Recommender Systems: Machine Learning Models for Customer Prediction

Overview of the Project

- Build a recommender system using explicit movie ratings provided by users.
- Recommender systems are a specialized type of machine learning model.
- ▶ Recommender systems predict items for users that they have never seen before or interacted with explicitly (e.g., by adding to favorites or making a purchase).
- ► Train the system on explicit user ratings.
- Test how accurately the algorithm can predict ratings for movies the users have already seen and rated.

Introduction to Recommender Systems

What a Recommender System Is

- ► A specialized type of machine learning system.
- Predicts ratings or preferences a user might assign to an item.
- Recommends items based on:
 - User's past behavior.
 - Behavior of other users.
- Often presented as Top-N Recommendations:
 - A sorted list of items a user might like.

Examples of Recommender Systems

- Common names:
 - Recommender engines
 - Recommendation systems
 - Recommendation platforms
- Examples in practice:
 - Amazon: Product recommendations based on user interactions and global customer data.
 - ▶ **Netflix**: Movie recommendations based on user preferences and other users' preferences.
 - Music platforms: Song recommendations.
 - **Dating apps**: People recommendations.

Applications of Recommender Systems

- Recommender systems can suggest:
 - Physical products.
 - Digital content (e.g., music, videos).
 - Services or experiences.
- ► The key is learning user preferences over time and blending them with insights from others.

Understanding You through Implicit and Explicit Ratings

How Do Recommender Systems Work?

- Recommender systems aim to understand you and everyone else.
- They collect data about your preferences and compare them with others.
- ► The goal: recommend items you might like based on patterns and behaviors.

Sources of Data

- ▶ Recommender systems need data to understand user interests.
- ► Two main types:
 - Explicit Feedback
 - ► Implicit Behavior

Explicit Feedback

- ▶ Users rate items directly (e.g., 1–5 stars, thumbs up/down).
- Examples:
 - Rating an online course.
 - Giving a movie 4 out of 5 stars.
- Benefits:
 - Clear indication of preferences.
- Limitations:
 - ightharpoonup Requires user effort ightharpoonup data is sparse.
 - Ratings vary by user and culture.

Implicit Feedback

- Inferred from user actions not directly stated.
- Examples:
 - Clicks
 - Purchases
 - Watch time
- Advantage: Much more data available.
- Challenge: Noisy signals, fraud, accidental clicks.

Clicks as Implicit Feedback

- Clicking a link can be interpreted as positive interest.
- Advantages:
 - High volume
- Disadvantages:
 - Not always meaningful (clickbait, accidents).
 - Vulnerable to bot/fraud activity.

Purchases as Implicit Feedback

- Strong indication of interest (requires effort and money).
- Resistant to fraud.
- Amazon uses purchase data to great effect.
- High-quality data often outweighs the need for complex algorithms.

Consumption as Feedback

- ► Time spent with content signals interest (e.g., minutes watched on YouTube).
- Less prone to fraud than clicks.
- ► A reliable metric, especially in content platforms.
- YouTubers aim to maximize watch time due to algorithm reliance.

Explicit vs Implicit Feedback

- Explicit Feedback:
 - Reliable but sparse.
 - Requires active input from users.
- ► Implicit Feedback:
 - More abundant.
 - May be noisier but covers broader behavior.

Working with MovieLens

- In this project, we use the **MovieLens public dataset**.
- ► Contains explicit ratings from 1 to 5 stars.

Garbage In, Garbage Out

- Even the best recommender algorithm won't perform well without:
 - Good data.
 - Plenty of it.
- ► Always start by asking: What kind of feedback do I have?
- Design your system around the strengths and limitations of your data.

Top-N Recommender Architecture

What is a Top-N Recommender System?

- Most real-world recommenders aim to present a finite list of top suggestions to users.
- ► A **Top-N Recommender** outputs the best *N* items for each user.
- Example: Amazon music widget shows 20 pages \times 5 items \rightarrow N=100.

Research vs. Reality

- Academic research often focuses on predicting ratings for unseen items.
- ▶ In the real world, users don't care about predicted ratings they care about what to consume next.
- Real recommender systems prioritize finding items users will love, not predicting items they will hate.

Top-N Pipeline Overview

- ▶ Input: Historical user data (e.g., ratings, purchases).
- **▶** Pipeline Stages:
 - 1. Candidate Generation
 - 2. Candidate Ranking
 - Filtering
 - 4. Display
- Each stage plays a key role in producing a useful recommendation list.

Architecture of a Top-N Recommender

Explaining Architecture of a Top-N Recommender

- Individual Interests: User-specific data such as past ratings, purchases, or views. Provides personalized input for recommendations.
- ▶ **Item Similarities:** Precomputed relationships between items based on user behavior or content. Learned during preprocessing or training.
- ► Candidate Generation: Uses interests and item similarities to build a shortlist of potentially relevant items for each user.
- ▶ Candidate Ranking: Scores and ranks the generated candidates using a machine learning model. ← Training occurs here the model learns to predict user preferences based on historical data.
- ► **Filtering:** Removes items the user has already seen or that don't meet quality thresholds. Keeps only the Top-N results.

Old Architecture of a Top-N Recommender

Explanation of Old Architecture of a Top-N Recommender

- ▶ Rating Predictions: A precomputed matrix of predicted ratings for all user-item pairs. These predictions are often generated using matrix factorization or other ML models. ← Training happens here the model is trained to estimate how a user might rate unseen items.
- Candidate Generation: Retrieves all predicted ratings for a given user from the prediction matrix. All items are considered candidates.
- ► Candidate Ranking: Sorts candidate items based on predicted ratings to prioritize the most relevant ones.
- ► **Filtering:** Removes already seen or irrelevant items and limits the output to the Top-N results.

1. Candidate Generation

- Based on the user's previous preferences (e.g., liked Star Trek).
- Query a similarity store to find related items (e.g., Star Wars).
- Use a distributed store like Cassandra, MongoDB, or Memcached.
- Optional: normalize user data (e.g., Z-scores), if sparsity allows.

Scoring Candidates

- Score items using:
 - Original item ratings.
 - Similarity strength between original and candidate items.
- Filter out low-scoring items early.
- Assign provisional scores to prepare for ranking.

2. Candidate Ranking

- Combine scores if items appear via multiple paths.
- Boost scores of repeated candidates.
- Sort candidates by final score.
- Optional: use machine learning (learning to rank) to optimize ranking.

3. Filtering Candidates

- ► Remove:
 - Items already rated/viewed.
 - ltems on a stop-list (e.g., offensive or low-quality).
- Apply score thresholds.
- Truncate to top N results.

4. Displaying Results

- ► The final Top-N list is sent to the UI layer.
- Displayed as product/movie/music widgets.
- Should feel relevant, fresh, and personalized.

System Architecture

- Recommendation service is typically distributed and accessed via web APIs.
- ► Key components:
 - Interest database (ratings, purchases).
 - Similarity store (item-item).
 - Scoring and ranking logic.
 - Filtering logic.

Item-Based Collaborative Filtering

- Used by Amazon (2003 paper).
- Recommends items similar to those a user liked.
- ▶ Main challenge: building and maintaining item similarity data.
- Simple concept, scalable in practice.

Alternative: Precomputed Rating Predictions

- ▶ Build full matrix of predicted ratings for all users and items.
- \blacktriangleright For a user, sort all items by predicted rating \rightarrow Top-N.
- Easier to benchmark prediction accuracy using:
 - RMSE (Root Mean Square Error):

$$\mathsf{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - x_i)^2}$$

Penalizes large errors more heavily.

► MAE (Mean Absolute Error):

$$\mathsf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - x_i|$$

Treats all errors equally.

- Drawbacks:
 - ▶ Inefficient at runtime (especially for large catalogs).
 - Doesn't prioritize known user interests.

When is This Approach OK?

- ► Acceptable if:
 - Item catalog is small.
 - You want to evaluate rating prediction accuracy.
- Still doesn't align with actual user engagement goals.
- Use carefully may optimize for the wrong thing.

