Amortized Analysis

Contents

- Aggregate analysis
- Accounting method
- Potential method
- Dynamic Table

Hanyang Univ.

- Aggregate analysis
 - A sequence of n operations takes worst-case time T(n) in total.
 - Average cost per operation is T(n)/n in the worst case = amortized cost
 - Amortized cost is the same to each operation
 - Even when there are several types of operations in the sequence

- Example of stack operation
 - Stack operations
 - PUSH(S, x)
 - POP(*S*)
 - MULTIPOP(S, k)
 - PUSH and POP run in O(1) time.
 - Thus the cost of each is 1.
 - Actual running time for n operations is $\Theta(n)$.
 - Total cost of a sequence of these n operations is n

- Example of stack operation
 - MULTIPOP(S, k)
 - Actual running time is linear in the number of POP operations actually executed.

• So, cost of MULTIPOP(S, k) is O(k).

- Example of stack operation
 - MULTIPOP(S, k)
 - Remove the k top objects of stack
 - If objects of stack are less than k, it removes the objects in the stack.
 - So, stack is empty

6 Hanyang Univ.

- Example of stack operation
 - Analysis of a sequence of *n* PUSH, POP and MULTIPOP operations
 - on an initially empty stack
 - Intuitive analysis of time complexity (wrong way)
 - The worst-case cost of one MULTIPOP: O(n)
 - Stack size: at most n
 - \rightarrow Total cost : $O(n^2)$
 - This cost isn't tight

- Example of stack operation
 - Using Aggregate analysis
 - Can obtain a better upper bound the entire sequence of n operations
 - Any sequence of n PUSH, POP and MULTIPOP operations
 - on an initially empty stack
 - [Push, push, pop, push, push, multipop(2), ...]
 - = [Push, push, pop, push, push, push, {pop, pop}, ...] $n \ge \#(\text{push}) \ge \#(\text{pop})$ $2n \ge \#(\text{push}) + \#(\text{pop})$
 - \rightarrow Total cost : O(n)
 - Amortized cost is O(n) / n = O(1)

- Example of incrementing binary counter
 - Consider the problem of implementing a k-bit binary counter that counts upward from 0
 - Use an array A[0..k-1] of bits

A[k-1]	A[2]	A[1]	A[0]
--------	------	------	------

- Example of incrementing binary counter
 - Cost of INCREMENT operation is proportional to the number of bits flip

- Example of incrementing binary counter
 - Cost of INCREMENT operation is proportional to the number of bits flip

Counter value	A[4]	A[3]	A[2]	A[1]	A[0]	cost	Total cost
0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1

- Example of incrementing binary counter
 - Cost of INCREMENT operation is proportional to the number of bits flip

Counter value	A[4]	A[3]	A[2]	A[1]	A[0]	cost	Total cost
0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1
2	0	0	0	1	0	2	3

- Example of incrementing binary counter
 - Cost of INCREMENT operation is proportional to the number of bits flip

Counter value	A[4]	A[3]	A[2]	A[1]	A[0]	cost	Total cost
0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1
2	0	0	0	1	0	2	3
3	0	0	0	1	1	1	4

- Example of incrementing binary counter
 - Cost of INCREMENT operation is proportional to the number of bits flip

Counter value	A[4]	A[3]	A[2]	A[1]	A[0]	cost	Total cost
0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1
2	0	0	0	1	0	2	3
3	0	0	0	1	1	1	4
4	0	0	1	0	0	3	7

- Example of incrementing binary counter
 - A single execution of INCREMENT takes time $\Theta(k)$ in the worst case
 - In which array A contains all 1s.

A[k-1]	•••	A[2]	A[1]	A[0]	cost
1		1	1	1	-
0	•••	0	0	0	k

- Thus, a sequence of n INCREMENT operations on an initially zero counter takes time O(nk) in the worst case.

