School of Mathematics and Computer Applications, TU Optimization Techniques (UMA-031) Tutorial Sheet -6 (Transportation problem)

1. Iron ore is to be transported from three mines to four steel mills situated in different cities. Find the minimum cost transportation schedule given the following cost matrix:

		A	Steel B	Mills C	D	Ore Available
	I	14	56	48	27	13
Mines	II	82	35	21	81	19
	III	99	31	71	63	16
Ore rec	quired	7.	14	21	6	

2. In a flood relief operation, there are four bases of operations B_i (i=1,2,3,4) from where air crafts can take relief materials to three targets T_j (j=1,2,3). Because of the difference in air crafts, range to target and flying altitudes, the relief material (in tons) per aircraft from any base that can be delivered to any target differs according to following table:

	T_1	T_2	T_3
B_1	8	6	5
B_2	6	6	6
B_3	10	8	4
B_4	18	6	4

The daily sortic capacity of each of the four bases is 150 sorties per day and the daily requirement of sorties on each target is 200. Find the allocation of sorties that maximizes the total tonnage over all the targets. If the problem has alternative solutions, find one.

In the following transportation problem, the penalty costs per unit of demand are 5, 3, and 2 for destinations 1, 2, and 3 respectively.

	DI	D2	D3	Availability
S1	5	1	7	10
S2	6	4	6	80
S2	3	2	5	15
Demand	75	20	50	

- (1) Determine the optimal solution.
- (2) Formulate above transportation as an LPP.

4. Consider the following transportation problem for minimum transportation cost.

	D_1	D_2	D_3	D4	· D5	Availability
. O ₁ ·	20	19	14	. 21	16	40
O ₂	15	20	13	19	16	60
O ₃	18	15	18	20	10	70
Requirement	30	40 ·	50	40	60	

Find an optimal solution of this transportation problem under the following restrictions.

- There is no transportation from origin O₃ to destination D₅.
- (2) The Origin O₁ supplies exactly 20 units to Destination D₄.
- (3) The Destination D₂ receives at lest 10 units from Origin O₂.
- 5. Solve the following transportation problem for minimum cost starting with the degenerate basis $x_{12} = 30$, $x_{21} = 40$, $x_{32} = 20$, $x_{43} = 60$

	D ₁	D ₂	D_3	Availability	
O ₁	4	5	2	30	
O ₂	4	1	3	40	
O ₃	3	6.	2	20	
04	2	3	7	60	
Demand	40	50	60		

A company has four plants producing the same product. The production cost differs from one plant to another as do the cost of raw materials. There are five regional warehouses. Sales price at each is different. The maximum sales, capacity, unit transportation costs etc. are given in the following table. Determine the transportation schedule which maximizes the over all profit.

			Pla	ints			
		1	2	3	4	Sales	
		Max	imum				1
Production cost (Rs.)		15	18	14	13	Price	Sales
Raw material cost (Rs.)		10	9	12	8	(Rs.)	Suics
W	arehou	se					
	1	3	9	5	4	34	80 .
	2	1	7	4	5	32	110
Transportation cost	3	5	8	3	6	31	150
(Rs.)	4	7	3	8	2	31	100
	5	4	5	6	7	31	150
Capacity		150	200	175	100		

.! Solutions for Transportation problem!

) This is a minimization problem.

- This is a balanced problem.

-> Use LCM to find the Initial B.F.S!

1 7 (14)	L56	148	[27]	12/6
11			6	130
1 82	35	10 201	[81	
199	131	171	100	H
1 1	14	2	0.63	16
4	14	at	8	
		2	0	

- Apply U.V method on this: - (for optimality)

Au the u; + v; - G; so for non-basic cells => optimal soln

Solve $\chi_{1}=7$, $\chi_{4}=6$, $\chi_{23}=19$, $\chi_{32}=14$, $\chi_{33}=6$, $\chi_{34}=0$

0-2

18	[6]	15	150
6	16	6	150
10	18	14	150
[8]	16	14	120
200	200	200.	

