

R2.09 Méthodes Numériques

Thibault Godin, Lucie Naert, Anthony Ridard IUT de Vannes Informatique

On va étudier les suites définies par $u_{n+1} = f(u_n)$ où f est une fonction.

On va étudier les suites définies par $u_{n+1} = f(u_n)$ où f est une fonction.

La question principale est "que peut-on dire de $(u_n)_{n\in\mathbb{N}}$ si on connaît f".

Rappels math discrètes R1.06:

Une fonction est une relation binaire où tout élément au départ est en relation avec au plus un élément à l'arrivée.

Une application est une fonction où tout élément au départ possède une image.

- Une fonction se note en général f plutôt que \mathcal{R} , et on écrit y = f(x) plutôt que x f y
- ▶ En fait, une fonction f de E vers F se note :

$$f: E \longrightarrow F$$

 $x \longmapsto f(x)$

▶ En Mathématiques, il est commun de définir une fonction f en donnant l'expression permettant de « calculer » f(x)

Fonction puissance $\alpha > 0$:

$$.^{\alpha}: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x^{\alpha}$$

Fonction puissance $\alpha > 0$:

Fonction puissance $\alpha > 0$:

 $\cdot^{\alpha}: \mathbb{R} \longrightarrow \mathbb{R}$

$$X \longmapsto X^{\alpha}$$
 $y \stackrel{10}{\longrightarrow} 10$
 $10 \stackrel{7}{\longrightarrow} 10$

Fonction inverse:

$$.^{-1}: \mathbb{R}^* \longrightarrow \mathbb{R}$$
$$x \longmapsto x^{-1}$$

Fonction puissance $\alpha > 0$:

Fonction inverse:

Fonctions polynomiales:

$$P: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Fonctions polynomiales:

$$P: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Fraction rationnelle : $\frac{P}{Q}$ où P et Q sont deux fonctions polynomiales.

Fonctions polynomiales:

 $P: \mathbb{R} \longrightarrow \mathbb{R}$

$$x \mapsto \sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Fraction rationnelle : $\frac{P}{Q}$ où P et Q sont deux fonctions polynomiales.

Fonction exponentielle:

 $\begin{array}{cccc} \exp: & \mathbb{R} & \longrightarrow & \mathbb{R}_+^* \\ & x & \longmapsto & e^x \end{array}$

Fonction exponentielle:

$$\exp: \quad \mathbb{R} \quad \longrightarrow \quad \mathbb{R}_+^*$$

$$x \quad \longmapsto \quad e^x$$

Fonction logarithme:

$$\begin{array}{ccc}
\ln : & \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\
 & x & \longmapsto & \ln x
\end{array}$$

Fonction exponentielle:

Fonction logarithme:

$$\begin{array}{ccc} \exp: & \mathbb{R} & \longrightarrow & \mathbb{R}_+^* \\ & x & \longmapsto & e^x \end{array}$$

$$\begin{array}{ccc}
\ln: & \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\
 & x & \longmapsto & \ln x
\end{array}$$

remarque :
$$\forall x \in \mathbb{R}_+^*$$
, $\exp \circ \ln(x) = x$ et $\forall x \in \mathbb{R}$, $\ln \circ \exp(x) = x$.

Fonction exponentielle:

Fonction logarithme: $\exp: \mathbb{R} \longrightarrow \mathbb{R}_+^*$

$$\begin{array}{ccc}
\ln : & \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\
 & x & \longmapsto & \ln x
\end{array}$$

remarque : $\forall x \in \mathbb{R}_+^*$, $\exp \circ \ln(x) = x$ et $\forall x \in \mathbb{R}$, $\ln \circ \exp(x) = x$.

Fonction exponentielle:

$$\exp: \quad \mathbb{R} \quad \longrightarrow \quad \mathbb{R}_+^*$$

$$x \quad \longmapsto \quad e^x$$

Fonction logarithme:

$$\begin{array}{cccc} \ln: & \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \ln x \end{array}$$

remarque : $\forall x \in \mathbb{R}_+^*$, $\exp \circ \ln(x) = x$ et $\forall x \in \mathbb{R}$, $\ln \circ \exp(x) = x$.

$$\log_d(x) = \frac{\ln(x)}{\ln(d)}$$
$$\log = \log_{10}$$

$$a^n = \exp(n \ln a) = e^{n \ln a}$$

On a vu que les suites $(u_n)n\in\mathbb{N}$ sont des fonctions

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto u_n$

On a vu que les suites $(u_n)n\in\mathbb{N}$ sont des fonctions

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto u_n$

on les verra parfois comme des fonctions réelles

$$f_u: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto u_n \text{ si } x \in [n, n+1[$

On a vu que les suites $(u_n)n \in \mathbb{N}$ sont des fonctions

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto u_n$

on les verra parfois comme des fonctions réelles

$$f_u: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto u_n \text{ si } x \in [n, n+1[$

On a vu que les suites $(u_n)n \in \mathbb{N}$ sont des fonctions

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto u_n$

on les verra parfois comme des fonctions réelles

$$f_u: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto u_n \text{ si } x \in [n, n+1[$

→ nombreux (contre-)exemples pour la suite!

Soit $f:U\to\mathbb{R}$ une fonction. On dit que :

▶ f est *majorée* sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;

- ▶ f est *majorée* sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;
- ▶ f est *minorée* sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \geq m$;

- ▶ f est *majorée* sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;
- ▶ f est $minor\acute{e}$ sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \geq m$;
- ▶ f est **bornée** sur U si f est à la fois majorée et minorée sur U, c'est-à-dire si $\exists M \in \mathbb{R} \ \forall x \in U \ |f(x)| \leq M$.

- ▶ f est *majorée* sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;
- ▶ f est $minor\acute{e}$ sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \geq m$;
- ▶ f est **bornée** sur U si f est à la fois majorée et minorée sur U, c'est-à-dire si $\exists M \in \mathbb{R} \ \forall x \in U \ |f(x)| \leq M$.

