Chapitre 9: 2nd principe de la thermodynamique

I Nécessité d'un 2nd principe

A) Transfert thermique

On considère deux solides A, B indilatables en contact thermique, tels que $A \cup B$ soit isolé.

$$1^{\text{er}}$$
 principe appliqué à $A \cup B$: (on suppose C_v constant) $\Delta U_{A \cup B} = 0 = \Delta U_A + \Delta U_B = C_{V,A} \times (T_A' - T_A) + C_{V,B} \times (T_B' - T_B)$

On obtient donc une équation avec 2 inconnues T'_A , T'_B . Le premier principe seul ne permet pas de montrer que $T'_A = T'_B = ...$

De plus, si $T_A < T_B$, la relation $T_A' < T_A < T_B < T_B'$ n'est pas contradictoire avec le premier principe seul.

B) Transfert de particules

Détente de Joule Gay-Lussac

Le premier principe impose que $U_f = U_i$ ($T_f = T_i$ pour un gaz parfait) mais aucune condition sur les densités volumiques à gauche et à droite. En particulier, le 1er principe n'explique pas le caractère irréversible de la détente.

C) Origine microscopique de l'irréversibilité de la détente

particules particules

Nombre de configurations microscopiques avec P particules à gauche et N-P à

droite : C_N^P . Probabilité d'avoir P particules à gauche : $pr = \frac{C_N^P}{2^N}$. $(2^N = \sum_{k=0}^N C_N^k)$

Si
$$N \sim N_a$$
 (6,022.10²³): $P = 0$ ou $N \Rightarrow pr = \frac{1}{2^{N_a}} \approx 1.10^{-2.10^{23}}$

Si on observe le système,
$$P = \frac{N}{2} \pm \sqrt{N}$$
. Fluctuations $\approx \frac{\sqrt{N}}{N/2} \sim \frac{1}{\sqrt{N}} \approx 10^{-11}$

II Enoncés historiques du 2nd principe

A) Définitions

Cycle monotherme : transformation cyclique au cours de laquelle le système est en contact avec une seule source de chaleur.

Cycle polytherme : transformation cyclique au cours de laquelle le système est en contact avec plusieurs sources de chaleur

Exemple : cycle de Carnot (ditherme)

B) Enoncé de Kelvin

Il est impossible d'obtenir du travail au cours d'un cycle monotherme.

$$\Sigma$$
 Q T

Le 2^{nd} principe s'énonce : $\{W \ge 0 \text{ (Le système reçoit du travail)}\}$

 $Q \le 0$ (Le système cède de la chaleur à T)

Exemple : impossible de créer un bateau qui fabrique du travail à partir de la chaleur extraite de l'océan (même si celui-ci était chaud). Ce type de moteur correspond à un "moteur perpétuel de 2^{ème} espèce".

Pour un cycle monotherme réversible :

$$\tau : \begin{cases} W \ge 0 \\ Q \le 0 \end{cases} \Rightarrow \tau^{-1} : \begin{cases} W_{\tau^{-1}} \ge 0 \\ Q_{\tau^{-1}} \le 0 \\ W_{\tau^{-1}} = -W \\ Q_{\tau^{-1}} = -Q \end{cases} \Rightarrow \begin{cases} W = 0 \\ Q = 0 \end{cases}$$

Une condition nécessaire pour qu'un cycle monotherme soit réversible est donc que W=Q=0

Donc
$$W > 0$$

 $Q < 0$ \Rightarrow Cycle irréversible

Le travail reçu par le système est dégradé en chaleur.

C) Enoncé de Clausius

La chaleur ne peut pas passer spontanément d'un corps froid vers un corps chaud.

D) Equivalence entre les énoncés de Clausius et de Kelvin

• On montre que Kelvin ⇒ Clausius. Supposons Clausius faux. On considère le cycle de Carnot suivant :

$$Q_c + W - Q = 0$$
. Donc $Q_c = Q - W > Q (W < 0)$ soit $Q_c - Q > 0$

La source froide a un fonctionnement stationnaire, car elle reçoit la même quantité de chaleur que ce qu'elle cède (pour rester à la même température, maintenue constante). On considère $\Sigma'=T_{\rm froid}+\Sigma$

Bilan énergétique : Σ' suit un cycle monotherme (à T_c), reçoit un travail W < 0, reçoit de la chaleur $Q_c - Q > 0$. Donc l'énoncé de Kelvin est faux.

