

Feature Extraction and Cross Validation

Supervised Linear Regression

Agenda

gl

- Interaction Effect & Dummy Variable
- Machine Learning Pipeline
- Data Processing
- Feature Extraction
 - Feature Transformation
 - Logarithmic transformation
 - Square root transformation
 - Reciprocal transformation
 - Exponential transformation
 - Box-cox transformation

Agenda

- Feature Scaling
 - Normalization
 - Standardization
- Feature Selection
 - Forward selection method
 - Backward elimination method
 - Stepwise method
 - Recursive Feature Elimination

Agenda

- Optimization
 - Prediction Evaluation
 - Bias and Variance
 - Model Validation
 - K-Fold Cross Validation
 - LOOCV

Interaction Effect

Interaction effect

gl

Sentiment

Lemonade

Interaction

 An interaction effect occurs when the effect of one variable depends on another variable. This combined effect may or may not improve the performance of the model

Note: It does not imply that the predictor variables are collinear

Example: Salary of an employee increases with experience, but this may vary based on whether the person has completed additional courses like MBA

91

- In context with our example, we shall consider the interaction effect of variables Engine_Capacity and Mileage
- We obtained Int_EC_Mil by taking the product of Mileage and Engine_Capacity
- Let us check whether the interaction term is adding value to our model

Mileage	Engine_Capacity	Int_EC_Mil	Age	Premium (in dollars)
15	1.8	27	2	392.5
14	1.2	16.8	10	46.2
17	1.2	20.4	8	15.7
7	1.8	12.6	3	422.2
10	1.6	16	4	119.4
7	1.4	9.8	3	170.9
20	1.2	24	7	56.9
21	1.6	33.6	6	77.5
18	1.2	21.6	2	214
11	1.6	17.6	5	65.3
7.9	1.4	11.06	3	250
8.6	1.6	13.76	3	220
12.3	1.2	14.76	2	217.5
17.1	1.6	27.36	1	140.88
19.4	1.2	23.28	6	97.25

Interaction Effect

Now our model is:

Premium = $\beta_0 + \beta_1$ Mileage + β_2 Engine_Capacity + β_3 Age + β_4 Int_EC_Mil + ϵ

Paramet er	Description
β_0	Premium value where the best fit line cuts the Y-axis (Premium)
β ₁	Regression coefficient of the variable Mileage
β ₂	Regression coefficient of the variable Engine_Capacity
β ₃	Regression coefficient of the variable Age
β ₄	Regression coefficient of the variable Int_EC_Mil

Dep. Variabl	e:	Premium		R-squar	red: 0.64	5
Mode	el:	OLS	Adj.	R-squar	red: 0.500	3
Metho	d: Lea	st Squares		F-statis	tic: 4.540	3
Dat	e: Sat, 0:	2 Jan 2021	Prob (F-statist	tic): 0.0238	3
Tim	e:	21:50:39	Log-	Likeliho	od: -84.98	1
No. Observation	s:	15		A	AIC: 180.0)
Df Residual	s:	10		E	BIC: 183.	5
Df Mode	el:	4				
Covariance Typ	e:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-502.0111	563.770	-0.890	0.394	-1758.169	754.147
Mileage	40.3059	37.155	1.085	0.303	-42.480	123.092
Engine	568.7234	369.858	1.538	0.155	-255.371	1392.817
Age	-25.7814	10.348	-2.491	0.032	-48.838	-2.724
Int_Engine_Mil	-30.5470	24.879	-1.228	0.248	-85.981	24.887
Omnibus:	0.026	Durbin-W	atson:	2.101		
Prob(Omnibus):	0.987	Jarque-Ber	a (JB):	0.195		
Skew:	0.079	Pro	b(JB):	0.907		
Kurtosis:	2.464	Cor	d. No.	774.		

