General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CR-147630) RESULTS OF A CARRIER AIRCRAFT (MODEL AX13191-4) VERIFICATION TEST IN THE BOEING TRANSONIC WIND TUNNEL USING A 0.03-SCALE 747 CAM/ORBITER MODEL 45-0 (CA6), VOLUME 1 (Chrysler Corp.) 624 p

N77-20081 He A99/MF ABI

Unclas G3/05 54582

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER HOUSTON, TEXAS

SPACE DIVISION CHRYSLER

DMS-DR-2262 NASA CR-147,630

VOLUME 1 OF 2

RESULTS OF A CARRIER AIRCRAFT (MODEL AX13191-4)

VERIFICATION TEST IN THE BOEING TRANSONIC WIND TUNNEL

USING A 0.03-SCALE 747 CAM/ORBITER MODEL 45-0

(CA6)

by

747 Aerodynamics, 747 Flight Controls and Wind Tunnel Test Group Boeing Aerospace Company

Prepared under NASA Contract Number NAS9-13247

by

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:

BTWT 1472

NASA Series Number:

CA6

Model Number:

AX13191-4 (Carrier), 45-0 (Orbiter)

Test Dates:

May 20 through June 6, 1975

Occupancy Hours:

265

FACILITY COORDINATOR:

AERODYNAMICS ANALYSIS ENGINEERS:

R. W. Sendek The Boeing Company Orgn. B-8342 M/S 1W-82

P. 0. Box 3707

Seattle, Washington 98124

Phone: (206) 655-3037

PROJECT ENGINEER:

J. R. Cornelius The Boeing Company Orgn. B-8342 M/S 1W-82 P. 0. Box 3707 Seattle, Washington 98124

Phone: (206) 655-1644

E. G. Dickson The Boeing Company Orgn. B-8260 M/S OL-23 P. O. Box 3707 Seattle, Washington 98124 Phone: (206) 342-1293

A. R. Wolfla The Boeing Company Orgn. B-8241 M/S OL-21

P. O. Box 3707

Seattle, Washington 98124 Phone: (206) 342-1700

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison--D. A. Sarver, J. E. Vaughn

Operations--Maurice Moser, Jr.

Reviewed by:

G. G. McDonald

Approved:

L. Glynn, Manager

Data Operations

Concurrence:

N. D. Kemp, Manager

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

RESULTS OF A CARRIER AIRCRAFT (MODEL AX13191-4) VERIFICATION TEST IN THE BOEING TRANSONIC WIND TUNNEL USING A 0.03-SCALE 747 CAM/ORBITER MODEL 45-0 (CA6)

bу

747 Aerodynamics, 747 Flight Controls and Wind Tunnel Test Group Boeing Aerospace Company

ABSTRACT

Tested in the 8- x 12-foot Transonic Wind Tunnel was a 0.03-scale model of the 747 CAM/Orbiter. Force and moment data were obtained on each vehicle both mated and separated. The investigation included the effects of orbiter incidence, orbiter tail cone, orbiter strut fairings, elevon, and body flap settings. Analysis of the data indicated the 747 is suitable as a carrier of the Orbiter in both the ALT launch and ferry mode. The effect of configuration changes on drag and stability was determined.

TABLE OF CONTENTS

 $\{\sum_{i\in I} x_i\}$

	Page
ABSTRACT	ifi
INDEX OF MODEL FIGURES	2
INDEX OF DATA FIGURES	3
INTRODUCTION	12
NOMENCLATURE	14
CONFIGURATIONS INVESTIGATED	20
TEST FACILITY DESCRIPTION	22
DATA REDUCTION	23
RESULTS AND DISCUSSION &	27
REFERENCES	28
TABLES	
I TEST CONDITIONS	29
II DATASET RUN NUMBER COLLATION SUMMARY	30
III MODEL DIMENSIONAL DATA	45
MODEL FIGURES	67
DATA FIGURES VOLUME 1	81
APPENDIX	
TABULATED SOURCE DATA VOLUME 2	81

INDEX OF MODEL FIGURES

igure	Title	Page
1.	Axis Systems	67
2.	Model Sketches	
	a. Orbiter Configuration Model 45-0	68
	b. Orbiter Trip Strip Definition	69
	c. 747-100 Configuration Model AX13191-4	70
	d. Trip Strip Definition AX13191-4	71
	e. Orbiter/Carrier Model	72
	f. Orbiter/Carrier Model Nomenclature	73
	g. Forward Support Configurations	74
	h. Aft Support Configurations	75
3.	Model Photographs	
	a. 747 CAM Alone Front View	76
	b. 747 CAM Alone Aft View	76
	c. Orbiter Alone Front View	77
	d. Orbiter Alone Aft View	77
	e. Orbiter Base Details	78
	f. Mated Configuration Front View	73
	g. Mated Configuration Aft View	79
	h. Mated Configuration (Tail Cone On) Aft View	79
	i. Mated Configuration (Tail Cone On) Front View	80

INDEX OF DATA FIGURES

	FIGURE	TITLE	CONDITION VARYING	SCHEDULE OF COEFFICIENTS PLOTTED	PAGES
	4	ORBITER ALONE CHARACTERISTICS, ELEVON O	MACH	A	1-3
	5	ORBITER ALONE CHARACTERISTICS, ELEVON 5	MACH	Α	4-6
	6	EFFECT OF ELEVON GAP, ORBITER ALONE	CONFIG.	A	7-9
	7	LATERAL-DIRECTIONAL CHARACTERISTICS, ORBITER ALONE, ELEVON 5	МАСН	В	10-12
	8	ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES	PHI	Α	13-24
ယ	9	ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES	PHI	Α	25-36
	10	MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 48 INCHES	PHI	Α	37-48
	וו	MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES	PHI	Α	49-60
	12	EFFECT OF ORBITER HEIGHT IN TUNNEL	WNGHGT	Α	61-72
	13	STABILIZER EFFECTIVENESS, BASIC 747 ALONE	STAB	С	73-84
	14	ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER 5	ELEVATORS	C	85-87
	15 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER O		ELEVATORS	C	88-96
	16	LATERAL-DIRECTIONAL STABILITY, BASIC 747 ALONE	BETA	С	97-102
	17	RUDDER EFFECTIVENESS, BASIC 747 ALONE	RUDDER	С	103-108

FIGURE	TITLE	CONDITION VARYING	SCHEDULE OF COEFFICIENTS PLOTTED	PAGES
18	747 ALONE UPFLOW CORRECTION, WING AT 49 INCHES	PHI	С	109-120
19	EFFECT OF ORB. SUPPORT STRUT FAIRINGS, LAUNCH CONFIGURATION, BETA O	CONFIG.	С	121-123
20	ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT FAIRED	CONFIG.	С	124-126
21	ORB. AFT STRUT TRADES, LAUNCH CONFIG., FWD. STRUT FAIRED	CONFIG.	С	127-129
22	ORB. AFT STRUT TRADES, LAUNCH CONFIG., FWD. STRUT UNFAIRED (AT103-1)	CONFIG.	С	130-132
23	ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23 FAIRING	CONFIG.	С	133-135
24	ORB. AFT STRUT TRADES, LAUNCH CONFIG., FWD. STRUT UNFAIRED (AT103.2)	CONFIG.	С	136-138
25	EFFECT OF SEALING GAP BETWEEN FWD. BATHTUB FAIRING AND ORB., LAUNCH CFGN	CONFIG.	С	139-141
26	EFFECT OF ORB. SUPPORT STRUT FAIRINGS, LAUNCH CONFIG., BETA 4	CONFIG.	С	142-144
27	LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG.	BETA	С	145-150
28	MACH NUMBER EFFECTS, LAUNCH CONFIGURATION	MACH	С	151-153
29	RUDDER EFFECTIVENESS, LAUNCH CONFIG.	RUDDER	С	154-159
30	ELEVATOR EFFECTIVENESS, LAUNCH CONFIGURATION	ELEVATOR	С	160-165

	FIGURE	TITLE	CONDITION VARYING	SCHEDULE OF COEFFICIENTS PLOTTED	PAGES
	31	STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 0	STAB	С	166-168
	32	STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 5	STAB	С	169-177
	33	EFFECT OF ALL VERTICAL TAILS OFF ON LAUNCH CONFIG.	BETA	С	178-183
	34	TAILCONE EFFECTS, LAUNCH CONFIGURATION	CONFIG.	С	184-192
	35	ORBITER INCIDENCE EFFECTS ON LAUNCH CONFIGURATION, SPOILER 5	IORB	С	193–195
	36	ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION	ELEVON	С	196-207
1	37	STABILIZER EFFECTIVENESS ON LAUNCH CONFIGURATION	STAB	С	208-210
	38	LATERAL-DIRECTIONAL STABILITY OF LAUNCH CONFIGURATION	BETA	С	211-213
	39	RUDDER EFFECTIVENESS ON LAUNCH CONFIGURATION	RUDDER	C	214-216
	40	EFFECT OF SIDESLIP, ALL VERTICAL TAILS OFF, LAUNCH CONFIGURATION	ВЕТА	С	217-219
	41	ORBITER INCIDENCE EFFECTS ON LAUNCH CONFIGURATION, SPOILER -1	IORB	С	220-222
	42	ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA O	CONFIG.	С	223-228
	43	ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA 4	CONFIG.	C	229-234

σı

INDEX OF DATA FIGURES (CONTINUED)

FIGURE	TITLE	CONDITION VARYING	SCHEDULE OF COEFFICIENTS PLOTTED	PAGES
44	EFFECT OF SIDE STRUT FAIRINGS ON LAUNCH CONFIG., CA23 AFT STRUT	CONFIG.	С	235-237
45	COMPARISON OF CANDIDATE FAIRING CONFIGURATIONS, LAUNCH CONFIGURATION	CONFIG.	С	238-240
46	EFFECT OF TRIP STRIPS ON SUPPORT STRUT FAIRINGS, LAUNCH CONFIGURATION	CONFIG.	С	241-243
47	STABILIZER EFFECTIVENESS, STRUT FAIRINGS OFF, TC OFF	STAB.	С	244-246
48	LATERAL-DIRECTIONAL STABILITY, STRUT FAIRINGS OFF, TC OFF	BETA	С	247-249
49	RUDDER EFFECTIVENESS, STRUT FAIRINGS OFF, TC OFF	RUDDER	С	250-252
50	LATERAL-DIRECTIONAL STABILITY, FAIRINGS CA23 AFT AND LONG CHORD FWD.	BETA	С	253-258
51	ALL VERTICAL TAILS OFF, LAUNCH CONFIG., CA23 AFT AND ROUND FWD.	BETA	С	259-261
52	LATERAL DIRECTIONAL STABILITY, LAUNCH CONFIG., CA23 AFT AND ROUND FWD.	BETA	С	262-264
53	STABILIZER EFFECTIVENESS, LAUNCH CONFIG., CA23 AFT AND ROUND FWD.	STAB	С	265-267
54	LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG., MIN AFT AND GAITER FWD.	BETA	С	268-270
55	STABILIZER EFFECTIVENESS, LAUNCH CONFIG., MIN AFT AND GAITER FWD.	STAB.	С	271-273

¢

F1GURE	TITLE	CONDITION VARYING	SCHEDULE OF COEFFICIENTS PLOTTED	PAGES
56	ELEVATOR EFFECTIVENESS, LAUNCH CONFIG., CA23 AFT AND ROUND FWD.	ELEVATOR	С	274-276
57	EFFECT OF T.C. FAIRING ON LONGITUDINAL STABILITY, ALT LAUNCH	CONFIG, STAB	С	277-279
58	STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON O	STAB	C	280-282
59	STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5	STAB	С	283-294
60	STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -10, BDFLAP 0	STAB	С	295-297
61	STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -10, BDFLAP -11.7	STAB	С	298-300
62	ELEVATOR EFFECTIVENESS, ALT CLIMB, IORB 6	ELEVATOR	С	301-309
63	LATERAL-DIRECTIONAL STABILITY, ALT CLIMB, IORB 6	BETA	С	310-315
64	RUDDER EFFECTIVENESS, ALT CLIMB, IORB 6	RUDDER	С	316-327
65	LATERAL-DIRECTIONAL STABILITY, ALL VERTICAL TAILS OFF, ALT CLIMB	вета	С	328-333
66	ORBITER ELEVON EFFECTS, FERRY, IORB 4.25	ELEVON	С	334-336
67	LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON -5	BETA	С	337-342
68	LATERAL-DIRECTIONAL STABILITY, FERRY, IQRB 4.25, ELEVON 0	ВЕТА	С	343-348

	FIGURE	TITLE	CONDITIONS VARYING	SCHEDULE OF COEFFICIENTS PLOTTED	PAGES
	69	RUDDER EFFECTIVENESS, FERRY, IORB 4.25	RUDDER	С	349-354
	70	ELEVATOR EFFECTIVENESS, FERRY, IORB 4.25	ELEVATOR	С	355-360
	71	STABILIZER EFFECTIVENESS, FERRY, IORB 4.25	STAB	С	361-369
	72	ALL VERTICAL TAILS OFF, FERRY, IORB 4.25	BETA	С	370-375
	73	HORIZONTAL TAIL OFF, FERRY, IORB 4.25	MACH	С	376-378
တ	74	STABILIZER EFFECTIVENESS, FERRY, IORB 3.0	STAB	С	379-381
	75	LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 3.0	BETA	С	382-384
	76	RUDDER EFFECTIVENESS, FERRY, IORB 3.0	RUDDER	С	385-387
101 78 LAT STI 79 ALI	77	STABILIZER EFFECTIVENESS, FERRY, UNFAIRED STRUTS, IORB 4.25	STAB	С	388-390
	LATERAL-DIRECTIONAL STABILITY, FERRY, UNFAIRED STRUTS, IORB 4.25	ВЕТА	С	391-393	
	79	ALL VERTICAL TAILS OFF, FERRY, UNFAIRED STRUTS, IORB 4.25	BETA	С	394-396
	80	TAILCONE EFFECTS, FERRY, UNFAIRED STRUTS, 10RB 4.25	CONFIG.	С	397-399
	18	HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, ALT CLIMB, 10RB 8	CONFIG.	С	400-405

FIGURE	TITLE	CONDITIONS VARYING	SCHEDULE OF COEFFICIENTS PLOTTED	PAGES
82	HORIZONTAL TAIL OFF INFLIGHT SPEED BRKS, ALT LAUNCH, IORB 8	CONFIG	С	406-411
83	HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, FERRY, IORB 4.25	CONFIG.	С	412-417
84	HORIZONTAL TAIL OFF, INFLIGHT SPEED BRKS, FERRY, IORB 4.25	CONFIG.	С	418-423
85	747 CAM AND BASIC 747, HORIZONTAL TAIL OFF	CONFIG.	С	424-429
86	EFFECT OF FORWARD STRUT HEIGHT, 747 CAM	CONFIG.	С	430-432
87	STABILIZER EFFECTIVENESS, 747 CAM, CA23 AFT-ROUND FWD	STAB	С	433-435
88	LATERAL-DIRECTIONAL STABILITY, 747 CAM, CA23 AFT-ROUND FWD	вета	С	436-438
89	MACH NUMBER EFFECTS, SPEED BRAKES DOWN, 747 CAM, CA23 AFT-ROUND FWD	MACH	С	439-441
90	ELEVATOR EFFECTIVENESS, 747 CAM, CA23 AFT-ROUND FWD	ELEVATOR	С	442-444
91	RUDDER EFFECTIVENESS, 747 CAM, CA23 AFT-ROUND FWD	RUDDER	С	445-447
92	MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT-ROUND FWD	MACH	С	448-450
93	EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN	CONFIG.	С	451-462

	FIGURE	TITLE	CONDITIONS VARYING	SCHEDULE OF COEFFICIENTS PLOTTED	PAGES
	94	MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT AND GAITER FWD	MACH	С	463-465
	95	LATERAL-DIRECTIONAL STABILITY, 747 CAM, MIN AFT AND GAITER FWD	вета	С	466-468
	96	EFFECT OF SPEED BRAKES, 747 CAM, MIN AFT AND GAITER FWD	SPOILER	С	469-471
	97	MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT AND GAITER FWD.	MACH	С	472-474
10	98	MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT, FAIRED FWD	МАСН	С	475-477
	99	MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, CAM STRUTS OFF	MACH	С	478-480
	100 REPEATABILITY STUDY, SPEED BRAKES DOWN, BASIC 747		С	481-492	
	101	CA-5 AND CA-6 COMPARISON, BASIC 747 ALONE	STAB	C	493-504
	102	CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER = 0	STAB	С	505-513
	103	CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER = -1	STAB	С	514-522
	104	CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, TAILCONE OFF	STAB	С	523-525

FIGURE	TITLE	CONDITIONS VARYING	SCHEDULE OF COEFFICIENTS PLOTTED	PAGES
105	CA-23 AND CA-6 COMPARISON, BASIC 747 CONFIGURATION, SPOILER = -1	-	С	526-528
106	CA-23 AND CA-6 COMPARISON, LAUNCH CONFIGURATION, SPOILER = 5	-	С	529-531
107	CA-23, CA-5, CA-6 COMPARISON, BASIC 747 CONFIGURATION	STAB	С	532-534
108	CA-23, CA-5, CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER = -1	STAB	С	535-537
109	CA-23, CA-5, CA-6 COMPARISON, LAUNCH CONFIGURATION	STAB	С	538-540

SCHEDULES:

- A) CL vs ALPHAO; CL vs CD; ALPHAO, CL vs CLM; CLN, CY, CSL vs ALPHAO
- B) CLN, CSL, CY vs BETAO
- C) CL vs ALPHAW; CL vs CD; ALPHAW, CL vs CLM; CLN, CY, CSL vs ALPHAW

INTRODUCTION

Previous 747/Orbiter mated configuration testing (CA5) was accomplished in the Boeing Transonic Wind Tunnel in September 1974 to obtain high speed data for the ferry and launch configurations. At that time, the baseline configuration included orbiter tailcone TC5 for both ferry and launch configurations. Subsequent to that test, the following changes were made to the baseline configuration:

- 1) Tailcone TC5 replaced by TC4 for ferry
- 2) Tailcone off for launch
- 3) Flaps up, gear up launch configuration

Therefore, one of the primary objectives of the CA6 configuration refinement test was to determine the impact of the tailcone configuration changes on drag, directional stability, and rudder power. The other test configuration changes were directed toward reducing drag for the ferry and launch climb configurations.

