EE363 Winter 2008-09

Lecture 7 Estimation

- Gaussian random vectors
- minimum mean-square estimation (MMSE)
- MMSE with linear measurements
- relation to least-squares, pseudo-inverse

Gaussian random vectors

random vector $x \in \mathbf{R}^n$ is Gaussian if it has density

$$p_x(v) = (2\pi)^{-n/2} (\det \Sigma)^{-1/2} \exp\left(-\frac{1}{2}(v - \bar{x})^T \Sigma^{-1}(v - \bar{x})\right),$$

for some $\Sigma = \Sigma^T > 0$, $\bar{x} \in \mathbf{R}^n$

- denoted $x \sim \mathcal{N}(\bar{x}, \Sigma)$
- $\bar{x} \in \mathbb{R}^n$ is the *mean* or *expected* value of x, *i.e.*,

$$\bar{x} = \mathbf{E} x = \int v p_x(v) dv$$

 \bullet $\Sigma = \Sigma^T > 0$ is the *covariance* matrix of x, i.e.,

$$\Sigma = \mathbf{E}(x - \bar{x})(x - \bar{x})^T$$

$$= \mathbf{E} x x^{T} - \bar{x} \bar{x}^{T}$$

$$= \int (v - \bar{x})(v - \bar{x})^{T} p_{x}(v) dv$$

density for $x \sim \mathcal{N}(0, 1)$:

ullet mean and variance of scalar random variable x_i are

$$\mathbf{E} x_i = \bar{x}_i, \quad \mathbf{E}(x_i - \bar{x}_i)^2 = \Sigma_{ii}$$

hence standard deviation of x_i is $\sqrt{\Sigma_{ii}}$

- covariance between x_i and x_j is $\mathbf{E}(x_i \bar{x}_i)(x_j \bar{x}_j) = \Sigma_{ij}$
- ullet correlation coefficient between x_i and x_j is $ho_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$
- ullet mean (norm) square deviation of x from \bar{x} is

$$\mathbf{E} \|x - \bar{x}\|^2 = \mathbf{E} \operatorname{Tr}(x - \bar{x})(x - \bar{x})^T = \operatorname{Tr} \Sigma = \sum_{i=1}^n \Sigma_{ii}$$

(using $\operatorname{Tr} AB = \operatorname{Tr} BA$)

example: $x \sim \mathcal{N}(0, I)$ means x_i are independent identically distributed (IID) $\mathcal{N}(0, 1)$ random variables

Confidence ellipsoids

• $p_x(v)$ is constant for $(v-\bar{x})^T\Sigma^{-1}(v-\bar{x})=\alpha$, *i.e.*, on the surface of ellipsoid

$$\mathcal{E}_{\alpha} = \{ v \mid (v - \bar{x})^T \Sigma^{-1} (v - \bar{x}) \le \alpha \}$$

- thus \bar{x} and Σ determine shape of density
- η -confidence set for random variable z is smallest volume set S with $\mathbf{Prob}(z \in S) \geq \eta$
 - in general case confidence set has form $\{v \mid p_z(v) \geq \beta\}$
- \mathcal{E}_{α} are the η -confidence sets for Gaussian, called *confidence ellipsoids*
 - α determines confidence level η

Confidence levels

the nonnegative random variable $(x-\bar{x})^T\Sigma^{-1}(x-\bar{x})$ has a χ^2_n distribution, so $\mathbf{Prob}(x\in\mathcal{E}_\alpha)=F_{\chi^2_n}(\alpha)$ where $F_{\chi^2_n}$ is the CDF some good approximations:

- \mathcal{E}_n gives about 50% probability
- $\mathcal{E}_{n+2\sqrt{n}}$ gives about 90% probability

geometrically:

- ullet mean \bar{x} gives center of ellipsoid
- semiaxes are $\sqrt{\alpha\lambda_i}u_i$, where u_i are (orthonormal) eigenvectors of Σ with eigenvalues λ_i

Estimation

example:
$$x \sim \mathcal{N}(\bar{x}, \Sigma)$$
 with $\bar{x} = \left[\begin{array}{c} 2 \\ 1 \end{array} \right]$, $\Sigma = \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right]$

- x_1 has mean 2, std. dev. $\sqrt{2}$
- x_2 has mean 1, std. dev. 1
- correlation coefficient between x_1 and x_2 is $\rho = 1/\sqrt{2}$
- $\mathbf{E} \|x \bar{x}\|^2 = 3$

90% confidence ellipsoid corresponds to $\alpha = 4.6$:

(here, 91 out of 100 fall in $\mathcal{E}_{4.6}$)

