臺北區 106 學年度第二學期 指定科目第一次模擬考試

數學甲

一作答注意事項-

考試範圍:第一~四冊全、選修數學甲(上)

考試時間:80分鐘

作答方式: ·選擇(填)題用 2B 鉛筆在「答案卡」上作答; 更正時, 應以橡皮擦擦拭, 切勿使用修正液(帶)。

- · 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- · 答案卷每人一張, 不得要求增補。

選填題作答說明:選填題的題號是 A, B, C, ……, 而答案的格式每題可能不同, 考生必須依各題的格式填答, 且每一個列號只能在一個格子畫記。請仔細閱讀下面的例子。

例:若第B題的答案格式是 ® ,而依題意計算出來的答案是 3 ,則考 生必須分別在答案卡上的第 18 列的 3 與第 19 列的 8 畫記,如:

例:若第 C 題的答案格式是 $\frac{2020}{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在 答案卡的第 20 列的二與第 21 列的二畫記,如:

20 1 2 3 4 5 6 7 8 9 0 - ±
21 1 2 3 4 5 6 7 8 9 0 - ±

祝考試順利

版權所有・翻印必究

第壹部分:選擇題 (單選題、多選題及選填題共占80分)

台京科目第一大模擬考試(分8台) 題選單、一

說明:第1題至第4題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇(填)題答案區」。各題答對者,得7分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

	個選項者,該題以零分計算。
	一作客注意事項一
1.	設甲、乙、丙三人投籃命中率分別為 $\frac{1}{2}$ 、 $\frac{1}{4}$ 、 $\frac{1}{3}$,且每人及每次投籃結果均互不影響,若
	每人各投籃 2 次,則三人總共投中 2 次之機率為何?
	作答方式:。選擇(填)題用 2日 錦筆在「答案卡」上作答;更正時,應以線 981(百)
	(2) 191 (2) 195 (2) 195 (3) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	(3) 193 576 195 年 195 年 -
	来依規定並記察案片、致機器稀稿無法辨識答案;或未使用 576 2015 年的発書寫答案卷、致评例人員無法辨認機器精描後之答案 576
	後果由考生自行承擔。 一 答案卷卷人一張,不得要求增補。
	選集變作答說明:選集獨的邀號是A·B·C········而答案的格式張獨可能不
	同、考生必須依各種的格式填签、且每一個列號只能在一個
	5 to as a 7 de fil 1 1 4 5 5 5 5 5

生必須分別在答案长上的第18列的三数第19列的总量記,如:

2. 若 [x] 表示小於或等於實數 x 的最大整數值,則 [$\log 1$] + [$\log 2$] + [$\log 3$] + …… + [$\log 2017$] 之值為何?

(1)4000

(1) 4000

(2) 4590

(4) 4944

答案卡的第 20 列的二级第 21 列的三重記,如:

(5) 5000

紀考試順利

版權所有。創印必穿

3. 已知 $i = \sqrt{-1}$,試求 $\left(\frac{1-i}{\sqrt{2}}\right)^{2018} = ?$

(3)(|b|a+|a|b)之向量可以平分a+b兩向量之夾角

4. 已知空間中一直線 $L: \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$,則下列哪一條直線與直線 L 互為歪斜線?

$$(1) \ \frac{x-1}{3} = \frac{y-1}{-2} = \frac{z-1}{-4}$$

 $(2) \frac{x}{-6} = \frac{y+9}{4} = \frac{z-2}{8}$

 $(3) \frac{x-3}{3} = \frac{y-8}{x-1} = z-3$ (x) = (x) + (x)

(4)
$$\frac{x+4}{2} = \frac{y+3}{2} = \frac{z-13}{3}$$

 $(5) \ \frac{x-1}{-3} = \frac{y-6}{2} = \frac{z+9}{4}$

二、多選題(占24分)

說明:第5題至第7題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得 8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答錯多於2個選項或 所有選項均未作答者,該題以零分計算。

5. 請選出正確的選項。

- (1)兩個非零向量 \overrightarrow{a} , \overrightarrow{b} 必符合: $|\overrightarrow{a} \cdot \overrightarrow{b}| \le |\overrightarrow{a}| |\overrightarrow{b}|$
- (2)兩個非零向量 \overline{a} , \overline{b} 必符合: $|\overline{a} + \overline{b}|^2 \ge |\overline{a}|^2 + |\overline{b}|^2$
- (3) ($|\overrightarrow{b}|\overrightarrow{a}+|\overrightarrow{a}|\overrightarrow{b}$) 之向量可以平分 $|\overrightarrow{a}|$, $|\overrightarrow{b}|$ 兩向量之夾角

$$(4) \left(\frac{\overrightarrow{a}}{|\overrightarrow{a}|} + \frac{\overrightarrow{b}}{|\overrightarrow{b}|} \right)$$
 之向量可以平分 \overrightarrow{a} , \overrightarrow{b} 兩向量之夾角

