This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

E04H 15/50

(11) International Publication Number:

WO 93/13284

(43) International Publication Date:

8 July 1993 (08.07.93)

(21) International Application Number:

PCT/US92/10976

A1

(22) International Filing Date:

18 December 1992 (18.12.92)

(30) Priority data:

811,978

23 December 1991 (23.12.91) US

(71) Applicant: WORLD SHELTERS, INC. [US/US]; 2920 Business Center Drive, Alexandria, VA 22314 (US).

(72) Inventor: ZEIGLER, Theodore, R.; 205 South Columbus Street, Alexandria, VA 22314 (US).

(74) Agent: SAVAGE, Michael, G.; Burns, Doane, Swecker & Mathis, George Mason Building, Washington and Prince Streets, P.O. Box 1404, Alexandria, VA 22313-1404 (US). (81) Designated States: CA, JP, KR, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report. With amended claims and statement.

(54) Title: POLYHEDRON BUILDING SYSTEM HAVING TELESCOPING SCISSORS

(57) Abstract

A collapsible framework (210) capable of being manipulated between a collapsed condition and an expanded, locked condition comprises a plurality of legs (220) and a plurality of collapsible quad sections (214, 216, 218). The legs are disposed generally in parallel with one another and in a bundle when the framework is in the collapsed condition. Each quad section comprises two split step scissor units (224) and two step scissor units (226). Each split step scissor unit is joined at one end to a respective leg (220), and comprises two arms (220, 230) that are pivotally joined, at least one of the arms being telescopic (228) and including means for locking the arm at a predetermined length. Each step scissor unit (226) is joined at one end to the other end of a respective split step scissor unit (224) and at its other end to the other step scissor unit, and each step scissor unit comprises two arms (246, 248) that are pivotally joined, at least one of the arms being telescopic and including means for locking the arm at a second predetermined length. The framework may further include a flexible canopy (212) supported by the legs (220) and quad sections (214, 216, 218), or may further include a plurality of tension cables (222) joining ends of the legs (220) and scissor units (224, 226). Other types of quad sections are also disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	G8	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	Ю	Norway
8F	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ.	Benin	ΙE	treland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
	Canada	JP	Japan	RU	Russian Federation
CA	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CF	•	•••	of Korea	SE	Sweden
CC	Congo	KR	Republic of Korea	SK	Slovak Republic
CH	Switzerland	KZ	Kazaklistan	SN	Senegal
CI	Cote d'Ivoire	l.J	Liechtenstein	SU	Soviet Union
CM	Cameroon	L.K.	Sri Lanka	TD	Chad
cs	Czechoslovakia	-	Luxembourg	TG	Togo
cz	Czech Republic	1.0	Монасо	UA	Ukraine
DE	Germany	MC		บร	United States of America
DK	Denmark	MC	Madagascar	VN	Viet Nam
ES	Spain	MI.	Mali	V IN	VICE 134
E	Cintand	MN	Mongolia		

10

15

20

POLYHEDRON BUILDING SYSTEM HAVING TELESCOPING SCISSORS

BACKGROUND

The present invention relates to collapsible canopy structures and frameworks for such structures.

Building assemblies are known that have a foldable capability so that they may be erected where desired and, when necessary, folded up to a compact form for storage and/or transportation. These assemblies employ column-like elements or rods as basic construction units that function as stays. The links are interconnected with pivot joints, slip joints, or other forms of movable interconnects so that a collapsible, articulated structure is formed. A fabric covering is usually associated with the network of rods. of such a collapsible structure is shown in U.S. Patent No. 3,185,164, which shows a structure including a plurality of rods joined by couplings into groups of three which are inter-related to form a generally hexagonal structural system. Another example of such a collapsible structure is shown in U.S. Patent No. 3,710,806. Structures that utilize elements intended to maintain the rigidity of the structure are also known, as

25 tents or other outdoor shelters are also known. Examples of collapsible frames for use in supporting such tents or outdoor structures are shown in U.S. Patents No. 563,376; No. 927,738; No. 1,773,847; and No. 2,781,766. Such structures have varied widely in their ease of erection and storage, and are of varying structural strength.

exemplified in U.S. Patent No. 3,063.521.

Collapsible structures are described in my prior U.S. Patents No. 3,968,808; No. 4,026,313; No. 4,290,244; No. 4,437,275; No. 4,473,986; No. 4,512,097; No. 4,522,008; No. 4,561,618; No. 4,579,066; No.

35 4,689,932; No. 4,761,929; and No. 4,838,003. In these

patents, the structural frameworks include scissor assemblies are comprised of pivotally connected members of fixed length. My U.S. Patent No. 3,968,808 discloses a self-supporting domed shelter constructed from a series of intermeshing pentagonal or hexagonal sections, each section being composed of crossed pairs of pivotally connected struts. The generally semi-spherical framework is made of elongate struts and hub means which are movable between a collapsed, bundled condition (in which the struts are closely bundled and in a generally 10 parallel relationship) and an expanded condition or three-dimensional form. This structural framework is self-supporting by virtue of self-locking action resulting from the asymmetrical disposition of certain The framework has zones of sliding connections 15 between crossed struts that allows the structure to be collapsed. My U.S. Patent No. 4,026,313 discloses sliding and pivoted connections and rectangular modules, among other things, and my U.S. Patents Nos. 4,290,244 and 4,437,275 generally are directed to structural 20 modules.

