

ŘADA B – PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU ROČNÍK XLIV/1995 • • ČÍSLO 5

V TOMTO SEŠITĚ

Albrecht se představuje......161

TECHNIKA POVRCHOVÉ MONTÁŽE
Součástky pro povrchovou montáž
Anglicko-český slovníček speciál- ních výrazů z oboru SMT 196

AMATÉRSKÉ RADIO - ŘADA B

Seznam použité literatury 197

Vydavatel: Vydavatelství MAGNET-PRESS, s. p., Vladisla-vova 26, 113 66 Praha 1, tel. 24 22 73 84-9, fax 24 22 3173. dakce: Jungmannova 24, 113 66 Praha 1, tel. 24227384. Šéfredaktor Luboš Kalousek, OK1FAC, I. 354.

Ročně vychází 6 čísel. Cena výtisku 20 -Kč. pololetní Předplatně 60,-kč, celoroční předplatně 120,-kč.

Rozšířuje: MAGNET-PRESS (poskytuje slevu na předplatném) a PNS, informače o předplatném podá a objednávnem) a PNS, miormace o preoplaniem poda a objednav-ky příjímě PNS, pošta, doručovatel a předplatitelské stře-disko administrace Vydavatelství MAGNET-PRESS. Velkoodběratelé a prodejci si mohou objednat AR za vy-hodných podminek v oddělení velkoobchodu MAGNET-PRESS, tel/fax (02) 26 12 26.

PRESS, tetrax (u2) zb 12 zb.
Podávání novinových zásilek povoleno jak Ředitelstvím pošt Praha (č. j. nov. 5030/1994 ze dne 10. 11.
1994), tak RPP Bratislava - pošta Bratislava 12
(čj. 82/93 dňa 23. 8. 1993). Objednávky do zahraničí přijímá MAGNET-PRESS, OZO.312, Vladislavova 28, 113 66

Praha 1 formou bankovního šeku.

Ve Slovenské republice předplatné zajišťuje a objednáv-ky přijímá přimo nebo prostřednictvím dalších distributorů MAGNET-PRESS Slovakia s.r.o., Teslova 12, 821 01 Bratislava, tel./fax (07) 21 36 44, resp. P.O. BOX 169, 830 00 Bratislava. Cena za jeden výtisk v SR je 27,-SK (22,-SK při předplatném v MAGNET -PRESS Slovakia). Inzerci přijímá inzertní oddělení MAGNET-PRESS, Jungmannova 24, 113 66 Praha 1, tel/fax (02) 24 22 31 73, tel. (02) 24 22 73 84. Riadkovú inzerciu vybavuje v SF MAGNET-PRESS Slovakia, s.r.o., Grösslingova 62, 811 09 Bratislava, tel./fax (07) 36 13 90.

Znění a úpravu odborné inzerce lze dohodnout s kterýmkoli redaktorem AR.

Za původnost a správnost přispěvků odpovídá autor. Nevyžádané rukopisy nevracime.

ISSN 0139-7087, číslo indexu 46 044. Toto číslo vyšlo 20. 9. 1995. @ MAGNET-PRESS s. p. Praha

Kommunikationstechnik aus Norddeutschland

Dnes si představíme opět jednu z firem od "sousedů", ze Spolkové republiky Německo, jejíž vznik a výsledky by opět mohly být vodítkem pro některé naše podnikatele. Cesta od pouhé prodejní firmy s pěti zaměstanci k prosperujícímu podniku s několika desítkami zaměstanců, jejíž jméno je známé v celé Evropě (i jinde), je krok po kroku popsána v následujícím přehledu.

Kronika firmy Albrecht

1974 - Po svém založení měla firma Lothar Albrecht své první sídlo v Hamburgu - majitel Lothar Albrecht (a jeho pět zaměstnanců) dovážel a prodával se značným úspěchem "sibíčka", občanské radiostanice.

1976 - Obchody "šly" tak dobře, že původní sídlo se stalo pro firmu omezujicím činitelem, proto firma přesídlila do většího objektu v Lűtjensee u Hamburgu. V mezidobí se také rozšířil počet spolupracovníků firmy (zaměstnanců) na 15.

1977 - V tomto roce byl založen velkoobchod Lothar Albrecht (občanské radiostanice, CB, a přístroje pro amaterské vysílání). Firma prodávala přístroje pod mottem "Albrecht-Funk auf allen Straßen" (Albrechtovy přístroje na všech ulicích). Původní obchodní značka "CB-Master" se dodnes používá pro bohatý sortiment příslušenství k radiostanicím jak CB, tak radiomamatérským.

1979 - V tomto roce byla založena společnost s ručením omezeným (GmbH) Albrecht Electronic.

1981 - Další růst firmy si vyžádal přesídlení do nové firemni budovy v Trittau. Na ploše velké 6000 m² tam bylo k dispozici zhruba 2000 m² plochy pro kanceláře a sklady.

1982 - Syn zakladatele firmy, Thomas Wilberger, přeblrá vedení celé firmy. Dlky vlastnímu vývoji první občanské radiostanice, která by vyhovovala evropským předpisům pro provoz v pásmu CB, CEPT (byla označena jako Alpha 4000 FM), rozšiřuje se používáni výrobků se značkou Albrecht v celé

1983 - Další rozvoj firmy zajistilo i rozšíření sortimentu o výrobky z oboru telekomunikací, především telefony a záznamníky. Firma začala spolupracovat se společnosti s ručením omezeným "wipe electronic" v Haanu, která ji zastupovala v západní části Spolkové republiky.

1985 - Aby mohla být dále optimalizována jakost výrobků firmy, byla výbudována vývojová laboratoř - v ní dnes pracují tři techníci a její měřicí vybaveni mà hodnotu přes milion marek.

se představuje

1988 - Charakteristickým údajem pro úspěch výrobků Albrecht z oblasti CB je prodej 100 000 kusů mobilních radiostanic.

1989 - Paleta nabízených výrobků se opět rozšiřuje a to o vše, co má jakoukoli spojitost s telekomunikacemi, tedy také o faxy a další příslušenstvi. Firma začíná pečlivě sledovat nejen technickou stránku prodávaných výrobků, ale i jejich vzhled - design.

1990 - Díky liberalizaci předpisů Spolkové pošty (k níž došlo v červnu 1990) vzniká volný a svobodný telekomunikační trh - příležitost také pro firmu Albrecht. Příležitosti bylo využito - Albrecht uvádí mezi prvnimi na trh telefon s nově navrženým designem, "Nicht-Telekom-Telefon", což by se dalo přeložit asi jako "telefon lišicí se od výrobků Telekom", tedy netradičního vzhledu. Albrecht jako padesátá firma v pořadí dosahuje schválení Spolkové pošty k volnémů prodeji svého sortimentu v SRN i mimo Spolkovou re-

1992 - Firma Albrecht Electronic GmbH dostává nové logo. Vzhledem k převzetí firmy "wipe electronic" (viz 1983) získává Albrecht, jako původně pouze severoněmecká firma, sídlo i v rýnské oblasti o velikosti 1000 m2 kancelářské a skladovací plochy. Nyní má firma Albrecht Electronic GmbH kolem 50 zaměstnanců v Trittau, kolem 15 v Haanu a/10 obchodních zástupců. Spolupráce s designerem Rűdigerem Bachorskim nese první ovoce: přístroj

Thomas Wilberger

CALLBUTLER I a radiostanice CB AE 4200 a AE 4600 dostávají první ceny za výborný design.

1993 - Firma Albrecht byla navržena Radou pro výtvarné řešení jednak na cenu Spolkové republiky za design a jednak na evropskou cenu za design. Přístroje CONO a CALLBUTLER II byly vyznamenány na honnoverském iF Industrie Forum-Design a vystaveny na veletrhu CEBIT. Výrobky Albrecht nesklízejí však pouze ceny za design záznamník CALLBUTLER II se stal za technické řešení jasným vítězem srovnávacího testu, pořádaného nadací Warentest. Firma Albrecht dále rozšiřuje svůj věhlas - na družicovém programu SAT1 jsou téměř denně předváděny produkty firmy a ve velmi divácky úspěšném seriálu Wolffův revír (byl uváděn i u nás) jsou používány výhradně Albrechtovy telefony a záznamníky. Kromě toho firma včas rozpoznala současný trend - sdružování trhů - a založila v prosinci telekomunikační firmu Electronica Albrecht Iberica S. L. v Barceloně.

1994 - TELEBUTLER II obdržel cenu spolkové země Schleswig-Holstein za design a cenu iF za design. Firma rozšířila svoji nabídku především v oblasti stále se rozšiřujícího trhu s přístroji pro mobilní komunikaci. Díky širokému příslušenství pro sítě C a D mají nyní prodejci autotelefonů možnost dále rozšiřovat síť svých zákazníků.

1995 - Také v tomto roce se dostalo firmě velkého uznání, pokud jde o design jejich výrobků, které potvrdilo správnost nastoupené cesty - National Design Museum v New Yorku vybralo přístroj CONO firmy Albrecht mezi své stálé exponáty. Toto mezinárodní uznání bylo doplněno celkem devátou cenou za design (udělenou při příležitosti iF) a to pro kombinaci fax, telefon, záznamník typu AE 500 z vlastního vývoje.

Firma se však s dosaženými výsledky nespokojuje. S ohledem na budoucí rozvoj bylo v Trittau právě dokončeno další sídlo firmy se zhruba 1500 m² kancelářských ploch a 2000 m² skladovacích ploch. Obchodní ředitel firmy Thomas Wildberger tento čin komentoval slovy: "Tato stavba je pro nás nezbytná proto, protože v nových podmínkách pro provoz CB jsou rozšířena kmitočtová pásma, v nichž je možné pracovat - to jistě přinese nutnost dále rozšířovat sortiment. Dále bude nutné rozšířit trh o přístroje s větším počtem kanálů, zřejmě asi 80, a stejně tak bude nutné rozšířit trh o přístroje pro datovou komunikaci via CB. Jako vedoucí firma na trhu nesmíme v tomto směru nic zanedbat, chceme-li si udržet přízeň zákazníků"

Na změny na trhu telekomunikačních přístrojů reagoval Albrecht dostatečně pružně novou řadou telefonních a faxových přístrojů. Již jmenovaný obchodní ředitel firmy to komentoval takto: "Stále se zvětšujícímu zájmu o bezšňůrové telefoný vycházíme vstříc nově vyvinutými přistroji AE 904 a AE 930. Stejně tak jsme vyšli vstříc požadavkům malých kanceláři a podnikatelů, kteří požadují levné a výkonné kombinace fax-telefon a popř. záznamník. Stejnou politiku bude Albrecht sledovat i do budoucna - pokud možno s předstihem se připravovat na uspokojování všech současných a budoucích potřeb potenciálních zákazníků".

Firma Abrecht po dvaceti letech své existence a se současným ročním obratem kolem 50 miliónů DM hodlá i do budoucna plnit základní strategii: umožňovat obchodu i zákazníkům pracovat s kvalitativně velmi jakostními přístroji s výjimečným designem a to za reálné ceny. To bylo spolu s podnikovou "Identity-Linie" v minulosti, je v současnosti a bude jistě i v budoucnosti základem všech úspěchů.

Firmu Albrecht zastupuje v ČR firma Computer Connection, Branická 42, Praha 4, tel/fax (02) 46 35 05, 46 13 79,

popř. Zenklova 131, Praha 8 -Libeň, tel. (02) 683 23 09,

popř. Benešova 15, Brno, tel. 060121 23 34.

Přehled vybraných občanských radiostanic Albrecht

	Alpha 4000	AE 4100	AE 4200	AE 4400,	AE 4500	AE 4550	AE 4600	AE 4650	AE 4800	AE 5000	AE 5100	AE 5150	AE 2200	AE 2800 K/p	AE 2800 KAM	AE 2850
Kanêle	40	40/12	40/12	40	40/12	40	40/12	40	40/12	40/12	40/12	40	40/12	40/12	40/12	40
Betriebsort/ Modulation	PM	FM/AM	FMAM	FM	FM/AM	FM	FMAM	FM	FMAM	FM/AM	FM/AM	FM	FMAM	FM/AM	FMAM	FM
Display	LED	rco	ŒD	LED	LED	LED	ŒĐ	LED	LEO	rCD	LCD	roo	LED	rco	rœ	rco
Max. Sendelel- stung (FM/AM)	4W	4W/1W	4W1W	4W	4W1W	4W	4W/1W	4W	4W1W	4W/1W	4W/1W	4W	4W/1W	4W/1W	4W/IW	4W
Sendeleistung reduzierbar	,	_				Х								Х	X	X
FM-Hab in kitz	1,8-2,0	max 2,0	1,8	1,8-2,0	1,8-2,0	1,8-2,0	1,9-2,1	1,9-2,1	1,8-2,0	max 2,0	max 2,0	mox 2,0	1,9-2,0	1,9-2,0	1,9-2,0	1,9-2
AM-Module- Honsgrad		max 95%.	max 96%		max 96%		max 96%		max 96%	max 95%	max 96%		max 96%	max 96%	max 96%	
NF-Ausgangs- leistung	min 2W	mın 3W	min 2W	min 2W	min 2W	mın 2W	min 2,6W	min 2,5W	min 3W	min 2W	min 2W	min 2W	max 1W	max IV	max 1W	max I
Suchleut/ Scenfunktion				X	X	Х				X	X	X	X			Х
Scon-Autostart nechsec.										oa. 8 Sec	os. 6 Sec.	00. 6 Sec.				00 6 Se
2-Kanalöber- wachung (DW)									·		X	×				X
AM/FM-Um- schallautom,							X			X	Х			X	χ.	
Notrettaste	9	9			9	9			9	9		9/19				9/19
RF-Qain	Regier				LocaMDX	LacoVOX	Regier	Regier	Regier	Regier						ļ
Squetch	X	X	X	X	X	X	X	X	X	X	X	X.	X	X	X	X
S-Meter	Instrum.	rco	LED	LED	LED	LED	instrum.	Instrum.	Inelium.	rco	rco	rcd	LEO	rcd	rco	ιco
Strom-Spor- schallung				<u></u>									LED anial	X	X	X
Konal nach Unterbrechen der Strom- versorgung	letzter	1.	ietzier	9	9	9	letzter	letzier	letzier	9	1	1	9	1	1	
Speicher- piätze					5 FM	5 FM				5AW5FM						
Anschluß für S-Meter	X	X	X	X	X	X	X	Х	X	X	X	×				
Anschluß für Lautsprecher	×	X	×	X	Х	X	X	X	X	Х	X	X	X	Х	X	Х
Art des Mileolons	Dynam.	Eleidret	Dynam.	Dynam.	Dynam.	Eleidret OFMF	Elektret	Eleidret	Elektrol	Elektrol	Elektret	Elektret	Elektret	Elektrol	Elektret	Efektre
Zugelessen für beliebige Milluofone		Х		·	_	X	X	X	×	X	×	×				X
Zugelassen für Selektivruf	X	X		X	X	X	X	X.	X	X	X	×				X
Eingebauter Selektivrof	,			AE 4400 SEL		X		Option Plotine								
Gewickt in g	1800 g	1000 g	800 g	800 g	800 g	800 g	900 g	900 g	1500 g	1100 g	800 g	800 g	400 g	300 g	300 g	300
Abmessunger in cm	23x18x7	19x14x4	13x18#4	18x13x3,4	19x 14x4	19x14x4	18x14x5	18x14x5	17x23x5	19x16x5	15x15x4	15x15x4	16,5x7x4	21x7x3,5	21x7x3,5	21x7x3
6-polige Mic Bechse nach GDCH-Norm	X	X		Х	X	×	X	X	X	X	X	x		ĺ		
Einzel- genehmigung		X	X	1	X	l	X		X	X	×	()	X		X	-
Aligemain- genehmigung	X	1		X		X		X	1			X	-	X		X

Překlad vybraných technických parametrů radiostanic CB:

Sendeleistung - vysíl. výkon, reduzierbar - redukovatelný, FM-Hub - kmit. zdvih, Modulationsgrad - stupeň modulace, Ausgangleistung - výstupní výkon, Suchlauf - skenování, Umschaltautomatik - samočinné přepínání, Notruftaste - tlačítko nouzového volání, Strom-Sparschaltung - obvod, šetřící proud, Speicherplätze - počet předvoleb (paměť), zugelassen mit beliebige Mikrofone - možno připojit libovolný mikrofon, selektiv Ruf - selektivní volba, Gewicht - hmotnost, Abmessungen - rozměry

B5

95

TECHNIKA POVRCHOVÉ MONTÁŽE

Ing. Josef Šandera, ing. Jiří Starý

Pokud se podíváme na vnitřní provedení moderních elektronických zařízení automatizační nebo výpočetní techniky (počítače PC apod.), výrobků spotřební elektroniky a ostatních elektronických zařízení, zjistíme, že jsou v nich použity integrované obvody s velkým množstvím přívodů a miniaturní součástky, které jsou pájeny přímo na povrch jednotlivých plošných spojů, případně zjistíme, že (zřídka) je použita i klasická součástka. Při prvním dojmu se jeví, že zvládnout tento druh technologie z hlediska oprav, případně konstrukce bude v amatérských podmínkách velice obtížné. Můžeme však konstatovat, že techniku povrchové montáže je možno i v amatérských podmínkách s minimálním speciálním technologickým vybavením úspěšně realizovat včetně oprav profesionálních výrobků.

Amatérské postupy nelze podceňovat ani na profesionálních pracovištích. Při vývoji elektroniky s prvky povrchové montáže je třeba ověřit chování funkčního vzorku zhotoveného stejnou technikou jako konečný výrobek - proto je třeba s minimálními náklady sestavit vzorek, i když se předpokládá, že větší výrobní série budou vyráběny na profesionálním pracovišti, většinou na automatech. Správný návrh je podmíněn aspoň částečnou znalostí profesionálních technologických postupů.

V tomto čísle AR řady B jsou stručně popsány typy součástek SMD včetně používaných pouzder, technologické postupy a používané materiály. Pozornost je rovněž věnována návrhu desky s plošnými spoji a opravám desko sazených technikou SMT. V závěru jsou uvedeny ukázky použití povrchové montáže v amatérských podmínkách, včetně vybavení pracoviště a jsou uvedeny některé osvědčené konstrukce (většinou z AR), navržené pro techniku povrchové montáže.

Historie a současný stav techniky povrchové montáže

Základní technologické postupy povrchové montáže, ve zkratce označované jako SMT (Surface Mount Technology), se začaly používat od počátku šedesátých let. V roce 1967 přichází na trh firma Siemens s pouzdrem SOT23, které se používalo při realizaci hybridních integrovaných obvodů, z nichž technika SMT konstrukčně vychází. Některé technologické postupy, používané v povrchové montáži

(montáž chip on board, použití vodivých lepidel apod.) byly přímo přebrány z hybridních technologií. Stále se však zvětšuje podíl moderních montážních technologií a způsobů pouzdření integrovaných obvodů a součástek (technologie BGA, TAB) a dalších.

Pokud sledujeme procentuální podíl spotřeby součástek pro povrchovou montáž (Surface Mounted Devices) - obr. 1 - je zřejmé, že se jejich spotřeba neustále zvětšuje a lze předpokládat, že v roce 1997 dosáhne 60 %.

Obr.1. Podíl světové spotřeby součástek SMD

Na tomto trendu má hlavní podíl rozšiřování výroby integrovaných obvodů v pouzdrech s větším množství přívodů s roztečí od 0,6 do 0,5 mm, které jsou vyžadovány z důvodů stále větší integrace.

Zvlášť bouřlivý rozvoj techniky povrchové montáže můžeme v současné době zaznamenat v oblasti telekomunikací a výpočetní techniky.

Srovnání SMT s klasickou montáží

Při klasické montáži jsou součásti s drátovými přívody po předchozím natvarování a ostřižení zasouvány do prokovených, nebo neprokovených děr desky s plošnými spoji (DPS) a následně zapájeny ze strany plošných spojů. Technika SMT předpokládá použití bezvývodových součástek, případně součástek s upravenými přívody, které se pájejí přímo na povrch desky s plošnými spoji ze strany spojů. Součástky mají podstatně menší rozměry. Základní rozdíl v konstrukci je zřejmý z obr. 2.

Obr. 2. Rozdíl mezi klasickou montáží a SMT

Technika povrchové montáže je stále používanější pro výhody, které je možno shrnout do následujících bodů:

- zmenšuje se rozměr a hmotnost desky s plošnými spoji. Zmenšuje se počet prokovených děr, případně díry nejsou vůbec třeba, což se příznivě projeví na ceně desky s plošnými spoji, která v současné době představuje až 50 % nákladů;
- zvětšuje se montážní hustota, je možnost oboustranné montáže;
- vyšší pracovní frekvence (součásti mají kratší, nebo žádné přívody).
- desky se snadno osazují automaty. Při osazování odpadá tvarování a zkracování přívodů součástek a pro osazování je možno použít jedinė zařízení;
 - zvětšuje se spolehlivost zařízení:
- jsou menší požadavky na výrobní prostory;
- snížuje se cena osazené desky, zvláště při velkých výrobních sériích.

I přes nesporné výhody této montážní techniky se vyskytují některé problémy, které je třeba řešit. Z důvodů velké montážní hustoty se vyskytují problémy s odvodem ztrátového tepla. Menší rozměry způsobují obtížnější kontrolu správnosti osazení a zapájení a desky se obtížněji opravují a testují. Cena součástek SMD je v současné době nepatrně vyšší nebo srovnatelná s cenou klasických součástek, lze však předpokládat, že s dalším rozšířením této techniky se bude snižovat. Velice často se používá smíšená montáž, při níž jsou používány klasické součástky s drátovými přívody (vývody) v kombinaci se součástkami SMD, neboť některé součástky jsou v provedení SMD buď nedostupné (případně se vůbec nevyrábějí), nebo mají vyšší cenu než klasické součástky. Celkově lze však konstatovat, že zvlášť při výrobě větších séríí desek na automatech se jeví povrchová montáž výrazně výhodnější jak z hlediska produktivity, tak i ceny. Výrobní náklady na realizaci desek osazených touto technikou jsou ve srovnání s klasickou montážní technikou asi o 30 % nižší.

Součástky pro povrchovou montáž

Součástky SMD (Surface Mount Device) se vyrábějí buď bez vývodů (čipové rezistory, kondenzátory, diody, keramické nosiče čipu), anebo s vývody (pouzdra tranzistorů, IO), které se svým charakterem a provedením odlišují od vývodů používaných u klasických součástek. Součástky mají menší rozměry (30 až 60 % rozměrů klasických součástek). Přívody se nezasouvají do děr, ale pájejí se na plošný spoj ze strany spojů. V tomto provedení mají součástky SMD podstatně větší mechanickou odolnost proti vibracím a rázům. Při montáži odpadá operace tvarování a ohýbání přívodů. Součástky mají podstatně lepší vf vlastnosti v důsledku podstatného zkrácení délky přívodů. Konstrukce a způsob osazování součástek SMD jsou zvlášť vhodné pro osazování automaty. Všechny součástky pro povrchovou montáž včetně konektorů musí být konstrukčně navrženy tak, aby na svém povrchu byly schopny bez poškození odolávat teplotě kolem 260 °C po dobu minimálně 10 sekund, což vyplývá z používaných pájecích technologií.

Vývoj SMD začal asi před 20 lety. V současné době téměř všíchni výrobci nabízejí součástky v provedení pro SMT.

Typy přívodů používaných pro SMT

U plastových pouzder pro integrované obvody a tranzistory (pouzdra typu FLAT-PACK, PLCC, SO, SOJ, SOT, apod.) se nejčastěji používají přívody tvaru "L" (gull wing = křídla racka), nebo tvaru "J", pro součástky hranolovitého tvaru se používají přívody buď tvaru metalizovaných plošek (u čipových součástek), nebo pod pouzdro zahnuté kovové pásky (elektrolytické kondenzátory, cívky apod.). Provedení přívodů a způsob jejich pájení je na obr. 3.

164 ametical ADTO

a) metalizované plošky

b) zahnutý páskový přívod c) přívod tvaru "L"

d) přívod tvaru "J"

Obr. 3. Nejčastěji používané přívody pro součástky SMD

U tvaru "L" lze pájený spoj poměrně snadno kontrolovat, případně testovat. Nevýhodou jsou větší stavební rozměry pouzder, která se obtížněji osazují automaty z důvodu snažší deformace přívodu při manipulaci. Naopak vývody tvaru "J", používané u plastových nosičů čipu, mají menší pájecí plošky, které nepřesahují obrys pouzdra, které může být snadno automaticky osazováno. Pouzdro se dá snadno umísťovat do obiímky. Jeho nevýhodou je větší výška, která znemožňuje kontrolu a testování při těsném umístění pouzder vedle sebe. Nedoporučuje se pájet je vlnou. Přívody tvořené metalizovanými ploškami se používají pro konstrukci čipových rezistorů a kondenzátorů a při konstrukci integrovaných obvodů v pouzdrech LCCC. Tantalové kondenzátory, případně ostatní plastové součástky bývají opatřeny páskovým přívodem umístěným pod pouzdro. V další části budou popsány nejčastěji používaná pouzdra pro techniku SMT.

Pouzdra pro integrované obvody

Pro integrované obvody se používají pouzdra s přívody ve dvou řadách, případně čtvercová nebo obdélníková pouzdra s přívody umístěnými na všech čtyřech stranách s roztečí 1,27 mm, popř. menší. Většina pouzder je z plastu, používají se však i keramícké nosiče čipu. Provedení v pouzdrech s přívody po stranách je efektivní do počtu přívodů 20. Při větším počtu přívodů se již délka pouzdra neúměrně zvětšuje a tím se nepříznivě zvětšuje i poměr mezi nejdelším a nejkratším přívodem k čipu, proto se používají pouzdra s přívody na všech čtyřech stranách, případně na jeho spodní části.

Je třeba si uvědomit, že v provedení a značení pouzder různými vý-

robci je nejednotnost a je třeba vždy si ověřit tvar a rozměr pájecích plošek (footprint) v příslušném katalogu.

Pouzdra SOIC (Small Outline Integrated Circuit)

Někdy se označují jako SO. V Evropě se začínaly používat od roku 1970 především v hodinkách. Jedná se o plastové pouzdro s vývody typu "L" (s roztečí 1,27 mm = 0,05 inch), které jsou umístěny po obou stranách pouzdra. Vyrábějí se s počtem přívodů od 8 do 16. Nákres pouzdra s rozměry je na obr. 4.

Obr.4. Pouzdro typu SOIC

Srovnáme-li toto pouzdro s klasickým DIL, zaujímá asi 1/3 plochy pouzdra DIL, max. ztrátový výkon dosahuje asi 75 % ztrátového výkonu pouzdra DIL. V těchto pouzdrech se vyrábí většina IO, které jsou dostupné v provedení DIL, a mají stejně zapojené přívody. Označení orientace je stejné jako u DIL výřezem, kruhovým výliskem, případně skosením hrany, nebo jinak. IO v těchto pouzdrech se často používají při smíšené montáži (DIL + SOIC).

Kromě toho se vyrábějí IO se stejným tvarem a přívody a s většími šířkami v pouzdrech s označením SO-xxM (5,6 mm), SO-xxL (7,6 mm), SO-xxW (8,4 mm), SO-xxX (10,0 mm), SO-xxY (11,1 mm), u nichž místo xx je uveden celkový počet přívodů, a pouzdra VSO-40 a VSO-56 (Very Small Outline) s roztečí 0,762 mm (0,03 inch), a obvody SSOP (Shrink Small Outline Package) s roztečí vývodů 0,65 mm v provedeních s tloušťkami 2,4 nebo 1,75 mm. Extrémně malými montážními výškami (1 mm) se vyznačují pouzdra s ozna-

Tab.1. Rozměry [mm] některých pouzder SOIC

(PHIL	IPS)
-------	------

		my morniory on	poulati. Co	., •	(, , ,,,,	0,
1	Počet řívodů	Rozteč přívodů	Šířka přívodů <i>w</i>	Max. délka	Max. šířka A	Max. celk.šířka W
$\neg \vdash$	8	1,27	0,4	5,00	4,0	6,2
	10	1,27	0.4	6,25	4,0	6,2
4	14	1,27	0,4	8,75	4,0	6,2
5	16	1,27	0,4	10,00	4,0	6,2
	8	1,27	0.4	7,55	7,6	10.65
6L	16	1,27	0,4	10,50	7,6	10,65
	20	1,27	0,4	13,00	7,6	10,65
4L	24	1,27	0,4	15,60	7,6	10,65
BL	28	1,27	0,4	18,10	7,6	10,65
40	40	0,76	0,35	16,00	7,6	12,30
56	56	0,75	0,35	22,00	11,1	15,80
40	40	0,76	0,35	16,00	7,6	

Tab. 2. Rozměry [mm] pouzder PLCC

Počet přívodů	Formát	Rozteč přívodů <i>p</i>	Max.rozměry pouzdra <i>AxB</i>	Maximální rozměry LxW
20	5x5	1,27	9,1	10,1
28	7x7	1,27	11,6	12,6
44	11x11	1,27	16,8	17,8
52	13x13	1,27	19,3	20,3
68	17x17	1,27	24,4	25,4
84	21x21	1,27	29,4	30,4
18	5x4	1,27	10,9x 7,5	10,0 x 8,5
28	9x5	1,27	14,1x 9,0	15,1x10,0
32	9x7	1,27	14,1x11,6	15,1x12,6

čením TSSOP (Thin Shrink Small Outline Package). Jsou v provedeních až s 56 vývody a s roztečí vývodů 0.5 mm. Pouzdra typu TSOP (Thin Small Outline Package) se vyznačují malou montážní výškou (1 mm) a vývody vedenými z kratších stran pouz-

Pouzdra typu SOJ

dra. V tab. 1 jsou rozměry některých

typů pouzder typu SO.

Jedná se o plastová pouzdra s rozteči přívodů jako SO (1,27 mm), avšak přívody jsou tvaru "J". Často se používají pro pouzdření pamětí (obr. 5). Je možno je např. nalézt u modulů SIM (SIP) počítačů.

Pouzdra PLCC (Plastic Leaded **Chip Carrier)**

Jsou to plastová pouzdra s přívody typu "J" s roztečí 1,27 mm. Svojí nízkou cenou a možnosti umísťovat je do objimek patří mezi nejrozšířenější. Jsou zvláště vhodná pro osazování automaty. Obr. 6 ukazuje provedeni pouzdra a v tab. 2 jsou rozměry nejčastěji používaných pouzder.

Pouzdra LCCC (Leadless Ceramic Chip Carrier)

Jedná se bezvývodová keramická pouzdra čtvercového nebo obdélníkového tvaru. Nákres je na obr. 7.

