

Deep Learning

Wrap-Up Lecture

4th February 2020

Dr. Nicholas Cummins

Introduction

Machine Learning

- Discovering rules to execute a data-processing task
- A machine-learning system is trained rather than explicitly programmed.
 - It's presented with many examples relevant to a task
 - It identifies statistical structure in these examples
 - These structure eventually allows the system to determine rules for automating the task
- Unlike optimisation and conventional statistical analysis we want to learn rules that are generalisable to new data instances

What is Deep Learning?

Deep learning is a specific subfield of machine learning

- Algorithms that put specific emphasis on learning successive layers of meaning full representations
- The term deep represents this idea of successive layers of representations

What is Deep Learning?

Neural networks

In deep learning, the layered representations are (almost always)
 learned via models called neural networks structured in literal layers
 stacked on top of each other

$$\varphi\left((w_1 \ w_2 \ \dots \ b)\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ 1 \end{pmatrix}\right) = \varphi(w_1x_1 + w_2x_2 + \dots + b) = y_k$$

What is Deep Learning?

Image Source:

https://distill.pub/2017 /feature-visualization/

- Deep learning is a set of multistage techniques for learning successive data representations
 - A DNN transforms input data into a set of representations that are increasingly informative about the final result

Different optimization objectives show what different parts of a network are looking for.

- n layer index
- x,y spatial position
- z channel index
- k class index

 $layer_n[:,:,z]$ $layer_n[x,y,z]$

Class Probability softmax[k]

Overview

Image Source:

https://distill.pub/2017/feature-visualization/

- Introduction
- Feed Forward Networks
- Convolutional Neural Networks
- Recurrent Neural Networks
- Sequence to Sequence
- Regularisation
- Explainable Al

Edges (layer conv2d0)

Simple predictions

- One input data point, one output prediction
- Build a network with one single knob (the weight), to learn a mapping to one single output

What does a neural network do?

- It scales an input by a particular amount
- It uses knowledge captured in the weights to interpret the input data to predict a certain outcome
 - This premise rings true, not may how complicated the network!

Weights represent knowledge

- It is a measure of sensitivity between the input data of the network and its prediction
 - If weight is high, tiny inputs can create large predictions
 - If weight is low, large inputs will make small predictions

- Making accurate predictions:
 - Compare
 - Evaluate how well the network performed

```
error = ((input * weight)- goal_pred) ** 2
```

- Learn
 - Adjusting each weight to reduce the error
 - Gradient Descent Algorithm
 - Using the derivate of weight and error to adjust the weights

```
weight = weight - (alpha*derivative)
```


Making accurate predictions:

- Compare
 - Evaluate how well the network performed

```
error = ((input * weight)- goal_pred) ** 2
```

- Learn
 - Adjusting each weight to reduce the error
 - Gradient Descent Algorithm
 - Using the derivate of weight and error to adjust the weights

```
weight = weight - (alpha*derivative)
```


Why measure error?

- Tuning weights to predict the target is actually a more complicated task than tuning weights to set error to zero
 - Therefore tune network such that Error == 0

Why squaring the error

- Help the network learn more effectively
 - Big errors become bigger
 - Small errors become smaller
- We also want positive errors so they don't cancel each other out when they are averaged

Gradient Descent for neural learning

```
pred = input * weight
error = (pred - goal_pred) ** 2
derivative = input * (pred - goal_pred)
weight = weight - (alpha * derivative)
```

- error is a measure of how much the network missed by
 - We define error to be always positive
- derivative is the derivate of weight and error
 - Predicts both direction and amount to adjust the weights
- Alpha scales the weight update
 - Helps minimise divergence effects when the input is large

Role of Hidden Layers

What are the weights learning?

Correlations between input and output

- If a weight is high, it means the model believes there's a high degree of correlation between that input and the prediction.
- If the number is very low (negative), then the network believes there is a very low correlation (perhaps even negative correlation) between that input and the prediction

– Why is this?

