Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil B: Kontextfreie Sprachen

11: Wortproblem und Syntaxanalyse

Version von: 24. Mai 2018 (14:05)

Wortproblem und Syntaxanalyse für kontextfreie Sprachen

- Phasen eines Compilers (schematisch):
 - Lexikalische Analyse
 - Syntaktische Analyse
 - Semantische Analyse
 - Zwischencode-Erzeugung
 - Zwischencode-Optimierung
 - Code-Erzeugung
- Bei der Syntaxanalyse wird die Struktur eines Programmes überprüft und in Form eines Syntax-Baumes repräsentiert
- Sie wird vom Parser durchgeführt
- Hierbei spielen kontextfreie
 Sprachen eine wichtige Rolle

- ullet Die Syntaxanalyse liefert die Information, ob das gegebene Programm $oldsymbol{w}$ syntaktisch korrekt ist
- Dies entspricht folgendem algorithmischen Problem:

Definition (Wortproblem für kontextfreie Grammatiken)

Gegeben: Wort $w \in \Sigma^*$, Grammatik G

Frage: Ist $oldsymbol{w} \in oldsymbol{L}(oldsymbol{G})$?

- Wenn das Programm syntaktisch korrekt ist, soll die Syntaxanalyse auch einen Ableitungsbaum liefern, da dieser das Rückgrat für die Codeerzeugung darstellt
- ullet Außerdem sollte bei syntaktisch inkorrekten Programmen $oldsymbol{w}$ eine Begründung geliefert werden, warum $oldsymbol{w}
 otin oldsymbol{L}(oldsymbol{G})$ Das betrachten wir nicht

Definition (Syntaxanalyse-Problem für kfr. Grammatiken)

Gegeben: Wort $w \in \Sigma^*$, Grammatik G

Gesucht: Falls $oldsymbol{w} \in oldsymbol{L}(oldsymbol{G})$: Ableitungsbaum

Übersicht

- Das Wortproblem für reguläre Sprachen kann für jede feste reguläre Sprache in linearer Zeit gelöst werden
 - durch Auswertung eines DFA
- Auch deterministische Kellerautomaten können in linearer Zeit ausgewertet werden
 - aber leider gibt es nicht für jede kontextfreie Sprache einen deterministischen Kellerautomaten

- Wir werden in diesem Kapitel sehen:
- Die naive Auswertung von PDAs mit Backtracking kann zu exponentieller Laufzeit führen kann
- Es gibt einen Algorithmus, der das Syntaxanalyse-Problem für kontextfreie Grammatiken in polynomieller Zeit löst:
 - Der **CYK-Algorithmus** basiert auf dynamischer Programmierung und hat Laufzeit $\mathcal{O}(|G||w|^3)$
- Da kubische Laufzeit für viele Zwecke nicht akzeptabel ist, betrachten wir danach zwei eingeschränkte Grammatiktypen, die eine Syntaxanalyse in linearer Zeit erlauben:
 - LL(1)-Grammatiken: recht einfach zu definieren
 - LR(1)-Grammatiken: komplizierter zu definieren, aber gleichmächtig zu DPDAs

Syntaxanalyse: Herangehensweisen

- Wir betrachten zwei Arten von Algorithmen für das Wortproblem für kontextfreie Grammatiken
- Algorithmen, die versuchen beim Lesen des Eingabestrings von links nach rechts eine Ableitung zu erzeugen
 - Backtracking (Linksableitung, top-down)
 - LL(k) (Linksableitung, top-down)
 - LR(k) (Rechtsableitung, bottom-up)
- Algorithmen, die den Eingabestring "als Ganzes" analysieren
 - CYK-Algorithmus
- Bevor wir uns dem Backtracking-Algorithmus zuwenden, werfen wir zunächst einen Blick auf den Ansatz der Top-down Syntaxanalyse
 - Bottom-up Syntaxanalyse werden wir gegen
 Ende des Kapitels betrachten

Top-down Syntax analyse (1/3)

Beispiel-Grammatik

$$egin{aligned} A
ightarrow B & | A + A & | A imes A & | (A) \ B
ightarrow a & | b & | Ba & | Bb & | B0 & | B1 \end{aligned}$$

Beispiel-Ableitungsbaum

- Bei der Top-down Syntaxanalyse wird der Ableitungsbaum von oben nach unten und (üblicherweise) von links nach rechts konstruiert
- Dieses Vorgehen ergibt eine Linksableitung

Beispiel-Ableitung: Top-down

$$egin{aligned} A &\Rightarrow A imes A \ \Rightarrow (A) imes A \ &\Rightarrow (A+A) imes A \ &\Rightarrow (B+A) imes A \ &\Rightarrow (B0+A) imes A \ &\Rightarrow (a0+A) imes A \ &\Rightarrow (a0+B) imes A \ &\Rightarrow (a0+B1) imes A \ &\Rightarrow (a0+b1) imes A + A \ &\Rightarrow (a0+b1) imes A$$

Top-down Syntax analyse (2/3)

Beispiel

$$A \rightarrow B \mid A + A \mid A \times A \mid (A)$$
 $B \rightarrow a \mid b \mid Ba \mid Bb \mid B0 \mid B1$
 $A \quad \times \quad A$
 $A \quad + \quad A$
 $B \quad 0$
 $A \quad A \quad + \quad A$
 $B \quad 0$
 $A \quad + \quad A$

Eingabe: (a0+b1) imes a+b

Beispiel

- ullet Der angegebene unvollständige Ableitungsbaum stellt eine Zwischensituation bei der Erzeugung einer Linksableitung für $(oldsymbol{a0}+oldsymbol{b1}) imesoldsymbol{a}+oldsymbol{b}$ dar
- ullet Der linke Teil der Blätter des Baumes stimmt mit dem Anfang der Eingabe überein: (a0+
- ullet Der unvollständige Baum entspricht der Satzform: $(oldsymbol{a} oldsymbol{0} + oldsymbol{A}) imes oldsymbol{A}$
- Als n\u00e4chstes muss also die Variable A ersetzt werden
- ullet Der Rest der Satzform ist:) imes A

Top-down Syntax analyse (3/3)

