Rotinas de *polyfit* e *lsqcurvefit* - Grupo 32 Métodos Numéricos e Otimização não Linear Universidade do Minho

A89510 - João Machado A90707 - Vitor Leite A90468 - Rui Armada

Dezembro 2021

1 Introdução

Após anos de recolhas de dados em relação a população de Portugal, desde 1960 até 2020, procuramos representar de forma gráfica por modelos diferentes com o intuito de obter o que melhor se ajusta à amostra referida.

2 Amostras

Table 1: Tabela com valores

xi	1960	1961	1962	1963	1964	1965
f(xi)	8857716	8929316	8993985	9030355	9035365	8998595
xi	1966	1967	1968	1969	1970	1971
f(xi)	8930990	8874520	8836650	8757705	8680431	8643756
xi	1972	1973	1974	1975	1976	1977
f(xi)	8630430	8633100	8754365	9093470	9355810	9455675
xi	1978	1979	1980	1981	1982	1983
f(xi)	9558250	9661265	9766312	9851362	9911771	9957865
xi	1984	1985	1986	1987	1988	1989
f(xi)	9996232	10023613	10032734	10030031	10019610	10005000
xi	1990	1991	1992	1993	1994	1995
f(xi)	9983218	9960235	9952494	9964675	9991525	10026176
xi	1996	1997	1998	1999	2000	2001
f(xi)	10063945	10108977	10160196	10217828	10289898	10362722
xi	2002	2003	2004	2005	2006	2007
f(xi)	10419631	10458821	10483861	10503330	10522288	10542964
xi	2008	2009	2010	2011	2012	2013
f(xi)	10558177	10568247	10573100	10557560	10514844	10457295
xi	2014	2015	2016	2017	2018	2019
f(xi)	10401062	10358076	10325452	10300300	10283822	10286263
xi	2020					
f(xi)	10305564					

Como dito, usamos como amostra a população de Portugal desde 1960 até 2020, ou seja, para o MatLab ficamos com x1=1, x2=2, ..., x61=61.

2.1 Modelo Polinomial

Figure 1: Modelo Polyfit

Figure 2: Ficheiro-M do Modelo Polyfit(1)

```
% 4º Degree
                                                                          [p4,s4]=polyfit(x,f,4);
                                                                         (s4.normr)^2;
hold on;
                                                                                                          % Avaluate Module
                                                                          yaux=polyval(p4,xaux);
                                                                         plot(xaux,yaux,'y')
% 2º Degree
                                                                         % 5º Degree
[p2,s2]=polyfit(x,f,2);
(s2.normr)^2;
                                % Avaluate Module
                                                                          [p5,s5]=polyfit(x,f,5);
                                                                                                          % Avaluate Module
                                                                          (s5.normr)^2;
yaux=polyval(p2,xaux);
                                                                         hold on;
plot(xaux,yaux,'g')
                                                                          yaux=polyval(p5,xaux);
                                                                         plot(xaux,yaux,'k')
% 3º Degree
                                                                         % 6º Degree
[p6,s6]=polyfit(x,f,6);
(s6.normr)^2;
[p3,s3]=polyfit(x,f,3);
                                % Avaluate Module
(s3.normr)_2;
hold on;
                                                                                                          % Avaluate Module
                                                                          hold on;
yaux=polyval(p3,xaux);
                                                                          yaux=polyval(p6,xaux);
plot(xaux,yaux,'r')
                                                                         plot(xaux,yaux,'m')
```

Figure 3: Ficheiro-M do Modelo Polyfit(2) e (3)

2.2 Modelo Não Polinomial

Figure 4: Modelo Lsqcurvefit

```
function [m] = myGrapth(c,x)

m = c(1).*exp(c(2)*x)+c(3).*exp(c(4)*x); %-- modelo

end
```

Figure 5: Ficheiro-M da Função Grafo

```
% -----
               DATA
% -----
x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
f=[8857716 8929316 8993985 9030355 9035365 8998595 8930990 8874520 8836650
% -----
             COMMANDS
% -----
c0=[9e+07 0.002 -9e+07 0.002]; %para os restantes modelos
[c]=lsqcurvefit('myGrapth',c0,x,f)
xaux=1:0.1:62;
plot(x,f,'or')
hold on;
times = linspace(x(1),x(end));
fun = myGrapth(c,times);
plot(x,f,'ko',times,fun,'b-')
legend('Data', 'Fitted exponential')
```

Figure 6: Ficheiro-M do Modelo Não Polinomial

3 Resultados e Considerações

Durante a execução deste trabalho, tivemos algumas dificuldade no que diz respeito ao ajuste de curvas devido ao grau de complexidade do perfil apresentado pelos dados seleccionados. Contudo, verificou-se que os ajustes obtidos pelo Modelo Polinomial, sobretudo aqueles de grau superiores, representaram um bom ajuste dos dados analisados.

Relativamente ao ajuste Não Polinomial este exigiu maior esforço para adequar um modelo aos dados, foram necessárias varias tentativas para se encontrar um modelo que melhor se adequasse aos dados.

Conclui-se ainda que o grau de ajuste do Modelo Polinomial aumentou de forma proporcional ao grau do polinómio.

4 Fonte

População total - Portugal