La Mole nelle REAZIONI CHIMICHE

La massa nelle reazioni chimiche si conserva.

Per stabilire le quantità (masse) di reagenti che reagiscono tra loro, o le quantità di prodotti che si formano dobbiamo contare gli atomi dei vari tipi

2 C + 1
$$O_2 \Rightarrow$$
 2 CO

2 atomi 1 molecola 2 molecole

2 moli di atomi 1 mole di molecole 2 x 6,022*10²³ 6,022*10²³ 2*12,01 g 32,00 g 2*28,01 g

Leggiamo una equazione chimica in vari modi equivalenti.

Vanno determinati i coefficienti stechiometrici (numeri che precedono le formula delle sostanze) in modo che il nr di atomi di ciascun elemento si conservi = bilanciamento della reazione

REAZIONI CHIMICHE reagenti → prodotti

ESEMPIO: reazione del metano con ossigeno

Oltre a bilanciare, è utile indicare gli stati di aggregazione di reagenti e prodotti. Essenziale per capire cosa avviene.

Oltre alla massa si conserva anche la carica.

Vanno bilanciate con i coefficienti stechiometrici

ESEMPIO: reazione di CaO con acqua

$$CaO_{(s)} + H_2O_{(l)} \rightarrow Ca^{2+}_{(aq)} + OH_{(aq)}^{-}$$

 $CaO_{(s)} + H_2O_{(l)} \rightarrow Ca^{2+}_{(aq)} + OH_{(aq)}^{-}$

La Tavola periodica

masse atomiche relative medie (u.m.a.) - masse molari (g)

IA																	0
1 H 1.0079	IIA		Simb	olo chii	nico —	26 - Fe	- No	umero .	atomic	0		IIIA	IVA	VA	VIA	VIIA	2 He 4.0026
3	4	ni				55.85	M		T1000000000000000000000000000000000000	relativa	3	5	6	7	8	9	10
Li	Be							,	uma)			В	C	N	O	F	Ne
6.941	9.012											10.811	12.011	14,007	16.00	19.00	20.179
11	12	m										13	14	15	16	17	18
Na 22.99	Mg 24.30	IIIB	IVB	VB	VIB	VIIB		VIIIB	-	IB	IIB	AI 26.98	Si 28.09	P 30.974	S 32.06	CI 35.453	Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
100000000000000000000000000000000000000	1.71 0.0000								3337	-				-		1000000	83.80 54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.91	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.2	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	†Ac	Rf (261)	Db	Sg	Bh (262)	Hs	Mt (266)	§	§	§						
	1 H 1.0079 3 Li 6.941 11 Na 22.99 19 K 39.10 37 Rb 85.47 55 Cs 132.91 87	1 H IIA 1.0079 3 4 Li Be 6.941 9.012 11 12 Na Mg 22.99 24.30 19 20 K Ca 39.10 40.08 37 38 Rb Sr 85.47 87.62 55 56 Cs Ba 132.91 137.33 87 88 Fr Ra	1 H IIA 1.0079 3 4 Li Be 6.941 9.012 11 12 Na Mg 22.99 24.30 IIIB 19 20 21 K Ca Sc 39.10 40.08 44.96 37 38 39 Rb Sr Y 85.47 87.62 88.91 55 56 57 Cs Ba *La 132.91 137.33 138.91 87 88 89 Fr Ra †Ac	1 H IIA Simbol 3 4 Li Be 6.941 9.012 11 12 Na Mg 22.99 24.30 IIIB IVB 19 20 21 22 K Ca Sc Ti 39.10 40.08 44.96 47.90 37 38 39 40 Rb Sr Y Zr 85.47 87.62 88.91 91.22 55 56 57 72 Cs Ba *La Hf 132.91 137.33 138.91 178.49 87 88 89 104 Fr Ra †Ac Rf	1 H IIA Simbolo chir 3 4 Li Be 6.941 9.012 11 12 Na Mg 22.99 24.30 IIIB IVB VB 19 20 21 22 23 K Ca Sc Ti V 39.10 40.08 44.96 47.90 50.94 37 38 39 40 41 Rb Sr Y Zr Nb 85.47 87.62 88.91 91.22 92.91 55 56 57 72 73 Cs Ba *La Hf Ta 132.91 137.33 138.91 178.49 180.95 87 88 89 104 105 Fr Ra †Ac Rf Db	IIA H IIA 1.0079 3 4 Li Be 6.941 9.012 11 12 Na Mg 22.99 24.30 IIIB IVB VB VIB 19 20 21 22 23 24 K Ca Sc Ti V Cr 39.10 40.08 44.96 47.90 50.94 52.00 37 38 39 40 41 42 Rb Sr Y Zr Nb Mo 85.47 87.62 88.91 91.22 92.91 95.94 55 56 57 72 73 74 Cs Ba *La Hf Ta W 132.91 137.33 138.91 178.49 180.95 183.85 87 88 89 104 105 106 Fr Ra †Ac Rf Db Sg	H	1 H 1.0079 IIA Simbolo chimico Fe 55.85	H	H	H	H	H	IIIA	H	H	H

