Edge Detection

Computer Vision (CS0029)

Edges

- Edge are points in an image where brightness change sharply
 - Changes in image brightness
- Many important things happen at an edge
 - Object boundaries
 - Reflectance change/patterns (e.g. zebra)
- Look at derivative in image to detect edges
 - Gradient
- Usually, the problem in edge detection is dealing with image noise

Gradients and Edges

 High-contrast image points can be detected by computing intensity difference in local image regions

- Detect high-contrasts using neighborhood template or masks
 - Similar to noise removal
- We will study 1-D signal, then move to 2-D
 - 1-D signal could be a row or column of an image

Differencing 1-D Signals

Some types of 1-D edges

Consider 1-D sampled signal

Difference/Derivative Mask

Examples of First Derivative

	S_1	12	12	12	12	12	24	24	24	24	24
	$S_1 \otimes M'$	1	0	0	0	0	12	0	0	0	0
	S ₁ is upward step edge										
	S_2	24	24	24	24	24	12	12	12	12	12
	$S_2 \otimes M'$	1	0	0	0	0	-12	0	0	0	0
	S ₂ is downward step edge										
	S_3	12	12	12	12	15	18	21	24	24	24
	$S_3 \otimes M'$	ı	0	0	0	3	3	3	3	0	0
	S ₃ is upward ramp										
	S ₄	12	12	12	12	24	12	12	12	12	12
	$S_4 \otimes M^{\prime}$	-	0	0	0	12	-12	0	0	0	0
,	S ₄ is bright impulse										

Smoothing

- The basic differences will give strong response to noise
 - Not a good way to estimate derivatives in real signals/images
- In practice, signal/image is almost always smoothed before calculating derivate

Usually, Gaussian smoothing is used

Derivative of Gaussian

- Smoothing then differentiating is same as convolving with the derivative of a smoothing kernel
 - $M_D^*(M_S^*I) = (M_D^*M_S)^*I$
- Thus need only to convolve with a "derivative of the Gaussian" filter

Results in smaller noise responses from derivative estimates

Derivative of Gaussian

$$g(x;\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-x_0)^2}{2\sigma^2}} \longrightarrow$$

$$\frac{dg(x;\sigma)}{dx} = \frac{-(x-x_0)}{\sqrt{2\pi}\sigma^3}e^{-\frac{(x-x_0)^2}{2\sigma^2}} \longrightarrow$$

0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 -5 -4 -3 -2 -1 0 1 2 3 4 5

(σ controls the scale/spread)

Discrete Gaussian Derivative Mask

- Set mask size: $ceil(3\sigma)*2 + 1$
 - Examine values for $x = [-ceil(3\sigma): ceil(3\sigma)]$
- For $\sigma = 1$, yields a 7-tap filter
 - Mask=[0.01, 0.11, 0.24, 0, -0.24, -0.11, -0.01]

Second Derivative

 Second derivative is zero when derivative magnitude is extremal (peak or valley)

• To find large changes (edge), good place to look is where the second derivative makes "zero-crossings"

Look for a change from "+ to -" or "- to +" (or "0 to +/- ", "+/- to 0")

Produces double-side edges

Difference/Derivative Masks

Examples of Second Derivative

S_1	12	12	12	12	12	24	24	24	24	24
$S_1 \otimes M$ "	-	0	0	0	12	-12	0	0	0	0
S ₁ is upward step edge										
S_2	24	24	24	24	24	12	12	12	12	12
$S_2 \otimes M$ "	-	0	0	0	-12	12	0	0	0	0
S ₂ is downward step edge										
S_3	12	12	12	12	15	18	21	24	24	24
S₃ ⊗ M"	1	0	0	3	0	0	(°)	73	0	0
S ₃ is upward ramp										
S_4	12	12	12	12	24	12	12	12	12	12
$S_4 \otimes M\text{''}$	-	0	0	12	-24	12	0	0	0	0
S ₄ is bright impulse										

Gaussian Second Derivative

$$\frac{\partial^2 g(x;\sigma)}{\partial x^2} = \left(\frac{(x-x_0)^2}{\sqrt{2\pi}\sigma^5} - \frac{1}{\sqrt{2\pi}\sigma^3}\right) \cdot e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$

Gaussian Second Derivative Mask

- Set mask size: $ceil(3\sigma)*2+1$
 - Examine values for $x = [-ceil(3\sigma) : ceil(3\sigma)]$
- For $\sigma = 1$, yields a 7-tap filter
 - Mask = [0.04, 0.16, 0, -0.4, 0, 0.16, 0.04]

2-D Signals (Images)

• 2-D Difference "Gradient" Operators

Gradient
$$\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\frac{\partial f}{\partial x} = f_x \approx \frac{1}{3} [(I[x+1,y] - I[x-1,y])/2 + (I[x+1,y-1] - I[x-1,y-1])/2 + (I[x+1,y+1] - I[x-1,y+1])/2]$$

$$\begin{split} \frac{\partial f}{\partial y} &\equiv f_y \approx & \frac{1}{3} [(I[x,y+1] - I[x,y-1])/2 \\ & + (I[x-1,y+1] - I[x-1,y-1])/2 \\ & + (I[x+1,y+1] - I[x+1,y-1])/2] \end{split}$$

$$\theta = \operatorname{atan}(f_y, f_x)$$
 $|\nabla f| = \sqrt{f_x^2 + f_y^2}$

Classic Gradient Masks

Prewitt:
$$F_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 $F_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ \hline 1 & 1 & 1 \end{bmatrix}$

