GBDT 算法原理简介

wepon wepon@pku.edu.cn 2017年7月14日

内容

- 泰勒公式
- 最优化方法
 - 梯度下降法(Gradient descend method)
 - 牛顿法(Newton's method)
- 从参数空间到函数空间
 - 从Gradient descend 到 Gradient boosting
 - 从Newton's method 到 Newton Boosting
- Gradient Boosting Tree 算法原理
- Newton Boosting Tree 算法原理: 详解 XGBoost
- 更高效的工具包 LightGBM
- 参考文献

泰勒公式

• **定义**: 泰勒公式是一个用函数在某点的信息描述其<mark>附近</mark>取值的公式。局部有效性

泰勒公式

• **定义**: 泰勒公式是一个用函数在某点的信息描述其<mark>附近</mark>取值的公式。局部有效性

• 基本形式:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

- 一阶泰勒展开: $f(x) \approx f(x_0) + f'(x_0)(x x_0)$
- 二阶泰勒展开: $f(x) \approx f(x_0) + f'(x_0)(x x_0) + f''(x_0) \frac{(x x_0)^2}{2}$

泰勒公式

• **定义**: 泰勒公式是一个用函数在某点的信息描述其<mark>附近</mark>取值的公式。局部有效性

• 基本形式: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$

- 一阶泰勒展开: $f(x) \approx f(x_0) + f'(x_0)(x x_0)$
- 二阶泰勒展开: $f(x) \approx f(x_0) + f'(x_0)(x x_0) + f''(x_0)\frac{(x x_0)^2}{2}$
- **迭代形式:** 假设 $x^t = x^{t-1} + \Delta x$,将 $f(x^t)$ 在 x^{t-1} 处进行泰勒 展开 $f(x^t) = f(x^{t-1} + \Delta x)$ $\approx f(x^{t-1}) + f'(x^{t-1}) \Delta x + f''(x^{t-1}) \frac{\Delta x^2}{2}$

在机器学习任务中,需要最小化损失函数 $L(\theta)$,其中 θ 是要求解的模型参数。梯度下降法常用来求解这种无约束最优化问题,它是一种迭代方法: 选取初值 θ^0 ,不断迭代,更新 θ 的值,进行损失函数的极小化。

在机器学习任务中,需要最小化损失函数 $L(\theta)$,其中 θ 是要求解的模型参数。梯度下降法常用来求解这种无约束最优化问题,它是一种迭代方法: 选取初值 θ^0 ,不断迭代,更新 θ 的值,进行损失函数的极小化。

• 迭代公式: $\theta^t = \theta^{t-1} + \Delta \theta$

在机器学习任务中,需要最小化损失函数 $L(\theta)$,其中 θ 是要求解的模型参数。梯度下降法常用来求解这种无约束最优化问题,它是一种迭代方法: 选取初值 θ^0 ,不断迭代,更新 θ 的值,进行损失函数的极小化。

- 迭代公式: $\theta^t = \theta^{t-1} + \Delta \theta$
- 将 $L(\theta^t)$ 在 θ^{t-1} 处进行一阶泰勒展开:

$$L(\theta^{t}) = L(\theta^{t-1} + \Delta \theta)$$

$$\approx L(\theta^{t-1}) + L(\theta^{t-1}) \Delta \theta$$

在机器学习任务中,需要最小化损失函数 $L(\theta)$,其中 θ 是要求解的模型参数。梯度下降法常用来求解这种无约束最优化问题,它是一种迭代方法: 选取初值 θ^0 ,不断迭代,更新 θ 的值,进行损失函数的极小化。

- 迭代公式: $\theta^t = \theta^{t-1} + \Delta \theta$
- 将 $L(\theta^t)$ 在 θ^{t-1} 处进行一阶泰勒展开:

$$L(\theta^{t}) = L(\theta^{t-1} + \Delta \theta)$$

$$\approx L(\theta^{t-1}) + L(\theta^{t-1}) \Delta \theta$$

• 要使得 $L(\theta^t) < L(\theta^{t-1})$, 可取: $\Delta \theta = -\alpha L(\theta^{t-1})$,则: $\theta^t = \theta^{t-1} - \alpha L(\theta^{t-1})$

在机器学习任务中,需要最小化损失函数 $L(\theta)$,其中 θ 是要求解的模型参数。梯度下降法常用来求解这种无约束最优化问题,它是一种迭代方法: 选取初值 θ^0 ,不断迭代,更新 θ 的值,进行损失函数的极小化。

