Logik

Aussagenlogik

Aussage Satz/Formel entweder wahr oder falsch: ..-form" bei zu wenig Infos.

Theoreme sind wahre Aussagen.

Junktoren

Negation $\neg A$ "Nicht" (!, ~, \rightarrow)

Konjunkt. $A \wedge B$ "und" (&&, \Box)

Disjunkt. $A \vee B$ "oder" (11, \Rightarrow)

Implikat. $A \Rightarrow B$ "Wenn, dann" $_{,,}\mathcal{B}^{"}$ (\rightarrow, if)

 $\mathcal{A} \Rightarrow \mathcal{B}$ " \mathcal{A} hinreichend"

 $\mathcal{B} \Rightarrow \mathcal{A} ... \mathcal{A}$ notwendig"

Äquiv. $\mathcal{A} \Leftrightarrow \mathcal{B}$ "Genau dann, wenn" $(\leftrightarrow, \equiv, ==, \implies)$

Wahrheitswertetabelle mit 2ⁿ Zeilen für n Atome. Konstruktionssystematik: Frequenz pro Atom verdoppeln.

\mathcal{A}	\mathcal{B}	$\neg \mathcal{A}$	$\mathcal{A}\wedge\mathcal{B}$	$A \lor B$	$\mathcal{A} \Rightarrow \mathcal{B}$	$\mathcal{A} \Leftrightarrow \mathcal{B}$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

X	ente Formeln ⇔	D	
	Bezeichnung		
$A \wedge B$	Kommutativ		
$A \vee B$	$B \lor A$	Nominutativ	
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ	
$A \vee (B \vee C)$	$(A \lor B) \lor C$	Assoziativ	
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv	
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv	
$A \wedge A$	A	Idempotenz	
$A \vee A$	A	idempotenz	
$\neg \neg A$	A	Involution	
$\neg(A \land B)$	$\neg A \lor \neg B$	De-Morgan	
$\neg(A \lor B)$	$\neg A \land \neg B$	DE-WORGAN	
$A \wedge (A \vee B)$	A	Absorption	
$A \vee (\mathbf{A} \wedge B)$	A	Absorption	
$A \Rightarrow B$	$\neg A \lor B$		
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination	
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$		

Axiomatik

Axiome als wahr angenommene Aussagen: an Nützlichkeit gemessen.

Anspruch, aber nach GÖDELS Unvollständigkeitssatz nicht möglich:

- Unabhängig
- Vollständig
- Widerspruchsfrei

Prädikatenlogik

Quantoren Innerhalb eines Univer-

Existenzg. ∃ "Mind. eines"

Individuum ∃! ..Genau eines"

Allq. ∀ "Für alle"

Quantitative Aussagen

Erfüllbar $\exists x F(x)$

Widerlegbar $\exists x \neg F(x)$

Tautologie $\top = \forall x F(x)$ (alle Schlussregeln)

Kontradiktion $\perp = \forall x \neg F(x)$

	Häufige Fehler
Bezeichnung	
Ausgeschlossenes Drittes	 Nicht vorau
Modus ponens	sen ist

Abschwächung

Oder: Ange-

zeige

Klassische Tautologien $A \vee \neg A$

 $A \wedge (A \Rightarrow B) \Rightarrow B$

 $(A \wedge B) \Rightarrow A$

 $A \Rightarrow (A \lor B)$

Häufige Fehler

Beweistechniken

nommen

Negation (DE-MORGAN)

 $\neg \exists x F(x) \Leftrightarrow \forall x \neg F(x)$

 $\neg \forall x F(x) \Leftrightarrow \exists x \neg F(x)$

• $\exists x (P(x) \Rightarrow Q(x)) \not\Rightarrow \exists x P(x)$

 $\bullet \neg \exists x \exists y P(x,y) \Leftrightarrow \forall x \neg \exists y P(x,y)$

Achtung: Aus falschen Aussagen kön-

nen wahre und falsche Aussagen folgen.

 $\neg B$.

Fallunters. Aufteilen, lösen, zusammen-

schränkung der Allgemeinheit"

 $A \Leftrightarrow B \Leftrightarrow C \Leftrightarrow \cdots$

1. Anfang: Zeige $F(n_0)$. 2. **Schritt:** Angenommen F(n)

Starke Induktion: Angenommen

 $n \in \mathbb{N}$.

 $=A \Rightarrow B \Rightarrow C \Rightarrow \cdots \Rightarrow A$

(Hypothese), zeige

F(n+1) (Behauptung

 $F(k) \quad \forall n_0 \leq k \leq$

 $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

führen. O.B.d.A = "Ohne Be-

Angenommen $A \wedge \neg B$, zeige Kontradiktion. (Reductio ad ab-

Direkt $A \Rightarrow B$ Angenommen

A, zeige B.

(Kontraposition).

