

# Multivariate Rational Functions in Julia

Erkut Dere

Advisor: Zafeirakis Zafeirakopoulos

26 October 2022



## Project Definition



The project is basically about implementing an algorithm that simplifies the multivariate rational functions that are too complex by using techniques such as interpolation.

$$\frac{f(x_1, x_2, ..., x_n)}{g(x_1, x_2, ..., x_n)} \in K(x_1, x_2, ..., x_n)$$



# Project Definition



$$\underbrace{\frac{f}{g}(p_1,\ldots,p_n)\in\mathsf{K}\cup\{\infty\}}_{f,g\in\mathsf{K}[x_1,\ldots,x_n],\,\mathrm{GCD}(f,g)=1}$$

Figure 1: Black box for rational function evaluation
[KY07]



## Project Design



#### Evaluation of Numerator and Denominator

Input:

- ▶  $\frac{f(x_1, x_2, \dots, x_n)}{g(x_1, x_2, \dots, x_n)}$  ∈  $\mathsf{K}(x_1, x_2, \dots, x_n)$  input as a black box (see above)
- B<sub>2</sub>,...,B<sub>n</sub>: n-1 shift elements that are randomly chosen from a sufficiently large finite set S<sub>1</sub> ⊆ K
- p<sub>1</sub>,..., p<sub>n</sub>: n evaluation points that are randomly chosen from a sufficiently large finite set S<sub>2</sub> ⊆ K
- ▶  $\bar{d}, \bar{e}$ : degree bounds  $\bar{d} \ge \deg(f)$  and  $\bar{e} \ge \deg(g)$
- d, e (optional): the degrees of f and g, respectively (with high probability)
- ▶  $\tau_1, \ldots, \tau_n$ : a given exponent vector with  $1 \le \tau_i \le \min(\bar{d}, \bar{e})$
- Output:  $\blacktriangleright$  the value of  $f(p_1^{\tau_1}, \dots, p_n^{\tau_n})/c$  and  $g(p_1^{\tau_1}, \dots, p_n^{\tau_n})/c$  (with high probability), where c is the leading coefficient of  $g(X, B_2X, \dots, B_nX)$  (with high probability)
  - or "failure," in which case the random values input are diagnosed as unusable





### Project Design



#### Rational Function Interpolation

Input:

- $ightharpoonup \frac{f(x_1, x_2, \dots, x_n)}{g(x_1, x_2, \dots, x_n)} \in \mathsf{K}(x_1, x_2, \dots, x_n)$  input as a black
- $(x_1, \ldots, x_n)$ : an ordered list of variables in f/g.  $\bar{d}, \bar{e}$ : degree bounds  $\bar{d} \ge \deg(f)$  and  $\bar{e} \ge \deg(g)$

- Output:  $f(x_1, \ldots, x_n)/c$  and  $g(x_1, \ldots, x_n)/c$  (with high probability), where  $c \in K$ .
  - ▶ Or "failure", in which case unlucky random elements have been selected (one can rerun the algorithm with new random values) or the black box does not evaluate a rational function of the given degree bounds.

[KY07]



#### Project Requirements



- \*Julia lang(MultivariatePolynomials.jl,Interpolations.jl)
- \*Data sets (Multivariate rational functions)
- \*Testing methods



#### Success Criteria



- Minimizing the number of evaluations.
- ► Rational interpolation.



#### References I



Erich Kaltofen and Zhengfeng Yang, *On exact and approximate interpolation of sparse rational functions*, ISSAC '07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation (2007), 203–210.

