FINITE-DIFFERENCE FREQUENCY-DOMAIN (FDFD) METHOD

1. Introduction: computational electrodynamics

1. Introduction: numerical methods overview

FDTD, FEM,
volume integral methods (VIM),
FDFD, DGTD,
method of lines (MoL),
Fourier modal method,
local eigenmode-modal method,
hybrid methods, Green functions

	Time Domain	Frequency Domain
Mesh generation effort	+	_
Transient simulation	+	_
Broadband solutions	+	0
Cosimulation	+	0
Low-frequency problems	_	+
Gigantic problems > 10 ¹⁰ unknowns	+	-
Nonlinear materials	+	_
Nonlinear cosimulation	+	_
Field and particle beam simulation	+	_
EMC simulations	+	О
Eigenmode calculations	_	+
Highly resonant structures	_	+
Periodic structures	0	+

[I. Munteanu, M. Timm, T. Weiland, 2010]

1. FDFD FORMULATION: EIGENPROBLEM VS WAVE TRANSMISSION

Maxwell's equations

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \qquad \nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t} + \mathbf{j}$$

$$\nabla \cdot \varepsilon \mathbf{E} = 0 \qquad \qquad \nabla \cdot \mu \mathbf{H} = 0$$

$$\frac{\partial}{\partial t} \rightarrow -i\omega$$

The eigenmode problem:

$$\frac{1}{\sqrt{\mu}}\nabla \times \frac{1}{\varepsilon}\nabla \times \frac{1}{\sqrt{\mu}}\sqrt{\mu}\mathbf{H} = \omega_{eig}^{2}\sqrt{\mu}\mathbf{H}$$

$$\left(\frac{1}{\sqrt{\mu}}\nabla \times \frac{1}{\varepsilon}\nabla \times \frac{1}{\sqrt{\mu}} - \omega^{2}\right)\sqrt{\mu}\mathbf{H} = \mathbf{S}$$

$$\omega_0 = \Re(\omega_{eig}), \quad Q = \frac{\omega_0}{2\Im(\omega_{eig})}$$

The wave scattering problem:

$$\left(\frac{1}{\sqrt{\mu}}\nabla \times \frac{1}{\varepsilon}\nabla \times \frac{1}{\sqrt{\mu}} - \omega^2\right)\sqrt{\mu}\mathbf{H} = \mathbf{S}$$

where
$$\mathbf{S} = \omega \sqrt{\mu^{-1}} \nabla \times \varepsilon^{-1} \mathbf{J}$$

2. FDFD FORMULATION: EIGENPROBLEM VS WAVE TRANSMISSION

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \qquad \nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t} + \mathbf{j}$$

2. FDFD FORMULATION: FDFD EIGENPROBLEM

Forward differential:

$$f = \frac{1}{\Delta h} \cdot \begin{bmatrix} -1 & 1 & & \\ & \ddots & & \\ & & -1 & 1 \\ & & & -1 \end{bmatrix}$$

2. FDFD FORMULATION: NON-UNIFORM MESHES

1D FDFD: METAL CAVITY

3. 1D PROBLEM

Maxwell's equations

$$\nabla \times \mathbf{E} = -\mu \mu_0 \frac{\partial \mathbf{H}}{\partial t} \qquad \frac{\partial E_x}{\partial z} = i\omega \mu \mu_0 H_y$$

$$\nabla \times \mathbf{H} = \varepsilon \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \qquad \frac{\partial}{\partial t} \rightarrow -i\omega \qquad \frac{\partial H_y}{\partial z} = -i\omega \varepsilon \varepsilon_0 E_z$$

$$\frac{1}{\varepsilon} \frac{\partial}{\partial z} \frac{1}{\mu} \frac{\partial}{\partial z} E_x = -\left(\frac{\omega}{c}\right)^2 E_x$$

$$\frac{1}{\mu} \frac{\partial}{\partial z} \frac{1}{\varepsilon} \frac{\partial}{\partial z} H_{y} = -\left(\frac{\omega}{c}\right)^{2} H_{y}$$

Yee unit cell staggered mesh

3. 1D FORWARD AND BACKWARD DIFFERENCES

Backward differential:

Forward differential:

$$B = \frac{1}{\Delta z} \cdot \begin{bmatrix} 1 & & & 0 \\ -1 & \ddots & & \\ & -1 & 1 & \\ & & -1 & 1 \end{bmatrix}$$

$$egin{bmatrix} H_1 \ H_2 \ H_3 \ dots \ \end{bmatrix}$$

$$B = \frac{1}{\Delta z} \cdot \begin{bmatrix} 1 & & & & & & \\ -1 & \ddots & & & & \\ & -1 & 1 & & & \\ & & -1 & 1 & & \\ & & & -1 & 1 \end{bmatrix} \qquad \begin{bmatrix} H_1 \\ H_2 \\ H_3 \\ \vdots \end{bmatrix} \qquad F = \frac{1}{\Delta z} \cdot \begin{bmatrix} -1 & 1 & & & \\ & \ddots & & \\ & & & -1 & 1 \\ 0 & & & -1 \end{bmatrix} \qquad \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ \vdots \end{bmatrix}$$

$$egin{bmatrix} E_1 \ E_2 \ E_3 \ dots \ \end{bmatrix}$$

$$\frac{1}{\varepsilon\mu} \mathbf{B} \mathbf{F} E_{x} = -\left(\frac{\omega_{eig}}{c}\right)^{2} E_{x}$$
eigenmatrix

$$\left(\lambda = rac{2\pi c}{\Re(\omega_{eig})}, \quad Q = rac{\Re(\omega_{eig})}{2\Im(\omega_{eig})}
ight)$$

3. 1D FORWARD AND BACKWARD DIFFERENCES

Backward differential:

Forward differential:

$$B = \frac{1}{\Delta z} \cdot \begin{bmatrix} 1 & & & 0 \\ -1 & \ddots & & \\ & -1 & 1 & \\ & & -1 & 1 \end{bmatrix}$$

$$egin{bmatrix} H_1 \ H_2 \ H_3 \ dots \end{bmatrix}$$

$$B = \frac{1}{\Delta z} \cdot \begin{bmatrix} 1 & & & 0 \\ -1 & \ddots & & \\ & -1 & 1 \\ & & -1 & 1 \end{bmatrix} \qquad \begin{bmatrix} H_1 \\ H_2 \\ H_3 \\ \vdots \end{bmatrix} \qquad F = \frac{1}{\Delta z} \cdot \begin{bmatrix} -1 & 1 & & \\ & \ddots & & \\ & & -1 & 1 \\ 0 & & & -1 \end{bmatrix} \qquad \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ \vdots \end{bmatrix}$$

PMC

 z_0

PEC

 Z_{end}

3. 1D PMC-PEC CAVITY

$$\frac{\partial^2 E_x}{\partial z^2} + k_z^2 E_x = 0$$

$$\lambda = \frac{4a}{2n+1}, n = 0, 1, 2, \dots$$

$$k_z = \frac{2\pi}{\lambda}$$

$$E_x = c_1 \cos(k_z z) + c_2 \sin(k_z z)$$

1D FDFD: PERIODIC SOLUTION

4. BAND GAP DIAGRAMS: MULTILAYERS

$$E_{x}(z) = e^{ik_{z}z}u(z)$$

$$u(z+a) = u(z)$$

4. BAND GAP DIAGRAMS: 1^{ST} FORMULATION

Forward differential:

Backward differential:

$$\mathbf{F} = \frac{1}{\Delta z} \cdot \begin{bmatrix} -1 & 1 & & & \\ & \ddots & & \\ & & -1 & 1 \\ e^{ik_z a} & & -1 \end{bmatrix} \quad \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ \vdots \end{bmatrix} \qquad \mathbf{B} = \frac{1}{\Delta z} \cdot \begin{bmatrix} 1 & & -e^{ik_z a} \\ -1 & \ddots & & \\ & -1 & 1 & \\ & & -1 & 1 \end{bmatrix} \quad \begin{bmatrix} H_1 \\ H_2 \\ H_3 \\ \vdots \end{bmatrix}$$

$$\mathbf{B} = \frac{1}{\Delta z} \cdot \begin{bmatrix} 1 & & -e^{ik_z a} \\ -1 & \ddots & \\ & -1 & 1 \\ & & -1 & 1 \end{bmatrix} \quad \begin{bmatrix} H_1 \\ H_2 \\ H_3 \\ \vdots \end{bmatrix}$$

$$E_{x}(z+a) = e^{ik_{z}a}E_{x}(z)$$

4. BAND GAP DIAGRAMS: 2ND FORMULATION

Forward differential:

$$F = \frac{1}{\Delta z} \cdot \begin{bmatrix} -1 & 1 & & & \\ & \ddots & & \\ & & -1 & 1 \\ 1 & & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \end{bmatrix} \qquad B = \frac{1}{\Delta z} \cdot \begin{bmatrix} 1 & & & 1 \\ -1 & \ddots & & \\ & -1 & 1 \\ & & -1 & 1 \end{bmatrix}$$