- Example of incrementing binary counter
 - Aggregate Analysis
 - can tighten our analysis to yield a worst-case cost of O(n) for a sequence of n INCREMENT operations by observing that not all bits flip each time INCREMENT is called

16 Hanyang Univ.

- Example of incrementing binary counter
 - Compute bit flip of Array A
 - Time of flip of A[0]: n
 - Time of flip of *A*[1]:
 - Time of flip of *A*[2]:
 - The total number of flip in the sequence
 - $\sum_{i=0}^{k-1} \lfloor n/2^i \rfloor < \sum_{i=0}^{\infty} n/2^i = 2n$
 - \rightarrow Total cost O(n)
 - Amortized cost = O(n)/n = O(1)

		_	_
A[3]	A[2]	A[1]	A[0]
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
<u> </u>	<u> </u>	<u> </u>	<u></u>
n/8	n/4	n/2	n

1

3

5

6

- Running time
 - O(n) time in total
- Amortized cost
 - O(n) / n = O(1)

Contents

- Aggregate analysis
- Accounting method
- Potential method
- Dynamic Table

- Accounting method
 - assign differing charges to different operations, with some operations charged more or less than they actually cost
 - Amortized cost
 The amount of charged operation
 - Credit
 - assign the difference to specific objects in the data structure
 can help pay for later operations whose amortized cost is less than
 their actual cost

- Accounting method
 - We want to show that in the worst case the average cost per operation is small by analyzing with amortized costs,
 - c_i : actual cost of the *i*th operation
 - \hat{c}_i : amortized cost of the *i*th operation
 - $\sum_{i=0}^{n} \hat{c}_i \ge \sum_{i=0}^{n} c_i$ for all sequences of n operations
 - The total credit stored in the data structure is the difference between the total amortized cost and the total actual cost
 - $\sum_{i=0}^n \hat{c}_i \sum_{i=0}^n c_i$

- Example of stack operation
 - The actual costs of the operations

• PUSH

• POP

• MULTIPOP min(k,s)

The amortized costs of the operations

• PUSH 2

• POP 0

• MULTIPOP 0

Example of stack operation

index	1	2	3	4
S				

cost				
S	1	2	3	4
credit				

23

Hanyang Univ.

- Example of stack operation
 - PUSH

cost	1			
S	1	2	3	4
credit	1			

- PUSH: actual cost 1 + prepaid credit 1
- Amortized cost : actual cost + credit = 2

- Example of stack operation
 - PUSH

cost	1	1		
S	1	2	3	4
credit	1	1		

- PUSH: actual cost 1 + prepaid credit 1
- Amortized cost : actual cost + credit = 2

- Example of stack operation
 - PUSH

cost	1	1	1	
S	1	2	3	4
credit	1	1	1	

- PUSH: actual cost 1 + prepaid credit 1
- Amortized cost : actual cost + credit = 2

- Example of stack operation
 - POP

index	1	2	3	4	
S					
↑ top					

cost	1	1	1	
S	1	2	3	4
credit	1	1	0	

- POP and MULTIPOP : pay credit 1
- Amortized cost : actual cost credit = 0

- Example of stack operation
 - PUSH

cost	1	1	1	1
S	1	2	3	4
credit	1	1	1	

- PUSH: actual cost 1 + prepaid of credit 1
- Amortized cost : actual cost + credit = 2

- Example of stack operation
 - POP and MULTIPOP must execute after PUSH operation
 - Charging the PUSH operation a little bit more (= credit)
 So, credit pay actual cost of POP and MULTIPOP operation
 - The amount of credit is always nonnegative
 - Because the stack always has nonnegative objects.
 - Thus, the total amortized cost is an upper bound on the total actual cost
 - Total amortized cost : O(n)
 - Total actual cost : O(n)

Example of incrementing binary counter

The actual costs

• Bit set $(0 \rightarrow 1)$: 1

• Bit reset $(1 \rightarrow 0)$:

