Homework 1

Due on Tuesday, September 11, at 05:20 pm

Answer 10 of the following 13 questions to get full credit for this homework assignment. Please follow the instructions for homework assignments. I reserve the right to deduct points if you do not follow these rules.

- 1. According to the Cauchy–Schwarz inequality we have $|\langle x,y\rangle| \leq \|x\|_2 \|y\|_2$ for any $x,y \in \mathbf{R}^n$, where $\langle \cdot,\cdot \rangle : \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ is the inner product. Proof the inequality and show that the equality only holds if the vectors x and y are linearly dependent.
- 2. Let $Q \in \mathbf{R}^{n,n}$ be a positive definite matrix, i.e., $\forall x \in \mathbf{R}^n \setminus \{0\} : x^T Q x > 0$. Show that

$$||x||_Q := \sqrt{x^\mathsf{T} Q x} = \langle x, Q x \rangle^{1/2}$$

is a norm.

- 3. Sketch the following sets in ${\bf R}^2$ and determine from you figure which sets are convex and which sets are not convex.
 - (a) $\{(x_1, x_2) : x_1^2 + x_2^2 \le 1\}$
 - (b) $\{(x_1, x_2) : 0 < x_1^2 + x_2^2 \le 1\}$
 - (c) $\{(x_1, x_2) : |x_1| + |x_2| \le 1\}$
- 4. Let $C = \{x \in \mathbf{R}^n : Ax \le b\}$. Show that C is a convex set.
- 5. Show that the convex hull $H := \operatorname{conv} S$ of a set $S \subseteq \mathbf{R}^n$ is the intersection of all convex sets C that contain S, i.e., H is equal to $\bigcap_{C \supset S, C \text{ convex}} C =: M$.
- 6. What is the distance between two parallel hyperplanes $\{x \in \mathbf{R}^n : a^\mathsf{T} x = b_1\}$ and $\{x \in \mathbf{R}^n : a^\mathsf{T} x = b_2\}$?
- 7. Let $\{x_i\}_{i=1}^m$, $x_i \in \mathbf{R}^n$. Consider a set of points V that are closer (in Euclidean norm) to x_0 than the other x_i , i.e., $V := \{x \in \mathbf{R}^n : \|x x_0\|_2 \le \|x x_i\|_2$, $i = 1, \ldots, m\}$. V is called a Voronoi region around x_0 with respect to $\{x_i\}_{i=1}^m$. Show that V is a polyhedron. Express V in the form $V = \{x : Ax \le b\}$.
- 8. Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality $C = \{x \in \mathbb{R}^n : x^\mathsf{T} A x + b^\mathsf{T} x + c \leq 0\}$ with $A \in \mathbb{S}^n$, $\mathbb{S}^n := \{M \in \mathbb{R}^{n,n} : M = M^\mathsf{T}\}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$. Show that C is convex if $A \succeq 0$. Hint: One possible way of showing this is to use the fact that a set is convex if its intersection with all lines of the form $\{u + \lambda v : \lambda \in \mathbb{R}\}$, where u and v are vectors, is a convex set.
- 9. Determine which of the following sets are convex.
 - (a) The set $S = \{x \in \mathbf{R}^n : \alpha \le a^\mathsf{T} x \le \beta, \ \alpha, \beta \in \mathbf{R}, a \in \mathbf{R}^n\}.$
 - (b) The set of points closer to one set S_1 than another set S_2 , i.e.,

$$K = \{x \in \mathbf{R}^n : \operatorname{dist}(x, S_1) \leq \operatorname{dist}(x, S_2)\}$$
,

where $S_i \subseteq \mathbf{R}^n$ and $\operatorname{dist}(x, S) = \inf \{ \|x - y\|_2 : y \in S \}$.

(c) The set of points whose distance to a point $x_0 \in \mathbf{R}^n$ does not exceed a fixed fraction $\alpha \in [0,1]$ of the distance to $y \in \mathbf{R}^n$, $y \neq x_0$, i.e., the set $\{x \in \mathbf{R}^n : \|x - x_0\|_2 \leq \alpha \|x - y\|_2\}$.

- 10. Let $S \subseteq \mathbf{R}^n$ and let $\|\cdot\|$ be some norm in \mathbf{R}^n .
 - (a) Let $S_{\alpha} := \{x \in \mathbf{R}^n : \operatorname{dist}(x,S) \leq \alpha\}$, where $\operatorname{dist}(x,S) = \inf_{y \in S} \|x y\|$ with $\alpha \geq 0$. Show that if S is convex, so is S_{α} .
 - (b) Let $S_{-\alpha} := \{x \in \mathbf{R}^n : \mathcal{B}(x,\alpha) \subseteq S\}$, where \mathcal{B} is the ball (in the norm $\|\cdot\|$) centered around x with radius α . Show that if S is convex, then $S_{-\alpha}$ is convex.
- 11. Let $A \in \mathbf{R}^{m,n}$, $b \in \mathbf{R}^m$, and b is in the range of A. Show that there exists an x satisfying $x \succ 0$, Ax = b, if and only if there exists no λ with $A^T\lambda \succeq 0$, $A^T\lambda \neq 0$, $b^T\lambda \leq 0$. Hint: First prove the following fact from linear algebra: $c^Tx = d$ for all x satisfying Ax = b if and only if there is a vector λ such that $c = A^T\lambda$, $d = b^T\lambda$. Then use a separating hyperplane argument.
- 12. Let $C_i \subseteq \mathbf{R}^n$, i=1,2, be nonempty convex sets. Show that $S=\theta_1C_1+\theta_2C_2$, where

$$C_1 + C_2 := \{ z \in \mathbf{R}^n : z = z_1 + z_2, z_1 \in C_1, z_2 \in C_2 \}$$

is convex for any $\theta \in \mathbf{R}, i = 1, 2$.

13. Let $f: \mathbf{R}^m \to \mathbf{R}^n$ be the linear fractional function

$$f(x) = (Ax + b)/(c^{\mathsf{T}}x + d), \quad \text{dom } f = \{x : c^{\mathsf{T}}x + d > 0\}.$$

In this problem we study the inverse image of a convex set C under f, i.e.,

$$f^{-1}(C) = \{x \in \text{dom } f : f(x) \in C\}.$$

For each of the following sets $C \subseteq \mathbf{R}^n$, give a simple description of $f^{-1}(C)$.

- (a) The halfspace $C = \{y : g^{\mathsf{T}}y \le h, \ g \ne 0\}.$
- (b) The ellipsoid $C = \{y : y^{\mathsf{T}} P^{-1} y \le 1, P \in \mathbf{S}_{++}^n \}.$