PHYSICS 4AL

EXPERIMENT 2: MEASUREMENT OF G

Terrence Ho | ID: 804793446 Date of Lab: April 25th, 2017 Lab Section: Tuesday, 5 P.M.

T.A.: David Bauer Lab Partners: Kai Crane

Contents

Derivation of Equation 2.1	2
Plots/Graphs	2
Data Tables	2
Conclusion	3
Extra Credit	3
Report	3
References	4

OVERVIEW

There were two parts to this experiment in order to find the value of g.

DERIVATION OF EQUATION 2.1

We first set the velocity V_1 to be the distance d travelled between the first photogate and the second photogate over time T_1 . Similarly, the velocity V_2 is equal to the distance D over time traveled T_2 between the second photogate and the landing pad.

$$V_1 = \frac{d}{T_1}$$
 and $V_2 = \frac{D}{T_2}$

We substitute these velocities into the kintic equation $V = V_0 + g(t)$, where $V = V_2$, $V_0 = V_1$, and t is equal to the average of the two times, or $t = \frac{T_1 + T_2}{2}$.

$$V_2 = V_1 + g\left(\frac{T_1 + T_2}{2}\right)$$

By substituting in the values for V_1 and V_2 , we get an equation that only contains the units that Equation 2.1 contained.

$$\frac{D}{T_2} = \frac{d}{T_1} + g\left(\frac{T_1 + T_2}{2}\right)$$

By rearranging the equation so that g is isolated, we end up with Equation 2.1.

$$g = \frac{2}{T_1 + T_2} \left(\frac{D}{T_2} - \frac{d}{T_1} \right)$$
, in terms of m/s²

PLOTS

DATA TABLES

Ball Drop Tables

Below are three tables, Table 2.1 showing the measured acceleration and the uncertainties. The uncertainties in Table 2.1 were derived by adding together both the systematic uncertainty and statistical uncertainty.

CONCLUSION

Insert conclusion here.

Trial	Photogate Spacing d (cm)	Gap to impact Sensor $D(cm)$	Measured Acceleration $g(m/s^2)$
1	8.00 ± 0.05	45.50 ± 0.05	10.03 ± 0.02
2	8.00 ± 0.05	54.00 ± 0.05	10.03 ± 0.03
3	8.00 ± 0.05	63.00 ± 0.05	10.07 ± 0.03
4	8.00 ± 0.05	27.00 ± 0.05	10.32 ± 0.01
5	8.00 ± 0.05	72.00 ± 0.05	10.05 ± 0.03

Table 2.1 Experiment Results and calculated acceleration values. The calculated value of the acceleration due to gravity g is 10.10 ± 0.02 m/s². The systematic and statistical uncertainties are not the same. The following Tables 2.2 and 2.3 list out the contributions to uncertainty systematic and statistical uncertainty made.

Trial	Photogate Spacing d (cm)	Gap to impact sensor	Systematic Uncertainty in Mea-
		D(cm)	sured Acceleration $g(m/s^2)$
1	8.00 ± 0.05	45.50 ± 0.05	± 0.02
2	8.00 ± 0.05	54.00 ± 0.05	± 0.02
3	8.00 ± 0.05	63.00 ± 0.05	± 0.02
4	8.00 ± 0.05	27.00 ± 0.05	± 0.01
5	8.00 ± 0.05	72.00 ± 0.05	± 0.02

Table 2.2 Uncertainty due to Systematic Uncertainty This table depicts the uncertainty that resulted from systematic variables. Uncertainty due to measurement in distances d and D was 0.05 cm, or 0.0005 m, because milimeters are the smallest unit on a meter stick. The best values for T_1 and T_2 were used along with the upper and lower limits of d and D to calculate g_{min} and g_{max} . Upper limits for measured distances: $d = d_{best} + \delta d$ and $D = D_{best} + \delta D$ Lower limits for measured distances: $d = d_{best} - \delta d$ and $D = D_{best} - \delta D$

EXTRA CREDIT

REPORT

Trial	Photogate Spacing d (cm)	Gap to impact sensor	Statistical Uncertainty in Mea-
		D(cm)	sured Acceleration $g(m/s^2)$
1	8.00 ± 0.05	45.50 ± 0.05	± 0.003
2	8.00 ± 0.05	54.00 ± 0.05	± 0.01
3	8.00 ± 0.05	63.00 ± 0.05	± 0.01
4	8.00 ± 0.05	27.00 ± 0.05	± 0.003
5	8.00 ± 0.05	72.00 ± 0.05	± 0.01

Table 2.3 Uncertainty due to Statistical Uncertainty Using the standard deviation equaiton on STDEV on Excel, the uncertainties were calculated by dividing the standard deviations by the square root N number of data points.

$$\delta g = \frac{1}{\sqrt{N}} * \sqrt{\frac{1}{N-1} * \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

REFERENCES

Anand, U., 2010. The Elusive Free Radicals, *The Clinical Chemist,* [e-journal] Available at:http://www.clinchem.org/content/56/10/1649.full.pdf> [Accessed 2 November 2013]

Biology Forums, 2012. *Normal glomerulus. Acute glomerulonephritis*. [online] Available at: http://biology-forums.com/index.php?action=gallery;sa=view;id=9284 [Accessed 23 October 2013].

Budisavljevic, M., Hodge, L., Barber, K., Fulmer, J., Durazo-Arvizu, R., Self, S., Kuhlmann, M., Raymond, J. and Greene, E., 2003. Oxidative stress in the pathogenesis of experimental mesangial proliferative glomerulonephritis, *American Journal of Physiology - Renal Physiology*, 285(6), pp. 1138-1148.

