# Úvod do softvérového inžinierstva (5BS03)

Ľubomír Sadloň Marek Tavač Ján Ružbarský



## Softvérové inžinierstvo (SI)?

 Inžinierstvo – praktická aplikácia teórie, metód a nástrojov pri návrhu strojov, mostov a pod.



#### Softvérové inžinierstvo

- disciplína, ktorá sa zaoberá tvorbou rozsiahlych softvérových systémov
- aplikácia inžinierskych metód na softvér, zaoberá sa všetkými aspektmi tvorby softvéru
- aplikácia systematického, disciplinovaného,
  merateľného prístupu na vývoj a údržbu softvéru.

#### Rozdiel medzi SI a informatikou

- Informatika sa zoberá algoritmami, spôsobom práce počítačov a softvérových systémov (exaktný popis)
- Softvérové inžinierstvo rieši praktické problémy tvorby softvéru (je nutné používať ad hoc metódy)

## Ciele

- Inžiniersky prístup k tvorbe systémov
- Ukázať rôzne aspekty tvorby systémov
- UML
- Práca v tíme
- Objektový prístup
- Enterprise Architect

Nie fyzické programovanie

## Manažment



#### Informatika

Aplikačný blok podpory nasadzovania a údržby databázových aplikácií

Cieľ: Analýza, návrh a implementácia aplikačného bloku na podporu nasadzovania a údržby databázových aplikácií.

Obsah: Analýza procesov nasadzovania aplikácií z pohľadu zabezpečenia konzistencie databáz s vývojovým cyklom aplikácií.

Na základe analýzy návrh univerzálneho aplikačného bloku za účelom automatizácie týchto procesov spĺňajúceho nasledujúce požiadavky:

- Identifikácia a riešenie nekonzistencií
- Podpora rôznych systémov verzionovania
- Podpora integrácie používateľského rozhrania
- Nezávislosť na type relačnej databázy
- Univerzálnosť, rozširovateľnosť, konfigurovateľnosť

Funkčnosť a použiteľnosť navrhnutého riešenia preukázať ukážkovou aplikáciou.

## Obsah

- Úvod do SI
- RUP procesy
- Biznis modelovanie
- Zber požiadaviek
- Agilné metodiky
- Analýza
- Testovanie
- Návrh
- Implementácia
- Nasadzovanie



## Základné pojmy



programy + dokumentácia + konfiguračné dáta



#### Softvérový systém

 pozostáva z niekoľkých programov, konfiguračných súborov, systémovej dokumentácie (štruktúra systému) a užívateľskej dokumentácie (použitie systému)



#### Softvérový produkt

softvér, ktorý sa dá predať zákazníkovi

## História

- Prvé počítače programovali jednotlivci alebo malé tímy: jazyky Fortran alebo assembler
- Počítače III. generácie: možnosti nových aplikácií, ktoré boli oveľa rozsiahlejšie než predchádzajúce systémy
  - Dôležité systémy roky meškali, predraženie projektov
    → softvérová kríza
  - Spôsoby vývoja malých SW projektov sa nedali použiť pre vývoj veľkých systémov
  - 1968 konferencia NATO o softvérovej kríze vznikol termín softvérové inžinierstvo

## História - prístupy

- Založené na vstupoch a výstupoch
- Založené na životnom cykle projektu



## Štruktúrovaná analýza a návrh

- Metodológia založená na dekompozícií procesov a diagramov toku dát
- Dátovo orientované



#### Objektovo orientovaná analýza a návrh

Analýza a návrh založená na notácií objektov, ktoré zachytávajú dáta a procesy v jednom

# Štruktúrovaná vs objektová

| Charakteristika    | Štrukturálna analýza<br>a návrh                                          | Objektovo orientovaná analýza a návrh                                          |
|--------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Metodológia        | Životný cyklus                                                           | Iteračná / Inkrementálna                                                       |
| Dôraz              | Procesy                                                                  | Objekty                                                                        |
| Riziko             | Vysoké                                                                   | Nízke                                                                          |
| Znovu použiteľnosť | Nízka                                                                    | Vysoká                                                                         |
| Vyzretosť          | Rozvinutá a rozsiahla                                                    | Vyvíjajúca sa                                                                  |
| Vhodná na          | Dobre definované<br>projekty so stálymi<br>užívateľskými<br>požiadavkami | Rizikové rozsiahle projekty<br>s meniacimi sa<br>užívateľskými<br>požiadavkami |

## Brooks: "The Mythical Man Month"

- Prečo je ťažké vytvárať veľké softvérové systémy
- Programátor je schopný napísať iba 1000 riadkov odladeného kódu za rok
- Veľké projekty sú iné ako malé
  - skúsenosti z malých projektov sa nedajú použiť na veľké.
- Kódovanie je tá najľahšia časť, ťažšie je:
  - Rozdeliť projekt do modulov
  - Zaistiť komunikáciu medzi modulmi
- Ak 1 programátor píše malý program, predstavuje to najjednoduchšiu časť a jeho efektivita je vyššia (20 riadkov denne)



## Rozloženie práce pri projekte



## Mythical Man Month?

- Vyjadrenie náročnosti vývoja SW počet ľudí x čas
- Čas a počet ľudí nie sú zameniteľné
  - Ak projekt trvá 15 ľuďom 2 roky, nie je možné aby 360 ľuďom (15 x 24) trval iba mesiac, resp. 60 ľuďom 6 mesiacov.
- Dôvod:
  - Práca nie je paralelizovateľná
  - Aby sme využili veľký počet programátorov, musíme rozdeliť projekt na veľa malých častí
  - Ladenie a testovanie systému sa dá ťažko paralelizovať
- Brooksov zákon:
  - Ak pridáme ľudí k omeškanému projektu, projekt ešte viac omešká.

