

$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ***

We have omitted some results that have been superseded by later experiments. See our earlier editions.

Σ^- MASS

The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID)	TECN	COMMENT
1197.449±0.030 OUR	FIT Error	includes scale fa	actor of	f 1.2.	
1197.45 ± 0.04 OUR	AVERAGE	Error includes	scale fa	actor of 1	1.2.
1197.417 ± 0.040		GUREV	93	SPEC	Σ^- C atom, crystal
1197.532 ± 0.057		GALL	88	CNTR	diff. Σ^- Pb, Σ^- W atoms
1197.43 ± 0.08	3000	SCHMIDT	65	HBC	See note with Λ mass
• • • We do not use t	the following	data for averag	es, fits,	limits, e	etc. • • •
1197.24 ± 0.15		$^{ m 1}$ DUGAN	75	CNTR	Exotic atoms
¹ GALL 88 conclude	s that the D	UGAN 75 mass	needs t	o be ree	valuated.

$m_{\Sigma^{-}}$	— n	n_{Σ^+}
------------------	-----	----------------

VALUE (MeV)	EVTS	DOCUMENT IL)	TECN
8.08 ± 0.08 OUR FIT	Error inclu	des scale factor	of 1.9.	
8.09 ± 0.16 OUR AVER	RAGE			
7.91 ± 0.23	86	BOHM	72	EMUL
8.25 ± 0.25	2500	DOSCH	65	HBC
8.25 ± 0.40	87	BARKAS	63	EMUL

$m_{\Sigma^-} - m_{\Lambda}$

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
81.766 ± 0.030 OUR FIT	Error incl	ludes scale facto	r of 1	.2.	
81.69 ± 0.07 OUR AV	ERAGE				
81.64 ± 0.09	2279	HEPP	68	HBC	
81.80 ± 0.13	85	SCHMIDT	65	HBC	See note with Λ mass
81.70 ± 0.19		BURNSTEIN	64	HBC	

Σ^- MEAN LIFE

Measurements with an error $\,\geq\,$ 0.2 $\times\,$ 10 $^{-10}$ s have been omitted.

$VALUE (10^{-10} \text{ s})$	EVTS	DOCUMENT ID		TECN	COMMENT
1.479 ± 0.011 OUR AVE	RAGE	Error includes scale	facto	of 1.3.	See the ideogram below.
1.480 ± 0.014	16k	MARRAFFINO	80	HBC	$K^- p 0.42 – 0.5 \text{ GeV}/c$
1.49 ± 0.03	8437	CONFORTO	76	HBC	$K^- p 1 - 1.4 \text{ GeV}/c$
1.463 ± 0.039	2400	ROBERTSON	72	HBC	$K^- p \ 0.25 \ { m GeV}/c$
$1.42\ \pm0.05$	1383	BAKKER	71	DBC	$K^- N \rightarrow \Sigma^- \pi \pi$
$1.41 \begin{array}{c} +0.09 \\ -0.08 \end{array}$		TOVEE	71	EMUL	
HTTP://PDG.LBL.0	GOV	Page 1		Creat	ed: 5/30/2017 17:22

$1.485 \!\pm\! 0.022$	100k	EISELE	70	HBC	K^-p at rest
1.472 ± 0.016	10k	BARLOUTAUE	69	HBC	$K^- p 0.4-1.2 \text{ GeV}/c$
1.38 ± 0.07	506	WHITESIDE			•
1.666 ± 0.075	3267	² CHANG	66	HBC	K^-p at rest
1.58 ± 0.06	1208	HUMPHREY	62	HBC	K^-p at rest

 $^{^2}$ We have increased the CHANG 66 error of 0.026; see our 1970 edition, Reviews of Modern Physics **42** 87 (1970).

Σ^- MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" in the Λ Listings. Measurements with an error \geq 0.3 μ_{N} have been omitted.