Widerspruch $(\neg A \Rightarrow \bot) \Rightarrow A$

Ring (Transitivität der Implikation)

Induktion $F(n) \quad \forall n > n_0 \in \mathbb{N}$

surdum)

• $U = \emptyset^{\mathbb{C}}$ nicht notwendig

•	Nicht voraussetzen,	was	zu	bewei-
	sen ist			

• Äguival. von Implikat. unterscheiden (Zweifelsfall immer Implikat.)

$$f(1) = 0, \mathbf{r}_{11}r_{12}r_{13}r_{14} \dots$$

$$f(2) = 0, r_{21} \mathbf{r}_{22} r_{23}r_{24} \dots$$

$$f(3) = 0, r_{31}r_{32} \mathbf{r}_{33} r_{34} \dots$$

$$f(4) = 0, r_{41}r_{42}r_{43} \mathbf{r}_{44} \dots$$

$$\vdots$$

(CANTORS Diagonalargumente)

Naive Mengenlehre

Mengen Zusammenfassung Objekte "Elemente".

Element $x \in M$ "enthält"

Leere M. $\emptyset = \{\}$

Universum U

Einschränkung $\{x \mid F(x)\}$

Relationen

Teilmenge $N \subseteq M$ $\Leftrightarrow \forall n \in N : n \in M$

Gleichheit M=N $\Leftrightarrow M \subseteq N \land N \subseteq M$

Mächtigkeit

 $|M| \begin{cases} = n & \text{endlich} \\ \geq \infty & \text{unendlich} \end{cases}$ $= |N| \Leftrightarrow \exists f_{\mathsf{bijekt.}} : M \to N$

Abzählbar $\exists f_{\mathsf{surj.}} : \mathbb{N} \to M$

- Endliche Mengen, ∅, ℕ, ℤ, □
- $M_{\text{abz.}} \wedge N_{\text{abz.}} \Rightarrow (M \cup N)_{\text{abz.}}$ (= $\{m_1, n_1, m_2, n_2, \dots\}$)
- $M_{abz} \wedge N \subseteq M \Rightarrow N_{abz}$

Operationen

Vereinig. $M \cup N$ \Leftrightarrow $\{x \mid x \in M \lor x \in N\}$

Schnitt $M \cap N \Leftrightarrow \{x \mid x \in M \land x \in A\}$ N (= \emptyset "disjunkt")

Diff. $M \setminus N \Leftrightarrow \{x \mid x \in M \land x \notin N\}$

Komplement M^{\complement} $\{x \mid x \notin M\}$

Alle logischen Äguivalenzen gelten auch für die Mengenoperationen.

Häufige Fehler

• $\forall M : \emptyset \subseteq M$, nicht $\forall M : \emptyset \in M$

Quantitative Relationen

Sei Indexmenge I und Mengen $M_i \quad \forall i \in I.$

 $\bigcup_{i \in I} M_i := \{ x \mid \exists i \in I : x \in M_i \}$ $\bigcap_{i=1}^{n} M_i := \{x \mid \forall i \in I : x \in M_i\}$

Neutrale Elemente

- $\bigcup_{i \in \emptyset} M_i = \emptyset$ ("hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Potenzmenge

 $\mathcal{P}(M) := \{ N \mid N \subset M \}$ $|\mathcal{P}(M)| = 2^{|M|} \quad (\in / \notin \mathsf{binär})$

Abbildungen

Abbildung f von X (Definitionsb.) nach Y (Werteb.) ordnet jedem $x \in X$ Antis. $\forall x,y: ((x,y) \in R \land (y,x) \in$ eindeutig ein $y \in Y$ zu.

$$\mathbf{f}: X \to Y$$

Graph $gr(f) := \{(x, f(x)) \mid x \in X\}$

Identität

$$\operatorname{id}_A:A\to A$$
 $\operatorname{id}_A(a):=a\quad \forall a\in A$

Umkehrfunktion $f^{-1}: Y \to X$ wenn f bijektiv und $(f \circ f^{-1})(y) = y$

Eigenschaften

Surjektiv $\forall y \in Y \exists x \in X : \mathbf{y} = \mathbf{f}(\mathbf{x})$

Bijektiv wenn injektiv und surjektiv

Verkettung $f \circ a : A \to C$

$$(f \circ g)(a) = f(g(a))$$

(der Reihenfolge nach)

$$A \xrightarrow{f \circ g} C$$

Relationen

Kartesisches Produkt

$$X_1 \times \cdots \times X_n := \{(x_1, \cdots, x_n) \mid x_1 \in X_1, \cdots, x_n \in X_n\}$$

Relation \sim von/auf M nach N ist Teilmenge $R \subseteq M \times N$. $(R' \subseteq N \times P)$

$$m \sim n \Leftrightarrow (m, n) \in R$$

$$\equiv$$
 Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$
 $\Leftrightarrow \mathrm{id}_M \subseteq R$

$$\equiv$$
 Sym. $\forall (x, y) \in R : (y, x) \in R$ $\Leftrightarrow R \subseteq R^{-1}$

Antis.
$$\forall x, y: ((x, y) \in R \land (y, x) \in R) \Rightarrow \mathbf{x} = \mathbf{y} \Leftrightarrow R \cap R' \subseteq \mathrm{id}_M$$

Spezielle Relationen

$$\begin{array}{l} \text{Inverse Relation } R^{-1} \ \text{mit} \ R \in M \times \\ N := \\ \{(n,m) \in N \times M \mid (m,n) \in R\} \end{array}$$

Leere Relation ∅

All relation $M \times M$

Äquivalenzrelation = reflexiv, symmetrisch und transitiv. (Gleichheit***)

Äguivalenzklasse $[m]_{=}$ auf M. Vertreter $m \in M$.

$$[m]_{\equiv} := \{x \in M \mid m \equiv x\}$$

$$\Leftrightarrow [m]_{=} = [x]_{=}$$

Zerlegung $\mathcal{N} \subseteq \mathcal{P}(M)$ von M.

