Introdução aos Sistemas Inteligentes

Prof. Sandro Jerônimo

Neurônio Artificial

Fontes das Imagens: www.shutterstock.com ou próprio autor

Neurônio biológico

Modelo biológico

 Corpo humano possui aproximadamente 100 bilhões de neurônios. Todos interconectados através das sinapses/dendritos.

Ideia geral

Um neurônio se adapta de forma a dar uma resposta ao que se "espera"

Aprendizado

E se o neurônio não estiver treinado?

Aprendizado

Se o neurônio não estiver treinado, vamos ter que ensiná-lo. O aprendizado consistem em "reconfigurar o neurônio".

 As sinapses transmitem estímulos através de diferentes concentrações de
 Na+ (Sódio) e K+ (Potássio)

Motivação com o Neurônio Artificial

O melhor de dois mundos!

- Os neurônios biológicos, trabalhando em rede, proporcionando uma fabulosa capacidade de processamento e armazenamento de informação
- Um computador faz uma conta simples, cerca de um milhão de vezes mais rápido que um ser humano

Redes Neurais Artificiais

Definição

 Redes Neurais Artificiais são sistemas inspirados nos neurônios biológicos e na estrutura massivamente paralela do cérebro, com capacidade de adquirir, armazenar e utilizar conhecimento experimental

Neurônio: biológico x artificial

Neurônio Biológico

- Dendrito e sinapses: entradas de sinais
- Corpo somático: processa os sinais de entrada
- Axônio: saída do neurônio (ativo ou não)

Neurônio Artificial

- Entradas e Pesos: entradas de dados com pesos para cada entrada
- Propagação: somatório da multiplicação dos pesos pelas entradas
- Saída: o somatório passa por uma função de ativação

Neurônio Artificial

 W_n

Ao receber as entradas, o núcleo do neurônio multiplica cada entrada pelo peso correspondente e realiza um somatório. Depois o resultado passa por uma função de ativação, que retorna valores (normalmente 0 ou 1).

Função de Ativação

Propósito

 Recebe o valor da saída do neurônio e coloca em um formato desejado

 $f(saida_neuronio) = \{coloca\ o\ valor\ da\ saida_neuronio\ em\ um\ formato\ desejado\}$

Exemplo

- Se o neurônio indica que uma ação deve ou não ser tomada, a função de ativação deveria dar respostas no formato: 0 (não faz) ou 1 (faz).
- Se o neurônio calcula a probabilidade de uma pessoa ser boa pagadora, a função deveria dar respostas entre 0% e 100%

Função de Ativação

 $f(x) = \{coloca\ o\ valor\ x\ da\ saida\ de\ neurônio\ em\ um\ formato\ desejado\}$

Função Degrau/Step

$f(x) = \begin{cases} 0, se \ x < a \\ 1, se \ x \ge a \end{cases} + 1$

Função Sigmoide

Neurônio Artificial de um NPC (Jogos)

 Como um NPC poderia aprender a escolher uma melhor decisão usado sua energia e a posição de outros jogadores?

Rede Neural Perceptron

Rede Neural Perceptron

 Uma rede neural perceptron tradicional possui uma ou mais camadas com vários neurônios artificiais

Rede Neural Perceptron

A utilização da rede neural perceptron se divide em:

Treinamento da Rede: após definir um conjunto de dado e parâmetros de treinamento, então o treinamento começa

Uso efetivo da rede (treinada previamente) para obter respostas

Perceptron - Treinamento

- Taxa de Aprendizado: velocidade na qual o sistema está caminhando para encontrar a solução (o tamanho do passo).
 - Taxa muito baixa vai necessitar de muitas épocas de treinamento.
 - Taxa alta pode tornar o algoritmo oscilante, demora para convergir.
- Erro Global: média dos erros para todo o conjunto de dados de teste.
- Época: cada período de treinamento, no qual todo o conjunto de dados já foi usado.

