

# Beyond Protected Attributes: Disciplined Detection of Systematic Deviations in Data

Trustworthy & Socially Responsible Machine Learning @ NeurIPS 2022

Adebayo Oshingbesan Research Engineer, IBM Research Africa

#### The Team: IBM Research Africa – AI Sciences



### **Systematic Deviations: Story So Far**

- Detecting systematic deviations helps in exploratory data analysis, data quality assessments, drifts detection, etc.
- Focus on group and individual level analysis on pre-selected attributes.
- Group /individual level analysis could be misleading (Kearns et al., 2018; Foulds et al., 2020).



Source: Kearns et al., 2018

## Are Pre-selected Features Truly Enough?

- What coverage of features should our analysis have?
- How could we help domain experts when analysing data for systematic deviations?



#### **Subgroup Discovery as a Solution**

- Subgroup discovery is an association mining technique that finds interesting patterns in transactional databases that can be extended for tabular datasets.
- Previous works on subgroup discovery include techniques such as Apriori (Limmerich et al., 2014), Slice Finder (Chung et al., 2019), and FP-Growth (Pastor et al., 2021).
- These techniques are not scalable and require either the size or the extremity of the deviation to be set.
- We present Automatic Stratification (AutoStrat) an efficient algorithm for automatically discovering interesting subgroups.
  - We validate with several datasets for different use cases and compare with other subgroup discovery techniques.

#### **AutoStrat**

- ullet AutoStrat finds the anomalous subgroups with higher-than-average outcomes as compared to the global mean,  $p_i$ .
  - $H_0$ : odds $(y_i) = \frac{p_i}{1 p_i}$ , is constant for all subgroups.
  - $H_1$ : odds $(y_i) = q * \frac{p_i}{1 p_i}$ , where q, the odds multiplier, > 1, for some subgroups.
- We search for the subgroups with the most evidence of q>1 by maximizing the Bernoulli likelihood ratios between these hypothesis .

$$\max_{q>1} \log \prod_{i \in S} \frac{\operatorname{Bernoulli}\left(\frac{qp_i}{1-p_i+qp_i}\right)}{\operatorname{Bernoulli}(p_i)} = \max_{q>1} \sum_{i \in S} y_i \cdot \ln(q) - \log(1-p_i+q \cdot p_i)$$

• If the search space is limited to pre-selected features, the subgroup discovered is called a protected subgroup (PS). Otherwise, the subgroup is called beyond-protected subgroup (BPS).

#### **Experimental Setup**

Datasets: Compas, Credit Card Client, OULAD Education Data

| Dataset     | Number of Records | Protected<br>Attributes     | Possible<br>Subgroups<br>(Without<br>logical ORs) | Target                              | Outcome<br>Proportion |  |
|-------------|-------------------|-----------------------------|---------------------------------------------------|-------------------------------------|-----------------------|--|
| Compas      | 4,743             | Sex, Race                   | 250,047 (432)                                     | v_decile_score >5                   | 0.2043                |  |
| Credit Card | 30,000            | Sex, Education,<br>Marriage | 2.79E+62<br>(3.06E+21)                            | default payment next month          | 0.2212                |  |
| OULAD       | 32,593            | Gender,<br>Disability       | 3.12E+13<br>(218,400)                             | final results = pass or distinction | 0.3151                |  |

- Baselines: Beam search, Apriori (Limmerich et al., 2014), FP-Growth (Chung et al., 2019), Slice Finder (Pastor et al., 2021).
- Metrics: Lift, Support, Odds Ratio (OR), Weighted Relative Accuracy (φ), Bernoulli Likelihood Statistic (Γ), p-value, and runtime.