- ∅ ∉ N
- $M = | | \mathcal{N}$
- $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
- (Korrespondiert zur ÄR.)

Quotient (\mathbf{M}/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv):=\{[m]_{\equiv}\mid m\in M\}$$

Analysis

Reelle Zahlen R

Angeordnete Körper

(Gilt auch für \mathbb{Z} und \mathbb{O})

Körperaxiome
$$(\mathbb{R},+,*)$$
 $a,b,c\in\mathbb{R}$

Addition $(\mathbb{R}, +)$

Assoziativität a + (b+c) = (a+b) + c

Kommutativität a+b=b+a

Neutrales Element Null $a+0=a \quad 0 \in \mathbb{R}$

Inverses "Negativ" $a + (-a) = 0 \quad (-a) \in \mathbb{R}$

Assoziativität a*(b*c) = (a*b)*c

Kommutativität a * b = b * a

Neutrales Element Eins $a * 1 = a \quad 1 \in \mathbb{R} \setminus \{0\}$

Inverses "Kehrwert" $a*(a^{-1})=1$ $a \neq 0, (a^{-1}) \in \mathbb{R}$

Distributivität

$$\mathbf{a} * (b+c) = \mathbf{a} * b + \mathbf{a} * c$$

Totale Ordnung

Transitivität

$$a < b \land b < c \Rightarrow a < c$$

Trichotomie Entweder

$$a < b \text{ oder } a = b \text{ oder } b < a$$

 $\Rightarrow Irreflexivit at (a < b \Rightarrow a \neq b)$

Addition

$$a < b \Rightarrow a + c < b + c$$

Multiplikation

$$a < b \Rightarrow a * c < b * c \quad 0 < c$$

Bei Additiver oder Multiplikativer Inversion dreht sich die Ungleichung.

Archimedes Axiom

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$$
$$n > \frac{1}{x}$$

Teilbarkeit

$$a|b \Leftrightarrow \exists n \in \mathbb{Z} : b = a * n$$

 $(\Rightarrow \sqrt{2} \notin \mathbb{Q}, \text{ da mit } \frac{a}{b} = \sqrt{2} \text{ nicht}$ teilerfremd)

Häufige Fehler

- Nicht durch Null teilen/kürzen
- Nicht -x < 0 annehmen
- Multiplikation mit negativen Zahlen kehrt Ungleichungen

Operationen

Brüche

- \bullet $\frac{a}{b} * \frac{c}{d} = \frac{a*c}{b*d}$
- $\bullet \quad \frac{a}{b} \stackrel{*d}{=} \frac{a*d}{b*d}$
- \bullet $\frac{a}{a} + \frac{b}{a} = \frac{a+b}{a}$
- \bullet $\frac{a}{b} + \frac{c}{d} = \frac{a*d+c*b}{b*d}$

Wurzeln $b^n = a \Leftrightarrow b = \sqrt[n]{a}$

- \bullet $\sqrt[n]{a * b} = \sqrt[n]{a} * \sqrt[n]{b}$
- $\sqrt[n]{\sqrt[m]{a}} = \sqrt[n*m]{a}$
- $\sqrt[n]{a} < \sqrt[n]{b}$ 0 < a < b
- $\sqrt[n+1]{a} < \sqrt[n]{a}$ 1 < a
- $\sqrt[n]{a} < \sqrt[n+1]{b}$ 0 < a < 1

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

Potenzen $a^{\frac{x}{y}} = \sqrt[y]{a^x}$

- $\bullet \ a^{\mathbf{x}} * b^{\mathbf{x}} = (a * b)^{\mathbf{x}}$
- $\bullet \ a^x * a^y = a^{x+y}$
- $\bullet \ (a^x)^y = a^{x*y}$

Intervalle

Sei $A \subseteq \mathbb{R}, A \neq \emptyset, a_0 \in A$.

Geschlossen
$$[a;b] := \{x \in \mathbb{R} \mid a \leq x \leq b\}$$
 ("Ecken sind mit enthalten")

Offen
$$(a; b) := \{x \in \mathbb{R} \mid a < x < b\}$$

(Bei ∞ immer offen, da $\infty \notin \mathbb{R}$)

Kleinstes/Größtes Element

Minimum
$$\min(A) := a_0$$

 $\Leftrightarrow \forall a \in A : \mathbf{a}_0 \le a$

Beschränktheit A heißt

Oben beschränkt
$$\exists s \in \mathbb{R} \forall a \in A : a \leq s$$

Unten beschränkt
$$\exists s \in \mathbb{R} \forall a \in A : s \leq a$$

Vollständigkeit

Infimum (klein)
$$\inf(A)$$

:= $\max\{s \in \mathbb{R} \mid \forall a \in A : s \le a\}$

Supremum (groß)
$$\sup(A)$$

:= $\min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \leq s\}$

Vollständigkeitsaxiom $\exists \sup(A)$.

