Homework

Panov Ivan, M3139 24-11-2019

Задача 1

Введем функцию f(i) - количиство непустых различных подпоследовательностей заканчивающихся на префиксе длины і. Подсчет функции будет осуществляться из предыдущих значений: f(i) = 2f(i-1) - f(j-1), где jявляется индексом предыдущего вхождения числа a_i . Докажем корректность: поймем, что f(i-1) просто общее количесво последовательностей на префиксе длины i-1 (по определению). Тогда нам нужно учесть все старые последовательности и последовательности, которые заканчиваются в i (из этого мы умножем в формуле перехода на 2). Если мы припишем ко всем уже найденным последовательностям a_i , то некоторые можно посчитать несколько раз, следовательно их нужно вычесть из общей суммы. Не трудно понять, что этими лишними последовательностями будут все заканчивающеся раньше j, так как с приписанным a_i они были подсчитаны на *j*-ом шагу $(a_i = a_j)$, что и является f(j-1). Теперь научимся считать переходы за $\mathcal{O}(n)$, n - количество чисел. Будем поддерживать массив со значениями функции cnt, где $cnt_i = f(i)$. Так же будем хранить массив ind, где ind_x последний индекс, на котором в исходном массиве встречается xна данной итерации. Теперь опишем процесс: $del = cnt_{i-1} - cnt_{ind_{a[i]}-1}$ - лишние последовательности, переприсвоим индекс $ind_{a[i]} = i$, посчитаем функцию $cnt_i = 2cnt_{i-1} - del + 1$. Будем считать, что если число x не встречалось, то del = 0, так как нужно учесть последовательность состоящюю только из нового символа. Итоговое время работы $\mathcal{O}(n)$.

Задача 2

Докажем правильность алгоритма. Очевидно, что максимальный палиндром является общей подпоследовательностью a и a^r . Пусть мы нашли максимальную последовательность, которая не является палиндромом длины n. Поделим эту последовательность по среднему элементу, если такой есть, или пополам. Обозначим левую часть за s_l , а правую s_r . Теперь поделим или по среднему символу, или по вхождению s_l последовательности a (a_l , a_r) и a^r (a_l^r и a_r^r). s_l подпоследовательность a_l^r и a_l из построения, а так как a^r это перевернутая a, то s_l^r подпоследовательность a_r , следовательно можно найти палиндромную последовательность длины n состоящую из $s_l + (middle\ element) + s_l^r$. Алгоритм доказан.

Задача 3

Для решения данной задачи придется воспользоваться алгоритмом поиска наибольшей возрастающей последовательности за $\mathcal{O}(n\log(n))$, только теперь будем хранить не только последний элемент на который заканчивается префикс, а список всех возможных элементов вместе с индексами, для каждого элемента номер списка, для каждого списка количество элементов, в котором оно хранится, заметим, что элементы в этих списках будут

в порядке убывания по построению. Теперь найдя какое-то НВП, мы также нашли все возможные ВП на префиксе в неявном виде. Для востановления ответа понадобится строить НВП проходясь начиная с конца, данный алгоритм будет отличатся только поиском не первого большего, а первого меньшего элемента. Востановление ответа проходит по следующему алгоритму: когда мы найдем суффикс НВП который заканчивается в элементе a_i , мы узнаем длину этого суффикса, пусть длина k, чтобы узнать лежит ли a_i в НВП посмотрим есть ли a_i в списке НВП для префикса длины n-k+1. При том если список состоит только из a_i , то a_i лежит во всех НВП, а если мы не нашли a_i в списке, то этот элемент не лежит ни в одной НВП. После обратки символа надо совершить переход: нужно уменьшить счетчик количества элементов в списке на префиксе для этого элемента, так как элемент больше не встретится на большем суффиксе. Поиск по списку осуществляется бинарным поиском, так как элементы в отсортированном порядке. Докажем корректность: определение принадлежности хотя бы одной последовательности очевидно, так как можно сказать мы просто нашли префикс и суффикс правильной НВП, пренадлежность всем определяется правильно, так как префикс опреденной длины может заканчиваться только одним символом, что гарантирует принадлежность этого элемента всем НВП, а те элементы которые не лежат нигде просто оставшиеся.