My U.S. Patent No. 4,689,932 discloses an octahedral module that provides the ability to build long, narrow structures or tall, wide structures. this octahedron-based design, the struts that define the 25 structural modules may be of equal length. The octahedron-based design also introduced a 90-45 degree coordinate system that permits "stretchability" on three axes because each of the modules has the same edge lengths. That is, the controlled addition of modules 30 permits the basic octahedron to be dimensionally increased in three mutually orthogonal directions: height, width, and length. My patent discloses a dome structure composed of two types of square modules: "flat" module; and a "transition", or cylindrical, 35 module. The circumscribing sides of all the modules are formed by crossed, pivotally connected struts. With this design, the resulting building has a generally spherical shape that is substantially horizontal at the top of the structure and substantially vertical near the bottom of the structure, there being a curved portion therebetween formed by the transition modules. With this design, the corner portions of the building are left open if, for example, passageways are desired, as shown in Figures 1-3 of the patent. As the size of the structure increases, the open corner sections become larger.

10 Many typical prior building designs, including geodesic domes and conventional structures such as frame tents, suffer from several general problems. structure is collapsible, it is often difficult to erect and requires several workers, a significant amount of time, and special tools and equipment. The structures 15 are also often complex in construction, having several different detachable parts and being relatively heavy and bulky in size. Non-uniformity of the sizes of the structural members also contributes to the overall 20 complexity and cost of such structures. conventional structures, such as frame tents having flat roofs, are limited in their aesthetic appeal. result, the appropriate uses of these structures are limited.

Fabrication of some collapsible structures, such as canopies having horizontal dimensions less than about twenty feet in length, presents special concerns because access to the limited interior space should not be excessively restricted by placement of the structural members. For example, the height of the canopy, which is typically determined by the lengths of posts, or legs, disposed at its corners, usually also determines the lengths of the crossed struts, or scissor members, that form the framework supporting the roof of the structure.

To obtain the desired width and height with appropriate structural stability, the scissor members may be splayed

30

to such an extent that access to the area under the canopy is restricted.

Telescoping or otherwise changeable elements in rod frameworks are described in U.S. Patents No. 3,940,892 to Lindbergh; No. 3,973,370 to McAllister; No. 4,641,477 to Schleck; No. 4,655,022 to Natori; and Nos. 4,888,895 and 4,942,686 to Kemeny. The Lindbergh patent describes the erection of an aircraft enclosure by forming an arch through the extension of a piston in a The McAllister patent discloses the hydraulic cylinder. 10 erection of a structure comprising a framework having extendable struts. Schleck teaches a modular rod/truss structure having chord and diagonal members comprising turnbuckles for length adjustments that permit arch construction. Natori teaches a framework including 15 extendable truss beams that permit fabrication of a curved structure. The Kemeny patents teach a scissorstype framework in which telescoping members permit different curvatures to be developed.

U.S. Patents No. 4,607,656 to Carter and Nos. 4,641,676 and 4,779,635 to Lynch describe relatively small collapsible canopy structures. In each of these patents, the canopy structure comprises a flexible covering and a framework that includes a number of telescoping legs and scissor assemblies, or X-shaped 25 linkages, between the legs. The fixed arm lengths and single pivots of the scissor assemblies significantly constrain the dimensions, i.e., the distances between the ends of the arms, achievable with such scissor assemblies because an increase in one of those distances can only be achieved by either lengthening the arms, which may make the collapsed framework unwieldy, or increasing the angle between the arms, which may restrict access to the structure.

The present invention addresses these and other 35 problems associated with known collapsible support structures. Among its several features and advantages,

the present invention provides collapsible canopy structures that have relatively small horizontal dimensions and unrestricted interior access. These features and advantages are provided by including in the framework several scissor assemblies having telescoping members, as well as the "ring and blade" hubs and locking devices described in my above-cited U.S. patents and the parent of the present application.

SUMMARY

10 In one aspect, the present invention provides a collapsible framework capable of being manipulated between a collapsed condition and an expanded, locked condition. The framework comprises a plurality of legs and a plurality of collapsible quad sections. 15 are disposed generally in parallel with one another and in a bundle when the framework is in the collapsed condition. Each quad section comprises two split step scissor units and two step scissor units. Each split step scissor unit is joined at one end to a respective 20 leg, and comprises two arms that are pivotally joined, at least one of the arms being telescopic and including means for locking the arm at a predetermined length. Each step scissor unit is joined at one end to the other end of a respective split step scissor unit and at its 25 other end to the other step scissor unit, and each step scissor unit comprises two arms that are pivotally joined, at least one of the arms being telescopic and including means for locking the arm at a second predetermined length.

In other aspects, the framework may further include a flexible canopy supported by the legs and scissor assemblies, or may further include a plurality of tension cables joining ends of the legs and scissor assemblies. In addition, the present invention encompasses frameworks comprising other types of quad section that are described further below.

15

20

25

30

An advantageous feature of a structure in accordance with the present invention is the balance between compression forces and tension forces within the Suitable structural members are provided to structure. withstand both compression and tension forces, so as to maintain the canopy structure in a structurally stable manner, while at the same time requiring fewer structural members than were required with prior structures. this manner, the structural strength/weight ratio is The structural stability and strength are increased. increased at least in part by the use of rigid locks and periphery and diagonal cables, as explained in more detail below. The support framework, although lightweight, is structurally stable and resistant to wind forces, etc.