Affine transformation

suppose $x \sim \mathcal{N}(\bar{x}, \Sigma_x)$

consider affine transformation of x:

$$z = Ax + b$$

where $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$

then z is Gaussian, with mean

$$\mathbf{E} z = \mathbf{E}(Ax + b) = A \mathbf{E} x + b = A\bar{x} + b$$

and covariance

$$\Sigma_{z} = \mathbf{E}(z - \bar{z})(z - \bar{z})^{T}$$

$$= \mathbf{E} A(x - \bar{x})(x - \bar{x})^{T} A^{T}$$

$$= A\Sigma_{x} A^{T}$$

examples:

- if $w\sim \mathcal{N}(0,I)$ then $x=\Sigma^{1/2}w+\bar{x}$ is $\mathcal{N}(\bar{x},\Sigma)$ useful for simulating vectors with given mean and covariance
- conversely, if $x \sim \mathcal{N}(\bar{x}, \Sigma)$ then $z = \Sigma^{-1/2}(x \bar{x})$ is $\mathcal{N}(0, I)$ (normalizes & decorrelates; called whitening or normalizing)

suppose $x \sim \mathcal{N}(\bar{x}, \Sigma)$ and $c \in \mathbf{R}^n$

scalar c^Tx has mean $c^T\bar{x}$ and variance $c^T\Sigma c$

thus (unit length) direction of minimum variability for x is u, where

$$\Sigma u = \lambda_{\min} u, \quad ||u|| = 1$$

standard deviation of $u_n^T x$ is $\sqrt{\lambda_{\min}}$ (similarly for maximum variability)

Degenerate Gaussian vectors

- ullet it is convenient to allow Σ to be singular (but still $\Sigma = \Sigma^T \geq 0$)
 - in this case density formula obviously does not hold
 - meaning: in some directions x is not random at all
 - random variable x is called a degenerate Gaussian
- \bullet write Σ as

$$\Sigma = \begin{bmatrix} Q_+ & Q_0 \end{bmatrix} \begin{bmatrix} \Sigma_+ & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Q_+ & Q_0 \end{bmatrix}^T$$

where $Q = [Q_+ \ Q_0]$ is orthogonal, $\Sigma_+ > 0$

- columns of Q_0 are orthonormal basis for $\mathcal{N}(\Sigma)$
- columns of Q_+ are orthonormal basis for $\operatorname{range}(\Sigma)$

• then

$$Q^T x = \begin{bmatrix} z \\ w \end{bmatrix}, \qquad x = Q_+ z + Q_0 w$$

- $z \sim \mathcal{N}(Q_+^T \bar{x}, \Sigma_+)$ is (nondegenerate) Gaussian (hence, density formula holds)
- $w = Q_0^T \bar{x} \in \mathbf{R}^n$ is not random, called deterministic component of x

Linear measurements

linear measurements with noise:

$$y = Ax + v$$

- $x \in \mathbf{R}^n$ is what we want to measure or estimate
- $y \in \mathbf{R}^m$ is measurement
- $A \in \mathbf{R}^{m \times n}$ characterizes sensors or measurements
- \bullet v is sensor noise

common assumptions:

- $x \sim \mathcal{N}(\bar{x}, \Sigma_x)$
- $v \sim \mathcal{N}(\bar{v}, \Sigma_v)$
- ullet x and v are independent

- $\mathcal{N}(\bar{x}, \Sigma_x)$ is the *prior distribution* of x (describes initial uncertainty about x)
- \bar{v} is noise *bias* or *offset* (and is usually 0)
- Σ_v is noise covariance

thus

$$\left[\begin{array}{c} x \\ v \end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c} \bar{x} \\ \bar{v} \end{array}\right], \left[\begin{array}{cc} \Sigma_x & 0 \\ 0 & \Sigma_v \end{array}\right]\right)$$

using

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{cc} I & 0 \\ A & I \end{array}\right] \left[\begin{array}{c} x \\ v \end{array}\right]$$

we can write

$$\mathbf{E} \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} \bar{x} \\ A\bar{x} + \bar{v} \end{array} \right]$$

and

$$\mathbf{E} \begin{bmatrix} x - \bar{x} \\ y - \bar{y} \end{bmatrix} \begin{bmatrix} x - \bar{x} \\ y - \bar{y} \end{bmatrix}^T = \begin{bmatrix} I & 0 \\ A & I \end{bmatrix} \begin{bmatrix} \Sigma_x & 0 \\ 0 & \Sigma_v \end{bmatrix} \begin{bmatrix} I & 0 \\ A & I \end{bmatrix}^T$$
$$= \begin{bmatrix} \Sigma_x & \Sigma_x A^T \\ A\Sigma_x & A\Sigma_x A^T + \Sigma_v \end{bmatrix}$$

covariance of measurement y is $A\Sigma_xA^T+\Sigma_v$

- \bullet $A\Sigma_xA^T$ is 'signal covariance'
- ullet Σ_v is 'noise covariance'

