### Introduction to

### Algorithm Design and Analysis

[03] Recursion

Jingwei Xu
<a href="http://cs.nju.edu.cn/ics/people/jingweixu">http://cs.nju.edu.cn/ics/people/jingweixu</a>
Institute of Computer Software
Nanjing University

### In the Last Class ...

- Asymptotic growth rate
  - Ο, Ω, Θ
  - ο, ω
- Brute force algorithms
  - By iteration
  - By recursion

### Recursion

- Recursion in algorithm design
  - The divide and conquer strategy
  - Proving the correctness of recursive procedures
- Solving recurrence equations
  - Some elementary techniques
  - Master theorem

# Recursion in Algorithm Design

- Computing n! With Fac(n)
  - if n=1 then return 1 else return Fac(n-1)\*n

M(1)=0 and M(n)=M(n-1)+1 for n>0 (critical operation: multiplication)

- Hanoi Tower
  - If n=1 then move d(1) to peg3 else Hanoi(n-1, peg1, peg2); move d(n) to peg3; Hanoi(n-1, peg2, peg3)

```
M(1)=1 and M(n)=2M(n-1)+1 for n>1 (critical operation: move)
```

# Recursion in Algorithm Design

- Counting the Number of Bits
  - Input: a positive decimal integer n
  - Output: the number of binary digits in n's binary representation

#### int BitCounting(int n)

- 1. if(n==1) return 1;
- 2. else
- 3. return BitCounting(n/2) + 1;

$$T(n) = \begin{cases} 0 & n = 1 \\ T(\lfloor n/2 \rfloor) + 1 & n > 1 \end{cases}$$

## Divide and Conquer

#### Divide

Divide the "big" problem to smaller ones

### Conquer

Solve the "small" problems by recursion

#### Combine

Combine results of small problems, and solve the original problem

# Divide and Conquer

```
The general pattern
solve(I)
                                             T(n)=B(n) for n≤smallSize
   n=size(I);
   if (n≤smallSize)
      solution=directlySolve(I);
                                       T(n) = D(n) + \sum T(size(I_i)) + C(n)
   else
      divide I into I<sub>1</sub>,... I<sub>k</sub>;
                                                                   for n>smallSize
      for each i∈{1,...,k}
         S_i = solve(I_i);
      solution=combine(S_1, ..., S_k);
```

return solution

# Divide and Conquer

### The BF recursion

- Problem size: often decreases linearly
  - "n, n-1, n-2, ..."

### The D&C recursion

- Problem size: often decrease exponentially
  - "n, n/2, n/4, n/8, ..."

# Examples



## Examples

- Maxima
- Frequent element
- Multiplication
  - Integer
  - Matrix
- Nearest point pair

# Examples

Arrays



Trees



### Workhorse

- "Hard division, easy combination"
- "Easy division, hard combination"

Usually, the "real work" is in one part.

### Correctness of Recursion



# Analysis of Recursion

- Solving recurrence equations
- E.g., Bit counting
  - Critical operation: add
  - The recurrence relation

$$T(n) = \begin{cases} 0 & n = 1 \\ T(\lfloor n/2 \rfloor) + 1 & n > 1 \end{cases}$$

# Analysis of Recursion

### Backward substitutions

By the recursion equation:  $T(n) = T(\lfloor \frac{n}{2} \rfloor) + 1$ 

For simplicity, let  $n=2^k$  (k is a nonnegative integer), that is, k = log n

$$T(n) = T(\frac{n}{2}) + 1 = T(\frac{n}{4}) + 1 + 1 = T(\frac{n}{8}) + 1 + 1 + 1 = \dots$$

$$T(n) = T(\frac{n}{2^k}) + \log n = \log n$$
  $(T(1) = 0)$ 

## Smooth Functions

- f(n)
  - Nonnegative eventually non-decreasing function defined on the set of natural numbers
- f(n) is called smooth
  - If f(2n)∈Θ(f(n))
- Examples of smooth functions
  - logn, n, nlogn, and n<sup>α</sup> (α≥0)
  - E.g.,  $2nlog2n=2n(logn + log2) \in \Theta(nlogn)$

### Even Smoother

- Let f(n) be a smooth function, then, for any fixed integer b≥2, f(bn)∈Θ(f(n))
  - That is, there exist positive constants c<sub>b</sub> and d<sub>b</sub> and a nonnegative integer n<sub>0</sub> such that

$$d_b f(n) \le f(bn) \le c_b f(n)$$
 for  $n \ge n_0$ 

It is easy to prove that the result holds for b=2<sup>k</sup>, For the second inequality:

$$f(2^k n) \le c_2^k f(n)$$
 for k=1,2,3... and n \geq n\_0

For an arbitrary integer b≥2, 2<sup>k-1</sup>≤b≤2<sup>k</sup>

Then, 
$$f(bn) \leq f(2^k n) \leq c_2^k f(n)$$
, we can use  $c_2^k$  as  $c_b$ .

### Smoothness Rule

- Let T(n) be an eventually non-decreasing function and f(n) be a smooth function.
  - If T(n)∈Θ(f(n)) for values of n that are powers of b (b≥2), then  $T(n)\in\Theta(f(n))$ .

Just proving the big - Oh part:

By the hypothesis:  $T(b^k) \le cf(b^k)$  for  $b^k \ge n_0$ 

By the prior result:  $f(bn) \le c_h f(n)$  for  $n \ge n_0$ 

Let  $n_0 \le b^k \le n \le b^{k+1}$ 

$$T(n) \leq T(b^{k+1}) \leq cf(b^{k+1}) = cf(bb^k) \leq cc_b f(b^k) \leq cc_b f(n)$$



# Computing the Fibonacci Number

$$T(0)=0$$
 $T(1)=1$ 
 $T(0)=T(n-1)+T(n-2)$ 
 $0,1,1,2,3,5,8,13,21,34,...$ 

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \dots + r_k a_{n-k}$$

is called linear homogenous relation of degree k.

For the special case of Fibonacci:  $a_n = a_{n-1} + a_{n-2}$  $r_1 = r_2 = 1$ 

## Computing the Fibonacci Number

$$f_0 = 0$$

$$f_1=1$$

$$f_{n}=f_{n-1}+f_{n-2}$$



0,1,1,2,3,5,8,13,21,34,...

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \dots + r_k a_{n-k}$$

is called linear homogenous relation of degree k.

For the special case of Fibonacci:  $a_n = a_{n-1} + a_{n-2}$  $r_1 = r_2 = 1$ 

# Characteristic Equation

For a linear homogeneous recurrence relation of degree
 k

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \dots + r_k a_{n-k}$$

the polynomial of degree k

$$x^k = r_1 x^{k-1} + r_2 x^{k-2} + \dots + r_k$$

is called its characteristic equation.

 The characteristic equation of linear homogeneous recurrence relation of degree 2 is:

$$x^2 - r_1 x - r_2 = 0$$

# Solution of Recurrence Relation

• If the characteristic equation  $x^2 - r_1x - r_2 = 0$  of the recurrence relation  $a_n = r_1a_{n-1} + r_2a_{n-2}$  has two distinct roots  $s_1$  and  $s_2$ , then

$$a_n = us_1^n + vs_2^n$$

where u and v depend on the initial conditions, is the explicit formula for the sequence.

 If the equation has a single root s, then, both s₁ and s₂ in the formula above are replaced by s.

### Proof of the Solution

Remember equation:  $x^2 - r_1 x - r_2 = 0$ We need to prove that:  $us_1^n + vs_2^n = r_1 a_{n-1} + r_2 a_{n-2}$ 

$$us_1^n + vs_2^n = us_1^{n-2}s_1^2 + vs_2^{n-2}s_2^2$$

$$= us_1^{n-2}(r_1s_1 + r_2) + vs_2^{n-2}(r_1s_2 + r_2)$$

$$= r_1us_1^{n-1} + r_2us_1^{n-2} + r_1vs_2^{n-1} + r_2vs_2^{n-2}$$

$$= r_1(us_1^{n-1} + vs_2^{n-1}) + r_2(us_1^{n-2} + vs_2^{n-2})$$

$$= r_1a_{n-1} + r_2a_{n-2}$$

## Back to Fibonacci Sequence

$$f_0 = 0$$

$$f_1=1$$



f<sub>n</sub>=f<sub>n-1</sub>+f<sub>n-2</sub> Explicit formula for Fibonacci Sequence

The characteristic equation is  $x^2 - x - 1 = 0$ , which has roots:

$$s_1 = \frac{1 + \sqrt{5}}{2}$$
 and  $s_1 = \frac{1 - \sqrt{5}}{2}$ 

Note: (by initial conditions)

$$f_1 = us_1 + vs_2 = 1$$
 and  $f_2 = us_1^2 + vs_2^2 = 1$  which means:  $f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$ 

## Guess and Prove

- Example:  $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- Guess
  - *T*(*n*)∈*O*(*n*)?
    - $T(n) \le cn$ , to be proved for c large enough
  - $T(n) \in O(n^2)$ ?
    - $T(n) \le cn^2$ , to be proved for c large enough
  - **Or maybe**, *T*(*n*)∈*O*(*n*log*n*)?
    - T(n)≤cnlogn, to be proved for c large enou
- Prove
  - by substitution

```
Try to prove T(n) \le cn:

T(n) = 2T(\lfloor n/2 \rfloor) + n \le 2c(\lfloor n/2 \rfloor) + n

\le 2c(n/2) + n = (c+1)n, Fail!
```

