BOOSTING ALGORITHM ASSIGNMENT

PROBLEM STATEMENT

As Data Scientists, we must develop a model to predict insurance charges when age, sex, BMI, children and smoker values are given as input parameters

DATASET INFORMATION

Total No of rows: 1338 (including column name)

Total No of columns: 6

<pre>import pandas as pd Dataset=pd.read_csv("insurance_pre.csv")</pre>								
Dataset								
	age	sex	bmi	children	smoker	charges		
o	19	female	27.900	0	yes	16884.92400		
1	18	male	33.770	1	no	1725.55230		
2	28	male	33.000	3	no	4449.46200		
3	33	male	22.705	0	no	21984.47061		
4	32	male	28.880	0	no	3866.85520		
1333	50	male	30.970	3	no	10600.54830		
1334	18	female	31.920	О	no	2205.98080		
1335	18	female	36.850	0	no	1629.83350		
1336	21	female	25.800	0	no	2007.94500		
1337	61	female	29.070	О	yes	29141.36030		
1338 rows × 6 columns								

Column Name: age, sex, bmi, children, smoker, charges

Input Variables: age, sex, bmi, children, smoker

Output Variable: Charges

PREPROCESSING METHOD:

Since the Dataset has categorical columns sex and smoker, it should be converted to numbers

Here the categorical data is nominal, so one hot encoding method is used to convert the categorical data (string) to numerical data (numbers 1 or 0)

Here categorical data(state) is available in the dataset which is converted to numerical data
As the categorical data available is nominal, one hot coding method is used to convert it into numerical data
Dataset=pd.get_dummies(Dataset,dtype=int,drop_first=True)
Dataset

	age	bmi	children	charges	sex_male	smoker_yes		
0	19	27.900	0	16884.92400	0	1		
1	18	33.770	1	1725.55230	1	0		
2	28	33.000	3	4449.46200	1	0		
3	33	22.705	0	21984.47061	1	0		
4	32	28.880	0	3866.85520	1	0		
1333	50	30.970	3	10600.54830	1	0		
1334	18	31.920	0	2205.98080	0	0		
1335	18	36.850	0	1629.83350	0	0		
1336	21	25.800	0	2007.94500	0	0		
1337	61	29.070	0	29141.36030	0	1		
1338 rows × 6 columns								

1. ADABOOST REGRESSOR:

S.no	n_estimators	learning_rate	loss	random_state	R2 score
1	50	1.0	linear	0	0.8447
2	20	1.0	linear	None	0.8704
3	50	2.0	linear	None	0.8753
4	20	2.0	linear	0	<mark>0.8809</mark>
5	50	1.0	square	0	0.5185
6	20	1.0	square	None	0.5837
7	50	2.0	square	None	0.5516
8	20	2.0	square	0	0.5083
9	50	1.0	exponential	0	0.6292
10	20	1.0	exponential	None	0.7472
11	50	2.0	exponential	None	0.5350
12	20	2.0	exponential	0	0.6522

Adaboost Regressor has a highest R^2 value as 0.8809 for n_estimators=20, learning_rate=2.0, loss='linear' and random_state=0

2. XGBOOST REGRESSOR:

S.no	eta	Max_depth	Subsample	Colsample_bytree	Tree_method	R Score
1	0.05	3	0.7	0.7	exact	0.8932
2	0.07	3	0.9	0.9	Exact	0.8896
3	0.1	3	0.9	0.9	Exact	0.8869
4	0.05	3	0.7	0.7	auto	0.8907
5	0.07	3	0.9	0.9	auto	0.8912
6	0.1	3	0.9	0.9	auto	0.8871
7	0.05	3	0.7	0.7	hist	0.8787
8	0.07	3	0.9	0.9	hist	0.8882
9	0.1	3	0.9	0.9	hist	0.8859
10	0.05	3	0.7	0.7	approx	0.8815
11	0.07	3	0.9	0.9	approx	<mark>0.8945</mark>
12	0.1	3	0.9	0.9	approx	0.8914

 $XGboost\ Regressor\ has\ a\ highest\ R^2value\ as\ 0.8945\ for$ eta=0.07,max_depth=3,subsample=0.9,colsample_bytree=0.9,tree_method='approx'

3. LGBM REGRESSOR:

S.NO	Boosting	n_estimator	num_ leaves	max_ depth	early_ stopping_	baggin_ freq	bagged_ Fraction	metric	R score
			icaves	асри	round	пец	Traction		400
1	gbdt	100	10	3	50	1	0.9	rmse	<mark>0.8934</mark>
2	gbdt	200	40	5	100	2	0.8	L1	0.8883
3	gbdt	300	70	6	150	1	0.7	L2	0.8863
4	gbdt	400	200	8	200	2	0.6	rmse	0.8839
5	gbdt	500	900	10	250	1	0.5	L1	0.8872
6	dart	100	10	3	NA	1	0.9	rmse	0.8787
7	dart	200	40	5	NA	2	0.8	L1	0.8846
8	dart	300	70	6	NA	1	0.7	L2	0.8810
9	dart	400	200	8	NA	2	0.6	rmse	0.8763
10	dart	500	900	10	NA	1	0.5	L2	0.8772
11	rf	100	10	3	50	1	0.9	rmse	0.8818
12	rf	200	40	5	100	2	0.8	L1	0.8861
13	rf	300	70	6	150	1	0.7	L2	0.8895
14	rf	400	200	8	200	2	0.6	rmse	0.8858
15	rf	500	900	10	250	1	0.5	L2	0.8866

LGBM Regressor has highest R^2 value as 0.8934 for boosting='gbdt', n_estimators=100, num_leaves=10, max_depth=3, early_stopping_rounds=50, bagging_freq=1, bagged_fraction=0.9 and metric='rmse'