Discrete differential geometry in homotopy type theory

Greg Langmead

Carnegie Mellon University

April 2025

Summary

This work brings to HoTT

- connections, curvature, and vector fields
- the index of a vector field
- a theorem in dimension 2 that total curvature = total index

Classical \rightarrow HoTT

Let M be a smooth, oriented 2-manifold without boundary, F_A the curvature of a connection A on the tangent bundle, and X a vector field with isolated zeroes x_1, \ldots, x_n .

$$\frac{1}{2\pi} \int_{M} F_{A} = \sum_{i=1}^{n} \operatorname{index}_{X}(x_{i}) = \chi(M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sum_{\text{faces } F} \flat_{F} = \sum_{\text{faces } F} L_{F}^{X}$$

Classical index

Near an isolated zero there are only three possibilities: index 0, 1, -1.

Index is the winding number of the field as you move clockwise around the zero.

Poincaré-Hopf theorem

The total index of a vector field is the Euler characteristic.

Examples:

Rotation: index +1 at each pole = **2**

Height: index +1 at each pole = 2

Gauss-Bonnet theorem

Total curvature divided by 2π is the Euler characteristic.

Curvature in 2D is a function $F_A: M \to \mathbb{R}$.

 $\int_M F_A$ sums the values at every point.

Positive and negative curvature cancel: 0

Constant curvature 1, area 4π : **2**

Plan

- Combinatorial manifolds
- Torsors and classifying maps
- Connections and curvature
- Vector fields
- Main theorem

HoTT background

- Symmetry,
 - Bezem, M., Buchholtz, U., Cagne, P., Dundas, B. I., and Grayson, D. R., (2021-) https://github.com/UniMath/SymmetryBook.
- Central H-spaces and banded types, Buchholtz, U., Christensen, J. D., Flaten, J. G. T., and Rijke, E. (2023) arXiv:2301.02636
- Soccola, L. (2020) MSCS 30(5). arXiv:1903.03245

Manifolds in HoTT

- Recall the classical theory of simplicial complexes
- Define a **realization** procedure to construct types

Simplicial complexes

Definition

An abstract simplicial complex M of dimension n is an ordered list of sets $M \stackrel{\text{def}}{=} [M_0, \dots, M_n]$ consisting of

- a set M_0 of vertices
- sets M_k of subsets of M_0 of cardinality k+1
- downward closed: if $F \in M_k$ and $G \subseteq F$, |G| = j + 1 then $G \in M_i$

We call the truncated list $M_{\leq k} \stackrel{\text{def}}{=} [M_0, \dots, M_k]$ the k-skeleton of M.

Simplicial complexes

Example

The **complete simplex of dimension** n, denoted $\Delta(n)$, is the set $\{0,\ldots,n\}$ and its power set. The (n-1)-skeleton $\Delta(n)_{\leq (n-1)}$ is denoted $\partial\Delta(n)$ and will serve as a combinatorial (n-1)-sphere.

$$\Delta(1)$$
 is visually $0 \bullet - - - 1$, $\partial \Delta(1)$ is visually $0 \bullet - - - 1$,

We will **realize** simplicial complexes by means of **a sequence of pushouts**.

Base case: the realization $\mathbb M$ of a 0-dimensional complex M is M_0 .

In particular the 0-sphere $\partial \Delta(1) \stackrel{\text{def}}{=} \partial \Delta(1)_0$.

For a 1-dim complex $M \stackrel{\text{def}}{=} [M_0, M_1]$ the realization is given by

$$egin{aligned} \mathcal{M}_1 imes \partial \Delta(1) & \stackrel{\mathsf{pr}_1}{\longrightarrow} \mathcal{M}_1 \ & \mathbb{A}_0 & \mathbb{M}_0 & \mathbb{M}_1 \end{aligned}$$

For example the simplicial 1-sphere $\partial \Delta(2) \stackrel{\text{def}}{=} 0$ is given by

Or the 1-skeleton of the octahedron \mathbb{O} :

$$\{\{w,g\},\ldots\}\times\{0,1\}\longrightarrow \{\{w,g\},\ldots\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\{w,g,\ldots\}\longrightarrow \mathbb{O}_1$$

To realize $M \stackrel{\text{def}}{=} [M_0, M_1, M_2]$ use $\partial \Delta(1), \partial \Delta(2)$:

$$M_1 imes \partial \Delta(1) \xrightarrow{\operatorname{pr}_1} M_1$$
 $A_0 \downarrow \qquad \qquad \downarrow^{*_{\mathbb{M}_1}} \qquad \downarrow^{*_{\mathbb{M}_1}}$
 $M_0 = \mathbb{M}_0 \xrightarrow{A_1} \mathbb{M}_1 \xrightarrow{h_2} \mathbb{M}_2$
 $M_2 imes \partial \Delta(2) \xrightarrow{\operatorname{pr}_1} M_2$

The full octahedron \mathbb{O} :

The **link** of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

A **combinatorial manifold** is a simplicial complex all of whose links are* simplicial spheres.

This will be our model of the **tangent space**.

^{*}the (classical) geometric realization is homeomorphic to a sphere

Combinatorial manifolds ↔ smooth manifolds

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a **combinatorial manifold**: a simplicial complex of dimension n such that the link is a combinatorial (n-1)-sphere, i.e. its geometric realization is an (n-1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Counterexample: Wikipedia says this is a simplicial complex, but we can see it fails the link condition:

What type families $\mathbb{M} \to \mathcal{U}$ will we consider? bundles.	Families of torsors ,	also called principal

Torsors

Let G be a (higher) group.

Definition

- A **right** G-object is a type X equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.
- X is furthermore a G-torsor if it is inhabited and the map $(\operatorname{pr}_1, \phi): X \times G \to X \times X$ is an equivalence.
- The inverse is (pr_1, s) where $s: X \times X \to G$ is called **subtraction** (when G is commutative).
- Let *BG* be the type of *G*-torsors.
- Let G_{reg} be the G-torsor consisting of G acting on itself on the right.

Facts

- $oldsymbol{\Omega}(BG,G_{\mathsf{reg}})\simeq G$ and composition of loops corresponds to multiplication in G.
- \bigcirc BG is connected.
- **3** 1 & 2 \Longrightarrow BG is a K(G,1).

See the Buchholtz et. al. H-spaces paper for more.

How to map into BS^1

To construct maps into BS^1 we **lift** a family of **mere circles**.

We will assume we have such a lift when we need it. (Remark: the lift is a choice of **orientation**.)

Other names:

- $\mathsf{BAut}(S^1) = \mathsf{BO}(2) = \mathsf{EM}(\mathbb{Z},1)$ (where $\mathsf{EM}(G,n) \stackrel{\mathsf{def}}{=} \mathsf{BAut}(\mathsf{K}(G,n))$)
- $BS^1 = BSO(2) = K(\mathbb{Z}, 2)$

Connections

Connections are extensions of a bundle to higher skeleta.

Recall link

The **link** of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

Define **the tangent bundle** on a combinatorial manifold to be $T_0 \stackrel{\text{def}}{=} \text{link} : \mathbb{M}_0 \to \mathsf{BAut}(S^1)$.

Connections on the tangent bundle

An extension T_1 of T_0 to M_1 is called a **connection on the tangent bundle**.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

We will define T_1 on the edge wb, so we need a term $T_1(wb)$: $link(w) =_{BAut(S^1)} link(b)$.

We imagine tipping:

$$T_1(g: link(w)) \stackrel{\text{def}}{=} w: link(b), \ldots$$

Use this method to define T_1 on every edge.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

Denote the path $wb \cdot br \cdot rw$ by $\partial(wbr)$. Consider $T_1(\partial(wbr))$:

We come back rotated by 1/4 turn. Call this rotation $R: link(w) =_{BAut(S^1)} link(w)$.

Extending T_1 to a face

Let H_{wbr} : refl_w =_{w=MW} $\partial(wbr)$ be the filler homotopy of the face.

 T_2 must live in $T_1(\operatorname{refl}_w) =_{(\operatorname{link}(w) =_{\operatorname{BAut}(S^1)}\operatorname{link}(w))} T_1(\partial(wbr)) = R$

 T_2 must be a homotopy H_R : id = R between automorphisms of link(w).

For example, a path $H_R(g)$: g = Rg = o. Choose go.

Original inspiration

The definition of a connection

Definition

If $\mathbb{M} \stackrel{\text{def}}{=} \mathbb{M}_0 \xrightarrow{\imath_0} \cdots \xrightarrow{\imath_{n-1}} \mathbb{M}_n$ is the realization of a combinatorial manifold and all the triangles commute in the diagram:

- The map f_k is a k-bundle on \mathbb{M} .
- The pair given by the map f_k and the proof $f_k \circ i_{k-1} = f_{k-1}$, i.e. that f_k extends f_{k-1} is called a k-connection on the (k-1)-bundle f_{k-1} .

The definition of curvature

Definition (cont.)

An extension consists of M_2 -many extensions to faces:

Here's the outer square for a single face F:

$$\begin{cases}
F \\
 \times \partial \Delta(2) \xrightarrow{pr_1} \begin{cases}
F \\
 \downarrow \\
 M_1 \xrightarrow{b_F} \mathcal{U}
\end{cases}$$

 $T_1(\partial(F))$ is the curvature at the face F and the filler \flat_F : id $= T_1(\partial F)$ is called a flatness structure for the face F.