- 迭代公式: $\theta^t = \theta^{t-1} + \Delta \theta$
- 将 $L(\theta^t)$ 在 θ^{t-1} 处进行一阶泰勒展开:

$$L(\theta^{t}) = L(\theta^{t-1} + \Delta \theta)$$

$$\approx L(\theta^{t-1}) + L(\theta^{t-1}) \Delta \theta$$

• 要使得 $L(\theta^t) < L(\theta^{t-1})$, 可取: $\Delta \theta = -\alpha L(\theta^{t-1})$,则: $\theta^t = \theta^{t-1} - \alpha L(\theta^{t-1})$

这里 α 是 步长,可通过line search确定,但一般直接赋一个小的数。

• 将 $L(\theta^t)$ 在 θ^{t-1} 处进行二阶泰勒展开:

$$L(\theta^{t}) \approx L(\theta^{t-1}) + L'(\theta^{t-1}) \Delta \theta + L''(\theta^{t-1}) \frac{\Delta \theta^{2}}{2}$$

• 将 $L(\theta^t)$ 在 θ^{t-1} 处进行二阶泰勒展开:

$$L(\theta^{t}) \approx L(\theta^{t-1}) + L'(\theta^{t-1}) \Delta \theta + L''(\theta^{t-1}) \frac{\Delta \theta^{2}}{2}$$

为了简化分析过程,假设参数是标量(即 θ 只有一维),则可将一阶和二阶导数分别记为 g 和 h:

$$L(\theta^t) \approx L(\theta^{t-1}) + g\Delta\theta + h\frac{\Delta\theta^2}{2}$$

• 将 $L(\theta^t)$ 在 θ^{t-1} 处进行二阶泰勒展开:

$$L(\theta^{t}) \approx L(\theta^{t-1}) + L'(\theta^{t-1}) \Delta \theta + L''(\theta^{t-1}) \frac{\Delta \theta^{2}}{2}$$

为了简化分析过程,假设参数是标量(即 θ 只有一维),则可将一阶和二阶导数分别记为 g 和 h:

$$L(\theta^t) \approx L(\theta^{t-1}) + g\Delta\theta + h\frac{\Delta\theta^2}{2}$$

• 要使得 $L(\theta^t)$ 极小,即让 $g\Delta\theta + h\frac{\Delta\theta^2}{2}$ 极小,可令: $\frac{\partial \left(g\Delta\theta + h\frac{\Delta\theta^2}{2}\right)}{\partial\Delta\theta} = 0$

求得
$$\Delta \theta = -\frac{g}{h}$$
 , 故 $\theta^t = \theta^{t-1} + \Delta \theta = \theta^{t-1} - \frac{g}{h}$

• 将 $L(\theta^t)$ 在 θ^{t-1} 处进行二阶泰勒展开:

$$L(\theta^{t}) \approx L(\theta^{t-1}) + L'(\theta^{t-1}) \Delta \theta + L''(\theta^{t-1}) \frac{\Delta \theta^{2}}{2}$$

为了简化分析过程,假设参数是标量(即 θ 只有一维),则可将一阶和二阶导数分别记为 g 和 h:

$$L(\theta^t) \approx L(\theta^{t-1}) + g\Delta\theta + h\frac{\Delta\theta^2}{2}$$

• 要使得 $L(\theta^t)$ 极小,即让 $g\Delta\theta + h\frac{\Delta\theta^2}{2}$ 极小,可令: $\frac{\partial \left(g\Delta\theta + h\frac{\Delta\theta^2}{2}\right)}{\partial\Delta\theta} = 0$

求得
$$\Delta \theta = -\frac{g}{h}$$
 , 故 $\theta^t = \theta^{t-1} + \Delta \theta = \theta^{t-1} - \frac{g}{h}$

参数 θ 推广到向量形式,迭代公式: $\theta^t = \theta^{t-1} - H^{-1}g$ 这里 H 是 海森矩阵

从参数空间到函数空间

- GBDT 在函数空间中利用梯度下降法进行优化
- XGBoost 在函数空间中用牛顿法进行优化

注:实际上GBDT泛指所有梯度提升树算法,包括XGBoost,它也是GBDT的一种变种,这里为了区分它们,GBDT特指"Greedy Function Approximation: A Gradient Boosting Machine"里提出的算法,它只用了一阶导数信息。

