SP705/706/707/708/813L/813M

低功耗微处理器外围监控器件

- 高精度电压监控器 SP705/707/813L(4.65V) SP706/708/813M(4.40V)
- 复位脉冲宽度-200ms
- 独立看门狗定时器-溢出周期 1.6s (SP705/706/813L/813M)
- 60uA 最大电源电流
- 开关式 TTL/CMOS 手动复位输入
- Vcc 下降到 1V 时,可产生RESET信号
- 支持对供电失败及低电池警告进行监控
- 提供8引脚PDIP, NSOIC, 及uSOIC封装。
- 705-708/813L 系列引脚兼容性增强以符合工业标准
- 功能符合 1232 系列工业标准

描述

SP705-708/813L/813M 系列属于微处理器(uP)监控器件,其集成有众多组件,可监测 uP 及数字系统中的供电及电池的工作情况。由于以上众多组件的使用,SP705-708/813L/813M 系列可有效地增强系统的可靠性及工作效率。SP705-708/813L/813M 系列包含一个看门狗定时器,一个 uP 复位模块,一个供电失败比较器,及一个手动复位输入模块。SP705-708/813L/813M 系列适用于开发计算机,车载系统,控制器,及其他一些智能仪器。对于对电源供电要求严格的 uP 系统/数字处理系统,SP705-708/813L/813M 系列是一款非常理想的选择。

型号	RESET 阀值	有效 RESET	手动 RESET	看门狗	PFI 精度
SP705	4.65V	LOW	YES	YES	4%
SP706	4. 40V	LOW	YES	YES	4%
SP707	4.65V	LOW 与 HIGH	YES	NO	4%
SP708	4. 40V	LOW 与 HIGH	YES	NO	4%
SP813L	4.65V	HIGH	YES	YES	4%
SP813M	4. 40V	HIGH	YES	YES	4%

极限参数

终端电压(以GND为基准):

Vcc -0.3V到+6.0V

所有其他输入(注解1) ----- -0.3V 到(Vcc+3.0V)

输入电流:

 Vcc
 20mA

 GND
 20mA

 输出电流(所有输出)
 20mA

 ESD 额定值
 4kV

电源持续功耗:

Plastic DIP (70℃以上时, 9.09mW/℃递减) 727mW SO (70℃以上时, 5.88mW/℃递减) 471mW Mini SO (70℃以上时, 4.10mW/℃递减) 330mW

这里仅对部分参数进行描述,器件在以上状态的工作性能,及下面规范中的相关操作,没有在这里说明。长期处于极限工作状态将影响器件的稳定性。

规范

SP705/707/813L 的 Vcc 范围为 4.75V 到 5.50V。SP706/708/813M 的 Vcc 范围为 4.50V 到 5.50V,TA=T_{MIN} 到 T_{MAX},除非有特别说明,一般以上数据皆以 25℃时为准。

到 1 Max , 除非有待劝说明 ,							
参数	最小值	典型值	最大值	单位	条件		
操作电压范围,Vcc	1.0		5. 5	V			
电源电流, I _{SUPPLY}		40	60	uA	MR=Vcc 或浮空,WDI 浮空		
复位阀值	4. 50	4.65	4. 75	V	SP705, SP707, SP813L, 注解 2		
	4. 25	4.40	4.50		SP706, SP708, SP813M, 注解 2		
复位滞后阈值		40		mV	注解 2		
复位脉冲宽度, t _{rs}	140	200	280	ms	注解 2		
复位输出电压					注解 2		
	Vcc-1.5				I _{SOURCE} =800uA		
	0.8			V	I _{SOURCE} =4uA, Vcc=1.1V		
			0.4		$I_{\text{SINK}}=3.2\text{mA}$		
			0.3		$V_{CC}=1V$, $I_{SINK}=50uA$		
看门狗溢出周期,tWD	1.00	1.60	2. 25	S	SP705, SP706, SP813L, SP813M		
WDI 脉冲宽度, tWP	50			Ns	V _{IL} =0.4V, V _{IH} =0.8xVcc		
WDI 输入阈值					SP705, SP706, SP813L, SP813M		
LOW			0.8	V	Vcc=5V		
HIGH	3. 5						
WDI 输入电流		30	75	UA	SP705, SP706, SP813L, SP813M		
					WDI=Vcc		
	-75	-20			SP705, SP706, Sp813L, SP813M		
					WDI=OV		
WDO输出电压	Vcc-1.5			V	I _{source} =800uA		
			0.40		I_{SINK} =3. 2mA		

