Use a counting argument to prove that, for any $n, r \in \mathbb{Z}^+$ and $1 \le r \le n$,

$$\binom{n}{r} + \binom{n}{r-1} \ = \ \binom{n+1}{r} \ .$$

One can prove this combinatorial identity algebraically by using the formula for $\binom{n}{k}$. However, since $\binom{n}{k}$ is defined as number of ways to choose a k-element subset from an n-element set, there should be some way of proving the identity by counting ways of choosing subsets from sets; this is what is meant by a "counting argument".]

Solution:

Consider choosing an r-element subset A from $\{b_1, \ldots, b_n, c\}$.

There are $\binom{n+1}{r}$ choices of A.

On the other hand, if A includes c, there are $\binom{n}{r-1}$ choices;

if A excludes c, there are $\binom{n}{r}$ choices.

Therefore $\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$.

Note:

With a counting argument, one can solve this problem without knowing the formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$

Alternative: Algebraically,
$$\binom{n}{r-1} + \binom{n}{r} = \frac{n!}{(r-1)!(n-(r-1))!} + \frac{n!}{r!(n-r)!} = \frac{n!}{r!(n+1-r)!} (r+(n+1-r)) = \binom{n+1}{r}.$$

2.* For $n \in \mathbb{Z}^+$, determine

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$

and

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} + \dots + (-1)^r \binom{n}{r} + \dots + (-1)^n \binom{n}{n}$$

Solution:

Note to tutor: I put this problem before the Binomial Theorem on purpose, so students can better appreciate the Binomial Theorem.

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = (1+1)^n = 2^n$$
 if we use the Binomial Theorem.

Alternative counting argument: Chooose a subset of $\{b_1, \ldots, b_n\}$

left-hand side: $\binom{n}{r}$ for picking a subset of size r.

right-hand side: each b_i is chosen or not chosen (2 possibilities)

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = (1-1)^n = 0$$
 if we use the Binomial Theorem.

The Binomial Theorem states that, for any $x, y \in \mathbb{R}$ and $n \in \mathbb{Z}^+$,

$$(x+y)^{n} = \binom{n}{0} x^{n} y^{0} + \binom{n}{1} x^{n-1} y^{1} + \dots + \binom{n}{r} x^{n-r} y^{r} + \dots + \binom{n}{n} x^{0} y^{n}.$$

- (i)* Give an inductive proof of the theorem.
- Give a counting argument for the theorem.

Solution:

Proof: By induction on n.

Basis n = 1: $(x + y)^n = (x + y)^1 = \binom{1}{0}x^1y^0 + \binom{1}{1}x^0y^1$.

Induction Hypothesis Suppose the theorem is true if n = k, for some $k \ge 1$.

Induction Step Consider n = k + 1.

$$(x+y)^n = (x+y)(x+y)^k \\ = (x+y)(\binom{k}{0}x^ky^0 + \binom{k}{1}x^{k-1}y^1 + \dots + \binom{k}{r}x^{k-r}y^r + \dots + \binom{k}{k}x^0y^k) \text{ by the Ind. Hyp.} \\ = \binom{k}{0}x^{k+1}y^0 + \binom{k}{1}x^ky^1 + \dots + \binom{k}{r}x^{k+1-r}y^r + \dots + \binom{k}{k}x^1y^k) \\ + \binom{k}{0}x^ky^1 + \dots + \binom{k}{r-1}x^{k-(r-1)}y^r + \dots + \binom{k}{k-1}x^1y^k + \binom{k}{k}x^0y^{k+1}.$$
 Note the $\binom{k}{0} = 1 = \binom{k+1}{0}$, $\binom{k}{r} + \binom{k}{r-1} = \binom{k+1}{r}$ by Problem 1, and $\binom{k}{k} = 1 = \binom{k+1}{k+1}$, so the claim is true for $n = k+1$.

 $(x+y)^n = (x_1+y_1)(x_2+y_2)\cdots(x_n+y_n)$ where $x_i = x$ and $y_i = y$ for all i. (ii)

In expanding the product, we can view each term in the expansion as picking x_i or y_i from each of the $(x_i + y_i)$'s.

The coefficient of $x^{n-r}y^r$ is thus the number of ways of picking r y_i 's (and picking x_i 's from the rest), i.e. $\binom{n}{r}$.

4. (i) Give an inductive proof of the following:

$$\binom{0}{r} + \binom{1}{r} + \binom{2}{r} + \dots + \binom{n}{r} = \binom{n+1}{r+1} \quad \text{for any } n, r \in \mathbb{N}.$$

Give a counting argument for the result.

