Сьогодні 27.05.2024

Урок № 171

Знаходження найбільшого спільного дільника (НСД) і найменшого спільного кратного (НСК) двох (кількох) чисел в межах тисячі

Повідомлення теми уроку та мотивація навчально-пізнавальної діяльності учнів

Мета уроку:

повторити, узагальнити і систематизувати знання з тем: знаходження найбільшого спільного дільника (НСД) і найменшого спільного кратного (НСК) двох (кількох) чисел в межах тисячі. Закріпити вміння, застосовувати набуті знання у практичній діяльності.

Поняття про найбільший спільний дільник

най Найбільшим спільним дільником кількох натуральних чисе чисел називають найбільше натуральне нисло, на яке діли ділиться кожне з цих чисел.

Найбільший спільний дільник чисел a і b позначають так: НСД (a; b).

Наприклад, можна записати, що НСД (32; 24) = 8

Найбільший спільний дільник кількох чисел дорівнює добутку спільних простих множників розкладу щих чисел

Задача 1. Знайти НСД (630; 1470).

Розв'язання. Розкладемо числа 630 і 1470 на прості множники і підкреслимо ті з них, які є спільними в обох розкладах:

$$630 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 7;$$

$$1470 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 7$$
.

Отже, НСД (630; 1470) = $2 \cdot 3 \cdot 5 \cdot 7 = 210$.

Відповідь: 210.

6	30	2	
3	15		
1	05	3	
	35	5	
	7	7	
	1		

14	70	2	
7	35	3	
2	45		
	49		
	7	7	
	1		

Найбільший спільний дільник кількох чисел дорівнює добутку спільних простих множників розкладу цих чисел

Задача 2. Знайти НСД (60; 140; 220).

Розв'язання.

Maemo: $60 = 2 \cdot 2 \cdot 3 \cdot 5$; $140 = 2 \cdot 2 \cdot 5 \cdot 7$;

 $220 = 2 \cdot 2 \cdot 5 \cdot 11.$

Отже, НСД (60; 140; 220) = $2 \cdot 2 \cdot 5 = 20$.

Відповідь: 20

Щоб знайти найбільший спільний дільник кількох чисел, достатньо:

- 1) Розкласти ці числа на множники.
- 2) Виписати всі спільні прості множники у знайдених розкладах і обчислити їх добуток.

Задача 3. Знайти НСД (8; 64; 320).

Розв'язання. Оскільки числа 64 і 320 діляться на 8, то НСД (8; 64; 320) = 8. Відповідь: 8.

Якщо серед даних чисел є дільник усіх інших з даних чисел, то він і буде найбільшим спільним дільником цих чисел. Якщо розклади чисел на прості множники не мають спільних множників, то найбільшим спільним дільником цих чисел є число 1

Поняття про взаємно прості числа

Два Два натуральні нислає найбільший спільний дільник яких яких дорівнює 1, називаються взаємно простими числами.

Наприклад, числа 12 і 35— взаємно прості, адже НСД (12; 35) = 1. Числа ж 15 і 18 не є взаємно простими, бо мають спільний дільник— число 3.

Поняття про найменше спільне кратне

Найменшим спільним кратним кількох натуральних чисел називають найменше натуральне число, яке ділиться на кожне з цих чисел.

Найменше спільне кратне чисел a i b позначають так:

HCK (a; b). Наприклад, HCK (4; 6) = 12

Задача 1. Знайти НСК (30; 36).

Розв'язання. Розкладемо числа на прості множники:

$$30 = 2 \cdot 3 \cdot 5$$
 і $36 = 2 \cdot 2 \cdot 3 \cdot 3$. Їх НСК має ділитися і на 30 , і на 36 , тому має бути добутком усіх простих множників і першого, і другого чисел. Розглянемо розклад одного із цих чисел, наприклад $30 = 2 \cdot 3 \cdot 5$, і з'ясуємо, яких простих множників другого числа в цьому розкладі немає. Це множники 2 і 3 , бо 172 в розкладі $30 = 2 \cdot 3 \cdot 5$ є один множник 2 і один множник 3 , а в розкладі $36 = 2 \cdot 2 \cdot 3 \cdot 3$ два множники 2 і два множники 3 . Отже, щоб знайти НСК (30 ; 36), треба розклад $30 = 2 \cdot 3 \cdot 5$ доповнити множниками 3 і 3 0, яких не вистачає. Маємо: НСК (30 ; 36) 36 0 36 1 36 2 36 3 36 3 36 4 36 5 36 9

Правило знаходження НСК двох чисел

Щоб знайти найменше спільне кратне двох чисел достатньо:

- 1) розкласти ці числа на прості множники;
- 2) доповнити розклад одного з них тими множниками другого числа, яких не вистачає в розкладі першого;
- 3) обчислити добуток знайдених множників.

За цим правилом можна знайти найменше спільне кратне трьох і більше чисел. Тоді розклад на прості множники одного із цих чисел треба доповнити тими простими множниками інших чисел, яких не вистачає в його розкладі, та обчислити добуток знайдених множників

Задача 2. Знайти НСК (42; 66; 90).

Розв'язання. Розкладемо числа 42, 66, 90 на прості множники.

Maemo: $42 = 2 \cdot 3 \cdot 7$; $66 = 2 \cdot 3 \cdot 11$; $90 = 2 \cdot 3 \cdot 3 \cdot 5$.

HCK $(42; 66; 90) = 2 \cdot 3 \cdot 7 \cdot 11 \cdot 3 \cdot 5 = 6930$.

Якщо найбільше з даних чисел ділиться на всі інші, то воно і є їх найменшим спільним кратним

Задача 3. Знайти НСК (6; 9; 36). **Розв'язання**. Оскільки число 36 ділиться і на 6, і на 9, то НСК (6; 9; 36) = 36

Найменшим спільним кратним двох взаємно простих чисел є добуток цих чисел. Наприклад, НСК (5; 8) = $5 \cdot 8 = 40$.

Підсумок уроку. Усне опитування

- 2. Чому дорівнює НСК і НСД двох:
- а) взаємно простих чисел;
- б) чисел, одне з яких ділиться на інше?

Домашне завдання

Завдання № 1.

Знайдіть НСК(15, 20, 12); Знайдіть НСД (144,120).

Домашне завдання

Завдання № 2.

Марися купила в магазині яйця і поклала їх в невеликий кошик. Дорогою вона збагнула, що кількість яєць ділиться на 2 і 3, і 5, і 10 і 15. скільки яєць купила Марися? Чи правильним буде розв'язання: $2 \cdot 3 \cdot 5 \cdot 10 \cdot 15 = 4500$ яєць? Як правильно розв'язати задачу?

