MATH 425b SAMPLE MIDTERM EXAM 1 Spring 2016 Prof. Alexander

- (1) Suppose the Fourier series of f(x) is $\sum_{n=-\infty}^{\infty} c_n e^{inx}$, and it converges pointwise as well as in L^2 . Show that f is real-valued if and only if $c_{-n} = \overline{c_n}$ for all n.
- (2)(a) Let $f(x) = |x+1|^{3/2}$, so $f''(x) = \frac{3}{4}|x+1|^{-1/2}$ for all $x \neq -1$ (you may take this as given.) Suppose f is given by some power series $f(x) = \sum_{n=0}^{\infty} a_n x^n$ in a neighborhood of x = 0. Show that this power series cannot converge for any x > 1. HINT: No computations are required, just reasoning.
- (b) Suppose $u_1, ..., u_{n+1}$ are orthonormal vectors or functions. Show that u_{n+1} cannot be in the linear span of $u_1, ..., u_n$, that is, we cannot have $u_{n+1} = \sum_{i=1}^n c_i u_i$ with $c_1, ..., c_n$ scalars.
- (3) Suppose X is a totally bounded metric space, that is, for every $\delta > 0$ there exists a finite set $D_{\delta} \subset X$ which is δ -dense. (δ -dense means that for every $x \in X$ there is a $y \in D_{\delta}$ with $d(x,y) < \delta$.) Suppose $f_n \to f$ pointwise on all the sets D_{δ} , and $\{f_n, n \geq 1\}$ is equicontinuous. Show that $f_n \to f$ uniformly on all of X.
- (4)(a) Let \mathcal{A}_1 be the algebra of all polynomial functions on [0, 1] with only even powers, that is, having form $P(x) = a_0 + a_2 x^2 + \cdots + a_{2n} x^{2n}$. Show that \mathcal{A}_1 is dense in C[0, 1]. HINT: Each P(x) in \mathcal{A}_1 can be written as $Q(x^2)$ for some other polynomial Q. What happens if Q(x) is close to P(x) for some appropriately chosen Q(x)? Why does such a Q(x)?
- (b) Let A_2 be the algebra of all even polynomial functions on [-1,1] (that is, all polynomials with P(x) = P(-x) for all x.) Show that the closure of A_2 in C[-1,1] (with the uniform metric) consists of all even continuous functions. HINT: Use (a).