

Description

The VST25N600 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =250V, I_D =25A $R_{DS(ON)}$ =60m Ω (typical) @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- LED backlighting
- Ideal for high-frequency switching and synchronous rectification

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST25N600-TC	VST25N600	TO-220C	-	-	-

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	250	V	
Gate-Source Voltage	V_{GS}	±20	V	
Drain Current-Continuous	I _D	25	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	17.5	Α	
Pulsed Drain Current	I _{DM}	100	Α	
Maximum Power Dissipation	P _D	135	W	
Derating factor		0.9	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	320	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Résistance, Junction-to-Case ^(Note 2)	$R_{ heta JC}$	1.11	°C/W	
--	----------------	------	------	--

Electrical Characteristics (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	250	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =250V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5	3.5	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	60	70	mΩ
Forward Transconductance	G FS	V_{DS} =5 V , I_{D} =20 A	15	-	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	\\ 405\\\\ 0\\	-	1600		PF
Output Capacitance	C _{oss}	V_{DS} =125V, V_{GS} =0V,	-	92		PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	4.3		PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	V_{DD} =125V, RL=7.5 Ω V_{GS} =10V,R _G =3 Ω	-	7	-	nS
Turn-on Rise Time	t _r		-	9	-	nS
Turn-Off Delay Time	t _{d(off)}		-	25	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	\/ -405\/ L -20A	-	24	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =125V, I_{D} =20A, V_{GS} =10V	-	9.5	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	5.6	-	nC
Drain-Source Diode Characteristics	<u>.</u>		•			
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	25	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = I_S$	-	45	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	_	160	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

l_D- Drain Current (A)

140 120 100 Power Dissipation (W) 80 60 40 20 0 0 25 50 75 100 125 150 175 T_J-Junction Temperature(°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance