[PRINT]

01034 Matematik 2 E24,

Fedir Vasyliev, 9/11/24 at 11:25:04 AM CEST

Question1: Score 0.66/1

Consider the system consisting of 3 first-order differential equations of the form:

$$x_{1}'(t) = 2 x_{1}(t) + 4 x_{2}(t) - 4 x_{3}(t)$$

$$x_{2}'(t) = 16 \ x_{1}(t) + 2 \ x_{2}(t) - 2 \ x_{3}(t)$$

$$x_3'(t) = 0$$

Let $\lambda_1,\ \lambda_2$ and λ_3 be the eigenvalues of the system matrix.

a) It is assumed $\lambda_1 < \lambda_2 < \lambda_3$, enter the three eigenvalues below:

 $\lambda_1 =$

Your response	Correct response
-6	-6

Auto graded Grade: 1/1.0

 $\lambda_2 =$

$^{\prime}2$ =	
Your response	Correct response
0	0

Auto graded Grade: 1/1.0

 $\lambda_3 =$

9	
Your response	Correct response
10	10

Auto graded Grade: 1/1.0

b) We consider the solution which has the following initial value conditions:

$$x_{1}\left(0
ight)=\ 4$$
 , $x_{2}\left(0
ight)=-3$ and $x_{3}\left(0
ight)=1$.

Enter an expression for each of the three solutions below:

$$x_1(t) =$$

Your response	Correct response
-355/60*exp(6*t)*(-0.5) + 1/15 + 117/60*exp(10*t)*0.5	exp(10*t)+3*exp(-6*t)

Auto graded Grade: 0/1.0

$x_{2}\left(t ight) =% {\displaystyle\int\limits_{0}^{\infty }} \left\{ x_{1}\left(t ight) -x_{1}\left(t ight) ight\} \left\{ x_{2}\left(t ight) ight\} \left\{ x_{1}\left(t ight) ight\} \left\{ x_{2}\left(t ight) ight\} \left\{ x_{1}\left(t ight) ight\} \left\{ x_{2}\left(t ight$	
Your response	Correct response
-355/60*exp(6*t) + 29/30 + 117/60*exp(10*t)	2*exp(10*t)-6*exp(-6*t)+1

Auto graded Grade: 0/1.0

Correct response
1

Auto graded Grade: 1/1.0

Total grade: 1.0×1/6 + 1.0×1/6 + 1.0×1/6 + 0.0×1/6 + 0.0×1/6 + 1.0×1/6 = 17% + 17% + 17% + 0% + 0% + 17%

Question2: Score 0.6/1

Consider the system consisting of 2 first-order differential equations of the form:

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\,x = A\,x\tag{1}$$

where $x\left(t\right)=\begin{bmatrix}x_{1}\left(t
ight)\\x_{2}\left(t
ight)\end{bmatrix}$ is a to dimensional vectorfunction.

$$A = \begin{bmatrix} 0 & 1 \\ -34 & -10 \end{bmatrix} \tag{2}$$

Question 2a

Determine the complete complex solution of the system (1) and show it can be written on the form.

$$\left| x\left(t
ight) = c_{1}e^{-mt}\;e^{int} \left[egin{array}{c} 1 \ -m+in \end{array}
ight] \; + \; c_{2}e^{-mt}\;e^{-int} \; \left[egin{array}{c} 1 \ -m-in \end{array}
ight]$$

and state the values of m and n below

m =

Your response	Correct response
5	5

Auto graded Grade: 6/6.0

Your response	Correct response
3	3

Auto graded Grade: 6/6.0

Question 2b

Specify the type of numbers $c_1\,$ and $c_2\,$ by checking the correct answer below:

Your response	Correct response
Choice 1:	
c_1 and c_2 are arbitrary real numbers.	c_1 and c_2 are arbitrary complex numbers.

Auto graded Grade: 0/2.0

Question 2c

The complete real solution can be determined from the complete complex solution. Show that the complete real solution can be written in the form:

$$x\left(t
ight)=c_{1}e^{-mt}\,\left[egin{matrix}\cos\left(nt
ight)\f\left(t
ight)\end{matrix}
ight]\,+\,c_{2}e^{-mt}\,\left[egin{matrix}\sin\left(nt
ight)\g\left(t
ight)\end{matrix}
ight]$$

and determine the two functions:

$$f(t) =$$

Your response	Correct response
m*cos(n*t) - n*sin(n*t)	-5*cos(3*t)-3*sin(3*t)

Auto graded Grade: 0/3.0

a(t) -

g(t) =	
Your response	Correct response
m*sin(n*t) + n*cos(n*t)	3*cos(3*t)-5*sin(3*t)

Auto graded Grade: 0/3.0

Total grade: 1.0×6/20 + 1.0×6/20 + 0.0×2/20 + 0.0×3/20 + 0.0×3/20 = 30% + 30% + 0% + 0% + 0%

Question3: Score 0/1

Let $arPhi\left(t
ight)$ denote the fundamental matrix of the homogeneous system $\dot{x}=A\cdot x$, $A\in\mathbb{R}^{2 imes2}$.

$$oldsymbol{arPsi} \Phi(t) = egin{bmatrix} e^4 & t & 2e^3 & t \ 0 & e^3 & t \end{bmatrix}$$

We consider now the inhomogeneous system:

$$\left|\dot{x}=A\cdot x
ight. + \left[egin{array}{c} 7 \ -3 \end{array}
ight]$$

State below the solution $x_{p}\left(t\right)=\begin{bmatrix}x_{1}&p\left(t\right)\\x_{2}&p\left(t\right)\end{bmatrix}$ to the inhomogeneous system which satisfies.

$$egin{aligned} x_p\left(0
ight) = egin{bmatrix} x_1 & p\left(0
ight) \ x_2 & p\left(0
ight) \end{bmatrix} = egin{bmatrix} 7 \ 5 \end{bmatrix} \end{aligned}$$

$$x_{1 p}(t) =$$

_	
Your response	Correct response
-3*exp(4*t) + 10*exp(3*t) - 13*exp(4*t)+6*exp(3*t) + 13 -	1/4*exp(4*t)+8*exp(3*t)-5/4
6*exp(-t)	114 ελρ(4 ι)+ο ελρ(5 ι)-514

Auto graded Grade: 0/1.0

 $x_{2p}(t) =$

- P		
	Your response	Correct response
	5*exp(3*t) + 3*exp(3*t) - 3*exp(-t)	4*exp(3*t)+1

Auto graded Grade: 0/1.0

Hint: Use Theorem 2.20

S Total grade: $0.0 \times 1/2 + 0.0 \times 1/2 = 0\% + 0\%$