IANPR SDK

Версия 1.4 Документация

СОДЕРЖАНИЕ

Введение

- 1. Модули
 - <u>1.1. Модуль распознавания iANPR</u>
 - 1.2. Модуль интерфейсов iANPRinterface
 - 1.3. Потоковый модуль iANPRcapture
- 2. Инсталляция и использование
 - 2.1. Windows
 - 2.2. Linux
- 3. Примеры на C/C++ для Windows
 - 3.1. Image
 - 3.2. Image_new
 - 3.3. Image_omp
 - 3.4. Capture
 - 3.5. Capture_(iANPRcapture)
 - 3.6. (iANPRcapture_motion)
- 4. Примеры на других языках для Windows
 - 4.1. C#
 - 4.1.1. Пример iANPRcapture motion на С# для iANPR SDK
 - 4.2. Delphi
- 5. Рекомендации к использованию
- 6. Как пользоваться Демо-версией iANPR SDK

Заключение

Введение

iANPR SDK -ЭТО комплект средств разработки для распознавания автомобильных номеров. Основная цель – обеспечить автоматизированное распознавание автомобильных номеров на основе библиотеки компьютерного зрения OpenCV. Возможности включают обработку изображений. Основной библиотеки использования библиотеки – С/С++.

Версия 1.4 откомпилирована с версиями OpenCV 3.0, при необходимости (по просьбе Клиента для FULL версий) может быть откомпилирована под другую версию.

Виды лицензий

iANPR RUS FREE Данный вид лицензии предназначен для использования библиотеки С бесплатного ограниченными скорость работы возможностями распознавания: искусственно существенно замедлена. Данный вид лицензии можно использовать ознакомительных и/или академических только целях. допускается распространение программного продукта совместно с данной библиотекой. Поставляется в виде динамических библиотек (DII).

iANPR RUS PRO HOME Это платная лицензия, которая предоставляет все возможности по распознаванию стандартных и транзитных российских номеров. Предназначена для физических лиц. Поставляется в виде динамических библиотек (DII).

iANPR RUS PRO LIMITED Это платная лицензия, которая предоставляет все возможности по распознаванию стандартных и транзитных российских номеров. Допускается использование только для собственных нужд внутри организации, принявшей данную лицензию. Поставляется в виде динамических библиотек (DII).

iANPR RUS PRO HOME EXTENDED Это платная лицензия, которая предоставляет все возможности по распознаванию стандартных и транзитных российских номеров, а также остальных типов номеров, присутствующих в данной версии. Предназначена для физических лиц. Поставляется в виде динамических библиотек (DII).

iANPR RUS PRO EXTENDED LIMITED Это платная лицензия, которая предоставляет все возможности по распознаванию стандартных и транзитных российских номеров, а также остальных типов номеров, присутствующих в данной версии. Допускается использование только для собственных нужд внутри организации, принявшей данную лицензию. Поставляется в виде динамических библиотек (DII).

iANPR RUS PRO FULL Это платная лицензия, которая предоставляет все возможности по распознаванию стандартных, тразитных российских номеров, а также остальных типов номеров, присутствующих в данной версии. Допускается использование для распространения собственного программного продукта.

iANPR KAZ FREE Данный вид лицензии предназначен для бесплатного использования библиотеки ограниченными C распознавания: работы возможностями скорость искусственно существенно замедлена. Данный вид лицензии можно использовать только ознакомительных и/или академических целях. допускается распространение программного продукта совместно с данной библиотекой. Поставляется в виде динамических библиотек (DII).

iANPR KAZ PRO LIMITED Это платная лицензия, которая предоставляет все возможности по распознаванию частных и номеров организаций Казахстана (только прямоугольные однострочные). Допускается использование только для собственных нужд внутри организации, принявшей данную лицензию. Поставляется в виде динамических библиотек (DII).

KAZ PRO iANPR FULL Это платная лицензия, предоставляет все возможности по распознаванию частных и номеров прямоугольные организаций Казахстана (только однострочные). Допускается использование ДЛЯ распространения собственного программного продукта.

iANPR TM FREE Данный вид лицензии предназначен для использования библиотеки бесплатного С ограниченными распознавания: скорость работы возможностями искусственно существенно замедлена. Данный вид лицензии можно использовать ознакомительных и/или академических только целях. допускается распространение программного продукта совместно с данной библиотекой. Поставляется в виде динамических библиотек (DII).

iANPR TM PRO LIMITED Это платная лицензия, которая предоставляет все возможности по распознаванию частных и номеров организаций Казахстана (только прямоугольные однострочные). Допускается использование только для собственных нужд внутри организации, принявшей данную лицензию. Поставляется в виде динамических библиотек (DII).

PR0 Это *iANPR* TMFULL платная лицензия, которая предоставляет все возможности по распознаванию частных и номеров прямоугольные однострочные). организаций Казахстана (только Допускается распространения собственного использование ДЛЯ программного продукта.

iANPR BY FREE Данный вид лицензии предназначен для бесплатного использования библиотеки С ограниченными возможностями распознавания: скорость работы искусственно существенно замедлена. Данный вид лицензии можно использовать ознакомительных и/или академических целях. допускается распространение программного продукта совместно с данной библиотекой. Поставляется в виде динамических библиотек (DII).

iANPR BY PRO LIMITED Это платная лицензия, которая предоставляет все возможности по распознаванию номеров грузового транспорта Беларуси (только прямоугольные однострочные). Допускается использование только для собственных нужд внутри организации, принявшей данную лицензию. Поставляется в виде динамических библиотек (DII).

PRO *iANPR* BY *FULL* Это платная лицензия, предоставляет все возможности по распознаванию номеров грузового транспорта Беларуси (только прямоугольные однострочные). использование собственного Допускается для распространения программного продукта.

Допускается совмещение лицензий на распознавание номеров разных стран. Подробнее об этом и о ценах на продукцию на странице:

http://intbusoft.com/rus/products/iANPR/

1. Модули

В версии 1.4 библиотека была поделена на 3 модуля:

- модуль распознавания;
- модуль интерфейсов;
- потоковый модуль.

В модуле распознавания остались базовые функции для распознавания автомобильных номеров.

Модуль интерфейсов предназначен для облегчения доступа к функциям распознавания и предоставляет различные варианты доступа.

Потоковый модуль предназначен для объединения результатов распознавания с нескольких кадров.

1.1. Модуль распознавания – iANPR

В данном модуле (iANPR.h) реализовано распознавание одного изображения. Всего в модуле 3 функции.

anprPlate

Функция поиска автомобильных номеров на изображении формата OpenCV.

```
int anprPlate(
    IplImage* Image,
    ANPR_OPTIONS Options,
    int* AllNumber, CvRect* Rects,
    char** Texts,
    void* param = NULL
);
```

Параметры:

Image – входное изображение в формате OpenCV (8-битное 1-канальное или 8-битное 3-канальное в зависимости от параметров Options.type_number);

Options – настройки режима распознавания в формате структуры <u>ANPR OPTIONS</u>;

AllNumber – количество найденных номеров;

Rects – указатель на массив структур CvRect (это структура из библиотеки OpenCV), куда будут записаны зоны нахождения номеров; **Texts** – указатель на массив указателей символьного типа, в которые для каждого номера будет возвращаться текст, указатели должны указывать на ранее выделенные области памяти; **param** – пока не используется.

Функция anprPlate возвращает 0 при успешном нахождении хотя бы одного номера. 1 — не детектировано ни одного кандидата на автомобильный номер, 2 — не найдено ни одного номера. Помимо этого может быть возвращена одна из следующих ошибок, определенных в iANPRerror.h:

IMAGE_EMPTY (-2) Изображение пустое;

ERROR_TYPE_PLATE (-100) Неподдерживаемый для данной конфигурации тип номера. Например, лицензия iANPR RUS PRO LIMITED не поддерживает флаг типа номера ANPR_RUSSIAN_PUBLIC. Поэтому его использование будет возвращать ошибку.

ERROR_TYPE_FOR_COLOR (-101) Не соответствие типа изображения и флага типа номера в структуре ANPR_OPTIONS.

Структура ANPR_OPTIONS

Данная структура определяет режимы распознавания.

Минимальная и максимальная площади номеров ограничивают поиск кандидатов на автомобильные номера. Площадь номера определяется произведением ширины номера на его высоту. Если необходимо задавать номера Российской Федерации через ширину, то можно использовать следующий пересчет:

```
min_plate_size = min_plate_width * min_plate_height;
max_plate_size = max_plate_width * max_plate_height;
```

Где min_plate_width – минимальная ширина номера, max_plate_width – максимальная ширина номера, min_plate_height –

минимальная высота номера, max_plate_height – максимальная высота номера.

Detect_Mode определяет режимы детектирования автомобильного номера. Их можно, даже нужно использовать совместно. В данной версии режимов детектирования 4:

- ANPR DETECTMODE1,
- ANPR_DETECTMODE2,
- ANPR_DETECTMODE3,
- ANPR DETECTMODE4.

Они отличаются настройками при поиске номеров и их можно использовать одновременно (при этом правда несколько снижается производительность).

ANPR_DETECTMODE1 – Метод, основанный на детектировании номера целиком с простой адаптивной обработкой изображения.

ANPR_DETECTMODE2 – Метод, основанный на детектировании номера целиком с адаптивной обработкой изображения, основанной на удалении мелких перемычек. Включает в себя практически 100% номеров детектированных с помощью ANPR_DETECTMODE1, а также номера, которые ANPR_DETECTMODE1 не детектируются. Поэтому ANPR DETECTMODE1 не рекомендуется использовать.

ANPR_DETECTMODE3 – Метод, основанный на детектировании номера целиком с блочной обработкой изображения.

АNPR_DETECTMODE4 — Метод, основанный на выделении частей номера с простой адаптивной обработкой изображения. Не рекомендуется использовать отдельно от других методов, поскольку дает низкие показатели детектированных номеров и не всегда точное детектирование. Однако, его особенности таковы, что он детектирует те номера, которые не детектируются другими методами. При этом могут в значительном количестве возникать дополнительные ложные срабатывания, например, на плакатах.

Для качественного распознавания рекомендуется использовать комбинации методов ANPR_DETECTMODE2 и ANPR_DETECTMODE3, или ANPR_DETECTMODE2 + ANPR_DETECTMODE3 + ANPR_DETECTMODE4, последнюю комбинацию методов можно получить одним флагом ANPR_DETECTCOMPLEXMODE.

Определение в iANPR.h:

#define	ANPR	DETECTMODE1	0x01
#define	ANPR	DETECTMODE2	0x02
#define	ANPR	DETECTMODE3	0x04
#define	ANPR	DETECTMODE4	0x08

Максимальное количество символов номера должно совпадать с максимальным размером, заданным в Texts функции anprPlate. Конечно максимальное количество символов + символ конца строки (0) равно 10, но если поставить больше размер буфера, например, 20, то это ошибкой не будет.

type_number определяет тип номеров для распознавания. **Все** *типы распознаваемых номеров являются прямоугольными однострочными*.

flags определяет дополнительные режимы распознавания. Нужно пока устанавливать 0, а если возникает необходимость выводить номера даже с низкой достоверностью распознавания отдельных символов (в том числе с символами, замененными знаком '?'), то установить флаг DEBUG_RECOGNITION_MODE, который равен 1.

Флаг RETURN_TYPE_NUMBER позволяет выводить после распознанного номера через двоеточие его тип. Например X111XX11:0. В версии 1.4 возвращение типа работает только для номеров Российской Федерации. Возвращаемые типы:

Тип номера	Код	Описание возвращаемого типа
TYPE_RUSSIAN_BASE	0	Базовый номер России
TYPE_RUSSIAN_TRANSIT	1	Транзитный номер России
TYPE_RUSSIAN_TRAILER	2	Номер прицепа России
TYPE_RUSSIAN_PUBLIC	3	Общественный транспорт России
TYPE_RUSSIAN_POLICE	4	Номер полиции России
TYPE_RUSSIAN_ARMY	5	Военный номер России
TYPE_RUSSIAN_SQUARE_BASE	6	Номер трактора или мотоцикла России

Нужно помнить, чтобы размеры буфера для текста были больше номера с возвращаемым типом.

