Matematică $M_pedagogic$

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_2 = 4$	2p
	$S_3 = b_1 + b_2 + b_3 = 2 + 4 + 8 = 14$	3 p
2.	f(m) = 5m - 6	2p
	$5m-6=2m \Leftrightarrow m=2$	3 p
3.	$x^2 - 10x + 25 = 25 \Rightarrow x^2 - 10x = 0$	2p
	x = 0 sau $x = 10$, care convin	3 p
4.	$x - \frac{10}{100} \cdot x + 10 = 190$, unde x este prețul inițial al obiectului	3 p
	x = 200 de lei	2p
5.	Punctul $M(3,0)$ este mijlocul segmentului OB	2p
	Ecuația medianei este $y = 4x - 12$	3 p
6.	$\sin 30^\circ = \frac{1}{2}$	2p
	$\sin 90^{\circ} = 1 \Rightarrow 2\sin 30^{\circ} - \sin 90^{\circ} = 2 \cdot \frac{1}{2} - 1 = 0$	3 p

1.	$(-1) \circ 1 = 2 \cdot ((-1) \cdot 1 + (-1) + 1) + 1 =$	3p
	$= 2 \cdot (-1) + 1 = -1$	2 p
2.	$x \circ y = 2(xy + x + y) + 1 = 2(yx + y + x) + 1 =$	3p
	$= y \circ x$, pentru orice numere reale x și y , deci legea de compoziție " \circ " este comutativă	2 p
3.	$x \circ y = 2xy + 2x + 2y + 2 - 1 =$	2p
	=2x(y+1)+2(y+1)-1=2(x+1)(y+1)-1, pentru orice numere reale x şi y	3 p
4.	$x \circ \left(-\frac{1}{2}\right) = 2\left(x+1\right)\left(-\frac{1}{2}+1\right) - 1 = x+1-1 = x$, pentru orice număr real x	2p
	$\left(-\frac{1}{2}\right) \circ x = 2\left(-\frac{1}{2}+1\right)(x+1)-1=x+1-1=x$, pentru orice număr real x , deci $e=-\frac{1}{2}$ este elementul neutru al legii de compoziție " \circ "	3 p
5.	• •	3p
	x = -2 sau $x = -1$	2 p
6.	$2(n+1)(n-1+1)-1 \le 11 \Leftrightarrow n^2+n-6 \le 0$	2p
	$n \in [-3, 2]$ şi, cum n este număr natural nenul, obținem $n = 1$ sau $n = 2$	3 p

SUBII	SUBIECTUL al III-lea (30 de pur	
1.	$\det A = \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = 1 \cdot 0 - 2 \cdot 1 =$	3p
	=0-2=-2	2p
2.	$A + B = \begin{pmatrix} 4 & 2 \\ 4 & 2 \end{pmatrix}$	3p
	$\det(A+B) = \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix} = 0$	2p
3.	$A \cdot A = \begin{pmatrix} 1 \cdot 1 + 1 \cdot 2 & 1 \cdot 1 + 1 \cdot 0 \\ 2 \cdot 1 + 0 \cdot 2 & 2 \cdot 1 + 0 \cdot 0 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} = B$	2p
4.	$aA + bB = \begin{pmatrix} a & a \\ 2a & 0 \end{pmatrix} + \begin{pmatrix} 3b & b \\ 2b & 2b \end{pmatrix} = \begin{pmatrix} a+3b & a+b \\ 2a+2b & 2b \end{pmatrix}$	2p
	$\begin{pmatrix} a+3b & a+b \\ 2a+2b & 2b \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 6 & 2 \end{pmatrix}, \text{ de unde obținem } a=2 \text{ și } b=1$	3p
5.	$X = B - A \Rightarrow X = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	3 p
	$\det X = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4 \neq 0$, deci matricea X este inversabilă	2p
6.	$A + B - aI_2 = \begin{pmatrix} 4 - a & 2 \\ 4 & 2 - a \end{pmatrix} \Rightarrow \det(A + B - aI_2) = a^2 - 6a$	3p
	$a^2 - 6a \le 0 \Leftrightarrow a \in [0, 6]$	2p

Pagina 2 din 2

Matematică M_pedagogic

Varianta 6

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați suma primilor trei termeni ai progresiei geometrice cu termeni pozitivi $(b_n)_{n\geq 1}$, știind că $b_1 = 2$ și $b_3 = 8$.
- **5p** 2. Determinați numărul real m, știind că punctul A(m,2m) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5x 6.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 10x + 25} = 5$.
- **5p 4.** După o ieftinire cu 10%, urmată de o scumpire cu 10 lei, prețul unui obiect este 190 de lei. Determinați prețul inițial al obiectului.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,4) și B(6,0). Determinați, în triunghiul AOB, ecuatia medianei din vârful A.
- **5p** | **6.** Arătați că $2\sin 30^{\circ} \sin 90^{\circ} = 0$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 2(xy + x + y) + 1$.

