Міністерство освіти і науки України НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ» Факультет інформатики

Протокол до лабораторної роботи №1 3 дисципліни "Математичні методи машинного навчання "

Виконав студент 3 курсу факультету інформатики Добровольський І. С.

1. Завдання лабораторної роботи

- 1) Сформувати тестову вибірку зображень з вихідного пакету;
- 2) Для зеленого каналу кольору тестових зображень обчислити наступні характеристики розподілу значень яскравості пікселів:
 - а) Математичне очікування та дисперсію;
 - b) Медіану та інтерквартильний розмах;
 - с) Коефіцієнти асиметрії та ексцесу (нормалізований);
 - d) Гістограму значень яскравості пікселів (нормалізовану);
- 3) Провести обробку отриманих гістограм:
 - а) Провести апроксимацію гістограм з використанням імовірнісних розподілів:
 - і) Нормального (гаусового) розподілу;
 - іі) Розподілу Лапласа;
 - ііі) Розподілу Стьюдента;
 - iv) Бета розподілу;
 - b) Для кожної гістограми визначити найкращий тип апроксимуючого розподілу за критерієм мінімізації середньо квадратичного відхилення;
 - с) Побудувати розподіл отриманих апроксимацій за видом апроксимуючого розподілу;
- 4) Побудувати багатовимірні гаусові моделі:
 - а) Сформувати вектори параметрів розподілу значень яскравості пікселів тестових зображень;
 - і) Математичне очікування;
 - іі) Математичне очікування та дисперсія;
 - ііі) Математичне очікування, дисперсія та коефіцієнт асиметрії;
 - iv) Математичне очікування, дисперсія, коефіцієнти асиметрії та ексцесу;
 - b) Визначити параметри багатовимірних гаусових моделей для кожної групи векторів, відобразити їх графічно та у вигляді таблиць.
- 5) Підготувати звіт за отриманими результатами лабораторної роботи.

2. Порядок виконання роботи та отримані результати

Робота була виконана на мові Groovy, з використанням бібліотеки *Apache Commons Math*. Бібліотеку було використано для генератора випадкових чисел та побудови апроксимуючих розподілів.

1) Для формування вибірки було використано бібліотеку *Apache Commons Math*.

2) Для кожного зображення з вибірки було створено масив зі значеннями яскравості зеленого каналу кожного пікселя.

Потім для кожного масиву було обраховано характеристики розподілу та нормалізовану гістограму. Всі вихідні дані для кожного зображення було записано у окремий вихідний файл.

В середньому було отримано наступні значення для характеристик розподілів:

Математичне очікування - 157.42204939176364 Дисперсія - 3447.3198232942555 Коефіцієнт асиметрії — -0.544311016148974 Коефіцієнт ексцесу - 0.882267849578084 3) Після апроксимації отриманих гістограм для кожної гістограми було визначено найкращий тип апроксимуючий розподіл та побудовано розподіл отриманих апроксимацій за видом апроксимуючого розподілу:

Для даної вибірки зображень найкраще підійшов бета-розподіл.

4) Багатовимірні гаусові моделі:

• Математичне очікування

Вектор середнього	157.4221
Матриця коваріації	1366.7403

• Математичне очікування та дисперсія

Вектор середнього	157.4221	3447.31982
Матриця коваріації	1366.7403	-33561.6732
	-33561.6732	4191897.3060

• Математичне очікування, дисперсія та коефіцієнт асиметрії

Вектор середнього	157.4221	3447.3198	0.5443
Матриця коваріації	1366.7403	-33561.6732	-28.7551
	-33561.6732	4191897.3060	579.6401
	-28.7551	579.6401	1.1048

• Математичне очікування, дисперсія, коефіцієнти асиметрії та ексцесу

Вектор середнього	157.4221	3447.3198	0.5443	0.8823
Матриця коваріації	1366.7403	-33561.6732	-28.7551	89.2180
	-33561.6732	4191897.3060	579.6401	-4065.5181
	-28.7551	579.6401	1.1048	-4.5731
	89.2180	-4065.5181	-4.5731	33.2634

3. Висновки

В ході лабораторної роботи було проаналізовано розподіл яскравості пікселів зеленого каналу сформованої вибірки зображень. Проаналізувавши кожне зображення з вибірки та обчисливши числові характеристики, ми намагалися апроксимувати гістограму кожного зображення до одного з заданих розподілів. З результатів обчислень можна зробити висновок, що однозначно визначити розподіл (вид розподілу), що описує яскравості пікселів зеленого каналу зображення, для всіх зображень не можна. Однак, мінімізація помилки показала, що Бета-розподіл частіше є найкращим, а розподіл Стьюдента підходить лише для деяких (для малої кількості) зображень.