DAT630 **Clustering**

Introduction to Data Mining, Chapter 8

21/09/2016

Krisztian Balog | University of Stavanger

Supervised vs. Unsupervised Learning

- Supervised learning
 - Labeled examples (with target information) are available
- Unsupervised learning
 - Examples are not labeled

Outline

- Clustering
- Two algorithms:
 - K-means
 - Hierarchical (Agglomerative) Clustering

Clustering

Clustering

- Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Why?

- For understanding
 - E.g., biology (taxonomy of species)
 - Business (segmenting customers for additional analysis and marketing activities)
 - Web (clustering search results into subcategories)
- For utility
 - Some clustering techniques characterize each cluster in terms of a cluster prototype
 - These prototypes can be used as a basis for a number of data analysis and processing techniques

How many clusters?

- The notion of a cluster can be ambiguous

Types of Clustering

- Partitional vs. hierarchical
 - Partitional: non-overlapping clusters such that each data object is in exactly one cluster
 - Hierarchical: a set of nested clusters organized as a hierarchical tree
- Exclusive vs. non-exclusive
 - Whether points may belong to a single or multiple clusters

Types of Clustering (2)

- Partial versus complete
 - In some cases, we only want to cluster some of the data
- Fuzzy vs. non-fuzzy
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights must sum to 1
 - Probabilistic clustering has similar characteristics

Different Types of Clusters

- Well-Separated Clusters
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster

Different Types of Clusters

- Center-based (or prototype-based)
 - A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
 - The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

Different Types of Clusters

- Shared Property or Conceptual Clusters
 - Clusters that share some common property or represent a particular concept

Notation

- x an object (data point)
- m the number of points in the data set
- K the number of clusters
- Ci the ith cluster
- c_i the centroid of cluster C_i
- m_i the number of points in cluster C_i

K-means Clustering

K-means

- One of the oldest and most widely used clustering techniques
- Prototype-based clustering
 - Clusters are represented by their centroids
- Finds a user-specified number of clusters (K)

Basic K-means Algorithm

- 1. Select K points as initial centroids
- 2. repeat
 - 3. Form *K* clusters by assigning each point to its closest centroid
 - 4. Recompute the centroid of each cluster
- 5. until centroids do not change

Basic K-means Algorithm

- 1. Select K points as initial centroids
- 2. repeat
 - 3. Form *K* clusters by assigning each point to its closest centroid
 - 4. Recompute the centroid of each cluster
- 5. until centroids do not change

Basic K-means Algorithm

- 1. Select K points as initial centroids
- 2. repeat

- 3. Form *K* clusters by assigning each point to its closest centroid
- 4. Recompute the centroid of each cluster
- 5. until centroids do not change

Basic K-means Algorithm

- 1. Select K points as initial centroids
- 2. repeat
 - 3. Form *K* clusters by assigning each point to its closest centroid

- 4. Recompute the centroid of each cluster
- 5. until centroids do not change

Basic K-means Algorithm

- 1. Select K points as initial centroids
- 2. repeat

- 3. Form K clusters by assigning each point to its closest centroid
- 4. Recompute the centroid of each cluster
- 5. until centroids do not change

Basic K-means Algorithm

- 1. Select K points as initial centroids
- 2. repeat
 - 3. Form *K* clusters by assigning each point to its closest centroid
 - 4. Recompute the centroid of each cluster

5. until centroids do not change

Interactive Demo

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

1. Choosing Initial Centroids

- Most commonly: select points (centroids) randomly
 - They may be poor
 - Possible solution: perform multiple runs, each with a different set of randomly chosen centroids

3. Assigning Points to the Closest Centroid

- We need a proximity measure that quantifies the notion of "closest"
- Usually chosen to be simple
 - Has to be calculated repeatedly
- See distance functions from Lecture 1
 - E.g., Eucledian distance

4. Recomputing Centroids

- Objective function is selected
 - I.e., what is it that we want minimize/maximize
- Once the objective function and the proximity measure are defined, we can define mathematically the centroid we should choose
 - E.g., minimize the squared distance of each point to its closest centroid

Sum of Squared Error (SSE)

- Measures the quality of clustering in the Eucledian space
- Calculate the error of each data point (its Eucledian distance to the closest centroid), and then compute the total sum of the squared errors

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist(c_i, x)^2$$

- A clustering with lower SSE is better

Minimizing SSE

- It can be shown that the centroid that minimizes the SSE of the cluster is the mean
- The centroid of the ith cluster

$$\mathbf{c}_i = \frac{1}{m_i} \sum_{x \in C_i} \mathbf{x}$$

Example Centroid computation

- What is the centroid of a cluster containing three 2-dimensional points: (1,1), (2,3), (6,2)?
- Centroid: ((1+2+6)/3, (1+3+2)/3) = **(3,2)**

5. Stopping Condition

- Most of the convergence occurs in the early steps
- "Centroids do not change" is often replaced with a weaker condition
 - E.g., repeat until only 1% of the points change

Exercise

Note

- There are other choices for proximity, centroids, and objective functions, e.g.,
- Proximity function: **Manhattan** (L1) Centroid: median

Objective func: minimize sum of L1 distance of an object to its cluster centroid

 Proximity function: cosine Centroid: mean

Objective func: maximize sum of cosine sim. of an object to ist cluster centroid

What is the complexity?

