高中数学平行组券 2022-10-20

	学校:	姓名:	班级:		号:	
—,	单选题					
1.	已知幂函数 $f(x)$	的图象经过点(4,2	2),则下列6	命题正确的是()	
A.	f(x) 是偶函数		В.	f(x) 在定义域上	是单调递增	曾函数
C.	f(x) 的值域为 R D. $f(x)$ 在定义域内有最大值					
2.	给定四个命题:(①当 $n=-1$ 时, y	·= x ⁿ 是减函	数;②幂函数的	图象都过(0	0,0), (1,1)
两,	点;③幂函数的图	图象不可能出现在	E第四象限;	④ 幂函数 <i>y</i> = <i>x</i> ′	"在第一象[艮为减函数
则	1<0, 其中正确的	的命题为()				
A.	14	B. 23	С.	24	D. 3(4
3.	下列命题中,正	确的有 () 个				
①对应: $A = R, B = R, f: x \to y = \frac{1}{x^2 + 1}$ 是映射, 也是函数;						
②若函数 $f(x-1)$ 的定义域是(1,2),则函数 $f(2x)$ 的定义域为 $\left(0,\frac{1}{2}\right)$;						
③幂函数 $y=x^{-\frac{2}{3}}$ 与 $y=x^4$ 图像有且只有两个交点;						
4	当 $b>0$ 时,方程	$\left 2^{x}-1\right -b=0$ 恒有	两个实根.			
A.	1	B. 2	C.	3	D. 4	
_						
	填空题	. ln r				
4.	已知函数 $f(x)$ =	$x^2, g(x) = \frac{\ln x }{x}$,有下列四	个命题:		
①函数 $h(x) = f(x) - g(x)$ 是奇函数;						
②函数 $h(x) = f(x) - g(x)$ 是定义域内的单调函数;						
③当 $x<0$ 时,方程 $f(x)=g(x)$ 有一个实数根;						
④当 $x>0$ 时,不等式 $f(x)>g(x)$ 恒成立,						
其中	中正确命题的序号	; 为				
5.	给出下面四个条	件: ① $\begin{cases} 0 < a < 1 \\ x < 0 \end{cases}$	$, \textcircled{2} \begin{cases} 0 < a < x < 0 \end{cases}$	${\stackrel{<}{\scriptstyle 1}}, {\stackrel{\bigcirc}{\scriptstyle 3}} \begin{cases} a > 1 \\ x < 0 \end{cases},$	$\textcircled{4} \begin{cases} a > 1 \\ x > 0 \end{cases},$	能使函数

 $y = \log_a x^{-2}$ 为单调减函数的是_____.

三、解答题

- 6. 幂函数 $f(x) = (m^2 m 5)x^m$ 是偶函数,
- (1)求m的值,写出f(x)解析式;
- $(2) g(x) = f(x) + \ln(x+4) + \ln(4-x),$
- ①判断g(x)的奇偶性,并用定义证明;
- ②指出g(x)的单调递减区间(无需证明),并解关于实数t的不等式g(t) < g(1-t).

1. B

【解析】先求出幂函数的解析式,再利用幂函数的性质即可判断.

【详解】设
$$f(x) = x^{\alpha}$$
,则 $4^{\alpha} = 2$,解得 $\alpha = \frac{1}{2}$,

$$\therefore f(x) = x^{\frac{1}{2}} = \sqrt{x},$$

:: f(x)的定义域为 $[0,+\infty)$,故A错误;可得f(x)在定义域上是单调递增函数,故B正确;

值域为 $[0,+\infty)$, 故 C 错误; 故 f(x) 在定义域内没有最大值,故 D 错误.

故选: B.

2. D

【分析】根据幂函数的性质:单调性、图象、特殊点,以及指数与函数性质间的关系,即可判断各项的正误.

【详解】①当n = -1时, $y = \frac{1}{x}$ 在 $(-\infty, 0)$ 和 $(0, +\infty)$ 都递减,而在 $x \in \mathbb{R}$ 不单调,错误;

- (2)幂函数的图象都过(1,1),但不一定过(0,0),错误;
- (3)幂函数的图象不可能出现在第四象限,正确;
- (4)幂函数 $y = x^n$ 在第一象限为减函数则 n < 0, 正确;

故选: D

3. C

【分析】对于①,由映射和函数的定义判断即可;

对于(2), 由抽象函数的定义求解即可;

对于(3),结合幂函数的性质作出图象即可判断;

对于④,将问题转化为 $y=\begin{vmatrix} 2^x-1 \end{vmatrix}$ 与y=b的图象交点个数的问题,作出图象即可判断.