- ▶ f est *majorée* sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;
- ▶ f est $minor\acute{e}e$ sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \geq m$;
- ▶ f est **bornée** sur U si f est à la fois majorée et minorée sur U, c'est-à-dire si $\exists M \in \mathbb{R} \ \forall x \in U \ |f(x)| \leq M$.

Soit $f:U\to\mathbb{R}$ une fonction. On dit que :

- ▶ f est *majorée* sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;
- ▶ f est $minor\acute{e}$ sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \geq m$;
- ▶ f est **bornée** sur U si f est à la fois majorée et minorée sur U, c'est-à-dire si $\exists M \in \mathbb{R} \ \forall x \in U \ |f(x)| \leq M$.

f bornée $\rightsquigarrow (u_n)_{n\in\mathbb{N}}: u_{n+1}=f(u_n)$ est bornée

Soit $f:U o\mathbb{R}$ une fonction. On dit que :

- ▶ f est *majorée* sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;
- ▶ f est $minor\acute{e}e$ sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \geq m$;
- ▶ f est **bornée** sur U si f est à la fois majorée et minorée sur U, c'est-à-dire si $\exists M \in \mathbb{R} \ \forall x \in U \ |f(x)| \leq M$.

f bornée $\rightsquigarrow (u_n)_{n \in \mathbb{N}} : u_{n+1} = f(u_n)$ est bornée

→ notion d'intervalle stable

Soient $f:U\to\mathbb{R}$ et $g:U\to\mathbb{R}$ deux fonctions. Alors :

- $f \ge g$ si $\forall x \in U$ $f(x) \ge g(x)$;
- ▶ $f \ge 0$ si $\forall x \in U$ $f(x) \ge 0$;
- $ightharpoonup f>0 \text{ si } \forall x\in U \ f(x)>0;$
- ▶ f est dite *constante* sur U si $\exists a \in \mathbb{R} \ \forall x \in U \ f(x) = a$;
- ▶ f est dite *nulle* sur U si $\forall x \in U$ f(x) = 0.

Soient $f:U\to\mathbb{R}$ et $g:U\to\mathbb{R}$ deux fonctions. Alors :

- $f \ge g$ si $\forall x \in U$ $f(x) \ge g(x)$;
- ▶ $f \ge 0$ si $\forall x \in U$ $f(x) \ge 0$;
- $ightharpoonup f>0 \text{ si } \forall x\in U \ f(x)>0;$
- ▶ f est dite *constante* sur U si $\exists a \in \mathbb{R} \ \forall x \in U \ f(x) = a$;
- ▶ f est dite *nulle* sur U si $\forall x \in U$ f(x) = 0.

f positive $\rightsquigarrow (u_n)_{n \in \mathbb{N}} : u_{n+1} = f(u_n)$ est positive.

Soient $f:U\to\mathbb{R}$ et $g:U\to\mathbb{R}$ deux fonctions. Alors :

- ▶ $f \ge g$ si $\forall x \in U$ $f(x) \ge g(x)$;
- ▶ $f \ge 0$ si $\forall x \in U$ $f(x) \ge 0$;
- $ightharpoonup f>0 \text{ si } \forall x\in U \ f(x)>0;$
- ▶ f est dite *constante* sur U si $\exists a \in \mathbb{R} \ \forall x \in U \ f(x) = a$;
- ▶ f est dite *nulle* sur U si $\forall x \in U$ f(x) = 0.

f positive $\rightsquigarrow (u_n)_{n \in \mathbb{N}} : u_{n+1} = f(u_n)$ est positive.

 $g: x \mapsto f(x) - x$ positive $\rightsquigarrow (u_n)_{n \in \mathbb{N}}: u_{n+1} = f(u_n)$ est croissante.

Soient $f:U\to\mathbb{R}$ et $g:U\to\mathbb{R}$ deux fonctions. Alors :

- ▶ $f \ge g$ si $\forall x \in U$ $f(x) \ge g(x)$;
- ▶ $f \ge 0$ si $\forall x \in U$ $f(x) \ge 0$;
- $ightharpoonup f > 0 \text{ si } \forall x \in U \ f(x) > 0;$
- ▶ f est dite *constante* sur U si $\exists a \in \mathbb{R} \ \forall x \in U \ f(x) = a$;
- f est dite *nulle* sur U si $\forall x \in U$ f(x) = 0.

f positive $\rightsquigarrow (u_n)_{n \in \mathbb{N}} : u_{n+1} = f(u_n)$ est positive.

$$g: x \mapsto f(x) - x$$
 positive $\rightsquigarrow (u_n)_{n \in \mathbb{N}}: u_{n+1} = f(u_n)$ est croissante.

▶ f est *croissante* sur U si $\forall x, y \in U$ $x \leq y \implies f(x) \leq f(y)$

- ▶ f est *croissante* sur U si $\forall x, y \in U$ $x \leq y \implies f(x) \leq f(y)$
- ▶ f est *décroissante* sur U si $\forall x, y \in U$ $x \leq y \implies f(x) \geq f(y)$

- ▶ f est *croissante* sur U si $\forall x, y \in U$ $x \le y \implies f(x) \le f(y)$
- ▶ f est **décroissante** sur U si $\forall x, y \in U$ $x \leq y \implies f(x) \geq f(y)$
- ightharpoonup f est *monotone* sur U si f est croissante ou décroissante sur U.

- ▶ f est *croissante* sur U si $\forall x, y \in U$ $x \le y \implies f(x) \le f(y)$
- ▶ f est **décroissante** sur U si $\forall x, y \in U$ $x \leq y \implies f(x) \geq f(y)$
- ightharpoonup f est *monotone* sur U si f est croissante ou décroissante sur U.

