Stepper Motors

ECE230 Introduction to Embedded Systems
Motors

Learning objectives

Following this lesson and related activities, students will be able to

- Distinguish between unipolar and bipolar stepper motors
- Describe the tradeoffs between wave drive, two-phase, and half-step methods of driving a stepper motor
- Calculate the number of steps needed to rotate a stepper motor a specified angle
- Calculate the number of steps per second needed to rotate a stepper motor at a specified rate

Motors

Convert electrical energy into linear or rotary force (torque)

- Electrical current passed through windings produce magnetic field
 - Causes motor shaft to rotate to align with magnetic field of magnets
 - Continuously altering current causes continuous change in magnetic field and continuous

rotation

Types of motors

- DC motor continuous angular motion (ON/OFF)
- Stepper motor rotation specified in steps (steps per rotation dependent on resolution and gearing)
 - Requires continuous signaling for rotation
 - Inherent knowledge of position
 - May be limited due to external forces restricting movement
- Servo motor specify angular position
 - Generally limited angular range

Unipolar Stepper Motor

Center-tap in each coil

Unidirectional current flow through half of winding

Commons (center-taps) may be tied together

Bipolar Stepper Motor

Bi-directional current flow through entire winding Potentially increased torque

Conceptual Model of Bipolar Stepper Motor

Wave Drive Sequence

Wave Drive (One-Phase)

- Only one phase is energized at a time
- Consumes the least power
- Assures positional accuracy regardless of any winding imbalance in the motor

Two-phase Sequence

Hi-Torque (Two-Phase)

- Energizes two adjacent phases
- Improved torque-speed product
- Greater holding torque

Half-step Sequence

Effectively doubles the stepping resolution of the motor, but the torque is not uniform for each step

Step angle

Resolution (step angle) depends on:

- Number of permanent magnet pole pairs
- Number of phases (windings)

Gearing may further increase resolution (reduce step angle)

Step calculations

Steps needed to rotate a desired angle – A (in degrees)

$$Steps = \frac{A}{step_angle} = \frac{A * steps_per_revolution}{360^{\circ}}$$

Step rate to RPM conversion

$$\frac{revolutions}{minute} \times \frac{1 \text{ minute}}{60 \text{ seconds}} \times \frac{steps}{revolution} = \frac{steps}{second}$$

The inverse of this value will give you the period between steps for the desired RPM

$$\frac{1}{\text{(steps/second)}} \Rightarrow seconds \ per \ step$$

Summary

Motors convert electrical energy into linear or rotary force (torque)

Stepper motor specifies rotation in steps

Unipolar Stepper Motor – center tap windings, creating four zones

- Unidirectional current flow through half of winding
- 5 or 6-pin interface

Bipolar Stepper Motor – bi-directional current flow through entire winding

4-pin interface

Drive sequences

- Wave Drive (One-Phase) only one phase is energized at a time
- **Hi-Torque (Two-Phase)** energizes two adjacent phases
- Half-step hybrid of one- and two-phase

Resolution (step angle) varies based on number of phases, permanent magnet pole pairs

References

Images

- Title
 - Adobe stock
- Motors
 - $\bullet \qquad \text{https://en.wikipedia.org/wiki/Electric_motor\#/media/File:Electric_motor.gif}$