CS450 Homework 6

Xiaowen Lin

8.4 Based on Richardson extrapolation method,

$$F(h) = a_0 + a_1 h + \mathcal{O}(h^2)$$

Given that F(0.2) = -0.8333 and F(0.1) = -0.9091.

$$F(0) = a_0 = F(h) + \frac{F(h) - F(h/2)}{(1/2) - 1} = 2F(h/2) - F(h) = -0.9849$$

9.4

- (a) Solution to the equation is $y(t) = e^{-5t}$. For real λ , if $\lambda < 0$, all nonzero solutions decay exponentially, so every solution is not only stable, but asymptotically stable.
 - (b) Applying Euler method $toy^{(1)} = \lambda y$ using fixed step size h,

$$y_{k+1} = (1 + h\lambda)y_k$$

which means $y_k = (1 + h\lambda)^h y_0$ We must have

$$h \le -\frac{2}{\lambda} = \frac{2}{5} = 0.4$$

But h = 0.5, so it is unstable.

(c)
$$y(0.5) = y(0) + h \times y^{(1)}(0) = 1 + 0.5 \times (-5) = -1.5$$

(d) $\left|\frac{1}{1-h*\lambda}\right| = 0.286 < 1$ so backward Euler is stable with h = 0.5

(e)
$$y(0.5) = y(0) + h \times y^{(1)}(0.5) = y(0) - 2.5 \times y(0.5)$$
$$y(0.5) = \frac{y(0)}{3.5} = 0.286$$

9.7

(a)

$$\mathbf{U} = \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right]$$

$$u_1 = y(t), u_2 = y^{(1)}(t), u_3 = u_2^{(1)} = y^{(2)}(t) = y$$
$$\mathbf{U}' = \begin{bmatrix} u_1^{(1)} \\ u_2^{(1)} \end{bmatrix} = \begin{bmatrix} y^{(1)}(t) \\ y(t) \end{bmatrix}$$

(b)

$$\mathbf{U_0} = \left[\begin{array}{c} y(0) \\ y^{(1)}(0) \end{array} \right] = \left[\begin{array}{c} 1 \\ 2 \end{array} \right]$$

(c)
$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} u_1^{(1)} \\ u_2^{(1)} \end{bmatrix}$$

Eigenvalues of $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is -1 and 1. Because there is one eigenvalue 1 that is larger than 0, so the solutions are no stable.

(d)

$$\mathbf{U_{t=0.5}} = \mathbf{U_0} + h \times \mathbf{U_0^{(1)}} = \begin{bmatrix} 1\\2 \end{bmatrix} + 0.5 \times \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 2\\2.5 \end{bmatrix}$$

(e)

$$\boldsymbol{I} + h\boldsymbol{J} = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

 $\rho(\boldsymbol{I}+h_k\boldsymbol{J}_f)$ is no bigger than 1, so error doesn't grow. And Euler's method is stable.

(f)
$$(\boldsymbol{I}-h\times\boldsymbol{J}(u^{(1)}))-1=\begin{bmatrix}1&-0.5\\-0.5&1\end{bmatrix}^{-1}=\begin{bmatrix}4/3&2/3\\2/3&4/3\end{bmatrix}$$
 Spectral radius is bigger than one, so it is unstable.

```
function cp08 04
syms x;
%Numerically evaluate integral, adaptive Simpson quadrature with "quad"
%funciton provided by matlab
disp('(a)');
f1=quad('x.^(3/2)',0,1);
disp(f1);
disp('(b)');
f2=quad('1./(1+10*(x.^2))',0,1);
disp(f2);
disp('(c)');
f3=quad('(exp(-9*x.^2)+exp(-1024*(x-1./4).^2))./pi.^(1./2)',0,1);
disp(f3);
disp('(d)');
f4=quad('(50./(pi*(2500*x.^2+1)))',0,10);
disp(f4);
disp('(e)');
f5=quad('1./abs(x).^0.5',-9,100);
disp(f5);
disp('(f)');
f6=quad('25*exp(-25*x)',0,10);
disp(f6);
disp('(g)');
f6=quad('log(x)',0,1);
disp(f6);
disp('So (a), (b), (c), (d), (e), (f) and (g) are all right solutions.');
```

```
>> cp08_04
```

(a)

0.4000

(b)

0.3999

(C)

0.1979

(d)

0.4994

(e)

25.9955

(f)

1.0000

(g)

-1.0000

So (a), (b), (c), (d), (e), (f) and (g) are all right solutions.

