Assignment_STAT6180

Alyssa Lim

5/6/2020

Question 1 - Companies Data

```
companies = read.table("companies.dat", header = TRUE)
```

Correlation Matrix

The Correlation Matrix indicates the linear relationship between the variables

- The upper right of the matrix contains the correlation coefficients
- The lower left of the matrix illustrate the linear relationship using scatter plot
- The diagonal of the matrix shows the distribution of the variables

library("PerformanceAnalytics")

```
## Warning: package 'PerformanceAnalytics' was built under R version 3.6.3
## Loading required package: xts
## Warning: package 'xts' was built under R version 3.6.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
##
       legend
```

```
companies.cor <- companies[, c(2,3,4,5,6,7,8)]
chart.Correlation(companies.cor, histogram = TRUE, pch = 19)</pre>
```


Scatter Plots and Variables Relationship

a. Stock Prices Plots

- The **stock price depends on the company earnings**, which means when the earnings is high the stock price will also rise
- The stock price affects yield inversely proportional, if the stock price is high the yield will decrease

Stock Prices vs Earnings

Stock Prices vs ROE

Stock Prices vs Yield

b. Dividend vs Yield Plot

• The yield depends on the dividend, yield's behaviour is based on the increase or decrease of the dividend issued by the company

Dividend vs Yield

c. ROS Plots

- The Return of Sales is dependent on sales, but inversely proportional with each other.
- Return of Sales measures company's efficiency, while Return of Equity measure performance. **Performance increases as company efficiency also increases**.

Sales vs ROS

ROS vs ROE

Return of Sales

Regression Model

Regression Summary

RESPONSE = Stock Prices

PREDICTORS = All

- $R^2 = 0.7717$ indicates that the model is strong, this is due to all predictors are used in fitting the model
- $P-Value=1.139e^{-06}$ which is less than 0.05 significance level, which indicates linear relationship between the response and all predictors

```
fitAll = lm(stock_prices ~ ., data = companies.cor)
summary(fitAll)
```

```
##
## Call:
## lm(formula = stock_prices ~ ., data = companies.cor)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9692 -3.4477 0.3714 3.0018 8.0128
##
```

```
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                                      6.274 1.74e-06 ***
## (Intercept)
                28.0223916 4.4664430
## dividend
                                      2.162
                                               0.0408 *
               10.3797828 4.8012590
## yield
                -3.3987596  0.5179006  -6.563  8.69e-07 ***
## earnings
                 2.7203359 0.5791694
                                      4.697 8.97e-05 ***
## sales
                 0.0003916 0.0013411
                                      0.292
                                               0.7728
## return_sales 0.6787534 0.3695837
                                       1.837
                                               0.0787 .
## return_equity -0.0842791 0.2165979 -0.389
                                               0.7006
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.757 on 24 degrees of freedom
## Multiple R-squared: 0.7717, Adjusted R-squared: 0.7146
## F-statistic: 13.52 on 6 and 24 DF, p-value: 1.139e-06
```

Validating the Full Regression Model

```
\varepsilon \sim N(0, \sigma^2)
```

- Q-Q plot indicates normal residual as it follows a straight line
- Residual vs Fitted plot doesn't contain any pattern which confirms constant variance

Therefore, Full Regression Analysis is Valid

Normal Q-Q Plot

Residual vs Fitted

95% Confidence Interval of the Slope

The confidence interval shows the range, where the possible true value of the slope, for Earnings lies.

confint(fitAll, 'earnings', level=0.95)

2.5 % 97.5 % ## earnings 1.524989 3.915683

Multiple Regression

Multiple Regression Summary

 ${\bf RESPONSE: Stock\ Prices}$

PREDICTORS: All

Hypothesis:

$$H_0: \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 = 0$$

 $H_1:$ not all $\beta_i=0$

Test Statistic:

```
MS = aov.fitAll$`Mean Sq`
Full_regSS = MS[1] + MS[2] + MS[3] + MS[4] + MS[5] + MS[6]
RegMS = Full_regSS/6
Fobs = RegMS/MS[7]
cat('Fobs = ', Fobs)
```

