

Previous

Next >

∷ Hide menu

Lecture: Naive Bayes

- Video: Week Introduction 27 sec
- **Video:** Probability and Bayes' Rule 3 min
- Reading: Probability and Bayes' Rule 10 min
- Video: Bayes' Rule 4 min
- Reading: Bayes' Rule 10 min
- Video: Naïve Bayes Introduction 5 min
- **Reading:** Naive Bayes Introduction 10 min
- **Video:** Laplacian Smoothing 2 min
- **Reading:** Laplacian Smoothing 10 min
- Video: Log Likelihood, Part 1 6 min
- Reading: Log Likelihood, Part 1 10 min
- Video: Log Likelihood, Part 2
- 2 min

Testing naïve Bayes

- log-likelihood dictionary $\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$
- $logprior = log \frac{D_{pos}}{D_{neg}} = 0$
- Tweet: [I, pass, the NLP interview]

$$score = -0.01 + 0.5 - 0.01 + 0 + logprior = 0.48$$

$$pred = score > 0$$

word	λ
l	-0.01
the	-0.01
happi	0.63
because	0.01
pass	0.5
NLP	0
sad	-0.75
not	-0.75

The example above shows how you can make a prediction given your λ dictionary. In this example the logprior is 0 because we have the same amount of positive and negative documents (i.e. $\log 1 = 0$).

Mark as completed

