Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method of modulating or demodulating a communication signal using differential quadrature phase shift keying (DQPSK), the method comprising:

upon receiving an inbound communication signal, demodulating the inbound communication signal by:

obtaining Pi/4 differential quadrature phase shift keying (DQPSK) symbols;

translating the Pi/4 DQPSK symbols into quadrature phase shift keying (QPSK) symbols utilizing the formula

 $\underline{S_{OPSK}(t) = (real(S(t)) + imag(S(t))) * (real(S(t-1)) - imag(S(t-1)))}.$

where S(t) is a DOPSK symbol at time t, and Sopsk(t) is a OPSK symbol at time t; and

mapping the QPSK symbols to a pair of bits; and

upon initiating an outbound communication signal, modulating the outbound communication signal by:

obtaining communication bits indicative of the outbound communication signal; translating the communication bits to three communication bits; and mapping the translated bits to DQPSK symbols.

- 2. (Currently Amended) The method of claim 1, wherein the translating the communication bits comprises performing an XOR operation.
 - 3. (Cancelled)

- 4. (Currently Amended) The method of claim [3] 1, wherein a phase of a first symbol is not known and a phase of a predecessor symbol is known.
- 5. (Previously Presented) The method of claim 1, wherein mapping the QPSK symbols to a pair of bits comprises utilizing a lookup table to map the QPSK symbols to a pair of bits.
- 6. (Previously Presented) The method of claim 5, wherein the lookup table includes the following values stored therein:

QPSK Symbol Input	Two Bits Output
Pi/4	. 00
3 Pi/4	01
-3 Pi/4	10
-Pi/4	11

- 7. (Previously Presented) The method of claim 1, wherein translating the communication bits to three communication bits comprises providing two variable bits and a hardwired bit to an adder.
- 8. (Previously Presented) The method of claim 1, wherein the step of mapping the translated bits to DQPSK symbols comprises using a lookup table.
- 9. (Original) The method of claim 1, wherein modulating does not require a complex multiplication operation.

10. (Currently Amended) A Pi/4 differential quadrature phase shift keying (DQPSK) modem, the modem comprising:

a processing unit; and

a storage device coupled to the processing unit and having stored there information for configuring the processing unit to:

obtain Pi/4 differential quadrature phase shift keying (DQPSK) symbols;

translate the Pi/4 DQPSK symbols into quadrature phase shift keying (QPSK) symbols utilizing the formula

 $S_{OPSK}(t) = (real(S(t)) + imag(S(t))) * (real(S(t-1)) - imag(S(t-1))),$ where S(t) is a DOPSK symbol at time t, and $S_{OPSK}(t)$ is a OPSK symbol at time t;

map the QPSK symbols to a pair of bits;

obtain communication bits indicative of the outbound communication signal; translate the communication bits to three communication bits; and map the translated bits to DQPSK symbols.

- 11. (Previously Presented) The modem of claim 10, wherein the translation of the communication bits to three communication bits comprises performing an XOR operation.
- 12. (Previously Presented) The modern of claim 10, wherein the mapping of QPSK symbols to a pair of bits performed by the processing unit comprises utilizing a lookup table to map the QPSK symbols to a pair of bits.
 - 13. (Cancelled)

14. (Previously Presented) The modern of claim 10, wherein the storage device comprises look up tables having the following values stored therein:

QPSK Symbol Input	Two Bits Output	
Pi / 4	00	
3 Pi / 4	01	
- 3 Pi / 4	10	
- Pi / 4	11	

and

Bit Combination	Real	Imaginary
000	0	1
001	-0.707	0.707
010	-1	0
011	-0.707	-0.707
100	0	-1
101	0.707	-0.707
110	1	0
111	0.707	0.707

15. (Currently Amended) A system which modulates or demodulates a communication signal using differential quadrature phase shift keying (DQPSK), the system comprising:

means for obtaining Pi/4 differential quadrature phase shift keying (DQPSK) symbols;

means for translating the Pi/4 DQPSK symbols into quadrature phase shift keying (QPSK) symbols utilizing the formula

$\underline{Sopsk}(t) = (real(S(t)) + imag(S(t))) * (real(S(t-1)) - imag(S(t-1))),$

where S(t) is a DOPSK symbol at time t, and SOPSK(t) is a QPSK symbol at time t;

means for mapping the QPSK symbols to a pair of bits;

means for obtaining communication bits indicative of the outbound communication signal;

means for translating the communication bits to three communication bits; and means for mapping the translated bits to DQPSK symbols.

- 16. (Original) The system of claim 15, wherein the means for translating the communication bits to three communication bits does not involve a complex multiplication operation.
- 17. (Previously Presented) The system of claim 15, wherein the means for translating the communication bits to three communication bits comprises means for performing an XOR operation.
 - 18. (Cancelled)
- 19. (Original) The system of claim 18, wherein a phase of a first symbol is not known and a phase of a predecessor symbol is known.
- 20. (Original) The system of claim 15, wherein the means for mapping the QPSK symbols to a pair of bits comprises means for utilizing a lookup table to map the QPSK symbols to a pair of bits.
- 21. (Currently Amended) A method of modulation using differential quadrature phase shift keying (DQPSK), the method comprising:

obtaining two communication bits indicative of the outbound communication signal;

translating the two communication bits to three communication bits; and

mapping the translated bits to DQPSK symbols wherein each DQPSK symbol is represented by a single in-phase component and a single quadrature phase component using a look up table wherein the look up table includes the following values stored therein:

Bit Combination	Real	<u>Imaginary</u>
000	0	1
<u>001</u>	<u>-0.707</u>	0.707
<u>010</u>	<u>-1</u>	<u>0</u>
011	<u>-0.707</u>	<u>-0.707</u>
100	<u>0</u>	<u>-1</u>
<u>101</u>	0.707	<u>-0.707</u>
110	<u>1</u>	<u>0</u>
111	<u>0.707</u>	0.707

22. (Currently Amended) A method of demodulation using differential quadrature phase shift keying (DQPSK), the method comprising:

obtaining Pi/4 differential quadrature phase shift keying (DQPSK) symbols;

translating the Pi/4 DQPSK symbols into quadrature phase shift keying (QPSK) symbols utilizing the formula

 $\underline{S_{OPSK}(t) = (real(S(t)) + imag(S(t))) * (real(S(t-1)) - imag(S(t-1))),}$ where S(t) is a DOPSK symbol at time t, and $\underline{S_{OPSK}(t)}$ is a OPSK symbol at time t; and mapping the QPSK symbols to a pair of bits.