

Term End Examination - November 2012

Course : MAT101 - Multivariable Calculus and Differential Slot: F1+TF1

Equations

Class NBR : 4444 / 4446 / 4456 / 4463 / 4560 / 4633 / 5157 / 5413

Time : Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer <u>ALL</u> the Questions

1. If u = xy + yz + zx where x = t, $y = t^2$ and $z = \log t$, find $\frac{du}{dt}$.

- 2. If $u = x^2$, v = x + y + z, w = x 2y + 3z, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
- 3. Evaluate $\iint dxdy$ over the positive quadrant of the circle $x^2 + y^2 = 4$ by changing into polar coordinates.
- 4. Evaluate $\int_{0}^{\pi/2} \sqrt{\cot \theta} d\theta$ using gamma function.
- 5. Find the unit normal vector to the surface $x^2y + 2xz^2 = 8$ at the point (1, 0, 2).
- 6. Find the value of 'a' so that the vector $\vec{F} = (z+3y)\hat{i} + (y-2z)\hat{j} + (x+az)\hat{k}$ is solenoidal.
- 7. Find the general solution for y''' 3y'' + 3y' y = 0
- 8. Solve $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} + 4y = 0$.
- 9. Find Laplace transform of t^2e^{-4t} .
- 10. Find the inverse Laplace transform of $\frac{1}{s(s-1)}$.

PART – B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

11. a) Find the Taylor's series expansion of $e^x \sin y$ near the point (0,0) up to second degree terms. [7]

b) Find the extreme values of $f(x, y) = x^3y^3 - 3x - 3y$.

[7]

- 12. a) Change the order of integration in $\int_{0}^{4a} \int_{y^2/4a}^{2\sqrt{ay}} dxdy$ and hence evaluate it. [7]
 - b) By changing into cylindrical polar co-ordinates, evaluate $\iiint_V dx dy dz$ where V is the region of space inside the cylinder $x^2 + y^2 = a^2$, that is bounded by the planes z = 0 and z = h.
- 13. a) Show that the vector field $\overline{F} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational [7] and find its scalar potential.
 - b) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, ds$ using Gauss divergence—theorem, where $\vec{F} = 2xy\hat{i} + yz^2\hat{j} + xz\hat{k}$ [7] and S is the surface of the region bounded by $x = 0, \ y = 0, \ z = 0, \ y = 3, \ x + 2z = 6.$
- 14. a) Solve $\frac{d^2y}{dx^2} + y = \sec x$ by using method of variation of parameters. [7]
 - b) Find the general solution for $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = e^x \sin x$ by the method of undetermined coefficients. [7]
- a) A function f(t) is periodic in (0,2b) and is defined as $f(t) = \begin{cases} 1, & 0 < t < b \\ -1, & b < t < 2b \end{cases}$ [7]

Find its Laplace transform.

- b) Solve $y'' 2y' + y = e^t$ using Laplace transforms given that y(0) = -2 and y'(0) = -3. [7]
- 16. a) Find the value of $\iint x^{m-1} y^{n-1} dx dy$ over the positive quadrant of the ellipse [7] $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in terms of gamma function.
 - b) Apply Convolution theorem to evaluate $L^{-1} \left[\frac{1}{(s^2 + 9)^2} \right]$. [7]
- 17. a) Evaluate $\iint_S \vec{F} \cdot \hat{n} ds$ where $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and S is the part of the sphere [7] $x^2 + y^2 + z^2 = 1$, which lies in the first octant.

b) Solve
$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^3$$
. [7]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$