Examenul national de bacalaureat 2021 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.

• Timpul de lucru efectiv este de trei ore.

A. MECANICĂ Testul 11

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect.

- 1. Proprietatea unui corp numită inertie este descrisă cantitativ de mărimea fizică numită:
- a. greutate
- b. masă
- c. fortă
- d. acceleratie
- (3p)
- 2. Unitatea de măsură a energiei potențiale poate fi scrisă în funcție de unitățile de măsură fundamentale din S.I. în forma:
- **a.** kg·m²·s⁻¹
- **b.** $kg \cdot m^2 \cdot s^{-2}$ **c.** $kg \cdot m \cdot s^{-1}$
- **d.** $kg \cdot m \cdot s^{-2}$
- (3p)
- **3.** O macara ridică un corp de masă m pe distanta H, pe directie verticală, si ulterior îl deplasează orizontal, pe distanta D. Expresia matematică a lucrului mecanic efectuat de greutatea corpului este:
- **a.** L = mg(D-H)
- **b.** L = mg(D+H)
- c. L = mgH
- **d.** L = -mqH
- (3p)
- **4.** Un fir elastic omogen are constanta elastică k = 600 N/m. Se taie din fir o bucată de lungime egală cu un sfert din lungimea totală a firului nedeformat. Constanta elastică a acestei bucăți de fir are valoarea:
- **a.** 2400 N/m
- **b.** 800 N/m
- **c.** 450 N/m
- **d.** 150 N/m
- (3p)
- **5.** Un corp este aruncat de la nivelul solului, cu viteza inițială $v_0 = 30$ m/s, vertical în sus. În absența frecării cu aerul, corpul urcă față de punctul de lansare la înălțimea maximă de:
- **a.** 300 m
- **b.** 45 m
- **c.** 3 m
- **d.** 15 m

(3p)

II. Rezolvati următoarea problemă:

(15 puncte)

Un corp cu masa m = 9kg este tractat cu viteză constantă pe o suprafață plană și orizontală, prin intermediul unui cablu elastic de masă neglijabilă, care face unghiul $\alpha = 30^{\circ}$ cu orizontala, ca în figura alăturată. Coeficientul de frecare la alunecare între corp și suprafață este

$$\mu = 0.22 \left(\cong \frac{\sqrt{3}}{8} \right)$$
. Diametrul cablului este $d = 0.79 \, \mathrm{mm} \left(\cong \sqrt{\frac{2}{\pi}} \, \mathrm{mm} \right)$, iar alungirea

relativă a acestuia este $\varepsilon = 2\%$.

- b. Determinați valoarea forței de tracțiune.
- c. Determinati valoarea modulului de elasticitate longitudinală (modulului lui Young) pentru materialul din care este confectionat cablul.
- d. Calculați valoarea minimă a forței de tracțiune sub acțiunea căreia corpul nu mai apasă pe suprafața orizontală. Unghiul format de forța de tractiune cu orizontala rămâne $\alpha = 30^{\circ}$.

III. Rezolvati următoarea problemă:

(15 puncte)

Un corp cu masa m=10 kg este lansat de-a lungul suprafeței orizontale a gheții cu viteza $v=7,2 \frac{\text{km}}{\text{k}}$. Sub

acțiunea forței de frecare, el se oprește după un interval de timp Δt =10s. Coeficientul de frecare la alunecare este constant. Calculati:

- a. energia cinetică a corpului în momentul lansării;
- b. lucrul mecanic efectuat de forța de frecare până la oprirea corpului;
- c. modulul forței de frecare;
- d. distanta parcursă de corp până la oprire.

Examenul national de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. • Timpul de lucru efectiv este de trei ore.

B. ELEMENTE DE TERMODINAMICĂ

Testul 11

Se consideră: numărul lui Avogadro $N_A = 6,02 \cdot 10^{23} \text{ mol}^{-1}$, constanta gazelor ideale $R = 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. Trei mase diferite m_1 , m_2 şi m_3 din acelaşi gaz ideal sunt supuse unor procese termodinamice reprezentate în coordonate p-T în figura alăturată. Volumele ocupate de gaze sunt egale $(V_1 = V_2 = V_3)$. Relația dintre cele densitățile gazelor este:

- **a.** $\rho_1 = \rho_2 = \rho_3$
- **b.** $\rho_1 > \rho_2 > \rho_3$
- **C.** $\rho_2 > \rho_3 > \rho_1$
- **d.** $\rho_3 > \rho_2 > \rho_1$

2. La presiunea $p = 8.31 \cdot 10^5$ Pa, concentratia moleculelor unui gaz ideal (numărul de molecule din unitatea de volum) este $n = 3.01 \cdot 10^{25} \text{ m}^{-3}$. Temperatura gazului este aproximativ:

- a. 1727°C
- **b.** 2000°C
- c. 2027°C
- d. 2054°C

(3p)

(3p)

- 3. Energia internă a unui gaz ideal scade atunci când gazul este supus următorului proces termodinamic:
- a. comprimare adiabatică
- **b.** destindere la presiune constantă
- c. comprimare la presiune constantă
- d. destinderea temperatură constantă

