Dynamic Programming Part 2

CS240

Spring 2022

Rui Fan

M

Matrix multiplication

$$\begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 11 \\ 33 & 32 \end{bmatrix}$$

- Let A be a p × q matrix, B be a q × r matrix. Let $C = A \times B$.
 - \Box C is a p × r matrix.
- C_{ij} is the entry in the i'th row and j'th column of C.
 - ☐ It's the dot product of the i'th row of A and j'th column of B.

$$C_{ij} = \sum_{k} A_{ik} \cdot B_{kj}$$

- Computing C takes O(pqr) time.
 - □ Time counted as number of multiplications.
 - ☐ C has pr entries.
 - □ Each entry formed by computing q products, then summing.

ÞΑ

Multiplying many matrices

- Suppose we want to multiply A_1 , A_2 , A_3 , A_4 . This can be done in several ways.
 - $\Box (A_1(A_2(A_3A_4))).$
 - $\Box (A_1((A_2A_3)A_4)).$
 - $\Box ((A_1A_2)(A_3A_4)).$

 - □ All give the same answer.
 - Because matrix multiplication is associative.
 - But they can take different amounts of time!

Same answer, different costs

- Multiplying a $p \times q$ matrix by a $q \times r$ matrix takes O(pqr) time.
- Let A_1 , A_2 , A_3 be 3 matrices with dimensions 10×100 , 100×5 , 5×50 .
- Cost of $((A_1A_2)A_3)$ is 7500.
 - \square 10*100*5=5000 for A_1A_2 , producing a 10×5 matrix.
 - \square Then another 10*5*50=2500 to multiply by A_3 .
- Cost of $(A_1(A_2A_3))$ is 75,000.
 - □ 100*5*50=25000 for A_2A_3 , producing a 100×50 matrix.
 - □ Then another 10*100*50=50000 to multiply by A_1 .
- Same answer, but 10 times the cost!

Matrix-chain multiplication problem

- Given a sequence $A_1, A_2, ..., A_n$ of matrices, where A_i has dimensions $p_{i-1} \times p_i$, for i=1,...n, compute the product $A_1 \times A_2 \times \cdots \times A_n$ in a way that minimizes the cost.
- $\blacksquare A_1 \times A_2 \times \cdots \times A_n$ has dimensions $p_0 \times p_n$.
 - \square Same as $(((A_1 \times A_2) \times A_3) ... \times A_n)$.
 - \square $(A_1 \times A_2)$ has dimensions $p_0 \times p_2$.
 - $\square ((A_1 \times A_2) \times A_3)$ has dimensions $p_0 \times p_3$.
 - $\square (((A_1 \times A_2) \times A_3) \times A_4)$ has dimensions $p_0 \times p_4$.
 - □ Etc.

re.

- Suppose we want to multiply $A = A_1 \times A_2 \times A_3 \times A_4 \times A_5 \times A_6 \times A_7 \times A_8$ efficiently.
- Say we first compute $B = A_1 \times A_2 \times A_3 \times A_4$, then $C = A_5 \times A_6 \times A_7 \times A_8$, and then $A = B \times C$.
- B has dimensions $p_0 \times p_4$, C has dimensions $p_4 \times p_8$, so computing $B \times C$ takes $O(p_0 p_4 p_8)$ time.
- Let M(1,4) be the smallest cost to compute $A_1 \times A_2 \times A_3 \times A_4$, and M(5,8) the smallest cost to compute $A_5 \times A_6 \times A_7 \times A_8$.
- Then computing A by breaking it apart into B and C takes $M(1,4) + M(5,8) + O(p_0p_4p_8)$ time.
- Since we split A into two parts following A_4 , we call this breaking at A_4 .

- Alternatively, we can break at A₃.
- Compute $B' = A_1 \times A_2 \times A_3$, then $C' = A_4 \times A_5 \times A_6 \times A_7 \times A_8$, and then $A = B' \times C'$.
- B' has dimensions $p_0 \times p_3$, C' has dimensions $p_3 \times p_3$, so computing B'×C' takes $O(p_0p_3p_8)$ time.
- Let M(1,3) be the smallest cost to compute $A_1 \times A_2 \times A_3$, and M(4,8) the smallest cost to compute $A_4 \times A_5 \times A_6 \times A_7 \times A_8$.
- Then computing A by breaking it apart into B' and C' takes $M(1,3) + M(4,8) + O(p_0p_3p_8)$ time.

