凸优化20181128课后作业

分别用障碍函数法和原对偶内点法求解下述二次规划问题:

minimize
$$(1/2)x^T P x + q^T x$$

subject to $Ax = b$
 $x \ge 0$

其中 $x \in \mathbb{R}^n$, $P \in \mathbb{S}^n_+$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

障碍函数法要求:

- 阈值误差 $\epsilon = 10^{-10}$;
- 请画出对数对偶间隙 $\log(\frac{n}{t})$ 和Newton 迭代次数k之间的关系;
- 给出原对偶最优解 x^* , λ^* , μ^* 和最优值 p^* ;

原对偶内点法要求:

- 原残差 $\|r_{pri}\|_{2} \le 10^{-10}$,对偶残差 $\|r_{dual}\|_{2} \le 10^{-10}$,代理对偶间隙 $\hat{\eta} \le 10^{-10}$;
- 给出最优解 x*, λ*, μ* 和最优值 p*;
- 分别画出 $\log \hat{\eta}$ 和 $\log \{(\|r_{\text{pri}}\|_2^2 + \|r_{\text{dual}}\|_2^2)^{1/2}\}$ 与Newton迭代次数k的关系图。

说明:

1、请使用"课程作业"附件中提供的数据求解以上两个问题;

我们给出了m=100, n=200时对应的矩阵P、q、A、b,以及初始点 x_0 、 λ 、 μ 。

- 2、请使用分块矩阵消元法求Newton方向(消元后使用Cholesky分解方法); 要求提交的代码中包含单独的Cholesky分解程序。
- 3、 作业需要在网络学堂上提交 MATLAB 程序和计算结果的电子版。 提交的作业中应包括:两种方法的程序(*.m 文件),计算结果(*.mat 文件), 实验报告(*pdf 文件)。