RESTRICTED POSITIONS AND ROOK POLYNOMIALS

Consider the problem of finding all arrangements of a, b, c, d, e with the restrictions indicated in Figure below, that is, a may not be put in position 1 or 5; b may not be put in 2 or 3; c not in 3 or 4; and e not in 5. A permissible arrangement can be represented by picking five unmarked squares with one square in each row and each column. For example, a permissible arrangement is (a, 2), (b, 1), (c, 5), (d, 3), (e, 4).

Count the number of permissible arrangements? (using inclusion—exclusion formula)

Let U be the set of all arrangements of the five letters without restrictions. So N = 5!. A_i?

Let A be the set of arrangements with a forbidden letter in position i. In terms of Figure below, A is the set of all collections of five squares, each in a different row and column such that the square in column i is a darkened square.

The number of permissible arrangements will then be

$$N(\overline{A}_1\overline{A}_2\overline{A}_3\overline{A}_4\overline{A}_5)$$

$$N(A_i) = ?$$

$$N(A_1) = 1 \times 4!$$

We obtain $N(A_i)$ by counting the ways to put a forbidden letter in position i times the 4! ways to arrange the remaining four letters in the other four positions (we do not worry about forbidden positions for these letters).

 $N(A_2) = 1 \times 4!$, $N(A_3) = 2 \times 4!$, $N(A_4) = 1 \times 4!$, and $N(A_5) = 2 \times 4!$. Collecting terms, we obtain

$$S_1 = \sum_{i=1}^{5} N(A_i) = 1 \times 4! + 1 \times 4! + 2 \times 4! + 1 \times 4! + 2 \times 4!$$

= $(1+1+2+1+2)4! = 7 \times 4!$

Here (1+1+2+1+2) = 7 is the number of the darkened squares in the Figure below.

S_1 = (number of darkened squares) × 4!

for any restricted-positions problem with a 5×5 family of darkened squares similar to Figure below.

$$N(A_iA_j) = ? S_2 = ?$$

 $N(A_iA_j)$ is the number of ways to put (different) forbidden letters in positions i and j times the 3! ways to arrange the remaining three letters.

$$N(A_1A_5) = 1 \times 3!$$
 $N(A_2A_3) = 1 \times 3!$ $N(A_2A_4) = 1 \times 3!$ $N(A_2A_5) = 2 \times 3!$ $N(A_3A_4) = 1 \times 3!$ $N(A_3A_5) = 4 \times 3!$ $N(A_4A_5) = 2 \times 3!$ $N(A_4A_5) = 2 \times 3!$

 $N(A_1A_3) = 2 \times 3!$

Collecting terms, we obtain

$$S_2 = \sum_{i,j} N(A_i A_j) = (1 + 2 + 1 + 1 + 1 + 1 + 2 + 1 + 4 + 2)3! = 16 \times 3!$$

d

e

$$S_3 = ?, S_4 = ?, S_5 = ?$$

 $N(A_1A_2) = 1 \times 3!$

The number 16 counts the ways to select two darkened squares, each in a different

row and column. Generalizing, we will have
$$S_k = \begin{pmatrix} \text{number of ways to pick } k \text{ darkened squares} \\ \text{each in a different row and column} \end{pmatrix} \times (5 - k)! \tag{1}$$

 $N(A_1A_4) = 1 \times 3!$

- Since letter d's row has no darkened squares, there is no way to pick five darkened squares, each in a different row and column.
- Thus $S_5 = 0$.
- On the other hand, it is tedious to compute S_3 and S_4 case by case.
- Hence, we discuss a theory for determining the number of ways to pick k darkened squares, each in a different row and column.
- This darkened squares selection problem can be restated in terms of a recreational mathematics question about a chess-like game.
- A chess piece called a **rook** can capture any opponent's piece on the chessboard in the same row or column as the rook (provided there are no intervening pieces).
- Counting the number of ways to place k mutually non-capturing rooks on this board of darkened squares is equivalent to our original sub-problem of counting the number of ways to pick k darkened squares.

Now we will develop two breaking-up operations to help us count non-capturing rooks on a given board *B*.

The first operation applies to a board B that can be decomposed into **disjoint sub-boards** B_1 and B_2 ,—that is, sub-boards involving different sets of rows and columns.

Often a board has to be properly rearranged before the disjoint nature of the two sub-boards can be seen.

Let B be the board of darkened squares in Figure below, let B_1 be the three darkened squares in rows a and e, and let B_2 be the four darkened squares in rows b and c.