Other advantageous features of a structure in accordance with the present invention are the hubs and pivot joints that allow the framework's struts to pivot with respect to each other.

Yet another advantage of a canopy structure in accordance with the present invention is its ease of deployment. The structure can be erected quickly by a single person at ground level having no tools, and easily expands from a compact, pre-assembled bundle to a canopy structure having a rigid, self-supporting frame and a cover. Regardless of size, the structure can be erected in a matter of minutes. Particular design features that allow the structure to be easily erected are pivotal connections of the frame members, optional telescoping support legs, and releasable locking bar mechanisms that rigidify the framework in a quick and convenient manner. For the same reasons, the structure is also easy to collapse for transport or storage.

The structure is also advantageous in that it is relatively lightweight and, in its collapsed condition, it forms a compact bundle, which facilitates transportation and storage. For example, a portable

15

20

25

30

shelter ten feet by ten feet in size collapses to a bundle that is only about five feet in length and one foot in diameter and that weighs only about thirty-five pounds. Thus, the canopy structure is easy to handle by even those persons having limited strength or mechanical capabilities.

In addition, the structure employs a waterproof cover that provides protection from the elements and may be constructed from pieces of material that are sized and configured to provide a smooth, taut cover in the expanded mode. The covering material is attached to the framework so as so not interfere with the structure's erection and collapse. Unique cover attachments securely attach the cover to the roof framework and do not interfere with an aesthetically pleasing appearance.

A structure in accordance with the present invention also employs cable members that effectively withstand the structure's tension forces and add only negligible weight. A related advantageous feature is the structure's cable keeper members, which serve to organize the tension cables of the roof structure and prevent the cables from becoming tangled during the erection or collapse of the structure. The cable keepers add little weight to the structure, yet they greatly improve the structure's ease of use, thereby making it possible to advantageously employ the structural cables.

The present canopy structure also features convenient support means which may consist of a plurality of telescoping support legs. The support means may be interconnected permanently to the roof framework, thereby greatly facilitating the collapsing and expanding operations.

Still another advantage of the present structure is its aesthetic appeal. Particularly for applications in which aesthetics are important, such as social gatherings, trade shows, exhibitions, or other

- 8 -

applications in the special events industry, the present structure has a modernistic look.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will be understood by reading the following detailed description in conjunction with the drawings in which:

FIGS. 1A and 1B show expanded and collapsed conditions of one embodiment of a structural framework in accordance with the present invention;

FIGS. 2A-2J show views of three types of quad section in accordance with the present invention;

FIGS. 3A-3D are views of a split step scissor unit in accordance with the present invention;

FIGS. 4A-4C are views of a step scissor unit in accordance with the present invention;

FIGS. 5A-5C are views of a flat scissor unit in accordance with the present invention;

FIG. 6 is a view of a mating member for joining 20 a ring and blade hub to a vertical member;

FIGS. 7A-7D are views of a universal pivot joint;

FIGS. 8A and 8B are views of a foot for the structural framework;

FIG. 9 illustrates the geometry of a step scissor;

FIGS. 10A-10F show views of one exemplary canopy structure;

FIGS. 11A-11E show views of another exemplary 30 canopy structure;

FIGS. 12A-12E show views of the canopy structure of FIGS. 1A and 1B; and

FIGS. 13A-13D illustrate the deployment steps for the canopy structure of FIGS. 1A and 1B.

DETAILED DESCRIPTION

Referring now to the Figures in which like elements are identified by like reference numerals throughout, FIGS. 1A and 1B illustrate a canopy structure 200 having a support framework 210 in accordance with the 5 present invention. The framework 210 is preferably constructed of a light-weight, rigid material, such as aluminum tubes or rods, and when expanded as in FIG. 1A the framework has a configuration that is generally square when viewed from above. The canopy structure 200, 10 as well as other canopy configurations are described in more detail below. The framework 210 supports a flexible canopy 212, which hides the left side of the framework in FIG. 1A and which is attached to the framework. described further below, the canopy 212 may be fabricated 15 from any suitably flexible material, such as cloth or vinyl. As illustrated in FIG. 1B, the support framework and the flexible canopy can be collapsed into a compact, easily transported condition.

The support framework 210 comprises a plurality 20 . of quad sections 214, 216, 218 that impart the general shape to the canopy structure and are described in more detail below. The four quad sections 214 at the corners of the framework 210 include upright legs 220 that optionally are telescopic. In the framework shown in 25 FIG. 1A, three types of quad section are provided, but other frameworks may include other mixtures of quad section types as desired to achieve different canopy configurations. For example, the canopy structure illustrated in FIGS. 10A-10F employs four quad sections 30 214 and the canopy structure illustrated in FIGS. 11A-11E employs four quad sections 214 and four quad sections 216. Also indicated as thin lines in FIG. 1A are several flexible tension cables 222 that may be provided to 35 stiffen the structure as described below.

15

The quad sections 214 are each comprised of two split step scissor units 224 and two step scissor units 226 as illustrated in the views of FIGS. 2A-2D, which also show an arrangement of diagonal and peripheral tension cables 222 as dashed lines. Similarly, the quad sections 216 are each comprised of two step scissor units 226 and two flat scissor units 250 as illustrated in the views of FIGS. 2E-2G and the quad section 218 is comprised of four flat scissor units 250 as illustrated in the views of FIGS. 2H-2J. Although it may appear from FIGS. 2A, 2E, and 2H that the quad units have square shapes, they are in fact not flat, which makes them stronger than flat sections, and are shaped more like trapezoids. It will be appreciated that quad sections (and resulting canopy structures) having other shapes, such as triangles, can also be constructed using the scissor units in accordance with the present invention. Other features and advantages of the scissor units 224, 226, 250 are described below.

