This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

M142052

4,05.97

日本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1996年 3月29日

REC'D 02'JUN 1997.
WIPO PCT

出 願 番 号 Application Number:

平成 8年特許願第103548号

出 願 人 Applicant (s):

日本ゼオン株式会社

PRIORITY DOCUMENT

1997年 5月 2日

特許庁長官 Commissioner, Patent Office

【書類名】 特許願

【整理番号】 PNZ96-0048

【提出日】 平成 8年 3月29日

【あて先】 特許庁長官殿

【国際特許分類】 C12N 15/00

【発明の名称】 新規な融合タンパク質、その遺伝子、組み換えベクター

、及び組み換えウイルスとその利用

【請求項の数】 13

【発明者】

【住所又は居所】 神奈川県川崎市川崎区夜光1-2-1 日本ゼオン株式

会社 総合開発センター内

【氏名】 斉藤 修治

【発明者】

【住所又は居所】 神奈川県川崎市川崎区夜光1-2-1 日本ゼオン株式

会社 総合開発センター内

【氏名】 津崎 芳成

【発明者】

【住所又は居所】 神奈川県川崎市川崎区夜光1-2-1 日本ゼオン株式

会社 総合開発センター内

【氏名】 柳田 昇

【特許出願人】

【識別番号】 000229117

【氏名又は名称】 日本ゼオン株式会社

【代表者】 中野 克彦

【手数料の表示】

【納付方法】 予納

【予納台帳番号】 033684

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【物件名】 図面 1

【書類名】 明細書

【発明の名称】 新規な融合タンパク質、その遺伝子、組み換えベクター、及び 組み換えウイルスとその利用

【特許請求の範囲】

【請求項1】 マイコプラズマ・ガリセプティカムの抗原性を有するポリペプチドとヘルペスウイルスの外膜タンパク質由来のポリペプチドとを含む融合タンパク質であって、外膜タンパク質由来のペプチドがマイコプラズマ・ガリセプティカムの抗原性を有するポリペプチドのN末端側に連結していることを特徴とする融合タンパク質。

【請求項2】 融合外膜タンパク質が、鳥類に感染性を示すヘルペスウイルス由来である請求項1記載の融合タンパク質。

【請求項3】 融合外膜タンパク質が、マレック病ウイルス由来である請求項2記載の融合タンパク質。

【請求項4】 融合外膜タンパク質が、マレック病ウイルス由来gBタンパク質である請求項3記載の融合タンパク質。

【請求項5】 融合外膜タンパク質が、ヘルペスウイルス由来の膜タンパク質のシグナル配列部分である請求項1記載の融合タンパク質。

【請求項6】 融合外膜タンパク質が、鳥類に感染性を示すヘルペスウイルス由来の膜タンパク質のシグナル配列部分である請求項5記載の融合タンパク質

【請求項7】 シグナル配列部分が、マレック病ウイルスの外膜タンパク質 由来のシグナル配列部分である請求項5記載の融合タンパク質。

【請求項8】 融合外膜タンパク質が、マレック病ウイルス由来gBタンパク質のシグナル配列部分である請求項5記載の融合タンパク質。

【請求項9】 請求項1~8記載の融合タンパク質をコードするハイブリッドDNA。

【請求項10】 請求項1~8記載の融合タンパク質をコードするDNAを 組み込んだ組み換えベクター。

【請求項11】 請求項1~8記載の融合タンパク質をコードするDNAを

組み込んだ組み換えアビポックスウイルス。

【請求項12】 請求項1~8記載の融合タンパク質をコードするDNAを 組み込んだ組み換えアビポックスウイルスを有効成分とした抗家禽マイコプラズ マガリセプティカム感染症用組み換え生ワクチン。

【請求項13】 請求項3または4記載の融合タンパク質をコードするDNAを組み込んだ組み換えアビポックスウイルスを有効成分とした抗家禽マイコプラズマガリセプティカム感染症、および抗マレック病感染症用組み換え三価生ワクチン。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】

本発明は、マイコプラズマ・ガリセプティカム抗原性ポリペプチドとヘルペスウイルス属外膜タンパク質由来のポリペプチドとの融合タンパク質、当該融合タンパク質をコードするハイブリッドDNA、及び当該ハイブリッドDNAを含有する組み換えアビポックスウイルスと、それを利用したワクチンに関する。

[0002]

【従来の技術】

マイコプラズマ・ガリセプティカム(Mycoplasma gallise pticum;以下、MGという)は鶏を含む家禽の産卵率低下や孵化率低下の原因菌であり、全世界に広く蔓延しており、養鶏業界に多大なる被害を及ぼしている。現在、その予防方法として不活化ワクチンや生ワクチンが利用されているが、前者の場合は接種方法が煩雑であったり、免疫持続期間が短く、高価であるなどの欠点がある。後者は、他の生ワクチンの併用によって予期せぬ疾病が現れる欠点がある。また、不活化ワクチン、生ワクチンともにMG感染の迅速な検出方法であるMG凝集反応を使えないデメリットがある。

[0003]

そこで、MGの感染防御抗原タンパク質などの、MG由来のタンパク質を遺伝 子工学的技術で生産させてワクチンとして利用することが期待されている。

MG抗原の遺伝子工学的製造は、大腸菌や酵母を用いた系(特開平2-111

795公報など)では、発現させるタンパク質の種類によっては発現量が少ない他、宿主由来のタンパク質の混入や発熱性物質の除去が難しいなどの問題が指摘されている。このため、組み換えウイルスを用いた抗原タンパク質の製造や組み換え生ワクチンの研究が進められている。

組み換えウイルスによる異種遺伝子の発現例は、多くの場合、真核生物の遺伝子もしくはウイルス遺伝子を発現させているため、糖鎖の付加や発現様式などが感染細胞のタンパク発現メカニズムと同じで、in vivoにおける発現タンパク質にたいする抗体価の誘導が比較的容易であった。しかし、原核生物遺伝子を組み換えウイルスで発現させた例は少なく、真核生物との発現様式の違いから効果的に特異抗体を誘導するとは言い難かった(Austenら、 Protein Targeting and Selection、Oxford Univ. Press. (1991))。

[0004]

また、MGに関しては、当該タンパク質をコードする遺伝子を組み込んだ組み換えウイルスは、特開平5-824646号公報、特開平7-133295号公報、WO94/23019号公報等で知られている。なかでも、WO94/23019号公報には、ニューカッスル病ウイルス(以下、NDVという)のHN遺伝子のシグナル膜アンカー部分の遺伝子とMG抗原遺伝子を繋げてウイルス膜アンカー領域を持つMG抗原タンパク質を発現する組み換えウイルスを、組み換え生ワクチンとして接種するとMG抗原遺伝子単独を発現する組み換えウイルスより効率よく抗体を誘導することが確認されている。

しかしながら、この程度では十分なワクチン効果は必ずしも期待できない。

従って、さらに抗原認識性を上げる方法を見出すことが、効果的な抗MG感染 症用ワクチンの開発に急務である。

[0005]

ところで、外膜タンパク質は、前述したNDV以外にも、ヘルペスウイルス属などにおいても、外膜タンパク質が知られている。例えば、単純ヘルペスウイルスの糖タンパク質B(gB)、C(gC)、D(gD)、H(gH)、I(gI)やマレック病ウイルス(以下、MDVという)の単純ヘルペスウイルス糖タン

パク質B、C、D、H、Iに相当するgBh、gCh、gDh、gHh、gIh、及び上記タンパク質とホモロジーを有するヘルペスウイルス属のタンパク質でなどは、その塩基配列やアミノ酸配列も知られている。また、これらのタンパク質の一部は単純ヘルペスウイルスの中和抗体を誘導する事が知られている(Delucaら、Virology、122、411-423(1982))。また、これらのタンパク質をコードする遺伝子をワクシニアウイルスに組み込んで、発現させることにより中和抗体を誘導する事も知られている(Blacklawsら、Virology、177、727-736(1990))。

しかしながら、これらヘルペスウイルス属の外膜タンパク質のシグナル配列を 活用することは十分に検討されていなかった。

[0006]

【発明が解決しようとする課題】

本発明者らは、かかる従来技術の下で、高い感染防御活性を有するマイコプラズマ抗原タンパク質を大量に発現し、宿主側に高度に抗原認識させることのできる組み換えウイルスを得るべく鋭意努力した結果、ヘルペスウイルス属の外膜タンパク質DNAにマイコプラズマ抗原タンパク質DNAを連結させたハイブリッドDNAを組み込んだ組み換えアビポックスウイルスを、宿主に感染させることにより宿主側の抗原認識能を飛躍的に向上させ得ることを見いだし、本発明を完成するに至った。

[0007]

【課題を解決するための手段】

かくして本発明によれば、マイコプラズマ・ガリセプティカムの抗原性を有するポリペプチド(以下、マイコプラズマ由来のポリペプチドということがある)とヘルペスウイルスの外膜タンパク質由来のポリペプチド(以下、ヘルペスウイルス由来のポリペプチドということがある)とを含む融合タンパク質であって、外膜タンパク質由来のポリペプチドがマイコプラズマ・ガリセプティカムの抗原性を有するポリペプチドのN末端側に連結していることを特徴とする融合タンパク質、当該融合タンパク質をコードするハイブリッドDNA、当該ハイブリッドDNAを組み込んだ組み換えアビポックスウイルス、および当該組み換えアビポ

ックスウイルスを有効成分とする生ワクチンが提供される。

以下に、本発明を詳述する。

[0008]

(マイコプラズマ由来のポリペプチドとその遺伝子)

ここで、マイコプラズマ由来のポリペプチドとは、MG免疫血清またはMG感染血清と抗原抗体反応を呈し、MGに由来する抗原タンパク質であるが、これらは天然のマイコプラズマ・ガリセプティカムが発現するタンパク質そのものである必要はなく、例えば1または2以上のアミノ酸が自然に、または人工的に例えば位置特異的変異など公知の手法(特公平6-16709号公報など)により欠損・付加・挿入・脱落・置換などの修飾を受けているタンパク質であってもよい。もちろんこのような変異によっても抗原性を示すエピトープが含まれていることは必要である。尚、エピトープ領域の決定は、ペプスキャン法に基づくGeysenらの方法(J. Immunol. Meth.、102、259-274(1987))、Hoppらの方法(Proc. Natl. Acad. USA、78、3824-3828(1981))、Chouらの方法(Advancesin Enzymology 47、145-148(1987))など公知の方法を用いることができる。

[0009]

このような抗原性を有するペプチドの具体例として特平開1-111795号公報、特開平5-824646号公報、WO94/23019号公報に記載された抗原タンパク質やそのタンパク質のアミノ酸配列を含むマイコプラズマ・ガリセプティカムのタンパク質などが例示され、もちろん、エピトープが含まれる限りこれらの一部であってもよい。

これらのなかでも、特開平5-824646号公報に記載されている約40キロダルトンのポリペプチド、特表平6-521927号公報に記載されている約66キロダルトンのTM-66遺伝子によってコードされたポリペプチド(当該公報の配列番号16)や約67キロダルトンのTM-67遺伝子によってコードされたポリペプチド(当該公報の配列番号27)などが好ましい。

