LECTURE 6: CORRELATION AND LINEAR REGRESSION BASICS

ECON 480 - ECONOMETRICS - FALL 2018

Ryan Safner

September 17, 2018

Covariance and Correlation

Population Linear Regression Model

OLS Estimators and Sample Regression Model

 $\boldsymbol{\cdot}$ We looked at single variables for descriptive statistics

- We looked at single variables for descriptive statistics
- $\cdot \ \mathsf{Most} \ \mathsf{uses} \ \mathsf{of} \ \mathsf{statistics} \ \mathsf{in} \ \mathsf{economics} \ \mathsf{and} \ \mathsf{business} \ \mathsf{investigate} \ \mathsf{relationships} \ \mathsf{between} \ \mathsf{variables}$

- We looked at single variables for descriptive statistics
- Most uses of statistics in economics and business investigate relationships between variables
 - # of police & crime rates

- · We looked at single variables for descriptive statistics
- Most uses of statistics in economics and business investigate relationships between variables
 - # of police & crime rates
 - · healthcare spending & life expectancy

- · We looked at single variables for descriptive statistics
- Most uses of statistics in economics and business investigate relationships between variables
 - # of police & crime rates
 - · healthcare spending & life expectancy
 - government spending & GDP growth

- · We looked at single variables for descriptive statistics
- Most uses of statistics in economics and business investigate relationships between variables
 - # of police & crime rates
 - · healthcare spending & life expectancy
 - · government spending & GDP growth
 - · carbon dioxide emissions & temperatures

- · We looked at single variables for descriptive statistics
- · Most uses of statistics in economics and business investigate relationships between variables
 - # of police & crime rates
 - · healthcare spending & life expectancy
 - · government spending & GDP growth
 - · carbon dioxide emissions & temperatures
- \cdot We will begin with bivariate data for relationships between X and Y

- · We looked at single variables for descriptive statistics
- · Most uses of statistics in economics and business investigate relationships between variables
 - # of police & crime rates
 - · healthcare spending & life expectancy
 - government spending & GDP growth
 - · carbon dioxide emissions & temperatures
- We will begin with bivariate data for relationships between X and Y
 - Immediate aim is to explore associations between variables, quantified with correlation and linear regression

- · We looked at single variables for descriptive statistics
- · Most uses of statistics in economics and business investigate relationships between variables
 - · # of police & crime rates
 - · healthcare spending & life expectancy
 - government spending & GDP growth
 - · carbon dioxide emissions & temperatures
- We will begin with bivariate data for relationships between X and Y
 - Immediate aim is to explore associations between variables, quantified with correlation and linear regression
 - · Later we want to develop more sophisticated tools to argue for causation

BIVARIATE DATA: SPREADSHEETS

econfreedom<-read.csv("~/Dropbox/Teaching/Hood College/ECON 480 - Econometrics/[
head(econfreedom)</pre>

##	ISO.Code	Country	${\tt Economic.Freedom.Summary.Index}$	GDP.Per.Capita
## 1	. AGO	Angola	5.08	4153.146
## 2	ALB	Albania	7.40	4543.088
## 3	ARE	Unit. Arab Em.	7.98	39313.274
## 4	ARG	Argentina	4.81	10501.660
## 5	ARM	Armenia	7.71	3796.517
## 6	AUS	Australia	7.93	54688.446

[·] Rows are individual observations

BIVARIATE DATA: SPREADSHEETS

econfreedom<-read.csv("~/Dropbox/Teaching/Hood College/ECON 480 - Econometrics/[
head(econfreedom)</pre>

##	ISO.Code	Country	${\tt Economic.Freedom.Summary.Index}$	GDP.Per.Capita
## 1	. AGO	Angola	5.08	4153.146
## 2	ALB	Albania	7.40	4543.088
## 3	ARE	Unit. Arab Em.	7.98	39313.274
## 4	ARG	Argentina	4.81	10501.660
## 5	ARM	Armenia	7.71	3796.517
## 6	AUS	Australia	7.93	54688.446

