GFFT on projective line

Ariel Gabizon
Zeta Function Technologies

$$S = \left\{g\text{, }g^2\text{,}\dots\text{, }g^n = 1\right\}\text{, }n = 2^k$$

$$S = \{g, g^2, \dots, g^n = 1\}, n = 2^k$$

Want to evaluate $f(X) \in \mathbb{F}[X]$ of deg $\langle n \rangle$ on S.

$$S = \left\{g, g^2, \dots, g^n = 1\right\}, n = 2^k$$

Want to evaluate $\mathbf{f}(\mathbf{X}) \in \mathbb{F}[\mathbf{X}]$ of deg \langle \mathbf{n} on \mathbf{S} .Use recursive formula

$$f(X) = f_e(X^2) + X \cdot f_o(X^2)$$

Since the map $x \to x^2$ is 2-to-1 on S, this reduces n evals of f to n/2 evals of two deg n/2 polys.

$$S = \left\{g\text{, }g^2\text{,}\dots\text{, }g^n = 1\right\}\text{, }n = 2^k$$

Want to evaluate $\mathbf{f}(\mathbf{X}) \in \mathbb{F}[\mathbf{X}]$ of deg \langle \mathbf{n} on \mathbf{S} .Use recursive formula

$$f(X) = f_e(X^2) + X \cdot f_o(X^2)$$

Since the map $x \to x^2$ is 2-to-1 on S, this reduces n evals of f to n/2 evals of two deg n/2 polys.

Requires $\mathbf{n}|\mathbf{p} - \mathbf{1}$, where $\mathbf{p} = |\mathbb{F}|$. Can we do something when $\mathbf{n}|(\mathbf{p} + \mathbf{1})$ instead??

$$S = \left\{g\text{, }g^2\text{,}\dots\text{, }g^n = 1\right\}\text{, }n = 2^k$$

$$S = \{g, g^2, \dots, g^n = 1\}, n = 2^k$$

The map $\sigma(x) = g \cdot x$ goes over **S** as a cycle.

$$S = \left\{g, g^2, \dots, g^n = 1\right\}$$
, $n = 2^k$

The map $\sigma(x) = g \cdot x$ goes over **S** as a cycle.

- Let $\tau = \sigma^{n/2}$. So $\tau(x) = -x$, and $\tau^2(x) = x$.
- The elements of S split into disjoint pairs $(\alpha, -\alpha)$.

$$S = \left\{g, g^2, \dots, g^n = 1\right\}, n = 2^k$$

The map $\sigma(x) = g \cdot x$ goes over S as a cycle.

- Let $\tau = \sigma^{n/2}$. So $\tau(x) = -x$, and $\tau^2(x) = x$.
- The elements of **S** split into disjoint pairs $(\alpha, -\alpha)$.
- ▶ Define $N(X) = X \cdot \tau(X) = -X^2$. N maps elements of a pair to the same output.

$$S = \{g, g^2, \dots, g^n = 1\}, n = 2^k$$

The map $\sigma(x) = g \cdot x$ goes over **S** as a cycle.

- Let $\tau = \sigma^{\pi/2}$. So $\tau(x) = -x$, and $\tau^2(x) = x$.
- The elements of S split into disjoint pairs $(\alpha, -\alpha)$.
- ▶ Define $N(X) = X \cdot \tau(X) = -X^2$. N maps elements of a pair to the same output.

Can we find a set of size p + 1 with a similar cyclical σ ?

The Projective line and fractional transformations

How to get set \mathbb{P} of size 2^k ? Look at *projective line* $\mathbb{P} := \mathbb{F} \cup \infty$

The Projective line and fractional transformations

How to get set \mathbb{P} of size 2^k ? Look at *projective line* $\mathbb{P} := \mathbb{F} \cup \infty$

Take fractional map:
$$\sigma(x) = \frac{1}{\alpha x + b}$$

Define: $\sigma(-b/\alpha) = \infty$, $\sigma(\infty) = 0$.

