6.1 A'reas entre Curvas (P79)

Region entre la curua y=f(x) y el eje x.

A'rea de la región
$$A = \int_{a}^{d} |f(x)| dx$$

$$A = -\int_{a}^{b} f dx + \int_{b}^{c} f dx - \int_{c}^{d} f dx$$

Intersecciones y bosquejor la curva y la región,

Ejerciciol: Bosqueje y encuentre el area de la región limitada por y=3x2-6x, x=-z, x=3 2 y=0.

$$y = 3x^{2} - 6x = 0$$

 $3x(x-2) = 0 \Rightarrow x = 0, x = 2.$

Some el área de 3 subregiones
$$A = \int_{0}^{3} 3x^{2} - 6x \, dx + \int_{0}^{2} 3x^{2} + 6x \, dx$$

$$-1$$

$$+ \int_{1}^{3} 3x^{2} - 6x \, dx$$

$$A = \chi^{3} - 3\chi^{2} \int_{-1}^{0} + (-\chi^{3} + 3\chi^{2})_{0}^{2} + \chi^{3} - 3\chi^{2} \int_{2}^{3}$$

$$A = 0 - (-8 = 12) + (-8 + 12) + (27 - 27 - 8 + 12) = 28$$

$$A = 20 + 4 + 4 = 28$$

¿ Qué sucede cuando hay una curua inferior?

Region: J(X) & y & f(X)

a & x & b. $\int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$ Jiferencia de á reus.

Franja horizontal á rectangula infinitesimal. uncho dx dA = (f(x) - g(x)) dx dA = (f(x) - g(x)) dx

Integrando en a Ex Eb. SdA = A

$$A = \int_{a}^{b} \left[S(x) - g(x) \right] dx$$

- i. Bosquejar las curvas f 49.
- 2. Intersector entre las curvas.
- 3. Basqueje la región

Ejemplo: Busqueje y encoentre el área entre k y2 = 4x en 15x54.

$$y_1 = \frac{-2}{\sqrt{x}}$$
 k $y_2 = 4x$ en $1 \le x \le 4$

$$\dot{c}$$
 \dot{y}_{2} \dot{y}_{1} ? \dot{c} \dot{c} \dot{y}_{1} \dot{y}_{2} ? $\frac{1}{\chi^{k}}$

$$A = \int_{1}^{4} y_{2} - y_{1} dx$$

$$A = \int_{1}^{4} 4x + 2x^{-1/2} dx$$

$$A = 2x^{2} + 4x^{1/2} \int_{1}^{4} 4x + 2x^{-1/2} dx$$

$$A = 2x^{2} + 4x^{1/2} \int_{1}^{4} 4x + 2x^{-1/2} dx$$

$$A = 3x^{2} + 4x + 2x^{-1/2} dx$$

Variación B'
$$y_1 = \frac{+4}{\sqrt{x'}}$$
 A $y_2 = 4x$ y la recta $x = 4$.

A = $\int_{-1}^{4} y_2 - y_1 dx$

intersección entre y_1 by y_2 .

$$\frac{4}{x^{1/2}} = 4x$$

$$1 = x^{3/2} \Rightarrow x = 1$$

$$A = \int_{1}^{9} 4x - 4x^{-1/2} dx = 2x^{2} - 8x^{1/2} dx = 2x^{2} - 8x^{2} - 8x^{1/2} dx = 2x^{2} - 8x^{2} - 8x^{2} - 8x^{2} dx = 2x^{2} - 8x^{2} - 8x^{2} - 8x^{2} - 8x^{2} dx = 2x^{2} - 8x^{2} - 8x^{2} - 8x$$

Variación C: A'rea de la región entre $y_1 = 4x^{-1/2}$, $y_2 = 4x$, x = 4 k y = 0.

$$y = 0 y = 0$$

$$A = \int_{0}^{1} (1/2)^{2} dx + \int_{0}^{1} (1/2)^{2} dx$$

$$A = 2x^{2} \int_{0}^{1} + 8x^{1/2} \int_{0}^{1} dx$$

$$A = 2 + 16 - 8 = 10$$

Ejemplo: Encuentre el área de la región entre las curvas y = 3x 4 y= 3x?

Intersector
$$3x^2 = 3x$$
 $x = 0$ $4x = 1$ $3x^2 - 3x = 3x(x-1) = 0$

$$A = \int_0^1 (3x - 3x^2) dx$$

$$A = \frac{3}{2}x^2 - x^3 \int_0^1 = \frac{3}{2} - 1 - 0$$

$$3x^2$$

Ejercicio 2: Bosqueje y encuentre el área de la región entre las curuas.

a)
$$y_1 = e^{\chi}$$
, $y_2 = e^{-\chi}$, $\chi = 0$, $\chi = \ln(2)$.

CIECE $\rightarrow +\infty$ deciece $\rightarrow 0$ $\chi = 0$ $y_1 = y_2 = 0$

$$A = \int_{0}^{\ln 2} (e^{x} - e^{-x}) dx$$

$$A = e^{x} + e^{-x} \int_{0}^{\ln 2} dx$$

$$A = e^{\ln 2} + e^{-\ln 2} \int_{0}^{\ln 2} dx$$

$$e^{\ln 2} = 2$$
, $e^{-\ln 2} = \frac{1}{e^{\ln 2}} = \frac{1}{2}$

$$A = e^{\ln 2} + e^{-\ln 2} - (e^{\circ} + e^{-\circ})$$

 $A = 2 + \frac{1}{2} - 2 = \frac{1}{2}$

6)
$$y_1 = \chi^3 + y_2 = 4\chi$$

2 regiones distintas y 3 intersectos.

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$y_1 = y_2$$
 $x^3 - 4x = 0$
 $x(x^2 - 4) = 0 \Rightarrow x = 0, \pm 2.$
 $y_1 = y_2(2) = 8.$

$$A = \int_{-1}^{0} (x^{3} - 4x) dx + \int_{0}^{2} (4x - x^{3}) dx$$

$$A = 2 \int_{0}^{2} (4x - x^{3}) dx$$

$$A = 2\left(2x^2 - \frac{x^4}{4}\right)^2 = 2\left(8 - \frac{16}{4}\right) = 2.4 = 8$$

c)
$$y_1 = x^2 - 4x + 4$$
, $y_2 = 10 - x^2$.

Intersectiones
$$y_1 = y_2$$
. $x^2 - 4x + 4 = 10 - x^2$.

$$2x^2 - 4x - 6 = 0$$

$$2(X^2-2X-3) = 2(X-3)(X+1) =$$

Intersector en x=-1 y x=3.

$$A = \int_{0}^{3} (0-x^{2} - (x^{2} - 4x + 4)) dx$$

$$A = \int_{0}^{3} (6 - 2x^{2} + 4x) dx$$

$$A = \left(6x - \frac{2}{3}x^3 + 2x^2\right)^3 = 18 - 18 + 18 - \left(-6 + \frac{2}{3} + 2\right)$$

$$18 + 4 - \frac{2}{3} = 22 - \frac{2}{3}$$

Alejandro
$$y_1 = 4 - x^2$$
 & $y_2 = 10 + x^2$, $x = 9$

$$A = \int_{0}^{b} y_{2} - y_{1} dx$$