BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – RÉSOLUTIONS À LA MAIN

CHRISTOPHE BAL

Document, avec son source L^AT_EX , disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Ce qui nous intéresse	2
2.	Notations utilisées	2
3.	Avec un seul facteur - Du basique très utile	3
4.	Sources utilisées	3
5.	AFFAIRE À SUIVRE	4

Date: 25 Jan. 2024 - 2 Fév. 2024.

1. CE QUI NOUS INTÉRESSE

Dans l'article « Note on Products of Consecutive Integers » 1 , Paul Erdos démontre que pour tout couple $(n,k) \in \mathbb{N}^* \times \mathbb{N}^*$, le produit de (k+1) entiers consécutifs $n(n+1) \cdots (n+k)$ n'est jamais le carré d'un entier.

Dans ce document, nous proposons quelques cas particuliers résolus de façon « adaptative » à la sueur des neurones; le but recherché est de fournir différentes approches même si parfois cela peut prendre plus de temps.

2. Notations utilisées

Dans la suite, nous emploierons les notations suivantes.

- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\}$ est l'ensemble des carrés parfaits.
- $\bullet {}^{2}\mathbb{N}_{*} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}.$
- $\forall (n,k) \in \mathbb{N}^* \times \mathbb{N}$, $\pi_n^k = \prod_{i=0}^k (n+i)$. Par exemple, nous avons $\pi_n^0 = n$ et $\pi_n^1 = n(n+1)$.
- P désigne l'ensemble des nombres premiers.
- $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*$, $v_p(n) \in \mathbb{N}$ est la valuation p-adique de n, c'est-à-dire $p^{v_p(n)} \mid n$ et $p^{v_p(n)+1} \nmid n$, autrement dit $p^{v_p(n)}$ divise n, contrairement à $p^{v_p(n)+1}$.
- $\forall (n,m) \in \mathbb{N}^2$, $n \wedge m$ désigne le PGCD de n et m.
- \bullet 2 $\mathbb N$ désigne l'ensemble des nombres naturels pairs.
- $2 \mathbb{N} + 1$ désigne l'ensemble des nombres naturels impairs.
- $(a \pm b)$ est un raccourci pour (a + b)(a b).

^{1.} J. London Math. Soc. 14 (1939).

3. Avec un seul facteur - Du basique très utile

Bien que simple, le fait suivant va être régulièrement utilisé dans la suite.

Fait 3.1.
$$\forall n \in {}^{2}\mathbb{N}_{*}$$
, s'il existe $m \in {}^{2}\mathbb{N}_{*}$ tel que $n = fm$ alors $f \in {}^{2}\mathbb{N}_{*}$.

 $D\'{e}monstration$. Il suffit de passer via les décompositions en facteurs premiers de n, m et f. \square

Nous allons souvent être amené à étudier des différences de carrés parfaits. Commençons par indiquer une jolie formule.

Fait 3.2.
$$\forall (N, M) \in \mathbb{N}^* \times \mathbb{N}^*$$
, si $N > M$, alors $N^2 - M^2 = \sum_{k=M+1}^{N} (2k-1)$.

Démonstration. Il suffit d'utiliser $N^2 = \sum_{k=1}^{N} (2k-1)$, une formule facile à démontrer algébriquement, et évidente à découvrir géométriquement.

L'identité précédente permet d'éliminer beaucoup de situations en s'aidant, si besoin, d'un petit programme informatique comme celui donné à la fin de cette section.

Fait 3.3. Soit $(N, M) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que N > M.

- (1) $N^2 M^2 \ge 2M + 1$.
- (2) $N^2 M^2 < 3$ est impossible.

Démonstration.

(1)
$$N^2 - M^2 = \sum_{k=M+1}^{N} (2k-1) \ge 2(M+1) - 1 = 2M+1$$

On peut aussi juste procéder comme suit.

$$N^2 - M^2 = (N - M)(N + M) \ge 1 \cdot (M + 1 + M) = 2M + 1$$

(2) Immédiat puisque $2M + 1 \ge 3$.

4. Sources utilisées

(1) Un échange consulté le 28 janvier 2024, et titré « n(n+1)...(n+k) est un carré ? » sur le site lesmathematiques.net.

La démonstration du fait ?? via le principe des tiroirs trouve sa source dans cet échange.

- (2) L'article « Le produit de 5 entiers consécutifs n'est pas le carré d'un entier. » de T. Hayashi, Nouvelles Annales de Mathématiques, est consultable via Numdam, la bibliothèque numérique française de mathématiques.
 - Cet article a inspiré la preuve alternative du fait ??.
- (3) Un échange consulté le 28 janvier 2024, et titré « product of six consecutive integers being a perfect numbers » sur le site https://math.stackexchange.com.

La démonstration courte du fait ?? est donné dans cet échange. Vous y trouverez aussi un très joli argument basé sur les courbes elliptiques rationnelles.

5. AFFAIRE À SUIVRE...