7	(C) comparing the first and second locations to obtain an
8	indication of an amount of difference betyveen the first and second
9	locations; and
10	(D) determining whether the indication of the amount of
α (a) 11	difference exceeds a predetermined amount;
- M () 12	wherein steps (A)-(D) are performed by discrete logic circuitry;
13	and
14	wherein the discrete logic circuitry provides an event notification
15	to a microprocessor when the indidation of the amount of difference
16	exceeds the predetermined amount.
1	2. A method according to claim 1,
2	wherein the predetermine amount comprises a first
3	predetermined amount in an X-d/rection and a second predetermined
4	amount in a Y-direction;
5	wherein the determining step (A) comprises determining an
6	X-location and a Y-location of the first touch;
7	wherein the determining step (B) comprises determining an
8	X-location and a Y-location of the second touch;
, 9	wherein the comparing step (C) comprises determining a first
10	amount of difference between the X-location of the first touch and the
11	X-location of the second fouch, and determining a second amount of
12	difference between the $-$ location of the first touch and the Y-location of
13	the second touch; and
14	wherein the determining step (D) comprises comparing the first
15	amount of difference with the first predetermined amount and comparing
16	the second amount of difference with the second predetermined amount.
1	(3.) (Amended) A method of processing an input from a touch plane
2	operator-input device, comprising:
Ω_{2} 3	(A) determining a first location of a first touch on the touch
Cont 4	plane operator indut device, including determining an X-location and a
5	Y-location of the first touch, including

-2-

6	(1) acquiring a first plurality of data samples from the
7	touch plane operator input device,
8	\bigvee (2) calculating the X-location of the first touch by
9	determining an average X-location for the first plurality of data
10	samples, and
11	(3) calculating the Y-location of the first touch by
12	determining an average Y-location for the first plurality of data
13	samples;
14	(B) determining a second location of a second touch on the
15	touch plane operator input device, including determining an X-location
16	and a Y-location of the second touch, including
17	(1) acquiring a second plurality of data samples from
18	the touch plane operator input device,
19	(2) calculating the X-location of the second touch by
20	determining an average X-location for the second plurality of data
21	samples, and
22	(3) calculating the Y-location of the second touch by
23	determining an average Y-Idcation for the second plurality of data
24	samples;
25	(C) comparing the first and second locations to obtain an
26	indication of an amount of difference between the first and second
27	locations, including
28	(1) determining a first amount of difference between
29	the X-location of the first touch and the X-location of the second
30	touch, and
31	(2) determining a second amount of difference between
32	the Y-location of the first touch and the Y-location of the second
33	touch; and
34	(D) determining whether the indication of the amount of
35 all	difference exceeds a predetermined amount, the predetermined amount
36	comprising a first predetermined amount in an X-direction and a second
37	predetermined amount in a Y-direction, including comparing the first
38	amount of difference with the first predetermined amount and comparing
39	the second amount of difference with the second predetermined amount

CMT

40	wherein steps (A)-(D) are performed by discrete logic circuitry;
~ () ⁴¹	and
2 M 42	wherein the discrete logic circuitry provides an event notification
43	to a microprocessor when the indication of the amount of difference
44	exceeds the predetermined amount.
4	4. A method according to claim 1, further comprising displaying a
1	mouse pointer moving from the first location to the second location on a
2	
3	display.
1	5. (Amended) A method of processing an input from a touch plane
. 2	operator input device, comprising:
3	(A) determining a first location of a first touch on the touch
4	plane operator input device;
5	(B) determining a second location of a second touch on the
6	touch plane operator input device;
7	(C) comparing the first and second locations to obtain an
8	indication of an amount of difference between the first and second
(C)	locations; and
10	(D) determining whether the indication of the amount of
11	difference exceeds a predetermined amount;
12	wherein steps (A)-(D) are performed by discrete logic circuitry;
13	and
14	wherein the discrete legic circuitry provides an event notification
15	to a microprocessor when the indication of the amount of difference
16	exceeds the predetermined amount,
17	wherein the predetermined amount defines a perimeter of a region
18	that surrounds the first location, and wherein the determining step (D)
19	comprises determining whether the second location is outside the
20	perimeter.
1	6. (Amended) A method according claim 1, wherein steps (A)-(D)
1	6. (Amended) A method according claim 1, wherein steps (A)-(D) are performed under the control of a state machine implemented in the discrete
	logic circuitry.
3	logic circuitry.

