

UE6 – Initiation à la Connaissance du Médicament

Chapitre 4 : Les récepteurs nucléaires

Professeur Christophe RIBUOT

La diversité des cibles

Récepteurs nucléaires :

famille de protéines qui se lient à la région promotrice des gènes soit pour augmenter soit réprimer leur transcription en ARN messagers.

La diversité des cibles

• Les récepteurs **nucléaires** sont des facteurs de transcription :

activés par des ligands lipophiles activés par phosphorylation

• Les ligands : hormones circulantes, ou des médiateurs synthétisés par la cellule, ou les métabolites cytosoliques d'un médiateur extracellulaire.

Les récepteurs nucléaires

TABLE 1 Human nuclear receptors

Nomenclature

Names	Nomenclature	Lagand
TRa	NR1A1	Thyroid hormones
TRB	NR1A2	Thyroid hormones
RARa	NR1B1	Retinoic acid
RARS	NR1B2	Retinoic acid
RARy	NR1B3	Ratinoic acid
PPARa	NRICI	Fatty acids, loukotrione B ₄ , fibrates
PPARS	NR1C2	Fatty acids
PPARy	NR1C3	Fatty acids, prostaglandin J., thiazolidinodiones
Roy-orber	NR1D1	Orphan
Rev-erbs	NR1D2	Orphan
RORe	NR1F1	Cholesterol, cholesteryl sulfate
RORS	NR1F2	Retinote acid
RORy	NR1F3	Orphan
LXRa	NR1H3	Oxysterols, T0901317, GW3965
LXRs	NR1H2	Oxysterols, T0901317, GW3966
FXRa	NR1H4	Bile acids, fexaramine
FXRp*	NR1H5	Lanosterol
VDR	NR1I1	Vitamin D, 1,25-dihydroxyvitamin D _a
PXR	NR1I2	Xenobiotics, 16a-cyanoprognenolone
CAR	NR1I3	Xenobiotics, phenobarbital
HNF4a	NR2A1	Orphan
HNF4y	NR2A2	Orphan
RXR _{ee}	NR2B1	Retinole acid
RXRβ	NR2B2	Retinoic acid
RXRy	NR2B3	Retinole acid
TR2	NR2C1	Orphan
TR4 TLL	NR2C2 NR2E2	Orphan
PNR	NR2E2 NR2E3	Orphan Orphan
COUP-TFI	NR2F1	Orphan
COUP-TFII	NR2F2	Orphan
EAR2	NR2F6	Orphan
ERa	NR3A1	Estradiol-17g, tamoxifen, raloxifene
ERS	NR3A2	Estradiol-17g, various synthetic compounds
ERR a	NR3B1	Orphan
ERRS	NR3B2	DES, 4-OH tamoxifen
ERRy	NR3B3	DES, 4-OH tamoxifon
GR.	NRSC1	Cortisol, dexamethasone, RU486
MR	NR3C2	Aldosterone, spirolacione
PR	NR3C3	Progesterone, medroxyprogesterone acetate, RU486
AR	NR3C4	Testesterone, flutamida
NGFI-B	NR4A1	Orphan
NURR1	NR4A2	Orphan
NOR1	NR4A3	Orphan
SF1	NR5A1	Orphan
LRH-1	NR5A2	Orphan
GCNF	NR6A1	Orphan
DAX-1	NR0B1	Orphan
SHP	NR0B2	Orphan

[&]quot; FXRs is a pseudogene in human but is a functional lanosterol receptor in mouse (Robinson-Rachavi et al., 2001; Otte et al., 2003).

0031-09070028-804-688-704\$20.00
PHARMACOLOGICAL EXPENSE
Copyright © 2006 by The American Society for Pharmacology and Experimental Therapeutics
Pharmacol Res 88:688-704, 2006

Vol. 58, No. 4 50423/3156338

^{• 49} récepteurs

 ²¹ récepteurs orphelins

Les récepteurs nucléaires

• Structure :

- 6 domaines A F
- A-B de longueur variable
- C: interaction ADN
- D : zone flexible
- E : liaison du ligand
- F: dimérisation

HORMONE

Les récepteurs nucléaires

Deux modalités d'interaction avec l'ADN :

en absence de ligand le Rx est associé à des protéines hsp, la fixation dissocie ce complexe, puis dimérisation et liaison à l'ADN.

en absence de ligand le Rx est associé à l'ADN et réprime la transcription, la fixation libère l'ADN

Les récepteurs des hormones stéroïdes surrénaliennes

- MR, GR, AR, ER et PR
 - MR pour les récepteurs aux minéralocorticoïdes dont le ligand endogène est l'aldostérone,
 - GR pour les récepteurs aux glucocorticoïdes dont le ligand endogène est le cortisol,
 - AR pour les récepteurs aux androgènes, dont le ligand endogène est la testostérone,
 - ER pour les récepteurs aux estrogènes dont le ligand endogène est l'hormone sexuelle femelle le 17 β -estradiol.
 - PR pour les récepteurs aux progestagènes dont le ligand endogène est la progestérone.
- Hormones stéroïdes dérivées du cholestérol

Les récepteurs GR

- Issus d'un gène unique : $GR\alpha$ et $GR\beta$,
- GRα présent dans tous les tissus,
- Activé par le cortisol :
 - augmente la synthèse des lipocortines
 - augmente la synthèse d'enzymes de nombreuses voies métaboliques
 - diminue la synthèse de TNF α et de IL-1,
 - diminue la synthèse des COX et de NO-synthase

Les corticoïdes

- Corticoïdes (agonistes des récepteurs GRα):
 - > Anti-inflammatoires,
 - Nombreuses indications ,
 - Multiples formes galéniques.

Asthme BPCO

Rhinites

états inflammatoires sévères immunosuppresseur

Les corticoïdes

 Glucocorticoïde par voie inhalée, anti-asthmatique.
 Le dipropionate de béclométasone en inhalation exerce un effet antiinflammatoire essentiellement local sur la muqueuse bronchique. ...

Les corticoïdes

 Bosse de bison : effet métabolique des corticoïdes

Les récepteurs des hormones thyroïdiennes.

- Issus de deux gènes : $TR\alpha$ et $TR\beta$,
- Activés par T3 et T4 : mais affinité pour T3 est 10x supérieure,
- TRα récepteur fœtal,
- TRβ exprimé chez l'adulte (cœur),
- Régule la transcription de gènes des enzymes du métabolisme.

La liothyronine

Cynomel ®:

- La liothyronine est la forme synthétique de l'hormone thyroïdienne T₃ naturelle lévogyre (LT3) :
 - > élévation du métabolisme basal,
 - > inhibition de la sécrétion de la TSH.

La liothyronine

 Des signes d'hyperthyroïdie, tels que : tachycardie, insomnie, excitabilité, céphalées, fièvre, sueurs, amaigrissement rapide, diarrhées...

Mentions légales

L'ensemble de ce document relève des législations française et internationale sur le droit d'auteur et la propriété intellectuelle. Tous les droits de reproduction de tout ou partie sont réservés pour les textes ainsi que pour l'ensemble des documents iconographiques, photographiques, vidéos et sonores.

Ce document est interdit à la vente ou à la location. Sa diffusion, duplication, mise à disposition du public (sous quelque forme ou support que ce soit), mise en réseau, partielles ou totales, sont strictement réservées à l'Université Grenoble Alpes (UGA).

L'utilisation de ce document est strictement réservée à l'usage privé des étudiants inscrits en Première Année Commune aux Etudes de Santé (PACES) à l'Université Grenoble Alpes, et non destinée à une utilisation collective, gratuite ou payante.

