PREDICTION OF PROCESS PERFORMANCE USING ML

Jiaqian Huang

ABOUT IDEA / TOPIC (1)

- 1. Inspired by two papers named "On the Use of ML for Blackbox System Performance Prediction" and "Applying Machine Learning Techniques to Improve Linux Process Scheduling"
- 2. Important and optimal to predict the process performance
 - a. Early detection of performance issues
 - b. Improved resource utilization
 - c. Better capacity planning
 - d. Reduced downtime
 - e. Improved user experience
 - f. Cost savings

ABOUT IDEA / TOPIC (2)

- 1. Process performance can be measured by:
 - a. CPU usage, memory usage, disk I/O, and network I/O.

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
2013	vboxuser	20	0	11.3g	298164	79680	S	14.3	14.7	21:23.00	firefox
2680	vboxuser	20	0	3228848	381256	81384	S	9.6	18.8	18:12.60	Isolat+
2096	vboxuser	20	0	207460	12680	9860	S	1.0	0.6	0:56.13	Xwayla+
1534	vboxuser	20	0	4012676	189588	52468	S	0.3	9.4	4:58.05	gnome-+
7753	vboxuser	20	0	21648	4068	3232	R	0.3	0.2	0:00.57	top
1	root	20	0	315376	7632	4520	S	0.0	0.4	0:06.47	systemd
2	root	20	0	0	0	0	S	0.0	0.0	0:00.51	kthrea+
3	root	0	-20	0	0	0	Ι	0.0	0.0	0:00.29	rcu_gp
4	root	0	-20	0	0	0	Ι	0.0	0.0	0:00.00	rcu_pa+
5	root	0	- 20	0	0	0	1	0.0	0.0	0:00.00	slub_f+

APPROACH

- 1. Collect large amount of data
- 2. Train machine learning models
- 3. Predict the performance

STEPS TO APPROACH

- 1. Write a linux kernel module in C language
 - Log process-related data such as CPU usage, memory usage, disk I/O, and network I/O

```
[ 2559.174759] proclog: loading out-of-tree module taints kernel.
[ 2559.178474] proclog: module verification failed: signature and/or required k
ey missing - tainting kernel
[ 2559.195497] Process logger module loaded
[ 2559.195511] Process: systemd (pid: 1)
[ 2559.195513] Process: kthreadd (pid: 2)
[ 2559.195515] Process: rcu_gp (pid: 3)
[ 2559.195516] Process: rcu_par_gp (pid: 4)
[ 2559.195518] Process: slub_flushwq (pid: 5)
static void log_processes(void) {
    struct task_struct *task;
    for_each_process(task) {
        printk(KERN_INFO "Process: %s (pid: %d)\n", task->comm, task->pid);
    }
}
```

STEPS TO APPROACH

- 1. Build ML models in Python
 - a. Preprocess data
 - i. Linear assumption, remove noise and collinearity, gaussian distributions, rescale inputs
 - b. Use `sklearn` for ML models
 - i. Linear regression
 - ii. Random forest
- 2. Present the prediction
 - a. Data visualization such as D3.js (TBD)

CRITICAL THINKING

- 1. Is the prediction made by the data I collect general enough?
- 2. Does our approach make it simple to predict the performance in ML?
- 3. Does our model provide accurate prediction of performance?

CONTRIBUTION

- 1. Project design JH
- 2. Linux Kernel Module JH
- 3. ML Models JH
- 4. Data preprocessing JH
- 5. Data visualization (TBD) JH

SOURCES AND TUTORIALS

- 1. https://www.usenix.org/conferen
 ce/nsdi21/presentation/fu
- 2. https://ieeexplore.ieee.org/doc ument/4085157

- 1. http://tldp.org/LDP/lkmpg/2.6/h
 tml/index.html
- 2. https://scikit-learn.org/stable
 /modules/linear model.html

Q&A