Weights are found via dot products

High Prediction High correlation/similarity between inputs and weights 0.98 dot dot **Low Prediction** Low correlation /similarity between inputs and weights

Role of Hidden Layers

Creating Correlation

- To learn when there is no correlation, just use more networks
- Hidden layer(s) can be thought of as creating intermediate dataset(s) that has correlation with the output
- Stacking linear neural networks does not give and more power
 - A more computationally expensive version of a single weighted sum
- Use non-linear activation functions to induce correlation between layer

Activation Functions

Role of Activation Functions

- Good activation functions are nonlinear
 - Allow for selective correlation: increase or decrease how correlated the neuron is to all the other incoming signals
- Other core properties
 - The function must be continuous and infinite
 - The function should be monotonic
 - I.e., no two input values of have the same output value
 - The function and its derivative should be easily computable
 - Enable efficiency when training and deploying the network

Activation Functions

Linear

$$-f(x) = ax$$

– Range -∞ to ∞

Sigmoid

$$-\sigma(x) = \frac{1}{1+e^x}$$

- Range: 0 to 1

Hyperbolic Tangent

$$- tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- Range: -1 to 1

Rectified Linear Unit

- $ReLU(x) = \max(0, x)$
- Range 0 to ∞

Leaky Rectified Linear Unit

$$- LReLU(x) = \begin{cases} x \text{ for } x \ge 0\\ 0.01x \text{ for } x < 0 \end{cases}$$

– Range -∞ to ∞

Softmax

$$- softmax(x_i) = \frac{\exp(x_i)}{\sum_{j} \exp(j)}$$

- Range: 0 to 1

Forward Propagation

Information flows from input to output to make a predication

Forward Propagation

- Each neuron is a function of the previous one connected to it
 - Output is a composite function of the weights, inputs, and activations
 - Change any one of these and ultimately the output well change

Feed Forward Network

Weights Learnt via Gradient Descent

- Update weights to minimise loss function
- This is achieved by taking the gradient of loss function with respect to the weights

$$W += W + \alpha \frac{\partial j}{\partial w}$$

- Not a trivial process as neural networks are structured as a series of layers
- A single network can contain many millions of weights, and modifying the value of one weight will affect the behaviour of all the others

Training a Deep Neural Network

Learning in Deep Neural Networks

- To control weight updates in neural networks we use a loss function to how far an output prediction is from what we expected
 - The loss function computes a single scalar value relating to network performance
 - Measures the difference between what we have predicted, \tilde{y} , with the what it should predicted y.

$$\mathcal{L}(\tilde{y}, y)$$

 We can then use this information to update the network

Loss Functions

Regression

- Predicting a single numerical value
- Final activation Linear
- Loss function Mean Squared Error

Binary outcome

- Data is or isn't a class
- Final Activation function Sigmoid
- Loss function Binary Cross Entropy

Single label from multiple classes

- Multiple classes which are exclusive
- Final Activation function Softmax
- Loss function Cross Entropy

Multiple labels from multiple classes

- If there are multiple labels in your data
- Final Activation function Sigmoid
- Loss function Binary Cross Entropy

Backpropagation

- Perform Gradient descent
 - Output value effected by weights at all layers

Winter Semester 2019/20 Deep Learning

Backpropagation

Backpropagation

Tool to calculate the gradient of the loss function for each weight

24

Calculating gradient for arbitrary weight

- Iteratively apply the chain rule
- Note: Error is now a function of the output and hence a function of the input, weights, and activation functions

Winter Semester 2019/20 Deep Learning 25

Weights

Feed-Forward
$$\rightarrow$$

$$x \xrightarrow{w} wx$$

Activation function

Summation Function

Calculating gradient via backpropagation

- Local gradients can be calculated before starting the backpropagation process
- Iteratively apply the chain rule
 - The derivative of the output of the network with respect to a local variable is found by multiplying the local gradient with the upstream gradient

Calculating gradient via backpropagation

Multivariate chain rule: Gradients add at branches

Training a Deep Neural Network

Learning in Deep Neural Networks

- The loss function provides a feedback signal to adjust the weights by a small amount, in a particular direction that will lower the score
- This adjustment is performed by an optimizer, which implements the Backpropagation algorithm
 - Error attribution: figuring out how much each weight contributed to the final error by propagating the error back through the network

Comparison of different Optimisers

- Gradient Descent
 - Slow to converge, need to heuristically set learning rate
- Momentum
 - Uses gradient of previous time step to accelerate convergence
- Nesterov Accelerated Gradient (NAG)
 - Calculates gradient with respect to the future step
- Adagrad Adaptive Gradient Algorithm
 - An adaptive learning rate method
- Adadelta and RMSProp
 - Adaptive approach which restrict the window size of accumulated past gradients
- Adam Adaptive Moment Estimation
 - Calculates adaptive learning rate from first and second moments of the gradients

