GEOMETRÍA MODERNA II

2019-2 (08 marzo 2019)

EXAMEN PARCIAL 01

INSTRUCCIONES: Justificar y argumentar todos los resultados que se realicen. Resolver únicamente cuatro ejercicios, de entregar más de cuatro ejercicios se anulará el ejercicio de mayor puntaje.

- 1. Sea $\triangle ABC$; h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_c \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.
- 2. Sea Γ una familia de circunferencias coaxiales. Demostrar que para cualquier punto P en el plano existe $\zeta(A,\alpha)\in\Gamma$ y $\zeta(B,\beta)\in\Gamma^{\perp}$ tal que $P\in\zeta(A,\alpha)\cap\zeta(B,\beta)$.
- 3. Sean $\zeta(A,\alpha)$ y $\zeta(B,\beta)$ circunferencias con $A \neq B$ cuyo eje radical es la recta l. Demostrar que para cualquier $C \in l$ si m y n son rectas tales que $m \cap n = \{C\}$ y $m \cap \zeta(A,\alpha) = \{P,Q\}$ y $n \cap \zeta(B,\beta) = \{R,S\}$ entonces $\{P,Q,R,S\}$ es un conjunto concíclico de puntos.
- 4. Demostrar que si $\{A,B,C\}$ es un conjunto de puntos en posición general y $\{\alpha,\beta,\gamma\}\subseteq\mathbb{R}$ entonces existe una circunferencia ortogonal a $\zeta(A,\alpha)$, $\zeta(B,\beta)$ y $\zeta(C,\gamma)$ simultáneamente.
- 5. Sea Γ una familia de circunferencias coaxiales y $\zeta(A,\alpha) \notin \Gamma$. Demostrar que los ejes radicales de $\zeta(A,\alpha)$ y cada circunferencia de Γ son rectas concurrentes.

GEOMETRÍA MODERNA II

2019-2 (08 marzo 2019)

EXAMEN PARCIAL 01

INSTRUCCIONES: Justificar y argumentar todos los resultados que se realicen. Resolver únicamente cuatro ejercicios, de entregar más de cuatro ejercicios se anulará el ejercicio de mayor puntaje.

- 1. Sea $\triangle ABC$; h_X la altura por $X \in \{A, B, C\}$. Demostrar que si $h_A \cap \overline{BC} = \{D\}$, $h_B \cap \overline{CA} = \{E\}$ y $h_C \cap \overline{AB} = \{F\}$ entonces $D\{\overline{DE}, \overline{DF}; \overline{DA}, \overline{DB}\} = -1$.
- 2. Sea Γ una familia de circunferencias coaxiales. Demostrar que para cualquier punto P en el plano existe $\zeta(A,\alpha)\in\Gamma$ y $\zeta(B,\beta)\in\Gamma^{\perp}$ tal que $P\in\zeta(A,\alpha)\cap\zeta(B,\beta)$.
- 3. Sean $\zeta(A,\alpha)$ y $\zeta(B,\beta)$ circunferencias con $A\neq B$ cuyo eje radical es la recta l. Demostrar que para cualquier $C\in l$ si m y n son rectas tales que $m\cap n=\{C\}$ y $m\cap \zeta(A,\alpha)=\{P,Q\}$ y $n\cap \zeta(B,\beta)=\{R,S\}$ entonces $\{P,Q,R,S\}$ es un conjunto concíclico de puntos.
- 4. Demostrar que si $\{A,B,C\}$ es un conjunto de puntos en posición general y $\{\alpha,\beta,\gamma\}\subseteq\mathbb{R}$ entonces existe una circunferencia ortogonal a $\zeta(A,\alpha)$, $\zeta(B,\beta)$ y $\zeta(C,\gamma)$ simultáneamente.
- 5. Sea Γ una familia de circunferencias coaxiales y $\zeta(A,\alpha) \notin \Gamma$. Demostrar que los ejes radicales de $\zeta(A,\alpha)$ y cada circunferencia de Γ son rectas concurrentes.