4.3 Determining Statistical Significance and 4.4 A Closer Look at Testing

E. Nordmoe

Math 261

Section 4.3 Determining Statistical Significance

p-value and H_0

- If the p-value is small, then a statistic as extreme as that observed would be unlikely if the null hypothesis were true, providing significant evidence against H_0 .
- The *smaller* the p-value, the *stronger* the evidence against the null hypothesis and in favor of the alternative.

Formal Decisions

If the p-value is small:

- Reject H_0
- the sample would be **extreme** if H_0 were true
- the results are statistically significant
- we have evidence for H_a

If the p-value is not small:

- Do not reject H_0
- ullet the sample would not be too extreme if H_0 were true
- the results are **not statistically significant**
- ullet the test is **inconclusive**; either H_0 or H_a may be true

But how small is small?

Significance Level

The **significance level** α is the threshold *below* which the p-value is deemed small enough to reject the null hypothesis.

- p-value $<lpha\Longrightarrow$ Reject H_0
- p-value $\geq \alpha \Longrightarrow$ Do not reject H_0

The most common value of α is .05

Values of .10 and .01 are also common.

Significance Level

- p-value $< lpha \Longrightarrow$ Results are **statistically significant** Reject H_0 in favor of H_a
- p-value $\geq \alpha \Longrightarrow$ Results are not statistically significant
 - Test is inconclusive

Components of a Hypothesis Test

A formal hypothesis test includes the following components:

- 1. State the null and alternative hypotheses (defining parameters when necessary).
- 2. Determine the value of the observed sample statistic.
- 3. Find the p-value.
- 4. Make a generic decision about H_0 : Reject H_0 or do not reject H_0 .
- 5. Write a sentence explaining the conclusion of the test in context, indicating whether or not we have convincing evidence for H_a and referring back to the question of interest.

Significance Testing is Controversial

Moving to a World Beyond p < 0.05

Link to the article

P-value, Significance Levels, and Decisions

Statistical Conclusions

Formal decision of hypothesis test, based on $\alpha = 0.05$:

Reject H₀

Do not reject H₀

Informal strength of evidence against H₀:

Very Strong	Strong	Moderate	Some	Little	
1%		5%		10%	

Never Accept the Null

- "Do not reject H_0 " is not the same as "accept H_0 "!
- Lack of evidence against H_0 is **not** the same as evidence for H_0 !

Section 4.4 A Closer Look at Testing

Type I and Type II Errors

	Reject H_0	Do not reject H_0
H_0 is true	Type I Error $(lpha)$	No error
H_0 is false	No error	Type II Error (eta)

Type I Error ==> False positive

Type II Error ==> False negative

Significance Level

The significance level, α , represents the tolerable probability of making a Type I error.

Multiple Testing

- When multiple hypothesis tests are conducted, the chance that at least one test incorrectly rejects a true null hypothesis increases with the number of tests.
- If the null hypotheses are all true, α of the tests will yield statistically significant results just by random chance.

Publication Bias

- Publication bias refers to the fact that usually only the significant results get published.
- The one study that turns out significant gets published, and no one knows about all the insignificant results.
- This combined with the problem of multiple comparisons, can yield very misleading results.

Replicating Results

By attempting to *replicate* significant results with another study, this second study can either:

• Reject H_0 , providing further confirmation that H_a is true

OR

• Fail to reject H_0 , suggesting that the first study may have yielded a Type I error.

Practical vs Statistical Significance

- With small sample sizes, even large differences or effects may not be significant.
- With large sample sizes, even a very small difference or effect can be significant.
- A statistically significant result is not always practically significant, especially with large sample sizes.