The Full Picture

Overview

Image Source:

https://distill.pub/2017/feature-visualization/

- Introduction
- Feed Forward Networks
- Convolutional Neural Networks
- Recurrent Neural Networks
- Sequence to Sequence
- Regularisation
- Explainable Al

Textures (layer mixed3a)

- Convolutional Neural Network (CNN)
 - Convolutional kernels perform feature extraction

CNN – Motivation

0	1	0	0	1	0
0	1	0	0	1	0
0	1	0	0	1	0
1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0

6 x 6 image

Apply small filers to detect small patterns

Each filter has a size of 3 x 3

-1	1	-1
-1	1	-1
-1	1	-1

Filter 1

1	-1	-1
-1	1	-1
-1	-1	1

Filter 2

Note: Only the size of the filters is specified; the weights are initialised to arbitrary values before the start of training.

The weights of the filters are learned through the CNN training process

0	1	0	0	1	0
0	1	0	0	1	0
0	1	0	0	1	0
1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 1

Compute the dot product between the filter and a small 3 x 3 chunk of the image

0	1	0	0	1	0
0	1	0	0	1	0
0	1	0	0	1	0
1	0	0	0	0	1
0	1	0	0	1	0

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 1

3	-3	-3	3
1	-2	-2	1
1	-2	-2	1
-1	-1	-1	-1

4 x 4 image

0	1	0	0	1	0
0	1	0	0	1	0
0	1	0	0	1	0
1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0

6 x 6 image

Filter 2

Feature Maps

4 x 4 x (#filters)

Do the same process for every filter

Max Pooling

Pooling layers are usually present after a convolutional layer.

They provide a down-sampled version of the convolution output.

In this example, a 2x2 region is used as input of the pooling. There are different types of pooling, the most used is max pooling.

Max Pooling

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

1	-1	-1
-1	1	-1
-1	-1	1

Feature map 1

Feature map 2

Operates over each feature map independently

Invariant to small differences in the input

Max Pooling

0	1	0	0	1	0
0	1	0	0	1	0
0	1	0	0	1	0
1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0

6 x 6 image

each filter is a channel

2 feature maps each of size 2 x 2

Smaller and more manageable

Convolve, Pool, Repeat

Can be repeat many times

Output can be regarded as new images:

- Smaller than the original images
- The depth of new images is the number of filters

Representation Learning with CNNs

Overview

Image Source:

https://distill.pub/2017/feature-visualization/

- Introduction
- Feed Forward Networks
- Convolutional Neural Networks
- Recurrent Neural Networks
- Sequence to Sequence
- Regularisation
- Explainable Al

Patterns (layer mixed4a)

RNN - Motivation

Processing sequential inputs/outputs

Neural Network needs **memory!**

Requires information/knowledge from previous inputs

Simple RNN

Inclusion of feedback into the network structure

Output of hidden layer are **stored** in the memory

Values in the memory are considered as **additional input** in the next time step

Inclusion of feedback into the network structure

Process a sequence of vectors **x** by applying a *recurrence formula* at every time step:

The same function and the same parameters are used at every time step.

function with parameters W

Simple RNN

Unrolled RNN

- Reuse the same weight matrix at every time step
- Makes the network easier to train

Simple RNN

Image source: https://colah.github.io/

• Simple RNN unwrapped over time

$$egin{aligned} h_t &= tahn(W_{hh}h_{t-1} + W_{xh}x_t) \ y_t &= W_{hy}h_t \end{aligned}$$

Simple RNN – Backpropagation

Backpropagation through time (BPTT)

Forward

Run through entire sequence to compute the *loss*

Backward

Run through entire sequence to compute the gradient update the weight matrix:

$$w \leftarrow w - \eta \partial L / \partial w$$

Vanishing and Exploding Gradients

Gradient flow in simple RNNs

$$w \leftarrow w - \eta \partial L / \partial w$$

Issue: W occurs each timestep

Every path from **W** to *Loss* is one dependency All paths from **W** to *Loss* need to be involved

$$\frac{\partial L}{\partial w} = \sum_{j=0}^{T} \frac{\partial L_{j}}{\partial w}$$

$$\frac{\partial L}{\partial w} = \sum_{j=0}^{T} \sum_{k=1}^{j} \frac{\partial L_{j}}{\partial y_{j}} \frac{\partial y_{j}}{\partial h_{j}} \left(\prod_{t=k+1}^{j} \frac{\partial h_{t}}{\partial h_{t-1}} \right) \frac{\partial h_{k}}{\partial w}$$

Repeated matrix multiplications leads to vanishing and exploding gradients.

The solution: Gated RNNs

Highly effective sequence models

- Gated RNNs are based on the idea of creating paths that have derivatives that neither vanish nor explode
- Gated RNNs have connection weights that may change at each time step
- Gated RNNs also allow a network to forget an old state
- Instead of manually deciding when to clear the state,
 the network to learn to decide when to do it.

Image source: https://colah.github.io/

LSTM network

 There are four interacting networks: cell state, input gate, forget gate, output gate

$$egin{aligned} g_t &= tanh \left(W_g \cdot [h_{t-1}, x_t] + b_g
ight) \ i_t &= \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i
ight) \ f_t &= \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f
ight) \ c_t &= f_t \odot c_{t-1} + i_t \odot g_t \ o_t &= \sigma \left(W_o \cdot [h_{t-1}, x_t] + b_o
ight) \ h_t &= o_t \odot tanh(c_t) \end{aligned}$$

 Single gating unit simultaneously controls the forgetting factor and the decision to update the state unit

$$egin{aligned} z_t &= \sigma \left(W_z \cdot [h_{t-1}, x_t] + b_z
ight) \ r_t &= \sigma \left(W_r \cdot [h_{t-1}, x_t] + b_r
ight) \ g_t &= tanh \left(W_g \cdot [r_t \odot h_{t-1}, x_t] + b_g
ight) \ h_t &= z_t \odot h_{t-1} + (1 - z_t) \odot g_t \end{aligned}$$

Guide to upcoming illustrations

Activation Functions

Sigmoid Activation Function

$$\sigma(x) = \frac{1}{1 + e^x}$$

Range: 0 to 1

Tanh Activation Function

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Range: -1 to 1

Simple RNN

Vanilla RNNs

- Suffer from short-term memory
- If a sequence is long enough they cannot carry information from earlier time steps to later
- Vanishing/Exploding Gradients
 - If a gradient value becomes extremely small, it doesn't contribute too much learning
 - Large error gradients result in very large updates during training.

 h_{t-1}

• The LSTM Recurrent Unit

- The internals structure of an LSTM unit allows is to keep or forget information over time
- Cell State: the memory of the network, carries relevant information throughout the processing of the sequence
- Information get's added or removed to the cell state via gates
 - Forget gate: what is relevant to keep from prior step
 - Input gate: what information is relevant to add from current step
 - Output gate: what the next hidden state should be
- The gates learns to determine what is relevant during training

Input Gate:

- Updates the cell state
- First, we pass the previous hidden state and current input into a sigmoid function.
- This decides which values will be updated by transforming the values to be between 0 and 1
- 0 means not important, and 1 means important

Multiplication S S T T Input Gates

Input Gate:

- You also pass the hidden state and current input into the tanh function to squish values between -1 and 1
- This helps to regulate the network.
- Then you multiply the tanh output with the sigmoid output.
- The sigmoid output will decide which information is important to keep from the tanh output

 x_t

Output Gate

Hidden Units

- The output gate decides what the next hidden state should be.
- First, we pass the previous hidden state and the current input into a sigmoid function.
- Then we pass the newly modified cell state to the tanh function.
- We multiply the tanh output with the sigmoid output to decide what information the hidden state should carry
- The output is the hidden state, which is then carried over to the next time step

• LSTM can deal with vanishing gradients:

- Previous cell state and input are added together
- The influence of the previous state never completely disappears unless the forget gate is closed
- Gradient flow is therefore improved
- Information is stored/retrieved over longer time periods

 x_t

Overview

Image Source:

https://distill.pub/2017/feature-visualization/

- Introduction
- Feed Forward Networks
- Convolutional Neural Networks
- Recurrent Neural Networks
- Sequence to Sequence
- Regularisation
- Explainable Al

Parts (layers mixed4b & mixed4c)

Sequence to Sequence

Aim:

- Build and train a single, large neural network that reads an input sequence and outputs an alternate sequence
 - E.g., for language translation applications

Core Idea:

- Use two RNNs in an encoder-decoder architecture
 - Encoder: models the input sequence to obtain a vector representation of a fixed dimensionality
 - Decoder: uses the output of the encoder as an input and extract the output sequence using another RNN

Sequence to Sequence

Sequence to sequence model

 Encoding the source sequence into a vector y_1 Decodes sequence into output format h_1 h_2 h_3 W x_1 χ_2 χ_3

Sequence to Sequence

Sequence modelling bottleneck

Only the final encoder state is used to initialise the decoder

Attention Mechanisms

- Do not discard intermediate encoder states, instead utilise
 all states in order to construct an new context vector
 - Probability distribution mapping each input to the output state that the decoder wants to generate
- Use this context vector when decoding the output sequence
- This means the decoder captures global information rather than solely making inferences based on a single hidden state
- During training the new network learns which inputs are important for the task, hence the name attention

Core Idea

- Attention places different focus on different parts of the input sequence assigning each input with a score.
- Then the encoder hidden states are aggregated using a weighted sum to produce a context vector which is also supplied to the decoder

Key steps

- 1. Obtain a score for every encoder hidden state
- 2. Run all the scores through a softmax layer
- 3. Multiply each encoder hidden state by its softmaxed score
- 4. Sum up the resulting vectors
- 5. Feed the context vector into the decoder

Image Source: https://towardsdatascience.com/

Image Source: https://towardsdatascience.com/

1. Obtain a score for every encoder hidden state

Step 1:

- A (scalar) score is obtained by a score function
- Typically the score function is a dot product between the decoder and encoder hidden states.
- E.g.,

Image Source: https://towardsdatascience.com/

Step 2:

- Put the scores through a softmax layer so that the softmaxed scores add up to 1.
- These softmaxed scores represent the attention distribution
- E.g.,

```
encoder_hidden score score^

[0, 1, 1] 15 0

[5, 0, 1] 60 1

[1, 1, 0] 15 0

[0, 5, 1] 35 0
```


Image Source: https://towardsdatascience.com/

3. Multiply each encoder hidden state by its softmaxed score

Step 3:

- Multiplying each encoder hidden state with its softmaxed score (scalar), to obtain the alignment vectors
- E.g.,

```
encoder score score^ alignment

[0, 1, 1] 15 0 [0, 0, 0]

[5, 0, 1] 60 1 [5, 0, 1]

[1, 1, 0] 15 0 [0, 0, 0]

[0, 5, 1] 35 0 [0, 0, 0]
```


Image Source: https://towardsdatascience.com/

4. Sum up the resulting vectors

Step 4:

- The alignment vectors are summed up to produce the context vector
- A context vector is an aggregated information of the alignment vectors from the previous step
- E.g.,

5. Feed the context vector into the decoder

Step 5:

- The manner this is done depends on the architecture design
 - Normal some form of concatenation with a decoder state or output
 - E.g.: Concatenation between the generated output from the previous decoder time step and context vector from the current time step

Overview

Image Source:

https://distill.pub/2017/feature-visualization/

- Introduction
- Feed Forward Networks
- Convolutional Neural Networks
- Recurrent Neural Networks
- Attention Mechanisms
- Regularisation
- Explainable Al

Objects (layers mixed4d & mixed4e)

Machine Learning

Goal

- Learn a *robust* predictive function $f(\cdot)$
- ullet A mapping from the feature space ${\mathcal X}$ to the label space ${\mathcal Y}$

$$\chi \xrightarrow{f(\cdot)} y$$

ullet Given a test sample (unknown label), the learnt function maps the test feature vector $oldsymbol{x}_*$ into a specific label $oldsymbol{y}_*$

$$\mathbf{y}_* = f(\mathbf{x}_*)$$

Generalisation

- Generalisation of a supervised model
 - In machine learning we want to minimise both the training error and the generalisation error
 - We only ever have a finite number of training samples
 - There is a need to ensure the generalisability of a model
 - The model's ability to adequately label new test data samples
 - Data not used during the training/optimisation phase
 - Generalization Error: The error on these new data instances

Training a machine learning model to generalise well to new (test) data is a challenging problem

Generalisation

• Training phase – minimise training errors

92

Generalisation

Generalisation Errors

- Underfitting the model is too simple
 - The model lacks sensitivity to the variation in data
- Overfitting the model is too complex
 - Model attempts to account for all the variation in the training data

