000

001 002 003 004 005 006 007

800 009 010 011 012

013

014

015 016 017 018 020 021

023 024 025 026 027 028 029

022

031 032 033 034 035 036

030

037 038 039 040 041 042

043 044 045 046 047

048

049

BECON: BERT with Evidence from CONceptNet for Common Sense Question Answering

Anonymous ACL submission

Abstract

CommonsenseQA (Talmor et al., 2018) is created by crowdsourcing workers based on knowledge graphs on ConceptNet (Speer et al., 2017). Solving the task requires the model to have common sense or world knowledge like humans. Current LM-pretrained model such as BERT (Devlin et al., 2018) achieves state-of-the-art performance on the CQA dataset, which implies that language models trained on very large corpus may learn some sort of common sense knowledge implicitly. On the other hand, with the availability of the large knowledge graph such as ConceptNet, which contains explicit common sense knowledge, we would like to investigate how to use the explicit form of common sense knowledge as complementary to BERT which has implicit common sense knowledge.

For CommonsenseQA task, a question and five candidate answers are given, and one of the five answers is correct. The candidate asnwers usually consist of one or two words, forming a concept. According to (Talmor et al., 2018), the best performing baseline model is the BERT-large model finetuned with CQA dataset. Our model is built based on BERT-large model, but also utilizes additional evidences from ConceptNet, which provides useful information to answer the question.

Concretely, to use the knowledge in Conceptnet, we first query each candidate answer in ConceptNet to get a list of evidence sentences which may be helpful to answer the question. In order to reduce the noise, we use pretrained BERT with Next-Sentence-Prediction head (BERT-NSP) to rank the evidence sentences and select the topscored one. A example of the evidence sentences are shown in Figure 1. We believe that BERT-NSP is helpful to rank the relevancy of the question and the evidence sentence. As in (Talmor et al.,

what is a wet person likely to do:			
A. suicide	Jumping out of a window is for suicide		
B. catch cold	Something that might happen as a consequence of getting wet is you catch a cold		
C. cross street	One of the things you do when you cross the street is look both ways		

an overeating individual can gain weight

What is a wet person likely to do?

D. gain weight

E. thank god

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Figure 1: A question from CommonsenseQA dataset and its 5 candidate answers with their corresponding top-ranked evidences. The correct answer are in bold/green, and the evidence corresponding to the correct answer is it italic.

a person can thank God

Model	test F1
BERT-large (Talmor et al., 2018)	56.7
CoS-E (Rajani et al., 2019)	58.2
BECON	57.9
BECON (ensemble)	59.6

Table 1: Comparison of the test accurary with literature.

2018), each question-answer pair is linearized into a delimiter-separated sequence (i.e., "[CLS] If ... ? [SEP] bedroom [SEP]") and the hidden vector over the [CLS] token are used as representation of the choice. For our BECON model, we further concatenate the evidence sentence (i.e., "[CLS] If ... ? [SEP] bedroom [SEP] bedroom is a place for sleeping [SEP]"), which may help the model make better decisions.

The experiment results on CQA test split are shown in Table 1. Our single model outperforms the BERT-large baseline by 1.2%. Using ensemble technique, our model achieves 59.7%, outperforms CoS-E (Rajani et al., 2019) by 1.4%.

In conclusion, our model shows that explicit common sense knowledge can be complementary to BERT in solving common sense question answering tasks.

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

100	References	150
101		151
102	Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep	152
103	bidirectional transformers for language understand-	153
104	ing. arXiv preprint arXiv:1810.04805.	154
105	Nazneen Fatema Rajani, Bryan McCann, Caiming	155
106	Xiong, and Richard Socher. 2019. Explain yourself!	156
107	leveraging language models for commonsense rea-	157
108	soning. arXiv preprint arXiv:1906.02361.	158
109	Robert Speer, Joshua Chin, and Catherine Havasi.	159
110	2017. Conceptnet 5.5: An open multilingual graph	160
111	of general knowledge. In Thirty-First AAAI Conference on Artificial Intelligence.	161
112		162
113	Alon Talmor, Jonathan Herzig, Nicholas Lourie, and	163
114	Jonathan Berant. 2018. Commonsenseqa: A question answering challenge targeting commonsense	164
115	knowledge. arXiv preprint arXiv:1811.00937.	165
116		166
117		167
118		168
119		169
120		170
121		171
122		172
123		173
124		174
125		175
126		176
127		177
128		178
129		179
130		180
131		181
132		182
133		183
134		184
135		185
136		186
137		187
138		188
139		189
140		190
141		191
142		192
143 144		193 194
144		194
145		196
146		190
148		198
. 70		190