Linear regression model (interaction effect)

Based on the data, the β parameters are:

$$\beta_0 = -502.011$$
, $\beta_1 = 40.3059$, $\beta_2 = 568.723$,

$$\beta_3 = -25.7814 \& \beta_4 = -30.5470$$

Thus the model is

$$Y = 502.011 + 40.3059 x_1 + 568.723 x_2 - 25.7814x_3 - 30.5470 x_4$$

That is,

Premium = -502.011 + 40.3059*Mileage + 568.723* Engine_Capacity - 25.7814*Age - 30.5470*Int_EC_Mil

	0.645	ed:	R-squar	1	Premium):	Dep. Variable
	0.503	ed:	R-squar	Adj.	OLS	l:	Mode
	4.543	tic:	F-statis		st Squares	I: Leas	Method
	0.0238	ic):	F-statist	Prob (2 Jan 2021	: Sat, 02	Date
	-84.981	od:	Likeliho	Log-	21:50:39):	Time
	180.0	IC:	A		15	s:	No. Observations
	183.5	BIC:	E		10	s:	Df Residuals
					4	l:	Df Mode
					nonrobust):	Covariance Type
0.975	[0.025		P> t	t	std err	coef	
754.147	58.169	-17	0.394	-0.890	563.770	-502.0111	Intercept
123.092	42.480		0.303	1.085	37.155	40.3059	Mileage
1392.817	55.371	-2	0.155	1.538	369.858	568.7234	Engine
-2.724	48.838	_4	0.032	-2.491	10.348	-25.7814	Age
24.887	85.981	-4	0.248	-1.228	24.879	-30.5470	Int_Engine_Mil
			2.101	atson:	Durbin-W	0.026	Omnibus:
			0.195	a (JB):	arque-Bera	0.987 J	Prob(Omnibus):
			0.907	b(JB):	Pro	0.079	Skew:
			774.	d. No.	Con	2.464	Kurtosis:

Inference: By Looking at the P-value of the Interaction Effect of Engine & Mileage, we can say that there is no Interaction between Mileage & Engine that produces significant result for the premium calculation.

gl

Presence of categorical variable

Linear regression of categorical variable

The regression method fails in presence of categorical variable

Thus we need to convert the categorical variable to numeric variable

In order to so, we use N - 1 dummy encoding

N-1 dummy encoding

Dummy variables are binary variables used to represent categorical data

 For a categorical variable that can take k values, k-1 dummy variables need to be created

A dummy variable is 1 if it takes a particular value, else it is 0

Dummy variable example

Consider a variable, Gender, used to represent the gender of a citizen during the census

Gender: Male, Female

Since Gender takes 2 values it can be represented with 1 dummy variable D₁ as:

Value	D ₁
Male	0
Female	1

Data

Let us consider a categorical variable Manufacturer in the data and find out how it behaves.

Mileage	Manufacturer	Premium (in dollars)
		, ,
15	Ford	392.5
14	Honda	46.2
17	Tata	15.7
7	Ford	422.2
10	Ford	119.4
7	Tata	170.9
20	Tata	56.9
21	Honda	77.5
18	Honda	214
11	Tata	65.3
7.9	Ford	250
8.6	Tata	220
12.3	Tata	217.5
17.1	Ford	140.88
19.4	Honda	97.25

Example

In context with our example, the categorical variable Manufacturer takes values Ford,
 Honda and Tata

Since Manufacturer takes 3 values, two dummy variables Mfr_Honda and Mfr_Tata
 are created

Value	Mfr_Honda	Mfr_Tata
Ford	0	0
Honda	1	0
Tata	0	1

Model with categorical variable

Now our model is

Premium =
$$\beta_0$$
 + β_1 Mileage + β_2 Mfr_Honda + β_3 Mfr_Tata + ϵ

Parameter	Description
βο	Premium value where the best fit line cuts the Y-axis (Premium)
β ₁	Regression coefficient of the variable Mileage
β_2	Regression coefficient of the dummy variable Mfr_Honda
β_3	Regression coefficient of the dummy variable Mfr_Tata

Linear regression model (dummy variable)