Donc non(Clausius)⇒ non(Kelvin). Donc Kelvin⇒ Clausius

• Montrons que Clausius \Rightarrow Kelvin Supposons Kelvin faux. On considère le système $\Sigma = A \cup B$ suivant :

Où A est un gaz parfait. On considère une transformation monotherme du système $\Sigma'=A$ au cours de laquelle A fournit un travail moteur au milieu extérieur. Comme A est un gaz parfait, il vérifie la $1^{\text{ère}}$ loi de Joule. Donc $T_i=T_f\Rightarrow U_i=U_f\Rightarrow \Delta U=0$. Donc W+Q=0. Donc Q=-W>0. Σ' ne peut recevoir de chaleur que de B (le système Σ est entouré d'une paroi athermane). Donc B fournit de la chaleur à Σ' . Donc la température de B diminue. Donc un corps (B) peut fournir de la chaleur à un corps plus chaud (A). Donc l'énoncé de Clausius est faux. Donc non(Kelvin) \Rightarrow non(Clausius).

III Enoncé moderne du 2nd principe

Pour tout système en équilibre interne, on peut définir une fonction d'état notée S, appelée entropie, telle que :

- S est une fonction extensive des variables extensives du système : S(U,V,n,x)(x : paramètre extensif non précisé)
- Pour une transformation dans un système isolé :
 - S augmente si la transformation est irréversible
 - S est constante si la transformation est réversible
 - S est maximale à l'équilibre thermodynamique (interne + milieu extérieur)

Propriétés :

S est une fonction d'état du système

- $\Delta S_{1\rightarrow 2} = S_2 S_1$ (indépendant de la transformation)
- Si la transformation est un cycle, $\Delta S = 0$
- L'entropie n'est pas conservative :

Pour un système isolé, U = cte donc $\Delta U = 0$, Mais S est croissante donc $\Delta S \ge 0$

- L'univers est isolé. Donc S_{univers} est croissante.

IV Entropie et variables d'état

A) Définition de la température thermodynamique

Système en équilibre interne. On définit la température thermodynamique Θ (thêta) telle que : $\frac{1}{\Theta} = \frac{\partial S}{\partial U}\Big|_{U=0.5}$ (En général, S(U) est croissante. donc $\Theta > 0$)

Equivalence entre T et Θ :

On considère A déterminé par U_A , $V_A = \text{cte}$, $n_A = \text{cte}$, $x_A = \text{cte}$ et B déterminé par U_B , $V_B = \text{cte}$, $n_B = \text{cte}$, $x_B = \text{cte}$.

D'après le 1^{er} principe appliqué à $A \cup B$:

$$\Delta U_{A \cup B} = \Delta U_A + \Delta U_B = 0$$
 ou $dU_A + dU_B = 0$

D'après le 2^{nd} principe appliqué à $A \cup B$ isolé, $dS_{A \cup B} \ge 0 \Leftrightarrow dS_A + dS_B \ge 0$

Et
$$dS_A = \frac{\partial S_A}{\partial U_A}\Big|_{V_A, n, x} dU_A + \underbrace{\frac{\partial S_A}{\partial V_A}\Big|_{U_A, n, x}} dV_A + \dots = \underbrace{\frac{1}{\Theta_A}} dU_A$$

De même,
$$dS_B = \frac{dU_B}{\Theta_B} = \frac{-dU_A}{\Theta_B}$$

Donc
$$dS_{A \cup B} = dU_A \times (\frac{1}{\Theta_A} - \frac{1}{\Theta_B}) \ge 0$$

• A l'équilibre thermodynamique, $S_{A \cup B}$ est maximum. Donc $dS_{A \cup B} = 0$

Donc $\frac{1}{\Theta_A} - \frac{1}{\Theta_B} = 0$ soit $\Theta_B = \Theta_A$ égalité des températures thermodynamiques de A et

B à l'équilibre thermodynamique.

• Si
$$\Theta_B < \Theta_A$$
: $dS_{A \cup B} \ge 0 \Leftrightarrow dU_A \times (\frac{1}{\Theta_A} - \frac{1}{\Theta_B}) \ge 0 \Leftrightarrow dU_A \le 0$

 $dU_A = \delta W + \delta Q_A = \delta Q_A$ (Indilatable). Donc $\delta Q_A \le 0$ la chaleur passe donc de A vers B (de celui pour lequel Θ est le plus élevé vers celui pour lequel Θ est le plus faible)

Donc Θ a le même comportement que T.

