

### Interro n°4 - Mathématiques et Calcul 2 (MC2)

Aucun document n'est autorisé. Les exercices sont indépendants. Toutes les réponses doivent être soigneusement justifiées.

Exercice 1. 2 pts Calculer  $\int_2^{+\infty} \frac{1}{x \ln(x)^2} dx$  à l'aide du changement de variable  $u = \ln(x)$ .

# Correction.

Posons  $f: x \to \frac{1}{x \ln(x)^2}$ . f est définie et continue sur  $[2, +\infty[$  donc  $I = \int_2^{+\infty} f(x) dx$  est une intégrale

Pour effectuer le changement de variable indiqué dans l'énoncé, on pose, pour tout  $t \in [2, +\infty[$ ,

$$F(t) = \int_2^t f(x) \mathrm{d}x$$

De sorte que  $I = \lim_{t \to +\infty} F(t)$ . 0.5 pts

On effectue ensuite le changement de variable  $u = \ln(x)$  ( $du = \frac{1}{x}dx$ ):

$$F(t) = \int_{2}^{t} \frac{1}{x \ln(x)^{2}} dx = \int_{2}^{t} \frac{1}{\ln(x)^{2}} \frac{1}{x} dx = \int_{\ln(2)}^{\ln(t)} \frac{1}{u^{2}} du = \left[ -\frac{1}{u} \right]_{\ln(2)}^{\ln(t)} = \frac{1}{\ln(2)} - \frac{1}{\ln(t)}$$

Finalement, 
$$I = \lim_{t \to +\infty} F(t) = \lim_{x \to +\infty} \left( \frac{1}{\ln(2)} - \frac{1}{\ln(t)} \right) = \frac{1}{\ln(2)}$$
. 1 pt

#### Exercice 2. 2.5 pts

Déterminer la nature de la série de terme général  $u_n = (-1)^n \arctan\left(\frac{1}{\sqrt{n}}\right) \ln\left(1 + \frac{2}{\sqrt{n}}\right)$ .

## Correction.

 $\overline{u_n = (-1)^n} \arctan\left(\frac{1}{\sqrt{n}}\right) \ln\left(1 + \frac{2}{\sqrt{n}}\right) = (-1)^n \arctan\left(\frac{1}{\sqrt{n}}\right) \ln\left(1 + \frac{2}{\sqrt{n}}\right)$ est défini pour tout  $n \ge 1$  et de signe non-constant. 0.

Par ailleurs,  $|u_n| = \arctan\left(\frac{1}{\sqrt{n}}\right) \ln\left(1 + \frac{2}{\sqrt{n}}\right) \underset{n \to +\infty}{\sim} \frac{\pi}{n} \left(\arctan(x) \underset{x \to 0}{\sim} x \text{ et } \ln(1+x) \underset{x \to 0}{\sim} x\right)$ . Or,  $\sum \frac{1}{n}$  est une série de Riemann divergente donc, par équivalence,  $\sum |u_n|$  diverge, c'est-à-dire  $\sum u_n$  n'est pas absolument

Cependant, en posant, pour tout  $n \ge 1$ ,  $a_n = \arctan\left(\frac{1}{\sqrt{n}}\right) \ln\left(1 + \frac{2}{\sqrt{n}}\right)$  tel que  $u_n = (-1)^n a_n$ , on remarque que  $a_n \xrightarrow[n \to +\infty]{} 0$ . De plus,  $(a_n)_{n \ge 1}$  est une suite à termes positifs et, puisque  $x \mapsto \frac{1}{\sqrt{x}}$  est décroissante mais  $y \mapsto \arctan(y)$  et  $y \mapsto \ln(1+2y)$  sont croissantes,  $(a_n)_{n\geq 1}$  est décroissante, par composition. Ainsi, par le critère de séries alternées,  $\sum u_n$  converge. 2 pts

# Exercice 3. 2 pts

Montrer que la série  $\sum \frac{1}{n(n+2)}$  converge et calculer la somme  $\sum_{n=1}^{+\infty} \frac{1}{n(n+2)}$ .

Correction.  $u_n = \frac{1}{n(n+2)} \text{ qui est défini pour tout } n \geq 1 \text{ et positif.}$ 

On a  $u_n \underset{n \to +\infty}{\sim} \frac{1}{n^2}$ . Or,  $\sum \frac{1}{n^2}$  est une série de Riemann convergente ( $\alpha = 2 > 1$ ) donc, par équivalence,

