Sleep State
Prediction Using
Accelerometry
Data

Juan Carlos Quintero Rubiano - 20232020172 Juan Nicolas Diaz Salamanca - 20232020059 Juan Felipe Wilches Gomez - 20231020137

Introduction

Sleep is a fundamental complex biological process composed of several distinct states which interruptions or unbalanced on this process may come with important physical and mental health issues, affecting millions worldwide and are linked to chronic diseases.

How does it study sleep?

- Traditionally sleep had been studied and monitored using
 Polysomnography (PSG) a technology that captures the following detailed physiological signals:
- EOG (Eye movements)
- EMG (Muscle tone)
- ECG (Heart rate)
- EEG (Brain activity)

Sleep States

Stage	EEG Characteristics	EOG	EMG
Wake (W)	Alpha rhythm (8-13 Hz) when eyes closed; Low-voltage, mixed-frequency activity when eyes open	Rapid eye movements	High tone
N1	Low-voltage, mixed-frequency (4-7 Hz); Vertex sharp waves; Alpha replaced by theta	Slow rolling eye movements	Moderate tone
N2	Sleep spindles (12-14 Hz bursts); K- complexes; Background theta activity	Minimal eye movements	Moderate tone
N3	Slow wave activity; High- amplitude (>75 µV) delta waves (0.5-2 Hz) in >20% of epoch	Minimal eye movements	Moderate to low tone
REM	Low-voltage, mixed frequency; Saw tooth waves; EEG desynchronization similar to wakefulness	Rapid eye movements	Lowest tone; Atonia

SLEEP STAGE CLASSIFICATION ACCORDING TO AASM GUIDELINES

Example of Sleep state patterns.

ADULT BRAIN WAVES (EEG)

PsychDB.com

(How does it study sleep?

- Recent advances in wearable technology have enabled the use of accelerometers as a **non-invasive, low-cost alternative** for sleep state prediction. These sensors, embedded in consumer devices like smartwatches and fitness trackers, measure body movement to infer sleep and wake state, following the next variables:
- Anglez: Wrist angle relative to body's vertical
- ENMO : Angular velocity

Systematic approach

Which models can be applied?

- Threshold-based algorithms: These use simple rules based on movement intensity to distinguish sleep from wake. For example, the Sadeh and Cole-Kripke algorithms are widely used in actigraphy-based sleep scoring.
- Machine learning models: Supervised classifiers such as random forests, support vector machines, and logistic regression are trained on labeled data to improve classification accuracy.
- Deep learning: Recurrent neural networks (RNNs), convolutional neural networks (CNNs), and hybrid models are increasingly used to capture temporal dependencies and complex patterns in accelerometry data

Processing data pipeline

Data Acquisition

Raw signals Detected

Data Processing

Produce a clean and organized dataset

Feature Extraction

Events are tagged and sorted to prepare for classification.

Classification Prediction

Reduces data to a binary set and determines the sleep sequence A predictive model estimates the next sleep state based on the sequence

Computational Data flow

Results

Parameter	Polysomnography (PSG)	Accelerometry
Data Acquisition	Multiple physiological signals: EEG, EOG, EMG,	Single sensor: 3-axis accelerometer measuring move-
	ECG, respiratory sensors	ment intensity
Signal Processing	Channel-specific filtering, artifact removal (blinking,	Low-pass filtering, noise removal, signal normaliza-
	movement), signal synchronization	tion, missing data handling
Feature Extraction	Spectral power bands, eye movement patterns, mus-	Activity counts, movement variability, zero-crossing
	cle tone measurements, cardiorespiratory features	frequency, temporal patterns
Classification Method	AASM scoring manual, 30-second epochs, expert	Threshold-based algorithms, machine learning mod-
	human scoring, rule-based classification	els, deep learning (LSTM, CNN)
Sleep States Detected	Wake (W), N1 (light sleep), N2 (intermediate), N3	Wake, Sleep (sometimes divided into light and deep
	(deep sleep), REM sleep	sleep)
Performance Metrics	Inter-scorer reliability, gold standard accuracy, com-	Accuracy (82-93%), Sensitivity (87-95%), Speci-
	prehensive sleep architecture	ficity (50-83%), Cohen's kappa (0.55-0.80)
Limitations	Expensive equipment, laboratory environment, inva-	Limited sleep stage discrimination, poor detection of
	sive sensors, limited monitoring duration	wake periods, transition period inaccuracies

Conclusions

Performance

Accelerometers measures present a low-cost and non-invasive alternative with consistent accurate reported sensitivity values of 91-93 %

Limitation

Accelerometry alone
cannot distinguish
between
all sleep stages (e.g., REM
vs. non-REM) with high
accuracy,
and it may misclassify
periods of quiet
wakefulness as sleep.

Scope

Accelerometry is a valuable tool for population studies and personal health monitoring, especially when combined with advanced computational models and contextual information

Thanks

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