Estimation

Minimum mean-square estimation

suppose $x \in \mathbf{R}^n$ and $y \in \mathbf{R}^m$ are random vectors (not necessarily Gaussian) we seek to estimate x given y

thus we seek a function $\phi: \mathbf{R}^m \to \mathbf{R}^n$ such that $\hat{x} = \phi(y)$ is near x one common measure of nearness: mean-square error,

$$\mathbf{E} \|\phi(y) - x\|^2$$

minimum mean-square estimator (MMSE) $\phi_{\rm mmse}$ minimizes this quantity general solution: $\phi_{\rm mmse}(y)={\bf E}(x|y)$, i.e., the conditional expectation of x given y

MMSE for Gaussian vectors

now suppose $x \in \mathbf{R}^n$ and $y \in \mathbf{R}^m$ are jointly Gaussian:

$$\left[egin{array}{c} x \ y \end{array}
ight] \ \sim \ \mathcal{N} \left(\left[egin{array}{c} ar{x} \ ar{y} \end{array}
ight], \ \left[egin{array}{cc} \Sigma_x & \Sigma_{xy} \ \Sigma_{xy}^T & \Sigma_y \end{array}
ight] \
ight)$$

(after a lot of algebra) the conditional density is

$$p_{x|y}(v|y) = (2\pi)^{-n/2} (\det \Lambda)^{-1/2} \exp\left(-\frac{1}{2}(v-w)^T \Lambda^{-1}(v-w)\right),$$

where

$$\Lambda = \Sigma_x - \Sigma_{xy} \Sigma_y^{-1} \Sigma_{xy}^T, \quad w = \bar{x} + \Sigma_{xy} \Sigma_y^{-1} (y - \bar{y})$$

hence MMSE estimator (i.e., conditional expectation) is

$$\hat{x} = \phi_{\text{mmse}}(y) = \mathbf{E}(x|y) = \bar{x} + \Sigma_{xy} \Sigma_y^{-1} (y - \bar{y})$$

 ϕ_{mmse} is an affine function

MMSE estimation error, $\hat{x} - x$, is a Gaussian random vector

$$\hat{x} - x \sim \mathcal{N}(0, \Sigma_x - \Sigma_{xy} \Sigma_y^{-1} \Sigma_{xy}^T)$$

note that

$$\Sigma_x - \Sigma_{xy} \Sigma_y^{-1} \Sigma_{xy}^T \le \Sigma_x$$

 $\it i.e.$, covariance of estimation error is always less than prior covariance of $\it x$

Best linear unbiased estimator

estimator

$$\hat{x} = \phi_{\text{blu}}(y) = \bar{x} + \Sigma_{xy} \Sigma_y^{-1} (y - \bar{y})$$

makes sense when x, y aren't jointly Gaussian

this estimator

- is unbiased, i.e., $\mathbf{E} \, \hat{x} = \mathbf{E} \, x$
- often works well
- is widely used
- has minimum mean square error among all *affine* estimators

sometimes called best linear unbiased estimator

MMSE with linear measurements

consider specific case

$$y = Ax + v, \quad x \sim \mathcal{N}(\bar{x}, \Sigma_x), \quad v \sim \mathcal{N}(\bar{v}, \Sigma_v),$$

x, v independent

MMSE of x given y is affine function

$$\hat{x} = \bar{x} + B(y - \bar{y})$$

where
$$B = \Sigma_x A^T (A\Sigma_x A^T + \Sigma_v)^{-1}$$
, $\bar{y} = A\bar{x} + \bar{v}$

intepretation:

- \bar{x} is our best prior guess of x (before measurement)
- $y \bar{y}$ is the discrepancy between what we actually measure (y) and the expected value of what we measure (\bar{y})

- ullet estimator modifies prior guess by B times this discrepancy
- estimator blends prior information with measurement
- B gives gain from observed discrepancy to estimate
- ullet B is small if noise term Σ_v in 'denominator' is large

MMSE error with linear measurements

MMSE estimation error, $\tilde{x} = \hat{x} - x$, is Gaussian with zero mean and covariance

$$\Sigma_{\text{est}} = \Sigma_x - \Sigma_x A^T (A \Sigma_x A^T + \Sigma_v)^{-1} A \Sigma_x$$

- $\Sigma_{\rm est} \leq \Sigma_x$, i.e., measurement always decreases uncertainty about x
- difference $\Sigma_x \Sigma_{\rm est}$ (or some other comparison) gives *value* of measurement y in estimating x
 - $(\Sigma_{\rm est~}{}_{ii}/\Sigma_{x~}{}_{ii})^{1/2}$ gives fractional decrease in uncertainty of x_i due to measurement
 - $(\mathbf{Tr} \Sigma_{\mathrm{est}} / \mathbf{Tr} \Sigma)^{1/2}$ gives fractional decrease in uncertainty in x, measured by mean-square error