Fobs = 13.51843

Null Distribution:

```
cat('F6,24 = ', qf(.95, df1 = 6, df2 = 24))
```

F6,24 = 2.508189

$$P(F_{6.24} \ge F_{obs}) = 2.51 < 13.52$$

Reject Null Hypothesis

P-Value:

```
Pval = pf(q = 13.51843, df1 = 6, df2 = 24, lower.tail = FALSE)
cat('P-value =', Pval)
```

P-value = 1.138712e-06

Conclusion:

- $P(F_{6.24} < F_{obs})$, significant evidence to reject the null hypothesis
- P-value is less than 0.05 significance level, which indicates that our model is a regression model
- Though looking at the F-test output of each variables, we can see that Sales and Return seems to be insignificant predictors for these model

Backward Model Selection

1. All Predictors

Sales gives the highest t-test output of 0.7728, which mean it is the most insignicant predictor in the model.

```
summary(fitAll)
```

```
##
## Call:
## lm(formula = stock_prices ~ ., data = companies.cor)
##
## Residuals:
##
               1Q Median
                               ЗQ
      Min
                                      Max
## -8.9692 -3.4477 0.3714 3.0018 8.0128
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                28.0223916 4.4664430
## (Intercept)
                                      6.274 1.74e-06 ***
## dividend
                                      2.162
                10.3797828 4.8012590
                                               0.0408 *
                -3.3987596  0.5179006  -6.563  8.69e-07 ***
## yield
## earnings
                 2.7203359 0.5791694
                                      4.697 8.97e-05 ***
## sales
                 0.0003916 0.0013411
                                       0.292
                                                0.7728
## return_sales
                 0.6787534 0.3695837
                                       1.837
                                                0.0787
## return_equity -0.0842791 0.2165979 -0.389
                                                0.7006
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.757 on 24 degrees of freedom
## Multiple R-squared: 0.7717, Adjusted R-squared: 0.7146
## F-statistic: 13.52 on 6 and 24 DF, p-value: 1.139e-06
```

2. Remove Sales in predictors

Return on Equity (ROE) now gives the highest t-test output of 0.7281, which means it is also a insignificant predictor in the model.

```
##
## Call:
## lm(formula = stock_prices ~ dividend + yield + earnings + return_sales +
```

```
return_equity, data = companies.cor)
##
##
## Residuals:
##
      Min
               1Q Median
                                3Q
                                      Max
## -9.1809 -3.5997 0.2969 2.9546 8.1417
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                28.21292
                          4.33693
                                      6.505 8.18e-07 ***
## dividend
                10.69800
                            4.58960
                                      2.331
                                              0.0281 *
## yield
                -3.37930
                            0.50411 -6.703 5.03e-07 ***
                 2.73474
                                      4.828 5.82e-05 ***
## earnings
                            0.56641
## return_sales 0.63141
                            0.32600
                                      1.937
                                              0.0641 .
## return_equity -0.07367
                            0.20959 - 0.352
                                              0.7281
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.669 on 25 degrees of freedom
## Multiple R-squared: 0.7709, Adjusted R-squared: 0.725
## F-statistic: 16.82 on 5 and 25 DF, p-value: 2.689e-07
  3. Remove Return on Equity in predictors
fitFour = lm(stock_prices ~ dividend + yield + earnings + return_sales,
            data = companies.cor)
summary(fitFour)
##
## Call:
  lm(formula = stock_prices ~ dividend + yield + earnings + return_sales,
##
       data = companies.cor)
## Residuals:
      Min
               10 Median
                                3Q
                                      Max
## -9.0146 -3.4573 0.3586 3.2298 7.9402
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                27.1990
                            3.1837
                                    8.543 5.05e-09 ***
## dividend
                11.0291
                            4.4155
                                    2.498
                                              0.0192 *
## yield
                -3.3294
                            0.4755 -7.002 1.96e-07 ***
                 2.6959
## earnings
                            0.5461
                                    4.937 3.97e-05 ***
## return sales
                 0.5661
                            0.2633
                                     2.150
                                            0.0411 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.59 on 26 degrees of freedom
## Multiple R-squared: 0.7697, Adjusted R-squared: 0.7343
## F-statistic: 21.73 on 4 and 26 DF, p-value: 5.634e-08
Therefore the best regression model for the data is:
```

