Lecture 3: Local Descent

Optimization T2023

Màster de Fonaments de Ciència de Dades

$f(\mathbf{x}) \to min$, $\mathbf{x} \in D \subseteq \mathbb{R}^n$, $n \ge 1$, f is smooth

Goal: Iteratively find a sequence $x^{(1)}, x^{(2)}, ... \rightarrow x^*$, where x^* is a solution of the optimization proble

where \mathbf{x}^* is a solution of the optimization problem (local or global minimum), realizing the descent

$$f(\mathbf{x}^{(1)}) > f(\mathbf{x}^{(2)}) > \cdots$$

Recall that $\nabla f(\mathbf{x}^*) = 0$

(for all or most* of the iterates)

General descent method.

given a starting point $\mathbf{x}^{(1)} \in D$ repeat

- 1. Determine descent direction $p^{(k)}$ (often, $||p^{(k)}|| = 1$)
- 2. Determine step size/learning rate $\alpha^{(k)}$
- 3. Update $\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}$

until stopping criterion is satisfied

III. Descent direction?

II. Step size?

I. Stopping criterion?

Digression: Why gradient?

Recall that from the Taylor formula

Theorem:

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ be a differentiable function, $a \in D$, $d \in \mathbb{R}^n$ with $\|d\| = 1$. If θ is the angle between d and $\nabla f(a)$. Then

$$\nabla_{\boldsymbol{d}} f(\boldsymbol{a}) = \boldsymbol{d}^T \cdot \nabla f(\boldsymbol{a}) = \|\nabla f(\boldsymbol{a})\| \cos \theta$$

In particular, the vector $-\nabla f(\mathbf{a})$ gives the maximum descent direction of f at the point \mathbf{a} .

I. Stopping criteria/termination conditions

- Maximum iterations: repeat until $k \leq k_{max}$
- Absolute improvement: repeat until

$$f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k+1)}) < \epsilon_a$$

Relative improvement: repeat until

$$f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k+1)}) < \epsilon_r |f(\mathbf{x}^{(k)})|$$

Gradient magnitude: repeat until

$$\left\|\nabla f\left(\mathbf{x}^{(k+1)}\right)\right\| < \epsilon_g$$

- ✓ One or more termination conditions can be used
- ✓ If there are several local minima, one can add *random restart* with $\mathbf{x}^{(1),new}$ sampled randomly from D

II. Step size/learning rate

Suppose $x = x^{(k)}$ and $p = p^{(k)}$ is given. How to find $\alpha = \alpha^{(k)}$?

Methods:

- 1. Exact line search
- 2. Approximate line search
- 3. Trust region methods

Exact line search

minimize_{α} $f(\mathbf{x} + \alpha \mathbf{p})$

- This is univariant optimization problem for $\phi(\alpha) := f(\mathbf{x} + \alpha \mathbf{p}) \rightarrow$
 - \rightarrow Find a **bracket** for the optimal solution α^* (α^* is characterized by $\phi(\alpha^*) < \phi(\alpha)$ for all α near α^*)
 - \rightarrow Use univariant optimization methods to find an approximate of α^* by successively shrinking the bracket. Methods include:
 - Dyadic/binary search
 - Fibonacci search
 - Quadratic fit search
 - Shubert–Piyavskii method
 - Bisection method

Definition: A bracket is an interval $[\alpha', \alpha'']$ containing α^*

Digression: some univalent optimization methods [KW, Ch.3]

- Dyadic/binary search: subdivide interval 'in half' at each step
- Fibonacci search: max reduction of interval size for given number of function evaluations
- Quadratic fit search
- Shubert-Piyavskii method : assuming ϕ is Lipshitz, e.g.

$$|\phi(x) - \phi(y)| \le \ell \cdot |x - y|, \ \forall x, y \in [\alpha', \alpha'']$$

• Bisection method: solve $\phi'(\alpha) = 0$ instead

Dyadic/binary and Fibonacci search

Assumption ★:

 ϕ is unimodal, that is, ϕ has a unique minimum on (α', α'')

 ϕ is decreasing on $[\alpha', \alpha^*]$ and ϕ is increasing on $[\alpha^*, \alpha'']$

 ϕ is convex on $[\alpha', \alpha'']$ ($\Leftrightarrow \phi'' > 0$)

Basic Splitting Step: for a pair $x_1 < x_2$ of points in the starting bracket

Exercise: Check that, under Assumption \star , for all $x_1 < x_2$ after the Basic Splitting Step the new interval contains α^* (hence, is a bracket).

