Application of Level Set Methods to Control & Reachability Problems in Continuous & Hybrid Systems

Ian Mitchell

Scientific Computing & Computational Mathematics Program
Stanford

Lots of Complex Systems

automation interfaces

autonomous robots

Why Hybrid Systems?

- Computers are increasingly interacting with external world
 - Flexibility of such combinations yields huge design space
 - Design methods and tools targeted (mostly) at either continuous or discrete systems
- Example: aircraft flight control systems

Reachable Sets: What and Why?

- One application: safety analysis
 - What states are doomed to become unsafe?
 - What states are safe given an appropriate control strategy?

Seven Mode Safety Analysis

Seven Mode Safety Analysis

Ability to choose maneuver start time further reduces unsafe set

6

My Contributions

- Proved correctness of Hamilton-Jacobi-Isaacs formulation for continuous backwards reachable sets
- Implemented high resolution level set algorithms to capitalize on this time dependent PDE formulation
- Adapted projection concepts into HJI framework to improve scalability
- Demonstrated accurate computation of reachable sets for nonlinear continuous and hybrid systems
- Applied computed reachable sets to safety verification, control synthesis and discrete abstraction problems in aircraft automation design

Outline

- The discrete, the continuous and the somewhere in between
 - Hybrid systems
- What are reachable sets?
 - Treating unknown inputs / parameters
- Computing reachable sets for continuous systems
 - A modified Hamilton-Jacobi-Isaacs equation
 - Application: synthesizing a safe control policy
 - Projective overapproximation of reachable sets
- Computing reachable sets for hybrid systems
 - The reach-avoid operator
 - Application: discrete abstraction
 - Application: an aircraft autolander
- Summary

Finite Automata

$$q(t+1) = \delta(q(t), \sigma(t))$$
 $q_i \in Q$ discrete states
 $q(t): \Box \to Q$ discrete trajectrory
 $\sigma_i \in \Sigma$ discrete actions
 $\sigma(t): \Box \to \Sigma$ action signal
 $\delta: Q \times \Sigma \to 2^Q$ transition function

Differential Equations

$$\dot{\mathbf{x}}(t) = \frac{d\mathbf{x}(t)}{dt} = f(\mathbf{x}(t), \upsilon(t))$$

 $X \in \square^n$

 $\upsilon \in \Upsilon \subset \Box^{n_{\upsilon}}$

 $\upsilon(t):\Box\to\Upsilon$

 $f: \square^n \times \Upsilon \rightarrow \square^n$

continuous state $x(t): \square \rightarrow \square^n$ continuous trajectory continuous inputs input signal flow field

Hybrid Automata

- Discrete modes and transitions
- Continuous evolution within each mode

 $f_{S}\begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} = \begin{pmatrix} -\mathbf{V} + \mathbf{V} \cos \psi \\ \mathbf{V} \sin \psi \end{pmatrix} \qquad f_{A}\begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} = \begin{pmatrix} -\mathbf{V} + \mathbf{V} \cos \psi - \mathbf{X}_{2} \\ \mathbf{V} \sin \psi + \mathbf{X}_{1} \end{pmatrix}$

dynamics in straight modes

dynamics in arc modes

Outline

- The discrete, the continuous and the somewhere in between
 - Hybrid systems
- What are reachable sets?
 - Treating unknown inputs / parameters
- Computing reachable sets for continuous systems
 - A modified Hamilton-Jacobi-Isaacs equation
 - Application: synthesizing a safe control policy
 - Projective overapproximation of reachable sets
- Computing reachable sets for hybrid systems
 - The reach-avoid operator
 - Application: discrete abstraction
 - Application: an aircraft autolander

Summary

Discrete Backward Reachable Sets

- Set of all states from which trajectories can reach some given target state
 - For example: from what states can we reach "cruise"?

Discrete System Dynamics

$$q(t+1) = \delta(q(t), \sigma(t))$$

Continuous Backward Reachable Sets

- Set of all states from which trajectories can reach some given target state
 - For example, what states can reach G(0)?

Why "Backward" Reachable Sets?

- To distinguish from forward reachable set
- To compute, run dynamics backwards in time from target set

$$\dot{x}(t) = -f(x(t))$$

Reachable Sets (controlled input)

- For most of our examples, target set is unsafe
- If we can control the input, choose it to avoid the target set
- Backward reachable set is unsafe no matter what we do

Reachable Sets (uncontrolled input)

- Sometimes we have no control over input signal
 - noise, actions of other agents, unknown system parameters
- It is safest to assume the worst case

Continuous System Dynamics $\dot{x}(t) = f(x(t), v(t))$

$$\exists \upsilon(\Box), x(t) \in G(0)$$

Two Competing Inputs

- For some systems there are two classes of inputs v = (u, d)
 - Controllable inputs u ∈ U
 - Uncontrollable (disturbance) inputs d ∈ D
- Equivalent to a zero sum differential game formulation
 - If there is an advantage to input ordering, give it to disturbances

Reachability Applications

- Safety Verification
 - Seven mode collision avoidance

- Synthesizing safe controllers that can be implemented
 - Collision avoidance filter

- Abstracting continuous behaviors to discrete models
 - Pilot interface for safe TOGA maneuver

Outline

- The discrete, the continuous and the somewhere in between
 - Hybrid systems
- What are reachable sets?
 - Treating unknown inputs / parameters
- Computing reachable sets for continuous systems
 - A modified Hamilton-Jacobi-Isaacs equation
 - Application: synthesizing a safe control policy
 - Projective overapproximation of reachable sets
- Computing reachable sets for hybrid systems
 - The reach-avoid operator
 - Application: discrete abstraction
 - Application: an aircraft autolander

Summary

Computing Continuous Reachable Sets

- Two key questions:
 - How to represent continuous sets?
 - How to evolve sets according to system dynamics?
- Two philosophies:
 - Forwards reachable set computed by following system trajectories
 - Backwards reachable set computed on a motionless grid
- My method (based on level set algorithms)
 - Backwards reachable set on a fixed grid
 - Implicit surface representation of sets
 - Solve Hamilton-Jacobi equation to evolve sets

5/17/02 21

Forward Reachability

- Forwards reachable set is computed by following trajectories
- Examples:
 - Timed automata: Uppaal [Larsen, Pettersson...], Kronos [Yovine,...], ...
 - Rectangular differential inclusions: Hytech, Hypertech [Henzinger, Ho, Horowitz, Wong-Toi, ...]
 - Polyhedra and linear dynamics: Checkmate [Chutinan & Krogh],
 d/dt [Bournez, Dang, Maler, Pnueli, ...], others [Bemporad, Morari,
 Torrisi, ...], [Greenstreet & Mitchell], ...
 - Ellipsoids and linear dynamics [Botchkarev, Kurzhanski, Tripakis, Varaiya, …]
 - Discretization (predicate abstraction) on grid [Kurshan & McMillan] or by cylindrical algebraic decomposition [Tiwari & Khanna]
- Advantages: Compact representation of sets, overapproximation guarantees
- Disadvantages: Linear dynamics, reliance on trajectory optimization, restrictive set representation, potentially large error

5/17/02 22

Backwards Reachability

- Backwards reachable set is computed on a motionless grid
- Examples:
 - Time dependent Hamilton-Jacobi [Sastry, Lygeros, Tomlin, ...]
 - Static Hamilton-Jacobi [Bardi, Capuzzo-Dolcetta, Falcone, ...]
 - Viability theory [Aubin, Quincampoix, Saint-Pierre, ...]
- Advantages: General representation of sets, nonlinear dynamics
- Disadvantages: Exponential growth of representation size with state dimension, direction of error is unknown

Implicit Surface Representation

The reachable set will be the zero sublevel set of a scalar function

$$G(t) = \{x \in \square \mid J(x,t) \leq 0\}$$

Useful fact

$$|D_x J(x,t)| = 1$$
 \Rightarrow
$$\begin{cases} D_x J(x,t) \text{ gives direction of nearest point on } \partial G(t) \\ J(x,t) \text{ gives distance to nearest point on } \partial G(t) \end{cases}$$

Evolving Reachable Sets

Modified Hamilton-Jacobi partial differential equation

$$D_t J(x,t) + \min \left[0, H\left(x, D_x J(x,t)\right) \right] = 0$$

$$H(x,p) = \max_{u \in U} \min_{d \in D} f(x,u,d) \bullet p$$

and terminal conditions:

$$J(x,0)=h(x)$$

where

$$G(0) = \{x \in \Box^n \mid h(x) \le 0\}$$

and

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

Hamilton-Jacobi Equation

$$D_t J(x,t) + H(x,D_x J(x,t)) = 0$$

- First order hyperbolic PDE
 - Solution can form kinks (discontinuous derivatives)
 - For the backwards reachable set, find the "viscosity" solution [Crandall, Evans, Lions, ...]
- Level set methods
 - Convergent numerical algorithms to compute the viscosity solution [Osher, Sethian, ...]
 - Non-oscillatory, high accuracy spatial derivative approximation
 - Stable, consistent numerical Hamiltonian
 - Variation diminishing, high order, explicit time integration

