

Operaciones de Procesamiento de Imágenes

II Unidad

Ms. Ing. Liz Sofia Pedro H.

Contenidos.

- Morfología matemática.
- Filtros
- 3. Detección de bordes.
- 4. Mejoramiento del contraste.

3. DETECCIÓN DE BORDES

3.1. Bordes

- Corresponden a cambios locales significativos de intensidad en una imagen.
- Un borde es una discontinuidad en la imagen (función) cuyo valor de gradiente o derivada es alto.

3.1. Bordes (Cont.)

- Se utiliza la derivada o diferencial.
- La derivada calcula variaciones entre un píxel y su vecindad.
- La detección de bordes es sensible al ruido pudiendo generar bordes falsos, sombreados, texturas o ruido.
- Las técnicas de detección de bordes se clasifican en:
 - Operadores de gradiente
 - Operadores direccionales.

3.2. Operadores de Gradiente.

- Los operadores de gradiente son técnicas clásicas para la detección de bordes.
- El gradiente es la derivada de una función respecto a los ejes x e y.

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \qquad \nabla f = (G_x, G_y)$$

3.2. Operadores de Gradiente (Cont.)

$$\left|\nabla f\right| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

$$|\nabla f| = \sqrt{G_x^2 + G_y^2}$$

$$\angle \nabla f = arctang(G_y/G_x)$$

Siendo la dirección de la gradiente perpendicular al borde

3.2. Operadores de Gradiente.

Debido al coste computacional se reduce a:

$$|\nabla f| = |G_x| + |G_y|$$

$$|\nabla f(x,y)| = \begin{bmatrix} G_x & G_y \end{bmatrix} = \begin{bmatrix} \frac{\Delta f}{\Delta x} & \frac{\Delta f}{\Delta y} \end{bmatrix}$$

 \square G_x y G_y se pueden representar por máscaras

3.2. Operadores de Gradiente (Cont.)

- Las máscaras correspondientes a la primera derivada no suelen utilizarse debido a que son muy sensibles al ruido al tener en cuenta solamente la información de dos pixeles.
- Las técnicas han evolucionado calcular brindando cierto efecto de suavizado, siendo menos sensibles al ruido.

3.2. Operadores de Gradiente (Cont.)

- Los operadores de primera derivada son:
 - Roberts
 - Prewitt
 - Sobel
- Los operadores de segunda derivada son:
 - Laplaciano
 - Laplaciano de una Gaussiana

3.3. Operador de Roberts

- □ Utiliza una máscara de 2x2.
- Al tener una vecindad pequeña es muy sensible al ruido.
- Se describe matemáticamente como:

$$G(I(i,j)) = |I(i,j) - I(i+1,j+1)| + |I(i,j+1) - I(i+1,j)|$$

donde:
$$G_{X=}|I(i,j)-I(i+1,j+1)|yG_{y}=|I(i,j+1)-I(i+1,j)|$$

3.3. Operador de Roberts (Cont.)

Las máscaras usadas por el operador de Roberts son:

3.3. Operador de Roberts (Cont.)

3.4. Operador de Prewitt

 Evita calcular el gradiente en punto medio empleando una máscara de 3x3.

$I_{1,1}$	$I_{1,2}$	$I_{1,3}$
$I_{2,1}$	$I_{i,j}$	$I_{2,3}$
$I_{3,1}$	$I_{3,2}$	$I_{3,3}$

$$\frac{\partial f}{\partial x} = (I_{3,1} + I_{3,2} + I_{3,3}) - (I_{1,1} + I_{1,2} + I_{1,3})$$

$$\frac{\partial f}{\partial y} = \left(I_{1,3} + I_{2,3} + I_{3,3}\right) - \left(I_{1,1} + I_{2,1} + I_{3,1}\right)$$

3.4. Operador de Prewitt (Cont.)

Las máscaras de Prewitt son:

$$G_x = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

3.4. Operador de Prewitt (Cont.)

3.5. Operador de Sobel

El operador de Sobel realiza detección de bordes brindando un suavizamiento gaussiano.

3.5. Operador de Sobel (Cont.)

3.5. Operador de Sobel (Cont.)

3.6. Laplaciano

- □ El laplaciano es un operador basado en la segunda derivada.
- Una ventaja de usar operadores de segunda derivada es que se puede estimar mejor la localización del borde.
- El borde se ubica donde la segunda derivada cruza cero.

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{G_x}{\partial x} = \frac{\partial \left(f(i+1,j) - f(i,j) \right)}{\partial x} = f(i+2,j) - 2f(i+1,j) + f(i,j)$$

$$\frac{\partial^2 f}{\partial^2 y} = \frac{G_y}{\partial y} = f(i, j+2) - 2f(i, j+1) + f(i, j)$$

□ Centrando en el pixel (i, j)

$$\frac{\partial^2 f}{\partial x^2} = f(i+1,j) - 2f(i,j) + f(i-1,j)$$

$$\frac{\partial^2 f}{\partial y^2} = f(i, j+1) - 2f(i, j) + f(i, j-1)$$

Discretizado y combinado en un solo operador:

$$\nabla^2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Mascara del operador laplaciano 3x3:

0	1	0
1	-4	1
0	1	0

3.7. Laplaciano de una gaussiana

- Laplacian of Gaussian: LOG
- Similar al operador de Sobel combina, suaviza la imagen combinando un filtro gaussiano y el detector de bordes laplaciano.

$$\nabla^2 G = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

3.7. Laplaciano de una gaussiana (Cont.)

Mascara del operador LOG 3x3:

3.7. Laplaciano de una gaussiana (Cont.)

3.7. Laplaciano de una gaussiana (Cont.)

3.8. Operadores direccionales

- En general, es útil conocer la dirección de los bordes y no sólo su magnitud.
- Algunos operadores que indican dirección son:
 - Prewitt (0° y 90°) 2 máscaras.
 - Kirsch (0°, 45°, 90° y 135°) 4 máscaras.
- Las máscaras pueden ser de diversos tamaños.

Operador Kirsch 0°

Gracias...