Evaluating Recommendations Systems

Train/Test and Cross Validation

Offline Evaluation Methodology

- Recommender systems are trained on prior user behavior to predict preferences.
- ► Train/Test Split:
 - Split ratings data into:
 - ► Training set (80–90% of data).
 - ► Testing set (10–20% of data).
 - Train the system using only the training data.
 - ► Test predictions using the reserved testing data.

Train/Test Split Diagram

Example of Train/Test Evaluation

- ► Testing setup:
 - User rated the movie "Up" as 5 stars in the test set.
 - Recommender system predicts the rating without seeing the answer.
- ▶ Measure how close the prediction is to the real rating.
- Repeat across all test set ratings to calculate overall accuracy.
- Provides insight into how well the system predicts user ratings.

Improving Evaluation: K-Fold Cross-Validation

- An extension of train/test methodology:
 - Create multiple randomly assigned training/testing sets (folds).
 - Train the system on each fold independently.
 - Measure accuracy for each fold and average the results.
- Benefits:
 - Reduces the risk of overfitting to a single training set.
 - Ensures generalizability to different data subsets.
- Drawback: Requires significantly more computation.

K-Fold Cross-Validation Diagram

Limitations of Offline Testing

- ► Train/test and k-fold cross-validation measure:
 - How accurately the system predicts ratings for items users already saw.
- ► The goal of recommender systems:
 - Recommend new, unseen items that users find interesting.
- ► Fundamental problem:
 - Offline methods can't test the novelty or engagement of recommendations.
 - Researchers without access to live systems (e.g., Netflix, Amazon) must rely on offline methods.

Accuracy Metrics (RMSE, MAE)

Mean Absolute Error (MAE)

- MAE is a straightforward metric for evaluating accuracy.
- Measures the average absolute error between predicted and actual ratings.
- Formula:

$$MAE = \frac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

- \triangleright y_i : Predicted rating.
- \triangleright x_i : Actual rating.
- n: Number of ratings.

Example: Calculating MAE

- Let's evaluate a test set with four ratings.
- ▶ The predicted ratings, actual ratings, and absolute errors are:

Predicted Rating	Actual Rating	Error	Absolute Error
5	3	5 – 3	2
4	1	4 – 1	3
5	4	5 – 4	1
1	1	1 - 1	0

- Sum of absolute errors: 2+3+1+0=6.
- ► MAE: $\frac{6}{4} = 1.5$.

Root Mean Square Error (RMSE)

- RMSE is another common metric for evaluating accuracy.
- Penalizes large errors more than MAE does by squaring the errors.
- ► Formula:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - x_i)^2}{n}}$$

- y_i: Predicted rating.
- x_i: Actual rating.
- n: Number of ratings.

Example: Calculating RMSE

Using the same test set as before, let's calculate the squared errors:

Predicted Rating	Actual Rating	Error	Squared Error
5	3	5 - 3 = 2	$2^2 = 4$
4	1	4 - 1 = 3	$3^2 = 9$
5	4	5 - 4 = 1	$1^2 = 1$
1	1	1 - 1 = 0	$0^2 = 0$

- ▶ Sum of squared errors: 4+9+1+0=14.
- ▶ RMSE: $\sqrt{\frac{14}{4}} \approx 1.87$.

MAE vs. RMSE

- MAE treats all errors equally.
- RMSE penalizes large errors more heavily.
- ▶ RMSE is higher than MAE when large errors are present.
- For our example:
 - ► MAE: 1.5.
 - ► RMSE: 1.87.

Real-World Metrics

- Users care about the quality of recommendations, not prediction accuracy.
- ► Top-N recommendation lists are more relevant in practice:
 - ▶ How likely are users to interact with recommended items?
 - Do recommendations help users discover new content?
- Offline metrics like MAE and RMSE are useful for development but limited in scope.

Top-N Hit Rate - Ways

Hit Rate (HR)

- ► Top-N means the system picks the best N recommendations (like top 5 or top 10) that it thinks a user will like the most
- ▶ Hit rate measures the success of a recommender system in generating Top-N recommendations.
- ► If one of the recommendations in a user's Top-N list matches an item they actually rated, it's considered a "hit."
- Formula:

$$Hit Rate = \frac{Hits}{Users}$$

- ▶ Hits: Number of successfully recommended items.
- Users: Total number of users.