>>

```
function cp09 08
G=6.67259e-11;
M=5.974e+24;
m=7.348e+22;
u s=M/(m+M);
u=m/(m+M);
D=3.844e+8;
d=4.669e+6;
omiga=2.661e-6;
x0=4.613e+8;
y0 = 0;
dx0=0;
dy0 = -1074;
tspan=[0,2400000];
figure(1);
options = odeset('RelTol', 1e-1);
[t,x]=ode45 (@odes, tspan, [x0 y0 dx0 dy0], options);
plot(x(:,1),x(:,3),(-d),0,'ro',(D-d),0,'*');
legend('Orbit', 'Earth', 'Moon');
title('Orbit caculated with error tolerance 1e-1');
xlabel('X');ylabel('Y');
figure(2);
options = odeset('RelTol', 1e-2);
[t,x]=ode45 (@odes,tspan,[x0 y0 dx0 dy0], options);
plot(x(:,1),x(:,3),(-d),0,"ro",(D-d),0,"*");
legend('Orbit', 'Earth', 'Moon');
title('Orbit caculated with error tolerance 1e-2');
xlabel('X');ylabel('Y');
figure(3);
options = odeset('RelTol', 1e-3);
[t,x]=ode45 (@odes, tspan, [x0 y0 dx0 dy0], options);
plot(x(:,1),x(:,3),(-d),0,"ro",(D-d),0,"*");
legend('Orbit', 'Earth', 'Moon');
title('Orbit caculated with error tolerance 1e-3');
xlabel('X');ylabel('Y');
figure (4);
options = odeset('RelTol',1e-10);
[t,x]=ode45(@odes,tspan,[x0 y0 dx0 dy0], options);
plot(x(:,1),x(:,3),(-d),0,"ro",(D-d),0,"*");
legend('Orbit', 'Earth', 'Moon');
xlabel('X');ylabel('Y');
title('Orbit caculated with error tolerance 1e-3');
```

```
disp('When error tolerance goes from 1e-1 to 1e-10, the orbit becomes more and more \checkmark
actually closed.');
figure (5);
plot(t);
dt=t(2:end)-t(1:(end-1));
title('Integration values of step size');
figure(6);
plot(dt);
title('Value of step size');
xlabel('# of step');ylabel('Step size');
{	t disp} ('Based on these figures titled "Integration values of step size" and "Value of step {	t arksigma}
size", we know that step size changes during the process. ');
[mx, nx] = size(x);
V=zeros(mx,1);
for i=1:mx
    V(i,1) = norm([x(i,1)+d, x(i,3)],2);
end
min(V);
disp('The minimum distance from spacecraft to earth is');
disp(min(V) - 6.378e6);
function fcode=odes(t,x)
    u1=x(2);
    u2=-G*(M*(x(1)+u*D)/(((x(1)+d)^2+x(3)^2)^(1/2))^3+m*(x(1)-u s*D)/(((D-d-x(1))^2+x(3))
^2) ^(1/2)) ^3) +omiga^2x(1) +2*omiga*x(4);
    u3=x(4);
    u4=-G*(M*x(3)/(((x(1)+d)^2+x(3)^2)^(1/2))^3+m*x(3)/(((D-d-x(1))^2+x(3)^2)^(1/2))^3)
+omiga^2*x(3)-2*omiga*x(2);
    fcode=[u1;u2;u3;u4];
end
```

end

>> cp09 08

When error tolerance goes from 1e-1 to 1e-10, the orbit becomes more and more actually \checkmark closed.

Based on these figures titled "Integration values of step size" and "Value of step size", \checkmark we know that step size changes during the process.

The minimum distance from spacecraft to earth is 6.8558e+06

>>