- ▶ f est *croissante* sur U si $\forall x, y \in U$ $x \le y \implies f(x) \le f(y)$
- ▶ f est **décroissante** sur U si $\forall x, y \in U$ $x \leq y \implies f(x) \geq f(y)$
- ightharpoonup f est *monotone* sur U si f est croissante ou décroissante sur U.

f croissante $\not \hookrightarrow (u_n)_{n \in \mathbb{N}} : u_{n+1} = f(u_n)$ est croissante : prendre $x \mapsto \frac{1}{2}x$

f croissante $\not \hookrightarrow (u_n)_{n \in \mathbb{N}} : u_{n+1} = f(u_n)$ est croissante : prendre $x \mapsto \frac{1}{2}x$

Cependant:

Théorème

f croissante $\not\hookrightarrow (u_n)_{n\in\mathbb{N}}: u_{n+1}=f(u_n)$ est croissante : prendre $x\mapsto \frac{1}{2}x$

Cependant:

Théorème

Soit f croissante. On considère la suite $(u_n)_{n\in\mathbb{N}}:u_{n+1}=f(u_n)$ alors :

▶ Si $u_1 \ge u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante

f croissante $\not\hookrightarrow (u_n)_{n\in\mathbb{N}}: u_{n+1}=f(u_n)$ est croissante : prendre $x\mapsto \frac{1}{2}x$

Cependant :

Théorème

- ▶ Si $u_1 \ge u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante
- ▶ Si $u_1 \le u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante

f croissante $\not\hookrightarrow (u_n)_{n\in\mathbb{N}}: u_{n+1}=f(u_n)$ est croissante : prendre $x\mapsto \frac{1}{2}x$

Cependant :

Théorème

- ▶ Si $u_1 \ge u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante
- ▶ Si $u_1 \le u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante

f croissante $\not\hookrightarrow (u_n)_{n\in\mathbb{N}}: u_{n+1}=f(u_n)$ est croissante : prendre $x\mapsto \frac{1}{2}x$

Cependant :

Théorème

- ▶ Si $u_1 \ge u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante
- ▶ Si $u_1 \le u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante
- le prouver

f croissante $\not\hookrightarrow (u_n)_{n\in\mathbb{N}}: u_{n+1}=f(u_n)$ est croissante : prendre $x\mapsto \frac{1}{2}x$

Cependant :

Théorème

- ▶ Si $u_1 \ge u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante
- ▶ Si $u_1 \le u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante
- **I** le prouver **I** Que peut-on dire sur la suite $u_{n+1} = u_n^2$?

f croissante $\not \hookrightarrow (u_n)_{n \in \mathbb{N}} : u_{n+1} = f(u_n)$ est croissante : prendre $x \mapsto \frac{1}{2}x$

Cependant:

Théorème

- ▶ Si $u_1 \ge u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante
- ▶ Si $u_1 \le u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante
- **I** le prouver **I** Que peut-on dire sur la suite $u_{n+1} = u_n^2$?

Un intervalle $I \subset \mathbb{R}$ est dit *stable* pour la fonction f si $f(I) \subset I$

Un intervalle $I \subset \mathbb{R}$ est dit *stable* pour la fonction f si $f(I) \subset I$

Donc si I=[a,b] est stable par f et $u_0\in I$ et $u_{n+1}=f(u_n)$, alors la suite $(u_n)_n$ est bornée : $\forall n\in\mathbb{N}, a\leq u_n\leq b$

- **▶** [0,1]
- **▶** [1, 2]
- **▶** [0, 3]
- **▶** [-1,1]
- $ightharpoonup [0, \frac{1}{2}]$
- **▶** [-1,0]

- **▶** [0, 1]
- **▶** [1, 2]
- **▶** [0, 3]
- **▶** [-1,1]
- $ightharpoonup [0, \frac{1}{2}]$
- **▶** [-1,0]

- **▶** [0,1]
- **▶** [1, 2]
- **▶** [0, 3]
- **▶** [-1,1]
- $ightharpoonup [0, \frac{1}{2}]$
- [-1,0]

- **▶** [0, 1]
- **▶** [1, 2]
- **▶** [0, 3]
- **▶** [-1,1]
- $ightharpoonup [0, \frac{1}{2}]$
- **▶** [-1,0]

- **▶** [0, 1]
- **▶** [1, 2]
- **(**0,3]
- **▶** [-1,1]
- $ightharpoonup [0, \frac{1}{2}]$
- **▶** [-1,0]

- **▶** [0, 1]
- **▶** [1, 2]
- **▶** [0, 3]
- **▶** [-1, 1]
- $ightharpoonup [0, \frac{1}{2}]$
- **▶** [-1,0]

- **▶** [0,1]
- **▶** [1, 2]
- **(**0,3]
- **▶** [-1,1]
- $ightharpoonup [0, \frac{1}{2}]$
- **▶** [-1,0]

- **▶** [0, 1]
- **▶** [1, 2]
- **▶** [0, 3]
- **▶** [-1,1]
- $ightharpoonup [0, \frac{1}{2}]$
- **▶** [-1,0]

- **▶** [0, 1]
- **▶** [1, 2]
- **▶** [0, 3]
- **▶** [-1,1]
- $ightharpoonup [0, \frac{1}{2}]$
- **▶** [-1,0]

Quels intervalles sont stables pour $f: x \mapsto x^2$?

- **▶** [0,1]
- **▶** [1, 2]
- **▶** [0, 3]
- **▶** [-1,1]
- $ightharpoonup [0, \frac{1}{2}]$
- [-1,0]

En pratique on cherche un intervalle stable aussi petit que possible.

Étudions une fonction

(quasi-)impossible \leadsto on va avoir besoin d'hypothèse supplémentaires.

Limite en l'infini

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle de la forme $I =]a, +\infty[$.

Limite en l'infini

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle de la forme $I =]a, +\infty[$.

▶ Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en $+\infty$ si

$$\forall \varepsilon > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \implies |f(x) - \ell| < \varepsilon$$

On note alors $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{+\infty} f = \ell$.

Limite en l'infini

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle de la forme $I =]a, +\infty[$.

