Indian Institute of Technology Jammu

CSD001P5M Linear Algebra Tutorial: 10

1. (a) Find the matrix relative to the standard basis of the linear operator T on \mathbb{R}^3 given by:

$$T(x_1, x_2, x_3) = (x_1 + x_3, x_1 + 2x_2 + x_3, -x_1 + x_2).$$

(b) Find the matrix of the same linear operator T relative to the ordered basis $\beta = \{(1,1,1),(1,2,3),(1,3,6)\}.$

[NB: The change of basis matrix $P_{S \to \beta}$ for this basis was calculated in **Q 2** of tutorial 06.]

- 2. (a) Let $T: V \to W$ and $U: W \to Z$ be linear transformations, where V, W and Z are finite-dimensional vector spaces over \mathbb{F} . Show that rank $(UT) \leq \min\{\operatorname{rank}(T), \operatorname{rank}(U)\}$.
 - (b) State an analogous result for matrices A and B, and comment briefly on its proof.
 - (c) For (b), give a non-trivial example (i.e. the matrices A, B should be non-zero and non-identity and should be of minimum size 2×2), in which equality is achieved, and a non-trivial example in which strict inequality holds.
- 3. Prove that there does not exist a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^2$ such that

Ker
$$T = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}.$$

- 4. Let $V = \mathbb{R}^{2 \times 2} = \text{vector space of } 2 \times 2 \text{ matrices with real entries, and consider the function } U: V \to V \text{ given by } U(A) = A + A^T \text{ , for all } A \in V \text{, where } A^T \text{ indicates the transpose of } A.$
 - (a) Show that U is a linear operator.
 - (b) Determine the matrix of U with regard to any suitable ordered basis β of V.
 - (c) Determine a basis for Ker ${\cal U}$ and determine a basis for Range ${\cal U}.$
 - (d) Determine the dimension of $\operatorname{Sym}_n(\mathbb{R})$, the space of symmetric $n \times n$ matrices with real entries. Briefly explain your answer.
- 5. Show that a linear transformation $T: V \to W$, where V and W are finite-dimensional with $\dim V = \dim W$, is injective if and only if it is surjective. (NB: This is part of Proposition 39, so you cannot use Prop 39 in your proof.)

1

- 6. Give an example of a vector space V, and two linear transformations $T, U : V \to V$, such that T is surjective but not injective, and U is injective but not surjective. (More advanced: this problem should be tried last.)
- 7. A square matrix A is said to satisfy a polynomial $p(t) \in \mathbb{R}[t]$ if p(A) = 0, i.e. if we substitute the matrix A in the polynomial by taking powers of A (in which the constant term is multiplied by identity matrix of appropriate size), then the resultant is the zero-matrix. Show that every $n \times n$ non-zero square matrix with real entries satisfies a non-zero polynomial of degree $\leq n^2$.
- 8. Let $V = \mathbb{R}^2$, and consider the ordered bases $\alpha = \{u_1, u_2\}$ and $\beta = \{v_1, v_2\}$, where the vectors are as given below. (NB: regard all vectors as column vectors in V)

$$\mathbf{u_1} = (3,1), \qquad \mathbf{u_2} = (11,4), \qquad \mathbf{v_1} = (3,2), \qquad \mathbf{v_2} = (7,5)$$

- (a) Find the change of basis matrix $P_{\alpha \to \beta}$.
- (b) Hence find $[v]_{\beta}$ given that $[v]_{\alpha} = (10, 20)$.
- (c) Is there some way to check your answer to (b)? Explain your method and use it to check your answer.
- 9. Given a vector space V over a field \mathbb{F} , a linear transformation $f:V\to\mathbb{F}$ is called a functional on V, i.e. the field \mathbb{F} is regarded as a vector space over itself. The vector space $L(V,F)=\{f:f \text{ is a functional on }V\}$ of all functionals is called the dual space of V and is denoted by V^* . We further assume that V is finite-dimensional with $\dim V=n$.
 - (a) What is the dimension of V^* ? Briefly justify your answer.
 - (b) Show that if f is a functional, then its null space is a hyperspace of V.

[NB: If V is a finite-dimensional space, then a hyperspace of V is a subspace U of V such that $\dim U = \dim V - 1$.]

- (c) Let W be any hyperspace of V. Show that there exists a functional f on V whose null space is exactly W.
- 10. Let $f_1(x) = x_1 + 2x_2 + 3x_3$, $f_2(x) = 2x_1 + 3x_2 + 5x_3$, $f_3(x) = 3x_1 + 2x_2 + 4x_3$, $x = [x_1 \ x_2 \ x_3]^t$ be linear functionals on \mathbb{R}^3 . Prove that $\{f_1, f_2, f_3\}$ is a basis of $(\mathbb{R}^3)^*$. Find vectors v_1, v_2, v_3 in \mathbb{R}^3 such that $f_i(v_i) = \delta_{ij}$, i, j = 1, 2, 3.