Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Depth-First Search

Subgraphs

- A subgraph S of a graphG is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G
 is a subgraph that
 contains all the vertices
 of G

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Non connected graph with two connected components

Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles

This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles
- The connected components of a forest are trees

Forest

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Depth-First Search

- Depth-first search (DFS)
 is a general technique
 for traversing a graph
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Can determine whether G is connected
 - Can compute the connected components of G
 - Can computes a spanning forest of G

- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph

DFS Algorithm from a Vertex

```
Algorithm DFS(u)
In: Vertex u of a graph G
Out: {DFS traversal of G starting at u}
Mark (u)
For each edge (u,v) incident on u do
  if (u,v) is not labelled then
       if v is not marked then {
          Label (u,v) as "discovery edge"
          DFS(v)
       else label (u,v) as "back edge"
```

Example

Example (cont.)

DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Properties of DFS

Property 1

DFS(**G**, **v**) visits all the vertices and edges in the connected component of **v**

Property 2

The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v called a DFS tree

Analysis of DFS

- \Box Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once initialized as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once initialized as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- □ DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure and it runs in $O(n^2)$ time if the graph is stored in an adjacency matrix.

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z
- \Box We call DFS(u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack


```
Algorithm pathDFS(G, v, z)

Mark(v)

S.push(v)

if v = z

return true

for all edges (v, w) incident on v do

if w is not marked then

if pathDFS(G, w, z) then

return true

S.pop(v)

return false
```