ECE2 - Mathématiques

DM4

- * A rendre le vendredi 05 février au début de la séance de cours. Aucun délai supplémentaire ne sera accordé.
- * Le devoir doit être rédigé sur des copies doubles. Les résultats doivent être mis en valeur (encadrés ou soulignés par exemple).
- * Toute réponse doit être justifiée.
- * Toute tentative d'escroquerie sera lourdement sanctionnée.

Exercice 1

On considère la fonction f définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 2x & \text{si } x \in]0,1] \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que f est une densité de probabilité.
- 2. Par la suite, on note X une variable aléatoire de densité f. On a donc $X(\Omega) =]0, 1]$.
 - (a) Montrer que X possède des moments de tous ordres et pour tout entier $n \in \mathbb{N}^*$, calculer $m_n(X)$.
 - (b) En déduire l'espérance et la variance de X.
- 3. Déterminer la fonction de répartition de X.
- 4. (a) Déterminer la loi de Y = ln(X).
 - (b) A l'aide de la loi de Y, déterminer si Y possède une espérance, une variance. Les calculer (sous réserve d'existence).
 - (c) Retrouver les résultats de la question précédente à l'aide du théorème de transfert.

Exercice 2

- 1. Montrer que l'intégrale $\int_0^{+\infty} \frac{1}{(1+x)^2} dx$ est convergente et donner sa valeur
- 2. On considère la fonction f définie par : $\forall x \in \mathbb{R}$, $f(x) = \frac{1}{2(1+|x|)^2}$.
 - (a) Montrer que f est paire.
 - (b) Montrer que f peut être considérée comme une fonction densité de probabilité.

Dans la suite, on considère une variable aléatoire X, définie sur un espace probabilisé (Ω, \mathcal{A}, P) admettant f comme densité.

On note F la fonction de répartition de X.

- 3. On pose $Y = \ln(1 + |X|)$ et on admet que Y est une variable aléatoire à densité, elle aussi définie sur l'espace probabilisé (Ω, \mathcal{A}, P) .
 - (a) Déterminer $Y(\Omega)$.
 - (b) Exprimer la fonction de répartition G de Y à l'aide de F.
 - (c) En déduire que Y admet pour densité la fonction g définie par :

$$g(x) = \begin{cases} 2e^x f(e^x - 1) & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$

(d) Montrer enfin que Y suit une loi exponentielle dont on déterminera le paramètre.