Maquinas de Turing

SergiOS

18-04-2023

Contents

Chapter 1	Introducción	Page 2	_
Chapter 2	Definición	Page 3	
2.1	Presentación: Un relato a grandes rasgos de lo que es una maquina de Turing	3	
2.2	Intuición: Una muestra de que es una maquina de Turing en términos que un humano pueda entender3		
2.3	Definición Formal: Definición en términos que los matemáticos entiendan Configuraciones — 4	4	
2.4	Definiciones Adicionales	5	
Chapter 3	Variantes de la Maguina de Turing	Page 6	

Chapter 1

Introducción

Este texto fue escrito para el semillero de Computación Cuántica de la universidad de los Andes. Tiene como objetivo ser un texto auxiliar a la presentación realizada por los estudiantes Sergio David López y Sergio Montoya. Fue realizado siguiendo las secciones 3.1 y 3.2 del libro *Introduction to the Theory of Computation* de *Michael Sipser*.

Chapter 2

Definición

2.1 Presentación: Un relato a grandes rasgos de lo que es una maquina de Turing

Una maquina de Turing es un modelo mas potente pero similar a un autómata. Su diferencia principal es que este cuenta con una memoria ilimitada y no restringida. Este modelo es mas util a la hora de aproximar una computadora convencional y soluciona muchos de los problemas que tienen los autómatas vistos previamente. Sin embargo, aun existen problemas que salen de las capacidades de una maquina de Turing.

2.2 Intuición: Una muestra de que es una maquina de Turing en términos que un humano pueda entender

Una maquina de Turing se compone de dos cosas

- 1. Cinta: Esta cumple el trabajo de la memoria. Es ilimitada y no esta restringida. Inicialmente solo contiene el string de entrada y esta vacía en todos los otros lugares. Si la maquina necesitara guardar información puede escribirla en la cinta.
- 2. Head: es esencialmente el elemento encargado de leer y modificar la cinta. Puede moverse arbitrariamente sobre esta.

Las maquinas de Turing Tienen un estado inicial y se les determina arbitrariamente un estado final de aceptación o rechazo. En el caso de que estos estados no existan la maquina quedara computando para siempre.

Example 2.2.1

Sea M_1 una maquina de Turing que recibirá el lenguaje $B = \{w \# w | w \in \{0,1\}^*\}$. Queremos que M_1 acepte si su imput hace pertenece a B y lo rechace en caso contrario. Para que esto sea mas fácil pongámonos en el lugar de M_1 . Nos encontramos encima de una lista inmensa de numero y te piden comprobar que esta lista consiste de dos numeros iguales separados por un #. La estrategia mas obvia es ir en zig-zag a ambos lados del # buscando que sean iguales o no.

Si diseñamos a M_1 para que trabaje de esa manera el algoritmo nos quedaria algo asi

```
Input: .. _w#w _...
   Output: .. _x#x _...
   /* Algoritmo que permite que M_1 acepte strings que pertenezcan a B
 1 Inicie en la primera celda;
 2 Lea la celda;
 3 Marque la celda como x:
 4 avance hasta encontrar un #;
 5 avance hasta que encuentre una celda diferente de x;
 6 Compruebe la celda;
 7 Si la celda es diferente rechace, de lo contrario marque como x;
 8 Recorra de regreso hasta encontrar un #;
  Avance hasta encontrar una x;
10 Avance 1;
11 Si encuentra \# lea la primera entrada que no sea x;
12 Si esta entrada es vació acepte de lo contrario rechace;
13 En caso contrario repita desde el paso 2;
```

2.3 Definición Formal: Definición en términos que los matemáticos entiendan

Definition 2.3.1: Maquina de Turing

Una maquina de Turing es una 7-tupla $(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ donde Q, Σ, Γ son conjuntos finitos y

- 1. Q es el conjunto de estados
- 2. Σ es el alfabeto del input no incluyendo \Box
- 3. Γ es el alfabeto de la cinta donde $\bot \in \Gamma$ y $\Sigma \subseteq \Gamma$
- 4. $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ es la función de transición
- 5. $q_0 \in Q$ es el estado inicial
- 6. $q_{accept} \in Q$ es el estado de aceptación
- 7. $q_{reject} \in Q$ es el estado de rechazo donde $q_a \neq q_r$

El corazón de la definición de una maquina de Turing es δ o función de transformación. Esta es una función $Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ que nos indica para cada estado que debemos hacer.

Question 1

Se deja al lector encontrar la representación en definición formal de la maquina de Turing mostrada en el ejemplo 1.

2.3.1 Configuraciones

Una configuración de una maquina de Turing se define como una 3-tupla (w,q,i) donde:

- \bullet w es la cadena que se encuentra en la cinta en un momento dado.
- q es el estado actual de la maquina de Turing.
- i es la posición actual de la cabeza de lectura/escritura en la cinta. Se dice que C_1 produce C_2 si la maquina puede ir de C_1 a C_2 en un solo paso.

Ejemplo

 $1011q_701111.$

- $\bullet\,$ la cinta es 101101111
- \bullet el estado actual es q_7
- $\bullet\,$ la cabeza se encuentra en el segundo 0

2.4 Definiciones Adicionales

Definition 2.4.1: Turing-Reconocible

Se llama a un lenguaje Turing-Reconocible si una maquina de Turing lo reconoce.

Definition 2.4.2: Turing-Decidible

Se le llama a un lenguaje Turing-Decidible o simplemente decidible si una maquina de Turing decide. Es decir que nunca se queda corriendo infinitamente y por tanto siempre llega a un estado final o inicial.

Chapter 3

Variantes de la Maquina de Turing