Mathematical Methods for Economic Dynamics (ECON 696)

Lecture 10: Control Theory III (Ch. 9)

Scrap Values (Ch. 9.10)

Consider the following problem

$$\max_{u(t) \in U} \left\{ \int_{t_0}^{t_1} f(t, x(t), u(t)) dt + S(x(t_1)) \right\},$$
 subject to $\dot{x}(t) = g(t, x(t), u(t)), \ x(t_0) = x_0 \ (*)$

The function S(x) is called a **scrap value function**, and we assume that it is C^1 .

Suppose that $(x^*(t), u^*(t))$ solves this problem (with no additional condition on $x(t_1)$).

Then, $(x^*(t), u^*(t))$ is indeed a solution to the corresponding problem with fixed terminal point $(t_1, x^*(t_1))$.

For all admissible pairs in this new problem, the scrap value function $S(x^*(t_1))$ is constant.

But then $(x^*(t), u^*(t))$ must satisfy all the conditions in the maximum principle, except the transversality conditions.

The Transversality Condition for the Problem with Scrap Value

Lemma: The transversality condition for problem (*) is

$$p(t_1) = S'(x^*(t_1)) (**).$$

Proof: We skip the proof. ■

If $S(x) \equiv 0$, then (**) reduces to $p(t_1) = 0$, which is precisely as expected in a problem with no restrictions on $x(t_1)$.

If x(t) denotes the capital stock of a firm, then according to (**), the shadow price of capital at the end of the planning period is equal to the marginal scrap value of the terminal stock.

Sufficient Conditions with Scrap Value

Theorem: Suppose $(x^*(t), u^*(t))$ is an admissible pair for the scrap value problem (*) and suppose there exists a continuous p(t) such that, for all $t \in [t_0, t_1]$,

- (A) $u = u^*(t)$ maximizes $H(t, x^*(t), u, p(t))$ w.r.t. $u \in U$
- (B) $\dot{p}(t) = -H'_x(t, x^*(t), u^*(t), p(t)), \ p(t_1) = S'(x^*(t_1))$
- (C) H(t, x, u, p(t)) is concave in (x, u) and S(x) is concave.

Then, $(x^*(t), u^*(t))$ solves the problem.

Proof: We omit the proof. ■

Example:

$$\max_{u \in \mathbb{R}} \left\{ \int_0^1 -\frac{1}{2} u^2 dt + \sqrt{x(1)} \right\} \text{ subject to } \dot{x} = x + u, \ x(0) = 0, \ x(1) \text{ free.}$$

We set

$$H(t, x, u, p) = -u^2/2 + p(x + u)$$

 $S(x) = \sqrt{x} = x^{1/2}.$

Since $u \in \mathbb{R}$, the maximum principle, requires that $H_u' = -u + p = 0$ so that u = p.

By the maximum principle,

$$\dot{p} = -H'_x \Rightarrow \dot{p} = -p \Rightarrow p(t) = Ae^{-t},$$

where A is a constant.

Since $\dot{x} = x + u$, u = p, and $p(t) = Ae^{-t}$, we have

$$\dot{x} - x = Ae^{-t}.$$

Using the formula of first-order linear equations, we have

$$x(t) = Be^{t} + e^{t} \int e^{-t} A e^{-t} dt = Be^{t} + Ae^{t} \int e^{-2t} dt = Be^{t} - \frac{A}{2}e^{-t}.$$

Since x(0) = 0, we have

$$0 = B - \frac{A}{2} \Rightarrow B = \frac{A}{2}.$$

Therefore,

$$x(t) = \frac{A}{2}(e^t - e^{-t}).$$

Since $S'(x) = \frac{1}{2}x^{-1/2}$ and $p(t) = Ae^{-t}$, transversality condition reduces to

$$Ae^{-1} = \frac{1}{2}(x(1))^{-1/2} \Rightarrow Ae^{-1} = \frac{1}{2} \left\{ \frac{A}{2}(e - e^{-1}) \right\}^{-1/2}.$$

