闵行区 2019 学年第一学期九年级质量监控试卷 答案要点及评分标准

一、选择题:

1. C; 2. A; 3. B; 4. D; 5. C; 6. B.

二、填空题:

7. 6; 8. 4; 9. 下降; 10. 40; 11. -6; 12. 50; 13.
$$\sqrt{2}$$
;

14.
$$\frac{12}{5}$$
; 15. $y = -x^2 + 1$; 16. $2 \neq 3$; 17. $2 \tan 36^\circ \left(\frac{2 \sin 36^\circ}{\cos 36^\circ}\right)$.; 18. 1.

三、解答题:

画图及结论正确.(4分)

21. 解: (1) 过点 O 作 $OH \perp DC$,垂足为 H.

$$AD//BC$$
, $\angle ADC=90^{\circ}$, $OH \perp DC$,

∴
$$\angle BCN = \angle OHC = \angle ADC = 90^{\circ}$$
. (1 $\frac{1}{1}$)

$$:OH \perp DC$$
, OH 过圆心,

即: *DE=CF*.

(2) 过点 A 作 $AG \perp BC$, 垂足为点 G, $\angle AGB = 90^{\circ}$,

$$\therefore \angle AGB = \angle BCN = 90^{\circ}, \quad \therefore AG//DC.$$

••
$$\frac{AD}{AE} = \frac{AB}{AC}$$
, $\mathbb{H} \frac{AD}{AB} = \frac{AE}{AC}$. (1 分)

在 $\triangle DAE$ 和 $\triangle BAC$ 中

$$\therefore \angle DAE = \angle BAC, \quad \frac{AD}{AB} = \frac{AE}{AC}.$$

AF 是 $\angle BAC$ 的平分线,

24. 解: (1) 设抛物线的表达式为 $y = ax^2 + bx + c(a \neq 0)$.

由题意得:
$$\begin{cases} -\frac{b}{2a} = -2\\ 9a - 3b + c = 0 \end{cases}$$
 (1分)

解得:
$$a = \frac{2}{3}$$
, $b = \frac{8}{3}$. (2 分)

∴这条抛物线的表达式为
$$y = \frac{2}{3}x^2 + \frac{8}{3}x + 2$$
. (1分)

注:用对称性求解析式酌情给分。

(2)
$$\Leftrightarrow y = 0$$
, $\# \angle \frac{2}{3}x^2 + \frac{8}{3}x + 2 = 0$,

解得
$$x_1 = -3$$
, $x_2 = -1$. (1分)

$$\therefore$$
 点 A 的坐标是 $(-3,0)$ \therefore 点 B 的坐标是 $(-1,0)$(1分)

在 Rt \triangle *OBC* 中, \angle *BOC*=90°,

∴
$$\cot \angle BCO = \frac{OC}{OB} = 2$$
. (1 分)

(3) 设点 *E* 的坐标是 (x, 0), 得 OE=|x|.

$$\therefore$$
 $\angle CEO = \angle BCO$, \therefore $\cot \angle CEO = \cot \angle BCO$.

在 Rt
$$\triangle$$
 EOC 中, \therefore cot \angle CEO = $\frac{OE}{OC} = \frac{|x|}{2} = 2$.

∵点 *C* 坐标是 (0, 2),

$$: l_{CE}: y = \frac{1}{2}x + 2$$
或 $y = -\frac{1}{2}x + 2$. (1分)

$$\therefore \begin{cases}
y = \frac{1}{2}x + 2 \\
y = \frac{2}{3}x^2 + \frac{8}{3}x + 2
\end{cases}, \quad \overrightarrow{\text{plx}} \begin{cases}
y = -\frac{1}{2}x + 2 \\
y = \frac{2}{3}x^2 + \frac{8}{3}x + 2
\end{cases}$$

解得
$$\begin{cases} x = -\frac{13}{4} \\ y = \frac{3}{8} \end{cases}$$
 和
$$\begin{cases} x = 0 \\ y = 2 \end{cases}$$
 (舍去), 或
$$\begin{cases} x = -\frac{19}{4} \\ y = \frac{35}{8} \end{cases}$$
 和
$$\begin{cases} x = 0 \\ y = 2 \end{cases}$$
 (舍去);

∴点
$$P$$
坐标是 $\left(-\frac{13}{4}, \frac{3}{8}\right)$ 或 $\left(-\frac{19}{4}, \frac{35}{8}\right)$(2分)

- - ∴ CF 是 Rt△ABC 的中线.(1分)

又∵在 Rt△ABC, AC=BC, ∠ACB=90°,

- \therefore $\angle DEF = \angle ADE + \angle DAE = \angle EFC + \angle ECF$, $\perp \angle ADE = \angle EFC = 90^{\circ}$,
- (2)解:

如右图,过点
$$B$$
 作 $BH \perp CD$ 于点 H .
可证 $\triangle CAD \cong \triangle BCH$. (1分)

∴
$$BH = CD = 2$$
, $CH = AD = x$, $DH = 2-x$. (1 $\%$)

可证
$$AD//BH$$
. $\therefore \frac{AD}{BH} = \frac{DE}{EH}$(1分)

$$\frac{x}{2} = \frac{DE}{EH}$$
, $\frac{x+2}{2} = \frac{DE + EH}{EH} = \frac{DH}{EH}$, $EH = \frac{4-2x}{x+2}$(1 $\frac{2}{2}$)

$$y = CE = CH + HE = x + \frac{4 - 2x}{x + 2} = \frac{x^2 + 4}{x + 2} (0 < x \le 2)$$
. (1+1 $\%$)

(3) 解: 当 GC=GD 时,如图 1,

取 AC 的中点 M,联结 MD. 那么 MD=MC,

联结 MG, $MG \perp CD$, 且直线 MG 经过点 B. 那么 BH 与 MG 共线.

当 CG=CD 时,如图 2,即 CG=2,点G 为 $\triangle ABC$ 的重心,

$$CF = \frac{3}{2}CG = 3$$
, $AB = 2CF = 6$, $AC = \frac{\sqrt{2}}{2}AB = 3\sqrt{2}$,

综上所述, 当 $\triangle CDG$ 是以 CG 为腰的等腰三角形时, AD=1 或 $\sqrt{14}$.