Типы распознавания Российских номеров

Тип номера	Код	Тип	Описание
		изображения	поддерживаемых
			номеров
ANPR_RUSSIAN_BASE	0	8bit, 1 channel	Базовые
ANPR_RUSSIAN_BASE2	1	8bit, 1 channel	Базовые и транзитные
ANPR_RUSSIAN_EXTENDED	2	8bit, 1 channel	Базовые, транзитные и
			номера прицепов
ANPR_RUSSIAN_PUBLIC	3	8bit, 1 channel	Только общественный
			транспорт
ANPR_RUSSIAN_POLICE	5	8bit, 1 channel	Только номера полиции
ANPR_RUSSIAN_ARMY	6	8bit, 1 channel	Только военные номера
ANPR_RUSSIAN_EXTENDED2	4	8bit, 3 channel	ANPR_RUSSIAN_EXTENDED + ANPR RUSSIAN PUBLIC
ANPR_RUSSIAN_FULL	7	8bit, 3 channel	ANPR_RUSSIAN_EXTENDED2 + ANPR_RUSSIAN_POLICE + ANPR_RUSSIAN_ARMY
ANPR_RUSSIAN_SQUARE_BASE	8	8bit, 1 channel	Только квадратные
			номера

ANPR_RUSSIAN_FULL_WITH_SQUARE	9	8bit. 3 channel	ANPR_RUSSIAN_FULL +
			ANPR RUSSIAN SQUARE BASE

8bit, 1 channel – изображение в градациях серого; 8bit, 3 channel – цветное изображение.

Базовые номера [ГОСТ Р 50577-93]:

Транзитные российские номера (MM976M34). Номера прицепов:

Общественный транспорт – желтые номера формата ММ11122. Номера полиции – синие номера формата М111122. Военные номера –черные номера формата 1111ММ22. Квадратные номера мотоциклов и тракторов типа: 1111 ММ22

Типы распознавания номеров Казахстана

Triffbi paoriodriabativisi fioli	OPOB.	tabantorana	
Тип номера	Код	Тип	Описание поддерживаемых
		изображения	номеров
ANPR_KAZ_1993_PRIVATE	100	8bit,	Частные номера
		1 channel	стандарта 1993 года
ANPR_KAZ_1993_ORGANIZATION	101	8bit,	Номера организаций
		1 channel	стандарта 1993 года
ANPR_KAZ_2012_PRIVATE	102	8bit,	Частные номера
		1 channel	стандарта 2012 года
ANPR_KAZ_2012_ORGANIZATION	103	8bit,	Номера организаций
		1 channel	стандарта 2012 года
ANPR_KAZ_BASE	104	8bit,	Частные и номера
		1 channel	организации
			стандартов 1993 и 2012

Типы распознавания номеров Туркменистана

		/	
Тип номера	Код	Тип	Описание
		изображения	поддерживаемых
			номеров
ANPR_TM_2009	201	8bit,	Частные номера
		1 channel	стандарта 2009 года
ANPR_TM_PRIVATE_BEFORE_2009	202	8bit,	Частные номера
		1 channel	стандарта до 2009
			года
ANPR_TM_BASE	203	8bit,	Все частные номера
		1 channel	

Типы распознавания номеров Беларуси

Тип номера	Код	Тип	Описание
		изображения	поддерживаемых
			номеров
ANPR_BY_TRUCK	300	8bit,	Все грузовые номера
		1 channel	
ANPR_BY_2004_TRUCK	301	8bit,	Грузовые номера
		1 channel	стандарта 2004 года
ANPR_BY_1992_TRUCK	302	8bit,	Грузовые номер
		1 channel	стандарта 1992 года

anprPlateRect

Функция поиска автомобильных номеров на регионе изображения формата OpenCV.

```
int anprPlateRect(
    IplImage* Image,
    CvRect Rect,
    ANPR_OPTIONS Options,
    int* AllNumber,
    CvRect* Rects,
    char** Texts,
    void* param = NULL
);
```

Параметры аналогичны функции <u>anprPlate</u>, дополнительный параметр **Rect** определяет обрабатываемую на изображении область.

Возвращаемые значения такие же, но добавляется ошибка: ERROR RECT (-1) – неправильно заданная область.

LicenseValue

Функция активации лицензионной версии iANPR. Вызов этой функции необходим только для лицензионной версии библиотеки и только один раз перед первым распознаванием. В случае использования функции LicenseValue с демо-версией iANPR, она никак не повлияет на работу программы.

```
void LicenseValue(
        char* lic
);
```

Параметры:

lic – массив, содержащий лицензионный ключ.

Функция не возвращает значений.

1.2. Модуль интерфейсов – iANPRinterface

Модуль интерфейсов расширяет возможности подключения к библиотеке. Определения функций представлены в iANPRinterface.h.

anprPlateMemory

Функция предназначена для распознавания графического файла форматов BMP, JPEG, PNG, TIFF форматов, который находится в памяти. К примеру, с жесткого диска в память читается BMP файл, а функции передается указатель на него.

```
int anprPlateMemory(
    char* in_buffer,
    int size_buffer,
    ANPR_OPTIONS Options,
    int* AllNumber,
    CvRect* Rects,
    char** Texts
);
```

Параметры:

in_buffer – указатель на входное изображение; size_buffer – размер буфера изображения; Остальные параметры аналогичны функции <u>anprPlate</u>. Возвращаемые значения такие же, как и в <u>anprPlate</u>.

anprPlateMemoryRect

Назначение функции аналогично <u>anprPlateMemory</u>, только также как и в <u>anprPlateRect</u> добавляется область поиска.

```
int anprPlateMemoryRect(
    char* in_buffer,
    int size_buffer,
    CvRect Rect,
    ANPR_OPTIONS Options,
    int* AllNumber,
    CvRect* Rects,
    char** Texts
);
```

Назначение параметров и возвращаемых значений аналогично anprPlateMemory и anprPlateRect.

