Homework 1 - Algorithm Design

Sapienza University of Rome

Marco Costa, 1691388

November 20, 2019

Problem: Given a weighted tree T with n nodes, find the complete graph G of minimum weight such that $T \subseteq G$ and T is the unique minimum spanning tree of G.

Idea: Insert edges that are not in the tree so as to obtain the complete graph. These edges must have a greater weight than those of the tree, so that T is the only MST of G.

Hint: Since *Kruskal*'s algorithm uses the *Union-Find* structures for representing the cust, we use this structures to solve the problem.

First solution:

Algorithm 1 Find complete graph

```
1: for u in set_1 do
2: for v in set_2 do
3: if e_{new} = (u, v) not in E then
4: e_{new}.setWeight(e.getWeight() + 1)
5: G.addEdge(e_{new})
```

Cost: O(|E|), but $|E| = \frac{|V|(|V|-1)}{2}$ and |V| = n, so $|E| = \frac{n^2 - n}{2}$ and the cost is $O(n^2)$ Second solution:

