Inaccurate Beliefs and Cyclical Labor Market Dynamics

Jenny Siqin Ding

University of Maryland

September 29, 2025

1

Motivation

- Long-standing questions in the macro labor market:
 - Why is unemployment so volatile and persistent?

Motivation

- Long-standing questions in the macro labor market:
 - Why is unemployment so volatile and persistent?

- New channel: Inaccurate beliefs about aggregate productivity
 - New empirical evidence on household beliefs and labor market decisions
 - o Model of belief formation to study their implications on aggregate fluctuations

Motivation

- Long-standing questions in the macro labor market:
 - Why is unemployment so volatile and persistent?

- New channel: Inaccurate beliefs about aggregate productivity
 - New empirical evidence on household beliefs and labor market decisions
 - Model of belief formation to study their implications on aggregate fluctuations

- Also provides insights to:
 - Why is the job separations more cyclical for high-wage workers? Mueller (2017)
 - Why similar workers have drastically different transition patterns across employment states? Hall and Kudlyak (2019) Ahn et al. (2023) Gregory et al. (2025)

This Paper

- New evidence on beliefs from survey data:
 - Household beliefs about unemployment systematically lag actual changes
 - Workers with more optimistic expectations about labor market prospects demand higher wages

This Paper

- New evidence on beliefs from survey data:
 - Household beliefs about unemployment systematically lag actual changes
 - Workers with more optimistic expectations about labor market prospects demand higher wages
- DMP model with imperfect info
 - o The distribution of worker beliefs are lagged and dispersed
 - Workers bargain for wages with firms based on their own beliefs
 - The distribution of worker beliefs affects firm's vacancy posting and layoffs
 - Better informed firms (share a common belief):
 - Bargain for wages, make hiring and layoff decisions according to their beliefs

- Aggregate fluctuations
 - Worker–firm belief gap drives the volatility in job creation ⇒ Amplification

- Aggregate fluctuations
 - Worker–firm belief gap drives the volatility in job creation ⇒ Amplification
 - Dispersion in worker beliefs affects layoffs
 - ⇒ Optimistic workers are hired at higher wages and face higher separation risks
 - ⇒ Composition of unemployment

- Aggregate fluctuations
 - Worker–firm belief gap drives the volatility in job creation ⇒ Amplification
 - Dispersion in worker beliefs affects layoffs
 - ⇒ Optimistic workers are hired at higher wages and face higher separation risks
 - ⇒ Composition of unemployment
 - Firm learning dampens the volatility and generates more persistence

- Aggregate fluctuations
 - Worker–firm belief gap drives the volatility in job creation ⇒ Amplification
 - Dispersion in worker beliefs affects layoffs
 - ⇒ Optimistic workers are hired at higher wages and face higher separation risks
 - ⇒ Composition of unemployment
 - Firm learning dampens the volatility and generates more persistence

- Heterogeneous transition patterns
 - Differences in learning rate and persistence in biases ⇒ Heterogeneity

Literature

Survey evidence on beliefs and labor market decisions/outcomes: Campbell et al. (2007),
 Conlon et al. (2018), Mitra (2023), Balleer et al. (2024), Jäger et al. (2024)

Contribution: New GE framework

- DMP models with information friction about aggregate productivity in GE:
 - Asymmetric beliefs about the aggregate: Menzio (2023), Morales-Jiménez (2022)
 - Biased beliefs about the aggregate: Mitra (2024), Bhandari et al. (2025)

Contribution: Dispersion + endogenous separations + role of firm beliefs

- Other DMP models with imperfect info:
 - Firm's private information on match quality: Azariadis and Stiglitz (1983), Kennan (2010)
 - Worker's private information on types: Acharya and Wee (2020), Birinci et al. (2025)

Contribution: Belief formation on aggregate productivity disciplined by survey data

Connect to the larger literature on amplification and persistence: Shimer (2005), Elsby and Michaels (2013), Ljungqvist and Sargent (1998), Marimon and Zilibotti (1999), Hornstein et al. (2007)...
 Stick-wages: Hall (2005), Shimer (2010), Gertler and Trigari (2009), Gertler et al. (2020)...

Roadmap

- Motivation evidence from survey data
- DMP model with imperfect information
- Calibration

- Quantitative results about aggregate fluctuations
 - Amplification and persistence of aggregate shocks
 - o Comovements of pre-displacement wage and unemployment rate
 - Heterogeneous transition patterns

Household beliefs lag the actual change in unemployment rate

Perceived and actual changes in unemployment rate (Both standardized). Source: MSC, FRED.

More Optimistic Workers have Higher Reservation Wage of Working

• Survey of Consumer Expectations: 2014m3–2023m7

Survey Questions and Regression equations

- Cross-section: Workers expecting higher job-finding rates set higher reservation wages
- Time series: Larger increases in unemployment expectations are associated with larger reductions in reservation wages

Table: Beliefs and Reservation Wages $log(w^r)$

	Exp job-finding rate			Exp unemployment rate			
	employed (1)	employed (2)	unemployed (3)	<i>all</i> (4)	employed (5)	non-employed (6)	
Beliefs	0.178*** (0.032)	0.102*** (0.027)	0.005* (0.003)	-0.114** (0.053)	-0.096* (0.052)	-0.132 (0.128)	
Household income	✓		✓				
Worker income		✓					
Demographics	✓	✓	✓				
Worker FE				✓	✓	✓	
Time FE	\checkmark	✓	\checkmark	✓	✓	✓	
Observations	19,035	18,989	802	28,318	19,049	8,231	
R ²	0.215	0.364	0.133	0.485	0.514	0.419	

DMP Model with Inaccurate Beliefs

Model: Timeline

Aggregate Productivity and Belief Formation

• Aggregate productivity:
$$z_t = \rho z_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_z^2)$$

Aggregate Productivity and Belief Formation

• Aggregate productivity:
$$z_t = \rho z_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_z^2)$$

• Heterogeneous worker beliefs: $\hat{z}_{it} = \hat{z}_t^w + \eta_{it}$, $\eta_{it} \sim \mathcal{N}(0, \sigma_s^2)$ \Rightarrow dispersion

$$\hat{z}_{t}^{w} = \hat{z}_{t-1}^{w} + \gamma^{w} \underbrace{(z_{t-1} - \hat{z}_{t-1}^{w})}_{\text{forecast error}}, \quad 0 < \gamma^{w} < 1 \quad \Rightarrow \text{delay}$$

$$\Rightarrow$$
 Distribution of worker beliefs $G_t \sim \mathcal{N}(\hat{z}_t^w, \sigma_s^2)$
(Perceived distribution of worker beliefs $\hat{G}_{it} \sim \mathcal{N}(\hat{z}_{it}, \sigma_s^2)$)

Strategic Considerations: Firms

- Workers and firms bargain ⇒ beliefs about others' expectations affect decisions
- Assume firms observe the true productivity z_t and the actual distribution of current worker beliefs $G_t \Rightarrow$ relaxed later
 - \Rightarrow firms use z_t and G_t to compute
 - o the expected distribution of future worker beliefs
 - o workers' value functions: expected reservation wages, and bargaining wages
 - $\circ\;$ resulting labor market tightness and own reservation wage

Strategic Considerations: Workers

- Each worker believes their own info is accurate and that firms also use this belief in wage setting
- Worker i perceives that other workers' beliefs are distributed as \hat{G}_{it} , centered on \hat{z}_{it}
 - \Rightarrow worker *i* uses \hat{z}_{it} and \hat{G}_{it} to compute
 - the *perceived* value functions of firms, labor market tightness, job-finding rate, firms' reservation wage
 - o wn reservation wage and bargained wage

Value Functions: Firms

- Dist. of beliefs affect the value of a filled job and firm's vacancy posting incentives
- Value of a filled job:

$$J(z, w) = z - w + \beta(1 - \delta) \mathbb{E} \left[\lambda \underbrace{\mathbb{1}(w'(z') < w)}_{Workers\ might\ quit} \underbrace{max\{J(z', w), V(z')\}}_{Whether\ to\ layoff} + (1 - \lambda) \underbrace{J(z', w^B(z'))}_{Renegotiation} \right]$$

