Georg-August-Universität Göttingen Module B.Inf.1241: Computational Optimal Transport	6 C 4 WLH
Learning outcome_core skills:	Workload:

Learning outcome, core skills:	Workload:
Knowledge of	Attendance time:
• the fundamental notions of optimal transport, and its strengths and limitations as a	56 h
data analysis tool	Self-study time:
• the discrete Kantorovich formulation, its convex duality, and Wasserstein distances	124 h
 classical numerical algorithms, entropic regularization, and their scopes of 	
applicability	
 examples for data analysis applications. Students can transfer these to new 	
potential applications	

Course: Computational Optimal Transport (Lecture, Exercise)	4 WLH
Examination: Written exam (90 minutes) or oral exam (approx. 20 minutes)	6 C
Examination prerequisites:	
At least 50% of homework exercises solved.	
Examination requirements:	
Knowledge of Kantorovich duality, Wasserstein distances, standard algorithms and	
implications for data analysis applications.	

Admission requirements: none	Recommended previous knowledge: Foundations of linear algebra and analysis (e.g. B.Mat.0801 and B.Mat.0802) and programming skills (e.g. B.Inf.1842).
Language: English	Person responsible for module: Prof. Dr. Bernhard Schmitzer
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4 - 6
Maximum number of students: 50	