Group Theory

a) Groups

We can combine two numbers, using addition, to get another number:

$$5+7=12$$

We can combine two sets, using union, to get another set:

$$(a,b,e,g) \cup (a,c,e,h,k) = (a,b,c,e,g,h,k)$$

etc

A binary operation * combines two "things" to get another "thing".

A binary operation * is commutative if p*q is always the same as q*p For example, if we are combining numbers:

addition is commutative 4+8=8+4

subtraction is not commutative $10-3 \neq 3-10$

multiplication is commutative $3 \times 5 = 5 \times 3$

division is not commutative $24 \div 6 \neq 6 \div 24$

A binary operation * is associative if p*(q*r) is always the same as (p*q)*r For example, if we are combining numbers:

addition is associative 4+(3+8)=(4+3)+8

subtraction is not associative $20-(12-8)\neq(20-12)-8$

multiplication is associative $3\times(4\times5)=(3\times4)\times5$

division is not associative $24 \div (6 \div 2) \neq (24 \div 6) \div 2$

Example 1

Set
$$\{1,2,3,4,5,6\}$$

Binary operation * where p*q = pq, mod 7

For example:

$$5*6=5\times6=30=2, mod 7$$

Here is the combination table:

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3

5	5	3	1	6	4	2
6	6	5	4	3	2	1

Note: 5*6 appears in the 5 row and the 6 column etc

Note: the binary operation * is commutative because 5*6=6*5 etc

(a) The set is closed under the binary operation. This means:

For all p and q in the set p*q is in the set.

So all the numbers in the combination table are in the set.

(b) The set contains an identity element e This means:

For all p in the set p*e=p and e*p=p

Here the identity element is 1

(c) Every element in the set has an inverse element in the set. This means:

For all p in the set there is an element p' in the set where p*p'=e and p'*p=e

1 is it's own inverse 1*1=1

2 and 4 are inverses 2*4=1 and 4*2=1

3 and 5 are inverses 3*5=1 and 5*3=1

6 is it's own inverse 6*6=1

(d)The binary operation is associative.

You can check this for the above combination table.

Rules for a group:

A set of elements and a binary operation * is a group if:

The set is closed under *

The set contains an identity element

Every element in the set has an inverse element in the set

* is associative

So the set $\{1,2,3,4,5,6\}$ with the binary operation * where p*q=pq, mod 7 is a group.

See Exercise

EXERCISE

Binary operation * where p*q=p+q, mod 4

Complete the combination table and show we have a group.

2) We have these functions:
$$e(x)=x$$
 $f(x)=\frac{1}{x}$ $g(x)=-x$ $h(x)=-\frac{1}{x}$

Set
$$\{e, f, g, h\}$$

Binary operation * where f(x)*g(x)=f(g(x))

Complete the combination table and show we have a group.

SOLUTIONS

1)

*	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Closed: all the numbers in the combination table are in the set.

Identity: 0

Inverses: 0 is its own inverse 1

1 and 3 are inverses

2 is its own inverse

Associative: you can check this for the above combination table.

2)

*	e	f	g	h
e	e	f	g	h
f	f	e	h	g
g	g	h	e	f
h	h	g	f	e

Closed: all the functions in the combination table are in the set.

Identity: e

Inverses: every function is its own inverse

Associative: you can check this for the above combination table.