FUNKCE

Značení

značení	co se tím myslí
[a,b]	uzavřený interval v mezích a a b
\mathbb{N}	množina přirozených čísel
${\mathbb Z}$	množina celých čísel
${\mathbb R}$	množina reálných čísel

Základní pojmy

Funkcí obecně rozumíme zobrazení z nějaké množiny A do reálných čísel \mathbb{R} . To znamená, že nějakým prvkům z množiny A přiřazujeme reálná čísla. Symbolicky to zapisujeme jako

$$f: A \to \mathbb{R}$$
 (1)

- Funkce $f: \mathbb{R} \to \mathbb{R}$ je reálná funkce jedné reálné proměnné. Zapisujeme ji ve tvaru f(x), kde x je nezávislá proměnná.
- Funkce $a: \mathbb{N} \to \mathbb{R}$ je posloupnost reálných čísel, přiřazuje hodnoty číslům 1,2,3, \cdots . Namísto a(n) píšeme a_n , čímž naznačujeme, že indexy probíhají přirozená čísla. (Posloupnostem se budeme věnovat od poloviny semestru.)
- Funkce $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ přiřazuje dvěma reálným číslům jiné reálné číslo, hovoříme o funkci dvou proměnných. Zapisujeme ji ve tvaru F(x,y), kde x a y jsou nezávislé proměnné. (Funkce dvou proměnných potkáme v poslední čtvrtině semestru.)

Nezávislé proměnné x ve funkci f(x) také někdy říkáme **argument funkce**, závislé proměnné $f(x_0)$ říkáme **funkční** hodnota v bodě x_0 .

Definiční obor D(f), D_f je množina takových čísel, pro která je funkce definována. **Obor hodnot** H(f), H_f , R_f je množina všech možných funkčních hodnot dané funkce.

Elementární funkce

Elementární funkce jsou takové, které lze složit konečným počtem operací (sčítání, odčítání, násobení, dělení a skládání) z těchto funkcí: konstanta, obecná mocnina, exponenciála, logaritmus, sinus, kosinus, tangens, kotangens, arkussinus, arkuskosinus, arkustangens a arkuskotangens.

Jiné funkce než elementární v kurzu prakticky nepotkáme. Je jich ale spousta. Příklady neelementárních funkcí si ukážeme, až budeme vybavení mocnými nástroji, jako je určitý integrál.

Prostá funkce, inverzní funkce

Označíme-li f(x) = y, můžeme se ptát na otázku, zda bychom mohli zpětně dopočítat argument funkce x při znalosti y. Pokud to lze, můžeme vytvořit **inverzní funkci** $f^{-1}(x)$ danou vztahem $f^{-1}(y) = x$.

Příklad 1 (Lineární funkce). K funkci f(x) = 3x - 6 můžeme najít inverzní. Označíme si 3x - 6 = y a pokusíme se vyjádřit x. Zřejmě $x = \frac{1}{3}(y+6)$. Předpis pro inverzní funkci tedy bude $f^{-1}(x) = \frac{1}{3}(x+6)$.

Příklad 2 (Potíže s kvadratickou funkcí). Pokusíme-li se hledat inverzní funkci k $f(x)=x^2$, narazíme na problém. Jedné hodnotě y příslušejí dvě různé hodnoty, a to sice \sqrt{y} anebo $-\sqrt{y}$. Například pokud položíme y=16, pak máme možnosti x=4 anebo x=-4. Vidíme, že na celé množině $\mathbb R$ nemůžeme inverzní funkci stanovit, protože potřebujeme jednoznačnost.

Verze: 24. září 2021

Předchozí příklad nás vede k podmínce, kterou musí daná funkce splňovat, abychom k ní mohli sestrojit inverzní. Řekneme, že funkce f je **prostá** na intervalu I, jestliže

$$x_1, x_2 \in I : x_1 \neq x_2 \implies f(x_1) \neq f(x_2).$$
 (2)

Slovně řečeno: vybereme-li si dvě různá x, nesmí se rovnat jejich funkční hodnoty f(x).

Definiční obor a obor hodnot se u inverzní funkce prohazují:

$$D_{f-1} = H_f, \quad H_{f-1} = D_f.$$
 (3)

Graf funkce f^{-1} lze získat z grafu f tak, že jej nakreslíme osově symetricky podle přímky y = x.

Příklad 3 (Odstranění potíží). Funkce z předchozího příkladu $f(x)=x^2$ je prostá na intervalu $[0,\infty)$, tam k ní existuje inverzní funkce $f^{-1}(x)=\sqrt{x}$, a na intervalu $(-\infty,0]$, tam k ní existuje inverzní funkce $f^{-1}(x)=-\sqrt{x}$.

Příklad 4 (Exponenciální funkce, přirozený logaritmus). Definujeme exponenciální funkci $\exp(x) = e^x$, kde $e = 2,718281828 \cdots$ je tzv. Eulerovo číslo. (Je iracionální, stejně jako číslo π , číslice v desetinném zápisu se neopakují.) Dále definujeme funkci k ní inverzní - přirozený logaritmus $\ln(x) = \log_e(x)$. Platí

$$D(\exp(x)) = \mathbb{R}, \quad H(\exp(x)) = (0, +\infty), \quad D(\ln(x)) = (0, +\infty), \quad H(\ln(x)) = \mathbb{R}.$$
 (4)

Užitečné vztahy, které se vyplatí pamatovat, jsou:

$$e^0 = 1$$
, $ln(1) = 0$ (5)

$$e^{x+y} = e^x e^y$$
, $e^{ax} = (e^x)^a$ (6)

$$ln(xy) = ln x + ln y, \quad ln(x^a) = a ln x \tag{7}$$

Grafy obou funkcí jsou znázorněny na obrázku 1.

Obrázek 1: Grafy funkcí exponenciály a přirozeného logaritmu. Všimněme si, že jsou grafy navzájem osově symetrické podle přímky y=x.