

## Fondamenti di Chimica industriale

4 Luglio 2014

## Esercizio N. 1

Produzione di cumene (C<sub>6</sub>H<sub>5</sub>C<sub>3</sub>H<sub>7</sub>) da benzene (C<sub>6</sub>H<sub>6</sub>) e propilene (C<sub>3</sub>H<sub>6</sub>).



Alimentazione fresca (mol%): miscela liquida a  $25^{\circ}$ C costituita da 75% propilene e 25% *n*-butano; benzene puro liquido a  $25^{\circ}$ C.

Alimentazione al reattore: benzene fresco e benzene di riciclo miscelati in rapporto 1:3.

Effluente dal reattore: miscela liquida a 204°C, raffreddata a 93°C nello scambiatore.

Colonna I di distillazione: la corrente di testa contiene il 20% del propilene alimentato al processo. Produzione: 1200 kg/h di cumene.

- Etichettare lo schema e procedere all'analisi dei gradi di libertà con il metodo delle tie streams.
- Si determini: la portata massiva delle correnti di alimentazione al reattore (kg/h), la portata molare e la composizione (mol%) della corrente uscente dal reattore, la portata molare e la composizione (mol%) della corrente di testa della Colonna I, la temperatura della corrente di benzene alimentata al reattore, la potenza termica al reattore.

|                  | <i>C<sub>p</sub></i> (kcal/kg °C) |
|------------------|-----------------------------------|
| propilene        | 0.57                              |
| <i>n</i> -butano | 0.55                              |
| benzene          | 0.45                              |
| cumene           | 0.40                              |

 $\Delta H_r^0 = 21956 \text{ kcal/kmol}$ 

## Esercizio N. 2

Steam reforming di propano:  $C_3H_8(g) + 3H_2O(v) \rightarrow 3CO(g) + 7H_2(g)$ 

Reazione secondaria (gas-shift):  $CO(g) + H_2O(v) \rightarrow CO_2(g) + H_2(g)$ 

La reazione di steam reforming è condotta su catalizzatore a base di nichel in un reattore tubolare adiabatico. Il popano è totalmente convertito.



L'alimentazione è costituita da vapore acqueo e propano gassoso in rapporto molare 6:1. La portata del gas di riscaldamento è pari a 4.94 m³/mol C<sub>3</sub>H<sub>8</sub>. Calcolare la composizione volumetrica della miscela prodotta.

|                               | $\Delta H_{\rm f}^0$ (kJ/mol) | $C_{P}$         |
|-------------------------------|-------------------------------|-----------------|
| gas di riscaldamento          | -                             | 0.040 kJ/mol °C |
| C <sub>3</sub> H <sub>8</sub> | - 104.5                       | 0.223 J/g °C    |
| H <sub>2</sub> O(v)           | - 241.8                       | 2.113 J/g °C    |
| CO                            | - 110.5                       | 1.036 J/g °C    |
| CO <sub>2</sub>               | - 393.5                       | 0.832 J/g °C    |
| H <sub>2</sub>                | -                             | 14.15 J/g °C    |

## Esercizio N. 3

Una corrente di aria, a 45°C, è umidificata dal 10% al 60% di umidità relativa in una colonna spray che opera adiabaticamente (alla pressione di 1 atm). Determinare l'umidità assoluta e la temperatura di saturazione adiabatica dell'aria in ingresso.

Calcolare la portata di acqua (kg/h) che deve essere alimentata per umidificare 15 kg/min di aria in ingresso alla colonna e la temperatura dell'aria in uscita dalla colonna.