Exercise4_LinearRegressionExtension

September 24, 2021

1 Linear Regression

1.0.1 Qualitative Features & Interaction Terms

- 1-A) Use the credit data set, fit OLS linear regression model to predict credit card balance using all the following features
 - Student
 - Income
 - Limit
 - Interaction term: Income*StudentInteraction term: Limit*Student

Find the p-values of all features. Are they all helpful in predicting the response? Why?

=======							
	coef	std err	t	P> t	[0.025		
0.975]							
Intercept	-415.3863	12.436	-33.401	0.000	-439.836		
-390.936							
Student[T.Yes]	235.2261	41.256	5.702	0.000	154.117		
316.336							
Income	-7.6162	0.252	-30.272	0.000	-8.111		
-7.122							
Student[T.Yes]:Income	-2.5835	0.702	-3.678	0.000	-3.965		

-1.202					
Limit	0.2613	0.004	69.090	0.000	0.254
0.269					
Limit:Student[T.Yes]	0.0667	0.012	5.515	0.000	0.043
0.090					

=======

. . . .

- (AP): It seems that all of the features are helpful in predicting the response, since all of the p-values are very low. In addition, none of the 95% confidence intervals contain 0.
- 1-B) Using sklearn library, find the test R^2 score for estimating the balance from features (Income, Limit, StudentEncode) using linear regression model. The StudentEncode is the binary feature that maps Student status to a numerical value ('yes' to 1 and 'No' to 0).
 - Set random state to zero in train test split

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score

credit = read_csv('Credit2.csv')
credit['StudentEncode'] = credit.Student.map({'No': 0, 'Yes': 1})

x = credit[['Income', 'Limit', 'StudentEncode']]
y = credit['Balance']

X_train, X_test, Y_train, Y_test = train_test_split(x, y, random_state=0)

model = LinearRegression().fit(X_train, Y_train)
pred = model.predict(X_test)

print('R^2 score: %.2f' % r2_score(pred, Y_test))
```

R^2 score: 0.95

- 1-C) Repeat the above question after adding to the model the two interaction terms:
- (1) (Income x StudentEncode) and (2) (Limit x StudentEncode)

```
[6]: credit['IncomexStudentEncode'] = credit['Income'] * credit['StudentEncode'] credit['LimitxStudentEncode'] = credit['Limit'] * credit['StudentEncode']

x = credit[['Income', 'Limit', 'StudentEncode', 'IncomexStudentEncode', \_ \to 'LimitxStudentEncode']]

y = credit['Balance']
```

```
X_train, X_test, Y_train, Y_test = train_test_split(x, y, random_state=0)

model = LinearRegression().fit(X_train, Y_train)
pred = model.predict(X_test)

print('R^2 score: %.2f' % r2_score(pred, Y_test))
```

	Income	Limit	StudentEncode	${\tt IncomexStudentEncode}$	${\tt LimitxStudentEncode}$
0	14.891	3606	0	0.000	0
1	106.025	6645	1	106.025	6645
2	104.593	7075	0	0.000	0
3	148.924	9504	0	0.000	0
4	55.882	4897	0	0.000	0
	•••	•••	•••	•••	
395	12.096	4100	0	0.000	0
396	13.364	3838	0	0.000	0
397	57.872	4171	0	0.000	0
398	37.728	2525	0	0.000	0
399	18.701	5524	0	0.000	0

[400 rows x 5 columns]

R^2 score: 0.95

1.0.2 Polynomial Regression

Set random_state= 0 in train_test_split in all the questions below.

2-A) Use the Auto dataset,

- (i) Find the test R^2 metric of a linear regression model that predicts the miles per gallon (mpg) from the horsepower.
- (ii) Use polynomial regression to include both the horsepower feature and $(horsepower)^2$ in the regression model to predict the mpg. Find the test R^2 metric in this case

Hint: You can use numpy.concatenate. For example to add to an array U a column vector W^2 , we can use $X=np.concatenate((U,W^{**}2),axis=1)$

```
[7]: from pandas import read_csv
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import numpy as np

AutoData=read_csv('Auto_modify.csv') # read the data

x = AutoData['horsepower']
y = AutoData['mpg']

X_train, X_test, Y_train, Y_test = train_test_split(x, y, random_state=0)
```

```
X_train = np.array(X_train).reshape(-1, 1)
X_test = np.array(X_train).reshape(-1, 1)
Y_train = np.array(Y_train).reshape(-1, 1)
Y_test = np.array(Y_train).reshape(-1, 1)
model = LinearRegression().fit(X_train, Y_train)
pred = model.predict(X_test)
print('R^2 score: %.2f' % r2_score(Y_test, pred))
```

R^2 score: 0.60

```
[8]: AutoData['horsepower_sq'] = AutoData['horsepower'] ** 2

x = AutoData[['horsepower', 'horsepower_sq']]
y = AutoData['mpg']

X_train, X_test, Y_train, Y_test = train_test_split(x, y, random_state=0)

model = LinearRegression().fit(X_train, Y_train)
pred = model.predict(X_test)

print('R^2 score: %.2f' % r2_score(Y_test, pred))
```

R^2 score: 0.73

2-B) With the same auto dataset, use KNN regression with K=7, to fit a model that predicts miles per gallon(mpg) in the following cases:

- One feature: Horsepower only
- Two features: horsepower and $(horsepower)^2$

Use MinMax feaures scaling. Find the R^2 metric in each of the above cases. Comparing KNN with linear regression, which model performs better? How does the performance change by adding the quadratic feature?

```
[11]: from sklearn import neighbors
  from sklearn import preprocessing

k = 7
  knn = neighbors.KNeighborsRegressor(n_neighbors=k)

x = AutoData['horsepower']
  y = AutoData['mpg']

X_train, X_test, Y_train, Y_test = train_test_split(x, y, random_state=0)
  X_train = np.array(X_train).reshape(-1, 1)
```

```
X_test = np.array(X_test).reshape(-1, 1)
scaler = preprocessing.MinMaxScaler().fit(X_train)

X_train_t = scaler.transform(X_train)
X_test_t = scaler.transform(X_test)

knn.fit(X_train_t, Y_train)
pred = knn.predict(X_test_t)

print('R^2 score: %.2f' % r2_score(Y_test, pred))
```

R^2 score: 0.66

```
[10]: x = AutoData[['horsepower', 'horsepower_sq']]
y = AutoData['mpg']

X_train, X_test, Y_train, Y_test = train_test_split(x, y, random_state=0)

scaler = preprocessing.StandardScaler().fit(X_train)

X_train_t = scaler.transform(X_train)

X_test_t = scaler.transform(X_test)

knn.fit(X_train_t, Y_train)
pred = knn.predict(X_test_t)

print('R^2 score: %.2f' % r2_score(Y_test, pred))
```

R^2 score: 0.67

(AP): KNN seems to be better for this problem than regular linear regression. Adding the quadratic term does not seem to change the R² score.