从Gradient Descend 到 Gradient Boosting

参数空间

$$\theta_t = -\alpha_t g_t$$

参数更新方向为负梯度方向

$$\theta = \sum_{t=0}^{T} \theta_t$$

最终参数等于每次迭代的增量的累加和,

 θ_0 为初值

从Gradient Descend 到 Gradient Boosting

参数空间

$$\theta_t = -\alpha_t g_t$$

参数更新方向为负梯度方向

$$\theta = \sum_{t=0}^{T} \theta_{t}$$

最终参数等于每次迭代的增量的累加和,

 θ_0 为初值

函数空间

$$f^{t}(x) = f^{t-1}(x) + f_{t}(x)$$

第t次迭代 第t-1次迭 第t次迭代 后的函数 代后的函数 的函数增量

$$f_t(x) = -\alpha_t g_t(x)$$

同样地,拟合负梯度

$$F(x) = \sum_{t=0}^{T} f_t(x)$$

最终函数等于每次迭代的增量的累加和,

 $f_0(x)$ 为模型初始值,通常为常数

从Newton's Method 到 Newton Boosting

参数空间

$$\theta_t = -H_t^{-1}g_t$$

与梯度下降法唯一不同的就是参数增量

$$\theta = \sum_{t=0}^{T} \theta_{t}$$

最终参数等于每次迭代的增量的累加和,

 θ_0 为初值

函数空间

$$f^{t}(x) = f^{t-1}(x) + f_{t}(x)$$

第t次迭代 第t-1次迭 第t次迭代 后的函数 代后的函数 的函数增量

$$f_t(x) = -\frac{g_t(x)}{h_t(x)}$$

$$F(x) = \sum_{t=0}^{T} f_t(x)$$

最终函数等于每次迭代的增量的累加和,

 $f_0(x)$ 为模型初始值,通常为常数

小结

• Boosting 算法是一种加法模型(additive training)

$$F(x) = \sum_{t=0}^{T} f_t(x)$$

小结

• Boosting 算法是一种加法模型(additive training)

$$F(x) = \sum_{t=0}^{T} f_t(x)$$

- 基分类器 f 常采用回归树[Friedman 1999] 和逻辑回归 [Friedman 2000]。下文以回归树展开介绍。树模型有以下优缺点:
 - 可解释性强
 - 可处理混合类型特征
 - 具体伸缩不变性(不用归一化特征)
 - 有特征组合的作用
 - 可自然地处理缺失值
 - 对异常点鲁棒
 - 有特征选择作用
 - 可扩展性强,容易并行

- 缺乏平滑性(回归预测时输出值只能输出有限的若干种数值)
- 不适合处理高维稀疏数据

• Friedman于论文" Greedy Function Approximation..."中最早提出GBDT

- Friedman于论文" Greedy Function Approximation..."中最早提出GBDT
- 其模型 F 定义为加法模型:

$$F(x;w) = \sum_{t=0}^{T} \alpha_t h_t(x;w_t) = \sum_{t=0}^{T} f_t(x;w_t)$$

其中,x为输入样本,h为分类回归树,w是分类回归树的参数, α 是每棵树的权重。

- Friedman于论文" Greedy Function Approximation..."中最早提出GBDT
- 其模型 F 定义为加法模型:

$$F(x; w) = \sum_{t=0}^{T} \alpha_t h_t(x; w_t) = \sum_{t=0}^{T} f_t(x; w_t)$$

其中,x为输入样本,h为分类回归树,w是分类回归树的参数, α 是每棵树的权重。

• 通过最小化损失函数求解最优模型:

$$F^* = \underset{F}{\operatorname{arg\,min}} \sum_{i=0}^{N} L(y_i, F(x_i; w))$$

NP难问题 -> 通过贪心法, 迭代求局部最优解

输入:
$$(x_i, y_i), T, L$$

- 1. 初始化 f_0
- 2. for t = 1 to T do

$$y_{i} = -\left[\frac{\partial L(y_{i}, F(x_{i}))}{\partial F(x_{i})}\right]_{F(x) = F_{t-1}(x)}, i = 1, 2, ...N$$

$$w^* = \arg\min_{w} \sum_{i=1}^{N} (y_i - h_t(x_i; w))^2$$

2.3 line search找步长:
$$\rho^* = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^{N} L(y_i, F_{t-1}(x_i) + \rho h_t(x_i; w^*))$$

2.4
$$\Leftrightarrow f_{t} = \rho^{*} h_{t}(x; w^{*})$$

$$F_{t} = F_{t-1} + f_{t}$$

输入:
$$(x_i, y_i), T, L$$

- 1. 初始化 f_0
- 2. for t = 1 to T do

$$y_{i} = -\left[\frac{\partial L(y_{i}, F(x_{i}))}{\partial F(x_{i})}\right]_{F(x) = F_{t-1}(x)}, i = 1, 2, ...N$$

$$w^* = \arg\min_{w} \sum_{i=1}^{N} (y_i - h_t(x_i; w))^2$$

2.3 line search找步长:
$$\rho^* = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^{N} L(y_i, F_{t-1}(x_i) + \rho h_t(x_i; w^*))$$