Solution:

Claim: $\binom{0}{r} + \binom{1}{r} + \binom{2}{r} + \dots + \binom{n}{r} = \binom{n+1}{r+1}$ for any $n, r \in \mathbb{N}$.

Proof: By induction on
$$n$$
. (This proof works for any $r \in \mathbb{N}$.)

Basis $n = 0$: $\binom{0}{r} = \begin{cases} 1 & \text{if } r = 0 \\ 0 & \text{if } r > 0 \end{cases}$ $\binom{n+1}{r+1} = \binom{0+1}{r+1} = \begin{cases} 1 & \text{if } r = 0 \\ 0 & \text{if } r > 0 \end{cases}$

Induction Hypothesis Suppose the claim is true if n = k, for some $k \ge 0$.

Induction Step Consider n = k + 1.

(0)
$$+$$
 (1) $+$ (2) $+$ ··· + (k) $+$ ($k+1$) $+$ ($k+1$) by the Ind. Hyp. $=$ ($k+1$) by Problem 1.

so the claim is true for n = k + 1.

By induction, the claim is true for all $n \in \mathbb{N}$.

Alternative non-inductive proof:

By Problem 1, $\binom{n}{r+1} + \binom{n}{r} = \binom{n+1}{r+1}$, so $\binom{n}{r} = \binom{n+1}{r+1} - \binom{n}{r+1}$.

Therefore
$$\binom{0}{r} + \binom{1}{r} + \binom{2}{r} + \dots + \binom{n}{r}$$

$$= (\binom{1}{r+1} - \binom{0}{r+1}) + (\binom{2}{r+1} - \binom{1}{r+1}) + (\binom{3}{r+1} - \binom{2}{r+1}) + \dots + (\binom{n+1}{r+1} - \binom{n}{r+1})$$

$$= -\binom{0}{r+1} + \binom{n+1}{r+1} = \binom{n+1}{r+1}.$$

Consider picking an (r+1)-element subset A from $\{0,1,\ldots,n\}$.

If the largest number in A is s, there are $\binom{s}{r}$ choices from $0, 1, \ldots, s-1$.

The total is $\sum_{s=0}^{n} {s \choose r}$, but this is also ${n+1 \choose r+1}$.

5.* Let $m, n, r \in \mathbb{N}$. Prove the following (Vandermonde's identity):

$$\binom{m+n}{r} = \binom{m}{0} \binom{n}{r} + \binom{m}{1} \binom{n}{r-1} + \dots + \binom{m}{r} \binom{n}{0}.$$

[An algebraic proof of this identity would be painfully tedious.]

Solution:

Consider choosing r persons from m men and n women; there are $\binom{m+n}{r}$ possibilities.

The chosen r can include k men, for $k = 0, 1, \ldots, r$.

For each k, there are $\binom{m}{k}\binom{n}{r-k}$ possibilities by the Multiplication Rule.

By the Addition Rule, the total number of possibilities is

$${\binom{m}{0}}{\binom{n}{r}} + {\binom{m}{1}}{\binom{n}{r-1}} + \dots + {\binom{m}{r}}{\binom{n}{0}} ,$$

so the claim is true.

Note This problem illustrates the power of counting arguments.

- 6. Recall the definition of $\bigcup_{k=1}^n A_k$ and $\bigcup_{k=1}^\infty A_k$ in Tutorial 3.
 - (i) Consider the claim:

"Suppose A_1, A_2, \ldots are finite sets. Then $\bigcup_{i=1}^n A_i$ is finite for any $n \geq 2$."

An inductive proof was given in class (Theorem 3.10). Here is an alternative "proof":

"We will prove by induction on n. Since A_1 and A_2 are finite, $A_1 \cup A_2$ is finite (by Lemma 3.9), so the claim is true for n=2. Now suppose the claim is true for n=k, so $\bigcup_{i=1}^k A_i$ is finite. Let $A_{k+1} = \emptyset$. Then $\bigcup_{i=1}^{k+1} A_i = \left(\bigcup_{i=1}^k A_i\right) \cup A_{k+1} = \left(\bigcup_{i=1}^k A_i\right) \cup \emptyset = \bigcup_{i=1}^k A_i$, which is finite by the induction hypothesis, so the claim is true for n=k+1. Therefore, the claim is true for all $n \ge 2$."

What is wrong with this "proof"?

(ii) Prove the following is false: "Suppose A_1, A_2, \ldots are finite sets. Then $\bigcup_{i=1}^{\infty} A_i$ is finite." [The point here is: induction takes you to any finite n, but not to infinity.]

