

Ontario High School Grade 11 Chemistry

Summer 2024, Chapter 7 Notes

Welcome to Wizeprep

These notes were created on Aug 4th, 2024

We're always updating our content. Check back for more.

Welcome to Your Course Notes

I'm Dana, your Wizeprep chemistry tutor. I put these notes and the corresponding online course together especially for Grade 11 Chemistry at Ontario High School. It's formulated to tell you everything you need to know, in a quick and easy format so you can get better grades, spend less time studying, and more time living.

Dana 4.4/5 🛨 MSc

Find Your Course Online

These course notes correspond to an online course full of video lectures, practice problems, instructor Q&A and more. Access it with this QR code or at wizeprep.com/in-course-experience/Sch3U-High-School

98%

Of Wizeprep Students Get Better Grades 66

After discovering Wizeprep at the beginning of my second semester, my grades have gone up significantly. I feel so much more confident when taking my exams.

Emily, Undergraduate Student

Your Wizeprep Resources

Get Better Grades

98% of students who study with Wizeprep reported higher grades

Really Understand Concepts

Our instructors know how to make complex topics feel simple

Cut Your Study Time in Half

Quick, curated lessons allow you to focus your study time where it matters

Find in These Course Notes

🔀 Relevant Theory

All the theory and expert knowledge you need to fully understand your course.

Practice Questions

Tons of practice problems, similar to those expected on your exam.

Exam Tips

Unique exam writing tips proven to help you score higher.

Find Online

□ Bite-Sized Video Lessons

Each section corresponds to a minutes-long video explanation by your expert instructors.

Solutions to Problems

See the solutions to the practice problems as well as a step-by-step breakdown of the answers.

24/7 Instructor Q&A

Need help clarifying a concept? You have direct access to your instructor.

Not subscribed yet?

Get started for free on Wizeprep.com

Table of Contents

Chapter 7. Solutions

7.1. Solutions

7.1.1. Solutions

7.1.2. Properties of Aqueous Solutions

7.1.3. Example: Identifying Solutes and Solvents

7.1.4. Practice Level 1

7.1.5. Practice Level 2

7.1.6. Practice Level 3

7.2. Concentrations

7.2.1. Concentration

7.2.2. Example: Calculation of Concentration

7.2.3. Example: Solution Stoichiometry

7.2.4. Example: Mixed Stoichiometry

7.2.5. Practice Level 1

7.2.6. Practice Level 2

7.2.7. Practice Level 2

7.2.8. Practice Level 3

7.3. Solubility

7.3.1. Solubility

7.3.2. Solubility Curves

7.3.3. Factors Affecting Solubility

7.3.4. Example: Solubility Curves

7.3.5. Practice Level 1

7.3.6. Practice Level 2

7.3.7. Practice Level 3

7.4. Making Solutions

7.4.1. Making Solutions

7.4.2. Example: Dilution Calculations

7.4.3. Practice Level 1

7.4.4. Practice Level 2

7.4.5. Practice Level 3

7. Solutions

7.1 Solutions

7.1.1

Solutions

- Solutions are homogeneous mixtures containing a solvent and a solute
 - The **solvent** is the component of a solution that is found in a greater quantity
 - The solute is the component found in a lesser amount
- Solutions can be gaseous, liquid or solid; the state of the solution is the same is as the state of the solvent
 - Solid solutions are also know as alloys
 - Liquid solutions with water as the solvent are known as aqueous solutions

Type of Solution	Solute	Solvent	Example
Gaseous Solutions	Gas	Gas	Air
Guseous solutions	Liquid	Gas	Humid air
	Gas	Liquid	Soda
Liquid Solutions	Liquid	Liquid	Alcoholic beverages
	Solid	Liquid	Salty water
Solid Solution	Solid	Solid	Metal Alloys

Watch the video tutorial for this lesson (02:36)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75103&activity_type=CourseLesson

Properties of Aqueous Solutions

- Electrolytes are compounds that dissolve in water, producing a solution that conducts electricity
 - Strong electrolytes dissolve to give solutions that conduct electricity efficiently
 These compounds completely dissociate or ionize in solution

