جامعة الخرطوم - كلية العلوم الرياضية مادة أساسيات الرياضيات (ب 101) - السنة الأولى

بعض القوانين على الفئات (متطابقات الفئات) Set Identities:

$A \cup \phi = A$	Identity laws
$A \cap U = A$	
$A \cup U = U$	Domination laws
$A \cap \phi = \phi$	
$A \cup A = A$	Idempotent laws
$A \cap A = A$	
$\left(A^{c}\right)^{c}=A$	Complementation laws
$A \cup B = B \cup A$	Commutative laws
$A \cap B = B \cap A$	
$A \cup (B \cup C) = (A \cup B) \cup C$	Associative laws
$A \cap (B \cap C) = (A \cap B) \cap C$	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
$(A \cup B)^c = A^c \cap B^c$	De Morgan's laws
$(A \cap B)^c = A^c \cup B^c$	
$A \cup (A \cap B) = A$	Absorption laws
$A \cap (A \cup B) = A$	Ausorption laws
$A \cup A^c = U$	Complement laws
$A \cap A^c = \phi$	Complement laws

$$(A\!-\!B)\! \cap \! B \! = \! \phi$$
 مثال: لتكن A,B فئتان اختياريتان عندئذ

البرهان :

$$x\in B$$
 يقتضى أن $x\in A-B$ يقتضى أن $x\in A$ يقتضى أن $x\in A$

جامعة الخرطوم - كلية العلوم الرياضية مادة أساسيات الرياضيات (ب 101) - السنة الأولى

$$(A \cup (B \cap C))^c = (C^c \cup B^c) \cap A^c$$

الحل:

$$(A \cup (B \cap C))^c = A^c \cap (B \cap C)^c$$
من قانون دى مورجان الاول

$$=A^c\cap (B^c\cup C^c)$$
من قانون دى مورجان الثانى

$$=(B^c\cup C^c)\cap A^c$$
من قانون الابدال للتقاطع

$$=(C^c \cup B^c) \cap A^c$$
من قانون الابدال للاتحاد

فئة القوة Power Set

p(A) يويف: لتكن A أي فئة. تعرف فئة القوة power set لA بانها فئة جميع الفئات الجزيئة من A و يرمز لها بالرمز

مثال: اذا کان
$$A = \{1,2,3\}$$
 فان

$$\Rightarrow p(A) = \{ \phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{3,1\}, \{1,2,3\} \}$$

مثال: ما هي فئة القوة للفئة الخالية؟

$$p(\phi) = \{\phi\}$$
 الحل:

مثال: ما هي فئة القوة للفئة
$$\{\phi\}$$
 ؟

$$p(\{\phi\}) = \{\phi, \{\phi\}\}\$$

$$p(A) \subseteq p(B)$$
 نظریة : اذا کان $A \subseteq B$ نظریة : ا

$$x\in B$$
 وعليه فان $x\in B$ ومن ثم $x\in A$ وعليه فان $x\in B$ وعليه فان $x\in B$ ومن ثم

Partition of a Set تجزئة الفئة

$$\{A_2\,,A_1\cdots A_n\}$$
 تشكل بخزئة من $A_n,\cdots A_2,A_1$ تشكل بخزئة من A_n يقال ان تعريف: لتكن A_n اذا و فقط كان :

جامعة الخرطوم - كلية العلوم الرياضية مادة أساسيات الرياضيات (ب 101) - السنة الأولى

$$\bigcup_{j=1}^{n} A_{j} = A \tag{1}$$

$$A_j \cap A_k = \phi, \quad \forall j \neq k$$
 (2)

الشكل التالي يوضح ذلك:

$$A = \{1, 2, 3, 4, 5, 6\}$$

$$A_2 = \{3, 4\}$$

$$A_i = \{1, 2\}$$

مثلاً: اذا كان:

ان
$$A_3 = \{3,6\}$$

$$A_1 \cup A_2 \cup A_3 = A$$

$$A_1 \cap A_2 = A_2 \cap A_3 = A_1 \cap A_3 = \phi$$

A وعليه، فان $\{A_1,A_2,A_3\}$ تشكل تجزئة على ,

أيضاً $\{Z^-,\{0\},Z^+\}$ تشكل تجزئة على Z حيث Z^- هي فئة الاعداد الصحيحة السالبة ، Z^- هي فئة الاعداد الصحيحة الموجبة Z^- .

الاعداد الكاردينالية Cardinal numbers

A تعریف: لتکن A أي فقة. تعرف کاردينالية الفقة A أو العدد الکاردينالي للفقة A بانما عدد عناصر A و يرمز لها بالرمز A منتهية و الا فهي غير منتهية .

$$|Z|=\infty$$
 ، $|\{\phi\}|=1$ ، $|\phi|=0$ فمثلاً

جامعة الخرطوم - كلية العلوم الرياضية مادة أساسيات الرياضيات (ب 101) - السنة الأولى

|A|=5 فان 10 هي مجموعة الاعداد الصحيحة الفردية الموجبة اقل من 10 فان

بعض خصائص الاعداد الكاردينالية Some Properties of Cardinal Numbers

$$|A| \le |B|$$
 اذا كانت $A \subseteq B$ فان (a)

$$|A \cup B| = |A| + |B| - |A \cap B|$$
 لاي فئتين A, B يكون (b)

$$(b/a)$$
 (باستخدام) $|A \cup B| \le |A| + |B|$

$$A \cap B = \phi$$
 متفصلتان أى B,A اذا كانت $|A \cup B| = |A| + |B|$ ويكون

$$|p(A)| = 2^n$$
 فان $|A| = n$ اذا كانت (d)

الضرب الكارتيزى Cartesian Product

النونية المرتبة Ordered n-tuple:

تعرف النونية المرتبة، ويرمز لها ب a_1 بانها a_2 بانها تجميع للعناصر المرتبة بحيث يكون a_1 هو العنصر الأول، a_1 هو العنصر النوني.

ملحوظة: نقول ان $i=1,2,\ldots,n$, $a_i=b_i$ اذا وفقط اذا كان $(a_1,a_2,\ldots,a_n)=(b_1,b_2,\ldots,b_n)$ على وجه الخصوص اذا $(a_1,a_2,\ldots,a_n)=(a_1,a_2)$ فان النونية المرتبة تسمى في هذه الحالة بالزوج المرتب ordered pair وتكتب كالتالى (a_1,a_2)

تعریف: لتکن A و B فئتین. حاصل الضرب الکارتیزی له A و B ، یرمز له به $^{A \times B}$ ، هو مجموعة کل الازواج المرتبة $^{(a,b)}$ بحیث $^{(a,b)}$ بحیث $^{(a,b)}$ و $^{(a,b)}$ نازواج المرتبة $^{(a,b)}$ بحیث $^{(a,b)}$ و $^{(a,b)}$ و $^{(a,b)}$ ، اذن،

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

جامعة الخرطوم - كلية العلوم الرياضية مادة أساسيات الرياضيات (ب 101) - السنة الأولى

$$B = \{a, b, c\}$$
 ومثال: اوجد $A \times B$ اذا کان $A \times B$

الحل:

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$$

 $A \times B \neq B \times A$ المثال السابق، وضح ان مستخدما المثال السابق،

تعریف: حاصل الضرب الکارتیزی للفئات A_1, A_2, \ldots, A_n ویکتب $A_1 \times A_2 \times \cdots \times A_n$ ویکتب A_1, A_2, \ldots, A_n هو عبارة عن فئة الازواج المرتبة $i=1,2,\ldots,n$, $a_i \in A_i$ ویکتب a_1, a_2, \ldots, a_n

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}$$