- · Rows are individual observations
- · Columns are variables on all individuals

BIVARIATE DATA: SPREADSHEETS

econfreedom<-read.csv("~/Dropbox/Teaching/Hood College/ECON 480 - Econometrics/[
head(econfreedom)</pre>

##		ISO.Code	Country	${\tt Economic.Freedom.Summary.Index}$	GDP.Per.Capita	
##	1	AGO	Angola	5.08	4153.146	
##	2	ALB	Albania	7.40	4543.088	
##	3	ARE	Unit. Arab Em.	7.98	39313.274	
##	4	ARG	Argentina	4.81	10501.660	
##	5	ARM	Armenia	7.71	3796.517	
##	6	AUS	Australia	7.93	54688.446	

- · Rows are individual observations
- · Columns are variables on all individuals
- Let X be Economic Freedom and Y be GDP per capita


```
str(econfreedom)
```

\$ GDP.Per.Capita

##

'data.frame': 152 obs. of 4 variables:

```
## $ ISO.Code : Factor w/ 152 levels "AGO", "ALB", "ARE",...

## $ Country : Factor w/ 152 levels "Albania", "Algeria",

## $ Economic.Freedom.Summary.Index: num 5.08 7.4 7.98 4.81 7.71 7.93 7.56 6.5
```

: num 4153 4543 39313 10502 3797 ...

HOOD

summary(econfreedom)

##

Median :

5719.3

```
ISO.Code
                                 Economic.Freedom.Summarv.Index
##
                      Country
                 Albania : 1
##
   AG0
             1
                                 Min.
                                        :4.800
##
   ALB
             1
                 Algeria : 1 1st Qu.:6.430
                 Angola : 1
                                 Median :7.050
##
   ARE
             1
             1
                 Argentina: 1
##
   ARG
                                 Mean
                                        :6.909
            1
##
   ARM
                 Armenia : 1
                                 3rd Ou.:7.428
##
   AUS
          : 1
                 Australia:
                                 Max.
                                        :9.030
    (Other):146
                 (Other) :146
##
##
   GDP.Per.Capita
##
   Min.
              206.7
##
   1st Qu.:
             1588.3
```

BIVARIATE DATA: SCATTERPLOTS

```
library("ggplot2")
ggplot(econfreedom, aes(x=Economic.Freedom.Summary.Index,v=GDP.Per.Capita))+
  geom point(color="blue")+theme bw()+
  xlab("Economic Freedom Index (2014)")+ylab("GDP per Capita (2014 USD)")
3DP per Capita (2014 USD)
  90000
  60000
  30000
```

Economic Freedom Index (2014)

[•] The best way to visualize an association between two variables is with a scatterplot

 $\boldsymbol{\cdot}$ Look for $\boldsymbol{association}$ between independent and dependent variables

- $\boldsymbol{\cdot}$ Look for $\boldsymbol{association}$ between independent and dependent variables
 - 1. *Direction*: is the trend positive or negative?

- $\boldsymbol{\cdot}$ Look for $\boldsymbol{association}$ between independent and dependent variables
 - 1. *Direction*: is the trend positive or negative?
 - 2. Form: is the trend linear, quadratic, something else, or no pattern?

- $\boldsymbol{\cdot}$ Look for $\boldsymbol{association}$ between independent and dependent variables
 - 1. *Direction*: is the trend positive or negative?
 - 2. Form: is the trend linear, quadratic, something else, or no pattern?
 - 3. Strength: is the association strong or weak?