The amortized costs

• Bit set : 2

• Bit reset : 0

Example of incrementing binary counter

cost	1				
A	A[0]	A[1]	A[2]	A[3]	A[4]
credit	1				

Example of incrementing binary counter

cost	1				
A	A[0]	A[1]	A[2]	A[3]	A[4]
credit					

Example of incrementing binary counter

A[3]	A[2]	A[1]	A[0]
0	0	0	1
0	0	1	0

cost	1	1			
A	A[0]	A[1]	A[2]	A[3]	A[4]
credit		1			

Example of incrementing binary counter

A[3]	A[2]	A[1]	A[0]
0	0	0	1
0	0	1	0
0	0	1	1

cost	1	1	1		
A	A[0]	A[1]	A[2]	A[3]	A[4]
credit	1	1			

Example of incrementing binary counter

A[3]	A[2]	A[1]	A[0]
0	0	0	1
0	0	1	0
0	0	1	1
			0

cost	1	1	1		
A	A[0]	A[1]	A[2]	A[3]	A[4]
credit		1			

35 Hanyang Univ.

Example of incrementing binary counter

A[3]	A[2]	A[1]	A[0]
0	0	0	1
0	0	1	0
0	0	1	1
		0	0

cost	1	1	1		
A	A[0]	A[1]	A[2]	A[3]	A[4]
credit					

36 Hanyang Univ.

Example of incrementing binary counter

A[3]	A[2]	A[1]	A[0]
0	0	0	1
0	0	1	0
0	0	1	1
	1	0	0

cost	1	1	1	1	
A	A[0]	A[1]	A[2]	A[3]	A[4]
credit			1		

Example of incrementing binary counter

A[3]	A[2]	A[1]	A[0]
0	0	0 0	
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1

cost	1	1	1	1	1
A	A[0]	A[1]	A[2]	A[3]	A[4]
credit	1		1		

Hanyang Univ.

- Example of incrementing binary counter
 - Bit reset must execute after each bit set
 - Charging the bit set in credit
 So, credit pay for actual cost of reset operation
 - The amount of credit is always nonnegative
 - Because the number of 1s in the counter never becomes negative
 - Thus, the total amortized cost is an upper bound on the total actual cost
 - Total amortized cost : O(n)
 - Total actual cost : O(n)

- Amortized cost
 - O(n) time in total
- Running time
 - O(n) time in total

Contents

- Aggregate analysis
- Accounting method
- Potential method
- Dynamic Table

- Potential method
 - Similar accounting method
 Credit → "potential energy" or just "potential"
 - The potential with the data structure as a whole rather than with specific objects within the data structure.

cost	1				
A	A[0]	A[1]	A[2]	A[3]	A[4]
credit	1				

1 1 cost Potential

cost	1				
4	4503	4547	4507	4501	45.43
\boldsymbol{A}	A[0]	A[1]	A[2]	A[3]	A[4]

credit

cost	1	1	1		
A	A[0]	A[1]	A[2]	A[3]	A[4]
credit	1	1			

Potential method

will perform n operations,

 D_0 : an initial data structure

 D_i : the data structure that results after applying the ith operation to data structure D_{i-1}

 $\Phi(D_i)$: the potential associated with data structure D_i

- Potential difference ($\Phi(D_i) \Phi(D_{i-1})$)
 - positive

The potential of the data structure increases

negative

The decrease in the potential pays for the actual cost of the operation

- Potential method
 - Amortized cost

•
$$\widehat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

The total amortized cost of the n operations

•
$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

= $\sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$

- We require $\Phi(D_i) \ge \Phi(D_0)$ for all i
 - So that $\sum_{i=1}^k \hat{c}_i \ge \sum_{i=1}^k c_i$ for all $1 \le k \le n$

- Example of stack operation
 - Potential function Φ
 - the number of objects in the stack
 - $\Phi(D_0) = 0$
 - The stack D_i that results after the ith operation has nonnegative potential
 - $\Phi(D_i) \ge 0$ = $\Phi(D_0)$

- Example of stack operation
 - Amortized cost analysis of each operation
 - PUSH operation
 - If the *i*th operation on a stack containing *s* objects is a PUSH operation,

»
$$\Phi(D_i) - \Phi(D_{i-1}) = (s+1) - s = 1$$

» So, the amortized cost is $\widehat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 $= 1 + (s+1) - s$
 $= 2$

- POP operation
 - If the ith operation on a stack containing s objects is a POP operation,

»
$$\Phi(D_i) - \Phi(D_{i-1}) = (s-1) - s = -1$$

» So, the amortized cost is $\widehat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 $= 1 + (s-1) - s$
 $= 0$

- Example of stack operation
 - Amortized cost analysis of each operation
 - MULTIPOP(S, k) operation
 - If the *i*th operation on a stack containing *s* objects is a MULTIPOP operation,
 - $k' = \min(k, s)$: The number of objects to be popped off the stack

»
$$\Phi(D_i) - \Phi(D_{i-1}) = -\min(k, s) = -k'$$

The amortized cost is $\widehat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 $= k' - k'$
 $= 0$

