CNS Assignment 1

Shreeya Pahune (2018113011)

03/09/2018

1 Optimizing the structure of a water dimer and hydrogen sulphide dimer single point energies of both

1.1 Configuring the g09.sh file

• Before submitting the .com file , we need to create a .sh file having the following info:

```
#!/bin/bash

#SBATCH -A cn4101

#SBATCH --qos=cn4101

#SBATCH -n 2

#SBATCH -N 1

#SBATCH --mem-per-cpu=200

#SBATCH --time=03:00:00

module load Gaussian/09revC

export GAUSS_SCRDIR=/scratch/$USER.$SLURM_JOBID
/bin/mkdir -p $GAUSS_SCRDIR

g09 [FILE NAME].com

/bin/rm -rf $GAUSS_SCRDIR
```

1.2 Procedure - .COM file

```
Writing a .COM file which includes the Z-Matrix for the H_2O dimer and H_2S dimer.
```

1

Z-Matrix for H₂O dimer:

```
%nproc=2
```

%mem=1GB

#HF STO-3G opt freq

Water Dimer Optimization

0 1

```
H
O 1 1.0
H 2 1.0 1 104.0
O 3 2.0 2 175.0 1 0.0
H 4 1.0 3 133.0 1 90.0
H 4 1.0 3 -133.0 1 90.0
```

Z-Matrix for H_2S dimer:

•

```
%nproc=2
%mem=1GB
#HF STO-3G opt freq
```

H2S optimization

0 1

Η

S 1 1.0

H 2 1.0 1 92.0

S 3 2.0 2 175.0 1 0.0

H 4 1.0 3 92.0 2 120.0

H 4 1.0 3 92.0 2 -120.0

1.3 Observations

Opening the file on Gaussian and reviewing the .LOG file, we observe and tabulate the following data:

Figure 1: Molecule Images

2 Page 2 / 6

H2S optimization		
File Name	H2S	
File Type	.log	
Calculation Type	FREQ	
Calculation Method	RHF	
Basis Set	STO-3G	
Charge	0	
Spin	Singlet	
E(RHF)	-788.62430206	a.u.
RMS Gradient Norm	0.00000179	a.u.
Imaginary Freq	0	
Dipole Moment	1.3185	Debye
Point Group	cs	
Job cpu time: 0 days 0 hours 0 minutes 3.2 seconds.		

Figure 2: H₂S Summary

Figure 3: H₂O Summary

1.4 Inference

As infered from the log file, the energy of the dimers lowers :

$$2H_2O \to (H_2O)_2 \tag{1}$$

$$2H_2S \to (H_2S)_2 \tag{2}$$

• H_2S molecule E(RHF) = -394.311630017

3 Page 3 / 6

- H_2O molecule E(RHF) = -74.9659011302
- H_2S dimer E(RHF) = -788.624302056
- H_2O dimer E(RHF) = -149.941244334
- Lowering of Energy in H₂O dimer

$$E_{\text{H}_2\text{O}} = -149.941244334 - 2(-74.9659011302) = -244.3798278 Hatrees$$
 (3)

• Lowering of Energy in H₂S dimer

$$E_{\rm H_2S} = -788.624302056 - 2(-394.311630017) = -0.00104202199 Hatrees \tag{4}$$

Lowering of energy in the case of H_2O dimer and H_2S dimer is observed. It is more in case of H_2O dimer due to formation of Hydrogen bonds.

2 Determining the activation energy of NH3 inversion through a planar transition state

2.1 Configuring the g09.sh file

• Before submitting the .com file , we need to create a .sh file having the following info:

```
#!/bin/bash

#SBATCH —A cn4101

#SBATCH — qos=cn4101

#SBATCH —n 2

#SBATCH —N 1

#SBATCH —mem-per-cpu=200

#SBATCH —time=03:00:00

module load Gaussian/09revC

export GAUSS_SCRDIR=/scratch/$USER.$SLURM_JOBID
/bin/mkdir —p $GAUSS_SCRDIR

g09 [FILE NAME].com

/bin/rm —rf $GAUSS_SCRDIR
```

2.2 Procedure - .COM file

Writing a .COM file which includes the Z-Matrix for the H₂O dimer and H₂S dimer.

Z-Matrix for H₂O dimer:

.

```
% nproc = 2
```

%mem=1GB

 $\#irc = calcfc \quad hf/sto -3g$

 $Ammonia-Plan\,a\,r$

0 1

N

H 1 1.0

H 1 1.0 2 120.0

H 1 1.0 2 120.0 3 179.9

2.3 Observations

Opening the file on Gaussian and reviewing the .LOG file, we observe and tabulate the following data:

(c) NH₃-Planar

Figure 5: NH₃ IRC Graph

2.4 Inference

From the graph obtained we can infer that the enrgy difference between the initial state and transition state of the NH_3 molecule is the Activation Energy.

$$\Delta Energy = E_{\text{transition}} - E_{\text{initial}} = (-55.437) - (-55.454) = 0.017 Hatrees$$
 (5)

Umbrella inversion of Nitrogen is a process in compounds with a nitrogen atom that has a pyramidal geometry, such as ammonia (NH3), whereby the molecule "turns inside out". It is a rapid oscillation of the nitrogen atom from one side of the plane formed by the substituents to the other side, passing through a planar transition state.

The ammonia interconversion is rapid at room temperature. One of the factors contribute to the rapidity of the inversion is a low energy barrier as observed.

6

Page 6 / 6