Detailed side and top views of the split step 20 scissor unit 224 are shown in FIGS. 3A, 3B, and the split step scissor unit 224 is advantageously collapsible into a compact bundle as shown in FIG. 3C. Although the two split step scissor units 224 preferably share one support leg 220, as indicated for example by FIG. 3B, it will be 25 appreciated that a member having a different purpose could instead be provided. For example, canopy structures that would be externally supported on one side, such as canopy structures attached to or abutting other structures, would not require legs on the sides so 30 supported. Thus, rather than four legs, only two would be provided, and four split step scissor units would not share legs.

As seen in FIGS. 3A-3C, each split step scissor unit 224 advantageously comprises arm members 228, 230, either or both of which may be telescopic, a member 232 that may or may not also be telescopic, a locking member

or device 234, a number of pivot joints 236, 238, and "ring and blade" hubs 240. Only member 228 is illustrated as telescopic in FIG. 3A, which also shows one tension cable 222, and other scissor units 224, 226 are partially indicated in FIG. 3B. The locking device 234 may be that described in Figure 8 of the parent of the present application. The hubs 240 are described in my U.S. Patents No. 4,280,521; No. 4,761,729; and No. 4,838,003, which are expressly incorporated here by reference, and in the parent of the present application, 10 which was incorporated by reference above. As described in more detail below, the hubs 240 provide pivotal connections between releasably interlocking sections 242, 244 of the locking member 234 and members 230, 232. addition, the hubs 240 are shared by other scissor units. The joints 236, 238 provide pivotal connections between pairs of the members 220, 228, 230, 232. Other features of the split step scissor units are described below.

Schematic side and top views of the step scissor unit 226 are shown in FIGS. 4A, 4B, and the step 20 scissor unit 226 is advantageously collapsible into a compact bundle as shown in FIG. 4C. As seen in FIGS. 4A-4C, each step scissor unit 226 advantageously comprises an arm member 246, which may or may not be divided into two members in the manner of members 228, 230, and an arm 25 member 248, which may or may not be telescopic, a pair of locking members 234, at least one pivot joint 236, and "ring and blade" hubs 240. Tension cable 222 and cable keepers 223 are shown as dotted lines in the FIG. 4A. in the step scissor unit described above, the hubs 240 30 provide pivotal connections between parts 242, 244 of the locking members 234 and members 246, 248; and the pivot 236 provides a pivotal connection between the members 246, 248, which may be fabricated of aluminum tubing having an outer diameter of three-quarters of an inch. 35 Other features of the step scissor units are described

below.

The quad sections 216 include two step scissor units 226 and two flat scissor units 250, and the quad section 218 includes four flat scissor units 250. Schematic side and top views of the flat scissor unit 250 are shown in FIGS. 5A, 5B, and the flat scissor unit 250 is advantageously collapsible into a compact bundle as shown in FIG. 5C. As seen in FIGS. 5A-5C, each flat scissor unit 250 advantageously comprises arm members 252, 254, which may or may not be divided into two members in the manner of members 228, 230, a pair of 10 locking members 234, at least one pivot 236, and "ring and blade" hubs 240. Tension cable 222 and cable keepers 223 are shown as dotted lines in the FIG. 5A. As in the step scissor unit described above, the hubs 240 provide pivotal connections between parts 242, 244 of the locking 15 members 234 and members 252, 254; and the joint 236 provides a pivotal connection between the members 252, 254. Other features of the flat scissor units are described below.

It will be appreciated that the quad section
218 is substantially similar to the flat module
illustrated in Figure 4B of the parent of the present
application. In such a flat module, each side face has a
rectangular shape so that the module's inner and outer
25 faces have identical widths and lengths and define
parallel planes. In addition, the flat module is of the
same general shape as described in my U.S. Patent No.
4,689,932.

Top views of two of the "ring and blade" hubs

240 can be seen in FIG. 3B; the hub shown on the left in
the figure is used at the top of a leg 220, and the hub
shown at the right in the figure joins the split step
scissor unit to another scissor unit. As seen in FIGS.

3A and 3B, the hub 240 is pivotally joined to the leg 220

by a blade 256, seen in more detail in FIG. 6 and as
described in the parent of the present application. The
extension portion of the blade 256 is inserted into the

leg 220 and, with a suitable spacer or adapter, is fixed by, for example, threaded fasteners 258. The upper portion of the blade 256 is engaged by "ring and blade" hub 240, and thus the hub 240 can pivot freely in the direction of the double-headed arrow shown in FIG. 6. The features of the hubs 240 are as described in connection with Figure 9A of the parent of the present application.

FIGS. 7A, 7B, 7C, and 7D show orthogonal and perspective views of the pivot joints 238, which 10 advantageously act as a kind of universal joint. A mating member 260 is slotted to accept a blade 262 attached to the arm member 228; the blade is retained in the member 260 by a convenient means such as a pin 264 15 that permits rotation in the direction of the arrows shown in FIG. 7A. Similarly, the member 260 is attached to the leg 220 by another pin 264 that permits rotation in the direction of the arrows shown in FIG. 7B. FIG. 7C shows the pivot joint 238 that joins the arm 232 and the 20 As shown in FIG. 7D, one of the pins 264 may also serve to attach to the leg 220 a mating member 260' of the other split scissor unit in the quad section. pivot joints 236 may be any means suitable for permitting the arms to pivot with respect to each other, such as a through-bolt and low-friction washers disposed among the 25 bolt-heads and the arms.

