Лекция 14. Непрерывность функции

14.1. Непрерывность функции в точке

Пусть a — предельная точка области определения функции f.

Определение 14.1. Функцию f называют непрерывной в точке a, если для каждого $\varepsilon > 0$ существует число $\delta(\varepsilon) > 0$ такое, что при всех x, удовлетворяющих условию $|x-a| < \delta$, справедливо неравенство $|f(x)-f(a)| < \varepsilon$, короче,

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0: \quad \forall x \quad |x - a| < \delta \quad \Rightarrow \quad |f(x) - f(a)| < \varepsilon.$$

Непрерывность функции в точке — свойство, характеризующее поведение функции не только в некоторой проколотой окрестности точки, но и в самой точке. Точка a обязана принадлежать области определения D(f). В определении непрерывности функции в точке a рассматривается δ — окрестность $U_{\delta}(a) = \{x : |x-a| < \delta\}$ точки a. Поэтому, когда говорят, что функция f непрерывна в точке, само собой разумеется, что f определена в некоторой окрестности этой точки.

Эквивалентную формулировку получим, используя предел функции в точке.

Определение 14.2. Функция f называется непрерывной в точке a, если

$$\lim_{x \to a} f(x) = f(a).$$

Определение 14.3. Функцию f называют непрерывной слева в точке a, если

$$\lim_{x \to a = 0} f(x) = f(a).$$

Определение 14.4. Функцию f называют непрерывной справа в точке a,если

$$\lim_{x \to a+0} f(x) = f(a).$$

Приведём ещё определение непрерывности "на языке последовательностей".

Определение 14.5. Функция f называется непрерывной в точке a, если для любой сходящейся к a последовательности точек $\{x_n\}$ из области D(f), справедливо равенство $\lim_{n\to\infty} f(x_n) = f(a)$.

Рис. 1: $\Delta f(a) = f(a + \Delta x) - f(a)$ — приращение функции f в точке a.

При изучении вопросов, связанных с непрерывностью функций, полезны понятия приращения аргумента и приращения функции. Пусть a и x — два значения аргумента функции f, положим $\Delta x = x - a$. Тогда $x = a + \Delta x$ и говорят, что точка x получена из a за счёт приращения аргумента Δx . Разность значений функции

$$\Delta f(a) = f(a + \Delta x) - f(a)$$

называют приращением функции f в точке a, когда аргумент получил приращение Δx . При этом Δx может быть как положительным, так и отрицательным.

Сформулируем определение непрерывности функции в точке "на языке приращений".

Определение 14.6. Функция f называется непрерывной в точке a, если бесконечно малому приращению аргумента в точке a соответствует бесконечно малое приращение функции f в точке a, т. е. $\Delta f(a) \to 0$ при $\Delta x \to 0$.

Определение 14.7. Функция f, непрерывная в каждой точке некоторого множества X, называется непрерывной на множестве X. Непрерывность в граничной точке множества X понимается как непрерывность соответственно слева или справа. Если при этом X = D(f), то функцию называют непрерывной.

14.2. Непрерывность основных элементарных функций

- Постоянная функция f(x) = c, где c некоторая константа, является непрерывной функцией.
 - \diamond Область определения функции $D(f) = \mathbb{R}$. Приращение функции в любой точке $a \in D(f)$ равно $\Delta f(a) = f(a + \Delta x) f(a) = c c = 0$.
- Степенная функция $f(x) = x^n$, где $n \in \mathbb{N}$, непрерывная функция.
 - \diamond Область определения функции $D(f) = \mathbb{R}$. Дадим аргументу приращение Δx и рассмотрим приращение функции в некоторой произвольной точке $a \in D(f)$:

$$\Delta f(a) = f(a + \Delta x) - f(a) = (a + \Delta x)^n - a^n = a^n + na^{n-1}\Delta x + \dots + \Delta x^n - a^n.$$

Поскольку при $\Delta x \to 0$ конечная сумма $na^{n-1}\Delta x + \ldots + \Delta x^n$ есть бесконечно малая, то $\Delta f(a) \to 0$ при $\Delta x \to 0$. Согласно определению 14.6 функция f(x) непрерывна в точке a.

