1. Systèmes de transition

Systèmes de transition

- ► Modélise formellement un système concret
- \blacktriangleright *États*: ensemble S (sommets)
- ▶ Relation de transition: \rightarrow ⊆ $S \times S$ (arcs)
- ▶ États initiaux: $I \subseteq S$ (où S peut débuter)

Prédécesseurs et successeurs

- \blacktriangleright Successeurs immédiats: Post $(s_1) = \{s_2\}$
- ▶ Prédécesseurs immédiats: $Pre(s_1) = \{s_0, s_2\}$
- \blacktriangleright Successeurs: Post* $(s_1) = \{s_1, s_2, s_3\}$
- ▶ Prédécesseurs: $\operatorname{Pre}^*(s_1) = \{s_0, s_1, s_2\}$
- ▶ États terminaux: s_3 car Post $(s_3) = \emptyset$

Chemins et exécutions

- ▶ Chemin fini: $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_1$
- ▶ Chemin infini: $s_1 \rightarrow s_2 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots$
- ▶ *Ch. maximal*: ne peut être étendu, par ex. $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3$
- Exécution: chemin maximal qui débute par un état initial

Structures de Kripke

- ▶ Décrit les propriétés des états d'un système
- \blacktriangleright Système de transition (S, \rightarrow, I)
- ► Propositions atomiques AP
- ▶ Fonction d'étiquetage $L: S \to 2^{AP}$
- ► Exemple: si $AP = \{p, q, r\}$ et $L(s_1) = \{p, q\}$, alors s_1 satisfait p et q, mais pas r

Explosion combinatoire

- Nombre d'états peut croître rapidement, par ex. $\mathcal{O}(2^n)$
- ► Existe techniques pour surmonter ce problème

2. Logique temporelle linéaire (LTL)

Logique

- ► Intérêt: spécifier formellement des propriétés
- ► Syntaxe: vrai $|p| \varphi \land \varphi | \varphi \lor \varphi | \neg \varphi | \mathsf{X}\varphi | \varphi \mathsf{U} \varphi | \mathsf{F}\varphi | \mathsf{G}\varphi$
- ▶ Interprétation: sur des traces, c.-à-d. des mots infinis de $(2^{AP})^{\omega}$
- ► Sémantique:

Équivalences

- \blacktriangleright Distributivité: X, G, U (gauche) sur \land ; X, F, U (droite) sur \lor
- ► Dualité: X dual de lui-même, F dual de G
- ► *Autre*: seules combinaisons de F et G: {F, G, FG, GF}

Types de propriétés

- ightharpoonup Invariant: propriété toujours vraie: $G\varphi$
- ► *Sûreté*: réfutable avec préfixe fini
- ► Vivacité: comportements vers l'infini

Vérification

- ▶ *Trace*: états d'une exécution infinie \mapsto leurs étiquettes
- ► Satisfaisabilité: $\mathcal{T} \models \varphi \iff \operatorname{Traces}(\mathcal{T}) \subseteq \llbracket \varphi \rrbracket$
- ► Équité: omettre traces triviales où un processus est ignoré
- ► *En pratique*: Spin (avec Promela), par ex. algorithme de Lamport, protocole de Needham-Schroeder

3. Langages ω -réguliers

Expressions ω -régulières

- ▶ Décrivent: les langages ω -réguliers de mots infinis
- ► Syntaxe:

$$s ::= r^{\omega} \mid (r \cdot s) \mid (s+s)$$
$$r ::= r^* \mid (r \cdot r) \mid (r+r) \mid a \mid \varepsilon$$

► Exemples:

 $a(a+b)^{\omega}$: mots qui débutent par a,

 $(ab)^{\omega}$: l'unique mot $abababab \cdots$

 $b^*(aa^*bb^*)^{\omega}$: mots avec une infinité de a et de b $(a+b)^*b^{\omega}$: mots avec un nombre fini de a

Automates de Büchi

- ► Définition: automates usuels; plusieurs états initiaux
- lacktriangle Langage: mots qui visitent états acceptants ∞ souvent
- ► *Expressivité*: \equiv expressions ω -rég.; déterminisme \neq non dét.

