Theoretische Informatik: Endliche Automaten, Formale Sprachen und Grammatiken

Marko Livajusic

24. November 2024

Inhaltsverzeichnis

1. Deterministische Endliche Automaten

1.1 Transduktor

Definition 1 Ein Transduktorautomat $\mathcal{T}: \{\Sigma, A, Z, z_0, \delta, \lambda\}$ ist ein deterministicher endlicher Automat ohne einen Endzustand.

 Σ : Eingabealphabet

A: Ausgabealphabet

Z: Zustandsmenge

 $\mathbf{z_0} \in Z$: Startzustand

 $\delta: \Sigma \times Z \to Z: Überführungsfunktion$

 $\lambda: \Sigma \times Z \to A^*$: Ausgabefunktion

1.1.1 Mealy-Automat

Definition 2 Ein Mealy-Automat ¹ ist ein Transduktor, dessen Ausgabe von der Überführungsfunktion δ und vom aktuellen **Zustand** z_n abhängig ist.

1.2 Akzeptor

Definition 3 Ein Akzeptor $\mathcal{A}: \{\Sigma, Z, z_0, \delta, F\}$ ist ein deterministicher endlicher Automat, der die Eingabe überprüft und keine Ausgabe besitzt. Er lässt sich wie folgt beschreiben:

¹für die Klausur irrelevant.

 Σ : Eingabealphabet

Z: Zustandsmenge

 z_0 : Startzustand

 δ : Überführungsfunktion

F: Endzustandsmenge

1.2.1 Moore-Automat

Definition 4 Ein Moore-Automat ist ein Transduktor, dessen Ausgabe vom aktuellen **Zustand** z_n abhängig ist.

1.2.2 Minimierung von DEAs

Zu minimieren sei folgender DEA:

Diagonale als äquivalent markieren:

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1		=		
q_2			=	
q_3				Ш

Felder, wo ein Zustand auf einen Endzustand trifft, streichen

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1		=		
q_2			=	
q_3	X	X	X	=

Eine Übergangstabelle mit übrigen Zuständen erstellen. Die Zustandspaare, die auf einen bereits gestrichenen Zustandspaar abgebildet werden, streichen

Zustand	0	1
(q_0,q_1)	(q_1,q_2)	$(\mathbf{q_2},\mathbf{q_3})$
(q_0,q_2)	(q_1,q_1)	$(\mathbf{q_2},\mathbf{q_3})$
(q_1,q_2)	(q_2,q_1)	(q_3,q_3)

Die neue Tabelle sieht dann so aus:

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1	X	=		
q_2	X		=	
q_3	X	X	X	

Die leeren Felder als äquivalent markieren:

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1	X	=		
q_2	X	=		
q_3	X	X	X	=

Spaltenweise die Zustände zusammenfassen:

2. Nichtdeterministische Endliche Automaten

2.1 ϵ -NEAs

Definition 5 Ein ϵ -NEA ist ein Akzeptor, der ϵ -Übergänge besitzt und deshalb mit dem leeren Wort Zustände wechseln kann.

2.1.1 ϵ -NEA \rightarrow NEA

Gegeben sei folgendes Zustandsdiagramm eines ϵ -NEA, welches in einen NEA umgewandelt werden soll:

Zuerst wird eine leere Übergangstabelle erstellt:

Zustand	0	1
q_0		
q_1		
q_2		
q_3		

Danach wird für jedes Eingabesymbol eine Tabelle mit der ϵ -Hülle erstellt:

Zustand	ϵ^*	0	ϵ^*
q_0			

Wie oben zu sehen ist, wird zuerst der Startzustand q_0 eingetragen. Danach wird die ϵ -Hülle des Zustands q_0 berechnet und eingetragen.

Definition 6 Eine ϵ -Hülle ist die Menge aller Zustände, die ein Zustand q_n mit dem leeren Wort ϵ erreichen kann.

Da im vorigen Beispiel q_0 mit dem leeren Wort keinen anderen Zustand als sich selbst erreichen kann, wird für dessen ϵ -Hülle q_0 eingetragen.

Die nächte Spalte steht für den Zustand, der erreicht wird, wenn bei q_0 das Eingabesymbol 0 eingegeben wird. Dies ist in diesem Beispiel der Zustand q_1 :

Zustand	ϵ^*	0	ϵ^*
q_0	q_0	$\mathbf{q_1}$	

Die letzte Spalte bezieht sich auf die ϵ -Hülle des Zustands aus der mittleren Spalte, welcher hier fettgedruckt steht. Die ϵ -Hülle von q_1 ist dabei $\{q_1,q_2\}$. Diese wird ebenfalls eingetragen:

Zustand	ϵ^*	0	ϵ^*
q_0	q_0	q_1	$\{q_1,q_2\}$

Diese ϵ -Hülle $\{q_1, q_2\}$ repräsentiert dabei die Zustände, die q_0 bei der Eingabe von 0 erreicht werden. Deshalb können diese in die Übergangstabelle eingetragen werden:

Zustand	0	1
q_0	$\{q_1, q_2\}$	
q_1		
q_2		
q_3		

Dieser Vorgang wird für alle Zustände durchgeführt, sowohl für die Eingabe von 0 als auch von 1. Die Tabellen sehen nach dem Algorithmus wie folgt aus:

Zustand	ϵ^*	0	ϵ^*
$\{q_0\}$	$\{q_0\}$	$\{q_1\}$	$\{q_1, q_2\}$
\int_{a}	$\{q_1\}$	Ø	Ø
$\{q_1\}$	$\{q_1, q_2\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$	$\{q_2\}$	$\{q_2\}$	$\{q_2\}$
$\{q_3\}$	$\{q_3\}$	Ø	Ø

Zustand	ϵ^*	1	ϵ^*
$\{q_0\}$	$\{q_0\}$	Ø	Ø
$\{q_1\}$	$\{q_1\}$	$\{q_1\}$	$\{q_1, q_2\}$
(11)	$\{q_2\}$	$\{q_3\}$	$\{q_3\}$
$\{q_2\}$	$\{q_2\}$	$\{q_3\}$	$\{q_3\}$
$\{q_3\}$	$\{q_3\}$	Ø	Ø

Zustand	0	1
$\{q_0\}$	$\{q_1,q_2\}$	Ø
$\{q_1\}$	$\{q_2\}$	$\{q_1,q_2,q_3\}$
$\{q_2\}$	$\{q_2\}$	$\{q_3\}$
$\{q_3\}$	Ø	Ø

Noch sollen die Endzustände ermittelt werden. Zu den Endzuständen gehört der Endzustand aus dem ϵ -NEAund die Zustände, die durch das leere Wort ϵ in den ursprünglichen Endzustand gelangen können. Deshalb wird in diesem Fall nur q_3 der Endzustand. Gezeichnet sieht das neue Zustandsdiagramm wie folgt aus:

Abbildung 2.1: Der neue NEA, ohne ϵ -Übergänge.

"o" steht hier für die leere Menge \emptyset .

2.1.2 ϵ -NEA \rightarrow DEA

Es sei folgendes Zustandsdiagramm eines ϵ -NEAs gegeben:

Die Umwandlung in ein DEA geschieht wie üblich mit der Potenzmengenkonstruktion:

Zustand	A	В
$\rightarrow \{q_0\}$	$\{q_1,q_4\}$	$\{q_3\}$
$\{q_1,q_4\}$	$\{q_0\}$	$\{q_2^*\}$
$\{q_3\}$	$\{q_4\}$	Ø
$\{q_2^*\}$	$\{q_4\}$	$\{q_3\}$
$\{q_4\}$	Ø	$\{q_2\}$
Ø	Ø	Ø

Anschlißend wird das neue Zustandsdiagramm des DEAs gezeichnet. qE repräsentiert dabei die leere Menge \emptyset .

Abbildung 2.2: Umwandlung von $\epsilon\textsc{-NEA}$ zu DEA. Dieser ist jedoch nicht zwangsläufig optimal bzw. minimal.

2.2 NEA \rightarrow DEA (Potenzmengenkonstruktion)

Dieser NEA soll in einen DEA umgewandelt werden:

Vorgehen: Es wird zuerst eine Übergangstabelle aufgestellt und geschaut, welche Zustände neu auftreten.

Zustand	a	b
$\rightarrow \{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_0,q_1\}$	$\{q_0\}$	$\{q_0, q_1, q_2^*\}$
$\{q_0, q_1, q_2\}^*$	$\{q_0, q_2^*\}$	$\{q_0, q_1, q_2^*\}$
$\{q_0, q_2\}^*$	$\{q_0, q_2^*\}$	$\{q_0, q_1, q_2^*\}$

Danach wird aus dieser Übergangstabelle der DEA gezeichnet:

3. Reguläre Ausdrücke

+: wiederhole das Zeichen davor n-mal, wobei n > 0

*: wiederhole das Zeichen davor n-mal, wobei $\mathbf{n} \geq \mathbf{0}$

3.1 $\text{RegEx} \rightarrow \epsilon\text{-NEA}$

3.1.1 $R = \emptyset$

3.1.2 $R = \epsilon$

3.1.3 R = a

3.1.4 R = ab

3.1.5 R = a|b

3.1.6 $R = a^*$

Beispiel 1 Es soll der reguläre Ausdruck $(0|1)^*01$ in einen ϵ -NEA umgewandelt werden.

4. Formale Sprachen

4.1 Reguläre Sprachen

Definition 7 Eine Sprache L ist dann regulär, wenn diese sich darstellen lässt mithilfe eines:

- 1. nichtdeterministischen endlichen Automatens
- 2. deterministischen endlichen Automatens
- 3. regulären Ausdrucks.

4.2 Q3.2: Grammatiken

Definition 8 Eine Grammatik G ist ein 4-Tupel $G = \{N, T, P, S\}$, wobei

- N das Nichtterminalalphabet
- ullet T das Terminalalphabet
- P die Produktionen
- S das Startsymbol ist.