[0010]

本発明においてマイコプラズマ由来のポリペプチドの遺伝子は、上述したマイコプラズマ・ガリセプティカムの抗原性を有するポリペプチドをコードするDNA配列を含むものであり、このようなDNAは、合成するか、または天然のマイコプラズマ・ガリセプティカムに属する細菌(具体例としてはR株、S6株、KP-13株、PG31株など)などから得ることができる。野外から分離されたMG由来のDNAでもよい。もちろん、これらの遺伝子を公知の手法(Methods in Enzymologyなど)により欠損・付加・挿入・脱落・置換などの修飾をしてもよい。

[0011]

(ヘルペスウイルス由来のポリペプチドとその遺伝子)

本発明で言うヘルペスウイルス由来のポリペプチドとは、ヘルペスウイルス属ウイルスのエンベロープを構成するタンパク質由来のポリペプチドであるが、このタンパク質全長である必要はなく、融合タンパク質として細胞膜に呈示させることのみを目的とする場合は、膜アンカーとシグナル配列を含み、分泌を目的とする場合などはシグナル配列のみであってもよい。また、外膜タンパク質はタイプI外膜タンパク質、タイプIIの外膜タンパク質のどちらでもよく、そのシグナル配列、膜アンカー配列はアミノ末端もしくはカルボキシル末端の疎水性ペプチド領域のアミノ酸配列を解析する事により、容易に見いだすことが可能である

外膜タンパク質の具体例としては、例えば、単純ヘルペスウイルスの糖タンパク質gB、gC、gD、gH、gIやマレック病ウイルス(以下、MDVという)の単純ヘルペスウイルス糖タンパク質gB、gC、gD、gH、gIに相当するgBh、gCh、gDh、gHh、gIh、及び上記タンパク質とホモロジーを有するヘルペスウイルス属のタンパク質等が挙げられる。

もちろん、外膜タンパク質のシグナル配列以外のエピトープを含むポリペプチ ドを前記抗原性を有するポリペプチドに連結させれば、このエピトープが生体内 で生体に免疫を付与することも期待できる。

[0012]

本発明においてマイコプラズマ由来のポリペプチドの遺伝子は、上述したヘル

ペスウイルス由来のポリペプチドをコードするDNA配列を含むものであり、このようなDNAは、合成するか、または天然のヘルペスウイルスから得ることができる。もちろん、これらの遺伝子を公知の手法(Methods in Enzymologyなど)により欠損・付加・挿入・脱落・置換などの修飾をしてもよい。

[0013]

(融合タンパク質とハイブリッドDNA)

本発明の融合タンパク質は、後述するハイブリッドDNAを組み込んだ組み換えアビポックスウイルスを鶏胎児線維芽細胞(以下、CEF細胞という)や発育鶏卵しょう尿膜細胞などにて培養し得ることができる。

得られた融合タンパク質は、コンポネントワクチンとして用いることも可能で ある。

[0014]

本発明のハイブリッドDNAは、上記該マイコプラズマ由来のポリペプチドの遺伝子とヘルペスウイルス由来のポリペプチドの遺伝子とが直接、又は任意のDNA配列を介して連結されたものである。

このハイブリッドDNAは、常法、例えばヘルペスウイルスの外膜タンパク質をコードするDNAまたは外膜タンパク質のシグナル配列をコードするDNAと、マイコプラズマ・ガリセプティカムの抗原タンパク質をコードするDNAとが結合可能な制限酵素切断断片となるようにし、両者をリガーゼで連結する方法や適当なリンカーを挟んで両DNAをリガーゼで連結する方法などによって作製される。

本発明の融合タンパク質のアミノ酸配列の具体的な例としては、配列番号2および4記載のものが例示される。マイコプラズマ・ガリセプティカム由来の40キロダルトンの抗原タンパク質の配列は、配列番号2中、第64~456番目、配列番号4中、第688~1081番目であり、配列番号2中、第1~63番目は、MDV由来の外膜タンパク質gBのシグナル配列であり、配列番号4中、第1~667番目は、MDV由来の外膜タンパク質gBのほぼ全長である。これらの融合タンパク質をコードするハイブリッドDNAの塩基配列の具体例としては

、配列番号1および3記載のものが例示される。

もちろん、本発明において融合タンパク質及びハイブリッドDNAはこれに限 定されるものではない。

[0015]

(組み換えアビポックスウイルス)

本発明の組み換えアビポックスウイルスは、アビポックスウイルスの非必須領域に上述のハイブリッドDNAを組み込んだ組み換えアビポックスウイルスである。本発明の組み換えアビポックスウイルスの構築方法は常法に従えば良く、例えば特開平1-168279号公報に記載の方法に従えばよい。すなわち、まずアビポックスウイルスの非必須領域に組み込んだ第一の組み換えベクターが構築される。

[0016]

本発明で用いるアビポックスウイルスの非必須領域は、クエイルポックスウイルスのTK領域、七面鳥ポックスウイルスのTK遺伝子領域や特開平1-168279号公報に記載されたDNA断片が挙げられ、好ましくは、前記公報記載の約7.3KbのEcoRI断片、約5.2KbのHindIII断片、約5.0KbのEcoRI-HindIII断片、約4.0KbのBamHI断片と相同組み換えをおこす領域である。

本発明で用いるベクターとしては、例えばpBR322、pBR325、pBR327、pBR328、pUC7、pUC8、pUC9、pUC18、pUC18、pUC19などのプラスミド、λファージ、M13ファージなどのファージ、pHC79などのコスミドなどが挙げられる。

[0017]

本発明で用いられるアビポックスウイルスは鳥類に感染するウイルスであれば特に限定されない。このようなウイルスの具体例としては、ピジョンポックスウイルス、フォウルポックスウイルス(以下、FPVという)、カナリーポックスウイルス、七面鳥ポックスウイルスなどが例示されるが、好ましくはピジョンポックスウイルス、FPV、七面鳥ポックスウイルス、より好ましくは、ピジョンポックスウイルス、FPVである。とりわけ好ましいアビポックスウイルスの具

体例としては、ATCC VR-251、ATCC VR-249、ATCC VR-250、ATCC VR-229、ATCC VR-229、ATCC VR-229、ATCC VR-229、ATCC VR-288、西ヶ原株、泗水株、CEVA株、CEVA株由来のウイルスのうち鶏胚線維芽細胞に感染したときに大きいプラークを形成するウイルス株などのごときFPVや、NP株 (鶏胎化鳩痘毒中野株)などのように鶏痘生ワクチン株として使用されるFPVと近縁のウイルスなどが例示される。これらの株はいずれも市販されているなど、容易に入手することができる。

[0018]

ついで、前記第一の組み換えベクターの非必須領域内に本発明のハイブリッド DNAを組み込んだ第二の組み換えベクターを構築する。通常、ハイブリッドD NAは、合成天然を問わず、アビポックスウイルスが保有する転写の系でプロモ ーターとして有効に機能するものであればいかなる塩基配列のものでもよく、チ ミジンキナーゼをコードするアビポックスウイルス由来遺伝子のプロモーターな どのアビポックスウイルス固有のプロモーターはもちろんのこと、アビポックス ウイルス以外のウイルス由来のDNAや真核生物、原核生物どちら由来のDNA であっても、上記条件を満たす限りにおいては当然本発明に使用可能である。こ のようなプロモーターの具体例としては、例えばJournal of Vir ology、51、662-669頁(1984年)に例示されるようなVVの プロモーター、具体的には7.5Kポリペプチドをコードする V V 遺伝子のプロ モーター、19KポリペプチドをコードするVV遺伝子のプロモーター、42K ポリペプチドをコードするVV遺伝子のプロモーター、チミジンキナーゼをコー ドするVV遺伝子のプロモーター、28KポリペプチドをコードするVV遺伝子 のプロモーターなどが例示される。また、Mossらの文献 J. Mol. Bio 1.、210、49-76頁、771-784頁、1989年)を参考にした合 成プロモーター、Davidsonの合成プロモーターや、その一部をプロモー - ター活性が喪失しない範囲での削除、変更などにより改変されたもの(例えば、 TTTTTTTTTTGGCATATAAATAATAATAAATACA ATAATTAATTACGCGTAAAAATTGAAAAACTATTCT AATTTATTGCACTC, TTTTTTTTTTTTTTTTTTTG GCATATAAATAATAAATACAATAATTAATTACGCGT AAAAATTGAAAAACTATTCTAATTTATTGCACTCなど) を用いることもできる。

[0019]

また、組み換えウイルスの検出が容易であるという点から、βーガラクトシダーゼをコードするDNAなどのマーカー遺伝子も組み込むことができる。

組み換えアビポックスウイルスの作製は、予めアビポックスウイルスを感染させた動物培養細胞に上記の第二の組み換えベクターを移入し、ベクターDNAとウイルスゲノムDNAとの間で相同組み換えを起こさせればよい。ここで用いられる動物培養細胞は、アビポックスウイルスが増殖可能なものであればよく、その具体例としてはCEF細胞はや発育鶏卵しょう尿膜細胞などが例示される。

宿主細胞に感染しているウイルスからプラークハイブリダイゼーションなどの 方法により目的とする組み換えアビポックスウイルスを単離する事ができる。

[0020]

(生ワクチン)

上記の方法によって構築された本発明の組み換えウイルスは抗マイコプラズマ ・ガリセプティカム感染症生ワクチンとして鳥類に接種することができる。

本発明の生ワクチンの調整方法は特に限定されないが、例えば、次の方法によって調製される。本発明の組み換えウイルスを該ウイルスが生育することができる細胞(以下、宿主細胞という)に感染させ、増殖させたのち、細胞を回収し、破砕する。この細胞破砕物を遠心分離によって沈殿物と組み換えウイルスを含有する高力価上清とに分離する。得られた上清は実質的に宿主細胞を含まず、細胞培養培地と組み換えウイルスを含んでおり、生ワクチンとして使用することができる。この上清には薬理学的に問題のないキャリアー、例えば生理食塩水などを添加し、希釈することもできる。また、この上清は凍結乾燥しても生ワクチンとして使用できる。本発明の生ワクチンの家禽への投与法は特に限定されず、例えば皮膚に引っかき傷を付けて生ワクチンを接種する方法、注射により接種する方法、飼料や水に混合し経口投与する方法、エアロゾルやスプレーなどにより吸入させる方法などが挙げられる。生ワクチンとして使用するには、通常の生ワクチ

ンの使用方法と同等でよく、例えばニワトリー羽あたり10²から10⁸プラークフォーミングユニット(以下、PFUという)程度を接種する。注射による場合、通常0.1ml程度の生理食塩水などの等張溶媒に本発明の組み換えウイルスを懸濁して用いることができる。本発明の生ワクチンは、ふつうの条件下では凍結乾燥すればよく、室温での保存が可能である。また、ウイルスの懸濁液を-20から-70℃下で凍結させ保存する事も可能である。