 Example: ionic compounds, strong acids, and strong bases

$$NaC\ell(s)
ightarrow\ Na^+(aq)+C\ell^-(aq)$$

$$HC\ell\left(aq
ight)
ightarrow H^{+}\left(aq
ight)+C\ell^{-}\left(aq
ight)$$

 Weak electrolytes dissolve to give solutions that don't conduct as much as strong electrolytes

These compounds only produce few ions when they dissolve in water *Examples:* Weak acids and weak bases

$$NH_3(aq) + H_2O(\ell)
ightleftharpoons NH_4^+(aq) + OH^+(aq)$$

Non-electrolytes are solutions that do not conduct electricity
 These are molecular that dissolve in water but don't produce any ions
 Example: Molecular compounds like C₆H₁₂O₆

$$C_6H_{12}O_6\left(s
ight)
ightarrow C_6H_{12}O_6\left(aq
ight)$$

Watch the video tutorial for this lesson (03:10)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75106&activity_type=CourseLesson

Example: Identifying Solutes and Solvents

Identify the solute and the solvent in the following solutions:

- a. sweetened tea
- b. vinegar
- c. soft drinks
- d. natural gas

Watch the video tutorial for this lesson (02:03)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=78353&activity_type=CourseLesson

Practice: Solutions Terms and Definitions

Match the following terms and definitions.

A. solid	solution containing two or more metals
B. subst	cance that dissolves in water to form a solution that conducts an electric current
C. subst	cance that does the dissolving in a solution
D. solut	ion with water as the solvent
E. subst	ance that is dissolved in a solution
F. homo	geneous mixture of two or more substances in a single physical state
	solution
	solute
	solvent
	alloy
	aqueous solution
	electrolyte

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=113805&activity_type=QuizQuestion

Practice: Identifying Solutes and Solvents

For each of the following solutions, identify:

- the original state of the solute (gas (G), liquid (L) or solid (S))
- the original state of the solvent (gas (G), liquid (L) or solid (S))
- the state of the solution itself (gas (G), liquid (L) or solid (S))

Solution	State of Solute	State of Solvent	State of Solution
Club Soda			
Hand Sanitizer			
Ocean Water			
Air			

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=113806&activity_type=QuizQuestion

7.1.6

Which of the following compounds is a weak electrolyte in water?

HBr	0
NaOH	0
CH ₃ COOH	0
HI	0
HNO ₃	0)

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=113044&activity_type=QuizQuestion

7.2 Concentrations

7.2.1

Concentration

Amount concentration

• Amount concentration is a quantitative measure of the amount of solute present in a solution

$$c = rac{n_{
m solute}({
m mol})}{V_{
m solution}(L)}$$

Percent Concentrations

• When it comes to consumer products, often times concentration is expressed in terms of percentages

% Volume by Volume ($%$ V/V)	% Weight by Volume ($%$ w/V)	% Weight by Weight (% w/w)
$c = rac{V_{ m solute}}{V_{ m solution}} imes 100\%$	$c = rac{m_{ m solute}(g)}{V_{ m solution}(mL)} imes 100\%$	$c = rac{m_{ m solute}}{m_{ m solution}} imes 100\%$

Dilute Solutions

- When working with very dilute solutions, we can express their concentrations using parts-per notation
- We can make the assumption that very dilute aqueous solutions have a density equal to the density of water or 1g/mL, then we can use the mass percent equation to get the part-per concentration

Parts per Million (ppm)	Parts per Billion (ppb)	Parts per Trillion (ppt)
$c_{ppm} = rac{m_{ m solute}}{m_{ m solution}} imes 10^6$	$c_{ppb} = rac{m_{ m solute}}{m_{ m solution}} imes 10^9$	$c_{ppt} = rac{m_{ m solute}}{m_{ m solution}} imes 10^{12}$

Watch the video tutorial for this lesson (03:57)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75191&activity_type=CourseLesson

Example: Calculation of Concentration

Calculate the amount concentration of a solution of 24g NaOH in 150mL of water.

