#### Alfabet. Siruri

Alfabet (notat Σ sau T) – multime finita, nevida de simboluri.

Sir - o secventa finita de simboluri dintr-un alfabet.

- Sirul vid: e

```
\Sigma_1 = \{0, 1\}
Siruri: 0, 1, 00, 11, 01, 10, ...
```

$$\Sigma_3 = \{(, )\}$$
  
Siruri:  $(, ), ((, (), ...$ 

#### Multimi de siruri

Multimea sirurilor peste un alfabet  $\Sigma$  (notata  $\Sigma$ \*) (Kleene star)

#### Multimea $\Sigma^*$ a şirurilor peste alfabetul $\Sigma$ este definita:

- $\cdot e \in \Sigma^*$
- ·daca  $a \in \Sigma$  si  $w \in \Sigma^*$ , atunci  $aw \in \Sigma^*$

#### Operatii pe siruri:

- Lungimea unui sir
- Concatenarea a doua siruri
- Exponentiere
- Reverse

#### Lungimea unui sir:

$$||:\Sigma^* \to N$$

$$|\mathbf{w}| = \begin{cases} 0, \, daca \, \, \mathbf{w} = \mathbf{e} \\ \\ 1 + |\mathbf{w}'|, \, daca \, \, \mathbf{w} = \mathbf{a}\mathbf{w}', \, \mathbf{a} \in \Sigma \, \text{$\vec{\mathbf{y}}$i $\mathbf{w}'$} \in \Sigma^* \end{cases}$$

#### Concatenarea a doua siruri:

$$\bullet: \Sigma_1^* \times \Sigma_2^* \longrightarrow \Sigma^*$$

$$\mathbf{w_1.w_2} = \mathbf{w_1w_2} = \begin{cases} \mathbf{w_2, dacă} \ \mathbf{w_1} = \mathbf{e} \\ \\ \mathbf{aw'_1w_2, dacă} \ \mathbf{w_1} = \mathbf{aw'_1, a} \in \Sigma \ \mathbf{si} \\ \\ \mathbf{w'_1, w_2} \in \Sigma^* \end{cases}$$

- •Un sir  $\mathbf{v} \in \Sigma^*$  este un subsir al şirului  $\mathbf{w} \in \Sigma^*$  daca există sirurile  $\mathbf{x}$ ,  $\mathbf{v}$ ,  $\mathbf{y} \in \Sigma^*$  astfel incat  $\mathbf{w} = \mathbf{x} \mathbf{v} \mathbf{y}$
- •Daca  $\mathbf{w} = \mathbf{u}\mathbf{v}$ ,  $\mathbf{v}$ ,  $\mathbf{w} \in \Sigma^*$ , oricare  $\mathbf{u} \in \Sigma^*$ , atunci  $\mathbf{v}$  este un sufix al lui  $\mathbf{w}$
- •Daca  $\mathbf{w} = u\mathbf{v}$ , u,  $w \in \Sigma^*$ , oricare  $v \in \Sigma^*$ , atunci u este un prefix al lui w

Prefix: a, ab, abb, abba

abba Sufix: a, ba, bba, abba

Subsir: b, bb, ...

- •e este subsir pentru orice şir  $w \in \Sigma^*$
- •orice sir  $\mathbf{w} \in \Sigma^*$  este un subsir propriu
- •e este prefix si sufix pentru orice  $w \in \Sigma^*$
- •orice sir  $w \in \Sigma^*$  este prefix propriu si sufix propriu

#### Exponentierea unui sir peste un alfabet $\Sigma$ :

$$E: \Sigma^* \times N \to \Sigma^*$$

$$E(w, i) = w^{i} = \begin{cases} e, dacă i = 0 \\ ww^{i-1}, în caz contrar \end{cases}$$

$$(ab)^3 = ababab$$

$$(01)^2 = 0101$$

#### Revers-ul unui sir peste un alfabet $\Sigma$ :

$$R: \Sigma^* \to \Sigma^*$$

$$R(w) = wR = \begin{cases} e, \, dac\,\check{a}\,\,w = e \\ \\ uRa, \, dac\,\check{a}\,\,w = au, \, a \in \Sigma \,\,si\,\,u \in \Sigma^* \end{cases}$$

$$1101^{R} = 1011$$

• $\Sigma^k$  - mulţimea tuturor şirurilor de lungime k, formate din simboluri din alfabetul  $\Sigma$ 

$$\Sigma = \{a, b\} \Sigma^1 = \{a, b\} \Sigma^2 = \{aa, ab, bb, ba\}$$

### •Kleene star

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$$

# Kleene plus

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots$$

## Limbaje

- •Limbaj peste alfabetul  $\Sigma$  orice submulţime a mulţimii  $\Sigma^*$
- •Elementele limbajului L: propozitii

