Министерство образования и науки РФ Санкт-Петербургский Политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа искусственного интеллекта

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 2

«Метод ближайших соседей» по дисциплине «Машинное обучение»

Выполнила:		
студентка гр. 3540201/20301		_ Климова О. А
	подпись, дата	
Проверил:		
д.т.н., проф.		_ Уткин Л. В.
	подпись, дата	

Санкт-Петербург

Содержание

Постановка задачи	3
1 Исследование зависимости точности классификатора от размера	выборки . 5
1.1 «Крестики-нолики»	5
1.2 Классификация спама	6
2 Классификатор для датасета «Glass»	8
4 Классификатор для svmdata4	15
4 Классификатор для датасета «Титаник»	16
Приложение 1. Исследование точности классификатора k ближайц от объема данных	
Приложение 2. Код, используемый для построения классификатор	а на основе
датасета «Glass»	18
Приложение 3. Код нахождения оптимального к для обучающего	множества
svmdata4	21
Приложение 4. Построение классификатора на основе метода k	5лижайших
соседей для датасета «Титаник»	22

Постановка задачи

В рамках данной работы необходимо:

- 1. Исследовать, как объем обучающей выборки и количество тестовых данных, влияет на точность классификации или на вероятность ошибочной классификации в примере крестики-нолики и примере о спаме e-mail сообщений.
- 2. Построить классификатор для обучающего множества **Glass**, данные которого характеризуются 10-ю признаками:
 - 1. Id number: 1 to 214;
 - 2. RI: показатель преломления;
 - 3. Na: сода (процент содержания в соотвествующем оксиде);
 - 4. Mg; 5. Al; 6. Si; 7. K; 8. Ca; 9. Ba; 10. Fe.

Классы характеризуют тип стекла:

- (1) окна зданий, плавильная обработка
- (2) окна зданий, не плавильная обработка
- (3) автомобильные окна, плавильная обработка
- (4) автомобильные окна, не плавильная обработка (нет в базе)
- (5) контейнеры
- (6) посуда
- (7) фары

Посмотреть заголовки признаков и классов. Перед построением классификатора необходимо также удалить первый признак Id number, который не несет никакой информационной нагрузки. Это выполняется командой glass <- glass[,-1].

Построить графики зависимости ошибки классификации от значения k и от типа ядра.

Исследовать, как тип метрики расстояния (параметр **distance**) влияет на точность классификации.

Определить, к какому типу стекла относится экземпляр с характеристиками: RI =1.516 Na =11.7 Mg =1.01 Al =1.19 Si =72.59 K=0.43 Ca =11.44 Ba =0.02 Fe =0.1.

Определить, какой из признаков оказывает наименьшее влияние на определение класса путем последовательного исключения каждого признака.

3. Для построения классификатора используйте заранее сгенерированные обучающие и тестовые выборки, хранящиеся в файлах svmdata4.txt, svmdata4test.txt. Найдите оптимальное значение k, обеспечивающее наименьшую ошибку классификации. Посмотрите, как выглядят данные на графике, используя функцию

plot(mydata.train\$X1, mydata.train\$X2, pch=21, bg=c("red","blue")
[unclass(mydata.train\$Colors)], main="My train data")

4. Разработать классификатор на основе метода ближайших соседей для данных **Титаник (Titanic dataset) -** https://www.kaggle.com/c/titanic

Исходные обучающие данные для классификации — в файле Titanic train.csv, а данные для тестирования — в файле Titanic test.csv.

1 Исследование зависимости точности классификатора от размера выборки

1.1 «Крестики-нолики»

Рассмотрим выборку из 958 элементов, каждый из которых для определенного расположения в игре «Крестики-нолики» классифицирует его как выигрышное (positive) или проигрышное (negative) для х:

-	V1 [‡]	V2 [‡]	V3 [‡]	V4	V5 [‡]	V 6 [‡]	V7	V8 [‡]	V9	V10 [‡]
UZZ	U	U	U	X.	٨	A.	U	U	U	positive
623	b	b	b	x	x	x	b	o	o	positive
624	b	b	b	o	o	b	x	x	x	positive
625	b	b	b	О	b	o	x	x	x	positive
626	b	b	b	b	o	o	x	x	x	positive
627	x	x	o	x	x	o	o	b	o	negative
628	x	x	o	x	x	o	b	o	o	negative
629	x	x	o	x	x	b	0	0	o	negative

Отобразим зависимость точности классификатора от размера тестовой и обучающей выборки из датасета «Крестики-нолики». При построении классификатора используем параметры: k = 7 -число ближайших соседей; k = 8 - чесло ближайших соседей; k =

Для оценки точности используем метрику ассигасу, где TP и TN - верно классифицируемые объекты:

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

При обучающей выборке 90%, а тренировочной 10%

Данные всех экспериментов приведены в Таблице 1.

