SAR Dipole

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

Performance Measurement Report

FOR Validation Dipoles

EUT Type:

Report No.: LW-SZ1860070-701 **SAR Validation Dipole**

Model Name:

D750V3, D835V2, D1750V2

D1900V2, D2450V2

D2600V2, D5GHzV2

Brand Name:

Speag

Test Conclusion:

Pass

Test Date:

Mar. 16, 2018 ~ Jul. 05, 2018

Date of Issue: Jul. 08, 2018

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please contact us.

1 GENERAL INFORMATION

1.1 Introduction

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDB 865664 D01 for reference dipoles used for SAR measurement system validations. Instead of the typical annual calibration recommended by measurement standards, the reference dipoles were demonstrated that the SAR target, impedance and return loss have remain stable, so the longer calibration interval is acceptable.

1.2 General Description for Equipment under Test (EUT)

EUT Type	DASY 5 Reference Dipoles
Manufacturer	Speag

Parameter	EUT 1	EUT 2	EUT 3	EUT 4	EUT 5	EUT 6	EUT 7
Model	D750V3	D835V2	D1750V2	D1900V2	D2450V2	D2600V2	D5GHzV2
Frequency	750 MHz	835 MHz	1750 MHz	1900 MHz	2450 MHz	2600 MHz	5GHz-6GHz
Serial Number	SN 1055	SN 4d187	SN 1130	SN 5d193	SN 952	SN 1095	SN 1200
Product Condition (New/ Used)	Used						
Last Cal. Date	2017/6/26	2017/6/26	2017/7/1	2017/6/30	2017/3/21	2017/7/10	2017/6/29
Current meas. Date	2018/6/24	2018/6/24	2018/6/26	2018/6/26	2018/3/16	2018/7/5	2018/6/25

1.3 Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
PC	Dell	N/A	N/A	N/A	N/A
E-Field Probe	Speag	EX3DV4	SN: 7340	2018/01/11	2019/01/10
E-Field Probe	Speag	ES3DV3	SN: 3110	2017/08/02	2018/08/01
Data Acquisition Electronics	Speag	DAE4	SN: 685	2017/08/02	2018/08/01
Signal Generator	R&S	SMBV100A	260592	2018/06/15	2019/06/14
Power Meter	Agilent	E4419B	GB40201833	2017/11/02	2018/11/01
Power Sensor	Agilent	E9300A	MY41498012	2017/11/02	2018/11/01
Power Sensor	Agilent	E9300A	MY41499891	2017/11/02	2018/11/01
Network Analyzer	Agilent	5071C	MY46103472	2018/03/14	2019/03/13
Thermometer	Elitech	RC-4HC	N/A	2017/11/13	2018/11/12
Dielectric Probe Kit	SATIMO	SCLMP	SN 25/13 OCPG56	N/A	N/A
Phantom1	Speag	SAM	SN: 1859	N/A	N/A
Phantom2	Speag	SAM	SN: 1857	N/A	N/A
Power Amplifier	SATIMO	6552B	22374	N/A	N/A
Attenuator	COM-MW	ZA-S1-31	1305003187	N/A	N/A
Directional coupler	AA-MCS	AAMCS-UDC	000272	N/A	N/A