- ullet Die allgemeine Situation bei der Bestimmung des nächsten Schrittes einer Linksableitung für einen Eingabestring w ist wie folgt:
 - Es ist schon eine Satzform abgeleitet
 - Ihre erste Variable bezeichnen wir mit $oldsymbol{X}$
 - Die davor stehenden Zeichen aus dem Alphabet Σ müssen mit dem Anfang der Eingabe übereinstimmen

$$m \stackrel{\text{\tiny def}}{=} \text{Anzahl dieser Zeichen}$$

- Den Rest der Satzform bezeichnen wir mit lpha
- Wir haben also: $S \Rightarrow_l^* w[1,m] X lpha$
- Damit insgesamt w erzeugt wird, muss also aus Xlpha der restliche String $w[m\!+\!1,n]$ erzeugt werden
- ullet Der nächste Ableitungsschritt ist gesucht: $w[1,m]Xlpha \Rightarrow_l w[1,m]etalpha$

Inhalt

11.1 Algorithmen für beliebige kontextfreie Sprachen

> 11.1.1 Backtracking

11.1.2 Der CYK-Algorithmus

11.2 Effiziente Syntaxanalyse

Backtracking-Algorithmus: Idee

- Der Backtrackingalgorithmus versucht systematisch eine Linksableitung zu erzeugen
- ullet Er probiert dazu nach Ableitung von $S\Rightarrow_l^* w[1,m]Xlpha$ alle Regeln der Form X oeta nacheinander aus
- Wenn die entstehende Satzform nicht zur Eingabe passt oder zu lang wird, wählt er beim nächsten Mal die nächste Regel
- Dabei kann es nötig sein, Schritte wieder rückgängig zu machen
- Die Laufzeit des Backtracking-Algorithmus kann exponentiell werden, wie das folgende Beispiel zeigt

Backtracking-Algorithmus: Beispiel (1/2)

Backtracking-Algorithmus:

- Versuche, Linksableitung zu erzeugen
- Wähle immer jeweils die erste passende Regel
- Falls nicht erfolgreich:
 - * zurücksetzen und nächste Regel wählen

Beispiel

• Grammatik:

$$S \rightarrow aA0$$
 (1)

$$S
ightarrow aB1$$
 (2)

$$A \rightarrow aA0$$
 (3)

$$A
ightarrow aB1$$
 (4)

$$A \rightarrow c$$
 (5)

$$B o aA0$$
 (6)

$$B \rightarrow aB1$$
 (7)

$$B o c$$
 (8)

Eingabe: aaac111

Lauf des Backtracking-Algorithmus			
Eingabe	Satzform	Regeln	Letzte Aktion
aaac111	S		
aaac111	aA0	1	Regel 1
a aac111	a A0	1	Vergleich: ok
a aac111	a aA00	1 3	Regel 3
aa ac111	aa A00	1 3	Vergleich: ok
aa ac111	aa aA000	133	Regel 3
aaa c111	aaa A000	133	Vergleich: ok
aaa c111	aaa aA0000	1333	Regel 3
aaac 111	aaaa A0000	1333	Vergleich: nicht ok
aaa c111	aaa A000	1 3 3 (3)	zurück
aaa c111	aaa aB1000	1334	Regel 4
aaac 111	aaaa B1000	1334	Vergleich: nicht ok
aaa c111	aaa A000	1 3 3 (4)	zurück
aaa c111	aaa c000	1335	Regel 5
aaac 111	aaac 000	1335	Vergleich: ok
aaac1 11	aaac0 00	1335	Vergleich: nicht ok
aaa c111	aaa A000	1 3 3 (5)	zurück
aa ac111	aa A00	1 3 (3)	zurück
aa ac111	aa aB100	1 3 4	Regel 4
aaa c111	aaa B100	1 3 4	Vergleich: ok
aaa c111	aaa aA0100	1346	Regel 6
aaac 111	aaaa A0100	1346	Vergleich: nicht ok

Backtracking-Algorithmus: Beispiel (2/2)

Backtracking-Algorithmus:

- Versuche, Linksableitung zu erzeugen
- Wähle immer jeweils die erste passende Regel
- Falls nicht erfolgreich:
 - * zurücksetzen und nächste Regel wählen

Beispiel

• Grammatik:

$$S \to aA0$$
 (1)
 $S \to aB1$ (2)
 $A \to aA0$ (3)
 $A \to aB1$ (4)
 $A \to c$ (5)
 $B \to aA0$ (6)
 $B \to aB1$ (7)
 $B \to c$ (8)

Eingabe: aaac111

Lauf des Backtracking-Algorithmus (Forts.)

Eingabe	Satzform	Regeln	Letzte Aktion
aaac 111	aaaa A0100	1346	Vergleich: nicht ok
aaa c111	aaa B100	1 3 4 (6)	zurück
aaa c111	aaa aB1100	1347	Regel 7
aaac 111	aaaa B1100	1 3 4 (7)	Vergleich: nicht ok
aaa c111	aaa B100	1 3 4 (7)	zurück
aaa c111	aaa c100	1348	Regel 8
aaac 111	aaac 100	1348	Vergleich: ok
aaac1 11	aaac1 00	1348	Vergleich: ok
aaac11 1	aaac10 0	1348	Vergleich: nicht ok
aaa c111	aaa B100	1 3 4 (8)	zurück
aa ac111	aa A00	1 3 (4)	zurück
aa ac111	aa c00	135	Regel 5
aaa c111	aac 00	135	Vergleich: nicht ok
aa ac111	aa A00	1 3 (5)	zurück
a aac111	a A0	1 (3)	zurück
a aac111	a aB10	1 4	Regel 4
		• • •	
aaac111	aaac111	2778	Vergleich: ok

- ullet Beobachtung: Bei Eingabe a^nc1^n kommen alle nstelligen Binärzahlen x in einer Satzform a^ncx vor
- exponentiell viele Schritte