- **5p 1.** Arătați că $(-1) \circ 1 = -1$.
- **5p 2.** Arătați că legea de compoziție "°" este comutativă.
- **5p** | **3.** Demonstrați că $x \circ y = 2(x+1)(y+1)-1$, pentru orice numere reale x și y.
- **5p 4.** Demonstrați că $e = -\frac{1}{2}$ este elementul neutru al legii de compoziție " \circ ".
- **5p 5.** Determinați numerele reale x pentru care $(x-1) \circ (x+2) = -5$.
- **5p 6.** Determinați numerele naturale nenule *n* pentru care $n \circ (n-1) \le 11$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$ și $B = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$.

- **5p 1.** Arătați că det A = -2.
- **5p** 2. Calculați $\det(A+B)$.
- **5p 3.** Arătați că $A \cdot A = B$.
- **5p 4.** Determinați numerele reale a și b pentru care $aA + bB = \begin{pmatrix} 5 & 3 \\ 6 & 2 \end{pmatrix}$.
- **5p** | **5.** Arătați că, dacă $X \in \mathcal{M}_2(\mathbb{R})$ astfel încât X + A = B, atunci matricea X este inversabilă.
- **5p 6.** Determinați valorile reale ale lui a pentru care $\det(A + B aI_2) \le 0$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$4\sqrt{5} - 5\sqrt{3} + 6\sqrt{3} - \sqrt{3} + 5 - 4\sqrt{5} =$	3 p
	$= (4\sqrt{5} - 4\sqrt{5}) + (-5\sqrt{3} + 6\sqrt{3} - \sqrt{3}) + 5 = 5$	2p
2.	f(1) = 1 + a	2 p
	$1+a=8 \Leftrightarrow a=7$	3 p
3.	$2x-1=x^2 \Rightarrow x^2-2x+1=0$	2p
	x=1, care convine	3 p
4.	Cifra unităților poate fi aleasă în 9 moduri	2 p
	Cum cifrele sunt distincte, pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 8 moduri, deci se pot forma $9.8 = 72$ de numere	3 p
5.	Dreapta d intersectează axa $Ox \Rightarrow y = 0$	2 p
	$x-2=0 \Rightarrow x=2$	3 p
6.	$AB^2 + AC^2 = 100 = BC^2 \Rightarrow \Delta ABC$ este dreptunghic în A	3 p
	$\mathcal{A}_{\Delta ABC} = \frac{6 \cdot 8}{2} = 24$	2p

1.	$(-1)*3 = (-1)\cdot 3 + (-1) + 3 =$	3p
	=-3-1+3=-1	2 p
2.	x * y = xy + x + y + 1 - 1 =	2p
	$=x(y+1)+(y+1)-1=(x+1)(y+1)-1$, pentru orice numere reale $x \neq y$	3 p
3.	x*0=(x+1)(0+1)-1=x+1-1=x, pentru orice număr real x	3p
	0*x = (0+1)(x+1)-1=x+1-1=x, pentru orice număr real x , deci $e=0$ este elementul neutru al legii de compoziție ,,*"	2p
4.	$1*\left(-\frac{1}{2}\right) = (1+1)\left(-\frac{1}{2}+1\right) - 1 = 2 \cdot \frac{1}{2} - 1 = 0$	2p
	$\left(-\frac{1}{2}\right)*1 = \left(-\frac{1}{2}+1\right)(1+1)-1 = \frac{1}{2}\cdot 2-1 = 0, \text{ deci } -\frac{1}{2} \text{ este simetricul lui 1 în raport cu legea}$ de compoziție ,,*"	3 p
5.	$x * x = (x+1)^2 - 1$, $x * x * x = (x+1)^3 - 1$, unde x este număr real	2p
	$(x+1)^3 - 1 = x \Leftrightarrow x(x+1)(x+2) = 0 \Leftrightarrow x = -2 \text{ sau } x = -1 \text{ sau } x = 0$	3p
6.	Mulțimea numerelor naturale de o cifră are 10 elemente, deci sunt 10 cazuri posibile	2p
	$(n+1)^2 - 1 = 3$ şi, cum n este număr natural, obținem $n = 1$, deci este 1 caz favorabil	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{10}$	1p

