HOUSING PRICE AND PREDICTION ANALYSIS

Group 10
SAMEER KATARIA, MAYANK JAIN AND ATHARVA GOMEKAR

Table of Contents:

S.no	Contents	Page number
1	Introduction	3
2	Exploratory Data Analysis	5
3	Fitting Baseline Model	8
4	Multicollinearity and Outlier Removal	9
5	Feature Engineering and Model Building	10
6	Model Evaluation	14
Α	Appendix	16

INTRODUCTION

- We have used the famous Ames housing dataset and used Multiple Linear Regression and other machine learning models to predict the sale price of houses based on various features.
- The dataset is available on Kaggle which includes 81 features describing a wide range of characteristics of 1460 homes in Ames, lowa that are sold between 2006 and 2010.
- The dataset consists of information about 1460 houses

Data Description

- Predictor Variables
 - Quantitative variables

Variable -	Description
LotFrontage	Linear feet of street connected to property
LotArea	Lot size in square feet
YearBuilt	Original construction date
YearRemodAdd	Remodel date (same as construction date if no remodeling or additions)
MasVnrArea	Masonry veneer area in square feet
BsmtFinSF1	Type 1 finished square feet
BsmtUnfSF	Unfinished square feet of basement area
TotalBsmtSF	Total square feet of basement area
1stFlrSF	First Floor square feet
2ndFlrSF	Second floor square feet
LowQualFinSF	Low quality finished square feet (all floors)
GrLivArea	Above grade (ground) living area square feet
BsmtFullBath	Basement full bathrooms
BsmtHalfBath	Basement half bathrooms
FullBath	Full bathrooms above grade
HalfBath	Half baths above grade
Bedroom	Bedrooms above grade (does NOT include basement bedrooms)
Kitchen	Kitchens above grade
TotRmsAbvGrd	Total rooms above grade (does not include bathrooms)
Fireplaces	Number of fireplaces
GarageYrBlt	Year garage was built
GarageCars	Size of garage in car capacity
GarageArea	Size of garage in square feet
WoodDeckSF	Wood deck area in square feet
OpenPorchSF	Open porch area in square feet
EnclosedPorch	Enclosed porch area in square feet
3SsnPorch	Three season porch area in square feet
ScreenPorch	Screen porch area in square feet
PoolArea	Pool area in square feet
MiscVal	\$Value of miscellaneous feature
MoSold	Month Sold (MM)
YrSold	Year Sold (YYYY)

Table 1: Quantitative Variables

Qualitative variables

Variable 🔻	Description
MSSubClass	Identifies the type of dwelling involved in the sale.
MSZoning	Identifies the general zoning classification of the sale.
Street	Type of road access to property
Alley	Type of alley access to property
LotShape	General shape of property
LandContour	Flatness of the property
Utilities	Type of utilities available
LotConfig	Lot configuration
LandSlope	Slope of property
Neighborhood	Physical locations within Ames city limits
Condition1	Proximity to various conditions
Condition2	Proximity to various conditions (if more than one is present)
BldgType	Type of dwelling
HouseStyle	Style of dwelling
OverallQual	Rates the overall material and finish of the house
OverallCond	Rates the overall condition of the house
RoofStyle	Type of roof
RoofMatl	Roof material
Exterior1st	Exterior covering on house
Exterior2nd	Exterior covering on house (if more than one material)
MasVnrType	Masonry veneer type
ExterQual	Evaluates the quality of the material on the exterior
ExterCond	Evaluates the present condition of the material on the exterior
Foundation	Type of foundation
BsmtQual	Evaluates the height of the basement
BsmtCond	Evaluates the general condition of the basement
BsmtExposure	Refers to walkout or garden level walls
BsmtFinType1	Rating of basement finished area
BsmtFinType2	Rating of basement finished area (if multiple types)
BsmtFinSF2	Type 2 finished square feet
Heating	Type of heating
HeatingQC	Heating quality and condition
CentralAir	Central air conditioning
Electrical	Electrical system
KitchenQual	Kitchen quality
Functional	Home functionality (Assume typical unless deductions are warranted)
FireplaceQu	Fireplace quality
GarageType	Garage location
GarageFinish	Interior finish of the garage
GarageQual	Garage quality
GarageCond	Garage condition
PavedDrive	Paved driveway
PoolQC	Pool quality
Fence	Fence quality
MiscFeature	Miscellaneous feature not covered in other categories
SaleType	Type of sale
SaleCondition	Condition of sale
Saiccondition	55.16.1.5.1 5416

Table 2: Qualitative Variables

> Cardinality of the data

Train data: 1460 rows x 79 featuresTest data: 1459 rows x 79 features

Response Variable

\$ Sale Price

• Objective:

- Perform exploratory data analysis to understand the intricacies of dataset.
- Perform feature selection to understand the variables affecting the housing prices.
- Understanding categorical variables as sparse matrix can reduce the adjusted R² in a misleading way.
- Check for all regression assumptions.
- Hypothesis Testing to corroborate all the results.
- Compare results with other advanced Machine Learning models.

EXPLORATORY DATA ANALYSIS AND DATA TRANSFORMATION

- 'SalePrice' is the response variable that we need to predict.
- It is observed that the response variable is right skewed. Since (linear) models are likes normal distribution, we need to transform the variable to approximate it to normal distribution.
- With the log(1+x) transformation, the skew disappears from the distribution thereby making the response variable distribution to be normal distribution.

Figure 1: Frequency plot before log Transformation

Figure 2: Frequency plot after log Transformation

Figure 3: QQ plot before Transformation

Figure 4: QQ plot after log transformation

- From the above figure, it is evident that after box cox transformation, the distribution of the response variable is close to normal.
- The correlation of response vs quantitative variables showcases the following (non-Exhaustive list)
 - High Correlation factors
 - Overall Quality
 - Garage Capacity (Cars)
 - Garage Area
 - Living Area
 - Total basement square ft
 - Year Built, Year Remodeled
 - Area of the first, second floor (Sq.ft)
 - Weak Correlation
 - Enclosed Porch area
 - Pool Area (Sq.ft)
 - Year, Month Sold
- From the above analysis, we observe that the price of the house is dependent on fairly intuitive factors.
- Missing Data:
 - > The data was checked for missing variables as multiple linear regression cannot handle missing data
 - > A column with more than 80 per cent of missing values were removed
 - ➤ Looking at figure 5, we have removed the top 4 columns with highest missing values.

Figure 5: Percentage of Missing Data

- Missing data handling
 - Few of the columns of the dataset had several NaN values which needs to be addressed either through removing them or imputing them with some specific values.
 - As the data size wasn't big enough, so it was logical to efficiently impute the gaps in the data. To achieve this target, we used Simple Imputer and Iterative Imputer for filling the values with the following rules (using Sklearn's Column Transformer):
 - List of 'NaN' including columns where NaN's mean's none
 - List of 'NaN' including columns where NaN's mean's 0
 - List of 'NaN' including columns where NaN's actually missing gonna replaced with mode
 - List of 'NaN' including columns where NaN's actually missing gonna replaced most common type of the related
 - Transforming rare values (less than 10) into one group
 - Based on the above Imputation target, columns of the complete data was split into different sub-sections and missing values were handled as discussed.
 - Cols_none
 - This subsection contained qualitative variables such as Garage type, Garage quality, Basement finish type etc

- A missing value in such a column indicates that the feature is not present in a particular house.
- A 'None' value was imputed (using simple imputer) here in case of a missing value indicating that the feature wasn't present in the house

Cols_zero

- This subsection contained quantitative variables such as finished area in basement (Sq.ft), Total Area of Basement, Number of cars handled by garage etc.
- A missing value in such a column indicates that the feature has zero value for the particular variable.
- Hence, a zero was imputed (using simple imputer) here in case of a missing value indicating the feature value is zero.

Cols_mode

- This subsection contained qualitative variables such as Electrical system, Kitchen quality, type of utilities etc
- A missing value in such a column indicates that the feature data might have been unreported. It doesn't make sense that the home has no utilities.
- Mode value of the column was imputed (using simple imputer) here in case of a missing value indicating that the most common features were available in the particular house

Categorical Data handling

- ▶ 47 features in our data are qualitative, as depicted in Table 2.
- > To model the behavior of qualitative variables, a boxplot of qualitative data vs the response variables was created.
- For some categorical variables, it is observed that the mean of the category constituents is close.
 - In case of roof style, Hip, Flat and barn roof has quite similar means and hence it might be difficult or the model to differentiate between categories
 - So, we have removed such categorical variables like Roof style, land slope, utilities, Basement Exposure etc.
- Now the rest of the variables are transformed into dummy variables and added to the data frame.

FITTING THE BASELINE (Linear Regression) MODEL

- After cleaning the data and converting the categorical variables to dummy variables, all the generated features were regressed on Sale Price of house.
- A baseline model was obtained.
- The number of predictor variables in the model were 211(higher because of the dummy variables)
- Some coefficients for the model and Interpretation
 - GarageArea
 - An increase of 1 unit in the scaled Garage area would result in increase in log(1+saleprice) by 0.014 holding all other variables constant
 - An increase of 1 unit in the scaled Garage area would result in increase in sale price by 0.014 holding all other variables constant
 - GarageCars
 - An increase of 1 unit in the scaled Garage cars would result in increase in log(1+saleprice) by 0.014 holding all other variables constant
 - An increase of 1 unit in the scaled Garage cars would result in increase in sale price by 0.014 holding all other variables constant
 - > Total basement square ft
 - An increase of 1 unit in the scaled Total basement area would result in increase in log(1+saleprice) by 0.014 holding all other variables constant
 - An increase of 1 unit in the scaled Total basement area would result in increase in sale price by 0.014 holding all other variables constant
 - Intercept
 - Holding all other variables zero, the average sale price of a house is \$169,719
 - Overall Quality
 - This feature was converted into a categorical variable
 - This indicates that the sale price of a bad quality house will be 0.0325 less than the sale price of a good quality house-keeping everything else constant.
- Summary Statistic of the model are as follows:

	OLS Regres	sion Results	
Dep. Variable:	SalePrice	R-squared:	0.911
Model:	OLS	Adj. R-squared:	0.898
Method:	Least Squares	F-statistic:	72.23
Date:	Wed, 20 Apr 2022	<pre>Prob (F-statistic):</pre>	0.00
Time:	03:46:02	Log-Likelihood:	1034.2
No. Observations:	1460	AIC:	-1704.
Df Residuals:	1278	BIC:	-742.3
Df Model:	181		
Covariance Type:	nonrobust		

Figure 6: Model Summary Baseline

Probability Plot

0.50

0.25

0.00

-0.25

-0.75

-1.00

-1.25

-3 -2 -1 0 1 2 3

Theoretical quantiles

Figure 7: Residual vs Fitted For Baseline

Figure 8: QQ plot residual

• Even though it can be observed that the baseline model follows regression assumptions, there are still a few outliers as observed in Figure 7.

OUTLIER REMOVAL AND MULTICOLLINEARITY

• Outlier Detection and Removal

- > As we observed a few outliers, its pertinent we remove the outliers in the data.
- We use cook's distance in our analysis for outlier removal.
- Cook's Distance is calculated by removing the ith data point from the model and recalculating the regression. It summarizes how much all the values in the regression model change when the ith observation is removed.
- Initially, all data points with cooks' distance greater than 4/n_obs were investigated
 - This yielded 115 points
 - However, so many points couldn't be removed from the data as removing these data points would lead to a loss of 10% of data which would have adverse results on our analysis.
- Hence, the criterion that cook's distance greater than 1 was checked and all such data points were removed.

• Multicollinearity

- In regression, "multicollinearity" refers to predictors that are correlated with other predictors.
- Multicollinearity occurs when your model includes multiple factors that are correlated not just to your response variable, but also to each other. In other words, it results when you have factors that are a bit redundant.
- VIF was used to tackle the problem of multicollinearity.
- VIF score of an independent variable represents how well the variable is explained by other independent variables.
- ➤ VIF was calculated for all the columns in our dataset and if VIF of column was greater than maximum of 10 and 1/(1+R²), then the column was removed as it indicated high multicollinearity
- ➤ A total of 107 variables were left after removing multicollinearity from the model.

