Max Flow and Min Cut

- Minimum cut
- Maximum flow
- Max-flow min-cut theorem

Max Flow and Min Cut

- · Minimum cut
- Maximum flow
- Max-flow min-cut theorem
- Ford-Fulkerson augmenting path algorithm
- Edmonds-Karp heuristics
- Bipartite matching

Maximum Flow and Minimum Cut

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- · Beautiful mathematical duality
- Many practical applications

Minimum Cut Problem

- Network: abstraction for material flowing through the edges
 - Directed graph
 - Capacities on edges
 - Source node s, sink node t
- Problem: delete "best" set of edges to disconnect t from s

Cuts

- A cut is a node partition (S,T) such that $s \in S$ and $t \in T$
- ullet capacity of partition: sum of weights of edges leaving S
- Min cut problem: find an s-t cut of minimum capacity

Maximum Flow Problem

- Network: abstraction for material flowing through the edges
 - Directed graph
 - Capacities on edges
 - Source node s, sink node t
- Problem: assign flow to edges so as to:
 - Equalize inflow and outflow at every intermediate vertex
 - Maximize flow sent from s to t

Flows

- A flow f is an assignment of weights to edges so that
 - Capacity: $0 \le f(e) \le u(e)$
 - Flow conservation: flow leaving v =flow entering v, except s, t
- Max flow problem: find flow that maximizes net flow into sink

Flows and Cuts

Observation 1

Let f be a flow, and (S,T) be any s-t cut. Then, the net flow sent across the cut is equal to the amount reaching t

Flows and Cuts

Observation 2

The value of the flow is at most the capacity of the cut

Flows and Cuts

Observation 3

Let f be a flow, (S,T) be an s-t cut whose capacity equals the value of f. Then f is a max flow and (S,T) is a min cut

Max-Flow Min-Cut Theorem

 Max-flow min-cut theorem (Ford-Fulkerson, 1956): In any network, the value of max flow equals capacity of min cut

Max-Flow Min-Cut Theorem

- Max-flow min-cut theorem (Ford-Fulkerson, 1956): In any network, the value of max flow equals capacity of min cut
- Proof: we find flow and cut such that Observation 3 applies

Towards an Algorithm

- Find s-t path where each arc has f(e) < u(e) and "augment" flow along it
- Repeat until you get stuck

Towards an Algorithm

- Find s-t path where each arc has f(e) < u(e) and "augment" flow along it
- Repeat until you get stuck
- Need to be able to "backtrack"

Residual Graph

- Original graph
 - Flow *f*(*e*)
 - Edge e = v > w
- Residual edge
 - Edge e = v > w or w > v
 - "Undo" flow sent
- Residual graph
 - · All the edges that have strictly positive residual capacity

Augmenting Paths

- Augmenting path = path in residual graph
- Increase flow along forward edges
- Decrease flow along backward edges

Augmenting Paths

- Observation 4. If augmenting path, then not yet a max flow.
- If no augmenting path, is it a max flow?

Ford-Fulkerson Augmenting Path Algorithm

- while there exists an augmenting path
 - Find augmenting path P
 - Compute bottleneck capacity of P
 - Augment flow along P

Max-Flow Min-Cut Theorem

Augmenting path theorem

A flow f is a max flow if and only if there are no augmenting paths

Max-flow min-cut theorem

The value of the max flow equals the capacity of the min cut

Proof

We prove the following are equivalent

- f is a max flow
- ullet There is no augmenting path relative to f
- There exists a cut whose capacity equals the value of f

Max-Flow Min-Cut Theorem Proof

- (1)->(2) equivalent to not (2)->not (1): Observation 4
- (3)->(1): Observation 3

Max-Flow Min-Cut Theorem Proof

- (1)->(2) equivalent to not (2)->not (1): Observation 4
- (3)->(1): Observation 3
- (2)->(3): Let f be a flow with no augmenting paths
 - Let S be set of vertices reachable from s in residual graph
 - S contains s; since no augmenting paths, S does not contain t
 - all edges e leaving S in original network have f(e) = u(e)
 - all edges \emph{e} entering \emph{S} in original network have $f(\emph{e})$ = 0
 - $|f| = \sum_{e \in S_1} f(e) \sum_{e \in S_2} f(e) = \sum_{e \in S_1} u(e) = capacity(S, T)$

Ford-Fulkerson Algorithm: Analysis

All capacities are integers between 1 and U

Theorem

The algorithm terminates in at most $|f^*| = VU$ iterations

Corollary

If U = 1, then algorithm runs in at most V iterations

Integrality theorem

If all arc capacities are integers, then there exists a max flow for which every flow value is an integer

Choosing Good Augmenting Paths

Choosing Good Augmenting Paths

Use care when selecting augmenting paths

- Some choices lead to exponential algorithms
- Clever choices lead to polynomial algorithms
- Optimal choices for real world problems?

Design goal is to choose augmenting paths so that

- Can find augmenting paths efficiently
- Few iterations

Edmonds-Karp heuristic: choose augmenting path with:

- Fewest number of arcs
- Max bottleneck capacity

Application: Bipartite Matching

- Input: undirected and bipartite graph ${\it G}$
- Set of edges M is a matching if each vertex appears at most once
- Max matching: find a max cardinality matching

Reduce to max flow

- Create a directed graph G'
- Direct all arcs from Left to Right, give infinite (or unit) capacity
- Add source s, and unit capacity arcs from s to each node in Left
- ullet Add sink t, and unit capacity arcs from each node in Right to t

Bipartite Matching: Proof of Correctness

- Matching in G of cardinality k induces flow in G' of value k
- Flow f of value k in G' induces matching of cardinality k in G
 - By integrality theorem, there exists 0-1 valued flow f of value ${\bf k}$
 - Consider M = set of edges from L to R with f(e) = 1
 - each node in L and R incident to at most one edge in M; |M| = k

