

Model Repair by Incorporating Negative Instances In Process Enhancement

Master Thesis

Author: Kefang Ding

Supervisor: Dr. Sebastiaan J. van Zelst

Examiners : Prof. Wil M.P. van der Aalst

Prof. Thomas Rose

Registration date: 2018-11-15

Submission date: 2019-04-08

This work is submitted to the institute

PADS RWTH University

Acknowledgments

The acknowledgments and the people to thank go here, don't forget to include your project advice.

Abstract

Big data projects have becomes a normal part of doing business, which raises the interest and application of process mining in organizations. Process mining combines data analysis with modeling, controlling and improving business processes, such that it bridges the gap of data mining on big data and business process management.

Process enhancement, as one of the main focuses in process mining, improves the existing processes according to actual execution event logs. It enables continuous improvement on business performance in organizations. However, most of the enhancement techniques only consider the positive instances which are execution sequences but lead to high business performance outcome. Therefore, the improved models tend to have a bias without the use of negative instances.

This thesis provides a novel strategy to incorporate negative information on process enhancement. Firstly, the directly-follows relations of business activities are extracted from the given existing reference process model, positive and negative instances of actual event log. Next, those relations are balanced and transformed into process model of Petri net by Inductive Miner. At end, long-term dependency on Petri net is further analyzed and added to block negative instances on the execution, in order to provide a preciser model.

Experiments for our implementation are conducted into scientific platform of KNIME. The results show the ability of our methods to provide better model with comparison to selected process enhancement techniques.

Bibliography

- [1] Josep Carmona and Jordi Cortadella. Process discovery algorithms using numerical abstract domains. *IEEE Transactions on Knowledge and Data Engineering*, 26(12):3064–3076, 2014.
- [2] Marcus Dees, Massimiliano de Leoni, and Felix Mannhardt. Enhancing process models to improve business performance: a methodology and case studies. In *OTM Confederated International Conferences*" On the Move to Meaningful Internet Systems", pages 232–251. Springer, 2017.
- [3] Dirk Fahland and Wil MP van der Aalst. Repairing process models to reflect reality. In *International Conference on Business Process Management*, pages 229–245. Springer, 2012.
- [4] Dirk Fahland and Wil MP van der Aalst. Model repair—aligning process models to reality. *Information Systems*, 47:220–243, 2015.
- [5] Mahdi Ghasemi and Daniel Amyot. Process mining in healthcare: a systematised literature review. 2016.
- [6] Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Robust process discovery with artificial negative events. *Journal of Machine Learning Research*, 10(Jun):1305–1340, 2009.
- [7] Sander JJ Leemans, Dirk Fahland, and Wil MP van der Aalst. Discovering block-structured process models from event logs-a constructive approach. In *International conference on applications and theory of Petri nets and concurrency*, pages 311–329. Springer, 2013.
- [8] Hernan Ponce-de León, Josep Carmona, and Seppe KLM vanden Broucke. Incorporating negative information in process discovery. In *International Conference on Business Process Management*, pages 126–143. Springer, 2016.
- [9] Wil Van Der Aalst. Process mining: discovery, conformance and enhancement of business processes, volume 2. Springer, 2011.
- [10] Wil Van der Aalst. Data science in action. In *Process Mining*, pages 3–23. Springer, 2016.
- [11] Seppe KLM vanden Broucke, Jochen De Weerdt, Jan Vanthienen, and Bart Baesens. Determining process model precision and generalization with weighted artificial negative events. *IEEE Transactions on Knowledge and Data Engineering*, 26(8):1877–1889, 2014.