Based on the data, the β parameters are:

$$\beta_0 = 368.93, \, \beta_1 = -9.117,$$

$$\beta_2 = -95.174$$
 and $\beta_3 = -129.216$

Thus the model is

$$Y = 368.93 - 9.117 x_1 - 95.174 x_2 - 129.216 x_3$$

That is,

Premium = 368.93 - 9.117 Mileage - 95.174 Mfr_Honda - 129.216 Mfr_Tata

Mileage	Manufacturer	Premium (in dollars)
15	Ford	392.5
14	Honda	46.2
17	Tata	15.7
7	Ford	422.2
10	Ford	119.4
7	Tata	170.9
20	Tata	56.9
21	Honda	77.5
18	Honda	214
11	Tata	65.3
7.9	Ford	250
8.6	Tata	220
12.3	Tata	217.5
17.1	Ford	140.88
19.4	Honda	97.25

Regression line (dummy variable)

The regression line:

Premium =
$$\beta_0$$
 + β_1 Mileage + β_2 Mfr_Honda + β_3 Mfr_Tata + ϵ

If the manufacturer is Honda, the regression line becomes:

Premium =
$$\beta_0 + \beta_1$$
 Mileage + β_2 Mfr_Honda + β_3 Mfr_Tata
= $\beta_0 + \beta_1$ Mileage + β_2 (1)+ β_3 (0)
= $\beta_0 + \beta_1$ Mileage + $\beta_2 + 0$
= $(\beta_0 + \beta_2)$ + β_1 Mileage

Value	Mfr_Honda	Mfr_Tata
Ford	0	0
Honda	1	0
Tata	0	1

Note the change in the intercept value.

Regression line (dummy variable)

The regression line:

Premium =
$$\beta_0$$
 + β_1 Mileage + β_2 Mfr_Honda + β_3 Mfr_Tata + ϵ

Value	Mfr_Honda	Mfr_Tata
Ford	0	0
Honda	1	0
Tata	0	1

For manufacturer = Ford,

Premium = $\beta_0 + \beta_1$ Mileage

For manufacturer = Honda,

Premium = $(\beta_0 + \beta_2) + \beta_1$ Mileage

For manufacturer = Tata,

Premium = $(\beta_0 + \beta_3) + \beta_1$ Mileage

Actual intercept

Change in intercept

Change in intercept

Machine Learning Pipeline

The ML pipeline

The ML pipeline: Data processing

DATA PROCESSING

- Collection
- Formatting
- Labelling

The ML pipeline: Feature extraction

FEATURE EXTRACTION

- Feature Transformation
- Feature Engineering
- Feature Selection

MODELING

- Model Building
- Model Evaluation

OPTIMIZATION

- Prediction Evaluation
- Model Validation
- Fine Tuning

The ML pipeline

Data Processing

Data processing

DATA PROCESSING

- Collection
- Formatting
- Labelling

- Collection: To extract data from various sources.
 Generally obtained in the raw form and not immediately suitable for analysis
- Formatting: Organizing the datasets as required for analysis
- Labelling: Manually labelling data

Feature Extraction

Feature

- Feature or attribute is an independent variable that acts as input to our model
- The columns of a dataset are considered as features

Features			
Product ID	Store	City	
FD_234	Α	Chennai	
DR_543	Α	Bangalore	
FD_176	В	Mumbai	
DR_621	Α	New Delhi	

Feature Extraction

FEATURE EXTRACTION

- Feature Transformation
- Feature Engineering
- Feature Selection

- Feature Transformation: Replacing the existing features by a function of these features
- Feature Engineering: Creating new features based on empirical relationships
- Feature Selection: Fitting a model of significant features

Feature Transformation

Why do we need feature transformation?