-> This is a balanced Transportation problem

-> This is a maximization problem, so Convert to minimization first.

Maxima of the matrix = 10.

->	U-V	method	for 0	btimal V2=4	Soln! - V2 = 5	
		4=0	50	50	50	150
		U_=-1	-3 4	11 4	150	150
		U3=-2	100	0 12	-31	150
		Uy=0	07 (2	100.	1 6	150
			200	200	200.	

All the U; +V; -G; SO, for non-basic) optimal soln.

Solm. is $x_1 = 50$, $x_2 = 50$, $x_{43} = 50$, $x_{43} = 150$.

Max. melief material transported is: - 4250

Hence attendance of time coists Choose any of these to be entering and proceed!

8= min 250,150 g = 50.

100	14 50. 14	50.	150
200	200	200.	150

Soln. is: - $x_{11} = 100$, $x_{13} = 50$, $x_{23} = 150$, $x_{31} = 100$, $x_{32} = 50$, $x_{42} = 150$. 3 = 4250.

8-3

) This is a warringation problem.

→ 29; = 105, 26; = 145 > Unbalanced problem

$$n_{1} + n_{1} + n_{3} \le 75$$
 $n_{1} + n_{1} + n_{3} \le 20$
 $n_{1} + n_{2} + n_{3} \le 20$

Coonstrain of the dema is more than Supply).

24j ?0, i=1,2,3,4 j=1,2,3.

1-4

120	19	[14]	[21	[16	40
[15]	20	[13]	[19]	[16]	60
18	15	. [18	120	(10)	. 20.
30	40	50	40	60.	

This is a minimization problem.

 \rightarrow $\leq a_i = 170, \leq b_i = 220.$

now with cost (0,0,0,0,0)

and RHS = 50.

-> Modified table is !-

20	[19]	[14]	21	16	40
15	120	13	119	16	60
[18]	15	[18]	120	[10]	70
0	10	10	10	0	50.
30	40	50	40	60.	

destination D. ...

ie No allocation is allowed on route (3,5) ie we need to force x35=0.

For this choose & 35= M. This will be -M formex.

Problem

Problem

Problem

Problem

Propose

19 14 30 16 40 30

15 20 13 19 16 5010

18 15 18 120 1M 7030 10.

9244 enters, 8 = min {80,50} = 30. + 214 leaves

regs enters, $Q = \min \{ 20, 10, 10 \} = 10!$, Both.

1214 234 become zero and we can choose any one. to have

All u;+v; -Gj €0 for non-basic cells

⇒ ofstimal soln.

Soln! -345 = 40, 241 = 0, 243 = 50, 245 = 10 -245 = 30, 243 = 40, 244 = 40, 245 = 103 = 2590

(11) The Origin Or Supplies exactly do units to distination Dy.

1.e $x_{14} = 20$, and no more allocation is allowed on the route (1, 4). Hence we block it by using cost of M. (baye +ve number) isnstead of 21 and Subtract 20 from a, 4 by

20 194 -4 [13 20 60

All u; +v; -G; &o for non-basic cells.

Soln. in $\chi_{42}=0$, $\chi_{43}=20$, $\chi_{24}=30$, $\chi_{23}=30$, $\chi_{32}=10$, $\chi_{35}=60$ $\chi_{42}=30$, $\chi_{34}=20$, $\chi_{14}=20$), $\chi_{3}=2290/1$

(iii) Destruction D2 recieves atteast to units form
allocate

O2 1e 9 2/2 = 10 and keep soute (2,2)
for more allocations. Modified Table is

	~	1
(7.	-10)-
122		
	_	

[20]	119	[14]	(21)	(16)	40
[15]	20	13	[19]	[16]	50
(18)	15	(18)	(20	(10,	7n
20	10	10	10	(0)	50
30	30	50	40	60	

-> Proceed as before to solve the sproblem, and solve in given by!

 $x_{32} = 10$, $x_{33} = 30$, $x_{21} = 30$, $x_{23} = 20$, $x_{32} = 10$, $x_{35} = 60$, $x_{42} = 10$, $x_{44} = 40$

- This is a balanced TP & a minimization problem

-> We are asked to find fee oftend soln starting with the degenerale soln.

