Tema 1. Análisis de algoritmos Resolución de recurrencias

F. Aguado, P. Cabalar, G. Pérez, C. Vidal

Consultar

Introducción

Definición

Una **sucesión** es una aplicación del conjunto de los números naturales en un conjunto S. Se suele usar la notación a_n para denotar la imagen del número natural n, el término n-ésimo de la sucesión.

Introducción

Definición

Una **sucesión** es una aplicación del conjunto de los números naturales en un conjunto S. Se suele usar la notación a_n para denotar la imagen del número natural n, el término n-ésimo de la sucesión.

Ejemplos

La sucesión $\{4n+1\}$, es de la forma

Se llama **sucesión constante** a aquella cuyos términos son todos iguales. Los términos de la sucesión constante {2} son

Definición

Se llama **relación de recurrencia** para una sucesión $\{a_n\}$ a toda expresión matemática, generalmente una ecuación, que relaciona cada término a_n , a partir de uno dado, con los anteriores.

Definición

Se llama **relación de recurrencia** para una sucesión $\{a_n\}$ a toda expresión matemática, generalmente una ecuación, que relaciona cada término a_n , a partir de uno dado, con los anteriores.

Ejemplo

$$a_n = a_{n-1} + a_{n-2}, \quad a_0 = 1, a_1 = 2$$

Ejemplo

La sucesión de Fibonacci, $\{F_n\} = \{0, 1, 1, 2, 3, 5, 8, ...\}$, puede definirse mediante la relación de recurrencia

$$F_n = F_{n-1} + F_{n-2}$$
, $n \ge 2$

junto con las condiciones iniciales, $\{F_0 = 0, F_1 = 1\}$.

Ejemplo

Con la misma relación de recurrencia:

$$a_n = a_{n-1} + a_{n-2}$$
, $n \ge 2$

pero con otras condiciones iniciales $\{a_0 = 1, a_1 = 2\}$, nos queda la sucesión: $\{a_n\} = \{1, 2, 3, 5, 8, \dots\}$

Definición

Resolver una relación de recurrencia es encontrar las sucesiones que la satisfacen, dando una fórmula explícita para el cálculo de su n-ésimo término.

Ejemplo (Torres de Hanoi)

- Objetivo: Trasladar la torre de discos a otro de los palos
- Normas:
 - en cada paso se mueve un único disco
 - sólo puede moverse el que está en la parte superior de un montón
 - no puede colocarse un disco encima de otro de menor tamaño.

Ejemplo (Torres de Hanoi)

La sucesión $\{H_n\}$, donde H_n es el número de movimientos necesarios para resolver el juego de las torres de Hanoi con n discos, es solución de la relación de recurrencia

$$H_n = 2H_{n-1} + 1$$
.

Ejemplo (Torres de Hanoi)

Los primeros términos de la sucesión son:

n	0	1	2	3	4	5	6	
H_n	0	1	3	7	15	31	63	

Parece que $H_n = 2^n - 1$

Ejemplo (Torres de Hanoi)

Parece que $H_n = 2^n - 1$

En efecto, la sucesión $a_n = 2^n - 1$, es una solución para la relación de recurrencia

$$a_n=2a_{n-1}+1,$$

puesto que

$$\underbrace{2^{n}-1}_{a_{n}}=2\cdot(\underbrace{2^{n-1}-1}_{a_{n-1}})+1.$$

Ejemplo (Torres de Hanoi)

$$a_n=2a_{n-1}+1,$$

OJO: Pero también la sucesión constante $\{-1, -1, -1, \dots\}$, es solución para esta misma relación de recurrencia, pues -1 = 2(-1) + 1. Evidentemente no es una solución para el problema de las torres de Hanoi.

Definición

Una relación de recurrencia lineal homogénea, con coeficientes constantes, (RRLHCC), de orden k es una expresión de la forma

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

donde los coeficientes, c_1, \ldots, c_k , son números reales y $c_k \neq 0$.

Ejemplos

$$\bullet$$
 $F_n = F_{n-1} + F_{n-2}$

$$a_n = 2a_{n-1} + 3a_{n-2} - 5a_{n-3}$$

$$a_n = na_{n-1}$$

$$a_n = 2a_{n-1} + 1$$

$$a_n = a_{n-1}a_{n-2}$$

Ejemplos

- $F_n = F_{n-1} + F_{n-2}$ es una RRLHCC de orden 2.
- $a_n = 2a_{n-1} + 3a_{n-2} 5a_{n-3}$ es una RRLHCC de orden 3.
- $a_n = na_{n-1}$ es una RRLH pero sus coeficientes no son constantes.
- $a_n = 2a_{n-1} + 1$ es una RRLCC de orden 1 pero no homogénea.
- \bullet $a_n = a_{n-1}a_{n-2}$ es una RRHCC de orden 2 pero no es lineal.

Para resolver la RRLHCC:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

buscaremos soluciones del tipo $a_n = r^n$, $r \neq 0$.

Para resolver la RRLHCC:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

buscaremos soluciones del tipo $a_n = r^n$, $r \neq 0$. Substituyendo, tenemos:

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \cdots + c_{k}r^{n-k}$$

Para resolver la RRLHCC:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

buscaremos soluciones del tipo $a_n = r^n$, $r \neq 0$. Substituyendo, tenemos:

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \cdots + c_{k}r^{n-k}$$

Dividiendo por r^{n-k} y reordenando:

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \cdots - c_{k} = 0.$$

Para resolver la RRLHCC:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

buscaremos soluciones del tipo $a_n = r^n$, $r \neq 0$. Substituyendo, tenemos:

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \cdots + c_{k}r^{n-k}$$

Dividiendo por r^{n-k} y reordenando:

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \cdots - c_{k} = 0.$$

 $\{r^n\}$ es una solución de la relación de recurrencia si, y sólo si, r satisface la ecuación

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \cdots - c_{k} = 0,$$

que recibe el nombre de ecuación característica, y sus raíces el de raíces características.

Teorema (Solución de RRLHCC con raíces características distintas)

Sea $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ una RRLHCC tal que sus raíces características, r_1, \ldots, r_k , son todas reales y distintas. Entonces, para cualesquiera números reales, $\alpha_1, \ldots, \alpha_k$,

la sucesión

$$a_n = \alpha_1 r_1^n + \dots + \alpha_k r_k^n$$

es una solución para la relación de recurrencia

• cualquier solución es de esta forma, para algunos números reales $\alpha_1, \ldots, \alpha_k$

$$F_n = F_{n-1} + F_{n-2}$$

$$F_n = F_{n-1} + F_{n-2}$$

Ecuación característica: $r^2 - r - 1 = 0$ con raíces $r_1 = (1 + \sqrt{5})/2$ y $r_2 = (1 - \sqrt{5})/2$.

$$F_n = F_{n-1} + F_{n-2}$$

Ecuación característica: $r^2 - r - 1 = 0$ con raíces $r_1 = (1 + \sqrt{5})/2$ y $r_2 = (1 - \sqrt{5})/2$.

$$F_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$F_n = F_{n-1} + F_{n-2}$$

Ecuación característica: $r^2 - r - 1 = 0$ con raíces $r_1 = (1 + \sqrt{5})/2$ y $r_2 = (1 - \sqrt{5})/2$.

$$F_n = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

Si $F_0=0$ y $F_1=1$, tendremos que $lpha_1=1/\sqrt{5}$ y $lpha_2=-1/\sqrt{5}$

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

$$F_n = F_{n-1} + F_{n-2}$$

$$F_n = F_{n-1} + F_{n-2}$$

Ecuación característica: $r^2-r-1=0$ con raíces $r_1=\frac{1+\sqrt{5}}{2}$ y $r_2=\frac{1-\sqrt{5}}{2}$.

$$F_n = F_{n-1} + F_{n-2}$$

Ecuación característica: $r^2-r-1=0$ con raíces $r_1=\frac{1+\sqrt{5}}{2}$ y $r_2=\frac{1-\sqrt{5}}{2}$.

$$F_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Teorema (Solución de RRLHCC con raíces características no distintas)

Sea $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ una relación de recurrencia lineal, homogénea y con coeficientes constantes tal que sus raíces características, r_1, \ldots, r_s , son reales y con multiplicidades respectivas m_1, \ldots, m_s . Las soluciones son de la forma

$$a_{n} = (\alpha_{10} + \alpha_{11} n + \dots + \alpha_{1m_{1}-1} n^{m_{1}-1}) r_{1}^{n} + (\alpha_{20} + \alpha_{21} n + \dots + \alpha_{2m_{2}-1} n^{m_{2}-1}) r_{2}^{n} + \dots + (\alpha_{s0} + \alpha_{s1} n + \dots + \alpha_{sm_{s}-1} n^{m_{s}-1}) r_{s}^{n}$$

para cualesquiera números reales α_{ij} .

$$t_n = \begin{cases} n & n = 0, 1, 2 \\ 5t_{n-1} - 8t_{n-2} + 4t_{n-3} & n \ge 3 \end{cases}$$

$$t_n = \begin{cases} n & n = 0, 1, 2 \\ 5t_{n-1} - 8t_{n-2} + 4t_{n-3} & n \ge 3 \end{cases}$$

Ecuación característica: $r^3 - 5r^2 + 8r - 4 = 0$ con raíces $r_1 = 1$ y $r_2 = 2$ (doble)

$$t_n = \begin{cases} n & n = 0, 1, 2 \\ 5t_{n-1} - 8t_{n-2} + 4t_{n-3} & n \ge 3 \end{cases}$$

Ecuación característica: $r^3 - 5r^2 + 8r - 4 = 0$ con raíces $r_1 = 1$ y $r_2 = 2$ (doble)

$$t_n = \alpha_1 1^n + (\alpha_2 + \alpha_3 n) 2^n$$

$$t_n = \begin{cases} n & n = 0, 1, 2\\ 5t_{n-1} - 8t_{n-2} + 4t_{n-3} & n \ge 3 \end{cases}$$

Ecuación característica: $r^3 - 5r^2 + 8r - 4 = 0$ con raíces $r_1 = 1$ y $r_2 = 2$ (doble)

$$t_n = \alpha_1 1^n + (\alpha_2 + \alpha_3 n) 2^n$$

 $t_0 = 0: \quad \alpha_1 + \alpha_2 = 0$

 $t_1 = 1$: $\alpha_1 + 2\alpha_2 + 2\alpha_3 = 1$ $t_2 = 2$: $\alpha_1 + 4\alpha_2 + 8\alpha_3 = 2$

Recurrencias ALGORITMOS Curso 2021–2022 12 / 1

$$t_n = \begin{cases} n & n = 0, 1, 2 \\ 5t_{n-1} - 8t_{n-2} + 4t_{n-3} & n \ge 3 \end{cases}$$

Ecuación característica: $r^3 - 5r^2 + 8r - 4 = 0$ con raíces $r_1 = 1$ y $r_2 = 2$ (doble)

$$t_{n} = \alpha_{1}1^{n} + (\alpha_{2} + \alpha_{3}n)2^{n}$$

$$t_{0} = 0: \quad \alpha_{1} + \alpha_{2} = 0$$

$$t_{1} = 1: \quad \alpha_{1} + 2\alpha_{2} + 2\alpha_{3} = 1$$

$$t_{2} = 2: \quad \alpha_{1} + 4\alpha_{2} + 8\alpha_{3} = 2$$

$$\alpha_{1} = -2$$

$$\alpha_{2} = 2$$

$$\alpha_{3} = \frac{-1}{2}$$

$$t_n = \begin{cases} n & n = 0, 1, 2 \\ 5t_{n-1} - 8t_{n-2} + 4t_{n-3} & n \ge 3 \end{cases}$$

Ecuación característica: $r^3 - 5r^2 + 8r - 4 = 0$ con raíces $r_1 = 1$ y $r_2 = 2$ (doble)

$$t_{n} = \alpha_{1}1^{n} + (\alpha_{2} + \alpha_{3}n)2^{n}$$

$$t_{0} = 0: \quad \alpha_{1} + \alpha_{2} = 0$$

$$t_{1} = 1: \quad \alpha_{1} + 2\alpha_{2} + 2\alpha_{3} = 1$$

$$t_{2} = 2: \quad \alpha_{1} + 4\alpha_{2} + 8\alpha_{3} = 2$$

$$\alpha_{1} = -2; \quad \alpha_{2} = 2; \quad \alpha_{3} = \frac{-1}{2}$$

$$t_n = 2^{n+1} - n2^{n-1} - 2$$

Relaciones de recurrencia no homogéneas

Definición

Una relación de recurrencia lineal no homogénea, con coeficientes constantes, (RRLnHCC), de orden k es una expresión de la forma

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + L(n)$$

donde los coeficientes, c_1, \ldots, c_k , son números reales, $c_k \neq 0$ y L(n) es una función de n (no nula)

Relaciones de recurrencia no homogéneas

Definición

Una relación de recurrencia lineal no homogénea, con coeficientes constantes, (RRLnHCC), de orden k es una expresión de la forma

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + L(n)$$

donde los coeficientes, c_1, \ldots, c_k , son números reales, $c_k \neq 0$ y L(n) es una función de n (no nula)

Ejemplos

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + L(n)$$

- $h_n = 2h_{n-1} + 1$
- $a_n = 3a_{n-1} + 2^n$
- $a_n = 3a_{n-1} 2a_{n-2} + n2^n$

13 / 1

Relaciones de recurrencia no homogéneas

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + L(n)$$

$$a_n^{(h)} = c_1 a_{n-1}^{(h)} + c_2 a_{n-2}^{(h)} + \dots + c_k a_{n-k}^{(h)}$$

relación de recurrencia lineal homogénea asociada

Teorema (Solución de una RRLnHCC)

Si $a_n^{(p)}$ es una solución particular de la RRLnHCC y $a_n^{(h)}$ es cualquier solución de la relación de recurrencia lineal homogénea asociada, entonces

$$a_n = a_n^{(h)} + a_n^{(p)}$$

es también solución de la relación de recurrencia no homogénea, y todas las soluciones son de esta forma, para alguna $a_n^{(h)}$.

$$a_n = a_n^{(h)} + a_n^{(p)}$$

• $H_n = 2H_{n-1} + 1 \text{ con } H_0 = 0.$

$$a_n = a_n^{(h)} + a_n^{(p)}$$

- $H_n = 2H_{n-1} + 1 \text{ con } H_0 = 0.$
- $H_n = H_n^{(h)} + H_n^{(p)}$

$$a_n = a_n^{(h)} + a_n^{(p)}$$

- $H_n = 2H_{n-1} + 1 \text{ con } H_0 = 0.$
- $H_n = H_n^{(h)} + H_n^{(p)}$
- Sabemos que $\{-1, -1, \ldots\}$ es una solución particular. Por lo tanto, cualquier solución es:

$$H_n = H_n^{(h)} - 1$$

$$a_n = a_n^{(h)} + a_n^{(p)}$$

- $H_n = 2H_{n-1} + 1 \text{ con } H_0 = 0.$
- $H_n = H_n^{(h)} + H_n^{(p)}$
- Sabemos que $\{-1, -1, \ldots\}$ es una solución particular. Por lo tanto, cualquier solución es:

$$H_n = H_n^{(h)} - 1$$

• Por otro lado la RRLH asociada es $H_n = 2H_{n-1}$ cuya única raíz es 2.