(5)已知
$$a$$
 , b , c , d 為實數 , 若二階行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 4$, 則 $(a^2 + b^2)(c^2 + d^2) \ge 16$

已刻空間中一直跟 $L: \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$,則下列哪一核直線和直線和直線化

 $(1) \frac{x-1}{3} = \frac{y-1}{-2} = \frac{z-1}{-4}$ (2) x y+9 z-2

6. 設 $f(x) = \frac{1}{\sqrt{2}}\sqrt{1-\cos 2x}$, $g(x) = \frac{1}{\sqrt{2}}\sqrt{1+\cos 2x}$,而 h(x) = f(x) + g(x),對於 x 為實數,則下列選項哪些正確?

- (1) y=f(x) 之週期為 π
- (2) y=g(x) 之週期為 $\frac{\pi}{2}$
- (3) y=h(x) 之週期為 $\frac{\pi}{2}$
- (4) y=f(x) 之極大值為1
- (5) y=h(x) 之極小值為 0

- 7. 請選出正確的選項。如此對於原理對於會上來單位不斷的企品,對應與學表與自由於科上的 2
 - (1)整係數 n 次多項式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$,n 為正整數,若 $a \mid a_n \perp b \mid a_0$,則 $(ax-b) \mid f(x)$
 - (2)若實係數多項式 f(x) 的最高次數為 5 次,則 f(x)=0 至少有一個實根
 - (3)設a,b皆為實數,則 $\sqrt{a} \times \sqrt{b} = -\sqrt{ab}$
 - (4)設 z 為複數,而 z 為 z 的共軛複數,則 $z \times z = |z|^2$
 - (5)若實係數多項式方程式f(x)=0,x在a < x < b之間恰找到 4個實根,則f(a)f(b) < 0

三、選填題(占28分)

說明:1.第A至D題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(8-19)。 2.每題完全答對給7分,答錯不倒扣,未完全答對不給分。

A. 臺北電臺舉辦 call in 接唱活動,規則為在主持人唱完某首歌的前三句內, call in 民眾若能接續唱完此歌,則可按三次電子鈕得獎金:第一次按出現獎金的個位數字,第二次按出現獎金的十位數字,第三次則為百位數字。例如聽眾三次按出的數字依序是6(個)、2(十)、8(百),就獲得826元,其中電子鈕是由0,1,2,……,9中的數字所產生,且三次按出的數字可相同。若一位聽眾已接唱成功,試求其獲得獎金的期望值是 ⑧⑨⑩ 元。(四捨五人至個位數)

機的向左或向右落下又繼續撞擊下一層。如右圖,最後會落到下方編 號 1~7的格子中,若彈珠每次向左或向右落下的機率相等,則彈珠

落到1~7號的格子內,出現的最大機率為

D. 如右圖,四面體 ABCD 中,底面 $\triangle BCD$ 為邊長 6 的正三角形,而

 $\overline{AB} = \overline{AC} = \overline{AD} = 9$,則直線 AB 與直線 CD 的距離為 $\sqrt{18}$ ⑨

電子鉅是由 0 · 1 · 2 · · · · · · · 9 中的數字所產生 · 且三次接出的

第貳部分:非選擇題(占20分)

說明:本部分共有二大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二) 與子題號((1)、(2)),同時必須寫出演算過程或理由,否則將予扣分甚至零分。作答務 必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每一子題配分標於題末。

- ·、設二次曲線 $\Gamma: 4x^2+y^2-6y+5=0$,以矩陣 $A=\begin{bmatrix} 1 & a \\ -a & 1 \end{bmatrix}$ 對 Γ 作線性變換得 Γ' ,即 $\begin{vmatrix} x' \\ y' \end{vmatrix} = A \begin{vmatrix} x \\ y \end{vmatrix}$, 其中 a 為實數 $(x,y) \in \Gamma$ $(x',y') \in \Gamma'$, 則:
 - (1) 當 Γ' 與x軸相切時,a=?(7分)
 - (2) 承(1), 試求切點坐標?(3分)

