VNH7040AY

Automotive fully integrated H-bridge motor driver

Datasheet - production data

Features

Туре	R _{DS(on)}	I _{out}	V _{ccmax}
VNH7040AY	40 mΩ typ (per leg)	35 A	38 V

- 3 V CMOS compatible inputs
- Undervoltage shutdown
- Overvoltage clamp
- Thermal shutdown
- Cross-conduction protection
- Current and power limitation
- Very low standby power consumption
- Protection against loss of ground and loss of V_{CC}
- PWM operation up to 20 KHz
- Multisense monitoring functions
 - Analog motor current feedback
 - Chip temperature monitoring
 - Battery voltage monitoring
- Multisense diagnostic functions
 - Output short to ground detection
 - Thermal shutdown indication
 - OFF-state open-load detection
 - High-side power limitation indication
 - Low-side overcurrent shutdown indication
 - Output short to V_{CC} detection

- Output protected against short to ground and short to V_{CC}
- · Standby mode
- Half bridge operation
- Package: ECOPACK[®]

Description

The device is a full bridge motor driver intended for a wide range of automotive applications. The device incorporates a dual monolithic high-side driver and two low-side switches. All switches are designed using STMicroelectronics® well known and proven proprietary VIPower® M0 technology that allows to efficiently integrate on the same die a true Power MOSFET with an intelligent signal/protection circuitry. The three dice are assembled in a PowerSSO-36 package equipped with three exposed islands for optimized dissipation performances. This package is specifically designed for the harsh automotive environment and offers improved thermal performance thanks to exposed die pads. A Multisense_EN pin is available to enable the MultiSense diagnostic. The input signals IN_A and IN_B can directly interface the microcontroller to select the motor direction and the brake condition. Two selection pins (SEL0 and SEL1) are available to address to the microcontroller the information available on the Multisense. The Multisense pin allows to monitor the motor current by delivering a current proportional to the motor current value and provides also the diagnostic feedback according to the implemeted truth table. When MultiSense_EN pin is driven low, MultiSense pin is in high impedance condition. The PWM, up to 20 KHz, allows to control the speed of the motor in all possible conditions. In all cases, a low level state on the PWM pin turns off both the LS_A and LS_B switches.

Contents VNH7040AY

Contents

1	Bloc	k diagram and pin description	6
2	Elect	trical specifications1	0
	2.1	Absolute maximum ratings	0
	2.2	Thermal data 1	11
	2.3	Electrical characteristics	2
	2.4	Waveforms	26
3	Prote	ections	28
	3.1	Power limitation (high side driver)	28
	3.2	Thermal shutdown (high side and low side)	28
	3.3	Current limitation and over current detector	28
4	Туріс	cal application schematic	:9
5	Multi	iSense operation	0
	5.1	MultiSense analog monitoring 3	30
	5.2	Multisense diagnostics flag in fault conditions	31
6	Reve	erse battery protection	2
7	Oper	n Load detection in off-state	3
8	lmmı	unity against transient electrical disturbances 3	5
9	Pack	kage and PCB thermal data3	6
	9.1	PowerSSO-36 thermal data 3	36
		9.1.1 Thermal resistances definition (values according to the PCB heatsink area)	38
	9.2	Thermal Characterization during transients	38
10	Pack	kage and packing information	2
	10.1	PowerSSO-36 TP package information	12
	10.2	PowerSSO-36 TP packing information	4

VNH7040A	Y	ontents
	10.3 PowerSSO-36 marking information	45
11	Order codes	46
12	Revision history	47

List of tables VNH7040AY

List of tables

Table 1.	Block description	6
Table 2.	Suggested connections for unused and not connected pins	
Table 3.	Pin definitions and functions	
Table 4.	Pin functions description	8
Table 5.	Absolute maximum ratings	10
Table 6.	Thermal data	11
Table 7.	Power section	12
Table 8.	Logic inputs (V _{cc} =7 V up to 28 V;-40 °C< T _i <150 °C)	13
Table 9.	Switching (V_{CC} = 13 V; R_{LOAD} = 2.6 Ω)	
Table 10.	Protections and diagnostics (7 V < V _{CC} < 18 V; -40 °C < T _i < 150 °C)	
Table 11.	MultiSense (7 V < V _{CC} < 18 V; -40 °C < T _i < 150 °C)	
Table 12.	Operative condition - truth table	
Table 13.	On-state fault conditions - truth table	24
Table 14.	Off-state — truth table	25
Table 15.	ISO 7637-2 electrical transient conduction along supply line	35
Table 16.	Thermal model for junction temperature calculation in steady-state conditions	38
Table 17.	Thermal parameters	40
Table 18.	PowerSSO-36 TP mechanical data	43
Table 19.	Device summary	46
Table 20	Document revision history	47

VNH7040AY List of figures

List of figures

-ıgure 1.	Block diagram	6
igure 2.	Configuration diagram (top view)	7
igure 3.	Current and voltage conventions	10
igure 4.	T _{DSTKON}	20
igure 5.	Definition of the low-side switching times	20
igure 6.	Definition of the high-side switching times	21
igure 7.	Low-side turn-on delay time	21
igure 8.	Time to shutdown for the low-side driver	22
igure 9.	Input reset time for HSD-fault unlatch	22
igure 10.	Input Reset time for LSD-fault unlatch	23
igure 11.	OFF-state diagnostic delay time from rising edge of V _{OUT} (t _{D VOL})	23
igure 12.	State diagram	26
igure 13.	Normal operative conditions	26
igure 14.	OUT shorted to ground and short clearing	27
igure 15.	OUT shorted to V _{CC} and short clearing	27
igure 16.	Typical application schematic	
igure 17.	MultiSense analog monitoring	30
igure 18.	P-channel MOSFET connected to the V _{CC} pin	
Figure 19.	Open load detection in off-state - configuration two half-bridges	
igure 20.	Open load detection in off-state - configuration full-bridge	34
igure 21.	PowerSSO-36™ PC board	36
igure 22.	Chipset configuration	
igure 23.	Auto and mutual R _{thi-amb} vs PCB copper area in open box free air condition	37
igure 24.	HSD thermal impedance junction ambient single pulse	39
igure 25.	LSD thermal impedance junction ambient single pulse	39
igure 26.	Electrical equivalent model	
igure 27.	PowerSSO-36 TP package dimensions	
igure 28.	PowerSSO-36 TP tube shipment (no suffix)	
igure 29.	PowerSSO-36 TP tape and reel shipment (suffix "TR")	44
igure 30.	PowerSSO-36 marking information	45

1 Block diagram and pin description

 V_{cc} HSDs POWER LIMITATION LSA_OVERTEMPERATURE LSB_OVERTEMPERATURE HSA_OVERTEMPERATURE U, HSB_OVERTEMPERATURE CLAMP HS_A CLAMP HS_B $\mathsf{HS}_{_{\mathsf{B}}}$ LOGIC Open-load OFF-state A Open-load OFF-state B CURRENT CURRENT LIMITATION A LIMITATION B Source_HSD_A FAULT DETECTION Source_HSD_B Drain_LSD_B Drain_LSD_A CLAMP LS_A CLAMP LS_B $HS_{_{\rm B}}$ LS_{B} MUX LS_A OVERLOAD DETECTOR LS_BOVERLOAD DETECTOR SELO C SEL1 C MultiSense_EN D IN_{B} PWM GND, $\mathsf{GND}_{\mathtt{B}}$ GAPG2810151009CFT