Základem pouzdra je keramická destička. Polovodičový čip je umístěn uprostřed destičky a zakryt kovovým víčkem, případně jinak. Vývody jsou umístěny na všech čtyřech hranách v rastru 1,27 a jsou zhotoveny metalizaci. Pouzdro se vyrábí obdélníkového nebo čtvercového tvaru s 18 až 156 přívody. Je zvlášť vhodné pro vf aplikace pro malou kapacitu, indukčnost a odpor přívodů. Dá se umisťovat do objímky a dobře se osazuje automaty. Pro přímé pájení na desku DPS je třeba používat speciální materiály podložky, jejichž koeficient tepelné roztažnosti TCE se blíží keramice (TCE = 5 až 6 ppm/°C), aby nepraskaly pájené plošné spoje. Pouzdra se používají pouze pro speciální aplikace, protože jsou velice drahá.

Pouzdra typu FLAT-PACK

Jedná se o plastové pouzdro obdélníkového nebo čtvercového tvaru s přívody tvaru "L", umístěnými na protilehlých stranách (FLAT-PACK), nebo po všech čtyřech stranách (QUAD FLAT-PACK). Pouzdra jsou

Obr. 5. Provedení pouzdra typu SOJ

Obr. 6. Provedení pouzder PLCC

Obr. 7. Provedení pouzdra LCCC

velice rozšířená zvláště v Japonsku a můžeme se s nimi setkat ve většině výrobků spotřební elektroniky (kalkulátory, elektronické hry apod.). Nákres pouzder je na obr. 8.

Vyrábějí se se 40 až 200 přívody různých šířek a s roztečí přívodů v základní rozměrové řadě AxB = 14 x 14, 20 x 14, 20 x 20, 28 x 20, 28 x 28 mm s rozměry v násobcích A.√2 a B.√2. Pouzdra jsou levná a mají malou montážní výšku. Hlavně v USA se vyrábějí tzv. BQFP (Bumpered Quad Flat-Pack),s roztečí 0,635 mm, která jsou v rozích opatřena výstupky, které chrání přívody proti poškození při manipulaci. Rozteč přívodů se neustále zmenšuje, v současné době se již vyrábějí IO s roztečí menší než 0,635 mm, tzv. provedení FQFP (Fine Pitch Quad Flat-Pack), příp. ULTRA-FQFP (rozteč 0,4 až 0,3 mm). Pouzdra typu fine pitch se pájejí většinou přetavením bez použití pájecí pasty. Stačí pouze pocínovat přívody galvanicky,

nebo žárově (tl. vrstvy cínu 15 µm). Tvar relativně dlouhých přívodů umožňuje rovněž pájet pouzdra přitlačením přívodů vyhřívaným kovovým nástrojem tvaru čtvercového nebo obdélníkového rámu.

Pouzdra typu LGA (Land Grid Array)

Z důvodů stále se zvětšující hustoty integrace rostou požadavky na počet přívodů pouzdra. Pouzdra LGA vycházejí konstrukčně z vývodových pouzder typu Pin Grid, u nichž jsou přívody umístěny pod pouzdrem. Klasické přívody jsou u LGA nahrazeny výstupky pokrytými pájkou. Pouzdra se vyrábějí v různých velikostech

Obr. 8. Pouzdra typu FLAT-PACK (QUAD FLAT-PACK)

anstoria ADI 165

Tab. 3. Přehled vyráběných pouzder pro IO

Počet		Rozteč vývodů [mm]										
vývodů	1,27	1,00	0,80	0,65	0,50	0,46	0,30					
8	so			SSOP	-							
14	SO SOM SOL	-	`	SSOP QSOP			*					
16	SO SOM SOL			SSOP QSOP	,	-	0					
18	SOL PLCC											
20	SOL PLCC			SSOP QSOP	TSOP							
24	SOL SOL SOW	LCC		SSOP QSOP	TSOP	,	-					
28.	SOX SOY PLCC	*		SSOP QSOP	TSOP							
30				SSOP								
32	PLCC SOL		TQFP	SSOP	TSOP							
34	TSOP											
36	1	,		SSOP								
40	SOL SOXL		TSOP	SSOP	TSOP							
44	PLCC	QFP	QFP TQFP	SSOP	TQFP							
48			QFP	SSOP	TSOP TQFP							
52	PLCC	QFP		QFP TQFP								
56		-		SSOP	TSOP							
64		QFP	TQFP SSOP	SSOP	TQFP		<u> </u>					
68	PLCC			BQFP QFP								
80	,		QFP	QFP TQFP	TQFP							
84	PLCC		QFP ·	BQFP	TQFP	ļ	1					
100	PLCC			QFP BQFP	TQFP							
120 128		QFP QFP	-		QFP	TQF	 					
*		-		 	TQFP		ļ					
132 134 144	٠,		QFP	BQFP	TQFP							
160		·		QFP	TQFP		TQFP					
164 168 176 184	,	. *		QFP	TQFP QFP		TQFP					
196 208 232				BQFP QFP	QFP							
240 256 304	*			WEI F	QFP	QFP						

s roztečí přívodů v rastru od 1,78 do 2,54 mm, nebo od 0,762 do 1,27 mm podle nákresu v levé části obr. 9 (obr. 9a).

Dalším vývojovým krokem v pouzdření čipů pro SMD je použití pouzder BGA (Ball Grid Array), obr. 9b. BGA mají na spodní straně čtvercové keramické podložky s několikavrstvovou strukturou, na které je umístěn polo-**B5** vodičový čip, pole kuliček nebo válečků (rastr 1,27, 1,5, příp. 1 mm), zhotovených z pájky s vyšší teplotou tavení (slitina Pb90/Sn10 s teplotou tavení 300 °C). Pájejí se eutektickou pájkou. Místo keramické podložky se také používá podložka ze stejného matenálu, z něhož je zhotovena deska s plošnými spoji (FR4, FR5), na které je nalepen polovodičový čip (pouzdro PBGA, Plastic Ball Grid Array). V tomto případě se používají kuličky z eutektické slitiny Sn63/Pb37. Celý systém je zapouzdřen do plastické hmoty. Obdobně je řešeno pouzdro TBGA (Tape Ball Grid Array), v němž je polovodičový čip připojen k podložce technologií TAB, jak je uvedeno dále.

Použitím plošného čtvercového pole lze dosáhnout u BGA několikrát větší hustoty vývodů ve srovnání s QFP. Mezi další předností pouzder. BGA patří "samocentrovací" schopnosti při pájení přetavením a žádné problémy s komplanaritou vývodů, které se běžně vyskytují u pouzder QFP.

Nejrozšířenější jsou BGA v plastikových pouzdrech (PBGA). Provedení v keramickém pouzdru (CBGA) nejsou citlivá k vlhkosti, mají vynikající rovinnost a lepší chlazení. TBGA (Tape Ball Grid Array) používají jako základní materiál tenkou polyimidovou podložku, na které je umístěn polovodičový čip technologií Flip Chip, který je seshora zakryt chladicím krytem. Tato pouzdra se vyznačují malou montážní výškou a malou hmotností. Předností je i velká spolehlivost. Pouzdra CBGA a TBGA využívají např. fy IBM, Motorola, Compag aj. Pouzdra BGA lze pájet klasickými technologiemi, většinou přetavením nebo horkým vzduchem.

Typů pouzder pro integrované obvody se vyrábí nepřeberné množství a v současné době je snaha pouzdra standardizovat (dohody mezi standardizačními ústavy EIAJ - Japonsko a JEDEC - USA). V tab. 3 je přehled současně vyráběných pouzder.

Obr. 9. Pouzdra typu LGA (a) a vývody pouzder BGA, BPGA (b)

166 Ametorske ADIO

Pouzdra pro tranzistory a diody

Čipy tranzistorů a diod se většinou umisťují do plastových pouzder s vývody tvaru "L", diody se vyrábějí rovněž ve válcovitém skleněném pouzdru.

Pouzdro SOT 23

Jedná se o nejstarší a nejpoužívanější typ plastového pouzdra s vývody tvaru "L". Začalo se vyrábět již od 60. let převážně pro potřeby hybridních obvodů. Podobné rozměry má pouzdro označené MPAK. Nákres s orientačními rozměry pouzdra je na obr. 10.

Obr. 10. Provedení pouzdra SOT23

Pouzdro se používá pro tranzistory do výkonu 300 mW. Pro usnadnění návrhu kresby plošných spojů se vyrábějí tranzistory, které mají opačně přívody emitoru a báze (provedení R), viz obr. 11.

Obr. 11. Zapojení tranzistorů v pouzdrech SOT23

Do pouzdra SOT23 se také umisťují čipy Zenerových diod, případně nejrůznější kombinace dvojic obyčejných diod (až do výkonové ztráty 350 mW), případně diod LED. U svítivých diod je tělisko zhotoveno z čirého nebo barevného plastu. Některá z možných zapojení diod jsou na obr. 12.

Kromě pouzdra SOT23 se někdy používá typ SC-59, který se liší provedením přívodů a je větší, a pouzdro TO236. Z hlediska footprintu jsou záměnná se SOT23. Plastové pouzdro SOT323 podobného provedení jako SOT23, avšak menší, začíná v roce 1992 používat fa Philips pro tranzistory. Jedná se o nejmenší typ pouzdra s výkonovou ztrátou 200 mW.

Pouzdro SOT25

je plastové pouzdro podobné SOT23 s pěti přívody, které se používá pro realizáci samostatných logických hradel. Je na obr.13 spolu se zapojením pouzdra.

Obr.13. Provedení pouzder SOT25

Pouzdro SOT223

Jedná se o čtyřvývodové pouzdro s přívody tvaru "L". Používá se většinou pro pouzdření výkonových tranzistorů.

Obr. 14. Provedení a rozměry pouzdra SOT223

Pouzdro SOD123

je novější typ pouzdra. Má pouze dva přívody tvaru "L", které jsou umístěny na protilehlých stranách. Používá se pro pouzdření diod.

Obr. 15. Provedení a rozměry pouzdra SOD123

Pouzdro SOT89

Jedná se o plastové pouzdro určené pro tranzistory a diody s větší výkonovou ztrátou (500 mW, u novějších provedení až 1 W). Střední přívod

Obr. 16. Provedení a rozměry pouzdra SOT89

pouzdra (C) může být vodivě spojen s chladičem, který se rovněž připájí na plošný spoj. Provedení pouzdra je na obr. 16, zapojení přívodů tranzistorů a možné zapojení diod je na obr.17.

Obr. 17. Zapojení tranzistorů a diod v pouzdru SOT89

Pouzdro SOT143

Jedná se o plastové pouzdro se čtyřmi vývody, které se proto používá většinou pro tranzistory, které mají více elektrod (MOS, FET apod.). Nákres a rozměry pouzdra jsou na obr.18. Pouzdro se vyrábí ve dvou provedeních (a, b, obr. 19). Podobné rozměry a provedení má pouzdro MPAK-4.

Obr. 18. Provedení a rozměry pouzdra SOT143

Obr. 19. Možná provedení pouzdra SOT143

Pouzdro SOT194

Jedná se o plastové pouzdro vyvinuté pro výkonové tranzistory se ztrátou do 4 W. Nákres a rozměry jsou na obr. 20.

Obr. 20. Provedení a rozměry pouzdra SOT194

Kromě výše uvedených nejčastěji používaných pouzder existuje celá řada dalších typů. Např. pouzdro TO220SMD (někdy je také značeno jako D²PACK), které nahrazuje pouzdro TO220 používané v klasické technologii. Dále jsou to typy SQUARE-PACK a celá řada dalších.

Pouzdro SOD80 (Small Outline Diode)

Jedná se o skleněné válcové pouzdro podobných rozměrů jako miniMELF (viz dále). Používá se pro diody do výkonové ztráty 250 mW. Katoda je označena barevným proužkem. Obdobný tvar má pouzdro SOD87, má však větší průměr a větší povolenou výkonovou ztrátu. Výkres a rozměry pouzder jsou na obr. 21.

Obr. 21. Provedení a rozměry pouzder SOD80 a SOD87

Pro diody se rovněž používá pouzdro, které se svými rozměry blíží provedení MELF, tzv. MELF-DIODE. Je možno použít stejný footprint jako pro rezistory typu MELF (jeho průměr je 2,3 mm a délka 5,0 mm).

Pasívní součástky pro povrchovou montáž

Nejstarší typy pouzder součástek SMD byly válcové. Jejich výhodou bylo, že je při osazování nebylo nutné správně orientovat (spodek-vrch), válcový tvar však způsobuje při automatickém i ručním osazování určité komplikace (součástky se kutálejí). Používají se však dodnes a to převážně v Japonsku.

Válcová pouzdra součástek se označují zkratkou MELF (popř. mini-MELF a mikroMELF). Používají se většinou pro rezistory, zřídka i pro keramické kondenzátory. Na obr. 22 je nákres pouzdra, v tab. 4 potom rozměry jednotlivých typů.

Obr. 22. Válcové provedení pouzder typu MELF

Tab. 4. Rozměry pouzder typu MFI F

17142			
Тур	Délka	P rů měr	Výkon. ztráta
<i>*</i>	L	D	rezist.
	[mm]	[mm]	[mW]
MELF	5,9	2,2	250
miniMELF	3,6	1,4	150
mikroMELF	2,0	1,27	100

Čipové pasívní součástky - jedná se o nejčastějí používané provedení, hlavně pro konstrukci rezistorů a kondenzátorů. Součástky mají tvar kvádru s vývody umístěnými po jeho stranách. Ve srovnání s provedením MELF jsou menší, mají menší spotřebu materiálu a svým tvarem jsou vhodné pro osazování automaty (snadné přemisťování vakuovými nástroji, nekutálí se po desce). Na rozdíl od válcových tvarů je třeba rozlišovat vrch a spodek součástky. Velikost SMD ie mezinárodně standardizována. Typ součástky udává přibližné rozměry jeho půdorysu v setinách palce inch (např. typ 0805 má délku 0,08 palce a šířku 0,05 palce). Rozměry půdorysu se podle provedení různými výrobci nepatrně liší, výška se pohybuje u rezistorů v rozmezí od 0,3 do 0,6 mm, u kondenzátorů může být u větších pouzder až 2,3 mm. Přívody jsou na protilehlých kratších stranách podle obr. 23.

Obr. 23. Možná provedení přivodů čipových součástek

Rezistory pro povrchovou montáž

Provedení válcových rezistorů typu MELF je podobné jako u klasických. Vyrábí se vakuovým napařováním odporové vrstvy (uhlíl. vé nebo kovové) na keramické tělísl... Válcové tělísko je po stranách opatřeno kovovými pocínovanými čepičkami. Odpor rezistoru je trimováním laserem nastaven na správnou velikost. Odporová vrstva je chráněna lakem. Jelikož isou pouzdra typu MELF poněkud větši (vyšší) než čipové rezistory a mají tedy větší plochu pro odporovou vrstvu, projevuje se to na jejich dlcuhodobé stabilitě a větší impulsní zatížitelnosti. Tento typ rezistorů má vzhledem ke geometrickému provedení lepší vf vlastnosti, lepší teplotní koeficient a je levnější než čipové rezistory. Rezistory se vyrábějí v provedení MELF, miniMELF a mikroMELF. Někdy se značí podle IEC (Mezir árodní elektrotechnické komise) jako RC6123, RC3715 a RC2211, kde čísla udávají přibližné rozměry v desetinách milimetru, Ztrátový výkon jednotlivých typů je 250 mW (MELF), 150 mW (miniMELF) a 100 mW (mikroMELF).

Ploché (čipové) rezistory pro SMT se vyrábějí z korundové destičky (čistý Al₂O₃), na kterou je většinou sítotiskem nanesena tlustovrstvovou technologií, obdobně jako u konstrukce HIO, odporová vrstva, která je tvořena směsí kysličníku ruthenia a skla. Kontakty jsou vytvořeny metalizací na užších stranách destičky. Vypálená vrstva odporové hmoty je upravena na požadovaný odpor trimováním a chráněna proti vlivům okolí vrstvou borosilikátového skla.

Vrstva se trimuje vytvořením drážky laserem, případně proudem křemenného písku. Provedení čipových rezistorů je na obr. 24.

Složení odporové vrstvy určuje odpor rezistoru - rozsah bývá od jednotek ohmů až po desítky megaohmů, speciální rezistory se vyrábějí až do jednotek teraohmů. Rezistory se vyrábějí od velikosti 0202 (délka 0,5 mm) až po provedení 2512 (délka 6,3 mm). V tab. 5 jsou rozměry, jmenovitý výkon a přípustné provozní napětí nejčastěji používaných typů SMD.

Obr. 24. Provedení čipových rezistorů; 1 - keramická podložka, 2 - vývod, 3 - odporová vrstva, 4 - ochranná vrstva, 5 - drážka po trimování

Rezistory se vyrábějí v tolerančních řadach E6 (20 %), E12(10 %), E24 (5 %), E48 (2 %), E96 (1 %), E192 (0,5 %), pro speciální použití nabizí řada firem provedení s přesnosti mimo toleranční řady, drátem vinuté rezistory apod. Ve všech velikostech se rovněž vyráběji rezistory s nulovým odporem pro realizaci propojek mezi plošnými spoji.

Odpor válcových rezistorů typu MELF se značí čárkovým barevným kódem obdobně jako u klasických rezistorů, u čipových rezistorů se značí číslicemi. Vzhledem k miniaturním rozměrům pouzdra se odpor uvádí na povrchu zjednodušeně třemi nebo čtyřmi číslicemi podle použité toleranční řady. První dvě (tři) číslice udávají platnou číselnou velikost odporu, poslední čislice je násobitelem (udává počet nul za číslem). Desetinná čárka se značí symbolem R. Propojovací můstky s nulovým odporem mají označení 000. Protože na malých pouzdrech je místo pro pouze dva znaky, používají někteří výrobci pro označení odporu v řadě písmeno, za kterým následuje násobitel (číslice). V tab. 6 je přiřazení písmena k odporu v toleranční řadě E24 (případně E6 a E12).

Pro odpory mimo řadu jsou použita k označení malá písmena podle tab. 7.

Tab. 7. Kódované značení rezistorů s odpory mimo řadu

Odpor	2,5	3,5	4,0	4,5	5,0	6,0	7,0	8,0	9,0
Znak	а	b	d	е	f	m	n	t	У

Pro názornost jsou na další straně příklady značení rezistorů.

Tab. 5. Nejčastěji používané velikosti pro čipové rezistory

Тур	` Délka	Šířka	Výška	Výkon	Napětí
2512	6,3 mm	3,0 mm	0,65 mm	1000 mW	200 V
2010	5,1 mm	2,5 mm	0,6 mm	500 mW	200 V
1210	3,2 mm	2,5 mm	0,6 mm	250 mW	200 V
1206	3,2 mm	1,6 mm	0,6 mm	125 mW	200 V
0805	2,0 mm	1,25 mm	0,4 mm	100 mW	150 V
0603	1,6 mm	0,8 mm	0,4 mm	63 mV	50 V
0402	1,02 mm	0,5 mm	0,3 mm	50 mW	50 V

Tab. 6. Kódované značení rezistorů pro odpory v řadě E24

Hodnota Znak	1,0 A	1,1 B	1,2 C	1,3 D	1,5 E	1,6 F	1,8 G	2,0 H		2,4 K	2,7 L	3,0 M	
Hodnota Znak	3,3 N	3,6 P	3,9 Q	4,3 R	4,7 S	5,1 T	5,6 U	6,2 V	6,8 W	7,5 X	8,2 Y	9,1 Z	

 $4,7~\Omega$ = \$0, nebo 4R7, nebo 4R70 $47~\Omega$ = \$1, nebo 470, nebo 47R0 $470~\Omega$ = \$2, nebo 471, nebo 470R $4700~\Omega$ = \$3, nebo 472, nebo 4701 $47000~\Omega$ = \$4, nebo 473, nebo 4702 řada E192 48100 Ω 4812

Z důvodů úspory místa a zjednodušení návrhu plošných spojů se někdy integruje několik rezistorů do jednoho pouzdra, vznikají tzv. rezistorová pole standardního, případně zákaznického provedení. Rezistory mohou být vnitřně propojeny (např. pro ošetření sběrnic počítačů), nebo se propojují vně pouzdra. Rezistorová pole se umisťují nejčastěji do pouzder typu SO. Proměnné rezistory pro SMT se vyrábějí výhradně jako cermetové (cermety = vrstva kov-dielektrikum). Odporová dráha je vytvořena na kerámické podložce a je tvořena nejčastěji vrstvou Cr-SiO2. Vyrábějí se jako jednootáčkové, případně několikaotáčkové výhradně s lineárním průběhem odporu. Rozměry trimrů nejsou dosud standardizovány, provedení footprintu závisí na použitém typu. Mechanické provedení je obdobné jako u klasických součástek s vývody upravenými pro povrchovou montáž. Vyrábějí se otevřená provedení vhodná pro pájení přetavením. Pro pájení vlnou je třeba použít uzavřenou konstrukci, kdy je systém uzavřen do plastového pouzdra. Konstrukce trimrů je přizpůsobena nastavování odporu dráhy na automatech. Pro náročné aplikace se vyrábějí hermeticky uzavřené trimry, u nichž je pehyblivý jezdec utěsněn silikonovým těsněním.

Kondenzátory pro povrchovou montáž

Pro techniku povrchové montáže se používají stejně jako pro klasickou montáž jako kondenzátory s malými a středními kapacitami kondenzátory s pevným dielektrikem, které je tvořeno keramikou nebo polymerem, jako kondenzátory s velkými kapacitami kondenzátory elektrolytické (hliníkové, nebo tantalové).

Obecně pro kapacitu kondenzátorů platí vztah

 $C = \varepsilon_0 \varepsilon_r(S/d),$

kde C je kapacita [F],

- ε_0 permitivita vakua (8,859 10⁻¹² F/m),
- ε_r relativní permitivita použitého dielektrika,
- S plocha elektrod [m²],
- d vzdálenost mezi elektrodami [m].

Z uvedeného vztahu je patmo, že pro realizaci kondenzátoru s co největší kapacitou je třeba systém, který má co největší plochu elektrod při co nejmenší vzdálenosti mezi nimi za použití dielektrika, které má co největší relativní permitivitu. Kondenzátor je třeba konstruovat tak, aby bylo (podle uvedeného vztahu) dosaženo co největší objemové kapacity.

Keramické kondenzátory pro SMT jsou tvořeny keramickým dielektrikem

a vyrábějí se jako jednovrstvové nebo několikavrstvové, většinou hranolovitého (čipové kondenzátory), řidčeji válcovitého tvaru. Rozměry nejčastěji používaných čipových pouzder jsou v tab. 8.

Tab. 8. Rozměry [mm] čipových keramických kondenzátorů

Тур	Délka <i>L</i>	Šířka <i>W</i>	Délka přívodu <i>A</i>
2225	5,7	6,3	0,3 až 1,0
2220	5,7	5,0	0,3 až 1,0
1825	4,5	6,3	0,3 až 1,0
1812	4,5	3,2	0,3 až 1,0
1808	4,5	2,0	0,3 až 1,0
1210	3,2	2,5	0,3 až 1,0
1206	3,2	1,6	0,25 až 0,75
0805	2,0	1,25	0,25 až 0,75
0603	1,6	0,8	0,25 až 0,75
0402	1,0	0,5	0,15 až 0,3

Výška pouzder se pohybuje v rozmezí 0,45 až 0,55 mm, kondenzátory pro větší a vysoké napětí se vyrábějí také v jiných typech pouzder a dosahují výšky až 5 mm.

U jednovrstvových kondenzátorů je tělísko tvořeno jednou vrstvou dielektrika s oboustrannými přívody, několikavrstvové kondenzátory se skládají z několika vrstev dielektrika s kovovými elektrodami, zapojených paralelně tak, jak je uvedeno na obr. 25a. Kovová pájecí ploška, která zároveň slouží k propojení elektrod, je tvořena vrstvou stříbra, případně vrstvou AgPd, na které je vrstva niklu (2 až 4 µm), následuje vrstva cínu, případně pájky (slitina SnPb) tak, jak ukazuje obr. 25b. Mezivrstva niklu zabraňuje nežádoucímu rozpouštění stříbra v pájce při pájení.

Jak je patrno ze vztahu pro kapacitu kondenzátoru, lze kapacitu podstatně ovlivňovat bez nutnosti zvětšovat rozměry elektrod změnou relativní permitivity použitého dielektrika. Permitivita závisí na převládajícím mechanismu polarizace v dielektriku. Mechanismy polarizace, které způsobují velkou permitivitu (což je žádoucí), bohužel způsobují, že permitivita materiálu (a tím i kapacita kondenzátoru) má značnou závislost hlavně na teplotě, přiloženém napětí a kmitočtu. Proto se materiály dielektrik používané pro keramické kondenzátory dělí do skupin podle toho, zda je žádoucí velká stabilita kapacity nebo velká kapacita bez požadavků na stabilitu.

Pro kondenzátory, u nichž se vyžaduje velká stabilita kapacity (např. oscilační obvody), se používá materiál typu I. Jedná se o keramický materiál s označením NPO nebo COG, případně další materiály pod označením N150, N220, N470 a další. Jejich relativní permitivita se pohybuje v rozmezí 30 až 150, materiály se používají pro konstrukci kondenzátorů s malou a střední kapacitou, které se vyznačují velkou stabilitou kapacity v závislosti na teplotě, napětí a kmitočtu. Vyrábějí se do kapacity 4,7 nF s provozním napětím do 150 V, případně do 10 nF s provozním napětím do 50 V.

Dalším typem materiálu pro výrobu kondenzátorů je materiál s označením X7R. Jeho relativní permitivita se pohybuje v rozmezí 500 až 2000. Umožňuje konstrukci kondenzátorů kapacit 470 pF až 1 µF. Kondenzátory s tímto typem dielektrika mají větší kapacitu na jednotku objemu, avšak za cenu větší nestability. Používají se např. jako vazební, vyhlazovací apod. a všude tam, kde není na závadu toleranční pásmo kapacity kolem 5 %.

Kondenzátory používající materiál Z5U (typ 3) mají velkou toleranci kapacity (-50 až +100 %). Používají se v případech, kdy vyžadujeme velkou kapacitu bez nároků na stabilitu, většinou jako blokovací. Relativní permitivita je větší než 4000 a kondenzátory dosahují kapacity 1,5 µF a větší.

Vzhledem k velkým výrobním tolerancím a značné závislosti kapacity na teplotě se kondenzátory typu 3 vyrábějí pouze v řadách E6 a E12.

Na obr. 26 (na další straně) jsou pro názomost uvedeny průběhy relativní změny kapacity (Δ*C/C* v [%]) v závislosti na teplotě pro keramické materiály NPO, X7R a Z5U.

Vícevrstvové fóliové kondenzátory se skládají z bezindukčně navinutých vrstev dielektrika (polyetyléntereftalát s označením MKT, polyetylénsulfid aj.), na které je vakuově napařena hliníková vrstva, která tvoří elektrody. Celý systém je zalisován do plastového pouzdra. Obdobně jako klasické kóndenzátory jsou schopny se samočinně při průrazu regenerovat. Relativní permitivita těchto kondenzátorů se pohybuje kolem 3, ztrátový úhel tg δ je menší než 10.10^{-3} . Používají se jako integrační, vazební, případně blokovací nebo filtrační kondenzátory.

Značení keramických kondenzátorů - kapacita na keramických čipo-

Obr. 25. Provedení několikavrstvových keramických kondenzátorů

<u>B5</u>

ametorida ADIO 169

vých kondenzátorech většinou nebývá udávána; pokud jsou označeny, je značení podobné jako u rezistorů. První dvojčíslí udává číselnou velikost, následující číslice je násobitelem. Odchylka je u číslice 8 (násobitel 0,01) a 9 (násobitel 0,1). Výsledná kapacita je v pF. Desetinná tečka je označována malým písmenem r, někdy se používají i písmena p, n nebo µ. Dále jsou uvedeny příklady značení

0,47 pF 478 nebo 0r47 nebo p47 4,7 pF479 nebo 4r7 nebo 4p7 47 pF 470

470 pF 471

4,7 nF (4700 pF) 472 nebo 4n7

47 nF (47000 pF)...... 473 470 nF (470000 pF).... 474

4,7 μF (4700000 pF)....475 nebo 4μ7

Elektrolytické kondenzátory se vyrábějí se buď jako tantalové nebo hlinikové. Záporná elektroda (katoda) elektrolytického kondenzátoru je tvořena vodivým elektrolytem, kladnou elekrodou (anodou) je kov, podle typu tantal nebo hliník. Dielektrikum je tvořeno oxidy kovů, z nichž je zhotovena anoda (Ta₂O₅ nebo Al₂O₃). Dielektrikum vykazuje polovodivé vlastnosti a proto je třeba kondenzátor správně polarizovat (do nepropustného směru). Povrch anody je zvětšen chemickým zdrsněním, případně sintrováním. Relativní permitivita se pohybuje u Al₂O₃ kolem 10 a u Ta₂O₅ kolem 25, proto tantalové kondenzátory mají větší kapacitu na jednotku objemu. Tloušťka dielektrika je co nejmenší a závisí na maximálním povoleném provozním napětí.

Rozměry elektrotytických kondenzátorů nejsou standardizovány, každý výrobce používá jiné rozměry. Při návrhu spojů je třeba respektovat doporučený footprint podle katalogu.

Obr.26. Závislost změny kapacity ΔC/C na teplotě

Tantalový kondenzátor se skládá z pravoúhlého tělesa anody, která je zhotovena z čistého sintrovaného tantalu s velkým povrchem a je pokryta vrstvou dielektrika, tvořenou pentoxidem tantalu Ta₂O₅. Pevným elektrolytem je burel (dioxid manganu, MnO₂). Katoda je zhotovena z grafitu s nanesenou stříbrnou pájkou. Systém kondenzátoru se většinou zalisuje do plastového pouzdra (provedení MC).

Kondenzátory se vyrábějí v rozsahu kapacit od 0,1 do 100 µF pro provozní napětí 4, 6, 10, 16, 20, 25, 35 a 50 V. Na obr. 27 je znázorněna konstrukce tantalového elektrolytického kondenzátoru PHILIPS provedení MC a možná provedení pouzder tantalových kondenzátorů.

V tab. 9 jsou orientační rozměry elektrolytických kondenzátorů řady 49MC fy PHILIPS.

Kromě pouzdřených elektrolytických kondenzátorů vyrábí Philips čipové kondenzátory (tzv. Modrá řada). Mezi další typy v plastovém pouzdře patří provedení TMC (Tantal Moulded Chip) a další. Jednotlivá provedení se liší tvarem přívodů a nepatrně velikostí pouzdra.

Kapacity a provozní napětí jsou většinou označovány přímo číslicemi a kladný vývod světlým proužkem.

Hliníkové kondenzátory s kapalným elektrolytem mají obdobnou konstrukci jako klasické. Hliníková fólie s oxidovou vrstvou dielektrika (Al₂O₃) je spolu s papírem nasyceným elektrolytem navinuta do svitku a je umístěna v hliníkovém pouzdru s pryžovou průchodkou. Celý systém se vkládá do hranolovitého pouzdra, popř. se zastříkává do plastické hmoty. Vyrábí se provedení naležato i nastojato v rozsahu kapacit 0,1 až 100 µF pro provozní napětí 6,3, 10, 16, 25, 40, 63 a 100 V. Konstrukce a možná provedení pouzder elektrolytických kondenzátorů jsou na obr. 28a,b.

Nevýhodou "mokrých" elektrolytických kondenzátorů je postupné vysychání elektrolytu a tím ztráta kapacity. Tento jev odstraňuje použití pevného elektrolytu. Provedení hliníkového elektrolytického kondenzátoru s pevným elektrolytem je na obr. 29.

Obr. 29. Konstrukce elektrolytického kondenzátoru s pevným elektrolytem

Anoda je tvořena hliníkovým páskem s vrstvou oxidu, která meandrovitě vyplňuje prostor. Pyrolýzou tekutého nitrátu manganu je zhotoven 🤇 pevný elektrolyt, který tvoří katodu. Sběmá elektroda je z grafitu. Firma Philips vyrábí tento typ pod označením SAL-CPL. Doba života kondenzátorů těchto typů je několikanásobně delší než kondenzátorů s mokrým elektrolytem. Tento typ se vyrábí v rozsahu kapacit od 0,1 µF do 68 µF pro provozní napětí 4 až 25 V. Zatímco u "mokrých" elektrolytických kondenzátorů udává PHILIPS dobu života 30 000 hodin při provozní teplotě 40 °C, u kondenzátorů s pevným dielektrikem je doba života delší než 500 000 hodin.

Cívky pro SMT

Cívky se vyrábějí navinutím vodiče na jádro většinou z feromagnetického materiálu. Používají se magneticky

Tab. 9. Rozměry [mm] elektrolytických tantalových kondenzátorů 49MC fy Philips

Velikost	Délka <i>L</i>	Šířka <i>W</i>	Výška <i>H</i>	Přívody A	Rozsah kapacit
Α	3,2	1,6	1,8	0,8	od 0,1 do 3,3 µF
В	3,4	2,8	2,1	0,8	od 0,47 do 10 µF
С	5,8	3,2	2,8	1,3	od 1,5 do 47 µF
D	7,3	4,3	3,0	1,3	od 4,7 do 100 µF

Obr. 27. Konstrukce tantalového elektrolytického kondenzátoru MC (a) a možná provedení pouzder (b)

Obr. 28. Konstrukce hliníkových elektrolytických kondenzátorů (a) a možná provedení pouzder (b)

měkké materiály s velkou permeabilitou (ferity). Jádro může v některých případech zcela obklopovat vinutí. Vyrábí se buď otevřené provedení, nebo může být cívka zalisována do vhodné plastické hmoty. Svým provedením a velikostí jsou cívky podobné tantalovým kondenzátorům, případně se vyrábí provedení ve velikosti pouzder 0805 a větších. Cívky s malou indukčnosti se mohou vyrábět jako samonosné bez jádra s tvarem přízpůsobeným povrchové montáži.

Vinutí cívky je možno vytvořit závity plošného vodiče realizovaného na keramických podložkách postupně skládaných na sebe tak, aby tvořily cívku. Keramické podložky mohou mít feromagnetické vlastnosti pro zvětšení indukčnosti cívky. Výsledkem jsou tzv. vrstvové cívky, které se vyznačuji velkou kompaktností a spolehlivostí. Postup vytváření cívky byl podrobně uveden v AR B3/95. Vyráběji se většinou ve velikostech 0805,1206 a dalších.

Na obr. 30 jsou uvedena možná provedení cívek pro SMT.

Značení indukčnosti clvek - cívky se vyrábějí s toleranci indukčnosti 20, 10, připadně 5 % od jednotek nH do stovek mH, pro proudy až do 2 A. Na pouzdrech, pokud to konstrukce dovoluje, je uvedena indukčnost a tolerance. Značí se pomocí číslic a písmen podobně jako odpor rezistorů. Základní jednotkou pro značení je µH. Tolerance 20 % je značena písmenem M, tolerance 10 % (někdy 5 %) písmenem K a 5 % písmenem J. Značení různých výrobců se však může odlišovat. Příklad značení indukčností:

TOC. I TITOGO ZITO	oun maunumon.
1R5M	1,5 µH ±20 %
	0,015 µH ±20 %
151K	150 µH ±10 %
1R5K	1,5 µH ±10 %
1R5J	1,5 µH ±5 %

Ostatní pasívní součástky SMD

Součástky mají téměř vždy hranolovitý tvar s přívody přizpůsobenými pro bezvývodové pájení. Jejich konstrukce je přizpůsobena zvýšenému tepelnému namáhání při pájení. Kromě výše uvedených součástek se v provedení SMD vyrábějí rovněž relé, krystaly, keramické filtry, termistory, optoelektronické součástky, pojistky a další součástky a sortiment se neustále rozšiřuje.

Elektromechanické součástky pro SMT

Pro potřeby povrchové montáže se přizpůsobuje tvar a provedení konek-

torů, spínačů, objimek a dalších konstrukčních prvků.

Konektory pro povrchovou montáž vykazují značné odlišnosti od klasických, neboť se zvětšující se hustotou montáže se zdůrazňuje stále více požadavek na větší hustotu mezideskového propojení.

Z toho vyplývá především menší rozteč mezi kontakty (1,27 mm a menší). Konektory jsou uzpůsobeny pro montáž plochých kabelů, případně ohebných plošných spojů a pro automatické osazování. Z toho důvodu je vyloučeno upevňovat konektory na desku s plošnými spoji pomocí šroubů nebo nýtů, používá se systém západek polohovacích kolíků, případně se konektory lepí. Totéž je možno konstatovat o konstrukci objímek. Do objímek se umisťují IO s vývody typu "J" (typy pouzder PLCC, SOJ). Výjimečně se umísťují do speciálních objímek i pouzdra FLAT-PACK s přívody tvaru "L". Po umístění pouzdra do objímky se plastovým rámečkem zajistí kontakt přivodů patice IO s ploškami na obiímce. Konektory a objímky nelze používat při pájení vlnou. Jsou výhradně určeny pro pájení přetavením, případně kondenzační pájení. Materiály pro konstrukci musí odolávat zvýšené teplotě při pájení.

Dále se vyrábějí pro potřeby SMT propojovací konektory, spínače apod. Konstrukčně jsou uzpůsobeny pro povrchovou montáž tvarem přívodů a použitým materiálem.

Balení součástek SMD

Jelikož součástky SMD jsou určeny pro osazování automaty, je této skutečnosti rovněž přizpůsobeno jejich balení. Drobné součástky (rezistory, kondenzátory, tranzistory případně i konektory) se balí do páskových zásobníků, které mohou být papírové nebo plastové s vylisovanou miskou, v niž je volně umistěna součástka (tzv. blister páska). Aby součástky nevypadly, jsou přikryty shora plastovou páskou, která se před osazováním odstraní. Kotouč s páskou se součástkami se umísti do podavače automatu. Zásobníky mají standardizovanou šířku 8, 12, 16, nebo 24 mm. Na kraji

jsou opatřeny perforací, která zajišťuje přesný posuv v podavači.

Integrované obvody jsou dodávány v antistatických plastových tyčových (pouzdra SO, VSO) nebo čtvercových zásobnících (pouzdra FLAT--PACK). Na obr. 31 je znázorněn tvar a provedení zásobníků pro součástky SMD

Skladování součástek SMD

Značnou pozornost je třeba věnovat skladování součástek. Součástky by měly být uloženy v suchém prostředí bez agresívních výparů za podmínek, které udává výrobce. Při nevhodném skladování se zhoršuje pájitelnost přívodů.

Pájecí metody používané pro SMT

Teorie pájení

Pájení je definováno jako způsob metalurgického spojování kovových součástí roztavenou pájkou. Povrchove atomy základního materiálu a tekuté pájky se přitom dostanou do tak malé vzdálenosti, že se mezi nimi vytvoří podminky pro účinek adhéznich a kohézních sil (adheze = přilnavost, koheze = soudržnost). Zároveň se vzájemně rozpouštějí a difundují některé prvky spojovaných materiálů. Při smáčení se dva volné povrchy mění v jedno mezifázové rozhraní mezi pevným a tekutým kovem. Ve většině případů se při pájení vytvářejí přechodové oblasti určité tloušťky, které mají jiné chemické, fyzikální a mechanické vlastnosti než spojované materiály. V případě pájení materiálů na bázi mědi, které jsou pájeny pájkou Sn-Pb (nejčastěji se používá v elektrotechnice) jsou vrstvy tvořeny intermetalickými fázemi Cu₃Sn a Cu₆Sn₅ tak, jak je znázorněno na obr. 32.

Obr. 32. Tvorba intermetalických vrstev při pájení

Fáze Cu₆Sn₅ vzniká při teplotě 186 °C, má formu krystalů, které vy-

Obr. 31. Provedení zásobníků součástek pro techniku SMT

<u>B5</u>

anstore 171

tvářejí souvislý povlak. Tato fáze je na rozdíl od Cu₃Sn nepájivá a je zdrojem obtíží se smáčivostí povrchu. Pokud vznikne, zvětšuje se i za běžné teploty (vysvětlení zhoršování pájitelnosti s časem), proto je snaha zamezit jejímu vzniku. Základním opatřením je nutnost zvětšit vrstvu cínu na minimální tloušťku 3 µm, aby vrstva nepronikla na povrch.

Galvanicky nanášené vrstvy nejsou tepelně zatěžovány, proto u nich tato nežádoucí vrstva nevzniká. Objevuje se až při pájení. V tomto případě je však tloušťka povlaku dostatečná (více než 15 µm).

Pájitelností rozumíme schopnost materiálu být smáčen při určité teplotě a za určitou dobu roztavenou pájkou. Jednoduchý případ roztékání roztavené pájky po povrchu kovu s vyznačením sil povrchového napětí je na obr. 33.

a zajistit podmínky pro vzájemnou reakci tuhého a roztaveného kovu. Všechny kovy vytvářejí na svém povrchu oxidovou vrstvu, která zhoršuje pájitelnost. Ušlechtilé kovy jako zlato, platina oxidují málo a proto je jejich pájitelnost dobrá. Pro dosažení kvalitního spoje je třeba odstranit oxidovou vrstvu pomocí tavidel.

Pájecí slitiny používané pro SMT

Pájet lze i při teplotách nižších, než je teplota tavení jednotlivých složek pájky. V elektrotechnice se většinou používá tzv. měkké pájení, které je charakteristické teplotou tavení nižší než 450 °C. Nejpoužívanější jsou cínové pájky (slitína Sn-Pb), které se používají ve formě tyčí či drátů, nebo jsou ve formě kulových částic součástí pájecích past.

Fázový diagram slitiny Sn-Pb je uveden na obr. 34. Na svislé ose je příměsí, které výrazně ovlivňují kvalitu spoje. Hliník, kadmium a zinek podporují oxidaci povrchu pájky, fosfor a arzén způsobují nesmáčivost, měď, ocel a zlato způsobují křehkost. Antimon omezuje pájitelnost. Síra vytváří nežádoucí sirníky, zvláště při pájenl stříb-

Používaná tavidla a jejich funkce

Pro zlepšení pálitelnosti se používalí tavidla. Jsou to organické látky, které se aplikují buď před procesem pájení (pájení vlnou), nebo jsou součástí pájecí pasty (pájení přetavením). Jedná se nejčastěji o kapalnou látku, která při ohřátí zrychluje nebo podporuje smáčení pájených materiálů pájkou. Tavidla za působení tepla odstraní s povrchu pájeného materiálu oxidv. nečistoty a chrání jej proti oxidaci během procesu pájení, kdy vzniká požadovaný metalurgický spoj. Požadavkem je snadná odstranitelnost zbytků po pájení, neboť zbytkový obsah nečistot může způsobit v klimaticky náročnějších prostředích destrukci pájeného spoje

Nejčastěji se používá kalafuna. což je přírodní pryskyřice. Jedná se o směs pryskyřičných kyselin s převážným obsahem kyseliny abietové (80 %). Za běžných podmínek je v pevném stavu, je dobře rozpustná v organických rozpouštědlech (např. alkoholu). Objemový izolační odpor rafinované kalafuny se pohybuje v rozmezí 10¹⁴ až 10¹⁶ Ωm, relativní permitivita je 2,8 až 2,9. Při procesu pájení kalafuna jako součást tavidla odstraňuje spolu s aktivátory oxidovou vrstvu s povrchu pájených ploch a tím příznivě ovlivňuje smáčení pájky a zlepšuje přenos tepla na pájené plochy. Zbytky, které zůstávají po pájení čistou kalafunou, mají dobré izolační vlastnosti, po ukončení pájecího procesu jsou v pevné sklovité formě, což je výhodné při testování (měřicí hroty zůstávají čisté). V poslední době je snaha nahrazovat kalafunu jako tavidló syntetickýmí pryskyřicemi, které mají výhodnější jak elektrické vlastnosti, tak korozivitu (zanedbatelnou).

Přísady, jejichž pomocí lze dosáhnout dobrých pájecích výsledků, se nazývají aktivátory. Spolu s kalafunou mají za úkol odstranit z pájky i z pájeného povrchu oxidy kovů. Oxidová vrstva je odstraněna při vyšších teplotách před procesem pájení. Jedná se o organické kyseliny, halogenidy apod.

Tavidla se značí podle obsahu aktivátorů. Nejčastěji se používá značení podle americké normy MIL-F-14256, nebo QQ-S517E, případně německé DIN 85 11 podle tab. 10a,b.

Tavidlo podle německé normy DIN 85 11 F-SW 32 odpovídá přibližně typu RMA.

Tavidla s označením R (případně RMA) jsou vhodná pro náročné aplikace v elektrotechnice. Pro běžné po-

Pro síly povrchového napětí platí vztah

 $\sigma_{\rm pt} = \sigma_{\rm kt} + \sigma_{\rm pk} \cos \Theta$

kde $\sigma_{\rm pt}$ je povrchové napětí rozhraní plynná-tuhá fáze [Nm⁻¹],

- povrchové napětí rozhraní σ_{kt} kapalná-tuhá fáze [Nm⁻¹],
- povrchové napětí rozhraní σ_{pk} plynná-kapalná fáze [Nm⁻¹],
- úhel smáčení (stykový úhel)

Funkce cos \(\theta\) je někdy označována jako úhel smáčení. Pro smáčivé povrchy je úhel ⊖ menší než 90°, pro nesmáčivé je větší než 90°.

Rychlost smáčení je ovlivňována vlívem působení tavidla a vlivem působení fyzikálně-chemických pochodů pájky a kovu. Např. u pájek s obsahem 30 až 70 % Sn při smáčení mědi dochází zpočátku působením povrchového napětí k rychlejšímu roztékání, které se později zpomalí vlivem fyzikálně-chemických vlastností reagujícich kovů za zvýšené teploty.

Při smáčení se základní materiál rozpouští v roztavené pájce. Současně s rozpouštěním probíhá difůze z kapalné fáze do tuhé.

Na základě tvaru menisku roztavené pájký lze usuzovat na kvalitu pájeného spoje. Na obr. 33a,b jsou rovněž uvedeny tvary menisku pro čipovou součástku SMD. Tvar b) vždy signalizuje nekvalitně zapájený spoj.

Pro vytvoření kvalitního pájeného spoje je kromě zvýšené teploty třeba splnit dva základní požadavky, tj. odstranit vrstvu nečistoty na povrchu

Obr. 34. Fázový diagram soustavy Sn-Pb

vynesena teplota slitiny, na vodorovné ose je hmotnostní poměr kovů tvořících slítinu. Z diagramu vyplývá, že zatímco samotný cín má teplotu tání 232 °C, olovo 327 °C, teplota tání slitiny Pb/Sn je závislá na hmotnostním poměru obou kovů, slitina tuhne mezi 183 až así 250 °C (což plyne z rozmezi křivek solidus a liquidus). Při poměru Sn/Pb 50/50 nemá slítina pevně definovaný bod tání. V pevné fázi je pod teplotou 183 °C a dokonale roztavená je při teplotě vyšší než 216 °C. Při poměru Sn/Pb 63/37 % je teplota tání slitiny jednoznačně dána, tj. 183 °C a je nejnižší. Slitina tohoto poměru se nazývá eutektická a z uvedených důvodů se používá pro pájení. Výběr vhodné pájky závisí na hlavně na její ceně, teplotě tavení a obsahu nečistot. Doporučuje se používat vakuově přetavované pájky, které se vyznačují menší viskozitou, mají lepší smáčecí schopnost, vzhledově je spoj jasnější, isou však dražšl. Kovy používané ve slitině musí být čisté bez nežádoucích Tab. 10a. Dělení tavidel podle MIL-F-14256

Тур	Charakteristika
R .	(Rosin Non Activated) - čistá syntetická nebo přírodní pryskyřice bez přísad
RMA	(Rosin Mildly Activated) - pryskyřice s aktivátory (organické haío- geny nebo častěji organické kyseliny), jejichž zbytky nezpůsobují korozi
RA	(Rosin Activated) - větší účinnost aktivátorů
RSA	(Rosin Super Activated) - velmi silně aktivované tavidlo

Tab. 10b. Dělení tavidel podle DIN 85 11

Тур	Charakteristika
F-SW 34	organické bezhalogenidové kyseliny s přírodní pryskyřicí bez aminů
F-SW 33	syntetické pryskyřice s organickými aktivátory bez halogenidů a aminů
F-SW 32	čistá přírodní pryskyřice s organickými aktivátory bez hałogenidů a aminů
F-SW 26	přírodní, popř. modifikovaná přírodní pryskyřice s přísadou orga- nických aktivátorů s halogenidy v max. množství 0,6 %

užívání i pro SMT se doporučuje typ RMA bez nutnosti odstraňovat zbytky. Pro spotřební elektroniku se někdy používá i typ RA. Typ RSA se pro elektroniku nehodí. Pokud se nepoužije speciální bezoplachové tavidlo, tak se pro odstranění zbytků používají organická rozpouštědla a postupy, které jsou uvedeny v kapitole o čistění. V současné době se stále častěji používají tavidía, která je možno odstranit vodou (často se používá značení OA). Jedná se o organické nebo anorganické soli a kyseliny, které musí být v každém případě beze zbytku odstraněny. Používá se destilovaná deionizovaná voda o teplotě asi 60 °C

V současné době se preferují bezoplachová tavidla na bázi přírodní i syntetické pryskyříce, značená jako SA s malým obsahem sušiny (2 až 3 %), která nevyžadují čístění. Ředidíem je většinou izopropanoí nebo destilovaná voda. Je trend používat bezoplachová tavidla řediteíná vodou. Mezi nejznámější výrobce tavideí patří ALPHA METALS, CCP, MULTICORE a LÍTTON KESTER.

Dále budou popsány nejčastěji používané technologické postupy, které se používají při pájení součástek SMT.

Strojní pájení vlnou

Jedná se o technologický postup, používaný od roku 1950 pro pájení klasických součástek s vývody zasunutými do otvorů desek s plošnými spoji. Tato technologie se v současné době rovněž používá pro pájení DPS, osazených pouze součástkami pro povrchovou montáž, popř. při smíšené montáži. Při pájení součástek SMD vlnou je třeba dodržovat určité zásady při návrhu desek, především pájecích plošek, rozmístění součástek, volbě

vhodných materiáíů apod., jak je uvedeno v následujících kapitolách. Při pájení součástek SMD vlnou je třeba vždy opatřit píošné spoje nepájivou maskou.

Na rozdíí od pájení kíasických součástek jsou součástky SMD umístěny na straně píošných spojů, která je umístěna směrem dolů k pájecí vlně. Proto je třeba součástky SMD před pájením nejprve na povrch plošných spojů přilepit. Konstrukční uspořádání pájecí linky je na obr. 35 a neliší se od linky pro pájení kíasických součástek.

Desky s plošnými spoji s nalepenými součástkami jsou umístěny do rámečků, které se pohybují definovanou rychíostí jednotlivými pracovními zónami na prstovém nebo řetězovém dopravníku. Před pájením je třeba nastavit rychíost posuvu dopravníku, parametry nanášeče tavidla (fluxeru), tepíotu předohřevu a vlastní parametry použitých pájecích vln, především jejich výšku a teplotu.

Nanášení tavidla - pro pájení desek s píošnými spoji, osazovanými plošnou montáží, se používají postupy nanášení tavidla pěnou, vlnou nebo sprayovým fluxerem. Úkolem operace je pokrýt pájená místa souvislou vrstvou kapalného tavidla, při smíšené montáže musí tavidlo vzlínat do prokovených děr. Při pěnovém nanášení tavidla se stlačeným vzduchem vytvoří pěna, která proudí úzkou štěrbinou a smáčí pohybující se desku s plošnými spoji, nebo je tavidlo vháněno do štěrbiny čerpadíem a vytváří souvislou vrstvu, která smáčí desku ze strany pájení. Při nanášení tavidía výše uvedenými metodamí se odpařuje rozpouštědlo a roztok tavidía houstne, proto je třeba průběžně sledovat jeho

viskozitu (příp. jen hustotu). Problémy u této metody se objevují při používání tavidel s malým obsahem sušiny. V případě nanášení sprayováním je tavidlo rozprašováno tryskou, která se pohybuje napříč pohybu dopravníku a rastruje DPS. Tavidlo se nanáší jen na plochu DPS v reprodukovatelném optimálně nastaveném množství a nevrací se zpět do zásobníku. Z toho důvodu není třeba kontrolovat hustotu a doplňovat ředidlo. Ve srovnání s pěnovým fluxerem je úspora tavidla u sprayového fluxeru asi 50 %.

Ofoukávání přebytku tavidla pomocí vzduchového nože - realizuje se jen při nanášení tavidla prvními dvěma metodami.

Předohřev desky s plošnými spoji - při předohřevu desky se odstraní rozpouštědlo z tavidía (většinou to bývá izopropylalkohol s tepíotou varu 82,4 °C) a desky i součástky se pozvolna ohřívají, čímž se zmenší teplotní ráz, kterému jsou vystaveny součástky při průchodu vlnou roztavené pájky. Předohřev bývá realizován ofoukováním horkým vzduchem, infrazářením, průchodem nad vyhřátými kovovými deskami, případně kombinací vyjmenovaných principů. Při předehřátí desky se odstraní s povrchu desky kromě rozpouštědla rovněž absorbovaná voda, která je nežádoucí.

Pájení vlnou roztavené pájky deska s plošnými spoji se pohybuje napříč vlnou roztavené pájky, která je vytvořena tryskou s mřížkou, do které se čerpadlem tíačí roztavená pájka (eutektická slitina Sn/Pb) z vyhřívané nádrže. Pájka smáčí dolní povrch desky s osazenými součástkami SMD, případně vniká do prokovených děr s drátovými přívody klasických součástek a díky povrchovému napětí ulpívá na pájecích ploškách. Roztavená pájka se ve víně neustále pohybuje, čímž se průběžně odstraňují oxidy z povrchu pájky. Na povrch pájky se v pájecí vaně přidávají speciální oleje nebo pryskyřice, které ovlivňují smáčivost a značně omezují oxidaci povrchu, příp. se voli přimíchávání oleje do vlny. Pro dosažení co nejlepších výsledků se používají různé tvary povrchu vlny a DPS je smáčena vínou pod určitým úhlem. Pro omezení tzv. stínového efektu (pájka dokonale neobtéká součástku) se pro pájení součástek SMD používá dvojitá pájecí vlna (obr. 36).

Deska splošnými spoji je nejprve smáčena pájkou proudící turbuíentně s velkou rychlostí, aby se zajistilo dokonalé smáčení všech plošek a jejich

Obr.36. Dvojitá pájecí vlna

Obr. 35. Schéma pájecí linky pro pájení vlnou

B5 95 Ametoride ADI 173 dokonalé prohřátí. Druhá část vlny s laminárním, klidným prouděním zabezpečuje vytvoření dokonalého menisku s dostatečným množstvím pájky na pájeném spoji.

Typické pájecí doby pájení na čip jsou v turbulentní vlně 0,5 až 0,8 s, na klidné vlně (laminární proudění) kolem 2 až 5 s. Teplota pájky ve vlně se pohybuje v rozmezí 240 až 250 °C.

Při použití technologie pájení vlnou se může při použití nevhodných podmínek, materiálů a postupů vyskytnout celá řada problémů a závad, jak při pájení součástek s vývody, tak SMD. Při pájení součástek s vývody mohou vznikat při použití nevhodného materiálu desky s plošnými spoji vlivem zvýšené teploty plyny, které se uvolňují v místě otvorů, narušují pájený spoj a vytvářejí v pájce bubliny a nehomogenity. Nedostatečné vnikání pájky do děr může být způsobeno kromě špatné pájitelnosti také malou výškou pájecí vlny. Objeví-li se při pájení SMD můstky, nebo nejsou-li některá místa pokryta pájkou, může to být způsobeno, pokud pomineme nesprávný návrh plošných spojů na desce a špatnou pajitelnost (díky nedostatečnému nanesení tavidla a jeho aktivity či předohřevu), špatnou teplotou pájecí lázně, nevhodnou výškou vlny či rychlosti posuvu dopravníku. Tyto závady lze částečně odstranit přidáním aditiv (olej nebo kalafuna) do pájecí vlny. Posouvají-li se (případně odpadávají-li) součástky, bylo použito nevhodné lepidlo. Tvoří-li se můstky při pájení IO (SO, VSO) s roztečí přívodů 1,27 mm a menší, byla pravděpodobně nevhodně seřízena pájecí vlna.

Hlavními přednostmi pájení vlnou oproti ručnímu pájení jsou nesrovnatelně větší produktivita a tím i nižší cena při mnohem větší spolehlivosti a kvalitě pájených spojů.

V současné době se preferuje používání sprayových fluxerů, které umožňují přesně dávkovat a tím spořit tavidlo. Součástky se stále častěji pájejí v dusíkové atmosféře za použití bezoplachových tavidel. Přítomnost dusíku výrazně zmenšuje tvorbu oxidu na pájeném spoji a v pájecí vaně a zmenšuje se spotřeba pájky (o 30 až 50 %). Cena pájecích zařízení je však vyšší a není zanedbatelná ani spotřeba dusíku (min. 8,5 m³/hodinu).

Lepení součástek před pájením lepidlo se umisťuje v přiměřeném množství do prostoru pod součástku. Svými vlastnostmi musí lepidlo splňovat určité základní požadavky, jako je teplotní stabilita, správná viskozita a odolnost vůči teplotám používaným při pájení. Lepidlo nesmí uvolňovat látky, které by zhoršily elektrické vlastnosti spojů a součástek, jeho rheologické vlastnosti musí být takové, aby zaru-

čovaly možnost použít různé technologické postupy nanášení. Lepidla jsou výrazně obarvena (červená, oranžová) pro snadnou optickou kontrolu nanesení a musí mít dostatečnou viskozitu, součástky po osazení musí na DPS držet tak dlouho, dokud se lepidlo nevytvrdí.

Lepidlo se nanáší na potřebná místa na DPS sítotiskem (nebo pomocí šablony), dispenzerem, popř. kapkovou metodou (někdy se používá výraz "razítkování"). Metody nanášení sítotiskem a dispenserem jsou také používány pro nanášení pájecí pasty při pájení přetavením a budou detailně popsány dále.

Při nanášení lepidla kapkovou metodou se využívá povrchového napětí viskózního lepidla, které ulpívá v definovaném množství na vhodném trnu (obr. 37). Je zřejmé, že množství naneseného lepidla je závislé na průměru trnu a na rychlosti zvedání trnu po přiložení na DPS. Kapková metoda může být výhodně použita pro simultánní nanášení lepidla. V tom případě se používá soustava trnů, která se ponoří do zásobníku s lepidlem a lepidlo je naneseno na DPS na všechna požadovaná místa současně.

Obr. 37. Nanášeni lepidla kapkovou metodou

Nejrozšířenější je nanášení lepidla dispenzerem nebo kapkovou metodou. Tento postup lze s výhodou použít jak při ručním osazování, případně opravách, tak při osazování automaty. Při automatickém osazování umožňuje tato metoda osazovat součástky v systému "in line" (DPS postupuje výrobními operacemi průběžně po pohyblivém pásu).

Při použití dávkovače se vytvořená kapka nesmí roztékat, po nanesení se lepidlo nesmí "roztahovat" směrem k dávkovači. Při tomto jevu vlivem nadměrné výšky lepidlo "skápne" a může znečistit povrch pájecí plošky, což je samozřejmě nežádoucí. Ideální lepidlo je takové, jehož vytvrzení je velmi rychlé při minimálním zvýšení teploty.

Množství naneseného lepidla musí být přiměřené, aby po přitisknutí součástky nebyly znečistěny pájecí plošky. Kapka naneseného lepidla musí být vyšší než je mezera pod součástkou, která je dána součtem výšky měděné fólie, nepájivé masky a mezery, která vzniká pod součástkou.

Doporučuje se poměr výška/průměr v poměru od 2:1 do 1:2.

Správné množství naneseného lepidla je na obr. 38.

Obr. 38. Správné množství naneseného lepidla

V tab. 11 je doporučené množství lepidla pro různé typy součástek SMD.

Uvedená množství jsou uváděna pro případ, že není pod součástkou tažen spoj, případně umístěna slepá ploška.

Lepidla pro lepení součástek SMDpro lepení součástek pro povrchovou montáž nabízejí výrobci dvě možnosti, lepení epoxidovým nebo akrylátovým lepidlem.

Lepidla na bázi epoxidů se v současné době používají jako jednosložková nebo dvousložková. Použití dvousložkového lepidla je komplikováno nutností míchat složky a omezenou dobou použitelnosti namíchané směsi, proto se častěji používají jednosložková lepidla. Epoxidová lepidla se vytvrzují teplem a mají dobrou adhezi, z toho důvodu se součástky při opravách hůře odstraňují.

Akrylátová lepidla lze aplikovat všemi výše uvedenými způsoby nanášení. Lepidlo je tixotropní, při nanášení je tekuté, nanesená kapka však drží tvar a má dostatečnou viskozitu, která způsobuje, že součástka je dostatečně uchycena až do doby vytvrzení.

Tab. 11. Doporučené množství lepidla (tloušťka fólie Cu 30 μm)

Typ pouzdra	Mezera pod součástkou [mm]	Mezera mezi DPS a SMD [mm]	Průměr kapky [mm]	Množství lepidla [mm³]
0805	0,03	0,06	0,9	0,04
1206	0,03	0,06	1,4	0,09
1212	0,03	0,06	1,7	0,14
1812	0,03	0,06	2,0	0,19
2220	0,03	0,06	2,5	0,29
SOT23	0,05	0,08	0,9	0,05
SOT143	0,05	0,08	0,9	0,05
SOT89	0,01	0,04	1,2	0,05
SO8	0,15	0,18	1,5 až 2,5	0,3 až 0,9
SO14	0,15	0,18	1,5 až 2,5	0,3 až 0,9
SO20L	0,20	0,23	2,0 až 3,0	0,7 až 2,2
miniMELF (0204)	0,05	0,08	1,0	0,10
MELF (0207)	0,10	0,13	1,0	0,6

Vytvrzování se děje zvýšenou teplotou, působením UV záření (vlnové délky 280 až 400 nm), nebo kombinací obou. Při použítí UV záření lepídlo tvrdne téměř okamžitě. Vytvrzené lepidlo je pružné, je odolné vůči účínkům roztavené pájky. Měkne při teplotě 150 °C, což usnadňuje opravy. Jako příklad je možno uvést akrylátová lepidla MULTICORE typ 881 (pro všeobecné použití) a typ 882 (tuhne rychleji).

