

DISTRIBUTION UNLIMITED.

0

WHIPPANY RIVER BASIN

MALAPARDIS BROOK, MORRIS COUNTY

LEVELT NEW JERSEY

N.J. NO NAME NO. 56

DAM NJ00804

DTIC ELECTE AUG 1 2 1981

PHASE 1 INSPECTION REPORT

DEPARTMENT OF THE ARMY

Philadelphia District Corps of Engineers Philadelphia, Pennsylvania

81 8 10 005

MAY 1981

REPT. NO: DAEN | NAP- 53842 | NJ 00 804- 81/05

はないはい

4

(1)

000

IV

R

National Dam Safety Program. No Name Number 56 Dam (NJ00804), Whippany River Basin, Malapardis Brook, Morris County, New Jersey. Phase I

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE Inspection Report. 2. GOVT ACCESSION NO. 3. "ECIPIENT'S CATALOG NUMBER 1. REPORT NUMBER DAEN/NAP-33842/NJ00804-81/05 4. TITLE (and Subtitle) TYPE OF REPORT & PERIOD COVERED Phase I Inspection Report National Dam Safety Program FINAL 6. PERFURMING ORG. REPORT NUMBER N.J. No Name Dam No. 56 Morris County, NJ MOTILE AUTHOR(A CONTRACT OR GRANT NUMBER(+) DACW61-79-C-0011 McDermott, Richard J., P.E. Grib-in, John E., PE / 10. PROGRAM ELEMENT, PROJECT, AREA & WORK-UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS Storch Engineers 220 Ridgedale Ave. Florham Park, NJ 07932 NJ Department of Environmental Protection Division of Water Resources 12. REPORT DATE May 1981 13. NUMBER OF PAGES P.O. Box CNO29 Trenton, NJ 08625 50 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) U.S. Army Engineer District, Philadelphia Custom House, 2d & Chestnut Streets Unclassified Philadelphia, PA 19106 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Dams

Malapardis Brook, NJ National Dam Safety Program

Embankments

Spillways

Whippany River Basin, NJ

Visual Inspection

Erosion

Morris County, N.J.

Structural Analysis

Embankment

N.J. No Name Dam No. 56, N.J.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)		
		7
		1
		1
		İ
		I
		l
	»:	
		1

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

DEPARTMENT OF THE ARMY PHILADELPHIA DISTRICT CORPS OF ENGINEERS

CUSTOM HOUSE-2D & CHESTNUT STREETS PHILADELPHIA, PENNSYLVANIA 19106

NAPEN-N

Hodorable Brendan i. Byrne Governor of New Jersey Trenton, New Jersey 08621

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for N.J. No Name wam No. 56 in Morris County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, N.J. No Name No. 56 Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to 7 percent of the Spillway Design Flood (SDF) would cause the dam to be overtopped. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

- a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated. 11 d (:
- b. Within six months from the date of approval of this report the following remedial actions should be initiated:
- (1) Erosion of the channel immediately downstroam of the dam should be repaired, and the channel properly stabilized,
- (2) All trees and adverse vegetation on the embankment should be removed, and the embankment suitably graded and protected against prosion.
- The concrete wall along the unstream side of the embankment should be repaired, etc. +

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

NAPEN-N

Honorable Brendan T. Byrne

- c. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam, within one year from the date of approval of this report.
- d. An emergency action plan and warning system should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congresswoman Fenwick of the Fifth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,

l Incl As stated ROGÉR L. BALDWIN

Lieutenant Colonel, Corps of Engineers Commander and District Engineer

Copies furnished:

Mr. Dirk C. Hofman, P.E., Deputy Director Division of Water Resources N.J. Dept. of Environmental Protection P.O. Box CN029 Trenton, NJ 08625

Mr. John O'Dowd, Acting Chief Bureau of Flood Plain Regulation Division of Water Resources N.J. Dept. of Environmental Protection P.O. Box CN029 Trenton, NJ 08625

N.J. NO NAME NO. 56 DAM (NJU0804)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL COLDITIONS

This dam was inspected on 17 December 1980 by Storca Engineers, under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

- N.J. No Name No. 56 Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to 7 percent of the Spillway Design Flood (SDF) would cause the dam to be overtopped. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:
- a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated.
- b. Within six months from the date of approval of this report the following remedial actions should be initiated:
- (1) Erosion of the channel immediately downstream of the dam should be repaired, and the channel properly stabilized.
- (2) All trees and adverse vegetation on the embankment should be removed, and the embankment suitably graded and protected against erosion.
- (3) The concrete wall along the upstream side of the embankment should be repaired.
- c. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam, within one year from the date of approval of this report.
- d. An emergency action plan and warning system should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

APPROVED:

ROGER L. JALDWIN

29 July 8

Lieutenant Colonel, Corps of Engineers

Commander and District Engineer

DATE:

PHASE I REPORT NATIONAL DAM SAFETY PROGRAM

Name of Dam:

N.J. No Name No. 56, Dam, NJ00804

State Located:

New Jersey

County Located:

Morris

Drainage Basin:

Whippany River

Stream:

Malapardis Brook

Date of Inspection:

December 17, 1980

Assessment of General Conditions of Dam

Based on visual inspection, past operational performance and Phase I engineering analyses, the dam is assessed as being in fair overall condition.

Based on investigations of the downstream flood plain made in connection with this report, it is recommended that the hazard potential classification be downgraded from high to significant hazard.

Hydraulic and hydrologic analyses indicate that the spillway is inadequate. Discharge from the spillway is not sufficient to pass the designated spillway design flood (SDF) without an overtopping of the dam. (The SDF for N.J. No Name No. 56 Dam is equivalent to the 100-year storm.) The spillway is capable of passing approximately 6 percent of the SDF. Therefore, the owner should engage a professional engineer experienced in the design and construction of dams in the near future to perform more accurate hydraulic and hydrologic analyses. Based on the findings of the analyses, the need for and type of remedial measures should be determined and then implemented.

i

Availability Codes

Distribution,

The owner should, in the near future, develop an emergency action plan together with an effective warning system outlining actions to be taken by the operator to minimize the downstream effects of an emergency at the dam.

In addition, it is recommended that the following remedial measures be undertaken by the owner in the near future.

- 1) Erosion of the channel immediately downstream of the dam should be repaired, and the channel properly stabilized.
- 2) All trees and adverse vegetation on the embankment should be removed, and the embankment suitably graded and protected against erosion.
- 3) The concrete wall along the upstream side of embankment should be repaired.

In the future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

Richard J. McDermott. P.E.

John E. Gribbin, P.E.