Solving a Differential Game

Terminal cost differential game for trajectories ξ_t(•;x,t,u(•),d(•))

$$J(x,t) = \max_{u(\square)} \min_{d(\square)} h \Big[\xi_f \big(0; x, t, u(\square), d(\square) \big) \Big]$$
where
$$\begin{cases} \xi_f \big(t; x, t, u(\square), d(\square) \big) = x \\ \dot{\xi}_f \big(s; x, t, u(\square), d(\square) \big) = f \big(x, u(s), d(s) \big) \end{cases}$$
terminal payoff function $h(x)$

- Value function solution J(x,t) given by viscosity solution to basic Hamilton-Jacobi equation
 - [Evans & Souganidis, 1984]

$$D_{t}J(x,t) + H(x,D_{x}J(x,t)) = 0$$
where
$$\begin{cases} H(x,p) = \max_{u \in U} \min_{d \in D} f(x,u,d) \bullet p \\ J(x,0) = h(x) \end{cases}$$

Modification for Optimal Stopping Time

- How to keep trajectories from passing through G(0)?
 - [Mitchell, Bayen & Tomlin 2002]
 - Augment disturbance input

$$\tilde{d} = [d \quad \underline{d}] \text{ where } \underline{d} : [t,0] \rightarrow [0,1]$$

$$\tilde{f}(x,u,\tilde{d}) = \underline{d} f(x,u,d)$$

Augmented Hamilton-Jacobi equation solves for reachable set

$$D_{t}J(x,t) + \tilde{H}(x,D_{x}J(x,t)) = 0 \text{ where } \begin{cases} \tilde{H}(x,p) = \max_{u \in U} \min_{\tilde{d} \in \tilde{D}} \tilde{f}(x,u,\tilde{d}) \bullet p \\ J(x,0) = h(x) \end{cases}$$

Augmented Hamiltonian is equivalent to modified Hamiltonian

$$\begin{split} \tilde{H}(x,p) &= \max_{u \in U} \min_{\tilde{d} \in \tilde{D}} \tilde{f}(x,u,\tilde{d}) \bullet p \\ &= \max_{u \in U} \min_{d \in D} \min_{\underline{d} \in [0,1]} \underline{d} f(x,u,d) \bullet p \\ &= \min \left[\mathbf{0}, \max_{u \in U} \min_{d \in D} f(x,u,d) \bullet p \right] = \min \left[\mathbf{0}, H(x,p) \right] \end{split}$$

Application: Synthesizing Safe Controllers

- By construction, on the boundary of the unsafe set there exists a control to keep trajectories safe
 - Filter potentially unsafe controls to ensure safety

Synthesizing Safe Controllers Example

- Filter potentially unsafe input to guarantee safety
- Collision avoidance example
 - Collision occurs if vehicles get within five units of one another
 - Evader chooses turn rate |u| ≤ 1 to avoid collision
 - Pursuer chooses turn rate |d| ≤ 1 to cause collision
 - Fixed equal velocity $\mathbf{v} = 5$

evader aircraft (control)

v e

dynamics (pursuer)

$$\frac{\mathbf{d}}{\mathbf{d}t} \begin{pmatrix} \mathbf{x}_{p} \\ \mathbf{y}_{p} \\ \theta_{p} \end{pmatrix} = \begin{pmatrix} \mathbf{v} \cos \theta_{p} \\ \mathbf{v} \sin \theta_{p} \\ \mathbf{d} \end{pmatrix}$$

pursuer aircraft (disturbance)

Collision Avoidance Filter 1

- Simple video game demonstration
 - Pursuer: turn to head toward evader
 - Evader: turn to head east
- No filtering for safety

Collision Avoidance Filter 2

- Simple video game demonstration
 - Pursuer: turn to head toward evader
 - Evader: turn to head east
- Evader's input is filtered to guarantee that pursuer does not enter the reachable set

Collision Avoidance Filter 3

- Simple video game demonstration
 - Pursuer: turn to head toward evader
 - Evader: turn to head east
- Evader's input is filtered, but pursuer is already inside reachable set, so collision cannot be avoided