2.4
$$\Leftrightarrow f_{t} = \rho^{*}h_{t}(x; w^{*})$$

$$F_{t} = F_{t-1} + f_{t}$$

输入:
$$(x_i, y_i), T, L$$

- 1. 初始化 f_0
- 2. for t = 1 to T do

$$y_{i} = -\left[\frac{\partial L(y_{i}, F(x_{i}))}{\partial F(x_{i})}\right]_{F(x) = F_{t-1}(x)}, i = 1, 2, ...N$$

$$w^* = \arg\min_{w} \sum_{i=1}^{N} (y_i - h_t(x_i; w))^2$$

2.3 line search找步长:
$$\rho^* = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^{N} L(y_i, F_{t-1}(x_i) + \rho h_t(x_i; w^*))$$

2.4
$$\Leftrightarrow f_{t} = \rho^{*} h_{t}(x; w^{*})$$

$$F_{t} = F_{t-1} + f_{t}$$

输入:
$$(x_i, y_i), T, L$$

- 1. 初始化 f_0
- 2. for t = 1 to T do

$$y_{i} = -\left[\frac{\partial L(y_{i}, F(x_{i}))}{\partial F(x_{i})}\right]_{F(x) = F_{t-1}(x)}, i = 1, 2, ...N$$

$$w^* = \arg\min_{w} \sum_{i=1}^{N} (y_i - h_t(x_i; w))^2$$

2.3 line search找步长:
$$\rho^* = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^{N} L(y_i, F_{t-1}(x_i) + \rho h_t(x_i; w^*))$$

2.4
$$\Leftrightarrow f_{t} = \rho^{*} h_{t}(x; w^{*})$$

$$F_{t} = F_{t-1} + f_{t}$$

输入:
$$(x_i, y_i), T, L$$

- 1. 初始化 f_0
- 2. for t = 1 to T do

$$y_{i} = -\left[\frac{\partial L(y_{i}, F(x_{i}))}{\partial F(x_{i})}\right]_{F(x) = F_{t-1}(x)}, i = 1, 2, ...N$$

$$w^* = \arg\min_{w} \sum_{i=1}^{N} (y_i - h_t(x_i; w))^2$$

2.3 line search找步长:
$$\rho^* = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^{N} L(y_i, F_{t-1}(x_i) + \rho h_t(x_i; w^*))$$

2.4
$$\Leftrightarrow f_{t} = \rho^{*} h_{t}(x; w^{*})$$

$$F_{t} = F_{t-1} + f_{t}$$

输入:
$$(x_i, y_i), T, L$$

- 1. 初始化 f_0
- 2. for t = 1 to T do

$$y_{i} = -\left[\frac{\partial L(y_{i}, F(x_{i}))}{\partial F(x_{i})}\right]_{F(x) = F_{t-1}(x)}, i = 1, 2, ...N$$

$$w^* = \arg\min_{w} \sum_{i=1}^{N} (y_i - h_t(x_i; w))^2$$

2.3 line search找步长:
$$\rho^* = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^{N} L(y_i, F_{t-1}(x_i) + \rho h_t(x_i; w^*))$$

2.4
$$\Leftrightarrow f_{t} = \rho^{*} h_{t}(x; w^{*})$$

$$F_{t} = F_{t-1} + f_{t}$$

输入:
$$(x_i, y_i), T, L$$

- 1. 初始化 f_0
- 2. for t = 1 to T do

$$y_{i} = -\left[\frac{\partial L(y_{i}, F(x_{i}))}{\partial F(x_{i})}\right]_{F(x) = F_{t-1}(x)}, i = 1, 2, ...N$$

$$w^* = \arg\min_{w} \sum_{i=1}^{N} (y_i - h_t(x_i; w))^2$$

2.3 line search找步长:
$$\rho^* = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^{N} L(y_i, F_{t-1}(x_i) + \rho h_t(x_i; w^*))$$

2.4
$$\Leftrightarrow f_t = \rho^* h_t(x; w^*)$$

更新模型:

$$F_{t} = F_{t-1} + f_{t}$$

输入:
$$(x_i, y_i), T, L$$

- 1. 初始化 f_0
- 2. for t = 1 to T do

$$y_{i} = -\left[\frac{\partial L(y_{i}, F(x_{i}))}{\partial F(x_{i})}\right]_{F(x) = F_{t-1}(x)}, i = 1, 2, ...N$$

$$w^* = \arg\min_{w} \sum_{i=1}^{N} (y_i - h_t(x_i; w))^2$$

2.3 line search找步长:
$$\rho^* = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^{N} L(y_i, F_{t-1}(x_i) + \rho h_t(x_i; w^*))$$

