Streaming for Aibohphobes: Longest Near-Palindrome under Hamming Distance

Elena Grigorescu, Purdue University

Erfan Sadeqi Azer, Indiana University

Samson Zhou, Purdue University

Structure of Talk

- Background
- ❖ 1-Pass Additive Algorithm
- 2-Pass Exact Algorithm
- **❖** Lower Bounds

FSTTCSIITKAN Finding Structure in ALPPATTERNS Noisy Data **FSTTCSPATTERNIITKANPURINDIAO** STREAMINGALGORITHMPATTERNU PERIODPERIODPERIODPER **FSTTCSTHEORYCSASBRICBCAUON** LONGPALINDROMEEMORDNILAPGN **OLFSTTCSIITKANPURINDIAGENXAS**

Palindrome

❖ A string that reads the same forwards and backwards

- * RACECAR
- ***** RACECAR

- **AIBOHPHOBIA**
- **AIBOHPHOBIA**

d-Near-Palindrome

- ❖ A string that "almost" reads the same forwards and backwards
- \clubsuit Given a metric dist, a d-near-palindrome has $dist(S, S^R) \leq d$.
- * RACECAR
- ***** FACECAR

Hamming Distance

- \clubsuit Given strings X, Y, the Hamming distance between X and Y is defined as the positions i at which $X_i \neq Y_i$.
- \Leftrightarrow S = FACECAR
- $S^R = RACECAF$
- \Leftrightarrow HAM $(S, S^R) = 2$

Streaming Model

- \diamondsuit String of length n arrives one symbol at a time
- \bullet Use o(n) space, ideally O(polylog n)

abaacabaccbabbbcbabbccababbccb abaacabaccbabbbcbabbccababbccb abaacabaccbabbbcbabbccababbccb

Longest d-Near-Palindrome Problem

 \clubsuit Given a string S of length n with all ves in a data stream, identify the longest d-near-palindrous in S of S of length n with all ves in a data stream, identify O(n).

 \clubsuit Given a string S of length n, which arrives in a data stream, find a "long" d-near-palindrome in space o(n).

Applications

Related Work (Palindromes in Data Streams)

- $O(\log n)$ space to provide a $(1 + \varepsilon)$ multiplicative approximation to the length of the longest palindrome (Berenbrink, Ergün, Mallmann-Trenn, Sadeqi Azer '14)
- 0 \sqrt{n} space to provide a \sqrt{n} additive approximation to the length of the longest palindrome (BEMS14)
- $\circ O(\sqrt{n})$ space to find the longest palindrome in two passes (BEMS14)
- $\Omega\left(\frac{\log n}{\varepsilon \log(1+\varepsilon)}\right)$ space for $(1+\varepsilon)$ multiplicative approximation (Gawrychowski, Merkurev, Shur, Uznanski'16)
- $\Delta \left(\frac{n}{E}\right)$ space for *E* additive approximation (GMSU16)

Our Results

- $O\left(\frac{d \log^7 n}{\epsilon \log(1+\epsilon)}\right)$ space to provide a $(1+\epsilon)$ multiplicative approximation to the length of the longest d-near-palindrome
- $O(d\sqrt{n}\log^6 n)$ space to provide a \sqrt{n} additive approximation to the length of the longest d-near-palindrome
- $O(d^2\sqrt{n}\log^6 n)$ space to find the longest d-near-palindrome in two passes
- $\Omega(d \log n)$ space LB for $(1 + \varepsilon)$ multiplicative approximation
- $\Leftrightarrow \Omega\left(\frac{dn}{E}\right)$ space LB for E additive approximation

Comparison

	Longest Palindrome	Longest d -Near-Palindrome (Here)
$(1+\varepsilon)$ multiplicative	$O(\log^2 n)$ (BEMS14)	$O\left(\frac{d\log^7 n}{\varepsilon\log(1+\varepsilon)}\right)$
\sqrt{n} additive	$O(\sqrt{n}\log n)$ (BEMS14)	$O(d\sqrt{n}\log^6 n)$
two pass exact	$O(\sqrt{n}\log n)$ (BEMS14)	$O(d^2\sqrt{n}\log^6 n)$
$(1 + \varepsilon)$ multiplicative LB	$\Omega\left(\frac{\log n}{\log(1+\varepsilon)}\right) (GMSU16)$	$\Omega(d \log n)$
E additive LB	$\Omega\left(\frac{n}{E}\right)$ (GMSU16)	$\Omega\left(\frac{dn}{E}\right)$

Structure of Talk

- Background
- ❖ 1-Pass Additive Algorithm
- 2-Pass Exact Algorithm
- **❖** Lower Bounds

Warm-Up

Suppose we see string S, followed by string T. How can we determine if S = T, with high probability?