As a result of some of the conclusions reached following the CA23 separation test conducted at Ames Research Center (ARC) in March and April 1975, considerable interest was shown in obtaining sufficient data from the CA6 to verify those conclusions. Therefore, additional mated data were obtained as well as Orbiter alone and 747/CAM alone data.

Test objectives are summarized as follows:

1) Verify the suitability of the 747/CAM for ferry with TC4 on and for air launch with TC4 on or off.

INTRODUCTION (Concluded)

- 2) Determine the effects of the configuration changes:
 - various support strut fairings
 - Orbiter incidence

- Orbiter elevon on ferry and launch climb performance and stability characteristics
- Orbiter body flap setting on launch climb performance
- 3) Measure Orbiter alone data to enable NASA/RI to calculate proximity effects.
- 4) Obtain comparative data with the CA23 test
- 5) Conduct selected flow visualization studies

Test CA6 was conducted in the Boeing 8- x 12-ft. Transonic Wind Tunnel (BTWT) May 20 to June 6, 1975. Occupancy time was 265 hours, including loads testing. Loads tests were made to obtain horizontal tail-off force and pitching moment data to be used together with the CA9 high speed pressure test data. Total number of data runs was 423. Test designation is BTWT 1472.

All of the test objectives were accomplished.

Volume 1 contains data figures and Volume 2 contains the appendix of tabulated source data.

NOMENCLATURE General

SYMBOL	PLOT SYMBOL	DEFINITION
8		speed of sound; m/sec, ft/sec
$c_{\mathbf{p}}$	CP	pressure coefficient; $(p_1 - p_{\omega})/q$
М	MACH	Mach number; V/a
p		pressure; N/m ² , psf
đ	Q(NSM) Q(PSF)	dynamic pressure; 1/2pV ² , N/m ² , psf
RN/L	RN/L	unit Reynolds number; per m, per ft
٧		velocity; m/sec, ft/sec
α	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
ψ	PSI	angle of yaw, degrees
ϕ	PHI	angle of roll, degrees
ρ		mass density; kg/m^3 , $slugs/ft^3$
	Refe	rence & C.G. Definitions
Ab .		base area; m ² , ft ²
ъ	BREF	wing span or reference span; m, ft
c.g.		center of gravity
£ _{REF} ē	LREF	reference length or wing mean aerodynamic chord; m, ft
S	SREF	wing area or reference area; ${\rm m}^2,~{\rm ft}^2$
	MRP	moment reference point
	XMRP	moment reference point on X axis
	YMRP	moment reference point on Y axis
•	ZMRP	moment reference point on Z axis
SUBSCRIPTS		·
ь 1		base local
s		static conditions
t œ		total conditions
		free stream

NOMENCLATURE (Continued)

Stability-Axis System

SYMBOL	PLOT SYMBOL	DEFINITION
CL.	CL	lift coefficient; lift , CAM
c^D .	CD	drag coefficient; drag, CAM
$\mathbf{c}_{\mathtt{Y}}$	СŸ	side-force coefficient; side force, CAM
c_{m}	CLM	pitching-moment coefficient; pitching moment , CAM qs/MAC
c _n	CIN	yawing-moment coefficient; yawing moment, CAM qSb
cl	CSL	rolling-moment coefficient; rolling moment , CAM qSb
c_{L_0}	CL	lift coefficient; $\frac{1ift}{qS}$, ORB
$c_{D_{\hbox{\scriptsize O}}}$	CD	drag coefficient; $\frac{drag}{qS}$, ORB
c_{Y_0}	CY	side-force coefficient; $\frac{\text{side-force}}{\text{qS}}$, ORB
c_{m_O}	CLM	pitching-moment coefficient; pitching-moment, ORB
c_{n_0}	CLN	yawing-moment coefficient; yawing moment, ORB
^С во	CSL	rolling-moment coefficient; $\frac{\text{rolling moment}}{\text{qSb}}$, ORB

ORIGINAL PAGE IS OF POOR QUALITY

NOMENCLATURE (Continued)

Body-Axis System

SYMBOL	PLOT SYMBOL	DEFINITION
$c_{ m N}$	CN	normal-force coefficient; normal force , CAM
CA	CA	axial-force coefficient; axial force , CAM
CY	CY	side-force coefficient; side force , CAM qS
c_m	CIM	pitching-moment coefficient; pitching moment , CAM qSLMAC
c_n	CYN	yawing-moment coefficient; yawing moment, CAM
c _l	CBL	rolling-moment coefficient; rolling moment, GAM qSb
c_{N_0}	CN	normal-force coefficient; $\frac{\text{normal-force}}{\text{qS}}$, ORB
$c_{A_{0}}$	CA	axial-force coefficient; $\frac{\text{axial force}}{\text{qS}}$, ORB
$c_{\mathbf{YO}}$	CY	side-force coefficient; $\frac{\text{side force}}{\text{qS}}$, ORB
c_{m_0}	CTW	pitching-moment coefficient; pitching moment, ORB qS MAC
C _{nO}	CYN	yawing-moment coefficient; yawing moment, ORB qSb
c _e o	CBL	rolling-moment coefficient; rolling moment, ORB qSb

NOMENCLATURE (Continued) Additions to Standard List

Symbol	Plot <u>Symbol</u>	Definition
BSTA		carrier fuselage station, in.
BWL.		carrier water line, in.
-	CDFFC	skin friction drag increment of Carrier
-	CDFF0	skin friction drag increment of Orbiter
FS		fuselage station, in.
i _{ORB}	IORB	Orbiter incidence angle, deg.
MS		model station, in.
$p_{t_{\infty}}$	PT-PSF	freestream total pressure - psf
p _∞	PS-PSF	freestream static pressure - psf
q_{∞}	Q(PSF)	freestream dynamic pressure - psf
s _{i-j}	Si-j	spoiler nos. i through j deflection angle, deg.
T _∞	TB11	freestream temperature - ^O R
WL		waterline, in.
WP		water plane, in.
Хс	XC	carrier longitudinal station, in.
Хо	XO	Orbiter longitudinal station, in.
Yc	YC	carrier lateral station, in.
Yo	YO	Orbiter lateral station, in.
Zc	ZC	carrier vertical station, in.
Zo	Z0	Orbiter vertical station, in.
αc	ALPHAC	carrier fuselage angle of attack, deg.

NOMENCLATURE (Continued) Additions to Standard List

	D2	
Symbol .	Plot Symbol	Definition
^α o	ALPHA0	Orbiter angle of attack, = $i_{ORB} - 2^{O} + \alpha_{WDP} - \Delta i_{ORB}$, deg.
$^{\alpha}$ WDP	ALPHAW	Carrier wing angle of attack, $\alpha_{\text{WDP}}^{=-\alpha}$ c + 2°, deg.
β _C	BETAC	carrier sideslip angle, deg.
^β 0	BETAO	Orbiter sideslip angle, deg.
^Ơ ORB	DIORB	change in Orbiter incidence due to support strut and balance deflections, deg.
$^{\Deltalpha}$ o	DALFA0	wall interference correction to orbiter angle of attack
^{Δα} c	DALFAC	wall interference correction to carrier angle of attack
^p ₁	DPC1	
Δp ₂	DPC2	differential pressure in balance cavity
Δp ₃	DPC3	area (local static pressure - freestream static pressure)- psf
Δp ₄	DPC4	
δe _{IB}	ELV-IB	carrier inboard elevator deflection, deg.
δ e _{OB}	ELV-0B	carrier outboard elevator deflection, deg.
δe	ELEVON	Orbiter elevon deflection angle, deg.
^δ BF	BDFLAP	Orbiter body flap deflection angle, deg.
δRL	RUD-L	carrier lower rudder panel deflection angle, deg.
^δ RU	RUD-U	carrier upper rudder panel deflection angle, deg.

NOMENCLATURE (Concluded) Additions to Standard List

Symbol	Plot <u>Symbol</u>	<u>Definition</u>
δ _R	RUDDER	Orbiter rudder deflection angle, deg.
^δ SB	SPDBRK	Orbiter speedbrake deflection angle, deg.
$J_{ ext{WDP}}$	STAB	carrier horizontal stabilizer deflection angle, with respect to wing, deg.
^ф ОRВ	PHIO	orbiter roll angle, deg.
	CAM	carrier aircraft modification
	FWD ST	forward strut angle
	WNGHGT	wing height, vertical distance from tunnel floor, inches

CONFIGURATIONS INVESTIGATED

Tested were Orbiter alone, 747 Carrier alone, and mated 747/Orbiter installations. The .03-scale models represented the baseline configuration.

747/Orbiter_

In the mated configuration, the 747/CAM model was attached to a blade and offset sting (WTC 506) in the lower rear fuselage. Installation is shown in figure 3a and 3b. The Orbiter model was mounted to the 747 carrier through a 3-point strut support system. The support struts were tested unfaired and faired using various combinations of the strut fairings (figures 2g and 2h).

Forces on the two models were recorded independently on separate internal balances. The carrier balance (6226) measured total carrier plus Orbiter forces and moments and the Orbiter balance (660G) measured Orbiter forces and moments.

<u>Crbiter</u>

The .03 scale Orbiter model 45-0 was tested alone, mounted on the MC 1-1200 straight sting. Orbiter forces and moments were measured by the same balance as in the mated configuration. Pitch data were obtained with elevon deflections of 0° and +5°. Yaw data at α_0 = 0° were obtained by rolling the model 90° and pitching through the required angle of attack range.

747 Carrier Aircraft

The .03 scale 747 model AX13191-4 was mounted on the WTC 506 swept

CONFIGURATIONS INVESTIGATED (Concluded)

strut sting, the same as in the mated configuration. The 6226 balance was used to measure 747 forces and moments.

The carrier was tested alone in the basic 747 configuration and in the 747 CAM configuration, with the 200 ft. 2 horizontal tail tip fins and orbiter support structure.

Test Variables

()

Carrier wing angle of attack = -4° to 12°

Orbiter angle of attack = 0 to 16°

Yaw angle = -10° , -6° , -4° , -2° , 0° , $+4^{\circ}$

Carrier Configuration Variables

Orbiter support structure and fairings

Stabilizer FRL = -1° , 0° , 1° , 2° , 5°

Rudder (upr/lwr) = 0/0, 3/3, 10/10, 0/10, 10/0

Inflight speed brakes 0/0/0 and 0/45/20

Elevator (inbd/outbd) = 0/0, 10/10, -10/-10

Horizontal tail off and on

Horizontal tail tip fins and vertical tail off and on

Model upright and inverted

Orbiter Configuration Variables

Nominal Orbiter incidence = 3° , 4.25° , 6° , 8° Tail cone off, tail cone on (TC4) Elevons 0° , $\pm 5^{\circ}$, -10° Body flap 0° , -11.7°

Elevon gaps open and sealed (one run)

Model upright and inverted

TEST FACILITY DESCRIPTION

The Boeing Transonic Wind Tunnel (BTWT) is a continuous flow, closed circuit, single return, atmospheric facility with the following characteristics:

Test Section Flow P	arameters	Test Section Dimens	ions
Freestream Condition	Range	Description	Value
Mach number	0 thru 1.15	Cross-section (minus	
Dynamic pressure, psia	0 thru 6.3	corner fillets), ft.	8 x 12
Static pressure, psia	15 to 5.4	Length, ft.	14.5
Stagnation pressure	atmospheric	Area, ft ²	88
Maximum unit Reynolds number, per foot	4 x 10 ⁶		-
Maximum total temperature, °F	160		

The test section can be operated with either solid or slotted walls.

The slotted wall configuration consists of 16 slots which can vary wall porosity from 3.5% to 11%.

Test data acquisition, recording, computations, and display are done by an XDS-9300 computer and Astro data sub-system.

DATA REDUCTION

Wall Corrections

Data were corrected for wall effects using the standard BTWT lift interference factor for 11% slotted walls, δ_0 = -.11 in the equation:

$$\Delta \alpha_{\text{wall}} = 57.3 \delta_{\text{o}} \frac{S_{\text{ref}}}{\text{Tunnel Area}} C_{\text{L}}$$

For the 747 alone or the Orbiter alone, the correction is straight forward. For the mated 747/Orbiter, $\Delta\alpha_{wall}$ was based on total C_L of the 747 + Orbiter as measured by the 747 balance, and this value of $\Delta\alpha_{wall}$ was used for the Orbiter balance data as well as the 747 balance data.

Drag correction for the mated configuration using the $\Delta\alpha_{wall}$ as determined above along with the appropriate C_L of either the 747 balance or the Orbiter balance is:

Orbiter balance:
$$\Delta C_D = (\Delta \alpha_{\text{wall}})(C_{\text{L}}_{\text{(orb)}})$$

$$= \begin{bmatrix} 57.3 & \delta_0 & \frac{S_{\text{ref}}}{\text{Tunnel Area}} & C_{\text{L}}_{\text{(747+orb)}} \end{bmatrix} \begin{bmatrix} C_{\text{L}}_{\text{(orb)}} \end{bmatrix}$$
747 balance: $\Delta C_D = \begin{bmatrix} 57.3 & \delta_0 & \frac{S_{\text{ref}}}{\text{Tunnel Area}} & C_{\text{L}}_{\text{(747+orb)}} \end{bmatrix} \begin{bmatrix} C_{\text{L}}_{\text{(747+orb)}} \end{bmatrix}$

Upflow |

1

The model was flown upright and inverted at each Mach number for the following configurations: Orbiter alone, with the wing at 48 inches and 57 inches above the tunnel floor, and 747 alone, with the wing at 49 inches above the tunnel floor. The upflow correction thus obtained at zero lift was applied to 747 balance data or Orbiter balance data at all

DATA REDUCTION (Continued)

angles of attack. The upflow derived with the Orbiter at 57 inches was applied to the Orbiter balance data in the mated configuration.

Blockage

Standard practice at BTWT is not to apply blockage corrections to the data for a slotted test section because they are considered small. For the 747 alone configuration, the correction to dynamic pressure, q, is less than .3% over the range of Mach number tested in CA6. This correction is directly proportional to volume of the model. Since the volume of the 747 plus Orbiter is 1/3 more than that of the 747 alone, q correction for the mated configuration is less than .4%.

Reynolds Number Correction

A Reynolds number correction was applied to all model drag data. This correction is necessary as a consequence of total temperature variation of the tunnel flow. The correction is applied to each model component (wing, horizontal tail, nacelle, etc.) by estimating the skin friction coefficient for each and correcting to a nominal Reynolds number per foot if the test RN is more than \pm 25000 from the nominal.

