Gradiënt Descent en Partieel differentiëren

Wat is gradient decent?

Gradient descent is een optimalisatie algoritme om de minimum van een functie te vinden. Het wordt vaak gebruikt bij deep learning modellen om gewichten en biases te veranderen en zo de model beter te trainen.

Opdrachten

Partieel differentiëren

Partieel afgeleide lineaire kostenfunctie

Partieel afgeleide
JCO)====\(\frac{1}{m}\Sin_1 \text{Cho}(\chick\cirt\cirt\cirt\cirt\cirt\cirt\cirt\cirt
met $he(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$
D (7 (8 0) 1 7 m 0 (1)
$\frac{\partial}{\partial \theta} \left(\mathcal{J}(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} 2(h \theta c x^{(i)}) - y^{(i)} \right)$ $= \frac{2}{m} \sum_{i=1}^{m} (c h \theta c x^{(i)}) - y^{(i)} $
Θ_{1}
$\frac{\partial}{\partial \theta}$ $C_{J}(\theta_{0},\theta_{1}) = \frac{1}{m}\sum_{i=1}^{m} 2 \operatorname{choc}_{\infty}(x_{i}) - y_{i})$, x_{i}
$=\frac{2}{\pi}\sum_{i=1}^{n}Ch\Theta C\chi C^{(i)})-\chi C^{(i)}).\chi C^{(i)}$

Gradiënt Descent

	Grad	ien to	esce	0						 1
	kosler	genci	2;3	Θ^2						
, 1	rand 0 = 1	lon u	Cicy	de						
2	nggele	eide								
3		9								
	Hellin 6-4=									
4	Cearn lr=0.	ing r	ode.							
5	Upda 0 = 1	1- CO!	1-24) = 1	6					
6	Repec 0 = 1.6	at .								
•	Helling	= 6-1	6 =	9.6	3.1.	9,6) =	0.6	4	

