SI engine combustion I

1

SI – engine combustion: How to "burn" things?

Reactants → **Products**

Premixed

- · Homogeneous reaction
 - Not limited by transport process
 - Fast/slow reactions compared with other time scale of interest
- Premixed flame
 - Examples: gas grill, SI engine combustion
- Detonation
 - Pressure wave driven reaction

Non-premixed

- · Diffusion flame
 - Examples: candle, diesel engine combustion

SI ENGINE COMBUSTION

- Premixed flame
 - -Laminar flame speed
- Turbulent enhancement of combustion
 - -Wrinkled laminar flame

3

LAMINAR FLAME SPEEDS

Fig. 9-25 Laminar burning velocity of several fuels as function of equivalence ratio, at 1 atm and 300 K.

Fig. 9-26 Effect of burned gas mole fraction in unburned mixture on laminar burning velocity. Fuel: gasoline.

(Note that actual burned gas from non-stoichiometric combustion would render the charge Φ different from the metered $\Phi).$

Schematic of SI engine flame propagation

Fig. 9-4 Schematic of flame propagation in SI engine: unburned gas (U) to left of flame, burned gas to right. A denotes adiabatic burned-gas core, BL denotes thermal boundary layer in burned gas.

- 1

Combustion produced pressure rise

- 1. Pressure is uniform, changing with time
- 2. For mass δm : h_b = h_u (because dm is allowed to expand against prevailing pressure)
- 3. T rise is a function of fuel heating value and mixture composition
 - \triangleright e.g. at Φ = 1, $T_u \sim 700$ K, $T_b \sim 2800$ K
- 4. Hence burned gas expands: $\rho_b \sim \frac{1}{4} \rho_u$; $\delta V_b \sim 4 \delta V_u$

9

Combustion produced pressure rise

- 5. Since total volume is constrained. The pressure must rise by δp , and all the gas in the cylinder is compressed.
- Both the unburned gas ahead of flame and burned gas behind the flame move away from the flame front
- Both the unburned gas and burned gas temperatures rise due to the compression by the newly burned gas
- Unburned gas state: since heat transfer is relatively small, the temperature is related to pressure by isentropic relationship
 - $ightharpoonup T_u/T_{u,0} = (p/p_0)^{(\gamma_u-1)/\gamma_u}$
- 9. Burned gas state:

Thermodynamic state of charge

Fig. 9-5 Cylinder pressure, mass fraction burned, and gas temperatures as function of crank angle during combustion.

11

Burn duration

- Burn duration as CA-deg. : measure of burn progress in cycle
- For modern fast-burn engines under medium speed, part load condition:
 - $-\Delta\theta_{0-10\%}\sim15^{\circ}$
 - $-\Delta\theta_{0-50\%} \sim 25^{\circ}$
 - $\Delta\theta_{0-90\%} \sim 35^{\circ}$
- As engine speed increases, burn duration as CA-deg. :
 - Increases because there is less time per CA-deg.
 - Decreases because combustion is faster due to higher turbulence
 - ➤ Net effect: increases approximately as ∞ rpm^{0.2}

Optimum Combustion Phasing

- Heat release schedule has to phase correctly with piston motion for optimal work extraction
- In SI engines, combustion phasing controlled by spark
- Spark too late
 - heat release occurs far into expansion and work cannot be fully extracted
- Spark too early

 Effectively "lowers" compression ratio
 - increased heat transfer losses
 - Also likely to cause knock
- **Optimal: Maximum Brake Torque (MBT) timing**
 - MBT spark timing depends on speed, load, EGR, Φ, temperature, charge motion, ...
 - Torque curve relatively flat: roughly 5 to 7°CA retard from MBT results in 1% loss in torque

of spark advance on brake torque at constant speed and A/F, at WOT

Obtaining combustion information from engine cylinder pressure data

- 1. Cylinder pressure affected by:
 - a) Cylinder volume change
 - b) Fuel chemical energy release by combustion
 - c) Heat transfer to chamber walls
 - d) Crevice effects
 - e) Gas leakage
- 2. Obtaining accurate combustion rate information requires
 - a) Accurate pressure data (and crank angle indexing)
 - b) Models for phenomena a,c,d,e, above
 - c) Model for thermodynamic properties of cylinder contents
- 3. Available methods
 - a) Empirical methods (e.g. Rassweiler and Withrow SAE 800131)
 - b) Single-zone heat release or burn-rate model
 - c) Two-zone (burned/unburned) combustion model

Typical	Range	bar	0 250
piezoelectric	Calibrated partial range	bar	0 50
pressure	Overload	bar	300
transducer spec.	Sensitivity	pC/bar	≂ –16
	Natural frequency	kHz	≈100
	Linearity, all ranges	%FSO	≤±0,5
6.2mm →	Acceleration sensitivity axial radial	bar/g bar/g	<0,0015 <0,0003
	Operating temperature range	°C	50 350
	Sensitivity shift 20 100°C 20 350°C 200± 50°C	% % %	≈±1 ≤±3,5 ≈1
	Insulation resistance bei 20°C	Ω	≥10 ¹³
	Shock insulation	g	2000
	Tightening sensitivity	Nm	10
	Capacitance	pF	8
	Weight	g	10
	Plug, ceramic insulator	Туре	10-32 UNI

Fig. 9-12 Results of heat-release analysis showing the combustion inefficiency and the corrections due to heat transfer and crevice effect.

Flow and Combustion Process in Spark-Ignition Engine

A Color Schieren Movie taken in a Special Visualization Engine

- Square piston engine
- · Visualization by color-schlieren method
 - Captures density gradients
- · Note:
 - Flame propagation process
 - Outgasing from crevices

23

Square piston flow visualization engine

Bore 82.6 mm Stroke 114.3 mm Compression ratio 5.8

Operating condition

 $\begin{array}{ccc} \text{Speed} & 1400 \text{ rpm} \\ \Phi & 0.9 \\ \text{Fuel} & \text{propane} \\ \text{Intake pressure} & 0.5 \text{ bar} \\ \text{Spark timing} & \text{MBT} \end{array}$

