

MODULE 4:

APPLIED AUGMENTED AI AND HPC AI

AGENDA

1.APPLIED AI

2. AUGMENTED AI

3. CONVERGE AI IN HPC SIMULATIONS

LESSONS

- Lesson 1: Applied AI
 - Form Recognition
 - Anomaly detection
 - -Types of Anomaly Detection
 - -Isolation Forest
 - -Applications

- Lesson 2: Augmented Artificial Intelligence (AAI)
 - -AAI An insight
 - -Functional aspects of AAI
 - -AAI and Big data
 - -Differences between AI and AAI

- Lesson 3: SmartSim
 - Intro
 - Architecture
 - Use case
 - Weather Climate example

LESSON 2:

Applied Al

HPE-Official Not For Circulia

FORMRECOGNITION

FORMRECOGNITION

information.

• Form Recognition helps to provide a well structure database that can be searched easily for

• In form recognizer key-values are extracted from form.

ANOMALY DETECTION

ANOMALY DETECTION

- The set of data points that are considerably different than the remainder of the data
- Abnormal instances are known as outliers (anomalies)
- Normal instances are known as inliers.
- The reasons for anomalies can be data errors, noise, and hidden patterns in the dataset.
- Can be important or a nuisance
- Very high blood pressure
- 200 pound for 2 year old

ANOMALY DETECTION

- Three possible cases:
- □ Correct Detection: Abnormalities is detected correctly.
- ☐ False Positives: Unexpected data values are observed, but the process continues to be normal.
- □ False Negatives: Consequences don't get registered in the abnormal data, but the process becomes abnormal.

TYPES OF ANOMALY DETECTION

Two directions to search anomalies:

Outlier detection If an observation differs from other data points.

Novelty detection If the training data doesn't have any outlier and detecting anomaly in the new observation.

ISOLATION FOREST

- Random observations are isolated by selecting a feature and a split value is selected between maximum and minimum values of the selected feature.
- This method takes advantage of two properties of anomalies,
- ➤ They are minorities consisting of fewer instances
- > Compared to normal instances, their attribute values are very different.
- Every single instance of anomaly can be isolated with a tree structure.

ISOLATION FOREST

- Anomalies fall closer to the tree root and normal points will be at the deeper end of the tree.
- Detection of anomalies is based on these isolation characteristics of a tree known as the Isolation Tree or iTree.
- IsolationTree(iTree):binary tree where each node in the tree has exactly zero or two daughter nodes
- An anomaly will be far away from normal instances, and it becomes isolated from other instances.
- On the iTree, instances that have short average path lengths are anomalies.

HOW ANOMALIES ARE DETECTED?

HOW ARE ANOMALIES DETECTED?

APPLICATIONS

Security Banking, Insurance, Finance Fraudulent Email Healthcare Manufacture

LESSON-2

AUGMENTED ARTIFICIAL INTELLIGENCE (A2I)

ARTIFICIAL INTELLIGENCE (AI) – AN INSIGHT

- Artificial Intelligence (AI)
 - Simulates Human intelligence and mimics the cognitive aspects
 - Machine learning (ML) A subset of AI
 - AI &ML aids in decision making function
 - Example: Automated classification of fruits into ripe and un-ripe categories
- The Biggest problem in AI:
 - Tries to replace human intelligence with machine intelligence
 - Cannot mimic human intelligence
 - This is exactly why self driven cars cannot be driven during bad weather conditions
 - Hence Augmented Artificial Intelligence (AAI)

AUGMENTED ARTIFICIAL INTELLIGENCE (A2I) – AN INSIGHT

- Augmented Artificial Intelligence (AAI)
 - Amplifies the functionality of AI
 - Machine intelligence excellent in ingesting large volumes of data and execute repetitive tasks
 - Human Intelligence Brilliant in exception handling, creativity and emotional intelligence
 - Combining Machine intelligence and human intelligence
 - Tries to coexist with humans and not replace them with machine intelligence
 - SO...AAI—THE BEST OF BOTH THE WORLDS

