

Pathway analysis: introduction and discussion

Francesca M. Buffa

Department of Oncology University of Oxford

Complex data structure

Cytoscape

ClueGO

Creates and visualizes a functionally grouped network of

CluePedia

CluePedia: A ClueGO plugin for pathway insights using integrated

AgilentLiteratureSearch

Mines scientific literature to find publications related to search

BiNGO

Calculates overrepresented GO terms in the network and display

GeneMANIA

Imports interaction networks from public databases from a list of

clusterMaker2

Multi-algorithm clustering app for Cytoscape

How do we represent a pathway

STRING

Kegg pathways

Kegg pathways

Nodes

- Genes
- Group of genes
- Compounds
- Other networks

Edges

Activation/Inhibition

Expression

Indirect

Phosphorylation/Diphosphorilation

Ubiquination

Association/Dissocation

Many repositories of biological pathways

Many repositories of biological pathways

2471 Pathways

>42 000 Pathways

505, 700 Pathways

2132 (H. sapiens)

Biological Pathway Exchange (BioPAX)

Before BioPAX

>100 DBs and tools Tower of Babel

After BioPAX Unifying language

Pathway analysis

affyID	gene.name	accession	unigene	FC	pfp
1419476 at	Adamdec1	NM 021475	Mm.36742	27.31	0
1448162 at			Mm.76649	26.58	2.44
_		NM 021334		17.06	
_					3.00
1415989_at	Vcam1		Mm.76649 Mm.42526	13.57	0
1418776_at	5830443L24Rik	NM_029509	1 Mm 37018	11.76	0

Many ways to approach pathway analysis

Khatri P, Sirota M, Butte AJ (2012) Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Comput Biol 8(2): e1002375. doi:10.1371/journal.pcbi.1002375

We have mapped our significantly differentially expressed genes to pathways. So we can start to interpret our results.

How likely is it that if we consider a random set of genes we will observe these pathways?

Are there any pathways that have a larger than expected subset of our selected genes in their annotation list?

Are there any pathways that have a larger than expected subset of our selected genes in their annotation list?

Are there any pathways that have a larger than expected subset of our selected genes in their annotation list?

Are there any pathways that have a larger than expected subset of our selected genes in their annotation list?

Two-way table:

	Selected	Universe
In Pathway	?	Ś
Not In Pathway	?	Ş
Total	?	?

Are there any pathways that have a larger than expected subset of our selected genes in their annotation list?

Two-way table:

	Selected	Universe
In Pathway	22	7500
Not In Pathway	28	22500
Total	50	30000

Are there any pathways that have a larger than expected subset of our selected genes in their annotation list?

Two-way table:

	Selected	Universe
In Pathway	22	7500
Not In Pathway	28	22500
Total	50	30000

Fold enrichment = (22/50) / (7500/30000) = 45% / 25% = 1.8

The Hypergeometric test

"The probability of drawing up to x of a possible K items in N drawings without replacement from a group of M objects"

X = the number of differentially expressed genes belonging to the pathway

K = the number of genes belonging to the pathway

N = the differentially expressed genes (or selected genes)

M = the universe

$$p = F(x \mid M, K, N) = \sum_{i=0}^{x} \frac{\binom{K}{i} \binom{M - K}{N - i}}{\binom{M}{N}}$$

Limitations

- Not always clear how to define the universe
- The over-representation analysis is independent of the changes measured. All genes are treated equally.
- Only the most significant genes are used which causes information loss
- Genes are assumed to be independent and the correlation structure is ignored
- Pathways are assumed to be independent

Many ways to approach pathway analysis

Khatri P, Sirota M, Butte AJ (2012) Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Comput Biol 8(2): e1002375. doi:10.1371/journal.pcbi.1002375

Gene Set Enrichment Analysis

Tests whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes)

Hypothesis:

Pathway regulation can be detected either by looking at large changes in individual genes or by looking at coordinated changes in sets of functionally related genes.