Example: Hit Rate

- Let's consider a test set of Top-N recommendations.
- ▶ If a user rates at least one of the recommended items, it's counted as a "hit."
- Example calculation:

User	Hit (Yes/No)
User 1	Yes
User 2	No
User 3	Yes
User 4	Yes

- ► Total Hits = 3, Total Users = 4.
- ► Hit Rate = $\frac{3}{4}$ = 0.75 or 75%.

Average Reciprocal Hit Rate (ARHR)

- ARHR builds on hit rate but accounts for the position of hits in the Top-N list.
- ► Formula:

$$ARHR = \frac{\sum_{i=1}^{n} \frac{1}{rank_i}}{Users}$$

- rank_i: Rank position of the hit.
- Users: Total number of users.
- Hits near the top of the list (e.g., rank 1) are weighted more heavily than hits at the bottom.

Example: ARHR Calculation

► Consider the following example with three hits:

Rank	Reciprocal Rank
1	$\frac{1}{1} = 1.0$
2	$\frac{1}{2} = 0.5$
3	$\frac{1}{3} = 0.33$

• ARHR = $\frac{1.0+0.5+0.33}{3} \approx 0.61$.

Cumulative Hit Rate (cHR)

- ► A variation of hit rate that filters hits based on a rating threshold.
- Only hits above a certain predicted or actual rating threshold are counted.
- Example:

Hit Rank	Predicted Rating
1	5.0
2	3.0
3	5.0
4	2.0

- If the threshold is \geq 3.0, we exclude hits with predicted ratings below 3.0.
- Adjusted cHR = $\frac{\text{Filtered Hits}}{\text{Users}}$.

Cumulative Hit Rate (cHR) - Formula

- ▶ **Definition:** Measures hit rate while excluding low-confidence or low-rating predictions.
- ► Formula:

$$\mathsf{cHR} = \frac{\mathsf{Number\ of\ Hits\ with\ Rating} \geq \mathsf{Threshold}}{\mathsf{Total\ Users}}$$

Encourages recommending items the model believes the user will rate highly.

Example: Cumulative Hit Rate Calculation

► Assume rating threshold = 3.0

Hit Rank	Predicted Rating
1	5.0
2	3.0
3	5.0
4	2.0

- ► Filtered Hits = 3 (ratings 5.0, 3.0, 5.0)
- ► Total Users = 4
- ► cHR = $\frac{3}{4}$ = 0.75 or 75%

Rating Hit Rate (rHR)

- ▶ **Definition:** Analyzes hit rate across different predicted rating bins.
- ► Formula:

$$\mathsf{rHR}_r = \frac{\mathsf{Number\ of\ Hits\ with\ Predicted\ Rating\ }r}{\mathsf{Total\ Users}}$$

- Breaks down hit rates by predicted rating score.
- Helps understand the distribution of predicted ratings for successful recommendations.
- Example:

Rating	Hit Rate
5.0	0.001
4.0	0.004
3.0	0.030
2.0	0.001
1.0	0.0005

Converge, Diversity and Novelty

Coverage

- ▶ **Definition:** Coverage measures the percentage of user-item pairs that your system can make predictions for.
- Formula:

$$\mathsf{Coverage} = \frac{\mathsf{Predicted\ User\text{-}Item\ Pairs}}{\mathsf{Total\ Possible\ User\text{-}Item\ Pairs}}$$

- ► High coverage ensures that more items and users are included in the recommendation process.
- ► Tradeoff: Higher coverage might reduce accuracy.

Example: Calculating Coverage

- Suppose we have:
 - ► 5 users.
 - ▶ 6 items.
 - ▶ Total possible user-item pairs: $5 \times 6 = 30$.
 - Model predicts ratings for 18 of those pairs.

Coverage Formula

Coverage =
$$\frac{18}{30}$$
 = 0.6 or 60%

- ▶ The recommender covers 60% of the user-item space.
- ▶ Higher coverage ensures broader personalization, but may impact accuracy.