Value Functions: Firms

- Dist. of beliefs affect the value of a filled job and firm's vacancy posting incentives
- Value of a filled job:

$$J(z, w) = z - w + \beta(1 - \delta) \mathbb{E} \left[\lambda \underbrace{\mathbb{1}(w'(z') < w)}_{Workers\ might\ quit} \underbrace{max\{J(z', w), V(z')\}}_{Whether\ to\ layoff} + (1 - \lambda) \underbrace{J(z', w^B(z'))}_{Renegotiation} \right]$$

• Value of vacancy and free entry condition:

(2)
$$V(z) = -\kappa + \beta \mathbb{E}q(\theta) \left\{ \int_{\hat{\mathbf{z}}_i} \max\{J(z', \mathbf{w}^B(\hat{\mathbf{z}}_i)), V(z')\} dG \right\} = 0$$

Expected value of a new hire

Value Functions: Firms

- Dist. of beliefs affect the value of a filled job and firm's vacancy posting incentives
- Value of a filled job:

$$J(z, w) = z - w + \beta(1 - \delta) \mathbb{E} \left[\lambda \underbrace{\mathbb{1}(w'(z') < w)}_{Workers\ might\ quit} \underbrace{max\{J(z', w), V(z')\}}_{Whether\ to\ layoff} + (1 - \lambda) \underbrace{J(z', w^B(z'))}_{Renevotiation} \right]$$

• Value of vacancy and free entry condition:

(2)
$$V(z) = -\kappa + \beta \mathbb{E}q(\theta) \left\{ \int_{\hat{\mathbf{z}}_i} \max\{J(z', \mathbf{w}^B(\hat{\mathbf{z}}_i)), V(z')\} d\mathbf{G} \right\} = 0$$

Expected value of a new hire

• Firm's acceptable wages:

(3)
$$\{w: w \leq \overline{w}^f(z) \text{ and } J(z, \overline{w}^f(z)) = 0\}$$

- Worker's belief affects their perceived job-finding rate and layoff prob.
- Perceived value of a filled job

(4)
$$J(\hat{z}, w) = \hat{z} - w + \beta(1 - \delta) \hat{\mathbb{E}} \Big[\lambda \mathbb{1}(w'(\hat{z}') < w) \max\{J(z', w), V(z')\} + (1 - \lambda)J(z', w^B(\hat{z}')) \Big]$$

• Perceived value of vacancy \Rightarrow Perceived job-finding rate $f(\hat{\theta})$

(5)
$$V(\hat{z}) = -\kappa + \beta q(\hat{\theta}) \hat{\mathbb{E}} \int_{\hat{z}_i} \max\{J(z', w^B(\hat{z}_i)), 0\} d\hat{G} = 0$$

Perceived reservation wage of the firm

(6)
$$\{w : w \le \hat{w}^f(\hat{z}) \text{ and } J(\hat{z}, \hat{w}^f(\hat{z})) = 0\}$$

- Worker's belief affects their perceived job-finding rate and layoff prob.
- Perceived value of a filled job

(4)
$$J(\hat{z}, w) = \hat{z} - w + \beta(1 - \delta) \hat{\mathbb{E}} \Big[\lambda \mathbb{1}(w'(\hat{z}') < w) \max\{J(z', w), V(z')\} + (1 - \lambda)J(z', w^B(\hat{z}')) \Big]$$

• Perceived value of vacancy \Rightarrow Perceived job-finding rate $f(\hat{\theta})$

(5)
$$V(\hat{z}) = -\kappa + \beta q(\hat{\theta}) \hat{\mathbb{E}} \int_{\hat{z}_i} \max\{J(z', w^B(\hat{z}_i)), 0\} d\hat{G} = 0$$

Perceived reservation wage of the firm

(6)
$$\{w: w \leq \hat{\mathbf{w}}^f(\hat{\mathbf{z}}) \text{ and } J(\hat{\mathbf{z}}, \hat{\mathbf{w}}^f(\hat{\mathbf{z}})) = 0\}$$

- Perceived strategies of the firm affects the worker's perceived value functions
- Worker's perceived value of working:

$$W(\hat{z}, w) = w + \beta \hat{\mathbb{E}} \left\{ \underbrace{\left[\delta + (1 - \delta) \lambda \mathbb{1} \left(w > \overline{w}^{f}(\hat{z}') \right) \right] U(\hat{z}')}_{Involuntary separations} + \underbrace{(1 - \delta) \lambda \mathbb{1} \left(w < \overline{w}^{f}(\hat{z}') \right) \max \{ W(\hat{z}', w), U(\hat{z}') \}}_{Quits} + \underbrace{(1 - \delta) (1 - \lambda) W(\hat{z}', w^{B}(\hat{z}'))}_{Renegotiation} \right\}$$

