Introduction to Computability and Complexity -Homework 4

Andrew McIsaac

December 1, 2021

Determine the correct inclusion relationship between the following pairs of classes. That is, fill in one of the relation symbols \subsetneq , \subseteq , =, \supseteq , \supseteq , or ? (if we cannot say based on our knowledge). Justify your answers.

(a) SPACE(n) ? TIME $(2^{\log^3 n})$

If we want to show any subset relationship from SPACE to TIME, we would have to go through Theorem 1.iii and the Corollary to Theorem 2. But NSPACE $(n) \nsubseteq \text{TIME}(2^{\log^3 n})$, as $n \notin o(\log^3 n)$.

If we want to show any subset relationship from TIME to SPACE, we would have to at least go through SPACE($2^{\log^3 n}$) (either by 1.i or by 1.ii and 1.iv), and then by Theorem 4 show that $2^{\log^3 n} \in o(n)$, which is false.

Therefore we cannot say the inclusion relationship.

(b) $\text{TIME}(2^{\log^3 n}) \supseteq \text{NSPACE}(\log^2 n)$

$$\operatorname{NSPACE}(\log^2 n) \overset{(1)}{\subseteq} \operatorname{TIME}(2^{\log^{2.5} n}) \overset{(2)}{\subsetneq} \operatorname{TIME}(2^{\log^3 n})$$

- (1) By Corollary. $\log^2 n \in o(\log^{2.5} n)$
- (2) By Theorem 5.

$$2^{\log^{2.5} n} \in o\left(\frac{2^{\log^3 n}}{\log^3 n}\right) \iff \lim_{n \to \infty} \frac{2^{\log^{2.5} n} \cdot \log^3 n}{2^{\log^3 n}} = 0$$

 $2^{\log^3 n}$ dominates, so at the limit the equation holds.

(c) $NSPACE(\log^2 n) \subseteq NTIME(2^{\log^3 n})$

$$NSPACE(\log^2 n) \subsetneq^{(1)} TIME(2^{\log^3 n}) \subseteq NTIME(2^{\log^3 n})$$

- (1) By Problem (b).
- (2) By Theorem 1.ii.
- (d) $NTIME(2^{\log^3 n})$? $NTIME(2^{n \log n})$

To show an inclusion relationship from NTIME \to NTIME, we'd have to go through NTIME \to SPACE \to NSPACE \to TIME \to NTIME. For NSPACE(f(n)) \subseteq TIME($2^{g(n)}$) such that $f(n) \in o(g(n))$ there is no possibility for either inclusion direction, so we cannot say based on our knowledge.

(e) NTIME $(2^{n \log n}) \supseteq SPACE(n)$

$$SPACE(n) \subseteq SPACE(n \log(\log n)) \tag{1}$$

$$SPACE(n \log(\log n)) \subseteq NSPACE(n \log(\log n))$$
 (2)

$$NSPACE(n \log(\log n)) \subseteq TIME(2^{n \log n})$$
(3)

$$TIME(2^{n\log n}) \subseteq NTIME(2^{n\log n}) \tag{4}$$

- (1) By Theorem 4. Clearly $n \in o(n \log(\log n))$
- (2) By Theorem 1.iii.
- (3) By Corollary.

$$\lim_{n \to \infty} \frac{n \log(\log n)}{n \log n} = \frac{\log(\log n)}{\log n} = 0$$

- (4) By Theorem 1.ii.
- (f) $SPACE(n) \supseteq NSPACE(\log^2 n)$

$$NSPACE(\log^2 n) \overset{(1)}{\subseteq} SPACE(\log^4 n) \overset{(2)}{\subsetneq} SPACE(n)$$

- (1) By Theorem 3.
- (2) By Theorem 4. Clearly $\log^4 n \in o(n)$
- (g) $\text{TIME}(2^{\log^3 n}) \subseteq \text{NTIME}(2^{\log^3 n})$

$$TIME(2^{\log^3 n}) \stackrel{(1)}{\subseteq} NTIME(2^{\log^3 n})$$

(1) By Theorem 1.ii.

Cannot be \subsetneq , as there would have to be a g(n) greater than $2^{\log^3 n}$ so that Theorem 5 could apply, but also equal to $2^{\log^3 n}$ so that Theorem 1.ii can apply. Obviously this is not possible. Further, there cannot be an inclusion relationship from NTIME \to TIME, as there would have to be an additional exponential factor for TIME, from the Corollary.

(h) $NSPACE(\log^2 n) \subsetneq NTIME(2^{n \log n})$

$$\operatorname{NSPACE}(\log^2 n) \overset{(1)}{\subseteq} \operatorname{TIME}(2^{\log^3 n}) \overset{(2)}{\subsetneq} \operatorname{TIME}(2^{n \log n}) \overset{(3)}{\subseteq} \operatorname{NTIME}(2^{n \log n})$$

- (1) By Corollary. $\log^2 n \in o(\log^3 n)$
- (2) By Theorem 5.

$$2^{\log^3 n} \in o\left(\frac{2^{n\log n}}{n\log n}\right) \iff \lim_{n \to \infty} \frac{2^{\log^3 n} \cdot n\log n}{2^{n\log n}} = 0$$

 $2^{n \log n}$ dominates, so the limit holds.

(3) By Theorem 1.ii.

(i) NTIME $(2^{\log^3 n})$? SPACE(n)

From SPACE \rightarrow NTIME we would need to go from n to something that dominates n in the exponent (going through the Corollary), which $\log^3 n$ does not.

From NTIME \to SPACE by Theorem 1.iv we get SPACE($2^{\log^3 n}$), but there is no way to get to SPACE(n) from here.

(j) $NTIME(2^{n \log n}) \supseteq TIME(2^{\log^3 n})$

$$\mathrm{TIME}(2^{\log^3 n}) \overset{(1)}{\subsetneq} \mathrm{TIME}(2^{n\log n}) \overset{(2)}{\subseteq} \mathrm{NTIME}(2^{n\log n})$$

- (1) By Theorem 5. (Same proof as (2) in Problem (h)).
- (2) By Theorem 1.ii.