- Example of stack operation
 - Amortized cost : O(1)
 - Total amortized cost : O(n)
 - Total actual cost : O(n)

- Example of incrementing binary counter
 - Potential function Φ
 - The number of 1s in the array
 - b_i : The number of 1s in the counter after the *i*th INCREMENT operation
 - t_i : The number of bits reset in the *i*th INCREMENT operation
 - Actual cost of the *i*th operation
 - $c_i \leq t_i + 1$
 - since in addition to resetting t_i bits, it sets at most one bit to 1

```
INCREMENT (A)

1  i = 0

2  while i < A.length and A[i] == 1

3  A[i] = 0

4  i = i + 1

5  if i < A.length

6  A[i] = 1
```

- Example of incrementing binary counter
 - Case of $b_i = 0$
 - the *i*th operation resets all *k* bits
 - $b_{i-1} = t_i = k$
 - Case of $b_i > 0$
 - $b_i = b_{i-1} t_i + 1$
 - In either case
 - $b_i \leq b_{i-1} t_i + 1$

Counter value	A[k]	•••	A[2]	A[1]	A[0]	b_i
<i>i</i> -1	1	•••	1	1	1	k
i	0	•••	0	0	0	0

Counter value	A[k]	•••	A[2]	A[1]	A[0]	b_i
<i>i</i> -1	0	•••	1	1	1	<i>k</i> -1
i	1	•••	0	0	0	1

- Example of incrementing binary counter
 - Potential difference

•
$$\Phi(D_i) - \Phi(D_{i-1}) = b_i - b_{i-1}$$

 $\leq (b_{i-1} - t_i + 1) - b_{i-1}$
 $= 1 - t_i$

- Amortized cost
 - $\widehat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$ $\leq (t_i + 1) + (1 - t_i) = 2$
 - \rightarrow O(1)

Hanyang Univ.

- Example of incrementing binary counter
 - If the counter starts at zero, $\Phi(D_0) = 0$ and since $\Phi(D_i) \ge 0$ for all i
 - The total amortized cost of a sequence of *n* INCREMENT operations is an upper bound on the total actual cost
 - The worst-case cost of n INCREMENT operations is O(n)

56 Hanyang Univ.

- Example of incrementing binary counter
 - If does not start at zero
 - $0 \le b_0$, $b_n \le k$ (k: the number of bits in the counter)

•
$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

- $\sum_{i=1}^{n} c_{i} = \sum_{i=1}^{n} \hat{c}_{i} - \Phi(D_{n}) + \Phi(D_{0}) \quad (\hat{c}_{i} \leq 2 \text{ for all } 1 \leq i \leq n)$
 $\leq \sum_{i=1}^{n} 2 - b_{n} + b_{0} \quad (\Phi(D_{n}) = b_{n}, \Phi(D_{0}) = b_{0})$
 $= 2n - b_{n} + b_{0}$

• The total actual cost is O(n) (as long as k = O(n), since b_0 , $b_n \le k$)

Contents

- Aggregate analysis
- Accounting method
- Potential method
- Dynamic Table

58 Hanyang Univ.

Dynamic tables

- Table allocation problem
- We do not always know in advance how many objects some applications will store in a table
 - insertion
 - So allocate space for a table and reallocate the table when new item is added.
 - deletion
 - Similarly, if many objects have been deleted from the table, it may be worthwhile to reallocate the table with a smaller size
 - Using amortized analysis, we shall show that the amortized cost of insertion and deletion is only O(1)

INSERT

- When inserting an item into a full table, we can expand the table by allocating a new table with more slots than the old table had.
- A common heuristic allocates a new table with twice as many slots as the old one.

60

Hanyang Univ.

INSERT

T.table: a pointer to the block of storage representing the table.

61

- T.num: the number of items in the table

- T.size : the total number of slots in the table.

