1. We prove that $\forall n \geq 2, 2^n + 3^n < 4^n$, using simple induction.

Base Case:
$$2^2 + 3^2 = 4 + 9 = 13 < 16 = 4^2$$
.

Ind. Hyp.: Assume $n \in \mathbb{N}$ and $n \ge 2$ and $2^n + 3^n < 4^n$.

Ind. Step:
$$2^{n+1} + 3^{n+1} = 2 \cdot 2^n + 3 \cdot 3^n$$

 $< 4 \cdot 2^n + 4 \cdot 3^n$
 $= 4 \cdot (2^n + 3^n)$
 $< 4 \cdot 4^n$ (by the I.H.)
 $= 4^{n+1}$

Hence, by induction, $\forall n \ge 2, 2^n + 3^n < 4^n$.

2. **Predicate:** Let P(n) be the statement: "any n squares can be dissected and rearranged to form one square".

Base Case: Any one square is already a square. Hence, P(1).

Ind. Hyp.: Assume $n \ge 1$ and P(n) (any n squares can be dissected and rearranged to form one square).

Ind. Step: Suppose $S_1, S_2, \ldots, S_n, S_{n+1}$ are n+1 squares.

Since $n+1 \ge 2$ (because $n \ge 1$) and P(2) is true (given), S_n and S_{n+1} can be dissected and rearranged to form one new square S'.

Then, $S_1, S_2, \ldots, S_{n-1}, S'$ is a collection of n squares. By the inductive hypothesis, they can be dissected and rearranged into one square.

During this dissection, S' will be cut by a finite number of straight lines, which adds a finite number of further cuts to the original squares S_n and S_{n+1} .

Hence, S_1, \ldots, S_{n+1} can be dissected and rearranged to form one square.

Since S_1, \ldots, S_{n+1} were arbitrary, P(n+1).

Conclusion: By induction, $\forall n \ge 1, P(n)$.

NOTE: There were many other correct ways to prove the induction step, e.g., we could have used the induction hypothesis first, to conclude that S_1, S_2, \ldots, S_n can be dissected and rearranged to form one square S', then P(2) to conclude that S', S_{n+1} can be dissected and rearranged to form one square.