$$a_n = a_n^{(h)} + a_n^{(p)}$$

- $H_n = 2H_{n-1} + 1 \text{ con } H_0 = 0.$
- $H_n = H_n^{(h)} + H_n^{(p)}$
- Sabemos que $\{-1, -1, \ldots\}$ es una solución particular. Por lo tanto, cualquier solución es:

$$H_n = H_n^{(h)} - 1$$

- Por otro lado la RRLH asociada es $H_n = 2H_{n-1}$ cuya única raíz es 2.
- Entonces $H_n^{(h)} = \alpha 2^n$ y

$$H_n = \alpha 2^n - 1$$
.

$$a_n = a_n^{(h)} + a_n^{(p)}$$

- $H_n = 2H_{n-1} + 1 \text{ con } H_0 = 0.$
- $H_n = H_n^{(h)} + H_n^{(p)}$
- Sabemos que $\{-1, -1, \ldots\}$ es una solución particular. Por lo tanto, cualquier solución es:

$$H_n = H_n^{(h)} - 1$$

- Por otro lado la RRLH asociada es $H_n = 2H_{n-1}$ cuya única raíz es 2.
- Entonces $H_n^{(h)} = \alpha 2^n$ y

$$H_n = \alpha 2^n - 1$$
.

ullet Finalmente si imponemos que $H_0=0$, nos queda 0=lpha-1 y

$$H_n = 2^n - 1$$
.

15/1

RRLnHCC: soluciones particulares

Teorema (Soluciones particulares)

Dada la RRLnHCC:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + L(n),$$

donde $L(n) = (p_0 + p_1 n + \cdots + p_t n^t) s^n$, entonces

Si s no es una de las raíces de la relación homogénea asociada, entonces

$$a_n^{(p)} = (\beta_0 + \beta_1 n + \cdots + \beta_t n^t) s^n,$$

es una solución particular para $\beta_0, \ldots, \beta_t \in \mathbb{R}$.

2 Si s es una de las raíces de la relación homogénea asociada, con multiplicidad m, entonces

$$a_n^{(p)} = (\beta_0 + \beta_1 n + \cdots + \beta_t n^t) n^m s^n,$$

16/1

es una solución particular para $\beta_0, \ldots, \beta_t \in \mathbb{R}$.

$$a_n = 3a_{n-1} + 2^n \text{ con } a_0 = 0$$
 $L(n) = 2^n$

•
$$L(n) = 2^n$$

$$a_n = 3a_{n-1} + 2^n \text{ con } a_0 = 0$$
 $L(n) = 2^n$

- $L(n) = 2^n$
- La RRLH asociada es $a_n = 3a_{n-1}$ cuya única raíz es 3.

$$a_n = 3a_{n-1} + 2^n \text{ con } a_0 = 0$$
 $L(n) = 2^n$

- $L(n) = 2^n$
- La RRLH asociada es $a_n = 3a_{n-1}$ cuya única raíz es 3.
- Como 2 no es raíz de la ecuación homogénea asociada, $a_n^{(p)} = \beta 2^n$.

$$a_n = 3a_{n-1} + 2^n \text{ con } a_0 = 0$$
 $L(n) = 2^n$

- $L(n) = 2^n$
- La RRLH asociada es $a_n = 3a_{n-1}$ cuya única raíz es 3.
- Como 2 no es raíz de la ecuación homogénea asociada, $a_n^{(p)} = \beta 2^n$.
- Usamos que $\beta 2^n$ verifica la relación inicial, con lo que

$$\beta 2^n = 3 \beta 2^{n-1} + 2^n$$
 y si $n = 1$ nos queda $2\beta = 3\beta + 2$,

$$\beta = -2 \text{ y } a_n^{(p)} = -2^{n+1}$$

$$a_n = 3a_{n-1} + 2^n \text{ con } a_0 = 0$$
 $L(n) = 2^n$

- $L(n) = 2^n$
- La RRLH asociada es $a_n = 3a_{n-1}$ cuya única raíz es 3.
- Como 2 no es raíz de la ecuación homogénea asociada, $a_n^{(p)} = \beta 2^n$.
- Usamos que $\beta 2^n$ verifica la relación inicial, con lo que

$$\beta 2^n = 3 \beta 2^{n-1} + 2^n$$
 y si $n = 1$ nos queda $2\beta = 3\beta + 2$,

$$\beta = -2 \text{ y } a_n^{(p)} = -2^{n+1}$$

• Por otro lado, recordemos que $a_n^{(h)} = \alpha 3^n$ y $a_n = \alpha 3^n - 2^{n+1}$

$$a_n = 3a_{n-1} + 2^n \text{ con } a_0 = 0$$
 $L(n) = 2^n$

- $L(n) = 2^n$
- La RRLH asociada es $a_n = 3a_{n-1}$ cuya única raíz es 3.
- Como 2 no es raíz de la ecuación homogénea asociada, $a_n^{(p)} = \beta 2^n$.
- Usamos que $\beta 2^n$ verifica la relación inicial, con lo que

