# Quantum Differentiable Programming with PennyLane



# Module: Analytic quantum gradients

Schuld, Maria, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. "Evaluating analytic gradients on quantum hardware." *Physical Review* A 99, no. 3 (2019): 032331.

#### Try-it-yourself: Quantum gradient



Given the quantum model

$$f(\theta) = \langle \psi(\theta) | \sigma_z | \psi(\theta) \rangle$$

with

$$|\psi(\theta)\rangle = R_x(\theta)|0\rangle, \ R_x(\theta) = e^{-i\theta\sigma_x}$$

and

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

How can we estimate  $\frac{\partial f}{\partial \theta}$  with a quantum computer?

### Try-it-yourself: Quantum gradient



$$\frac{\partial f}{\partial \theta} = \frac{\partial}{\partial \theta} \langle 0 | e^{i\theta\sigma_x} \sigma_z e^{-i\theta\sigma_x} | 0 \rangle 
= \langle 0 | (i\sigma_x) e^{i\theta\sigma_x} \sigma_z e^{-i\theta\sigma_x} | 0 \rangle - \langle 0 | e^{i\theta\sigma_x} \sigma_z (-i\sigma_x) e^{-i\theta\sigma_x} | 0 \rangle 
= i (\langle 0 | \sigma_x e^{i\theta\sigma_x} \sigma_z e^{-i\theta\sigma_x} | 0 \rangle + \langle 0 | e^{i\theta\sigma_x} \sigma_z \sigma_x e^{-i\theta\sigma_x} | 0 \rangle)$$

### Analytic quantum gradients





$$f(\vec{\theta}) = \langle 0 | U^{\dagger}(\vec{\theta}) \hat{B} U(\theta) | 0 \rangle$$

#### Analytic quantum gradients





$$\frac{\partial f}{\partial \theta_i} = \frac{1}{2 \sin(s)} \left[ f(\theta_i + S) - f(\theta_i - S) \right]$$

#### Analytic quantum gradients







$$\frac{\partial f}{\partial \theta_i} = \frac{1}{2\sin(s)} \left[ f(\theta_i + S) - f(\theta_i - S) \right]$$

#### This is not finite difference!



$$\partial_{ heta} f( heta) = c [f( heta + s) - f( heta - s)]$$

- Exact
- Shift is specific to each gate in general, we use a large shift

$$\partial_{ heta}f( heta)=rac{f( heta+\Delta heta)-f( heta-\Delta heta)}{2\Delta heta}$$

- Only an approximation
- Requires that shift is small
- Known to give rise to numerical issues
- For near-term devices, small shifts could lead to the resulting difference being swamped by noise



$$f( heta) = \sin heta \Rightarrow \partial_{ heta} f( heta) = \cos heta$$

$$\cos heta = rac{\sin( heta + \pi/4) - \sin( heta - \pi/4)}{\sqrt{2}}$$

$$\partial_{ heta}f=rac{1}{\sqrt{2}}[f( heta+\pi/4)-f( heta-\pi/4)]$$



$$U(\theta) = e^{-i K_i \theta/2}$$
 where  $K_i^2 = I$ 

$$U(\theta) = e^{-iK_i\frac{\theta}{2}} = I\cos\left(\frac{\theta}{2}\right) - iK\sin\left(\frac{\theta}{2}\right) \quad \Rightarrow \quad \nabla_{\theta}U(\theta) = -\frac{i}{2}KU(\theta) = -\frac{i}{2}U(\theta)K$$

$$f(\theta) = \left\langle \psi \middle| U^{\dagger}(\theta) B U(\theta) \middle| \psi \right\rangle \quad \Rightarrow \quad \nabla_{\theta} f(\theta) = \frac{i}{2} \left\langle \psi \middle| U^{\dagger}(\theta) [K, B] U(\theta) \middle| \psi \right\rangle$$

Substitute in 
$$[K, B] = -\frac{i}{\sin s} [U^{\dagger}(s)KU(s) - U^{\dagger}(-s)KU(-s)]$$

$$\nabla_{\theta} f(\theta) = \frac{1}{2\sin s} [f(\theta + s) - f(\theta - s)], \qquad s \in [0, 2\pi)$$



$$U(\theta) = e^{-iK_i\theta/2}$$
 where  $K_i^2 \neq I$ 

Controlled rotation operations: 
$$CR = e^{-i(I \otimes K_i)\theta/2} = \begin{bmatrix} I & 0 \\ 0 & R_i(\theta) \end{bmatrix}$$

$$\nabla_{\theta} f(\theta) = c_1 [f(\theta + \alpha) - f(\theta - \alpha)] - c_2 [f(\theta + \beta) - f(\theta - \beta)]$$

where 
$$c_1 \sin \frac{\alpha}{2} - c_2 \sin \frac{\beta}{2} = \frac{1}{4}$$
 and  $c_1 \sin(\alpha) - c_2 \sin \beta = \frac{1}{2}$ 



# The parameter-shift rule has been explored and extended in-depth since first detailed

- Quantum hardware benchmarking https://arxiv.org/abs/2008.06517
- Extended to higher derivatives https://arxiv.org/abs/2008.06517
- Extended to additional gates, including noisy channels

https://arxiv.org/abs/2005.10299 https://johannesjakobmeyer.com/blog/004-noisy-parameter-shift/ https://pennylane.ai/qml/demos/tutorial\_stochastic\_parameter\_shift.html

Convergence proofs and criteria
 https://arxiv.org/abs/1910.01155
 https://pennylane.ai/gml/demos/tutorial\_doubly\_stochastic.html





### pennylane.ai/qml

## @pennylaneai



State preparation with Rigetti Forest + PyTorch



3-qubit Ising model in PyTorch



Quantum Generative Adversarial Networks with Cirg + TensorFlow



Variational classifier



Basic tutorial: qubit rotation



Gaussian transformation



Plugins and Hybrid computation



Function fitting with a quantum neural network



A brief overview of VQE



Data-reuploading classifer



Quantum natural gradient



PyTorch and noisy devices



Variational Quantum Linear Solver



Coherent Variational Quantum Linear Solver



QAOA for MaxCut



Barren plateaus in quantum neural networks



Quantum circuit structure learning



Doubly stochastic gradient descent



Advanced Usage



Quantum transfer learning



Quantum embeddings and metric learning

#### Check out the demos!









pennylane.ai/qml

@pennylaneai

#### Check out the demos!







pennylane.ai/qml

@pennylaneai