Karp-Rabin Fingerprints

- Given base B and a prime P, define $\phi(S) = \sum_{i=1}^n B^i S[i] \pmod{P}$
- \Leftrightarrow If S = T, then $\phi(S) = \phi(T)$
- \Leftrightarrow If $S \neq T$, then $\phi(S) \neq \phi(T)$ w.h.p. (Schwartz-Zippel)

Properties of Karp-Rabin Fingerprints

- $\phi(S[1:y]) = \phi(S[1:x]) + B^x \phi(S[x:y])$ (concatenation)
- \clubsuit Define $\phi^R(S) = \sum_{i=1}^n B^{-i}S[i] \pmod{P}$ (reversal)
- $\Phi(S^R[1:x]) = B^{x+1} \Phi^R(S[1:x])$
- $\Phi^{R}(S[1:y]) = \Phi^{R}(S[1:x]) + B^{-x}\Phi^{R}(S[x:y])$
- Can be computed on the fly

Identifying Palindromes

Identifying Near-Palindromes? (CFP+16)

Karp-Rabin Fingerprints for Subpatterns

- $S_{a,b} = S[a]S[a+b]S[a+2b]S[a+3b] \dots$
- $\phi_{a,b}(S) = \phi(S_{a,b}) = B * S[a] + B^2 * S[a+b] + B^3 * S[a+2b] \dots$

- **4** Let $\Delta = \#\{a \mid \phi_{a,b}(S) \neq B^k \phi_{a,b}^R(S)\}$
- riangle Then $\Delta \leq \text{HAM}(S, S^R)$

- Sample 1 primes p_1, p_2 from $[1/(g^2 n, 544 d \log^2 n]$.
- $\Delta \leq \text{HAM(S } S^R)$
- ❖ If HAM(),

What about $HAM(S, S^R) \leq 2d$?

+16)

Karp-Rabin Fingerprints for Sub-Subpatterns

Second-Level Karp-Rabin Fingerprints

- Call a mismatch *isolated* under p_i if it is the only mismatch under some subpattern S_{a,p_i} . Let I be the number of isolated mismatches.
- \Leftrightarrow If $HAM(S, S^R) \leq 2d$, then $I = HAM(S, S^R)$ w.h.p. (CFP+16)

In Review

- ❖ There exists a data structure of size $O(d \log^6 n)$ bits that recognizes whether $HAM(S, S^R) \le d$ w.h.p.
- Recently, this has been improved to $O(d \log n)$. (Clifford, Kociumaka, Porat '17)
- \clubsuit Through black-box reduction, improves our results by $O(\log^5 n)$.

Additive Error Algorithm

 \clubsuit Initialize a data structure every $\frac{\sqrt{n}}{2}$ positions!

Additive Error Algorithm

- $4 \cdot 2\sqrt{n}$ sketches, each of size $O(d \log^6 n)$ bits
- Total space: $O(d\sqrt{n}\log^6 n)$ bits

Structure of Talk

- Background
- 1-Pass Additive Algorithm
- 2-Pass Exact Algorithm
- **❖** Lower Bounds

2-Pass Exact Algorithm

- Can we modify 1-pass additive algorithm to 2-pass exact?
- Missing characters before checkpoint!

2-Pass Exact Algorithm

- Idea: keep all characters before each checkpoint in the second pass
- \clubsuit What if there are $\Omega(n)$ candidates?

