Wiley Online Library

DOI: 10.1002/chin.201414018

Gold I 7600

14- 018

Sr₂Au₆Al₃ and Eu₂Au₆Al₃ — First Representatives of the Sr₂Au₆Zn₃ Type with Aluminum Triangles. — Sr₂Au₆Al₃ (I) and Eu₂Au₆Al₃ (II) are prepared by melting the elements in a molar ratio of 3:7.2:3 in a muffle furnace for (I) (sealed Ta tube in a silica tube, 1. 1300 K, 10 min, 2. 800 K, 8 h) and in an induction furnace for (II) (sealed Ta tube in a H₂O-cooled sample chamber, 1300 K, 5 min, cooling to room temperature with a rate of 35 K/min). The samples are characterized by powder and single crystal XRD. They crystallize with the Sr₂Au₆Zn₃-type structure in space group R₃C (Z = 6). Au atoms form diamond-related networks of slightly distorted tetrahedra in the stacking sequence of the 6R polytype. Voids left by this network are filled in an ordered manner by both Sr/Eu atoms and the rare motif of Al₃ triangles. The Al₃ triangles in Sr₂Au_{6.18}Al_{2.82} show a small degree of Al/Au mixing. — (GERKE, B.; POETTGEN*, R.; Z. Naturforsch., B: Chem. Sci. 69b (2014) 1, 121-124, http://dx.doi.org/10.5560/ZNB.2014-3300 ; Inst. Anorg. Anal. Chem., Westfael. Wilhelms-Univ., D-48149 Muenster, Germany; Eng.) — J. Schramke