Solution available online

Watch the video tutorial for this lesson (02:29)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=75572&activity_type=CourseLesson

7.2.3 Example: Solution Stoichiometry

Example: Solution Stoichiometry

What volume of 0.125mol/L NaOH(aq) is required to react completely with 15.0mL of 0.100mol/L $Al_2(SO_4)_3(aq)$?

$$6NaOH(aq) + Al_2(SO_4)_3(aq)
ightarrow 2Al(OH)_3(s) + 3Na_2SO_4(aq)$$

Solution available online

- 2.
- 3.

Watch the video tutorial for this lesson (04:29)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=75438&activity_type=CourseLesson

7.2.4 Example: Mixed Stoichiometry

Example: Mixed Stoichiometry

Lithium metal was added to a 25mL of a 1.3mol/L solution of Ag_2SO_4 . Once the reaction has gone to completion, what mass of silver metal is produced?

$$Ag_2SO_4(aq) + 2Li(s)
ightarrow Li_2SO_4(aq) + 2Ag(s)$$

Solution available online

- 2.
- 3.

Watch the video tutorial for this lesson (03:55)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=75435&activity_type=CourseLesson

Practice: Amount Concentration

To make a 2.00mol/L solution, how many moles of solute will be needed if 4.0 liters of solution are required? Give your answer to one decimal place; do not include units.

Answer

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=113800&activity_type=QuizQuestion

7.2.6

Practice: Percent Volume by Volume

How many mL of hydrogen peroxide are needed to make a 8.5% solution by volume of hydrogen peroxide if you want to make 450mL of solution?

Answer

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=112591&activity_type=QuizQuestion

Practice: Dilute Concentrations

Symptoms of mercury poisoning become apparent after a person has accumulated 20mg of mercury. If a person ingested 30mg of mercury, what concentration of mercury in parts per million, are in his body? Assume the person has a mass of 65kg.

2.17ppm	0
0.46ppm	0
0.31ppm	0
3.25ppm	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=113750&activity_type=QuizQuestion

Practice: Balancing Chemical Reactions and Stoichiometry

When solutions of lead (II) nitrate and sodium iodide are mixed, a bright yellow precipitate of lead (II) iodide appears.

Part 1

MARK YOURSELF QUESTION

- 1. Grab a piece of paper and try this problem yourself.
- 2. When you're done, check the "I have answered this question" box below.
- 3. View the solution and report whether you got it right or wrong.

Write the complete balanced equation for this double-replacement reaction.

I have answered this question

Practice: Balancing Chemical Reactions and Stoichiometry

When solutions of lead (II) nitrate and sodium iodide are mixed, a bright yellow precipitate of lead (II) iodide appears.

Part 2

What volume, in mL, of 0.400 mol/L NaI(aq) is necessary to precipitate all the aqueous lead(II) ions in 50.0 mL of 0.200 mol/L $Pb(NO_3)_2(aq)$? Give your answer to one decimal place; do not include units in your answer.

Answer

Practice: Balancing Chemical Reactions and Stoichiometry

When solutions of lead (II) nitrate and sodium iodide are mixed, a bright yellow precipitate of lead (II) iodide appears.

Part 3

What mass of precipitate, in grams, is formed in this reaction? Give your answer to one decimal place; do not include units in your answer.

Answer

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=113751&activity_type=QuizQuestion

7.3 Solubility

7.3.1

Solubility

- Solubility is defined as the amount of solute that can be dissolved in an amount of solvent at a given temperature.
- Whether a solute will dissolve in a solvent, depends on the intermolecular forces between:
 - Solute particles
 - Solvent particles
 - o Solute and solvent particles

- A solute will dissolve in a solvent if the solute-solvent forces of attraction are greater than the solute-solute and solvent-solvent forces of attraction.
 - Polar substances will dissolve in polar substances
 Example: water and methanol (CH₃OH)

lonic substances will dissolve in polar substances
 Example: water and salt (NaCl)

Non-polar substances will dissolve in other non-polar substances
 Example: hexane and benzene

i WIZE TIP

Remember, "like dissolves like"!