Estimation error covariance

- ullet error covariance Σ_{est} can be determined before measurement y is made!
- ullet to evaluate Σ_{est} , only need to know
 - -A (which characterizes sensors)
 - prior covariance of x (i.e., Σ_x)
 - noise covariance (i.e., Σ_v)
- you do not need to know the measurement y (or the means \bar{x} , \bar{v})
- useful for experiment design or sensor selection

Information matrix formulas

we can write estimator gain matrix as

$$B = \Sigma_x A^T (A\Sigma_x A^T + \Sigma_v)^{-1}$$
$$= (A^T \Sigma_v^{-1} A + \Sigma_x^{-1})^{-1} A^T \Sigma_v^{-1}$$

- $n \times n$ inverse instead of $m \times m$
- \bullet Σ_x^{-1} , Σ_v^{-1} sometimes called *information matrices*

corresponding formula for estimator error covariance:

$$\Sigma_{\text{est}} = \Sigma_x - \Sigma_x A^T (A \Sigma_x A^T + \Sigma_v)^{-1} A \Sigma_x$$
$$= (A^T \Sigma_v^{-1} A + \Sigma_x^{-1})^{-1}$$

can interpret $\Sigma_{\mathrm{est}}^{-1} = \Sigma_x^{-1} + A^T \Sigma_v^{-1} A$ as:

 $\begin{array}{l} \text{posterior information matrix } (\Sigma_{\mathrm{est}}^{-1}) \\ = \text{prior information matrix } (\Sigma_x^{-1}) \\ + \text{information added by measurement } (A^T \Sigma_v^{-1} A) \end{array}$

Estimation 7–27

proof: multiply

$$\Sigma_x A^T (A \Sigma_x A^T + \Sigma_v)^{-1} \stackrel{?}{=} (A^T \Sigma_v^{-1} A + \Sigma_x^{-1})^{-1} A^T \Sigma_v^{-1}$$

on left by $(A^T\Sigma_v^{-1}A+\Sigma_x^{-1})$ and on right by $(A\Sigma_xA^T+\Sigma_v)$ to get

$$(A^T \Sigma_v^{-1} A + \Sigma_x^{-1}) \Sigma_x A^T \stackrel{?}{=} A^T \Sigma_v^{-1} (A \Sigma_x A^T + \Sigma_v)$$

which is true

Relation to regularized least-squares

suppose $\bar{x}=0$, $\bar{v}=0$, $\Sigma_x=\alpha^2 I$, $\Sigma_v=\beta^2 I$

estimator is $\hat{x} = By$ where

$$B = (A^{T} \Sigma_{v}^{-1} A + \Sigma_{x}^{-1})^{-1} A^{T} \Sigma_{v}^{-1}$$
$$= (A^{T} A + (\beta/\alpha)^{2} I)^{-1} A^{T}$$

. . . which corresponds to regularized least-squares

MMSE estimate \hat{x} minimizes

$$||Az - y||^2 + (\beta/\alpha)^2 ||z||^2$$

over z

Example

navigation using range measurements to distant beacons

$$y = Ax + v$$

- $x \in \mathbf{R}^2$ is location
- y_i is range measurement to ith beacon
- v_i is range measurement error, IID $\mathcal{N}(0,1)$
- ith row of A is unit vector in direction of ith beacon

prior distribution:

$$x \sim \mathcal{N}(\bar{x}, \Sigma_x), \quad \bar{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \Sigma_x = \begin{bmatrix} 2^2 & 0 \\ 0 & 0.5^2 \end{bmatrix}$$

 x_1 has std. dev. 2; x_2 has std. dev. 0.5

90% confidence ellipsoid for prior distribution

$$\{ x \mid (x - \bar{x})^T \Sigma_x^{-1} (x - \bar{x}) \le 4.6 \}$$
:

Case 1: one measurement, with beacon at angle 30°

fewer measurements than variables, so combining prior information with measurement is critical

resulting estimation error covariance:

$$\Sigma_{\text{est}} = \begin{bmatrix} 1.046 & -0.107 \\ -0.107 & 0.246 \end{bmatrix}$$

90% confidence ellipsoid for estimate \hat{x} : (and 90% confidence ellipsoid for x)

interpretation: measurement

- ullet yields essentially no reduction in uncertainty in x_2
- ullet reduces uncertainty in x_1 by a factor about two

Case 2: 4 measurements, with beacon angles 80° , 85° , 90° , 95° resulting estimation error covariance:

$$\Sigma_{\text{est}} = \begin{bmatrix} 3.429 & -0.074 \\ -0.074 & 0.127 \end{bmatrix}$$

90% confidence ellipsoid for estimate \hat{x} : (and 90% confidence ellipsoid for x)

interpretation: measurement yields

- ullet little reduction in uncertainty in x_1
- ullet small reduction in uncertainty in x_2