ECE 625: Data Analysis and Knowledge Discovery

Di Niu

Department of Electrical and Computer Engineering University of Alberta

April 6, 2021

Fitting Neural Networks

Outline

Fitting Neural Networks

Training Neural Networks

Zip code data

Summary and Remark

3/15

Fitting Neural Networks

The unknown parameters in neural network model are called weights, denoted by θ , which includes

$$\{\alpha_{0m}, \alpha_m; m = 1, 2, \cdots, m\} M(p+1)$$
 weights,
 $\{\beta_{0k}, \beta_k; k = 1, 2, \cdots, K\} K(M+1)$ weights.

► In regression, we minimize RSS

$$R(\theta) = \sum_{i=1}^{N} R_i = \sum_{i=1}^{N} \sum_{k=1}^{K} (y_{ik} - f_k(x_i))^2$$

► In classification, we minimize cross-entropy (deviance)

$$R(\theta) = \sum_{i=1}^{N} R_i = -\sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} \log f_k(x_i),$$
 probability

and the corresponding classifier is $G(x) = \arg \max_k f_k(x)$.

regression Back-Propagation

- \triangleright The generic approach to minimizing $R(\theta)$ is by gradient descent, called back-propagation in this setting.
- Let $z_{mi} = \sigma(\alpha_{0m} + \alpha_m^T x_i)$ and $z_i = (z_{1i}, \dots, z_{Mi})$. The derivatives of $R(\theta)$ are df k(x i)/d beta km

$$\frac{\partial R_{i}}{\partial \beta_{km}} = -2(y_{ik} - f_{k}(x_{i}))g_{k}'(\beta_{k}^{T}z_{i})z_{mi},$$

$$\frac{\partial R_{i}}{\partial \alpha_{ml}} = -\sum_{k=1}^{K} 2(y_{ik} - f_{k}(x_{i}))g_{k}'(\beta_{k}^{T}z_{i})\frac{\partial F_{km}\sigma'(\alpha_{m}^{T}x_{i})x_{il}}{\partial F_{km}\sigma'(\alpha_{m}^{T}x_{i})x_{il}}$$

$$= -dT_{k}/dZ_{m}*dZ_{m}/d alpha_{ml}$$

which can be rewritten as

$$\frac{\partial R_i}{\partial \beta_{km}} = \delta_{ki} z_{mi}, \quad \frac{\partial R_i}{\partial \alpha_{ml}} = s_{mi} x_{il}, \tag{1.1}$$

where the quantities δ_{ki} and s_{mi} are "errors" from the current model at the output and hidden layer units, respectively.

Back-Propagation

It can easily be shown that

$$s_{mi} = \sigma'(\alpha_m^T x_i) \sum_{k=1}^K \beta_{km} \delta_{ki}, \qquad (1.2)$$

known as the back-propagation equations.

• Given the derivatives, a gradient descent update at (r + 1) iteration has the form

$$\beta_{km}^{(r+1)} = \beta_{km}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial R_i}{\partial \beta_{km}^{(r)}}, \tag{1.3}$$

$$\alpha_{ml}^{(r+1)} = \alpha_{ml}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial R_i}{\partial \alpha_{ml}^{(r)}},$$

where γ_m is the learning rate.

Back-Propagation

- In the forward pass, the current weights are fixed and the predicted values $\hat{f}_k(x_i)$ are computed from formula in the last lecture.
- In the backward pass, the errors δ_{ki} are computed, and then back-propagated via (1.2) to give the errors s_{mi} .
- ▶ Both sets of errors are then used to compute the gradients for the updates in (1.3) via (1.1).
- ► This two-pass procedure is what is known as back-propagation.
- Back-propagation can be slow. Other methods include second-order techniques, conjugate gradients and variable metric methods.

6/15

Training Neural Networks

- ▶ Starting Values. Usually starting values for weights are chosen to be random values near zero. Hence the model starts out nearly linear, and becomes nonlinear as the weights increase.
- ▶ Overfitting. Often neural networks have too many weights and will overfit the data at the global minimum of *R*.
- A more explicit method for regularization is weight decay, which is analogous to ridge regression, that is

$$J(\theta) = \sum_{km} \beta_{km}^2 + \sum_{ml} \alpha_{ml}^2.$$

 Other penalties are proposed as well, for example, the weight elimination penalty

$$J(\theta) = \sum_{km} \beta_{km}^2 / (1 + \beta_{km}^2) + \sum_{ml} \alpha_{ml}^2 / (1 + \alpha_{ml}^2).$$

The broken purple boundary is the Bayes error rate. Both use the softmax activation function and cross-entropy error.

Training Neural Network

- Number of hidden units and layers. Generally speaking it is better to have too many hidden units than too few.
- ▶ Multiple Minima. The loss function $R(\theta)$ is nonconvex and hence possesses many local minima.
- ► One must at least try a number of random starting configurations, and choose the solution giving lowest (penalized) error.
- ► Another approach is via bagging, which averages the predictions of networks training from randomly perturbed versions of the training data.

9/15

Training Neural Network

Fitting Neural Networks

In summary, there are two free parameters to select: the weight decay λ and number of hidden units M as in

$$R(\theta) + \lambda J(\theta)$$
.

As a learning strategy, one could fix either parameter at the value corresponding to the least constrained model, to ensure that the model is rich enough, and use cross-validation to choose the other parameter.

Fitting Neural Networks

Examples of training cases from ZIP code data. Each image is a 16×16 8-bit grayscale representation of a handwritten digit.

4 0 1 4 4 4 5 1 4 5 1

Zip code data

0000

0000

Zip code data

- ▶ Net-1: No hidden layer, equivalent to multinomial logistic regression.
- ▶ Net-2: One hidden layer, 12 hidden units fully connected.
- ► Net-3: Two hidden layers locally connected.
- ▶ Net-4: Two hidden layers, locally connected with weight sharing.
- ► Net-5: Two hidden layers, locally connected, two levels of weight sharing.

Zip code data

0000

Summary and Remark

- ► Back propagatioon
- ► Training neural network
- Zip code data
- ▶ Read textbook Chapter 11 and R code
- ▶ Do R lab