Proyecto // Parcial II

Grupos de Lie

*

Este proyecto está diseñado como una introducción a la geometría diferencial de los grupos de Lie.

1 Definición y propiedades básicas

Definición 1.1. Un grupo de Lie es una variedad diferenciable G junto con un par de funciones diferenciables $m: G \times G \to G$, $i: G \to G$ y un elemento distinguido $e \in G$ tal que

- 1. m(a,e) = m(e,a) = a para todo $a \in G$.
- 2. m(c, m(a, b)) = m(m(c, a), b) para todo $a, b, c \in G$.
- 3. $m(a, i(a)) = m(i(a), a) = e \text{ para todo } a \in G.$

Esto es, todo grupo de Lie es un grupo, que además es una variedad y las operaciones de grupo son diferenciables. De ahora en adelante usaremos la notación ab=m(a,b) y $i(a)=a^{-1}$.

Si $a \in G$, entonces la multiplicación derecha e izquierda por a define dos funciones $L_a, R_a: G \to G$ dada por

$$L_a(b) = ab$$

$$R_a(b) = ba$$

Ejercicio 1.1. Para cada $a \in G$ demuestra que:

- 1. L_a y R_a son differenciables.
- 2. $L_a^{-1} = L_{a^{-1}} y R_a^{-1} = R_{a^{-1}}$. Concluye que $L_a y R_a$ son difeomorfismos.
- 3. Si $b \in G$ entonces $L_a \circ L_b = L_{ab}$ y $R_a \circ R_b = R_{ba}$.
- 4. $i \circ L_a = R_{a^{-1}} \circ i \ y \ i \circ R_a = L_{a^{-1} \circ i}$.

La función de multiplicación $m: G \times G \to G$ es diferenciable por lo que tiene diferencial en cada punto $(g,h) \in G \times G$. Recuerden que $T_{(g,h)}(G \times G) \cong T_gG \times T_hG$. Esta descomposición del espacio tangente nos permite describir la diferencial de m en términos de los difeomorfismos L_a y R_b .

Ejercicio 1.2. Demuestra que se puede calcular la diferencial de m en el punto $(a,b) \in G \times G$ como

$$Dm_{(a,b)}(v,w) = (DL_a)_b(w) + (DR_b)_a(v)$$

Sugerencia: Usa que $Dm_{(a,b)}$ es lineal y calcula $Dm_{(a,b)}$ en vectores de la forma (v,0) y (0,w).

Ejercicio 1.3. Demuestra que la diferencial del mapeo de inversión $i:G\to G$ en la identidad está dado por

$$Di_e(v) = -v$$

Notemos que para cada $a \in G$ se tiene que $L_a(e) = ae = a$ y por lo tanto la diferencial $(DL_a)_e : T_eG \to T_aG$ conecta dichos espacios tangentes.

Ejercicio 1.4. Demuestra que, para cada $a \in G$ la diferencial $(DL_a)_e$ es un isomorfismo lineal.

Estos isomorfismos se pueden juntar en una función

$$\Psi: G \times T_eG \to TM$$

definida por

$$\Psi(a, v) = (a, (DL_a)_e(v)) \in TM$$

Ejercicio 1.5. Este ejercicio tiene como objetivo demostrar que Ψ es un isomorfismo de haces vectoriales.

- 1. Demuestra que Ψ es una función diferenciable.
- 2. Define $\Gamma: TM \to G \times T_e$ como

$$\Gamma(a,v) = (a, DL_{a^{-1}}(v))$$

Demuestra que Γ es diferenciable y que $\Psi^{-1} = \Gamma$.

- 3. Demuestra que Ψ es un mapeo de haces vectoriales y concluye que Ψ es un isomorfismo de haces vectoriales.
- 4. Concluye que G es paralelizable.

Para una introducción accesible a la teoría de grupos de Lie, véase [7]. También es recomendable consultar la parte de Graeme Segal del libro [4].

2 Campos invariantes

Las multiplicaciones por la izquierda y derecha también transportan o trasladan los campos vectoriales. Los campos invariantes son aquellos que coinciden con todos sus traslados:

Definición 2.1. Se dice que un campo vectorial X en G es izquierdo [derecho] invariante si para todo $a \in G$

$$L_a^*(X) = X \qquad [R_a^*(X) = X]$$

es decir si para todo $b \in G$

$$(DL_a)_b(X_b) = X_{ab} \qquad [(DR_a)_b(X_b) = X_{ba}]$$

La colección de campos izquierdo invariantes es denotada por $\mathcal{X}^G(G)$.

Nota que si $X,Y \in \mathcal{X}^G(G)$ son un par de campos invariantes y $c \in \mathbb{R}$ entonces X+cY es un campo izquierdo invariante. Esto es los campos izquierdo invariantes forman un subespacio vectorial del conjunto de campos vectoriales.

Ejercicio 2.1. Demuestra que si $X \in \mathcal{X}^G(X)$ es un campo izquierdo invariante $y \ Y = i^*(X)$, i.e. $Y_a = (Di)_{a^{-1}}(X_{a^{-1}})$, entonces Y es izquierdo invariante.

Ejercicio 2.2. Para cada vector $v \in T_eG$ define el campo vectorial X_v como $(X_v)_a = (DL_a)_e(v)$. Demuestra que X_v es un campo vectorial diferenciable e izquierdo-invariante.

Prueba también que el mapeo $v \mapsto X_v$ es un isomorfismo lineal entre T_eG y $\mathcal{X}^G(G)$. Por lo que $\mathcal{X}^G(G)$ es un espacio vectorial con $\dim(\mathcal{X}^G(G)) = \dim(G)$.

Ejercicio 2.3. Demuestra que si $X, Y \in \mathcal{X}^G(G)$ entonces $[X, Y] \in \mathcal{X}^G(G)$.

Por todo lo probado hasta ahora $T_eG \cong \mathcal{X}^G(G)$ es un espacio vectorial finito dimensional junto con una operación $[\cdot,\cdot]:\mathcal{X}^G(G)\times\mathcal{X}^G(G)\to\mathcal{X}^G(G)$ bilineal y antisimétrica. Esta operación satisface la identidad de Jacobi

$$[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0$$

A un espacio vectorial junto con una operación así se le llama un álgebra de Lie.

Definición 2.2. Un álgebra de Lie es un espacio vectorial V junto con una operación $[\cdot,\cdot]:V\times V\to V$ que satisface

- 1. $[\cdot,\cdot]$ es bilineal.
- 2. Para todos $v, w \in V$, [v, w] = -[w, v].
- 3. Para todos $v, w, z \in V$, [v, [w, z]] + [z, [v, w]] + [w, [z, v]] = 0.

Definición 2.3. A T_eG se le llama el álgebra de Lie asociada a G y es usualmente escrita con letras góticas $\mathfrak{g} = T_eG$.

3 Subgrupos a un parámetro

Definición 3.1. Una curva diferenciable $a: \mathbb{R} \to G$ es un subgrupo a un parámetro si

$$a(0) = e$$
$$a(t+s) = a(t)a(s)$$

Cada subgrupo a un parámetro produce transformaciones a un parámetro de G de la siguiente manera: Sea $\Psi_a:G\times\mathbb{R}\to G$ la función definida por

$$\Psi_a(b,t) = ba(t) = R_{a(t)}(b)$$

Ejercicio 3.1. Demuestra que Ψ_a es diferenciable. Y que para todo $b \in G$ y $t, s \in \mathbb{R}$ se tiene que $\Psi_a(b, t + s) = \Psi_a(\Psi_a(b, t), s)$.

Para cada b fijo esto define una curva diferenciable $\beta_a^b(t) = \Psi_a(b,t)$ que satisface $\beta_a^b(0) = \Psi_a(b,0) = a(0)b = eb = b$. Luego $(\beta_a^b)'(0) \in T_bM$. Si definimos $X_a(b) := (\beta_a^b)'(0)$, la función X_a define un campo vectorial. Notemos que se cumple que:

$$X_a(b) = \frac{\partial \Psi_a}{\partial t}(b,0)$$

Ejercicio 3.2. Demuestra que X_a es un campo vectorial izquierdo invariante $y(X_a)_e = a'(0)$.