4.2.1 Typ 3 Grammatik (regulär)

Eine Grammatik G ist dann $regul\"{a}r$, wenn in den Produktionen P

• links ein Nichtterminal und rechts ein oder mehrere Terminale vorkommen gefolgt von maximal einem Nichtterminal

4.3 Ableitung

Gegeben sei folgende Grammatik:

$$T = \{x, y, z\}$$

$$N = \{S, M, A, V\}$$

$$P = \{S \rightarrow A|M|V$$

$$A \rightarrow (S + S)$$

$$M \rightarrow (S \cdot S)$$

$$V \rightarrow x|y|z$$

$$\}$$

Wie wird das Wort $(x \cdot (y+z))$ gebildet?

$$S \Rightarrow M \Rightarrow (S \cdot S)$$

$$\Rightarrow (v \cdot S) \Rightarrow (x \cdot S) \Rightarrow (x \cdot A) \Rightarrow$$

$$(x \cdot (S+S)) \Rightarrow (x \cdot (v+S)) \Rightarrow (x \cdot (y+v)) \Rightarrow (x \cdot (y+z))$$

4.3.1 Ableitungsbaum

Dies kann man auch mit einem Ableitungsbaum darstellen:

4.3.2 Syntaxdiagramme: Regeln

- 1. 1 Syntaxdiagramm $\hat{=}$ 1 Produktionsregel, wobei das Syntaxdiagramm der Name der Produktionsregel ist
- 2. Nichtterminale: eckig
- 3. Terminale: rund

4.4 Kontextfreie Sprachen

Gegeben sei folgende kontextfreie Grammatik:

$$N = \{A, B, S\}$$

$$T = \{a, b, \epsilon\}$$

$$S = S$$

$$P = \{$$

$$S \to AB$$

$$S \to ABA$$

$$A \to aA$$

$$A \to a$$

$$B \to Bb$$

$$B \to \epsilon$$

$$\}$$

4.4.1 Chomsky-Normalform

Definition 9 Die Chomsky-Normalform ist eine Normalform für kontextfreie Grammatiken und ist die Voraussetzung für den ??.

Gegeben sei folgende Grammatik, die in die Chomsky-Normalform gebracht werden sollte:

$$G = (N, T, P, S)$$

$$N = \{A, B\}$$

$$T = \{0\}$$

$$P = \{$$

$$A \rightarrow BAB|B|\epsilon$$

$$B \rightarrow 00|\epsilon\}$$

Um eine Grammatik G in die Chomsky-Normalform zu bringen, müssen 4 Regeln befolgt werden:

- 1. Wähle ein neues Startsymbol.
- 2. Eliminiere ϵ
- 3. Eliminiere unit rules, d.h. Nichtterminal auf ein Nichtterminal, bspw. $S \to A$
- 4. Verändere alle Regeln, wo mehr als ein Terminal vorkommt, bspw. $S \to 00$
- 5. Verändere alle Regeln, wo mehr als zwei Nichtterminale vorkommen, bspw. $S \to AB$

4.4.2 CYK-Algorithmus

Mit dem CYK-Algorithmus lässt sich sagen, ob ein Wort ω in einer kontextfreien Sprache liegt. Die Voraussetzung für den CYK-Algorithmus ist die ??.

Beispiel 2 Sei G eine Grammatik mit Produktionsregeln P, die definiert sind als:

$$S \to BC|AC|BA$$

$$A \to AA|BB|a$$

$$B \to BA|b$$

$$C \to AC|c$$

Nun bestimme man, ob das Wort ababac in L(G) liegt.

$$a$$
 b a b a

Die unterste Zeile ist die 1. Zeile. Fangen wir (von links) mit dem ersten Feld der ersten Zeile, so sehen wir, dass ein Nichtterminalsymbol gesucht ist, welches das Wort a ableitet. Schaut man auf die Grammatik, so sieht man, dass lediglich die Produktionsregel A das Wort a ableitet, weshalb sie in das untere Feld eingetragen

wird:

5. Registermaschine

5.1 Häufige Operationen

```
5.1.1 R_1 == R_2
Es gilt: R_1 - R_2 = 0 \land R_2 - R_1 = 0
    load #10
    store 1
    load #2
    store 2
    load 1
    sub 2
    store 3
    load 2
    sub 1
    store 4
    load 3
    jzero second_check
    goto not_equal // else case
    second_check: load 4
    jzero equal // R1-R2 UND R2-R1 sind 0
    not_equal: END
    equal: END
```

5.2 $R_1 < R_2$

Es gilt:
$$R_2 - R_1 \neq 0$$
 load #10

store 1
load #2
store 2

load 2
sub 1
jnzero proceed
end

proceed: do_stuff
end

5.3 $R_1 > R_2$

Es gilt: $R_1 - R_2 \neq 0$ load #10

store 1

load #2

store 2

load 1

sub 2

jnzero proceed

end

proceed: do_stuff
end