<u>Laboratory 5</u> – Zsok Alina-Valentina

Problem 3 - Given an undirected graph, find a vertex coloring with minimum number of colors.

It.	current Vertex	previous	colored Vertex	edge (v1, v2)	used Colors
		0			
1		0			
1.1	1	0	0	True	
2		0 1			
2.1	2	0 1	0	True	
2.2		0 1	1	True	
3		0 1 2			
3.1	6		0	True	
3.2		0 1 2	1	False	

3.3		0 1 2	2	True	
4		0 1 2 6			
4.1		0 1 2 6	0	False	
4.2	4	0 1 2 6	1	True	
4.3		0 1 2 6	2	False	
4.4		0 1 2 6	6	False	
5		0 1 2 6 4			
5.1		0 1 2 6 4	0	False	
5.2		0 1 2 6 4	1	False	
5.3	3	0 1 2 6 4	2	False	
5.4		0 1 2 6 4	6	False	
5.5		0 1 2 6 4	4	True	
6		0 1 2 6 4 3			
6.1	5	0 1 2 6 4 3	0	False	
6.2		0 1 2 6 4 3	1	False	
6.3	5	0 1 2 6 4 3	2	False	

6.4		0	1	2	↓ 6	4	3				6	False	
6.5		0	1	2	6	4	3				4	True	
6.5		0	1	2	6	4	→ 3				3	True	
7		0	1	2	6	4	3	5					
7.1		0	1	2	6	4	3	5			0	False	
7.2		0	1	2	6	4	3	5			1	False	
7.3		0	1	2	6	4	3	5			2	False	
7.4	8	0	1	2	↓ 6	4	3	5			6	False	
7.5		0	1	2	6	4	3	5			4	True	
7.6		0	1	2	6	4	3	5			3	False	
7.7		0	1	2	6	4	3	→ 5			5	False	
8		0	1	2	6	4	3	5	8				
8.1		0	1	2	6	4	3	5	8		0	False	
8.2	9	0	↓ 1	2	6	4	3	5	8		1	False	
8.3		0	1	2	6	4	3	5	8		2	False	
8.4	9	0	1	2	6	4	3	5	8		6	False	

8.5		0	1	2	6	4	3	5	8			4	False	
8.6		0	1	2	6	4	3	5	8			3	False	
8.7		0	1	2	6	4	3	↓ 5	8			5	True	
8.8		0	1	2	6	4	3	5	↓ 8			8	True	
9		0	1	2	6	4	3	5	8	9				
9.1		0	1	2	6	4	3	5	8	9		0	False	
9.2		0	1	2	6	4	3	5	8	9		1	False	
9.3		0	1	2	6	4	3	5	8	9		2	False	
9.4	7 -	0	1	2	6	4	3	5	8	9		6	True	
9.5	,	0	1	2	6	4	3	5	8	9		4	False	
9.6		0	1	2	6	4	3	5	8	9		3	False	
9.7		0	1	2	6	4	3	5	8	9		5	True	
9.8		0	1	2	6	4	3	5	↓ 8	9		8	False	
9.9		0	1	2	6	4	3	5	8	↓ 9		9	False	
		0	1	2	6	4	3	5	8	9	7			

			Lis	st of co	lors us	sed			
Re	Pi	Bl	Pu	Gr	Ye	Or	Br	Bk	Wh

• Source Code Explanation

```
oublic String colorGraphMinimum(){
   ArrayList<Color> colorsUsed = new ArrayList<>();
   ArrayList<ColoredVertex> previous = new ArrayList<>(); // a list of previous nodes that were colored
   for(int vertex : this.vertices){
      ColoredVertex newVertex = new ColoredVertex(vertex);
      allNodes.add(newVertex);
  allNodes.get(0).setColor(this.colors.get(0));
                                                  Step 1
  previous.add(allNodes.get(0));
  allNodes.remove( index: 0);
   colorsUsed.add(this.colors.get(0));
   for(ColoredVertex uncoloredVertex : allNodes){
       ArrayList<Color> copyUsedColors = new ArrayList<>(colorsUsed); // copy of used color list
       for(ColoredVertex coloredVertex : previous){
           if(this.existsEdgeBetweenTwoVertices(uncoloredVertex.vertex,coloredVertex.vertex)){
              if(copyUsedColors.contains(coloredVertex.color)){
                  copyUsedColors.remove(coloredVertex.color);
                                                                     Step 2
      if(copyUsedColors.size() != 0){
          uncoloredVertex.setColor(copyUsedColors.get(0));
                                                                        Step 3
          uncoloredVertex.setColor(this.colors.get(colorsUsed.size()));
          colorsUsed.add(this.colors.get(colorsUsed.size()));
       previous.add(uncoloredVertex);
```

○ Step 1 – Initializing all the lists

- a) sets the color of the first node from the undirected graph with the first available color;
- b) adds the *first node* to the *previous list*;
- c) adds the used color to the <u>colorsUsed list</u>;
 - Step 2 Checking if the current chosen vertex is a neighbor of a previous nodes
- a) selects the *next uncolored vertex* from the list;
- b) makes a copy of the colorsUsed list (copyUsedColors);
- c) checks if exists an edge between the <u>uncolored vertex</u> and the <u>nodes</u> from the <u>previous list</u>;
 - i. if an edge exists then it removes the color used for the other vertex
 - ii. otherwise, it goes to the next node from the previous list
 - Step 3 Colors the uncolored vertex
- a) checks if any (already) <u>used colors</u> is available for usage;
 - i. if there is an (already) used color available then it uses the first one from the list;
 - ii. otherwise, the uncolored vertex is colored with the next unused color from the colors list and add the color to the colorsUsed list;

-, .	adds the i	iow colored	vertex and a	idds it to tii	e previous	iist;		