Text Classification in Practice: A Hands-on NLP Journey from TF-IDF to Transformers

Welcome to our hands-on exploration of text classification. We'll journey through practical techniques from traditional methods to cutting-edge transformers.

Session Goals

Understand Text Classification

Master the fundamentals of organizing text into predefined categories. categories.

Work with AG News Dataset

Apply techniques to a real-world classification task.

Build Multiple Models

Compare TF-IDF, FastText, and RoBERTa approaches.

Evaluate Effectively

Learn metrics and visualization techniques for model assessment.

Step 1: Data Collection and Preparation

is the foundation of the process. This involves gathering the necessary data, cleaning and preprocessing it to ensure it's ready for analysis.

Step 3: Model Selection and Training

is the core of the machine learning learning process. Here, we choose choose the appropriate model architecture, fine-tune its hyperparameters, and train it on the the prepared data.

2

Step 2: Feature Extraction is where we transform the raw text data into a format that can be processed by machine learning models. This could involve techniques like TF-IDF or more advanced word embeddings.

Optimization is the final step, where we assess the model's performance, identify areas for improvement, and iterate to refine the solution.

NLP TEXT CLASSIFICATION

Understanding Text Classification

Definition

Assigning predefined categories to text based on content, features, and patterns.

Common Applications

Sentiment analysis, spam detection, topic categorization, categorization, and content moderation.

Key Algorithms

Naive Bayes, Support Vector Machines, Logistic Regression, and Neural Neural Networks.

Text Classsification

The Classification Challenge

The Problem

Given news articles, automatically identify documents on the same same topic.

The Constraint

Use as few labeled examples as possible.

The Reason

Manual labeling is expensive and time-consuming.

The Solution

Efficient models that generalize well from limited training data.

Workflow Step 1: Data Collection and Preparation

Gather Data

Use public datasets, web scraping, or APIs to APIs to collect relevant text examples.

Clean Data

Remove irrelevant characters, HTML tags, tags, and normalize text format.

Preprocess Text

Apply tokenization, stemming/lemmatization, and remove stop stop words.

Dataset: AG News

Public News Headlines

Collection of real news articles from trusted sources. Each Each headline captures key information.

Four Balanced Categories

- World news and politics
- Sports coverage
- Business reports
- Science and technology updates

Practical Benefits

Clean, balanced dataset. Easy to process.

Workflow Step 2: Feature Extraction

Τ

Bag of Words (BoW)

Counts word frequencies in documents. Simple but ignores word order.

000

TF-IDF

Weights terms by importance. Penalizes common words across documents.

H

Word Embeddings

Captures semantic relationships between words. Maps words to words to vectors.

BAG OF WORDS

Workflow Step 3: Model Selection and Training

Logistic Regression

Interpretable results. Effective Effective for binary problems. problems.

SVM

Powerful for high-dimensional dimensional data. Works well well with sparse text.

Neural Networks

Captures complex patterns. Requires more data and computing power.

Naive Bayes

classification.

Baseline Models: TF-IDF + Classical ML

Fast and interpretable

NAIVE BAYES VS LOGISTIC REGRESSION

Probabilistic

Linear classifier

FastText Embeddings + Logistic Regression

Pretrained Vectors

Use Facebook's FastText embeddings trained on Common Crawl.

Improved Results

Capture semantic meaning beyond bag-of-bag-of-words.

Sentence Representation

Average word vectors to create document document embeddings.

Logistic Regression

Train classifier on these semantic embeddings.

Word Embeddings

Captures semantic relationships between words.

FastText + Logistic Regression

Modern Deep Learning: RoBERTa

Advanced Architecture

Bidirectional encoder representations from transformers Transfer Learning

Pretrained on massive text corpus

Fine-Tuning

Adapted to AG News classification task Contextual Understanding

Captures complex linguistic patterns

We'll use the Hugging Face implementation of 'roberta-base' to leverage its powerful contextual representations.

TF-IDF

Document

The car is red. It is a fast car.

car

- Converts text to word counts
- Ignores word meanings

WORD EMBEDDINIGS

- Maps words to vectors
- Embeds word relationships

BERT

The car is red.

- Uses transformers /self-attention
- Understands context

Incorrect

Predictions

Classification

All Predictions

F-MEASURE **ACCURACY** 2 x Precision x Recall Correct Predictions Precision + Recall (Correct Predictions **All Predictions)**

Precision

Recall

Overall correctness Accuracy True positives / All predicted Precision positives Recall True positives / All actual positives positives F1-Score Harmonic mean of precision and

and recall

Workflow Step 4: Model

Evaluation and Optimization

Evaluation: Multi-class

- Accuracy = (3+3+1)/10 = 0.7
- Good measure when
 - Classes are nearly balanced
- Preferred:
 - Precision/recall/F1 for each class

P	0.75	1	0.333
R	0.75	0.75	0.5
F1	0.75	0.86	0.4

$$= (0.75+0.86+0.4)/3$$

= 0.67

Error Analysis

Confusion Matrix
 How classes get confused?

3	0	1
0	3	1
1	0	1

Find classes that get confused with others

Evaluation Metrics & Visualization

Confusion Matrices

Visualize prediction errors across categories. Identify which classes are confused.

ROC Curves

across thresholds.

Plot sensitivity vs specificity.

Measure discriminative power

F1-score Comparison

Balance precision and recall.

Compare models with a single metric.

Error Analysis

Examine misclassified examples. Identify patterns patterns and model weaknesses.

Conflusion Matrix

Precision

Precim.	FC)	Fx1	
5	1	•	
+	x	:	

Model Evaluation

Bonus Quiz

- Naive Bayes Assumption
 What key assumption does Naive Bayes make about features?
- 3 LSTM Advantage

 How do LSTMs address the vanishing gradient problem?

- TF-IDF Purpose

 Why do we use IDF in the TF-IDF calculation?
- Transformer Innovation

 What key mechanism makes transformers different from RNNs?

 RNNs?

Test your understanding with these concept checks. We'll review answers together after you submit.

Next Steps & Homework

Try Alternative Models

Experiment with DistilBERT for speed improvement

Fine-tune FastText

Instead of freezing embeddings, update them during training

Scale to Full Dataset

Use all 120,000 examples and measure performance differences

0

Explore Explainability

Implement SHAP values to understand model decisions

Practical Tips and Tools

Comprehensive NLP libraries with text processing tools.

scikit-learn

User-friendly machine learning toolkit with classification models.

Cloud APIs

Ready-to-use solutions solutions from Google, Google, AWS, and Azure.

Azure.