

Model Optimization and Tuning Phase Template

Date	2 nd July 2024
Team ID	SWTID1720109498
Project Title	Blueberry Yield Predictor
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Linear Regression	-	Regression metrics on the test set R2 score: 0.9850297685259484 MAE: 111.5204986497179 MSE: 21684.627147497344 RMSE: 147.25701052071287
Random Forest Regressor	<pre>from sklearn.model_selection import GridSearchCV param_grid = { 'n_estimators': [100, 200, 300], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth': [10, 20, 300, None], 'min_samples.pliet': [2, 5, 10], 'min_samples.pliet': [2, 5, 10], 'bootstrap': [True, False] } rf = RandomForestRegressor() grid_search = GridSearchCV(estimator=rf, param_grid=param_grid,</pre>	Fitting 3 folds for each of 648 candidates, totalling 1944 fits Best Parameters: ("bootstrap': False, "max_depth': None, "max_features': "log2', "min_samples_leaf': 1, "min_samples_split': 2, 'n_estimators': 200) Rean Squared from: 2006.51280590809 R-squared: 0.9840964787311984


```
param_grid = {
                                    "max_depth': [None, 10, 20, 30],
"min_samples_split': [2, 5, 10],
"min_samples_leaf': [1, 2, 4],
"max_features': [None, 'auto', 'sqrt', 'log2']
DecisionTr
                                                                                                                          Fitting 3 folds for each of 144 candidates, totalling 432 fits
Best Parameters: {'max_depth': 30, 'max_features': None, 'min_samples_leaf': 4, 'min_samples_split': 2}
ee
                                                                                                                           Mean Squared Error: 39945.42992962877
                                                                                                                           R-squared: 0.9724232135369657
Regressor
                              dt = DecisionTreeRegressor()
grid_search = GridSearchCV(estimator=dt, param_grid=param_grid,
                                                                 cv=3, n_jobs=-1, verbose=2)
                              param_grid = {
   'n_estimators': [100, 200, 300],
   'learning_rate': [0.01, 0.1, 0.2],
   'max_depth': [3, 6, 9],
   'subsample': [0.6, 0.8, 1.0],
   'colsample_bytree': [0.6, 0.8, 1.0]
XGB
                                                                                                                          Fitting 3 folds for each of 243 candidates, totalling 729 fits
                                                                                                                          Best Parameters: {'colsample_bytree': 1.0, 'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 200, 'subsample': 0.6}
                                                                                                                          Mean Squared Error: 19206.509150671092
Regressor
                                                                                                                          R-squared: 0.9867405657547946
                              xgb = XGBRegressor()
```

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric	Optimized Metric
Linear Regression	Regression metrics on the test set R2 score: 0.9850297685259484 MAE: 111.5204986497179 MSE: 21684.627147497344 RMSE: 147.25701052071287	-
Random Forest Regressor	Regression metrics on the test set R2 score: 0.9794220417457439 MAE: 132.1608756852944 MSE: 29807.511859370235 RMSE: 172.64852116183977	Regression metrics on the test set R2 score: 0.9840964787311984 MAE: 120.52941809457525 MSE: 23036.512805030303 RMSE: 151.7778402963697
Decision Tree Regressor	Regression metrics on the test set R2 score: 0.9621834493005946 MAE: 181.75958724836605 MSE: 54777.89727850463 RMSE: 234.04678437975736	Regression metrics on the test set R2 score: 0.9724232135369657 MAE: 155.86761325904146 MSE: 39945.42992962877 RMSE: 199.86352826273423
XGB Regressor	Regression metrics on the test set R2 score: 0.982172684010463 MAE: 119.19604783486517 MSE: 25823.161181161377 RMSE: 160.69586547625107	Regression metrics on the test set R2 score: 0.9867405657547946 MAE: 108.15756897906451 MSE: 19206.509150671092 RMSE: 138.5875504894689

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The XGB Regressor model was selected for its superior performance, exhibiting the
	highest R2 score during hyperparameter tuning. Its ability to handle complex
	relationships, minimize overfitting, and optimize predictive accuracy aligns with
XGB Regressor	project objectives, justifying its selection as the final model