Sobel:
$$F_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 $F_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

Separability

Prewitt:
$$F_x = \frac{1}{6} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$F_y = 1/6$$

$$F_{x} = 1/8 \boxed{2}$$

$$F_y = 1/8$$

Sobel:
$$F_x = \frac{1}{8}$$
 $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ $F_y = \frac{1}{8}$ $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$

Prewitt mask results

 F_x F_y

Sobel mask results

 F_{y}

Gradient Magnitude

Different Gradient Magnitude Threshold

Use different thresholds

OpenCV - Sobel

```
import cv2
import numpy as np
img = cv2.imread('kcface.png', cv2.IMREAD_GRAYSCALE)
#X and Y direction sobel filter
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
cv2.imwrite('kcFaceGrayFx.png', sobelx)
cv2.imwrite('kcFaceGrayFy.png', sobely)
#combine gradient X and Y
grad = np.sqrt( np.square(sobelx) + np.square(sobely) )
cv2.imwrite('kcFaceGraySobel.png', grad)
#thresholding
grad[grad < 250] = 0
grad[grad >= 250] = 255
cv2.imwrite('SobelThreshold250.png', grad)
```


2-D Gaussian

$$g(x, y; \sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x-x_0)^2 + (y-y_0)^2}{2\sigma^2}}$$

Gaussian Derivatives

$$\frac{\partial g(x,y;\sigma)}{\partial x} = \frac{-(x-x_0)}{2\pi\sigma^4} e^{-\frac{(x-x_0)^2 + (y-y_0)^2}{2\sigma^2}}$$

$$\frac{\partial g(x, y; \sigma)}{\partial y} = \frac{-(y - y_0)}{2\pi\sigma^4} e^{-\frac{(x - x_0)^2 + (y - y_0)^2}{2\sigma^2}}$$

Creating Masks

- Gx mask
 - Fill mask values with $g_{x}(x, y, ; \sigma)$
 - x-range: $[-ceil(3\sigma): ceil(3\sigma)]$ (or 2 σ)
 - y-range: $[-ceil(3\sigma): ceil(3\sigma)]$
- Gy mask
 - Fill mask values with $g_{y}\left(x,y,;\sigma\right)$
 - x-range: $[-ceil(3\sigma): ceil(3\sigma)]$ (or 2 σ)
 - y-range: $[-ceil(3\sigma): ceil(3\sigma)]$

Gaussian Derivatives

Effect of Scale

$$\sigma = 1$$

$$\sigma = 3$$

 $\sigma = 5$

Thicker edges (from left to right)

Laplacian of Gaussian

- Second derivative function of Gaussian
 - Zero-crossing are found at edge locations
 - Smoothing used to combat noise
- Combine two orientations into one circular filter
 - Simply sum Gaussian second derivative in x direction and y direction
 - Non-oriented, the second derivative filter
- Laplacian of Gaussian operator:

$$\nabla^2 g(x, y; \sigma) = \frac{\partial^2 g(x, y; \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y; \sigma)}{\partial y^2}$$

Laplacian of Gaussian

$$\nabla^2 g(x, y; \sigma) = \frac{\partial^2 g(x, y; \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y; \sigma)}{\partial y^2}$$

Zero-Crossings

 $\sigma = 3$

Selected zero-crossings

Effect of Scale

From left to right

$$\sigma = 1, 3, 5$$
? or $\sigma = 5, 3, 1$?

Effect of Scale

Simple Laplacian Mask

• Small 3x3 mask approximation of LOG

$$LOG = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Canny Edge Detector

Very popular and effective method

 Produces extended contour/edge segments by "following" high gradient magnitudes within the smoothed image

Canny Edge Detection

• 1. Smooth the image (Gaussian)

- 2. Compute the gradient
 - Calculate magnitude and orientation at each pixel (sobel operator)
- 3. Suppress non-maximal gradients
 - Keep points where gradient magnitude is maximal along the direction of the gradient
- 4. Follow edge contours (edge linking)
 - Use upper and lower thresholds

Non-Maximal Suppression

- Detect a pixel is the maximal between positive and negative gradient
 - Slice the gradient magnitude along gradient direction (perpendicular to edge)
 - Quantize gradient orientation by 45 degrees
 - Could also interpolate values
 - Mark points along slice that are maximal
 - E.g. 0 degree direction and gradient points left: if g[x-1] < g[x] or g[x] > g[x+1], then g[x] = 1

Edge Linking

- Sequentially follow continuous contour segments
- Initiate only on edge pixels where gradient magnitude meets high threshold (T_H)
- A single threshold can cause many broken edge segments
- Once started, follow through connect pixels whose gradient magnitude meet a lower threshold (T_L)
 - If $g[x] < T_1$, no edge at x
 - If g[x] > T_H, edge at x
 - If $T_H > g[x] > T_I$ and $g[x_n] > T_H$
 - x_n : any one of 8-connected neighbors

Canny Edge Detection Results

Original Image

Canny Edge Detection

Overlay

```
import cv2
import numpy as np

img = cv2.imread('kcface.png', cv2.IMREAD_GRAYSCALE)
canny = cv2.Canny(img,150,200)
```