- m number of points, n number of attributes,
 K number of clusters
- Space requirements: O(?)
- Time requirements: O(?)

Complexity

- m number of points, n number of attributes,
 K number of clusters
- Space requirements: O((m+K)*n)
 - Modest, as only the data points and centroids are stored
- Time requirements: O(I*K*m*n)
 - I is the number of iterations required for convergence
 - Modest, linear in the number of data points

K-means Issues

- Depending on the initial (random) selection of centroids different clustering can be produced
- Steps 3 and 4 are only guaranteed to find a local optimum
- Empty clusters may be obtained

Bisecting K-means

- Straightforward extension of the basic Kmeans algorithm
- Idea:
 - Split the set of data points to two clusters
 - Select one of these clusters to split
 - Repeat until K clusters have been produced
- The resulting clusters are often used as the initial centroids for the basic K-means algorithm

Bisecting K-means Alg.

- 1. Initial cluster contains all data points
- 2. repeat
 - 3. Select a cluster to split
 - 4. for a number of trials
 - Bisect the selected cluster using basic Kmeans
 - 6. end for
 - 7. Select the clusters from the bisection with the lowest total SSE
- 8. until we have K clusters

Selecting a Cluster to Split

- Number of possible ways
 - Largest cluster
 - Cluster with the largest SSE
 - Combine size and SSE
- Different choices result in different clusters

Hierarchical Clustering

 By recording the sequence of clusterings produced, bisecting K-means can also produce a hierarchical clustering

Limitations

- K-means has difficulties detecting clusters when they have
 - differing sizes
 - differing densities
 - non-spherical shapes
- K-means has problems when the data contains outliers

Example: differing sizes

Example: differing density

Original points K-means (3 clusters)

Example: non-spherical shapes

Overcoming Limitations

- Use larger K values
- Natural clusters will be broken into a number of sub-clusters

Example: differing sizes

Example: differing density

Example: non-spherical shapes

Summary

- Efficient and simple
 - Provided that K is relatively small (K<<m)
- Bisecting variant is even more efficient and less susceptible to initialization problems
- Cannot handle certain types of clusters
 - Problems can be overcome by generating more (sub)clusters
- Has trouble with data that contains outliers
 - Outlier detection and removal can help

Hierarchical Clustering

Hierarchical Clustering

- Two general approaches
- -
- Agglomerative
- Start with the points as individual clusters
- At each step, merge the closest pair of clusters
- Requires a notion of cluster proximity
- Divisive
 - Start with a single, all-inclusive cluster
 - At each step, split a cluster, until only singleton clusters of individual points remain

Agglomerative Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized
 - Dendrogram
 - Nested cluster diagram (only for 2D points)

Nested cluster diagram

Strengths

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by cutting the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - E.g., in biological sciences

Basic Agglomerative Hierarchical Clustering Alg.

- 1. Compute the proximity matrix
- 2. repeat
 - 3. Merge the closest two clusters
 - 4. Update the proximity matrix
- 5. until only one cluster remains

ExampleStarting situation

- Start with clusters of individual points and a proximity matrix

ExampleIntermediate situation

- After some merging steps, we have some clusters

ExampleIntermediate situation

- We want to merge the two closest clusters (C2 and C5) and update the proximity matrix

ExampleAfter merging

- How do we update the proximity matrix?

Defining the Proximity between Clusters

- MIN (single link)
- MAX (complete link)
- Group average
- Distance between centroids

Single link (MIN)

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph

Complete link (MAX)

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

Group average

- Proximity of two clusters is the average of pairwise proximity between points in the two clusters

$$proximity(C_i, C_j) = \frac{\sum_{x \in C_i, y \in C_j} proximity(x, y)}{m_i \cdot m_j}$$

 Need to use average connectivity for scalability since total proximity favors large clusters

Strengths and Weaknesses

- Single link (MIN)
 - Strength: can handle non-elliptical shapes
 - Weakness: sensitive to noise and outliers
- Complete link (MAX)
 - Strength: less susceptible to noise and outliers
 - Weakness: tends to break large clusters
- Group average
 - Strength: less susceptible to noise and outliers
 - Weakness: biased towards globular clusters

Prototype-based methods

- Represent clusters by their centroids
 - Calculate the proximity based on the distance between the centroids of the clusters

- Ward's method
 - Similarity of two clusters is based on the increase in SSE when two clusters are merged
 - Very similar to group average if distance between points is distance squared

Exercise

Key Characteristics

- No global objective function that is directly optimized
- No problems with choosing initial points or running into local minima
- Merging decisions are final
 - Once a decision is made to combine two clusters, it cannot be undone

What is the complexity?

- m is the number of points
- Space complexity O(?)
- Time complexity O(?)

Complexity

- Space complexity O(m2)
 - Proximity matrix requires the storage of $m^2/2$ proximities (it's symmetric)
 - Space to keep track of clusters is proportional to the number of clusters (*m-1*, exclusing singleton clusters)
- Time complexity $O(m^3)$
 - Computing the proximity matrix $O(m^2)$
 - m-1 iterations (Steps 3 and 4)
 - It's possible to reduce the total cost to O(m² log m) by keeping data in a sorted list (or heap)

Summary

- Typically used when the underlying application requires a hierarchy
- Generally good clustering performance
- Expensive in terms of computation and storage