【详解】解:对于①,对应: $A = R, B = R, f: x \to y = \frac{1}{x^2 + 1}$ 是映射,也是函数;符合映射,函数的定义,故①对;

对于②,若函数 f(x-1) 的定义域是(1,2),则 $x-1 \in (0,1)$, $\therefore 2x \in (0,1) \Rightarrow x \in \left(0,\frac{1}{2}\right)$ 故函数 f(2x) 的定义域为 $\left(0,\frac{1}{2}\right)$,故②对

对于③,幂函数 $y=x^{-\frac{2}{3}}=\frac{1}{\sqrt[3]{x^2}}$ 为偶函数,在 $(-\infty,0)$ 上单调递增,在 $(0,+\infty)$ 上单调递减且图像过(1,1),(-1,1) , $y=x^4$ 为偶函数,在 $(-\infty,0)$ 上单调递减,在 $(0,+\infty)$ 上单调递增且图像过(1,1),(-1,1) 所以两个图像有且只有两个交点,故③对;

于④,当x>1时, $\begin{vmatrix} 2^x-1 \end{vmatrix}$ 单调递增,且函数值大于 1,所以当b>1时,方程 $\begin{vmatrix} 2^x-1 \end{vmatrix}-b=0$ 只有一个实根.故④错;

故选: C

4. (3)(4)

【分析】利用反例可说明h(x)不是奇函数且不是定义域内的单调函数,利用导数可证明 f(x) = g(x)有一个实数解,利用导数可证明f(x) > g(x)在 $(0,+\infty)$ 上恒成立,从而可得正确命题的序号.

【详解】对于①②,
$$h(x) = x^2 - \frac{\ln|x|}{x}$$
 , $h(1) = 1, h(-1) = 1$, 因 $h(-1) \neq -h(1)$,

所以h(x)不是奇函数.而h(1) = h(-1),故h(x)在定义域内不是单调函数,

故(1)(2)错误.

对于(3),

方程f(x) = g(x)在 $(-\infty,0)$ 上是否有一个实数根等价于 $x^3 = \ln(-x)$ 是否有一个实数根,

也就是 $s(x) = x^3 - \ln(-x)$ 在 $(-\infty, 0)$ 是否有一个零点.

因为 $s'(x) = 3x^2 - \frac{1}{x} > 0$ (x < 0), 故s(x)在($-\infty$,0)上为单调增函数,

因为
$$s\left(-\frac{1}{e}\right) = -\frac{1}{e^3} + 1 > 0$$
, $s\left(-e\right) = -e^3 - 1 < 0$, 故 $s\left(x\right)$ 在 $\left(-\infty,0\right)$ 有一个零点.

所以方程f(x) = g(x)在 $(-\infty,0)$ 上有一个实数根,故(3)正确.

对于(4), 当x > 0时, 不等式f(x) > g(x)等价于 $x^3 > \ln x$,

$$\Rightarrow u(x) = x^3 - \ln x$$
, $x > 0$, $\text{Mu}'(x) = 3x^2 - \frac{1}{x} = \frac{3x^3 - 1}{x}$,

$$\stackrel{\text{def}}{=} 0 < x < \left(\frac{1}{3}\right)^{\frac{1}{3}} \text{ Fr}, \quad u'(x) < 0, \quad \stackrel{\text{def}}{=} x > \left(\frac{1}{3}\right)^{\frac{1}{3}} \text{ Fr}, \quad u'(x) > 0,$$

故
$$u(x)$$
在 $\left(0,3^{-\frac{1}{3}}\right)$ 上为减函数,在 $\left(3^{-\frac{1}{3}},+\infty\right)$ 为增函数,

所以
$$u(x)_{\min} = u\left(3^{-\frac{1}{3}}\right) = \frac{1}{3} + \frac{\ln 3}{3} > 0$$
,故 $u(x) > 0$ 在 $(0, +\infty)$ 上恒成立,

所以f(x) > g(x)在 $(0,+\infty)$ 上恒成立,故(4)正确.