Hanyang Univ.

```
TABLE-INSERT(T, x)
         if T.size == 0
                  allocate T.table with 1 slot
                  T.size = 1
         if T.num == T.size
                  allocate new-table with 2 * T.size slots
                  insert all items in T.table into new-table
6
                  free T.table
                                                           elementary insertion
                  T.table = new-table
                                                                       expansion
                  T.size = 2 * T.size
         insert x into T.table
10
11
         T.num = T.num + 1
```

- Let us analyze a sequence of n TABLE-INSERT operations on an initially empty table.
 - If the current table has room for the new item, then cost $c_i = 1$.
 - If the current table is full, an expansion occurs, then $c_i = i$.
 - 1 for insert new item, i-1 for move for extend

- Let us analyze a sequence of n TABLE-INSERT operations on an initially empty table.
 - If the current table has room for the new item, then cost $c_i = 1$.
 - If the current table is full, an expansion occurs, then $c_i = i$.
 - 1 for insert new item, i-1 for move for extend

- Let us analyze a sequence of n TABLE-INSERT operations on an initially empty table.
 - If the current table has room for the new item, then cost $c_i = 1$.
 - If the current table is full, an expansion occurs, then $c_i = i$.
 - 1 for insert new item, i-1 for move for extend

- Let us analyze a sequence of n TABLE-INSERT operations on an initially empty table.
 - If the current table has room for the new item, then cost $c_i = 1$.
 - If the current table is full, an expansion occurs, then $c_i = i$.
 - 1 for insert new item, i-1 for move for extend

• Let us analyze a sequence of *n* TABLE-INSERT operations on an initially empty table.

67

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}$$

Hanyang Univ.

• The total cost of n TABLE-INSERT operations Is therefore

$$\sum_{i=1}^{n} c_i = n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j$$

$$< n + 2n$$

$$= 3n$$

68 Hanyang Univ.

- Let us analyze a sequence of *n* TABLE-INSERT operations on an initially empty table.
 - For 1 to n, when item inserted in table, its cost is 1.
 - It requires 1 * n = n cost.

- Let us analyze a sequence of n TABLE-INSERT operations on an initially empty table.
 - For 1 to n, when item inserted in table, its cost is 1.
 - It requires 1 * n = n cost.

- Let us analyze a sequence of n TABLE-INSERT operations on an initially empty table.
 - For 1 to n, when item inserted in table, its cost is 1.
 - It requires 1 * n = n cost.

- Let us analyze a sequence of n TABLE-INSERT operations on an initially empty table.
 - When table size is exact power of 2, table expansion occur
 - 2^j insert is occurred.
 - And it occurred [lg n] times.

Aggregate analysis

- Let us analyze a sequence of n TABLE-INSERT operations on an initially empty table.
 - When table size is exact power of 2, table expansion occur
 - 2^j insert is occurred.
 - And it occurred $\lfloor \lg n \rfloor$ times.

Aggregate analysis

• The total cost of *n* TABLE-INSERT operations Is therefore

$$\sum_{i=1}^{n} c_i = n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j$$

$$< n + 2n$$

$$= 3n$$

– Since the total cost of n TABLE-INSERT operations is bounded above by 3n, the amortized cost of single operation is at most 3 (3n/n).

 By using the accounting method, we can get some feel for why the amortized cost of a TABLE-INSERT operation should be 3.

75 Hanyang Univ.

```
TABLE-INSERT(T, x)
           if T.size == 0
                       allocate T.table with 1 slot
3
                       T.size = 1
           if T.num == T.size
                       allocate new-table with 2 * T.size slots
                       insert all items in T.table into new-table
                       free T.table
                                                                   elementary insertion
                       T.table = new-table
                       T.size = 2 * T.size
10
           insert x into T.table
11
           T.num = T.num + 1
```

76 Hanyang Univ.

- By using the accounting method, we can get some feel for why the amortized cost of a TABLE-INSERT operation should be 3.
 - There are two types of elementary insertion:
 - 6 insert all items in *T.table* into new-table
 - 10 insert x into T.table

- By using the accounting method, we can get some feel for why the amortized cost of a TABLE-INSERT operation should be 3.
 - each item pays for 3 elementary insertions:
 - 1 **cost** for line 10,
 - 2 credit for line 6.
 - Credit is used to move items when expansion occurred

- By using the accounting method, we can get some feel for why the amortized cost of a TABLE-INSERT operation should be 3.
 - each item pays for 3 elementary insertions:
 - inserting itself into the current table
 - moving itself when the table expands
 - moving another item that has already been moved once when the table expands