The model wetted areas and reference lengths used to correct to the nominal Reynolds number are as follows:

Mode1	Component	Ref. Length	Wetted Area
747 747 747 747 747	Body Flap track fairings Horizontal tail Nacelles (internal) Nacelles (external)	6.75 ft. .65	12.71 <u>ft²</u> .84 2.175 1.7 1.245

DATA REDUCTION (Continued)

Mode 1	Component	Ref. Length	Wetted Area
747	Nacelle struts	.638 <u>ft.</u>	$ \begin{array}{c c} .650 & \underline{ft}^2 \\ 1.53 & \underline{} \\ 8.28 & \underline{} \end{array} $
747	Vertical tail	.6940	
747	Wing	.9058	
Orbiter	Body (TC on)	4.155	7.2252
Orbiter	Body (TC off)	3.225	5.5692
Orbiter	Vertical tail	.4995	.6941
Orbiter	Wing	1.1868	3.5775

Mounting Strut Tare Corrections

(]:

Data in this report were corrected for 747 model support system interference only where noted. These effects were evaluated for the 747 alone configuration in previous BTWT tests. The tares were extrapolated for the M=.3 case.

All carrier aerodynamic forces and moments measured were reduced to coefficient form in the body and stability axis systems using the following carrier reference dimensions:

Symbol	Description	Model <u>Scale</u>	Full <u>Scale</u>
S	747 wing area, ft ²	4.95	5500
ъ	747 wing span, in.	70.44	2348
č	747 wing mean aerodynamic chord, in.	9.834	327.8
XMRP	747 longitudinal moment reference point, in. X _C	40.196	1339.91
YMRP	747 lateral moment reference point, in. Y_C	0.0	0.0
ZMRP	747 vertical moment reference point, in. Z_{C}	5.7225	190.75

DATA REDUCTION (Concluded)

Orbiter aerodynamic forces and moments measured by the Orbiter internal balance were also reduced to coefficient form in body and stability axis systems using Orbiter reference dimensions as listed below:

> SREF = 2690 ft^2 LREF = 474.8 in.

BREF = 936.67 in.

XMRP = 1109.0 in.X0

YMRP = 0.0 in, Y0

ZMRP = 375.0 in Z0

RESULTS AND DISCUSSION

For Taunch climb, the TC4 fairing was found to give a considerably greater drag saving than the TC5 fairing tested in CA5.

Test	<u>∆CD</u>	Tailcone
CA6	.0152	TC4
CA5	.0110	TC ₅

The TC₄ tailcone fairing consistently performs better than TC₅; a similar improvement was observed for the ferry configuration. Both orbiter strut fairings and an up (-5°) orbiter elevon reduce the climb drag for near-ceiling conditions (C_L = .75), the model scale increments being ΔC_D = -43 counts and -15 counts, respectively.

For the typical ferry cruise condition at C_L = 0.6, the faired orbiter support struts reduce the wind tunnel grag coefficient by 41 counts. Other fairing configurations gave up to 62 drag counts reduction. However, these gains were made with high fineness ratio (long chord) forward strut fairings, which caused further deterioration in directional stability below the minimum guideline level. Ferry drag was reduced by decreasing the Orbiter incidence to 3° (from 4.25°). The 15 count (approximate) reduction in wind tunnel drag was partly a result of the reduced forward support strut length. A five-degree up orbiter elevon angle was tested but gave no improvement in ferry drag.

REFERENCES

- "Pre-test Information for Testing the 747/Space Shuttle Orbiter in the Boeing 8 x 12-foot Transonic Wind Tunnel. Test No. CA-6," E. Dickson, L. Watts, Boeing Doc. D180-18380-1, May 8, 1975.
- "Aerodynamic Design Data Book, Volume 1, Orbiter Vehicle," December 1974, SD 72-SH-0060-1H.
- "Analysis of CA5 High Speed Test of Boeing 747 Space Shuttle Orbiter Carrier (BTWT Test 1431," Boeing Doc. D180-18411-1, R. M. Miller, dated October 31, 1974.
- "Model Assembly" (TE 1007), Boeing Dwg. 65-69716.
- "Wing," W44_1, Boeing Dwg. No. 65-89585.
- "Horizontal Tail Assembly," H₁₅, Boeing Dwg. No. 65-66630.
- "Nacelle Assembly," N₅₇ & N₅₈.
- "Nacelle Installation," N57 & N58, Boeing Dwg. No. 1007-97.
- "Vertical Tail," Vg.1, Boeing Dwg. No. 1007-26.
- "Orbiter Configuration Control Drawing," NR Dwg. No. VL70-000140A.
- "Orbiter Lines Baseline," NR Dwg. No. VL70-000147B.
- "Boeing Model 747-200B Aerodynamic Summary," Boeing Dwg. No. 65B00097.

TABLE I.

ST : CA6	TABLE I.		DATE : Post-Test
	TEST CON	DITIONS	
			•
MACH NUMBER	REYNOLDS NUMBER (per foot)	DYNAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATUR (degrees Fahrenheit)
0.3	1.88 x 10 ⁶	0.87	90
0.4	2.36 x 10 ⁶	1.50	97
0.5	2.75 x 10 ⁶	2.17	104
0.6	3.06×10^6	2.90	112
0.7	3.33 x 10 ⁶	3.64	114
		<u>.</u>	
BALANCE UTILIZED:	Boeing 6226 (747),	Boeing 660G (Orbi	ter)
NF SF AF PM RM	CAPACITY: 660G 6226 1335 4750 lbs 1780 2380 lbs 133 360 lbs 2015 21000 in-lb	ACCURACY: + 0.1% + 0.1% + 0.1% - 0.1% - 0.1% - 0.1% - 0.1%	COEFFICIENT TOLERANCE:
COMMENTS:	4265 8300 in-1b)S <u>T U.1%</u>	

DATA SET CONFIGURATION			C1	RE	ER			T,	ORBI	ER						MACHI	-			
IDE	HTIFIER			Q	18	Seu	Se _{Ve}	B	0	oL	उ	Se	5-	SOF	Ø	0,3	0.4	0.5	0.6	o.
RG	Pool	ORB +	FANS								0	0	0	0	0	9		8	17	6
	- 2									\Diamond		5	1			14		13	12	1,1
	ા									$\langle \cdot \rangle$						18		17	16	15
										O	15				90	23		22	21	20
	ુડ								2-1	\Diamond	0				180	28		27	26	2.
	ંદ્ર					1 245				5						32		31	30	2
	்7									S						39	5	36	38	3
	ଂଖ					1										43		42	41	4
	3									⋧ >					0	48		47	46	4
	10															52		51	50	4
	11		Elevo Gap ≤EAL	N 50															54	
•	12	K,+ H	15.1 Vq.1	(2.13	0	0	0	0							65		64	63	6.
	13				4.0											70		69	68	6
	14				1.9		1									75		74	73	7
	15						10												78	
	16			\coprod	1		-10					pretty.							80	
	17				.06		-10									84			83	8
7	18			1	:03	V	-10	Y	Ý							8	14 - 147. 148 148.		87	ŏ
1	7		13 19		:	25		31		37		43	49) 	55		<u>61</u>		67	
ا	اسبا		terre la		لي	عبا		سال	444	بيا		سيا	بلبد		,1,		مهدا		مميا	••
			Dda = 0	1.	. , .			C	OEFFI	CENTS	G. Company		17	ر اد	4 +		1DV	LA (1)	IC A	121

 \ominus

OF POOR QUALITY TABLE II (Continued) TEST: DATE: DATA SET/RUN NUMBER COLLATION SUMMARY CARRIER ORBITER MACH NUMBERS DATA SET CONFIGURATION SSP LORB &P 5+ SBF 0.40.5 0.6 0.7 0.3 RGPO 19 Ö K, + H,5.149.1 Ò /07 **Z8** 3/ K2 + H15.1 V2.1 KZ+MGANG, SI-IZ AT 100.1 + ORB F 47,

COEFFICENTS IDVAR III ICS AR (2): NOV 3 de = -1.7 to 1.0° Dx = - 4+0.12 K2 = same as K1 except trib stribe removed from made nacelle primary SCHEDULES

75 76

TEST

MUN NUMBERS

DATA SET	CONFIGURATION				RIFF					ORE	ITE						IUMBERS	
ENTIFIER		\propto	8	Se%	Se 6	3	0		LORB		25	SBF		0.3	0.4	0.5		
GP037 K	+ He SIVE SI-12 AT 105 NE	8	4.8	0	0	o	0	%	6	5	0	0			<u> </u>		160	
38	AT _{95,11,2}					4		Ш							<u></u>	<u> </u>	162	
39	AT 103.2					4									<u> </u>		163	
40						0									<u> </u>		165	
41	AT 92.1					4									<u> </u>		166	
f 2	AT 95 提升					4											169	<u> </u>
43																	170	
44	AT 95=#3																174	
45	AT 108					1							t		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		177	
46						0											179	
47	AT 16					4											181	:
48	ATI					1											183	
49	ATION																185	
50	AT 013																187	
51						0							:				189	
52		B				-4												191
ड	ATS					2											195	194
1 54		U	7			4			V	,	Ţ						198	197
				!S		31		37		43	45		55		61		67	
									4 4 4						1		1	
on A			_		-4-1-			CENTS		عبيا	لبد	<u>4</u>	عاملات المارات		I DV	AR (1)	10:4	- 121

O

TES.	7 :				DAT	A SE	T/RU	N NU	MBER	COL	ATIO	N SUMI	MARY	DATE	:				
DAT	A SET			_	ARI	UER.				(ORBIT	ER					IUMBERS		_
	TIFIER		Q	8	Se7	L δε%	Q.	Ø	SSP	Loes	Se	S۲	SEF	0.3	0.4	0,5	0.6	0.7	
RGF	673	ORR TANS	19	4.7	-	0	10	0	745/20	6	5	0	0				251		
	 74	Kat VIJSHIZ FT	S	-	0		0				5						254	253	
	75			1)						255		
	76	K2 +HIS.6/V4.15,-12 FIT 53.7 + ORG FRNSA		0		0											25		
	77		-	2.2													259		ŀ
	78		T	4.8.													261		,
	79			-10				П			+						<i>2</i> 63		4
	හ	Katherinian State To	Ħ	-ID							5		-				265		9
	ਚ/	7688	11	4.8	打												267		
	82		3.79	+-	11	11			11						OUL	LOW	268		1
	23	142+HIS 4. No. 15-12 AT 103-1			#	 	11	H	††				1 1 1		1		270		
	22	+ ORS TC4 15-12 AT 103.	1	H	H	H		H	††				1-1-1				272		ŀ
	85		#	to	ff	11	H	1 1	† † †			1	1 1 1				274		l
			\dagger	191		1	1	H					\Box		1		276		l
	<u> 36</u>		14		+-+-	++-	-			\vdash	\vdash				 		278		
	<u> </u>		#	1	1+	++-	+4			$\vdash\vdash$			++		1		280		l
	<u>æ</u>		╫	╂	++	╫	2	 	╂╌╂╌		┝╁╸		\mathbf{f}		†	 	282		l
	<u>89</u>		$oldsymbol{H}$	╂┼	1-1-	╁			1 1	1			1 1 1		†		284		l
	90		Į.V	TÅ	Ļ	<u> </u>	6	Y					1 V I		<u> </u>	<u> </u>			بَط
·		7 13 19			25	`	31		37		43	4:	9	55	61	<u></u>	67	- 1	5
سلم	لنسط	<u> </u>	-88	1-1	ببا	444	يسلل	of se	ICENT:		ببيا	<u>نا</u>	بالداد	11111	100	AR II)	16.744 16.741	R (2)	10 10
	& OR							JEFF	TERM I										
	SCHEDI	JLES																	<u></u>

TABLE II (Continued)

DATA SET	CONFIGURATION			CA	RRIE	R				OF	BITE	R				MACHI	IUMBERS	
ENTIFIER		\propto		Se4	256	\mathcal{G}_{-}	Ø		Lor	δe	Sr.	SBF		0.3	0.4	0,5	0.6	0.7
GP109 K	PHIELLY SI-IZ AT IS A		4.77	0	0	0	0	⁹ %,	ઠ	5	0	0					325	324
101						0										l	327	
						6							¥.				330	329
12	+088 FBN 18					α											333	332
/3						-4											336	335
14						4				N I							339	338
15	ATIS		¥			4											342	341
16			4.75			0			•								345	344
17	ATION TO THE				•	3			8.11								347	
18					0												349	
19			1		<u>-</u> 0										1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		351	
ZO			2.06		0												<i>35</i> 5	
21			ġ.			V	2.0										357	
22			185			-4											359	
23						2											361	
24		9				4											363	
25		1				6											365	
1 26		J				0	V					艺基					367	
7	13 19	TENTE	2	!5		31		37		43	49)	55		61		67	7
											ııl					1.4	1	
			11.4			C	DEFF	CENT							IDV	AR (1)	1E . AF	9 (2) Y

EST:							N NU	MBER		LATIO		MARY		DATE			41414 PRO	
DATA SET	CONFIGURATION		× ×		1216	R.	B	ίδsρ	· · · · · · · · · · · · · · · · · · ·	<u> Peri</u>		16		0.3	10.4		O.G	
RG P127	Ky High: Si-12 A		914	. 00 4	O	10	6	94%,	8.11	в <u>δе</u> 5	84	Sef O		10,3	0.7	10.5	369	<u> </u>
28	+ CRAPENTS	75.4			1	4	H	1/20	0.11	17	╁			1			371	
29																	373	
30				+			H	$\dagger \dagger$		++-							315	
31	V. V.ISIZ ATE	192.1		10		Y	Ħ										377	
32		102.	4.5		10				4. z	1								381
33			-9	4					ij								383	
34	4	112.1	2,0					Ħ	6.0								385	
35		11 <u>12</u>	120	#													386	
36			4.9														389	7.77
37						2											391	
38			111			4											393	
39			11			6											396	
40			6).9	7		0		9%		-10							398	
41										-5							400	
42										0					(f) Sept		402	
43			2.0							- Q				+ 8/2			404	
14			J, B	1	1		V		, 1	-5	¥						406	
		19		25		31		37		.43			55		61		67	7
11.4		la.e.		11.	• • •	111				ببيان	لبد	•••	4		ببد		16.0	2 e 2 (2)
e or						C	DEFF	CENT	5						IOV	AR 111	16.40	16'

EST:		J		DAT	A SE	r/Ru	N NU	MBE	S COL	LATIO	N SUMI	MARY		DATE	•			
DATA SET	CONFIGURATION				-121		12_			0R	RITE	2				NUMBER		
DENTIFIER					5.%	3	0	δsp		Se	δr	SBF		0.3	0.4 0.			1
RGP145	KZHIGGIVGISI-B ATHE	19	2.04	0	10	0	10	9%	6.03	-10	9	0		<u> </u>		40	<u> </u>	_
-, 1 6		Ш	2.04									-11.7				410		1
T	Ka Higger Vg. AT III. ORB FRNS		.15							1		-11.7				413		
48						17				- 5	1	0		418	4/	7 416	415	
49		Ш				-4								421		420]
50	•	\prod				2	7				Two de la			424		12	3].
51						4								427		426	,	- 5
52		П	↓			6								43C		429)	٩
53		П	-11	1		0								433		432] {
54		П	.16	3		0								436		435		NOM BEN
55			1	10	¥	Ī								439		438		1
56			1	0	900									443		442	441	1
57			.14										1 1	447		446		_
58			1.95	T	0									452	45	***	449	-
59	· ·	11	194			T		\Box				111		457			154	-
60	HOLD FO NEL AT III.	PO			Π	1	 							460		459	·	1
61	TORK PRINTS	1	1			-4								463		462		1
v 62		1	H	lt		4			-	4		1		466		465		1
				_ T _	لـــا							<u> </u>		140			<u> </u>	<u>بست</u> . عد
7				25		31		37		43	49		55		61	67		75 7
مانندلنا. ح⊙ء	•	البادية.	<u> </u>		•••		DEFFI	CENT	<u> </u>	ĬĸŔ ŖŔŢŔ	<u> </u>	1 1 1 			IDVARIT	I E LA	R (2)	• • •
SCHEOU	•																	

ä

EST:			-	DAT	A SET	r/RU	N NU	MBEF	COLL	ATIO	4 SUMI	MARY		DATE	:				
DATA SET		1	_	~R	vie	R_			· ·	3)C	BITE	(P_		1	-	MACHIN	UMBERS	·	_
PENTIFIER	CONFIGURATION	α			Selo		ø	SSP			£-	δßE		0.3	0.4	0.5	0.6	0.7	J
GP163	KZHISI ATI	19	١٥.	-	0	10	0	0	6.03	-5	0	0		470			469		_
<u>-</u> 54	Ke Vere Fa Nas ATHE	િ		0	_	0				55 †				475		474	472	473	,
		1	[-]		-	0			•	0		•					477		
9	K2HIS.I VI.I AT III	9	-06		0	2			4.25					481			480		
67						4		П						484			483		
68	KaHIS: 6 IV9,1 AT IIZ		1			0				V				488		487	486		
69		11				O		П		-5				492		491	490		
70		1	П			0	П	П		1							493		
71		T	П			2				1				496			495		
72			П			2	П			0				499			498		
73			П			4	П							502			501		
74			П			6								<i>5</i> 05			504		
75			П			10		П						508			507		
76		1	П	1		-4							- 	511			510		
77		1	1	3		0								514			513		
78			П	10		ī								517			516		
79				%0			П							520			519		
V 80		1,	17	190	1	Ŧ	V			V		1		523			522		
7	13 19			25		. 31		37		43	49)	55		61		67		*
			لو	-,						-	 المات				حميا		سميا		
da OR		•			· · ·	_ c	OEFF	CENT	5	•		\triangle			IDV	AR (-1)	IC', AF	7 (2)	
SCHEDU												/							•

rest :			:	DAT	A SE1	r/RU	N NU	MBE	s C0)LL	ATIO	1 SUM	MARY		DATE	•				
DATA SET	CONFIGURATION				1216					_		ITE	ર					IUMBERS		
DENTIFIER		\propto	ર્સ	Sry	£e3/0		Ø	ર્નેડ્રા	λo	RB	бe	dr.	S8F		0.3	0.4	0.5	0.6		Γ
₹SPBI	Kz His.6.14.140Rate AT 114		-α	0	905	0	0	0	4.2	≥ 5	0	0	_		526			525		1
 82			10	. 1	1										528		<u>i </u>	527		
33			1		-101										531			530		
34			101		0				П		i				535		534	533		
85			1.97				П								539		538	537]
86'	Salis. 1" + ORBTCa AT III.	П	-12	1		1			П						542			541] :
87			i			-4		П	П						545			544		S
88		П				4			П						548			547		Š
89						10				ヿ					551			550		
90	TORRES			0	-	0							1		555		554	553		70,000
	Kahisal Veltoma AT "A.I		- 5	Ť	٥	<u>) </u>	H		3.1	5						TAPE		557		18
92	*98.K4	H		+	ľ			H^{-}	Ť	7					f -			558		1
93			Н			2			H	1	+						e.m	561		1
94			Н		1	7		H		+			 - 			 		563		1
95		H	H			10		H^-		7								565		1
96		H	Н			10				\dashv				·				567		1
97			Н			0 4		H^-		7						-		569		1
		4	H	10		70	H-		H	┽	-				-			572		ł
₩ 98	<u>V</u>			IQ.		U			1		<u> Y</u>	<u>. Y</u>	1		<u> </u>		<u> </u>	712		4)-
7	13 19			25		31		37			13	4:	9	55		61		67		.5
e on	:		الم			C	DEFFI	CENT	5	4	-1-1-1		1.1.1.1.			10v	AR (1)	IC. A	7 (2)	**C

rest :		_]		DAT	A SE	Γ/RU	N NU	MBE	COLL	ATIO	N SUM	MARY	DATE	:				
DATA SET	CONFIGURATION	L		CAR	NER			, <u>"" </u>		OP	BITE	R			MACHI	UMBERS		_
IDENTIFIER		α	8	Says	Se ³ 6	ß	Ø	δ≤P	LORE	ઈલ	Sr	Sef	Q.3	0.4	0.5	0,6	0.7	Γ
CGP199	HORB TC4 AT!	16	<u> </u>	0	-	0	0	0	3.15	0	0	-				577]
<u> </u>		3.1	-		_				4.25							579		l
201	Kz His. 6.1 Vq.1	-	1.96		0			П	!							582		1
203			-10											1 "		<i>5</i> 84		1
203		T	01			V									1	586		ı
204		9	打			-4								1		588		I
205		3.9	П			-4					1	11		Oil	row	589		
206		19	1			4		H								591		1
207		1	#			2				十		++-		 	 	593	 	1
200		11	††			0				_	i	11		 	 	595		
209	1	11	11				-			-	1 !-			 	 	597		l
210	Kahga + OBR TCA	#	††	=		0		11		+		++		1		599		
211		+	tt	1		4		 		_	 -	╅┼┈		1-		601		l
212		+	什		Н			╂┼╌			 -			 		603		l
213		+	+		-+-	7				+		1		 	-		Ī	ı
	Mehissi Va.I	ि	F.02	4		\mathcal{H}				+		1			-	605		
215	Ha Veri se + one Fe Nas	#	1.0%	0								Ó				6 0 7	609	ĺ
	+ 000 % N30	+	-	-		H		9454		1				610				l
1 216	V	14		¥		Y		77	V	1	1			613			612	L
7	13 19			25		31		37		43	45	9	55	6.1	·	67	?	5
المفعليات			لبعنه	لبعا		يبا	 	Li.	لععب	بعب	بلب		, 1	بيبا	AR (1)	IC LAS	4	٠C
et OR	,								, 					100	A 111	10.7.4	140	14.
SCHEOU	LES																	<u> </u>

EST :	· •	J					N NU	MBE	S COL						DATE	·			
DATA SET	CONFIGURATION	<u>_</u>			5121€		16 min	1				TER						IUMBERS	
	V. M. ATION	X	ĸ		Ae7c		1500						δBF	ļ	O.3		0.5	D. 6	
	K2 ATION			0		0	_		8.07	19		9	0		ļ	616			615
18		10	Ш					0	$\sqcup \bot$	Ш	_		0			619	<u> </u>		618
19	K2 Vq.1 +ore Tc1	Ш	Ш					0			_		_			622			621
20		9	Ш					944/2								625	<u> </u>		624
21		V						9/45/20	4.23							629			628
22		9						0	4.23	1						632			63/
23	Kz V9.1	4	П						_	—						635			634
24	K2 Vq./ AT/05.2	6	П				4.25	J			1			_		638			637
25	K2 H15.6.1 V4.15 AT		507		0			74. _{5/20}		11	1			-				640	
26		I	П	1	\top		6	<u> </u>		Ħ	7							642	
27			╟╂┫			4	ĬŤ-		\vdash	H	┪	+-						645	
		H	H	+	H	2	-	╫	-	╁┼	┪							647	
85			Н				 	┞┼╾	╂╌╂╌	₩	-{			<u></u>		:			
29		H			H	4		₩	\vdash	╁┼	\dashv	-						649 651	
30		Н	H	- -		6	-		-	╀	4	-							
31		Į.	\sqcup			10		4	\vdash	\sqcup	4				(653	/==
32	Ke Hisa . I You AT as	6			*	Q		0			1				658		657	-	
33	Kaylisti Kilsina AT was		S		100		Ц.,	74%		Ш	┙							660	
1 34			امح	t	10.8	7	<u> </u>	44/20		L		<u> </u>	1				,	662	
, ,	13 19			25		31	•	37		43		49)	55		61		67	
1111			أنب			بنا		نبا		حدا				سلب		سا		مميا	لم
						C	OEFFI	CENT	\$				•			IDV	AR (1)	IC: AR	4 (5)
G OR SCHEDU	<i>F</i>				 			· • • • • • • • • • • • • • • • • • • •					·						

TABLE II (Continued)

EST:			<u> </u>					N NU	MBER		٠.	N SUMA	ARY		DATE					_
DATA SET	CONFIGURATI	ON				RE		Fwe	T	, c	RBIT							NIMOTES		7
	vu V.c	N=103.3	8			_			δsP	A ORB	<i>ခ်</i> င	<u>δ-</u>	Ser		Ò. 3	0.4	0.5	0.6		4
	KzH16.6.1V9.1S1-12	H'9s:	2	-		9	9	0	94420		1	II.						664	<u> </u>	4
<u> </u>				106	아	-		igspace	0/44/20			<u> </u>					<u> </u>	666	<u> </u>	
3 (KallisarVair	AT 1033	H	501			Ц.		0						671		670			
38		AT II.	*	Ш					0						676		675	674		1
57	Kulen Yei Sin		9				•		0/44/2									678		
70							2											680		
41							4											682		1
+2				+			10											684		1
43	•		1	99			0		Ţ									686		1
44	Katherera Nora			-71					0						691		690		୧୫୫	
45		AT! 8	Í	50				1	\prod						676		695			
	Ka His. 6.1 Va.1		Ħ						Ш					4.	701		700	699		-
	K. His.i Vo.			Ħ				-							706		705			-
	K2 HIS.S.I VOIL	AT(1)2	H	1.93		\vdash	+		0	3.15	0	0			/50		705	575		ł
10	+ORR TC4	111-1				-			\vdash	3.13	<u> </u>	U		<u>. </u>				2/2		ł
		···												· .						ł
				Н																ł
								:						.		!				1
			Ш															أسيين		l
	13	19			5		31		37		43	. 49		55		61		67	- 3	: 5
للبلل	<u> </u>	معلمه	فببعث	أبعب		نييا	ببا		عبعيا	لعنفيه	ممم	بلب	سعبف	حالب	سند	حعيدا		مميا	لم	بحد
# OR	<u> </u>				. ·		CC)EFFI(CENTS				·		:. 	IDV/	NA 111	10:49	 - (3)	•**
SCHEOU	.65																			•

4

THE HAT

Ł

TABLE II. (Concluded)

Coefficient Schedules

	R & B	data are 747 data.
	A & C	data are Orbiter data.
	R data	BETA, PHI, ALPHAC, IORD, CL, CD, CLM, CY, CLN, CSL
	B data	DPC1, DPC2, DPC3, DPC4, PT-PSF, PS-PSF, Q(PSF), TB11, CDFFC
Orbiter Alone	- A data	BETAO, PHIO, IORB, CL, CD, CLM, CY, CLN, CSL
	C data	DALFAO, IORD, CDFFO
Orbiter with Carrier	- {A data	ALPHAO, BETAO, PHIO, IORD, CL, CD, CLM, CY, CLN, CSL
carrier	C data	DALFAC, ALPHAC, ALPHAO, DALFAO, IORD, CDFFO

TABLE III. - MODEL DIMENSIONAL DATA

a. Carrier Model

MODEL COMPONENT: B27.8			
GENERAL DESCRIPTION: BODY, 747 Pro	oject with A.P.V. e	xit.	
MODEL SCALE: 0.03			
DRAWING NUMBER: 65-69716			
DIMENSIONS:	FULL SCALE	MODEL SCALE	
Length, in.	2702	<u>81.06</u>	
Max. Width, in.	<u> 255</u>	7.65	
Max. Depth	,,,,,,,,,,,,,		
Fineness Ratio			
Area			
Max. Cross-Sectional		*******	
Planform			
Wetted, ft ²	424	.3816	
Base		·	

MODEL COMPONENT: Horizontal Tail - H15.1		
GENERAL DESCRIPTION: Swept Horizontal Tai	1 With	
Planform Radius Fillet at L.E Body Int	ersection.	
MODEL SCALE= 0.03		
DRAWING NUMBER: 65-66630, 69-49180, 1007-	477	
DIMENSIONS:	Full Scale	Model Scale
EXPOSED DATA (one side)		
Area- ft ²	736	0.6625
Span- in.	436.5	13.095
Aspect Ratio		
Taper Ratio		
Dihedral Angle-deg.	7	7
Incidence Angle-deg.	Secretaria de la Companya de la Comp	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sweep Back Angle-deg. L. E.	43.08	43.08
Chords-in.		
Root	388	11.64
Tip	97	2.91
MAC		
Apex Location-in.		
Хo		
Yo		
Z		
.25 MAC Location-in.		
X _c Station	2564	76.920
Yo		
Z _o		

MODEL COMPONENT: Horizontal Tail HI	5.6.1	
GENERAL DESCRIPTION: Horizontal ta	il with vertical fins	
on each tip at body B.L. 12.82		
MODEL SCALE: 0.03		
DRAWING NUMBER: 1319-60		······································
DIMENSIONS:	Full Scale	Model Scale
Exposed Data (one side)	,	
Area - ft ²	200	0.18
Span - in.	<u>251.4</u> 4	7.543
Aspect Ratio	<u>2.1</u> 9	2.19
Taper Ratio	<u>1.0</u> 0	1,00
Dihedral Angle-deg.	0	0
Incidence Angle-deg.	<u></u>	
Sweep Back Angle-deg.	0	0
Chords - in.	<u>114.54</u>	3.43

MODEL DIMENSIONAL DATA

MODEL COMPONENT: M25			
GENERAL DESCRIPTION: Inboard 747,	J _{T9D} Nacelle		
strut			-
Model Scale: 0.03			
DRAWING NUMBER			
DIMENSIONS:	FULL SCALE	MODEL SCALE	
Wing B.L. of nacelle β, in.	470.0	14.100	
Cont angle deg inhoard		2	

MODEL COMPONENT: M26.8		
GENERAL DESCRIPTION: Outboard 747, & JT90	Nacelle	
	·	
Model Scale: 0.03		
DRAWING NUMBER 937-590		
DIMENSIONS	FULL SCALE	MODEL SCALE
Wing, B.L. of nacelle & in.	834.0	25.02
Cant angle, Deg. inboard (toe in at LE Int.)	2	2

MODEL COMPONENT: N57		
GENERAL DESCRIPTION Inboard Fan Cowl and Primary		
747 Naceile, flow thru type - JT9	D Blow-In Doors	
Model Scale: 0.03		
DRAWING NUMBER 5.0 1007-96, 97		
DIMENSIONS	FULL SCALE	MODEL SCALE
LENGTH:		
Cowl	104.0	3.120
Nac. Assy	219.17	6.575
OUTSIDE DIAMETER:		
Cowl	101.67	3.05
Engine	68.67	2.06
INSIDE DIAMETER (T.E.)		
Cowl	91.67	2.75
Engine	53.33	1.60
LOCATION, WING LE, W.B.L.	470.0	14.10

MODEL COMPONENT: N58		
GENERAL DESCRIPTION: Outboard fan	cowl and primary	
747 Macelle, flow thru type - JT90	Blow-In Doors	•
Model Scale: 0.03		
DRAWING NUMBER <u>5.0. 1.007-96, -97</u>		
•	•	
		•
DIMENSIONS	FULL SCALE	MODEL SCALE
LENGTH:		•
Cowl	104.0	3.120
Nac. Assy.	219.17	6.573
OUTSIDE DIAMETER	•	•
Cow1	101.67	3.05
Engine	68.67	2.06
INSIDE DIAMETER (T.E.)	•	
Cowl	91.67	2.75
Engine .	53.33	1.60
LOCATION, WING, LE, WBL	834.0	25.02

MODEL COMPONENT: SPOILERS - S1-12		
GENERAL DESCRIPTION: Multi-panel flight	spoilers. Four o	utboard and
two inboard spoilers per side. Subscri	pt denotes spoiler	panel ^S l is the
most outboard L.H. panel and S12 is mos	t outboard R.H. pa	nel.
747 MODEL SCALE: 0.030	MODEL: 1065	
DRAWING NO.: 65-71450, S. O. 1065-51,	-59, -81, -173	
DIMENSIONS: (one panel)	FULL SCALE	MODEL SCALE
Outboard S_{1-4} and S_{9-12} (Ft ²)	21.48	0.0193
Span (equivalent), in.	6.25	0.1875
Chord, in.	3.44	0.1032
Inboard S_{5-6} and S_{7-8} (Ft ²)	35.31	0.0318
Span (equivalent), in.	7.50	0.225
Chord, in.	4.71	0.1413

MODEL COMPONENT: T19		
GENERAL DESCRIPTION: Flap track fairings,	4 on each side	····
MODEL SCALE: 0.03		
DRAWING NUMBER 5.0. 1007-403	,	
DIMENSIONS	FULL SCALE	MODEL SCALE
WBL of Track No. 1, in. WBL of Track No. 2, in. WBL of Track No. 3, in. WBL of Track No. 4, in.	235.3 353. 652. 743.6	7.06 10.59 17.56 22.31
Distance from wing trailing edge to track trailing edge, in.	50.	1.5
LENGTH:		
Track No. 1 Track No. 2 Track No. 3 Track No. 4	276.66 255.0 206.66 193.33	8.30 7.65 6.20 5.80
MAX. WIDTH:		
Track No. 1 Track No. 2 Track No. 3 Track No. 4	30.0 30.0 28.33 28.33	.90 .90 .85 .85
DEPTH_BELOW_WING:		
Track No. 1 Track No. 2 Track No. 3 Track No. 4	37.33 36.66 28.33 28.33	1.12 1.10 .85 .85

MODEL COMPONENT: V9.1		
GENERAL DESCRIPTION: Swept Vertical Tail		·
Model Scale: 0.03		
DRAWING NUMBER: 65-6.9716; 1007-26, -610;	937-319	
DIMENSIONS:	FULL SCALE	MODEL SCALE
TOTAL DATA		
Area (Theo)- Ft ²	830	<u>.7470</u>
Planform Span (Theo) - In. Aspect Ratio Rate of Taper	386.5	11.595
Taper Ratio		
Sweep-Back Angles, Degrees Leading Edge Trailing Edge 0.25 Element Line	50.12	50.12
Chords: Root (Theo) WP-in. Tip (Theo) WP-in. MAC	461.67 157	13.85
Fus. Sta. of .25 MAC W. P. of .25 MAC B.L. of .25 MAC	2529.6	75.888
Airfoil Section Leading Wedge Angle-Deg. Trailing Wedge Angle-Deg. Leading Edge Radius		
Void Area		
Blanketed Area		

TABLE IIIa. - Concluded.