The Projective line and fractional transformations

How to get set \mathbb{P} of size 2^k ? Look at *projective line* $\mathbb{P} := \mathbb{F} \cup \infty$

Take fractional map:
$$\sigma(x) = \frac{1}{\alpha x + b}$$

Define: $\sigma(-b/\alpha) = \infty$, $\sigma(\infty) = 0$.

claim: For the right choice of α , b σ makes a cycle over all of \mathbb{P} !

Projective coordinates: Represent $a \in F$ by (c, d) with a = c/d e.g. (a, 1).

So $\infty = (1, 0)$.

Projective coordinates: Represent $a \in F$ by (c, d) with a = c/d e.g. (a, 1).

So $\infty = (1, 0)$.

As a circle in the plane:

See Circle STARK paper [HLP24] for this approach

As places of the field $K = \mathbb{F}(X)$:

As places of the field $K = \mathbb{F}(X)$:

Dfn: A valuation ring of $R \subset \mathbb{F}(X)$ is a subring such that $\forall y \in K \ y \in R \ \text{or} \ 1/y \in R \ \text{(or both)}$.

As places of the field $K = \mathbb{F}(X)$:

Dfn: A valuation ring of $R \subset \mathbb{F}(X)$ is a subring such that $\forall y \in K \ y \in R$ or $1/y \in R$ (or both).

Example: Choose $\alpha \in F$, take $R_{\alpha} = \{f(X)/g(X)|f, g \in \mathbb{F}[X], g(\alpha) \neq 0\}.$

As places of the field $K = \mathbb{F}(X)$:

Dfn: A valuation ring of $R \subset \mathbb{F}(X)$ is a subring such that $\forall y \in K \ y \in R$ or $1/y \in R$ (or both).

Example: Choose $\alpha \in F$, take $R_{\alpha} = \{f(X)/g(X)|f, g \in \mathbb{F}[X], g(\alpha) \neq 0\}.$

Valuation rings in K, are also called "places" of K.

The unique maximal ideal of \mathbf{R}_{α} is $\mathbf{I}_{\alpha} = \{(\mathbf{X} - \alpha) \cdot \mathbf{r} | \mathbf{r} \in \mathbf{R}\}$

The unique maximal ideal of \mathbf{R}_{α} is $\mathbf{I}_{\alpha} = \{(\mathbf{X} - \alpha) \cdot \mathbf{r} | \mathbf{r} \in \mathbf{R}\}$

Cool thing: $R_{\alpha}/I_{\alpha} = \mathbb{F}$. And we can evaluate $r \in R_{\alpha}$ at α by taking $r \mod I_{\alpha}$

The unique maximal ideal of \mathbf{R}_{α} is $\mathbf{I}_{\alpha} = \{(\mathbf{X} - \alpha) \cdot \mathbf{r} | \mathbf{r} \in \mathbf{R}\}$

Cool thing: $\mathbf{R}_{\alpha}/\mathbf{I}_{\alpha} = \mathbb{F}$. And we can evaluate $\mathbf{r} \in \mathbf{R}_{\alpha}$ at α by taking $\mathbf{r} \mod \mathbf{I}_{\alpha}$

This gives the same result as "normal" evaluation!

The infinity point in the algebraic representation

There is one more place of degree one in K: $R_{\infty} = \{f(X)/g(X)|deg(f) \leq deg(g)\}.$

The infinity point in the algebraic representation

There is one more place of degree one in K: $R_{\infty} = \{f(X)/g(X)|deg(f) \leq deg(g)\}.$

 R_{∞} = "the set of functions that can be evaluated at infinity"

What does this last part have to do with FFT?

Like in regular FFT - we'll end up needing to represent f(X) as a combination of two functions $f_e(N(X))$, $f_o(N(X))$ of half the "degree"; where N will be a degree two rational function.

What does this last part have to do with FFT?

Like in regular FFT - we'll end up needing to represent f(X) as a combination of two functions $f_e(N(X))$, $f_o(N(X))$ of half the "degree"; where N will be a degree two rational function.

Working within the function field gives us convenient tools to construct the right bases for representing f, f_e , f_o , and defining degree in the right way.