### Generalized Linear Latent Variable Models

Bert van der Veen

Department of Mathematical Sciences, NTNU

## Outline today

- gllvm R-package
- GLLVMs background
- Difference to classical methods
- Unimdal responses

### Questions so far?



## Model-based thinking for community ecology

#### Warton et al. 2015

- Classical methods ignore properties of the ecological process
- They are purely algorithmic (and severely outdated)
- There are few links to theory

### Model-based analysis

- Accounts for properties of the ecological process
- Is flexible
- Has clear connections with testable hypotheses
- Are computationally intensive <a></a>
- Provides diagnostic tools

## Some other (approximate) latent variable models

- Principal Component Analysis (Pearson 1901)
- Factor analysis (Spearman 1904)
- Redundancy Analysis (Rao 1964)
- Principal Coordinate Analysis (Gower 1966)
- Correspondence Analysis (Benzecri 1973)
- Detrended Correspondence Analysis (Hill and Gauch 1980)
- Canonical Correspondence Analysis (ter Braak 1986)
- Non-metric Multidimensional Scaling (Kruskal 1964)
- t-SNE (van der Maaten 2008)
- UMAP (McInnes and Healy 2018)



## Some other (approximate) latent variable models

- Principal Component Analysis (Pearson 1901)
- Factor analysis (Spearman 1904)
- Redundancy Analysis (Rao 1964)
- Principal Coordinate Analysis (Gower 1966)
- Correspondence Analysis (Benzecri 1973)
- Detrended Correspondence Analysis (Hill and Gauch 1980)
- Canonical Correspondence Analysis (ter Braak 1986)
- Non-metric Multidimensional Scaling (Kruskal 1964)
- t-SNE (van der Maaten 2008)
- UMAP (McInnes and Healy 2018)

GLLVM replaces all of these, and does it better.





## Contemporary multivariate methods

- Multivariate GLMs (Wang et al. 2012)
- Vector GAMs (Yee et al. 1996,2003,2010,2015)
- Joint SDMs (Pollock et al. 2014 , Clark et al. 2014)
- Row-column interaction models (Hawinkel et al. 2019)
- Generalized Linear Latent Variable Models (Skrondal and Rabe-Hesketh 2004, Hui et al. 2015, Warton et al. 2015, Ovaskainen et al. 2017)

## Contemporary multivariate methods

- Multivariate GLMs (Wang et al. 2012)
- Vector GAMs (Yee et al. 1996,2003,2010,2015)
- Joint SDMs (Pollock et al. 2014 , Clark et al. 2014)
- Row-column interaction models (Hawinkel et al. 2019)
- Generalized Linear Latent Variable Models (Skrondal and Rabe-Hesketh 2004, Hui et al. 2015, Warton et al. 2015, Ovaskainen et al. 2017)

and many more (e.g., clustering)

### Goals of ordination

- To order sites and species along gradients
- To reduce dimensions (because there are many)
  - for unconstrained ordination: species
  - for constrained ordination: species and predictors
- penerally: to facilitate inference on (sparse) multivariate data

## Generalized Linear Latent Variable Model (GLLVM)

- A framework for model-based multivariate analysis
- That does dimension reduction (i.e., ordination)
- There is no distance measure
- You do need to specify:
  - 1. A distribution
  - 2. A link function
  - 3. The model its structure
- Latent variables are found by *best fit* (and the first is not always the most important)
- We (can) treat them as random effect when appropriate



$$y_{ij} \sim f\left\{g^{-1}\left(\eta_{ij}\right), \phi_j\right\}$$
 (1)

Community data <sup>1</sup>

$$y_{ij} \sim f\left\{ g^{-1} \left( \eta_{ij} \right), \phi_j \right\} \tag{1}$$

2. Response distribution

$$y_{ij} \sim f \left\{ g^{-1} \left( \eta_{ij} \right), \phi_j \right\} \tag{1}$$

3. (inverse) Link function

$$y_{ij} \sim f\left\{g^{-1}\left(\eta_{ij}\right), \phi_j\right\}$$
 (1)

