Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Meyer, Schneider, Unterreiter

 $\begin{array}{c} {\rm SS}\ 2008 \\ 21.07.2008 \end{array}$

Juli – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vo	Vorname:					
MatrNr.: Studiengang:							
Die Lösungen sind in Rei r geschriebene Klausuren kör					zugebe	n. Mit	Bleistift
Dieser Teil der Klausur umf Rechenaufwand mit den Ke wenn nichts anderes gesagt	enntniss	en aus	der Vor	elesung	lösbar s	sein. Ge	_
Die Bearbeitungszeit beträg	gt 60 N	/linute	n.				
Die Gesamtklausur ist mit beiden Teile der Klausur m					,		
Korrektur							
	1	2	3	4	5	6	Σ

1. Aufgabe 7 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = \begin{cases} \frac{x^3 + \sqrt{|y|}}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

- a) Ist f im Punkt (0,0) stetig?
- b) Existieren die partiellen Ableitungen $\frac{\partial f}{\partial x}(0,0)$ und $\frac{\partial f}{\partial y}(0,0)$? Sie diese gegebenenfalls.
- c) Ist f im Punkt (0,0) differenzierbar?

2. Aufgabe 4 Punkte

Parametrisieren Sie das Bogenstück AB im 1. Quadranten auf der Ellipse $\frac{x^2}{2} + \frac{y^2}{4} = 1$ mit dem Anfangspunkt $A = (\sqrt{2}, 0)$ und dem Endpunkt $B = (1, \sqrt{2}).$

3. Aufgabe 9 Punkte

Gegeben sei eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f'(x, y) = (\sin(x^2) y)$ sowie die Abbildung $\vec{g} : \mathbb{R}^2 \to \mathbb{R}^2$ mit $\vec{g}(x,y) = (xy, x + 2y)^T$. Ermitteln Sie für die Funktion $h: \mathbb{R}^2 \to \mathbb{R}$ mit $h = f \circ \vec{g}$ im Punkt (1,0)die Richtung des stärksten Anstiegs.

4. Aufgabe 5 Punkte

Gegeben sei das Vektorfeld $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x,y,z) = (\sin x,\ y^2,\ z)^T$ Ist \vec{v} ein Potentialfeld?

Welchen Wert hat das Kurvenintegral $\int \vec{v} \cdot \vec{ds}$

für die Kurve $\vec{c}(t) = (\cos t, \sin t, t)^T, t \in [0, 2\pi]$?

5. Aufgabe 9 Punkte

Ermitteln Sie den Flächeninhalt der Fläche, die aus der Ebene $E = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 2\}$ von dem Zylinder $Z = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1\}$ ausgeschnitten wird.

6. Aufgabe 6 Punkte

Notieren Sie das Integral $\int\limits_{-2}^{2} \left(\int\limits_{0}^{4-y^2} f(x,y) \, dx \right) dy$ in der Form $\int\limits_{a}^{b} \left(\int\limits_{\alpha(x)}^{\beta(x)} f(x,y) \, dy \right) dx \quad \text{mit geeigneten Grenzen } a,\, b,\, \alpha(x),\, \beta(x).$