Berkeley UNIVERSITY OF CALIFORNIA

Intermezzo

- for next HW assignment: variance, covariance, correlation
- for next HW assignment: Principal Component Analysis (PCA)
- regression table

Intermezzo

- for next HW assignment: variance, covariance, correlation
- for next HW assignment: Principal Component Analysis (PCA)
- regression table

recap:

$$\mu = E(x) = \int x \, p(x) \, dx$$

$$\sigma^2 = var(x) = \int (x - \mu)^2 p(x) dx$$

$$var(x) = \int (x - \mu)^2 p(x) dx = E([x - \mu]^2)$$

variance can be interpreted as **mean of** $[x - \mu]^2$

$$= E(x^{2} - 2x\mu + \mu^{2})$$

$$= \int [x^{2} - 2x\mu + \mu^{2}] p(x) dx$$

$$= \int x^{2} p(x) dx - 2\mu \int x p(x) dx + \mu^{2} \int p(x) dx$$

$$= E(x^2) - 2\mu E(x) + \mu^2 E(1)$$

$$= E(x^2) - 2\mu E(x) + \mu^2$$

$$\int p(x) \, dx = 1$$

$$\mu = E(x)$$

$$\sigma^2 = E(x^2) - E(x)^2$$

recap:

a, b = const
$$\sigma^2 = E(x^2) - E(x)^2$$

$$var([a x_1 + b x_2]) = E([a x_1 + b x_2]^2) - E(a x_1 + b x_2)^2$$

$$= E(a^2 x_1^2 + 2ab x_1 x_2 + b^2 x_2^2) - E(a x_1 + b x_2)^2$$

$$= a^{2}E(x_{1}^{2}) + 2ab E(x_{1}x_{2}) + b^{2} E(x_{2}^{2}) - E(a x_{1} + b x_{2})^{2}$$

$$= a^{2}E(x_{1}^{2}) + 2ab E(x_{1}x_{2}) + b^{2} E(x_{2}^{2}) - [aE(x_{1}) + b E(x_{2})]^{2}$$

$$= a^{2}E(x_{1}^{2}) - a^{2}E(x_{1})^{2} + b^{2}E(x_{2}^{2}) - b^{2}E(x_{2})^{2} + 2ab E(x_{1}x_{2}) - 2abE(x_{1})E(x_{2})$$

$$a^{2} var(x_{1})$$

$$b^{2} var(x_{2})$$

$$2ab cov(x_{1}, x_{2})$$

$$= a^2 var(x_1) + b^2 var(x_2) + 2ab cov(x_1, x_2)$$

$$cov(x_1, x_2) = cov(x_2, x_1) = E(x_1x_2) - E(x_1)E(x_2)$$

covariance

$$\mu = E(x) = \int x \, p(x) \, dx$$

$$\sigma^2 = var(x) = \int (x - \mu)^2 p(x) dx$$


```
\mu = E(x) = \int x \, p(x) \, dx
|\sigma^2 = E(x^2) - E(x)^2|
x1 = np.random.normal(0,2,(1000,))
                                                            \sigma^2 = var(x) = \int (x - \mu)^2 p(x) dx
x2 = np.random.normal(3,3,(1000,))
x3 = np.random.uniform(0,5,(1000,))
x4 = 5*np.random.uniform(3,4,(1000,))
x5 = np.sqrt(x4)
x6 = x1 + x2
x7 = 2*x3
x8 = x3*x2
All = np.vstack((x1, x2, x3, x4, x5, x6, x7, x8))
data = pd.DataFrame(All.transpose(),
                      columns = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8']
out = sns.pairplot(data, kind = "kde", \
                         plot kws = {'color':[176/255, 224/255, 230/255]}, \
                         diag kws = {'color':'black'})
out.map_offdiag(plt.scatter, color = 'black')
```


$$\mu = E(x) = \int x \, p(x) \, dx$$

$$\sigma^2 = var(x) = \int (x - \mu)^2 p(x) dx$$

based on the shape of the data cloud

- \rightarrow prediction how x_1 and x_2 are related, i. e. how they **correlate**
- → how to quantify?

