a} \sqrt[k]{f(x)} = \sqrt[k]{A}$.
 - (2) 证明: 对于正偶数 k, 如果 A > 0, 则有 $\lim_{x \to a} \sqrt[k]{f(x)} = \sqrt[k]{A}$.