$$\beta 2^n = 3 \beta 2^{n-1} + 2^n$$
 y si $n = 1$ nos queda $2\beta = 3\beta + 2$,

$$\beta = -2 \text{ y } a_n^{(p)} = -2^{n+1}$$

- Por otro lado, recordemos que $a_n^{(h)} = \alpha 3^n$ y $a_n = \alpha 3^n 2^{n+1}$
- Finalmente, como $a_0 = 0$, $\alpha = 2$ y

$$a_n = 2 \cdot 3^n - 2^{n+1}$$

$$a_n = a_{n-1} + n \text{ con } a_0 = 0$$
 $L(n) = n = n \cdot 1^n$

18 / 1

$$a_n = a_{n-1} + n \text{ con } a_0 = 0$$
 $L(n) = n = n \cdot 1^n$

• La RRLH asociada $a_n = a_{n-1}$ tiene como raíz 1.

$$a_n = a_{n-1} + n \text{ con } a_0 = 0$$
 $L(n) = n = n \cdot 1^n$

- La RRLH asociada $a_n = a_{n-1}$ tiene como raíz 1.
- Entonces $a_n^{(p)} = (an + b)n$.

$$(an + b)n = [a(n - 1) + b](n - 1) + n$$

$$a_n = a_{n-1} + n \text{ con } a_0 = 0$$
 $L(n) = n = n \cdot 1^n$

- La RRLH asociada $a_n = a_{n-1}$ tiene como raíz 1.
- Entonces $a_n^{(p)} = (an + b)n$.

$$(an + b)n = [a(n - 1) + b](n - 1) + n$$

$$a_n = a_{n-1} + n \text{ con } a_0 = 0$$
 $L(n) = n = n \cdot 1^n$

- La RRLH asociada $a_n = a_{n-1}$ tiene como raíz 1.
- Entonces $a_n^{(p)} = (an + b)n$.

$$(an + b)n = [a(n - 1) + b](n - 1) + n$$

• La relación ha de cumplirse para n=1 y n=2, y resolviendo el sistema queda $a=b=\frac{1}{2}$. Entonces:

$$a_n^{(p)} = \frac{(n+1)n}{2}$$

$$a_n = a_{n-1} + n \text{ con } a_0 = 0$$
 $L(n) = n = n \cdot 1^n$

• Entonces $a_n^{(p)} = (an + b)n$.

$$(an + b)n = [a(n - 1) + b](n - 1) + n$$

• La relación ha de cumplirse para n=1 y n=2, y resolviendo el sistema queda $a=b=\frac{1}{2}$. Entonces:

$$a_n^{(p)} = \frac{(n+1)n}{2}$$

• Por otro lado, recordemos que $a_n^{(h)} = \alpha 1^n = \alpha$

18 / 1

$$a_n = a_{n-1} + n \text{ con } a_0 = 0$$
 $L(n) = n = n \cdot 1^n$

• Entonces $a_n^{(p)} = (an + b)n$.

$$(an + b)n = [a(n - 1) + b](n - 1) + n$$

• La relación ha de cumplirse para n=1 y n=2, y resolviendo el sistema queda $a=b=\frac{1}{2}$. Entonces:

$$a_n^{(p)} = \frac{(n+1)n}{2}$$

- Por otro lado, recordemos que $a_n^{(h)} = \alpha 1^n = \alpha$
- Entonces $a_n = \alpha + \frac{(n+1)n}{2}$

$$a_n = a_{n-1} + n \text{ con } a_0 = 0$$
 $L(n) = n = n \cdot 1^n$

• Entonces $a_n^{(p)} = (an + b)n$.

$$(an + b)n = [a(n - 1) + b](n - 1) + n$$

• La relación ha de cumplirse para n=1 y n=2, y resolviendo el sistema queda $a=b=\frac{1}{2}$. Entonces:

$$a_n^{(p)} = \frac{(n+1)n}{2}$$

- Por otro lado, recordemos que $a_n^{(h)} = \alpha 1^n = \alpha$
- Entonces $a_n = \alpha + \frac{(n+1)n}{2}$
- Como $a_0=0$, nos queda $\alpha=0$ y $a_n=\frac{(n+1)n}{2}$

$$a_n = 3a_{n-1} - 2a_{n-2} + n2^n \text{ con } a_0 = 0, a_1 = 1 \text{ y } L(n) = n2^n$$

• La RRLH asociada $a_n = 3a_{n-1} - 2a_{n-2}$ tiene como raíces 1 y 2.

$$a_n = 3a_{n-1} - 2a_{n-2} + n2^n \text{ con } a_0 = 0, a_1 = 1 \text{ y } L(n) = n2^n$$

- La RRLH asociada $a_n = 3a_{n-1} 2a_{n-2}$ tiene como raíces 1 y 2.
- Como 2 es raíz de la ecuación homogénea, $a_n^{(p)} = (an + b)n 2^n$.

$$a_n = 3a_{n-1} - 2a_{n-2} + n2^n \text{ con } a_0 = 0, \ a_1 = 1 \text{ y } L(n) = n2^n$$