Item Similarity

- Similarity quantifies how closely two items are related based on user behavior.
- Commonly used to recommend items similar to those a user liked.
- Types of similarity:
 - **Cosine similarity**: Angle between rating vectors.
 - **Pearson correlation**: Measures linear correlation.
- Similarity is usually computed using rating vectors for items across users.

Example: Calculating Cosine Similarity

Ratings from 3 users for two items:

User	Item A	Item B
User 1	5	3
User 2	4	2
User 3	0	2

Cosine similarity formula:

$$sim(A,B) = \frac{\vec{A} \cdot \vec{B}}{||\vec{A}|| \times ||\vec{B}||}$$

Vectors:

$$\vec{A} = [5, 4, 0], \quad \vec{B} = [3, 2, 2]$$

► Result:

$$sim(A, B) \approx 0.76$$

Diversity

- ▶ Definition: Diversity measures how varied the recommendations are within the Top-N list.
- ► Calculated using average similarity *S* between recommended items:

$$\mathsf{Diversity} = 1 - S$$

- S: Average similarity between item pairs in the recommendation list.
- High diversity may lead to novel recommendations but risks reducing relevance.

Example: Calculating Diversity

► Example similarity scores between items in a Top-N list:

Item Pair	Similarity
Item 1, Item 2	0.7
Item 2, Item 3	0.8
Item 3, Item 1	0.6

- Average similarity $S = \frac{0.7 + 0.8 + 0.6}{3} = 0.7$.
- ▶ Diversity = 1 0.7 = 0.3.

Novelty

- ▶ Definition: Measures how "unpopular" the recommended items are.
- Computed as the mean popularity rank of the recommended items.

Novelty =
$$\frac{1}{N} \sum_{i=1}^{N} \operatorname{rank}(i)$$

- N: Total number of recommended items in the Top-N list.
- **rank(i)**: Popularity rank of item i (higher = less popular).
- ightharpoonup Higher novelty ightharpoonup more obscure items are being recommended.
- ▶ Tradeoff: Too much novelty can harm relevance and trust.

Example: Calculating Novelty

Assume a Top-5 recommendation list for a user:

Item	Popularity Rank
Item A	45
Item B	120
Item C	230
Item D	310
Item E	400

Novelty Formula

Novelty =
$$\frac{45 + 120 + 230 + 310 + 400}{5} = 221$$

- ▶ Higher mean rank \rightarrow less popular items \rightarrow more novelty.
- Promotes long-tail discovery, but too much may harm user trust.

The Long Tail Effect

- ▶ Popularity of items often follows a "long tail" distribution:
 - Few items are very popular (head).
 - ▶ Most items have low demand (long tail).
- Recommender systems surface niche, less popular items in the long tail.
- ▶ Benefits:
 - Users discover new interests.
 - Lesser-known items get more exposure.

The Long Tail Effect

Balancing Metrics in Recommender Systems

- Recommender systems require a balance between:
 - Familiar, popular items (trust-building).
 - Novel, diverse items (serendipitous discovery).
- Metrics such as coverage, diversity, and novelty are interdependent:
 - Increasing one might reduce another.
 - ► The right balance depends on your use case and audience.

Churn, Responsiveness and A/B Tests

Churn

- Definition: Measures how often recommendations for a user change.
- Purpose: Indicates how sensitive a system is to new user behavior.
- High churn can indicate:
 - System responsiveness to user updates.
 - Over-sensitivity to minor user actions.
- Tradeoff: High churn risks showing irrelevant or overly dynamic recommendations.

Example: Churn

- Suppose a user rates a new movie:
 - Does this substantially change their recommendations?
 - High churn indicates recommendations update drastically.
- Balance required: Randomization can keep recommendations fresh but may reduce relevance.

Responsiveness

- Definition: Measures how quickly new user behavior influences recommendations.
- Purpose: Ensures that recommendations adapt to user updates efficiently.
- Levels of responsiveness:
 - Immediate: Recommendations change instantly after user actions.
 - Delayed: Recommendations update after periodic data processing.
- Tradeoff: Higher responsiveness increases system complexity and maintenance costs.