▶ Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en $+\infty$ si

$$\forall \varepsilon > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \implies |f(x) - \ell| < \varepsilon$$

On note alors $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{x \to +\infty} f = \ell$.

▶ On dit que f a pour limite $+\infty$ en $+\infty$ si

$$\forall A > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \implies f(x) > A$$

On note alors $\lim_{x \to +\infty} f(x) = +\infty$.

Limite en l'infini

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle de la forme $I =]a, +\infty[$.

▶ Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en $+\infty$ si

$$\forall \varepsilon > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \implies |f(x) - \ell| < \varepsilon$$

On note alors $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{x \to +\infty} f = \ell$.

▶ On dit que f a pour limite $+\infty$ en $+\infty$ si

$$\forall A > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \implies f(x) > A$$

On note alors $\lim_{x \to +\infty} f(x) = +\infty$.

Limite en l'infini

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle de la forme $I =]a, +\infty[$.

▶ Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en $+\infty$ si

$$\forall \varepsilon > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \implies |f(x) - \ell| < \varepsilon$$

On note alors $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{x \to +\infty} f = \ell$.

▶ On dit que f a pour limite $+\infty$ en $+\infty$ si

$$\forall A > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \implies f(x) > A$$

On note alors $\lim_{x \to +\infty} f(x) = +\infty$.

On définira de la même manière la limite en $-\infty$ pour des fonctions définies sur les intervalles du type $]-\infty,a[$.

Exemple 1

On a les limites classiques suivantes pour tout $n \ge 1$:

$$\lim_{x \to +\infty} x^n = +\infty \quad \text{ et } \quad \lim_{x \to -\infty} x^n = \begin{cases} +\infty \text{ si } n \text{ est pair} \\ -\infty \text{ si } n \text{ est impair} \end{cases}$$

16 / 39

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit $x_0 \in \mathbb{R}$ un point de I ou une extrémité de I.

Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en x_0 si $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - \ell| < \varepsilon$ On dit aussi que f(x) tend vers ℓ lorsque x tend vers x_0 . On note alors $\lim_{x \to x_0} f(x) = \ell$ ou bien $\lim_{x \to \infty} f(x) = \ell$.

▶ On dit que f a pour limite $+\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) > A$$

On note alors $\lim_{x \to x_0} f(x) = +\infty$.

▶ On dit que f a pour limite $+\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) > A$$

On note alors $\lim_{x \to x_0} f(x) = +\infty$.

▶ On dit que f a pour limite $-\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) < -A$$

On note alors $\lim_{x \to x_0} f(x) = -\infty$.

▶ On dit que f a pour limite $+\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) > A$$

On note alors $\lim_{x \to x_0} f(x) = +\infty$.

▶ On dit que f a pour limite $-\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) < -A$$

On note alors $\lim_{x \to x_0} f(x) = -\infty$.

▶ On dit que f a pour limite $+\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) > A$$

On note alors $\lim_{x \to x_0} f(x) = +\infty$.

▶ On dit que f a pour limite $-\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) < -A$$

On note alors $\lim_{x \to x_0} f(x) = -\infty$.

Soit f une fonction numérique définie sur un intervalle I, sauf, peut-être en $x_0 \in I$. Si f admet une limite quand x tend vers x_0 . Alors, cette limite est unique

Soit f une fonction numérique définie sur un intervalle I, sauf, peut-être en $x_0 \in I$. Si f admet une limite quand x tend vers x_0 . Alors, cette limite est unique

On utilisera surtout la contraposée : Soit $f: I \to \mathbb{R}$ et deux suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ ayant toutes deux pour limite x_0 . Alors si $\lim_{n \to \infty} f(u_n) = \ell \neq \ell' = \lim_{n \to \infty} f(v_n)$ alors f n'a pas de limite en x_0

Soit f une fonction numérique définie sur un intervalle I, sauf, peut-être en $x_0 \in I$. Si f admet une limite quand x tend vers x_0 . Alors, cette limite est unique

On utilisera surtout la contraposée : Soit $f:I\to\mathbb{R}$ et deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ ayant toutes deux pour limite x_0 . Alors si $\lim_{n\to\infty} f(u_n) = \ell \neq \ell' = \lim_{n\to\infty} f(v_n)$ alors f n'a pas de limite en x_0

Prouver que $x \mapsto \cos x$ n'a pas de limite en $+\infty$

Soit f une fonction numérique définie sur un intervalle I, sauf, peut-être en $x_0 \in I$. Si f admet une limite quand x tend vers x_0 . Alors, cette limite est unique

On utilisera surtout la contraposée : Soit $f:I\to\mathbb{R}$ et deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ ayant toutes deux pour limite x_0 . Alors si $\lim_{n\to\infty} f(u_n) = \ell \neq \ell' = \lim_{n\to\infty} f(v_n)$ alors f n'a pas de limite en x_0

- **The equal of the equation of**
- Prouver que $x \mapsto \frac{1}{\frac{1}{2} 1}$ n'a pas de limite en 0

Propriétés des limites

Soit f une fonction numérique définie sur un intervalle I, sauf, peut-être en $x_0 \in I$. Si f admet une limite quand x tend vers x_0 . Alors, cette limite est unique

On utilisera surtout la contraposée : Soit $f:I\to\mathbb{R}$ et deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ ayant toutes deux pour limite x_0 . Alors si $\lim_{n\to\infty} f(u_n) = \ell \neq \ell' = \lim_{n\to\infty} f(v_n)$ alors f n'a pas de limite en x_0

- **T** Prouver que $x \mapsto \cos x$ n'a pas de limite en $+\infty$
- Prouver que $x \mapsto \frac{1}{\frac{1}{e^{\frac{1}{x}}-1}}$ n'a pas de limite en 0

De manière générale, si $\lim_{n\to\infty}u_n=x_0$ mais que la suite $(f(u_n))_{n\in\mathbb{N}}$ n'a pas de limite alors la fonction f n'a pas de limite en x_0

