CS 5003: Parameterized Algorithms Lectures 14-15

Krithika Ramaswamy

IIT Palakkad

Basic Definitions in Parameterized Complexity

- * Parameterized Problem Q
 - * Each instance is associated with a non-negative integer called parameter
- * The size n of an instance (x, k) of Q
 - * N = |(x, k)| = |x| + k
- * Q is fixed-parameter tractable if it can be solved in f(k) n⁰⁽¹⁾ time
- * A kernelization algorithm for Q is a polynomial-time algorithm that given any instance (x, k) of Q returns an instance (x', k') such that
 - * $|(x', k')| \le g(k)$ and
 - * (x, k) is an yes-instance of Q iff (x', k') is an yes-instance of Q

Vertex Cover

Vertex Cover (parameterized by solution size)

Instance: A graph 6 on n vertices m edges and integer k

Question: Poes 6 have a vertex cover of size at most k?

Parameter: k

 $f(k) (n+m)^{0(1)}$

Vertex Cover Above LP

Instance: A graph G on n vertices m edges and integer k

Question: Does 6 have a vertex cover of size at most k?

Parameter: [k-lp(G)]

 $g(k-lp)(n+m)^{0(1)}$

Vertex Cover LP

$$minimize \sum_{v \in V(G)} x(v)$$

subject to
$$x(v) + x(u) \ge 1$$
 for each edge $\{u, v\} \in E(G)$
 $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

Optimum solution
$$x^*$$

$$\sum_{v \in V(G)} x^*(v) > k \implies (G, k) \text{ is no instance}$$

Computable in P-time

Instance: A graph G on n vertices m edges and integer k

Question: Does & have a vertex cover of size at most k?

Parameter: [k-lp(G)]

Optimum solution x*

$$\left(\frac{1}{2}\right)$$

$$\left(> \frac{1}{2} \right)$$

$$=\frac{1}{2}$$

There is a min vertex cover including > 1/2 set and excluding < 1/2 set

(G, k) is an yes-instance iff (G',k') is an yes-instance

(G, k) is an yes-instance iff (G-v, k-1) or (G-N[v],k-IN(v)I) is an yes-instance

* Branch 1: v is in the vertex cover

- * G' = G V
- * k'= k 1
- * $|p(G')\rangle = |p(G) 1/2|$
 - * Suppose not
 - * |p(G') < |p(G) 1/2
 - * lp(G') <= lp(G) 1 (half-integrality)
 - * G has an optimum solution that is not all-1/2
- * k' lp(G') <= k 1 lp(G) + 1/2 <= k lp(G) 1/2

Apply preprocessing rules (reduction rules) at each node

- * Branch 2: v is not in the vertex cover
 - * G' = G N[v]
 - * k' = k |N(v)|
 - * $|p(G')\rangle = |p(G) |N(v)| + 1/2$
 - * Suppose not
 - * |p(G') < |p(G) |N(v)| + 1/2
 - * lp(G') <= lp(G) IN(v)| (half-integrality)
 - * G has an optimum solution that is not all-1/2
 - * k' |p(G')| <= k |N(v)| |p(G)| + |N(v)| 1/2 <= k |p(G)| 1/2

- * $4^{(\lceil k-lp(G)\rceil)} n^{0(1)}$ time algorithm
- * Apply reduction rules at each node (Reduction Rules do not increase k-lp)
- * At leaves, what is the computation?

LPVC(G)

$$minimize \sum_{v \in V(G)} x(v)$$

subject to $x(v) + x(u) \ge 1$ for each edge $\{u, v\} \in E(G)$

 $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

Theorem: There is an optimum solution to LPVC(G) that assigns 0, 1 or 1/2 to each of the variables

Bipartite Graph

Theorem: Optimum solution to LPVC(G) = IMin Vertex Cover of Bl

Feasible half integral solution x* to LPVC(G)

$$|S| = \sum_{v \in V_1} 2 + \sum_{v \in V_{\frac{1}{2}}} 1 = 2(\sum_{v \in V_1} 1 + \sum_{v \in V_{\frac{1}{2}}} \frac{1}{2}) = \sum_{v \in V(G)} x^*(v)$$

And thus size of minimum VC is <= 2 * opt value.

For any edge (u, v). Suppose both of them are not assigned value one and u_1 \in T_1. That means as there is as well an edge (u2, v2) we

$$\sum_{v \in V(G)} y^*(v) = \sum_{v: v_1, v_2 \in T} 1 + \sum_{v: |\{v_1, v_2\} \cap T| = 1} \frac{1}{2} = \frac{1}{2} |T_1| + \frac{1}{2} |T_2| + \frac{1}{2} |T_{12}| = \frac{1}{2} |T|$$

Thus 2 * opt is less than equal to |MVC|.