

Course Name: Probability Dept.: Department of Mathematics

Exam Duration: 180 mins Venue: Depart. of Math.

Question No.	1	2	3	4	5	6	7	
Score	16 marks	16 marks	12 marks	16 marks	12 marks	12 marks	16 marks	

This exam paper contains <u>seven</u> questions and the score is <u>100</u> in total. (Please hand in your exam paper, answer sheet, and your scrap paper to the proctor when the exam ends.)

Notations:

- \mathbb{R} : the real number set, i.e., $\mathbb{R} = (-\infty, \infty)$.
- \mathcal{B} : the Borel σ -algebra of \mathbb{R} .
- Re $(\phi_X(t))$: real part of the characteristic function $\phi_X(t)$ of random variable X.
- a.e.: almost everywhere.
- a.s.: almost surely.
- i.i.d.: independent and identically distributed.
- $Z \sim N(0,1)$: random variable Z has standard normal distribution.

ANSWER THE FOLLOWING SEVEN QUESTIONS:

- 1. Answer the following two questions:
- (a) Let f be a measurable function on a measure space $(\Omega, \mathcal{A}, \mu)$. Suppose $\int_{\Omega} f \, d\mu$ exists and A_1, A_2, \ldots form a partition of Ω . Show that

$$\int_{\Omega} f \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{A_n} f \, \mathrm{d}\mu.$$

(b) Assume that X is a random variable defined on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Show that

$$\mathbb{E}|X| < \infty$$
 if and only if $\sum_{n=1}^{\infty} \mathbb{P}(|X| > n) < \infty$.

- 2. Answer the following two questions:
- (a) Let f be a measurable function on a measure space $(\Omega, \mathcal{A}, \mu)$. Show that if f is integrable, then $\mu(A_n) \to 0$ as $n \to \infty$ implies

$$\int_{A_n} |f| \mathrm{d}\mu \to 0.$$

(b) Consider the integral

$$I_n = \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-3x} dx.$$

- (i) Guess the value of $\lim_{n\to\infty} I_n$.
- **4.16** 设 $\alpha > 0$, 求极限 $\lim_{n \to \infty} (\mathbf{R}) \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-(\alpha + 1)x} dx$. 令 $f_n(x) = \left(1 + \frac{x}{n}\right)^n e^{-(\alpha + 1)x} \varphi_{[0,n]}(x)$, 则 $\lim_{n \to \infty} f_n(x) = e^{-\alpha x}$.
- (ii) Prove that your guess is correct.
- 3. Let X_1 and X_2 be two independent \mathbb{R} -valued random variables with distributions F_1 and F_2 , respectively. Show that the distribution function of the sum $X_1 + X_2$ is given by

$$\mathbb{P}\left(X_1 + X_2 \le x\right) = \int_{\mathbb{R}} F_1\left(x - x_2\right) dF_2\left(x_2\right).$$

4. Given a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, let X be a \mathbb{R} -valued random variable, and for $t \in \mathbb{R}$, define the characteristic function of X by

$$\phi_X(t) := \int_{\mathbb{R}} e^{itx} \mathbb{P}^X(dx) = \mathbb{E}\left[e^{itX}\right] = \mathbb{E}\left[\cos(tX) + i\sin(tX)\right].$$

where \mathbb{P}^X is the distribution measure of X.

(a) Show that, for any $t \in \mathbb{R}$,

$$1 - \text{Re}(\phi_X(2t)) < 4 [1 - \text{Re}(\phi_X(t))].$$

(b) Let $\{X_j\}_{j\geq 1}$ be a sequence of independent and identically distributed random variables with $\mathbb{E}(X_j) = \mu$ and $\mathrm{Var}(X_j) = \sigma^2 \in (0, \infty)$. Let

$$S_n = \sum_{j=1}^n X_j$$
 and $Y_n = \frac{S_n - n\mu}{\sqrt{n}\sigma}$.

Use characteristic function to show that Y_n converges in distribution to Z, where $Z \sim N(0, 1)$.

5. Given a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, assume that $\{X_n\}_{n\geq 1}$ is a sequence of random variables, and X is a random variable, all of which are from (Ω, \mathcal{A}) to $(\mathbb{R}, \mathcal{B})$. If $X_n \xrightarrow{P} X$, show that there exists a subsequence $\{n_k\}_{k\geq 1}$ such that $X_{n_k} \xrightarrow{\text{a.s.}} X$.

6. Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables, and let f_0 and f_1 be two probability density functions. Assume $f_0(x) > 0$ for all x and X_k has f_0 as its density function. Define

$$\xi_n = \frac{f_1(X_1)\cdots f_1(X_n)}{f_0(X_1)\cdots f_0(X_n)}, \quad n = 1, 2, \dots$$

Show that $\{\xi_n\}_{n\geq 1}$ is a martingale with respect to $\mathcal{F}_n = \sigma\{X_1,\ldots,X_n\}$.

