Algebra

Textbook: Real Analysis

FRED YUAN

Fall 2024

Homework of our real variables class. Textbook by Folland. Professor: Shukun Wu

1 Week 1

Exercise 1.1. Prove demorgan's law: $(\bigcup_{a\in A} E_{\alpha})^c = \bigcap_{a\in A} E_{\alpha}^c$

Proof. Let $x \in \bigcup_{a \in A} E_a$. This means x must be in some $E_{a_0}, E_{a_1}, ... E_{a_n}$. Then $x^c \in E_{a_0}^c, E_{a_1}^c, ... E_{a_n}$ Where $E_{a_n} \in \bigcap_{a \in A} E_a$

By definition of intersection,
$$\mathbf{x} \in E_{a_0}^c \cap E_{a_1}^c \cap \dots = E_{a_n}^c$$
, $\mathbf{x} = \bigcap_{a \in A} E_a^c$

Exercise 1.2. Let X be a finite set. Prove that $|2^X| = 2^{|X|}$

Proof. Intuitively, we can mark each element as in or out Proof by induction: X = 1. Let $X = \{1\}$

$$P(X) = {\emptyset, {1}} = 2$$

We WTS: $|2^{X+1}| = 2^{|X+1|}$

$$2^{|X+1|} = P(X) \cup X_{n+1} = |P(X)| \cup X_{n+1}$$
. You have two choices, include X_{n+1} or not, so $\Rightarrow |P(X)| \cdot 2 = |2^{X+1}|$.

Exercise 1.3. Let $f: X \to Y$ be a mapping. Prove that $f^{-1}(\bigcup_{a \in A} E_a) = \bigcup_{a \in A} f^{-1}E_a$

Proof. 1. Let $x \in f^{-1} \bigcup_{a \in A} E_a \implies y \in \bigcup_{a \in A} E_a$. Then for some a_0 , $y \in E_{a_0}$ Where $E_{a_0} \subseteq E_a$ for all $a \in A \implies x \in f^{-1}E_{a_0} \subseteq \bigcup_{a \in A} f^{-1}(E_a)$

2. The proof goes the other way as well. (It's the same) Let
$$x \in \bigcup_{a \in A} f^{-1}E_a \implies x \in f^{-1}(E_{a_0}) \implies y \in E_{a_0} \subseteq \bigcup_{a \in A} E_a \implies x \subseteq f^{-1}(\bigcup_{a \in A} E_a)$$

Exercise 1.4. Show that there does not exist a linear order of " \leq " of \mathbb{C} with the following additional assumptions:

- 1. For any 3 numbers a, b, c, $a \le b$ implies $a + c \le b + c$.
- 2. For any two numbers $a, b, a \ge 0$ and $b \ge 0$ impies $ab \ge 0$
- 3. 0 < 1

Proof. we must define an ordering for i. Either $i \ge 0$ or $i \le 0$. However, neither of these cases make sense.

If $i \ge 0$, square both sides to get a contradiction.

If $i \le 0$, ⁴ both sides to get a contradiction.

For below, assume $i \le 0$

1. If $i \ge 0$, then a = 0, b = i, c = 0. We have $0 \le b$ but after squaring both sides, we get $0 \le -1$. Contradiction.

If $i \le 0$, a = i, b = 0, c = 0. Starting with $i \le 0$, if we ⁴ both sides, we end up with $1 \ge 0$. Contradiction.

- 2. a = 0a + 1i, b = 0a + ia. ab = -1
- 3. If 0 < 1, then 0a + 2i < 1a + 0i. However, $(0a + 2i)^4 = 16 > 1^4 = 1$

Exercise 1.5. Let $f: \mathbb{R} \to \mathbb{R}$ be an increasing function (this is, $f(x_1) \ge f(x_2)$ if $x_1 \ge x_2$). Let $E:=\{x \in \mathbb{R}: f(x) \text{ is not continuous in } x\}$. Prove that E is countable

Proof. Observation: Because f is increasing, lets say we start at arbitrary -n. Every $f(x_2)$, $f(x_3)$, ... \geq -n. Lets say $f(x_2) = -n + \epsilon$. And since E is not continuous, this means f(x) must be jumping.

Observation: Since this sequence is increasing, if we can show that there forms either a bijection or injection onto Q, then E is countable.

If ϵ is a rational number, then we are already done.

So if $\epsilon = \pi$ or some irrational value, we need to find some $\frac{p}{q} < \epsilon$ so that we can form a bijection. Because Q is dense in \mathbb{R} , we know there always exists a $0 < \frac{p}{q} < \epsilon$.

Thus, we can map E to Q. Since $|E| \le |Q|$, |E| is countable.

Exercise 1.6. Suppose $E \subset \mathbb{R}$ is a countable set. Prove that there exists $r \in \mathbb{R}$ such that $E \cap (r+E) = \emptyset$. Here $r+E := \{r+x : x \in E\}$

Proof. Since E is countable, $|E| \le |Q|$, meaning E can be listed. $E := \{E_0, E_1, ... E_n\}$. WLOG, assume E is increasing and sorted.

Now if we let $x \in E$, the most concerning element is $x = E_0$. Let $r = E_n + 2|E_0|$.

We have two cases:
$$\begin{cases} E_0 > 0 : r + x = E_n + 2E_0 + x > E_n \\ E_0 < 0 : E_n + 2|E_0| + x > E_n \end{cases}$$

Therefore, if we let $r := E_n + 2|E_0|$, all elements r + E will be ">" E. Thus, $E \cap (r + E) = \emptyset$

2 Week 2

Exercise 2.1. Show that a countable union of countable sets is still countable

Proof. Suppose we have some countable sets, $S_0, S_1, S_2, ... S_n$ and $S := \bigcup_{i \in N} S_i$. Since each of these sets are countable, we can list them all out.

 $S_0 = \{S_{0_0}, S_{0_1}, ... S_{0_n}\}, S_1 = \{S_{1_0}, S_{1_1}, ... S_{1_n}\}, ...$ We can re-arrange these sets in a n x n grid similar to the rationals. Then we can find a mapping from |S| to $|\mathbb{Q}|$ just like cantor's snake.

i.e. There is a mappping $f: |\mathbb{N} \times \mathbb{N}| \to |\mathbb{N}|$ that lists everything in the grid. Therefore, S is countable.

Exercise 2.2. Show that \mathbb{Q} is a dense subset of \mathbb{R} under the euclidian metric.

Proof. To be dense in R, we must show that for every element $r \in \mathbb{R}$, $\exists q \in \mathbb{Q}$ such that $d(q, r) < \epsilon$ given arbitrary ϵ .

Take $q := \frac{m}{n}$ and suppose r is irrational.

WTF: q such that $|r - \frac{m}{n}| < \epsilon$. Assume r > q so $r - \frac{m}{n} < \epsilon$

By the archemedian property, we know there exists a n > N s.t. $\frac{1}{n} < \epsilon$. Also, for any $r \in \mathbb{R}$, we can find a m such that $m \le nr < m+1$.

$$=0\leq nr-m<1\rightarrow 0\leq r-\frac{m}{n}<\frac{1}{n}$$

Finally, since $\epsilon > \frac{1}{n}$, we arrive at $|r - \frac{m}{n}| < \frac{1}{n} < \epsilon$.