Step 1) Understanding Regression

Characteristics	Linear Regression	Logistic Regression
What they do	Tries to predict a number	Tries to predict outcomes that are
		yes/no, true/false or something similar
How they work	It draws a straight line through the data	It uses an S-shaped curve to show the
	points that shows the overall trend	probability of an outcome happening
What they interpret	The numbers given tell you how much	These numbers tell you how much a
	the result changes when one factor	factor increases or decreases the odds
	changes (either the independent or	of one of the outcomes happening
	dependent variable)	
When to use	Best to use when you want a predicted	Best to use when you want a decision.
	number. This method uses a straight	This method uses a curve to turn the
	line to make its predictions	prediction into a probability

Step 2) More on Linear Regression Interpreting the Measurement and Assessing Model Fitness

Dependent Variable = Alert Volume
Independent Variable = Clients
There is a positive relationship between the variables
because the line rises from the left to the right
The incline of this line is not steep, it gently slopes up
from left to right. This indicates a weaker relationship
between the variables
The R-Squared value is 0.86 which is really close to 1. The
data points fall close to the regression line. R-Squared
values that are closer to 1 indicate a better predictive
model
)

Step 3) Differentiating between models

	Scenario A – Financial	Scenario B – Online Movie
	Institution	Provider
Predictive Model	Regression - Linear	Classification – Random Forest
Variables	Dependent Variable = Global Oil	Dependent Variable = whether the
	Prices, Independent Variable =	customer is likely to watch RomCom
	Unemployment rates of top 20 GDP	with Sandler and Barrymore (yes/no)
	countries	Independent Variable = customers'
		viewing habits
Explanation	I want to look at how changes in the	Random Forests are used when large
	unemployment rates of the top 20	data sets contain more variables
	GDP countries relate to global oil	than decision trees. Each decision
	prices. Using a linear regression	tree within the forest will predict an
	model will tell me how much the oil	outcome to the same question "is
	price might change with a one-unit	this customer likely to watch
	change in the unemployment rate.	RomCom with Sandler and
		Barrymore?"

Step4) Bias in the Data from Step 2 Linear Regression Model

