We claim:

- 1. An optical element for an optical data transfer device, said optical element comprising an optical glass with an index of refraction ($\mathbf{n_d}$) that is greater than or equal to 1.70, an Abbé number ($\mathbf{v_d}$) that is greater than or equal to 35 and a density (ρ) that is less than or equal to 4.5 g/cm³.
- 2. The optical element as defined in claim 1, wherein said Abbé number (ν_d) is greater than or equal to 40.
- 3. The optical element as defined in claim 1 or 2, wherein said density (ρ) is less than or equal to 4.3 g/cm³.
- 4. An optical glass for optical data transfer, said optical glass having an index of refraction ($\mathbf{n_d}$) that is greater than or equal to 1.70, an Abbé number ($\mathbf{v_d}$) that is greater than or equal to 35 and a density (\mathbf{p}) that is less than or equal to 4.5 g/cm³.
- 5. A read-and-write device for optical data transfer, said read-and-write device comprising an optical glass with an index of refraction (n_d) that is greater than or

equal to 1.70, an Abbé number (v_d) that is greater than or equal to 35 and a density (ρ) that is less than or equal to 4.5 g/cm³.

- 6. The read-and-write device with a movable read-write head and at least one optical element, said at least one optical element comprising an optical glass with an index of refraction (\mathbf{n}_d) greater than or equal to 1.70, an Abbé number (\mathbf{v}_d) greater than or equal to 35 and a density (ρ) less than or equal to 4.5 g/cm³.
- 7. An optical glass having an index of refraction ($\mathbf{n_d}$) greater than or equal to 1.71, an Abbé number ($\mathbf{v_d}$) greater than or equal to 39 and a density (\mathbf{p}) less than or equal to 4.7 g/cm³, wherein said optical glass comprises (in percent by weight on an oxide basis):

La ₂ O ₃	30 to 45
B ₂ O ₃	30 to 40
PbO	0.1 to 5
MgO	0 to 8
CaO	0 to 8
SrO .	0 to 8
BaO	0 to 8
ZnO	1 to 10
TiO ₂	0 to 5
ZrO ₂	1 to 10

Y_2O_3	1 to 8
Yb ₂ O ₃	0.1 to 5
Gd_2O_3	0.1 to 5
Nb ₂ O ₅	0.1 to 10
With MgO+CaO+SrO+BaO	. 0 to 10

8. An optical glass having an index of refraction ($\mathbf{n_d}$) greater than or equal to 1.71, an Abbé number ($\mathbf{v_d}$) greater than or equal to 39 and a density (ρ) less than or equal to 4.7 g/cm³, wherein said optical glass comprises (in percent by weight on an oxide basis):

La ₂ O ₃	30 to 45
B ₂ O ₃	30 to 40
PbO	0.1 to 5
MgO	0 to 8
CaO	0 to 8
SrO .	0 to 8
BaO	0 to 8
ZnO	1 to 10
TiO ₂	0 to 5
ZrO ₂	1 to 10
Y ₂ O ₃	1 to 8
Yb ₂ O ₃	0.1 to 5

Gd_2O_3	0.1 to 3
Nb ₂ O ₅	2 to 10
With MgO+CaO+SrO+BaO	0 to 10

9. An optical glass having an index of refraction (\mathbf{n}_d) greater than or equal to 1.71, an Abbé number (\mathbf{v}_d) greater than or equal to 39 and a density (\mathbf{p}) less than or equal to 4.7 g/cm³, wherein said optical glass comprises (in percent by weight on an oxide basis):

La ₂ O ₃	32 to 42
B ₂ O ₃	30 to 40
PbO	0.5 to 4
MgO	0 to 8
CaO	0 to 8
SrO	0 to 8
BaO	0 to 8
ZnO	2 to 8
TiO ₂	0 to 2
ZrO ₂	3 to 10
Y_2O_3	1 to 5
Yb ₂ O ₃	0.5 to 2
Gd ₂ O ₃	0.1 to 3
Nb ₂ O ₅	4 to 10
With MgO+CaO+SrO+BaO	0 to 10

10. An optical glass having an index of refraction ($\mathbf{n_d}$) greater than or equal to 1.71, an Abbé number ($\mathbf{v_d}$) greater than or equal to 39 and a density ($\boldsymbol{\rho}$) less than or equal to 4.7 g/cm³, wherein said optical glass comprises (in percent by weight on an oxide basis):

La ₂ O ₃	35 to 50
B_2O_3	30 to 40
SiO ₂	0 to 8
GeO ₂	0.1 to 15
MgO	0 to 5
CaO	0.1 to 7
SrO	0 to 2
ВаО	0.1 to 7
ZnO	0 to 5
ZrO ₂	0.1 to 8
Y_2O_3	0.1 to 6
Gd ₂ O ₃	0 to 5
Nb ₂ O ₅	1 to 10

11. An optical glass having an index of refraction (n_d) greater than or equal to 1.71, an Abbé number (v_d) greater than or equal to 39 and a density (ρ) less

than or equal to 4.7 g/cm³, wherein said optical glass comprises (in percent by weight on an oxide basis):

38 to 48
30 to 40
0.to 5
0.5 to 13
5 to 13
0 to 2
0.1 to 5
0 to 2
0.1 to 5
0 to 3
0.5 to 6
0.1 to 4
3 to 7

12. The optical glass as defined in claim 8, 9, 10 or 11, further comprising Al_2O_3 in an amount of from 0 to 5 percent by weight, based on oxide content, and at least one alkali metal oxide selected from the group consisting of Li_2O , Na_2O , K_2O , Rb_2O and Cs_2O , and wherein said at least one alkali metal oxide is present in an amount of from 0 to 10 percent by weight, based on oxide content.

- 13. The optical glass as defined in claim 8, 9, 10 or 11, further comprising at least one alkali metal oxide selected from the group consisting of Li_2O , Na_2O and K_2O , and wherein said at least one alkali metal oxide is present in an amount of from 0 to 10 percent by weight, based on oxide content.
- 14. The optical glass as defined in claim 8, 9, 10 or 11, further comprising at least one alkali metal oxide selected from the group consisting of Li_2O , Na_2O and K_2O , and wherein said at least one alkali metal oxide is present in an amount of from 0 to 8 percent by weight, based on oxide content.
- 15. The optical glass as defined in claim 8, 9, 10 or 11, further comprising at least one ingredient selected from the group consisting of As₂O₃, Sb₂O₃, SnO₂, CeO₂, Cl., F., and SO₄²⁻, and wherein said at least one ingredient is present in an amount of from 0 to 1.5 percent by weight and said amount for oxide ingredients is on an oxide basis.