- Since there are 8 matrices, there are 7 ways we can break A into subproblems this way.
 - □ Breaking at A_1 has cost $C_1 = M(1,1) + M(2,8) + p_0 p_1 p_8$.
 - □ Breaking at A_2 has cost $C_2 = M(1,2) + M(3,8) + p_0p_2p_8$.
 - □ Breaking at A_3 has cost $C_3 = M(1,3) + M(4,8) + p_0p_3p_8$.
 - □ Breaking at A_4 has cost $C_4 = M(1,4) + M(5,8) + p_0 p_4 p_8$.
 - □ Breaking at A_5 has cost $C_5 = M(1,5) + M(6,8) + p_0 p_5 p_8$.
 - □ Breaking at A_6 has cost $C_6 = M(1.6) + M(7.8) + p_0 p_6 p_8$.
 - □ Breaking at A_7 has cost $C_7 = M(1,7) + M(8,8) + p_0 p_7 p_8$.

100

- Which split is best?
 - □ We don't know.
 - □ But one of the splits gives the best way to multiply $A_1 \times A_2 \times \cdots \times A_8$.
 - □ Because no matter how we parenthesize $A_1 \times A_2 \times \cdots \times A_8$, there's some multiplication that happens last.
 - This corresponds to the split position.
 - E.g. if we parenthesize as $(A_1 \times (A_2 \times A_3)) \times ((A_4 \times A_5) \times (A_6 \times (A_7 \times A_8)))$, the split occurs after A₃.
- So, the minimum cost M(A) to multiply $A_1 \times A_2 \times \cdots \times A_8$ is the minimum cost from one of the splittings.
- So $M(A) = \min(C_1, C_2, C_3, C_4, C_5, C_6, C_7)$.

Dynamic programming equation

■ Let M(i,j) be the smallest time to multiply matrices of $A_i \times A_{i+1} \times \cdots \times A_j$. Then

$$M(1,n) = \min_{1 \leq j \leq n-1} (M(1,j) + M(j+1,n) + p_0 p_j p_n)$$

$$Cost \ of \qquad Choose \ the \qquad Cost \ of \ the \qquad Cost \ of \ the \qquad Cost \ of \ multiplying \ all \\ the \ matrices \qquad point \ j \qquad first \ part \qquad second \ part \\ A_1, \dots, A_n.$$

M

DP equation and subproblems

- Solving the main problem M(1,n) requires solving subproblems M(i,j), for $1 \le i,j \le n$.
- Solving each M(i,j) in turn requires solving smaller subproblems.
- Work bottom up. Solve smallest subproblems first, then combine the solutions to solutions of bigger subproblems.
- In the base case we have M(i,i)=0, for all i.
 - □ Because we just have matrix A_i, with no multiplications.

Source: Introduction to Algorithms, Cormen et al

M

The table method

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25
	3 0				m	

- □Compute bottom up, row by row.
- \square Final answer we want is M(1,6).
- □Bottom row is all 0.
- ☐ In second to bottom row,
- $A(i, i+1) = p_{i-1}p_ip_{i+1}$ because we multiply A_i and A_{i+1} .
- □Values in each row only depend on values in rows below, which we've already computed.

$$m[1,3] = \min \begin{cases} m[1,2] + m[3,3] + 30 \times 15 \times 5 = 18000 \\ m[2,1] + m[2,3] + m[2,3] + 30p \times 35p \times 5 = 0873500 + 35 \cdot 15 \cdot 20 \\ m[2,5] = \min \end{cases} \begin{cases} m[2,3] + m[4,5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \cdot 5 \cdot 20 \\ m[2,4] + m[5,5] + p_1 p_4 p_5 = 4375 + 0 + 35 \cdot 10 \cdot 20 \\ = 7125 \end{cases}$$

The table method

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

- ☐The s table says where the breaks should happen.
- ☐ This comes from which term produced the min cost in the m table.
- \square Ex To compute m[2,5], we saw breaking at A₃ gave the min cost. So s[2,5]=3.
- □Ex To compute m[1,6] first break at 3.
- \square So the subproblems are m[1,3] and m[4,6].
- ☐ To compute m[1,3], break at 1.
- \square So the subproblems are m[1,1] and m[2,3].
- ☐ To compute m[4,6], break at 5.
- \square So the subproblems are m[4,5] and m[6,6].
- □So altogether the optimal sequence is

$$(A_1(A_2A_3))((A_4A_5)A_6).$$

Cost of the table method

- We have three nested loops, each of size O(n). So the total time cost is $O(n^3)$.
- More intuitively, we have n² table entries to fill in, where entry

$$M(1,n) = \min_{1 \le j \le n-1} (M(1,j) + M(j+1,n) + p_0 p_j p_n)$$

- involves checking O(n) other table entries. So the cost is $n^2 \times O(n) = O(n^3)$.
- Space complexity is $O(n^2)$, because we use two tables of size n^2 .

