Simple Table from Wizard

Tabl	Table 1: Random table							
X	Col1	Col2	Col3					
Row1	1	2	3					
Row2	4	5	6					
Row3	7	8	9					

The lack of nighttime performance necessitates the need for costly batteries and grid connection to other sources of energy, most notably fossil fuels. Described in the $Table\ 1$.

Multirow / multicolumn Table - 1

Table 2: Events and Response for keyboard and mouse inputs from user

Table 2: Events and Response for keyboard and mouse inputs from user					
Event	Response				
pygame.QUIT occurs when trying	Quitting the pygame window using pygame. quit and				
to close the window	then quitting the application using quit.				
pygame.VIDEORESIZE occurs	Changing the viewing parameters such that the aspect				
when trying to resize the pygame	ratio remains unchanged so that the object looks the				
window	same without any distortion				
	1. If key is 0-9 then the current_box is set to the corre-				
	sponding key value				
	2. If key is the left arrow key, storing the move				
pygame.KEYDOWN	variable with traslation matrix in the x direction by				
	$+0.01$ pixels. Then the <i>curr_move</i> is updated with				
	$curr_move = curr_move + move$				
	3. If key is the right arrow key, storing the move				
	variable with traslation matrix in the \boldsymbol{x} direction by				
	-0.01 pixels. Then the curr_move is updated with				
	$curr_move = curr_move + move$				
	4. If key is the up arrow key, storing the move				
	variable with traslation matrix in the y direction by				
	$+0.01$ pixels. Then the <i>curr_move</i> is updated with				
	curr_move=curr_move+move				
	5. If key is the down arrow key, storing the move				
	variable with traslation matrix in the y direction by				
	-0.01 pixels. Then the curr_move is updated with				
	curr_move=curr_move+move				
	6. If key is the X arrow key, storing the move				
	variable with traslation matrix in the z direction by				
	$+0.01$ pixels. Then the <i>curr_move</i> is updated with				
	curr_move=curr_move+move				
	7. If key is the Z arrow key, storing the move vari-				
	able with traslation matrix in the z direction by				
	0.01 pixels. Then the curr_move is updated with				
	curr_move=curr_move+move				

Multirow / multicolumn Table - 2

Table 3: Analysis of exponential factoring to weighted factoring

rable of timely big of exponential factoring to weighted factoring													
Mean Filter	Pa- ram- eter					Speckle			Salt-Pepper				
		Exp	Exp	Fac-	Fac-	Exp	Exp	Fac-	Fac-	Exp	Exp	Fac-	Fac-
		w ·	в.	tor	tor	w [.]	в	tor	tor	w.	В	tor	tor
				W	В			W	В			W	В
Heron	MSE:	0.096	0.020	0.161	0.040	0.098	0.001	0.180	0.001	0.069	0.026	0.161	0.040
neron	PSNR:	10.169	16.807	7.908	13.973	10.068	27.25	7.436	29.558	11.592	15.812	6.727	12.960
Centroidal	MSE:	0.034	0.087	0.062	0.028	0.033	0.0012	0.066	0.0049	0.034	0.0012	0.068	0.419
Centroldai	PSNR:	14.100	10.579	12.076	5.5068	14.721	229.268	11.760	723.116	514,655	29.176	11.645	3.773
Inverse Contr	MSE:	0.449	0.0054	0.576	0.0055	0.644	0.0051	0.575	0.040	0.743	0.0058	0.743	0.0109
iliverse Collti	PSNR:	3.471	22.654	2.392	22.587	1.986	22.910	2.397	13.939	1.285	22.399	1.288	19.621

$Multirow \ / \ multicolumn \ Table \ - \ 3$

Table 4: Results of tumor segmentation for HGG, LGG and Combined Cases; Proposed work in comparison with Ref. 17

Method	Dataset Used	Gra	DSC	PPV	Sensitivity	
Downson	BRATS 2017		Complete	0.82	0.84	0.83
		HGG	Core	0.76	0.86	0.74
			Enhanced	0.73	0.78	0.74
Proposed			Complete	0.76	0.92	0.69
		LGG	Core	0.34	0.86	0.28
			Enhanced	0.33	0.54	0.62
			Complete	0.80	0.86	0.79
		Combined	Core	0.65	0.86	0.62
			Enhanced	0.62	0.69	0.71
In Pereira et al.[?]	BRATS 2013	HGG	Complete	0.88	0.91	0.86
			Core	0.76	0.90	0.74
			Enhanced	0.73	0.72	0.81
			Complete	0.65	0.54	0.86
		LGG	Core	0.53	0.42	0.86
			Enhanced	0.00	0.00	0.00
			Complete	0.84	0.85	0.86
		Combined	Core	0.72	0.82	0.76
			Enhanced	0.62	0.60	0.68