Statistical Methods MATH2715 info

Teaching material is all online!

- On Minerva http://minerva.leeds.ac.uk
- On GitHub https://github.com/luisacutillo78/ Statistical-Methods-Lecture-Notes

R code submission

- No technichal issue please submit your SURNAMEstudentid.R [or .Rmd as required] file in the assignment folder.
- Please print a copy of your notebook and put it into your marker collection box.

Resources

- Mathematical Statistics and Data Analysis 3rd ed. (by J. A. Rice);
- http://www1.maths.leeds.ac.uk/statistics/R/Rintro.pdf;
- https://www.datacamp.com/courses/free-introduction-to-r.

Where We've Been, Where We're Going

In the previous Lecture

- Univariate and Multivariate Change of Variables
- Markov's Inequality
- Chebyshev's Inequality
- Weak Law of Large Numbers
- Exercises & Questions

Today

- Weak Law of Large Numbers: Interpretation and discussion
- Convergence in probability
- Convergence in distribution
- Central limit theorem

Why are we studying limit theorems?

Questions we are addressing

- What happens when we consider a long sequence of random variables?
- What can we reasonably infer from data?
- Laws of large numbers: averages of random variables converge on expected value?
- Central Limit Theorems: sum of random variables have normal distribution?

Sequence of Random Variables

Sequence of Independent and Identically, Distributed Random variables.

- Sequence: $X_1, X_2, \ldots, X_n, \ldots$
- Think of a sequence as sampled data:
 - Suppose we are drawing a sample of *N* observations
 - Each observation will be a random variable, say X_i
 - With realization x_i

Mean/Variance of Sample Mean

Sample Mean

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Let \bar{X}_n be the sample mean. Then $E[\bar{X}_n] = \mu$ and $\text{var}(\bar{X}_n) = \frac{\sigma^2}{n}$

Proof.

$$E[\bar{X}_n] = \frac{1}{n} \sum_{i=1}^n E[X_i] = \frac{1}{n} n\mu = \mu$$

$$var(\bar{X}_n) = \frac{1}{n^2} var(\sum_{i=1}^n X_i) = \frac{1}{n^2} \sum_{i=1}^n var(X_i) = \frac{1}{n^2} n\sigma^2 = \frac{\sigma^2}{n}$$

Weak Law of Large Numbers

Proposition

Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution with mean μ and $Var(X_i) = \sigma^2$. Then, for all $\epsilon > 0$,

$$P\left\{\left|\frac{X_1+X_2+\ldots+X_n}{n}-\mu\right|\geq\epsilon\right\}\to 0 \text{ as } n\to\infty$$

Weak Law of Large Numbers

Interpreation

It is a common belief that if we toss a coin textitmany times, the propostion of heads will be close to $\frac{1}{2}$.

The law of large numbers is a mathematical interpretation of this believe!

Example

- Successive tosses of a coin can be modelled as independent random trials X_i
- Each X_i takes on 0 (if the i-th result is tail) or 1 (if the i-th result is head)
- The proportion of heads in n trials is $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

The law of large numbers says that \bar{X} approaches μ as the number of trials grows.

Sequences and Convergence: Recalls

Sequence of real numbers:

$${a_i}_{i=1}^{\infty} = {a_1, a_2, a_3, \dots, a_n, \dots,}$$

Definition

We say that the sequence $\{a_i\}_{i=1}^{\infty}$ converges to real number A if for each $\epsilon>0$ there is a positive integer N such that for $n\geq N$, $|a_n-A|<\epsilon$

Sequences and Convergence

Sequence of functions:

$$\{f_i\}_{i=1}^{\infty} = \{f_1, f_2, f_3, \dots, f_n, \dots, \}$$

Definition

Suppose $f_i: X \to \Re$ for all i. Then $\{f_i\}_{i=1}^{\infty}$ converges pointwise to f if, for all $x \in X$ and $\epsilon > 0$, there is an N such that for all $n \geq N$,

$$|f_n(x) - f(x)| < \epsilon$$

This is as strong of a statement!

Let $\widehat{\theta}_i$ be an estimator for θ based on i observations.

Let $\widehat{\theta}_i$ be an estimator for θ based on i observations. Increasing sample size we get a Sequence of estimators:

$$\left\{\widehat{\theta}_i\right\}_{i=1}^n \ = \ \left\{\widehat{\theta}_1, \widehat{\theta}_2, \widehat{\theta}_3, \dots, \widehat{\theta}_n\right\}$$

Question: What can we say about $\{\widehat{\theta}_i\}_{i=1}^n$ as $n \to \infty$?

- What is the probability $\widehat{\theta}_n$ differs from θ ?

Let $\widehat{\theta}_i$ be an estimator for θ based on i observations. Increasing sample size we get a Sequence of estimators:

$$\left\{\widehat{\theta}_i\right\}_{i=1}^n \ = \ \left\{\widehat{\theta}_1, \widehat{\theta}_2, \widehat{\theta}_3, \dots, \widehat{\theta}_n\right\}$$

Question: What can we say about $\{\widehat{\theta}_i\}_{i=1}^n$ as $n \to \infty$?

- What is the probability $\widehat{\theta}_n$ differs from θ ?
- What is the probability $\left\{\widehat{\theta}_i\right\}_{i=1}^n$ converges to θ ?

Let $\widehat{\theta}_i$ be an estimator for θ based on i observations. Increasing sample size we get a Sequence of estimators:

$$\left\{\widehat{\theta}_i\right\}_{i=1}^n \ = \ \left\{\widehat{\theta}_1, \widehat{\theta}_2, \widehat{\theta}_3, \dots, \widehat{\theta}_n\right\}$$

Question: What can we say about $\{\widehat{\theta}_i\}_{i=1}^n$ as $n \to \infty$?

- What is the probability $\widehat{\theta}_n$ differs from θ ?
- What is the probability $\left\{\widehat{\theta}_i\right\}_{i=1}^n$ converges to θ ?

Definition

We will say the sequence $\widehat{\theta}_n$ converges in probability to θ (perhaps a non-degenerate RV) if,

$$\lim_{n\to\infty} Prob(|\widehat{\theta}_n - \theta| > \epsilon) = 0$$

For any $\epsilon > 0$

Definition

We will say the sequence $\widehat{\theta}_n$ converges in probability to θ (perhaps a non-degenerate RV) if,

$$\lim_{n\to\infty} Prob(|\widehat{\theta}_n - \theta| > \epsilon) = 0$$

For any $\epsilon > 0$

- ϵ is a tolerance parameter: how much error around θ ?

Definition

We will say the sequence $\widehat{\theta}_n$ converges in probability to θ (perhaps a non-degenerate RV) if,

$$\lim_{n\to\infty} Prob(|\widehat{\theta}_n - \theta| > \epsilon) = 0$$

For any $\epsilon > 0$

- ϵ is a tolerance parameter: how much error around θ ?
- In the limit, convergence in probability implies the $\widehat{\theta}_n$ distribution collapses on a spike at θ

Definition

We will say the sequence $\widehat{\theta}_n$ converges in probability to θ (perhaps a non-degenerate RV) if,

$$\lim_{n\to\infty} Prob(|\widehat{\theta}_n - \theta| > \epsilon) = 0$$

For any $\epsilon > 0$

- ϵ is a tolerance parameter: how much error around θ ?
- In the limit, convergence in probability implies the $\widehat{\theta}_n$ distribution collapses on a spike at θ
- $\left\{\widehat{\theta}_i\right\}$ does not need actually converge to θ , only $\mathrm{P}(|\theta_n$ $\theta|>\epsilon)=0$

Convergence in Distribution

Definition

 $\widehat{\theta}_n$, with cdf $F_n(x)$, converges in distribution to random variable Y with cdf F(x) if

$$\lim_{n\to\infty}|F_n(x)-F(x)|=0$$

For all $x \in \Re$ where F(x) is continuous.

- Says that cdfs are equal, says nothing about convergence of underlying RV

Convergence in Distribution

Definition

 $\widehat{\theta}_n$, with cdf $F_n(x)$, converges in distribution to random variable Y with cdf F(x) if

$$\lim_{n\to\infty} |F_n(x) - F(x)| = 0$$

For all $x \in \Re$ where F(x) is continuous.

- Says that cdfs are equal, says nothing about convergence of underlying RV
- Useful for justifying use of some sampling distributions

Central Limit Theorem

Proposition

Let X_1, X_2, \ldots be a sequence of independent random variables with mean μ and variance σ^2 . Let X_i have a cdf $P(X_i \leq x) = F(x)$ and moment generating function $M(t) = E[e^{tX_i}]$. Let $S_n = \sum_{i=1}^n X_i$. Then

$$\lim_{n \to \infty} P\left(\frac{S_n - \mu n}{\sigma \sqrt{n}} \le x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp\left(-\frac{x^2}{2}\right)$$

Central Limit Theorem

Proposition

Let X_1, X_2, \ldots be a sequence of independent random variables with mean μ and variance σ^2 . Let X_i have a cdf $P(X_i \leq x) = F(x)$ and moment generating function $M(t) = E[e^{tX_i}]$. Let $S_n = \sum_{i=1}^n X_i$. Then

$$\lim_{n \to \infty} P\left(\frac{S_n - \mu n}{\sigma \sqrt{n}} \le x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp\left(-\frac{x^2}{2}\right)$$

Proof plan:

- 1) Rely on Fact that convergence of MGFs convergence in CDFs
- 2) Show that MGFs, in limit, converge on normal MGF

Proposition

Let F_n be a sequence of cumulative distribution functions with the corresponding moment generating functions M_n . F be a cdf with the moment generating functions M. If $\lim_{n\to\infty} M_n(t) \to M(t)$ for all t in some interval, then $F_n(x) \leadsto F(x)$ for all x (when F is continuous).

Proposition

Suppose $\lim_{n\to\infty}a_n\to a$, then

$$\lim_{n\to\infty} \left(1 + \frac{a_n}{n}\right)^n = e^a$$

Proposition

Suppose M(t) is a moment generating function some random variable X. Then M(0)=1.

Proof. Suppose X_1, \ldots, X_n are iid variables with E[X] = 0, variance σ_x^2 , Moment Generating Function (MGF) $M_x(t)$.

Proof. Suppose X_1, \ldots, X_n are iid variables with E[X] = 0, variance σ_x^2 , Moment Generating Function (MGF) $M_x(t)$. Let $S_n = \sum_{i=1}^n X_i$ and $Z_n = \frac{S_n}{\sigma_x \sqrt{n}}$.

Proof. Suppose X_1, \ldots, X_n are iid variables with E[X] = 0, variance σ_x^2 , Moment Generating Function (MGF) $M_x(t)$. Let $S_n = \sum_{i=1}^n X_i$ and $Z_n = \frac{S_n}{\sigma_x \sqrt{n}}$.

$$M_{S_n} = (M_x(t))^n$$
 and $M_{Z_n}(t) = \left(M_x\left(\frac{t}{\sigma_x\sqrt{n}}\right)\right)^n$

Proof. Suppose X_1, \ldots, X_n are iid variables with E[X] = 0, variance σ_x^2 , Moment Generating Function (MGF) $M_x(t)$.

Let
$$S_n = \sum_{i=1}^n X_i$$
 and $Z_n = \frac{S_n}{\sigma_x \sqrt{n}}$.

$$M_{S_n} = (M_x(t))^n$$
 and $M_{Z_n}(t) = \left(M_x\left(\frac{t}{\sigma_x\sqrt{n}}\right)\right)^n$

Using Taylor's Theorem we can write

$$M_x(s) = M_x(0) + sM'_x(0) + \frac{1}{2}s^2M''_x(0) + e_s$$

$$e_s/s^2 o 0$$
 as $s o 0$.

$$M_{x}(s) = M_{x}(0) + sM'_{x}(0) + \frac{1}{2}s^{2}M''_{x}(0) + e_{s}$$

Filling in the values we have

$$M_X(s) = 1 + 0 + \frac{\sigma_X^2}{2}s^2 + \underbrace{e_s}_{\text{Goes to zero}}$$

Set $s = \frac{t}{\sigma \times \sqrt{n}} \lim_{n \to \infty} s \to 0$. Then

$$M_{Z_n}(t) = \left(1 + rac{\sigma_x^2}{2} \left(rac{t}{\sigma_x \sqrt{n}}
ight)^2
ight)^n$$

$$= \left(1 + rac{t^2/2}{n}
ight)^n$$
 $\lim_{n \to \infty} M_{Z_n}(t) = e^{rac{t^2}{2}}$

WHITE BOARD EXERCISES

Today

- Review
- Questions