Define $r_k(B)$ to be the number of ways to place k non-capturing rooks on board B, $r_k(B_1)$ the number of ways to place k non-capturing rooks on sub-board B_1 , and $r_k(B_2)$ the number of ways to place k non-capturing rooks on sub-board B_2 .

$$r_1(B_1) = ? r_1(B_2) = ?$$

There are three ways to place one rook on sub-board B_1 in Figure below, since B_1 has three squares, and similarly four ways to place one rook on sub-board B_2 .

Then $r_1(B_1) = 3$ and $r_1(B_2) = 4$.

$$r_2(B_1) = ? r_2(B_2) = ?$$

$$r_2(B_1) = 1 \text{ and } r_2(B_2) = 3.$$

 $r_3(B_1) = ? r_3(B_2) = ?$

 $r_k(B_1) = r_k(B_2) = 0$ for $k \ge 3$, since each sub-board has only two rows. It will be convenient to define $r_0 = 1$ for all boards.

Observe that (why)

$$r_2(B) = r_2(B_1) + r_1(B_1)r_1(B_2) + r_2(B_2)$$

Observe next that since B_1 and B_2 are disjoint, placing, say, two noncapturing rooks on the whole board B can be broken into three cases: placing two noncapturing rooks on B_1 (and none on B_2), placing one rook on each subboard, or placing two noncapturing rooks on B_2 . Thus we see that

$$r_2(B) = r_2(B_1) + r_1(B_1)r_1(B_2) + r_2(B_2)$$

or, using that fact that $r_0(B_2) = r_0(B_1) = 1$,

$$r_2(B) = r_2(B_1)r_0(B_2) + r_1(B_1)r_1(B_2) + r_0(B_1)r_2(B_2)$$

= 1 \times 1 + 3 \times 4 + 1 \times 3 = 16 (2)

Recall that 16 is the number obtained earlier when summing all $N(A_iA_j)$ to count all ways to pick two darkened squares each in a different row and column.

Lemma

If B is a board of darkened squares that decomposes into the two disjoint subboards B_1 and B_2 , then

$$r_k(B) = r_k(B_1)r_0(B_2) + r_{k-1}(B_1)r_1(B_2) + \dots + r_0(B_1)r_k(B_2)$$
(3)

We define the **rook polynomial** R(x, B) of the board B of darkened squares to be

$$R(x, B) = r_0(B) + r_1(B)x + r_2(B)x^2 + \cdots$$

Remember that $r_0(B) = 1$ for all B.

$$R(x, B_1) = ? R(x, B_2) = ?$$

$$R(x, B_1) = 1 + 3x + 1x^2$$
 and $R(x, B_2) = 1 + 4x + 3x^2$

$$R(x, B) = ?$$

Moreover, by the correspondence between (3) and the formula for the product of two generating functions, we see that $r_k(B)$, the coefficient of x^k in the rook polynomial R(x, B) of the full board, is simply the coefficient of x^k in the product $R(x, B_1)R(x, B_2)$. That is,

$$R(x, B) = R(x, B_1)R(x, B_2) = (1 + 3x + 1x^2)(1 + 4x + 3x^2)$$

$$= 1 + [(3 \times 1) + (1 \times 4)]x + [(1 \times 1) + (3 \times 4) + (1 \times 3)]x^2$$

$$+ [(1 \times 4) + (3 \times 3)]x^3 + (1 \times 3)x^4$$

$$= 1 + 7x + 16x^2 + 13x^3 + 3x^4$$

Theorem 1

If B is a board of darkened squares that decomposes into the two disjoint subboards B_1 and B_2 then

$$R(x, B) = R(x, B_1)R(x, B_2)$$

$N(\overline{A}_1\overline{A}_2\overline{A}_3\overline{A}_4\overline{A}_5)$

$$N(\overline{A}_1 \overline{A}_2 \overline{A}_3 \overline{A}_4 \overline{A}_5) = N - S_1 + S_2 - S_3 + S_4 - S_5$$

$$= 5! - r_1(B)4! + r_2(B)3! - r_3(B)2! + r_4(B)1! - r_5(B)0!$$

$$= 5! - 7 \times 4! + 16 \times 3! - 13 \times 2! + 3 \times 1! - 0 \times 0!$$

Theorem 2

The number of ways to arrange *n* distinct objects when there are restricted positions

is equal to
$$n! - r_1(B)(n-1)! + r_2(B)(n-2)! + \dots + (-1)^k r_k(B)(n-k)!$$

where the $r_k(B)$ s are the coefficients of the rook polynomial R(x, B) for the board B

(4)

 $+ \cdots + (-1)^n r_n(B)0!$

of forbidden positions.