В силу произвольности точки a функция $f(x) = x^n$, где $n \in \mathbb{N}$, непрерывна в своей области опредедения.

- Фукции $f(x) = \sin x$, $f(x) = \cos x$ непрерывные.
 - \diamond Начнем с функции $f(x) = \sin x$. Область определения функции $-D(f) = \mathbb{R}$.

Дадим аргументу приращение Δx и рассмотрим приращение функции в некоторой произвольной точке $a \in D(f)$:

$$\Delta f(a) = \sin(a + \Delta x) - \sin a = 2\cos\left(a + \frac{\Delta x}{2}\right)\sin\frac{\Delta x}{2}$$

В силу ограниченности косинуса и неравенства $|\sin \Delta x| \leq |\Delta x|$ имеем

$$0 \le |\Delta f(a)| \le 2 \left| \sin \frac{\Delta x}{2} \right| \le |\Delta x|.$$

Следовательно, согласно теореме о "двух милиционерах" $\Delta f(a) \to 0$ при $\Delta x \to 0$, что доказывает непрерывность синуса.

Д/З: Аналогично доказать непрерывность косинуса.

- Показательная функция $f(x) = a^x$, a > 0, $a \ne 1$, непрерывная функция.
 - 1. Рассмотрим сначала поведение показательной функции в точке x=0. Доказав, что $\lim_{x\to 0}a^x=a^0=1$, докажем тем самым непрерывность показательной функции в точке 0. Очевидно, что 0 предельная точка $D(f)=\mathbb{R},\,0\in D(f).$

а) Пусть a > 1.

 \Diamond

Ранее было доказано, что

$$\lim_{n \to \infty} a^{1/n} = \lim_{n \to \infty} \sqrt[n]{a} = 1 \quad \text{if} \quad \lim_{n \to \infty} a^{-1/n} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{a}} = 1.$$

Согласно этому для любого $\varepsilon > 0$

$$\exists N_1(\varepsilon) \in \mathbb{N}: \forall n > N_1 \quad 1 - \varepsilon < a^{1/n} < 1 + \varepsilon,$$

$$\exists N_2(\varepsilon) \in \mathbb{N}: \forall n > N_2 \quad 1 - \varepsilon < a^{-1/n} < 1 + \varepsilon;$$

тогда для всех n, больших $N = \max\{N_1, N_2\}$ выполняются неравенства

$$1 - \varepsilon < a^{-1/n} < a^{1/n} < 1 + \varepsilon.$$

Для этих n и всех x из окрестности нуля

$$-\delta = -\frac{1}{n} < x < \frac{1}{n} = \delta$$

в силу возрастания показательной функции при a>1 справедливы неравенства

$$1 - \varepsilon < a^{-1/n} < a^x < a^{1/n} < 1 + \varepsilon$$
.

Таким образом, для каждого $\varepsilon > 0$ существует такое число δ , зависящее от n, а в конечном счете зависящее от ε , что при всех x, удовлетворяющих условию $|x-a|<\delta$, справедливо неравенство $|a^x-1|<\varepsilon$, т. е. $\lim_{x\to 0}a^x=1$. Согласно определениям 14.1, 14.2 показательная функция $f(x)=a^x$ при a>1 непрерывна в точке 0.

б) Пусть
$$0 < a < 1$$
. Тогда $b = \frac{1}{a} > 1$ и $\lim_{x \to 0} a^x = \lim_{x \to 0} \frac{1}{b^x} = \frac{1}{\lim_{x \to 0} b^x} = 1$.

Непрерывность функции $f(x) = a^x$, a > 0, $a \ne 1$, в точке 0 доказана.

2. Теперь докажем непрерывность показательной функции в произвольной точке x_0 области определения, отличной от 0.

