P1 de Álgebra Linear I -2005.2

8 de setembro de 2005.

Gabarito

1)

(a) Considere os planos de equações cartesianas

$$\alpha: x - 2y + z = 1,$$

 $\beta: 2x - y + 2z = 2,$
 $\gamma: x - 5y + z = k.$

Determine k para que os planos se interceptem ao longo de uma reta.

(b) Considere os planos π e ρ de equações cartesianas

$$\pi$$
: $2x - y + z = 1$, ρ : $x + 2y + z = 2$.

Determine a equação cartesiana do plano τ que contém o ponto (1, 1, 1) tal que a interseção dos planos π , ρ e τ seja uma reta r.

(c) Considere os planos π e ρ do item anterior. Estude se existe um plano ν tal que a interseção dos planos π , ρ e ν seja o ponto (1,1,0). Em caso afirmativo determine a equação cartesiana de ν . Em caso negativo, justifique cuidadosamente sua resposta.

Resposta:

1 a) Para que os planos se interceptem ao longo de uma reta o sistema linear dado pelas equações cartesianas dos planos

$$x - 2y + z = 1,$$

 $2x - y + 2z = 2,$
 $x - 5y + z = k$

deve ter solução. De fato, como queremos que a interseção seja uma reta a solução não pode ser única. Usaremos o método de escalonamento e escolheremos k para que o sistema não tenha solução única:

Onde as operações efetuadas são segunda equação menos duas vezes a primeira, e terceira equação menos a primeira. Continuando o escalonamento, terceira equação mais segunda, obtemos

Portanto, k = 1.

De fato, v. também pode raciocinar como segue. Os dois primeiros planos já se interceptam ao longo de uma reta: reaproveitando o escalonamento já feito,

Logo y=0. Portanto, x=1-z. Escolhendo z como parâmetro temos que a interseção dos planos α e β é a reta r de equação paramétrica:

$$r: (1-t,0,t), \qquad t \in \mathbb{R}.$$

Logo k deve ser escolhido de forma que o plano γ contenha a reta r:

$$1(1-t)-5(0)+1(t)=k,$$
 $1-t+t=k,$ $k=1.$

1 b) O plano τ deve conter a reta s de interseção dos planos π e ρ e o ponto P=(1,1,1). Portanto, é suficiente determinar o vetor diretor v da reta s e um ponto A da mesma. Assim conhecemos dois vetores paralelos ao plano τ , os vetores v e \overline{AP} . Desta forma um vetor normal de τ é

$$n = v \times \overline{AP}.$$

Determinaremos as equações paramétricas de s. Temos que o sistema

$$2x - y + z = 1,$$
 $x + 2y + z = 2$

é equivalente a

$$x + 2y + z = 2$$
, $x - 3y = -1$.

Escolhendo y como parâmetro temos

$$x = -1 + 3t$$
, $y = t$, $z = 1 + y - 2x = 1 + t + 2 - 6t = 3 - 5t$.

Logo

$$s: (-1+3t, t, 3-5t), \qquad t \in \mathbb{R}.$$

Temos

$$v = (3, 1, -5), \quad A = (-1, 0, 3).$$

Verifique que o ponto pertence aos dois planos e que v é ortogonal aos vetores normais dos planos π e ρ (isto é, os vetores (2, -1, 1) e (1, 2, 1)).

Temos

$$\overline{AP} = (2, 1, -2).$$

Logo

$$n = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 1 & -5 \\ 2 & 1 & -2 \end{vmatrix} = (-2+5, -(-6+10), 3-2) = (3, -4, 1).$$

Logo o plano τ é da forma

$$\tau$$
: $3x - 4y + z = d$.

Determinamos d pela condição $(1,1,1) \in \tau$:

$$3-4+1=d=0$$
.

Finalmente,

$$\tau$$
: $3x - 4y + z = 0$.

Verificamos que o plano τ contém a reta s: $(-1+3\,t,t,3-5\,t)$ interseção de π e ρ :

$$3(-1+3t)-4(t)+3-5t=-3+9t-4t+3-5t=0.$$

1 c) O plano ν não existe. Se o ponto (1, 1, 0) pertencer à interseção dos três planos, ele deve necessariamente pertencer aos dois primeiros planos.

Mas o ponto (1,1,0) não pertence ao plano ρ pois não verifica sua equação cartesiana (embora pertença a π , verifique)

$$1+2+0=3\neq 2$$
.