anprPlateMat

Функция аналогичная <u>anprPlate</u>, за исключением того, что первый параметр – это изображение в формате cv::Mat C++ интерфейса изображений в OpenCV.

```
int anprPlateMat(
    cv::Mat Image,
    ANPR_OPTIONS Options,
    int* AllNumber,
    CvRect* Rects,
    char** Texts
);
```

Назначение параметров и возвращаемых значений аналогично anprPlate.

an pr Plate Mat Rect

Назначение функции аналогично <u>anprPlateMat</u>, только также как и в <u>anprPlateRect</u> добавляется область поиска.

```
int anprPlateMatRect(
    cv::Mat Image,
    CvRect Rect,
```

```
ANPR_OPTIONS Options,
int* AllNumber,
CvRect* Rects,
char** Texts
```

Назначение параметров и возвращаемых значений аналогично anprPlate.

anprPlateXML

Функция, аналогичная <u>anprPlate</u>, за исключением того, что найденные номера возвращаются в формате XML.

Параметры:

Image – входное изображение в формате OpenCV (8-битное 1-канальное или 8-битное 3-канальное в зависимости от параметров Options.type_number);

Options – настройки режима распознавания в формате структуры ANPR_OPTIONS;

xml_buffer – указатель на выделенный в памяти перед вызовом функции буфер, в который будет возвращаться XML-строка следующего формата:

allnumbers показывает количество найденных автомобильных номеров. А для каждого найденного номера возвращается тег number, у которого value – текст номера, а coord – его координаты (X,Y,ширина, высота).

size_xml_buffer – размер выделенного буфера, после вызова функции будет содержать размер записанной XML-строки/

Возвращаемые значения такие же, как и в <u>anprPlate</u>, добавляется возможная ошибка:

ERROR_SIZE_XML_BUF (-3) Недостаточный размер буфера XML.

anprPlateRectXML, anprPlateMemoryXML, anprPlateMemoryRectXML, anprPlateMatXML, anprPlateMatRectXML

Варианты предыдущих функций с возвращением параметров через XML.

```
int anprPlateRectXML(
    IplImage* Image,
    CvRect Rect,
    ANPR OPTIONS Options,
    char* xml buffer,
    int* size xml buffer
);
int anprPlateMemoryXML(
    char* in buffer,
    int size buffer,
    ANPR OPTIONS Options,
    char* xml buffer,
    int* size xml buffer
);
int anprPlateMemoryRectXML(
    char* in buffer,
    int size buffer,
    CvRect Rect,
    ANPR OPTIONS Options,
    char* xml buffer,
     int* size xml buffer
);
int anprPlateMatXML(
    cv::Mat Image,
    ANPR OPTIONS Options,
    char* xml buffer,
    int* size xml buffer
);
int anprPlateMatRectXML(
```

```
cv::Mat Image,
    CvRect Rect,
    ANPR_OPTIONS Options,
    char* xml_buffer,
    int* size_xml_buffer
);
```

Параметры и возвращаемые значения аналогично вышеописанным функциям.

1.3. Потоковый модуль - iANPRcapture

Потоковый модуль предназначен для повышения достоверности распознавания автомобильных номеров на видеопотоке за счет объединения результатов распознавания из нескольких кадров.

Функции данного модуля определены в iANPRcapture.h.

CreateiANPRCapture

Создание iANPR-потока.

```
iANPRCapture CreateiANPRCapture(
    int max_frames,
    ANPR_OPTIONS Options,
    CvRect Rect
);
```

Параметры:

max_frames – количество кадров, из которых объединяется результат;

Options – настройки распознавания (заполненная структура <u>ANPR_OPTIONS</u>);

Rect – область распознавания в формате CvRect.

Возвращает выделенный в памяти объект iANPRCapture. Если создать не удастся, то возвращает NULL.

ReleaseiANPRCapture

Очистка памяти от объекта iANPRCapture.

Параметры:

Capture – указатель на объект iANPRCapture.

AddFrameToiANPRCapture

Функция добавляет текущий кадр в поток iANPRCapture и возвращает распознанные автомобильные номера.

```
int AddFrameToiANPRCapture(
    iANPRCapture Capture,
    IplImage* Image,
    int* AllNumber,
    CvRect* Rects,
    char** Texts
);
```

Параметры:

Capture – объект iANPRCapture.

Image – входное изображение.

Остальные параметры аналогичны anprPlate.

Возвращаемые значения аналогичны anprPlate.

AddFrameToiANPRCaptureMat

Функция добавляет текущий кадр (cv::Mat) в поток iANPRCapture и возвращает распознанные автомобильные номера.

```
int AddFrameToiANPRCaptureMat(
    iANPRCapture Capture,
    cv::Mat Mat,
    int* AllNumber,
    CvRect* Rects,
    char** Texts
);
```

Параметры аналогичны <u>AddFrameToiANPRCapture</u> за тем исключением, что текущий кадр передаётся в структуре cv::Mat. Возвращаемые значения аналогичны **anprPlate**.

CreateMemoryForiANPRCapture

Функция выделяет память для дополнительной функциональности потокового распознавания. Необходимо вызывать только если предполагается использование далее функции **GetNumbersInMemory**.

```
int CreateMemoryForiANPRCapture(
    iANPRCapture Capture,
    int min_frames_with_plate,
    int frames_without_plate,
    int max_plates_in_mem
);
```

Capture – объект iANPRCapture.

Параметры:

min_frames_with_plate — количество кадров между первым и последним распознанным номером, после которого можно считать, что это действительно номер.

frames_without_plate — количество кадров без распознанного ранее номера, после которого можно выдавать результат.

max_plates_in_mem – максимальное количество номеров в памяти. Функция возвращает 0 при успешном вызове, иначе ошибка.

GetNumbersInMemory

Возвращает суммированный результат нахождения номера из памяти. Он возвращается только после frames_without_plate кадров, установленных в <u>CreateMemoryForiANPRCapture</u>.

```
int GetNumbersInMemory(
    iANPRCapture Capture,
    int* AllNumber,
    char** Texts,
    int Size_Texts,
    CvPoint* Points,
    int* all_point
);
```

Параметры:

Capture – объект iANPRCapture.

