Presentations-ByProjectiveGradedModules

Graded module presentations for CAP over a graded ring

2019.03.15

15 March 2019

Martin Bies

Martin Bies

Email: martin.bies@alumni.uni-heidelberg.de

Homepage: https://www.ulb.ac.be/sciences/ptm/pmif/people.html

Address: Physique Théorique et Mathématique Université Libre de Bruxelles Campus Plaine - CP 231

Building NO - Level 6 - Office O.6.111

1050 Brussels Belgium

Contents

1	The CAP category of graded module presentations for CAP						
	1.1	The GAP categories for graded module presentations for CAP	4				
	1.2	The GAP categories for graded module presentation morphisms for CAP	5				
	1.3	CAP categories	5				
2	Graded submodules of projective graded modules over a graded ring						
	2.1	GAP category of graded submodules for CAP	6				
	2.2	GAP category of graded ideals for CAP	6				
	2.3	Constructors for graded submodules from a list list and a graded ring	7				
	2.4	Constructors for graded submodules from a list of lists and a specified superobject	7				
	2.5	Constructors for graded submodules from a morphism	8				
	2.6	Attributes for graded submodules	8				
	2.7	Full information of a submodule	9				
	2.8	Submodule powers	9				
3	Fun	Functors for graded module presentations for CAP					
	3.1	Functor less generators for S-fpgrmod	10				
	3.2	Functor StandardModule for S-fpgrmod	11				
	3.3	Functor ByASmallerPresentation for S-fpgrmod	11				
	3.4	The Frobenius-power functor	12				
4	Nat	Natural transformations for graded module presentations for CAP					
	4.1	Natural isomorphism from identity functor to the standard module functor	14				
5	Tools						
	5.1	Saturation	15				
	5.2	Embeddings in projective modules	16				
	5.3	Minimal free resolutions	16				
	5.4	Betti tables	16				
	5.5	Extension modules	16				
	5.6	Twisting graded module presentations	17				
6	Examples and Tests						
	6.1	The category SfpgrmodLeft	18 18				
	6.2	The category SfpgrmodRight	18				
	6.3	Graded left ideals	19				
	6.4	Graded right ideals	21				

$^{\prime}$

Presentations By Projective Graded Modules

Index		32
6.8	Minimal free resolutions and Betti tables	30
6.7	The Frobenius functor	28
6.6	Graded right submodules	25
6.5	Graded left submodules	23

The CAP category of graded module presentations for CAP

1.1 The GAP categories for graded module presentations for CAP

${\bf 1.1.1} \quad Is Graded Left Or Right Module Presentation For CAP \ (for \ Is CAPP resentation Category Object)$

▷ IsGradedLeftOrRightModulePresentationForCAP(object)

(filter)

Returns: true or false

The GAP category of graded left and right module presentations.

1.1.2 IsGradedLeftModulePresentationForCAP (for IsGradedLeftOrRightModulePresentationForCAP)

▷ IsGradedLeftModulePresentationForCAP(object)

(filter)

Returns: true or false

The GAP category of objects in the presentation category over the category of projective graded left modules.

${\bf 1.1.3} \quad Is Graded Right Module Presentation For CAP \quad (for \quad Is Graded Left Or Right Module Presentation For CAP)$

▷ IsGradedRightModulePresentationForCAP(object)

(filter)

Returns: true or false

The GAP category of objects in the presentation category over the category of projective graded right modules.

1.2 The GAP categories for graded module presentation morphisms for CAP

1.2.1 IsGradedLeftOrRightModulePresentationMorphismForCAP (for IsCAPPresentationCategoryMorphism)

▷ IsGradedLeftOrRightModulePresentationMorphismForCAP(object)

(filter)

Returns: true or false

The GAP category of left or right module presentation morphisms

1.2.2 IsGradedLeftModulePresentationMorphismForCAP (for IsGradedLeftOr-RightModulePresentationMorphismForCAP)

▷ IsGradedLeftModulePresentationMorphismForCAP(object)

(filter)

Returns: true or false

The GAP category of morphisms in the presentation category over the category of projective graded left modules.

1.2.3 IsGradedRightModulePresentationMorphismForCAP (for IsGradedLeftOr-RightModulePresentationMorphismForCAP)

▷ IsGradedRightModulePresentationMorphismForCAP(object)

(filter)

Returns: true or false

The GAP category of morphisms in the presentation category over the category of projective graded right modules.

1.3 CAP categories

1.3.1 SfpgrmodLeft (for IsHomalgGradedRing)

▷ SfpgrmodLeft(S)

(attribute)

Returns: a CapCategory

Given a graded ring S, one can consider the category of f.p. graded left S-modules, which is captured by this attribute.

1.3.2 SfpgrmodRight (for IsHomalgGradedRing)

▷ SfpgrmodRight(S)

(attribute)

Returns: a CapCategory

Given a graded ring S, one can consider the category of f.p. graded right S-modules, which is captured by this attribute.

Graded submodules of projective graded modules over a graded ring

2.1 GAP category of graded submodules for CAP

▷ IsGradedLeftSubmoduleForCAP(object)

(filter)

Returns: true or false

The GAP category of graded left submodules for CAP.

2.1.2 IsGradedRightSubmoduleForCAP (for IsGradedRightModulePresentationFor-CAP)

▷ IsGradedRightSubmoduleForCAP(object)

(filter)

Returns: true or false

The GAP category of graded right submodules for CAP.

${\bf 2.1.3} \quad Is Graded Left Or Right Submodule For CAP \ (for \ Is Graded Left Or Right Module Presentation For CAP)$

▷ IsGradedLeftOrRightSubmoduleForCAP(object)

(filter)

Returns: true or false

The GAP category of graded left or right submodules for CAP.

2.2 GAP category of graded ideals for CAP

2.2.1 IsGradedLeftIdealForCAP (for IsGradedLeftSubmoduleForCAP)

▷ IsGradedLeftIdealForCAP(object)

(filter)

Returns: true or false

The GAP category of graded left ideals for CAP.

