Analysis and Attacks of decentralized content curation platforms

Andrés Monteoliva Mosteiro, Orfeas Stefanos Thyfronitis Litos, and Aggelos Kiayias

University of Edinburgh a.monteoliva@serious.server, o.thyfronitis@ed.ac.uk, akiayias@inf.ed.ac.uk

Abstract. We will attack Steem.

1 Introduction

Steem is not incentive-compatible.

2 Related Work

Many people have done many similar things.

3 Model

1 Notation

- We denote the set of all probability distributions on set A as $\mathcal{D}(A)$.
- We denote the powerset of a set A with 2^A .
- -a||b| denotes the concatenation of a and b.

2 Properties of Post Voting Systems

A post voting system has the objective to arrange the posts according to the preferences of the participants. The ideal order is defined based on the likeability matrix for the posts.

Definition 1 (Post). Let $N, P \in \mathbb{N}^*, L_i \in \mathcal{D}\left([0,1]^N\right)$. A post is defined as p = (i, l(v)), with $i \in [N], l \sim L_i$ (and $v \in \mathbb{R}_+$).

- Author. The first element of a post is the index of its creator, i.
- **Likeability.** The likeability of a post is defined as $l \in [0,1]^N$ (, where l is drawn from L_i the Likeability Distribution of its creator u_i).

- (Votes. A post has an associated "vote" value, which is a real nonnegative number. It is initialized at 0 and increases whenever a player votes for the post, as explained later in detail.)

Let
$$l_i \sim L_i$$
 and $p_i = (i, l_i, 0)$. The set of all posts is $\mathcal{P} = \bigcup_{i=1}^P \{p_i\}^{1,2}$.

Definition 2 (Post score). Let post p = (i, l). We define the score of p as $sc(p) = \sum_{i=1}^{N} l_i$.

The score of a post is a single number that represents its overall worth to the community. In an ordered list of posts where higher posts are more visible, the "common interest" would require that a post with higher score appear before another post with a lower score.

Definition 3 (Ideal Post Order). Let \mathcal{P} a set of posts. We define IDEALORDER (\mathcal{P}) as a list of the posts in \mathcal{P} such that

$$\forall i < j \in |\mathcal{P}|, \text{sc}\left(\text{IDEALORDER}\left(\mathcal{P}\right)[i]\right) \geq \text{sc}\left(\text{IDEALORDER}\left(\mathcal{P}\right)[j]\right)$$
.

Definition 4 (Post-Voting System). Accepts as inputs:

- list of posts (in some order)
- set of players, each consisting of a strategy profile

Returns an ordered list of the same posts, possibly reordered

Definition 5 (Honest Player). A player u is considered honest if her utility is maximized when the result of the post-voting system equals her subjective ordering of the posts:

$$\forall i < j \in |\mathcal{P}|, l_{u,u\text{-Order}(\mathcal{P})[i]} \ge l_{u,u\text{-Order}(\mathcal{P})[j]}$$
.

4

3

Definition 6 (Convergence under honesty). A post-voting system t-converges under honesty if the output of the system with all parties playing honestly equals the ideal order in the first t, for any initial order, and any likeability distribution.⁵

¹ TODO: consider removing things in parentheses

² TODO: consider dropping L_i entirely

³ TODO: discuss list notation

⁴ TODO: discuss list notation

⁵ TODO: continue

Theorem 1. The Steem system t-converges under honesty, assuming the following conditions on SP, v ...⁶

The above result is tight. If the conditions are violated the above theorem is not true.

3 Modeling Steem

Players The are $N \in \mathbb{N}^*$ players in the model. A player u is defined by her Steem Power $SP \in \mathbb{N}$, her Voting Power $VP \in [0, 1]$, her Likeability Distribution $L \in \mathcal{D}\left([0, 1]^N\right)$ and her Strategy $S \in \{H, G\} \times \times 2^{[N]}$. Let the ith player be represented by the tuple $u_i = (\mathcal{SP}_i, \mathcal{VP}_i, L_i, S_i)$. The tuple of players is defined as $\mathcal{U} = (u_1, \dots, u_i, \dots, u_N)$ and each player is identified by her index in \mathcal{U} .

We will now explain each field in u_i in detail:

- Steem Power. The Steem Power of u_i is defined as $\mathcal{SP}_i \in \mathbb{N}$ and represent the influence of the player in the platform. The vector of Steem Power funds for the N players is defined as $\mathcal{SP} = (\mathcal{SP}_1, \dots, \mathcal{SP}_i, \dots, \mathcal{SP}_n)$.
- **Voting Power.** The Voting Power of u_i is defined as $\mathcal{VP}_i \in [0, 1]$ and can be understood as voting influence that is used up when voting and regenerates with time. The vector of Voting Power for the N players is defined as $\mathcal{VP} = (\mathcal{VP}_1, \dots, \mathcal{VP}_i, \dots, \mathcal{VP}_N)$.
- **Likeability Distribution.** The Likeability Distribution $L_i \in \mathcal{D}\left([0,1]^N\right)$ of u_i is a distribution on how likeable is the content produced by u_i to the rest of the players. The Likeability Distribution for the whole system is $\mathcal{L} = (L_1, \ldots, L_i, \ldots, L_n)$.
- **Strategy.** The strategy of u_i is defined as $S_i \in \{H, G\} \times \mathbb{N}^* \times 2^{[N]}$, where the first element is the player's core strategy, the second is her attention span and the third is her voting ring.
 - Honest/Greedy. H corresponds to the *honest* and G to the *greedy* strategy. An *honest* player votes according to the likeability of a post l_i (defined later)⁷, that is to say she votes the posts she likes. For *honest* players, the value of the vote is computed as $v_{H,i} = a \cdot \mathcal{VP} \cdot l \cdot \mathcal{SP} + b$, where l is drawn from the Likeability distribution⁸⁹. In Steem terms, l can be understood as the weight of a vote.

