Chapter 4

Nonparametric Techniques

Bayes Theorem for Classification

$$P(\omega_j|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_j) \cdot P(\omega_j)}{p(\mathbf{x})} \quad (1 \le j \le c) \quad \text{(Bayes Formula)}$$

Prior probability: $P(\omega_j)$ Likelihood: $p(\mathbf{x}|\omega_j)$

 \square Case I: $p(\mathbf{x}|\omega_j)$ has certain parametric form $p(\mathbf{x}|\omega_j, \boldsymbol{\theta}_j)$

Maximum-Likelihood (ML) Estimation

Bayesian Parameter Estimation

Bayes Theorem for Classification (Cont.)

Potential problems for Case I

The assumed parametric form may not fit the ground-truth density encountered in practice, e.g.:

Assumed parametric form: Unimodal (单峰, such as Gaussian pdf)

Ground-truth form: Multimodal (多峰)

□ Case II: $p(\mathbf{x}|\omega_j)$ doesn't have **parametric form**

Let the data speak for themselves!

Parzen Windows

k_n-nearest-neighbor

Density Estimation

General settings

Feature space: $\mathcal{F} = \mathbf{R}^d$

Feature vector: $\mathbf{x} \in \mathcal{F}$

pdf function: $\mathbf{x} \sim p(\cdot)$

How to estimate $p(\mathbf{x})$ from the training examples?

Fundamental fact

The probability of a vector **x** falling into a region $\mathcal{R} \subset \mathcal{F}$:

$$P = \Pr[\mathbf{x} \in \mathcal{R}] = \int_{\mathcal{R}} p(\mathbf{x}') d\mathbf{x}'$$

A smoothed/averaged version of $p(\mathbf{x})$

$$\Pr[\mathbf{x} \notin \mathcal{R}] = 1 - P$$

$$P = \Pr[\mathbf{x} \in \mathcal{R}] = \int_{\mathcal{R}} p(\mathbf{x}') d\mathbf{x}'$$

$$\Pr[\mathbf{x} \in \mathcal{R}] = P$$

Given *n* examples (*i.i.d.*) { $\mathbf{x_1}$, $\mathbf{x_2}$, ..., $\mathbf{x_n}$ } with $\mathbf{x_i} \sim p(\cdot)$ ($1 \le i \le n$)

Let X be the (discrete) **random variable** representing the number of examples falling into \mathcal{R}

X will take Binomial

distribution (二项分布):

$$\Pr[X = r] = \binom{n}{r} P^r (1 - P)^{n-r} \quad (0 \le r \le n)$$

$$X \sim \mathcal{B}(n, P)$$

$$X \sim \mathcal{B}(n, P)$$
 $\mathcal{E}[X] = nP$ Table 3.1 [pp.109]

Assume ${\mathcal R}\,$ is small

$$p(\cdot)$$
 hardly varies within \mathcal{R}

$$P = \Pr[\mathbf{x} \in \mathcal{R}] = \int_{\mathcal{R}} p(\mathbf{x}') d\mathbf{x}'$$

$$\simeq p(\mathbf{x}) \int_{\mathcal{D}} 1 d\mathbf{x}'$$
 (x is a point within \mathcal{R})

$$P \simeq p(\mathbf{x}) V$$

 $P \simeq p(\mathbf{x}) \, V$ (V is the volume enclosed by \mathcal{R})

$$P = \frac{\mathcal{E}[X]}{n}$$

$$P \simeq p(\mathbf{x}) V$$

$$p(\mathbf{x}) = \frac{\mathcal{E}[X]/n}{V}$$

$$X \sim \mathcal{B}(n, P)$$

X peaks sharply $X \sim \mathcal{B}(n, P)$ about $\mathcal{E}[X]$ when *n* is large enough

Let *k* be the actual value of *X* after observing the *i.i.d.* training examples $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$

To show the explicit

relationships with *n*:

$$\mathcal{R}$$
 (containing x)

$$p(\mathbf{x}) = \frac{k/n}{V} \longrightarrow p_n(\mathbf{x}) = \frac{k_n/n}{V_n}$$