Updated Model Summary Statistics:

```
OLS Regression Results
______
Dep. Variable:
                    SalePrice R-squared:
                                                         0.883
        Least Squares F-statistic:
Wed, 20 Apr 2022 Prob (F-statistic):
                         OLS Adj. R-squared:
Model:
Method:
                                                        93.38
Date:
                                                        0.00
                      03:46:09 Log-Likelihood:
                                                        833.49
Time:
No. Observations:
                         1457
                              AIC:
                                                        -1447.
                         1347 BIC:
Df Residuals:
                                                        -865.7
Df Model:
                          109
Covariance Type:
                     nonrobust
```

Figure 9: Model Summary Stats after VIF and Outlier removal

• It can be observed that even though R² and Adjusted R² have decreased, the BIC has also decreased which explains a greater goodness of fit as compared to the previous model (*Figure 6*)

FEATURE SELECTION AND ENGINEERING

- Feature engineering is an important part of model building activity. It involves creation, deletion and modification of features using the domain knowledge persistent to the dataset.
- Before performing any featuring engineering operations, we tried to understand the relationship between/amongst response and/or explanatory variables.
- From the above correlation matrix, it is evident that the response variable ('SalePrice') is strongly correlated with variables likes Overall Quality, Garage Cars, Garage Area, etc.
- In addition, we can also eyeball through few highly correlated pair of explanatory variables such (Garage Cars, Garage Area), (1st floor Surface Area, Total basement area), etc.
- Data Wrangling:
 - Converting several quantitative variables to string types as it would better align with robust model implementation.
 - Dropping few irrelevant columns ('PoolQC', 'MiscFeature', 'Fence', 'Alley', 'FireplaceQu').
 - Creating new quantitative variable ('TotalSF' computed as sum of areas, in sq. ft., of Basement, 1st floor and 2nd floor.
 - Transforming the Overall condition and Overall quality variables to binary ouput based on the logical below:
 - If Overall condition >= 8, then OC_Good; Else OC_Bad
 - If Overall quality >= 8, then OQ_Good; Else OQ_Bad
- Variable Transformation:
 - Several variables such as 'YearBuilt', 'YearRemodAdd', GarageYrBlt', 'MoSold',
 'YrSold' were transformed based on the min-max values as described below:

```
New(Target\ Variable) \\ = \frac{OldValue(Target\ Variable) - MIN(OldValue(Target\ Variable))}{(Max(OldValue(Target\ Variable)) - MIN(OldValue(Target\ Variable)))}
```

- As the data consisted of a lot of features, more effort was dedicated towards feature selection rather than new feature creation.
- However, few unique new features were created like Total Area that would take total area of basement, first and second floor into account.

Lasso CV

- Least absolute shrinkage and selection operator is a regression analysis method that performs both variable selection and regularization to enhance the prediction accuracy and interpretability of the resulting model.
- Trying to minimize the cost function, Lasso regression will automatically select those features that are useful, discarding the useless or redundant features.
- o In Lasso regression, discarding a feature will make its coefficient equal to 0.
- Lasso was used on the complete model after outlier removal, and it shrunk a few coefficients to zero.
- The number of non-zero coefficients left after Lasso CV are 67.
- Summary of the model

	OLS Regression Results					
=======================================	=======================================					
Dep. Variable:	SalePrice	R-squared:	0.867			
Model:	OLS	Adj. R-squared:	0.861			
Method:	Least Squares	F-statistic:	137.6			
Date:	Wed, 20 Apr 2022	Prob (F-statistic):	0.00			
Time:	03:46:12	Log-Likelihood:	741.62			
No. Observations:	1460	AIC:	-1349.			
Df Residuals:	1393	BIC:	-995.1			
Df Model:	66					
Covariance Type:	nonrobust					

Figure 10: Summary Stats for Lasso

- Some coefficients for the model and Interpretation
 - GarageArea
 - An increase of 1 unit in the scaled Garage area would result in increase in log(1+saleprice) by 0.014 holding all other variables constant
 - An increase of 1 unit in the scaled Garage area would result in increase in sale price by 0.014 holding all other variables constant
 - GarageCars
 - An increase of 1 unit in the scaled Garage cars would result in increase in log(1+saleprice) by 0.014 holding all other variables constant
 - An increase of 1 unit in the scaled Garage cars would result in increase in sale price by 0.014 holding all other variables constant
 - Total basement square ft
 - An increase of 1 unit in the scaled Total basement area would result in increase in log(1+saleprice) by 0.014 holding all other variables constant

- An increase of 1 unit in the scaled Total basement area would result in increase in sale price by 0.014 holding all other variables constant
- Intercept
 - Holding all other variables zero, the average sale price of a house is \$169,719
- Overall Quality
 - This feature was converted into a categorical variable
 - This indicates that the sale price of a bad quality house will be 0.0325 less than the sale price of a good quality house keeping everything else constant.
- The model assumptions also hold true.

Figure 11: Residuals vs Fitted for Lasso

Figure 12: QQ plot for Lasso

Backward Selection

- Backward stepwise selection is a variable selection method which begins with a model that contains all variables under consideration
- Then it starts removing the least significant variables one after the other until a pre-specified stopping rule is reached or until no variable is left in the model.
- Backward selection was used in the analysis to select the appropriate number of variables in this scenario.
- It gave back the selected number of features to be to be used in the model to be 78.
- Summary Stats for the model:

OLS Regression Results				
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	SalePrice OLS Least Squares Wed, 20 Apr 2022 04:21:11 1460 1381 78 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:	0.899 0.893 157.4 0.00 941.33 -1725. -1307.	

The model coefficients and hypothesis testing intervals are added in the appendix

The model assumptions also hold true.

Probability Plot

0.50

0.25

0.00

-0.25

-0.50

-1.00

-1.25

-1.50

-3 -2 -1 0 1 2 3

Theoretical quantiles

Figure 13: Residuals vs Fitted Backward Selection

Figure 14: QQ plot for Backwards

RFEC (Recursive Feature Elimination with CV)

- RFE is popular because it is easy to configure and use and because it is effective at selecting those features (columns) in a training dataset that are more or most relevant in predicting the target variable.
- The recursive feature elimination with cross validation approach selected a total of 31 features from the whole 211 features
- The model statistics are as follows:

```
OLS Regression Results
Dep. Variable:
                             SalePrice
                                         R-squared:
                                                                            0.862
Model:
                                   OLS
                                         Adj. R-squared:
                                                                            0.859
Method:
                         Least Squares
                                          F-statistic:
                                                                            228.3
Date:
                      Wed, 20 Apr 2022
                                         Prob (F-statistic):
                                                                             0.00
Time:
                              03:49:32
                                          Log-Likelihood:
                                                                           716.79
No. Observations:
                                  1460
                                         AIC:
                                                                           -1354.
Df Residuals:
                                  1420
                                         BIC:
                                                                           -1142.
Df Model:
                                    39
Covariance Type:
                             nonrobust
```

Figure 15: Model Metrics

The model selection process yielded Mean squared error vs the features as follows:

Figure 16: Cross validation score vs features for RFEC

 The hypothesis testing and the appropriate coefficient factors can be found in the appendix.

MODEL EVALUATION

Model	R- squared	BIC	Mean Squared Error	Mean Absolute Error	Mean Absolute Percentage Error
Baseline	0.911	-742	0.0142	0.0832	0.00696
Baseline (Outlier Removed)	0.925	-994	0.0120	0.0769	0.00644
Baseline (VIF)	0.886	-877	0.0181	0.0996	0.00833
Lasso	0.872	-1009	0.0204	0.0959	0.00803
Backward Selection	0.890	-1336	0.0176	0.0925	0.00774
RFEC	0.911	-756	0.0142	0.0832	0.00696
Random Forest	0.684	-	0.0504	0.1676	0.01399

Table 3: Model Metrics

- After training the above-mentioned models, some interesting results were observed. A
 prior regarding the model performance for Lasso was assumed. But since Lasso gave a
 low R-squared, this means there were many multi-collinear variables in the original
 design matrix.
- After observing the all the metrics for the models from Table 3, it is clear there is no point
 in fixating over R-squared alone but looking at model performance by combining it with
 BIC. As MSE, MAE and MAPE are very close, and we can disregard them for plain
 model comparison. BIC values bias more and R-squared values variability. Observing
 these two the right bias-variance tradeoff.

Baseline with VIF:

- Baseline with VIF here mean the baseline model with all the features was trained first and then another version by removing outliers and another after handling multicollinearity.
- The R-squared score for this final model is 0.886 which reduced from the very first baseline model and the BIC is -877. This value improves from the very first baseline model suggesting that the original model had many non-contributing features.

Lasso

- Since the prior about the model does not give good results, further investigation suggests that there many variables which calculate similar features about the those, for example, garage area and garage capacity. Higher garage area will have higher car capacity. This argument is further corroborated by the fact that backward selection omits garage area and keeps garage car, but Lasso does the opposite. Furthermore, from the correlation matrix the correlation between these two features is the same indicating similarity between features. This information is sufficient to reject the prior about which model would perform the best.
- The BIC value, which penalizes model complexity, has a value of -1009. This shows many features have been reduced to zero. The feature selected by the model are 63.

RFEC Model

Another feature selection method used to then train an OLS model was RFEC which takes an object of the OLS, calculates the feature importance, and drops the variable with the lowest importance. The features thus obtained from this method are intuitive, but the constant variance graph shows some clustering and further investigation might be required. The R-squared for this model is 0.911 but a BIC score of -756 which is slightly better than the baseline suggests that there is overfitting.

Backward Selection

- The OLS model trained after selecting features with backward selection gives a R-squared of 0.89 with a BIC of -1336. This suggests a little underfitting compared to RFEC model.
- Considering the number of features are double than RFEC and still there is some underfitting this model will perform better on incoming test set better.

Random Forrest

- The scope of this report does not delve into the technicalities of the report. But just presents the scores obtained after running a very basic version of the model without much hyper-parameter tuning. This model has a significantly low R-squared score. Because random forest is hard to interpret and is often termed as a black-box model. Hence, we reject this model for the time being. Further hyper-parameter tuning and feature selection with decision tree-based methods may give better results but again at a loss of interpretability.
- As a concluding statement, the backward selection model hits the right balance of goodness of fit and bias-variance tradeoff and as a result is the best model out of all.