Minimising Generalisation Errors

- A trade-off of between bias and variance errors and the effect of model complexity
 - Increase in model complexity results in an initial decreases in generalisation error due to a decrease in model bias
 - As model becomes more complex generalisation errors increases due an increase in model variance

Regularisation – Mini-Batch Learning

Mini-Batch Learning

- Performs an update for every batch of n training examples
- Reduces noise in variance of weight updates

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla J(\theta^{(t)}; \boldsymbol{x}^{(i:i+n)}; \boldsymbol{y}^{(i:i+n)})$$

Advantages

- Stable convergence
- Good learning speed
- Good approximation minima location

Disadvantages

Total loss not accumulated

Regularisation – Weight Penalties

Weight Penalties

Addition of a weight penalty term to the cost function

$$\tilde{J}(\theta; x, y) = J(\theta; x, y) + \alpha \Omega(\theta)$$

- Large weights make networks unstable
 - Minor variation or statistical noise on the expected inputs will result in large differences in the output
- Aim of penalty term is to encourage the model to map the inputs to the outputs of the training dataset in such a way that the weights of the model are kept small

Regularisation – Weight Penalties

Common penalty terms

- L1 Norm

- The sum of the absolute values of the weights
- L1 encourages weights to be zero if possible
- Resulting in more sparse weights
 - Weights with more zeros values

– L2 Norm

- The sum of the squared values of the weights
- Penalizes larger weights

$$\alpha\Omega(\theta) = \|\theta\|_1$$
$$= \sum_{n} |\theta_n|$$

$$\alpha\Omega(\theta) = \frac{1}{2} \|\theta\|_2^2$$
$$= \sqrt{\sum_n |\theta_n|^2}$$

Regularisation – Data Augmentation

Data Augmentation

- The best way to make a machine learning model generalise better is to train it on more data
- One way to get around this problem is to create fake data and add it to the training set
 - Trivial with images: shifts, flips, zooms, rotations
 - Adding noise is a form of augmentation
- One must be careful not to apply transformations that would change the correct class.
 - Flips and rotations not useful when recognising the difference between "b" and "d" or the difference between "6" and "9",

Regularisation – Training with Noise

Training with noise

- Adding noise means that the network is less able to memorise training samples
 - Input data is changing all of the time
- Results in smaller network weights and a more robust network that has lower generalisation error
- Typical to add noise to input data
 - White Gaussian noise with mean of 0 and a standard deviation of 1
 - Generated as needed using a pseudorandom number generator.
 - We can also add noise activations, to weights, to the gradients and to the to the outputs

Dropout

- Method for training a ensemble of slightly different networks and averaging them
- Underlying concept:
 - Although it's likely that large, unregularized neural networks will overfit to noise, it's unlikely they will overfit to the same noise
 - I.e. they will make slightly different mistakes
 - Averaging will cancel out the differing mistakes revealing what they all learned in common: the signal properties
- The ensemble of subnetworks is formed by randomly removing nonoutput units during training

Training with Dropout

- Random neurons before updating the parameters
- Each neuron has p% to dropout
 - p is a hyperparameter chosen before training

- Training with Dropout
 - The structure of the network is changed
 - Continue training with this new network
 - For each mini-batch, we resample the dropout neurons

Testing with Dropout

- Use a single neural without dropout. The weights of this network are scaled-down versions of the trained weights.
- If a neuron is retained with probability p during training, the outgoing weights are multiplied by p at test time

Regularisation – Early Stopping

Early Stopping

- Neural networks can get worse if you train them too much
 - When training a large network, there will be a point during training when the model will stop learning the signal and start learning the statistical noise in the training dataset
- Training a neural network long enough to learn the mapping, but not so long that it overfits the training data.
- Trivial to monitor performance on a holdout validation dataset can be monitored during training
- Stop training when generalization error increases

Regularisation – Early Stopping

Early Stopping

- During training, the model is evaluated on a holdout validation dataset after each epoch
- If the performance of the model on the validation dataset starts to degrade then the training process is stop

Regularisation – Compression

Pruning

- Induce sparsity in a network's connection matrices
- Possible to remove 75-90% of neurons from a network without significantly affecting performance

Core idea:

- Rank neurons according to how much they contribute
 - E.g., the L1/L2 norm of neuron weights
- Remove the low ranking neurons from the network
- This results a smaller and faster network