The distinction between the path \flat_F and the endpoint $T_1(\partial(F))$ is small enough to be confusing.

Vector fields

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim realization of a combinatorial manifold.

- Our bundles of mere circles can only model nonzero tangent vectors.
- A global section of this family would be a trivialization of T, so that's not a good definition.

Our solution:

- A **vector field** is a term $X : \prod_{m:\mathbb{M}_1} Tm$.
- It models a classical nonvanishing vector field on the 1-skeleton.
- We model classical zeros by omitting the faces.

Reminder: pathovers

- Recall pathovers (dependent paths).
- There is an asymmetry: we pick a fiber to display π, the path over p.
- Dependent functions map paths to pathovers: $\operatorname{apd}(X)(p) : \operatorname{tr}_p(X(a)) = X(b)$ (simply denoted X(p)).

Next goal: define the index of a vector field on a face by computing $X(\partial F)$ around a

face.

 T_1

An example of **swirling** and **index** at this face.

 T_3

- Denote by X_1 this vector $X(v_1)$: T_1 .

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T₂₁ is trivial. Denote the transported vector as thinner.

•

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T₂₁ is trivial. Denote the transported vector as thinner.
- Say T₃₂ rotates clockwise. Denote the twice-transported vector as dashed.

- Denote by X_1 this vector $X(v_1): T_1$.
- Say T₂₁ is trivial. Denote the transported vector as thinner.
- Say T₃₂ rotates clockwise. Denote the twice-transported vector as dashed.
- Say T₁₃ is trivial. The thrice-transported vecor is dotted.

- X on e_{12} is red, etc.
- We translated all pathover data to the end of the loop.
- (Reminds me of scooping ice cream towards the last fiber.)
- The total pathover X(∂F) is called the swirling X_F of X at the face F.

Symbolic version

Index

$$\operatorname{tr}_F \stackrel{\mathsf{def}}{=} \operatorname{tr}(\partial F) : T_1 =_{BS^1} T_1$$
 curvature

$$\flat_F \stackrel{\mathsf{def}}{=} \flat(\partial F) \qquad : \mathsf{id} =_{(\mathcal{T}_1 =_{\mathcal{B}S^1} \mathcal{T}_1)} \mathsf{tr}_F \quad \textbf{flatness}$$

$$X_F \stackrel{\mathsf{def}}{=} X(\partial F)$$
 : $\mathsf{tr}_F(X_1) =_{\mathcal{T}_1} X_1$ swirling

(Recall that T_1 being an S^1 -torsor means we can use subtraction to obtain an equivalence $s(-, X_1) : T_1 \xrightarrow{x \mapsto x - X_1} S^1$. TODO: prep this earlier.)

Definition

The **flattened swirling** of the vector field X on the face F is the loop

$$L_F^X \stackrel{\text{def}}{=} \flat_F(X_1) \cdot X_F : (X_1 =_{T_1} X_1).$$

The **index** of the vector field X on the face F is the integer I_F^X such that $\text{loop}^{I_F^X} =_{S^1} (L_F^X) - X_1$.

Simplifying swirling

Swirling involves concatenating dependent paths. Can we simplify that?

Pay off all our assumptions 1: torsor structure, vector field

$$T_1$$
 $T_{13}T_{32}T_{21}X_1$
 $T_{13}T_{32}X_{21}$:
 $T_{13}T_{32}X_2$
 $T_{13}X_{32}$:
 $T_{13}X_3$
 X_{13} :

- Def: $\alpha_i \stackrel{\text{def}}{=} s(-, X_i) : T_i \stackrel{\sim}{\to} S^1$ (trivialization on 0-skeleton).
- Def: $\rho_{ji} \stackrel{\text{def}}{=} \alpha_j(T_{ji}(X_i))$ is the rotation of T_{ji} .

$$\begin{array}{ccc} T_i & \xrightarrow{T_{ji}} & T_j \\ \text{base} \mapsto X_i \left(\stackrel{\alpha_i}{\sim} \downarrow & \downarrow \stackrel{\alpha_j}{\sim} \right) \text{base} \mapsto X_j \\ & S^1 & \xrightarrow{(-)+\rho_{ji}} & S^1 \end{array}$$

• Lemma: $\rho_{ij} = -\rho_{ji}$ because **in** T_j : $\rho_{ij} + \rho_{ji} + X_j = \rho_{ij} + T_{ji}X_i = T_{ji}(\rho_{ij} + X_i) = T_{ji}T_{ij}X_j = X_j$.

Pay off all our assumptions 1: torsor structure, vector field (cont.)

