PROJET DE PYTHON FOR DATA ANALYSIS

GAZEAU RÉMI

PRÉSENTATION DU DATASET

```
height:
          integer.
                             Height of the block.
lenght:
         integer.
                             Length of the block.
          integer.
                            Area of the block (height * lenght);
area:
                             Eccentricity of the block (lenght / height);
          continuous.
eccen:
p black: continuous.
                            Percentage of black pixels within the block (blackpix / area);
                             Percentage of black pixels after the application of the Run Length Smoothing Algorithm (RLSA) (blackand / area)
p_and:
          continuous.
mean tr: continuous.
                            Mean number of white-black transitions (blackpix / wb trans);
blackpix: integer.
                            Total number of black pixels in the original bitmap of the block.
blackand: integer.
                            Total number of black pixels in the bitmap of the block after the RLSA.
wb_trans: integer.
                            Number of white-black transitions in the original bitmap of the block.
```

To Predict:

Class	Frequency	Percent	Valid Percent	Cum Percent
text horiz. line	4913 329	89.8 6.0	89.8 6.0	89.8 95.8
graphic	28	.5	.5	96.3
vert. line picture	88 115	1.6 2.1	1.6 2.1	97.9 100.0
	TOTAL	5473	100.0	100.0

OBJECTIF

• Réussir à déterminer à quoi correspond un élément dans une page internet

• Cette tâche est importante dans le cadre de l'analyse automatique de documents

ÉTAPES

• Tester plusieurs modèles et plusieurs hyperparamètres

• Regarder si certaines variables semblent être délétères pour la performance du modèle

• Faire de nouveau un test avec le jeu de données nettoyé

Tenter de voir si les performances sont meilleures après une ACP

MODÈLES TESTÉS

- KNN
- Nearets Centroid
- Decision Tree
- SVM
- Neural Networks
- Random Forest

MEILLEURS RÉSULTATS

KNN

Random Forest

MODIFICATION DU DATASET

• Variables qui semblent ne pas apporter d'informations (Length et P_Black) => Suppression

NOUVEAUX RÉSULTATS

KNN

Random Forest

REDUCTION DE DIMENSION

• Résultats de la methode Random Forest suite à un de réduction de dimension

CHOIX DU MODÈLE

Méthode de la Random Forest

• Nombre d'arbres : 25%

• Performance : environ 97,5% de réussite

API

Données à mettre dans un fichier CSV

• Utilisation de la librairie Flask

Modèle exporté au format Pickle