Structural result of palindromes (BEMS14)

Structural Result of Near-Palindromes

Goal #1: Recover fingerprints of all overlapping "long" near-palindromes

Goal #2: Use sublinear space in compression

Structural Result of Near-Palindromes

Goal #1: Recover fingerprints of all overlapping "long" near-palindromes

❖ Goal #2: Use sublinear space in compression

Goal #1: Recover fingerprints of all overlapping "long" near-palindromes

Goal #1: Recover fingerprints of all overlapping "long" near-palindromes

Goal #1: Recover fingerprints of all overlapping "long" near-palindromes

Goal #1: Recover fingerprints of all overlapping "long" near-palindromes

- \clubsuit Not quite periodic (at most 2d-1 different words)
- Need to save at most 2d 1 fingerprints of words

2-Pass Exact Algorithm

- First pass: $O(d^2\sqrt{n}\log^6 n)$ bits
- \clubsuit At most 2d-1 fingerprints, each of size $O(d \log^6 n)$ words
- Need to save at \sqrt{n} characters before 2d-1 checkpoints: $O(d\sqrt{n})$
- Total space: $O(d^2\sqrt{n}\log^6 n)$ bits

Structure of Talk

- Background
- 1-Pass Additive Algorithm
- 2-Pass Exact Algorithm
- **A** Lower Bounds

- ❖ Yao's Principle: find "hard" distribution for deterministic algorithms
- **\Let \nu** be the prefix of $10110011100011110000 \dots = 1^10^11^20^2 \dots$ of length $\frac{n}{4}$ (GMSU16).
- ❖ Take $x \in X = \left\{\text{strings of length } \frac{n}{4} \text{ with weight } d\right\}$
- \clubsuit Take $y \in Y = \{y \mid HAM(x, y) = d \text{ or } HAM(x, y) = d + 1\}$
- \Leftrightarrow Define $s(x,y) = v^R x y^R v$.

YES: If $HAM(x, y) \le d$, then the longest d-near-palindrome of s(x, y) has length n. NO: If HAM(x,y) > d, then the longest d-near-palindrome of s(x,y) has length at most $200d^2 + \frac{n}{2}$.

- $A (1 + \varepsilon)$ multiplicative algorithm differentiates whether $A (1 + \varepsilon)$ multiplicative algorithm differentiates $A (1 + \varepsilon)$ multiplicative $A (1 + \varepsilon)$ multip
- ❖ Just need to show cannot differentiate whether $HAM(x, y) \le d$ or HAM(x, y) > d in $o(d \log n)$ space!

- \Rightarrow Save x in $\frac{d \log n}{3}$ bits.
- Since $x \in X = \{\text{strings of length } \frac{n}{4} \text{ with weight } d\}$, there are $\frac{|X|}{4}$ pairs (x, x') which are mapped to the same configuration.

- \clubsuit Let I be the set of indices for which $x_i = 1$ or $x_i' = 1$
- \clubsuit Suppose HAM(x, y) = d but y does not differ from x in I
- x: 10110000001000100000100100000
- x': 100000010010101000000100100000
- 4 y: 111101100010001011100100100010
- \Leftrightarrow Then HAM(x', y) > d!
- \Leftrightarrow Errs on either s(x, y) or s(x', y).

- There are $\frac{|X|}{4}$ values of x mapped to the wrong configuration, each with $\binom{n}{4}-2d d$ values of y, where algorithm is incorrect.
- Probability of failure:

$$\frac{|X| \binom{n}{4} - 2d}{4 \binom{|X|}{|X||Y|}} \ge \frac{1}{n}$$

In Review

- ❖ Provided a distribution over which any deterministic algorithm with $o(d \log n)$ bits fails to distinguish $HAM(x, y) \le d$ or HAM(x, y) > d at least $\frac{1}{n}$ of the time
- $A (1 + \varepsilon)$ multiplicative algorithm differentiates whether $HAM(x, y) \le d$ or HAM(x, y) > d
- Showed every deterministic algorithm fails over random inputs

Additive Lower Bounds

- ***** Define $s(x, y) = 1^{E} x_{1} 1^{\frac{E}{d}} x_{2} 1^{\frac{E}{d}} x_{3} \dots x_{\frac{n'}{2}} y_{\frac{n'}{2}} \dots y_{3} 1^{\frac{E}{d}} y_{2} 1^{\frac{E}{d}} y_{1} 1^{E}$
- ❖ Take $x \in X = \left\{\text{all strings of length } \frac{n'}{2}\right\}$
- \Rightarrow Take $y \in Y = \{HAM(x, y) = d \text{ or } HAM(x, y) = d + 1\}$

Open Problems

- \diamond Can we find the longest d-near-palindrome in the *edit* distance?
- Longest palindromic subsequence

Questions?

