EEE5015: Machine Learning & Artificial Intelligence

Zhiyun Lin

Outline

- 1 Introduction
- 2 Policy Evaluation
- 3 Policy Iteration
- 4 Value Iteration
- 5 Extensions to Dynamic Programming
- 6 Contraction Mapping

What is Dynamic Programming?

Dynamic sequential or temporal component to the problem Programming optimising a "program", i.e. a policy

- c.f. linear programming
- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
- Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused
- Markov decision processes satisfy both properties
 - Bellman equation gives recursive decomposition
 - Value function stores and reuses solutions

Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP
- It is used for planning in an MDP
- For prediction:
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$ and policy π
 - or: MRP $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - Output: value function v_{π}
- Or for control:
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - lacksquare Output: optimal value function v_*
 - and: optimal policy π_*

Other Applications of Dynamic Programming

Dynamic programming is used to solve many other problems, e.g.

- Scheduling algorithms
- String algorithms (e.g. sequence alignment)
- Graph algorithms (e.g. shortest path algorithms)
- Graphical models (e.g. Viterbi algorithm)
- Bioinformatics (e.g. lattice models)

L Iterative Policy Evaluation

Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- \blacksquare $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\pi}$
- Using synchronous backups,
 - At each iteration k+1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - where s' is a successor state of s
- We will discuss *asynchronous* backups later
- lacktriangle Convergence to v_{π} will be proven at the end of the lecture

LIterative Policy Evaluation

Iterative Policy Evaluation (2)

$$\mathcal{P}^{\pi}_{s,s'} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'}$$
 $\mathcal{R}^{\pi}_{s} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}^{a}_{s}$

$$egin{aligned} v_{k+1}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}^{k+1} &= \mathcal{R}^{m{\pi}} + \gamma \mathcal{P}^{m{\pi}} \mathbf{v}^k \end{aligned}$$

Example: Small Gridworld

Evaluating a Random Policy in the Small Gridworld

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$r = -1$$
 on all transitions

- Undiscounted episodic MDP $(\gamma = 1)$
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- \blacksquare Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

LExample: Small Gridworld

Iterative Policy Evaluation in Small Gridworld

 v_k for the Random Policy

Greedy Policy w.r.t. v_k

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

random policy

k = 1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

-1.75 = 0.25 * (-1+0) + 0.25 * (-1-1) + 0.25 * (-1-1) + 0.25 * (-1-1) + 0.25 * (-1-1) + 0.25 * (-1-1) + 0.25 * (-1-1) + 0.25 * (-1-1) + 0.25 * (-1-1)

Example: Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

1,	_	2
ĸ	_	_

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

k	=	∞

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

How to Improve a Policy

- lacksquare Given a policy π
 - **Evaluate** the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

• Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \mathsf{greedy}(v_\pi)$$

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to $\pi*$

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Policy Improvement

- lacksquare Consider a deterministic policy, $a=\pi(s)$
- We can improve the policy by acting greedily

$$\pi'(s) = \operatorname*{argmax} q_{\pi}(s, a)$$
 $a \in \mathcal{A}$

This improves the value from any state s over one step,

$$q_{\pi}(s,\pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s,a) \geq q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

It therefore improves the value function, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$egin{aligned} & v_{\pi}(s) \leq q_{\pi}(s,\pi'(s)) = \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s
ight] \ & \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma q_{\pi}(S_{t+1},\pi'(S_{t+1})) \mid S_{t} = s
ight] \ & \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi}(S_{t+2},\pi'(S_{t+2})) \mid S_{t} = s
ight] \ & \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + \dots \mid S_{t} = s
ight] = v_{\pi'}(s) \end{aligned}$$

Policy Improvement

Policy Improvement (2)

If improvements stop,

$$q_{\pi}(s,\pi'(s)) = \max_{a\in\mathcal{A}} q_{\pi}(s,a) = q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

- lacksquare Therefore $v_\pi(s)=v_*(s)$ for all $s\in\mathcal{S}$
- lacksquare so π is an optimal policy

-Policy Iteration

Extensions to Policy Iteration

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - \blacksquare e.g. ϵ -convergence of value function
- \blacksquare Or simply stop after k iterations of iterative policy evaluation?
- For example, in the small gridworld k=3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k=1
 - This is equivalent to *value iteration* (next section)

-Policy Iteration

—Extensions to Policy Iteration

Generalised Policy Iteration

Policy evaluation Estimate v_{π} Any policy evaluation algorithm

Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

-Value Iteration

└─Value Iteration in MDPs

Principle of Optimality

Any optimal policy can be subdivided into two components:

- \blacksquare An optimal first action A_*
- \blacksquare Followed by an optimal policy from successor state S'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if

- For any state s' reachable from s
- lacktriangledown π achieves the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

└─Value Iteration in MDPs

Deterministic Value Iteration

- If we know the solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards
- Still works with loopy, stochastic MDPs

└─Value Iteration

Value Iteration in MDPs

Example: Shortest Path

Prol	oler	n

 V_1

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1

 V_2

0 -1 -2	-2
-1 -2 -2	-2
-2 -2 -2	-2
-2 -2 -2	-2

 V_3

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

$$V_5$$

$$V_6$$

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	- 5
-3	-4	-5	-6

 V_7

-Value Iteration

└─ Value Iteration in MDPs

Value Iteration

- Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $ule{} v_1
 ightarrow v_2
 ightarrow ...
 ightarrow v_*$
- Using synchronous backups
 - At each iteration k+1
 - For all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- \blacksquare Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