Count the number of permissible arrangements?

$$R(x, B_1) = 1 + 3x + 1x^2$$
 and $R(x, B_2) = 1 + 4x + 3x^2$

$$R(x, B) = R(x, B_1)R(x, B_2) = (1 + 3x + 1x^2)(1 + 4x + 3x^2)$$
$$= 1 + 7x + 16x^2 + 13x^3 + 3x^4$$

$$N(\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_4}\overline{A_5}) = N - S_1 + S_2 - S_3 + S_4 - S_5$$

$$= 5! - r_1(B)4! + r_2(B)3! - r_3(B)2! + r_4(B)1! - r_5(B)0!$$

$$= 5! - 7 \times 4! + 16 \times 3! - 13 \times 2! + 3 \times 1! - 0 \times 0!$$

$$= 120 - 168 + 96 - 26 + 3 - 0 = 25$$

How many ways are there to send six different birthday cards, denoted C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , to three aunts and three uncles, denoted A_1 , A_2 , A_3 , U_1 , U_2 , U_3 , if aunt A_1 would not like cards C_2 and C_4 ; if A_2 would not like C_1 or C_5 ; if A_3 likes all cards; if U_1 would not like C_1 or C_5 ; if U_2 would not like U_3 would not like U_4 ?

First draw the board and compute the Rook Polynomial.

	A_1	A_2	A_3	U_1	U_2	U_3
C_1						
C_2	9					
C_3						
C ₄						
C_5						
C ₆						

22	A_2	U_1	A_3	A_1	U_2	U_3
C_1						
<i>C</i> ₅						
<i>C</i> ₃						
C_2			2 0			
<i>C</i> ₄			6 8			
<i>C</i> ₆						

Thus the original board B of darkened squares decomposes into the two disjoint subboards, B_1 in rows C_1 and C_5 , and B_2 in rows C_2 , C_4 , and C_6 . Actually B_2 itself decomposes into two disjoint subboards B'_2 and B''_2 , where B''_2 is the single square (C_6, U_3) . By inspection, we see that

$$R(x, B_1) = 1 + 4x + 2x^2$$

$$R(x, B_2) = R(x, B'_2)R(x, B''_2) = (1 + 3x + x^2)(1 + x)$$

$$R(x, B) = R(x, B_1)R(x, B_2)$$

$$= (1 + 4x + 2x^2)(1 + 3x + x^2)(1 + x)$$

$$= 1 + 8x + 22x^2 + 25x^3 + 12x^4 + 2x^5$$

$$C_1$$

$$C_2$$

$$C_3$$

$$C_4$$

$$C_2$$

$$C_4$$

 C_6

Then the answer to the card-mailing problem is

$$\sum_{k=0}^{6} (-1)^k r_k(B)(6-k)!$$

$$= 6! - 8 \times 5! + 22 \times 4! - 25 \times 3! + 12 \times 2! - 2 \times 1! + 0 \times 0!$$

$$= 720 - 960 + 528 - 150 + 24 - 2 + 0 = 160 \blacksquare$$

At a university, seven freshmen, F_1 , F_2 , F_3 , F_4 , F_5 , F_6 and F_7 , enter the same academic program. Their department head, eager to retain these new students, wants to assign each incoming freshman a mentor from among the upperclassmen of the program. Seven mentors are chosen, M_1 , M_2 , M_3 , M_4 , M_5 , M_6 and M_7 , but there are some scheduling conflicts. M_1 cannot work with F_1 or F_3 , M_2 cannot work with F_1 or F_5 , M_4 cannot work with F_3 or F_6 , M_5 cannot work with F_2 or F_7 , and M_7 cannot work with F_4 . In how many ways can the department head assign the mentors so that each incoming freshman has a different mentor?

First draw the board and compute the Rook Polynomial.