故答案为: (3)(4).

【点睛】本题考查函数的奇偶性、单调性、方程的解以及不等式的恒成立,说明函数不具有 奇偶性、单调性,应根据反例说明,方程的解或不等式的恒成立,可以通过构建新函数,利 用导数研究其单调性、最值等,从而使问题得到解决.

5. (1)(4)

【分析】令 $t=x^{-2}$,则 $y=\log_a t$,根据对数函数与幂函数的单调性,以及复合函数的单调性,逐项判定,即可求解.

当
$$\begin{cases} 0 < a < 1 \\ x < 0 \end{cases}$$
 时, $t = x^{-2}$ 为增函数, $y = \log_a t$ 为减函数,

根据复合函数的单调性的判定方法,

可得函数 $y = \log_a x^{-2}$ 为减函数, 所以①满足条件;

当
$$\begin{cases} 0 < a < 1 \\ x > 0 \end{cases}$$
 时, $t = x^{-2}$ 为减函数, $y = \log_a t$ 为减函数,

根据复合函数的单调性的判定方法,

可得函数 $y = \log_a x^{-2}$ 为增函数,所以②不满足条件;

当
$$\begin{cases} a > 1 \\ x < 0 \end{cases}$$
时, $t = x^{-2}$ 为增函数, $y = \log_a t$ 为增函数,

根据复合函数的单调性的判定方法,

可得函数 $y = \log_a x^{-2}$ 为增函数, 所以③不满足条件;

当
$$\begin{cases} a > 1 \\ x > 0 \end{cases}$$
时, $t = x^{-2}$ 为减函数, $y = \log_a t$ 为增函数,

根据复合函数的单调性的判定方法,

可得函数 $y = \log_a x^{-2}$ 为减函数, 所以④满足条件.

故选: (1)(4).

【点睛】本题主要考查了对数函数与幂函数的图象与性质的应用,其中解答中熟记对数函数和幂函数的单调性,以及复合函数的单调性的判定方法是解答的关键,着重考查了推理与论证能力.

6. (1)
$$m = -2$$
, $f(x) = x^{-2}$

(2)① g(x) 是偶函数;证明见解析;②单调递减区间为(0,4);不等式的解集为 $\left(\frac{1}{2},1\right)$ $\cup (1,4)$

【分析】(1)根据幂函数的定义及奇偶性直接判断参数值;

(2)①根据奇偶性的定义直接证明即可;②根据复合函数的单调性判断函数的单调区间,并根据单调性解不等式。

(1)

由 f(x) 是幂函数可得 $m^2 - m - 5 = 1$,解得 m = -2 或 3,

因为f(x)是偶函数,所以m = -2, $f(x) = x^{-2}$;

(2)

(1) g(x) 是偶函数

因为
$$g(x) = x^{-2} + \ln(x+4) + \ln(4-x)$$
, x 满足
$$\begin{cases} x \neq 0 \\ x+4 > 0 \\ 4-x > 0 \end{cases}$$

解得g(x)定义域为 $(-4,0)\cup(0,4)$,

$$g(x) = x^{-2} + \ln(16 - x^2),$$

$$g(-x) = (-x)^{-2} + \ln(16 - (-x)^2) = x^{-2} + \ln(16 - (-x)^2) = x^{-2} + \ln(16 - x^2) = g(x)$$
,

所以g(x)是偶函数

②单调递减区间为(0,4),

因为
$$g(x)$$
为偶函数, $g(t) < g(1-t)$ 可化为 $g(|t|) < g(|1-t|)$,

由g(x)在(0,4)单调递减可得|t|>|1-t|,

又由g(x)定义域为(-4,0) \cup (0,4)

可得
$$\left\{ \begin{aligned} 0 &< \left| t \right| < 4 \\ 0 &< \left| 1 - t \right| < 4 \\ \left| t \right| > \left| 1 - t \right| \end{aligned} \right.$$

解得
$$\frac{1}{2} < t < 4$$
,且 $t \neq 1$

所以不等式的解集为 $\left(\frac{1}{2},1\right)$ \cup (1,4).