MAT121 V22 Oppgavesamling for eksamensforberedelse

Oppgave 1. Hvis A er 6×5 og AB^T er 6×7 , hvilken størrelse har da B ? Velg ett alternativ:
Oppgave 2. Anta at A er 4×4 og at trappeform av A har 3 pivoter. Hvilket av følgende utsagn er SANT? Velg ett alternativ: $\Box A\mathbf{x} = 0$ er inkonsistent. $\Box A\mathbf{x} = 0$ har ikke-trivielle løsninger. $\Box A\mathbf{x} = \mathbf{b}$ er konsistent for enhver $\mathbf{b} \in \mathbb{R}^4$. $\Box A\mathbf{x} = \mathbf{b}$ er inkonsistent for enhver $\mathbf{b} \in \mathbb{R}^4$. $\Box A\mathbf{d} = \mathbf{b}$ Har inkonsistent for enhver $\mathbf{b} \in \mathbb{R}^4$. $\Box A\mathbf{d} = \mathbf{b}$ Har inkonsistent for enhver $\mathbf{b} \in \mathbb{R}^4$.
Oppgave 3. Anta at A,B er $n\times n$ og at AB er inverterbar. Må da A være inverterbar? (Svaret må begrunnes: Gi et bevis eller et moteksempel.)
Oppgave 4. Hvis A er $n \times n$ og det finnes en $\mathbf{b} \in \mathbb{R}^n$ slik at ligningen $A\mathbf{x} = \mathbf{b}$ har mer enn én løsning, kan da A være inverterbar? (Svaret må begrunnes.)
Oppgave 5. Anta at A er $n \times n$ og diagonaliserbar. Må da A være inverterbar? (Svaret må begrunnes.)
Oppgave 6. Anta at A er $n \times n$ matrise som kan omformes til identitetsmatrisen I ved hjelp av følgende elementære radoperasjoner: • én radombytting • fire radsubstitusjoner (et multiplum av en rad legges til en annen rad) • fire operasjoner der en rad ganges med en faktor, med faktorene -1 , -1 , 2 og 3 . Hva er da verdien av $\det(A)$? Velg ett alternativ: $\begin{array}{c c} 1 \\ \hline 0 \\ \hline -6 \\ \hline 0 \\ \hline -6 \\ \hline \end{array}$ $\begin{array}{c c} 0 \\ \hline -\frac{1}{6} \\ \hline \end{array}$

Oppgave 7. Vi betrakter ligningen $A\mathbf{x} = \mathbf{b}$, der A er 2×3 . Hvilket av følgende utsagn er USANT? Velg ett alternativ:

- \Box Ligningen har enten ingen eller u
endelig mange løsninger.
- ☐ Ligningen har minst én fri variabel.
- ☐ Hvis ligningen er inkonsistent, har den likevel en minste kvadrat-løsning.
- \Box Hvis redusert trappe form av A ikke har noen rad med bare nuller, er ligningen konsistent.
- \square Hvis $[A \ \mathbf{b}]$ har 2 pivoter, er ligningen garantert konsistent.

Oppgave 8. La W være underrommet av \mathbb{R}^4 utspent av vektorene

$$\mathbf{u}_1 = \begin{bmatrix} 0 \\ 4 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 2 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{u}_4 = \begin{bmatrix} 2 \\ -2 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_5 = \begin{bmatrix} 6 \\ 0 \\ -1 \\ 1 \end{bmatrix}.$$

Hva er dimensjonen til W? Velg ett alternativ:

- \Box 0
- \Box 1
- \square 2
- \square 3 \square 4
- □ 4 □ **-**
- \Box 5
- \square ingen av de andre alternativene

Oppgave 9. Regn ut
$$A^{30}$$
 når $A = \begin{bmatrix} 4 & 4 & -4 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

Oppgave 10. La A være en symmetrisk $n \times n$ -matrise.

- (a) Vis at $Col(A)^{\perp} = Nul(A)$.
- (b) Vis at enhver $\mathbf{y} \in \mathbb{R}^n$ kan skrives på formen $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, der $\hat{\mathbf{y}} \in \text{Col}(A)$ og $\mathbf{z} \in \text{Nul}(A)$.

Oppgave 11. Finn en parameterfremstilling av skjæringslinjen mellom planene $3x_1 - x_2 + 2x_3 = 1$ og $3x_1 + 3x_2 - 2x_3 = 5$.

Oppgave 12. La l være skjæringslinjen mellom planene $3x_1 - x_2 + 2x_3 = 1$ og $3x_1 + 3x_2 - 2x_3 = 5$. Finn en ortonormal basis for planet W som går gjennom origo og er vinkelrett på l.

Oppgave 13. La
$$W$$
 være planet utspent av $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$ og $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$. Finn en ligning for W .

Oppgave 14. La $W = \operatorname{Spenn}\{\mathbf{v}_1, \mathbf{v}_2\}$ og $H = \operatorname{Spenn}\{\mathbf{v}_3, \mathbf{v}_4\}$, der

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}.$$

Da er W og H plan i \mathbb{R}^3 , og de skjærer hverandre langs en linje. Finn en parameterfremstilling for denne linjen.

Oppgave 15. La \mathbb{P}_3 betegne vektorrommet av polynomer av grad mindre eller lik 3, og sett

$$p_1(t) = 1 + t + t^3$$
, $p_2(t) = t + t^2$, $p_3(t) = t - t^3$, $p_1(t) = 1 + t$.

Vis at $\mathcal{B} = \{p_1, p_2, p_3, p_4\}$ er en basis for \mathbb{P}_3 . Videre, skriv $q(t) = 3 - 2t + 5t^2 - 7t^3$ som en lineær kombinasjon av disse basisvektorene.