Basic Splitting Step in "almost" two parts:

do the basic splitting step for x_1 and x_1 + ϵ , where $\epsilon > 0$ is small

- Each Basic Splitting Step requires 2 evaluations of the function at x_1 and x_2 .
- In general, i.e., if Assumption ★ is violated, the Basic Splitting Step doesn't work!

Exercise: Give an example

Dyadic/binary search: under Assumption ★

given the desired size $\epsilon>0$ of the bracket choose $\delta<\epsilon$ (usually much smaller) repeat

- 1. Pick the midpoint $x_1 = \frac{\alpha' + \alpha''}{2}$
- 2. Do the Basic Splitting Step in 'almost' two parts using x_1 and $x_1 + \delta$
- 3. Update $[\alpha', \alpha'']$ with the new bracket from step 2 above until $|\alpha'' \alpha'| < \epsilon$

Exercise: How many evaluations of the function ϕ is required in the dyadic search in order to shrink the bracket by a factor of 100?

Fibonacci search (under Assumption ★)

- Fibonacci numbers are given by the recursive relation $F_{n+2} = F_{n+1} + F_n$, with starting condition $F_1 = F_2 = 1$.
- This generates the sequence 1, 1, 2, 3, 5, 8, 11, ...
- This sequence grows as $F_n \sim \frac{1}{\sqrt{5}} \varphi^n$, for n large, where $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.6$ is the Golden ratio.

given the number of steps *N*

$$\label{eq:for_interpolation} \begin{aligned} \text{for } i = N, N-1, \dots, 1 \ \ \text{do} \\ \text{if } i \neq 1, \end{aligned}$$

1. Compute $x_1, x_2 \in [\alpha', \alpha'']$ such that

$$\frac{\alpha'' - x_1}{\alpha'' - \alpha'} = \frac{F_i}{F_{i+1}} \text{ and } \frac{x_2 - \alpha'}{\alpha'' - \alpha'} = \frac{F_i}{F_{i+1}}$$

- 2. Do the **Basic Splitting Step** using x_1 and x_2
- 3. Update $[\alpha', \alpha'']$ with the new bracket from step 2 above

Observe that after this step, the length of the new bracket is proportional to the length of the previous bracket as F_i to F_{i+1}

otherwise

Do the Basic Splitting Step in 'almost' two parts using $\frac{\alpha' + \alpha''}{2}$ and $\frac{\alpha' + \alpha''}{2} + \epsilon$

Key Advantage: Fibonacci search uses significantly smaller evaluations of the function than the dyadic search because it re-uses some evaluation points! (see example on the next slide)

Exercise: How many evaluations of the function ϕ is required in the Fibonacci search in order to shrink the bracket by a factor of 100? Compare it to the corresponding result of the dyadic search.

Fibonacci search (under Assumption ★): an example

Consider using Fibonacci search with five function evaluations to minimize $f(x) = \exp(x-2) - x$ over the interval [a,b] = [-2,6]. The first two function evaluations are made at $\frac{F_5}{F_6}$ and $1 - \frac{F_5}{F_6}$, along the length of the initial bracketing interval:

$$f(x^{(1)}) = f\left(a + (b - a)\left(1 - \frac{F_5}{F_6}\right)\right) = f(1) = -0.632$$

$$f(x^{(2)}) = f\left(a + (b - a)\frac{F_5}{F_6}\right) = f(3) = -0.282$$

The evaluation at $x^{(1)}$ is lower, yielding the new interval [a, b] = [-2, 3]. Two evaluations are needed for the next interval split:

$$x_{\text{left}} = a + (b - a) \left(1 - \frac{F_4}{F_5} \right) = 0$$

 $x_{\text{right}} = a + (b - a) \frac{F_4}{F_5} = 1$

A third function evaluation is thus made at x_{left} , as x_{right} has already been evaluated:

$$f(x^{(3)}) = f(0) = 0.135$$

The evaluation at $x^{(1)}$ is lower, yielding the new interval [a, b] = [0, 3]. Two evaluations are needed for the next interval split:

$$x_{\text{left}} = a + (b - a) \left(1 - \frac{F_3}{F_4} \right) = 1$$
 $x_{\text{right}} = a + (b - a) \frac{F_3}{F_4} = 2$

A fourth functional evaluation is thus made at x_{right} , as x_{left} has already been evaluated:

$$f(x^{(4)}) = f(2) = -1$$

The new interval is [a, b] = [1, 3]. A final evaluation is made just next to the center of the interval at $2 + \epsilon$, and it is found to have a slightly higher value than f(2). The final interval is $[1, 2 + \epsilon]$.