OVERVIEW - NJ NO NAME NO. 56 DAM 20 JAHOARY 1951

TABLE OF CONTENTS

	<u>Page</u>
ASSESSMENT OF GENERAL CONDITION OF DAM	i
OVERVIEW PHOTO	iii
TABLE OF CONTENTS	iv
PREFACE	vi
SECTION 1 - PROJECT INFORMATION 1.1 General 1.2 Description of Project 1.3 Pertinent Data	1
SECTION 2 - ENGINEERING DATA 2.1 Design 2.2 Construction 2.3 Operation 2.4 Evaluation	7
SECTION 3 - VISUAL INSPECTION 3.1 Findings	9
SECTION 4 - OPERATIONAL PROCEDURES 4.1 Procedures 4.2 Maintenance of Dam 4.3 Maintenance of Operating Facilities 4.4 Description of Warning System	12
4.4 Description of warning system	

TABLE OF CONTENTS (cont.)

		Page
	- HYDRAULIC/HYDROLOGIC Evaluation of Features	14
	- STRUCTURAL STABILITY Evaluation of Structural Stability	16
7.1	- ASSESSMENT AND RECOMMENDATIONS Dam Assessment Recommendations	18
PLATES		
1	KEY MAP	
2	VICINITY MAP	
3	SOIL MAP	
4	GENERAL PLAN	
5	SECTIONS	
6	PHOTO LOCATION PLAN	
APPENDICE	S	
1	Check List - Visual Inspection	
	Check List - Engineering Data	
2	Photographs	
3	Engineering Data	
4	Hydraulic/Hydrologic Computations	
5	Bibliography	

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that the unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydraulic and hydrologic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydraulic and hydrologic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

N.J. NO NAME NO. 56 DAM, I.D. NJ00804

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The Division of Water Resources of the New Jersey Department of Environmental Protection (NJDEP) in cooperation with the Philadelphia District of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the State of New Jersey. Storch Engineers has been retained by the NJDEP to inspect and report on a selected group of these dams. The NJDEP is under agreement with the Philadelphia District of the Corps of Engineers.

b. Purpose of Inspection

The visual inspection of N.J. No Name No. 56 Dam was made on December 17, 1980. The purpose of the inspection was to make a general assessment of the structural integrity and operational adequacy of the dam structure and its appurtenances.

1.2 Description of Project

a. Description

N.J. No Name No. 56 Dam is an earthfill dam with a boulder lined chute spillway and an adjacent outlet conduit connected to a downstream mill building. The upstream face of the dam is formed by a concrete wall to the right of the spillway and a stone rubble wall to the left of the spillway.

The intake structure for the outlet conduit consists of a concrete inlet located at the left end of the dam. The structure is fitted with steel fish screens and contains no observable gate operating mechanism. The conduit is a 24-inch cast iron pipe.

The elevation of the spillway crest is 275.0 National Geodetic Vertical Datum (N.G.V.D.) while that of the crest of dam is 277.0. The downstream channel bed elevation is 269.8. The overall length of the dam is 123 feet and its height is 7.2 feet. the top width of the embankment is 20 feet and the slope of the downstream face is 4 horizontal to 1 vertical.

b. Location

N.J. No Name No. 56 Dam is located in the Township of Hanover, Morris County, New Jersey. It impounds an unnamed lake located west of North Jefferson Road. Principal access to the dam is by an unpaved road which is entered from North Jefferson Road. Discharge from the spillway of the dam flows into the Malapardis Brook, tributary to the Whippany River.

c. Size and Hazard Classification

The dam is classified in accordance with criteria presented in "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers. Size categories consist of Small, Intermediate and Large while hazard categories are designated as Low, Significant and High.

<u>Size Classification:</u> N.J. No Name No. 56 Dam is classified as "Small" size since its maximum storage volume is 128 acre-feet (which is less than 1000 acre-feet) and its height is 7.2 feet (which is less than 40 feet).

Hazard Classification: Visual inspection of the downstream flood plain of the dam together with breach analysis indicate that failure of the dam due to overtopping during a storm equivalent to the spillway design flood (SDF) could cause property damage to the mill building and grounds located 350 feet downstream from the dam. Extensive structural damage to the road bridge (North Jefferson Road) located 350 feet from the dam is not anticipated as a result of dam failure. Loss of more than a few lives is not anticipated. Accordingly, N.J. No Name No. 56 Dam is classified as "Significant" hazard.

d. Ownership

N.J. No Name No. 56 Dam is owned and operated by the Whippany Paper Board Company, 10 North Jefferson Road, Whippany, New Jersey 07981.

e. Purpose of Dam

The purpose of the dam was the impoundment of a lake used for flood control and for water supply for the downstream mill owned by the Whippany Paper Board Company. Reportedly, the impoundment is not presently being used for any purpose.

f. Design and Construction History

N.J. No Name No. 56 Dam reportedly was constructed by Whippany Paper Board Company around 1960.

g. Normal Operational Procedures

The dam and appurtenances are operated and maintained by the Whippany Paper Board Company. Repairs are made on an "as needed" basis. However, the dam is not presently in use and, reportedly, the Whippany Paper Board Company does not intend to make use of the dam in the future.

1.3 Pertinent Data

a.	Drainage	Area

4.55 square miles

b. Discharge at Damsite

Maximum flood at damsite	Unknown
Outlet works at pool elevation	N.A.
Spillway capacity at top of dam	189 c.f.s.

c. Elevation (N.G.V.D.)

Top of Dam	277.0
Maximum pool-design surcharge	279.1
Spillway crest	275.0
Stream bed at toe of dam	269.8
Maximum tailwater	275 (Estimated)

d. Reservoir

Length of maximum pool	1100 feet (Estimated)
Length of recreation pool	900 feet (Scaled)

e. Storage (Acre-feet)

Recreation pool	15
Design surcharge	654
Top of dam	128

f. Reservoir Surface (acres)

Top of dam	234	(Estimated)
Maximum pool - design surcharge	459	(Estimated)
Recreation pool	8.7	

g. Dam

Type Earthfill Length 123 feet Height 7.2 feet

Sideslopes - Upstream Left Section: 1 horiz. to 1 vert

Right Section: Vertical

- Downstream 4 horiz. to 1 vert.

Zoning Unknown
Impervious core Unknown
Cutoff Unknown
Grout curtain Unknown

h. Diversion and Regulating Tunnel N.A.

i. Spillway

Type
Boulder lined chute,
Trapezoidal Section
Length of weir
Crest elevation
Approach channel
Discharge channel
Natural Streambed

j. Regulating Outlet

24-inch C.I.P. running to downstream mill (Operating mechanism unknown)

SECTION 2: ENGINEERING DATA

2.1 Design

No plans or calculations pertaining to the original design of the dam could be obtained.

2.2 Construction

No data or reports pertaining to the construction of the dam are available.

2.3 Operation

No data or reports pertaining to the operations of the dam are available. Reportedly, drawings relating to a pending lake lowering permit are presently available in the files of the Hanover Township Engineering Department.

