

B39HF High Frequency Circuits

Lecture 5 The Lossless Microstrip Line

Prof. Yongqiang Hei

yqhei@mail.xidian.edu.cn

- Microstrip technology is the most commonly used TL in practice, due to ease of implementation and low-cost PCB fabrication.
- Transmission line is defined by a top metallic strip elevated above some type of material.
- This material is typically a dielectric material of low loss and it is attached to a metallic ground plane.

- Presence of charges of opposite polarity on its two conducting sides gives rise to electric field lines.
- Considering a HF source, fields are time-varying.
- Due to Maxwell's Equations a magnetic field is also field generated.
- The microstrip line has two geometric parameters: the width of the elevated strip, w, and the thickness (height) of the dielectric layer, h.

- Patterns of E and H (or B) are not always perpendicular.
- This does not define a pure transverse electromagnetic wave (TEM).
- Around the regions of the conductors, field lines have highest intensity and are generally orthogonal.
- Microstrip is considered a quasi-TEM transmission line (TL).
- Can apply fundamental TL theory to practical high frequency circuit design when using microstrip.

For the coaxial, two-wire, and parallel-plate lines, the field lines are confined to the region between the conductors. A characteristic attribute of such transmission lines is that the phase velocity of a wave traveling along any one of them is given by

$$u_p = \frac{c}{\sqrt{\varepsilon_r}}$$

where c is the velocity of light in free space and ε_r is the relative permittivity of the dielectric medium between the conductors.

面身毛子們找大學 The Lossless Microstrip Line

In the microstrip line, nonuniform mixture can be accounted for by defining an effective relative permittivity ε_{eff} such that the phase velocity is given by an expression that resembles, namely

$$u_p = \frac{c}{\sqrt{\varepsilon_{eff}}}$$

It is possible to use curve-fit approximations to rigorous solutions to arrive at the Following set of expressions:

$$\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \left(\frac{\varepsilon_r - 1}{2}\right) \left(1 + \frac{10}{s}\right)^{-xy}$$

where s is the width-to-thickness ratio

$$s = \frac{w}{h}$$

面身毛子件技术學 The Lossless Microstrip Line

and x and y are intermediate variables given by

$$x = 0.56 \left[\frac{\varepsilon_r - 0.9}{\varepsilon_r + 3} \right]^{0.05}$$

$$y = 1 + 0.02 \ln \left(\frac{s^4 + 3.7 \times 10^{-4} s^2}{s^4 + 0.43} \right) + 0.05 \ln \left(1 + 1.7 \times 10^{-4} s^3 \right)$$

The characteristic impedance of the microstrip line is given by

$$Z_{0} = \frac{60}{\sqrt{\varepsilon_{eff}}} \ln \left\{ \frac{6 + (2\pi - 6)e^{-t}}{s} + \sqrt{1 + \frac{4}{s^{2}}} \right\}$$

with

$$t = \left(\frac{30.67}{s}\right)^{0.75}$$

Figure 2-11 displays plots of Z_0 as a function of s for various types of dielectric materials:

面身起汗神水大學 The Lossless Microstrip Line

The corresponding line and propagation parameters are given by

$$R' = 0$$
 (Because $\sigma_c = \infty$)

$$G' = 0$$
 (Because $\sigma = \infty$)

$$\alpha = 0$$
 (Because $R' = G' = 0$)

$$L' = Z_0^2 C'$$

$$C' = \frac{\sqrt{\varepsilon_{eff}}}{Z_0^2 c}$$

$$\beta = \frac{\omega}{c} \sqrt{\varepsilon_{eff}}$$

面身毛子科技大学 The Lossless Microstrip Line

The preceding expressions allow us to compute the values of Z_0 and the other propagation parameters when given values for ε_r , h, and ω . This is exactly what is needed in order to analyze a circuit containing a microstrip transmission line.

To perform the reverse process, namely to design a microstrip line by selecting values for its ω and h such that their ratio yields the required value of Z_0 (to satisfy design specifications), we need to express s in terms

of Z_0 . The expression for Z_0 given by $Z_0=\frac{60}{\sqrt{\epsilon_{eff}}}\ln\left\{\frac{6+(2\pi-6)e^{-t}}{s}+\sqrt{1+\frac{4}{s^2}}\right\}$

is rather complicated, so inverting it to obtain an expression for s in terms

of Z_0 is rather difficult.

