

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE INGENIERÍA

Tarea 4 de física computacional

- 1. Grafique y(x) para las siguientes ecuaciones diferenciales
 - a) $y''(x) + \operatorname{sen}(x y'(x) y(x)) + 2x = 5$; y(0) = 1, y'(0) = 2 para $x \in [0, 3]$
 - b) $y^{(4)} + \operatorname{sen} xy^{(3)} + \exp(-x)y'' + y' xy = 0$ con el vector de condiciones iniciales $\mathbf{Y}_0 = [1, 2, 3, 4]$, para $x \in [1, 2]$ (observe que $x_0 = 1$)
- 2. La ecuación de movimiento para un péndulo amortiguado es:

$$\ddot{\theta} + \frac{c}{m}\dot{\theta} + \frac{g}{l}\sin\theta = 0$$

Tomando $m=1\,\mathrm{Kg},\,l=1\,\mathrm{m},\,g=9.8\,\mathrm{m/s^2}$ y $c=0.5\,\mathrm{Ns/m},\,\mathrm{haga}$ una gráfica de la tensión en la cuerda como función del tiempo.

- 3. Reproduzca la figura 5.b $(u_1(t) = u_2(t) = 0)$ de la referencia [1].
- 4. Implemente los números duales y sobrecargue las siguientes funciones y operadores. (^), (*), (+), (-), (/), (==), (/=), acos, acosh, asin, atan, atan2, atanh, sin, cos, cosh, erf, sinh, tan, tanh, exp, log, sqrt, abs.
- 5. Usando las funciones del ejercicio anterior, implemente $\nabla f(\mathbf{x}_0)$ y $\mathbf{J}f(\mathbf{x}_0)$; una función que permita calcular el gradiente y otra que calcule el Jacobiano de una función evaluada en el punto \mathbf{x}_0 .

Referencias

[1] Optimizing functionals using differential evolution, Engineering Applications of Artificial Intelligence 97 (2021) 104086. doi:doi.org/10.1016/j.engappai.2020.104086.