Relatório

Trabalho 1

Introdução às Redes de Comunicação

Licenciatura em Engenharia Informática

Protocolos da Camada de Transporte

João Moreira – 2015230374

Ricardo Tavares – 2014230130

Introdução

Neste primeiro trabalho prático da disciplina de Introdução às Redes de Comunicação, pretendemos compreender melhor os protocolos da camada de transporte UDP (User Datagram Protocol) e TCP (Transmission Control Protocol).

O UDP é um protocolo que é conhecido pela sua rapidez, sendo que tem o senão de não garantir a chegada dos pacotes do servidor ao cliente, apesar de que conseguimos minorar estes ricos implementando algoritmos de retransmissão e time-outs ou acknowledgments. O uso deste protocolo é concentrado na transmissão de dados pouco sensíveis, por exemplo: fluxos de áudio e vídeo. Um exemplo da utilização do UDP é a transmissão em tempo real de imagem/vídeo em Brodcasts e Multicasts.

O TCP é um protocolo que se concentra mais na segurança na transmissão de dados, visto que evita a perda de informação e garante que os dados são enviados na sua ordem correta e sem erros. Este protocolo utiliza acknowledgments que consistem em mensagens que são enviadas para o servidor informando-o se o cliente recebeu os dados, sendo este o sistema de controlo de fluxo deste protocolo. Vantagens como esta levam a que o TCP seja utilizado em redes globais e que seja o protocolo no qual assenta o núcleo da Internet. Um exemplo da sua utilização é por exemplo um chat escrito.

Resultados

Exercício nº2

Para responder a esta pergunta consultamos o ficheiro ns-default.tcl que contêm as informações de origem utilizadas no NS2.

Tamanho por omissão das filas nos nós	50 (Queue set limit_ 50)		
Tamanho por omissão dos pacotes TCP	1000 bytes (Agent/TCP set packetSize_ 1000)		
Tamanho por omissão dos pacotes UDP	1000 bytes (Agent/UDP set packetSize_ 1000)		
Tamanho por omissão da janela do TCP	20 (Agent/TCP set window_ 20)		

Para o tamanho da fila neste trabalho fizemos os seguintes cálculos:

Sabendo que o tamanho por omissão do UDP e TCP é 1000 bytes fazemos:

Portanto arredondamos por excesso para um tamanho de fila de 2098.

Exercício nº3

Alínea 1

ТСР		UDP		
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos
002.479s	88	0	001.709s	0

A janela mais pequena que se pode aplicar é quando o nº de pacotes perdidos e o tempo são o menor possível. Com janelas abaixo de 88 verificámos perdas de pacotes.

Alínea 2

ТСР		UDP		
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos
002.473s	90	0	001.731	14

Exercício nº4

Alínea 1

ТСР		UDP		
Tempo min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos	
002.489s	2	001.726s	780	

Alínea 2

ТСР		UDP		
Tempo min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos	
002.473s	10	001.722s	837	

Alínea 3

ТСР		UDP			
Tempo min	Janela min	Nº pacotes enviados/recebidos	Tempo min	Nº pacotes perdidos	Velocidade "PC A" – "PC B"
002.462	100	600/532	002.439s	383	7MB

Exercício nº5

Após analisar os resultados obtidos e tendo em conta o que já sabíamos sobre estes protocolos, podemos fazer agora compará-los.

Com o UDP obtivemos sempre um tempo de transmissão menor comparativamente ao TCP, visto que este último verifica sempre se o cliente recebeu o pacote antes de enviar um novo, enquanto que o UDP não.

O protocolo TCP mantém a integridade do que está a ser enviado, o que o torna mais seguro em relação ao UDP, que pode provocar perdas de pacotes.

Se o objetivo for rapidez de transmissão, como é o caso de um Broadcast/Live Stream ou um jogo Online, o protocolo UDP é o mais adequado. Se procurarmos a não-perda de dados, como é o caso de um chat, dever-se-á usar o TCP.

Exercício nº6

Ao colocarmos as 2 streams UDP, no cenário 2, estamos a contribuir para uma taxa de ocupação dos canais, neste caso de 60% entre "PC B" e "PC C" e 50% entre "PC D" e "PC C".

Entre "PC B" e "PC C" temos apenas 4 Mb/s disponíveis, logo iremos ter maior perda de pacotes da parte do UDP visto que ele não confirma se os pacotes chegaram ao destino e vamos ter um tempo mínimo maior da parte do TCP porque vão ter de ser reenviados pacotes que possam não conseguir ser enviados inicialmente.

Entre "PC D" e "PC C" temos 5Mb/s disponíveis, sendo que aqui os problemas vão ser dirigidos em grande parte ao TCP porque é ele que envia e recebe comunicações, logo é ele que vai ter atrasos na chegada da confirmação de se o pacote chegou ao cliente.

Uma possível solução para resolver este problema seria a implementação das ligações como SFQ em vez de Drop-Tail, de forma a minimizar as perdas de pacotes.