- 7. Answer the following two questions:
 - (i) State the Doob's Optional Sampling Theorem.
- (ii) Let $\{X_n\}_{n\geq 0}$ be an integrable and adapted process. Show that $\{X_n\}_{n\geq 0}$ is a martingale if and only if $\mathbb{E}[X_S] = \mathbb{E}[X_T]$ for all stopping times S and T that take at most two real-valued values.

1. Solution

(b) "="
$$\sum_{n=1}^{\infty} p(|x|-n) = \sum_{n=1}^{\infty} \sum_{n=n+1}^{\infty} p(|x|-m) = \sum_{n=1}^{\infty} n p(|x|-n) = \sum$$

2. Solution

(a) for a sequence of numbers
$$\{a_n\}_{n\geq 1}$$
 increasing to ∞ , we decompose

 $\mu|fI_{Rn}| = \mu(|f|I_{Rn} \cap |f| \leq a_n) + \mu(|f|I_{Rn} \cap |f| \geq a_n) \leq a_n \mu(A_n) + \mu(|f|I_{(|f| \geq a_n)})$

:
$$f$$
 is integrable, $|f|_{SH}=a_{n}| \leq |f|$, By DCT $\mu(|f|_{SH}=a_{n}|) \rightarrow \mu(|f|_{SH}=a_{n}|)=0$
We set $\alpha_{n}=(\mu(a_{n}))^{-1/2}$. : $\mu(|f|_{SH}) \leq (\mu(a_{n}))^{1/2}+\mu(|f|_{SH})=a_{n}|) \rightarrow 0$

(ii) Let
$$\int_{0}^{\pi} = I_{(0,n)} (1+\frac{x}{n})^n e^{-3x}$$
, then $\int_{0}^{\pi} \int_{0}^{\pi} I_{(0,n)} e^{-2x} \left((H^{\frac{x}{n}})^n f \right) dx = \int_{0}^{\pi} \lim_{n \to \infty} \int_{0}^{\pi} I_{(n)} dx = \int_{0}^{\pi}$

$$P(x_1+x_2 \leq x) = \int_{\mathbb{R}} P(x_1 \leq x-s) dF(s) = \int_{\mathbb{R}} F(x-s) dF(s)$$

4. Solution

(a)
$$1-\text{Re}\left(\phi_{X}(zt)\right) = \int_{\mathbb{R}}\left(1-\alpha_{X}(ztX)\right)p^{X}(dx) = \int_{\mathbb{R}}2\left(1-\alpha_{X}^{2}tX\right)p^{X}(dx) = \int_{\mathbb{R}}2\left(1+\alpha_{X}^{2}tX\right)\left(1-\alpha_{X}^{2}tX\right)p^{X}(dx)$$

$$\leq \left[4\left(1-\alpha_{X}^{2}tX\right)p^{X}(dx) = 4\left[1-\text{Re}\left(\phi_{X}(t1)\right)\right]$$

(b)
$$Y_n = \frac{S_n - nn}{m\sigma} = \frac{1}{m} \frac{N}{m} \frac{X_i - N}{\sigma}$$
 $M_i = \frac{X_i - N}{\sigma}$, $E(M_i) = 0$, $Var(M_i) = 1$.

$$\lim_{n \to \infty} |V_{n}(t)| = \lim_{n \to \infty} \left[1 - \frac{t^{2}}{2n} + o(\frac{t}{n}) \right]^{n} = \exp \left\{ \lim_{n \to \infty} n \left[n \left(1 - \frac{t^{2}}{2n} + o(\frac{t}{n}) \right) \right] \right\} = \exp \left\{ -\frac{t^{2}}{2} \right\} = \exp \left\{ -\frac{t^{2}}{2}$$

5. Solution.

GPT .

$$X_{n} \stackrel{P}{\longrightarrow} X$$
, ... for any \$200, $\lim_{n \to \infty} P(|X_{n} - X| \ge \xi) = 0$, ... $\exists \{n_{k}\}, p\{|X_{n_{k}} - X| \ge \xi\} \ge \frac{1}{2R}$
 $\vdots \stackrel{P}{\longrightarrow} P(|X_{n_{k}} - X| \ge \xi) \ge \infty$... $P(|X_{n_{k}} - X| \ge \xi, i \cdot 0, \xi) = 0$ [Borel - Cantelli Lemma]
 $\vdots P(\exists N, k > N, |X_{n_{k}} - X| \le \xi) = 1$, i.e. $P(|X_{n_{k}} - X| \ge \xi) = 1$

6. Solution

(i) For any
$$n$$
, $E[|3n|] = E[3n] = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \frac{f_{i}(x_{i}) \cdots f_{i}(x_{n})}{f_{o}(x_{i}) \cdots f_{o}(x_{n})} f_{o}(x_{i}) \cdots f_{o}(x_{n}) dx_{1} \cdots dx_{n}$

$$= \int_{\mathbb{R}} f_{i}(x_{i}) dx_{1} \cdots \int_{\mathbb{R}} f_{i}(x_{n}) dx_{n} = 1 \quad 200$$

(ii) For any n, 3, is Fn-measurable.

