Aula 3: Retificadores de Onda Completa

Prof. Derick Furquim Pereira

Parte teórica

Questionário

1. (3,0 pontos) Dado o circuito abaixo, onde $v_i(t) = V_P \sin \omega t$, esboce a forma de onda de $v_o(t)$ e no mesmo gráfico indique em quais momentos cada um dos diferentes diodos entra em condução. Por fim, calcule o valor médio de $v_o(t)$.

- 2. (1,0 pontos) Com base na resposta da questão anterior, responda:
 - (a) Qual a relação entre as frequências de v_o e v_i ? Justifique.
 - (b) A tensão de saída v_o é contínua? Justifique.

Retificador de onda completa com derivação central

Procedimento

Coloque a chave S1 do *DIP Switch* na posição fechada (ON) e mantenha as demais chaves na posição aberta. Nesta condição, tem-se o circuito equivalente mostrado na Figura 1.

Figura 1: Circuito equivalente do retificador de onda completa com derivação central.

Para realizar a filtragem capacitiva da tensão na saída do retificador da Figura 1, posicione as chaves S1 e S2 do *DIP Switch* na posição fechada (ON) e mantenha as demais abertas. Desta forma, o capacitor C1 da Figura 1 é inserido na saída do retificador.

Universidade Federal Fluminense Departamento de Engenharia Elétrica TEE00129 - Laboratório de Eletrônica Básica

Questionário

3. (2,0 pontos) Com o auxílio de um osciloscópio, meça a tensão de saída do retificador de onda completa (Figura 1) sem o filtro capacitivo. Esboce a forma de onda observada e meça os valores de pico a pico, eficaz, médio, o período e a frequência.

Valor	Acoplamento CC	Acoplamento CA	Período	Frequência
Pico-pico				
Eficaz				
Médio				

- 4. (1,0 pontos) Com o auxílio de um osciloscópio, e utilizando o **Acoplamento CC**, meça a tensão de saída do retificador de onda completa (Figura 1) **com** o filtro capacitivo. Em seguida, responda as questões a seguir:
 - (a) A forma de onda deixou de ser pulsante?
 - (b) Qual o novo valor médio da tensão de saída?
- 5. (1,0 pontos) Com o auxílio de um osciloscópio, e utilizando o **Acoplamento CA**, meça as ondulações (*ripple*) da tensão de saída do retificador de onda completa (Figura 1) **com** o filtro capacitivo, considerando os valores mínimo de máximo da resistência do potenciômetro POT1.

Retificador de onda completa tipo ponte.

Procedimento

Coloque a chave S3 do *DIP Switch* na posição fechada (ON) e mantenha as demais chaves na posição aberta. Nesta condição, tem-se o circuito equivalente mostrado na Figura 2.

Figura 2: Circuito equivalente do retificador de onda completa tipo ponte.

Universidade Federal Fluminense Departamento de Engenharia Elétrica TEE00129 - Laboratório de Eletrônica Básica

Para realizar a filtragem capacitiva da tensão na saída do retificador da Figura 2, posicione as chaves S3 e S4 do *DIP Switch* na posição fechada (ON) e mantenha as demais abertas. Desta forma, o capacitor C2 da Figura 2 é inserido na saída do retificador.

Questionário

6. (1,0 pontos) Com o auxílio de um osciloscópio, meça a tensão de saída do retificador tipo ponte (Figura 2) **sem** o filtro capacitivo. Esboce a forma de onda observada e meça os valores de pico a pico, eficaz, médio, o período e a frequência.

Valor	Acoplamento CC	Acoplamento CA	Período	Frequência
Pico-pico				
Eficaz				
Médio				

- 7. (1,0 pontos) Com o auxílio de um osciloscópio, e utilizando o **Acoplamento CC**, meça a tensão de saída do retificador tipo ponte (Figura 2) **com** o filtro capacitivo. Em seguida, responda as questões a seguir:
 - (a) A forma de onda deixou de ser pulsante?
 - (b) Qual o novo valor médio da tensão de saída?