

Ensemble methods

- Idea is to use multiple learners and combine their predictions.
 - E.g. in ensemble of classifiers, predictions from a set of classifiers are combined
- Consider a committee of M models with uncorrelated errors, then by simply averaging the outputs of the M models the average error can be reduced by a factor of M.
 - Although in practice the errors are typically correlated and so the reduction is smaller.
- Ensemble methods can transform a "weak" learner into a strong model by taking combinations of the former.
- Ensemble methods combine models such that the ensemble achieves better performance than an individual model on average.

Ensemble Methods

Base Models – examples

Decision Tree

Neural Network

Can we reduce variance?

Original decomposition:

$$\mathbb{E}_{\mathbf{x},y,\mathcal{D}}\Big[(g_{\mathcal{D}}(\mathbf{x}) - y)^2\Big] = \mathbb{E}_{\mathbf{x},\mathcal{D}}\Big[\Big(g_{\mathcal{D}}(\mathbf{x}) - \overline{g}(\mathbf{x})\Big)^2\Big] + \mathbb{E}_{\mathbf{x}}\Big[\Big(\overline{g}(\mathbf{x}) - \overline{y}(\mathbf{x})\Big)^2\Big] + \mathbb{E}_{\mathbf{x},y}\Big[\Big(\overline{y}(\mathbf{x}) - y\Big)^2\Big]$$
Variance
Bias²
Noise

- Suppose we have M different training datasets: $\mathcal{D}_1, \mathcal{D}_2,, \mathcal{D}_M$
- Can train a separate model on each of them: $g_{\mathcal{D}_1}, g_{\mathcal{D}_2},, g_{\mathcal{D}_M}$
- Predictions can be obtained as the average of the trained models

$$\widehat{g}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} g_{\mathcal{D}_m}(\mathbf{x}) \to \overline{g}(\mathbf{x})$$
 as $M \to \infty$

- As $\widehat{g}(\mathbf{x}) \to \overline{g}(\mathbf{x})$, the variance term $\mathbb{E}[(\widehat{g}(\mathbf{x}) \overline{g}(\mathbf{x}))^2] \to 0$
- Issue: Don't have M different training datasets.

Bootstrap Aggregating

- Bagging: Bootstrap Aggregating
- Bootstrap: Replicate given dataset by sampling with replacement.
- Example:

Original data:
$$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}\}$$

Bootstrap 1: $\{\mathbf{x}^{(4)}, \mathbf{x}^{(1)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(2)}\}$
Bootstrap 2: $\{\mathbf{x}^{(5)}, \mathbf{x}^{(5)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(2)}\}$
Bootstrap 3: $\{\mathbf{x}^{(2)}, \mathbf{x}^{(1)}, \mathbf{x}^{(1)}, \mathbf{x}^{(3)}, \mathbf{x}^{(1)}\}$

• Bootstrap samples are independent realizations of the original data.

Bagging Algorithm

for m = 1 to M do

- Draw a bootstrap sample dataset \mathcal{D}_m from the training dataset \mathcal{D} .
 - The size of \mathcal{D}_m should be same as \mathcal{D} .
- Train a base model T_m on the dataset \mathcal{D}_m .

end for

- Output ensemble models: $\{T_1, T_2, ..., T_M\}$
- Prediction for a new example \mathbf{x}^* :
 - Regression:

$$\overline{y}_M(\mathbf{x}^*) = \frac{1}{M} \sum_{m=1}^M T_m(\mathbf{x}^*)$$

– Classification:

$$\overline{y}_M(\mathbf{x}^*) = \text{majority vote}\{C_1(\mathbf{x}^*), C_2(\mathbf{x}^*),, C_M(\mathbf{x}^*)\}$$

where $C_m(\mathbf{x}^*)$ is the class prediction of the mth model.

