

CORE-V Cores Roadmap

Davide Schiavone Jérôme Quévremont Arjan Bink davide@openhwgroup.org jerome.quevremont@thalesgroup.com arjan.bink@silabs.com

CORE-V Family History

- Initial contribution of open-source RISC-V cores from ETH Zurich PULP Platform and the OpenHW Group is the official committee for these repositories
- OpenHW Cores Task Group has the mandate to develop feature and functionality roadmap for the CORE-V Family of open-source RISC-V processors
 - Chair: Arjan Bink, Silicon Laboratories
 - Vice-Chair: Jérôme Quévremont, Thales Research & Technology

	A		5

Core	Bits/Stages	Description
CV32E40P (RI5CY)	32bit / 4-stage	A family of 4-stage cores that implement, RV32IMFCXpulp, optional 32-bit FPU, instruction set extensions for DSP operations including HW loops, SIMD extensions, bit manipulation and post-increment instructions.
CVA6 (Ariane)	32 & 64bit / 6-stage	A family of 6-stage, single issue, in-order CPU cores implementing RV64GC extensions with three privilege levels M, S, U to fully support a Unix-like (Linux, BSD, etc.) operating system. The cores have configurable size, separate TLBs, a hardware PTW and branch-prediction (branch target buffer, branch history table and a return address stack).

June 2021

CORE-V Cores P/N Syntax

© OpenHW Group

June 2021

3

CORE-V RISC-V Cores Roadmap

CORE-V Embedded-class Cores

© OpenHW Group June 2021

CV32E40P - PF / TRL 5

- 4-stage, in-order, single-issue
- RV32IM[F]CZicount_Zicsr_Zifencei [PULP_XPULP][PULP_CLUSTER][PULP_ZFINX]
- M-mode, CLINT, OBI
- 'RTL Freeze' achieved
 - RV32IMC extensions verified
 - Step&Compare with Imperas as reference model (100% coverage)
 - Interrupts and Debug
- Activities on RVFI interface
 - Facilitating sim-based step&compare verification FSM and formal verification

CV32E40P – preliminary PPA

- CV32E40P
 - COREMARK/MHz: 2,91

Technology	Frequency	Area	Comments
TSMC 16nm	909MHz	53,4kGE	No FPU

© OpenHW Group

CV32E40P tag::v2 - PL / TRL 3

- RV32PULP_XPULP extensions
 - Verification and Reference Model
 - Moving the existing instructions to the RISC-V custom space
 - SW support with upstream GCC and LLVM compiler
 - LEC to v1 when PULP_XPULP=0
- RV32F extensions
 - Verification
- CV-DBG
 - Moving, documenting, and verifying the external RISC-V Debug module
- Project goal: industrial grade (TRL 5)

CV32E40P tag::v2 – preliminary PPA

CV32E40P with PULP_XPULP

• COREMARK/MHz: 3,19

Technology	Frequency	Area	Comments
UMCL 65nm	560MHz	40,7kGE	No FPU – based on RI5CY
Globalfoundies GF22FDX	938MHz*	N/A	No FPU – based on RI5CY
TSMC 16nm	769MHz	84,5kGE	No FPU, 1 extra Perf. Counter
Xilinx Genesys 2	20MHz**	7kLUTs 2,5kFFs 7 DSP	No FPU
Zynq Ultrascale+	140MHz	8,4kLUTs 2,7kFFs 7 DSP	No FPU – based on RI5CY

CV32E40S - PA / TRL 2

CORE-V

- 4-stage, in-order, single-issue
- RV32IMC[Xsecure]Zicsr_Zifencei[_ Zce]
- M/U-mode, CLINT, OBI, ePMP, PMA, bus error
- Secure core
 - Reduction of side-channel attacks
 - Zce (iff ratified)
 - PPA optimizations wrt CV32E40P
- Verification
- Project goal: industrial grade (TRL 5)

CV32E40X – PA / TRL 2

CORE-V

- 4-stage, in-order, single-issue
- RV32IMC[ABP]Zicount_Zicsr_Zifen cei[_Zce][X]
- M-mode, CLINT, OBI, PMA, bus error
- Compute intensive core
 - CV-X-IF interface to offload custom extensions
 - Zce, RV32B and RV32P (iff ratified)
 - PPA optimizations wrt CV32E40P
- Verification
- Project goal: industrial grade (TRL 5)

CV32E41P - PC / TRL 2

- 4-stage, in-order, single-issue
- RV32IMCZicount Zicsr Zifencei [Zce][{F, Zfinx}][PULP_XPULP][P ULP_CLUSTER]
- M-mode, CLINT, OBI
- Starting from CV32E40P fork
- Goals:
 - Proof of Concepts to demonstrate the PPA of Zce and Zfinx RISC-V draft ISA extensions
- Project goal: Proof of concept (TRL 3) (next may be TRL 5)

12

© OpenHW Group June 2021

CV32E20 - PC / TRL 2

- 2-stage, in-order, single-issue
- RV32{I,E}[M]CZicount_Zicsr_Zifen cei[_Zce]
- M-mode, CLINT, OBI
- Low area core
 - Optimized power and area for control-oriented applications
 - Starting point lowRISC lbex (which started from ETH zero-riscy)
 - Clean-up parameters
 - Aligning IP interface with CV32E40* cores
- Project goal: industrial grade (TRL 5)

13

CORE-V Application-class Cores

© OpenHW Group June 2021 14

CVA6

- 6-stage, in-order, single-issue
- RV{32 | 64}IMAC[FD]Zicsr
- M/S/U-mode, CLINT, AXI
- Flexible application core

 - Linux-compatible thanks to MMU
 32 or 64 bit (CV32A6, CV64A6) from same RTL (64b from ETH, 32b from Thales)
 - L1 caches
- Project goal: industrial grade (TRL 5)
 - Currently drafting specifications, entry point for next stages

CV64A6 - PA / TRL 4

- Verification
 - RV64GC (RV64IMAFDC), debug, interrupts, privileges... to verify
 - sim-based Step&Compare, formal verification considered
 - RVFI interface
- New documentation
 - reStructured text-based as for the other cores
- FPGA optimizations
 - Target the Xilinx Genesys2, but not a Soft-Core!

CV32A6 - PA / TRL 3

- 32b version support for
 - Pipeline
 - MMU
 - Floating-point
 - Linux
- Verification
 - RV32GC (RV32IMAFDC), debug, interrupts, privileges... to verify
 - sim-based Step&Compare, formal verification considered
 - RVFI interface
- PPA optimizations
 - ASIC
 - FPGA (vendor-independent soft-core)

CVA6 – preliminary PPA

CV64A6

• COREMARK/MHz: 2,19

• DMIPS/MHz: 1,53

Technology	Frequency	Area	Comments
Globalfoundies GF22FDX	1,7GHz	210kGE	No FPU, No Caches
28nm	740MHz	211kGE	No FPU, No Caches
Zynq Ultrascale+	95MHz	39,7kLUTs 23,2kFFs 37 DSP 37 BRAM (cache)	

© OpenHW Group 18

CVA6 – preliminary PPA

CV32A6

• COREMARK/MHz: 2,25

• DMIPS/MHz: **1,35**

Technology	Frequency	Area	Comments
28nm	740MHz	87kGE	No FPU, No Caches, smaller CSR config., multicycle MUL, No MMU, No branch prediction, smaller scoreboard
Zynq Ultrascale+	120MHz	13,9kLUTs 9,3kFFs 4 DSP 32 BRAM (cache)	No FPU, No Caches, No MMU

© OpenHW Group

June 2021

CORE-V Core Logic Blocks

IP surrounding the CORE-V COREs

© OpenHW Group June 2021 20

CORE-V Core Logic Blocks

CV-FPU — PL / TRL 3

CORE-V

- Standalone co-processor that computes floating-point RISC-V RVF and RVD extensions
 - Parts of other projects as
 - CV32E40Pv2, CV32A6, CV64A6
- Possible starting point ETH fpnew:
 - Documentation
 - resTructured text documentation
 - Verification stand-alone or as part of the cores
- Project goal: industrial grade (TRL 5)

© OpenHW Group

June 2021

CV-DBG – PL / TRL 3

CORE-V

- Standalone IP that implements RISC-V Debug Module
 - Debug Transport Module, and ROM for Execution based debug
 - Parts of other projects as
 - CV32E40Pv2, CV32A6, CV64A6
- Possible starting point ETH riscvdbg:
 - Documentation
 - resTructured text documentation
 - Verification stand-alone or as part of the cores
- Project goal: industrial grade (TRL 5)

© OpenHW Group June 2021 23

CV-VEC – PC / TRL 3

- Standalone co-processor that computes vectorial instructions based on RISC-V RVV extensions
- Starting point ETH ara
 - RVB vector extensions and mixedprecision
 - SW support for ML applications
 - Implementation in Globalfoundries 22FDX
 - Compatible with CV64A6
- Part of OpenHW Accelerate research program with Mitacs, CMC_Microsystems, Polytechnique Montréal & ETH Zurich → TRL 4

© OpenHW Group June 2021 24

- OpenHW Group is a not-for-profit, global organization driven by its members and individual contributors where HW and SW designers collaborate in the development of open-source cores, related IP, tools and SW such as the CORE-V Family of open-source RISC-V cores
- OpenHW Group & CORE-V Family of open-source RISC-V cores for use in high volume production SoCs
 - Visit the <u>OpenHW CORE-V Cores GitHub repository</u> and contribute
 - Learn more at <u>OpenHW TV</u>
- Follow us on Twitter <u>@openhwgroup</u> & <u>LinkedIn OpenHW Group</u>

© OpenHW Group

June 2021