Mathématiques II-CD - Corrigé modèle

Question 1 (4+3=7pts)

1)
$$\lim_{x \to +\infty} \left(\frac{x-1}{x+2}\right)^{2x+1} = \lim_{x \to +\infty} \left(\frac{x+2-3}{x+2}\right)^{2x+1} = \lim_{x \to +\infty} \left(1 + \frac{1}{-\frac{x+2}{3}}\right)^{-\left(\frac{x+2}{3}\right) \cdot (-6) - 3}$$
$$= \lim_{x \to +\infty} \left[\left(1 + \frac{1}{-\frac{x+2}{3}}\right)^{-\left(\frac{x+2}{3}\right)} \right]^{-6} \cdot \left(1 + \frac{1}{-\frac{x+2}{3}}\right)^{-3} = e^{-6} = \frac{1}{e^6}$$

2)
$$\lim_{x \to 0} \frac{\log(1 - x^2)}{\sin^2 x} =_H \lim_{x \to 0} \frac{\frac{1}{1 - x^2} \cdot (-2x)}{2 \cdot \ln 10 \cdot \sin x \cdot \cos x} = \lim_{x \to 0} \frac{-2x}{\ln 10 \cdot (1 - x^2) \cdot \sin 2x}$$
$$=_H \lim_{x \to 0} \frac{-2}{-2x \cdot \ln 10 \cdot \sin 2x + \ln 10 \cdot (1 - x^2) \cos 2x \cdot 2} = -\frac{2}{2\ln 10} = -\frac{1}{\ln 10}$$

Question 2 (7+5=12pts)

1)
$$\log_{\sqrt{2}}(5-x) + \log_{\frac{1}{2}}(2x^2 + 5x - 3) \le 2$$

 $C.E.: 1) 5 - x > 0 \iff x < 5$
2) $2x^2 + 5x - 3 > 0 \iff x \in]-\infty, -3[\cup]\frac{1}{2}; +\infty[$
 $[\Delta = 49, x_1 = -3, x_2 = \frac{1}{2}]$

$$D =]-\infty, -3[\cup]\frac{1}{2}; 5[$$

$$\log_{\sqrt{2}}(5-x) + \log_{\frac{1}{2}}(2x^2 + 5x - 3) \le 2$$

$$\Leftrightarrow \frac{\ln(5-x)}{\ln 2^{\frac{1}{2}}} + \frac{\ln(2x^2 + 5x - 3)}{\ln 2^{-1}} \le 2$$

$$\Leftrightarrow 2\ln(5-x) - \ln(2x^2 + 5x - 3) \le 2\ln 2$$

$$\Leftrightarrow \ln(5-x)^2 \le \ln 4 + \ln(2x^2 + 5x - 3)$$

$$\Leftrightarrow (5-x)^2 \le 4(2x^2 + 5x - 3)$$

$$\Leftrightarrow -7x^2 - 30x + 37 \le 0$$

$$\Delta = 900 + 4 \cdot 7 \cdot 37 = 1936$$

$$x_1 = \frac{30 - 44}{-14} = 1$$
 $x_2 = \frac{30 + 44}{-14} = -\frac{37}{7}$

$$S = \left] -\infty; -\frac{37}{7} \right] \cup \left[1; 5 \right[$$

2)
$$\frac{7e^{x}-2e^{-x}}{3e^{x}-1}=1-e^{-x}$$

$$C.E.: 3e^x - 1 \neq 0 \iff e^x \neq \frac{1}{3} \iff x \neq -\ln 3$$

$$D = \mathbb{R} \setminus \{-\ln 3\}$$

$$\frac{7e^x - 2e^{-x}}{3e^x - 1} = 1 - e^{-x}$$

$$\Leftrightarrow 7e^x - 2e^{-x} = (1 - e^{-x})(3e^x - 1)$$

$$\Leftrightarrow 7e^x - 2e^{-x} = 3e^x - 1 - 3 + e^{-x}$$

$$\Leftrightarrow 4e^x - 3e^{-x} = -4$$

$$\Leftrightarrow 4e^{2x} - 3 = -4e^x$$

$$\Leftrightarrow 4e^{2x} + 4e^x - 3 = 0$$

Posons:
$$y = e^x > 0$$

Il faut donc résoudre: $4y^2 + 4y - 3 = 0$

$$\Delta = 16 - 4 \cdot 4 \cdot (-3) = 64$$

$$y_1 = \frac{-4+8}{8} = \frac{1}{2}$$

$$y_1 = \frac{-4+8}{8} = \frac{1}{2}$$
 $y_2 = \frac{-4-8}{8} = -\frac{3}{2}$

Il reste donc à résoudre:

$$e^x = \frac{1}{2}$$
 ou $\underbrace{e^x}_{>0} = -\frac{3}{2}$ impossible

$$\Leftrightarrow x = -\ln 2$$

$$S = \{-\ln 2\}$$

Question 3 (4+3+4+3+6=20pts)

1)
$$D_f = \mathbb{R}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^{\frac{1-x}{2}} \left(\underbrace{-2x^2 - x - 1}_{-\infty} \right) = \lim_{x \to +\infty} \frac{-2x^2 - x - 1}{e^{x-1}} =_H \lim_{x \to +\infty} \frac{-4x - 1}{e^{x-1}}$$

$$=_H \lim_{x \to +\infty} -\frac{4}{e^{x-1}} = 0$$
A. H. D: $y = 0$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \underbrace{e^{1-x}}_{x \to +\infty} \left(\underbrace{-2x^2 - x - 1}_{x \to -\infty} \right) = -\infty$$
 pas d'A. H. G.

Cauchy

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \underbrace{e^{1-x}}_{x \to +\infty} \left(-2x - 1 - \frac{1}{x} \right) = +\infty$$

$$B. P. G d'axe (Oy)$$

2)
$$D_{f'} = \mathbb{R}$$

 $f'(x) = -e^{1-x}(-2x^2 - x - 1) + e^{1-x}(-4x - 1) = \underbrace{e^{1-x}}_{>0}(2x^2 - 3x)$
 $f'(x) = 0 \Leftrightarrow 2x^2 - 3x = 0 \Leftrightarrow x(2x - 3) = 0 \Leftrightarrow x = 0 \text{ ou } x = \frac{3}{2}$

x	-∞		0	ii ii	3 2			+∞
f'(x)		+	0	-	0	+		
f(x)		-∞ /	max — e	7	$ \begin{array}{c} \min \\ -\frac{7}{\sqrt{e}} \end{array} $	7	0	88
			$\approx -2,72$		≈ -4	25		

Maximum en A(0; -e) et minimum en $B\left(\frac{3}{2}, -\frac{7}{\sqrt{e}}\right)$

3)
$$D_{f''} = \mathbb{R}$$

 $f''(x) = -e^{1-x}(2x^2 - 3x) + e^{1-x}(4x - 3) = e^{1-x}(-2x^2 + 7x - 3)$

$$f''(x) = 0 \Leftrightarrow -2x^2 + 7x - 3 = 0 \Leftrightarrow x = \frac{1}{2} \text{ ou } x = 3$$
 $\left[\Delta = 25, x_1 = \frac{1}{2}, x_2 = 3 \right]$

x	-∞		$\frac{1}{2}$		3		+∞
f''(x)		-	0	+	0	-	J W
<i>f</i> (<i>x</i>)			P.I.	U	P.I.	Λ	- N
	35 SE		-2	\sqrt{e}	$-22e^{-}$	-2	
	19		≈ - 3.3	3	≈ -3	3	

Points d'inflexion en $C\left(\frac{1}{2}; -2\sqrt{e}\right)$ et en $D\left(3; -\frac{22}{e^2}\right)$

4)

5)
$$A_{\lambda} = -\int_{0}^{\lambda} e^{1-x} \left(-2x^{2} - x - 1\right) dx = \int_{0}^{\lambda} e^{1-x} \left(2x^{2} + x + 1\right) dx$$
 $IPP \ f(x) = 2x^{2} + x + 1 \quad g'(x) = e^{1-x}$
 $f'(x) = 4x + 1 \quad g(x) = -e^{1-x}$
 $A_{\lambda} = \left[-e^{1-x}(2x^{2} + x + 1)\right]_{0}^{\lambda} + \int_{0}^{\lambda} e^{1-x} \left(4x + 1\right) dx$
 $IPP \ f(x) = 4x + 1 \quad g'(x) = e^{1-x}$
 $f'(x) = 4 \quad g(x) = -e^{1-x}$
 $A_{\lambda} = \left[-e^{1-x}(2x^{2} + x + 1)\right]_{0}^{\lambda} + \left[-e^{1-x}(4x + 1)\right]_{0}^{\lambda} + \int_{0}^{\lambda} 4e^{1-x} dx$
 $= \left[-e^{1-x}(2x^{2} + x + 1)\right]_{0}^{\lambda} + \left[-e^{1-x}(4x + 1)\right]_{0}^{\lambda} + \int_{0}^{\lambda} 4e^{1-x} dx$
 $= \left[-e^{1-x}(2x^{2} + 5x + 6)\right]_{0}^{\lambda} = -e^{1-\lambda}(2\lambda^{2} + 5\lambda + 6) + 6e^{1}$
 $\lim_{x \to +\infty} A_{\lambda} = \lim_{x \to +\infty} \left(-\frac{e^{1-\lambda}}{e^{\lambda-1}} + 6e\right) = 6e$
 $= \lim_{x \to +\infty} \left(-\frac{4}{e^{\lambda-1}} + 6e\right) = 6e$

Question 4 (7+3=10pts)

1)
$$C.E.: (1) \frac{x+1}{2x-1} > 0$$

(2)
$$2x - 1 \neq 0 \Leftrightarrow x \neq \frac{1}{2}$$

Tableau des signes:

x	-00	-1	an : .	1 2		+∞
x + 1	-	0	+		+ .	
2x - 1	-		-	0	+	<i>"</i>
$\frac{x+1}{2x-1}$	+	0	- v		+	11 * 1

$$D_f = \left] - \infty; -1 \right[\cup \left] \frac{1}{2}; + \infty \right[$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \left(x - \overbrace{\ln \frac{x+1}{2x-1}}^{\frac{-\ln \frac{1}{2}}{2}} \right) = \pm \infty$$

pas d'A.H.

On a:
$$\lim_{x \to \pm \infty} \frac{x+1}{2x-1} = \lim_{x \to \pm \infty} \frac{x}{2x} = \frac{1}{2}$$

Recherche d'une A.O. éventuelle:

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x - \ln \frac{x+1}{2x-1}}{x} = \lim_{x \to \pm \infty} \left(1 - \frac{1}{x} \cdot \ln \frac{x+1}{2x-1} \right) = 1 \ (= a)$$

$$\lim_{x \to \pm \infty} [f(x) - x] = \lim_{x \to \pm \infty} \left[-\frac{\ln \frac{1}{2}}{\ln \frac{x+1}{2x-1}} \right] = -\ln \frac{1}{2} = \ln 2 \ (= b)$$

$$A. O. \equiv y = x + \ln 2$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \left(\overrightarrow{x} - \ln \frac{\overrightarrow{x+1}}{2x-1} \right) = +\infty$$

 $A.\,V:x=-1$

$$\lim_{x \to \frac{1}{2}^{+}} f(x) = \lim_{x \to \frac{1}{2}^{+}} \left(\overrightarrow{x} - \ln \frac{\overrightarrow{x+1}}{2x-1} \right) = -\infty$$

$$A.V.: x = \frac{1}{2}$$

2)
$$\forall x \in]-\infty; -1[\cup]^{\frac{1}{2}}; +\infty[:$$

$$\varphi(x) = f(x) - y_{A.O.} = -\ln \frac{x+1}{2x-1} - \ln 2 = -\left(\ln \frac{x+1}{2x-1} + \ln 2\right) = -\ln \frac{2x+2}{2x-1}$$