Noten que para obtener un campo izquierdo invariante hay que multiplicar por la derecha por el subgrupo a un parámetro.

Hemos visto cada subgrupo a un parámetro define un campo vectorial izquierdo invariante. Ahora veremos que el reciproco también es cierto.

Para los siguientes ejercicios, necesitamos usar la noción de *flujo* y la relación entre flujos maximales y campos vectoriales. Para más detalles sobre estas nociones, véase [5, p. 135] [6, p.89] y [3, p. 74].

Ejercicio 3.3. Sea $Sub_1(G)$ el conjunto de subgrupos a un parámetro de G. Acabamos de definir una función $\Theta : Sub_1(G) \to \mathcal{X}^G(G)$ dado por

$$\Theta(a) = \frac{\partial \Psi_a}{\partial t}$$

Cada campo izquierdo invariante $X \in \mathcal{X}^G(G)$ es una ecuación diferencial en G la cual induce un flujo maximal $\Psi_X : G \times \mathbb{R} \to G$ (asumiremos por el momento que está definido en todo $G \times \mathbb{R}$)

- 1. Demuestra que la curva $a(t) = \Psi_X(e,t)$ es un subgrupo a un parámetro de G.
- 2. Demuestra que $\Theta(a) = X$. Sugerencia: Demuestra que $\Psi_a = \Psi_X$.
- 3. Concluye que Θ es biyectiva.

Dado que $T_eG \cong \mathcal{X}^G(G) \cong Sub_1(G)$ todo vector tangente en la identidad tiene asociado un subgrupo a un parámetro.

Ejercicio 3.4. Demuestra que para todo $v \in T_eG$ existe un único subgrupo a un parámetro de G, digamos $a_v : \mathbb{R} \to G$, tal que $a'_v(0) = v$.

Dichos mapeos se juntan en un único mapeo llamado el mapeo exponencial del grupo G.

Definición 3.2. El mapeo exponencial $exp: T_eG \to G$ es la función definida por

$$exp(v) = a_v(1)$$

Ejercicio 3.5. Demuestra que, para todo $v \in T_eG$ se tiene

$$a_v(t) = exp(tv)$$

Una exposición relativamente elemental de los subgrupos a un parámetro del grupo $GL_n(\mathbb{R})$ y su relación con los sistemas lineales de ecuaciones diferenciales se puede encontrar en el capítulo 3 de [2].

4 Métricas invariantes

La noción de campo vectorial invariante se puede extender a campos tensoriales. Eso ya que los difeomorfismos L_a (y R_a) también trasladan campos tensoriales. Recordamos que si $g: M \to N$ es un difeomorfismo y $T \in T_s^r M$ es un campo tensorial entonces g_*T es el campo tensorial en N tal que para todo $g(q) \in N$ y todos $v_1, \dots, v_r \in T_{g(q)}N$ y $f^1, \dots, f^s \in T_{g(q)}^*N$ se tiene que

$$(g_*(T))_{g(q)}(v_1, \dots, v_r, f^1, \dots, f^s)$$

$$= T(Dg_q^{-1}(v_1), \dots, Dg_q^{-1}(v_r), f^1 \circ Dg_q, \dots, f^s \circ Dg_q)$$

Definición 4.1. Un campo tensorial $T \in T_s^r G$ es izquierdo [derecho] invariante si para todo $a \in G$ se tiene que $(L_a)_*(T) = T$ [$(R_a)_*(T) = T$]. El espacio de (r,s)-tensores izquierdo-invariantes es denotado por $(T_s^r)^G G$. El espacio de r-formas diferenciales izquierdo-invariantes es denotado por $\Omega_G^r G$.