2.4 Evaluation

a. Availability

Available engineering data is limited to that which is on file at the Hanover Township Engineering Department. The file contains drawings relating to the lake lowering permit presently pending.

b. Adequacy

Available engineering data pertaining to N.J. No Name No. 56 Dam is not adequate to be of significant assistance to the performance of a Phase I evaluation. A list of absent information is included in paragraph 7.1.b.

c. Validity

The validity of engineering data cannot be assessed due to the absence of data.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

The inspection of N.J. No Name No. 56 Dam was performed on December 17, 1980 by staff members of Storch Engineers. A copy of the visual inspection check list is contained in Appendix 1. The following procedures were employed for the inspection:

- 1) The embankment of the dam, appurtenant structures and adjacent areas were examined.
- The embankment and accessible appurtenant structures were measured and key elevations determined by surveyor's level.
- 3) The embankment, appurtenant structures and adjacent areas were photographed.

b. Dam

The concrete wall forming the upstream side of the dam appeared to be in fair condition. The crest and downstream side of the dam appeared to be deteriorated condition. The crest was covered with weeds and the downstream side was irregularly shaped and overgrown with weeds and small trees. No evidence of seepage or animal holes on the downstream side of the dam was observed, although the dam was obscured by approximately 1-inch of snow.

The spillway discharge channel leads directly away from the dam for approximately 20 feet and then bends sharply to the right, or south, for another 30 feet and then sharply to the left.

or east, to lead away from the dam as the downstream channel. At the first bend considerable erosion was observed along the left bank of the channel or chute, with many roots of trees exposed.

c. Appurtenant Structures

The outlet structure located at the left end of the dam appears to be an outlet for a 24-inch cast iron pipe used to supply water to a mill downstream from the dam.

The concrete forming the outlet structure chamber and the headwall appeared to be in satisfactory condition. It appeared that there were two fish screens or trash racks on both the upstream and downstream sides of the headwall. Their conditions appeared to be satisfactory. Approximately 1 foot downstream from the headwall there was a slot with another fish screen protruding and its condition appeared to be satisfactory as well.

d. Reservoir Area

The impoundment of the dam is 900 deet long with a width varying from 300 to 400 feet. The land surrounding the reservoir appeared to be undeveloped grassland. The reservoir bank is approximately 2 feet high and the land beyond the bank has a terrain with flat slopes. To the left of the reservoir at its upstream end there is an adjacent garage with approximately 10 bays and a yard for trucks and equipment. The upstream end of the impoundment is connected by culverts under Route 287 to an additional impoundment including a large area known as Lee Meadows.

e. Downstream Channel

The spillway discharges into the Malapardis Brook, a tributary of the Whippany River. Between the dam and the North Jefferson Road Bridge (approximately 350 feet downstream) the downstream channel is a rock-lined stream with high banks having slopes of approximately 50 percent and tree and brush growth on the banks. Downstream from the bridge the channel bed remains the same, rocky and slightly meandering; however, the right bank is formed by the Brick Mill Building and the left bank is rocky and tree and brush covered. The 24-inch cast iron pipe bringing water from the dam impoundment to the mill crosses the channel at a skewed angle approximately 100 feet downstream from the bridge.

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

The level of water in the impoundment of the subject dam is regulated by discharge over the boulder lined chute spillway. The outlet works of the dam is used to draw off water for the purpose of supplying the mill downstream via the 24 inch C.I.P. but reportedly is no longer in use.

The Whippany Paper Board Company has applied to Hanover Township for permission to lower the normal lake level by approximately two feet for the purpose of lowering the water table at the request of the Prudential, which is located in the vicinity of the subject dam.

4.2 Maintenance of the Dam

Reportedly, maintenance is performed on an "as needed" basis.

4.3 Maintenance of Operating Facilities

Reportedly, the outlet works is maintained on an "as needed" basis.

4.4 Description of Warning System

Reportedly, no warning system is currently in use for the dam.

4.5 Evaluation of Operational Adequacy

The operation of the dam has not been successful to the extent that the dam reportedly has been overtopped in the past.

Maintenance is inadequate and maintenance documentation is poor.

Areas of maintenance that have not been adequately performed are:

- 1) Erosion of the spillway discharge channel immediately downstream of the dam not repaired.
- 2) Trees and bushes on the embankment not removed.
- 3) Embankment not suitably protected against erosion.
- 4) Concrete wall along upstream side of embankment not repaired.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 <u>Evaluation of Features</u>

a. Design Data

The quantity of storm water runoff that the spillway should be able to handle is based on the size and hazard classification of the dam. This runoff quantity, called the spillway design flood (SDF) is described in terms of return frequency or probable maximum flood (PMF) depending on the extent of the dam's size and potential hazard. According to the "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers, the SDF for N.J. No Name No. 56 Dam falls in a range of 100-year storm to 1/2 PMF. In this case, the low end of the range, 100-year storm is chosen since the factors used to select size and hazard classification are on the low side of their respective ranges.

The SDF peak computed for N.J. No Name No. 56 Dam is 3183 c.f.s. This value is derived from the 100-year flood hydrograph computed by the use of the HEC-1-DAM Flood Hydrograph Computer Program using the Soil Conservation Service triangular unit hydrograph method with curvilinear transformation. Hydrologic computations and computer output are contained in Appendix 4.

The spillway discharge rates were computed by analysis of critical depth flow at the entrance to a channel. The spillway discharge with lake level equal to the top of the dam was computed to be 189 c.f.s. The SDF was routed through the dam by use of the HEC-1-DAM computer program using the modified Puls method. In routing the SDF, it was found that the dam crest would be overtopped by a depth of 2.1 feet. Accordingly, the subject spillway is assessed as being inadequate in accordance with criteria developed by the U.S. Army Corps of Engineers.

b. Experience Data

Reportedly, the dam has been overtopped in the past. No damage to downstream structures was reported at the time of the overtoppings.

c. Visual Observation

Severe erosion of the spillway discharge channel was observed at the time of inspection. Also, the observed irregular shape of the downstream face of dam could be due to overtopping erosion.

d. Overtopping Potential

As indicated in paragraph 5.1.a. a storm of magnitude equal to the SDF would cause overtopping of the dam by a depth of 2.1 feet over the crest of the dam. The spillway is capable of passing approximately 6 percent of the SDF with lake level equal to the top of dam.

e. Drawdown Data

No drawdown computations can be performed due to the apparent absence of a functioning low level outlet.

SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

The dam appeared, at the time of inspection to be outwardly structurally sound with no evidence of cracks or distress. The crest and the downstream face of the dam however, appeared to be irregularly shaped, possibly due to erosion.

b. Generalized Soils Description

The generalized soils description of the dam site consists of clay and silt deposited during the Wisconsin glaciation intermingled with recent alluvium composed laregly of gravel and sand deposited by streams. The glacial moraine overlies shale and sandstone bedrock known as the Brunswick Formation.

c. Design and Construction Data

Analyses of structural stability and construction data for the embankment are not available.

d. Operating Records

No operating records are available for the dam. The water level of the lake impounded by N.J. No Name No. 56 Dam is not monitored.

e. Post-Construction Changes

Reportedly, there have been no post-construction changes since the dam was constructed in 1960.

f. Seismic Stability

N.J. No Name No. 56 Dam is located in Seismic Zone 1 as defined in "Recommended Guidelines for Safety Inspection of Dams" which is a zone of very low seismic activity. Experience indicates that dams in Seismic Zone 1 will have adequate stability under seismic loading conditions if they have adequate stability under static loading conditions. N.J. No Name No. 56 Dam appeared to be stable under static loading conditions at the time of inspection.

SECTION 7: ASSESSMENT AND RECOMMENDATIONS

7.1 Dam Assessment

a. Safety

Based on hydraulic and hydrologic analyses outlined in Section 5 and Appendix 4, the spillway of the subject dam is assessed as being inadequate. The spillway is not able to pass the SDF without an overtopping of the dam.

The embankment appeared, at the time of inspection to be outwardly stable. The crest and the downstream face of the dam, however, appeared to be in deteriorated condition, possibly due to erosion.

b. Adequacy of Information

Information sources for this report include 1) field inspections, 2) USGS quadrangle, 3) plans on file with the Hanover Township Engineering Department, 4) consultation with personnel of the Hanover Township Engineering Department, 5) consultation with personnel of the Whippany Paper Board Company. The information obtained is sufficient to allow a Phase I assessment as outlined in "Recommended Guidelines for Safety Inspection of Dams."

Some of the absent data are as follows:

- 1. Construction and as-built drawings
- 2. Description of fill material for embankment.
- 3. Design computations and reports.
- 4. Maintenance documentation.
- 5. Soils report for the site.

c. Necessity for Additional Data/Evaluation

Although some data pertaining to N.J. No. Name No. 56 Dam are not available, additional data are not considered imperative for this Phase I evaluation.

7.2 Recommendations

a. Remedial Measures

Based on hydraulic and hydrologic analyses outlined in paragraph 5.1.a, the spillway is considered to be inadequate. It is therefore recommended that a professional engineer experienced in the design and construction of dams be engaged in the near future to perform more accurate hydraulic and hydrologic analyses. Based on the findings of these analyses, the need for and type of remedial measures should be determined and then implemented.

The owner should, in the near future develop an emergency plan together with an effective warning system outlining actions to be taken by the operator to minimize the downstream effects of an emergency at the dam.

In addition, it is further recommended that the following remedial measures be undertaken by the ownr in the near future.

- 1) Erosion of the channel immediately downstream of the dam should be repaired and the channel properly stabilized.
- 2) All trees and adverse vegetation on the embankment should be removed, and the embankment suitably graded and protected against erosion.
- 3) The concrete wall along the upstream side of embankment should be repaired.

b. Maintenance

In the future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

<u>PLATES</u>

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR PROTECTION
TRENTON, NEW JERSEY

INSPECTION AND EVALUATION OF DAMS

KEY MAP

N.J. No Name No. 56 DAM

SCALE: NONE

DATE: FEB.1981

Legend

AR/GL-67 Remains of glacial lake bed deposits, composed of stratified

materials, and intermingled with recent alluvium placed by

streams.

GM-4 Glacial ground moraine; composed of unstratified material

deposited during the Wisconsin glaciation.

Note: Information taken from: Rutgers University, Engineering Soil

Survey of New Jersey, Report No. 9, Morris County, November 1953 and Geologic Map of New Jersey prepared by J. V. Lewis and H. Kummel 1910-1912, revised by H. B. Kummel 1931 and

M. Johnson 1950.

PLATE 3

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY.

INSPECTION AND EVALUATION OF DAMS

SOIL MAP

N.J. No Name No. 56 DAM

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR. PROTECTION
TRENTON, NEW JERSEY.

SCALE: NONE

Note: Information taken from field inspection December 17, 1980

	PLATE 5
STORCH ENGINEERS	INSPECTION AND EVALUATION OF DAMS
FLORHAM PARK, NEW JERSEY	SECTIONS
DIVISION OF WATER RESOURCES	N.J. NO NAME Nº 56 DAM
N.J. DEPT. OF ENVIR PROTECTION	1.D.N.J. 00804 SCALE: NONE
TRENTON, NEW JERSEY	DATE: FE B. 1981

APPENDIX 1

Check List - Visual Inspection

Check List - Engineering Data

Check List Visual Inspection Phase I

lame of Dam N.J. No Name 56 Dam	County	Morris	State N. 1.	Coordinators	NJDEP
Date(s) Inspection 12/17/80	Weather	Sunny	Temperature	20°F	
Pool Elevation at time of Inspection_	275.0	M.S.L.	Tailwater at Time of Inspection_		270.0M.S.L.
Inspection Personnel:					į
John Gribbin	Richard McDermott	rmott			
Charles Osterkorn					
Daniel Buckelew					
	John Gribbin	u d	Recorder		

EMBANKMENT

	EMBANKMENT	
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
• GENERAL	Crest covered with weeds. Downstream face covered with weeds and small trees and not well defined. Conc. wall forming upstream face (right side) in fair condition. Stone rubble wall forming upstream face (left side) in fair condition.	ce covered Trees and weeds should be defined. Conc. removed. in fair condition. Conc. wall should be repaired.
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	Junctions appeared stable.	•
ANY NOTICEABLE SEEPAGE	None observed.	
STAFF GAGE AND RECORDER	None observed.	
DRAINS	None observed.	

EMBANKMENT

	CHDANNIENI	
VISUAL EXAMINATION	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	None observed.	-
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed.	
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	None observed.	
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	Vertical: generally level Horizontal: irregular	
RIPRAP	None observed.	

OUTLET WORKS

	OUTLET WORKS	
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SURFACES IN OUTLET CONDUIT	Outlet conduit composed of cast iron, could not be observed in vicinity of dam. Conduit above ground in vicinity of downstream mill building appeared to be in satisfactory condition.	Function of outlet conduit unknown. Operating condition of outlet conduit unknown. Operating mechanism not observed.
INTAKE STRUCTURE	Concrete surfaces in satisfactory condition. Fish screens appeared to be in satisfactory condition, but not observed below the water line.	
OUTLET STRUCTURE	Not observed.	Conduit enters mill building.
OUTLET CHANNEL	N/A	·
GATE AND GATE HOUSING	Not observed.	Presence of gate unknown.

SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CREST	Crest formed by entrance section to chute, lined with small boulders. Boulders irregularly placed and appeared to provide insufficient erosion protection.	Crest should be properly stabilized.
APPROACH CHANNEL	N/A	•
DISCHARGE CHANNEL	Formed by chute located on downstream side of dam. Bottom of chute lined with small boulders. Sides consist of earth banks. Banks significantly eroded at bend in chute (with exposed roots observed).	Channel sides and bottom should be properly stabilized.
te d a Photographical in 1882 house discussed		
M. Oliginaryalaring and the control of the control		

INSTRUMENTATION

	INSTRUMENTATION	
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None observed.	
OBSERVATION WELLS	None observed.	
WEIRS	None observed.	
PIEZOMETERS	None observed.	·
O HER		

RESERVOIR

,	RESERVOIR	
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Shores were grass covered with 5' high banks and flat to moderately sloping terrain beyond.	
SEDIMENTATION	Unknown.	•
STRUCTURES ALONG BANKS	Industrial garage and yard located adjacent to left side at upstream end. Road bridge crosses reservoir near upstream end.	
and the same of the Company of Same and the same of th		

DOWNSTREAM CHANNEL

	REMARKS OR RECOMMENDATIONS		•		
DOWNSTREAM CHANNEL	OBSERVATIONS	Between dam and bridge 350' downstream, channel is natural stream with rocky bottom and wooded banks. Downstream from bridge, stream meanders through mill complex.	Banks high with slopes of approx. I horizontal to 1 vertical.	Road bridge (Jefferson Road) located 350' downstream. Mill building adjacent to stream located immediately below bridge. Brick weigh station located adjacent to channel immediately upstream from Jefferson Road bridge.	
	VISUAL EXAMINATION OF	COMPTION SETTION, DEBRIS, ETC.)	SLOPES	STRUCTURES ALONG BANKS	

CHECK LIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION

MITEM		REMARKS
DAM - PLAN	Not Available	
SECTIONS		
SPILLMAY - PLAN	Not Available	
SECTIONS		•
DETAILS		
OPERATING EQUIPMENT PLANS & DETAILS	Not Available	
OUTLETS - PLAN	Not Available	
DETAILS		
CONSTRAINTS		
DISCHARGE RATINGS	TINGS	
HYDRAULIC/HYDROLOGIC DATA	Not Available	
RAINFALL/RESERVOIR RECORDS	Not Available	
CONSTRUCTION HISTORY	Not Available	
LOCATION MAP	Not Available	

REMARKS	•				
	Not Available	Not Available	Not Available	Not Available	Not Available
ITEM	DESIGN REPORTS	GEOLOGY REPORTS	DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM INSTABILITY SEEPAGE STUDIES	MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	POST-CONSTRUCTION SURVEYS OF DAM

Not Available

BORROW SOURCES

REMARKS	
ITEM	

MONITORING SYSTEMS

Not Available

MODIFICATIONS

Not Available

HIGH POOL RECORDS

Not Available

POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS

Drawings relating to pending lake lowering permit available in the files of the Hanover Twp. Engineering Department, P.O. Box 250, Whippany, New Jersey, 07981.

PRIOR ACCIDENTS OR FAILURE OF DAM Not Available DESCRIPTION REPORTS

MAINTENANCE OPERATION RECORDS

Pending lake lowering permit (see above)

APPENDIX 2

Photographs

PHOTO 1 SPILLWAY

PHOTO 2
INTAKE STRUCTURE FOR PIPE TO MILL

NJ NO NAME No. 56 DAM 17 DECEMBER 1980

PHUTO 3
CREST OF EMBANKMENT

PHOTO 4

DOWNSTREAM FACE OF EMBANKMENT

NJ NO NAME No. 56 DAM 17 DECEMBER 1980

PHOTO 5

UPSTREAM FACE OF EMBANKMENT

PHOTO 6

UPSTREAM FACE OF EMBANKMENT - RIGHT SIDE

NJ NO NAME No. 56 DAM 17 DECEMBER 1980

20 JANUARY 1981 PHOTO 7

PHOTO 8

PHOTO 8

DOWNSTREAM CHANNEL ADJACENT TO MILL BUILDING

NJ NO NAME No. 56 DAM

APPENDIX 3

Engineering Data

CHECK LIST

HYDROLOGIC AND HYDRAULIC DATA

ENGINEERING DATA

DRAINAGE AREA CHARACTERIS	TICS: wooded, residential and swampy areas					
ELEVATION TOP NORMAL POOL	(STORAGE CAPACITY): 275.0 (15 acre-feet)					
ELEVATION TOP FLOOD CONTR	OL POOL (STORAGE CAPACITY): N/A					
ELEVATION MAXIMUM DESIGN	POOL: 279.1					
ELEVATION TOP DAM:	277.0					
SPILLWAY CREST:	Boulder lined channel					
	275.0					
b. Type	Chute (trapezoidal section)					
c. Width						
d. Length_						
e. Location Spillover Downstream side of dam						
	e of GatesN/A					
	h C.I.P. connected to downstream mill building					
a. Type	•					
b. Location						
c. Entrance Invert Unknown						
	Unknown (pipe enters mill bldg.)					
	- None					
HYDOMETEOROLOGICAL GAGES: None						
	N/A					
b. Location	N/A					
c. Records	N/A					
MAXIMUM NON-DAMAGING DISCHARGE:						
(Lake Stage Equal to Top of Dam) 189 c.f.s.						

APPENDIX 4

Hydraulic/Hydrologic Computations

STORCH ENG							_ of _/2_
Project				•			2-23-81
	1137-	08		Chkd By	JG	_Date	2/23/81
		HADBOTOR	<u> </u>				
HYDROLOGI	C ANALYSIS	:					
			· · · · · · · · · · · · · · · · · · ·	7 - 1			
Runder	HYDROGRAPH	WILL BE	DEAETOR	ed by	HEC	-/· D	AM
U51NG	SCS TRIANGO	LAS HYDR	CHRAPH I	NTH C	המורוו	JENI	
TRANSFO	GRUATION.						
· NO Alvia	ac AREA = 4.		•	<u> </u>			
DIEVINA	AC AIREA = 41	33 34. M			<u>i</u>		
		1 1				:	
INFILTRATIO	DATA NO	1	1				
INCIAL	INFILTRATION		1.0 1	~	· · ·	<u> </u>	
	1/41/15/31/5		, t	1			
CONSTAN	IT INFILTRATION		0.10	12/HR.			
		· · · · · · · · · · · · · · · · · · ·	·				
TIME OF	CONCENTRATIO	N- SUMM	127 /	SEE ATI	<u> </u>		(213
ME.	2047				_د_ د	μ ις)	
MEJHOD#	1, 5,C.5. TR-55				5.76		a a managara and a san a s
	z, chow						
KIETHON L	4 AH.LN , E	D.F.P. NICKIO	ACACH	·	7.40	- -	
iucthod.	4 4 TEXAS HIGHY	YAY. DERT.	TP PW.5		3.56		
							-
E A IÒ	computer inpu						
1-012	COMPORCE 114FO	<u>`</u> •					

