Workshop I Curso SQL

Sistema de Gestión de Inventarios y Usuarios

Presentado por:

Braian Martinez Estefo

38.803.401

16-04-2025

Introducción

Temática del Proyecto

Sistema de Gestión de Inventarios y Usuarios

Objetivo

Poder llevar a cabo el control y gestión de:

- Usuarios en el sector IT
- Equipos asignados
- Tareas realizadas en diferentes sedes
- Estadísticas detalladas por sede

Necesidades por cubrir

Migrar a un sistema de gestión más ordenado

Diagrama Entidad-Relación

Descripción de Tablas Principales

SEDES

Almacena información de las ubicaciones físicas.

id_sede (PK, INT, AI)
nombre_sede (VARCHAR, 100)

USUARIOS

Almacena la información de cada usuario del sistema.

id_usuario (PK, INT, AI)
nombre, apellido (VARCHAR, 50)
email (VARCHAR, 100)
telefono (VARCHAR, 20)
id_sede (FK, INT)

EQUIPOS

Información detallada de los equipos informáticos.

id_equipo (PK, INT, AI)
id_sede, id_usuario (FK, INT)
tipo_equipo, marca, modelo (VARCHAR, 50)
estado (ENUM: en uso, backup, falla, obsoleto)
fecha_entrega, fecha_actualizacion (DATE)
posibles_mejoras, fallas_reportadas (TEXT)

BARCOS

Registro de barcos de la empresa y sus arribos.

id_barco (PK, INT, AI)
nombre_barco (VARCHAR, 100)
fecha_arribo (DATE)
estado_equipos (ENUM: ok, falla, obsoleto)
posibles_mejoras (TEXT)
numero_anydesk (VARCHAR, 30)

HISTORIAL_CAMBIOS

Detalla el historial de cambios en los equipos/usuarios.

id_cambio (PK, INT, AI)
id_equipo (FK, INT)
id_usuario_anterior, id_usuario_nuevo (FK, INT)
motivo_cambio (ENUM: falla, rotura, otro)
fecha_cambio (DATE)

INVENTARIO_SEDES

Inventario por sede, indicando el estado de los equipos.

id_inventario (PK, INT, AI)
id_sede, id_equipo (FK, INT)
estado (ENUM: asignado, backup, obsoleto)
fecha_registro (DATE)

CODERHOUSE

Objetos de la Base de Datos

UISTAS

- > vw_cant_usuarios_por_sede: Cuenta usuarios por sede
- > vw_cant_equipos_por_sede: Cantidad de equipos por sede
- > vw_equipos_por_sede: Equipos registrados en cada sede
- > vw_arribos_barcos: Arribos registrados por barco
- > vw_historial_cambios: Registro de cambios realizados

FUNCIONES

- > ObtenerCantidadEquiposPorSede: Total equipos por sede
- > VerificarEstadoEquipo: Estado de un equipo por ID
- > ObtenerHistorialDeCambiosPorEquipo: Historial por equipo
- > ContarUsuariosPorSede: Total usuarios por sede
- ObtenerProximoArribo: Próxima fecha de arribo

PROCEDIMIENTOS ALMACENADOS

- > InsertarNuevoEquipo: Inserta equipo asociado a sede/usuario
- > ActualizarEstadoEquipo: Actualiza estado de un equipo
- > RegistrarCambioDeEquipo: Registra cambios y transferencias
- > GenerarReporteInventario: Informe detallado por sede
- > RegistrarArriboBarco: Registra arribo y actualiza info

TRIGGERS

- > trg_AuditarCambiosEquipo: Registra automáticamente cambios en HISTORIAL_CAMBIOS cuando se actualiza un equipo
- trg_ActualizarInventarioSede: Actualiza INVENTARIO_SEDES cuando se inserta un nuevo equipo
- trg_EliminarEquipoInventario: Elimina registros de INVENTARIO_SEDES cuando un equipo es eliminado

Resultados: Análisis de Datos

Hallazgos Clave

- Usuarios por Sede
 Puerto Madryn concentra la mayor cantidad de usuarios (13), seguido por Rawson (10), mientras que Barcos tiene mínima presencia (1).
- Equipos por Sede Distribución más equilibrada: Puerto Madryn y Rawson tienen 7 equipos cada uno, mientras que Barcos cuenta con 5 equipos.
- Arribos de Barcos
 Don Mario presenta el mayor número de arribos (3).
 Santa María, Mar del Norte, Estrella Austral y Bahía Azul registran 2 arribos cada uno.
- Historial de Cambios

 Las fallas representan el motivo más común (40%), seguido por otros motivos (33%) y roturas (27%).

Implicaciones para el Negocio

- Evaluar distribución de recursos entre sedes
- Implementar programas preventivos para reducir fallas
- Optimizar rutas de barcos basado en frecuencia

CODERHOUSE

Análisis Detallado y Correlaciones

Beneficios e Impacto del Sistema

Plan de Implementación y Mejoras Futuras

Cronograma de Implementación

Fase 1: Mayo 2025

Migración de Datos

Conversión de hojas de Excel a la nueva estructura de base de datos SQL. Validación de integridad de datos y prueba de consistencia.

Fase 2: Junio 2025

Implementación del Backend

Despliegue de la estructura de base de datos, objetos y procedimientos almacenados. Configuración del entorno de producción.

Fase 3: Julio 2025

Desarrollo de Interfaz

Creación de la interfaz de usuario web conectada a la base de datos. Implementación de funcionalidades de consulta y registro.

Fase 4: Agosto 2025

Capacitación y Lanzamiento

Entrenamiento al personal técnico y administrativo. Transición completa al nuevo sistema y monitoreo inicial.

Mejoras Futuras

Aplicación Móvil

Desarrollo de una aplicación para técnicos que permita actualizar el estado de equipos y gestionar el inventario en tiempo real desde cualquier ubicación.

Automatización y Alertas

Implementación de alertas automáticas para mantenimiento preventivo, equipos próximos a obsolescencia y notificaciones de arribos de barcos programados.

Análisis Predictivo

Integración de algoritmos de aprendizaje automático para predecir necesidades de mantenimiento basado en patrones históricos de uso y fallas.

Integración con Sistemas ERP

Conexión bidireccional con sistemas de planificación de recursos empresariales para gestión financiera y aprovisionamiento automático.

Métricas de Éxito

95%

80%

30%

Conclusiones

Logros Principales

Base de Datos Optimizada

Migración exitosa desde Excel a un sistema SQL estructurado con modelos relacionales.

Análisis de Datos Avanzado

Implementación de vistas y consultas para generar informes detallados y visualizaciones.

Automatización de Procesos

Creación de triggers y procedimientos almacenados para mantener la integridad y eficiencia.

Beneficios Obtenidos

Mayor Eficiencia Operativa

Reducción del 65% en el tiempo de gestión de inventarios y asignación de equipos.

Optimización de Recursos

Distribución más estratégica de equipos entre sedes basada en análisis de datos.

Toma de Decisiones Informada

Acceso a métricas claras sobre equipos, usuarios y mantenimiento para planificación estratégica.

Contacto

Braian Martinez Estefo

braian.martinez@empresa.com

github.com/Braianee

Próximos Pasos

- Programar reunión de lanzamiento con stakeholders
- Iniciar capacitación para personal técnico
- Stablecer calendario de implementación por sedes

¡Gracias por su atención!

Herramientas Utilizadas

MySQL Workbench

Microsoft Excel

Genspark IA

NitroPDF

GitHub

https://github.com/Braianee/Script-SQL-CODER.git