Project 1 - Group 2

Job Market Analysis for Data Jobs

Members:

Colin

Heran

Kevin

Paola

Motivation & Summary

- Love for data
- Analytics skills are needed now
- Predict our future post bootcamp
- Most valuable skills and if we are learning them
- Where the jobs are located

- Hypothesis:
 - Higher number of skills correlated with higher pay (Were we able to answer it?)

Main Questions & Data used

Data used: Indeed Dataset

- What are the top skills required for Data jobs?
- Is higher number of skills correlated with higher pay?
- What are the most valuable skills?
- Is having more skills better?

API: Google Maps

- What are the top locations?
- What locations pay the most?

Data used: US Bureau of Labor Statistics

What is the pay premium for having a Data job?

Data used: Cost of Living Index

 Is there a pay premium that results from having these data skills?

Job Market Status for Data Jobs - The Process

Cleanup

- 1. Library & packages used
 - Pandas, Matplotlib
- 2. Import CSV
- 3. Reformat and clean:
 - Dropna, dropped blank skills, dropped remote/USA locations
 - Filters
 - Replace
 - Rename
 - Merge

Analysis

- Present overview of data in new dataframe
 - Summary statistics -Mean, std, min and max
 - Functions count, value_counts, dtypes, sum
 - Select data iloc, loc
 - Chi-squared test
 - Cramer's V
 - Multivariate Regression

Visualization

- Make visualizations for key data points
 - Bar plots
 - Pie charts
 - Maps

Data Analysis

What is the difference between

ta scientist, engineer, and

yst?

Data Scientist

also known as Data Managers, statisticians.

A data scientist will be able to take data science projects from end to end. They can help store large amounts of data, create predictive modelling processes and present the findings.

Skills: Mathematics, Programming, Communication

Will use programmes such as: SQL, Python, R

Data Engineers

also known as database administrators and data architects.

They are versatile generalists who use computer science to help process large datasets. They typically focus on coding, cleaning up data sets, and implementing requests that come from data scientists.

Skills: Programming, Mathematics, Big data

Will use programmes such as: Hadoop, NoSQL, and Python

Data Analysts

also known as business Analysts.

They typically help people from across the company understand specific queries with charts.

Skills: Statistics, Communication, Business knowledge

Will use programmes such as: Excel, Tableau, SQL

Which job types are the most listed in 2018?

What are the top skills requested for each job type?

Does knowing more languages increase your salary?

Inferential Statistics Number of Skills vs Job Types

	Mean Number of Skills	Median Number of Skills	Number of Skills Variance	Number of Skills Std. Dev.	Number of Skills Std. Err.
 Job_Type					
data_analyst	4.9	4.0	9.8	3.1	0.1
data_engineer	11.1	10.0	26.9	5.2	0.2
data_scientist	8.7	8.0	21.4	4.6	0.1
All Job Types	8.0	7.0	24.1	4.9	0.1

Inferential Statistics Salary vs Job Types

	Salary_Index	Salary_Bracket
0	1	<80000
1	2	80000-99999
2	3	100000-119999
3	4	120000-139999
4	5	140000-159999
5	6	>160000

	Mean Salary Index	Median Salary Index	Salary Index Variance	Salary Index Std. Dev.	Salary Index Std. Err.
Job_Type					
data_analyst	2.1	2.0	1.7	1.3	0.0
data_engineer	3.8	4.0	1.3	1.1	0.0
data_scientist	3.9	4.0	1.4	1.2	0.0
All Job Types	3.4	3.0	2.1	1.4	0.0

Which industries have the most job vacancies?

Which companies have the most job listings?

Highest Paying Industries

Where are the jobs located?

Where are the jobs?

Where are the highest paying jobs?

Where are the highest paying jobs?

Premium 1: Largest Premium - Top Five States

Premium 2: Smallest Premium - Bottom Five States

Premium 3: Custom Pick of Relevant States

What skills are most in-demand for each income bracket?