Appendix:

OLS Regression Results

OLS Regression Results						
=========	:=======		=======	=========	=========	
Dep. Variable	:	SalePr	ice R-sc	quared:		
Model: 0.898			OLS Adj.	R-squared:		
Method: 72.23		Least Squa	res F-st	catistic:		
Date: 0.00	Wed	d, 20 Apr 2	022 Prok	(F-statistic)	:	
Time: 1034.2		23:35	:08 Log-	-Likelihood:		
No. Observati	ons:	1	460 AIC:		-	
1704. Df Residuals: 742.3		1	278 BIC:		-	
Df Model:			181			
Covariance Ty	rpe:					
========						
0.975]	coef	std err	t	P> t	[0.025	
Intercept	12.0241	0.003	3607.304	0.000	12.018	
12.031 a0 0.002	-0.0076	0.005	-1.501	0.134	-0.018	
a1 0.015	0.0021	0.007	0.311	0.756	-0.011	
a2 0.004	-0.0056	0.005	-1.185	0.236	-0.015	
a3 0.001	-0.0128	0.007	-1.880	0.060	-0.026	
a4 0.032	0.0214	0.006	3.819	0.000	0.010	
a5 0.013	0.0055	0.004	1.397	0.163	-0.002	
a6 0.175	-0.1098	0.145	-0.757	0.449	-0.394	
a7 0.024	0.0058	0.009	0.632	0.527	-0.012	
a8 0.058	0.0407	0.009	4.475	0.000	0.023	
a9 0.010	-0.0011	0.006	-0.194	0.847	-0.012	
a10 0.002	-0.0082	0.005	-1.636	0.102	-0.018	
a11 0.015	-0.0222	0.019	-1.174	0.241	-0.059	

a12	0.0238	0.006	4.262	0.000	0.013	
0.035 a13	0.0243	0.012	2.008	0.045	0.001	
0.048 a14	0.0266	0.006	4.429	0.000	0.015	
0.038	0.0200	0.000	1.123	0.000	0.010	
a15	0.0436	0.009	4.889	0.000	0.026	
0.061 a16	0.0339	0.008	4.071	0.000	0.018	
0.050 a17	0.0106	0.005	2.291	0.022	0.002	
0.020 a18	0.0613	0.006	10.141	0.000	0.049	
0.073						
a19 0.033	0.0199	0.007	3.009	0.003	0.007	
a20	0.0141	0.006	2.466	0.014	0.003	
0.025 a21	0.0046	0.006	0.755	0.450	-0.007	
0.016 a22	-0.0156	0.007	-2.355	0.019	-0.029	_
0.003 a23	0.0147	0.008	1.775	0.076	-0.002	
0.031						
a24 0.030	0.0208	0.005	4.449	0.000	0.012	
a25	0.0137	0.004	3.419	0.001	0.006	
0.022 a26	0.0037	0.004	0.890	0.374	-0.004	
0.012						
a27 0.018	0.0105	0.004	2.569	0.010	0.002	
a28 0.015	0.0077	0.004	2.129	0.033	0.001	
a29	0.0193	0.004	5.203	0.000	0.012	
0.027 a30	-0.0082	0.004	-2.091	0.037	-0.016	-
0.001 a31	-0.0020	0.004	-0.530	0.596	-0.009	
0.005	0.0020	0.004	0.550	0.390	0.009	
a32	-0.0028	0.004	-0.769	0.442	-0.010	
0.004 a33	-0.0014	0.004	-0.377	0.706	-0.009	
0.006						
a34 0.038	0.0317	0.003	9.790	0.000	0.025	
a35	-0.0370	0.004	-8.786	0.000	-0.045	-
0.029 a36	0.0090	0.008	1.074	0.283	-0.007	
0.025	0 0044	0 004	1 000	0 205	0 004	
a37 0.013	0.0044	0.004	1.027	0.305	-0.004	
a38	0.0075	0.008	0.920	0.358	-0.009	
0.024						

a39 0.004	-0.0038	0.004	-0.947	0.344	-0.012	
a40 0.007	-0.0013	0.004	-0.318	0.750	-0.009	
a41 0.011	0.0038	0.004	0.962	0.336	-0.004	
a42 0.003	-0.0103	0.004	-2.611	0.009	-0.018	-
a43 0.003	-0.0109	0.004	-2.697	0.007	-0.019	-
a44 0.013	0.0047	0.004	1.161	0.246	-0.003	
a45 0.008	-0.0009	0.005	-0.181	0.856	-0.010	
a46 0.015	0.0079	0.004	2.056	0.040	0.000	
a47 0.013	0.0059	0.004	1.583	0.114	-0.001	
a48 0.020	0.0120	0.004	2.976	0.003	0.004	
a49 0.001	-0.0063	0.004	-1.702	0.089	-0.013	
a50 0.004	-0.0027	0.004	-0.774	0.439	-0.010	
a51 0.055	0.0314	0.012	2.565	0.010	0.007	
a183[0] 0.053	0.0312	0.011	2.795	0.005	0.009	
a183[1] 0.006	-0.0132	0.004	-3.501	0.000	-0.021	-
a53 0.003	-0.0087	0.006	-1.409	0.159	-0.021	
a54 0.001	-0.0065	0.004	-1.665	0.096	-0.014	
a55 0.001	-0.0139	0.007	-2.085	0.037	-0.027	-
a56 0.001	-0.0189	0.010	-1.898	0.058	-0.038	
a57 0.006	-0.0084	0.007	-1.171	0.242	-0.023	
a58 0.003	-0.0291	0.014	-2.150	0.032	-0.056	-
a59 0.022	0.0042	0.009	0.477	0.633	-0.013	
a60 0.030	-0.0527	0.012	-4.502	0.000	-0.076	-
a61 0.006	-0.0266	0.011	-2.520	0.012	-0.047	-
a62 0.007	-0.0247	0.009	-2.754	0.006	-0.042	_
a63 0.021	-0.0341	0.007	-4.980	0.000	-0.048	-
a64 0.008	-0.0251	0.008	-2.955	0.003	-0.042	-

a65	-0.0443	0.016	-2.760	0.006	-0.076	-
0.013 a66	-0.0052	0.005	-0.956	0.339	-0.016	
0.005 a67	-0.0252	0.010	-2.526	0.012	-0.045	-
0.006 a68	-0.0046	0.008	-0.570	0.569	-0.020	
0.011 a69	0.0146	0.011	1.387	0.166	-0.006	
0.035 a70	-0.0463	0.014	-3.358	0.001	-0.073	_
0.019 a71	-0.0144	0.007	-2.010	0.045	-0.029	_
0.000 a72	-0.0293	0.010	-2.894	0.004	-0.049	-
0.009 a73	-0.0210	0.009	-2.316	0.021	-0.039	-
0.003 a74	-0.0096	0.013	-0.767	0.443	-0.034	
0.015 a75	0.0094	0.007	1.417	0.157	-0.004	
0.023 a76	-0.0130	0.008	-1.679	0.093	-0.028	
0.002 a86[0]	-0.0071	0.003	-2.084	0.037	-0.014	_
0.000 a86[1]	-2.143e-16	5.52e-16	-0.388	0.698	-1.3e-15	
8.69e-16 a78	0.0039	0.004	1.080	0.280	-0.003	
0.011 a88[0]	-0.0114	0.003	-3.723	0.000	-0.017	_
0.005 a88[1]	1.403e-15	1.7e-15	0.825	0.410	-1.93e-15	
4.74e-15 a89[0]	0.0109	0.002	5.250	0.000	0.007	
0.015 a89[1]	0.0045	0.002	2.252	0.024	0.001	
0.008 a90[0]	-1.89e-15	2.25e-15	-0.839	0.402	-6.31e-15	
2.53e-15 a90[1]	3.529e-16	4.77e-16	0.739	0.460	-5.84e-16	
1.29e-15 a82	-0.0028	0.004	-0.809	0.419	-0.010	
0.004 a83	-0.0071	0.004	-1.993	0.046	-0.014	_
0.000 a84	0.0052	0.004	1.456	0.146	-0.002	
0.012 a85	-1.415e-15	1.69e-15	-0.837	0.403	-4.73e-15	
1.9e-15 a87	-0.0045	0.002	-2.252	0.024	-0.008	_
0.001 a91	0.0151	0.018	0.842	0.400	-0.020	
0.050	0.0131	0.010	0.042	0.500	0.020	

a92	0.0150	0.006	2.566	0.010	0.004	
0.027 a93	0.0124	0.009	1.446	0.149	-0.004	
0.029	0.0121	0.003	1.110	0.113	0.001	
a94	-0.0052	0.005	-1.108	0.268	-0.014	
0.004 a95	0 0060	0 000	-0.751	0 452	0 025	
0.011	-0.0069	0.009	-0.751	0.453	-0.025	
a96	0.0006	0.005	0.123	0.902	-0.008	
0.009 a97	-0.0155	0.016	-0.949	0.343	-0.047	
0.017						
a98	-0.0079	0.005	-1.468	0.142	-0.019	
0.003 a99	0.0084	0.004	1.872	0.061	-0.000	
0.017	0.0004	0.004	1.072	0.001	-0.000	
a100	-0.0228	0.013	-1.732	0.084	-0.049	
0.003						
a101	-0.0022	0.005	-0.456	0.649	-0.011	
0.007	0 0221	0 005	C 12C	0.000	0 044	
a102 0.023	-0.0331	0.005	-6.136	0.000	-0.044	
a103	-0.0131	0.004	-3.081	0.002	-0.021	
0.005						
a104	-0.0011	0.012	-0.092	0.927	-0.024	
0.022 a105	-0.0870	0.045	-1.948	0.052	-0.175	
0.001	0.0070	0.045	1.940	0.032	0.175	
a106	-0.0167	0.010	-1.660	0.097	-0.036	
0.003 a107	-0.0730	0.043	-1.696	0.090	-0.157	
0.011	0.0730	0.045	1.090	0.090	0.137	
a108	-0.0125	0.008	-1.528	0.127	-0.028	
0.004	0 0040	0.000	1 555	0 100	0 001	
a109 0.011	0.0048	0.003	1.557	0.120	-0.001	
a110	0.0024	0.003	0.789	0.430	-0.004	
0.008						
a111	-0.0102	0.005	-1.864	0.063	-0.021	
0.001 a112	-1.824e-15	2 010-15	-0.907	0.365	-5.77e-15	
2.12e-15	-1.0246-13	2.01e-13	-0.907	0.303	-3.776-13	
a126[0]	0.0013	0.008	0.155	0.877	-0.015	
0.017	0.0005	0.000	1 000	0.000	0 005	
a126[1] 0.006	-0.0095	0.008	-1.223	0.222	-0.025	
a127[0]	1.157e-15	1.24e-15	0.935	0.350	-1.27e-15	
3.58e-15 a127[1]	1.1e-15	1.29e-15	0.851	0.395	-1.43e-15	
3.63e-15	1.16-13	1.296-13	0.031	0.393	-1.43E-13	
a115	-4.148e-16	4.75e-16	-0.874	0.382	-1.35e-15	
5.17e-16						
a142[0]	0.0152	0.008	1.955	0.051	-5.45e-05	
0.030						