VALUE (μ_N)	EVTS	DOCUMENT ID		TECN	COMMENT
−1.160±0.025 OUR AVERAG below.	E Error ind	cludes scale facto	or of 1	1.7. See	the ideogram
$-1.105\pm0.029\pm0.010$		HERTZOG	88	CNTR	Σ^- Pb, Σ^- W atoms
$-1.166\pm0.014\pm0.010$	671k	ZAPALAC	86	SPEC	$ne^-\nu, n\pi^-$ decays
$-1.23 \pm 0.03 \pm 0.03$	da a data fa	WAH	85		$p Cu \rightarrow \Sigma^- X$
• • • We do not use the follow	ving data foi	r averages, fits, i	imits,	etc. • •	•
-0.89 ± 0.14	516k	DECK	83	SPEC	$p Be o \; \Sigma^- X$

Σ⁻ CHARGE RADIUS

VALUE (fm) DOCUMENT ID TECN COMMENT ³ ESCHRICH 01 SELX $\Sigma^- e \rightarrow \Sigma^- e$ $0.780 \pm 0.080 \pm 0.060$

³ ESCHRICH 01 actually gives $\langle r^2 \rangle = (0.61 \pm 0.12 \pm 0.09) \text{ fm}^2$.

Σ^- DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$n\pi^-$	(99.848±0.005) %
Γ_2	$n\pi^-\gamma$	[a] $(4.6 \pm 0.6) \times 10^{-4}$
Γ_3	$ne^{-}\overline{ u}_{e}$	$(1.017\pm0.034)\times10^{-3}$
Γ_4	n $\mu^-\overline{ u}_\mu$	$(4.5 \pm 0.4) \times 10^{-4}$
Γ_5	$\Lambda e^{-}\overline{\nu}_{e}$	$(5.73 \pm 0.27) \times 10^{-5}$

[a] See the Listings below for the pion momentum range used in this measurement.

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 16 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2 =$ 8.7 for 13 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

Σ^- Branching ratios

$$\Gamma(n\pi^-\gamma)/\Gamma(n\pi^-)$$

 Γ_2/Γ_1

The π^+ momentum cuts differ, so we do not average the results but simply use the latest value for the Summary Table.

<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
0.46 ± 0.06	292	EBENHOH	73	HBC	$\pi^+~<$ 150 MeV $/c$
• • • We do not use	the following	data for average	es, fits,	limits,	etc. • • •
0.10 ± 0.02	23	ANG	69 B	HBC	$\pi^-~<110~{ m MeV}/c$
~ 1.1		BAZIN	65 B	HBC	$\pi^-~<$ 166 MeV $/c$

 $\Gamma(ne^-\overline{\nu}_e)/\Gamma(n\pi^-)$

 Γ_3/Γ_1

Measurements with an error $> 0.2 \times 10^{-3}$ have been omitted. DOCUMENT ID EVTS

VALUE (units 10)	LVIJ	DOCUMENTID		TLCIV	COMMINICIAL
1.019±0.035 OUR	FIT				
$1.019^{+0.031}_{-0.040}$ OUR	AVERAGE				
$0.96\ \pm0.05$	2847	BOURQUIN	83 C	SPEC	SPS hyperon beam
$1.09 \begin{array}{l} +0.06 \\ -0.08 \end{array}$	601	⁴ EBENHOH	74	HBC	K^-p at rest
$1.05 \begin{array}{l} +0.07 \\ -0.13 \end{array}$	455	⁴ SECHI-ZORN	73	HBC	K^-p at rest
$0.97\ \pm0.15$	57	COLE	71	HBC	K^-p at rest
1.11 ± 0.09	180	BIERMAN	68	HBC	

 $^{^4}$ An additional negative systematic error is included for internal radiative corrections and latest form factors; see BOURQUIN 83C.