1.4EUT Photos

2 SIMULATING LIQUID VERIFICATION

Liquid	Fre.	Meas.	Meas.	Target	Target	Conductivity	Permittivity
Type	(MHz)	Conductivity	Permittivity	Conductivity	Permittivity	Tolerance	Tolerance
Турс	(1411 12)	(σ) (S/m)	(ε)	(σ) (S/m)	(ε)	(%)	(%)
Head	750	0.91	40.53	0.893	41.94	1.90	-3.36
Body	750	0.99	54.68	0.963	55.53	2.80	-1.53
Head	835	0.89	40.78	0.90	41.50	-1.11	-1.73
Body	835	0.98	53.86	0.97	55.20	1.03	-2.43
Head	1750	1.38	39.96	1.371	40.08	0.66	-0.30
Body	1750	1.45	52.56	1.488	53.43	-2.55	-1.63
Head	1900	1.43	39.71	1.40	40.00	2.14	-0.72
Body	1900	1.55	51.58	1.52	53.30	1.97	-3.23
Head	2450	1.84	38.94	1.80	39.20	2.22	-0.66
Body	2450	1.93	50.88	1.95	52.70	-1.03	-3.45
Head	2600	1.99	39.03	1.964	39.01	1.32	0.05
Body	2600	2.21	50.89	2.163	52.51	2.17	-3.09
Head	5250	4.63	36.06	4.706	35.93	-1.61	0.36
Body	5250	5.34	47.48	5.358	48.95	-0.34	-3.00
Head	5600	5.07	35.83	5.065	35.53	0.10	0.84
Body	5600	5.65	46.63	5.766	48.47	-2.01	-3.80
Head	5750	5.17	35.41	5.219	35.36	-0.94	0.14
Body	5750	5.87	46.28	5.942	48.27	-1.21	-4.12

3 DIPOLE IMPEDANCE AND RETURN LOSS

The dipoles are designed to have low return loss when presented against a flat phantom at the specified distance. A Vector Network Analyser was used to perform a return loss measurement on the specific dipole when in the measurement location against the phantom and the distance was specified by the manufacturer with a special, low loss and low relative permittivity spacer.

The impedance was measured at the SMA-connector with the network analyser.

The measurement of verification with return loss should not deviate by more than 20% and minimum of 20 dB of the return loss, and the impedance (real or imaginary parts) should not deviate by more than 5 Ohms from the previous measurement using network analyzer.

Note:

The "Previous Meas." in the following table refer to dipoles or other equivalent RF sources calibration reports.

3.1 D750V3

RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Return Loss(dB)	Meas. Results	Current Me	as. Pre	evious Meas.	Max. Deviation		
Impedance jΩ jΩ (Real part)	Return Loss(dB)	-30.881		-29.870	3.4%		
Return Loss Trc1 S11 dB Mag 10 dB / Ref0 dB Cal 1 S10 -10 -20 -30 -30 -40 -40 -50 -80 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -70 -70 -80 -70 -70 -70 -70 -70 -70 -70 -70 -70 -7	Impodence	51.921 Ω - 3	.131 49.9	994 Ω - 3.211	1.927Ω		
Trc1 S11 dB Mag 10 dB / Ref0 dB Cal 1 1	impedance	impedance $j\Omega$ $j\Omega$ (Re					
Trc1 S11 Smith Ref 1 U Cal 1			Return Los	S			
-10 -10 -20 -30 -40 -40 -50 -80 -70 -80 -80 -70 -80 -80 -70 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -93 -93 -93 -93 -93 -93 -93 -93 -93 -93		Mag 10 dB / Ref0 d	B Cal		1		
-10 -20 -30 -40 -50 -80 -80 -70 -80 -80 -71 -80 -80 -71 -80 -80 -71 -80 -80 -71 -80 -80 -72 -80 -73 -75 -80 -80 -75 -80 -80 -75 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -70 -80 -80 -80 -80 -80 -80 -80 -80 -80 -8	S11		and the same of th	750.00000 MHz	176		
-20 -30 -40 -50 -80 -80 -80 -80 -80 -70 -80 -80 -80 -80 -80 -80 -80 -80 -170 -80 -80 -170 -80 -80 -170 -80 -170 -80 -170 -80 -170 -80 -170 -80 -170 -80 -170 -80 -170 -80 -170 -170 -1750.00000 MHz 51.921 Ω -33.131 Ω	0	+					
-30 -40 -50 -60 -70 -80 -80 -80 -80 -80 -80 -80 -80 -80 -8	10						
-40 -50 -60 -60 -70 -80 -80 -70 -80 -70 -80 -70 -80 -70 -70 -70 -70 -70 -70 -70 -70 -70 -7	-20						
5060708070708070	-30		₩				
-6070807080	-40						
Ch1 Start 550 MHz Pwr -10 dBm Stop 950 MHz Impedance 1 1 1 750.00000 MHz 51.921 Ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-50-						
Ch1 Start 550 MHz Pwr -10 dBm Stop 950 MHz Impedance Trc1 S11 Smith Ref 1 U Cal 1 1 1 1 750.00000 MHz 51.921 Ω -j3.131 Ω	60			3 9			
Ch1 Start 550 MHz Pwr -10 dBm Stop 950 MHz Impedance Trc1 S11 Smith Ref 1 U Cal 1 750.00000 MHz 51.921 Ω -j3.131 Ω	70		2				
Impedance Trc1 S11 Smith Ref 1 U Cal 1 1 1 750.00000 MHz 51.921 Ω -j3.131 Ω	80						
Impedance Trc1 S11 Smith Ref 1 U Cal 1 1 1 750.00000 MHz 51.921 Ω -j3.131 Ω							
Trc1 S11 Smith Ref 1 U Cal 1	Ch1 Start 55	0 MHz	Pwr -10 dBm		Stop 950 MHz		
Trc1 S11 Smith Ref 1 U Cal 1			Impedance)			
S11 1 •1 750.00000 MHz 51.921 Ω -j3.131 Ω					92.5		
-j3.131 Ω		th Ref 1 U Cal		~ 750 00000 ML	73		
05.034 pr	511	/05	1	750.00000 1111	-j3.131 Ω		
				-X//	05.034 рг		
			$\checkmark \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				
0 02 05 11 2							
-0.5		-0.5	1				
-1 Ch1 Start 550 MHz Pwr -10 dBm Stop 950 MHz	Ch1 Start 55	0 MHz	<u> </u>		Stop 950 MHz		
On Jun 330 min 2 1 W - 10 doin 300p 330 min 2	OIII Statt 99	V NII IZ	I WI -IU UDIII		OLOP OUT WITTE		

