Evaluation

Albert Bifet (@abifet)

Paris, 2 December 2016 albert.bifet@telecom-paristech.fr

Data Streams

Big Data & Real Time

Data stream classification cycle

- Process an example at a time, and inspect it only once (at most)
- Use a limited amount of memory
- Work in a limited amount of time
- Be ready to predict at any point

Evaluation

- 1. Error estimation: Hold-out or Prequential
- 2. Evaluation performance measures: Accuracy or κ -statistic
- 3. Statistical significance validation: MacNemar or Nemenyi test

Evaluation Framework

Error Estimation

Data available for testing

- Holdout an independent test set
- Apply the current decision model to the test set, at regular time intervals
- The loss estimated in the holdout is an unbiased estimator

Holdout Evaluation

1. Error Estimation

No data available for testing

- The error of a model is computed from the sequence of examples.
- ► For each example in the stream, the actual model makes a prediction, and then uses it to update the model.

Prequential or Interleaved-Test-Then-Train

1. Error Estimation

Hold-out or Prequential?

Hold-out is more accurate, but needs data for testing.

- Use prequential to approximate Hold-out
- Estimate accuracy using sliding windows or fading factors

Hold-out or Prequential or Interleaved-Test-Then-Train

2. Evaluation performance measures

	Predicted	Predicted	
	Class+	Class-	Total
Correct Class+	75	8	83
Correct Class-	7	10	17
Total	82	18	100

Table: Simple confusion matrix example

► Accuracy =
$$\frac{75}{100} + \frac{10}{100} = \frac{75}{83} \frac{83}{100} + \frac{10}{17} \frac{17}{100} = 85\%$$

• Arithmetic mean =
$$(\frac{75}{83} + \frac{10}{17})/2 = 74.59\%$$

• Geometric mean =
$$\sqrt{\frac{75}{83}} \frac{10}{17} = 72.90\%$$

2. Performance Measures with Unbalanced Classes

	Predicted Predicted		
	Class+	Class-	Total
Correct Class+	75	8	83
Correct Class-	7	10	17
Total	82	18	100

Table: Simple confusion matrix example

	Predicted	Predicted	
	Class+	Class-	Total
Correct Class+	68.06	14.94	83
Correct Class-	13.94	3.06	17
Total	82	18	100

Table: Confusion matrix for chance predictor

2. Performance Measures with Unbalanced Classes

Kappa Statistic

- p₀: classifier's prequential accuracy
- p_c: probability that a chance classifier makes a correct prediction.
- κ statistic

$$\kappa = \frac{p_0 - p_c}{1 - p_c}$$

- $\kappa = 1$ if the classifier is always correct
- $\kappa = 0$ if the predictions coincide with the correct ones as often as those of the chance classifier

Forgetting mechanism for estimating prequential kappa Sliding window of size w with the most recent observations

3. Statistical significance validation (2 Classifiers)

	Classifier A Class+	Classifier A Class-	Total
Classifier B Class+	С	а	c+a
Classifier B Class-	b	d	b+d
Total	c+b	a+d	a+b+c+d

$$M = |a-b-1|^2/(a+b)$$

The test follows the χ^2 distribution. At 0.99 confidence it rejects the null hypothesis (the performances are equal) if M > 6.635.

McNemar test

3. Statistical significance validation (> 2 Classifiers)

Two classifiers are performing differently if the corresponding average ranks differ by at least the critical difference

$$CD = q_{\alpha} \sqrt{rac{k(k+1)}{6N}}$$

- \triangleright k is the number of learners, N is the number of datasets,
- ritical values q_{α} are based on the Studentized range statistic divided by $\sqrt{2}$.

Nemenyi test

3. Statistical significance validation (> 2 Classifiers)

Two classifiers are performing differently if the corresponding average ranks differ by at least the critical difference

$$CD = q_{\alpha} \sqrt{rac{k(k+1)}{6N}}$$

- ▶ *k* is the number of learners, *N* is the number of datasets,
- critical values q_{α} are based on the Studentized range statistic divided by $\sqrt{2}$.

# classifiers	2	3	4	5	6	7
q _{0.05}	1.960	2.343	2.569	2.728	2.850	2.949
9 0.10	1.645	2.052	2.291	2.459	2.589	2.693

Table: Critical values for the Nemenyi test

Cost Evaluation Example

	Accuracy	Time	Memory
Classifier A	70%	100	20
Classifier B	80%	20	40

Which classifier is performing better?

RAM-Hours

RAM-Hour Every GB of RAM deployed for 1 hour

Cloud Computing Rental Cost Options

Cost Evaluation Example

	Accuracy	Time	Memory	RAM-Hours
Classifier A	70%	100	20	2,000
Classifier B	80%	20	40	800

Which classifier is performing better?

Evaluation

- 1. Error estimation: Hold-out or Prequential
- 2. Evaluation performance measures: Accuracy or κ -statistic
- 3. Statistical significance validation: MacNemar or Nemenyi test
- 4. Resources needed: time and memory or RAM-Hours

Evaluation Framework