2.2.2 IsGradedRightIdealForCAP (for IsGradedRightSubmoduleForCAP)

▷ IsGradedRightIdealForCAP(object)

(filter)

Returns: true or false

The GAP category of graded right ideals for CAP.

${\bf 2.2.3} \quad Is Graded Left Or Right I deal For CAP \ (for \ Is Graded Left Or Right Submodule For CAP)$

▷ IsGradedLeftOrRightIdealForCAP(object)

(filter)

Returns: true or false

The GAP category of graded left or right ideals for CAP.

2.3 Constructors for graded submodules from a list list and a graded ring

2.3.1 GradedLeftSubmoduleForCAP (for IsList, IsHomalgGradedRing)

▷ GradedLeftSubmoduleForCAP(L, R)

(operation)

Returns: a graded left submodule for CAP

The arguments are a graded ring R and a list of lists L of homogeneous elements of R which generate the submodule. The method then returns the corresponding graded left submodule.

2.3.2 GradedRightSubmoduleForCAP (for IsList, IsHomalgGradedRing)

▷ GradedRightSubmoduleForCAP(L, R)

(operation)

Returns: a graded right submodule for CAP

The arguments are a graded ring R and a list of lists L of homogeneous elements of R which generate the submodule. The method then returns the corresponding graded right submodule.

2.4 Constructors for graded submodules from a list of lists and a specified superobject

2.4.1 GradedLeftSubmoduleForCAP (for IsList, IsCAPCategoryOfProjectiveGradedLeftModulesObject)

▷ GradedLeftSubmoduleForCAP(L, M)

(operation)

Returns: a graded left submodule for CAP

The arguments are a projective graded left module M defined over a graded ring R and a list of lists L of homogeneous elements from R which generate the submodule. The method then returns the corresponding graded left submodule of M.

2.4.2 GradedRightSubmoduleForCAP (for IsList, IsCAPCategoryOfProjectiveGradedRightModulesObject)

▷ GradedRightSubmoduleForCAP(L, M)

(operation)

Returns: a graded right submodule for CAP

The arguments are a projective graded right module M defined over a graded ring R and a list of lists L of homogeneous elements from R which generate the submodule. The method then returns the corresponding graded right submodule of M.

2.5 Constructors for graded submodules from a morphism

2.5.1 GradedLeftSubmoduleForCAP (for IsCAPCategoryOfProjectiveGradedLeft-ModulesMorphism)

▷ GradedLeftSubmoduleForCAP(a)

(operation)

Returns: a graded left submodule for CAP

The argument is a morphism of projective graded left modules a. The kernel embedding of a is then used to define a left presentation that we embed into the projective module Range(a). Thereby we constructed a graded left submodule.

2.5.2 GradedRightSubmoduleForCAP (for IsCAPCategoryOfProjectiveGradedRightModulesMorphism)

▷ GradedRightSubmoduleForCAP(a)

(operation)

Returns: a graded right submodule for CAP

The argument is a morphism of projective graded right modules a. The kernel embedding of a is then used to define a right presentation that we embed into the projective module Range(a). Thereby we constructed a graded left submodule.

2.6 Attributes for graded submodules

2.6.1 PresentationForCAP (for IsGradedLeftOrRightSubmoduleForCAP)

▷ PresentationForCAP(M)

(attribute)

Returns: a graded left presentation for CAP

The argument is a graded left or right submodule M over a graded ring. We then return a left or right presentation of this submodule, respectively.

2.6.2 Generators (for IsGradedLeftOrRightSubmoduleForCAP)

▷ Generators(M)

(attribute)

Returns: a list

The argument is a graded left or right submodule M over a graded ring. We then return the list of generators of this submodule.

2.6.3 HomalgGradedRing (for IsGradedLeftOrRightSubmoduleForCAP)

▷ HomalgGradedRing(M)

(attribute)

Returns: a graded homalg ring

The argument is a graded left or right submodule M over a graded ring. We then return this graded ring.

2.6.4 EmbeddingInSuperObjectForCAP (for IsGradedLeftOrRightSubmoduleFor-CAP)

▷ EmbeddingInSuperObjectForCAP(I)

(attribute)

Returns: a CAP presentation category morphism

The argument is a graded left or right submodule *M* over a graded ring. We return the embedding of this module into the corresponding projective graded module.

2.6.5 SuperObjectForCAP (for IsGradedLeftOrRightSubmoduleForCAP)

▷ SuperObjectForCAP(I)

(attribute)

Returns: a CAP presentation category object

The argument is a graded left or right submodule M in a graded ring. We return the superobject.

2.7 Full information of a submodule

The method 'FullInformation' is also avaiable to display all information about a graded submodule.

2.8 Submodule powers

2.8.1 * (for IsGradedLeftSubmoduleForCAP, IsGradedLeftSubmoduleForCAP)

> *(arg1, arg2) (operation)

2.8.2 * (for IsGradedRightSubmoduleForCAP, IsGradedRightSubmoduleForCAP)

▷ *(arg1, arg2)
(operation)

2.8.3 \^ (for IsGradedLeftSubmoduleForCAP, IsInt)

▷ \^(arg1, arg2) (operation)

2.8.4 \^ (for IsGradedRightSubmoduleForCAP, IsInt)

▷ \^(arg1, arg2) (operation)

Functors for graded module presentations for CAP

3.1 Functor less generators for S-fpgrmod

3.1.1 LessGradedGenerators (for IsGradedLeftOrRightModulePresentationForCAP)

▷ LessGradedGenerators(M)

(operation)

Returns: a graded left or right module presentation for CAP

The argument is a graded left or right module presentation M for CAP. We then return a presentation of this module which uses less generators.

3.1.2 LessGradedGenerators (for IsGradedLeftOrRightModulePresentationMorphismForCAP)

▷ LessGradedGenerators(a)

(operation)

Returns: a graded left or right module presentation morphism for CAP

The argument is a graded left or right module presentation morphism a for CAP. We then return a presentation of this morphism which uses less generators.