 $\blacktriangleright \ \, \mathsf{Si} \,\, f \leq g \,\, \mathsf{et} \,\, \mathsf{si} \,\, \lim_{\mathsf{x_0}} f = \ell \in \mathbb{R} \,\, \mathsf{et} \,\, \lim_{\mathsf{x_0}} g = \ell' \in \mathbb{R} , \,\, \mathsf{alors} \,\, \ell \leq \ell'.$

- $\blacktriangleright \ \, \mathsf{Si} \,\, f \leq g \,\, \mathsf{et} \,\, \mathsf{si} \,\, \lim_{\mathsf{x_0}} f = \ell \in \mathbb{R} \,\, \mathsf{et} \,\, \lim_{\mathsf{x_0}} g = \ell' \in \mathbb{R} , \,\, \mathsf{alors} \,\, \ell \leq \ell'.$
- ▶ Si $f \le g$ et si $\lim_{x \to a} f = +\infty$, alors $\lim_{x \to a} g = +\infty$.

- ▶ Si $f \leq g$ et si $\lim_{x \to g} f = \ell \in \mathbb{R}$ et $\lim_{x \to g} g = \ell' \in \mathbb{R}$, alors $\ell \leq \ell'$.
- ▶ Si $f \le g$ et si $\lim_{x \to \infty} f = +\infty$, alors $\lim_{x \to \infty} g = +\infty$.
- ▶ Théorème des gendarmes Si $f \leq g \leq h$ et si $\lim_{x_0} f = \lim_{x_0} h = \ell \in \mathbb{R}$, alors g a une limite en x_0 et $\lim_{x \to 0} g = \ell$.

- ▶ Si $f \leq g$ et si $\lim_{x \to g} f = \ell \in \mathbb{R}$ et $\lim_{x \to g} g = \ell' \in \mathbb{R}$, alors $\ell \leq \ell'$.
- ▶ Si $f \le g$ et si $\lim_{x \to \infty} f = +\infty$, alors $\lim_{x \to \infty} g = +\infty$.
- ▶ Théorème des gendarmes Si $f \leq g \leq h$ et si $\lim_{x_0} f = \lim_{x_0} h = \ell \in \mathbb{R}$, alors g a une limite en x_0 et $\lim_{x \to 0} g = \ell$.

- ▶ Si $f \leq g$ et si $\lim_{x \to a} f = \ell \in \mathbb{R}$ et $\lim_{x \to a} g = \ell' \in \mathbb{R}$, alors $\ell \leq \ell'$.
- ▶ Si $f \le g$ et si $\lim_{x_0} f = +\infty$, alors $\lim_{x_0} g = +\infty$.
- ▶ Théorème des gendarmes Si $f \le g \le h$ et si $\lim_{x_0} f = \lim_{x_0} h = \ell \in \mathbb{R}$, alors g a une limite en x_0 et $\lim_{x \to 0} g = \ell$.

- ▶ Si $f \leq g$ et si $\lim_{x \to a} f = \ell \in \mathbb{R}$ et $\lim_{x \to a} g = \ell' \in \mathbb{R}$, alors $\ell \leq \ell'$.
- ▶ Si $f \le g$ et si $\lim_{x_0} f = +\infty$, alors $\lim_{x_0} g = +\infty$.
- ▶ Théorème des gendarmes Si $f \le g \le h$ et si $\lim_{x_0} f = \lim_{x_0} h = \ell \in \mathbb{R}$, alors g a une limite en x_0 et $\lim_{x \to 0} g = \ell$.

Remarque : on peut travailler sur un petit intervalle autour de x_0

Théorème des croissances comparées

$x \to +\infty$	log	poly.	exp
log	$\frac{\log}{\log} \rightsquigarrow \text{fact.}$	$rac{poly}{log} o \infty$	$rac{ ext{exp}}{ ext{log}} ightarrow \infty$
poly	$rac{\log}{\text{poly}} o 0$	$\frac{\text{poly}}{\text{poly}} \rightsquigarrow \text{fact.}$	$rac{ ext{exp}}{ ext{poly}} o \infty$
ехр	$rac{\log}{\exp} o 0$	$rac{poly}{exp} o 0$	$\frac{\exp}{\exp} \rightsquigarrow fact.$

Théorème des croissances comparées

$x \to +\infty$	log	poly.	exp
log	$\frac{\log}{\log} \rightsquigarrow \text{fact.}$	$rac{poly}{log} o \infty$	$rac{ ext{exp}}{ ext{log}} o \infty$
poly	$rac{\log}{\text{poly}} o 0$	$\frac{\text{poly}}{\text{poly}} \rightsquigarrow \text{fact}.$	$rac{ ext{exp}}{ ext{poly}} o \infty$
exp	$\frac{\log}{\exp} o 0$	$rac{poly}{exp} o 0$	$\frac{\exp}{\exp} \rightsquigarrow fact.$

$$\lim_{x\to 0^+} (x \ln x) = 0^- \qquad ; \qquad \forall n \in \mathbb{N} \quad \lim_{x\to -\infty} x^n e^x = 0$$

Soit *I* un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

▶ On dit que f est continue en un point $x_0 \in I$ si $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$ c'est-à-dire si f admet une limite en x_0 (cette limite vaut alors nécessairement $f(x_0)$).

Soit *I* un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

- ▶ On dit que f est continue en un point $x_0 \in I$ si $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x x_0| < \delta \implies |f(x) f(x_0)| < \varepsilon$ c'est-à-dire si f admet une limite en x_0 (cette limite vaut alors nécessairement $f(x_0)$).
- On dit que f est continue sur l si f est continue en tout point de l.

Soit *I* un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

- ▶ On dit que f est continue en un point $x_0 \in I$ si $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x x_0| < \delta \implies |f(x) f(x_0)| < \varepsilon$ c'est-à-dire si f admet une limite en x_0 (cette limite vaut alors nécessairement $f(x_0)$).
- On dit que f est continue sur l si f est continue en tout point de l.