Quadratic fit search

The method is based on the following observations:

- 'close' to the minima functions look like quadratic functions
- we can explicitly find minima of quadratic functions:

Lemma:

There exists a unique parabola that passes through any triple of distinct points (a, y_a) , (b, y_b) , (c, y_c) . This parabola has its extremum at

$$x^* = \frac{1}{2} \frac{y_a(b^2 - c^2) + y_b(c^2 - a^2) + y_c(a^2 - b^2)}{y_a(b - c) + y_b(c - a) + y_c(a - b)}$$

Exercise*: Show that the algorithm described on the next slide converges to a local minimum (assuming the function is smooth)

Quadratic fit search

#

given a triple a < b < c where [a,c] is a bracket of ϕ and $\phi(b) < \phi(a)$, $\phi(b) < \phi(c)$ repeat

- 2. If $x^* \in [b, c]$, then
 - Check which value is larger, $\phi(x^*)$ or $\phi(b)$:
 - i. If $\phi(b) > \phi(x^*)$, update the triple (a, b, c) with (b, x^*, c)
 - ii. If $\phi(b) < \phi(x^*)$, update the triple (a, b, c) with (a, b, x^*)

3. Otherwise

- Again, check which value is larger, $\phi(x^*)$ or $\phi(b)$:
 - i. If $\phi(b) > \phi(x^*)$, update the triple (a, b, c) with (a, x^*, b)
 - ii. If $\phi(b) < \phi(x^*)$, update the triple (a, b, c) with (x^*, b, c)

until the $|a-c|<\epsilon$

In these examples, parabola at the current step is in orange; parabola at the next step is in blue

That is, when $x^* \in [a, b)$ because of condition #

Or any other stopping criterion based on variation of the function

Bisection method

The method is based on the following observations:

- Instead of looking for a local minimum of ϕ , we can look for a solution of $\phi'=0$
- We assume that $[\alpha', \alpha'']$ is a bracket for ϕ , and hence there exists a solution of $\phi'=0$ on this interval

given an interval [a,b] such that $\phi'(a)\cdot\phi'(b)<0$ repeat

- 2. If $\phi'(a) \cdot \phi'(c) < 0$, update interval [a, b] with [a, c]
- 3. If $\phi'(b) \cdot \phi'(c) < 0$, update interval [a, b] with [c, b]

until
$$|a - b| < \epsilon$$

• If $[\alpha', \alpha'']$ doesn't satisfy the condition $\phi'(\alpha') \cdot \phi'(\alpha'') < 0$, then one can try iteratively shrink this interval by a constant factor (say 2), until the condition is fulfilled. However, it might not always work (see an example of the function on the left where the bisection method can fail; this is the situation of a local minimum in a 'deep valley'). More sophisticated methods should be used instead.

Exercise: Let $\phi(x) = \frac{x^2}{2} - x$. Apply the bisection method to find an interval containing the minimizer of ϕ starting with the interval [0,1000]. Execute 3 steps of the algorithm.

minimize_{α} $f(\mathbf{x} + \alpha \mathbf{p})$

Consider conducting a line search on $f(x_1, x_2, x_3) = \sin(x_1x_2) + \exp(x_2 + x_3) - x_3$ from x = [1, 2, 3] in the direction d = [0, -1, -1]. The corresponding optimization problem is:

$$\underset{\alpha}{\text{minimize}} \sin((1+0\alpha)(2-\alpha)) + \exp((2-\alpha) + (3-\alpha)) - (3-\alpha)$$

which simplifies to:

$$\min_{\alpha} \operatorname{sin}(2-\alpha) + \exp(5-2\alpha) + \alpha - 3$$

The minimum is at $\alpha \approx 3.127$ with $x \approx [1, -1.126, -0.126]$.

Find $\alpha^{(k)}$ approximately and move on with the descent method

For simplicity,
$$x_k = \mathbf{x}^{(k)}$$
, $p_k = \boldsymbol{p}^{(k)}$, $\alpha_k = \alpha^{(k)}$

We impose the following condition for α_k

$$\phi(\alpha_k) := f(x_k + \alpha_k p_k) < f(x_k) + c_1 \alpha_k (\nabla f(x_k))^T p_k, c_1 \in (0, 1).$$

The condition is called (sufficient decrease condition).

Remarks.

- $\ell(\alpha_k) := f(x_k) + c_1 \alpha_k \nabla f^T(x_k) p_k$ is a linear function.
- For small values of $\alpha_k > 0$ we have $\phi(\alpha_k) < \ell(\alpha_k)$. This is so because $c_1 \in (0,1)$ and then

$$\phi'(0) = (\nabla f(x_k))^T p_k < c_1 (\nabla f(x_k))^T p_k = \ell'(0) < 0.$$

Sufficient decrease. We ask for a decrease proportional to α and $\phi'(0) = (\nabla f(x_k))^T p_k$. Usually $c_1 \approx 0.1$.