Perceptron - Treinamento

Estratégia simples de treinamento de um neurônio

- Dado um conjunto de dados (entradas e saída), seguir o seguinte passos:
- (1) Iniciar os valores dos pesos aleatoriamente
- (2) Para cada conjunto de dados, calcular o erro na saída no neurônio (erro = saída desejada saída do neurônio)
- (3) Baseado no erro, atualizar o valor de cada peso segundo a seguinte equação:

Wx = Wx + (Erro x TaxaAprendizado x Entrada)

• (4) Repetir a partir do passo (2), até que se complete um número de épocas ou o erro global esteja abaixo de um limiar.

Perceptron - Treinamento

Vamos ensinar um neurônio a somar 2 números!

Exemplos a serem passado para o neurônio (base de treinamento)

X ₀	X ₁	Saída desejada
1	1	2
2	2	4
3	3	6
4	4	8
5	5	10

- Vamos ignorar a função de ativação neste exemplo
- Além disso, vamos utilizar uma taxa de aprendizado igual a 0,05 e apenas uma época (5 iterações)

Ensinando um neurônio a somar

- Iniciando o algoritmo...
 Pesos aleatórios
 - $-W_0 = 0,000000$
 - $-W_1 = 0.800000$
- Treinando com a linha 1

Sn =
$$(x_0 \times w_0) + (x_1 \times w_1)$$

= $(1 \times 0) + (1 \times 0.8) = 0.8$
Erro = $Sd - Sn = 2 - 0.8 = 1.2$

$$W_0 = W_0 + (TaxaApr x Erro x Entrada)$$

= 0 + (0,05 x 1,2 x 1) = 0,06

\mathbf{X}_{0}	X ₁	Sd
1	1	2
2	2	4
3	3	6
4	4	8
5	5	10

Ensinando um neurônio a somar

Sn =
$$(x_0 \times w_0) + (x_1 \times w_1)$$

= $(2 \times 0,06) + (2 \times 0,86) = 1,84$
Erro = Sd - Sn = $4 - 1,84 = 2,16$
 $W_0 = W_0 + (TaxaApr \times Erro \times Entrada)$
= $0,06 + (0,05 \times 2,16 \times 2) = 2,276$
 $W_1 = 1,076$

X _o	X ₁	Sd
1	1	2
2	2	4
3	3	6
4	4	8
5	5	10

Ensinando um neurônio a somar

Treinando com a linha 3

$$Erro = 1,944$$

$$W_0 = 0.5676$$

$$W_1 = 1,3676$$

• Treinando com a linha 4

$$Erro = 0,2592$$

$$W_0 = 0.61944$$

$$W_1 = 1,41944$$

Treinando com a linha 5

$$Erro = -0,1944$$

\mathbf{X}_0	X ₁	Sd
1	1	2
2	2	4
3	3	6
4	4	8
5	5	10

Afinal... O neurônio aprendeu a somar?

Um teste simples - Quanto é 1+1?

Sn =
$$(x_0 \times w_0) + (x_1 \times w_1)$$

= $(1 \times 0.57) + (1 \times 0.37) = 1.94$

Afinal...

O neurônio aprendeu a somar?

Testando mais valores

- Na tabela notamos que a rede aprendeu a somar dois números iguais com uma margem de erro de 0,02
- O erro poderia ser menor se tivéssemos a treinado por mais épocas.
- Ela consegue generalizar, somando números não treinados anteriormente (ex:10+10)

X ₀	X ₁	Saída
1	1	1,94
2	2	3,88
3	3	5,8
4	4	7,76
5	5	9,7
6	6	11,65
7	7	13,59
10	10	19,41

Afinal... O neurônio aprendeu a somar?

Um teste fora dos padrões: quanto é 1000 + 1?

Sn =
$$(x_0 \times w_0) + (x_1 \times w_1)$$

= $(1.000 \times 0.57) + (1 \times 0.37) = 570.37$

Precisão: (570,37 / 1001) = 0,57 <<< 57%

Por que a precisão caiu? Resposta: base de treino é incompleta

Rede Neural Multicamadas
Perceptron

Uma rede neural perceptron de uma única camada tem dificuldade de representar funções não-lineares ou modelos que separem linearmente os dados.