#### However:

$$T(n) = 2T(\lfloor n/2 \rfloor) + n \ge 2c\lfloor n/2 \rfloor + n$$
$$\ge 2c[(n-1)/2] + n = cn + (n-c) \ge cn$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2(c \lfloor n/2 \rfloor \log (\lfloor n/2 \rfloor)) + n$$

$$\leq cn \log (n/2) + n$$

$$= cn \log n - cn \log 2 + n$$

$$= cn \log n - cn + n$$

$$\leq cn \log n \quad \text{for } c \geq 1$$

## Divide and Conquer Recursions

- Divide and conquer
  - Divide the "big" problem to small ones
  - Solve the "small" problems by recursion
  - Combine results of small problems, and solve the original problem
- Divide and conquer recursion

$$T(n) = bT(n/c) + f(n)$$
divide conquer combine

### Recursion Tree



The recursion tree for T(n)=T(n/2)+T(n/2)+n

### Recursion Tree

#### Node

 Non-leaf T(size) nonrecursive cost T(n)n Non-recursive cost T(n/2)T(n/2)n/2n/2 Recursive cost T(n/4)T(n/4)n/4T(n/4)T(n/4)n/4n/4n/4Leaf

The recursion tree for T(n)=T(n/2)+T(n/2)+n

- Edge
  - Recursion

Base case

## Recursion Tree

Recursive cost

Non-recursive cost

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

# of sub-problems

size of sub-problems



## Recursion Tree for

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

Total?



## Solving the Divide-and-Conquer Recurrence

- The recursion equation for divide-and-conquer, the general case: T(n)=bT(n/c)+f(n)
- Observations:
  - Let base-cases occur at depth D (leaf), then n/c<sup>D</sup>=1, that is D=log(n)/log(c)
  - Let the number of leaves of the tree be L, then L=b<sup>D</sup>, that is L=b<sup>(log(n)/log(c))</sup>
  - By a little algebra: L=n<sup>E</sup>, where E=log(b)/log(c), called critical exponent.

## Recursion Tree for

$$T(n) = bT(n/c) + f(n)$$



# Divide-and-Conquer - the Solution

- The solution of divide-and-conquer equation is the nonrecursive costs of all nodes in the tree, which is the sum of the row-sums
  - The recursion tree has depth  $D = \log(n)/\log(c)$ , so there are about that many row-sums.
- The 0th row-sum
  - is f(n), the non recursive cost of the root.
- The Dth row-sum
  - is n<sup>E</sup>, assuming base cases 1, or Θ(n<sup>E</sup>) in any event.

# Solution by Row-sums

- [Little Master Theorem] Row-sums decide the solution of the equation for divide-andconquer:
  - Increasing geometric series:  $T(n) \in \Theta(n^E)$
  - Constant:  $T(n) \in \Theta(f(n)\log n)$
  - Decreasing geometric series:  $T(n) \in \Theta(f(n))$

This can be generalized to get a result not using explicitly row-sums.

### Master Theorem

- Loosening the restrictions on f(n)
  - Case 1:  $f(n) \in O(n^{E-\varepsilon})$ ,  $(\varepsilon > 0)$ , then:

$$T(n) \in \Theta(n^E)$$

• Case 2:  $f(n) \in \Theta(n^E)$ , as all node depth contribute about equally: /

$$T(n) \in \Theta(f(n)\log(n))$$

• Case 3:  $f(n) \in \Omega(n^{E+\varepsilon}), (\varepsilon > 0)$ , and of  $bf(n/c) \le \theta f(n)$  for some constant  $\theta < 1$  and all sufficiently large n, then:  $T(n) \in \Theta(f(n))$ 

The positive  $\epsilon$  is critical, resulting gaps between cases as well.

## Using Master Theorem

- Example 1:  $T(n) = 9T(\frac{n}{3}) + n$   $b = 9, c = 3, E = 2, f(n) = n = O(n^{E-1})$ Case 1 applies:  $T(n) = \Theta(n^2)$
- Example 2:  $T(n) = T(\frac{2}{3}n) + 1$  $b = 1, c = \frac{3}{2}, E = 0, f(n) = 1 = \Theta(n^{E})$

Case 2 applies:  $T(n) = \Theta(\log n)$ 

• Example 3:  $T(n) = 3T(\frac{n}{4}) + n \log n$   $b = 3, c = 4, E = \log_4 3, f(n) = n \log n = \Omega(n^{E+\epsilon})$ Case 3 applies:  $T(n) = \Theta(n \log n)$ 

## Using Master Theorem

$$T(n) = 2T(n/2) + n \log n$$
  
Does Case 3 apply? Why?

$$T(n) = \sqrt{n}T(\sqrt{n}) + n$$

- The gap between the 3 cases
  - Often, non of the 3 cases apply
  - Your task: design more non-solvable recursions

# Thank you! Q & A