[0021]

特に、前記ヘルペスウイルスの外膜タンパク質由来のポリペプチドをコードする遺伝子が、ヘルペスウイルスのエピトープが1以上、好ましくは天然の外膜タンパク質との相同性が90%以上のポリペプチドをコードするものである場合、本発明の生ワクチンは、マイコプラズマ・ガリセプティカム感染症とアビポックスウイルス感染症に対するワクチンとして機能するのほか、外膜タンパク質の由来となるヘルペスウイルスの感染症に対しても有効なワクチンとして機能する、いわゆる三価のワクチンとして用いることができる。

[0022]

【発明の効果】

本発明によれば、マイコプラズマ・ガリセプティカムの抗原タンパク質由来のポリペプチドとヘルペスウイルスの外膜タンパク質由来のポリペプチドとの融合タンパク質が得られ、この融合タンパク質は抗マイコプラズマ感染症、抗鶏痘、抗マレック病ワクチンとして有用である。また、当該融合タンパク質をコードするハイブリッドDNAを利用することにより、マイコプラズマ・ガリセプティカム抗原タンパク質を宿主細胞表面に効率よく提示するばかりでなく、細胞外に分泌して宿主の抗原認識担当細胞に効果的に認識されるアビポックスウイルスが得られ、該組み換えアビポックスウイルスは強力な抗マイコプラズマ感染症ワクチンとして有用である。

[0023]

【実施例】

(実施例1)マレック病ウイルスのgB遺伝子のシグナル直後へTTM-1タンパク質DNAが連結したハイブリッドDNAを有する組み換えpNZ40K-S

の構築(図1、2、3参照)

まず、特開平6-78764 号公報に開示されている、マレック病ウイルスの g B 遺伝子を含むプラスミド p U C g B を制限酵素 B a m H I と S a 1 I で切断 し、3. 9 k b の断片を回収した。

これとは別に、pUC18のHindIII-SalI部位にプラスミドpNZ1729R (Yanagidaら、J. Virol.、66、1402-1408 (1992))をHindIIIとSalIとで消化して得られた約140bpのDNA断片を挿入し、さらにHindIII-PstI部位に合成DNA(5'-AGCTGCCCCCCGGCAAGCTTGCA-3')を挿入し、次にSalI-EcoRI部位に合成DNA(5'-TCGACATTTTAATGTGTAC-3')を挿入し、最後にSacI-EcoRI部位に合成DNA(5'-AATCGGCCGGGGGGGCCCAGCT-3')を挿入して、プラスミドpGTPsを構築した。

得られたpGTPsを制限酵素SalIとBamHIで開裂させ、リガーゼで前出の3.9kbの断片と連結し、pGTPsMDgBを取得した。次に、WO94/23019号公報特許に開示のpNZ2929XM1をEcoRIで切断し、740bpの断片を回収したのちT4 DNA ポリメラーゼで末端を平滑化した。pGTPsMDgBもXbaIで開裂させた後、T4 DNA ポリメラーゼで末端を平滑化した。pGTPsMDgBもXbaIで開裂させた後、T4 DNA ポリメラーゼで末端を平滑化し、末端平滑化した740bp断片とリガーゼによって連結して、新たプラスミドを構築した。この新たなプラスミドをBglIIとSalIで切断して3.0kbの断片を回収し、pNZ2927XM1のBglIIとSalIで切断した1.1kbの断片とリガーゼによって連結し、マレック病ウイルスのgB遺伝子のシグナル配列部分のC末端にTTM-1遺伝子のN末端が連結したプラスミドが得られた。

最後に、pGTPs40K-SをSalIとBamHIで切断した1.4kbを、SalIとBamHIで開裂させたプラスミドpNZ1829R断片(9.3kb)とリガーゼによって連結し、目的の組み換え用プラスミドpNZ40K-S(10.7kb)を取得した。

[0024]

(実施例2)マレック病ウイルスのgB遺伝子のC末にTTM-1タンパク質DNAが連結したハイブリッドDNAを有する組み換え用プラスミドpNZ40K-Cの構築(図4、5、6参照)

実施例1のプラスミドpGTPsMDgBを制限酵素MluIで切断後、T4DNAポリメラーゼで末端を平滑化した。そのあとに制限酵素XbaIで切断して、1.9kbの断P16片を回収した。また、ファージミッドベクターpBluescriptII(東洋紡績株式会社製;以下、pBSKSIIという)を制限酵素XbaIとSmaIで開裂後、先ほどの1.9kbの断片とリガーゼによって連結したプラスミドを取得した。つぎにこのプラスミドを制限酵素EcoRIとSalIで開裂後、pNZ2929XM1を制限酵素EcoRIとSalIで切断した550bp断片および、EcoT22IとSalIで切断した615bp断片とリガーゼによって連結したプラスミドを取得した。このプラスミドを制限酵素XbaIとSalIで切断した2.7kbの断片と、pGTPsMDgBを制限酵素XbaIとSalIで切断した3.3kbの断片とをリガーゼによって連結し、マレック病ウイルスのgB遺伝子のC末端にTTM-1遺伝子のN末端が連結したプラスミドpGTPs40K-Cが得られた。

最後に、pGTPs40K-CをSalIとXbaIで切断した2.7kbを、SalIとXbaIで開裂させたプラスミドpNZ1829R断片(9.5kb)とリガーゼによって連結し、目的の組み換え用プラスミドpNZ40K-C(12.2kb)を取得した。

[0025]

実施例3 組み換えFPV 40K-C、40K-Sの作製と純化

単層のCEFに鶏痘生ワクチン株であるNP株をm. o. i. = 0. 1で感染させて、3時間後にこれらの細胞をトリプシン処理で剥がし、細胞懸濁液とした。この懸濁液中の2×10⁷個の細胞と10μgの組み換え用プラスミドpNZ40K-CまたはpNZ40K-Sと混合し、Saline G(0.14M塩化ナトリウム、0.5mM塩化カリウム、1.1mMリン酸一水素二ナトリウム、1.5mMリン酸二水素ーカリウム、0.5mM塩化マグネシウム・6水和物、0.011%グルコース)に懸濁し、室温においてジーンパルサー(Bio-

Rad社製)を用いて3.0KVcm $^{-1}$ 、0.4msec、25 $^{\circ}$ Cの条件下でエレクトロポレーションした。プラスミドを導入した細胞を、その後37 $^{\circ}$ C、72時間培養し、3回の凍結融解によって細胞を溶解し、組み換えウイルスを含むウイルスを回収した。

[0026]

回収した組み換えウイルスは、次のようにして選択した。回収したウイルス液を単層のCEFに感染させ、生育培地を含んだ10mlの寒天溶液を重層した。室温中で寒天を温めたのち、FPVのプラークが出現するまで37℃で培養後ブルオギャル(Bluo-gal)を200μg/mlの濃度で含んだ寒天溶液を重層し、さらに48時間37℃で培養した。全プラークのうち約1%のプラークが青く発色した。これらの青いプラークをた単離回収して、さらに同様の操作を繰り返して全てのプラークが青く染まるまでウイルスの純化を行った。通常この繰り返しは3~4日で終了する。この純化されたウイルスをそれぞれ40K-C、40K-Sと名付けた。40K-C、40K-Sはドットブロットハイブリダイゼーション、サザンブロットハイブリダイゼーションによって組み込んだ各DNAの位置を確認した。

[0027]

実施例4 40K-C、40K-S感染細胞におけるTTM-1ポリペプチドの 発現

40K-C及び40K-SがTTM-1ポリペプチドを感染細胞中で発現することを調べるために、抗マイコプラズマ・ガリセプティカムS6株血清を用いたウェスタンブロッティング法を行った。40K-Cまたは40K-SをCEFに感染させ、37℃でプラークが出現するまで培養後、セルスクレーパーによって細胞をはがし取り培養上清とともに8000G、20分間遠心し、細胞を含む沈さ(以下、ペレットという)を回収した。さらに、ペレットをPBSで洗浄後、8000G、20分間遠心し、洗浄した細胞を含むペレットを回収した。このペレットを150μ1のPBSで懸濁し、そのうちの50μ1に等量のレムリバッファー(10%メルカプトエタノールを含む)を加え、3分間煮沸処理したのち、Laemmliの方法(Nature、227、668-685(1970)

)に従い、ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(以下、SDS-PAGEという)に付した。SDS-PAGEを終了したゲルで分離したポリペプチドをBurnett等(A. Anal. Biochem.、112、195-203(1970))やTowbin等の方法(Proc. Natl. Acad. Sci.、75、4350-4354(1979)に従ってポリビニリデンジフルオロライド膜(Immobilon Transfer Membrane(ミリポア社);以下、メンブレンという)に電気泳動によって移行させた。メンブレンは、3%のスキムミルクを含むPBSに1時間浸せきして、非特異結合が起きないようにブロッキングし、次に鶏抗マイコプラズマ・ガリセプティカムS6株血清を1000倍に希釈したPBSに1時間浸せきした。

[0028]

次に、PBSでメンブレンをすすいだ後、二次抗体としてアルカリフォスファターゼコンジュゲート抗鶏IgGを含むPBSに1時間浸せきした。PBSでメンブレンをすすいだ後、発色基質としてニトロブルーテトラゾリウム塩(NBT)(GIBCO-BRL社製)と、5ーブロモー4ークロロ3ーインドールフォスフェイト-P-トルイジン塩(BCIP)(GIBCO-BRL社製)を用い、反応液(100mMトリス塩酸(pH7.5)、0.15M塩化ナトリウム、50mM塩化マグネシウム)10m中で発色反応を行った。

図7に示すとおり、40K-S、40K-C感染細胞ともに、目的の位置に反応するタンパク質が確認でき、組み換えFPV感染細胞で予想通りのタンパク質を発現していることを確認できた。

[0029]

実施例5 組み換えFPV接種鶏の抗体誘導能

ウエスタンブロットの結果を図7に示す。

40K-C及び40K-SをCEFで37℃、48時間培養後、二回凍結融解を繰り返し、細胞浮遊液を回収し、ウイルスタイターが、10⁶pfu/mlとなるように調製したのち、生後7日のSPF鶏(Line M、日本生物科学研究所)の右翼膜に穿刺用針で10μ1接種した。接種後善感発痘を観察し、接種から二週後に血清を採取した。採取した血清の抗体価はELISA法で測定した

。精製したTTM-1ポリペプチドを1μg/we11となるようにバイカーボネイトバッファーに溶解し、96we11マイクロタイタープレートに吸着させた後、スキムミルクでブロッキングを行ってその後の非特異的吸着を防いだ。次に各ウェルに被検血清の希釈液をのせた後ホースラディッシュパーオキシダーゼ結合抗鶏イムノグロブリン抗体(ウサギ抗体)としてのせた。十分洗浄した後、基質として2,2'ーアジノジエチルーベンズチアゾリンスルフォネートを加え、イムノリーダーで405nmの波長光に対する吸光度で抗体の相対希釈倍率を測定した。なお、対照一次抗体には、抗TTM-1ポリペプチド鶏血清を用いた。【0030】

