Página Principal ▶ Mis cursos ▶ Cálculo I 2020 ▶ Cuestionarios en Moodle. ▶ Cuestionario 3

Comenzado el viernes, 6 de noviembre de 2020, 10:22

Estado Finalizado

Finalizado en viernes, 6 de noviembre de 2020, 13:02

Tiempo empleado 2 horas 39 minutos

Pregunta 1

Finalizado

Puntúa como 16.00

Tildar la(s) alternativa(s) correcta(s).

Seleccione una o más de una:

- a. Sea f(x) una función par en R e integrable en el intervalo [a, b], con a < 0 y b > 0. Si $\int_0^b f(x) dx = 12$, entonces $\int_a^b f(x) dx = 24$.
- b. Si una función es discontinua en un intervalo [a,b] no es integrable en él.
- c. Sea h(x) una función continua y no negativa en el intervalo [a,b]. Si $f(x)=\pi+h(x)$, entonces $\left|\int_a^b f(x)\,dx\right|=\int_a^b \left|f(x)\right|\,dx.$
- d. Si f(x) es una función integrable en el intervalo [a,b], entonces se cumple que $\left|\int_{-a}^{b} f(x) \, dx\right| = \int_{-a}^{b} \left|f(x)\right| \, dx.$
- e. Sea h(x) una función impar, integrable en todo $\mathbb R$ y tal que $\int \frac{3}{-1} h(r) \, dr = 6$. Es posible entonces determinar el valor de $-\int \frac{1}{3} h(r) \, dr$.

Pregunta 2

Finalizado

Puntúa como 18,00

Tildar la(s) alternativa(s) correcta(s)

Seleccione una o más de una:

- a. Aplicando el 1º Teorema Fundamenta del Cálculo se tiene que: $\int_{-\pi}^{0} \tan x \ dx = -\ln \left|\cos x\right| \ \left| \frac{0}{\pi} = -\ln \left|\cos 0\right| + \ln \left|\cos \left(-\pi\right)\right| \ = \ -1 + 1 = 0$
- b. Si $0 < \int_a^b |f(x)| \ dx < \int_a^b |g(x)| \ dx$ entonces f(x) < g(x) para todo x en [a, b]
- c. Es posible calcular la longitud del arco de $f(x) = x^{2/3}$ en el [-1, 3], realizando el cálculo en los intervalos [-1, 0] y [0, 3] y luego sumando los resultados.
- d. Dada a<0 el valor $c=e^{\frac{1}{\varepsilon-1}}$ es el punto al que alude el teorema del valor medio del cálculo integral para $f(x)=a\ln(x^2)$ en el intervalo $\begin{bmatrix}1,&e\end{bmatrix}$
- e. Nunca puede darse que una función sea integrable en un intervalo [a, b] si es discontinua en un número finito de puntos en él.

Pregunta 3

Finalizado

Puntúa como 16,00

Tildar la(s) alternativa(s) correcta(s):

Seleccione una o más de una:

- a. El modelo dado por $\int_{-2}^{2} \sqrt{1 + \frac{4}{9}x^{-\frac{2}{3}}} dx$ permite calcular la longitud de arco de $f(x) = x^{2/3} + a$ en el [-2, 2], para todo a>0.
- b. La longitud de arco de la curva y=x an el intervalo [-2,2] está dada por: $\int_{-8}^{0} \sqrt{1+\frac{1}{9}y^{-\frac{4}{3}}} dy$.
- c. Ninguna de las otras opciones es correcta.
- d. La longitud de arco de la curva y= x^3 en el intervalo [-2,0] se puede calcular resolviendo la siguiente integral $\int_{0}^{2} \sqrt{1+9x^4} dx$

Pregunta 4

Finalizado

Puntúa como 16.00

Dadas las funciones f(x) y g(x), marque cada una de las opciones que considere correctas.

Seleccione una o más de una:

- a. Es posible calcular el área sombreada como $A=\int_0^1 [g(x)-f(x)]dx+\int_{-1}^0 [f(x)-g(x)]dx$
- ${\mathbb Z}$ b. Es posible calcular el área sombreada como $A=2\int {1\over 0}[\,g(x)-f(x)]dx$
- lacksquare c. El área sombreada se puede calcular como $A=\int_{-1}^{1} [g(x)-f(x)]dx$
- d. No es posible calcular el área sombreada puesto que las funciones toman valores negativos en una de las regiones delimitadas.
- e. El área sombreada es cero.

Pregunta 5

Finalizado

Puntúa como 16,00

Tildar la(s) alternativa(s) correcta(s)

Seleccione una o más de una:

- a. La integral impropia $\int\limits_{1}^{\infty} \frac{x+3}{x^2+x} dx$ es convergente
- b. Existe un valor de k<0 para el que la integral impropia $\int\limits_0^\infty ke^{-kx} \;dx$ converge a 1.
- c. La integral impropia $\int\limits_{2}^{\infty} \frac{dx}{x^2 \ ln \, x}$ diverge
- d. La integral impropia $\int_{-\infty}^{-2} \frac{x}{x^3+1} dx$ es convergente

Pregunta 6

Finalizado

Puntúa como 18,00

Sea la sucesión de términos $b_n = \sqrt[3]{n-1}$

Tildar las altenativa(s) correcta(s):

Seleccione una o más de una:

- a. La sucesión es acotada.
- b. Para la determinación de la convergencia de la sucesión dada resulta útil el Teorema de compresión.
- c. La sucesión es no monótona.
- d. La sucesión diverge.
- e. La sucesión dada es convergente.
- f. La sucesión dada es decreciente.

Ayuda: puede utilizar la función asociada en el intervalo $\left[1,\infty\right)$.

◆ Foro de consultas del

Recuperatorio del Cuestionario 2

Foro de consultas sobre el Cuestionario 3 ▶