

Sparse Representation for Computer Vision and Pattern Recognition

Yifei Han, Jixuan Fan, Yiqin Wang, Guanxing Lu 8/4/2024

Content

- Basic Concepts
- Task Definition
- Motivation
- Method
- Experiments
- Conclusions

Basic Concepts

Sparse representation

Signal processing

Computer vision

Express data efficiently!

Task Definition

Datasets

Extended Yale B Face (Yale-B)

Columbia University Image Library (COIL-20)

MNIST

2,414 frontal-face images

72 views of 20 objects each

60,000 handwritten numbers

Face Recognition as Sparse Representation

Representing the test signal as a sparse linear combination of the training signals

□ Face Recognition as Sparse Representation Representing the test signal as a sparse linear combination of the training signals

$$\boldsymbol{D} \doteq [\boldsymbol{D}_1, \boldsymbol{D}_2, \dots, \boldsymbol{D}_c] = [\boldsymbol{d}_{1,1}, \boldsymbol{d}_{1,2}, \dots, \boldsymbol{d}_{k,N_k}]. \tag{1}$$

$$\mathbf{x} = \mathbf{D}\alpha_0 \in \mathbb{R}^m \tag{2}$$

$$\mathbf{\alpha}_0 = \left[0, \cdots, 0, \mathbf{\alpha}_i^T, 0, \dots, 0\right]^T \in \mathbb{R}^N$$

Consider occlude and corrupt:

$$\boldsymbol{x} = \boldsymbol{x}_0 + \boldsymbol{e}_0 = \boldsymbol{D}\alpha_0 + \boldsymbol{e}_0 \tag{3}$$

$$(\boldsymbol{\alpha}_0, \boldsymbol{e}_0) = \arg\min \|\boldsymbol{\alpha}\|_0 + \|\boldsymbol{e}\|_0 \quad \text{subject to}$$

$$\boldsymbol{x} = \boldsymbol{D}\alpha + \boldsymbol{e}. \tag{4}$$

$$\min \|\boldsymbol{\alpha}\|_1 + \|\boldsymbol{e}\|_1$$
 subject to $\boldsymbol{x} = \boldsymbol{D}\alpha + \boldsymbol{e}$ (5)

■ The "cross-and-bouquet" model

The cross—and—bouquet polytope is spanned by vertices from both the bouquet and the cross

The "cross-and-bouquet" model

$$\mathbf{D} = [\mathbf{d}_1 \dots \mathbf{d}_N] \in \mathbb{R}^{m \times N}, \quad \mathbf{d}_i \sim_{iid} \mathcal{N}\left(\boldsymbol{\mu}, \frac{\nu^2}{m} \mathbf{I}_m\right),$$

$$\|\boldsymbol{\mu}\|_2 = 1, \qquad \|\boldsymbol{\mu}\|_{\infty} \le C_{\mu} m^{-1/2}.$$
(6)

$$(\boldsymbol{\alpha}_0, \boldsymbol{e}_0) = \arg\min \|\boldsymbol{\alpha}\|_1 + \|\boldsymbol{e}\|_1$$

subject to $\boldsymbol{D}\boldsymbol{\alpha} + \boldsymbol{e} = \boldsymbol{D}\boldsymbol{\alpha}_0 + \boldsymbol{e}_0$, (8)

Dense Error Correction by L1 -Minimization

Data: Extended Yale B Face

Receiver Operating Characteristic (ROC) for validation with 30% occlusion

Conclusion: The sparse representation significantly outperforms the competitors

Sparse Modeling for Image Reconstruction

Classification error rate (%)

Cluster #	ℓ^1 -graph	G-g	LE-g	LLE-g	PCA+Km
USPS: 7	0.962	0.381	0.724	0.565	0.505
FOR. : 7	0.763	0.621	0.619	0.603	0.602
ETH.: 7	0.605	0.371	0.522	0.478	0.428

Classification error rate (%)

Gallery #	PCA	NPE	LPP	ℓ^1 -graph-SL	Fisherfaces [7]
USPS: 10	37.21	33.21	30.54	21.91	15.82
FOR.: 10	27.29	25.56	27.32	19.76	21.17
ETH.: 10	47.45	45.42	44.74	38.48	13.39

Classification error rate (%)

Labeled #	ℓ^1 -g	LLE-g	LE-g	MFA	PCA
USPS: 10	25.11	34.63	30.74	34.63	37.21
FOR.: 10	17.45	24.93	22.74	24.93	27.29
ETH.: 10	30.79	38.83	34.54	38.83	47.45

Sparse Modeling for Image Reconstruction

Dictionary learned from a standard set of color image [1]

Sparse Modeling for Image Classification

Dictionary learned from a standard set of color images [1]

Learning to Sense

Independentl y

Simultaneously learning the dictionary and sensing matrices

Conclusions

Conclusions