【表1】

表 1 rFPV接種鶏血清のELISA抗体価

鶏の処理方法	抗TTM-1抗体価
40K-S接種	1,024
40K-C接種	512
TTM-1免疫	512
非接種	1

抗体価は非接種鶏群の抗体価を1とした場合の血清の希釈倍率

[0031]

表1に示すとおり、40K-Cまたは40K-Sを接種した鶏の血清中の抗TTM-1 抗体価は、TTM-1 ポリペプチドを免疫した鶏血清抗体価より上昇した。このことから、組み換えFPV は接種鶏に有意に抗体価を誘導することが確かめられた。

[0032]

· 実施例-6 組み換えFPV接種鶏へのマイコプラズマ攻撃試験

攻撃試験は基本的に動物用生物学的製剤基準に従った。以下、簡単にその方法を記述する。

試験用SPF鶏 (Line M、日本生物科学研究所)が5週齢のときに40

K-C及び40K-Sを右翼膜に穿刺用針で $10\mu1$ 接種した。接種後善感発痘を観察し、免疫が成立したことを確認した。接種後 2 週目にマイコプラズマガリセプティカム R株を $10^4\sim10^5$ c f u / 羽となるように気管内に強制投与し、感染を成立させた。感染 14 日後にネンブタールで屠殺剖検し、気管の病理組織標本を作製し、気管粘膜の厚さと、組織所見をもとに気管病変スコアを測定した。スコアの基準も製剤基準に則り、群内の各鶏の気管病変スコアの平均を各群のスコアとした。参考までに、気管病変スコアの判定基準を表 2 に記す。

[0033]

【表2】

表 2 気管病変スコアの判定基準

粘膜の厚さ	組織所見	スコア
90mm以上	正常なもの	0
90mm以上	粘膜固有層に円形細胞の軽度な浸潤あるい は微少集簇巣を認めるが、上皮細胞は正常 なもの	1
110mm未満	した細胞は亦姓あるいは脱落し、粘膜固有	
	屋は円形細胞の浸潤により中程度に肥厚し でいるもの	2
110mm以上	上皮細胞は変性あるいは脱落し、粘膜固有層は毛細血管の増生及び円形細胞の浸潤により高度に肥厚し、腔内には細胞崩壊産物の堆積が認められるもの	3
		<u> </u>

[0034]

判定結果を表3および図8に示した。

[0035]

【表3】

表3 FFPV接種鶏気管病変平均スコア

鶏の処理方法	病変	スコア
	平均	標準誤差
40K-S接種	1. 38	0.16
40K-C接種	1.89	0.13
市販ワクチン免疫	2. 11	0.24
TTM-1ポリペプチド免疫	1. 09	0.23
非接種	2. 27	0.21

[0036]

この結果から明らかなように、40K-C及び40K-Sを接種した鶏の病変スコアは非接種鶏に比べて明らかに低く、マイコプラズマチャレンジに対して明らかな感染防御能を鶏に付与していることがわかった。このことから、40K-C及び40K-Sはマイコプラズマガリセプティカムに対する有効なワクチンとなりうることがわかった。

[0037]

【配列表】

配列番号:1

配列の長さ:1372

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:他の核酸 ハイブリッドDNA(40K-S)

配列

ATG CAC TAT TTT AGG CGG AAT TGC ATA TTT TTC CTT ATA GTT ATT CTA

Met	His	Tyr	Phe	Arg	Arg	Asn	Cys	Ile	Phe	Phe	Leu	Ile	Val	Ile	Leu	
1				5					10					15		
TAT	GGT	ACG	AAC	TCA	TCT	CCG	AGT	ACC	CAA	AAT	GTG	ACA	TCA	AGA	GAA	96
Tyr	Gly	Thr	Asn	Ser	Ser	Pro	Ser	Thr	Gln	Asn	Val	Thr	Ser	Arg	Glu	
			20					25					30			
GTT	GTT	TCG	AGC	GTC	CAG	TTG	TCT	GAG	GAA	GAG	TCT	ACG	TTT	TAT	CTT	144
Val	Val	Ser	Ser	Val	Gln	Leu	Ser	Glu	Glu	Glu	Ser	Thr	Phe	Tyr	Leu	
		35					40					45				
TGT	CCC	CCA	CCA	GTG	GGT	TCA	ACC	GTG	ATC	CGT	CTA	GAA	TTC	GGC	TGT	192
Cys	Pro	Pro	Pro	Val	Gly	Ser	Thr	Val	Ile	Arg	Leu	Glu	Phe	Gly	Cys	
	50					55					60					
ATG	TCT	ATT	ACT	AAA	AAA	GAT	GCA	AAC	CCA	AAT	AAT	GGC	CAA	ACC	CAA	240
Met	Ser	Ile	Thr	Lys	Lys	Asp	Ala	Asn	Pro	Asn	Asn	Gly	Gln	Thr	Gln	
65					70					7 5					80	
TTA	GAA	GCA	GCG	CGA	ATG	GAG	TTA	ACA	GAT	CTA	ATC	AAT	GCT	AAA	GCG	288
Leu	Glu	Ala	Ala	Arg	Met	Glu	Leu	Thr	Asp	Leu	Ile	Asn	Ala	Lys	Ala	
				85					90					95		
ATG	ACA	TTA	GCT	TCA	CTA	CAA	GAC	TAT	GCC	AAG	ATT	GAA	GCT	AGT	TTA	336
Met	Thr	Leu	Ala	Ser	Leu	Gln	Asp	Tyr	Ala	Lys	Ile	Glu	Ala	Ser	Leu	
			100					105					110			
TCA	TCT	GCT	TAT	AGT	GAA	GCT	GAA	ACA	GTT	AAC	AAT	AAC	CTT	AAT	GCA	384
Ser	Ser	Ala	Tyr	Ser	Glu	Ala	Glu	Thr	Val	Asn	Asn	Asn	Leu	Asn	Ala	
		115					120					125				
ACA	TTA	GAA	CAA	CTA	AAA	ATG	GCT	AAA	ACT	AAT	TTA	GAA	TCA	GCC	ATC	432
Thr	Leu	Glu	Gln	Leu	Lys	Met	Ala	Lys	Thr	Asn	Leu	Glu	Ser	Ala	Ile	
	130					135					140					
AAC	CAA	GCT	AAT	ACG	GAT	AAA	ACG	ACT	TTT	GAT	AAT	GAA	CAC	CCA	AAT	480
Asn	Gln	Ala	Asn	Thr	Asp	Lys	Thr	Thr	Phe	Asp	Asn	Glu	His	Pro	Asn	
145					150					155					160	

TTA	GTT	GAA	GCA	TAC	AAA	GCA	CTA	AAA	ACC	ACT	TTA	GAA	CAA	CGT	GCT		528
Leu	Val	Glu	Ala	Tyr	Lys	Ala	Leu	Lys	Thr	Thr	Leu	Glu	Gln	Arg	Ala		
				165					170					175			
ACT	AAC	CTT	GAA	GGT	TTG	TCA	TCA	ACT	GCT	TAT	AAT	CAA	ATT	CGC	AAT		576
Thr	Asn	Leu	Glu	Gly	Leu	Ser	Ser	Thr	Ala	Tyr	Asn	Gln	Ile	Arg	Asn		
			180					185					190				
AAT	TTA	GTG	GAT	CTA	TAC	AAT	AAA	GCT	AGT	AGT	TTA	ATA	ACT	AAA	ACA		624
Asn	Leu	Val	Asp	Leu	Tyr	Asn	Lys	Ala	Ser	Ser	Leu	Ile	Thr	Lys	Thr		
		195					200					205					
CTA	GAT	CCA	CTA	AAT	GGG	GGA	ACG	CTT	TTA	GAT	TCT	AAT	GAG	ATT	ACT		672
Leu	Asp	Pro	Leu	Asn	Gly	Gly	Thr	Leu	Leu	Asp	Ser	Asn	Glu	Ile	Thr		
	210					215					220						
ACA	GCT	AAT	AAG	AAT	ATT	AAT	AAT	ACG	TTA	TCA	ACT	ATT	AAT	GAA	CAA		720
Thr	Ala	Asn	Lys	Asn	Ile	Asn	Asn	Thr	Leu	Ser	Thr	Ile	Asn	Glu	Gln		
225					230					235					240		
AAG	ACT	AAT	GCT	GAT	GCA	TTA	TCT	AAT	AGT	TTT	ATT	AAA	AAA	GTG	ATT		768
Lys	Thr	Asn	Ala	Asp	Ala	Leu	Ser	Asn	Ser	Phe	Ile	Lys	Lys	Val	Ile		
			-	245					250					255			
CAA	AAT	AAT	GAA	CAA	AGT	TTT	GTA	GGG	ACT	TTT	ACA	AAC	GCT	AAT	GTT		816
Gln	Asn	Asn	Glu	Gln	Ser	Phe	Val	Gly	Thr	Phe	Thr	Asn	Ala	Asn	Val		
			260					265					270				
CAA	CCT	TCA	AAC	TAC	AGT	TTT	GTT	GCT	TTT	AGT	GCT	GAT	GTA	ACA	CCC		864
Gln	Pro	Ser	Asn	Tyr	Ser	Phe	Val	Ala	Phe	Ser	Ala	Asp	Val	Thr	Pro		
		275					280					285					
GTC	AAT	TAT	AAA	TAT	GCA	AGA	AGG	ACC	GTT	TGG	AAT	GGT	GAT	GAA	CCT		912
. Val	Asn	Tyr	Lys	Tyr	Ala	Arg	Arg	Thr	Val	Trp	Asn	Gly	Asp	Glu	Pro		
	290		•			295	ı				300						
TCA	AGT	AGA	ATT	CTI	GCA	AAC	ACG	AAT	AGT	ATC	ACA	GAT	GTT	TCI	TGG	~	960
Ser	Ser	Arg	Ile	Leu	Ala	Asn	Thr	Asn	Ser	Ile	Thr	Asp	Val	Ser	Trp		