&c= 4.7 HR LAG TIME = 60% TC = 2.5 Hr

٠

Project N. J. LAKE NO NAME No. 56 DAM Made By Ji Ha Date 2.23-81

1/32 - 05

Chkd By JG Date 2/23/81

24	HOURS 100 YEA	R RAINSTROM		
				:
DIS	TRIBUTION FOR	LAKE NoNam	e No.50	DAM
			,	
	T - 5 8	Pero Fine?	,	
	TIME [H.]	RAIN EIN]	:	
	/	0.08		
	2	0.08	1 :	<u>:</u> :
	3	0.08	: ;	
	4	0.08	, ,	
	5	0.01		
	6	0.00		
	7	0.09	; ;	
	8	0.09		
	9	0.18	1	
	10	0.18		
	' //	0.18	1	
	/2	0.19		
	13	0.3		
	14	0.3		
	15	0.8		
	16	3.0		
,	/7	0.4		
	18	0.3		
	19	0.19		
	20	0.18		
	21	0.09		
	22	0,09		
	23	0.08		
	24	0.08		
	24 47	2 7,20		
	L	L		

FROM TP 40. U.S. WEATHER BUREAU

Sault 4 1

						Chkd I	Ву <u>Ј</u>	_Date <u>_</u> 2	/23/2
		T	YPICAL	CROSS S	SECTION	<u></u>			
				REACH				;	
		:							
	10'	150'	ıs'	15'	IS'	150'	10		
							1		·
	$\Delta \perp$					N=0.0C	1 2/2		
0/40		N=0.06	ļ				10,00	^y	
	0/				 	ļ	-1/1/2		
9/	£	×/1-2		Z50.0:N		4/2/02	76		
				inv. 260.0	/	4.0.			
=	 -			MW. 200,0	<u>/</u>	<u></u>	- 	· · · · ·	
					7/ 0				<u> </u>
					-5°50-			(
			74 74 1A 3+5	D. FAUNC	-0/	neren	V		
				D. FAUNC	-0/	narean	V		
			<u>IA3+5</u>		-0/	NAUEAN	b		
			<u>IA3+5</u>	EACH 2	-0/	NACKAN	\		
		_5	<u>IA3+5</u>		-0/	NETREAL	V		
			<u>IA3+5</u>		-0/	MAYDEN MAYDEN			
			<u>IA3+5</u>		-0/	N STREAM	9		
			<u>IA3+5</u>		-0/	NETREAM	2		
			<u>IA3+5</u>		-0/	-185 -185	2		
			TA 3+5		100m	-185 -185	2		
		5	TA 3+5		100m		2		
		5	TA 3+5	EACH 2	10 DOW		2		
		5	TA 3+5		1000 1000 N=0.02		2		

STA. 7400, FACING DOWNSTICKY

HEC - 1 - DAM PRINTOUT

Overtopping Analysis

1 HILLUM IVENOGORAPH TO LAKE HORMARE 156 DAH 2	000	•	01 21	100 TENK SI	TEAK STORM ROOTING	2	0	•	₹ .	· ·	
1HILUM HYDROGRAFH TO LANE HORME 156 DAH 2 4.55 1HILUM HYDROGRAFH TO LANE HORME 156 DAH 2 0.019 0)	! : :	-						· · · · · · · · · · · · · · · · · · ·		
1HI LUM HYDROGKAFH TO LANE HOHAME 154 DAH 2 4.55	0	LAKE		*		0	7	! !	:	i	!
0.019 0.019		1HF LOW	HYDROGRAF	TH TO LAKE		156 DAH					
0.019 0.019	0 3	£1	4.55			0					
0.019 0.019 0.019 0.017 0.017 0.019	0.019	!	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	!
0.019 0.015 0.018	0.019		0.019	0.019		0.013	0.019	0.019	0.019	0.019	
0.019 0.019	3.012	:	-0.019	20.019.		0.017	0.019	0.019	0.019	0.019	:
0.017 0.017 0.017 0.017 0.017 0.018	0.019		0.019	0.019		0.019	610.0	0.019	0.019	0.019	
2.028	0.019		0.019	0.019		0.019	0.019	0.019	0.038	0.038	
0.083 0.083 0.163 0.163 0.163 0.163 0.163 0.750 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.038 0.083 0.083 0.038	0,038	Ì	0.038	0.038	1	0.038	0.038	0.038	0.038	0.038	1
0.035 0.053 0.163 0.163 0.163 0.083 0.083 0.083 0.083 0.038	530.0		0.083	0.083		0.163	0.163	0.163	0.750	0.750	
0.035 0.038 0.038 0.038 1 0.14 0.037 0.038 0.038 0.038 1 0.14 0.05 2.0 0.05 2.0 0.05 2.0 0.05 2.0 0.05 2.0 1 1 1 1 0.1	0.750		0.163	0.163		0.153	0.083	0.083	180.0	0.083	•
2.55 0.05 2.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7000	:	0.053	1000		30.00	7.038	95040-	0.038	0.038	į
-0.05 10.05 10.05 10.05 10.05 10.05 10.05 226 226 226 226 2263 2262 2263 2263 22	200		0000	0000		2000	-		•		
-0.05 2.0		t.					-	1.0			
FOUTE DISCULARGE THROUGH DAN 1 1 2.275 -1 224 227 228 280 282 -275 -1 24 189 326 657 1042 -1 255 280 300 2003	0.1	ļ			; ; ;						!
ROUTE BISCHARGE INFOUGH PAH 224 227 228 280 282 74 189 326 657 1042 2.63 1.5 107 CHANNEL KOUTING REACH 1 0.035 0.02 277 160 275 180 2.62 65 250 0.0086 2.62 250 275 250 0.0086 2.62 250 275 250 0.0086 2.62 65 200 275 350 0.0086 2.62 65 200 275 350 0.0086 2.62 65 200 200 200 200 200 200 200 200 200 20	1						7				
226 227 228 280 282 275 -1 1 1 2 275 -1 275 -1 1 1 2 275 272 278 280 282 282 275 275 275 275 275 275 275 275 275 27	;		(SCHARBE_)	CHROUGH D	N.				:	1	:
226 227 228 280 282 275 275 278 280 282 275 275 1042 225 282 280 282 275 282 282 275 282 282 275 285 285 275 285 285 275 285 275 285 285 285 285 285 285 285 285 285 28	•			7	-			•			
2.63 1.5 1013 2.63 1.5 107 CHANNEL ROUTING REACH I I I I I I I I I I I I I I I I I I I	T		177	7,0	c c	=	C/7:	1.			
8.7 572 1013 2.63 1.5 107 CHANNEL ROUTING REACH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1001	762	150	10					
2.63 1.5 107 CHANNEL ROUTING REACH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠ <			1010		>					
2.63 1.5 107 CHANNEL ROUTING REACH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,0		2 60	300							
2.63 1.5 107 CHANNEL ROUTING REACH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	275				; ;						*
CHANNEL ROUTING REACH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	277		1.3	107							
CHANNEL KOUTING REACH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	ا	- 1								-
0.035 0.06 260 275 350 0.0280 285 190 275 355 0.0280 275 160 275 175 260 190 275 285 175 260 190 275 285 175 260 190 280 255 257 257 2580 257 257 2580 257 257 2580 257 257 2580 257 257 2580 257 257 2580 257 257 2580 257 257 257 257 257 257 257 257 257 257		CHANNEL		REACH 1	•						
0.035 0.06 260 275 350 0.0280 205 190 275 355 0.0280 205 190 225 255 255 175 260 190 275 255 0.0280 275 255 265 190 205 255 255 255 255 255 255 255 255 25	-			-	-						
285 10 277 160 275 175 260 190 275 355 287 1 160 275 175 260 190 275 355 287 1 1 1 CHANNEL ROUTING REACH 2 1 1 0.025 0.02 25,7 275 350 0.0086 262 65 280 100 280	90.0	. • I		260	275	, -	0.0280		 	-	
275 355 227 365 285 1 2 СИАНИЕL ROUTING REACH 2 0.035 0.02 257 275 350 0.0086 262 65 280 100 280	•			277	160		175	260	190	260	
2 СИАНИЕL ROUTING REACH 2 0.035 0.02 257 275 350 0.0086 262 65 280 100 280	_205	į		222	365	i					
0.035 0.02 257 275 350 0.0086 250 262 65 280 100 280	-	C					-				
0.035 0.02 257 275 350 0.0086 280 5 275 25 268 40 252 50 262 65 280 100 280		CHANNEL			1						
0.035 0.02 257 275 350 0.0086 280 5 225 25 25 25 268 40 252 50 262 65 262 65 270 280	! " ;	•				1				 -	
262 65 270 100 280	90.0	٥	0.07	257	275		9900.0				
262 65 280 100	0	1	4:	275	1111	792	40	727	- 05	777	
	000		9	5.00	001	280					

