# Quantized Network Coding for Sparse Messages

## M. Nabaee

#### F. Labeau

#### Joint Source-Network Coding

While conventional routing based packet forwarding along distributed source coding is information theoretically sufficient for transmission of inter-node correlated sources in the network, random linear network coding plays a significant role in the next generation communication schemes because of its flexibility and robustness to changes.



Compressed sensing based network coding is a new approach for *non-adaptive* joint source-network coding of sparse (or compressible) messages.

## Quantized Network Coding

Consider a directed graph (network),  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ , of nodes,  $\mathcal{V} = \{1, \ldots, n\}$ , and lossless edges,  $\mathcal{E} = \{1, \ldots, |\mathcal{E}|\}$ . Messages,  $\underline{x} = [x_v, v \in \mathcal{V}]$ , are k-sparse in transform domain  $\phi$ .



We define Quantized Network Coding at each node:

$$y_e(t) = \mathbf{Q}_e \left[ \sum_{e' \in In(v)} \beta_{e,e'}(t) \ y_{e'}(t-1) + \alpha_{e,v}(t) \ x_v \right], \tag{1}$$

where  $\mathbf{Q}_e$  is the quantizer of the outgoing edge e. Representing quantization noise by  $n_e(t)$ , we have:

$$y_{e}(t) = \sum_{e' \in In(v)} \beta_{e,e'}(t) \ y_{e'}(t-1) + \alpha_{e,v}(t) \ x_{v} + n_{e}(t), \quad (2)$$

which implies a linear network (system) with  $\underline{x}$  and  $n_e(t)$ 's, as its inputs.

Received packets at the decoder node, at time t, are:

$$\underline{z}(t) = [y_e(t) : e \in In(v_0)] = B \cdot \underline{y}(t)$$

$$= \Psi(t) \cdot \underline{x} + \underline{n}_{eff}(t),$$
(3)

where *B* is defined such that:

$$\{B\}_{i,e} = \begin{cases} 1 , i \text{ corresponds to } e, e \in In(v_0) \\ 0 , \text{ otherwise} \end{cases}$$
 (5)

By storing enough marginal measurements, at the decoder, we build up the *total measurements vector*,  $\underline{z}_{tot}(t)$ , as follows:

$$\underline{\underline{z}}_{tot}(t) = \begin{bmatrix} \underline{\underline{z}}(2) \\ \underline{\underline{z}}(t) \end{bmatrix}_{m \times 1} = \Psi_{tot}(t) \cdot \underline{\underline{x}} + \underline{\underline{n}}_{eff,tot}(t). \tag{6}$$

Now, we try to recover  $\underline{x}$  from the noisy under-determined measurements,  $\underline{z}_{tot}(t)$  ( $\Psi_{tot}(t)$  is not full column rank). This can be achieved by adopting compressed sensing in this scenario, and if successful, we have embedded distributed source coding in the network coding.

### CS based Decoding

We use an  $\ell_1$ -min decoder at the gateway node:

$$\underline{\hat{\mathbf{x}}}(\mathbf{t}) = \phi \cdot \arg\min_{\underline{s}'} ||\underline{s}'||_{1}, \tag{7}$$

subject to:  $||\underline{z}_{tot}(t) - \Psi_{tot}(t) \phi \underline{s}'||_2^2 \le \epsilon^2(t)$ 

with  $\epsilon^2(t)$  as an upper bound on  $\ell_2$  norm of measurement noise, *i.e.*  $\underline{n}_{eff,tot}(t)$ .

### Design of Network Coding Coefficients

Measurement matrices which satisfy Restricted Isometry Property (RIP) are appropriate for compressed sensing of sparse signals. Gaussian ensembles are a choice of matrices with such property.

**Theorem:** If the network coding coefficients,  $\alpha_{e,v}(t)$  and  $\beta_{e,e'}(t)$ , are such that:

 $\alpha_{e,v}(t) = 0, \ \forall \ t > 2, \ and \ \alpha_{e,v}(2)$ 's are independent zero mean Gaussian random variables,

 $\triangleright \beta_{e,e'}(t)$ 's are deterministic,

then the resulting total measurement matrix,  $\Psi_{tot}(t)$ , has zero-mean Gaussian entries, and for every  $v, v' \in \mathcal{V}$ , where  $v \neq v'$ ,  $\{\Psi_{tot}(t)\}_{iv}$  and  $\{\Psi_{tot}(t)\}_{iv'}$  are independent.

This can be done in a distributed way, where the coefficients are pseudo-randomly generated.

## Recovery Error Bound

**Theorem:** If  $\Psi_{\text{tot}}(t)$  and  $\phi$  are such that  $\Psi_{\text{tot}}(t) \cdot \phi$  satisfies RIP of order 2k with a constant  $\delta_{2k} < \sqrt{2} - 1$ , and  $\hat{\underline{x}}(t)$  is the recovery result of  $\ell_1$ -min decoder of Eq. 7, with  $\epsilon^2(t)$  calculated according to Eq. 9, then:

$$||\underline{x} - \hat{\underline{x}}(t)||_{2}^{2} \leq c_{1} \epsilon^{2}(t)$$

$$\epsilon^{2}(t) = \frac{1}{4} \sum_{t'=2}^{t} \left( \sum_{t''=1}^{t'-1} \underline{\Delta}_{Q}^{T} \Big| \prod_{t'''=t''+2}^{t} F(t''') \Big|^{T}$$

$$\cdot B^{T}B \cdot \sum_{t''=1}^{t'-1} \Big| \prod_{t'''=t''+2}^{t'} F(t''') \Big| \underline{\Delta}_{Q} \right)$$

$$\underline{\Delta}_{Q} = [\Delta_{Q,e} : e \in \mathcal{E}],$$
(10)

where  $\Delta_{Q,e}$  is the step size of uniform quantizer, used for outgoing edge e.

#### Simulation Results

A random deployment of 100 nodes with uniform distribution of 1400 *unit capacity* links is considered. Messages are k-sparse with  $\frac{k}{n} = 0.1, 0.2, 0.3$ , and uniformly distributed between -0.5 and +0.5. Moreover, a *uniform quantizer* is used at each outgoing edge.



#### Conclusions

The compressed sensing results helped us develop an efficient network coding scheme for *non-adaptive* practical joint source-network coding of correlated sources.