Balancing Metrics

- Offline metrics include:
 - MAE, RMSE.
 - Hit Rate, Diversity, Novelty, Coverage.
 - Churn, Responsiveness.
- Tradeoffs between metrics:
 - High diversity may reduce relevance.
 - High churn may reduce user trust.
 - High novelty may overwhelm users with unfamiliar options.
- The balance depends on business goals and cultural context.

Online A/B Testing

▶ **Definition:** Tests recommendations on real users to measure their actual reactions.

Process:

- Split users into groups.
- Show different recommendation algorithms to each group.
- Measure engagement, purchases, or clicks.

Benefits:

- Ensures recommendations work in real-world scenarios.
- Avoids introducing unnecessary complexity.

Perceived Quality of Recommendations

- Users can explicitly rate the quality of recommendations.
- ► Challenges:
 - Users may confuse rating the item with rating the recommendation.
 - Requires additional user effort with little perceived benefit.
 - Data collected may be sparse and unclear.
- Best practice: Focus on user engagement and A/B tests instead.

Evaluation with python code

Evaluation

- The MovieLens.py file defines a MovieLens class that loads and parses the dataset.
- ➤ The RecommenderMetrics.py file defines a RecommenderMetrics class that calculates the following metrics:
 - MAE (Mean Absolute Error)
 - RMSE (Root Mean Squared Error)
 - GetTopN
 - HitRate
 - CumulativeHitRate (cHR)
 - RatingHitRate (rHR)
 - AverageReciprocalHitRank (ARHR)
 - UserCoverage
 - Diversity
 - Novelty
- The TestMetrics.py file uses these two classes to load the data, compute all metrics, and print the evaluation results.

Content-Based Filtering

Introduction to Content-Based Filtering

- Recommend items based solely on their own attributes.
- Useful when collaborative data is scarce or as a hybrid enhancement.
- Example: Suggest movies in the same genre and release period as ones a user enjoyed.

MovieLens Genre Data

- ► Each movie record lists its genres, e.g., Adventure—Comedy—Fantasy.
- ▶ There are 18 possible genres per movie.

ID	Title	Genres
1	Toy Story (1995)	Adventure—Animation—Children—Comedy—Fantasy
2	Jumanji (1995)	Adventure—Children—Fantasy
3	Grumpier Old Men (1995)	Comedy—Romance
4	Waiting to Exhale (1995)	Comedy—Drama—Romance
5	Father of the Bride Part II (95)	Comedy

Genres as Binary Vectors

- ► Convert each genre list into an 18-dimensional {0,1} vector.
- ▶ 1 indicates presence of a genre, 0 absence.

Movie	Action	Adventure	Animation	Children	Comedy	 Romance	Sci-Fi	Thriller	Western
Toy Story	0	1	1	1	1	 0	0	0	0
Jumanji	0	1	0	1	0	 0	0	0	0
Grumpier Old Men	0	0	0	0	1	 1	0	0	0

Cosine Similarity (2D Illustration)

Cosine Similarity: Measuring Genre-Based Movie Similarity

- ► This diagram explains how we compute similarity between movies using genre attributes.
- ► Each axis represents a binary genre feature here simplified to just two: **Comedy** and **Adventure**.
- ▶ Movies are plotted as vectors in this genre space:
 - **Toy Story** and **Monty Python** are both comedy & adventure \rightarrow vector (1,1).
 - ▶ **Grumpier Old Men** is only comedy \rightarrow vector (1,0).
 - ▶ Indiana Jones is only adventure \rightarrow vector (0,1).
- The angle θ between vectors reflects their similarity. The cosine of that angle gives us:

cosine similarity =
$$\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \cdot \|\vec{y}\|}$$

- ► Interpretation:
 - $ightharpoonup \cos(0^\circ) = 1.0 \rightarrow \text{Identical genre profile.}$
 - $ightharpoonup \cos(90^\circ) = 0 \rightarrow \text{No genres in common.}$
 - $ightharpoonup \cos(45^\circ) \approx 0.71 \rightarrow \text{Partial similarity}.$

Cosine Similarity Formula

$$\operatorname{CosSim}(x, y) = \frac{\sum_{i=1}^{D} x_i y_i}{\sqrt{\sum_{i=1}^{D} x_i^2} \sqrt{\sum_{i=1}^{D} y_i^2}}$$

- $x, y \in \{0, 1\}^D$: genre-vectors.
- Numerator: count of shared genres.
- Denominator: normalizes by vector lengths.