Collision Avoidance Computation

- Work in relative coordinates with evader fixed at origin
 - State variables are now relative planar location (\mathbf{x}, \mathbf{y}) and relative heading ψ

$$\frac{d}{dt} \begin{pmatrix} x \\ y \\ \psi \end{pmatrix} = \begin{pmatrix} -v + v \cos \psi + uy \\ v \sin \psi - ux \\ d - u \end{pmatrix}$$

evader aircraft (control)

pursuer aircraft (disturbance)

Hamilton-Jacobi Formulation

Evader tries to maintain five mile separation

$$\begin{aligned} |\det p = D_x J(x,t), \quad |u| \leq 1, \quad |d| \leq 1 \\ J(x,t=0) &= \sqrt{x^2 + y^2} - 5 \\ H(x,p) &= p_x v + p_x v \cos \psi + p_y v \sin \psi + u(p_x y - p_y x - p_\psi) - d(p_\psi) \\ &= p_x v + p_x v \cos \psi + p_y v \sin \psi + |p_x y - p_y x - p_\psi| - |p_\psi| \end{aligned}$$

Computing Reachable Set

display: $G(t) = \{x \in \square^n \mid J(x,t) \le 0\}$

Final Reachable Set

Converged G(t) = G

Simulation cost: twenty minutes, four megabytes

rendering software by Prof. Ron Fedkiw

Validating the Numerical Algorithm

- Analytic solution for reachable set can be found [Merz, 1972]
 - Applies only to identical pursuer and evader dynamics
 - Merz's solution placed pursuer at the origin, game is not symmetric
 - Analytic solution can be used to validate numerical solution
 - [Mitchell, 2001]

Innovation in Level Set Methods

- Level set methods are prone to area/volume loss
 - Particle level set method is an easy to program technique that significantly improves volume preservation
 - [Enright, Fedkiw, Ferziger & Mitchell, 2002]

Level Set Only

Particle Level Set

Projective Overapproximation

- Overapproximate reachable set of high dimensional system as the intersection of reachable sets for lower dimensional projections
 - [Mitchell & Tomlin, 2002]
 - Example: rotation of "sphere" about z-axis

Computing with Projections

- Forward and backward reachable sets for finite automata
 - Projecting into overlapping subsets of the variables, computing with BDDs [Govindaraju, Dill, Hu, Horowitz]
- Forward reachable sets for continuous systems
 - Projecting into 2D subspaces, representation by polygons [Greenstreet & Mitchell]
- Level set algorithms for geometric optics
 - Need multiple arrival time (viscosity solution gives first arrival time), so compute in higher dimensions and project down [Osher, Cheng, Kang, Shim & Tsai]

Hamilton-Jacobi in the Projection

- Consider x-z projection represented by level set $J_{xz}(x,z,t)$
 - Back projection into 3D yields a cylinder $J_{xz}(x,y,z,t)$
- Simple HJ PDE for this cylinder

$$D_t J_{xz}(x,y,z,t) + \sum_{i=1}^3 p_i f_i(x,y,z) = 0 \quad \text{where } \begin{cases} p_1 = D_x J_{xz}(x,y,z,t) \\ p_2 = D_y J_{xz}(x,y,z,t) \\ p_3 = D_z J_{xz}(x,y,z,t) \end{cases}$$

- But for cylinder parallel to y-axis, $p_2 = 0$

$$D_t J_{xz}(x,y,z,t) + p_1 f_1(x,y,z) + p_3 f_3(x,y,z) = 0$$

- What value to give free variable y in f_i(x,y,z)?
 - Treat it as a disturbance, bounded by the other projections

$$D_t J_{xz}(x, y, z, t) + \min_{y} [p_1 f_1(x, y, z) + p_3 f_3(x, y, z)] = 0$$

• Hamiltonian no longer depends on y, so computation can be done entirely in x-z space on $J_{xz}(x,z,t)$

Projective Collision Avoidance

- Work strictly in relative x-y plane
 - Treat relative heading $\psi \in [0, 2\pi]$ as a disturbance input
 - Compute time: 40 seconds in 2D vs 20 minutes in 3D
 - Compare overapproximative prism (mesh) to true set (solid)

