Laboratoria 6 Zadanie 4 na wykład

Krystian Baran 145000 13 kwietnia 2021

1 Zadanie 4

Celem sprawdzenia dokładności wskazań pewnego przyrządu pomiarowego dokonano 10 pomiarów tej samej wielkości fizycznej X i otrzymano następujące wyniki:

 $9,01;\ 9,00;\ 9,02;\ 8,99;\ 8,98;\ 9,00;\ 9,00;\ 9,01;\ 8,99;\ 9,00.$

Dokonać przekształcenia pomiarów według wzoru:

$$Y = 100(X - 9)$$

Dla wielkości X i Y oszacować ich wartości oczekiwane i wariancje.

Na początku sporządzimy tabele wartości Xi Ykorzystając z podanego wzoru.

Lp.	X	Y
1	9.01	1
2	9	0
3	9.02	2
4	8.99	-1
5	8.98	-2
6	9	0
7	9	0
8	9.01	1
9	8.99	-1
10	9	0

Oszacujemy wartość oczekiwaną jako średnia z podanych wartości, czyli:

$$\mathbb{E}X = \overline{X} = \frac{\sum x_i}{n} = \frac{90}{10} = 9$$

$$\mathbb{E}Y = \overline{Y} = \frac{\sum y_i}{n} = \frac{9}{10} = 0$$

Aby obliczyć odchylenie standardowe potrzebujemy sumę kwadratów obniżonych o średnią.

Lp.	$(x_i - \overline{X})^2$	$(y_i - \overline{Y})^2$
1	0.0001	1
2	0.0000	0
3	0.0004	4
4	0.0001	1
5	0.0004	4
6	0.0000	0
7	0.0000	0
8	0.0001	1
9	0.0001	1
10	0.0000	0
SUM	0.0012	12

Wtedy można łatwo obliczyć wartość odchylenia standardowego:

$$\sigma_x = \sqrt{\frac{\sum (x_i - \overline{X})^2}{n}} = \sqrt{\frac{0.0012}{10}} \approx 0.010954451$$

$$\sigma_y = \sqrt{\frac{\sum (y_i - \overline{Y})^2}{n}} = \sqrt{\frac{12}{10}} \approx 1.095445115$$

Wartość oczekiwana zmiennej X wynosi 9, gdzie X jest mierzona długość, więc możemy przyjąć że jest to długość mierzonego obiektu.

Wartość oczekiwana zmiennej Y, która wskazuje nam błąd procentowy względem wartości rzeczywistej 9, wynosi 0; zatem obiekt zmierzony został poprawnie.

Odchylenie standardowe zmiennej X wynosi w przybliżeniu 0.01, oznacza to że rzeczywistsza długość obiektu, z uwzględnieniem błędu pomiarowego wynosi 9.00 ± 0.01 .

Odchylenie standardowe zmiennej Y wynosi w przybliżeniu 1, zatem rzeczywista wartość procentowego błędu jest $\pm 1\%$.