⁶ TODO: continue

⁷ TODO: untangle

⁸ TODO: move to posts section

 $^{^9}$ TODO: explain a, b

A greedy player only votes for posts produced by users of its Voting Ring. The value of vote for a player if u_i is greedy is defined as $v_{G,i} = a \cdot \mathcal{VP}_i \cdot \mathcal{SP}_i$, ¹⁰ as in our model all greedy votes are executed with full weight.

- Attention Span. This is a positive integer that represents the number of posts a player can consider voting simultaneously. For the benefit of simplicity, we will assume that this number is constant throughought all players. 11
- **Voting Ring.** If player u_i is *honest*, her Voting Ring is $R_i = \emptyset$. If u_i is greedy, her Voting Ring is $R_i \in 2^{[N]}$. A voting ring is defined as $R_i = \{g_1, \ldots, g_j, \ldots, g_n\}$ where $g_j \in \mathcal{U}$ is the jth member of the voting ring and n is the size of the ring. Two greedy players will either have the same or disjoint voting rings $(\forall i \neq j \in [N], R_i = R_j \lor (R_i \cap R_j = \emptyset))$.

The tuple of the strategies for the N players is defined as $S = (S_1, \dots, S_i, \dots, S_N)$.

The set of players is defined as $\mathcal{U} = (u_1, ..., u_i, ..., u_n) \ \forall i \in [N].^{12}$

4 Game Execution

- 6: end for
 7: P ← SHUFFLE(P)
 Number of Posts
 Number of Pos
 - return \mathcal{P}

$TODOS^{13,14}$

9: end function

TODO: same
 TODO: discuss
 TODO: fix appearance
 TODO: Improve argmax notation
 TODO: Write Greedy

Algorithm 2 Player votes for best of k posts

```
1: function Vote(u_i, \mathcal{P})
 2:
          switch S_i do
 3:
               \mathbf{case}\ honest
 4:
                    p_j \leftarrow \operatorname{argmax} \{l_{i,p}\}
                             p \in \mathcal{P}_{1..k}
                    Parse p_i as (m, l_p, v)
 5:
                    v' \leftarrow v + \mathcal{VP}_i \cdot l_{i,p} \cdot sp_i
 6:
                    \mathcal{VP}_i \leftarrow \mathcal{VP}_i - (a\mathcal{VP}_i l_{i,p} + b)
 7:
 8:
                    \mathcal{P} \leftarrow p_1 || p_2 || \dots || p_{j-1} || (m, l_p, v') || p_{j+1} || \dots || p_N
 9:
               end case
10:
               {\bf case}\ Greedy
11:
                                   ▷ If post belongs to voting ring and not reached min VPower
12:
                     if p \in s.R \land p.VPower > s.Min then
13:
                          voteValue \leftarrow p.VPower \cdot weight \cdot sp
14:
                          p \leftarrow p.votes + voteValue
                     end if
15:
               end case
16:
          end switch
17:
          return \mathcal{P}
18:
19: end function
```

Algorithm 3 Players cast votes for r rounds

```
1: function Curate(\mathcal{U}, \mathcal{P}, r)
 2:
         for j = 1 to r do
                                                                                                \triangleright r voting rounds
 3:
              for u_i \in \mathcal{U} do
                   if IsVoteRound(j, S_i, r, N) then
 4:
 5:
                        \mathcal{P} \leftarrow \text{Vote}(u_i, \mathcal{P})
                                                                         \triangleright Player i votes zero or one posts
                   end if
 6:
 7:
              end for
              \mathcal{P} \leftarrow \text{Order}(\mathcal{P})
                                            ▷ Order posts by vote count after each round of votes
 8:
 9:
         end for
10:
         return \mathcal{P}
11: end function
```

Algorithm 4 Calculates whether voting in this round is optimal

```
1: function IsVoteRound(j, S, r, N)
2: 3: end function
```

Algorithm 5 Posts curation procedure

```
Input: \mathcal{U}, r
Output: \mathcal{P}

1: \mathcal{P} \leftarrow \text{GENERATEPOSTS}(\mathcal{U})
2: \mathcal{P} \leftarrow \text{CURATE}(\mathcal{U}, \mathcal{P}, r)
3: return \mathcal{P}
```

4 Results

Steem won't achieve high quality posts.

5 Further Work

Posts at any time

6 Conclusion

Keep inventing new decentralized content curation platforms.

7 Acknowledgements

We thank @seriousposter for their invaluable posts analyzing Steem and our mums for the cookies.

References