- Polar (or ionic) substances dissolve other polar substances
- Non-polar substances dissolve other non-polar substances

- A solute will not dissolve in a solvent if the solute-solvent forces of attraction are weaker than individual solute and solvent force of attractions.
 - Non-polar substances don't dissolve in polar substance, since they cannot break the strong forces of attraction inside the polar substance

Types of Solutions

- An unsaturated solution is a solution in which more solute can be dissolved in the solvent at a given temperature and pressure
- A saturated solution contains the maximum amount of solute that can be dissolved in a solvent at a given temperature and pressure
- A super saturated solution contains more than the maximum amount of solute that can be dissolved in a solvent at a given temperature and pressure

Watch the video tutorial for this lesson (05:18)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75107&activity_type=CourseLesson

Solubility Curves

- We can tell what type of solution we have from a solubility curve by looking at the concentration of the solution and the temperature at which the solution is at.
 - To the left of the curve supersaturated solution
 Example: a 50g KNO₃/100mL H₂O of at 20°C
 - On the curve saturated solution
 Example: a 50g KNO₃/100mL H₂O of at 45°C
 - To the right of the curve unsaturated solution
 Example: a 50g KNO₃/100mL H₂O of at 80°C

Watch the video tutorial for this lesson (02:14)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=78065&activity_type=CourseLesson

Factors Affecting Solubility

Temperature

• For solids in an aqueous solution, an increase in temperature will typically result in an increase in solubility

- For liquids, there is no defined trend
- For gases in an aqueous solution, an increase in temperature will typically result in a decrease in solubility

Pressure

- For solids and liquids, a change in pressure will have a negligible effect on solubility
- For gases, an increase in pressure will typically result in an increase in solubility

Watch the video tutorial for this lesson (02:11)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75669&activity_type=CourseLesson

Example: Solubility Curves

Suppose a solution contains 20g of MgSO₄ dissolved in 100mL of water at 50°C. Is the solution saturated, unsaturated, or supersaturated? Explain your answer.

Solution available online

Watch the video tutorial for this lesson (01:31)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=78188&activity_type=CourseLesson

Practice: Solubility

What would HCl readily dissolve in?

H ₂ O	0
C ₆ H ₆ (benzene)	0
Both	0
None	0)

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=112598&activity_type=QuizQuestion

Practice: Factors affecting Solubility

Most solutes dissolve faster in a water when the temperature is increased. Which of the following solutes is an exception to this rule?

NaCl	0
KNO ₃	0
CO ₂	0
NH ₄ CI	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=113807&activity_type=QuizQuestion

Practice: Solubility Curves

Use the solubility curve below to answer the following questions:

Part 1 What happens to a solution of KNO_3 that is saturated at 50°C when it is cooled quickly to 10°C?

(the solution is not changed	0
	the solution becomes saturated	0
	the average kinetic energy rises	0
(extra solute falls out of solution	0

Practice: Solubility Curves

Use the solubility curve below to answer the following questions:

Part 2 How would you describe a solution of KNO_3 at $80^{\circ}C$ is there are about 45g of KNO_3 dissolved in $100 \, \text{mL}$ of water?

(it is supersaturated	0
	it is dilute	0
	it is unsaturated	0
(it is saturated	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=108890&activity_type=QuizQuestion

7.4 Making Solutions

7.4.1

Making Solutions

Making Standard Solutions

- A **standard** or **stock solution** is a solution that we know the concentration of accurately. Stock or standard solution can be diluted.
- To make a standard or stock solution, you have to dissolve the desired number of moles of solute in enough solvent to give the desired final volume of solution.