Python Code: Cosine Similarity

```
def computeGenreSimilarity(movie1, movie2, genres):
# genres: dict movieID -> binary vector
g1 = genres[movie1]
g2 = genres[movie2]
sumxx = sum(x*x for x in g1)
sumyy = sum(y*y for y in g2)
sumxy = sum(x*y for x, y in zip(g1,g2))
return sumxy / math.sqrt(sumxx * sumyy)
```

Example Similarity Scores

► Toy Story vs. Grumpier Old Men:

$$\frac{1}{\sqrt{2}\times\sqrt{1}}\approx 0.707$$

- **Toy Story vs. Monty Python**: identical genres $\rightarrow 1.0$.
- ▶ Grumpier Old Men vs. Indiana Jones: no overlap \rightarrow 0.0.

Collaborative Filtering

Similarity Metrics

1. Adjusted Cosine Similarity

- Accounts for different user rating scales.
- ▶ Subtract each user's mean rating before computing cosine.

$$\operatorname{sim}_{\operatorname{adjCos}}(x,y) = \frac{\sum_{i \in I_{xy}} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i \in I_{xy}} (x_i - \bar{x})^2} \sqrt{\sum_{i \in I_{xy}} (y_i - \bar{y})^2}}$$

- \triangleright x_i, y_i : ratings by users x, y on item i.
- $ightharpoonup \bar{x}, \bar{y}$: average ratings of users x, y.
- ► *I_{xy}*: items co–rated by both users.

2. (Item-based) Pearson Similarity

- Similar to adjusted cosine, but mean-centered per item.
- Captures deviation from average item popularity.

$$\operatorname{sim}_{\operatorname{Pearson}}(x,y) = \frac{\sum_{i \in I_{xy}} (x_i - \overline{i}) (y_i - \overline{i})}{\sqrt{\sum_{i \in I_{xy}} (x_i - \overline{i})^2} \sqrt{\sum_{i \in I_{xy}} (y_i - \overline{i})^2}}$$

- $ightharpoonup \overline{i}$: mean rating of item i over all users.
- Useful for item-based collaborative filtering.

3. Spearman Rank Correlation (Concept)

- Like Pearson, but uses ranks instead of raw ratings.
- Convert each user's ratings into ranks.
- ▶ Measures monotonic relationship between users/items.
- Computationally intensive, less common in large-scale systems.

4. Mean Squared Difference (MSD)

- Direct measure of average squared rating difference.
- Less abstract than cosine; lower = more similar.

$$\mathrm{MSD}(x,y) = \frac{1}{|I_{xy}|} \sum_{i \in I_{xy}} (x_i - y_i)^2, \qquad \mathrm{sim}_{\mathrm{MSD}}(x,y) = \frac{1}{1 + \mathrm{MSD}(x,y)}$$

▶ $MSD \in [0, \infty)$, $sim_{MSD} \in (0, 1]$.

5. Jaccard Similarity

- ▶ Ideal for binary / implicit feedback.
- lgnores rating values; only presence vs. absence.

$$sim_{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Intersection

Union covers all shaded area

Summary of Similarities

- Cosine / Adjusted Cosine: angle-based, handles centering.
- ▶ **Pearson:** mean—centered per item, good for item—based CF.
- ▶ **Spearman:** rank—based, robust to non-linear scales.
- ▶ MSD: direct squared difference, easy intuition.
- Jaccard: set overlap, suited to implicit/binary data.

Cosine remains a solid default choice for most applications.

User-based Collaborative Filtering

Overview

- Find users similar to the target user by comparing their ratings.
- ► Recommend items that those similar users liked, which the target user hasn't seen.

