

PAVOOC - Prediction and visualization of on- and off-targets for CRISPR

Moritz Schäfer | Technische Universität Berlin & Bayer Pharma | Master thesis

Background

- Knockout experiments used in drug target validation
- Sequence (partially) determines efficacy

- Guide prediction scores still vary in performance

- Guide prediction scores still vary in performance
- A lot of manual labor for guide selection

	n or manaanaan	i ioi gaiao coloctic	,,,	
Ta	POLRZL	28,5	28	-3,0075211818282
20	SPC24	29,5	42	-2,83403119872683
21	THAP1	31,5	27	-3,01155447143932
22	CDC123	32,5	44	-2,81699463079959
23	M/DD74	37	7.68	2 58033330817648

- Guide prediction scores still vary in performance
- A lot of manual labor for guide selection

19	POLRZL	28,5	28	-3,0075211818282			
20	SPC24	29,5	42	-2,83403119872683			
21	THAP1	31,5	27	-3,01155447143932			
22	CDC123	32,5	A 44	-2,81699463079959			
23	M/DD74	37	7.68	2 5803333081 7648			

- Non-frame-shift indels cannot be circumvented

- Guide prediction scores still vary in performance
- A lot of manual labor for guide selection

TA	POLRZL	28,5	28	-3,0075211818282
20	SPC24	29,5	42	-2,83403119872683
21	THAP1	31,5	27	-3,01155447143932
22	CDC123	32,5	A 44	-2,81699463079959
23	WDD74	37	768	2 58033330817648

- Non-frame-shift indels cannot be circumvented

- Cancer cellline data affects certain guides AGCATCGTAAGTGAATTACGG - + PPM
 - DMS153 lung cancer cellline SNP

Solution

- Cutting-edge guide efficacy scoring
- All-in-one guide design tool
- Web-based
- Functional domain-aware
- Incorporate cancer cellline data

Guide efficacy prediction - Dataset

Guide	Measured efficacy
GTAGGGGTCCGTACTCAGCAAGG	0.86
ACACTGCCGAGCGATGAGGATGG	0.42
AAGGTGAAGGAGGATGCGGCGGG	0.53
GAAAAGATAGGTCACTGACCCGG	0.12
GCAAGTCACTGAGTGCAGAACGG	0.73
GCATTGGTAAGCGCACAGGAAGG	0.70
AAGACTGGCGCATGGTCCACTGG	0.57

- 5310 data rows
- Efficacy relates to cell proliferation after CRISPR application

"Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9", 2016, John G. Doench et al.

Conservation features

- 7 conservation scores
- median
- min
- max

$$p_{max} = 0.0043$$

Conservation feature results

Comparison of 100 runs on adaboost

Deep Learning architecture

"Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning", 2015, B. Alipanahi et al.

Deep Learning architecture

"Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning", 2015, B. Alipanahi et al.

Conclusion: Deep Learning can improve guide efficacy prediction

Architecture