En particular una 1-forma ω es izquierdo invariante si para todo $a \in G$ y todo campo vectorial $X \in \mathcal{X}(G)$

$$(L_a)_*(\omega)(X) = \omega \left(DL_a^{-1}(X)\right) = \omega \left(DL_{a^{-1}}(X)\right)$$

Ejercicio 4.1. Sean $\omega \in \Omega^1 G$ y $X \in \mathcal{X}(G)$.

- 1. Demuestra que ω es izquierdo-invariante si y sólo si $\omega(Y)$ es una función constante para todo $Y \in \mathcal{X}^G G$.
- 2. Demuestra que X es izquierdo-invariante si y sólo si $\tau(X)$ es una función constante para todo $\tau \in \Omega^1_GG$.

Definición 4.2. Una métrica izquierdo(derecho)-invariante en G es una métrica $g \in T_0^2(G)$ (simétrica, positivo definida) que es izquierdo(derecho)-invariante.

Ejercicio 4.2. Demuestra que siempre existe una métrica izquierdo-invariante.

Ejercicio 4.3. Sea g una métrica riemanniana en G y $X \in \mathcal{X}(G)$.

- 1. Demuestra que g es izquierdo invariante si y sólo si para todo par $Y, Z \in \mathcal{X}^G(G)$ la función g(Y, Z) es constante.
- 2. Supón que g es izquierdo invariante. Demuestra que X es izquierdo invariante si g sólo si para todo G expression G (G) la función G(G) es constante.

Ejercicio 4.4. Demuestra que si g es una métrica izquierdo(derecho)-invariante entonces para todo $a \in G$ los difeomorfismos $L_a(R_a)$ son isometrías.

Ejercicio 4.5. Demuestra que si X es derecho invariante entonces $\mathcal{L}_X g = 0$. Sugerencia: Recuerda que el flujo de X está dado por $\Psi_a(b,t) = a(t)b$, donde $a : \mathbb{R} \to G$ es una solución a x' = X(x) con a(0) = e y luego evalúa $\mathcal{L}_X g$ con campos izquierdo-invariantes.

Ejercicio 4.6. Supongamos que g es una métrica izquierdo y derecho invariante (o bi-invariante). Usa la fórmula de Koszul:

$$g(\nabla_X Y, Z) = \frac{1}{2} (Xg(Y, X) + Yg(X, Z) - Zg(X, Y) + g([X, Y], Z) - g([X, Z], Y) - g([Y, Z], X))$$

y la ecuación

$$\mathcal{L}_X g(Y, Z) = X g(Y, Z) - g([X, Y], Z) - g(Y, [X, Z])$$

para demostrar que si X es un campo izquierdo invariante entonces

$$\nabla_X X = 0$$

Concluye que las curvas $\gamma_v(t) = exp(tv)$, para $v \in T_eG$ unitario, son geodésicas. Sugerencia: Calcula $g(\nabla_X X, Z)$ para cualquier campo $Z \in \mathcal{X}^G(G)$.

Para más información sobre métricas invariantes en grupos de Lie véase el apéndice 2 de [1].

References

- V. I. Arnol'd. Mathematical methods of classical mechanics. New York: Springer-Verlag, 1989. ISBN: 978-0387968902.
- [2] V. I. Arnol'd. Ordinary differential equations. Berlin, Germany New York: Springer, 2006. ISBN: 978-3540345633.
- [3] Theodor Bröcker and Klaus Jänich. *Introduction to differential topology*. Cambridge New York: Cambridge University Press, 1982. ISBN: 978-0521284707.
- [4] Roger Carter, Graeme Segal, and Ian G. Macdonald. Lectures on Lie groups and Lie algebras. Cambridge New York: Cambridge University Press, 1995. ISBN: 978-0521499224.
- [5] Michael Spivak. Calculus on manifolds: a modern approach to classical theorems of advanced calculus. Vol. 1. Westview Press, 1971.
- [6] Shlomo Sternberg. Lectures on differential geometry. American Mathematical Soc., 1999.
- [7] John Stillwell. Naive lie theory. New York London: Springer, 2010. ISBN: 978-1441926814.