$\mathcal{P}\mathbf{1}$

$$\mathcal{P}$$
1.a $\bigcup_{x \in \mathbb{Z}} \{x, x+1, x+2\}$

The resultant set will be \mathbb{Z} because of the range of the indexing set, which is also \mathbb{Z} .

$$\mathcal{P}$$
1.b $\bigcup_{n\in\mathbb{N}} (-n,n)$

As n approaches infinity, the interval described also expands to infinity. The union of all of these intervals is therefore \mathbb{R} .

$$\mathcal{P}$$
1.c $\bigcap_{n\in\mathbb{N}} (-n,n)$

As n increases, the width of each interval also increases, but all of them are centered at 0. The smallest interval is the original interval: (-1,1).

$$\mathcal{P}$$
1.d $\bigcup_{n=2}^{\infty} [0, 1-1/n)$

As the value of n increases, the right endpoint gets closer and closer to 1, but never reaches. Indeed,

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = 1$$

This means that the union of all of these intervals also won't include 1. The answer is therefore [0,1).

$$\mathcal{P}$$
1.e $\bigcup_{x \in \mathbb{Z}} \left(\bigcup_{n=2}^{\infty} [x, x+1-1/n) \right)$

Using the results of the last subproblem, the inner union is [x, x+1). The outer union then takes this interval and repeats it across all integers x. This gives $\mathbb R$ as the result.

 \mathcal{P}^{2}

$$\mathcal{P}$$
2.a $\left(\bigcup_{x\in\mathbb{Z}}\left\{x,x+1,x+2\right\}\right)^C$

Taking the complement results in removing the integers from the reals, or in shorter form, $\mathbb{R}\backslash\mathbb{Z}$.

$$\mathcal{P}$$
2.b $\left(\bigcup_{n\in\mathbb{N}}(-n,n)\right)^C$

The complement of \mathbb{R} with respect to \mathbb{R} is the empty set, $\{\}$.

$$\mathcal{P}$$
2.c $\left(\bigcup_{n=2}^{\infty}[0,1-1/n)\right)^{C}$

The complement is the result of simply removing [0,1) from the reals. Doing so yields $pars-\infty, 0 \cup [1,\infty)$.

$$\mathcal{P}$$
2.d $\left(\bigcup_{x\in\mathbb{Z}}\left(\bigcup_{n=2}^{\infty}\left[x,x+1-1/n\right)\right)\right)^{C}$

The complement of the reals is just the empty set, {}.

P3

$$\mathcal{P}$$
3.a $|A \times B| = |A| \cdot |B|$

We can use the A as the outer indexing collection and B as the inner indexing collection. To carry out the cartesian product, we traverse through the entirety of B |A| times. This results in a set with cardinality $|A| \cdot |B|$.

$$\mathcal{P}$$
3.b $|\mathcal{P}\left(\mathcal{P}\left(\mathcal{P}\left(\mathcal{P}\left(\mathcal{O}\left(\mathcal{O}\right)\right)\right)\right)|$

We won't take each powerset function, since that would be very cumbersome. The initial set is the empty set, therefore it has 0 elements. For an initial set with cardinality n, the powerset produces a set with cardinality 2^n . This makes sense because for each element, there are two choices: include them in the subset or don't. We can then compute,

$$\begin{aligned} |\mathcal{P}(\varnothing)| &= 1\\ |\mathcal{P}(\mathcal{P}(\varnothing))| &= 2\\ |\mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing)))| &= 4\\ |\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing))))| &= 16 \end{aligned}$$

In general, define $\mathcal{P}_n\left(\varnothing\right)$ as the set produced by applying the powerset n times to the empty set. We see that $|\mathcal{P}_n\left(\varnothing\right)|=2^{|\mathcal{P}_{n-1}\left(\varnothing\right)|}$.

 \mathcal{P} 4

$$\mathcal{P}$$
4.a $(A \backslash B) \subseteq A$

Define $C := A \setminus B$. We wish to prove that $C \subseteq A$. By definition, C is made up of all the elements of A that don't appear in B. Therefore all the elements of C will be in A, proving that it is a subset.

$$\mathcal{P}$$
4.b $(A \cup B)^C = A^C \cap B^C$

Define an arbitrary member x such that $x \in (A \cup B)^C$. By definition, $(x \notin A) \land (x \notin B)$. Therefore, by the definition of the complement of a set, $(x \in A^C) \land (x \in B^C)$. Since this works for an arbitrary x, $(A \cup B)^C \subseteq A^C \cap B^C$.

Similarly, define an arbitrary member y such that $y \in A^C \cap B^C$. Therefore, by the definition of the intersection, $(y \in A^C) \wedge (y \in B^C)$. By the definition of the complement $(y \notin A) \wedge (y \notin B)$. We can replace the conjunction operator with a set union using the definition of a union to write $y \notin (A \cup B)$. Using the definition of a complement again, $y \in (A \cup B)^C$. Since this works for an arbitrary $y, A^C \cap B^C \subseteq (A \cup B)^C$.

Putting these two arguments together shows that $(A \cup B)^C = A^C \cap B^C$.

$$\mathcal{P}$$
5 $A \triangle B = (A \cup B) \setminus (A \cap B)$

Since we are already given a definition of the symmetric difference, it is sufficient to prove

$$(A \backslash B) \cup (B \backslash A) = (A \cup B) \backslash (A \cap B)$$

The symmetric difference only retains elements in A and B that are unique to them, relative to each other.

Consider an element x that is an arbitrary member of $A\triangle B$. That element, by definition is a member of exactly one set. If it is only a member of one set, then it is not in the intersection of the two sets. And is therefore also a member of $(A \cup B) \setminus (A \cap B)$. Therefore, $A\triangle B \subseteq (A \cup B) \setminus (A \cap B)$. We can repeat the same exact argument for a member of $(A \cup B) \setminus (A \cap B)$ to see that $A\triangle B \subseteq (A \cup B) \setminus (A \cap B)$. Therefore, $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.