 V_n : volume of \mathcal{R}_n n: # training examples

Quantities:

 k_n : # training examples falling within \mathcal{R}_n

Fix V_n and determine k_n Parzen Windows

Fix k_n and determine V_n \longleftarrow k_n -nearest-neighbor

Parzen Windows

$$p_n(\mathbf{x}) = \frac{k_n/n}{V_n}$$
 Fix V_n , and then determine k_n

Assume \mathcal{R}_n is a *d*-dimensional

hypercube (超立方体)

V

 $V_n = h_n^d$

The length of each edge is h_n

Determine k_n with window function (窗口函数), a.k.a. kernel function (核函数), potential function (势函数), etc.

Emanuel Parzen (1929-)

Window function:
$$\varphi(\mathbf{u}) = \left\{ egin{array}{ll} 1 & |u_j| \leq 1/2; & j=1,\ldots,d \\ 0 & \text{otherwise} \end{array} \right.$$

 $\varphi(\mathbf{u})$ defines a **unit hypercube** centered at the origin

$$\varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) = 1$$

 \mathbf{x}_i falls within the hypercube of volume V_n centered at \mathbf{x}

$$k_n = \sum_{i=1}^n \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

$$p_n(\mathbf{x}) = \frac{k_n/n}{V_n} \qquad p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

$$k_n = \sum_{i=1}^n \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

An average of functions of x and x_i

 $\varphi(\cdot)$ is not limited to be the hypercube window function of Eq.9 [pp.164]

 $\varphi(\cdot)$ could be any pdf function:

$$\varphi(\mathbf{u}) \ge 0$$

$$\int \varphi(\mathbf{u}) \, d\mathbf{u} = 1$$

$$\frac{1}{n} p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) \qquad (V_n = h_n^d)$$

$$\varphi(\cdot)$$
 being a pdf function $p_n(\cdot)$ being a pdf function

$$\int p_n(\mathbf{x}) d\mathbf{x} = \frac{1}{nV_n} \sum_{i=1}^n \int \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) d\mathbf{x}$$
 Integration by substitution (換元积分)
$$\det \mathbf{u} = (\mathbf{x} - \mathbf{x}_i)/h_n$$

$$= \frac{1}{nV_n} \sum_{i=1}^n \int h_n^d \varphi\left(\mathbf{u}\right) d(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^n \int \varphi\left(\mathbf{u}\right) d(\mathbf{u}) = 1$$

 $\begin{array}{c} \text{window function} \\ \text{(being pdf)} \ \varphi(\cdot) \end{array} + \begin{array}{c} \text{window} \\ \text{width } h_n \end{array} + \begin{array}{c} \text{training} \\ \text{data } \mathbf{x}_i \end{array}$

Parzen pdf:
$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) \quad \left(V_n = h_n^d\right)$$

$$\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right) \qquad \qquad p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i)$$

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i)$$

- What is the effect of h_n ("window width") on the Parzen pdf?
- **口** $p_n(\mathbf{x})$: superposition (叠加) of *n* interpolations (插值)
- \square \mathbf{x}_i : contributes to $p_n(\mathbf{x})$ based on its "distance" from x (i.e. " \mathbf{x} - \mathbf{x}_i ")

The effect of h_n ("window width")

$$\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right) = \underbrace{\frac{1}{h_n^d}}_{\mathbf{T}} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

Affects the *amplitude* (vertical scale, 幅度)

What do "amplitude" and "width" mean for a function?