A foot member 266 may be provided as a base for a respective one of the legs 220 as illustrated in the orthogonal views of FIGS. 8A, 8B. The generally plate-like foot member 266 has two apertures therethrough, a first aperture for accepting the leg 220, and a second aperture through which a stake or other locating means may be disposed to fixedly position the canopy structure on a supporting surface. Once the leg is positioned in its aperture, a retaining pin or other locking means 268 may be inserted to hold the leg and foot together. In a structure having telescoping legs, the portion of the leg

30

35

10

15

20

25

30

35

to which the foot is attached advantageously can rotate with respect to the other portion of the leg, thereby permitting the foot to move between a deployed position, as shown in FIG. 3A, and a compact stowed position, as shown in FIG. 3C.

Each leg 220 preferably consists of two concentric, telescoping tubes, and is approximately five feet long when fully collapsed. If aluminum, the tubes may have outer diameters of one-and-one-eighth and oneand-one-quarter inches. In their expanded mode, the legs 220 are approximately seven feet long. A button latch or snap lock assembly is provided on each leg 220 to maintain the legs in their expanded mode. As described in the parent of the present application, the snap lock assembly may consist of a pair of apertures in the wall of the outer tube that cooperate with a pair of detents on the inner tube. When the legs are positioned in their expanded mode, the detents snap into the apertures to maintain the legs in the expanded position. To collapse the legs, the user simply presses the detents to disengage the snap lock assemblies.

It will be appreciated that a split step scissor unit 224 resembles a conventional scissor, or Xshaped linkage, in which the crossed struts are pivotally joined at the mid-point. In contrast, either or both of the arms 228, 230 of a split step scissor unit 224 can be separated from the mid-point of the arm member 232, which may have an outer diameter of one inch when fabricated of aluminum tubing. In accordance with one feature of the invention, each of the arms 228, 230 may be pivotally joined to member 232 substantially anywhere along the length of member 232. As one example, FIGS. 3A-3C show the arm 228 joined to member 232 at a point located beyond the mid-point of member 232 and the arm 230 joined to the arm 232 at the latter's mid-point. It will also be appreciated that the arms 228, 230, rather than being disposed on opposite sides of the arm 232 as shown, may

15

be disposed on the same side, provided appropriate steps are taken to avoid interference when collapsed.

The location of the pivot joint 238 that attaches the arm 228 to the leg 220 in the present split step scissor unit is independent of the length of the arm 232 and the height of the hub 240 at the end of the arm 236. Thus, the roof of the canopy structure can rise toward the structure's center without restricting access into the structure as would occur with a conventional scissor arrangement. In addition, it will be appreciated that lowering the location of the pivot joint 238 toward the leg's foot will generally stiffen the leg. It is only advisable to avoid the formation of forty-fivedegree angles between the arm 228 and the leg 220 and arm 232 so that the two pivot joints 238 do not interfere when the split step scissor unit is collapsed.

Moreover, the split step scissor units render the quad sections 214 sufficiently rigid to avoid the need for corner three-strut leg assemblies as described 20 in the parent of the present application. Such a threestrut leg could also adversely affect access into relatively small structures. If additional leg stiffness is needed, for example in the embodiment shown in FIG. 3A, an additional telescoping arm could be provided that 25 would not adversely affect accessibility into the Such an additional arm would be joined to the structure. leg 220 and arm 232 by additional pivot joints 232, one additional pivot joint being located low on the leg 220 and the other additional pivot joint being located near 30 the hub 240 joining the arm 232 to the leg.

To enable the canopy structure to be collapsed into a compact bundle and obtain the advantages provided by the present invention, one or both of the arms 228, 230 is preferably telescopic and can be locked at a predetermined length. Such lockable telescoping action is advantageously provided by fabricating the arms as concentric tubes, with the inner tube including a button

35

15

20

25

30

35

latch mechanism such as described in the above-cited U.S. Patent No. 4,641,676 to Lynch and in my co-pending, commonly assigned U.S. Patent Application Serial No. 07/649,031, filed February 1, 1991. The outer concentric tube need only include a hole suitable for accepting the button of the button latch mechanism. It will be appreciated that the tubes can be formed by conventional metal working processes, and for applications in which low weight is particularly desirable, the tubes could be formed of other materials, including plastics and composites. If aluminum, the tubes may have outer diameters of three-quarters and five-eighths inches.

My above-cited pending Application No. 07/649,031, which is hereby expressly incorporated by reference, discloses that a suitable button latch mechanism, which is shown in cross-section in FIG. 3D, comprises a narrow strip of folded spring steel having a buttonhead formed at one end that is commercially available as part no. A-130 from Valley Tool & Die Co., N. Royalton, Ohio. It will be appreciated that the concentric tubes have severely limited rotation with respect to each other, thereby permitting reliable engagement of the button latch, and by selecting the location of the hole on the outer concentric tube, the extension of the arm can be selected. It will be further appreciated that the button latch can be disengaged and the telescoping arms and legs collapsed by simply forcing the buttonheads back through the holes. This type of button latch mechanism can be advantageously employed wherever such telescoping or snap-lock action is needed.