- 二、如右圖, P(x,y) 為圓 $C_1: x^2+y^2-4x+2y+1=0$ 上的動點, 而連接 C_1 , C_2 , C_3 , C_4 四個相同大小圓的圓心A,B,C,D 為一正方形, 試求:
 - (1) 陰影處圓弧圍成圖形的面積。(5分)
 - (2) |x-2y| 的最大值與最小值。(5 分)

臺北區 106 學年度第二學期

指定科目第一次模擬考試

版權所有·翻印必究

數學考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	
答案	(3)	(4)	(4)	(3)	(1)(3)(4)(5)	(1)(3)(4)	(2)(4)	BESSES PARTICIPATION AND AND AND AND AND AND AND AND AND AN

第壹部分:選擇題

一、單撰題

1. (3)

難易度:易

出處:選修數學甲(上)第一章〈機率統計〉

目標:獨立事件

解析: 先求每人投籃一次

三人均未投中的機率為
$$p_0 = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \left(1 - \frac{1}{3}\right) = \frac{1}{4}$$

三人共投中 1 次的機率為
$$p_1 = \frac{1}{2} \times \frac{3}{4} \times \frac{2}{3} + \frac{1}{2} \times \frac{1}{4} \times \frac{2}{3} + \frac{1}{2} \times \frac{3}{4} \times \frac{1}{3} = \frac{11}{24}$$

三人共投中 2 次的機率為
$$p_2 = \frac{1}{2} \times \frac{1}{4} \times \frac{2}{3} + \frac{1}{2} \times \frac{3}{4} \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{4} \times \frac{1}{3} = \frac{1}{4}$$

則所求機率
$$p=p_0\times p_2+p_2\times p_0+p_1\times p_1$$

$$= \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} + \frac{11}{24} \times \frac{11}{24}$$
$$= \frac{193}{576}$$

故撰(3)。

2. (4)

難易度:易

出處:第一冊第三章〈指數、對數函數〉

目標:對數函數

解析: $1 \le x \le 2017$, $x \in N$

$$1 \le x < 10 \Rightarrow 0 \le \log x < 1 \Rightarrow \lceil \log x \rceil = 0, 9$$
 個

$$10 \le x < 10^2 \Rightarrow 1 \le \log x < 2 \Rightarrow [\log x] = 1$$
, 90 (\square

$$10^2 \le x < 10^3 \Rightarrow 2 \le \log x < 3 \Rightarrow \lceil \log x \rceil = 2$$
, 900 (B)

$$10^3 \le x \le 2017 \Rightarrow 3 \le \log x < 4 \Rightarrow [\log x] = 3$$
, $2017 - 1000 + 1 = 1018$ 個

故選(4)。

3. (4)

難易度:中

出處:選修數學甲(上)第二章〈三角函數〉

目標:複數的幾何意涵

解析:
$$\left(\frac{1-i}{\sqrt{2}}\right)^{2018} = \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)^{2018} = \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right]^{2018}$$

$$= \cos\left(-\frac{2018}{4}\pi\right) + i\sin\left(-\frac{2018}{4}\pi\right)$$

$$= \cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)$$

$$= 0 + (-1) \times i$$

$$= -i$$

故選(4)。

版權所有·翻印必究

4. (3)

難易度:中偏易

出處:第四冊第二章〈空間中的平面與直線〉

目標:空間中直線的關係(平行、重合與歪斜)

解析:(1) \times :方向向量成比例,但 L 上一點 (-3, -7, 6) 不在(1) 上,兩者為平行關係

(2) \times : 方向向量成比例,且L上一點 (-3, -7, 6) 代入(2)合,兩者為重合關係

$$L: \begin{cases} x = -3 - 3t \cdots \bigcirc \\ y = -7 + 2t \cdots \bigcirc 2 \end{cases}, t \in R, (3): \begin{cases} x = 3 + 3s \cdots \bigcirc 4 \\ y = 8 - s \cdots \bigcirc 5 \end{cases}, s \in R \end{cases}$$

$$z = 3 + 3s \cdots \bigcirc 6$$

$$\mathbf{F} = \begin{cases} -3 - 3t = 3 + 3s \\ -7 + 2t = 8 - s \end{cases}$$
,得 $t = 17$, $s = -19$, 代入③與⑥不相等,則為歪斜

(4) ×:同(3)方法:方向向量不成比例,則不平行

$$L: \begin{cases} x = -3 - 3t \cdots 0 \\ y = -7 + 2t \cdots 2 \end{cases}, t \in R, (4): \begin{cases} x = -4 + 2k \cdots 7 \\ y = -3 + 2k \cdots 8 \end{cases}, k \in R \\ z = 13 + 3k \cdots 9 \end{cases}$$