MODEL COMPONENT: WING - W44.1		
GENERAL DESCRIPTION: Swept 747 Wing		
MODEL SCALE: 0.03		
	DWG. NO.: _	65-89585
DIMENSIONS:	FULL SCALE	MODEL SCALE
TOTAL		
Area (Theo.) Ft ²	5500	4.95
Planform	2348	70.44
Span (Theo. In.)	6.96	6.96
Aspect Ratio		
Rate of Taper		
Taper Ratio	7	7
Dihedral Angle, degrees	·	<u></u>
Incidence Angle, degrees	<u></u>	
Aerodynamic Twist, degrees		
Swept Back Angles, degrees		
Leading Edge		
Trailing Edge		
0.25 Element Line		
Chords:		
Root (Theo) B.P.O.O.	**************************************	
Tip, (Theo) B.P.		
MAC	327.8	9.834
Fus. Sta. of .25 MAC	1339.91	40.197
W. P. of .25 MAC	190.75	5.7225
B. L. of .25 MAC		

TABLE III. MODEL DIMENSIONAL DATA b. Orbiter

MODEL COMPONENT : BODY - BOK		
GENERAL DESCRIPTION :Configuration 1	OA'B orbiter fu	ISPLAGE
NOTE: Box is identical to Box except und	erside of fusela	ige has been
refaired to accept Will.		
MODEL SCALE: 0.030		
DRAWING NUMBER . VL70-0001438 -000200000140A000140B		89. –000145.
·		
DIMENSIONS: Length (CML: Fwd Sta. X _o =235) In.	FULL SCALE 1293.3	MODEL SCALE 38.799
Length (IML: Fwd Sta. X _o =238) In.	1290.3	38.709
Max Width ($0 \text{ X}_0 = 1528.3$) In.	264.00	7.920
Mox Depth ($C X_0 = 1464$) In.	250.00	7.500
Fineness Rotio	· 0,264	0,264
Area - Ft2		*
Max. Cross-Sectional	340,88	0.3048
Planform	4	(Special parameters are see ; we derivately see held
Wetted	-	property and an execution of the same
Base		

MODEL COMPONENT : CANOPY - Co		
GENERAL DESCRIPTION : Configuration 3A	. Canopy used	with fuselage
B ₂₆ .	·	
MODEL SCALE: 0.030 MODEL	DWG: SS-A001/	7. Release 12
DRAWING NUMBER . VL70-000143A	<u> </u>	-
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length $(X_0 = 434.643 \text{ to } 578)$, In.	143.357	4.301
Max Width (@ X _O = 513.127). In.	152.412	4.572
Max Depth (@ $X_0 = 485.0$). In.	25.00	0.750
Fineness Ratio		
Área		
Max. Cross—Sectional		**************************************
Planform		<u> </u>
Wetted		
. Base		•

MODEL COMPONENT: SLOTTED FLEVON (6 -INCH GAP)	- E),3		
GENERAL DESCRIPTION: Configuration 1404 'B C NOTE: E ₁₃ is a lotted version of E ₂₆ . Date			
MODEL SCALE: 0.030			
DRAWING NUMBER: V170-000200 -006089, -006092			
DIMENSIONS:	FULL-SCALE	MODEL SCALE	
Area - Ft ²	210.0	0.189	
Span (equivalent) . In.	349.2	10.476	
Inb'd equivalent chord . In.	118.004	3.540	
Outb'd equivalent chord, In.	55.192	1.656	
Ratio movable surface chord/ total surface chord		·	
At Inb'd equiv. chord	0.2 096	0.2096	
At Outb'd equiv. chord	0.4004	0.4004	
Sweep Back Angles, degrees			
Leading Edge	0.∞	0,00	
Tailing Edge	- 10,056	- 10.056	
Hingeline (Product of area and c) Area Moment (Noomakriowkingaxkina).Ft3	0.00	0.00	
Mean Aerodynamic Chord, In.	90.7	2.721	

TABLE IIIb. (Concluded)

MODEL COMPONENT : BODY FLAP - FR		
GENERAL DESCRIPTION : Configuration 1	40A/B orbiter bo	dv flap
Hingeline located at $X_0 = 1528.3$. $Z_0 = 3$	284.3	
MODEL SCALE: 0.030 MODE	L DWG: SS-A0014	7. Release 12
DRAWING NUMBER:VL70-000140A, -000	145	
•		
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length ($X_0=1520 \text{ to } X_0=1613$) In.	93.00	2,79
Max Width (In.)	262.0	7.86
Max Depth (@ $X_0 = 1520$) In.	23.00	0.69
Fineness Ratio		
Area - Ft ²		
Max. Cross—Sectional		4
Planform	1.50,525	0.135
Wetted		
Base	41.847	0.038

MODEL COMPONENT : OMS POD - M16		
GENERAL DESCRIPTION :Configurati	on 140C orbiter	OMS pod - short.
pod.		
MODEL SCALE: 0_030		
DRAWING NUMBER :	0	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (OMS Fund St.a. Xo=1310.5)	.I <u>n. 258.50</u>	7.755
Max Width (@ . $X_0 = 1511$). In.	136.8	4.104
Max Depth (@ X = 1511). In.	74.70	2.24]
Fineness Ratio	2.484	2.484
Area - Ft ²		
Max. Cross-Sectional	58.864	0.053
Planform		
Wetted		
Base	····	

MODEL COMPONENT: MPG NOZZLES - N24		
GENERAL DESCRIPTION: Configuration	140A/B Orbiter MPS Nozz	Les
MODEL SCALE: 0.030	MODEL DWG: SS-A00147.	Release 12
DRAWING NUMBER: VI.70-005030A, -0001A	OA	•
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length - In. Gimbal Point to Exit Plane Throat to Exit Plane	<u>157.0</u> 99.2	<u>4.71</u> <u>2.976</u>
Diameter - In. Exit Throat Inlet	91.000	2.73
Area - ft ² Exit Throat	45.166	0.0407
Gimbal Point (Station) In. Upper Nozzle X Y Z		
Lower Nozzles « Y Z	$ \begin{array}{r} $	44.045 1.59 10.279
Null Position - Deg. Upper Nozzle Pitch Yaw	<u> 16</u> 0	<u> 16</u>
Lover Nozzle Pitch Yaw	10 3.5	10 3.5

MODEL COMPONENT: OF	is nozzles – N ₂₈		
GENERAL DESCRIPTION:	Configuration 140A 'B	Orbiter OMS Nozzle	3
MODEL SCALE: 0.030			,
DRAWING NUMBER: VL70	-COOLAGA (Location).	SS-A00106, Release	5 (Contour)
DIMENSIONS:		FULL SCALE	MODEL SCALE
MACH NO.			
Length - In. Gimbal Point Throat to Exi			
Diameter - In. Exit Throat Inlet'			
Area - ft ² Max. Cro Throat	ss-Sectional (1 nozz)	Le)	-
Gimbal Point (Sta Left Nozzle X o Yo Zo	tion) - In.		_ 45.54 - 2.64 14.76
Right Nozzles X _o Y _o Z _o	;	1518.0 88.0 492.0	15.54 2,64 14.76
Null Position - i Left Nozzle Pitch Yaw	Dag.	15°491 12°171	15°1,9'
Right Nozzle Pitch Yaw		15°19!	150491

MODEL COMPONENT: RUDDER - R5		
GENERAL DESCRIPTION: Configuration 1400 or Configuration 1404 '3 rudder)	biter rudder (ide	entical to
MODEL SCALE: 0.030		
DRAWING NUMBER: VL70-000146B.	000095	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	100.15	0.090
Span (equivalent). In.	201.00	6.030
Inb'd equivalent chord. In.	91.585	2.748
Outb'd equivalent chord . In.	50.833	1.525
Ratio movable surface chord/ total surface chord		
- At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees	•	
Leading Edge	34.83	34.83
Tailing Edge	24.25	26.25
Hingeline	31,.83	34.83
(Product of larea & ^) Area Moment ().Ft	.3 610.92	0.165
Mean Aerodynamic Chord, In.	73.2	2.196

OF POOR QUALITY

(**)**

MODEL COMPONENT: TAIL CONE - TC,		
GENERAL DESCRIPTION: Fairing mounted of	on orbiter fuselag	e base
<u> </u>		
MODEL SCALE: 0.030		·····
DRAWING NUMBER: Boeing Drawing 1319		
REF: R.I. Dwg. BCDV70-830		
		•
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length - in.	435.0	13.05
Max Width - in.	303.33	9.10
Max Height - in.	265.00	7.95
Finesness Ratio		
Area - FT ²		
Projected Frontal A Max Cross-Sectional		.4212
Planform		
Wetted		
Base		

MODEL COMPONENT: VERTICAL - Vg		
GENERAL DESCRIPTION: Configuration 140C orbi	ter vertical ta	il (identical
to configuration 1/04 B vertical tail).		
		,
MODEL SCALE: 0.070		
DRAWING NUMBER: VL70-000140C -000144B		
DIMENSIONS:	FULL SCALE	MODEL SCALE
TOTAL DATA		
Area (Theo) - Ft ² Planform Span (Theo) - In. Aspect Ratio Rate of Taper Taper Ratio Sweep-Back Angles, Degrees. Leading Edge Trailing Edge O.25 Element Line Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC	413.243 315.72 1.675 0.507 0.404 45.00 26.25 41.13 268.50 108.47 199.81 1463.35	0.372 9.472 1.575 0.507 0.404 45.00 26.25 41.13 8.055 3.254 5.994 43.901
W.P. of .25 MAC B.L. of .25 MAC	635.52	19.066 0.00
Airfoil Section Leading Wedge Angle - Deg. Trailing Wedge Angle - Deg. Leading Edge Radius	10.00 14.92 2.00	10.00 11.92
Void Area	13.17	0,0010
Blanketed Area	0.0	0,0

OF POOR QUALITY

TABLE IIIb. (Concluded)

MODEL COMPONENT: WING-W 116		
SEVERAL DESCRIPTION: Configuration 4		
NOTE: Identical to Will except airfoil thickness.	Dihedral angle	is along
trailing edge of wing.		
MODEL SCALE: 0.030		
TEST YO.	DWG. NO. VL70	0-0001404, -000200
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA Area (.neo.) Ft2 Planform Span (Theo In. Aspect Ratio Rate of Taper Taper Ratio Dihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Sweep Sack Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC B.L. of .25 MAC B.L. of .25 MAC EXPOSED DATA Area (Theo) Ft2 Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC Root B-L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64 Root b	2690.00 936.68 2.265 1.177 0.200 3.500 0.500 3.000 45.000 - 10.056 35.209 689.24 137.85 474.81 1136.83 290.58 182.13 1751.50 720.68 2.059 0.245 562.09 137.85 392.83 1185.98 294.30 251.77	2.121 28.10 2.265 1.177 0.200 3.500 0.500 3.000 45.000 -10.056 35.209 20.477 4.136 14.241 31.105 8.717 5.161 1.576 21.620 2.059 0.215 16.863 4.136 11.785 35.579 8.829 7.553
2	0.120	0.120
Tip $\frac{b}{2}$ = Data for (1) of (2) Sides	 	***************************************
Leading Edge Cuff 2 Planform Area Ft ² Leading Edge Intersects Fus M. L. @ Sta Leading Edge Intersects Wing @ Sta	113.18 500.00 1024.00	0.102 15.00 30.72

Figure 1. Axis Systems

9

4...

a. Orbiter Configuration Model 45-0 Figure 2. Model Sketches

b. Orbiter Trip Strip DefinitionFigure 2. Continued

c. 747-100 Configuration Model #AX13191-4
Figure 2. Continued

747 Carrier Boundary Layer Trips

WING

Wing upper and lower surface: 10% local chord, 120 grit 80 to 100 grains/inch, 0.1 inch wide.

EMPENNAGE (All surfaces, top and bottom)

10% local chord 0.1 inch wide, 120 grit, 80 to 100 grains/inch.

BODY NOSE

0.75 inch back from L.E. 100 grit 0.1 inch wide, 80-100 grains/inch.

NACELLE

Fan cowl. 4 inch from L.E. (inside and outside), 100 grit, 80-100 grains/inch, 0.10 inch wide. Primary, at the fan cowl exit plane, (outside surface only), 100 grit, 80-100 grains/inch, .10 inch wide.

d. Trip Strip Definition AX13191-4

Figure 2. Continued

e. Orbiter/Carrier Model Figure 2. Continued

f. Orbiter/Carrier Model Nomenclature Figure 2. Continued

AT 93.1 MEDIUM CHORD FWD FAIRING

MODIFICATIONS

AT 103.1 UPPER END FAIRING REMOVED

AT 103.2 TUBE SUPPORTS FLAT SIDED 4.67" WIDE

AT 103.3 ORBITER OFF, UPPER END FAIRING OFF, SPACER NORMALLY INSIDE ORBITER REMOVED

AT 108 LONG CHORD HAD FAIRING

g. Forward Support Configurations
Figure 2. Continued

AT 105 UNFAIRED AFT SUPPORT STRUTS

FRONT QUARTER VIEW

AT 110 FULLY FAIRED AFT SUPPORT

AT 111 MINIMUM AFT FAIRING

AT 95 (CONFIG. PREVIOUSLY TESTED IN CA23 AS 95.11, 12)

SIDE STRUTS ARE SAME AS AT 111.1

h. Aft Support Configurations
Figure 2. Concluded

a. 747 CAM Alone Front View

b. 747 CAM Alone Aft ViewFigure 3. Model Photographs

c. Orbiter Alone Front View

d. Orbiter Alone Aft ViewFigure 3. Continued.

ORIGINAL PAGE IS OF POOR QUALITY

e. Orbiter Base Details

f. Mated Configuration Front View Figure 3. Continued.

g. Mated Configuration Aft View

h. Mated Configuration (Tail Cone On) Aft View Figure 3. Continued.

i. Mated Configuration (Tail Cone On) Front View
 Figure 3. Concluded.

DATA FIGURES

.ó8

.16

.20

FIG. 4 ORBITER ALONE CHARACTERISTICS, ELEVON O

.04

0, 0, 0, 0,

.24

.28

FIG. 4 ORBITER ALONE CHARACTERISTICS, ELEVON O

ORBF8N24/28(AGP001)

FIG. 4 ORBITER ALONE CHARACTERISTICS, ELEVON O

FIG. 5 ORBITER ALONE CHARACTERISTICS, ELEVON 5

Ò1

CLM

 $\dot{O}_1 \ \dot{O}_2 \ \dot{O}_3 \ \dot{O}_4$

-.01

FIG. 5 ORBITER ALONE CHARACTERISTICS, ELEVON 5

.Ò2

.òз

.04

-.02

- .03

9

ALPHAO

8

10

11

12

13

FIG. 5 ORBITER ALONE CHARACTERISTICS, ELEVON 5

5

6

.001

- .002 **因**

-.003

-.004

PAGE

FIG. 6 EFFECT OF ELEVON GAP, ORBITER ALONE
(A)MACH = .60

FIG. 6 EFFECT OF ELEVON GAP. ORBITER ALONE

(A)MACH = .60

PAGE

.