# Result: Comparison between Protected Subgroups & Non-Protected Subgroups Across Three Datasets

| Dataset | Type | Subgroup                                                                                       | <i>p</i> -value | OR    | $\Gamma(S)$ |
|---------|------|------------------------------------------------------------------------------------------------|-----------------|-------|-------------|
| Compas  | BPS  | age_cat = Less than 25                                                                         | 0.0099          | 9.33  | 274         |
| Compas  | PS   | sex = Male AND<br>race = African-American OR Native American                                   | 0.0099          | 1.86  | 70          |
| Credit  | BPS  | $PAY_0 = 2 OR 3 OR 4$                                                                          | 0.0099          | 11.55 | 1583        |
| Card    | PS   | MARRIAGE = 1 OR 2 OR 3<br>AND SEX = 1 AND EDUCATION = 2 OR 3                                   | 0.5445          | 1.27  | 40          |
| OULAD   | BPS  | studied_credits = 90.0 - 655.0<br>AND region = NOT (IRELAND or WALES)<br>AND imb_band = 0%-90% | 0.0099          | 2.26  | 309         |
|         | PS   | disability = Y                                                                                 | 0.0099          | 1.42  | 43          |

# Result (Contd.): Comparison of AutoStrat with Other Recently Proposed Algorithms for OULAD Dataset

| Method           | Subgroup                                                                                                  | Lift | Support | OR   | $\Gamma(S)$ | $\phi(S)$ | Time   |
|------------------|-----------------------------------------------------------------------------------------------------------|------|---------|------|-------------|-----------|--------|
| AutoStrat (Ours) | imd_band=0% - 90% AND<br>studied_credits = 90 - 120<br>OR 120 - 655 AND region<br>= NOT(Ireland OR Wales) | 1.47 | 0.2     | 2.26 | 309         | 0.03      | 25.44  |
| Beam search      | studied_credits=90 - 120                                                                                  | 1.29 | 0.2     | 1.67 | 118         | 0.02      | 0.72   |
| Apriori          | studied_credits=90 - 120                                                                                  | 1.29 | 0.2     | 1.67 | 118         | 0.02      | 6.72   |
| Fp-growth        | num_prev_attempts=0 AND<br>studied_credits=90 - 120                                                       | 1.31 | 0.16    | 1.68 | 109         | 0.02      | 11.73  |
| Slice Finder     | region=North Western AND num_prev_attempts=2                                                              | 1.85 | 1.91E-3 | 3.05 | 9           | 0         | 260.77 |

#### **Conclusion and Future Work**

- We described AutoStrat an efficient algorithm for divergent subgroup discovery.
- One limitation of AutoStrat, like other subgroup discovery algorithms, is the need to bin continuous features. Future works include supporting continuous variables directly.
- Also, while we only focused on the most divergent subgroup in this paper, we would be extending the analysis to multiple returned subgroups in future works.

# Thank you! Asante!







#### References

- Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerrymandering: Auditing and learning for subgroup fairness. In International Conference on Machine Learning, pages 2564–2572. PMLR, 2018
- James R Foulds, Rashidul Islam, Kamrun Naher Keya, and Shimei Pan. An intersectional definition of fairness. In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages 1918–1921. IEEE, 2020
- Daniel B Neill and Tarun Kumar. Fast multidimensional subset scan for outbreak detection and characterization. Online Journal of Public Health Informatics, 5(1), 2013
- Zhe Zhang and Daniel B Neill. Identifying significant predictive bias in classifiers. arXiv preprint arXiv:1611.08292, 2016
- Joshua D Habiger and Edsel A Pena. Randomised p-values and nonparametric procedures in multiple testing. Journal of nonparametric statistics, 23(3):583–604, 2011
- Bernard V North, David Curtis, and Pak C Sham. A note on the calculation of empirical p values from monte carlo procedures. The American Journal of Human Genetics, 71(2):439–441, 2002
- Daniel B Neill. Fast subset scan for spatial pattern detection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(2):337–360, 2012
- Florian Lemmerich. Novel techniques for efficient and effective subgroup discovery. Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany), 2014.
- Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong Whang. Slice finder: Automated data slicing for model validation. In 2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 1550–1553. IEEE, 2019.
- Eliana Pastor, Luca de Alfaro, and Elena Baralis. Looking for trouble: Analyzing classifier behavior via pattern divergence. In Proceedings of the 2021 International Conference on Management of Data, pages 1400–1412, 2021