Таблица 2 – Зависимость точности от выборки – «Крестики-нолики»

Процент обучающей выборки о общего объема данных	Точность классификации
90%	0.875
80%	0.8645833
70%	0.8854167
60%	0.9010417
50%	0.9164927
40%	0.9113043
30%	0.9329359
20%	0.8917862
10%	0.7949015

По полученным данным можно сделать вывод о том, что самая высокая точность классификации при объеме обучающей выборки от 30% до 60%. А также можно сделать вывод о том, что классификатор, построенный с помощью метода к ближайших соседей на датасете «Крестики-нолики» дает более хорошую точность классификации (≈ 0.88), чем при использовании наивного Байесовского классификатора (≈ 0.71).

1.2 Классификация спама

Рассмотрим выборку из 4601 элемента, каждый из которых для набора признаков текстового сообщения классифицирует его как спам или не спам:

charExclamation $^{\circ}$	charDollar [‡]	charHash [‡]	capitalAve [‡]	capitalLong [‡]	capitalTotal [‡]	type [‡]
0.778	0.000	0.000	3.756	61	278	spam
0.372	0.180	0.048	5.114	101	1028	spam
0.276	0.184	0.010	9.821	485	2259	spam
0.137	0.000	0.000	3.537	40	191	spam
0.135	0.000	0.000	3,537	40	191	spam
0.000	0.000	0.000	3.000	15	54	spam
0.164	0.054	0.000	1.671	4	112	spam

Отобразим зависимость точности классификатора от размера тестовой и обучающей выборки из датасета «Спам». При построении классификатора используем параметры: k = 7 – число ближайших соседей;

kernel = (optimal) - ядро; distance = 2 - параметр расстояния Минковского.

Для оценки точности используем метрику ассигасу, где TP и TN - верно классифицируемые объекты:

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

При обучающей выборке 90%, а тренировочной 10%

```
predict nonspam spam
  nonspam 2359 441
  spam 142 1198
> accuracy2
[1] 0.8591787
```

Данные всех экспериментов приведены в Таблице 2.

Таблица 2 – Зависимость точности от выборки – «Спам»

Процент обучающей выборки о общего объема данных	Точность классификации
90%	0.8591787
80%	0.8752717
70%	0.8947205
60%	0.8938406
50%	0.8978261
40%	0.9152174
30%	0.9086957
20%	0.9206522
10%	0.9260871

По полученным результатам можно сделать вывод о том, что точность работы классификатора наименьшая при объеме обучающей выборки от 80% до 90%. Также можно видеть, что и для датасета «Спам» метод k ближайших соседей работает лучше, чем наивный Байесовский классификатор.

Код для всех реализуемых выше экспериментов представлен в Приложении 1.

2 Классификатор для датасета «Glass»

Датасет Glass содержит 214 строк:

•	ld [‡]	RI [‡]	Na [‡]	Mg [‡]	AI [‡]	Si [‡]	K \$	Ca [‡]	Ba [‡]	Fe [‡]	Type [‡]
1	1	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.00	0.00	1
2	2	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.00	0.00	1
3	3	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.00	0.00	1
4	4	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.00	0.00	1
5	5	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.00	0.00	1
6	6	1.51596	12.79	3.61	1.62	72.97	0.64	8.07	0.00	0.26	1

Удалим первый столбец, так как он не несет информации для классификации:

•	RI [‡]	Na [‡]	Mg [‡]	AI	Si [‡]	K	Ca [‡]	Ba [‡]	Fe [‡]	Type [‡]
1	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.00	0.00	1
2	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.00	0.00	1
3	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.00	0.00	1
4	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.00	0.00	1
5	1.51742	13,27	3.62	1.24	73.08	0.55	8.07	0.00	0.00	1
6	1.51596	12.79	3.61	1.62	72.97	0.64	8.07	0.00	0.26	1

Построим классификатор с помощью метода к ближайших соседей.