Дадим аргументу приращение Δx и рассмотрим приращение функции в точке x_0 :

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = a^{x_0 + \Delta x} - a^{x_0} = a^{x_0} (a^{\Delta x} - 1).$$

Так как a^{x_0} величина ограниченная, а $a^{\Delta x} - 1 \to 0$ при $\Delta x \to 0$, то

$$\lim_{\Delta x \to 0} \Delta f(x_0) = 0.$$

Согласно определению 14.6 функция $f(x) = a^x$ непрерывна в точке x_0 .

Непрерывность показательной функции доказана.

14.3. Арифметические свойства непрерывных функций

Теорема 14.3.1. Если функции f(x) и g(x) непрерывны в точке a, то в этой точке непрерывны функции $f(x) \pm g(x)$, $f(x) \cdot g(x)$, а если, кроме того, $g(a) \neq 0$, то непрерывна и функция f(x)/g(x).

Д/З:Доказательство провести самостоятельно. Арифметические свойства непрерывных функций вытекают из арифметических свойств предела функции в точке.

Следствие 14.3.2. Φ ункции $y = \operatorname{tg} x$ и $y = \operatorname{ctg} x$ являются непрерывными функциями.

14.4. Непрерывность обратной функции

Теорема 14.4.1. Пусть функция f на отрезке [a,b] строго возрастает и непрерывна, f(a) = c и f(b) = d. Тогда обратная функция $x = f^{-1}(y)$ строго возрастает и непрерывна на отрезке [c,d].

Доказательство. Функция f на отрезке [a,b] строго возрастает, если

$$\forall x_1, x_2 \in [a, b] \quad x_1 < x_2 \quad \Rightarrow \quad f(x_1) < f(x_2).$$

Надо доказать, что обратная функция f^{-1}

- 1. существует,
- 2. строго возрастает,
- 3. является непрерывной.
- 1. Обратная функция $x = f^{-1}(y)$ существует на отрезке [c,d], если функция y = f(x) является взаимно-однозначной на [a,b]. Докажем, что строго возрастающая на отрезке [a,b] функция является взаимно-однозначной, т. е. каждое $y \in [c,d]$ соответствует единственному элементу $x \in [a,b]$.

Предположим, что существует

$$y \in [c, d]: f(x_1) = y, f(x_2) = y, x_1 < x_2,$$

но это противоречит условию строгого возрастания функции f. Следовательно, строго возрастающая на отрезке [a,b] функция y=f(x) является взаимно-однозначной, а это означает, что существует обратная ей функция $x=f^{-1}(y)$.

- 2. Возьмем произвольные значения $y_1, y_2 \in [c, d]$ так, чтобы выполнялось неравенство $y_1 < y_2$. По свойству взаимно-обратных функций $y_1 = f(f^{-1}(y_1)), y_2 = f(f^{-1}(y_2))$. Значения строго возрастающей функции f находятся в том же соотношении, что и ее аргументы, следовательно, $f^{-1}(y_1) < f^{-1}(y_2)$. Это означает, что функция $f^{-1}(y)$ строго возрастает.
- 3. Зафиксируем точку $y_0 \in (c,d)$ и докажем непрерывность функции $f^{-1}(y)$ в этой точке. Пусть x_0 та точка интервала (a,b), в которой $f(x_0) = y_0$. Возьмём произвольное положительное число ε такое, что ε -окрестность точки x_0 принадлежит интервалу (a,b). Тогда точки $y_1 = f(x_0 \varepsilon)$ и $y_2 = f(x_0 + \varepsilon)$ попадают в интервал (c,d).

Рис. 2: Взаимно-однозначное соответствие интервалов $(x_0 - \varepsilon, x_0 + \varepsilon)$ и (y_1, y_2) .

В силу строгого возрастания функция f(x) устанавливает взаимно-однозначное соответствие интервала $(x_0 - \varepsilon, x_0 + \varepsilon)$ на оси OX и интервала (y_1, y_2) на оси OY.