Functional aspects of A2I

FUNCTIONAL ASPECTS OF A21

- Advanced analytics
 - Provisions associative recall (which makes the neural network to learn, interpret and remember the inherent relationships with unrelated aspects)
 - Facilitates a real-time processing of the information
 - Precise predictions and decision making can be achieved when combined with human intelligence
- Interoperability
 - AAI provides seamless access to real-time data
 - Helps to develop cognitive ability in the networks and machines
 - Suitable for self diagnosis and self healing applications
- Autonomy
 - Better performance without human interventions
 - Self maintain, sensory abilities, interpretation power, reaction to operative environment, navigational abilities and task performance

A2I&BIGDATA

- Big data
 - High volume, variety and variability
 - Cannot be analyzed using conventional data processing aspects
 - Helps to identify patterns and develop actionable insights with AI and ML
 - Better data driven efficient decision making with AI & ML
 - Better prediction with larger datasets
- A2I in Big Data analytics
 - Reduces the time taken for cleaning the data
 - Gives more time to analyze, visualize and recommend suggestions in Extract, Transform and Load (ETL) process

DIFFERENCES BETWEEN AI AND A2I

Artificial Intelligence(AI)	AugmentedArtificial Intelligence(A2I)	
Machine based system are involved in the process of decision making	A combination of machine and human beings are involved in the	
∠o ^r	processof decisionmakingwith NLP	
Finaloutputismachinedependant	The final output is not entirely dependanton the machinesbut are	
cricial,	humarbasedaswell	
Thedecisionareoftennotsuitablen realtimescenarios	Theresultsarehumanændethicalin nature	
The pace of the decision making is very fast, based on the	Decisionmakingprocessis slowerashumarinputsareinvolvedaswell	
computationadapability of the machines		
Theconceptof "Blackbox" makest difficult to explain the intermediate	Easierto explainthe stepsinvolvedto arriveat the output stagedue to	
stepsin decisionmaking	the absence f blackboxapproach	

LESSON 3:

SmartSim

HPE-Official NotiFor

CONTEXT

Data at rest: HPE AI Development Environment

Data in motion: SmartSim

Distributed data: Swarm Learning

MOTIVATION - OPENING UP POSSIBILITIES

Add Machine learning methodology to your simulations with just couple of lines of coo

SIMULATION MODELS

What kind of simulations/codes are we talking about here?

- Chemistry QMCPACK, GAMESS
- Fluid DynamicsOpenFOAM, SU2
- OceanMOM6, MIT-GCM
- Coupled Climate 3SM, CESM
- General MultPhysicsMOOSE
- Molecular Dynamics AMMPS, OpenMM, CP2K, GROMMACS
- Biology:NAMD
- Quantum ChromodynamicsHROMA, MILC
- AtmosphereCAM, SPCAM

SMARTSIM-RETAINING VALUABLE RESOURCES

Question-Should we abandoû/C++/Fortran and rewrite in Python?

Tribal/community knowledge

Time-proven techniques

Development cost

Solution—SmartSimfuture forwardsthe value of your investment

SMARTSIM-CAPABILITIES

- Use Machine Learning (ML) models in existing Fortran/C/C++ simulations
- Communicate data between C, C++, Fortran, and Python applications
- Train ML models and make predictions using TensorFlow, PyTorch, and ONNX
- Analyze data streamed from HPC applications while they are running

All of these can be done without touching the filesystem, i.e. data-in-motion

SMARTSIM - COMPONENTS

- SmartSim is composed of two libraries
- The infrastructure library facilitates application and ML/DL deployment
- The **client library**enables any application to communicate data and remotely execute ML/DL models and scripts from C++, C, Fortran, and Python

