TD 04 - Classes P et EXP

Exercice 1.Temps déterministe

Rappel des définitions :

$$\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathsf{DTIME}(n^k),$$

$$\mathsf{EXP} = \bigcup_{k \in \mathbb{N}} \mathsf{DTIME}(2^{n^k}).$$

- 1. Au précédent TD nous avons donné une machine M_{pal} pour le problème du **Palindrome** qui fonctionne en temps n^3+2 sur l'alphabet $\Gamma=\{a,b,k,y,B\}$. Expliquer quelle est l'idée du théorème d'accélération linéaire pour résoudre en temps $(1+\frac{1}{1000})n+\frac{1}{1000}(n^3+2)$ le problème du **Palindrome**.
- **2.** Donner deux classes de complexité en temps déterministe qui sont séparées par le théorème de hiérarchie.
- 3. Montrer que le problème suivant est dans P.

Accessibilité

entrée : un graphe orienté G et deux sommets s et t *question* : existe-t-il un chemin de s à t dans G?

- 4. Montrer que le problème 2-SAT est dans la classe P.
- 5. Montrer que le problème $L_{2SAT+} = L_{2SAT} \cup \{a01bb, t11wu\}$ est dans P, sans utiliser le lemme de clôture de P par changements finis (on supposera que $0, 1, a, b, t, w, u \in \Sigma$). C'est-à-dire, donner un algorithme polynomial pour ce problème (a priori on devrait utiliser le même argument que pour la preuve générale, mais sur un exemple).

Exercice 2. Temps non-déterminisite

- 1. Montrer que le problème Clique est dans la classe EXP.
- 2. Montrer que le problème suivant est dans la classe EXP.

Set packing

entrée : une famille $\{S_j\}_{j\in\{1,\dots,m\}}$ d'ensembles tels que $S_j\subseteq\{1,\dots,n\}$ pour tout $j\in\{1,\dots,m\}$, et un entier $\ell\in\mathbb{N}$ question : $\{S_j\}$ contient-il ℓ ensembles mutuellement disjoints?

3. Montrer que le problème suivant est dans EXP.

Node cover

entrée : un graphe G=(V,E) et un entier ℓ question : existe-t-il un sous ensemble $V'\subseteq V$ tel que $|V'|\le \ell$ et toute arête de E a l'une de ses extrémités dans V'?

4. Montrer que le problème suivant est dans EXP.

Directed Hamiltonian circuit

entrée : un graphe orienté G=(V,A)

question: existe-t-il un circuit dans *G* qui inclue chaque sommet exactement une fois?