Pour caculer la somme, on a, par décomposition en éléments simples, que, pour tout  $n \ge 1$ ,

$$u_n = \frac{1}{2} \left( \frac{1}{n} - \frac{1}{n+2} \right)$$
 0.5 pts

Ainsi, pour tout  $N \geq 3$ ,

$$\begin{split} S_N &= \sum_{n=1}^N \frac{1}{n(n+2)} \\ &= \frac{1}{2} \sum_{n=1}^N \left( \frac{1}{n} - \frac{1}{n+2} \right) \\ &= \frac{1}{2} \left( \sum_{n=1}^N \frac{1}{n} - \sum_{n=1}^N \frac{1}{n+2} \right) \\ &= \frac{1}{2} \left( \sum_{i=1}^N \frac{1}{i} - \sum_{i=3}^N \frac{1}{i} \right) \quad \text{(changements d'indice } i = n \text{ et } i = n+2, \text{ respectivement)} \\ &= \frac{1}{2} \left[ \left( 1 + \frac{1}{2} + \sum_{i=3}^N \frac{1}{i} \right) - \left( \sum_{i=3}^N \frac{1}{i} + \frac{1}{N+1} + \frac{1}{N+2} \right) \right] \\ &= \frac{1}{2} \left( \frac{3}{2} - \frac{1}{N+1} - \frac{1}{N+2} \right) \\ &= \frac{3}{4} - \frac{1}{2} \left( \frac{1}{N+1} + \frac{1}{N+2} \right) \end{split}$$

Finalement, 
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+2)} = \lim_{N \to +\infty} S_N = \frac{3}{4}.$$
 1 pt

**Exercice 4.** (1.25 + 2.25) pts

Résoudre les équations différentielles suivantes :

1. 
$$(1+x^2)y'(x) + xy(x) = 0, x \in \mathbb{R}$$
  $(E_1)$ 

2. 
$$4y'(x) + 2y(x) = x^2 - 1, x \in \mathbb{R}$$
 (E<sub>2</sub>)

## Correction.

1. L'équation homogène  $(E_1)$  est équivalente à l'équation normalisée :

$$y'(x) + \frac{x}{1+x^2}y(x) = 0, x \in \mathbb{R}.$$
 (car  $1 + x^2 > 0$  pour tout  $x \in \mathbb{R}$ ) 0.5 pts

Une primitive de  $\alpha: x \in \mathbb{R} \mapsto \frac{x}{1+x^2}$  est  $A: x \in \mathbb{R} \mapsto \frac{1}{2}\ln(1+x^2)$ . Ainsi, l'ensemble des solutions de  $(E_1)$  est:

$$\left\{ y_C : x \in \mathbb{R} \mapsto Ce^{-\frac{1}{2}\ln(1+x^2)} = \frac{C}{\sqrt{1+x^2}} \mid C \in \mathbb{R} \right\} \text{ 0.75 pts}$$

2.  $\mathbf{1}^{\mathbf{\acute{e}re}}$  étape : L'équation homogène associée à  $(E_2)$  :

$$y(x)' + \frac{1}{2}y(x) = 0, x \in \mathbb{R}.$$

2

admet pour solutions les fonctions de la forme  $y_C: x \mapsto Ce^{-\frac{1}{2}x}$  où  $C \in \mathbb{R}$ . 0.5 pts

**2**ème étape : Le second membre étant un polynôme de dégré 2, on cherche **une** solution particulière de la forme  $y_p: x \in \mathbb{R} \mapsto ax^2 + bx + c$  où  $(a,b,c) \in \mathbb{R}^3$  0.25 pts. Pour déterminer a,b et c, on injecte  $y_p$  dans  $(E_2)$ . On a, pour tout  $x \in \mathbb{R}$ ,  $y_p'(x) = 2ax + b$ . D'où :

$$\forall x \in \mathbb{R}, \ 4y'_p(x) + 2y_p(x) = x^2 - 1$$
  
 $\iff \forall x \in \mathbb{R}, \ 4(2ax + b) + 2(ax^2 + bx + c) = x^2 - 1$ 

En regroupant par exposant, on obtient, pour tout  $x \in \mathbb{R}$ ,

$$(2a-1)x^2 + (8a+2b)x + (4b+2c+1) = 0$$
 0.5 pts

Un polynôme identiquement nul est le polynôme nul. Ainsi, ses coefficients sont tous nuls et on obtient le système suivant :

$$\begin{cases} 2a - 1 = 0 \\ 8a + 2b = 0 \\ 4b + 2c + 1 = 0 \end{cases}$$

$$\iff \begin{cases} a = 1/2 \\ b = -4a = -2 \\ c = -(4b+1)/2 = 7/2 \end{cases}$$

Donc  $y_p: x \in \mathbb{R} \mapsto \frac{1}{2}x^2 - 2x + \frac{7}{2}$  est une solution particulière de  $(E_2)$  0.5 pts (Attention à vérifier que  $y_p$  est bien solution de  $(E_2)$  pour s'assurer qu'il n'y pas eu d'erreurs de calcul dans la résolution du système).

Conclusion: Finalement, l'ensemble des solutions de  $(E_2)$  est :

$$\left\{y: x \in \mathbb{R} \mapsto y_p(x) + y_C(x) = \frac{1}{2}x^2 - 2x + \frac{7}{2} + Ce^{-\frac{1}{2}x} \mid C \in \mathbb{R}\right\} \ \text{0.5 pts}$$