Inhalt

11.1 Algorithmen für beliebige kontextfreie Sprachen

11.1.1 Backtracking

> 11.1.2 Der CYK-Algorithmus

11.2 Effiziente Syntaxanalyse

Der CYK-Algorithmus

- Exponentieller Aufwand ist bei der Syntaxanalyse natürlich inakzeptabel
- Wir betrachten jetzt einen Algorithmus, der das Wortproblem für beliebige kontextfreie Grammatiken in polynomieller Zeit löst

lacksquare für CNF in Zeit $\mathcal{O}(|G||w|^3)$

 Der CYK-Algorithmus wurde von Cocke, Younger und Kasami (unabhängig voneinander) entwickelt
 um 1965

- "Richtig" veröffentlicht wurde er nur von Younger [Younger 67]
- Der CYK-Algorithmus verwendet dynamische Programmierung
- ullet Die hier betrachtete Variante nutzt aus, dass die Grammatik G für L in CNF ist, der Algorithmus lässt sich aber für kontextfreie Grammatiken, die nicht in CNF sind, anpassen

Der CYK-Algorithmus: Grundidee

- ullet Sei G in CNF gegeben und w ein String der Länge n
- Zunächst wird das Problem in Teilprobleme zerlegt, die durch Parameter repräsentiert werden
 - Das Problem wird also "parametrisiert"
- ullet Für jede Wahl von $oldsymbol{i}, oldsymbol{j} \in \{1, \dots, n\}$ mit $oldsymbol{i} \leqslant oldsymbol{j}$ sei $oldsymbol{V_{i,j}} \stackrel{ ext{def}}{=} \{X \in oldsymbol{V} \mid X \Rightarrow^* oldsymbol{w}[i,j]\}$
 - $igtiis V_{ij}$ ist also die Menge aller Variablen, aus denen w[i,j] abgeleitet werden kann
- ullet Klar: $w\in L(G) \Longleftrightarrow S\in V_{1,n}$
- ullet Der CYK-Algorithmus berechnet die Mengen $V_{i,j}$ bottom-up

- ullet Er nutzt aus, dass bei einer CNF-Grammatik für $X \in V$, $1 \leqslant i < j \leqslant n$ äquivalent sind:
 - $oldsymbol{-} oldsymbol{X} \in V_{ij}$
 - es gibt $m{Y}, m{Z} \in m{V}$ und $m{k} \in \{m{i}, \dots, m{j}{-}m{1}\}$ mit:
 - $* X \rightarrow YZ$ ist Regel von G,
 - $*~Y \in V_{i,k}$ und
 - * $Z \in V_{k+1,j}$

Der CYK-Algorithmus

Algorithmus 11.1 (CYK-Algorithmus)

```
Eingabe: oldsymbol{w} \in oldsymbol{\Sigma}^*, oldsymbol{G} = (oldsymbol{V}, oldsymbol{\Sigma}, oldsymbol{S}, oldsymbol{P}) in CNF
Ausgabe: "ja", falls oldsymbol{w} \in oldsymbol{L}(oldsymbol{G})
    {Einzelne Zeichen}
 1: for i := 1 TO n do
 2: V_{i,i} := \{X \in V \mid X 	o w[i] \text{ in } P\}
    { Teilstrings der Länge \ell + 1}
 3: for \ell := 1 TO n-1 do
      for i:=1 TO n-\ell do
 5: V_{i,i+\ell} := arnothing
 6: for k := i TO i + \ell - 1 do
    V_{i.i+\ell} \coloneqq V_{i.i+\ell} \cup
                \{X\mid X	o YZ in P,Y\in V_{i,k},Z\in V_{k+1,i+\ell}\}
 8: if S \in V_{1,n} then
       Akzeptieren
10: else
```

- Anweisung 7 kann durch eine Schleife über alle Regeln von G implementiert werden
- ullet Dass der Aufwand $\mathcal{O}(n^3|G|)$ ist (für n=|w|), lässt sich an den verschachtelten Schleifen des Algorithmus direkt ablesen

Ablehnen

11:

CYK-Algorithmus: Beispiel

Beispiel-Grammatik

$$S
ightarrow NB\mid EA\mid \epsilon \ T
ightarrow NB\mid EA\ N
ightarrow 0 \ E
ightarrow 1 \ A
ightarrow 0\mid NT\mid EC\ B
ightarrow 1\mid ET\mid ND\ C
ightarrow AA \ D
ightarrow BB$$

Verlauf der Bearbeitung

- ullet Ergebnis: $S \in V_{1,8}$ deshalb: $01110100 \in L(G)$
- Wie lässt sich nun ein Ableitungsbaum für 01110100 gewinnen?
- ullet Durch eine kleine Erweiterung des CYK-Algorithmus: er merkt sich jeweils nicht nur X sondern auch das zugehörige k

Der erweiterte CYK-Algorithmus

Algorithmus 11.2 (Erweiterter CYK-Algorithmus 11.3)

Eingabe: $oldsymbol{w} \in oldsymbol{\Sigma}^*$, $oldsymbol{G} = (oldsymbol{V}, oldsymbol{\Sigma}, S, oldsymbol{P})$ in CNF

Ausgabe: Ableitungsbaum, falls $oldsymbol{w} \in oldsymbol{L}(oldsymbol{G})$

1: for
$$i:=1$$
 TO n do

2:
$$V_{i,i} := \{(X,i) \mid X o w[i,i] ext{ in } P\}$$

3: for
$$\ell := 1$$
 TO $n-1$ do

4: for
$$i := 1$$
 TO $n - \ell$ do

5:
$$V_{i,i+\ell} := \emptyset$$

6: for
$$k := i$$
 TO $i + \ell - 1$ do

7:
$$V_{i,i+\ell} := V_{i,i+\ell} \cup \{(X,k) \mid X o YZ ext{ in } P,Y \in V_{i,k},Z \in V_{k+1,i+\ell} \}$$

- 8: **if** es gibt kein k mit $(S,k) \in V_{1,n}$ then
- 9: Ablehnen
- 10: Konstruiere Ableitungsbaum rekursiv durch Aufruf von Tree(S,1,n)

riangle Dabei ist " $m{Y} \in m{V_{i,k}}$ " eine Abkürzung für: "es gibt ein $m{m}$ mit $(m{Y},m{m}) \in m{V_{i,k}}$ "

Algorithmus (Tree)