-0.0052	0.006	-0.846	0.398	-0.017
0.0080	0.022	0.355	0.722	-0.036
-1.338e-15	1.43e-15	-0.935	0.350	-4.15e-15
-8.781e-16	1.05e-15	-0.838	0.402	-2.93e-15
0.0557	0.040	1.392	0.164	-0.023
-0.0149	0.017	-0.861	0.389	-0.049
-0.0052	0.005	-1.078	0.281	-0.015
0.0008	0.014	0.056	0.955	-0.027
-0.0027	0.013	-0.210	0.834	-0.028
0.0193	0.019	0.996	0.319	-0.019
-0.0075	0.018	-0.405	0.686	-0.044
0.0080	0.010	0.781	0.435	-0.012
-0.0031	0.010	-0.299	0.765	-0.023
0.0005	0.007	0.067	0.947	-0.013
-0.0058	0.007	-0.880	0.379	-0.019
-0.0075	0.022	-0.338	0.736	-0.051
0.0170	0.020	0.855	0.393	-0.022
-0.0159	0.013	-1.244	0.214	-0.041
0.0190	0.011	1.727	0.084	-0.003
-7.315e-17	8.9e-17	-0.822	0.411	-2.48e-16
0.0244	0.017	1.456	0.146	-0.008
-0.0032	0.006	-0.580	0.562	-0.014
0.0064	0.004	1.470	0.142	-0.002
-1.149e-16	1.66e-16	-0.692	0.489	-4.41e-16
0.0091	0.014	0.652	0.515	-0.018
0.0130	0.006	2.037	0.042	0.000
-0.0030	0.006	-0.496	0.620	-0.015
	0.0080 -1.338e-15 -8.781e-16 0.0557 -0.0149 -0.0052 0.0008 -0.0027 0.0193 -0.0075 0.0080 -0.0031 0.0005 -0.0058 -0.0075 0.0170 -0.0159 0.0170 -0.0159 0.0190 -7.315e-17 0.0244 -0.0032 0.0064 -1.149e-16 0.0091 0.0130	0.0080 0.022 -1.338e-15 1.43e-15 -8.781e-16 1.05e-15 0.0557 0.040 -0.0149 0.017 -0.0052 0.005 0.0008 0.014 -0.0027 0.013 0.0193 0.019 -0.0075 0.018 0.0080 0.010 -0.0031 0.010 0.0058 0.007 -0.0058 0.007 -0.0075 0.022 0.0170 0.022 0.0159 0.013 0.0190 0.011 -7.315e-17 8.9e-17 0.0244 0.017 -0.0032 0.006 0.0064 0.004 -1.149e-16 1.66e-16 0.0091 0.014 0.0130 0.006	0.0080 0.022 0.355 -1.338e-15 1.43e-15 -0.935 -8.781e-16 1.05e-15 -0.838 0.0557 0.040 1.392 -0.0149 0.017 -0.861 -0.0052 0.005 -1.078 0.0008 0.014 0.056 -0.0027 0.013 -0.210 0.0193 0.019 0.996 -0.0075 0.018 -0.405 0.0080 0.010 0.781 -0.0031 0.010 -0.299 0.0005 0.007 0.067 -0.0058 0.007 -0.880 -0.0075 0.022 -0.338 0.0170 0.020 0.855 -0.0159 0.013 -1.244 0.0190 0.011 1.727 -7.315e-17 8.9e-17 -0.822 0.0044 0.017 1.456 -0.0032 0.006 -0.580 0.0064 0.004 1.470 -1.149e-16 1.66e-16 -0.692 0.0130 0.006 2.037	0.0080 0.022 0.355 0.722 -1.338e-15 1.43e-15 -0.935 0.350 -8.781e-16 1.05e-15 -0.838 0.402 0.0557 0.040 1.392 0.164 -0.0149 0.017 -0.861 0.389 -0.0052 0.005 -1.078 0.281 0.0008 0.014 0.056 0.955 -0.0027 0.013 -0.210 0.834 0.0193 0.019 0.996 0.319 -0.0075 0.018 -0.405 0.686 0.0080 0.010 0.781 0.435 -0.0031 0.010 -0.299 0.765 0.0005 0.007 0.067 0.947 -0.0058 0.007 -0.880 0.379 -0.0075 0.022 -0.338 0.736 0.0170 0.022 -0.338 0.736 0.0159 0.013 -1.244 0.214 0.0190 0.011 1.727 0.084 </td

a143	0.0051	0.023	0.216	0.829	-0.041
0.051 a145	0.0034	0.006	0.537	0.591	-0.009
0.016 a146	-0.0014	0.004	-0.353	0.724	-0.009
0.006					
a147 0.073	0.0249	0.025	1.014	0.311	-0.023
a149 0.140	0.0616	0.040	1.545	0.122	-0.017
a150	0.0092	0.012	0.774	0.439	-0.014
0.033 a152	0.0113	0.007	1.647	0.100	-0.002
0.025 a153	0.0026	0.004	0.707	0.479	-0.005
0.010 a154	0.0112	0.005	2.382	0.017	0.002
0.020					
a161[0] 0.143	0.0372	0.054	0.689	0.491	-0.069
a161[1] 0.035	0.0038	0.016	0.245	0.807	-0.027
a162[0] 0.116	0.0265	0.046	0.582	0.561	-0.063
a162[1]	-0.0058	0.020	-0.285	0.776	-0.046
0.034 a163[0]	0.0497	0.068	0.729	0.466	-0.084
0.183 a163[1]	0.0060	0.014	0.440	0.660	-0.021
0.033 a164[0]	0.0152	0.033	0.456	0.648	-0.050
0.081 a164[1]	0.0030	0.024	0.126	0.900	-0.044
0.050 a165[0]	0.0264	0.043	0.607	0.544	-0.059
0.112 a165[1]	0.0004	0.026	0.015	0.988	-0.050
0.051 a193[0]	0.0251	0.069	0.366	0.715	-0.110
0.160	0.0231	0.009			
a193[1] 0.101	0.0077	0.047	0.162	0.872	-0.085
a193[2]	0.1075	0.138	0.780	0.435	-0.163
0.378 a167	-0.0021	0.002	-0.967	0.334	-0.006
0.002 a168	0.0116	0.003	3.913	0.000	0.006
0.017 a169	-2.613e-18	2.41e-18	-1.086	0.278	-7.33e-18
2.11e-18					
a170 0.004	-0.0100	0.003	-3.221	0.001	-0.016
a171	0.0128	0.005	2.769	0.006	0.004

0.022

a196[0]	-0.0244	0.005	-4.877	0.000	-0.034	-
0.015 a196[1]	-0.0064	0.004	-1.448	0.148	-0.015	
0.002 a173 0.011	0.0030	0.004	0.734	0.463	-0.005	
a174 0.010	0.0028	0.004	0.705	0.481	-0.005	
a175 0.006	-0.0019	0.004	-0.466	0.641	-0.010	
a176 3.61e-18	9.373e-19	1.36e-18	0.688	0.492	-1.74e-18	
a177 0.024	0.0129	0.006	2.216	0.027	0.001	
a178 0.018	-0.0256	0.004	-6.813	0.000	-0.033	-
a179 0.004	-0.0113	0.004	-2.962	0.003	-0.019	-
a180 6.11e-32	-5.223e-31	2.97e-31	-1.756	0.079	-1.11e-30	
a181 0.003	-0.0103	0.004	-2.779	0.006	-0.018	_
a182 0.005	-0.0122	0.004	-3.189	0.001	-0.020	_
a184 1.83e-33	-1.558e-32	8.87e-33	-1.756	0.079	-3.3e-32	
a185 0.052	0.0088	0.022	0.398	0.691	-0.034	
a186	0.1443	0.168	0.858	0.391	-0.186	
0.474 a187	0.0343	0.039	0.885	0.376	-0.042	
0.110 a188 0.222	0.0611	0.082	0.746	0.456	-0.099	
a189	0.0213	0.027	0.789	0.430	-0.032	
0.074 a190	0.1252	0.151	0.827	0.408	-0.172	
0.422 a191	0.1056	0.120	0.880	0.379	-0.130	
0.341 a192	0.1073	0.127	0.846	0.398	-0.142	
0.356 a194	0.0116	0.004	2.830	0.005	0.004	
0.020 a195	-8.513e-05	0.004	-0.021	0.983	-0.008	
0.008 a197	-0.0026	0.004	-0.703	0.482	-0.010	
0.005 a198	6.667e-05	0.004	0.017	0.986	-0.008	
0.008 a199	0	0	nan	nan	0	
0 a200 0	0	0	nan	nan	0	

a201	0	0	nan	nan	0
0 a202	0	0	nan	nan	0
0 a203	0	0	nan	nan	0
0 a204	0.0168	0.022	0.749	0.454	-0.027
0.061 a205	0	0	nan	nan	0
0 a206	0.0106	0.004	2.954	0.003	0.004
0.018 a207	-0.0088	0.021	-0.425	0.671	-0.049
0.032 a208	0.0027	0.006	0.472	0.637	-0.009
0.014 a209	0.0010	0.008	0.121	0.904	-0.015
0.017 a210	-0.0030	0.010	-0.300	0.764	-0.022
0.017 a211 0.070	0.0095	0.031	0.310	0.757	-0.051
=======================================	=======		=======	=======	
Omnibus: 1.922		626.	890 Durbin	-Watson:	
Prob (Omnibut 10641.606	s):	0.	000 Jarque	-Bera (JB):	

-1.553 Prob(JB):

15.856 Cond. No.

Notes:

Skew: 0.00

Kurtosis:

6.22e+16

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 5.46e-30. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

OLS Regression Results

Dep. Variable: SalePrice R-squared:
0.925
Model: OLS Adj. R-squared:
0.914
Method: Least Squares F-statistic:

87.04

Date: Wed, 20 Apr 2022 Prob (F-statistic):

0.00

Time: 23:35:19 Log-Likelihood:

1154.3

No. Observations: 1458 AIC:

1947.

Df Residuals: 1277 BIC: -

990.1

Df Model: 180 Covariance Type: nonrobust

	Type:					
0.975]	coef		t			===
12.032	12.0260					
a0 0.030 a1	0.0199		3.986 0.564		0.010	
0.016 a2 0.004	-0.0050	0.004	-1.155	0.248	-0.014	
a3 0.030	0.0169		2.587			
a4 0.022 a5	0.0120		2.320 0.657		0.002	
0.010 a6 0.230	-0.0317	0.134	-0.237	0.813	-0.294	
a7 0.037	0.0205		2.402			
a8 0.035 a9	0.0180		2.126 -0.295		0.001	
0.009 a10	0.0070		1.475			
0.016 a11 0.022	-0.0125	0.017			-0.047	
a12 0.034 a13	0.0242		4.709 3.296		0.014	
0.059 a14	0.0298	0.006	5.394	0.000	0.019	
0.041 a15 0.054	0.0374	0.008	4.553	0.000	0.021	
a16 0.047	0.0322	0.008	4.194	0.000	0.017	
a17 0.016 a18 0.066	0.0073	0.004	1.714 9.855	0.087	-0.001 0.044	

a19 0.024	0.0120	0.006	1.970	0.049	5.16e-05	
a20 0.022	0.0119	0.005	2.256	0.024	0.002	
a21 0.014	0.0032	0.006	0.584	0.559	-0.008	
a22 0.005	-0.0165	0.006	-2.708	0.007	-0.028	-
a23 0.027	0.0116	0.008	1.522	0.128	-0.003	
a24 0.027	0.0188	0.004	4.357	0.000	0.010	
a25 0.020	0.0123	0.004	3.312	0.001	0.005	
a26 0.013	0.0052	0.004	1.372	0.170	-0.002	
a27 0.015	0.0077	0.004	2.046	0.041	0.000	
a28 0.014	0.0072	0.003	2.170	0.030	0.001	
a29 0.023	0.0167	0.003	4.899	0.000	0.010	
a30 0.010	0.0030	0.004	0.802	0.423	-0.004	
a31 0.005	-0.0014	0.003	-0.400	0.689	-0.008	
a32 0.004	-0.0030	0.003	-0.907	0.365	-0.010	
a33 0.007	0.0004	0.003	0.121	0.904	-0.006	
a34 0.050	0.0437	0.003	14.186	0.000	0.038	
a35 0.028	-0.0359	0.004	-9.256	0.000	-0.044	_
a36 0.025	0.0102	0.008	1.324	0.186	-0.005	
a37 0.013	0.0049	0.004	1.232	0.218	-0.003	
a38 0.025	0.0098	0.008	1.305	0.192	-0.005	
a39 0.003	-0.0045	0.004	-1.233	0.218	-0.012	
a40 0.007	-0.0009	0.004	-0.228	0.820	-0.008	
a41 0.012	0.0049	0.004	1.347	0.178	-0.002	
a42 0.008	0.0007	0.004	0.200	0.841	-0.007	
a43 0.002	-0.0050	0.004	-1.345	0.179	-0.012	
a44 0.012	0.0047	0.004	1.254	0.210	-0.003	
a45 0.003	-0.0054	0.004	-1.229	0.219	-0.014	