- By using the accounting method, we can get some feel for why the amortized cost of a TABLE-INSERT operation should be 3.
 - each item pays for 3 elementary insertions:
 - inserting itself into the current table
 - moving itself when the table expands
 - moving another item that has already been moved once when the table expands

- By using the accounting method, we can get some feel for why the amortized cost of a TABLE-INSERT operation should be 3.
 - each item pays for 3 elementary insertions:
 - inserting itself into the current table
 - moving itself when the table expands
 - moving another item that has already been moved once when the table expands

- By using the accounting method, we can get some feel for why the amortized cost of a TABLE-INSERT operation should be 3.
 - each item pays for 3 elementary insertions:
 - inserting itself into the current table
 - moving itself when the table expands
 - moving another item that has already been moved once when the table expands

- By using the accounting method, we can gain some feeling for why the amortized cost of a TABLE-INSERT operation should be 3.
 - each item pays for 3 elementary insertions:
 - inserting itself into the current table
 - moving itself when the table expands
 - moving another item that has already been moved once when the table expands

- By using the accounting method, we can get some feel for why the amortized cost of a TABLE-INSERT operation should be 3.
 - each item pays for 3 elementary insertions:
 - inserting itself into the current table
 - moving itself when the table expands
 - moving another item that has already been moved once when the table expands

- By using the accounting method, we can get some feel for why the amortized cost of a TABLE-INSERT operation should be 3.
 - each item pays for 3 elementary insertions:
 - inserting itself into the current table
 - moving itself when the table expands
 - moving another item that has already been moved once when the table expands

- By using the accounting method, we can get some feel for why the amortized cost of a TABLE-INSERT operation should be 3.
 - each item pays for 3 elementary insertions:
 - inserting itself into the current table
 - moving itself when the table expands
 - moving another item that has already been moved once when the table expands

- We can use the potential method to analyze a sequence of *n* TABLE-INSERT operations.
 - and we shall use it in Section 17.4.2 to design a TABLE-DELETE operation that has an O(1) amortized cost as well

87 Hanyang Univ.

- We can use the potential method to analyze a sequence of *n* TABLE-INSERT operations.
 - and we shall use it in Section 17.4.2 to design a TABLE DELETE operation that has an O(1) amortized cost as well.
 - We start by defining a potential function Φ
 - 0 immediately after an expansion
 - table size by the time the table is full

•
$$\Phi(T) = 2*T.num - T.size$$
 (17.5)

- Immediately before an expansion, we have T.num = T.size and thus $\Phi(T) = T.num$
- $\Phi(T)$ is always nonnegative
 - The initial value of the potential is 0
 - and since the table is always at least half full, $T.num \ge T.size/2$

• Before expansion, $\Phi_i = num_i$

• After expansion, $\Phi_i = 0$ but immediately increased by 2

- The amortized cost of the ith TABLE-INSERT operation
 - $-num_i$: the number of items in the table after the *i*th operation
 - size_i: the total size of the table after the ith operation
 - $-\Phi_i$: the potential after the *i*th operation
 - $-\widehat{c_i}$: its amortized cost with respect to Φ
 - Initially, we have $num_0 = 0$, $size_0 = 0$, and $\Phi_0 = 0$.

- The amortized cost of the *i*th TABLE-INSERT operation
 - If the *i*th TABLE-INSERT operation does not trigger an expansion, then we have $size_i = size_{i-1}$ and the amortized cost of the operation is
 - $\Phi(T) = 2*T.num T.size$

$$\widehat{c_i} = c_i + \Phi_i - \Phi_{i-1}
= 1 + (2 * num_i - size_i) - (2 * num_{i-1} - size_{i-1})
= 1 + (2 * num_i - size_i) - (2 * (num_i - 1) - size_i)
= 3$$

The amortized cost of the *i*th TABLE-INSERT operation
 If the *i*th TABLE-INSERT operation does trigger an expansion, then we have

$$size_i = 2 * size_{i-1}$$

$$size_{i-1} = num_{i-1} = num_i - 1$$

$$size_i = 2 * (num_i - 1)$$

Thus, the amortized cost of the operation is

$$\begin{split} \widehat{c_i} &= c_i + \Phi_i - \Phi_{i-1} \\ &= num_i + (2 * num_i - size_i) - (2 * num_{i-1} - size_{i-1}) \\ &= num_i + (2 * num_i - 2 * (num_i - 1)) - (2 * (num_i - 1) - (num_i - 1)) \\ &= num_i + 2 - (num_i - 1) \\ &= 3 \end{split}$$

94

Hanyang Univ.

