Shape of Scatterplot and Possible Choices of Transformations

X	or	у
log x		y^2
$\frac{1}{X}$		y ³
	etc.	

х	or	у
log x		log y
1		<u>1</u>
X		У
	etc.	

x	or	У
x ²		y ²
x ³		y^3
	etc	

X	or	У
x ²		log y
x ³		$\frac{1}{y}$
	etc.	

```
options ls=78 ps=45 nodate nonumber;
data phstudy;
input time ph @@; * '@@' tells SAS to keep reading data on this line;
datalines;
1 7.02 1 6.93 2 6.42 2 6.51 4 6.07 4 5.98 6 5.59 6 5.80 8 5.51 8 5.36;

proc gplot data=phstudy;
plot ph*time;
run;
```


The shape of the scatterplot looks like graph #2 on the previous page.

We could try to get a more accurate model by transforming time (x variable) using either a logarithmic or reciprocal transformation, or we could transform pH (y variable) using either of these two transformations.

First, we ignore the curvature and fit a simple linear model.

```
title1 'pH regressed on time';
proc reg data=phstudy;
model ph=time /p r;
output out=newph predicted=pred residual=resid;
run;
```

pH regressed on time

The REG Procedure
Model: MODEL1
Dependent Variable: ph

Number of Observations Read 10 Number of Observations Used 10

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected To	tal	1 8 9	2.85612 0.20717 3.06329	2.85612 0.02590	110.29	<.0001
	Root MSE Dependent M Coeff Var	lean	0.16092 6.11900 2.62990	R-Square Adj R-Sq	0.9324	

Variable DF		Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept time	1	6.99537 -0.20866	0.09774	71.57 -10.50	<.0001 <.0001	

Plot the observed points and the fitted values from simple linear regression. We know that this is probably a bad fit.

```
proc gplot data=newph;
  plot ph * time
        pred * time / overlay;
  plot resid * time;
  run;
```


We will follow one of the recommended transformations and try to get a better fit.

Transform Time (X) and Generate a New Model

```
data transform;
set phstudy; * this reads in all the data from the 'phstudy' data set;
logtime = log(time); * log transform X and save it as a new variable;
run;

title1 'pH regressed on log(time)';
proc reg data=transform;
model ph=logtime /p r;
output out=newph2 predicted=pred residual=resid;
run;
```

pH regressed on log(time)

The REG Procedure
Model: MODEL1
Dependent Variable: ph

Number of Observations Read 10 Number of Observations Used 10

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected	Total	1 8 9	3.00931 0.05398 3.06329	3.00931 0.00675	446.03	<.0001
	Root MS: Depende Coeff V	nt Mean	0.08214 6.11900 1.34237	R-Square Adj R-Sq	0.9824	

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	6.98303	0.04846	144.10	<.0001
logtime	1	-0.72600	0.03438	-21.12	<.0001

```
proc gplot data=newph2;
  plot ph * logtime
        pred * logtime / overlay;
  plot resid * logtime;
  run;
```


But we don't want our supervisor to deal with "log time". We need to graph the results using "time".

Notice how the fitted "linear" model bends to fit the points.

Compare these plots to the original simple linear model.

A New Example: Metal corrosion as a function of the concentration of a chemical.

```
options ls=78 ps=60 nodate nonumber;
data corrosion;
 input napo4 corrode @@;
datalines;
 2.5 7.68
              5.03 6.95
                            7.6 6.3
                                         11.6 5.75
                                                     13 5.01
                                                                19.6 1.43
 26.2 0.93
             33.0 0.72
                            40 0.68
                                         50 0.65
                                                     55 0.56
 title 'Corrosion Data';
 proc gplot data=corrosion;
 plot corrode * napo4;
 run;
```


Some combination of these transformations might be useful: $\log x$, $\log y$, $\frac{1}{x}$ and/or $\frac{1}{y}$

There are 9 possible models with these variables. We will keep track of them in this table.

Enter R ² and RMSE for each model	у	log y	<u>1</u> y
х			
log x			
$\frac{1}{x}$			

Fit a Bunch of Models Using Original and Transformed Variables

```
* create a new data set that contains the transformed variables;
data transform;
 set corrosion;
 log napo4 = log(napo4);
 log corrode = log(corrode);
 inv napo4 = 1/napo4;
 inv corrode = 1/corrode;
 run;
* run a bunch of models;
 proc reg data=transform;
 model corrode = napo4;
                          * Model 1: original variables;
 output out=new predicted=pred residual=resid;
 model log_corrode = log_napo4; * Model 6: log Y and log X;
 model inv_corrode = inv_napo4; * Model 7: 1/Y and 1/X;
 run;
```

The REG Procedure
Model: MODEL1
Dependent Variable: corrode

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	1 9 10	67.84940 19.73701 87.58642	67.84940 2.19300	30.94	0.0004
Der	ot MSE pendent Mean eff Var	1.48088 3.33273 44.43444	R-Square Adj R-Sq	0.7747 0.7496	

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	6.73510	0.75731	8.89	<.0001
napo4	1	-0.14202	0.02553	-5.56	0.0004

The REG Procedure Model: MODEL2

Dependent Variable: log_corrode

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Tota	1 9 10	10.72150 1.70428 12.42578	10.72150 0.18936	56.62	<.0001
Ι	Root MSE Dependent Mean Coeff Var	0.43516 0.70353 61.85337	R-Square Adj R-Sq	0.8628 0.8476	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	2.05603	0.22254	9.24	<.0001
napo4	1	-0.05645	0.00750	-7.52	<.0001