a46	0.0055	0.004	1.568	0.117	-0.001	
0.012 a47	0.0046	0.003	1.353	0.176	-0.002	
0.011 a48	0.0117	0.004	3.161	0.002	0.004	
0.019 a49	-0.0050	0.003	-1.474	0.141	-0.012	
0.002 a50	-0.0017	0.003	-0.535	0.592	-0.008	
0.005 a51	0.0317	0.011	2.814	0.005	0.010	
0.054 a183[0]	0.0314	0.010	3.060	0.002	0.011	
0.052 a183[1]	-0.0152	0.003	-4.400	0.000	-0.022	_
0.008 a53	-0.0064	0.006	-1.126	0.260	-0.018	
0.005 a54	-0.0052	0.004	-1.424	0.155	-0.012	
0.002 a55	-0.0128	0.006	-2.094	0.036	-0.025	_
0.001 a56	-0.0115	0.009	-1.260	0.208	-0.029	
0.006 a57	-0.0070	0.007	-1.054	0.292	-0.020	
0.006 a58	-0.0268	0.012	-2.147	0.032	-0.051	_
0.002 a59	0.0081	0.008	0.995	0.320	-0.008	
0.024 a60	-0.0441	0.011	-4.088	0.000	-0.065	-
0.023 a61	-0.0230	0.010	-2.362	0.018	-0.042	-
0.004 a62	-0.0187	0.008	-2.263	0.024	-0.035	-
0.002 a63	-0.0301	0.006	-4.768	0.000	-0.042	_
0.018 a64	-0.0225	0.008	-2.886	0.004	-0.038	_
0.007 a65	-0.0383	0.015	-2.590	0.010	-0.067	_
0.009 a66	-0.0027	0.005	-0.533	0.594	-0.012	
0.007 a67	-0.0210	0.009	-2.290	0.022	-0.039	_
0.003 a68	-0.0084	0.007	-1.134	0.257	-0.023	
0.006 a69	0.0083	0.010	0.858	0.391	-0.011	
0.027 a70	-0.0360	0.013	-2.833	0.005	-0.061	-
0.011 a71 0.003	-0.0102	0.007	-1.548	0.122	-0.023	

a72 0.006	-0.0243	0.009	-2.618	0.009	-0.043	-
a73 0.003	-0.0189	0.008	-2.268	0.023	-0.035	_
a74 0.013	-0.0099	0.012	-0.856	0.392	-0.033	
a75 0.021	0.0090	0.006	1.474	0.141	-0.003	
a76 0.001	-0.0131	0.007	-1.828	0.068	-0.027	
a86[0] 0.001	-0.0075	0.003	-2.395	0.017	-0.014	-
a86[1] 3.83e-15	-9.88e-16	2.46e-15	-0.402	0.688	-5.81e-15	
a78 0.009	0.0021	0.003	0.638	0.524	-0.004	
a88[0] 0.001	-0.0070	0.003	-2.479	0.013	-0.013	_
a88[1] 1.84e-15	5.498e-16	6.58e-16	0.836	0.403	-7.41e-16	
a89[0] 0.015	0.0111	0.002	5.824	0.000	0.007	
a89[1] 0.010	0.0059	0.002	3.164	0.002	0.002	
a90[0] 3.01e-16	7.623e-17	1.15e-16	0.666	0.506	-1.48e-16	
a90[1] 1.99e-15	4.428e-16	7.91e-16	0.560	0.576	-1.11e-15	
a82 0.001	-0.0072	0.003	-2.231	0.026	-0.014	_
a83 0.001	-0.0077	0.003	-2.333	0.020	-0.014	-
a84 0.009	0.0030	0.003	0.911	0.362	-0.003	
a85 8.29e-16	1.333e-16	3.55e-16	0.376	0.707	-5.63e-16	
a87 0.002	-0.0059	0.002	-3.164	0.002	-0.010	_
a91 0.043	0.0105	0.017	0.634	0.526	-0.022	
a92 0.020	0.0095	0.005	1.750	0.080	-0.001	
a93 0.022	0.0067	0.008	0.842	0.400	-0.009	
a94 0.003	-0.0050	0.004	-1.161	0.246	-0.013	
a95 0.012	-0.0044	0.008	-0.520	0.603	-0.021	
a96 0.009	0.0013	0.004	0.319	0.750	-0.007	
a97 0.007	-0.0229	0.015	-1.523	0.128	-0.052	
a98 0.003	-0.0066	0.005	-1.322	0.186	-0.016	

a99 0.018	0.0103	0.004	2.483	0.013	0.002	
a100 0.012	-0.0121	0.012	-0.999	0.318	-0.036	
a101 0.006	-0.0027	0.004	-0.619	0.536	-0.011	
a102 0.018	-0.0281	0.005	-5.652	0.000	-0.038	-
a103 0.007	-0.0145	0.004	-3.690	0.000	-0.022	_
a104 0.019	-0.0018	0.011	-0.162	0.871	-0.023	
a105 0.011	-0.0696	0.041	-1.693	0.091	-0.150	
a106 0.004	-0.0137	0.009	-1.478	0.140	-0.032	
a107 0.017	-0.0602	0.040	-1.521	0.129	-0.138	
a108 0.004	-0.0112	0.008	-1.490	0.136	-0.026	
a109 0.005	-0.0010	0.003	-0.356	0.722	-0.007	
a110 0.016	0.0108	0.003	3.757	0.000	0.005	
a111 0.001	-0.0110	0.005	-2.190	0.029	-0.021	_
a112 3.81e-18	-6.957e-17		-2.076	0.038	-1.35e-16	_
a126[0] 0.017	0.0024	0.008	0.314	0.753	-0.013	
a126[1] 0.003	-0.0112	0.007	-1.561	0.119	-0.025 -1.94e-16	
a127[0] 1.66e-17 a127[1]	-1.054e-16 2.32e-16	1.05e-16	-2.328 2.212	0.020		_
4.38e-16 a115	1.191e-16		1.611	0.108		
2.64e-16 a142[0]	0.0167		2.338			
0.031 a142[1]	-0.0085	0.006		0.129		
0.002 a142[2]	0.0128	0.021	0.622	0.534		
0.053 a148[0]		1.24e-16		0.172		
4.12e-16 a148[1]	-8.836e-17			0.000	-1.37e-16	_
3.94e-17 a148[2]	0.0741	0.037	2.012	0.044	0.002	
0.146 a118	-0.0155	0.016	-0.969	0.333		
0.016 a119	-0.0060	0.004	-1.331	0.184		
0.003						

a133[0]	0.0020	0.013	0.152	0.879	-0.024
0.028 a133[1] 0.014	-0.0091	0.012	-0.770	0.442	-0.032
a135[0] 0.058	0.0227	0.018	1.273	0.203	-0.012
a135[1] 0.018	-0.0155	0.017	-0.917	0.359	-0.049
a136[0] 0.021	0.0028	0.009	0.293	0.769	-0.016
a136[1] 0.012	-0.0069	0.010	-0.731	0.465	-0.026
a138[0] 0.018	0.0056	0.006	0.888	0.375	-0.007
a138[1] 0.010	-0.0023	0.006	-0.379	0.705	-0.014
a139[0] 0.033	-0.0074	0.021	-0.361	0.718	-0.048
a139[1] 0.045	0.0090	0.018	0.495	0.621	-0.027
a140[0] 0.008	-0.0148	0.012	-1.255	0.210	-0.038
a140[1] 0.033	0.0132	0.010	1.301	0.193	-0.007
a128 3.59e-17	-1.009e-17	2.34e-17	-0.431	0.667	-5.61e-17
a131 0.048	0.0180	0.015	1.165	0.244	-0.012
a132 0.006 a134	-0.0037 0.0028	0.005	-0.724 0.707	0.469	-0.014 -0.005
0.011 a151[0]	5.363e-17	1.57e-17	3.423	0.480	2.29e-17
8.44e-17 a151[1]	0.0133	0.013	1.038	0.299	-0.012
0.038 a151[2]	0.0133	0.006	2.788	0.005	0.012
0.028 a141	-0.0021	0.006	-0.369	0.712	-0.013
0.009 a143	0.0080	0.022	0.368	0.713	-0.034
0.050 a145	0.0009	0.006	0.146	0.884	-0.011
0.012 a146	-0.0011	0.004	-0.311	0.756	-0.008
0.006 a147	0.0386	0.023	1.706	0.088	-0.006
0.083 a149	0.0795	0.037	2.168	0.030	0.008
0.151 a150	0.0148	0.011	1.349	0.178	-0.007
0.036 a152 0.020	0.0080	0.006	1.270	0.204	-0.004

a153	0.0035	0.003	1.030	0.303	-0.003	
0.010 a154 0.016	0.0078	0.004	1.812	0.070	-0.001	
a161[0] 0.009	-0.0002	0.005	-0.035	0.972	-0.010	
a161[1] 0.016	0.0047	0.006	0.839	0.402	-0.006	
a162[0] 0.005	-0.0037	0.004	-0.842	0.400	-0.012	
a162[1] 0.006	-0.0059	0.006	-0.955	0.340	-0.018	
a163[0] 0.014	0.0022	0.006	0.364	0.716	-0.010	
a163[1] 0.017	0.0072	0.005	1.397	0.163	-0.003	
a164[0] 0.001	-0.0066	0.004	-1.613	0.107	-0.015	
a164[1] 0.013	-0.0003	0.007	-0.046	0.963	-0.014	
a165[0] 0.004	-0.0046	0.004	-1.048	0.295	-0.013	
a165[1] 0.014	-0.0004	0.007	-0.055	0.956	-0.015	
a193[0] 0.003	-0.0082	0.006	-1.400	0.162	-0.020	
a193[1] 0.026 a193[2]	0.0037	0.012	0.324	0.746	-0.019 -0.212	
0.286 a167	-0.0006	0.002	-0.316	0.752	-0.005	
0.003 a168	0.0089	0.003	3.240	0.001	0.003	
0.014 a169	-9.231e-18	2.5e-18	-3.692	0.000		_
4.33e-18 a170	-0.0091	0.003	-3.175	0.002	-0.015	_
0.003 a171	0.0136	0.004	3.192	0.001	0.005	
0.022 a196[0]	-0.0231	0.005	-5.019	0.000	-0.032	_
0.014 a196[1]	-0.0058	0.004	-1.434	0.152	-0.014	
0.002 a173	-0.0001	0.004	-0.035	0.972	-0.007	
0.007 a174	0.0021	0.004	0.589	0.556	-0.005	
0.009 a175	-0.0022	0.004	-0.610	0.542	-0.009	
0.005 a176	-7.133e-18	7.7e-19	-9.265	0.000	-8.64e-18	-
5.62e-18 a177 0.022	0.0110	0.005	2.059	0.040	0.001	

a178	-0.0243	0.003	-7.043	0.000	-0.031	-
0.018 a179 0.006	-0.0124	0.004	-3.539	0.000	-0.019	-
a180 4.53e-19	1.783e-19	1.4e-19	1.271	0.204	-9.69e-20	
a181 0.002	-0.0088	0.003	-2.584	0.010	-0.015	-
a182 0.005	-0.0122	0.004	-3.472	0.001	-0.019	_
a184 4.54e-18	1.755e-18	1.42e-18	1.237	0.216	-1.03e-18	
a185 0.038	-0.0021	0.020	-0.102	0.919	-0.042	
a186 0.359	0.0551	0.155	0.356	0.722	-0.249	
a187 0.083	0.0131	0.036	0.369	0.712	-0.057	
a188 0.166	0.0185	0.075	0.245	0.806	-0.129	
a189 0.056	0.0076	0.025	0.304	0.761	-0.041	
a190 0.319	0.0460	0.139	0.330	0.741	-0.227	
a191 0.258	0.0411	0.110	0.372	0.710	-0.175	
a192 0.268	0.0394	0.117	0.338	0.736	-0.190	
a194 0.018	0.0104	0.004	2.765	0.006	0.003	
a195 0.007	-0.0002	0.004	-0.057	0.954	-0.007	
a197 0.004	-0.0031	0.003	-0.912	0.362	-0.010	
a198 0.007	0.0004	0.004	0.113	0.910	-0.007	
a199 0	0	0	nan	nan	0	
a200 0	0	0	nan	nan	0	
a201 0	0	0	nan	nan	0	
a202 0	0	0	nan	nan	0	
a203 0	0	0	nan	nan	0	
a204 0.060	0.0195	0.021	0.945	0.345	-0.021	
a205 0	0	0	nan	nan	0	
a206 0.017	0.0101	0.003	3.065	0.002	0.004	
a207 0.028	-0.0090	0.019	-0.473	0.636	-0.046	

a208	0.0039	0.005	0.7	742	0.458	-0.006
0.014						
a209	0.0009	0.008	0.1	15	0.908	-0.014
0.016						
a210	-0.0042	0.009	-0.4	163	0.643	-0.022
0.014						
a211	0.0108	0.028	0.3	382	0.703	-0.045
0.066						
=========	========					=========
=====						
Omnibus:		651.21	10 E	Ourbin-W	atson:	
1.909						
Prob(Omnibus)	:	0.00)O J	Jarque-B	era (JB):	
11873.407						
Skew:		-1.61	16 F	Prob(JB)	:	
0.00						
Kurtosis:		16.60)1 C	Cond. No	•	
1.47e+17						
=========	========	========	=====	======	========	=========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 9.61e-31. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

