B62005Y-02 理论计算机科学基础

2017年3月29日

Solutions to Homework # 2

主讲教师: 杨光

张远航 2015K8009929045

Sipser 2.1 (c) Derivations: $E \Rightarrow E+T \Rightarrow E+T+T \Rightarrow E+T+T \Rightarrow F+T+T \Rightarrow ... \Rightarrow a+a+a$. The parse tree:

Sipser 2.2 (a) First, we show that both A and B are CFLs. The following grammars derive them:

$$\begin{split} S &\to RT \\ R &\to \mathtt{a}R \mid \varepsilon \\ T &\to \mathtt{b}T\mathtt{c} \mid \varepsilon \end{split}$$

and

$$\begin{split} S &\to TR \\ R &\to \mathbf{a} T \mathbf{b} \mid \varepsilon \\ T &\to \mathbf{c} R \mid \varepsilon \end{split}$$

Note that $A \cap B = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free by Example 2.20. We have found a counterexample and therefore the CFLs are not closed under intersection.

- (b) *Proof.* We prove this in two parts:
 - CFLs are closed under the union operation. Let $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ be two arbitrary CFGs. We can construct a grammar

 $G = (V, \Sigma, R, S)$ that recognized their union:let $V = V_1 \cup V_2$ and $R = R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\}$. (W.L.O.G. assume that $R_1 \cap R_2 = \emptyset$; otherwise rename the variables.)

• CFGs are not closed under complementation. Assume to the contrary that the CFGs are closed under complementation; then for two CFGs G_1 and G_2 , $\overline{L(G_1)}$ and $\overline{L(G_2)}$ are context-free. It follows that $\overline{L(G_1)} \cup \overline{L(G_2)}$ is context free. Our assumption implies that $\overline{L(G_1)} \cup \overline{L(G_2)} = L(G_1) \cap L(G_2)$ (by de Morgan's Law) is also context-free; however, following part (a) and setting $G_1 = A$ and $G_2 = B$ leads us to a contradiction. Therefore the context-free languages are not closed under complementation.

Sipser 2.4 (b) The following grammar generates it:

$$S \rightarrow \mathsf{0}T\mathsf{0} \mid \mathsf{1}T\mathsf{1}$$

$$T \rightarrow \mathsf{0}T\mathsf{0} \mid \mathsf{1}T \mid \varepsilon$$

Sipser 2.6 (b) We can write the complement of the language $\{a^nb^n \mid n \geq 0\}$ as the union of two languages:

- $\{a^ib^j \mid i, j \ge 0, i \ne j\}$, and
- arbitrary strings of a and b with "ba" in between: $(a \cup b)^*ba(a \cup b)^*$.

The CFGs for them are

$$S_1
ightarrow aS_1 b \mid A \mid B$$
 $A
ightarrow aA \mid a$ $B
ightarrow Bb \mid b$

and

$$S_2 \to E$$
ba E

$$E \to EE \mid a \mid b \mid \varepsilon$$

Combining them we get a CFG for the language asked:

$$S
ightarrow S_1 \mid S_2$$
 $S_1
ightarrow \mathtt{a} S_1 \mathtt{b} \mid A \mid B$ $A
ightarrow \mathtt{a} A \mid \mathtt{a}$

$$B o B$$
b | b $S_2 o E$ ba E $E o EE\mid a\mid b\mid arepsilon$

Sipser 2.11 Here is the constructed automata:

Sipser 2.14 First, add a start variable:

$$\begin{split} S &\to A \\ A &\to BAB \mid B \mid \varepsilon \\ B &\to \mathsf{00} \mid \varepsilon \end{split}$$

Second, remove all ε -rules. We remove $B \to \varepsilon$:

$$S \to A$$

$$A \to BAB \mid B \mid AB \mid BA \mid A \mid \varepsilon$$

$$B \to 00$$

Also remove $A \to \varepsilon$:

$$S \to A \mid \varepsilon$$

$$A \to BAB \mid B \mid AB \mid BA \mid BB \mid A$$

$$B \to 00$$

Third, we handle all unit rules. Remove $A \to A$:

$$S \rightarrow BAB \mid B \mid AB \mid BA \mid BB \mid \varepsilon$$

$$A \rightarrow BAB \mid B \mid AB \mid BA \mid BB$$

$$B \rightarrow 00$$

Also remove $A \to B$:

$$S \to BAB \mid B \mid AB \mid BA \mid BB \mid 00 \mid \varepsilon$$

$$A \to BAB \mid B \mid AB \mid BA \mid BB \mid 00$$

$$B \to 00$$

Finally, convert it into Chomsky normal form:

$$S \rightarrow BC \mid AB \mid BA \mid BB \mid UU \mid \varepsilon$$

$$A \rightarrow BC \mid AB \mid BA \mid BB \mid UU$$

$$C \rightarrow AB$$

$$B \rightarrow UU$$

$$U \rightarrow 0$$