MR上拉电流	100	250	600	UA	MR=0V
MR脉冲宽度, tWR	150			Ns	
MR输入阈值					
LOW			0.8	V	
HIGH	2.0				
MR到复位时的延迟,			250	Ns	注解 2
tWD					
PFI 输入阈值	1. 20	1. 25	1. 30	V	Vcc=5V
PFI 输入电流	-25.00	0. 01	25. 00	NA	
PFO输出电压	Vcc-1.5			V	I _{SOURCE} =800uA
			0.4		$I_{\text{SINK}}=3.2\text{mA}$

注解1:如果输入电流小于10mA,PFI及MR上输入电压限制可以超过额定值。

注解 2: 在 SP705-SP708 上添加RESET信号,在 SP707/708/813L/813M 上添加 RESET信号。

图 1 引脚分布图

名称	功能	引脚描述					
		SP705/706		SP707/708		SP813L	/813M
		DIP/	uS0IC	DIP/	uS0IC	DIP/	uSOIC
		SOIC		SOCI		SOCI	
MR	手动复位-当被拉低于 0.8V 以下时,输入触发一个复位	1	3	1	31	1	3
	信号。其输入为低电平有效,内部有 70uA 上拉电流。						
	其可被 TTL/CMOS 逻辑线驱动,或通过开关短接至地。						
Vcc	+5V 电源	2	4	2	4	2	4
GND	所有信号的地参考端	3	5	3	5	3	5

PFI	供电失败信号输入一当电压监控器输入低于 1.25V 时,	4	6	4	6	4	6
	PFO将为 LOW。如果没有使用该引脚,可将 PFI 连接至地						
	或VCC。						
PF0	供电失败输出—输出为高,直到 PFI 低于 1.25V。	5	7	5	7	5	7
WDI	看门狗输入—如果输入保持 HIGH 或 LOW 达 1.6s,内部	6	8	_	-	6	8
	看门狗定时器将溢出,WDO将为低。将WDI 浮空,或者将WDI 与高阻抗触发缓冲连接,以禁止看门狗功能。一						
	旦设定RESET,且 WDI 为触发态,或 WDI 遇到一个上升沿/下降沿,内部看门狗定时器都将清 0。						
N. C.	无连接	-	-	6	8	-	-
RESET	低电平有效RESET输出一当 Vcc 低于复位阈值	7	1	7	1	-	-
	(SP705/707/813L 为 4.65V, SP706/708 为 4.40V),将						
	会产生一个 200ms 的低电平脉冲,并持续为低。在 Vcc						
	升高超过复位阈值,或MR从 LOW 升为 HIGH 后,其将持						
	续 200ms 的低电平。一个看门狗溢出不会触发RESET,						
	除非WDO与MR连接。						
WDO	看门狗输出一当内部看门狗定时器完成 1.6s 的计时,	8	2	_	-	8	2
	其将被拉低;其不会升高,直到看门狗被清为 0。WDO在						
	低电平状态下将为 LOW。当 Vcc 低于复位阈值, WDO将						
	为低。然而,与RESET不同,WDO没有最小的脉冲宽度限						
	制。一旦 Vcc 超过复位阈值,WDO 将立即持续为 HIGH,						
	之间没有任何延迟。						
RESET	高电平有效 RESET 输出— 输出为RESET的补充。一旦	-	-	8	2	7	1
	RESET 为高,RESET为低,反之亦然。SP813L/813M 仅有一个复位输出。						