(iii) For any n , $E\left[\frac{1}{3}n\right] = E\left[\frac{\frac{1}{5}(X_1)\cdots\frac{1}{5}(X_{m-1})}{\frac{1}{5}(X_1)\cdots\frac{1}{5}(X_m)}\right] + \frac{1}{5}(X_m)\left[\frac{1}{5}(X_m)\right] = \frac{1}{3}n-1$ $= \frac{1}{3}n-1\int_{\mathbb{R}}\frac{\frac{1}{5}(X_m)}{\frac{1}{5}(X_m)} + \frac{1}{5}(X_m)dX_m = \frac{1}{3}n-1\int_{\mathbb{R}}\frac{1}{5}(X_m)dX_m = \frac{1}{3}n-1$ $\therefore \frac{1}{3}n^3_{n\geq 1} \text{ is a martingale with respect to } F_n = \frac{1}{5}(X_1,\dots,X_n)$								
7. Solution								
(i) Let (Xn) n = 0 l	ne a martingale (resp. superm	artingale)	and let s.T					
be stopping times	bounded by a constant c u	V						
proof (Martingale)	Proof. First note that $E\left X_T\right = E\left\{\left \sum_{n=0}^c X_n I_{\{T=n\}}\right \right\}$ $\leq \sum_{n=0}^c E\left X_n I_{\{T=n\}}\right \leq \sum_{n=0}^c E\left X_n\right < \infty$ Similarly, $E\left X_S\right < \infty$. Hence X_S and X_T are integrable. Second, X_S is \mathcal{F}_S -measurable, and $E\left(X_T \mathcal{F}_S\right)$ is also \mathcal{F}_S -measurato prove that for all $A \in \mathcal{F}_S$, we have $\int_A X_T dP = \int_A X_S dP$ i.e. $E\left(X_T I_A\right) = E\left(X_S I_A\right)$ To prove (§.3), define a r.v. $R(\omega) = S(\omega) I_A(\omega) + T(\omega) I_{A^c}(\omega)$ $R(\omega) \text{ is a stopping time. Indeed,}$ $\left\{R \leq n\right\} = (A \cap \{S \leq n\}) \cup (A^c \cap \{T \leq n\})$ Because $A \in \mathcal{F}_S$, then $A \cap \{S \leq n\} \in \mathcal{F}_n$. Also $A^c \in \mathcal{F}_S \subset \mathcal{F}_T$, then	(8.3)						
	8.2. STOPPING TIME $n\} \in \mathcal{F}_n. \text{ Thus } \{R \leq n\} \in \mathcal{F}_n. \text{ Thus } R \text{ is a stopping time.}$ Now $R \leq T \leq c$, then $E\left(X_R\right) = E\left(X_SI_A + X_TI_{A^c}\right)$ $E\left(X_T\right) = E\left(X_TI_A + X_TI_{A^c}\right)$ By Theorem 8.2.2 we have $E\left(X_R\right) = E\left(X_T\right) = E\left(X_0\right)$ Then 8.4 and 8.5 yield that $E\left(X_SI_A\right) - E\left(X_TI_A\right) = 0$ By the definition of conditional expectation, 8.2 holds.	(8.4) (8.5)						
	pale) QE 12 , $\alpha < \delta$, then $E[X_T \overline{T}_S] = E[X_T] = E[X_S]$	Xs a.s.						

@ a>b .---

" <u>"</u>	= "	£[Xn]]	<u>.</u> m], Xr	m is	<i>Ŧ</i> _m ···	. (n>n	1),	R(w) =	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ι , ι ,	W & A W & A	, Y A E Fm
R is	s a	stopping	time .	E	[XR] =	E[I	oc Xn +	Ia Xm]	= £[(Xn]	(s= n	, T= R)
:. <u>1</u>	E[lax.] = E[In X	E)	Pa Xm 0	lp =	A E (Xn l	17m) dp	;.	Xm =	E (Xn/7,	, T= R) J a.s.
		, is				•		•				
	,,.,	•	,,,,,,	J	•							