日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2000年 7月14日

出 願 番 号 Application Number:

特願2000-213741

出 願 人 Applicant (s):

富士写真フイルム株式会社

2001年 4月 6日

特許庁長官 Commissioner, Patent Office

特2000-213741

【書類名】

【整理番号】 Y1G0742

【提出日】 平成12年 7月14日

【あて先】 特許庁長官殿

【国際特許分類】 G03F 7/09

B41N 3/03 501

G03F 7/30

特許願

【発明者】

【住所又は居所】 静岡県榛原郡吉田町川尻4000番地 富士写真フイル

ム株式会社内

【氏名】 堀田 久

【発明者】

【住所又は居所】 静岡県榛原郡吉田町川尻4000番地 富士写真フィル

ム株式会社内

【氏名】 坂本 敦

【特許出願人】

【識別番号】 000005201

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】 100059959

【弁理士】

【氏名又は名称】 中村 稔

【選任した代理人】

【識別番号】 100067013

【弁理士】

【氏名又は名称】 大塚 文昭

【選任した代理人】

【識別番号】 100082005

【弁理士】

【氏名又は名称】 熊倉 禎男

【選任した代理人】

【識別番号】 100065189

【弁理士】

【氏名又は名称】 宍戸 嘉一

【選任した代理人】

【識別番号】 100096194

【弁理士】

【氏名又は名称】 竹内 英人

【選任した代理人】

【識別番号】 100074228

【弁理士】

【氏名又は名称】 今城 俊夫

【選任した代理人】

【識別番号】 100084009

【弁理士】

【氏名又は名称】 小川 信夫

【選任した代理人】

【識別番号】 100082821

【弁理士】

【氏名又は名称】 村社 厚夫

【選任した代理人】

【識別番号】 100086771

【弁理士】

【氏名又は名称】 西島 孝喜

【選任した代理人】

【識別番号】 100084663

【弁理士】

【氏名又は名称】 箱田 篤

【手数料の表示】

【予納台帳番号】 008604

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】 平版印刷版の製造方法

【特許請求の範囲】

【請求項1】 下記式に示される関係を満たす表面を有するアルミニウム支 持体上にポジ型感光層を設けた平版印刷版を、珪酸塩を含まない現像液で現像処 理することを特徴とする平版印刷版の製造方法:

0.30≦A/(A+B)≦0.90(式中、AはX線光電子分光法を用いて測定 して得られたフッ素(1S)のピーク面積(counts·eV/sec)を表し、BはX線 光電子分光法を用いて測定して得られたアルミニウム(2P)のピーク面積(co unts·eV/sec)を表す)。

【請求項2】 珪酸塩を含まない現像液が、(a)非還元糖から選ばれる少 なくとも一種の糖類および(b)少なくとも一種の塩基(珪酸塩を除く)を含有し 、 p Hが 9 . 0 ~ 1 3 . 5 の範囲にある現像液である、請求項 1 に記載の平版印刷 版の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は現像性、耐腐食性、汚れ、耐刷、残色及び残膜性能が改善された平版 印刷版の製造方法に関する。

[0002]

【従来の技術】

従来のポジ型感光性平版印刷版は親水性を備えた支持体上にインキ受容性の感 光層を設けたものである。このような感光性平版印刷版の感光層に画像露光を施 し、ついで現像液を用いて露光済みの感光層を現像すると、露光部の感光層が除 去されて親水性の支持体の表面が露出する一方、非露光部の感光層は支持体の表 面に残留してインキ受容性の画像部が形成され、それによって平版印刷版が得ら れる。このような印刷版において非画像部にインキがつくことにより生じる汚れ を防ぐためには非画像部をさらに親水化する必要があるが、通常は現像時に、ア ルカリ金属珪酸塩を含む現像液を用いることにより、非画像部のみを親水化して

汚れ性能を改善していた。ところが、アルカリ金属珪酸塩を含む現像液を用いる場合、SiO2に起因する固形物が析出しやすいこと、あるいは現像廃液を処理する際、中和処理を行おうとするとSiO2に起因するゲルが生成する等の問題があった。また、現像により付着したアルカリ金属珪酸塩に現像液中に溶解している染料、あるいは樹脂等の親油成分が再吸着し、残色、残膜性能を劣化させる問題が有った。

[0003]

これらの不都合を回避できる現像液として、現像安定化剤として、糖類、オキシム類、フェノール類、及びフッ素化アルコール類から選ばれる少なくとも1種の化合物を0.01モル/リットル以上含有し、かつアルカリ剤を含有する現像液、すなわち珪酸塩フリーの現像液が考えられるが、従来のポジ型感光性平版印刷版を現像しようとするとアルミニウム支持体の陽極酸化皮膜が現像液で溶解され、現像液中に蓄積されて、カス、ヘドロとなって自動現像機の洗浄性を悪くしたり、スプレーの目詰まりを起こすなどという別の不都合点があった。また、このような現像液で現像した印刷版を印刷時に放置すると、インキがさらにとれにくくなる、いわゆる放置汚れが生じるという問題点もある。

[0004]

これらの問題点を解決するために従来から支持体の陽極酸化皮膜への種々の処理が提案されている。現像時の溶解防止能があるといわれている水蒸気処理は、非画像部の残色や残膜現象を防止することができるが、放置汚れの問題点は解消できなかった。また、陽極酸化皮膜へのシリケート処理により、非画像部における放置汚れの問題は解決できるが、耐刷力、残色性能が劣化するという欠点があり、いずれもこれらの問題を解決するに到っていない。

[0005]

【発明が解決しようとする課題】

従って、本発明の目的は、残色、残膜性能、耐刷性能及び汚れ性能が共に良好でかつ現像時の現像液中のカス、ヘドロを抑制できる平版印刷版の製造方法を提供することにある。

[0006]

【課題を解決するための手段】

本発明者は、上記目的を達成すべく鋭意研究の結果、下記式に示される関係を満たす表面を有するアルミニウム支持体上にポジ型感光層を設けた平版印刷版を、珪酸塩を含まない現像液で現像処理することを特徴とする平版印刷版の製造方法により、残色、残膜性能、汚れ性能及び耐刷性能が共に良好なポジ型感光性平版印刷版が得られ、かつ現像時のカス、ヘドロを抑制できることを見出し本発明を完成した。すなわち、本発明の製造方法においてアルミニウム支持体は式:0 $.30 \le A/(A+B) \le 0.90$ (式中、AはX線光電子分光法を用いて測定して得られたフッ素(1S)のピーク面積($counts \cdot eV/sec$)を表し、BはX線光電子分光法を用いて測定して得られたアルミニウム(2P)のピーク面積($counts \cdot eV/sec$ を表す)を満たすものである。

[0007]

【発明の実施の形態】

以下本発明の方法について詳細に説明する。本発明の感光性平版印刷版の製造方法は、任意に陽極酸化及び粗面化処理を行ったアルミニウム支持体表面を一定のフッ素化率となるように処理し、このアルミニウム支持体上に後述するポジ型感光層を設け、露光後、珪酸塩を含まない現像液で処理する方法である。本発明の方法は特に一定のフッ素化率を有するアルミニウム支持体を用いて製造された平版印刷版を、珪酸塩を含まない現像液で現像する点に特徴を有する。

[0008]

(アルミニウム支持体)

本発明において用いるアルミニウム支持体は、その表面が $0.30 \le A/(A+B) \le 0.90$ (式中、AはX線光電子分光法を用いて測定して得られたフッ素 (1S) のピーク面積 (counts·eV/sec) を表し、BはX線光電子分光法 (Electron Spectroscopy for Chemical Analysis:以下、適宜ESCAと称する)を用いて測定して得られたアルミニウム (2P) のピーク面積 (counts·eV/sec) を表す) の関係を満たすものである必要がある。

[0009]

ここで、ESCAについて説明する。

超高真空中で、試料表面に一定のエネルギー(hv)のX線を照射すると、光電効果によって試料構成原子から電子(光電子)が真空中に放出される。

このとき、放出された光電子の運動エネルギー(E_{K})は、式(I)で表され、 E_{K} をエネルギーアナライザーで測定することで、光電子の結合エネルギー(E_{R})が求められる。

[0010]

【数1】

$$E_{K} = h \nu - E_{R} - \phi \qquad (I)$$

(式中、φは仕事関数を表す。)

[0011]

照射X線としてはエネルギー幅の小さいMg - Kα (1253.6 e V) やA 1-Kα (1486.6 e V) が用いられ、このような軟X線の侵入深さは試料表面から数 μ m程度である。

しかし、試料の深い所から発生した光電子は、試料表面に達するまでに他の原子との非弾性散乱によりエネルギーを失ってしまう確率が非常に高く、試料の極表面で発生した光電子のみが他の原子に衝突することなく式(I)の関係を保ったまま飛び出して分析される。

このような理由から、ESCAは試料最表面の数nm(数10Å)を測定することができる。

[0012]

本発明において、ESCAでアルミニウム支持体表面を測定したとき得られたフッ素(1S)のピーク面積をA(counts・eV/sec)とし、同様に測定したアルミニウム(2P)のピーク面積をB(counts・eV/sec)としたとき、両者が式 $0.30 \le A/(A+B) \le 0.90$ であり、好ましくは $0.37 \le A/(A+B) \le 0.85$ を満たす関係にあり、より好ましくは式 $0.45 \le A/(A+B) \le 0.85$ の範囲、最も好ましくは式 $0.55 \le A/(A+B) \le 0.90$)の範囲である。A/(A+B)が0.30より小さい場合には被覆層に含まれる無機フッ素化合物の含有量が少なすぎて目的とする耐酸性、耐アルカリ性の向上効果が不充分となる。また、0.90を越える場合には基板と感

光層との密着性が低下し、耐刷性が劣化するという問題があり、いずれも好ましくない。

[0013]

このような支持体は、支持体表面を任意に陽極酸化処理をした後、フッ素含有 化合物等で処理することにより得ることができる。好ましい例としては、支持体 上に無機フッ素化合物を含む被覆層を形成する方法が挙げられる。この被覆層の 形成は、アルミニウム基板に直接形成してもよいが、耐久性と効果の観点から、 アルミニウム支持体に陽極酸化処理を行った後に陽極酸化被膜上に形成すること が好ましい。

[0014]

被覆層はアルミニウム支持体の陽極酸化皮膜を無機フッ素化合物を含む水溶液と接触させることにより形成することができる。本発明で使用しうる無機フッ素化合物としては、金属フッ化物が好ましい。具体的には、例えば、フッ化ナトリウム、フッ化カルシウム、フッ化カリウム、フッ化マグネシウム、ヘキサフルオロジルコニウムカリウム、ヘキサフルオロジルコニウムナトリウム、ヘキサフルオロジルコニウムナトリウム、ヘキサフルオロジルコニウム水素酸、ヘキサフルオロチタン酸カリウム、ヘキサフルオロジルコニウムアンモニウム、ヘキサフルオロチタン酸アンモニウム、ヘキサフルオロケイ酸、フッ化ニッケル、フッ化鉄、フッ化リン酸、フッ化リン酸アンモニウム等が挙げられ、これらは1種のみを用いてもよく、2種以上を併用してもよい。好ましい無機フッ素化合物としては、フッ化ナトリウム、フッ化カリウム、フッ化アンモニウム及びフッ化リチウムが挙げられる。

[0015]

上記水溶液中における無機フッ素化合物の濃度は0.001g/リットル $\sim 100g/$ リットルが適当であり、好ましくは0.01g/リットル $\sim 50g/$ リットル、さらに好ましくは0.1g/リットル $\sim 20g/$ リットルである。本発明のアルミニウム支持体は、例えば、25℃でのpHが $2\sim 6$ 、好ましくはpHが $3\sim 5$ のこれらの水溶液に、200~1000 未満の温度で、好ましくは $30\sim 70$ 000.5秒 ~ 6 分、さらに好ましくは1秒 ~ 30 秒間、アルミニウム基

板を接触させることにより得ることができる。接触させる方法としては、これらの水溶液に浸漬させてもよく、陽極酸化被膜が形成された表面に対して水溶液をスプレーにより吹き付ける方法でもよく、水溶液を水蒸気状に気化させた状態で基板表面に接触させる方法でもよく、水溶液の温度と接触時間が制御できる限りにおいて、公知のいかなる方法によっても実施できる。

[0016]