$$cov(x_1, x_2) = cov(x_2, x_1) = E(x_1x_2) - E(x_1)E(x_2)$$

$$\mu = E(x) = \int x \, p(x) \, dx$$

$$\sigma^2 = var(x) = \int (x - \mu)^2 p(x) dx$$

a) x_1 and x_2 are independent

$$E(x_1x_2) - E(x_1)E(x_2)$$

$$= \iint x_1 x_2 \, p(x_1) \, p(x_2) \, dx_1 dx_2 \, - \int x_1 \, p(x_1) \, dx_1 \int x_2 \, p(x_2) \, dx_2$$

 x_1 and x_2 are independent:

 x_1 is not a function of x_2 and vise verse x_1 cannot be predicted by x_2 and vise verse

$$= \int x_1 p(x_1) dx_1 \int x_2 p(x_2) dx_2 - \int x_1 p(x_1) dx_1 \int x_2 p(x_2) dx_2 = 0$$

covariance equals **zero** if samples are **independent**!

$$cov(x_1, x_2) = cov(x_2, x_1) = E(x_1x_2) - E(x_1)E(x_2)$$

$$\mu = E(x) = \int x \, p(x) \, dx$$

$$\sigma^2 = var(x) = \int (x - \mu)^2 p(x) dx$$

b) x_1 and x_2 are **not** independent

$$E(x_1x_2) - E(x_1)E(x_2)$$

$$= \iint x_1 x_2 \, p(x_1) \, p(x_2) \, dx_1 dx_2 \, - \int x_1 \, p(x_1) \, dx_1 \int x_2 \, p(x_2) \, dx_2$$

 x_{20} x_{20} x

 x_1 and x_2 are **not** independent:

 x_1 is a function of x_2 and vise verse x_1 can be predicted by x_2 to certain degree and vise verse

$$= \iint x_1 p(x_1) x_2(x_1) p(x_2(x_1)) dx_1 dx_2(x_1) - \int x_1 p(x_1) dx_1 \int x_2 p(x_2) dx_2$$

covariance does not equal zero!

$$cov(x_1, x_2) = cov(x_2, x_1) = E(x_1x_2) - E(x_1)E(x_2)$$

covariance

$$x1 = np.random.normal(0, 2, (1000,))$$

 $x2 = 2*x1 + np.random.normal(0, 2, (1000,))$

Same dependency, but different variance!

$$cov(x_1, x_2) = cov(x_2, x_1) = E(x_1x_2) - E(x_1)E(x_2)$$

covariance

Same dependency, but different variance!

Need to scale for the variance!

Pearson's correlation coefficient

$$\rho(x_1, x_2) = \frac{cov(x_1, x_2)}{\sqrt{\sigma_1^2 \sigma_2^2}}$$

$\rho(x_1, x_2)$:

- ranges from -1 to +1
- zero: no correlation(completely independent)
- -1: max anti correlation
- +1: max correlation

$$cov(x_1, x_2) = cov(x_2, x_1) = E(x_1x_2) - E(x_1)E(x_2)$$

$$\rho(x_1, x_2) = \frac{cov(x_1, x_2)}{\sqrt{\sigma_1^2 \sigma_2^2}}$$

sns.heatmap(data.corr(), cmap = "Blues")

covariance

Pearson's correlation coefficient

$\rho(x_1, x_2)$:

- ranges from -1 to +1
- zero: no correlation (completely independent)
- -1: max anti correlation
- +1: max correlation

$\rho(x_1, x_2)$:

- ranges from -1 to +1
- zero: no correlation (completely independent)
- -1: max anti correlation
- +1: max correlation