	` .	uncte
1.	$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	3р
	$\det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$	2p
2.	$A(1) + A(5) = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix} + \begin{pmatrix} -9 & 10 \\ -15 & 16 \end{pmatrix} = \begin{pmatrix} -10 & 12 \\ -18 & 20 \end{pmatrix} =$	2p
	$=2\begin{pmatrix} -5 & 6 \\ -9 & 10 \end{pmatrix} = 2A(3)$	3 p
3.	$A(1) \cdot A(2) = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix} \cdot \begin{pmatrix} -3 & 4 \\ -6 & 7 \end{pmatrix} =$	2p
	$= \begin{pmatrix} -9 & 10 \\ -15 & 16 \end{pmatrix} = A(5)$	3p
4.	$\det(A(a)) = \begin{vmatrix} 1-2a & 2a \\ -3a & 1+3a \end{vmatrix} = (1-2a)(1+3a) - (-3a)2a = 1+a, \text{ unde } a \text{ este număr real}$	3 p
	Matricea $A(a)$ este inversabilă $\Leftrightarrow \det(A(a)) \neq 0$, deci $a \in \mathbb{R} \setminus \{-1\}$	2p
5.	$A(a) \cdot A(-1) = \begin{pmatrix} 1 - 2a & 2a \\ -3a & 1 + 3a \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 3 & -2 \end{pmatrix} = A(-1), \text{ pentru orice număr real } a$	3p
	$A(-1) \cdot A(a) = \begin{pmatrix} 3 & -2 \\ 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 - 2a & 2a \\ -3a & 1 + 3a \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 3 & -2 \end{pmatrix} = A(-1), \text{ pentru orice număr real } a$	2p
6.	$\det\left(A\left(n^4\right)\right) = 1 + n^4$	2p
	$1+n^4 < 32 \Leftrightarrow n^4 < 31$ şi, cum n este număr natural nenul, obținem $n=1$ sau $n=2$	3 p

Matematică M_pedagogic

Varianta 7

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $4\sqrt{5} \sqrt{75} + \sqrt{108} \sqrt{3} + \sqrt{25} \sqrt{80} = 5$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + a, unde a este număr real. Determinați numărul real a, pentru care f(1) = 8.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x-1} = x$.
- **5p 4.** Determinați câte numere naturale de două cifre distincte se pot forma cu cifrele 1, 2, 3, 4, 5, 6, 7, 8 și 9.
- **5p 5.** În reperul cartezian xOy se consideră dreapta d de ecuație y = x 2. Determinați coordonatele punctului de intersecție a dreptei d cu axa Ox.
- **5p** | **6.** Se consideră triunghiul ABC cu AB = 6, AC = 8 și BC = 10. Calculați aria triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = xy + x + y.

- **5p 1.** Arătați că (-1)*3=-1.
- **5p** 2. Demonstrați că x * y = (x+1)(y+1)-1, pentru orice numere reale x și y.
- **5p 3.** Verificați dacă e = 0 este elementul neutru al legii de compoziție "*".
- **5p 4.** Verificați dacă $-\frac{1}{2}$ este simetricul lui 1 în raport cu legea de compoziție "*".
- **5p 5.** Determinați numerele reale x, știind că x*x*x=x.
- **5p 6.** Determinați probabilitatea ca, alegând un număr n din mulțimea numerelor naturale de o cifră, acesta să verifice relația n * n = 3.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricea $A(a) = \begin{pmatrix} 1-2a & 2a \\ -3a & 1+3a \end{pmatrix}$, unde a este număr real.

- **5p** | **1.** Arătați că $\det(A(0))=1$.
- **5p 2.** Arătați că A(1) + A(5) = 2A(3).
- **5p 3.** Arătați că $A(1) \cdot A(2) = A(5)$.
- **5p 4.** Determinați valorile reale ale lui a pentru care matricea A(a) este inversabilă.
- **5p** | **5.** Demonstrați că $A(a) \cdot A(-1) = A(-1) \cdot A(a) = A(-1)$, pentru orice număr real a.
- **5p 6.** Determinați numerele naturale nenule n pentru care $\det(A(n^4)) < 32$.