AllNumber – возвращается количество распознанных номеров на последний кадр из памяти (первоначально содержит размер буфера (количество номеров) Texts).

Texts – содержимое номера.

Size_Texts – размер каждого элемента (строки) массива Texts.

Points – указатель на выделенный перед вызовом массив CvPoint для траектории (если NULL, то траектория не возвращается).

all_points – сюда передается размер массива **Points**, возвращается количество найденных точек, а если массив меньше (рекомендуется 1000 элементов), чем реально найдено точек, то будет возвращено только то количество точек, для которых есть место.

Функция возвращает 0 при успешном вызове, иначе ошибка. Если возвращаются одновременно 2 номера в кадре, что маловероятно, по причине суммирования и отсрочки, то будет возвращаться траектория только для первого.

CreateLineIntersection

Функция создает линию для фиксации пересечения. На самом деле линия состоит из двух линий — и пересечение фиксируется только тогда, когда пересекаются обе (сделано для исключения ложных срабатываний).

```
int CreateLineIntersection(
    iANPRCapture Capture,
    CvPoint pla,
    CvPoint p2a,
    CvPoint p1b,
    CvPoint p2b
);
```

Параметры:

Capture – объект iANPRCapture.

p1a и **p2a** – точки характеризующие верхнюю линию (линия не может быть вертикальной – максимум дельта х может быть в 3 раза меньше дельта у. Иначе ошибка ERROR_SLOPE_LINE).

p1b и **p2b** – точки характеризующие нижнюю линию.

Функция возвращает 0 при успешном вызове, иначе ошибка. Линии должны быть параллельны друг другу. Иначе ERROR NO PARALLEL LINES.

LicenseCapture

Функция активации лицензионной версии iANPRcapture. Вызов этой функции необходим только для лицензионной версии библиотеки и только один раз перед первым распознаванием. В случае использования функции LicenseCapture с демо-версией iANPRcapture, она никак не повлияет на работу программы.

```
void LicenseCapture(
          char* lic
);
```

Параметры:

іс – массив, содержащий лицензионный ключ.

Функция не возвращает значений.

2. Инсталляция и использование

Каких либо особых требований к инсталляции не существует.

2.1. Windows

Для того, чтобы iANPR SDK заработало, на компьютер необходимо установить:

Для Microsoft Visual C++ 2013 SP1 Redistributable Package (x86) http://www.microsoft.com/en-us/download/details.aspx?id=40784

Скачайте OpenCV 3.0.0

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.0.0/opencv-3.0.0.exe/download

Хотя нужные библиотеки OpenCV идут вместе с iANPR SDK, но для разработки программ вам вероятно понадобится подключение заголовочных файлов. В iANPR использовались библиотеки, откомпилированные vc12.

Далее осуществляете подключение в виде обычных динамических библиотек.

Если вы реализуете проект на C/C++ на Visual Studio, то пропишите пути до h и lib для OpenCV и места, где находится iANPR:

Добавьте подключаемые библиотеки (в свойствах Компоновщика):

После этого обратите внимание, чтобы все dll из папки x86 или x64 находились или в папке с вашим исполняемым файлом, или в папке, прописанной в переменной РАТН.

2.2. Linux

Использованная ОС – Ubuntu 13.10 desktop i386

1. Руководствуясь

<u>http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_i</u>

устанавливаем дополнительное программное обеспечение для OpenCV.

2. Скачиваем версию OpenCV 3.0 для linux отсюда http://sourceforge.net/projects/opencylibrary/

И компилируем ее.

- 3. Скачиваем и распаковываем iANPR SDK
- 4. Необходимо сделать видимой библиотеку для программ. Для этого можно прописать путь до libianpr_86.so или просто скопировать этот файл туда же, где лежат библиотеки OpenCV:

/usr/local/lib/

- 5. Обновить пути до библиотек Idconfig
- 6. В папке с примером для Linux открываем makefile и исправляем lianpr_64 на lianpr_86 (поскольку компилируем в 32 битной версии linux).
 - 7. В той же папке вызываем make

Должен создаться исполняемый файл.

8. Проверяем работу программы.

3. Примеры на C/C++ для Windows

3.1. Image

Исходный код примеров постоянно совершенствуется. В описании ниже отражены наиболее значимые участки кода. Однако полный исходный код примеров может отличаться. Полный исходный код примера image находится в папке samples, распространяемой с iANPR SDK.

```
#include "opencv2/highgui/highgui_c.h"
#include "../../Include/iANPR.h"
#include <stdio.h>
#include <Windows.h>
int main( int argc, char** argv)
{
      if ( argc > 1 )
       {
              IplImage* Img = cvLoadImage( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
              if ( Img == NULL ){
                     printf( "Cann't load file!");
                     return 1;
             CvRect Rects[100];
              int all = 100;
              char** res = new char*[all];
              for(int j=0;j<all;j++) res[j] = new char[20];</pre>
             ANPR OPTIONS a;
             a.Detect Mode = ANPR DETECTCOMPLEXMODE;
             a.min plate size = 500;
             a.max plate size = 50000;
             a.max_text_size = 20;
             a.type_number = ANPR_RUSSIAN_BASE;
             a.flags = 0;
             int i;
              char key[1481] = { 0 };
             FILE* f = fopen( "lic.key", "rb" );
              if ( f != NULL )
                     fread( (void*)key, 1480, 1, f );
                    fclose( f );
              LicenseValue( key );
               _try
                     i = anprPlate( Img, a, &all, Rects, res );
               _except(EXCEPTION_EXECUTE_HANDLER)
```

В примере загружается изображение с помощью функции cvLoadImage. Далее выделяется память для хранения 100 номеров (предполагаем, что будут найдено не более 100 номеров, конечно, можно устанавливать меньше).

ANPR OPTIONS. Заполняется структура при заполнении детектирования дорожных указывается режим ANPR DETECTCOMPLEXMODE. Устанавливается диапазон площади (в пикселях в квадрате) номеров. Значение 20 соответствует определенным выше буферам для хранения номеров. детектирования номера установлен базовым, что означает, что при попадании В кадр, к примеру, номеров прицепа, ОНИ распознаваться неправильно.