The possible arrangements of the tension cables 222, which generally are comprised of any suitable wire or cable, and cable retention means, which preferably consist of cable keeper members 223, are described in connection with Figures 5A-7C of the parent of the present application. The cable keepers serve to retain the cables 222, and can be made of a flexible or rigid

material such as a thin strip of plastic or cloth material. The cable keepers could be made of a material which has elastic properties. Each cable keeper is, at one end, attached to its corresponding cable and, at the other end, attached to a corresponding arm as seen for example in FIGS. 4A and 5A. The cable keepers are preferably made of flexible plastic tape, the ends of which are adhered to the cables and arms by wrapping the adhesive sides around these components.

10 As the framework is collapsed, the cable keepers retain the corresponding tension cables in an organized, looped configuration, thereby preventing any problems with tangling and greatly facilitating the process of erecting and collapsing the framework. As tension members, the cables provide additional strength 15 and structural rigidity to the framework. It will be appreciated that such rigidity can also be provided by suitably strengthened hubs and arms, but the cables have the advantage of being light and flexible, thereby facilitating collapse of the framework into a bundle. It will be understood that the alternative support cable designs described in Figures 5A-5C and 6A-6E of the parent of the present application can also be provided in the present framework.

25 FIG. 9 shows the geometry for calculating lengths of the arm members and locking members in either a split step scissor unit (illustrated in FIG. 9) or a step scissor unit. Providing that the length of the locking member 234 is equal to the length between the hub 240 at the top of the leg 220 and the leg's pivot 238, 30 and that the locking member 234 is advantageously parallel to the leg and perpendicular to the arm 232, the included angles between the arms 230, 232 and between arms 228, 232 are 22.5 degrees. Setting the "step" height of the scissor unit (i.e., the distance between 35 points B0, B1, or the length of the locking member 234) at unity, the lengths of the portions of the arm 232 between

10

15

20

25

the pivot point S and the points A^0 and B^1 are both 2.41421. By geometry, the distances between points A^1 and B^0 and S are both 2.61313, and the distance between A^0 and B^0 is 4.9309.

The framework is covered with a flexible material that is held taut by the framework when expanded to its functionally operative condition. The flexible material or fabric may be attached to the framework at each outer hub by a cover connector mechanism illustrated in Figure 10 of the parent of the present application. The flexible cover may be made of a polyester or other suitable material that may resist water, fire, and ultraviolet light. A cover button having a circular plate member and stem is insertable within a central aperture of the hub, and may be made of a plastic or The stem snaps easily into and other suitable material. out of the hub body. A fabric patch holds the button to the cover, and the patch may have a circular shape and be attached to the cover by heat-sealing or sewing. In this way, the cover can be quickly and easily removed, for example for cleaning.

The blades that are used with the struts and cables are preferably as illustrated in Figure 11 of the parent of the present application. The outer ends of the blade members are provided with plugs received in the ends of the tubular rods, and the blades may be interconnected to the struts and cables by means of suitable fasteners or by crimping.

The shape of the erected framework is partially
determined, and thus can be selected, by the number and
type of quad sections used as may be seen from the abovedescribed Figures and from FIGS. 10A-12E. FIGS. 10A-10F
show a structure having horizontal dimensions ten feet by
ten feet and being comprised of four quad sections 214.

Such a structure, if fabricated from aluminum tubes,
would weigh approximately thirty-five pounds. FIG. 10A
shows the structure from the side; FIGS. 10B and 10C show

the structure from the top and in perspective, respectively; FIGS. 10D and 10E show the collapsed structure from the side and top, respectively; and FIG. 10F shows the structure's framework, which as described above comprises four quad sections 216 and legs 220. Similarly, FIGS. 11A-11E show a structure having horizontal dimensions ten feet by twenty feet and being comprised of four quad sections 214 and four quad sections 216, and FIGS. 12A-12E show the structure 200 having horizontal dimensions fifteen feet by fifteen feet that was described above in connection with FIGS. 1A and 1B. These structures, if fabricated from aluminum, would advantageously weigh only seventy and eighty pounds, respectively.

In a preferred embodiment, the rods 232, 248, 254 are each approximately five feet in length, and the quad sections are interconnected to each other by sharing adjacent struts, hubs, and locking bars. The quad sections are maintained in a rigid, erected position by engagement of the locking bars 234 between the hubs 240. The center of the roof of the structure shown in FIGS. 1A and 1B is approximately twelve feet from the ground, and the legs are approximately seven feet in height, with the entire structure collapsing to a bundle approximately five feet in length and two feet in diameter.

It will be seen from FIGS. 10A-12E that the structures are conveniently comprised of repeating split-step and step scissor assemblies that have been described in the preceding Figures, and that a step scissor assembly in accordance with the present invention can achieve essentially any angle. Moreover, the length of the locking devices 234 is not limited by the length of the framework's legs, which can be deployed independently of deploying the canopy. These canopy structures are easily raised from the ground up and suffer minimal interference between the framework members and the included volume. In addition, the present structures are

30

35

pre-assembled and require no additional components, which could be misplaced.

FIGS. 13A-13D schematically illustrate the deployment steps for the canopy structure 200. structure 200 is shown without the cover 212 for purposes of illustration, although the cover would preferably be attached to the roof framework. As shown in Figure 13A, the structure 200 is a collapsed bundle of approximately five feet in length. The rods and legs are in a 10 substantially vertical position, with the hubs being at the upper and lower ends of the bundle. The collapsed framework is maintained as a bundle by use of suitable cord or rope, and a container (not shown) may be provided for facilitating the storage and transportation of the structure.