 $\chi_{12}=30$, $\chi_{1}=40$, $\chi_{32}=20$, $\chi_{43}=60$ Total allocation is 150.

- m+n-1 = 4+3-1=6=No. of Basic variables, but we are given only 4, have the other two are equal to gero and we need to find the place (cells) which should be zero and basic.
- -> We shall use the fact that all basic cells are atteast connected to atteast one more. And we should be able to solve the eyes.

 for uis at vis by assuming only value of only one of these.

Using (1,2), 4,+V2=5, Let U,=0 => V2=5 (3,2), 43+V2=6 => U3+5=6 => U3= And these segn. Stops here, form (2,1), 42+4= 4, we need atleast one of these to solve this. Let 24,=0, a basic variable (1,1) => U,+V,=4 => 0+V,=4 => V,=4 (2,1) => U2 = 0 We are left with 44 4 V3 and the eyn. which we can use for these (it is only one Whichis for (4,3), flance we need to put one more zero, to find either of Uy or V3., wind Let 24, =0 (basic cell) >> U4+V, = 2 => Uy=-2. (4,3) => U4+V3=7 => V3=9. This gives us our starting B. F.S.

Applying Calculating $u_i + v_j - G_i^*$ for boxin non-basic Cells we get x_{33} as the entering variable. $\theta = \min \frac{20,20,609}{20,20,609} = 0$, x_1 haves.

 χ_{22} enters , $Q = \min_{Q} 40, 60, 20 \frac{1}{9} = 20$, χ_{32} leaves. $V_1 = 8$ $V_2 = 5$ $V_3 = 13$ 4 = 4 = 4 4 = 4 = 4 4 = -4 4 = -4 4 = -6 4 = -6

×13 enters, Q= min & 40, 20, 30 y= 20., 221 leaves

 $2 \frac{1}{4} = 10$ $\frac{10}{40} = 10$, $\frac{10}{40} =$

233 enters, Q= min 210, 40 y=10, 243 leaves

	V 2-1	V2=0	V3=2	
4,=0	1 4	-2/ /2	30	30
Uz =1	24	30	10	40
43=0	13	6	20	20
44=3	40	23	27	60
	40	20	60.	

All $u_i + v_j - G_j$ for non-basic cells (0 =) of timel Solvo $= \chi_3 = 30$, $\chi_{22} = 30$, $\chi_{33} = 10$, $\chi_{33} = 20$, $\chi_{41} = 40$, $\chi_{42} = 20$

3= 300

			Plan	rts				
86		1	2	3	4			
Prod. Cost	1	15	18	14	13.			
Rawingter	al	10	9	12	8.			
ware house	1	11	11	111	111	(Sales (availibity)	S.P.	
	1	3	9	5	4	80	34	
	2	1	4	4	5	110	32	
	3	5	8	3	6	150	31	
	4	7	3	8	2	100	31	
demand) (apacity	15	4	1 5	6	7	1100.	31	
apacity		150	200	175	1000			

Net profit for each cell = SoP - Prod. Cost - Raw met. Cost - bransportation Cost

Profit matrix

				1
34-15-	34-18-9	- 2	2 34-13-8	80
$ \begin{array}{c c} 10 - 3 \\ = 6 \end{array} $ $ \begin{array}{c} 32 - 15 - 10 \\ -1 = 6 \end{array} $	32-18-9	11 2	132-13-8	110
31-15-10	31-18-9	3 -14-12	31-13-8	150
31-15-10	31-18-9	31-14-12	31-13-8	100
31-15-10	31-18-9	31-14-12	31-13-8	150.
150	200	175	100	

-> This is maximization posob., Convert to minimizamaxima = 9.

1 3	4	[6]	LO	80
3	[1]	17	[3]	100
[8]	13	12	15	150
10	[8]	112	4	100
12	110	210	16,	50.
1.130	200 1	175 1	100.	

(TV)

This is an unbalanced problem, Hence belowing

U-V method!

