

Thomas Bayes

José Vitor Novaes Moreira

Universidade Federal de Viçosa - Campus Florestal

jose.novaes@ufv.br

Quem foi Thomas Bayes

Foi um estatístico Inglês, filósofo que é conhecido para a formulação de um caso específico do teorema que leva seu nome: teorema de Bayes Considerando a sua imensa importância atual, sabemos pouco sobre Thomas Bayes. Ele foi um pastor presbiteriano que viveu no início do século 18 (1701-1761) na Inglaterra. Estudou teologia na Universidade de Edimburgo (Escócia), de onde saiu em 1722. Em 1731 assumiu a paróquia de Tunbridge Wells, no condado de Kent. Cinco anos depois, publicou seu primeiro e único livro de matemática, chamado The doctrine of fluxions (A doutrina das fluxões) o nome fluxion foi dado pelo matemático e físico Isaac Newton (1642-1727).

Com base nesse livro e em outras possíveis contribuições, Bayes foi eleito em 1752 para a Royal Society, sociedade científica britânica criada em 1645.

Imagem 1: Thomas Bayes

Origem do Teorema de Bayes

A Dois anos após sua morte, um amigo, o filósofo Richard Price (1723-1791), apresentou à Royal Society um artigo que aparentemente encontrou entre os papéis do reverendo, com o nome ' **('Ensaio buscando resolver um problema na doutrina das probabilidades')**. Nesse artigo estava a demonstração do famoso teorema de Bayess.

Após sua publicação, o trabalho caiu no esquecimento, do qual só foi resgatado pelo matemático francês Pierre-Simon de Laplace (1749-1827). O teorema de Bayes foi mais tarde desenvolvido por Pierre-Simon Laplace, que foi o primeiro a publicar uma formulação moderna em 1812 em seu livro Teoria Analítica de Probabilidade, na tradução do francês.

Imagem 2: Pierre.

O teorema

O Teorema de Bayes é uma fórmula matemática usada para o cálculo da probabilidade de um evento dado que outro evento já ocorreu, o que é chamado de probabilidade condicional. A grande questão do Teorema de Bayes é que eu preciso ter alguma informação anterior, ou seja, preciso saber que um determinado evento já ocorreu e qual a probabilidade desse evento. É baseado nessa inferência bayesiana que surge a expressão "grau de crença", que é esse confiança em algum evento anterior, essa suposição inicial, O teorema é um corolário da lei da probabilidade total, expresso matematicamente na forma da seguinte equação:

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Em que A e B são eventos e $P(B) \neq 0$

Aplicação

Como possibilita a inferência de dados a partir de informações prévias, o teorema de Bayes tem, na verdade, diversas aplicações práticas.Uma das aplicações do Teorema de Bayes é no famoso problema de Monty Hall. Esse problema, ou paradoxo, controverso e contra intuitivo reflete bem essa mudança das probabilidades baseada em um grau de crença.

Problema de Monty Hall

O que é esse problema? Bem, se trata do famoso jogo das portas, comum em muitos game shows, em que o convidado tem que escolher 1 de 3 portas, pois essa contêm um prêmio. Assim que você escolhe, uma outra porta é aberta revelando estar vazia e, então, é perguntado se você deseja trocar de porta.//

O grau de crença assumido é que o apresentador do programa sabe exatamente onde está o prêmio. Sendo assim, independente se você escolheu a porta certa de primeira, ele abrirá uma porta que está vazia e te perguntará se deseja trocar. Partindo-se dessa informação dada, de que o apresentador sabe onde está o prêmio, você deve trocar ou não de porta?//

Trocar de porta dobra suas chances de ganhar o prêmio. Vamos supor que você escolha a porta número 1. O apresentador abre a porta número 2, que está vazia. Ele então te pergunta se você deseja trocar de porta. Quando você escolhe a porta número 1, você tem 1/3 de chance de ganhar, pois temos 3 portas, com somente uma contendo o prêmio. Então, o que acontece com suas chances quando o apresentador abre uma porta vazia? Elas se mantêm na mesma. Definindo os eventos:

 $\cdot A = a \text{ porta escolhida } (n^{\circ}) \text{ tem o prêmio}$

·B = o apresentador abre uma porta vazia

Sabemos que P(A) = 1/3. Para calcular P(B), precisamos cobrir todas as possibilidades do apressentador abrir uma porta vazia. Ou seja, quais são as probabilidades de \circ apresentador abrir uma porta vazia tendo você escolnido ou não a porta certa. Assim, o Teorema fica dessa forma:

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B|A) \times P(A) + P(B|A^C) \times P(A^C)}$$

Assim, vamos definir as probabilidades:

 $\cdot P(A) =$ probabilidade de o prêmio estar na porta número 1 .

P(BIA) = probabilidade de o apresentador escolher uma porta vazia dado que o prêmio está na porta número I.

 $P\left(B|A^C\right)$ = probabilidade de o apresentador escolher uma porta vazia dado que o prêmio nao está na porta número 1.

 $\cdot P\left(A^{C}\right) =$ probabilidade de o prêmio nao estar na porta número 1

Podemos afirmar que probabilidade de o apresentador abrir uma porta vazia é 1, ou seja, $P(B|A) = P\left(B|A^C\right) = I$. Porque essa informação foi dada

Quanto a $P\left(A^{C}\right)$ temos uma probabilidade de 2/3, pois essa é a chance de errarmos a porta na primeira, se você mantiver sua escolha pela primeira porta, terá uma probabilidade de:

$$P(A|B) = \frac{1 \times \frac{1}{3}}{1 \times \frac{1}{3} + 1 \times \frac{2}{3}} = \frac{1}{3}$$

Ou seja, se você não mudar de porta, sua chance de ganhar permanece em 1/3, enquanto se você trocar, dobra suas chances para 2/3

Como a tecnologia tem utilizado o teorema de Bayes

Com o avanço da tecnologia, há um aumento no volume de dados gerados por empresas e pessoas. Essas informações precisam ser contextualizadas, cruzadas e avaliadas para que seja possível encontrar a relação entre elas.

A ideia de Bayes pode ser usada nesse sentido e, por isso, é aplicada na construção de diversos algoritmos. Na análise de cenários, extrapolação de dados e avaliações de riscos, o teorema ajuda os algoritmos a darem uma resposta mais precisa.

A crescente onda de inteligência artificial e de machine learning aumenta a capacidade das máquinas e faz com que a proposta de Bayes seja ainda mais útil. Por isso, o recurso pode ser usado em diversas ferramentas que utilizam a análises de eventos para entender as probabilidades de certas ocorrências.

Referências

Marcelo Petenate . **Tudo que você precisa saber sobre o Teorema de Bayes**12 novembro. 2019/em Estatistica. Disponível em: https://www.escolaedti.com.br/teorema-de-bayes.

Thiago Gonçalves. **O Teorema de Bayes:o que é e qual sua aplicação?.** Disponível em: https://www.voitto.com.br/blog/artigo/teorema-de-bayes