• Value of unemployment:

(8)
$$U(\hat{z}) = b + \beta \hat{\mathbb{E}} \left\{ f(\hat{\theta}) W(\hat{z}', w^B(\hat{z})) + (1 - f(\hat{\theta}')) U(\hat{z}') \right\}$$

- Worker's perceived value functions determine
 - The range of acceptable wages:

(9)
$$\{w: w \geq \underline{w}^r(\hat{z}) \text{ and } W(\hat{z}, \underline{w}^r(\hat{z})) = U(\hat{z})\}$$

Model: Wage Bargaining Game

- Worker makes the first offer: giving firms 1ϑ of the *percieved* matching surplus, *thinking* that the firm will always accept
- Firms accept if it's below its reservation wage
- Otherwise, the match is dissolved

Steady State Rejection Probability: Full Info

- Wage rigidities + two-sided lack of commitment ⇒ endogenous separations
 - Firms lay off workers when the true state is low and current wage is high
 - Workers quit the job when their belief is high and current wage is low
 - All bargaining result in matches

Steady State Rejection Probability: Noisy Beliefs

• Noisy beliefs create a region with nonzero probability of failed negotiation

Model Mechanism

 Amplification: Lagged worker beliefs ⇒ slow adjustment for wages of new hires ⇒ larger volatility in job creation

• Persistence: Firm learning ⇒ dampened and sluggish response in all variables

- Firms hire high-wage workers, knowing they can fire them later
- Dispersion in beliefs ⇒ wage dispersion ⇒ ↑ separations of high wage workers in recessions
 - ⇒ Shift in the composition of unemployment
 - ⇒ Heterogeneity

Calibration

Calibration: Belief Parameters

- MSC 1978m1-2020m2
- Cross-sectional dispersion in beliefs
 - Calibrate σ_s to match time-average of $\sigma_u = \frac{1}{T} \sum_t \tilde{\sigma}_t = 0.2$ in data
- Worker's learning rate
 - \circ Calibrate learning rate γ^{w} to match learning rate in data (0.093)

Reg results

(10)
$$\textit{UNEMPL}_{t}^{e} = \beta_{1} \textit{UNEMPL}_{t-1} + \beta_{2} \textit{UNEMPL}_{t-1}^{e} + \epsilon_{t}$$

Parameters

	Description	Value	Source
ρ	Persistence of z	0.983	GHT
σ_z	Standard Deviation of z	0.007	GHT
β	Discount factor	0.997	GHT (3% interest)
λ	Renegotiation frequency	11/12	GHT (every 4 quarters)
α	Matching elasticity to v	0.5	Blanco et al. (2024)
ϑ	Bargaining power of the worker	0.6	within the range

• GHT = Gertler et al. (2020)

	Description	Value	Target	Moment
δ	Exog job destruction rate	0.018	Unemploy. rate = 6.1%	6.1%
b	Unemp benefit	0.650	0.7 of median state productivity	0.65
Α	Matching efficiency	0.328	Job finding rate = 27.7%	27.8%
κ	Cost of vacancy posting	0.289	Labor market tightness = 0.720	0.719
$\sigma_{\!s}$	Std. dev. of beliefs	0.019	$MSC \sigma_u = 0.20$	0.199
$\gamma^{\it w}$	Learning rate of HH	0.085	MSC $\beta^1 = 0.093$	0.095

Quantitative Results

- Aggregate fluctuations
- Cyclical job separations
- Distributional consequences

Business Cycle Summary Statistics

	р	и	f	s	θ
Panel A: Data					
Standard Deviation	0.010	0.103	0.053	0.067	0.229
Quarterly Autocorrelation	0.746	0.934	0.871	0.773	0.936
Panel B: Full Info					
Standard Deviation	0.014	0.025	0.020	0.012	0.041
Quarterly Autocorrelation	0.727	0.795	0.719	0.505	0.719