(3p)

- 4. Unitatea de măsură în S.I. a capacității calorice a unui corp este:
- a. J⋅K⁻¹
- **b.** $J \cdot mol^{-1} \cdot K^{-1}$
- **c.** $J \cdot kg^{-1} \cdot K^{-1}$

(3p)

5. O cantitate v = 4 mol de gaz ideal diatomic $(C_V = 2,5R)$, aflat la temperatura $T_1 = 300$ K, este încălzit adiabatic până la temperatura $T_2 = 600 \text{ K}$. Lucrul mecanic efectuat de gaz este de aproximativ:

- a. –30.5 kJ
- **b.** –24.9 kJ
- d. 30.5 kJ

(3p)

II. Rezolvati următoarea problemă:

(15 puncte)

O butelie având volumul $V_1 = 10 \, \text{L}$ conține aer la presiunea $p_1 = 2.10^5 \, \text{Pa}$. Altă butelie, având volumul $V_2 = 5 \, \text{L}$, conține azot la presiunea $p_2 = 3 \cdot 10^5 \, \text{Pa}$. Cele două butelii sunt legate printr-un tub cu volum neglijabil prevăzut cu o membrană care se sparge dacă diferența dintre presiunile celor două gaze este $\Delta p = 2.10^5$ Pa. Ambele gaze, considerate ideale, se află la temperatura $t = 7^{\circ}$ C. Masa molară a aerului este $\mu_{\rm l}=29\cdot 10^{-3}~{\rm kg/mol}$, iar cea a azotului $\mu_{\rm l}=28\cdot 10^{-3}~{\rm kg/mol}$. Determinați:

- a. numărul de molecule din aerul aflat în prima butelie;
- b. masa unei molecule de azot;
- c. masa minimă de azot care trebuie introdusă suplimentar în butelia de volum V_2 pentru a produce spargerea membranei;
- d. masa molară a amestecului obținut după spargerea membranei, ca urmare a introducerii azotului suplimentar.

III. Rezolvați următoarea problemă:

(15 puncte)

 $v = 0.12 \text{ mol} \left(\cong \frac{1}{8.31} \text{mol} \right)$ de gaz ideal monoatomic $(C_V = 1,5R)$ este supusă procesului ciclic $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$, reprezentat în sistemul de coordonate p-T în figura alăturată. Temperatura gazului în starea 1 este $T_1 = 300 \, \text{K}$. Considerați că In $2 \cong 0.7$.

- a. Calculați energia internă a gazului în starea 2.
- b. Determinați valoarea căldurii primite de gaz în timpul unui ciclu.
- c. Calculați lucrul mecanic total schimbat de gaz cu mediul exterior în timpul unui ciclu.
- **d.** Reprezentați procesul ciclic $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ în sistemul de coordonate *p-V*.

Examenul național de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. • Timpul de lucru efectiv este de trei ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Testul 11

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. Unitatea de măsură, în SI, pentru puterea electrică poate fi scrisă în forma:

- c. $A^2 \cdot \Omega^2$
- **d.** $V^2 \cdot \Omega^2$ (3p)
- 2. Intensitatea curentului electric printr-un conductor este numeric egală cu:
- a. lucrul mecanic efectuat pentru deplasarea unității de sarcină electrică prin conductor
- b. sarcina electrică transportată de electroni prin conductor
- c. raportul dintre tensiunea la bornele conductorului și rezistența internă a sursei din reteaua electrică în care este conectat conductorul
- d. sarcina electrică transportată de purtătorii de sarcină care trec, într-o secundă, prin secțiunea transversală a conductorului (3p)
- 3. În figura alăturată sunt reprezentate caracteristicile curent-tensiune a două rezistoare. Relația corectă dintre rezistențele electrice ale celor două rezistoare este:

b.
$$R_2 = 1.5 \cdot R_1$$

c.
$$R_2 = 2 \cdot R_1$$

d.
$$R_1 = 10 \cdot R_2$$

4. Un circuit electric conține o baterie cu tensiunea electromotoare E și rezistența interioară r și un reostat a cărui rezistență electrică poate fi modificată. Puterea maximă care poate fi transmisă circuitului exterior are expresia:

a. $\frac{E}{R+r}$

b.
$$\frac{E^2}{2r}$$

c.
$$\frac{E^2}{4r}$$

c.
$$\frac{E^2}{4r}$$
 d. $\frac{E^2r}{4}$

5. Pentru porțiunea de rețea din figura alăturată se cunosc: $R_1 = 12 \Omega$, $R_2 = R_3 = 6 \Omega$, $I_1 = I_3 = 1 \text{A}$ și $I_2=$ 3 A . Tensiunea indicată de un voltmetru ideal $\left(R_V
ightarrow \infty
ight)$ conectat între A și B

are valoarea:

- **a.** 36 V
- **b.** 18 V
- **c.** 12 V

II. Rezolvaţi următoarea problemă:

(15 puncte)

Generatorul care alimentează circuitul din figura alăturată este caracterizat de tensiunea electromotoare E = 64 V şi rezistenţa interioară $r = 2,0 \Omega$. Parametrii nominali ai becurilor sunt