- In case of skewed (predictor and/or dependent) variable, we transform it to reduce the skewness
- If the assumptions of linear regression are not met, the transformation of skewed target variable can be used for making the error terms more compatible with the assumptions
- If the relationship between a predictor and the response variable is non-linear, it can be linearized using transformation

Assumption of normality

The parametric methods used to compute test statistics or confidence intervals on the predictor variables assume the data to follow a normal distribution

Hence it is favourable that features have an approximately normal distribution

Recap: The parametric methods are used when sample statistics adequately represent the population

Rule for transformed variables

Comparison of model performance should be done using the original units for the target variable and not with the units after the transformation

Transformation methods

- Logarithmic transformation
- Square root transformation
- Reciprocal transformation
- Exponential transformation
- Box-cox transformation

Transformation methods

- Logarithmic transformation
- Square root transformation
- Reciprocal transformation
- Exponential transformation
- Box-cox transformation

Logarithmic transformation

- To linearize, values of a variable are replaced with its natural log
- It cannot be used on a categorical variable after dummy encoding since ln(0) is undefined
- Also if a variable takes zero or negative values, the logarithmic transformation cannot be used on it

34

Consider the following data:

OHSIGE	i lite	HOH) WILLIÇ	j uali	a.				
	12	0	2	6	24	12	21	6	16

In(X)	2.5	2.2	1.1	1.8	3.2	2.6	3.1	1.8	2.7	2.6	3.9	3.1	3.8	3.4	4.5	3.1	3.5	

54

Note: Values are rounded to 1 decimals

Transformation techniques

- Logarithmic transformation
- Square root transformation
- Reciprocal transformation
- Exponential transformation
- Box-cox transformation

Square root transformation

Values of a variable are replaced with its square root

To reduce right skewness, we may use square root transformation

It can be applied even when the variable takes a zero value

Example of square root transformation

Consider the following data:

Note: Values are rounded to 1 decimals

Х	12	9	3	6	24	13	21	6	16	13	54	23	46	32	87	23	34
√X	3.5	3	1.7	2.4	4.9	3.6	4.6	2.4	4	3.6	7.4	4.8	6.8	5.7	9.3	4.8	5.8

Transformation techniques

- Logarithmic transformation
- Square root transformation
- Reciprocal transformation
- Exponential transformation
- Box-cox transformation

Reciprocal transformation

Values of a variable are replaced with its reciprocal

It can not be applied when the variable takes zero values

However, can be applied to negative values

• Example: population per area (population density) transforms to area per person

Consider the following data:

Х	12	19	23	16	14	13	21	13	16	13	24	23	41	32	27	23	34
1/X	.08	.05	.04	.06	.07	.08	.05	.08	.06	.08	.04	.04	.02	.03	.04	.04	.03

Transformation techniques

- Logarithmic transformation
- Square root transformation
- Reciprocal transformation
- Exponential transformation
- Box-cox transformation

Exponential transformation

- Values of a variable are replaced with its exponential
- It is generally used to transform logarithmic transformed data to get the original data back

Example of exponential transformation

Consider the data used in logarithmic transformation.

Х	12	9	3	6	24	13	21	6	16	13	54	23	46	32	87	23	34
In(X)	2.5	2.2	1.1	1.8	3.2	2.6	3.1	1.8	2.7	2.6	3.9	3.1	3.8	3.4	4.5	3.1	3.5
exp(X)	12	9	3	6	24	13	21	6	16	13	54	23	46	32	87	23	34

Transformation techniques

- Logarithmic transformation
- Square root transformation
- Reciprocal transformation
- Exponential transformation
- Box-cox transformation

Box cox transformation

It is defined as

$$X^{\lambda} = egin{cases} rac{X^{\lambda}-1}{\lambda} & ext{if} \lambda > 0 \ \ln(X) & ext{if} \lambda = 0 \end{cases}$$

Here, X is the variable and λ is the transformation parameter and can be tuned according to the data.

- The Box-Cox transformation can only be used on positive variables
- Generalized form of logarithmic transformation

Summary

Type of Transformation	Properties
Logarithmic transformation	Can not be used if a variable takes zero or negative values
Square root transformation	Can be used to reduce the right skewness, Can not be used if the variable takes negative values
Reciprocal transformation	Can not be used if a variable takes zero value
Exponential transformation	Inverse of log transformation
Box-cox transformation	Generalization of log transformation

Model Before Log Transformation

Build the multiple linear regression model using the OLS method.