Folgen

Folge $(a_n)_{n\in\mathbb{N}}$ in A ist eine Abb. f: $\mathbb{N} \to A \text{ mit } a_n = f(n).$

Arithmetische Folge
$$a_{n+1} = a_n + d$$

 $a_n = a + (n-1) * d$ $d, a \in \mathbb{R}$

Geometrische Folge
$$a_{n+1} = a_n * q$$
 $a_n = q^n \quad q \in \mathbb{R}$

Rekursion a_n ist auf a_{n-1} definiert.

$$a_{n+1} = F(n, a_n) \quad \forall n \in \mathbb{N}$$

 $F: A \times \mathbb{N} \to A$

$$\exists p_1, \dots, p_n \in \mathbb{P} : n = \mathbf{p_1} * \dots * \mathbf{p_n}$$

Summen und Produkte

Summe
$$\sum_{i=1}^{n} i = 1 + 2 + \cdots + n$$

Produkt
$$\prod_{i=1}^{n} i = 1 * 2 * 3 * \cdots * n$$

Fakultät
$$n! = \prod^n i \ (0! = 1)$$

Gaussche Summe $n \in \mathbb{N}$

$$\sum_{i=1}^{n} i = \frac{n * (n+1)}{2}$$

Geom. Summe $q \in \mathbb{R} \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

Bernoulli Unglei. $n \in \mathbb{N}_0, x \geq -1$

$$(1+x)^n \ge 1 + n * x$$

Binom. Koeff. $\binom{n}{k} = \frac{n!}{k!*(n-k)!}$

- Rechnen: $\frac{n>k}{0<(n-k)}$
- \bullet $\binom{n}{0} = \binom{n}{n} = 1$
- \bullet $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

Binomischer Satz $n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k} * b^k$$

Grenzwerte

$$\mathbf{Betrag} \quad |x| := \left\{ \begin{array}{ccc} x & 0 \le x \\ - & x & x < 0 \end{array} \right.$$

Lemma |x * y| = |x| * |y|

Dreiecksungleichung $|x+y| \le |x| + |y|$

Umgekehrte Dreiecksungleichung $||x| - |y|| \le |x - y|$

Konvergenz

Sei $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}, a\in\mathbb{R}.$

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow$$

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \ge n_0 :$$

$$\begin{vmatrix} \mathbf{a_n} - \mathbf{a} \end{vmatrix} \le \epsilon$$

$$(a - \epsilon \le a_n \le a + \epsilon)$$

$$\xrightarrow{\text{Epsilonumgebung}} \Rightarrow \mathbb{R}$$

•
$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow \lim_{n \to \infty} a_n = a$$

Beschränkt + monoton ⇒ konvergent:

$$\lim_{n\to\infty}a_n=\begin{cases}\inf\{a_n\mid n\in\mathbb{N}\} & (a_n)_{\textit{fall}}.\\ \sup\{a_n\mid n\in\mathbb{N}\} & (a_n)_{\textit{steig}}.\end{cases}$$

Nullfolgen $\lim_{n\to\infty} a_n = 0$

- $\lim_{n\to\infty} \frac{1}{-k} = 0$ $k \in \mathbb{N}$
- $\lim_{n\to\infty} n*q^n=0$

Folgen gegen 1

- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ a>0
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Bestimmt Divergent

$$\begin{aligned} a_n &\xrightarrow{n \to \infty} \infty \Leftrightarrow \\ \forall R > 0 \exists n \geq n_0 \in \mathbb{N} : a_n \geq R \\ a_n &\xrightarrow{n \to \infty} -\infty \Leftrightarrow \\ \forall R < 0 \exists n \geq n_0 \in \mathbb{N} : a_n \leq R \end{aligned}$$

$$\lim_{n \to \infty} q^n \begin{cases} = 0 & (-1; 1) \\ = 1 & = 1 \\ \ge \infty & > 1 \\ \mathsf{div.} & \le -1 \end{cases}$$

Monotonie

Monoton fallend

$$a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$$

Monoton steigend

$$a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$$

Beschränktheit

$$\exists k > 0 \forall n \in \mathbb{N} : |\mathbf{a}_n| \le \mathbf{k}$$

- Konvergent ⇒ beschränkt
- Unbeschränkt ⇒ divergent

Grenzwertsätze

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

- $a_n \xrightarrow{n \to \infty} a \wedge a_n \xrightarrow{n \to \infty} b$ $\Rightarrow a = b$ (Max. einen Grenzw.)
- $a = 0 \wedge (b_n)_{beschr}$ $\Leftrightarrow \lim_{n\to\infty} a_n * b_n = 0$
- $a_n \le b_n \Leftrightarrow a \le b$ (nicht <)

$$\bullet \lim_{n \to \infty} \begin{cases} a_n \pm b_n = a \pm b \\ a_n * b_n = a * b \\ a_n * c = a * c \\ \sqrt[k]{a_n} = \sqrt[k]{a} \\ |a_n| = |a| \end{cases}$$

Einschachtelungssatz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

Spezielle Folgen

Teilfolge streng mnt. Folge $(b_k)_{n\in\mathbb{N}}$ mit $(n_k)_{k\in\mathbb{N}}$, sodass $b_k = \mathbf{a}_{nk} \quad \forall k \in \mathbb{N}$.

