OMEGA ACADEMY, CURSO DE MÉTODOS NUMÉRICOS.

Erika Jissel Gutiérrez Beltrán
Daniel Fernández Delgado
Frank Edward Daza González
Johanna Arias
Freddy Sebastián García

Profesor:

Walter German Magaña

Materia:

Métodos Numéricos

Universidad de San Buenaventura Cali 2014

Guía de métodos numéricos.

UNIDAD DIECIOCHO

Matriz Inversa

Dada una matriz cuadrada A, si existe otra matriz A' del mismo orden que verifique: $A \cdot B = B \cdot A = I$ (I = matriz identidad), se dice que B es la matriz inversa de A y se representa por $A^{\wedge} - 1$

Si existe la matriz inversa de A, se dice que la matriz A es inversible o regular.

Una matriz A de orden n (n filas y n columnas) tiene inversa cuando su rango es n, es decir, cuando el rango de dicha matriz coincide con su orden.

Primero se tiene un teorema:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Si el determinante de A no es cero el inverso multiplicativo de A es:

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Ejemplo:

Encontrar A^{-1}

$$A = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix}$$

Primero se halla el determinante de A:

$$|A| = (3)(4) - (5)(1) = (12) - (5) = 7$$

Guía de métodos numéricos.

Luego se calcula la adjA.

$$A = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix}$$

$$A_{11} = 4$$
 $A_{12} = -1$

$$A_{21} = -5$$
 $A_{22} = 3$

Después con las respuestas se arma la matriz B y luego se obtiene B^T que es la adjA.

$$B = \begin{bmatrix} 4 & -1 \\ -5 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -1 \\ -5 & 3 \end{bmatrix} \qquad B^{T} = \begin{bmatrix} 4 & -5 \\ -1 & 3 \end{bmatrix} = adjA$$

A continuación se aplica el teorema

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} A_{11} & -A_{21} \\ -A_{12} & A_{22} \end{bmatrix}$$

Guía de métodos numéricos.

$$A^{-1} = \frac{1}{7} \begin{bmatrix} 4 & -5 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} \frac{4}{7} & \frac{-5}{7} \\ -\frac{1}{7} & \frac{3}{7} \end{bmatrix}$$

Finalmente se comprueba el resultado:

$$AA^{-1} = I_2 = A^{-1}A$$

$$\begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} \frac{4}{7} & \frac{-5}{7} \\ -\frac{1}{7} & \frac{3}{7} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$a_{11} = (3)\left(\frac{4}{7}\right) + (5)\left(-\frac{1}{7}\right) = \frac{12}{7} - \frac{5}{7} = \frac{7}{7} = 1$$

$$a_{12} = (3)\left(-\frac{5}{7}\right) + (5)\left(\frac{3}{7}\right) = -\frac{15}{7} + \frac{15}{7} = \frac{0}{7} = 0$$

$$a_{21} = (1)\left(\frac{4}{7}\right) + (4)\left(-\frac{1}{7}\right) = \frac{4}{7} - \frac{4}{7} = \frac{0}{7} = 0$$

$$a_{22} = (1)\left(-\frac{5}{7}\right) + (4)\left(\frac{3}{7}\right) = -\frac{5}{7} + \frac{12}{7} = \frac{7}{7} = 1$$

Guía de métodos numéricos.

