SEQUENTIAL CIRCUITS

- Race around condition
- Mater slave model
- Flip flop conversion

Race Around Condition

■ For JK flip flop if J, K and Clock are equal to 1 the state of flip-flop keeps on toggling which leads to uncertainty in determining the output of the flip-flop. This problem is called **Race around** the **condition**.

Race Around Condition

■ For JK flip flop if J, K and Clock are equal to 1 the state of flip-flop keeps on toggling which leads to uncertainty in determining the output of the flip-flop. This problem is called **Race around** the **condition**.

Master Slave JK Flip Flop

Master Slave JK Flip Flop Clock SINGLE STREET SI

Master Slave D Flip Flop

Flip Flop Conversion

1. Design a T Flip Flop using D Flip Flop

$$\begin{array}{c}
A \\
O \\
\downarrow
\end{array}$$

$$T = 1$$

Tof T-ft.

The
$$Q_{t+1}$$
 Deriver reconstruction to blood D-ff Q_{t+1} Deriver $Q_$

$$S = J \otimes_{L}$$

$$K \otimes_{L} + U \otimes_{L}$$

$$J = 0 \otimes_{L} + U \otimes_{L}$$

$$R = K \otimes_{L}$$

$$R = K \otimes_{L}$$

3. Design a D flip flop using an AB flip flop whose function table is given below.

Α	В	Output
0	0	RESET
0	1	No Change
1	0	Toggle
1	1	SET

3. Design a D flip flop using an AB flip flop CONTD.

Asynchronous Inputs:

PRESET	CLEAR	FF Response
0	0	Indeterminate
5 0~	1	SET
1	0	CLEAR
1	1 -	Clocked operation

Asynchronous Inputs:

Any Questions?