FIG. 6 EFFECT OF ELEVON GAP, ORBITER ALONE

(A)MACH = .60

PAGE

FIG. 7 LATERAL-DIRECTIONAL CHARACTERISTICS, ORBITER ALONE, ELEVON 5

FIG. 7 LATERAL-DIRECTIONAL CHARACTERISTICS, ORBITER ALONE, ELEVON 5

FIG. 7 LATERAL-DIRECTIONAL CHARACTERISTICS, ORBITER ALONE, ELEVON 5
PAGE 12

FIG. 8 ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES

(A)MACH = .30

PAGE

FIG. 8 ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES (A)MACH = .30 PAGE

FIG. 8 ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES
(A)MACH = .30

(B)MACH .50

FIG. 8 ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES

(B)MACH = .50

(B)MACH .50 PAGE 18

FIG. 8 ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES (C)MACH = .60

FIG. 8 ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES (C)MACH = .60 PAGE

FIG. 8 ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES

FIG. 8 ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES

(D)MACH = .70

FIG. 8 ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES CD)MACH = .70

FIG. 8 ORBITER ALONE, UPFLOW CORRECTION, WING AT 48 INCHES

(D)MACH = .70

PAGE 24

¥

FIG. 9 ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES

(A)MACH = .30

FIG. 9 ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES

(A)MACH = .30

FIG. 9 ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES

(B)MACH = .50

PAGE :

28

ا س

ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES .50 (B)MACH

.50 (B)MACH PAGE 30

FIG. 9 ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES (C)MACH = .60

ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES (C)MACH .60

FIG. 9 ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES (C)MACH = .60

FIG. 9 ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES

(D)MACH = .70

FIG. 9 ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES

FIG. 9 ORBITER ALONE, UPFLOW CORRECTION, WING AT 57 INCHES

(D)MACH = .70

36

.

FIG. 10 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 48 INCHES

(A)MACH = .30

PAGE

.

FIG. 10 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 48 INCHES

(A)MACH = .30

PAGE 38

FIG. 10 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 48 INCHES

(A)MACH = .30

(B)MACH = .50 PAGE 40

FIG. 10 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 48 INCHES

(B)MACH = .50

PAGE 41

-

FIG. 10 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 48 INCHES (B)MACH = .50 PAGE 42

FIG. 10 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 48 INCHES

(C)MACH = .60

PAGE 44

FIG. 10 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 48 INCHES

(C)MACH = .60

PAGE 45

ŧ

FIG. 10 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 48 INCHES

CD)MACH = .70

PAGE 46

FIG. 10 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 48 INCHES

(D)MACH = .70

PAGE 47

ŀ

(D)MACH = .70 PAGE 48

ŧ

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(A)MACH = .30

PAGE 49

ŀ

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(A)MACH = .30

PAGE 50

•

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(A)MACH = .30

PAGE

ŀ

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(B)MACH = .50

PAGE 52

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(B)MACH = .50

PAGE 53

ŀ

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(B)MACH = .50

PAGE 54

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(C)MACH = .60

PAGE 55

.

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(C)MACH = .60

PAGE 56

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(C)MACH = .60 PAGE 57

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(D)MACH = .70

PAGE 58

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES (D)MACH = .70PAGE

FIG. 11 MODEL UPRIGHT AND INVERTED, ORBITER ALONE, WING AT 57 INCHES

(D)MACH = .70

PAGE 60

•

FIG. 12 EFFECT OF ORBITER HEIGHT IN TUNNEL

(A)MACH = .30

FIG. 12 EFFECT OF ORBITER HEIGHT IN TUNNEL

FIG. 12 EFFECT OF ORBITER HEIGHT IN TUNNEL
(B)MACH = .50

64

FIG. 12 EFFECT OF ORBITER HEIGHT IN TUNNEL
(B)MACH = .50

FIG. 12 EFFECT OF ORBITER HEIGHT IN TUNNEL (B)MACH = .50

-

FIG. 12 EFFECT OF ORBITER HEIGHT IN TUNNEL

FIG. 12 EFFECT OF ORBITER HEIGHT IN TUNNEL (C)MACH = .60

Ė

FIG. 12 EFFECT OF ORBITER HEIGHT IN TUNNEL (D)MACH = .70

FIG. 12 EFFECT OF ORBITER HEIGHT IN TUNNEL

(D)MACH = .70

PAGE 71

FIG. 12 EFFECT OF ORBITER HEIGHT IN TUNNEL (D)MACH = .70

F.

FIG. 13 STABILIZER EFFECTIVENESS, BASIC 747 ALONE
(A)MACH = .30

73

ŧ

FIG. 13 STABILIZER EFFECTIVENESS, BASIC 747 ALONE

FIG. 13 STABILIZER EFFECTIVENESS, BASIC 747 ALONE

(A)MACH = .30

PAGE

FIG. 13 STABILIZER EFFECTIVENESS, BASIC 747 ALONE (B)MACH = .50

76

ŧ

FIG. 13 STABILIZER EFFECTIVENESS, BASIC 747 ALONE

(B)MACH = .50

FIG. IS STABILIZER EFFECTIVENESS, BASIC 747 ALUNE

(B)MACH = .50

PAGE 78

ŀ

FIG. 13 STABILIZER EFFECTIVENESS, BASIC 747 ALONE

ļ

FIG. 13 STABILIZER EFFECTIVENESS, BASIC 747 ALONE (C)MACH = .60

FIG. 13 STABILIZER EFFECTIVENESS, BASIC 747 ALONE

FIG. 13 STABILIZER EFFECTIVENESS. BASIC 747 ALONE
(D)MACH = .70

82

}

FIG. 13 STABILIZER EFFECTIVENESS, BASIC 747 ALONE
(D)MACH = .70

ţ

FIG. 13 STABILIZER EFFECTIVENESS, BASIC 747 ALONE
(D)MACH = .70

84

FIG. 14 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER 5

FIG. 14 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER 5

(A)MACH = .60

PAGE 86

FIG. 14 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER 5
(A)MACH = .60

FIG. 15 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER O

(A)MACH = .30

PAGE 88

ļ

FIG. 15 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER O

FIG. 15 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER 0

(A)MACH = .30

PAGE 90

FIG. 15 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER O

FIG. 15 ELEVATOR EFFECTIVENESS, BASIC /4/ ALONE, STABILIZER U

(B)MACH = .60

PAGE 92

ŧ

FIG. 15 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER O

FIG. 15 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER 0

(C)MACH = .70

PAGE 94

ţ

FIG. 15 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER O

FIG. 15 ELEVATOR EFFECTIVENESS, BASIC 747 ALONE, STABILIZER O

٥٢.

(C)WVCH =

FIG. 16 LATERAL-DIRECTIONAL STABILITY, BASIC 747 ALONE
(A)MACH = .30

FIG. 16 LATERAL-DIRECTIONAL STABILITY, BASIC 747 ALONE
(A)MACH = .30

ŀ

FIG. 16 LATERAL-DIRECTIONAL STABILITY, BASIC 747 ALONE
(A)MACH = .30

ŧ

FIG. 16 LATERAL-DIRECTIONAL STABILITY, BASIC 747 ALONE
(B)MACH = .60

.

FIG. 16 LATERAL-DIRECTIONAL STABILITY, BASIC 747 ALONE
(B)MACH = .60

FIG. 16 LATERAL-DIRECTIONAL STABILITY, BASIC 747 ALONE
(B)MACH = .60

ļ

FIG. 17 RUDDER EFFECTIVENESS, BASIC 747 ALONE

(A)MACH = .30

FIG. 17 RUDDER EFFECTIVENESS, BASIC 747 ALONE

(A)MACH = .30

PAGE 104

FIG. 17 RUDDER EFFECTIVENESS, BASIC 747 ALONE
(A)MACH = .30

FIG. 17 RUDDER EFFECTIVENESS, BASIC 747 ALONE
(B)MACH = .60

ŀ

FIG. 17 RUDDER EFFECTIVENESS, BASIC 747 ALONE
(B)MACH = .60

FIG. 17 RUDDER EFFECTIVENESS, BASIC 747 ALONE
(B)MACH = .60

5

FIG. 18 747 ALONE UPFLOW CORRECTION, WING AT 49 INCHES
(A)MACH = .30

FIG. 18 747 ALONE UPFLOW CORRECTION, WING AT 49 INCHES
(B)MACH = .50

ŧ

FIG. 18 747 ALONE UPFLOW CORRECTION, WING AT 49 INCHES

(B)MACH = .50

PAGE

ŧ

FIG. 18 747 ALONE UPFLOW CORRECTION, WING AT 49 INCHES (C)MACH = .60

(C)MACH = .60

(D)MACH = .70

REFERENCE INFORMATION

DATA SET SYMBOL

CONFIGURATION DESCRIPTION

FIG. 18 747 ALONE UPFLOW CORRECTION, WING AT 49 INCHES (D)MACH = .70

(D)MACH = .70

FIG. 19 EFFECT OF ORB. SUPPORT STRUT FAIRINGS, LAUNCH CONFIGURATION, BETA O

[A)MACH = .60

PAGE 121

FIG. 19 EFFECT OF ORB. SUPPORT STRUT FAIRINGS, LAUNCH CONFIGURATION, BETA O

(A)MACH = .60

PAGE 122

FIG. 19 EFFECT OF ORB. SUPPORT STRUT FAIRINGS, LAUNCH CONFIGURATION, BETA O

(A)MACH = .60

PAGE 123

ļ

FIG. 20 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT FAIRED

(A)MACH = .60

PAGE 124

ŧ. . .

FIG. 20 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT FAIRED

[A)MACH = .60 PAGE 125

ŧ

FIG. 20 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT FAIRED

[A]MACH = .60

PAGE 126

.

FIG. 21 ORB. AFT STRUT TRADES, LAUNCH CONFIG., FWD. STRUT FAIRED

(A)MACH = .60

(A)MACH = .60 PAGE 128.

ŀ

FIG. 21 ORB. AFT STRUT TRADES, LAUNCH CONFIG., FWD. STRUT FAIRED

(A)MACH = .60

PAGE 129

ţ.

FIG. 22 ORB. AFT STRUT TRADES, LAUNCH CONFIG., FWD. STRUT UNFAIRED (AT103.1)

(A)MACH = .60

PAGE 130

F

FIG. 22 ORB. AFT STRUT TRADES, LAUNCH CONFIG., FWD. STRUT UNFAIRED (AT103.1)
(A)MACH = .60
PAGE 13

FIG. 22 ORB. AFT STRUT TRADES, LAUNCH CONFIG., FWD. STRUT UNFAIRED (AT103.1)

(A)MACH = .60

PAGE 132

FIG. 23 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23 FAIRING

(A)MACH = .60

PAGE 133

FIG. 23 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23 FAIRING

(A)MACH = .60

PAGE 134

ŧ

FIG. 23 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23 FAIRING
PAGE

160

.

135

FIG. 24 ORB. AFT STRUT TRADES, LAUNCH CONFIG., FVD. STRUT UNFAIRED (AT103.2)

(A)MACH = .60

PAGE 136

FIG. 24 ORB. AFT STRUT TRADES, LAUNCH CONFIG., FWD. STRUT UNFAIRED (AT103.2)

(A)MACH = .60

PAGE 137

į.

FIG. 24 ORB. AFT STRUT TRADES, LAUNCH CONFIG., FWD. STRUT UNFAIRED (AT103.2)

(A)MACH = .60

PAGE 138

+

FIG. 25 EFFECT OF SEALING GAP BETWEEN FWD. BATHTUB FAIRING AND ORB., LAUNCH CFGN
(A)MACH = .60
PAGE 139

FIG. 25 EFFECT OF SEALING GAP BETWEEN FWD. BATHTUB FAIRING AND ORB., LAUNCH CFGN
(A)MACH = .60
PAGE 140

ŧ

FIG. 25 EFFECT OF SEALING GAP BETWEEN FWD. BATHTUB FAIRING AND ORB., LAUNCH CFGN

(A)MACH = .60

PAGE 141

Ł

FIG. 26 EFFECT OF ORB. SUPPORT STRUT FAIRINGS, LAUNCH CONFIG., BETA 4

(A)MACH = .60

PAGE 142

.

FIG. 26 EFFECT OF ORB. SUPPORT STRUT FAIRINGS, LAUNCH CONFIG., BETA 4

(A)MACH = .60

PAGE 143

ŀ

FIG. 26 EFFECT OF ORB. SUPPORT STRUT FAIRINGS, LAUNCH CONFIG., BETA 4

[A]MACH = .60

PAGE 144

X. Y

FIG. 27 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG.

FIG. 27 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG.

(A)MACH = .60

¥ .

FIG. 27 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG.

ŧ

FIG. 27 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG. (B)MACH = .70

FIG. 27 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG.

(B) MACH = .70

FIG. 27 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG.

(B)MACH = .70

ŧ

FIG. 28 MACH NUMBER EFFECTS, LAUNCH CONFIGURATION

FIG. 28 MACH NUMBER EFFECTS, LAUNCH CONFIGURATION

CA6 K2H15.6.1V9.1S1-12 AT103.1/95-.30RBF8N24/28(RGP059)

FIG. 28 MACH NUMBER EFFECTS, LAUNCH CONFIGURATION

FIG. 29 RUDDER EFFECTIVENESS, LAUNCH CONFIG.

Ł

FIG. 29 RUDDER EFFECTIVENESS, LAUNCH CONFIG.

(A)MACH = .60

FIG. 29 RUDDER EFFECTIVENESS, LAUNCH CONFIG.

(A)MACH = .60

FIG. 29 RUDDER EFFECTIVENESS, LAUNCH CONFIG.

(B)MACH = .70

FIG. 29 RUDDER EFFECTIVENESS, LAUNCH CONFIG.

(B)MACH = .70

PAGE 158

.

FIG. 29 RUDDER EFFECTIVENESS, LAUNCH CONFIG.

(B)'IACH = .70

FIG. 30 ELEVATOR EFFECTIVENESS, LAUNCH CONFIGURATION (A)MACH =.60

FIG. 30 ELEVATOR EFFECTIVENESS, LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 30 ELEVATOR EFFECTIVENESS, LAUNCH CONFIGURATION
(A)MACH = .60

ŧ

(B)MACH =

.70

FIG. 30 ELEVATOR EFFECTIVENESS, LAUNCH CONFIGURATION

(B)MACH = .70

PAGE 164

Ĭ.

FIG. 30 ELEVATOR EFFECTIVENESS, LAUNCH CONFIGURATION

(B)MACH = .70

FIG. 31 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 0

(A)MACH = .60

PAGE 166

FIG. 31 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 0

(A)MACH = .60

PAGE 167

FIG. 31 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 0

(A)MACH = .60

PAGE 168

ŧ

FIG. 32 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 5

[A)MACH = .50

PAGE 169

ŧ

FIG. 32 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 5

(A)MACH = .50

PAGE 170

į

FIG. 32 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 5

(A)MACH = .50

PAGE 171

Ì

FIG. 32 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 5

(B)MACH = .60

PAGE 172

FIG. 32 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 5

(B)MACH = .60

PAGE 173

FIG. 32 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 5

(B)MACH = .60

PAGE 174

FIG. 32 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 5

(C)MACH = .70

PAGE 175

į

FIG. 32 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 5

(C)MACH = .70

PAGE 176

FIG. 32 STABILIZER EFFECTIVENESS, LAUNCH CONFIGURATION, ELEVON = 5

(C)MACH = .70

PAGE

.

FIG. 33 EFFECT OF ALL VERTICAL TAILS OFF ON LAUNCH CONFIGURATION

(A)MACH = .60

PAGE 178

FIG. 33 EFFECT OF ALL VERTICAL TAILS OFF ON LAUNCH CONFIGURATION

(A)MACH = .60

PAGE

ļ

FIG. 33 EFFECT OF ALL VERTICAL TAILS OFF ON LAUNCH CONFIGURATION

(A)MACH = .60

PAGE 180

FIG. 33 EFFECT OF ALL VERTICAL TAILS OFF ON LAUNCH CONFIGURATION

(B)MACH = .70

PAGE 181

FIG. 33 EFFECT OF ALL VERTICAL TAILS OFF ON LAUNCH CONFIGURATION

(B)MACH = .70

PAGE 182

.