X1	X2	E
1	1	1
1	0	0
0	1	0
0	0	0

X1	X2	OU
1	1	1
1	0	1
0	1	1
0	0	0

1	•
0 0	1 x2
(a) x	x_1 and x_2

X1	X2	XOR
1	1	0
1	0	1
0	1	1
0	0	0

- McCulloch & Pitts (1943): modelo computacional para o neurônio artificial. Não possuía capacidade de aprendizado
- Hebb (1949): modelo de aprendizado (Hebbian Learning Rule)
- Rosenblatt (1957): Perceptron, com grande sucesso em certas aplicações de problemas em outras aparentemente similares
- Minsly & Papert (Perceptrons 1969): prova matemática de que as redes Perceptron são incapazes de solucionar problemas simples tipo OU-EXCLUSIVO
- Rumelhart (início da década de 80): novos modelos que superaram os problemas dos Perceptrons. Ex: redes perceptron multicamadas etc.
- Schmidhuber & Hochreiter (1997): modelo LSTM é proposto possibilitando avanços teóricos para *deep learning*
- Anos 2000....: avança o volume de bases de dados transacionais (*Big Data*), o desenvolvimentos de hardware, metodologias, *frameworks* e plataformas de serviços de computação em nuvem (Microsoft, Google, Amazon, IBM... *Al as a Services, MLOps*)

Perceptron Multicamadas

Motivação

- Superar as limitações das redes de camada única
- Realiza aproximações para funções contínuas
- Todo conjunto de dados pode ser separado por uma rede de 3 camadas.
- Quase todo conjunto de dados pode ser separado por uma rede de 2 camadas.

Exemplo com 3 camadas

Camada de Entrada

Perceptron Multicamadas: estruturas

Redes feed-forward

- Single-layer ou multi-layer
- Implementam funções não possuem estado interno

Redes Recorrentes

- Possuem ciclos direcionados com atrasos possuem estado interno.
- Redes de Hopfield: implementam memória associativa.
- Máquinas de Boltzmann: usa funções estocásticas de ativação.

Perceptron Multicamadas

Algoritmo *Back propagation* – Funcionamento Geral

- Inicia-se os pesos com um valor aleatório
- Usando o training set, alimenta a rede com os valores de entrada e observa a saída
- Calcula o erro
- Ajusta os pesos para diminuir o erro (back propagating na rede), e repete o processo um número fixo de vezes ou até que o erro seja pequeno o suficiente.

Algoritmo back propagation

Fase forward

Entrada é apresentada à primeira camada da rede e propagado em direção às saídas.

Fase forward

Os neurônios da camada i calculam seus sinais de saída e propagam à camada i + 1

Fase forward

A última camada oculta calcula seus sinais de saída e os envia à camada de saída

Fase forward

A camada de saída calcula os valores de saída da rede.

A camada de saída calcula o erro da rede: δ_{j}

Calcula o termo de correção dos pesos

(a atualização será feita depois)

Envia o erro para a última camada oculta

A camada oculta calcula o seu erro

Calcula o termo de correção dos pesos

(a atualização será feita depois)

A camada oculta calcula o seu erro

$$\delta_j = f'(u_j) \cdot \sum \delta_k w_{lk}$$

Calcula o termo de correção dos pesos

(a atualização será feita depois)

Cada unidade atualiza seus pesos

$$w_{ij}(novo) = w_{ij}(velho) + \Delta w_{jk}$$

back propagation

Repete-se o processo enquanto enquanto a rede não aprender

o padrão de entrada Camadas intermediárias Camada de Camada de entrada saída

Cuidados e possibilidades

- Deve-se tomar cuidado para que o training set seja representativo do conjunto de entradas e saídas possíveis
- Em caso de mudança significativa nos conjuntos de entrada e saída, deve-se treinar a rede novamente.
- Pode-se fazer a rede adaptativa, de forma que ela continue sendo treinada durante a execução (aprendizado por reforço)