Skew:

build a model on training dataset
fit() is used to fit the OLS model
MLR_model = sm.OLS(y_train, X_train).fit()
print the summary output
print(MLR_model.summary())

OLS Regression Results Dep. Variable: Appliances R-squared: 0.352 Model: Adj. R-squared: 0.315 Method: F-statistic: 9.663 Least Squares Date: Mon. 02 Nov 2020 Prob (F-statistic): 1.09e-26 16:39:10 Log-Likelihood: -1942.0 No. Observations: 434 AIC: 3932. Df Residuals: 410 BIC: 4030. Df Model: Covariance Type: nonrobust

covariance Ty	pe:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	30.5038	157.184	0.194	0.846	-278.484	339.492
T1	1.6850	3.239	0.520	0.603	-4.683	8.053
RH_1	5.7350	1.404	4.084	0.000	2.974	8.496
T2	-7.0984	2.915	-2.435	0.015	-12.829	-1.368
RH_2	-4.4119	1.387	-3.181	0.002	-7.139	-1.685
T3	4.7152	1.865	2.528	0.012	1.049	8.382
RH_3	0.0217	1.275	0.017	0.986	-2.485	2.528
T4	3.2258	2.027	1.591	0.112	-0.759	7.210
RH_4	1.0482	1.182	0.887	0.376	-1.275	3.372
T5	0.2366	2.129	0.111	0.912	-3.949	4.422
RH_5	-0.0046	0.275	-0.017	0.987		0.537
T6	1.4891	0.949	1.569	0.117	-0.377	
RH_6	0.0480	0.107	0.447	0.655	-0.163	0.259
T7	-4.4128	2.288	-1.928	0.055	-8.911	0.086
RH_7	0.5859		0.867	0.387	-0.743	1.915
T8	11.1364	1.670	6.667	0.000	7.853	
RH_8	-2.9775	0.588	-5.061	0.000	-4.134	
T9	-8.3401	3.044	-2.740	0.006		
RH_9	-0.8892	0.663	-1.341	0.181	-2.192	
	-0.5231	1.100	-0.476	0.634		1.638
Press_mm_hg		0.191	0.028	0.978	-0.371	0.381
	0.0488	0.192	0.255	0.799		0.426
Windspeed		0.592	1.969	0.050	0.002	2.329
Visibility	-0.0091	0.129	-0.071	0.943	-0.262	0.244
Omnibus:		128.702		-Watson:		1.935
Prob(Omnibus)	:	0.000	Jarque.	-Bera (JB):		428.410

Prob(JB):

9.37e-94

1.340

```
# plot the Q-Q plot
# 'r' represents the regression line
qqplot(MLR_model.resid, line = 'r')

# set plot and axes labels
# set text size using 'fontsize'
plt.title('Q-Q Plot', fontsize = 15)
plt.xlabel('Theoretical Quantiles', fontsize = 15)
plt.ylabel('Sample Quantiles', fontsize = 15)
# display the plot
plt.show()
```


Interpretation Here we can see that the residuals are not normally distributed. The value of skewness is 1.3445. We will log transform the target variable and see if this reduces the skewness.

Model After Log Transformation

Build the multiple linear regression model using the OLS method after transforming the target variable.

```
# build a model on training dataset
# fit() is used to fit the OLS model
# use log transformation of y_train
MLR_model_after_transform = sm.OLS(np.log(y_train), X_train).fit()
# print the summary output
print(MLR_model_after_transform.summary())
```

OLS Regression Results

Dep. Variable:	Appliances	R-squared:	0.353				
Model:	OLS	Adj. R-squared:	0.317				
Method:	Least Squares	F-statistic:	9.733				
Date:	Mon, 02 Nov 2020	Prob (F-statistic):	6.79e-27				
Time:	16:39:10	Log-Likelihood:	-114.07				
No. Observations:	434	AIC:	276.1				
Df Residuals:	410	BIC:	373.9				
Df Model:	23						
Covariance Type:	nonrobust						

