09/12/2024

CapECL1 Devoir surveillé de Mathématiques n°4 Durée : 2h30

Exercice 1 (30 points)

On considère l'équation fonctionnelle :

(P)
$$\forall (x,y) \in \mathbb{R}^2$$
, $[1 - f(x) f(y)] f(x+y) = f(x) + f(y)$.

Le but est de trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$, continues sur \mathbb{R} , qui vérifient (P).

Dans les questions 1) à 5), on suppose que f vérifie toutes les conditions ci-dessus.

1. Premières propriétés de f

- (a) Montrer que f(0) = 0.
- (b) Montrer que f est impaire.

2. Limite de f en $+\infty$

- (a) Justifier que $\forall x \in \mathbb{R} : (1 f(x)^2) f(2x) = 2 f(x)$.
- (b) Montrer qu'il est impossible que f ait une limite infinie lorsque $x \to +\infty$.
- (c) Montrer que, si f possède une limite finie lorsque $x \to +\infty$, alors cette limite est nécessairement 0.

3. Ensemble des zéros de f On note dorénavant

$$S = \{ x \in \mathbb{R} \mid f(x) = 0 \}.$$

- (a) Justifier que $S \neq \emptyset$.
- (b) Montrer que si $x \in S$, alors pour tout $m \in \mathbb{N}$, $m x \in S$.
- (c) Montrer que si $x \in S$, alors $x/2 \in S$.

4. Raisonnement par l'absurde Supposons, par l'absurde, que $S = \{0\}$.

- (a) Montrer que f a un signe constant strict sur $]0, +\infty[$.
- (b) Soit $(x,y) \in]0, +\infty[^2$. Montrer que f(y) f(x) est du signe de f(y-x) (au sens strict).
- (c) Dans le cas f > 0 sur \mathbb{R}_+^* , en déduire que f est strictement croissante sur \mathbb{R}_+ . Que dire dans l'autre cas?
- (d) Conclure.

5. Détermination de l'ensemble S

- (a) Montrer qu'il existe un réel a > 0 dans S.
- (b) On fixe un tel $a \in S \cap]0, +\infty[$. Montrer que, pour tout $n \in \mathbb{N}, \ a/2^n \in S$, puis que pour tout $(n, m) \in \mathbb{N}^2, \ m \, a/2^n \in S$.
- (c) Soit x > 0 fixé. On définit la suite (u_n) par

$$u_n = \frac{a}{2^n} \left\lfloor \frac{2^n x}{a} \right\rfloor, \quad n \in \mathbb{N}.$$

Montrer que $u_n \to x$. En déduire que $x \in S$.

6. Conclusion Quelles sont les fonctions $f: \mathbb{R} \to \mathbb{R}$, continues, qui vérifient (P)?

Exercice 2 (11 points)

On considère la suite (u_n) définie par

$$\begin{cases} u_0 \in \mathbb{R}, \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \sin(u_n). \end{cases}$$

1. Montrer que $\forall n \in \mathbb{N}^*, u_n \in [-1, 1]$.

CapECL1

09/12/2024Durée : 2h30

2. Étudier la fonction g définie sur [-1, 1] par

$$g(x) = \sin(x) - x$$

et en déduire son signe sur cet intervalle.

- 3. Que dire de la suite (u_n) si u_0 est tel que $u_1 = 0$?
- 4. On suppose $u_1 \in]0,1]$. Montrer que $\forall n \in \mathbb{N}^*, u_n \in [0,1]$. En déduire que (u_n) est décroissante et donner sa limite.
- 5. Que se passe-t-il si $u_1 \in [-1,0]$? (On pourra justifier plus rapidement.)

Exercice 3 (9 points)

Soit (u_n) une suite réelle. On pose, pour tout $n \in \mathbb{N}^*$,

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n}.$$

On suppose que la suite (u_n) est croissante et converge vers un réel ℓ .

- 1. Montrer que la suite (v_n) est également croissante et que, pour tout $n \in \mathbb{N}^*$, $v_n \leq \ell$. Que peut-on en déduire?
- 2. Établir que, pour tout $n \in \mathbb{N}^*$,

$$v_{2n} \geq \frac{u_n + v_n}{2}.$$

3. En déduire la limite de la suite (v_n) .

FIN