High Dimensional Statistics

Spring 2025

Sharif University of Technology

Dr. Amir Najafi

Due: 1404/4/10

Homework 5

Sparse Linear Models in High Dimensions

Problem 1: Optimization and Threshold Estimators

 $[10 \ points]$

(a) Show that the hard-thresholding estimator (7.6a in the source book) corresponds to the optimal solution $\tilde{\theta}$ of the non-convex program

$$\min_{\theta \in \mathbb{R}^n} \left\{ \frac{1}{2} \|y - \theta\|_2^2 + \frac{1}{2} \lambda^2 \|\theta\|_0 \right\}.$$

(b) Show that the soft-thresholding estimator (7.6b in the source book) corresponds to the optimal solution $\tilde{\theta}$ of the ℓ_1 -regularized quadratic program

$$\min_{\theta \in \mathbb{R}^n} \left\{ \frac{1}{2} \|y - \theta\|_2^2 + \lambda \|\theta\|_1 \right\}.$$

Problem 2: Pairwise Incoherence

[15 points]

Given a matrix $X \in \mathbb{R}^{n \times d}$, suppose that it has pairwise incoherence (7.12) upper bounded as $\delta_{\text{pw}}(X) < \gamma$.

- (a) Let $S \subset \{1, 2, \dots, d\}$ be any subset of size s. Show that there is a function $\gamma \mapsto c(\gamma)$ such that $\gamma_{\min}\left(\frac{X_S^TX_S}{n}\right) \geq c(\gamma) > 0$, as long as γ is sufficiently small.
- (b) Prove that X satisfies the restricted nullspace property with respect to S as long as $\gamma < 1/3$. (Do this from first principles, without using any results on restricted isometry.)

Problem 3: Pairwise Incoherence and RIP for Isotropic Ensembles

[10 points]

Consider a random matrix $X \in \mathbb{R}^{n \times d}$ with i.i.d. N(0,1) entries.

- (a) For a given $s \in \{1, 2, ..., d\}$, suppose that $n \gtrsim s^2 \log d$. Show that the pairwise incoherence satisfies the bound $\delta_{pw}(X) < \frac{1}{3s}$ with high probability.
- (b) Now suppose that $n \gtrsim s \log\left(\frac{es}{s}\right)$. Show that the RIP constant satisfies the bound $\delta_s < 1/3$ with high probability.

Problem 4: ℓ_{∞} -Bounds for the Lasso

[10 points]

Consider the sparse linear regression model $y = X\theta^* + w$, where $w \sim N(0, \sigma^2 I_{nxn})$ and $\theta^* \in \mathbb{R}^d$ is supported on a subset S. Suppose that the sample covariance matrix $\Sigma = \frac{1}{n}X^TX$ has its diagonal entries uniformly upper bounded by one, and that for some parameter $\gamma > 0$, it also satisfies an ℓ_{∞} -curvature condition of the form

$$\|\Sigma\Delta\|_{\infty} \ge \gamma \|\Delta\|_{\infty}$$
 for all $\Delta \in \mathcal{C}_3(S)$.

Show that with the regularization parameter $\lambda_n = 4\sigma\sqrt{\frac{\log d}{n}}$, any Lasso solution satisfies the ℓ_{∞} -bound

$$\|\hat{\theta} - \theta^*\|_{\infty} \le \frac{6\sigma}{\gamma} \sqrt{\frac{\log d}{n}}$$

with high probability.

Problem 5: Online Sparse Regression Regret Bound

[15 points]

Let $d, T \in \mathbb{N}$, and fix integers k and k_0 satisfying $1 \le k < k_0 \le d$. Consider the following (k, k_0, d) -online sparse regression setting over T rounds:

- On each round $t = 1, 2, \dots, T$:
 - 1. The learner selects a subset $S_t \subseteq [d]$ of size $|S_t| = k_0$.
 - 2. Nature reveals the feature-vector restricted to S_t :

$$x_t(S_t) = (x_{t,i})_{i \in S_t}$$
, where $x_t \in \mathbb{R}^d$ and $||x_t||_2 \le 1$.

- 3. The learner outputs a prediction $\hat{y}_t \in [-1, 1]$.
- 4. Nature then reveals the true label $y_t \in [-1,1]$, and the learner incurs square loss

$$\ell_t(\widehat{y}_t) = (\widehat{y}_t - y_t)^2.$$

• Define the class of comparator regressors

$$W_k = \{ w \in \mathbb{R}^d : ||w||_2 \le 1, ||w||_0 \le k \},$$

where $||w||_0$ counts the nonzero coordinates of w. The regret of the learner is

$$\operatorname{Regret}_{T} = \sum_{t=1}^{T} (\widehat{y}_{t} - y_{t})^{2} - \min_{w \in \mathcal{W}_{k}} \sum_{t=1}^{T} (w \cdot x_{t} - y_{t})^{2}.$$

