数理统计第12次作业

林陈冉

2016年12月20日

6.10 检验问题

 H_0 : 结果符合遗传学模型 \leftrightarrow H_1 : 结果不符合遗传学模型

可知 n = 109, $\alpha = 0.05$, 当 X 是题中所给的情况下, 其似然函数为

$$F(X,p) = (p^2)^{10} (2p(1-p))^{53} ((1-p)^2)^{46} = 2^{53} p^{73} (1-p)^{145}$$

令其导数为0

$$F'(X,p) = 2^{53}p^{72}(1-p)^{144}(218p - 73) = 0$$

求得其最大似然估计 $p^*=0.334$,那么理论分布 $p_1=0.112$, $p_2=0.445$, $p_3=0.442$,观察频数 $\nu_1=10$, $\nu_2=53$, $\nu_3=46$,经计算 $k_0^*=\sum_{i=1}^3 \frac{(\nu_i-np_i)^2}{np_i}=0.913$.

$$r = 3$$
, $s = 1$, $K_n^* \sim \chi_1^2$, 拟合优度

$$p(k_0^*) = P(K_n^* \ge k_0 | H_0) \approx P(\chi_1^2 \ge k_0^*) > 0.25 > \alpha$$

故可以认为实验结果符合遗传学模型.

6.11 检验问题

 H_0 :射击结果服从二项分布 \leftrightarrow H_1 :射击结果不服从二项分布

修改表格为

命中数	0-2	3	4	5	6	7	8-10
靶数	6	10	22	26	18	12	6

可知 n=100 , $\alpha=0.05$. 设击中的概率为 p , 每个靶上命中的子弹数目 X_i 服从 B(10,p) 的二项分布,其最大似然解 $p^*=\bar{X}/10=0.6$, 则认为检验问题 H_0 为射击结果服从 B(10,6) 的二项分布.

理论分布
$$p_1=P\{X=0,1,2\}=0.012$$
 , $p_2=P\{X=3\}=0.042$, $p_3=P\{X=4\}=0.114$, $p_4=P\{X=5\}=0.201$, $p_5=P\{X=6\}=0.251$, $p_6=P\{X=7\}=0.215$, $p_7=P\{X=6\}=0.251$, $p_8=0.251$, $p_8=0.251$

 $\{8,9,10\}=0.167$, 观察频数 $\nu_1=6$, $\nu_2=10$, $\nu_3=22$, $\nu_4=26$, $\nu_5=18$, $\nu_6=12$, $\nu_7=6$, 经计算 $k_0^*=\sum_{i=1}^7 \frac{(\nu_i-np_i)^2}{np_i}=51.702$.

r=7, s=1, 则 $K_n^* \sim \chi_5^2$, 拟合优度

$$p(k_0^*) = P(K_n^* \ge k_0^* | H_0) \approx P(\chi_5^2 \ge k_0^*) < 0.005 < \alpha$$

故可以认为射击结果不服从二项分布.

6.11 检验问题

 H_0 :每天事故数服从Poisson分布 $\leftrightarrow H_1$:每天事故数不服从Poisson分布

修改表格为

事故数	0	1	2	3-4	≥ 5
天数	109	65	22	7	7

可知 n=210 , $\alpha=0.05$. 设Poisson的参数为 λ , 每天的事故数目 X_i 服从 $P(\lambda)$, 其最大似然解 $\lambda^*=\sum_{i=1}^{210}X_i/210=0.804$, 则认为检验问题 H_0 每天事故数服从 P(0.804) .

理论分布 $p_1=P\{X=0\}=0.447$, $p_2=P\{X=1\}=0.359$, $p_3=P\{X=2,3\}=0.144$, $p_4=P\{X=4\}=0.0466$, $p_5=P\{X\geq 5\}=0.0014$, 观察频数 $\nu_1=109$, $\nu_2=65$, $\nu_3=22$, $\nu_4=7$, $\nu_5=7$, 经计算 $k_0^*=\sum_{i=1}^5 \frac{(\nu_i-np_i)^2}{np_i}=154.45$.

$$r=5$$
, $s=1$, 则 $K_n^* \sim \chi_4^2$, 拟合优度

$$p(k_0^*) = P(K_n^* \ge k_0^* | H_0) \approx P(\chi_5^2 \ge k_0^*) < 0.005 < \alpha$$

故可以认为每天事故数不服从Poisson分布.

6.14 检验问题

 H_0 : 电容量服从正态分布 $\leftrightarrow H_1$: 电容量不服从正态分布

修改表格为

电容量	$-\infty$ -103.5	103.5-105.5	105.5 - 106.5	106.5 - 107.5	107.5 - 108.5
个数	6	10	16	13	17
电容量	108.5-109.5	109.5-110.5	110.5-111.5	$111.5-\infty$	
个数	11	9	10	8	

可知 n=100 , $\alpha=0.05$. 设正态分布的参数为 μ,σ^2 , 电量 X 服从 $N(\mu,\sigma^2)$, 其最大似然解 $\mu^*=\bar{X}=107.85$, $\sigma^{*2}=7.0275$ 则认为检验问题 H_0 电容量服从 N(107.85,7.0275) .

理论分布 $p_1=0.0504$, $p_2=0.137$, $p_3=0.117$, $p_4=0.142$, $p_5=0.149$, $p_6=0.136$, $p_7=0.108$, $p_8=0.0744$, $p_9=0.0842$, 观察频数 $\nu_1=6$, $\nu_2=10$, $\nu_3=16$, $\nu_4=13$, $\nu_5=17$, $\mu_6=11$, $\mu_7=9$, $\mu_8=10$, $\mu_9=8$, 经计算 $k_0^*=\sum_{i=1}^9 \frac{(\nu_i-np_i)^2}{np_i}=4.82$.

$$r = 9$$
 , $s = 2$, 则 $K_n^* \sim \chi_6^2$, 拟合优度

$$p(k_0^*) = P(K_n^* \ge k_0^* | H_0) \approx P(\chi_6^2 \ge k_0^*) > 0.50 > \alpha$$

故可以认为电容量服从正态分布.

6.16 检验问题

 H_0 :慢性气管炎和吸烟无关 \leftrightarrow H_1 :慢性气管炎和吸烟有关

列连表为

吸烟量/支/日	0-9	10-19	≥ 20	Σ
患者人数	22	98	25	145
健康人数	22	89	16	127
Σ	44	187	41	272

可知 n=272 , r=2 , s=3 , $\alpha=0.05$, 査表 $\chi^2_{(r-1)(s-1)}(\alpha)=\chi^2_2(0.05)=5.991$, 检验统计量

$$K_n^* = n\left(\sum_{i=1}^r \sum_{j=1}^s \frac{n_{ij}^2}{n_{i\cdot}n_{\cdot j}} - 1\right) = 1.223 < 5.991$$

故认为慢性气管炎和吸烟无关.

6.17 检验问题

 H_0 : 处理前后比例相等 \leftrightarrow H_1 : 处理前后比例不相等

列连表为

健康状况	未感冒	感冒一次	感冒两次以上	Σ
	252	145	103	500
未处理	224	136	140	500
Σ	476	281	243	1000

可知 n=1000 , r=2 , s=3 , $\alpha=0.05$, 査表 $\chi^2_{(r-1)(s-1)}(\alpha)=\chi^2_2(0.05)=5.991$, 检验统计量

$$K_n^* = n\left(\sum_{i=1}^r \sum_{j=1}^s \frac{n_{ij}^2}{n_{i\cdot}n_{\cdot j}} - 1\right) = 7.569 > 5.991$$

故认为处理前后比例不相同.