verified that g is an eub for $\vec{f} \upharpoonright \alpha_{\xi}$. But then g witnesses that α_{ξ} is good for \vec{f} . Moreover, by construction, $\alpha_{\xi} \in C$. Since C was arbitrary, we have shown that there are stationarily many elements of $S_{\lambda}^{\lambda^{+3}}$ that are good for \vec{f} .

By Theorem 12, it follows that there is an eub h for \vec{f} such that $\mathrm{cf}(h(i)) > \lambda$ for all $i < \omega$.

Claim 14. $cf(h(i)) \ge \lambda^{+3}$ for all but finitely many $i < \omega$.

Proof. If not, then there exist $k \in \{1,2\}$ and an unbounded $A \subseteq \omega$ such that, for all $i \in A$, we have $\mathrm{cf}(h(i)) = \lambda^{+k}$. For each $i \in A$, let $\{\delta^i_\eta : \eta < \lambda^{+k}\}$ enumerate, in increasing fashion, a set of ordinals cofinal in h(i). For each $\eta < \lambda^{+k}$, define a function h_η from ω to the ordinals by letting $h_\eta(i) = \delta^i_\eta$ if $i \in A$ and $h_\eta(i) = 0$ otherwise. For each $\eta < \lambda^{+k}$, we have $h_\eta <^* h$, so, since h is an eub for \vec{f} , there is $\beta_\eta < \lambda^{+3}$ such that $h_\eta <^* f_{\beta_\eta}$. Let $\gamma = \sup\{\beta_\eta : \eta < \lambda^{+k}\}$. Since k < 3, we have $\gamma < \lambda^{+3}$. Therefore, for all $\eta < \lambda^{+k}$, we have $h_\eta <^* f_\gamma$. Fix an unbounded $B \subseteq \lambda^{+k}$ and an $n < \omega$ such that, for all $\eta \in B$, we have $h_\eta <_\eta f_\gamma$. But then, for all $i \in A \setminus n$, we must have $f_\gamma(i) \ge \sup\{\delta^i_\eta : \eta \in B\} = h(i)$, contradicting the fact that h is an upper bound for \vec{f} .

But this claim immediately contradicts the fact that \vec{f} is a sequence of functions from ω to ϵ and $\epsilon < \lambda^{+3}$. This is because, by the claim, we must have $h(i) > \epsilon$ for all but finitely many $i < \omega$. But then the constant function, taking value ϵ , witnesses that h fails to be an eub.

The results in this section lead to the following corollary.

Corollary 15. Suppose that $3 \le n < \omega$.

- 1. If $\eta < \omega_{n+1}$, then there is no strongly increasing sequence $\langle f_{\alpha} : \alpha < \omega_{n+1} \rangle$ of functions from ω to η .
- 2. $(\aleph_{\omega+1}, \aleph_{\omega}) \not\twoheadrightarrow (\aleph_{n+1}, \aleph_n)$.
- 3. There are no inner models $V \subseteq W$ of ZFC such that $(\aleph_{\omega+1})^V = (\aleph_{n+1})^W$.

It also follows that the only regular cardinals that can possibly be lengths of strongly increasing sequences from ω^{ω} are \aleph_n for $0 \le n \le 3$. We have seen that there are always such sequences of length \aleph_0 and \aleph_1 . We will prove, in Section 3, the consistency of the existence of a strongly increasing sequence of length \aleph_2 . The question about the consistency of the existence of a strongly increasing sequence of length \aleph_3 remains open.

3 Consistency via a \mathbb{P}_{max} variation

In this section we use a natural variation of Woodin's partial order \mathbb{P}_{\max} to produce a very strongly increasing sequence in ω^{ω} of length ω_2 .

We refer the reader to [14] for background on \mathbb{P}_{max} , especially Chapter 4 and Section 9.2. The article [8] may also be helpful. Conditions in our partial order \mathbb{P} are triples (M, F, a) such that