TITLE: ELECTRICITY PRICE PREDICTION

INTRODUCTION:

In this part of the project, the main goal is to build a prediction model for electricity prices. This report outlines the steps involved in loading and preprocessing the dataset to prepare it for analysis.

DATASET DESCRIPTION:

The dataset used for this project contains historical electricity prices. It includes various features such as date, time, and the corresponding electricity price for each observation.

ALGORITHM:

1) Loading the Dataset:

The first step in the development process is to load the historical electricity prices dataset. This can be done using a variety of tools and programming languages, such as Python and its data manipulation libraries like Pandas.

2) Handling Missing Values:

Missing values can be filled in or removed depending on the nature and significance of the missing data. This can be done using techniques such as mean imputation or interpolation.

3) Converting Data Types:

Sometimes, the dataset may contain columns with incorrect data types. For example, a column that represents dates may be stored as strings instead of datetime objects. In such cases, it is important to convert the data types to the appropriate format.

4) Removing Outliers:

Outliers are data points that deviate significantly from the rest of the dataset. These outliers can distort the analysis and prediction models. Removing outliers can be done by using statistical techniques such as z-score or interquartile range.

5) Scaling and Normalization:

Scaling and normalization are important preprocessing steps to ensure that all features are on a similar scale. This helps in preventing certain features from dominating the analysis or prediction models.

PROGRAM:

import pandas as pd

Load the dataset

dataset = pd.read_csv('/Electricity.csv')

Handle missing values

dataset = dataset.fillna(method='ffill') # Forward fill missing values
print(dataset)

OUTPUT:

		DateTime	Holiday	HolidayFlag	DayOf\	Week \	
0	1970-01-01	00:00:00.00	0040848	None	0.0	1.0	
1	1970-01-01	00:00:00.00	0040848	None	0.0	1.0	
2	1970-01-01	00:00:00.00	0040848	None	0.0	1.0	
3	1970-01-01	00:00:00.00	0040848	None	0.0	1.0	
4	1970-01-01	00:00:00.00	0040848	None	0.0	1.0	
380	09 1970-01-0	01 00:00:00.	000041639	New Year's Ev	ve	1.0	1.0
380	10 1970-01-	01 00:00:00.	000041639	New Year's Ev	ve	1.0	1.0
380	11 1970-01-0	01 00:00:00.	000041639	New Year's Ev	ve	1.0	1.0
380	12 1970-01-0	01 00:00:00.0	000041639	New Year's Ev	ve	1.0	1.0
380	13 1970-01-0	01 00:00:00.	000041639	New Year's Ev	ve	1.0	1.0

	WeekOfYear	Day Month	Year PeriodOf[Day ForecastWindProduction \	١
0	44.0 1.0	11.0 2011.0	-1.696450	315.31	
1	44.0 1.0	11.0 2011.0	-1.624264	321.80	
2	44.0 1.0	11.0 2011.0	-1.552078	328.57	
3	44.0 1.0	11.0 2011.0	-1.479892	335.60	
4	44.0 1.0	11.0 2011.0	-1.407706	342.90	
			•••		
3800	9 1.0 3	1.0 12.0 2013	.0 1.407547	1179.14	
3801	1.0 3	1.0 12.0 2013	.0 1.479733	1152.01	
3801	1.0 3	1.0 12.0 2013	.0 1.551919	1123.67	
3801	1.0 3	1.0 12.0 2013	.0 1.624105	1094.24	
3801	1.0 3	1.0 12.0 2013	.0 1.696290	1064.0	

SystemLoadEA SMPEA ORKTemperature ORKWindspeed CO2Intensity \ 0 3388.77 49.26 6.00 9.30 600.71

1	3196.66 49.26	6.00	11.10	605.42
2	3060.71 49.10	5.00	11.10	589.97
3	2945.56 48.04	6.00	9.30	585.94
4	2849.34 33.75	6.00	11.10	571.52
38009	3932.22 34.51	6.00	22.20	285.31
38010	3821.44 33.83	5.00	24.10	278.31
38011	3724.21 31.75	4.00	20.40	280.91
38012	3638.16 33.83	5.00	14.80	302.46
38013	3624.25 33.83	5.00	16.70	308.01

ActualWindProduction SystemLoadEP2 SMPEP2

0	356.00	3159.60 54.32
1	317.00	2973.01 54.23
2	311.00	2834.00 54.23
3	313.00	2725.99 53.47
4	346.00	2655.64 39.87
38009	812.0	3692.95 42.45
38010	852.0	3571.0 33.83
38011	962.0	3460.29 31.75
38012	950.0	3563.99 50.6
38013	1020.0	3517.08 34.9

[38014 rows x 18 columns]

Convert data types

dataset['DateTime'] = pd.to_datetime(dataset['DateTime']) print(dataset['DateTime'])

OUTPUT:

- 0 1970-01-01 00:00:00.000040848 1970-01-01 00:00:00.000040848 2 1970-01-01 00:00:00.000040848 3 1970-01-01 00:00:00.000040848 4 1970-01-01 00:00:00.000040848 38009 1970-01-01 00:00:00.000041639
- 38010 1970-01-01 00:00:00.000041639 38011 1970-01-01 00:00:00.000041639

```
38012 1970-01-01 00:00:00.000041639
```

38013 1970-01-01 00:00:00.000041639

Name: DateTime, Length: 38014, dtype: datetime64[ns]

#REMOVE OUTLIERS

outliers = dataset['PeriodOfDay'].between(0, 47) # Define a range for valid prices dataset = dataset[outliers] print(outliers)

OUTPUT:

- 24 True
- 25 True
- 26 True
- 27 True
- 28 True

...

- 38009 True
- 38010 True
- 38011 True
- 38012 True
- 38013 True

Name: PeriodOfDay, Length: 19008, dtype: bool

#Scale and normalize feature

dataset['PeriodOfDay'] = (dataset['PeriodOfDay'] - dataset['PeriodOfDay'].mean()) /
dataset['PeriodOfDay'].std()
print(dataset['PeriodOfDay'])

OUTPUT:

γ	- 1	\sim	1 വവ 1
/4	- 1	nn	1281
<u>~</u> '		.00	

- 25 -1.516822
- 26 -1.372363
- 27 -1.227903
- 28 -1.083444

...

38009 1.083444

38010 1.227903

38011 1.372363

38012 1.516822

38013 1.661281

Name: PeriodOfDay, Length: 19008, dtype: float64

CONCLUSION:

In this part of the project, we have successfully loaded and preprocessed the historical electricity prices dataset. The dataset is now ready for further analysis and the development of a prediction model for electricity prices.