The four legs 220 are moved outward, as shown by the arrows in FIG. 13B, so that the telescoping members 238 of the split step scissor units snap into their extended positions. (Two of the legs 220 and other portions of the framework are not shown in FIGS. 13B-20 13D.) As shown in FIG. 13C, the framework is then expanded by pulling the structure outwardly and evenly along the ground as indicated by the arrows, thereby rotating the rods about the pivot joints 236, 238. Eventually, as is shown in FIG. 13C, the structure is 25 pulled to its outermost position, and the quad sections 214, 216, 218 are locked into position by connecting the locking devices 234 from the underside of the structure as indicated by the arrows. Preferably, the user first engages the locking bars in the central part of the 30 structure and then works outwardly in symmetric fashion until all of the locking bars are engaged. The locking bars maintain the quad sections in their erected positions so that the roof portion of the framework 210 is self-supporting. 35

If the legs 220 are telescopic, the roof portion of the framework may then be raised above the ground by expanding the telescoping legs to their snaplocked positions as indicated by the arrows shown in FIG.
13D. It is possible to raise the legs either separately
or simultaneously. When all of the legs have been
5 raised, the framework 210 (and the structure 200) assumes
the erected position illustrated. As a final step, the
support feet 266 may be secured to the ground by stakes.
It will be appreciated that the separate deployment of
the roof portion and legs of the structure, as well as
10 the separate deployment of each of the quad sections,
significantly simplifies the erection and collapse of the
canopy structure.

The foregoing description is intended in all senses to be illustrative rather than restrictive. Other embodiments of the invention will suggest themselves to those of ordinary skill in the art, and those embodiments that fall within the spirit and scope of the following claims are intended to be included therein.

10

15

20

WHAT IS CLAIMED IS:

1. A structural framework capable of being manipulated between a collapsed condition and an expanded, locked condition comprising:

a plurality of legs disposed generally in parallel with one another and in a bundle when the framework is in the collapsed condition; and

a plurality of collapsible quad sections, each quad section comprising

two split step scissor units, each split step scissor unit being joined at one end to a respective leg and comprising two arms that are pivotally joined, at least one of the arms being telescopic and including means for locking the arm at a predetermined length and

two step scissor units, each step scissor unit being joined at one end to the other end of a respective split step scissor unit and at its other end to the other step scissor unit, wherein each step scissor unit comprises two arms that are pivotally joined, at least one of the arms being telescopic and including means for locking the arm at a second predetermined length.

- 2. The framework of claim 1, further including a flexible canopy supported by the legs and quad sections.
- 3. The framework of claim 1, further including a plurality of tension cables joining ends of the legs and the scissor units.
 - 4. The framework of claim 1, wherein each leg is telescopic and includes means for locking the leg at a third predetermined length.
- 30 5. The framework of claim 1, further comprising a plurality of second collapsible quad sections interposed

between adjacent collapsible quad sections, each second quad section comprising

two step scissor units, each step scissor unit being a respective one of the step scissor units in the collapsible quad sections and

two flat scissor units, each flat scissor unit being joined at one end to a respective step scissor unit and at its other end to at least one other respective step scissor unit, wherein each flat scissor unit comprises two arms that are pivotally joined, at least one of the arms being telescopic and including means for locking the arm at a third predetermined length.

6. The framework of claim 5, further comprising a third collapsible quad section interposed between four adjacent second collapsible quad sections, each third quad section comprising four flat scissor units joined at their ends, each flat scissor unit also being joined at each end to two respective step scissor units.

AMENDED CLAIMS

[received by the International Bureau on 17 May 1993 (17.05.93); original claims 1,3,5 and 6 amended; new claims 7-10 added; remaining claims unchanged (2 pages)]

1. A structural framework capable of being manipulated between a collapsed condition and an expanded, locked condition comprising:

a plurality of legs disposed generally in parallel with one another and in a bundle when the framework is in the collapsed condition; and

a plurality of collapsible quad sections, each quad section comprising
two split step scissor units, each split step scissor unit being
pivotally fixed at one end to one of the plurality of legs and comprising two arms that are
pivotally joined, at least one of the arms of the split step scissor unit being collapsible and
including means for locking the collapsible arm of the split step scissor unit at a
predetermined length and

two step scissor units, each step scissor unit being joined at one end to a second end of a respective split step scissor unit, second ends of each step scissor unit being joined to each other, wherein each step scissor unit comprises two arms that are pivotally joined, at least one of the arms of the step scissor unit being collapsible and including means for locking the collapsible arm of the step scissor unit at a second predetermined length.

- 2. The framework of claim 1, further including a flexible canopy supported by the legs and quad sections.
- 3. The framework of claim 1, further including a tension cable joining an end of one of the plurality of legs and at least one of the split step scissor units.
- 4. The framework of claim 1, wherein each leg is telescopic and includes means for locking the leg at a third predetermined length.

5. The framework of claim 1, further comprising a plurality of second collapsible quad sections interposed between adjacent collapsible quad sections, each second quad section comprising

two step scissor units, each step scissor unit being one of the step scissor units in adjacent collapsible quad sections and

two flat scissor units, each flat scissor unit being joined at one end to a first one of the two step scissor units of the second quad section and, at a second end, to a second one of the two step scissor units of the second quad section, wherein each flat scissor unit comprises two arms that are pivotally joined, at least one of the arms of the flat scissor unit being collapsible and including means for locking the collapsible arm of the flat scissor unit at a third predetermined length.