- Look for association between independent and dependent variables
 - 1. Direction: is the trend positive or negative?
 - 2. Form: is the trend linear, quadratic, something else, or no pattern?
 - 3. Strength: is the association strong or weak?
 - 4. Outliers: do any observations break the trends above?

$$s_{X,Y} = E[(X - \overline{X})(Y - \overline{Y})]$$

 $^{^{1}}$ Henceforth we limit to samples, for convenience. Population covariance is denoted $\sigma_{ extsf{X}, extsf{Y}}$

$$s_{X,Y} = E[(X - \overline{X})(Y - \overline{Y})]$$

• Intuition: if X is above its mean, would we expect Y:

 $^{^{1}}$ Henceforth we limit to samples, for convenience. Population covariance is denoted $\sigma_{\rm X,Y}$

$$s_{X,Y} = E[(X - \overline{X})(Y - \overline{Y})]$$

- Intuition: if X is above its mean, would we expect Y:
 - to be above its mean also (X and Y covary positively)

 $^{^{1}}$ Henceforth we limit to samples, for convenience. Population covariance is denoted $\sigma_{ extsf{X}, extsf{Y}}$

$$s_{X,Y} = E[(X - \overline{X})(Y - \overline{Y})]$$

- Intuition: if X is above its mean, would we expect Y:
 - to be above its mean also (X and Y covary positively)
 - to be below its mean (X and Y covary negatively)

 $^{^{1}}$ Henceforth we limit to samples, for convenience. Population covariance is denoted $\sigma_{
m X,Y}$

$$s_{X,Y} = E[(X - \overline{X})(Y - \overline{Y})]$$

- Intuition: if X is above its mean, would we expect Y:
 - to be above its mean also (X and Y covary positively)
 - to be below its mean (X and Y covary negatively)
- Covariance is a common measure, but the units are meaningless, thus we rarely need to use it so don't worry about learning the formula

¹Henceforth we limit to samples, for convenience. Population covariance is denoted $\sigma_{
m X,Y}$

CORRELATION

• More convenient to standardize covariance into a more intuitive concept: correlation (ρ or r), normalized to be between -1 and 1

$$r_{X,Y} = \frac{s_{X,Y}}{s_X s_Y} = \frac{cov(X,Y)}{sd(X)sd(Y)}$$

• More convenient to standardize covariance into a more intuitive concept: correlation (ρ or r), normalized to be between -1 and 1

$$r_{X,Y} = \frac{s_{X,Y}}{s_X s_Y} = \frac{cov(X,Y)}{sd(X)sd(Y)}$$

• Alternatively, sample correlation can be found by standardizing (finding the *Z*-score) X and Y and multiplying, for each (X, Y) pair, and then averaging (over n-1, due to sampling df, again):

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} Z_X Z_Y$$

CORRELATION: EXAMPLE CALCULATION

Example

CORRELATION: EXAMPLE CALCULATION II

```
mean(corr.example$x) #find mean of x

## [1] 2.5

mean(corr.example$y) #find mean of y
```

```
sd(corr.example$x) #find sd of x
```

Su(corr.example\$x) #11nd Sd of x

```
## [1] 1.290994
```

sd(corr.example\$v) #find sd of v

[1] 4

CORRELATION: EXAMPLE CALCULATION III

```
## x y z.product
## 1 1 1 0.9793959
## 2 2 2 0.2176435
## 3 3 4 0.0000000
## 4 4 9 1.6323265
```


CORRELATION: EXAMPLE CALCULATION IV

```
(sum(corr.example$z.product)/3) #average z products over n-1
## [1] 0.943122
cor(corr.example$x, corr.example$y) #compare our answer to cor() command
## [1] 0.9431191
cov(corr.example$x, corr.example$y) #just for kicks - covariance
```


CORRELATION: INTERPRETATION

• Correlation is standardized to $-1 \le r \le 1$

CORRELATION: INTERPRETATION

- Correlation is standardized to $-1 \le r \le 1$
 - \cdot Negative values \implies negative association

- Correlation is standardized to $-1 \le r \le 1$
 - \cdot Negative values \implies negative association
 - \cdot Positive values \implies positive association

- Correlation is standardized to $-1 \le r \le 1$
 - \cdot Negative values \implies negative association
 - \cdot Positive values \implies positive association
 - · Correlation of $0 \implies$ no association