Fort C C++ Py Tensor API DataSet API Al clients Redis clients

Client library &martRedi

SMARTREDIS API

Tensor data types

- Double
- Float
- Int8
- Int16
- Int32
- Int64
- UInt8
- UInt16

Metadata types

- Double
- Float
- Int64
- Int32
- Uint 64
- Uint32
- String

Same API in Python, Fortran, C, C++

Client data structure	API	Description	
	Client.put_tensor()	Set a tensor	
Tensor	Client.get_tensor()	Retrieve a tensor	
	Client.unpack_tensor()	Fill user-provided memory space with retrieved tensor	
	Client.set_model()	Store and distribute ML/DL model	
Model	Client.get_model()	Retrieve model	
	Client.run_model()	Execute a ML/DL model on some stored data	
	Client.set_script()	Store and distribute TorchScript script	
Script	Client.get_script()	Retrieve a TorchScript script	
	Client.run_script()	Run a TorchScript function within a script on some data	

	DataSetactions	API	Description	
		DataSet.add_tensor()	Add a tensor to the DataSet	
	Construct	DataSet.add_meta_scalar()	Add a metadata value to a scalar field	
		DataSet.add_string_scalar()	Add a metadata value to a string field	
	Ctono	Client.put_dataset()	Set a DataSet	
	Store	Client.get_dataset()	Retrieve a DataSet	
	Inspect	DataSet.get_tensor()	Get a tensor from the DataSet	
		DataSet.unpack_tensor()	Fills user-provided memory space with tensor	

DATA FLOW IN SMARTSIM

Streamlining management and data exchange

HOW CAN YOU USE SMARTSIM?

Key characteristic = data exchange between simulation and indatabase

ONLINE ANALYSIS

- Stream data from C/C++/Fortran simulations for analysis, and visualization in real time
- Arrays transformations between languages handled by SmartRedis (Fortran -> NumPy)
- Clients are lightweight: single static library
- No reading/writing to slow shared filesystems

SmartRedis
Python Client
sends/gets
Tensors as
NumPy arrays

Jupyter

ONLINE TRAINING

- SmartRedis Client can be used inside DataLoaders for TensorFlow and PyTorch to perform Stream Training
- Trained models can be checkpointed, saved and later sent to the database for online inference
- Can be set from any language and called from any language (i.e. model set from Python, called from Fortran)

ONLINE INFERENCE

- Call TensorFlow, PyTorch, ONNX (scikit-learn, spark, etc) models stored inside the database
- Result of inference stored at new key for retrieval when needed. Minimizes data movement

• Multiple levels of batching – database auto-batches to optimize GPU memory usage

Tensors
(i.e. Fortran Arrays)

Shard 1

Data

AI Models

Equation

Tensors
(i.e. Fortran Arrays)

Shard 1

Data

AI Models

Data

AI Models

red=Infrastructure blue=Client

```
1 import io
   2 import torch
   3 import numpy as np
   4 import torch.nn as nn
   5 from smartsim import Experiment
   6 from smartsim.database import Orchestrator
   7 from smartredis import Client
   9 class Net(nn.Module):
         def __init__(self):
  11
             super(Net, self).__init__()
  12
             self.conv = nn.Conv2d(1, 1, 3)
  13
 14
         def forward(self, x):
 15
             return self.conv(x)
17 exp = Experiment("svd", launcher="local")
  18 db = Orchestrator()
_19 exp.start(db)
 21 client = Client(address="127.0.0.1:6379",
                     cluster=False)
  23 n = Net()
  24 example_forward_input = torch.rand(1, 1, 3, 3)
  25 module = torch.jit.trace(n, example_forward_input)
  26 model_buffer = io.BytesIO()
  27 torch.jit.save(module, model_buffer)
  29 client.set_model("cnn", model_buffer.getvalue(),
                      "TORCH", device="CPU")
  31 client.put_tensor("input", example_forward_input.numpy())
  32 client.run_model("cnn", inputs=["input"], outputs=["output"])
  34 output = client.get_tensor("output")
__35 print(f"Prediction: {output}")
37 exp.stop(db)
```