-Value Iteration

└─Value Iteration in MDPs

Value Iteration (2)

$$v_{k+1}(s) \longleftrightarrow s$$

$$v_k(s') \longleftrightarrow s' \bigcirc$$

$$egin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \ \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm	
Prediction	Bellman Expectation Equation	Iterative	
		Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
	+ Greedy Policy Improvement		
Control	Bellman Optimality Equation	Value Iteration	

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- lacksquare Could also apply to action-value function $q_\pi(s,a)$ or $q_*(s,a)$
- Complexity $O(m^2n^2)$ per iteration

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[r(s,a) + \gamma \sum_{s'} p(s'|s,a) v_{\pi}(s') \right], \quad s \in \mathcal{S}$$

$$v_*(s) = \max_{\alpha \in \mathcal{A}} \left[r(s,\alpha) + \gamma \sum_{s'} p(s',r \mid s,\alpha) v_*(s') \right], \quad s \in \mathcal{S}$$

L Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

- DP methods described so far used *synchronous* backups
- i.e. all states are backed up in parallel
- Asynchronous DP backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

- In-place dynamic programming
- Prioritised sweeping
- Real-time dynamic programming

Asynchronous Dynamic Programming

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function for all s in \mathcal{S}

$$V_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_{old}(s') \right)$$

$$V_{old} \leftarrow V_{new}$$

In-place value iteration only stores one copy of value function for all s in \mathcal{S}

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right)$$

Asynchronous Dynamic Programming

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right) - v(s) \right|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

L Asynchronous Dynamic Programming

Real-Time Dynamic Programming

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t , A_t , R_{t+1}
- lacksquare Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s') \right)$$

Full-width and sample backups

Full-Width Backups

- DP uses *full-width* backups
- For each backup (sync or async)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
 - Number of states n = |S| grows exponentially with number of state variables
- Even one backup can be too expensive

Full-width and sample backups

Sample Backups

- In subsequent lectures we will consider *sample backups*
- Using sample rewards and sample transitions $\langle S, A, R, S' \rangle$

- Advantages:
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - Cost of backup is constant, independent of n = |S|

Approximate Dynamic Programming

Approximate Dynamic Programming

- Approximate the value function
- Using a function approximator $\hat{v}(s, \mathbf{w})$
- Apply dynamic programming to $\hat{v}(\cdot, \mathbf{w})$
- \blacksquare e.g. Fitted Value Iteration repeats at each iteration k,
 - lacksquare Sample states $ilde{\mathcal{S}}\subseteq\mathcal{S}$
 - For each state $s \in \tilde{S}$, estimate target value using Bellman optimality equation,

$$ilde{v}_k(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \hat{v}(s', \mathbf{w_k}) \right)$$

■ Train next value function $\hat{v}(\cdot, \mathbf{w_{k+1}})$ using targets $\{\langle s, \tilde{v}_k(s) \rangle\}$

Some Technical Questions

- How do we know that value iteration converges to v_* ?
- Or that iterative policy evaluation converges to v_{π} ?
- And therefore that policy iteration converges to v_* ?
- Is the solution unique?
- How fast do these algorithms converge?
- These questions are resolved by *contraction mapping theorem*

Value Function Space

- lacktriangle Consider the vector space ${\cal V}$ over value functions
- There are |S| dimensions
- Each point in this space fully specifies a value function v(s)
- What does a Bellman backup do to points in this space?
- We will show that it brings value functions *closer*
- And therefore the backups must converge on a unique solution

Value Function ∞-Norm

- We will measure distance between state-value functions u and v by the ∞ -norm
- i.e. the largest difference between state values,

$$||u-v||_{\infty} = \max_{s \in \mathcal{S}} |u(s)-v(s)|$$

Bellman Expectation Backup is a Contraction

lacktriangle Define the Bellman expectation backup operator T^{π} ,

$$T^{\pi}(\mathbf{v}) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}$$

■ This operator is a γ -contraction, i.e. it makes value functions closer by at least γ ,

$$||T^{\pi}(u) - T^{\pi}(v)||_{\infty} = ||(\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} u) - (\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v)||_{\infty}$$

$$= ||\gamma \mathcal{P}^{\pi}(u - v)||_{\infty}$$

$$\leq ||\gamma \mathcal{P}^{\pi}||u - v||_{\infty}||_{\infty}$$

$$\leq \gamma ||u - v||_{\infty}$$

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an operator T(v), where T is a γ -contraction,

- T converges to a unique fixed point
- lacksquare At a linear convergence rate of γ

Contraction Mapping

Convergence of Iter. Policy Evaluation and Policy Iteration

- The Bellman expectation operator T^{π} has a unique fixed point
- \mathbf{v}_{π} is a fixed point of T^{π} (by Bellman expectation equation)
- By contraction mapping theorem
- Iterative policy evaluation converges on v_{π}
- Policy iteration converges on v_*

Bellman Optimality Backup is a Contraction

■ Define the Bellman optimality backup operator T^* ,

$$T^*(v) = \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a v$$

■ This operator is a γ -contraction, i.e. it makes value functions closer by at least γ (similar to previous proof)

$$||T^*(u) - T^*(v)||_{\infty} \le \gamma ||u - v||_{\infty}$$

—Contraction Mapping

Convergence of Value Iteration

- \blacksquare The Bellman optimality operator T^* has a unique fixed point
- \mathbf{v}_* is a fixed point of T^* (by Bellman optimality equation)
- By contraction mapping theorem
- Value iteration converges on v_*