Geometrické uspořádání lepicích bodů je jednodušší při použití lepidel vytvrzovaných teplem. Při použití pravoúhlých součástek, pouzder MELF, miniMELf, diod SOD80 apod. postačí zpravidla jeden lepící bod uprostřed. U větších součástek je třeba vytvořit lepících bodů několik. Znovu je třeba zdůraznit, že lepidlo se nesmí vytlačit na pájecí plošky. Při použití lepidel vytvrzovaných UV zářením je třeba součástku umístit mezi lepící body, které jsou umístěny v přímé vidítelnosti od zdroje UV záření. Počet lepících bodů a jejich rozmístění záleží na tvaru součástky. Některé příklady jsou uvedeny na obr. 39.

Obr. 39. Lepicí body při použití lepidla vytvrzovaného UV zářením

Pájení přetavením

Při tomto technologickém postupu se součástky osazují do pájecí pasty, -která se přetaví při teplotě, která je vyšší než je bod tání pájky, obsažené v pastě. Pro přetavení pájecí pasty je možno použít ohřev infračerveným zářením, dále metody, kdy je pasta ohřívána přenosem tepla pomocí zahřátého media (horkým plynem, kondenzační) a laserem. Ve srovnání s pájením vlnou, případně jinými technologiemi, má pájení pomocí pájecích past následující výhody:

- pájka a tavidlo se vhodným technologickým postupem aplikují pouze v místech kde je třeba, důsledkem toho je úspora materiálu,

 pájka a tavidlo se dávkují v přesně definovaném poměru,

 je vyloučena "nekontrolovatelná" přítomnost nečistot, které se mohou dostat do pájecí lázně při pájení vlnou, případně při jiných postupech,

pájecí proces probíhá bez teplotních

- přesný technologický postup aplikace pasty umožňuje dosáhnout větší hustoty montáže.

Pájecí pasta pro SMT obsahuje jemně zrnitou pájku (eutektickou slitinu Pb/Sn, případně jí velmi blízkou) a organickou složku, která obsahuje vhodné tavidlo, rozpouštědlo a látky upravující viskozitu. Výrobci pájecích past nabízejí široký sortiment různých typů pro určitý druh použití. Typický poměr jednotlivých složek je 90 hmotnostních % pájky, 10 % tavidla s 5 % pryskyřice, 4 % rozpouštědla a 1 % aktivátorů a tixotropních složek. Při výběru správného typu je třeba uvažovat technologii nanášení pasty, vlastností desky s plošnými spoji, přívodů součástek, stejně jako maximální teplotu, jíž je možno vystavit desku a součástky při pájení.

Pájecí slítina je v pastě obsažena ve formě kuliček definované velikosti (od 10 do 80 µm) s co nejhladším povrchem. Na velikosti částic a kvalitě povrchu totiž záleží množství nežádoucích oxidů v pastě, které mají podstatný vliv na pájitelnost. Pájecí pasty se v současné době vyrábějí s obsahem oxidů menším než 0,03 hmotnostních procent. Skladováním pasty se obsah oxidů zvětšuje a je-li jejich obsah větší než 0,15 %, hrozí nebezpečí tzv. kuličkování pasty (balling effect), kdy se po přetavení vyskytnou v okolí spoje drobné kuličky pájky, které mohou způsobit zkrat. Při větším obsahu nečistot se pájka vůbec neslije. Pro standardní pájení součástek SMD se

používá slitina ve složení 60 % Sn/ /40 % Pb, případně 63 % Sn/37 % Pb. V případě, že jsou pájeny součástky, jejichž přívody obsahují vrstvu Ag (čipové součástky), je vhodné použít slitinu s malým obsahem stříbra (62 % Sn/ /36 % Pb/2 % Ag). Přitomnost stříbra v pájce zmenšuje jeho rozpustnost z přívodů. Pro všeobecné použítí se používají pájecí pasty s velikostí částic okolo 45 µm. Podíl kovových částic v pastě má být mezí 86 až 90 %. Kvalitu pájecích past je možno kontrolovat

chemicky nebo opticky. Pro sítotisk jsou nevhodné pasty s velkým podílem velkých částic. a) Pájecí pasty MULTICORE Sn62 RM 92 AAS 90

Tavidlo obsažené v pájecí pastě má za úkol odstraňovat oxidy při pájení. S pomocí rozpouštědla způsobuje žádoucí lepivost pasty, aby součástky zůstaly přichyceny na desce až do okamžíku pájení a upravuje viskozitu pro technologické postupy nanášení sítotiskem, šablonou, nebo dispenserem. Jako příklad je v tab.12 značení pajecich past fy MULTICORE, Alpha Metals a Kester Litton.

Vlastnosti pájecích past - jsou určovány vlastnostmi jednotlivých složek pasty, tj. práškovitou pájkou, tavidlem (s přísadou, ovlivňující viskozitu, plastifikátorem) a použitým rozpouštědlem. Viskozita pasty závisí na poměru množství tavidla a rozpouštědla. Závísí také na tlaku a teplotě, při které ji měříme. Pájecí pasta musí být tixotropní, tzn., že při zvětšování tlaku, který na ní působi, musí výrazně zmenšovat viskozitu; když tlak pomine, viskozita by se měla opět zvětšit, aby se na pájecích ploškách pasta neroztékala. Tato viastnost se zvlášť vyžaduje pří nanášení sítotiskem nebo přes šablonu. Dále musí pájecí pasta zůstat po nanesení lepivá a nesmí po vysušení výrazně měnit svůj objem. Po přetavení nesmi pasta vytvářet samostatné kuličky, které mohou způsobit zkrat. Kulíčkování (tzv. balling effect) je téměř vždy známkou, že je pasta znečístěna většinou nadbytečným množstvím oxidů.

Před jejím použitím se doporučuje provést orientační zkoušku podle obr. 40 tak, že kapku pasty naneseme na keramickou podložku a přetavíme při teplotě o 30 až 40 °C vyšší, než je teplota tání pájky. V případě, že se vytvoří kolem kapky pájky max. 3 až 4 samostatné kuličky, pasta ještě vyhovuje. Je-li samostatných kuliček více (případně se pasta vůbec neslije), tak ji nelze použít.

Pájecí pasty se dodávají v plastových nebo kovových obalech, větši-

95

Tab. 12. Příklady značení pájecích past MULTICORE, Alpha Metals a Litton Kester

ameterski AD 175

Obr. 40. Orientační zkouška kvality pájecí pasty

nou do max. hmotnosti obsahu 500 g ve "vytlačovacích" obalech, případně pro nanášení dávkovačem přímo v obalech podobných injekční stříkačce většinou po 25 gramech.

Záruční skladovací doba je (podle výrobce) asi půl roku, je možno je skladovat bez problémů podstatně déle v chladničce při teplotách asi 5 °C. Při uložení v chladničce je třeba před použitim pastu nechat asi jeden den "ležet" při pokojové teplotě, aby se odstranila zkondenzovaná vzdušná vlhkost na povrchu pasty.

Někteří výrobci doporučují pastu před použitím zamíchat dřevěnou špachtlí, zvláště tehdy, když se na povrchu vlivem skladování oddělí vrstva tavidla. Viskozita se upravuje opatrně přidáním několika kapek výrobcem doporučeného ředidla. Zbytky použité pasty mohou mohou být uloženy do vhodné nádoby (nikdy k nepoužité pastě) a znovu použity.

Pasta ze sítěk, stěrek, dispenzerů apod. se odstraňuje ihned po skončení práce metylacetátem, izopropylalkoholem nebo toluenem za dodržení všech bezpečnostních a hygienických předpisů.

Mezi nejznámější výrobce pájecích past patří fy MULTICORE, Litton Kester, Alpha Metals, Alpha Grillo.

Metody nanášení pájecí pasty pasta musí být nanesena na pájecí plochy s dostatečnou přesností a v určitém množství. Nejpoužívanější metody jsou sítotisk, tisk přes kovovou šablonu (šablonový tisk), nebo nanášení dávkovačem (dispenzerem), připadně méně častější způsob kapkovou metodou, která byla již dříve popsána při nanášení lepidla pro pájení vlnou.

Nanášení sítotiskem, nebo přes kovovou šablonu - touto metodou je možno nanášet pastu na poměrně velké plochy na jedné straně, nebo na obou stranách desky s plošnými spoji současně. Je samozřejmé, že na desce nesmí být osazeny žádné součástky. Základem je síťka, která je napnuta ve vhodném rámu (většinou kovový). Na povrchu síťky je nanesena emulse s kresbou pájecích plošek tak, že v místech, na něž má být nanesena pasta, emulse chybí a těrkou lze přes otvory síťky protlačit pastu na požadovaná místa. Těrka definované tvrdosti bývá většinou zhotovena z PVC nebo tvrdé pryže. Kresba otvorů na síťce se zhotovuje expozicí světlocitlivé emulse, nanesené na povrchu síťky, UV zářením přes filmovou matrici. Síťky se používají nylonové, polyesterové, nebo kovové (pro dlouhou dobu života) s hustotou v rozmezí 24 až 78 ok na 1 cm délky. Podle zkušeností by velikost oka síťky měla být přibližně 2,5 až 4krát větší než největší částice pájky, jinak by se oka síťky mohla ucpávat". Protože velikost částic pájky v pastě je nejčastěji v rozmezí 40 až 70 µm, používají se proto oka v síťce o velikosti 220 µm, čemuž odpovídá podle tab. 13 síťka s hustotou 31 ok/cm.

Tloušťka nanesené vrstvy závisí na celkové tloušťce síťky a použité emulzi, částečně také na obsahu pájky v pastě a velikosti částic. V praxi se pohybuje v rozmezí 100 až 300 µm. Optimální tloušťka je pro většinu aplikací 120 µm, závisí na velikosti použitých součástek - je třeba ji experimentálně odzkoušet. Příliš veliká tloušťka způsobuje, že součástky na roztavené pájce plavou a mohou se pootočit tam, kde je povrchové napětí větší.

Rozdíl tloušťky mezi vlhkou a vysušenou pájecí pastou není příliš podstatný, protože při odpařování rozpouštědla z pasty se částice nepohybují, ale zůstávají "slepeny" tavidlem.

Důležitý je však rozdíl v objemu mezi nepřetavenou a přetavenou pastou. Na obr. 41 je poměr tloušťky přetavené h_r a nepřetavené h_w pasty v závislosti na obsahu pájky v pastě (hmotnostní %).

Z grafu je patrný rozdíl pro pastu nanesenou v podobě bodu nebo souvislého pásu. Množství pájecí pasty je třeba volit tak, aby po přetavení zůstalo na pájených ploškách dostatečné množství pájky.

Zhotovená síťka, většinou vlepená do rámu, se upevní do sítotiskového zařízení, které se skládá ze základní desky, na kterou se umisťuje deska

Obr. 41. Poměr h,/ hw v závisíosti na obsahu pájky v pájecí pastě

s plošnými spoji a odklopným rámem s rámečkem síťky (viz obr. 42). Stavěcími šrouby se sesouhlasí kresba na síťce s kresbou plošných spojů a nastaví výška síťky nad deskou, tzv. odskok síťky. Při malém odskoku se síťka lepí na desku, při velkém odskoku je materiál síťky příliš namáhán. Správný odskok síťky má být asi 0,8 až 1 mm. Pasta se nanese na jednu stranu síťky a stěrkou se rozetře po její ploše. Stěrka bývá nejčastěji vyrobena z pryže definované tvrdosti. Kvalita nanášení je závislá na tvrdosti stěrky, úhlu sklonu stěrky a rychlosti roztírání. Správné podmínky sitotisku je třeba experimentálně odzkoušet. Pasta se může nanášet ručně, případně na automatickém zařízení.

Při nanášení pasty přes kovovou šablonu (šablonový tisk) se používají stejná technologická zařízení jako pro sítotisk. V rámu je na rozdíl od sítotisku upnuta kovová fólie s motivem pro požadovaný tisk pájecí pasty. Předností šablon je jak delší doba života, tak i tisk jemnějších motivů až do velikosti 0,2 mm (u sítotisku je hranice 0,635 mm). Šablony se zhotovují převážně z nerezové oceli, mosazi nebo

Obr. 42. Konstrukce sítotiskového zařízení

Tab. 13. Rozměry a vlastnosti sítěk pro nanášení pasty sltotiskem

Hustota ok [cm ⁻¹] [inch ⁻¹]				Tloušťka tkaniny [µm]		
24	60	114	310	235		
31	80	94	224	215		
41	105	76	165	175		
64	165	51	104	115		
71	180	46	97	100		
78	200	41	86	90		

niklové mosazi, případně z měděných bronzů. Jejich tloušťka je od 0,1 až do 0,5 mm. Zhotovují se leptáním, laserem, nebo galvanicky.

Leptané šablony se zhotovují až do tloušťek 0,4 mm. Z důvodu snadného leptání se používají zejména slitiny mědi. Pro tloušťky menší než 0,15 mm se preferuje niklová mosaz a nerezová ocel. Důvodem je jejich větší stabilita a odolnost v otěru. Zhotovují se fotocestou osvitem rezistu přes filmovou předlohu a leptáním většinou oboustranně. Hranice možností při oboustranném leptání jsou v tab. 14.

Tab. 14. Parametry oboustranně leptaných šablon

curry or roubron	•
	Tolerance
[mm]	[mm]
0,15	±0,04
0,20	±0,025
0,25	±0,025
	Nejmenší průměr plošky [mm] 0,15 0,20

Při použití laseru jsou šablony zhotovovány přímo z dat CAD, není třeba filmová předloha. Jako materiál se používají výhradně nerezové oceli. Opakovatelná přesnost je ±10 μm, rozlišení 1 μm.

Galvanicky se šablony zhotovují aditivním procesem z Ni. Podkladem pro zhotovení mohou být jak filmové předlohy, tak data CAD.

Celkem přijatelných výsledků je možno dosáhnout použitím vrtané kovové šablony. Obdélníkové plošky jsou nahrazeny kruhovými s průměrem stejným, nebo o asi 0,1 mm větším, než je jejich šířka. Vrtá se souřadnicovou vrtačkou s velkou rychlostí otáčení podle datového souboru, vytvořeného speciálně pro tento účel. Při vrtání je třeba zajistit, aby se nedeformovala rovinnost šablony (vytlačování), což by nepříznivě ovlivnilo tloušťku nanesené vrstvy. U větších ploch je možno umístit několik vrtaných děr vedle sebe podle obr. 43.

Obr. 43. Náhrada obdélníkových otvorů v kovové šabloně kruhovými

Nanášení pomocí dávkovače (dispenzeru) - zatímco při nanášení pasty sítotiskem naneseme pastu na všechny pájecí plochy současně, při použití dávkovače se pasta nanáší postupně, dávkovací jehlou. Na desce s plošnými spoji mohou již být částečně osazeny součástky. Nanášení je pomalejší, avšak při použití automatického posuvu je rychlost dostatečná a dosahuje 15 000 až 50 000 kapek za hodinu.

Obr. 44. Možná provedení dávkovačů (dispenzerů)

Pro ruční nanášení je pasta umístěna v tlustostěnné nádobce podobné injekční střlkačce s pohyblivým pístem uvnitř. Dávkování se uskutečňuje stlačováním pístu pomoci impulsů stlačeného vzduchu (obr. 44a). Množstvl nanesené pájecí pasty závisí na vnitřním průměru dávkovací jehly, viskozitě pasty a době trvání impulsu. Dávkovací zařízení umožňuje regulovat tlak vzduchu (používá se tlak v rozmezí 70 až 300 kPa) a délku trvání impulsu, připadně nastavit režim opakovaného dávkování pasty, což je vhodné při nanášení souvislého pásu pájecí pasty. Zařízení většinou obsahuje rovněž vakuovou pinzetu. Tato metoda pracuje na principu "tlak a čas". Nevýhodou metody je, že se často separují složky pájecí pasty. Proto je vhodnější pro lepidlo.

V poslední době se preferují automatické dispenzery se šnekovým čerpadlem. Princip je na obr. 44b. Na zásobník s pastou působí konstantní, relativně malý tlak. Šnekové čerpadlo, které je umístěno v ose dispenzní hlavy, se vždy pootočí o dráhu, která je dána dobou sepnutí elektromagnetické spojky a rychlostí otáčení stejnosměrného motoru. Elektromagnetická spojka přenáší točivý moment z motoru na šnekové čerpadlo, které dávkuje pájecí pastu.

Výrobci většinou dodávají pájecí pasty, určené pro dávkování, v plastových zásobnících s pístem, aby se předešlo komplikovanému plnění. Pro dávkování pasty se používají jehly vnitřního průměru od 250 µm do 1,6 mm malé délky (kolem 5 mm), aby se jehla neucpala. Průměr nanesené kapky pasty bude přibližně 1,5násobkem vnitřního průměru jehly.

Sítotisk a dávkovač je rovněž možno použít pro nanášení lepidla, naopak kapkovou metodu je možno použít pro nanášení pasty. V tom připadě nanášecí hroty mívají nejrůznější speciální tvary, aby pasta na hrotu držela. Pájecí pasta musí mít v tomto připadě podobné vlastnosti jako lepidlo.

Metody pájení přetavením

Přetavení ohřevem infračerveným zářením - technologie pájení přetavením ohřevem infračerveným zářením využívá energii záření středních a krátkých vlnových dělek (1 až 5 µm). Zatímco pro přenos tepelně energie vedením a prouděním platí vztah

 $dQ/dt = hA(T_1 - T_2)$

kde h je koeficent přestupu tepla [Wm⁻²K⁻¹], který je definován jako množství tepla, které projde plochou A ze zdroje tepla teploty T_2 do tělesa, které teplo přijímá (teplota T_1), pro přenos tepla zářením platí vztah:

$$dQ / dt = A \sigma (\varepsilon_1 T_1^4 - \varepsilon_2 T_2^4),$$

kde σ je Stefan-Boltzmannova kon-
stanta [5,67 10⁻⁸ Wm⁻²K⁻⁴],

ε₁, ε₂ jsou koeficienty emise a absorbce (jsou menšl než jedna, pro ideálně černé těleso jsou jedna),

T₁, T₂ - teplota tělesa, které záření přijímá a vysllá [K].

U systémů, u nichž se uplatňují oba mechanismy přenosu tepla, dostáváme porovnáním uvedených vztahů výsledný vztah pro koeficient přenosu tepla:

$$h_{\rm r} = \frac{\sigma \left(\varepsilon_1 T_1^4 - \varepsilon_2 T_2^4 \right)}{T_1 - T_2}$$

Ze vztahu je zřejmé, že koeficient přenosu tepla h_r nezávisí pouze na rozdílu teplot T_1 - T_2 , ale i na jejich velikosti. Množství tepla, které bude absorbováno, závisí na koeficentu ε_1 , jehož velikost souvísí s barvou povrchu, a na vlnové délce záření.

Při pájení infračerveným zářením (IR = Infra-Red) nastává jev, kdy součástky s tmavším povrchem isou více zahřívány než místa, kde se nachází pájeci pasta. Dochází tedy k nerovnoměrnému rozložení teploty na povrchu desky s plošnými spoji, což má vliv na kvalitu pájení a tepelné namáhání součástek. Jako zdroje IR záření se používají zářiče z křemenného skla, plněné argonem, s wolframovým vláknem a s vhodnými reflektory, které rozptylují záření na větší plochu, případně zářiče pracující na principu sekundární emise, vyzařující na větších vlnových délkách (3 až 7 μm), při kterých je absorbce záření méně závislá na barvě ozářeného předmětu. V tom případě záření proniká pouze do hloubky několika setin milimetru a součástky jsou zahřívány pouze na povrchu.

Pece pro IR ohřev se většinou staví jako průběžné s různou šířkou

215 teplota [°C] 125 120 t [s]

Obr. 47. Teplota zářičů a naměřená teplota na DPS pro pec DIMA SMRO 0250

dopravníku. Deska se ohřívá z obou stran v samostatných tepelných zónách, podle délky průchodu jich může být 3 až 6. Pece bývají řízeny mikroprocesory, požadovaný teplotní profil je možno nastavit většinou s přesností lepší než +3 °C a je možno měnit rychlost posuvu dopravníku.

Infraohřev se ve většině případů kombinuje s konvekcí, tj. ohřevem desky horkým vzduchem, případně některým inertním plynem (dusík). Na obr. 45 je schématicky znázorněno provedení pece pro ohřev infračerve-

ným zářením.

Pájí se většinou ve vzduchové atmosféře. Kyslík obsažený ve vzduchu, však zvětšuje oxidaci částic pájky a přívodů a urychluje tepelnou degradaci materiálů. Proto se někdy používá pájení v-dusíku, případně ve směsi dusíku s malým množstvím vodíku (5 %). Vodík omezuje oxidační procesy a omezuje roztékání tavidla po desce s plošnými spoji ve fázi předohřevu, které sebou strhává částice pájky a po přetavení vytváří samostatné kuličky, které mohou způsobit nežádoucí zkrat.

Na obr. 46 je typický pájecí profil pro pájení infraohřevem. V předehřívací fázi (30 až 90 sekund) při teplotě 130 až 150 °C se odpařuje rozpouštědlo z pájecí pasty a zároveň se chemicky aktivuje tavidlo. Při předohřevu je třeba brát v úvahu velikost použitých součástek a tepelnou vodivost desky s plošnými spojí. Pasta se přetavuje během 5 až 20 s při teplotě o 20 až 30 °C vyšší, než je bod tání použité pájky. Pochod musí trvat dostatečně dlouho, aby se dosáhlo optimálního smáčení a homogenního rozlití pájky.

-t [s] Obr. 46. Průběh růstu teploty při pájení přetavením

Je-li doba zbytečně dlouhá, kovy se v pájce více rozpouštějí a vytváří se nadměrné množství oxidů. V této době se vývody součástek SMD připájejí na pájecí plošky. Při správném návrhu DPS povrchové napětí roztavené pájky vystředí pájené součástky na pájecí plošky (pokud nejsou přilepeny). Správně nastavený teplotní profil má podstatný vliv na kvalitu pájených spojů. Závisí na typu pájecí pasty, případně i lepidla, na hustotě osazení a velikosti desky a je jej třeba

experimentálně odzkoušet.

Skutečný teplotní profil je nutno měřit přímo na povrchu desky. Používají se k tomu speciální záznamová zařízení většinou s termočlánkovými teploměry, které se umísťují na zkušební desku a musí být zastíněny před přímými účinky infračerveného záření. Měření bývá několikakanálové, aby bylo možno získat přehled o příčném teplotním profilu pece. Méně se používají bezkontaktní záznamové systémy pracující na principu optických pyrometrů. Tento způsob měření teploty však vykazuje chybý způsobené odrazem záření. Při použití zářičů, pracujících na principu sekundární emise, jsou většinou čidla, která snímají teplotu, umístěna v tělese zářiče a při nastavování teplotního profilu se nastavuje teplota těles zářičů. Na obr. 47 je rozmístění zářičů a nastavení jejich teploty pro pec SMRO 0250 fy DIMA a skutečný naměřený teplotní profil na desce s plošnými spoji (rychlost posuvu 0,35 m/min).

Ohřev infračerveným zářením má velkou účinnost (60 až 70 %), je však dosti nerovnoměrný v důsledku různého koeficientu absorbce desky a součástek a nedá se použít pro pájení pouzder BGA, která se začínají používat stále častěii.

Přetavení pájecí pasty přenosem tepla vedením nebo prouděním - při těchto postupech se využívá mechanismů přenosu tepelné energie na pájený spoj kontaktně, popř. přes vhodné plynné nebo kapalné prostředí. Pro přenos tepla mezi médiem a předmětem, který se ohřívá, plati vztah pro dQ/dt, uvedený dříve. Podstatnou roli hraje koeficient přenosu tepla h, jehož velikost závisí na fyzikálních vlastnostech média a předmětu (geometrické rozměry, rychlost a typ proudění, kvalita povrchu a další). Je zřejmé, že doba, za niž se předmět dokonalé ohřeje, je závislá jak na tepelné vodivosti, tak na tepelné kapacitě použitého média i ohřívaného předmětu. Déle budou popsány nejpoužívanější metody pájení, využívající tohoto principu.

Kondenzační pájení - tento typ pájení je založen na principu, že pokud umístíme pevnou látku (v našem případě desku s plošnými spoji se součástkami) do prostoru nasycených par určité látky, která má vysoký bod varu, bude na chladnějším povrchu desky a součástek tato látka kondenzovat a přitom se uvolní skupenské kondenzační teplo, které přetaví pájecí pastu. Je žádoucí, aby použitá kapalina měla malé povrchové napětí (velká smáčivost povrchu), velkou tepelnou kapacitu, byla inertní, nehořlavá a řadu dalších vlastností. Jako pájecí kapaliny se používají látky na bázi fluorovaných uhlovodíků s teplotou nasycených par od 215 do 260 °C. Jedná se o precizní způsob pájení s přesně definovanými podmínkami a minimálním tepelným namáháním součástek. V současné době se však tento způsob pájení používá velice zřídka z důvodů ekologické závadnosti. Používané pájecí kapaliny totiž narušují ozónovou vrstvu. V současné době se již hledá náhrada za fluorované uhlovodíky a dá se předpokládat, že kondenzační pájení se začně opět znovu používat.

Pájecí zařízení je konstruováno jako vsázkové (typ "batch"), případně kontinuální. Schématický nákres kontinuálního pájecího zařízení je na obr. 48.

Pájení proudem ohřátého plynu (konvekční pájení) - při pájení v horkém plynu se potřebné teplo pro přetavení získává průchodem ohřátého vzduchu nebo plynu (vodík, dusík) pájecím prostorem po obou stranách desky. Konvekční přetavovací pece mívají zpravidla minimálně 8 nezávisle regulovatelných přetavovacích zón. Tento způsob pájení umožňuje jednoduššeji nastavit pájecí profil pouhou

době se používají stále častěji, jelikož umožňují pájet pouzdra BGA

Horký plyn se může tryskou usměrnit na předem stanovená místa desky s plošnými spoji, čímž se dosáhne rychlejšího ohřevu. Tento způsob se nejčastěji používá při opravách (pájení horkým vzduchem). Úspěšně se dá aplikovat při pájení, případně odpájení součástek umístěných na klasických podložkách s malou tepelnou vodivostí. U podložek s velkou tepelnou vodivostí (keramické materiály) se přívody obtížně prohřívají z důvodů přestupu velkého množství tepla do podložky.

Pájení laserem - při tomto způsobu pájení se využívá energie laserového paprsku. Laserový paprsek je možno úzce nasměrovat na pájené místo, tím je vyloučen nežádoucí ohřev součástek. Ohřev může být velice krátký (kolem 5 ms), čímž se vylučuje vznik křehkých intermetalických struktur na pájeném spoji. Pájení laserem se praktikuje postupně na každém přívodu zvlášť, případně při aplíkaci přenosu záření optickými vlákny ie možno pájet několik spojů současně. Paprsek je vychylován optickými systémy, řízenými mikropočítačem, a postupně přetavuje nanesenou pájecí pastu. Do pájeného místa se vlivem povrchového napětí "stáhne" pouze takové množství přetavené pájky, které je v jeho blízkosti. Zbytky nepřetavené pasty je možno omýt. Tímto způsobem se podstatně zmenšuje množství nežádoucích vodivých můstků.

K pájení se používá neodymový laser Nd:YAG, nebo plynový laser CO2.

Laser Nd:YAG emituje světlo vlnové délky 1,06 µm (spodní oblast IR záření). Záření této vlnové délky proniká sklem a většinou plastických hmot a je přijatelně absorbováno kovy. Pří jeho používání není nezbytně nutné při přemísťování paprsku po desce s plošnými spoji zdroj záření vypínat.

Laser CO₂ pracuje s vlnovou délkou 10,6 µm (horní oblast IR záření). Jeho záření je dobře odráženo kovy (až 74 %). Z toho důvodu by se mohlo zdát, že pro pájení tímto laserem bude třeba podstatně větší energie, než při použití laseru Nd:YAG. Většina záření

je však absorbována tavidlem a organickými složkami pájecí pasty (až 95 %), které svou tepelnou vodivostí způsobují ohřev spoje. Z toho důvodu má laser CO2 dokonce podstatně větší účinnost (10 až 15 %) než neodymový (1 %). Na obr. 49 je schématicky naznačeno pájení laserem CO2.

Při výběru typu laseru je si však třeba uvědomit, že se při přetavení pájky prudce zvětší odrazivost kovového povrchu a odražený paprsek laseru CO2 může zničit součástku. Rovněž hrozí nebezpečí destrukce desky s plošnými spoji, pokud se použije větší průměr stopy paprsku. Laser CO2 se rovněž nedá použít pro precizní pájení bez tavidla z již dříve uvedených důvodů, proto se v tomto případě používá neodymový laser.

Ostatní metody pájení součástek SMD

Pájení pomocí vyhřívaného nástroje - v tomto případě se ohřívají pájené plochy vyhřívaným nástrojem. Tato metoda se používá především při pájení integrovaných obvodů s přívody typu "L" u pouzder typu SO nebo častěji u pouzder FLAT-PACK. Přívody se mohou pájet buď postupně, nebo lze jich pájet celou řadu, případně se pájejí všechny vývody pouzdra současně za použití vyhřívaného rámu. Ohřev se uskutečňuje přenosem tepla, nebo průchodem proudu přes kontakt (odporové pájení). Princip obou metod je na obr. 50a,b.

Obr. 50. Pájení vyhřívaným nástrojem a odporové pájení

95

V tomto případě musí být přívody součástek a pájecí body předem pokryty vrstvou pájky. Metoda pájení všech přívodů současně vyhřívaným nástrojem se nejčastěji používá při pájení pouzder s malou roztečí přívodů (fine pitch).

Ruční pájení - používá se zejména při prototypové nebo malosériové výrobě a ve srovnání se strojním pájením je méně spolehlivé. Podrobný popis ručního pájení je uveden v kapitole. zabývající se opravami.

pohyblivý stůl (X,Y)

Je třeba se zmínit také o technologii připojování součástek pomocí vodivých lepidel. Tato technologie nabývá v současné době na důležitosti pro své některé výhody.

Použití vodívých lepidel - při použití této technologie se podstatně zredukuje počet výrobních operací. Vodivé lepidlo se nanáší na měděný povrch pájecích plošek sítotiskem nebo dispenzerem a po umístění součastek se vytvrdí.

Používají se vodivá lepidla na bázi epoxidů nebo polyimidů. Velké vodivosti se dosahuje přidáním vodivého práškového materiálu, nejčastěji stříbra (až 85 hmotnostních %), čímž lze dosáhnout měrného odporu 1 až 10 μΩm (pájený spoj má 0,17 μΩm). Vytvrzování probíhá při podstatně nižší teplotě než pájení (kolem 150 °C). S úspěchem se tato technologie používá při umisťování součástek SMD na ohebné "desky" s plošnými spoji, které se vyznačují menší tepelnou odolností a u nichž proto klasické pájení nelze použít.