Backward differential:

$$\mathbf{B} = \frac{1}{\Delta z} \cdot \begin{bmatrix} 1 & & & 1 \\ -1 & \ddots & & \\ & -1 & 1 & \\ & & -1 & 1 \end{bmatrix}$$

$$u(z+a) = u(z)$$

$$E_{x}(z) = e^{ik_{z}z}u(z)$$

$$\frac{1}{\varepsilon\mu}(ik_{z} + B)(ik_{z} + F)u = -\left(\frac{\omega_{eig}}{c}\right)^{2}u$$

4. BAND GAP DIAGRAMS: MESH AND DOMAIN SIZE

TASK ASSIGNMENT

5. Assignment

Task1:

- Find the modes of the PMC-PEC cavity.
- Check how solution improves as discretization becomes finer.
- Visualize the field inside the cavity.

Task2:

- Build 1D BG diagrams using 1st formulation. For particular k_z find several first eigenfrequencies ω_{eig} . (Do not pay attention to peculiarities of mesh generation at domain boundaries, use F and B from previous task. To impose periodicity use cosine fuction.)
- Construct the eigenmatrix for a multilayer consisting of two dielectrics of ε_1 and ε_2 . Assume the layers have equal thickness. See how BG opens as contrast between ε_1 and ε_2 increases.

19

5. CHARTFLOW TO PROGRAMMING

- 1. Choose the domain size, for example, a=1.
- 2. Set the number of grid nodes n_{grid} .
- 3. Define the discretization unit $\Delta z=a/n_{grid}$.
- 4. For periodic conditions define k_z .
- 5. Define the differential operators F,B, each of size $[n_{grid}, n_{grid}]$.
- 6. Define the permittivity array. You will obtain matrix of size $[n_{grid}, n_{grid}]$ with inverse permittivity $1/\epsilon$ on the main diagonal.
- 7. Assemble eigenmatrix. Find eigensolution.

5. TIPS TO PROGRAMMING

Relevant Matlab functions:

spdiags ones, repmat eigs

Relevant Python functions:

numpy.ones numpy.vstack scipy.sparse.spdiags sp.sparse.lil_matrix scipy.sparse.lil_matrix.transpose scipy.sparse.linalg.eigs

3D FDFD

6. 3D FDFD FORMULATION

$$\begin{pmatrix} \frac{\omega}{c} \end{pmatrix}^{2} \begin{bmatrix} E_{x} \\ E_{y} \\ E_{z} \end{bmatrix} = \begin{bmatrix} \epsilon_{xx}^{-1} \\ & \epsilon_{yy}^{-1} \\ & & \epsilon_{zz}^{-1} \end{bmatrix} \begin{bmatrix} 0 & -V_{z} & V_{y} \\ V_{z} & 0 & -V_{x} \\ -V_{y} & V_{x} & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mu_{xx}^{-1} \\ & \mu_{yy}^{-1} \\ & & \mu_{zz}^{-1} \end{bmatrix} \begin{bmatrix} 0 & -U_{z} & U_{y} \\ U_{z} & 0 & -U_{x} \\ -U_{y} & U_{x} & 0 \end{bmatrix} \begin{bmatrix} E_{x} \\ E_{y} \\ E_{z} \end{bmatrix}$$

$$U_{x} = \frac{1}{dx} \hat{I}_{nz} \otimes \hat{I}_{ny} \otimes F_{nx}$$

$$U_{y} = \frac{1}{dy} \hat{I}_{nz} \otimes F_{ny} \otimes \hat{I}_{nx}$$

$$U_{z} = \frac{1}{dz} F_{nz} \otimes \hat{I}_{ny} \otimes \hat{I}_{nx}$$

$$\hat{V} = -\hat{U}^T$$

 $I_{n_x,n_{y,n_z}}$ unit matrix \otimes Kronecker product