On admet que $\Theta = T$

Donc
$$[S] = \frac{[U]}{[T]} = J.K^{-1}$$

B) Pression thermodynamique

Donc
$$V_A + V_B = V_{A \cup B} \Rightarrow dV_A + dV_B = 0$$

$$U_A + U_B = cte \ (1^{er} \text{ principe} : \Delta U = 0 \Rightarrow U = cte)$$

Donc
$$dU_A + dU_B = 0$$

D'après le $2^{\rm nd}$ principe appliqué à $A \cup B$ isolé : $dS_{A \cup B} \ge 0$

$$dS_{A} = \frac{\partial S_{A}}{\partial U_{A}}\bigg|_{V_{A},n,x} dU_{A} + \frac{\partial S_{A}}{\partial V_{A}}\bigg|_{U_{A},n,x} dV_{A} + \underbrace{\frac{\partial S_{A}}{\partial n}\bigg|_{U_{A},V_{A},x} dn + \frac{\partial S_{A}}{\partial x}\bigg|_{U_{A},V_{A},n}}_{=0} dx$$

$$= \frac{dU_A}{T_A} + \frac{\partial S_A}{\partial V_A} \bigg|_{U = 0.5} dV_A$$

et
$$dS_B = \frac{-dU_A}{T_B} + \frac{\partial S_B}{\partial V_B}\Big|_{U_{D,B,X}} (-dV_A)$$

Donc
$$dS_{A \cup B} = dU_A \times (\frac{1}{T_A} - \frac{1}{T_B}) + dV_A \times \left(\frac{\partial S_A}{\partial V_A}\Big|_{U_A, n, x} - \frac{\partial S_B}{\partial V_B}\Big|_{U_B, n, x}\right) \ge 0$$

Conséquences:

A l'équilibre thermodynamique, $S_{A \cup B}$ est maximum.

$$\text{Donc} \left. \frac{\partial S_{A \cup B}}{\partial U_A} \right|_{V_A} = 0 \Leftrightarrow T_A = T_B \text{ et } \left. \frac{\partial S_{A \cup B}}{\partial V_A} \right|_{U_A} = 0 \Leftrightarrow \left. \frac{\partial S_A}{\partial V_A} \right|_{U_A, n, x} = \left. \frac{\partial S_B}{\partial V_B} \right|_{U_B, n, x}$$

Cette dernière relation équivaut à l'égalité des pressions (dV = 0).

On définit la pression thermodynamique $\Pi = T \frac{\partial S}{\partial V}$. $[\Pi] = Pa$

A l'équilibre thermodynamique, $\prod_A = \prod_B$.

Hors équilibre, on suppose que l'on a $T_A = T_B$ mais $\prod_A > \prod_B$

$$dS_{A \cup B} \ge 0 \Leftrightarrow dV_A \left(\frac{\prod_A}{T_A} - \frac{\prod_B}{T_B}\right) \ge 0 \Leftrightarrow dV_A \left(\prod_A - \prod_B\right) \ge 0$$

Donc $dV_A \ge 0$

Donc Π a le même comportement que P.

On admet ici encore que $\Pi = P$

C) Généralisation

A tout paramètre extensif x, on associe un paramètre intensif X défini par :

$$X = -T \frac{\partial S}{\partial x} \Big|_{U,V,n,\dots}$$

On dit que X et x sont variables conjuguées (comme -P et V par exemple)

Remarque : pour une transformation réversible où x varie, $\delta W_{\text{rév},x} = Xdx$

Donc, pour tous les travaux : $\delta W_{\text{rév}} = \sum X dx$

A l'équilibre thermodynamique de 2 systèmes A et B qui peuvent échanger x, on a $X_A = X_B$.

D) Identité thermodynamique

On considère un système, d'entropie S(U,V,n,x)

Pour une étape infinitésimale de transformation quasi-statique :

$$dS = \frac{\partial S}{\partial U}\Big|_{V,n,x,\dots} dU + \frac{\partial S}{\partial V}\Big|_{U,n,x,\dots} dV + \frac{\partial S}{\partial n}\Big|_{V,U,x,\dots} dn + \frac{\partial S}{\partial x}\Big|_{V,U,n,\dots} dx + \dots$$

$$= \frac{dU}{T} + \frac{P}{T}dV - \frac{X}{T}dx + \dots$$

 $\Leftrightarrow dU = TdS - PdV + Xdx$ (Identité thermodynamique)

Application:

$$au_{OS}$$

$$\Delta S = S_2 - S_1 = \int_{\tau_{QS}} \left(\frac{dU}{T} + \frac{P}{T} dV - \frac{X}{T} dx \right)$$

<u>Autre</u> écriture :

Autre écriture :

$$H = U + PV \Rightarrow dH = dU + VdP + PdV$$

 $dH = TdS + VdP + Xdx$