3.1.3 FunctorLessGradedGeneratorsLeft (for IsHomalgGradedRing)

(attribute)

Returns: a functor

The argument is a homalg graded ring *R*. The output is functor which takes a left presentation in S-fpgrmodL as input and computes a presentation having less generators.

3.1.4 FunctorLessGradedGeneratorsRight (for IsHomalgGradedRing)

⊳ FunctorLessGradedGeneratorsRight(R)

(attribute)

Returns: a functor

The argument is a homalg graded ring *R*. The output is functor which takes a right presentation in S-fpgrmodR as input and computes a presentation having less generators.

3.2 Functor Standard Module for S-fpgrmod

${\bf 3.2.1} \quad Graded Standard Module \quad (for \quad Is Graded Left Or Right Module Presentation For CAP)$

▷ GradedStandardModule(M)

(operation)

Returns: a graded left or right module presentation for CAP

The argument is a graded left or right module presentation M for CAP. We then try to reduce the relations and thereby return a new presentation - the Standard module.

3.2.2 GradedStandardModule (for IsGradedLeftOrRightModulePresentationMorphismForCAP)

▷ GradedStandardModule(a)

(operation)

Returns: a graded left or right module presentation morphism for CAP

The argument is a graded left or right module presentation morphism a for CAP. We then try to reduce the relations and thereby return a new presentation, which we term the Standard module morphism.

3.2.3 FunctorGradedStandardModuleLeft (for IsHomalgGradedRing)

(attribute)

Returns: a functor

The argument is a homalg graded ring *R*. The output is functor which takes a left presentation in S-fpgrmodL as input and computes its standard presentation.

3.2.4 FunctorGradedStandardModuleRight (for IsHomalgGradedRing)

(attribute)

Returns: a functor

The argument is a homalg graded ring *R*. The output is functor which takes a right presentation in S-fpgrmodR as input and computes its standard presentation.

3.3 Functor ByASmallerPresentation for S-fpgrmod

3.3.1 ByASmallerPresentation (for IsGradedLeftOrRightModulePresentationFor-CAP)

▷ ByASmallerPresentation(M)

(operation)

Returns: a graded left or right module presentation for CAP

The argument is a graded left or right module presentation M for CAP. We then return a smaller presentation of this module. This is obtained by first applying 'LessGenerators' and then 'Standard-Module'.

3.3.2 ByASmallerPresentation (for IsGradedLeftOrRightModulePresentationMorphismForCAP)

▷ ByASmallerPresentation(a)

(operation)

Returns: a graded left or right module presentation morphism for CAP

The argument is a graded left or right module presentation morphism *a* for CAP. We then return a smaller presentation of this morphism. This is obtained by first applying 'LessGenerators' and then 'StandardModule'.

3.3.3 FunctorByASmallerPresentationLeft (for IsHomalgGradedRing)

(attribute)

Returns: a functor

The argument is a homalg graded ring *R*. The output is functor which takes a left presentation in S-fpgrmodL as input and computes a smaller presentation. The latter is achieved by first applying 'LessGenerators' and then acting with 'StandardModule'.

3.3.4 FunctorByASmallerPresentationRight (for IsHomalgGradedRing)

(attribute)

Returns: a functor

The argument is a homalg graded ring *R*. The output is functor which takes a right presentation in S-fpgrmodR as input and computes a smaller presentation. The latter is achieved by first applying 'LessGenerators' and then acting with 'StandardModule'.

3.4 The Frobenius-power functor

3.4.1 FrobeniusPower (for IsGradedLeftOrRightModulePresentationForCAP, IsInt)

▷ FrobeniusPower(M, p)

(operation)

Returns: a presentation category object

The arguments are a CAPPresentationCategoryObject M and a non-negative integer p. This method then computes the p-th Frobenius power of M.

3.4.2 FrobeniusPower (for IsGradedLeftOrRightModulePresentationMorphismFor-CAP, IsInt)

▷ FrobeniusPower(M, p)

(operation)

Returns: a presentation category morphism

The arguments are a CAPPresentationCategoryMorphism M and a non-negative integer p. This method then computes the p-th Frobenius power of M.

3.4.3 FrobeniusPowerWithGivenSourceAndRangePowers (for Is-GradedLeftOrRightModulePresentationMorphismForCAP, IsInt,IsGradedLeftOrRightModulePresentationForCAP, RightModulePresentationForCAP) IsGradedLeftOr-RightModulePresentationForCAP)

 \triangleright FrobeniusPowerWithGivenSourceAndRangePowers(m, p, s', r')

(operation)

Returns: a presentation category morphism

The arguments are a CAPPresentationCategoryMorphism m, a non-negative integer p, the p-th Frobenius power of the source of m, s', and the p-th Frobenius power of the range of m, r'. This method then computes the p-th Frobenius power of m by use of s' and r'.

3.4.4 FrobeniusPowerFunctorLeft (for IsHomalgGradedRing, IsInt)

▷ FrobeniusPowerFunctorLeft(R, p)

(operation)

Returns: a functor

The argument is a homal graded ring R and a non-negative integers p. The output is the functor which takes graded left-presentations and -morphisms to their p-th Frobenius power.

3.4.5 FrobeniusPowerFunctorRight (for IsHomalgGradedRing, IsInt)

▷ FrobeniusPowerFunctorRight(R, p)

(operation)

Returns: a functor

The argument is a homal graded ring R and a non-negative integers p. The output is the functor which takes graded right-presentations and -morphisms to their p-th Frobenius power.

Natural transformations for graded module presentations for CAP

4.1 Natural isomorphism from identity functor to the standard module functor

${\bf 4.1.1} \quad Natural Isomorphism From Identity To Graded Standard Module Left\ (for\ Is Homalg Graded Ring)$

NaturalIsomorphismFromIdentityToGradedStandardModuleLeft(S)

(attribute)

Returns: a natural transformation Id ⇒ StandardModuleLeft

The argument is a homalg graded ring S. The output is the natural morphism from the identity functor to the left standard module functor.

