DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A

Durée: 4 heures

Calculatrices/téléphones non autorisés

Notation : Par la suite, \mathbb{N}^* , \mathbb{Z} , \mathbb{Q} et \mathbb{R} désignent respectivement les ensembles des nombres entiers naturels non nuls, entiers relatifs, rationnels et réels. \mathbb{R}_+^* désigne l'ensemble des nombres réels strictement positifs.

1. Intégration

(1) Calculer les intégrales suivantes :

(a)
$$\int_0^2 \max(\ln(1+x^2), 1) dx$$
,

(b)
$$\int_0^1 \lim_{n \to \infty} \sqrt{x + \sqrt{x + \sqrt{\dots + \sqrt{x}}}} dx$$
 en justifiant d'abord l'existence de la limite.

(2) Montrer que pour tout $n \in \mathbb{N}^*$,

$$\frac{2}{\pi} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) \le \int_{\pi}^{2\pi} \frac{|\sin(nx)|}{x} dx \le \ln(2).$$

2. Equations aux dérivées partielles

Soit la fonction $v:[0,10]\times\mathbb{R}\to\mathbb{R}$, solution de l'équation suivante :

$$(1) \qquad -\frac{\partial v}{\partial t}(t,x)+\max_{a\in\mathbb{R}}\left[-\frac{\partial v}{\partial x}(t,x)(x+2a)-\frac{\partial^2 v}{\partial x^2}(t,x)\frac{a^2}{2}\right]=0 \quad \forall (t,x)\in[0,10]\times\mathbb{R},$$

(2)
$$v(10,x) = x^2 - x \quad \forall x \in \mathbb{R}.$$

On cherche une solution de la forme

(3)
$$v(t,x) = \gamma(t)x^2 + \varphi(t)x + \rho(t),$$

où $\gamma:[0,10]\to\mathbb{R}_+^*$ et $\varphi,\ \rho:[0,10]\to\mathbb{R}$ sont des fonctions dérivables à déterminer.

- (a) Calculer $\frac{\partial v}{\partial t}(t,x)$, $\frac{\partial v}{\partial x}(t,x)$ et $\frac{\partial^2 v}{\partial x^2}(t,x)$ en fonction de x et des fonctions γ, φ et ρ .
- (b) En utilisant (2), trouver les conditions terminales $\gamma(10)$, $\varphi(10)$ et $\rho(10)$.
- (c) Que devient l'équation (1)?
- (d) Rappeler ou retrouver le maximum d'une fonction $x\mapsto \alpha x^2+\beta x+c$ où $\alpha<0$ et $\beta,c\in\mathbb{R}$. En déduire le maximum de la fonction $a\mapsto -\frac{\partial v}{\partial x}(t,x)(x+2a)-\frac{\partial^2 v}{\partial x^2}(t,x)\frac{a^2}{2}$, où $\frac{\partial v}{\partial x}(t,x)$ et $\frac{\partial^2 v}{\partial x^2}(t,x)$ sont les dérivées trouvées au premier point. Que devient l'équation (1)?
- (e) Trouver les équations aux dérivées partielles vérifiées par les fonctions γ et φ .
- (f) Calculer les solutions des équations trouvées au point précédent. Calculer la fonction ρ .

1

(g) En déduire la fonction v.

3. Polynômes

Soit n un entier naturel non nul. On pose $A = (X+1)^{2n} - 1$, polynôme de $\mathbb{R}[X]$.

- (1) Montrer que l'on peut écrire $A = X \times B$ où B est un polynôme de $\mathbb{R}[X]$ dont on précisera le degré, le coefficient dominant et le terme constant noté b_0 .
- (2) Déterminer les racines de A dans \mathbb{C} (l'ensembles des nombres complexes). On posera $z_0 = 0$ et les autres racines $z_1, ..., z_{2n-1}$ seront mises sous forme trigonométrique.
- (3) On pose

$$P_n = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{2n}\right).$$

Montrer que

$$P_n = \prod_{k=n+1}^{2n-1} \sin\left(\frac{k\pi}{2n}\right).$$

En déduire que, si

$$Q_n = \prod_{k=1}^{2n-1} \sin\left(\frac{k\pi}{2n}\right),\,$$

alors $P_n = \sqrt{Q_n}$.

- (4) Calculer de deux façons $\prod_{k=1}^{2n-1} z_k$. En déduire Q_n et P_n .
- (5) On pose $F = \frac{1}{A}$. Déterminer la décomposition de F en éléments simples sur \mathbb{C} .
- (6) Question indépendante : Soit $P \in \mathbb{R}[X]$, $P = X^n + X^{n-1} + ... + X + 1$. Soient $x_1, x_2, ..., x_n \in \mathbb{C}$ les racines de P. Calculer

$$S = \sum_{k=1}^{n} \frac{1}{x_k - 2}.$$

4. Matrices

Notations et notions preliminaires : Soient p et q appartenant à \mathbb{Z} et

$$[\![p,q]\!] = \{m : m \in \mathbb{Z} \mid p \le m \text{ et } m \le q\}.$$

 $\mathcal{M}_n(\mathbb{R})$ désigne l'algèbre des matrices carrées d'ordre n, n étant un entier supérieur ou égal à 2, dont les éléments sont des réels. On note I_n la matrice identité d'ordre n et J_n la matrice de \mathcal{M}_n dont tous les éléments sont égaux à 1.

Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on note a_{ij} l'élément de la *i*-ème ligne et de la *j*-ème colonne de la matrice A.

Une matrice $A = (a_{ij})$ appartenant à $\mathcal{M}_n(\mathbb{R})$ est dite matrice semi-magique s'il existe un réel $\sigma(A)$ vérifiant :

$$\forall i \in [1, n], \quad \sum_{j=1}^{n} a_{ij} = \sigma(A) \quad \text{ et } \quad \forall j \in [1, n], \quad \sum_{i=1}^{n} a_{ij} = \sigma(A).$$

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite matrice magique si elle est semi-magique et si en plus

$$\sigma(A) = tr(A) = \sum_{\substack{i+j=n+1\\1 \le i,j \le n}} a_{ij}.$$

Les ensembles des matrices semi-magiques et magiques d'ordre n seront notés respectivement \mathcal{P}_n et \mathcal{Q}_n .

Une matrice magique A est définie carré magique si la propriété suivante est vérifiée

$${a_{ij};(i,j) \in [1,n]^2} = [1,n^2].$$

L'objet de ce problème, dont les trois parties peuvent être traitées indépendamment, est l'étude de \mathcal{P}_n et \mathcal{Q}_n et de certaines propriétés des matrices magiques.

Partie I

- I.1 Montrer que si A est un carré magique d'ordre n, le réel $\sigma(A)$ vaut nécessairement $\frac{n(n^2+1)}{2}$.
- I.2 Montrer qu'il n'existe pas de carré magique d'ordre 2.

Partie II

- II.1 Montrer que \mathcal{P}_n est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et que l'application σ est une forme linéaire sur \mathcal{P}_n . Vérifier également que \mathcal{Q}_n est un sous-espace vectoriel de \mathcal{P}_n .
- II.2 Vérifier que la matrice J_n est magique. Calculer pour $p \in \mathbb{N}^*$, la matrice J_n^p .
- II.3 a) Montrer qu'une matrice A de $\mathcal{M}_n(\mathbb{R})$ est dans \mathcal{P}_n si et seulement si il existe un réel λ tel que $AJ_n = J_nA = \lambda J_n$. Quelle est alors la signification de λ ?
 - b) Montrer que \mathcal{P}_n est une sous-algèbre de l'algèbre $\mathcal{M}_n(\mathbb{R})$. Que dire pour \mathcal{Q}_n ?
 - c) Montrer que l'application σ est un morphisme d'algèbres de \mathcal{P}_n dans \mathbb{R} .
 - d) Soit A une matrice inversible de \mathcal{P}_n . Montrer que $\sigma(A)$ est non nul, que A^{-1} appartient à \mathcal{P}_n et que $\sigma(A^{-1}) = \frac{1}{\sigma(A)}$. Réciproquement, si A appartient à \mathcal{P}_n et que $\sigma(A)$ est non nul, peut-on conclure que A est inversible?

Partie III

On note maintenant $M_n = (m_{ij})$ la matrice d'ordre n qui vérifie $m_{ij} = 0$ si $i + j \neq n + 1$ et $m_{ij} = 1$ si i + j = n + 1.

Une matrice $A = (a_{ij})$ appartenant à $\mathcal{M}_n(\mathbb{Q})$ appartient à l'ensemble $\mathcal{P}_n(\mathbb{Q})$ si il existe un rationnel $\sigma(A)$ vérifiant :

$$\forall i \in [1, n], \quad \sum_{j=1}^{n} a_{ij} = \sigma(A) \quad \text{ et } \quad \forall j \in [1, n], \quad \sum_{j=1}^{n} a_{ij} = \sigma(A).$$

Une matrice $A \in \mathcal{M}_n(\mathbb{Q})$ appartient à l'ensemble $\mathcal{Q}_n(\mathbb{Q})$ si elle appartient à $\mathcal{P}_n(\mathbb{Q})$ et si en plus sa trace et la trace de M_nA sont égales à $\sigma(A)$.

- III.1 Montrer que $\mathcal{P}_n(\mathbb{Q}) = \mathcal{Q}_n(\mathbb{Q}) \oplus \mathbb{Q}I_n \oplus \mathbb{Q}M_n$.
- III.2 Montrer que $\mathcal{P}_n(\mathbb{Q})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{Q})$.
- III.3 Montrer que si $A \in \mathcal{Q}_3(\mathbb{Q})$, alors $A^p \in \mathcal{Q}_3(\mathbb{Q})$ pour tout $p \geq 1$ impair.
- III.4 Le résultat de la question précédente est-il encore valable pour des matrices magiques en dimension supérieure?