1) <u>Проведем исследование зависимости ошибки классификации от числа соседей</u> (рассмотрим k от 1 до 10) при разных значениях ядер, расстояние distance возьмем постоянное и равное 2.

Kernel = «rectangular»:

Kernel = «triangular»:

Kernel = «epanechnikov»:

Kernel = «biweight»:

Kernel = «triweight»:

Kernel = «cos»:

Kernel = «inv»:

Kernel = «gaussian»:

Kernel = «rank»:

Kernel = «optimal»:

По полученным данным можно сделать вывод об оптимальном значении k для каждого из ядер:

Ядро	Число k, при котором ошибка классификации наименьшая
rectangular	1
triangular	3
epanechnikov	3
biweight	4
triweight	4
cos	3
inv	1
gaussian	1
rank	1
optimal	5

Для используемого датасета ошибка минимальна (≈ 0.345) при k=5 и ядре «optimal».

2) Исследуем влияние параметра distance на точность классификации.

В таблице 3 представлены результаты точности, полученные при различных значениях расстояния при использовании классификатора с параметрами: k=7; kernel = «optimal».

Таблица 3 – Зависимость точности от параметра distance

Значение параметра distance	Точность классификации
1	0.6279070
2	0.6279070
3	0.6046512
4	0.5813953
5	0.5581395
6	0.5581395
7	0.5581395
8	0.5581395
9	0.5581395
10	0.5581395

График зависимости точности от расстояния distance:

Самая высокая точность классификации ($\approx 63\%$) при distance = 1. При увеличении параметра distance точность классификации уменьшается.

3) Определим к какому типу стекла относится экземпляр с характеристиками: RI =1.516 Na =11.7 Mg =1.01 Al =1.19 Si =72.59 K=0.43 Ca =11.44 Ba =0.02 Fe =0.1.

Данный экземпляр с вероятностью:

- 0.68 относится к 5-му классу (контейнеры);
- 0.23 относится ко 2-му классу (окна зданий, не плавильная обработка);
- 0.07 относится к 1-му классу (окна зданий, плавильная обработка);
- 0.02 относится к 3-му классу (автомобильные окна, плавильная обработка).
- 4) Исследуем как признаки влияют на точность классификации, путем последовательного исключения каждого признака:

Признак, который исключен	Точность классификации
1) RI	0.6976744
2) Na	0.7906977
3) Mg	0.6976744
4) Al	0.7441861

5) Si	0.6976744
6) K	0.6744186
7) Ca	0.7209302
8) Ba	0.7441861
9) Fe	0.7906977

По результатам исследования можно видеть, что самая высокая точность классификатора ($\approx 79\%$) при исключении признака Fe, значит данный признак в меньшей степени влияет на результат классификации.

Код для всех реализуемых выше экспериментов представлен в Приложении 2.

4 Классификатор для svmdata4

Был построен классификатор по заранее сгенерированным обучающим и тестовым выборкам, хранящимся в файлах svmdata4.txt, svmdata4test.txt.

Было найдено оптимальное значение k=8, обеспечивающее наименьшую ошибку классификации.

Данные используемого датасета представляются в следующем виде:

My train data

Код, используемый для работы с датасетом svmdata4 представлен в Приложении 3.

4 Классификатор для датасета «Титаник»

Разработан классификатор на основе метода ближайших соседей для данных Титаник (Titanic dataset).

Для обучения удалим из датасета данные, которые не несут обучающей информации, такие как: id, имя пассажира, каюта, порт посадки и номер билета.

Далее было определено оптимальное значение к ближайших соседей: 37.

Для построения классификатора необходимо, чтобы все данные были заполнены, поэтому для параметров Age и Fire пропуски были заполнены средними значениями.

Затем был построен классификатор на основе метода k ближайших соседей с параметрами: k=37, kernel = «optimal», distance = 2. Точность данного классификатора составила $\approx 79\%$.

Код, на основе которого был построен классификатор для датасета «Титаник» приведен в Приложении 4.