## Exemplu: Limbaje peste alfabetul $\Sigma = \{a, b\}$

```
L_1 = \{w \in \{a, b\}^*\}
L_2 = \{w \in \{a, b\}^*\}
L_3 = \{w \in \{a, b\}^* \mid |w| = para\}
L_4 = \{w \in \{a, b\}^* \mid w = a^nb^n\}
L_5 = \{w \in \{a, b\}^* \mid w = a^nb^na^nb^n\}
```

# Limbaje

- Reprezentarea limbajelor
- •Pentru orice limbaj se poate gasi o reprezentare finita?

# Reprezentarea limbajelor

- Limbaj L peste alfabetul Σ
- A alfabet folosit pentru reprezentarea limbajului L

| Limbaj L peste alfabetul Σ                    | A - alfabet folosit pentru reprezentarea limbajului L |
|-----------------------------------------------|-------------------------------------------------------|
| Numarul de limbaje peste Σ: 2 <sup> Σ* </sup> | Numarul de siruri folosite pentru reprezentare:  A*   |
| 2 <sup>Σ*</sup> nenumarabila                  | A* numarabila                                         |

- Nu putem avea o reprezentare finita pentru orice limbaj
- Ne intereseaza numai limbajele pentru care avem o reprezentare finita

# Operatii asupra limbajelor

- Reuniunea
- ·Intersectia
- Diferenta

•Concatenarea a două limbaje  $L_1$  si  $L_2$  ( $L_1$  si  $L_2$  sunt definite peste alfabetul  $\Sigma^*$ ):

 $L_1 . L_2 = L_1L_2 = \{w_1w_2 \mid \text{oricare } w_1 \in L_1 \text{ şi } w_2 \in L_2\}$ 

```
L_1 = \{ab, ba, aa, bb\}

L_2 = \{c, cc\}
```

 $L_1L_2 = \{abc, bac, aac, bbc, abcc, bacc, aacc, bbcc\}$ 

# Operatii asupra limbajelor

Exponenţierea unui limbaj L (peste alfabetul ∑\*):

$$L^{i} = \begin{cases} \{e\}, \text{ dacă i=0} \\ LL^{i-1}, \text{ altfel} \end{cases}$$

```
L_1 = {ab, ba}

L_1^2 = {ba, ab}{ba, ab} = {baba, baab, abba, abab}
```

•Reversul unui limbaj L(peste alfabetul ∑):

```
L_1 = \{ab, ba, aa, bb\}

L_1^R = \{ba, ab, aa, bb\}
```

- Kleene star pentru un limbaj L: L\*
  - $e \in L^*$
  - dacă  $w \in L$  și  $w' \in L^*$  atunci  $ww' \in L^*$

- •Kleene plus pentru un limbaj L: L+
  - $\cdot$  L  $\subseteq$  L $^{+}$
  - daca  $v \in L$  si  $w \in L^+$  atunci  $vw \in L^+$

# Proprietatile limbajelor

1. 
$$L\Phi = \Phi L = \Phi$$

**2.** 
$$L\{e\} = L$$

3. 
$$L_1(L_2L_3) = (L_1L_2)L_3$$

**4.** 
$$L_1(L_2 \cup L_3) = (L_1L_2) \cup (L_1L_3)$$

5. 
$$L^1 = L$$

6. 
$$L^{i+j} = L^i L^j$$

**7.** 
$$L^* = UL^i$$
,  $i \ge 0$ 

**8.** L+ = ULi, 
$$i \ge 1$$

# Definirea limbajelor

- Generare
- Acceptoare

- gramatici
- Automate
  - Automate finite
  - Automate cu stiva
  - Masina Turing

$$G = (N, \Sigma, P, S)$$

- •N mulţimea simbolurilor neterminali
- •**\Sigma** mulţimea simbolurilor terminali (  $\Sigma \cap N = \Phi$ )
- •P o submulţime finită din  $(N U \Sigma) * N (N U \Sigma) * x (N U \Sigma) *$

$$p \in P$$
,  $p = (\alpha, \beta)$  este notat cu  $\alpha \to \beta$   
 $p = productie$ 

•S ∈ N - simbolul de start al gramaticii G.

