Algoritmusok és adatszerkezetek I. Gyakorlatjegyzetek

Gyakorlatvezető: Dr. Ásványi Tibor Csoport: 16 (2022/23/2. szemeszter)

2023. április 5.

1. gyakorlat

1.1. Maximumkiválasztásos rendzés

Példa a használatára: $M_i := maxi(B, 5)$

- \bullet a B valójában egy pointer
- felteszsük, hogy elérhetjük a B elemszámát (mintha amolyan objektum lenne): *B = B[0]; *(B+i) = B[i]

Sorbarendezés illusztrációja

$$<3,1,2,4,2'>\rightarrow$$
monoton növekvő \rightarrow legvégére
$$<3,1,2,2'|4>\rightarrow$$
rendezetlen | rendezett
$$<2',1,2|3,4>$$

$$<|1,2',2,3,4>\rightarrow<1,2',2,3,4>$$

Hatékonyság. Ilyenkor **felülről** (MT(n)) és **alulról** (mT(n)) kell becsülni a program műveletidejét / hatékonyságát / futásidejét ahol csupán a nagyságrendet kell figyelni: $c \cdot n$, n!, n^2 , $\log n$, stb.

$$T(n) = ? = \sum_{i=2}^{n} (i-1) = \sum_{k=0}^{n-1} k = \frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}$$
(1)

$$T(n) = \frac{1}{2}n^2 - \frac{1}{2} \in \Theta(n^2)$$
 (2)

ahol $\Theta(\Box)$ olyan fgv.-ekből álló fgv.osztály, mely hasonló nagyságrendű függvényekből áll, mint az argumentuma (amit itt \Box jelöl)

Az n^2 -es algoritmusok eléggé lassúak, több évtizedig is tarthat a futása elég nagy mennyiségű bemeneten. Ez **absztrakt idő**, nem fizikai idő – ingadozni fog 10%-ot egy határon belül.

Rendezés stabilitás. Ha két azonos kulcsú elem egy adott sorrendben van, mindig ugyanabban lesznek, akárhányszor futtajuk le a programot

Maximumkiválasztásos rendezés: **nem stabil** Lehet javítai a maximukiválasztásos rendezésen

1.2. (Naív) Buborékrendezés

$$<1,2|2',3,4> \rightarrow <1,2,2',3,4>$$

Stabilitás: stabil

Iterációk: pontosan ugyanannyit

 ${f Hat\'ekonys\'ag}$: elég rossz (még rosszabb is), mert picit fölöslegesen dolgozik $(\Theta(n^2))$

Ha egy adott szakaszon / ponttól nem cserél, ott biztosan rendezett \rightarrow megoldás: jegyezzük meg, h hol cserélt utoljóra

1.3. (Javított) Buborékrendezés

Megjegyzi, hol cserélt utoljára

min. műveletigény: $mT(n) = n - 1 \in \Theta(n)$

max. műveletigény: $MT(n)=\frac{1}{2}n^2-\frac{1}{2}\in\Theta(n^2)$ \to ha csökkenő sorrendben van az eredeti

2. gyakorlat

2.1. Beszúró rendezés

- a buborékoshoz képest javított
- ketté vágjuk
 - hagyományosan az eleje rendezett
 - nincs a kettő résztömb között kapcsolat
- stabil rendezés, helyben $\rightarrow \Theta(1)$ munkatárral tudja rendezni
- ösztönösen használt, intuitíve jövő algoritmus

 $<3,5,7|2,4,3'>\rightarrow$ beillesztjük a megfelelő helyre a rendezetlen első elemét

$$<2,3,4,5,7|3'>(*)$$

$$<2,3,4,5,\Box,7>$$
 ahol $x:=3'$

$$<2,3,4,\square,5,7>$$

 $<2,3,\square,4,5,7>\leftarrow x\text{-et}$ beillesztjük az üres helyre

<2,3,3',4,5,7> beillesztés után

 $\begin{aligned} & \text{IS} = \text{insertion sort} \\ & \text{Megjegyz\'es: itt a t\"{o}mb\"{o}t 0-t\acute{o}l indexelj\"{u}k} \end{aligned}$

$ig(\mathrm{beill}(A:\mathbb{T}[],i:\mathbb{N}) ig)$	
A[i-1] > A[i]	
x := A[i]	
A[i] := A[i-1]	
j := i - 2	
$j \ge 0 \land A[j] > x$	_
A[j+1] := A[j]	
j	
A[j+1] := x	

- műveletigény:
 - $-mT(n) = n 1 \in \Theta(n)$

$$-MT(n) = (n-1) + \sum_{i=1}^{n-1} (n-1) = (*) = \frac{1}{2}n^2 - \frac{1}{2} \in \Theta(n^2)$$