Figure 1. Block diagram

Table 1. Block description

Name	Description
Logic control	Allows the turn-on and the turn-off of the high-side and the low-side switches according to the truth table.
Undervoltage	Shuts down the device for battery voltage below (4 V).
High-side and low-side clamp voltage	Protect the high-side and the low-side switches from high voltage on the battery line.
High-side and low-side driver	Drive the gate of the concerned switch to allow a proper R _{DS(on)} for the leg of the bridge.
Current limitation	Limits the motor current in case of short circuit.
High-side and low-side overtemperature protection	In case of short-circuit with the increase of the junction temperature, it shuts down the concerned driver to prevent degradation and to protect the die.
Low-side overcurrent detector	Detects when low-side current exceeds shutdown current and latches off the concerned low-side.
Fault detection	Signalizes an abnormal condition of the switch (output shorted to ground or output shorted to battery) by a feedback on the MultiSense

Table 1. Block description (continued)

Name	Description
Power limitation	Limits the power dissipation of the high-side driver inside safe range in case of short to ground condition.
Open-load in OFF-state	Signalize an open-load when the switches are off by a feedback on the MultiSense
T _{chip} monitoring	Provides a signal linked to the Chip temperature by a feedback on the MultiSense
V _{CC} monitoring	Provides a signal linked to the Chip temperature by a feedback on the MultiSense

Table 2. Suggested connections for unused and not connected pins

Connection / pin	MultiSense	N.C.	SOURCE_HSx	DRAIN_LSx	INPUTx, PWM SELx MultiSense_EN
Floating	Not allowed	Х	X	Х	Х
To ground	Through 1 kΩ resistor	Х	Not allowed	х	Through 15 kΩ resistor

Figure 2. Configuration diagram (top view)

Table 3. Pin definitions and functions

Pin N°	Symbol	Function	
1, 18, 36	NC	Not connected.	
10, 27	V _{CC} , Heat slug1	Drain of high-side switches and power supply voltage.	
16	INA	Clockwise input.	
17	PWM	PWM input.	
19	MultiSense	Output of current sense and diagnostic feedback	
20	MultiSense_EN	Enables the MultiSense diagnostic pin	
15	SEL0	Address the MultiSense multiplexer	
22	SEL1	Address the MultiSense multiplexer	
21	INв	Counter clockwise input.	
28, 29, 35	Drain_LSD _B , Heat Slug3	Drain of low-side switch B.	
23, 24, 25, 26	Source_HSD _B	Source of high-side switch B	
30, 31, 32, 33, 34	GND _B	Source of low-side switch B.	
2, 8, 9	Drain_LSD _A , Heat Slug2	Drain of low-side switch A.	
11, 12, 13, 14	Source_HSD _A	Source of high-side switch A	
3, 4, 5, 6, 7	GND _A	Source of low-side switch A.	

Table 4. Pin functions description

Name	Description
V _{CC}	Battery connection.
GND	Power ground.
Source_LSD _A Source_LSD _B ⁽¹⁾	Power connections to the motor or the bridge configuration: Source HSD_A and Drain LSD_A must be externally connected; Source HSD_B and Drain LSD_B must be externally connected.
IN _A IN _B	Voltage controlled input pins with hysteresis, CMOS compatible. These two pins control the state of the bridge in normal operation according to the truth table (brake to $V_{\rm CC}$, Brake to GND, clockwise and counterclockwise).
PWM	Voltage controlled input pin with hysteresis, CMOS compatible. This pin turns ON the low-side driver according to the $\rm IN_A$ and $\rm IN_B$ settings (see <i>Table 13</i>). Gates of low-side FETS get modulated by the PWM signal during their on phase allowing speed control of the motor.
SEL ₀ SEL ₁	Active high compatible with 3 V and 5 V CMOS output pin; they addresses the Multisense multiplexer

Table 4. Pin functions description (continued)

Name	Description
MultiSense	Multiplexed Analog Signal. It delivers a current proportional to the load or a voltage proportional to the V_{CC} voltage or a voltage proportional to the chip temperature whenever the MultiSense_EN is set to high. The desired signal is chosen via SEL0 and SEL1 levels. The MultiSense pin supplies as well a Fault Flag when a fault is detected on the selected path A or B.
MultiSense_EN	Active high compatible with 3 V and 5 V CMOS output pin. It enables the MultiSense diagnostic pin.

^{1.} If the device is used in Bridge configuration we indicate: Source_HSD_A = Drain_LSD_A = OUT_A; Source HSD_B = Drain LSD_B = OUT_B; OUT_A and OUT_B are the power connections to the motor.

2 Electrical specifications

Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Table 5. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	38	V
-V _{CC}	Reverse V _{CC} supply voltage	0.3	V
I _{max}	DC output current (continuous)	Internally limited	Α
I _R	Reverse output current (continuous) ⁽¹⁾	-16	Α
V _{CCPK}	Maximum transient supply voltage (ISO 16750-2 2010 Test B clamped to 40 V; R_L = 4 Ω)	40	V
V _{CCJS}	Maximum jump start voltage for single pulse short circuit protection	28	V
I _{IN}	Input current (IN _A and IN _B pins)		
I _{SEL}	SEL _{0,1} DC input current	-1 to 10	mA
I _{PWM}	PWM Input current		
I _{SENSE_EN}	MultiSense_EN DC input current	-1 to 1.5	mA
1.	CS pin DC output current (V _{GND} = V _{CC} and V _{SENSE} < 0 V)	10	mA
ISENSE	CS pin DC output current in reverse (V _{CC} < 0 V)	-20	IIIA

Table 5. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
V _{ESD}	Electrostatic discharge (Human body model: R = 1.5 kΩ; C = 100 pF) – IN _A ,IN _B , PWM – MultiSense, SEL0, SEL1, MultiSense_EN – V _{CC} – Output	2 2 4 4	kV
T _c	Junction operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

^{1.} Based on the internal wires capability.

2.2 Thermal data

Table 6. Thermal data

Symbol	Parameter		Max. value	Unit
D	Thermal resistance junction-case (per leg)	HSD	4	°C/W
R _{thj-case}	Thermal resistance junction-case (per leg)	LSD	4.3	°C/W
R _{thj-amb}	Thermal resistance junction-ambient		See Figure 23	°C/W

2.3 Electrical characteristics

 V_{CC} = 7 V up to 28 V; -40 °C < T_i < 150 °C, unless otherwise specified.

Table 7. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4		28	V
		Off-state standby $IN_A = IN_B = PWM = 0$; $SEL_{0,1} = 0$; $T_j = 25$ °C; $V_{CC} = 13$ V; MultiSense_EN = 0			1	μA
Is		Off-state standby ⁽¹⁾ ; $IN_A = IN_B = PWM = 0$; $SEL_{0,1} = 0$; $V_{CC} = 13 \text{ V}$; $T_j = 85 \text{ °C}$; $MultiSense_EN = 0$			1	μA
	Supply current	Off-state standby; $IN_A = IN_B = PWM = 0$; $SEL_{0,1} = 0$; $V_{CC} = 13 \text{ V}$; $T_j = 125 \text{ °C}$; MultiSense_EN = 0			3	μA
		Off-state (no standby) IN _A = IN _B = PWM = 0; SEL _{0,1} = 1; MultiSense_EN = 0		2	4	mA
		On-state: IN _A or IN _B = 5V; PWM = 1; SEL _{0,1} = 0; Multisense_EN=0; No Load		3.5	6	mA
t _{D_STBY} ⁽²⁾	Standby mode blanking time	V_{CC} = 13 V; IN_A = IN_B = MultiSense_EN = 0 V; PWM = SEL_1 = 0 V; V_{SEL0} from 5 V to 0 V.	60	300	550	μs
	Static high-side resistance	I _{OUTx} = 5 A; T _j = 25 °C		27		mΩ
R _{ONHS}		I _{OUTx} = 5 A; T _j = -40 °C to 150 °C			53	mΩ
		V _{CC} = 4 V; I _{OUT} = 5 A; T _j = 25 °C		30		mΩ
		I _{OUTx} = 5 A; T _j = 25 °C		14		mΩ
R _{ONLS}	Static low-side resistance	I _{OUTx} = 5 A; T _j = -40 °C to 150 °C			27	mΩ
		$V_{CC} = 4 \text{ V}; I_{OUT} = 5 \text{ A}; T_j = 25 \text{ °C}$		20		mΩ
V _f	High-side free-wheeling diode forward voltage	I _{OUTx} = -5 A; T _j = 150 °C		0.7	0.9	V
1	Off-State Output current of	$T_j = 25 \text{ °C}; V_{CC} = 13V; V_{OUTA} = 0 \text{ or} $ $V_{OUTB} = 0; IN_A = IN_B = PWM = 0$	0		1	μA
I _{L(off)}	one leg	$T_j = 125^{\circ}C; V_{CC} = 13V; V_{OUTA} = 0 \text{ or } V_{OUTB} = 0; IN_A = IN_B = PWM = 0$	0		3	μA
I _{L(off)h}	Off-state output current of one leg with other HSD on	$IN_A = PWM = 0$; $IN_B = 5 V$; $V_{CC} = 13 V$; $V_{OUTA} = 0$	20		60	μA

^{1.} Parameter guaranteed by design and characterization; not subject to production test.

^{2.} To power on the device from standby, it is recommended to: toggle INA or INB or SEL0 or SEL1 or Multisense_EN from 0 to 1 first to come out from STBY mode; toggle PWM from 0 to 1 with a delay of 20 μs this avoids any overstress on the device in case of existing short-to-battery.

Table 8. Logic inputs (V_{cc}=7 V up to 28 V;-40 °C< T_j <150 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level voltage				0.9	V
V _{IH}	Input high level voltage		2.1			V
V _{IHYST}	Input hysteresis voltage		0.2			V
V	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V
V_{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
I _{INL}	Input current	V _{IN} = 0.9 V	1			μA
I _{INH}	Input current	V _{IN} = 2.1 V			10	μA
SEL ₀ , SEL ₁ (V _{CC} = 7 V up to 18 V; -40 °C <	T _j < 150 °C)				
V _{SELL}	Input low level voltage				0.9	V
I _{SELL}	Low level input current	V _{SEL} = 0.9 V	1			μΑ
V _{SELH}	Input high level voltage		2.1			V
I _{SELH}	High level input current	V _{SEL} = 2.1 V			10	μA
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V
V	Input clamp voltage	I _{SEL} = 1 mA	5.3		7.2	V
V _{SELCL}	Imput clamp voltage	I _{SEL} = -1 mA		-0.7		V
PWM (V _{CC} =	• 7 V up to 28 V; -40 °C < T _j < 1	150 °C)				
V_{PWM}	Input low level voltage				0.9	V
I _{PWM}	Low level input current	V _{PWM} = 0.9 V	1			μA
V _{PWM}	Input high level voltage		2.1			V
I _{PWMH}	High level input current	V _{PWM} = 2.1 V			10	μA
V _{PWM(hyst)}	Input hysteresis voltage		0.2			V
V	Input clamp voltage	I _{PWM} = 1 mA	5.3		7.2	V
V _{PMWCL}	input damp voltage	I _{PWM} = -1 mA		-0.7		V
SENSE_EN (V _{CC} = 7 V up to 18 V; -40 °C <	T _j < 150 °C)				
V _{SEnL}	Input low level voltage				0.9	V
I _{SEnL}	Low level input current	V _{SEn} = 0.9 V	1			μΑ
V _{SEnH}	Input high level voltage		2.1			V
I _{SEnH}	High level input current	V _{SEn} = 2.1 V			10	μA
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V
V	Input clump voltage	I _{SEn} = 1 mA	5.3		7.5	V
V_{SEnCL}	input ciump voltage	I _{SEn} = -1 mA		-0.7		V

Table 9. Switching (V_{CC} = 13 V; R_{LOAD} = 2.6 Ω)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
f ⁽¹⁾	PWM frequency		0		20	kHz
t _{d(on)}	Turn-on delay time	Input rise time < 1 μ s; MultiSense_EN = 5 V (no standby); SEL _{0,1} = 0; PWM = 0 (see <i>Figure 6</i>)		43		μs
t _{d(off)}	Turn-off delay time	Input rise time < 1 μ s; MultiSense_EN = 5 V (no standby); SEL _{0,1} = 0; PWM = 0 (see <i>Figure 6</i>)		18		μs
t _r	Rise time	See Figure 5		0.7	1.5	μs
t _f	Fall time	See Figure 5		0.7	1.3	μs
t _{cross}	Low Side turn-on delay time	See Figure 7	40	160	300	μs

^{1.} Parameter guaranteed by design and characterization; not subject to production test.

Table 10. Protections and diagnostics (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{USD}	Undervoltage shutdown	V _{CC} falling			4	V
V _{USDreset}	Undervoltage shutdown reset	V _{CC} rising			5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.3		V
1	High-side current	V _{CC} = 13 V	35	49	70	Α
I _{LIM_HSD}	limitation	4 V < V _{CC} < 18 V			70	Α
I _{SD_LSD}	Shutdown LS current		42	59	84	Α
t _{SD_LSD}	Time to shutdown for the low-side	IN _A = IN _B = 0; PWM = 5 V (see Figure 8)		5		μs
V _{CL_HSD}	High-side clamp voltage $(V_{CC}$ to $OUT_A = 0$ or $OUT_B = 0$)	I _{OUT} = 100 mA; t _{clamp} = 1 ms; I _{clamp} = 100 mA	38	46		V
V _{CL_LSD}	Low-side clamp voltage (OUT _A = V_{CC} or OUT _B = V_{CC} to GND)	I _{OUT} = 100 mA; t _{clamp} = 1 ms; I _{clamp} = 100 mA	38	46		V
T _{TSD_HSD}	High-side thermal shutdown temperature	IN _x = 2.1 V	150	175	200	°C
T _{TR_HSD}	High-side thermal reset temperature		135			°C
T _{HYST_HSD}	High-side thermal hysteresis (T _{TSD_HSD} - T _{TR_HSD})			7		°C
T _{TSD_LSD}	Low-side thermal shutdown temperature	IN _x = 0 V, PWM = 5 V	150	175	200	°C

Table 10. Protections and diagnostics (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CL}	Total clamp voltage (V _{CC} to GND)	I _{OUT} = 100 mA; t _{clamp} = 1 ms; I _{clamp} = 100 mA	38	46	52	V
V _{OL}	OFF-state open-load voltage detection threshold	$\begin{split} &\text{IN}_{\text{A}} = \text{IN}_{\text{B}} = 0; \text{ PWM} = 0; \\ &\text{MultiSense_EN} = 5 \text{ V}; \\ &\text{V}_{\text{SEL0}} = 5 \text{ V}; \\ &\text{V}_{\text{SEL1}} = 0 \text{ V for CHA}; \\ &\text{V}_{\text{SEL0}} = 0 \text{ V}; \\ &\text{V}_{\text{SEL1}} = 0 \text{ V for CHB} \end{split}$	2	3	4	>
I _{L(off2)}	OFF-state output sink current	$\begin{split} & IN_A = IN_B = 0; V_{OUTx} = V_{OL}; \\ & PWM = 0; MultiSense_EN = 5 V; \\ & SEL_0 = 1; SEL_1 = 0 for CHA; \\ & SEL_0 = 0; SEL_1 = 0 for CHB \end{split}$	-100		-15	μА
$\Delta T_{j_SD}^{(1)}$	Dynamic temperature			60		°C
t _{DSTKON}	OFF-state diagnostic delay time from falling edge of INPUT (see Figure 4)	$\begin{aligned} & V_{INA} = 5 \text{ V to 0 V; IN}_{B} = 0; \\ & PWM = 0; V_{SEL0} = 5 \text{ V;} \\ & V_{SEL1} = 0 \text{ V; SENSE_EN = 1;} \\ & I_{OUTA} = 0 \text{ A; } V_{OUTA} = 4 \text{ V} \end{aligned}$	40	160	300	μs
t _{D_VOL}	OFF-state diagnostic delay time from rising edge of V _{OUT}	$\begin{split} & \text{IN}_{\text{A}} = \text{IN}_{\text{B}} = 0; \text{PWM} = 0; \\ & \text{V}_{\text{SENSE_EN}} = 5 \text{V}; \text{V}_{\text{OUTx}} = 0 \text{V to} \\ & 4 \text{V}; \text{SEL}_{0} = 1; \text{SEL}_{1} = 0 \text{for CHA}; \\ & \text{SEL}_{0} = 0; \text{SEL}_{1} = 0 \text{for CHB} \\ & \text{(see Figure 11)} \end{split}$		5	30	μs
t _{Latch_RST_HD} ⁽¹⁾	Input reset time for high- side fault unlatch	V _{INx} = 5 V to 0 V; H _{SDx} faulting (see <i>Figure</i> 9)	3	10	20	μs
t _{Latch_RST_LS} ⁽¹⁾	Input reset time for low- side fault unlatch	V _{INx} = 0 V to 5 V; L _{SDx} faulting (see <i>Figure 10</i>)	3	10	20	μs

