CIE6020/MAT3350 Selected Topics in Information Theory

Lecture 1: Entropy

10 Janurary 2019

The Chinese University of Hong Kong, Shenzhen

Information

• Instructor: Shenghao Yang

• office: Cheng Dao 606

• email: shyang@cuhk.edu.cn

phone: 842 73827

• office hour: Thursday/Friday, 11:20 - 12:00

Information

• Instructor: Shenghao Yang

• office: Cheng Dao 606

email: shyang@cuhk.edu.cn

phone: 842 73827

• office hour: Thursday/Friday, 11:20 - 12:00

• Lecture: Thursday/Friday, 10:00 - 11:20

• Classroom: 101 Zhi Xin

Recommended Books

- Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. 2nd. John Wiley & Sons, Inc, 2006
- David J.C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003
- Raymond W. Yeung. Information Theory and Network Coding. Springer, 2008
- Abbas El Gammal and Young-Han Kim. Network Information Theory. Cambridge University Press, 2011
- F. J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-Holland, 2007
- Tom Richardson and Ruediger Urbanke. Modern Coding Theory. Cambridge University Press, 2008
- Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006

Evaluation

- CIE6020
 - Homework (30%)
 - Course Project (30%)
 - Final Exam (40%)
- MAT3350
 - Homework (25%)
 - Course Project (25%)
 - Final Exam (50%)

Project Information

- A list of papers will be provided.
- Each student involves in one and only one project.
- Bi-weakly reports, midterm presentation, final report.

Why Learn Information Theory?

- IT provides high-level guidance about the information system design:
 - WiFi, 3G, 4G, 5G,
 - Distributed storage, content distribution network
 - Wireless ad hoc/mesh/sensor networks, Internet, IoT
 - Distributed/parallel computing
- It helps us to answer some common questions
 - What is information?
 - What does "entropy" mean?
 - How small can we compress a file, and how fast can we transmit information using LTE?
- IT finds applications in all major science and engineering sectors.

Claude E. Shannon (1916-2001)

- 1948, A Mathematical Theory of Communication (full article)
- 1937, founding digital circuit design theory
- cryptography
- artificial intelligence (see a demonstration)

Shannon's Diagram of a general Communication System

Background

Probability

- Let \mathcal{X} and \mathcal{Y} be finite sets, also called *alphabets*.
- Let X and Y be discrete random variables taking values in $\mathcal X$ and $\mathcal Y$, respectively.
- Probability mass function: $p_X(x) = \Pr\{X = x\}, x \in \mathcal{X}.$
- ullet We also denote the probability distribution by p rather than p_X when the random variable referred to is clear from context.
- Joint distribution: $p(x,y) = \Pr\{X = x, Y = y\}.$
- Conditional distribution: $p(x|y) = \frac{p(x,y)}{p(y)}$.
- If $(X,Y) \sim p(x,y)$ are independent, p(x,y) = p(x)p(y) for all $x \in \mathcal{X}, \ y \in \mathcal{Y}.$

C

Entropy

What is information

- Information is about uncertainty.
- Entropy is a measure of the uncertainty of a random variable.
- Entropy arises naturally as the fundamental limits of source coding.

Entropy

Definition

The entropy H(X) of a discrete random variable X is defined by

$$H(X) = -\sum_{x} p(x) \log p(x).$$

Remark

- 1. The summation is over the support of X.
- 2. The log is to the base 2 and the unit of entropy is bit.
- 3. H(X) depends only on p(x), not on the actual values of x—entropy is independent of the alphabet \mathcal{X} . So we also write H(X) as H(p).

Other Forms

- Expectation form $H(X) = -\mathbb{E}\log(p(X))$
- Binary entropy function: $H(p) = -p \log p (1-p) \log (1-p)$

Properties

- $H(X) \ge 0$ where equality holds iff X is a deterministic.
- $H(X) \leq \log |\mathcal{X}|$ where \mathcal{X} is the alphabet of X. The equality holds iff X is uniformly distributed on \mathcal{X} .

Joint Entropy

- The entropy of a pair of random variables (X,Y) with alphabets $\mathcal X$ and $\mathcal Y$ is also defined by considering (X,Y) as a single random variable over $\mathcal X \times \mathcal Y$. For convenience, we write H(X,Y)=H((X,Y)).
- \bullet The joint entropy H(X,Y) of a pair of discrete random variable (X,Y) with a joint distribution p(x,y) is defined as

$$H(X,Y) = -\sum_{x} \sum_{y} p(x,y) \log p(x,y) = -\mathbb{E} \log p(X,Y).$$

Conditional Entropy and Mutual

Information

Conditional Entropy

 \bullet For random variables X and Y, the conditional entropy H(Y|X) is defined as

$$H(Y|X) = -\sum_{x,y} p(x,y) \log p(y|x) = -\mathbb{E} \log p(Y|X).$$

Denote

$$H(Y|X = x) = H(p_{Y|X}(\cdot|x)) = -\sum_{y} p(y|x) \log p(y|x).$$

We can write

$$H(Y|X) = \sum_{x} p(x)H(Y|X = x).$$

• In other words, the conditional entropy is the expectation of the entropy of the conditional distribution of Y given X=x.

Basic Properties

- $H(Y|X) \ge 0$ with equality iff Y is a function of X (over the support of X).
- (Chain rule) H(X,Y) = H(X) + H(Y|X).
- $H(Y|X) \leq H(Y)$ with equality iff X and Y are independent. In other words, conditioning reduces entropy.

Mutual Information

Definition

The $\it mutual information$ between random variables $\it X$ and $\it Y$ is defined as

$$I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} = \mathbb{E} \log \frac{p(X,Y)}{p(X)p(Y)}.$$

Remark

- 1. I(X;Y) is symmetrical in X and Y.
- 2. I(X;X) = H(X): observing X can get all the information of X.
- 3. $I(X;Y) \ge 0$ (Log-sum inequality).
- 4. I(X;Y) only depends on the joint distribution $p_{X,Y}$, so we also write $I(X;Y) = I(p_{X,Y})$.

Relations

• We have the following equalities:

$$I(X;Y) = H(X) - H(X|Y)$$

= $H(Y) - H(Y|X)$
= $H(X) + H(Y) - H(X,Y)$.

 If the alphabets are not finite, the above equalities hold provided that all the entropies and conditional entropies are finite.

Information Diagram of Two Random Variables

