Введем некоторые определения:

- \bullet $at(\phi)$ множество атомов в формуле ϕ
- $at_i(\phi)$ некоторый заданный порядок этих атомов
- Атом a сопоставим с булевой переменной e(a) (такую процедуру будем называть булевское кодирование)
- e(t) булева формула, полученную булевым кодированием каждого атома формулы t (такую формулу будем называть пропозиционным скилетом формулы t)

Рассмотрим следующий пример: $\phi := x = y \lor x = z$. Тогда $at(\phi) = \{at_1, at_2\}$, $at_1 := x = y$, $at_2 := x = z$. Сопоставим x = y булеву переменную $e(x = y) = b_1$ и x = z булеву переменную $e(x = z) = b_2$. Получаем $e(\phi) = b_1 \lor b_2$.

Пусть α - некоторая (возможно, частичная) оценка формулы $e(\phi)$, например для формулы выше пусть $\alpha = \{e(at_1) \to FALSE, e(at_2) \to TRUE\}$.

$$Th(at_i, \alpha) = \begin{cases} at_i & \text{если } \alpha(at_i) = TRUE \\ \neg at_i & \text{иначе} \end{cases}$$

 $Th(\alpha)=\{Th(at_i,\alpha)|e(at_i),\alpha\},\ \overline{Th(\alpha)}$ - конъюнкция всех элементов их $Th(\alpha)$

Пусть нам данн алгоритм (назовём его Deduction), который может решить $\overline{Th(\alpha)}$. Опишем алгоритм решение SMT-формул, имея Deduction:

- Вычислим $B = e(\phi)$
- Отправим *В* SAT-решателю
- Если получили "UNSAT то возвращаем "UNSAT"
- Если получили "UNKNOWN то возвращаем "UNKNOWN"
- Если получили некоторую α , то вычисляем Deduction от $Th(\alpha)$
- Если получили "SAT то возвращаем "SAT"
- Если получили "UNKNOWN то возвращаем "UNKNOWN"
- Если получили "UNSAT то $B = B \wedge$ "блокирующий дизюнкт"t и начинаем со второго пункта

Опишем подробнее свойства "блокирующего дизюнкта" (так же называют леммой):

- ullet t тавтология в T
- ullet t состоит только из атомов из ϕ
- t "блокирует" α , т.е. при отправлении B SAT-решателю мы не сможем снова получить α

Предположим, что в предыдущем примере оценка оказалась "UNSAT тогда можно привести такой "блокирующий дизюнкт": $t := e(at_1) \lor \neg e(at_2)$ (т.е. мы просто взяли дизъюнкцию отрицаний атомов). Есть и другие способы найти блокирующий дизюнкт, например, часто можно взять дизъюнкцию части отрицаний атомов, если они "UNSAT" в данной теории.

Есть более эффективные алгоритмы решения SMT задач, но для этого нам нужно изучить, как работает SAT решатель. В процессе работы ленивого алгоритма может возникнуть много блокирующих дизюнктов. Многие теории можно свести к SAT задаче, но обычно существуют более эффективные алгоритмы решения теорий.

Решим с помощью SMT-решателя задачу с прошлой лекции: задача о расскарске графа. Имеется граф G=(V,E). Можно ли его вершини расскрасить в k цветов так, чтобы никакие соседние вершины не были раскрашены в один и тот же цвет? Постороим следующую систему уравнений:

- \bullet x_i целые
- $1 < x_i < c$
- $x_i \neq x_j$ для $(x_i, x_j) \in E$

Для решения такой системы нам понадобится SMT-решатель, умеющий разрешать теорию равенства.

В качестве упражнения предоставляются следующие задачи:

- Судоку (заполнить поле числами)
- Сапер (указать, на какую клетку можно "кликнуть")

В конце лекции разбрем следующую задачу - даны две программы, а и b:

```
Программа а:
```

```
int i, out_a = in; for (int i = 0; i < 2; ++i) out_a = out_a * i; return out_a; 
Программа b: int out_b = (in * in) * in;
```

 $mt out_b = (m \cdot m) \cdot m;$ return out_b;

Нужно проверить, являются ли они эквивалентными друг другу. Для этого построим формулы, описывающие связь между входом и выходом программ:

$$\phi_a := (out_a_0 = in_a_0) \wedge (out_a_1 = out_a_0 * in_a_0) \wedge (out_a_2 = out_a_1 * in_a_0)$$

$$\phi_b := out_b_0 = (in_b_0 * in_b_0) * in_b_0$$

Чтобы программы были эквивалентны, должно выполняться:

$$(in_a_0 = in_b_0) \land \phi_a \land \phi_b \rightarrow out_a_2 = out_b_0$$

Проверку такой формулы на выполнимость может осуществить SMTрешатель, умеющий разрешать теорию равенства.