

Question 1: Analyze the following circuit.

Requirement(s):

Answer the following question(s):

Hit: $F(A, B, C) = \sum (1,2,7)$ Means that the function output will be **1 at combination $(1)_{10} = (001)_2$ and combination $(2)_{10} = (010)_2$ and so on. Otherwise, the function output will be **0**.

Build the truth table

1- # inputs = 3(X, Y, Z)

2- # outputs = 1 (F)

X	Y	Z	D (X, Y, Z) I0	B (X, Y, Z) I1	X ^ Z	F (X, Y, Z)
0	0	0	0	0	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	1
0	1	1	0	1	1	1
1	0	0	1	0	1	0
1	0	1	0	0	0	0
1	1	0	0	0	1	0
1	1	1	1	1	0	1

1- The output D $(X, Y, Z) = \sum (1, 2, 4, 7)$ [produces 1 at 1, 2, 4 and 7]

2- The output B (X, Y, Z) = \sum (1, 2, 3, 7) [produces 1 at 1, 2, 3 and 7]

Question 2: Implement the following Function F (W, X, Y, Z) using 4x1 multiplexer

Truth Table:

_	W	X	Y	Z	F (W, X, Y, Z)	
	0	0	0	0	0	
	0	0	0	1	0	10
	0	0	1	0	1	
L	0	0	1	1	1	
	0	1	0	0	0]
	0	1	0	1	1	I1
	0	1	1	0	0	
	0	1	1	1	1	Ц
	1	0	0	0	0	
	1	0	0	1	0	12
	1	0	1	0	0	
	1	0	1	1	0	
	1	1	0	0	1	
	1	1	0	1	1	13
	1	1	1	0	1	.5
	1	1	1	1	1	

Design this circuit:

Question 3: Analyze the following circuit, then redesign with suitable Multiplexer.

Requirement(s):

Answer the following question(s):

Truth Table:

Х	V	z	Decoder 1			Decoder 2			E (V. V. 7)		
Α	I		3	2	1	0	7	6	5	4	F (X, Y, Z)
0	0	0	0	0	0	1	0	0	0	1	1
0	0	1	0	0	1	0	0	0	0	1	1
0	1	0	0	0	0	1	0	0	1	0	0
0	1	1	0	0	1	0	0	0	1	0	0
1	0	0	0	1	0	0	0	1	0	0	0
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	1	0	0	1	0	0	0	0
1	1	1	1	0	0	0	1	0	0	0	1

Re-Design this circuit:

**Hint: Suitable Mux = # of inputs - 1

Question 4: Design a counter that counts the following sequence 3, 1, 2 using D flip flops.

Requirement(s):

Answer the following question(s):

- # External Inputs = 0
- # External Outputs = 0
- # Flip-Flops = 2 (1 for each bit)

State Diagram:

State Table:

$\mathbf{A}_{\mathbf{n}}$	B _n	D_{A}	$\mathbf{D}_{\mathtt{B}}$	A_{n+1}	B_{n+1}
0	0	X	X	X	X
0	1	1	0	1	0
1	0	1	1	1	1
1	1	0	1	0	1

$$D_A = A_{n+1} = A_n \wedge B_n$$

$$D_B = B_{n+1} = A_n$$

Design this circuit:

Question 5: Analyze the following sequential circuit for M N flipflop and then find its state and characteristic tables.

Requirement(s):

Answer the following question(s):

State Table:

M	N	Qn	Q _{n+1} (D)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Characteristic Table:

M	N	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	Q _n `

State Diagram:

Question 6: Design a sequential circuit using D flip flops according to the following state diagram.

Requirement(s):

Answer the following question(s):

- 1- # Of external inputs = 1
- 2- # Of external outputs = 2
- 3- # Of flip-flops = 2
- 4- # Of total inputs = 3

State Table:

X	$\mathbf{A}_{\mathbf{n}}$	$\mathbf{B}_{\mathbf{n}}$	$A_{n+1}(D_A)$	$B_{n+1}(D_B)$	O1	O0
0	0	0	0	1	0	0
0	0	1	1	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	0	1
1	0	0	1	1	1	0
1	0	1	0	0	1	1
1	1	0	0	1	1	0
1	1	1	1	0	1	1

$$D_A = A_{n+1} = X \wedge A_n \wedge B_n$$

$$O1 = X$$

$$D_B = B_{n+1} = B_n$$

$$O0 = B_n$$

Design:

Question 7: Analyze the following counter circuit.

Requirement(s):

Answer the following question(s):

Of external inputs = 0

Of external outputs = 0

Of flip-flops = 3

Of total outputs = 6

State Table:

$\mathbf{A}_{\mathbf{n}}$	B _n	C _n	$A_{n+1}(D_A)$	$B_{n+1}(D_B)$	C_{n+1} (D_C)
0	0	0	0	1	1
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	1	1	0
1	0	0	1	1	0
1	0	1	1	0	1
1	1	0	1	0	0
1	1	1	1	1	0

State Diagram:

