Weighted Least Squares (WLS)

Intro

 The Weighted Least Squares (WLS) method is an extension of the ordinary least squares (OLS) technique. The model is formulated the same way as in OLS:

$$\hat{y}(\boldsymbol{x}) = \boldsymbol{x}^{\mathsf{T}} \hat{\boldsymbol{\beta}} + \varepsilon(\boldsymbol{x})$$

where x is the vector of features, β is the vector of parameters, y(x) is the target variable, and $\varepsilon(x)$ is the error term.

- Each observation x has associated weights w(x) that reflect the importance of that particular observation.
- This method minimizes the weighted sum of squared residuals:

$$ext{RSS} = \sum_{oldsymbol{x} \in X^{\ell}} w(oldsymbol{x}) \cdot (y(oldsymbol{x}) - \hat{y}(oldsymbol{x}))^2
ightarrow \min_{oldsymbol{eta}}.$$

· The solution to this minimization problem is given by:

$$\boldsymbol{\beta}^* = \underbrace{\left(\boldsymbol{X}^\mathsf{T} \boldsymbol{W} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^\mathsf{T} \boldsymbol{W}}_{\boldsymbol{X}^{\dagger} \dots} \boldsymbol{y},$$

where W is the diagonal matrix of weights, and X_W^+ is the weighted pseudo-inverse.

Formalism

Weight matrix

For a weighted

$$RSS = \sum_{\boldsymbol{x} \in X^{\ell}} w(\boldsymbol{x}) \cdot (y(\boldsymbol{x}) - \hat{y}(\boldsymbol{x}))^{2}$$

let's introduce the weight matrix:

$$egin{aligned} W &:= \operatorname{diag}(w(oldsymbol{x}_1),..., & w(oldsymbol{x}_\ell)) \ &= \begin{pmatrix} w(oldsymbol{x}_1) & & & \ & \ddots & & \ & & w(oldsymbol{x}_\ell) \end{pmatrix} \end{aligned}$$

Matrix form

Thus, we can rewrite the RSS in matrix form as a quadratic form:

$$RSS = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} W(\boldsymbol{y} - X\boldsymbol{\beta}).$$

Transformation to standard LS problem

The weighted LS problem can be easily reformulated as a standard LS problem by replacing the original variables with transformed ones:

$$oldsymbol{y}' \coloneqq W^{rac{1}{2}}oldsymbol{y}, \quad X' \coloneqq W^{rac{1}{2}}X, \quad oldsymbol{arepsilon}' \coloneqq W^{rac{1}{2}}oldsymbol{arepsilon}$$

Substituting these transformations into the original model, we get:

Heteroscedasticity can be eliminated by applying weighted LS.

For a model with non-constant variance of the error term:

$$y = X\beta + \varepsilon$$
, $Var[\varepsilon(x)] = y(x)^2 \cdot \sigma^2$

To apply WLS, the weights must have a negative square unit:

$$w(x) = \frac{1}{y(x)^2}$$

This leads to the transformations:

$$y' = \frac{y}{\sqrt{w}}, \quad x' = \frac{x}{\sqrt{w}}, \quad \varepsilon' = \frac{\varepsilon}{\sqrt{w}}$$

The weight matrix is:

$$W = \begin{pmatrix} \frac{1}{y(x_1)^2} & & \\ & \ddots & \\ & & \frac{1}{y(x_\ell)^2} \end{pmatrix}$$

and

$$y' = \sqrt{W}y$$
, $x' = \sqrt{W}x$, $\varepsilon' = \sqrt{W}\varepsilon$

Now, the model can be formulated as a homoscedastic least squares problem:

$$y' = X'\beta + \varepsilon', \quad \operatorname{Var}[\varepsilon'(x)] = \sigma^2$$

Quadratic form is a function of the form:

$$Q(x_1,...,x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{i,j} x_i x_j.$$

Coefficients $a_{i,j}$ can be arranged in a symmetric matrix A, and the quadratic form can be written in matrix form as:

$$Q(x) = x^T A x.$$

$$y' = X'\beta + \varepsilon'$$

Analytical solution

Now, let's solve for $oldsymbol{eta}$ in the transformed model. Since W and $W^{\{\frac{1}{2}\}}$ are diagonal matrices, transposing them results in the same matrix:

$$\boldsymbol{\beta}^* = {X'}^+ \boldsymbol{y}' = \left({X'}^\mathsf{T} X'\right)^{-1} {X'}^\mathsf{T} \boldsymbol{y}'$$

Expanding the expressions:

Ing the expressions:
$$\beta^* = \left(\left(W^{\frac{1}{2}}X\right)^TW^{\frac{1}{2}}X\right)^{-1}\left(W^{\frac{1}{2}}X\right)^{\mathsf{T}}W^{\frac{1}{2}}\boldsymbol{y}$$

$$= \left(X^\mathsf{T}WX\right)^{-1}X^\mathsf{T}W\boldsymbol{y}$$

Therefore, the solution is:

$$\boldsymbol{\beta}^* = \underbrace{\left(\boldsymbol{X}^\mathsf{T} \boldsymbol{W} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^\mathsf{T} \boldsymbol{W}}_{\boldsymbol{X}_W^+} \boldsymbol{y}$$