Soit *I* un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

- ▶ On dit que f est continue en un point $x_0 \in I$ si $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x x_0| < \delta \implies |f(x) f(x_0)| < \varepsilon$ c'est-à-dire si f admet une limite en x_0 (cette limite vaut alors nécessairement $f(x_0)$).
- On dit que f est continue sur l si f est continue en tout point de l.

Intuitivement, une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever le crayon », c'est-à-dire si sa courbe représentative n'admet pas de saut.

Intuitivement, une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever le crayon », c'est-à-dire si sa courbe représentative n'admet pas de saut.

Voici des fonctions qui ne sont pas continues en x_0 :

Intuitivement, une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever le crayon », c'est-à-dire si sa courbe représentative n'admet pas de saut.

Voici des fonctions qui ne sont pas continues en x_0 :

Attention, une fonction continue n'est pas forcément "lisse"

limite d'une suite $u_{n+1} = f(u_n)$

Si on prend f continue on a

Théorème

Soit $f:I\to\mathbb{R}$ une fonction continue. Alors si u_n admet une limite ℓ , c'est un point fixe de f. C'est-à-dire : $\lim u_n=\ell\Rightarrow f(\ell)=\ell$

limite d'une suite $u_{n+1} = f(u_n)$

Si on prend f continue on a

Théorème

Soit $f:I\to\mathbb{R}$ une fonction continue. Alors si u_n admet une limite ℓ , c'est un point fixe de f. C'est-à-dire : $\lim u_n=\ell\Rightarrow f(\ell)=\ell$

T Le prouver. Quelles sont les limites possibles de la suite $u_{n+1} = u_n^2$?

limite d'une suite $u_{n+1} = f(u_n)$

Si on prend f continue on a

Théorème

Soit $f:I\to\mathbb{R}$ une fonction continue. Alors si u_n admet une limite ℓ , c'est un point fixe de f. C'est-à-dire : $\lim u_n=\ell\Rightarrow f(\ell)=\ell$

- **T** Le prouver. Quelles sont les limites possibles de la suite $u_{n+1} = u_n^2$?
- Montrer que la réciproque (l'écrire) est fausse (donner un contre exemple).

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment, alors f est bornée et atteint ses bornes

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment, alors f est bornée et atteint ses bornes

traduction : l'image d'un intervalle [a, b] par une fonction continue est inclue dans un intervalle [y, z] et il existe $c, d \in [a, b]$ tels que f(c) = y et f(d) = z.

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment, alors f est bornée et atteint ses bornes

traduction : l'image d'un intervalle [a, b] par une fonction continue est inclue dans un intervalle [y, z] et il existe $c, d \in [a, b]$ tels que f(c) = y et f(d) = z.

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment, alors f est bornée et atteint ses bornes

traduction : l'image d'un intervalle [a, b] par une fonction continue est inclue dans un intervalle [y, z] et il existe $c, d \in [a, b]$ tels que f(c) = y et f(d) = z.

 $oldsymbol{\mathscr{D}}$ Donner un exemple de fonction $f:[a,b] o \mathbb{R}$ bornée n'atteignant pas ses bornes

Théorème des valeurs intermédiaires

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment, alors, pour tout réel y compris entre f(a) et f(b), il existe $c \in [a, b]$ tel que f(c) = y.

 \bigcirc II n'y a aucune raison que c soit unique.

Théorème des valeurs intermédiaires

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment, alors, pour tout réel y compris entre f(a) et f(b), il existe $c\in[a,b]$ tel que f(c)=y.

 \mathbf{F} II n'y a aucune raison que c soit unique.

Théorème des valeurs intermédiaires

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment, alors, pour tout réel y compris entre f(a) et f(b), il existe $c\in[a,b]$ tel que f(c)=y.

Il n'y a aucune raison que c soit unique.

Donner un exemple de fonction non continue qui satisfait les conclusions du théorème des valeurs intermédiaires

Étude de suite

proposition

Si $f:[a,b] \to [a,b]$ est une fonction continue croissante, alors quelque soit $u_0 \in [a,b]$, la suite récurrente (u_n) est monotone et converge vers $\ell \in [a,b]$ vérifiant $f(\ell) = \ell$.

faire le bilan des théorèmes utilisés pour montrer ce résultat

On a vu que pour étudier $u_{n+1} = f(u_n)$ où f est une fonction, on a souvent besoin de connaître :

des bornes et des intervalles stables

- des bornes et des intervalles stables
- le sens de variation de f (théorème de monotonie)

- des bornes et des intervalles stables
- le sens de variation de f (théorème de monotonie)
- ▶ signe de $g: x \mapsto f(x) x$ (définition des suites croissantes)

- des bornes et des intervalles stables
- le sens de variation de f (théorème de monotonie)
- ▶ signe de $g: x \mapsto f(x) x$ (définition des suites croissantes)
- les maxima et minima de f (pour borner la suite)

- des bornes et des intervalles stables
- le sens de variation de f (théorème de monotonie)
- ▶ signe de $g: x \mapsto f(x) x$ (définition des suites croissantes)
- les maxima et minima de f (pour borner la suite)

On a vu que pour étudier $u_{n+1} = f(u_n)$ où f est une fonction, on a souvent besoin de connaître :

- des bornes et des intervalles stables
- le sens de variation de f (théorème de monotonie)
- ▶ signe de $g: x \mapsto f(x) x$ (définition des suites croissantes)
- les maxima et minima de f (pour borner la suite)

Comment obtenir ces infos?