^{1.} Parameter guaranteed by design and characterization; not subject to production test.

Table 11. MultiSense (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	MultiSense clamp	V _{SEn} = 0 V; I _{SENSE} = -1 mA		7		V
V _{SENSE_CL}	voltage	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	V
K _{OL}	lout/Isense	I _{OUTx} = 0.05 A; V _{SENSE} = 0.5 V; V _{SENSE_EN} = 5 V; T _j = -40 °C to 150 °C	1609	5365	9120	
Κ ₀	I_{OUT}/I_{SENSE} $I_{OUT}/I_{SENSE} = 0.5 \text{ V};$ $V_{SENSE} = 5 \text{ V};$ $V_{j} = -40 \text{ °C to } 150 \text{ °C}$		2898	4794	6762	
K ₁	I _{OUTx} = 3 A; V _{SENSE} = 4 V;		3470	4450	5430	
K ₂	lout/Isense	I _{OUTx} = 5 A; V _{SENSE} = 4 V; V _{SENSE_EN} = 5 V; T _j = -40 °C to 150 °C	3870	4450	5030	
K ₃	lout/Isense	I _{OUTx} = 10 A; V _{SENSE} = 4 V; V _{SENSE_EN} = 5 V; T _j = -40 °C to 150 °C	3990	4436	4880	
dK _{OL} /K _{OL} ⁽¹⁾	Analog sense current drift	I _{OUTx} = 0.05 A; V _{SENSE} = 0.5 V; V _{SENSE_EN} = 5 V; T _j = -40 °C to 150 °C	-30		30	%
dK ₀ /K ₀ ⁽¹⁾	Analog sense current drift	I _{OUTx} = 0.3 A; V _{SENSE} = 0.5 V; V _{SENSE_EN} = 5 V; T _j = -40 °C to 150 °C	-20		20	%
dK ₁ /K ₁ ⁽¹⁾	Analog sense current drift	I _{OUTx} = 3 A; V _{SENSE} = 4 V; V _{SENSE_EN} = 5 V; T _j = -40 °C to 150 °C	-10		10	%
dK ₂ /K ₂ ⁽¹⁾	Analog sense current drift	I _{OUTx} = 5 A; V _{SENSE} = 4 V; V _{SENSE_EN} = 5 V; T _j = -40 °C to 150 °C	-6		6	%
dK ₃ /K ₃ ⁽¹⁾	Analog sense current drift	I _{OUTx} = 10 A; V _{SENSE} = 4 V; V _{SENSE_EN} = 5 V; T _j = -40 °C to 150 °C	-5		5	%

Table 11. MultiSense (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	MultiSense leakage current	$IN_A = IN_B = PWM = 0 V;$ $SEL_0 = SEL_0 = SEn = 0 V; T_j = -40 °C to 150 °C (standby)$	0		0.5	μΑ
^I SENSE0		$\begin{split} & SEn = 5 \; V; \; IN_A = IN_B = 5 \; V; \\ & PWM = 0 \; V; \; legX \; diagnostic \\ & selected; \; I_{OUTX} = 0 \; A \\ & E.g. \\ & - \; LegA: \; SEL_0 = 5 \; V; \; SEL_1 = 0 \; V; \\ & I_{OUTA} = 0 \; A; \; I_{OUTB} = 5 \; A \\ & - \; LegB: \; SEL_0 = 0 \; V; \; SEL_1 = 0 \; V; \\ & I_{OUTA} = 5 \; A; \; I_{OUTB} = 0 \; V \end{split}$	0		5	μΑ
		$\begin{split} & SEn = 5 \; V; \; PWM = 0 \; V; \; legX \\ & diagnostic \; selected; \; HSx \; OFF \\ & E.g. \\ & - \; LegA: \; SEL_0 = 5 \; V; \; SEL_1 = 0 \; V; \\ & IN_A = 0 \; V; \; IN_B = 5 \; V; \; I_{OUTB} = 5 \; A \\ & - \; LegB: \; SEL_0 = 0 \; V; \; SEL_1 = 0 \; V; \\ & IN_A = 5 \; V; \; IN_B = 0 \; V; \; I_{OUTA} = 5 \; A \end{split}$	0		5	μА
V _{SENSEH}	MultiSense output voltage in fault condition	$\begin{split} &V_{CC} = 13 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega; \\ &V_{SEn} = 5 \text{ V} \\ &- \text{ E.g: OUT}_{A} \text{ in open-load;} \\ &V_{INA} = 0 \text{ V; } V_{SEL0} = 5 \text{ V;} \\ &V_{SEL1} = 0 \text{ V; } I_{OUTA} = 0 \text{ A;} \\ &V_{OUTA} = 4 \text{ V} \end{split}$	5		7	٧
V _{OUT_MSD} ⁽¹⁾	Output Voltage for MultiSense shutdown	$V_{INA} = 5 \text{ V; } V_{INB} = 0 \text{ V; } V_{SEn} = 5 \text{ V; } V_{SEL0} = 5 \text{ V; } V_{SEL1} = 0 \text{ V; } R_{SENSE} = 2.7 \text{ k}\Omega \text{ I}_{OUTx} = 5 \text{ A}$		5		V
Vsense_sat	MultiSense saturation voltage	$\begin{split} &V_{CC} = 7 \text{ V; } V_{SEn} = 5 \text{ V;} \\ &R_{SENSE} = 10 \text{ k}\Omega; V_{INA} = 5 \text{ V;} \\ &V_{INB} = 0 \text{ V; } I_{OUTA} = 10 \text{ A;} \\ &V_{SEL0} = 5 \text{ V; } V_{SEL1} = 0 \text{ V;} \\ &T_j = 150 ^{\circ}\text{C} \end{split}$	5			V
I _{SENSE_SAT} ⁽¹⁾	MultiSense saturation current	$ \begin{vmatrix} V_{CC} = 13 \text{ V; } V_{SENSE} = 4 \text{ V;} \\ V_{SEn} = 5 \text{ V; } V_{INA} = 5 \text{ V; } V_{INB} = 0 \text{ V;} \\ V_{SEL0} = 5 \text{ V; } V_{SEL1} = 0 \text{ V;} \\ T_j = 150^{\circ}\text{C} $	4			mA
I _{OUT_SAT} ⁽¹⁾	Output saturation current	$ \begin{vmatrix} V_{CC} = 13 \text{ V; } V_{SENSE} = 4 \text{ V;} \\ V_{SEn} = 5 \text{ V; } V_{INA} = 5 \text{ V; } V_{INB} = 0 \text{ V;} \\ V_{SEL0} = 5 \text{ V; } V_{SEL1} = 0 \text{ V;} \\ T_j = 150^{\circ}\text{C} $	20			А
I _{SENSEH}	MultiSense current in fault condition	V _{CC} = 13 V; V _{SENSE} = V _{SENSEH}	15	20	30	mA

