Sunshine Celebrator

Haichao Xing

Github link: https://github.com/Maris-26/Sunshine-Celebrator.git

Current Problems

Seattle's winters are long, dark, and often cloudy, making sunshine feel rare and special. The short daylight hours and constant overcast skies make it easy to **miss those fleeting moments of sunlight**.

People want a way to **instantly notice when the sun is shining** so they don't miss those bright, uplifting moments.

Solution proposal

Sunshine Celebrator enhances the experience of bright days by detecting sunlight levels and visually displaying real-time changes.

Using an APDS9960 light sensor, the device processes light intensity and responds through an OLED display and a stepper motor.

Users can place the sensing device on a windowsill while keeping the display device indoors, allowing them to instantly see and appreciate when the sun is shining.

System Architecture

Sensing Device

Signal Processing:

- *Moving Average* → Reduces noise by averaging last 5 sensor readings
- Exponential Weighted Moving Average → Smooths fluctuations with a 0.3 weight factor
- $Rate\ Calculation \rightarrow Measures$ the rate of change to detect intensity variations

Processed sensor data (OLED):

- Raw → Direct sensor readings without processing
- Smoothed → More stable data with noise reduction
- Rate → Helps the client determine how fast the light intensity is changing

Effect:

Reduces BLE Data Transmission Load

Display Device

• The stepper motor cycles through 4 predefined states, determined by Smoothed Light Intensity (Smoothed) and Rate of Change (Rate)

Display Device

Project Schematic

PCB Editor

Printed PCB

Display Device

Enclosure Design

For Sensing Device

For Display Device

BLE Communication

Server -- succeed

Client -- succeed

```
client | Arduino IDE 2.3.4
File Edit Sketch Tools Help
                client.ino
             void setup() {
                 Serial.begin(115200);
       113
                 Serial.println("❷ 启动 Arduino BLE Client");
       114
       115
       116
                 BLEDevice::init("");
       117
                 BLEScan* pBLEScan = BLEDevice::getScan();
       118
                 pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());
       119
                 pBLEScan->setInterval(1349);
       120
                 pBLEScan->setWindow(449);
       121
                 pBLEScan->setActiveScan(true);
       122
                 pBLEScan->start(5, false);
       123
       124
       125
             void loop() {
                if (doConnect) {
       126
                    if (connectToServer()) {
       127
       128
                        Serial.println("☑ BLE 连接成功!");
       129
                    } else {
       130
                        Serial.println("X BLE 连接失败!");
      Output Serial Monitor ×
      Message (Enter to send message to 'XIAO ESP32C3' on 'COM15')
      ●建成功
      ☑ BLE Client 己成功连接到 Server
      ✓ 找到目标服务
      ✓ 找到目标特征
      □ 读取到的初始值: h
      ☑ 成功注册通知回调
      ✓ BLE 连接成功!
      ≥ 接收到的光照值: 104
      ≥ 接收到的光照值: 104
      髮 接收到的光照值: 104
      遂 接收到的光照值: 107
```


The recording of a successful BLE connection between the server and client is also on GitHub.

Battery & Budget Summary

Battery Life Estimate

Budget Summary

\$9.9

1 more*ESP32C3

\$16.58

2*3.7V1000mAh Battery

\$0

OLED, APDS9960, PCB, Step Motor, Switch, Button, LED...

Total \$26.48

Future Work

1. Improve BLE Stability

Optimize the Bluetooth connection between the server and client to ensure more reliable real-time data transmission.

2. Processed sensor data (OLED)

Improve motor response consistency and reduce any unintended fluctuations in movement.

3. Effect:

Enhance OLED visualization by adding real-time feedback and historical sunlight trends for better user interaction.

Thank You