Diluting Standard Solutions

• We can reduce the concentration of a standard solution by adding more solvent to the solution

• We can calculate the concentration of the diluted solution using the following equation:

$$c_1V_1=c_2V_2$$

Watch the video tutorial for this lesson (02:45)

 $https://www.wizeprep.com/in-course-experience/Sch3U-High-School?\\ activity_id=75108\&activity_type=CourseLesson$

7.4.2 **Example: Dilution Calculations**

Example: Dilutions

Calculate the concentration of a diluted HCl solution prepared by taking 5.00mL of 1.50mol/L HCl and diluting it to 100.0mL in a volumetric flask.

Solution available online

Watch the video tutorial for this lesson (01:50)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75680&activity_type=CourseLesson

Practice: Dilutions

During a dilution, the number of moles of solute:

d	decreases	0
ir	ncreases	0
d	does not change	0
n	nay increase or decrease, depending on the dilution	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=113773&activity_type=QuizQuestion

Practice: Dilutions

What volume of 4.0mol/L HCl solution is needed to make 0.50L of 3.0mol/L HCl solution?

6.0mL	0
375mL	0
24mL	0
0.375mL	0
66.7mL	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=108892&activity_type=QuizQuestion

Practice: Making Solutions

Match the following changes to the effect they will have on the final concentration of the solution.

- **A.** doubling the original volume by adding water
- **B.** doubling the original volume by adding more of an identical solution
- **C.** doubling the number of moles by dissolving more solute

the concentration will halve
no effect on the final concentration
the concentration will double

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=113808&activity_type=QuizQuestion

Find this, and much, much more on Wizeprep.com

Bite-Sized Video Lessons

Each section corresponds to a minutes-long video explanation by your expert instructors.

Solutions to Problems

See the solutions to the practice problems as well as a step-by-step breakdown of the answers.

24/7 Instructor Q&A

Need help clarifying a concept? You have direct access to your instructor.

Also on Wizeprep.com

Crash Courses

A live review of all testable concepts, exam-like practice problems, tips & tricks, and Q&A. Led by an instructor who is an expert on your course.

✓ Live Online Session ✓ Booklet ✓ Solutions ✓ Recording

Weekly Tutorials

A weekly, live review of lecture topics led by an instructor who knows your course inside and out.

✓ Live Online Session
✓ Booklet
✓ Solutions
✓ Recording

First week free!

Mock Exam Walkthroughs

A realistic practice exam based on past exams from your course. An instructor experienced with your course will walk through the solutions.

✓ Live Online Session ✓ Booklet ✓ Solutions ✓ Recording

Wizeprep MCAT

Chemistry

Org Chem

Biochem

Physics

Psych

Two Plans

ELITE 515 LIVE

Flexible live schedules, face-time with our MCAT instructors.

515+ performance guarantee

SELF-PACED

Watch 144 hours of expert MCAT instruction whenever you have time.

Both Plans Include...

- 144 hrs of expert instruction
- 15 full-length practice exams
- ✓ 100+ practice passages
- 405+ passage-based questions

- All AAMC materials
- Personalized study plan
- 6 top-quality textbooks
- Unlimited Q&A with MCAT experts

Performance Guarantee

The Elite 515 program promises you a score of at least 515 on the MCAT or money back. A 515 puts you within the top 2% of scores!

Find Free MCAT Resources on Wizeprep.com/MCAT

Free Live Events

Learn about the med school application process and more.

Free Diagnostic Exam

Predict your MCAT score and assesses strengths and weaknesses.

Free Trial

Don't just take our word for it. Try out the first few lessons vourself.

Other Courses at Ontario High **School**

Grade 12 **Chemistry**

Resource for SCH4U

Grade 12 Calculus & Vectors

Resource for MCV4U

Grade 12 Biology

Resource for SBI4U

Grade 11 Biology

Resource for SBI3U

Grade 12 Data Management

Resource for MDM4U

Grade 12 Advanced

Functions

Resource for MHF4U

Grade 11 **Functions**

Resource for MCR3U

Grade 12 Physics

Resource for SPH4U

Grade 10 **Principles of Mathematics**

Resource for MPM2D

Grade 9 Math (De-streamed)

Resource for MTH1W