Table 11. MultiSense (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C) (continued)

		<u> </u>			i -	1
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Chip temperature	analog feedback					
		$\begin{aligned} & V_{SENSE_EN} = 5 \text{ V; } V_{SEL0} = 0 \text{ V;} \\ & V_{SEL1} = 5 \text{ V; } V_{INA} = V_{INB} = 0 \text{ V;} \\ & R_{SENSE} = 1 \text{ k}\Omega; T_j = -40 \text{ °C} \end{aligned}$	2.343	2.428	2.513	V
V _{SENSE_TC}	MultiSense output voltage proportional to chip temperature	$V_{SENSE_EN} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; \\ V_{SEL1} = 5 \text{ V}; V_{INA} = V_{INB} = 0 \text{ V}; \\ R_{SENSE} = 1 \text{ k}\Omega; T_j = 25 \text{ °C}$	1.990	2.076	2.161	V
		$V_{SENSE_EN} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; \\ V_{SEL1} = 5 \text{ V}; V_{INA} = V_{INB} = 0 \text{ V}; \\ R_{SENSE} = 1 \text{ k}\Omega; T_j = 125 °C$	1.444	1.530	1.615	V
dV _{SENSE_TC} /dT	Temperature coefficient	T _j = -40 °C to 150 °C		-5.5		mV/K
Transfer function		$V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + dV$	SENSE_T		- T ₀)	
V _{CC} supply voltag	ge analog feedback					
V_{SENSE_VCC} MultiSense output voltage proportional to V_{CC} supply voltage		V_{CC} = 13 V; V_{SENSE_EN} = 5 V; V_{SEL0} = V_{SEL1} = 5 V; R_{SENSE} = 1 k Ω	3.16	3.23	3.3	V
Transfer function		V _{SENSE_VCC} = V _{CC} /4		•		•
MultiSense timing	gs (Multiplexer transitio	n times) ⁽²⁾				
t _{D_AtoB}	Multisense transition delay from legA to legB	$V_{INA} = 5 \text{ V to 0 V,}$ $V_{INB} = 5 \text{ V}$ $V_{sense_EN} = 5 \text{ V}$ $V_{sel0} = 5 \text{ V to 0 V}$ $V_{sel1} = 0 \text{ V}$ $R_{sense} = 1 \text{ KOhm}$ $I_{OUTA} = 200 \text{ mA}$ $I_{OUTB} = 6 \text{ A}$			20	μs
t _{D_BtoA}	Multisense transition delay from legB to legA	V _{INB} = 5 V to 0 V, V _{INA} = 5 V V _{sense_EN} = 5 V V _{sel0} = 0 V to 5 V V _{sel1} = 0 V R _{sense} = 1 KOhm I _{OUTB} = 200 mA I _{OUTA} = 6 A			20	μs
t _{D_} cstoтc	MultiSense transition delay from current sense to T _C sense	$V_{INA} = 5 \text{ V; } V_{SENSE_EN} = 5 \text{ V;} $ $V_{SEL0} = 5 \text{ V to 0 V;} $ $V_{SEL1} = 0 \text{ V to 5 V; } I_{OUTA} = 2.5 \text{ A;} $ $R_{SENSE} = 1 \text{ k}\Omega;$			60	μs
t _{D_TCto} CS	MultiSense transition delay from T _C sense to current sense	$V_{INA} = 5 \text{ V; } V_{SENSE_EN} = 5 \text{ V;} $ $V_{SEL0} = 0 \text{ V to 5 V;} $ $V_{SEL1} = 5 \text{ V to 0 V; } I_{OUTA} = 2.5 \text{ A;} $ $R_{SENSE} = 1 \text{ k}\Omega;$			20	μs

Table 11. MultiSense (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{D_CStoVCC}	MultiSense transition delay from current sense to V _{CC} sense	$V_{INA} = 5 \text{ V}; V_{SENSE_EN} = 5 \text{ V}; \\ V_{SEL0} = 5 \text{ V}; V_{SEL1} = 0 \text{ V to 5 V}; \\ I_{OUTA} = 2.5 \text{ A}; R_{SENSE} = 1 \text{ k}\Omega;$			60	μs	
t _{D_VCCto} CS	MultiSense transition delay from V _{CC} sense to current sense	$V_{INA} = 5 \text{ V; } V_{SENSE_EN} = 5 \text{ V; } V_{SEL0} = 5 \text{ V; } V_{SEL1} = 5 \text{ V to 0 V; } I_{OUTA} = 2.5 \text{ A; } R_{SENSE} = 1 \text{ k}\Omega;$			20	μs	
t _{D_TCto} vcc		$V_{CC} = 13 \text{ V; } T_j = 125 \text{ °C;}$ $V_{SENSE_EN} = 5 \text{ V;}$ $V_{SEL0} = 0 \text{ V to 5 V;}$ $V_{SEL1} = 5 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega;$			20	μs	
^t D_VCCtoTC	MultiSense transition delay from V_{CC} sense to T_C sense V_{CC} sense $V_{CC} = 13 \text{ V}; T_j = 125 \text{ °C};$ $V_{SENSE_EN} = 5 \text{ V};$ $V_{SEL0} = 5 \text{ V} \text{ to 0 V};$ $V_{SEL1} = 5 \text{ V};$ $V_{SENSE} = 1 \text{ k}\Omega;$ angs (CurrentSense mode)						
MultiSense timing	gs (CurrentSense mode)					
^t DSENSE1H	Current sense settling time from rising edge of V _{SENSE_EN}	$V_{INA} = 5 \text{ V}; V_{INB} = 0 \text{ V};$ $V_{SENSE_EN} = 0 \text{ V to 5 V};$ $R_{SENSE} = 1 \text{ k}\Omega; R_L = 2.6 \Omega;$ $V_{PWM} = 5 \text{ V}; V_{SEL0} = 5 \text{ V};$ $V_{SEL1} = 0 \text{ V}$			60	μs	
t _{DSENSE1L}	Current sense disable delay time from falling edge of V _{SENSE_EN}	$V_{INA} = 5 \text{ V; } V_{INB} = 0 \text{ V;}$ $V_{SENSE_EN} = 5 \text{ V to 0 V;}$ $R_{SENSE} = 1 \text{ k}\Omega; R_L = 2.6 \Omega;$ $V_{PWM} = 5 \text{ V; } V_{SEL0} = 5 \text{ V;}$ $V_{SEL1} = 0 \text{ V}$			20	μs	
MultiSense timin	gs (chip temperature se	nse mode)		•			
t _{DSENSE2H}	V _{SENSE_TC} setting time from rising edge of V _{SENSE_EN}	$V_{SENSE_EN} = 0 \text{ V to 5 V};$ $V_{SEL0} = 0 \text{ V};$ $V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			60	μs	
t _{DSENSE2L}	V _{SENSE_TC} setting time from falling edge of V _{SENSE_EN}	V_{SENSE_EN} = 5 V to 0 V; V_{SEL0} = 0 V; V_{SEL1} = 5 V; R_{SENSE} = 1 k Ω			20	μs	
MultiSense timing	g (V _{CC} voltage sense m	ode)	<u> </u>				
t _{DSENSE3H}	V _{SENSE_VCC} setting time from rising edge of V _{SENSE_EN}	V_{SENSE_EN} = 0 V to 5 V; V_{SEL0} = 5 V; V_{SEL1} = 5 V; R_{SENSE} = 1 kΩ			60	μs	
t _{DSENSE3L}	V _{SENSE_VCC} setting time from falling edge of V _{SENSE_EN}	$V_{SENSE_EN} = 5 \text{ V to 0 V};$ $V_{SEL0} = 5 \text{ V};$ $V_{SEL1} = 5 \text{ V}$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs	

^{1.} Parameter guaranteed by design and characterization; not subject to production test.