Считывается лицензионный ключ из файла lic.key с помощью функции fread, а затем ключ передаётся в функцию LicenseValue. Вызов этой функции необходим только для лицензионной версии iANPR SDK и только перед первым распознаванием.

Вызывается функция <u>anprPlate</u> из iANPR SDK. После чего найденные номера в кадре изображения выводятся в консоль.

В конце осуществляется уничтожение ранее выделенной памяти.

Пример вызова (для текущей версии – отличается от примера выше):

image.exe 0 ..\images\image.bmp Информация выведется на консоль, в файл: image.exe 0 ..\images\image.bmp > res.txt

3.2. Image_new

В данном примере показано, как пользоваться различными интерфейсами для работы с библиотекой. В отличие от предыдущего примера подключается дополнительный заголовочный файл iANPRinterface.h.

Функция Memory в примере показывает возможность чтения JPEG, BMP, PNG, TIFF файлов из памяти. Т.е. можно прочитать файл в память, а потом передать указатель в <u>anprPlateMemory</u>.

В функции WithMat приведен C++ интерфейс доступа на основе Mat. Изображение распознается через функцию <u>anprPlateMatRect</u>.

В функциях XMLWork и XMLWork2 приведены примеры работы с функциями <u>anprPlateRectXML</u> и <u>anprPlateMatRectXML</u> соответственно. Результат в виде XML-строки выводится в консоль.

3.3. Image_omp

Встроенного распараллеливания в iANPR нет, однако его можно легко реализовать, разбивая входное изображение на отдельные части.

Когда производится работа с большими изображениями, например, 1920х1080, время распознавания на обычном ПК может быть недостаточно для работы в реальном времени. Для решения данной проблемы можно разбить изображение на части и анализировать их параллельно. Здесь, однако, следует помнить, что в случае попадания номера на пересечение частей, то он не будет распознан. Поэтому нужно внести некоторую избыточность, используя пересекающиеся части. Причем уровень пересечения определяется максимально возможными размерами объекта распознавания.

Предположим, что объект распознавания в форме круга, и его максимальный диаметр на изображении составляет D_{max} . Тогда ширина области пересечения сегментов должна быть больше D_{max} . В этом случае площадь несколько раз анализируемой области (в разных сегментах) будет рассчитываться по следующей формуле:

$$S = L * D_{max}$$

где L – длина границ между всеми сегментами. Понятно, что в этом случае S будет зависеть не только от количества сегментов, но и от их формы. На следующем рисунке показано два примера расположения сегментов. Один сегмент серого цвета, а другой белого. Область пересечения показана штрихами.

Декомпозиция с пересекающимися границами: с небольшой областью пересечения (а), со значительной областью пересечения (б)

Недостатком является то, что при полном анализе изображения будет анализироваться не Width*Height площадь изображения, a Width*Height+S.

Предположим, что мы знаем количество ядер процессора, например, 6. Разделим изображение на 6 частей так:

Естественно нужно помнить об области пересечения частей. 1080/6 = 180

Возьмем в качестве максимальной высоты номера высоту в 80 пикселей. Тогда части вверх и вниз увеличатся на 40 пикселей, кроме самого верхнего и нижнего, где увеличение только в одну сторону.

В примере распараллеливание происходило на основе библиотеки OpenMP.

Для каждого потока создавалось собственное изображение, после чего запускался параллельный цикл:

```
for(int j=0;j<all;j++) res[j] = new char[20];</pre>
                             ANPR OPTIONS a;
                             a.Detect Mode = ANPR DETECTCOMPLEXMODE;
                             a.min_plate_size = 500;
                             a.max_plate_size = 50000;
                             a.max_text_size = 20;
                             a.type_number = ANPR_RUSSIAN BASE;
                             a.flags = 0;
                             int i2 = anprPlate( Images[i], a, &all, Rects, res );
                             if ( i2 == 0 )
                                    for( int j = 0; j < all; j++ ) {</pre>
#pragma omp critical
                                                   printf( "%s\n", res[j] );
                                           }
                                    }
                             for(int j=0;j<100;j++) delete [] res[j];</pre>
                             delete [] res;
                     }
              }
```

Первоначально сравним насколько велика избыточность, откомпилировав программу с выключенным OpenMP. Успешное распознавание было в обоих случаях. Время распознавания на AMD-FX(tm)-6100 Six-cores 3.3GHz (на одном ядре), 8Гб ОЗУ, Windows 7 64:

Последовательный блок 0.297с

Параллельный блок 0.369с

Т.е. избыточность вычислений примерно в 1.24 раз. Во столько замедлилось вычисление.

После включения OpenMP параллельный блок отработал за 0.1c. Т.е. прирост производительности в 2.9 раз.

Почему такой малый прирост? Ответ: 1) избыточность; 2) вычисления в блоках неравномерные – где обнаружился номер, а где нет, поэтому время работы – это время распознавания блока с максимальной информацией.

Но в принципе, даже такой прирост производительности – почти в 3 раза. А это позволяет за 1 секунду обработать 10 кадров, что для реального времени может быть достаточно при данных настройках.

3.4. Capture

Пример Capture работает с Web-камерой, но если в качестве аргумента командной строки указать видео файл, то будет обрабатывать его. Информация о распознавании выводится прямо в кадр следующим образом:

Особенностью данного примера потокового распознавания номера является то, что выдается результат распознавания не каждого кадра, а производится проверка — есть ли в предыдущем кадре такой же найденный номер. Если есть, то только тогда выводится результат распознавания.

Данный подход позволяет отбросить значительную часть ложных срабатываний, возникающих в отдельном кадре.

3.5. Capture_(iANPRcapture)

Данный пример показывает, как работать с модулем **iANRcapture**, появившимся.

