Decision Tree Report

Introduction

A Decision Tree is a widely used machine learning model for classification and regression tasks. It operates by splitting the data into subsets based on feature conditions, forming a tree-like structure. This report evaluates the performance of a Decision Tree model applied to a given dataset.

Methodology

A Decision Tree follows a recursive partitioning approach based on the following principles:

- It selects the best feature for splitting using criteria such as Gini Impurity or Information Gain.
- The dataset is split iteratively until a stopping condition is met (e.g., maximum depth or minimum samples per leaf).
- Predictions are made by traversing the tree from the root to a leaf node.

Steps Taken:

1. Data Preprocessing:

- Checked for missing values.
- Conducted exploratory data analysis (EDA) to examine feature distributions and correlations.
- Encoded categorical variables using one-hot encoding.
- Scaled numerical features if necessary.
- Split data into training (70%) and testing (30%) sets.

2. Model Training:

- o Implemented Decision Tree using sklearn.tree.DecisionTreeClassifier.
- o Experimented with different criterion functions (Gini and Entropy).
- Tuned hyperparameters such as max_depth, min_samples_split, and min_samples_leaf.

3. Performance Evaluation:

- Measured using Accuracy, Precision, Recall, and F1-Score.
- Evaluated feature importance to understand the key contributors to predictions.

Decision Tree Model Analysis

No	Model Type	Parameters	Results
01	Default Configuration	-	0.9333
02	Limited Depth for Preventing	criterion="squared_error", max_depth=5	0.9271
	Overfitting		
03	Minimum Samples per Split	min_samples_split=10	0.9112
04	Using the "friedman_mse"	criterion="friedman_mse"	0.9154
	Criterion		
05	Restricting the Number of	max_features="sqrt"	-0.7754
	Features Considered for Splitting		
06	Random State for	random_state=42	0.9122
	Reproducibility		
07	Reducing Overfitting	max_leaf_nodes=20	0.9057
80	Criterion for Count Data	criterion="poisson"	0.9159

Conclusion

The Decision Tree Model Analysis highlights the impact of different hyperparameters on model performance. The **Default Configuration** achieved the highest result (**0.9333**), indicating that the dataset may not require excessive tuning for optimal performance. However, specific modifications provided valuable insights:

- **Limited Depth (max_depth=5)** slightly reduced accuracy **(0.9271)** but improved generalization, reducing overfitting risks.
- Minimum Samples per Split (min_samples_split=10) and Random State (random_state=42) maintained stable performance (0.9112 0.9122).
- Using the "friedman_mse" Criterion (0.9154) and Poisson Criterion (0.9159) showed potential but did not outperform the default.
- Restricting Features (max_features="sqrt") resulted in poor performance (-0.7754), indicating that using all features might be necessary for this dataset.
- **Reducing Overfitting (max_leaf_nodes=20)** slightly lowered accuracy **(0.9057)**, suggesting that further fine-tuning is required.

Recommendations

- 1. **Use Default Configuration** as the primary model since it performed best **(0.9333)**.
- 2. **Limit tree depth (max_depth=5)** for better generalization, especially if overfitting is a concern.
- 3. **Avoid limiting features (max_features="sqrt")**, as it negatively impacted performance.
- 4. **Consider using "friedman_mse" or "poisson" criteria** for specialized cases but validate improvements with additional testing.
- 5. **Further tune min_samples_split, max_leaf_nodes, and max_depth** to balance accuracy and generalization.

Final Recommendation

The **Default Configuration** remains the best choice for optimal performance. However, if overfitting is a concern, **limiting depth (max_depth=5)** and fine-tuning **min_samples_split & max_leaf_nodes** could enhance model stability without significantly sacrificing accuracy.