Efficient Global 2D-3D Matching for Camera Localization in a Large-Scale 3D Map

Liu Liu, Hongdong Li, and Yuchao Dai

In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017

Outline

- □ Research field
- Motivation
- Proposed scheme
- Experiment and comparison
- Conclusion

What is IBL?

■ Image-based localization → feature similarity

- image retrieval: without building the global map in advance
- direct 2D-3D matching: map is needed
- covisibility: consider the relationship among multiple global sub-models

https://www.slideshare.net/xavigiro/deep-image-retrieval-learning-global-representations-for-image-search

General solution for 2D-3D matching localization

- **■** Selection of 2D-3D matches
 - □ PnP + RANSAC

- **■** Remove ambiguous matches
 - ratio test

https://www.semanticscholar.org/paper/An-Analytical-Solution-to-the-Perspective-n-Point-Fabrizio-Devars/95cacfebed0cde6b111559342e9b29fff69c06e6/figure/0

Why?

- □ Large-scale problem \rightarrow ambiguity
 - 3D points can be visually similar or even identical (repeated structure)
 - **ambiguous matches** are almost inevitable

Why?

□ Local search \rightarrow sub-optimal solution

- □ take account of similarities between 2D-3D matches
- involves in global compatibility among all matching pairs? effective?

Local search

How? – Step 1 (build a map graph)

- □ traditionally, 3D map is in the form of unordered point clouds
- transform into weighted and bi-directed map graph
 - covisibility c_{ij} if P_j is seen by an image set, how likely P_i can also be seen from the same image set

How? – Step 1 (build a map graph)

- \Box collect all c_{ij} into a square matrix $C = [c_{ij}]$ of size $N \times N$
- □ normalize each column unit norm to form a left stochastic matrix
 - with each column summing to 1
- \square also call C as state transition matrix

$$c_{ij} = \frac{|A_i \cap A_j|}{|A_j|} \qquad \qquad \begin{bmatrix} c_{00} & \cdots & c_{0N} \\ \vdots & \ddots & \vdots \\ c_{N0} & \cdots & c_{NN} \end{bmatrix}$$

How? – Step 2 (query vector)

- \square query image \rightarrow a set of 2D feature points
- □ for every 2D feature points, find a set of tentative matches from 3D graph nodes, by comparing their descriptor similarity via Bag-of-words vocabulary tree search

How? – Step 2 (query vector)

- \Box collect all q_i into a column vector q
- \square normalize q to have unit norm $q_i \leftarrow \frac{q_i}{\sum_{i=1}^N q_i}$
- \square q can also be interpreted as a probability
 - measures the probability of point cloud *i* belongs to the optimal sub-set of 3D points that can be matched to the set of 2D query features

How? – Step 3 (random walk)

- Map graph → Markov network (aka. Markov Random Field)
 - for global match between 2D query image and 3D map
 - $p_v(t)$ is the probability of finding random walker at node v at time t
 - $\square p_{\nu}(\infty)$ gives the probability that the random walker eventually ends at node ν
 - when random walkers converge, they reach steady state

How? – Step 3 (random walk)

□ Random Walk with Restart (RWR)

- $p(t+1) = \alpha Cp(t) + (1-\alpha)q$
- \square α is chosen empirically between 0.8–0.9
- $\square p(0)$ is initialized by 1/N
- $\square p(\infty)$ stands for the final matchability of every 3D point to the set of 2D query features

How? – Step 4 (camera pose computation)

■ Recover one-to-one correspondences

- do ratio test to retrieve one-to-one matches
- fed into PnP-RANSAC to find camera position and orientation

How? - Summary

Experiment – dataset selection

□ Four standard publicly available benchmark datasets for city-scale localization (1) Dubrovnik, (2) Rome, (3) Vienna, (4) San Francisco (SF-0)

Dataset	#(images)	#(points)	#(query images)
Dubrovnik [32]	6,044	1,975,263	800
Rome [32]	15,179	4,067,119	1,000
Vienna [23]	1,324	1,123,028	266
SF-0 [12]	610,773	30,342,328	803

□ In term of recall-rate (# images have been successfully localized)

Method	Inlier thresholds						
	0.2	0.3	0.4	0.5	0.6	0.7	0.8
Active Search [43,44]	709	673	607	528	420	287	162
Our method	791	774	757	730	690	607	516

[44] T. Sattler, B. Leibe, and L. Kobbelt, "Efficient effective prioritized matching for large-scale image-based localization," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

^[43] T. Sattler, B. Leibe, and L. Kobbelt, "Improving image-based localization by active correspondence search," ECCV'12

□ In term of precision (camera localization error)

[43] T. Sattler, B. Leibe, and L. Kobbelt, "Improving image-based localization by active correspondence search," ECCV'12.

[44] T. Sattler, B. Leibe, and L. Kobbelt, "Efficient effective prioritized matching for large-scale image-based localization," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

□ In term of precision (camera localization error)

Method	quartile errors (m)			num. of images		
Method	1st	median	3rd	<18.3m	>400m	#(reg.)
our method	0.24	0.70	2.67	743	7	794
act. se. [43,44]	0.40	1.40	5.30	704	9	795
all desc. [42]	0.40	1.40	5.90	685	16	783
int. mean [42]	0.50	1.30	5.10	675	13	782
P2F [32]	7.50	9.30	13.40	655	-	753
vis. prob. [13]	0.88	3.10	11.83	-	-	788

^[42] T. Sattler, B. Leibe, and L. Kobbelt, "Fast image-based localization using direct 2d-to-3d matching," ICCV'11.

^[13] S. Choudhary and P. Narayanan, "Visibility probability structure from sfm datasets and applications," ECCV'12.

^[32] Y. Li, N. Snavely, and D. P. Huttenlocher, "Location recognition using prioritized feature matching," ECCV'10.

□ In terms of accuracy (the inlier ratio in the final matched 2D-3D feature pairs after applying RANSAC)

[43] T. Sattler, B. Leibe, and L. Kobbelt, "Improving image-based localization by active correspondence search," ECCV'12.

[44] T. Sattler, B. Leibe, and L. Kobbelt, "Efficient effective prioritized matching for large-scale image-based localization," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

□ In terms of scalability [use SF-0 dataset]

Dataset	#(images)	#(points)	#(query images)
SF-0 [12]	610,773	30,342,328	803

- our method localizes 652 images (out of totally 803 query images), and the average time spent per image is 0.30s
- active search [43,44] is only able to localize 31 images
- □ For Rome and Vienna datasets
 - has about 4-millions and 1-millions 3D map points
 - □ localized 990 (out of 1000) and 213 (out of 266) query images
 - the average query time by our unoptimized code was 2.35s and 1.67s

Conclusion

A global method, taking account of not only individual feature match's visual similarity but also the global compatibilities as measured by the pair-wise covisibility, to deal with scalability and ambiguity for localization.

Ratio test

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004