Eingabe: X, i, j

Ausgabe: Ableitungsbaum für

$$w[i,j]$$
 aus X

1: if
$$i=j$$
 then

2: RETURN Blatt σ_i

3: Wähle ein $m{k}$ mit $(m{X},m{k}) \in m{V_{i,j}}$

4: Wähle Y, Z, so dass

$$\bullet X \to YZ$$

$$ullet$$
 $Y\in V_{i,k}$ und

$$ullet$$
 $Z\in V_{k+1,j}$

5: RETURN Baum mit Wurzel $m{X}$, linkem Teilbaum Tree $(m{Y},m{i},m{k})$ und rechtem Teilbaum Tree $(m{Z},m{k}+m{1},m{j})$

Erweiterter CYK-Algorithmus: Beispiel

Beispiel-Grammatik

$$S
ightarrow NB \mid EA \mid \epsilon \ T
ightarrow NB \mid EA \ N
ightarrow 0 \ E
ightarrow 1 \ A
ightarrow 0 \mid NT \mid EC \ B
ightarrow 1 \mid ET \mid ND \ C
ightarrow AA \ D
ightarrow BB$$

ullet Aus Platzgründen steht hier statt $(oldsymbol{X}, oldsymbol{k})$ jeweils $oldsymbol{X^k}$

 S^1,T^1

 B^1

ullet Außerdem ist nur jeweils höchstens $ein \ k$ mit $(oldsymbol{X}, oldsymbol{k}) \in V_{oldsymbol{i}, oldsymbol{j}}$ angegeben

Erweiterter CYK-Algorithmus: Beispiel-Ableitung

Inhalt

11.1 Algorithmen für beliebige kontextfreie Sprachen

> 11.2 Effiziente Syntaxanalyse

- 11.2.1 Top-down-Syntaxanalyse
- 11.2.2 Bottom-up-Syntaxanalyse

Effizientere Syntaxanalyse

- Syntaxanalyse von Programmtexten sollte möglichst in linearer Zeit erfolgen
 - → Die beiden bisher betrachteten Algorithmen für das Syntaxanalyse-Problem sind also nicht effizient genug
- Für allgemeine kontextfreie Grammatiken sind aber leider keine Linearzeit-Algorithmen für das Syntaxanalyse-Problem bekannt
- Ein möglicher Ausweg ist, Grammatiken so einzuschränken, dass die Syntaxanalyse in linearer Zeit möglich wird
 - Das Ziel ist dabei, möglichst viele Sprachen mit den eingeschränkten Grammatiken beschreiben zu können

- Wir werden zwei Einschränkungen von Grammatiken kennen lernen
- Bei beiden wird die Eingabe von links nach rechts gelesen
- Bei beiden hängt die nächste Regelanwendung nur vom nächsten Zeichen der Eingabe ab
 - Damit kann uferloses Backtracking vermieden werden
- ullet Bei LL(1)-Grammatiken wird, ausgehend vom Startsymbol, eine *Linksableitung* für $oldsymbol{w}$ erzeugt
 - → Top-down-Syntaxanalyse
- ullet Bei LR(1)-Grammatiken wird, ausgehend von $oldsymbol{w}$, durch "Rückwärtsanwendung" von Regeln eine Rechtsableitung erzeugt
 - → Bottom-up-Syntaxanalyse
- ullet Beide Grammatik-Typen gibt es auch mit Abhängigkeit von den nächsten k Zeichen

 \square LL($m{k}$), LR($m{k}$)

Inhalt

- 11.1 Algorithmen für beliebige kontextfreie Sprachen
- 11.2 Effiziente Syntaxanalyse
- > 11.2.1 Top-down-Syntaxanalyse
 - 11.2.2 Bottom-up-Syntaxanalyse

Effiziente Top-down-Syntaxanalyse: Vorüberlegungen (1/5)

• Im Folgenden betrachten wir nur Grammatiken G, die nicht *linksrekursiv* sind

$${}^{ ext{\tiny{log}}}$$
 d.h.: $X \Rightarrow_{m{G}}^* X lpha$ mit $lpha \ \ \ \ \epsilon$ ist verboten

- Sonst bestünde die Gefahr von Endlosschleifen.
- **Problem:** welche Regel soll angewendet werden, wenn mehrere Anwendungen möglich sind?
 - Wir wissen: Backtracking ist zu ineffizient
- Idee zur Vermeidung exponentiellen Aufwandes:
 - Wir schränken G so ein, dass immer direkt erkennbar ist, welche Regel angewendet werden muss
 - "Direkt erkennbar" heißt dabei, dass für die Entscheidung nur das nächste Zeichen der Eingabe angeschaut werden muss

Effiziente Top-down-Syntaxanalyse: Vorüberlegungen (2/5)

Beispiel

• Wir betrachten die Grammatik für Palindrome:

$$P o aPa\mid bPb\mid a\mid b\mid \epsilon$$
 und versuchen eine Linksableitung für den String $abba$ zu finden:

- Der Versuch scheitert schon im ersten Schritt, da aus der Kenntnis des ersten Zeichens a nicht hervorgeht, ob wir die Regel $P \to a$ oder $P \to aPa$ anwenden sollen
- Wenn wir korrekt mit $P\Rightarrow aPa$ beginnen, stellt sich im zweiten Schritt wieder das Problem:

$$P o b$$
 oder $P o bPb$

- Nach dem korrekten zweiten Schritt $aPa\Rightarrow abPba$ gibt es wieder zwei Möglichkeiten: $P\Rightarrow bPb$ oder $P\Rightarrow\epsilon$
- Diese Grammatik ist also sicher nicht für die Top-down-Analyse mit nur einem "Vorschau-Zeichen" geeignet
- Ein offensichtlicher Grund hierfür ist, dass es mehrere Regeln derselben Variablen gibt, deren rechte Seite mit demselben Terminalsymbol beginnt
 - → das verbieten wir in effizienten Top-down-Grammatiken

Effiziente Top-down-Syntaxanalyse: Vorüberlegungen (3/5)

