- **d.** 950 000 000 atoms of plutonium
- **e.** 4.61×10^{17} atoms of radon
- **f.** 8 trillion atoms of cerium
- **112.** Calculate the number of atoms in each of the following masses.
 - **a.** 0.0082 g of gold
 - **b.** 812 g of molybdenum
 - **c.** 2.00×10^2 mg of americium
 - **d.** 10.09 kg of neon
 - e. 0.705 mg of bismuth
 - **f.** 37 μ g of uranium
- 113. Calculate the mass of each of the following.
 - **a.** 8.22×10^{23} atoms of rubidium
 - b. 4.05 Avogadro's constants of manganese atoms
 - **c.** 9.96×10^{26} atoms of tellurium
 - d. 0.000 025 Avogadro's constants of rhodium atoms
 - e. 88 300 000 000 000 atoms of radium
 - **f.** 2.94×10^{17} atoms of hafnium
- **114.** Calculate the number of moles in each of the following masses.
 - a. 45.0 g of acetic acid, CH₃COOH
 - **b.** 7.04 g of lead(II) nitrate, Pb(NO₃)₂
 - c. 5000 kg of iron(III) oxide, Fe₂O₃
 - **d.** 12.0 mg of ethylamine, $C_2H_5NH_2$
 - e. 0.003 22 g of stearic acid, C₁₇H₃₅COOH
 - **f.** 50.0 kg of ammonium sulfate, $(NH_4)_2SO_4$
- 115. Calculate the mass of each of the following amounts.
 - **a.** 3.00 mol of selenium oxybromide, SeOBr₂
 - **b.** 488 mol of calcium carbonate, CaCO₃
 - **c.** 0.0091 mol of retinoic acid, $C_{20}H_{28}O_2$
 - **d.** 6.00×10^{-8} mol of nicotine, $C_{10}H_{14}N_2$
 - e. 2.50 mol of strontium nitrate, Sr(NO₃)₂
 - **f.** 3.50×10^{-6} mol of uranium hexafluoride, UF₆
- **116.** Calculate the number of molecules or formula units in each of the following amounts.
 - a. 4.27 mol of tungsten(VI) oxide, WO₃
 - **b.** 0.003 00 mol of strontium nitrate, $Sr(NO_3)_2$
 - c. 72.5 mol of toluene, C₆H₅CH₃
 - **d.** 5.11×10^{-7} mol of α -tocopherol (vitamin E), $C_{29}H_{50}O_2$
 - e. 1500 mol of hydrazine, N₂H₄
 - **f.** 0.989 mol of nitrobenzene C₆H₅NO₂
- **117.** Calculate the number of molecules or formula units in each of the following masses.
 - a. 285 g of iron(III) phosphate, FePO₄
 - **b.** 0.0084 g of C_5H_5N
 - c. 85 mg of 2-methyl-1-propanol, (CH₃)₂CHCH₂OH
 - **d.** 4.6×10^{-4} g of mercury(II) acetate, Hg(C₂H₃O₂)₂
 - e. 0.0067 g of lithium carbonate, Li₂CO₃
- 118. Calculate the mass of each of the following quantities.
 - **a.** 8.39×10^{23} molecules of fluorine, F_2
 - **b.** 6.82×10^{24} formula units of beryllium sulfate, BeSO₄
 - c. 7.004×10^{26} molecules of chloroform, CHCl₃
 - d. 31 billion formula units of chromium(III) formate, Cr(CHO₂)₃
 - **e.** 6.3×10^{18} molecules of nitric acid, HNO₃
 - **f.** 8.37×10^{25} molecules of freon 114, $C_2Cl_2F_4$
- 119. Precious metals are commonly measured in troy ounces. A troy ounce is equivalent to 31.1 g. How

- many moles are in a troy ounce of gold? How many moles are in a troy ounce of platinum? of silver?
- **120.** A chemist needs 22.0 g of phenol, C₆H₅OH, for an experiment. How many moles of phenol is this?
- **121.** A student needs 0.015 mol of iodine crystals, I₂, for an experiment. What mass of iodine crystals should the student obtain?
- **122.** The weight of a diamond is given in carats. One carat is equivalent to 200. mg. A pure diamond is made up entirely of carbon atoms. How many carbon atoms make up a 1.00 carat diamond?
- **123.** 8.00 g of calcium chloride, CaCl₂, is dissolved in 1.000 kg of water.
 - **a.** How many moles of CaCl₂ are in solution? How many moles of water are present?
 - **b.** Assume that the ionic compound, CaCl₂, separates completely into Ca²⁺ and Cl⁻ ions when it dissolves in water. How many moles of each ion are present in the solution?
- **124.** How many moles are in each of the following masses? **a.** 453.6 g (1.000 pound) of sucrose (table sugar),
 - $C_{12}H_{22}O_{11}$
 - **b.** 1.000 pound of table salt, NaCl
- **125.** When the ionic compound NH₄Cl dissolves in water, it breaks into one ammonium ion, NH₄⁺, and one chloride ion, Cl⁻. If you dissolved 10.7 g of NH₄Cl in water, how many moles of ions would be in solution?
- **126.** What is the total amount in moles of atoms in a jar that contains 2.41×10^{24} atoms of chromium, 1.51×10^{23} atoms of nickel, and 3.01×10^{23} atoms of copper?
- 127. The density of liquid water is 0.997 g/mL at 25°C.
 - Calculate the mass of 250.0 mL (about a cupful) of water.
 - **b.** How many moles of water are in 250.0 mL of water? Hint: Use the result of (a).
 - **c.** Calculate the volume that would be occupied by 2.000 mol of water at 25°C.
 - **d.** What mass of water is 2.000 mol of water?
- 128. An Avogadro's constant (1 mol) of sugar molecules has a mass of 342 g, but an Avogadro's constant (1 mol) of water molecules has a mass of only 18 g. Explain why there is such a difference between the mass of 1 mol of sugar and the mass of 1 mol of water.
- **129.** Calculate the mass of aluminum that would have the same number of atoms as 6.35 g of cadmium.
- **130.** A chemist weighs a steel cylinder of compressed oxygen, O₂, and finds that it has a mass of 1027.8 g. After some of the oxygen is used in an experiment, the cylinder has a mass of 1023.2 g. How many moles of oxygen gas are used in the experiment?
- **131.** Suppose that you could decompose 0.250 mol of Ag₂S into its elements.
 - **a.** How many moles of silver would you have? How many moles of sulfur would you have?
 - **b.** How many moles of Ag₂S are there in 38.8 g of Ag₂S? How many moles of silver and sulfur would be produced from this amount of Ag₂S?
 - **c.** Calculate the masses of silver and sulfur produced in (b).