また、被覆層形成のため、無機フッ素化合物を含む水溶液で処理する際に、支持体表面の親水性を向上させる目的で更にリン酸処理を行うこともできる。

本発明に係る支持体の親水性向上処理に使用しうるリン酸塩としては、アルカリ金属及びアルカリ土類金属といった金属のリン酸塩が挙げられる。具体的には、例えば、リン酸亜鉛、リン酸アルミニウム、リン酸アンモニウム、リン酸ーカリウム、リン酸一大素アンモニウム、リン酸一大・リン酸ーナトリウム、リン酸ニ水素カリウム、リン酸水素ニカリウム、リン酸カルシウム、リン酸水素アンモニウムナトリウム、リン酸水素ニアンモニウム、リン酸水素アンモニウムナトリウム、リン酸第一鉄、リン酸第二鉄、リン酸ニ水素ナトリウム、リン酸ナトリウム、リン酸第一鉄、リン酸第二鉄、リン酸ニアンモニウム、リン酸ニ水素カルシウム、リン酸リチウム、リン酸鉛、リン酸ニアンモニウム、リン酸ニ水素カルシウム、リン酸リチウム、リン酸鉛、リン酸ニアンモニウム、リン酸アンモニウム、リン酸サトリウムがサインではアンモニウム、リンではアンモニウム、リンではアンで変ナトリウム、リンではアンモニウム、リンではアンでである。また、亜リン酸ナトリウム、リンではリンではアンでである。また、亜リン酸ナトリウム、リンではリン酸ナトリウム、リン酸水素ニナトリウム、リン酸水素ニカリウム等が挙げられる。これらは、1種または2種以上を合有させてもよい。

[0017]

このようなリン酸処理を行う場合には、無機フッ素化合物を含む水溶液にこれらのリン酸を混合したリン酸混合液を調製して、それを処理に用いてもよく、また、フッ素化合物含有被覆層形成工程の前後にリン酸を含む処理液で処理してもよい。

上記水溶液中におけるリン酸塩の濃度は、10g/リットル~1000g/リ

ットルが適当であり、好ましくは50g/リットル~200g/リットルである。また処理方法は、先に無機フッ素化合物を含む水溶液で処理したのと同様の条件で行うことができる。

[0018]

また、被覆層形成のため、無機フッ素化合物を含む水溶液で処理する際に、支持体表面の親水性を向上させる目的で前後に珪酸塩処理を行うこともできる。

本発明に係る支持体の親水性向上処理に使用しうる珪酸塩としては、珪酸ナトリウム、珪酸カリウム、珪酸リチウムが挙げられる。

[0019]

このような珪酸塩処理を行う場合には、無機フッ素化合物を含む水溶液にこれらの珪酸塩を混合した混合液を調製して、それを処理に用いてもよく、また、フッ素化合物含有被覆層形成工程の前後に珪酸塩を含む処理液で処理してもよい。

上記水溶液中における珪酸塩の濃度は、0.1g/リットル~100g/リットルが適当であり、好ましくは1g/リットル~50g/リットルである。また処理方法は、先に無機フッ素化合物を含む水溶液で処理したのと同様の条件で行うことができる。

[0020]

また、被覆層形成のため、無機フッ素化合物を含む水溶液で処理する際に、支持体表面の親水性を向上させる目的で更に親水性樹脂処理を行うこともできる。

本発明に係る支持体の親水性向上処理に使用しうる親水性樹脂としては、ポリビニルホスホン酸、ポリビニルアルコール、CMC等が挙げられる。

[0021]

このような親水性樹脂処理を行う場合には、無機フッ素化合物を含む水溶液にこれらの親水性樹脂を混合した混合液を調製して、それを処理に用いてもよく、また、フッ素化合物含有被覆層形成工程の前後に親水性樹脂を含む処理液で処理してもよい。

上記水溶液中における親水性樹脂の濃度は、0.001g/リットル~100g/リットルが適当であり、好ましくは0.1g/リットル~50g/リットルである。また処理方法は、先に無機フッ素化合物を含む水溶液で処理したのと同

様の条件で行うことができる。

[0022]

上記、リン酸、珪酸塩及び親水性樹脂のうち二種以上を組み合わせて用いても 良い。

[0023]

本発明の方法において用いられるアルミニウム支持体としては、寸度的に安定 なアルミニウムを主成分とする金属であり、アルミニウムまたはアルミニウム合 金からなる。純アルミニウム板の他、アルミニウムを主成分とし、微量の異元素 を含む合金板、又はアルミニウム(合金)がラミネートもしくは蒸着されたプラ スチックフィルム又は紙の中から選ばれる。更に、特公昭48-18327号に 記載されているようなポリエチレンテレフタレートフィルム上にアルミニウムシ ートが結合された複合体シートでもかまわない。以下の説明において、上記に挙 げたアルミニウムまたはアルミニウム合金からなる基板をアルミニウム支持体と 総称して用いる。前記アルミニウム合金に含まれる異元素には、ケイ素、鉄、マ ンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタンなどが あり、合金中の異元素の含有量は10質量%以下である。本発明では純アルミニ ウム板が好適であるが、完全に純粋なアルミニウムは精錬技術上製造が困難であ るので、僅かに異元素を含有するものでもよい。このように本発明に適用される アルミニウム板は、その組成が特定されるものではなく、従来より公知公用の素 材のもの、例えばJIS A1050、JIS A1100、JIS A3103 、JIS A3005などを適宜利用することが出来る。また、本発明に用いら れるアルミニウム支持体の厚みは、およそ0.1 mm~0.6 mm程度である。こ の厚みは印刷機の大きさ、印刷版の大きさ及び目的により適宜変更することがで きる。

[0024]

(砂目立て処理)

上記アルミニウム支持体は陽極酸化処理の他により好ましい形状に砂目立て処理することが好ましい。砂目立て処理方法は、特開昭 5 6-2 8 8 9 3 号に開示されているような機械的砂目立て、化学的エッチング、電解グレインなどがある

。さらに塩酸または硝酸電解液中で電気化学的に砂目立てする電気化学的砂目立て方法、及びアルミニウム表面を金属ワイヤーでひっかくワイヤーブラシグレイン法、研磨球と研磨剤でアルミニウム表面を砂目立でするボールグレイン法、ナイロンブラシと研磨剤で表面を砂目立てするブラシグレイン法のような機械的砂目立て法を用いることができ、上記砂目立て方法を単独あるいは組み合わせて用いることもできる。

[0025]

その中でも本発明に有用に使用される砂目表面を作る方法は、塩酸または硝酸電解液中で化学的に砂目たてする電気化学的方法であり、適する電気量は陽極時電気量 $50\,\mathrm{C/d\,m^2}\sim 1000\,\mathrm{C/d\,m^2}$ の範囲である。さらに具体的には、 $0.1\sim 50\,\mathrm{\%}$ の塩酸または硝酸を含む電解液中、温度 $20\sim 100\,\mathrm{C}$ 、時間 $1\,\mathrm{?}$ $\sim 30\,\mathrm{?}$ 、電流密度 $1\sim 200\,\mathrm{A/d\,m^2}$ の条件で直流又は交流を用いて行われる。電気化学的粗面化は、表面に微細な凹凸を付与することが容易であるため、感光層と基板の密着を向上する上でも好ましい。

[0026]

この粗面化により、平均直径約0.5~20μmのクレーターまたはハニカム状のピットをアルミニウム表面に30~100%の面積率で生成することが出来る。ここで設けたピットは印刷版の非画像部の汚れにくさと耐刷力を向上する作用がある。電気化学的処理では、十分なピットを表面に設けるために必要なだけの電気量、即ち電流と電流を流した時間の積が電気化学的粗面化における重要な条件となる。より少ない電気量で十分なピットを形成出来ることは、省エネの観点からも望ましい。粗面化処理後の表面粗さとしてはRa=0.2~0.7μmが好ましい。

[0027]

このように任意に砂目立て処理したアルミニウム支持体は、さらに酸またはアルカリにより化学的にエッチングされることが好ましい。酸をエッチング剤として用いる場合は、微細構造を破壊するのに時間がかかり、工業的に本発明を適用するに際しては不利であるが、アルカリをエッチング剤として用いることにより改善できる。本発明において好適に用いられるアルカリ剤としては、苛性ソーダ

、炭酸ソーダ、アルミン酸ソーダ、メタケイ酸ソーダ、リン酸ソーダ、水酸化カリウム、水酸化リチウム等が挙げられ、アルカリ剤の濃度と処理温度の好ましい範囲はそれぞれ1~50%、20~100℃であり、A1の溶解量が5~20g/m³となるような条件が好ましい。エッチングのあと表面に残留する汚れ(スマット)を除去するために酸洗いが行われる。用いられる酸は硝酸、硫酸、リン酸、クロム酸、フッ酸、ホウフッ化水素酸等が用いられる。特に電気化学的粗面化処理後のスマット除去処理方法としては、好ましくは特開昭53-12739号公報に記載されているような50~90℃の温度の15~65質量%の硫酸と接触させる方法及び特公昭48-28123号公報に記載されているアルカリエッチングずる方法が挙げられる。

[0028]

(陽極酸化処理)

本発明の方法において上述したように任意に処理されたアルミニウム支持体は 、一定のフッ素化率を有するようにフッ素化処理される前に陽極酸化処理が行わ れることが好ましい。陽極酸化処理はこの分野で従来より行われている方法で行 うことができる。具体的には、硫酸、リン酸、クロム酸、シュウ酸、スルファミ ン酸、ベンゼンスルフォン酸等の単独あるいはこれらの二種以上を組み合わせて 水溶液または非水溶液中でアルミニウムに直流または交流を流すとアルミニウム 支持体表面に陽極酸化皮膜を形成することができる。この際、電解液中に少なく ともA1合金板、電極、水道水、地下水等に通常含まれる成分はもちろん含まれ ても構わない。さらには第2、第3成分が添加されていても構わない。ここでい う第2、3成分とは、例えばNa、K、Mg、Li、Ca、Ti、Al、V、C r、Mn、Fe、Co、Ni、Cu、Zn等の金属のイオンやアンモニウムイオ ン等の陽イオンや、硝酸イオン、炭酸イオン、塩素イオン、リン酸イオン、フッ 素イオン、亜硫酸イオン、チタン酸イオン、ケイ酸イオン、棚酸イオン等の陰イ オンが挙げられ、その濃度としては0~10000ppm程度含まれても良い。 陽極酸化処理の条件は使用される電解液によって種々変化するので一概に決定さ れ得ないが、一般的には電解液の濃度が1~80%、液温−5~70℃、電流密 度0.5~60A/dm²、電圧1~100V、電解時間10~200秒の範囲が 適当である。これらの陽極酸化処理のうちでも特に英国特許第1,412,768号明細書に記載されている、硫酸電解液中で高電流密度で陽極酸化する方法が好ましい。本発明においては、陽極酸化皮膜は $0.5\sim20\,\mathrm{g/m^2}$ であることが好ましく、 $0.5\,\mathrm{g/m^2}$ 以下であると版に傷が入りやすく、 $20\,\mathrm{g/m^2}$ 以上は製造に多大な電力が必要となり、経済的に不利である。好ましくは、 $1.0\sim10\,\mathrm{g/m^2}$ である。更に好ましくは、 $1.5\sim6\,\mathrm{g/m^2}$ である。

[0029]

(中間層)

本発明においては上記の一定のフッ素化率を有するアルミニウム支持体の上に 直接ポジ型感光層を設けることができるが、必要に応じて上記支持体上に中間層 を設け、各中間層上にポジ型感光層を設けることもできる。

[0030]

中間層を設ける方法としては、例えば、溶液による浸漬処理、スプレー処理、 コーティング処理、蒸着処理、スパッタリング、イオンプレーティング、溶射、 鍍金等が挙げられるが、特に限定されるものではない。具体的処理方法として、 例えば、特開昭60-149491号公報に開示されている、少なくとも1個の アミノ基と、カルボキシル基及びその塩の基並びにスルホ基及びその塩の基から なる群がら選ばれた少なくとも1個の基とを有する化合物からなる層、特開昭6 0-232998号公報に開示されている、少なくとも1個のアミノ基と少なく とも1個の水酸基を有する化合物及びその塩から選ばれた化合物からなる層、特 開昭62−19494号公報に開示されているリン酸塩を含む層、特開昭59−1 01651号公報に開示されているスルホ基を有するモノマー単位の少なくとも 1種を繰り返し単位として分子中に含む高分子化合物からなる層等をコーティン グによって設ける方法が挙げられる。また、カルボキシメチルセルロース、デキ ストリン、アラビアガム、2-アミノエチルホスホン酸などのアミノ基を有する ホスホン酸類、置換基を有してもよいフェニルホスホン酸、ナフチルホスホン酸 、アルキルホスホン酸、グリセロホスホン酸、メチレンジホスホン酸およびエチ レンジホスホン酸などの有機ホスホン酸、置換基を有してもよいフェニルリン酸 、ナフチルリン酸、アルキルリン酸およびグリセロリン酸などの有機リン酸エス