Beispiel

Wir betrachten die Grammatik

$$egin{aligned} S
ightarrow aA \mid BC \ A
ightarrow bA \mid c \ B
ightarrow bC \mid Ca \ C
ightarrow ba \mid ab \end{aligned}$$

ullet Wir suchen eine Linksableitung für ababa:

$$S\Rightarrow aA \ \Rightarrow abA \ \Rightarrow ?$$

- Wir haben im ersten Schritt schon einen "Fehler" gemacht
- Eine Ableitung ergäbe sich durch:

$$S\Rightarrow BC \ \Rightarrow CaC \ \Rightarrow abaC \ \Rightarrow ababa$$

- Was ist hier schiefgelaufen?
- Zwar haben die rechten Regelseiten hier jeweils verschiedene erste Terminalsymbole
- ullet Aber aus B lässt sich der String aba ableiten
- ullet Damit stehen die beiden rechten Regelseiten aA und BC miteinander in Konkurrenz, obwohl sie nicht mit dem selben Terminalsymbol beginnen
- Wir müssen also auch berücksichtigen, welche ersten Zeichen sich durch weitere Ableitung aus der ersten Variablen einer rechten Regelseite ergeben können

Effiziente Top-down-Syntaxanalyse: Vorüberlegungen (4/5)

Beispiel

Wir betrachten die Grammatik

$$S
ightarrow aA\mid BC \ A
ightarrow bA\mid c \ B
ightarrow c\mid \epsilon \ C
ightarrow ab$$

ullet Wir suchen eine Linksableitung für ab:

$$S\Rightarrow aA \ \Rightarrow abA \ \Rightarrow ?$$

Wir haben schon wieder im ersten Schritt einen "Fehler" gemacht

• Eine Ableitung ergäbe sich durch:

$$S\Rightarrow BC \ \Rightarrow C \ \Rightarrow ab$$

- Was ist hier schiefgelaufen?
- Die rechten Regelseiten haben hier jeweils verschiedene erste Terminalsymbole, auch bei Berücksichtigung der möglichen ersten Terminalsymbole, die sich aus ersten Variablen rechter Regelseiten ableiten lassen
- ullet Aber B lässt sich zu ϵ ableiten und C zu ab
- ullet Deshalb stehen die beiden rechten Regelseiten aA und BC miteinander in Konkurrenz, obwohl aus B nicht als erstes Terminalsymbol a ableitbar ist
- Wir müssen also auch berücksichtigen, welche ersten Zeichen sich durch Ableitung aus den gesamten rechten Regelseiten ergeben können und dabei insbesondere ε-Ableitungen berücksichtigen

Effiziente Top-down-Syntaxanalyse: Vorüberlegungen (5/5)

Beispiel

Wir betrachten die Grammatik

$$S
ightarrow AB \ A
ightarrow \epsilon\mid aB \ B
ightarrow aaB\mid b$$

ullet Wir suchen eine Linksableitung für aab:

$$S\Rightarrow AB \ \Rightarrow aBB \ \Rightarrow ?$$

- Wir haben hier im zweiten Schritt einen "Fehler" gemacht
- Eine Ableitung ergäbe sich durch:

$$S\Rightarrow AB \ \Rightarrow B \ \Rightarrow aaB \ \Rightarrow aab$$

- Was ist hier schiefgelaufen?
- Zwar haben die rechten Regelseiten jeweils verschiedene erste Terminalsymbole, auch bei Berücksichtigung der ableitbaren Strings
- ullet Aber in AB kann das nächste Zeichen a sowohl aus A entstehen als auch (nach Anwendung von $A o \epsilon$) aus B
- ullet Dies führt dazu, dass bei der Satzform AB und nächstem Symbol a nicht klar ist, ob als nächstes $A o \epsilon$ oder A o aB angewendet werden muss
- ullet Wir müssen deshalb in einem solchen Fall $(A\Rightarrow^*\epsilon)$ auch darauf achten, welche Zeichen **hinter** A erzeugt werden können
- ullet Diese Beobachtungen führen uns zur Definition von LL $(oldsymbol{1})$ -Grammatiken

LL(1)-Grammatiken: Definition

- Zur Definition von LL(1)-Grammatiken verwenden wir die folgenden beiden Operatoren:
- $\begin{array}{c} \bullet \quad \mathsf{F\"{u}r} \; \mathsf{eine} \; \mathsf{Satzform} \; \alpha \; \mathsf{sei} \\ \underline{\mathsf{FIRST}(\alpha)} \stackrel{\scriptscriptstyle \mathsf{def}}{=} \\ \{\sigma \in \Sigma \mid \alpha \Rightarrow^* \sigma v, v \in \Sigma^* \} \cup \\ \{\epsilon \mid \alpha \Rightarrow^* \epsilon \} \end{array}$
- ullet Für eine Variable $m{X}$ sei $m{ ext{FOLLOW}(m{X})} \stackrel{ ext{def}}{=} \{m{\sigma} \in m{\Sigma} \mid m{S} \Rightarrow^* um{X}m{\sigma}m{v}, u, m{v} \in m{\Sigma}^* \}$
- FIRST(α) enthält also alle ersten Terminalzeichen von Strings, die aus α abgeleitet werden können (und evtl. ϵ , wenn dieses aus α abgeleitet werden kann)
- ullet FOLLOW $(oldsymbol{X})$ enthält alle Terminalzeichen, die in irgendeiner aus $oldsymbol{S}$ ableitbaren Satzform $unmittelbar\ hinter\ oldsymbol{X}$ vorkommen können

Definition (LL(1)-Grammatik)

- ullet Sei G eine kontextfreie Grammatik G ohne nutzlose Variablen und ohne Linksrekursion
- ullet ist eine **LL(1)-Grammatik**, wenn für alle Variablen X und alle Regeln X o lpha und X o eta mit $lpha \neq eta$ die beiden folgenden Bedingungen gelten:
 - (i) $\mathsf{FIRST}(\boldsymbol{\alpha}) \cap \mathsf{FIRST}(\boldsymbol{\beta}) = \emptyset$
 - (ii) Falls $lpha \Rightarrow^* \epsilon$ so ist FOLLOW $(X) \cap \mathsf{FIRST}(oldsymbol{eta}) = arnothing$
- ullet FIRST $(oldsymbol{lpha})$ und FOLLOW $(oldsymbol{X})$ können effizient berechnet werden
- LL(1)-Grammatiken lassen sich sehr einfach rekursiv implementieren
- Die Erzeugung von Code lässt sich dabei oft sehr leicht integrieren: rekursiver Abstieg

