

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Островерх Владимир Степанович

В рамках ВКР было выполнено

1 Анализ данных

2 Подготовка данных

3 Подбор и обучение моделей машинного обучения

4 Создание и обучение нейронной сети

5 Создание приложения Flask

Анализ данных

Обзор данных

Изучены характеристики датасета:

- 1. Типы данных;
- 2. Количество пропусков;
- 3. Количество уникальных значений;
- 4. Статистическая сводка;
- 5. Матрица корреляций;
- 6. Таблица рассеивания значений;
- 7. Выбросы.

Сводная информация

	Тип данных	Количество_пропусков	Количесвто_уникальных_значений	Процент_пропусков
id_x	int64	0	1023	0.0
Соотношение матрица-наполнитель	float64	0	1014	0.0
Плотность, кг/м3	float64	0	1013	0.0
модуль упругости, ГПа	float64	0	1020	0.0
Количество отвердителя, м.%	float64	0	1005	0.0
Содержание эпоксидных групп,%_2	float64	0	1004	0.0
Температура вспышки, С_2	float64	0	1003	0.0
Поверхностная плотность, г/м2	float64	0	1004	0.0
Модуль упругости при растяжении, ГПа	float64	0	1004	0.0
Прочность при растяжении, МПа	float64	0	1004	0.0
Потребление смолы, г/м2	float64	0	1003	0.0
id_y	int64	0	1023	0.0
Угол нашивки, град	int64	0	2	0.0
Шаг нашивки	float64	0	989	0.0
Плотность нашивки	float64	0	988	0.0

Анализ данных

Визуализация корреляции и рассеивания данных

Анализ данных

Было взято за основу, синтетические данные — это нецелочисленные значения. Были отобраны только записи, для которых в столбце «Плотность нашивки» целое число. По полученным данным была составлена карта корреляции. Видно, что на таких данных зависимости уже более выражены.

На полученном датасете далее будем проводить обучение.

Подбор моделей

Поиск гиперпараметров по сетке с перекрестной проверкой, у1

- 1. LinearRegression
- 2. GammaRegressor
- 3. ARDRegression
- 4. AdaBoostRegressor
- ExtraTreesRegressor
- 6. GradientBoostingRegressor
- 7. BaggingRegressor
- 8. CatBoostRegressor

	model	best_score	best_params
0	LinearRegression	-17.919547	{}
1	GammaRegressor	-14.156777	{}
2	ARDRegression	-6.943522	{'tol': 0.001}
4	BaggingRegressor	-5.173590	{'max_features': 0.5, 'max_samples': 1.0, 'n_e
3	AdaBoostRegressor	-4.036066	{'loss': 'linear', 'n_estimators': 5}
5	ExtraTreesRegressor	-3.861599	{'max_depth': 10, 'min_samples_split': 5, 'n_e
6	${\sf Gradient Boosting Regressor}$	-3.782408	{'learning_rate': 0.5, 'loss': 'huber', 'max_d
7	CatBoostRegressor	-3.059801	{'depth': 5, 'iterations': 500, 'learning_rate

Результат обучения

«Модуль упругости при растяжении, ГПа»

Мололи	Без нормализации			С нормализацией			
Модели	MAE	MSE	r2	MAE	MSE	r2	
1	2	3	4	5	6	7	
1. LinearRegression	2,076	5,75	0,13	2,08	5,75	0,13	
2. GammaRegressor	1,84	4,29	0,16	2,62	9	-161,02	
3. ARDRegression	2,6	8,3	-8,5	1,9	4,28	-0,5	
4. AdaBoostRegressor	0,81	1,17	0,81	1,25	2,37	0,59	
5. ExtraTreesRegressor	1,35	4,17	0,27	1,65	5,14	- 0,92	
6.							
GradientBoostingRegressor	1,44	4,72	0,21	1,71	8,41	-0,14	
7. BaggingRegressor	1,83	4,74	-0,37	1,82	5,76	-2,5	
8. CatBoostRegressor	2,01	6,98	-2,67	2,01	6,98	-2,67	