Panel C: HH Learning Standard Deviation Quarterly Autocorrelation

Panel D: HH Learning + Dispersion Standard Deviation Quarterly Autocorrelation

Panel E: HH Learning + Dispersion + Firm Learning Standard Deviation Quarterly Autocorrelation

	р	и	f	s	θ
Panel A: Data					
Standard Deviation	0.010	0.103	0.053	0.067	0.229
Quarterly Autocorrelation	0.746	0.934	0.871	0.773	0.936
Panel B: Full Info					
Standard Deviation	0.014	0.025	0.020	0.012	0.041
Quarterly Autocorrelation	0.727	0.795	0.719	0.505	0.719
Panel C: HH Learning					
Standard Deviation	0.014	0.113	0.140	0.017	0.280
Quarterly Autocorrelation	0.751	0.782	0.616	0.548	0.546

Panel D: HH Learning + Dispersion Standard Deviation Quarterly Autocorrelation

Panel E: HH Learning + Dispersion + Firm Learning Standard Deviation Quarterly Autocorrelation

	р	и	f	s	θ
Panel A: Data					
Standard Deviation	0.010	0.103	0.053	0.067	0.229
Quarterly Autocorrelation	0.746	0.934	0.871	0.773	0.936
Panel B: Full Info					
Standard Deviation	0.014	0.025	0.020	0.012	0.041
Quarterly Autocorrelation	0.727	0.795	0.719	0.505	0.719
Panel C: HH Learning					
Standard Deviation	0.014	0.113	0.140	0.017	0.280
Quarterly Autocorrelation	0.751	0.782	0.616	0.548	0.616
Panel D: HH Learning + Disp	ersion				
Standard Deviation	0.014	0.115	0.139	0.020	0.279
Quarterly Autocorrelation	0.727	0.785	0.626	0.374	0.627
Panel E: HH Learning + Disp	ersion + Firm	1 Learning			
Standard Deviation		C			
Quarterly Autocorrelation					

	р	и	f	s	θ
Panel A: Data					
Standard Deviation	0.010	0.103	0.053	0.067	0.229
Quarterly Autocorrelation	0.746	0.934	0.871	0.773	0.936
Panel B: Full Info					
Standard Deviation	0.014	0.025	0.020	0.012	0.041
Quarterly Autocorrelation	0.727	0.795	0.719	0.505	0.719
Panel C: HH Learning					
Standard Deviation	0.014	0.113	0.140	0.017	0.280
Quarterly Autocorrelation	0.751	0.782	0.616	0.548	0.546
Panel D: HH Learning + Disp	persion				
Standard Deviation	0.014	0.115	0.139	0.020	0.279
Quarterly Autocorrelation	0.727	0.785	0.626	0.374	0.627
Panel E: HH Learning + Disp	ersion + Firn	n Learning (γ	F = 0.5)		
Standard Deviation	0.014	0.092	0.110	0.015	0.219
Quarterly Autocorrelation	0.727	0.814	0.705	0.505	0.705

- Sluggish adjustment for household beliefs generates sticky wages for new hires ⇒ further reduce firm's vacancy posting incentives
- Larger drop in job-finding rate and job creation

Job-finding probability

New hires

- Sluggish adjustment for household beliefs generates sticky wages for new hires ⇒ further reduce firm's vacancy posting incentives
- Larger drop in job-finding rate and job creation

Job-finding probability

New hires

Model with firm learning

- Sluggish adjustment for household beliefs generates sticky wages for new hires ⇒ further reduce firm's vacancy posting incentives
- Larger drop in job-finding rate and job creation

Job-finding probability

New hires

Model with firm learning

- Sluggish adjustment for household beliefs generates sticky wages for new hires ⇒ further reduce firm's vacancy posting incentives
- Larger drop in job-finding rate and job creation

Job-finding probability

New hires

- Larger belief dispersion generates larger layoffs
- Firm learning dampens this result

0.03 - Full Info $\gamma^F = FI, \gamma^w = 0.085$, no disp 0.03 0.02 Percentage point 0.01 0.000.00 -0.01 -0.01 10 20 30 40 Months after shock

- More workers are hired closed to firm's layoff threshold
- The pool of unemployment shifts towards high-wage workers during recessions (Mueller (2017)