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2\sqrt{3} - \sqrt{20} + \sqrt{45} - \sqrt{5} + \sqrt{4} - \sqrt{12} = 2\sqrt{3} - 2\sqrt{5} + 3\sqrt{5} - \sqrt{5} + 2 - 2\sqrt{3} =$	3 p
	$= (2\sqrt{3} - 2\sqrt{3}) + (-2\sqrt{5} + 3\sqrt{5} - \sqrt{5}) + 2 = 2$	2 p
2.	$f(3)=10, f(1)=8 \Rightarrow a=f(3)-f(1)=2$	3p
	f(a) = f(2) = 9	2p
3.	$2x^2 + 4x + 1 = x^2 + 2x + 1 \Rightarrow x^2 + 2x = 0$	2 p
	x = -2, care nu convine sau $x = 0$, care convine	3 p
4.	Prețul după prima ieftinire este $x - \frac{50}{100} \cdot x = \frac{x}{2}$, unde x este prețul inițial al obiectului	2p
	Prețul după a doua ieftinire este $\frac{x}{2} - \frac{50}{100} \cdot \frac{x}{2} = \frac{x}{4}$, deci $\frac{x}{4} = 100 \Rightarrow x = 400$ de lei	3 p
5.	Mijlocul segmentului <i>NP</i> este punctul $Q(-1,-2)$	3 p
	MQ = 1	2 p
6.	$\cos B = \frac{AB}{BC} \Rightarrow \frac{\sqrt{3}}{2} = \frac{AB}{10}$	3p
	$AB = 5\sqrt{3}$	2p

		2
1.	$2*2=2\cdot 2\cdot 2-2\cdot 2-3=$	3 p
	=8-4-4+3=3	2p
2.	x * y = 2xy - 2x - 2y + 2 + 1 =	2 p
	=2x(y-1)-2(y-1)+1=2(x-1)(y-1)+1, pentru orice numere reale x şi y	3 p
3.	$x*\frac{3}{2} = 2(x-1)\left(\frac{3}{2}-1\right) + 1 = x-1+1 = x$, pentru orice număr real x	2 p
	$\frac{3}{2} * x = 2(\frac{3}{2} - 1)(x - 1) + 1 = x - 1 + 1 = x = x * \frac{3}{2}$, pentru orice număr real x, deci $e = \frac{3}{2}$ este	3 p
	elementul neutru al legii de compoziție "*"	
4.	$2*\frac{5}{4} = 2(2-1)(\frac{5}{4}-1)+1=2\cdot\frac{1}{4}+1=\frac{3}{2}$	2 p
	$\frac{5}{4} * 2 = 2\left(\frac{5}{4} - 1\right)(2 - 1) + 1 = 2 \cdot \frac{1}{4} + 1 = \frac{3}{2}, \text{ deci } \frac{5}{4} \text{ este simetricul lui 2 în raport cu legea de compoziție ,,*"}$	3 p
5.	$2(x+1-1)(x-1-1)+1=1 \Leftrightarrow x(x-2)=0$	3p
	x = 0 sau $x = 2$	2p
6.	$2(n-1)(n+1-1)+1 \le 5 \Leftrightarrow (n-1)n \le 2$	2p
	Cum n este număr natural nenul, obținem $n=1$ sau $n=2$	3 p

SUBIECTUL al III-lea	(30 de puncte)
----------------------	----------------

5022	(30 the p	direct)
1.	$\det A = \begin{vmatrix} 1 & 4 \\ -3 & -2 \end{vmatrix} = 1 \cdot (-2) - (-3) \cdot 4 =$	3p
	=-2+12=10	2 p
2.	$B \cdot B = \begin{pmatrix} 27 & -6 \\ -12 & 3 \end{pmatrix}$	2p
	$6B - 3I_2 = \begin{pmatrix} 30 & -6 \\ -12 & 6 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 27 & -6 \\ -12 & 3 \end{pmatrix} = B \cdot B$	3p
3.	$xA + yB = \begin{pmatrix} x & 4x \\ -3x & -2x \end{pmatrix} + \begin{pmatrix} 5y & -y \\ -2y & y \end{pmatrix} = \begin{pmatrix} x+5y & 4x-y \\ -3x-2y & -2x+y \end{pmatrix}$	2p
	$\begin{pmatrix} x+5y & 4x-y \\ -3x-2y & -2x+y \end{pmatrix} = \begin{pmatrix} 7 & 7 \\ -8 & -3 \end{pmatrix}, \text{ de unde obținem } x=2 \text{ și } y=1$	3p
4.	$\det B = 3$	2p
	$B^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{5}{3} \end{pmatrix}$	3p
5.	$X = B - A \Rightarrow X = \begin{pmatrix} 4 & -5 \\ 1 & 3 \end{pmatrix}$	2p
	$\det X = \begin{vmatrix} 4 & -5 \\ 1 & 3 \end{vmatrix} = 17 \neq 0 \text{ , deci matricea } X \text{ este inversabilă}$	3p
6.	$A + aI_2 = \begin{pmatrix} 1+a & 4 \\ -3 & a-2 \end{pmatrix} \Rightarrow \det(A + aI_2) = a^2 - a + 10 =$	2p
	$= \left(a - \frac{1}{2}\right)^2 + \frac{39}{4} > 0, \text{ pentru orice număr real } a$	3p