305					310					315					320	
ATT	TAT	AGT	TTA	GCT	GGA	ACA	AAC	ACG	AAG	TAC	CAA	TTT	AGT	TTT	AGC	1008
Ile	Tyr	Ser	Leu	Ala	Gly	Thr	Asn	Thr	Lys	Tyr	Gln	Phe	Ser	Phe	Ser	
				325					330					335		
AAC	TAT	GGT	CCA	TCA	ACT	GGT	TAT	TTA	TAT	TTC	CCT	TAT	AAG	TTG	GTT	1056
Asn	Tyr	Gly	Pro	Ser	Thr	Gly	Tyr	Leu	Tyr	Phe	Pro	Tyr	Lys	Leu	Val	
			340					345					350			
AAA	GCA	GCT	GAT	GCT	AAT	AAC	GTT	GGA	TTA	CAA	TAC	AAA	TTA	AAT	AAT	1105
Lys	Ala	Ala	Asp	Ala	Asn	Asn	Val	Gly	Leu	Gln	Tyr	Lys	Leu	Asn	Asn	
		355					360					365				
GGA	AAT	GTT	CAA	CAA	GTT	GAG	TTT	GCC	ACT	TCA	ACT	AGT	GCA	AAT	AAT	1153
Gly	Asn	Val	Gln	Gln	Val	Glu	Phe	Ala	Thr	Ser	Thr	Ser	Ala	Asn	Asn	
	370					375					380					
ACT	ACA	GCT	AAT	CCA	ACT	CCA	GCA	GTT	GAT	GAG	ATT	AAA	GTT	GCT	AAA	1201
Thr	Thr	Ala	Asn	Pro	Thr	Pro	Ala	Val	Asp	Glu	Ile	Lys	Val	Ala	Lys	
385					390					395					400	
ATC	GTT	TTA	TCA	GGT	TTA	AGA	TTT	GGC	CAA	AAC	ACA	ATC	GAA	TTA	AGT	1249
Ile	Val	Leu	Ser	Gly	Leu	Arg	Phe	Gly	Gln	Asn	Thr	Ile	Glu	Leu	Ser	
				405					410					415		
GTT	CCA	ACG	GGT	GAA	GGA	AAT	ATG	AAT	AAA	GTT	GCG	CCA	ATG	ATT	GGC	1297
Val	Pro	Thr		Glu	Gly	Asn	Met	Asn	Lys	Val	Ala	Pro	Met	Ile	Gly	
•			420					425					430			
					TCA											1345
Asn	He		Leu	Ser	Ser	Asn	Glu	Asn	Asn	Ala	Asp	Lys	Ile	Pro	Gly	
		435					440					445				
TAC																1372
Tyr		Arg	Pro	Gly	Thr		Leu	***								
	450 •		0.5	,		455						•	•			
	[00	3 8	1								,				

8-103548

【配列表】

配列番号:2

配列の長さ:456

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:タンパク質

配列 Met His Tyr Phe Arg Arg Asn Cys Ile Phe Phe Leu Ile Val Ile Leu Tyr Gly Thr Asn Ser Ser Pro Ser Thr Gln Asn Val Thr Ser Arg Glu Val Val Ser Ser Val Gln Leu Ser Glu Glu Glu Ser Thr Phe Tyr Leu Cys Pro Pro Pro Val Gly Ser Thr Val Ile Arg Leu Glu Phe Gly Cys Met Ser Ile Thr Lys Lys Asp Ala Asn Pro Asn Asn Gly Gln Thr Gln 5 Leu Glu Ala Ala Arg Met Glu Leu Thr Asp Leu Ile Asn Ala Lys Ala Met Thr Leu Ala Ser Leu Gln Asp Tyr Ala Lys Ile Glu Ala Ser Leu Ser Ser Ala Tyr Ser Glu Ala Glu Thr Val Asn Asn Asn Leu Asn Ala Thr Leu Glu Gln Leu Lys Met Ala Lys Thr Asn Leu Glu Ser Ala Ile Asn Gln Ala Asn Thr Asp Lys Thr Thr Phe Asp Asn Glu His Pro Asn

Leu Val Glu Ala Tyr Lys Ala Leu Lys Thr Thr Leu Glu Gln Arg Ala

				165					170					175	
Thr	Asn	Leu	Glu	Gly	Leu	Ser	Ser	Thr	Ala	Tyr	Asn	Gln	Ile	Arg	Asn
			180					185					190		
Asn	Leu	Val	Asp	Leu	Tyr	Asn	Lys	Ala	Ser	Ser	Leu	Ile	Thr	Lys	Thr
		195					200					205			
Leu	Asp	Pro	Leu	Asn	Gly	Gly	Thr	Leu	Leu	Asp	Ser	Asn	Glu	Ile	Thr
	210					215					220				
Thr	Ala	Asn	Lys	Asn	Ile	Asn	Asn	Thr	Leu	Ser	Thr	Ile	Asn	Glu	Gln
225					230					235					240
Lys	Thr	Asn	Ala	Asp	Ala	Leu	Ser	Asn	Ser	Phe	Ile	Lys	Lys	Val	Ile
				245					250					255	
Gln	Asn	Asn	Glu	Gln	Ser	Phe	Val	Gly	Thr	Phe	Thr	Asn	Ala	Asn	Val
			260			÷		265					270		
Gln	Pro	Ser	Asn	Tyr	Ser	Phe	Val	Ala	Phe	Ser	Ala	Asp	Val	Thr	Pro
		275					280					285			
Val	Asn	Tyr	Lys	Tyr	Ala	Arg	Arg	Thr	Val	Trp	Asn	Gly	Asp	Glu	Pro
	290					295					300				
Ser	Ser	Arg	Ile	Leu	Ala	Asn	Thr	Asn	Ser	Ile	Thr	Asp	Ϋal	Ser	Trp
305					310	٠				315					320
Ile	Tyr	Ser	Leu	Ala	Gly	Thr	Asn	Thr	Lys	Tyr	Gln	Phe	Ser	Phe	Ser
				325					330					335	
Asn	Tyr	Gly	Pro	Ser	Thr	Gly	Tyr	Leu	Tyr	Phe	Pro	Tyr	Lys	Leu	Val
			340					345					350		
Lys	Ala	Ala	Asp	Ala	Asn	Asn	Val	Gly	Leu	Gln	Tyr	Lys	Leu	Asn	Asn
		355					360					365			
Gly	Asn	Val	Gln	Gln	Val	Glu	Phe	Ala	Thr	Ser	Thr	Ser	Ala	Asn	Asn
	370					375					380				
Thr	Thr	Ala	Asn	Pro	Thr	Pro	Ala	Val	Asp	Glu	Ile	Lys	Val	Ala	Lys
385					390					395					400

 Ile
 Val
 Leu
 Ser
 Gly
 Leu
 Arg
 Phe
 Gly
 Gln
 Asn
 Thr
 Ile
 Glu
 Leu
 Ser

 Val
 Pro
 Thr
 Gly
 Glu
 Gly
 Asn
 Met
 Asn
 Lys
 Val
 Ala
 Pro
 Met
 Ile
 Gly

 Asn
 Ile
 Tyr
 Leu
 Ser
 Ser
 Asn
 Glu
 Asn
 Ala
 Asp
 Lys
 Ile
 Pro
 Gly

 Tyr
 Arg
 Arg
 Pro
 Gly
 Thr
 Phe
 Leu

 450
 455
 455
 455
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 4

[0039]

【配列表】

配列番号:3

配列の長さ:3264

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:他の核酸 ハイブリッドDNA (40K-C)

配列

ATG CAC TAT TTT AGG CGG AAT TGC ATA TTT TTC CTT ATA GTT ATT CTA 48 Met His Tyr Phe Arg Arg Asn Cys Ile Phe Phe Leu Ile Val Ile Leu 10 15 1 5 TAT GGT ACG AAC TCA TCT CCG AGT ACC CAA AAT GTG ACA TCA AGA GAA 96 Tyr Gly Thr Asn Ser Ser Pro Ser Thr Gln Asn Val Thr Ser Arg Glu 30 25 20 GTT GTT TCG AGC GTC CAG TTG TCT GAG GAA GAG TCT ACG TTT TAT CTT 144 Val Val Ser Ser Val Gln Leu Ser Glu Glu Glu Ser Thr Phe Tyr Leu 45 40 35 TGT CCC CCA CCA GTG GGT TCA ACC GTG ATC CGT CTA GAA CCG CCG CGA 192

Cys	Pro	Pro	Pro	Val	Gly	Ser	Thr	Val	Ile	Arg	Leu	Glu	Pro	Pro	Arg	
	50					55					60					
AAA	TGT	CCC	GAA	CCT	AGA	AAA	GCC	ACC	GAG	TGG	GGT	GAA	GGA	ATC	GCG	240
Lys	Cys	Pro	Glu	Pro	Arg	Lys	Ala	Thr	Glu	Trp	Gly	Glu	Gly	Ile	Ala	
65					70					75					80	
ATA	TTA	TTT	AAA	GAG	AAT	ATC	AGT	CCA	TAT	AAA	TTT	AAA	GTG	ACG	CTT	288
Ile	Leu	Phe	Lys	Glu	Asn	Ile	Ser	Pro	Tyr	Lys	Phe	Lys	Val	Thr	Leu	
				85					90					95		
TAT	TAT	AAA	AAT	ATC	ATT	CAG	ACG	ACG	ACA	TGG	ACG	GGG	ACG	ACA	TAT	336
Tyr	Tyr	Lys	Asn	Ile	Ile	Gln	Thr	Thr	Thr	Trp	Thr	Gly	Thr	Thr	Tyr	
			100					105					110			
AGA	CAG	ATC	ACT	AAT	CGA	TAT	ACA	GAT	AGG	ACG	CCC	GTT	TCC	ATT	GAA	384
Arg	Gln	Ile	Thr.	Asn	Arg	Tyr	Thr	Asp	Arg	Thr	Pro	Val	Ser	Ile	Glu	
		115					120					125				
GAG	ATC	ACG	GAT	CTA	ATC	GAC	GGC	AAA	GGA	AGA	TGC	TCA	TCT	AAA	GCA	432
Glu	Ile	Thr	Asp	Leu	Ile	Asp	Gly	Lys	Gly	Arg	Cys	Ser	Ser	Lys	Ala	
	130					135					140				•	
AGA	TAC	CTT	AGA	AAC	AAT	GTA	TAT	GTT	GAA	GCG	TTT	GAC	AGG	GAT	GCG	480
Arg	Tyr	Leu	Arg	Asn	Asn	Val	Tyr	Val	Glu	Ala	Phe	Asp	Arg	Asp	Ala	
145					150					155					160	
GGA	GAA	AAA	CAA	GTA	CTT	CTA	AAA	CCA	TCA	AAA	TTC	AAC	ACG	CCC	GAA	528
Gly	Glu	Lys	Gln	Val	Leu	Leu	Lys	Pro	Ser	Lys	Phe	Asn	Thr	Pro	Glu	
				165					170					175		
TCT	AGG	GCA	TGG	CAC	ACG	ACT	AAT	GAG	ACG	TAT	ACC	GTG	TGG	GGA	TCA	576
Ser	Arg	Ala	Trp	His	Thr	Thr	Asn	Glu	Thr	Tyr	Thr	Val	Trp	Gly	Ser	
			180					185					190			
CCA	TGG	ATA	TAT	CGA	ACG	GGA	ACC	TCC	GTC	AAT	TGT	ATA	GTA	GAG	GAA	624
Pro	Trp	Ile	Tyr	Arg	Thr	Gly	Thr	Ser	Val	Asn	Cys	Ile	Val	Glu	Glu	
		195					200					205				