^{2.} Transition delay are measured up to +/- 10% of final conditions.

Figure 5. Definition of the low-side switching times

Figure 6. Definition of the high-side switching times

Figure 8. Time to shutdown for the low-side driver

Note: MultiSense_EN=1

Figure 9. Input reset time for HSD-fault unlatch

Note: MultiSense_EN=1

Figure 10. Input Reset time for LSD-fault unlatch

Note: MultiSense_EN = 1

Figure 11. OFF-state diagnostic delay time from rising edge of V_{OUT} ($t_{D\ VOL}$)

MultiSense_EN = 1 Note:

INA	INB	PWM	SEL0	SEL1	MS_EN	MS	HSA	LSA	HSB	LSB
0	0	1	0	0	1	High-Z	OFF	ON	OFF	ON
		1	1	0	1	High-Z	OFF	ON	OFF	ON
0	1	0	0	0	1	Current Monitoring HSB	OFF	OFF	ON	OFF
	'	1	0	0	1	Current Monitoring HSB	OFF	ON	ON	OFF
0	1	0	1	0	1	High-Z	OFF	OFF	ON	OFF
0	'	1	1	0	1	High-Z	OFF	ON	ON	OFF
1	0	0	0	0	1	High-Z	ON	OFF	OFF	OFF
'		1	0	0	1	High-Z	ON	OFF	OFF	ON
1	0	0	1	0	1	Current Monitoring HSA	ON	OFF	OFF	OFF
'		1	1	0	1	Current Monitoring HSA	ON	OFF	OFF	ON
1	1	Х	0	0	1	Current Monitoring HSB	ON	OFF	ON	OFF
'	'	^	1	0	1	Current Monitoring HSA	ON	OFF	ON	OFF
0	0	0	1	0	1	Off state diagnostic OUTA	OFF	OFF	OFF	OFF
0	0	0	0	0	1	Off state diagnostic OUTB	OFF	OFF	OFF	OFF
X ⁽¹⁾	Х	Х	0	1	1	Tchip Monitoring	_	_	_	_
Х	Х	Х	1	1	1	Vcc Monitoring	_	_	_	_
Х	Х	Х	Х	Х	0	High-Z ⁽²⁾	_	_	_	_

Table 12. Operative condition - truth table

Table 13. On-state fault conditions - truth table

D	igital l	nput pins	s ⁽¹⁾	MultiSense	Comment			
INA	INB	PWM	SEL0	WiditiSelise	Comment			
0	0	1	0	VsenseH	LSB protection triggered; LSB latched off			
0	0	1	1	VsenseH	LSA protection triggered; LSA latched off			
0	1	Х	0	VsenseH	HSB protection triggered; HSB latched off			
0	1	1	1	VsenseH	LSA protection triggered; LSA latched off			
1	0	1	0	VsenseH	LSB protection triggered; LSB latched off			
1	0	Х	1	VsenseH	HSA protection triggered; HSA latched off			
1	1	Х	0	VsenseH	HSB protection triggered; HSB latched off			
1	1	Х	1	VsenseH	HSA protection triggered; HSA latched off			

^{1.} MultiSense_EN = 1 and SEL1 = 0 are mandatory for fault detection. Other logic combinations on digital input pins not reported on the above table do not allow to detect a latched-off channel.

^{1.} X means that the value of the pin can be 0 or 1.

^{2.} When $IN_A = IN_B = PWM = SEL_0 = SEL_1 = MultiSense_EN = 0$ device enters standby after T_{DSTBY} .

Table 14. Off-state — truth table

INA	INB	SEL0	SEL1	PWM	OUTA	ОПТВ	MultiSense_EN	MultiSense	Description
Off-state diagnostic									
		1	0	· O ·	Vouta > Vol		1	V _{SENSEH}	Case 1: OUT _A shorted to V _{CC} if no pull-up is applied. Case 2: NO open-load in full bridge configuration with an external pull-up on OUTB Case 3: open-load in half bridge configuration with an external pull-up on OUT _A (motor connected between Out and Ground)
					V _{OUTA} < V _{OL}	Х	1	Hi-Z	Case 1: open-load in full Bridge configuration with an external pull-up on OUT _B Case 2: NO open-load in half Bridge configuration with external pull-up on OUT _A (motor connected between Out and Ground)
0	0	0 ⁽¹⁾⁽²⁾	0(1)(2)		x	V _{OUTB} > V _{OL}	1	V _{SENSEH}	Case 1: OUT _B shorted to V _{CC} if no pull-up is applied Case 2: NO open-load in full bridge configuration with external pull-up on OUT _A Case 3: open-load in half bridge configuration with external pull-up on OUT _B (motor connected between Out and Ground)
					Х	Voutb < Vol	1	Hi-Z	Case1: open-load in full Bridge configuration with an external pull-up on OUT _A Case 2. NO open-load in half Bridge configuration with external pull-up on OUT _B (motor connected between Out and Ground)

^{1.} The device enters standby mode after $TD_{_sdby}$.

47/

To power on the device from standby, it is recommended to: toggle INA or INB or SEL0 or SEL1 from 0 to 1 first to come
out from STBY mode; toggle PWM from 0 to 1 with a delay of 20 µs this avoids any overstress on the device in case of
existing short-to-battery.

Standby Mode INA or INB or PWM or MS_EN or SEL0 or SELB = 1 INA & INB & PWM & MS_EN & SEL0 & SELB = 0 Operating Mode GAPG2810151153CFT

Figure 12. State diagram

Waveforms 2.4

Figure 13. Normal operative conditions

 $MultiSense_EN = 1.$ Note:

Figure 14. OUT shorted to ground and short clearing

Note: MultiSense_EN = 1

Note: MultiSense_EN = 1

Protections VNH7040AY

3 Protections

3.1 Power limitation (high side driver)

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the MultiSense pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power. The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue. When Power Limitation is reached, The device enters in latch mode and generates the Fault Flag on Multisense=VsenseH when the faulty leg diagnostic is selected (please refer to *Table 13*).

3.2 Thermal shutdown (high side and low side)

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175 $^{\circ}$ C), it automatically switches off and the diagnostic indication is triggered on MultiSense (please refer to *Table 13*). The device switches on again as soon as its junction temperature drops to T_R .

3.3 Current limitation and over current detector

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. High side current limitation: in case of short-circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIM_HSD} , by operating the output power MOSFET in the active region.

Low side overcurrent detector: this protection senses the current flowing in the low side. If the current exceeds a safety level I_{SD_LS} , the device will switch off after a filtering time $t_{sd~Id}$.

In case of fault conditions caused by Power Limitation or overtemperature or open load/short to VCC in OFF state, the fault is indicated by the MultiSense pin being internally switched to a "current limited" voltage source pulled to level VSENSEH (please refer to *Table 13*).

4 Typical application schematic

Figure 16. Typical application schematic

Note: To protect the device against Battery disconnection with energized inductive load when the bridge driver goes into 3-state, suggested C(Vcc) is:

$$C(Vcc) = \frac{Emotor}{0.5 \cdot DVcc, max^2}$$

where:

Emotor = 33.5 mJ;

DVcc,max = Vcc_AMR - Vcc_max;

 $Vcc_AMR = 38 V;$

Vcc_max = 26 V (Vcc at jump start);

 $C(Vcc) = 470 \mu F.$

5 MultiSense operation

5.1 MultiSense analog monitoring

Diagnostic information on device and load status are provided by an analog output pin (MultiSense) delivering the following signals:

- Current monitor: current mirror of channel output current
- V_{CC} monitor: voltage proportional to V_{CC}
- T_{CASE}: voltage proportional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in MultiSense multiplexer addressing table.