Proba E. c)

Matematică *M_pedagogic*

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

- **5p 1.** Arătați că $2\sqrt{3} \sqrt{20} + \sqrt{45} \sqrt{5} + \sqrt{4} \sqrt{12} = 2$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 7. Calculați f(a), unde a = f(3) f(1).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x^2 + 4x + 1} = x + 1$.
- **5p 4.** După două ieftiniri succesive cu câte 50%, un obiect costă 100 de lei. Calculați prețul inițial al obiectului.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(-2,-2), N(-2,0) și P(0,-4). Determinați lungimea medianei din vârful M al triunghiului MNP.
- **5p 6.** Se consideră triunghiul ABC dreptunghic în A, cu BC = 10 și $m(\angle B) = 30^{\circ}$. Calculați lungimea laturii AB.

SUBIECTUL al II-lea – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = 2xy - 2x - 2y + 3.

- **5p 1.** Arătați că 2*2=3.
- **5p 2.** Demonstrați că x * y = 2(x-1)(y-1)+1, pentru orice numere reale x și y.
- **5p** 3. Arătați că $e = \frac{3}{2}$ este elementul neutru al legii de compoziție "*".
- **5p 4.** Verificați dacă $\frac{5}{4}$ este simetricul lui 2 în raport cu legea de compoziție "*".
- **5p 5.** Determinați numerele reale x pentru care (x+1)*(x-1)=1.
- **5p 6.** Determinați numerele naturale nenule n pentru care $n*(n+1) \le 5$.

SUBIECTUL al III-lea – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

Se consideră matricele
$$A = \begin{pmatrix} 1 & 4 \\ -3 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & -1 \\ -2 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- **5p 1.** Arătați că det A = 10.
- **5p** | **2.** Arătați că $B \cdot B = 6B 3I_2$.
- **5p 3.** Determinați numerele reale x și y pentru care $xA + yB = \begin{pmatrix} 7 & 7 \\ -8 & -3 \end{pmatrix}$.
- **5p 4.** Determinați inversa matricei B.
- **5p** | **5.** Arătați că matricea $X \in \mathcal{M}_2(\mathbb{R})$, care verifică egalitatea A + X = B, este inversabilă.
- **5p** | **6.** Demonstrați că $\det(A + aI_2) > 0$, pentru orice număr real a.

Matematică *M_pedagogic*

Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(\sqrt{2}-1)(3\sqrt{2}+1) = 5-2\sqrt{2}$	2p
	$\left(\sqrt{2}+1\right)^2 = 3+2\sqrt{2}$, deci $\left(\sqrt{2}-1\right)\left(3\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)^2 = 5-2\sqrt{2}+3+2\sqrt{2}=8 \in \mathbb{Z}$	3 p
2.	f(1) = 2m - 6, deci $2m - 6 = -4$ sau $2m - 6 = 4$	3 p
	m=1 sau $m=5$	2p
3.	$2x+3 = (3x+2)^2 \Rightarrow 9x^2 + 10x + 1 = 0$	3p
	$x = -1$ care nu convine, $x = -\frac{1}{9}$ care convine	2p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 36 de numere naturale de două cifre care au cifra zecilor strict mai mică decât cifra unităților, deci sunt 36 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{5}$	2p
5.	$m_{AC} = -a + 1, \ m_{OB} = \frac{1}{2}$	2p
	$\frac{1}{2}(-a+1) = -1 \Leftrightarrow a = 3$	3 p
6.	$\frac{BC}{\sin A} = \frac{AC}{\sin B} \Rightarrow \frac{6\sqrt{2}}{\sin A} = \frac{12}{\frac{\sqrt{2}}{2}} \Rightarrow \sin A = \frac{1}{2}$	3p
	$m(A) = 30^{\circ}$, care convine, sau $m(A) = 150^{\circ}$, care nu convine, deoarece $m(B) = 45^{\circ}$	2p

1.	$\sqrt{2} * \sqrt{4} = (\sqrt{2} - 2)(\sqrt{4} - 2) + 2 =$	3р
	$=(\sqrt{2}-2)(2-2)+2=2$	2p
2.	$x * y = (x-2)(y-2) + 2$, pentru orice numere reale $x \neq y$	2p
	y*x=(y-2)(x-2)+2=(x-2)(y-2)+2=x*y, pentru orice numere reale x și y , deci legea de compoziție "*" este comutativă	3 p
3.	x*3 = (x-2)(3-2) + 2 = x-2+2 = x, pentru orice număr real x	2p
	3*x = (3-2)(x-2)+2=x-2+2=x, pentru orice număr real x , deci $e=3$ este elementul neutru al legii de compoziție ,,*"	3p
4.	$(2^{x}-2)(4^{x}-2)+2=2 \Leftrightarrow 2^{x}-2=0 \text{ sau } 4^{x}-2=0$	3р
	$x=1 \text{ sau } x=\frac{1}{2}$	2p

5.	$(x-2)(x+1-2)+2 \le 8 \Leftrightarrow x^2-3x-4 \le 0$	3 p
	$x \in [-1,4]$	2p
6.	x*2=2 şi $2*y=2$, pentru orice numere reale x şi y	2p
	$1*\sqrt{2}*\sqrt{3}**\sqrt{10} = ((1*\sqrt{2}*\sqrt{3})*\sqrt{4})*(\sqrt{5}*\sqrt{6}**\sqrt{10}) = 2*(\sqrt{5}*\sqrt{6}**\sqrt{10}) = 2$	3p

SUBIECTUL al III-lea (30 de puncte)

1.	$\det M = \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} = 2 \cdot 3 - 1 \cdot (-1) =$	3 p
	=6+1=7	2 p
2.	$A(a) = \begin{pmatrix} 2+2a & 1 \\ -1 & 3+2a \end{pmatrix} \Rightarrow \det(A(a)) = \begin{vmatrix} 2+2a & 1 \\ -1 & 3+2a \end{vmatrix} = 4a^2 + 10a + 7$	3 p
	$4a^2 + 10a + 7 = 7 \Leftrightarrow a = -\frac{5}{2} \text{ sau } a = 0$	2p
3.	$M \cdot A(a) = M \cdot (M + 2aI_2) = M \cdot M + 2aM$, pentru orice număr real a	2p
	$A(a) \cdot M = (M + 2aI_2) \cdot M = M \cdot M + 2aM = M \cdot A(a)$, pentru orice număr real a	3 p
4.	$A(-1) = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \det(A(-1)) = 1 \neq 0$	2p
	$\left(A(-1)\right)^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$	3p
5.	Suma elementelor matricei $A(\log_2 a)$ este $5+4\log_2 a$	2p
	$5 + 4\log_2 a = 37 \Leftrightarrow \log_2 a = 8$, deci $a = 256$	3 p
6.	Pentru orice număr întreg m , numărul $\det(A(m)) = 4m^2 + 10m + 7$ este întreg și, cum $4m^2 + 10m + 7 > 0$, obținem că numărul $\det(A(m))$ este natural	2p
	Cum $4m^2$ și $10m$ sunt numere pare, obținem că numărul $\det(A(m))$ este natural impar	3p

Pagina 2 din 2

Proba E. c) Matematică *M_pedagogic*

Clasa a XII-a

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că numărul $(\sqrt{2}-1)(3\sqrt{2}+1)+(\sqrt{2}+1)^2$ este întreg.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = (2m-1)x-5, unde m este număr real. Determinați numerele reale m, știind că |f(1)| = 4.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x+3} = 3x+2$.
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifra zecilor strict mai mică decât cifra unităților.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,1), B(2,1) și C(0,a), unde a este număr real. Determinați numărul real a astfel încât $AC \perp OB$.
- **5p 6.** Determinați măsura unghiului A al triunghiului ABC, știind că $BC = 6\sqrt{2}$, AC = 12 și $m(\ll B) = 45^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = (x-2)(y-2)+2.

- **5p** 1. Calculati $\sqrt{2} * \sqrt{4}$.
- **5p 2.** Demonstrați că legea de compoziție "*" este comutativă.
- **5p 3.** Verificați dacă e = 3 este elementul neutru al legii de compoziție "*".
- **5p 4.** Determinați numerele reale x pentru care $2^x * 4^x = 2$.
- **5p 5.** Determinați valorile reale x pentru care $x*(x+1) \le 8$.
- **5p 6.** Calculați $1*\sqrt{2}*\sqrt{3}*...*\sqrt{10}$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $M = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(a) = M + 2aI_2$, unde a este număr real.