	OLS Regression Results					
====						
Dep. Variable:		SalePrice	R-squ	ared:		
0.883 Model:		OT C	7 4 -	R-squared:		
0.874		OLIS	Auj.	K-squared.		
Method:	L	east Squares	F-sta	tistic:		
92.54						
Date: 0.00	Wed,	20 Apr 2022	Prob	(F-statistic)):	
Time:		23:35:35	I.oa-I.	ikelihood:		
834.56		20.00.00	_09 _			
No. Observations	:	1458	AIC:		-	
1447. Df Residuals:		1247	DIC.			
860.5		1347	BIC:		_	
Df Model:		110				
Covariance Type:		nonrobust				
=====	======	========	======	=======	=========	
	coef	std err	t	P> t	[0.025	
0.975]						
						

Intercept 12.033	12.0252	0.004	3232.423	0.000	12.018	
a4 0.051	0.0418	0.004	9.380	0.000	0.033	
a5 0.018	0.0098	0.004	2.396	0.017	0.002	
a7	0.0469	0.009	5.164	0.000	0.029	
0.065 a8	0.0205	0.009	2.184	0.029	0.002	
0.039 a9	0.0162	0.006	2.723	0.007	0.005	
0.028 a10	0.0225	0.005	4.334	0.000	0.012	
0.033 a12	0.0219	0.005	4.287	0.000	0.012	
0.032 a14	0.0414	0.006	6.615	0.000	0.029	
0.054 a19	0.0447	0.006	7.116	0.000	0.032	
0.057 a20	0.0232	0.005	4.864	0.000	0.014	
0.033 a21	0.0031	0.006	0.493	0.622	-0.009	
0.015 a22	-0.0211	0.007	-2.989	0.003	-0.035	_
0.007 a23	0.0703	0.007	9.428	0.000	0.056	
0.085 a24	0.0354	0.005	7.395	0.000	0.026	
0.045 a25	0.0171	0.004	3.983	0.000	0.009	
0.026 a26	0.0125	0.004	2.854	0.004	0.004	
0.021 a27	0.0027	0.004	0.622	0.534	-0.006	
0.011 a28	0.0061	0.004	1.595	0.111	-0.001	
0.014 a29	0.0199	0.004	4.989	0.000	0.012	
0.028 a30	0.0058	0.004	1.390	0.165	-0.002	
0.014 a31	0.0013	0.004	0.335	0.738	-0.006	
0.009 a32	-0.0016	0.004	-0.411	0.681	-0.009	
0.006 a33	-0.0054	0.004	-1.362	0.173	-0.013	
0.002 a35	-0.0368	0.005	-8.080	0.000	-0.046	_
0.028 a36	0.0230	0.005	4.459	0.000	0.013	
0.033 a37	0.0230	0.003		0.113	-0.002	
0.015	0.000	0.004	1.584	0.113	-0.002	

a38	0.0172	0.006	2.790	0.005	0.005	
0.029 a39	-0.0074	0.004	-1.764	0.078	-0.016	
0.001 a40	0.0002	0.004	0.038	0.970	-0.008	
0.009 a41	0.0041	0.004	0.985	0.325	-0.004	
0.012 a42	-0.0005	0.004	-0.119	0.905	-0.009	
0.008 a43	-0.0047	0.004	-1.065	0.287	-0.013	
0.004						
a44 0.007	-0.0011	0.004	-0.247	0.805	-0.010	
a45 0.004	-0.0058	0.005	-1.175	0.240	-0.015	
a46	0.0085	0.004	2.155	0.031	0.001	
0.016 a47	6.361e-05	0.004	0.016	0.987	-0.008	
0.008 a48	0.0162	0.004	3.756	0.000	0.008	
0.025 a49	-0.0065	0.004	-1.663	0.097	-0.014	
0.001 a50	-0.0048	0.004	-1.250	0.212	-0.012	
0.003						
a183[0] 0.010	0.0006	0.005	0.135	0.893	-0.008	
a183[1] 0.003	-0.0104	0.004	-2.670	0.008	-0.018	_
a53 0.010	0.0014	0.004	0.330	0.742	-0.007	
a54	0.0006	0.004	0.161	0.872	-0.007	
0.008 a55	-0.0056	0.005	-1.173	0.241	-0.015	
0.004 a56	0.0101	0.004	2.376	0.018	0.002	
0.018 a57	0.0130	0.004	2.913	0.004	0.004	
0.022 a59	0.0334	0.004	7.719	0.000	0.025	
0.042						
a62 0.012	0.0027	0.005	0.547	0.585	-0.007	
a63 0.008	-0.0169	0.004	-3.827	0.000	-0.026	_
a64	0.0001	0.004	0.031	0.975	-0.008	
0.008 a66	0.0008	0.005	0.180	0.857	-0.008	
0.010 a67	1.496e-05	0.004	0.003	0.997	-0.008	
0.008 a68	0.0178	0.004	3.974	0.000	0.009	
0.027						

a69 0.037	0.0278	0.005	5.754	0.000	0.018	
0.037 a71	0.0072	0.004	1.618	0.106	-0.002	
0.016	0 0006	0 004	0 151	0.000	0 007	
a72 0.009	0.0006	0.004	0.151	0.880	-0.007	
a73	-0.0005	0.004	-0.126	0.900	-0.009	
0.008 a75	0.0245	0.004	5.829	0.000	0.016	
0.033 a76	0.0045	0.004	1.042	0.297	-0.004	
0.013 a92 0.008	-0.0014	0.005	-0.287	0.774	-0.011	
a93 0.007	-0.0062	0.007	-0.949	0.343	-0.019	
a94 0.000	-0.0100	0.005	-2.049	0.041	-0.020	
a95 0.014	0.0048	0.004	1.076	0.282	-0.004	
a96 0.012	0.0040	0.004	0.995	0.320	-0.004	
a98 0.008	0.0002	0.004	0.049	0.961	-0.008	
a99 0.022	0.0137	0.004	3.352	0.001	0.006	
a101 0.001	-0.0078	0.004	-1.781	0.075	-0.016	
a102 0.033	-0.0441	0.006	-7.915	0.000	-0.055	-
a103 0.005	-0.0041	0.004	-0.936	0.350	-0.013	
a106 0.010	0.0019	0.004	0.473	0.637	-0.006	
a108 0.012	0.0039	0.004	0.989	0.323	-0.004	
a126[0] 0.013	-0.0026	0.008	-0.335	0.738	-0.018	
a126[1] 0.012	-0.0035	0.008	-0.454	0.650	-0.018	
a142[0] 0.040	0.0298	0.005	5.470	0.000	0.019	
a142[1] 0.004	-0.0060	0.005	-1.130	0.259	-0.016	
a142[2] 0.020	0.0082	0.006	1.405	0.160	-0.003	
a119 0.009	0.0002	0.005	0.050	0.960	-0.009	
a136[0] 0.023	0.0098	0.007	1.503	0.133	-0.003	
a136[1] 0.004	-0.0085	0.006	-1.331	0.183	-0.021	
a138[0] 0.020	0.0071	0.006	1.120	0.263	-0.005	

a138[1] 0.007	-0.0054	0.006	-0.840	0.401	-0.018	
a132 0.004	-0.0055	0.005	-1.085	0.278	-0.016	
a134 0.014	0.0059	0.004	1.477	0.140	-0.002	
	8.138e-18	4.04e-18	2.012	0.044	2.05e-19	
a151[1] 0.021	0.0113	0.005	2.265	0.024	0.002	
a151[2] 0.020	0.0116	0.004	2.864	0.004	0.004	
a141 0.000	-0.0080	0.004	-1.990	0.047	-0.016	_
a145 0.032	0.0185	0.007	2.776	0.006	0.005	
a146 0.006	-0.0021	0.004	-0.508	0.611	-0.010	
a152 0.042	0.0298	0.006	4.722	0.000	0.017	
a153 0.009	0.0011	0.004	0.284	0.777	-0.007	
a154 0.030	0.0203	0.005	4.308	0.000	0.011	
a171 0.022	0.0123	0.005	2.521	0.012	0.003	
a196[0] 0.023	-0.0329	0.005	-6.550	0.000	-0.043	_
a196[1] 0.009	-0.0180	0.004	-4.016	0.000	-0.027	-
a173 0.008	-0.0006	0.004	-0.137	0.891	-0.009	
a174 0.009	0.0008	0.004	0.190	0.849	-0.007	
a175 0.003	-0.0056	0.004	-1.294	0.196	-0.014	
a177 0.026	0.0140	0.006	2.239	0.025	0.002	
a178 0.012	-0.0198	0.004	-4.997	0.000	-0.028	-
a179 0.005	-0.0130	0.004	-3.290	0.001	-0.021	-
a181 0.000	-0.0079	0.004	-2.005	0.045	-0.016	-
a182 0.005	-0.0129	0.004	-3.247	0.001	-0.021	-
a194 0.017	0.0088	0.004	1.995	0.046	0.000	
a195 0.005	-0.0040	0.004	-0.915	0.360	-0.012	
a197 0.002	-0.0057	0.004	-1.451	0.147	-0.014	
a198 0.009	0.0007	0.004	0.164	0.870	-0.007	

a206	0.0071	0.004	1.829	0.068	-0.001
0.015					
a208	-0.0002	0.004	-0.053	0.958	-0.009
0.008 a209	-0.0019	0.004	-0.446	0.655	-0.010
0.006	-0.0019	0.004	-0.440	0.055	-0.010
a210	-0.0065	0.004	-1.698	0.090	-0.014
0.001					
========	-=======	========	=======	========	-========
=====					
Omnibus:		233.2	75 Durbi	n-Watson:	
1.940		0.04		- ()	
Prob (Omnibus	5):	0.00	JU Jarqu	e-Bera (JB):	
884.988 Skew:		-0.73	39 Prob(TR) •	
6.72e-193		0.73	33 1100(05).	
Kurtosis:		6.51	19 Cond.	No.	
5.75e+15					
=========		========		========	-=========

====

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.3e-28. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

OLS Regression Results

OLS Regression Results							
=======================================	===========	-===				=====	
====							
Dep. Variable:	SalePric	e	R-squ	ared:			
0.843							
Model:	OL	JS	Adj. 1	R-squared:			
0.837							
Method:	Least Square	es.	F-sta	cistic:			
130.0	-						
Date:	Wed, 20 Apr 202	22	Prob	(F-statistic)	:		
0.00	, -			,			
Time:	23:35:4	14	I.oa-I.	ikelihood:			
621.70	20.001		_09	2.7.0 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
No. Observations	: 146	50	AIC:			_	
1125.	•	, 0	1110.				
Df Residuals:	140	11	BIC:			_	
813.5	140	<i>,</i> _	DIC.				
Df Model:	5	58					
		-					
Covariance Type:	nonrobus	; T					
=====							
	coef std err		t	P> t	10 025		
0.0751	coel sta ell		L	F/ L	[0.023		
0.975]							

