Lec 16

Closures of Relations

- 1. The set S is called the reflexive closure of R if it:
 - o contains R
 - o is reflexive
 - \circ is minimal (is contained in every reflexive relation Q that contains R (R \subseteq Q), i.e. , S \subseteq Q)
- 2. **Definition:** Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is subset of every relation Q ($S \subseteq Q$) with property P that contains R (R \subseteq Q).
- 3. Find Transitive Closure
 - Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path
 - Method: Path in Directed Graphs
 - Let R be relation on a set A. There is a path of length n from a to b if and only if (a, b) $\in R^n$.
 - proof: (by induction)

i.h. there is a path of length n from a to b if and only if (x,b) $\in \mathbb{R}^n$

i.s. there is a path of length n+1

iff $(a,x) \in R$; iff $(a,b) \in R^n$

Connectivity Relation

1. Lemma: Let A be a set with n elements, and R a relation on A. If there is a path from a to b with a \neq b, then there exists a path of length \leq n - 1.

$$R^* = \bigcup_{k=1}^n R^k \Longrightarrow R^* = \bigcup_{k=1}^n R^k$$

For upper is n is a = b;

We also can use 0.1 Matrix

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} ee \cdots M_R^{[n]}$$

Procedure:

• transClosure (M_R : zero-one n \times n matrix) // computes R^{st} with zero-one matrices

A := B :=
$$M_R$$
;

for i := 2 to n

$$\mathsf{A} \coloneqq \mathsf{A} \odot M_R$$

 $B := B \vee A$

return B

// B is the zero-one matrix for R^*

- \circ O(n^4)
- o improve algorithm

procedure

Warshall (MR: zero-one n \times n matrix) // computes R^* with zero-one matrices W := M_R ; for k := 1 to n $\hat{a} \in \langle \text{ for i := 1 to n}$ $\hat{a} \in \langle \text{ for j := 1 to n}$ $\hat{a} \in \langle \text{ w}_{ij} := w_{ij} \lor (w_{ik} \land w_{kj})$ return W

- Time Complex: $O(n^3)$
- lacksquare w_{ij} = 1 means there is a path from i to j going only through nodes \leq k.

$$W_{ij}^{[k]} = W_{ij}^{[k-1]} ee (W_{ik}^{[k-1]} \wedge W_{kj}^{[k-1]})$$

- 2. **Lemma:** The transitive closure of a relation R equals the connectivity relation R^* .
- 3. **Theorem:** The transitive closure of a relation R equals the connectivity relation R^* .

Proof:

- \circ R^* is transitive
- $\circ \ R^* \subseteq S$ whenever S is a transitive relation containing R
 - If (a, b) $\in R^*$ and (b, c) $\in R^*$, then there are paths from a to b and from b to c in R. Thus, there is a path from a to c in R. This means that (a, c) $\in R^*$.
 - Suppose that S is a transitive relation containing R

Then S^n is also transitive and $S^n \subset S$.

We have $S^* \subseteq S$. Thus, $R^* \subseteq S^* \subseteq S$

$$S^* = \bigcup_{k=1}^n S^k$$

$$R \subseteq S \to R^* \subseteq S^*$$

Equivalence Relation

1. **Definition:** A relation R on a set A is called an <u>equivalence relation</u> if it is <u>reflexive</u>, <u>symmetric</u>, and <u>transitive</u>.

2. **Equivalence Class**

1. **Definition:** Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a, denoted by $[a]_R$. When only one relation is considered, we use the notation [a].

$$[a]_R = b: (a,b) \in R$$

Example:

- A = {0, 1, 2, 3, 4, 5, 6} R = {(a, b) : a ≡ b mod 3} [0] = [3] = [6] = {0, 3, 6} [1] = [4] = {1, 4} [2] = [5] = {2, 5}
- "Strings a and b have the same length."
 - [a] = the set of all strings of the same length as a
- "Integers a and b have the same absolute value."
 - [a] = the set $\{a, -a\}$
- "Real numbers a and b have the same fractional part (i.e., $a b \in \mathbf{Z}$)."

[a] = the set
$$\{\ldots, a-2, a-1, a, a+1, a+2, \ldots\}$$

- 2. **Theorem**: Let R be an equivalence relation on a set A. The following statements are equivalent:
 - (i) a R b (ii) [a] = [b](iii) $[a] \cap [b] \neq \emptyset$; (i) \rightarrow (ii) \rightarrow (iii) \rightarrow (i) (i) \rightarrow (ii) a R b $(a,b) \in R$ $[a] \subseteq [b]$ $[b] \subseteq [a]$

$$x \in [a] \hspace{0.2cm} (a,x) \in R \hspace{0.2cm} (b,a) \in R \Rightarrow ((b,x) \in R \hspace{0.2cm} x \in [b])$$

$$egin{aligned} (ii) &
ightarrow (iii) \ [a] &= [b] \quad [a] \cap [b] \quad [a]
eq \emptyset \ (a,a) &\in R \quad a \in [a] \quad [a] \cap [b]
eq \emptyset \ (iii) &
ightarrow (i) \end{aligned}$$

$$egin{aligned} Suppose & [a] \cap [b]
eq \emptyset & c \in [a] \cap [b] \ \\ (a,c) \in R & and & (b,c) \in R \ \\ from & (b,c) \in R & by & symmetric & we have & (c,b) \in R \ \end{aligned}$$

by transitive we have $(a,b) \in R$

Partition of a Set S

1. **Definition:** Let S be a set. A collection of nonempty subsets of S $A_1, A_2, A_3, \ldots, A_k$ is called a partition of S if:

$$A_i\cap A_j=\emptyset, \quad i
eq j \ \ and \ \ S=igcup_{i=1}^k A_i$$

2. Example:

$$A = \{0, 1, 2, 3, 4, 5, 6\}$$

$$A_1 = \{0, 3, 6\}, A_2 = \{1, 4\}, A_3 = \{2, 5\}$$

Equivalence Classes and Partitions

1. **Theorem**: Let R be an equivalence relation on a set A. Then union of all the equivalence classes of R is A:

$$A=\bigcup_{a\in A}[a]_R$$

- 2. Theorem: The equivalence classes form a partition of A.
- 3. **Theorem:** Let $A_1, A_2, A_3, \ldots, A_i, \ldots$ be a partition of S. Then there is an equivalence relation R on S, that has the sets A_i as its equivalence classes.

 $Equivalence \ \ relation \longrightarrow Equivalence \ \ classes \longrightarrow partition \ \ of \ \ A \longrightarrow Equivalence \ \ relation$