Данный модуль позволяет добиться более высокой достоверности распознавания, чем в примере Capture, по причине того, что проверяется не совпадение номеров в обоих кадрах, а вычисляется общая достоверность распознанных символов в кадре с уровнем глубины (количества кадров), заданным программистом:

```
i capture = CreateiANPRCapture( 10, a, cvRect( 0, 0, frame->width, frame->height ) );
```

Каждый кадр добавляется в потоковый объект

```
i1 = AddFrameToiANPRCapture( i_capture, object, &all, Rects, res );
```

Где вытесняется старый кадр и проверяется — не было ли похожего номера на предыдущих кадрах. Если номер, найденный в текущем кадре похож на номера в одном или нескольких предыдущих, то результаты распознавания суммируются.

3.6. (iANPRcapture_motion)

Данный пример является улучшение предыдущего. Позволяет вычислять траекторию движения номера и детектировать пересечение линии, т.е. можно реализовать функционал детектирования въезда-выезда авто.

Отличие данного примера в следующем.

Первоначально создается дополнительная память для дополнительной функциональности (удалять ее потом не надо, она очистится вместе с удалением объекта).

```
CreateMemoryForiANPRCapture( i capture, 10, 15, 100 );
```

Максимальное количество номеров в памяти — 100. Если 15 кадров не было номера, распознанного ранее, то выдается результат. Номер считается распознанным, только если его начальное детектирование было раньше, чем 10 кадров в конечном.

Далее создается линия пересечения:

```
Lines[0].x = int( frame->width * 0.1f ); Lines[0].y = int( frame->height * 0.6f );
Lines[1].x = int( frame->width * 0.3f ); Lines[1].y = int( frame->height * 0.6f );
Lines[2].x = int( frame->width * 0.1f ); Lines[2].y = int( frame->height * 0.7f );
Lines[3].x = int( frame->width * 0.3f ); Lines[3].y = int( frame->height * 0.7f );
CreateLineIntersection( i_capture, Lines[0], Lines[1], Lines[2], Lines[3] );
```

Для получения такого уточненного результата нужно каждый раз (в каждом кадре, после вызова функции AddFrameToiANPRCapture вызывать функцию, возвращающую траекторию:

```
GetNumbersInMemory( i_capture, &all, res , 20, Points, &all_points );
```

Если значение all_points будет больше 0, то значит номер нашелся. И на экран выводится траектория номера и сам номер:

```
pp2.x=0;
pp2.y=40;
pp1.x=1;
pp1.y=41;
cvPutText( frame, res[0], pp1, &font, CV_RGB(0,0,0) );
cvPutText( frame, res[0], pp2, &font, CV_RGB(0,255,0) );
cvResize( frame, image );
cvShowImage( "frame", image);
```

4. Примеры на других языках для Windows

4.1. C#

На С# рекомендуется использовать XML интерфейс для работы с библиотекой. В библиотеке – это пример platereader.

Подключается функция из библиотеки следующим образом:

```
public struct ANPR OPTIONS
  public int min_plate_size; // Минимальная площадь номера
   public int max_plate_size; // Максимальная площадь номера
   public int Detect_Mode; // Режимы детектирования
   public int max_text_size; // Максимальное количество символов номера + 1
   public int type_number; // Тип автомобильного номера
   public int flags; // Дополнительные опции
};
#if WIN32
        [DllImport("iANPRinterface vc12 x86.dll", CallingConvention =
CallingConvention.StdCall)
       unsafe public static extern int anprPlateMemoryXML(byte[] in buffer, int
size_buffer, ANPR_OPTIONS Options,
            StringBuilder xml buffer, int[] size xml buffer);
        [DllImport("iANPR_vc12_x86.dll", CallingConvention = CallingConvention.StdCall)]
        unsafe public static extern void LicenseValue(sbyte[] key);
#elif WIN64
        [DllImport("iANPRinterface vc12 x64.dll", CallingConvention =
CallingConvention.StdCall)]
        unsafe public static extern int anprPlateMemoryXML(byte[] in_buffer, int
size_buffer, ANPR_OPTIONS Options,
            StringBuilder xml_buffer, int[] size_xml_buffer);
        [DllImport("iANPR_vc12_x64.dll", CallingConvention = CallingConvention.StdCall)]
        unsafe public static extern void LicenseValue(sbyte[] key);
#endif
```

При этом в настройках проекта необходимо разрешить небезопасный код и задать символы условной компиляции WIN32 и WIN64 для конфигураций сборки x86 и x64 соответственно.

В примере, файл читается полностью в память и передается в функцию библиотеки:

```
ANPR_OPTIONS anpr;
anpr.Detect_Mode = 14;
anpr.min_plate_size = 500;
anpr.max_plate_size = 25000;
anpr.max_text_size = 20;
anpr.type_number = 0;
anpr.flags = 1;
StringBuilder buffer_builder = new StringBuilder(10000);
```

```
int[] size_builder = new int[1];
size_builder[0] = 10000;
int result = anprPlateMemoryXML(buffer, size, anpr, buffer_builder, size_builder);
```

Чтобы узнать результат распознавания, необходимо просмотреть возвращенный XML:

```
StringBuilder output = new StringBuilder();
using (XmlReader reader = XmlReader.Create(new StringReader(buffer builder.ToString())))
{
       reader.ReadToFollowing("allnumbers");
      reader.MoveToFirstAttribute();
      string numbers = reader.Value;
      output.AppendLine("Количество найденных номеров: " + numbers);
      int all = Convert.ToInt32(numbers);
      for (int i = 0; i < all; i++)</pre>
             reader.ReadToFollowing("number");
             reader.MoveToFirstAttribute();
             string num = reader.Value;
             reader.MoveToNextAttribute();
             string num coord = reader.Value;
             output.AppendLine("Homep: " + num + " (Координаты: " + num_coord + ")");
      }
}
```

В результате в форму выведутся найденные номера и их координаты:

4.1.1. Пример iANPRcapture_motion на C# для iANPR SDK

iANPRcapture_motion_CShrp Программа предназначена ДЛЯ демонстрации возможностей iANPR SDK в вычислении траектории движения автомобильного номера и детектирования пересечения номером заранее заданных линий, T.e. демонстрации для реализации функционала детектирования выезда автомобилей с помощью iANPR SDK. Эта программа написана на языке С# и является аналогом программы iANPRcapture_motion, написанной на языке С++. Эти и другие примеры использования распространяются в составе iANPR SDK.