	coef	std err	t	P> t	[0.025	0.975]	
const	3.9872	2.330	1.712	0.088	-0.592	8.567	
T1	0.0063	0.048	0.131	0.896	-0.088	0.101	
RH_1	0.0741	0.021	3.561	0.000	0.033	0.115	
T2	-0.0743	0.043	-1.720	0.086	-0.159	0.011	
RH_2	-0.0523	0.021	-2.542	0.011	-0.093	-0.012	
T3	0.0627	0.028	2.269	0.024	0.008	0.117	
RH_3	-0.0043	0.019	-0.228	0.820	-0.041	0.033	
T4	0.0586	0.030	1.951	0.052	-0.000	0.118	
RH_4	0.0127	0.018	0.725	0.469	-0.022	0.047	
T5	-0.0144	0.032	-0.457	0.648	-0.076	0.048	
RH_5	0.0010	0.004	0.252	0.801	-0.007	0.009	
T6	0.0205	0.014	1.456	0.146	-0.007	0.048	
RH_6	0.0004	0.002	0.221	0.825	-0.003	0.003	
T7	-0.0621	0.034	-1.831	0.068	-0.129	0.005	
RH_7	0.0095	0.010	0.944	0.345	-0.010	0.029	
T8	0.1656	0.025	6.688	0.000	0.117	0.214	
RH_8	-0.0411	0.009	-4.719	0.000	-0.058	-0.024	
T9	-0.1033	0.045	-2.290	0.023	-0.192	-0.015	
RH_9	-0.0099	0.010	-1.004	0.316	-0.029	0.009	
T_out	-0.0148	0.016	-0.911	0.363	-0.047	0.017	
Press_mm_hg	-0.0010	0.003	-0.343	0.732	-0.007	0.005	
RH_out	-0.0004	0.003	-0.133	0.894	-0.006	0.005	
Windspeed	0.0162	0.009	1.844	0.066	-0.001	0.033	
Visibility	-0.0001	0.002	-0.054	0.957	-0.004	0.004	
Omnibus:		14.42	0 Durbin-	Watson:		1.970	

0.037

4.310

Jarque-Bera (JB):

Prob(JB):

Cond. No.

31.139

1.73e-07

1.16e + 05

Prob(Omnibus):

Skew:

Kurtosis:

```
91
```

```
# plot the Q-Q plot
# 'r' represents the regression line
qqplot(MLR_model_after_transform.resid, line = 'r')

# set plot and axes Labels
# set text size using 'fontsize'
plt.title('Q-Q Plot', fontsize = 15)
plt.xlabel('Theoretical Quantiles', fontsize = 15)
plt.ylabel('Sample Quantiles', fontsize = 15)
# display the plot
plt.show()
```


After transforming the target variable, the skewness reduced to 0.0366 and we can see a near normal distribution of the residuals.

Feature Scaling

Feature scaling

It is a technique used to transform the data into a same scale

 Since the features have various ranges, it becomes a necessary step in data preprocessing while using machine learning algorithms

 Since most machine learning algorithms use distance calculations, features taking higher values will weigh in more in the distance compared to features taking values of low magnitude

Example

 In a dataset which has variables age and income. The age of a person is measured in years which can take values between 18 to 65 (retirement age) and income of a person is in thousands
 So it is necessary to bring the two features on the same scale to assign appropriate weights

In some parts of the world, height is measured using metric system (centimetres), while in some other parts the imperial system is used (feet/inches).
 So the results would be different if the height value is 152 cm or 5 feet, when if converted they refer to the same height value.

Feature scaling methods

- Normalization
- Standardization

Normalization

Normalization is the process of rescaling features in the range 0 to 1

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Standardization

- Standardization rescales the feature such that it has mean 0 and unit variance
- The procedure involves subtracting the mean from observation and then dividing by the standard deviation

$$x' = rac{x-x}{\sigma}$$

Feature Selection

Feature selection

- Feature selection is the process of including the significant features in the model
- This can be achieved by:
 - Forward selection method
 - Backward elimination method
 - Stepwise method
- To understand the above methods let $X_1, X_2, ..., X_k$ be k predictor variables and Y be the response variable

