L4: Symmetric group

Symmetric group

 $S_{n} = \{O: \{1, 2, ..., n\} -r \{1, ..., n\} \mid O \text{ bijection }\}$ "Symmetric group on a elements."

On element of eSn can be given by the list $\{O(3), ..., O(n)\}$ es. $O = \{2, 1, 3\} \in S_{3}$ sometime without as $O = \{2, 1, 3\} \in S_{3}$

 $E_{X} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \in S_{5}$ $1 + \begin{pmatrix} 2 & 5 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 4 & 5 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 4 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 4 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 4 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 4 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 4 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 4 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 4$

we write 3 = (135)(24) cycle decomposition

Det Given $a_{1,-}$, $a_{1} \in \{1,..,n\}$ all distinct we define $5n \ni \sigma =: (a_{1} \cdots a_{l})$ "an l-cycle"

by the formula $\sigma(\alpha) = \begin{cases} a_{j+1} & \text{if } \alpha = a_{j} \\ x & \text{else} \end{cases}$

Rem (an...ae) = (an...ae) and T=(b1...bm) be such that

Ean..., ae! n (b1,..., bm! = p "disjain".

Then o. T = T.o

Pf Exc.

Prop Every $\sigma \in S_n$ admits a decomposition into disjoint cycles, i.e. $\exists \sigma_1,...,\sigma_m \in S_n$ disjoint cycles set. $\sigma = \sigma_1 \sigma_m$ Pf (stetch) but $i = \min(j \mid o(j) \neq j \mid f$ for some l_1, l_2 we have $\sigma^{l_1}(j) = \sigma^{l_2}(j) = \sigma^{l_3}(j) = \sigma^{l_4}(j) = \sigma^{l_4}$

replace
$$\sigma$$
 with σ_1^{-1} . σ and repeat.

П

Rule Not every product of cycles is a cycle decomp.

1.5. (123)(34) = (1234) (123)(45)(34) = (12354)