Prolog

Programação Lógica

> Roteiro:

- 1. Surgimento
- 2. Característica
- 3. Tipo de Dados
- 5. Fatos (Base de Dados)
- 6. Consultas
- 7. Regras
- 8. Listas
- 9. Predicados do Prolog
- 10. Exercícios

1. Surgimento

Foi criada em meados de 1972 por Alain Colmerauer e Philippe Roussel, baseados no conceito de Robert Kowalski da interpretação procedimental das cláusulas de Horn. A motivação para isso veio em parte da vontade de reconciliar o uso da lógica como uma linguagem declarativa de representação do conhecimento com a representação procedimental do conhecimento, que era popular na América do Norte no final da década de 1960 para início de 1970.

Aplicações

 Principais aplicações se dão na área de computação simbólica:

"Lógica matemática, prova automática de teoremas e semântica;

"Solução de equações simbólicas;

"Bancos de dados relacionais;

"Linguagem Natural;

"Sistemas Especialistas;

" Planejamento Automático de Atividades; " Aplicações de "General Problem Solving", como jogos (Xadrez, Damas, Jogo da Velha, etc.):

Compiladores;

"Análise Bioquímica e projetos de novas drogas.

2. Característica

• O Prolog é uma linguagem declarativa, significando que em vez de o programa estipular a maneira de chegar à solução, passo a passo, (como nas linguagens procedimentais imperativas), limita-se a fornecer uma descrição do problema que se pretende computar. Usa uma coleção de *fatos* (**base de dados**) e de relações lógicas (regras) que exprimem o domínio relacional do problema a resolver.

Introdução ao Prolog

Características

- Provador de teoremas (Verdade ou Falso)
- Linguagem declarativa
- Linguagem não tipada
- Linguagem é interpretada
- Não determinístico
- Diferente de programação procedimental (definição lógica dos problemas)
- Não existe variáveis globais
- Muito usado em IA (rápida prototipação)

Da Notação de Kowalski para um

programa Prolog Notação de Kowalski

Fato ou Cláusula Unitária

Programa Prolog

Regra

```
chama(a,b) \leftarrow
                                      chama(a,b).
usa(b,e) \leftarrow
                                      usa(b,e).
depende(x,y) \leftarrow chama(x,y)
                                      depende(X,Y) :- chama(X,Y).
depende(x,y) \leftarrow usa(x,y)
                                      depende(X,Y) :- usa(X,Y).
depende(x,y) \leftarrow chama(x,z),
                                      depende(X,Y) :- chama(X,Z),
                   depende(z,y)
                                                          depende(Z,Y).
\leftarrow depende(a,e)
                                      ?- depende(a,e).
```

Questionamento

3.1 Átomos

 As constantes de texto são introduzidas por meio de átomos. Um átomo é uma sequência constituída de letras, números, mas iniciando com uma letra minúscula.

Elementos da Linguagem - Átomos

- Definição: cadeias compostas pelos seguintes caracteres:
 - Letras Maiúsculas: A,..., Z
 - Letras Minúsculas: a,..., z
 - Dígitos: 0, 1,..., 9
 - Caracteres especiais: *, +, _, -, >, <, =, :, , ~
- Composição de Átomos:
 - Cadeias começando com letras minúsculas. Ex.: x_y, maria, curso_de_IA
 - Cadeias de caracteres especiais. Ex.: <---->, ::=
 - Cadeias de caracteres entre apóstrofos. Ex.: 'Maria', 'casa branca', 'a'

3.2 Números

• Um número é uma sequência de dígitos, permitindo também os sinais de . (para números reais), - (número negativo) e e (notação científica). Algumas implementações do Prolog não fazem distinção entre inteiros e números reais.

Ex: 321

3.21

3.3 Variáveis

 Variáveis são declaradas da mesma forma que átomos, porém iniciando com uma letra maiúscula. No ambiente Prolog uma variável não é um contêiner cujo valor pode ser atribuído (como ocorre nas linguagens imperativas). Seu comportamento é próximo de um padrão, que incrementalmente especificado pela unificação. Em outras palavras, uma variável Prolog é como uma incógnita, cujo valor é desconhecido a princípio, mas após descoberto, não sofre mais mudanças.

Ex: Ana X _X _Ana _ana

Programa Prolog

- Declaração de fatos (cláusulas unitárias)
- Declaração de regras
- Interrogação a respeito desses elementos

Fatos e regras denotam relações entre objetos

Programa Prolog (cont.) Parâmetros • Estrutura de um fato

Nome do predicado

• Estrutura de uma regra
gosta(joao, X):gosta(X, vinho),
gosta(X, futebol).

gosta(joao, maria).

Questionamentos

• Dada a **base de fatos**:

```
gosta(julio,peixe).
gosta(julio,maria).
gosta(maria,livro).
gosta(joao,livro).
```

Quem gosta de livro? ?- gosta(X, livro).

Quem gosta de livro e chocolate? ?- gosta(X, livro), gosta(X, chocolate).

Quem gosta de livro ou chocolate? ?- gosta(X, livro); gosta(X, chocolate).

Disjunção

Introdução ao SWI-Prolog (cont.)