Important quantities you should know:

mean

$$\mu = E(x) = \int x \, p(x) \, dx$$

median
$$m$$

$$\int_{a}^{m} p(x) dx = \frac{1}{2}$$

variance

$$\sigma^2 = var(x) = \int (x - \mu)^2 p(x) dx$$

$$\sigma^2 = E(x^2) - E(x)^2$$

$$\sigma_{tot}^2 = \sigma_1^2 + \sigma_2^2 + 2 cov(x_1, x_2)$$

covariance

$$cov(x_1, x_2) = E(x_1x_2) - E(x_1)E(x_2)$$

correlation coefficient

$$\rho(x_1, x_2) = \frac{cov(x_1, x_2)}{\sqrt{\sigma_1^2 \sigma_2^2}}$$

note:

$$\int (x-\mu)^n p(x) \ dx$$

called n-th moment of a pdf

Intermezzo

- for next HW assignment: variance, covariance, correlation
- for next HW assignment: Principal Component Analysis (PCA)
- regression table

correlation means:

- features are **not mutually independent**
- we can predict feature a from feature b to some extend
- we don't need all features
- → reducing number of features (dimensions) without losing information

$$\Sigma = \begin{pmatrix} \sigma_{11}^2 & \sigma_{12}^2 & \dots & \sigma_{1N}^2 \\ \dots & \sigma_{ii}^2 & \dots & \sigma_{iN}^2 \\ \sigma_{N1}^2 & \sigma_{Ni}^2 & \dots & \sigma_{NN}^2 \end{pmatrix} \qquad \text{covariance matrix}$$

can be interpreted as a quadratic form

Sivia, "Data Analysis" section 3.2

$$\Sigma = \begin{pmatrix} \sigma_{11}^2 & \sigma_{12}^2 & \dots & \sigma_{1N}^2 \\ \dots & \sigma_{ii}^2 & \dots & \sigma_{iN}^2 \\ \sigma_{N1}^2 & \sigma_{Ni}^2 & \dots & \sigma_{NN}^2 \end{pmatrix} \qquad \text{covariance matrix}$$

Sivia, "Data Analysis" section 3.2

can be interpreted as a quadratic form

idea: diagonalize Σ

$$\begin{pmatrix} \lambda_1 & 0 \dots & 0 \\ 0 & \lambda_i & 0 \\ 0 & 0 & \lambda_N \end{pmatrix}$$

 $\begin{pmatrix} \lambda_1 & 0 \dots & 0 \\ 0 & \lambda_i & 0 \\ 0 & 0 & \lambda \dots \end{pmatrix} \qquad \text{the diagonal are the eigenvalues (= variances in new coordinate system)}$

principal components of the new covariance matrix are parallel to the new coordinate axes (= eigenvectors)

idea: diagonalize ${m \Sigma}$

$$egin{pmatrix} \lambda_1 & 0 & \dots & 0 \ 0 & \lambda_i & 0 \ 0 & 0 & \lambda_N \end{pmatrix}$$

the diagonal are the eigenvalues (= variances in new coordinate system)

principal components of the new covariance matrix are parallel to the new coordinate axes (= eigenvectors)

from sklearn.decomposition import PCA

out = PCA(n_components = 3).fit(XYZ)

eigenVec = out.components_

eigenVal = out.explained_variance_

eigenXYZ = out.transform(XYZ)

Intermezzo

- for next HW assignment: variance, covariance, correlation
- for next HW assignment: Principal Component Analysis (PCA)
- regression table

see also discussion this week

Index	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP	toxicity_score
0	341.704	2.65585	3.09407	2	9.11147	80.9281
1	335.951	3.22262	2.89039	7	8.92848	83.4911
2	235.203	2.44115	2.48203	1	6.49731	61.8406
3	246.505	2.76656	2.71547	7	7.45089	57.0538
4	437.939	3.4801	3.59569	3	10.9156	131.326