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n\in\mathbb{N}} \exists (a_{n\,k})_{k\in\mathbb{N}_{mnt}}.$$

(nicht streng!)

Häufungspunkt *h* mit einer Teilfolge

$$\lim_{n \to \infty} a_{n\,k} = h$$

• $\lim_{n\to\infty} a_n = a \Leftrightarrow \exists ! : h = a$

Bolzano-Weierstraß

$$(a_n)_{n\in\mathbb{N}_{\textit{beschr.}}}\Rightarrow \exists h_{\textit{H\"{a}\it{uf.}}}$$
 (Teilfolge $+$ (beschr.) $\Rightarrow \exists$ H\"{a}\it{uf.})

Cauchy-Folge

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 :$$

 $|a_n - a_m| \le \epsilon$

(Konv. ohne bekannten Grenzwert)

Vollständigkeit von ℝ

$$(a_n)_{n \in \mathbb{N}_{\text{CAUCHY}}} \Leftrightarrow \exists \lim_{n \to \infty} a_n$$

$$(\exists \lim_{n \to \infty} a_n \Rightarrow (a_n)_{n \in \mathbb{N}_{\text{CAUCHY}}}$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_{\text{beschr.}}}$$

$$\Rightarrow \exists h \quad \text{(BW)}$$

$$\Rightarrow \lim_{n \to \infty} a_n = h)$$

Reihen

Reihe
$$(s_n)_{n\in\mathbb{N}}=\sum_{k=1}^\infty a_k$$
 mit den Gliedern $(a_k)_{k\in\mathbb{N}}.$

nte Partialsumme
$$s_n = \sum_{k=1}^n a_k$$

Grenzwert ebenfalls $\sum_{k=1}^{\infty} a_k$, falls s_n

Spezielle Reihen

Geom.
$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$
 $q \in (-1;1)$

Harmon.
$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 divergent

Allg. Harmon.
$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$
 konvergiert $\forall \alpha > 1$

Lemma

- $-\sum_{\substack{k=1\\ \sum_{k=1}^{\infty}}}^{\infty} a_k + \sum_{k=1}^{\infty} b_k =$ Datenstrukturen $-\mathbf{c} * \sum_{k=1}^{\infty} \mathbf{a_k} = \sum_{k=1}^{\infty} \mathbf{c} * \mathbf{a_k}$
- $\exists N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \Rightarrow$ $(\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$ (Es reicht spätere Glieder zu betrachten)
- $(\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$ $\Rightarrow \forall N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\text{konv}}$ $\Rightarrow \lim_{N \to \infty} \sum_{k=N}^{\infty} a_k = 0$

Konvergenzkriterien

Cauchy

$$(\sum_{k=1}^{\infty}a_k)_{\text{konv.}}$$

$$\Leftrightarrow (\sum_{k=1}^{n}a_k)_{n\in\mathbb{N}}$$

$$\Leftrightarrow \forall \epsilon>0 \exists n_0\in\mathbb{N} \forall n>m>n_0:$$

$$|\sum_{k=m+1}^{n}a_k|\leq \epsilon$$

Notwendige

$$(\sum_{k=1}^{\infty} a_k)_{\text{konv.}} \Rightarrow \lim_{n \to \infty} a_n = \mathbf{0}$$
$$\lim_{n \to \infty} a_n \neq 0 \Rightarrow (\sum_{k=1}^{\infty} a_k)_{\text{div.}}$$

Hinreichende

Lemma
$$a_k \ge 0 \ (\Rightarrow mnt.) \ \forall k \in \mathbb{N}$$

$$(\sum_{k=1}^{\infty} a_k)_{\mathsf{konv.}} \Leftrightarrow (\sum_{k=1}^{\infty} a_k)_{\mathsf{beschr.}}$$

Majorante
$$0 \le \mathbf{a_k} \le \mathbf{b_k} \quad \forall k \in \mathbb{N}$$
(Min. \le Major.)

$$(\sum_{k=1}^{\infty} b_k)_{\text{konv.}} \Leftrightarrow (\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$$

• $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ konvergent Algorithmen auf

Algorithmus Handlungsvorschrift aus endlich vielen Einzelschritten zur Pro-

- Korrektheit (Test-based dev.)
- Terminierung (TOURING)
- Effizienz (Komplexität)

Formen (High to low) Menschl. Spra- Rechenregeln che, Pseudocode, Mathematische Ausdrücke. Quellcode. Binärcode

Divide & Conquer

Divide Zerlegen in kleinere Teilproble-

Conquer Lösen der Teilprobleme mit gleicher Methode (rekursiv)

Merge Zusammenführen der Teillösun-

Effizienz

Raum/Zeit-Tradeoff: schnell + großvs. klein + langsam.

