Bioinformatics CS300 Building a Sequence Database

Week7, Deck 1
Fall 2022
Oliver BONHAM-CARTER

Spreadsheets?

Good for Small Data Sets

Pros

- Convenient to maintain a spreadsheet
- Lots of data available online in spreadsheets
- Looking up specifics

Cons

- Hard to query for specifics
- Data appears crowded and confusing
- File limits on how much data you can store.
- Security: spreadsheet make all data available to all users?

So, Use a Database!!

- Improved data sharing and data security
- Effective data integration
- Consistent, reliable data
- Maintainable
- Increased productivity
- Better decision-making

And more!

Let's Make a Database!!

- Simple, easy to learn SQL language
- Open source
- Built for sophisticated queries to find any type of data.
- Download Link: https://www.sqlite.org/download.html

SQLite Resources

- Documentation:
 - https://www.sqlite.org/docs.html
- Online SQLite3 (demonstrations)
 - https://extendsclass.com/sqlite-browser.html
 - https://sqliteonline.com/
- Command Line Reference
 - https://www.sqlite.org/cli.html

Coding Time!

Store this information

Maybe this information too?

Basic Schema

For a single table

CREATE TABLE mySeq(

ID VARCHAR,

name VARCHAR,

seq VARCHAR);

mySeq

ID, Name, Seq

Attributes
(similar to variables)

Create a Table

- Paste in your table creation code.
- Click "Run"

SQLite Browser Online:

https://extendsclass.com/sqlite-browser.html


```
INSERT INTO mySeq VALUES
```

(

"gene101",

"x-gene",

"ATATCG"

stored as a tuple

mySeq

ID = "gene101", Name = "x-gene", Seq = "ATATCG"

Add Data (Populate)

- Paste insert code with data as a tuple
- Click "Run"

```
Database file Queries Save & Share Export Run

1 INSERT INTO mySeq VALUES (
2 "gene101",
3 "x-gene",
4 "ATATCG");
```


SELECT * FROM mySeq;

mySeq

ID = "gene101", Name = "x-gene", Seq = "ATATCG" ID name seq

gene101 x-gene ATATCG

query

- Paste query code
- Click "Run"

Add More Data

```
INSERT INTO mySeq VALUES
"gene210",
                                    mySeq
"a-gene",
"GATATCG");
                                  ID = ... ,
Name = ... ,
INSERT INTO mySeq VALUES
"gene300",
"b-gene",
          Add more data
"GTATCG");
```


Query ID's and Seqs

SELECT ID, seq FROM mySeq;

mySeq

ID = "gene101", Name = "x-gene", Seq = "ATATCG"

ID	seq
gene101	ATATCG
gene210	GATATCG
gene300	GTATCG

query

- Create a database to contain the following information.
 - ID
 - Organism
 - DNASeq
 - Protseq
- Add at least four rows of data (this data can be real or made-up)
- Offer two queries for two different types of information from the data.

GitHub Classroom working repository:

https://classroom.github.com/a/pqKAOxgT

Please Push

- Table creation code
- Code to insert data
- SQL query code for two queries
- Sample Output

Due on Friday

14 Oct 2022

THINK