Mohammed A. El-Agha

Data Mining

- Data mining is the process of discovering patterns in large data sets
- knowledge discovery in databases

- 2 main types
 - Supervised Learning
 - Unsupervised Learning

Data Mining

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Clustering
 - Outlier Analysis

Python

- Why?
 - Simple syntax
 - Understandable semantic
 - A lot of ready-used libraries
 - Most of methods, techniques, metrics are single-line function

Project

- Dataset
 - Student Performance Data Set
- Paper
 - User Data Mining to Predict Secondary School Student Performance
- The used Data Mining methods are:
 - Decision Tree Classification
 - Nearest Neighbor Classification
 - Linear Regression
 - Kmeans clustering
 - Generalized ESD Outlier Analysis

Paper

- Using Data Mining to Predict Secondary School Student Performance
- 2008

• study students assessment in secondary schools in Portugal using their grades in two courses: Mathematics and Language

Paper

- The paper presents three supervised methods which are:
 - Binary Classification
 - 5-Level Classification
 - Regression
- Using
 - Decision Tree (DT)
 - Random Forest (RF)
 - Neural Networks (NN)
 - Support Vector Machine (SVM)

Dataset

The data is from University of Minho in Portugal

student assessment in Portuguese language course from two schools

 consists of two sub data sets; one of Language course and other for math course

Dataset

- 649 case with 31 feature, including
 - personal factors, such as: sex and age
 - living conditions, such as: urban or rural address and home to school travel time
 - health factor
 - social factors, such as: family size, quality of family relationships, parent's cohabitation status, student's guardian, mother's education, father's education, mother's job, father's job
 - entertainment factors, such as: romantic relationship, free time after school, going out with friends, Internet access at home
 - educational factors, such as: weekly study time, extra educational support, extra paid classes, desire to study higher

Data Preprocessing

- Configurations
- Remove irrelevant features
 - school, famsize, reason, traveltime, nursery, guardian
- Remove similar values features
 - age
- Remove redundant features
 - Medu, Fedu, Pstatus, G1, G2
- Fill NA/None by zero
 - failures, studytime, famrel, freetime, goout, health
- Convert nominal string to nominal integer
- Discretization
 - absences: bin 1 [0-24], bin 2 [25-49], bin 3 [50-74], bin 4 [75-100]
 - G3: Fail [0-9], Pass [10-14], Good [15-20]

Data Preprocessing

 After data preprocessing, 19 features are still. The 19th is G3 which is the target class.

Data Visualization

Used Data Mining Methods

- Decision Tree Classification
 - training set is 65% and the testing set is 35%
- Nearest Neighbors Classification
 - training set is 60% and the testing set is 40%
- Linear Regression
 - training set is 60% and the testing set is 40%
- K-Means Clustering
 - K = 3
- Generalized ESD Outlier Analysis
 - Number of output outliers is 10, and outlier ratio is 0.1

Used Python Libraries

- DataFrame
- Pandas
- Matplotlib
- Sklearn
- PyAstronomy
- tkinter

Code

File	Class/es
datasetreader	DatasetReader
preprocess	DataPreProcesses
	DataPreProcessorForTask
classification	DecisionTreeClassifier
	NearestNeighborClassifier
regression	LinearRegression
clustering	KmeansClustering
outlier_analysis	Generalized ESDO utlier Analysis
main	Main
gui_luncher	

Code

Results

Results (DT)


```
[[ 2 0 29]
[ 0 2 24]
[ 22 11 138]]
```

Results (KNN)


```
[[ 4 0 39]
[ 1 2 29]
[ 5 15 165]]
```

Results (Linear Regression)

7.496560871116448

Results (K-Means)

Results (ESD)

```
Outlier Analysis for : failures
Number of outliers: 100
Indices of outliers: [18, 78, 131, 169, 170, 179, 237, 279, 478, 543, 557, 568, 571,
610, 127, 146, 163, 173, 175, 284, 351, 370, 407, 413, 487, 552, 569, 572, 581, 590,
44, 112, 118, 137, 148, 158, 164, 172, 174, 177, 184, 212, 219, 253, 254, 255, 256,
262, 264, 283, 287, 291, 320, 322, 350, 405, 406, 415, 421, 425, 431, 432, 436, 453,
454, 465, 471, 480, 486, 488, 489, 490, 491, 497, 500, 502, 506, 508, 512, 518, 545,
559, 563, 566, 567, 574, 577, 578, 580, 583, 587, 597, 604, 605, 612, 624, 632, 639,
640, 644]
 3.00000
 3.00000
 3.00000
 3.00000
 3.00000
 3.00000
 3.00000
 3.00000
 3.00000
 3.00000
 3.00000
 3.00000
 3.00000
 3.00000
 2.00000
 2.00000
```