## Intro To Computer Vision Using OpenCV

**Evan Stoddart** 

03/24/2018





#### **About Me**

#### **Evan Stoddart**

ADAS Subteam Leader

OSU EcoCAR 3

Graduate Research Assistant

OSU Center For Automotive Research

#### *Hometown*:

Pittsburgh, PA

<u>Major</u>:

Electrical and

Computer Engineering

<u>Year</u>:

4<sup>th</sup> Year BS, 1<sup>st</sup> Year MS

Internships:

Hewlett Packard, STERIS Corporation, Bosch

*Interests:* 

robotics, cars, and medical devices





## What is Computer Vision?





"Computer Vision (CV) is an interdisciplinary field that deals with how computers can be made for gaining high-level understanding from digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human visual system can do"

- Wikipedia

### How do We Automate Tasks using CV?



#### How do We Automate Tasks using CV?

The automation strategy depends on what data we want to find in the image.

- Kernels
  - Math used behind the scenes.
- Image Processing
  - Basic operations on images
  - Crop images to gather a Region of Interest (ROI)
  - · Adjust image for contrast, color space
- Object Detection/Classification
  - Search for an object in the image
  - Pattern Recognition
  - Machine Learning
  - Deep Learning
- Post Processing
  - Collect information about the object
  - Filter Noise from Data
  - Area of Object
  - Position of Object
  - Color of Object



Original Color Image



#### Kernels: The Basic Math used in CV

- Kernels
  - Smaller matrix that mathematically describes the desired operation
- Convolution (Sliding Window)
- When you use Photoshop, this is the math that is happening behind the scenes!
- Used in many CV algorithms for pre processing, object detection, filters and more!

| 1,  | 1,0 | 1,  | 0 | 0 |
|-----|-----|-----|---|---|
| 0,0 | 1,  | 1,0 | 1 | 0 |
| 0,  | 0,0 | 1,  | 1 | 1 |
| 0   | 0   | 1   | 1 | 0 |
| 0   | 1   | 1   | 0 | 0 |

4

Image

Convolved Feature

| Operation      | Kernel                                                                      | Image result |
|----------------|-----------------------------------------------------------------------------|--------------|
| Identity       | $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$         |              |
| Edge detection | $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$       |              |
|                | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$        |              |
|                | $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ |              |
| Sharpen        | $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$     |              |

### Image Processing

- Crop
- Change color space
  - Grayscale
  - HSV
  - RGB
- Filters
  - Gaussian Blur
- Morphological Operations
  - Dilation grow image regions
  - Erosion shrink image regions
  - Opening structured removal of image region boundary pixels
  - Closing structured filling in of image region boundary pixels



### Object Detection/Classification

Single object

Classification Instance **Object Detection** Classification + Localization **Segmentation** CAT, DOG, DUCK CAT CAT CAT, DOG, DUCK

Multiple objects

#### Pattern Recognition

- Pattern recognition was a term popular in the 70s and 80s.
- Getting a computer program to do something "smart" like recognize the character "3" in an image
  - Algorithms are manually coded by programmer
    - Tedious
    - Not robust
  - "Learning" is not performed by the computer
- Examples:
  - Color Thresholding/Masking
  - Edge Detection



#### Machine Learning

- Sometime in the early 90s people started realizing that a more powerful way to build pattern recognition algorithms is to replace an expert with data.
- Collect data (ex. a bunch of face images and non-face images), choose an algorithm, and wait for the computations "training" to finish.
- "Machine Learning" emphasizes that the computer program (or machine) must do some work to "learn" after it is given data.
- Example Algorithms:
  - Haar Features
  - HOG (Histogram of Gradients)
  - Easy to use in OpenCV,
    all you need is data! More on this later...