Приложение 1. Исследование точности

классификатора к ближайших соседей от объема данных

```
##КРЕСТИКИ-НОЛИКИ
library(kknn)
A_raw <- read.table("Tic_tac_toe.txt", sep = ",", stringsAsFactors = TRUE)
#Число строк в базе
n <- dim(A_raw)[1]
# Устанавливаем базу генерации случайных чисел и рандомизируем выборку
set.seed(12345)
A_rand <- A_raw[ order(runif(n)), ]
#Разделим данные на обучающие и тестирующие (90% обучающая)
nt <- as.integer(n*0.9)
A_{train} <- A_{rand}[1:nt,]
A_{\text{test}} < -A_{\text{rand}}[(nt+1):n,]
#Процент классов из V10 в обучающей и тестовой выборке
prop.table(table(A_train$V10))
prop.table(table(A_test$V10))
\#Строим классификатор (k = 7, distance = 2, kernel = "optimal")
A classifier <- kknn(V10\sim., A train, A test, k = 7, distance = 2, kernel = "optimal")
A_predicted <- fitted(A_classifier)
tab1 = table(A_predicted, A_test$V10)
#вычисляем точность классификации
accuracy = (tab1[1,1] + tab1[2,2]) / (tab1[1,1] + tab1[2,2] + tab1[1,2] + tab1[2,1])
tab1
accuracy
##СПАМ
library(kernlab)
library(kknn)
data(spam)
#Случайным образом выбираем 10% сообщений для тестирования
idx < -sample(1:dim(spam)[1], 4601*0.1);
spamtrain <- spam[-idx, ];</pre>
spamtest <- spam[idx, ];</pre>
#Обучаем классификатор
A_classifier <- kknn(type \sim ., spamtrain, spamtest, k = 7, distance = 2, kernel = "optimal")
predict <- fitted(A_classifier)</pre>
tab2 = table(predict, spamtest$type)
#вычисляем точность классификации
accuracy2 = (tab2[1,1] + tab2[2,2]) / (tab2[1,1] + tab2[2,2] + tab2[1,2] + tab2[2,1])
tab2
accuracy2
```

Приложение 2. Код, используемый для построения классификатора на основе датасета «Glass»

```
##GLASS
library(kknn)
library(rcompanion)
data(glass)
glass <- glass[, -1]
#Число строк в базе
n \leftarrow dim(glass)[1]
# Устанавливаем базу генерации случайных чисел и рандомизируем выборку
set.seed(12345)
Glass rand <- glass[order(runif(n)), ]
#Разделим данные на обучающие и тестирующие (80% обучающая)
nt <- as.integer(n*0.8)
Glass_train <- Glass_rand[1:nt, ]
Glass_test <- Glass_rand[(nt+1):n, ]
Depk = matrix(c(1:10, 1:10), nrow = 10, ncol = 2, byrow = TRUE)
#Строим классификатор для выявления зависимости ошибки от k (distance = 2, kernel =
"optimal")
for (k in 1:10){
Glass_classifier <- kknn(Type \sim ., Glass_train, Glass_test, k = k, distance = 2, kernel =
"optimal")
fit <- fitted(Glass_classifier)</pre>
tab3 = table(fit, Glass_test$Type)
sum1 = 0
sum2 = 0
#вычисляем суммы числителя и знаменателя для нахождения точности классификации
for(i in 1:6){
 sum1 = sum1 + tab3[i,i]
 for(j in 1:6){
  sum2 = sum2 + tab3[i,j]
 }
#вероятность ошибочной классификации
mistake3 = 1 - sum1/sum2
Depk[k, 1] = k
Depk[k, 2] = mistake3
plot(Depk[,1],Depk[,2], col="red", ylab="Ошибка классификации", xlab="k", pch = 19,
type="o")
```

```
#Строим классификатор для выявления зависимости ошибки от distance (k = 7, kernel =
"optimal")
for (d in 1:10){
 Glass_classifier <- kknn(Type \sim ., Glass_train, Glass_test, k = 7, distance = d, kernel =
"optimal")
 fit <- fitted(Glass_classifier)</pre>
 tab3 = table(fit, Glass_test$Type)
 sum1 = 0
 sum2 = 0
 #вычисляем суммы числителя и знаменателя для нахождения точности классификации
 for(i in 1:6){
  sum1 = sum1 + tab3[i,i]
  for(j in 1:6){
   sum2 = sum2 + tab3[i,j]
  }
 }
 #точность классификации
 accuracy3 = sum1/sum2
 Depd[d, 1] = d
 Depd[d, 2] = accuracy3
plot(Depd[,1],Depd[,2], col="blue", ylab="Точность классификации", xlab="distance", pch =
19, type="o")
#определеям тип стекла
example <- data.frame(RI=1.516, Na=11.7, Mg=1.01, Al=1.19, Si=72.59, K=0.43,
             Ca=11.44, Ba=0.02, Fe=0.1)
Glass_classifier <- kknn(Type\sim., Glass_train, example, k = 7, distance = 2, kernel = "optimal")
#выведем матрицу вероятносте прогнозируемых классов
Glass_classifier$prob
#определим наименнее значимый признак для классификации
library(dplyr)
glass
#удаляем признак RI
Newglass <- glass %>% select(-Fe)
n <- \dim(Newglass)[1]
NewGlass rand <- Newglass[order(runif(n)), ]
#Разделим данные на обучающие и тестирующие (80% обучающая)
nt <- as.integer(n*0.8)
NewGlass_train <- NewGlass_rand[1:nt, ]
NewGlass_test <- NewGlass_rand[(nt+1):n, ]
NewGlass_classifier <- kknn(Type \sim ., NewGlass_train, NewGlass_test, k = 7, distance = 2,
kernel = "optimal")
fit <- fitted(NewGlass classifier)</pre>
tab3 = table(fit, NewGlass_test$Type)
```

```
sum1 = 0 sum2 = 0 #вычисляем суммы числителя и знаменателя для нахождения точности классификации for(i in 1:6){ sum1 = sum1 + tab3[i,i] for(j in 1:6){ sum2 = sum2 + tab3[i,j] } } #точность классификации ассигасу3 = sum1/sum2 ассигасу3
```

