线性代数 (Linear Algebra)

第四章 Vector Spaces

§ 4.4 Coordinate Systems 坐标系统

衡益

2021 年 11 月 25 日,中山大学南校区

坐标系统

坐标系统

定理 (唯一表示定理)

令B={ \mathbf{b}_1 , …, \mathbf{b}_n }是向量空间l的一个基,则对l中每个向量 \mathbf{x} ,存在唯一的一组数 \mathbf{c}_1 ,…, \mathbf{c}_n ,使得: $\mathbf{x} = \mathbf{c}_1 \mathbf{b}_1 + \dots + \mathbf{c}_n \mathbf{b}_n$

3

Proof: Since β spans V, there exist scalars such that $\mathbf{x} = c_1 \mathbf{b_1} + ... + c_n \mathbf{b_n}$. Suppose \mathbf{x} also has the representation $\mathbf{x} = d_1 \mathbf{b_1} + ... + d_n \mathbf{b_n}$

坐标系统

for scalars d1,...,dn. Then, subtracting, we have

$$0 = \mathbf{x} - \mathbf{x} = (c_1 - d_1)\mathbf{b}_1 + \dots + (c_n - d_n)\mathbf{b}_n$$
 (2)

Since β is linearly independent, the weights in (2) must

be all zero. That is , $c_j = d_j$ for $1 \le j \le n$.

坐标系统

定义

假设集合 \mathbf{B} ={ $\mathbf{b_1}$, …, $\mathbf{b_n}$ }是 \mathbf{m} 一个基, \mathbf{x} 在 \mathbf{v} 中, \mathbf{x} 相对于基 \mathbf{B} 的坐标(或 \mathbf{x} 的 \mathbf{B} -坐标)是使得 $\mathbf{x} = c_1\mathbf{b_1} + \cdots + c_n\mathbf{b_n}$ 的权 c_1, \cdots, c_n . 若 c_1, \cdots, c_n 是 \mathbf{x} 的 \mathbf{B} -坐标,则 \mathbf{R} n中的向量

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \mathbf{\mathbf{E}} \mathbf{x} (\mathbf{H} \mathbf{N} + \mathbf{B}) \mathbf{B} \mathbf{M} \mathbf{A} \mathbf{B} \mathbf{B},$$

映射 $\mathbf{x} \to [\mathbf{x}]_{\mathbf{B}}$ 称为(由B确定的) 坐标映射.

5

• Example: The entries in the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ are the coordinates of x relative to the standard basis $\varepsilon = \begin{pmatrix} \mathbf{e_1} & \mathbf{e_2} \end{pmatrix}$, since

$$\begin{bmatrix} 1 \\ 6 \end{bmatrix} = 1 \bullet \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 6 \bullet \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1 \bullet \mathbf{e}_1 + 6 \bullet \mathbf{e}_2$$

$$\varepsilon = \{\mathbf{e_1} \quad \mathbf{e_2}\}$$
,则 $\left[\mathbf{x}\right]_{\varepsilon} = \mathbf{x}$

坐标的几何意义

7

坐标的几何意义

举例:

标准向量
$$\varepsilon = \begin{pmatrix} \mathbf{e_1} & \mathbf{e_2} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{b_1} & \mathbf{b_2} \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

向量
$$\mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

FIGURE 1 Standard graph paper.

FIGURE 2 \mathcal{B} -graph paper.

Rn中的坐标

9

ℝⁿ 中的坐标

• Example : Let $b_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \mathcal{B} = \{b_1, b_2\}$

Find the coordinate vector $[\mathbf{x}]_{\beta}$ of \mathbf{x} relative to $\boldsymbol{\beta}$

• Solution: The $\boldsymbol{\beta}$ -coordinate c_1 , c_2 of \boldsymbol{x} satisfy

$$c_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \qquad \text{Or} \qquad \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$b_{1} \qquad b_{2} \qquad x \qquad \qquad b_{1} \qquad b_{2} \qquad x$$

So
$$c_1 = 3, c_2 = 2$$

 $\mathbf{x} = 3\mathbf{b}_1 + 2\mathbf{b}_2$ $\begin{bmatrix} \mathbf{x} \end{bmatrix}_B = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

ℝⁿ 中的坐标

For a basis $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, let

$$P_{\beta} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix}$$
 and $[\mathbf{x}]_{\beta} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

Then

$$\mathbf{x} = P_{\beta}[\mathbf{x}]_{\beta}.$$

We call P_{β} the **change-of-coordinates matrix** from β to the standard basis in \mathbf{R}^n . Then

$$[\mathbf{X}]_{eta} = P_{eta}^{-1} \mathbf{X}$$

and therefore P_{β}^{-1} is a **change-of-coordinates matrix** from the standard basis in \mathbf{R}^n to the basis β .

