Asymptotic level sets 11/20/18 $\frac{d}{dx} = \frac{d}{(x^2 + (y - Us)^2)/4Ds} ds$ $\frac{d}{(x, y, t)} = \frac{1}{(y - Us)^2} ds$ $y = Xt^{\alpha}$, $y = Yt^{\beta}$, $s = \xi t^{\gamma}$ ours $h = \frac{1}{5}(x^2 + (y - Us)^2) = \frac{1}{5+7}(x^2 + (Yt^3 - U\xit^3)^2)$ Need x = 1/2. Not going interest nicely with t2/2, t2r Put d=p=r= = 1? $\frac{J\xi}{\log h} = \frac{1}{\xi} \left(X + \left(Y - U\xi \right)^2 \right)$ $\frac{t''}{4\pi D\xi} \left(\frac{1}{X + (Y - U\xi)^2} \right)$ $\frac{1}{4\pi D\xi} \left(\frac{1}{X + (Y - U\xi)^2} \right)$ Use sattle port Liplius mithal. LE)= (X2+(Y-UF))