Programmlaufzeit/-allokationen	Komplexität
Einfluss äuSSerer Faktoren	Unabh.
Konkrete Größe	Asymptotische Schätzung

Inputgröße n Jeweils

- Best-case C_B
- Average-case C_A
- Worst-case Cw

Asymptotische /Speicherkomplexität

Groß-O-Notation Kosten $C_f(n)$ mit $q: \mathbb{N} \to \mathbb{R} \exists c > 0 \exists n_0 > 0 \forall n > n_0$

Untere Schranke $\Omega(f)$ $C_f(n) > c * q(n)$

Obere Schranke O(f)

 $C_f(n) \leq c * q(n)$

Exakte Schranke $\Theta(f)$ $C_f(n) \in \Omega(f) \cap O(f)$ Polynom kten Grades $\in \Theta(n^k)$

(Beweis: q und c finden)

Groß-O	Wachstum	Klasse	
O(1)	Konstant		
$O(\log n)$	Logarithmisch		
O(n)	Linear		oar
$O(n \log n)$	Nlogn		lösbar
$O(n^2)$	Quadratisch	D	
$O(n^3)$	Kubisch	Polynomiell $O(n^k)$	
$O(2^n)$	Exponentiell	Exponentiell $O(\alpha^n)$	
O(n!)	Fakultät		hart
$O(n^n)$			

Elementare Operationen, Kontrollstr.

Schleifen $\in i$ Wiederholungen * O(f)teuerste Operation

Abfolge O(q)O(f)nach $O(\max(f;q))$

Rekursion $\in k$ Aufrufe *O(f) teuerste Operation

Mastertheorem $a \ge 1, b > 1, \Theta > 0$

$$T(n) = a * T(\frac{n}{b}) + \Theta(n^k)$$

$$\Rightarrow \begin{cases} \Theta(n^k) & a < b^k \\ \Theta(n^k * \log n) & a = b^k \\ \Theta(n^{\log_b a}) & a > b^k \end{cases}$$

Floor/Ceiling

Zeit-

Floor |x| nach unten

Ceiling $\lceil x \rceil$ nach oben

Suchverfahren

(nicht sortierte) Folge n Elemente $L := [a_0, \ldots, a_n]$ gleichen Typs.

Array Sequenzielle Abfolge im Speicher, statisch, Index O(1), schnelle Suchverfahren

Sequenziell
$$C_A(n) = \frac{1}{n} * \sum^n i = \frac{n+1}{2} \in O(n)$$

Algorithm: Sequential Search Input: Liste L. Predikat xOutput: Index i von xfor $i \leftarrow 0$ to L.len - 1 do if x = L[i] then return i end $\mathsf{return} \, -1$

Auswahlproblem Finde *i*-kleinstes Element in unsortierter Liste $\in \Theta(n)$

```
Algorithm: i-Smallest Element
Input: Unsortierte Liste L, Level i
Output: Kleinstes Element x
p \leftarrow L[L, len - 1]
 for k = 0 to L.len - 1 do
       if L[k] < p then
              Push (L < , L[k])
      \inf_{\substack{L[k] > p \text{ then} \\ \text{Push} \, (L_{>}, \, L[k])}} L[k] > p \text{ then}
if L < .len = i - 1 then
if L < .len > i - 1 then
       return i-Smallest Element L_{<}
    L > .len < i - 1 then
       return i-Smallest Element (L>
        i-1-L_{<}.len)
```

Sortierte Listen

Binär $C_W(n) = |\log_2 n| + 1, C_A(n) \approx$ $\log_2 n \in O(\log n)$

Algorithm: Binary Search

Input: Sortierte Liste L. Predikat xOutput: Index i von xif L.len = 0 then return - 1 $m \leftarrow \lfloor \frac{L.\operatorname{len}}{2} \rfloor$ if x = L[m] thenif x < L[m] then return Binary Search $[L[0],\ldots,L[m-1]]$ if x > L[m] then return m+1+ Binary Search $[L[m+1], \ldots, L[L.len-1]]$

Sprung Kosten Vergleich a, Sprung b Verkettete Listen mit optimaler Sprungweite:

$$m = \left\lfloor \sqrt{\left(\frac{a}{b}\right) * n} \right\rfloor$$

Lineare Liste endlich, geordnete
$$C_A(n) = \frac{1}{2}(\lceil \frac{n}{m} \rceil * a + m * b) \in O(\sqrt{n})$$
 Löschen $\in O(1)$

Algorithm: Jump Search Input: Sortierte Liste L, Predikat xOutput: Index i von x $\begin{array}{l} m \leftarrow \lfloor \sqrt{n} \rfloor \\ \text{while } i < L \, . \mathit{len do} \end{array}$ if x < L[i] then return Search $[L[i-m], \ldots, L[i-1]]$ end end

- Rekursive Sprungsuche $\in O(\sqrt[k]{n})$
- Partitionierung in Blöcke m möglich