表1 器件引脚描述

图 2 SP705/706/813L/813M 内部模块图

图 3 SP707/708 内部模块图

图 4A 供电失败比较器反向设定响应时间

图 4B 供电失败比较器反向设定响应时间电路图

图 5A 供电失败比较器设定的响应时间

图 5B 供电失败比较器设定响应时间图

图 6A SP705/707 RESET输出电压 vs 电源电压

图 6B SP705/707 RESET输出电压 vs 电源电压相关电路图

图 7A SP705/707 RESET响应时间

图 7B SP705/707 RESET响应时间相关电路图

图 8 SP707 RESET 及RESET的断定

图 9 SP708 RESET 及RESET的反向断定

图 10 SP708 RESET 与RESET 断定与反向断定图

图 11 SP707/708/813L/813M RESET 输出电压 vs 电压源

图 12 SP813L/813M RESET 响应时间

图 13 SP707/708/813L/813M RESET 输出电压 vs 电压源 & SP813L/813M RESET 响应时间电路图

特性

SP705-708/813L/813M 系列提供 4 种功能:

- 1 在上电,下电及掉电情况下复位输出。
- 2 如果看门狗输入引脚在 1.6S 内没有接收到一个信号,看门狗输出将为低。
- 3 一个 1.25V 的阀值检测器,可以监测供电失败警告,及低电池状态。或监控一个非+5V 的电源。
- 4 支持低电平手动复位,允许外部按键开关产生 RESET 信号。

SP707/708 与 SP705/706 比较,多了一个高电平 RESET 功能,少了一个看门狗定时器模块。SP813L 与 SP705 比较,其不仅支持高电平 RESET,还支持低电平RESET。当电压源低于 4.65V 时,SP705/707/813L 将 产生一个复位信号。当电压源低于 4.40V 时,SP706/708/813M 将产生复位信号。

SP705-708/813L/813M 系列非常适用于车载系统,智能仪表,电池型计算机及控制器。SP705-708/813L/813M适合应用于一些对 uP 及其相关器件要求严格的监控场合。

操作原理

SP705-708/813L/813M 是一款微处理器(uP)外围监控型器件,可监控一些数字器件(微处理器,微控制器及存储体)供电状态。该系列适用于需要对电源进行监控的便挟式及电池供电型设备。使用该器件,可以有效地减少系统内部组件数量及降低复杂度。该系列产品的看门狗功能可持续对系统的工作状态进行监控。更多 SP705-708/813L/813M 特性描述可参见下文。

复位输出

一个微处理器复位输入可启动 uP(以一种已知的状态)。SP705-708/813L/813M 系列可以在上电的过程中产生复位信号。并阻止在下电及掉电时代码执行错误。

在上电的过程中,一旦 Vcc 达到 1V,RESET将为一个稳定的逻辑低电平,一般为 0.4V 或者更低。当 Vcc 上升,RESET将保持为 LOW。当 Vcc 上升超过复位阈值,内部定时器将在 200ms 以后产生一个RESET信号。一旦 Vcc 跌至复位阈值以下时(如系统掉电),RESET保持低电平。如果在初始化复位的过程中产生掉电,复位脉冲将至少持续 140ms。在下电的过程中,一旦 Vcc 跌至复位阈值以下,RESET将保持为 LOW,并稳定在 0.4V 或更低,直到 Vcc 低于 1V。

SP707/708/813L/813M 高电平 RESET 输出是RESET输出的一种简单补充, 当 Vcc 低于 1.1V 时保持有效。一些 uP, 如 Intel 的 80C51, 需要高电平复位脉冲。

看门狗定时器

SP705-708/813L/813M 系列看门狗电路可监控 uP 的工作状态。如果 uP 没有触发看门狗输入(WDI)在 1.6s 及 WDI 没有触发。如果 uP 在 1.6s 内没有发出 WDI(WatchDog Input:看门狗输入)信号,或 WDI 没有进入触发态,WDO将为 LOW。当RESET信号发出以后,WDI 为触发态,看门狗定时器将被清 0,并停止计数。当RESET被释放,WDI 被拉为 HIGH 或 LOW,定时器将开始计数。此时可以检测到脉宽至少为 50ns。

图 14 SP705/706/813L/813M 看门狗时序

一般情况下,WDO可与 uP 的 NMI(Non-Maskable Interrupt:不可屏蔽中断)输入引脚连接。当 Vcc 跌至复位阀值以下时,WDO将持续为 LOW,且不受看门狗定时器的约束。一般,其将产生一个 NMI 信号,但是RESET同时将为低,NMI 信号将被系统忽略。

