CS3230 Tutorial 8

AY 25/26 Sem 1 — github/omgeta

- Q1). (b); Only total bank balance needs to be non-negative over Q operations
- Q2). Charge \$3 \in O(1) for every insertion, where \$1 is the cost of insertion, and \$2 is stored in the bank. Every time we double in size, we use \$1 for the item to copy itself over and \$1 for another item, so the bank is non-negative. Since actual cost \leq am. cost, then actual cost is O(1)
- Q3). ENQUEUE(x): charge $\$2 \in O(1)$ where \$1 is cost of addition, and \$1 is stored in the bank for later DEQUEUE(): charge $\$0 \in O(1)$ by using the stored \$1 in the bank for the item to remove DELETE(k): charge $k\$0 = 0 \in O(1)$ by using the stored \$1s in the bank for each item removal ADD(A): enqueue |A| items for charge $\$2|A| \in O(|A|)$ cost
- Q4). Let $\Phi = |Q|$, ENQUEUE(x): actual cost =1, $\Delta \Phi = +1 \implies$ am. cost $2 \in O(1)$ DEQUEUE(): actual cost =1, $\Delta \Phi = -1 \implies$ am. cost $0 \in O(1)$ DELETE(k): actual cost =k, $\Delta \Phi = -k \implies$ am. cost $0 \in O(1)$ ADD(A): actual cost =|A|, $\Delta \Phi = +|A| \implies$ am. cost $2|A| \in O(|A|)$
- Q5). Let $\Phi = size(T) items(T) \ge 0$, Case 1 (no shrinkage): actual cost = 1, $\Delta \Phi = +1 \implies$ am. cost $2 \in O(1)$ Case 2 (shrinkage): actual cost = 1 + n, $\Delta \Phi = (n - n) - (2n - (n - 1)) = <math>1 - n \implies$ am. cost $2 \in O(1)$