$\Gamma(n\mu^-\overline{\nu}_\mu)/\Gamma(n\pi^-$	-)				Γ ₄ /	′Γ ₁
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
0.45 ± 0.04 OUR FIT						
0.45±0.04 OUR AVE	RAGE					
0.38 ± 0.11	13	COLE	71	HBC	K^-p at rest	
0.43 ± 0.06	72	ANG	69	HBC	K^-p at rest	
0.43 ± 0.09	56	BAGGETT	69	HBC	K^-p at rest	
$0.56 \!\pm\! 0.20$	11	BAZIN	65 B	HBC	K^-p at rest	
0.66 ± 0.15	22	COURANT	64	HBC		
$\Gamma(\Lambda e^- \overline{\nu}_e)/\Gamma(n\pi^-$	-)				Γ ₅ /	′Γ 1
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
0.574±0.027 OUR F	IT					
0.574±0.027 OUR A	VERAGE	_				
0.561 ± 0.031	1620	⁵ BOURQUIN	82	SPEC	SPS hyperon beam	
0.63 ± 0.11	114	THOMPSON	80	ASPK	Hyperon beam	
0.52 ± 0.09	31	BALTAY	69	HBC	K^-p at rest	
0.69 ± 0.12	31	EISELE	69	HBC	K^-p at rest	
0.64 ± 0.12	35	BARASH	67	HBC	K^-p at rest	
0.75 ± 0.28	11	COURANT	64	HBC	K^-p at rest	
5	DOLLDOLL	N 005 1: 1 1				

⁵ The value is from BOURQUIN 83B, and includes radiation corrections and new acceptance.

Σ^- DECAY PARAMETERS

See the "Note on Baryon Decay Parameters" in the neutron Listings. Older, outdated results have been omitted.

α_- FOR $\Sigma^- \to n\pi^-$

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.068±0.008 OUR A	WERAGE				
$-0.062\!\pm\!0.024$	28k	HANSL	78	HBC	$K^- p \rightarrow \Sigma^- \pi^+$
-0.067 ± 0.011	60k	BOGERT	70	HBC	$K^- p \ 0.4 \ { m GeV}/c$
$-0.071\!\pm\!0.012$	51k	BANGERTER	69	HBC	K^-p 0.4 GeV/ c
ϕ ANGLE FOR Σ^-	$ o$ $n\pi^-$	=			$(\tan\!\phi=\beta\ /\ \gamma)$
φ ANGLE FOR Σ ⁻ VALUE (°)		DOCUMENT ID		TECN	$ ag{tan}\phi=eta$ / γ)
•	EVTS			<u>TECN</u>	
VALUE (°)	EVTS		70 B		
VALUE (°) 10±15 OUR AVERA	EVTS NGE	DOCUMENT ID		НВС	COMMENT

^oBERLEY 70B changed from -5 to $+5^{\circ}$ to agree with our sign convention.

g_A/g_V FOR $\Sigma^- \rightarrow ne^- \overline{\nu}_e$

Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the "Note on Baryon Decay Parameters" in the neutron Listings. What is actually listed is $|g_1/f_1-0.237g_2/f_1|$. This reduces to $g_A/g_V\equiv g_1(0)/f_1(0)$ on making the usual assumption that $g_2=0$. See also the note on HSUEH 88.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.340 ± 0.017 OUR AV	ERAGE				
$+0.327\!\pm\!0.007\!\pm\!0.019$	50k	⁷ HSUEH			Σ^- 250 GeV
$+0.34 \pm 0.05$	4456			SPEC	SPS hyperon beam
0.385 ± 0.037	3507	⁹ TANENBAUM	74	ASPK	
• • • We do not use the	e following	data for averages	, fits,	limits, e	etc. • • •
$0.29\ \pm0.07$	25k	HSUEH	85	SPEC	See HSUEH 88
$0.17 \begin{array}{l} +0.07 \\ -0.09 \end{array}$	519	DECAMP	77	ELEC	Hyperon beam

⁷ The sign is, with our conventions, unambiguously positive. The value assumes, as usual, that $g_2=0$. If g_2 is included in the fit, than (with our sign convention) $g_2=-0.56\pm0.37$, with a corresponding reduction of g_A/g_V to $+0.20\pm0.08$.

$f_2(0)/f_1(0)$ FOR $\Sigma^- \rightarrow ne^-\overline{\nu}_e$

The signs have been changed to be in accord with our conventions, given in the "Note on Baryon Decay Parameters" in the neutron Listings.

