ML Review Quiz: Big Recap

* Required

3 main types of learning		ad by maab	ina laarning alg	orithmo:
You were introduced to 3 differe unsupervised learning, supervis learning to one of the goals belo	ed learning, and reinforcem			
Mark only one oval per row.				
	unsu	pervised	supervised	reinforceme
Learn how to optimally beh environment	nave in your			
Discover patterns in your d	lata			
Predict Y from X The main ML types also Imatch each subcategory to its	•	*		51
The main ML types also I	•	*		51
The main ML types also l	•		ised Learning	5 (
The main ML types also l	s main learning type.		ised Learning	51
The main ML types also I match each subcategory to its Mark only one oval per row.	s main learning type.		ised Learning	51
The main ML types also Imatch each subcategory to its Mark only one oval per row. Dimensionality Reduction	s main learning type.		ised Learning	51
The main ML types also Imatch each subcategory to its Mark only one oval per row. Dimensionality Reduction Clustering	s main learning type.		ised Learning	51

Mark only one oval per row.

Dimensionality Reduction	Anomaly Detection	Clustering	Features- based Supervised Learning Models	Similarity- based Supervised Learning Models
			I IIIQTATINA	Dimensionality Anomaly Reduction Detection Clustering Supervised Learning

4.	Data vs. Concept Drift *			2 points
	In this task we want to predict the price of a house fr in either a data or a concept drift? Remember: Data D Concept Drift is when the input/output relation change	rift is when the		
	Mark only one oval per row.			
		Data Drift	Concept Drift	
	Due to inflation, the same size house now costs 20% more than 5 years ago.			
	On average, people built larger houses in 2020 than in 2010.			
5.	Over- and Underfitting * A model's performance on new data points can be bathas a high bias) or overfitting (= high variance). Which wark only one oval per row.		ons: underfitting (= the n	2 points nodel
		underfitting	g overfitting	
	When you evaluate the model on the data it was trained on, the performance is close to that of a human, but on new data points it performs poorly.			
	No matter on what data (train or test) you evaluate the model, the performance is always far below that of a human.			

2 points

	underfitting	overfitting		
try a more complex (non-linear) model			_	
feature engineering			_	
use regularization			_	
get more data (samples)			_	
feature selection			_	
Machine learning is an "iterative" pronas to try many ideas before arriving ther than have the first thing they mark only one oval.	g at a solutio	•		n
nas to try many ideas before arriving tather than have the first thing they Mark only one oval.	g at a solutio	•		n
nas to try many ideas before arriving they rather than have the first thing they Mark only one oval. True	g at a solutic try work. *	on that's go	od enough,	n
nas to try many ideas before arriving tather than have the first thing they Mark only one oval. True False Which of these are reasons that it's	g at a solutic try work. *	on that's go	od enough,	n
nas to try many ideas before arriving rather than have the first thing they Mark only one oval. True False Which of these are reasons that it's system to be 100% accurate? *	g at a solutic try work. *	on that's go	od enough,	n
nas to try many ideas before arriving rather than have the first thing they wark only one oval. True False Which of these are reasons that it's system to be 100% accurate? * Wark only one oval.	g at a solutic try work. *	on that's go	od enough,	n