100 YEAR STORM ROUTH 100 YEAR STORM YEAR STORM ROUTH 100 YEAR STORM YOUNG YOU HAD NOT ANY YOU WANT YOU WANT YOU HAD NOT ANY YOUNG YOU HAD NOT ANY YOU WANT YOU WANT YOU WANT YOU HAD NOT ANY YOU WANT
--

***********	*******	*******		*********	177	*******
		HYDROGRAFH ROUTING	UTING			
ROUTE DISC	ROUTE DISCHARGE THROUGH DAM	DAM .				
1	STAG ICONF DAH 1	TECON TIAFE	JPLT 0	JFRT INAME	IE ISTAGE	IAUTO 0
0.0 0.0 0.0 0.0	CLUSS AVG	ROUTING MATA IRES ISAME 1 1	10 I OP T	1PMP 0	LSTR 0	
X	NSTES NSTEE	1 AG AMSKK	×	TSK STORA	A ISFRAT	
		000.0	0.000		}	
SIAGE 275.00 276.00	277.90	278.00	280,00	292,00		
FLOW 0.00 74.00	189.00	326.00	00:259	1042.00		
SURFACE AREA 0. 9.	572.	1013.				
CAFACILYZ. 04 154	1100	16241.				
ELEVATION≈ 270, 275.	280.	300.				
CREL 275.0	SPUID CC	COOW EXPW E1	ELEVL COUL	nt CAREA	EXFL 0.0	
		TOPEL COOP	DATA EXPD	DAMUID		

	***	*	****	***	****	英格拉斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯	********
	PEAK FLOW AND	ł .	E CEND (F PERIOD) S	SUMMARY FOR MULTIF	STORAGE (END OF FERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FIOWS IN CIPIT FEFT FOR SECOND (CIBIT METERS FER SECOND)	COMPUTATIONS
				REA IN SOU	AREA IN SQUARE MILES (SQUARE KILOMETERS)	KILOMETERS)	
OFERATION	STATION	AREA	FLAN	FLAN RATIO 1	RATIOS A	RATIOS AFFLIED TO FLOWS	
HYDROGRAPH AT	LAKE	4.55	-	1183.			
٠	•	11.78)	~	90.14)(
ROUTED TO	пан	4.55	1	1349.			
	J	11.78)	•	38,21)(
ROUTED TO	-	4.55		1349.		•	
	J	11.78)	-	38,20)(
ROUTED TO	C1	4.55		1350.			
	~	11.78)	_	38,22)(

			INS	HHARY OF DA	SUMMARY OF DAM SAFETY ANALYSIS	LYSIS	-		
EI AM T			THITINI HALIE		CPILLMAY CRESI		10F 05 DAM		
		ELEVATION STORNGE OUTFLOW	275.00 15.		275.00 15.		277.00 128. , 189.		
	RATIO OF PMF	HAXIHUM RESERVOIR W.S.ELEU	HAXIHUH DEFTH DVER DAM	STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOF HOURS	TIBE OF MAX OUTFLOW HOURS	TIME DE FAILURE HOURS	
	1.00	279.08	2.08	654.	1349.	13.00	22.75	00.0	
	-		14	PLAN 1	STATION	1			
			RATIO	HAXIMUM FLOW, CFS	NAXIMUM STAGE,FT	TIME			
			1.00	1349.	264.5	22.25			
			FI	FLAN 1	SIALION	c			
			RATID	HAXIHUH ELDW,CES	HAXIMUM SIAGE:FI	TIME			
		•	1.00	1350.	263.1	22.75			
FLOOD HYDROGRAPH FACKAGE (HEC-1) JAM SAFETY VERSION JULY 1978 1971 HODIETCATION 25 FEB 79	ACKAGE (HEC-1) JULY 1978 JA FEB 79	C-1) 1978 79							
· · · · · · · · · · · · · · · · · · ·	**********	***) : !
				,					

HEC - 1 - DAM PRINTOUT

Breach Analysis

•											
	300	•	15				•	0	₹ ,		
ģ :	!] • !	1	-			 -		•			
.	۰ ۰	LAKE			0						
_		INFLOW	HYDROGRAFH TO LAKE	H TO LA		456 DAM			! !		
	0 2	21	4.55		4.55	•					
•	0.0	0.010	0.019	0.010	010	0.019	0.019	0.010	010	0.019	
	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	
	0.012	0.019	0.019	0.019	0.012	0.017	0.012	0.012	0.019	0.019	
	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	
	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.038	0.038	
- 1	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	
	0.083	0.083	0.083	0.083	0.163	0.163	0.163	0.163	0.750	0.750	
_	0.750	0.750	0.163	0.163	0.163	0.163	0.083	0.083	0.083	0.063	
-	0.083_	0.083	0.083	0.083	0.038	0.038	0.038	0.038	0.038	0.038	147
_	0.038	0.038	0.038	0.038	0.038	0.038	:		-		
						•		.1.0-			•
c4		2,5							. !		
ı	-1.0	-0.05	2.0					\$.	!		
	-	DAM				-	-	;			
: 2		SOUTE DE	ROUTE DISCHARGE THROUGH DAM	THEOUGH 1	HQ.	•	•				
	! ! !			1	1.1				-	!	
7.	-			,			-275	-1			•
X	275	276	222	228	280	282					
۲ ۲	ο.	7.4	189	326	759	1042					
€	0	8.7	572	1013							
ٺ	270	275	280	300	:		1				
*	275										
. ت	277	2.63	1.5	107		1					
ad	25	4	270	1	275	277					
	-	-									
Z >		CHANNEL	ROUTING REACH	REACH 1	-						
i 🚄	! :									:	
۸,	90.0	0.035	90.0	260	275		0.0280				
7	0	285	10	272	160	ı	175	260	120	260	
۲7	205	275	50 50 50	277	365	282		-			
×	-	CI.									
ä]	THANNEL	CHANNEL ROLLING REACH 2	REACH 2							
>				-	-						
- 7	7 0	27.0		757	87.0	78.0	7000				
,	•	200	0	175	4	240		15.7	1	7.57	
	۰ ن ^۰	27.0) v 4	9 0	2 -	000	2	2	2	3	
	2										

1

٠,.