Treinamento pode ser

- Por padrão (on-line, incremental) Ajusta pesos a cada padrão de treinamento apresentado.
- Por ciclo (batch) Ajusta pesos depois de apresentar todos os padrões de treinamento (considera um erro médio para o conjunto de padrões).
- Estático Topologia fixa (ajusta somente os pesos).
- Dinâmico Topologia ajustável (ajusta pesos e topologia).

Algumas dificuldades

- Não existe uma regra eficiente para treinamento e para encontrar uma arquitetura ideal. O treinamento é bastante experimental e as vezes demorado, em função do elevado número de combinação de parâmetros.
- Algumas ferramentas oferecem recursos para ajudar na busca de parâmetros/configurações ideais, mas consome tempo.

Algumas dificuldades

- *Mínimos locais*: o treinamento pode parar prematuramente.
- Overfitting: uma rede hiper treinada (treinou por muito tempo), ou possui mais neurônios do que precisa, acaba se ajustando a um grupo específico de dados, diminuindo a sua generalização.
- Existem diversos algoritmos de treinamentos: back propagation, Rprop, Quickprop, Levenberg-Marquardt.

Rede Neural Multicamadas
Perceptron

Aplicações

Predição de vendas

- Valores médios anuais de vendas (Bilhões R\$)
- Índice do volume de vendas do varejo brasileiro (IBGE)
- Supermercados/Hipermercados

2000	2001	2002	2003	2004	2005
64,41	65,32	65,69	61,57	65,92	67,44

2006	2007	2008	2009	2010	2011
72,78	77,81	81,65	88,46	96,16	88,85

Como serão os próximos anos?

2012	2013	
?	?	?

Predição de vendas – Estratégia da Janela deslizante

Dados Originais

2000	2001	2002	2003	2004	2005
64,41	65,32	65,69	61,57	65,92	67,44
2006	2007	2008	2009	2010	2011
72,78	77,81	81,65	88,46	96,16	88,85

Montagem da base de treinamento

Ano1, Ano2, Ano3, Ano4, Ano5 \rightarrow Ano6 Ano2, Ano3, Ano4, Ano5, Ano6 \rightarrow Ano7 Ano3, Ano4, Ano5, Ano6, Ano7 \rightarrow Ano8

Dados de Treinamento

X1	X2	Х3	Х4	X5	Sd
64,41	65,32	65,69	61,57	65,92	67,44
65,32	65,69	61,57	65,92	67,44	72,78
65,69	61,57	65,92	67,44	72,78	77,81
61,57	65,92	67,44	72,78	77,81	81,65
65,92	67,44	72,78	77,81	81,65	88,46
67,44	72,78	77,81	81,65	88,46	96,16
72,78	77,81	81,65	88,46	96,16	88,85

PUC Minas Virtua

Predição de vendas - Modelos com 25 e 9 neurônios

Predição de vendas – Resultados do modelo

Sistema de controle de irrigação

 Ideia: controlar irrigação e ventilação de uma planta com base na temperatura e umidade

Uso de arduino

Sistema de controle de irrigação

Arduino UNO

Função de ativação (step)

$$f(x) = \begin{cases} 0, se \ x < a \\ 1, se \ x \ge a \end{cases}$$

Sistema de controle de irrigação

RESULTADOS OBTIDOS

Entradas		Saídas Esperadas		Saídas da Rede	
Umidade	Temperatura	Registro	Cooler	Registro	Cooler
920	710	0	0	0	0
249	590	1	1	1	1
100	590	1	0	1	0
302	720	1	1	1	1
1022	1020	0	0	0	0
798	897	0	1	0	1
1024	902	0	0	0	0
849	1024	0	1	0	1
603	402	0	0	0	0
499	503	1	0	1	0

