Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №0

по дисциплине «Моделирование»

Выполнил: Студент гр. ИВ-622 Курзин А.С.

Проверила: Ассистент Кафедры ВС Петухова Я.В.

СОДЕРЖАНИЕ

ПОСТАНОВКА ЗАДАЧИ	3
ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	3
ГЕНЕРАТОРЫ СЛУЧАЙНЫХ ЧИСЕЛ	5
РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ	5
ЗАКЛЮЧЕНИЕ	9
ЛИСТИНГ	10

ПОСТАНОВКА ЗАДАЧИ

Необходимо взять готовую реализацию трёх генераторов псевдослучайных чисел и убедиться в их равномерном распределении, используя такие параметры как χ^2 и автокорреляция.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Пусть X - исследуемая случайная величина. Требуется проверить гипотезу H_0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений над случайной величиной X: $X^n = (x_1, ..., x_n), x_i \in [a, b], \forall_i = 1...n$, и по ней построить эмпирический закон распределения F'(x) случайной величины X.

Гипотеза $H_0^{'}$: X^n порождается ранее упомянутой функцией F'(x). Разделим [a,b] на k непересекающихся интервалов $[a_i,b_i],i=1...k$.

Пусть n_i — количество наблюдений в j-м интервале;

 $p_{j} = F\left(b_{j}\right) - F\left(a_{j}\right)$ - вероятность попадания наблюдения в j-й интервал при выполнении гипотезы $H_{0}^{'}$;

 $E_j = n \, p_j$ - ожидаемое число попаданий в j-й интервал; тогда распределение Хи-квадрат с числом степеней свободы k-1 будет иметь следующую статистику:

$$\chi^2 = \sum_{j=1}^k \frac{(n_j - E_j)^2}{E_j} \sim \chi_{k-1}^2$$

В зависимости от значения критерия χ^2 гипотеза H_0 может приниматься либо отвергаться:

- $\chi_1^2 < \chi^2 < \chi_2^2$ гипотеза H_0 выполняется.
- $\chi^2 \leq \chi_1^2$ попадает в левый «хвост» распределения. Следовательно, теоретические и практические значения очень близки. Если, к примеру, происходит проверка генератора случайных чисел, который сгенерировал n чисел из отрезка [0,1] и выборка χ^n распределена равномерно на [0,1], то генератор

нельзя называть случайным (гипотеза случайности не выполняется), т.к. выборка распределена слишком равномерно, но гипотеза H_0 выполняется.

• $\chi^2 \geq \chi_2^2$ — попадает в правый «хвост» распределения, гипотеза H_0 отвергается.

Автокорреляционная функция – предназначена для оценки корреляции между смещенными копиями последовательностей.

$$a(\tau) = \frac{\sum\limits_{i=1}^{N-\tau} (x_i - Ex) (x_{i+\tau} - Ex)}{(N-\tau) * S^2(x)},$$
где

Ех - математическое ожидание — среднее значение случайной величины при стремлении количества выборок или количества её измерений (иногда говорят — количества испытаний) к бесконечности:

$$E(x) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

 $S^{2}(x)$ - выборочная дисперсия случайной величины — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки:

$$S^{2}(x) = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \dot{x})^{2} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - (\dot{x})^{2};$$

 $x_{i+\tau}$ — множество значений другой случайной величины (полученной из значений прошлой случайной величины, но с некоторым смещением);

n – мощность множества случайных величин;

т – смещение последовательности.

ГЕНЕРАТОРЫ СЛУЧАЙНЫХ ЧИСЕЛ

В качестве генератора случайных чисел были взяты:

- Стандартный генератор для языка Python
- Второй генератор случайных чисел альтернативный стандартному SystemRandom. В модуле random есть класс SystemRandom, внутри реализации которого идет обращение как раз к os.urandom. В этом альтернативном генераторе реализованы те же функции. Она выдает так же псевдослучайные данные, но они зависят дополнительно и от операционной системы. Результаты используются в криптографии. Есть недостаток то что функции SystemRandom отрабатывают в несколько раз дольше.
- Встроенный в NumPy генератор псевдослучайных чисел в подмодуле random. Числа являются псевдослучайными, в том плане что, сгенерированы детерминистически из порождающего элемента (seed number), но рассредоточены в статистическом сходстве с случайным образом. Для генерации NumPy использует особенный алгоритм, который имеет название Mersenne Twister – это генератор случайных чисел на основе «Вихря Марсенна». алгоритма Вихрь Мерсенна генератор псевдослучайных чисел основывается на свойствах простых чисел Мерсенна (отсюда название) и обеспечивает быструю генерацию высококачественных по критерию случайности псевдослучайных чисел. Вихрь Мерсенна лишён многих недостатков, присущих другим ГПСЧ, таких как малый период, предсказуемость, легко выявляемые статистические закономерности.

РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ

При помощи генератора псевдослучайных числе было сгенерировано 10 000, и 1 00 000 случайных значений в диапазоне от 0 до 1. Диапазон от 0 до 1 был поделен на 1 00 и 1 000 равномерных отрезков. Далее считаем количество попаданий на отрезки.

```
Стандартный рандом:
Всего точек:10000
Всего интервалов:1000
Хи квадрат:1059.00000000000018
Всего точек:1000000
Всего интервалов:1000
Хи квадрат:978.4779999999993
Всего точек:1000000
Всего интервалов:100
Хи квадрат:110.0975999999997
```

Рисунок 1– Результаты вычислений «хи-квадрат» для ГСЧ: Стандартный random

```
SystemRandom:
Всего точек:10000
Всего интервалов:1000
Хи квадрат:1015.199999999997
Всего точек:1000000
Всего интервалов:1000
Хи квадрат:973.8359999999997
Всего точек:1000000
Всего интервалов:100
```

Рисунок 2 – Результаты вычислений «хи-квадрат» для ГСЧ: SystemRandom

```
NumPy:
Всего точек:10000
Всего интервалов:1000
Хи квадрат:979.399999999992
Всего точек:1000000
Всего интервалов:1000
Хи квадрат:919.3900000000011
Всего точек:1000000
Всего интервалов:100
Хи квадрат:110.7326
```

Рисунок 3 – Результаты вычислений «хи-квадрат» для ГСЧ: NumPY

Таблица №1

Taominga 1421				
N - количество чисел		N = 10 000	N = 1 000 000	N = 1 000 000
k - количество интервалов		k = 1000	k = 1 000	k = 100
Генераторы случайных чисел	Стандартный random языка Python	$X^2 = 1059$	$\chi^2_{_{9\kappa cn, random}} = 978.48$	$\chi^2_{_{9KCN, random}} = 110.098$
	SystemRandom	$X^2 = 1015.2$	$\chi^2_{_{\mathcal{J}KCN, SystemRandom}} = 973.83$	$X^2 = 96.96$ skcn, SystemRandom
	NumPy (Marsenne twister)	X ² =979.4	$X_{_{\mathfrak{K}CN,\ NumPy}}^{2}=929.39$	X ² =110.73

Была рассчитана автокорреляция для каждого ГСЧ при N=1.000.000 и k=1.000, где $a(\tau)$ — автокорреляция, τ — смещение интервалов. В таблице N $^{\circ}1$ показаны результаты генерации случайных чисел каждым ГСЧ с изменением количествачисел и количества интервалов.

```
a(t): 0.00010639002976257232
t: 2
a(t): 0.0001531011200339764
t: 3
a(t): -2.526631517712201e-06
t: 4
a(t): 4.890486070151586e-05
t: 5
a(t): 0.00011497246716318977
t: 6
a(t): 8.90450744154203e-05
t: 7
a(t): 8.942178737909984e-05
t: 8
a(t): 2.8275804883855447e-05
t: 9
a(t): -9.589755198619878e-06
t: 10
a(t): -0.00013847919438545294
t: 11
a(t): 3.6816721869393716e-05
t: 12
a(t): 1.893196965780562e-05
t: 13
a(t): 0.0001785454738490241
t: 14
t: 14
a(t): 3.5071511301123114e-05
t: 15
a(t): 0.00021921420182309138
a(t): -0.00019234487412636613
t: 17
a(t): 2.165977064603795e-05
t: 18
a(t): 9.253385153656658e-05
t: 19
a(t): -0.0001019551031168983
t: 20
a(t): -6.065511204239002e-05
```

Рисунок 4 — Результат расчета коэффициента корреляции генератором: NumPY

```
t: 1
a(t): 0.00010291303734568405
t: 2
a(t): -4.12562571198859e-05
t: 3
a(t): 4.8275327769102225e-05
t: 4
a(t): -0.00010361024716407265
t: 5
a(t): 5.918559601754087e-06
t: 6
a(t): 5.122101432146405e-05
t: 7
a(t): 4.861363635746295e-05
t: 8
a(t): 6.022226045519005e-05
t: 9
a(t): 4.8593324447173345e-05
t: 10
a(t): 4.1223009120397364e-05
t: 11
a(t): 5.248771555848274e-05
t: 12
a(t): -8.653071317065792e-05
t: 13
a(t): 0.0001659487681962547
t: 14
a(t): -5.956536659101994e-05
t: 15
a(t): -6.019763862936095e-05
t: 16
a(t): 0.00012747774308036398
t: 18
a(t): -0.00012857861162284006
t: 19
a(t): 2.0667351866022685e-05
t: 20
a(t): -8.798963592830245e-05
```