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
0.97±0.14 OUR AV	ERAGE				
$+0.96\pm0.07\pm0.13$	50k	HSUEH	88	SPEC	Σ^- 250 GeV
$+1.02\pm0.34$	4456	BOURQUIN	83 C	SPEC	SPS hyperon beam

TRIPLE CORRELATION COEFFICIENT D for $\Sigma^- o ne^- \overline{ u}_e$

The coefficient D of the term $D \ \mathbf{P} \cdot (\hat{\mathbf{p}}_e \times \hat{\mathbf{p}}_{\nu})$ in the $\Sigma^- \to ne^- \overline{\nu}$ decay angular distribution. A nonzero value would indicate a violation of time-reversal invariance.

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.11±0.10	50k	HSUEH	88	SPEC	Σ^- 250 GeV

g_V/g_A FOR $\Sigma^- \to \Lambda e^- \overline{\nu}_e$

For the sign convention, see the "Note on Baryon Decay Parameters" in the neutron Listings. The value is predicted to be zero by conserved vector current theory. The values averaged assume CVC-SU(3) weak magnetism term.

VALUE	<u>EVTS</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
0.01 ± 0.10	OUR AVERAG	E Error includes scal	le fac	tor of 1.	5. See the ideogram
below.					
-0.034 ± 0.080	1620	¹⁰ BOURQUIN	82	SPEC	SPS hyperon beam
$-0.29\ \pm0.29$	114	THOMPSON	80	ASPK	BNL hyperon beam
$-0.17\ \pm0.35$	55		75 B	SPEC	BNL hyperon beam
$+0.45\ \pm0.20$	186	^{10,11} FRANZINI	72	HBC	

¹⁰ The sign has been changed to agree with our convention.

⁸BOURQUIN 83C favors the positive sign by at least 2.6 standard deviations.

⁹ TANENBAUM 74 gives 0.435 ± 0.035 , assuming no q^2 dependence in g_A and g_V . The listed result allows q^2 dependence, and is taken from HSUEH 88.

 $^{^{11}}$ The FRANZINI 72 value includes the events of earlier papers.

<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
2.4 ±1.7 OUR AVER	AGE				
1.75 ± 3.5	114	THOMPSON	80	ASPK	BNL hyperon beam
3.5 ± 4.5	55	TANENBAUM	75 B	SPEC	BNL hyperon beam
2.4 ± 2.1	186	FRANZINI	72	HBC	

Σ^- REFERENCES

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

ESCHRICH	01	PL B522 233	I. Eschrich et al.	(FNAL SELEX Collab.)
GUREV	93	JETPL 57 400	M.P. Gurev et al.	(PNPI)
		Translated from ZETFP 5	7 389.	` ,
GALL	88	PRL 60 186	K.P. Gall et al.	(BOST, MIT, WILL, CIT $+$)
HERTZOG	88	PR D37 1142	D.W. Hertzog et al.	(WILL, BOST, MIT+)
HSUEH	88	PR D38 2056	S.Y. Hsueh et al.	$(\hat{C}HIC, ELMT, FNAL+\hat{I})$
ZAPALAC	86	PRL 57 1526	G. Zapalac et al.	(EFI, ELMT, FNAL $+$)
HSUEH	85	PRL 54 2399	S.Y. Hsueh <i>et al.</i>	(CHIC, ELMT, FNAL+)
WAH	85	PRL 55 2551	Y.W. Wah et al.	` (FNAL, IOWA, ISU)
BOURQUIN	83B	ZPHY C21 27	M.H. Bourquin et al.	(BRIS, GEVA, HEIDP+)
BOURQUIN	83C	ZPHY C21 17	M.H. Bourquin <i>et al.</i>	(BRIS, GEVA, HEIDP+)
DECK `	83	PR D28 1	L. Deck <i>et al.</i>	(RUTĠ, WISC, MICH, MINN)
BOURQUIN	82	ZPHY C12 307	M.H. Bourquin et al.	(BRIS, GEVA, HEIDP+)
MARRAFFINO	80	PR D21 2501	J. Marraffino <i>et al.</i>	` (VAND, MPIM)
THOMPSON	80	PR D21 25	J.A. Thompson et al.	(PITT, BNL)
HANSL	78	NP B132 45	T. Hansl <i>et al.</i>	(MPIM, VAND)
DECAMP	77	PL 66B 295	D. Decamp et al.	(LALO, EPOL)
CONFORTO	76	NP B105 189	B. Conforto <i>et al.</i>	(RHEL, LOIC)
DUGAN	75	NP A254 396	G. Dugan <i>et al.</i>	(COLU, YALE)
TANENBAUM	75B	PR D12 1871	W. Tanenbaum <i>et al.</i>	(YALE, FNAL, BNL)
		- · -		(=, · · · · =, - · · =)