Problems without optimal substructure

- Can we use dynamic programming to solve all problems efficiently?
- No. There are many problems we don't have any efficient solutions to.
- One main reason is, not all problems have the optimal substructure property.
 - Sometimes, solving a problem optimally involves solving subproblems nonoptimally!
- How is this possible?
 - One main reason is optimal solutions to subproblems might not be combinable to a solution for the original problem.

Problems with(out) optimal substructure

- Given a graph, find
 - □ The shortest path between two vertices.
 - □ The longest simple path between two vertices.
 - Simple path can't use a node twice.
 - Without the restriction, longest path can be infinite.
 Just go round and round forever.

M

Shortest path

- Shortest paths has optimal substructure.
- Shortest path from x to y has to go through one of y's neighbors.
 - □ Subproblems are shortest paths from x to z, for every neighbor z of y.
 - □ Then $d(x,y) = \min_{(z,y) \in E} (d(x,z) + w(z,y)).$
 - □ I.e. shortest path from x to y is to take shortest path from x to one of y's neighbors, then go to y.

10

Longest simple path

- Longest simple path does not have optimal substructure.
 - I.e., you can't get the longest simple paths (LSP) from x to y by piecing together LSP's from x or y to other nodes.

- LSP from q to t is q,r,t.
 - □ LSP from q to r is q,s,t,r.
 - \square LSP from r to t is r,q,s,t.
 - □ But we can't combine the simple paths from q to r, and from r to t, into another simple path.
 - When subsolutions aren't combinable, we say the subproblems aren't independent.
- Not only can't we solve LSP using dynamic programming, LSP has no known efficient solution.

Ŋ.

Longest common subsequence

- Given a string X, a subsequence of X is any string formed by removing some letters of X.
 - □ Ex "let" is a subsequence of "letters".
 - So are "les" and "ees".
 - □ Subsequence isn't necessarily consecutive.
- A common subsequence of strings X and Y is a subsequence of both X and Y.
 - □ E.g. "ees" is a common subsequence of both "letters" and "cheers".
 - □ It's not the longest common subsequence (LCS).
 - ☐ The longest common subsequence (LCS) of "letters" and "cheers" is "eers".
 - □ There may be several LCS's for some strings.

Application

- Given two DNA sequences X and Y, how similar are they? This helps us understand
 - Will a person get a disease?
 - □ Are two people related?
 - What is the function of a new protein?
- One way is to look at the LCS of X and Y.
 - □ If the LCS is very long, then X and Y are probably similar.
- Many other ways to measure similarity.

Subproblems in LCS

In dynamic programming, we divide a problem into smaller subproblems. For LCS, we divide the problem on a long string to the problem on a shorter string, by removing the last letter of the long string.

NA.

A dynamic program for LCS

- Let S[1,i] be the first i letters of a string S, and S[i] be the i'th letter of S.
 - □ Let S[i,0] be the empty string, for any i.
- Let LCS(X[1,i], Y[1,j]) be the LCS of X[1,i] and Y[1,j].
- Let c(i,j) be the length of LCS(X[1,i], Y[1,j]).
- We have the following dynamic programming equations.

$$c[i,0] = 0 \text{ for all } i$$

$$c[0,j] = 0 \text{ for all } j$$

$$c[i,0] \text{ is LCS of } X[1,i] \text{ and } Y[1,0].$$

$$Since Y[1,0] \text{ is empty string, it has no LCS with } X[1,i]. \text{ Similarly for } c[0,j].$$

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(c[i-1,j], c[i,j-1]) & \text{if } X[i] \neq Y[j] \end{cases}$$

From argument on last slide.

The table method for LCS

- Make a table to record the c[i,j] values.
- Row is prefixes of Y, column is prefixes of X.
- c[i,j] is length of LCS(X[1,i],Y[1,j]).
- Start with the 0 column and 0 row. Fill in all 0's.
- Fill in rest of table from left to right, and from top to bottom. I.e. (1,1), (1,2),(1,3),..., (2,1),(2,2),...
 - Because a cell's value depends on vals in cells to the left, leftup, and up.

```
c[i,0] = 0 for all i.

c[0,j] = 0 for all j.

c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ max(c[i-1,j], c[i, j-1]) & \text{if } X[i] \neq Y[j] \end{cases}
```


Source: Introduction to Algorithms, Cormen et al.

