

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL) Academic Year $2010/2011 - 2^{nd}$ Year Examination – Semester 3

IT3304: Mathematics for Computing-II PART 2 - Structured Question Paper

25th February 2011 *(ONE HOUR)*

To be completed by th	e candid	late	
BIT Examination	Index	No:	

Important Instructions:

UCSC

- The duration of the paper is 1 (One) hour.
- The medium of instruction and questions is English.
- This paper has 3 questions and 07 pages.
- Answer all questions.
- Question 2 (40% marks) and other questions (30% marks each).
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.

$\boldsymbol{\cap}$		A	
u	uestions	Ansv	verea

Indicate by a cross (x), (e.g. X) the numbers of the questions answered.

To be completed by the candidate by marking a cross (x).	1	2	3	
To be completed by the examiners:				

- (a) Let $A = (a_{ij})$ be a square matrix of order n and C_{ij} be the cofactor of a_{ij} .
 - (i) Write an expression to find |A| by expanding along the row i.
 - (ii) Write an expression to find |A| by expanding along the column j.

(b) Let
$$A = \frac{1}{3} \begin{pmatrix} 11 & -2 & 8 & 5 \\ -4 & 2 & -6 & 2 \\ 8 & 1 & 6 & 9 \\ -7 & 12 & 3 & 6 \end{pmatrix}, B = \frac{1}{3} \begin{pmatrix} -8 & 3 & 9 & -2 \\ 3 & -5 & 2 & -3 \\ -7 & 10 & -6 & -8 \\ 6 & 1 & 4 & -7 \end{pmatrix}, C = \frac{1}{3} \begin{pmatrix} 9 & 11 & 7 & 2 \\ 0 & 1 & 8 & 12 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Find

- (i) A+B
- (ii) |C|

(c) Let
$$A = \frac{1}{3} \begin{pmatrix} 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \end{pmatrix}$$
.

Find

(30 marks)

(a)

(i) |A|
$$= \sum_{j=1}^{n} a_{ij} C_{ij}$$

(ii) |A| $= \sum_{i=1}^{n} a_{ij} C_{ij}$

(ii) |A|
$$= \sum_{i=1}^{n} a_{ij} C_{ij}$$

(b) (i)
$$|A+B| = \begin{vmatrix} 3 & 1 & 17 & 3 \\ -1 & -3 & -4 & -1 \\ 1 & 11 & 0 & 1 \\ -1 & 13 & 7 & -1 \end{vmatrix} = 0 \text{ as } 1^{\text{st}} \text{ and } 4^{\text{th}} \text{ columns are equal}$$

(c) (i)
$$C = \frac{1}{9} \begin{pmatrix} -6 & 6 & -3 \\ -3 & -6 & -6 \\ -6 & -3 & 6 \end{pmatrix}$$

adj
$$\mathbf{A} = \mathbf{C}^{T} = \frac{1}{9} \begin{pmatrix} -6 & -3 & -6 \\ 6 & -6 & -3 \\ -3 & -6 & 6 \end{pmatrix}$$

$$= -\frac{1}{3} \begin{pmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \\ 1 & 2 & -2 \end{pmatrix}$$

$$|\mathbf{A}| = -1$$

$$\mathbf{A}^{-1} = (\mathbf{adj} \ \mathbf{A})/|\mathbf{A}| = \frac{1}{3} \begin{pmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \\ 1 & 2 & -2 \end{pmatrix}$$

- (a) Prove that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$
- (b) Find the area bounded by the curves $y_1 = x^2$ and $y_2 = 1 + 2x x^2$.

(40 marks)

ANSWER IN THIS BOX

(a)

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{k \to \infty} \sum_{n=1}^{k} \frac{1}{n(n+1)} = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \lim_{k \to \infty} \left(1 - \frac{1}{k+1} \right) = 1.$$

(b)

$$y_1 = y_2$$
 gives $x = a = \frac{1 - \sqrt{3}}{2}$ and $x = b = \frac{1 + \sqrt{3}}{2}$.

Hence the required area is

$$\int_{a}^{b} (y_{2} - y_{1}) dx = \int_{\frac{1-\sqrt{3}}{2}}^{\frac{1+\sqrt{3}}{2}} (1 + 2x - 2x^{2}) dx = x + x^{2} - 2x^{3} / 3 \Big|_{\frac{1-\sqrt{3}}{2}}^{\frac{1+\sqrt{3}}{2}}$$

$$= \left(\frac{1+\sqrt{3}}{2}\right) + \left(\frac{1+\sqrt{3}}{2}\right)^{2} - \frac{2}{3} \left(\frac{1+\sqrt{3}}{2}\right)^{3} - \left(\frac{1-\sqrt{3}}{2}\right) - \left(\frac{1-\sqrt{3}}{2}\right)^{2} + \frac{2}{3} \left(\frac{1-\sqrt{3}}{2}\right)^{3}$$

$$= \sqrt{3}$$

т.			1				41.		1:		. 4	. • .		1		1			. 1.		C 1		1.	- 1. <i>-</i>		1	TI	
In	a gam	ie, a	. pia	yer 1	IOSS	es 1	tnre	ee c	11116	eren	it co	oins	anc	ı cc	oun	ts th	ne i	nun	ıbe	r o	ın	eac	1S (opt	aine	ea.	ın	e
pro	babil	ity d	listri	ibuti	on o	of tl	he i	nun	ıbe	r of	hea	ids (obta	ine	d is	giv	ven	bel	ow	'.								
																	1				_							
								X	`	0			1		2	<u> </u>			3									

X	0	1	2	3
P[X=x]	С	c^2	$c - 2c^2$	$c^2 + 2c$

- (a) Determine the value of c.
- (b) Calculate the probability of getting at most one head.
- (c) If that player gets more than two heads he will win the game. Calculate the probability of winning the game.
- (d) Calculate the expected number of heads that the player can get.
- (e) Calculate the standard deviation of the number of heads obtained.

(30 marks)

ANSWER IN THIS BOX (a) $c + c^2 + c - 2c^2 + c^2 + 2c$ $c = \frac{1}{4} = 0.25$ (b) P[at most one head] = P[X = 0] + P[X = 1] = 0.25 + 0.0625 = 0.3125(c) $P\{\text{winning the game}\} = P[\text{more than two heads}]$ =P[X = 2] + P[X = 3] = 0.125 + 0.5625 = 0.6875Or (by using part (b) $P\{\text{winning the game}\} = P[\text{more than two heads}]$ = 1-P[at most one head] = 1-0.3125 = 0.6875(d) E(X) = 0*(0.25)+1*(0.0625)+2*(0.125)+3*(0.5625)= 0 + 0.0625 + 0.250 + 1.6875=2(e) $E(X^{2}) = 0^{2} * (0.25) + 1^{2} * (0.0625) + 2^{2} * (0.125) + 3^{2} * (0.5625)$ = 0 + 0.0625 + 0.5 + 5.0625=5.625 $V(X) = E(X^2) - [E(X)]^2 = 5.625 - 2^2 = 1.625$ Standard Deviation = $\sqrt{V(X)} = \sqrt{1.625} = 1.2747$

[