5.2 Multisense diagnostics flag in fault conditions

Multisense pin delivers fixed voltage (VSENSEH) with a certain current capability in case of

- Fault condition on activated high-side (in ON state) triggered by Power Limitation, overtemperature protection, where MultiSense output is selected by SEL0 to high-side in fault state.
- Fault condition on activated low-side (in ON state) triggered by overcurrent shutdown, overtemperature protection, where MultiSense output is selected by SEL0 to the same leg (of high-side) where low-side is in fault state.
- Short-circuit to VCC on OUT in OFF state (INA = INB = PWM = 0) selected by SEL0;
 Special care must be taken for the OUTB (SEL0 = 0) because the fixed voltage is available only before device enters its stand-by mode after TD_STDBY (because all control signals are set to 0).
- In the configuration of half bridge (load connected between OUT and ground), when
 open-load appears on OUT in OFF state (selected by SEL0) with activated external
 pull-up resistor. Such condition causes an effect similar to the short circuit to V_{CC} on
 leg in OFF state (as mentioned in above case, output voltage exceeds open-load
 threshold V_{OL}).

6 Reverse battery protection

The picture below shows a P-Channel MOSFET connected to the V_{CC} pin.

STB80PF55-D2PAK
Q1
Vbat
Vcc
(To system supply)
15V

R11
1K

GND

Figure 18. P-channel MOSFET connected to the V_{CC} pin

In normal operation the Zener diode plus the resistor generate a gate-source voltage enough to switch on the P-MOSFET. In case of reverse battery polarity: the P-Ch is switched off since its gate voltage is low. No current can flow in this state.

57

7 Open Load detection in off-state

The Open Load (OL) detection in off-state operates when output is deactivated (it means INA = INB = PWM = 0). Open load detection is performed by reading the MultiSense output. External (switched) pull-up resistor has to be used and dimensioned to pull output voltage above the maximum open load detection voltage (VOL MAX) when load is not connected.

Possible conditions are specified in Table 14.

If pull up resistor is applied over switched circuitry, it allows to detect short to VCC from Open load.

Depending on application setup, two cases can be applied:

 Half-bridge, with separate loads on OUTA and OUTB, open-load pull-up resistor R_{PU} is applied for each side; see example in the figure below.

Figure 19. Open load detection in off-state - configuration two half-bridges

if the device is used in half bridge configuration, the R_{PU} value has to be:

$$R_{pull_up} < \frac{V_{BATTmin} - V_{OLmax}}{I_{L(off2)min[@VOLmax]}}$$

 Full bridge (load connected between OUTA and OUTB), only one pull-up resistor RPU is sufficient; see example in the figure below.

Figure 20. Open load detection in off-state - configuration full-bridge

if the device is used in H-bridge configuration, the equation is:

$$R_{pull_up} < \frac{V_{BATTmin} - V_{OLmax}}{2xI_{L(off2)min[@VOLmax]}}$$

8 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 15: ISO 7637-2 electrical transient conduction along supply line*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), *Section 4*. The DUT is intended as the present device only, without components and accessed through VCC and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Table 15. ISO 7637-2 electrical transient conduction along supply line

Test pulse 2011(E)	with status	everity level Il functional nce status	Minimum number of pulses or	Burst cycle/pulse repetition time		Pulse duration and pulse generator internal				
	Level	U _S ⁽¹⁾	test time	min.	max.	impedance				
1	III	-112 V	500 pulses	0.5 s		2 ms, 10 Ω				
2a	III	+55	500 pulses	0.2 s	5 s	50 μs, 2 Ω				
3a	IV	-220 V	1h	90 ms	100 ms	0.1 μs, 50 Ω				
3b	IV	+150 V	1h	90 ms	100 ms	0.1 μs, 50 Ω				
4 ⁽²⁾	IV	-7 V	1 pulse			100 ms, 0.01 Ω				
Load dump according to ISO 16750-2:2010										
Test B ⁽³⁾		40 V	5 pulse	1 min		400 ms, 2 Ω				

^{1.} US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E)

^{2.} Test pulse from ISO 7637-2:2004(E)

^{3.} With 40 V external suppressor referred to ground (-40 $^{\circ}$ C < T_J < 150 $^{\circ}$ C)

9 Package and PCB thermal data

9.1 PowerSSO-36 thermal data

Figure 21. PowerSSO-36™ PC board

Note:

Board finish thickness 1.6 mm +/- 10%, board double layers and four layers, board dimension 129x60, board material FR4, Cu thickness 0.070 mm (front and back side), thermal vias spaced on a 1.2 mm x 1.2 mm grid, Vias pad clearance thickness 0.2 mm,

thermal via diameter 0.3 mm \pm 0.08 mm, Cu thickness on vias 0.025 mm, footprint dimension 4.1 mm x 6.5 mm.

RthA
Chip 1

RthB
Chip 2

RthBC

RthBC

RthC
Chip 3

Figure 22. Chipset configuration

9.1.1 Thermal resistances definition (values according to the PCB heatsink area)

- RthHS = RthHSA = RthHSB = high side chip thermal resistance junction to ambient (HSA or HSB in ON state)
- RthLS = RthLSA = RthLSB = low side chip thermal resistance junction to ambient
- RthHSLS = RthHSALSB = RthHSBLSA = mutual thermal resistance junction to ambient between high side and low side chips
- RthLSLS = RthLSALSB = mutual thermal resistance junction to ambient between low side chip.

Table 16. Thermal model for junction temperature calculation in steady-state conditions

Chip 1	Chip 2	Chip 3	Tjchip1	Tjchip2	Tjchip3
ON	OFF	ON	$P_{dchip1}.R_{thA} + P_{dchip3}.$ $R_{thAC} + T_{amb}$	$P_{dchip1}.R_{thAB} + P_{dchip3}$. $R_{thBC} + T_{amb}$	$P_{dchip1}.R_{thAC} + P_{dchip3}$. $R_{thC} + T_{amb}$
ON	ON	ON	$P_{dchip1}.R_{thA} + P_{dchip2}.$ $R_{thAB} + T_{amb}$	$P_{dchip1}.R_{thAB} + P_{dchip2}$. $R_{thB} + T_{amb}$	P _{dchip1} .R _{thAC} + P _{dchip2} . R _{thBC} + T _{amb}
ON	OFF	OFF	P _{dchip1} .R _{thA} + T _{amb}	P _{dchip1} .R _{thAB} + T _{amb}	P _{dchip1} .R _{thAC} + T _{amb}
ON	ON	ON	P _{dchip1} .R _{thA} + (P _{dchip2} + P _{dchip3}) · R _{thAB} + T _{amb}	$\begin{aligned} & P_{\text{dchip2}}.R_{\text{thB}} + P_{\text{dchip1}} . \\ & R_{\text{thAB}} + P_{\text{dchip3}} . \\ & R_{\text{thBC}} + T_{\text{amb}} \end{aligned}$	$\begin{aligned} &P_{dchip1}.R_{thAB} + P_{dchip2} \\ &.R_{thBC} + P_{dchip3} \\ &.R_{thC} + T_{amb} \end{aligned}$

9.2 Thermal Characterization during transients

$$T_{hs} = PD_{hs} \cdot Z_{hs} + Z_{hsls} \cdot (Pd_{lsA} + Pd_{lSB}) + T_{amb}$$

$$T_{ISA} = Pd_{ISA} \cdot Z_{IS} + Pd_{hs} \cdot Z_{hsIs} + Pd_{ISB} \cdot Z_{ISIs} + T_{amb}$$

$$T_{ISB} = Pd_{ISB} \cdot Z_{IS} + Pd_{hs} \cdot Z_{hsIs} + Pd_{IsA} \cdot Z_{IsIs} + T_{amb}$$