3.2 D835V2

RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Meas. Results	Current M	eas.	Pre	vious N	Meas.	М	ax. Deviation	
Return Loss(dB)	-25.43	0		-24.86	62		2.3%	
Impedance	46.544 Ω -	3.507	45.7	49 Ω -	3.449		-0.795Ω	
impedance	jΩ			jΩ			(Real part)	
Return Loss								
Trc1 S11 dB Mag 10 dB / Ref 0 dB Cal 1								
S11	wag 10 db / Reio	dB Cal	•1	835.0	0000 MH	z -25.	430 dB	
0				31	100,000			
-10								
20			\mathcal{L}					
30			\bigvee	8 8				
-40	5			:			-	
-50		-						
60		10 00		i :				
-70	4	- 10 - 13.		[4 4]			-	
80		-				-		
Ch1 Start 63	5 MHz	Pwr -	10 dBm			Stop 1.	035 GHz	
		Imped	dance					
(R)		<u> </u>						
Trc1 S11 Smi	th Ref 1 U Cal						1	
S11			1 •1	835.0	00000 MI	-j3	.544 Ω .507 Ω	
	0.5	/	1			11	1.67 pF	
		$\times\!\!/$						
	0 0.2 0.5 1 1 2 55							
	.0.5							
Ch1 Start 63	5 MHz	Pwr -	10 dBm			Stop 1.	035 GHz	
						58		

3.3 D1750V2

RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Meas. Results	Current Me	eas.	Pre	/ious	Meas.	Max. Deviation		
Return Loss(dB)	-27.872	2		-27.46	53	1.5%		
Impodance	46.763 Ω + 0	0.612	45.98	31 Ω +	- 0.606	0.782Ω		
Impedance	jΩ			jΩ		(Real part)		
	Return Loss							
Tro1 S41 dD I	Mag 10 dB / Ref0	dB Cal				1		
S11	wag 10 db / Reio	UB Cal	•1	1.75	0000 GHz	-27.872 dB		
0		92						
10								
20	++							
30	3 2	 				1 0		
-40	3.	V						
-50								
60								
70	91 0,			:				
80								
Ch1 Start 1.5	55 GHz	Pwr -	10 dBm			Stop 1.95 GHz		
		Impe	dance					
€		•						
Trc1 S11 Smith Ref 1 U Cal 1 S11								
Chi Start 1.5	DO GHZ	Pwr -	I U aBM	1		5(0) 1.95 GHZ		

3.4 D1900V2

RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Meas. Results	Current Mea	s. Pre	vious Meas.	Max. Deviation	1				
Return Loss(dB)	-24.513		-24.883	-1.5%					
Impedance	46.749 Ω + 4.2	221 46.5	85 Ω + 4.324	0.164Ω					
Impedance	jΩ		jΩ	(Real part)					
	Return Loss								
Trc1 S11 dB Mag 10 dB / Ref 0 dB Cal 1									
S11	wag 10 dB / Rero dB	Cal •1	1.900000 GH	lz -24.513 dB					
0			3	-					
-10									
20									
30	+	Ă-	8 8						
40			1						
50									
60									
-70			0 0						
1508-0									
80									
Ch1 Center	1.9 GHz	Pwr -10 dBm	1.8	Span 400 MHz					
7000	Ir	mpedance							
S11	-0.5	5 1	1.900000 GF	j4.221 Ω 353.57 pH					
Ch1 Center	1.8 UHZ	Pwr -10 dBm		Span 400 MHz					

3.5 D2450V2

RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Meas. Results	Current Meas.	Previous Meas.	Max. Deviation						
Return Loss (dB)	-27.205	-23.809	14.3%						
Impedance	mpedance $46.8 \Omega + 1.658 j\Omega$ $48.7 \Omega + 6.254 j\Omega$								
	Return Loss								
Trc1 S11 dB S11 - 010203040506070	Mag 10 dB / Ref 0 dB Cal	•1 2.450000 GHz	1 -27.205 dB						
Ch1 Start 2.			Stop 2.65 GHz						
62	+impe	edance							
Trc1 S11 Sm S11	0 0.5		j1.658 Ω 107.68 pH						
Ch1 Start 2.	25 GHz Pwr -	10 dBm	Stop 2.65 GHz						

3.6 D2600V2

RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Meas. Results	Current Meas.	Previous Mea	s. Max. Deviation						
Return Loss(dB)	-21.794	-21.481	1.5%						
Impedance	46.334 Ω -5.883	44.590 Ω -5.8	79 1.744Ω						
impedance	jΩ	jΩ	(Real part)						
	Return Loss								
(
S11	Mag 10 dB / Ref 0 dB Cal	•1 2.600000	GHz -21.794 dB						
0		2031 932497566 93664665							
10									
20									
30									
40									
50									
60									
70									
-80									
Ch1 Start 2.4	4 GHz Pwr -	10 dBm	Stop 2.8 GHz						
			ver)						
	Impe	dance							
Impedance Trc1 S11 Smith Ref 1 U Cal 1 2.600000 GHz 46.334 Ω -j5.883 Ω 10.406 pF Ch1 Start 2.4 GHz Pwr -10 dBm Stop 2.8 GHz									
Ch1 Start 2.4	IGHz Pwr-	10 dBm	Stop 2.8 GHz						

3.7 D5GHzV2

RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Meas. Results	Current Meas.	Previous Meas.	Max. Deviation				
5250 MHz							
Return Loss(dB)	-25.052	-26.013	-3.7%				
Impedance	47.735 Ω -4.621	48.180 Ω -4.570	0.445Ω				
Impedance	jΩ	jΩ	(Real part)				
		MHz					
Return Loss(dB)	-26.377	-25.418	3.8%				
Impedance	54.525 Ω+2.142	55.218 Ω +2.140	0.693Ω				
	jΩ	jΩ	(Real part)				
		MHz					
Return Loss(dB)	-29.503	-29.687	-0.6%				
Impedance	51.171 Ω -3.278	50.573 Ω -3.249	0.598Ω				
γ	jΩ	jΩ	(Real part)				
Return Loss							
Trc1 S11 dB I	Mag 10 dB / Ref 0 dB Cal		1				
S11		1 5.250000 GHz					
0		2 5.600000 GHz •3 5.750000 GHz	-26.877 dB -29.503 dB				
-10							
20	•	3					
-30							
40							
-50							
60							
70							
-80							
Ch1 Start 5 0	GHz Pwr -	10 dBm	Stop 6 GHz				
Impedance							

RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Meas. Results	Current Meas.	Previous Meas.	Max. Deviation				
5250 MHz							
Return Loss(dB)	-30.483	-28.952	5.3%				
Impodonos	47.975 Ω -2.840	47.902 Ω -2.794	0.073Ω				
Impedance	jΩ	jΩ	(Real part)				
	5600	MHz					
Return Loss(dB)	-24.636	-24.095	2.2%				
Impedance	54.321 Ω + 3.910	$55.313 \Omega + 3.876$	0.992Ω				
impedance	jΩ	jΩ	(Real part)				
	5750	MHz					
Return Loss(dB)	-29.774	-30.925	-3.7%				
Impedance	51.737 Ω -2.126	51.882 Ω -2.203	0.145Ω				
impedance	jΩ	jΩ	(Real part)				
Return Loss							
Frc1 S11 dB I	Mag 10 dB / Ref 0 dB Cal		1				
S11	Mag 10 dB / 1010 dB Call	1 5.250000 GHz	-30.483 dB				
0		2 5.600000 GHz -24.636 dB •3 5.750000 GHz -29.774 dB					
-10							
.20		2					
-30	1	3					
-40							
	'V						
-50-							
-60							
-70-							
-80							
Ch1 Start 5 0	GHz Pwr -	10 dBm	Stop 6 GHz				
Impedance							

4 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

4.1 Dipole SAR Validation Measurement Result

Freq. (MHz)	Liquid Type	Power (mW)	1 g Measured SAR (W/kg)	Normaliz ed SAR (W/kg)	10 g Measured SAR (W/kg)	Normaliz ed SAR (W/kg)	1 g Targeted SAR (W/kg)	Tolerance (%)	10 g Targeted SAR (W/kg)	Tolerance (%)
750	Head	100	0.815	8.15	0.548	5.48	8.49	-4.00	5.55	-1.26
	Body	100	0.823	8.23	0.552	5.52	8.49	-3.06	5.55	-0.54
835	Head	100	0.996	9.96	0.641	6.41	9.56	4.18	6.22	3.05
	Body	100	0.963	9.63	0.636	6.36	9.56	0.73	6.22	2.25
1750	Head	100	3.590	35.90	1.870	18.70	36.40	-1.37	19.30	-3.11
	Body	100	3.810	38.10	1.990	19.90	36.40	4.67	19.30	3.11
1900	Head	100	4.030	40.30	2.090	20.90	39.70	1.51	20.50	1.95
	Body	100	3.840	38.40	1.970	19.70	39.70	-3.27	20.50	-3.90
2450	Head	100	5.390	53.90	2.380	23.80	52.40	2.86	24.00	-0.83
	Body	100	5.310	53.10	2.290	22.90	52.40	1.34	24.00	-4.58
2600	Head	100	5.840	58.40	2.490	24.90	55.30	5.61	24.60	1.22
	Body	100	5.830	58.30	2.510	25.10	55.30	5.42	24.60	2.03
5200	Head	100	7.980	79.80	2.130	21.30	76.50	4.31	21.60	-1.39
	Body	100	7.320	73.20	2.050	20.50	76.50	-4.31	21.60	-5.09
5600	Head	100	8.270	82.70	2.220	22.20	83.30	-0.72	23.40	-5.13
	Body	100	8.270	82.70	2.310	23.10	83.30	-0.72	23.40	-1.28
5800	Head	100	8.030	80.30	2.140	21.40	78.00	2.95	21.90	-2.28
	Body	100	7.730	77.30	2.120	21.20	78.00	-0.90	21.90	-3.20