テル、置換基を有してもよいフェニルホスフィン酸、ナフチルホスフィン酸、アルキルホスフィン酸およびグリセロホスフィン酸などの有機ホスフィン酸、グリシンやβ-アラニンなどのアミノ酸類、およびトリエタノールアミンの塩酸塩などのヒドロキシル基を有するアミンの塩酸塩などから選ばれる化合物層を設ける方法もある。

[0031]

また、不飽和基を有するシランカップリング剤を塗設処理しても良く、例えば N-3-(アクリロキシ-2-ヒドロキシプロピル)-3-アミノプロピルトリエトキ シシラン、(3-アクリロキシプロピル)ジメチルメトキシシラン、(3-アクリ ロキシプロピル)メチルジメトキシシラン、(3-アクリロキシプロピル)トリ メトキシシラン、3-(N-アリルアミノ)プロピルトリメトキシシラン、アリル ジメトキシシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、3 -ブテニルトリエトキシシラン、2-(クロロメチル)アリルトリメトキシシラン _ メタクリルアミドプロピルトリエトキシシラン、N-(3-メタクリロキシー 2 -ヒドロキシプロピル)-3-アミノプロピルトリエトキシシラン、(メタクリロ キシジメチル) ジメチルエトキシシラン、メタクリロキシメチルトリエトキシシ ラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシプロピルジメ チルエトキシシラン、メタクリロキシプロピルジメチルメトキシシラン、メタク リロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメ トキシシラン、メタクリロキシプロピルメチルトリエトキシシラン、メタクリロ キシプロピルメチルトリメトキシシラン、メタクリロキシプロピルトリス(メト キシエトキシ)シラン、メトキシジメチルビニルシラン、1-メトキシ-3-(ト リメチルシロキシ) ブタジエン、スチリルエチルトリメトキシシラン、3-(N-スチリルメチルー2-アミノエチルアミノ)-プロピルトリメトキシシラン塩酸塩 、ビニルジメチルエトキシシラン、ビニルジフェニルエトキシシラン、ビニルメ チルジエトキシシラン、ビニルメチルジメトキシシラン、O-(ビニロキシエチ ル) -N-(トリエトキシシリルプロピル)ウレタン、ビニルトリエトキシシラン 、ビニルトリメトキシシラン、ビニルトリー t ーブトキシシラン、ビニルトリイソ プロポキシシシラン、ビニルトリフェノキシシラン、ビニルトリス(2-メトキ

シエトキシ)シラン、ジアリルアミノプロピルメトキシシランを挙げることができる。これらのうちでアクリロイル基、メタクリロイル基、ビニル基、アリル基を含むカップリング剤が好ましいが、特に不飽和基の反応性が早いメタクリロイル基、アクリロイル基を含むカップリング剤が特に好ましい。また、特開平11-109637に記載の酸基とオニウム基を有する高分子化合物の中間層を一層好適に用いることができる。

[0032]

(酸基とオニウム基とを有する高分子化合物の中間層)

中間層形成に用いる高分子化合物として、酸基を有する、あるいは、酸基を有する構成成分と共にオニウム基を有する構成成分をも有する高分子化合物が一層好適に用いられる。この高分子化合物の構成成分の酸基としては、酸解離指数(p K a)が7以下の酸基が好ましく、より好ましくは-COOH、 $-SO_3H$ 、 $-OSO_3H$ 、 $-PO_3H_2$ 、 $-OPO_3H_2$ 、 $-CONHSO_2$ 、 $-SO_2NHSO_2$ - であり、特に好ましくは-COOHである。好適なる酸基を有する構成成分は、下記の一般式(1)あるいは一般式(2)で表される重合可能な化合物である

[0033]

【化1】

$$CH_2 = \begin{bmatrix} R \\ I \\ C \\ A \\ A \\ A \end{bmatrix}_a (B)_b = [(D)_d \\ X]_t$$
 (1)

$$CH_{2} = C$$

$$(A)_{a} (B)_{b} (G) (D)_{d} X$$

$$(E)_{e} X'$$
(2)

[0034]

式中、Aは2価の連結基を表す。Bは芳香族基あるいは置換芳香族基を表す。D及びEはそれぞれ独立して2価の連結基を表す。Gは3価の連結基を表す。X及びX'はそれぞれ独立してpKaが7以下の酸基あるいはそのアルカリ金属塩あるいはアンモニウム塩を表す。Rは水素原子、アルキル基またはハロゲン原子を表す。a、b、d、eはそれぞれ独立して0または1を表す。tは $1\sim3$ の整数である。

[0035]

酸基を有する構成成分の中でより好ましくは、Aは-COO-または-CONH-を表し、Bはフェニレン基あるいは置換フェニレン基を表し、その置換基は水酸基、ハロゲン原子あるいはアルキル基である。D及びEはそれぞれ独立してアルキレン基あるいは分子式が C_nH_{2n} O、 C_nH_{2n} Sあるいは C_nH_{2n+1} Nで表される2価の連結基を表す。Gは分子式が C_nH_{2n-1} 、 C_nH_{2n-1} O、 C_nH_{2n-1} Sあるいは C_nH_{2n} Nで表される3価の連結基を表す。ただし、ここでnは1~12の整数を表す。X及びX'はそれぞれ独立してカルボン酸、スルホン酸、ホ

スホン酸、硫酸モノエステルあるいは燐酸モノエステルを表す。 R は水素原子またはアルキル基を表す。 a、 b、 d、 e はそれぞれ独立して O または 1 を表すが、 a と b は同時に O ではない。

[0036]

酸基を有する構成成分の中で特に好ましくは一般式(1)で示す化合物であり、Bはフェニレン基あるいは置換フェニレン基を表し、その置換基は水酸基あるいは炭素数1~3のアルキル基である。D及びEはそれぞれ独立して炭素数1~2のアルキレン基あるいは酸素原子で連結した炭素数1~2のアルキレン基を表す。Rは水素原子あるいはメチル基を表す。Xはカルボン酸基を表す。aは0であり、bは1である。

[0037]

酸基を有する構成成分の具体例を以下に示す。ただし、本発明はこの具体例に限定されるものではない。アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、イタコン酸、マレイン酸、無水マレイン酸等が挙げられ、さらに下記のものが挙げられる。

[0038]

【化2】

[0039]

【化3】

$$CH_2 = CH$$

$$CH_2$$

[0040]

【化4】

$$CH_2 = CH$$

$$SO_2NHCOCH_3$$

$$CH_2 = CH$$

$$CONHSO_2 \longrightarrow CH_3$$

$$CH_2 = CH$$

$$SO_2NHSO_2 \longrightarrow CH_3$$

$$CH_2 = CH$$

$$SO_2NHSO_2 \longrightarrow CH_3$$

$$CH_2 = CH$$

$$CH_3 \longrightarrow CH_2 = CH$$

$$CH_3 \longrightarrow CH_3 \longrightarrow SO_2NH$$

$$CH_3 \longrightarrow SO_2NH$$

$$CH_3 \longrightarrow SO_3NH$$

$$CH_3 \longrightarrow SO_3NH$$

[0041]

上記のような酸基を有する構成成分は、1種類あるいは2種類以上組み合わせ てもよい。

また、上記中間層形成に用いられる高分子化合物の構成成分のオニウム基として好ましいものは、周期律表第V族あるいは第VI族の原子からなるオニウム基であり、より好ましくは窒素原子、リン原子あるいはイオウ原子からなるオニウム基であり、特に好ましくは窒素原子からなるオニウム基である。また、この高分子化合物は、その主鎖構造がアクリル樹脂やメタクリル樹脂やポリスチレンのようなビニル系ポリマーあるいはウレタン樹脂あるいはポリエステルあるいはポリアミドであるポリマーが好ましい。中でも、主鎖構造がアクリル樹脂やメタクリ

ル樹脂やポリスチレンのようなビニル系ポリマーがさらに好ましい。特に好ましい高分子化合物は、オニウム基を有する構成成分が下記の一般式(3)、一般式(4)あるいは一般式(5)で表される重合可能な化合物であるポリマーである

[0042]

【化5】

$$CH_{2} = \begin{matrix} R' \\ C \\ (J) \\ \hline (J) \\ \hline (K) \\ \hline (K) \\ \hline (M) \\ \hline$$

$$CH_{2} = \begin{matrix} R' \\ C \\ (J) \\ \hline (J) \\ \hline (K) \\ \hline (M) \\ \hline$$

$$CH_{2} = C \\ (J)_{j} - (K)_{k} - (M)_{m} - Y_{k_{2}}^{+}$$

$$(5)$$

[0043]

表すが、 R'_1 と R'_2 あるいは R'_4 と R'_5 はそれぞれ結合して環を形成してもよい。 j、 k、 mはそれぞれ独立して0または1を表す。 u は1 ~ 3 0 整数を表す。

[0044]

オニウム基を有する構成成分の中でより好ましくは、Jは-COO-または-CONH-を表し、Kはフェニレン基あるいは置換フェニレン基を表し、その置換基は水酸基、ハロゲン原子あるいはアルキル基である。Mはアルキレン基あるいは分子式が $C_nH_{2n}O$ 、 $C_nH_{2n}S$ あるいは $C_nH_{2n+1}N$ で表される 2 価の連結基を表す。ただし、ここでnは $1\sim1$ 2 の整数を表す。Yは窒素原子またはリン原子を表し、Y'はイオウ原子を表す。Z はハロゲンイオン、 PF_6 、 BF_4 あるいは R'_6SO_3 を表す。 R'_6 は水素原子またはアルキル基を表す。 R'_1 、 R'_2 、 R'_3 、 R'_5 はそれぞれ独立して水素原子あるいは場合によっては置換基が結合してもよい炭素数 $1\sim1$ 0 のアルキル基、芳香族基、アラルキル基を表し、 R'_4 は炭素数 $1\sim1$ 0 のアルキリジン基あるいは置換アルキリジンを表すが、 R'_1 と R'_2 あるいは R'_4 と R'_5 はそれぞれ結合して環を形成してもよい。 I、I 、 mはそれぞれ独立してI0 または I1 を表すが、I2 と I2 は に I3 に I3 に I3 に I3 に I4 に I5 に I5 に I5 に I5 に I5 に I6 に I7 に I7 に I8 に I9 に

[0045]

オニウム基を有する構成成分の中で特に好ましくは、Kはフェニレン基あるいは置換フェニレン基を表し、その置換基は水酸基あるいは炭素数 $1\sim3$ のアルキル基である。Mは炭素数 $1\sim2$ のアルキレン基あるいは酸素原子で連結した炭素数 $1\sim2$ のアルキレン基を表す。 Z^- は塩素イオンあるいは R'_6 S O_3^- を表す。 R'_6 は水素原子あるいはメチル基を表す。 j は 0 であり、k は 1 である。

[0046]

オニウム基を有する構成成分の具体例を以下に示す。ただし、本発明はこの具体例に限定されるものではない。

[0047]

【化6】

$$CH_2=CH$$

$$CH_2$$

[0048]

【化7】

$$CH_{2} = CH$$

$$CH_{2} = CH$$

$$CH_{2}N^{\dagger}Et_{3} Br$$

$$CH_{2} = CH$$

$$CH_{2} = CH$$

$$CH_{2} = CH$$

$$CH_{2}N^{\dagger}Et_{3} BF_{4}$$

$$CH_{2}N^{\dagger}Et_{3} MeSO_{3}$$

$$CH_{2} = C$$

$$CH_{2}N^{\dagger}Et_{3} CI$$

$$CH_{2} = \overset{\circ}{C}$$

$$COOCH_{2}CH_{2}N^{\dagger}Me_{3} CI^{-}$$

$$CH_{2} = \overset{\circ}{C}$$

$$CONHCH_{2}CH_{2}N^{\dagger}Me_{3} CI^{-}$$

$$CH_{2} = \overset{\circ}{C}$$

$$CH_{3}$$

$$CH_{2} = \overset{\circ}{C}$$

$$CH_{3}$$

$$CH_{2} = \overset{\circ}{C}$$

$$COOCH_{2}CH_{2}N^{\dagger}HMe_{2} CI^{-}$$

$$CONHCH_{2}CHCH_{2}N^{\dagger}Me_{3} CI^{-}$$

[0049]

中間層形成に用いる高分子化合物には、上記のようなオニウム基を有する構成成分を1モル%以上、好ましくは5モル%以上含むことが望ましい。オニウム基を有する構成成分が1モル%以上含まれると密着性が一層向上される。また、オニウム基を有する構成成分は1種類あるいは2種類以上組み合わせてもよい。さ