Interchanging columns F_2 and F_6 , F_4 and F_5 , F_1 and F_5 , F_1 and F_6 , and rows M_1 and M_3 yields a decomposition of the original board into the three subboards displayed in the final board of Fig.(1.4). Now we set about calculating the $r_k(B_i)$'s for these subboards, and arrive at the following: $r_1(B_1) = 6$, $r_2(B_1) = 10$, $r_3(B_1) = 4$; $r_1(B_2) = 2$; $r_1(B_3) = 1$. Thus we arrive with the following rook polynomials for B_1 , B_2 and B_3 :

$$R(x, B_1) = 1 + 6x + 10x^2 + 4x^3$$
$$R(x, B_2) = 1 + 2x$$
$$R(x, B_3) = 1 + x$$

Multiplying these rook polynomials yields:

$$R(x,B) = R(x,B_1)R(x,B_2)R(x,B_3) =$$

$$(1+6x+10x^2+4x^3)(1+2x)(1+x) =$$

$$(1+6x+10x^2+4x^3)(1+3x+2x^2) =$$

$$1+3x+2x^2+6x+18x^2+12x^3+10x^2+30x^3+20x^4+4x^3+12x^4+8x^5 =$$

$$1+9x+30x^2+46x^3+32x^4+8x^5.$$

The required answer is

$$7! - 9 \times 6! + 30 \times 5! - 46 \times 4! + 32 \times 3! - 8 \times 2! + 0 \times 1! - 0 \times 0! = 5,040 - 6,480 + 3,600 - 1,104 + 192 - 16 = 1,232.$$

Thus there are 1,232 ways to assign each freshman his or her own mentor, in accordance with the given restrictions.

■

Determine the coefficients of R(x, B)

It is a problem of determining the coefficients of R(x, B) when the board B does not decompose into two disjoint sub-boards.

Let us break the problem of determining $r_k(B)$ into two cases, depending on whether or not a certain square s is one of the squares chosen for the k non-capturing rooks.

How the board can be split now?

Let B_s be the board obtained from B by deleting square s (if square s is not chosen), and

let B_s^* be the board obtained from B by deleting square s plus all squares in the same row or column as s (if square s is chosen).

If square s is not used, we must place k noncapturing rooks on B_s . If square s is used, then we must place k-1 noncapturing rooks on B_s^* . Hence we conclude that

$$r_k(B) = r_k(B_s) + r_{k-1}(B_s^*)$$
(5)

Using the generating function methods introduced in Section 7.5 for turning a recurrence relation into a generating function, we obtain from (5)

$$R(x, B) = \sum_{k} r_k(B) x^k = \sum_{k} r_k(B_s) x^k + \sum_{k} r_{k-1}(B_s^*) x^k$$
$$= \sum_{k} r_k(B_s) x^k + x \sum_{k} r_k(B_s^*) x^k$$
$$= R(x, B_s) + x R(x, B_s^*)$$

$$R(x, Bs) = ?, R(x, B^*_s) = ?$$

$$R(x, B_s) = (1+3x)(1+2x) = 1+5x+6x^2$$

$$R(x, B_s^*) = (1+2x)(1+x) = 1+3x+2x^2$$

$$R(x, B) = R(x, B_s) + xR(x, B_s^*) = (1 + 5x + 6x^2) + x(1 + 3x + 2x^2)$$
$$= 1 + 6x + 9x^2 + 2x^3$$

Theorem 3

Let B be any board of darkened squares. Let s be one of the squares of B, and let B_s and B_s^* be as defined above. Then

$$R(x, B) = R(x, B_s) + xR(B_s^*)$$

Compute R(x, B) C_1

The square in the bottom right corner is t, which is disjoint from the other squares, and the remaining board is B_1 .

$$R(x, B_s) = (1 + 3x + x^2)(1 + 3x + x^2) = 1 + 6x + 11x^2 + 6x^3 + x^4$$

 $R(x, B_s^*) = (1 + 2x)(1 + 2x) = 1 + 4x + 4x^2$

Then

$$R(x, B_1) = R(x, B_s) + xR(x, B_s^*) = (1 + 6x + 11x^2 + 6x^3 + x^4)$$
$$+x(1 + 4x + 4x^2)$$
$$= 1 + 7x + 15x^2 + 10x^3 + x^4$$

and

$$R(x, B) = R(x, B_1)R(x, t)$$

$$= (1 + 7x + 15x^2 + 10x^3 + x^4)(1 + x)$$

$$= 1 + 8x + 22x^2 + 25x^3 + 11x^4 + x^5$$

The number of ways to send birthday cards is

$$6! - 8 \times 5! + 22 \times 4! - 25 \times 3! + 11 \times 2! - 1 \times 1! + 0 \times 0! = 159$$