

MAPPING AGAINST SEXUAL HARRASMENT

Team Presentation

Sara
Domínguez
Leader

Samuel Acosta
Developer

Andrea
Serna
Literature
review

Mauricio
Toro
Data preparation

Problem Statement

Streets of Medellín, Origin and Destination

Constrained
Shortest
Paths

First Algorithm

Streets of Medellín, Origin and Destination

Shortest path without exceeding a weighted-average risk of harassment *r*

Second Algorithm

Streets of Medellín, Origin and Destination

Path with the lowest weighted-average risk of harassment without exceeding a distance d

Algorithm Explanation

Dijkstra for the Constrained Shortest Path:

The graphic has a groups of nodes, of which each of them contains their distances between one and another. Also, the initial node has a value of 0, and the other ones of infinite.

Algorithm Complexity

	Time Complexity	Memory Complexity
Dijkstra	O(E*Log(V))	O(V*E2^E)

Time and memory complexity of the algorithm name. The V represent the vertices, while the E represents edges. Therefore, both algorithms have very good time and memory complexity, but A* could run faster and safe more memory.

Shortest Path Results

Origin	Destination	Shortest distance (meters)	Without exceeding a weighted-average risk of harassment
Universidad EAFIT	Universidad de Medellín	700	0.84
Universidad de Antioquia	Universidad Nacional	80	0.83
Universidad Nacional	Universidad Luis Amigó	90	0.85

Shortest distance obtained without exceeding a weighted average risk of harassment r.

Lowest Risk Results

Origin	Destination	Weighted-average risk of harassment	Without exceeding a distance (meters)
Universidad EAFIT	Universidad de Medellín	0.42	5000
Universidad de Antioquia	Universidad Nacional	0.2	7000
Universidad Nacional	Universidad Luis Amigó	0.3	6500

Lowest weighted-average risk of harassment obtained without exceeding a distance d.

Algorithm Execution Times

Future Work Directions

Databases

Data structure 2

Software Eng.

Integrative project

