MATH 231B, FALL 2017 HOMEWORK 4 SOLUTIONS

1. (Sec. 3.8, ex. 47) Let E, O denote the subspaces of $L^2(\mathbb{R})$ consisting of even and odd functions, respectively. If $f \in E$ and $g \in O$, then

$$\langle f, g \rangle = \int_{\mathbb{R}} f \overline{g} = 0,$$

since $f\overline{g}$ is an odd function and the integral of an odd function over any symmetric interval of real numbers equals zero. Therefore, $E \perp O$, so $O \subset E^{\perp}$. To prove that O equals E^{\perp} , we recall that every function f can be uniquely written as g + h, where g is even and h is odd. Indeed,

$$g(x) = \frac{f(x) + f(-x)}{2}, \qquad h(x) = \frac{f(x) - f(-x)}{2}.$$

It is clear that if $f \in L^2(\mathbb{R})$, then $g \in E$ and $h \in O$.

Now assume $f \in E^{\perp}$. Then f = g + h, where $g \in E$ and $h \in O$. So g = f - h is in E^{\perp} since $h \in O \subset E^{\perp}$ and E^{\perp} is a subspace. But g is also in E and $E \cap E^{\perp} = \{0\}$. Thus g = 0 and therefore $f = h \in O$. This proves $E^{\perp} \subset O$ and completes the proof.

2. (Sec. 3.8, ex. 50) First observe that if $A \subset B$, then clearly $B^{\perp} \subset A^{\perp}$. Therefore, since $S \subset \operatorname{span}(S)$, it follows that $\operatorname{span}(S)^{\perp} \subset S^{\perp}$. To prove the opposite inclusion, assume $x \in S^{\perp}$. Let $y \in \operatorname{span}(S)$ be arbitrary. Then $y = \alpha_1 x_1 + \cdots + \alpha_n x_n$, for some scalars α_j and vectors $x_j \in S$. Then:

$$\langle x, y \rangle = \sum_{j=1}^{n} \overline{\alpha}_{j} \langle x, x_{j} \rangle = 0,$$

since $x \perp S$. This shows $x \in \text{span}(S)^{\perp}$, completing the proof.

3. (Sec. 3.8, ex. 52) Let $S = \{(x,y) \in \mathbb{R}^2 : -1 \le x \le 1, y = 0\}$ and p = (0,1). Consider an arbitrary point $q = (t,0) \in S$. Since $|t| \le 1$, we have

$$\left\| p-q\right\| =\max\{\left| t\right| ,1\}=1.$$

Thus dist(p, S) = 1 and every point $q \in S$ is the closest point to p.

4. (Sec. 3.8, ex. 53) We claim that

$$y = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n.$$

To prove this, let us fist show that $x - y \perp e_k$, for all k. Indeed,

$$\begin{aligned} \langle x-y,e_k\rangle &= \langle x,e_k\rangle - \langle y,e_k\rangle \\ &= \langle x,e_k\rangle - \sum_{n=1}^{\infty} \langle x,e_n\rangle \langle e_n,e_k\rangle \\ &= 0 \end{aligned}$$

1

since $\langle e_n, e_k \rangle = \delta_{nk}$ (the Kronecker delta). Since (e_n) is a complete orthonormal sequence in S, it follows that $x - y \perp S$.

Let us show that for every $z \in S$, $||x-y|| \le ||x-z||$. Since $x-y \perp y-z$, by the Pythagorean formula we have:

$$||x - z||^2 = ||(x - y) + (y - z)||^2$$
$$= ||x - y||^2 + ||y - z||^2$$
$$\ge ||x - y||^2.$$

This proves that $||x - y|| = \operatorname{dist}(x, S)$.