Résolvons:

$$\varphi(x)>0\Leftrightarrow -\ln\tfrac{2x+2}{2x-1}>0\Leftrightarrow \ln\tfrac{2x+2}{2x-1}<0\Leftrightarrow \tfrac{2x+2}{2x-1}<1\Leftrightarrow \tfrac{3}{2x-1}<0\Leftrightarrow x<\tfrac{1}{2}$$

X	-∞	-1	$\frac{1}{2}$		+∞
$\varphi(x)$	+	- 11		,-I	
Position	$C_f/A.O$			$^{A.O.}/_{C_f}$	

Question 5 (3+3=6pts)

1)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (1+\sin x)^2 dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (1+2\sin x + \sin^2 x) dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(1+2\sin x + \frac{1}{2} - \frac{1}{2}\cos 2x\right) dx$$
$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\frac{3}{2} + 2\sin x - \frac{1}{2} \cdot \frac{1}{2} \cdot \cos 2x \cdot 2\right) dx = \left[\frac{3}{2}x - 2\cos x - \frac{1}{4}\sin 2x\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$$
$$= \left[\frac{\pi}{2} - 1 - \frac{\sqrt{3}}{8}\right] - \left[\frac{\pi}{4} - \sqrt{3} - \frac{\sqrt{3}}{8}\right] = \frac{\pi}{2} - 1 - \frac{\sqrt{3}}{8} - \frac{\pi}{4} + \sqrt{3} + \frac{\sqrt{3}}{8} = \frac{\pi}{4} + \sqrt{3} - 1$$

2)
$$\int \frac{2-x}{\sqrt{1-9x^2}} dx = \int \left(\frac{2}{\sqrt{1-9x^2}} - \frac{x}{\sqrt{1-9x^2}}\right) dx$$

$$= \int \left(\frac{2}{3} \cdot \frac{1}{\sqrt{1-(3x)^2}} \cdot 3 + \frac{1}{18} \cdot (-18x) \cdot (1-9x^2)^{-\frac{1}{2}}\right) dx$$

$$= \frac{2}{3} \cdot Arc \sin 3x + \frac{1}{18} \cdot \frac{1}{2} \cdot (1-9x^2)^{\frac{1}{2}} + c \ (c \in \mathbb{R})$$

$$= \frac{2}{3} Arc \sin 3x + \frac{1}{9} \sqrt{1-9x^2} + c \ (c \in \mathbb{R})$$

Question 6 (5pts)

$$f(x) = 9 - x^2$$
et $g(x) = -2x + 6$

$$f(x) = g(x) \Leftrightarrow 9 - x^2 = -2x + 6 \Leftrightarrow x^2 - 2x - 3 = 0 \Leftrightarrow x = -1 \text{ ou } x = 3$$
$$[\Delta = 16, x_1 = -1, x_2 = 3]$$

f et g sont positives sur [-1;3] et $f \ge g$ sur [-1;3].

$$V = \pi \cdot \int_{-1}^{3} [f^{2}(x) - g^{2}(x)] dx = \pi \cdot \int_{-1}^{3} [(9 - x^{2})^{2} - (-2x + 6)^{2}] dx$$

$$= \pi \cdot \int_{-1}^{3} (81 - 18x^{2} + x^{4} - 4x^{2} + 24x - 36) dx$$

$$= \pi \cdot \int_{-1}^{3} (x^{4} - 22x^{2} + 24x + 45) dx$$

$$= \pi \cdot \left[\frac{1}{5} x^{5} - \frac{22}{3} x^{3} + 12x^{2} + 45x \right]_{-1}^{3}$$

$$= \pi \cdot \left[\left(\frac{243}{5} - 198 + 108 + 135 \right) - \left(-\frac{1}{5} + \frac{22}{3} + 12 - 45 \right) \right]$$
$$= \pi \cdot \left(\frac{468}{5} + \frac{388}{15} \right) = \frac{1792\pi}{15} cm^3 \approx 375,3 cm^3$$