ATG	GAT	GCC	CGC	TCT	GTG	TTT	CCG	TAT	TCA	TAT	TTT	GCA	ATG	GCC	AAT	672
Met	Asp	Ala	Arg	Ser	Val	Phe	Pro	Tyr	Ser	Tyr	Phe	Ala	Met	Ala	Asn	
	210					215					220					
GGC	GAC	ATC	GCG	AAC	ATA	TCT	CCA	TTT	TAT	GGT	CTA	TCC	CCA	CCA	GAG	720
Gly	Asp	Ile	Ala	Asn	Ile	Ser	Pro	Phe	Tyr	Gly	Leu	Ser	Pro	Pro	Glu	
220					225					230					235	
GCT	GCC	GCA	GAA	CCC	ATG	GGA	TAT	CCC	CAG	GAT	AAT	TTC	AAA	CAA	CTA	768
Ala	Ala	Ala	Glu	Pro	Met	Gly	Tyr	Pro	Gln	Asp	Asn	Phe	Lys	Gln	Leu	
				240					245					250		
GAT	AGC	TAT	TTT	TCA	ATG	GAT	TTG	GAC	AAG	CGT	CGA	AAA	GCA	AGC	CTT	816
Asp	Ser	Tyr	Phe	Ser	Met	Asp	Leu	Asp	Lys	Arg	Arg	Lys	Ala	Ser	Leu	
			255					260					265			
CCA	GTC	AAG	CGT	AAC	TTT	CTC	ATC	ACA	TCA	CAC	TTC	ACA	GTT	GGG	TGG	864
Pro	Val	Lys	Arg	Asn	Phe	Leu	Ile	Thr	Ser	His	Phe	Thr	Val	Gly	Trp	
		270					275					280				
GAC	TGG	GCT	CCA	AAA	ACT	ACT	CGT	GTA	TGT	TCA	ATG	ACT	AAG	TGG	AAA	912
Asp	Trp	Ala	Pro	Lys	Thr	Thr	Arg	Val	Cys	Ser	Met	Thr	Lys	Trp	Lys	
	285					290					295					
GAG	GTG	ACT	GAA	ATG	TTG	CGT	GCA	ACA	GTT	AAT	GGG	AGA	TAC	AGA	TTT	960
Glu	Val	Thr	Glu	Met	Leu	Arg	Ala	Thr	Val	Asn	Gly	Arg	Tyr	Arg	Phe	
300					305					310					315	
ATG	GCC	CGT	GAA	CTT	TCG	GCA	ACG	TTT	ATC	AGT	AAT	ACG	ACT	GAG	TTT	1008
Met	Ala	Arg	Glu	Leu	Ser	Ala	Thr	Phe	Ile	Ser	Asn	Thr	Thr	Glu	Phe	
				320					325					330		
GAT	CCA	AAT	CGC	ATC	ATA	TTA	GGA	CAA	TGT	ATT	AAA	CGC	GAG	GCA	GAA	1056
Asp	Pro	Asn	Arg	Ile	Ile	Leu	Gly	Gln	Cys	Ile	Lys	Arg	Glu	ı Ala	Glu	
			335	ı		-		340	ı				345	5		
GCA	GCA	ATC	GAG	CAG	ATA	TTT	AGG	ACA	AAA	TAT	TAA	GAC	AGT	CAC	GTC	1105
Ala	Ala	Ile	Glu	Gln	Ile	Phe	Arg	Thr	Lys	Tyr	Asn	Asp	Ser	His	Val	

		350					355					360			·	
AAG	GTT	GGA	CAT	GTA	CAA	TAT	TTC	TTG	GCT	CTC	GGG	GGA	TTT	ATT	GTA	1153
Lys	Val	Gly	His	Val	Gln	Tyr	Phe	Leu	Ala	Leu	Gly	Gly	Phe	Ile	Val	
	365					370					375					
GCA	TAT	CAG	CCT	GTT	CTA	TCC	AAA	TCC	CTG	GCT	CAT	ATG	TAC	CTC	AGA	1201
Ala	Tyr	Gln	Pro	Val	Leu	Ser	Lys	Ser	Leu	Ala	His	Met	Tyr	Leu	Arg	
380					385					390					395	
GAA	TTG	ATG	AGA	GAC	AAC	AGG	ACC	GAT	GAG	ATG	CTC	GAC	CTG	GTA	AAC	1249
Glu	Leu	Met	Arg	Asp	Asn	Arg	Thr	Asp	Glu	Met	Leu	Asp	Leu	Val	Asn	
				400				-	405					410		
AAT	AAG	CAT	GCA	ATT	TAT	AAG	AAA	AAT	GCT	ACC	TCA	TTG	TCA	CGA	TTG	1297
Asn	Lys	His	Ala	Ile	Tyr	Lys	Lys	Asn	Ala	Thr	Ser	Leu	Ser	Arg	Leu	
			415			٠		420					425			
CGG	CGA	GAT	ATT	CGA	AAT	GCA	CCA	AAT	AGA	AAA	ATA	ACA	TTA	GAC	GAC	1345
Arg	Arg	Asp	Ile	Arg	Asn	Ala	Pro	Asn	Arg	Lys	Ile	Thr	Leu	Asp	Asp	
		430					435					440				
ACC	ACA	GCT	ATT	AAA	TCG	ACA	TCG	TCT	GTT	CAA	TTC	GCC	ATG	CTC	CAA	1393
Thr	Thr	Ala	Ile	Lys	Ser	Thr	Ser	Ser	Val	Gln	Phe	Ala	Met	Leu	Gln	
	445					450					455					
TTT	CTT	TAT	GAT	CAT	ATA	CAA	ACC	CAT	ATT	AAT	GAT	ATG	TTT	AGT	AGG	1441
Phe	Leu	Tyr	Asp	His	Ile	Gln	Thr	His	Ile	Asn	Asp	Met	Phe	Ser	Arg	
460					465					470					475	
ATT	GCC	ACA	GCT	TGG	TGC	GAA	TTG	CAG	AAT	AGA	GAA	CTT	GTT	TTA	TGG	1489
Ile	Ala	Thr	Ala	Trp	Cys	Glu	Leu	Gln	Asn	Arg	Glu	Leu	Val	Leu	Trp	
				480					485					490		
CAC	GAA	GGG	ATA	AAG	ATT	AAT	CCT	AGC	GCT	ACA	GCG	AGT	GCA	ACA	TTA	1537
His	Glu	Gly	Ile	Lys	Ile	Asn	Pro	Ser	Ala	Thr	Ala	Ser	Ala	Thr	Leu	
			495					500					505			
GGA	AGG	AGA	GTG	GCT	GCA	AAG	ATG	TTG	GGG	GAT	GTC	GCT	GCT	GTA	TCG	1585

Gly	Arg	Arg	Val	Ala	Ala	Lys	Met	Leu	Gly	Asp	Val	Ala	Ala	Val	Ser	
		510					515					520				
AGC	TGC	ACT	GCT	ATA	GAT	GCG	GAA	TCC	GTC	ACT	TTG	CAA	AAT	TCT	ATG	1633
Ser	Cys	Thr	Ala	Ile	Àsp	Ala	Glu	Ser	Val	Thr	Leu	Gln	Asn	Ser	Met	
	525					530					535					
CGA	GTT	ATC	ACA	TCC	ACT	AAT	ACA	TGT	TAT	AGC	CGA	CCA	TTG	GTT	CTA	1681
Arg	Val	Ile	Thr	Ser	Thr	Asn	Thr	Cys	Tyr	Ser	Arg	Pro	Leu	Val	Leu	
540					545					550					555	
TTT	TCA	TAT	GGA	GAA	AAC	CAA	GGA	AAC	ATA	CAG	GGA	CAA	CTC	GGT	GAA	1729
Phe	Ser	Tyr	Gly	Glu	Asn	Gln	Gly	Asn	Ile	Gln	Gly	Gln	Leu	Gly	Glu	
				560					565					570		
AAC	AAC	GAG	TTG	CTT	CCA	ACG	CTA	GAG	GCT	GTA	GAG	CCA	TGC	TCG	GCT	1777
Asn	Asn	Glu	Leu	Leu	Pro	Thr	Leu	Glu	Ala	Val	Glu	Pro	Cys	Ser	Ala	
			575					580					585			
AAT	CAT	CGT	AGA	TAT	TTT	CTG	TTT	GGA	TCC	GGT	TAT	GCT	TTA	TTT	GAA	1825
Asn	His	Arg	Arg	Tyr	Phe	Leu	Phe	Gly	Ser	Gly	Tyr	Ala	Leu	Phe	Glu	
		590					595					600				
AAC	TAT	AAT	TTT	GTT	AAG	ATG	GTA	GAC	GCT	GCC	GAT	ATA	CAG	ATT	GCT	1873
Asn	Tyr	Asn	Phe	Val	Lys	Met	Val	Asp	Ala	Ala	Asp	Ile	Gln	Ile	Ala	
	605					610					615					
AGC	ACA	TTT	GTC	GAG	CTT	AAT	CTA	ACC	CTG	CTA	GAA	GAT	CGG	GAA	ATT	1921
Ser	Thr	Phe	Val	Glu	Leu	Asn	Leu	Thr	Leu	Leu	Glu	Asp	Arg	Glu	Ile	
620					625					630					635	
TTG	CCT	TTA	TCC	GTT	TAC	ACA	AAA	GAA	GAG	TTG	CGT	GAT	GTT	GGT	GTA	1969
Leu	Pro	Leu	Ser	Val	Tyr	Thr	Lys	Glu	Glu	Leu	Arg	Asp	Val	Gly	Val	
-				640					645					650		
TTG	GAT	TAT	GCA	GAA	GTA	GCT	CGC	CGC	AAT	CAA	CTA	CAT	GAA	CTT	AAA	2017
Leu	Asp	Tyr	Ala	Glu	Val	Ala	Arg	Arg	Asn	Gln	Leu	His	Glu	Leu	Lys	
			655		:			660					665			