(5) \times : 方向向量相同,但 L 上一點 (-3, -7, 6) 不在(5)上,兩者為平行關係 故選(3)。

二、多選題

5. (1)(3)(4)(5)

難易度:中偏難

出處:第三冊第三章〈平面向量〉

目標:向量的概念與向量的內積、柯西不等式

解析:
$$(1)$$
〇: $|a|$ · $|a|$ · $|a|$ | $|$

若 $\cos \theta < 0$ 時,則 $|\overrightarrow{a} + \overrightarrow{b}|^2 \le |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2$ 與題意不合

$$(3)(4)$$
 〇:向量 $r\overrightarrow{a}+s\overrightarrow{b}$ 只要符合:① $r>0$, $s>0$,② $|r\overrightarrow{a}|=|s\overrightarrow{b}|$

即可使ra + sb 平分a ,b 所來的角

(5) 〇:由柯西不等式:
$$(a^2+b^2)$$
 [$d^2+(-c)^2$] $\geq (ad-bc)^2$
 $\Rightarrow (a^2+b^2)(c^2+d^2) \geq 4^2=16$

故選(1)(3)(4)(5)。

6. (1)(3)(4)

難易度:中

出處:選修數學甲(上)第二章〈三角函數〉

目標:三角函數的性質與圖形、三角函數的應用

解析:
$$f(x) = \frac{1}{\sqrt{2}}\sqrt{1-\cos 2x} = \sqrt{\frac{1-\cos 2x}{2}} = |\sin x|$$

$$g(x) = \frac{1}{\sqrt{2}}\sqrt{1+\cos 2x} = \sqrt{\frac{1+\cos 2x}{2}} = |\cos x|$$

 $\exists |h(x)=f(x)+g(x)=|\sin x|+|\cos x|, x\in R$

(1) 〇: v=f(x) 之週期為 π

(2) \times : y=g(x) 之週期為 π

$$(3)$$
 \bigcirc : $y=h(x)$ 之週期為 $\frac{\pi}{2}$

(4) ○: y=f(x) 之極大值為 1

(5) ×: y=h(x) 之極小值為1

故選(1)(3)(4)。

7. (2)(4)

難易度:中

出處:第一冊第二章〈多項式函數〉

目標:一次因式檢驗法、勘根定理、複數

解析:(I)×:一次因式檢驗法的逆敘述不一定成立

(3) \times : 當 a < 0 , b < 0 時,則 \sqrt{a} × \sqrt{b} = $-\sqrt{ab}$

(4) 〇: 設複數 z=a+bi, a, $b \in R$, 則 $z \times \overline{z} = a^2 + b^2 = |\overline{z}|^2$

(5) \times : 若 f(x)=0 在 a , b 之間恰找到 4 個實根 , 則亦可能 f(a) f(b)如右圖所示

A. 500

難易度:中偏易

解析: 按出的號碼是由 000,001,,999 共有 1000 個相異數值所組成

每個號碼出現的機率皆為 1000

設X為通過接唱完成獲得的獎金

則獎金金額期望值為
$$E(X) = \frac{1}{1000} (1 + 2 + 3 + \dots + 999) = 499.5 \approx 500 (元)$$
。

難易度:中偏易

出處:第三冊第二章〈直線與圓〉

目標:直線方程式

解析:如右圖,設 D 點為直線 L 與 \overline{AB} 的交點 \overline{AB} 的交點 \overline{AB} 的交點 \overline{AB} 的交點 \overline{AB} 的

$$\mathbb{A}[\triangle BCD = \frac{1}{2} \triangle BOA \Rightarrow \frac{1}{2} \times 3 \times x = \frac{1}{2} \times \left(\frac{1}{2} \times 2 \times 4\right) \Rightarrow x = \frac{4}{3} \times 4 \times 4 = \frac{1}{3} \times 4 \times 4 =$$

則
$$D\left(\frac{4}{3}, y\right)$$
且 $D \in AB$

∴直線L的方程式為x-4y+4=0。

難易度:中偏易

出處: 選修數學甲(上)第一章〈機率統計〉

目標:重複試驗的機率

解析:彈珠每次向右、向左的機率皆為 $\frac{1}{2}$

落到 1 號與 7 號格子的機率為:
$$C_0^6 \left(\frac{1}{2}\right)^6 = \frac{1}{64}$$

落到 2 號與 6 號格子的機率為:
$$C_1^6 \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^5 = \frac{6}{64} = \frac{3}{32}$$