2.4
$$\Leftrightarrow f_{t} = \rho^{*}h_{t}(x; w^{*})$$

$$F_{t} = F_{t-1} + f_{t}$$

3. 输出 F_T

Newton Boosting Tree 算法原理: 详解 XGBoost

- 模型函数形式
- 目标函数
 - 正则项
 - 误差函数的二阶泰勒展开
- 回归树的学习策略
 - 打分函数
 - 树节点分裂方法
 - 缺失值的处理
- 其它特性

模型函数形式

给定数据集 $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}$,XGBoost进行additive training,学习K棵树,采用以下函数对样本进行预测:

$$\hat{y}_i = \phi(\mathbf{x}_i) = \sum_{k=1}^K f_k(\mathbf{x}_i), \quad f_k \in \mathcal{F},$$

模型函数形式

给定数据集 $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}$,XGBoost进行additive training,学习K棵树,采用以下函数对样本进行预测:

$$\hat{y}_i = \phi(\mathbf{x}_i) = \sum_{k=1}^K f_k(\mathbf{x}_i), \quad f_k \in \mathcal{F},$$

这里 F 是假设空间, f(x)是回归树(CART):

$$\mathcal{F} = \{ f(\mathbf{x}) = w_{q(\mathbf{x})} \} (q : \mathbb{R}^m \to T, w \in \mathbb{R}^T)$$

q(x)表示将样本x分到了某个叶子节点上,w是叶子节点的分数(leaf score),所以 $w_{q(x)}$ 表示回归树对样本的预测值

模型函数形式

• 例子: 预测一个人是否喜欢电脑游戏

回归树的预测输出是实数分数,可以用于回归、分类、排序等任务中。对于回归问题,可以直接作为目标值,对于分类问题,需要映射成概率,比如采用逻辑函数 $\sigma(z) = \frac{1}{1+\rho^{-z}}$

目标函数

• 参数空间中的目标函数:

$$Obj(\Theta) = L(\Theta) + \Omega(\Theta)$$

误差函数: 我们的模型有多

拟合数据。

正则化项:惩罚复杂模型

误差函数可以是square loss, logloss等, 正则项可以是L1正则, L2正则等。

Ridge Regression (岭回归): $\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 + \lambda \|\theta\|^2$

LASSO:
$$\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 + \lambda \|\theta\|_1$$

- 正则项的作用,可以从几个角度去解释:
 - 通过偏差方差分解去解释
 - PAC-learning泛化界解释
 - Bayes先验解释,把正则当成先验

- 正则项的作用,可以从几个角度去解释:
 - 通过偏差方差分解去解释
 - PAC-learning泛化界解释
 - Bayes先验解释,把正则当成先验
- 从Bayes角度来看,正则相当于对模型参数引入先验分布:

L2正则,模型参数服从高斯分布 $\theta \sim N(0, \sigma^2)$ 对参数加了分布约束,大部分绝对值很小

L1正则,模型参数服从拉普拉斯分布 对参数加了分布约束,大部分取值为0

• XGBoost的目标函数(函数空间)

$$\mathcal{L}(\phi) = \sum_{i} l(\hat{y}_i, y_i) + \sum_{k} \Omega(f_k)$$

正则项对每棵回归树的复杂度进行了惩罚

• XGBoost的目标函数(函数空间)

$$\mathcal{L}(\phi) = \sum_{i} l(\hat{y}_i, y_i) + \sum_{k} \Omega(f_k)$$

正则项对每棵回归树的复杂度进行了惩罚

• 相比原始的GBDT, XGBoost的目标函数多了正则项, 使得学习出来的模型更加不容易过拟合。

• XGBoost的目标函数(函数空间)

$$\mathcal{L}(\phi) = \sum_{i} l(\hat{y}_i, y_i) + \sum_{k} \Omega(f_k)$$

正则项对每棵回归树的复杂度进行了惩罚

- 相比原始的GBDT, XGBoost的目标函数多了正则项, 使得学习出来的模型更加不容易过拟合。
- 有哪些指标可以衡量树的复杂度? 树的深度,内部节点个数,叶子节点个数(T),叶节点分数(w)... XGBoost采用的:

$$\Omega(f) = \gamma T + \frac{1}{2}\lambda \|w\|^2$$

对叶子节点个数进行惩罚,相当于在训练过程中做了剪枝

• 第t次迭代后,模型的预测等于前t-1次的模型预测加上第t棵树的预测:

$$\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$$

• 第t次迭代后,模型的预测等于前t-1次的模型预测加上第t棵树的预测:

$$\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$$

• 此时目标函数可写作:

$$\mathcal{L}^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y_i}^{(t-1)} + f_t(\mathbf{x}_i)) + \Omega(f_t)$$

