Линейные отображения. Линейные формы

|1| Найдите базис ядра линейного отображения, заданного матрицей:

a)
$$\begin{pmatrix} 3 & 5 & -4 & 2 \\ 2 & 4 & -6 & 3 \\ 11 & 17 & -8 & 4 \end{pmatrix}$$
; 6) $\begin{pmatrix} 6 & 9 & 2 \\ -4 & 1 & 1 \\ 5 & 7 & 4 \\ 2 & 5 & 3 \end{pmatrix}$; B) $\begin{pmatrix} 5 & 7 & 6 & -2 & 2 \\ 8 & 9 & 9 & -3 & 4 \\ 7 & 1 & 6 & -2 & 6 \\ 4 & -1 & 3 & -1 & 4 \end{pmatrix}$.

 $\fbox{2}$ Линейное отображение $\phi:\mathbb{Q}^3 o\mathbb{Q}^2$ заданое матрицей $\left(egin{array}{cc}2&3&-1\1&-2&1\end{array}
ight)$. В \mathbb{Q}^3 выбран новый базис $e_1=(1,-1,0)^\mathsf{T}$, $e_2=(0,2,-1)^\mathsf{T}$, $e_3=(1,0,1)^\mathsf{T}$. Найдите матрицу отображения в этом базисе.

 $\lfloor 3
floor$ Найти матрицу отображения из предыдущей задачи, если в \mathbb{Q}^2 выбран новый базис $f_1 = (3,2)^T$, $f_2 = (1,1)^T$, а базис в \mathbb{Q}^3 оставлен без изменений.

 $\boxed{4}$ Пусть линейное отображение $\varphi:U o V$ в базисах (e_1,e_2,e_3) пространства Uи (f_1,f_2) пространства V имеет матрицу $\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}$. Найдите матрицу этого отображения в базисах $(e_1, e_1 + e_2, e_1 + e_2 + e_3)$ и $(f_1, f_1 + f_2)$.

 $\lfloor \underline{5} \rfloor$ Найдите матрицу линейного отображения $\phi: \mathbb{F}[x]_1 o M_2(\mathbb{F}), \ g(x) \mapsto g(S),$ где $S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ — фиксированная матрица, если в $\mathbb{F}[x]_1$ выбран базис (1,x), а в $M_2(\mathbb{F})$

— базис из стандартных матричных единиц $(E_{11}, E_{12}, E_{21}, E_{22})$.

 6^* \mathbb{F}_q — поле из q элементов. Найдите:

- а) число линейных отображений из пространства \mathbb{F}_q^n в пространство \mathbb{F}_q^k ;
- б) число инъективных линейных отображений из \mathbb{F}_q^n в \mathbb{F}_q^k ;
- в) число сюръективных линейных отображений из \mathbb{F}_q^n в \mathbb{F}_q^k ;

 $\boxed{7}$ Какие из отображений пространства $\mathbb{R}[\mathsf{x}]_{\mathsf{n}}$ в себя являются линейными:

a)
$$f(x) \mapsto f(1)$$
; 6) $f(x) \mapsto 2 \cdot f(1)$;

B)
$$f(x) \mapsto x^2 \cdot \int_0^1 f(t) dt$$
, $n \ge 2$;

r)
$$f(x) \mapsto f(0) \cdot f(1) \cdot x;$$
 д) $f(x) \mapsto \frac{d^n}{dx^n} f(x^2);$

r)
$$f(x) \mapsto f(0) \cdot f(1) \cdot x;$$
 д) $f(x) \mapsto \frac{d^n}{dx^n} f(x^2);$
e) $f(x) \mapsto x^n \cdot f(\frac{1}{x});$ ё) $f(x) \mapsto \frac{\int_0^x f(t)dt}{x}?$

- 8 Рассмотрим линейное пространство всех сходящихся числовых последовательностей (a_n) . Какие из функций $(a_n) \mapsto \lim_{n \to \infty} a_n$, $(a_n) \mapsto \sup a_n$, $(a_n) \mapsto a_1$ являются линейными?
- 9 В пространстве $M_n(\mathbb{R})$ рассмотрим функции следа и определителя. Являются ли они линейными?
- 10 Найдите базис ядра линейного функционала $\phi = 2x^1 3x^2 + x^4$, где $x^k : \mathbb{R}^4 \to \mathbb{R}$ функционал взятия k-той координаты вектора \mathbb{R}^4 в стандартном базисе.
- 11 Докажите, что линейные формы $\varphi_1 = x^1 + 2x^2 + 3x^3$, $\varphi_2 = 4x^1 + 5x^2 + 6x^3$, $\varphi_3 = 7x^1 + 8x^2 + x^3$ образуют базис пространства $(\mathbb{Q}^3)^*$, и найдите сопряжённый ему базис в \mathbb{Q}^3 . Найдите координаты вектора $(4,-2,13)^T \in \mathbb{Q}^3$ в этом базисе. Каковы коэффициенты формы $5x^1 4x^2 + 2x^3$ относительно этого базиса?
- 12^* Пусть k натуральное число. Сопоставим каждому многочлену степени не выше n значение его k-той производной в точке a. Проверьте, что этим определена линейная функция. Найдите ее координатную строку в базисах:
 - a) $1, x, x^2, ..., x^n$;
 - 6) $1, x \alpha, (x \alpha)^2, \dots, (x \alpha)^n$.
- 13^* В пространстве многочленов степени не выше п с вещественными коэффициентами линейные функции l^k , $k=0,1,\ldots,n$ заданы формулой $l^i(f)=f^{(i)}(a)$ для всех многочленов этого пространства, где a произвольная точка числовой прямой. Докажите, что эти функции образуют базис в сопряжённом пространстве, и найдите двойственный базис изначального пространства.
- $\boxed{14^*}$ В пространстве $\mathbb{R}[x]_n$ линейные функции l^k , $k=0,1,\ldots,n$ заданы формулой $l^i(f)=\int\limits_0^{i+1}f(t)dt.$ Докажите, что эти функции образуют базис в пространстве $(\mathbb{R}[x]_n)^*.$
- 15^* В пространстве $\mathbb{R}[x]_n$ линейные функции l^k , $k=0,1,\ldots,n$ заданы формулой $l^i(f)=f(\alpha_i)$, где $\alpha_0,\alpha_1,\ldots,\alpha_n$ различные точки числовой прямой. Докажите, что эти функции образуют базис в пространстве $(\mathbb{R}[x]_n)^*$. Найдите двойственный базис в пространстве $\mathbb{R}[x]_n$.
- 16^* Докажите, что k линейных функций на n-мерном линейном пространстве линейно независимы тогда и только тогда, когда пересечение их ядер является подпространством размерности n-k.
- 17^* Докажите, что векторное пространство $(\mathbb{R}[x])^*$ не изоморфно пространству $\mathbb{R}[x]$.