REAL ANALYSIS QUALIFYING EXAM AUGUST 1990

Directions: Answer all nine questions. Questions one to eight are each worth ten points, while question nine is worth twenty points. Throughout, λ denotes Lebesgue measure on R.

- (a) Let $f\colon E\to R$ be a real-valued uniformly continuous function defined on a subset E of R. Prove that f has a unique extension to a uniformly continuous function $g\colon E\to R$, where E denotes the closure of
 - (b) Give an example of a bounded continuous real-valued function on (0,1] which has no continuous extension to [0,1]. The second of th
- 2. Recall that a subset of R is said to be an R -set if it is a countable union of closed sets.
 - (a) Let E be a Lebesgue measurable set. Prove that there exists an
 - F_{σ} -set A contained in E such that $\lambda(E\backslash A)=0$. (b) Let $f=R\to R$ be continuous. Prove that if A is an F_{σ} -set, then f(A) is also and F set.
- 3. (a) Give an example of a finitely additive set function of defined on a measurable space (X,B) and taking values in [0, \infty] (possibly taking the value φ) which is not σ-additive.
 - (b) Let (X,B,μ) be a finite measure space. Suppose that ν is a finitely additive set function on (X,B) taking values in $[0,\infty]$ and satisfying the following condition: given $\epsilon>0$ there exists $\delta>0$ such that, for every E belonging to B, if $\mu(E) < \delta$ then $\nu(E) < \epsilon$. Prove that ν is σ -additive.
 - 3 23541 1841 9803] (c) Is the result of (b) still true if (X,B,μ) is merely σ-finite? The Company Explain your answer.
- Let (X,B,μ) be a finite measure space. Suppose that $\langle E_n \rangle$ is a sequence of measurable sets such that $\{n \in N: x \in E_n\}$ is a finite set for every $x \in X$. Prove that $\mu(E_n) \to 0$. 10 W 10 W 10

Hint: Prove that for every $\varepsilon > 0$ there exists a measurable set $\frac{R}{\epsilon}$ such

re, cakin.

that
$$\mu(A) < \frac{\varepsilon}{2}$$
 and $\int_{X \setminus A} (\sum_{n=1}^{\infty} X_{E_n}) d\mu < \infty$.

(a) Let $f: R \to R$ be differentiable everywhere and satisfy (for some M > 0) $|f'(x)| \le M$ for all x. Prove that 5.

$$(U_{\alpha})_{\alpha\in A}$$
 be a (possibly uncountable) collection of open sets such that
$$\mu(U_{\alpha}) = 0 \quad \text{for each } \alpha. \quad \text{Then } \mu(U_{\alpha}) = 0? \qquad \text{limit for each } \alpha \in A$$

(c)
$$\lim_{n \to \infty} \int_{1}^{\infty} \frac{e^{nx}}{e^{nx}x^2 + 1} dx = 1$$
?

- (d) Let $\langle E_n \rangle$ be a decreasing sequence of Lebesgue measurable subsets of R with empty intersection. Then $\lambda(E_n) \to 0$?
- (e) Let E be a $(\lambda \times \lambda)$ -measurable subset of $[0,1] \times [0,1]$ such that $1 \quad 7 \quad 1 \quad 1 \quad 1 \quad \lambda \times \{x \in [0,1]: \lambda(E_x) \geq \frac{1}{2}\} \geq \frac{1}{8}$. Then $\lambda \times \{y \in [0,1]: \lambda(E^y) \geq \frac{1}{4}\} \geq \frac{1}{4}$?

$$(E_x = \{y \in [0,1]: (x,y) \in E\} \text{ and } E^y = \{x \in [0,1]: (x,y) \in E\}.)$$