11

坐标映射

One-to-one Transformations 单射(也译作injective)

Definition (One-to-one transformations). A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is *one-to-one* if, for every vector b in \mathbb{R}^m , the equation T(x) = b has *at most one* solution x in \mathbb{R}^n .

定义: 映射T: $\mathbb{R}^n \to \mathbb{R}^m$ 是单射,则对于任意 $\mathbf{b} \in \mathbb{R}^m$,方程 $T(\mathbf{x}) = \mathbf{b}$ 在 $\mathbf{x} \in \mathbb{R}^n$ 中至多有一个解。

Onto Transformations

满射(也译作surjective)

Definition (Onto transformations). A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is *onto* if, for every vector b in \mathbb{R}^m , the equation T(x) = b has at least one solution x in \mathbb{R}^n .

定义: 映射T: $\mathbb{R}^n \to \mathbb{R}^m$ 是满射,则对于任意 $\mathbf{b} \in \mathbb{R}^m$,方程 $T(\mathbf{x}) = \mathbf{b}$ 在 $\mathbf{x} \in \mathbb{R}^n$ 中至少有一个解。

Bijective (双射)

Definition: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is bijective if it is injective and surjective; that is, every element $\mathbf{b} \in \mathbb{R}^m$ is the image of exactly one element $\mathbf{x} \in \mathbb{R}^n$.

定义: 映射T: $\mathbb{R}^n \to \mathbb{R}^m$ 是双射,则映射T既为单射也为满射,即对于任意 $\mathbf{b} \in \mathbb{R}^m$,方程 $T(\mathbf{x}) = \mathbf{b}$ 在 $\mathbf{x} \in \mathbb{R}^n$ 中有唯一解。

Comparison

The above expositions of one-to-one and onto transformations were written to mirror each other. However, "one-to-one" and "onto" are complementary notions: neither one implies the other. Below we have provided a chart for comparing the two. In the chart, A is an $m \times n$ matrix, and $T: \mathbb{R}^n \to \mathbb{R}^m$ is the matrix transformation T(x) = Ax.

T is one-to-one	T is onto
$T(\mathbf{x}) = \mathbf{b}$ has at most one solution for every \mathbf{b} . 对每个 \mathbf{b} ,方程 $T(\mathbf{x}) = \mathbf{b}$ 在至多有一个解.	$T(\mathbf{x}) = \mathbf{b}$ has at least one solution for every \mathbf{b} . 对每个 \mathbf{b} ,方程 $T(\mathbf{x}) = \mathbf{b}$ 至少有一个解.
The columns of A are linearly independent. A的列向量线性独立.	The columns of A span \mathbb{R}^m . A的列向量张成 \mathbb{R}^m 空间.
A has a pivot in every column. A的每列都有主元.	A has a pivot in every row. A的每行都有主元.
The range of <i>T</i> has dimension n. <i>T</i> 的值域是n维的.	The range of <i>T</i> has dimension m. T的值域是 <mark>m维</mark> 的.

 $T(\mathbf{x}) = \mathbf{b} \in \mathbb{R}^n + \mathbf{f} \in \mathbb{R}^n$

回顾 → 变换

符号: \mathbb{R}^n : 定义域 (domain of T)

ℝ‴: 余定义域、陪域 (codomain of T)

 $T: \mathbb{R}^n \to \mathbb{R}^m$ 的变换

 $T(\mathbf{x}): \mathbf{x} \in \mathbb{R}^m$ 的像(Image of \mathbf{x})

所有 $T(\mathbf{x})$ 的集合: 值域 (Range of T)

17

坐标映射

Theorem 8

Let $\beta = \{b_1,...,b_n\}$ be a basis for a vector space V. Then the coordinate mapping $x \rightarrow [x]_B$ is a one-to-one linear **transformation** from V onto \mathbb{R}^n

