# Amex Campus Challenge 2021 Data Science

#### **Problem Statement**

Given all the text that might appear in an invoice image, your goal is to classify all the text into pre-defined categories such as total amount/tax/tip, etc.



Business use case: Digitizing invoice, automating expenses, and for ensuring compliance and regulation.

# Stages of Competition

# Stage 1 Leaderboard Scoring

# Data to be shared with participants for this round:

- 1. 900 training set
- 2. 100 validation set

# Data expected from participants:

Upload predictions for the validation set in the output json format. Sample shared in next slide.

#### Results at the end of round:

Leaderboard Round 1 rankings and scores

# Stage 2- Out of Time Scoring

# Data to be shared with participants for this round: 100 test set (to be shared post

# Data expected from participants:

conclusion of Round 1)

Upload predictions for the test set in the output json format. Sample shared in next slide.

### Results at the end of round:

Leaderboard Round 2 rankings and scores. List of teams selected for Stage 3.

# Stage 3 - Virtual Interaction

## Data expected from participants:

Share a deck or documentation which you'd be asked to present in front of a panel. It should broadly cover your understanding of the problem, insights and approach. Please find more details in following slides.

### Results at the end of round:

List of participants qualifying for pre-placement interviews for final placement

#### **Dataset Overview**

Text extracted from receipts from Food and Beverage category will be shared with participants

- Dataset with 1,100 receipts is split as:
  - 900 receipts for training
  - 100 receipts for validation (Stage 1 Leaderboard)
  - 100 receipts for test (Stage 2 Submission)
- Each receipt will have two files associated with it (more details in the following slide)
  - 1. Input JSON containing meta data which includes
    - a. Text Information
    - b. All 4 coordinates of the bounding box for every text segment
      - a. Clockwise Top Left, Top Right, Bottom Right and Bottom Left.
      - b. Top Left of image has coordinates (0,0)
  - 2. Output JSON containing the Label/Class information for every text segment that appears in input file
- There are 10 possible Labels
  - Please use the exact label mentioned in the list eg. "total amount"
  - Comprehensive list of labels and their description are in the following slides

#### Dataset details

Each receipt will have two files associated with it. Samples below

- 1. Input JSON containing meta data which includes text info + text position
- 2. Output JSON containing the Label/Class information for every text segment that appears in input file

- 1. Extracted text
- 2. Text position
- 3. Text Label

#### Input Json

```
{"textAnnotations": [

{"boundingPoly": {"vertices": [{"x": 218.0, "y": 98.0}, {"x": 327.0, "y": 98.0}, {"x": 327.0, "y": 113.0}, {"x": 218.0, "y": 113.0}]}, "description": "ICHIKAWA"},

{"boundingPoly": {"vertices": [{"x": 220.0, "y": 112.0}, {"x": 316.0, "y": 112.0}, {"x": 316.0, "y": 121.0}, {"x": 316.0, "y": 121.0}, {"x": 220.0, "y": 121.0}]}, "description": "Japanese Restaurant"}, ....

{"boundingPoly": {"vertices": [{"x": 63.0, "y": 289.0}, {"x": 299.0, "y": 285.0}, {"x": 299.0, "y": 310.0}, {"x": 63.0, "y": 314.0}]}, "description": "Refreshing Tuna Poke Rice Bowl"}]}
```

#### **Output Json**

```
[{"id": 1, "text": "ICHIKAWA", "label": "w merchant name", "box": [218, 113, 327, 98], "linking": []},

{"id": 2, "text": "Japanese Restaurant", "label": "w merchant name", "box": [220, 121, 316, 112], "linking": []},
...

{"id": 12, "text": "Refreshing Tuna Poke Rice Bowl", "label": "O description beginning", "box": [63, 314, 299, 285], "linking": []}]
```

#### Submission format

Please follow the following instructions for creating your submission file for leaderboard

- 1) File should be in json format
- 2) Name your file as your\_team\_name.json
- 3) The format of the file should be a nested dictionary
  - 1) The high level dictionary key should be the image names (for eg. for image 0001 the string should be 'image\_0001')
  - 2) The nested dictionary key should be the index of the text you're predicting for (eg. "0" for the first text appearing in your input file for that image)
  - 3) The value of the nested dictionary should be the label (eg. "total amount" etc.)

Sample text file which has labels for 2 images.

"image\_0001": {"0": "w merchant name", "1": "x merchant address beginning", "2": "z merchant phone", "3": "y merchant address inside", "4": "others"}, "image\_0002": {"0": "others", "1": "others", "2": "others", "3": "1 DESCRIPTION INSIDE", "4": "others", "5": "others", "6": "others"}}

Details on how the above text file is structured.

```
text tabels

image_0001 ("0" "w merchant name" "1" "a merchant address beginning" "2": "z merchant phone", "3": "y merchant address inside", "4": "others"),

"image_0002": ("0") "others", "1": "others", (2") "others", "3": "1 DESCRIPTION INSIDE", "4": "others", "6": "others")}
```

# List of Labels

| SNO | Туре | Label                   | Description of Label          |
|-----|------|-------------------------|-------------------------------|
| 1   | Item | 0 description beginning | Description of Item Purchased |
| 2   | Item | 1 description inside    | Description of Item Purchased |
| 3   | Item | e quantity              | Quantity of Item Purchased    |
| 4   | Item | unit price              | Unit Price of Item            |
| 5   | Item | 5 total price per item  | Final Price of Item           |
| 6   | Misc | sub total               | Sub total in a receipt        |
| 7   | Misc | 2 tax total             | Amount of tax paid            |
| 8   | Misc | 3 tip                   | Tips/Gratitude offered        |
| 9   | Misc | total amount            | Final amount paid             |
| 10  | Misc | others                  | Any other text                |

# **Evaluation Criteria- Quantitative**

We would consider label fields for every text segment appearing in input JSON & evaluate the F1 Score for each image. Final evaluation metric is the average F1 score for all invoices.

Final score is the average F1 scores across N test invoices as

Evaluation metric = 
$$\frac{\sum_{i}^{N} F1score(y_{true_{i}}, y_{pred_{i}})}{N}$$

where  $y_{true}$  is the array of true labels for  $i^{th}$  invoice and  $y_{pred}$  is your array of predicted label for  $i^{th}$  invoice

For more information about F1 score used here please refer to the following link:

<u>https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fl score.html</u>
In parameters average = 'macro' will be used

# **Evaluation Criteria- Qualitative**

Once selected post Leaderboard round 2, you are expected to share a deck or documentation which you'd be asked to present in front of a panel.

It should broadly cover the following ideas:

- 1. Understanding of Problem:
  - I. Understanding of the overall objective
  - II. Data Exploration: Understanding trends, patterns & deriving insights
- 2. Methodology & Thought process: Ideas & Approaches Tried
  - I. Data / feature engineering
  - II. Choice of algorithms and models
  - III. Validation
- 3. Assumptions

# Guidelines - suggested packages and tools

- Any open-source packages
  - Machine/Deep Learning packages
    - TensorFlow
    - Torch
    - NLTK
    - Spacy
    - Scikit-Learn
  - Word Embeddings
    - Flair
    - Bert
    - Word2Vec
    - Glove
  - Graph Neural Network
    - Graph Convolutional Network
    - Graph Attention Network
- Recommended Paper
  - https://arxiv.org/pdf/1903.11279.pdf

#### Rules

- 1. A team can have 1 to 2 members
- 2. An individual employee cannot be a member of more than one team
- 3. In case of a tie between two teams, the lead would go to the team which submitted the results first
- 4. In case of a discrepancy, the decision by the organizing team would be final