4.1.2 NaturalIsomorphismFromIdentityToGradedStandardModuleRight (for IsHomalgGradedRing)

 ${\tt \triangleright} \ \, {\tt NaturalIsomorphismFromIdentityToGradedStandardModuleRight(S)}$

(attribute)

Returns: a natural transformation Id ⇒ StandardModuleRight

The argument is a homalg ring *S*. The output is the natural morphism from the identity functor to the right standard module functor.

Tools

5.1 Saturation

5.1.1 Saturate (for IsGradedLeftModulePresentationForCAP, IsGradedLeftIdealFor-CAP)

▷ Saturate(M, I) (operation)

Returns: a presentation category object

The arguments are two CAPPresentationCategoryObject M and a graded left ideal I. We then compute the saturation of M with respect to I.

5.1.2 Saturate (for IsGradedRightModulePresentationForCAP, IsGradedRightIdeal-ForCAP)

 \triangleright Saturate (M, I) (operation)

Returns: a presentation category object

The arguments are two CAPPresentationCategoryObject M and a graded right ideal I. We then compute the saturation of M with respect to I.

5.1.3 EmbeddingInSaturationOfGradedModulePresentation (for IsGradedLeftModulePresentationForCAP, IsGradedLeftIdealForCAP)

riangleright EmbeddingInSaturationOfGradedModulePresentation(M, I)

(operation)

Returns: a presentation category morphism

The arguments are two CAPPresentationCategoryObject M and a graded left idea II. We then compute the embedding of M into its saturation with respect to I.

5.1.4 EmbeddingInSaturationOfGradedModulePresentation (for IsGradedRight-ModulePresentationForCAP, IsGradedRightIdealForCAP)

▷ EmbeddingInSaturationOfGradedModulePresentation(M, I)

(operation)

Returns: a presentation category morphism

The arguments are two CAPPresentationCategoryObject M and a graded right ideal I. We then compute the embedding of M into its saturation with respect to I.

5.2 Embeddings in projective modules

5.2.1 EmbeddingInProjectiveObject (for IsGradedLeftOrRightModulePresentation-ForCAP)

▷ EmbeddingInProjectiveObject(M)

(operation)

Returns: a presentation category morphism

The argument is a CAPPresentationCategoryObject M, which is represented by a morphism m in the underlying category of projective modules. In this category we can compute the cokernel projection m (although this need not be possible in more general proj-categories). The range of this morphism is a projective module. The zero morphism into this very projective module defines an object of the presentation category, which allows us to embed M into a projective module presentation. The corresponding presentation category morphism is returned.

5.3 Minimal free resolutions

5.3.1 MinimalFreeResolutionForCAP (for IsGradedLeftOrRightModulePresentationForCAP)

▷ MinimalFreeResolutionForCAP(M)

(attribute)

Returns: a complex of projective graded module morphisms

The argument is a graded left or right module presentation M. We then compute a minimal free resolution of M.

5.4 Betti tables

5.4.1 BettiTableForCAP (for IsGradedLeftOrRightModulePresentationForCAP)

▷ BettiTableForCAP(M)

(attribute)

Returns: a list of lists

The argument is a graded left or right module presentation M. We then compute the Betti table of M.

5.5 Extension modules

5.5.1 GradedExtForCAP (for IsInt, IsGradedLeftOrRightModulePresentationForCAP, IsGradedLeftOrRightModulePresentationForCAP)

▷ GradedExtForCAP(e, M1, M2)

(operation)

Returns: a f.p. graded module

The arguments are an integer i and two f.p. graded modules M_1 and M_2 . Then this method computes $\text{text}Ext^i \leq M_1$.

5.6 Twisting graded module presentations

5.6.1 Twist (for IsGradedLeftOrRightModulePresentationForCAP, IsList)

Twist(M)
 (operation)

Returns: a GradedLeftOrRightModulePresentationForCAP

The argument is a graded left or right module presentation M and an element of the class group of the ring over which this module is graded. We then compute the twisted graded module presentation.

5.6.2 Twist (for IsGradedLeftOrRightModulePresentationForCAP, IsHomalgModuleElement)

▷ Twist(arg1, arg2)

(operation)

Examples and Tests

6.1 The category SfpgrmodLeft

```
gap> Q := HomalgFieldOfRationalsInSingular();
gap> S := GradedRing( Q * "x_1, x_2, x_3, x_4" );
Q[x_1,x_2,x_3,x_4]
(weights: yet unset)
gap> SetWeightsOfIndeterminates( S, [[1,0],[1,0],[0,1],[0,1]] );
gap> category_left := SfpgrmodLeft( S );
Category of graded left module presentations over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )
gap> functor1_left := FunctorLessGradedGeneratorsLeft( S );
Less generators for Category of graded left module presentations over
Q[x_1,x_2,x_3,x_4] (with weights
[[1,0],[1,0],[0,1],[0,1]])
gap> functor2_left := FunctorGradedStandardModuleLeft( S );
Graded standard module for Category of graded left module presentations over
Q[x_1,x_2,x_3,x_4] (with weights
[[1,0],[1,0],[0,1],[0,1]])
gap> natural_transformation_left :=
> NaturalIsomorphismFromIdentityToGradedStandardModuleLeft( S );
Natural isomorphism from Id to Graded standard module for Category of graded
left module presentations over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )
```

6.2 The category SfpgrmodRight

```
gap> category_right := SfpgrmodRight( S );
Category of graded right module presentations over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
gap> functor1_right := FunctorLessGradedGeneratorsRight( S );
Less generators for Category of graded right module presentations over Q[x_1,x_2,x_3,x_4] (with weights
[ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
```

```
gap> functor2_right := FunctorGradedStandardModuleRight( S );
Graded standard module for Category of graded right module presentations over
Q[x_1,x_2,x_3,x_4] (with weights
[ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
gap> natural_transformation_right :=
> NaturalIsomorphismFromIdentityToGradedStandardModuleRight( S );
Natural isomorphism from Id to Graded standard module for Category of graded
right module presentations over Q[x_1,x_2,x_3,x_4] (with weights
[ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
```