		CR) COMP	TED BR	EACH HY	PROBRAFH								1
12 to 4 to 4	400.	800. 1200. 1600	1200.	1600	2000	2400.	, 2800.		•		 	.0	
									•	•			• •
	#0 #0	•							•			•	
•	6	•	•						•	•	•		•
	. G	•	•			•			•	•	•	•	•
18.90 8.	2												•
	02	•	•	-		•			•	•	•		•
- 1	- BOs	*********	4	*****	******	****	*******	4.444444.	***	********	*******	****	•
-	æ '	•	•			•			•		•	•	•
B.98 12.	æ '	•	•			•			•	•	•	•	•
1			.								-		• •
	•		•	•		•			•	•			-
		4											-
	•	•	•						•,	•	•	•	•
	•	ë	•			•		_	•				•
- 1		g .										1	
9.15 20	• • • • • • • • • • • • • • • • • • • •		: : : : :	•	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •		•
0 10 11.	•	0	•			•			•	•	•	•	•
	•	•		_		•	•		•	•	•	•	•
9.15.15			1										•
0.10.17.	•	•	. a			•			•	•	• •	•	•
•			2						•	•			
	•	•	•	FO		•			. •	•			
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		•
9-37-31-				9 6									
100	•	•	•	ž.		•		_	•	•	•	•	•
9.42.55.	•	•	•	2		•			•	•	-	•	•
9	•	•	-		æ					•	-		
	•	•	•	•	æ.	•			•	•	•	•	•
					*								•
	•	•	•	•	35	•		_	•	•			•
7.54 39.	•	•	•	•	O#	•				•	•		
 @	-	-	-						-				• •
9.60 42.	•	•	•	Ī									•
62 43						B							
	•	•	•			. RO	-		•	•	•	•	•
67	•	•!	•			· ,	•			•			•
7.69 46.	•	•	•			<u>.</u>	i			•	•	•	•
	•	•	•				ı.		•	•		•	
		•	-			•	•		•	•	•	•	•

}						ı			
	***	COMPUTATIONS					-		
	***	STORAGE (END OF PERIOD) SUMMARY FOR MULTIFLE FLAN-RATIO ECONOMIC COMFF.10/TIONS FLOWS IN CUBIC FEEL PER SECOND (CUBIC METERS FER SECOND)		RATIOS AFFLIED TO FLOWS					
	***	SUMMARY FOR MULTIFU EI EER SECOND (CUBIO		RATIOS AF	•			: 1	
·	*	PERIOD) CUBIC FEE		ATIO 1	31834	90.14)(77,57)(77.78)(77.98)(
	****	CENT OF	Ĕ	FLAN RATIO	•	•	<u> </u>		
				AREA	4. 10. 10.	11.78)	11.78)	11.78)	11,78)
	****	PEAK FLOW AND		STATION	7 V	•	БАМ		
	1 ,	<i>(</i> 1.		OFERATION	HYDROGRAPH AT		ROUTED TO	ROUIED ID	ROUTED IO

C	4
۰	7
	1
1	7
:	7
	3
•	9
•	ς,
,	_
:	1
,	7
L	ч
٠	٠
4	_
1	1
_	_
2	9
3	С
í	7
	1
	٠,
į	=
•	-
	1
3	٦
í	4
4	ď
•	ř
:	ř
:	:
•	-
	4

	TIME OF FAILURE HOURS	18.75				· ·					
70F OF DAH 277.00 128. 189.	TIRE OF HAX OUTFLOW HOURS "	21,00									
	DUKALION OVER TOF HOURS	5.00		TIME HOUKS	21.00		2	TIME HOURS	21.00		
SFILLWAY CREST 275.00	MAXIBUM OUTFLOW CFS :	2739,	STATION	HAXIMUM STAGE,FT	266.7		STATION	HAXIHUH STAGE: FI	265.8		
INITIAL VALUE 5 275.0015.	THE STORAGE TO SAC-FT	.95 298.	FLAN 1	RATIO FLOW, CFS	1.00 2747.		FLAN 1	MAXIMUM RATIO FLOW,CFS	1.00 2754.	:	
IN ELEVATION STORAGE OUTFLOW	HAXIMUM HAXIMUM RESERVOIR DEPTH W.S.ELEV OVER DAM	277.95					ì	E			
•	RATIO HO OF RES	1.00							*********	KAGE JL	* *
									**************************************	FLOOD HYDROGRAFH FACKAGE DAM SAFETY VERSION JULIAST MODIFICATION 26	***************************************
FLAN									****	FLOOD H) DAM SAFE	* * * * * * * * * * * * * * * * * * * *

APPENDIX 5

Bibliography

- 1 1. "Recommended Guidelines for Safety Inspection of Dams," Department of the Army, Office of the Chief of Engineers, Washington, D.C. 20314.
- 2. <u>Design of Small Dams</u>, Second Edition, United States Department of the Interior, Bureau of Reclamation, United State Government Printing Office, Washington, D.C., 1973.
- 3. Holman, William W. and Jumikis, Alfreds R., <u>Engineering Soil</u>
 <u>Survey of New Jersey</u>, <u>Report No. 11</u>, <u>Sussex County</u>, <u>Rutgers</u>
 University, New Brunswick, N.J., 1953.
- 4. "Geologic Map of New Jersey," prepared by J. Volney Lewis and Henry B. Kummel, dated 1910-1912, revised by H.B. Kummel, 1931 and M. Johnson, 1950.
- 5. Chow, Ven Te., Ed., Handbook of Applied Hydrology, McGraw-Hill Book Company, 1964.
- 6. Herr, Lester A., <u>Hydraulic Charts for the Selection of Highway Culverts</u>, U.S. Department of Transportation, Federal Highway Administration, 1965.
- 7. <u>Safety of Small Dams</u>, Proceedings of the Engineering Foundation Conference, American Society of Civil Engineers, 1974.
- 8. King, Horace Williams and Brater, Ernest F., <u>Handbook of Hydraulics</u>, Fifth Edition, McGraw-Hill Book Company, 1963.
- 9. <u>Urban Hydrology for Small Watersheds, Technical Release No. 55,</u> Engineering Division, Soil Conservation Service, U.S. Department of Agriculture, January 1975.