如果 WDI 保持为无连接状态,WDO可以作为低线输出。因为浮空状态的 WDI 禁止内部定时器,仅当 Vcc 低至复位阀值以下时,WDO为 LOW,其可作为低线输出。

图 15 WDI 触发态时 SP705/706 的时序。SP707/708/813L/813M RESET 输出与RESET输出反向

供电失败比较器

供电失败比较器有多种用途,因为其输出端及非反向输入端没有内部连接。其反向输入内部连接有1.25V的参考源。

为了构建一个供电失败的预警电路,可将 PFI 引脚与分压器相连,如图 16。在+5V 稳压器产生压差之前,选择分压比使 PFI 上的电压降至 1.25V 以下。使用PFO以中断 uP,这样可以为掉电做准备。

手动复位

手动复位(MR)输入允许 RESET 可被外部按键触发。开关可产生一个最低 140ms 的 RESET 脉冲。MR与 TTL/CMOS 逻辑兼容,所以其可以驱动外部逻辑线路。SP706P/R/S/T-SP708R/S/T 的MR能够被用来强制一个 看门狗溢出以产生一个 RESET 脉冲,需将WDO连接至MR即可。

Vcc 下降到 0V,可确保得到一个有效的RESET输出

当 Vcc 降低到 1V,SP705/706/707/708 的RESET输出不再下降,其为开路。如果高阻抗 CMOS 逻辑输入端没有被驱动,其有可能发生漂移,得到一个不确定的电压值。如果一个下拉电阻被增加到RESET引脚上,任何干扰电荷或漏级电流将被导向地端,并保持RESET为低。电阻值在这里并不重要。 $100K\Omega$ 左右即可,足够大不能通过RESET信号,足够小不能将RESET拉至地。

监控电压与未调节DC输入端不同点

监控电压与未调节 DC 不同之处在于连接了一个分压器至 RFI,并可专用于分压比调节。如果需要,可通过在 PFI 和PF0之间连接一个电阻 (其值 10 倍于潜在分频网络上的两个电阻之和)增加一定的滞后。PFI 与 GND 之间的电容,将减少供电失败电路检测线上高频噪声的敏感度。RESET能够被用来监测电压 (除了+5V的 Vcc 线)。当 PFI 低至 1.25V以下时,连接PF0至MR以初始化一个复位信号。图 17 所示为,当+5V的电源降至 RESET 阈值以下时,或当+12V 电源下降 11V 左右时,SP705/706/707/708 系列如何配置以设定RESET。

图 16 典型操作电路

图 17 监控+5V 或+12V 电源

监控负电压源

供电失败比较器可以可以对负电源,如图 18 所示。当负轨性能良好(负电压数值较大),PFO 为 LOW。通过增加一个电阻和晶体管(如下图所示),一个 HIGH PFO 信号将触发 RESET 信号。当 PFO 保持为 HIGH 足够的时间后,SP705-708/813L/813M 系列将持续产生 RESET(RESET=LOW,RESET=HIGH)。电路的准确率依靠于 PFI 阀值容限,Vcc 线路及相关电阻。

与uP(带准双向RESET引脚)的接口

带准双向 RESET 引脚的 uP,如 Motorola 68HC11 系列,支持 SP705/706/707/708 的RESET输出功能。如,RESET输出被驱动为 HIGH,而 uP 准备将其拉低时,将会得到一个不确定的逻辑电平。为了防止这种现象的出现,可在RESET输出与 uP 复位 I/0 之间连接一个 4.7 K Ω 电阻,如图 19。并缓冲RESET输出,以供其他系统组件使用。

Buffered RESET connects to System Components

+5V

+5V

V

Sipex

RESET

4.7 K Ω

GND

GND

图 19 SP705/706/707/708 与微处理器准双向 RESET 口的接口电路

图 20 电源电流 vs 温度

图 21 电源电流 vs 电源电压

应用设计

相对于现在的工业器件,SP705-708/813L/813M系列提供优良功能及更低功耗。参见图 21 及 22 中的,电源电流性能特性与温度及电源电压关系图。

表 2 所示为,如何使用 SP705-708/813L/813M 系列取代 Dallas Semiconductor 的 DS1232LP/LPS。并列出了可替换列表,向设计者展示了该系列的一些优点。表中列出了引脚名称的描述,从描述中可以得知,两款芯片的功能基本相同或类似。