6.3 Graded left ideals

```
Example
gap> IdealLeft := GradedLeftSubmoduleForCAP( [ [ "x_1*x_3" ],
              ["x_1*x_4"], ["x_2*x_3"], ["x_2*x_4"]], S);
<A graded left ideal of Q[x_1,x_2,x_3,x_4]
(with weights [[1, 0], [1, 0], [0, 1], [0, 1])>
gap> Generators( IdealLeft );
[["x_1*x_3"], ["x_1*x_4"], ["x_2*x_3"], ["x_2*x_4"]]
gap> HomalgGradedRing( IdealLeft );
Q[x_1,x_2,x_3,x_4]
(weights: [ (1, 0), (1, 0), (0, 1), (0, 1)])
gap> FullInformation( SuperObjectForCAP( IdealLeft ) );
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 0 and degrees:
[ ]
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ])
with matrix:
(an empty 0 x 1 matrix)
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 1 and degrees:
[[0,1]]
_____
gap> FullInformation( EmbeddingInSuperObjectForCAP( IdealLeft ) );
Source:
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 4 and degrees:
[[(1,2),2],[(2,1),2]]
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ])
```

```
with matrix:
-x_4, x_3, 0, 0,
0, \quad 0, \quad -x_4, x_3,
-x_2,0, x_1, 0,
0, -x_2, 0, x_1
(over a graded ring)
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 4 and degrees:
[[(1,1),4]]
Mapping matrix:
-----
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
with matrix:
x_1*x_3,
x_1*x_4,
x_2*x_3,
x_2*x_4
(over a graded ring)
Range:
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 0 and degrees:
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
with matrix:
(an empty 0 x 1 matrix)
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 1 and degrees:
[[0,1]]
gap> IdealLeftToPower2 := IdealLeft * IdealLeft;
<A graded left ideal of Q[x_1,x_2,x_3,x_4]
(with weights [[1, 0], [1, 0], [0, 1], [0, 1])>
gap> Display( IdealLeftToPower2 );
A graded left ideal of Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ) generated by
[ [ x_1^2*x_3^2 ], [ x_1^2*x_3*x_4 ], [ x_1*x_2*x_3^2 ], [ x_1*x_2*x_3*x_4 ],
[x_1^2*x_3*x_4], [x_1^2*x_4^2], [x_1*x_2*x_3*x_4], [x_1*x_2*x_4^2],
[x_1*x_2*x_3^2], [x_1*x_2*x_3*x_4], [x_2^2*x_3^2], [x_2^2*x_3*x_4],
```

```
[ x_1*x_2*x_3*x_4 ], [ x_1*x_2*x_4^2 ], [ x_2^2*x_3*x_4 ], [ x_2^2*x_4^2 ] ]
gap> 2ndFrobPowerIdealLeft := FrobeniusPower( IdealLeft, 2 );
<A graded left ideal of Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])>
gap> Display( 2ndFrobPowerIdealLeft );
A graded left ideal of Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ]) generated by
[ [ x_1^2*x_3^2 ], [ x_1^2*x_4^2 ], [ x_2^2*x_3^2 ], [ x_2^2*x_4^2 ] ]
```

6.4 Graded right ideals

```
_{-} Example _{-}
gap> IdealRight := GradedRightSubmoduleForCAP( [ [ "x_1*x_3",
             "x_1*x_4", "x_2*x_3", "x_2*x_4"]], S);
<A graded right ideal of Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )>
gap> Generators( IdealRight );
[ [ "x_1*x_3", "x_1*x_4", "x_2*x_3", "x_2*x_4" ] ]
gap> HomalgGradedRing( IdealRight );
Q[x_1,x_2,x_3,x_4]
(weights: [ (1,0), (1,0), (0,1), (0,1)])
gap> FullInformation( SuperObjectForCAP( IdealRight ) );
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 0 and degrees:
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] )
with matrix:
(an empty 1 x 0 matrix)
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ]) of rank 1 and degrees:
[[0,1]]
______
gap> FullInformation( EmbeddingInSuperObjectForCAP( IdealRight ) );
Source:
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [1, 0], [1, 0], [0, 1], [0, 1]) of rank 4 and degrees:
[[(1,2),2],[(2,1),2]]
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [[1,0],[1,0],[0,1],[0,1]])
```

```
with matrix:
-x_4,0, -x_2,0,
x_3, 0, 0, -x_2,
0, -x_4, x_1, 0,
0, x_3, 0, x_1
(over a graded ring)
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 4 and degrees:
[[(1,1),4]]
Mapping matrix:
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
with matrix:
x_1*x_3, x_1*x_4, x_2*x_3, x_2*x_4
(over a graded ring)
Range:
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ]) of rank 0 and degrees:
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ])
with matrix:
(an empty 1 x 0 matrix)
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 1 and degrees:
[[0,1]]
gap> IdealRightToPower2 := IdealRight * IdealRight;
<A graded right ideal of Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )>
gap> Display( IdealRightToPower2 );
A graded right ideal of Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ) generated by
 [ [ x_1^2 * x_3^2, x_1^2 * x_3 * x_4, x_1 * x_2 * x_3^2, x_1 * x_2 * x_3 * x_4, x_1^2 * x_3 * x_4, x_1^2 * x_1^2 * x_2^2 * x_1^2 * x_1^2 * x_2^2 * x_1^2 * 
x_1^2*x_4^2, x_1*x_2*x_3*x_4, x_1*x_2*x_4^2, x_1*x_2*x_3^2, x_1*x_2*x_3*x_4,
x_2^2*x_3^2, x_2^2*x_3*x_4, x_1*x_2*x_3*x_4, x_1*x_2*x_4^2, x_2^2*x_3*x_4,
x_2^2*x_4^2
gap> 2ndFrobPowerIdealRight := FrobeniusPower( IdealRight, 2 );
A graded right ideal of Q[x_1,x_2,x_3,x_4]
```

```
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])>
gap> Display( 2ndFrobPowerIdealRight );
A graded right ideal of Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ]) generated by
[ [ x_1^2*x_3^2, x_1^2*x_4^2, x_2^2*x_3^2, x_2^2*x_4^2 ] ]
```