4. Linear predictor ("the model") —

$$y_{ij} \sim f\left\{ \frac{g^{-1}}{\left( \eta_{ij} \right)}, \phi_j \right\}$$
 (1)

5. Dispersion parameter

#### Latent variable distribution

$$\mathbf{z}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 (2)

- In unconstrained ordination, we assume LVs to be multivariate standard normal in distribution
  - lacktriangle They absorb all residual variation, so we assume  $\mathbf{z}_i = \epsilon_i$
- This is similar to classical ordination methods (orthogonality)
- But in GLLVMs they are random effects (more appropriate)
- In constrained ordination this is different (see)

#### GLLVM Likelihood

$$\mathcal{L}(\Theta) = \sum_{i=1}^{n} \log \left\{ \int \prod_{j=1}^{m} \int \left( y_{ij} | \mathbf{z}_{i}, \Theta \right) h(\mathbf{z}_{i}) d\mathbf{z}_{i} \right\}, \quad (3)$$

Take away: ugly integral sign that we cannot analytically solve

$$\frac{\eta_{ij}}{\uparrow} = \beta_{0j} + \dots + \begin{bmatrix} \mathbf{z}_i^{\mathsf{T}} & \gamma_j \\ \end{bmatrix}$$
 (4)

1. Linear predictor

$$\frac{\eta_{ij}}{\eta_{ij}} = \beta_{0j} + \dots + \begin{bmatrix} \mathbf{z}_i^\top & \gamma_j \\ \mathbf{z}_i^\top & \gamma_j \end{bmatrix} \tag{4}$$

2. Species intercept

$$\frac{\eta_{ij}}{\eta_{ij}} = \beta_{0j} + \dots + \frac{\mathbf{z}_i^{\mathsf{T}} \gamma_j}{\eta_{ij}} \tag{4}$$

3. Other stuff -

$$\frac{\eta_{ij}}{|\boldsymbol{\eta}_{ij}|} = |\boldsymbol{\beta}_{0j}| + |\dots| + |\mathbf{z}_i^{\mathsf{T}}| \boldsymbol{\gamma}_j| \tag{4}$$

4. Ordination

$$\eta_{ij} = \beta_{0j} + \dots + \mathbf{z}_{i}^{\mathsf{T}} \gamma_{j} \tag{4}$$

- 5. Site scores (ordination axis/latent variables)
- 6. Species loadings

- Model selection
- Confidence intervals
- Diagnostic tools: residuals, derivatives, information criteria
- Adjustable model structure

- Model selection
- Confidence intervals
- Diagnostic tools: residuals, derivatives, information criteria
- Adjustable model structure
- Ordination for all kinds of datatypes in one framework
  - Count data, cover data, binary data, continuous data
  - Poisson, zero-inflated, negative binomial, binomial, ordinal, beta, gamma, etc.

- Model selection
- Confidence intervals
- Diagnostic tools: residuals, derivatives, information criteria
- Adjustable model structure
- Ordination for all kinds of datatypes in one framework
  - Count data, cover data, binary data, continuous data
  - Poisson, zero-inflated, negative binomial, binomial, ordinal, beta, gamma, etc.
- Many tools from ordination too
  - Ordination plots
  - ► Gradient length
  - Variance partitioning (to some degree)

### Model-based ordination

#### Suggested to use Generalized Linear Latent Variable Models for unconstrained ordination





Special Feature: New Opportunities at the Interface Between Ecology and Statistics | Gree Access |

### Model-based approaches to unconstrained ordination

Francis K.C. Hui 🔀, Sara Taskinen, Shirley Pledger, Scott D. Foster, David I. Warton

First published:23 July 2014 | https://doi.org/10.1111/2041-210X.12236 | Citations: 57

Building on a long history of using latent variables in ecology (e.g., ter Braak 1985)

