

Design Intel SSDs Into Datacenters

Benny NI

Business Development Manager NVM Solutions Group, Intel July, 2013

Thank You ... for Being SSD Champions

Data Center SSD Market Trend

Every High-Performance HDD Will Be Replaced by a SSD!

Enterprise SSD Market Analysis - SATA

Intel is leading the market growth!

Intel Data Center SSDs

Product Feature Differences

	Intel® SSD 710 Series ¹
Capacity	100/200/300GB
Interface	SATA 3Gbps (ATA8)
Performance Transfer Rate (Read/Write)	270/210MB
IOPS (4K Random Read/Write)	38.5K/2.7K IPOS
Latency Average (Read/Write)	75/85µs
Features Encryption	128-bit AES
Data Integrity	LBA Tag Checking
Warranty	Three years
Endurance	4.5 drive writes per day
Power Loss Protection	Yes

2.5" 100/200/400/800GB 1.8-inch 200/400GB SATA 6Gbps (ATA8) 500/460MB 75K/36K IPOS 50/65µs 256-bit AES End-to-end data protection Five years 10 drive writes per day	DC S3700 Series ²	
(ATA8) 500/460MB 75K/36K IPOS 50/65µs 256-bit AES End-to-end data protection Five years 10 drive writes		
75K/36K IPOS 50/65µs 256-bit AES End-to-end data protection Five years 10 drive writes		
50/65µs 256-bit AES End-to-end data protection Five years 10 drive writes	500/460MB	
256-bit AES End-to-end data protection Five years 10 drive writes	75K/36K IPOS	
End-to-end data protection Five years 10 drive writes	50/65µs	
protection Five years 10 drive writes	256-bit AES	
10 drive writes		
	Five years	
per day	10 drive writes per day	

Yes plus Self Test

Increased capacities

Improved performance, latencies, and endurance

2X the endurance

¹ Data based on Intel[®] SSD 710 Series data sheet.

² DC S3700 data is preliminary.

Product Feature Differences

	Intel® SSD 320 Series
Capacity	80/120/160/300/600GB
Interface	SATA 3Gbps (ATA8)
Performance Transfer Rate (Read/Write)	270/220MB
IOPS (4K Random Read/Write)	39.5K/600 IPOS
Latency Average (Read/Write)	75/95µs
Features Encryption	128-bit AES
Data Integrity	LBA Tag Checking
Warranty	Five years
Endurance (4k full span)	0.06 drive writes per day
Power Loss Protection	Yes

Increased capacities

Improved performance, latencies, and endurance

>5X the endurance

Transition to the DC S3500 Series

	Intel® SSD 320 Series	Intel® SSD 520 Series	Intel® SSD DC S3500 Series	Benefit
Full Data Path protection		Data Path only	Data + Non Data Path	Protects against unexpected data corruption throughout the drive
Power Loss Data Protection	PLI		PLI + PLI check	Protects data against unexpected power loss
Intel Developed Controller		0		Intel Quality & Reliability
Consistent Performance		18% better than 320	50% better than 520	Tighter IOPS and lower max latencies for consistent and predictable performance
AES 256b encryption	128b	128b	256b	Enhanced data protection for data at rest
High Capacities	600GB	480GB	800GB	Increased capacities for growing storage needs
NAND Technology	25nm	25nm	20nm	Leading edge NAND technology provides a better cost structure

Migrate to DC \$3500 to gain and save!

Intel® SSDs Enhance Corp IT Efficiency Microsoft Exchange

Intel IT – Server + 40 HDD > Server + 14 DC S3700 SSD

50% per user infrastructure cost reduction

80% Utilization of All Assets 99% SLA in T1 Apps 95% SLA in T2+ 10% Y-o-Y Cost Reductions

Parameter	10k + 7k HDD Config	DC S3700 SSD Config	Delta
Active Users	6K Users	12K > 18k Users	2x More Users
LDAP look up	1x	2x	2x Faster
Mail Submission ¹	1x	6x	6x Faster Outbox
CPU Headroom	NA	2x Available CPU	Room to Grow Predictable Performance
System Configuration	Server + 2x JBOD (spindles for IOPS not TB)	Server only	Less Management & Complexity
Size	6U (\$120/Yr. @ \$105/SqFt)	2U (\$40/Yr. @ \$ 105/SqFt)	60% Space Reduction
Total Power & Cooling (Server + 1.25*Server)	1780 Watts* (\$1080/Yr. @ \$.07KWh)	370Watts* (\$230/Yr. @ \$.07KWh)	79% Power Reduction*
Cost Server & JBOD	~\$20k Total Server + 2x JBOD	~\$30K Server Only	33% Increase in BoM Cost
\$/user	3.33\$/user	2.5\$/user,low to 1.67\$/user	25%-50%↓

SSD Interface Mix Trend in Data Center

SSD Interface Mix in Storage

SATA continues to take >50% share while PCIe is taking off!

NVM Express (NVMe) Overview

- NVM Express is a high performance, scalable host controller interface designed for Enterprise and client systems that use PCI Express* SSDs
- NVMe developed by industry consortium of 80+ members and is directed by a 13-company Promoter Group

- NVMe 1.0 published March, 2011
- NVMe 1.1 published October, 2012 adding Enterprise and Client capabilities
 - Enterprise: Multi-path I/O and namespace sharing
 - Client: Lower power through autonomous transitions during idle
- Reference drivers available for Microsoft* Windows and Linux*, others in development
- The first UNH-IOL NVMe plugfest held on May 13-16, 2013 in Durham, NH to enable an interoperable ecosystem.
- Additional information at NVMExpress.org website

NVMe command structures
and specs found here

*Other names and brands may be claimed as the property of others.

NVM Express (NVMe) Technical Basics (Internal Property of the Internal Property of the Internal

- The focus of the effort is efficiency, scalability and performance
 - All parameters for 4KB command in single 64B DMA fetch
 - Supports <u>deep</u> queues (64K commands per Q, up to 64K queues)
 - Supports MSI-X and interrupt steering
 - Streamlined command set optimized for NVM (6 I/O commands)
 - Enterprise: Support for end-to-end data protection (i.e., DIF/DIX)
 - NVM technology agnostic

2.5" SFF PCle Drive: From SATA, to SAS, to SFF 8639

Current SATA Connector

- Uses legacy SATA pin pitch
- Keyed to preclude the insertion of a non-SATA drive

Current SAS Connector

- Added additional signaling pins for a secondary port option at with a tighter, modern, pin pitch
- Supports both SATA and SAS drives

SFF 8639 Connector

- Fills out all remaining pin capacity of the legacy form factor
- Designed to support many protocols
- Enterprise mapping supports legacy SATA, SAS, and modern PCle drives simultaneously

Both single port X4 and dual port X2 drives

Specs can be found here-

http://www.ssdformfactor.org/docs/SSD_Form_Factor_Version1_00.pdf

Parameters Effecting Performance – Request Size, Queue Depth

DC S3700 data

- Request Size
 - Bandwidth Increases from smaller transfer size to bigger transfer size
 - Why: Fix command processing overhead

DC S3700 data

Queue Depth

- By operating at high queue depth, you increase performance. (More on random reads)
- Why: We can assign work to multiple flash in parallel

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Configurations: Measurements made using Intel i5-2400S CPU at 2.50 GHZ CPU and 4GB of DDR3 PC5-31-0600 Memory, Intel® DC 33700 Series, 8000GB used for analysis.

Parameters Effecting Performance – Density, Read/Write Mix

Performance vs. Density

Density

- Lower density → higher density increases performance
- Why: More flash devices means more concurrent work possible

- Moving from more writes to more reads increases performance
- Why: Reads process faster than writes on NAND plus less "housekeeping"

DC S3700 data

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Configurations: Measurements made using Intel i5-2400S CPU at 2.50 GHZ CPU and 4GB of DDR3 PC3-10600 Memory. Intel® DC S3700 Series, 800GB used for analysis.

Parameters Effecting Performance -

Randomness, Over-provisioning

% Random access

- If application uses sequential accesses instead of random, it will improve performance and QoS
- Why: Pre fetch on reads, reduced channel collisions, less NAND "housekeeping"

DC S3700/S3500 data

Over-provisioning

- Go from full LBA access to limited LBA access will improve performance, endurance and QoS
- Why: Additional spare capacity allows "housekeeping" algorithms to run more efficiently

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Configurations: Measurements made using Intel 15-2400S CPU at 2.50 GHZ CPU and 4GB of DDR3 PC3-10600 Memory, Intel® DC 33700 Series, 8000B used for analysis.

Parameters Effecting Performance – Compressibility, State of Drive

- Data Compressibility
 - Uncompressible data → compressible data → improved performance, improved endurance, QoS
 - Why: Less data read/written to NAND and increased spare capacity same value as short stroking

- Prior State of the Drive
 - Full and random drive → sequential writes and/or TRIM → higher performance
 - Why: the housekeeping algorithms need to work harder

LBA (4K-bytes) alignments

Improper alignment, first partition starts with LBA address 63, it will hurt SSD performance due to RMW

Proper 4Kbytes aligned partition

- Typical example at Linux partition
- >> fdisk -u -c -b 4096 /dev/sdX

QoS (Quality of Service) 101

What Impacts QoS

- Drop in Bandwidth or IOPS from regular range
 - Background NAND management for reliability
 - Host versus housekeeping activity
- Latency outlier
 - move from usecond to milliseconds
- High frequency of latency outliers
 - Moving from 99.9999% availability to 99% availability

How to Benchmark QoS

- Look at the tightness of IOPS spread
 - Measure average to min value, set to <20% variation for HE</p>
- Look at the max latencies at low and high QD
 - Measure max latency with a high 9s availability (99.9999%)
 - 99.9999% means 1 outlier in 100 million data points

Importance of Latency QoS TPCC* Random Workload

Transaction processing requires dense IO (Higher IOPS/GB)

No Mercy for latency outliers and occasional drops of IOPS

Non consistent performance impacts transaction processing

New Quality of Service Specification¹

		Intel SSD DC S3700					
Specification	Unit	Queue I	Depth=1	Queue Depth=32			
		100 GB	200/400/800 GB	100 GB	200/400/800 GB		
Quality of Service ^{3,4} (99.9%)					Outlier Me		
Reads	ms	0.5	0.5	1	1		
Writes	ms	0.5	0.5	15	10		
Quality of Service ^{3,4} (99.9999%)							
Reads	ms	10	5	10	5		
Writes	ms	10	5	20	20		

Table 3. Random Read/Write IOPS Consistency

		Intel SSD DC S3700						
Specification ⁴ Unit		100 GB	200 GB (2.5"/1.8")	400 GB (2.5"/1.8")	800 GB			
Random 4 KB Read (up to) ²	%	90	90	90	90			
Random 4 KB Write (up to)	%	85	90	90	90 Stability			
Random 8 KB Read (up to) ³	%	90	90	90	90			
Random 8 KB Write (up to)	%	85	90	90	90			

Max Latency & IOP Consistency Specified

Source: http://www.anandtech.com/show/6433/intel-固态硬盘-dc-s3700-200gb-review/3

New Quality of Service Specification¹

Table 6. (Quality o	f Service
------------	-----------	-----------

		Intel SSD DC S3500						
Specification	Unit	Queue [Depth=1	Queue Depth=32				
		80/120/160/ 240 GB	300/400/480/ 600/800 GB	80/120/160/ 240 GB	300/400/480/ 600/800 GB			
Quality of Service ^{3, 4} (99.9%)					Out			
Reads	ms	0.5	0.5	2	2			
Writes	ms	5 2		20	10			
Quality of Service ^{3,4} (99.9999%)								
Reads	ms	10	5	10	5			
Writes	ms	10	10	30	30			

Table 3. Random Read/Write IOPS Consistency

Intel SSD DC S3500									s
Specification ⁴	Unit	80GB (2.5/ 1.8")	120GB	160GB	240GB (2.5"/ 1.8")	300GB	400GB (1.8")	480 / 600 GB	800GB (2.5"/ 1.8")
Random 4 KB Read (up to)2	%	90	90	90	90	90	90	90	90
Random 4 KB Write (up to)	%	75	75	75	75	75	75	75	75
Random 8 KB Read (up to) ³	%	90	90	90	90	90	90	90	90
Random 8 KB Write (up to)	%	75	75	75	75	75	75	75	75

Max Latency & IOP Consistency Specified

http://www.anandtech.com/show/7065/intel-ssd-dc-s3500-review-480gb-part-1

Data Center Performance Optimization Example Intel® SSD DC S3700

IOPS Saturation Already Happened here? What's the point of incurring more latency?

100% Random Write workload on DC S3700 Latency measured at 99.999% outlier

- Add more drives or over-provision to gain higher IOPS
- Limit QD per drive to meet the max latency requirement of the system
- QD/drive and IOPS/drive will help size your database without hitting high latency events

Minimize Latency by Optimizing for QD/Drive

Configuring for Raid/HBA performance

- Use latest RAID/HBA SSD-friendly firmware which simplifies previous HDD software stacks, such as called FastPath* IO
- Disable RAID Read Caching
- Application stacks IO queues/threads
 - Use max queue depth on each striped drives times the number of stripped drives for maximum read performance
 - Use proper queue depth (4 to 8) on each striped drives times number of striped drives for better write performance and lower latency
- RAID parameters: wt nora direct...strpszM sz
 - "sz" equals to over-provision for all SSDs in RAID (MUST do security erase SSDs before "sz")

Configuring Linux IO for better performance

- Use noop/deadline (default is cfq)
 - /sys/block/sdX/queue/scheduler
- Turn rotational=0
- Turn off read_ahead_kb=0
- Adjust nr_requests value based on number of drives
- Disable I/O barrier on all Intel data center SSDs (all have power protection feature)
 - barrier=0 (ext3, ext4) or nobarrier (XFS)
- Check rq_affinity (use 2, RHL6.4 default is 1)

Intel S3500 6x800GB 4KB Random Read

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and function: Any change to any of those factors may cause the results to vary. You should consult other information that products.

Configurations: Measurements made using Hanlan Creek (Intel SS520HC) system with two Intel[®] Xeon XS560@ 2.93GHz and 12G8 (per CPU) Mem running RHE6.1 O/S

Regarding softirq rq_affinity

- **Strict** rq_affinity distributes soft interrupts to different CPU cores (rq_affinity=2 is available at RHE 6.4 release)
- Demo on S3500x6 with LSI HBA 2008
- Example case: 6 x Intel® 3500 800GB SSD behind HBA controller

4K 100% random read (threads =32x6)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist, you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Configurations: Measurements made using Hahalan Creek (Intel S5520HC) system with two Intel[®] Xeon X5560@ 2.93GHz and 12GB (per CPU) Mem running RHE6.1 0/S. Strict efficitly is available after kernel patches. LSI "2008 HBA controllors"

SSD life measurement and monitor

- S.M.A.R.T provides SSD health info
- SMART info can be retrived on most Raid controllers now
- At pre-production, use E2/3/4 to measure SSD wearing status under timed workloads, then estimate SSD life time
 - E2(226) Timed Workload Media Wear out Indicator
 - Reports % of wear during a test period not less than 60 mins Raw value needs to be divided by 1024 to get the % #
 - E3(227) Timed Workload Read/Write Ratio
 - Reports the raw value of the ratio
 - E4(228) Workload Timer
 - Reports out the raw value of time during a run
- Monitoring E9 at your regular maintenance job, when E9 reaches to 1, backup data and change SSDs