Solution:

(i) Error in "proof":

There is an implicit universal quantification on A_1, A_2, \ldots , i.e. we have to prove the claim is true for all possible A_1, A_2, \ldots , so we cannot just consider the special case $A_{k+1} = \emptyset$. The proof must work for any given A_1, A_2, \ldots

(ii) Let $A_i = \{i\}$. Then $\bigcup_{i=1}^{\infty} A_i = \mathbb{Z}^+$, which is infinite.

7. State and prove the Inclusion/Exclusion Rule for four sets.

Solution:

$$|A \cup B \cup C \cup D| = |A| + |B| + |C| + |D| - |A \cap B| - |A \cap C| - |B \cap C| - |B \cap D| - |C \cap D| - |A \cap D| + |A \cap B \cap C| + |A \cap C \cap D| + |B \cap C \cap D| + |A \cap B \cap D| - |A \cap B \cap C \cap D|.$$

Proof:

$$|A\cup B\cup C\cup D|=|A|+|B\cup C\cup D|-|A\cap (B\cup C\cup D)| \text{ by Inclusion/Exclusion for 2 sets } |B\cup C\cup D|=|B|+|C|+|D|-|B\cap C|-|B\cap D|-|C\cap D|+|B\cap C\cap D|$$

by Inclusion/Exclusion for 3 sets.

$$\begin{split} |A\cap (B\cup C\cup D)| &= |(A\cap B)\cup (A\cap C)\cup (A\cap D)| \\ &= |A\cap B| + |A\cap C| + |A\cap D| - |A\cap B\cap C| - |A\cap B\cap D| - |A\cap C\cap D| \\ &+ |A\cap B\cap C\cap D| & \text{by Inclusion/Exclusion for 3 sets} \end{split}$$

The claim follows when the second and third equations are substituted into the first equation.

8. Let $n \in \mathbb{Z}^+$. A **complete graph** for n nodes, denoted K_n , is an undirected graph with an edge between every pair of nodes and a loop at every node. Draw K_n for $n \leq 5$.

- 9. Suppose A and B are nonempty finite sets, |A| = n and |B| = k.
 - (i) How many relations are there from A to B?
 - (ii)* How many functions are there from A to B? (In particular, how many Boolean functions are there for m variables?)
 - (iii) How many injective functions are there from A to B?
 - (iv)* For $k \leq 4$, how many surjective functions are there from A to B?
 - (v) How many bijections are there from A to B?
 - (vi)* For $k \leq 3$, how many functions are there from A to B that are not injective and not surjective?

Solution:

- (i) A relation R is a subset of $A \times B$, so $R \in \mathcal{P}(A \times B)$. $\mathcal{P}(A \times B)$ has $2^{|A \times B|} = 2^{|A||B|}$ elements, so there are 2^{nk} relations.
- (ii)* For a function $f: A \to B$, there are k choices for each $f(a_i)$. There are n possible a_i 's, so the number of functions is $k^n = |B|^{|A|}$. For Boolean functions of m variables, $A = \{T, F\}^m$ and $B = \{T, F\}$, so $|A| = 2^m$ and |B| = 2, and there are $|B|^{|A|} = 2^{2^m}$ Boolean functions.
- (iii) If |A| > |B|, there are no injective functions $f: A \to B$ (Theorem 8.1.2). If $|A| \le |B|$, there are k choices for $f(a_1)$, k-1 choices for $f(a_2)$, etc. so the total number of injective functions is $k(k-1)\cdots(k-n+1) = {}^kP_n$.
- (iv)* Let T(n,k) be the number of surjective functions from A to B, and $F = \{f : A \to B \mid f \text{ is not surjective}\}$. (By Theorem 8.1.3, T(n,k) = 0 if n < k.) Then $T(n,k) = k^n |F|$, by (ii) above. Let $F_i = \{f : A \to B \mid b_i \notin range(f)\}$. Then $F = F_1 \cup F_2 \cup \ldots \cup F_k$. By Inclusion/Exclusion, $|F| = \sum_i |F_i| \sum_{i,j} |F_i \cap F_j| + \sum_{h,i,j} |F_h \cap F_i \cap F_j| \cdots$ where $|F_i| = (k-1)^n, |F_i \cap F_j| = (k-2)^n, \ldots, |F_1 \cap \cdots \cap F_r| = (k-r)^n$. Therefore $|F| = \binom{k}{1}(k-1)^n \binom{k}{2}(k-2)^n + \binom{k}{3}(k-3)^n \cdots = \sum_{i=1}^k (-1)^{i-1}\binom{k}{i}(k-i)^n$, so $T(n,k) = k^n |F| = (-1)^0\binom{k}{0}(k-0)^n |F| = \sum_{i=0}^k (-1)^i\binom{k}{i}(k-i)^n$. $\underbrace{k=1}_i: T(n,1) = 1^n + (-1)\binom{1}{1}(1-1)^n = 1 \text{ (all of } A \text{ maps to } b_1).$ $\underbrace{k=2}_i: T(n,2) = 2^n \binom{2}{1}(2-1)^n + \binom{2}{2}(2-2)^n = 2^n 2 \text{ (all of } A \text{ map to } b_1 \text{ or all map to } b_2)$ $\underbrace{k=3}_i: T(n,3) = 3^n \binom{3}{1}(3-1)^n + \binom{3}{2}(3-2)^n = 3^n 3(2^n) + 3.$ $\underbrace{k=4}_i: T(n,4) = 4^n \binom{4}{1}(4-1)^n + \binom{4}{2}(4-2)^n \binom{4}{3}(4-3)^n = 4^n 4(3^n) + 6(2^n) 4.$
- (v) There is a bijection $f: A \to B$ if and only if n = k (Theorem 8.1.4). There are k choices for $f(a_1), k-1$ choices for $f(a_2), \ldots,$ total = $\begin{cases} k! & \text{if } n = k \\ 0 & \text{if } n \neq k \end{cases}$
- (vi)* $\#(\sim \text{injective} \land \sim \text{surjective})$ $= \#(\sim (\text{injective} \lor \text{surjective})) = \#\text{functions} - \#(\text{injective} \lor \text{surjective})$ = #functions - (#injective + #surjective - #bijections). $\underline{k=1}$: All functions are surjective, so 0. $\underline{k=2}$: n > k = 2: $2^n - (0 + (2^n - 2) - 0) = 2$ n < k = 2: $2^n - (^2P_n + 0 - 0) = 0$ since n = 1. n = k = 2: $2^n - (^2P_2 + (2^2 - 2) - 2!) = 2$.

