Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

МЕГАФАКУЛЬТЕТ ТРАНСЛЯЦИОННЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ПРОГРАММИРОВАНИЯ

ЛАБОРАТОРНАЯ РАБОТА №3 По дисциплине «Архитектура ЭВМ» Исследование работы ЭВМ при выполнении циклических программ

Санкт-Петербург, 2020 г.

Текст исходной программы:

Адрес	Код команды	Мнемоника	Комментарии		
00A 00B 00C 00D	0000 0000 0000 0000	- - -	- - - -		
00E	001C	ISZ (01C)	Ячейка, которая, используется в качестве косвенной адресации к числам, которые надо будет добавить.		
00F 010	0000	-	- -		
011	0000	-	Ячейка, в которой будет храниться сумма ячеек: (01C) - (01F).		
012	FFFC	number = -4	Количество итераций программы.		
013 014	F200 480E	CLA ADD (480E)	0 >> A Добавление в аккумулятор значений из (01C) - (01F) с увеличением значения в ячейке (00E) на 1.		
015 016 017	B018 4011 3011	BEQ 018 ADD (011) MOV (011)	Если число, которое мы взяли > 0 - запишем его в (011), иначе перейдем в (018).		
018	0012	ISZ (012)	Переход к следующему числу.		
019	C013	BR 013	Уменьшение кол-ва итераций цикла на 1, если значение в (012) < 0 перейдем в (013), иначе завершим.		
01A	F000	HLT	end.		
01B	0378	_	_		
01C 01D 01E 01F	0000 F0EB 0377 0000	- - -	number number number number		

Таблица трассировки:

Команда		Содерж	имое регист	Изменен	Измененная ячейка				
Адрес	Код	СК	PA	PK	РД	А	С	Адрес	Новый код
013	F200	014	013	F200	F200	0000	0		
014	480E	015	01C	480E	0000	0000	0	00E	001D
015	B018	018	015	B018	B018	0000	0		
018	0012	019	012	0012	FFFD	0000	0	012	FFFD
019	C013	013	019	C013	C013	0000	0		
013	F200	014	013	F200	F200	0000	0		
014	480E	015	01D	480E	F0EB	F0EB	0	00E	001E
015	B018	016	015	B018	B018	F0EB	0		
016	4011	017	011	4011	0000	F0EB	0		
017	3011	018	011	3011	F0EB	F0EB	0	011	F0EB
018	0012	019	012	0012	FFFE	F0EB	0	012	FFFE
019	C013	013	019	C013	C013	F0EB	0		
013	F200	014	013	F200	F200	0000	0		
014	480E	015	01E	480E	0377	0377	0	00E	001F
015	B018	016	015	B018	B018	0377	0		
016	4011	017	011	4011	F0EB	F462	0		
017	3011	018	011	3011	F462	F462	0	011	F462
018	0012	019	012	0012	FFFF	F462	0	012	FFFF
019	C013	013	019	C013	C013	F462	0		
013	F200	014	013	F200	F200	0000	0		
014	480E	015	01F	480E	0000	0000	0	00E	0020
015	B018	018	015	B018	B018	0000	0		
018	0012	01A	012	0012	0000	0000	0	012	0000
01A	F000	01B	01A	F000	F000	0000	0		

Описание программы:

- 1. Программа находит сумму 4-х чисел в последовательно записанных ячейках.
- 2. Области данных и результатов:

Данные: (01C) - (01F)

Результаты: (011)

3. Расположение в памяти ЭВМ исходных данных и результатов:

00Е: ячейка для косвенной адресации к ячейкам, сумму значений которых необходимо найти.

011: результат

(013) - (01А): цикл

(01С) – (01F): сами числа

4. Адреса первой и последней исполняемых команд:

Первой: 013

Последней: 01А

Код программы:

```
CMD CK 013 // start from (013)
000 A00
00B 0000
00C 0000
00D 0000
00E 001C // address
00F 0000
010 0000
011 0000
012 FFFC // iterations
013 F200 // clear
014 480E // 480E --> 00E -> 01C -> A + (01C) -> 01C -> 01D ...
015 B018 // if (A == 0 && C == 0) M = (018) else M = (015)
016\ 4011\ //\ A\ +\ (011)
017 \ 3011 \ // \ (011) = A
018 0012 // (012) ++ if ((012) < 0) M = (019) else M = (01A)
019 \ C013 \ // \ M = (013)
01A F000 // end;
01B 0378
01C 0000 // value 1
01D F0EB // value 2
01E 0377 // value 3
01F 0000 // value 4
```