Tapological sorting using predecessor counting algorithm Pb 4: we have a directed graph with 8 vortices and 12 edges

Input file	;
8 12	57 100
125	585
13 400 2 4 5 2 5 400	6 7 5 6 8 5
2 6 5 3 2 400	785

topological sorting orders:
1,3,2,5,4,6,7,8
1,3,2,4,6,5,7,8
1,3,2,5,6,4,7,8
1,3,2,6,4,5,7,8
1,3,2,6,4,5,7,8

	T X	Ty	Count : Dictionary	g: queul	sorted: list
iteration			02111223	414	£ 3
iteration L	1	2 3	010111223		
iteration 2	3	2 6	00011123		[4,3]
itenation 3	2	6	12345678	446 4456 4456	[1, 3,2]
iteration 4	4		010101010101213	€1516E	[1,3,2,4]
iteration 5	5 7	+ 1	00000000112	41614	[113,214,5]
Heration 6	6 3	t	0000000001	FIF	[1,3,2,4,5,6]

iterationat	X	1 4	count : Dictionary	g: gueul	sorted: list
(Heriod tolive)		8	1000000000	<u> </u>	[113,214,5,6,7]
ileration 8	8		000000000	ETE	[1,3,2,4,5,6,7]

The algorithm is over, the graph is a DAG having sixeof (sorted) = 8

Highest cost walk between 2 given vertices: storting vertex: + ending vertex: +

initialization	u	V	dist: Dictionary	mext: Dictionary
iteration 1	T	2 3	05 100	12345678
iteration 2	3	2 6	0 200 100 105	12345678
iteration 3	2	4 5 6	0 200 100 205 105 0 200 100 205 300 105 0 200 100 205 300 205	1 2 3 4 5 6 7 8 3 4 2 1 3 1
iteration 4	4	-	-	_
iteration 5	5	7 8	0 200 (00 205) 300 205 400 305 0 200 (00 205) 300 205 400 305	1 3 1 1 2 1 2 1 2 1 5 1 5 1 3 1 1 2 1 2 1 2 1 5 1 5
ileration 6	6	7 8	_	
iteration 7	*		⇒ stop $u = 7$ (ending vert the highest walk is dis and using mext, we can $1 \Rightarrow 3 \Rightarrow 2 \Rightarrow 5 \Rightarrow 7$	t[u]=400 n build the walk: