Panel Data

EC 421, Set 12

Luciana Etcheverry November 26, 2019

Prologue

Schedule

Last Time

Instrumental variables and causality

Today

Panel data

Upcoming

- Assignment due Tomorrow
- Office hours:
 - Today: 3-4pm
 - Wednesday: 10-12pm
- Practice Final

Intro

Intro

We've considered two types of data (each with one dimension):

Panel data combine these data types/dimensions: individual i at time t.

Panel data combine these data types/dimensions: individual i at time t.

Definition

With *panel data*, we have

- repeated observations (t)
- on multiple indiviuals (i).

#>		state	year	poverty_rate	min_wage
#>	1	CA	1990	13.9	4.25
#>	2	CA	2000	12.7	6.25
#>	3	CA	2010	16.3	8.00
#>	4	OR	1990	9.2	4.25
#>	5	OR	2000	10.9	6.50
#>	6	OR	2010	14.2	8.40
#>	7	WA	1990	8.9	4.25
#>	8	WA	2000	10.8	6.50
#>	9	WA	2010	11.5	8.55

Thus, our regression equation with a panel dataset looks like

$$y_{it} = eta_0 + eta_1 x_{it} + u_{it}$$

for individual *i* in time *t*.

Example

Minimum-wage laws involve many contentious/important policy questions.

- Do minimum-wage laws increase well-being for minimum-wage earners and their families?
- Do minimum-wage laws increase unemployment?
- Overall, do minimum-wage laws decrease poverty?

We want to know the causal effect of the minimum wage, i.e., β_1 in

$$(\text{Poverty Rate})_{it} = \beta_0 + \beta_1 (\text{Min. Wage})_{it} + u_{it}$$

where *i* denotes state and *t* indexes year.

Example

If we go ahead and run OLS in our panel, we find

OLS w/ outcome variable 'poverty rate'

Term	Est.	S.E.	t stat.	p-Value
Intercept	14.196	0.283	50.21	<0.0001
Min. Wage	-0.203	0.051	-3.99	<0.0001

which suggests that a one-dollar increase in the minimum wage significantly *reduces* poverty by approximately 0.203 percentage points.

Surprising?

Example: Causality is still hard

To isolate the causal effect of minimum wage on poverty in

$$(\text{Poverty Rate})_{it} = \beta_0 + \beta_1 (\text{Min. Wage})_{it} + u_{it}$$

We still need exogeneity, i.e., $\boldsymbol{E}[u_{it} \mid (\text{Min. Wage})] = 0$.

Exogeneity with panel data: Are there omitted factors that affect both a state's minimum wage *and* its poverty rate?

We are going to discuss two common panel-data strategies:

- 1. Fixed effects
- 2. First differences

Fixed effects

Fixed effects are binary indicator variables that *help* control for unobserved differences across individuals or time periods.

For example, we can include a **fixed effect for each individual state** *i* to control for unobserved, time-invariant differences between states:

$$(Poverty Rate)_{it} = \beta_0 + \beta_1 (Min. Wage)_{it} + State_i + u_{it}$$

#>		state	year	poverty_rate	min_wage	fe_ca	fe_or	fe_wa
#>	1	CA	2000	12.7	6.25	1	0	0
#>	2	CA	2010	16.3	8.00	1	0	0
#>	3	OR	2000	10.9	6.50	0	1	0
#>	4	OR	2010	14.2	8.40	0	1	0
#>	5	WA	2000	10.8	6.50	0	0	1
#>	6	WA	2010	11.5	8.55	0	0	1

Fixed effects

Notice that these individual fixed effects are just individual-specific intercepts—now each unit/individual gets her own intercept.

Q: What are these individual-level fixed effects (FEs) doing?

A₁: They remove each individual's mean, *i.e.*, $y_{it} - \overline{y}_i$ and $x_{it} - \overline{x}_i$.

A₂: They control for unobserved, time-invariant differences between units.[†]

† By time-invariance differences we mean differences between individuals that do not change over time.

In the raw data (no fixed effects/demeaning), individuals differ in levels.

Individual-fixed effects remove individuals' means.

Fixed effects

Fixed effects are one method econometricians try to "match" individuals to generate a valid control group for our treated individuals.

Toward this goal, we include fixed effects for each time period t, to (attempt to) control for shocks that affected all observations.

$$(\text{Poverty Rate})_{it} = \beta_0 + \beta_1 (\text{Min. Wage})_{it} + \frac{\text{State}_i}{\text{State}_i} + \frac{\text{Year}_t}{\text{Vear}_t} + u_{it}$$

#>		state	year	poverty_	rate	min_wage	fe_ca	fe_or	fe_wa	fe_2000	fe_2010
#>	1	CA	2000		12.7	6.25	1	0	0	1	0
#>	2	CA	2010		16.3	8.00	1	0	0	0	1
#>	3	OR	2000		10.9	6.50	0	1	0	1	0
#>	4	OR	2010		14.2	8.40	0	1	0	0	1
#>	5	WA	2000		10.8	6.50	0	0	1	1	0
#>	6	WA	2010		11.5	8.55	0	0	1	0	1

Fixed-effects estimation in R

R makes estimation with fixed-effects really easy.

As always, you have options.

We're going to use the felm() function from the lfe package.

General notation:

```
felm(y \sim x1 + x2 + \cdots \mid fe1 + fe2 \cdots, data = some_data)
```

Our example:

```
felm(poverty_rate ~ min_wage | state + year, data = panel_df)
```

Fixed-effects estimation in R

```
felm(poverty_rate ~ min_wage | state + year, data = panel_df)
```

Fixed effects w/ outcome variable 'poverty rate'

Term	Est.	S.E.	t stat.	p-Value
Min. Wage	0.374	0.109	3.43	0.0006

lm(poverty_rate ~ min_wage, data = panel_df)

OLS w/ outcome variable 'poverty rate'

Term	Est.	S.E.	t stat.	p-Value
Intercept	14.196	0.283	50.21	<0.0001
Min. Wage	-0.203	0.051	-3.99	<0.0001

Fixed-effects estimation in R

Q: Which set of estimates should we believe?

A: The set that you believe meets our exogeneity requirement.

First differences

Another route—related to our time-series studies—uses first differences.

The **first difference** for variable y is the difference between individual i's current value of y (i.e., $y_{i,t}$) and his previous (lagged) value of y (i.e., $y_{i,t-1}$).

We write the first difference as

$$\Delta y_{it} = y_{i,t} - y_{i,t-1}$$

First differences

From our example, write the model for t and t-1

$$(\text{Poverty Rate})_{i,t} = \beta_0 + \beta_1 (\text{Min. Wage})_{i,t} + u_{i,t}$$
 (t)

$$(\text{Poverty Rate})_{i,t-1} = \beta_0 + \beta_1 (\text{Min. Wage})_{i,t-1} + u_{i,t-1} \qquad \text{(t-1)}$$

taking the difference between (t) and (t-1) gives

$$egin{aligned} \left(ext{Poverty Rate}
ight)_{i,t} - \left(ext{Poverty Rate}
ight)_{i,t-1} &= \\ eta_0 - eta_0 + eta_1 (ext{Min. Wage})_{i,t} - eta_1 (ext{Min. Wage})_{i,t-1} + u_{i,t} - u_{i,t-1} \end{aligned}$$

which implies

$$\Delta (ext{Poverty Rate})_{i,t} = eta_1 \Delta (ext{Min. Wage})_{i,t} + \Delta u_{i,t}$$

First differences

Estimating our model via first differences gives us the results

First diff. w/ outcome variable 'poverty rate'

Term	Est.	S.E.	t stat.	p-Value
Intercept	-0.064	0.047	-1.34	0.1811
Min. Wage	0.221	0.157	1.41	0.1584

Fixed effects w/ outcome variable 'poverty rate'

Term	Est.	S.E.	t stat.	p-Value
Min. Wage	0.374	0.109	3.43	0.0006

OLS w/ outcome variable 'poverty rate'

Term	Est.	S.E.	t stat.	p-Value
Intercept	14.196	0.283	50.21	<0.0001
Min. Wage	-0.203	0.051	-3.99	<0.0001

Q: Conclusions?

A: Models (and their requirements) can *really* affect your results

Q: Comparing FE and FD: Which one should you choose?

A:

- If there is no serial correlation in the error term, we know FE is BLUE, so that is the clear choice. Alternatively, suppose the residual follows a random walk. Now, FD is much better because it eliminates the autocorrelation. In between these two extremes, it is difficult to know which is more efficient.
- When the time span is long, the assumption that individual's FE is not time-varying becomes an untenable assumption. In this case, both FE and FD will yield biased estimates and the estimates from the two methods will tend to diverge.

Table of contents

Admin

- 1. Schedule
- 2. Final info

Panel data

- 1. Introduction
- 2. Definition
- 3. Example: Minimum wage
- 4. Fixed effects
- 5. Fixed effects in R
- 6. First differences