Master Thesis: Query for Sound

total page goal: 60-90

Page Sum {93}

1. Introduction {15}

- 1. 1. Working with audio in post production {2}
 - 1. 1. 1. Metadata Formats {4}
 - 1. 1. 2. Accessible Fields {4}
- 1. 2. Functional Overview of Sound Library Software {5}

2. Searching methods for audio clips {20}

- 2. 1. The basic query methods
 - 2. 1. 1. Text search {3}
 - 2. 1. 2. Content search {6}
- 2. 2. Query by example {4}
- 2. 3. Statistical methods {6}
- 2. 4. Possible visualisations {4}
 - 2. 4. 1. List view
 - 2. 4. 2. Tags
 - 2. 4. 3. Graphs

3. The Lab {38}

- 3. 1. The Gap {6}
- 3. 2. Research {4}
- 3. 3. Existing Prototypes {4}
- 3. 4. the concept {6}
- 3. 5. Freesound-Explorer as a possible Solution {4}
 - 3. 5. 1. technical background {8}
 - 3. 5. 2. Review of the existing functionality {4}

4. Proof of Concept {16}

- 4. 1. The classic list view {6}
- 4. 2. Batch download of selection {4}
- 4. 3. Semantic Zones {6}

5. Discussion of Results {14}

- 5. 1. Evaluation? {6}
- 5. 2. Review {4}
- 5. 3. Further Work {4}

6. References

1. Introduction {15}

1.1. Working with audio in post production {2}

This work shall investigate current practices in audio post-production. We focus on the special case of searching for audio clips in sound design and similar tasks.

The soundtrack of a movie is a complex collage of multiple layer of audio, each consiting of layers itself, containing several thousands of single audio files arranged, manipulated and mixed to fit into the global "view". $\frac{1}{2}$

- Recording Production Sound, Foley Artists, Music Effects etc.
- Synthesizing Generating formerly unknown Sounds, Sounds for Layering, creating patches and virtual Instruments related to Music Effects.
- Collecting / Library Usage Bridge to main topic: Workig with existing soundclips, as recording and synthesizing are very expensive in time and money. Aim is to find appropriate audio material in the least possible time:
 - How do you organize a huge amount of audio clips?
 - O How are the Libraries sorted?
 - Short overview of heterogeniousity in reality.

1.1.1. Metadata Formats {4}

Introdution only of relevant Data Formats (BWAV, AIFF, mp3, ogg, Flac, aac, iXML, aXML)

1.1.2. Accessible Fields {4}

Overwiew of details about the usage in two or three formats (description, mic channel, author etc.)

1.2. Functional Overview of Sound Library Software {5}

<u>List of functionalities in available tools</u> at the market that provide searching functionality specialized on audio clips. (Soundminer, Basehead, Netmix etc.) (* cited from creativefieldrecording.com *)

2. Searching methods for audio clips {20}

2.1. The basic query methods

2.1.1. Text search {3}

- plain search {1}
- boolean search {1}
- thesaurus {1}

2.1.2. Content search {6}

- overview of audio features (superficial) {6}
 - o low-level (time-, spectrum based)
 - o mid-level (rhythm, tonality, hardness, brightness)
 - o high-level (timbre, similarity, segmentation, genre, tempo, key)

2.2. Query by example {4}

exemplary model of a distance based clustering

2.3. Statistical methods {6}

- methods for classification
- methods for clustering

2.4. Possible visualisations {4}

2.4.1. List view

• "classic mode" - interactive list view with sorting

2.4.2. Tags

automated labeling of audio clips

2.4.3. **Graphs**

- per file views like magnitude spectrum, waveform etc.
- relationship visualizations (dendrogram, multy-layer cake diagram of labels)
- distribution visualizations (based on audio features)
- Dimensionality reduction techniques

3. The Lab {38}

3.1. The Gap {6}

• Why is it probably the state of the art (what works well)?

- What is quite impossible with a blank text search?
- Which sounds are particulary difficult to find?
- What other representation than text and visualized spectral or energy views (e.g. Waveforms) are possible?
- Some examples.

3.2. Research {4}

Overview of a few papers and prototypes and Institutes.

3.3. Existing Prototypes {4}

Leading to Freesound Explorer and its user concepts.

3.4. the concept {6}

How to enhance this particular one tool to make it feasible for production? Why did I choose the Freesound-Explorer?

3.5. Freesound-Explorer as a possible Solution {4}

Author, freesound, papers

3.5.1. technical background {8}

- How does it work in general?
- Freesound API, Client-Server, Model-View-Controller
- t-SNE clustering
- what to modify, how to "plug in"

3.5.2. Review of the existing functionality {4}

- derived from "The Gap" chapter what is missing?
- Where are my modifications placed within the source code

4. Proof of Concept {16}

- Implemented additional functionality
- Pictures and descriptions

4.1. The classic list view {6}

• interactive list synchronized with the map view

4.2. Batch download of selection {4}

• including legal information

4.3. Semantic Zones {6}

• e.g. Highlighting frequent tags > Frequent pattern mining

5. Discussion of Results {14}

5.1. Evaluation? {6}

How to show, that the concept works? How to measure speed improvements in the workflow?

5.2. Review {4}

Why this is actually less mature for production: Only Online Only freesound

5.3. Further Work {4}

see evernote notes...

6. References

1. the overall intended impression <u>←</u>