▶ Exemple: mots tels que $\#a = \infty$, $\#b = \infty$ et $\#c \neq \infty$:

Intersection d'automates de Büchi

- $ightharpoonup 1^{\text{ère}}$ idée: simuler \mathcal{A} et \mathcal{B} en parallèle via produit; pas suffisant
- ► *Solution*: faire deux copies, alterner aux états acceptants

4. Vérification algorithmique de formules LTL

LTL vers automates

- ▶ Alphabet: $\Sigma := 2^{AP}$
- ► Conversion: $\varphi \to \mathcal{A}_{\varphi}$ (pire cas: $2^{\mathcal{O}(|\varphi|)}$ états)
- ► Exemples:

Structures de Kripke vers automates

- ightharpoonup Conversion: étiquettes \equiv lettres + tout acceptant
- ► Exemple:

Test du vide

- ▶ Vérification: $\mathcal{T} \models \varphi \iff \mathcal{L}(\mathcal{A}_{\mathcal{T}}) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) = \emptyset$
- ► Lassos: $\mathcal{L}(\mathcal{B}) \neq \emptyset \iff \exists q_0 \stackrel{*}{\rightarrow} q \stackrel{+}{\rightarrow} q \text{ où } q_0 \in Q_0, q \in F$
- ► Détection: double parcours en profondeur (temps linéaire)

► *Sommaire*:

5. Logique temporelle arborescente (CTL)

Logique

- ▶ Intérêt: raisonne sur le temps avec un futur indéterminé
- ► Syntaxe: $vrai \mid p \mid \Phi \land \Phi \mid \Phi \lor \Phi \mid \neg \Phi \mid QT\Phi \mid Q(\Phi \cup \Phi)$
- où $Q \in \{\exists, \forall\}, T \in \{X, F, G\}$ Interprétation: sur l'arbre de calcul d'une structure de Kripke
- ► Sémantique:

Propriétés d'un système

- ▶ Satisfiabilité dépend des états: $\llbracket \Phi \rrbracket := \{ s \in S : s \models \Phi \}$
- ▶ Spécification: $\mathcal{T} \models \Phi \iff I \subseteq \llbracket \Phi \rrbracket$
- ► Expressivité: incomparable à LTL

Équivalences

► Distributivité:

$$\exists \mathsf{F}(\Phi_1 \vee \Phi_2) \equiv (\exists \mathsf{F}\Phi_1) \vee (\exists \mathsf{F}\Phi_2)$$
$$\forall \mathsf{G}(\Phi_1 \wedge \Phi_2) \equiv (\forall \mathsf{G}\Phi_1) \wedge (\forall \mathsf{G}\Phi_2)$$

- ► *Attention*: pas équiv. si on change les quantificateurs
- ▶ *Dualité*: effet d'une négation: $\exists \leftrightarrow \forall$, X \leftrightarrow X et F \leftrightarrow G
- ▶ Idempotence: $QTQT\Phi \equiv QT\Phi$ où $Q \in \{\exists, \forall\}, T \in \{\mathsf{F}, \mathsf{G}\}$

6. Vérification algorithmique de formules CTL

Algorithme

- ightharpoonup Approche: calculer $\llbracket \Phi' \rrbracket$ pour chaque sous-formule Φ' de Φ
- ▶ *Vérification*: tester $I \subseteq \llbracket \Phi \rrbracket$
- ► Forme normale existentielle plus simple, mais pas nécessaire
- ▶ Complexité: $\mathcal{O}((|S| + |\rightarrow|) \cdot |\Phi|)$ avec bonne implémentation
- ► *En pratique*: NuSMV + langage de description de haut niveau

Logique propositionnelle

► Règles récursives:

$$\label{eq:problem} \begin{split} \llbracket \textit{vrai} \rrbracket &= S, \\ \llbracket p \rrbracket &= \{ s \in S : p \in L(s) \}, \\ \llbracket \Phi_1 \wedge \Phi_2 \rrbracket &= \llbracket \Phi_1 \rrbracket \cap \llbracket \Phi_2 \rrbracket, \\ \llbracket \neg \Phi \rrbracket &= S \setminus \llbracket \Phi \rrbracket. \end{split}$$

Opérateurs temporels existentiels

- ▶ Calcul de $\llbracket\exists X \Phi \rrbracket$: $\{s \in S : Post(s) \cap \llbracket \Phi \rrbracket \neq \emptyset\}$
- ► Calcul de $\llbracket \exists \mathsf{G} \Phi \rrbracket : \mathbf{T} \subseteq \llbracket \Phi \rrbracket \text{ max. t.q. } \forall s \in \mathbf{T} : \mathsf{Post}(s) \cap \mathbf{T} \neq \emptyset$
- ightharpoonup Calcul de $\exists (\Phi_1 \cup \Phi_2) \colon T \supseteq \llbracket \Phi_2 \rrbracket$ min. t.q.