4.2 D750V3

4.2.1 Dipole 750 MHz Validation Measurement for Head Tissue

Dipole 750 MHz; Type: D750V3; Serial: D750V3-SN:1055

Date/Time: 6/24/2018

Communication System Band: D750 (750.0 MHz); Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 40.53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature: 22.2 Liquid Temperature: 21.1

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(6.16, 6.16, 6.16);

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn685;

 Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1859; Type: QD000P40CD; Serial: TP1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipolevalidation measurement for Head Tissue/Pin= 100mW ,d=15mm/Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.34 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.815 W/kg; SAR(10 g) = 0.548 W/kg

Maximum value of SAR (measured) = 0.878 W/kg

0 dB = 0.878 W/kg = -0.57 dBW/kg

4.2.2 Dipole 750 MHz Validation Measurement for Body Tissue

Dipole 750 MHz; Type: D750V3; Serial: D750V3-SN:1055

Date/Time: 6/24/2018

Communication System Band: D750 (750.0 MHz); Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.68$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.2 Liquid Temperature: 21.1

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(6.15, 6.15, 6.15);

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn685

Phantom: SAM (30deg probe tilt) with CRP v5.0 on Right 1857; Type: QD000P40CD; Serial:
 TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipolevalidation measurement for Body Tissue/Pin= 100mW ,d=15mm /Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.58 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.823 W/kg; SAR(10 g) = 0.552 W/kg

Maximum value of SAR (measured) = 0.885 W/kg

0 dB = 0.885 W/kg = -0.53 dBW/kg

4.3 D835V2

4.3.1 Dipole 835 MHz Validation Measurement for Head Tissue

Dipole 835 MHz; Type: D835V2; Serial: D835V2-SN:4d187

Date/Time: 6/24/2018

Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.89 \text{ S/m}$; $\epsilon r = 40.78 \rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature: 22.2 Liquid Temperature: 21.1

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(6.1, 6.1, 6.1);

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn685

 Phantom: SAM (30deg probe tilt) with CRP v5.0 on Right 1857; Type: QD000P40CD; Serial: TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Head Tissue/Pin= 100mW , d=15mm/Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.47 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.996 W/kg; SAR(10 g) = 0.641 W/kg

Maximum value of SAR (measured) = 1.06 W/kg

0 dB = 1.06 W/kg = 0.25 dBW/kg

4.3.2 Dipole 835 MHz Validation Measurement for Body Tissue

Dipole 835 MHz; Type: D835V2; Serial: D835V2-SN:4d187

Date/Time: 6/24/2018

Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\epsilon r = 53.86$; $\rho = 1000$ kg/m3

Phantom section: Flat Section

Ambient Temperature: 22.2 Liquid Temperature: 21.1

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(6.1, 6.1, 6.1);

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn685

Phantom: SAM (30deg probe tilt) with CRP v5.0 on Right 1857; Type: QD000P40CD; Serial:
 TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Body Tissue/Pin= 100mW , d=15mm /Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.61 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.963 W/kg; SAR(10 g) = 0.636 W/kg

Maximum value of SAR (measured) = 1.04 W/kg

0 dB = 1.04 W/kg = 0.17 dBW/kg

4.4D1750V2

4.4.1 Dipole 1750 MHz Validation Measurement for Head Tissue

Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2-SN: 1130

Date/Time: 6/26/2018

Communication System Band: D1750 (1750.0 MHz); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.38 \text{ S/m}$; $\epsilon r = 39.96$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature:22.4 Liquid Temperature:21.3

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(5.17, 5.17, 5.17);

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn685

Phantom: SAM (30deg probe tilt) with CRP v5.0 on Left 1859; Type: QD000P40CD; Serial:
 TP1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Head Tissue/Pin= 100mW ,d=10mm /Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.02 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 6.67 W/kg

SAR(1 g) = 3.59W/kg; SAR(10 g) = 1.87 W/kg

Maximum value of SAR (measured) = 3.98 W/kg

0 dB = 3.98 W/kg = 5.80 dBW/kg

4.4.2 Dipole 1750 MHz Validation Measurement for Body Tissue

Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2-SN:1130

Date/Time: 6/26/2018

Communication System Band: D1750 (1750.0 MHz); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.45 \text{ S/m}$; $\epsilon r = 52.56$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature:22.4 Liquid Temperature:21.3

