Forest Cover Prediction Type

By
Abhishek Agarwal
Beau Kramer
Pavan Kurapati

Overview

The study area includes four wilderness areas located in the Roosevelt National Forest of northern Colorado. These areas represent forests with minimal human-caused disturbances, so that existing forest cover types are more a result of ecological processes rather than forest management practices.

Understanding the problem

Labels

Seven Cover Types

- 1. Spruce Fir
- 2. Lodgepole Pine
- 3. Ponderosa Pine
- 4. Cottonwood/Willow
- 5. Aspen
- 6. Douglas-Fir
- 7. Krummholz

Features

54 Features

- Elevation
- Aspect
- Slope
- Horizontal and Vertical Distance to hydrology
- Horizontal distance to roadways
- Hillshade 9AM, Noon and 3PM
- Horizontal Distance to Fire Points
- 4 Wilderness Areas
- 40 Soil Types

Dataset

Training Set - 15,120

Test Set - 565,892

Attribute Types

- Numerical 10
- Categorical 44
 - 4 WildernessTypes
 - 40 Soil Types

Project objective:

Predict Tree type for a given 30 x 30 meter cell

Exploratory Data Analysis

Soil Counts

Soil Types 8 and 25 lack enough variance

Wilderness Areas by Soil Type

Certain Soil Types much more prevalent in specific wilderness areas

Wilderness Areas by Tree Cover

- Tree Cover type per
 Wilderness Area differs
 significantly
- Eg. Cover Type 4 is found almost exclusively in Wilderness Area 4

Hillshade at 9AM and 3PM

- Inverse correlation between the two variables
- Can reduce collinearity by removing one of the variables
- Minimal loss of information

Correlations

Highly Correlated

- → Vertical and Horizontal distance to nearest water features
 - ◆ Distance normalized
- → Hillshade Index at 9AM and 3PM
 - ◆ Removed Hillshade at 3PM

Lesson 1:

Don't underestimate data visualization

Pre-processing

Feature Engineering

Distance to Hydrology

 $=\sqrt{Horizontal\ distance\ to\ Hyrdology^2+Vertical\ distance\ to\ Hydrology^2}$

- Distance to Hydrology variable created to coalesce the Horizontal and Vertical distance since those two variables were highly correlated
- Soil types 7, 15, 8 and 25 removed
- Hillshade at 3PM removed

$$X' = \frac{X - \mu}{\sigma}$$

Non categorical variables
Normalized

Modeling

Baseline - Predict tree type based on the most common tree per soil type

Baseline accuracy = 34.94%

Classifiers

Classifier	Best Parameters	Dev Set Accuracy	Test Set Accuracy
KNN	Neighbors = 1, Weights = uniform	82.01%	68.80%
Decision Trees	Criterion = gini, max depth = 17, min_sample_split =2	78.17%	65.65%
SVM	C=100, kernel =rbf	78.44%	37.05%
Logistic Regression	C=10, Penalty = l2	66.47%	3.24%

Classifiers

Classifier	Best Parameters	Dev Set Accuracy	Test Set Accuracy
Extra Trees	Criterion = entropy, min_sample_split =3, n_estimators = 250	87.43%	77.02%
Decision Trees + Adaboost	n_estimators=250	86.17%	76.35%
Random Forest	Criterion = gini, n_estimators=500	85.58%	75.16%
XGboost	n_estimators=808,learning_rate=0.23, max_depth=10 etc.	86.11%	74.46%

Lesson 2:

Read the documentation

Lesson 3:

Think of machine learning as a process

And our winning model : StackingClassifier

Base Models

- Extra Trees
- SVM

Stacking Method

- StackingClassifier with best SVM and best ET
- Best LR as meta classifier

Dev set accuracy- 0.878

Test set accuracy- 77.349%

Lesson 4:

Try radically different techniques

Lessons Learned

- 1. Don't underestimate data visualization
- 2. Read the documentation
- 3. Think of machine learning as a process
- 4. Try radically different techniques
- 5. Finally prepare for long wait times