Bagging – Random Forests

- Bagging gives the average of predictions of a model fit to many Bootstrap samples.
- Bagging reduces the variance as it averages the fits from many independent datasets (bootstrap samples).
- Issue with Bagging:
 - Similar decision trees can be formed by different Bootstrap samples.
- Random Forests address the issue.
- In Random Forests, each Bootstrap sample produces a different decision tree.
- The final output is the average of the predictions from all the trees.

Bootstrap samples

Original Dataset

Instance	Weather	Health	Teaching	Topic Importance	Going to class?
1	Hot	Good	Interesting	Medium	Yes
2	Cold	Average	Boring	High	Yes
3	Cold	Sick	Mediocre	Medium	No
4	Mild	Average	Interesting	High	Yes
5	Rainy	Sick	Mediocre	Low	No
6	Hot	Good	Boring	High	Yes
7	Rainy	Good	Mediocre	Medium	No
8	Mild	Good	Mediocre	Medium	Yes

- k variables are selected at random, where k < D. Default: $k = \sqrt{D}$ - Here k = 2.
- Of the k selected features, the best feature (according to some criteria) is used for splitting.

- k variables are selected at random, where k < D. Default: $k = \sqrt{D}$ - Here k = 2.
- Of the k selected features, the best feature (according to some criteria) is used for splitting.
- At the next node, k features are again selected at random and splitting is done using the best feature.

	Instance	Weather	Health	Teaching	Topic Importance	Going to class?
	7	Rainy	Good	Mediocre	Medium	No
	2	Cold	Average	Boring	High	Yes
BOOTSTRAP-1	6	Hot	Good	Boring	High	Yes
DOOTSTRAT-1	2	Cold	Average	Boring	High	Yes
	5	Rainy	Sick	Mediocre	Low	No
	6	Hot	Good	Boring	High	Yes
	8	Mild	Good	Mediocre	Medium	Yes
	7	Rainy	Good	Mediocre	Medium	No

- k variables are selected at random, where k < D. Default: $k = \sqrt{D}$ - Here k = 2.
- Of the k selected features, the best feature (according to some criteria) is used for splitting.
- At the next node, k features are again selected at random and splitting is done using the best feature.

- k variables are selected at random, where k < D. Default: $k = \sqrt{D}$ - Here k = 2.
- Of the k selected features, the best feature (according to some criteria) is used for splitting.
- At the next node, k features are again selected at random and splitting is done using the best feature.
- The process is repeated till the end.

Tree ensembles

	Instance	Weather	Health	Teaching	Topic Importance	Going to class?
	7	Rainy	Good	Mediocre	Medium	No
	2	Cold	Average	Boring	High	Yes
BOOTSTRAP-1	6	Hot	Good	Boring	High	Yes
bootsmar 1	2	Cold	Average	Boring	High	Yes
	5	Rainy	Sick	Mediocre	Low	No
	6	Hot	Good	Boring	High	Yes
	8	Mild	Good	Mediocre	Medium	Yes
	7	Rainy	Good	Mediocre	Medium	No
	Instance	Weather	Health	Teaching	Topic Importance	Going to class?
	6	Hot	Good	Boring	High	Yes
	6	Hot	Good	Boring	High	Yes
BOOTSTRAP-2	1	Hot	Good	Interesting	Medium	Yes
DOOTSTRAF-2	4	Mild	Average	Interesting	High	Yes
	5	Rainy	Sick	Mediocre	Low	No
	1	Hot	Good	Interesting	Medium	Yes
	7	Rainy	Good	Mediocre	Medium	No
	5	Rainy	Sick	Mediocre	Low	No
	Instance	Weather	Health	Teaching	Topic Importance	Going to class?
	6	Hot	Good	Boring	High	Yes
	2	Cold	Average	Boring	High	Yes
	4	Mild	Average	Interesting	High	Yes
BOOTSTRAP-3	4	Mild	Average	Interesting	High	Yes
	1	Hot	Good	Interesting	Medium	Yes
	5	Rainy	Sick	Mediocre	Low	No
	2	Cold	Average	Boring	High	Yes

