16/11/2017 HackerRank

Unique Divide And Conquer

Submissions Leaderboard Discussions Editorial	Problem	
---	---------	--

Divide-and-Conquer on a tree is a powerful approach to solving tree problems.

Imagine a tree, t, with n vertices. Let's remove some vertex v from tree t, splitting t into zero or more connected components, t_1, t_2, \ldots, t_k , with vertices n_1, n_2, \ldots, n_k . We can prove that there is a vertex, v, such that the size of each formed components is $at most \lfloor \frac{n}{2} \rfloor$.

The Divide-and-Conquer approach can be described as follows:

- Initially, there is a tree, **t**, with **n** vertices.
- Find vertex v such that, if v is removed from the tree, the size of each formed component after removing v is at most $\lfloor \frac{n}{2} \rfloor$.
- Remove \boldsymbol{v} from tree \boldsymbol{t} .
- Perform this approach recursively for each of the connected components.

We can prove that if we find such a vertex v in linear time (e.g., using *DFS*), the entire approach works in $\mathcal{O}(n \cdot \log n)$. Of course, sometimes there are several such vertices v that we can choose on some step, we can take and remove any of them. However, right now we are interested in trees such that at each step there is a unique vertex v that we can choose.

Given n, count the number of tree t's such that the Divide-and-Conquer approach works determinately on them. As this number can be quite large, your answer must be modulo m.

Input Format

A single line of two space-separated positive integers describing the respective values of n (the number of vertices in tree t) and m (the modulo value).

Constraints

- $1 \le n \le 3000$
- $n < m < 10^9$
- m is a prime number.

Subtasks

- $n \le 9$ for 40% of the maximum score.
- $n \leq 500$ for 70% of the maximum score.

Output Format

Print a single integer denoting the number of tree t's such that vertex v is unique at each step when applying the Divide-and-Conquer approach, modulo m.

Sample Input 0

1 103

Sample Output 0

16/11/2017 HackerRank

1

Explanation 0

For n=1, there is only one way to build a tree so we print the value of $1 \mod 103 = 1$ as our answer.

Sample Input 1

2 103

Sample Output 1

P

Explanation 1

For n = 2, there is only one way to build a tree:

This tree is not valid because we can choose to remove either node $\mathbf{1}$ or node $\mathbf{2}$ in the first step. Thus, we print $\mathbf{0}$ as no valid tree exists.

Sample Input 2

3 103

Sample Output 2

3

Explanation 2

For n=3, there are 3 valid trees depicted in the diagram below (the unique vertex removed in the first step is shown in red):

Thus, we print the value of $3 \mod 103 = 3$ as our answer.

Sample Input 3

4 103

Sample Output 3

4

Explanation 3

For n=4, there are 4 valid trees depicted in the diagram below (the unique vertex removed in the first step is shown in red):

The figure below shows an invalid tree with n = 4:

This tree is *not valid* because we can choose to remove node $\mathbf{2}$ or node $\mathbf{3}$ in the first step. Because we had four valid trees, we print the value of $\mathbf{4} \mod 103 = \mathbf{4}$ as our answer.

f y in Submissions:<u>77</u> Max Score:90 Difficulty: Advanced Rate This Challenge: ☆☆☆☆☆

```
Current Buffer (saved locally, editable) & 🗸
                                                                                           Java 7
 1 ▼ import java.io.*;
   import java.util.*;
 3
    import java.text.*;
    import java.math.*;
 5
    import java.util.regex.*;
 6
 7 ▼ public class Solution {
 8
        public static void main(String[] args) {
 9 ▼
10
             /* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
11
   }
12
                                                                                                                    Line: 1 Col: 1
                                                                                                        Run Code
                                                                                                                     Submit Code
                      Test against custom input
1 Upload Code as File
```

16/11/2017 HackerRank

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature