תרגילים: שפות כריעות ושפות קבילות

שאלה L^* מוגדרת: בהינתן השפה L^* מוגדרת:

$$L^* = \{\varepsilon\} \cup \{w = w_1 w_2 \cdots w_k \mid \forall \ 1 \le i \le k \ , \ w_i \in L\}$$

- L בהינתן מכונת טיורינג M המקבלת שפה בהינתן בהינתן בהינת א L^{\ast} המקבלת את המקבלת M^{\ast} דטרמיניסטית אי דטרמינט טיורינג אי
- .L המכריעה שפה M המכונת טיורינג בהינתן מכונת טיורינג אי דטרמיניסטית M^* המכריעה את בנו מכונט טיורינג אי
- שאלה 2 האם הטענה הבאה נכונה, לא נכונה, או שקולה לבעיה פתוחה. $L(M) \in R \ \, \lambda + L(M) \in CoRE$ לכל מכונת טיורינג M, אם M
- שאלה לבעיה פתוחה. האם הטענה הבאה נכונה, לא נכונה, או שקולה לבעיה פתוחה. $L_2 \in Co\,RE \,\,$ או $L_1 \in RE \,\,$ אזי $L_1 \cap L_2 \in R$
 - -שאלה 4 הוכיחו כי לכל 3 שפות L_1, L_2, L_3 כך ש
 - $L_1 \cup L_2 \cup L_3 = \Sigma^*$.1
 - $1 \leq i,j \leq 3$, $i \neq j$ לכל ל $L_i \cap L_j = \emptyset$.2
 - $1 \leq i \leq 3$ לכל $L_i \in R$ הוכיחו כי $1 \leq i \leq 3$ לכל ל

תשובות

שאלה 1

L את מכונת טיורנג שמזהה את M

 L^* אי-דטרמיניסטית אמקבלת אי-דטרמיניסטית טיורינג M^*

תאור הבנייה

:w על קלט $=M^*$

. אם w=arepsilon מקבלת. w=arepsilon

 $k \in \mathbb{N}^+$ כאשר $w = w_1, w_2, \ldots, w_k$ ל- w ל- מלוקה של אי דטרמיניסטי דטרמיניסטי אווקה $w = w_1, w_2, \ldots, w_k$ בוחרת באופן אי

i < i < k לכל.

. מריצה את w_i על M על מריצה $M^* ullet$

.(3 קיבלה חוזרים לשלב M אם *

.4 אזי M^* אזי $\{w_i\}$ אזי כל המחרוזות אזי M מקבלת.

ניתנת לחישוב - מספר הפירוקים האפשריים ל- w הוא סופי ולכן הניחוש הוא סופי, לפיכך כתיבה - M^st על הסרט והרצת M ניתן לחישוב.

 $\underline{L^{*}}=L\left(M^{*}
ight)$:הוכחת נכונות

⇒ כיוון

 $w\in L\left(M^{st}
ight)$ נניח כי

. קיבלה M ($1 \leq i \leq k$) w_i כך שעבור כל ($k \in \mathbb{N}^+$) $w = w_1 \cdot w_2 \cdot \ldots \cdot w_k$ קיבלה m

L(M) = L כל $w_i \in L(M)$ בפרט, $w_i \in L(M)$

 $w_i \in L \Leftarrow$

 $w = w_1 w_2 \dots w_k \in L^* \Leftarrow$

 $L(M^*) \subseteq L^* \Leftarrow$

\Rightarrow כיוון

 $w \in L^*$ נניח כי

 $(1 \leq i \leq k) \ w_i \in L$ כך שכל ($k \in \mathbb{N}^+$) $w = w_1 w_2 \cdots w_k$ קיימת חלוקה $k \in \mathbb{N}^+$

w תנחש את הפירוק הזה עבור $M^* \Leftarrow$

כזה w_i כזה תקבל כל M

w תקבל את $M^* \Leftarrow$

 $w \in L(M^*) \Leftarrow$

 $L^* \subset L(M^*) \Leftarrow$

 $L\left(M^{st}
ight)=L^{st}$ אזי אזי $L^{st}\subseteq L\left(M^{st}
ight)$ ו- $L\left(M^{st}
ight)\subseteq L^{st}$ אזי שלכן, מאחר ומצאנו ש

.L את מכונת טיורנג שמכריעה את מכונת טיורנג M^* אי-דטרמיניסטית המכריעה את M^*

תאור הבנייה

:w על קלט $=M^*$

- .1. אם w=arepsilon מקבלת.
- $k \in \mathbb{N}^+$ כאשר $w = w_1, w_2, \ldots, w_k$ ל- w ל- בוחרת באופן אי דטרמיניסטי חלוקה של $w = w_1, w_2, \ldots, w_k$ בוחרת באופן אי
 - $1 \le i \le k$ לכל.
 - $.w_i$ על M מריצה את M^*
 - . דוחה M^* אם M דוחה או M^*
 - אחרת אם M קיבלה חוזרים לשלב 3). \ast
 - .4 אזי M^* אזי $\{w_i\}$ אזי המחרוזות $\{w_i\}$ אזי את כל מקבלת.

