Fundamentos de Física ICF024. Segundo semestre 2015

GUÍA DE EJERCICIOS SOBRE CONCEPTOS DE CINEMÁTICA

- 1. (*) La posición de una partícula que se mueve en el plano está descrita por la función $\vec{r}(t) = 15t \,\hat{i} + (20t 2t^2) \,\hat{j} \ (x:m,\,t:s)$.
 - a. Determine la posición en los instantes de tiempo t = 0, 3, 5, 7, 10 s.
 - b. Calcule el desplazamiento entre los instantes $t_1 = 3$ y $t_2 = 5$ s , $t_1 = 3$ y $t_2 = 7$ s .
 - c. Calcule las velocidades medias para los intervalos definidos en el punto anterior.
- 2. (*) En un movimiento unidimensional una partícula está definida por la ecuación de itinerario $x(t) = 8 + 40t 2t^2$ (x : m, t : s).
 - a. Calcule la posición para los instantes $t_1 = 0$ y $t_2 = 5$ s y para $t_1 = 10$ y $t_2 = 15$ s.
 - b. Determine las velocidades medias entre $t_1 = 0$ y $t_2 = 5$ s y para $t_1 = 10$ y $t_2 = 15$ s.
 - c. Calcule las velocidades medias para los intervalos que se muestran en la tabla y obtenga la velocidad instantánea para el instante $t=5\ s$.

t_1	t ₂	X ₁	X ₂	Δx	Δt	$v_m = (\Delta x / \Delta t)$
5	6	158				
5	5.5	158	167.5	9.5	0.5	19
5	5.1	158				
5	5.01	158				
5	5.001	158				

- d. Usando el concepto de límite, determine la función velocidad instantánea v(t) para los instantes de tiempo $t_1 = 5 \ y \ t_2 = 15 \ s$.
- e. Usando el concepto de límite, determine la función aceleración instantánea a(t) para los instantes de tiempo $t_1=5\ y\ t_2=15\ s$.
- f. Grafique las funciones x(t), v(t) y a(t)
- 3. (*) En un movimiento unidimensional de un movimiento vertical hacia abajo, la posición de una partícula está determinada por la ecuación de itinerario descrita por $y(t) = 10 20t 4.9t^2$ (y: m, t: s).
 - a. Esquematice la situación anterior en el instante t = 0 s.
 - b. Determine la velocidad v(t) y a(t) para este movimiento.
 - c. Calcule el tiempo y la velocidad con que la partícula llega al suelo.

- 4. (*) Dada la función de itinerario de una partícula $\vec{r}(t) = 3t^2 \hat{i} + 2t^3 \hat{j} + 2\hat{k}$ (x:m,t:s). Encuentre la velocidad y aceleración de la partícula para todo instante de tiempo.
- 5. (*) El vector de posición de una partícula es $\vec{r}(t) = (t+2)\hat{i} + t^2\hat{j}$ (x:m,t:s). ¿Qué desplazamiento ha experimentado la partícula en el intervalo de tiempo entre $t_1 = 2$ y $t_2 = 4$ s?
- 6. (*) Un auto viaja a lo largo de una curva sobre un plano. Sus coordenadas cartesianas en función del tiempo están dadas por las ecuaciones:

$$x(t) = 2t-1$$
, $y(t) = 2t^3 - 3t^2$ (x, y: m, t: s)

- a. La posición del auto en t = 1 s.
- b. La velocidad y la aceleración para cualquier instante de tiempo.
- c. La ecuación de la trayectoria de la partícula.
- 7. (*) Dado el vector posición $\vec{r}(t) = 2t^2 \hat{i} 2t \hat{j}$ ($\vec{r}: m, t: s$). Hallar:
 - a. Las componentes del vector posición para t = 3 s.
 - b. El vector velocidad.
 - c. El vector aceleración.
 - d. La ecuación de la trayectoria.
- 8. (*) Considere el movimiento de una partícula en el plano. Las coordenadas de la posición de la partícula en cada instante son:

$$x(t) = 2 + 3t$$
, $y(t) = 3 + 2t^{2}$ $(x, y : m, t : s)$

Estudie el movimiento de la partícula en el intervalo de tiempo $0 < t < 10 \, s$. Para ello realice las siguientes actividades.

- a. Calcule la posición de la partícula en t = 0 s y t = 10 s.
- b. Calcule el desplazamiento de la partícula entre t = 0 s y t = 10 s.
- c. Calcule la velocidad media en ese intervalo de tiempo.
- d. Calcule la velocidad media entre t=3 s y t=3.5 s; entre t=3 s y t=3.2 s; entre t=3 s y t=3.05 s; entre t=3 s y t=3.005 s ; entre t=3 s y t=3.0005 s . ¿Cuánto vale la velocidad en t=3 s ?
- e. Calcule la aceleración media entre t = 0 s y t = 10 s.
- f. Calcule la aceleración en el instante $t=2\ s$ siguiendo el proceso del límite como lo realizó para la velocidad media.
- g. Determine la trayectoria que sigue la partícula en el plano.
- (*) Dificultad regular.