公式中 $y_i, \tilde{y}_i^{(t-1)}$ 都已知,模型要学习的只有第t棵树 f_t

• 第t次迭代后,模型的预测等于前t-1次的模型预测加上第t棵树的预测:

$$\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$$

• 此时目标函数可写作:

$$\mathcal{L}^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y_i}^{(t-1)} + f_t(\mathbf{x}_i)) + \Omega(f_t)$$

公式中 $y_i, \tilde{y}_i^{(t-1)}$ 都已知,模型要学习的只有第t棵树 f_t

• 将误差函数在 $\tilde{y}_i^{(t-1)}$ 处进行二阶泰勒展开:

$$\mathcal{L}^{(t)} \simeq \sum_{i=1}^{n} [l(y_i, \hat{y}^{(t-1)}) + g_i f_t(\mathbf{x}_i) + \frac{1}{2} h_i f_t^2(\mathbf{x}_i)] + \Omega(f_t)$$

公式中,
$$g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)})$$
 $h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$

$$\mathcal{L}^{(t)} \simeq \sum_{i=1}^{n} [l(y_i, \hat{y}^{(t-1)}) + g_i f_t(\mathbf{x}_i) + \frac{1}{2} h_i f_t^2(\mathbf{x}_i)] + \Omega(f_t)$$

• 将公式中的常数项去掉,得到:

$$\tilde{\mathcal{L}}^{(t)} = \sum_{i=1}^{n} \left[g_i f_t(\mathbf{x}_i) + \frac{1}{2} h_i f_t^2(\mathbf{x}_i) \right] + \Omega(f_t)$$

$$\mathcal{L}^{(t)} \simeq \sum_{i=1}^{n} [l(y_i, \hat{y}^{(t-1)}) + g_i f_t(\mathbf{x}_i) + \frac{1}{2} h_i f_t^2(\mathbf{x}_i)] + \Omega(f_t)$$

• 将公式中的常数项去掉,得到:

$$\tilde{\mathcal{L}}^{(t)} = \sum_{i=1}^{n} [g_i f_t(\mathbf{x}_i) + \frac{1}{2} h_i f_t^2(\mathbf{x}_i)] + \Omega(f_t)$$

• 把 $f_t, \Omega(f_t)$ 写成树结构的形式,即把下式代入目标函数中

$$f(\mathbf{x}) = w_{q(\mathbf{x})}$$
 $\Omega(f) = \gamma T + \frac{1}{2}\lambda ||w||^2$

$$\mathcal{L}^{(t)} \simeq \sum_{i=1}^{n} [l(y_i, \hat{y}^{(t-1)}) + g_i f_t(\mathbf{x}_i) + \frac{1}{2} h_i f_t^2(\mathbf{x}_i)] + \Omega(f_t)$$

• 将公式中的常数项去掉,得到:

$$\tilde{\mathcal{L}}^{(t)} = \sum_{i=1}^{n} [g_i f_t(\mathbf{x}_i) + \frac{1}{2} h_i f_t^2(\mathbf{x}_i)] + \Omega(f_t)$$

• 把 $f_t, \Omega(f_t)$ 写成树结构的形式,即把下式代入目标函数中

$$f(\mathbf{x}) = w_{q(\mathbf{x})}$$
 $\Omega(f) = \gamma T + \frac{1}{2}\lambda ||w||^2$

• 得到:

$$L^{(t)} = \sum_{i=1}^{n} [g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)] + \Omega(f_t)$$

$$= \sum_{i=1}^{n} [g_i w_{q(x_i)} + \frac{1}{2} h_i w_{q(x_i)}^2] + \gamma T + \lambda \frac{1}{2} \sum_{j=1}^{T} w_j^2$$

$$L^{(t)} = \sum_{i=1}^{n} [g_{i}f_{t}(x_{i}) + \frac{1}{2}h_{i}f_{t}^{2}(x_{i})] + \Omega(f_{t})$$

$$= \sum_{i=1}^{n} [g_{i}w_{q(x_{i})} + \frac{1}{2}h_{i}w_{q(x_{i})}^{2}] + \gamma T + \lambda \frac{1}{2}\sum_{j=1}^{T}w_{j}^{2}$$
对样本累加

对叶节点累加

• 怎么统一起来?

$$L^{(t)} = \sum_{i=1}^{n} [g_{i}f_{t}(x_{i}) + \frac{1}{2}h_{i}f_{t}^{2}(x_{i})] + \Omega(f_{t})$$

$$= \sum_{i=1}^{n} [g_{i}w_{q(x_{i})} + \frac{1}{2}h_{i}w_{q(x_{i})}^{2}] + \gamma T + \lambda \frac{1}{2}\sum_{j=1}^{T}w_{j}^{2}$$
对样本累加