#### Gramatici – Conventii de notare

- •simboluri terminale literele mici de la inceputul alfabetului latin (a,b,c,...)
- •siruri de simboluri terminale literele mici de la sfarsitul alfabetului latin (u, v, x,...)
- •simboluri neterminale literele mari de la inceputul alfabetului latin (A, B, C, . . . ) si S
- •simboluri terminale sau neterminale literele mari de la sfirsitul alfabetului latin  $(U, V, X, \ldots)$  elemente din  $N U \Sigma$
- •siruri din (N U  $\Sigma$ ) \* literele alfabetului grecesc ( $\alpha$ ,  $\beta$ , ...)

#### Forma propozitionala in gramatica G:

- •orice sir din  $(N \cup \Sigma)^*$  obtinut prin:
  - •S este o forma propozitionala
  - •dacă  $\alpha\beta\gamma$  este o forma propozitională si exista o productie  $\beta \rightarrow \delta$  atunci  $\alpha\delta\gamma$  este o forma propozitionala.

#### Relatia de derivare intr-o gramatica $G ==>_G$

- •definita asupra formelor propozitionale
  - $\bullet \alpha$  și  $\beta$  doua forme propoziționale
  - • $\alpha ==> \beta$  dacă si numai daca exista w1, w2 si  $\gamma \rightarrow \delta \in P$  astfel incat  $\alpha = w_1 \gamma w_2$  si  $\beta = w_1 \delta w_2$ .

- •Derivarea in k pasi,  $\alpha ==>^k \beta$ 
  - •daca exista  $\alpha_0, \alpha_1, ..., \alpha_k$  forme propozitionale astfel incat:

$$\alpha = \alpha_0 = > \alpha_1 = > \dots = > \alpha_{i-1} = > \alpha_i \dots = > \alpha_k = \beta$$

•inchiderea tranzitiva si reflexiva a relatiei ==>\*

$$\alpha = >^* \beta < = > \alpha = >^k \beta$$
 pentru orice  $k \ge 0$ 

•inchiderea tranzitiva ==>+

$$\alpha = >^+ \beta < => \alpha =>^k \beta$$
 pentru orice  $k \ge 1$ 

Propozitie - o forma propozitionala intr-o gramatică *G*, care contine numai simboluri terminale.

Limbajul generat de o gramatica **G**, notat cu **L(G)**, este reprezentat de mulţimea tuturor propozitiilor generate de gramatica **G**:

$$L(G) = \{w \in \Sigma^* | S ==>^+ w\}$$

Doua gramatici G1, G2 se numesc echivalente daca genereaza acelasi limbaj adica, L(G1) = L(G2).

# Clasificarea gramaticilor lerarhia Chomsky

•gramatici de tip 0 (gramatici fără restricții - GFR)  $\alpha \rightarrow \beta$  cu  $\alpha \in (N \ U \ \Sigma) * N (N \ U \ \Sigma) * , \ \beta \in (N \ U \ \Sigma) *$ •gramatici de tip 1 (gramatici dependente de context - GDC)  $\alpha \rightarrow \beta$ ,  $|\alpha| \leq |\beta|$ ,  $cu \ \alpha \in (N \ U \ \Sigma) * N \ (N \ U \ \Sigma) *$   $\beta \in (N \ U \ \Sigma) *$ 

sau de forma

S→e, caz în care S nu apare în partea dreaptă al nici unei alte productii.

- •gramatici de tip 2 (gramatici independente de context GIC)  $A\rightarrow \alpha$  cu  $A\in N$ ,  $\alpha\in (N\ U\ \Sigma)$  \*
- •gramatici de tip 3 (gramatici regulate dreapta GR)  $A \rightarrow \alpha B$  cu  $A \in N$ ,  $B \in (N \ U \ \{e\})$ ,  $\alpha \in \Sigma^*$

# Clasificarea limbajelor lerarhia Chomsky