LL(1)-Grammatiken: Beispiele

Beispiel

$$S
ightarrow aB\mid bA\mid c \ A
ightarrow aS\mid bAA \ B
ightarrow bS\mid aBB$$

- Offensichtlich erfüllt die Grammatik alle Bedingungen der Art (i)
- Da keine ε-Regeln vorkommen, erfüllt sie auch (ii)
- Also ist es eine LL(1)-Grammatik

Beispiel

$$S
ightarrow AB \ A
ightarrow \epsilon\mid aB \ B
ightarrow aA\mid b$$

- ullet FOLLOW $(oldsymbol{A})=\{oldsymbol{a},oldsymbol{b}\}$
- ullet FIRST $(aB)=\{a\}$
- ullet Da es eine Regel $A \to \epsilon$ gibt, müssten diese beiden Mengen disjunkt sein
- \rightarrow keine LL(1)-Grammatik

Beispiel

$$egin{aligned} A &
ightarrow BC \mid ab \ B &
ightarrow cAA \mid bc \mid \epsilon \ C &
ightarrow cC \mid \epsilon \end{aligned}$$

- Es gilt:
 - FIRST $(oldsymbol{A}) = \{oldsymbol{a}, oldsymbol{b}, oldsymbol{c}, oldsymbol{\epsilon}\}$
 - FIRST $(oldsymbol{B}) = \{oldsymbol{b}, oldsymbol{c}, oldsymbol{\epsilon}\}$
 - FIRST $(oldsymbol{C}) = \{oldsymbol{c}, oldsymbol{\epsilon}\}$
 - FOLLOW $(oldsymbol{A}) = \{oldsymbol{a}, oldsymbol{b}, oldsymbol{c}\}$
 - FOLLOW $(oldsymbol{B})=\{oldsymbol{a},oldsymbol{b},oldsymbol{c}\}$
 - FOLLOW $(oldsymbol{C}) = \{oldsymbol{a}, oldsymbol{b}, oldsymbol{c}\}$
 - BC ⇒* ϵ
- Also haben wir:
 - -A o BC und A o ab,
 - BC ⇒* ϵ
 - FOLLOW $(oldsymbol{A}) \cap \mathsf{FIRST}(oldsymbol{ab}) =$

 $\{a\} \neq \emptyset$

ightharpoonup Dies ist keine LL(1)-Grammatik

LL(1)-Grammatiken: Parsing

- Parsing-Algorithmen für LL(1)-Grammatiken verwenden eine Tabelle, die dem Compiler in jeder Situation (Variable und nächstes Zeichen) sagt, welche Regel anzuwenden ist
- Die Berechnung dieser Tabelle wird hier nicht betrachtet
- Stattdessen schauen wir ein Beispiel an
 - Die Beispieltabelle vernachlässigt das Wortende-Symbol
- LL(k)-Grammatiken (für $k \ge 2$) erlauben Parsing-Algorithmen, die die nächsten k Zeichen der Eingabe berücksichtigen, und verallgemeinern LL(1)-Grammatiken

Beispiel

ullet Sei G die LL(1)-Grammatik

$$S o AB \mid (S)S$$

$$A o CA \mid \epsilon$$

$$B \rightarrow ba$$

$$C \rightarrow ca$$

- ullet FIRST $(oldsymbol{B})=\{oldsymbol{b}\}$, FIRST $(oldsymbol{C})=\{oldsymbol{c}\}$
- ullet FIRST $(oldsymbol{A})=\{oldsymbol{c},oldsymbol{\epsilon}\}$
- $FIRST(S) = \{b, c, (\}$
- ullet FOLLOW $(oldsymbol{A})=\{oldsymbol{b}\}$

• Die zugehörige Tabelle ist:

	\boldsymbol{a}	b	\boldsymbol{c}	()
\overline{S}		AB	AB	(S)S	
\boldsymbol{A}		ϵ	CA		
\boldsymbol{C}			ca		
\boldsymbol{B}		ba			

Inhalt

11.1 Algorithmen für beliebige kontextfreie Sprachen

11.2 Effiziente Syntaxanalyse

11.2.1 Top-down-Syntaxanalyse

> 11.2.2 Bottom-up-Syntaxanalyse

Bottom-up Syntaxanalyse (1/3)

Beispiel-Grammatik

$$egin{aligned} A &
ightarrow B \mid A + A \mid A imes A \mid (A) \ B &
ightarrow a \mid b \mid Ba \mid Bb \mid B0 \mid B1 \end{aligned}$$

Beispiel-Ableitungsbaum

- Bei der Bottom-up Syntaxanalyse wird der Ableitungsbaum von unten nach oben und (üblicherweise) von links nach rechts konstruiert
- Dieses Vorgehen ergibt eine Rechtsableitung

Beispiel-Ableitung: Bottom-up (rückwärts)

$$(a0+b1) imes a+b \Leftarrow (B0+b1) imes a+b \Leftarrow (B+b1) imes a+b \Leftarrow (A+b1) imes a+b \Leftarrow (A+b1) imes a+b \Leftarrow (A+B1) imes a+b \Leftarrow (A+B) imes a+b \Leftarrow (A+A) imes a+b \Leftarrow (A) imes a+b \Leftarrow (A) imes a+b \Leftarrow A imes A+b \Leftarrow A imes A+B \Leftarrow A imes A+A \Leftarrow A imes A$$

Bottom-up Syntaxanalyse (2/3)

ullet Eingabe: $(oldsymbol{a0}+oldsymbol{b1}) imesoldsymbol{a}+oldsymbol{b}$

Beispiel

- ullet Der abgebildete unvollständige Ableitungsbaum stellt eine Zwischensituation bei der Erzeugung einer Rechtsableitung für $(oldsymbol{a0}+oldsymbol{b1}) imesoldsymbol{a}+oldsymbol{b}$ dar
- ullet Das Anfangsstück (a0+b1) der Eingabe wurde schon gelesen und auf (A+B1) reduziert
- ullet Der unvollständige Baum entspricht der Satzform:: $(oldsymbol{A}+oldsymbol{B1}) imesoldsymbol{a}+oldsymbol{b}$
- ullet Die restliche Eingabe) imes a+b muss noch gelesen werden
- Im nächsten Schritt muss wieder eine Regel rückwärts angewendet werden