Při použití stříbrných vodivých lepidel může za přítomnosti vlhkosti a silného elektrického pole mezi blízkými kontakty (do 0,5 mm) vzniknout vlasové spojení v důsledku migrace stříbra ve směru elektrických siločar. V tom případě je třeba použit lepidlo na bázi Ag-Pd, případně zlata.

elektrody

Vodivá lepidla jsou drahá - při jejich použití se však úspoří až 50 % potřebných technologických procesů.

Na závěr kapitoly jsou uvedeny měkké pájky slitiny Sn-Pb výrobce Kovohutě Příbram, vhodné pro použití v technice SMT. Pro ruční pájení je

<u>B5</u>

ametoria ADI 179

Tah 15 Truhičková nájky - výrohce Kovohutě Příhram

1ab. 15. Iru	bickove pajky - vyrobce Kovonute Pribram	
Označ.	Charakteristika pájky	Tepl. tavení
Sn60 Pb FB12-12	Pájka určená pro náročné pájení v elek- tronice a elektrotechnice, plněná mírně aktivovanou kalafunou. Tavidlo odpovídá F-SW-32 (RMA)	183 až 190 °C
Sn60 Pb MTL-401	Pájka určená pro pájení v elektronice a elektrotechnice, plněná mírně aktivova- nou kalafunou. Tavidlo odpovídá F-SW-32 (RMA)	183 až 190 °C
Sn60 Pb MTL-400	Kvalitní pájka určená pro velmi náročné pájení. Je plněna mírně působícím tavidlem MTL-400 a je tedy vhodná pro velmi jemnou elektroniku. Tavidlo odpo- vídá F-SW-31 (R)	183 až 190 °C
Sn63 Pb MTL-401	Velmi kvalitní pájka s aktivovanou kalafunou pro náročné pájení především miniaturní elektroniky. Má shodnou horní a dolní teplotu tavení. Tavidlo odpovídá F-SW-3 (RMA)	183 ℃
Sn63 Pb MTL-400	Velmi kvalitní pájka, plněná mírně působícím tavidlem, vhodná pro pájení velmi jemné a náročné elektroniky. Má shodnou horní a dolní teplotu tavení. Tavidlo odpovídá F-SW-31 (R)	183 °C

nou montáž, pokud isou součástky SMD osazeny ze strany spojů. Jedním pájecím cyklem je možno zapájet všechny typy součástek.

Při pájení oboustranně osazených DPS přetavením, kdy jsou součástky usazeny do pájecí pasty, je možno pájet samostatně jednu a potom druhou stranu, při použití lehkých součástek obě strany desky přetavit současně bez jejich předchozího přilepení. Součástky umístěné na spodní straně neodpadnou. Je samozřejmé je možné rovněž součástky z jedné strany přile-

Uvedený přehled není vyčerpávající, vhodnou kombinaci technických postupů je třeba si předem odzkoušet.

Technika osazování

Ruční osazování - používá se výhradně pro výrobu malých séríí desek případně při výrobě prototypových vzorků. Součástky se ručně umisťují na desku pomocí vakuové pinzety. tzn., že součástka se přisaje podtla-

vhodná trubičková pájka s tavidlem uvnitř. Pájky svým obsahem příměsí odpovídají normě DIN 1707. "Dráty" se vyrábějí v průměrech 0,6, 0,8, 1,0, 1,5 2,0 až 6 mm. V tab. 15 jsou typy, vhodné pro SMT.

Techniky montáže, používané v SMT

Způsoby montáže DPS

Povrchová montáž součástek patří mezi moderní montážní techniky, které postupně nahrazují montáž klasickou. Její používání přináší mnoho výhod, které byly již uvedeny v úvodu.

V současné době se kromě čisté povrchové montáže, při níž jsou použity výhradně součástky pro povrchovou montáž buď na jedné, nebo na obou stranách (viz obr. 51a, b), užívá také smíšená montáž (obr. 51c, d), kdy jsou použity kromě součástek SMD také klasické vývodové součástky. Některé součástky nejsou totiž dosažitelné v provedení SMD (elektrolytické kondenzátory velkých kapacit, transformátory, apod.), nebo jsou podstatně levnější.

Pro smíšenou montáž se využívá různých kombinací technologických postupů pájení a osazování (jednostranně, případně oboustranně osazená DPS). Na obr. 52a, b, c jsou uvedeny možné technologické postupy při osazování jednostranně a oboustranně osazených DPS při montáži SMT při pájení vlnou a přetavením. Při pájení vlnou je třeba součástky SMD před pájením přilepit. Tato technika je zvlášť vhodná pro smíše-

Obr. 51. Možné způsoby montáže; a) jednostranná SMT, b) oboustranná SMT, c) jednostranná smíšená, d) oboustranná smíšená

jednostranně osaz. DPS (SMT i smíšená montáž)

oboustranně osaz. DPS (SMT i smíšená montáž)

oboustranně osazená DPS (smíšená mont	áž)
komplinované válosi vistous ozpavením	
umístění součástek SMD do pájecí pasty (str. A	(c)
pájení přetavením (str. A)	c
přilepení součástek SMD (str. B)	gio
osazení klasických součástek na str. A	(s
pájení vlnou (str. B)	

Obr. 52. Možné technologické postupy osazení DPS (str. A - strana součástek, str. B - strana spojů)

Obr. 53. Provedení pohyblivých ramen

kem na hrot jehly. Pro uchopení rozměrnějších, případně těžších součástek se používá pružná přísavka, nasazená na jehlu. Ruční osazování je značně časově náročné, vyžaduje soustředění a zručnost. Pro zrychlení práce bývá vakuová pinzeta umístěna na pohyblivém raménku upevněném na otočném, případně posuvném ramení (viz obr. 53a, b).

Manipulační hlavice umožňuje uchopit součástku, natočit ji a přesně umístit na požadované místo. Stiskem na jehlu se vakuum vypne (součástka se pustí), případně opět přisaje na hrot

Pohyblivá ramena se rovněž používají pro nanášení pájecí pasty nebo lepidla dávkovačem, jehož princip byl popsán v předchozí kapitole. Funkce vakuové pinzety se proto často sdružuje s dávkovačem do jedné skříně, která tvoří příslušenství osazovacích ramen a poloautomatů. Zařízení většinou nemá svůj kompresor a je třeba je napojit na tlakový vzduch.

Pro zrychlení práce a vyloučení chyb při osazování se používají osazovací poloautomaty. Jsou vybaveny pohyblivým posuvným ramenem s otočnou hlavicí. Součástky jsou umístěny v zásobnících. Sypané součástky bývají umístěny v otočném karuselu, který přemisťuje zásobník s požadovanou součástkou do manipulačního prostoru, součástky balené do pásů nebo v tyčových zásobnících jsou umístěny v podavačích. Zařízení je řízeno vestavěným, případně externím mikropočítačem (většinou řady IBM-PC). Pro indikaci mista na desce s plošnými spoji, do něhož je třeba umístit požadovanou součástku, se využívají nejrůznější principy. Nejčastěji se používá systém pohyblivého stolku s mechanickým nebo světelným ukazovatelem, případně systémy, které snímají polohu pohyblivého raménka v osách x a y.

světelný ukaz. (laser)

U prvního principu se po naprogramování ukazovatel postupně přemisťuje na místa desky s plošnými spoji, kde mají být umístěny součástky a zároveň je indikováno, z kterého zásobníku je nutno součástku vzít. Na obr. 54 je zařízení holandské firmy DIMA, SMPA-0200, pracující na tomto principu.

U druhého principu je poloha raménka indikována kurzorem na obrazovce počítače. Příslušná součástka se umístí do právě vyznačeného prostoru na desce s plošnými spoji, jejíž pokládací schéma je na obrazovce. Dražší zařízení bývají opatřena kamerou CCD. Např. u systému poly-CAT firmy Polyplas se po dosažení správné polohy kamerou zobrazuje požadované místo na desce, aby mohla být součástka na desce přesně umístěna. Někdy bývá správná poloha hlavice indikována akusticky, pípnutím, popř. pomocí čtveřice svítivých diod (svstém M10 německé firmv MECHATRONIC).

Osazovacími polautomaty se dosahuje podle složitosti desek osazovací rychlosti od 300 do 1000 součástek za hodinu při přesnosti osazení lepší než 0,5 mm. Ceny osazovacích poloautomatů jsou dosti vysoké (desítky až stovky tisíc Kč) a při nákupu je třeba zvážit, není-li výhodnější nahradit poloautomat několika pracovnicemi, z níchž každá osazuje ručně určitou skupinu součástek.

Osazovací automaty - používají se pro osazování velkých sérií desek. Proces osazování je plně automatizován a je možno ho naprogramovat mikropočítačem. Přesnost pokládání součástky, zvláště při použití pouzder s velmi malou roztečí přívodů (FINE PITCH), musí být značná a při ručním osazení jí není možno dosáhnout. Pro správné polohování je používána nejčastěji metoda, kdy je poloha sou-

částky a tvar plošek snímán kamerou, obraz je digitalizován a je vyhodnocována poloha přívodů vůči ploškám. Na základě odchylky se dělá korekce umístění součástky. Osazovací automaty se dělí podle způsobu osazování na sekvenční, sekvenčně/simultánní a simultánní.

Při sekvenčním způsobu osazování (obr. 55a) jsou součástky postupně brány ze zásobníku a umisťovány na desku. Otočná osazovací hlava se pohybuje v osách x, y, z, někdy je pohyblivý i stolek s DPS. Systém pracuje způsobem Pick and Place (uchop a umísti). Tento způsob osazování je nejrozšířenější, vyznačuje se značnou variabilností, avšak má omezenou osazovací rychlost, která se pohybuje podle dokonalosti od 4000 do 10 000 součástek za hodinu.

Při simultánním způsobu osazování jsou součástky uchopeny vakuovým systémem z vhodného zásobníku současně a položeny na DPS. Je zřejmé, že tento systém je podstatně rychlejší, avšak příprava pro osazování nové desky je naročnější.

Oba dva systémy se často kombinují, tzn., že se používá několik vakuových hlavic, které pracují současně (simultánně/sekvenční způsob práce). Každá hlavice je schopna osazovat určitý typ součástky podle použitého nástavce (obr. 55c).

Osazovací automaty jsou podle složitosti vybaveny též systémem, který před osazením změří elektrické parametry součástky a vadné (nebo mimo toleranci) vyřadí. Umožňují rovněž nanášení lepidla nebo pájecí pasty pomocí dispenzeru, umístěného na osazovací hlavě. Současným trendem v konstrukci automatů jsou snahy o zvětšování osazovací rychlosti, variabilnosti, přesnosti osazování apod. Z toho důvodu se používají stále dokonalejší a propracovanější konstrukce. Moderní osazovací automaty s několika osazovacími hlavami dosahují osazovací rychlosti až 40 000 součástek za hodinu, simultánně pracující až 300 000 součástek za hodi-

Pro zvětšení produktivity se vytvářejí komplexní výrobní linky, pracující systémem IN-LINE, které umožňují provádět kontinuálně všechny technologické operace včetně testování hotové desky.

Obr. 54. Osazovací poloautomat DIMA SMPA-0200

Obr. 56. Provedení a montáž čipů TAB; a) provedení, b) možná montáž na desku

Speciální techniky montáže

Kromě zapouzdřených integrovaných obvodů se na DPS umísťují také polovodičové čipy bez pouzdra, které se po přilepení na desku vhodně nakontaktují. Je zřejmé, že tento postup je možno provádět pouze automaty v čistém prostředí.

Technika zvaná Chip On Board vychází z konstrukce hybridních obvodů a často se používá v digitálních hodinkách, kalkulátorech a výrobcích spotřební elektroniky. Čip se přilepí na desku s plošnými spoji epoxidovým lepidlem, obsahujícím stříbro (kvůli dobré tepelné vodivosti). Lepidlo se nanáší běžnými postupy (sítotisk, dispenzer). Vývody na čipu se s plošnými spoji spojují tenkými hliníkovými nebo zlatými vodiči většinou ultrazvukem (na patřičně upravený povrch plošného spoje).

Technika TAB (Tape Automated Bonding) - v tomto případě jsou přívody realizovány páskovými vodiči, vytvořenými odleptáním kovové fólie na plastovém páskovém nosiči (obr. 56a).

Základ tvoří tenká, většinou polyimídová fólie tvaru pásu s perforací (obdobně jako kinofilm) s vyraženými otvory, která se pokryje tenkou vrstvou měděné fólie a vyleptají se přívody, které jsou pokryty vrstvou cínu. V dalším kroku se nakontaktuje polovodičový čip, který se otestuje. K tomu slouží testovací plošky, umístěné na konci přívodů. Dále se čip zapouzdří kapkou pryskyřice a před montáží se odřízne z pásu (na obrázku značeno čárkovaně) a nalepí na desku. Předem pocínované přívody se připájejí speciálním nástrojem. Možné umístění čipů TAB na desku je na obr. 56b.

Technika Flip-Chip - polovodičové čipy se opatří (většinou ještě v nerozděleném stavu) v místech přivodů kapkami pájky. Čip se při montáži "překlopí" na DPS a přípájí přetavením (obr. 57).

Obr. 57. Montáž čipů technikou Flip-Chip

182 Amatoria ADI

<u>B5</u> 95 Technologie Beam-Leads - princip montáže čipů spočívá v tom, že se přivody nosníkového tvaru vytvoří přímo na čipu a odkryjí se odleptáním křemíkového substrátu. Takto upravený čip se překlopí na DPS a nakontaktuje (obr. 58).

Obr. 58. Montáž čipů technikou Beam-Leads

Ve všech případech jsou přilepené a nakontaktované čipy chráněny proti poškození zakápnutím epoxidovou nebo silikonovou pryskyřicí. Výše popsané postupy je možno velice dobře automatizovat, jsou levné a je možno dosáhnou velké montážní hustoty.

Na závěr kapitoly je se třeba zmínit rovněž o montážním postupu, nazývaném QHIO (Quasi-Hybrid IO). Tento postup nahrazuje tlustovrstvové hybridní obvody funkčně i rozměrově shodným ekvivalentem na bázi součástek SMD. Místo keramického substrátu se používá klasický laminát pro desky s plošnými spoji tloušťky kolem 0,6 mm, který umožňuje výrazně snížit cenu. Pouzdří se většinou stejnou technologii jako hybridní obvody, tzv. fluidizací do epoxídové pryskyřice.

Desky s plošnými spoji pro techniku SMT

Požadované vlastnosti

Pro techniku SMT má deska s plošnými spoji stejně jako u klasické montáže za úkol realizovat vodivé spojení mezi součástkami, mechanicky uchytit součástky a bývá na ní umístěn i informační popis pro montáž a případné opravy. Pro povrchovou montáž součástek se pro výrobu desek s plošnými spoji většinou nevyžadují speciální materiály. Ve většině případů je možné používat desky běžného provedení (tvrzený papír, skloepoxidový materiál apod.). Nejčastěji je používán materiál typu FR-4. Požadavky na elektrické vlastnosti materiálů pro desky s plošnými spoji určenými pro techniku SMT se v podstatě neliší od nároků, které jsou na ně kladeny při klasické montáži. Z elektrických vlastností je třeba převážně sledovat povrchový a objemový elektrický odpor, elektrickou pevnost, relativní permitivitu a ztrátový

úhel tg δ, případně řadu dalších. Podle konkrétní aplikace záleží na konstruktérovi, který parametr je rozhoduiící pro správnou funkci navrhovaného zařízení. U materiálů používaných pro výrobu desek s plošnými spoji je velice důležité chování laminátu, zejména změna fyzikálních vlastností při zvýšené teplotě. Je třeba si uvědomit, že deska s plošnými spoji (klasická i SMT) je při pájení součástek po dobu několíka sekund vystavena teplotám vyšším než je teplota tavení pájky (asi 200 °C), a ty mohou být krátkodobě 250 až 280 °C. Deska se rovněž zahřívá při provozu v důsledku ohřevu součástek, což má vliv na stárnutí materiálu. Zatímco u desek osazených vývodovými součástkami hraje roli pouze průhyb desky, ztráta pevnosti laminátu, případně přilnavost měděné fólie. u techniky SMT je navíc také podstatná tepelná roztažnost matenálu. Při pájení součástek SMD nejvíce používanými technologiemi (vlnou nebo přetavením) se ohřívají deska i součástky a při následném chladnutí. kdy pájka začíná tuhnout, není pnutí. které vzniká v důsledku různé tepelné roztažnosti, redukováno pružností přívodů, jako je tomu při klasické montáži. Při nevhodně zvoleném materiálu může být vzniklá síla tak velká, že součástky mohou praskat, případně být odtrženy od povrchu desky. Relativní změnu rozměru materiálu s teplotou vyjadřují vztahy

$$\Delta I / I_0 = \alpha_1 . \Delta \vartheta$$
 a $\alpha_1 = (\Delta I / I_0) . (1 / \Delta \vartheta),$

kde ΔI je změna rozměru při změně teploty [m],

l₀ rozměr matenálu [m],

Δϑ rozdíl teplot [°C],

x koeficient tepelné roztažnosti [°C-¹].

Tepelnou roztažnost materiálu podle druhého vztahu charakterizuje materiálová konstanta, tzv. koeficient tepelné roztažnosti α_t. Udává relativní změnu rozměru při ohřátí materiálu o 1 °C. Vyjadřuje se buď v [%], nebo s označením ppm (ppm = 10-6). Značí se jako TCE (Temperature Coefficient of Expansion) a je udáván v ppm/°C. Tepelná roztažnost ve směru os x, y a z není u vrstvených laminátů stejná, u SMT je třeba sledovat tepelnou roztažnost ve směru os x a y (podélnou), při konstrukci desek s prokovenými děrami je třeba uvažovat s roztažností i ve směru z (příčnou), aby prokovené díry nepraskaly. Tepelná roztažnost ve směru osy z bývá zvláště u vrstvených materiálů podstatně větší (TCE, až 60 ppm/ °C). Výrazná změna elektrických i mechanických vlastností laminátu, zvláště koeficientu tepelné roztažnosti TCE a mechanické pevnosti, nastává při tzv. teplotě zeskelnění, která je definována pro makromolekulární látky jako teplota, při níž přechází materiál ze stavu sklovitého do elastického. Na obr. 59 je změna TCEz (ve směru příčném) v závislosti

Obr. 59. Teplotní závislost TCE_z nejčastěji používaných materiálů pro DPS s vyznačenou teplotou zeskelnění, T_a

na teplotě s vyznačenou teplotou zeskelnění ($T_{\rm g}$) pro různé materiály používané pro desky s plošnými spoji, v tab. 16 jsou koeficienty tepelné roztažnosti pro nejčastěji používané matenály.

Tab. 16. Teplotní součinitel délkové roztažnosti materiálů používaných pro SMT ve směru os x a y

Pouzdra a podložky	TCE _{xy} [ppm/°C]
Plastová pouzdra	20 až 23
Keramická pouzdra	5,4 až 6,7
Laminát FR-4	12 až 24
Laminát FR-4	1
(vícevrstvový)	14 až 24
FR-4 s kov. jádrem	
(INVAR plát. mědí)	8,6 až 14
Keramické více-	•
vrstvové desky	6,0 až 8,3
Laminát Epoxy-	
-Kevlar	6,0 až 7,0

Materiál desky, který použijeme, by měl mít přibližně stejnou tepelnou roztažnost jako použité součástky, jinak vzniká nežádoucí pnutí, které je závislé na rozdílu teplot, velikosti součástek a rozdílu součinitelů délkové roztažnosti TCE. Na laminát typu FR-4 mohou být podle zkušeností bezpečně osazovány miniaturní pasívní součástky s keramickým nosičem, čipové i typu MELF až do velikosti 10 mm. dále pak integrované obvody v plastových pouzdrech typu SO, PLCC, FLAT-PACK apod. Při osazování keramických nosičů, zvláště pak LCCC, je třeba použít některý z materiálů s redukovaným TCE, které budou popsány dále. U konstrukcí SMT rozměry součástek a velká hustota montáže znamenají větší koncentraci výkonu na menší ploše a horší podmínky pro odvod tepla. Je třeba zajistit, aby během provozu nebyly součástky i celé desky nadměrně ohřívány. To závisí mimo jiné také na tepelných vlastnostech materiálu pro DPS. Jelikož součástky SMD jsou v přímém kontaktu s DPS, část ztrátového tepla se přeObr. 60. Průchod tepla vrstveným materiálem

nese ze součástek do materiálu podložky vedením. Deska s plošnými spoji zastává funkci i chladiče. Množství tepla Q, které projde materiálem za čas t, lze pro přenos tepla vedením vyjádřit vztahem

$$Q/t=(-kA/I).(\vartheta_2-\vartheta_1),$$

kde k je koeficient tepelné vodivosti [Js⁻¹ m⁻¹ °C⁻¹],

A plocha, kterou teplo prochází [m²],

 $(\vartheta_2 - \vartheta_1)$ rozdíl teplot [°C],

/ vzdálenost míst s teplotami ϑ_1 a ϑ_2 [m].

Výraz kA/I = 1/R se označuje jako tepelná vodivost a jeho převrácená hodnota je tepelný odpor $R_0 = I/kA$ [°C W-1].

Pokud teplo přestupuje přes vrstvené materiály s různým koeficientem tepelné vodivosti *k* ve směru příčném nebo podélném na vrstvy podle obr. 60a, b, pro výsledný tepelný odpor materiálu platí obdobně jako pro elektrický odpor známé vztahy pro sériové

a paralelní řazení odporů.

Jelikož podložky pro DPS mají většinou charakter vrstvených materiálů. nebo se skládají ze samostatných vrstev, je třeba si uvědomit, že tepelný odpor materiálu není ve směru os x, y a osy z stejný a jeho velikost závisí na druhu materiálu a na jeho tloušťce. Protože se teplo v matenálu šíří všemi směry, nikoli pouze v osách x, v, z, jsou uvedené vztahy pouze přiblížné, pro přesný výpočet je třeba užít řešení na základě Fourierovy rovníce. Z uvedeného rozboru je zřejmé, že přenos tepla a tím i chlazení součástek lze výrazně ovlivnit vložením vrstvy z dobře tepelně vodivého materiálu do struktury desky s plošnými spoji. Je také třeba zdůraznit, že pro SMT je třeba používat desky s plošnými spoji, které zaručují dostatečnou tuhost a odolnost vůči zborcení, desky musí být rovné, protože všechny technologické operace, které se provádějí na desce (např. nanášení pájecí pasty nebo lepidla, automatické osazování apod.) vyžadují velkou přesnost polohování. Z těchto důvodů se vyžaduje max. prohnutí a zkroucení desky 5 µm na 1 mm délky. Většina moderních používaných materiálů tyto požadavky splňuje. Prohnutí desky se zvětší rovněž při použití nepájivé masky a při tepelném namáhání desky během technologických operací.

Nejčastěji používané materiály

Mechanické a elektrické vlastnosti DPS nejvíce ovlivňuje složení materiálu, z něhož je zhotovena základní deska. Téměř 90 % používaných materiálů jsou fenolické nebo epoxidové pryskyřice v kombinaci s papírem nebo skleněnými vlákny. Ve speciálních případech se používají polyestery, melaminy, silikony, PTFE (teflon), polysulfony a další.

Lamináty na základě fenolických pryskyřic - jsou charakteristické dobrými elektrickými vlastnostmi (kromě odolnosti vůči elektrickému oblouku) a nízkou cenou. Z toho důvodu se používají ve výrobcích levné spotřební elektroniky. Základní matenál (nejčastěji vrstvený papír), umístěný mezi měděné fólie, se impregnuje ve vakuu fenolformaldehydovou pryskyřicí. Tlakem a zvýšenou teplotou dojde k zesítění molekul a vzniká základní deska. Obsah pryskyřice se pohybuje v rozmezi 35 až 58 %. Při větším obsahu pryskyřice je materiál tvrdší a křehčí, což komplikuje vrtání, ražení otvorů a mechanické opracování desky. Proto se přidávají matenály, které zmenšují křehkost. Vyrábějí se materiály s různou tvrdostí s označením podle doporučení NEMA (americké sdružení výrobců - National Electrical Manufactures Association) jako X, XX, XXX, XXXPC a varianta FR-2, což je typ XXXPC v nehořlavé úpravě (Flame Resist)

Lamináty s epoxidovou pryskyřicí jedná se o nejčastěji používané matenály. Epoxidovou pryskyřicí rozpuštěnou v rozpouštědle se ipregnuje většinou skelná tkanina (případně papír), která se vysuší a nařeže na požadovanou velikost. Tím vzniknou tzv. prepregy. Ty se vloží mezi měděné fólie. Potom následuje vytvrzování pryskyňce pod tlakem za přítomnosti katalyzátoru v lisech. Vytvrzená pryskyňce je stabilní, odolává kyselinám a zásadám, avšak při zvýšené teplotě měkne. Vyrábí se pět základních typů epoxidových laminátů: FR 3 - jedná se o laminát tvořený epoxidovou pryskyřicí a vrstveným papírem. Tento typ obsahuje látky, které zpomalují hoření. Má dobré elektrické vlastnosti, dá se snadno opracovávat. Vyznačuje se rozměrovou stálostí a dobrou mechanickou pevností.

Ostatní typy používají jako plnivo matenály na základě skelných vláken. G10 - nejčastěji používaný materiál. Vyznačuje se dobrými elektrickými i

85 95 mechanickými vlastnosti. Použitá skelná tkanina a postup impregnace způsobuje značnou anizotropii vlastností ve směru os x, y a z. Jeho nehořlavá varianta je typ FR 4, která vznikne záměnou epoxidových funkčních skupin chlórem a brómem.

G11 - jedná se o nejkvalitnější a také nejdražší materiál. Hůře se opracovává, má však vynikající tepelnou odolnost (po 1 hodině při teplotě 150 °C si zachovává 50% pevnost v ohybu). Jeho nehořlavá modifikace má označení FR 5.

Lamináty na bázi polyimidu - používají polyimidovou pryskyřici se skleněnými vlákny. Vyznačují se vyšší teplotou zeskelnění T_g , která je v tomto případě 290 °C, což je více než teplota tavení pájky. Z toho důvodu nedochází při pájení k destrukci matenálu. Jsou dražší než epoxidové lamináty, při realizaci prokovených děr jsou problémy s aktivací povrchu a s přilnavosti měděné fólie k podložce.

Ostatní používané materiály - pro speciální aplikace se používá celá řada dalších impregnačních materiálů, z nichž uvedeme zejména: Polyesterové prvskyřice - isou relativně levné. jejich použití přináší problémy s kroucením a ohýbáním desky. Velice obtížně se prokovují díry a proto se používají pro jednostranně plátované desky. Silikonové materiály - vyznačují se dobrou chemickou a tepelnou odolnosti (je možno je použít do teploty až 400 °C). Problémy jsou se špatnou přilnavostí měděné folie. Melaminové pryskyřice - používají se velmi zřídka pro velkou tvrdost. V tab.17 jsou uvedeny nejčastěji používané organické lamináty a jejich vlastnosti.

Materiály s redukovaným TCE - u klasických materiálů se pohybuje koeficient tepelné roztažnosti TCE v rozmezi 11 až 15 ppm/°C. Zkušenosti ukazují, že pro montáž integrovaných obvodů v plastových pouzdrech typu SO, PLCC a dalších a pro montáž pasívních součástek na keramickém nosiči (který má TCE = 6 až 7 ppm/°C. avšak součástky mají malé rozměry), je možno bez obav použít běžné lamináty, které byly dříve uvedeny. Pro montáž větších keramických pouzder, zvláště pouzder LCCC, je nutno bezpodmínečně používat materiály, jejichž TCE se blíží keramice. Toho lze dosáhnout buďto přidáním vhodného plniva, nebo vrstvením s materiálem, který celkový TCE zmenší (většinou kovové jádro).

Materiály bez kovového jádra - jako základní složka se nejčastěji používá laminát epoxi-sklo, nebo polyimid-sklo, do něhož se přidává příměs, která má malý nebo záporný koeficient tepelné roztažnosti TCE. Výztužný materiál může být ve formě mikrokuliček, krátkých nebo dlouhých

Tab. 17. Vlastnosti organických laminátů pro výrobu DPS

Тур	XXXPC	FR2	FR3	G10	G11	FR4	GP0-1
Hustota [g/cm³]	1,28	1,30	1,45	1,75	1,75	1,85	1,5 až 1,9
TCE _{xy} [ppm/°C]	11	11	13	10	10	11	15
Tep. vodivost [Js ⁻¹ m ⁻¹ °C ⁻¹]	0,24	0,24	0,23	0,26	0,25	0,25	•
Permitivita (při 1MHz)	4,5	4,5	4,6	5,0	5,1	4,9	4,4
El. pevnost [kV]	60-70	60-70	60-65	35-60	35-63	35-65	40
Pevnost v tahu [MPa]	92	88	83	280	280	280	70
Navlhavost [%]	0,8	0,8	0,75	0,35	0,35	0,35	1,0

vláken z aramidu, skla, křemene nebo grafitu. V případě použití výztužného materiálu se sice zmenší TCE ve směru k rovině desky, avšak většinou se i zvětší ve směru kolmém k rovině desky, což může způsobit praskání stěn prokovených děr. Firma DU-PONT vyrábí speciální materiál s obchodním názvem KEVLAR. Materiál je vyroben na bázi aramidových vláken a má záporný TCE. Používá se buď v kombinaci se skleněnými vlákny, nebo bez nich. Kevlar-skloepoxidové lamináty lze používat do teplot 100 až 150 °C. Při vyšších teplotách se již nepříznivě projevuje vysoký TCE, a praskají prokovené díry. Příznivější je situpolvimidových laminátů s Kevlarem. Vhodným procentuálním složením použitých komponent lze výrazně zmenšit koeficient TCE. Materiály se však obtížněji opracovávají, vrtají a mají malý modul pružnosti. Při jejich výrobě vznikají ve struktuře v důsledku velkých rozdílů v TCE mikrotrhliny, které výrazně narušují homogenitu materiálu. V důsledku toho jsou značně navlhavé, což nepříznivě ovlivňuje elektrické vlastnosti, zvláště elektrický odpor desky. Pro použití těchto materiálů je důležitým činitelem také výrobní cena. Polyimid kevlarový laminát je 18x dražší a polyimid - křemenný laminát až 41x dražší než běžný skloepoxidový laminát. V současné době se ukazuje jako nejvýhodnější řešení ovrstvení nosné desky vhodným elastickým materiálem, např. polyimidem, epoxidy, nitrilovým kaučukem s příměsí fenolů a podobně. Tloušťka nanesených povlaků se pohybuje od 0,05 do 0,1 mm. Základní deska může být izo-

1 - laminát, 2 - nepružné lepidlo, 3 - kovové jádro Obr. 61. Konstrukce podložky pro DPS s kovovým jádrem

lační, nebo vodivá. Na pružnou vrstvu je naválcována Cu fólie.