## Inžiniersky prístup – stavby

- Najskôr podrobný plán model
- Normy a technologické postupy
- Výroba produktu podľa plánu
- Špecializácia architekt a staviteľ
- Architekt vie urobiť plány
- Staviteľ vie plány čítať a stavať podľa nich

## Tvorba softvéru - problémy

- Tvorba bez plánu, resp. iba hrubý náčrt
- Normy a technologické postupy neexistujú ako uzákonený štandard
- Pôvodné ciele sa menia v priebehu tvorby softvéru
- Kumulácia profesií
- Spoločný jazyk sa hľadá nádejný UML

## Skúsenosti

- Pre projekt je dôležité mať skúsených vývojárov
- Brooks väčšina chýb nie je v kóde ale v samotnom návrhu
- Minimálna skúsenosť tímu je nebezpečná "efekt druhého systému"
  - Prvý produkt týmu minimálny (dôležité že pracuje, členovia týmu sú spokojní)
  - Druhý produkt týmu implementované to čo sa pri prvom produkte vynechalo
  - Výsledok druhý systém je veľký a nevýkonný
  - Tretí produkt je už v poriadku

## Tvorba softvérových systémov



## Základné prvky vývoja softvéru



## Softvérový proces



#### Činnosti

- Procesy, ktoré napomáhajú zaistiť, že výsledný produkt je správny, kompletný a zrozumiteľný
- konkrétny návod na vykonanie činnosti



#### Metodika (pracovný postup)

- Sekvencia činností, ktoré napomáhajú pri vývoji finálneho produktu
- výsledky produkty činnosti
- riadenie kvality
- Nástroje (podpora)
  - Životný cyklus projektu

# <u>Životný cyklus – vytvor a oprav</u>



# Životný cyklus – vodopádový



## Analýza

- Analýza domény, získavanie (zber) a definícia požiadaviek
  - Zoznámenie sa so širším kontextom systému
  - Konzultácia s užívateľmi zistenie cieľov a služieb systému
  - Ciele a požiadavky sú definované v dokumente špecifikácie požiadaviek

## Návrh

- Návrh systému a návrh softvéru
- Rozdelenie požiadaviek na HW a SW, definícia architektúry systému
- Identifikácia a popis základných abstrakcií a ich vzťahov (UML)

## Kódovanie a testovanie

- Dizajn je realizovaný ako množina modulov, tried, programov
- Overenie špecifikácií modulov
- Integrácia a testovanie systémov
  - Jednotlivé moduly sú zostavené do výsledného systému
  - Úplný systém je otestovaný na zhodu so špecifikáciou
  - Po otestovaní odovzdaný zákazníkovi

## Údržba

- Najdlhšia fáza životného cyklu praktické používanie
- Oprava chýb programu a dizajnu + rozširovanie systému

# Životný cyklus – vodopádový

#### Klady

- zavádza systém do vývoja softvéru
- proces sa dá plánovať a kontrolovať
- vynucuje si zavedenie pravidiel
- vynucuje si dodržanie termínov

#### Nedostatky

- fázy sa neprekrývajú sekvenčný postup
- od zadanie po hotový produkt dlhý čas
- výsledok závisí od analýzy vhodný ak je problém známy
- kontrola kvality produktu až po dokončení

# Životný cyklus – vodopádový

- Modifikácie
  - inkrementálny model
    - postupné dopĺňanie úplných častí
    - systém menších vodopádov
  - **špirálový** model
    - vytváranie prototypov celého produktu
    - paralelný vývoj všetkých častí

## Inkrementálny model



# špirálový model



#### RUP – Rational Unified Process

- výsledok vývoja veľkých softvérových firiem na čele s firmou Rational - IBM
- princípy najlepšie praktiky tvorby SW
  - iterácie
  - správa požiadaviek
  - komponentová architektúra
  - vizuálne modely
  - overovanie kvality
  - riadenie zmien

## RUP – princípy

#### iterácie

- chyby sa odhalia v začiatočných návrhoch
- postupná tvorba systému po častiach tak, aby každá iterácia končila spustiteľným kódom

#### správa požiadaviek

- získavanie a dokumentovanie požiadaviek zadávateľa
- požiadavka vlastnosť produktu

## RUP – princípy

#### komponentová architektúra

- rozdeľuj a panuj
- štruktúra prvkov systému
- využívanie existujúcich a tvorba nových komponentov

#### vizuálne modely

- vytváranie a aktualizácia modelov v grafickej podobe
  - UML
- vo všetkých fázach tvorby systému
- zrozumiteľnosť
- komunikácia: užívateľ vývojár,
  vývojár vývojár

## RUP – princípy

#### overovanie kvality

 sledovanie kvality pomocou stanovených kritérií počas celého procesu vývoja

#### riadenie zmien

objektívne zmeny v priebehu riešenia – napr. zákony

## RUP – iterácia



## RUP – schéma (obsah x čas)

#### tok činností

fázy

biznis modelovanie

špecifikácia požiadaviek

analýza a návrh

implementácia

testovanie

nasadenie



iterácie

## RUP - fázy = 1 cyklus (verzia)

#### Zahájenie

definícia vízie, určenie rozsahu systému

#### Rozpracovanie

návrh architektúry systému

#### Tvorba

produkcia, beta verzia systému

#### Odovzdanie

produkcia, beta verzia systému, tvorba dokumentácie

## Záver

- systémový prístup softvérový proces
- životný cyklus projektu
- RUP

Ďakujem za pozornosť.