Текущая версия iANPRcapture_motion_CShrp используется так: iANPRcapture_motion_CShrp.exe 7 D:/video.avi Где 7 – тип распознаваемого номера (российские номера), D:/video.avi – полное имя видео файла.

4.2. Delphi

Конечно. Delphi также XML МОЖНО использовать возвращения результатов, но здесь приведен пример, как вызвать функции из демо-версии iANPR без XML с использованием Delphi 7. Для вызова функций из платной версии iANPR необходимо перед первым использованием функций распознавания загрузить LicenseValue лицензионный помощью функции ключ LicenseCapture ДЛЯ активации iANPR.dll ИЛИ iANPRcapture.dll соответственно.

Определение типов:

```
type
  ANPR_OPTIONS = Record
    min_plate_size:integer;
        max_plate_size:integer;
    Detect_Mode:integer;
    max_text_size:integer;
        type_number:integer;
    flags:integer;
  end;

type
  CvRect = Record
    x:integer;
  y:integer;
```

```
width:integer;
height:integer;
end;
type
PRect = ^CvRect;
```

Подключение функции:

```
function anprPlateMemoryRect( in_buffer: PChar; size_buffer: integer; Rect: CvRect;
Options: ANPR_OPTIONS; AllNumber: PInt; Rects: PRect; Texts: PPChar ): integer;
stdcall; external 'iANPRinterface_vc12_x86.dll'
    name 'anprPlateMemoryRect';
```

Чтение из файла и вызов функции:

```
with TFileStream.create(File_, fmOpenReadWrite) do
GetMem(p, Size);
read(p^, Size);
s := Size;
finally
free;
end;
all := 100;
anpr.min_plate_size := 500;
anpr.max_plate_size := 25000;
anpr.Detect_Mode := 6; // ANPR_DETECTMODE2 | ANPR_DETECTMODE3;
anpr.max text size := 20;
anpr.type number := 0; //
                                ANPR RUSSIAN BASE
anpr.flags := 0;
pr := @rect;
GetMem( ptext, all * sizeof(pchar));
for i := 0 to all-1 do
 GetMem( ptext[i], 20 *sizeof( char ) );
RectArea.x := 0; RectArea.y := 0;
RectArea.width := 640; RectArea.height := 480;
r := anprPlateMemoryRect( p, s, RectArea, anpr, @all, pr, @ptext[0] );
FreeMem(p);
```

5. Рекомендации к использованию

ТРЕБОВАНИЯ К АЛГОРИТМУ РАСПОЗНАВАНИЯ

Номер автомобиля должен размещаться в кадре целиком.

Угол вертикального наклона видеокамеры не более 40°.

Угол наклона вглубь – не более 30°.

Изображения должны быть четкими и не размытыми.

Размер символов для надежного распознавания должен быть не менее 14 пикселей в высоту.

Расстояние до автомобиля камеры определяется фокусным расстоянием, установленным на камере и должно удовлетворять требованиям к высоте символов и четкости изображения. Это может быть и 3 метра, и 7 метров в зависимости от используемой камеры и ее настроек.

СРАВНЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ ВЕРСИЙ

Компьютер: AMD-FX(tm)-6100 Six-cores 3.3GHz (на одном ядре), 8Гб ОЗУ, Windows 7 64 в режиме ANPR_RUSSIAN_BASE Средняя обработка изображения 640х480: 0.025c (PRO), 0.8c (FREE) Средняя обработка изображения 1920х1080: 0.26c (PRO), 9c (FREE)

РЕКОМЕНДАЦИИ К ПАРАМЕТРАМ РАСПОЗНАВАНИЯ

<u>1. Для систем автоматизации въезда на парковку по списку</u> белых номеров.

Detect Mode = ANPR DETECTCOMPLEXMODE;

flags = DEBUG_RECOGNITION_MODE;

Для того, чтобы наблюдать максимальное количество номеров, объединять результаты и потом отсеивать по списку белых номеров. Т.е. номер с одним ошибочно распознанным символом или вообще нераспознанным Вы можете на основе совпадения остальных символов с номером из белого списка (Вы сравниваете самостоятельно) отнести к правильно распознанному.

2. Для систем надежного распознавания номера при отсутствии белого списка.

Detect_Mode = ANPR_DETECTMODE2 | ANPR_DETECTMODE3; flags = 0;

Для минимального количества ложных срабатываний.

6. Как пользоваться Демо-версией iANPR SDK

Демо версия не предназначена для распознавания в реальном времени, а лишь позволяет оценить функции распознавания автомобильных номеров. Технология распознавания реализована в библиотеке iANPR_vc12_x86.dll и существенно замедлена (примерно в 32 раза) для ограничения использования. Проверить работу SDK можно по готовым примерам. Например, image.exe.

image 0 image.bmp > image.txt

После отработки в image.txt будут результаты работы алгоритма bat-файлом распознавания (TO же самое достигается run_read_image_bmp.bat). Если вы хотите распознать группу файлов в каталоге. TO ДЛЯ ЭТОГО ОНЖОМ воспользоваться bat-файлом run read in dir.bat. Например, так:

run_read_in_dir.bat c:\im

Результаты распознавания выведутся в консоль.

Для тестирования распознавания в потоке, что должно повышать достоверность распознавания за счет анализа не одного кадра, а последовательности, нужно воспользоваться примером capture. По умолчанию пример работает с подключенной к компьютеру камерой, однако здесь следует помнить, что поскольку скорость существенно замедлена, то достоверность даже понизится, а не повысится. Поэтому если вы хотите проверить реальную достоверность распознавания, то запишите сначала видео в файл, а потом вызовите пример с параметром, например так:

capture.exe 0 100media\AMBA2826.MOV

Заключение

Библиотека постоянно развивается и совершенствуется, в том числе и с точки зрения качества распознавания.

Будут добавляться распознавание номеров из других стран.

Планируются дополнительные модули с вспомогательными функциями.

При возникновения ошибок, некорректного распознавания и т.п. обращайтесь на support@intbusoft.com, указав настройки алгоритма, которые вы используете и приложив изображение, с которым возникают проблемы.