http://www.broadinstitute.org/gsea/

- 1) Define phenotype classes (e.g. Cells in Hypoxia or Normoxia)
- 2) Define a gene set of interest (e.g. Genes in the HIF1a pathway)

- 1) Define phenotype classes (e.g. Cells in Hypoxia or Normoxia)
- 2) Define a gene set of interest (e.g. Genes in the HIF1a pathway)
- 3) Sort genes based on their differential expression between classes

- 1) Define phenotype classes (e.g. Cells in Hypoxia or Normoxia)
- 2) Define a gene set of interest (e.g. Genes in the HIF1a pathway)
- 3) Sort genes based on their differential expression between classes
- 4) Tag genes from the set S within the sorted list

- 1) Define phenotype classes (e.g. Cells in Hypoxia or Normoxia)
- 2) Define a gene set of interest (e.g. Genes in the HIF1a pathway)
- 3) Sort genes based on their differential expression between classes
- 4) Tag genes from the set S within the sorted list
- 5) Walk down the list, for each gene: if gene is in S running-sum statistic up, if not down. (The magnitude of the increment depends on FC)

- 1) Define phenotype classes (e.g. Cells in Hypoxia or Normoxia)
- 2) Define a gene set of interest (e.g. Genes in the HIF1a pathway)
- 3) Sort genes based on their differential expression between classes
- 4) Tag genes from the set S within the sorted list
- 5) Walk down the list, for each gene: if gene is in S running-sum statistic up, if not down. (The magnitude of the increment depends on FC)
- 6) ES is the maximum deviation from zero of this random walk

Improvement on over-representation

- No need to define an arbitrary threshold for selecting significant genes
- The molecular measurements of the actual changes are not ignored but used in order to detect coordinated changes in the expression of genes in the same pathway.
- Coordinate changes are considered: the dependence between genes in a pathway is accounted for

Limitations

- Pathway are considered independent. However a gene can function in more than one pathway, meaning that pathways can cross and overlap.
- Most methods use ranks instead of the actual changes (exception exist: gene set analysis http://statweb.stanford.edu/~tibs/GSA/ but only available as R function at the moment)
- The nature of the functional link between genes, the strength of the evidence for this link, the role of the genes in the pathway are not considered, only the list of genes in a pathway is used

Many ways to approach pathway analysis

Khatri P, Sirota M, Butte AJ (2012) Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Comput Biol 8(2): e1002375. doi:10.1371/journal.pcbi.1002375

MinePATH

Available at minepath.org (Koumakis et al., 2012)

Kegg pathways

Kegg pathways

Nodes

- Genes
- Group of genes
- Compounds
- Other networks

Edges

Activation/Inhibition

Expression

Indirect

Phosphorylation/Diphosphorilation

Ubiquination

Association/Dissocation

Discretise the gene expression data

0: down-regulated genes

1: up-regulated genes

Combine discretized gene expression data and decomposed sub-paths

Combine discretized gene expression data and decomposed sub-paths

Activation

Inhibition

	Sample 1	Sample 2	Sample 3	•••
Gene A	1	0	1	•••
Gene B	1	1	1	•••
Gene C	0	1	0	•••
	•••	•••	•••	

Combine discretized gene expression data and decomposed sub-paths

Activation

		Ъ	
		ON	OFF
A	ON	✓	×
	OFF	×	×

Inhibition

		ь	
		ON	OFF
A	ON	×	✓
	OFF	✓	×
	OFF		

	Sample 1	Sample 2	Sample 3	
Gene A	1	0	1	
Gene B	1	1	1	
Gene C	0	1	0	
	•••	•••	•••	

Interactions as logical operators

Evaluate sub-paths

Visualize the results

Visualizing the best pathways

- 'Red' is used to encode sub-path relations that are active for phenotype 1 (Class 1)
- 'Blue' for relations that are active for phenotype 2 (Class 2)
- 'Magenta' for relations holding for both phenotypes
- 'Orange' for relations that are "always-active"
- "Yellow" for the association/disassociation relations
- 'Grey' for inactive relations.

There are still many gaps

