OpenBook

-TSC-Vasilica Danțiș – 332CD

Diagrama bloc:

OpenBook - Diagrama Bloc

Descriere detaliată a funcționalității hardware:

1. Microcontroller (ESP32-C6)

• Rol: Asigură controlul central al dispozitivului, conectivitatea Wi-Fi, logica de afișare pe E-Ink și interfața cu utilizatorul (butoane).

• Caracteristici:

- Integrează un nucleu RISC-V și un subsistem Wi-Fi 6 (802.11ax).
- Consum redus în modurile de deep-sleep, esențial pentru un e-book reader.

2. E-Ink Display

- **Tip**: (ex.) 2.9" EPD (monocrom), cu driver intern sau driver separat.
- Interfață cu ESP32-C6: SPI (poate fi 4-wire SPI cu linii de comandă suplimentare DC, CS, RST, BUSY).
- **Motiv**: E-Ink-ul are consum redus de energie, menținând imaginea chiar și fără alimentare (refresh scăzut).

3. Senzor BME688

- Rol: Permite ajustarea luminozității (dacă există LED) sau stocarea datelor de mediu.
- Interfață: I2C (implicit) / SPI (opțional).
- **Consum**: Relativ mic (în jur de câțiva µA în mod de stand-by, dar poate crește la câteva mA în mod de funcționare continuă).

4. DS3231 RTC

- Rol: Asigură un ceas de timp real foarte precis, cu consum scăzut.
- Interfață: I2C, cu eventual pin de interrupt (INT/SQW) pentru semnal periodic sau alarmă.
- Consum: $\sim 1-2 \,\mu A$ în modul de menținere a ceasului (alimentat direct din baterie).

5. Memorie externă NOR Flash (W25Q512)

- Rol: Oferă stocare suplimentară (ex. 64Mbit) pentru fișiere, resurse, cărți electronice etc.
- Interfață: SPI la viteze ridicate (până la 40-80MHz, dacă e specificat).
- Consum: câțiva mA în scriere/citire și μA în mod standby.

6. Sistem de alimentare și managementul bateriei

- **USB-C Connector**: Permite alimentare la 5V și date (pentru programare/debug).
- **Battery Charger** (MCP73831):
 - Încarcă Li-Po la 4.2V cu un curent setat prin rezistență PROG (ex. 500mA).
- LDO / DC-DC: Convertește tensiunea bateriei (3.7V nominal) în 3.3V stabil pentru ESP32-C6, E-Ink și restul circuitelor. Dacă se dorește extragerea tensiunii 5V, se poate folosi un boost converter (DC-DC step-up).
- Calcul consum (approx.):
 - ESP32-C6: ~80-240 mA în mod Tx Wi-Fi, <1 mA în modemsleep, câțiva μA în deep-sleep.

- E-Ink: consum ridicat doar la refresh (~tens of mA), inactiv aproape 0.
- Senzor BME688: <1 mA tipic (pe I2C) în mod standard,
 <1 μA standby.
- 。 RTC DS3231: 1-2 μA menținere ceas.

7. Interfața utilizator (Butoane)

• 3 butoane SMD (ex. Boot, Change, Reset) conectate la pinii GPIO ai ESP32-C6, cu rezistențe de pull-up/pull-down și debounce minimal (sau software).

8. Alte considerații

- Protecție ESD pe USB, liniile SPI, conectori externi.
- **Test pad-uri**: semnalele principale (MISO, MOSI, RX, GND) expuse pentru programare / debugging.