Intercept 12.032	12.0241	0.004	2847.336	0.000	12.016	
a3 0.048	0.0341	0.007	4.686	0.000	0.020	
a4 0.028	0.0168	0.006	2.970	0.003	0.006	
a5 0.015	0.0056	0.005	1.235	0.217	-0.003	
a6 0.042	0.0297	0.006	4.912	0.000	0.018	
a7 0.068	0.0539	0.007	7.703	0.000	0.040	
all 0.008	-0.0284	0.010	-2.799	0.005	-0.048	-
a12 0.021	0.0110	0.005	2.173	0.030	0.001	
a13 0.061	0.0428	0.010	4.492	0.000	0.024	
a14 0.068	0.0560	0.006	9.393	0.000	0.044	
a17 0.013	0.0020	0.005	0.360	0.719	-0.009	
a18 0.137	0.1161	0.011	10.700	0.000	0.095	
a19 0.028	0.0146	0.007	2.109	0.035	0.001	
a22 0.007	-0.0188	0.006	-3.166	0.002	-0.030	-
a23 0.056	0.0390	0.009	4.510	0.000	0.022	
a24 0.057	0.0468	0.005	8.878	0.000	0.036	
a25 0.019	0.0099	0.005	2.108	0.035	0.001	
a26 0.010	0.0008	0.005	0.168	0.866	-0.008	
a27 0.016	0.0065	0.005	1.349	0.177	-0.003	
a28 0.016	0.0078	0.004	1.803	0.072	-0.001	
a33 0.004	-0.0046	0.004	-1.056	0.291	-0.013	
a35 0.033	-0.0414	0.004	-9.353	0.000	-0.050	-
a36 0.027	0.0093	0.009	1.044	0.297	-0.008	
a37 0.012	0.0031	0.004	0.711	0.477	-0.006	
a40 0.018	0.0086	0.005	1.879	0.060	-0.000	
a43 0.004	-0.0127	0.004	-2.832	0.005	-0.022	_
a45 0.011	0.0012	0.005	0.261	0.794	-0.008	

a46	0.0028	0.004	0.644	0.520	-0.006	
0.011 a47	-0.0005	0.004	-0.108	0.914	-0.009	
0.008 a56	0.0070	0.005	1.522	0.128	-0.002	
0.016 a58	-0.0076	0.005	-1.529	0.127	-0.017	
0.002 a67	-0.0071	0.005	-1.510	0.131	-0.016	
0.002 a68	0.0107	0.005	2.217	0.027	0.001	
0.020 a73	-0.0025	0.005	-0.549	0.583	-0.012	
0.007 a74	0.0074	0.009	0.812	0.417	-0.010	
0.025 a86[0]	-0.0103	0.004	-2.294	0.022	-0.019	-
	8.528e-19	4.2e-18	0.203	0.839	-7.38e-18	
9.08e-18 a88[0]	-0.0170	0.004	-3.854	0.000	-0.026	_
0.008 a88[1]	-1.651e-17	5.3e-18	-3.118	0.002	-2.69e-17	_
6.12e-18 a90[0]	-3.065e-18	2.91e-18	-1.054	0.292	-8.77e-18	
2.64e-18 a90[1]	-3.71e-18	2.87e-18	-1.294	0.196	-9.34e-18	
1.92e-18 a83	-0.0105	0.004	-2.417	0.016	-0.019	_
0.002 a91	-0.0017	0.010	-0.166	0.868	-0.022	
0.019 a98	-0.0015	0.005	-0.281	0.779	-0.012	
0.009 a115	1.057e-17	4.41e-18	2.396	0.017		
1.92e-17 a148[0]				0.783		
5.03e-18 a148[1]			-2.278	0.023		_
6.84e-19 a148[2]	-0.0089	0.006	-1.462	0.144	-0.021	
0.003 a133[0]	-0.0045	0.009	-0.481	0.630	-0.023	
0.014 a133[1]	-0.0020	0.009	-0.221	0.825	-0.020	
0.016	-3.217e-18	1.19e-18		0.023	-5.56e-18	
a151[0] 8.79e-19			-2.699			_
a151[1] 0.019	0.0094	0.005	1.856	0.064	-0.001	
a151[2] 0.013	0.0048	0.004	1.083	0.279	-0.004	
a143 0.006	-0.0048	0.005	-0.907	0.365	-0.015	

a150	-0.0136	0.005	-2.494	0.013	-0.024	_
0.003 a152	0.0223	0.008	2.916	0.004	0.007	
0.037 a153	0.0071	0.004	1.640	0.101	-0.001	
0.016 a154	0.0187	0.005	3.648	0.000	0.009	
0.029 a162[0]	-0.0055	0.005	-1.191	0.234	-0.015	
0.004 a162[1]	-0.0072	0.005	-1.523	0.128	-0.017	
0.002 a193[0]	-0.0261	0.006	-4.736	0.000	-0.037	_
0.015 a193[1]	0.0069	0.005	1.297	0.195	-0.004	
0.017 a193[2]	-0.0170	0.006	-2.667	0.008	-0.029	_
0.004 a167	-0.0053	0.006	-0.895	0.371	-0.017	
0.006 a170	-0.0165	0.006	-2.845	0.005	-0.028	_
0.005 a176	0	0	nan	nan	0	
0 a185	-0.0126	0.004	-2.806	0.005	-0.021	_
0.004 a190	-0.0093	0.006	-1.509	0.132	-0.021	
0.003 a203	0	0	nan	nan	0	
0 a205 0	0	0	nan	nan	0	
======	========	=======		=======	=======	====
Omnibus: 1.937		971.6	663 Durbin	-Watson:		
Prob (Omnibu 48547.895	us):	0.0	000 Jarque	-Bera (JB):		
Skew:		-2.4	463 Prob(J	B):		
Kurtosis: 3.91e+16		30.8	317 Cond.	No.		

=====

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 6.15e-30. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

===== Dep. Variabl	e:	SalePr	rice R-squ	ared:		
0.907	~ .	Daiori	_			
Model: 0.900			OLS Adj.	R-squared:		
Method:		Least Squa	res F-sta	tistic:		
119.9 Date:	Wo	d 20 Apr 2	1022 Prob	(F-statistic	-) •	
0.00	VV C	a, 20 npr 2			-) •	
Time: 1004.0		23:35	:52 Log-L	ikelihood:		
No. Observat	ions:	1	460 AIC:			-
Df Residuals 1199.	:	1	.349 BIC:			-
Df Model:			110			
Covariance T						
=====				========		
0.975]	coef	std err	t	P> t	[0.025	
				. – – – – – – – – – – – – – – – – – – –		
Intercept 12.031	12.0241	0.003	3630.329	0.000	12.018	
a4	0.0196	0.005	4.294	0.000	0.011	
0.029 a8	0.0429	0.006	7.130	0.000	0.031	
0.055 a11	-0.0378	0.006	-6.001	0.000	-0.050	-
0.025 a12	0.0206	0.005	4.160	0.000	0.011	
0.030 a14	0.0265	0.006	4.725	0.000	0.015	
0.037 a15	0.0348	0.008	4.202	0.000	0.019	
0.051 a18	0.0993	0.011	9.053	0.000	0.078	
0.121 a19	0.0223	0.006	3.734	0.000	0.011	
0.034 a20	0.0152	0.005	2.967	0.003	0.005	
0.025 a22	-0.0111	0.005	-2.371	0.018	-0.020	-
0.002 a23	0.0156	0.007	2.229	0.026	0.002	
0.029 a24	0.0205	0.004	4.677	0.000	0.012	
0.029 a25	0.0141	0.004	3.677	0.000	0.007	
0.022 a27	0.0086	0.004	2.242	0.025	0.001	

a28 0.014	0.0075	0.003	2.172	0.030	0.001	
a29 0.027	0.0197	0.004	5.499	0.000	0.013	
a30 0.001	-0.0078	0.004	-2.143	0.032	-0.015	-
a35	-0.0378	0.004	-9.583	0.000	-0.046	-
0.030 a42	-0.0115	0.004	-3.194	0.001	-0.019	-
0.004 a43	-0.0114	0.004	-3.004	0.003	-0.019	-
0.004 a44	0.0061	0.004	1.643	0.101	-0.001	
0.013 a46	0.0076	0.004	2.165	0.031	0.001	
0.015 a48	0.0128	0.004	3.564	0.000	0.006	
0.020 a49	-0.0066	0.003	-1.910	0.056	-0.013	
0.000 a51	0.0330	0.011	2.959	0.003	0.011	
0.055 a183[0]	0.0297	0.010	2.856	0.004	0.009	
0.050 a183[1]	-0.0132	0.004	-3.724	0.000	-0.020	-
0.006 a53	-0.0062	0.004	-1.598	0.110	-0.014	
0.001 a54	-0.0075	0.003	-2.136	0.033	-0.014	-
0.001 a55	-0.0187	0.004	-4.624	0.000	-0.027	-
0.011 a56	-0.0212	0.005	-4.633	0.000	-0.030	-
0.012 a58	-0.0223	0.005	-4.718	0.000	-0.032	-
0.013 a60	-0.0501	0.005	-10.833	0.000	-0.059	_
0.041 a61	-0.0230	0.004	-5.201	0.000	-0.032	_
0.014 a62	-0.0281	0.005	-6.175	0.000	-0.037	-
0.019 a63	-0.0373	0.005	-8.259	0.000	-0.046	_
0.028 a64	-0.0214	0.004	-5.292	0.000	-0.029	_
0.013 a65	-0.0400	0.006	-6.792	0.000	-0.052	-
0.028 a67	-0.0205	0.004	-4.642	0.000	-0.029	-
0.012 a69	0.0168	0.004	3.882	0.000	0.008	
0.025 a70 0.042	-0.0526	0.005	-10.069	0.000	-0.063	_

a71	-0.0134	0.004	-3.367	0.001	-0.021	-
0.006 a72	-0.0272	0.004	-6.120	0.000	-0.036	-
0.018 a73	-0.0162	0.004	-4.110	0.000	-0.024	_
0.008 a75	0.0109	0.004	2.897	0.004	0.004	
0.018 a76	-0.0097	0.004	-2.486	0.013	-0.017	_
0.002 a78	0.0068	0.004	1.871	0.062	-0.000	
0.014 a89[0]	0.0257	0.004	6.233	0.000	0.018	
0.034 a89[1]	0.0095	0.004	2.550	0.011	0.002	
0.017 a84	0.0110	0.004	2.857	0.004	0.003	
0.019 a92	0.0156	0.005	3.370	0.001	0.007	
0.025						
a97 0.005	-0.0192	0.007	-2.632	0.009	-0.033	-
a99	0.0132	0.004	3.641	0.000	0.006	
0.020 a102	-0.0331	0.005	-6.613	0.000	-0.043	_
0.023 a103	-0.0120	0.004	-3.122	0.002	-0.020	-
0.004 a105	-0.0688	0.025	-2.782	0.005	-0.117	-
0.020 a106	-0.0125	0.006	-1.990	0.047	-0.025	_
0.000 a107	-0.0574	0.024	-2.393	0.017	-0.105	_
0.010 a108	-0.0104	0.005	-1.917	0.055	-0.021	
0.000 a111	-0.0101	0.006	-1.773	0.076	-0.021	
0.001 a142[0]	0.0155	0.005	2.915	0.004	0.005	
0.026 a142[1]	-0.0028	0.005	-0.572	0.568	-0.013	
0.007 a142[2]	0.0044	0.004	1.041	0.298	-0.004	
0.013 a119	-0.0068	0.004	-1.878	0.061	-0.014	
0.000 a135[0]	0.0134	0.015	0.864	0.388	-0.017	
0.044 a135[1]	-0.0004	0.015	-0.028	0.977	-0.031	
0.030	0 0104					
a140[0] 0.003	-0.0184	0.008	-2.331	0.020	-0.034	_
a140[1] 0.037	0.0220	0.008	2.901	0.004	0.007	

