

Introdução à datascience com R

Cleuton Sampaio

Lição 2: Estatística básica: Medidas de tendência central

Tipos de dados

Antes de entrarmos em estudos estatísticos é necessário conceituarmos e classificarmos os tipos de dados (o domínio) das variáveis que trabalharemos:

- **Discreto**: Domínio dos inteiros (Z): Por exemplo, quantos filhos cada família possui: 1, 2, 3 etc;
- **Contínuo**: Domínio dos números reais (R): Por exemplo, a altura de uma pessoa: 1,75m, 1,68m etc;
- Categoria: Não possui significado matemático, mas classifica os dados: Por exemplo, o estado civil de uma pessoa: Casada, Solteira, Divorciada, Viúva etc.
 Um tipo de categoria especial é a binomial ou binária, que só admite dois valores, por exemplo, se a pessoa trabalha (sim e não), ou se é solteira (verdadeiro, falso);
- **Ordinal**: É um tipo de categoria, que implica ordenação: Por exemplo, a classificação dos participantes de uma maratona: Primeiro, Segundo, Terceiro;

Estatística descritiva

Estatística descritiva serve para analisar e sumarizar um dataset, e é, geralmente, a primeira coisa que fazemos quando recebemos um novo trabalho.

População e amostra

Em estatística, "**população**" é o conjunto dos dados que desejamos analisar. Por exemplo, se queremos analisar o desempenho escolar dos alunos brasileiros do ensino fundamental, então a população será o conjunto de TODOS os alunos brasileiros do ensino fundamental.

A população pode ser muito grande, logo, faz sentido extrair subconjuntos de dados, desde que sejam representativos, para podermos analisar. Isto se chama "amostra".

Tendência central

As medidas de tendência central são: média, mediana e moda. Eu sei que você sabe o que é média, mas existem alguns detalhes que talvez desconheça.

Média (ou média da população)

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Conhecemos a média (em inglês: "mean" ou "average") da população pela letra grega "mi" e a quantidade de elementos da população pela letra "N" (maiúscula).

Média da amostra

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Conhecemos a média da população pelo x com uma barra "x barra" e a quantidade de elementos da população pela letra "n" (minúscula).

A média é uma medida pouco confiável pois é afetada por **valores espúrios** (*outliers*), assunto que veremos mais adiante.

Mediana

A mediana (em inglês: "median") é o valor que está no centro de uma amostra. Vamos imaginar o seguinte dataset:

O valor da mediana é "6", que é o elemento central desse dataset, isto porque há um número ímpar de elementos. Se houver um número par de elementos, a mediana é calculada como a média dos dois valores centrais, por exemplo:

Neste caso, a mediana é "5" ((4 + 6) / 2).

Moda

A moda (em inglês: "mode") é o valor que mais se repete em uma amostra, por exemplo: [1,2,2,3,4,5,6,7]

Neste caso, a moda é o número 2, que é o elemento que mais se repete.

Caso os dados sejam categóricos ou estejam agrupados por faixas, a moda é a faixa que possui maior número de ocorrências.

Quantidade de alunos	Média obtida
13	até 5,0
8	entre 5,0 (exclusive) até 8,0
3	entre 8,0 (exclusive) até 10

Existem técnicas de amostragem ("sampling") que formar subconjuntos representativos de uma população. Estas técnicas são utilizadas para evitar o "**viés**" (em inglês: "bias"), que é uma tendência indesejável nos dados coletados.

Neste exemplo, vemos que a maior quantidade de alunos obteve média até 5,0, logo, esta é a "classe modal".

Viés também é conhecido como erro sistemático em uma ou mais características de uma amostra, representando uma distorção entre o valor da característica e o valor real. Vieses podem ser introduzidos por erros no cálculo ou por contaminação da amostra.

Voltando às técnicas de amostragem, temos:

- Amostragem aleatória: Utilizamos uma função para selecionar elementos aleatórios da População, de modo a evitar a introdução de viés;
- Amostragem sistemática: Pegamos elementos em intervalos selecionados, por exemplo, a cada 10 elementos pegamos 1;

 Amostragem estratificada: Dividimos a população em estratos (ou camadas) e retiramos alguns dados de cada estrato para formar a amostra. É importante manter a representatividade da população.

Exemplo

Comparando Média, Mediana e Moda

Abra o arquivo "R-course/lesson2/medidasCentrais.R", no nosso repositório do Github: https://github.com/cleuton/datascience/tree/master/R-course/lession1

Vamos imaginar um exemplo simples: Os pesos dos alunos adolescentes de uma turma: [52,52,54,56,57,60,61,65,70,120]

Peso médio: 64.7;

• Mediana: 58.5;

• Moda: 52.

Se tomarmos a média como descritor desse dataset, assumiremos que os alunos dessa turma pesam quase 65 kg, o que é um erro grosseiro. Note que, dos 10 alunos, 7 pesam menos que isso. O peso médio é 10% maior que a mediana dos pesos, e muito superior à moda.

Se você quiser saber quanto tipicamente pesa cada aluno, qual métrica usará? A moda simples, baseada em elementos que se repetem, pode não existir (caso não haja elementos repetidos), mas podemos dividir os pesos em faixas e calcular a classe modal, por exemplo:

Faixa de peso	Quantidade de alunos
Até 55 kg	3
Até 80 kg	6
Acima de 80 kg	1

Podemos ver que a faixa de peso que tem mais alunos, ou a "classe modal" é a dos que pesam entre 55 e 80 kg.

