Reg. No.				

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Second Semester

18PYB101J – PHYSICS: ELECTROMAGNETIC THEORY, QUANTUM MECHANICS, WAVES AND OPTICS (For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note:

(i)

Page 1 of 3

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

(ii)		b hall invigilator at the end of B & Part - C should be ans			9			
Time	e: 3	hours				Max. N	/Iark	s: 1	00
			PART – A (20	$0 \times 1 = 20 \text{ N}$	Marks)	Marks	BL *	со	PO
				LL Questic	-				
	1	The st	pace charge polarization v	-		1	2	1	1
		_	Electric power		Audio				
		(C) I	-	` '	Optical -			-	•
	2.	The v	ector field whose diverger			1	2	1	1
		(A) I	rrotational	(B)	Rotational				
		(C) (Conservation	(D)	Solenoidal				
	3.	Which	n law can ampere's circuit	al be derive	ed from?	1	3	1	1
		(A) (Gauss Law	(B)	Newton's Law				
			Kirchhoff's Law	(D)	Biot-Savart Law				
	4.		terial of thickness 0.5 mm		ectric constant of 2.5 is subject oduced?	ed ¹	5	1_	1
		(A) 2	2.78 μC/m	(B)	3.91 μC/m				
		` '	5.84 μC/m	(D)	$4.12~\mu\text{C/m}$				
	5.		relative permeability of a potibility?		is 0.050. What is its magne	tic 1	5	2	1
		(A)	299	(B)	499				
		(C) (599	(D)	899				
	6.	Which	h of the following is a pro	perty of a l	hard magnetic material?	1	2	2	1
		(A)	Low hysteresis	(B)	Low eddy loss				
		(C)	Low coercive force	(D)	High residual induction			11	
	7.	Piezo	-electric materials are	class	of material.	1	1	2	1
		(A)	Active	(B)	Passive				
		(C)	Insulator	(D)	Magnetic				
	8.	susce	ptibility is $1.5 imes 10^{-3}$. Fin	id the magi		nd ¹	5	2	1
		` /	1000 A/m	. ,	1500 A/m				
		(C)	2000 A/m	(D)	2500 A/m				

25NA218PYB101J

	9.	The pri	ncipal quantum number descr	ibes		1	4	3	1
		(A) Th	ne spin of the electron	(B)	The shape of the orbital				
		(C) Er	nergy and size of the orbit	(D)	*				
	10.		is the probability of findin	g the	particle inside the box.	1	2	3	1
		(A) Qu	antisation		Normalization				
		(C) Hy	bridisation	(D)	Interference				
	11.	If the u	incertainty in the location of	fa.pa	article is equal to its de Broglie	1	3	3	1
		waveler	igth, what is the uncertainty in	n its v	velocity?				
		(A) Δv		(B)	$\Delta h = v$				
	>	(C) Δp)=V	(D)	$\Delta k = v$				
	12.	The class	ssical free electron theory cou	ıld no	t explain the	1	3	3	1
		(A) Oh	ım's law		Electrical conductivity in metals				
		(C) W	ave nature of the particle	(D)	Photo electrical effect				
13.	In Fresnel diffraction, the relative phase difference between the curved wavefront is					1	4	1	
		(A) Co	enstant	(B)	-1				
		(C) No	ot constant		Linearly increased				
	14.	The radi	us of the half-period zone is	propo	ortional to	1	1	4	1
					The square root of the frequency of light				
		(C) Th	1	(D)	The frequency of light of light				
	15		velength		_	1	5	4	1
	15.	A thin sheet with a refractive index of 1.5 and thickness of 1cm is placed in the path of light. What is the path difference observed?						4	1
		(A) 0.0	01 light. What is the pain diff		0.005				
		(C) 0.0		` /	0.009				
	16	If the dis	stance between the two clita i	a dow	blad the fair as will!	1	2	4	1
	10.	If the distance between the two slits is doubled, the fringe width (A) Doubles (B) Halves							1
		(C) 4 T		` '	Remains same				
	17.	A pair o	f mirrors placed on either side		ne active medium is known as _	. 1	I	5	1
			tical Resonator	` '	Cavity				
		(C) Ca			Shielding				
	18.	Calcula semicon	ate the wavelength of radiatid ducting material with a band	ion en gap e	mitted by an LED made up of energy of 2.8eV.	1	5	5	1
		(A) 2.8	Å	(B)	4.3308 Å	*6			
		(C) 554	18.4 Å	(D)	4430.8 Å				
	19.	Optical t	fiber is worked on principl	e.		1	1	5	1
		1 1	ws of reflection		Total internal reflection				
		(C) Lav	ws of interference	(D)	Brewster's law.				
	20.		G laser produces the waveleng	gth of	f microns.	1	1	5	1
		(A) 1.0		` '	10.603		2		
Page	2 of 3	(C) 9.6	02	(D)	2.564	ENI 4 0 *	onu-	A4 *	

25NA218PYB101J

	PART – B (5 \times 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	CO	РО	
21.	Explain electric field and electric potential due to surface charge	4	.1	1	1	
22,	distribution. Electromagnetic radiation propagating in free space has the values of electric and magnetic fields 86.6 V/m and 0.23 A/m respectively. Calculate	4	5	1	1	
	the characteristic impedance.	4	1	2	1	
23.	Discuss the magnetic behaviours based on their hystersis loop.	4	3	3	1	
24.	Explain the normalized wave functions for Schrodinger wave equations. Explain the wave behavior of light, including diffraction and interference,	4	4	4	1	
25.	the role of constructive and destructive interference in Young's single-slit					
	method. Write notes on the characteristics of the laser.	4	1	5	1	
26. 27.	Discuss the difference between single-mode and multimode fiber.	4	4	5	1	
	$PART - C (5 \times 12 = 60 Marks)$	Marks	ВL	co	PO	
	Answer ALL Questions	12	3	1	1	
28. a.	Derive the Maxwell's equations of electromagnetism from the fundamental laws of electricity and magnetism.	12	J	1	1	
	(OR)	12	3	1	1	
b.	Explain					
	(i) frequency dependence and					
	(ii) frequency versus power loss of various polarization mechanisms with					
29. a	suitable diagrams.		2	2	1	
	(OR)	10	2	2	1	
b	. Explain the magnetic bubble memory with suitable diagrams and write a	12	2	2	1	
	few applications. Obtain the wave function for a particle moving in a one-dimensional	12	4	3	1	
30. a	potential well using Schrodinger wave equations. (OR)					
b .i	i. Derive the de-Brogle equations in terms of energy, voltage, and temperature.	8	2			
i	i. Write a note of the non-existence of electrons in the nucleus with the help	5 4	4	1 3	3 1	
	C4- and containty principle			3 4	1 1	
31. 8	diffraction at a double-slit method.	. 12		, -	7 1	
	(OR)	v 12	į.	3	4 1	
	Explain how will you produce and detect plane, elliptically, and circularly polarized light.			3	4 1	
32.	a. Explain the principle, working, and construction of CO ₂ laser and write th merits and demerits of CO ₂ laser.	е				
	(OR)	n 8		4	5 1	
	b. Derive the expression for Numerical Aperture and acceptance angle for a optical fiber.			4	5 1	1
	ii. A step-index fiber has a numerical aperture of 0.26, a core refractive index of 1.5, and a core diameter of 100 micrometers. Calculate the acceptance	ex 4 ee		4	ا ر	
	angle. * * * *					