MSAN 601: Linear Regression Analysis Quiz 2

by James D. Wilson (University of San Francisco)

There are 5 questions. Each question is weighted equally. Grades will be out of 100 points. You have until 9:45. Good luck!

- 1. Suppose that a linear regression model perfectly fits the training data so that the MSE is 0. Which of the following statements is true? (thought I would give a nice multiple choice question to start things off)
 - (a) You will always have a test error of zero
 - (b) You can not have test error zero
 - (c) None of the above
- 2. Let X be an $n \times p$ data matrix as described in class, and y an n-dimensional continuous vector. You decide to fit a linear regression model of y on X:

$$y = X\beta + \epsilon$$

According to what we've talked about in class, what two possible assumptions can you make about ϵ ?

3. Suppose that you observe the data $(x_1, y_1), \ldots, (x_n, y_n)$ and you fit the model

$$y_i = f(x_i) + \epsilon_i$$
.

Through estimation, you find an estimator \hat{f} . Write the equation for the mean squared error of \hat{f} .

4. Suppose you take the data observed in Question (2) and randomly split the data into training data $(\mathbf{x}_{train}, \mathbf{y}_{train})$ and test set data $(\mathbf{x}_{test}, \mathbf{y}_{test})$. From the training set, you fit the model \hat{g} according to

$$y_i = g(x_i) + \epsilon_i$$
.

- (a) Write the equation for the MSPE of \hat{g} .
- (b) What can you say about the relationship between the MSE and MSPE of \hat{g} ?
- (c) Suppose that you observe a new data point (x_0, y_0) . Write the equation for the $\mathbb{E}[MSPE(\widehat{g}(x_0))]$ in terms of the bias and variance of \widehat{g} and the error terms ϵ_i .
- 5. Suppose that we fit polynomial models of data \mathbf{y} against \mathbf{x} of order p = 1, 2, ..., 99 to data where we observe 150 data points. In particular, we fit functions of the following type on a randomly selected training set of size 100:

$$f(\mathbf{x}) = \sum_{j=0}^{p} a_j x^j$$

In terms of the bias-variance tradeoff, explain what happens to the prediction accuracy of the fitted model on the test set as a function of p.