 $T_{13}T_{32}T_{21}X_1$ $T_{13}T_{32}X_{21}$: $\left\|T_{13}T_{32}X_2$ $T_{13}X_{32}$: $\left\|T_{13}X_3$ X_{13} : $\left\|T_{13}X_3$

 T_1

- Define $\sigma_{ii} \stackrel{\text{def}}{=} \alpha_i(X_{ji}) : \rho_{ji} =_{S^1} \text{base}$.
- Paths of the form $(a = S^1 \text{ base})$ can be added:
 - + : $(a = base) \times (b = base) \rightarrow (a + b = base)$.
 - $\bullet \ p+q=(p+b)\cdot q.$
- Lemma: $\sigma_{ij} + \sigma_{ji} = \text{refl}_{\text{base}}$.
- Proof: apd(X)(refl) = refl $\implies X_{ij} \cdot T_{ij}X_{ji} = refl_{X_i}$ $\implies \sigma_{ij} + \sigma_{ji} = refl_{base} (T_{ij} \text{ just}$ translates X_{ii} to cat with X_{ii}).

Pay off all our assumptions 2: no boundary, commutativity

Definition

Let F_1, \ldots, F_n be the faces of \mathbb{M} , $v_i : F_i$ be designated vertices, and $\partial F_i : v_i = v_i$ be the triangular boundaries. The **total swirling** is

$$X_{\mathsf{tot}} \stackrel{\mathsf{def}}{=} \sigma_{\partial F_1} + \dots + \sigma_{\partial F_n}$$

- We assume that this expression involves every edge once in each direction.
- S^1 is commutative, hence **complete cancellation**.

Consequence

$$\begin{array}{lll} \operatorname{tr}_F \stackrel{\operatorname{def}}{=} \operatorname{tr}(\partial F) & : T_1 =_{BS^1} T_1 & \operatorname{curvature} \\ \flat_F \stackrel{\operatorname{def}}{=} \flat(\partial F) & : \operatorname{id} =_{(T_1 =_{BS^1} T_1)} \operatorname{tr}_F & \operatorname{flatness} \\ X_F \stackrel{\operatorname{def}}{=} X(\partial F) & : \operatorname{tr}_F(X_1) =_{T_1} X_1 & \operatorname{swirling} \\ L_F^X \stackrel{\operatorname{def}}{=} \flat_F(X_1) \cdot X_F & : (X_1 =_{T_1} X_1) & \operatorname{flattened swirling} \end{array}$$

These can all be totaled in S^1 to give

$$\mathsf{tr}_\mathsf{tot} \stackrel{\mathsf{def}}{=} \sum_i \rho_{\partial F} = \mathsf{base}$$
 $X_\mathsf{tot} \stackrel{\mathsf{def}}{=} \sum_i \sigma_{\partial F} = \mathsf{refl}_\mathsf{base}$ $b_\mathsf{tot} \stackrel{\mathsf{def}}{=} \sum_i b_{\partial F} + \sigma_{\partial F} = \sum_i b_{\partial F}$

So in our lingo: the total flatness equals the total flattened swirling.

Examples

Each face contributes $\flat_F = H_R$, a 1/4-rotation. Total: 2.

For total index one obtains +1 from F_{wrg} , +1 from F_{ybo} , +0 from others. Total: 2.

Classical proof

[26.2] The difference $\Re(\Delta) - 2\pi \Im_F(s)$ can be found by summing over the edges K_j the change $\Phi(K_j)$ in the illustrated angle $\angle Fw_{||}$, i.e., the rotation of $\mathbf{w}_{||}$ relative to \mathbf{F} .

Figure: Needham, T. (2021) Visual Differential Geometry and Forms.

- The classical proof is discrete-flavored.
- " $\angle Fw_{||}$ " looked a lot like a pathover.
- Hopf's Φ is defined on edges, not loops. We imitated that too.

Thank you!

Connections are 1-forms on P not on M .	$T(e_{ij})$: $T_i = T_j$ is a torsor and not a group.
Space of connections for a given P is contractible.	Two extensions to \mathbb{O}_1
Zeros of $X = Poincare dual of the Euler class.$	

Covariant derivative.	apd.
Leibniz rule.	

Maurer-Cartan form.	
Gauge transformations acting on connections and maybe functions (YM) of connections.	
The based gauge group acts freely on connections.	

Characteristic classes.	$BS^1 o B^n \mathbb{Z}$.
Chern-Weil theory.	$\mathbb{O} \xrightarrow{T} BS^1 \to B^n \mathbb{Z}.$
Hopf fibration.	$\mathbb{O} \stackrel{?}{ o} EM(\mathbb{Z},1).$