

O aprendizado por reforço (Q-Learning) consegue gerenciar portfólios no mercado de criptomoedas?

Ludmilla Mattos Rafael Morais Laerte Takeuti

Universidade de Brasília

05 de outubro de 2018

Motivação

- ► Alocação de portfólios
- Cryptomoedas
- Q-Learning

Alocação de Portfólios

- Carteira com diversos ativos
- Diversificar para reduzir o risco e maximizar o retorno
- Principio do investidor racional
- ► Markowitz (1952)

Alocação de Portfólios

Cryptomoedas

- ▶ Bitcoin surge em 2009, autoria atribuida a Satoshi Nakamoto
- ► Tecnologia de Blockchain
- ► Mais de 1900 moedas ativas ¹

- ► Aprendizado por Reforço
- ► Processo markoviano de decisão
- Free-model policy

Processo Markoviano de Decisão

Técnica capaz de lidar com problemas que envolvem sequências de decisões orientadas a um objetivo. Deseja-se obter uma política ótima na qual o agente recebe o máximo de retorno médio.

- Conjunto Finito de Estados
- Ações possíveis para cada estado
- Probabilidades de transições entre os estados
- Função Retorno entre os estados dado a ação

$$V_s^{\pi} = R_s(\pi(s)) + \gamma \sum_{s'} P_{ss'}[\pi(s)] V^{\pi}(s')$$

Model-Free policy

Não exige o conhecimento das probabilidades de transição.

$$Q^{Novo}(s_t, a_t) = (1 - \alpha) \underbrace{Q(s_t, a_t)}_{Valor \; Antigo} + \underbrace{\alpha}_{T \times \; Aprend. \; Recompensa} \underbrace{\left[\underbrace{r_t}_{Recompensa} + \underbrace{\gamma}_{Fator \; Desconto} \underbrace{\max_{a} \; Q(s_{t+1}, a)}_{Est. \; do \; valor \; futuro} \right]}_{Est. \; do \; valor \; futuro}$$

- observa o estado s_t
- seleciona e executa uma ação at
- observa o estado subsequente s_{t+1}
- ightharpoonup recebe uma recompensa imediata r_t
- ► ajusta *Q*^{Novo}

Avaliação do Modelo

Estratégia de Referência

Baseada na intuição do passeio aleatório ($Ramdon\ Walk$ - RW), isto é, toda informação do momento presente encontra-se no instante anterior. Para cada instante de tempo considera-se o retorno anterior de todas as moedas para então alocar 100% do portfólio na que apresentou o melhor desempenho.

Teste de habilidade de predição superior

Sua hipótese nula é a de que nenhuma predição considerada é superior à referência, isto é, se rejeitada a hipótese inferimos que ao menos uma das séries preditas é superior.

Estados: são estabelecidos com base na trajetória do preço das moedas. Foi considerado a combinação do sinal obtido do retorno de cada moeda.

Tabela 1: Estados Possíveis

1	2	3		7	8
+	+	+		- /	74
+	+	-		-#	븻
+	-	+		+	4
	1 + + +	1 2 + + + + + -	1 2 3 + + + + + - + - +	1 2 3 ··· + + + ··· + + - ···	1 2 3 ··· 7 + + + ··· - + + - ··· +

Ações: considera o montante alocado a cada moeda, dado por valores entre 0,0 e 1.

Tabela 2: Alocação do Portfólio (%)

A	1	2	3	 60	61	62
Bitcoin	100	90	80	 0	0	0
Ethereum	0	10	20	 20	10	0
Litcoin	0	0	0	 80	90	100

Recompensas: devem representar o prêmio imediato acarretado pela ação. Uma vez que a ação estabelece quanto do capital é alocado, a recompensa é dada pela soma dos retornos ponderada pela alocação:

$$r_t = A_t * R_t$$

Sendo,

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}}$$

Matriz Q

Matriz de Estados e Ações de dimensão $[8 \times 62]$

Tabela 3: Alocação do Portfólio (%)

```
(100,0,0) (90,10,0) (80,20,0) ··· (0,10,90) (0,0,100)

+ + +
+ + -
:
+ - -
```


Os dados foram coletados no dia 4 de abril de 2018 de forma automática do site https://poloniex.com. Foram utilizados 6068 pontos de dados referentes ao preço de mercado das moedas obtidos com intervalos de três horas desde agosto de 2015 até maio de 2018. A base de dados foi dividida em fases de treinamento, validação e teste:

Tabela 4: Partição da base de dados

Partição	Período	Tamanho	
Treinamento	Ago-2015 \sim Mai-2017	3.900	
Teste	Mai-2017 \sim Mai-2018	2.168	

Resultados

Resultados

Tabela 5: Métricas de desempenho e teste SPA de comparação para as Estratégias

Estratégia	Retorno Médio	Volatilidade	Sharpe Ratio	teste SPA
RW	1,61	0,45	2,41	
QL	1,74	0,99	1,75	0,298
RW*	-1,96	2,29	-1,30	
QL*	-0,63	0,26	-1,25	< 0,001

Conclusões

- ► Explorar Espaços mais informativos
- ▶ Incorporar a volatilidade no cálculo de recompensa

Código-Fonte

https://github.com/ludmattos/qLearningFinance

