

Physics

Thermal

Heat Heat Ca

Heat Capacity 1

Heat Capacity 1

Essential Pre-Uni Physics G3.1

Data:

- Specific heat capacity of water: $4180\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of aluminium: $880\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of iron: $435\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of paraffin oil: $2130\,\mathrm{J\,kg^{-1}\,K^{-1}}$

Complete the values in the table below. Give your answers to 2 sf.

Energy / J	Material	Mass / kg	Initial temperature / $^{\circ}\mathrm{C}$	Final temperature / °C
	Aluminium	0.290	15	82
45200	Paraffin	2.30	3.0	
81000	Water	1.50	11	

<u>Home</u> <u>Gameboard</u> Physics Thermal Heat Capacity Essential Pre-Uni Physics G3.3

Essential Pre-Uni Physics G3.3

- ullet Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of aluminium: $880\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- \bullet Specific heat capacity of iron: $435\,J\,kg^{-1}\,K^{-1}$
- ullet Specific heat capacity of paraffin oil: $2130\,\mathrm{J\,kg^{-1}\,K^{-1}}$

These specific heat capacities can also be found within the hint tabs.

How much water can a shower head heat each second from $12\,^{\circ}\mathrm{C}$ to $41\,^{\circ}\mathrm{C}$ if the heater has a power of $4200\,\mathrm{W}$? Assume that no heat is lost to the surroundings, and give your answer in kilograms.

Gameboard:

STEM SMART Physics 27 - Heat and mixtures

Home Gameboard Physics Thermal Heat Capacity E

Essential Pre-Uni Physics G3.4

Essential Pre-Uni Physics G3.4

- ullet Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of aluminium: $880\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- ullet Specific heat capacity of iron: $435\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- ullet Specific heat capacity of paraffin oil: $2130\,\mathrm{J\,kg^{-1}\,K^{-1}}$

These specific heat capacities can also be found within the hint tabs.

If $0.024\,\mathrm{kg}$ of water gets trapped in the shower heater (the heater has a power of $4200\,\mathrm{W}$) of <u>question G3.3</u>, the thermal sensor must stop the current before the water reaches $80\,^\circ\mathrm{C}$. Assuming that the water is at $35\,^\circ\mathrm{C}$ when the fault occurs, how quickly must the thermal sensor act? Give your answer in seconds.

Gameboard:

STEM SMART Physics 27 - Heat and mixtures

<u>Home</u> <u>Gameboard</u> Physics Thermal Heat Capacity Essential Pre-Uni Physics G3.7

Essential Pre-Uni Physics G3.7

- Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of aluminium: $880\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of iron: $435\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of paraffin oil: $2130\,\mathrm{J\,kg^{-1}\,K^{-1}}$

These specific heat capacities can also be found within the hint tabs.

How much water at $52\,^\circ\mathrm{C}$ must I add to $19\,\mathrm{kg}$ of water at $21\,^\circ\mathrm{C}$ to make it the right temperature, $37\,^\circ\mathrm{C}$ for me to bath a baby?

Gameboard:

STEM SMART Physics 27 - Heat and mixtures

Home Gameboard Physics Thermal Heat Capacity Essential Pre-Uni Physics G3.8

Essential Pre-Uni Physics G3.8

- ullet Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of aluminium: $880\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of iron: $435\,J\,kg^{-1}\,K^{-1}$
- ullet Specific heat capacity of paraffin oil: $2130\,\mathrm{J\,kg^{-1}\,K^{-1}}$

These specific heat capacities can also be found within the hint tabs.

If I add $210\,\mathrm{g}$ of rivets at $303\,^\circ\mathrm{C}$ made of some unknown metal to $500\,\mathrm{g}$ of water at $15\,^\circ\mathrm{C}$, and the final temperature is $34\,^\circ\mathrm{C}$, what is the specific heat capacity of the mystery metal? Give your answer to 2 significant figures.

Gameboard:

STEM SMART Physics 27 - Heat and mixtures

<u>Gameboard</u>

Physics

Thermal

Heat Capacity

Essential Pre-Uni Physics G4.1

Essential Pre-Uni Physics G4.1

- ullet Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- ullet Specific heat capacity of ice: $2030\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- ullet Specific latent heat of fusion of ice: $3.35 imes 10^5 \, J \, \mathrm{kg}^{-1}$
- ullet Specific latent heat of vaporization of water: $2.26 imes 10^6 \, J \, kg^{-1}$

In all questions, assume that the heat capacities given above remain constant at all temperatures.

Part A Frozen pipe

A frozen pipe contains $5.60\,\mathrm{kg}$ of ice. How much energy is needed to melt it without changing its temperature?

Part B Warming and melting

If the ice were initially at $-3.5\,^{\circ}\mathrm{C}$, how much energy would be taken to warm it to melting point and then melt it?