- -átlagos műveletigény \rightarrow ea. jegyzetben található
- mitől jobb a buborékrendezésnél?
 - csak akkor cserél, ha nincs a helyén
 - $-\ (k+2)$ db a mozgatások száma, míg a bubis
é $3k\ (?)$ (igazából gőzöm sincs)

2.2. Összefésülő rendezés (merge sort)

- "oszd meg és uralkodj"-elv, azaz:
 - -szimmetrikusan elfelezzük \rightarrow külön-külön sorbarendezzük a résztömböket
 - akkor is szétválasztja, ha sorba van rendezve
 - az egyelemű részsorozatok eleve rendezve vannak, így ezeket összefuttatja
 - rekurziós szintekkel feljebb megy és összefésüli a résztömböket
- rekurziós mélység: $\simeq \log_2 n$;
 - minden szinten szétvágást és összefésülést hajt végre
 - rekurziós memóriaigény / futásidő minden szintn $\Theta(n)$, kivéve a 0-1. szinteken
- rendezés: stabil
- hatékonyság: akár $mT(n) \in \Theta(\log n)$, akár $MT(n) \in \Theta(n \log n)$, nem lehet lineáris (de ettől függetlenül még jónak számít)

Az ábrát hadd ne gépeljem be, megtalálható amúgyis az ea. jegyzetben.

$$(MS(A : \mathbb{T}[n]))$$
 $ms(A, 0, n)$

2.3. Verem (stack) adattípus

 $Megjegyz\acute{e}s$: 1-től indexeljük az elemeket (ahol az n:=0 a pillanatnyi fizikai mérete a tömbnek)

3. gyakorlat

3.1. Verem felhasználása: lengyel jelölés kiértékelése

- matematikai kifejezések jelölése:
 - infix jelölés (hagyományos): $5+3\cdot 4/(2+3-1)$
 - postfix jelölés (lengyel forma): 5 3 4*2 3+1-/+#
 - * #: a string végét jelöli (\sim C-ben ' \setminus 0')
 - * btw, a Wikipédia szerint a lengyel jelölés valójában a prefix jelölést jelenti, míg a postfix jelölést $reverse\ Polish\ notation$ nek nevezi $^-\setminus_-(._-)_-/^-$
- miért jó? → egyes fordítóprogramok átalakítják lengyel formára, mert nagyon könnyű kiértékelni
- kiértékelésük veremmel:
 - lengyel forma: számok a verembe, az operátorok "kiveszik" (pop()-olják) a szükséges számú argumentumokat
 - $-infix\ forma$: műveleti jelek a verembe (+,-, zárójelek, #), a számokkal meg lesz valami sajnos nem értem, hogy működik :')

Az ábrákat egyelőre nem rajzolnám fel. Gyakorlásként meg lehet írni a struktogramját a postfix-kiértékeléses és az infix-kiértékeléses algoritmusnak.

3.2. Verem adattípus másképp

S1L (singly linked list) – egyszerű egyirányú lista

A maradék stuki szorgalmi-házi.

4. gyakorlat

4.1. Sor / Lánc adatszerkezet

First In First Out (FIFO) adatszerkezet

Queue	
$-f,t: \mathbf{E}1^*$	
$-n:\mathbb{N}:=0$	
$+ \text{Queue}() \{ f := t := \mathbf{new} \text{ E1} \}$	$//\ konstruktor$
$+ \operatorname{add}(x : \mathbb{T})$	$//$ sor $v\'eg\'ere$
$+ ext{ rem}() : \mathbb{T}$	$// \operatorname{pop}()$ - $nak \ felel \ meg$
$+ ext{ first}(): \mathbb{T}$	// $ritk$ án használják
$+ \operatorname{length}() : \mathbb{T} \; \{ \mathbf{return} \; n \}$	$//$ isEmpty() : \mathbb{B} helyett
$+ \operatorname{setEmpty}()$	
$+ \sim \text{Queue}() \{ \text{setEmpty}(); \ \mathbf{delete} \ f \}$	$//\ destruktor$

Ha képes az [i]-edik elemét lekérdezni, akkor már nem queue-ról / sorról van szó. 3 klasszikus megoldása létezik (ábrákat pls hadd ne):

- A) f közvetlenül az első elemre, t közvetlenül az utolsóra mutat
- B) f közvetlenül az első elemre, t közvetlenül egy önálló végelemre mutat
 - végelem: inicializálatlan kulcsú, ⊗-ra mutat a next adattagja
 - amikor az add(x) metódusát meghívjuk, inicializálja eme végelemet (beállítja x-re a kulcsot) és generál a végére egy új végelemet
- C) ciklikus: a végelem rámutat a fejelemre (azaz az első elemre)

Itt a B) modell szerint írjuk meg. A megjegyzések az osztálydiagramban ezt a modellt szemléltetik. Szorg-hf: megírni a maradék stratégia egyikével.

 $Alternatív megoldás: \mathbb{B}$ típussal tér vissza, nem használ kivételt, így FALSE-szal tér vissza, ha nem A $\,p\,$ segédváltozóval eltároljuk az könnyebben elrejtődnek a hibák. várgás elkerülése végett.