Materiály s kovovým jádrem - dalším způsobem, jak výrazně ovlivnit TCE podložky pro konstrukci DPS, je použít kovové jádro ve spojení se skelným laminátem. Možné konstrukční uspořádání systému s použitím kovového jádra je na obr. 61.

Na kovové jádro, které je tvořeno vrstveným kovovým materiálem s vhodným TCE je přes nepružnou, tepelně vodivou podložku nalepen skelný laminát s oboustrannou deskou s plošnými spoji. Jako materiál kovového jádra se používá mědí plátovaná slitina Alloy 42 (42 % Ni, 58 % Fe), nebo mědí plátovaný molybden, Kovar, nebo nejčastěji mědí plátovaný Invar (36 % Ni, 64 % Fe). Součinitel délkové roztažností Invaru plátovaného mědí lze do určité míry měnit v rozmezí 2,8 až 6,0 ppm/°C změnou poměru tloušťky Invaru k naplátované mědi. Měď se používá proto, aby se zvětšila tepelná vodivost, protože kovové jádro má kromě regulace TCE a elektrického stínění také funkci chladiče. Z toho důvodu se někdy umisťuie. zvláště u integrovaných obvodů, pod součástku měděná podložka, která je v přímém kontaktu s kovovým jádrem tak, jak ukazuje předchozí obrázek. Laminaty se mohou zhotovovat jako dvouvrstvové, připadně několikavrstvové. Celá konstrukce musí být navržena symetricky, aby nedocházelo k ohybu desky při změně teploty. Možné uspořádání vrstev je na obr. 62.

Je zřejmé že plošné spoje, které jsou na podložce s kovovým jádrem,

Obr. 62. Typické rozměry vrstveného materiálu

je třeba vyrábět podobnou technologií jako vícevrstvové, tj. postupným slepováním jednotlivých vrstev. Vzhledem k tomu, že pro jejich výrobu je možno použít standardní technologická zařízení a skloepoxidové lamináty, je jejich použítí pro speciální aplikace poměrně rozšířené.

Ohebné plošné spoje - základním materiálem pro výrobu ohebných plošných spojů jsou polyimidové, nebo levnější polyesterové fólie s vodivou kresbou (většinou měď). Jednotlivé spoje se mohou slepovat a tím se vytvářelí vícevrstvové strukury. Pro lepení se většinou používají akrylátová, nebo epoxidová lepidla. Při použití akrylátových lepidel pro spoje s prokovenými děrami se mohou vyskytnout problémy s praskáním a odlepováním fólie v důsledku vysokého TCEz, fólie jsou značně navlhavé (až 3 % hmotnosti) a mají nízkou teplotu zeskelnění. Epoxidová lepidla mají v tomto směru podstatně lepší vlastnosti, jsou však méně pružná a mají pro tyto aplikace menší lepivost, proto jejich použití již není v současné době tak rozšířené.

Požadavky na měděnou fólii DPS - pro konstrukci DPS se používá měděná fólie čistoty 99,5 %, vyráběná elektrolyticky na nerezových bubnech. Musí se vyznačovat dobrou adhezí k laminátu, která je podmíněna drsností povrchu (úprava anodickou oxidací) a velkou pružností, aby spoje nepraskaly.

Technologie výroby a požadavky na konstrukci DPS

Technologické postupy výroby desek s plošnými spoji, používané pro SMT, jsou převážně stejné jako pro konstrukci klasických DPS. Nejčastěji se používá subtraktívní technologie (90 % světové produkce) za použití laminátu plátovaného měděnou fólií, která se chemicky odleptává. Kresba je realizována fotocestou, tzn. osvětlením přes filmovou matrici za použití fotorezistu.

Ridčeji používaná aditivní technologie používá jako výchozí materiál pro desky s plošnými spoji laminát bez plátované mědi, na kterém se po vrtání děr přímo vytváří vodivý obrazec včetně pokovení děr. Měď (i další kovové povlaky) se nanáší chemicky (bezproudově). Výchozí materiál není tepelně zpracováván s měděnou fólií a tím se nevytváří při výrobě vnitřní pnutí, které bývá příčinou zkroucení a prohnutí desek. Při chemickém vylučování mědi se dosahuje podstatně lepší rovnoměrnosti vrstvy jak na plochách, tak v otvorech desky. Aditivní technologie není zatím příliš rozšířená pro svoji vysokou cenu a náročnost technologického procesu. Aditivní technologií lze vyrobit spoje šířky 0,1 až 0,07 mm. Princip subtraktivní a aditivní technologie je na obr. 63a,b.

Pokud je to možné, používají se pro SMT jednostranné desky bez prokovených děr, pro smíšenou jednoObr. 63. Rozdíl mezi subtraktivní (a) a aditivní (b) technologií výroby desek s plošnými spoji

strannou montáž, nebo pokud je vyžadována velká hustota montáže, je třeba použít dvou, případně několikavrstvové spoje. Vícevrstvové plošné spoje se většinou zhotovují laminováním tenkých dvouvrstvových desek (do tlouštky 0,8 mm), bez otvorů, mezi které se vkládá lepící list (skelná tkanina s nedotvrzenou pryskyřicí - tzv. prepreg). Vytvrzování probíhá za působení tepla a tlaku v laminačním lisu. Po spojení vrstev se vyvrtají a prokoví otvory, které uskutečňují spojení jednotlivých vrstev. Jak již bylo uvedeno, lze pro běžné aplikace používat klasické materiály podložek. Je tedy možno použít desky běžného provedení, jako např. z tvrzeného papíru. skloepoxidového laminátu apod. Nejčastěji se používá materiál typu FR4. Pro jednostranné spoje lze používat typ FR3 a pro vf aplikace pak speciální materiály. Při použití povrchové montáže se podstatně zmenší rozměry desky s plošnými spoji (až 50 %). Je možno rozměr desky zachovat a lze zmenšit hustotu osazení součástek, čímž se zlepší teplotní poměry desky a zvětší se spolehlivost systému. Tloušťky desek se většinou používají stejné jako u klasické montáže. Výrobci v Evropě nabízejí lamináty v tloušťkách od 0,2 do 3,2 mm. Přednostně je používána tloušťka 1,5 mm. Pro desky malých rozměrů je možno používat tenčí lamináty, je však třeba sí uvědomit, že celý systém musí mít určitou tuhost, aby se při ohřevu deska neprohnula, případně nezkroutila. Tloušťka desky by měla být v určitém vztahu k její velikosti, aby při pájení nebylo třeba desky vyztužovat. Je-li DPS malá, umisťuje se několik stejných motivů na jednu větší, tzv. multipanel, pro usnadnění manipulace a zrychlení osazování. Pak je třeba zajistit, aby po ukončení všech technologických operací bylo možno jednotlivé hotové DPS snadno rozdělit. Používá se frézování, a to buď ztenčením příčného profilu desky, nebo je možno desku

odfrézovat tak, aby držela pouze na krátkých spojkách, případně kombinací obou metod. Jednotlivé desky se potom rozdělí rozlomením. Možné provedení je na obr. 64. Místo frézování se používá také řezání vodním paprskem. Je však třeba počítat s tím, že řez není rovný a je třeba ho dodatečně ofrézovat. Přesně definovaný rozměr desky s plošnými spoji je většinou vyžadován z důvodů přesného zakládání desky při technologických operacích a při osazování automaty.

Tloušťka měděné fólie se obvykle volí ve vztahu k jemnosti kresby plošných spojů, standardně se volí tloušťka 35 a 17 µm. Pro nejjemnější spoje se užívají tenčí fólie (5 µm a 8 µm). Pro aplikace, při nichž je deska namáhána mechanicky, zvláště otřesy (automobilový průmysl), je třeba použít tlustší fólii (70 µm). Při povrchové montáži součástek nejsou nutné prokovené díry pro zakládání součástek. což podstatně zvětšuje spolehlivost a snižuje cenu desky, která v dnešní době není zanedbatelná (činí až 50 % celkové ceny osazené desky). Je-li nezbytné použít prokovené díry (velká hustota montáže, testovací body, vicevrstvové DPS apod.), používají se díry od průměru 0,3 mm. V případě, že se vyžaduje mimořádně velká hustota spojů, používá se pro SMT technologie drátových spojů, tzv. systém MULTIWIRE (viz obr. 65).

Obr. 65. Technologie drátových spojů - MULTIWIRE

<u>B5</u>

95

Obr. 64. Možná provedení multipanelů

anstore ADIO 185

V tomto případě neisou vodivé propojky realizovány leptanými vodivými cestami, ale izolovanými vodiči o průměru až 60 µm, umístěnými přímo v základním materiálu. Vodiče se připojují k prokoveným děrám. Topologii a pokládání vodičů navrhují stroje řízené počítačem v rastru 300 µm. Lamináty se používají běžné, popř. speciální s leptanými spoji, které slouží jako napájecí vodiče nebo stínění. Casto se používá kovové jádro, které zvětšuje celkovou tuhost systému a upravuje TCE. Velkou výhodou je flexibilita při návrhu, tzn., že všechny změny v propojení je možno dělat odděleně od návrhu rozložení součástek na desce. Pro názornost dvouvrstvová deska MULTIWIRE nahradí osmivrstvovou desku klasickou. Je možno realizovat až 65 cm délky spojů na 1 cm2. Tato technologie je velice drahá a proto se používá pro speciální zařízení zvláště ve vojenské technice.

Na povrch vodivé kresby se pro SMT nanáší vždy nepájivý lak (tzv. nepájivá maska), který zmenšuje možnost vzniku můstků a zkratů mezi

pájecími ploškami.

Požadavky na nepájivou masku jasně definuje německá norma DIN 40 804. Podle ní isou nepájivé masky teplotně stálé krycí laky, kterými se vykrývají zvolené plochy desky s plošnými spoji tak, aby se při následném pájecím postupu na těchto plochách neukládala žádná pájka. Vzhledově se nepájivé laky na povrchu DPS poznají podle barevného odstinu. Musí se vyznačovat dobrou teplotní stálostí a přilnavostí k základnímu materiálu a kovovým povlakům a nesmí zhoršovat elektrické vlastnosti desky s plošnými spoji. Používají se jednosložkové nebo dvousložkové laky na bázi epoxi-novolakových pryskyřic, které mají dobré dielektrické vlastnosti a vynikající odolnost vůči plíživým proudům. Nanášejí se sítotiskem, clonováním aj.

Požadavky na stále jemnější obrazce z důvodů miniaturizace vedou k použití suchých nebo tekutých fotorezistů. "Kresba" se vytváří osvitem přes předlohu UV zářením. Pro vyvolávání se používají vodně alkalické

roztoky.

Při použití běžných technologických postupů výroby DPS jsou vodivé cesty většinou pokryty cínem nebo pájkou. Pokud se nepájivá masku nanáší přímo na tuto vrstvu, může tehdy, je-li vrstva pájky tlustá a vrstva napájivé masky tenká, dojít po zapájení desky k jejímu "krabacení", případně popraskání (tzv. efekt pomerančové kůry). Proto se nepájivá maska nanáší na měděné vodiče bez vrstvy pájky. Ta se z povrchu odstraní většinou leptáním ve speciálních selektivně pracujících lázních (tzv. stripování). Vrstva pájky se na desce zhotoví až po nanesení nepájivé masky. Nejvíce je rozšířena metoda HAL (Hot Air Leveling). Svisle upevněná deska se ponoří do roztavené pájky a při jejím výstupu je přebytečná pájka stírána a vyfukována z otvorů dynamickými účinky horkého vzduchu. Výsledkem je rovnoměrná vrstva pájky, nanesená na pájecích ploškách. Na místa pokrytá nepájivou maskou se pájka nenane-

Návrh kresby DPS pro povrchovou montáž

Při návrhu kresby DPS pro povchovou montáž je třeba dodržovat určité zásady, které přináší tato technika. Je třeba si uvědomit, že použité součástky mají podstatně menší rozměry než klasické, proto jsou větší nároky na kvalitu a přesnost kresby. Kresba plošných spojů se umisťuje téměř výhradně v rastru 1,27 mm, spoje se navrhují (pokud to jde) jako jednostranné bez prokovených děr. Před započetím návrhu je třeba mít bezpečně ujasněno, které typy pouzder a součástí použijeme, nejlépe je mít je předem připravené. Dodatečná záměna typů pouzder je vzhledem k nemožnosti tvarovat vhodně přívody vyloučena. Pro ruční kreslení předlohy a matrice je možno používat stejné postupy jako při návrhu klasickém. Předloha se kreslí na speciálním materiálu s malou tepelnou roztažnosti ze strany spojů ve zvětšeném měřítku a matrice se zhotovují jejím ofotografová-

Výhodnější je navrhovat kresbu spojů pro SMT počítačem pomocí návrhového systému CAD (PADs, Eagle, ORCAD apod.). Pokud je vytvořen návrh na počítači, lze snadněji zhotovit i veškeré podklady pro výrobu a osazení DPS, včetně souborů pro kresbu nepájivé masky, pro vrtání, popis apod. Zdlouhavou práci na návrhu spojů tak, aby se nekřížily (za dodržení určitých konstrukčních zásad), vykonává autorouter. Zkušenosti ukazují, že nejlepšího výsledku je možno dosáhnout kombinací ručního a počítačového návrhu propojení. Knihovny návrhových systémů již obsahují většinu pouzder pro povrchovou montáž, obvykle se však nevyhneme při návrhu tomu, že si budeme muset vytvořit nové prvky.

Matrice se vykreslují na fotoploteru přímo na film. Pokud si zhotovujeme datový soubor pro výrobu matric sami (nejčastěji se používá formát dat GERBER), doporučuje se konzultovat volbu velikostí ploch a použitých čar s výrobcem, abychom se vyhnuli zbytečnému vykreslování velkých ploch a širokých čar tenkými čarami (kreslení s emulaci). Vhodnou volbou se podstatně zkrátí doba kreslení předlohy a tím se sníží náklady na výrobu. Při návrhu je třeba respektovat použitou technologii osazování a pájení desky a je třeba rovněž brát ohled na její oživování a případné testování.

Při ručním osazování součástek nemusíme dbát na žádné odlišnosti. jiná je situace při osazování automatem. V tomto případě je třeba, aby součástky byly rozmístěny s ohledem na možnost přístupu osazovací hlavice a je třeba dbát i na to, aby stroj vykonával co nejméně pohybů, což má vliv na rychlost osazování a na délku doby života automatu. Při osazování dvoustranných desek by měla být snaha umístit součástky, které automat "nezvládne", všechny na jednu stranu. Vzhledem k tomu, že technika SMT je určena pro osazování automaty, je vhodné s uvedenými pravidly počítat při každém návrhu.

Při pájení vlnou musí být součásti před pájením přilepeny. V případě, že nejsou mezi ploškami pro součástku taženy spoje, je v těchto místech vhodné umístit slepou plošku (obr. 66).

Obr. 66. Umístění slepé plošky pod součástku

To umožni použít menší množství lepidla. Větší množství lepidla může způsobit znečistění pájecích plošek, což je nežádoucí.

Na obr. 67 je rozdíl v umistění a velikosti pájecích ploch pro pájení vlnou (a) a pájení přetavením (reflow, b). Při procesu reflow je vhodné, aby pájeci plocha byla umístěna více pod přívod, na rozdíl od pájení vlnou, kdy proces probíhá "zvenku" a pájecí plocha by měla být větší a přesahovat více přes součástku.

Při pájení přetavením mají součástky v okamžiku, kdy se pájka taví, tendenci se pohybovat v důsledku toho, že soustava zaujímá termodynamicky stav s nejmenší povrchovou energií. Pokud jsou pájecí plošky stejně velké a jejich plocha a plocha přívodů je dobře pájitelná, součástka se sama vyrovná, v opačném případě může nastat nežádoucí posuv, případně se součástka může postavit na hranu, tzv. "tombstoning" efekt (anglicky tombstone = náhrobní kámen). Tento jev vzniká zvláště při kondenzačním pájení, při němž jsou změny teploty velmi rychlé.

Obecně lze říci, že přívod k plošce součástky by měl být realizován vodičem podstatně menší šířky, než je šířka pájecí plochy pro součástku tak.

jak je uvedeno dále.

Obr. 67. Umístění pájecí plošky pro pájení vlnou a pájení přetavením

Připojení testovacích hrotů vyžaduje téměř vždy vytvořit měřicí plošky. protože plocha pájecích plošek je malá (zvláště pouzdra PLCC) a jejich rozteč je 1,27 mm a menší. Měřící plošky by měly být umístěny vždy z jedné strany desky v rastru 2,54 mm.

Při rozmisťování součástek na desku je třeba kromě zásad, které ovlivňují správnou elektrickou funkci zapojení, dodržovat pravidla pro použitou technologii pájení. Při pájení přetavením nezáleží na orientaci součástek, omezení isou pouze ve vzdálenosti mezi ploškami a součástkami. Pro pouzdra typu SO může být minimální vzdálenost ploch mezi řadami 0,3 mm, u pouzder s přívody tvaru "J" (pouzdra PLCC) se tato vzdálenost doporučuje několik mm z důvodů kontroly pájení a oprav.

Bude-li třeba umisťovat na desku měřicí a testovací body, je třeba vzdálenost zvětšit, nebo testovací body umístit na druhé straně desky (pokud

je oboustranná).

Při pájení vlnou musí být vzdálenosti mezi součástkami větší, aby nevznikaly zkraty nebo zastínění v důsledku postupu desky vlnou. Doporučené vzdálenosti jsou na obr. 68 a 69.

Experimentálně bylo zjištěno, že se při průchodu součástek vlnou tvoří především můstky mezi ploškami a to v okamžiku, kdy součástka opouští vlnu. Proto se doporučuje umístit na konec footprintu záchytnou slepou plošku, která tento jev omezí. Ploška se používá při pájení pouzder integrovaných obvodů. Tvar a orientace plošky jsou na obr. 70, doporučené roz000000000000000 záchytné plošky 00000000000000000000 směr pohybu vlnou

Obr. 70. Záchytné plošky při pájení vlnou

měry jsou uvedeny dále (viz doporučení PHILIPS).

Při rozmisťování součástek je vhodné dodržovat, pokud to je možné, stejnou orientaci pouzder IO, tranzistorů. diod aj. Při ručním osazování se zmenšuje pravděpodobnost chyb a při použití automatu se zvětšuje rychlost osazování.

Kresba a umístění vodičů pro SMT návrh se většinou realizuje v rastru 1,27 mm, pro jednodušší aplikace pak v rastru 2,54 mm, stejně jako u klasických DPS. Zásady umisťování vodičů mezi ploškami jsou na obr. 71. Vzhledem k malým rozměrům použitých součástek je tendence zmenšovat šířku spojů pod 0,15 mm (6 mils). Z hlediska spolehlivosti a přijatelné ceny desky se zatím nejčastěji používají (v rastru 1,27 mm) šířky spojů a mezer do minimální velikosti 0,2 mm (8 mils. 1 mils = 1/1000 inch, tj. 0,0254 mm) i když existují speciální aditivní technologie, které umožňují konstrukci spojů menší šířky.

SMER POHYBU VLNOU

Obr. 68. Doporučené vzdálenosti [mm] mezi IO při pájení vlnou

SMER POHYBU VLNOU

Prokovené díry - jak již bylo řečeno, používají se v případech pouze nezbytně nutných, kdy to vyžaduje hustota montáže. Je třeba si uvědomit, že bývají často příčinou závad a značně zvyšují cenu desky. Jejich průměr se volí od (minimálně) 0,3 mm.

Návrh ploch pro součástky - plošky musí být navrženy dostatečně velké s ohledem na nepřesnosti při osazování součástek (případně nanášení pájecí pasty) a jejich vzájemná vzdálenost musí být dostatečná, aby se nevořily můstky (zvláště při pájení vlnou). Šířka pájecích plošek se obvykle navrhuje shodná se šířkou přívodů k součástkám. U součástek, které mají přívody velmi úzké, je možno šířku zvětšit, např. u SOT23.

Doporučené rozměry pájecích plošek pro určitá pouzdra součástek (tzv. footprinty) jsou pro pájení vlnou i přetavením uváděny v katalozích. Obecně lze konstatovat, že pro pájení vlnou je plošky třeba navrhovat větší s dostatečným přesahem. Pro čipové součástky je rozměr "r" podle obr. 67c 0,8 až 1,0 mm a plocha "s" pod součástkou je 0,4 až 0,6 mm. Z důvodů již dříve uvedených jsou plošky pro pájení přetavením menší a jsou umístěny více pod přívody součástek. Rozměr "s" pod součástkou by měl být minimálně stejně velký jako metalizovaná ploška ze spodní strany součástky (asi 0,5 mm pro 0805 až do délky 0,9 mm pro typ pouzdra 2220). Přesah "r" by měl být co nejmenší, minimálně však 0,3 mm. Šířka plošek pro pájení vlnou i přetavením se navrhuje stejná, větší o 0,2 mm než je šířka součástky. Je třeba zdůraznit, žev této oblasti existuje značná nejednotnost, optimální velikost je třeba prakticky odzkoušet při přibližném dodržení zásad uvedených v předchozím textu. Na obr. 72 a v tab.18 jsou doporučené rozměry plošek pro některé pasívní součástky.

Obr. 72. Rozměry plošek pro čipové součástky a pouzdra typu MELF

Druh		F	ájení vlno	u	Pájení přetavením		
		a b B		а	b	В	
	0805	1,45	1,2	3,65	1,45	0,8	2,65
Čipové	1206	1,7	1,4	4,85	1,7	1,0	3,65
rezistory a	1210	2,75	1,4	4,85	2,75	1,0	3,65
konden-	1808	2,25	1,5	6,45	2,25	1,1	5,2
zátory	1812	3,25	1,5	6,45	3,25	1,1	5,2
	2220	5,3	1,6	7,6	5,3	1,2	6,2
	MELF	2,4	1,5	6,5	2,4	1,0	6,2
miniMELF		1,6	1,2	4,2	1,6	0,8	3,8
mikroMELF		1,3	0,6	2,5	1,3	0,5	2,3

Ostatní doporučení - při propojování plošek umístěných blízko sebe, nebo při spojování přívodů IO musí být propojka zhotovena tenkým vodičem podle obr. 73a, b, c. Při nesprávném propojení se hromadí pájka na velké ploše a při ohybu desky může spoj prasknout. Při pájení přetavením může pájka, která se roztéká po ploše, způsobit posuv součástky. Při použití nepájivé masky tento jev nenastává, avšak v každém případě se doporučuje respektovat toto pravidlo. Obdobně je nutno řešit připojení pájecího bodu (např. pro vodič, pájecí špičku) k pájecí plošce (obr. 73d). Toto řešení navíc, kromě důvodů uvedených v předchozím textu, brání nadměrnému ohřevu součástky při pájení přívodu. V případě, že se nepoužije nepájivá maska, doporučuje se použít šířku vodiče 0,25 mm a délku nejméně 0,5 mm.

Návrh nepájivé masky - při návrhu je třeba dodržovat zásadu, aby plochy, kde se maska nenachází (tzn. v místech pájení), byly maximálně asi o 0,3 mm větší než rozměr pájecí plošky.

Na obr. 74 jsou příklady řešení nepájivé masky. Zjednodušené provedení na obr. 74a se používá při nanášení nepájivé masky na jemné motivy sítotiskem, který nedovoluje větší přesnost tisku. Výhodnější a dokonalejší je provedení podle obr. 74b, které je možno použít pro jemné motivy při použití nepájivé masky, vyvolávané fotografickým procesem.

Toto provedení je rovněž nezbytné, pokud je mezi ploškami veden vodič. Nepájivá maska se někdy se při pájení vlnou navrhuje tak, aby byly odmaskovány prokovené díry. Pájka vzlínáním zaplní prokovené díry, čímž se zmenšuje jejich poruchovost.

Pro technologii SMT je nepájivá maska nezbytně nutná, i když pro výrobu prototypových vzorků, pájených přetavením nebo ručně, se lze bez ní obejít. Pak je ovšem třeba velice pečlivě prohlédnout celou desku a odstranit případné kuličky pájky, které mohou způsobit zkrat.

Na obr. 75 a 76 jsou konkrétní rozměry pájecích ploch pro pájení vlnou a přetavením a řešení nepájivé masky podle doporučení PHILIPS.

Na závěr kapitoly jsou uvedeny katalogové údaje tuzemského výrobce desek pro plošné spoje. Pro běžné použití pro SMT lze doporučit materiál výrobce VCHZ Synthesia Semtín UMATEX T 222. Svými vlastnostmi odpovídá americkým normám MIL-P 13949 a UL 94V a v některých parametrech je převyšuje:

Umatex 222 - skloepoxidový laminát typu FR4, plátovaný jednostranně nebo oboustranně elektrolytickou mědí. Tloušťky fólie: 18, 35, 70 a 105 um. Tloušťky desek: 0,2, 0,6, 0,8, 1,0, 1,5, 2,0 a 2,5 mm.

Elektrické vlastnosti Umatex 222 El. odpor objemový (při velké 106 MΩcm. vlhkosti): povrchový (při velké

vlhkosti): 104 MΩ.

Obr. 74. Řešení nepájivé masky

B5

95

188 Amatorshe V

PLCC84 26.9 30.0 (31.5)

Obr. 76. Řešení nepájivé masky podle fy PHILIPS

El. průraz (příčně):	40 kV.
Permitivita (při 1 MHz):	5,4.
Ztrátový činitel:	0,03.
Odolnost vůči el oblouku:	60 s

Speciální materiály s redukovaným TCE se u nás nevyrábějí - je možno použít výrobky zahraniční, např. firmy ISOLA.

Čistění a kontrola desek s plošnými spoji

Čistění desek s plošnými spoji

Jedná se o proces odstranění zbytků tavidel po pájení, které mohou mít polární, nebo nepolární charakter. Za nečistoty polárního charakteru lze považovat zbytky aktivátorů obšažených v tavidle, zbytky solí při leptání, případně při pokovování desky, otisky prstů apod. Nepolárním znečistěním se rozumějí zbytky kalafuny, oleje, vosků, nebo prach. Zbytky polárních nečistot vytvářejí za přítomnosti vzdušné vlhkosti disociovanou kapalinu kyselého nebo zásaditého charakteru, která způsobuje korozi přívodů součástek a výrazně zvětšuje vodivost povrchu desky (iontová vodivost). Nepolární nečistoty nebývají kritické pro správnou funkci a spolehlivost. Negativně se projeví např. při testování, při němž tato izolační mezivrstva znemožňuje správnou funkci testeru a způsobuje znečistění testovacích jehel. Zbytky po pájení s větším obsahem sušiny někdy nevyhovují náročným vzhledovým kritériím, na povrchu desky se vytvoří bílé skvrny, které však po stránce funkční nejsou na závadu. V souvislosti s obrovským nástupem bezoplachových technologií (no clean) během posledních pěti let. zeiména v oblasti spotřební a průmyslové elektroniky, se z důvodů ekonomických a ekologických problematika čistění odsouvá do pozadí. Pozomost se soustřeďuje především na kontrolu kvality pájení.

Proces čistění a výběr vhodného čisticího prostředku závisí na druhu použitého tavidla. Čisticí kapalina nesmí poškozovat ani plastické hmoty, použité na desce, ani popisy a nesmí pronikat do struktury plastových pouzder. Účinnost rozpouštění plastů a elastomerů je velmi důležitým parametrem a udává se v hodnotách KB (hodnota Kauri Butanol). Čím je toto číslo větší, tím je rozpouštědlo agresívnější vůči plastickým hmotám. Běžně používaná halogenová rozpouštědla (trichloretylén, 1,1,1 trichloretan, perchlor-etylén) mají KB velké (od 130 do 90) a nelze je proto pro čistění použít. Pouze trichlor-trifluoretan (F113) má přiměřeně malou účinnost rozpouštění (KB 30), která dovoluje desku do něj celkově ponořit.

Volba vhodné čisticí kapaliny - při posuzování vhodnosti čisticí kapaliny je důležitá teplota při mytí, schopnost pronikat (penetrovat) pod součástky SMD (ovlivňuje ji povrchové napětí, viskozita a smáčitelnost) a toxicita a to nejenom její negativní vliv na lidský organismus, ale také nepříznivý vliv na životní prostředí (narušování ozonové vrstvy), při kondenzačním pájení také schopnost odstraňovat pájecí kapalinu. Čistění probíhá za běžné, případně zvýšené teploty.

Pro laboratorní aplikace se používají následující čisticí média, aplikovaná lokálně, nebo na celou desku:

Fluorované uhlovodíky - používání freonů (chlorofluoro-uhlovodíků typu CFC-113), které poškozují ozonovou vrstvu, bylo zakázáno Montrealským protokolem z r. 1986 a v současné době se nahrazují méně škodlivými freony typu HCFC-141b, jejichž používání se má ukončit asi v r. 2000. Nové vývojové typy na bázi fluorovaných uhlovodíků (HFC) budou uvedeny na trh v letošním roce. Jejich výraznou předností je, že nebudou poškozovat ozonovou vrstvu. Fluorované uhlovodíky se rychle odpařují, jsou nehořlavé, narušují však některé plasty a jsou drahé.

Perfluorované uhlovodíky - většinou se používají v kombinaci s fluorovanými uhlovodíky. Rychle se odpařují, jsou nehořlavé, nepoškozují plasty. Mezi nevýhody patří, že jsou drahé; nejsou-li smíchány, pak mají špatné čisticí schopnosti.

Alkoholy - používá se převážně izopropylalkohol nebo etylalkohol. Doporučuje se používat především izopropylalkohol, který méně proniká do struktury plastových pouzder. Alkoholy nenarušují plastické hmoty a velice účinně odstraňují zbytky tavidel. Mezi nevýhody patří hořlavost a hydroskopičnost (pohlcují vzdušnou vlhkost).

Nelineární alkoholy - používají se pro náročné aplikace a jsou zvláště vhodné pro čistění šablon. Mají vyšší bod vzplanutí, účinně odstraňují většinu tavidel a jsou levné. Z důvodu vyššího bodu varu se pomaleji odpařují.

Deionizovaná voda - velice rozšířený čistící prostředek, používá se na odstraňování zbytků vodou rozpustných tavidel a "bílých" zbytků, které zůstanou na desce při odstranění tavidel jinými látkami a působí rušivě na vzhled. Ke zvětšení čistící účinnosti se míchá s jinými rozpouštědly. Je velmi levná, nenarušuje plasty, avšak pomalu se odpařuje a je neúčinná při odstraňování tuků a olejů.

Terpeny - jedná se o přírodní produkt s citrusovým aroma. Používají se pro čistění zastudena. Odstraňují všechny typy tavidel a olejů a nezanechávají žádné zbytky. Před použitím je třeba odzkoušet, nenarušují-li použité plasty. Jsou však hořlavé a pomalu se odpařují.

Směsi uhlovodíků - jedná se o čisticí prostředek pro většinu tavidel, po čistění se nemusí deska oplachovat, nepoškozují plastické hmoty. Jsou však hořlavé a pomalu se odpařují.

Pro průmyslové aplikace se používá pět základních nefreonových čistících postupů.