Job Separations

- More workers are hired closed to firm's layoff threshold
- The pool of unemployment shifts towards high-wage workers during recessions (Mueller (2017)

Job Separations

• More workers are hired closed to firm's layoff threshold

•

Layoffs

Job Separations

- Asymmetry \Rightarrow Larger drop in job-finding rate \Rightarrow smaller outflows
- Dispersion \Rightarrow Larger layoffs \Rightarrow larger inflows
- Firm learning ⇒ dampens volatility and generates more persistence

- Asymmetry \Rightarrow Larger drop in job-finding rate \Rightarrow smaller outflows
- Dispersion ⇒ Larger layoffs and unsuccessful renegotiations ⇒ larger inflows

Unemployment rate

- Asymmetry \Rightarrow Larger drop in job-finding rate \Rightarrow smaller outflows
- Dispersion ⇒ Larger layoffs and unsuccessful renegotiations ⇒ larger inflows

Unemployment rate

- Asymmetry \Rightarrow Larger drop in job-finding rate \Rightarrow smaller outflows
- Dispersion ⇒ Larger layoffs and unsuccessful renegotiation ⇒ larger inflows

Unemployment rate

High-wage workers face more cyclical separations

- Mueller (2017): Comovements of pre-displacement wage and unemployment rate
- Driven by higher cyclicality of job separations among high-wage workers; similar job-finding rates

Comovements of pre-displacement wage and unemployment rate

Distributional Consequences of Inaccurate Beliefs

- Empirical Observation: Heterogeneous transition patterns across workers (Gregory et al. (2025), Hall and Kudlyak (2019), Ahn et al. (2023))
- Differences in learning rate or persistence in biases can partially explain this
- Two types of workers with different learning rates

(11)
$$\hat{z}_{it}^{fast} = \hat{z}_{t-1}^{fast} + \gamma^{fast}(z_{t-1} - \hat{z}_{t-1}^{fast}) + \eta_{it}$$

(12)
$$\hat{z}_{it}^{slow} = \hat{z}_{t-1}^{slow} + \gamma^{slow}(z_{t-1} - \hat{z}_{t-1}^{slow}) + \eta_{it}$$

•
$$\gamma^{slow} = 0.02, \gamma^{fast} = 0.20$$

Diff. in Learning Rates Helps Explain Heterog. Transition Patterns

• Slow updating workers are relatively more optimistic at the beginning of the recession

⇒ Hired at higher wages ⇒ Higher layoff rates and Unemployment rate Persistent biases

Layoffs Unemployment rate

Conclusion

• Theory about how systematic biases and idiosyncratic noise in beliefs about the aggregate affects labor market fluctuations and heterogeneous transition patterns

• Future work:

- Interaction of noisy beliefs about aggregate, worker private info, and misperception of employers
- o Implications for job acceptance, search/on-the-job search, future separation risks

References

- Acharya, S. and Wee, S. L. (2020). Rational inattention in hiring decisions. *American Economic Journal: Macroeconomics*, 12(1):1–40.
- Ahn, H. J., Hobijn, B., and Şahin, A. (2023). The dual us labor market uncovered. Technical report, National Bureau of Economic Research.
- Azariadis, C. and Stiglitz, J. E. (1983). Implicit contracts and fixed price equilibria. *The Quarterly Journal of Economics*, pages 2–22.
- Balleer, A., Duernecker, G., Forstner, S., and Goensch, J. (2024). *Biased expectations and labor market outcomes: Evidence from German survey data and implications for the East-West wage gap.* Number 1062. Ruhr Economic Papers.
- Bhandari, A., Borovička, J., and Ho, P. (2025). Survey data and subjective beliefs in business cycle models. *Review of Economic Studies*, 92(3):1375–1437.
- Birinci, S., See, K., and Wee, S. L. (2025). Job applications and labour market flows. *Review of Economic Studies*, 92(3):1438–1496.