与 DS1232, SP705-708/813L/813M 系列有一个单独的看门狗输出引脚(WDO), 其可以简单与MR连接以产生复位信号。DS1232 具有引脚选择特性,但 SP705-708/813L/813M 系列具有更多的可选择功能, 如复位阈值或看门狗溢出延时。这些功能为实际的应用而打造, 这些功能的使用可在一定程度上降低成本,降低系统复杂度。此外,813L/813M 系列具有 DS1232 所没有的供电失败输入及输出功能,对于检测不规则的电压源其非常有效。SP705-708/813L/813M 系列提供有 uSOIC 封装,可应用于很多对空间要求严格的工业场合。

功能	Dallas DS12	232LP/LPS	Sipex 可替换型号			
	引脚号	引脚描述	Sipex 型号	引脚号		引脚描述
	DIP/SOIC			DIP/SOIC	USOIC	
手动复位	1	PBRST	SP705-708/813L/813M	1	3	MR
WDI 时间延迟	2	TD	SP705-708/813L/813M	N/A	N/A	1.6秒
设定						
Vcc Trip 4.6	3	TOL=GND	SP705/707/813L	N/A	N/A	4. 6V
Vcc Trip 4.4	3	TOL=Vcc	SP706/708/813M	N/A	N/A	4. 4V
地	4	GND	SP705/708/813L/813M	3	5	GND
高电平复位	5	RST	SP707/708	8	2	RESET
高电平复位	5	RST	SP813L/813M	7	1	RESET

低电平复位	6	RST	SP705-708	7	1	RESET
看门狗输入	7	 ST(H到L)	SP705/706/813L/813M	6	8	WDI
电压输入	8	Vcc	SP705-708/813L/813M	2	4	Vcc
供电失败输入	N/A	N/A	SP705-708/813L/813M	4	6	PFI
供电失败输出	N/A	N/A	SP705-708/813L/813M	5	7	PF0
看门狗输出	N/A	N/A	SP705/706/813L/813M	8	2	WDO

表 2 Dallas 器件总览

订购信息

N 32 H 102		
型号	温度范围	封装
SP705CP	0℃到+70℃	8-pin Plastic DIP
SP705CN	0℃到+70℃	8-pin Narrow SOIC
SP705CU	0℃到+70℃	8-pin uSOIC
SP705EP	-40℃到+85℃	8-pin Plastic DIP
SP705EN	-40℃到+85℃	8-pin Narrow SOIC
SP705EU	-40℃到+85℃	8-pin uSOIC
SP706CP	0℃到+70℃	8-pin Plastic DIP
SP706CN	0℃到+70℃	8-pin Narrow SOIC
SP706CU	0℃到+70℃	8-pin uSOIC
SP706EP	-40℃到+85℃	8-pin Plastic DIP
SP706EN	-40℃到+85℃	8-pin Narrow SOIC
SP706EU	-40℃到+85℃	8-pin uSOIC
SP707CP	0℃到+70℃	8-pin Plastic DIP
SP707CN	0℃到+70℃	8-pin Narrow SOIC
SP707CU	0℃到+70℃	8-pin uSOIC
SP707EP	-40℃到+85℃	8-pin Plastic DIP
SP707EN	-40℃到+85℃	8-pin Narrow SOIC
SP707EU	-40℃到+85℃	8-pin uSOIC
SP813LCP	0℃到+70℃	8-pin Plastic DIP
SP813LCN	0℃到+70℃	8-pin Narrow SOIC
SP813LCU	0℃到+70℃	8-pin uSOIC
SP813LEP	-40℃到+85℃	8-pin Plastic DIP
SP813LEN	-40℃到+85℃	8-pin Narrow SOIC
SP813LEU	-40℃到+85℃	8-pin uSOIC
SP813MCP	0℃到+70℃	8-pin Plastic DIP
SP813MCN	0℃到+70℃	8-pin Narrow SOIC
SP813MCU	0℃到+70℃	8-pin uSOIC
SP813MEP	-40℃到+85℃	8-pin Plastic DIP
SP813MEN	-40℃到+85℃	8-pin Narrow SOIC
SP813MEU	-40℃到+85℃	8-pin uSOIC