Regularisation – Compression

Quantization

- Reducing the number of bits that represent a number
 - Predominant numerical format used for deep learning is the
 32-bit floating point
 - Weights and activations can be represented using 8-bit integers without incurring significant loss in accuracy
 - Possible to reduce precision further
 - Binary Neural Networks {-1,1}
 - Ternary neural networks {-1,0,1}

Quantize to powers of Two

-0.38	1.74	1.93
2.56	1.27	3.71
-0.95	-7.67	-0.86

2 ⁰	2 ¹	2 ¹
2 ¹	2 ¹	2 ²
-2 ⁰	-2 ³	-2 ⁰

Overview

Image Source:

https://distill.pub/2017/feature-visualization/

- Introduction
- Feed Forward Networks
- Convolutional Neural Networks
- Recurrent Neural Networks
- Attention Mechanisms
- Regularisation
- Explainable Al

Objects (layers mixed4d & mixed4e)

Interpretable Machine Learning

 Methods and models that make the behaviour and predictions of machine learning systems understandable to humans

Black-Box Systems

- Models that cannot be understood by looking at their parameters
- These models are not interpretable

Explainable Al

Importance of Interpretability

- Provide complete descriptions
 - A single-value evaluation metric is an incomplete description
- Aid problem formalisation
 - Model must also explain how it came to the prediction
- Gain Knowledge
 - The model becomes the source of knowledge as well as the data
- Easier Debugging and Auditing
 - Important for health and safety, detect inherent biases in data

Explainable Al

Taxonomy of Interpretability Methods

- Intrinsic or post hoc?
 - Restricting the complexity of the machine learning model (intrinsic)
 - Applying methods that analyse the model after training (post hoc)
- Model-specific or model-agnostic?
 - Model-specific tools are limited to specific model classes.
 - Model-agnostic tools can be used on any machine learning model and are applied after the model has been trained
- Local or global?
 - Does the interpretation method explain an individual prediction (local) or the entire model behaviour (global)

Explainable Al

Local Interpretable Model-Agnostic Explanations (LIME)

 Trains local surrogate models to approximate the predictions of the underlying black box model

- Key Steps
 - Trains your (black-box) model
 - Select instance to explain
 - Create perturbed dataset
 - Train a weighted, interpretable model, on perturbed dataset variations
 - Explain the prediction using model

Deep Learning system are complex

- A single prediction can involve millions of mathematical operations, depending on the network architecture
- Interpretation is virtually impossible
 - We would have to consider millions of weights that interact in a complex way to understand a prediction by a neural network
- Standard explanation methods can work, however specific neural-network based approaches are advantageous
 - Access learnt information in hidden layers
 - Utilise the gradient of the network

Image Source:

https://distill.pub/2017 /feature-visualization/

Feature Visualization

Making the inner works of neural networks interpretable

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

Feature Visualisation

- Approaches of making the learned features explicit
 - Finding the input that maximizes the activation of a unit
 - Unit: neurons, entire feature maps, entire (convolutional) layers
- Feature visualisation is an optimisation problem
 - Assume that the weights of the neural network are fixed
 - I.e., the network is trained.
 - We are looking for a new image that maximizes the (mean) activation of a unit:

$$img^* = arg \max_{img} \sum_{x,y} h_{n,x,y,z}(img)$$
 Equation identifies mean activation of an entire channel z in layer n

Feature Visualisation

 Instead of maximizing the activation, you can also minimize the activation

$$img^* = arg \max_{img} \sum_{x,y} h_{n,x,y,z}(img)$$

$$img^* = \arg\min_{img} \sum_{x,y} h_{n,x,y,z}(img)$$

Maximising

Minimising

Activations from Inception V1 neuron 484 from layer mixed4d pre Relu

Image Source:

https://distill.pub/2017/feature-visualization/

Key steps in Feature Visualisation

- Start from random noise
- Place constraints on the update
 - Ensure that only small changes are allowed
- Apply steps to reduce noise in updates
 - Jittering, rotation or scaling to the image

Advantages of Visualisation

- Unique insights into the learning process of neural networks
- Can be used to explain which pixels were important for the classification

Disadvantages of Visualisation

- Many feature visualization images are simply not interpretable
- Illusion of explainability
 - They offer no real insight into the working of the neural network
 - The neurons interact in a highly complex manner, we still cannot infer these interactions from observing when certain neurons activate