Curvature condition. Since the previous condition is always satisfied for small values of α_k we need to add further conditions for termination. We use the so called curvature condition

$$(\nabla f(x_k + \alpha_k p_k))^T p_k \ge c_2 (\nabla f(x_k))^T p_k, c_2 \in (c_1, 1)$$

In other words if $\phi'(\alpha_k)$ is not negative enough we terminate the k-step.

Wolfe conditions

Definition. The conditions (together) to terminate the k-step given by

$$f(x_k + \alpha_k p_k) < f(x_k) + c_1 \alpha_k (\nabla f(x_k))^T p_k,$$

$$(\nabla f(x_k + \alpha_k p_k))^T p_k \ge c_2 (\nabla f(x_k))^T p_k,$$

with $0 < c_1 < c_2 < 1$ are usually called Wolfe conditions.

Definition. The conditions (together) to terminate the k-step given by (we do not allow $\phi'(\alpha_k)$ to be too positive).

$$f(x_k + \alpha_k p_k) < f(x_k) + c_1 \alpha_k (\nabla f(x_k))^T p_k,$$

$$|(\nabla f(x_k + \alpha_k p_k))^T p_k| \le |c_2 (\nabla f(x_k))^T p_k|,$$

with $0 < c_1 < c_2 < 1$ are usually called strong Wolfe conditions.

Wolfe conditions

Wolfe conditions: existence

Lemma. Suppose $f: D \subset \mathbb{R}^n \to \mathbb{R}$ be a \mathcal{C}^1 function. Let p_k a descent direction at the point $x_k \in D$ and assume $f|L_{p_k}$ is bounded below where $L_{p_k} = \{x \in \mathbb{R}^n \mid x = x_k + \alpha p_k, \ \alpha > 0\}$. Then if $0 < c_1 < c_2 < 1$ there exist intervals of step lengths satisfying the (strong) Wolfe conditions

Proof. Since $\ell'(\alpha_k) < 0$ (and constant) there exists a first intersection, $\hat{\alpha}_k > 0$, between $\ell(\alpha_k)$ and $\phi(\alpha_k)$:

$$f(x_k + \hat{\alpha}_k p_k) = f(x_k) + c_1 \hat{\alpha}_k (\nabla f(x_k))^T p_k.$$
 (1)

The sufficient decrease condition it is satisfied for all $\alpha_k \in [0, \hat{\alpha}_k]$. By the Mean Value Theorem we have that there exists $\tilde{\alpha}_k \in [0, \hat{\alpha}_k]$ such that

$$f(x_k + \hat{\alpha}_k p_k) - f(x_k) = \hat{\alpha}_k (\nabla f(x_k + \tilde{\alpha}_k p_k))^T p_k$$

All together imply

$$\left(\nabla f\left(x_{k}+\tilde{\alpha}_{k}p_{k}\right)\right)^{T}p_{k}=c_{1}\hat{\alpha}_{k}\left(\nabla f\left(x_{k}\right)\right)^{T}p_{k}>c_{2}\hat{\alpha}_{k}\left(\nabla f\left(x_{k}\right)\right)^{T}p_{k}.$$

Therefore $\tilde{\alpha}_k$ satisfies the Wolfe conditions and smoothness gives the desired interval.

Convergence

Remark. Until this moment we just consider the definition of the process, that is the election of p_k and α_k . But we need to study if the process converge to somewhere.

Let p_k be a descent direction, and let θ_k the angle of p_k and $-\nabla f(x^*)$

$$\cos(\theta_k) = -\frac{1}{||\nabla f(x_k)|| \ ||p_k||} (\nabla f(x_k))^T p_k$$

Theorem. Assume notation above with p_k a descent direction and α_k satisfying Wolfe's conditions. Suppose f is C^2 and bounded below in \mathbb{R}^n . Then

$$\sum_{k=0}^{\infty} \cos^2(\theta_k) ||\nabla f(x_k)|| < \infty.$$
 (2)

Convergence

Corollary. Under the above notation and assumptions we have

$$\cos^2(\theta_k)||\nabla f(x_k)|| \to 0$$

Moreover if there exists $\delta > 0$ such that $\cos(\theta) > \delta$ then

 $\lim_{k\to\infty} ||\nabla f(x_k)|| = 0 \quad \text{(globally convergent algorithms)}$

Remark. The final δ -condition basically means that p_k do not get arbitrarily orthogonal to the gradient vector. This is, for instance, the case of the steepest descent method.