

ECE124 Intro-Digital and Computer Sys

Chapter 7

Memory and Programmable Logic

Memories

- How is memory used in computers?
 - Memory hierarchy (next slide)
- What differentiates various types of memories?
 - Technology: magnetic, charge, capacitance, resistance, fuse
 - Access Flexibility: random (access anything), sequential (access in order)
 - » Random Access Memory (RAM) vs. Sequential Access Memory (SAM)
 - » USB memory vs. Magnetic type memory
 - » Access/Cycle Time: time required to complete a read/write operation
 - Access Options (Memory function): Write (i.e. store) and read (i.e. retrieve), or read only
 - » Read-Write Memory (RWM) vs. ROM (Read-Only Memory)
 - Volatility: non-volatile or volatile (does or does not retain data on power-down)
 - Capacity: amount of data that can be stored—typically expressed in bytes
 - » Word Size: # bits stored or retrieved upon access
- We'll consider two conventional memories
 - Random-Access Memory (RAM)
 - Read-Only Memory (ROM)
- Is memory combinational or sequential logic?
 - RAM: array of binary storage elements like sequential, but not clocked (latch)
 - (ROM:)combinational (decoder + OR gates)

AND NANDgare

Memory Hierarchy

Random-access Memory (RAM)

- Memory terminology:
 - Smallest unit is "word" (n bits wide)
 - 1 byte is 8 bits, 1 word is 2 bytes (16 bits)
 - Identified by "address"
- Block diagram:
 - k address lines k = 10
 - \gg At most 2^k words storage
 - n data lines (input and output)

• Size $\neq 2^k \times n$ bits

- Example:
 - 1024-bit memory with 16-bit words

 How many address lines?

 1024-bit memory with 16-bit words

Memory Layout

- Example: 1024x16 RAM
 - 1024 16-bit words
 - 10 bits identify address (or "location") of word
 - 16 bit word stored at each location

Binary decimal

0000000000

0000000001

0000000010 2(0)

11111111101

0

1021

1023

1022

Remember:

 $k (Kilo) = 2^{10}$

M (Mega) = 2^{20}

 $G (Giga) = 2^{30}$

T (Tera) = 2⁴⁰

0000 000010

Memory content

10110101010101110

1010101110001001

1001110100010100

0000110100011110

11011111000100101

RAM Read and Write

- Control inputs:
 - Address
 - Read
 - Write
- Write operation
 - 1. Apply address to address lines
 - 2. Apply data to data input lines
 - 3. Activate write input

- Read operation
 - 1. Apply address to address line
 - 2. Activate read input
 - 3. Read value from data output lines

RAM Read and Write

- Control inputs on commercial memories
 - Memory enable
 - Read and write (often read/write)

Memory	Read /	Memory
enable	write	operation
0	X	none
1	0	write to selected word
1	1	read from selected word

- What timing constraints need to be considered?
 - Access time = time to read a word
 - Cycle time = time to write a word
 - Also: setup and hold time on address lines

Memory Cell Design

Binary memory cell implemented with SR latch:

Note: memory is not clocked

Memory Cell Design

Binary memory cell implemented with SR latch (nor gate based):

Note: memory is not clocked

RAM Types

- Static random access memory (SRAM)
 - Operates like a latch
 - Implemented with 6 transistors
 - Fast operation, but power hungry
 - Memory retains information while power is applied

- Dynamic random access memory (DRAM)
 - Data stored as charge in capacitance
 - Implemented with 1 transistor; less area required

TH

- Slower operation, but less power hungry
- Memory needs to be "refreshed"

Memory Organization

• Internal layout of memory:

One word per "row"

 Each "binary cell" stores one bit

Memory cell:

- Decoder:
 - Selects word

Coincident Decoding – Address Splitting

Split decoders into two dimensions:

ANDS 32-67+

k/2 × 2^{k/2} decoder in each dimension

2 of 5×326it

 Coincidence of selected lines determines word

1024

bK

5 × 32 decoder 32 ANDS 0 1 2 20 . . . 31

binary address

How many gates are required?

32 + 32 = 64 ANDs
 with 5 inputs each

Address Multiplexing - DRAM

- Number of pins on memory chip impacts cost
 - How can we reduce the number of pins necessary?
- Address multiplexing
 - Address is transmitted in parts
 - Multiplexing in time
- Example: 64k word DRAM
 - Bit-addressable
 - » 2¹⁶ address space
 - 16 bits of address are split (multiplexed) in time by strobing
 - CAS: "Column Address Strobe"
 - » RAS: "Row Address Strobe"