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(4.87, 4.87, 4.87);

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn685

Phantom: SAM (30deg probe tilt) with CRP v5.0 on Left 1859; Type: QD000P40CD; Serial:
 TP1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Body Tissue/Pin= 100mW ,d=10mm /Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.61 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 6.98 W/kg

SAR(1 g) = 3.81 W/kg; SAR(10 g) = 1.99 W/kg

Maximum value of SAR (measured) = 4.26 W/kg

0 dB = 4.26 W/kg = 6.29 dBW/kg

4.5 D1900V2

4.5.1 Dipole 1900 MHz Validation Measurement for Head Tissue

Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2-SN:5d193

Date/Time: 6/26/2018

Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.43 \text{ S/m}$; $\epsilon r = 39.71$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature:22.4 Liquid Temperature:21.3

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(4.87, 4.87, 4.87);

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn685

Phantom: SAM (30deg probe tilt) with CRP v5.0 on Left 1859; Type: QD000P40CD; Serial:
 TP1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Head Tissue/Pin= 100mW ,d=10mm /Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.57 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 7.42 W/kg

SAR(1 g) = 4.03 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 4.55 W/kg

0 dB = 4.55 W/kg = 6.58 dBW/kg

4.5.2 Dipole 1900 MHz Validation Measurement for Body Tissue

Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2-SN:5d193

Date/Time: 6/26/2018

Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.55 \text{ S/m}$; $\epsilon r = 51.58$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature:22.4 Liquid Temperature:21.3

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(4.61, 4.61, 4.61);

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn685

Phantom: SAM (30deg probe tilt) with CRP v5.0 on Right 1857; Type: QD000P40CD; Serial:
 TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Body Tissue/Pin= 100mW ,d=10mm /Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.57 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 7.15 W/kg

SAR(1 g) = 3.84 W/kg; SAR(10 g) = 1.97 W/kg

Maximum value of SAR (measured) = 4.28 W/kg

0 dB = 4.28 W/kg = 6.31 dBW/kg

4.6 D2450V2

4.6.1 Dipole 2450 MHz Validation Measurement for Head Tissue

Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2-SN:952

Date/Time: 3/16/2018

Communication System Band: CD2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\epsilon_r = 38.94$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:22.5 Liquid Temperature:21.3

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(4.4, 4.4, 4.4);

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn685;

 Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Head Tissue/Pin= 100mW ,d=10mm/Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.28 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 11.8 W/kg

SAR(1 g) = 5.39 W/kg; SAR(10 g) = 2.38 W/kg

Maximum value of SAR (measured) = 6.21 W/kg

0 dB = 6.21 W/kg = 7.93 dBW/kg

4.6.2 Dipole 2450 MHz Validation Measurement for Body Tissue

Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2-SN:952

Date/Time: 3/16/2018

Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.93 \text{ S/m}$; $\epsilon_r = 50.88$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:22.5 Liquid Temperature:21.3

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(4.23, 4.23, 4.23);

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn685;

 Phantom: SAM (30deg probe tilt) with CRP v5.0 left 1859; Type: QD000P40CD; Serial: TP1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Body Tissue/Pin= 100mW ,d=10mm /Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.11 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 10.9 W/kg

SAR(1 g) = 5.31 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 5.92 W/kg

0 dB = 5.92 W/kg = 7.72 dBW/kg

4.7 D2600V2

4.7.1 Dipole 2600 MHz Validation Measurement for Head Tissue

Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2-SN: 1095

Date/Time: 7/5/2018

Communication System Band: D2600 (2600.0 MHz); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; $\sigma = 1.99 \text{ S/m}$; $\epsilon r = 39.03$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.1

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(4.25, 4.25, 4.25);

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn685;

 Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Head Tissue/Pin= 100mW ,d=10mm /Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.49 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 11.17 W/kg