2) Considere as retas de equações paramétricas

$$r_1: (t, t+1, 2t-1), t \in \mathbb{R}, \quad e \quad r_2: (2t+1, t, t), t \in \mathbb{R}.$$

- (a) Verifique se as retas se interceptam. Em caso afirmativo determine o ponto de interseção, e em caso negativo a distância entre as duas retas.
- (b) Escreva a equação cartesiana do plano π que contém a reta r_2 e é paralelo à reta r_1 .
- (c) Determine a distância do plano π do item anterior ao ponto P = (-1, 3, 0).
- (d) Considere os pontos

$$A = (0, 1, -1)$$
 e $B = (1, 0, 0)$.

Determine um ponto C pertencente à reta r_2 que seja equidistante dos pontos A e B.

(e) Considere agora os planos

$$\alpha: x - y + z = 0$$
, e $\beta: 2x + y - 4z = 0$.

Encontre o plano ν perpendicular a α e β e que passa pelo ponto (4,0,-2).

Resposta:

2 a) Para verificar se as retas se interceptam devemos ver se o sistema

$$t = 2s + 1$$
, $t + 1 = s$, $2t - 1 = s$

tem solução. Das duas primeiras equações obtemos (substituindo o valor de t na segunda)

$$2s+1+1=s$$
, $s=-2$, $t=-3$.

Mas este resultado é incompatível com a terceira equação:

$$2(-3) - 1 = -7 \neq -2.$$

Logo as retas não se interceptam (como não são paralelas as retas são reversas).

Outra forma de verificar se as retas se interceptam é calcular sua distância d, cálculo que faremos a seguir. Escolhemos um ponto de cada reta, por exemplo $A = (0, 1, -1) \in r_1$ e $B = (1, 0, 0) \in r_2$, e determinamos o vetor $\overline{AB} = (1, -1, 1)$. Escolhemos também vetores diretores das retas r_1 e r_2 , por exemplo, os vetores (1, 1, 2) e (2, 1, 1), respetivamente. Então

$$d = \frac{|(1, -1, 1) \cdot [(1, 1, 2) \times (2, 1, 1)]|}{|(1, 1, 2) \times (2, 1, 1)|}.$$

Temos,

$$(1,1,2) \times (2,1,1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{vmatrix} = (-1,3,-1).$$

Logo

$$|(1,1,2)\times(2,1,1)|=\sqrt{11}.$$

Por outro lado,

$$(1,-1,1)\cdot(-1,3,-1)=-5.$$

Logo $d = 5/\sqrt{11}$.

2 b) Sabemos que o vetor normal n do plano π é o produto vetorial dos vetores diretores das retas r_1 e r_2 . Este cálculo já foi feito no item anterior,

$$n = (1, -3, 1).$$

Logo o plano π é da forma

$$\pi$$
: $x - 3y + z = d$.

Como a reta r_2 está contida em π temos que o ponto B=(1,0,0) pertence a π . Logo,

$$1 - 3(0) + 0 = d.$$

$$\pi$$
: $x - 3y + z = 1$.

2 c) A distância d do plano π ao ponto P=(-1,3,0) é obtida como segue: (i) consideramos a reta ℓ que contém o ponto P e é ortogonal a π , (ii) determinamos o ponto de interseção T da reta ℓ e do plano π , (iii) então a distância d é o comprimento do segmento PT.

Temos que o vetor diretor de ℓ é o vetor normal de π . Logo

$$\ell : (-1+t, 3-3t, t), \quad t \in \mathbb{R}.$$

Para calcular o ponto de interseção de ℓ e π devemos ver para que valor de t um ponto da forma (-1+t, 3-3t, t) verifica a equação do plano:

$$(-1+t)-3(3-3t)+t=1$$
, $11t=11$, $t=1$.

Logo

$$T = (0, 0, 1)$$

Finalmente,

$$\overline{PT} = (-1, 3, -1),$$

e seu módulo é $\sqrt{11}$. Logo a distância é $\sqrt{11}$.