#### Deep Learning

- Similar to Machine Learning in that the computer "learns" from exposure to training data
- Except, Deep Learning programs learn not only the data, but <u>developed</u> its own algorithm to optimize finding the data within an input image
- Deep Learning is built on Convolutional Neural Networks
  - AlexNet
    - Used in the ImageNet Large Scale Visual Recognition Challenge in 2012.
    - The network achieved a top-5 error of 15.3%, more than 10.8 percentage points ahead of the runner up.
  - Inception
    - Modern network
    - trained on more than a million images and can classify images into 1000 object categories
- Mathematically, Deep Learning is hard, use a Deep Learning Frameworks to make it easier
  - Caffe from University of California at Berkeley
  - TensorFlow from Google
  - PyTorch/Torch
- Deep Learning is computationally expensive
  - Use GPU to run the algorithm in parallel



#### Post Processing

- Filters
  - Object detection isn't always perfect → noise
  - Filters are used to remove unwanted data
  - Examples: Temporal (Heat Map)
- Tracking
  - Persistently track an object as it moved about the screen, image by image, in a video
- Physical Traits
  - Obtain information from image objects
  - Size of object
  - Position of object in space
    - Depth estimation



#### 

Ν

Ρ

total

#### How do We Automate Tasks using CV?

 In theory, implementing CV algorithms into a program can be mathematical and convoluted (no pun intended)

- In practice, libraries exist which abstract the math to provide the desired functionality.
  - More often than not, the function you need is built into a library
  - All you need is a basic understanding of the function, enough to enter parameters needed for your application



## What is OpenCV?



#### What is OpenCV?

- OpenCV is a widely used open-source computer vision framework
  - Over 14 million downloads
  - Library available in C++ and Python
  - Compatible with Tensorflow, Torch/PyTorch, and Caffe Deep Learning Frameworks
  - Open source anyone can use, edit, contribute to the library
  - First released in 1999 by Intel Corporation
  - Website: Opencv.org



#### **Example Functions**

- Using Python
- Image Preprocessing
  - Crop
  - Change colorspace (grayscale)
- Pattern Recognition
  - Color thresholding
- Machine Learning
  - Haar Classifier
- Post Processing
  - Temporal Filter
  - Overlaying Image

#### What to do if you get stuck

- Forums & Online Resources
  - Stackoverflow
  - pyimagesearch.com
  - OpenCV.org
  - Other application specific forums and websites

- Useful tips for Google searching
  - OpenCV syntax varies by version(popular versions are 2.4, 3.0, 3.3)
  - When searching, specify the version you are using as well as the language (Python/C++)
    - Include the function you are interested in
    - Include an error code if one was printed by your program
    - Example:
      - OpenCV 2.14 Python 2.7 ImportError: DLL load failed: %1 is not a valid Win32 application



## Computer Vision Applications



### **CV** Applications

- Robotics
- Medical Devices
- Automotive
- ...the list goes on!





#### Classification: skin cancer detection

Images organized in a tree taxonomy of 2032 diseases (by medical experts)

CNN trained **757** disease classes: a disease partitioning algorithm to generate classes clinically and visually similar





# EcoCAR ADAS Applications



### EcoCAR ADAS Applications

- Advanced Driver Assistance Systems (ADAS)
  - Forward Collision Warning
  - Lane Departure Warning
  - Park assist
  - Adaptive cruise control
- We can use cameras with Computer Vision as well as other sensors like Radar and LiDAR to develop this functionality





#### Pattern Recognition

- Color thresholding:
  - An image is just a matrix of values where each value represents a color.
  - We can use computer algorithms to show the colors we want to see and "mask" those that we don't by selecting corresponding ranges of these values.
  - ADAS application: detect the color red to produce a stop sign detector.



#### Pattern Recognition

- Canny edge detector + Hough transforms:
  - We can use computer algorithms to highlight edges (i.e. areas in the image with large changes in color/pixel value) Canny edge detector.
  - After detecting edges, we can determine which edges belong to lines using Hough transforms.
  - ADAS application: detect lines on the road to produce a lane detector/lane departure warning system.



### **Object Detection**











### QUESTIONS?

