Esercizi per la Seconda Settimana

Esercizio 2.1 Sia \underline{v} un vettore non nullo ortogonale a \underline{t} , \underline{w} ed \underline{s} . Mostrare che quest'ultimi sono complanari.

Esercizio 2.2 Siano \underline{v} , \underline{t} , \underline{w} tre versori tali che $\underline{v} \cdot \underline{t} = 1/2$ e $\underline{w} \cdot \underline{t} = 1$. Calcolare l'angolo convesso determinato da \underline{v} e \underline{w} .

Esercizio 2.3 Siano \underline{v} e \underline{w} due versori. Può accadere che $|\underline{v} + \underline{w}| = 1$ e $|\underline{v} - \underline{w}| = \sqrt{3}$?

Esercizio 2.4 Dati due vettori \underline{v} , \underline{w} non paralleli, trovare un'espressione per la proiezione ortogonale di un generico vettore \underline{t} lungo la direzione individuata dalla bisettrice dell'angolo convesso formato da \underline{v} e \underline{w} .

Esercizio 2.5 Dato un vettore \underline{t} , mostrare che l'applicazione dall'insieme dei vettori liberi in sè stesso definita da

$$T(v) = (v \cdot t)t$$

non è iniettiva.

Esercizio 2.6 Mostrare che i vettori $(\underline{v} \wedge \underline{w}) \wedge \underline{v}$, \underline{v} , \underline{w} non formano mai una base.

Esercizio 2.7 Siano \underline{v} e \underline{t} non parallleli e sia \underline{x} tale che

$$(\underline{x} \wedge \underline{v}) \cdot \underline{t} = 3(\underline{x} \wedge \underline{v}) \cdot \underline{t} .$$

È lecito concludere che \underline{x} è necessariamente il vettore nullo?

Esercizio 2.8 Sia \underline{v} un vettore non nullo assegnato. Determinare l'insieme dei vettori \underline{x} tali che $(\underline{x} \wedge \underline{v}) \wedge \underline{v} = \underline{0}$.

Esercizio 2.9 Sia \underline{v} un vettore non nullo e siano \underline{w} e \underline{w}' tali che $\underline{w}-\underline{w}'$ sia parallelo a \underline{v} . Mostrare che se \underline{w} non è parallelo a \underline{v} , allora l'area del parallelogramma individuato da \underline{v} e \underline{w} è uguale all'area del parallelogramma individuato da \underline{v} e \underline{w}' .

Esercizio 2.10 Se $(\underline{v},\underline{w},\underline{t})$ è una base positivamente orientata, è vero che anche $(\underline{v},\underline{v}+\underline{w},\underline{t})$ lo è?

Esercizio 2.11 Se $\underline{v},\underline{w}$ e \underline{t} costituiscono una base, è vero che anche i vettori $\underline{v} \wedge \underline{w}, \underline{w}$ e \underline{t} formano una base?

In tutti gli esercizi che seguono, la terna \underline{i} , \underline{j} e \underline{k} sta sempre a indicare una base ortonormale positivamente orientata

Esercizio 2.12 Costruire una base ortonormale della quale il primo elemento sia parallelo a $\underline{i}+j$.

Esercizio 2.13 Sia U il piano vettoriale determinato da $\underline{v}=\underline{j}-\underline{k}$ e $\underline{w}=\underline{i}+3\underline{j}+2\underline{k}$ (per piano vettoriale si intende l'insieme dei vettori complanari con \underline{v} e \underline{w}). Determinare la proiezione ortogonale del vettore $\underline{t}=\underline{i}+2\underline{j}-\underline{k}$ sul piano vettoriale U.

Esercizio 2.14 Sia U il piano vettoriale determinato da $\underline{v} = \underline{i} + 3\underline{j} + 4\underline{k}$ e $\underline{w} = 2\underline{i} + \underline{j} - \underline{k}$. Trovare un'espressione per la proiezione ortogonale di un generico vettore x sul piano vettoriale U.

Esercizio 2.15 Trovare l'espressione generale della proiezione ortogonale di un vettore \underline{x} sul piano vettoriale U determinato da due generici vettori non paralleli \underline{v} e \underline{w} .

Esercizio 2.16 Determinare il vettore simmetrico di $\underline{v} = \underline{i} + 2\underline{j} - \underline{k}$ rispetto alla direzione determinata da $\underline{u} = \underline{i} - 2\underline{j} - 2\underline{k}$.

Esercizio 2.17 Calcolare i valori di h per i quali i tre vettori $\underline{v} = \underline{i} - \underline{j} - \underline{k}$, $\underline{w} = 3\underline{i} + h\underline{j} + 2\underline{k}$ e $\underline{t} = \underline{i} + \underline{k}$ sono linearmente indipendenti.

Esercizio 2.18 Siano $\underline{x} = \underline{i} - h\underline{j} + 2\underline{k}, \ \underline{v} = \underline{i} - \underline{j} - \underline{k}$ e $\underline{w} = 2\underline{i} - \underline{k}$. Trovare il valore di h per il quale \underline{x} è complanare con \underline{v} e \underline{w} .

Esercizio 2.19 Siano $\underline{x} = \underline{i} - \underline{j} - h\underline{k}, \ \underline{v} = \underline{i} - \underline{k}$ e $\underline{w} = \underline{j} - \underline{k}$. Trovare i valori di h per i quali \underline{x} , \underline{v} e \underline{w} formano una base.