The REG Procedure Model: MODEL3

Dependent Variable: inv corrode

Analysis of Variance

	Sum of	Mean		
DF	Squares	Square	F Value	Pr > F
1	4.17887	4.17887	142.91	<.0001
9	0.26317	0.02924		
10	4.44203			
	0.17100	R-Square	0.9408	
	0.79678 21 46130	Adj R-Sq	0.9342	
	1 9	DF Squares 1 4.17887 9 0.26317 10 4.44203 0.17100 t Mean 0.79678	DF Squares Square 1 4.17887 4.17887 9 0.26317 0.02924 10 4.44203 0.17100 R-Square t Mean 0.79678 Adj R-Sq	DF Squares Square F Value 1 4.17887 4.17887 142.91 9 0.26317 0.02924 10 4.44203 0.17100 R-Square 0.9408 t Mean 0.79678 Adj R-Sq 0.9342

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-0.04760	0.08745	-0.54	0.5994
napo4	1	0.03525	0.00295	11.95	<.0001

The REG Procedure Model: MODEL4 Dependent Variable: corrode

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Tota	1 9 1 10	57.52465 30.06177 87.58642	57.52465 3.34020	17.22	0.0025
D	oot MSE ependent Mean oeff Var	1.82762 3.33273 54.83859	R-Square Adj R-Sq	0.6568 0.6186	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
<pre>Intercept inv_napo4</pre>	1	1.28437	0.73979	1.74	0.1166
	1	20.93677	5.04509	4.15	0.0025

The REG Procedure Model: MODEL5 Dependent Variable: corrode

Analysis of Variance

			Sum of	Mean		
Source		DF	Squares	Square	F Value	Pr > F
Model		1	78.66723	78.66723	79.38	<.0001
Error		9	8.91919	0.99102		
Corrected Tot	cal	10	87.58642			
	Root MSE Dependent Me Coeff Var		0.99550 3.33273 29.87045	R-Square Adj R-Sq	0.8982 0.8869	

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	11.24080	0.93697	12.00	<.0001
log_napo4	1	-2.81318	0.31575	-8.91	<.0001

The REG Procedure Model: MODEL6 Dependent Variable: log_corrode

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	10.78507	10.78507	59.16	<.0001
Error	9	1.64071	0.18230		
Corrected Total	10	12.42578			
Root M Depend Coeff	ent Mean	0.42697 0.70353 60.68888	R-Square Adj R-Sq	0.8680 0.8533	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	3.63163	0.40187	9.04	<.0001
log_napo4	1	-1.04163	0.13542	-7.69	<.0001

The REG Procedure Model: MODEL7

Dependent Variable: inv_corrode

Analysis of Variance

Source	D	F	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected To		9	1.95687 2.48517 4.44203	1.95687 0.27613	7.09	0.0260
	Root MSE Dependent Mea Coeff Var	n	0.52548 0.79678 5.95065	R-Square Adj R-Sq	0.4405 0.3784	

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept inv napo4	1	1.17458	0.21270	5.52	0.0004
	1	-3.86157	1.45057	-2.66	0.0260

We want small values for RMSE and large values for R². Based on these two measures of model fit, we should take a closer look at models 3 and 5.

```
Model 3 uses the reciprocal of Y with the original X. RMSE = 0.17 R<sup>2</sup> = 0.94
```

Model 5 uses the original Y with the log of X. RMSE = $1.0 R^2 = 0.90$

WE CANNOT COMPARE THESE MODELS USING RMSE BECAUSE THEY HAVE DIFFERENT Y'S.

Transforming the Y generates new challenges in interpreting the results of the fitted model, so we take a closer look at Model 3.

Corrosion Data

```
inv
                               corrode upper
                                                lower
Obs napo4 corrode corrode inv pred hat
                                        hat
                                                  hat
                                                         diff diffsq
 1 2.50
         7.68 0.13021 0.04051 24.6846 4.44195 -6.9394 -17.0046 289.157
 2 5.03 6.95 0.14388 0.12968 7.7112 3.31622 -23.7051 -0.7612
                                                                0.579
 3 7.60 6.30 0.15873 0.22026 4.5401 2.63183 16.5124 1.7599
                                                                3.097
 4 11.60
         5.75 0.17391 0.36124 2.7682 1.98391 4.5781
                                                      2.9818
                                                                8.891
         5.01 0.19960 0.41059
                                2.4355 1.82408 3.6637
                                                      2.5745
 5 13.00
                                                                6.628
          1.43 0.69930 0.64320
                                1.5547 1.30992 1.9120 -0.1247
 6 19.60
                                                                0.016
 7 26.20
         0.93 1.07527 0.87582
                                1.1418 1.00663
                                               1.3189 -0.2118
                                                                0.045
 8 33.00 0.72 1.38889 1.11549
                                0.8965 0.80206 1.0161 -0.1765
                                                                0.031
 9 40.00 0.68 1.47059 1.36221
                                0.7341 0.65769 0.8306 -0.0541
                                                                0.003
10 50.00 0.65 1.53846 1.71466
                                0.5832 0.51978 0.6643 0.0668
                                                                0.004
11 55.00 0.56 1.78571 1.89089 0.5289 0.46981 0.6049 0.0311
                                                                0.001
```

On the original scale,

solid blue circles: X = napo4 and Y = observed corrosion red plus signs: X = napo4 and Y = predicted corrosion

For comparison, here is the original scatterplot.

The SAS code for this handout is on the course website.

The filename is TransformingXorY.sas.