- La RRLH asociada $a_n = 3a_{n-1} 2a_{n-2}$ tiene como raíces 1 y 2.
- Como 2 es raíz de la ecuación homogénea, $a_n^{(p)} = (an + b)n 2^n$.
- Usamos que $a_n^{(p)}$ verifica la relación inicial, con lo que

$$(an + b)n 2^{n} = 3[a(n - 1) + b](n - 1)2^{n-1}$$
$$-2[a(n - 2) + b](n - 2)2^{n-2}$$
$$+n 2^{n}$$

$$a_n = 3a_{n-1} - 2a_{n-2} + n2^n \text{ con } a_0 = 0, \ a_1 = 1 \text{ y } L(n) = n2^n$$

- La RRLH asociada $a_n = 3a_{n-1} 2a_{n-2}$ tiene como raíces 1 y 2.
- Como 2 es raíz de la ecuación homogénea, $a_n^{(p)} = (an + b)n 2^n$.
- Usamos que $a_n^{(p)}$ verifica la relación inicial, con lo que

$$(an + b)n 2^{n} = 3[a(n - 1) + b](n - 1)2^{n-1}$$
$$-2[a(n - 2) + b](n - 2)2^{n-2}$$
$$+n 2^{n}$$

$$a_n = 3a_{n-1} - 2a_{n-2} + n2^n \text{ con } a_0 = 0, a_1 = 1 \text{ y } L(n) = n2^n$$

- La RRLH asociada $a_n = 3a_{n-1} 2a_{n-2}$ tiene como raíces 1 y 2.
- Como 2 es raíz de la ecuación homogénea, $a_n^{(p)} = (an + b)n 2^n$.
- Usamos que $a_n^{(p)}$ verifica la relación inicial, con lo que

$$(an + b)n 2^{n} = 3[a(n - 1) + b](n - 1)2^{n-1}$$
$$-2[a(n - 2) + b](n - 2)2^{n-2}$$
$$+n 2^{n}$$

• La relación ha de cumplirse para n = 2 y n = 3, y resolviendo el sistema queda a = 1 y b = -1.

$$a_n^{(p)} = (n-1)n \, 2^n$$

$$a_n = 3a_{n-1} - 2a_{n-2} + n2^n \text{ con } a_n^{(p)} = (an + b)n2^n$$

$$(an + b)n 2^{n} = 3[a(n - 1) + b](n - 1)2^{n-1}$$
$$-2[a(n - 2) + b](n - 2)2^{n-2}$$
$$+n 2^{n}$$

$$a_n = 3a_{n-1} - 2a_{n-2} + n 2^n \text{ con } a_0 = 0 \text{ y } a_1 = 1$$
 $L(n) = n 2^n$

• La RRLH asociada $a_n = 3a_{n-1} - 2a_{n-2}$ tiene como raíces 1 y 2.

$$a_n = 3a_{n-1} - 2a_{n-2} + n 2^n \text{ con } a_0 = 0 \text{ y } a_1 = 1$$
 $L(n) = n 2^n$

- La RRLH asociada $a_n = 3a_{n-1} 2a_{n-2}$ tiene como raíces 1 y 2.
- Como $a_n^{(p)} = (n-1)n2^n$ y $a_n^{(h)} = \alpha 1^n + \beta 2^n$, se tiene que:

$$a_n = \alpha + \beta 2^n + (n-1)n 2^n$$

$$a_n = 3a_{n-1} - 2a_{n-2} + n 2^n \text{ con } a_0 = 0 \text{ y } a_1 = 1$$
 $L(n) = n 2^n$

- La RRLH asociada $a_n = 3a_{n-1} 2a_{n-2}$ tiene como raíces 1 y 2.
- Como $a_n^{(p)} = (n-1)n2^n$ y $a_n^{(h)} = \alpha 1^n + \beta 2^n$, se tiene que:

$$a_n = \alpha + \beta 2^n + (n-1)n 2^n$$

• Como $a_0 = 0$ y $a_1 = 1$, nos queda:

$$\begin{cases}
0 = \alpha + \beta \\
1 = \alpha + 2\beta
\end{cases}$$

$$a_n = 3a_{n-1} - 2a_{n-2} + n 2^n \text{ con } a_0 = 0 \text{ y } a_1 = 1$$
 $L(n) = n 2^n$

- La RRLH asociada $a_n = 3a_{n-1} 2a_{n-2}$ tiene como raíces 1 y 2.
- Como $a_n^{(p)} = (n-1)n2^n \text{ y } a_n^{(h)} = \alpha 1^n + \beta 2^n$, se tiene que:

$$a_n = \alpha + \beta 2^n + (n-1)n 2^n$$

$$\begin{array}{rcl}
0 & = & \alpha + \beta \\
1 & = & \alpha + 2\beta
\end{array} \right\} \quad \beta = 1 \\
\alpha = -1$$

$$a_n = -1 + 2^n (n^2 - n + 1)$$

21 / 1

Órdenes de complejidad

Orden	Complejidad
Θ(1)	Constante
$\Theta(\log n)$	Logarítmica
$\Theta(n)$	Lineal
$\Theta(n \log n)$	Cuasi lineal
$\Theta(n^b)$	Polinómica
$\Theta(a^n)$	Exponencial
Θ(n!)	Factorial

