Теортест-1 (Вариант 44)

Тема – определенный интеграл

Задача 1

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^2-1}{x^2+1}$;
- 2. $\frac{x^9}{x^5+1}$;
- 3. $\frac{x^4}{(x^5+1)^3}$;
- 4. $\frac{x^2-x+1}{x^2+x}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. Если $f \ge 0$ на [a, b], то F не убывает на [a, b];
- 2. $\int_a^b f(x)dx = F(b) F(a);$
- 3. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];
- 4. Если f непрерывна на [a,b], то F первообразная для f на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a, b];
- 2. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 3. Если $f \ge 0$ на [a,b], то $\int_a^b f(x) dx \ge 0$;
- 4. Если $f \ge 0$ на [a,b] и $\exists c \in [a,b]$: f(c) > 0, то $\int_a^b f(x) dx > 0$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

1

Задача 4

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [0, 10];
- 2. [-2, 20];
- 3. [-10, 20];
- 4. [-2, 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Выберите все верные утверждения:

- 1. Длины противоположных путей равны;
- 2. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 3. Длина кривой зависит от параметризации;
- 4. Длина замкнутой кривой равна нулю;
- 5. Длина любой кривой конечна;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v = du + C;
- 2. du = v;
- 3. u = dv;
- 4. vdt = u'dt;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 7

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x^2)dx = 2 \int f(t)tdt;$
- 2. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2}$;
- 3. $\int f(x)dx = \int f(1/t) \frac{dt}{t^2}$;
- 4. $\int \frac{f(x)}{\ln x} dx = \int f(e^t) dt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. при движении площадь не меняется;
- 2. если $A \subset B$, то площадь A меньше площади B;
- 3. площадь A всегда положительна;
- 4. площадь отрезка равна нулю;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. При измельчении разбиения нижняя сумма Дарбу уменьшается;
- 2. При измельчении разбиения нижняя сумма Дарбу увеличивается;
- 3. Нижняя сумма Дарбу является наименьшей из всех интегральных сумм для данного разбиения;
- 4. Нижняя сумма Дарбу не больше любой интегральной суммы для данного разбиения;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 10

Пусть f интегрируема и $f\geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x)dx>0$:

- 1. f((a+b)/2) = 1;
- 2. f > 0 на [a, b];
- 3. f возрастает (нестрого) на [a,b] и f(b)=1;
- 4. f непрерывна на [a,b] и f((a+b)/2) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)