FIG. 33 EFFECT OF ALL VERTICAL TAILS OFF ON LAUNCH CONFIGURATION

(B)MACH = .70 PAGE 183

FIG. 34 TAILCONE EFFECTS, LAUNCH CONFIGURATION

(A)MACH = .60

•

FIG. 34 TAILCONE EFFECTS, LAUNCH CONFIGURATION

TAILCONE EFFECTS, LAUNCH CONFIGURATION (A)MACH =

.60

FIG. 34 TAILCONE EFFECTS. LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 34 TAILCONE EFFECTS, LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 34 TAILCONE EFFECTS, LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 34 TAILCONE EFFECTS, LAUNCH CONFIGURATION

(A)MACH = .60

FIG. 34 TAILCONE EFFECTS, LAUNCH CONFIGURATION
(A)MACH = .60

ţ

FIG. 34 TAILCONE EFFECTS, LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 35 ORBITER INCIDENCE EFFECTS ON LAUNCH CONFIGURATION, SPOILER 5

[A]MACH = .60

PAGE 193

ţ

FIG. 35 ORBITER INCIDENCE EFFECTS ON LAUNCH CONFIGURATION, SPOILER 5

(A) PAGE 194

ŧ

FIG. 35 ORBITER INCIDENCE EFFECTS ON LAUNCH CONFIGURATION, SPOILER 5

(A)MACH = .60 PAGE 195

ţ

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION

(A)MACH = .60

ŀ

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION
(A)MACH = .60

•

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION

(A)MACH = .80

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION

(A)MACH =

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION

CA)MACH = .60

(A)MACH = .60

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION

(A)MACH = .50

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION

made and the second of the sec

ļ

FIG. 36 ORBITER ELEVON EFFECTS ON LAUNCH CONFIGURATION

(A)MACH = .60

FIG. 37 STABILIZER EFFECTIVENESS ON LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 37 STABILIZER EFFECTIVENESS ON LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 37 STABILIZER EFFECTIVENESS ON LAUNCH CONFIGURATION

CADMACH = .60

FIG. 38 LATERAL-DIRECTIONAL STABILITY OF LAUNCH CONFIGURATION

[A]MACH = .60

FIG. 38 LATERAL-DIRECTIONAL STABILITY OF LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 38 LATERAL-DIRECTIONAL STABILITY OF LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 39 RUDDER EFFECTIVENESS ON LAUNCH CONFIGURATION
(A)MACH = .60

FIG. 39 RUDDER EFFECTIVENESS ON LAUNCH CONFIGURATION

FIG. 39 RUDDER EFFECTIVENESS ON LAUNCH CONFIGURATION
(A)MACH = .60

PAGE .2:6

FIG. 40 EFFECT OF SIDESLIP, ALL VERTICAL TAILS OFF, LAUNCH CONFIGURATION

(A)MACH = .60

PAGE

FIG. 40 EFFECT OF SIDESLIP, ALL VERTICAL TAILS OFF, LAUNCH CONFIGURATION

(A)MACH = .60

PAGE 218

the market page of the Contract of the Contrac

Ł

FIG. 40 EFFECT OF SIDESLIP, ALL VERTICAL TAILS OFF, LAUNCH CONFIGURATION

(A)MACH = .60

PAGE

ł

FIG. 41 ORBITER INCIDENCE EFFECTS ON LAUNCH CONFIGURATION, SPOILER -1

(A)MACH = .60

PAGE 220

FIG. 41 ORBITER INCIDENCE EFFECTS ON LAUNCH CONFIGURATION, SPOILER -1

(A)MACH = .60

PAGE 221

ŧ

FIG. 41 ORBITER INCIDENCE EFFECTS ON LAUNCH CONFIGURATION, SPOILER -1

(A)MACH = .60

PAGE 222

FIG. 42 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA O
PAGE

[A]MACH = .60

ŀ

FIG. 42 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA O (A)MACH .60 PAGE 224

FIG. 42 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA O
PAGE 225

FIG. 42 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA O

(B)MACH = .70

PAGE 226

FIG. 42 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA O

(B)MACH = .70

PAGE 227

FIG. 42 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA O

(B)MACH = .70

PAGE 228

FIG. 43 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA 4

(A)MACH = .60

PAGE

F ...

FIG. 43 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA 4

(A)MACH = .60

PAGE 230

FIG. 43 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA 4

(A)MACH = .60

PAGE 231

FIG. 43 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA 4

(B)MACH = .70 PAGE 232

FIG. 43 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA 4

(B)MACH = .70

PAGE 233

ŧ

FIG. 43 ORB. FWD. STRUT TRADES, LAUNCH CONFIG., AFT STRUT CA23, BETA 4

(B)MACH = .70

PAGE 234

FIG. 44 EFFECT OF SIDE STRUT FAIRINGS ON LAUNCH CONFIG., CA23 AFT STRUT

(A)MACH = .60

PAGE 235

Ė

FIG. 44 EFFECT OF SIDE STRUT FAIRINGS ON LAUNCH CONFIG., CA23 AFT STRUT

(A)MACH = .60

PAGE 236

FIG. 44 EFFECT OF SIDE STRUT FAIRINGS ON LAUNCH CONFIG., CA23 AFT STRUT

(A)MACH = .60

PAGE

È.

FIG. 45 COMPARISON OF CANDIDATE FAIRING CONFIGURATIONS, LAUNCH CONFIGURATION

PAGE 238

FIG. 45 COMPARISON OF CANDIDATE FAIRING CONFIGURATIONS, LAUNCH CONFIGURATION

(A)MACH = .60

PAGE 239

.

FIG. 45 COMPARISON OF CANDIDATE FAIRING CONFIGURATIONS, LAUNCH CONFIGURATION

(A)MACH = .60

PAGE 240

FIG. 46 EFFECT OF TRIP STRIPS ON SUPPORT STRUT FAIRINGS, LAUNCH CONFIGURATION

[A]MACH = .60

PAGE 241

FIG. 46 EFFECT OF TRIP STRIPS ON SUPPORT STRUT FAIRINGS, LAUNCH CONFIGURATION

[A]MACH = .60

PAGE 242

FIG. 46 EFFECT OF TRIP STRIPS ON SUPPORT STRUT FAIRINGS, LAUNCH CONFIGURATION

(A)MACH = .60

PAGE 243

ŧ

FIG. 47 STABILIZER EFFECTIVENESS, STRUT FAIRINGS OFF, TC OFF

(A)MACH = .60

PAGE

244

FIG. 47 STABILIZER EFFECTIVENESS, STRUT FAIRINGS OFF, TC OFF

FIG. 47 STABILIZER EFFECTIVENESS, STRUT FAIRINGS OFF, TC OFF

FIG. 48 LATERAL-DIRECTIONAL STABILITY, STRUT FAIRINGS OFF, TC OFF

FIG. 48 LATERAL-DIRECTIONAL STABILITY, STRUT FAIRINGS OFF, TC OFF

(A)MACH = .60

PAGE 248

FIG. 48 LATERAL-DIRECTIONAL STABILITY, STRUT FAIRINGS OFF, TC OFF

FIG. 49 RUDDER EFFECTIVENESS, STRUT FAIRINGS OFF, TC OFF

FIG. 49 RUDDER EFFECTIVENESS, STRUT FAIRINGS OFF, TC OFF

FIG. 49 RUDDER EFFECTIVENESS, STRUT FAIRINGS OFF, TC OFF

FIG. 50 LATERAL-DIRECTIONAL STABILITY, FAIRINGS CA23 AFT AND LONG CHORD FWD.

(A)MACH = .60

PAGE 253

ŧ

FIG. 50 LATERAL-DIRECTIONAL STABILITY, FAIRINGS CA23 AFT AND LONG CHORD FWD.

(A)MACH = .60

PAGE 254

FIG. 50 LATERAL-DIRECTIONAL STABILITY, FAIRINGS CA23 AFT AND LONG CHORD FWD.

(A)MACH = .60

PAGE 255

FIG. 50 LATERAL-DIRECTIONAL STABILITY, FAIRINGS CA23 AFT AND LONG CHORD FWD.

(B)MACH = .70

PAGE 256

FIG. 50 LATERAL-DIRECTIONAL STABILITY, FAIRINGS CA23 AFT AND LONG CHORD FWD.

(B)MACH = .70

PAGE 257

į

FIG. 50 LATERAL-DIRECTIONAL STABILITY, FAIRINGS CA23 AFT AND LONG CHORD FWD.

(B)MACH = .70

PAGE 258

FIG. 51 ALL VERTICAL TAILS OFF, LAUNCH CONFIG., CA23 AFT AND ROUND FWD.

(A)MACH = .60

PAGE 260

FIG. 51 ALL VERTICAL TAILS OFF, LAUNCH CONFIG., CA23 AFT AND ROUND FWD.

(A)MACH = .60

PAGE 261

FIG. 52 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG., CA23 AFT AND ROUND FWD.

(A)MACH = .60

PAGE 262

FIG. 52 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG., CA23 AFT AND ROUND FWD.

(A)MACH = .60

PAGE 263

Ł

FIG. 52 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG., CA23 AFT AND ROUND FWD.

(A)MACH = .60

PAGE 264

FIG. 53 STABILIZER EFFECTIVENESS, LAUNCH CONFIG., CA23AFT AND ROUND FWD.

(A)MACH = .60

PAGE 266

ľ

FIG. 53 STABILIZER EFFECTIVENESS, LAUNCH CONFIG., CA23AFT AND ROUND FWD.

[A]MACH = .60

PAGE

\$

267

FIG. 54 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG., MIN AFT AND GAITER FWD.

(A)MACH = .60

PAGE 268

FIG. 54 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG., MIN AFT AND GAITER FWD.

(A)MACH = .60

PAGE 269

FIG. 54 LATERAL-DIRECTIONAL STABILITY, LAUNCH CONFIG., MIN AFT AND GAITER FWD.

(A)MACH = .60

PAGE 270

FIG. 55 STABILIZER EFFECTIVENESS, LAUNCH CONFIG., MIN AFT AND GAITER FWD.

(A)MACH = .60

PAGE

Ì

271

FIG. 55 STABILIZER EFFECTIVENESS, LAUNCH CONFIG., MIN AFT AND GAITER FWD.

(A)MACH = .60

PAGE 272

FIG. 55 STABILIZER EFFECTIVENESS, LAUNCH CONFIG., MIN AFT AND GAITER FWD.

(A)MACH = .60

PAGE

FIG. 56 ELEVATOR EFFECTIVENESS, LAUNCH CONFIG., CA23AFT AND ROUND FWD.

(A)MACH = .60

PAGE 274

ŀ

FIG. 56 ELEVATOR EFFECTIVENESS, LAUNCH CONFIG., CA23AFT AND ROUND FWD.

(A)MACH = .60

PAGE

275

FIG. 56 ELEVATOR EFFECTIVENESS, LAUNCH CONFIG., CA23AFT AND ROUND FWD.

(A)MACH = .60

PAGE

276

FIG. 57 EFFECT OF T.C. FAIRING ON LONGITUDINAL STABILITY, ALT LAUNCH

(A)MACH = .60

PAGE 277

ŧ

FIG. 57 EFFECT OF T.C. FAIRING ON LONGITUDINAL STABILITY, ALT LAUNCH

(A)MACH = .60

PAGE 278

FIG. 57 EFFECT OF T.C. FAIRING ON LONGITUDINAL STABILITY, ALT LAUNCH

FIG. 58 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON O

FIG. 58 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON O

FIG. 58 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON O

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5

(A)MACH = .30

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5

(A)MACH = .30

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5

,

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5

CA: = HOAM(A)