HTTP://PDG.LBL.GOV

Page 7

EBENHOH TANENBAUM	74 74	ZPHY 266 367 PRL 33 175	H. Ebenhoh <i>et al.</i> W. Tanenbaum <i>et al.</i>	(HEIDT) (YALE, FNAL, BNL)
EBENHOH	73	ZPHY 264 413	W. Ebenhoh <i>et al.</i>	(HEIDT)
SECHI-ZORN	73	PR D8 12	B. Sechi-Zorn, G.A. Snow	(UMD)
ВОНМ	72	NP B48 1	G. Bohm <i>et al.</i>	(BERL, KIDR, BRUX, IASD+)
FRANZINI	72	PR D6 2417	P. Franzini <i>et al.</i>	(COLU,HEID,UMD+)
ROBERTSON	72	Thesis UMI 78-00877	R.M. Robertson	(IIT)
BAKKER	71	LNC 1 37	A.M. Bakker <i>et al.</i>	(SABRE Collab.)
COLE	71	PR D4 631	J. Cole <i>et al.</i>	(STON, COLU)
Also		Thesis Nevis 175	H. Norton	(COLU)
TOVEE	71	NP B33 493	D.N. Tovee et al.	(LOUC, KIDR, BERL+)
BERLEY	70B	PR D1 2015	D. Berley et al.	(BNL, MASA, YALE)
BOGERT	70	PR D2 6	D.V. Bogert et al.	(BNL, MASA, YALE)
EISELE	70	ZPHY 238 372	F. Eisele et al.	(HEID)
PDG	70	RMP 42 87	A. Barbaro-Galtieri et al.	(LRL, BRAN+)
ANG	69	ZPHY 223 103	G. Ang et al.	(HEID)
ANG	69B	ZPHY 228 151	G. Ang et al.	(HEID)
BAGGETT	69	PRL 23 249	N.V. Baggett, B. Kehoe, G.A.	A. Snow (UMD)
BALTAY	69	PRL 22 615	C. Baltay et al.	(COLU, ŠTON)
BANGERTER	69	Thesis UCRL 19244	R.O. Bangerter	` (LRL)
BANGERTER	69B	PR 187 1821	R.O. Bangerter et al.	(LRL)
BARLOUTAUD	69	NP B14 153	R. Barloutaud et al.	(SACL, CERN, ĤEID)
EISELE	69	ZPHY 221 1	F. Eisele <i>et al.</i>	` (HEID)
BIERMAN	68	PRL 20 1459	E. Bierman et al.	(PRIN)
HEPP	68	ZPHY 214 71	V. Hepp, H. Schleich	(HEID)
WHITESIDE	68	NC 54A 537	H. Whiteside, J. Gollub	(ÒBER)
BARASH	67	PRL 19 181	N. Barash et al.	`(UMD)
CHANG	66	PR 151 1081	C.Y. Chang	(COLU)
BAZIN	65B	PR 140 B1358	M. Bazin <i>et al.</i>	(PRIN, RUTG, COLU)
DOSCH	65	PL 14 239	H.C. Dosch et al.	` (HEID)
Also		PR 151 1081	C.Y. Chang	(COLU)
SCHMIDT	65	PR 140 B1328	P. Schmidt	(COLU)
BURNSTEIN	64	PRL 13 66	R.A. Burnstein et al.	(UMD)
COURANT	64	PR 136 B1791	H. Courant et al.	(CERN, HEID, UMD+)
BARKAS	63	PRL 11 26	W.H. Barkas, J.N. Dyer, H.H.	H. Heckman (LRL)
HUMPHREY	62	PR 127 1305	W.E. Humphrey, R.R. Ross	(LRL)
			, ,,	()