Integrating Background Knowledge and Reinforcement Learning for Action Selection

John E. Laird
Nate Derbinsky
Miller Tinkerhess

Goal

- Provide an architectural support so that:
 - Agent uses (possibly heuristic) background knowledge to initially make action selections
 - Might be non determinism in the environment that is hard to build a good theory of.
 - Learning improves action selections based on experienced-based reward
 - Captures regularities that are hard to encode by hand.
- Approach: Use chunking to learn RL rules and then use reinforcement learning to tune behavior.

Deliberate Background Knowledge for Action Selection

Examples:

- Compute the likelihood of success of different actions using explicit probabilities.
- Look-ahead internal search using an action model to predict future result from an action
- Retrieve from episodic memory of similar situation
- Request from instructor

Characteristics

- Multiple steps of internal actions
- Not easy to incorporate accumulated experienced-based reward

Soar Approach

Calculations in a substate of a tie impasse

Playsenshajtdesteitactenststeditchgibetheildentele. number of dice under cups.

Bid 4 2's

Bid 6 6's

Players can "push" out a subset of their dice and reroll when bidding.

Player can Challenge previous bid. All dice are revealed

Evaluation with Probability Calculation

Using Reinforcement Learning for Operator Selection

- Reinforcement Learning
 - Choosing best action based on expected value
 - Expected value updated based on received reward and expected future reward
- Characteristics
 - Direct mapping between situation-action and expected value (value function)
 - Does not use any background knowledge
 - No theory of original of initial values (usually 0) or value-function
- Soar Approach
 - Operator selection rules with numeric preferences
 - Reward received base on task performance
 - Update numeric preferences based on experience
- Issues:
 - Where do RL-rules come from?
 - Conditions that determine the structure of the value function
 - Actions that initialize the value function

Value Function in Soar

- Rules map from situation-action to expected value.
 - Conditions determine generality/specificity of mapping

Approach: Using Chunking over Substate

- For each preference created in the substate, chunking (EBL) creates a new RL rule
 - Actions are numeric preference
 - Conditions based on working memory elements tested in substate

 Reinforcement learning tunes rules based on experience

Two-Stage Learning

RL rules updated based on agent's experience

Evaluation with Probability Calculation

Learning RL-rules

Using only probability calculation

Learning RL-rules

Using probability and model

Research Questions

- Does RL help?
 - Do agents improve with experience?
 - Can learning lead to better performance than the best hand-coded agent?
- Does initialization of RL rules improve performance?
- How does background knowledge affect rules learned by chunking and how do they affect learning?

Evaluation of Learning

- 3-player games
 - Against best non learning player agent
 - Heuristics and opponent model
 - Alternate 1000 game blocks of testing and training
- Metrics
 - Speed of learning & asymptotic performance
- Agent variants:
 - B: baseline
 - H: with heuristics
 - M: with opponent model
 - MH: with opponent model and heuristics

Learning Agent Comparison

- Best agents do significantly better than hand coded.
- H and M give better initial performance than B.
- P alone speed learning (smaller state space).
- M slows learning (much larger state space).

Learning Agents with Initial Values = 0

Number of Rules Learned

Nuggets and Coal

• Nuggets:

- First combination of chunking/EBL with RL
 - Transition from deliberate to reactive to learning
 - Potential story for origin of value functions for RL
- Intriguing idea for creating evaluation functions for gameplaying agents
 - Complex deliberation for novel and rare situations
 - Reactive RL learning for common situations

Coal

- Sometimes background knowledge slows learning...
- Appears we need more than RL!
- How recover if learn very general RL rules?