Forward selection method

91

Procedure

- 1. Start with a null model (with no predictors)
- 2. Obtain the correlation between Y and each variable. The variable with highest correlation gets added to the model (say X_m). Build a model Y ~ X_m
- 3. Obtain the correlation between Y and remaining (k-1) variables. The next variable (say X_p) is included, which has the highest correlation with Y after removing X_m
- 4. Build a model Y $\sim X_m + X_p$. If X_p is significant include it in the model else discard
- 5. Repeat steps (3) and (4) until reaching the stopping rule or running out of variables

Forward selection method

Consider 5 predictors

Obtain the most significant predictor

(predictor having highest correlation with Y)

Model with most significant variable $(say X_2)$

Add to the model

Obtain the next most significant predictor (from the remaining 4 predictor)

Model with most significant variable (say X,)

Add to the model

Continue until reaching the stopping rule or running out of variables

Backward elimination method

91

Procedure

- 1. Start with a full model (model with all k predictors)
- 2. Remove the variable which is least significant (variable with largest p-value)
- 3. Fit a new model with remaining (k-1) regressors
- 4. The next variable (say X_p) is removed if it is least significant
- 5. Repeat steps (3) and (4) until reaching the stopping rule or all variables are significant

Backward elimination method

Start with a FULL MODEL (a model with all the 5 predictors)

$$Y \sim \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5$$

Obtain the least significant predictor (predictor having highest p-value)

Model after removing the least significant variable (say X_3 the least significant)

$$Y \sim \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_4 + \beta_4 X_5$$

Obtain the next least significant predictor (predictor having highest p-value after removing X₃)

Model after removing the least significant variable (say X, is least significant)

$$Y \sim \beta_0 + \beta_1 X_2 + \beta_2 X_4 + \beta_3 X_5$$

Continue until reaching the stopping rule or running out of variables

Stepwise regression

- It is a combination of forward selection and backward elimination method
- Procedure:
 - Start with a null model (with no predictors)
 - At each step add or remove variable based on its corresponding p-value
 - Stop when no variable can be added or removed justifiably

Stepwise regression

5. Recursive Feature Elimination (RFE)

dtype='object')

It is the process that returns the significant features in the dataset by recursively removing the less significant feature subsets

- It is an instance of backward feature elimination
- Procedure:
 - Train a full model
 - Create subsets for features
 - Set the subset size
 - Compute the ranking criteria for each feature subset
 - Remove the feature subset that has the least ranking

```
# set of independent variables
# drop the target variable using 'drop()'
# 'axis = 1' drops the specified column
X = df energy cons.drop('Appliances', axis = 1)
# consider the dependent variable
y = df energy cons['Appliances']
# split data into train subset and test subset
# set 'random state' to generate the same dataset each time you run the code
# 'test size' returns the proportion of data to be included in the testing set
X train, X test, y train, y test = train test split(X, y, test size = 0.20, random state = 10)
# initiate linear rearession model to use in feature selection
linreg rfe = LinearRegression()
# build the RFF model
# pass the regression model to 'estimator'
# pass number of required features to 'n features to select'
# if we do not pass the number of features, RFE considers half of the features
rfe model = RFE(estimator=linreg rfe, n features to select = 12)
# fit the RFE model on the training dataset using fit()
rfe model = rfe model.fit(X train, v train)
# create a series containing feature and its corresponding rank obtained from RFE
# 'ranking' returns the rank of each variable after applying RFE
# pass the ranks as the 'data' of a series
# 'index' assigns feature names as index of a series
feat index = pd.Series(data = rfe model.ranking , index = X train.columns)
# select the features with rank = 1
# 'index' returns the indices of a series (i.e. features with rank=1)
signi feat rfe = feat index[feat index==1].index
# print the significant features obtained from RFE
print(signi feat rfe)
Index(['T1', 'RH_1', 'T2', 'RH_2', 'T3', 'T4', 'RH_4', 'T7', 'T8', 'RH_8',
       'T9', 'Windspeed'],
```

Recursive feature elimination (RFE)