1	7.	A met	hod of processing operator inputs to a touch plane operator
2	input device	to emu	late a hardware mouse, comprising:
3		(A)	displaying a mouse pointer at a first logation on a display;
4		(B)	receiving an operator touch indicative of a desired second
5	location	on for t	he mouse pointer on the display, the perator touch being
6	receiv	ed by a	a touch plane interface from a sensor/system of the touch
7	plane	operato	or input device;
8		(C)	comparing the first and second locations to obtain an
9	indica	tion of	an amount of mouse pointer movement; and
0		(D)	determining whether the indication of the amount of mouse
1	pointe	er move	ment exceeds a predetermined amount;
2		where	in the steps (B)-(D) are performed by discrete logic circuitry;
3		where	in the discrete logic circuitry provides an event notification
4	to a n	nicropro	ocessor when the indication of the amount of movement
5	excee	ds the	predetermined amount.
1	8.	A met	thod according to claim/7, wherein the touch plane operator
2	input device	forms a	at least part of an operator interface of an internet access
3	device.		
			, , , , , , , , , , , , , , , , , , ,
1	9.		hod according to daim 7, wherein the touch plane operator
2		torms a	at least part of an/operator interface of an industrial control
3	system.		
1	10.	A met	thod according to claim 7, wherein the touch plane interface
2	is located on	a syste	em-on-chip integrated circuit chip, wherein the
3	microprocess	or is lo	cated on the integrated circuit chip.
1	11.	A met	hod according to claim 7, wherein the touch plane operator
2	interface and	the dis	splay in combination comprise a touch screen.
1	12.	A met	hod according to claim 7, wherein the touch plane operator
2	interface con	nprises	a toych pad.

aft

13. (Amended) An integrated circuit comprising:

(A) microprocessor;

Atty. Dkt. No. 00AB007 (081696-0234)

3	(B) a touch screen interface, the touch screen interface being
4	adapted to interface the microprocessor to a touch screen; and
5	(C) a digital signal processor, the digital signal processor being
6	coupled between the touch screen interface and the microprocessor, the
7	digital signal processor being adapted to determine a location of a touch
8	on the touch screen, the digital signal processor including a comparator,
9	the comparator comparing a new location of a touch to a previous
10	location of a touch, and the digital signal processor issuing an event
11	notification to the microprocessor if an/indication of the difference
12	between the previous location and the new location exceeds a
13	predetermined amount.
1	14. (Amended) A device comprising:
2	(A) a touch screen, the touch screen including a touch screen
4 3	display and a touch screen sensor system; and
1 ₄	(B) an integrated circuit the integrated circuit including
5	(1) a microprocessor;
6	(2) a touch screen interface, the touch screen interface
7	being adapted to interface the microprocessor to the
8	touch screen; and
9	(3) a digital signal processor, the digital signal processor
10	being coupled between the touch screen interface
11	and the microprocessor, the digital signal processor
12	being adapted to determine a location of a touch on
13	the touch screen, the digital signal processor
14	including a comparator, the comparator comparing a
15	new/location of a touch to a previous location of a
16	touch, and the digital signal processor issuing an
17	event notification to the microprocessor if an
18	indication of the difference between the previous
19	cation and the new location exceeds a
20	predetermined amount.

all.

all

all

Please add the following new claims:

15. (New) A method according to claim 2, wherein the first
predetermined amount defines a perimeter of a region that surrounds the first
location, and wherein the perimeter is also defined by the second predetermined
amount, and wherein the determining step (D) comprises determining whether
the second location is outside the perimeter.

16. (New) A method according to claim 15, wherein the first predetermined amount defines the perimeter in a first dimension and the second predetermined amount defines the perimeter in a second dimension.