- 6. The framework of claim 5, further comprising a third collapsible quad section interposed between four adjacent second collapsible quad sections, the third quad section comprising four flat scissor units joined at their ends, each flat scissor unit also being joined at each end to two respective step scissor units.
- 7. The framework of claim 1, further including a tension cable joining an end of one of the plurality of legs and at least one of the step scissor units.
- 8. The framework of claim 1, wherein the collapsible arm of the split step scissor unit is telescopic.
- 9. The framework of claim 1, wherein the collapsible arm of the step scissor unit is telescopic.
- 10. The framework of claim 5, wherein the collapsible arm of the flat scissor unit is telescopic.

STATEMENT UNDER ARTICLE 19

In complete response to the art cited in the International Search Report, applicant hereby amends the claims as set forth in the attached replacement pages 22-24.

By the present Amendment, claim 1 has been amended, at paragraph 4 thereof, to recite that each split scissor unit is "pivotally fixed at one end to one of the plurality of legs", rather than being "joined at one end to a respective leg". Further, in the same paragraph, claim 1 is amended to recite that at least one of the arms of the split step scissor unit is "collapsible", where it was previously recited that the arm was "telescopic". The other amendments to claims 1, 3, 5, and 6 are directed primarily to formal matters, such as deleting references to "respective" ones of scissor units and replacing those references with more precise language. Claims 2 and 4 are unchanged.

New claims 7-10 have been added. The new claims do not add new matter.

The documents that were cited in the International Search Report were all categorized as "Y" documents. It is respectfully submitted that the cited documents, whether taken alone or in combination with one another, neither disclose nor suggest all of the features or the combination of features of the claimed invention. For example, there is no disclosure or suggestion in any of the cited documents of a framework including a combination of features including split step scissor units such as are recited in claim 1.

The cited documents do not disclose a split step scissor unit that is pivotally fixed at one end to one of a plurality of legs. For example, while the member 30 of Carter is fixed to the leg, the member 32 is fixed to a leg slider 58 that slides up and down the leg when the shelter is opened or collapsed. Further, the cited documents do not disclose or suggest a collapsible arm of a split step scissor unit, including means for locking the collapsible arm of the split step scissor unit at a predetermined length.

The combination of features recited in claim 1 offers a variety of advantages. The framework of claim 1 offers advantages including a split step scissor unit pivotally fixed at one end to one of a plurality of legs. Further, the framework of claim 1 offers the advantage of a split step scissor unit including a collapsible arm of the split step scissor unit, including means for locking the collapsible arm of the split step scissor unit at a predetermined length. The foregoing advantages offer the further advantage of avoiding the need to provide sliding members for opening and collapsing a framework.

Similarly, as there is no disclosure in any of the cited documents of a split step scissor unit, it would not be obvious to one of ordinary skill in the art to provide a second step scissor unit between an end of a split step scissor unit and a step scissor unit. It is submitted that, only through the use of impermissible hindsight reconstruction based on the Applicant's own disclosure, would one of ordinary skill in the art be motivated to provide modifications to the shelters of the cited documents necessary to even approach the combination of features recited in claim 1.

For at least the foregoing reasons, it is submitted that claim 1 is patentably distinguishable over the cited documents. Claims 2-10, which depend from claim 1, are submitted to be patentable over the cited documents for at least the same reasons.

3NSDOCID: <WO 9313284A1>

SUBSTITUTE SHEET

FIG. 9

SUBSTITUTE SHEET

SUBSTITUTE SHEET

INTERNATION SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER								
IPC(5) :E04H: 15/50 US CL :52/646								
According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED								
Minimum documentation searched (classification system followed by classification symbols)								
U.S.: 1135/97,102,103,107,108,109,110,112,906,908; 52/80,81,109,646								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)								
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.					
Y	US,A, 4,779,635 (LYNCH) 25 Octob	1,2,4						
Y	US, A, 4,885,891 (LYNCH) 12 document.	1,2,4						
Y	US, A, 4,947,884 (LYNCH) 14 Augu 28.	3,4						
Y	US, A, 4,607,656 (CARTER) 26 Augu	1,2,4						
Y	US, A, 3,381,923 (BERRY) 07 May	1,2						
Further documents are listed in the continuation of Box C. See patent family annex.								
Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the								
	urness defining the general state of the art which is not considered e part of particular relevance	principle or theory underlying the inve	ntion					
	ier document published on or after the international filing date ament which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be consider when the document is taken alone	claimed invention cannot be ed to involve an inventive step					
	to establish the publication date of another citation or other intreason (as specified)	"Y" document of particular relevance; the	claimed invention cannot be					
O doct	nment referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	documents, such combination					
	ment published prior to the international filing date but later than priority date claimed	"&" document member of the same patent f	imily					
Oate of the a	ctual completion of the international search I 1993	Date of mailing of the international search report 1 7 MAR 1993						
Commission	ailing address of the ISA/US er of Patents and Trademarks	Authorized officer Ng who Ngueyen						
	1	MATTHEW LENO HOUSE NGOC-BO						
Facsimile No	. NOT APPLICABLE	Telephone No. (703) 305-7599						

Form PCT/ISA/210 (second sheet)(July 1992)*