- Correlation is standardized to $-1 \le r \le 1$
 - \cdot Negative values \implies negative association
 - \cdot Positive values \implies positive association
 - · Correlation of 0 \Longrightarrow no association
 - \cdot As $|r| \to 1 \Longrightarrow$ the stronger the association

- Correlation is standardized to $-1 \le r \le 1$
 - \cdot Negative values \implies negative association
 - Positive values ⇒ positive association
 - · Correlation of 0 \Longrightarrow no association
 - · As $|r| \rightarrow 1 \implies$ the stronger the association
 - · Correlation of $|r| = 1 \implies$ a perfect linear relationship

GUESS THE CORRELATION!

DEW COME TWO PLOTERS SCORE BOORD OBOUT SETTINGS

Guess The Correlation Game

HIGH SCORE (1)

CORRELATION AND ENDOGENEITY

• Reminder: Correlation does not imply causation!

CORRELATION AND ENDOGENEITY

- · Reminder: Correlation does not imply causation!
- · See the **Handout** for more on Covariance and Correlation

CORRELATION AND ENDOGENEITY II

Example

• The correlation between Life Expectancy and Doctors Per Person is 0.705.

Example

CORRELATION AND ENDOGENEITY II

Example

ALWAYS PLOT YOUR DATA!

ANSCOMBE'S QUARTET

Anscombe's Quartet: A Modern Re-interpratation

##	dataset		X		У	
##	Length	n:1846	Min.	:15.56	Min.	: 0.01512
##	Class	:character	1st Qu	.:41.07	1st Qu	.:22.56107
##	Mode	:character	Median	:52.59	Median	:47.59445
##			Mean	:54.27	Mean	:47.83510
##			3rd Qu	.:67.28	3rd Qu	.:71.81078
##			Max.	:98.29	Max.	:99.69468

ANSCOMBE'S QUARTET: A MODERN RE-INTERPRATATION II

See the Datasaurus

Model

LINEAR REGRESSION

• If an association appears linear, we can estimate the equation of a line that would "fit" the data

LINEAR REGRESSION

• If an association appears linear, we can estimate the equation of a line that would "fit" the data

$$Y = a + bX$$

- Recall a linear equation describing a line contains: - a: vertical intercept - b: slope - Note we will use different symbols for a and b, in line with standard econometric notation

LINEAR REGRESSION II

 $\boldsymbol{\cdot}$ How do we choose the equation that best fits the data? Process is called $\mbox{linear regression}$

 $\,\cdot\,$ Linear regression lets us estimate the slope of the population regression line between X and Y

- Linear regression lets us estimate the slope of the population regression line between X and Y
- · We can make **inferences** about the population slope coefficient

- · Linear regression lets us estimate the slope of the population regression line between X and Y
- · We can make **inferences** about the population slope coefficient
 - · eventually, a causal interpretation

- · Linear regression lets us estimate the slope of the population regression line between X and Y
- · We can make **inferences** about the population slope coefficient
 - · eventually, a causal interpretation
 - slope $=\frac{\Delta Y}{\Delta X}$: for a 1-unit change in X, how many units will this cause Y to change?

 $\boldsymbol{\cdot}$ Statistically, we want to use the population regression model for:

- $\boldsymbol{\cdot}$ Statistically, we want to use the population regression model for:
- 1. Estimation of the marginal effect of X on Y (slope of population regression line)

- Statistically, we want to use the population regression model for:
- 1. Estimation of the marginal effect of X on Y (slope of population regression line)
- 2. Hypothesis Testing of the value of the marginal effect (slope)

- Statistically, we want to use the population regression model for:
- 1. Estimation of the marginal effect of X on Y (slope of population regression line)
- 2. Hypothesis Testing of the value of the marginal effect (slope)
- 3. Confidence Interval construction of a range for the true effect (slope)

AN EXTENDED EXAMPLE

Example

What is the relationship between class size and educational performance?

• Policy question: What is the effect of reducing class sizes by 1 student per class on test scores? 10 students?

