A Construction of C^r Conforming Finite Element Space in Any Dimension

Ting Lin

School of Mathematical Sciences, Peking University

Collaborators: Jun Hu @ PKU, Qingyu Wu @ PKU 8TH PKU WORKSHOP ON NUMERICAL METHODS FOR PDES Oct. 2022

Main Result

THE H^m PROBLEM

Find $u \in H_0^m(\Omega)$ s.t.

$$(\nabla^m u, \nabla^m v) = (f, v) \quad \forall v \in H_0^m(\Omega).$$

The (conforming) finite element method chooses a (finite-dimensional) subspace V_h of $H_0^m(\Omega)$, and find $u_h \in V_h$ s.t.

$$(\nabla^m u_h, \nabla^m v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

For piecewise smooth functions, H^m conforming $\Leftrightarrow C^{m-1}$ continuity.

In 1D, we can choose V_h as (generalized) Hermite element. It is much more challenging when consider higher dimensions.

MAIN RESULT

Hu, J., Lin, T., & Wu, Q. (2021). A Construction of C^r Conforming Finite Element Spaces in Any Dimension. arXiv preprint arXiv:2103.14924.

Theorem (Hu-L.-Wu, 2021.)

Given $u \in \mathcal{P}_k(K)$, $k \ge 2^d r + 1$. Define the DOF for a simplex (codimension s)F of K, (the space $\mathcal{B}_{F,n,k}$ will be introduced later)

$$\frac{1}{|F|} \int_{F} (D^{\theta}u) \cdot v \quad \forall |\theta| = n \le r2^{s}, \quad \forall v \in \mathcal{B}_{F,n,k}.$$

Then this set of degrees of freedom is unisolvent for the shape function space $\mathcal{P}_k(K)$, and the resulting finite element space is C^r .

	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	$\mathbb{R}^{n\geq 5}$
H^1	Lagrange P_1	Lagrange P_1	Lagrange P_1	Lagrange P_1	Lagrange P_1
H^2	Hermite P ₃	Argyris P ₅	Ženíšek P ₉	Zhang P_{17}	$HLW\ P_{2^n+1}$
H^3	gHermite P ₅	Ženíšek P_9	Zhang P_{17}	HLW P ₃₃	HLW $P_{2^{n+1}+1}$
H^4	gHermite P ₇	BZ P ₁₃	HLW P ₂₅	HLW P_{49}	HLW $P_{3 \cdot 2^n + 1}$
$H^{m\geq 5}$	gHermite P_{2m-1}	BZP_{4m-3}	$HLW\ P_{8m-7}$	HLW P_{16m-15}	HLW $P_{(m-1)2^n+1}$

DEFINITION OF $\mathcal{B}_{F,n,k}$

Define the set of multi-indices

$$\Sigma(d,k) := \{(\alpha_0, \alpha_1, \cdots, \alpha_d) \in \mathbb{N}_{\geq 0}^{d+1} : \sum_{i=0}^d \alpha_i = k\}$$

Given an array $r = r_1, \dots, r_d$, let

$$\Sigma_0^{(r)}(d,k) = \{(\alpha_0, \cdots, \alpha_d) \in \Sigma(d,k) : \alpha_{i_1} + \cdots + \alpha_{i_s} > r_s, \\ \forall i_1, \cdots, i_s, s = 1, 2, \cdots, d\}.$$

For simplex F with co-dimension s, define the bubble function space

$$\mathcal{B}_{F,\mathbf{n},k} := \operatorname{span}\{\lambda_0^{\alpha_0} \cdots \lambda_{d-s}^{\alpha_{d-s}}, \alpha \in \Sigma_0^{(r_s-\mathbf{n},\cdots,r_d-\mathbf{n})} (d-s,k-\mathbf{n})\}.$$

Note here r_s indicates the C^{r_s} continuity on codimension s simplices.

For example, in two dimensions, let $r_1=1,\,r_2=2$, then $\mathcal{B}_{f,0,k}=(\lambda_0\lambda_1\lambda_2)^2P_{k-6}$. This is the interior DOF of the Argyris element. But in general, it is **NOT** a complete bubble form.

Tool: Intrinsic Decomposition

AN INTRINSIC DECOMPOSITION OF MULTI-INDICES

Define the continuity vector $\mathbf{r} = (r_1, \dots, r_d)$ and degree k such that

Assumption: $r_d \geq 2r_{d-1} \geq \cdots \geq 2^{d-1}r_1$ and $k \geq 2r_d + 1$.

$$\Sigma_d^{(r)}(d,k) := \{(\alpha_0,\cdots,\alpha_d) \in \Sigma(d,k): \text{ There exists a subset } N_d \subseteq [d],$$
 such that $\operatorname{Card}(N_d) = d \text{ and } \sum_{i \in N_d} \alpha_i \leq r_d\},$

and then,

$$\Sigma_s^{(r)}(d,k) := \{(\alpha_0,\cdots,\alpha_d) \in \Sigma(d,k): \text{ There exists a subset } N_s \subseteq [d],$$
 such that $\operatorname{Card}(N_s) = s$ and $\sum_{i \in N_s} \alpha_i \leq r_s\} \setminus \bigcup_{s' \geq s+1} \Sigma_{s'}^{(r)}(d,k),$

for $s = d - 1, \dots, 1$ sequentially. Finally, we find that

$$\Sigma_0^{(\mathbf{r})}(d,k) := \Sigma(d,k) \setminus \bigcup_{s'=1}^d \Sigma_{s'}^{(\mathbf{r})}(d,k),$$

which is coincident with the definition of $\Sigma_0^{(r)}(d,k)$.

REFINED INTRINSIC DECOMPOSITION

Figure 1: The decomposition of $\Sigma(2,13)$ with the continuity vector $\mathbf{r}=(1,5)$ and polynomial degree k=13.

This correspondence leads to the following definition. By assumption, the all the following definition are well-defined.

Let $N(\alpha)$ be the N_s in the aforementioned definition, and $n(\alpha) := \sum_{i \in N(\alpha)} \alpha_i$. Define the **refined intrinsic decomposition** is defined as

$$\Sigma_{N,n}(d,k) = \{ \alpha \in \Sigma(d,k) : N(\alpha) = N \text{ and } n(\alpha) = n \}.$$

BIJECTION LEMMA

Lemma (Bijection Lemma)

For general pair N, n, let $\Delta = [d] \setminus N$, then the mapping

$$\mathcal{R}_{N,\Delta}: \alpha \mapsto (\theta, \sigma), \ \theta_i = \alpha_i, i \in \mathbb{N} \ \text{and} \ \sigma_i = \alpha_i, i \in \Delta,$$

is a bijection between $\Sigma_{N,n}(d,k)$ and $\Sigma(N,n) \times \Sigma_0^{(q)}(\Delta,k-n)$ with $q:=(r_s-n,\cdots,r_d-n)$.

Given a subsimplex F, let $N = \mathbb{I}_d \setminus \langle F \rangle$, then

$$\Sigma(N,n) \iff$$
 a partial derivative D^{θ}

$$\Sigma_0^{\it q}(\Delta,k-n) \Longleftrightarrow \ \ {
m a polynomial, which forms a basis of} \ {\cal B}_{F,n,k}$$

Since $\Sigma_{N,n}$ forms a partition of $\Sigma(d,k)$, then the total number of the degrees of freedom are equal to the cardinality of $\Sigma(d,k)$.

To unify the notation, let φ_{α} be such degrees of freedom $\int_{\Lambda} D^{\theta}(\cdot) \lambda^{\sigma}$.

Proof

INDEX ORDER

Now it suffices to show when all degrees of freedom vanishes for $u \in P_k(K)$, then u = 0.

Set $\mathcal{P}_{N,n}:=$ span $\left\{\lambda_0^{\alpha_0}\cdots\lambda_d^{\alpha_d}:\ \alpha\in\Sigma_{N,n}(d,k)\right\}$. For any $u\in\mathcal{P}_k(K)$, there is a unique decomposition $u=\sum_{N,n}u_{N,n}$ with $u_{N,n}\in\mathcal{P}_{N,n}$.

We introduce the following order first.

Definition (Order of the index)

For all the pairs (N, n), introduce the following order: Say $(N', n') \leq (N, n)$ if

$$N' \supseteq N$$
 or $N' = N$ and $n' \le n$.

Say
$$(N', n') \prec (N, n)$$
 if $(N', n') \leq (N, n)$ and $(N', n') \neq (N, n)$.

We can show that if $(N', n') \not \leq (N, n)$, then for all $\beta \in \Sigma_{N', n'}$, $\sum_{i \in N} \beta_i > n$.

INDUCTION LEMMA

Lemma (Induction Lemma)

If the condition $(N',n') \leq (N,n)$ **DOES NOT** hold, then $\varphi_{\alpha}(u_{N',n'}) = 0$ for all $\alpha \in \Sigma_{N,n}$.

Proof.

WLOG, we assume that $N=\{0,1,\cdots,s-1\}$. For $\beta\in\Sigma_{N',n'}$, it suffices to show that $\varphi_{\alpha}(\lambda^{\beta})=0$. Since $\sum_{i=0}^{s-1}\beta_{i}>n$ and $\sum_{i=0}^{s-1}\alpha_{i}=n$, it follows from $\lambda_{< s}$ vanishes on $\Delta=\langle[d]\setminus N\rangle$ that

$$\partial_{\mathbf{n}_0}^{\alpha_0} \cdots \partial_{\mathbf{n}_{s-1}}^{\alpha_{s-1}} (\lambda_0^{\beta_0} \cdots \lambda_{s-1}^{\beta_{s-1}} \cdots) = 0$$

on Δ .

PROOF

Proof of the Unisolvency

The unisolvency comes from the above two lemmas.

Induction Lemma: $(N',n') \not\preceq (N,n) \Longrightarrow \varphi_{\alpha}(u_{N',n'}) = 0$ for some $\alpha \in \Sigma_{N,n}$.

Partial Unisolvency: $\varphi_{\alpha}(u_{N,n}) = 0$ for all $\alpha \in \Sigma_{N,n}$, then $u_{N,n} = 0$.

- First, consider an element (N,n) which is smallest under the partial order \leq , then by Induction Lemma,
 - $0=arphi_{lpha}(u_{N,n})+arphi_{lpha}(\sum_{N',n'
 eq N,n}u_{N',n'})=arphi_{lpha}(u_{N,n})$ for all $lpha\in\Sigma_{N,n}$. Then by partial unisolvency, $u_{N,n}=0$.
- Then, suppose that for all $u_{N'',n''}$ such that $(N'',n'') \prec (N,n)$ are zero. By induction lemma, for $\alpha \in \Sigma_{N,n}$, $0 = \varphi_{\alpha}(u_{N,n}) + \varphi_{\alpha}(\sum_{N',n' \not \succeq N,n} u_{N',n'}) = \varphi_{\alpha}(u_{N,n})$. Again by partial unisolvency, $u_{N,n} = 0$.
- Then induction lemma yields that u = 0.

Lemma (Unisolvency for $\mathcal{P}_{N,n}$)

If
$$\varphi_{\alpha}(u_{N,n}) = 0$$
 for all $\alpha \in \Sigma_{N,n}(d,k)$, then $u_{N,n} = 0$.

Proof.

WLOG, we assume that $N = \{0, 1, 2, \dots, s-1\}$.

Recall that

$$u \in \mathcal{P}_{N,n} = \sum_{\theta,\sigma} c_{\sigma,\theta} (\lambda_0^{\theta_0} \cdots \lambda_{s-1}^{\theta_{s-1}}) (\lambda_s^{\sigma_0} \cdots \lambda_d^{\sigma_{d-s}}) \to \sum_{\theta,\sigma} c_{\theta,\sigma} \boldsymbol{\lambda}_{\leq s}^{\sigma} \boldsymbol{\lambda}_{\geq s}^{\sigma}.$$

Here $\theta \in \Sigma(N, n), \sigma \in \Sigma_0^q(\Delta, k - n)$.

- Since $\lambda_{\leq s}$ vanishes on Δ , we have $D^{\theta'} \lambda_{\leq s}^{\theta} \lambda_{\geq s}^{\sigma} = [D^{\theta'} \lambda_{\leq s}^{\theta}] \lambda_{>s}^{\sigma}$ on Δ , for $\theta' \in \Sigma(N, n)$.
- Find a linear combination of $\widetilde{D}^{\theta'}$ of $D^{\theta'}$, such that $\widetilde{D}^{\theta'} \lambda_{\leq s}^{\theta} = \delta_{\theta,\theta'}$.
- Find a polynomial $\widetilde{p}^{\sigma'} \in \lambda \Sigma_0^q$ such that $(\lambda_{>s}^{\sigma}, \widetilde{p}^{\sigma'})_{\Delta} = \delta_{\sigma, \sigma'}$.
- By bijection lemma, $\int_{\Delta} \widetilde{D}^{\theta'} u \widetilde{p}^{\sigma'}$ is a linear combination of φ_{α} .
- Finally, $c_{\theta,\sigma} = \int_{\Delta} \widetilde{D}^{\theta} u \widetilde{p} = 0$, by assumption, therefore, u = 0.

DISCUSSIONS

Some are known to us:

- A geometric view, by [Chen & Huang, 2021];
- Explicit Basis Functions in 3D and 4D, by [Zhang, 2022];

Much more are unknown to us:

- · Is the assumption necessary to construct some finite elements?
- Lower the continuity assumption in some macro-element, e.g. Alfeld split or Powell–Sabin split.
- · Nonconforming finite elements.

Thank you for listening!