Bottom-up Syntaxanalyse (3/3)

- ullet Die allgemeine Situation bei der Bestimmung des nächsten Schrittes einer Rechtsableitung für einen Eingabestring $oldsymbol{w}$ ist wie folgt:
 - Für ein Anfangsstück $m{w}[m{1}, m{m}]$ des Strings wurden schon Regeln rückwärts angewendet
 - Die daraus entstandene Satzform α liegt auf dem Keller
 - Wir haben also: $lpha \Rightarrow_{m{r}}^* w[1,m]$
 - Damit insgesamt S erreicht wird, muss also lpha w[m+1,n] auf S "zurück abgeleitet werden"
- ullet Im nächsten Schritt muss eine passende rechte Regelseite eta und eine RegelX o eta identifiziert und dann (rückwärts) angewendet werden

Bottom-up Syntaxanalyse: Vorüberlegungen

Beispiel: Grammatik

$$S
ightarrow aABe \ A
ightarrow Abc \mid b \ B
ightarrow d$$

- ullet Wir betrachten die Bottom-up Syntaxanalyse für den String abbcde
- Eine Rechtsableitung für diesen String:

Beispiel: Rechtsableitung

$$S \Rightarrow aABe \ \Rightarrow aAde \ \Rightarrow aAbcde \ \Rightarrow abbcde$$

- ullet Bottom-up-Syntaxanalyse für abbcde
- ullet Ziel: durch "umgekehrte" Regelanwendung mit Rechtsableitung zu S kommen
- 1. Ableitungsschritt:
 - Wir suchen zuerst rechte Seiten von Produktionen in abbcde
 - Kandidaten: b und d
 - Wir entscheiden uns für A o b und erhalten die Satzform aAbcde
- 2. Ableitungsschritt:
 - Kandidaten (in aAbcde): Abc, b, d
 - Welche Produktion sollen wir anwenden?
- Die Grammatik soll garantieren, dass das Finden der "richtigen rechten Seite" immer "einfach" ist
- Wir nennen diese "richtige rechte Seite" den Schlüssel (engl.: handle)
 - Der Schlüssel von aAbcde ist Abc

Bottom-up Syntaxanalyse: Prinzip (1/2)

- ullet w[1,m] ist schon reduziert auf lpha
- ullet w[m+1,n] ist noch zu lesen
- $oldsymbol{\circ}$ Nächster Schritt: Passenden Schlüssel $oldsymbol{eta}$ und Regel $X o oldsymbol{eta}$ identifizieren und anwenden
- β kann
 - (a) ein Suffix von lpha sein,
 - (b) ein Teilstring von $oldsymbol{w}[oldsymbol{m}+oldsymbol{1},oldsymbol{n}]$ sein, oder
 - (c) aus einem Suffix von lpha und einem Präfix von w[m+1,n] bestehen
- Die jeweils auszuführende Aktion:
 - (a) Ersetze auf dem Keller $oldsymbol{eta}$ durch eine passende linke Regelseite $oldsymbol{X}$

Reduce

- (b,c) oder lege (zunächst) $oldsymbol{w}[m+1]$ auf den Keller Shift
- → Shift-Reduce-Parsing

Bottom-up Sytaxanalyse: Prinzip (2/2)

- Damit Shift-Reduce-Parsing ohne Backtracking möglich ist, muss die Grammatik folgende Bedingungen erfüllen:
 - (A) Der Parser muss den Schlüssel β identifizieren können, um zu entscheiden, ob er einen Reduce-Schritt ausführen kann
 - (B) Er muss erkennen können, bezüglich welcher Variablen X ein Reduktionsschritt mit Regel $X \to \beta$ angewandt wird
- Ziel bei LR(1)-Grammatiken: um diese Entscheidungen zu treffen, muss nur das nächste Zeichen hinter dem (kürzesten möglichen) Schlüssel gelesen werden

LR(1)-Grammatiken: Definition

Definition (LR($\mathbf{1}$)-Grammatik)

- ullet Eine Grammatik G heißt $\mathbf{LR}(1)$ -Grammatik, falls für alle $X\in V$, $x,y\in \Sigma^*$, und alle Satzformen α,β,γ gelten:
 - (1) Falls für ein $\sigma \in \Sigma$ $S \Rightarrow_{m{r}}^* \alpha X \sigma x \Rightarrow_{m{r}} \alpha \beta \sigma x$ und $\gamma \Rightarrow_{m{r}} \alpha \beta \sigma y$ gelten mit $\gamma \neq \alpha X \sigma y$, dann ist γ nicht von S aus ableitbar
 - (2) Falls $S\Rightarrow_{m r}^* lpha X \Rightarrow_{m r} lpha eta$ und $\gamma\Rightarrow_{m r} lpha eta$ gelten mit $\gamma \neq lpha X$, dann ist γ nicht von S aus ableitbar
- Bedingung (1) sagt also, dass es mit aktueller Satzform $\alpha \beta$ und nächstem Zeichen σ keine Alternative zur Rückwärtsanwendung von $X \to \beta$ gibt

- Die Definition garantiert also gerade die Gültigkeit der Bedingungen (A) & (B) der vorherigen Folie
- ullet Nach Lesen von $oldsymbol{\sigma}$ (oder am Ende der Eingabe) und mit lphaeta auf dem Keller "weiß" der Algorithmus, dass er X o eta anwenden muss
- Um zu einer LR(1)-Grammatik einen Shift-Reduce-Algorithmus zu gewinnen, ist eine genauere Analyse der Grammatik nötig
 - Dann können die anzuwendenden Regeln jeweils aus einer Tabelle abgelesen werden
 - Diese Analyse geht aber über den Rahmen dieser Vorlesung hinaus
- ullet LR(1)-Grammatiken lassen sich verallgemeinern für eine weitere Vorausschau (look-ahead) von k Zeichen statt einem Zeichen

LR(k)-Grammatiken: Beispiele (1/2)

Beispiel

$$S
ightarrow CD \ C
ightarrow a \ D
ightarrow EF \mid aG \ E
ightarrow ab \ F
ightarrow bb \ G
ightarrow bba$$