We solve this for A as follows:

$$4A^{2}e^{-2} = \left\{ \frac{A}{2}(e - e^{-1}) \right\}^{-1}$$

$$\Rightarrow 4A^{2}e^{-2} \left\{ \frac{A}{2}(e - e^{-1}) \right\} = 1$$

$$\Rightarrow 2A^{3}(e^{-1} - e^{-3}) = 1$$

$$\Rightarrow A = e[2(e^{2} - 1)]^{-1/3}.$$

Thus, we obtain the following solution candidate:

$$u^*(t) = Ae^{-t}$$
 $p(t) = Ae^{-t}$
 $x^*(t) = \frac{A}{2}(e^t - e^{-t}),$

where $A = e[2(e^2 - 1)]^{-1/3}$.

Since the Hamiltonian is concave in (x, u) and the scrap function S(x) is strictly concave in x, the solution candidate we have obtained is indeed the solution.

Current Value Formulation

Many control problems in economics have the following structure:

$$\max_{u \in U \subseteq \mathbb{R}} \left\{ \int_{t_0}^{t_1} f(t, x, u) e^{-rt} dt + S(x(t_1)) e^{-rt_1} \right\}, \ \dot{x} = g(t, x, u), \ x(t_0) = x_0 \ (*)$$

$$(a) \ x(t_1) = x_1, \ (b) \ x(t_1) \ge x_1, \ \text{or} \ (c) \ x(t_1) \ \text{free} \ (**)$$

The current value Hamiltonian for the problem is

$$H^{c}(t, x, u, \lambda) = \lambda_{0} f(t, x, u) + \lambda g(t, x, u).$$

Current Value Maximum Principle: Scrap Values

Theorem: Suppose that the admissible pair $(x^*(t), u^*(t))$ solves problem (*) and (**). Then, there exist a continuous function $\lambda(t)$ and a number λ_0 , either 0 or 1, such that, for all $t \in [t_0, t_1]$, we have $(\lambda_0, \lambda(t)) \neq (0, 0)$, and:

- (A) $u = u^*(t)$ maximizes $H^c(t, x^*(t), u, \lambda(t))$ for $u \in U$
- (B) $\dot{\lambda}(t) r\lambda(t) = -\partial H^c(t, x^*(t), u^*(t), \lambda(t))/\partial x$ whenever $u^*(t)$ is continuous
- (C) The transversality conditions are:
 - (a') $\lambda(t_1)$ no condition
 - (b') $\lambda(t_1) \begin{cases} = \lambda_0 S'(x^*(t_1)) & \text{if } x^*(t_1) > x_1 \\ \ge \lambda_0 S'(x^*(t_1)) & \text{otherwise} \end{cases}$
 - (c') $\lambda(t_1) = \lambda_0 S'(x^*(t_1)).$

Theorem: The current value maximum principle with scrap values such that $\lambda_0 = 1$ is sufficient if U is convex, $H^c(t, x, u, \lambda(t))$ is concave in (x, u), and S(x) is concave in x.

Proof We omit the proof. ■

Example:

$$\max_{u \in \mathbb{R}} \left\{ \int_0^T (x - u^2) e^{-0.1t} dt + ax(T) e^{-0.1T} \right\}$$
 subject to $\dot{x} = -0.4x + u, \ x(0) = 1, \ x(T)$ free,

where a is a positive constant.

We formulate the current value Hamiltonian with $\lambda_0 = 1$:

$$H^{c}(t, x, u, \lambda) = x - u^{2} + \lambda(-0.4x + u).$$

 H^c is concave in (x, u). Moreover, S(x) = ax is linear so that it is concave in x.

Therefore, the conditions in the maximum principle are sufficient.

Because H^c is concave in u and $u \in \mathbb{R}$,

(1)
$$\frac{\partial H^c(t, x^*(t), u^*(t), \lambda(t))}{\partial u} = -2u^*(t) + \lambda(t) = 0.$$

By the maximum principle, we also have

$$\dot{\lambda}(t) - 0.1\lambda(t) = -\partial H^c/\partial x = -1 + 0.4\lambda(t)$$

$$\Rightarrow \dot{\lambda} - 0.5\lambda = -1.$$

By the formula of first-order linear differential equations, we obtain

(2)
$$\lambda(t) = Ce^{0.5t} + \frac{-1}{-0.5} = Ce^{0.5t} + 2,$$

where C is a constant.