Oppgave 16. La $\mathcal{B} = \{p_1, p_2, p_3, p_4\}$ være som i forrige oppgave, og la $\mathcal{E} = \{1, t, t^2, t^3\}$ (standardbasisen for \mathbb{P}_3). Finn variabelskiftematrisene $\mathcal{P}_{\mathcal{B}\leftarrow\mathcal{E}}$ og $\mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}}$.

Oppgave 17. La $\mathcal{B} = \{p_1, p_2, p_3, p_4\}$ være basisen for \mathbb{P}_3 fra de to foregående oppgavene. La $T \colon \mathbb{P}_3 \to \mathbb{P}_3$ være den lineære avbildningen definert ved at

$$T(p_1) = 1 + t + t^2 + t^3$$
, $T(p_2) = 2 + 3t + 2t^2 + 3t^3$, $T(p_3) = 3 + 5t + 4t^2 + 6t^3$, $T(p_4) = 4 + 7t + 6t^2 + 9t^3$.

Finn matrisen til T relativt \mathcal{B} .

Oppgave 18. La $T: \mathbb{P}_3 \to \mathbb{P}_3$ være den lineære avbildningen fra forrige oppgave. Finn matrisen til T relativt standarbasisen $\mathcal{E} = \{1, t, t^2, t^3\}$.

Oppgave 19. La $T: \mathbb{P}_3 \to \mathbb{P}_3$ være den lineære avbildningen fra oppgave 17. Beskriv kjernen til T (dvs. kernel, ker(T)).

Oppgave 20. (Eksamen mai 2002.) Finn den reduserte trappeformen til matrisen

$$A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 5 & 6 & -3 & 11 \\ -2 & -3 & 0 & -5 \end{bmatrix}.$$

Finn en basis for nullrommet til A. La R være radrommet til A. Finn en basis for det ortogonale komplementet til R.

Oppgave 21. (Eksamen mai 2002.) Gitt ligningssystemet

$$x_1 + x_2 - x_3 + 2x_4 = 1,$$

$$5x_1 + 6x_2 - 3x_3 + 11x_4 = a,$$

$$-2x_1 - 3x_2 + (a - 5)x_3 - 5x_4 = b.$$

For hvilke verdier av a og b har systemet

- (i) akkurat én løsning,
- (ii) uendelig mange løsninger,
- (iii) ingen løsning.

Oppgave 22. (Eksamen mai 2002.) La V være et vektorrom med en basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$. Sett

$$c_1 = b_1 + b_3$$
, $c_2 = b_2$, og $c_3 = b_1 + b_2$.

Vis at $C = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ også er en basis for V. Finn matrisen Q slik at $[\mathbf{v}]_C = Q[\mathbf{v}]_B$ for alle $\mathbf{v} \in V$.

Oppgave 23. (Eksamen mai 2002.) Den lineære avbildningen $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ er gitt ved

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\x_1\\x_2\end{bmatrix}.$$

Finn standardmatrisen til T. Videre, kontroller at $\mathcal{D} = \{(0,0,1), (0,1,1), (1,1,1)\}$ er en basis for \mathbb{R}^3 , og finn matrisen til T relativt denne basisen.

Oppgave 24. (Eksamen mai 2002.) Kjeglesnittet K har ligningen

$$4x_1^2 + 2\sqrt{3}x_1x_2 + 6x_2^2 = 21.$$

Finn et ortogonalt variabelskifte i \mathbb{R}^2 slik at K's ligning i de nye variablene er uten kryssledd. Hva slags kjeglesnitt er K? Tegn en figur som viser de opprinnelige koordinataksene, de nye, og K.

Oppgave 25. (Eksamen mai 2002.) Vis at (-1,1,1) er en egenvektor til matrisen

$$A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$

Hva er den tilhørende egenverdien? Avgjør om A er diagonaliserbar.

Oppgave 26. (Eksamen mai 2002.) La B være en symmetrisk matrise som har egenvektorene (2, 1, 1) og (0, 1, -1). Finn en ortogonal matrise P som diagonaliserer B. Hva blir P^{-1} ?

Oppgave 27. (Eksamen mai 2002.) La B og C være kvadratiske, symmetriske matriser. Anta at B og C er similære. Gjør rede for at det finnes en ortogonal matrise Q slik at $Q^T C Q = B$.

Oppgave 28. (Eksamen mai 1997.) Anta at B er en diagonaliserbar matrise der ingen av egenverdiene er lik 1. Vis at $I - B^n$ er inverterbar dersom n er et oddetall. Hva kan du si om tilfellet der n er et partall?

Oppgave 29. (Eksamen mai 1997.) Definer en lineær avbildning $T\colon \mathbb{R}^4 \to \mathbb{R}^4$ ved

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_2\\x_1\\x_4\\x_3 \end{bmatrix}.$$

- (a) Finn standardmatrisen til T. Grunngi at T er diagonaliserbar.
- (b) Vis at T bare har egenverdiene $\lambda_1 = 1$ og $\lambda_2 = -1$.
- (c) Vektorene

$$\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \quad \text{og} \quad \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

er egenvektorer for T. Finn en basis for egenrommet til egenverdien -1.

(d) La W være underrommet av \mathbb{R}^4 gitt ved

$$x_1 + x_2 + x_3 + x_4 = 0.$$

Definer $S \colon W \to W$ ved at $S(\mathbf{w}) = T(\mathbf{w})$ for $\mathbf{w} \in W$. Finn en ortonormal basis for W bestående av egenvektorer for S.