Divide y Vencerás: Esquema

- El problema original se descompone en l subproblemas más pequeños:
 - Tamaño del problema original: n
 - Tamaño del subproblema i: $m_i < n$
 - Normalmente $\sum_{i=1}^{\ell} m_i < n$
- ${f 2}$ Los ${m \ell}$ subproblemas se resuelven por separado, aplicando el mismo algoritmo
- lacktriangle La solución al problema original se obtiene combinando las soluciones a los ℓ subproblemas
- Su coste computacional se determina resolviendo relaciones de recurrencia

Divide y Vencerás: Esquema

Caso general

$$T_{\mathsf{dyv}}(n) = \begin{cases} T_{\mathsf{trivial}}(n) & n \leq n_0 \\ T_{\mathsf{dividir}}(n,\ell) + \sum_{i=1}^{\ell} T_{\mathsf{dyv}}(m_i) + T_{\mathsf{combinar}}(n,\ell) & n > n_0 \end{cases}$$

- Caso muy frecuente
 - $m_i = \frac{n}{b}$ para $i = 1, \dots, \ell$ con $\ell \ge 1$ y $b \ge 2$
 - $T_{\text{trivial}}(n) \in \Theta(1)$
 - $T_{\text{dividir}}(n, \ell) + T_{\text{combinar}}(n, \ell) \in \Theta(n^k) \text{ con } k \ge 0$

$$T_{\mathsf{dyv}}(n) = \begin{cases} 1 & n \leq n_0 \\ \ell T(\frac{n}{b}) + cn^k & n > n_0 \end{cases}$$

con c > 0

$$T(n) = \ell T(\frac{n}{b}) + c \cdot n^k$$
, si $n \ge n_0$

 $\ell \ge 1$, $b \ge 2$, $k \ge 0$ y c > 0

$$T(n) = \ell T(\frac{n}{b}) + c \cdot n^k$$
, si $n \ge n_0$

$$\ell \ge 1$$
, $b \ge 2$, $k \ge 0$ y $c > 0$

$$n \in \{bn_0, b^2n_0, \ldots\}$$
, es decir, $\frac{n}{n_0} = b^i$ con $i \ge 1$

$$T(n) = \ell T(\frac{n}{b}) + c \cdot n^k$$
, si $n \ge n_0$

$$\ell \ge 1$$
, $b \ge 2$, $k \ge 0$ y $c > 0$

 $n \in \{bn_0, b^2n_0, \ldots\}$, es decir, $\frac{n}{n_0} = b^i$ con $i \ge 1$ Cambio de variable $n = b^i n_0$

$$T(n) = \ell T(\frac{n}{b}) + c \cdot n^k$$

 $n \in \{bn_0, b^2n_0, \ldots\}$, es decir, $\frac{n}{n_0} = b^i$ con $i \ge 1$ Cambio de variable $n = b^i n_0$

$$t(i) := T(n) = T(b^i n_0)$$

$$t(0) = T(n_0) = 1$$

 $t(i) = \ell t(i-1) + c n_0^k b^{ik} \text{ si } i \ge 1$

$$t(i) = \ell t(i-1) + c n_0^k b^{ik}$$
, si $n \ge n_0$

$$t(i) = \ell t(i-1) + c n_0^k b^{ik}$$
, si $n \ge n_0$

La RRLH es $t^h(i) = \ell t(i-1)$ cuya solución es $t^h(i) = a \ell^i$

$$t(i) = \ell t(i-1) + c n_0^k b^{ik}$$
, si $n \ge n_0$

La RRLH es $t^h(i) = \ell t(i-1)$ cuya solución es $t^h(i) = a \ell^i$ Caso $\ell = b^k$

$$t^p(i) = d i b^{ik}$$

$$t(i) = \ell t(i-1) + c n_0^k b^{ik}$$
, si $n \ge n_0$

La RRLH es $t^h(i) = \ell t(i-1)$ cuya solución es $t^h(i) = a b^{ik}$ Caso $\ell = b^k$

$$t^p(i) = d i b^{ik}$$

$$t(i) = t^h(i) + t^p(i) = a b^{ik} + d i b^{ik}$$

$$t(i) = \ell t(i-1) + c n_0^k b^{ik}$$
, si $n \ge n_0$

La RRLH es $t^h(i) = \ell t(i-1)$ cuya solución es $t^h(i) = a b^{ik}$ Caso $\ell = b^k$

$$t^p(i) = d i b^{ik}$$

$$t(i) = t^h(i) + t^p(i) = a b^{ik} + d i b^{ik}$$

.

