Regression Models - Week 4 Course Project

Sanjay Lonkar 30 Jun 2018

Overview

Analyze data set "mtcars" of collection of cars and answer following two questions:

- 1. Is an automatic or manual transmission better for MPG
- 2. Quantify the MPG difference between automatic and manual transmissions

Result

Manual transmission is better for MPG than Autaomatic transmission. Also, manual transmission has 1.8 greater MPG than automatic transmission.

Load data set and perform exploratory data analysis

See Appendix 1 for brief exploratory data analysis.

```
data (mtcars)
```

Visual Analysis

Verify impact on MPG by generating a box plot of Transmission Type against MPG. See Appendix 2 for generated box plot. It shows MPG is less for Aumotatic transmission type cars.

Quantified Regression Analysis

```
aggregate(mpg~am, data = mtcars, mean)
     am
             mpg
## 1 0 17.14737
## 2 1 24.39231
mtcars$cyl <- factor(mtcars$cyl)</pre>
mtcars$vs
           <- factor(mtcars$vs)
mtcars$gear <- factor(mtcars$gear)</pre>
mtcars$carb <- factor(mtcars$carb)</pre>
           <- factor(mtcars$am,labels=c("Automatic","Manual"))</pre>
tManual <- mtcars [mtcars$am == "Manual", ]
tAutomatic <- mtcars [mtcars$am == "Automatic", ]
t.test(tAutomatic$mpg, tManual$mpg)
##
## Welch Two Sample t-test
##
## data: tAutomatic$mpg and tManual$mpg
## t = -3.7671, df = 18.332, p-value = 0.001374
```

```
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.280194 -3.209684
## sample estimates:
## mean of x mean of y
## 17.14737 24.39231
```

It shows that Autmoatic cars have lower 7.25 lower MPG (24.39231 - 17.14737) than Manual cars. Corresponding P-Value is 0.001374 which indicated substantial difference.

```
regressionModel <- lm (mpg ~ am, data = mtcars)
summary (regressionModel)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
##
       Min
                1Q Median
                               3Q
                                      Max
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            1.125 15.247 1.13e-15 ***
                17.147
## amManual
                 7.245
                            1.764
                                    4.106 0.000285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
```

Manual car average MPG is 7.2 higher than that of Autmoatic cars which has MPG of 17.1 MPG. Constructing new multivariate regression model as above shows only 36% of the variance (R squared).

```
multivariateModel <- lm (mpg ~ am + cyl + disp + hp + wt, data = mtcars)
anova (regressionModel, multivariateModel)</pre>
```

```
## Analysis of Variance Table

##

## Model 1: mpg ~ am

## Model 2: mpg ~ am + cyl + disp + hp + wt

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 30 720.90

## 2 25 150.41 5 570.49 18.965 8.637e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

summary(multivariateModel) # See Appendix 3 for result
```

We have lesser P-Value of 8.637e-08 indicating better model. Pair plot in Appendix 4 shows correlations between difference data points and MPG.

Conclusion, new model gives us 86.64% variance. Taking into account disp, hp, cyl and wt affect on correlation between mpg and am, we can say that difference between Manual and Automatic cars MPG is 1.81 MPG.

Appendix 1

Brief Exploratory Analysis

```
head (mtcars)
##
                     mpg cyl disp hp drat
                                             wt qsec vs
                                                                am gear
## Mazda RX4
                    21.0
                           6 160 110 3.90 2.620 16.46 0
                                                            Manual
## Mazda RX4 Wag
                          6 160 110 3.90 2.875 17.02 0
                    21.0
                                                            Manual
## Datsun 710
                    22.8 4 108 93 3.85 2.320 18.61 1
                                                            Manual
                    21.4 6 258 110 3.08 3.215 19.44 1 Automatic
## Hornet 4 Drive
                                                                      3
## Hornet Sportabout 18.7
                          8 360 175 3.15 3.440 17.02 0 Automatic
## Valiant
                    18.1
                         6 225 105 2.76 3.460 20.22 1 Automatic
##
                    carb
## Mazda RX4
                       4
## Mazda RX4 Wag
                       4
## Datsun 710
                       1
## Hornet 4 Drive
                       1
## Hornet Sportabout
                       2
## Valiant
str (mtcars)
## 'data.frame':
                   32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : Factor w/ 3 levels "4", "6", "8": 2 2 1 2 3 2 3 1 1 2 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : Factor w/ 2 levels "0", "1": 1 1 2 2 1 2 1 2 2 2 ...
## $ am : Factor w/ 2 levels "Automatic", "Manual": 2 2 2 1 1 1 1 1 1 1 ...
## $ gear: Factor w/ 3 levels "3", "4", "5": 2 2 2 1 1 1 1 2 2 2 ...
```

Appendix 2

Box plot visually showing Manual cars give higher MPG than Automatic cars

\$ carb: Factor w/ 6 levels "1","2","3","4",..: 4 4 1 1 2 1 4 2 2 4 ...

Transmission Type

Appendix 3

Summary of multivariate model that gave minimum P-Value

summary(multivariateModel)

```
##
## Call:
## lm(formula = mpg ~ am + cyl + disp + hp + wt, data = mtcars)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
##
   -3.9374 -1.3347 -0.3903
                           1.1910
                                     5.0757
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.864276
                                     12.564 2.67e-12 ***
                            2.695416
## amManual
                1.806099
                            1.421079
                                       1.271
                                               0.2155
## cyl6
               -3.136067
                            1.469090
                                     -2.135
                                               0.0428 *
## cy18
               -2.717781
                            2.898149
                                      -0.938
                                               0.3573
                0.004088
                           0.012767
                                       0.320
                                               0.7515
## disp
               -0.032480
                                     -2.323
                                               0.0286 *
## hp
                            0.013983
## wt
               -2.738695
                            1.175978 -2.329
                                               0.0282 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 2.453 on 25 degrees of freedom
## Multiple R-squared: 0.8664, Adjusted R-squared: 0.8344
## F-statistic: 27.03 on 6 and 25 DF, p-value: 8.861e-10
```

Appendix 4

Pair plot indicating correlations between difference data points and MPG

```
pairs(mpg ~ ., data = mtcars)
```

