Distributions (normal, binomial, poisson...)

$Ingrid\ Brizotti$

The goal is to show how to create different distributions and help those are new on R.

Distribution	Random number	PDF	CDF	Quantile
Normal	rnorm	dnorm	pnorm	qnorm
Binomial	rbinom	dbinom	binom	qbinom
Poisson	rpois	dpois	ppois	qpois
t	rt	dt	pt	qt
F	rf	df	pf	qf
Chi-Squared	rchisq	dchisq	pchisq	qchisq
Gamma	rgamma	dgamma	pgamma	qgamma
Geometric	rgeom	dgeom	pgeom	qgeom
Exponential	rexp	dexp	pexp	qexp
Weibull	rweibull	dweibull	pweibull	qweibull
Uniform	runif	dunif	punif	qunif
Beta	rbeta	dbeta	pbeta	qbeta
Multinomial	rmultinom	dmultinom	pmultinom	qmultinom
Hypergeometric	rhyper	dhyper	phyper	qhyper
Log-normal	rlnorm	dlnorm	plnorm	qlnorm
Logistic	rlogis	dlogis	plogis	qlogis

Where PDF means Probability Density Function, and CDF is Cumulative Density Function.

Normal (or Gaussian)

```
# generate 10 standard normal random numbers
rnorm(10)

## [1] 0.96252937 -2.09232687 -1.58381641 -0.31998772 0.05728371
## [6] -0.59191907 -0.72068806 0.52476283 -0.18960077 -0.14098140

# generate 1000 random numbers (has mean 0 and standard deviation 1)
a <- rnorm(1000)
hist(a, main ="Gaussian distribution")</pre>
```

Gaussian distribution


```
# Defining mean and standard deviation
dist_normal <- rnorm(120, mean=50, sd=5)
hist(dist_normal, main = "Gaussian distribution of mean 50 and sd 5")</pre>
```

Gaussian distribution of mean 50 and sd 5


```
# checking the mean and standard deviation
mean(dist_normal)
## [1] 49.94348
sd(dist_normal)
## [1] 5.042885
# Finding a proportion (less than 2)
sum(a < 2)/1000
## [1] 0.98
\# or using Cumulative Density Function (CDF) --> gives the area under curve
pnorm(2)
## [1] 0.9772499
# Probability Density Function (PDF) --> gives the density (height of the PDF) of the normal with mean=
densities <- dnorm(0, 1, .5)
# Quantile Function (inverse of pnorm) --> gives the value at which the CDF of the standard normal is .
qnorm(0.65, 0, 1)
## [1] 0.3853205
Binomial
# Generate 10 binomial random numbers with parameters n = 5 and p = 0.7:
rbinom(10, 5, .7)
## [1] 4 4 5 5 3 4 4 3 3 4
# To simulate the number of successes out of 6 trials with probability 0.4 of success,
# we run rbinom with n=1, size=6 (trial size), and prob=0.4
rbinom(1, size=6, prob=0.4)
## [1] 3
# probability of 2 successes out of 10
dbinom(x=2, size=10, prob=0.2)
```

[1] 0.3019899

```
# probability of 2 or fewer successes out of 10
pbinom(q=2, size=10, prob=0.2)
```

[1] 0.6777995

Poisson

```
# Generate 20.000 Poisson random numbers with lambda = 4:
dist_poisson <- rpois(20000, 4)
hist(dist_poisson, main="Poisson distribution")</pre>
```

Poisson distribution


```
# Estimate the mean and variance of a Poisson random variable whose mean
# is 8.2 by simulating 1.000 Poisson random numbers.
vpoi <- rpois(1000,8.2)

# check the mean and variance
mean(vpoi)</pre>
```

[1] 8.058

var(vpoi)

[1] 8.216853