Mathematical Induction

Use induction to prove that $(1+x)^n \ge 1+x\cdot n$ for all positive integers n, where x can be any real number such that $x \ge -1$.

Let P(n) denote the proposition that $(1+x)^n \ge 1+n\cdot x$, where n is a positive integer and x is a fixed real number such that $x \ge -1$. Note that $(1+x)^n \ge 0$ when $x \ge -1$.

BASIS STEP: P(1) is true since $1 + x \ge 1 + x$.

INDUCTIVE STEP: Let us assume P(n), that is $(1 + x)^n \ge 1 + n \cdot x$ is true for an arbitrary positive integer n. This is our inductive hypothesis.

We have to show that P(n+1), $(1+x)^{n+1} \ge 1 + (n+1) \cdot x$ is also true assuming the inductive hypothesis P(n).

Proof:

 $(1+x)^{n+1} = (1+x) \cdot (1+x)^n \ge (1+x) \cdot (1+n \cdot x)$ using the inductive hypothesis and the fact that $(1+x) \ge 0$, since $x \ge -1$.

$$(1+x) \cdot (1+n \cdot x) = 1+(n+1)x + nx^2 \ge 1+(n+1)x$$

since $n \cdot x^2 \ge 0$

By the **Principle of Mathematical Induction** (Basis Step and Inductive Step together) $(1 + x)^n \ge 1 + x \cdot n$ for all positive integers n, where x is a fixed real number with $x \ge -1$.