- Blanco, A., Drenik, A., Moser, C., and Zaratiegui, E. (2024). A theory of labor markets with inefficient turnover. Technical report, National Bureau of Economic Research.
- Campbell, D., Carruth, A., Dickerson, A., and Green, F. (2007). Job insecurity and wages. *The Economic Journal*, 117(518):544–566.
- Conlon, J. J., Pilossoph, L., Wiswall, M., and Zafar, B. (2018). Labor market search with imperfect information and learning. Technical report, National Bureau of Economic Research.
- Du, W., Monninger, A., Qiu, X., and Wang, T. (2024). Perceived unemployment risks over business cycles.
- Elsby, M. W. L. and Michaels, R. (2013). Marginal jobs, heterogeneous firms, and unemployment flows. *American Economic Journal: Macroeconomics*, 5(1):1–48.
- Gertler, M., Huckfeldt, C., and Trigari, A. (2020). Unemployment fluctuations, match quality, and the wage cyclicality of new hires. *The Review of Economic Studies*, 87(4):1876–1914.

- Gertler, M. and Trigari, A. (2009). Unemployment fluctuations with staggered nash wage bargaining. *Journal of political Economy*, 117(1):38–86.
- Gregory, V., Menzio, G., and Wiczer, D. (2025). The alpha beta gamma of the labor market. *Journal of Monetary Economics*, 150:103695.
- Hall, R. E. (2005). Employment fluctuations with equilibrium wage stickiness. *American economic review*, 95(1):50–65.
- Hall, R. E. and Kudlyak, M. (2019). Job-finding and job-losing: A comprehensive model of heterogeneous individual labor-market dynamics. Technical report, National Bureau of Economic Research.
- Hornstein, A., Krusell, P., and Violante, G. L. (2007). Technology—policy interaction in frictional labour-markets. *The Review of Economic Studies*, 74(4):1089–1124.
- Jäger, S., Roth, C., Roussille, N., and Schoefer, B. (2024). Worker beliefs about outside options. *The Quarterly Journal of Economics*, page qjae001.

- Kennan, J. (2010). Private information, wage bargaining and employment fluctuations. *The Review of Economic Studies*, 77(2):633–664.
- Ljungqvist, L. and Sargent, T. J. (1998). The european unemployment dilemma. *Journal of political Economy*, 106(3):514–550.
- Mankiw, N. G., Reis, R., and Wolfers, J. (2003). Disagreement about inflation expectations. *NBER macroeconomics annual*, 18:209–248.
- Marimon, R. and Zilibotti, F. (1999). Unemployment vs. mismatch of talents: Reconsidering unemployment benefits. *The Economic Journal*, 109(455):266–291.
- Menzio, G. (2023). Stubborn beliefs in search equilibrium. *NBER Macroeconomics Annual*, 37(1):239–297.
- Mitman, K., Tobias, B., Alexandre, K., and Kathrin, S. (2022). Expectation and wealth heterogeneity in the macroeconomy. Technical report, working paper.
- Mitra, A. (2023). Macroeconomic sentiments and job search behavior.

- Mitra, A. (2024). Essays on labor market dynamics and information frictions. PhD thesis.
- Morales-Jiménez, C. (2022). The cyclical behavior of unemployment and wages under information frictions. *American Economic Journal: Macroeconomics*, 14(1):301–331.
- Mueller, A. I. (2017). Separations, sorting, and cyclical unemployment. *American Economic Review*, 107(7):2081–2107.
- Shimer, R. (2005). The cyclical behavior of equilibrium unemployment and vacancies. *American economic review*, 95(1):25–49.
- Shimer, R. (2010). Labor markets and business cycles.

Belief Parameters: Michigan Survey of Consumers

- Construct $\tilde{\mu}_t$, following Mankiw et al. (2003):
 - "How about people out of work during the coming 12 months do you think that there will be more unemployment than now, about the same, or less?"
 - "more unemployment," "less unemployment," "no change,", "don't know."
- Assumptions:
 - $E(\Delta \tilde{u}_{it})$ follows $N(\tilde{\mu}_t, \tilde{\sigma}_t^2)$.
 - Interpret "no change" as a small change within a threshold c.
- Back out $\tilde{\mu}_t$ and $\tilde{\sigma}_t$ from %more unemployment and %less unemployment

(13)
$$\%$$
Up = 1 - $F\left(\frac{-c - \tilde{\mu}_t}{\tilde{\sigma}_t}\right)$ $\%$ *Down* = $F\left(\frac{c - \tilde{\mu}_t}{\tilde{\sigma}_t}\right)$