 $s \in \llbracket \Phi_1 \rrbracket \land \operatorname{Post}(s) \cap T \neq \emptyset) \implies s \in T$

Optimisations

- ► *Autres opérateurs*: ∀ et F s'implémentent directement; nécessaire pour obtenir un algorithme polynomial
- ► *Points fixes*: temps linéaire si calculs directs sans raffinements itératifs; par ex. calcul de composantes fortement connexes

7. Vérification symbolique : diagrammes de décision binaire

Diagramme de décision binaire

- ▶ But: représenter des fonctions booléennes de façon compacte
- ▶ *Utilité*: manipuler efficacement de grands ensembles d'états
- ► Propriétés:
 - ▶ graphe dirigé acyclique
 - ▶ sommets étiquetés par variables ordonnées sauf 0 et 1
 - ▶ les chemins respectent l'ordre des variables
 - \blacktriangleright sommets uniques et non redondants ($lo(u) \neq hi(u)$)
- ► Canonicité: pas deux BDDs pour la même fonction booléenne

Manipulation

- ▶ Représentation: tableau associatif sommet \leftrightarrow (x_i, lo, hi)
- ▶ Ajout d'un sommet: temps constant avec $make(x_i, lo, hi)$
- \blacktriangleright *Construction*: par substitutions récursives avec build(φ)
- ► Op. bool.: application récursive « synchronisée » avec apply
- ▶ Quantif.: exists $x_i \in \{0,1\} : t$ obtenu via $t[0/x_i] \vee t[1/x_i]$
- ► Complexité: polynomiale sauf pour build

Vérification

- ► *État*: représenté par identifiant binaire
- ► *Transition*: paire d'identifiants binaires
- ► Ensemble: représenté par sommet de BDD
- ► Logique prop.: manipulation de BDD
- ▶ Opérateurs temporels: via calculs de Post ou Pre sur BDD
- $\blacktriangleright \; \textit{Satisfiabilit\'e} : I \subseteq \llbracket \Phi \rrbracket \Leftrightarrow I \cap \overline{\llbracket \Phi \rrbracket} = \emptyset \Leftrightarrow \mathsf{apply}_{\wedge}(u_I, u_{\overline{\llbracket \Phi \rrbracket}}) = 0$

8. Systèmes avec récursion

Contexte

- ► Espace d'états: pile d'appel ou d'éléments (+ valeurs locales)
- ► Défi: gérer un nombre infini ou arbitraire d'états
- ► Approche: construction et analyse de systèmes à pile

Systèmes à pile

- ▶ Définition: états P, alphabet Γ , transitions $\{p \xrightarrow{a \to u} q, \ldots\}$
- ▶ *But*: décrire un ensemble de piles (et non accepter des mots)
- ► Configuration: $\langle p, \mathbf{w} \rangle \in P \times \Gamma^* \mapsto (p) + \text{pile}$
- ► Exemple de modélisation:

	bool $x \in \{faux, vr\}$	ai}		f_1	\rightarrow	$b_0 f_2$	$f_0 \rightarrow f_1$	f_1	\rightarrow	f_0f_2	1
f_0 :	foo(): x = ¬x: si x: foo() sinon: bar() retourner	<i>b</i> ₀ : <i>b</i> ₁ :	<pre>bar(): si x: foo() retourner</pre>	f_2 b_0 b_1	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	ε b_1 ε	$f_0 \to f_1$	$\begin{array}{c} f_2 \\ b_0 \\ b_1 \end{array}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	f_0b_1	

Calcul de prédécesseurs/successeurs

- ▶ $\textit{D\'ef.: Pre}^*(C) := \bigcup_{i \ge 0} \operatorname{Pre}^i(C) \text{ et Post}^*(C) := \bigcup_{i \ge 0} \operatorname{Post}^i(C)$
- ▶ Représentation: symbolique de C avec un \mathcal{P} -automate \mathcal{A}
- ▶ $Id\acute{e}$: (états initiaux = états de \mathcal{P}) + mots sur alphabet de pile
- ▶ Décrit: Conf(\mathcal{A}) := { $\langle p, w \rangle : p \xrightarrow{w}_{\mathcal{A}} \bigcirc$ }
- ► *Algorithme*: permet de calculer $Pre^*(Conf(A))$ par saturation
- ▶ *Approche*: init. $\mathcal{B} := \mathcal{A}$ puis enrichir avec cette règle:

Vérification

- ▶ *Approche*: système \mapsto sys. à pile, spécification \mapsto \mathcal{P} -automate, vérification: par $\text{Pre}^*/\text{Post}^*/\text{automate}$ de Büchi (LTL)
- ► Applications: raisonnement sur piles, par ex. « bytecode »

9. Systèmes infinis

Réseaux de Petri

- ► Déf.: places et transitions reliées par arcs pondérés
- ► Marquage: nombre de jetons par place
- ▶ Déclenchement: si assez de jetons pour chaque arc entrant, les retirer, et en ajouter de nouveaux selon les arcs sortants
- ightharpoonup Successeurs: Post* $(m) = \{m' \in \mathbb{N}^P : m \stackrel{*}{\to} m'\}$
- $ightharpoonup Prédecesseurs: \operatorname{Pre}^*(\boldsymbol{m}') = \{ \boldsymbol{m} \in \mathbb{N}^P : \boldsymbol{m} \stackrel{*}{\to} \boldsymbol{m}' \}$

Modélisation

- ► Processus: comptés par les places
- ► Exemple: $si \neg x$: x = vrai tant que $\neg x$: sinon: $goto p_0$ pass

Graphes de couverture

- lacktriangle Idée: construire Post $^*(m)$ mais accélérer avec ω si x < x'
- ▶ *Test*: m' couvrable ssi le graphe contient un $m'' \ge m'$

► Exemple:

Algorithme arrière

- ▶ *Idée*: construire $\uparrow Pre^*(\uparrow m')$ en déclenchant vers l'arrière
- ▶ *Représentation*: d'ensemble clos par le haut par base finie
- ► *Test*: m peut couvrir m' ssi découvert

Accessibilité

- ▶ *Problème*: tester si $m' \in Post^*(m)$
- ► Décidable mais plus compliqué

10. Systèmes probabilistes

Chaîne de Markov

- ► But: remplacer non-déterminisme par probabilités
- ► *Déf.*: struct. de Kripke avec proba. sur transitions / états init.
- ► *Représentation*: probabilités = matrice **P** et vecteur **init**

Exemple: $1 \rightarrow \text{départ}$ $1 \rightarrow \text{succès}$ $1 \rightarrow \text{départ}$ $1 \rightarrow \text{dépar$

- ► Événements: exéc. inf. décrites par préfixes finis (cylindres)
- ▶ *Probabilité*: somme du produit des transitions de cylindres
- ► Exemple: $\mathbb{P}(\mathsf{F}\,\mathsf{succès}) = \sum_{i=0}^{\infty} 1 \cdot ((1/10) \cdot 1)^i \cdot (9/10) \cdot 1 = 1$
- ► Outils: PRISM/Storm (PCTL, analyse quantitative, etc.)

Accessibilité

- ► Accessibilité: événement de la forme A U B
- ▶ Partition: $S_0 := \llbracket \neg \exists (A \cup B) \rrbracket$, $S_1 := B$, $S_2 := S \setminus (S_0 \cup S_1)$ prob. a déterminer
- ▶ Approche: $\mathbf{A} := \mathbf{P}$ sur $S_?$; $\mathbf{b}(s) :=$ proba. d'aller de s vers S_1 ; $\mathbf{x}(s) = \mathbb{P}(s \models A \cup B)$ est la solution de $(\mathbf{I} \mathbf{A}) \cdot \mathbf{x} = \mathbf{b}$
- ▶ Approx.: $A \cup^{\leq n} B$ obtenu par $f^n(\mathbf{0})$ où $f(y) \coloneqq \mathbf{A} \cdot y + \mathbf{b}$

Comportements limites

- ► CFC terminales: une est atteinte et parcourue avec proba. 1
- ► FG et GF: se calculent via accessibilité et CFC terminales

CTL probabiliste (PCTL)

- ▶ *Syntaxe*: comme CTL, mais \exists / \forall deviennent \mathcal{P}_I , et ajout $\mathsf{U}^{\leq n}$
- $\triangleright \mathcal{P}_I(\varphi)$: proba. de φ dans intervalle I?
- ▶ $U^{\leq n}$: côté droit satisfait en $\leq n$ étapes?
- ► Vérification: calcul récursif + éval. proba. d'accessibilité