- TABLE-DELETE operation.
 - Table contraction is analogous to table expansion:
 - when the number of items in the table drops too low, we allocate a new, smaller table and then copy the items from the old table into the new one.

- TABLE-DELETE operation.
 - load factor : $\alpha(T) = T.num / T.size$

96 Hanyang Univ.

- TABLE-DELETE operation.
 - load factor : $\alpha(T) = T.num / T.size$
 - we would like to preserve two properties:
 - the load factor of the dynamic table is bounded below by a positive constant
 - the amortized cost of a table operation is bounded above by a constant.

```
TABLE-DELETE(T, x)
        if T.size == 0
                break
        if T.num == T.size / 2
                allocate new-table with T.size / 2 slots
                insert all items in T.table into new-table
                free T.table
                T.table = new-table
                T.size = T.size / 2
        delete x into T.table
9
10
        T.num = T.num - 1
```

- Table expansion and contraction
 - double the table size upon inserting an item into a full table
 - halve the size when a deleting an item would cause the table to become less than half full
 - This strategy would guarantee that the load factor of the table never drops below 1/2, but have a **problem**

- Table expansion and contraction
 - We perform n operations on a table T, where n is an exact power of 2.
 - The first n/2 operations are insertions,
 - cost a total of $\Theta(n)$.
 - At the end of this sequence of insertions, T.num = T.size = n/2.
 - For the second n/2 operations, we perform the following sequence:
 - insert, delete, delete, insert, insert, delete, delete, insert, insert,

- Table expansion and contraction
 - First n/2 insertion.

Hanyang Univ.

- Table expansion and contraction
 - First n/2 insertion.

- Table expansion and contraction
 - First n/2 insertion.

- Table expansion and contraction
 - First n/2 insertion.

- Table expansion and contraction
 - First n/2 insertion.

- Table expansion and contraction
 - First n/2 insertion.

- Table expansion and contraction
 - First n/2 insertion.

- And insert, delete, delete, insert, insert, delete, delete, insert, insert, . . .
 - n/2 number of insertion occur in 2 operation!

- Table expansion and contraction
 - The cost of each expansion and contraction is $\Theta(n)$, and there are $\Theta(n)$ of them.
 - After n/2-th operation, cost of each 2 operation is n/2
 - Thus, the total cost of the n operations is $\Theta(n^2)$, making the amortized cost of an operation $\Theta(n)$.

108 Hanyang Univ.

- Improve upon this strategy
 - Specifically, we continue to double the table size upon inserting an item into a full table,
 - but we halve the table size when deleting an item causes the table to become less than 1/4 full, rather than 1/2 full as before.
 - The load factor of the table is therefore bounded below by the constant 1/4.

- potential method to analyze the cost of a sequence of n
 TABLE-INSERT and TABLE-DELETE operations
 - Let us denote the load factor of a nonempty table T by $\alpha(T) = T.num / T.size$
 - Since for an empty table, T.num = T.size = 0 and $\alpha(T) = 1$
 - We shall use as our potential function

$$\Phi_i = \begin{cases} 2 * num_i - size_i & \text{if } \alpha(T) \ge 1/2\\ size_i/2 - num_i & \text{if } \alpha(T) < 1/2 \end{cases}$$

potential method to analyze the cost of a sequence of n
 TABLE-INSERT and TABLE-DELETE operations

$$\Phi_i = \begin{cases} 2 * num_i - size_i & \text{if } \alpha(T) \ge 1/2\\ size_i/2 - num_i & \text{if } \alpha(T) < 1/2 \end{cases}$$

- When $\alpha(T) = 1/4$, and if *i*th operation is deletion
 - Contraction has occurred.
 - It needs num_i potential

When load factor is 1/2, the potential is 0.

- When the load factor is 1
 - we have T.size = T.numwhich implies $\Phi(T) = T.num$
 - Thus the potential can pay for an expansion if an item is inserted.

- When the load factor is 1/4,
 - we have T.size = 4*T.num, which implies $\Phi(T) = T.num$
 - Thus the potential can pay for a contraction if an item is deleted.