*Lanthanide Series

†Actinide Series

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.4	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Struttura della tavola periodica

Legame Chimico

Si forma stabilmente se l'aggregato risultante (a T ~ ambiente) ha energia minore degli atomi separati:

$$-\Delta E = E_1 - E_2 \ge 100 \text{ k J mol}^{-1}$$

$$E_1 \longrightarrow A$$

$$A \longrightarrow B$$

 $E_{legame} = -\Delta E = \text{energia di legame AB}$

Notare: $96.5 \text{ kJ mol}^{-1}(\text{legami}) = 1 \text{ eV} / (\text{legame})$

Tre tipi di legami chimici "forti"

 $E_{legame} \ge 100 \text{ k J mol}^{-1}$

Legame ionico

Attrazione *elettrostatica* fra ioni di carica opposta

E tipico dei composti ionici (o sali)

Analisi strutturale ai raggi X di NaCl (densità elettronica)

10 elettroni

18 elettroni

i metalli tendono a perdere e-:

cationi (carica +)

i non-metalli tendono ad acquistare e:

⇒ anioni (carica -

18/VIII

Dalla radice dell'elemento con desinenza -uro. Esempio

FeCl₃ cloruro di ferro (III)

eccezione: O2-: ossido

Sali: costituiti da anioni e cationi. Si nomina prima l'anione, poi il catione. Non viene nominata la carica degli ioni, se è univoca.

Legame covalente

condivisione di coppie di elettroni esterni tipicamente tra coppie di atomi di non-metalli

Legame metallico: ogni atomo condivide suoi elettroni superficiali con gli atomi primi vicini

18/VIII

Esempio classe di composti molecolari covalenti: gli alcani (idrocarburi saturi)

Nome	Formula: C_nH_{2n+2}	P.f. °C	P.eb. °C
Metano	CH ₄	—183	—162
Etano	CH ₃ CH ₃	—172	-88,5
Propano	CH ₃ CH ₂ CH ₃	—187	— 42
n-Butano	$CH_3(CH_2)_2CH_3$	—138	0
n-Pentano	$CH_3(CH_2)_3CH_3$	—130	36
n-Esano	$CH_3(CH_2)_4CH_3$	— 95	69
n-Eptano	$CH_3(CH_2)_5CH_3$	-90,5	98
n-Ottano	$CH_3(CH_2)_6CH_3$	— 57	126
Isobutano	(CH ₃) ₂ CHCH ₃	—159	— 12
Isopentano	(CH ₃) ₂ CHCH ₂ CH ₃	—160	28
Neopentano	$(CH_3)_4C$	— 17	9,5
Isoesano	(CH3)2CH(CH2)2CH3	—154	60
3-Metilpentano	CH ₃ CH ₂ CH(CH ₃)CH ₂ CH ₃	—118	63
2,2-Dimetilbutano	(CH3)3CCH2CH3	— 98	50

