discussion with benjamin

Showing the use of knock-off covariates and comparaison between theoritical and empircal propreties.

covariate: variable related to outcome variable

The difference between:

Classical inference

- 1. Devise a model
- 2. Collect data
- 3. Test hypotheses

Post selection inference

With a selected model (which we choose according to a specific metric, leads to bias, anyway...) we then do hypothesis testing to know confidence or other measure about parameters/model.

What we usually do is sample splitting, use one for selection and the other for inference.

- 1. Collect data
- 2. Select a model
- 3. Test hypotheses

Covariate knock-off

Objectif: Select subset of variables relevant for Y (or select covariates) while bounding the False Discovery rate.

Allows for model selection and hypothesis testing at he same time?

Notes:

U-statistics: un-biased estimator

V-statistics: not unbiased but similarly asymptotically then U-stats

Perform study with:

- 1 simulated data: covariates and output sharing non-linear representation like: $X_i \sim \mathcal{N}(I_d, \beta.\Sigma)$ where $\beta \in \{0,1\}^d$
- 2 p >> n
- 3 Real data from UCI, low/high dimensional

to show:

- 1 that the difference between the expected and the observed is bounded
- 2 Accuracy of different methods
- 3 Compare with existing methods: PC, HSIC
- 4 The False Detection Rate (but this could be the same as 1))

And we can use:

- 1 Tobias HSIC code. Ideas of just replacing HSIC by Kendal, spearman or MMD.
- 2 Jazza's paper (find full reference, and also maybe not Jazza, it could be Zhang, author of one of the references)
- 3 Ref [3] $\it Model-Free\ Feature\ Screening\ and\ FDR\ Control\ with\ Knockoff\ Features\ provides\ code.$ In particular, python code for gene knock off data simulations. Should be ok to modify existing $\it W_i$ statistic and $\it TR$.
- 4 Ref[1] for knock off Controlling the false discovery rate via knockoffs, The Annals of Statistics
 - https://web.stanford.edu/group/candes/knockoffs/
 - https://en.wikipedia.org/wiki/Knockoffs (statistics)
 - https://www.stat.cmu.edu/~ryantibs/journalclub/knockoff.pdf
 - https://imaging-in-paris.github.io/semester2019/slides/w3/Thirion.pdf (in practice and applied to GWAS)
- 5 Ref[4] for formula origin Some new measures of dependence for random variables based on Spearman's ρ and Kendall's τ
- 6 Book asymptotic statistics, of Van der Wanz