Figure 24. HSD thermal impedance junction ambient single pulse

Tj, PdAhs R1 R2 C7 R8 **⊘**PdBhs R7 W R22 C21 R21 C10 C11 C12 C13 + R14 R9 R10 R11 R12 R13 ₩ C16 PdBls R19 R15 R16 R17 R18 R20 ____ T_amb

Figure 26. Electrical equivalent model

Table 17. Thermal parameters

Area/island (cm ²)	FP	2	8	4L
R1 (°C/W)	0.8			
R2 (°C/W)	3.2			
R3 (°C/W)	12	11	8	5
R4 (°C/W)	28	14	13	5
R5 (°C/W)	37	21	14	7
R6 (°C/W)	36	36	22	13
R7 (°C/W)	0.8			
R8 (°C/W)	3.2			
R9 (°C/W)	0.8			
R10 (°C/W)	2.5			
R11 (°C/W)	22	14	14	8
R12 (°C/W)	49	32	20	13
R13 (°C/W)	54	33	25	16
R14 (°C/W)	56	30	27	20
R15 (°C/W)	0.8			
R16 (°C/W)	2.5			
R17 (°C/W)	22	14	14	8
R18 (°C/W)	49	32	20	13
R19 (°C/W)	54	33	25	16
R20 (°C/W)	56	30	27	20
R21 (°C/W)	70	64	70	55
R22 (°C/W)	70	66	55	40

DocID028118 Rev 5

Table 17. Thermal parameters (continued)

Area/island (cm ²)	FP	2	8	4L
R23 (°C/W)	70	64	70	55
C1 (W·s/°C)	0.00028			
C2 (W·s/°C)	0.008			
C3 (W·s/°C)	0.18	0.16	0.15	0.18
C4 (W·s/°C)	0.7	1.45	1.4	0.4
C5 (W·s/°C)	0.8	1.8	1.5	14
C6 (W·s/°C)	5	6	7.5	18
C7 (W·s/°C)	0.00028			
C8 (W·s/°C)	0.008			
C9 (W·s/°C)	0.00007			
C10 (W·s/°C)	0.016			
C11 (W·s/°C)	0.13	0.1	0.1	0.08
C12 (W·s/°C)	0.35	0.3	0.37	0.26
C13 (W·s/°C)	0.55	1.4	1.2	1.4
C14 (W·s/°C)	2.8	5.4	3.2	20
C15 (W·s/°C)	0.00007			
C16 (W·s/°C)	0.016			
C17 (W·s/°C)	0.13	0.1	0.1	0.08
C18 (W·s/°C)	0.35	0.3	0.37	0.26
C19 (W·s/°C)	0.55	1.4	1.2	1.4
C20 (W·s/°C)	2.8	5.4	3.2	20
C21 (W·s/°C)	0.011	0.009	0.009	0.005
C22 (W·s/°C)	0.017	0.016	0.016	0.011
C23 (W·s/°C)	0.011	0.009	0.009	0.005

10 Package and packing information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

10.1 PowerSSO-36 TP package information

Figure 27. PowerSSO-36 TP package dimensions

Table 18. PowerSSO-36 TP mechanical data

Oh a l		Millimeters	
Symbol	Min.	Тур.	Max.
А	2.15		2.47
A2	2.15		2.40
a1	0		0.1
b	0.18		0.36
С	0.23		0.32
D	10.10		10.50
Е	7.4		7.6
е		0.5	
e3		8.5	
F		2.3	
G			0.1
Н	10.1		10.5
h			0.4
k	0 deg		8 deg
L	0.6		1
М		4.3	
N			10 deg
0		1.2	
Q		0.8	
S		2.9	
Т		3.65	
U		1.0	
X1	1.85		2.35
Y1	3		3.5
X2	1.85		2.35
Y2	3		3.5
Х3	4.7		5.2
Y3	3		3.5
Z1		0.4	
Z2		0.4	

10.2 PowerSSO-36 TP packing information

Figure 28. PowerSSO-36 TP tube shipment (no suffix)

Figure 29. PowerSSO-36 TP tape and reel shipment (suffix "TR")

10.3 PowerSSO-36 marking information

Special function digit

&: Engineering sample

PowerSSO-36 TOP VIEW

(not in scale)

Special function digit

&: Engineering sample

Special function digit

&: Engineering sample

<b

Figure 30. PowerSSO-36 marking information

Parts marked as '&' are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

Order codes VNH7040AY

11 Order codes

Table 19. Device summary

Package	Order codes		
1 donage	Tube	Tape and reel	
PowerSSO-36 TP	VNH7040AY	VNH7040AYTR	

VNH7040AY Revision history

12 Revision history

Table 20. Document revision history

Date	Revision	Description of changes
06-Nov-2015	1	Initial release.
21-Dec-2015	2	Table 11: MultiSense (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C): – I _{SENSE0} : updated test conditions
23-Feb-2016	3	Table 9: Switching (V_{CC} = 13 V; R_{LOAD} = 2.6 Ω): - t_{cross} : updated values Table 10: Protections and diagnostics (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C): - t_{DSTKON} : updated values Table 11: MultiSense (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C): - I_{SENSE0} , V_{SENSE_TC} : updated values
13-Dec-2016	4	$ \begin{split} & Table \ 5: Absolute \ maximum \ ratings: \\ & - \ I_R: \ updated \ value \\ & Table \ 6: \ Thermal \ data: \\ & - \ R_{thj\text{-}case} \ and \ R_{thj\text{-}amb}: \ updated \ values \\ & Table \ 7: \ Power \ section: \\ & - \ Added \ new \ test \ conditions \ for: \ R_{ONHS}, \ R_{ONLS} \\ & Table \ 10: \ Protections \ and \ diagnostics \ (7 \ V < V_{CC} < 18 \ V; \ -40 \ ^{\circ}C < T_{j} < 150 \ ^{\circ}C): \\ & - \ Added \ new \ test \ condition \ for: \ I_{LIM_HSD} \\ & Table \ 11: \ MultiSense \ (7 \ V < V_{CC} < 18 \ V; \ -40 \ ^{\circ}C < T_{j} < 150 \ ^{\circ}C): \\ & - \ Added \ new \ parameter \ T_{D_AtoB} \\ & Added: \ Chapter \ 2.4: \ Waveforms, \ Chapter \ 3: \ Protections, \ Chapter \ 4: \ Typical \ application \ schematic, \ Chapter \ 5: \ MultiSense \ operation, \ Chapter \ 6: \ Reverse \ battery \ protection, \ Chapter \ 7: \ Open \ Load \ detection \ in \ off-state, \ Chapter \ 8: \ Immunity \ against \ transient \ electrical \ disturbances, \ Chapter \ 9: \ Package \ and \ PCB \ thermal \ data. \\ & Minor \ text \ changes. \end{aligned}$
10-May-2017	5	Updated: — Document status promoted from preliminary data to production data — Features added 'AEC-Q100 qualified' — Description — Table 5: Absolute maximum ratings — Table 7: Power section — Table 9: Switching (V _{CC} = 13 V; R _{LOAD} = 2.6 Ω) — Table 10: Protections and diagnostics (7 V < V _{CC} < 18 V; -40 °C < T _j < 150 °C) — Table 11: MultiSense (7 V < V _{CC} < 18 V; -40 °C < T _j < 150 °C) — Section 3.3: Current limitation and over current detector — Section 7: Open Load detection in off-state — Figure 13 and add note, Figure 16 and add note, Figure 21, Figure 22 and Figure 23 Added Table 16 and Section 9.2: Thermal Characterization during transients.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