Summary

Method	Properties						
Forward Selection	Starts with a null model. Significant variables are added one at a time						
Backward Elimination	Starts with a full model and removes the least significant feature at each step						
Stepwise Method	Combination of forward selection and backward elimination method						
Recursive Feature Elimination	Selects a best subset of features						

Optimization

Optimization

OPTIMIZATION

- Prediction Evaluation
- Model Validation
- Fine Tuning

- Prediction Evaluation: Process of evaluating how effectively the constructed model performs predictions
- Model Validation: Using test data to validate the model built using train data
- Fine Tuning: Maximizing the performance of a constructed model

Prediction Evaluation

Prediction Evaluation

To construct a model with high prediction efficacy it is important to consider the prediction errors:

- o Bias
- Variance

- Consider the example of influence of years of experience on salary
- The plot represents a relationship between salary and experience
- Let us assume a grey curve that captures the true trend for the points in the plot

Given the years of experience information (x_e) , we can determine the salary (y_s) using the grey curve

But we do not actually know the grey curve for this plot

To find the curve that captures the true trend we divide the data into:

- Train data
- Test data

 We first estimate a regression line to capture the trend in the train data

 But compared to the line, the grey curve seems to better capture the relationship between experience and salary

Bias

 The linear regression line will never bend and hence will never capture the "true" relationship

 This inability to capture the "true" relationship is called bias

We then estimate a blue curve that captures the trend in train data perfectly, even better than the grey curve

Error calculation

Error is measured by adding the squares of difference between the actual and the fitted values.

The curve fits the data points so perfectly, the difference between the actual and fitted values is actually zero.

We use the same blue line and blue curve to estimate trends in test data

Even though the blue curve fits the train data with zero error, it does not predict well on test data

Variance

91

This difference in fits is called variance

- Bias is the difference between a model's predicted values and the observed values
- Variance of a model is the difference between predictions if the model is fit to different datasets

Bias-Variance for a simple model

- If the model is too simple it will have high bias and low variance
- Such a model will give not perfectly accurate predictions, but the predictions will be consistent
- The model will not be flexible enough to learn from the majority of given data, this is termed as underfitting

Example for bias

As we can see compared to the blue line, the blue curve captured the trend in train data perfectly. Hence we can say that the blue line has a high bias.

Bias-Variance for a complex model

- If the model is too complex it will have low bias and high variance
- Such a model will give accurate predictions but inconsistently
- The high variance indicates it will have a much better fit on the train data compared to the test data, this is termed as overfitting

Model Validation

Model validation

The model validation methods use test data to validate the model built using train data

- The model validation:
 - o k fold cross validation
 - Leave one out cross validation (LOOCV)

Cross validation

Test set

Test set

Procedure:

- Consider a data having '2n' observations
- o Partition the dataset into two subsets: train and test sets of the equal size (n)

Run = 1

Run = 2

Train set

Train set

- Measure the model performance
- Swap the train and test sets
- Total error is obtained by summing up the errors for both runs
- This method is known as two fold cross validation.
- Here, each observation is used exactly once for training and once for testing

The k - fold cross validation

Procedure:

- Partition the dataset into 'k' subsets
- Consider one subset as the test set and remaining subsets as train set
- Measure the model performance
- Repeat this until all k subsets are considered as test set
- Total error is obtained by summing up the errors for all the k runs
- This method is known as the k fold cross validation
- Here, each observation is used exactly k times for training and exactly once for testing

91

Choosing k

The value of k is completely experimental and based on the size of the dataset. Usually it is considered as 5 or 10, but there is no hard rule for that.

In python we can use the 'sklearn.model_selection.cross_val_score()' to perform the k-fold cross validation. By default, the function considers the value of k = 5.

Consider the 10-fold cross validation.

The total error is given by:

$$\varepsilon = \frac{1}{10} \sum_{i=1}^{n=10} \varepsilon_i$$

LOOCV

- It is a special case of k fold cross validation method. Instead of subsetting the data,
 at every run one observation is considered as the test set
- For n observations, there are n runs
- The total error is the sum of errors for n runs
- In LOOCV, the estimates from each fold are highly correlated and their average can have a high level of variance

gl

Thank You