- **5p 1.** Calculați $\det M$.
- **5p** 2. Determinați numerele reale a, știind că det(A(a)) = 7.
- **5p** 3. Arătați că $M \cdot A(a) = A(a) \cdot M$, pentru orice număr real a.
- **5p 4.** Determinați inversa matricei A(-1).
- 5p | 5. Determinați numărul real a, a > 0, pentru care suma elementelor matricei $A(\log_2 a)$ este egală cu 37.
- **5p 6.** Demonstrați că, pentru orice număr întreg m, numărul $\det(A(m))$ este natural impar.

Proba E. c)

Matematică *M_pedagogic*

Clasa a XI-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I

- Pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea și SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	\mathbf{A}	5p
2.	C	5p
3.	D	5p
4.	В	5p
5.	В	5p
6.	В	5p

SUBIECTUL al II-lea (30 de puncte)

1.	$3*9=3^{\log_3 9}=$	2 p
	$=3^2=9$	3 p
2.	$\log_3(x * y) = \log_3(x^{\log_3 y}) = \log_3 y \cdot \log_3 x, \text{ pentru orice } x, y \in M$	2p
	$\log_3(y*x) = \log_3(y^{\log_3 x}) = \log_3 x \cdot \log_3 y = \log_3(x*y), \text{ deci } x*y = y*x, \text{ pentru orice}$	3p
	$x, y \in M$, de unde obținem că legea de compoziție "*" este comutativă	
3.	$x*3 = x^{\log_3 3} = x^1 = x$, pentru orice $x \in M$	2p
	$3*x = 3^{\log_3 x} = x$, pentru orice $x \in M$, deci $e = 3$ este elementul neutru al legii de compoziție "*"	3 p
4.	$x*a = a \Leftrightarrow a*x = a \Leftrightarrow a^{\log_3 x} = a$, pentru orice $x \in M$	3 p
	a=1	2 p
5.	$x*x = x^{\log_3 x}$, $x*x*x = x^{\log_3^2 x}$, pentru orice $x \in M$	2p
	$x = x \cdot \frac{\log_3^2 x}{1} = x$, deci $x = 1$ sau $x = \frac{1}{3}$ sau $x = 3$, care convin	3 p
6.	$x*1=1$, pentru orice $x \in M$	2p
	$\left \frac{1}{5} \times \frac{2}{5} \times \frac{3}{5} \times \frac{4}{5} \times \frac{5}{5} = \left(\frac{1}{5} \times \frac{2}{5} \times \frac{3}{5} \times \frac{4}{5} \right) \times 1 = 1 \right $	3 p

1.	$1 = 1 + 0 \cdot \sqrt{3}$	3 p
	Deoarece $1 \in \mathbb{Z}$ și $0 \in \mathbb{Z}$, obținem $1 \in \mathbb{Z}\left[\sqrt{3}\right]$	2p
2.	$x = m + n\sqrt{3}$, $y = p + q\sqrt{3}$, unde $m, n, p, q \in \mathbb{Z} \Rightarrow x + y = (m+p) + (n+q)\sqrt{3}$	3 p
	Deoarece $m + p \in \mathbb{Z}$ și $n + q \in \mathbb{Z}$, obținem $x + y \in \mathbb{Z}\left[\sqrt{3}\right]$	2p

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

3.	$x = m + n\sqrt{3}$, $y = p + q\sqrt{3}$, unde $m, n, p, q \in \mathbb{Z} \Rightarrow xy = (mp + 3nq) + (mq + np)\sqrt{3}$	3p
	Deoarece $mp + 3nq \in \mathbb{Z}$ și $mq + np \in \mathbb{Z}$, obținem $xy \in \mathbb{Z}\left[\sqrt{3}\right]$	2p
4.	$\left(2+\sqrt{3}\right)x'=1 \Rightarrow x'=\frac{1}{2+\sqrt{3}}=$	2p
	$= \frac{2 - \sqrt{3}}{2^2 - \sqrt{3}^2} = 2 - \sqrt{3} \in \mathbb{Z} \left[\sqrt{3} \right]$	3p
5.	De exemplu, pentru $x = 2 - \sqrt{3}$, avem $x \in \mathbb{Z}\left[\sqrt{3}\right]$	2p
	Deoarece $1, 7 < \sqrt{3} < 2 \Rightarrow 0 < 2 - \sqrt{3} < 0, 3$ obţinem $0 < x < \frac{3}{10}$	3p
6.	$a \in H \Rightarrow a = m + n\sqrt{3}$, unde $m, n \in \mathbb{Z}$, $m^2 - 3n^2 = 1$, deci $\frac{1}{a} = \frac{1}{m + n\sqrt{3}} = 1$	2p
	$= \frac{m - n\sqrt{3}}{m^2 - 3n^2} = m + (-n)\sqrt{3} \text{ si, cum } m, n \in \mathbb{Z} \text{ si } m^2 - 3(-n)^2 = m^2 - 3n^2 = 1, \text{ obținem } \frac{1}{a} \in H$	3 p