ניתנת לחישוב - מספר הפירוקים האפשריים ל- w הוא סופי ולכן הניחוש הוא סופי, לפיכך כתיבה - M^st על הסרט והרצת M ניתן לחישוב.

$L^{st}=L\left(M^{st} ight)$ הוכחת נכונות:

 \Leftarrow כיוון

 $w\in L\left(M^{st}
ight)$ ננית כי

- קיבלה. M ($1 \leq i \leq k$) w_i כך שעבור כל ($k \in \mathbb{N}^+$) $w = w_1 \cdot w_2 \cdot \ldots \cdot w_k$ קיימת חלוקה
 - L(M) = L בפרט, בפרט. $w_i \in L(M)$ כל
 - $w_i \in L \Leftarrow$
 - $w = w_1 w_2 \dots w_k \in L^* \Leftarrow$
 - $L(M^*) \subseteq L^* \Leftarrow$

\Rightarrow כיוון

 $w \in L^*$ נניח כי

- $(1 \leq i \leq k) \ w_i \in L$ כך שכל ($k \in \mathbb{N}^+$) $w = w_1 w_2 \cdots w_k$ קיימת חלוקה $k \in \mathbb{N}^+$
 - w תנחש את הפירוק הזה עבור $M^* \Leftarrow$
 - כזה w_i כזה תקבל כל M כזה \Leftarrow
 - w תקבל את $M^* \Leftarrow$
 - $w \in L(M^*) \Leftarrow$
 - $L^* \subseteq L(M^*) \Leftarrow$

 $L\left(M^{*}
ight)=L^{*}$ אזי אזי $L^{*}\subseteq L\left(M^{*}
ight)$ -ו $L\left(M^{*}
ight)\subseteq L^{*}$ אזי ישחר ומצאנו ש

שאלה 2 הטענה נכונה:

 $L(M) \in RE$. ההגדרה: מתקיים, לפי מתקיים, לכל לכל מכונת טיורינג מתקיים, לפי אזי $L(M) \in Co\:RE$ לכן, אם $L(M) \in RE \cap Co\:RE = R$.

שאלה 3 הטענה לא נכונה. דוגמה נגדית:

יהי
$$L_1=L_{\Sigma^*}
otin RE$$
 כאשר

$$L_{\Sigma^*} = \{ \langle M \rangle \mid L(M) = \Sigma^* \}$$

$$.L_2=\overline{L_{\Sigma^*}}$$
 ותהי

$$L_1\cap L_2=\emptyset\in R$$
 -בורר ש-

$$\mathcal{L}_1
otin Co\,RE$$
 מצד שני, $L_1 = L_{\Sigma^*}
otin RE$ וגם

$$L_2
otin RE$$
 וגם $L_2 = \overline{L_{\Sigma^*}}
otin Co\,RE$ -י

שאלה 4

שיטה 1

 $1 \leq i \leq 3$ לכל L_i את המקבלת את מכונת טיורינג מכיוון ש- $L_i \in RE$ קיימת מכונת טיורינג M_i^* המכריעה את לכל $1 \leq i \leq 3$ באופן הבא.

 M_3^* -ו M_2^* את הבנייה עבור דומה אפשר לבאופן באופן את הבנייה עבור M_1^*

:w על קלט $=M_1^*$

 M_1,M_2,M_3 מריצה במקביל את שלושת מריצה פריצה •

. אם
$$M_1^* \Leftarrow \eta$$
 מקבלת סקבלת אם ס

. דוחה
$$M_2^* \Leftarrow \pi$$
 קיבלה $M_2 \circ$

. דוחה
$$M_3^* \Leftarrow$$
 קיבלה M_3 דוחה ס

נכונות הבנייה:

 $.L_1$ את מכרעיה M_1^st נראה כי

.w את מקבלת $M_1^* \Leftarrow w$ את מקבלת $M_1 \Leftarrow w \in L_1$ אם א

.w את דוחה את דוחה את מקבלת את או מקבלת את מקבלת מקבלת $M_2 \Leftarrow w \in M_2 \cup M_3 \Leftarrow w \notin L_1$ אם

שיטה 2

 $ar{L}_1 \in RE$ נשים לב כי RE תחת איחוד, גם $L_2 \in RE$ וגם וגם $L_2 \in RE$ נשים לב כי $L_3 = ar{L}_1$ ואס

 $L_1 \in R$ ניתן להוכיח וגם , $\bar{L}_1 \in RE$ וגם וגם וגם אזי קיבלנו ש-

 $.L_3$ -ו רבור עבור כנ"ל