		Par Sébastion Jupin-Langlois Guillaume Tanguay				
0		Analyse économique Examen 2013 Partiel 2				
Question I		Défenseur TRAM=1290				
	M	CC CC OLE CAT P/F,i,N Poat Scat A/P,i,N AEC				
1	0	1000 288 2000 3188 0,8929 2936 2936 1,12 3288				
(2)	1)	420 168 2500 3088 0,7972 2462 5398 0,5917 (3194)				
3	1					
	3	294 118 3000 3412 0,7118 2429 7827 0,4163 3258				
4 4	123	206 82 3500 3788 0,6355 2407 6234 0,3292 3369				
5 5	5	144 58 4000 4202 0,5674 2384 12618 0,2774 3500				
6 6	7	101 40 4500 4641 0,5066 2351 14969 0,2432 3640				
		Aspirant :				
		RC=(P-5)(A/P,1290,4)+i5				
		RC = (9500-5000) · 0,3292 + 0,12 · 5000 = 2081,4				
		AE = (A/P, 1290,4) [too (P/F, 1290,1) + 1000 (P/F, 1290, d) + 1200 (P/F, 1290,3) + 1500 (P/F, 1290,4)				
0		AC = 0,3292 [1000.0,8929 + 1000-0,7972 +1200.0,7118+1500.0,6355]				
		AC=1151,4				
		AEC = RC+AC = 2081,4+1151,4=3232,80\$				

Question 2 2008

usine 700k tomes 250 M\$ Index = 172

Frais opération aujourdh'ui = 17\$/tonne (2013)

X=0,65 = cont total en capital X=0,75 => Frais annuels d'opération

2013

usine 500k tonnes Index = 194

Ajustement capacité (2008) capacité (2013) facteur X Usine 250M 700K 500K 0.65

Clois = C2008 (Q2013) X = 200,89 M\$

Ajustement temporel:
Coût Index 08 Index 13
Usine 200,89M\$ 172 194 226,58 M\$

500k tonnes/an 17\$tonnes = 8,5 M\$

Frais annuels d'operation = 8,5M \$/an cont total en capital = 226,58 Mt

Question 3 P=35K\$ B3 = 28500\$ 1. lineaire p468 $38500 = 35k - 3(35k - 5) \rightarrow éq.: B_m = P - m(P-5)$ $6500 = \frac{3}{5}(35k-5)$ S = 35K - 10833 = 24167\$ 2. 28500 = 35k(1-d)3 > éq.: Bn = P(1-d)n P470-471 0,9338 = 1-0 d=0,0662 B5 = 35k(1-0,0662) = 24 850\$ p479 3. d=0,0792 By = 28500 (1-0,0792) = 26 242,8 Bg = 26242,8(1-0,0792) = 24164,37\$

Question 4: Queles, service P=400K\$ 5=100K\$ TRAM=1290 revenu = 150 K\$ taux imposition = 40% exploitation= 10 K\$ d=0,3 DPA FNACC 340K\$ 60 K a38k \$ 102k 71,4K 166,6K\$ 49,98K 116 630 \$ t FNACC S G Pertes/Gain 0,4 116620 100K 6648 -16620\$ G=t(FNACC-S)=0,4(116 620-100K)=6648 p.550 NS (valeur de recupération) = 5+G=100K+6648=106648\$ Année 2 Année 3 150K\$ Revenu brut = 150k \$ Exploitation = 10k\$ 10 K \$ DPA = 102K\$ 71,4K\$ Bénéfice imposable = 38 K\$ 68600\$ 27440\$ Impôt (40%) = 15200 \$ Bénéfice net 22800\$ 41160\$ 71400\$ DPA , loak \$ p.535 112560\$ Flux monetane net: 124 800\$

N.	0 . 1 .	0 1 1)	0 11 1	0 -1 1)
N	Projet a)	Projet b)	Projet C)	Projet d)
0	-300K	-250K	-900K	-175K
a	-35k	-27k	-55k	-50k
3	-35k	-277K	-55K	-225K
4	-335k	-37K	-255k	-50K
5	-35 k	-27k	-55k	-50 K
6	-35+	-277K	-55k	-dd5K
7	-35 k	-17K	-55k	-50K
8	-335k	-27K	- 255K	-50K
9	-35k	-277k	-55K	-225K
10	-35k	-27K	-55K	-50K
	-35K	-27K	-55k	-50k
19	-35k	-27K	-55K	-50K
PEA = -300	K [1+(P/1	=,1090,4)+(P/F	7,1090,18)	
-35	K(P/A, 1070,12)) = -883 3	19,50\$	
-		3)+(P/F,1070,6)		
- d1K	(P/A,10%,12)	= -868 944	,407	
PEc = - 2004	k[1+(P/F,10	90,4) + (P/F,1090	[(8,	
-55	K(P/A, 1090,13) = -804 653	3,56\$	
PE0 = -175	K[1+(P/F, 10%	10,3)+(P/F,1090,6)	+ (P/F, 10%,9)	
-50!	K(P/A,1090,1	a) = -840 16	7,50\$	