Mild Average Interesting

High

Yes

Algorithm – regression

for m = 1 to M do

- Draw a bootstrap sample dataset \mathcal{D}_m from the training dataset \mathcal{D} . The size of \mathcal{D}_m should be same as \mathcal{D} .
- Construct a decision tree T_m using the bootstraped dataset \mathcal{D}_m based on the following rules:
 - Select k features randomly from the D features.
 - From the k features, select the best feature (based on some criteria) for splitting
 - Split the node using the best feature.
 - Repeat the process till the stopping criteria is attained.

end for

- Output tree ensembles: $\{T_1, T_2, \dots, T_M\}$
- Prediction at a new point \mathbf{x}^* :
 - Regression:

$$\overline{y}_M(\mathbf{x}^*) = \frac{1}{M} \sum_{m=1}^M T_m(\mathbf{x}^*)$$

Algorithm – classification

for m = 1 to M do

- Draw a bootstrap sample dataset \mathcal{D}_m from the training dataset \mathcal{D} . The size of \mathcal{D}_m should be same as \mathcal{D} .
- Construct a decision tree T_m using the bootstraped dataset \mathcal{D}_m based on the following rules:
 - Select k features randomly from the D features.
 - From the k features, select the best feature (based on some criteria) for splitting
 - Split the node using the best feature.
 - Repeat the process till the stopping criteria is attained.

end for

- Output tree ensembles: $\{T_1, T_2, \dots, T_M\}$
- Prediction at a new point \mathbf{x}^* :
 - Classification:

$$\overline{y}_M(\mathbf{x}^*) = \text{majority vote}\{C_1(\mathbf{x}^*), C_2(\mathbf{x}^*),, C_M(\mathbf{x}^*)\}$$

where $C_m(\mathbf{x}^*)$ is the class prediction of the mth random forest.

Out-of-bag error

- Test error can be assessed without cross-validation or validation set
- On an average, each bagged tree uses around two-third of the original training dataset.
 - The left-out examples are known as "out-of-bag" (OOB) examples.
- Example:

```
Original data : \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}\}\
Bootstraps
OOB examples
Bootstrap 1 : \{\mathbf{x}^{(4)}, \mathbf{x}^{(1)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(2)}\}\ \{\mathbf{x}^{(5)}\}\
Bootstrap 2 : \{\mathbf{x}^{(5)}, \mathbf{x}^{(5)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(2)}\}\ \{\mathbf{x}^{(1)}, \mathbf{x}^{(4)}\}\
Bootstrap 3 : \{\mathbf{x}^{(2)}, \mathbf{x}^{(1)}, \mathbf{x}^{(1)}, \mathbf{x}^{(3)}, \mathbf{x}^{(1)}\}\ \{\mathbf{x}^{(4)}, \mathbf{x}^{(5)}\}\
```

- The prediction for the *n*th example $\mathbf{x}^{(n)}$ can be made using the bagging trees where $\mathbf{x}^{(n)}$ was an OOB example.
- So roughly there will be around M/3 predictions for each example.

Ensemble Methods

Out-of-bag error

- Final OOB prediction:
 - Regression: Average of the predicted outputs.
 - Classification: Majority vote.
- In this way OOB predictions can obtained for all the N examples in the training dataset.
- OOB error: Error can be computed from the OOB predictions of the N examples.
 - The resulting error provides an estimate of the test error for the bagged model.

Why RFs work?

- The main difference with bagging is that the features are chosen from random subsets.
- The decision trees in bagging can end up being correlated as the same features are tend to be used repeatedly for splitting different bootstrap samples.
 - In Random Forests the splitting features are selected from random subsets and so the correlation between trees decreases.
- Also by restricting the number of features the computations are reduced; the trees are learnt faster.