Y = 27.2 + (11.03 * dividend) + (-3.33 * yield) + (2.7 * earnings) + (0.57 * ROS)

- All remaining predictors have T-test output less than 0.05 significance level, which indicates they are signicant predictors
- $R^2 = 0.7697$ indicates strong model, due to the model captures 77% of the variability in the companies data

Question 2 - Prof 2020 Data

Added square and cube of the predictor variety

```
prof = read.table("prof_2020.dat", header = TRUE)
prof$variety2 = prof$variety^2
prof$variety3 = prof$variety^3
head(prof)
```

```
##
           state variety mathprof variety2 variety3
                                               474552
## 1
                       78
                               252
                                       6084
         Alabama
## 2
         Arizona
                       73
                               259
                                        5329
                                               389017
                       77
                               256
                                       5929
## 3
        Arkansas
                                               456533
## 4
      California
                       68
                               256
                                        4624
                                               314432
## 5
        Colorado
                       85
                               267
                                       7225
                                               614125
## 6 Connecticut
                               270
                                       7396
                       86
                                               636056
```

Fitting the Data

Linear Model

```
lr = lm(mathprof ~ variety, data = prof)
summary(lr)
```

```
##
## Call:
## lm(formula = mathprof ~ variety, data = prof)
##
## Residuals:
##
       Min
                                    3Q
                  1Q
                      Median
                                            Max
## -11.3623 -3.8687
                      0.1061
                               3.6503
                                        8.6629
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 162.1225
                          12.0493 13.455 2.14e-15 ***
                                    8.454 5.66e-10 ***
## variety
                 1.2532
                           0.1482
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.188 on 35 degrees of freedom
## Multiple R-squared: 0.6713, Adjusted R-squared: 0.6619
## F-statistic: 71.47 on 1 and 35 DF, p-value: 5.659e-10
```

Quadratic Model

```
qr = lm(mathprof ~ variety + variety2, data = prof)
summary(qr)
##
## Call:
## lm(formula = mathprof ~ variety + variety2, data = prof)
##
## Residuals:
##
               1Q Median
      Min
                               3Q
                                      Max
## -8.8465 -2.0569 -0.2999 2.0535 8.9431
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 772.22271 111.60653
                                    6.919 5.66e-08 ***
## variety
              -14.23086
                           2.82561 -5.036 1.54e-05 ***
## variety2
                0.09767
                           0.01781
                                    5.484 4.04e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.834 on 34 degrees of freedom
## Multiple R-squared: 0.8256, Adjusted R-squared: 0.8153
## F-statistic: 80.45 on 2 and 34 DF, p-value: 1.282e-13
Cubic Model
cr = lm(mathprof ~ variety + variety2 + variety3, data = prof)
summary(cr)
##
## Call:
## lm(formula = mathprof ~ variety + variety2 + variety3, data = prof)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
## -8.6854 -2.1340 -0.2368 2.1942 8.8665
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.069e+03 1.603e+03 0.667
                                               0.509
## variety
              -2.559e+01 6.117e+01 -0.418
                                               0.678
                                               0.757
## variety2
               2.418e-01 7.756e-01
                                      0.312
## variety3
              -6.070e-04 3.266e-03 -0.186
                                               0.854
##
## Residual standard error: 3.89 on 33 degrees of freedom
## Multiple R-squared: 0.8257, Adjusted R-squared: 0.8099
## F-statistic: 52.12 on 3 and 33 DF, p-value: 1.293e-12
```

Data Plot

- Linear Fit = BLUE
- Quadratic Fit = RED
- Cubic Fit = GREEN

Conclusion

The best model is Quadratic Model, due to:

- It gives the highest Adjusted R^2 value of 0.8153 • It has the lowest P-value of 1.282 e^{-13}
- In cubic fit, variety3 is insignificant in the model, with the highest T-test output of 0.854
- In quadratic fit all predictors are significant, all predictors has T-test output of less than 0.05 significance level