Since x(T) is free and S(x) = ax, the transversality condition $\lambda(t_1) = \lambda_0 S'(x^*(t_1))$ reduces to

(3)
$$\lambda(T) = a$$
.

Combining (2) and (3) together, we have

$$\lambda(t) = (a-2)e^{-0.5(T-t)} + 2.$$

From (1), $u^*(t) = \lambda(t)/2$.

Plugging $u^*(t) = \lambda(t)/2$ into $\dot{x} = -0.4x + u$,

$$\dot{x} + 0.4x = \lambda(t)/2$$

By the formula of first-order linear differential equations, we have

$$x^*(t) = Ce^{-0.4t} + e^{-0.4t} \int e^{0.4t} \lambda(t) / 2dt,$$

where C is a constant. Since $\lambda(t) = (a-2)e^{-0.5(T-t)} + 2$,

$$x^{*}(t) = Ce^{-0.4t} + \frac{e^{-0.4t}}{2} \int \left\{ (a-2)e^{-0.5T+0.9t} + 2e^{0.4t} \right\} dt$$

$$= Ce^{-0.4t} + \frac{(a-2)e^{-0.4t-0.5T}}{2} \int e^{0.9t} dt + e^{-0.4t} \int e^{0.4t} dt$$

$$= Ce^{-0.4t} + \frac{(a-2)e^{-0.4t-0.5T}}{2} \cdot \frac{e^{0.9t}}{0.9} + e^{-0.4t} \frac{e^{0.4t}}{0.4}$$

$$= Ce^{-0.4t} + \frac{5(a-2)}{9}e^{-0.5(T-t)} + \frac{5}{2}.$$

Since $x^*(0) = 0$, we can pin down the value of C:

$$C = -\frac{5(a-2)}{9}e^{-0.5T} - \frac{5}{2}.$$

Thus, the solution to this problem is obtained:

$$\lambda(t) = (a-2)e^{-0.5(T-t)} + 2$$

$$u^*(t) = \lambda(t)/2$$

$$x^*(t) = Ce^{-0.4t} + \frac{5(a-2)}{9}e^{-0.5(T-t)} + \frac{5}{2},$$

where

$$C = -\frac{5(a-2)}{9}e^{-0.5T} - \frac{5}{2}.$$

Infinite Horizon (Ch. 9.11)

A typical infinite horizon optimal control problem in economics takes the following form:

$$\max \int_{t_0}^{\infty} f(t,x(t),u(t))e^{-rt}dt,$$
 subject to $\dot{x}(t)=g(t,x(t),u(t)),\ x(t_0)=x_0,\ u(t)\in U$ (1)

Many problems do impose the constraint

$$\lim_{t \to \infty} x(t) \ge x_1 \quad (x_1 \text{ is a fixed number}) \quad (2)$$

The pair (x(t), u(t)) is **admissible** if it satisfies $\dot{x}(t) = g(t, x(t), u(t))$, $x(t_0) = x_0$, $u(t) \in U$, along with (2) when that is imposed.

Theorem (Sufficient Conditions with an Infinite Horizon):

Suppose that an admissible pair $(x^*(t), u^*(t))$ for problem (1), with or without terminal condition (2), satisfies the following conditions for some $\lambda(t)$ for all $t \geq t_0$, with $\lambda_0 = 1$:

- (a) $u^*(t)$ maximizes $H^c(t, x^*(t), u, \lambda(t))$ with respect to $u \in U$;
- (b) $\dot{\lambda}(t) r\lambda = -\partial H^c(t, x^*(t), u^*(t), \lambda(t))/\partial x;$
- (c) $H^c(t, x, u, \lambda(t))$ is concave in (x, u);
- (d) $\lim_{t\to\infty} \lambda(t)e^{-rt}[x(t)-x^*(t)] \geq 0$ for all admissible x(t).
- Then, $(x^*(t), u^*(t))$ is a solution to Problem (1).