Рисунок 5 — Результат расчета коэффициента корреляции генератором: SystemRandom

```
a(t): 4.133635459390662e-05
a(t): -7.019543080487497e-05
a(t): 7.391313343756057e-05
a(t): -5.0457459840988267e-05
a(t): -5.2453308366165746e-05
a(t): 0.00012133899834866426
a(t): 3.976695253710333e-05
a(t): 2.5532399273116586e-05
a(t): -1.7804669934585084e-06
a(t): -5.756187947247577e-05
a(t): 1.5204482583575554e-05
a(t): -8.623909507708797e-05
a(t): -8.010060331563146e-05
a(t): 7.642128531715837e-05
a(t): -9.877692137467345e-05
a(t): -7.3861273082270945e-06
t: 17
  16
a(t): 3.855889533340398e-05
t: 18
a(t): -0.0001976470912450474
a(t): 0.00010680436379290887
a(t): 0.00015402516140643386
```

Рисунок 6 — Результат расчета коэффициента корреляции Генератором: Стандартный random

Исходя из выше представленных данных можно сделать вывод, что числа действительно являются случайными, так как значения автокорреляции стремятся к нулю.

ЗАКЛЮЧЕНИЕ

В рамках лабораторной работы были изучены методы тестирования качества работы генератора псевдослучайных чисел и проведены эксперементы по критерий Пирсона и автокорреляции.

Из результатов эксперимента, мы можем увидеть, что критерии «хи-квадрат» примерно равны $\chi^2 = 945.899$, $\chi^2 = 1026.049$, $\chi^2 = 1028.827$, также можем заметить, что «хи-квадрат» табличного равен $\chi^2_{\text{таб}} = 1142.848$. Таким оюразом, $\chi^2_{\text{эксп}} \leq \chi^2_{\text{таб}}$ и отсюда мы можем сделать вывод о том, что гипотезы о равновероятном распределении в генераторах случайных чисел принимается. В противном случае, если бы значение $\chi^2_{\text{эксп}}$ было бы ровно или больше чем $\chi^2_{\text{таб}}$, то гипотеза была бы отклонена. Следовательно, для всех тех трех различных генераторов, которые мы взяли, гипотеза принимается.

Так же стоит заметить, что значение автокареляции приближено к нулю, что говорит о том, что статистической взаимосвязи между исходной и сдвинутой последовательности нет. Коэффициент автокорреляции напрямую зависит от количества точек на интервалах. Если уменшить количество интервалов, то точек в каждом интервале становиться больше и график будет более равномерным, а коэфициент кореляции приблежается к нулевому значению. Если уменшить количество точек, то количество точек попавшых на интервал становиться меньше.

ЛИСТИНГ

```
import random
import numpy as np
from math import sqrt
import typing as tp
def get_float_rand() -> float:
  return float(random.random())
def get_SystemRandom() -> float:
  r = random.SystemRandom()
  rand = r.random()
  return float(rand)
def get_NumPy_rand() -> float:
  rnd = np.random.sample()
  return float(rnd)
def mat_waiting(N: int, x: tp.Sequence[int]) -> float:
  i = 0
  Ex = 0
  while i < N:
     Ex += x[i] * (1 / N)
     i += 1
  return float(Ex)
def sample_variance(N: int, x: tp.Sequence[int]) -> float:
  i = 0
  Sx = 0
  Ex = mat\_waiting(N, x)
  while i < N:
     Sx += (x[i] + Ex) ** 2
     i += 1
  Sx = Sx / N
  return float(Sx)
def autocorrelation(offset: int, N: int, x: tp.Sequence[int], Ex: float, S2x: float) -> float:
  R = 0
  i = 0
```

```
while i < N - offset:
     R += (x[i] - Ex) * (x[i+offset] - Ex)
     i += 1
  R = R / ((N - offset) * S2x)
  return float(R)
N = 1000000
K = 1000
y = range(N)
\mathbf{x} = []
array = [0] * K
ksi = 0
offset = 1
for k in y:
  rand = get_float_rand()
  x.append(rand)
  inter = rand / (1 / K)
  array[int(inter)] += 1
print('Всего точек:' + str(N))
print('Всего интервалов:' + str(K))
avg = 0
for n in x:
  avg += n
avg = avg / (N)
print('Сред. арифм. :' + str(avg))
i = 0
summary = 0
while i < len(x):
  summary += (x[i] - avg) ** 2
  i += 1
deviation = sqrt((1 / N) * summary)
print('Сред. квадр. откл. :' + str(deviation))
p_i = 1 / K
i = 0
while i < K:
  ksi += (((array[i] - p_i * N) ** 2) / (p_i * N))
  i += 1
print('Кси квадрат:' + str(ksi))
```

```
Ex = mat_waiting(N, x)
S2x = sample_variance(N, x)
i = 0
offset = 1
while i < K / 2:
    R = autocorrelation(offset, N, x, Ex, S2x)
    print('offset: ' + str(offset))
    print('R: ' + str(R))

i += 1
offset +=1</pre>
```