Heap Sort Worksheet -\$2020

Thursday, November 5, 2020 6:51 PM

Heap Sort Workshee...

Build Heap

- 1. Let index = length/2-1. This is the parent of the last node in the tree, i.e. list[index + 1] . . . list[length-1] are leaves
- Convert the subtree with root of list[index] into a heap.
 - a. Given list[a] is root of tree, list[b] is left child (root *2 +1), list[c] is right child (root*2+2), if exists
 - b. Compare list[b] with list[c] to determine larger child, list[largerIndex]
 - c. Compare list[a] with list[largerIndex]. If list[a] < list[largerIndex], then swap, else already a heap
 - d. If swap, repeat step 2 for the subtree of list[largerIndex]
- 3. Convert the subtree with the root of list[index-1] into a heap, repeat until list[0]

Heap Sort

- 1. Swap the root with the end of the list.
- 2. Heapify the list up to but not including the root
- 3. Repeat until there is only one node in the list

Simulate the heapsort algorithm manually to sort the array:

Show all steps

- 1. Make into a heap
- 2. Sort

									M	ax-He	ap
[0]	5	5	5	5	5	5	92	92			
[1]	22	92	92	aa.	92	52	5	76			
[2]	9	9	9	81	81	81	81	81			
[3]	76	92	92	92	22	76	76	5			
[4]	63	63	63	63	63	63	63	63			
[5]	81	81	81	9	9	9	9	9			
[6]	48	48	48	48	48	48	48	48			
[7]	92	76	76	76	76	22	22	22			
[8]	54	S 4	S4	54	54	54	54	54			
[9]	28	28	28	98	9-8	<i>9</i> -8	28	28			

[0]	92	8	N	76	22	63	28	54	5	ധ	9	15
[1]	76	76	76	5	63	22	54	2 8	28	21	5	
[2]	81	48	48	48	48	48	48	48	٩	9		
[3]	54	54	54	54	S 4	54	22	22	22			
[4]	63	63	63	63	5	5	5	5	•			
[5]	9	9	9	9	q	9	9	9				
[6]	48	28	78	28	28	28						
[7]	22	22	d d	2								
[8]	5	N										
[9]	28											

										1	1	
[0]												5
[1]											9	9
[2]										22	22	22
[3]									28	28	28	28
[4]								48	48	48	48	48
[5]							54	84	S4	S 4	S4	Sep
[6]						63	63	63	63	63	63	63
[7]				76	76	71	76	76	76	76	76	76
[8]		81	81	81	81	81	81	81	8(81	81	18
[9]	92	92	92	92	92	92	92	32	92	32	92	92