MM719 - 2S 2011 - Exame de Qualificação (07/12/2011)

Observação: $M_n(k)$ representa o espaço das matrizes $n \times n$ com coeficientes no corpo k. Para cada matriz $A \in M_n(k)$, representamos por tr(A) o traço da matriz A e por $\det(A)$ o determinante.

1. (3 pt) Considere a transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ dada por

$$T(x_1, x_2, x_3, x_4) = (2x_1 - x_2, x_2, -4x_1 + 2x_2 + 3x_3 - 2x_4, 2x_1 - 2x_2 + 3x_4).$$

Determine uma base de Jordan para T e a matriz de T em relação a essa base.

- 2. (3 pt) Verifique se as afirmações abaixo estão corretas. Justifique cada resposta.
 - (a) Dado um espaço vetorial V de dimensão n, então $V \otimes V \cong M_n$ =espaço das matrizes $n \times n$.
 - (b) Todo subespaço de um espaço vetorial V de dimensão n, é uma interseção finita de subespaços de dimensão n-1.
 - (c) Para um operador linear $T: \mathbb{R}^n \to \mathbb{R}^n$, onde \mathbb{R}^n tem o produto interno usual $\langle \ , \ \rangle$, temos que $\langle T(x), T(y) \rangle = \langle x, y \rangle$, para todo par $x, y \in \mathbb{R}^n$, se e somente se $T^t \circ T = \mathrm{id}$, onde T^t é a transposta de T.
 - (d) Seja $T: \mathbb{C}^n \to \mathbb{C}^n$, um operador linear tal que $T^k = \mathrm{id}$ para algum k > 1 então a forma canônica de Jordan de T tem um bloco $k \times k$.
 - (e) O espaço $M_2(\mathbb{R})$ das matrizes 2×2 com coeficientes reais é um quociente de \mathbb{R}^8 (Isto é, existe um subespaço $W \subset \mathbb{R}^8$ tal que $\mathbb{R}^8/W \cong M_2(\mathbb{R})$).
 - (f) Para um operador linear $T:V\to V$, sobre um espaço vetorial V, tal que $T^2=T$ existe uma base de V constituída de autovetores de T.
- 3. (3 pt) Sejam V um espaço vetorial sobre um corpo k e $T:V\to V$ um operador linear. Seja $\mathcal B$ uma base de V e A a matriz de T em relação a $\mathcal B$.
 - (a) Mostre que se T é diagonalizável, então $T \otimes T$ também é diagonalizável.
 - (b) Defina $\operatorname{tr}(T) = \operatorname{tr}(A)$ e mostre que essa definição não depende da base \mathcal{B} escolhida.
 - (c) Assume que dim V = n e seja $\wedge^n T : \wedge^n V \to \wedge^n V$ a transformação linear induzida por T no n-ésimo produto exterior de V. Verifique que tr $(\wedge^n T) = \det(A)$.
- 4. (1 pt)
 - (a) Escreva a definição de adjunta de uma transformação linear dada.
 - (b) Enuncie o teorema espectral sobre o corpo dos reais.

Boa prova!

Departamento de Matemática, IMECC-UNICAMP EXAME DE QUALIFICAÇÃO DE MESTRADO ANÁLISE NO \mathbb{R}^n

14 de dezembro de 2011.

1. (a) Se a_0 e b_0 são constantes tais que $a_0^2 + b_0^2 = 1$, mostre que as curvas

$$\frac{x^2}{a_0^2} + \frac{y^2}{b_0^2} = 1$$
 e $x + y = 1$

são tangentes.

(b) Suponha que as curvas acima não são tangentes, mas se interseccionam em (x_0, y_0) . Podemos afirmar que o sistema

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\\ x + y = 1 \end{cases}$$

admite soluções x = x(a, b) e y = y(a, b), tais que $x_0 = x(a_0, b_0)$, $y_0 = y(a_0, b_0)$ e dependem suavemente de (a, b), para (a, b) numa vizinhança V de (a_0, b_0) ? Justifique sua resposta.

2. (a) Se $T: \mathbb{R}^n \to \mathbb{R}^n$ é um isomorfismo, mostre que

$$|T(x)| \ge \frac{1}{\|T^{-1}\|} |x|.$$

(b) Se $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ é diferenciável em $x_0 \in U$ e $f'(x_0)$ é um isomorfismo, mostre que existem constantes positivas δ e c tais que

$$|h| < \delta \Rightarrow |f(x_0 + h) - f(x_0)| \ge c|h|.$$

3. Sejam $g: \mathbb{R}^n \to \mathbb{R}^n$ um difeomorfismo de classe C^1 e $X \subset \mathbb{R}^n$ um subconjunto compacto e conexo. Se Y = g(X), Mostre que existe $x_0 \in X$ tal que

$$m(Y) = |J_g(x_0)| \ m(X),$$

onde $J_g(x_0)$ é o determinante Jacobiano de g no ponto x_0 e m(X) denota o volume (medida) de X. Detalhe os resultados utilizados na sua justificativa colocando os nomes dos teoremas ou os seus enunciados.

4. Seja $\mathcal{A}_k(\mathbb{R}^n)$ o espaço vetorial das k-formas (k-tensores). Seja $\{e_1, ... e_n\}$ uma base de \mathbb{R}^n e $I = \{i_1 < ... < i_k\}$, $J = \{j_1 < ... < j_k\}$ k-listas ascendentes. Defina

$$\phi_I(e_{j_1}, ..., e_{j_1}) = \delta_{IJ} = \begin{cases} 0, & \text{se } I \neq J \\ 1 & \text{se } I = J. \end{cases}$$

Mostre que a família ϕ_I , quando I percorre todas as k-listas ascendentes de inteiros $\{1, ..., n\}$, forma uma base de $\mathcal{A}_k(\mathbb{R}^n)$.

Se $(v_1,...v_k)$ é uma k-upla de vetores de \mathbb{R}^n e X é a matriz $n \times k$

$$X = \left(\begin{array}{ccc} x_{11} & \dots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nk} \end{array}\right),$$

cuja i-esima coluna é formada pelas coordenadas de v_i na base dada, mostre que

$$\phi_I(v_1, ..., v_k) = det X_I,$$

onde X_I é a matriz quadrada $k \times k$ cujas linhas são sucessivamente as linhas $i_1, ..., i_k$ de X.

5. Dizemos que uma função $f: \mathbb{R}^n \to \mathbb{R}^n$ é fortemente monótona se existe uma constante a > 0 tal que, para todo $x, y \in \mathbb{R}^n$, temos

$$\langle f(x) - f(y), x - y \rangle \ge a|x - y|^2$$
.

- (a) Se f é diferenciável em x_0 e fortemente monótona, mostre que $f'(x_0)$ também é fortemente monótona (com a mesma constante a).
- (b) Mostre que f é fortemente monótona, isto é,

$$\langle f(x) - f(y), \ x - y \rangle \ge a|x - y|^2$$

se, e somente se,

$$|(I + \lambda f)(x) - (I + \lambda f)(y)| \ge \sqrt{1 + 2\lambda a} |x - y|, \quad \forall \ \lambda > 0.$$

Conclua que a equação $x + \lambda f(x) = y_0$ tem unicidade de solução.

BOA PROVA!

1	2	3	4	Σ

ATENÇÃO: Não é permitido destacar as folhas

Exame Qualificação - Topologia Geral.

NOME:	RA:
1101/1D:	1071.

- 1^a Questão. (7.0 pts.) Responda Verdadeiro ou Falso. Justifique.
 - i- Todo espaço metrizável é normal.
 - ii- Se $P:A\to B$ e $q:C\to D$ são duas aplicações quocientes, sendo B e C espaços separáveis localmente compactos, então o mapa $p\times q:A\times C\to B\times D$ é uma aplicação quociente.
 - iii- \mathbb{R}^2 é homeomorfo a \mathbb{R}^3 .
 - iv- Seja (X, d) um espaço métrico compacto e Y métrico. Seja $f: X \to Y$ uma isometria (i.e. $d_Y(f(x), f(y)) = d_X(x, y)$) então f é um homeomorfismo.
 - v- Seja X um espaço de Hausdorff compacto. Então X é metrizável se, e somente se, X tem uma base enumerável.
 - vi- Seja $p:X\to Y$ uma aplicação quociente. Assuma que Y é conexo. Se cada conjunto $p^{-1}(\{y\})$ é conexo então X é conexo.
- vii- Seja S^n a esfera unitaria n dimensional. Então $\pi_1(S^n)$ é trivial quando $n \geq 2$

 2^a Questão. (1.0 pt.) Seja $A \subset X$ um subconjunto arbitrário de um espaço topológico X. Denote $X/A := (X - A) \cup \{A\}$ (Note que $\{A\}$ é um conjunto com exatamente um elemento: o próprio conjunto A. Defina a aplicação $\pi: X \to X/A$ por

$$\pi(x) = \left\{ \begin{array}{ccc} x & \text{se} & x \not\in A \\ \{A\} & \text{se} & x \in A \end{array} \right.$$

Considere então X/A equipado com a topologia quociente.

- i- Mostre que, se $F \subset X$ é fechado e $F \cap A = \emptyset$ então $\pi(F)$ é fechado em X/A.
- ii- Mostre que, se X/A é um espaço de Hausdorff, então o conjunto A é fechado em X.
- 3^a Questão. (1.0 pt.) Determine se cada um dos espaços de matrizes abaixo é compacto ou não e determine o número de seus componentes conexos por caminhos: $Gl(3,\mathbb{C}),\ U(3,\mathbb{C}),\ O(3,\mathbb{R}).$
- 4^a Questão. (1.0 pt.) Mostre que $\pi_1(S^2)=0,\,\pi_1(\mathbb{RP}^2)=\mathbb{Z}_2$ e que $\pi_1(SO(3))=\mathbb{Z}_2$

Incluir na prova todas as contas feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Bom Trabalho!