МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова» (БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

Факультет	И	Информационные и управляющие системы
	шифр	Наименование
Кафедра	И9	Систем управления и компьютерных технологий
	шифр	наименование
Дисциплина	Модели	прование систем

Лабораторная работа №3 на тему «Построение генератора случайных чисел с заданным законом распределения» Вариант №3

Выполнил студент группы	Ы И967
Васильев	H.A.
Фамилия	И.О.
ПРЕПОДАВАТЕЛЬ	
Захаров А.Ю.	
Фамилия И.О.	Подпись
« <u></u> »	2019 г.

Основные сведения из теории

Генераторы случайных чисел и случайных процессов широко применяются в различных областях, прежде всего при построении моделей стохастических систем. В зависимости от физического облика модели могут использоваться аппаратные или программные генераторы.

При любом принципе построения генератор случайных чисел должен обеспечивать получение последовательностей чисел $x_1, x_2, ..., x_n, ...$, обладающих следующими свойствами:

- 1) значение очередного числа для пользователя генератора заранее непредсказуемо;
- 2) отдельные числа, входящие в последовательность, взаимно независимы;
- 3) статистическая обработка последовательности должна приводить к получению характеристик, соответствующих определенному закону распределения.

Общий принцип построения программных генераторов состоит в том, что на первом этапе имитируется равномерный закон распределения в интервале [0; 1], а затем полученная последовательность преобразуется для обеспечения требуемого закона.

Получение равномерного закона в интервале [0; 1] обеспечивается на основе использования целочисленных рекуррентных соотношений различного вида, реализуемых в условиях ограниченной разрядности представления чисел.

Метод обратных функций позволяет получать любой непрерывный закон распределения, если только существует аналитическое выражение для F(x) и может быть получена в аналитическом виде обратная функция.

Проверка качества генератора случайных чисел предусматривает получение с его использованием случайных выборок, восстановление по ним выборочных законов распределения и проверку соответствия закона распределения генерируемых случайных чисел заданному закону распределения.

Критерий согласия Колмогорова применяется в том случае, когда по случайной выборке восстановлена статистическая функция распределения $F^*(x)$. В качестве меры расхождения здесь рассматривается максимум абсолютной величины разности теоретической и выборочной (статистической) ФРВ:

$$\Delta_{p} = \max_{x} \left| F(x) - F^{*}(x) \right|,$$

где F(x) – теоретическая ФРВ.

Критерием согласия является вероятность того, что случайная величина $\lambda = \Delta \sqrt{n}$ при данном объеме выборки n и правильном выборе теоретического закона могла бы принять значение, не меньшее $\Delta_{\rm D} \sqrt{n}$:

$$P(\lambda \ge \Delta_{p} \sqrt{n}) = P(\lambda / \sqrt{n} \ge \Delta_{p}). \tag{9}$$

При $n \ge 50$ вероятности (9) рассчитываются в соответствии с законом распределения Колмогорова. Наиболее важные для практики их значения представлены в табл. 15.

Распределение Колмогорова

Таблица 15

λ	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9
P	0,270	0,178	0,112	0,068	0,040	0,022	0,012	0,006	0,003	0,002

Если теоретический закон распределения подобран, порядок применения критерия Колмогорова аналогичен рассмотренному выше для критерия Пирсона. В качестве граничного для области согласия теоретического и выборочного законов принято рассматривать значение P=0,1. Ему соответствует λ =1,22. Таким образом, при λ_p = $\Delta_p \sqrt{n} \le$ 1,22 считается, что теоретическое распределение согласуется с выборочным.

Содержание задания

В соответствии с индивидуальным вариантом задания (табл. 16):

- 1. Построить программный генератор случайных чисел с заданным законом распределения. Рекомендуется использовать метод обратных функций.
- 2. Оценить величину математического ожидания и дисперсии по выборкам объемом 50, 100, $1000, 10^5$ и сравнить с точными величинами, полученными аналитически.
- 3. Оценить соответствие полученного закона заданному, используя указанный критерий согласия: Пирсона (1) или Колмогорова (2).

При выполнении п. 3 предусмотреть:

- построение гистограммы (в случае применения критерия Пирсона) или статистической функции распределения (в случае применения критерия Колмогорова);
- использование выборок указанных в п. 2 объемов.

№ вар.	Плотность распределения вероятностей и интервал распределения	Критерий согласия	
3	$f(z) = \frac{1}{1 - \sin^2 z} \left(0 \le z \le \frac{\pi}{4} \right)$	2	

Результат работы программы