SAR(1 g) = 5.84 W/kg; SAR(10 g) = 2.49 W/kg

Maximum value of SAR (measured) = 6.38 W/kg

0 dB = 6.38 W/kg = 8.05 dBW/kg

4.7.2 Dipole 2600 MHz Validation Measurement for Body Tissue

Dipole 2600 MHz; Type: D2600V2; Serial: D835V2-SN: 1095

Date/Time: 7/5/2018

Communication System Band: D2600 (2600.0 MHz); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; $\sigma = 2.21 \text{ S/m}$; $\epsilon r = 50.89$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.1

DASY5 Configuration:

Probe: ES3DV3 - SN3110; ConvF(4.12, 4.12, 4.12);

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn685;

 Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Body Tissue/Pin= 100mW ,d=10mm /Zoom

Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.27 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 12.5 W/kg

SAR(1 g) = 5.83 W/kg; SAR(10 g) = 2.51 W/kg

Maximum value of SAR (measured) = 6.67 W/kg

0 dB = 6.67 W/kg = 8.24 dBW/kg

4.8 D5GHzV2

4.8.1 Dipole 5 GHz Validation Measurement for Head Tissue

Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2-SN:1200

Date/Time: 6/25/2018

Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz;

Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; σ = 4.63 S/m; ϵ_r = 36.06; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.07 S/m; ϵ_r = 35.83; ρ = 1000 kg/m³, Medium parameters

used: f = 5750 MHz; $\sigma = 5.17 \text{ S/m}$; $\varepsilon_r = 35.41$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.2

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(5.65, 5.65, 5.65); ConvF(4.87, 4.87, 4.87); ConvF(4.95, 4.95, 4.95);
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454;
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole validation measurement for Head Tissue/Pin= 100mW ,dist=10mm,f=5250 MHz /Zoom Scan (7x7x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 37.41 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.13 W/kgMaximum value of SAR (measured) = 19.79 W/kg

0 dB = 19.79 W/kg = 12.96 dBW/kg

Dipole validation measurement for Head Tissue/Pin= 100mW ,dist=10mm,f=5600 MHz /Zoom Scan (7x7x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 28.37 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 37.5 W/kg

SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 20.51 W/kg

0 dB = 20.51 W/kg = 13.12 dBW/kg

Dipole Calibration for Head Tissue/Pin= 100mW ,dist=10mm,f=5750 MHz /Zoom Scan (7x7x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 33.52 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 40.42 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 17.29 W/kg

0 dB = 17.29 W/kg = 12.38 dBW/kg

4.8.2 Dipole 5 GHz Validation Measurement for Body Tissue

Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2-SN:1200

Date/Time: 6/25/2018

Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5250 MHz; Frequency:

5600 MHz; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; σ = 5.34 S/m; ϵ_r = 47.48; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.65 S/m; ϵ_r = 46.63; ρ = 1000 kg/m³, Medium parameters

used: f = 5750 MHz; $\sigma = 5.87 \text{ S/m}$; $\varepsilon_r = 46.28$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.2

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(5.16, 5.16, 5.16); ConvF(4.35, 4.35, 4.35); ConvF(4.58, 4.58, 4.58);
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454;
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial:
 TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipolevalidation measurement for Body Tissue/Pin= 100mW ,dist=10mm,f=5250 MHz /Zoom Scan (7x7x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 36.65 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 7.32 W/kg; SAR(10 g) = 2.05 W/kg Maximum value of SAR (measured) = 14.41 W/kg

0 dB = 14.41 W/kg = 11.59 dBW/kg

Dipolevalidation measurement for Body Tissue/Pin= 100mW , dist=10mm,f=5600 MHz /Zoom Scan (7x7x21)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 40.17 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 35.4 W/kg

SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.31 W/kgMaximum value of SAR (measured) = 20.28 W/kg

0 dB = 20.28 W/kg = 13.07 dBW/kg

Dipolevalidation measurement for Body Tissue/Pin= 100mW ,dist=10mm,f=5750 MHz /Zoom Scan (7x7x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 36.43 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 19.33 W/kg

0 dB = 19.33 W/kg = 12.86 dBW/kg

--END OF REPORT--