-- MARWIN

An Open Source Rapid Deployable DIY MARS Rover

Team Members

Vyshak P P (VAS15CS113)

Mohamed Sahin V A (VAS15CS068)

Joe S Kolengaden (VAS15CS060)

Contents

- Abstract
- Problem Statement
- Design
- Implementation Plan

Introduction

- Ever growing demand and developments in space exploration industry have inspired us to create **MARWIN**.
- Rapid industrialization and entry of private firms in space industry have opened up new possibilities for startups.

Abstract: project background

- The basic aim behind the project is to address the need of open source projects in space industry.
- The MARWIN rover is designed to be modular and customizable according to various explorational needs.
- The basic use of MARWIN will be to avail rapid deployable rover solutions in human exploration of other planets.

Problem statement:

- The working of space rover cannot be exhibited to the public directly and it is because of high maintenance costs.
- There is a lack of open-source projects that support space exploration and related technology.
- There is no available prototype or even design for rapid deployable modular rovers.

Design

- The design principle of MARWIN is logically divided into 3*3*3 like Rubik's Cube design approach.
- We use Rocker Bogie mechanism for traversing through rough terrain.
- We provide any of the scientific equipment in this prototype.
 - Atmospheric content Sensor: Which enables us to detect the presence of different types of Gases.
 - Life detecting robotic system: Which detects the presence of biological life form.

Architecture

Raspberry Pi 3 B+

- It acts as the brain (Motherboard).
- Buffers all data in the internal server (Database).

Live Analysis

Navigation Block

Left Wheel & Right Wheel

Sensor Cluster 1, 2 & 3

Power management block

Implementation Plan

- 1. Rocker-Bogie system with RC.
- 2. Scientific equipments (sensor clusters).
- 3. Power management system.
- 4. Autonomous navigation.
- 5. Video streaming and analysis.
- 6. Testing and analysis.
- 7. Modification and finalizing the design.

Note: All the project work will be made open source via **GitHub**.

Goal Based Navigation

Rover Actions Flowchart

Why ESP32?

SPECS/BOARD	ESP32	ESP8266	ARDUINO UNO
Number of Cores	2	1	1
Architecture	32 Bit	32 Bit	8 Bit
CPU Frequency	160 MHz	80 MHz	16 MHz
WiFi	YES	YES	NO
BLUETOOTH	YES	NO	NO
RAM	512 KB	160 KB	2 KB
FLASH	16 MB	16 MB	32 KB
GPIO PINS	36	17	14
Busses	SPI, I2C, UART, I2S, CAN	SPI, I2C, UART, I2S	SPI, I2C, UART
ADC Pins	18	1	6
DAC Pins	2	0	0

ESP32 dual core

- Each core can do different task independently.
- Sync can be achieved via Mutually Exclusive Semaphores.
- The 32bit dual core clocked at 180Mhz can outperform AtMEga328p(Arduino UNO R3) by

Sensor list

- MQ-2 Methane, Butane, LPG, smoke
- MQ-3 Alcohol, Ethanol, smoke
- MQ-4 Methane, CNG Gas
- MQ-5 Natural gas, LPG
- MQ-6 LPG, butane gas
- MQ-7 Carbon Monoxide
- MQ-8 Hydrogen Gas
- MQ-9 Carbon Monoxide, flammable gasses

- MLX90614 IR temperature sensor
- MAG3110 Magnetometer
- ITG 3200 Gyroscope
- ADXL 345 Accelorometer
- TSL 102 Luminosity sensor
- ML8511 UV detector
- BMP180 Barometric Pressure/altitude sensor
- MMA84551 Inclination sensor

Literature survey

- Terrain feature extraction and assessment.
- Terrain-Based Navigation
- Obstacle-Avoidance Navigation
- Goal-Based Navigation
- Behavior Integration

Paper: An Intelligent Terrain-Based Navigation System for Planetary Rovers

Literature survey (cont....)

- Wheel supporting system.
- Wheel defect detection
 - Wavelet-SVM
 - Deep Learning

Paper: Wheel defect detection using machine learning.

Literature survey (cont....)

- Prototype for searching signs of life in mars.
- Laser and reflectometer tech to detect traces of methane.
- Surveying and localization of data.

Paper: Robot System to Search for Signs of Life on Mars

Applications.....

Highly modified versions of the rover can be used in fields such as

- 1. Defence.
- 2. Rescue operations.
- 3. Disaster management.
- 4. Remote sensing.
- 5. Agriculture.
- 6. R&D.

And more...