2 d) Resolveremos este item de duas formas. O conjunto dos pontos equidistantes dos pontos A e B é o plano η que contém o ponto médio M do segmento AB,

$$M = (1/2, 1/2, -1/2)$$

e é ortogonal ao vetor $\overline{AB}=(1,-1,1)$. Portanto é um plano da forma

$$\eta \colon x - y + z = d,$$

onde d é obtido pela condição $M \in \eta$:

$$1/2 - 1/2 - 1/2 = d = -1/2.$$

Finalmente, o ponto C é obtido como a interseção do plano η e a reta r_2 . Devemos ver para que valor de t o ponto (2t+1,t,t) pertence a η ,

$$2\,t+1-t+t=-1/2,\quad t=-3/4.$$

Logo

$$C = (-2/4, -3/4, -3/4).$$

Verificamos as distância de C a A e B. Temos

$$\overline{AC} = (-2/4, -7/4, 1/4), \quad \overline{BC} = (-6/4, -3/4, -3/4).$$

Logo

$$\operatorname{dist}(AC) = \frac{\sqrt{4+49+1}}{4} = \frac{\sqrt{54}}{4}, \quad \operatorname{dist}(BC) = \frac{\sqrt{36+9+9}}{4} = \frac{\sqrt{54}}{4}.$$

Outra forma de resolver o exercício é a seguinte. Devemos escolher t de forma que a distância de (2t+1,t,t) aos pontos A e B coincidam. Isto é,

$$(2t+1)^2 + (t-1)^2 + (t+1)^2 = (2t)^2 + (t)^2 + (t)^2.$$

Isto é,

$$4t^{2} + 4t + 1 + t^{2} - 2t + 1 + t^{2} + 2t + 1 = 4t^{2} + t^{2} + t^{2}$$
.

Simplificando,

$$4t + 3 = 0,$$
 $t = -3/4.$

E obtemos o mesmo resultado que no caso anterior.

2 e) Como o plano ν é ortogonal a α , o vetor normal de α , n=(1,-1,1) deve ser paralelo a ν . Analogamente, como o plano ν é ortogonal a β , o vetor normal de β , m=(2,1,-4) deve ser paralelo a ν . Portanto, conhecemos dois vetores paralelos a ν , logo o vetor normal de ν é paralelo ao produto vetorial $(1,-1,1)\times(2,1,-4)$:

$$(1,-1,1) \times (2,1,-4) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 1 \\ 2 & 1 & -4 \end{vmatrix} = (3,6,3).$$

E podemos escolher o vetor (1,2,1) como vetor normal do plano. Logo o plano ν é da forma

$$\nu$$
: $x + 2y + z = d$.

Determinamos d pela condição $(4,0,-2) \in \nu$,

$$(4) + 2(0) + (-2) = d = 2.$$

$$\nu$$
: $x + 2y + z = 2$.

3) Considere os pontos de \mathbb{R}^3

$$P = (1, -2, 3), \quad Q = (4, 3, -1), \quad R = (2, 2, 1), \quad S = (5, 7, -3).$$

- (a) Mostre que o quadrilátero Σ tendo como vértices os ponts $P,\,Q,\,R$ e S é um paralelogramo.
- (b) Determine a área do paralelogramo Σ .
- (c) Determine a equação cartesiana do plano π que contém o paralelogramo $\Sigma.$

Resposta:

- **3 a)** Em primeiro lugar consideraremos os vetores determinados por estes pontos (eliminamos a orientação):
 - $\overline{PQ} = (3, 5, -4),$
 - $\overline{PR} = (1, 4, -2),$
 - $\overline{PS} = (4, 9, -6),$
 - $\overline{QR} = (-2, -1, 2),$
 - $\overline{QS} = (1, 4, -2),$
 - $\overline{RS} = (3, 5, -4).$

Portanto \overline{PQ} e \overline{RS} são o mesmo vetor. Analogamente, \overline{PR} e \overline{QS} são o mesmo vetor. Logo temos um paralelogramo de lados PQ e RS (paralelos) e PR e QS (paralelos).

3 b) A área do paralelogramo é o módulo do produto vetorial

$$\overline{PQ} \times \overline{PR} = (3, 5, -4) \times (1, 4, -2) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 5 & -4 \\ 1 & 4 & -2 \end{vmatrix} = (-10 + 16, 6 - 4, 12 - 5) = (6, 2, 7).$$

Logo a área de paralelogramo é

$$\sqrt{36+4+49} = \sqrt{89}$$

 ${f 3}$ c) O vetor normal do plano já foi calculado no item anterior, (6,2,7). Portanto,

$$\pi : 6x + 2y + 7z = d.$$

Como $P=(1,-2,3)\in\pi,$ temos

$$6 - 4 + 21 = d = 23.$$

Logo

$$\pi$$
: $6x + 2y + 7z = 23$.

Verifique que os outros pontos também verificam esta equação.