Scopul lucrarii

Rezolvarea ecuatiilor algebrice si transcendente

1) Utilizând metoda analitică și grafică să se separe toate radacinile reale ale ecuațiilor propuse.

$$x^3 - 4x^2 + 3x - 7 = 0$$
 (metoda analitică)
 $x^4 + x^2 - 1 = 0$ (metoda grafică)

- 2) Calculați toate rădăcinile unei ecuații cu eroare admisibilă ϵ =10⁻⁴ utilizind metodele:
 - Tangentei
 - Secantei
 - Injumatatirii

Ecuatiile propuse spre rezolvare:

Metoda analitică

$$x^{3}-4x^{2}+3x-7=0$$
 $x \in [-k,k]$ $k = 1 + \frac{a}{i \cdot a \cdot 0 \lor i \cdot i}$ $a = \max\{ |a_{1}|, ..., |a_{2}| \}$
 $a = \max\{ 1, 4, 3, 7 \} = 7$
 $k = 1 + \frac{7}{1} = 1 + 7 = 8$

$$f'(x)=3x^2-8x+3=0$$

$$\Delta = b^2 - 4ac \Leftrightarrow 8^2 - 4*3*3 = 64 + 36 = 100;$$

$$x = \dot{c} \frac{-b \pm \sqrt{\Delta}}{2a} \vee \dot{c}$$

$$x_1 = \frac{8-10}{6} = \frac{-2}{6} = \frac{-1}{3}$$

$$x_2 = \frac{8+10}{6} = \frac{18}{6} = 3$$

Creem tabelul de semn

X	-8	0	$\frac{-1}{3}$	3	8	W
sgn f(x)	-	_	_	+	+	1

Observăm că avem doar o alternanta de semn, deci rădăcinile ecuației se află pe intervalul $(\frac{1}{3}:3)$

Metoda grafica

Separăm rădăcinile ecuației folosind metoda grafică pentru ecuația

$$x^4 + x^2 - 1 = 0$$

$$x^4 = 1+x$$
; $y=1+x$

1)
$$x = 0$$
; $y = 1$

2)
$$x = 2$$
; $y = 3$

$$f(x) = x^4$$

X	-2	0	2
f(x	16	1	1

$$g(x) = 1-x$$

X	0	1	2
g(x)	1	2	3

Graficul funtiilor:

Punctul de intersectie se afla in punctul (-1.2; 0.7)

Graficul a fost realizat cu ajutorul online constructorului de grafice: https://www.meta-calculator.com/

Listingul programului

```
#include <iostream>
#include <conio.h>
#include <math.h>
#include <windows.h>
using namespace std;
double(*f)(double), (*fd)(double);
double fl(double x) {
    return pow(x, 3) - 4 * pow(x, 2) + 3 * x - 7;
}
double fdl(double x) {
    return 3 * pow(x, 2) - (4 * x) + 3;
}
void injumatatire() {
    int k = 0;
```

```
double a, b, c = 0, eps=0.0001;
      cout << " Introduceti intervalul " << endl;</pre>
      cout << " a = ";
      cin >> a;
      cout << " b = ";
      cin >> b;
      while ((b - a) > eps) {
            k++;
            c = (a + b) / 2;
            if (f(c) == 0)
                  break;
            if (f(a) * f(c) < 0)
                  b = c;
            else
                  a = c;
      }
      cout << " Radacina este: " << c << endl;</pre>
      cout << " Numarul de iteratii: " << k;</pre>
      getch();
}
void tangentelor() {
      int k = 0;
      double x0, x1, eps = 0.0001;
      cout << " Introduceti valoare initiala x0" << endl;</pre>
      cout << " x0 = ";
      cin >> x0;
      while (1) {
            x1 = x0 - f(x0) / fd(x0); k++;
            if (abs(x1 - x0) < eps) {
                   cout << " Radacina este: " << x0 << endl << " Numarul de</pre>
iteratii " << k << endl; break;</pre>
            }
            x0 = x1;
      } getch();
void secante() {
      double x2, x1, x3 = 0, y, eps = 0.0001;
      int n = 0;
```

```
cout << " Introduceti intervalul " << endl;</pre>
      cout << " a = ";
      cin >> x1;
      cout << " b = ";
      cin >> x2;
      do {
            n++;
            y = x3;
            x3 = x2 - (f(x2)*(x2 - x1) / (f(x2) - f(x1)));
            x1 = x2;
            x2 = x3;
      } while (fabs(y - x3) >= eps);
      cout << " Radacina este: " << x3 << endl;</pre>
      cout << " Numarul de iteratii : " << n << endl;</pre>
      getch();
void selectFunction() {
      system("cls");
      cout << " 1. Functia f(x) = x^3 + 2 * x^2 - 5x + 1" << endl;
            int opt;
      do {
            opt = getch();
      } while (opt<'1' || opt>'2');
      system("cls");
      switch (opt) {
      case '1': {
            f = f1;
            fd = fd1;
            break;
      }
      }
}
int meniu() {
      system("cls");
      if (f == f1)
            cout << " Functia f1(x)=x^3 + 2 * x^2 - 5x + 1" << endl << endl;
```

```
cout << " 1. Selectarea functiei" << endl;</pre>
      cout << " 2. Metoda injumatatirii - exactitatea 10^(-4)" << endl;</pre>
      cout << " 3. Metoda tangentelor - exactitatea 10^(-4)" << endl;</pre>
      cout << " 4. Metoda secantelor - exactitatea 10^(-4)" << endl;</pre>
      cout << " 5. Iesire" << endl;</pre>
      int opt;
      do {
           opt = getch();
      } while (opt<'1' || opt>'5');
      system("cls");
      return opt - '0';
}
int main() {
      int opt;
      f = f1;
      fd = fd1;
      do {
            switch (opt = meniu()) {
            case 1: {selectFunction();
                  break;
                        }
            case 2: {injumatatire();
                 break;
            }
            case 3: {tangentelor();
                  break;
            }
            case 4: {secante();
                break;
            }
} while (opt != 5);
```

Screenshoturi

Meniul principal

```
Functia f1(x)=x^3 + 2 * x^2 - 5x + 1

1. Selectarea functiei
2. Metoda injumatatirii - exactitatea 10^(-4)
3. Metoda tangentelor - exactitatea 10^(-4)
4. Metoda secantelor - exactitatea 10^(-4)
5. Iesire
```

Metoda injumatatirii

```
Introduceti intervalul

a = -5

b = 5

Radacina este: 3.70049

Numarul de iteratii: 17
```

Metoda secantelor

```
Introduceti intervalul

a = -5

b = 5

Radacina este: 3.70048

Numarul de iteratii : 5
```

Metoda tangentelor

```
Introduceti valoare initiala x0
x0 = -5
Radacina este: 4.66523
Numarul de iteratii 5
```

Concluzii
In baza elaborii lucrării de laborator am rezolvat ecuaiile algebrice sau mai
sunt numite si transcendente, utilizînd diferite metode. Primele metode utilizate se
rezumau la metoda analitică si cea grafică. Metoda grafică a oferit posibilitatea
separării solutiilor prin construirea graficului funcței.