### GLLVMs vs. classical ordination: main differences

- 1) GLLVMs have a real model
- GLLVMs incorporate distributions, not distances
- There are no eigenvalues (but there is variance)
- 4) Number of dimensions are set <u>a-priori</u> as in NMDS
- 5) Latent variables are found by "best fit"
- 6) You might not get the same solution every time
- 7) Forget about permutation testing
- 8) We do not care much about rotation





### Fitting unconstrained ordination

#### In R e.g.,

- HMSC Bayesian (slow) with a lot of tools
- Boral Bayesian (slow) easy to use
- ecoCopula even (super) faster (but marginal interpretation)
- glmmTMB very easy to use, can include many other random-effects
- gllvm fast and easy to use

## Fitting ordination with predictors

#### In R e.g.,

- VGAM robust algorithm, quick, many distributions
- RCIM flexible response models
- gllvm straightforward interface, also random effects

# The gllvm R-package



Jenni Niku (JYU), Francis Hui (ANU), Pekka Korhonen (JYU), Sara Taskinen (JYU), David Warton (UNSW), Bob O'Hara (NTNU)

Many people have put a lot of work into development of the methods presented

- Fast
- Easy to use
- Many different model structures
- (Un)constrained ordination with random-effects
- Tools for ordination (biplot) and regression (model selection, statistical uncertainties)
- (very) Active support via github (Jenni Niku, me 😌)

Jenni Niku, Wesley Brooks, Riki Herliansyah, Francis K.C. Hui, Pekka Korhonen, Sara Taskinen, Bert van der Veen and David I. Warton (2023). gllvm: Generalized Linear Latent Variable Models. R package version 1.4.3.

#### gllvm

Received: 7 May 2019 | Accepted: 5 September 2019

DOI: 10.1111/2041-210X.13303

#### **APPLICATION**



# gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in R

Jenni Niku<sup>1</sup> | Francis K. C. Hui<sup>2</sup> | Sara Taskinen<sup>1</sup> | David I. Warton<sup>3</sup>

- Originally published in 2019 by Niku et al.
- For JSDM, unconstrained, and residual ordination
- Since then it has been considerably extended
- ▶ Models are fitted in C++ with Template Model Builder

(Kristensen et al. 2015)

$$\mathcal{L}(\Theta) = \sum_{i=1}^{n} \log \biggl\{ \int \prod_{j=1}^{m} f\biggl(y_{ij} | \mathbf{z}_{i}, \Theta \biggr) h\biggl(\mathbf{z}_{i}\biggr) d\mathbf{z}_{i} \biggr\}, \tag{5}$$

The package has three methods for approaching the estimation:

- Laplace approximation (LA)
- Variational approximation (VA)
- Extended variational approximation (EVA)

Sometimes we want or need to switch between these

## Main function: gllvm(.)

gllvm {gllvm}

R Documentation

### Generalized Linear Latent Variable Models

#### Description

Fits generalized linear latent variable model for multivariate data. The model can be fitted using Laplace approximation method or variational approximation method.

#### This has many arguments

- y (community data)
- X (environment)
- TR (traits)
- data
- formula
- family

- num.lv (unconstrained ord.)
- num.lv.c (concurrent ord.)
- num.RR (constrained ord.)
- ly formula
- sd.errors (often takes long)
- method (LA, VA, EVA)

- studyDesign
- dist
- colMat (new)
- colMat.rho.struct (new)
- corWithin
- quadratic (unimodal response model)
- row.eff
- offset
- randomB (for constrained/concurrent)
- randomX (for 4th corner)
- beta0com
- zeta.struc (only applies to ordinal)

- link (only applies to binomial)
- Ntrials (only applies to binomial)
- Power (only applies to tweedie)
- seed (for reproducibility)
- scale.X (for 4th corner)
- return.terms
- gradient.check (convergence check)
- disp.formula (dispersion parameters)
- control
- control.va
- control start