$$\underline{k=3}: \ n > k = 3: \ 3^n - (0 + (3^n - 3(2^n) + 3) - 0) = 3(2^n) - 3$$

$$n < k = 3: \ 3^n - (^3P_n + 0 - 0) = \begin{cases} 0 & \text{if } n = 1\\ 3 & \text{if } n = 2 \end{cases}$$

$$n = k = 3: \ 3^3 - (^3P_3 + (3^3 - 3(2^3) + 3) - 3!) = 21.$$

Note: For n = k, the general formula is $n^n - n!$.

- 10.* Let U be a nonempty finite set. A 3-partition is a partition of U into three subsets X, Y and Z such that
 - $X \neq \emptyset, Y \neq \emptyset \text{ and } Z \neq \emptyset,$
 - $X \cap Y = Y \cap Z = X \cap Z = \emptyset$ and
 - $\bullet \quad X \cup Y \cup Z = U.$
 - (i) List all possible 3-partitions of $\{a, b, c, d\}$.

Suppose U has n elements, where $n \geq 3$. Let P_n be the number of 3-partitions of U. What is P_4 ?

- (ii) Prove that $P_{n+1} = 3P_n + 2^{n-1} 1$ for all $n \ge 3$.
- (iii) Prove that $P_n = \frac{1}{2}(3^{n-1} 2^n + 1)$ for all $n \ge 3$.

Solution:

(i)
$$\{\{a\}, \{b\}, \{c, d\}\}, \{\{a\}, \{c\}, \{b, d\}\}, \{\{a\}, \{d\}, \{b, c\}\}, \{\{b\}, \{c\}, \{a, d\}\}, \{\{b\}, \{d\}, \{a, c\}\}, \{\{c\}, \{d\}, \{a, b\}\} \Rightarrow P_4 = 6.$$

Let $U = \{a_1, ..., a_n\}.$

(ii) Case (1) The 3-partition is $\{X, Y, \{a_{n+1}\}\}$.

The number of possible X is the number of possible $X \in \mathcal{P}(\{a_1, \ldots, a_n\})$, except $X = \emptyset$ and $X = \{a_1, \ldots, a_n\}$ (which makes $Y = \emptyset$), i.e. $|\mathcal{P}(\{a_1, \ldots, a_n\})| - 2 = 2^n - 2$.

Once X is determined, $Y = \{a_1, \ldots, a_n\} \setminus X$.

However, $\{X,Y\} = \{Y,X\}$, so the total number of $\{X,Y\}$ is $\frac{2^{n}-2}{2} = 2^{n-1} - 1$.

