Figure 12.32

A full-adder.

We close this section by showing how we can use half- and full-adders to compute the sum of two *n*-bit numbers.

EXAMPLE 12.26

Using a half-adder and full-adder, design a circuit that computes the sum of two 3-bit numbers $x = x_2x_1x_0$ and $y = y_2y_1y_0$.

SOLUTION:

A half-adder accepts two bits outputing the sum and carry bits. On the other hand, a full-adder accepts three bits to produce the sum and carry bits. The circuit in Figure 12.33 produces the sum $s = s_3 s_2 s_1 s_0$.

Figure 12.33

The range of possible combinatorial circuits expands as logic gates from half- and full-adders describe many electrical systems through the production of bit sums.

Exercises 12.4

When will the combinatorial circuit for each boolean expression produce 1 as the output?

1.
$$x' = 0$$
 2. $x + y = 0$ $y = 0$ 3. $xy = 0$

Find the output produced by the combinatorial circuits in Exercises 4–13.

- 14-17. Devise a logic table for each circuit in Exercises 6-9.
- **18–21.** Construct a combinatorial circuit for each boolean expression in Exercises 9, 10, 14, and 15 in Section 12.2.

Using only NAND gates, design a combinatorial circuit that receives x and y as input signals and outputs:

22. x' **23.** x + y **24.** xy

25-27. Redo Exercises 22-24, using only NOR gates.

Figure 12.44

(2) Using the Karnaugh map in Figure 12.44, we have:

$$\begin{split} E_2 &= (wxy'z' + wx'y'z') + (wx'y'z' + wx'y'z) \\ &+ (w'x'yz + w'x'yz' + w'xyz + w'xyz') \\ &= wy'z'(x+x') + wx'y'(z+z') + [w'x'y(z+z') + w'xy(z+z')] \\ &= wy'z' + wx'y' + (w'x'y + w'xy) \\ &= wy'z' + wx'y' + w'y(x+x') \\ &= wy'z' + wx'y' + w'y \end{split}$$

These cases suggest that Karnaugh maps simplify boolean expressions more easily than algebraic laws, especially when variables are few.

Simplify each boolean expression using the laws of boolean algebra.

1.
$$xy + xy' = \chi \sqrt{2}$$
. $x(x+y) + xy' = \chi \sqrt{3}$. $(x+y)xy'$
4. $xy + xy' + x'y' = \chi + y'$

5.
$$x'yz + x'y'z' + x'yz' + x'y'z = x'$$
 6. $xy'z' + x'y'z' + xy'z + x'y'z$

6.
$$xy'z' + x'y'z' + xy'z + x'y'z$$

7.
$$(x + y)(x + y + z)xy$$

8.
$$(x + y + z)xyz$$

9.
$$(x + y)(y + z)(z + x)$$

$$10. (xy + yz + zx)xyz$$

11.
$$(x+y)(x'+y)(x+y')$$

12.
$$(x + y' + z)(x + y + z')xy'z'$$

13.
$$(x + y)(y + z)(z + x)xyz$$

14.
$$(x + yz)(y + zx)(z + xy)$$

15.
$$mxyz + m'xy'z' + mxyz' + m'xy'z$$

15.
$$wxyz + w'xy'z' + wxyz' + w'xy'z$$
 16. $wx'yz + wx'yz' + w'x'yz' + w'xyz'$

Find the boolean expression represented by each Karnaugh map.

Display each sum of minterms in a Karnaugh map.

21.
$$xy + x'y'$$
 22. $x'y + xy'$

29.

3/.

Using a Karnaugh map, simplify each sum of minterms.

23. xy + xy'

24. xy + xy' + x'y'

Find the boolean expression represented by each Karnaugh map.

Using a Karnaugh map, simplify each boolean expression.

$$29. xy'z + xy'z' = xy'$$

30.
$$xyz + xy'z + x'yz + x'y'z$$

31.
$$xy'z' + xy'z + x'y'z' + x'y'z = \gamma' / 32$$
. $xyz + xyz' + x'y'z' + x'y'z'$

33-36. Using a Karnaugh map, simplify the boolean expressions in Exercises 25-28.

Find the boolean expression represented by each Karnaugh map.

38.		yz	yz'	y'z'	y'z
ı	vx	1			1
U	vx'				
и	y'x'				
u	v'x	1			1

Represent each sum of minterms in a Karnaugh map.

41.
$$wxy'z + w'xyz$$

42.
$$wxyz + wxy'z + w'xyz + w'xy'z$$

43.
$$wxy'z + wx'y'z + w'xy'z + w'x'y'z$$
 44. $wx'yz' + wx'y'z' + w'x'yz' + w'x'y'z'$

44.
$$wx'yz' + wx'y'z' + w'x'yz' + w'x'y'z'$$

45-48. Using a Karnaugh map, simplify the boolean expressions in Exercises 37-40.

Using a Karnaugh map, simplify each boolean expression.

49.
$$wxyz + wx'yz + w'x'yz + w'xyz$$

50.
$$wx'yz' + wx'y'z' + w'x'yz' + w'x'y'z'$$

51.
$$wx'yz + wx'yz' + wx'y'z' + w'x'y'z' + w'xy'z' + w'xy'z$$

52.
$$wxyz + wxyz' + wxy'z' + wxy'z + wx'y'z + w'x'y'z + w'xy'z$$