Proba E. c)

Matematică *M_pedagogic*

Clasa a XI-a

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I – Scrieți, pe foaia de examen, litera corespunzătoare răspunsului corect. (30 de puncte)

1. Rezultatul calculului $\frac{1}{3-\sqrt{2}} + \frac{1}{3+\sqrt{2}} + \frac{1}{\sqrt{49}}$ este: 5p

B. $3 + \sqrt{2}$

2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x - 5. Mulțimea soluțiilor inecuației f(2m+1) > f(m)**5p**

A. $(-\infty, -2)$

B. $(-\infty, -1)$

C. $(-1, +\infty)$ D. (-2, -1)

3. Mulțimea soluțiilor ecuației $2\log_2 x = \log_2(x+12)$ este: 5p

B. {-4,3}

C. $\{-3,4\}$

5p 4. După o majorare cu 20%, urmată de o reducere cu 20%, prețul unui obiect este 96 de lei. Prețul inițial al obiectului este:

A. 96 de lei

B. 100 de lei

C. 120 de lei

D. 144 de lei

5p 5. Se consideră dreptele de ecuații $d_1: y = 2x - 1$, $d_2: y = -x + 5$ și $d_3: y = x - a$, unde a este număr real. Dacă dreptele d_1 , d_2 și d_3 sunt concurente, atunci numărul real a este egal cu:

A. −5

B. -1

6. Aria triunghiului dreptunghic *ABC* cu ipotenuza BC = 26 și $\cos B = \frac{12}{13}$, este egală cu:

5p

B. 120

C. 156

D. 240

SUBIECTUL al II-lea – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

Pe mulțimea $M = (0, +\infty)$ se definește legea de compoziție asociativă $x * y = x^{\log_3 y}$.

- **1.** Arătați că 3*9 = 9. 5p
- 2. Demonstrați că legea de compoziție "*" este comutativă. 5p
- **3.** Verificați dacă e = 3 este elementul neutru al legii de compoziție "*".
- **4.** Determinați $a \in M$ pentru care x * a = a, pentru orice $x \in M$. **5p**
- **5.** Determinati $x \in M$ pentru care x * x * x = x.
- **6.** Calculați $\frac{1}{5} * \frac{2}{5} * \frac{3}{5} * \frac{4}{5} * \frac{5}{5}$

SUBIECTUL al III-lea – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

Se consideră mulțimea $\mathbb{Z} \lceil \sqrt{3} \rceil = \{ m + n\sqrt{3} \mid m, n \in \mathbb{Z} \}.$

1. Verificați dacă $1 \in \mathbb{Z} \lceil \sqrt{3} \rceil$. **5**p

2. Demonstrați că $x + y \in \mathbb{Z} \lceil \sqrt{3} \rceil$, pentru orice $x, y \in \mathbb{Z} \lceil \sqrt{3} \rceil$. **5p**

3. Demonstrați că $xy \in \mathbb{Z} \lceil \sqrt{3} \rceil$, pentru orice $x, y \in \mathbb{Z} \lceil \sqrt{3} \rceil$. **5**p

4. Pentru $x = 2 + \sqrt{3}$, determinați $x' \in \mathbb{Z} \lceil \sqrt{3} \rceil$ astfel încât xx' = 1. **5**p

5. Dați exemplu de un număr $x \in \mathbb{Z}\left[\sqrt{3}\right]$, astfel încât $0 < x < \frac{3}{10}$. **5p**

6. Se consideră mulțimea $H = \{m + n\sqrt{3} \mid m, n \in \mathbb{Z}, m^2 - 3n^2 = 1\}$. Demonstrați că, dacă $a \in H$, atunci $\frac{1}{a} \in H$.