$$T(n) = \alpha n^k + c n^k \log_b n \in \Theta(n^k \log_b n)$$

$$t(i) = \ell t(i-1) + c n_0^k b^{ik}$$
, si $n \ge n_0$

La RRLH es $t^h(i) = \ell t(i-1)$ cuya solución es $t^h(i) = a \ell^i$

$$t(i) = \ell t(i-1) + c n_0^k b^{ik}$$
, si $n \ge n_0$

La RRLH es $t^h(i) = \ell t(i-1)$ cuya solución es $t^h(i) = a \ell^i$ Caso $\ell \neq b^k$

$$t^p(i) = d b^{ik}$$

$$t(i) = \ell t(i-1) + c n_0^k b^{ik}$$
, si $n \ge n_0$

La RRLH es $t^h(i) = \ell t(i-1)$ cuya solución es $t^h(i) = a \ell^i$ Caso $\ell \neq b^k$

$$t^p(i) = d b^{ik}$$

$$t(i) = t^h(i) + t^p(i) = a \ell^i + d b^{ik}$$

$$t(i) = \ell t(i-1) + c n_0^k b^{ik}$$
, si $n \ge n_0$

La RRLH es $t^h(i) = \ell t(i-1)$ cuya solución es $t^h(i) = a \ell^i$ Caso $\ell \neq b^k$

$$t^p(i) = d b^{ik}$$

$$t(i) = th(i) + tp(i) = a \elli + d bik$$

٠

$$T(n) = \alpha \left(\frac{n}{n_0}\right)^k + (1-\alpha) \left(\frac{n}{n_0}\right)^{\log_b \ell}$$

con

$$\begin{cases} \alpha > 0 & \text{si } \ell < b^k \\ \alpha < 0 & \text{si } \ell > b^k \end{cases}$$

$$T(n) = \alpha \left(\frac{n}{n_0}\right)^k + (1-\alpha) \left(\frac{n}{n_0}\right)^{\log_b \ell}$$

$$\alpha = \frac{cn_0^k}{\left(1 - \frac{\ell}{b^k}\right)}$$

$$T(n) = \alpha \left(\frac{n}{n_0}\right)^k + (1-\alpha) \left(\frac{n}{n_0}\right)^{\log_b \ell}$$

$$\alpha = \frac{cn_0^k}{\left(1 - \frac{\ell}{b^k}\right)}$$

Por lo tanto:

$$\left\{ \begin{array}{ll} \alpha > 0 & \text{si } \ell < b^k \\ \alpha < 0 & \text{si } \ell > b^k \end{array} \right.$$

$$T(n) = \alpha \left(\frac{n}{n_0}\right)^k + (1-\alpha) \left(\frac{n}{n_0}\right)^{\log_b \ell}$$

Por lo tanto:

$$\begin{cases} \alpha > 0 & \text{si } \ell < b^k \\ \alpha < 0 & \text{si } \ell > b^k \end{cases}$$

- a.1) Si $\ell < b^k$, entonces $\alpha > 0$ y $T(n) \in \Theta(n^k)$
- a.2) Si $\ell > b^k$, entonces $\alpha < 0$ y $T(n) \in \Theta(n^{\log_b \ell})$

$$T(n) = \ell T(\frac{n}{b}) + c \cdot n^{k}$$

$$T(n) \in \begin{cases} \Theta(n^{k}) & \text{si } \ell < b^{k} \\ \Theta(n^{k} \log_{b} n) & \text{si } \ell = b^{k} \\ \Theta(n^{\log_{b} \ell}) & \text{si } \ell > b^{k} \end{cases}$$

Recordando que:

 ℓ es el número de subproblemas,

 $\frac{n}{b}$ es el tamaño de cada subproblema y

la complejidad de dividir el problema y combinar las soluciones es cn^k

$$T(n) = \ell T(\frac{n}{b}) + c \cdot n^{k}$$

$$T(n) \in \begin{cases} \Theta(n^{k}) & \text{si } \ell < b^{k} \\ \Theta(n^{k} \log_{b} n) & \text{si } \ell = b^{k} \\ \Theta(n^{\log_{b} \ell}) & \text{si } \ell > b^{k} \end{cases}$$

$$T(n) = \begin{cases} 1 & n = 1 \\ 3T(\frac{n}{2}) + n & n = 2^{i}, n \ge 1 \end{cases}$$

Como 3 > 2^1 , se tiene que $T(n) \in \Theta(n^{\log_2 3})$

$$T(n) = \ell T(\frac{n}{b}) + c \cdot n^{k}$$

$$T(n) \in \begin{cases} \Theta(n^{k}) & \text{si } \ell < b^{k} \\ \Theta(n^{k} \log_{b} n) & \text{si } \ell = b^{k} \\ \Theta(n^{\log_{b} \ell}) & \text{si } \ell > b^{k} \end{cases}$$

$$T(n) = \begin{cases} 1 & n = 1 \\ 3T(\frac{n}{2}) + n^2 & n = 2^i, n \ge 1 \end{cases}$$

Como 3 < 2^2 , se tiene que $T(n) \in \Theta(n^2)$

$$T(n) = \ell T(\frac{n}{b}) + c \cdot n^{k}$$

$$T(n) \in \begin{cases} \Theta(n^{k}) & \text{si } \ell < b^{k} \\ \Theta(n^{k} \log_{b} n) & \text{si } \ell = b^{k} \\ \Theta(n^{\log_{b} \ell}) & \text{si } \ell > b^{k} \end{cases}$$

$$T(n) = \begin{cases} 1 & n = 1 \\ 4T(\frac{n}{2}) + n^2 & n = 2^i, n \ge 1 \end{cases}$$

Como $4 = 2^2$, se tiene que $T(n) \in \Theta(n^2 \log_2 n)$

Consultar