Example: Ratings Table

	Indiana Jones	Star Wars	Empire Strikes Back	Incredibles	Casablanca
Bob	4	5	_		
Ted	_	_	_	_	1
Ann	_	5	5	5	_

Step 1: Compute User–User Similarities

	Bob	Ted	Ann
Bob	1.0	0.0	1.0
Ted	0.0	1.0	0.0
Ann	1.0	0.0	1.0

Bob's top neighbors: Ann (1.0), Ted (0.0)

Step 2: Generate Candidates

- 1. Take Bob's top neighbor(s): Ann (similarity = 1.0).
- 2. Collect items Ann rated that Bob hasn't:
 - Empire Strikes Back, Incredibles

Step 3: Score Candidates

Normalize ratings to [0,1] (e.g. 5 stars \mapsto 1.0), then weight by similarity:

$$score(i) = \sum_{u \in \{Ann\}} (sim(u, Bob) \times normRating(u, i)).$$

Here Ann's ratings \rightarrow 1.0 and $\mathrm{sim}(\mathrm{Ann},\mathrm{Bob})=$ 1.0, so

$$score(Empire) = 1.0 \times 1.0 = 1.0$$
, $score(Incredibles) = 1.0$.

Step 4: Filter & Recommend

- Remove items Bob has already rated (none of these).
- ▶ Both candidates tie at score 1.0; choose *Empire Strikes Back* as a recommendation.

User-Based CF Pipeline

- 1. Build rating matrix: users \times items.
- 2. Compute similarity matrix: user-user (e.g. cosine).
- 3. **Neighbor lookup:** top-K similar users for target.
- 4. **Candidate gen.:** items neighbors rated \ items target rated.
- 5. **Score candidates:** weighted by similarity & neighbor ratings.
- 6. **Filter & select:** exclude seen; sort by score; present Top-*N*.

Item-based Collaborative Filtering

Why Item-Based CF?

- ▶ Items are *stable* (a book remains a book), users' tastes may drift.
- ► Catalog size « user base ⇒ smaller similarity matrix.
- ► New-user friendliness: as soon as a user interacts with one item, you can recommend similar items.

Example: Ratings Matrix

	Bob	Ted	Ann
Indiana Jones	4		
Star Wars	5		5
Empire Strikes Back			5
Incredibles			5
<u>Casablanca</u>		1	

Cosine Similarity Between Items

$$sim(i,j) = \frac{\sum_{u \in U_{ij}} r_{u,i} r_{u,j}}{\sqrt{\sum_{u \in U_{ij}} r_{u,i}^2} \sqrt{\sum_{u \in U_{ij}} r_{u,j}^2}}$$

- $ightharpoonup U_{ii}$: users who rated both items i and j.
- ► Here, ratings are non-zero only in our tiny example, so many similarities collapse to 0 or 1.

Step 1: Compute Item-Item Similarities

	Indiana	Star Wars	Empire SB	Incredibles	Casablanca
Indiana Jones	1	1	0	0	0
Star Wars	1	1	1	1	0
Empire Strikes Back	0	1	1	1	0
Incredibles	0	1	1	1	0
Casablanca	0	0	0	0	1

Step 2: Recommend for Bob

- 1. Bob's known likes: Star Wars.
- 2. Look up all items similar to *Star Wars*:

{ Indiana Jones, Empire SB, Incredibles}

- 3. Score each by its similarity to Star Wars \times Bob's rating of Star Wars (5).
- 4. Since sim = 1 for all three and Bob's rating=5,

score =
$$1 \times 5 = 5$$
.

- 5. Filter out items Bob already rated (none of these).
- 6. Final recommendations (tie): *Indiana Jones, Empire Strikes Back, Incredibles.*

Item-Based CF Pipeline

- 1. Build ratings matrix: items \times users.
- 2. Compute similarity matrix: item-item (e.g. cosine).
- 3. For target user:
 - Gather items they've rated.
 - For each, fetch its top-K similar items.
 - ▶ Aggregate & score candidates by $\sum r_{u,i} sim(i,\cdot)$.
 - Remove already-seen items.
 - Present Top-N.