AN EXTENDED EXAMPLE: SCATTERPLOT

```
library("foreign") #for importing .dta files
CASchool<-read.dta("~/Dropbox/Teaching/Hood College/ECON 480 - Econometrics/Data
ca.scatter<-ggplot(CASchool, aes(str,testscr))+
  geom_point(color="blue",fill="blue")+
  xlab("Student to Teacher Ratio")+
  ylab("Test Score")+theme_bw()</pre>
```


AN EXTENDED EXAMPLE: SCATTERPLOT II

AN EXTENDED EXAMPLE: SLOPE

• If we *change* (Δ) the class size by an amount, what would we expect the *change* in test scores to be?

$$\beta_{\textit{ClassSize}} = \frac{\textit{change in test score}}{\textit{change in class size}} = \frac{\Delta \textit{test score}}{\Delta \textit{class size}}$$

AN EXTENDED EXAMPLE: SLOPE

• If we *change* (Δ) the class size by an amount, what would we expect the *change* in test scores to be?

$$\beta_{\textit{ClassSize}} = \frac{\textit{change in test score}}{\textit{change in class size}} = \frac{\Delta \textit{test score}}{\Delta \textit{class size}}$$

• If we knew $\beta_{ClassSize}$, we could say that changing class size by 1 student will change test scores by $\beta_{ClassSize}$

AN EXTENDED EXAMPLE: SLOPE II

· Rearranging:

$$\Delta$$
test score $=eta_{ extsf{ClassSize}} imes \Delta$ class size

AN EXTENDED EXAMPLE: SLOPE II

· Rearranging:

$$\Delta$$
test score = $\beta_{ClassSize} \times \Delta$ class size

· Suppose $\beta_{ClassSize} = -0.6$. If we shrank class size by 2 students, our model predicts:

AN EXTENDED EXAMPLE: SLOPE II

· Rearranging:

$$\Delta$$
test score = $\beta_{ClassSize} \times \Delta$ class size

· Suppose $\beta_{ClassSize} = -0.6$. If we shrank class size by 2 students, our model predicts:

$$\Delta$$
test score = -0.6

$$\Delta$$
test score = \times - 2 = 1.2

AN EXTENDED EXAMPLE: SLOPE III

test score
$$= eta_0 + eta_{ extsf{ClassSize}} imes$$
 class size

 $\boldsymbol{\cdot}$ The line relating class size and test scores has the above equation

AN EXTENDED EXAMPLE: SLOPE III

test score
$$= eta_0 + eta_{ ext{ClassSize}} imes$$
 class size

- The line relating class size and test scores has the above equation
 - + $eta_{ ext{0}}$ is the vertical-intercept, test score where class size is 0

AN EXTENDED EXAMPLE: SLOPE III

test score
$$= \beta_0 + \beta_{\text{ClassSize}} \times \text{class size}$$

- The line relating class size and test scores has the above equation
 - \cdot β_0 is the vertical-intercept, test score where class size is 0
 - \cdot $\beta_{ extit{ClassSize}}$ is the slope of the regression line

AN EXTENDED EXAMPLE: SLOPE III

test score
$$= \beta_0 + \beta_{\text{ClassSize}} \times \text{class size}$$

- The line relating class size and test scores has the above equation
 - \cdot eta_0 is the vertical-intercept, test score where class size is 0
 - \cdot $\beta_{ extit{ClassSize}}$ is the slope of the regression line
- This relationship only holds **on average** for all districts in the population, individual districts are also affected by other factors

 \cdot To get an equation that holds for each district, we need to include other factors

test score
$$= \beta_0 + \frac{\beta_{\textit{ClassSize}}}{\beta_0} \times \text{class size} + \text{other factors}$$

 \cdot To get an equation that holds for each district, we need to include other factors

test score
$$= eta_{\mathrm{0}} + \ensuremath{eta_{\mathrm{ClassSize}}} imes$$
 class size $+$ other factors