Chien, C., Lee, P., Chen, C., Ma, M., Lai, M. and Hsu, S., 2001. De Novo Demonstration and Co-localization of Free-Radical Production and Apoptosis Formation in Rat Kidney Subjected to Ischemia/Reperfusion, *Journal of the American Society of Nephrology*, 12(5), pp. 973-982.

Couser, W., 1993. Pathogenesis of glomerulonephritis, *Kidney International Supplements*, 42, pp. 19-26.

De Gasparo, M., 2002. Angiotensin II and nitric oxide interaction, *Heart Failure Reviews*, [e-journal] Available at:http://www.ncbi.nlm.nih.gov/pubmed/12379820 [Accessed 26 October 2013]

Edinburgh Renal Education Pages, 2012. *Glomerulonephritis* [online] Available at: http://www.edrep.org/pages/textbook/glomerulonephritis.php> [Accessed 25 October 2013].

Forbes, J., Coughlan, M. and Cooper, M., 2008. Oxidative Stress as a Major Culprit in Kidney Disease in Diabetes, *Diabetes*, 57(6), pp. 1446-1454.

Geeky Medics, 2010. *Glomerulonephritis* [online] Available at: http://geekymedics.com/2010/10/27/glomerulonephritis/ [Accessed 25 October 2013].

Gryglewski, R., Palmer, R., Moncada, S., 1986. Superoxide anion is involved in the breakÂŋdown of endothelium derived relaxing factor, *Nature*, 320, pp. 454-456.

Halliwell, B., 2001. Free Radicals and other reactive species in Disease, *Encyclopedia of Life Sciences*, [e-journal] Available at:http://web.sls.hw.ac.uk/teaching/level4/bcm1_2/reading/oxidative_stress/files/0xidative_stress.pdf [Accessed 19 October 2013]

Huang, H., Patel, P. and Salahudeen, A., 2001. Lazaroid compounds prevent early but not late stages of oxidant-induced cell injury: potential explanation for the lack of efficacy of lazaroids in clinical trials, *Pharmacological Research*, 41(1), pp. 55-61.

Klinger, J., Abman, S. and Gladwin, M., 2013. Nitric Oxide Deficiency and Endothelial Dysfunction in Pulmonary Arterial Hypertension, *American Journal of Respiratory and Critical Care Medicine*, 188(6), pp. 639-646.

Lindemann, I., Boettcher, J., Oertel, K., Pasternack, R., Heine, A. and Klebe, G. 2012. Inhibitors of Transglutaminase 2: A therapeutic option in celiac disease, *To be Published*, [e-journal + PDB structure] Available at:http://www.ebi.ac.uk/pdbe-srv/view/entry/3s3s/summary [Accessed 24

October 2013]

Mayo Clinic, 2011. *Glomerulonephritis* [online] Available at: http://www.mayoclinic.com/health/glomerulonephritis/DS00503/> [Accessed 20 October 2013].

McCord, J., Roy, R. and Schaffer, S., 1985. Free radicals and myocardial ischemia. The role of xanthine oxidase, *Advances in myocardiology*, [e-journal] Available at:http://www.ncbi.nlm.nih.gov/pubmed/2982206> [Accessed 24 October 2013]

National Health Service, 2012. *Causes of glomerulonephritis* [online] Available at: http://www.nhs.uk/Conditions/Glomerulonephritis/Pages/Causes.aspx [Accessed 20 October 2013].

Niaudet, P., 2013. Overview of the pathogenesis and causes of glomerulonephritis in children. [online] Available at: http://www.uptodate.com/contents/overview-of-\the-pathogenesis-and-causes-of-glowersed-21 October 2013].

Ronco, P., 2013. *Mechanisms of glomerular crescent formation*. [online] Available at: http://www.uptodate.com/contents/mechanisms-of-glomerular-crescent-formation [Accessed 21 October 2013].

Rutchik, J., 2013. *Toxic Neuropathy Clinical Presentation*. [online] Available at: http://emedicine.medscape.com/article/1175276-clinical#a0216> [Accessed 26 October 2013].

R&D Systems, 2013. *Technical Information*. *Ischemia/Reperfusion Injury*. [online] Available at: http://www.rndsystems.com/cb_detail_objectname_SP96_Ischemia.aspx [Accessed 28 October 2013].

Salahudeen, A., 1999. Free Radicals in Kidney Disease and Transplantation, *Saudi Journal of Kidney Diseases and Transplantation*, 10(2), pp. 137-143.

Sarma, A., Mallick, A. and Ghosh, A., 2010. Free Radicals and Their Role in Different Clinical Conditions: An Overview, *International Journal of Pharma Sciences and Research*, 1(3), pp. 182-192.

Shah, S., Baliga, R., Rajapurkar, M. and Fonseca, V., 2007. Oxidants in Chronic Kidney Disease, *Journal of the American Society of Nephrology*, 18(1), pp. 16-28.

The University of Utah, Unknown. *Glomerulonephritis* [online] Available at: http://library.med.utah.edu/WebPath/RENAHTML/RENALIDX.html#8 [Accessed 25 October 2013].

Wang, C. and Salahudeen, A., 1994. Cyclosporine nephrotoxicity: attenuation by an antioxidant -inhibitor of lipid peroxidation in-vitro and in-vivo, *Transplantation*, 58, pp. 940-946.

Wang, C. and Salahudeen, A., 1995. Lipid peroxidation accompanies cyclosporine nephrotoxicity: effects of vitamin E, *Kidney International*, 47, pp. 927-934.

Weiss, S., 1989. Tissue Destruction by Neutrophils, *New England Journal of Medicine*, 320, pp. 365-376.