MOOC Econometrics

Lecture 2.4.2 on Multiple Regression: Evaluation - Statistical Tests

Christiaan Heij

Erasmus University Rotterdam

t-test

• Test for relevance of single explanatory factor j:

Test $H_0: \beta_j = 0$ against $H_1: \beta_j \neq 0$.

• A1-A7: $b_i \sim N(\beta_i, \sigma^2 a_{ii})$, a_{ii} is element (j, j) of $(X'X)^{-1}$.

If $H_0: \beta_j = 0$ holds, then $z_j = \frac{b_j - \beta_j}{\sigma \sqrt{a_{jj}}} = \frac{b_j}{\sigma \sqrt{a_{jj}}} \sim \mathcal{N}(0,1)$.

• Replace unknown σ by s, square root of $s^2 = e'e/(n-k)$.

Test statistic: $t_j = \frac{b_j}{s\sqrt{a_{jj}}} = \frac{b_j}{\mathsf{SE}(b_j)}$, with $\mathsf{SE}(b_j) = s\sqrt{a_{jj}}$.

• A1-A7: $t_i \sim t(n-k)$ (close to normal unless n-k small).

Erafus

Test for a single restriction: t-test

• Under assumptions A1-A6:

 $E(b) = \beta$ and $var(b) = \sigma^2(X'X)^{-1}$.

• A7: ε is normally distributed.

Test

Check that A1-A7 imply $b \sim N(\beta, \sigma^2(X'X)^{-1})$.

• Answer: $b = (X'X)^{-1}X'(X\beta + \varepsilon) = \beta + (X'X)^{-1}X'\varepsilon$ is linear function of $\varepsilon \sim N(0, \sigma^2 I)$.

Lecture 2.4.2, Slide 2 of 8, Erasmus School of Economics

Test for multiple restrictions: *F*-test

• Test for multiple linear restrictions:

Test $H_0: R\beta = r$ against $H_1: R\beta \neq r$.

- $\rightarrow R$ is given $(g \times k)$ matrix with rank(R) = g
- $\rightarrow r$ is given $(g \times 1)$ vector
- A1-A7 imply $b \sim N(\beta, \sigma^2(X'X)^{-1})$.

Test

Under H_0 : $Rb \sim N(m, \sigma^2 V)$. Compute m and $\sigma^2 V$.

• Answer: $m = E(Rb) = RE(b) = R\beta = r$.

$$\sigma^2 V = \operatorname{var}(Rb) = R \operatorname{var}(b) R' = \sigma^2 R(X'X)^{-1} R'.$$

F-test

- Then $(1/\sigma)(Rb-r) \sim N(0, V)$.
- Facts: $(1/\sigma^2)(Rb-r)'V^{-1}(Rb-r) \sim \chi^2(g)$. $F = (1/s^2)(Rb-r)'V^{-1}(Rb-r)/g \sim F(g,n-k).$
- F can be computed from residual sums of squares:

$$F = \frac{(e_0'e_0 - e_1'e_1)/g}{e_1'e_1/(n-k)}$$

- $\rightarrow e'_0 e_0$: sum of squared residuals of restricted model (H_0)
- \rightarrow e'_1e_1 : sum of squared residuals of unrestricted model (H_1)

Ezafus,

Lecture 2.4.2, Slide 5 of 8, Erasmus School of Economics

F-test

- $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$.
- Test $H_0: \beta_2 = 0$ against $H_1: \beta_2 \neq 0$.
- If H_0 holds, then $F=rac{(e_0'e_0-e_1'e_1)/g}{e_1'e_1/(n-k)}\sim F(g,n-k)$
 - $ightarrow e_0'e_0$: sum of squared residuals of restricted model (OLS in model $y=X_1eta_1+arepsilon$)
 - $o e_1'e_1$: sum of squared residuals of unrestricted model (OLS in model $y=X_1\beta_1+X_2\beta_2+arepsilon$)

Erafus

Test for removing a set of explanatory factors

- Restricted model: remove set of g explanatory factors.
- Re-order *k* factors so that last *g* are removed:

Re-order
$$X=(X_1\ X_2),\ eta=\left(egin{array}{c} eta_1\ eta_2 \end{array}
ight)$$
, and $b=\left(egin{array}{c} b_1\ b_2 \end{array}
ight)$

 X_2 : last g columns of X (factors removed in restricted model)

 β_2 : last g elements of β

 b_2 : last g elements of b

• Then $y = X_1\beta_1 + X_2\beta_2 + \varepsilon = X_1b_1 + X_2b_2 + e$.

Capus

Lecture 2.4.2, Slide 6 of 8, Erasmus School of Economics

TRAINING EXERCISE 2.4.2

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).