Math Notes

By me (Thanks to for the template SirCharlieMars)

Contents

Chapter 1		Page 2
1.1	Indices	2
1.2	Logarithms (logs)	3

Chapter 1

1.1 Indices

Definition 1.1.1: Index Laws

1. $a^m \times a^n = a^{n+m}$

$$2. \ a^m \div a^n = a^{n-m}$$

$$3. \ (a^m)^n = a^{m \times n}$$

4.
$$a^{-m} = \frac{1}{a^m}$$

5.
$$a^0 = 1$$

6.
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Example 1.1.1 (Laws In Action)

1.
$$2^3 \times 2^7 = 2^{10}$$

$$2. \ \frac{3^6}{3^2} = 3^4$$

3.
$$(5^2)^5 = 5^{10}$$

4.
$$7 \times 2^{-2} = \frac{7}{2^2}$$

5.
$$45^0 = 1$$

6.
$$5^{\frac{-3}{7}} = \frac{1}{\sqrt[7]{5^3}}$$

Note:-

Indices are used extremely frequently and there are often multiple laws hidden in each question

1.2 Logarithms (logs)

Definition 1.2.1: Principle

The general equation is:

$$log_{(a)}(y) = x \leftrightarrow a^x = y$$

For example:

$$log_{10}1 = 0 \leftrightarrow 10^0 = 1$$

Definition 1.2.2: Laws

1.
$$\log_{(a)}(x) + \log_{(a)}(y) = \log_{(a)}(xy)$$

2.
$$\log_{(a)}(x) - \log_a(y) = \log_{(a)}(\tfrac{x}{y})$$

3.
$$\log_{(a)}(x^n) = n \log_{(a)}(x)$$

4.
$$\log_{(a)}(a) = 1$$

5.
$$\log_{(a)}(1) = 0$$

To use these laws, the bases must be the same a

Example 1.2.1 (Laws In Action)

Round to two decimal place

1.
$$\log_2 2 + \log_2 5 = \log_2 10 = 3.32$$

2.
$$\log_5 12 - \log_5 2 = \log_5 6 = 1.11$$

3.
$$\log_7 2^2 = 2 \times \log_7 2 = 0.71$$

4.
$$\log_{84} 84 = 1$$

5.
$$\log_{153} 1 = 0$$

Note:-

some calculators have a default log base of 10