ONLINE PROCESSING

- Same SmartRedis Clients can call TorchScript scripts (JIT-traced Python) stored inside database
- Can be set from any language and called from any language (i.e. set from Python, called from Fortran)
- Simple example calculates Singular Value Decomposition (SVD) of tensors streamed to database


```
red=Infrastructure blue=Client
   1 import numpy as np
  2 from smartsim import Experiment
   3 from smartsim.database import Orchestrator
  4 from smartredis import Client
    def calc_svd(input_tensor):
        return input_tensor.svd()
    exp = Experiment("svd", launcher="local")
 10 db = Orchestrator()
_11 exp.start(db)
 13 client = Client(address="127.0.0.1:6379",
                     cluster=False)
 15 tensor = np.random.randint(0, 100,
 16
                                size=(30, 10, 2))
 17 client.put_tensor("input", tensor)
 18 client.set_function("svd", calc_svd)
 19 client.run_script("svd", "calc_svd",
                       "input", ["U", "S", "V"])
 20
 21 U = client.get_tensor("U")
 22 S = client.get_tensor("S")
 23 V = client.get_tensor("V")
 24
_25 print(f"U: {U}, S: {S}, V: {V}")
26 exp.stop(db)
```


VALUE PROPOSITION – SMARTSIM

Bridging together HPC and AI with a new modeling paradigm

Extending value of current models/approaches

- Readyto-consume popular model integrations for immediate use
- Unlocks previously prohibitive-time data access
- Ability to scale training and analyses to consume full system resources
- Reduce/eliminate wasted development cycles, and learningurves for highost resources
- Easily integratespen-sourcealternatives with ML/Data Science stack

Higher productivity

- Experiment Tracking at the individual and team level, removing potential loss of data and time
- Ability for Domain Experts and Machine Learning Engineers to combine expertise into a single workflow
- Ability to integrate with openurces visualization frameworks fortion fly insight
- Faster model and analytics iterations to quickly find successful working hypothesis
- Maximize expensive resources' ability to focus on development and not HPC infrastructure

Faster performance and TTM

- Integrate modern ML stack into legacy codes
- Management of complex workflowslorm,
 PBS, LSF, and Cobalt
- Execute, monitor, and analyze legacy codes with modern ML methods
- Data communication between legacy codes and Python easily and setale
- Analyze data streamed from simulations in reatime
- Enables domain and ML experts to focus on methodology not underlying infrastructure

USER PERSONAS

	Domain scientist/SME	Machine learning enginee	er ITMLOps	LOB leader	Executive
Who?	Subject matter domain expert	Hands on model developers	Bring models to production	Director of researchLeader of Model Dev team	C-level sponsor
What do they care about? Key pain points	 Augmenting their simulations/codes using latest AI software stack Real-time simulation control Weak ML methods and ML coding skills Manually implementing ML features through piecemeal code 	 Accessing data from simulations/historical codes ML data feeds at scale Understanding data from those codes Scaling to production-ready models Weak HPC knowledge 	 Provide necessary infra for ML Engineering team to train and deploy models Efficiently managing infra Difficult to stay in front of evolving ML infra needs Ability to scale resources on-the-fly 	 Get the most out of their expensive people and infrastructure resources. Get the most out of ML models to achieve business objectives Optimizing ROI Visibility and Risk management Optimal utilization of infrastructure/resources 	 Lead ML/AI transformation for entire company Roadmap for AI expansion
Value proposition	 Faster time to Insight Enhance existing methodological approaches with ML Greenfield analytic capability Solutions level capability 	Faster time to models and market Iterate quicker for better methods Focus on ML development, not HPC infrastructure	 Accelerated ML dev cycles Single pane of glass for process/systems insight Reduced support req for SME and ML Engineer 		 ROI Faster time to market Relationship with a transformation partner that has data scientists, AI infrastructure experts, and advisory
Role	Key influencer	Key influencer	Key influencer	Decision-maker/veto	• Veto

SmartSim has shown breakthrough capability in the climate and weather vertical.

First research to ever successfully integrate a production-grade, global climate model (MOM6) with a ML surrogate for a stable decadal simulation.

RESULTS

THANK YOU

HPE-Official NotiFor