TTT	TAT	GAC	ATA	AAC	AAA	GTA	ATA	GAA	GTG	GAT	ACA	AAT	TAC	GCG	GGG	2065
Phe	Tyr	Asp	Ile	Asn	Lys	Val	Ile	Glu	Val	Asp	Thr	Asn	Tyr	Ala	Gly	
		670					675					680				
CTG	CAG	GAA	TTC	GGC	TGT	ATG	TCT	ATT	ACT	AAA	AAA	GAT	GCA	AAC	CCA	2113
Leu	Gln	Glu	Phe	Gly	Cys	Met	Ser	Ile	Thr	Lys	Lys	Asp	Ala	Asn	Pro	
	685					690					695					
AAT	AAT	GGC	CAA	ACC	CAA	TTA	GAA	GCA	GCG	CGA	ATG	GAG	TTA	ACA	GAT	2161
Asn	Asn	Gly	Gln	Thr	Gln	Leu	Glu	Ala	Ala	Arg	Met	Glu	Leu	Thr	Asp	
700					705					710					715	
CTA	ATC	AAT	GCT	AAA	GCG	ATG	ACA	TTA	GCT	TCA	CTA	CAA	GAC	TAT	GCC	2209
Leu	Ile	Asn	Ala	Lys	Ala	Met	Thr	Leu	Ala	Ser	Leu	Gln	Asp	Tyr	Ala	
				720					725					730		
AAG	ATT	GAA	GCT	AGT	TTA	TCA	TCT	GCT	TAT	AGT	GAA	GCT	GAA	ACA	GTT	2257
Lys	Ile	Glu	Ala	Ser	Leu	Ser	Ser	Ala	Tyr	Ser	Glu	Ala	Glu	Thr	Val	
			735					740					745			
AAC	AAT	AAC	CTT	AAT	GCA	ACA	TTA	GAA	CAA	CTA	AAA	ATG	GCT	AAA	ACT	2305
Asn	Asn	Asn	Leu	Asn	Ala	Thr	Leu	Glu	Gln	Leu	Lys	Met	Ala	Lys	Thr	
		750					755					760				
AAT	TTA	GAA	TCA	GCC	ATC	AAC	CAA	GCT	AAT	ACG	GAT	AAA	ACG	ACT	TTT	2353
Asn	Leu	Glu	Ser	Ala	Ile	Asn	Gln	Ala	Asn	Thr	Asp	Lys	Thr	Thr	Phe	
	765					770					775					
GAT	AAT	GAA	CAC	CCA	AAT	TTA	GTT	GAA	GCA	TAC	AAA	GCA	CTA	AAA	ACC	2401
Asp	Asn	Glu	His	Pro	Asn	Leu	Val	Glu	Ala	Tyr	Lys	Ala	Leu	Lys	Thr	
780					785					790					795	
ACT	TTA	GAA	CAA	CGT	GCT	ACT	AAC	CTT	GAA	GGT	TTG	TCA	TCA	ACT	GCT	2449
Thr	Leu	Glu	Gln	Arg	Ala	Thr	Asn	Leu	Glu	Gly	Leu	Ser	Ser	Thr	Ala	
				800					805					810		
TAT	AAT	CAA	ATT	CGC	AAT	AAT	TTA	GTG	GAT	CTA	TAC	AAT	AAA	GCT	AGT	2497
Tyr	Asn	Gln	Ile	Arg	Asn	Asn	Leu	Val	Asp	Leu	Tyr	Asn	Lys	Ala	Ser	

			815					820					825			
AGT	TTA	ATA	ACT	AAA	ACA	CTA	GAT	CCA	CTA	AAT	GGG	GGA	ACG	CTT	TTA	2545
Ser	Leu	Ile	Thr	Lys	Thr	Leu	Asp	Pro	Leu	Asn	Gly	Gly	Thr	Leu	Leu	
		830					835					840				
GAT	TCT	AAT	GAG	ATT	ACT	ACA	GCT	AAT	AAG	AAT	ATT	AAT	AAT	ACG	TTA	2593
Asp	Ser	Asn	Glu	Ile	Thr	Thr	Ala	Asn	Lys	Asn	Ile	Asn	Asn	Thr	Leu	
	845					850					855					
TCA	ACT	ATT	AAT	GAA	CAA	AAG	ACT	AAT	GCT	GAT	GCA	TTA	TCT	AAT	AGT	2641
Ser	Thr	Ile	Asn	Glu	Gln	Lys	Thr	Asn	Ala	Asp	Ala	Leu	Ser	Asn	Ser	
860					865					870					875	
TTT	ATT	AAA	AAA	GTG	ATT	CAA	AAT	AAT	GAA	CAA	AGT	TTT	GTA	GGG	ACT	2689
Phe	Ile	Lys	Lys	Val	Ile	Gln	Asn	Asn	Glu	Gln	Ser	Phe	Val	Gly	Thr	
				880					885	•				890		
TTT	ACA	AAC	GCT	AAT	GTT	CAA	CCT	TCA	AAC	TAC	AGT	TTT	GTT	GCT	TTT	2737
Phe	Thr	Asn	Ala	Asn	Val	Gln	Pro	Ser	Asn	Tyr	Ser	Phe	Val	Ala	Phe	
			895					900					905			~
AGT	GCT	GAT	GTA	ACA	CCC	GTC	AAT	TAT	AAA	TAT	GCA	AGA	AGG	ACC	GTT	2785
Ser	Ala	Asp	Val	Thr	Pro	Val	Asn	Tyr	Lys	Tyr	Ala	Arg	Arg	Thr	Val	
		910					915					920				
TGG	AAT	GGT	GAT	GAA	CCT	TCA	AGT	AGA	ATT	CTT	GCA	AAC	ACG	AAT	AGT	2833
Trp	Asn	Gly	Asp	Glu	Pro	Ser	Ser	Arg	Ile	Leu	Ala	Asn	Thr	Asn	Ser	
	925					930					935					
ATC	ACA	GAT	GTT	TCT	TGG	ATT	TAT	AGT	TTA	GCT	GGA	ACA	AAC	ACG	AAG	2881
Ile	Thr	Asp	Val	Ser	Trp	Ile	Tyr	Ser	Leu	Ala	Gly	Thr	Asn	Thr	Lys	
940					945					950					955	
. TAC	CAA	TTT	AGT	TTT	AGC	AAC	TAT	GGT	CCA	TCA	ACT	GGT	TAT	TTA	TAT	2929
Tyr	Gln	Phe	Ser	Phe	Ser	Asn	Tyr	Gly	Pro	Ser	Thr	Gly	Tyr	Leu	Tyr	
				960					965	-		••••		970		
TTC	CCT	TAT	AAG	TTG	GTT	AAA	GCA	GCT	GAT	GCT	TAA	AAC	GTT	GGA	TTA	2977

Phe	Pro	Tyr	Lys	Leu	Val	Lys	Ala	Ala	Asp	Ala	Asn	Asn	Val	Gly	Leu	
			975					980					985			
CAA	TAC	AAA	TTA	AAT	AAT	GGA	AAT	GTT	CAA	CAA	GTT	GAG	TTT	GCC	ACT	3025
Gln	Tyr	Lys	Leu	Asn	Asn	Gly	Asn	Va l	Gln	Gln	Val	Glu	Phe	Ala	Thr	
		990					995					1000				
TCA	ACT	AGT	GCA	AAT	AAT	ACT	ACA	GCT	AAT	CCA	ACT	CCA	GCA	GTT	GAT	3073
Ser	Thr	Ser	Ala	Asn	Asn	Thr	Thr	Ala	Asn	Pro	Thr	Pro	Ala	Va 1	Asp	
]	1005]	1010]	1015					
GAG	ATT	AAA	GTT	GCT	AAA	ATC	GTT	TTA	TCA	GGT	TTA	AGA	TTT	GGC	CAA	3121
Glu	Ile	Lys	Val	Ala	Lys	Ile	Val	Leu	Ser	Gly	Leu	Arg	Phe	Gly	Gln	
1020)]	1025				1	030]	1035	
	ACA	ATC	GAA			GTT	CCA	ACG			GGA	AAT	ATG			3169
AAC				TTA	AGT				GGT	GAA				AAT	AAA	3169
AAC	ACA		Glu	TTA	AGT			Thr	GGT	GAA			Met	AAT	AAA	3169
AAC Asn	ACA	Ile	Glu	TTA Leu 040	AGT Ser	Val	Pro	Thr	GGT G1y 1045	GAA Glu	Gly _.	Asn	Met	AAT Asn 1050	AAA Lys	3169 3217
AAC Asn GTT	ACA Thr	Ile CCA	Glu J ATG	TTA Leu 1040 ATT	AGT Ser	Val AAC	Pro ATT	Thr TAT	GGT Gly 1045 CTT	GAA Glu AGC	Gly TCA	Asn AAT	Met GAA	AAT Asn 1050 AAT	AAA Lys AAT	
AAC Asn GTT	ACA Thr GCG	Ile CCA Pro	Glu J ATG	TTA Leu 1040 ATT	AGT Ser	Val AAC	Pro ATT Ile	Thr TAT	GGT Gly 1045 CTT	GAA Glu AGC	Gly TCA	Asn AAT Asn	Met GAA	AAT Asn 1050 AAT	AAA Lys AAT	
AAC Asn GTT Val	ACA Thr GCG	Ile CCA Pro	Glu ATG Met	TTA Leu 1040 ATT Ile	AGT Ser GGC Gly	Val AAC Asn	Pro ATT Ile	TAT Tyr	GGT Gly 1045 CTT Leu	GAA Glu AGC Ser	Gly TCA Ser	Asn AAT Asn	Met GAA Glu	AAT Asn 1050 AAT Asn	AAA Lys AAT	
AAC Asn GTT Val	ACA Thr GCG Ala	CCA Pro	Glu ATG Met 1055 ATC	TTA Leu 1040 ATT Ile	AGT Ser GGC Gly	Val AAC Asn TAC	Pro ATT Ile CGT	TAT Tyr 1060	GGT G1y 1045 CTT Leu CCC	GAA Glu AGC Ser	Gly TCA Ser	Asn AAT Asn TTT	Met GAA Glu 1065	AAT Asn 1050 AAT Asn	AAA Lys AAT	3217

[0040]

【配列表】

配列番号:4

配列の長さ:1080

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:タンパク質

配列	Ī														
Met	His	Tyr	Phe	Arg	Arg	Asn	Cys	Ile	Phe	Phe	Leu	Ile	Val	Ile	Leu
1				5					10					15	
Tyr	Gly	Thr	Asn	Ser	Ser	Pro	Ser	Thr	Gln	Asn	Val	Thr	Ser	Arg	Glu
			20					25					30		
Val	Val	Ser	Ser	Val	Gln	Leu	Ser	Glu	Glu	Glu	Ser	Thr	Phe	Tyr	Leu
		35					40					45			
Cys	Pro	Pro	Pro	Val	Gly	Ser	Thr	Val	Ile	Arg	Leu	Glu	Pro	Pro	Arg
	50					55					60				
Lys	Cys	Pro	Glu	Pro	Arg	Lys	Ala	Thr	Glu	Trp	Gly	Glu	Gly	Ile	Ala
65					70					7 5					80
Ile	Leu	Phe	Lys	Glu	Asn	Ile	Ser	Pro	Tyr	Lys	Phe	Lys	Val	Thr	Leu
				8 5					90		-			95	
Tyr	Tyr	Lys	Asn	I·le	Ile	Gln	Thr	Thr	Thr	Trp	Thr	Gly	Thr	Thr	Tyr
			100					105					110		
Arg	Gln	Ile	Thr	Asn	Arg	Tyr	Thr	Asp	Arg	Thr	Pro	Val	Ser	Ile	Glu
		115					120					125			
Glu	Ile	Thr	Asp	Leu	Ile	Asp	Gly	Lys	Gly	Arg	Cys	Ser	Ser	Lys	Ala
	130					135					140				
Arg	Tyr	Leu	Arg	Asn	Asn	Val	Tyr	Val	Glu	Ala	Phe	Asp	Arg	Asp	Ala
145					150					155					160
Gly	Glu	Lys	Gln	Val	Leu	Leu	Lys	Pro	Ser	Lys	Phe	Asn	Thr	Pro	Glı
				165					170					175	
Ser	Arg	Ala	Trp	His	Thr	Thr	Asn	Glu	Thr	Tyr	Thr	Val	Trp	Gly	Se
			180					185	i				190		
Pro	Trp	Ile	Tyr	Arg	Thr	Gly	Thr	Ser	Val	Asn	Cys	Ile	Val	Glu	Gli
		195					200					205	,		
Met	Asp	Ala	Arg	Ser	Val	Phe	Pro	Tyr	Ser	Tyr	Phe	Ala	Met	Ala	Ası
	210	١				215	,				220)			