Gameboard:

STEM SMART Physics 27 - Heat and mixtures

<u>Gameboard</u>

Physics

Thermal Heat Capacity

Essential Pre-Uni Physics G4.2

Essential Pre-Uni Physics G4.2

- ullet Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- ullet Specific heat capacity of ice: $2030\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- ullet Specific latent heat of fusion of ice: $3.35 imes 10^5 \, J \, \mathrm{kg}^{-1}$
- ullet Specific latent heat of vaporization of water: $2.26 imes 10^6 \, J \, kg^{-1}$

In all questions, assume that the heat capacities given above remain constant at all temperatures.

Part A Initial temperature

A certain quantity of ice requires $10.0\,\mathrm{J}$ to warm it to melting temperature. It then requires $100\,\mathrm{J}$ to melt it. Calculate the initial temperature of the ice in $^{\circ}\mathrm{C}$, assuming no heat loss to the surroundings.

Part B Final temperature

The water at freezing point in Part A is then heated using a further $100\,\mathrm{J}$. What is its final temperature? Give your answer in $^\circ\mathrm{C}$

Gameboard:

STEM SMART Physics 27 - Heat and mixtures

<u>Gameboard</u>

Physics

Thermal Heat Capacity

Essential Pre-Uni Physics G4.5

Essential Pre-Uni Physics G4.5

- ullet Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- ullet Specific heat capacity of ice: $2030\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- ullet Specific latent heat of fusion of ice: $3.35 imes 10^5 \, J \, \mathrm{kg}^{-1}$
- ullet Specific latent heat of vaporization of water: $2.26 imes 10^6 \, \mathrm{J\,kg^{-1}}$

In all questions, assume that the heat capacities given above remain constant at all temperatures.

A mass of $0.35\,\mathrm{kg}$ of ice at $-15\,^{\circ}\mathrm{C}$ is lowered into an insulated beaker containing $0.61\,\mathrm{kg}$ of water at $59\,^{\circ}\mathrm{C}$.

Part A Equilibrium temperature

What is the temperature after equilibrium has been reached? Give your answer in °C

Part B Minimum mass of water for $0.0\,^{\circ}\mathrm{C}$

What is the minimum mass of water at $59\,^{\circ}\mathrm{C}$ needed in the beaker to achieve a final temperature of $0.0\,^{\circ}\mathrm{C}$?

Part C Maximum mass of water for $0.0\,^{\circ}\mathrm{C}$

What is the maximum mass of water at $59\,^{\circ}\mathrm{C}$ that could be present in the beaker to achieve a final temperature of $0.0\,^{\circ}\mathrm{C}$?

Gameboard:

STEM SMART Physics 27 - Heat and mixtures

<u>Home</u> <u>Gameboard</u> Physics Thermal Heat Capacity Sea Level Rise

Sea Level Rise

Part A Ocean heating

Sea level is currently observed to increase at a total rate of about $3\,\mathrm{mm/year}$. Out of this total rate, approximately $1\,\mathrm{mm/year}$ is due to thermal expansion of the warming sea water. This is known as steric sea level change.

Assume that the ocean heating occurs uniformly over the top $1000\,\mathrm{m}$ of the ocean at a rate of $0.01\,^\circ\mathrm{C}\,\mathrm{year}^{-1}$. Calculate the power required for this ocean heating.

Use the following information:

- ullet Assume that the Earth is a perfect sphere with radius $6371\,\mathrm{km}$
- ullet The oceans cover $70\,\%$ of the Earth's surface
- ullet The density of sea water is $1025\,{
 m kg}\,{
 m m}^{-3}$
- ullet The heat capacity of sea water $C_p = 4.006 imes 10^3 \, \mathrm{J\,kg^{-1}\,K^{-1}}$

Part B Melting ice on land

For this question, we assume that the remaining $2\,\mathrm{mm}\,\mathrm{year}^{-1}$ of sea level change occurs due to the melting of land-based ice.

Estimate the rate of melting of land-based ice (in $kg \, year^{-1}$) needed to achieve the observed rate of sea level increase due to the **non-steric** effect. Assume that the area of the ocean remains constant.

Part C Power of melting

Estimate the power required to account for the observed rate of melting, assuming that the ice is initially at $T_{\rm ice}=-20\,^{\circ}{
m C}$.

The heat capacity of ice is $C_{\rm ice}=2100\,{
m J\,kg^{-1}\,K^{-1}}$ and the latent heat of fusion ofice is $L_{\rm fusion}=330\,{
m kJ\,kg^{-1}}.$

Created for Isaac Physics by the Royal Meteorological Society.

Gameboard:

STEM SMART Physics 27 - Heat and mixtures