Esercizio 2.20 Siano $\underline{v} = 2\underline{i} - \underline{j} + \underline{k}$, $\underline{w} = \underline{i} - \underline{j} - \underline{k}$ e $\underline{t} = \underline{i} + h\underline{j} + \underline{k}$. Determinare per quali valori di h i vettori \underline{v} , \underline{w} e \underline{t} formano una base positivamente orientata.

Esercizio 2.21 Siano $\underline{v} = \underline{i} - h\underline{k}$, $\underline{w} = 2\underline{i} - \underline{j} + \underline{k}$ e $\underline{t} = h\underline{i} + \underline{j} - \underline{k}$. Determinare per quali valori di h si ha che:

- a) \underline{v} , \underline{w} e \underline{t} formano una base;
- b) $\underline{v}, \underline{w} \in \underline{t}$ formano una base positivamente orientata;
- c) \underline{v} , \underline{w} e \underline{t} determinano un parallelepipedo di volume pari a 1

Esercizio 2.22 Siano $\underline{v} = h\underline{i} + 2\underline{j} - \underline{k}$, $\underline{w} = \underline{i} - 2\underline{j} - \underline{k}$ e $\underline{t} = \underline{i} - \underline{k}$. Esistono dei valori per h tali per cui \underline{v} è complanare con \underline{w} e \underline{t} ed è al tempo stesso ortogonale a $\underline{s} = \underline{i} + j$?

Esercizio 2.23 Esprimere il vettore $\underline{x} = \underline{i} + 2\underline{j} + 3\underline{k}$ come combinazione lineare dei vettori della base $\{\underline{i},\underline{i}+\underline{j},\underline{i}+\underline{j}+\underline{k}\}.$

Esercizio 2.24 Siano \underline{v} e \underline{w} tali che $\underline{v} \wedge \underline{w} \cdot \underline{t} = 0$ per ogni vettore \underline{t} . Cosa si può dire di \underline{v} e \underline{w} ?

Esercizio 2.25 Siano \underline{v} e \underline{w} due versori ortogonali. Quanti sono i vettori \underline{x} che sono ortogonali sia a \underline{v} che a \underline{w} e che risolvono l'equazione vettoriale $\underline{v} \wedge \underline{w} \cdot \underline{x} = 2$?

Esercizio 2.26 Quanti sono i vettori \underline{x} che risolvono l'equazione vettoriale dell'esercizio precedente senza essere vincolati da nessun'altra condizione?

Esercizio 2.27 Siano \underline{v} e \underline{w} non paralleli e si consideri il sistema di equazioni vettoriali

$$\begin{cases} \underline{x} \wedge \underline{v} \cdot \underline{w} = 0\\ \underline{x} \cdot \underline{v} = 0 \end{cases}$$

Descrivere l'insieme dei vettori \underline{x} che risolvono il sistema.

Esercizio 2.28 Siano \underline{v} e \underline{w} non paralleli e si consideri il sistema di equazioni vettoriali

$$\begin{cases} \underline{x} \wedge \underline{v} \cdot \underline{w} = 0 \\ \underline{x} \cdot \underline{v} = 0 \\ \underline{x} \cdot \underline{w} = 0 \end{cases}$$

Descrivere l'insieme dei vettori \underline{x} che risolvono il sistema.

Esercizio 2.29 Se $\underline{t} \wedge \underline{v} \cdot \underline{w} = \underline{w} \wedge \underline{v} \cdot \underline{t}$, che cosa si può concludere sulla terna \underline{t} , \underline{v} , \underline{w} ?

Esercizio 2.30 Se \underline{v} , \underline{w} , \underline{t} sono complanari è vero che anche $\underline{v}+3\underline{w}$, $\underline{w}+5\underline{t}$, $\underline{v}+\underline{w}+\underline{t}$ lo sono?

Esercizio 2.31 Siano \underline{v} e \underline{w} due vettori paralleli non nulli e sia T l'applicazione che trasforma ogni vettore x nel vettore

$$T(\underline{x}) = \underline{x} \wedge \underline{v} + \underline{x} \wedge \underline{w}$$
.

Quali sono i vettori \underline{x} che vengono trasformati da T nel vettore nullo?

Esercizio 2.32 Determinare l'insieme dei vettori che sono complanari con i due vettori $\underline{v}_1 = \underline{i} + \underline{k}$ e $\underline{v}_2 = \underline{i} - 2\underline{j} + 3\underline{k}$ e, simultaneamente, complanari con i due vettori $\underline{w}_1 = \underline{i} - \underline{j}$ e $\underline{w}_2 = \underline{i} + 2\underline{j} + \underline{k}$.

Esercizio 2.33 Siano $\underline{v} = \underline{i} - 2\underline{j} + \underline{k}$ e $\underline{w} = (h+1)\underline{i} - \underline{j} - \underline{k}$. Determinare h in modo che l'angolo convesso formato da \underline{v} e \underline{w} sia $\frac{\pi}{3}$.

Esercizio 2.34 Sapendo che \underline{v} , \underline{w} e $\underline{v}-\underline{w}$ sono tre versori, determinare l'angolo convesso formato da v e w .