Histograma

Wikipedia:

O histograma, também conhecido como distribuição de frequências, é a representação gráfica em colunas ou em barras (retângulos) de um conjunto de dados previamente tabulado e dividido em classes uniformes ou não uniformes. A base de cada retângulo representa uma classe. A altura de cada retângulo representa a quantidade ou a frequência absoluta com que o valor da classe ocorre no conjunto de dados para classes uniformes ou a densidade de frequência para classes não uniformes. Importante ferramenta da estatística, o histograma também é uma das chamadas sete ferramentas da qualidade.

Um histograma nos permite visualizar nossos dados e como eles se agrupam em torno da média, que é o nosso valor esperado. No caso dos pesos, este seria o histograma plotado como gráfico de barras:

A média é 64,7 kg, e há mais valores abaixo dela. Temos alguns entre 60 e 70 kg e pelo menos 1 entre 110 e 120 kg.

Nosso histograma apresenta uma assimetria à direita (cauda mais comprida à direita), algo assim:

Isto denota outro fenômeno, que discutiremos posteriormente, que é a dispersão dos dados, com relação à média. Um histograma equilibrado seria como um sino:

Calculando as medidas centrais em R

Abra o RStudio. Podemos executar comandos de duas maneiras: Imediata ou scripts. Na forma imediata, digitamos os comandos na console (janela inferior esquerda) e os executamos imediatamente. Na forma de script, criamos (ou abrimos) um script R (um arquivo com extensão ".R") e digitamos os comandos, executando o script inteiro com o comando "source" (menu: "Code / Source", ou botão "source").

Abra o script "medidasCentrais.R" (menu: "File / Open File") e acompanhe:

```
# Vamos criar um vetor com pesos dos alunos:
a < c(52, 52, 54, 56, 57, 60, 61, 65, 70, 120)
# Exibindo o vetor inteiro (todas as posições):
print(a)
# Exibindo apenas a primeira posição (o peso da primeira pessoa: 52):
print(a[1])
# Exibindo apenas a décima posição (o peso da décima pessoa: 120):
print(a[10])
# Exibindo a quantidade de posições do vetor (10):
print(length(a))
# Calculando a Média manualmente (soma dos pesos / quantidade de pessoas):
media <- sum(a) / length(a)</pre>
print(media)
# Usando a função "mean()":
print(mean(a))
# Calculando a mediana dos pesos:
mediana <- median(a)</pre>
print(mediana)
# Moda (R não tem uma função nos pacotes padrões):
# Criando uma função para calcular a moda:
calcMode <- function(v) {</pre>
  uniqv <- unique(v)</pre>
  uniqv[which.max(tabulate(match(v, uniqv)))]
```

```
}
# Invocando a função e calculando a moda do vetor (54):
moda <- calcMode(a)
print(moda)
# Mostrando um histograma com a distribuição dos pesos:
print(hist(a))</pre>
```

Criamos uma variável (um espaço na memória) chamado "a" e atribuímos a ela um vetor, contendo os pesos dos dez alunos, separados por vírgulas. Em R, usamos o operador seta ("<-") para inicializar variáveis. É possível substituir pelo sinal de igual ("="), mas é melhor se acostumar com a seta:

```
a < c(52, 52, 54, 56, 57, 60, 61, 65, 70, 120)
```

A partir deste momento, "a" é um vetor, como um vetor matemático, ela conterá posições. Cada posição contém o peso de um aluno associado:

- a[1]: Peso do primeiro aluno (52 kg);
- a[2]: Peso do segundo aluno (52 kg);
- a[5]: Peso do quinto aluno (57 kg);

Para calcular a média dos pesos, precisamos da soma dos pesos e da quantidade de alunos:

```
media <- sum(a) / length(a)
print(media)</pre>
```

Atribuímos à outra variável, chamada "media" (sem acentos mesmo), uma expressão matemática, formada pelo resultado da função "sum()" dividido pelo resultado da função "length()". A primeira, retorna o somatório dos pesos de todas as posições do vetor, cujo nome foi passado como parâmetro (a), e a segunda, retorna a quantidade de posições do vetor, cujo nome foi passado (a).

O comando "print()" mostra na console o resultado.

Funções

Além do "sum()" e do "length()", R possui várias funções prontas, como estas:

- mean(): Calcula a média;
- median(): Calcula a mediana;
- hist(): Desenha o histograma;

Porém, ele carece de uma função pronta para calcular a moda. Então, criamos uma função simples:

```
calcMode <- function(v) {
  uniqv <- unique(v)
  uniqv[which.max(tabulate(match(v, uniqv)))]
}</pre>
```

Não importam os detalhes agora, apenas entenda que esta função calcula a moda de um vetor. E podemos invocá-la como fazemos com qualquer outra função:

```
moda <- calcMode(a)</pre>
```

A diferença é que esta função "calcMode()" só existe dentro do nosso código-fonte.

Execute o código e estude-o muito bem. Tente calcular as medidas de tendência central de outras amostras de dados. Experimente com valores contínuos também.

Cleuton Sampaio, M.Sc.