Проектирование структуры

Спецификация разрабатываемого ПО

Методология SADT

К достоинствам методологии SADT можно отнести:

- 1) универсальность
- 2) простота
- 3) поддержка коллективно работы
- 4) использование на ранних стадиях разработки
- 5) сочетается с другими структурными методами проектирования.

Методология функционального моделирования IDEF0

Формальное определение IDEFo-модели имеет следующий вид:

«М есть модель системы S, если М может быть использована для получения ответов на вопросы относительно S с точностью А»

IDEFo-модель – это древовидная структура диаграмм, где верхняя диаграмма является наиболее общей, а нижние наиболее детализированы. Каждая из диаграмм какого-либо уровня представляет собой декомпозицию некоторого компонента диаграммы предыдущего уровня.

Контекстная диаграмма

Детализированная диаграмма

Типы связей

При создании IDEF0-модели наиболее часто используются следующие стратегии декомпозиции:

- 1. Функциональная стратегия.
- 2. Декомпозиция в соответствии с функциями
- 3. Декомпозиция в соответствии с уже известными стабильными подсистемами
- 4. Декомпозиция, основанная на отслеживании «жизненного цикла» для ключевых входов системы.
- 5. Декомпозиция по физическому процессу

Диаграммы потоков данных (DFD)

Понятие	Нотация Йордана	Нотация Гейна-Сарсона
Внешняя сущность	Имя внешнего объекта	
Функция	Имя функции	Имя Механизм
Поток данных	Имя объекта	Имя объекта
Хранилище данных	Имя объекта	№ Имя объекта

IDEF3 – диаграмма активностей

Название перекрестков		Обозначение перекрестков	Смысл перекрестков		
			Схема расхождения	Схема схождения	
'Исклн	очающий ИЛИ"	X	Только одна поспедующая работа запускается	Только одна предшествующая работа должна быть завершена	
"u"	Асинхронный	&	Все поспедующие работы запускаются	Все предшествующие работы должны быть завершены	
	Синхронный	&	все поспедующие работы запускаются одновременно	Все предшествующие работы допжны быть завершены одновременно	
"или"	Асинхронный	O	Одна или несколько последующих работ запускаются	Одна или несколько предшествующих работ должны быть завершены	
	Синхронный	O	Одна или несколько последующих работ запускаются одновременно	Одна или несколько предшествующих работ должны быть завершены одновременно	

Диаграмма «сущность-связь»

Диаграммы переходов состояний

Псевдокод

Структура	Псевдокод	Структура	Псевдокод
Следование	<Действие1>	Выбор	Выбор <код>
	<Действие2>		<код1>:<Действие1>
			<код2>: <Действие2>
			••••
			Все-выбор
Ветвление	Если <Условие>	Цикл с	Для <индекс> =
	то <Действие1>	заданным	<n>,<k>,<h></h></k></n>
	иначе <Действие2>	количеством	<Действие>
	Все-если	повторений	Все-цикл
Цикл-пока	Цикл-пока	Цикл-до	Выполнять
	<Условие>		<Действие>
	<Действие>		Д о <Условие>
	Все-цикл		

Цикл-пока не конец файла Прочитать запись Сравнить заданные поля с критерием поиска Если совпали то Сохранить в выходной список Все-если Все-цикл Вывод результирующего списка

Flow-формы

<Действие 1>

<Действие 2>

<Действие 3>

Если <Условие>

то

<Действие 1>

иначе | <Действие 2>

Выбор <Код>

Код 1 <Действие 1>

Код 2 <Действие 2>

иначе <Действие 3>

в

a

Пока <Условие>

<Действие>

б

<Действие>

До <Условие>

Для i=1, n, h

<Действие>

г

0

е

Диаграммы Насси-Шнейдермана

Действие1 Действие2

Пействия

Пока условие не станет верным

Выполнять, пока условие верно Действия

Структурные карты Константайна

условные и циклические вызовы модулей

Пример Разработать структурную карту Константайна для задачи сортировки одномерного массива с помощью алгоритмов Пузырька, прямого выбора и Шелла

Схема Джексона

Диаграмма Варение-Орра

НІРО -диаграмма

ПЕРТ-диаграмма

Сеть Петри