Proof: For any admissible pair (x(t), u(t)) and for all $t \geq t_0$, define

$$D_{u}(t) = \int_{t_{0}}^{t} \underbrace{f(\tau, x^{*}(\tau), u^{*}(\tau))}_{=f^{*}} e^{-r\tau} d\tau - \int_{t_{0}}^{t} \underbrace{f(\tau, x(\tau), u(\tau))}_{=f} e^{-r\tau} d\tau$$
$$= \int_{t_{0}}^{t} (f^{*} - f) e^{-r\tau} d\tau$$

Using the similar simplified notation,

$$f^* = (H^c)^* - \lambda g^* \underbrace{=}_{\dot{x}^* = g^*} (H^c)^* - \lambda \dot{x}^*,$$

$$f = H^c - \lambda g \underbrace{=}_{\dot{x} = g} H^c - \lambda \dot{x}.$$

So,

$$D_u(t) = \int_{t_0}^t \left[(H^c)^* - H^c \right] e^{-r\tau} d\tau + \int_{t_0}^t \lambda e^{-r\tau} (\dot{x} - \dot{x}^*) d\tau.$$

By concavity of H^c w.r.t. (x,u), one has

$$H^{c} - (H^{c})^{*} \leq \frac{\partial (H^{c})^{*}}{\partial x} (x - x^{*}) + \frac{\partial (H^{c})^{*}}{\partial u} (u - u^{*}).$$

This is equivalent to

$$(H^c)^* - H^c \ge -\frac{\partial (H^c)^*}{\partial x}(x - x^*) + \frac{\partial (H^c)^*}{\partial u}(u^* - u)$$
$$= (\dot{\lambda} - r\lambda)(x - x^*) + \frac{\partial (H^c)^*}{\partial u}(u^* - u).$$

So,

$$D_u(t) \ge \int_{t_0}^t e^{-r\tau} \left[(\dot{\lambda} - r\lambda)(x - x^*) + \lambda(\dot{x} - \dot{x}^*) \right] d\tau + \int_{t_0}^t \frac{\partial (H^c)^*}{\partial u} (u^* - u) e^{-r\tau} d\tau$$

As we have already shown elsewhere,

$$(a) \Rightarrow \frac{\partial (H^c)^*}{\partial u} (u^* - u) \ge 0 \Rightarrow \int_{t_0}^t \frac{\partial (H^c)^*}{\partial u} (u^* - u) e^{-r\tau} d\tau \ge 0.$$

Thus,

$$D_{u}(t) \geq \int_{t_{0}}^{t} \frac{d}{d\tau} \left[e^{-r\tau} \lambda(\tau)(x(\tau) - x^{*}(\tau)) \right] d\tau$$

$$= \left[e^{-r\tau} \lambda(\tau)(x(\tau) - x^{*}(\tau)) \right]_{t_{0}}^{t}$$

$$= e^{-rt} \lambda(t)(x(t) - x^{*}(t)) \left(\because x(t_{0}) = x^{*}(t_{0}) = x_{0} \right)$$

Then,

$$D_u(\infty) \ge \lim_{t \to \infty} e^{-rt} \lambda(t) (x(t) - x^*(t)) \underbrace{\ge}_{:: (d)} 0$$

Noting

$$D_u(\infty) = \int_{t_0}^{\infty} (f^* - f)e^{-r\tau} d\tau \ge 0,$$

we conclude that $(x^*(t), u^*(t))$ is a solution to Problem (1).

Lemma (A condition guaranteeing (d)): Let $(x^*(t), u^*(t))$ be an admissible pair for Problem (1) satisfying (a), (b), and (c) in the sufficiency result. Suppose that $\lim_{t\to\infty} x(t) \geq x_1$ for any admissible x(t). Assume further that the following three conditions hold:

(A)
$$\lim_{t\to\infty} \lambda(t) e^{-rt} (x_1 - x^*(t)) \ge 0$$
;

(B)
$$\exists M \in \mathbb{R}_+$$
 such that $|\lambda(t)e^{-rt}| \leq M$ for all $t \geq t_0$;

(C)
$$\exists t' \in \mathbb{R}$$
 such that $\lambda(t) \geq 0$ for all $t \geq t'$.

Then, (d) $\lim_{t\to\infty} \lambda(t)e^{-rt}[x(t)-x^*(t)] \ge 0$ for all admissible x(t).

Proof: We skip the proof. ■

Example: Consider the problem

$$\max \int_0^\infty -u^2 e^{-rt} dt, \ \dot{x} = u e^{-at}, \ x(0) = 0, \ \lim_{t \to \infty} x(t) \ge K, \ u \in \mathbb{R},$$

where r, a, and K are positive constants with a > r/2.

Set $H^c = -u^2 + \lambda u e^{-at}$ as the current value Hamiltonian. We compute the Hessian matrix of H^c :

$$H(x,u) = \begin{pmatrix} \frac{\partial^2 H^c}{\partial x^2} & \frac{\partial^2 H^c}{\partial u \partial x} \\ \frac{\partial^2 H^c}{\partial x \partial u} & \frac{\partial^2 H^c}{\partial u^2} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}.$$

Since H(x,u) is negative semidefinite for all (x,u), H^c is concave in (x,u).

We find

$$\frac{\partial H^c}{\partial x} = 0,$$

$$\frac{\partial H^c}{\partial u} = -2u + \lambda e^{-at}.$$

Since every $u \in \mathbb{R}$ is an interior point,

$$u^*(t) \in \operatorname{arg\,max} H^c(t, x^*(t), u, \lambda(t)) \Rightarrow u^*(t) = \frac{1}{2} \lambda e^{-at}.$$

Next, since the differential equation below is separable, we obtain

$$\dot{\lambda} - r\lambda = -\partial H^c / \partial x = 0 \Rightarrow \lambda = Ae^{rt},$$

where A is a constant. Thus,

$$u^*(t) = \frac{1}{2} A e^{(r-a)t}.$$

Plugging $u = (1/2)Ae^{(r-a)t}$ into $\dot{x} = ue^{-at}$, we obtain

$$\dot{x}^* = \frac{1}{2} A e^{(r-2a)t}.$$

Solving this differential equation, we obtain

$$x^* = C + \int \frac{1}{2} A e^{(r-2a)t} dt \Rightarrow x^* = C + \frac{1}{2(r-2a)} A e^{(r-2a)t},$$

where C is a constant. Noting $x^*(0) = 0$, we have C = -A/2(r - 2a) so that

$$x^*(t) = \frac{A}{2(2a-r)} (1 - e^{(r-2a)t}).$$

As a > r/2, we have

$$\lim_{t \to \infty} x^*(t) = \frac{A}{2(2a-r)} \underset{\lim_{t \to \infty} x(t) \ge K}{\Longrightarrow} A \ge 2K(2a-r) \Rightarrow A > 0.$$

So, (C) in the lemma holds.

We compute

$$\lambda(t)e^{-rt}(K - x^*(t)) = Ae^{rt}e^{-rt}\left[K - \frac{A}{2(2a - r)}\left(1 - e^{(r - 2a)t}\right)\right]$$

$$\to A\left[K - \frac{A}{2(2a - r)}\right] \text{ as } t \to \infty$$

Setting A = 2K(2a - r), we obtain

$$\lim_{t\to\infty}\lambda(t)e^{-rt}(K-x^*(t))=0\Rightarrow (A) \text{ in the lemma hold.}$$

We also confirm (B) in the lemma holds:

$$|\lambda(t)e^{-rt}| = |Ae^{rt}e^{-rt}| = A = 2K(2a - r) = M, \ \forall t \ge 0.$$

It follows from the lemma (A condition guaranteeing (d)) that (d) holds.

Using the theorem on sufficient conditions with an Infinite Horizon, we have found the solution to Problem (1).