Alcani (qualche notizia)

sono componenti del petrolio

Frazione	Temperatura di distillazione, °C	Numero di atomi di carbonio
Gas	Minore di 20°	C_1 — C_4
Etere di petrolio	20-60°	C_5 — C_6
Ligroina	60-100°	C_6 — C_7
Benzina naturale	40-205°	C ₅ —C ₁₀ e cicloalcani
Cherosene	175-325°	C_{12} — C_{18} e aromatici
Gasolio	Superiore a 275°	C_{12} e superiori
Olio lubrificante	Liquidi non volatili	Probabilmente lunghe catene legate a struttura ciclica
Asfalto o coke di petrolio	Solidi non volatili	Strutture policicliche

Gli alcani lineari, ramificati e ciclici si ottengono principalmente dal cracking del petrolio (= reazione ad alta temperatura \rightarrow frammentazione)

Nel cracking si formano (per ragioni di probabilità, o meglio entropiche) prevalentemente specie a peso molecolare basso.

ioni poliatomici:

12 Carbonate ion, CO₃2-

13 Phosphate ion, PO₄³⁻

cationi

ione ammonio

ione idronio

Acidi e basi

Classi importanti di sostanze: moltissime reazioni chimiche possono essere comprese come reazioni acido-base

Comportamento studiato in soluzione acquosa: concentrazione espressa come: molarità $\equiv M \equiv moli sostanza/litro di soluzione [X] = 1 M = 1 mole di X in 1 L soluzione$

- · Acidi: sapore aspro. Attaccano molti metalli
- · Basi: sapore amaro

Acidi e basi sono molto reattivi e corrosivi. Possono essere pericolosi.

Acidi e basi: proprietà

- sostanze elettrolitiche: disciolte in acqua si dissociano in ioni (Arrhenius 1886):
- soluzioni in H₂O di acidi o basi (o sali) conducono elettricità

Acidi: in H₂O danno ioni H⁺ (aq) o meglio H₃O⁺ (aq):

$$HCl_{(g)} \xrightarrow{H_2O} H^+_{(aq)} + Cl^-_{(aq)}$$

H⁺ = protone - in fasi condensate "non esiste" "libero" ma solo solvatato o "legato"!

Basi: in
$$H_2O$$
 danno ioni OH^- :

Na $OH \xrightarrow{H_2O} Na^+_{(aq)} + OH^-_{(aq)}$

Acidi forti: proprietà

- · Sostanze molecolari molto corrosive
- · Elettroliti forti: si deprotonano (dissociano) completamente in H₂O.

Esempio HCl
$$T_{fus} = -112 \, ^{\circ}C$$
 $T_{eb} = -84 \, ^{\circ}C$

Reazione spostata completamente verso i prodotti

Acidi forti:altri esempi

Ac. Bromidrico HBr +
$$H_2O \rightarrow H_3O^+$$
 (aq)+Br⁻(aq)

Ac. Iodidrico HI +
$$H_2O \rightarrow H_3O^+(aq)+I^-(aq)$$

Ac. Nitrico
$$HNO_3 + H_2O \rightarrow H_3O^+(aq)+NO_3^-(aq)$$

Ac. Solforico
$$H_2SO_4 + H_2O \rightarrow H_3O^+(aq) + HSO_4^-(aq)$$

$$HSO_4^-(aq) + H_2O \rightarrow H_3O^+(aq) + SO_4^{2-}(aq)$$

Reazioni di deprotonazione completamente spostate a destra per gli acidi forti!