Respuestas a los problemas:

1.

a.
$$\vec{r}(0) = 0\hat{i} + 0\hat{j} m$$

 $\vec{r}(3) = 45\hat{i} + 42\hat{j} m$
 $\vec{r}(5) = 75\hat{i} + 50\hat{j} m$
 $\vec{r}(7) = 105\hat{i} + 42\hat{j} m$
 $\vec{r}(10) = 150\hat{i} + 0\hat{j} m$

b.
$$\Delta \vec{r_1} = 30\hat{i} + 8\hat{j} m$$

 $\Delta \vec{r_2} = 60\hat{i} m$

c.
$$<\vec{v}_1>=15\hat{i}+4\hat{j} \ m/s$$

 $<\vec{v}_2>=15\hat{i} \ m/s$

2.

a.
$$x(0) = 8 m$$

 $x(5) = 158 m$
 $x(10) = 208 m$
 $x(15) = 158 m$

b.
$$<\vec{v}_1>=30\hat{i} \ m/s$$

 $<\vec{v}_2>=-10\hat{i} \ m/s$

c.

t ₁	t ₂	X ₁	x_2	Δx	Δt	$v_m = (\Delta x / \Delta t)$
5	6	158	176	18	1	18
5	5.5	158	167.5	9.5	0.5	19
5	5.1	158	159.98	1.98	0.1	19.8
5	5.01	158	158.1998	0.1998	0.01	19.98
5	5.001	158	158.019998	0.019998	0.001	19.998

Entonces
$$\vec{v}(5) = 20\hat{i} \ m/s$$

d.
$$\vec{v}(t) = (40-4t)\hat{i}$$
 m/s , $\vec{v}(5) = 20\hat{i}$ m/s , $\vec{v}(15) = -20\hat{i}$ m/s

e.
$$\vec{a}(t) = -4\hat{i} \ m/s^2$$
, $\vec{a}(5) = -4\hat{i} \ m/s^2$, $\vec{a}(15) = -4\hat{i} \ m/s^2$

f. Gráficos.

Fundamentos de Física ICF024. Segundo semestre 2015

3.
$$y(0) = 10 m$$
, indica la altura a la que se encontraba el cuerpo en $t = 0$.

b.
$$v(t) = -20 - 9.8t \ m/s, \ a(t) = -9.8 \ m/s^2$$

c.
$$t = 0.45 s \ y \ v = -24,41 \ m/s$$

4.
$$\vec{v}(t) = 6t \,\hat{i} + 6t^2 \,\hat{j} \, m/s$$
, $\vec{a}(t) = 6\hat{i} + 12t \,\hat{j} \, m/s^2$

$$\mathbf{5.} \qquad \Delta \vec{r} = 2\hat{i} + 12\hat{j} \quad m$$

6. a.
$$\vec{r}(1) = \hat{i} - \hat{j} m$$

b.
$$\vec{v}(t) = 2\hat{i} + (6t^2 - 6t)\hat{j} \ m/s$$
, $\vec{a}(t) = (12t - 6)\hat{j} \ m/s^2$

c.
$$y(x) = 2\left(\frac{x+1}{2}\right)^3 - 3\left(\frac{x+1}{2}\right)^2 m = \frac{1}{4}(x^3 - 3x - 2)m$$

7. **a.**
$$x = 18 m, y = -6 m$$

b.
$$\vec{v}(t) = 4t \,\hat{i} - 2 \,\hat{j} \, m/s$$

$$\vec{a}(t) = 4\hat{i} \ m/s^2$$

$$\mathbf{d.} \qquad y(x) = -\sqrt{2x} \ \mathbf{m}$$

8. a.
$$\vec{r}(0) = 2\hat{i} + 3\hat{j}$$
 m, $\vec{r}(10) = 32\hat{i} + 203\hat{j}$ m

$$\Delta \vec{r} = 30\hat{i} + 200\hat{j} \ m$$

c.
$$<\vec{v}>=3\hat{i}+20\hat{j} \ m/s$$

d.
$$<\vec{v}_1>=3\hat{i}+13\hat{j} \ m/s$$

 $<\vec{v}_2>=3\hat{i}+12.4\hat{j} \ m/s$
 $<\vec{v}_2>=3\hat{i}+12.1\hat{j} \ m/s$

$$\langle v_3 \rangle = 3i + 12.1j \ m/s$$

 $\langle \vec{v}_4 \rangle = 3\hat{i} + 12.01\hat{j} \ m/s$

$$\langle \vec{v}_4 \rangle = 3\hat{i} + 12.002\hat{j} \text{ m/s}$$

Luego en
$$t=3 \, s, \ \vec{v} = 3\hat{i} + 12 \, \hat{j} \ m/s$$

e.
$$<\vec{a}>=4\hat{j} \, m/s^2$$

f.
$$\vec{a}(2) = 4\hat{j} \ m/s^2$$

g.
$$y(x) = 3 + 2\left(\frac{x-2}{3}\right)^2 m = \frac{1}{9}(2x^2 - 8x + 35)m$$