Возьмём положительное число δ такое, что δ -окрестность точки y_0 принадлежит (y_1, y_2) . Тогда вся δ -окрестность точки y_0 при отображении $x = f^{-1}(y)$ попадёт в ε -окрестность точки x_0 . А это означает непрерывность функции f^{-1} в точке y_0 .

При доказательстве односторонней непрерывности функции $f^{-1}(y)$ в концах отрезка c и d рассуждения аналогичны. Нужно только брать соответствующие односторонние окрестности.

Теорема доказана.

Замечание 14.1. Если функция f строго возрастает и непрерывна на интервале (a,b), то $c = \lim_{x \to a+0} f(x)$, $d = \lim_{x \to b-0} f(x)$. Интервалы (a,b), (c,d) могут быть конечными или бесконечными.

Следствие 14.4.2. Функции $y = \log_a x$, $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$, $y = \arctan x$ являются непрерывными.

14.5. Непрерывность композиции функций

Пусть на множестве X задана функция f и Y — множество значений f(x), когда $x \in X$. Если на Y определена функция g, то говорят, что на множестве X определена суперпозиция функций

$$g \circ f = g(f(x))$$
.

Теорема 14.5.1. Пусть f(x) непрерывна в точке a, f(a) = b; g(y) непрерывна в точке b, g(b) = c; тогда суперпозиция функций g(f(x)) непрерывна в точке a.

Доказательство. Так как f(x) непрерывна в точке a, f(a) = b, то a- предельная точка области X и для любой сходящейся к a последовательности точек $\{x_n\}$ из области X справедливо равенство $\lim_{n\to\infty} f(x_n) = b.$

Так как g(y) непрерывна в точке b, g(b) = c, то b — предельная точка области Y и для любой сходящейся к b последовательности точек $\{y_n\}$ из области Y, в том числе и для $y_n = f(x_n)$, справедливо равенство $\lim_{n \to \infty} g(y_n) = c$.

Таким образом, a — предельная точка области X и для любой сходящейся к a последовательности точек $\{x_n\}$ из X справедливо равенство

$$\lim_{n \to \infty} g\left(f(x_n)\right) = c = g\left(f(a)\right),\,$$

т. е. выполняется определение непрерывности функции в точке на языке последовательностей. Теорема доказана.

Следствие 14.5.2. Если $\lim_{x\to a} f(x) = b$ и существует $\lim_{y\to b} g(y)$, то при вычислении предела $\lim_{x\to a} g(f(x))$ можено переходить от переменной x к новой переменной y=f(x):

$$\lim_{x \to a} g(f(x)) = \left\{ y = f(x) \xrightarrow[x \to a]{} b \right\} = \lim_{y \to b} g(y).$$

Следствие 14.5.3. Если существует $\lim_{x\to a} f(x)$, а функция g непрерывна, то знак предела (lim) и знак функции (g) можно менять местами.

$$\lim_{x \to a} g\left(f(x)\right) = g\left(\lim_{x \to a} f(x)\right). \tag{14.1}$$

Следствие 14.5.4. Степенная функция x^{α} , $\alpha \in R$, x > 0, является непрерывной.

Доказательство. Степенная функция $y = x^{\alpha}$, $\alpha \in R$, x > 0, представима в виде композиции непрерывных функций $f(x) = \alpha \ln x$ и $g(y) = e^y$:

$$x^{\alpha} = g(f(x)) = e^{\alpha \ln x}.$$

Пример 14.1.

- 1. Если существует $\lim_{x\to a} f(x)$, то $\lim_{x\to a} e^{f(x)} = e^{\lim_{x\to a} f(x)}$.
- 2. $\lim_{x \to a} \cos x = \cos \left(\lim_{x \to a} x \right) = \cos a$.

Теорема 14.5.5. Все элементарные функции непрерывны в своей области определения.

Доказательство. Мы доказали, что все основные элементарные функции являются непрерывными. Элементарные функции задаются с помощью конечного числа арифметических операций и композиций из основных элементарных функций, следовательно, также являются непрерывными.