Lecture 22: Final Review

- Nuts and bolts
- Fundamental questions and limits
- Tools
- Practical algorithms
- Future topics

Basics

Nuts and bolts

• Entropy:

$$H(X) = -\sum_{x} p(x) \log_2 p(x) \text{ (bits)}$$

$$H(X) = -\int f(x) \log f(x) dx$$
 (bits)

- Conditional entropy: H(X|Y), joint entropy: H(X,Y)
- Mutual information: reduction in uncertainty due to another random variable

$$I(X;Y) = H(X) - H(X|Y)$$

• Relative entropy: $D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$

• For stochastic processes: entropy rate

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{H(X^n)}{n} = \lim_{n \to \infty} H(X_n | X_{n-1}, \dots, X_1)$$
$$= -\sum_{ij} \mu_i P_{ij} \log P_{ij} \text{ for 1st order Markov chain}$$

Dr. Yao Xie, ECE587, Information Theory, Duke University

Thou Shalt Know (In)equalities

Chain rules:

$$H(X,Y) = H(X) + H(Y|X),$$

$$H(X_1, X_2, \dots, X_n) = \sum_{i=1}^n H(X_i|X_{i-1}, \dots, X_1)$$

$$I(X_1, X_2, \dots, X_n; Y) = \sum_{i=1}^n I(X_i; Y|X_{i-1}, \dots, X_1)$$

- ullet Jensen's inequality: if f is a convex function, $Ef(X) \geq f(EX)$.
- Conditioning reduces entropy: $H(X|Y) \leq H(X)$
- $H(X) \ge 0$ (but differential entropy can be < 0), $I(X;Y) \ge 0$ (for both discrete and continuous)

ullet Data processing inequality: X o Y o Z

$$I(X;Z) \le I(X;Y)$$

$$I(X;Z) \le I(Y;Z)$$

• Fano's inequality:

$$P_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}|}$$

Fundamental Questions and Limits

Fundamental questions

Physical Channel

- Data compression limit (lossless source coding)
- Data transmission limit (channel capacity)
- Tradeoff between rate and distortion (lossy compression)

Codebook

Fundamental limits

Lossless compression:

•
$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

•
$$H(X|\hat{X}) = 0$$
, $I(X;\hat{X}) = H(X)$

• Data compression limit: $\sum_x l(x)p(x) \ge H(X)$

• instantaneous code: $\sum_{i=1}^{m} D^{-l_i} \leq 1$

ullet optimal code length: $l_i^* = -\log_D p_i$

Channel capacity:

- ullet given fixed channel with transition probability p(y|x)
- $C = \max_{p(x)} I(X;Y)$

• BSC: C = 1 - H(p), Erasure: $C = 1 - \alpha$

• Gaussian channel: $C = \frac{1}{2} \log(1 + \frac{P}{N})$

water-filling

Rate-distortion:

- given source with distribution p(x)
- $R(D) = \min_{p(x|\hat{x}): \sum p(x)p(\hat{x}|x)d(x,\hat{x}) \leq D} I(X;\hat{X})$
- ullet compute R(D): construct "test" channel

• Bernoulli source: $R(D) = (H(p) - H(D))^+$

• Gaussian source: $R(D) = \left(\frac{1}{2}\log\frac{\sigma^2}{D}\right)^+$

Tools

Tools: from probability

• Law of Large Number (LLN): If x_n independent and identically distributed,

$$\frac{1}{N} \sum_{n=1}^{N} x_n \to \mathbb{E}\{X\}, \text{w.p.}1$$

- Variance: $\sigma^2 = \mathbb{E}\{(X-\mu)^2\} = \mathbb{E}\{X^2\} \mu^2$
- Central Limit Theorem (CLT):

$$\frac{1}{\sqrt{N\sigma^2}} \sum_{n=1}^{N} (x_n - \mu) \to \mathcal{N}(0,1)$$

Tools: AEP

• LLN for product of i.i.d. random variables

$$\sqrt[n]{\prod_{i=1}^{n} X_i} \to e^{E(\log X)}$$

AEP

$$\frac{1}{n}\log\frac{1}{p(X_1, X_2, \dots, X_n)} \to H(X)$$
$$p(X_1, X_2, \dots, X_n) \approx 2^{-nH(X)}$$

Divide all sequences in \mathcal{X}^n into two sets

Typicality

Joint typicality

Tools: Maximum entropy

Discrete:

• $H(X) \leq \log |\mathcal{X}|$, equality when X has uniform distribution

Continuous:

• $H(X) \leq \frac{1}{2} \log(2\pi e)^n |K|$, $EX^2 = K$ equality when $X \sim \mathcal{N}(0,K)$

Practical Algorithms

Practical algorithms: source coding

• Huffman, Shannon-Fano-Elias, Arithmetic code

Codeword Length	Codeword	X	Probability
2 2 2 3	01 10 11 000	1 2 3 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3	001	5	0.15^{\prime}

Practical algorithms: channel coding

A (partial) diagram

Practical algorithms: decoding

Viterbi algorithm

What are some future topics

Distributed lossless coding

Consider the two i.i.d. sources $(U,V) \sim p(u,v)$

Multi-user information theory

Multiple access channel

Statistics

- Large deviation theory
- Stein's lemma...

One last thing...

Make things as simple as possible, but not simpler.

- A. Einstein