6.5 Graded left submodules

```
_{-} Example .
gap> SubmoduleLeft := GradedLeftSubmoduleForCAP( [ [ "x_1*x_3" ],
              ["x_1*x_4"], ["x_2*x_3"], ["x_2*x_4"]], S);
<A graded left ideal of Q[x_1,x_2,x_3,x_4]
(with weights [[1, 0], [1, 0], [0, 1], [0, 1])>
gap> Generators( SubmoduleLeft );
[["x_1*x_3"], ["x_1*x_4"], ["x_2*x_3"], ["x_2*x_4"]]
gap> HomalgGradedRing( SubmoduleLeft );
Q[x_1,x_2,x_3,x_4]
(weights: [ (1, 0), (1, 0), (0, 1), (0, 1)])
gap> SubmoduleLeft2 := GradedLeftSubmoduleForCAP( [ [ "x_1*x_3", 1 ],
              [ "x_1*x_4", 1 ], [ "x_2*x_3", 1 ], [ "x_2*x_4", 1 ] ],
              CAPCategoryOfProjectiveGradedLeftModulesObject([[[0,0],1], [[1,1],1]], S));
<A graded left submodule over Q[x_1,x_2,x_3,x_4]</pre>
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )>
gap> FullInformation( EmbeddingInSuperObjectForCAP( SubmoduleLeft2 ) );
Source:
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [1, 0], [1, 0], [0, 1], [0, 1]) of rank 3 and degrees:
[[(1,2),1],[(2,1),1],[(2,2),1]]
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
with matrix:
x_4,
                -x_3,
                                 -x_4,
                                                x_3,
                -x_2,
                                 -x_1,
                                                x_1,
-x_2*x_3+x_1*x_4, -x_1*x_3+x_2*x_3, x_1*x_3-x_1*x_4, 0
(over a graded ring)
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ]) of rank 4 and degrees:
[[(1,1),4]]
Mapping matrix:
-----
A morphism in the category of projective graded left modules over
Q[x_{-1},x_{-2},x_{-3},x_{-4}] \ (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
with matrix:
x_1*x_3,1,
```

```
x_1*x_4,1,
x_2*x_3,1,
x_2*x_4,1
(over a graded ring)
Range:
----
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 0 and degrees:
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] )
with matrix:
(an empty 0 x 2 matrix)
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 2 and degrees:
[[0,1],[(1,1),1]]
gap> IsGradedLeftSubmoduleForCAP( SubmoduleLeft2 );
gap> SubmoduleLeft3 := GradedLeftSubmoduleForCAP( [[ "x_1", 1 ], [ "x_2", 1 ]],
                 CAPCategoryOfProjectiveGradedLeftModulesObject(
                                                      [[[-1,0],1],[[0,0],1]], S)
<A graded left submodule over Q[x_1,x_2,x_3,x_4]</pre>
(with weights [[1, 0], [1, 0], [0, 1], [0, 1])>
gap> FullInformation( EmbeddingInSuperObjectForCAP( SubmoduleLeft3 ) );
Source:
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [1, 0], [1, 0], [0, 1], [0, 1]) of rank 0 and degrees:
[ ]
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ])
with matrix:
(an empty 0 x 2 matrix)
A projective graded left module over Q[x_1,x_2,x_3,x_4] (with weights
[[1,0],[1,0],[0,1],[0,1]]) of rank 2 and degrees:
[[0,2]]
           ______
```

```
Mapping matrix:
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ])
with matrix:
x_1,1,
x_{2,1}
(over a graded ring)
Range:
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 0 and degrees:
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ])
with matrix:
(an empty 0 x 2 matrix)
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 2 and degrees:
[[(-1, 0), 1], [0, 1]]
```

6.6 Graded right submodules

```
_{-} Example _{\cdot}
gap> SubmoduleRight := GradedRightSubmoduleForCAP( [ [ "x_1*x_3",
                    "x_1*x_4", "x_2*x_3", "x_2*x_4"]], S);
<A graded right ideal of Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )>
gap> Generators( SubmoduleRight );
[ [ "x_1*x_3", "x_1*x_4", "x_2*x_3", "x_2*x_4"] ]
gap> HomalgGradedRing( SubmoduleRight );
Q[x_1,x_2,x_3,x_4]
(weights: [ (1,0), (1,0), (0,1), (0,1)])
gap> SubmoduleRight2 := GradedRightSubmoduleForCAP( [ [ "x_1*x_3",
                     "x_1*x_4", "x_2*x_3", "x_2*x_4"], [1, 1, 1, 1]],
                     CAPCategoryOfProjectiveGradedRightModulesObject([[[0,0],1], [[1,1],1]], S)
<A graded right submodule over Q[x_1,x_2,x_3,x_4]</pre>
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )>
gap> FullInformation( EmbeddingInSuperObjectForCAP( SubmoduleRight2 ) );
Source:
_____
```

```
A projective graded right module over \mathbb{Q}[x_1,x_2,x_3,x_4]
(with weights [ [1, 0], [1, 0], [0, 1], [0, 1]) of rank 3 and degrees:
[[(1,2),1],[(2,1),1],[(2,2),1]]
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ])
with matrix:
x_4, x_2, -x_2*x_3+x_1*x_4,
-x_3, -x_2, -x_1*x_3+x_2*x_3,
-x_4, -x_1, x_1*x_3-x_1*x_4,
x_3, x_1, 0
(over a graded ring)
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 4 and degrees:
[[(1,1),4]]
Mapping matrix:
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ])
with matrix:
x_1*x_3, x_1*x_4, x_2*x_3, x_2*x_4,
1, 1, 1,
                    1
(over a graded ring)
Range:
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 0 and degrees:
[ ]
A morphism in the category of projective graded right modules over
\label{eq:Qx_1,x_2,x_3,x_4} $$ (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) $$
with matrix:
(an empty 2 x 0 matrix)
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [1, 0], [1, 0], [0, 1], [0, 1]) of rank 2 and degrees:
[[0,1],[(1,1),1]]
_____
gap> IsGradedRightSubmoduleForCAP( SubmoduleRight2 );
gap> SubmoduleRight3 := GradedRightSubmoduleForCAP( [[ "x_1", "x_2" ], [ 1, 1 ]],
                  CAPCategoryOfProjectiveGradedRightModulesObject(
>
                                                      [[[-1,0],1],[[0,0],1]], S)
```