17. (New) A method according to claim 7, wherein the predetermined amount defines a perimeter of a region that surrounds the first location, wherein the determining step (D) comprises determining whether the second location is outside the perimeter, and wherein the event notification is provided responsive to the second location being outside the perimeter.

18. (New) An integrated circuit according to claim 13, wherein the predetermined amount defines a perimeter of a region that surrounds the first location, wherein the comparator determines whether the second location is outside the perimeter, and wherein the event notification is issued responsive to the second location being outside the perimeter.

19. (New) A device according to claim 14, wherein the predetermined amount defines a perimeter of a region that surrounds the first location, wherein the comparator determines whether the second location is outside the perimeter, and wherein the event notification is issued responsive to the second location being outside the perimeter.

20. (New) A method of processing data from a touch plane operator input device, comprising:

(A) determining a first location of a first touch on the touch plane operator input device;

05 cm[†] 1

2

3

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

-7-

5	(B) determining a second location of a second touch on the
6	touch plane operator input device;
7	(C) determining that the second location is outside a perimeter
8	of a region, the first location being inside the perimeter of the region; and
9	(D) issuing an event notification to the microprocessor in
10	response to determining that the second location s outside the perimeter
11	of the region;
12	wherein steps (A)-(D) are performed by digital signal processor
13	separate from the microprocessor.
1	21. (New) A method of processing data from an operator input
2	device, comprising:
3	(A) acquiring data from the operator input device relating to a
4	desired first location of the mouse pointer on the display;
5	(B) displaying a mouse pointer at a first location on a display;
6	(C) acquiring additional data from the operator input device;
7	(D) causing a microprocessor/to wait to process location data
8	from the operator input device until after the additional data is acquired,
9	such that the microprocessor does not process the additional data;
10	(E) after acquiring the add/tional data, acquiring further
11	additional data from the input device indicative of a second desired
12	position of the mouse pointer on the display, the second desired position
13	having a second location that is outside a perimeter of a region, the first
4	location of the first operator tough being inside the perimeter;
5	(F) providing the microprocessor with information relating to
6	the second location of the second touch;
7	(G) processing the information relating to the second location
8	of the second touch at the microprocessor;
9	(H) displaying the mouse pointer at the second location on the
20	display;
21	wherein the causing step (D) causes microprocessor overhead
2	required to process data from the operator input device to be reduced as

 $a5_{t}$

nel // all

-8-

microprocessor processed the additional data.

compared to the microprocessor overhead that would be required if the

23

1	22. (New) A method of processing data from a touch plane operator
2	input device, comprising:
3	(A) acquiring data from the touch plane operator input device
4	relating to a first touch on the touch screen
5	(B) determining a first location ϕ f the first touch on the touch
6	plane operator input device;
7	(C) acquiring additional data from the touch plane operator
8	input device;
9	(D) causing a microprocessor/to wait to process location data
10	from the touch plane operator input device until after the additional data
11	is acquired, such that the microprocessor does not process the additional
12	data;
13	(E) after acquiring the additional data, acquiring further
14	additional data from the touch plane operator input device relating to a
15	second touch on the touch screen, the second operator touch having a
16	second location that is outside a perimeter of a region, the first location
17	of the first operator touch being inside the perimeter;
18	(F) determining a sec∳nd location of the second touch on the
19	touch plane operator input devide; and
20	(G) providing the midroprocessor with information relating to
21	the second location of the second touch;
22	(H) processing the Information relating to the second location
23	of the second touch at the microprocessor;
24	wherein the causing step (D) causes microprocessor overhead
25	required to process data from the touch plane operator input device to be
26	reduced as compared to the microprocessor overhead that would be
27	required if the microprocessed the additional data.
1	23. (New) A method according to claim 21, wherein the first and
2	second operator touches are both part of a continuous series of touches that
3	occur as part of an operator t ϕ uch trajectory that extends from a first region of

.

all

the touch plane operator input device to a second region of the touch plane

4

operator input device.