SOLUCIÓN DEL TALLER DE GEOMETRÍA

SEGUNDA PARTE

Operacional y numéricos

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el -1
- D. Solo para el -3

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el -1
- D. Solo para el -3

Ecuación de la recta y= ao +aix

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el −1
- D. Solo para el -3

①
$$(x-1)P = 2-y$$

$$x-1-2=-y$$

$$y=3-x$$

$$m=$$

Ecuación de la recta y= ao +aix

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el -1
- D. Solo para el -3

①
$$(x-1)$$
? $= 2-y$
 $x-1-2=-y$
 $y=3-x$
 $m=-1$

Ecuación de la recta y= ao +aix

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el -1
- D. Solo para el -3

①
$$(x-1)$$
 = 2-y
 $y = 3-x$
① $(x-1)$ = 2-y
 $x-1-2=-y$
 $y=3-x$ $m=-1$

(2)
$$(X-1)^2 = Y-2$$

 $Y = 2 + 2(X-1)$
 $4-p$

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el -1
- D. Solo para el -3

(2)
$$(X-1)^2 = Y-2$$

 $1-P$
 $y = 2 + 2(x-1)$
 $4-P$

(2)
$$(X-1)^2 = Y-2$$

 $Y=2+2(X-1)$
 $Y=2+2(X-1)$
 $Y=2+2(X-1)$
 $Y=2+2(X-1)$
 $Y=2+2(X-1)$
 $Y=2-(X-1)$
 $Y=3-X$

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el −1
- D. Solo para el -3

(2)
$$(X-1)^2 = Y-2$$

 $1-P$
 $y = 2 + 2(X-1)$
 $4-P$

(2)
$$(X-1)^2 = Y-2$$

 $1-P$
 $y = 2 + 2(X-1)$
 $y = 2 + 2(X-1)$

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el –1
- D. Solo para el -3

$$\frac{2}{1-p} = y-2$$

$$y = 2 + 2 \frac{(x-1)}{1-p}$$

(2)
$$(X-1)^2 = y-2$$

 $1-p$
 $y=2+2(X-1)$
 $y=2+2(X-1)$
 $y=1+x$
 $y=1$

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el −1
- D. Solo para el -3

$$\frac{1}{y} = 2 - y$$

$$\frac{1}{y} = 2 - y$$

$$\frac{1}{y} = 3 - x$$

$$\frac{1}{y} = 3 - x$$

(2)
$$(x-1)^2 = y-2$$

 $1-p$
 $y = 2 + 2(x-1)$
 $y = 2 + 2(x-1)$

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el −1
- D. Solo para el -3

La segundac diene un denominador $= \emptyset$

13

¿Para cuál(es) valor(es) de p las rectas de ecuación $\frac{x-1}{p} = \frac{2-y}{p}$

 $y \frac{x-1}{1-p} = \frac{y-2}{2}$ son perpendiculares?

- A. Solo para el 3
- B. Solo para el 1
- C. Solo para el -1
- D. Solo para el -3

Considere las rectas L1 y L2 de ecuaciones L1: y = ax + b y L2: y = cx + d. ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?

- I) Si a = c y b d, entonces L1 y L2 son paralelas no coincidentes.
- II) Si ac = 1 y b > d, entonces las rectas se intersectan en el primer cuadrante.
- III) Si b = d y c a, entonces L1 y L2 se intersectan en el punto (0, b).
- A. Solo I
- B. Solo III
- C. Solo I y II
- D. Solo I y III

- Considere las rectas L1 y L2 de ecuaciones L1: y = ax + b y L2: y = cx + d. ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) Si $a = c y b \neq d$, entonces L1 y L2 son paralelas no coincidentes.

 II) Si ac = 1 y b > d, entonces las rectas se intersectan en el primer cuadrante.

 III) Si $b = d y c \neq a$, entonces L1 y L2 se intersectan en el punto (0, b).
 - A. Solo I
 - B. Solo III
 - C. Solo I y II
 - D. Solo I y III

- Considere las rectas L1 y L2 de ecuaciones L1: y = ax + b y L2: y = cx + d. ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) Si $a = c y b \neq d$, entonces L1 y L2 son paralelas no coincidentes.

 II) Si ac = 1 y b > d, entonces las rectas se intersectan en el primer cuadrante. + III) Si $b = d y c \neq a$, entonces L1 y L2 se intersectan en el punto (0, b).
 - A. Solo I
 - B. Solo III
 - C. Solo I y II
 - D. Solo I y III

- Considere las rectas L1 y L2 de ecuaciones L1: y = ax + b y L2: y = cx + d. ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) Si $a = c y b \neq d$, entonces L1 y L2 son paralelas no coincidentes.