Подбор моделей

Поиск гиперпараметров по сетке с перекрестной проверкой, у2

- 1. LinearRegression
- 2. GammaRegressor
- 3. ARDRegression
- 4. AdaBoostRegressor
- ExtraTreesRegressor
- 6. GradientBoostingRegressor
- 7. BaggingRegressor
- 8. CatBoostRegressor

	model	best_score	best_params
0	LinearRegression	-10.358839	{}
2	ARDRegression	-5.373563	{'tol': 0.01}
6	${\sf Gradient Boosting Regressor}$	-3.616197	{'learning_rate': 0.01, 'loss': 'huber', 'max
1	GammaRegressor	-2.569186	{}
7	CatBoostRegressor	-2.321341	{'depth': 7, 'iterations': 100, 'learning_rate
3	AdaBoostRegressor	-2.243952	{'loss': 'exponential', 'n_estimators': 30}
5	ExtraTreesRegressor	-1.972986	{'max_depth': 10, 'min_samples_split': 2, 'n_e
4	BaggingRegressor	-1.668895	{'max_features': 0.5, 'max_samples': 1.0, 'n_e

Результат обучения

«Прочность при растяжении, МПа»

Модели	Без нормализации			С нормализацией			
Модели	MSE	MAE	r2	MSE	MAE	r2	
1	2	3	4	5	6	7	
1. LinearRegression	623,77	473638,04	0,04	623,77	473638,04	0,04	
2. GammaRegressor	456,87	262844,88	-1,27	450,56	257126,75	-478,39	
3. ARDRegression	449,03	276128,64	-15,98	460,21	278366,25	-20,86	
4. AdaBoostRegressor	341,95	186183,54	-4,1	420,26	230471,75	-3,52	
5. ExtraTreesRegressor	404,76	217654,45	-2,1	402,44	217700,03	-8,32	
6.							
GradientBoostingRegressor	426,89	238395,84	-38,38	430,2	242203,44	-37,65	
7. BaggingRegressor	283,49	130370,73	-1,34	405,77	235881,56	-7,18	
8. CatBoostRegressor	346,87	173018,99	-7,62	346,87	173018,99	-7,62	

Нейронная сеть

«Соотношение матрица-наполнитель»

Результаты:

R2: -0,48.

MSE: 0.53;

MAE: 0.57.

```
def baseline_model():
    model = Sequential()
    normalizer
    model.add(Dense(20, input_dim=10, activation='tanh', bias_initializer='he_normal', kernel_initializer='he_normal'))
    model.add(Dense(150, input_dim=20, activation='tanh', bias_initializer='he_normal', kernel_initializer='he_normal'))
    model.add(Dense(150, input_dim=150, activation='tanh', bias_initializer='he_normal', kernel_initializer='he_normal'))
    model.add(Dense(100, input_dim=150, activation='tanh', bias_initializer='he_normal', kernel_initializer='he_normal'))
    model.add(Dense(20, input_dim=100, activation='tanh', bias_initializer='he_normal', kernel_initializer='he_normal'))
    model.add(Dense(1, input_dim=20, activation='linear', bias_initializer='he_normal', kernel_initializer='he_normal'))

adam = Adam()
    model.compile(loss='mean_squared_error', optimizer='adam')
    return model

model = baseline_model()
```


Приложение Flask

Приложение доступно по пути: https://ostroverkh-vkr-10.onrender.com/

Рассчитывает прогноз по переменным:

- «Модуль упругости при растяжении, ГПа»;
- «Прочность при растяжении, МПа».

Введите данные для расчета:

Плотность, кг/м³:
Модуль упругости, ГПа:
Количество отвердителя, м.%:
Содержание эпоксидных групп, %:
Температура вспышки, °С:
Поверхностная плотность, г/м ² :
Потребление смолы, г/м²:
Угол нашивки, градусы:
Шаг нашивки:
Плотность нашивки:
Рассчитать

do.bmstu.ru