OH

らに、中間層形成に用いる高分子化合物は、構成成分あるいは組成比あるいは分 子量の異なるものを2種類以上混合して用いてもよい。

[0050]

また、この酸基と共にオニウム基をも有する高分子化合物においては、酸基を有する構成成分を20モル%以上、好ましくは40モル%以上含み、オニウム基を有する構成成分を1モル%以上、好ましくは5モル%以上含むことが望ましい。酸基を有する構成成分が20モル%以上含まれると、アルカリ現像時の溶解除去が一層促進され、また酸基とオニウム基との相乗効果により密着性がなお一層向上される。また、このオニウム基と共に酸基をも有する高分子化合物においても、構成成分あるいは組成比あるいは分子量の異なるものを2種類以上混合して用いてもよいことはいうまでもない。以下に、上記のオニウム基と共に酸基をも有する高分子化合物の代表的な例を示す。なお、ポリマー構造の組成比はモル百分率を表す。

[0051]

【化8】

表1 代表的な高分子化合物の例

	構造	分 戶量 (Mw)
No.1	-(CH ₂ -CH) ₈₃ -(CH ₂ ·CH) ₁₇ COOH CH ₂ N ⁺ Me ₃ Cf	3.2 ந
No.2	(CH ₂ -CH) ₈₅ (CH ₂ ·CH) ₁₅ COOH CH ₂ N ⁺ Et ₃ CI	2.8 万
No.3	(CH ₂ -CH) ₇₃ (CH ₂ ·CH) ₂₇ Me COOH CO	2.6 万
No.4	(CH ₂ -CH) ₆₄ -(CH ₂ CH) ₃₆	4.1 万
No.5	(CH ₂ -CH) ₇₆ (CH ₂ ·CH) ₂₄ COOH CH ₂ N ⁺ (CH ₂ CH ₂ OH) ₃	1.1 万
No.6	-(CH ₂ -CH) ₈₈ -(CH ₂ ·CH) ₁₂ COOH CH ₂ P ⁺ (n-Bu) ₃ CI	1.7 万
No.7	-(CH ₂ -CH) 58 -(CH ₂ -CH) 42 SO ₃ H CH ₂ P*(n-Bu) ₃ CI	3.6 <i>片</i>

[0052]

【化9】

	構造	分子量(Mw)
No.8	$-(CH_2-CH)_{73}$ $-(CH_2-CH)_{27}$ SO_3H $CH_2N^+Et_3$ CI^-	2.2 万
No.9	-(CH ₂ -CH) ₆₄ -(CH ₂ -CH) ₃₆	4.4 万
No.10	-(CH ₂ -CH)=1 -(CH ₂ -CH)+49 CH ₂ P(OH) ₂ CH ₂ N ⁺ Et ₃ CI	1.9 万
No.11	-(CH ₂ -CH) _{B5} -(CH ₂ -CH) ₁₅ COOH CH ₂ N ⁺ Et ₃ Br	2.8 万
No.12	COOH CH ₂ N'Et ₃ Br' (CH ₂ -CH) ₈₅ -(CH ₂ -CH) ₁₅ COOH CH ₂ N ⁺ Et ₃ BF ₄	2.8 万
No.13	-(CH ₂ -CH) ₈₅ -(CH ₂ -CH) ₁₅ COOH CH ₂ N ⁺ Et ₃ PF ₆	2.8 万
No.14	$-(CH_2-CH_3)$ $-(CH_2-CH)$ $-(CH)$ $-(CH$	3.4 万

[0053]

【化10】

[0054]

【化11】

[0055]

上記のような中間層形成に用いる、酸基を有するあるいは酸基と共にオニウム 基をも有する高分子化合物のいずれも、一般には、ラジカル連鎖重合法を用いて 製造することができる ("Textbook of Polymer Science"3rd ed,(1984)F.W.Bi llmeyer,A Wiley-Interscience Publication参照)。また、これらの高分子化合 物の分子量は広範囲であってもよいが、光散乱法を用いて測定した時、重量平均 分子量 (Mw) が500~2,000,000であることが好ましく、また2,0 00~600,000の範囲であることが更に好ましい。また、この高分子化合 物中に含まれる未反応モノマー量は広範囲であってもよいが、20重量%以下で あることが好ましく、また10重量%以下であることがさらにに好ましい。また 、酸基と共にオニウム基をも有する高分子化合物の代表的な例の一つとして上記 した p - ビニル安息香酸とビニルベンジルトリメチルアンモニウムクロリドとの 共重合体(表1のNo.1)を例にとって、その合成例を示せば次のとおりであ る。 p-ビニル安息香酸 [北興化学工業(株) 製] 146.9g(0.99mol)、ビニルベンジルトリメチルアンモニウムクロリド44.2g(0.21mo1)および2-メトキシエタノール446gを1Lの3口フラスコに取り、窒素気 流下攪拌しながら、加熱し75℃に保った。次に2,2-アゾビス(イソ酪酸) ジメチル2.76g(12mmol)を加え、攪拌を続けた。2時間後、2,2-アゾビス(イソ酪酸)ジメチル2.76g(12mmo1)を追加した。更に、 2時間後、2,2-アゾビス (イソ酪酸) ジメチル2.76g (12mmol) を 追加した。2時間攪拌した後、室温まで放冷した。この反応液を攪拌下12Lの 酢酸エチル中に注いだ。析出する固体を濾取し、乾燥した。その収量は189. 5gであった。得られた固体は光散乱法で分子量測定を行った結果、重量平均分 子量 (Mw) は3.2万であった。他の高分子化合物も同様の方法で合成できる

[0056]

酸基とオニウム基を有する中間層は、上記した酸基を有するあるいは酸基と共にオニウム基をも有する高分子化合物(以下単に「高分子化合物」という)を、 上述した亜硝酸または亜硝酸塩を含む水溶液で処理し、さらに任意に親水化処理 したアルミニウム支持体の上に種々の方法により塗布して設けられる。中間層を設けるために一般的に採用される方法の一つは、メタノール、エタノール、メチルエチルケトンなどの有機溶剤もしくはそれらの混合溶剤あるいはこれら有機溶剤と水との混合溶剤に高分子化合物を溶解させた溶液をアルミニウム支持体上に塗布し、乾燥して設ける方法であり、他の一つは、メタノール、エタノール、メチルエチルケトンなどの有機溶剤もしくはそれらの混合溶剤あるいはこれら有機溶剤と水との混合溶剤に高分子化合物を溶解させた溶液に、アルミニウム支持体を浸漬して高分子化合物を吸着させ、しかる後、水などによって洗浄し、乾燥して設ける方法である。前者の方法では、高分子化合物の0.005~10重量%の濃度の溶液を種々の方法で塗布できる。例えば、バーコーター塗布、回転塗布、スプレー塗布、カーテン塗布などいずれの方法を用いてもよい。また、後者の方法では、溶液の濃度は0.01~20重量%、好ましくは0.05~5重量%であり、浸漬温度は20~90℃、好ましくは25~50℃であり、浸漬時間は0.1秒~20分、好ましくは2秒~1分である。

[0057]

上記の高分子化合物の溶液は、アンモニア、トリエチルアミン、水酸化カリウムなどの塩基性物質や、塩酸、リン酸、硫酸、硝酸などの無機酸、ニトロベンゼンスルホン酸、ナフタレンスルホン酸などの有機スルホン酸、フェニルホスホン酸などの有機ホスホン酸、安息香酸、クマル酸、リンゴ酸などの有機カルボン酸など種々の有機酸性物質、ナフタレンスルホニルクロライド、ベンゼンスルホニルクロライドなどの有機酸クロライド等によりp Hを調整し、p H=0~12、より好ましくはp H=0~5、の範囲で使用することもできる。また、感光性平版印刷版の調子再現性改良のために黄色染料を添加することもできる。高分子化合物の乾燥後の被覆量は、2~100 mg/m 2 が適当であり、好ましくは5~50 mg/m 2 である。上記被覆量が2 mg/m 2 よりも少ないと、十分な効果が得られない。また、100 mg/m 2 より多くても同様である。

[0058]

その他にも特開平5-50779に示すゾルゲルコーティング処理、特開平5-246171に示すホスホン酸類のコーティング処理、特開平6-234284

、特開平6-191173及び特開平6-230563に記載のバックコート用素 材をコーティングにより処理する方法、特開平6-262872に示すホスホン 酸類の処理、特開平6-297875に示すコーティング処理、特開平10-10 9480に記載の方法で陽極酸化処理する方法、特願平10-252078及び 特願平10-253411に記載の浸漬処理方法等、何れの方法によっても良い

[0059]

(ポジ型感光層)

上記の、任意に陽極酸化処理、粗面化処理等され、任意に中間層が設けられた 、一定のフッ素化率を有する支持体上に以下のポジ型感光層を設ける。

[0060]

ポジ型感光層はポジ型感光性組成物を適宜溶媒等に溶解して上記支持体上に塗布等することにより設けられる。このようなポジ型感光性組成物としては、露光前後で現像液に対する溶解性、または膨潤性が変化するものであればいずれでも使用できる。以下、代表的なポジ型感光性組成物について説明するが、これにより本発明は限定されない。

[0061]

(ポジ型感光性化合物)

ポジ型感光性組成物中の感光性化合物としては、 o ーキノンジアジド化合物が挙げられ、その代表例として o ーナフトキノンジアジド化合物が挙げられる。 o ーナフトキノンジアジド化合物としては、特公昭43-28403号公報に記載されている1,2-ジアゾナフトキノンスルホン酸クロリドとピロガロールーアセトン樹脂とのエステルであるものが好ましい。

[0062]

その他の好適なo-キノンジアジド化合物としては、米国特許第3,046,120号および同第3,188,210号明細書中に記載されている1,2-ジアゾナフトキノンスルホン酸クロリドとフェノールホルムアルデヒド樹脂とのエステルがある。

[0063]

その他の有用なのーナフトキノンジアジド化合物としては、数多くの特許に報告され、知られているものが挙げられる。例えば、特開昭47-5303号、同48-63802号、同48-63803号、同48-96575号、同49-38701号、同48-13354号、特公昭37-18015号、同41-11222号、同45-9610号、同49-17481号、特開平5-11444号、特開平5-19477号、特開平5-19478号、特開平5-107755号、米国特許第2,797,213号、同第3,454,400号、同第3,54,323号、同第3,573,917号、同第3,674,495号、同第3,785,825号、英国特許第1,227,602号、同第1,251,345号、同第1,267,005号、同第1,329,888号、同第1,330,932号、ドイツ特許第854,890号等の各公報または明細書中に記載されているものを挙げることができる。

[0064]

さらにその他の o ーキノンジアジド化合物としては、分子量1,000以下のポリヒドロキシ化合物と1,2 ージアゾナフトキノンスルホン酸クロリドとの反応により得られる o ーナフトキノンジアジド化合物も使用することができる。例えば特開昭 5 1 ー 1 3 9 4 0 2 号、同 5 8 ー 1 5 0 9 4 8 号、同 5 8 ー 2 0 3 4 3 4 号、同 5 9 ー 1 6 5 0 5 3 号、同 6 0 ー 1 2 1 4 4 5 号、同 6 0 ー 1 3 4 2 3 5 号、同 6 0 ー 1 6 3 0 4 3 号、同 6 1 ー 1 1 8 7 4 4 号、同 6 2 ー 1 0 6 4 5 号、同 6 2 ー 1 0 6 4 6 号、同 6 2 ー 1 5 3 9 5 0 号、同 6 2 ー 1 7 8 5 6 2 号、同 6 4 ー 7 6 0 4 7 号、米国特許第 3,1 0 2,8 0 9 号、同 第 3,1 2 6,2 8 1 号、同 第 3,1 3 0,0 4 7 号、同 第 3,1 4 8,9 8 3 号、同 第 3,1 8 4,3 1 0 号、同 第 3,1 8 8,2 1 0 号、同 第 4,6 3 9,4 0 6 号等の各公報または明 細書に記載されているものを挙げることができる。

[0065]

これらのoーナフトキノンジアジド化合物を合成する際には、ポリヒドロキシ化合物のヒドロキシル基に対して1,2ージアゾナフトキノンスルホン酸クロリドを0.2~1.2当量反応させることが好ましく、0.3~1.0当量反応させることがさらに好ましい。1,2ージアゾナフトキノンスルホン酸クロリドとして

は、1,2-ジアゾナフトキノン-5-スルホン酸クロリドが好ましいが、1,2-ジアゾナフトキノン-4-スルホン酸クロリドも用いることができる。また得られるo-ナフトキノンジアジド化合物は、1,2-ジアゾナフトキノンスルホン酸エステル基の位置および導入量の種々異なるものの混合物となるが、ヒドロキシル基がすべて1,2-ジアゾナフトキノンスルホン酸エステルに転換された化合物がこの混合物中に占める割合(完全にエステル化された化合物の含有率)は5モル%以上であることが好ましく、さらに好ましくは20~99モル%である。

[0066]

また、oーナフトキノンジアジド化合物を用いずにポジ型に作用する感光性化 合物として、例えば特公昭52-2696号に記載されているo-ニトリルカル ビノールエステル基を含有するポリマー化合物やピリジニウム基含有化合物(特 開平4-365049号など)、ジアゾニウム基含有化合物(特開平5-249 664号、特開平6-83047号、特開平6-324495号、特開平7-7 2621号など)も使用することができる。さらに光分解により酸を発生する化 合物と(特開平4-121748号、特開平4-365043号など)、酸によ り解離するC-〇-C基またはC-〇-Si基を有する化合物との組み合せ系も 使用することができる。例えば光分解により酸を発生する化合物とアセタールま たはO、N-アセタール化合物との組み合せ(特開昭48-89003号など) 、オルトエステルまたはアミドアセタール化合物との組み合せ(特開昭51-1 20714号など)、主鎖にアセタールまたはケタール基を有するポリマーとの 組み合せ(特開昭53-133429号など)、エノールエーテル化合物との組 み合せ(特開昭55-12995号、特開平4-19748号、特開平6-23 0574号など)、N-アシルイミノ炭素化合物との組み合せ(特開昭55-1 26236号など)、主鎖にオルトエステル基を有するポリマーとの組み合せ(特開昭56-17345号など)、シリルエステル基を有するポリマーとの組み 合せ(特開昭60-10247号など)、およびシリルエーテル化合物との組み 合せ (特開昭60-37549号、特開昭60-121446号、特開昭63-236028号、特開昭63-236029号、特開昭63-276046号な

[0067]

(結合剤)

○一キノンジアジド化合物は単独でも感光層を構成し得るが、結合剤(バインダー)としてのアルカリ水に可溶な樹脂と共に使用することが好ましい。このようなアルカリ水に可溶性の樹脂としては、この性質を有するノボラック樹脂があり、たとえばフェノールホルムアルデヒド樹脂、mークレゾールホルムアルデヒド樹脂、pークレゾールホルムアルデヒド樹脂、mー/pー混合クレゾールホルムアルデヒド樹脂、フェノール/クレゾール(mー、pー、○一またはmー/pー/○一混合のいずれでもよい)混合ホルムアルデヒド樹脂などのクレゾールホルムアルデヒド樹脂などが挙げられる。これらのアルカリ性可溶性高分子化合物は、重量平均分子量が500~100,000のものが好ましい。その他、レゾール型のフェノール樹脂類も好適に用いられ、フェノール/クレゾール(mー、pー、○一またはmー/pー/○一混合のいずれでもよい)混合ホルムアルデヒド樹脂が好ましく、特に特開昭61-217034号公報に記載されているフェノール樹脂類が好ましい。

[0068]

また、フェノール変性キシレン樹脂、ポリヒドロキシスチレン、ポリハロゲン化ヒドロキシスチレン、特開昭51-34711号公報に開示されているようなフェノール性水酸基を含有するアクリル系樹脂、特開平2-866号公報に記載のスルホンアミド基を有するビニル樹脂やウレタン樹脂、特開平7-28244号、特開平7-36184号、特開平7-36185号、特開平7-248628号、特開平7-261394号、特開平7-333839号公報などに記載の構造単位を有するビニル樹脂など種々のアルカリ可溶性の高分子化合物を含有させることができる。特にビニル樹脂においては、以下に示す(1)~(4)のアルカリ可溶性基含有モノマーから選ばれる少なくとも1種を重合成分として有する皮膜形成性樹脂が好ましい。

[0069]

(1) N-(4-E)ドロキシフェニル)アクリルアミドまたはN-(4-E)ドロキシフェニル)メタクリルアミド、O-、m-またはD-Eドロキシスチレン、O-またはM-グロモーD-Eドロキシスチレン、O-またはM-グロルーD-E とじロキシスチレン、O-、M-またはD-Eドロキシフェニルアクリレートまたはメタクリレート等の芳香族水酸基を有するアクリルアミド類、メタクリルアミド類、アクリル酸エステル類、メタクリル酸エステル類およびビドロキシスチレン類、(2) アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸およびそのM-フエステル、イタコン酸、無水イタコン酸およびそのM-フエステルなどの不飽和カルボン酸、

[0070]

(3) N-(o-アミノスルホニルフェニル)アクリルアミド、N-(m-アミ ノスルホニルフェニル)アクリルアミド、N-(p-アミノスルホニルフェニル) アクリルアミド、N- [1- (3-アミノスルホニル) ナフチル] アクリルア ミド、N-(2-アミノスルホニルエチル)アクリルアミドなどのアクリルアミ ・ド類、N-(o-アミノスルホニルフェニル)メタクリルアミド、N-(m-ア ミノスルホニルフェニル) メタクリルアミド、N - (p-アミノスルホニルフェ ニル) メタクリルアミド、N- [1- (3-アミノスルホニル) ナフチル] メタ クリルアミド、N- (2-アミノスルホニルエチル) メタクリルアミドなどのメ タクリルアミド類、また、oーアミノスルホニルフェニルアクリレート、mーア ミノスルホニルフェニルアクリレート、p-アミノスルホニルフェニルアクリレ ート、1-(3-アミノスルホニルフェニルナフチル)アクリレートなどのアク リル酸エステル類などの不飽和スルホンアミド、o-アミノスルホニルフェニル メタクリレート、mーアミノスルホニルフェニルメタクリレート、pーアミノス ルホニルフェニルメタクリレート、1-(3-アミノスルホニルフェニルナフチ ル) メタクリレートなどのメタクリル酸エステル類などの不飽和スルホンアミド 、(4)トシルアクリルアミドのように置換基があってもよいフェニルスルホニ ルアクリルアミド、およびトシルメタクリルアミドのような置換基があってもよ いフェニルスルホニルメタクリルアミド。

[0071]

さらに、これらのアルカリ可溶性基含有モノマーの他に以下に記す(5)~(14)のモノマーを共重合した皮膜形成性樹脂が好適に用いられる。(5)脂肪族水酸基を有するアクリル酸エステル類およびメタクリル酸エステル類、例えば、2ーヒドロキシエチルアクリレートまたは2ーヒドロキシエチルメタクリレート、(6)アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸アミル、アクリル酸つエニル、アクリル酸シクロヘキシル、アクリル酸オクチル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸ー2ークロロエチル、アクリル酸4ーヒドロキシブチル、グリシジルアクリレート、Nージメチルアミノエチルアクリレートなどの(置換)アクリル酸エステル、(7)メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸アミル、メタクリル酸プラー、メタクリル酸シクロヘキシル、メタクリル酸オクチル、メタクリル酸マニール、メタクリル酸ベンジル、メタクリル酸ー2ークロロエチル、メタクリル酸4ーヒドロキシブチル、グリシジルメタクリレート、Nージメチルアミノエチルメタクリレートなどの(置換)メタクリル酸エステル、

[0072]

 ニルエーテル類、

[0073]

[0074]

これらのアルカリ可溶性高分子化合物は、重量平均分子量が500~500,000ものが好ましい。このようなアルカリ可溶性高分子化合物は1種類あるいは2種類以上を組み合せて使用してもよい。また、かかる高分子化合物の感光性組成物中に占める割合は、80質量%以下が適当であり、好ましくは30~80質量%、より好ましくは50~70質量%である。この範囲であると現像性および耐刷性の点で好ましい。

[0075]

さらに、米国特許第4,123,279号明細書に記載されているように、 tーブチルフェノールホルムアルデヒド樹脂、オクチルフェノールホルムアルデヒド樹脂のような、炭素数3~8のアルキル基を置換基として有するフェノールとホルムアルデヒドとの縮合物あるいはこれらの縮合物のoーナフトキノンジアジドスルホン酸エステル (例えば特開昭61-243446号に記載のもの)を併用することは画像の感脂性を向上させる上で好ましい。

[0076]

(現像促進剤)

感光性組成物中には、感度アップおよび現像性の向上のために環状酸無水物類、フェノール類および有機酸類を添加することが好ましい。環状酸無水物類としては、米国特許4,115,128号明細書に記載されている無水フタル酸、テト

ラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、3,6 - エンドオキシー Δ4 テトラヒドロ無水フタル酸、テトラクロル無水フタル酸、無水マレイン酸、ク ロル無水マレイン酸、α-フェニル無水マレイン酸、無水コハク酸、無水ピロメ リット酸などが使用できる。フェノール類としては、ビスフェノールA、p-ニ トロフェノール、p-エトキシフェノール、2,4,4′ートリヒドロキシベンゾ フェノン、2,3,4-トリヒドロキシベンゾフェノン、4-ヒドロキシベンゾフ 4"ーテトラヒドロキシー3,5,3',5'ーテトラメチルトリフェニルメタン などが挙げられる。さらに、有機酸類としては、特開昭60-88942号、特 開平2-96755号公報などに記載されている、スルホン酸類、スルフィン酸 類、アルキル硫酸類、ホスホン酸類、リン酸エステル類およびカルボン酸類など があり、具体的には、pートルエンスルホン酸、ドデシルベンゼンスルホン酸、 p-トルエンスルフィン酸、エチル硫酸、フェニルホスホン酸、フェニルホスフ ィン酸、リン酸フェニル、リン酸ジフェニル、安息香酸、イソフタル酸、アジピ ン酸、p-トルイル酸、3,4-ジメトキシ安息香酸、フタル酸、テレフタル酸 - 1,4-シクロヘキセンー2,2-ジカルボン酸、エルカ酸、ラウリン酸、 n-ウンデカン酸、アスコルビン酸などが挙げられる。上記の環状酸無水物類、フェ ノール類および有機酸類の感光性組成物中に占める割合は、0.05~15質量 %が好ましく、より好ましくは0.1~5質量%である。

[0077]

(現像安定剤)

また、感光性組成物中には、現像条件に対する処理の安定性(いわゆる現像許容性)を広げるため、特開昭62-251740号公報や特開平4-68355号公報に記載されているような非イオン界面活性剤、特開昭59-121044号公報、特開平4-13149号公報に記載されているような両性界面活性剤を添加することができる。非イオン界面活性剤の具体例としては、ソルビタントリステアレート、ソルビタンモノパルミテート、ソルビタントリオレート、ステアリン酸モノグリセリド、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンノニルフェニルエーテルなどが挙げられる。両性界面活性剤の具体例

としては、アルキルジ(アミノエチル)グリシン、アルキルポリアミノエチルグリシン塩酸塩、2-アルキル-N-カルボキシエチル-N-ヒドロキシエチルイミダゾリニウムベタインやN-テトラデシル-N,N-ベタイン型(例えば、商品名アモーゲンK、第一工業(株)製)およびアルキルイミダゾリン系(例えば、商品名レボン15、三洋化成(株)製)などが挙げられる。上記非イオン界面活性剤および両性界面活性剤の感光性組成物中に占める割合は、0.05~15質量%が好ましく、より好ましくは0.1~5質量%である。

[0078]

(焼き出し剤、染料、その他)

感光性組成物中には、露光後直ちに可視像を得るための焼出し剤、画像着色剤としての染料やその他のフィラーなどを加えることができる。染料としては、特開平5-313359号公報に記載の塩基性染料骨格を有するカチオンと、スルホン酸基を唯一の交換基として有し、1~3個の水酸基を有する炭素数10以上の有機アニオンとの塩からなる塩基性染料をあげることができる。添加量は、全感光性組成物の0.2~5質量%である。

[0079]

また、上記特開平5-313359号公報に記載の染料と相互作用して色調を変えさせる光分解物を発生させる化合物、例えば特開昭50-36209号(米国特許3,969,118号)に記載のo-ナフトキノンジアジドー4-スルホン酸ハロゲニド、特開昭53-36223号(米国特許4,160,671号)に記載のトリハロメチルー2ーピロンやトリハロメチルトリシジン、特開昭55-62444号(米国特許2,038,801号)に記載の種々のo-ナフトキノンジアジド化合物、特開昭55-77742号(米国特許4,279,982号)に記載の2-トリハロメチルー5-アリール1,3,4-オキサジアゾール化合物などを添加することができる。これらの化合物は単独または混合し使用することができる。これらの化合物のうち400nmに吸収を有する化合物を先の黄色染料として用いてもよい。

[0080]

画像の着色剤として前記上記特開平5-313359号公報に記載の染料以外

に他の染料を用いることができる。塩形成性有機染料を含めて好適な染料として油溶性染料および塩基染料を挙げることができる。具体的には、オイルグリーンBG、オイルブルーBOS、オイルブルー#603、(以上、オリエント化学工業株式会社製)、ビクトリアピュアブルーBOH、ビクトリアピュアブルーNAPS、エチルバイオレット6HNAPS(以上、保土谷化学工業(株)製)、ローダミンB(C145170B)、マラカイトグリーン(C142000)、メチレンブルー(C152015)等を挙げることができる。

[0081]

また、感光性組成物中には、下記一般式 [I]、 [II] あるいは [III] で表わされ、417nmの吸光度が436nmの吸光度の70%以上である黄色系染料を添加することができる。

[0082]

【化12】

$$\begin{array}{c|c}
R_1 & Q & G_1 \\
\hline
 & Q & C & G_1 \\
\hline
 & Q & C & G_1 \\
\hline
 & Q & G_1 \\
\hline
 & Q & G_2 \\
\hline
 & Q & Q & Q \\
\hline$$

[0083]

式 $\{I\}$ 中、 R^1 および R^2 はそれぞれ独立に水素原子、炭素数 $1\sim 10$ のアルキル基、アリール基またはアルケニル基を示す。また R^1 と R^2 は環を形成してもよい。 R^3 、 R^4 、 R^5 はそれぞれ独立に水素原子、炭素数 $1\sim 10$ のアルキル基を示す。 G^1 、 G^2 はそれぞれ独立にアルコキシカルボニル基、アリールオキシカルボニル基、アシル基、アリールカルボニル基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アリールスルホニル基またはフルオロアルキルスルホニル基を示す。また G^1 と G^2 は環を形成してもよい。さらに R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 G^1 、 G^2 のうち 1 つ以上に 1 つ以上のスルホン酸基、カルボキシル基、スルホンアミド基、イミド基、N-スルホニルアミド基、フェノール性水酸基

、スルホンイミド基、またはその金属塩、無機または有機アンモニウム塩を有する。 Y は O、S、N R(R は水素原子もしくはアルキル基またはアリール基)、 S e、-C(CH_3) $_2$ $^-$ 、-CH=CH-より選ばれる 2 価原子団を示し、 n1 は 0 または 1 を示す。

[0084]

【化13】

$$R_7$$
 $CH-CH$ G_3 G_4 G_4 G_4

[0085]

式 [II] 中、 R^6 および R^7 はそれぞれ独立に水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基、ヘテロ環基、置換ヘテロ環基、アリル基または置換アリル基を表わし、また、 R^6 と R^7 とは共にそれが結合している炭素原子と共に環を形成しても良い。n2は0、1または2を表わす。 G^3 および G^4 はそれぞれ独立に、水素原子、シアノ基、アルコキシカルボニル基、置換アルコキシカルボニル基、アリールオキシカルボニル基、置換アリールオキシカルボニル基、アシル基、アリールオキシカルボニル基、アシル基、アリールオキシカルボニル基、アリールカルボニル基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アリールスルホニル基、アルキルスルホニル基、アリールスルホニル基、フルオロアルキルスルホニル基を表わす。ただし、 G^3 と G^4 が同時に水素原子となることはない。また、 G^3 と G^4 とはそれが結合している炭素原子と共に非金属原子から成る環を形成しても良い。さらに R^6 、 R^7 、 G^3 、 G^4 のうち1つ以上に1つ以上のスルホン酸基、カルボキシル基、スルホンアミド基、イミド基、N-スルホニルアミド基、フェノール性水酸基、スルホンイミド基、またはその金属塩、無機または有機アンモニウム塩を有する。

[0086]

【化14】

$$\begin{array}{c} R_{11} \\ R_{12} \\ R_{13} \end{array} \begin{array}{c} CH = CH - C - CH_2 - C - CH = CH - CH_2 - CH_2$$

[0087]

式 [III] 中、R⁸、R⁹、R¹⁰、R¹¹、R¹²、R¹³はそれぞれ同じでも異なっていてもよく水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基、アルコキシ基、ヒドロキシル基、アシル基、シアノ基、アルコキシカルボニル基、アリールオキシカルボニル基、ニトロ基、カルボキシル基、クロル基、ブロモ基を表わす。

[0088]

(ポジ型感光層の形成、その他)

ポジ型感光層は、上記の各感光性組成物の成分を溶解する溶媒に溶かして支持体上に塗布することによって得られる。ここで使用する溶媒としては、 γ ーブチロラクトン、エチレンジクロライド、シクロヘキサノン、メチルエチルケトン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2ーメトキシエチルアセテート、1ーメトキシー2ープロパノール、1ーメトキシー2ープロピルアセテート、トルエン、酢酸エチル、乳酸メチル、乳酸エチル、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、水、Nーメチルピロリドン、テトラヒドロフルフリルアルコール、アセトン、ジアセトンアルコール、メタノール、エタノール、イソプロパノール、ジエチレングリコールジメチルエーテルなどがあり、これらの溶媒を単独あるいは混合して使用できる。そして、溶液中の感光性組成物成分の濃度(固形分)は、2~50質量%が適当である。塗布量としては0.5g/m²~4.0g/m²が好ましい。0.5g/m²よりも少ないと耐刷性が劣化する。4.0g/m²よりも多いと耐刷性は向上するが、感度が低下してしまう。また、感光性組成物溶液の支持体上へ

の塗布等感光層の形成方法は、従来から知られた種々の方法によることができる

[0089]

感光性組成物中には、塗布法を良化するための界面活性剤、例えば、特開昭62-170950号公報に記載されているようなフッ素系界面活性剤を添加することができる。好ましい添加量は、全感光性組成物の0.01~1質量%であり、さらに好ましくは0.05~0.5質量%である。以上のようにして得られた平版印刷版では、原画フィルムに対して忠実な印刷物を得ることができるが、焼ボケおよび印刷物のがさつき感が悪い。焼ボケを改良する方法としてこのようにして設けられた感光層の表面を凹凸にする方法がある。例えば特開昭61-25825号公報に記載されているように感光組成物溶液中に数μmの粒子を添加し、それを塗布する方法があるが、この方法では焼ボケの改良効果も小さくかつがさつき感は全く改良されない。

[0090]

(露光)

本発明において、感光層を設けた平版印刷版は像露光された後に現像処理される。像露光に用いられる活性光線の光源としてはカーボンアーク灯、水銀灯、メタルハライドランプ、キセノンランプ、タングステンランプ、ケミカルランプなどがある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。レーザービームとしてはヘリウム・ネオンレーザー、アルゴンレーザー、クリプトンレーザー、ヘリウム・カドミウムレーザー、KrFエキシマーレーザー、半導体レーザー、YAGレーザーなどが挙げられる。

[0091]

(現像処理)

次に、本発明の方法における現像処理について説明する。

本発明の方法において使用する現像液は珪酸塩を含まないものを使用する。そのような現像液として好ましいものは、実質的に有機溶剤を含まないアルカリ性の水溶液であり、具体的にはNaOH、KOH、LiOH、第3リン酸ナトリウ

ム、第2リン酸ナトリウム、第3リン酸アンモニウム、第2リン酸アンモニウム、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、アンモニア水などのような水溶液が適当である。さらに好ましくは(a)非還元糖から選ばれる少なくとも一種の糖類および(b)少なくとも一種の塩基を含有し、pHが9.0~13.5の範囲にある現像液である。以下この現像液について詳しく説明する。なお、本明細書中において、特にことわりのない限り、現像液とは現像開始液(狭義の現像液)と現像補充液とを意味する。

[0092]

(非還元糖および塩基)

この現像液は、その主成分が、非還元糖から選ばれる少なくとも一つの化合物 と、少なくとも一種の塩基からなり、液のpHが9.0~13.5の範囲であるこ とを特徴とする。かかる非還元糖とは、遊離のアルデヒド基やケトン基を持たず 、還元性を示さない糖類であり、還元基同士の結合したトレハロース型少糖類、 糖類の還元基と非糖類が結合した配糖体および糖類に水素添加して還元した糖ア ルコールに分類され、何れも好適に用いられる。トレハロース型少糖類には、サ ッカロースやトレハロースがあり、配糖体としては、アルキル配糖体、フェノー ル配糖体、カラシ油配糖体などが挙げられる。また糖アルコールとしてはD,L -アラビット、リビット、キシリット、D,L-ソルビット、D,L-マンニット 、D,L-イジット、D,L-タリット、ズリシットおよびアロズルシットなどが 挙げられる。さらに、二糖類の水素添加で得られるマルチトールおよびオリゴ糖 の水素添加で得られる還元体(還元水あめ)が好適に用いられる。これらの中で 特に好ましい非還元糖は糖アルコールとサッカロースであり、特にD-ソルビッ ト、サッカロース、還元水あめが適度な p H 領域に緩衝作用があることと、低価 格であることで好ましい。これらの非還元糖は、単独もしくは二種以上を組み合 わせて使用でき、それらの現像液中に占める割合は0.1~30質量%が好まし く、さらに好ましくは、1~20質量%である。この範囲以下では十分な緩衝作 用が得られず、またこの範囲以上の濃度では、高濃縮化し難く、また原価アップ の問題が出てくる。尚、還元糖を塩基と組み合わせて使用した場合、経時的に褐 色に変色し、pHも徐々に下がり、よって現像性が低下するという問題点がある

[0093]

非還元糖に組み合わせる塩基としては、珪酸塩以外の従来より知られているア ルカリ剤が使用できる。例えば、水酸化ナトリウム、同カリウム、同リチウム、 燐酸三ナトリウム、同カリウム、同アンモニウム、燐酸二ナトリウム、同カリウ ム、同アンモニウム、炭酸ナトリウム、同カリウム、同アンモニウム、炭酸水素 ナトリウム、同カリウム、同アンモニウム、硼酸ナトリウム、同カリウム、同ア ンモニウムなどの無機アルカリ剤が挙げられる。また、モノメチルアミン、ジメ チルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチ ルアミン、モノイソプロピルアミン、ジイソプロピルアミン、トリイソプロピル アミン、n-ブチルアミン、モノエタノールアミン、ジエタノールアミン、トリ エタノールアミン、モノイソプロピノールアミン、ジイソプロパノールアミン、 エチレンイミン、エチレンジアミン、ピリジンなどの有機アルカリ剤も用いられ る。これらのアルカリ剤は単独もしくは二種以上を組み合わせて用いられる。こ れらの中で好ましいのは水酸化ナトリウム、同カリウムである。その理由は、非 還元糖に対するこれらの量を調整することにより広いpH領域でpH調整が可能 となるためである。また、燐酸三ナトリウム、同カリウム、炭酸ナトリウム、同 カリウムなどもそれ自身に緩衝作用があるので好ましい。これらのアルカリ剤は 現像液のpHを9.0~13.5の範囲になるように添加され、その添加量は所望 のpH、非還元糖の種類と添加量によって決められるが、より好ましいpH範囲 は10.0~13.2である。

[0094]

現像液にはさらに、糖類以外の弱酸と強塩基からなるアルカリ性緩衝液が併用できる。かかる緩衝液として用いられる弱酸としては、 $pKaが10.0\sim13.2$ のものが好ましい。このような弱酸としては、 $Pergamon\ Press社発行のIONISATION\ CONSTANTS\ OF\ ORGANIC\ ACIDS\ IN\ AQUEOUS\ SOLUTION\ などに記載されているものから選ばれ、例えば<math>2,2,3,3-$ テトラフルオロプロパノール-1 (pKa12.74)、トリフルオロエタノール(同12.37)、トリクロロエタノール(同12.24) などのアルコール類、ピリジン-2- アルデヒド(同12.6

8)、ピリジンー4ーアルデヒド(同12.05)などのアルデヒド類、サリチル酸(同13.0)、3ーヒドロキシー2ーナフトエ酸(同12.84)、カテコール(同12.6)、没食子酸(同12.4)、スルホサリチル酸(同11.7)、3,4ージヒドロキシスルホン酸(同12.2)、3,4ージヒドロキシ安息香酸(同11.94)、1,2,4ートリヒドロキシベンゼン(同11.82)、ハイドロキノン(同11.56)、ピロガロール(同11.34)、o-クレゾール(同10.33)、レゾルシノール(同11.27)、p-クレゾール(同10.27)、m-クレゾール(同10.09)などのフェノール性水酸基を有する化合物、

[0095]

[0096]

これらの弱酸の中で好ましいのは、スルホサリチル酸、サリチル酸である。これらの弱酸に組み合わせる塩基としては、水酸化ナトリウム、同アンモニウム、同カリウムおよび同リチウムが好適に用いられる。これらのアルカリ剤は単独もしくは二種以上を組み合わせて用いられる。上記の各種アルカリ剤は濃度および組み合わせによりpHを好ましい範囲内に調整して使用される。

[0097]

(界面活性剤)

現像液には、現像性の促進や現像カスの分散および印刷版画像部の親インキ性 を高める目的で必要に応じて種々界面活性剤や有機溶剤を添加できる。好ましい 界面活性剤としては、アニオン系、カチオン系、ノニオン系および両性界面活性 剤が挙げられる。界面活性剤の好ましい例としては、ポリオキシエチレンアルキ ルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエ チレンポリスチリルフェニルエーテル類、ポリオキシエチレンポリオキシプロピ レンアルキルエーテル類、グリセリン脂肪酸部分エステル類、ソルビタン脂肪酸 部分エステル類、ペンタエリスリトール脂肪酸部分エステル類、プロピレングリ コールモノ脂肪酸エステル類、しょ糖脂肪酸部分エステル類、ポリオキシエチレ ンソルビタン脂肪酸部分エステル類、ポリオキシエチレンソルビトール脂肪酸部 分エステル類、ポリエチレングリコール脂肪酸エステル類、ポリグリセリン脂肪 酸部分エステル類、ポリオキシエチレン化ひまし油類、ポリオキシエチレングリ セリン脂肪酸部分エステル類、脂肪酸ジエタノールアミド類、N,Nービスー2 ヒドロキシアルキルアミン類、ポリオキシエチレンアルキルアミン、トリエタ ノールアミン脂肪酸エステル、トリアルキルアミンオキシドなどの非イオン性界 面活性剤、

[0098]

脂肪酸塩類、アビエチン酸塩類、ヒドロキシアルカンスルホン酸塩類、アルカンスルホン酸塩類、ジアルキルスルホ琥珀酸エステル塩類、直鎖アルキルベンゼンスルホン酸塩類、分岐鎖アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩類、ポリオキシエチレンアルキルスルホフェニルエーテル塩類、NーメチルーNーオレイルタウリンナトリウム塩、Nーアルキルスルホ琥珀酸モノアミドニナトリウム塩、石油スルホン酸塩類、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩類、アルキル硫酸エステル塩類、ポリオキシエチレンアルキルエーテル硫酸エステル塩類、脂肪酸モノグリセリド硫酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩類、ポリオキシエチレンスチリル

フェニルエーテル硫酸エステル塩類、アルキルリン酸エステル塩類、ポリオキシエチレンアルキルエーテルリン酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩類、スチレン/無水マレイン酸共重合物の部分酸化物類、オレフィン/無水マレイン酸共重合物の部分酸化物類、ナフタレンスルホン酸塩ホルマリン縮合物類などのアニオン界面活性剤、アルキルアミン塩類、テトラブチルアンモニウムブロミド等の第四級アンモニウム塩類、ポリオキシエチレンアルキルアミン塩類、ポリエチレンポリアミン誘導体などのカチオン性界面活性剤、カルボキシベタイン類、アミノカルボン酸類、スルホベタイン類、アミノ硫酸エステル類、イミダゾリン類などの両性界面活性剤が挙げられる。以上挙げた界面活性剤の中でポリオキシエチレンとあるものは、ポリオキシメチレン、ポリオキシプロピレン、ポリオキシブチレンなどのポリオキシアルキレンに読み替えることもでき、それらの界面活性剤もまた包含される。

[0099]

さらに好ましい界面活性剤は、分子内にパーフルオロアルキル基を含有するフッ素系の界面活性剤である。かかるフッ素系界面活性剤としては、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルリン酸エステルなどのアニオン型、パーフルオロアルキルベタインなどの両性型、パーフルオロアルキルトリメチルアンモニウム塩などのカチオン型およびパーフルオロアルキルアミンオキサイド、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキル基および親水性基含有オリゴマー、パーフルオロアルキル基とび親油性基含有オリゴマー、パーフルオロアルキル基、親水性基および親油性基含有オリゴマー、パーフルオロアルキル基および親油性基含有ウレタンなどの非イオン型が挙げられる。上記の界面活性剤は、単独もしくは2種以上を組み合わせて使用することができ、現像液中に0.001~10質量%、より好ましくは0.01~5質量%の範囲で添加される。

[0100]

(現像安定化剤)

現像液には、種々の現像安定化剤が用いられる。それらの好ましい例として、 特開平6-282079号公報記載の糖アルコールのポリエチレングリコール付

加物、テトラブチルアンモニウムヒドロキシドなどのテトラアルキルアンモニウ ム塩、テトラブチルホスホニウムブロマイドなどのホスホニウム塩およびジフェ ニルヨードニウムクロライドなどのヨードニウム塩が好ましい例として挙げられ る。さらには、特開昭50-51324号公報記載のアニオン界面活性剤または 両性界面活性剤、また特開昭55-95946号公報記載の水溶性カチオニック ポリマー、特開昭56-142528号公報に記載されている水溶性の両性高分 子電解質がある。さらに、特開昭59-84241号公報のアルキレングリコー ルが付加された有機ホウ素化合物、特開昭60-111246号公報記載のポリ オキシエチレン・ポリオキシプロピレンブロック重合型の水溶性界面活性剤、特 開昭60-129750号公報のポリオキシエチレン・ポリオキシプロピレンを 置換したアルキレンジアミン化合物、特開昭61-215554号公報記載の重 量平均分子量300以上のポリエチレングリコール、特開昭63-175858 号公報のカチオン性基を有する含フッ素界面活性剤、特開平2-39157号公 報の酸またはアルコールに4モル以上のエチレンオキシドを付加して得られる水 溶性エチレンオキシド付加化合物と、水溶性ポリアルキレン化合物などが挙げら れる。

[0101]

(有機溶剤)

現像液は実質的に有機溶剤を含まないものであるが、必要により有機溶剤が加えられる。かかる有機溶剤としては、水に対する溶解度が約10質量%以下のものが適しており、好ましくは5質量%以下のものから選ばれる。例えば、1-フェニルエタノール、2-フェニルエタノール、3-フェニルー1-プロパノール、4-フェニルー1-ブタノール、2-フェニルー2-ブタノール、2-フェニルー1-ブタノール、2-フェニル・2-ベンジルオキシエタノール、o-メトキシベンジルアルコール、m-メトキシベンジルアルコール、p-メトキシベンジルアルコール、ベンジルアルコール、シクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、N-フェニルエタノールアミンおよびN-フェニルジエタノールアミンなどを挙げることができる。現像液において実質的に有機溶剤を含ま

ないとは、有機溶剤の含有量が使用液の総重量に対して5質量%以下であることをいう。その使用量は界面活性剤の使用量と密接な関係があり、有機溶剤の量が増すにつれ、界面活性剤の量は増加させることが好ましい。これは界面活性剤の量が少なく、有機溶剤の量を多く用いると有機溶剤が完全に溶解せず、従って、良好な現像性の確保が期待できなくなるからである。

[0102]

(還元剤)

現像液にはさらに還元剤を加えることができる。これは印刷版の汚れを防止するものであり、特に感光性ジアゾニウム塩化合物を含むネガ型感光性平版印刷版を現像する際に有効である。好ましい有機還元剤としては、チオサリチル酸、ハイドロキノン、メトール、メトキシキノン、レゾルシン、2ーメチルレゾルシンなどのフェノール化合物、フェニレンジアミン、フェニルヒドラジンなどのアミン化合物が挙げられる。さらに好ましい無機の還元剤としては、亜硫酸、亜硫酸水素酸、亜リン酸、亜リン酸水素酸、チオ硫酸および亜ジチオン酸などの無機酸のナトリウム塩、カリウム塩、アンモニウム塩などを挙げることができる。これらの還元剤のうち汚れ防止効果が特に優れているのは亜硫酸塩である。これらの還元剤は使用時の現像液に対して好ましくは、0.05~5質量%の範囲で含有される。

[0103]

(有機カルボン酸)

現像液にはさらに有機カルボン酸を加えることもできる。好ましい有機カルボン酸は炭素原子数6~20の脂肪族カルボン酸および芳香族カルボン酸である。脂肪族カルボン酸の具体的な例としては、カプロン酸、エナンチル酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸およびステアリン酸などがあり、特に好ましいのは炭素数8~12のアルカン酸である。また炭素鎖中に二重結合を有する不飽和脂肪酸でも、枝分かれした炭素鎖のものでもよい。芳香族カルボン酸としては、ベンゼン環、ナフタレン環、アントラセン環などにカルボキシル基が置換された化合物で、具体的には、o-クロロ安息香酸、p-クロロ安息香酸、o-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、o-アミノ安息香酸、

p-アミノ安息香酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸、2,3-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸、没食子酸、1-ヒドロキシ-2-ナフト工酸、3-ヒドロキシ-2-ナフト工酸、2-ヒドロキシ-1-ナフト工酸、1-ナフト工酸、2-ナフト工酸などがあるがヒドロキシナフト工酸は特に有効である。上記脂肪族および芳香族カルボン酸は水溶性を高めるためにナトリウム塩やカリウム塩またはアンモニウム塩として用いるのが好ましい。現像液の有機カルボン酸の含有量は格別な制限はないが、0.1質量%より低いと効果が十分でなく、また10質量%以上ではそれ以上の効果の改善が計れないばかりか、別の添加剤を併用する時に溶解を妨げることがある。従って、好ましい添加量は使用時の現像液に対して0.1~10質量%であり、より好ましくは0.5~4質量%である。

[0104]

(その他)

現像液には、さらに必要に応じて、防腐剤、着色剤、増粘剤、消泡剤および硬水軟化剤などを含有させることもできる。硬水軟化剤としては例えば、ポリ燐酸およびそのナトリウム塩、カリウム塩およびアンモニウム塩、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸、トリエチレンテトラミンヘキサ酢酸、ヒドロキシエチルエチレンジアミントリ酢酸、ニトリロトリ酢酸、1,2一ジアミノシクロヘキサンテトラ酢酸および1,3一ジアミノー2一プロパノールテトラ酢酸などのアミノポリカルボン酸およびそれらのナトリウム塩、カリウム塩およびアンモニウム塩、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、トリエチレンテトラミンヘキサ(メチレンホスホン酸)、ヒドロキシエタンー1,1一ジホスホン酸やそれらのナトリウム塩、カリウム塩およびアンモニウム塩を挙げることができる。

[0105]

このような硬水軟化剤はそのキレート化力と使用される硬水の硬度および硬水の量によって最適値が変化するが、一般的な使用量を示せば、使用時の現像液に

0.01~5質量%、より好ましくは0.01~0.5質量%の範囲である。この範囲より少ない添加量では所期の目的が十分に達成されず、添加量がこの範囲より多い場合は、色抜けなど、画像部への悪影響がでてくる。現像液の残余の成分は水である。現像液は、使用時よりも水の含有量を少なくした濃縮液としておき、使用時に水で希釈するようにしておくことが運搬上有利である。この場合の濃縮度は、各成分が分離や析出を起こさない程度が適当である。

[0106]

(現像および後処理)

かかる組成の現像液で現像処理された平板印刷版は水洗水、界面活性剤等を含 有するリンス液、アラビアガムや澱粉誘導体等を主成分とするフィニッシャーや 保護ガム液で後処理を施される。本発明の方法において感光性平板印刷版の後処 理にはこれらの処理を種々組み合わせて用いることができる。近年、製版・印刷 業界では製版作業の合理化および標準化のため、感光性平板印刷版用の自動現像 機が広く用いられている。この自動現像機は、一般に現像部と後処理部からなり 、感光性平板印刷版を搬送する装置と、各処理液槽およびスプレー装置からなり 、露光済みの感光性平板印刷版を水平に搬送しながら、ポンプで汲み上げた各処 理液をスプレーノズルから吹き付けて現像および後処理するものである。また、 最近は処理液が満たされた処理液槽中に液中ガイドロールなどによって感光性平 板印刷版を浸漬搬送させて現像処理する方法や、現像後一定量の少量の水洗水を 版面に供給して水洗し、その廃水を現像液原液の希釈水として再利用する方法も 知られている。このような自動処理においては、各処理液に処理量や稼働時間等 に応じてそれぞれの補充液を補充しながら処理することができる。また、実質的 に未使用の処理液で処理するいわゆる使い捨て処理方式も適用できる。このよう な処理によって得られた平版印刷版はオフセット印刷機に掛けられ、多数枚の印 刷に用いられる。

[0107]

【実施例】

以下実施例をもって本発明を説明するが、本発明はこれらの実施例に限定されるものではない。

(実施例1~16)