	Python	thon SQL	L Machine Learning	R	R Hadoop	Tableau	SAS	Spark	Java	Others
Salary_List										
<80000	20.96%	56.33%	9.75%	21.54%	1.75%	23.58%	19.07%	1.31%	8.15%	89.52%
80000-99999	46.09%	73.60%	22.48%	34.79%	10.85%	31.66%	17.45%	7.94%	15.32%	93.51%
100000-119999	63.31%	67.43%	42.57%	47.65%	30.15%	26.25%	21.18%	25.51%	30.66%	95.07%
120000-139999	75.24%	65.72%	54.01%	47.25%	46.62%	19.89%	14.86%	42.14%	39.94%	96.70%
140000-159999	78.19%	54.76%	61.83%	43.62%	49.19%	16.01%	14.39%	46.06%	43.62%	94.55%
>160000	67.89%	51.23%	56.37%	36.76%	43.63%	10.54%	12.99%	41.91%	35.29%	88.97%

Skills for Top 3 Industries

Skill	Consulting and Business Services	Internet and Software	Banks and Financial Services
python	59.83%	69.68%	58.02%
sql	52.95%	66.29%	68.13%
machine learning	47.75%	46.94%	41.10%
r	38.62%	42.90%	37.58%
hadoop	37.92%	39.03%	36.26%
tableau	28.09%	16.94%	23.08%
sas	16.99%	13.23%	21.10%
spark	33.01%	34.19%	35.16%
java	25.56%	34.68%	35.82%
Others	92.42%	94.03%	95.82%
Total	712	620	455

Preliminary Multivariate Regression Results Support Key Takeaways

OLS Regression Results

Covariance Type:

Dep. Variable:	Salary_Index	R-squared:	0.406
Model:	OLS	Adj. R-squared:	0.402
Method:	Least Squares	F-statistic:	114.7
Date:	Mon, 17 Aug 2020	Prob (F-statistic):	0.00
Time:	14:57:46	Log-Likelihood:	-8014.4
No. Observations:	5239	AIC:	1.609e+04
Df Residuals:	5207	BIC:	1.630e+04
Df Model:	31		

nonrobust

	coef		t	P> t	[0.025	0.975]
const	2.4098	0.041	58.367	0.000	2.329	2.491
Consulting and Business Services	0.2509	0.049	5.103	0.000	0.155	0.347
Internet and Software	0.1375	0.052	2.663	0.008	0.036	0.239
Banks and Financial Services	0.1847	0.058		0.001	0.071	0.298
Health Care	-0.3131	0.068	-4.581	0.000	-0.447	-0.179
Insurance	0.2186	0.081	2.704	0.007	0.060	0.377
CA	0.9580	0.040	23.669	0.000	0.879	1.037
NY	0.7671	0.053	14.605	0.000	0.664	0.870
VA	0.3893		5.754		0.257	
MA		0.075	3.723	0.000	0.133	0.428
DC	0.2609	0.101	2.593	0.010		0.458
WA	0.4931	0.082	5.991	0.000	0.332	0.655
python		0.037			0.250	
	-0.3727	0.035	-10.653	0.000	-0.441	-0.304
machine learning	0.4992	0.037	13.638	0.000	0.427	0.571
hadoop	0.4286	0.043	9.899		0.344	
spark	0.2766	0.047	5.924			
avs	0.2035	0.051	3.960	0.000	0.103	0.304
scala	0.2945	0.052	5.704			0.396
nosql	0.2021	0.057	3.527	0.000	0.090	0.314
naturallanguageprocessing	0.1908	0.054	3.540	0.000	0.085	0.297
datawarehouse	0.1478	0.056	2.636	0.008	0.038	0.258
dataanalysis	-0.2613	0.057	-4.601	0.000	-0.373	-0.150
agure	-0.1912	0.065	-2.939	0.003	-0.319	-0.064
matlab	0.2247	0.060	3.747	0.000	0.107	0.342
microsoftoffice	-0.6416	0.066	-9.703	0.000	-0.771	-0.512
microsoftpowerpoint	-0.3992	0.070	-5.731	0.000	-0.536	-0.263
designexperience	0.2638	0.072	3.671	0.000	0.123	0.405
perl	0.2495	0.073	3.423	0.001	0.107	0.392
softwaredevelopment		0.074		0.006	0.060	
projectmanagement	0.3367	0.077	4.352	0.000	0.185	0.488
53	0.2878	0.093	3.082	0.002	0.105	0.473

Omnibus:	58.080	Durbin-Watson:	0.680
Prob(Omnibus):	0.000	Jarque-Bera (JB):	59.891
Skew:	0.253	Prob(JB):	9.88e-14
Kurtosis:	3.134	Cond. No.	10.8

Findings and Conclusions

Post Mortem:

- Limitations
- How we deal with that
- Additional research questions (if we had two more weeks)

Did we find what we expected to find?

If not, why not?

What inferences or general conclusions can we draw from our analysis?

General conclusion:

- The analytics and technology skills vary widely (ML, Python, R, SQL as the most valuable)
- Problem-solving in the workplace, including soft skills such as communication, creativity and teamwork are also important skills
- Consulting, Internet & Software, Financial Services as the top industries

Q&A