Gly	Asp	Ile	Ala	Asn	Ile	Ser	Pro	Phe	Tyr	Gly	Leu	Ser	Pro	Pro	Glu
220					225					230					235
Ala	Ala	Ala	Glu	Pro	Met	Gly	Tyr	Pro	Gln	Asp	Asn	Phe	Lys	Gln	Leu
	-			240					245					250	
Asp	Ser	Tyr	Phe	Ser	Met	Asp	Leu	Asp	Lys	Arg	Arg	Lys	Ala	Ser	Leu
			255					260					265		
Pro	Val	Lys	Arg	Asn	Phe	Leu	Ile	Thr	Ser	His	Phe	Thr	Val	Gly	Trp
		270					275					280			
Asp	Trp	Ala	Pro	Lys	Thr	Thr	Arg	Val	Cys	Ser	Met	Thr	Lys	Trp	Lys
	285					290					295				
Glu	Val	Thr	Glu	Met	Leu	Arg	Ala	Thr	Val	Asn	Gly	Arg	Tyr	Arg	Phe
300					305					310					315
Met	Ala	Arg	Glu	Leu	Ser	Ala	Thr	Phe	Ile	Ser	Asn	Thr	Thr	Glu	Phe
				320					325					330	
Asp	Pro	Asn	Arg	Ile	Ile	Leu	Gly	Gln	Cys	Ile	Lys	Arg	Glu	Ala	Glu
			335					340					345		
Ala	Ala	Ile	Glu	Gln	Ile	Phe	Arg	Thr	Lys	Tyr	Asn	Asp	Ser	His	Val
		350					355					360			
Lys	Val	Gly	His	Val	Gln	Tyr	Phe	Leu	Ala	Leu	Gly	Gly	Phe	Ile	Val
	365					370					375				
Ala	Tyr	Gln	Pro	Val	Leu	Ser	Lys	Ser	Leu	Ala	His	Met	Tyr	Leu	Arg
380					385					390					395
Glu	Leu	Met	Arg	Asp	Asn	Arg	Thr	Asp	Glu	Met	Leu	Asp	Leu	Val	Asn
			-	400					405					410	•
Asn	Lys	His	Ala	Ile	Tyr	Lys	Lys	Asn	Ala	Thr	Ser	Leu	Ser	Arg	Leu
			415					420					425		
Arg	Arg	Asp	Ile	Arg	Asn	Ala	Pro	Asn	Arg	Lys	He	Thr	Leu	Asp	Asp
		430					435					440			
Thr	Thr	Ala	Ile	Lys	Ser	Thr	Ser	Ser	Val	Gln	Phe	Ala	Met	Leu	Gln

	445					450					455				٠
Phe	Leu	Tyr	Asp	His	Ile	Gln	Thr	His	Ile	Asn	Asp	Met	Phe	Ser	Arg
460					465					470					475
Ile	Ala	Thr	Ala	Trp	Cys	Glu	Leu	Gln	Asn	Arg	Glu	Leu	Val	Leu	Trp
				480					485					490	
His	Glu	Gly	Ile	Lys	Ile	Asn	Pro	Ser	Ala	Thr	Ala	Ser	Ala	Thr	Leu
			495					500					505		
Gly	Arg	Arg	Val	Ala	Ala	Lys	Met	Leu	Gly	Asp	Val	Ala	Ala	Val	Ser
		510					515					520			
Ser	Cys	Thr	Ala	Ile	Asp	Ala	Glu	Ser	Val	Thr	Leu	Gln	Asn	Ser	Met
	525					530					535				
Arg	Val	Ile	Thr	Ser	Thr	Asn	Thr	Cys	Tyr	Ser	Arg	Pro	Leu	Val	Leu
540					545					550					555
Phe	Ser	Tyr	Gly	Glu	Asn	Gln	Gly	Asn	Ile	Gln	Gly	Gln	Leu	Gly	Glu
				560					565					570	
Asn	Asn	Glu	Leu	Leu	Pro	Thr	Leu	Glu	Ala	Val	Glu	Pro	Cys	Ser	Ala
			575					580					585		
Asn	His	Arg	Arg	Tyr	Phe	Leu	Phe	Gly	Ser	Gly	Tyr	Ala	Leu	Phe	Glu
		590					595					600			
Asn	Tyr	Asn	Phe	Val	Lys	Met	Val	Asp	Ala	Ala	Asp	Ile	Gln	Ile	Ala
	605					610					615				
Ser	Thr	Phe	Val	Glu	Leu	Asn	Leu	Thr	Leu	Leu	Glu	Asp	Arg	Glu	Ile
620					625					630					635
Leu	Pro	Leu	Ser	Val	Tyr	Thr	Lys	Glu	Glu	Leu	Arg	Asp	Val	Gly	Val
				640					645					650	
Leu	Asp	Tyr	Ala	Glu	Val	Ala	Arg	Arg	Asn	Gln	Leu	His	Glu	Leu	Lys
			655					660					665		
Phe	Tyr	Asp	Ile	Asn	Lys	Val	Ile	Glu	Val	Asp	Thr	Asn	Tyr	Ala	Gly
		670					675					680			

Le	eu	Gln	Glu	Phe	Gly	Cys	Met	Ser	Ile	Thr	Lys	Lys	Asp	Ala	Asn	Pro
		685					690					695				
As	sn	Asn	Gly	Gln	Thr	Gln	Leu	Glu	Ala	Ala	Arg	Met	Glu	Leu	Thr	Asp
70	0					705					710					715
Le	€u	Ile	Asn	Ala	Lys	Ala	Met	Thr	Leu	Ala	Ser	Leu	Gln	Asp	Tyr	Ala
					720					725					730	
Ly	/S	Ile	Glu	Ala	Ser	Leu	Ser	Ser	Ala	Tyr	Ser	Glu	Ala	Glu	Thr	Val
				735					740					745		
As	n	Asn	Asn	Leu	Asn	Ala	Thr	Leu	Glu	Gln	Leu	Lys	Met	Ala	Lys	Thr
			750					755					760			
As	n	Leu	Glu	Ser	Ala	Ile	Asn	Gln	Ala	Asn	Thr	Asp	Lys	Thr	Thr	Phe
		765					770					775				
As	p	Asn	Glu	His	Pro	Asn	Leu	Val	Glu	Ala	Tyr	Lys	Ala	Leu	Lys	Thr
78	80					785					790					795
Th	r	Leu	Glu	Gln	Arg	Ala	Thr	Asn	Leu	Glu	Gly	Leu	Ser	Ser	Thr	Ala
					800					805					810	
Ty	r	Asn	Gln	Ιle	Arg	Asn	Asn	Leu	Val	Asp	Leu	Tyr	Asn	Lys	Ala	Ser
				815					820					825		
Se	r	Leu	Ile	Thr	Lys	Thr	Leu	Asp	Pro	Leu	Asn	Gly	Gly	Thr	Leu	Leu
			830					835					840			
As	P	Ser	Asn	Glu	Ile	Thr	Thr	Ala	Asn	Lys	Asn	Ile	Asn	Asn	Thr	Leu
		845					850					855				
Se	r	Thr	Ile	Asn	Glu	Gln	Lys	Thr	Asn	Ala	Asp	Ala	Leu	Ser	Asn	Ser
86	0					865					870					875
Ph	е	Ile	Lys	Lys	Val	Ile	Gln	Asn	Asn	Glu	Gln	Ser	Phe	Val	Gly	Thr
					880					885					890	
Ph	e	Thr	Asn	Ala	Asn	Val	Gln	Pro	Ser	Asn	Tyr	Ser	Phe	Val	Ala	Phe
				895					900				-	905	-	
Se	r	Ala	Asp	Val	Thr	Pro	Val	Asn	Tyr	Lys	Tyr	Ala	Arg	Arg	Thr	Val

Trp Asn Gly Asp Glu Pro Ser Ser Arg Ile Leu Ala Asn Thr Asn Ser Ile Thr Asp Val Ser Trp Ile Tyr Ser Leu Ala Gly Thr Asn Thr Lys Tyr Gln Phe Ser Phe Ser Asn Tyr Gly Pro Ser Thr Gly Tyr Leu Tyr Phe Pro Tyr Lys Leu Val Lys Ala Ala Asp Ala Asn Asn Val Gly Leu Gln Tyr Lys Leu Asn Asn Gly Asn Val Gln Gln Val Glu Phe Ala Thr Ser Thr Ser Ala Asn Asn Thr Thr Ala Asn Pro Thr Pro Ala Val Asp Glu Ile Lys Val Ala Lys Ile Val Leu Ser Gly Leu Arg Phe Gly Gln Asn Thr Ile Glu Leu Ser Val Pro Thr Gly Glu Gly Asn Met Asn Lys Val Ala Pro Met Ile Gly Asn Ile Tyr Leu Ser Ser Asn Glu Asn Asn Ala Asp Lys Ile Pro Gly Tyr Arg Arg Pro Gly Thr Phe Leu

[0041]

【図面の簡単な説明】

【図1】

p N Z 4 0 K - S の構築手順を説明する図である。

【図2】

DNZ40K-Sの構築手順を説明する図である。

【図3】

pNZ40K-Sの構築手順を説明する図である。

【図4】

pNZ40K-Cの構築手順を説明する図である。

【図5】

pNZ40K-Cの構築手順を説明する図である。

【図6】

pNZ40K-Cの構築手順を説明する図である。

【図7】

TTM-1ポリペプチドの発現を確認した結果を示すウエスタンブロッドの図である。

【図8】

気管病変スコアを示す図である。

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【書類名】 要約書

【要約】

【課題】 抗マイコプラズマワクチンとしてより強力な組み換えウイルスを提供 する。

【解決手段】 マイコプラズマ・ガリセプティカムの抗原性を有するポリペプチドとヘルペスウイルスの外膜タンパク質由来のポリペプチドとを含む融合タンパク質であって、外膜タンパク質由来のペプチドがマイコプラズマ・ガリセプティカムの抗原性を有するポリペプチドのN末端側に連結していることを特徴とする融合タンパク質をコードするDNAを作製し、これをアビポックスウイルスの増殖に非必須な領域に組み込んで組み換えアビポックスウイルスを作製する。

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

000229117

【住所又は居所】

東京都千代田区丸の内2丁目6番1号

【氏名又は名称】

日本ゼオン株式会社

出願人履歴情報

識別番号

[000229117]

1. 変更年月日

1990年 8月22日

[変更理由]

新規登録

住 所

東京都千代田区丸の内2丁目6番1号

氏 名

日本ゼオン株式会社