Visual Representation 2

Pattern Recognition & Machine Learning Laboratory
Tae-jin Woo
Aug 11, 2021

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles [M. Noroozi et al., 2016] (1/7)

Goal

- > Providing image representation learning without human annotation
- Achieving encouraging performance comparable to supervised learning

Motivation

- > Learning features of object parts and their correct spatial arrangement
 - By training a network to solve pretext task
- Obtained features can be transferred to classification and detections tasks

Contribution

- > Achieving State-of-the-Art (SOTA) in self-supervised learning method
- Building a CNN that can be trained to solve jigsaw puzzles as a pretext task
- Introduced Context-Free Network (CFN) to maintain the compatibility
 - CFN has fewer parameters than AlexNet

Method	Pretraining time	Supervision	Classification	Detection	Segmentation	
Krizhevsky <i>et al.</i> [25]	3 days	1000 class labels	78.2%	56.8%	48.0%	
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	-	
Doersch et al. [10]	4 weeks	context	55.3%	46.6%	-	
Pathak et al. [30]	14 hours	context	56.5%	44.5%	29.7%	
Ours	2.5 days	context	67.6%	53.2 %	$\boldsymbol{37.6\%}$	

Results on PASCAL VOC 2007 detection and classification

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles [M. Noroozi et al., 2016] (2/7)

Self-supervised learning

- > Concept
 - Learning features of data through pretext task with unlabeled data
 - Learning supervision itself
 - Progress transfer learning of pre-trained model for downstream task
 - Both freezing pre-trained weights and fine-tuning are possible
 - Fewer labeled data would be used for transfer learning
- Pros and cons
 - Pros
 - Enable learning with unlabeled data
 - Possible to get general features before fine-tuning of several downstream tasks
 - Cons
 - Lower performance than supervised learning in computer vision field

Example of self-supervised learning 1

Example of self-supervised learning 2

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles [M. Noroozi et al., 2016] (3/7)

Pretext task

- > Concept
 - Pre-designed problems for networks to solve
 - Visual features are learned through pretext task
 - Jigsaw puzzle reassembly problem is introduced in this paper
 - Only for efficient feature extracting applied to downstream tasks
- Jigsaw puzzle
 - Solving the puzzle requires a good understanding of object features
 - Representative and distinguishable features of object part will be learnable
 - How to solve
 - (a) Image from which the tiles (marked with green lines) are extracted
 - (b) A puzzle obtained by shuffling the tiles
 - (c) Reassemble and determine the relative positions

Learning image representations by solving Jigsaw puzzles

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles [M. Noroozi et al., 2016] (4/7)

Learning method

- Architecture
 - Shuffling the order of each tile and use it as input to the CFN
 - Learning through average 69 permutation set each input image
 - Features are extracted from the input image first and the order is set last
 - To solve the problem of learn low-dimensional features between tiles
 - » Low-dimensional features mean similar structural patterns or textures
 - Building a siamese-ennead convolutional network
 - Weights of convolutional network are shared up to fc6 layer
 - CFN architecture is more compact than AlexNet
 - » fc6 layer of CFN includes 18M parameters, while fc6 layer of AlexNet includes 37.5M parameters

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles [M. Noroozi et al., 2016] (5/7)

Training

- Output
 - CFN can be seen as the conditional pdf
 - $p(S|A_1, A_2, ..., A_9) = p(S|F_1, F_2, ..., F_9) \prod_{i=1}^{9} p(F_i|A_i)$
 - » S is the configuration of the tiles
 - » A_i is the i th part appearance of the object
 - » F_i is the intermediate feature representation

$$- p(L_1, L_2, ..., L_9 | F_1, F_2, ..., F_9) = \prod_{i=1}^9 p(L_i | F_i)$$

- » If S can be as a list of tile positions $S = (L_1, L_2, ..., L_9)$
- » CFN learns only spatial arrangement if S is a single per image
- Learning is making F_i become a meaningful feature

Transfer learning

- Freezing pre-trained weights
 - Ability to evaluate the performance of feature extraction
- Fine-tuning pre-trained weights
 - Ability to conduct downstream task

Transfer learning with fixed pre-trained weights

Transfer learning with fine-tuning pre-trained weights

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles [M. Noroozi et al., 2016] (6/7)

Experiments

- Transfer learning
 - Fine-tuning pre-trained features by using AlexNet on PASCAL VOC 2007
 - Initialized all the conv layers with CFN weights of a standard AlexNet
 - Retrained the rest of the network with Gaussian noise as initial weights
 - Performance evaluation
 - Outperformed all other unsupervised methods
 - Closing the gap with features obtained with supervision
- ImageNet classification
 - Finding a layer extracting features of the network
 - Method: Fix parameters of a specific network and retrain
 - Checking result
 - conv5 layer starts to be specialized on the pretext task
 - » Significant improvement when the conv5 layer is also trained

Method	Pretraining time	Supervision	Classification	Detection	Segmentation	May a	a conv1	a conv2	a conv3	a conv4	a conv5
Krizhevsky et al. [25]	3 days	1000 class labels	78.2%	56.8%	48.0%	- CFN	54.7	52.8	49.7	45.3	34.6
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	-	Doersch et al. [10]	53.1	47.6	48.7	45.6	30.4
Doersch et al. [10]	4 weeks	context	55.3%	46.6%	-	Wang and Gupta [39]	51.8	46.9	42.8	38.8	29.8
Pathak et al. [30] Ours	14 hours 2.5 days	context	56.5% 67.6%	44.5% 53.2%	29.7% 37.6%	Random	48.5	41.0	34.8	27.1	12.0

Results on PASCAL VOC 2007 detection and classification

Comparison of classification results on ImageNet 2012

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles [M. Noroozi et al., 2016] (6/7)

Ablation studies

- Permutation set
 - Cardinality
 - Performance of the downstream task increased as the permutation set increased
 - Average hamming distance
 - The higher distance, the higher the performance of the downstream task
- Preventing shortcuts
 - Low level statistics
 - Solution: Normalized pixel mean and standard deviation independently
 - Edge continuity
 - Solution: Making 21 pixel gap between tiles by selecting tiles randomly
 - Chromatic aberration
 - Solution: Use resize, 30% of greyscale input images, and color jittering

Number of permutations	Average hamming distance	Minimum hamming distance	Jigsaw task accuracy	Detection performance Ga	Gan	Normalization	Color jittering	Jigsaw task accuracy	Detection performance	
1000	8.00	2	71	53.2	Gap	TOTHAILEAUOH	Color Judering	organ task accuracy	Detection performance	
1000	6.35	2	62	51.3	1.	,		100		
1000	3.99	2	54	50.2	X	/		98	47.7	
100	8.08	2	88	52.6	1		100	and the same of th	-,,,	
95	8.08	3	90	52.4		X		90	43.5	
85	8.07	4	91	52.7	•	,	1100	00	10.0	
71	8.07	5	92	52.8	1	1	Y	90	K1 1	
35	8.13	6	94	52.6	٧	V	^	09	01.1	
10	8.57	7	97	49.2	,	1	,	00	FO 0	
7	8.95	8	98	49.6	✓	\	✓	88	52.6	
6	9	9	99	49.7						

Results on PASCAL VOC 2007 detection and classification