对叶节点累加

• 怎么统一起来? 定义每个叶节点j上的样本集合为 $I_j = \{i | q(x_i) = j\}$ 则目标函数可以写成按叶节点累加的形式:

$$L^{(t)} = \sum_{j=1}^{T} \left[\left(\sum_{i \in I_j} g_i \right) w_j + \frac{1}{2} \left(\sum_{i \in I_j} h_i + \lambda \right) w_j^2 \right] + \gamma T$$
$$= \sum_{j=1}^{T} \left[G_j w_j + \frac{1}{2} (H_j + \lambda) w_j^2 \right] + \gamma T$$

$$L^{(t)} = \sum_{j=1}^{T} \left[G_{j} w_{j} + \frac{1}{2} (H_{j} + \lambda) w_{j}^{2} \right] + \gamma T$$

• 如果确定了树的结构(即q(x)确定),为了使目标函数最小,可以令其导数为0,解得每个叶节点的最优预测分数为:

$$w_j^* = -\frac{G_j}{H_j + \lambda}$$

代入目标函数,得到最小损失为:

$$L^* = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

回归树的学习策略

当回归树的结构确定时,我们前面已经推导出其最优的叶节点分数以及 对应的最小损失值,问题是怎么确定树的结构?

暴力枚举所有可能的树结构,选择损失值最小的 - NP难问题 贪心法,每次尝试分裂一个叶节点,计算分裂前后的增益,选择增益最 大的

回归树的学习策略

• 当回归树的结构确定时,我们前面已经推导出其最优的叶节点分数以及对应的最小损失值,问题是怎么确定树的结构?

暴力枚举所有可能的树结构,选择损失值最小的 - NP难问题 贪心法,每次尝试分裂一个叶节点,计算分裂前后的增益,选择增益最 大的

• 分裂前后的增益怎么计算?

ID3算法采用信息增益

C4. 5算法采用信息增益比

CART采用Gini系数

XGBoost呢?

XGBoost的打分函数

$$L^* = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

标红部分衡量了每个叶子节点对总体损失的的贡献,我们希望损失越小越好,则标红部分的值越大越好。

XGBoost的打分函数

$$L^* = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

标红部分衡量了每个叶子节点对总体损失的的贡献,我们希望损失越小越好,则标红部分的值越大越好。

因此,对一个叶子节点进行分裂,分裂前后的增益定义为:

$$Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} - \gamma$$

Gain的值越大,分裂后 L 减小越多。所以当对一个叶节点分割时,计算所有候选(feature, value)对应的gain,选取gain最大的进行分割

• 暴力枚举

遍历所有特征的所有可能的分割点,计算gain值,选取值最大的 (feature, value) 去分割

```
Algorithm 1: Exact Greedy Algorithm for Split Finding
 Input: I, instance set of current node
  Input: d, feature dimension
  qain \leftarrow 0
 G \leftarrow \sum_{i \in I} g_i, H \leftarrow \sum_{i \in I} h_i
  for k = 1 to m do
        G_L \leftarrow 0, \ H_L \leftarrow 0
     for j in sorted(I, by \mathbf{x}_{jk}) do

\begin{vmatrix}
G_L \leftarrow G_L + g_j, & H_L \leftarrow H_L + h_j \\
G_R \leftarrow G - G_L, & H_R \leftarrow H - H_L \\
score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})
\end{vmatrix}

  end
  Output: Split with max score
```

- 近似方法对于每个特征,只考察分位点,减少计算复杂度
 - Global: 学习每棵树前,提出候选切分点
 - Local:每次分裂前,重新提出候选切分点

Algorithm 2: Approximate Algorithm for Split Finding

for k = 1 to m do

Propose $S_k = \{s_{k1}, s_{k2}, \dots s_{kl}\}$ by percentiles on feature k. Proposal can be done per tree (global), or per split(local).

end

for
$$k = 1$$
 to m do

$$G_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \ge \mathbf{x}_{jk} > s_{k,v-1}\}} g_j$$

$$H_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \ge \mathbf{x}_{jk} > s_{k,v-1}\}} h_j$$

end

Follow same step as in previous section to find max score only among proposed splits.

