

Olimpiada Națională de Matematică Etapa Județeană/a Sectoarelor Municipiului București, 16 martie 2019

SOLUŢII ŞI BAREME ORIENTATIVE-CLASA a VIII-a

Problema 1. Determinați numerele x, y, cu x întreg și y rațional, pentru care se verifică egalitatea:

$$5(x^2 + xy + y^2) = 7(x + 2y).$$

Gazeta Matematică

Soluție. Aducerea ecuației la forma $(10y + 5x - 14)^2 + 75x^2 - 196 = 0 \dots 3p$ obţinem $y \in \{3, \frac{4}{5}\}$ Soluțiile sunt: $\{(-1,3); (-1,\frac{4}{5}); (0,0); (0,\frac{14}{5}); (1,2); (1,-\frac{1}{5})\}$ 3p

Problema 2. Fie ABCDA'B'C'D' paralelipiped dreptunghic și M, N, P proiecțiile punctelor A, C respectiv B' pe diagonala BD'.

- a) Arătați că BM + BN + BP = BD'.
- b) Demonstrați că $3(AM^2 + B'P^2 + CN^2) \ge 2D'B^2$ dacă și numai dacă paralelipipedul dreptunghic ABCDA'B'C'D' este cub.

Soluție. a) Aplicând teorema catetei în triunghiurile ABD', D'B'B și D'CB, obținem $BM = \frac{AB^2}{BD'}, BP = \frac{B'B^2}{BD'}$ și $BN = \frac{BC^2}{BD'}$.
Concluzia

b) Pentru implicația directă notăm AB = x, BC = y, AA' = z. Aplicând teorema

înălţimii, prin ridicare la pătrat, deducem relaţiile:
$$AM^2 = \frac{AB^2 \cdot D'A^2}{D'B^2} = \frac{x^2y^2 + x^2z^2}{x^2 + y^2 + z^2}, B'P^2 = \frac{D'B'^2 \cdot B'B^2}{D'B^2} = \frac{z^2x^2 + z^2y^2}{x^2 + y^2 + z^2}, CN^2 = \frac{D'C^2 \cdot CB^2}{D'B^2} = \frac{y^2x^2 + y^2z^2}{x^2 + y^2 + z^2} \dots 2\mathbf{p}$$
Inegalitatea devine $6\frac{x^2y^2 + y^2z^2 + z^2x^2}{x^2 + y^2 + z^2} \ge 2(x^2 + y^2 + z^2)$, adică $(x^2 - y^2)^2 + (y^2 - z^2)^2 + (y^2 - z^2$

 $(z^2 - x^2)^2 < 0$

Pentru implicația inversă notând cu l lungimea muchiei cubului, obținem AM = $B'P = CN = \frac{l\sqrt{6}}{3}$ și inegalitatea se verifică cu egalitate : $6l^2 \geq 6l^2 \dots 1$

Problema 3. Se consideră paralelipipedul dreptunghic ABCDA'B'C'D' astfel încât măsura unghiului diedru format de planele (A'BD) și (C'BD) este 90° iar măsura unghiului diedru format de planele (AB'C) și (D'B'C) este 60°. Determinați măsura unghiului diedru format de planele (BC'D) și (A'C'D).

Soluție. Vom considera lungimea lui BC egală cu unitatea de masură, iar ABa, AA' = c. Dacă P este proiecția lui A pe BD deducem $m((A'BD), (ABC)) = m(\widehat{A'PA})$ şi dacă P' este proiecția lui C pe BD, obținem $m((C'B\widehat{D}),(ABC)) = m(\widehat{C'P'C})$. Din

congruența triungmurilor dreptungiice AAP și CCP , (C.C.), rezulta $m(APA) = \frac{1}{2}(180^{\circ} - 90^{\circ}) = 45^{\circ}$ de unde $c = AA' = AP = \frac{AB \cdot AD}{BD} = \frac{a}{\sqrt{a^2+1}}$
Analog ipoteza $m((AB'\widehat{C}), (\widehat{D'}B'C)) = 60^{\circ}$ conduce la relația $\frac{c\sqrt{3}}{\sqrt{c^2+1}} = a$ 2p
Se obţine $a = 1, c = \frac{1}{\sqrt{2}}$
$m((BC'\widehat{D}), (\widehat{A'}C'D) = m((AB'\widehat{C}), (\widehat{D'}B'C)) = 60^{\circ} \dots 1p$
Problema 4. Rezolvați în mulțimea numerelor reale ecuația:
$\left[x + \frac{1}{x}\right] = \left[x^2 + \frac{1}{x^2}\right],$
unde $[a]$, reprezintă partea întreagă a numărului real a .
Soluţie. Din ipoteză se deduce $x>0$
În concluzie $ x - \frac{\sqrt{5}}{2} < \frac{1}{2}, x \in \left(\frac{-1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$ 2p