Arquitectura de Sistemas e Computadores II Exame

Departamento de Informática Universidade de Évora

16 de Janeiro de 2014

Indique todos os cálculos efectuados

Perguntas rápidas

- 1. [0,5 valores] Quando é que um programa pode ser mais lento num computador com um processador com uma frequência de relógio mais elevada do que noutro com uma frequência de relógio inferior?
- 2. [0,5 valores] A que correspondem, nos processadores reais, as duas memórias de instruções e de dados visíveis nos diagramas de blocos do MIPS?
- 3. [0,5 valores] No contexto das caches, qual a principal diferença entre as estratégias write-through e write-back?
- 4. [0,5 valores] Que factores influenciam o ganho de desempenho obtido com a paralelização de um programa?

Desempenho

5. O programa P é executado num computador em que a duração do ciclo de relógio é de $2 \, \text{ns}$, com um CPI de 2,4. Na execução do programa são executadas $300 \, \text{milhões}$ de instruções, com a seguinte distribuição:

Instruções	Aritméticas	Acesso à memória	Saltos condicionais
%	50	30	20

- (a) [1,5 valores] Qual o tempo de CPU necessário para a execução de P?
- (b) $[1,5\ valores]$ Numa nova implementação da mesma arquitectura, conseguiu-se reduzir o CPI das instruções aritméticas de 2 para 1,6. Qual o ganho de desempenho obtido quando P é executado na nova implementação?

Implementação MIPS monociclo

6. A implementação MIPS monociclo da Figura 1 inclui o necessário para a execução da instrução addu, que é uma instrução tipo-R, com três argumentos:

		0	rs	rt	rd	0	32	
addu rd, rs, rt	bits	6	5	5	5	5	6	

Esta instrução soma os valores que se encontram nos registos rs e rt e guarda o resultado em rd.

- (a) [1,5 valores] Quais das unidades funcionais existentes serão usadas para a execução desta instrução?
- (b) [1,5 valores] Quais os valores que os vários sinais de controlo deverão ter durante a execução desta instrução?

(Não precisa de indicar o valor de ALUOp, basta dizer qual será a função da ALU na execução desta instrução.)

Pipeline MIPS de 5 andares

7. [2 valores] Considere a execução do código seguinte no pipeline MIPS de 5 andares com forwarding, decisão dos saltos condicionais no andar ID e sem delay slot.

1.		or	\$2,	\$0 ,	\$0
2.		or	\$4,	\$0 ,	\$0
3.	início:	beq	\$4,	\$9,	fim
4.		lw	\$5,	0(\$6	3)
5.		add	\$2,	\$2,	\$5
6.		addiu	\$6,	\$6,	4
7.		addi	\$4,	\$4,	1
8.		beq	\$0 ,	\$0 ,	início
9.	fim:				

Liste todos os atrasos introduzidos e todos os usos de *forwarding* que ocorrem durante execução deste código. Para cada uso de *forwarding*, indique entre que andares do *pipeline* ocorre e qual o registo cujo valor é *forwarded*.

Cache

 $\bf 8.~[2~valores]~$ Considere que uma palavra tem $\bf 32~$ bits e que os endereços seguintes são acedidos pela ordem indicada:

Para a sequência de acessos indicada, simule o funcionamento de uma cache 2-way set associative, com 32 palavras, blocos de 4 palavras e usando a estratégia LRU na substituição de blocos. Assuma que a cache inicialmente está vazia e, para cada acesso, indique a palavra acedida, o número do bloco a que pertence, o índice da posição que vai ocupar na cache, se há um hit ou um miss e, quando aplicável, o bloco que será substituído. Apresente o conteúdo final da cache, com o máximo detalhe que conseguir, e calcule a miss rate verificada.

9. [1 valor] Durante a execução de um programa, observou-se a ocorrência de 77316 misses quando utilizada uma cache fully-associative, dos quais 5157 foram compulsory misses. Quando empregue uma cache com a mesma capacidade e blocos com a mesma dimensão, mas 8-way set associative, o número de misses observado foi 83117.

Quantos foram os compulsory misses, os capacity misses e os conflict misses ocorridos com a segunda cache?

Memória virtual

10. [2 valores] Durante a execução de um programa, é acedido um endereço da página virtual 103. Nesse momento, o conteúdo do TLB (*direct-mapped*, com 4 blocos de uma tradução) do sistema e a tabela de páginas do programa têm o conteúdo (parcialmente) mostrado:

TLB Valid Dirty Tag Pág. física 0 50 5 0 1 33 1 0 10 $\overline{25}$ 1 1 8 2 1 1 24 $\overline{2}$ 3

	Dirty	Pág. física
99	0	2
100	0	20
101	0	DISCO
102	1	8
103	0	13

Tabela de páginas

Descreva o que acontece durante a tradução do endereço virtual para físico e mostre o conteúdo resultante do TLB e da tabela de páginas.

- 11. [1,5 valores] Um sistema com endereços virtuais de 48 bits e páginas com 8 KB usa tabelas de páginas com dois níveis. Se forem usados 15 bits para indexar o primeiro nível da tabela, quantas páginas haverá no máximo no segundo nível e quantas posições terá cada uma?
- 12. [1,5 valores] Qual o tempo médio necessário para transferir uma página com 4096 bytes da memória virtual para a RAM, se o disco magnético da máquina tiver as seguintes características:

Velocidade	Seek time médio	Taxa de transferência	Latência do controlador
3000 rpm	$7\mathrm{ms}$	$100\mathrm{MB/s}$	$50\mu\mathrm{s}$

Multiprocessamento

13. [2 valores] Num multiprocessador de memória partilhada é executado um programa paralelo, sendo as instruções seguintes executadas no processador indicado:

Processador 1 Processador 2
$$x = 5;$$
 $x = x + 2;$

Liste as possíveis sequências de valores que a variável ${\tt x}$ poderá assumir durante a execução deste código se, inicialmente, o valor de ${\tt x}$ for 0.

Figura 1: Diagrama de blocos da implementação MIPS monociclo