Case (2) The 3-partition is formed by taking a 3-partition $\{X,Y,Z\}$ of $\{a_1,\ldots,a_n\}$ and adding a_{n+1} to one of them (X or Y or Z).

The number of $\{X, Y, Z\}$ is P_n , so the total number is $3P_n$.

Adding the two cases gives $P_{n+1} = 3P_n + 2^{n-1} - 1$.

(iii) We prove $P_n = \frac{1}{2}(3^{n-1} - 2^n + 1)$ for all $n \ge 3$ by induction on n.

Basis n = 3: There is just one partition, namely $\{\{a_1\}, \{a_2\}, \{a_3\}\}$, so $P_3 = 1$. Also $\frac{1}{2}(3^{3-1} - 2^3 + 1) = \frac{1}{2}(9 - 8 + 1) = 1 = P_3$, so the claim is true for n = 3.

Induction Hypothesis: Suppose the equation is correct if n = k, for some $k \ge 3$.

Induction Step: Consider n = k + 1.

By (ii),
$$P_{k+1} = 3P_k + 2^{k-1} - 1$$

 $= \frac{3}{2}(3^{k-1} - 2^k + 1) + 2^{k-1} - 1$ by the Induction Hypothesis
 $= \frac{1}{2}(3^k) - 3(2^{k-1}) + \frac{3}{2} + 2^{k-1} - 1$
 $= \frac{1}{2}(3^k) - 2^k + \frac{1}{2}$
 $= \frac{1}{2}(3^k - 2^{k+1} + 1)$ so the claim is true for $n = k + 1$.

By induction, the claim is true for all $n \geq 3$.

- 11.* Consider a Boolean expression α with statement variables x_1, \ldots, x_n . A **truth assignment** is a function $f: \{x_1, \ldots, x_n\} \to \{T, F\}$. We say f satisfies α (or f is a **satisfying truth assignment** for α) if and only if α is true when, for all i, $f(x_i)$ is the truth value of x_i .
 - (i) Does f(p) = T, f(q) = T and f(r) = F satisfy $(p \lor q) \land ((r \lor \sim q) \lor \sim (p \lor r))$?
 - (ii) What is the maximum number of truth assignments that can satisfy α ?
 - (iii) For n=3, give an example of α that has the maximum number of satisfying truth assignments.
 - (iv) A Boolean expression is **satisfiable** if and only if it has at least one satisfying truth assignment. For n = 4, give an example of a Boolean expression that is not satisfiable.
 - (v) How many satisfying truth assignments are there for the Boolean expression in (i)?

[The **Satisfiability Problem** is: Given a Boolean expression α , is α satisfiable? Mathematically, this question has a trivial solution: simply try all possible truth assignments. Computationally, however, this problem is believed to be **intractable**, in the sense that no one has found a fast solution algorithm. The problem does not become much easier even if α is in CNF: if α has two literals per clause, there is a polynomial algorithm to determine satisfiability; but if α has three literals per clause, the satisfiability problem becomes NP-complete.]

Solution:

n is the number of statement variables.

- (i) No. See the truth table below.
- (ii) Each truth assignment corresponds to one row of the truth table for α , so the maximum number of truth assignments that can satisfy α is the number of rows in the truth table, i.e. 2^n .
- (iii) Any tautology will do; e.g. $((p \to q) \land (q \to r)) \to (p \to r)$.
- (iv) α is not satisfiable iff it does not have any satisfying truth assignments. This happens iff every row in the truth table makes α false, i.e. α is a contradiction. Any contradiction will do; e.g. $(x_1 \wedge \sim x_1 \wedge x_2) \vee (x_3 \wedge \sim x_3 \wedge x_4)$.
- (v) There are 5 satisfying assignments:

p	q	r	$p \lor q$	$r \vee \sim q$	$\sim (p \vee r)$	$(p \vee q) \wedge ((r \vee \sim q) \vee \sim (p \vee r))$
T	Τ	Τ	Τ	Τ	\mathbf{F}	T
\mathbf{T}	Τ	\mathbf{F}	${ m T}$	\mathbf{F}	${ m F}$	${ m F}$
\mathbf{T}	F	Τ	Τ	${ m T}$	${ m F}$	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m F}$	${ m T}$
F	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m F}$	${ m T}$
F	${ m T}$	\mathbf{F}	${ m T}$	F	${ m T}$	${ m T}$
F	\mathbf{F}	${ m T}$	\mathbf{F}	F	${ m F}$	${ m F}$
\mathbf{F}	F	F	F	\mathbf{F}	${ m T}$	F