Other approaches to attempt Object Detection

Pro:

Pro:

• It is easy to implement

Pro:

- It is easy to implement
- Worked well

Pro:

- It is easy to implement
- Worked well

Pro:

- It is easy to implement
- Worked well

Cons:

Have patches of incorrect aspect ratio

Pro:

- It is easy to implement
- Worked well

Cons:

Have patches of incorrect aspect ratio

Pro:

- It is easy to implement
- Worked well

- Have patches of incorrect aspect ratio
- Fails for Multiple Object Mutiple Class

Pro:

- It is easy to implement
- Worked well

- Have patches of incorrect aspect ratio
- Fails for Multiple Object Mutiple Class

Pro:

- It is easy to implement
- Worked well

- Have patches of incorrect aspect ratio
- Fails for Multiple Object Mutiple Class
- Increased prediction iteration per image

Pro:

- It is easy to implement
- Worked well

- Have patches of incorrect aspect ratio
- Fails for Multiple Object Mutiple Class
- Increased prediction iteration per image
- Have increased the noise in the data

Other Approaches

Approach 2: Increase the number of patches

Cons:

 Having more divisions leads to more prediction iterations

- Having more divisions leads to more prediction iterations
- Many bounding boxes are approximating the same thing

Cons:

- Having more divisions leads to more prediction iterations
- Many bounding boxes are approximating the same thing

Solution: Perform Structured Divisions

Approach 3 : Perform Structured divisions

Divide the image into a 10 X 10 grid

- Divide the image into a 10 X 10 grid
- Define centroid of each grid cell

- Divide the image into a 10 X 10 grid
- Define centroid of each grid cell
- Take three different patches of different aspect ratio for defined centroids
- Start training model based on these derived (structured) patches

- Have defined patches of three different aspect ratio
- Have increased the patches from 5 to 300

Approach 4 : Becoming more efficient

Focus on covering different aspect
ratio

Focus on covering different aspect

ratio

- Focus on covering different aspect ratio
- Increase anchor boxes and take more patches

20x20 Grid

- Focus on covering different aspect ratio
- Increase anchor boxes and take more patches

Issue: Drastic increase in number of patches

20x20 Grid

- Focus on covering different aspect ratio
- Increase anchor boxes and take more patches

- Issue : Drastic increase in number of patches
- Solution : Patch Selection

20x20 Grid

Solution : Patch Selection

- Focus on covering different aspect ration
- Increase anchor boxes and take more patches
- Patch Selection

Issue : Multiple Predictions of same object

- Focus on covering different aspect ratio
- Increase anchor boxes and take more patches
- Patch Selection

- Issue : Multiple Predictions of same object
- Solution : Pick only one patch out of the many which say the "same thing"

- Focus on covering different aspect ratio
- Increase anchor boxes and take more patches
- Patch Selection
- Pick only one patch out of the many which say the "same thing"
- Train a multiclass classifier instead of binary

Result - Our performance is pretty decent

Approach 5: Using End-to-End Deep Learning

Patch Extraction