a126[0] 0.016	0.0028	0.007	0.408	0.684	-0.011	
a126[1] 0.002	-0.0108	0.007	-1.613	0.107	-0.024	
a131 0.021	0.0117	0.005	2.566	0.010	0.003	
a134 0.014	0.0075	0.004	2.121	0.034	0.001	
a139[0] 0.022	-0.0116	0.017	-0.672	0.502	-0.045	
a139[1] 0.056	0.0227	0.017	1.340	0.180	-0.011	
	-1.351e-18	6.38e-18	-0.212	0.832	-1.39e-17	
a148[1] 3.5e-17	2.633e-17	4.43e-18	5.949	0.000	1.76e-17	
a148[2] 0.033	0.0193	0.007	2.675	0.008	0.005	
a149 0.041	0.0253	0.008	3.163	0.002	0.010	
	-8.508e-18	3.35e-18	-2.540	0.011	-1.51e-17	-
a151[1] 0.013	0.0051	0.004	1.211	0.226	-0.003	
a151[2] 0.016	0.0089	0.004	2.480	0.013	0.002	
a152 0.027	0.0143	0.006	2.290	0.022	0.002	
a154 0.021	0.0123	0.004	2.826	0.005	0.004	
a161[0] 0.130	0.0378	0.047	0.805	0.421	-0.054	
a161[1] 0.036	0.0071	0.015	0.470	0.638	-0.022	
a162[0] 0.104	0.0267	0.040	0.672	0.502	-0.051	
a162[1] 0.033	-0.0056	0.019	-0.287	0.774	-0.044	
a163[0] 0.167	0.0507	0.059	0.854	0.393	-0.066	
a163[1] 0.034	0.0087	0.013	0.665	0.506	-0.017	
a165[0] 0.100	0.0254	0.038	0.673	0.501	-0.049	
a165[1] 0.049	0.0012	0.025	0.050	0.960	-0.047	
a164[0] 0.072	0.0150	0.029	0.519	0.604	-0.042	
a164[1] 0.049	0.0044	0.023	0.196	0.845	-0.040	
a193[0] 0.143	0.0254	0.060	0.424	0.671	-0.092	
a193[1] 0.093	0.0054	0.045	0.122	0.903	-0.082	

a193[2]	0.0156	0.010	1.524	0.128	-0.004	
0.036						
a167 0.025	0.0134	0.006	2.355	0.019	0.002	
a168	0.0225	0.005	4.245	0.000	0.012	
0.033						
a171	0.0129	0.004	2.945	0.003	0.004	
0.022 a196[0]	-0.0255	0.005	-5.540	0.000	-0.035	_
0.016						
a196[1]	-0.0074	0.004	-1.797	0.073	-0.015	
0.001 a177	0.0142	0.005	2.692	0.007	0.004	
0.025	0.0142	0.005	2.032	0.007	0.004	
a178	-0.0248	0.003	-7.095	0.000	-0.032	_
0.018	-0.0120	0.004	-3.396	0.001	-0.019	
a179 0.005	-0.0120	0.004	-3.396	0.001	-0.019	_
a181	-0.0111	0.004	-3.143	0.002	-0.018	_
0.004	0.0150	0 004	4 000	0.000	0 000	
a182 0.008	-0.0150	0.004	-4.202	0.000	-0.022	_
a185	-0.0092	0.004	-2.560	0.011	-0.016	-
0.002						
a191 0.045	0.0257	0.010	2.595	0.010	0.006	
a192	0.0234	0.010	2.295	0.022	0.003	
0.043						
a194	0.0112	0.003	3.198	0.001	0.004	
0.018 a204	0.0112	0.004	2.823	0.005	0.003	
0.019	0.0112	0.001	2.025	0.003	0.005	
a206	0.0103	0.003	2.957	0.003	0.003	
0.017	0.0120	0 004	2 066	0.000	0 001	
a207 0.007	-0.0139	0.004	-3.866	0.000	-0.021	_
========				=======		====
===== Omnibus:		699.1	.87 Durbin	-Watson:		
1.910						
Prob (Omnibu	ıs):	0.0)00 Jarque	-Bera (JB):		
14799.157 Skew:		-1.7	731 Prob(J	B) •		
0.00		± • /	1100(0	<i>-,</i> •		
Kurtosis:		18.2	208 Cond.	No.		

=====

1.42e+16

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The smallest eigenvalue is 6.81e-29. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

OLS Regression Results

OLS REGIESSION RESULTS						
======	=	=		==== ==	=	=
Dep. Variable 0.856	:	SalePr	ice R-s	squared:		
Model: 0.853			OLS Adj	. R-squared:		
Method: 256.8		Least Squa	res F-s	statistic:		
Date: 0.00	Wed	, 20 Apr 2	022 Pro	bb (F-statisti	c):	
Time: 683.13		23:36	:01 Log	J-Likelihood:		
No. Observati 1298.	ons:	1	460 AIC	:		-
Df Residuals: 1119.		1	426 BIC	•		-
Df Model: Covariance Ty	ne•	nonrob	33			
						=====
====	-	. 1		5 2.11.1	50 00F	
0.975]	coei		t	P> t	[0.025	
Intercept 12.032	12.0241	0.004	2996.071	0.000	12.016	
a8 0.080	0.0673	0.007	10.145	0.000	0.054	
a14 0.062	0.0504	0.006	8.643	0.000	0.039	
a15 0.033	0.0162	0.009	1.882	0.060	-0.001	
a16 0.039	0.0315	0.004	8.698	0.000	0.024	
a17 0.017	0.0088	0.004	2.080	0.038	0.001	
a18 0.054	0.0389	0.008	5.129	0.000	0.024	
a24 0.049	0.0394	0.005	8.139	0.000	0.030	
a34 0.122	0.0934	0.015	6.337	0.000	0.064	
a35 0.029	-0.0372	0.004	-8.861	0.000	-0.045	-
a63 0.021	-0.0291	0.004	-7.008	0.000	-0.037	-
a70 0.016	-0.0243	0.004	-5.442	0.000	-0.033	-
a87 4.14e-05	-0.0042	0.002	-1.981	0.048	-0.008	-

a89[0]	0.0189	0.004	4.400	0.000	0.010	
0.027 a89[1]	0.0042	0.002	1.981	0.048	4.14e-05	
0.008 a102 0.047	-0.0575	0.005	-10.936	0.000	-0.068	-
a109 0.004	-0.0003	0.002	-0.149	0.881	-0.004	
a110 0.004	-0.0023	0.003	-0.745	0.456	-0.008	
a111 0.010	0.0032	0.003	0.938	0.348	-0.003	
a163[0] 0.032	0.0208	0.006	3.762	0.000	0.010	
a163[1] 0.014	0.0059	0.004	1.400	0.162	-0.002	
a167 0.001	-0.0031	0.002	-1.329	0.184	-0.008	
a168 0.020	0.0136	0.003	4.277	0.000	0.007	
a170 0.004	-0.0108	0.003	-3.092	0.002	-0.018	_
a196[0] 0.023	-0.0328	0.005	-6.462	0.000	-0.043	-
a196[1] 0.002	-0.0116	0.005	-2.488	0.013	-0.021	-
a177 0.041	0.0294	0.006	5.031	0.000	0.018	
a178 0.016	-0.0243	0.004	-5.866	0.000	-0.032	_
a185 0.001	-0.0092	0.004	-2.152	0.032	-0.018	_
a186 0.042	0.0277	0.007	3.899	0.000	0.014	
a187 0.006	-0.0022	0.004	-0.510	0.610	-0.011	
a188 0.022	0.0118	0.005	2.188	0.029	0.001	
a189 0.005	-0.0038	0.004	-0.900	0.368	-0.012	
a190 0.019	0.0060	0.007	0.883	0.377	-0.007	
a191 0.033	0.0212	0.006	3.415	0.001	0.009	
a192 0.033	0.0211	0.006	3.442	0.001	0.009	
a193[0] 0.006	-0.0162	0.005	-3.160	0.002	-0.026	-
a193[1] 0.015	0.0060	0.005	1.287	0.198	-0.003	
a193[2] 0.010	-0.0014	0.006	-0.237	0.813	-0.013	
		======	=		=	

=====

```
Omnibus:
                              914.363
                                        Durbin-Watson:
1.951
Prob(Omnibus):
                               0.000
                                        Jarque-Bera (JB):
39448.779
                               -2.287
                                       Prob(JB):
Skew:
0.00
Kurtosis:
                               28.051
                                       Cond. No.
2.18e+16
```

=====

Notes:

a10

a25

a26

a27

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.82e-29. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

New Column Old Column Name Name a0 BsmtFinSF1 BsmtFinSF2 a1 a2 BsmtUnfSF а3 TotalBsmtSF a4 BsmtFullBath BsmtHalfBath a5 a6 GarageYrBlt a7 GarageArea a8 GarageCars a9 MasVnrArea

a11	LotFrontage
a12	LotArea
a13	YearBuilt
a14	YearRemodAdd
a15	1stFlrSF
a16	2ndFlrSF
a17	LowQualFinSF
a18	GrLivArea
a19	FullBath
a20	HalfBath
a21	BedroomAbvGr
a22	KitchenAbvGr
a23	TotRmsAbvGrd
a24	Fireplaces

MSSubClass

WoodDeckSF OpenPorchSF

EnclosedPorch

a28	3SsnPorch
a29	ScreenPorch
a30	PoolArea
a31	MiscVal
a32	MoSold
a33	YrSold
a34	TotalSF
a35	C (all)
a36	FV
a37	RH
a38	RL
a39	Grvl
a40	IR1
a41	IR2
a42	IR3
a43	Bnk
a44	HLS
a45	Low
a46	AllPub
a47	Corner
a48	CulDSac
a49	FR2
a50	FR3
a51	Gtl
a183	Mod
a53	Blmngtn
a54	Blueste
a55	BrDale
a56	BrkSide
a57	ClearCr
a58	CollgCr
a59	Crawfor
a60	Edwards
a61	Gilbert
a62	IDOTRR
a63	MeadowV
a64	Mitchel
a65	NAmes
a66	NPkVill
a67	NWAmes
a68	NoRidge
a69	NridgHt
a70	OldTown
a71	SWISU
a72	Sawyer
	•

a73	SawyerW
a74	Somerst
a75	StoneBr
a76	Timber
a86	Artery

Condition1_Other a78

Feedr a88 a89 Norm a90 PosA a82 PosN RRAe a83 a84 RRAn a85 RRNe

Condition2_Other a87

a91 1Fam a92 2fmCon a93 Duplex a94 **Twnhs** a95 1.5Fin a96 1.5Unf a97 1Story a98 2.5Fin a99 2.5Unf a100 2Story a101 SFoyer a102 OQ_Bad a103 OC_Bad Flat a104 a105 Gable a106 Gambrel a107 Hip

CompShg a110 RoofMatl_Other

Mansard

a108

a109

Tar&Grv a111 a112 WdShake a126 AsbShng a127 AsphShn a115 BrkComm a142 BrkFace CBlock a148 a118 CemntBd

a119 Exterior1st_Other

a133 HdBoard a135 MetalSd

a136	Plywood
a138	Stucco
a139	VinylSd
a140	Wd Sdng
a128	Brk Cmn
a131	CmentBd
2122	Exterior2nd Othe

a132 Exterior2nd_Other

a134 ImStucc a151 Stone a141 BrkCmn a143 None

a145 ExterQualGood a146 ExterCondGood

a147 BrkTil a149 PConc a150 Slab

a152 BsmtQualGood a153 BsmtCondGood a154 BsmtExposureGood

ALQ a161 a162 BLQ a163 GLQ a164 LwQ a165 Rec Unf a193 GasA a167 a168 GasW Grav a169

a170 Heating_Other a171 HeatingQCGood

a196 N

a173 Electrical_Other

a174 FuseA a175 FuseF a176 FuseP

a177 KitchenQualGood a178 Functional_Other

a179 Maj1 a180 Maj2 a181 Min1 Min2 a182 a184 Sev a185 2Types a186 Attchd a187 Basment

a188	BuiltIn
a189	CarPort
a190	Detchd
a191	Fin
a192	RFn
a194	GarageQualGood

 ${\sf GarageCondGood}$

a195

a197 a198 COD a199 CWD a200 Con ConLD a201 a202 ConLl a203 ConLw a204 New Oth a205

a206 SaleType_Other

a207 Abnorml
a208 AdjLand
a209 Alloca
a210 Family
a211 Normal