Operadores relacionais

$$\neg X > Y$$

Introdução ao SWI-Prolog (cont.)

Operadores aritméticos

```
X+Y soma de X e Y;
X - Y diferença de X e Y;
X * Y multiplicação de X por Y;
X / Y divisão de X por Y;
X mod Yresto da divisão de X por Y.
```

Atribuição de valores numéricos "is":
?- X is 10 + 2.

Negação de predicados:

4. Operadores

Operador	Símbolo	Exemplo
E	,	A , B
OU	;	A; B
Negação	\+	\+ A
Igualdade	=	A = B
Diferença	\==	A \== B

5. Fatos (Base de Dados)

• A unidade básica do Prolog é o predicado, que é postulado verdadeiro. Um predicado consiste de uma cabeça e um número de argumentos.

```
1
2 %/ Base de Dados%/
3
4 animal(cachorro).%Animal é a cabeça, e cachorro o predicado
5 pai(jose, antonio).%pai é a cabeça, e jose e antonio são os predicados
6
```

Linha 5 se lê: cachorro é um animal

Linha 6 se lê: **jose** é **pai** de **antonio**

6. Consultas

 Para recuperar informações de um programa lógico, usamos consultas. Uma consulta pergunta se uma determinado relacionamento existe entre objetos.

```
19 ?- animal(cachorro). Não Está na Base de Dados

true.

20 ?- animal(gato).

false.

21 ?- animal(X). Linha 19: cachorro é um

X = cachorro. Linha 20: gato é um animal
```

Linha 19: cachorro é um animal? Linha 20: gato é um animal? Linha 21: Quem é animal?

7. Regras

- O segundo tipo de predicado no Prolog é a regra, também chamada de "cláusula".
- Ex:

```
luz(acesa) :- interruptor(ligado).
```

A luz está acesa se o interruptor estiver ligado.

```
Obs: ':-' significa 'SE'
NomeRegra(Varivável(is)):- Condições.
```

• Regras:

• Para utilizarmos uma regra, se usa o símbolo ":-"

```
Ex.:
Dados os fatos:
  pai(arthur, silvio).
  pai(arthur, carlos).
  pai(carlos,xico).
  pai(silvio,ricardo).
Utilizaremos a seguinte regra:
  avo(X,Z) := pai(X,Y), pai(Y,Z).
  Isso significa que se alguém é pai de uma pessoa, que
  por sua vez é pai de outra pessoa, então ele é avô.
Vamos realizar uma querie para conferir a regra:
  ?- avo(arthur,xico),avo(arthur,ricardo).
Resposta: "YES"
```

Prática – Criar a base de dados

pais e mães

```
pai(antonio, rui).
pai(antonio, sandra).
mae(maria, rui).
mae(maria, sandra).
```

feminino(maria).
feminino(sandra).
masculino(antonio).
masculino(rui).

(o antonio é pai do rui)

(a maria é mãe do rui)

Sintaxe

Quando o corpo não é vazio as cláusulas designam-se por regras, definindo relações à custa de outras relações.

filhos e filhas

```
filho(X,Y):- pai(Y,X), masculino(X).
filho(X,Y):- mae(Y,X), masculino(X).
filha(X,Y):- pai(Y,X), feminino(X).
filha(X,Y):- mae(Y,X), feminino(X).
```

ou

Executando um programa

Software Swi-Prolog 6.4.1 plataforma Windows :

- > Criação de um novo arquivo fonte .pl
- > Edição de .pl já existente

[1] 4 ?-

> Execução de arquivo finalizado

🥁 SWI-Prolog -- c:/Users/Raranna/Desktop/Backup Rah/Desktop/backup Raranna/Documents/UESC/Fundamentos/familia.pl

```
File Edit Settings Run Debug Help
% library(win_menu) compiled into win_menu 0,00 sec, 34 clauses
Warning: c:/users/raranna/desktop/backup rah/desktop/backup raranna/documents/uesc/fundamentos/familia.pl:38:
        Singleton variables: [D,M]
Warning: c:/users/raranna/desktop/backup rah/desktop/backup raranna/documents/uesc/fundamentos/familia.pl:48:
        Singleton variables: [Z]
% c:/Users/Raranna/Desktop/Backup Rah/Desktop/backup Raranna/Documents/UESC/Fundamentos/familia.pl compiled 0,00 sec, 47 clauses
Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 6.4.1)
Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic), or ?- apropos(Word).
1 ?- pai(jose, X).
X = rosana .
2 ?- mae(maria, Y).
Y = ariel
Unknown action: - (h for help)
Action?
Actions:
 (n, r, space, TAB): redo
                      write
                                           print
h (?):
Action? :
Y = daniel.
3 ?- mae(alimindia,G)
Action (h for help) ? break
% Break level 1
[1] 3 ?- mae(alimindia,C).
C = rosana :
C = marcos
C = maria.
```

Como podemos ver, o Prolog é uma linguagem muito poderosa, principalmente na área de Inteligência Artificial onde é líder absoluta. Entre as implementações do Prolog, podemos citar o Visual Prolog (Turbo Prolog), o SWI Prolog, GNU Prolog, Amzi! Prolog, entre muitas outras já existentes.