Detalii despre pinii ESP32-C6:

Pin (Schemă)	Nume/Net	Rol / Funcționalitate	Observații
1	GND	Masă (Ground)	Referință GND pentru toate circuitele
2	3V3	Alimentare 3.3V pentru modul ESP32-C6	Asigură tensiunea de operare a nucleului și perifericelor
3	RESET	Intrare reset hardware	Permite resetarea întregului modul
5	SS_SD	Chip Select pentru card SD (dacă există)	Linie de selecție SPI pentru card SD
6	EPD_DC	Linie Data/Command pentru E-Ink	Controlează modurile de scriere/command la ecranul E-Ink
7	SCK	Linie de tact (clock) SPI	Comună pentru E-Ink, Flash, SD etc. (în funcție de rutare)
8	INT_RTC	Linie de întrerupere de la RTC (de ex. DS3231)	Folosită pentru a trezi sau semnala evenimente temporizate
9	32KHz	Conexiune la cristal de 32 kHz (sau intrare/ieșire ceas)	Pentru cronometrare precisă, dacă este folosit un ceas extern
10	MOSI	SPI Master Out Slave In	Linie de date SPI către periferice (E-Ink, Flash)
11	EPD_CS	Chip Select pentru ecranul E- Ink	Activează/dezactivează ecranul pe magistrala SPI
12	FLASH_CS	Chip Select pentru memoria Flash externă	Activează/dezactivează memoria externă SPI

13	USB_D-	Linie USB diferențial negativ	Conexiune USB pentru alimentare/date (DP/DM)
14	USB_D+	Linie USB diferențial pozitiv	Conexiune USB pentru alimentare/date (DP/DM)
15	IO/BOOT (GPIO8)	Intrare BOOT / GPIO8	Util pentru selectarea modului de boot sau intrare general-purpose
16	RTC_RST	Reset pentru RTC (de ex. DS3231)	Poate fi folosit pentru a reseta sau inițializa RTC
17	I2C_PW	Semnal de alimentare/enabl e pentru magistrala I2C	Permite alimentarea/închiderea magistralei I2C, dacă designul o cere
18	EPD_3V3_C	Linie de alimentare (3.3V) controlată pentru E-Ink	Poate fi folosită la pornirea/oprirea ecranului E-Ink
19	SDA	Linie de date I2C	Conectat la senzori (BME688), RTC, etc.
20	SCL	Linie de ceas I2C	Conectat la senzori (BME688), RTC, etc.
21	EPD_RST	Reset hardware pentru E-Ink	Pune în starea inițială driverul E-Ink
23	IO/CHANGE	Semnal de întrerupere sau schimbare (GPIO)	Poate fi folosit pentru detectarea unor evenimente externe
24	RX (GPIO17)	Rx UART principal (TXD0/RXD0)	Pentru comunicare serială / debug
25	TX (GPIO16)	Tx UART principal (TXD0/RXD0)	Pentru comunicare serială / debug
26	EPD_BUSY	Indică starea de ocupat a ecranului E-Ink	Se folosește pentru a ști când ecranul a terminat refresh-ul
27	MISO	SPI Master In Slave Out	Linie de date SPI din periferice (de ex. card SD, Flash)

Considerații de design PCB

1. Rutarea traseelor de alimentare:

- Lățime de minimum 0.3 mm pentru liniile de putere (3V3, 5V, VBAT).
- Lățime de minimum 0.15 mm pentru liniile de date (SPI, I2C, UART etc.).
- Grosime PCB de maximum 1 mm pentru a încăpea în carcasă.

2. Decuplare:

- Condensatoare de 100 nF (0402) lângă fiecare pin de alimentare al circuitelor integrate (ESP32, BME688, DS3231, Flash).
- $_{\circ}$ Condensatoare mai mari (ex. 4.7 μF \sim 10 μF) pentru stabilizarea surselor locale.

3. Antenă ESP32-C6:

 Zona antenei trebuie eliberată de planul de masă și semnale, cu decupaj PCB sub antenă.

4. DRC și ERC:

 Verificarea regulilor de design (no 90-degree angles, via stitching pe planul GND, clearance etc.).

5. Placement:

- Componente SMD doar pe Top Layer (după specificațiile proiectului).
- o Butoanele poziționate ergonomic pentru utilizator.

o Conectorul USB-C accesibil pe marginea plăcii.

6. Via Stitching:

 Implementat în jurul ESP32-C6 și a planului de masă pentru reducerea zgomotului EMI.

7. Test pad-uri:

Semnalele MISO, MOSI, SCK, GND, 3V3, TX, RX etc.
 accesibile pentru programare şi debugging.