

Описание разрабатываемого модуля

Модуль по нескольким параллельным потокам (количество потоков задается параметрически) принимает транзакции, а также значение приоритета каждого пакета транзакций. Из всех входных транзакций выбирается наиболее приоритетная, которая транслируется на выход модуля. Транзакции с равными значениями приоритета транслируются на выход по принципу Round-Robin. Значение приоритета транзакции, равное нулю, приравнивается к наибольшему значению приоритета. Арбитраж производится потранзакционно: переключение арбитра на следующий входной порт производится только после завершения передачи транзакции с текущего выбранного арбитром порта.

Описание интерфейса модуля

Помимо входа синхросигнала (clk) и синхронного сброса (rst_n), порты модуля разделяются на множество входных потоков и один выходной поток.

Каждый входной поток данных включает:

- s_data_i шина данных транзакций;
- s_qos_i шина значения приоритета текущего пакета транзакций;
- s_last_i флаг завершения транзакции;
- s_valid_i запрос от master-устройства на передачу 1 пакета данных;
- s_ready_o сигнал о готовности принять 1 пакет данных, передаваемый master-устройству.

Выходной поток включает:

- m_data_o шина данных транзакций;
- m_qos_o шина значения приоритета текущего пакета транзакций;
- m_id_o номер потока, с которого транслируется транзакция;
- m_last_o флаг завершения транзакции;
- m_valid_o запрос от модуля на передачу 1 пакета данных;
- m_ready_i сигнал о готовности принять 1 пакет данных, передаваемый модулю.

Каждый писанный порт содержит в своем названии направление передаваемых данных (i — input, o — output).

Описание микроархитектуры модуля

Так как в данном модуле не предполагается буферизация данных, предлагается использовать комбинационную логику. Каждый узел предлагается реализовать в виде отдельного подмодуля, чтобы сохранить читаемость схемы и кода на выбранном языке описания аппаратуры. Помимо стандартных комбинационных узлов (в том числе и многоразрядных) необходимо описать узел сравнения приоритетов (на Рисунке 1 обозначен как СМР), экземпляры которого необходимо соединить последовательно в количестве STREAM_COUNT – 1.

Рисунок 1 — Структурная диаграмма модуля

Остановимся подробнее на каждом блоке модуля.

1. Блок выбора потока

Данный блок представляет собой компаратор, сравнивающий STREAM_COUNT операндов и выдающий на выходе номер первого наибольшего (или равного нулю) операнда при активном соответствующему ему сигнале valid. Проще всего реализовать данный подмодуль, используя цикл с параметром.

На вход данного подмодуля необходимо подать значения QoS и valid со всех входных потоков, синхросигнал и сигнал синхронного сброса, а выходное значение будет соответствовать номеру приоритетного потока (m_id_o).

2. Блок выбора значения приоритета

Данный блок предлагается реализовать при помощи параметрического мультиплексора с многоразрядными входами данных. На входы данных подаются значения приоритетов со всех входных потоков, а на адресный вход — номер приоритетного потока.

3. Блок выбора данных

Данный блок предлагается реализовать по аналогии с предыдущим, но на входы данных мультиплексора необходимо подать данные транзакций со всех входных потоков.

4. Блок определения сигнала готовности принять пакет

В данной реализации предлагается реализовать блок определения сигнала готовности принять пакет данных при помощи дешифратора с количеством выходов, равному STREAM_COUNT, и узла побитовой конъюнкции. На информационный вход дешифратора подается значение m_id_o, а на разрешающий вход — m_ready_i. Значения с выходов дешифратора подаются на один из входов узла побитовой конъюнкции, а на второй вход подается значение s_valid_i. Таким образом, если master-устройство готово принять пакет данных,

а slave-устройство готово его предоставить, значение s_ready_о выбранного потока становится равным 1.

5. Блок определения сигнала готовности передать пакет

В данной реализации модуля предполагается, что устройство готово передать пакет в тот момент, когда slave-устройство готово передать его на один из входных потоков. Таким образом, сигнал m_valid_o формируется как результат дизъюнкции всех битов s_valid_i.

6. Блок определения флага завершения транзакции

В данной реализации модуля предполагается, что флаг завершения транзакции на выходе устройства поднимается в момент поднятия аналогичного флага на одном из входных потоков. Таким образом, сигнал m_last_o формируется как результат дизъюнкции всех битов s_valid_i.