

Density estimation via adiabatic quantum computing

Matteo Robbiati¹², Juan Manuel Cruz Martinez² and Stefano Carrazza¹²³

Aim of the project

We propose a novel strategy to perform density estimation: given a variable x sampled from an unknown distribution $\rho(x)$, we aim to estimate the puntual Probability Density Function (PDF) value $\hat{\rho}(x)$.

We focus on one-dimensional distributions, and then extend the study to the case of joint PDFs of indipendent variables.

Schematic pipeline of the algorithm

% Encoding a CDF into an adiabatic evolution

We use Qibo [1] to simulate an adiabatic evolution on time au

$$H_{\rm ad}(\tau|\boldsymbol{\theta}) = [1 - s(\tau|\boldsymbol{\theta})]H_0 + s(\tau|\boldsymbol{\theta})H_1, \qquad (1)$$

Where $s(\tau|\boldsymbol{\theta})$ is a parametric scheduling function.

We map $\{x, F(x)\}$ into $\{\tau, -E(\tau)\}$, where $E(\tau)$ energy of a non-interacting Pauli Z over the evolved ground state of $H_{\rm ad}$ at τ .

Optimizing the adiabatic evolution

- 1. perform the evolution with initial guess θ_0 in the scheduling;
- 2. estimate a loss function $J_{\text{mse}}[F, -E(\theta)]$; 3. update θ using a chosen optimizer until convergence.

Building a derivable circuit

After encoding the CDF into the evolution, we translate $H_{\rm ad}$ into a circuit derivable via shift rules [2]:

♥ Validation cases

We firstly test the QAML procedure on a Gamma distribution and on a Gaussian mixture.

W Quantum density estimation of quantum generated data

LHC events of a $pp \to t\bar{t}$ decay generated with a quantum GAN [3].

On which we apply the QAML algorithm:

Results

Simulation with $N_{\rm nshots} = 5 \cdot 10^4$.

Fit function	N_{sample}	p	J_f	$N_{ m ratio}$	χ^2
Gamma	$5 \cdot 10^4$	25	$2.9 \cdot 10^{-6}$	31	$2.2 \cdot 10^{-4}$
Gaussian mix	$2 \cdot 10^{5}$	30	$2.75 \cdot 10^{-5}$	31	$4.39 \cdot 10^{-3}$
t	$5 \cdot 10^4$	20	$2.1 \cdot 10^{-6}$	34	$3.4 \cdot 10^{-4}$
s	$5 \cdot 10^{4}$	20	$7.9 \cdot 10^{-6}$	34	$1.20 \cdot 10^{-3}$
y	$5 \cdot 10^4$	8	$3.7 \cdot 10^{-6}$	34	$1.45 \cdot 10^{-3}$

Scale up with dimensionality

We can extend this framework to d-dim joint PDFs $\rho_j(\mathbf{x})$ composing a d-qubits circuit which encodes the rotations corresponding to d adiabatic evolutions. We then execute this circuit six times (shift rules) and we reconstruct the joint PDF. In the following we estimate $\rho_i(x_1, x_2) = \Gamma_1(x_1|k=10, \lambda=0.2) \cdot \Gamma_2(x_2|k=50, \lambda=0.5).$

References

- S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, D. García-Martín, A. Garcia-Saez, J. I. Latorre, and S. Carrazza, "Qibo: a framework for quantum simulation with hardware acceleration," Quantum Science and Technology, vol. 7, p. 015018, dec 2021.
- [2] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, "Evaluating analytic gradients on quantum hardware," Physical Review A, vol. 99, mar 2019.
- [3] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D. M. Grabowska, and S. Carrazza, "Style-based quantum generative adversarial networks for monte carlo events," Quantum, vol. 6, p. 777, aug 2022.

