Machine Learning Methodologies and Applications (AI6012) Individual Assignment

Leon Sun (G2204908A)

30 September 2023

1 Question 1 (10 marks)

Suppose there are C classes, 0, 1, ..., C-1

For
$$c > 0$$
: $P(y = c \mid x) = \frac{\exp(-w^{(c)^T}x)}{1 + \sum_{c=1}^{C-1} \exp(-w^{(c)^T}x)} = \hat{y}_c$ (1)

For
$$c > 0$$
: $P(y = 0 \mid x) = \frac{1}{1 + \sum_{c=1}^{C-1} \exp(-w^{(c)^T} x)} = \hat{y}_0$ (2)

2 Question 2 (5 marks)

2.2. Answer:

C=0.01	C=0.05	C=0.1	C=0.5	C=1
0.84958	0.85038	0.85038	0.85050	0.85032

Table 1: Classification accuracy on running linear kernel SVM on 3-fold cross-validation using training set with different values of the parameter C in $\{0.01, 0.05, 0.1, 0.5, 1\}$

2.3. Answer:

	g = 0.01	g = 0.05	g=0.1	g = 0.5	g=1
C=0.01	0.76377	0.76433	0.77096	0.76377	0.76377
C=0.05	0.78871	0.83293	0.83029	0.76961	0.76377
C=0.1	0.83226	0.83754	0.83717	0.79092	0.76377
C=0.5	0.84411	0.84546	0.84559	0.82507	0.77772
C=1	0.84682	0.84589	0.84651	0.82956	0.78668

Table 2: Classification accuracy on running rbf kernel SVM on 3-fold cross-validation using training set with parameter gamma in {0.01, 0.05, 0.1, 0.5, 1} and different values of the parameter C in {0.01, 0.05, 0.1, 0.5, 1}

2.4. Answer:

	kernal=Linear, C=1
Accuracy of SVMs	0.84733

Table 3: Classification accuracy on running linear kernel SVM on 3-fold cross-validation using test set with different values with C=1

3 Question 3 (5 marks)

4 Question 4 (5 marks)

 $\begin{array}{ccc} & \textbf{kernal=Linear, C=1} \\ \textbf{Accuracy of SVMs} & 0.84733 \end{array}$

Table 4: Classification accuracy on running linear kernel SVM on 3-fold cross-validation using test set with different values with C=1