 $U_1 = 20 \text{ V}$, $I_2 = 0.5 \text{ A}$, respectiv $U_2 = 40 \text{ V}$, $I_2 = 0.3 \text{ A}$. Rezistența totală R a reostatului și pozitia cursorului C sunt astfel alese încât becurile să functioneze la parametri nominali. Conductoarele de legătură au rezistență electrică neglijabilă. Determinați:

- a. rezistenta electrică a becului B₁;
- b. intensitatea curentului electric prin conductorul AC;
- c. intensitatea curentului electric ce străbate generatorul;
- **d.** rezistența electrică R_{BC} a porțiunii reostatului cuprinsă între capătul B și cursorul C

III. Rezolvati următoarea problemă:

În circuitul electric a cărui schemă este reprezentată în figura alăturată se cunosc: E = 60 V, $r = 4 \Omega$, $R_1 = 20 \Omega$, $R_2 = 30 \Omega$, $R_3 = 8 \Omega$. Voltmetrul este considerat ideal $(R_V \to \infty)$. Rezistența electrică a conductoarelor de legătură se neglijează. Determinați:

- a. rezistența electrică echivalentă a circuitului exterior generatorului;
- **b.** puterea dezvoltată de rezistorul având rezistența electrică R_i ;
- c. valoarea tensiunii indicate de voltmetru;
- d. puterea totală dezvoltată de generator dacă se conectează între A și B un fir cu rezistență neglijabilă.

Examenul national de bacalaureat 2021 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. • Timpul de lucru efectiv este de trei ore.

D. OPTICĂ Testul 11

Se consideră viteza luminii în vid $c = 3.10^8$ m/s.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.

- 1. Sub actiunea unei radiatii cu frecventa v, catodul unei celule fotoelectrice emite electroni cu energia cinetică maximă E_c . Lucrul mecanic de extracție a electronilor din catod este:
- **a.** $L = h \cdot v$
- **b.** $L = E_c h \cdot v$
- **c.** $L = h \cdot v + E_c$
- **d.** $L = h \cdot v E_c$ (3p)
- **2.** O lentilă are convergența $C = 2.0 \,\mathrm{m}^{-1}$. Distanța focală a acestei lentile este:
- **a.** 200 cm
- **b.** 50 cm
- c. 25 cm
- (3p)
- 3. Imaginea virtuală dată de un sistem optic pentru un punct luminos se formează:
- a. la intersecția dintre o rază și o prelungire de rază de lumină care intră în sistemul optic
- b. la intersectia razelor de lumină care ies din sistemul optic
- c. la intersectia prelungirii razelor de lumină care ies din sistemul optic
- d. la intersectia razelor de lumină care intră în sistemul optic

(3p)

- **4.** Două lentile cu distanțele focale $f_1 = 30$ cm și respectiv $f_2 = 20$ cm formează un sistem alipit. Distanța focală echivalentă a sistemului este:
- **a.** 50 cm
- **b.** 25 cm
- c. 18 cm
- d. 12 cm (3p)

5. Într-un experiment s-a măsurat valoarea unghiului de refracție r al unei raze laser la trecerea din aer $(n_{aer} \cong 1)$ într-un lichid, pentru diverse valori ale unghiului de incidență i. Pe baza datelor obtinute, a fost trasat graficul alăturat. Indicele de refracție al lichidului are valoarea aproximativă:

0,50 0,75 1,00

0,25

- **a.** 0,75
- **b.** 1,33
- **c.** 1,50
- d. 1.75

(15 puncte)

(3p)

Un obiect cu înălțimea de 2cm este așezat perpendicular pe axa optică a unei lentile subțiri având distanța focală $f = 60 \,\mathrm{cm}$. Imaginea obtinută pe un ecran are înăltimea de trei ori mai mare decât obiectul. Calculati:

- a. convergența lentilei;
- b. distanța la care este așezat obiectul față de lentilă;
- c. distanta de la obiect la ecranul pe care se formează imaginea;
- d. înălțimea imaginii formate de lentilă.

III. Rezolvați următoarea problemă:

(15 puncte)

Sursa de lumină a unui dispozitiv Young este așezată pe axa de simetrie a acestuia și emite radiații cu lungimea de undă de 500 nm. Distanța dintre cele două fante ale dispozitivului este $a = 1 \, \text{mm}$.

- a. Calculați distanța la care trebuie să se afle ecranul față de planul fantelor pentru ca interfranja să fie de 1,5mm atunci când dispozitivul este în aer.
- b. Considerând că ecranul de observație se plasează la 2m de planul fantelor, calculați diferența de drum optic dintre două raze care interferă într-un punct aflat pe ecranul de observație la 1,2 mm de maximul central:
- c. Calculați distanța dintre cel de al treilea minim de interferență situat de o parte a maximului central și maximul de ordin unu situat de cealaltă parte a maximului central. Distanța dintre planul fantelor și ecran este D=2m.
- d. Calculați noua valoare a interfranjei dacă întreg dispozitivul se introduce în apă și se menține distanța D=2m dintre planul fantelor și ecran. Indicele de refracție al apei este $n_{apa}=\frac{4}{3}$.