114

TABLE-INSERT and TABLE-DELETE

 $-c_i$: the actual cost of the *i*th operation

 $-\widehat{c}_i$: its amortized cost with respect to Φ

 $- num_i$: the number of items

stored in the table after the ith operation

 $-size_i$: the total size of the table after the *i*th operation

 $-\alpha_i$: the load factor of the table after the *i*th operation

 $-\Phi_i$: the potential after the *i*th operation

– Initially, $num_0 = 0$, $size_0 = 0$, $\alpha_0 = 1$, and $\Phi_0 = 0$

TABLE-INSERT

- The analysis is identical to that for table expansion in Section 17.4.1 if $\alpha_{i-1} \ge 1/2$.
 - Whether the table expands or not,
 the amortized cost of the operation is at most 3

TABLE-INSERT

- If $\alpha_{i-1} < 1/2$, table cannot expand.
 - Then $size_i = size_{i-1}$
 - $num_{i-1} = num_i 1$ Then the amortized cost of the *i*th operation is

$$\begin{split} \widehat{c_i} &= c_i + \Phi_i - \Phi_{i-1} \\ &= 1 + (size_i/2 - num_i) - (size_{i-1}/2 - num_{i-1}) \\ &= 1 + (size_i/2 - num_i) - (size_i/2 - (num_i-1)) \\ &= 0 \end{split}$$

TABLE-INSERT

- If $\alpha_{i-1} < 1/2$ but $\alpha_i \ge 1/2$, then
 - $\Phi_{i-1} = T.size/2 T.num$
 - $\Phi_i = 2 * T.num T.size$
 - $num_i = num_{i-1} + 1 = \alpha_i * size_i$

TABLE-INSERT

- If
$$\alpha_{i-1} < 1/2$$
 but $\alpha_i \ge 1/2$, then
$$\widehat{c_i} = c_i + \Phi_i - \Phi_{i-1}$$

$$= 1 + (2 * num_i - size_i) - (size_{i-1}/2 - num_{i-1})$$

$$= 1 + (2 * (num_{i-1} + 1) - size_{i-1}) - (size_{i-1}/2 - num_{i-1})$$

$$= 3 * num_{i-1} - 3 * size_{i-1}/2 + 3$$

$$= 3 * \alpha_{i-1} size_{i-1} - 3 * size_{i-1}/2 + 3$$

$$< 3 * size_{i-1}/2 - 3 * size_{i-1}/2 + 3$$

$$= 3$$

 Thus, the amortized cost of a TABLE-INSERT operation is at most 3.

- TABLE-DELETE
 - $num_i = num_{i-1} 1$
 - If $\alpha_{i-1} < 1/2$
 - 1. operation causes the table to contract
 - 2. operation does trigger a contraction

TABLE-DELETE

- If
$$\alpha_{i-1} < 1/2$$

1. Operation does not cause the table to contract Then $size_i = size_{i-1}$

$$\begin{split} \widehat{c_i} &= c_i + \Phi_i - \Phi_{i-1} \\ &= 1 + (size_i/2 - num_i) - (size_{i-1}/2 - num_{i-1}) \\ &= 1 + (size_i/2 - num_i) - (size_i/2 - (num_i+1)) \\ &= 2 \end{split}$$

TABLE-DELETE

- If
$$\alpha_{i-1} < 1/2$$

- 2. operation does trigger a contraction
 - actual cost of the operation is $c_i = num_i + 1$
 - $size_i/2 = size_{i-1}/4 = num_{i-1} = num_i + 1$
 - the amortized cost of the operation is

$$\begin{split} \widehat{c_i} &= c_i + \Phi_i - \Phi_{i-1} \\ &= (num_i + 1) + (size_i/2 - num_i) - (size_{i-1}/2 - num_{i-1}) \\ &= (num_i + 1) + \left((num_i + 1) - num_i \right) - \left((2 * num_i + 2) - (num_i + 1) \right) \\ &= 1 \end{split}$$

- TABLE-DELETE
 - If $\alpha_{i-1} \ge 1/2$
 - Its amortize cost is constant.
 - If $\alpha_i < 1/2$, operation doesn't trigger contraction.

• In summary, since the amortized cost of each operation is bounded above by a constant, the actual time for any sequence of n operations on a dynamic table is O(n).