1. Estimation

Statistic

Let:

 $\cdot \left(\Omega, \mathcal{A}, \mathcal{P} \right)$ m-D statistical model parametrized by Θ

 $\cdot (M, \Sigma)$ measurable space

 $\cdot\: X\: :\: \Omega \to M$ random variable

 $f: M \to \mathbb{R}^m$

Then, f is a statistic if:

 $\cdot f$ measurable

We denote:

 $\cdot f : T$

Sufficiency

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ m-D statistical model parametrized by Θ

 $\cdot (M, \Sigma)$ measurable space

 $\cdot\: X\: :\: \Omega \to M$ random variable

 $T: M \to \mathbb{R}^m$ statistic

Then, T is sufficient if:

$$\cdot \forall \theta_1, \theta_2 \in \Theta$$
:

 $\forall x \in M$:

 $\forall t \in \mathbb{R}^m$:

$$P_{\theta_1}(X = x \mid T \circ X = t) = P_{\theta_2}(X = x \mid T \circ X = t)$$

Estimator

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model parametrized by Θ

 $\cdot (M, \Sigma)$ measurable space

 $\cdot\: X\: :\: \Omega \to M$ random variable

 $T: M \to \mathbb{R}^k$ statistic

 $\cdot \theta \in \Theta$

Then, T is an estimator of θ if:

 $\cdot T$ approaches θ

Loss function

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model parametrized by Θ

 $\cdot (M, \Sigma)$ measurable space

 $\cdot\: X\: :\: \Omega \to M$ random variable

 $T: M \to \mathbb{R}^k \text{ estimator}$

 $\cdot W : \mathbb{R}^k \times \Theta \to \mathbb{R}^+$

Then, W is a loss function if:

 $\cdot W(\theta, \theta) = 0$

Risk function

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model parametrized by Θ

 $\cdot (M, \Sigma)$ measurable space

 $\cdot\: X\: :\: \Omega \to M$ random variable

 $T: M \to \mathbb{R}^k$ estimator

 $W: \mathbb{R}^k \times \Theta \to \mathbb{R}^+ \text{ loss function}$

We name risk function to:

$$\begin{array}{cccc}
R_T : \Theta & \longrightarrow & \mathbb{R}^+ \\
\theta & \longmapsto & E_{\theta}(W(T, \theta))
\end{array}$$

\mathbf{UMV}

Let:

 $\cdot statements \\$

.

Then, item is a/an entity if:

 $\cdot conditions$

.

We denote:

 $\cdot property : notation$

.

Same conditions

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ parametric statistical model

 $\cdot X : \Omega \to \mathbb{R}$ random variable

 $\cdot \Theta \subset \mathbb{R}$ interval

 $\cdot \, \chi_F$ real estimator with integrable quadratic

.

Then, *item* is a/an entity if:

 $\cdot \ \forall \ \theta \in \Theta :$

 $\exists h : \mathbb{R} \to \mathbb{R} :$

 $h \ge 0$

h integrable

 $\exists \mathcal{U} \subset \mathbb{R}$:

 $\theta \in \mathcal{U}$

 $|T(x)\partial_{\theta}L(x,\theta)| \le h$

Efficient

Let:

 \cdot mismas condiciones

Then, T is efficient if:

$$\cdot Var_{\theta}T = \frac{g'(\theta)^2}{I(\theta)}$$