43

Outline

- The discrete, the continuous and the somewhere in between
 - Hybrid systems
- What are reachable sets?
 - Treating unknown inputs / parameters
- Computing reachable sets for continuous systems
 - A modified Hamilton-Jacobi-Isaacs equation
 - Application: synthesizing a safe control policy
 - Projective overapproximation of reachable sets
- Computing reachable sets for hybrid systems
 - The reach-avoid operator
 - Application: discrete abstraction
 - Application: an aircraft autolander

Summary

Computing Hybrid Reachable Sets

- Compute continuous reachable set in each mode separately
 - Uncontrollable switches may introduce unsafe sets
 - Controllable switches may introduce safe sets

5/17/02

Forced switches introduce boundary conditions

Reach-Avoid Operator

Compute set of states which reaches G(0) without entering E

$$G(t) = \left\{ x \in \square^n \mid J_G(x,t) \le 0 \right\}$$

$$E = \left\{ x \in \square^n \mid J_E(x) \le 0 \right\}$$

Reach-Avoid Set **G**(t)

- Formulated as a constrained Hamilton-Jacobi equation or variational inequality
 - [Mitchell & Tomlin, 2000]

$$D_t J_G(x,t) + \min \left[0, H\left(x, D_x J_G(x,t)\right) \right] = 0$$

subject to: $J_G(x,t) \ge J_E(x)$

Level set can represent often odd shape of reach-avoid sets

Application: Discrete Abstractions

 It can be easier to analyze discrete automata than hybrid automata or continuous systems

Use reachable set information to abstract away continuous details

Application: Aircraft Autolander

- Airplane must stay within safe flight envelope during landing
 - Bounds on velocity (V), flight path angle (γ), height (z)
 - Control over engine thrust (T), angle of attack (α), flap settings
 - Model flap settings as discrete modes of hybrid automata
 - Terms in continuous dynamics may depend on flap setting
 - [Mitchell, Bayen & Tomlin, 2001]

Landing Example: Discrete Model

- Flap dynamics version
 - Pilot can choose one of three flap deflections
 - Thirty seconds for zero to full deflection

- Implemented version
 - Instant switches between fixed deflections
 - Additional timed modes to remove Zeno behavior

Landing Example: No Mode Switches

Landing Example: Mode Switches

Landing Example: Synthesizing Control

- For states at the boundary of the safe set, results of reach-avoid computation determine
 - What continuous inputs (if any) maintain safety
 - What discrete jumps (if any) are safe to perform
 - Level set values & gradients provide all relevant data

Abstraction Example: Cockpit Display

- Controllable flight envelopes for landing and Take Off / Go Around (TOGA) maneuvers may not be the same
- Pilot's cockpit display may not contain sufficient information to distinguish whether TOGA can be initiated
 - [Oishi, Mitchell, Bayen, Tomlin & Degani, CDC 2002]

Summary

- Hybrid systems can model systems with complex interactions between discrete and continuous components
- Level set methods can accurately compute reachable sets for nonlinear continuous and hybrid systems
 - Continuous and discrete inputs may affect system dynamics
 - Differential game formulation models unknown parameters robustly
 - Projective overapproximation to improve algorithm's scalability
- These reachable sets can be applied to
 - Verify safe behavior
 - Synthesize safe control policies
 - Create discrete abstractions
- Reachability problems motivate innovation in level set methods
 - Particle level set method used for fluid simulation and animation

Future Directions

- Comparing reachable sets computed by different algorithms
 - Create interval or sector bounded linear approximation for landing example and compute control invariant subset of envelope (by LMIs & SDPs) or backwards reachable set (by ellipsoidal methods)
- Fully local level set implementation (time and space)
- Toolkit for computing reachable sets
- Control synthesis and planning
 - Filtering controls for safety: soft walls for aircraft
- Projective overapproximation
 - Characterizing appropriate problems and choices of projections

Probabilistic models

Acknowledgements

- Kaaren
- Current & Former Supervisors
 - Professors Claire Tomlin, Ronald Fedkiw & Mark Greenstreet
- Committee
 - Professors Stephen Boyd, David Dill & Antony Jameson
- Hybrid Systems Lab
 - Alexandre Bayen, Ronojoy Ghosh, Inseok Hwang, Gokhan Inalhan, Jung Soon Jang, Meeko Oishi, Dusan Stipanovic, Rodney Teo, Sherann Ellsworth
- Physically Based Modeling Group
 - Douglas Enright, Robert Bridson, Frederic Gibou, Eran
 Guendelman, Neil Molino, Igor Neverov, Duc Nguyen, Joseph
 Teran
- Scientific Computing & Computational Mathematics Program
- Family & Friends