

## Problem G: Diamenty są wieczne

Do skonstruowania pewnego ściśle tajnego urządzenia potrzeba diamentów najwyższej jakości. Brylanty są szlifowane do najróżniejszych kształtów (przyjmujemy, że do dowolnego wielościanu wypukłego), a następnie trzeba sprawdzić, czy nie ma w nich choćby najmniejszego mikrodefektu.

Aby testować diamenty skonstruowano urządzenie, które za pomocą ultradźwięków wykrywa te defekty. Niestety urządzenie to jest zbyt dokładne i czasem wykrywa drobne wiry powietrza jako defekty. Problem ten można jednak łatwo obejść, pisząc dodatkowy moduł oprogramowania. Na podstawie współrzędnych siatki diamentu i współrzędnych punktów wskazanych przez urządzenie należy określić, czy ten punkt jest wewnątrz diamentu (wtedy jest to defekt), czy na zewnątrz (wtedy jest to wir). Tobie przypadła przyjemność napisania tego modułu.

## Wejście

W pierwszej linii pliku wejściowego znajduje się liczba naturalna d ( $1 \le d \le 1000$ ), określająca liczbę zestawów danych, których opisy umieszczone są kolejno po sobie w następnych liniach pliku. Opis pojedynczego zestawu wygląda następująco. Dla każdego zestawu danych w pierwszym wierszu mamy jedną liczbę m ( $4 \le m \le 200\,000$ ) – liczbę ścian wielościanu. W każdym z następnych m wierszy mamy najpierw jedną liczbę  $k_i$  ( $3 \le k_i \le 10\,000$ ) – liczbę wierzchołków danej ściany wielokąta. Następnie  $k_i$  trójek x, y, z – współrzędnych kolejnych punktów na tej ścianie ( $-1\,000\,000 \le x, y, z \le 1\,000\,000$ ). Wierzchołki są podane po kolei. Nie ma "sztucznych" wierzchołków - na żadnej ścianie nie ma żadnych trzech wierzchołków współliniowych. Podobnie nie ma dwóch ścian na tej samej płaszczyźnie. Ściany są podane w dowolnej kolejności. W następnym wierszu znajduje się jedna liczba n ( $1 \le n \le 100$ ), określająca liczbę punktów pomiarowych. W kolejnych n wierszach znajdują się trzy liczby x, y, z ( $-1\,000\,000 \le x, y, z \le 1\,000\,000$ ) – współrzędne kolejnego punktu pomiarowego.

## Wyjście

Wyjście powinno się składać z odpowiedzi na kolejne zestawy wejściowe, każda zakończona pustym wierszem. Odpowiedź na zestaw danych powinna się składać z dokładnie n wierszy, z których każdy brzmi TAK jeżeli punkt leży wewnątrz lub na ścianie wielościanu lub NIE w przeciwnym przypadku.

## Przykład

2 2 1

poprawną odpowiedzią jest:

TAK

NIE

TAK