Prove that there exists an (inefficient) algorithm which, for any $k_0 \ge k + 2$, runs in time

$$O\left(\binom{d}{k}k_0\right)$$
 per round,

and guarantees the expected regret bound

$$\mathbb{E}\big[\mathrm{Regret}_T\big] \ = \ O\!\Big(\tfrac{d^2}{(k_0-k)^2}\,\sqrt{k\log d\;T}\Big).$$

Problem 6: Error Bounds in Least-Squares Estimation

[15 points]

Consider the linear model

$$y = X\beta + z$$
,

where $y \in \mathbb{R}^n$ is the response vector, $X \in \mathbb{R}^{n \times p}$ is the predictor matrix, $\beta \in \mathbb{R}^p$ is the true weight vector, and $z \in \mathbb{R}^n$ is a noise vector with i.i.d. entries $z_i \sim \mathcal{N}(0, \sigma_z^2)$. The least-squares estimate is:

$$\beta_{ls} = \arg\min_{\tilde{\beta}} \|y - X\tilde{\beta}\|_2.$$

Here, $y \in \mathbb{R}^n$ is the observed response vector, $X \in \mathbb{R}^{n \times p}$ is the matrix of predictors, $\beta \in \mathbb{R}^p$ is the true coefficient vector, and $z \in \mathbb{R}^n$ is Gaussian noise with variance σ_z^2 . The vector β_{ls} denotes the least-squares estimator. The notation $||v||_2$ refers to the Euclidean (or ℓ_2) norm. The quantities σ_{\min} and σ_{\max} are the smallest and largest singular values of X, respectively. Assume $p \geq n$ and that X is full-rank (i.e., has rank n). Show that, with high probability,

$$\frac{p\sigma_z^2(1-\epsilon)}{\sigma_{\max}^2} \le \|\beta - \beta_{ls}\|_2^2 \le \frac{p\sigma_z^2(1+\epsilon)}{\sigma_{\min}^2},$$

for some small constant $\epsilon > 0$. Provide a sharp bound on the aforementioned probability.

Reading Material

Read the paper Confidence Intervals and Hypothesis Testing for High-Dimensional Regression and answer the following problems.

Problem 7: Paper Summarization

[15 points]

In this problem, you should write a clear and concise overview of the paper in **no more than two pages**. Please ensure that your summary:

- **Highlights the paper's main goals and contributions.** What are the authors aiming to achieve, and why is it important?
- Describes the key technical ideas and methods. How do the authors approach the problem? What techniques or frameworks do they employ?
- Discusses the significance and implications of the results. Why are these findings impactful, and how might they influence future research or applications?

Above all, your summary should be well-structured, straightforward, and demonstrate a thorough understanding of the paper's content.

Problem 8: Variance Bound for De-Biased LASSO

 $[10 \ points]$

Consider a high-dimensional linear regression model given by

$$Y = \mathbf{X}\theta_0 + W$$

where:

• $\mathbf{X} \in \mathbb{R}^{n \times p}$ is a deterministic design matrix with p > n,

- $Y \in \mathbb{R}^n$ is the response vector,
- $\theta_0 \in \mathbb{R}^p$ is the true parameter vector, sparse with $\|\theta_0\|_0 = s_0$,
- $W \sim N(0, \sigma^2 I_n)$ is Gaussian noise,
- $\hat{\Sigma} = \frac{1}{n} \mathbf{X}^T \mathbf{X}$ is the sample covariance matrix.

Let $\hat{\theta}^n$ be the LASSO estimator defined as:

$$\hat{\theta}^n = \arg\min_{\theta \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|Y - \mathbf{X}\theta\|_2^2 + \lambda \|\theta\|_1 \right\},\,$$

with regularization parameter $\lambda = \sigma \sqrt{\frac{c^2 \log p}{n}}$ for some constant c > 0. Define the de-biased estimator:

$$\hat{\theta}^u = \hat{\theta}^n + \frac{1}{n} M \mathbf{X}^T (Y - \mathbf{X} \hat{\theta}^n),$$

where $M \in \mathbb{R}^{p \times p}$ satisfies $|M\hat{\Sigma} - I|_{\infty} \leq \mu$ for a small $\mu > 0$, and $|\cdot|_{\infty}$ denotes the entrywise ℓ_{∞} norm.

Assume that:

- X satisfies the compatibility condition for the support $S = \text{supp}(\theta_0)$ with constant $\phi_0 > 0$,
- $\max_i \hat{\Sigma}_{ii} \leq K_0 < \infty$.

Prove that the variance of each component $\hat{\theta}_i^u$ of the de-biased estimator satisfies:

$$\operatorname{Var}(\hat{\theta}_i^u) \le \frac{\sigma^2}{n} \cdot \frac{1}{(1-\mu)^2 \hat{\Sigma}_{ii}},$$

for all $i \in [p] = \{1, \dots, p\}$, under the given assumptions. Interpret the result in the context of high-dimensional inference.