 $\boldsymbol{\cdot}$ For now, we will ignore these until the next lesson

• To get an equation that holds for *each* district, we need to include other factors

test score
$$= eta_{\rm 0} + eta_{\rm ClassSize} imes$$
 class size $+$ other factors

- · For now, we will ignore these until the next lesson
- · Thus, $\beta_0 + \beta_{\text{ClassSize}} imes$ class size gives the average effect of class sizes on scores

• To get an equation that holds for *each* district, we need to include other factors

test score =
$$\beta_0 + \beta_{\text{ClassSize}} \times \text{class size} + \text{other factors}$$

- · For now, we will ignore these until the next lesson
- \cdot Thus, $eta_0 + eta_{ extsf{ClassSize}} imes$ class size gives the **average effect** of class sizes on scores
- Later, we will want to estimate the marginal effect (causal effect) of each factor on an individual district's test score, holding all other factors constant

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- · y is the dependent variable of interest
 - · AKA "response variable," "regressand," "Left-hand side (LHS) variable"

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- · y is the dependent variable of interest
 - · AKA "response variable," "regressand," "Left-hand side (LHS) variable"
- x_1 and x_2 are independent variables
 - AKA "explanatory variables," "regressors," "Right-hand side (RHS) variables," "covariates," "control variables"

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- · y is the dependent variable of interest
 - · AKA "response variable," "regressand," "Left-hand side (LHS) variable"
- x_1 and x_2 are independent variables
 - AKA "explanatory variables," "regressors," "Right-hand side (RHS) variables," "covariates," "control variables"
- We have observed values of y, x_1 , and x_2 & "regress y on x_1 and x_2 "

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- y is the dependent variable of interest
 - · AKA "response variable," "regressand," "Left-hand side (LHS) variable"
- x_1 and x_2 are independent variables
 - AKA "explanatory variables," "regressors," "Right-hand side (RHS) variables," "covariates," "control variables"
- We have observed values of y, x_1 , and x_2 & "regress y on x_1 and x_2 "
- $\cdot \beta_0, \beta_1$, and β_2 are unknown parameters to estimate

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- · y is the dependent variable of interest
 - AKA "response variable," "regressand," "Left-hand side (LHS) variable"
- x_1 and x_2 are independent variables
 - AKA "explanatory variables," "regressors," "Right-hand side (RHS) variables," "covariates," "control variables"
- We have observed values of y, x_1 , and x_2 & "regress y on x_1 and x_2 "
- $\cdot \beta_0, \beta_1$, and β_2 are unknown parameters to estimate
- \cdot ϵ is the error term
 - It is **stochastic** (random)
 - · We can never measure the error term

THE POPULATION REGRESSION MODEL

 \cdot How do we draw a line through the scatterplot? We do not know the true $eta_{ extit{ClassSize}}$

²Data is student-teacher-ratio and average test scores on Stanford 9 Achievement Test for 5th grade students for 420 K-6 and K-8 school districts in California in 1999, (Stock and Watson, 2015: p. 141)

THE POPULATION REGRESSION MODEL

- \cdot How do we draw a line through the scatterplot? We do not know the true $eta_{ extit{ClassSize}}$
- We do have data from a sample of class sizes and test scores²

²Data is student-teacher-ratio and average test scores on Stanford 9 Achievement Test for 5th grade students for 420 K-6 and K-8 school districts in California in 1999, (Stock and Watson, 2015: p. 141)

THE POPULATION REGRESSION MODEL

- \cdot How do we draw a line through the scatterplot? We do not know the true $eta_{ extit{ClassSize}}$
- We do have data from a *sample* of class sizes and test scores²
- · So the real question is, how can we estimate β_0 and β_1 ?

²Data is student-teacher-ratio and average test scores on Stanford 9 Achievement Test for 5th grade students for 420 K-6 and K-8 school districts in California in 1999, (Stock and Watson, 2015; p. 141)

OLS ESTIMATORS AND SAMPLE
REGRESSION MODEL