Content

Introduction

- Problem statment
- Data
- Workfllow Describtion

Analysis

- EDA
- Infrence

insghts

localhost:8501

3/27/24, 10:08 PM Digtal Crope Yield

Digtal Crope Estimation Problem

Introduction

Problem statment

Digtal crope yield estmation in India

- Smallholder farmers are crucial contributors to global food production, and in India often suffer most from poverty and malnutrition.

 These farmers face challenges such as limited access to modern agriculture, unpredictable weather, and resource constraints. To tackle this issue, Digital Green collected data via surveys, offering insights into farming practices, environmental conditions, and crop yields.
- The objective of this challenge is to create a machine learning solution to predict the crop yield per acre of rice or wheat crops in India. Our goal is to empower these farmers and break the cycle of poverty and malnutrition.

Data

- The data was collected through a survey conducted across multiple districts in India. It consists of a variety of factors that could potentially impact the yield of rice crops.
- The data source is <u>Digital Green</u>, Which hosted the data as a competition in <u>zindi platform</u>.
- Data structure '.csv' files
- Data Shape: (3652, 50)

Variables defintion and dtype: Varibles type:

DataFrame:

localhost:8501 2/11

3/27/24, 10:08 PM Digtal Crope Yield

Workfllow Describtion

The data contain different types of features:

Numebr of datetime features: 5

Numebr of catogrical features: 24

Numebr of numerical features: 21

Hint: The catogrical data dosen't contain features of ordinal type.

P Note:

• All what we see here is coming as a result of data analysis, dealing with missing data and dealing with outliers.

• You can find all details in this **Notebook**.

1- Missing value:

I used the following approach:

- Drop any column with more than '40.0%' of missing values.
- Imput the catogrical columns with the mode.
- Impute the numerical columns with 'KNNImputer'.

2- Outliers:

I use the following approach:

- Detect some extrem data points and through them out
- Use the IQR to handel the outliers
- Outliers in the target variable 'Yield' with residual plot.

localhost:8501 3/11

3/27/24, 10:08 PM

Digtal Crope Yield

Residual Plot

After Data cleainig we end up with

Numebr of catogrical features: 17

Numebr of numerical features: 16

Numebr of datetime features: 5

Analysis

EDA

Date time features :

I devide the date time features to seasons, to see rice cultivation cycle.

Rice Cultivation seasons Rice Harvrest seasons

Digtal Crope Yield

Harvrost spasons

• Catogrical features :

District and Block

Dsecribtion Defintions

Pie chart Count plot

Transplantation, harvesting and threshing methods.

Source of water and Source of power

Methods of fertilization

- P Note: We dealing with imbalance data.
- Numerical features :

localhost:8501 8/11

choose a variable to see it's distribution

CultLand

CultLand

Description Area of total cultivated land

• Bi variante:

Correlated features

CultLand vs CropCultLand

BasalDAP vs 1tdUrea

Yield vs Acre

Infrence

- In this section we gonna use some statistics, hypothesis testing
- We will us noneparametric tests, due the data is not normaly distribuit
- 1- Mann_wetny U tset

Harv_method ('hand' , 'machine')

- Group1 n= 3642
- Group2 n= 228

Threshing_method ('hand', 'machine')

- Group1 n= 1772
- Group2 n= 2098

Threshing_method ('hand', 'machine')

- Group1 n= 3846
- Group2 n= 24

H0: Group1[Yield]median =
Group2[Yeild]median

H1: Group1[Yield]median <
Group2[Yeild]median</pre>

	MWU
U-val	286969.0
alternative	less
p-val	2.27041745003878e-15
RBC	0.3088215459020973
CLES	0.6544107729510487

Descision: sice P-value < 0.05 level of significant, we rejet H0 and conclud that the median of yield given harv_method == 'hand' is less than the median of yield given harv_method == 'machine' H0: Group1[Yield]median =
Group2[Yeild]median

H1: Group1[Yield]median <
Group2[Yeild]median</pre>

	MWU
U-val	1631694.5
alternative	less
p-val	2.6390400091343988e-11
RBC	0.1221917789058482
CLES	0.5610958894529241

 Descision: sice P-value < 0.05 level of significant, we rejet H0 and conclud that the median of yield given Threshing_method == 'hand' is less than the median of yield given Threshing_method == 'machine' H0: Group1[Yield]median =
Group2[Yeild]median

H1: Group1[Yield]median ≠
Group2[Yeild]median

	MWU
U-val	24109.5
alternative	two-sided
p-val	5.3012401101648294e-05
RBC	0.47760660426417056
CLES	0.2611966978679147

Descision: sice P-value < 0.05 level of significant, we rejet H0 and conclud that the median of yield given Threshing_method == 'plowed_in_soil' not equal the median of yield given Threshing_method == 'burned'