Proof: Take two typical vectors in V

$$\mathbf{u} = c_1 \mathbf{b_1} + \cdots + c_n \mathbf{b_n}, \mathbf{w} = d_1 \mathbf{b_1} + \cdots + d_n \mathbf{b_n}$$

Then
$$\mathbf{u} + \mathbf{w} = (c_1 + d_1)\mathbf{b_1} + \dots + (c_n + d_n)\mathbf{b_n}$$

It follows that
$$\begin{bmatrix} \mathbf{u} + \mathbf{w} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = \begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathbf{B}} + \begin{bmatrix} \mathbf{w} \end{bmatrix}_{\mathbf{B}}$$
Thus the coordinate mapping preserves addition

Thus the coordinate mapping

坐标映射

If **r** is any scalar, then $r\mathbf{u} = r(c_1\mathbf{b_1} + \cdots + c_n\mathbf{b_n}) = (rc_1)\mathbf{b_1} + \cdots + (rc_n)\mathbf{b_n}$

So
$$[r\mathbf{u}]_{\mathbf{B}} = \begin{bmatrix} rc_1 \\ \vdots \\ rc_n \end{bmatrix} = r \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = r[\mathbf{u}]_{\mathbf{B}}$$

Thus the coordinate mapping also preserves scalar multiplication.

坐标映射

Standard basis for \mathbf{P}_2 : $\{\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3\} = \{1,t,t^2\}$

Polynomials in \mathbf{P}_2 behave like vectors in \mathbf{R}^3 . Since $a + bt + ct^2 = \underline{\mathbf{a}} \mathbf{p}_1 + \underline{\mathbf{b}} \mathbf{p}_2 + \underline{\mathbf{c}} \mathbf{p}_3$,

$$\left[a+bt+ct^{2}\right]_{\beta} = \left[\begin{array}{c} a \\ b \\ c \end{array}\right]$$

We say that the vector space \mathbb{R}^3 is *isomorphic* to \mathbf{P}_2 .

Isomorphic:同构的 Isomorphism:同构

坐标映射

EXAMPLE: Parallel Worlds of \mathbb{R}^3 and \mathbf{P}_2 .

Vector Space
$$\mathbb{R}^3$$
 Vector Space \mathbb{P}_2

Vector Form: $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ Vector Form: $a+bt+bt^2$

Vector Addition Example
$$\begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix} \quad (-1+2t-3t^2) + (2+3t+5t^2) = 1+5t+2t^2$$

Informally, we say that vector space V is **isomorphic** to W if every vector space calculation in V is accurately reproduced in W, and vice versa.

坐标映射

EXAMPLE: Use coordinate vectors to determine if $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a linearly independent set, where $\mathbf{p}_1 = 1 - t$, $\mathbf{p}_2 = 2 - t + t^2$, and $\mathbf{p}_3 = 2t + 3t^2$.

把不熟悉的向量空间有关的问题转换到熟悉的向量空间上来

Solution: The standard basis set for P_2 is $\beta = \{1, t, t^2\}$. So

$$[\mathbf{p}_1]_{\beta} = \begin{bmatrix} \mathbf{I} \\ -\mathbf{I} \\ \mathbf{O} \end{bmatrix}, [\mathbf{p}_2]_{\beta} = \begin{bmatrix} \mathbf{2} \\ -\mathbf{I} \\ \mathbf{I} \end{bmatrix}, [\mathbf{p}_3]_{\beta} = \begin{bmatrix} \mathbf{O} \\ \mathbf{2} \\ \mathbf{3} \end{bmatrix}$$

Then

$$\left[\begin{array}{ccc} 1 & 2 & 0 \\ -1 & -1 & 2 \\ 0 & 1 & 3 \end{array}\right] \sim \cdots \sim \left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right]$$

By the IMT, $\{[\mathbf{p}_1]_{\beta}, [\mathbf{p}_2]_{\beta}, [\mathbf{p}_3]_{\beta}\}$ is linearly $\underline{\mathbf{independent}}$ and therefore

 $\{\mathbf p_1, \mathbf p_2, \mathbf p_3\}$ is linearly <u>independent</u>

