Chương 5 : Giải gần đúng phương trình vi phân

Cho phương trình vi phân cấp1

$$y'(x) = f(x, y(x))$$

với điều kiện ban đầu $y(x_0) = y_0$.

Tính gần đúng giá trị y(b) với b bất kỳ cho trước

1) Phương pháp Euler

a) Nội dung: Chia đoạn [a,b] thành n phần đều

nhau, bởi các điểm chia

$$x_0 = a < x_1 = x_0 + h < x_2 = x_0 + 2h <$$
 $< ... < x_n = b = a + nh$

$$y_{i+1} = y_i + k$$
 $k = h f(x_i, y_i)$

b) Sai số:
$$|y_{gd}(b) - y_d(b)| \le \frac{hM^{(2)}}{2L} [e^{L(b-a)} - 1]$$

$$L = Max \left| \frac{\partial f}{\partial y}(x, y) \right|$$

Ví dụ: Phương trình $y'(x) = 1 + (x - y)^2$ với điều kiện ban đầu y(2) = 1.

Tính gần đúng nghiệm y(2.6) với bước h=0.2

x_i	Giá trị y _i
2.0	1
2.2	$1+0.2[1+(2-1)^2]=1.4$
2.4	$[1.4 + 0.2[1 + (2.2 - 1.4)^{2}] = 1.728$
2.6	$[1.728 + 0.2[1 + (2.4 - 1.728)^{2}] = 2.0183168$

2) Phương pháp Euler cải tiến

a) Nội dung:
$$y_{i+1} = y_i + \frac{k_1 + k_2}{2}$$

$$k_1 = hf(x_i, y_i)$$

$$k_2 = hf(x_{i+1}, y_i + k_1)$$

Ví dụ: Giải phương trình $y'(x) = 1 + (x - y)^2$ với điều kiện ban đầu y(2) = 1 trong ví dụ trước theo phương pháp **Euler cải tiến**, kết quả như sau:

x_i	Giá trị $y(x_i)$
2	1.0 of CH 3
2.2	1.364
2.4	1.6823194 sưu tập
2.6	1.971640265

3) Công thức Runge – Kutta bậc 4:

a) Công thức

$$y(x_{i+1}) = y(x_i) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = hf(x_i, y_i)$$

$$k_2 = hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$$

$$x_3 = hf(x_i + \frac{h}{2}, y_i + \frac{k_2}{2})$$

$$k_4 = hf(x_{i+1}, y_i + k_3)$$

Ví dụ: Giải phương trình $y'(x) = 1 + (x - y)^2$ với điều kiện ban đầu y(2) = 1 trong ví dụ trước theo phương pháp **Runge-Kutta**, kết quả như sau:

x_i	$y(x_i)$	Gía trị của k	
2	1.0	OF CH	3
2.2	1.366661	k1= 0.4	k2=0.362
		k3\(\text{\fighta}\) 0.368912 \(\text{\fighta}\)	k4=0.338141
2.4	1.685708	k1 = 0.338891	k2 = 0.316706
		k3 =0.320120	k4 = 0.301736
2.6	1.974994	k1 = 0.302043	k2 = 0.287986
		k3 = 0.289860	k4 = 0.277983

4) Giải hệ phương trình vi phân cấp 1:

Giả sử ta cần giải hệ :
$$\begin{cases} y' = F(x, y, z) \\ z' = G(x, y, z) \end{cases}$$
 trong đó

y = y(x), z = z(x) là những hàm phải tìm và thỏa điều kiện ban đầu $y(x_0) = y_0, z(x_0) = z_0$

Phương pháp Euler

$$y_{i+1} = y_i + hF(x_i, y_i, z_i)$$

$$z_{i+1} = z_i + hG(x_i, y_i, z_i)$$

Ví dụ: Cho hệ
$$\begin{cases} y'(x) = z(x) \\ z'(x) = 2z(x) - y(x) + x \end{cases}$$

với điều kiện y(0) = 1, z(0) = 0.

Tìm y(1) và z(1) nếu số bước chia là n = 4

Bước	x_i	y_i	z_i
0	0	1.0	0.0
1	0.25	1.0 di Hemut-enep	- 0.25
2	0.50	0.9375	
3	0.75		
4	1.00		

5) Giải phương trình vi phân cấp cao:

Giải phương trình vi phân cấp 2

$$y''(x) + p(x)y'(x) + q(x)y(x) = f(x)$$

với điều kiện đầu $y(x_0) = y_0$, $y'(x_0) = y_0'$

Đưa về hệ phương trình vi phân cấp 1 bằng phép

đổi biến
$$y'(x) = z(x)$$
, $y''(x) = z'(x)$

Hệ
$$\begin{cases} y' = z & \text{TÀI LIỆU SƯU TẬP} \\ z' = -p(x)z - q(x)y + f(x) \end{cases} \text{với điều kiện}$$

ban đầu
$$y(x_0) = y_0$$
 và $z(x_0) = y_0' = z_0$.

Hệ này đã biết cách giải