

Présentation finale Robust neural networks

Vincent Gouteux
Tiphaine Le Clercq
Maxence Philbert

17/12/2019

1) Présentation du problème

- On s'intéresse à la robustesse des réseaux de neurones.
- But : implémenter des attaques (adversarielles puis Black-box) pour tromper un réseau de neurones de classification d'images puis implémenter un moyen de défense contre celles-ci
- Données utilisées : CIFAR10 (60 000 images de taille 32*32 réparties en 10 classes : avion, voiture, oiseau, chat ...)

2) Attaques adversarielles Principe

- But : générer des exemples afin de tromper un réseau de neurones
- En classification d'images : générer des images perturbées de telle sorte que le réseau prédise mal leur classe
- Perturbation faible (non détectable à l'oeil humain) mais assez forte pour que le réseau prédise la mauvaise classe

original image prediction: giant_panda

the perturbation, enhanced 127 times

perturbed image prediction: bucket

2) Attaques adversarielles FGSM et FGM : Formules

- But : générer une perturbation δ telle que f(x) = y mais $f(x + \delta) \neq y$ sous la contrainte $||\delta|| \leq \epsilon$

$$\delta = \underset{||\delta|| \le \epsilon}{argmax} \mathcal{L}(f, x + \delta, y)$$

- Attaque FGSM : avec norme L^{∞}

$$\delta^* = \epsilon sign(\nabla_x \mathcal{L}(f, x, y))$$

- Attaque FGM : avec norme $\,L^2$

$$\delta^* = \epsilon \frac{\nabla_x \mathcal{L}(f, x, y)}{||\nabla_x \mathcal{L}(f, x, y)||_2}$$

2) Attaques adversarielles FGSM et FGM : Résultats

	Images originales	Attaque FGSM $\epsilon = 0.031$	Attaque FGM $\epsilon = 0.4$
Training Accuracy	0.812	0.0988	A 0.0982
Testing Accuracy	0.684	0.0014	0.1303

Table 1: Précisions d'entraînement et de validations obtenues

Figure 5: Mauvaise classification d'une image de chien

Figure 6: Mauvaise classification d'une image de bateau

2) Attaques adversarielles PGD : Formules

- Version itérative des attaques
 FG(S)M vues précédemment
- On génère itérativement des perturbations de la manière

suivante:

$$\begin{cases} x_0 = x \\ x_{t+1} = \pi_{B(0,\epsilon)}(x_t + \underset{||\delta|| \le \eta}{argmax} \mathcal{L}(f, x_t + \delta, y)) \end{cases}$$

Figure 9: Attaque PGD

Résultats:

	Images originale	PGD L^{∞} ($\eta = 0.031 \text{ et } \epsilon = 0.05$)	PGD L^2 ($\eta = 0.4 \text{ et } \epsilon = 0.05$)
Training Accuracy	0.812	0.0052	0.0044
Testing Accuracy	0.684	0.1465	0.0906

Table 2: Précision d'entraînement et de validations obtenues

3) Attaques Black-box

- On suppose que l'on ne sait rien sur le réseau à part sa prédiction pour une entrée donnée (ici un vecteur de probabilités de taille 10)
- Pas d'accès au gradient de la fonction de perte donc impossible d'utiliser les méthodes vues précédemment.
- Comment trouver la perturbation optimale ?

3) Attaques Black-box Générateur de perturbations aléatoires

Principe:

- On génère une perturbation aléatoire très faible
- On regarde ce que prédit le réseau
- Si la proba d'appartenir à la bonne classe diminue alors on conserve la perturbation
- Sinon, on retourne à l'image à l'état précédent
- Conditions d'arrêt : le réseau se trompe
 + borne sur la norme de la perturbation

	Images originales	Attaque Random
Testing Accuracy	0.812	0.125

Table 4: Précision du modèle sur les images avec perturbations Aléatoires

3) Attaques Black-box Modification d'un pixel

- Il est possible de tromper le réseau en modifiant un seul pixel d'une image
- Test effectué sur une image :
 - on modifie un par un ses pixels (on met le pixel à 1)
 - on demande au réseau de prédire la classe à chaque fois
 - le réseau se trompe 298 fois sur 1024 (soit 30% de mauvaise classification)

Figure 16: Exemples de pixels qui provoquent une mauvaise classification

4) Défense : Adversarial training Principe

- Principe : On entraîne le réseau avec des images perturbées

		Image originale	FGSM	PGD
Réseau	Training Accuracy	0.812	0.0988	0.0982
Original	Testing Accuracy	0.684	0.0014	0.1303
Réseau	Training Accuracy	-	- 1	-
FGSM	Testing Accuracy	0.4321	0.3618	0.3683
Réseau	Training Accuracy	-	- 1	-
PGD	Testing Accuracy	0.5863	0.3823	0.4048

Table 3: Précisions obtenues pour les 3 modèles

Figure 10: Étapes de l'Adversarial Training