);

```
<A graded right submodule over Q[x_1,x_2,x_3,x_4]
(with weights [[1, 0], [1, 0], [0, 1], [0, 1])>
gap> FullInformation( EmbeddingInSuperObjectForCAP( SubmoduleRight3 ) );
Source:
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 0 and degrees:
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ])
with matrix:
(an empty 2 x 0 matrix)
A projective graded right module over Q[x_1,x_2,x_3,x_4] (with weights
[[1,0],[1,0],[0,1],[0,1]]) of rank 2 and degrees:
[[0,2]]
Mapping matrix:
-----
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
with matrix:
x_1, x_2,
1,1
(over a graded ring)
______
Range:
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ]) of rank 0 and degrees:
[ ]
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] )
with matrix:
(an empty 2 x 0 matrix)
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ]) of rank 2 and degrees:
[[(-1, 0), 1], [0, 1]]
```

6.7 The Frobenius functor

```
_{-} Example
gap> frob_functor_left := FrobeniusPowerFunctorLeft( S, 2 );
Frobenius functor for Category of graded left module presentations over
Q[x_1,x_2,x_3,x_4] (with weights [[1,0],[1,0],[0,1],[0,1]])
to the power 2
gap> FullInformation( ApplyFunctor( frob_functor_left,
                                EmbeddingInSuperObjectForCAP( IdealLeft ) ) );
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 4 and degrees:
[[(2,4),2],[(4,2),2]]
A morphism in the category of projective graded left modules over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ) with matrix:
-x_4^2, x_3^2, 0, 0,
           -x_4^2, x_3^2,
0, 0,
           x_1^2, 0,
-x_2^2,0,
0, -x_2^2, 0,
                  x_1^2
(over a graded ring)
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 4 and degrees:
[[(2,2),4]]
Mapping matrix:
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])
with matrix:
x_1^2*x_3^2,
x_1^2*x_4^2,
x_2^2*x_3^2
x_2^2*x_4^2
(over a graded ring)
Range:
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 0 and degrees:
A morphism in the category of projective graded left modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [0, 1 ] ])
with matrix:
```

```
(an empty 0 x 1 matrix)
A projective graded left module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 1 and degrees:
[[0,1]]
______
gap> frob_functor_right := FrobeniusPowerFunctorRight( S, 2 );
Frobenius functor for Category of graded right module presentations over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )
to the power 2
gap> FullInformation( ApplyFunctor( frob_functor_right,
                             EmbeddingInSuperObjectForCAP( IdealRight ) ) );
______
Source:
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ) of rank 4 and degrees:
[[(2,4),2],[(4,2),2]]
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )
with matrix:
-x_4^2,0, -x_2^2,0,
x_3^2, 0,
           0, -x_2^2,
     -x_4^2, x_1^2, 0,
     x_3^2, 0,
                x_1^2
(over a graded ring)
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 4 and degrees:
[[(2,2),4]]
Mapping matrix:
A morphism in the category of projective graded right modules over
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )
x_1^2*x_3^2,x_1^2*x_4^2,x_2^2*x_3^2,x_2^2*x_4^2
(over a graded ring)
Range:
A projective graded right module over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )) of rank 0 and degrees:
[ ]
```

```
A morphism in the category of projective graded right modules over Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ]) with matrix: (an empty 1 x 0 matrix)

A projective graded right module over Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ]) of rank 1 and degrees: [ [ 0, 1 ] ]
```

6.8 Minimal free resolutions and Betti tables

```
_ Example _
gap> res1 := MinimalFreeResolutionForCAP( IdealLeft );
<An object in Complex category of CAP category of projective graded left modules over</p>
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] )>
gap> FullInformation( res1 );
[[[1, 1], 4]]
 Ι
-x_4, x_3, 0, 0,
0, \quad 0, \quad -x_4, x_3,
-x_2,0,
        x_1, 0,
0, -x_2, 0, x_1
(over a graded ring)
[[[1,2],2],[[2,1],2]]
 Ι
-x_2, x_1, x_4, -x_3
(over a graded ring)
[[[2, 2], 1]]
gap> betti1 := BettiTableForCAP( IdealLeft );
[[(1,1),(1,1),(1,1)],[(1,2),(1,2),
(2, 1), (2, 1)], [(2, 2)]
gap> res2 := MinimalFreeResolutionForCAP( IdealRight );
<An object in Complex category of CAP category of projective graded right modules over</p>
Q[x_1,x_2,x_3,x_4] (with weights [ [ 1, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 1 ] ])>
gap> FullInformation( res2 );
[[[1, 1], 4]]
 Ι
-x_4,0, -x_2,0,
x_3, 0, 0, -x_2,
0, -x_4, x_1, 0,
0, x_3, 0, x_1
(over a graded ring)
```

```
[[[1,2],2],[[2,1],2]]

-x_2,
x_1,
x_4,
-x_3
(over a graded ring)
[[[2,2],1]]

gap> betti2 := BettiTableForCAP( IdealRight );
[[(1,1),(1,1),(1,1),(1,1)],[(1,2),(1,2),(2,1),(2,1)],[(2,2)]]
```