- Higher $\tilde{\mu}_t$: more pessimism
- Higher $\tilde{\sigma}_t$: more dispersion in beliefs Figure 1

Firm Learning Rate

	1978m1-2020m2 (1)	1978m1-2024m3 (2)
β_1	0.093***	0.144***
	(0.019)	(0.018)
β_2	0.887***	0.849***
·	(0.018)	(0.018)
R^2	0.857	0.846

Regression about Reservation Wages

Reg Results

- Q4: What do you think is the percent chance that 12 months from now the unemployment rate in the U.S. will be higher than it is now?
- For employed Q22: Suppose you were to lose your main job this month. What do you think is the percent chance that within the following 3 months, you will find a job that you will accept, considering the pay and type of work?
- For unemployed workers Q17: What do you think is the percent chance that within the coming 12 months, you will find a job that you will accept, considering the pay and type of work?
- For unemployed workers Q18: And looking at the more immediate future, what do you think is the percent chance that within the coming 3 months, you will find a job that you will accept, considering the pay and type of work?
- RW2: Suppose someone offered you a job today in a line of work that you would consider. What is the lowest wage or salary you would accept (BEFORE taxes and other deductions) for this job?
- (14) $\log(res wage)_{it} = \alpha_0 + \alpha_1 Belief_{it} + X_{it} + \epsilon_{it}$

	p	и	f	s	θ
Panel A: Data					
Standard Deviation	0.010	0.103	0.053	0.067	0.229
Quarterly Autocorrelation	0.746	0.934	0.871	0.773	0.936
Panel E: HH Learning + Disp	ersion + Firm	Learning (γ	F = 0.2)		
Standard Deviation	0.014	0.064	0.066	0.017	0.132
Quarterly Autocorrelation	0.727	0.849	0.769	0.378	0.769
Panel F: HH Learning + Disp	ersion + Firm	Learning (γ	F = 0.3)		
Standard Deviation	0.014	0.085	0.088	0.025	0.176
Quarterly Autocorrelation	0.727	0.833	0.758	0.324	0.758
Panel G: HH Learning + Disp	ersion + Firn	n Learning (γ	F = 0.4)		
Standard Deviation	0.014	0.098	0.101	0.031	0.202
Quarterly Autocorrelation	0.727	0.818	0.731	0.272	0.731

Main results

Learning for Firms

Main

- Adaptive learning for firms: $\hat{z}_t^f = \hat{z}_{t-1}^f + \gamma^f \underbrace{(z_{t-1} \hat{z}_{t-1}^f)}_{\text{forecast error}}, \quad \gamma^f > \gamma^w \implies \text{delay}$
- Motivation evidence: firms have more accurate and less dispersed information relative to households (Mitman et al. (2022))
- Same as before, firm observe the current distribution of worker beliefs
- Firm use \hat{z}^f to update the distribution of worker beliefs in the next period

- Firms make hiring and layoff decisions based on their belief:
 - Delayed response in labor market tightness, job-finding rate and layoffs
 - Smaller belief asymmetry between workers and firms
 - \Rightarrow dampens the aggregate volatility

Firm Learning IRFs

Job-finding rate

New hires

Main

Firm Learning IRFs

Layoffs

Separations

Main

Mueller 2017: Evidence from CPS

Figure 4. Average Wage from Previous Year by Employment Status in the CPS March Supplement, 1962-2012

Persistent biases

• Layoffs are concentrated on the optimistic workers with higher wages

$$\hat{z}_{it}^{o} = (1 - \gamma^{w})\hat{z}_{t-1}^{w} + \gamma^{w}z_{t-1} + \zeta^{o} + \eta_{it} \qquad \hat{z}_{it}^{p} = (1 - \gamma^{w})\hat{z}_{t-1}^{w} + \gamma^{w}z_{t-1} + \zeta^{p} + \eta_{it}$$

$$\hat{z}_{it}^{
ho} = (\mathsf{1} - \gamma^{oldsymbol{w}})\hat{z}_{t-1}^{oldsymbol{w}} + \gamma^{oldsymbol{w}} z_{t-1} + \zeta^{
ho} + \eta_{it}$$

Layoffs

Unemployment rate