Posterior evaluation for Bayesian Deep Neural Networks

Аминов Тимур

Московский физико-технический институт

26 февраля 2020 г.

Logistic regression

Plan

$$X \rightarrow Wx + b \rightarrow P(y)$$

Prediction

$$\mathbf{P}(y|x) = \sigma(w \cdot x + b)$$

Loglikelihood

$$\mathbf{L} = -\sum_{i=1}^{n} y_{i} \log \mathbf{P}(y|x_{i}) + (1 - y_{i}) \log (1 - \mathbf{P}(y|x_{i}))$$

Learning

Stochastic gradient descent is used to optimize NN parameters.

loss

very high learning rate

low learning rate

high learning rate

good learning rate

epoch

 $x_{t+1} = x_t - \text{learning rate} \cdot dx$

Different optimizers

Problem: overfitting

Solution: regularization

$$L_{reg}(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} \log p(y_i|x_i, \boldsymbol{\theta}) + \lambda \boldsymbol{R}(\boldsymbol{\theta})$$

Adding some extra term to the loss function

- ullet L₂ Regularization : $oldsymbol{R}(oldsymbol{ heta}) = \|oldsymbol{ heta}\|_2^2$
- L_1 Regularization : $R(\theta) = \|\theta\|_1$
- Elastic Net $(L_1 + L_2)$: $R(\theta) = \beta \|\theta\|_2^2 + \|\theta\|_1$

Regularization: Dropout

Some neurons are "dropped" during training.

Prevents overfitting.

(a) Standard Neural Net

(b) After applying dropout.

Bayesian deep network

Bayes' theorem

Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Posterior

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathbf{y}, \boldsymbol{\theta}|\mathbf{X})p(\boldsymbol{\theta})}{p(\mathbf{y}|\mathbf{X})} \propto p(\mathbf{y}, \boldsymbol{\theta}|\mathbf{X})p(\boldsymbol{\theta})$$

Where $p(\mathbf{y}, \theta | \mathbf{X}) = p(\mathbf{y} | \mathbf{X}, \theta) p(\theta)$

Evidence

$$f(\mathbf{\Theta}) = p(\mathbf{y}|\mathbf{X}, \mathbf{\Theta}) = \int p(\mathbf{y}|\mathbf{X}, \mathbf{w}) p(\mathbf{w}|\mathbf{\Theta}) d\mathbf{\Theta}$$

Where Θ - hyperparameters of model, w - parameters of model

(ロ) (個) (注) (注) 注 り(()

Regularization: Prior

Regularized cross-entropy

$$L(\theta) := -\frac{1}{n} \sum_{i=1}^{n} \log p(y_i|x_i, \theta) + \Omega(\theta)$$

 $\Omega(\theta)$ is a regularizer over model parameters

Temperature

$$p(\theta|\mathcal{D}) \propto exp(-U(\theta)/T)$$

Posterior energy function

$$U(\theta) := -\sum_{i=1}^{n} \log p(y_i|x_i, \theta) - \log p(\theta)$$

 $p(\theta)$ is a proper prior density function

Prior: prediction

Prediction

$$p(\mathbf{y}|\mathbf{X}, \mathcal{D}) = \int p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$

Analytical solution of this integral is not always available

Approximation

$$p(y|x, \mathcal{D}) \approx \frac{1}{5} \sum_{s=1}^{5} p\left(y|x, \boldsymbol{\theta}^{(s)}\right)$$

Where $\theta^{(s)}, s = 1 \dots S$ sampled from $p(\theta|\mathcal{D})$

Prior: Temperature concentration

Prior: Temperature

T = 0

All posterior probability mass is concentrated on the set of maximum a posteriori (MAP) point estimates

T < 1

Corresponds to artificially sharpening the posterior, which can be interpreted as overcounting the data by a factor of 1/T and a rescaling of the prior as $p(\theta)^{\frac{1}{T}}$

T = 1

Corresponds to the true Bayes posterior and performance gains for T < 1 point to a deeper and potentially resolvable problem with the prior, likelihood, or inference procedure

Why Should Bayes (T = 1) be Better?

Theory

For several models where the predictive performance can be analyzed it is known that the posterior predictive can dominate common point-wise estimators based on the likelihood

Classical empirical evidence

For classical statistical models, averaged predictions have been observed to be more robust in practice

Model averaging

Recent deep learning models based on deterministic model averages, have shown good predictive performance

Prior: Experiment

Figure 1. The "cold posterior" effect: for a ResNet-20 on CIFAR-10 we can improve the generalization performance significantly by cooling the posterior with a temperature $T\ll 1$, deviating from the Bayes posterior $p(\theta|\mathcal{D})\propto \exp(-U(\theta)/T)$ at T=1.

Prior: Experiment

Figure 3. Predictive performance on the IMDB sentiment task test set for a tempered CNN-LSTM Bayes posterior. Error bars are \pm one standard error over three runs. See Appendix A.4.

Hypothesis

Biased SG-MCMC Hypothesis

Lack of accept/reject Metropolis-Hastings corrections in SG-MCMC introduces bias

Minibatch Noise Hypothesis

Gradient noise from minibatching causes inaccurate sampling at T=1

Dirty Likelihood Hypothesis

Deep learning practices that violate the likelihood principle cause deviation from the Bayes posterior

Bias-variance Tradeoff Hypothesis

For T = 1 the posterior is diverse and there is high variance between model predictions. For $T \ll 1$ we sample nearby modes and reduce prediction variance but increase bias; the variance dominates the error and reducing variance ($T \ll 1$) improves predictive performance

Hypothesis: Problems with the Prior $p(\theta)$

Bad Prior Hypothesis

The current priors used for BNN parameters are inadequate, unintentionally informative, and their effect becomes stronger with increasing model depths and capacity

Implicit Initialization Prior in SGD

The inductive bias from initialization is strong and beneficial for SGD but harmed by SG-MCMC sampling

Literature

- How Good is the Bayes Posterior in Deep Neural Networks Really?
- Выбор моделей в машинном обучении
- Machine learning course at MIPT