The table method for LCS

- If the letters in row i and column j match, val of cell (i,j) = val of cell (i-1,j-1)+1.
 - □ Also, make a diagonal arrow, indicating LCS(X[1,i],Y[1,j]) is LCS(X[1,i-1],Y[1,j-1]) plus X[i] (or Y[j]).
- If letters don't match, val of cell (i,j) = max of vals in cells (i-1,j), (i,j-1).
 - □ Make an arrow to whichever cell gives has higher val (break ties arbitrarily).
 - Arrow indicates which way to go to find LCS.
- Length of LCS is in bottom right cell (4 in the example).
- LCS string given by following arrows starting from bottom right.
 - Each diagonal arrow corresponds to a matching letter.
 - ☐ The LCS is BCBA in the example.

```
c[i,0] = 0 for all i.
        c[0,j] = 0 for all j.
c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(c[i-1,j], c[i, j-1]) & \text{if } X[i] \neq Y[j] \end{cases}
                0
                       x_i
                       B
                 3
                                  0
                                  0
                 5
                       D
                                  0
                       B
```


Cost of the LCS DP

- There are O(mn) entries in the c table.
- Filling each entry requires looking at 1 or 2 adjacent entries.
- So running time O(mn).
- Amount of memory needed (space complexity) is also O(mn), since tables have mn entries.

- For practical applications, e.g. in bioinformatics, m and n can be huge, $O(10^6)$.
- Running time can be $O(mn) = O(10^{12})$ or higher, which is feasible in practice.
- However, $O(10^{12})$ space complexity is often too much.
 - □ Can we solve LCS with linear, i.e. O(m + n) space complexity?

- Notice that we can easily compute the value of the LCS in linear space.
- Suppose $m \le n$. To compute the value of c[i,j], only need values from c[i-1,j], c[j-1,i] and c[j-1,i-1].
- So when computing the *j*'th column, we only need values from the *j*'th and *j* − 1'st columns.
 - So we only need to keep these two columns in memory.
 - □ So the memory complexity compute c[m, n] is O(m + n).
- But how do we compute the LCS string in linear space?
 - □ Retracing the LCS path seems to require storing entire matrix.

- Hirschberg (1975) proposed a way to find the LCS string in O(mn) time and O(m+n) space.
- The LCS path moves up and to the left, starting from (m,n).
- Suppose it crosses the middle column n/2 in row j.
 - \square We'll see later how to find j.
- This divides the LCS path into two parts, from (1,1) to (j,n/2), and (j,n/2) to (m,n).
- First part is an LCS for X[1,j] and Y[1,n/2].
- Second part is an LCS for Y[n,n/2] and X[m,j].
 - ☐ Y[n,n/2] is the reverse of Y[n/2,n], and X[m,j] is the reverse of X[j,m].

- How do we find the crossing row j of the LCS?
- Compute all the LCS values for X[1, m] and Y[1, n/2].
 - □ Let p(i, n/2) be value in row i, column n/2.
- Compute all the LCS values for X[m, 1] and Y[n, n/2].
 - □ Do this the same way as for normal LCS.
 - Let q(i, n/2) be value in row i, column n/2.
- Then $j = \max_{1 \le i \le m} p\left(i, \frac{n}{2}\right) + q\left(i, \frac{n}{2}\right)$.
- Computing all the LCS values and j takes O(mn) time and O(m+n) space.
- Once we find j, computing the green path takes O(m + n) space, by induction.
- After computing the green path, we can reuse the same space to compute the red path.
- Thus, the entire computation takes O(m + n) space.

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

- O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.
- T(q, n/2) + T(m q, n/2) time for two recursive calls.
- Choose constant c so that:

$$T(m, 2) \le cm$$

 $T(2, n) \le cn$
 $T(m, n) \le cmn + T(q, n/2) + T(m-q, n/2)$

- Claim: $T(m, n) \le 2cmn$
 - Base cases: m = 2 or n = 2.
 - Inductive hypothesis: T(m', n') ≤ 2cm'n' with m'<m and n'<n</p>

$$T(m,n) \leq T(q,n/2) + T(m-q,n/2) + cmn$$

$$\leq 2cqn/2 + 2c(m-q)n/2 + cmn$$

$$= cqn + cmn - cqn + cmn$$

$$= 2cmn$$