DSC5103 Statistics

Session 6. Regularization in Linear Models

Review of last session

- Model selection in (generalized) linear models
 - The model selection workflow: forward, backward, best subset
 - The traditional vs. modern performance measures

- Validation methods: a tool for numerically estimating out-of-sample error
 - Validation set, LOOCV, K-fold CV
 - Auto vs. Manual CV

Plan for today

- Model Selection
 - Best Subset and Stepwise Selection using Cross-Validation

- Shrinkage Methods (Regularization) for linear models
 - Ridge Regression
 - The Lasso
 - Elastic Net
- Regularization in general

Ridge Regression

Ordinary Least Squares (OLS) minimizes

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
.

Ridge Regression imposes a slightly different objective to minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2,$$

- Effectively, Ridge Regression adds a penalty term to linear regression
- λ ≥ 0 is a tuning parameter

Ridge Regression

- It still tries to find estimator of β to reduce the RSS
- In addition, it tries to "shrink" large values of β 's towards zero

$$\lambda \sum_{j=1}^{p} \beta_j^2,$$

- Parameter λ serves to control the relative weight of the two objectives
 - When $\lambda = 0$, it reduces to linear regression (OLS)
 - When λ goes to infinity, it becomes the null model without predictors
 - We shall use cross-validation to find the best λ

$$\lambda = 0$$
 $\lambda = 0$
 $\lambda = 0$
 $\lambda = 0$
 $\lambda = 0$

$$\beta = (\beta_0, \beta_1, \beta_2)$$

Ridge:
$$\left(\lambda\left(\frac{\beta_1^2+\beta_2^2}{m}\right)\right)$$

Credit Data: Ridge Regression

 $2-7: ||\beta||_2 = \int \beta_1^2 + \beta_2^2 + \cdots + \beta_p^2$

As λ increases, the coefficients shrink towards zero.

Scaling of Predictors

- The standard least squares coefficient estimates are scale equivariant
 - multiplying X_j by a constant c simply leads to a scaling of the least squares coefficient estimates by a factor of c.
 - regardless of how the **j**-th predictor is scaled, $\beta_i X_i$ will remain the same
- The ridge regression coefficient estimates can change substantially when multiplying a given predictor by a constant due to the penalty term
 - it is best to **standardize** the predictors first by rescaling by their standard deviation

$$y \sim \frac{x_1 - \mathcal{U}}{\sigma(x_1)} + \dots + \frac{x_p - \mathcal{U}}{\sigma(x_p)} P$$

Why Shrinkage Works?

- OLS minimizes bias but can be highly variable
 - When there is multicollinearity
 - In particular when n and p are of similar size or when n < p

- Ridge regression can substantially reduce variance at the cost of bias
 - Parameter λ to balance the bias-variance trade-off
 - hence potentially improve the out-of-sample performance

Bias and Variance in Ridge Regression

Black: Bias

Green: Variance

Purple: MSE

Advantages of Ridge Regression

- (owpwide)
 If p is large, then using the best subset selection approach requires searching through enormous numbers of possible models
 - With Ridge Regression, for any given λ , we only need to fit one model and the computations turn out to be very simple

000

The LASSO

- Ridge Regression's major disadvantage
 - the penalty term will never force any of the coefficients to be exactly zero
 - the final model will include all variables, which makes it harder to interpret
- A more modern alternative is the LASSO (Least Absolute Shrinkage and Selection Operator)

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

- Similar to Ridge Regression, except it uses a different penalty term
- L-1 versus L-2 norm

What's the difference?

- Using this penalty, the LASSO forces coefficient estimates to be exactly zero
- The LASSO effectively does variable selection (together with parameter estimation)

- It yields sparse models that are easier to interpret
- With LASSO, we can produce a model that has high predictive power and it is simple to interpret

Credit Data: LASSO

Ridge Regression and LASSO

- An optimization perspective
 - View λ as a Lagrangian multiplier

• Ridge Regression

Win RSS+
$$\lambda$$
. $\|\beta\|_{2}$

minimize $\sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij}\right)^{2}$ subject to $\sum_{j=1}^{p} \beta_{j}^{2} \leq s$,

Selecting λ by Cross-Validation

• Select a grid of potential values, compute cross-validation error rate (for each value of λ), and select the one that gives the least error rate

Selecting λ by Cross-Validation

LASSO

$$\begin{array}{ccc}
\mathcal{Y} = X & & & & \\
\mathcal{Y} \sim X + X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' & & & \\
\mathcal{Y} = X + 0X' &$$

RSS +
$$\lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=1}^{p} \beta_j^2$$

- Two tuning parameters λ_1 and λ_2
- In R implementation (function *glmnet()*) of elastic net

$$RSS + \lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + \frac{1-\alpha}{2} \sum_{j=1}^{p} \beta_j^2 \right) \quad \bigcirc < \swarrow \quad < \downarrow \quad \succeq \swarrow$$

- − Two tuning parameters λ and α (0 ≤ α ≤ 1)
- Special cases: $\alpha = 0$ is ridge regression; $\alpha = 1$ is lasso

Regularization in General

- Simultaneous parameter estimation and variable selection
- The general idea of regularization applies to a much wider class of tools
 - Generalized Linear models
 - Tree pruning
 - SVM
 - Neural Network and Deep Learning
 - **–** ...
- Allow for much more complicated models without overfitting
- Appropriate for p >> n problems

Group Project

- Requirement/assessment
 - Problem definition (5): research questions, data
 - Analysis execution (5): choice of tools, model generation and comparison
 - Report (5) and presentation (5)
- · Report (Technical Appendix)
 - As concise as possible (penalty term for number of pages)
 - Rmarkdown is good enough
- Presentation
 - Around 15-minute self-recorded video
 - To cover the high-level messages not technical details
 - Better to involve all the team members
- Submission deadline: Nov 23