Affects the *width* (horizontal scale, 宽度)

For $\varphi(\mathbf{u})$:

$$|\varphi(\mathbf{u})| \le a$$
 (amplitude)

$$|u_j| \le b_j \text{ (width)}$$

 $(j = 1, \dots, d)$

For $\delta_n(\mathbf{x})$:

$$|\delta_n(\mathbf{x})| \le (1/h_n^d) \cdot a$$

$$|x_j| \le h_n \cdot b_j \ (j = 1, \dots, d)$$

$$\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

 $\delta_n(\cdot)$ being a pdf function

$$\int \delta_n(\mathbf{x}) \, d\mathbf{x} = \int \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right) \, d\mathbf{x}$$

Integration by substitution

Let
$$\mathbf{u} = \mathbf{x}/h_n$$

$$= \int \frac{1}{h_n^d} \cdot \varphi(\mathbf{u}) \cdot h_n^d \ d\mathbf{u} = \int \varphi(\mathbf{u}) \ d\mathbf{u} = 1$$

$$\delta_n(\mathbf{x}) = \frac{1}{h_n^d} \, \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

Suppose $\varphi(\cdot)$ being a 2-d

Gaussian pdf

The shape of $\delta_n(x)$ with decreasing values of h_n

h=0.5

h=0.2

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i), \text{ where } \delta_n(\mathbf{x}) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

- h_n very large $\rightarrow \delta_n(\mathbf{x})$ being *broad* with *small amplitude* $p_n(\mathbf{x})$ will be the superposition of n broad, slowly changing (慢变) functions, i.e. being *smooth* (平滑) with *low resolution* (低分辨率)
- h_n very small $\rightarrow \delta_n(\mathbf{x})$ being *sharp* with *large amplitude* $p_n(\mathbf{x})$ will be the superposition of n sharp pulses (尖脉冲), i.e. being *variable/unstable* (易变) with *high resolution* (高分辨率)

A compromised value (折衷值) of h_n should be sought for limited number of training examples

More illustrations:

Subsection 4.3.3 [pp.168]

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i), \text{ where } \delta_n(\mathbf{x}) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

Suppose $\varphi(\cdot)$ being a 2-d *Gaussian pdf* and n=5

The shape of $p_n(x)$ with decreasing values of h_n

k_n -Neareast-Neighbor

$$p_n(\mathbf{x}) = \frac{k_n/n}{V_n}$$
 Fix k_n , and then determine V_n

specify $k_n \rightarrow$ center a cell about $x \rightarrow$ grow the cell until capturing k_n nearest examples \rightarrow return cell volume as V_n

The principled rule to specify k_n [pp.175]

$$\lim_{n \to \infty} k_n = \infty$$

$$\lim_{n \to \infty} \frac{k_n}{n} = 0$$

A rule-of-thumb choice for k_n :

$$k_n = \sqrt{n}$$

k_n-Neareast-Neighbor (Cont.)

Eight points in one dimension (n=8, d=1)

red curve: $k_n=3$

black curve: $k_n=5$

Thirty-one points in two dimensions (n=31, d=2)

black surface: $k_n=5$

Summary

- Basic settings for nonparametric techniques
 - Let the data speak for themselves
 - Parametric form not assumed for class-conditional pdf
 - Estimate class-conditional pdf from training examples
 - → Make predictions based on Bayes Formula
- Fundamental result in density estimation

$$p_n(\mathbf{x}) = \frac{k_n/n}{V_n}$$

 V_n : volume of region \mathcal{R}_n containing **x**

 k_n : # training examples falling within \mathcal{R}_n

Summary (Cont.)

- Parzen Windows: Fix V_n → Determine k_n
 - Effect of h_n (window width): A compromised value for a fixed number of training examples should be chosen

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) \qquad (V_n = h_n^d)$$

 $\varphi(\cdot)$ being a pdf function $p_n(\cdot)$ being a pdf function

window function (being pdf) $\varphi(\cdot)$ + window width h_n + training data \mathbf{x}_i Parzen pdf $p_n(\cdot)$

Summary (Cont.)

• k_n -nearest-neighbor: Fix $k_n \rightarrow$ Determine V_n

specify $k_n \rightarrow$ center a cell about $x \rightarrow$ grow the cell until capturing k_n nearest examples \rightarrow return cell volume as V_n

The principled rule to specify
$$k_n$$
 [pp.175]
$$\lim_{n\to\infty} k_n = \infty$$
 A rule-of-thumb choice for k_n :
$$k_n = \sqrt{n}$$