On a vu que pour étudier $u_{n+1} = f(u_n)$ où f est une fonction, on a souvent besoin de connaître :

- des bornes et des intervalles stables
- le sens de variation de f (théorème de monotonie)
- ▶ signe de $g: x \mapsto f(x) x$ (définition des suites croissantes)
- les maxima et minima de f (pour borner la suite)

Comment obtenir ces infos? Prendre des fonctions plus régulières/lisses (hypothèses plus fortes) \leadsto plus d'outils

Derivée

f est dérivable en x_0 si le **taux d'accroissement** $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie lorsque x tend vers x_0 . La limite s'appelle alors le **nombre dérivé** de f en x_0 et est noté $f'(x_0)$. Ainsi $f'(x_0) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$

f est dérivable en x_0 si le taux d'accroissement $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie lorsque x tend vers x_0 . La limite s'appelle alors le nombre dérivé de f en x_0 et est noté $f'(x_0)$. Ainsi $f'(x_0) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$

f est *dérivable sur l* si f est dérivable en tout point $x_0 \in I$. La fonction $x \mapsto f'(x)$ est la *fonction dérivée* de f, elle se note f'.

f est dérivable en x_0 si le taux d'accroissement $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie lorsque x tend vers x_0 . La limite s'appelle alors le nombre dérivé de f en x_0 et est noté $f'(x_0)$. Ainsi $f'(x_0) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$

f est *dérivable sur I* si f est dérivable en tout point $x_0 \in I$. La fonction $x \mapsto f'(x)$ est la *fonction dérivée* de f, elle se note f'.

Montrer que la fonction $f: x \mapsto x^2$ est dérivable en tout point $x_0 \in \mathbb{R}$.

f est $d\acute{e}rivable$ en x_0 si le taux d'accroissement $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie lorsque x tend vers x_0 . La limite s'appelle alors le nombre $d\acute{e}riv\acute{e}$ de f en x_0 et est noté $f'(x_0)$. Ainsi $f'(x_0) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$

f est dérivable sur I si f est dérivable en tout point $x_0 \in I$. La fonction $x \mapsto f'(x)$ est la **fonction dérivée** de f, elle se note f'.

T Montrer que la fonction $f: x \mapsto x^2$ est dérivable en tout point $x_0 \in \mathbb{R}$.

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x - x_0)(x + x_0)}{x - x_0} = x + x_0 \xrightarrow[x \to x_0]{} 2x_0.$$

f est dérivable en x_0 si le taux d'accroissement $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie lorsque x tend vers x_0 . La limite s'appelle alors le nombre dérivé de f en x_0 et est noté $f'(x_0)$. Ainsi $f'(x_0) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$

f est dérivable sur I si f est dérivable en tout point $x_0 \in I$. La fonction $x \mapsto f'(x)$ est la **fonction dérivée** de f, elle se note f'.

Montrer que la fonction $f: x \mapsto x^2$ est dérivable en tout point $x_0 \in \mathbb{R}$.

$$\frac{f(x)-f(x_0)}{x-x_0}=\frac{x^2-x_0^2}{x-x_0}=\frac{(x-x_0)(x+x_0)}{x-x_0}=x+x_0\xrightarrow[x\to x_0]{}2x_0.$$

de plus f'(x) = 2x.

Une fonction dérivable en x_0 est continue en x_0

Une fonction dérivable en x_0 est continue en x_0

la réciproque est fausse

Une fonction dérivable en x_0 est continue en x_0

la réciproque est fausse

Fonctions usuelles

Fonction $x \mapsto$	Dérivée	
x ⁿ	nx^{n-1} $(n \in \mathbb{Z})$	
$\frac{1}{x}$	$-\frac{1}{x^2}$	
\sqrt{x}	$\frac{1}{2}\frac{1}{\sqrt{x}}$	
x^{lpha}	$\alpha x^{\alpha-1} (\alpha \in \mathbb{R})$	
e ^x	e ^x	
ln x	$\frac{1}{x}$	
cos x	— sin <i>x</i>	
sin x	cos x	

Soient $f,g:I\to\mathbb{R}$ deux fonctions dérivables sur I. Alors pour tout $x\in I$:

(f+g)'(x) = f'(x) + g'(x)

- (f+g)'(x) = f'(x) + g'(x)
- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé

- (f+g)'(x) = f'(x) + g'(x)
- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé
- $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$

- (f+g)'(x) = f'(x) + g'(x)
- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé
- $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$

- (f+g)'(x) = f'(x) + g'(x)
- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé
- $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$
- $\qquad \qquad \left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f(x)^2} \quad (\text{si } f(x) \neq 0)$
- $\qquad \qquad \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2} \quad (\text{si } g(x) \neq 0)$

- (f+g)'(x) = f'(x) + g'(x)
- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé
- $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$
- $\qquad \qquad \left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f(x)^2} \quad (\text{si } f(x) \neq 0)$
- $\qquad \qquad \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2} \quad (\text{si } g(x) \neq 0)$

- (f+g)'(x) = f'(x) + g'(x)
- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé
- $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$
- $\qquad \qquad \left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f(x)^2} \quad \text{(si } f(x) \neq 0)$
- $\qquad \qquad \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2} \quad (\text{si } g(x) \neq 0)$
- Calculer la dérivée de $x \mapsto x \ln x x + 56$
- Démontrer la formule $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$

Soient f, g telles que g est dérivable en a et f est dérivable en g(a). Alors $f \circ g$ est dérivable en a et

$$(f\circ g)'(a)=g'(a).f'(g(a))$$

Soient f,g telles que g est dérivable en a et f est dérivable en g(a). Alors $f \circ g$ est dérivable en a et

$$(f\circ g)'(a)=g'(a).f'(g(a))$$

preuve (presque):

Soient f, g telles que g est dérivable en a et f est dérivable en g(a). Alors $f \circ g$ est dérivable en a et

$$(f\circ g)'(a)=g'(a).f'(g(a))$$

preuve (presque) :

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f \circ g(a) - f \circ g(x)}{a - x}$$

$$= \lim_{x \to a} \frac{f \circ g(a) - f \circ g(x)}{g(a) - g(x)} \frac{g(a) - g(x)}{a - x}$$

$$= g'(a) \cdot f'(g(a))$$

Soient f, g telles que g est dérivable en a et f est dérivable en g(a). Alors $f \circ g$ est dérivable en a et

$$(f\circ g)'(a)=g'(a).f'(g(a))$$

preuve (presque) :