Obr. 78. Částečné čistění vodou za použití terpenů

Vodní čistění - je nejznámějším technologickým čisticím procesem. Pro zmýdelnění pryskyřičných zbytků se často používá vodný roztok alkalického saponifikátoru v koncentraci 1 až 10 %. Zbytky po čistění jsou opláchnuty kvalitní deionizovanou vodou a deska se suší proudícím horkým vzduchem. Používá se zásobníkový (batch), nebo průběžný způsob čištění (inline). Na obr. 77 je schéma průběžného vodního čistění. Z ekologických a ekonomických důvodů se do linky často doplňuje recirkulační stanice.

Částečné čistění vodou - tento novější čisticí proces využívá koncentrovaných čisticích prostředků na bázi uhlovodíků. Následuje třístupňový oplach vodou. Sušením se odstraní zbytky vody z povrchu DPS. Proces pracuje s recirkulací jak v uhlovodíkové sekci, tak i v čisticích sekcích pracujícich s vodou. Používá se zásobníkový nebo průběžný způsob čistění. Na obr. 78 je schéma průběžného částečného čistění vodou za použití terpenů.

Čistění vodou mísitelnými produkty - tyto postupy využívají čisticí produkty na organické bázi, které jsou mísitelně s vodou. DPS se suší proudem horkého vzduchu. Problematičtější částí procesu je odstranění čisticích chemikálií z oplachové vody. Využívá se jak zásobníkový, tak i průběžný způsob čištění.

Čistění systémy rozpouštědlo-rozpouštědlo - při tomto postupu se desky čistí rozpouštědly na bázi uhlovodíků a oplachují se stejnými nebo jinými rozpouštědly, které nejsou na vodní bázi. Rozpuštěný zbytek je z desky odstraněn stlačeným vzduchem a finálně se deska suší proudem horkého vzduchu. Požadavky na bezpečnost jsou jedním z klíčových činitelů této skupiny zařízení. Tento čisticí postup se používá jen u zásobníkových systémů.

Čistění pomocí perfluorovaných uhlovodíků - tento starší technologický postup se v poslední době stále více používá jako čistění v parách. Desky s plošnými spoji se čistí přírodními organickými produkty nebo produkty na ropné bázi. Čisticí chemikálie se likvidují perfluorovanými uhlovodíky, stejným prostředkem se zabezpečuje finální oplach. Perfluorované uhlovodíky se odpaří a zanecha-

jí DPS čisté a suché. Tento princip se používá pouze u zásobníkových systémů.

Konstrukce čisticích zařízení - zařízení zásobníkového typu se používají jak manuální, poloautomatické, nebo automatické. Pracuií na principu odstředivky, nebo podobně jako myčkv na nádobí. Často se používají ve spojení s ultrazvukem. Ultrazvuk sice narušuje a uvolňuje nerozpustitelné částice a napomáhá penetraci rozpouštědla, avšak je třeba vzít v úvahu skutečnost, že vlivem vibrací se mohou poškodit polovodičové součástky (přerušení přívodů k čipu), proto někteří výrobci čistění ultrazvukem nedoporučují. Průběžně pracující zařízení vyžadují větší prostor a mají i větší spotřebu chemikálií. Využívají se pro větší výrobní kapacity. Deska se čistí nejčastěji ponorem, popř. ostřikem (sprejováním), případně v horkých parách kapaliny (kondenzační čistění). Všeobecně se za nejúčinnější způsob považuje ponor desky do čisticí kapaliny.

Kontrola kvality čistění - množství nečistot se vyjadřuje v µg NaCl na 1 cm² plochy (µg NaCl / cm²). Za běžnou hodnotu se považuje 5, pro náročné aplikace méně než 1,5 µg NaCV /cm². K měření množství nečistot se používá metoda vodního výluhu (do vody může být přidán i izopropylalkohol). Výsledek se získá na základě změny vodivosti v průběhu čistění, resp. z rozdílu před a po čistění desky s plošnými spoji. Touto metodou získáme informace o množství polárních nečistot, které ovlivňují vodivost čisticí kapaliny a mají rozhodující vliv na dlouhodobou spolehlivost desky s plošnými spoji. Ostatní druhy nečistot (bílé zbytky na desce) způsobují špatný vzhled desky a mohou mít většinou za následek pouze špatný kontakt testovacích jehel.

Deska se spoji se kontroluje opticky - dokonalým prohlédnutím desky. V poslední době se znečistění desky s plošnými spoji sleduje vyhodnocením změny odporu na vodivostním obrazci (obr. 79) na zkušební desce,

Obr. 79. Testovací obrazec pro měření vodivosti

umístěné v čisticím prostředí spolu s čistěnými deskami. Testovací obrazec může být umístěn také pod sou-částkou. Velikost SIR (Surface Insulation Resistance) udává povrchový odpor, který je měřítkem vyčistění desky.

V tab. 19 jsou doporučené údaje hraničních podmínek čištění pro čisticí média: vodu, etanol, izopropanol, halogenované uhlovodíky a terpeny.

Tab. 19. Doporučené mezní podmínky pro čistění

Druh čistění	Cistici podmínky
Vroucí kapalina	40 až 80 °C /4 min
Ultrazvuková čistička	40 kHz; 9 W / litr;
	45 °C / 2 min
Kondenzačni čistění	80 °C / 30 s
Čištění sprejováním	45 °C / 16 barů

Kontrola správné funkce desek plošných spojů a kvality pájení

Elektrické testování osazených desek - princip elektrického testování desek s plošnými spoji, osazenými technikou povrchové montáže, je obdobný jako u klasické technologie, praktické způsoby jsou však podstatně složitější. Součástky na desce mají menší rozměry, jsou na desce obvykle osazeny hustěji a mají odlišný tvar přívodů. Stejně jako jako u klasické montáže se používají funkční testery, nebo inspekční (in-circuit) testery.

Při funkčním testování se kontroluje správná funkce celé desky, která je většinou připojena k měřicím a měřeným signálům (analogové i číslicové) přes konektor na desce. Při testování se sleduje a vyhodnocuje chování výstupů při definovaných signálech přivedených na vstupy. Inspekční (in circuit) testery měří automaticky odpor, kapacitu, indukčnost, případně další veličiny v definovaných místech testované desky pomocí jehlových kontaktů, rozmístěných na kontaktním poli v rastru 2,54 mm, které jsou přitlačovány k desce osazené součástkami. Poskytují informace o závadách konkrétních součástek, zkratech na desce s plošnými spoji, případně dalších závadách na desce. Je jimi možno rovněž kontrolovat desku před osazenim.

Deska s plošnými spoji musí být navržena tak, aby splňovala požadavky správného a spolehlivého připojení měřicích hrotů. Ideální návrh předpokládá připojení měřicích hrotů na speciální plošky navržené pro testování. Z důvodu úspor je možno měřicí hroty kontaktovat na pájecí body prokovených děr, popř. u smíšené montáže na přívody vývodových součástek. Nedoporučuje se kontaktovat hroty na přivody integrovaných obvodů (pouzdra s přívody tvaru "L", např. SO, Flat- -Pack). Pokud je přívod nezapájený, tlakem jehly se kontakt uzavře a spoj se jeví jako dobrý. Nevhodné je rovněž navrhovat kontaktování hrotů na meniskus pájky u součástek, případně na volnou plochu. Je třeba počítat s tím, že součástka se může po přetavení posunout (pokud není přilepena). Je zřejmé, že měřicí body nesmí být pokryty nepájivou maskou a musí být dostatečně vzdáleny od hran desky. Správné a nesprávné připojení měřicích hrotů je na obr. 80.

Obr. 80. Připojení měřicích hrotů při testování: a) správně, b) nesprávně 200 ms) a IR detektor kontroluie dobu zvyšování a snižování teploty. Kvalitní spoj rychle převede tepelnou energii do okolí a jeho teplota se rychle snižuje. Pájený spoj s defekty nebo nadměrným množstvím pájky se chová odlišně.

Pro snímací kontakty se používají snadno vyměnitelné pérové kolíky s korunkou, nebo hrotem o vrcholovém úhlu 30°. Přítlačná síla by měla být nejméně 1,5 N. Měřicí hroty mohou být umístěny z obou stran desky. Testování je obtížné zejména tehdy, musí-li hrot najíždět na přívod ze strany (pouzdra s přívody tvaru "J", PLCC, SOJ). Přípravky pro tento způsob jsou příliš složité a nespolehlivé a je proto lepší navrhnout na desce s plošnými spoji testovací plošku.

Kontrola pájeného spoje - četnost a typ závady závísí na technologii pájení, kvalitě pájky, tavidla a pájených ploch, typu přívodů a na technologických podmínkách. Kvalitu zapájených spojů je možno kontrolovat zrakem (lupou), nebo mikroskopem (doporučené zvětšení je 5 až 30x), případně se používají kamery CCD. Vizuální kontrola je málo spolehlivá, některé závady jsou těžko pozorovatelné a mohou se projevit až za delší dobu (póry, studené spoje, zbytky tavidel, povrchové znečistění). Spolehlivě lze těmito způsoby určit jen umístění součástky mimo pájecí plošky a hrubé závady při pájení, jako je nedostatečné množství pájky nebo špatné smáčení povrchu. Proto se používají dokonalejší metody, např. kontrola rentgenovými paprsky, popř. (častěji) kontrola laserem.

Při kontrole <u>rentgenovými paprsky</u> je deska s plošnými spoji prosvětlována zářením a je možno identifikovat závady ve struktuře pájeného spoje i v místech, která jsou zakrytá. Kontrolní zařízení jsou plně automatizovaná, paprsek je usměrňován do požadovaných míst a může dopadat pod různými úhly. Výsledný obraz je elektronicky zpracováván a vyhodnocován.

Při kontrole <u>laserovým paprskem</u> je pájený spoj posuzován podle své tepelné charakteristiky (systém Vanzetti). Kontrolovaný spoj je impulsně vyhříván laserovým paprskem (laser YAG o vlnové délce záření 1,06 µm, délka trvání impulsů 10 až

Obr. 81. Kontrola spojů laserem

Na obr. 81 je uveden princip kontroly spojů pomocí laseru, na obr. 82 jsou tepelné charakteristiky pájených spojů.

1- utržený přivod - velké dutiny, 2 - matný nebo granulovaný povrch - "stuidený spoj", 3 - správný spoj, 4 - velká tepelná vodivost spoje

Obr. 82. Tepelné charakteristiky pájených spojů

Ke kontrole pájených spojů se také používají kontrolní metody, založené na chování spoje (jeho pružnosti) pod vlivem elektromagnetického vlnění (50 MHz až 1 GHz), které je směrováno na kontrolovaný spoj. Odražené záření umožňuje přímo modulovat jas TV monitoru a zobrazovat strukturu, případně moduluje laserový paprsek. Přenos energie vlnění se uskutečňuje nejčastěji přes vhodnou kapalinu (voda, alkohol apod).

Opravy desek osazených technikou SMT

Při výměně součástek SMD je třeba dodržovat určité zásady, aby se nepoškodily plošné spoje. Pokud potřebujeme vyjmutou součástku znovu použít, musí být celý postup co nejšetrnější. Komplikace nastanou zvlášť při výměně integrovaných obvodů s větším počtem přívodů.

Odstraňování součástek - při výměně součástky musíme zajistit, aby byly odpájeny všechny přívody součástky současně. Většinou je neúčinné postupné odsávání pájky z přívodů. Pájku se nepodaří dokonale odstranit a při odstraňování součástky se pak snadno odtrhne jedna nebo několik pájecích plošek. Je třeba si uvědomit, že některé součástky mohou být spodní stranou přilepeny a k jejich odstranění je třeba použít značnou sílu.

Nejšetrnějším způsobem odpájení je současné zahřátí všech přívodů součástky horkým vzduchem. Existují nákladná profesionální zařízení se speciálními nástavci pro různé velikosti pouzder integrovaných obvodů (např. zařízení CRAFT-25 PACE). Proudicím horkým vzduchem se zahřejí současně všechny přívody integrovaného obvodu a ten se pomocí vakuové přisavky vyjme. Tento způsob se ukazuje v současné době jako jediný možný při samostatném odpájování pouzder s přívody typu BGA.

Nástavce jsou konstruovány tak, aby horký vzduch proudil pod pouzdro, čímž se přetaví kuličky pájky. Ohřev zespodu je zajišťován zdrojem IR záření, který se umístí pod pouzdro, které je třeba odstranit. Je zřejmé, že při odpájení horkým vzduchem je integrovaný obvod značně tepelně namáhán, obvod se rovněž může poškodit statiokou elektřinou, která vzniká prouděním horkého vzduchu. Princip odpájení horkým vzduchem je na obr. 83.

Obr. 83. Princip odpájení IO horkým vzduchem

Nejčastěji se při výměně součástek SMD používá ohřev přívodů přiložením vyhřívaného nástavce na přívody. Používají se různé tvary nástavců, které se nasazuji do vyhřívané hlavice pájedla. Některé z možných tvarů jsou na obr. 84.

Obr. 84. Možné tvary nástavců k pájedlu

vý měnně nástavce

topná tělísko

Obr. 85. Termokleště s používanými nástavci

K odpájení menších pouzder SO, FLAT-PACK se používají např. nástavce podle obr. 84a, b vhodné velikosti. Tvar c) je vhodný pro odpájení pouzder SOT, případně čipových součástek. Vyhřátý nástavec nasadíme na součástku, kterou po prohřátí přívodů sejmeme. Vlivem povrchového napětí roztavené pájky součástka drží na nástavci a můžeme ji snadno seimout. Pokud byla přilepena, je třeba posuvem do strany narušit adhezi lepidla. Na součástky, které je možno uchopit z boku (součástky hranolovitého tvaru, pouzdra typu SOJ, integrované obvody PLCC apod.) je možno použít termokleště (obr. 85) s dělenými nástavci různých tvarů. Součástku uchopíme, necháme roztavit pájku a seimeme s desky.

Při odstraňování integrovaných obvodů typu Flat-Pack s přívody tvaru "L" se používá vyhřívaný nástavec v kombinaci s vakuovou přísavkou (obr. 86.). Nástavec příslušné velikosti přiložíme na přívody a po roztavení pájky "zapneme vakuum", IO se přisaje a můžeme ho sejmout. Je-li součástka přilepena, je třeba použit větší sílu, případně vyčkat, až lepidlo teplem ztratí pevnost.

Obr. 86. Nástavec s vakuovou přísavkou

Pravidla pro odpájení součástek před výměnou součástky je třeba mít jistotu, že je součástka skutečně vadná. Je třeba se přesvědčit, zda je kolem součástky dostatek místa pro použití vhodného nástavce, aby nemohly být případně poškozeny okolní součástky. Je vhodné si poznamenat označení součástky a klíč pro její správnou orientaci. Při používání nástavců se doporučuje k zajištění dokonalého přestupu tepla a současnému ohřevu všech přívodů nanést předem na pájená místa nadbytečné množství pájky a tavidla (u součástek s malou roztečí přívodů se většina přívodů

spojí), která po roztavení zajistí shodné prohřátí všech přívodů. Při odstraňování větších obdélníkových a čtvercových pouzder umístíme po celém obvodu pouzdra trubičkovou pájku s tavidlem, která se po přiložení vyhřátého nástavce roztaví. Po vyjmutí součástky odsajeme přebytečnou pájku a místo na desce spoje očistíme izopropylalkoholem. Lupou (nebo lépe mikroskopem) zkontrolujeme, není-li odtržena měděná fólie a odstraníme případné vodivé můstky.

Nehodláme-li součástku znovu použít a je-li možno deformovat přívody, dá se někdy použít pro vyjímání některých integrovaných obvodů (hlavně typů FLAT-PACK) následující postup: Pokud je to možné, vsuneme do mezery mezi přívody a pouzdro lakovaný měděný drát o vhodném průměru (vzhledem k velikosti přívodů, průměr 0,1 až 0,3 mm). Přívody integrovaného obvodu můžeme potom postupně odpájet za současného prohřívání hrotem pájky a ohýbání jednotlivých přívodů pomocí lakovaného drátu tak, jak ukazuje obr. 87.

Připájení součástky - součástky lze pájet přímým kontaktem vyhřívaného nástroje, popř. horkovzdušnou pájkou přetavením pájecí pasty. Při horkovzdušném pájení rozměrných pouzder s velkou tepelnou vodivostí se mohou vyskytnout problémy s dokonalým prohřátím spoje. Tato metoda je zvlášť vhodná při pájení tenkých

přívodů, případně drobných čipových součástek. Nedoporučuje se přetavovat pájecí pastu kontaktně, tj. vyhřívaným hrotem. Přetavení totiž probíhá při vyšší teplotě než při použití horkého vzduchu a zbytky tavidel obsažené v pájecí pastě se obtížně odstraňují. Pájení horkým vzduchem se v kombinaci se zdrojem IR záření používá pro pájení pouzder BGA.

Při kontaktním způsobu součástku uchopíme nejlépe vakuovou pinzetou, položíme ji na pájecí plošky a postupně připájíme všechny přívody. Součástku nikdy nebereme holou rukou. Správný postup je na obr. 88. Při pájení používáme trubičkovou pájku (s nejlépe bezoplachovým tavidlem) o průměru kolem 0,5 až 0,8 mm a teplotu hrotu v rozmezí 220 až 280 °C. Při ručním pájení není nutný přidavek 2 % Ag, protože pájení trvá krátkou dobu a rozpouštění stříbra je minimální. Po připájení musí pájka dokonale smáčet povrch spoje i přívodu součástky.

Obr. 88. Správný postup pájení součástek SMD

Obr. 87. Možný způsob odpájení pouzder

Řadu přívodů integrovaných obvodů pájíme postupně, popř. je možno použít hrot se šikmou ploškou a vyhloubením, na který se nanese přiměřené množství pajky - pak lze postupným pohybem napříč poděl pouzdra připájet celou řadu přívodů (obr. 89a). Jedná se aplikaci tzv. mikrovlny. Tento postup již vyžaduje patřičnou zručnost.

Při všech uvedených postupech používáme nadbytek tavidla, které po-

tom odstranime izopropylalkoholem. K nanášení tavidla se vyrábí speciální tužka podobná popisovačům FIX (např. FLUXPEN 950E fy Litton), případně pastovitá tavidla v zásobnících podobných iniekční stříkačce. Přívody integrovaných obvodů lze s úspěchem pájet rovněž přetavením pomocí horkovzdušné pájky (obr. 89b) - na přívody naneséme dávkovačem přiměřené množství pájecí pasty ve tvaru pásu a tu horkovzdušnou pájkou přetavíme. Bezchybné připájení v obou případech zkontrolujeme mikroskopem.

Vybavení pracoviště pro opravy pro opravy desek s plošnými spoji, osazených technikou SMT, se vyrábí celá řada opravárenských stanic, které obsahují kromě pájedla rovněž zdroj "vakua" pro vakuovou pinzetu, odsávačku a zdroj stlačeného vzduchu pro horkovzdušné pájedlo. Jako příklad komplexně řešené opravárenské stanice je možno uvést opravárenskou stanici americké firmy PACE, PRC 2000 (obr. 90). Zařízení obsahuje: tři nezávislé vyhřívací jednotky s číslicovým nastavováním teploty, kombinovaný zdroj vakua a stlačeného vzduchu pro odsávání a horkovzdušné pájení, k němuž je možno připojit široký výběr manipulačních vyhřívaných hlavic

- jednotku pro nanášení pasty nebo lepidla ručním dávkovačem a vakuovou pinzetu,

- zdroj proudu pro impulsní pájení a galvanické nanášení kovů pro opravy kontaktů (zlacení),

- zdroj pro ruční vrtačku.

K zařízení je možno podle potřeby objednat široký sortiment různých nástavců, pájecích hrotů, vrtačky včetně brusných kotoučků, kapaliny pro zlacení apod. Originálně je řešen systém s vrtačkou pro opravy vícevrstvových desek s plošnými spoji. Broušení se přeruší, pokud vodivá brusná hlavice narazí na spoj, který je umístěn pod broušeným místem (galvanicky se spojí brusná hlavice a spoj ve vrstvě pod broušeným místem a vzniklý řídicí signál vypíná vrtačku). Pájecí jednotka

je stejně jako u většiny ostatních výrobců opatřena vypínatelným systémem, který zmenšuje topný výkon v případě, že se delší dobu nepájí. což šetří energii a podstatně prodlužuje dobu života pajecích hrotů.

Pracovní prostory je třeba zabezpečit proti statické elektřině. Pro tyto účely se vyrábí celá řada antistatických podložek, antistatické náramky apod. V nouzi dobře poslouží kovový plech (pozor na zkraty při oživování !) umístěný na pracovním stole, který se uzemní na zemnicí svorku elektroniky pájedla.

Technika SMT v amatérské praxi

I když technika osazování desek s plošnými spoji povrchovou montáží vznikla především proto, aby se zvětšila produktivita výroby zavedením osazovacích automatů, v současné době se SMT stále více prosazuje i v amatérské praxi a pro konstrukci obvodů, pracujících na vysokých kmitočtech, je dokonce nezbytná. Amatérské postupy, které budou popsány v následujíci části, umožňují také výrábět vzorky v předvýrobních etapách na profesionálních pracovištích bez použití speciální a drahé technologie.

K vybavení pracoviště pro práci v oblasti povrchové montáže je nezbytné si opatřit mikropáječku. Postačí typ s maximálním příkonem topného tělíska do 45 W. Musí být opatřena regulaci teploty v rozsahu do 600 °C s přesností minimálně +2 °C a musí umožňovat výměnu pájecích hrotů. Je vhodné si opatřit sadu různých průměrů hrotů včetně plochého provedení pro pájení mikrovlnou. V žádném případě nelze používat transformátorovou páječku. V nouzi je možno použít starší typ mikropáječky (např. typ ERS 50, který vyráběla TESLA Liptovský Hrádok), s upravenými hroty a zkalibrovat nastavení teploty.

Dalšími nezbytnými nástroji jsou pinzety a odsávačka pájky. Je nejlepší, pokud je odsávačka součástí pájecí soupravy a pájka se odsává vyhřívaným pájecím hrotem s otvorem uprostřed. V nouzí je možno použít; klasickou pístovou odsávačku, na jejíž hrot nasadíme přes vhodnou redukci asi 5 cm dlouhou silikonovou hadičku malého průměru. Až se hadička ucpe pájkou, jednoduše ji kousek odstřihneme a pokračujeme v práci.

Pro manipulaci se součástkami malých rozměrů (čipové součástky, MELF, miniMELF, elektrolytické kondenzátory apod.) stačí používat klasickou pinzetu, doporučuje se však opatřit si vakuovou pínzetu s pružnou přísavkou, která je pro pro manipulaci s pouzdry IO větších rozměrů nezbytná. Součástka se přichycuje na manipulační hrot pomocí podtlaku, "va-

Vakuovou pinzetu lze jednoduše zhotovit úpravou vzduchovacího motorku pro akvaristy. Je vhodné použít výkonnější typ, na trhu je v potřebách pro akvaristy dostatečný výběr. Motorek upravíme tak, aby bylo možno na sací ventil nasadit silikonovou hadičku vnitřního průměru 2 až 3 mm. Tělísko vakuové pinzety zhotovíme ze dvou tělísek injekčních stříkaček objemu 5 ml. Vytáhneme píst a odřízneme horní rozšířenou část. Obě tělíska spojíme pomocí spojky s otvorem oprostřed, vysoustružené z libovolného materiálu. Do jedné z částí vyvrtáme asi 10 mm od vyústění, kam budeme nasazovat jehlu, díru o průměru asi 3 mm, jejímž ucpáním ukazováčkem "zapínáme" a "vypínáme" vakuum. Do horní části tělíska je vhodné umístit kousek vaty jako filtr. Postup zhotovení jednoduchého tělíska s při-

Obr. 91. Zhotovení jednoduchého těliska pro vakuovou pinzetu

Manipulační hroty (jehly) a pružné přísavky je možno získat od firem, které se zabývají prodejem zařízení pro povrchovou montáž. Dají se také použít jehly do injekčních stříkaček s větším průměrem, které jsou podstatně levnělší. Nerezovou trubičku jehly je však třeba zkrátit na délku asi 15 mm. Při zkracování trubičku nařízneme, zlomíme, zabrousíme do roviny a opatrně ohneme v úhlu asi 30°. Pro práci postačí tři průměry jehel (2, 1 a 0,8 mm). Pružnou přísavku lze v nouzi nahradit dvěma silikonovými trubičkami různých průměrů, které spojíme

Obr. 90. Opravárenská stanice PACE PRC 2000

Amatérské provedení vakuové pinzety

podle obr. 92a, čímž vytvoříme jakési rozšíření na konci jehly. Pro manipulaci s válcovými pouzdry (MELF, mimi-MELF, SOD80 aj.) se doporučuje nasadit na konec jehly silikonovou hadičku, aby bylo možno součástku lépe uchopít (obr. 92b).

Obr. 92. Náhrada pružné přísavky a "vylepšení" pro manipulací s válcovými pouzdry silikonové hadičky

Máme-li k dispozici horkovzdušnou pájku, je možno součástky osazovat do pájecí pasty a proudem horkého vzduchu, který proudí z vyústění vyhřívaného hrotu páječky, pastu přetavit. Tento postup je vhodný zvláště při pájení přívodů tvaru "J" (pouzdra PLCC). V tomto případě je možno nanášet pájecí pastu pomocí párátka, případně je možno si vyrobit dávkovací přípravek podle obr. 93.

K výrobě použíjeme injekční stříkačku, používanou pro dávkování inzulinu, o objemu 1 ml. Vyjmeme píst,
který zkrátíme podle obr. 93a. Z tělíska odstraníme jehlu (jehlu zahřejeme
a za tepla ji vytáhneme) a místo ní vyvrtáme díru o ∅ asi 1 mm. Z tlustšího
ocelového plechu zhotovíme držák se
závitem M3 uprostřed, který se po naplnění tělíska pájecí pastou a vložení
pístu nasune na rozšířenou část tělíska. Píst se posouvá postupným šroubováním mosazného šroubu M3 délky

asi 75 mm, který je na konci opatřen vhodným knoflíkem.

Postup při používání připravku - na zúženou část tělíska nasadíme jehlu a otáčením šroubu je pístem pájecí pasta vytlačována hrotem jehly. Pájecí pasta musí být v prostoru tělesa

bez vzduchových bublin. Používáme pasty určené pro dávkování díspenzerem. Po skončení práce je třeba zpětným otočením šroubu zmenšit tlak v dávkovači, jinak se časem bude pasta "separovat".

Amatérská realizace plošných spojů pro SMT - pro amatérskou výrobu desek s plošnými spoji je možno použít běžné postupy výroby. Při realizaci malých desek s nepříliš hustými plošnými spoji je možno kreslit motiv spojů přímo na desku, v ostatních případech je třeba použít výrobu fotocestou. Filmovou matrici je možno zhotovit přímo ručním kreslením na vhodnou fólii (např. ASTRALON), případně ofotografováním na film, nebo na kopírce. V tom případě nesmíme zapomenout umístit na kresbu kontrolní rozměr (kvůli správnému zvětšení). Používáme-li k návrhu počítač, je možné předlohu zhotovit tiskem na laserové tiskárně. Při výrobě matric na kopírce (případně laserové tiskárně) je třeba dbát na dostatečnou "sytost" kresby a výběr vhodné fólie z hlediska tepelné roztažnosti a tepelné odolnosti. Používáme fólie, které jsou určeny pro laserové tiskárny a kopírky (mají patřičnou tepelnou odolnost), aby se zařízení nemohlo poškodit.

Jako základní materiál pro desky s plošnými spoji používáme výhradně materiál typu FR4 (např. UMATEX 222) tloušťky 0,8 až 1,5 mm. Nedoporučuje se používat příliš tenké materiály (i když jde o desku malé velikosti). Tenký materiál má zhoršený odvod tepla, při pájení se pájené místo přehřívá a může se odloupnout měděná fólie

Příklady konstrukcí realizovaných technikou SMT

Na závěr je uvedeno několik konstrukcí realizovaných technikou SMT. Jedná se o zapojení s časovačem 555, mnohokrát publikované většinou na stránkách AR. Časovač 555 je velice používaná a oblíbená součástka s širokými možnostmi použití. V provedení SMD se vyrábí v pouzdru SO-8 se shodným zapojením přívodů jako u klasického pouzdra.

V zapojeních byly použity rezistory a keramické kondenzátory typu 0805 nebo 1206, elektrolytické kondenzátory jsou tantalové. Desky s plošnými spoji jsou navrženy jako jednostranné bez prokovených děr. Při návrhu desek s plošnými spoji byl použit počítačový systém EAGLE 2.05 bez autorouteru.

Na obr. 94a, b je jak zapojení, taknávrh plošných spojů základního zapojení časovače 555 v astabilním módu. Na výstupu "výst" dostáváme signál pravoúhlého průběhu s amplitudou od nuly až do velikosti téměř U_n (napájecího napětí). Kmítočet oscilací je možno stanovit ze vztahu

$$f = \frac{1,44}{(R_1 + 2R_2) \cdot C_1}$$
 [Hz; Ω , F],

který závisí převážně na článku R_2 , C_1 (odpor rezistoru R_1 je proti odporu rezistoru R_2 velmi malý). Poměrem odporů R_1 a R_2 je určen poměr impuls//mezera. Součástky uvedené ve schématu jsou navrženy pro výstupní kmitočet 1 kHz. Zapojení je realizováno na jednostranné desce s plošnými spoji velikosti 14,6 x 25,5 mm.

Zapojení je možno použít jako samostatný zdroj obdélníkových kmitů a vzhledem k miniaturním rozměrům je ho možno vestavět do libovolného přístroje. Použité rezistory a kondenzátory jsou typu 1206.

Na obr. 95a, b je modifikované zapojení astabilního multivibrátoru z obr. 94, zapojeného jako převodník teplota-kmitočet. Místo rezistoru R₂ je

194 amatorile ADIO

B5 95

Obr. 93. Dávkovací zařízení pro nanášení pájecí pasty

Obr. 94. Astabilní multivibrátor s 555

zapojeno polovodičové teplotní čidlo KTY10 v pouzdru TO92, které má odpor 2 kΩ při 25 °C. Pro součástky, uvedené ve schématu, bude kmitočet při 25 °C asi 1 kHz. Je možno rovněž použít jiná teplotní čidla (např. KTY85 v pouzdru SOD 80). Dioda D

chrání obvod před přepólováním. Vzhledem k jeho malým rozměrům je možno celý převodník umístit do pouzdra sondy a v případě měření teploty mikropočítačem vhodným programem vyloučit teplotní závislost součástek a nelinearitu převodníku. Deska s plošnými spoji má rozměry 9,5 x 25,5 mm a je uzpůsobena pro umístění celé elektroniky do válcové sondy. Propojka mezi přívody 8 a 4 integrovaného obvodu je realizována rezistorem s nulovým odporem (R₀) v pouzdru 1206. Dioda D₁ je v použdře SOD 80, kondenzátor C1 je polyesterový v pouzdře 1812, ostatní pasívní součástky jsou v pouzdrech 1206.