• 近似方法举例: 三分位数

$$\begin{aligned} \textit{Gain} &= \max \{ \textit{Gain}, \frac{\textit{G}_{1}^{2}}{\textit{H}_{1} + \lambda} + \frac{\textit{G}_{23}^{2}}{\textit{H}_{23} + \lambda} - \frac{\textit{G}_{123}^{2}}{\textit{H}_{123} + \lambda} - \gamma, \\ \frac{\textit{G}_{12}^{2}}{\textit{H}_{12} + \lambda} + \frac{\textit{G}_{3}^{2}}{\textit{H}_{3} + \lambda} - \frac{\textit{G}_{123}^{2}}{\textit{H}_{123} + \lambda} - \gamma \} \end{aligned}$$

• 实际上XGBoost不是简单地按照样本个数进行分位,而是以二阶导数值作为权重(论文中的Weighted Quantile Sketch),比如:

• 为什么用hi加权? 把目标函数整理成以下形式,可以看出hi有对loss加权的作用

$$\sum_{i=1}^{n} \frac{1}{2} h_i (f_t(\mathbf{x}_i) - g_i/h_i)^2 + \Omega(f_t) + constant,$$

缺失值处理

当特征出现缺失值时,XGBoost

可以学习出默认的节点分裂方向

```
Algorithm 3: Sparsity-aware Split Finding
 Input: I, instance set of current node
 Input: I_k = \{i \in I | x_{ik} \neq \text{missing}\}
 Input: d, feature dimension
 Also applies to the approximate setting, only collect
 statistics of non-missing entries into buckets
 qain \leftarrow 0
 G \leftarrow \sum_{i \in I}, g_i, H \leftarrow \sum_{i \in I} h_i
 for k = 1 to m do
      // enumerate missing value goto right
      G_L \leftarrow 0, H_L \leftarrow 0
      for j in sorted(I_k, ascent order by \mathbf{x}_{ik}) do
           G_L \leftarrow G_L + g_i, \ H_L \leftarrow H_L + h_i
        G_R \leftarrow G - G_L, \ H_R \leftarrow H - H_Lscore \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})
      end
      // enumerate missing value goto left
      G_R \leftarrow 0, \ H_R \leftarrow 0
      for j in sorted(I_k, descent order by \mathbf{x}_{ik}) do
           G_R \leftarrow G_R + q_i, H_R \leftarrow H_R + h_i
         G_L \leftarrow G - G_R, \ H_L \leftarrow H - H_R

score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})
      end
 end
 Output: Split and default directions with max gain
```

XGBoost的其它特性

- 行抽样(row sample)
- 列抽样(column sample) 借鉴随机森林
- Shrinkage(缩减),即学习速率 将学习速率调小,迭代次数增多,有正则化作用
- 支持自定义损失函数(需二阶可导)

```
def logloss(preds, dtrain):
  labels = dtrain.get_label()
  # 将预测的score转化为概率
  preds = 1.0 / (1.0 + np.exp(-preds))
  grad = preds - labels
  hess = preds * (1.0 - preds)
  return grad, hess
```

更高效的工具包 LightGBM

• 速度更快

Data	xgboost	xgboost_hist	LightGBM
Higgs	3794.34 s	551.898 s	238.505513 s
Yahoo LTR	674.322 s	265.302 s	150.18644 s
MS LTR	1251.27 s	385.201 s	215.320316 s
Ехро	1607.35 s	588.253 s	138.504179 s
Allstate	2867.22 s	1355.71 s	348.084475 s

• 内存占用更低

Data	xgboost	xgboost_hist	LightGBM
Higgs	4.853GB	3.784GB	0.868GB
Yahoo LTR	1.907GB	1.468GB	0.831GB
MS LTR	5.469GB	3.654GB	0.886GB
Ехро	1.553GB	1.393GB	0.543GB
Allstate	6.237GB	4.990GB	1.027GB

• 准确率更高(优势不明显,与XGBoost相当)

LightGBM的改进

• 直方图算法

把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图。在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点

当离散为256个bin时,只需要8bit,比原始的浮点数节省7/8的内存占用。并且减小了分裂时计算增益的计算量。

LightGBM的改进

- 直方图差加速
 - 一个叶子的直方图可以由它的父亲节点的直方图与它兄弟节点的 直方图做差得到,提升一倍速度

- 带深度限制的Leaf-wise的叶子生长策略
- 直接支持类别特征
- Cache命中率优化
- 多线程优化
- •

参考文献

- Greedy function approximation a gradient boosting machine. J.H. Friedman(1999).
- Additive logistic regression a statistical view of boosting. Friedman(2000).
- XGBoost: A Scalable Tree Boosting System. T. Chen, C. Guestrin (2016).
- Introduction to Boosted Trees. T. Chen
- Tree Boosting With XGBoost. Didrik Nielsen
- XGBoost 与 Boosted Tree
- GBDT详解,火光摇曳
- <u>LightGBM: 三天内收获GitHub 1000+ 星</u>
- 《统计学习方法》李航. 附录梯度下降法与牛顿法
- 泰勒公式,维基百科

谢谢聆听!