Exponentiell $\in O(\log x)$

Algorithm: Exponential Search Input: Sortierte Liste L. Predikat xOutput: Index i von xwhile x > L[i] do return Search $[L \lfloor i/2 \rfloor, \ldots, L[i-1]]$ • Unbekanntes n möglich

Interpolation $C_A(n)$ $\log_2 \log_2 n$, $C_W(n) \in O(n)$ Algorithm: Searchposition Input: Listengrenzen [u, v]Output: Suchposition p return $\lfloor u + \frac{x - L[u]}{L[v] - L[u]}$

Algorithm: Interpolation Search

Häufigkeitsordnungen mit griffswahrscheinlichkeit p_i : $C_A(n) =$

Frequency-count Zugriffszähler Element

Transpose Tausch mit Vorgänger Move-to-front

Container Jedes Element p ist in der Form $p \rightarrow | (\text{key}) | \text{value} | \text{next} |$. Index $\in O(n)$

Input: Zeiger p auf Vorgänger des löschendes Elements if $p \neq \emptyset \land p \rightarrow \textit{next} \neq \emptyset$ then $p o \mathsf{next} \leftarrow (p \to \mathsf{next}) \to \mathsf{next}$

• desh. sehr dynamisch

Suchen
$$C_A(n) = \frac{n+1}{2} \in O(n)$$

Algorithm: Search Linked List Input: Verkettete Liste L. Predikat xOutput: Zeiger p auf x $p \leftarrow L$ head while $p \rightarrow value \neq x do$ $p \leftarrow p \rightarrow \mathsf{next}$ end return p

Doppelt Verkettet Zeiger auf Vorgänger (key) | value | prev | next

- Bestimmung des Vorgängers ∈ O(1) statt O(n)
- Höherer Speicheraufwand

Skip

- Zeiger auf Ebene i zeigt zu nächstem 2^i Element
- Suchen $\in O(\log n)$

Perfekt Einfügen. Löschen $\in O(n)$ (Vollst. Reorga.)

Randomisiert Höhe zufällig (keine vollst. Reorga.) $P(h) = \frac{1}{2h+1}$: Einfügen, Löschen $\in O(\log n)$

Spezielle Listen

ADT "Abstrakte Datentypen"

Stack S = |, **TOP**", \cdots Operationen nur auf letztem Element $\in O(1)$

Queue Q = || "HEAD", \cdots , "TAIL" Vorne Löschen, hinten einfügen

Priority Queue $P = \begin{bmatrix} p_0 & p_1 & \cdots & p_n \\ a_0 & a_1 & \cdots & a_n \end{bmatrix}$

Jedes Element hat Priorität; Entfernen von Element mit höchster ("MIN") Priorität

Sortierverfahren

Sortierproblem

Gegeben (endliche) Folge von Schlüsseln (von Daten) $(K_i)_{i \in I}$

Gesucht Bijektive Abbildung $\pi:I\to$ I (Permutation), sodass $K_{\pi(i)}$ < $K_{\pi(i+1)}$

mit Optimierung nach geringen

- Schlüsselvergleichen C
- Satzbewegungen M

Eigenschaften

Ordnung Allgemein vs. speziell: Ordnung wird nur über Schlüsselvergleiche hergestellt

Relation Stabil vs. instabil: Vorherig relative Reihenfolge bleibt erhalten

Speicher In situ vs. ex situ: Zusätzlicher Speicher notwendig

Lokal *Intern* vs. *extern*: Hauptspeicher oder Mischung vorsortierter externer Teilfolgen

Ordnung $\forall x, y \in X$

Reflexiv $x \leq x$

Antisym. $x \leq y \land y \leq x \Rightarrow x = y$

Transitiv $x \le y \land y \le z \Rightarrow x = z$

Total (Vollständig) $x < y \lor y < x$

(ohne Total: "Halbordnung")

Einfache Sortierverfahren $O(n^2)$

Selection Entferne kleinstes Element in unsortierter Liste und füge es sortierter Liste an.

```
Algorithm: Selectionsort
Input: Liste L
Output: Sortierte Liste L
for i \leftarrow 0 to L.len - 2 do
      min \leftarrow i
      for i \leftarrow i + 1 to L.len - 1 do
            if L[i] < L[min] then \min \leftarrow j
      if min \neq i then
       Swap L[min], L[i]
if L \cdot len = 0 then
      return -1
```

Insertion Verschiebe erstes Element aus unsortierter Liste von hinten durch sortierte Liste, bis das vorgehende Element kleiner ist.

```
Algorithm: Insertionsort
Input: Liste L
Output: Sortierte Liste L
for i \leftarrow 1 to L.len - 1 do
        if L[i] < L[i-1] then
                temp \leftarrow L[i]
                j \leftarrow i
                \begin{array}{c} \text{while } temp < L[j-1] \land j > 0 \text{ do} \\ \mid L[j] \leftarrow L[j-1] \end{array}
                end
                L[j] \leftarrow temp
```

