```
# IMPORTING THE REQUIRED LIBRARIES
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from google.colab import files
uploaded = files.upload()
     Choose Files Default_Fin.csv
     • Default_Fin.csv(application/vnd.ms-excel) - 275118 bytes, last modified: 7/30/2021 - 100% done
     Saving Default_Fin.csv to Default_Fin (1).csv
uploaded.keys()
     dict_keys(['Default_Fin.csv'])
# importing dataset
default=pd.read_csv("Default_Fin.csv")
default.head()
```

	Index	Employed	Bank Balance	Annual Salary	Defaulted?
0	1	1	8754.36	532339.56	0
1	2	0	9806.16	145273.56	0
2	3	1	12882.60	381205.68	0
o undo cell deletion use Ctrl+M 7 or the Undo option in the Edit menu.				menu X 0	

To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu $\,\,\, imes\,$

```
default.shape
     (10000, 5)
default.describe()
```

	Index	Employed	Bank Balance	Annual Salary	Defaulted?
count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.50000	0.705600	10024.498524	402203.782224	0.033300
std	2886.89568	0.455795	5804.579486	160039.674988	0.179428

```
#boxplot
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.boxplot(y=default["Annual Salary"])
plt.subplot(1,2,2)
sns.boxplot(y=default["Bank Balance"])
plt.show()
```


To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X

plt.tlgure(tlgslze=(lo,o))

```
plt.subplot(1,2,1)
sns.countplot(default["Employed"])

plt.subplot(1,2,2)
sns.countplot(default["Defaulted?"])
plt.show()
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas
       FutureWarning
     /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas
       FutureWarning
                                                              10000
       7000
       6000
                                                              8000
       5000
                                                               6000
      ± 4000 -
#value count
default["Employed"].value_counts()
     1
          7056
          2944
     Name: Employed, dtype: int64
default["Defaulted?"].value_counts()
     0
          9667
           333
     Name: Defaulted?, dtype: int64
# value count in the form of percentage
default["Employed"].value_counts(normalize=True)
     1
          0.7056
          0.2944
     Name: Employed, dtype: float64
```

To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X

1 0.0333

Name: Defaulted?, dtype: float64

▼ bivariate analysis

```
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.boxplot(default["Defaulted?"],default["Annual Salary"])
plt.subplot(1,2,2)
sns.boxplot(default["Defaulted?"],default["Bank Balance"])
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

cross tab
pd.crosstab(default["Employed"],default["Defaulted?"],normalize="index").round(2)

Defaulted?	0	1
Employed		
0	0.96	0.04
1	0 97	0.03

#heatmap to check correlation
sns.heatmap(default[["Bank Balance", "Annual Salary"]].corr(),annot=True)
nlt.show()

to check null values
default.isnull().sum()

Index	0
Employed	0
Bank Balance	0
Annual Salarv	0

```
Defaulted? 0 dtype: int64
```

```
sns.boxplot(y=default["Bank Balance"])
plt.show()
```



```
q1,q2=default["Bank Balance"].quantile([0.25,0.75])
```

```
# inter quantile range
iqr=q2-q1
iqr
```

8214.87

lower limit

To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X

```
ul=q2+(1.5*iqr)
print(ul)
```

-6541.5150000000001 26317.965

values in database which are greater than upper limit
df=default[default["Bank Balance"]>ul]
df.head()

default[default["Bank Balance"]==ul].count()

Index 31
Employed 31
Bank Balance 31
Annual Salary 31
Defaulted? 31
dtype: int64

default=default.drop("Index",axis=1)

default.columns=["employed","balance","income","default"]
default.head()

	employed	balance	income	default
0	1	8754.36	532339.56	0
1	0	9806.16	145273.56	0

#applying logistic regression
from sklearn.model_selection import train_test_split

```
x=default.drop("default",axis=1)
y=default["default"]
```

x.head()

	employed	balance	income
0	1	8754.36	532339.56
1	0	9806.16	145273.56
2	1	12882.60	381205.68
3	1	6351.00	428453.88
4	1	9427.92	461562.00

0x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=21,stratify

```
print(x_train.shape)
print(y_train.shape)
```

To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X

0 0.971 0.03

Name: default, dtype: float64

0 0.971 0.03

Name: default, dtype: float64

!pip install imblearn

```
Requirement already satisfied: imblearn in /usr/local/lib/python3.7/dist-packages (0 Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.7/dist-package Requirement already satisfied: numpy>=1.8.2 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: scikit-learn>=0.20 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: scipy>=0.13.3 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-package
```

```
# SMOTE (synthetic minority over sampling technique)
import imblearn
from imblearn.over_sampling import SMOTE
     /usr/local/lib/python3.7/dist-packages/sklearn/externals/six.py:31: FutureWarning: T
       "(<a href="https://pypi.org/project/six/">https://pypi.org/project/six/</a>).", FutureWarning)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:144: FutureWarni
       warnings.warn(message, FutureWarning)
sm=SMOTE(random_state=33, sampling_strategy=0.75)
x_res,y_res=sm.fit_sample(x_train,y_train)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarnin
       warnings.warn(msg, category=FutureWarning)
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
lr.fit(x_res,y_res)
                                                                  fit_intercept=True,
 To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X

  iter=100,

                                                                  ty='12',
                         random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                         warm start=False)
y pred=lr.predict(x test)
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,y_pred)
     array([[2103, 797],
            Γ 28,
                    72]])
#calculating accuracy
(2103+72)/(2103+797+28+72)
    0.725
```