落到 3 號與 5 號格子的機率為:
$$C_2^6 \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^4 = \frac{15}{64}$$

落到 4 號格子機率為:
$$C_3^6 \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^3 = \frac{20}{64} = \frac{5}{16}$$
 最大

則出現的最大機率為 5/16

$$C(0,1)$$

$$O(x,y)$$

$$A(2,0)$$

$$||h(x) - \sqrt{2}\sqrt{1 + \cos 2x}|$$

D. $\sqrt{23}$

: 第四冊第一章〈空間向量〉

目標:空間概念

解析:作 \overline{CD} 中點為M,再作 $\overline{MN} \perp \overline{AB}$

則 MN L CD, 且 MN 為所求

則
$$\overline{MN} \perp \overline{CD}$$
 ,且 \overline{MN} 為所求
$$\overline{BM} = 3\sqrt{3} \quad , \quad \overline{BH} = \frac{2}{3} \overline{BM} = 2\sqrt{3}$$

$$\Rightarrow \overline{AH} = \sqrt{\overline{AB}^2 - \overline{BH}^2} = \sqrt{81 - 12} = \sqrt{69}$$

$$\Rightarrow \overline{AH} = \sqrt{\overline{AB}^2 - \overline{BH}^2} = \sqrt{81 - 12} = \sqrt{69}$$

$$\triangle ABM = \frac{1}{2} \times \overline{BM} \times \overline{AH} = \frac{1}{2} \times \overline{AB} \times \overline{MN}$$

$$\Rightarrow 3\sqrt{3} \times \sqrt{69} = 9 \times \overline{MN}$$

$$\therefore \overline{MN} = \sqrt{23}$$
。 関則改規則 等等科非選擇

$$-\cdot (1) \pm \sqrt{5} \; ; \; (2) \; (\pm 2 \sqrt{5} \; , 0)$$

難易度:中偏難

出處:第四冊第三章〈矩陣〉

目標:矩陣的線性變換、反矩陣

解析: (1):
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & a \\ -a & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{1+a^2} & \frac{-a}{1+a^2} \\ \frac{a}{1+a^2} & \frac{1}{1+a^2} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\Rightarrow x = \frac{1}{1+a^2} (x' - ay') \cdot y = \frac{1}{1+a^2} (ax' + y') \qquad (x + x_0) = \frac{1}{x_0 + 1} = x_0 \cdot (x_0 - x_0) = \frac{1}{x_0 + 1} = x_0 \cdot (x_0 - x_0) =$$

$$\stackrel{4+a^2}{(1+a^2)^2} (x')^2 - \frac{6a}{1+a^2} (x') + 5 = 0$$

$$\left(\frac{-6a}{1+a^2} \right)^2 - 4 \times \frac{4+a^2}{(1+a^2)^2} \times 5 = 0 \Rightarrow a^2 = 5 \Rightarrow a = \pm \sqrt{5} = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 - \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a + 4} \times 4 + \left(\frac{5a + 4}{5a + 4} \right) = 2 \times \frac{5a + 4}{5a +$$

得($\pm 2\sqrt{5}$,0)。

二、(1)
$$4-4\sqrt{3}+\frac{4}{3}\pi$$
; (2)最大值為 $4+2\sqrt{5}$,最小值為 0

難易度:中偏難

出處:選修數學甲(上)第二章〈三角函數〉

目標:三角函數的應用、三角函數的疊合

解析: (1)作圖如右,設面積為 $a \cdot b \cdot c$, $\overline{AD} = 2$

依面積列式:

$$a+2b+c=\frac{1}{6}$$
圓面積×2- $\triangle CDE$ 面積

$$= \frac{1}{6} \times \pi \times 2^2 \times 2 - \frac{1}{2} \times 2 \times \sqrt{3}$$

$$= \frac{4}{6} \pi - \sqrt{3}$$

解①、②、③得
$$c=4-4\sqrt{3}+\frac{4}{3}\pi$$
。

$$\mathbf{M} = \begin{bmatrix} x \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\Rightarrow x = \frac{1}{1 + a^2} (x' - ay') : y = \frac{1}{1 + a^2}$$

$$\left(\frac{-6a^{2}}{1+a^{2}}\right)^{3} - 4 \times \frac{4+a^{2}}{(1+a^{2})^{2}} \times 5 = 0 \ \overline{6}$$

$$\Rightarrow d^2 = 5 \Rightarrow a = \pm \sqrt{5} - (1.5)$$

$$G_{ab} = (-1.01 + a^2)^2 f$$

$$(2) a = \pm \sqrt{5} \text{ PCA} \left[-\frac{1}{2} \times \frac{(1+n)}{4+n^2} \times \left[-\frac$$