 II) Si ac = 1 y b > d, entonces las rectas se intersectan en el primer cuadrante. + III) Si $b = d y c \neq a$, entonces L1 y L2 se intersectan en el punto (0, b).
 - A. Solo I
 - B. Solo III
 - C. Solo I y II
 - D. Solo I y III

15. En la figura adjunta los triángulos ADF y ADE son rectángulos en F y E, respectivamente, \underline{FB} y \underline{EC} son sus alturas y miden lo mismo.

¿Cuál(es) de las siguientes expresiones es (son) siempre igual(es) a la medida

del segmento BC?

$$I)AD - 2AB$$

II)
$$AD - (2(EC)^2: AC)$$

$$III)AD - (BF - EC)$$

A. Solo II

B. Solo I y II

C. Solo I y III

D. Solo II y III

15. En la figura adjunta los triángulos ADF y ADE son rectángulos en F y E, respectivamente, \underline{FB} y \underline{EC} son sus alturas y miden lo mismo.

¿Cuál(es) de las siguientes expresiones es (son) siempre igual(es) a la medida

del segmento BC?

$$I)AD - 2AB$$

II)
$$AD - (2(EC)^2: AC)$$

$$III)AD - (BF - EC)$$

15. En la figura adjunta los triángulos ADF y ADE son rectángulos en F y E, respectivamente, FB y EC son sus alturas y miden lo mismo.

¿Cuál(es) de las siguientes expresiones es (son) siempre igual(es) a la medida

del segmento BC?

$$I)AD - 2AB$$

II)
$$AD - (2(EC)^2: AC)$$

$$III)AD - (BF - EC)$$

C. Solo I y III

D. Solo II y III

$$AD-2AB \rightarrow$$

$$\frac{AB}{EC} = \frac{BF}{AC}$$

$$AB = \frac{(EC)(BF)}{AC} = \frac{EC^2}{AC}$$

15. En la figura adjunta los triángulos ADF y ADE son rectángulos en F y E, respectivamente, FB y EC son sus alturas y miden lo mismo.

¿Cuál(es) de las siguientes expresiones es (son) siempre igual(es) a la medida

del segmento BC?

$$I)AD - 2AB$$

II)
$$AD - (2(EC)^2: AC)$$

$$III)AD - (BF - EC)$$

B. Solo I y II

C. Solo I y III

D. Solo II y III

$$\frac{AB}{FC} = \frac{BF}{AC}$$

$$AB = \frac{(EC)(BF)}{AC} = \frac{EC^2}{AC}$$

16. En el triángulo ABC de la figura adjunta, D pertenece a AC y E pertenece a AB. Si DE // BC, ¿cuál es la medida del segmento AE?

- A. 5 cm
- B. 6 cm
- C. 7 cm
- D. 9 cm

16. En el triángulo ABC de la figura adjunta, D pertenece a AC y E pertenece a AB. Si DE // BC, ¿cuál es la medida del segmento AE?

$$\frac{10}{2 \times 42} = \frac{6}{\times +2}$$

- A. 5 cm
- B. 6 cm
- C. 7 cm
- D. 9 cm

16. En el triángulo ABC de la figura adjunta, D pertenece a AC y E pertenece a AB. Si DE // BC, ¿cuál es la medida del segmento AE?

B. 6 cm

C. 7 cm

D. 9 cm

$$\frac{10}{2 \times 42} = \frac{6}{\times +2}$$

$$10(X+2) = 6(2X+2)$$

 $10X+20 = 12X + 12$
 $8 = 2X$
 $X = 4 = X+2 = 6$

- A. m > 0 y n > 0
- B. m > 0 y n < 0
- C. m < 0 y n > 0
- D. m < 0 y n < 0

```
A. m > 0 y n > 0
```

B.
$$m > 0$$
 y $n < 0$

C.
$$m < 0 y n > 0$$

D.
$$m < 0 y n < 0$$

A.
$$m > 0 y n > 0$$

B.
$$m > 0$$
 y $n < 0$

C.
$$m < 0 y n > 0$$

D.
$$m < 0 y n < 0$$

A.
$$m > 0 y n > 0$$

B.
$$m > 0$$
 y $n < 0$

C.
$$m < 0 y n > 0$$

D.
$$m < 0 y n < 0$$

$$J = m \times + b$$

$$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 + 4}{4 - 3}$$

$$= \frac{1}{1} = 1$$