Basi forti: proprietà

- Sostanze ioniche: idrossidi e ossidi del 1°e 2° gruppo della tavola periodica; molto corrosive
- Elettroliti forti: la parte che si scioglie, è completamente dissociata in H₂O

Idrossido di sodio NaOH_(s)
$$\xrightarrow{H_2O}$$
 Na⁺ $_{(aq)}$ +OH⁻ $_{(aq)}$
Ossido di sodio Na₂O_(s) + H₂O_(l) \rightarrow 2Na⁺ $_{(aq)}$ +2OH⁻ $_{(aq)}$
Idrossido di calcio $Ca(OH)_{2(s)} \xrightarrow{H_2O} Ca^{2+}_{(aq)}$ +2OH⁻ $_{(aq)}$
Ossido di calcio $CaO_{(s)}$ + H₂O_(l) \rightarrow $Ca^{2+}_{(aq)}$ +2OH⁻ $_{(aq)}$
Ossidi: dissociazione completa (come tutti i sali)
O²-non è stabile in H₂O: O²⁻ $_{(aq)}$ +H₂O \rightarrow 2OH⁻ $_{(aq)}$

Acidi e basi deboli

Sostanze per cui la reazione di dissociazione in H_2O non è completa: sono detti elet<u>trolit</u>i deboli.

Esempi di acidi deboli:

Ac. acetico

OH

 $CH_3COOH + H_2O \Rightarrow H_3O^+(aq) + CH_3COO^-(aq)$

Ac. fluoridrico

HB⁺

 $HF + H_2O \leftrightarrows H_3O^+(aq)+F^-(aq)$

Esempio basi deboli: ammoniaca $NH_3 + H_2O \leftrightarrows NH_4^+ (aq) + OH^- (aq)$

H₃O⁺

HA

Reazioni tra acidi e basi:

neutralizzazione, spesso violenta, trasferimento protone ≈ sempre completa.

Acido (forte) + base (forte)
$$\rightarrow$$
 H₂O + (sale)

Esempio:
$$HBr_{(aq)} + NaOH_{(aq)} \rightarrow Na^{+}_{(aq)} + H_{2}O + Br^{-}_{(aq)}$$
 $HBr_{(aq)} + H_{2}O \rightarrow H_{3}O^{+}_{(aq)} + Br^{-}_{(aq)}$
 $NaOH_{(aq)} \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$
 $H_{3}O^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow 2H_{2}O$

La neutralizzazione è fondamentalmente formazione di H₂O

Na⁺ e Br⁻ (nell'esempio) sono presenti in forma solvatata all'inizio ed alla fine della reazione: il loro contributo è inessenziale (ioni spettatori).

Anche i sali sciolti in H₂O sono completamente dissociati

Reazioni di neutralizzazione

trasferimento protone, ≈ sempre complete.

Esempio: Acido (debole) + base (forte)

$$HCN + H_2O \rightarrow H_3O^+_{(aq)} + CN^-_{(aq)}$$

NaOH + HCN
$$\rightarrow$$
 Na $^{+}$ _(aq)+H₂O+CN $^{-}$ _(aq)

Na⁺ (aq) ione spettatore

chiave: formazione di H₂O

Il sale NaCN è solubile in acqua come Na $^+$ $_{(aq)}$ e CN $^ _{(aq)}$

Se si fa evaporare H₂O a certo punto la soluzione diventa satura e precipita NaCN solido

Anche: acido (forte) + base (debole) e acido (debole) + base (debole)

Reazioni di ossido-riduzione

Originariamente: ossidazione = reazioni con O_2

$$2Mg_{(s)} + O_{2(g)} \rightarrow 2MgO_{(s)}$$

 $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(l)}$
 $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$

Alcune reazioni chimiche sono usate per immagazzinare energia e rilasciarla (eg. fotosintesi, combustione, pile accumulatori). Molte di queste reazioni di interesse energetico (biologiche e tecnologiche) sono reazioni di ossido-riduzione.