Приложение 3. Код нахождения оптимального k для обучающего множества svmdata4

Приложение 4. Построение классификатора на основе метода k ближайших соседей для датасета «Титаник»

```
##Титаник
library(kknn)
library(dplyr)
#Загрузка обучающей выборки
Titanic_train <- read.csv("Titanic_train.csv", header = TRUE, sep = ",", dec = ".",
                stringsAsFactors = FALSE)
#Загрузка тестовой выборки
Titanic_test <- read.csv("Titanic_test.csv", header = TRUE, sep = ",", dec = ".",
               stringsAsFactors = FALSE)
#Удаление столбцов, ненесущих информации для обучения
Titanic_train <- Titanic_train %>% select(-PassengerId)
Titanic_train <- Titanic_train %>% select(-Name)
Titanic train <- Titanic train %>% select(-Ticket)
Titanic_train <- Titanic_train %>% select(-Cabin)
Titanic train <- Titanic train %>% select(-Embarked)
Titanic_train
#Нахождение оптимального k
fit.train \leftarrow train.kknn(Survived \sim ., Titanic train, kmax = 40, distance = 2,
              kernel = "optimal")
fit.train
#Заполнение пропусков
#Нахождение средних значений
Age_mean <- summary(Titanic_test$Age)[4]
Fare mean <- summary(Titanic test$Fare)[4]
for(i in 1:dim(Titanic_test)[1]){
 if(is.na(Titanic_test$Age[i])){
  Titanic_test$Age[i]=Age_mean
 if(is.na(Titanic test$Fare[i])){
  Titanic_test$Fare[i]=Fare_mean
 }
}
Titanic_classifier <- kknn(Survived ~ ., Titanic_train, Titanic_test, k = 37, distance = 2, kernel =
"optimal")
fit <- round(fitted(Titanic classifier))</pre>
Gen sub = read.csv("gender submission.csv", header = TRUE, sep = ",", dec = ".",
           stringsAsFactors = FALSE)
```

```
tab4 = table(fit, Gen\_sub\$Survived) \\ tab4 \\ accuracy4 = (tab4[1,1] + tab4[2,2]) / (tab4[1,1] + tab4[2,2] + tab4[1,2] + tab4[2,1]) \\ accuracy4
```