Index

Bet	tiTableForCAP	FrobeniusPowerFunctorRight
	for IsGradedLeftOrRightModulePresenta	for IsHomalgGradedRing, IsInt, 13
	tionForCAP, 16	FrobeniusPowerWithGivenSourceAndRange-
\ *		Powers
	for IsGradedLeftSubmoduleForCAP, IsGrad	for IsGradedLeftOrRightModuleP-
	edLeftSubmoduleForCAP, 9	resentationMorphismForCAP,
	for IsGradedRightSubmoduleForCAF	, IsInt,IsGradedLeftOrRightModulePresentationForCAP,
	IsGradedRightSubmoduleForCAP, 9	IsGradedLeftOrRightModulePresenta-
\^		tionForCAP, 13
	for IsGradedLeftSubmoduleForCAP, IsInt, 9	FunctorByASmallerPresentationLeft
	for IsGradedRightSubmoduleForCAP, IsInt	, for IsHomalgGradedRing, 12
	9	${\tt FunctorBy ASmaller Presentation Right}$
ВуА	SmallerPresentation	for IsHomalgGradedRing, 12
	for Is Graded Left Or Right Module Presenta	- FunctorGradedStandardModuleLeft
	tionForCAP, 11	for IsHomalgGradedRing, 11
	for IsGradedLeftOrRightModulePresenta	- FunctorGradedStandardModuleRight
	tionMorphismForCAP, 12	for IsHomalgGradedRing, 11
		${\tt FunctorLessGradedGeneratorsLeft}$
Emb	eddingInProjectiveObject	for IsHomalgGradedRing, 10
	for IsGradedLeftOrRightModulePresenta	FunctorLessGradedGeneratorsRight
	tionForCAP, 16	for IsHomalgGradedRing, 10
Ŀmb	eddingInSaturationOfGradedModule-	
	Presentation	Generators
	for IsGradedLeftModulePresentationFor	· ·
	CAP, IsGradedLeftIdealForCAP, 15	8 Con de dEnt For CAR
	for IsGradedRightModulePresentation	
	ForCAP, IsGradedRightIdealForCAP	for IsInt, IsGradedLeftOrRightModuleP- resentationForCAP, IsGradedLeft-
- - -	eddingInSuperObjectForCAP	OrRightModulePresentationForCAP,
CIIIO	for IsGradedLeftOrRightSubmoduleForCAF	_
	9	GradedLeftSubmoduleForCAP
	9	for IsCAPCategoryOfProjectiveGradedLeft-
Fro	beniusPower	ModulesMorphism, 8
	for IsGradedLeftOrRightModulePresenta	for IsList, IsCAPCategoryOfProjectiveGrad-
	tionForCAP, IsInt, 12	edLeftModulesObject, 7
	for IsGradedLeftOrRightModulePresenta	for IsList, IsHomalgGradedRing, 7
	tionMorphismForCAP, IsInt, 12	GradedRightSubmoduleForCAP
Fro	beniusPowerFunctorLeft	for IsCAPCategoryOfProjectiveGrad-
	for IsHomalgGradedRing, IsInt, 13	edRightModulesMorphism, 8
	· · · · · · · · · · · · · · · · · · ·	odiusiumodaiesimon ju

for IsList, IsCAPCategoryOfProjectiveGrad-IsGradedRightModulePresentationForedRightModulesObject, 7 for IsList, IsHomalgGradedRing, 7 LessGradedGenerators ${\tt GradedStandardModule}$ IsGradedLeftOrRightModulePresenta-IsGradedLeftOrRightModulePresentafor tionForCAP, 10 tionForCAP, 11 for IsGradedLeftOrRightModulePresentafor IsGradedLeftOrRightModulePresentationMorphismForCAP, 10 tionMorphismForCAP, 11 MinimalFreeResolutionForCAP HomalgGradedRing IsGradedLeftOrRightModulePresentafor IsGradedLeftOrRightSubmoduleForCAP, tionForCAP, 16 NaturalIsomorphismFromIdentityTo-IsGradedLeftIdealForCAP GradedStandardModuleLeft for IsGradedLeftSubmoduleForCAP. 6 for IsHomalgGradedRing, 14 ${\tt IsGradedLeftModulePresentationForCAP}$ NaturalIsomorphismFromIdentityTo-Is Graded Left Or Right Module Presenta-GradedStandardModuleRight tionForCAP, 4 for IsHomalgGradedRing, 14 IsGradedLeftModulePresentation-MorphismForCAP PresentationForCAP Is Graded Left Or Right Module Presentafor IsGradedLeftOrRightSubmoduleForCAP, tionMorphismForCAP, 5 IsGradedLeftOrRightIdealForCAPfor IsGradedLeftOrRightSubmoduleForCAP, Saturate IsGradedLeftModulePresentationForfor ${\tt IsGradedLeftOrRightModulePresentation-}$ CAP, IsGradedLeftIdealForCAP, 15 ForCAP for IsGradedRightModulePresentationfor IsCAPPresentationCategoryObject, 4 IsGradedRightIdealForCAP, ForCAP, IsGradedLeftOrRightModulePresentation-15 MorphismForCAP SfpgrmodLeft for IsCAPPresentationCategoryMorphism, 5 for IsHomalgGradedRing, 5 $Is {\tt GradedLeftOrRightSubmoduleForCAP}$ SfpgrmodRight for IsGradedLeftOrRightModulePresentafor IsHomalgGradedRing, 5 tionForCAP, 6 SuperObjectForCAP ${\tt IsGradedLeftSubmoduleForCAP}$ for IsGradedLeftOrRightSubmoduleForCAP, IsGradedLeftModulePresentationForfor 9 CAP, 6 ${\tt IsGradedRightIdealForCAP}$ Twist IsGradedLeftOrRightModulePresentafor for IsGradedRightSubmoduleForCAP, 7 tionForCAP, IsHomalgModuleElement, ${\tt IsGradedRightModulePresentationForCAP}$ IsGradedLeftOrRightModulePresenta-IsGradedLeftOrRightModulePresentationForCAP, 4 for tionForCAP, IsList, 17 IsGradedRightModulePresentation-MorphismForCAP for IsGradedLeftOrRightModulePresenta-

tionMorphismForCAP, 5

IsGradedRightSubmoduleForCAP