(2)
$$x^2 + y^2 - 4x + 2y + 1 = 0 \Rightarrow (x - 2)^2 + (y + 1)^2 = 4$$
則圓參數式 $\begin{cases} x = 2 + 2\cos\theta \\ y = -1 + 2\sin\theta \end{cases}$, $0 \le \theta < 2\pi$
 $|x - 2y| = |(2 + 2\cos\theta) - 2(-1 + 2\sin\theta)|$
 $= |2\cos\theta - 4\sin\theta + 4|$

$$= |2\sqrt{5}\cos(\theta + \alpha) + 4|$$
 , 其中 $\begin{cases} \sin\alpha = \frac{2}{\sqrt{5}} \\ \cos\alpha = \frac{1}{\sqrt{5}} \end{cases}$

則最大值為 $|2\sqrt{5} + 4| = 4 + 2\sqrt{5}$ 最小值為 0。

北模 B3 數學考科非選擇題批改原則

第貳部分:非選擇題

 $-\cdot (1) \pm \sqrt{5}$; (2) ($\pm 2\sqrt{5}$, 0)

難易度:中偏難

出處:第四冊第三章〈矩陣〉 目標:矩陣的線性變換、反矩陣

解析:(1):
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & a \\ -a & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{1+a^2} & \frac{-a}{1+a^2} \\ \frac{a}{1+a^2} & \frac{1}{1+a^2} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \quad (2 \%)$$

$$\Rightarrow x = \frac{1}{1+a^2} (x' - ay') \cdot y = \frac{1}{1+a^2} (ax' + y') \qquad (\forall y + \forall x a) = 1$$

將上式代人
$$\Gamma: 4x^2+y^2-6y+5=0$$
 且令 $y'=0$ 《 中日 $0=2+y0-y+3$ 》 入为为土

得
$$\frac{4+a^2}{(1+a^2)^2}(x')^2 - \frac{6a}{1+a^2}(x') + 5 = 0$$
 (2分)

 Γ' 與x軸相切,則判別式為0

$$\Rightarrow a^2 = 5 \Rightarrow a = \pm \sqrt{5} \circ (1 \%)$$

(2)
$$a = \pm \sqrt{5} \text{ (1)} \left(-\frac{1}{2} \times \frac{(1+a^2)^2}{4+a^2} \times \left(-\frac{6a}{1+a^2} \right), 0 \right)$$
 (2 分)

二、(1)
$$4-4\sqrt{3}+\frac{4}{3}\pi$$
; (2)最大值為 $4+2\sqrt{5}$,最小值為 0

難易度:中偏難

出處:選修數學甲(上)第二章〈三角函數〉

目標:三角函數的應用、三角函數的疊合

解析:(1)作圖如右,設面積為 $a \cdot b \cdot c$, $\overline{AD} = 2$

$$(4a+4b+c=2^2=4$$
 ··················· ① (1 分)

$$\begin{cases} 2a+3b+c = \frac{1}{4} \times \pi \times 2^2 = \pi & \dots & (1 \ \ \ \ \ \ \ \ \end{cases}$$
 (1 \(\frac{1}{2}\))

解①、②、③得
$$c=4-4\sqrt{3}+\frac{4}{3}\pi$$
。 (1分)

(2)
$$x^2 + y^2 - 4x + 2y + 1 = 0 \Rightarrow (x - 2)^2 + (y + 1)^2 = 4$$
則圓參數式 $\begin{cases} x = 2 + 2\cos\theta \\ y = -1 + 2\sin\theta \end{cases}$, $0 \le \theta < 2\pi$ (2分)
$$|x - 2y| = |(2 + 2\cos\theta) - 2(-1 + 2\sin\theta)|$$

$$= |2\cos\theta - 4\sin\theta + 4|$$

$$= |2\sqrt{5}\cos(\theta + \alpha) + 4|$$
, 其中 $\begin{cases} \sin\alpha = \frac{2}{\sqrt{5}} \\ \cos\alpha = \frac{1}{\sqrt{5}} \end{cases}$
則最大值為 $|2\sqrt{5} + 4| = 4 + 2\sqrt{5}$

最小值為0。 (1分)