• Die Grammatik hat nur zwei Rechtsableitungen:

$$egin{aligned} extstyle - S \Rightarrow_r CD \Rightarrow_r CEF \Rightarrow_r \ CEbb \Rightarrow_r Cabbb \ extstyle - S \Rightarrow_r CD \Rightarrow_r CaG \Rightarrow_r Cabba \end{aligned}$$

ightharpoonup Sie erfüllt *nicht* die LR(1)-Bedingung:

-
$$\sigma=b$$
- $\alpha=C, X=E, x=b, eta=ab$
- $\gamma=CaG, y=a$
- Aber: $\gamma=CaG \neq CEbb=\alpha X\sigma x$

Sie ist aber eine LR(2)-Grammatik

GTI / Schwentick / SoSe 18

$\mathsf{LR}(oldsymbol{k})$ -Grammatiken

$\overline{\mathsf{LR}(oldsymbol{k})} ext{-}\mathsf{Grammatik}$

- ullet Für jedes $k\geqslant 0$ heißt eine Grammatik G LR(k)-Grammatik, falls für alle $X\in V, x,y\in \Sigma^*$, und alle Satzformen $lpha,eta,\gamma$ gelten:
 - (1) Falls für ein $z\in \Sigma^k$ $S\Rightarrow_{r}^* \alpha Xzx\Rightarrow_{r} \alpha \beta zx$ und $\gamma\Rightarrow_{r} \alpha \beta zy$ gelten mit $\gamma \neq \alpha Xzy$, dann ist γ nicht von S aus ableitbar
 - (2) Falls für ein $z\in \Sigma^{< k}$ $S\Rightarrow_{r}^{*}\alpha Xz\Rightarrow_{r}\alpha\beta z$ und $\gamma\Rightarrow_{r}\alpha\beta z$ gelten mit $\gamma\neq\alpha Xz$, dann ist γ nicht von S aus ableitbar

LR(k)-Grammatiken: Beispiele (2/2)

Beispiel

$$S
ightarrow Cc \mid Dd \ C
ightarrow Ca \mid \epsilon \ D
ightarrow Da \mid \epsilon$$

- ullet Die Grammatik erzeugt Strings der Form a^nc und a^nd
- Ableitungen:

$$egin{aligned} -S &\Rightarrow_r Cc \Rightarrow_r^* Ca^nc \Rightarrow_r a^nc \ -S &\Rightarrow_r Dd \Rightarrow_r^* Da^nd \Rightarrow_r a^nd \end{aligned}$$

- ullet Der Parser müsste zuerst a^nc oder a^nd lesen, um zu wissen, ob als letzter Ableitungsschritt der Rechtsableitung die Regel $C o \epsilon$ oder $D o \epsilon$ angewendet werden muss
- ightharpoonup Die Grammatik erfüllt für kein k die LR(k)-Bedingung

$\mathsf{LL}(oldsymbol{k})$ - und $\mathsf{LR}(oldsymbol{k})$ -Grammatiken: Eigenschaften

Satz 11.4

ullet Für jedes $k\geqslant 1$ lassen sich durch ${\sf LL}(k+1)$ -Grammatiken mehr Sprachen beschreiben als durch ${\sf LL}(k)$ -Grammatiken

Satz 11.5

- ullet Für jedes $k\geqslant 1$ sind äquivalent:
 - L ist deterministisch kontextfrei
 - $L=L(oldsymbol{G})$ für eine LR($oldsymbol{k}$)Grammatik $oldsymbol{G}$

Folgerung 11.6

- (a) Für jedes $k \geqslant 1$ sind $\mathrm{LR}(k)$ -Grammatiken und $\mathrm{LR}(1)$ -Grammatiken gleich ausdrucksstark
- (b) Das Syntaxanalyseproblem für LR(k)-Grammatiken lässt sich in linearer Zeit lösen
- (b) ...mittels DPDAs

- LR(0)-Grammatiken entsprechen gerade den deterministischen Kellerautomaten, die mit leerem Keller akzeptieren
- ullet Jede LL($oldsymbol{k}$)-Grammatik ist auch eine LR($oldsymbol{k}$)-Grammatik
- ullet Aber: nicht zu jeder LR $(oldsymbol{k})$ -Grammatik gibt es eine äquivalente LL $(oldsymbol{k})$ -Grammatik
- ullet LR($oldsymbol{k}$)-Grammatiken sind eindeutig

Folgerung 11.7

- Jede deterministisch kontextfreie Sprache hat eine eindeutige Grammatik
- ullet Mehr zur Syntaxanalyse mit LR $(oldsymbol{k})$ -Grammatiken findet sich im Buch von Ingo Wegener
- Es gibt eine Vielzahl weiterer eingeschränkter kontextfreier Grammatiktypen, die für die Konstruktion von Compilern von Bedeutung sind
- Näheres (und natürlich sehr viel mehr) können
 Sie in der Vorlesung Übersetzerbau erfahren

Zusammenfassung

- ullet Das Wortproblem für kontextfreie Grammatiken lässt sich mit dem CYK-Algorithmus in Zeit $O(|G||w|^3)$ lösen
- Um eine sehr effiziente Syntaxanalyse von Programm-Code zu gewährleisten, ist es nötig, eingeschränkte Grammatiken zu verwenden
- Dabei gibt es zwei wichtige Ansätze:
 - Top-down: LL(1)-Grammatiken
 - Bottom-up: LR(1)-Grammatiken
- LL(1)-Grammatiken sind konzeptionell einfacher, aber LR(1)-Grammatiken sind ausdrucksstärker
- LR(1)-Grammatiken k\u00f6nnen genau die deterministisch kontextfreien Sprachen beschreiben

- Parser lassen sich zum Beispiel mit yacc automatisch aus kontextfreien Grammatiken erzeugen
- Dabei lässt sich im Falle eines (einfachen)
 Compilers sogar die Codeerzeugung integrieren
 - Zusammenspiel mit lex

Literatur

• CYK-Algorithmus:

- Daniel H. Younger. Recognition and parsing of context-free languages in time n^3 . Information and Control, 10(2):189–208, 1967