Generalizzando: reazioni red-ox = reazioni con trasferimento di elettroni = reaz. in cui cambiano i nr di ossidazione (nr di ox)

$$2Mg_{(s)} + O_{2(g)} \rightarrow 2(Mg^{2+} O^{2-})_{(s)}$$

nr di ox= carica che atomo avrebbe se legame fosse ionico

Reazioni di ossido-riduzione =

- Reazioni con trasferimento di elettroni
- Reazioni in cui cambiano i nr di ossidazione

Semireazione di riduzione:

$$Cu^{+2}$$
 + $2e^ \rightarrow$ Cu

Semireazione di ossidazione

$$Zn \rightarrow Zn^{+2} + 2e^{-}$$

solfato di rame (II)

Riduzione: diminuisce nr di ossidazione e specie acquista elettroni

Ossidazione: aumenta nr di ossidazione e specie perde elettroni

Reazione red-ox: somma

Soluzione di una riduzione e di

Cuso₄ un'ossidazione

Reazioni di ossido-riduzione

vanno su atomi più propensi ad accettarli.

```
numero di ossidazione
   Attribuzione del
Elementare (e.g. F<sub>2</sub>, Cl<sub>2</sub>, C, Na, He..) 0
                                       = a carica
Ione monoatomico
Ioni metalli 1° gruppo
                                        +1
Ioni metalli 2° gruppo
                                        +2
                                +1, -1 (con metalli)
Idrogeno
                               -1 ( o dispari positivo se
Alogeni
                           legati ad O o F); F: -1 sempre
                                -2, -1 in perossidi, +2 se
Ossigeno
                                              legato a 2 F
in specie poliatomica (molecola o ione):
somma nr di ox degli atomi in specie = carica della specie
In generale: nr di ox. di un atomo in molecola = carica
che avrebbe se legami fossero ionici con e- dei legami che
```

Esempi reazioni di ossido-riduzione

$$Cu^{2+}_{(aq)} + H_{2 (g)} + 2H_{2}O_{(I)} \rightarrow Cu_{(s)} + 2H_{3}O^{+}_{(aq)}$$

$$3H_{2(g)} + N_{2(g)} \leftrightarrows 2NH_{3(g)}$$

$$H_{2}O_{(g)} + CO_{(g)} \leftrightarrows H_{2(g)} + CO_{2 (g)}$$

$$2SO_{3(g)} \leftrightarrows 2SO_{2(g)} + O_{2(g)}$$

$$H_{2}O_{2(aq)} + Fe_{(s)} \leftrightarrows Fe(OH)_{2(aq)}$$

$$CH_{4(g)} + 2O_{2(g)} \leftrightarrows CO_{2(g)} + 2H_{2}O_{(g)}$$

Reazioni acido-base in genere non sono di ossido-riduzione: non cambiano nr di ox

$$HCl_{(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + Cl^-_{(aq)}$$

 $Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2Na^+_{(aq)} + 2OH^-_{(aq)}$

Reazioni di ossidi con acqua:

sono in genere sono facili!

Ossidi di metalli: formazione di idrossidi basici

$$Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2Na^+_{(aq)} + 2OH^-_{(aq)}$$
 $CaO_{(s)} + H_2O_{(l)} \rightarrow Ca^{2+}_{(aq)} + 2OH^-_{(aq)}$

Ossidi di non metalli: formazione di ossiacidi

$$SO_{3(g)}+2H_2O_{(l)} \leftrightarrows H_2SO_{4(aq)}+H_2O_{(l)} \rightarrow H_3O^+_{(aq)}+HSO_{4^-_{(aq)}}$$
 $SO_{2(g)}+2H_2O_{(l)} \leftrightarrows H_2SO_{3(aq)}+H_2O_{(l)} \leftrightarrows H_3O^+_{(aq)}+HSO_{3^-_{(aq)}}$
 $CO_{2(g)}+2H_2O_{(l)} \leftrightarrows H_2CO_{3(aq)}+H_2O_{(l)} \leftrightarrows H_3O^+_{(aq)}+HCO_{3^-_{(aq)}}$
 $N_2O_{5(g)}+3H_2O_{(l)} \leftrightarrows 2HNO_3+2H_2O_{(l)} \rightarrow 2H_3O^+_{(aq)}+NO_{3^-_{(aq)}}$
Gli ossidi sono composti importanti: spesso sono prodotti di «combustione» e le reazioni di combustione