Nanorobotics Based Thrombolysis: Dissolving blood clot using nanorobots

Presented by: Mohammed Shaheer V K

S7G

CHN19AE015

Guide : Mrs. Anupama A

Department of Electronics EngineeringCollege of Engineering Chengannur

Content

- **➤** Problem Statement
- > Introduction
 - Nanotechnology
- Nanorobotics
- Nanorobot
- Thrombolysis
- > Nanorobotics for Thrombolysis
- Medications for thrombolysis
- > Procedure
 - Stages of action
- Conclusion and future scope
- > Pros and cons
- > References
- ➤ Thank you
- **➤** Questions

Problem Statement

Inaccessible blood clots at deeper part of body, increasing fatality rates in patients.

"Nanotechnology in medicine is going to have a major impact on the survival of the human race."

-Bernard Marcus

INTRODUCTION

NANO TECHNOLOGY

-Norio Taniguchi-1974

Introduction

What is nano technology?

Nanorobot

 A nanorobot is 50-100nm sized small robot developed to carry out specific functions

Thrombolysis

What is blood clot?

Thrombolysis treatment for blood clot

10 million cases of VTE occur annually across the globe

Nano Robotics For Thrombolysis

• Blood clots in deep arteries or veins, narrow internal sections of brain are accessed for treatment using nanorobots

Medications for Removing blood Clot

- Streptokinase.
- Alteplase.
- Reteplase.
- Tenecteplase.
- Urokinase.
- Prourokinase.
- Anistreplase(APSAC)

Medicines used for Thrombolysis

- tissue plasminogen activator (tPA)
- TNKase (tenecteplase)
- Urokinase

Nanorobot

Procedure

Swamps of nanorobots with medications are passed to the destinations area

It consists of 3 stages.

Procedure

Stage 1 Stage 2 Stage 3

Injecting nanorobots Movement of nanorobots via via veins

Location of treatment area bloodstream to area of action via chemical changes

Controlling via Distribution of medicine ultrasonic/electromagnetic field

Pros and Cons

Pros

- Faster healing
- Quick action
- Precise
- Low chance of failure

Cons

- Chance for misuse
- Security issue
- Malfunction
- Underdevelopment

Conclusion And Future Scope

Advancement of medical sceince as well breakthroughs in nanotechnology now is becoming a reality for nanorobotic treatment of different human diseases and conditions

Introducing nanorobots and image processing to autonomously remove blood clots without any medications.

Reference

P. Malhotra and N. Shahdadpuri, "Nano-robotic based Thrombolysis: Dissolving Blood Clots using Nanobots," 2020 IEEE 17th India Council International Conference (INDICON), 2020, pp. 1-4, doi: 10.1109/INDICON49873.2020.9342510.

Akita, S., Nakayama, Y., 2002, "Manipulation of nanomaterial by carbon nanotube nanotweezers in scanning probe microscope," Japanese Journal of Applied Physics, Vol. 41, Part 1, No. 6B, pp. 4242-4245.

individual carbon nanotubes through nanorobotic manipulations and its applications," Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, pp. 440-445.

Thanks

Any questions?

Reference

Akita, S., Nakayama, Y., 2002, "Manipulation of nanomaterial by carbon nanotube nanotweezers in scanning probe microscope," Japanese Journal of Applied Physics,

Vol. 41, Part 1, No. 6B, pp. 4242-4245.

individual carbon nanotubes through nanorobotic manipulations and its applications," Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, pp. 440-445.

.

Reference

individual carbon nanotubes through nanorobotic manipulations and its applications," Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, pp. 440-445.

Arai, F., Nakajima, M., Dong, L., Fukuda, T., 2002, "Force measurement with pico-Newton order resolution using a carbon nanotube probe," International Symposium on Micromechatronics and Human Science, pp. 105-110.

Arai, F., Nakajima, M., Dong, L., Fukuda, T., 2003a, "Pico-Newton order force measurement using a calibrated carbon nanotube probe by electromechanical resonance," Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 300-305.