To perform the reverse process, namely to design a microstrip line by selecting values for its ω and h such that their ratio yields the required value of Z_0 (to satisfy design specifications), we need to express s in terms of Z_0

An alternative option is to generate a family of curves similar to those displayed in figure and to use them to estimate s for a specified value of Z_0 .

面身毛子科技术學 The Lossless Microstrip Line

A logical extension of the graphical approach is to generate curve-fit expressions that provide high-accuracy estimates of s. The error associated with the following formulas is less than 2%:

(a) For
$$Z_0 \leq (44 - 2\varepsilon_r)\Omega$$

$$s = \frac{\omega}{h} = \frac{2}{\pi} \left\{ (q-1) - \ln(2q-1) + \frac{\varepsilon_r - 1}{2\varepsilon_r} \left[\ln(q-1) + 0.29 - \frac{0.52}{\varepsilon_r} \right] \right\}$$

where,
$$q = \frac{60\pi^2}{Z_0\sqrt{\varepsilon_r}}$$

The error associated with the following formulas is less than 2%:

面身配子們找大學 The Lossless Microstrip Line

A logical extension of the graphical approach is to generate curve-fit expressions that provide high-accuracy estimates of s:

(b) For
$$Z_0 \ge (44 - 2\varepsilon_r)\Omega$$

$$s = \frac{\omega}{h} = \frac{8e^{p}}{e^{2p} - 2}$$

where,
$$p = \sqrt{\frac{\varepsilon_r + 1}{2}} \frac{Z_0}{60} + \left(\frac{\varepsilon_r - 1}{\varepsilon_r + 1}\right) \left(0.23 + \frac{0.12}{\varepsilon_r}\right)$$

面身毛子科技术学 The Lossless Microstrip Line

Module 2.3 Lossless Microstrip Line

The output panel lists the values of the transmission-line parameters and displays the variation of Z_0 and ε_{eff} with h and ω .

面身毛子科技术學 The Lossless Microstrip Line

Example 2-2: Microstrip Line

A 50Ω microstrip line uses a 0.5 mm thick sapphire substrate with $\varepsilon_r = 9$. What is the width of its copper strip?

Solution: Since $Z_0 = 50 > 44 - 18 = 32$, we should use

$$p = \sqrt{\frac{\varepsilon_r + 1}{2}} * \frac{Z_0}{60} + \left(\frac{\varepsilon_r - 1}{\varepsilon_r + 1}\right) \left(0.23 + \frac{0.12}{\varepsilon_r}\right)$$
$$= \sqrt{\frac{9 + 1}{2}} * \frac{50}{60} + \left(\frac{9 - 1}{9 + 1}\right) \left(0.23 + \frac{0.12}{9}\right) = 2.06$$

$$s = \frac{\omega}{h} = \frac{8e^{p}}{e^{2p} - 2} = \frac{8e^{2.06}}{e^{4.12} - 2} = 1.056$$

面身毛子神技术學 The Lossless Microstrip Line

Hence,
$$\omega = sh = 1.056 \times 0.5 \ mm = 0.53 \ mm$$

To check our calculations, we use s=1.056 to calculate Z_0 to verify that the value we obtained is indeed equal or close to 50Ω . With $\varepsilon_r = 9$,

$$x = 0.56 \left[\frac{\varepsilon_r - 0.9}{\varepsilon_r + 3} \right]^{0.05}$$

$$y = 1 + 0.02 \ln \left(\frac{s^4 + 3.7 * 10^{-4} s^2}{s^4 + 0.43} \right) + 0.05 \ln \left(1 + 1.7 * 10^{-4} s^3 \right)$$

$$S = \frac{w}{h}$$

$$t = \left(\frac{30.67}{s}\right)^{0.75}$$

面身毛子科技术學 The Lossless Microstrip Line

$$\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \left(\frac{\varepsilon_r - 1}{2}\right) \left(1 + \frac{10}{s}\right)^{-xy}$$

$$Z_{0} = \frac{60}{\sqrt{\varepsilon_{eff}}} \ln \left\{ \frac{6 + (2\pi - 6)e^{-t}}{s} + \sqrt{1 + \frac{4}{s^{2}}} \right\}$$

yield,

$$x = 0.55$$
 $y = 0.99$ $\varepsilon_{\text{eff}} = 6.11$

$$t = 12.51$$
 $Z_0 = 49.93\Omega$

The calculated value of Z_0 is, for all practical purposes, equal to the value specified in the problem statement.