Bubble Vertausche benachbarte Ele- Turnier Liste also Binärbaum, bestimmente die nicht in Sortierordnung sind, me $\min L$ durch Austragen des Turniers, durchlaufe bis nichts vertauscht wird. entferne Sieger und wiederhole von Sie-Achtung: Die hinteren Elemente können gerpfad aus. im Durchlauf ignoriert werden!

```
Algorithm: Bubblesort
Input: Liste L
Output: Sortierte Liste L
i \leftarrow I, len
swanned ← 1
while swanned do
      swapped \leftarrow 0
      for j \leftarrow 0 to i-2 do
            if L[j] > L[j+1] then
                  Swap L[j], L[j + 1]
                  swapped \leftarrow 1
      end
end
```

Verbesserte Sortierverfahren $O(n \log n)$

Shell Insertionsort, nur werden Elemente nicht mit Nachbarn getauscht, sondern in t Sprüngen h_i , die kleiner werden. Im letzten Schritt dann Insertionsort ($h_t = 1$); somit Sortierung von grob bis fein, also Reduzierung der Tauschvorgänge.

```
Algorithm: Shellsort
Input: Liste L, Absteigende Liste von Sprunggrößen H
Output: Sortierte Liste L
foreach h in H do
      for i \leftarrow h to L.len - 1 do
           temp \leftarrow L[i]
           for j \leftarrow i; temp < L[j-h] \land j \ge h;
             end
           L[j] \leftarrow \mathsf{temp}
      end
end
```

Quick Rekursiv: Pivot-Element in der Mitte, Teillisten $L_{<}$, $L_{>}$, sodass $\forall l_{<} \in$ $L_{<} \forall l_{>} \in L_{>} : l_{<} < x < L_{>}$. Zerlegung: Durchlauf von Links bis $L[i] \geq x$ und von Rechts bis $L[i] \le x$, dann tauschen.

```
Algorithm: Quicksort
Input: Liste L, Indices l, r
Output: L, sortiert zwischen l und r
\inf_{l} \ \underset{\mathbf{return}}{l} \ge r \ \mathbf{then}
i \,\leftarrow\, l
j \leftarrow r
\operatorname{piv} \leftarrow L[\lfloor \frac{l+r}{2} \rfloor]
          while L[i] < piv do
          end
          while L[j]>\operatorname{\it piv}\operatorname{\it do}
         if i < j then
                  Swap L[i], L[j]
 while i \leq j;
Quicksort (L, l, j)
Quicksort (L, i, r)
```

Heap Stelle Max-Heap (gröSStes Element in der Wurzel) her, gib Wurzel aus under ersetze mit Element ganz rechts in unterster Ebene.

```
Algorithm: Max-Heapify
Input: Liste L. Index i der MHE widerspricht und
       \forall j > i erfüllen MHE
Output: Liste L mit MHE \forall j > i
l \leftarrow 2i + 1
r \leftarrow 2i + 2
if l < L . len \wedge L[l] > L[i] then
      largest \leftarrow l
       \mathsf{largest} \, \leftarrow \, i
if r < L.len \wedge L[r] > L[largest] then
      largest \leftarrow r
\text{if } \textit{largest} \neq i \text{ then} \\
      Swap L[i], L[largest]
      Max-Heapify \hat{L}, largest
Algorithm: Build-Max-Heap
Input: Liste L
Output: Liste L mit MHE
for i \leftarrow |\frac{L \cdot len}{2}| - 1 to 0 do
     Max-Heapify L, i
Algorithm: Heapsort
Input: Liste L
Output: Sortierte Liste L
Build-Max-Heap L
for i \leftarrow L.len - 1 to 1 do
      Swap L[0], L[i]
       Max-Heapify L, 0
```

Große Datensätze sortieren Spezielle Sortierverfahren O(n)

	Stabil	Mem.	Schlüsselvergleiche			Satzbewegungen			
Algo.			C_B	C_A	C_{W}	M_B	M_A	M_W	
Selection	×	1	nx(n-1)	n+(n-1)	nx(n-1)	3*(n-1)	3*(n-1)	3*(n-1)	_
Insertion	/	1	n-1	$\approx \frac{n\pi(n-1)}{4} + n - \ln n$	$\frac{n*(n-1)}{2}$	2*(n-1)	$\frac{n^2+3n-4}{4}+n-1$	$\frac{n^2+3n-4}{2}$	0(6.2)
Bubble	/	1	$\frac{n + (n-1)}{2}$	n+(n-1)	$\frac{n*(n-1)}{2}$	0	$\frac{3n + (n-1)}{4}$	$\frac{3n*(n-1)}{2}$	0
				Best-case	Aver	rage-case Worst-case		ase	
Shell	×	1		-		-			
Quick	×	logn		$n \log n$	n log n		n ²		8
Turnier	×	2n-1		$n \log n$	nlogn		nlogn		O(n log n)
Heap	×	1		n log n	n log n		nlogn		કે
Merge	-	76		$n \log n$	$n \log n$		nlogn		
			Untere	Schranke $\Omega(n \log n)$ für	allgemeir	ne Sortierverf	ahren		
Distribution		- 71		п	n		n log n,	n ²	O(n)