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5

Ē

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5

(A)MACH = .70

PAGE

292

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5
(A)MACH = .70

FIG. 59 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -5

FIG. 60 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -10, BDFLAP 0

FIG. 60 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -10, BDFLAP 0

(A)MACH = .60

PAGE 296

Ŀ

FIG. 60 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -10, BDFLAP 0

FIG. 61 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -10, BDFLAP -11.7

(A)MACH = .60

PAGE 298

FIG. 61 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -10, BDFLAP -11.7

(A)MACH = .60

PAGE 299

ŧ

FIG. 61 STABILIZER EFFECTIVENESS, ALT CLIMB, ELEVON -10, BDFLAP -11.7

(A)MACH = .60

PAGE 300

FIG. 62 ELEVATOR EFFECTIVENESS, ALT CLIMB, LORB 6

(A)MACH = .30

FIG. 62 ELEVATOR EFFECTIVENESS, ALT CLIMB, IORB 6

[A)MACH = .30

PAGE 302

FIG. 62 ELEVATOR EFFECTIVENESS, ALT CLIMB, IORB 6
(A)MACH = .30

FIG. 62 ELEVATOR EFFECTIVENESS, ALT CLIMB, IORB 6
(B)MACH = .60

FIG. 62 ELEVATOR EFFECTIVENESS, ALT CLIMB, IORB 6

FIG. 62 ELEVATOR EFFECTIVENESS, ALT CLIMB, IORB 6
(C)MACH = .70

FIG. 62 ELEVATOR EFFECTIVENESS, ALT CLIMB, IORB 6

FIG. 63 LATERAL-DIRECTIONAL STABILITY, ALT CLIMB, TORB 6

FIG. 63 LATERAL-DIRECTIONAL STABILITY, ALT CLIMB, IORB 6
(A)MACH = .30

FIG. 63 LATERAL-DIRECTIONAL STABILITY, ALT CLIMB, IORB 6
(B)MACH = .60

FIG. 63 LATERAL-DIRECTIONAL STABILITY, ALT CLIMB, IORB 6
(B)MACH = .60

FIG. 63 LATERAL-DIRECTIONAL STABILITY, ALT CLIMB, IORB 6

FIG. 64 RUDDER EFFECTIVENESS, ALT CLIMB, IORB 6
(A)MACH = .30

ŧ

FIG. 64 RUDDER EFFECTIVENESS, ALT CLIMB, IORB 6
(A)MACH = .30

(A)MACH .30

FIG. 64 RUDDER EFFECTIVENESS, ALT CLIMB, IORB 6
(B)MACH = .50

FIG. 64 RUDDER EFFECTIVENESS, ALT CLIMB, IORB 6
(B)MACH = .50

FIG. 64 RUDDER EFFECTIVENESS, ALT CLIMB, IORB 6

FIG. 64 RUDDER EFFECTIVENESS, ALT CLIMB, IORB 6
(C)MACH = .60

FIG. 64 RUDDER EFFECTIVENESS, ALT CLIMB, IORB 6

FIG. 64 RUDDER EFFECTIVENESS, ALT CLIMB, IORB 6
(D)MACH = .70

FIG. 64 RUDDER EFFECTIVENESS, ALT CLIMB, IORB 6

FIG. 65 LATERAL-DIRECTIONAL STABILITY, ALL VERTICAL TAILS OFF, ALT CLIMB

(A)MACH = .30

PAGE 328

ŀ

FIG. 65 LATERAL-DIRECTIONAL STABILITY, ALL VERTICAL TAILS OFF, ALT CLIMB

(A)MACH = .30

PAGE

329

FIG. 65 LATERAL-DIRECTIONAL STABILITY, ALL VERTICAL TAILS OFF, ALT CLIMB

(A)MACH = .30

PAGE 330

Ī

FIG. 65 LATERAL-DIRECTIONAL STABILITY, ALL VERTICAL TAILS OFF, ALT CLIMB

(B)MACH = .60

PAGE

GE 331

FIG. 65 LATERAL-DIRECTIONAL STABILITY, ALL VERTICAL TAILS OFF, ALT CLIMB

(B)MACH = .60

PAGE 332

FIG. 65 LATERAL-DIRECTIONAL STABILITY, ALL VERTICAL TAILS OFF, ALT CLIMB

(B)MACH = .60

333

FIG. 66 ORBITER ELEVON EFFECTS, FERRY, IORB 4.25
(A)MACH = .60

FIG. 66 ORBITER ELEVON EFFECTS, FERRY, IORB 4.25

FIG. 67 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON -5

[A)MACH = .30

PAGE 337

ŧ

FIG. 67 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON -5

(A)MACH = .30

PAGE 338

F

FIG. 67 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON -5

(A)MACH = .30

FIG. 67 LATERAL-DIRECTIONAL STABILITY, FERRY, TORB 4.25, ELEVON -5
(B)MACH = .60
PAGE 340

FIG. 67 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON -5

(B)MACH = .60

PAGE 341

.60 PAGE (B)MACH 342

FIG. 68 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON O

(A)MACH = .30

FIG. 68 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON O

(A)MACH = .30

PAGE 344

ì

FIG. 68 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON O

(A)MACH = .30

FIG. 68 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON 0

(B)MACH = .60

PAGE 346

FIG. 68 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON 0

(B)MACH = .60

PAGE 347

ŧ

FIG. 68 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 4.25, ELEVON O

(B)MACH = .60

PAGE 348

FIG. 69 RUDDER EFFECTIVENESS, FERRY, IORB 4.25
(A)MACH = .30

FIG. 69 RUDDER EFFECTIVENESS, FERRY, IORB 4.25

FIG. 69 RUDDER EFFECTIVENESS, FERRY, IORB 4.25

F

FIG. 69 RUDDER EFFECTIVENESS, FERRY, IORB 4.25
(B)MACH = .60

FIG. 69 RUDDER EFFECTIVENESS, FERRY, IORB 4.25

FIG. 70 ELEVATOR EFFECTIVENESS, FERRY, IORB 4.25

FIG. 70 ELEVATOR EFFECTIVENESS, FERRY, IORB 4.25

FIG. 70 ELEVATOR EFFECTIVENESS, FERRY, IORB 4.25
(B)MACH = .60

FIG. 70 ELEVATOR EFFECTIVENESS, FERRY, IORB 4.25
(B)MACH = .60

FIG. 70 ELEVATOR EFFECTIVENESS, FERRY, IORB 4.25
(B)MACH = .60

T

FIG. 71 STABILIZER EFFECTIVENESS, FERRY, IORB 4.25

FIG. 71 STABILIZER EFFECTIVENESS, FERRY, IORB 4.25
(A)MACH = .30

FIG. 71 STABILIZER EFFECTIVENESS, FERRY, IORB 4.25
(A)MACH = .30

FIG. 71 STABILIZER EFFECTIVENESS, FERRY, IORB 4.25
(B)MACH = .50

FIG. 71 STABILIZER EFFECTIVENESS, FERRY, IORB 4.25

ŧ

FIG. 71 STABILIZER EFFECTIVENESS, FERRY, IORB 4.25
(B)MACH = .50

FIG. 71 STABILIZER EFFECTIVENESS, FERRY, IORB 4.25

FIG. 71 STABILIZER EFFECTIVENESS, FERRY, IORB 4.25

FIG. 71 STABILIZER EFFECTIVENESS, FERRY, 10RB 4.25

FIG. 72 ALL VERTICAL TAILS OFF, FERRY, IORB 4.25

FIG. 72 ALL VERTICAL TAILS OFF, FERRY, IORB 4.25
(A)MACH = .30

FIG. 72 ALL VERTICAL TAILS OFF, FERRY, IORB 4.25
(A)MACH = .30

ł

FIG. 72 ALL VERTICAL TAILS OFF, FERRY, IORB 4.25
(B)MACH = .60

FIG. 73 HORIZONTAL TAIL OFF, FERRY, IORB 4.25

PAGE 377

FIG. 73 HORIZONTAL TAIL OFF, FERRY, IORB 4.25

FIG. 74 STABILIZER EFFECTIVENESS, FERRY, IORB 3.0

(A)MACH = .60

FIG. 74 STABILIZER EFFECTIVENESS, FERRY, IORB 3.0
(A)MACH = .60

FIG. 75 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 3.0
(A)MACH = .60

FIG. 75 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 3.0

EADMACH = .60

FIG. 75 LATERAL-DIRECTIONAL STABILITY, FERRY, IORB 3.0
(A)MACH = .60

ŧ

FIG. 76 RUDDER EFFECTIVENESS, FERRY, IORB 3.0
(A)MACH = .60

(A)MACH = .60

FIG. 76 RUDDER EFFECTIVENESS, FERRY, IORB 3.0
(A)MACH = .60

FIG. 77 STABILIZER EFFECTIVENESS, FERRY, UNFAIRED STRUTS, IORB 4.25

(A)MACH = .60

PAGE 388

ŀ

FIG. 77 STABILIZER EFFECTIVENESS, FERRY, UNFAIRED STRUTS, IORB 4.25

(A)MACH = .60

PAGE 389

į

FIG. 77 STABILIZER EFFECTIVENESS, FERRY, UNFAIRED STRUTS, 10RB 4.25

(A)MACH = .60

PAGE 390

ŧ

FIG. 78 LATERAL-DIRECTIONAL STABILITY, FERRY, UNFAIRED STRUTS, IORB 4.25

(A)MACH = .60

PAGE

FIG. 78 LATERAL-DIRECTIONAL STABILITY, FERRY, UNFAIRED STRUTS, 10RB 4.25

(A)MACH = .60

PAGE 392

FIG. 78 LATERAL-DIRECTIONAL STABILITY, FERRY, UNFAIRED STRUTS, IORB 4.25

(A)MACH = .60

PAGE 393

FIG. 79 ALL VERTICAL TAILS OFF, FERRY, UNFAIRED STRUTS, IORB 4.25

(A)MACH = .60

PAGE 394

FIG. 79 ALL VERTICAL TAILS OFF, FERRY, UNFAIRED STRUTS, IORB 4.25
(A)MACH = .60

FIG. 79 ALL VERTICAL TAILS OFF, FERRY, UNFAIRED STRUTS, IORB 4.25

(A)MACH = .60

PAGE 396

FIG. 80 TAILCONE EFFECIS, FERRY, UNFAIRED STRUTS, 10RB 4.25

(A)MACH = .60

PAGE

FIG. 80 TAILCONE EFFECTS, FERRY, UNFAIRED STRUTS, IORB 4.25
(A)MACH = .60

FIG. 81 HURIZUNIAL TAIL UFF, SPEED BRKS FAIRED, ALT CLIMB, TURB 8

[A]MACH = .43

PAGE 400

.

FIG. 81 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, ALT CLIMB, IORB 8

(A)MACH = .40

-

PAGE

FIG. 81 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, ALT CLIMB, IORB 8

(A)MACH = .40

PAGE

-

FIG. 81 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, ALT CLIMB, IORB 8

(B)MACH = .70

PAGE 403

ŀ

FIG. 81 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, ALT CLIMB, IORB 8

(B)MACH = .70

PAGE 404

FIG. 81 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, ALT CLIMB, IORB 8

(B)MACH = .70

PAGE

GE 405

FIG. 82 HORIZONTAL TAIL OFF INFLIGHT SPEED BRKS, ALT LAUNCH, IORB 8

[A]MACH = .40

PAGE 406

FIG. 82 HORIZONTAL TAIL OFF INFLIGHT SPEED BRKS, ALT LAUNCH, IORB 8

(A)MACH = .40

PAGE 408

ŧ

FIG. 82 HORIZONTAL TAIL OFF INFLIGHT SPEED BRKS, ALT LAUNCH, IORB 8

(B)MACH = .70

PAGE 409

FIG. 82 HORIZONIAL IAIL OFF INFLIGHT SPEED BRKS, ALT LAUNCH, TORB 8

(B)MACH = .70

PAGE 410

.

FIG. 82 HORIZONTAL TAIL OFF INFLIGHT SPEED BRKS, ALT LAUNCH, IORB 8

(B)MACH = .70

PAGE

FIG. 83 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, FERRY, IORB 4.25

[A]MACH = .40

PAGE 412

FIG. 83 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, FERRY, IORB 4.25

FIG. 83 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, FERRY, IORB 4.25

(A)MACH = .40

PAGE

. .. -

FIG. 83 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, FERRY, IORB 4.25

(B)MACH = .70

PAGE

ŀ

FIG. 83 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, FERRY, IORB 4.25

(B)MACH = .70

PAGE 416

ţ

FIG. 83 HORIZONTAL TAIL OFF, SPEED BRKS FAIRED, FERRY, IORB 4.25
(B)MACH = .70

IORB

REFERENCE INFORMATION

DATA SET SYMBOL CONFIGURATION DESCRIPTION

FIG. 84 HURIZUNIAL IAIL UFF, INFLIGHT SPEED BRAS, FERRY, TURB 4.25

(A)MACH = .40

PAGE 418

ţ.

FIG. 84 HORIZONTAL TAIL OFF, INFLIGHT SPEED BRKS, FERRY, IORB 4.25

(A)MACH = .40

PAGE 419

FIG. 84 HORIZONTAL TAIL OFF, INFLIGHT SPEED BRKS, FERRY, IORB 4.25

(A)MACH = .40

PAGE 420

FIG. 84 HORIZONTAL TAIL OFF, INFLIGHT SPEED BRKS, FERRY, IORB 4.25

(B)MACH = .70

PAGE 421

FIG. 84 HURIZUNIAL IAIL UFF, INFLIGHT SPEED BRKS, FERRY, TURB 4.25
(B)MACH = .70
PAGE 422

FIG. 84 HORIZONTAL TAIL OFF, INFLIGHT SPEED BRKS, FERRY, IORB 4.25
(B)MACH = .70

FIG. 85 747 CAM AND BASIC 747, HORIZONTAL TAIL OFF

FIG. 85 747 CAM AND BASIC 747, HORIZONTAL TAIL OFF

FIG. 85 747 CAM AND BASIC 747, HORIZONTAL TAIL OFF (A)MACH = .40

FIG. 85 747 CAM AND BASIC 747, HORIZONTAL TAIL OFF

•

FIG. 87 STABILIZER EFFECTIVENESS, 747 CAM, CA23AFT-ROUND FWD

(A)MACH. .60

FIG. 87 STABILIZER EFFECTIVENESS, 747 CAM, CA23AFT-ROUND FWD

FIG. 88 LATERAL-DIRECTIONAL STABILITY, 747 CAM, CA23 AFT-ROUND FWD

(A)MACH = .60

PAGE 436

FIG. 88 LATERAL-DIRECTIONAL STABILITY, 747 CAM, CA23 AFT-ROUND FWD

(A)MACH = .60

PAGE 437

ŀ

FIG. 88 LATERAL-DIRECTIONAL STABILITY, 747 CAM, CA23 AFT-ROUND FWD

(A)MACH = .60

PAGE 438

•

FIG. 89 MACH NUMBER EFFECTS, SPEED BRAKES DOWN, 747 CAM, CA23 AFT-ROUND FWD

ŀ

FIG. 89 MACH NUMBER EFFECTS, SPEED BRAKES DOWN, 747 CAM, CA23 AFT-ROUND FWD

- 1 CLM - .3

 $\dot{O}_1 \dot{O}_2 \dot{O}_3 \dot{O}_4$

. 1

-1.0E

MACH NUMBER EFFECTS, SPEED BRAKES DOWN, 747 CAM, CA23 AFT-ROUND FWD

PAGE

441

(A)MACH = .60

FIG. 90 ELEVATOR EFFECTIVENESS, 747 CAM, CA23 AFT-ROUND FWD (A)MACH = .60

(A)MACH .60

(A)MACH = .60

FIG. 91 RUDDER EFFECTIVENESS, 747 CAM, CA23 AFT-ROUND FWD

FIG. 92 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT-ROUND FWD

FIG. 92 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT-ROUND FWD

FIG. 92 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT-ROUND FWD

FIG. 93 EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN

FIG. 93 EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN

(A)MACH = .30

PAGE

ŧ

FIG. 93 EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN

FIG. 93 EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN

(B)MACH = .50

PAGE

E 454

. .

FIG. 93 EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN

(B)MACH = .50

PAGE 456

È

09.

(C)WVCH =

FIG. 93 EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN

(C)MACH = .60

FIG. 93 EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN
(C)MACH = ,60

FIG. 93 EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN (D)MACH = .70

ŀ

FIG. 93 EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN
(D)MACH = .70

FIG. 93 EFFECT OF SUPPORT FAIRINGS, 747 CAM, SPEED BRAKE DOWN

FIG. 94 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT AND GAITER FWD.

CD

FIG. 94 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT AND GAITER FWD.

FIG. 94 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT AND GAITER FWD.

B 4 A⊾PHAW

-.002

- .003転

10

FIG. 95 LATERAL-DIRECTIONAL STABILITY, 747 CAM, MIN AFT AND GAITER FWD.

(A)MACH = .60

PAGE 466

FIG. 95 LATERAL-DIRECTIONAL STABILITY, 747 CAM, MIN AFT AND GAITER FWD.

(A)MACH = .60

PAGE

467

FIG. 95 LATERAL-DIRECTIONAL STABILITY, 747 CAM, MIN AFT AND GATTER FWD.

(A)MACH = .60

PAGE 468

ı

FIG. 96 EFFECT OF SPEED BRAKES, 747 CAM, MIN AFT AND GAITER FWD.

FIG. 97 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT AND GAITER FWD.

FIG. 97 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT AND GAITER FWD.

FIG. 97 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT AND GAITER FWD.

FIG. 98 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT, FAIRED FWD

FIG. 98 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT, FAIRED FWD

CLM

FIG. 98 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, MIN AFT, FAIRED FWD

.08

.04

.12

.16

.20

.24

-1.0

-.04

 $\dot{O}_1 \dot{O}_2 \dot{O}_3 \dot{O}_4$

FIG. 99 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, CAM STRUTS OFF

FIG. 99 MACH NUMBER EFFECTS, SPEED BRKS DWN, 747 CAM, CAM STRUTS OFF

FIG. 100 REPEATABILITY STUDY, SPEED BRAKES DOWN, BASIC 747
(B)MACH = .50

FIG. 100 REPEATABILITY STUDY, SPEED BRAKES DOWN, BASIC 747

(B)MACH = .50

(C)MACH = .60

490

FIG. 100 REPEATABILITY STUDY, SPEED BRAKES DOWN, BASIC 747

(A)MACH -.30

FIG. 101 CA-5 AND CA-6 COMPARISON, BASIC 747 ALONE

(B)MACH =

FIG. 101 CA-5 AND CA-6 COMPARISON, BASIC 747 ALONE

(C)MACH = .60

FIG. 101 CA-5 AND CA-6 COMPARISON, BASIC 747 ALONE

FIG. 101 CA-5 AND CA-6 COMPARISON, BASIC 747 ALONE (D)MACH = .70

į

.70 (D)MACH = .

FIG. 102 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= 0

(A)MACH = .30

PAGE 505

ŧ

FIG. 102 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= 0

FAGE 506

FIG. 102 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= 0

(A)MACH = .30

PAGE 507

.

FIG. 102 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOTLER= 0

(B) MACH = .50PAGE .50

1

FIG. 102 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= 0

(B)MACH = .50

PAGE 510

FIG. 102 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= 0

(C)MACH = .60

PAGE 512

ŧ

FIG. 102 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= 0

(C)MACH = .60

FIG. 103 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= -1

(A)MACH = .30

PAGE 514

7

ŀ

FIG. 103 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= -1

(A)MACH = .30

PAGE

FIG. 103 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= -1

CADMACH = .30

PAGE 516

FIG. 103 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= -1
(B)MACH = .50

PAGE 517

Ł

FIG. 103 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= -1
(B)MACH = .50
PAGE 518

c .

FIG. 103 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= -1
(B)MACH = .50

PAGE

ŀ

519

PAGE

FIG. 103 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPOILER= -1

(C)MACH = .60

PAGE 521

ŀ

FIG. 103 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, SPUILER= -1

(C)MACH = .60

PAGE 522

FIG. 104 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, TAILCONE OFF

(A)MACH = .60

PAGE 523

1

FIG. 104 CA-5 AND CA-6 COMPARISON, FERRY CONFIGURATION, TAILCONE OFF

(A)MACH = .60

PAGE 524

ţ

FIG. 105 CA-23 AND CA-6 COMPARISON, BASIC 747 CONFIGURATION, SPOILER = -1

(A)MACH = .60

PAGE 526

DATA SET SYMBOL CONFIGURATION DESCRIPTION

(CE9814) ARC14-080-1 CA23 747/3 (CARRIER ISOLATED)

(RGP013) CA6 KIH15.1 V9.1

.000 -1.000 .000 -1.000 SEE THE ASSOCIATED DATA DOCUMENT FOR REFERENCE CHARACTERISTICS FOR INDIVIDUAL DATASETS

FIG. 105 CA-23 AND CA-6 COMPARISON, BASIC 747 CONFIGURATION, SPOILER = -1

(A)MACH = .60

PAGE 527

FIG. 105 CA-23 AND CA-6 COMPARISON, BASIC 747 CONFIGURATION, SPOILER = -1

[A]MACH = .60

PAGE 528

FIG. 106 CA-23 AND CA-6 COMPARISON, LAUNCH CONFIGURATION, SPOILER = 5

(A)MACH = .60

PAGE 529

FIG. 106 CA-23 AND CA-6 COMPARISON, LAUNCH CONFIGURATION, SPOILER = 5

(A)MACH = .60

PAGE 530

FIG. 109 CA-23, CA-5, CA-6 COMPARISON, LAUNCH CONFIGURATION

(A) MACH = .60

(A)MACH = .60 PAGE 540