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f \circ g(a) - f \circ g(x)}{a - x}$$

$$= \lim_{x \to a} \frac{f \circ g(a) - f \circ g(x)}{g(a) - g(x)} \frac{g(a) - g(x)}{a - x}$$

$$= g'(a).f'(g(a))$$

T Calculer la dérivée de $x \mapsto \sin \frac{1}{x}$

Fonction	Dérivée	
u ⁿ	$nu'u^{n-1}$ ($n\in\mathbb{Z}$)
$\frac{1}{u}$	$-\frac{u'}{u^2}$	
\sqrt{u}	$\frac{1}{2} \frac{u'}{\sqrt{u}}$	
u^{lpha}	$\alpha u'u^{\alpha-1}$ ($\alpha \in \mathbb{R}$)
e ^u	u' e ^u	
ln <i>u</i>	<u>u'</u> u	
cos u	$-u' \sin u$	
sin <i>u</i>	$u'\cos u$	

Fonction	Dérivée	
u ⁿ	nu'u ⁿ⁻¹	$(n \in \mathbb{Z})$
$\frac{1}{u}$	$-\frac{u'}{u^2}$	
\sqrt{u}	$\frac{1}{2} \frac{u'}{\sqrt{u}}$	
${\it u}^{lpha}$	$\alpha u' u^{\alpha-1}$	$(\alpha \in \mathbb{R})$
e^u	u'e ^u	
ln <i>u</i>	<u>u'</u> u	
cos u	−u′ sin u	
sin <i>u</i>	$u'\cos u$	

lacksquare Calculer la dérivée de $x\mapsto \frac{1}{\sqrt{x}}$

Extrema

Soit I un intervalle ouvert et $f:I\to\mathbb{R}$ une fonction dérivable. Si f admet un maximum local (ou un minimum local) en x_0 alors $f'(x_0)=0$.

Extrema

Soit I un intervalle ouvert et $f:I\to\mathbb{R}$ une fonction dérivable. Si f admet un maximum local (ou un minimum local) en x_0 alors $f'(x_0)=0$.

La réciproque est fausse. Par exemple la fonction $f : \mathbb{R} \to \mathbb{R}$, définie par $f(x) = x^3$ vérifie f'(0) = 0 mais $x_0 = 0$ n'est ni maximum local ni un minimum local.

Théorème des accroissements finis

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b]. Il existe $c\in]a,b[$ tel que f(b)-f(a)=f'(c) (b-a)

Corollaire

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur]a,b[.

- 1. $\forall x \in]a, b[f'(x) \ge 0 \iff f \text{ est croissante};$
- 2. $\forall x \in]a, b[f'(x) \le 0 \iff f \text{ est décroissante};$
- 3. $\forall x \in]a, b[f'(x) = 0 \iff f \text{ est constante};$

Soit $f:I\to\mathbb{R}$ une fonction dérivable sur un intervalle I ouvert. S'il existe une constante M telle que pour tout $x\in I$, $\left|f'(x)\right|\leq M$ alors $\forall x,y\in I$ $\left|f(x)-f(y)\right|\leq M|x-y|$

Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I ouvert. S'il existe une constante M telle que pour tout $x \in I$, $|f'(x)| \le M$ alors

$$\forall x, y \in I$$
 $|f(x) - f(y)| \leq M|x - y|$

Montrer l'inégalité des accroissements finis (en utilisant l'égalité des accroissements finis)

Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I ouvert. S'il existe une constante M telle que pour tout $x \in I$, $|f'(x)| \le M$ alors

$$\forall x, y \in I$$
 $|f(x) - f(y)| \le M|x - y|$

Montrer l'inégalité des accroissements finis (en utilisant l'égalité des accroissements finis)

Soit $f: I \to \mathbb{R}$ une application et k > 0. f est dite k-lipschitzienne sur I, si

$$(\forall x \in I) (\forall y \in I) (|f(x) - f(y)| \le k |x - y|)$$

Soit $f:I\to\mathbb{R}$ une fonction dérivable sur un intervalle I ouvert. S'il existe une constante M telle que pour tout $x\in I$, $\left|f'(x)\right|\leq M$ alors $\forall x,y\in I$ $\left|f(x)-f(y)\right|\leq M|x-y|$

Soit $f: I \to \mathbb{R}$ une application et k > 0. f est dite k-lipschitzienne sur I, si

$$(\forall x \in I) (\forall y \in I) (|f(x) - f(y)| \le k |x - y|)$$

Un application k-lipschitzienne avec k < 1 est dite contractante

(un) Théorème du point fixe

Soit $f:[a;b] \to [a;b]$ une fonction vérifiant, pour tout $x \in [a;b]$ et tout $y \in [a;b]$

$$|f(x) - f(y)| \le L|x - y|$$
 avec $0 < L < 1$

Alors, la suite définie par :

$$\begin{cases} x_0 \in [a; b] \\ x_{n+1} = f(x_n) \end{cases}$$

converge vers l'unique solution \overline{x} de l'équation x = f(x)

(un) Théorème du point fixe

Soit $f:[a;b] \rightarrow [a;b]$ une fonction vérifiant, pour tout $x \in [a;b]$ et tout $y \in [a;b]$

$$|f(x) - f(y)| \le L|x - y|$$
 avec $0 < L < 1$

Alors, la suite définie par :

$$\begin{cases} x_0 \in [a; b] \\ x_{n+1} = f(x_n) \end{cases}$$

converge vers l'unique solution \overline{x} de l'équation x = f(x)

Montrer que la fonction $x \mapsto x^2$ est contractante sur $]-\frac{1}{3},\frac{1}{3}[$. En déduire la convergence de la suite $u_0=-\frac{1}{4}; u_{n+1}=u_n^2.$