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

Intermezzo:

my_model.summary()

number of data points is much larger than the number of regressors

→ degree of freedom approx. no of obs

		not th	ie fit quality!	
Dep. Variable:	toxicity_score	R-squared:	0.790	
Model:	OLS	Adj. R-squared:	0.789	
Method:	Least Squares	F-statistic:	597.5	
Date:	Fri, 13 Sep 2024	Prob (F-statistic):	3.34e-266	p-value for
Time:	20:57:10	Log-Likelihood:	1013.0	constant mode
No. Observations:	800	AIC:	-2014.	
Df Residuals:	794	BIC:	-1986.	
Df Model:	5	p-values for	r	
Covariance Type:	nonrobust	factors		

P>|t| [0.025 0.975] std err coef 0.1494 0.000 0.173 Intercept 0.012 12.533 0.126 molecular weight 0.7961 0.970 0.089 8.982 0.000 0.622 electronegativity -0.1682 -11.591 0.000 -0.197 -0.140 0.015 bond lengths 0.0204 0.049 0.417 0.677 -0.076 0.116 num hydrogen bonds 0.0035 0.008 0.458 0.647 -0.011 0.018 logP 0.1246 0.072 1.723 -0.017 0.085 0.267

Omnibus: Durbin-Watson: 1.984 2.249 Prob(Omnibus): 0.325 Jarque-Bera (JB): 2.240 Skew: -0.129 Prob(JB): 0.326 Cond. No. Kurtosis: 2.980 65.6

OLS Regression Results

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 2σ conf range of factors

<u>more accurate:</u> determining **the p-values for the factors using ANOVA** for the corresponding residuals

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

	df	sum_sq	mean_sq	F	PR(>F)	vs from t-test
molecular_weight	1.0	13.346285	13.346285	2847.525516	8.024085e-265	0.0000
electronegativity	1.0	0.640388	0.640388	136.631363	3.085962e-29	0.0000
bond_lengths	1.0	0.000684	0.000684	0.145954	7.025342e-01	0.6766
num_hydrogen_bonds	1.0	0.000703	0.000703	0.150055	6.985866e-01	0.6473
logP	1.0	0.013917	0.013917	2.969353	8.524510e-02	0.0852
Residual	794.0	3.721459	0.004687	NaN	NaN	

vs from t-tes

```
residuals = my_model.resid
```

```
plt.hist(residuals, color = 'w', edgecolor = 'black')
plt.title('fit residuals')
plt.ylabel('#')
plt.xlabel('value')
plt.show()
```


residuals approx. normally distributed around $\mu = 0$

residuals = my_model.resid

```
plt.hist(residuals, color = 'w', edgecolor = 'black') plt.title('fit residuals') plt.ylabel('#') residuals approx. plt.xlabel('value') normally distributed plt.show() around \mu = 0
```

stats.probplot(residuals, dist = "norm", plot = pylab)
pylab.show()

Intermezzo:

Intermezzo:

```
Ypred = my_model.predict(TestS)
higher = np.max([Ypred, TestS.toxicity_score])
lower = np.min([Ypred, TestS.toxicity score])
plt.plot([lower, higher], [lower, higher], c = [0, 0, 0, 0.2], linewidth = 4)
plt.scatter(TestS.toxicity_score, Ypred, marker = '.', c = 'k')
plt.ylabel('prediction')
plt.xlabel('toxicity score')
                                     1.0
plt.show()
                                     0.8
                                   0.6
0.4
                                     0.2
                                     0.0
                                                0.2
                                                       0.4
                                                             0.6
                                                                     0.8
                                                                           1.0
                                         0.0
                                                       toxicity_score
```

mean_dev = np.sum(abs(TestS.toxicity_score - Ypred))/len(Ypred)
print(mean_dev)

Intermezzo

- for next HW assignment: variance, covariance, correlation
- for next HW assignment: Principal Component Analysis (PCA)
- regression table