# Distributions in gllvm

| Type of data       | Distribution | Method     | Link            |
|--------------------|--------------|------------|-----------------|
| Normal             | Gaussian     | VA/LA      | identity        |
| Counts             | Poisson      | VA/LA      |                 |
| log                |              |            |                 |
|                    | NB           | VA/LA      | log             |
|                    | ZIP          | VA/LA      | log             |
|                    | ZINB         | VA/LA      | log             |
|                    | binomial     | VA/LA      | probit          |
|                    | binomial     | LA         | logit           |
| Binary             | Bernoulli    | EVA VA/LA  | probit logit    |
| Ordinal            | Multinomial  | VA         | cumulative pro- |
| р.                 | <b>-</b> "   | E) /A /I A | bit             |
| Biomass            | Tweedie      | EVA/LA     | log             |
| Positive continu-  | Gamma        | VA/LA      | log             |
| ous                | Exponential  | VA/LA      | log             |
| Percent cover      | beta         | LA/EVA     | •               |
|                    |              | ,          | probit/logit    |
| with zeros or ones | ordered beta | EVA        | probit          |

# Functions in the package

- gllvm()
- logLik()
- summary()
- confint()
- predict()
- coefplot()
- getPredictErr()
- getResidualCor() and getResidualCov()
- getEnvironmentalCor() (new) and getEnvironmentalCov() (new)
- optima() and tolerances()
- simulate()

randomCoefplot()

plot() and residuals()

se() and vcov()

getLV()

getLoadings() (new)

predictLVs()

new: in development version, not on CRAN yet

#### **Defaults**

- without lv.formula: 2 unconstrained LVs
- with lv.formula: 0 unconstrained LVs
- method = "VA"
- sd.errors = TRUE
- optimizer = "optim" with optim.method = "BFGS"
- row.eff = FALSE
- Power = 1.1
- seed = NULL

We will look at how/why to change these in the workshop.

- Covariates outside of ordination: X and formula ("conditioning" or "covariate-adjusted")
- Unconstrained ordination: num.lv and (optional) quadratic
- Constrained ordination: num.RR and (optional) lv.formula or randomB or quadratic
- Concurrent ordination: num.lv.c and (optional) lv.formula or randomB or quadratic
- Fourth-corner LVM: X and TR and formula and (optional) randomX or beta0comm
- Random species effects: formula and X and (optional) beta0comm
  - Phylogenetic effects: colMat and colMat.rho.struct
- Random site effects: row.eff and (optional) dist or studyDesign

#### Some of these can be combined, not all

E.g., no traits with constrained/concurrent ordination that might be the only limitation at present

# Insight into the algorithm

```
Little shiny app here: https://bertvdveen.shinyapps.io/shinygllvm/
Or, e.g., : gllvm(y, family = "poisson", TMB = FALSE,
plot = TRUE)
```

# Unconstrained ordination/JSDM



# Unconstrained ordination/JSDM

```
library(corrplot)
corrplot(getResidualCor(uord), type = "lower", order = "AOE", tl.pos = "l'
    tl.cex = 0.3, diag = FALSE, win.asp = 0.5)
```



#### Constrained ordination



# Multiple starting values

One "quirk" about such models: they can give different solutions each time. gllvm strategy:

- starting.val: different types of (smartly) generated starting values
- jitter.var: add a little noise to starting values
- optimizer: changing it can help at times
- n.init: run model multiple times and pick best
- n.init.max: maximum number of tries before exit

# Signs that your model has not converged

- Weird ordination plot (somtimes)
- Large gradient values (use gradient.check cautiously)
- Singular hessian
- Parameters on boundary
- Very large species loadings (usually combined with small sigma.lv)
- Small site scores
- Probably more

#### To-do

#### Many extensions are still possible, and in the pipeline

- emmeans support
- Fitting robustness
- Traits in ordination
- Spatial/temporal LVs
- Variance partitioning
- Zero-inflated modeling
- Mixed response types

But, we are few and only human

### Where to go

Bugs: https://github.com/JenniNiku/gllvm/issues

 $Questions: \ https://github.com/JenniNiku/gllvm/discussions$ 

Examples: https://jenniniku.github.io/gllvm/

### To conclude

- In active development
- Parallelisation
- Suggestions welcome
- Let's dive in