

Генератор анализаторов с поддержкой неоднозначных атрибутных EBNF-грамматик в среде .NET

Автор: Григорьев Семён Вячеславович **Научный руководитель:** к.ф.-м.н. А.С. Лукичёв

Санкт-Петербургский государственный университет Математико-Механический факультет Кафедра системного программирования

23 марта 2011г.

Область применения

Реинжиниринг программного обеспечения:

- Упрощение создания и сопровождения грамматик
 - ▶ Нет необходимости задавать однозначную контекстно-свободную
 - ▶ Нет десятков конфликтов при одном изменении
- Работа с диалектами одного языка
 - Задание общей грамматики
 - Автоматическое определение диалекта

Цели и задачи

Цель

Разработка генератора синтаксических анализаторов для $\frac{\text{среды .NET}}{\text{со следующими свойствами:}}$

- Работа с произвольными контекстно-свободными грамматиками
- Поддержка EBNF-грамматик
- Поддержка семантических вычислений

Задача

Реализовать поддержку s-атрибутных и l-атрибутных грамматик.

Алгоритм

GLR-анализатор предназначен для работы с произвольной (в том числе неоднозначной!) КС грамматикой

- Для однозначных грамматик работает за линейное время
- $O(n^3)$ в худшем случае

Рассмотренные подходы:

- Алгоритм Эрли
- Алгоритм Томиты
- Рекурсивно-восходящий алгоритм

EBNF-грамматики

Конструкции регулярных выражений в правых частях правил.

Пример грамматики:

•
$$S \rightarrow A(+A)*$$

 \bullet $A \rightarrow a$

Преобразованная грамматика:

- \circ $S \rightarrow AB$
- \bullet $A \rightarrow a$
- $B \rightarrow +AB$
- $B \rightarrow \varepsilon$

Входная цепочка: а+а

EBNF-грамматики

Ожидания пользователя: Результат:

Вычисление атрибутов

Правило грамматики:

someRule : val1 = (a {action1})* val2 = c {someFunc val1 val2}

Узел дерева вывода:

Дерево разбора *Str*:

Вычисление атрибутов

• Конечный автомат с помеченными переходами:

• Трасса автомата:

```
 \begin{array}{l} \hbox{\it [(SeqS,1);}\\ \hbox{\it (ClsS,1);}\\ \hbox{\it (SeqS,2);(LeafS,4);'a';(LeafE,4);...(SeqE,2);}\\ \hbox{\it (ClsE,1);}\\ \hbox{\it (LeafS,4);'c';(LeafE,4);}\\ \hbox{\it (SeqE,1)]} \end{array}
```

• По трассе строится дерево разбора.

Результаты

Для генератора GLR-анализаторов с поддержкой EBNF-грамматик без преобразования реализован механизм поддержки І-атрибутных и s-атрибутных грамматик:

- генератор action-кода;
- механизм вычисления атрибутов;

Используемые продукты Microsoft

При разработке используются следующие продукты Microsoft:

- Microsoft Visual Studio 2010 среда разработки
- F# язык разработки и целевой язык генератора
- F# PowerPack FsLex и FsYacc.

Заключение

Данная разаработка ведётся в рамках проекта кафедры системного программарования Математико-Механического факультета СПбГУ YaccConstructor. Исходный код и дополнительную информацию по проекту можно найти на сайте http://code.google.com/p/recursive-ascent.