Na obr. 96a, b je zapojení monostabilního klopného obvodu, který je spouštěn pravoúhlými nebo trojúhelníkovými impulsy. Tranzistor T₁ upravuje vstupni signál na potřebnou amplitudu. Timer (časovač) je zapojen jako monostabilní klopný obvod a je spouštěn impulsy na vstupu 2. Úroveň

výstupních impulsů lze nastavovat podle potřeby potenciometrem R_7 , šířku impulsů lze měnit potenciometrem R_6 a ve větším rozsahu změnou kapacity kondenzátoru C_3 . V tab. 20 jsou kapacity kondenzátoru C_3 pro různou šířku impulsů.

Obr. 95. Převodník teplota-kmitočet

Tab. 20. Kapacity kondenzátoru C₃ pro různou šířku impulsů pro zapojení na obr. 96

Kapacita kondenzátoru C3	Šiřka impulsů
10 μF	90 ms.až 1,2 s
1 µF	9 ms až 120 ms
100 nF	0,9 ms až 12 ms
10 nF	90 µs až 1,2 ms
1 nF	9 μs až 120 μs

Zapojení je možno použít jako generátor přídavných impulsů, doplňující běžný generátor. Desku s plošnými spoji je možno připájet přímo na přívody potenciometru R₆, případně R₇, který umístíme na čelní panel přístroje. Deska s plošnými spoji má rozměry 21,6 x 31,0 mm. Při návrhu byly použity pro pasívní součástky pouzdra 1206 a pro tranzistor pouzdro SOT23.

Na obr. 97a, b je zapojení časovače 555, který pracuje v bistabilním re-

b)

b)

žimu jako obvod, signalizující zmenšení napájecího napětí. Za normálního stavu, když je napětí baterie větší než minimální požadovaná úroveň, svítí svítivá dioda trvale. Při zmenšení napětí pod určitou úroveň začíná svítivá dioda blikat a se zmenšujícím se napětím se kmitočet blikání zvyšuje, až dioda přestane zcela svítit. Toho

Obr. 96. Generátor přídavných impulsů

amatorile ADI 195

95

Obr. 97. Indikace poklesu napětí

dosáhneme zapojením Zenerovy diody mezi vývod 7 a zem. O tom, zda svítivá dioda svítí nebo bliká, rozhoduje, zda 2/3 velikosti napájecího napětí jsou větší než Zenerovo napětí diody.

Dìoda D₂ slouží k ochraně obvodu proti přepólování. Při stanovení hranice blikání a stálého svitu je třeba počítat s úbytkem napětí na ní. Ve schématu jsou navrženy součástky tak, že při použití křemíkové diody proti přepólování a při napájecím napětí 9 V začíná svítivá dioda blikat asi od 6,8 V.

Zařízení je možno použít jako indikátor poklesu napájení baterie. Zapojení je realizováno na desce s plošnými spoji o rozměrech 11 x 24 mm. Rezistory jsou v pouzdrech 1206, diody v pouzdrech SOD 80. Kondenzátor C₁ je tantalový v pouzdře odpovídajícího typu. ANGLICKO-ČESKÝ SLOVNÍK SPECIÁLNÍCH VÝRAZŮ PRO SMT

active chip element aktivní čip active SMD aktivní SMD adhesion dispenser dávkovač lepidla ammo-pack muniční způsob bale-

assembling flat montážní ploška automatic inline planting pořadové automatické vsazování

automatic planting machine vsazovací automat

В

base material základní materiál ball bond termokompresní svar beam lead nosníkový vývod bed-of-nails propojovací deska blended double-sided mounting oboustranná smíšená mon-

blended mounting smíšená montáž blister-packing blistr, reliéfní pás board clamp příchytka desky breadboard pokusné zapojení

(obvodu) bump nálitek

butt lead vývod s čelním kontaktem

burn-in board zahořovací deska

C

carrier cap víčko nosiče cartridge plochý lineární zásobník case pouzdro castellation zoubkování (na pouz-

castellation zoubkování (na pouzdru)

centering station středicí stanice chip carrier nosič čipu chip element čip (viz též die) chip-on-board (COB) holý čip na desce

chip-on-flex (COF) čip na pružné podložce

clamshell oboustranný testovací přípravek

coat unit nanášecí jednotka conductive fixation vodivá fixace contact flat kontaktní ploška contact plane dosedací rovina cooling flat chladicí ploška cubic (shape) SMD SMD tvaru kvádru

customized vyrobený na objednávku

cylindric (shape) SMD válcová SMD

D

decal (transfer) obtisk device perforation součástková perforace device window součástkové

okénko dewettina odsmá

dewetting odsmáčení die čip

die paddle lůžko čipu directive lead bend direktivní ohyb vývodu

dosing unit dávkovací jednotka drop-off point bod odhazování (součástky) edge registration orientace na hranu embossed tape vymačkávaný pás excising SMD vyjímání SMD

E

fiducial orientační značka fiducial zero výchozí, nulová poloha

figure of merit poměrné číslo, citlivost

fillet kužel pájky

fine-pitch technology (FPT) technologie malých roztečí

flat-packs plochá plastová pouzdra flip-chip lícní čip footprint tvar, obrazec kontaktů

free packaging volné balení

G

gluer dávkovač lepidla gripper zachycovač guide perforation vodicí perforace gull wing lead vývod "L"

in-circuit test obvodová zkouška inner lead bonding (ILB) připojení vnitřních vodičů inner mould vnitřní zalisování

J

just-in-time (production) výrobní postup, při němž jsou potřebné součástky do továrny dodány přesně v dobu, kdy je jich zapotřebí

jog(ging) posuv, posouvání, krokování

.

land pájecí ploška (viz pad) land pattern šablona přípojných plošek

lap joint přeplátovaný spoj layout uspořádání, rozmístění, úprava

lead frame montážní rámeček leadless ceramic chip carrier (LCCC) bezvývodový keramický

nosič čipu

lead forming justování vývodu

learning curve křivka postupu při
osvojování znalostí

length of terminal projection zone délka průměru vývodu

linear magazine lineární zásobník

M

magazine x y souřadnicový zásobník

manual planting ruční vsazování
MELF připájení za čelní kovovou
elektrodu

metal coating film vrstva pokovení MIFI miniaturní feritová

indukčnost

modular chip mounting (MCM) modulová montáž mount podložka

mounting on conductive pattern montáž na vodivý obrazec

multilayer board (MLB) vicevrstvová deska s plošnými spoji negative mounting angle záporný montážní úhel non-conductive fixation nevodivá fixace, tmelení, lepení non-wetting nesmáčení off-the-shelf IC skladový integrovaný obvod outer lead bonding (OLB) připojení vnějších vodičů outer mould vnější zalisování overlap přesah, překrytí packaging on magazine balení v zásobníku on pressed carrier v tvarovém nosiči on reel na civce on tape v pásu pad pájecí ploška passive chip element pasivni čip pattern of terminal land areas kresba kontaktovací oblasti pick-and-place sekvenční osazování pick-up point bod nabírání (součástky) picker podávač pin grid array (PGA) kolíčkové vývody v šachovnicovém uspořádání pin registration orientace na kolík pin transfer nanášení (lepidla) špičkou placer zakladač plane of conductive pattern rovina vodivého obrazce planting vsazování planting device vsazovací součástka planting tolerance vsazovací odchylka plastic leaded chip carrier plastový vývodový nosič (PLCC) čipu plastic QFP (PQFP) plastové QFP plotting grafické zobrazení populate a board osadit desku positive mounting angle kladný montážní úhel prism SMD SMD tvaru kvádru

quader SMD SMD tvaru kvádru quad flat pack (QFP) čtverhranné ploché pouzdro

R
reference plane referenční rovina
reference plane distance vzdálenost referenční roviny
reflow soldering pájení přetavením
relation edge vztažná hrana
relation edge-gap odstup od

vztažné hrany

room temperature vulcanize (RTV) vulkanizace při pokojové teplotě

S scooper squeegee lopatkový roztírač

screen printing sítotisk semi-automatic planting poloautomatické vsazování

sequentic-automatic planting sekvenční automatické vsa zování

shipping tube transportní trubka SIMID miniaturní čipová indukčnost

simultaneous automatic planting simultánní automatické vsazování

single-sided mounting jednostranná montáž slide carrier posuvný nosič slight turning angle úhel natočení small outline large (SOL) velký SO

prvek

soldering plane rovina pájení solder levelling vyrovnávání, rozlití pájky

space tape krycí pásek squeegee roztírač, váleček stack magazine stohovací zásobník

stand-off height montážní odstup, výška

stick magazine tyčový zásobník surface mount component, device povrchově montovatelný prvek

surface of terminal projection plocha průmětu vývodu

T *technologic flat* technologická
ploška

terminal land area oblast kontaktování vývodu thermode termod tooling hole

technologický otvor
tool tips nástrojové hroty
thin small-outline package (TSOP)
tenké vsazovací pouzdro
tube magazine tyčový zásobník

underbrush cleaning čistění kartáčováním

W

wafer čip
waffle magazine plošný (souřadnicový, kazetový) zásobník
waffle packs kazetové (souřadnicové) zásobníky

width of terminal projection šířka průmětu vývodu **Z**

zero výchozí bod zone tape automated bonding (TAB) nezapouzdřený čip, kontaktovaný na filmovém nosiči zone wire bonding spojování vodičů

Seznam použité literatury

[1] Fanta, S.: SMT v praxi. Sdělovací technika, říjen 1994, s. 428.
 [2] Urbánek, J.; Vackář, J.: Technologie elektronických zařízení I. Skriptum VUT. Praha 1982.

[3] Der Stand der Technik - SMT. vydání 1/95, s. 58.

[4] The World of Surface Mount Technology. SIEMENS: Productronica 1994.

[5] AR B5/94, s. 176, 178.

[6] AR B3/92, s. 102.

[7] Surface Mount Technology, červenec 1993, s. 18 až 20. [8] Soutor, Z.; Šavel, J.; Žůrek, J.:

[8] Soutor, Z.; Savel, J.; Žůrek, J.: Hybridní integrované obvody. SNTL-ALFA 1982, s. 153-162, 105-106.

[9] Musil, V. a kolektiv: Konstrukce a technologie elektronických zařízení. Skriptum VUT Brno. PC-DIR Brno 12//1994, s. 169-197, 222-258.

[10] *Hájek, J.*: AA řada SMT, sv. 5. Praha 1992.

[11] Kocman, V.: Fyzika a technologie elektrotechnických materiálů. Skriptum VUT Brno 12/1971, s. 311-318, 358-359.

[12] Martinek, A.: Technologie povrchové montáže. AR A3/1991.

[13] SMD Technologie. Philips, srpen 1989, s. 35, 97-100.

[14] User Guide, Flint SMD. 7. vyd. 1992.
[15] Peters, W.: Fotosenzibilní nepájivé masky ELPEMER pro DPS. Sborník přednášek SMT-INFO 02/92, s. 27-32.
[16] Lea, C.: A Scientific Guide To Sur-

[16] Lea, C.: A Scientific Guide To Surface Mount Technology. Electrochemical Publications Ltd.: Scotland 1988.
[17] Richter, B.: Alles Über SMT. Elektronik Praxis 5/1990, s. 47-50.

INZERCE

Inzerci přijímá osobně i poštou Vydavatelství MAGNET-PRESS (inzerce AR-B), Jungmannova 24, 113 66 Praha 1, tel. (02) 24 22 73 84, (02) 24 22 77 23, tel./fax (02) 24 22 31 73. Uzávěrka tohoto čísla byla 16. 8., do kdy jsme museli obdržet úhradu za inzerát.

Cena za první započatý řádek je 44,- Kč, za každý další i započatý 22,- Kč. Platba je včetně daně z přidané hodnoty. Cena za plošnou inzerci se řídi velikostí inzerátu, za 1 cm² plochy je 29,- Kč, k ceně inzerátu se připočítává 22 % DPH. Nejmenší velikost plošného inzerátu je 54x40 mm. Za opakovanou inzerci poskytujeme slevy.

Text pište čitelně, aby se předešlo chybám, vznikajícím z nečitelnosti předlohy.

PRODEJ

Osciloskop C1-91 dvoukanál., 100 MHz, dvě čas. základny, měření *U, I, R.* Rastr 12x10 cm. Jiří Mejsnar, Štěpanická Lhota č. 42, 512 37 Benecko.

Sady SMD rezistorů a kondenzátorů

V dnešni elektronice postupne přechází výroba na povrchovou montáž. V amaterske i profesionalní praxi potřebujeme sem tam nějaké komponenty SMD

Přicházíme s nabídkou sad SMD rezistorů a kondenzátorů.

Sady jsou přehledně uloženy v plastových složkách, v "šanonech", dostupnost součástek je vyborná. Součástky jsou z výroby baleny v lepenkových páscích a podle požadovane dělky pásku jsou zasunuty v plastově složce.

U rezistoru jsou v sadě umístěny rezistory v řadě E24 od hodnoty l Ω do 3.3 M Ω + zkratovací propojky, tj. celkem l 58 hodnot v počtu 10, 25, 50 ks od jedne hodnoty podle velikosti sady. Při třech velikostech sady (A. AP. P) a třech rozměřech rezistoru (0603, 0805 a 1206) nabízíme 9 druhu rezistorových sad. Pásky jsou přehledně umístěny a označeny a u každé sady jsou přiloženy informace o vlasnostech rezistoru.

V sadách SMD kondenzátorů jsou podobným způsobem umístěny kondenzátory v řadě E6 od hodnoty 1 pF do 68nF. Protože u kondenzátorů dodáváme pouze jediny rozměr ()805 a nabízime opět tři velikosti sady 10, 25, 50 ks od jedné hodnoty, máme tak k dispozici 3 druhy kondenzátorových sad.

Sady menšího typu A či AP jsou vhodné pro radioamatéry, oprávaře a vývojové pracovníky menších firem. Sady P s největším počtem součástek od jedne hodnoty jsou vhodné pro vývojové pracovníky větších firem a pro prodejny, kde lze jednoduše vytvořit zásobu R a C v celé řadě a tak rychle reagovat na požadavky zákazníků.

SMD rezistory 0603, 0805, 1206

Sada obsahuje rezistory DRALORIC pro povrchovou montáž rozméru 0603, 0805 nebo 1206 v řadě E24. balené v lepenkových páscich.

Rozmě	ry rezisto	ru			Param	etry rezist	oru					
rozmer	J [mm]	š[mm]	v(mm) 0,45	p(mm) 0.25	rozmer	rozsah	vykon. zaużeni	tepi, koet.	tolerance	max. nap.	-	
0603 0805	1.6 2	0.8 1,25	0.45	0.4		[Ohm]	(W)	[ppm/•C]	1%1	[V]		
1206	3.1	1,55	0.43	0.45	0603	1.0-9.1	0.1	+500/-200	5	50		
	etry zkrat			•	0603	10-3.3M	0.1	200	5	50		1 /.
rozmer	•	x. odpor		ax. proud	0805	1.0-9.1	0.125	+500/-200	5	150		
04.02	-	[mΩ]		[A]	0805	10-3.3M	0.125	200	5	150	· u	غو
0603 0805.		50 50	•	2	1206	1.0-9.1	0.25	+500/-200) 5	200		•
1206	•	50		2	1206	10-3.3M	0.25	200	5	200		

SMD kondenzátory 0805

Sada obsahuje keramické kondenzatory pro povrchovou montáž rozměru 0805 v řadě E6, halené v lepenkových pascich, od hodnoty 1pF do 68nF.

Rozméry rozmér	kondenzatoru	š[mm]	v(mı	mj.	p(mm j	Par	_	ondenzátorů keram	ucká hmota dle	EIA	tolerance	(%)
0805	2	1,25	1.3	2	0.5	lpa	ź 680p		C0G		5	
						lna	ź 33n		X7R		10	
						47n	až 68n	•	Z5Ú		20	
-					Ceník	sad S	MD		•			
objedn. čislo	součástka	typ sady	počet kusu od hodnoty	rozmér	cena sady vė. DPH		obieda.	součástka	typ sady	počet kusů od hodnoty	rozmêr	cena sady vc. DPH
210101	rezistory	A603	10	0603	1073 Kč		210401	kondenzatory	A805C ''	10	0805	683 Kö
210102	rezistory	AP603	25	0603	2305 Kč		210402	kondenzatory	AP805C	25	0805	1451 Kč
210103	rezistorv	P603	50	0603	3843 Kč		210403	kondenzatory	P805C	50	0805	2366 Kč
210201	rezistory	A805	10	0805	1073 Kč					× ·		
210202	rezistory	AP805	25	0805	2305 Kč	Sad	y SMD d	lodává:				
210203	rezistory	P805	50	0805	3843 Kč		N	wl	FA	NDA elek	tronik s	. r. o.
210301	rezistory	A1206 -	10	1206	1073 Kč	_	23	FAND	A Tě	rlická 475	/22	
210302	rezistory	AP!206	25	1206	2305 Kč		23.	* ELEKTRO	NIK 73	5 35 Horn	í Suchá	
210303	rezistory	P1206	50	1206	3843. Kč		170	7		Vfax: 0699		2

"Kusovky" SMD rezistorů a kondenzátorů

Nabidka SMD rezistoru a kondenzatoru v EI 4/95 méla velký ohlas. Proto jsme se rozhodli rozšířit nabídku i pro "menší" zákazníky, takže bude možno zakoupit i jednotlivé kusy rezistoru a kondenzatoru.

Jednotlive kusy SMD rezistoru a kondenzatoru dodává firma GALVEOS. Těrlická 475/22, 735 35 Horní Suchá, Tel/fax: 06994/309 92 Rezistory jsou dodávany ve velikostech 0603, 0805, 1206 v hodnotách 1 Ω až 3M3 v řadě E24, kondenzátory ve velikosti 0805 v hodnotách 1 pF až 68 nF v řadě E6.

SMD rezistory	•	SMD kondenzátory		Dodává:
Počet ks od hodnoty	Cena s DPH za ks	Počet ks od hodnoty	Cena's DPH za ks	
1 + 49	1,80 Kč	1 + 9	2,80 Kč	Galveos■
50 ÷ 99	1,40 Kč	10 + 99	2,60 Kč	
100 + 999	0,85 Kč	100 + 999	2,40 Kč	
$1000 \div 3999$	0,65 Kč	1000 + 3999	2,20 Kč	GALVEOS
4000	0.35 Kč	`4000	1.95 Kč	Těrlická 475/22, 735 35 Horní Sucha
K vaná sa nějpočitáva j	ednotné voštovné a halné v	ue voiši 73.50 Kč.		Tel/fax: 06994/309 92

Edice příruček o technice povrchové montáže

Technika povrchové montáže je jedním z oborů, který se stále dynamicky rozvíjí. Díky opravdové úspoře materiálu, výrobního času a prostoru nachází stále širší uplatnění. Odborná literatura, zabývající se vážněji problematikou techniky povrchové montáže se v klasické knižní podobě u nás dosud neobjevila, kromě útlých modrých svazků SMT. Edice má název AA řada SMT a začala vycházet před několika lety. Za tu dobu vyšla více než desítka svazků, z nichž každý má do 20 stránek a stojí v současné době kolem 15 Kč.

Příručky SMT mají za úkol seznámit zájemce o tuto montážní techniku se součástkami a postupy, užívanými v SMT. Autor Ing. Hájek je odborník a "SMT nadšenec" v jedné osobě. Díky jemu přinášejí tyto příručky mnoho neocenitelných informací, které bychom jinde těžko hledali. Rozdělení na jednotlivé svazky, které na první pohled nebudilo důvěru, se ukázalo praktičtější. Jednak proto, že informace mohou být průběžně vydávány a aktualizovány a jednak si každý koupí ten svazek, který právě potřebuje.

obj.číslo		obsah svazku
120006	sv.1	Úvod do SMT
120007	sv.2	Tabulky diod
120008	sv.3	Tabulky tranzistorů
120009	sv.4	Zpětné tabulky polovodičů
120010	sv.5	Rezistory
120011	sv.6	Kondenzátory
120012	sv.7	Elektrolytické kondenzátory
120013	sv.8	Indukčnosti
120022	sv.9	Pájení
120105	sv.10	Tranzistory BC8xx
120125	sv.11	Potenciometrické trimry
120281	sv.12	Ker. kondenzátory Vitramon
120282	sv.13	Tantalové kondenzátory
120323	sv.14	Ker. kondenzátory Siemens
120387	sv.15	Elektrolytické kond. Philips

Připravují se další svazky: Další pasívní součástky, Experimentální plošné spoje, Aktivní součástky a integrované obvody, SMT pro konstruktéry a opraváře, ...

V prvních svazcích byly po všeobecném úvodu do techniky povrchové montáže zveřejněny porovnávací tabulky polovodičů, základní údaje o aktivních a pasívních součástkách SMD uspřádané přehledně do tabulek a nakonec přehled a základy používaných pájecích postupů. Od svazku 14 by měla být náplň edice zaměřena na uvádění konkrétních údajů o SMD součástkách, jejich vlastnostech a značení.

Distribucí se zabývá firma BEN technická literatura, v jejíž prodejně nebo zásilkové službě tyto svazky dostanete.

Knihy připravované nakladatelstvím BEN - technická literatura

MONOLITICKÉ -MIKROPOČÍTAČE

Publikace má poskytnout čtenáři základní přehledné informace tak, aby se orientoval v oboru a měl přehled o typech dostupných na našem trhu. Podrobné údaje je třeba čerpat z katalogů nebo příruček vydaných výrobcem ke konkrétnímu mikropočítači. Publikace je rozdělena do dvou částí. V první jsou teoreticky popsány vlastnosti, obvodová řešení a postupy používané v technice monolitických mikropočítačů (Architektura, rozdělení a technologie pro výrobu monolitických mikropočítačů, části monolitického mikropočítače, instrukční soubor, pouzdření, prostředky pro vývoj aplikací, aspekty použití). Druhá část stručně seznamuje s mikrořadiči nejvýznamnějších světových firem (INTEL, MOTOROLA, TI, NATIONAL SEMICONDUCTOR, DALLAS SEMI-CONDUCTOR, MICROCHIP, ZILOG, PHILIPS, SIEMENS, SGS-THOMSON, OKI, NEC, TOSHIBA, HITACHI, TE-MIC, ATMEL). Není podrobným výčtem, ale pouze přehledem jednotlivých typových řad hlavních výrobců. V závěru najdeme inzerci firem, které s monolitickými mikropočítači obchodují, prodávají programátory, mazačky, emulátory, poskytují technickou podporu či prodávají

Kniha by měla vyjít v průběhu měsíce září 1995, autor Stanislav Pechal, rozsah 250 stran B5, obj.č. 120488, MC 195 Kč.

OPERAČNÍ ZESILOVAČE

Kniha přináší vyčerpávající pohled na operační zesilovače a zapojení s nimi. Autor Ing. Punčochář je známý elektrotechnický specialista v tomto oboru.

Vyjde přibližně během zimy tohoto roku, rozsah do 300 stran B5 se spoustou obrázků a schémat, cena do 200 Kč.

Přehled diskrétních polovodičových součástek TESLA

Přehled či vlastně katalog polovodičových diskrétních prvků z celé produkce podniků TESLA vyjde ještě letos v tradičním velkém formátu A4.

POČÍTAČOVÁ ROZHRANÍ PŘENOS DAT A ŘÍDICÍ SYSTÉMY

Kniha seznamuje srozumitelnou formou se základními technickými a programovými prostředky řídicích systémů a probírá různé způsoby přenosu dat včetně jeho zabezpečení.

Názvy hlavních kapitol: Základní pojmy, Sériová rozhraní, Paralelní rozhraní, vnější paměťové prostředky, obvody řídicích systémů.

Khiha by měla vyjít v průběhu září. autor Ing. Vlach, rozsah 150 stran A5, obj.č. 110631, MC 99 Kč.

Přehled obvodů TTL

Tak jako vyšla kniha Přehled obvodů řady CMOS 4000, bude i tato příručka obsahovat základní vlastnosti a souhrné přehledy obvodů TTL.

Autor Petr Jedlička, rozsah díla bude upřesněn později, cena každého svazku by neměla přesáhnout 200 Kč.

Prodejna BEN - technická literatura (Věšínova 5, 100 00, Praha 10 - Strašnice, tel. 02 - 781 8412, 782 0211, fax 02 - 782 2775), kde si můžete uvedené knihy zakoupit nebo objednat na dobírku je pouhých 200 metrů od stanice metra "Strašnická".

Otevřeno Po - Pá 9 až 18 hod. a nově v sobotu 9 až 13 hod.

Vážení čtenáři, v tomto čísle Amatérského rádia pro konstruktéry jste se dozvěděli mnohé o technologii povrchové montáže. My vám zde nabízlme výrobu vašich obvodů pomocí této technologie nebo také tlustovrstvé hybridní technologie. Vzhledem k mnohaletým zkušenostem vám nabízime výrobu na profesionální úrovni, ve vysoké kvalitě a za výhodné ceny. Nabízime také rychlé uspokojení vašich požadavků bez ohledu na to, zda sè jedná o velká nebo kusová množství obvodů. Pro informaci dále uvádíme některé parametry technologií, které u nás používáme.

POVRCHOVÁ MONTÁŽ - SMT

Použití: pro elektronické obvody s malými rozměry, spolehlivé, pro nf i vf účely, vhodné pro automatizovanou výrobu, kombinovanou montáž Rozměry substrátu: max šiře 250mm, délka pro nanášení pasty 450mm Vsazované součástky: rezistory: SMĎ od rozměru 0603, melf, minimelf

kondenzátory: od rozměru 0603 akt. součástky: SOT, SOD, SO, PLCC, FlatPack, melf, minimelf atd.

Nanášení pájecí pasty: sítotisk, šablonový tisk, ruční dispens

Nanášení lepidla: automat. dispens, ruční dispens, sítotisk, šablonový tisk Osazování: SMD součástky osazujeme do cínové pasty nebo lepidla,

osazujeme pracovištém DIMA, větší série automatem (2 osazovací hlavy, 1 dispenzní, 120 zásobníků, vibrátory, natočení souč. po 1,5°, maximální osazovací plocha 457x356 mm., 3000 součástek/hod)

Vytvrzování lepidla: průběžná sušící pec, 3 zóny, nastavený teplotní profil Pájení: pec Reflow, 3 nezávislé zóny, šířka pásu 300 mm, vlna pro SMD i vývodové součástky

Mytí: podle přání zákazníka (ultrazvuk, Prozon, Perchlor, Izopropylalkohol, demineralizovaná voda, vyvařování)

HYBRIDNÍ TECHNOLOGIE

Použití:miniaturní elektronické obvody, tepelně namáhané, s přesnými pasivními sítěmi, pro nf i vf účely, s požadavkem na aktivní kalibraci, pro levné zákaznické obvody,

Substrát: korundová keramika, řezání a rýhování laserem max. 90x60 mm Součástky: tisknuté rezistory: běžně od 1Ω do 10MΩ, kalibrované na libovolnou hodnotu s přesností až 0,5%, nejmenší rozměr 1x1 mm vsazovací rezistory a kond.; od rozměru 0603, melfy, minimelfy aktivní součástky: nepouzdřené čipy, vsazovací SMD

Kalibrace rezistorů: laserem, aktivní í pasivní trimování Vodivé vrstvy: až 4 vodivé vrstvy, křížené spoje, prokovené otvory Nanášení pasty, osazování a pájení: stejné jako u povrchové montáže Vývody: ploché, páskové, přímé, zahnuté, rozteč 1,27; 2,5; nebo 2,54 Pouzdření: fluidní hmota, polyuretanový lak, polymerová krycí hmota, polovodičový tmel

Mytí: dle technologických postupů na mycí lince

Další operace: lepení nepouzdřených čipů, kontaktování čipů Termosonic zlatem 22μm, 25μm

Obě tyto technologie je možno vzájemně kombinovat za účelem dosažení co nejlepších vlastností a spolehlivosti obyodu při nízkých nákladech. Abychom vám mohli obratem odpovědět na vaši poptávku na výrobu elektronických obvodů povrchovou, klasickou či smíšenou montáží, potřebujeme znát velikost plošného spoje, množství a druhy osazovaných součástek, požadavky na mytí a připadné výstupní měření a předpokládané množství vyráběných kusů. Plošný spoj vám také můžeme navrhnout z dodaného schématu.

Pro vypracování nabídky na vývoj a výrobu zákaznického hybridního integrovaného obvodu potřebujeme znát schéma obvodu, požadavky na rozměry a rozložení vývodů, klimatickou odolnost, výstupní měření a předpokládaný odběr. Možná vás překvapí, že vývoj zákaznického HIO se vyplatí i pro velmi malé množství vyráhěných kusů. Vývoj běžného obvodu trvá 2 až 4 týdov.

pro velmi malé množství vyráběných kusů. Vývoj běžného obvodu trvá 2 až 4 týdny.
Pomocí technologií, které zde uvádíme, vyrábíme také KRYSTALOVÉ OSCILÁTORY, teplotně kompenzované, termostatované, napětím řízené apod. Rádi vám zašleme náš katalog oscilátorů. Hybridní technologii využíváme především při výrobě NÍZKOFREKVENČNÍCH AKTIVNÍCH FILTRŮ a ZÁKAZNICKÝCH HYBRIDNÍCH INTEGROVANÝCH OBVODŮ.

HC electronics s.r.o. Okružní 1144 500 80 Hradec Králové

tel: 049/411 77 fax: 049/411 77

Oba autoři tohoto čísla AR řady B, ing. Jiří Starý a ing. Josef Šandera jsou členy sdružení SMT plus, které zajišťuje osazování a pájení menších sérií desek s plošnými spoji, zhotovených jak technikou klasickou, tak plošné montáže (strojní pájení vlnou a přetavením), návrhy desek s plošnými spoji, opravuje technologická zařízení firem PACE a DIMA a zabývá se poradenskou činností v oblasti montážních technologií.

Sdružení připravuje výrobu technologických zařízení pro povrchovou montáž (regulovatelná mikropáječka, dispenzer a jednoduché osazovací raménko). V současné době jsou již k dispozici zařízení, vyobrazená na protější straně obálky (přípravek k měření součástek SMD a vakuové pinzety).

Ve snaze překlenout nedostatek informací a praktických znalostí v tomto oboru jsou připraveny pravděpodobně na začátek prosince t. r. v Brně jednodenní praktické kursy povrchové montáže. Budou se konat dva typy kursů, jeden podá základní informace o SMT (včetně oprav) po názvem Praktické základy SMT a je určen pro vývojáře, technology, mistry ve výrobě a ostatní zájemce, druhý bude specializován na opravy desek osazených technikou plošné montáže.

Dále bychom chtělí upozornit na již několík let v Brně pořádané odborné semináře, které se zabývají problematikou SMT, na níchž se několikrát ročně scházejí odbornící a zástupci naších i zahraničních firem (pořádá SMT Info Brno).

V případě zájmu o všechny nebo některé z nabízených služeb se lze obrátit o podrobnější informace na ad-

SMT plus, Purkyňova 99, 612 45 Brno tel./fax (05) 46 21 48 84, tel. (05) 46 21 16 80

