Computability via Recursive Functions

Justin Pumford

March 2020

1 Effective Calcubility and Computability

2 Primitive Recursive Functions

2.1 Functions

For this paper, \mathbb{N} refers to the set $\{0, 1, 2, 3, ...\}$

3 The Ackermann Function

Definition (The Ackermann Function). Let $n, m \in \mathbb{N}$. Then define A(n, m) as follows:

$$A(m,n) = \begin{cases} n+1 & m=0\\ A(m-1,1) & m>0 \land n=0\\ A(m-1,A(m,n-1)) & m>0 \land n>0 \end{cases}$$

Lemma 1. For any $m, n \in \mathbb{N}, A(m, n) \in \mathbb{N}$

Proof. Proof Here \Box

Theorem 1. A(m, n) is a total function

Proof. We will proceed inductively to show that A(m,n) is defined for all $m,n\in\mathbb{N}$.

Clearly A(0,n) is defined for all $n \in \mathbb{N}$. Assume A(k,n) is defined for some

 $k \in \mathbb{N}$ and every $n \in \mathbb{N}$. Since k+1 > 0, A(k+1,0) = A(k,1), which is defined.

Now we assume A(k+1,j) is defined for some $j \in \mathbb{N}$. By Lemma 1, A(k+1,j) = a for some $a \in \mathbb{N}$. Then since j+1>0, A(k+1,j+1) = A(k,A(k+1,j)) = A(k,a). Since A(k,n) is defined for every $n \in \mathbb{N}$ by our inductive hypothesis, A(k,a) = A(k+1,j+1) is defined.

Theorem 2. For any $m, n, s \in \mathbb{N}$ where s > n, A(m, n) < A(m, s)

Proof. Use the proof of A(m, n); A(m, n + 1)

Theorem 3. For any $m, n, s \in \mathbb{N}$, A(m, A(s, n)) < A(m + s + 2, n)

Proof. Proof here \Box

Definition. Let P be the set of all primitive recursive functions so that if $f(x_1, x_2, ..., x_n) \in P$ and $m = max\{x_1, x_2, ..., x_n\}$, then there exists $t \in \mathbb{N}$ so that $f(x_1, x_2, ..., x_n) < A(t, m)$

Theorem 4. c(x), s(x), $p_i(x_1, x_2, ..., x_n) \in P$

Proof.

$$c(x) = 0 < x + 1 = A(0, x)$$

$$s(x) = x + 1 < x + 2 = A(1, x)$$

$$p_i(x_1, x_2, ..., x_n) = x_i \le m < m + 1 = A(0, m)$$

To verify x + 2 = A(1, x), we proceed by induction.

A(1,0) = A(1-1,1) = A(0,1) = 2 = 0 + 2. Now assume A(1,k) = k + 2 for some $k \in \mathbb{N}$. Then A(1,k+1) = A(1-1,A(1,k+1-1)) = A(0,A(1,k)) = A(0,k+2) = k+3 = (k+1)+2.

Theorem 5. P is closed under composition

Proof. Let $f, g_1, g_2, ..., g_k \in P$, where f is k-ary and each g_i is j-ary. Let $x_1, x_2, ..., x_j \in \mathbb{N}$. Let $m = max\{x_1, x_2, ..., x_j\}$. Let h be the j-ary primitive recursive function that results from function composition of f with $g_1, g_2, ..., g_k$. Let g_{max} be the g_i giving the maximum value in $max\{g_1(x_1, ..., x_j), ..., g_k(x_1, ..., x_j)\}$. Let $m_g = g_{max}(x_1, ..., x_j)$ Since $g_{max} \in P$, there exists some $t_g \in \mathbb{N}$ so that $m_g < A(t_g, m)$. Similarly since $f \in P$, there exists some $t_f \in \mathbb{N}$ so that $h(x_1, ..., x_j) = f(g_1(x_1, ..., x_j), ..., g_k(x_1, ..., x_j)) < A(t_f, m_g)$. But since $m_g < A(t_g, m)$, by Theorem 2 $A(t_f, m_g) < A(t_f, A(t_g, m))$. By Theorem 3, $A(t_f, A(t_g, m)) < A(t_f + t_g + 2, m)$. Let $t = t_f + t_g + 2 \in \mathbb{N}$. Then $h(x_1, ..., x_j) < A(t, m)$. So $h \in P$.

Theorem 6. P is closed under primitive recursion	
Proof.	
Theorem 7. P is precisely the primitive recursive functions	
Proof.	
Theorem 8. $A(m,n)$ is not a primitive recursive function	
Proof. Proof Here	

4 General Recursive Functions

- 4.1 Partial Functions
- 4.2 Definition of General Recursive Functions