く支持体の作成方法>

(a) 下記の表1の成分からなるA1溶湯を調整し、溶湯処理、濾過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC鋳造法で作成し、表面を平均10mm面削機で削り取った後、約5時間550℃で均熱保持し、温度400℃に下がったところで、熱間圧延を用いて厚さ2.7mmの圧延板とし、更に連続焼鈍機を使って熱処理を500℃で行った後、冷間圧延で、厚さ0.24mmに仕上げた。このアルミ板を幅1030mmにした後、連続的に処理を行った。

[0108]

【表1】

成分	Si	Fe	Cu	Мn	M g	Ζn	T⊲i
	0.06	0.30	0.017	0.001	0.001	0.001	0.03

[0109]

- (b) アルミニウム板の表面をナイロンブラシと400メッシュのパミストンの水懸濁液を用い、砂目立てをした後、よく水で洗浄した。苛性ソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%、温度70℃でスプレーによるエッチング処理を行い、アルミニウム板を7g/m²溶解した。その後スプレーによる水洗をおこなった。
- (c) 温度30℃の硝酸濃度1質量%水溶液(アルミニウムイオン0.5質量% 含む)で、スプレーによるデスマット処理を行い、その後スプレーで水洗した。 前記デスマットに用いた硝酸水溶液は、硝酸水溶液中で交流を用いて電気化学的 な粗面化を行う工程の廃液を用いた。

[0110]

(d) $60 \, \text{Hz}$ の交流電圧を用いて連続的に電気化学的な粗面化処理を行った。 この時の電解液は、硝酸 1 質量%水溶液(アルミニウムイオン0.5 質量%、ア ンモニウムイオン0.007 質量%含む)、温度 $50 \, \text{C}$ であった。交流電源波形 は図 2 に示した波形で電流値がゼロからピークに達するまでの時間 $T \, \text{P}$ が $2 \, \text{m}$ s e c、d u t y 比 1:1、台形の矩形波交流を用いて、カーボン電極を対極とし て電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電 解槽は2個使用した。

電流密度は電流のピーク値で3 O A / d m 2 、電気量はアルミニウム板が陽極時の電気量の総和で2 3 O C / d m 2 であった。補助陽極には電源から流れる電流の5 %を分流させた。

その後、スプレーによる水洗を行った。

[0111]

- (e) アルミニウム板を苛性ソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%でスプレーによるエッチング処理を70℃でおこない、アルミニウム板を1g/m²溶解し、前段の交流を用いて電気化学的な粗面化をおこなったときに生成した水酸化アルミニウムを主体とするスマット成分の除去と、生成したピットのエッジ部分を溶解し、エッジ部分を滑らかにした。その後スプレーで水洗した。
- (f)温度60℃の硫酸濃度25質量%水溶液(アルミニウムイオンを0.5質量%含む)で、スプレーによるデスマット処理をおこない、その後スプレーによる水洗をおこなった。

[0112]

(g)陽極酸化装置を使って硫酸濃度 1.70g/1(アルミニウムイオンを0.5質量%含む)、温度 4.0 \mathbb{C} 、3.0 A/d m^2 、にて陽極酸化量が2.5 g/m^2 になるように陽極酸化処理ををおこなってから、スプレーによる水洗をおこなった。ここまでの基板をAとした。

次に第2表に示したフッ化物を含む水溶液で処理を行った後、水洗を行い、各 基板を作成した。

[0113]

得られた基板表面のフッ素化率を下記の装置を用いて下記の条件にて測定した

装置名:PHI-5400MC(アルバック・ファイ製)

X線源: MgK_α (400W)

Pass energy: 71.55eV

分析面積: 1.1 mmφ

光電子の取り出し角度: 45度

[0114]

次に上記の如く処理された基板上に、下記に示した高分子化合物を下記処方にて塗布した後、80%、15秒間乾燥した。乾燥後の塗布量は $6.5 mg/m_2$ であった。次に下記感光液 Aを塗布することにより感光層を設けた。乾燥後の感光層塗布量は $1.3 g/m^2$ であった。さらに真空密着時間を短縮させるため、特公昭61-28986 号記載の方法でマット層を形成させることにより、感光性平版印刷板を作成した。

[0115]

〔処方〕

高分子化合物(分子量Mw = 2.8万):0.1g

メタノール:100g

純水:1g

[0116]

【化15】

化合物A

[0117]

[感光液A]

1,2-ジアゾナフトキノン-5-スルホニルクロリドとピロガロール-アセトン樹脂とのエステル化物 (米国特許第3,635,709号明細書の実施例1に記載されているもの) 0.8 g

バインダー

ノボラック I (下記構造式参照)

1.5 g

ノボラックII(下記構造式参照)	0.2 g
ノボラック以外の樹脂III(下記構造式参照)	0.4 g
p-ノルマルオクチルフェノール-ホルムアルデヒド樹脂	(米国特許第4,123,2
79号明細書に記載されているもの)	0.02g
ナフトキノンー1,2-ジアジド-4-スルホン酸クロライ	F 0.01g
テトラヒドロ無水フタル酸	0.02g
安息香酸	0.02g
ピロガロール	0.05g
4 − 〔p − N , N − ビス(エトキシカルボニルメチル)アミ	ノフェニル] -2,6
ビス(トリクロロメチル)-S-トリアジン(以下トリン	アジンAと略)
	0.07g
ビクトリアピュアブルーBOH(保土谷化学(株)製の対	アニオンを1ーナフタ
レンスルホン酸に変えた染料)	0.045g
F176PF(フッ素系界面活性剤、大日本インキ化学工	業(株)製)
	0.01g
メチルエチルケトン	1 5 g
1-メトキシー2-プロパノール	1 0 g

[0118]

【化16】

ノボラック (I)

ノボラック(II)

ノボラック以外の樹脂(III)

$$\begin{array}{c} \text{CH}_{3} \\ -\left(\text{CH}_{2} - \overset{\mid}{\text{C}}\right)_{30} - \left(\text{CH}_{2} - \overset{\mid}{\text{CH}}\right)_{40} - \left(\text{CH}_{2} - \overset{\mid}{\text{CH}}\right)_{25} - \left(\text{CH}_{2} - \overset{\mid}{\text{CH}}\right)_{5} \\ \text{C} \equiv \text{N} & \text{COOCH}_{3} & \text{COOCH}_{2} - \end{array}$$

$$\text{CH}_{2} \text{ONHSO}_{2} - \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array}$$

Mw50000

[0119]

このように作成した感光性平版印刷版を1mの距離から3kWのメタルハライドランプにより1分間画像露光し、下記の現像液AあるいはBを用いて富士写真フイルム(株)製PSプロセッサー900VRを用いて、30℃12秒間現像した。

[0120]

現像液A (pH=13):

D-ソルビトール

5.1 重量部

水酸化ナトリウム

1.1重量部

トリエタノールアミン・エチレンオキサイド付加物(30モル) 0.03重量部 水 93.8重量部

現像液 B:

[SiO₂] / [Na₂O] モル比1.2、SiO₂ 1.4 質量%の珪酸ナトリウム水溶液100 重量部

エチレンジアミン・エチレンオキサイド付加物(30モル) 0.03重量部

[0121]

上記のように現像処理して得られた平版印刷版について、耐刷性、汚れ性、残 色、残膜性能、カス、ヘドロを測定した。その結果を表2に示した。なお、上記 性能の評価方法は次のとおりである。

[0122]

耐刷性:小森印刷機(株)製印刷機スプリントを用いて、正常に印刷されなくなるまでの印刷枚数をもって評価した。印刷枚数が多いほど耐刷性が良好である。

[0123]

汚れ性:ハイデルベルグ社製SOR-M印刷機にて1000枚印刷後印刷を停止し、30分間放置する。その後、再度印刷機に取り付けて100枚印刷した。その時の非画像部のインキの払われた枚数を評価した。枚数が少なければ少ないほど汚れ性能はよい。

[0124]

ヘドロ・カス:現像液1リットルに対して、プレート10m²を処理した後、この時のアルカリ現像液に対する酸化皮膜の溶解の程度を現像液中に残るカスの状態で判定した。

〇・・・カス、ヘドロが発生しない

△・・・カス、ヘドロの発生が認められるが、×程は多くない。

×・・・カス、ヘドロが多量に発生する

[0125]

残膜:現像後の平版印刷版の非画像部の280nmの光での反射光学濃度と感光 層塗布前の支持体表面の280nmの反射光学濃度の差(ΔD)を測定した。ΔD が少ないほど残膜性能が良い。

[0126]

残色:現像後の平版印刷版の非画像部の600nmの光での反射光学濃度と感光層塗布前の支持体表面の600nmの光での反射光学濃度の差(ΔD)を測定した。ΔDが少ないほど残色性能が良い。

[0127]

下記表から明らかなように支持体のフッ素化率が0.3~0.9の範囲を有する感光性平版印刷版を珪酸塩を含まない現像液で現像処理した平版印刷版(実施例1~7)はいずれも汚れ、耐刷、残色、残膜性能に優れ、かつ現像液中のカス、ヘドロも発生しなかった。一方、比較例(1~4)に示した基板はいずれも汚れ、耐刷性、残色、残膜、カス・ヘドロを両立出来ず、満足のいくものではなかった。

[0128]

【表2】

							ſ			
実施例 /比較例	実施例 比較例	第1浴処理(処理条件)	第2浴処理(処理条件)	万瀬 化棒 ロ	現後幾	汚れ	<u>አ</u> ጸ∙ ላኑ°ը	高智森 67数	残色	残膜
		3号珪酸+トリウム 1%+フッイヒナトリウム 2% (60°C, 1分)	なし	0.82	A	22	0	5.0	0.05	0.05
	23	7ッ化ナトリケム 2% (50°C, 15 秒)	なし	0.64	Α	24	. 0	6.0	0.05	0.06
Ð	3	7ッ化カリウム 5% + リン酸ニ水素ナトリウム 15% + 生酸カリウム 0.1% (50°C, 20 秒)	なし	0.72	А	21	0	5.5	0.04	0.04
K福创	4	7ッ化ナドリウム 0.1%+リン酸ニ水素ナドリウム 10% (80°C, 30 秒)	なし	0.34	А	24	0	6.0	0.03	0.10
	2	3号珪酸扑/)从1% (50°C, 30秒)	フッイヒシ・ルコン酸かりかム 0.1% (60°C, 10 秒)	0.41	А	24	0	5.5	0.02	0.04
	9	7ッ化チシン酸かか4 0.1% (60°C, 10 秒)	3 号珪酸ナリウム 1% (70°C, 30 秒)	0.33	А	21	0	5.5	0.03	0.07
	~	お"リビ"ニルもスなン酸 2% + フッパピナトリウム 1% (70°C, 1分)	なし	0.55	А	25	0	6.0	0.01	0.02
	-	なし	なし	0.12	А	35	×	6.0	0.06	0.32
五	2	7ッ化けりかん0.1%(20°C,5秒)	なし	0.27	А	23	×	6.0	0.03	90'0
数 例	က	7ッ化ナリウム 10%(100℃, 1分)	なし	0.92	А	24	0	2.0	0.05	0.04
	4	7ッ化ナトリウム 2% (50°C, 15 秒)	なし	0.64	В	56	٥	6.0	0.10	0.25
]=	A I(A	1) A/(A+R)								

) A/(A+B)

[0129]

【発明の効果】

本発明の平版印刷版の製造方法により、残色、残膜性能、汚れ性能及び耐刷性 能が共に良好なポジ型感光性平版印刷版が得られ、かつ現像時のカス、ヘドロを 抑制できる。 【書類名】

要約書

【要約】

【課題】 残色、残膜性能、耐刷性能及び汚れ性能が共に良好でかつ現像時の現像液中のカス、ヘドロを抑制できる平版印刷版の製造方法を提供すること

【解決手段】 下記式に示される関係を満たす表面を有するアルミニウム 支持体上にポジ型感光層を設けた平版印刷版を、珪酸塩を含まない現像液で現像 処理することを特徴とする平版印刷版の製造方法:

 $0.30 \le A/(A+B) \le 0.90$ (式中、AはX線光電子分光法を用いて測定して得られたフッ素(1S)のピーク面積($counts \cdot eV/sec$)を表し、BはX線光電子分光法を用いて測定して得られたアルミニウム(2P)のピーク面積($counts \cdot eV/sec$)を表す)。

【選択図】

なし

出願人履歴情報

識別番号

[000005201]

1. 変更年月日

1990年 8月14日

[変更理由]

新規登録

住 所

神奈川県南足柄市中沼210番地

氏 名

富士写真フイルム株式会社