

CUSTOMER OPTIMIZATION

IS 6813 Capstone

Andy Spendlove, Dan Powell, Jessica Kersey, Melissa Messervy, Tommaso Pascucci

Project Background

<u>Approach</u>

Immediate Impact

Targeted Intervention

Project Background

Current Threshold

Project Background

<u>Approach</u>

<u>Immediate Impact</u>

Targeted Intervention

Initial Approach

- Frequent order type associated with growth in initial models
- Sales reps with frequent order type clustered in high-growth group

Refined Approach

- Modeled customers below 400 gallons / year
- Causal Inference to estimate Heterogenous Treatment Effect
- Target = Avg Gallons Ordered Per Year
- Treatment = Frequent Order Type: Sales Rep

Project Background

<u>Approach</u>

<u>Immediate Impact</u>

Targeted Intervention

Customers Projected to Exceed 400 Gallons With Intervention

Project Background

<u>Approach</u>

Immediate Impact

Targeted Intervention

Targeted Intervention

CUSTOMER NUMBER	FREQUENT ORDER TYPE	TREATMENT EFFECT
501676519	MYCOKE360	170
501697621	MYCOKE360	170
600058076	CALL CENTER	169
501121328	MYCOKE LEGACY	164
600266259	CALL CENTER	159
600558267	MYCOKE LEGACY	154
600567852	MYCOKE LEGACY	154
501284653	MYCOKE LEGACY	151

Conditional Average Treatment Effects

All Customers

Avg Gallons per year

Subset

Avg Gallons per year

Conditional Average Treatment Effects

Sub-Trade Channel: Middle School

Avg Gallons per year

Cold Drink Channel: Wellness

Project Background

<u>Approach</u>

Immediate Impact

Targeted Intervention

Moving Forward

Recommendation

- Refine the sales rep models
- Utilize HTE modeling
- Model other interventions

Outcome

- Boost overall sales
- Retain Red Truck customers
- Unlock growth opportunities

QUESTIONS?

APPENDIX

Clustering Models

- Looked at clusters with high proportions of customers that grew (2023-2024)
- Examined characteristics of clusters
 - Highest proportions of growers and declining businesses
- Examined Correlations
 - Proportion of growing companies in a cluster and characteristics
- Customers included in model: 17,281

*Removed customers with NA values

Summary of HTE Modeling

- Heterogeneous Treatment Effect (HTE)
 - Treatment effects that vary across individuals or subgroups in a sample
 - Idea: model potential outcomes (factual and counterfactual) for each individual to estimate ITE
- Conditional Average Treatment Effect (CATE)
 - Treatment effects conditional on a covariate feature
- Individual Treatment Effect (ITE)
 - CATE down to the individual level; treatment effect conditional on being CUSTOMER NUMBER x

HTE Modeling - T-learner

- Trains Two Random Forest Models
 - Treatment (Sales Rep)
 - Non-Treatment (Not Sales Rep)
- Gets predictions for treatment effect using the treated and untreated models
- Calculates ITE
 - \circ ITE = $\hat{Y}1 \hat{Y}0$
- R^2 of models:
 - Untreated learner: 0.109
 - Treated learner: 0.235
- Mean CATE: 22.44
- Customers included in model: 22779

Modeling Results - Lasso

- Conducted Lasso Regression on Treatment Effect using characteristics
- R2: 0.460
- Gave insight into magnitude and direction of selected features' impact on treatment effect

Attempted Models

High-Growth Feature Analysis

- Logistic Regression
- Lasso
- Ridge
- Clustering
- Causal Forest
- Random Forest
- K-Means Clustering
- K-Medoid Clustering
- XG Boost
- DBSCAN

Treatment effects

- T-learner
 - Sales Rep
 - MyCoke360
- Causal forest
 - Sales Rep All Customers
 - Sales Rep Subset

Treatment Effect Feature Importance

- Lasso
- Random Forest