Ellentétben f memóriacímét a memóriaszi-

4.2. Halmaz adatszerkezet fejelemes listával (H1L)

- Növekvő sorrendben tárolja az elemeket (szig. mon. növ. ↑).
- Minden elem csak egyszer szerepelhet.
- A halmaz fejelemes egyirányú listát alkalmaz (H1L).

SET
$-H: \mathbf{E}1^*$
$+ \operatorname{SET}() \ \{H := \mathbf{new} \ E1()\}$
$+\operatorname{insert}(x:\mathbb{T}):\{0,1,2\}$
$+ ext{ delete}(x:\mathbb{T}):\mathbb{B}$
$+ \operatorname{search}(x : \mathbb{T}) : \mathbb{B}$
$+ \operatorname{setEmpty}()$
$+ isEmpty() : \mathbb{B} \{ \mathbf{return} \ H \to next = \emptyset \}$
$+ \sim SET() \{ setEmpty(); \ \mathbf{delete} \ H \}$

Az insert()-hez némi magyarázat: 0 - siker; 1 - memória túlcsordulás; 2 - már benne van. A search() TRUE-val tér vissza, ha megtalálja a szóban forgó elemet.

Érdemes megfigyelni a ciklusfeltételekben az állítások sorrendjét: $q \neq \emptyset \land q \rightarrow key < x$. Ha a $q \neq \emptyset$ FALSE-szal tér vissza, a hátralévő részét ki sem értékeli \rightarrow hangyányit hatákonyabb, mint a fordított sorrendben. A maradék metódus szorg-hf.-nek lett feladva

5. gyakorlat

5.1. Ciklikus kétirányú lista (C2L)

E2
$+ key: \mathbb{T}$
+ next, prev : E2* := this // "onmagára inicializálja"
$-\operatorname{insert}(p,q,r)$
$+ ext{ follow}(p,q: ext{E2*})$
$+ \operatorname{precede}(q, r : E2*)$
$ + \operatorname{unlink}(q:\mathrm{E}2^*) $

- fejelemes (alapértelmezetten ilyen): H (key adattagja inicializálatlan)
- végén lehetne NULL is, de praktikusabb, ha összekötjük → hence: ciklikus
- rövidítése: C2L
- alapvetően 2 művelet (3, ha szigorúan vesszük; 4, ha annál is szigorúbban)
 - 1. Beszúrás két elem közé: insert(p, q, r) (segédfüggvény, jellemzően privát)
 - 2. Beszúrás elé / mögé: follow $(p,q:\mathrm{E}2^*),$ precede $(q,r:\mathrm{E}2^*)$
 - 3. Elem kifűzése: unlink $(q : E2^*)$

Fontos: nem törli, csak függetleníti a láncból

Miért jó, hogy ciklikus?

- bárhova be lehet szúrni
- legvégére hogyan a leghatékonyabb?
 - 1. follow $(H \to prev, q)$
 - 2. precede(q, H)
- ekvivalensek, de a második elhanyagolhatóan hatékonyabb

További lehetséges műveletek: readC2L(): E2*, slice(): E2* (utóbbi egy egész listaszakaszt hoz létre)

Ennek fényében nézzük meg a gyorsrendezést!

(readC2L() : E2*) H := new E2 read(x) p := new E2 $p \to key := x$ precede(p, H)

5.2. Quicksort

- működése:
 - kiválasztunk egy tengelyt (pivotot) (az eredetiben véletlenszerűen, itt az első eleme a listának)
 - átrendezzük az elemeit úgy, h a tengely elé kerüljenek a kisebbek, mögé a nagyobbak
 - felbontjuk részlistákra (partícionáljuk) és ugyanígy ismételjük az eljárást, amíg 2-eleműeket nem kapunk
 - legvégül összefésüljük
- stabil rendezés (C2L-re, a tömbrendező változatanem az)
- \bullet rendelkezik fejelemmel (H)
- kvízkérdésekből szerzett állítások
 - "oszd meg és uralkodj" elvű algoritmus
 - -a particionálás egy-elemű résztömbre nem hajtódik végre
 - a tengely kiválasztása és a részekre bontás mindig lineáris időben befejeződik
 - a quicksort particionáló eljárása közben a tengellyel egyenlők a tengely elé és mögé is kerülhetnek

A kapcsolódó ábrák szintúgy a Teams-es órai jegyzetben találhatók.

Jelöljék a köv. változók az alábbi értékeket: $p:=H\to next,\, r:=H\to prev$

$$\frac{\left(\operatorname{Quicksort}(H: \operatorname{E2*})\right)}{\operatorname{QS}(H,H)}$$

Itt p és r közötti részét rendezzük a listának. Ilyenkor nem kell rendezni: egyelemű, $\ddot{u}reslista$.

