

UNIVERSITY OF WASHINGTON DEPARTMENT OF OCEANOGRAPHY Seattle, Washington 98105

Technical Report No. 134

PHYSICAL, CHEMICAL, AND BIOLOGICAL DATA FROM THE NORTHEAST PACIFIC OCEAN: COLUMBIA RIVER EFFLUENT AREA, JANUARY - JUNE 1963

Volume II

CNAV Oshawa Cruise Oshawa-1: 12-26 March Brown Bear Cruise 320: 28 March - 10 April

Prepared by

C. M. Love

With the Data Analysis Staff

Scientific Program

Under the general direction of

Clifford A. Barnes

U.S. Atomic Energy Commission Contract No. AT(45-1)-1725 RLO-1725-33

Office of Naval Research Contracts Nonr-477(10) and Nonr- $\frac{1}{1}$ 77(37) Project NR 083 012

Reference M65-56 March 1966

RICHARD H. FLE

Chairman

FORD A. BARNES Principal Investigator

Reproduction in whole or in part is permitted for any purpose of the United States Government

TABLE OF CONTENTS

																				P	age
INTRODUCTIO	N.	•	•	•	•	•	•	•	•	•	•		٠		•	•	•	•	•	•	1
EXPLANATION	OF	DAT.	ΑТ	ABI	ES		-	•	•	•		•	•	•	•			•			1
Abbrev	iat:	i ons	an	d H	ead	ing	s U	sed	in	Da	.ta	Tab	les		•	•	•	•	•	٠	1
Codes	Used	i fo	r R	epo	rti	ng	0bs	erv	ati	ons	•	•	•	•	•	•	•	•	•	•	6
DATA TABLES					·	•								•		1.		•		•	13

v

LIST OF FIGURES

					Pag	е
1.	Station locations Cruise Oshawa-1, 12-26 March 1963		•	•	. 1	2
	Station locations Brown Bear Cruise 320, 28 March -				. 13	8

INTRODUCTION

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COL

This report constitutes Volume II of Technical Report No. 134 and contains data from Cruise Oshawa-1, 12-26 March 1963, and Brown Bear Cruise 320, 28 March - 10 April 1963. A discussion of the objectives of these cruises and the scientific program of which they were a part will be found in Volume I, together with descriptions of the observations made, the methods of collecting samples and the methods of determination of properties. A list of the personnel engaged in collecting and preparing the data and a bibliography will also be found in Volume I.

The cruise tracks and station locations for cruises Oshawa-1 and Brown Bear 320 will be found in Figures 1 and 2 of this volume.

EXPLANATION OF DATA TABLES

The information in the data tables was transcribed directly from IBM cards using an IBM 1401 Data Processing System. A blank space in the tables or headings indicates that no observation was taken. The original data and the interpolated and computed values punched on the cards are in most cases recorded or coded in accordance with the procedures used by the National Oceanographic Data Center; however, some weather information is coded with U.S. Navy Hydrographic Office codes. The codes used to describe weather and sea conditions, etc., will be found in NODC Publication M-2 (National Oceanographic Data Center, 1964) or in H.O. Publication No. 606-c (U.S. Navy Hydrographic Office, 1956) and H.O. Publication No. 607 (U.S. Navy Hydrographic Office, 1955a). (See References in Volume I.) Some changes were made in the card format, but these do not affect the arrangement of the data in this report. Abbreviations and column headings are described below and, where necessary, the NODC or Hydrographic Office numerical codes have been reproduced to aid in interpreting the data.

Abbreviations and Headings Used in Data Tables

DATE

For Observed Values the date given is Greenwich day/month/year. For Biological Data the date given is local (ship's time, +8 zone) day/month/year.

HR (Hour)

Greenwich mean time to the nearest tenth of an hour of the messenger drop on the first cast.

LAT (Latitude and LONG (Longitude) In degrees and minutes; or in degrees, minutes, and tenths of minutes on some stations.

SNDG (Depth of water)

Depth of water in meters at the station as determined by the ship's echo sounder. This depth was generally recorded immediately after the ship arrived on station.

WEA (Weather)

State of the weather. One of two possible codes was used for reporting present weather. A two-digit number in this space indicates use of WMO Code 4677, shown on page 9; one number preceded by an X indicates use of WMO Code 4501, shown on page 11. The X has no significance except to indicate which code was used.

WIND VEL DIR (Wind velocity and direction)

Wind velocity in knots. Wind direction, see code, page 8.

BAROM (Barometric pressure)

To obtain the barometric pressure in millibars, add 900 if this number is above 50; add 1000 if below 50.

TEMP DRY WET (Air temperature, dry, wet bulb)

In degrees Celsius

RELHU (Relative Humidity)

Expressed in per cent.

WTRCLR (Water color)

Expressed according to the Forel-Ule scale. See code, page 10.

SECD1 (Water transparency) Depth in meters to which a 12-inch (30.5 cm) Secchi disk could be seen on daylight stations.

SEA DIR (Sea state and direction)

State of the sea, see code, page 8. Direction from which sea was coming, see code, page 8.

SWELL DIR (Swell amount and direction)

Height and wave length of swell, see code, page 8. Direction from which swell was coming, see code, page 8.

DOM WAVE DIR

HT PER

(Dominant wave direction, height, and period)

Dominant wave characteristics (National Oceanographic Data Center, 1964) were reported on some cruises instead of sea and swell. Direction from which waves were coming, see code, page 8. Height of waves, see code, page 8. Period of waves, see code, page 11.

CLOUD TYPE __AMT __ (Cloud type and amount)

Cloud type, see code, page 7. Amount of cloud cover, see code, page 7.

VIS (Visibility)

Range of visibility. See code, page 7 .

WIRE ANGLE(S)

In degrees. Wire angles are tabulated only for those casts whose numbers appear in the "Cast" column at the left of the page, i.e., casts from which data were obtained. The first number is the wire angle for Cast 1, or the lowest numbered cast appearing, the second for Cast 2, etc. Dashes (--) indicate the wire angle was not recorded for that cast.

CST (Cast)

Cast number.

DEPTH

Depth in meters from which sample was

obtained.

TEMP (Temperature)

In degrees Celsius.

SAL (Salinity)

In parts per thousand (0/00).

SIGMA-T (σ_{+})

An expression for the density of sea water at atmospheric pressure, having the indicated temperature and salinity. To convert sigma-t values to density, divide by 1000 and add 1; thus sigma-t 22.42 = density

1.02242.

OXYGEN (Dissolved Oxygen)

ML/L

In milliliters per liter

MGA/L

In milligram-atoms per liter

AOU (Apparent oxygen utilization)

In milligram-atoms per liter

SATN (Saturation)

Per cent of oxygen saturation

PHOS (Phosphatephosphorus) In microgram-atoms per liter (µg-at/1)

NITR (Nitrate-nitrogen)

In microgram-atoms per liter (ug-at/1)

SIL (Silicate-silicon)

In microgram-atoms per liter (µg-at/1)

CHL-A (Chlorophyll a)

In milligrams per cubic meter

PRODUCTIVITY, IAB-I (Incubator productivity)

Expressed as milligrams carbon assimilated per cubic meter per hour.

Fr

PRODUCTIVITY, DECK-I
(Simulated in situ
productivity)

Expressed as milligrams carbon assimilated per cubic meter per day.

LIGHT SAT

Data from light saturation experiments. Refer to text, page 6 of Volume I.

PROD (Productivity)

Productivity of sample receiving the indicated amount of illumination. Expressed as milligrams of carbon assimilated per cubic meter per hour.

FILT (Filter)

Indicates the per cent of total incubator illumination transmitted to the sample through a neutral density filter. The total incubator illumination in units of lux is listed at the bottom of the Biological Data section.

IRRAD (Irradiance)

Per cent of surface solar radiation reaching the indicated depth.

OXY (Dissolved oxygen)

Units are indicated in the column heading. In the Biological Data section oxygen is reported in milligram-atoms per liter. In the Interpolated and Computed Values oxygen is reported in milliliters per liter.

WATER COLUMN VALUES

Integrated values over the water column from the surface to the bottom of the euphotic zone for CPL-A, LAB-I, and DECK-I. The values at 100 meters and below are not included in this integration because they are below the euphotic zone.

MESSENGER TIME

Messenger time (ship's time, +8 zone) of the productivity east.

INCOMING SOLAR
RADIATION - AM ____

Expressed in calories per square centimeter. The AM value is the integrated value of incoming radiation from sunrise to ship's noon; PM represents from ship's noon to sunset.

ZOOPLANKTON

Indicates that zooplankton samples were collected at this station. The information following indicates the type of sampler or net used, the type of tow made, the times of the tow, and the depths sampled, as follows:

(CLARKE-BUMPUS)

Clarke-Bumpus sampler

(HALF-METER NET)

Half-meter net

(MIDWATER TRAWL)

Midwater trawl

HORIZ

Horizontal tow

VERT

Vertical tow

OBL

Oblique tow

STEP

Stepped tow

TIME (from - to)

Ship's time (+8 zone) of the tow

DEPTHS

Depths sampled

Example: Station 318-6

ZOOPLANKTON (CLARKE-BUMPUS) HORIZ - TIME 0154-0204 DEPTHS 100, 70 0232-0243 30, 0

means that two horizontal tows using Clarke-Bumpus were made. The first tow began at 0154 ship's time, lasted until 0204 and sampled at 70 and 100 meters (two samplers on the wire). The second tow sampled at the surface and 30 meters and lasted from 0232 to 0243 ship's time.

LIGHT SATURATION INCUBATOR ILLU-MINATION

Total incubator illumination for light saturation experiments. Expressed in lux.

SP VOL ANOMALY (Specific volume anomaly, 10⁵8) The anomaly of specific volume at the indicated temperature, salinity, and pressure compared to a standard water of 0° C temperature and 35 $^{\circ}$ /oo salinity, at the same pressure. Tabular values multiplied by 10^{-5} will give the anomaly in units of cubic centimeters per gram.

GEOPOT ANOMALY (Geopotential anomaly, ΣΔD)

Geopotential anomaly in dynamic meters of the layer of water between the surface and the indicated depth.

POT ENERGY (Potential energy anomaly)

Potential energy anomaly in units of 10^8 ergs per square centimeter of the layer of water between the surface and the indicated depth.

VAR RATIO (Variance ratio)

The ratio of the variance of the interpolation polynomial to the variance of the measurement. The value of the variance ratio is an indication of the adequacy of the vertical spacing of the observed values upon which the interpolation is based. See page 7 of Volume I. Values close to 1 indicate optimum spacing. Values greater than 3 indicate that the vertical spacing is inadequate to represent faithfully the distribution of properties in this region of the curve. In the case of missing values, where different combinations of observed values may be used to interpolate at the same depth, the variance ratio which indicates the worst spacing has been printed. Values greater than 100 have been printed as 99.99. If the observed depth corresponds to a desired standard depth, no interpolation is made and the variance ratio is not computed.

E(T) (Temperature
 interpolation error)

Interpolation error, in degrees Celsius, of the temperature value at this depth. For a discussion of the interpolation error, see page 7 of Volume I. If the observed depth corresponds to a desired standard depth, the interpolation error will be zero.

E(S) (Salinity interpolation error)

Interpolation error, in parts per thousand, of the salinity value at this depth. See comments under E(T) above.

E(0) (Oxygen interpolation error)

Interpolation error, in milliliters per liter, of the oxygen value at this depth. See comments under E(T) above.

Indicates a questionable value. See page 8 of Volume I.

ŧ

Indicates a hand-interpolated value. See page 8 of Volume I.

Codes Used for Reporting Observations

Taken from National Oceanographic Data Center Publication M-2, "Processing Physical and Chemical Data from Oceanographic Stations," or U.S. Navy Hydrographic Office Publication No. 606-e, "Hydrographic Office Observers Manual. Bathythermograph Observations," or U.S. Navy Hydrographic Office Publication No. 607, "Instruction Manual for Oceanographic Observations."

Cloud Type (taken from NODC Publication M-2) WMO Code 0500

```
Code
 0
      Cirrus . . . . .
 1
      Cirrocumulus . . .
      Cirrostratus . . .
 3
      Altocumulus . . .
      Altostratus
 5
      Nimbostratus .
 6
      Stratocumulus
      Stratus . . .
 7
 8
      Cumulus . . .
 9
      Cumulonimbus . . . . . .
 x
      Cloud no visible owing to darkness, fog, duststorm, sandstorm,
      or other analogous phenomena
Amount of Cloud Cover (taken from NODC Publication M-2) WMO Code 2700
```

Code

```
1/10 or less, but not zero
      1 okta or less, but not zero
2
                                            2/10 - 3/10
      2 oktas
                                            4/10
      3 oktas
                                            5/10
      4 oktas
5
      5 oktas
                                            6/10
                                            7/10 - 8/10
     6 oktas
                                            9/10 or more, but not 10/10
      7 oktas or more, but not 8 oktas
                                            10/10
      8 oktas
     Sky obscured, or cloud amount
      cannot be estimated
```

Visibility (taken from NODC Publication M-2) WMO Code 4300

Code

```
0
      Less than 50 metres (less than 55 yards)
      50-200 metres
                           (approx. 55-220 yards)
2
      200-500 metres
                           (approx. 220-550 yards)
                           (approx. 550 yards-5/8 n.m.)
      500-1,000 metres
                           (approx. 5/8-1 n.m.)
      1- 2 km
      2- 4 km
                           (approx. 1-2 n.m.)
      4-10 km
                           (approx. 2-6 n.m.)
                           (approx. 6-12 n.m.)
7
      10-20 km
8
     20-50 km
                           (approx. 12-30 n.m.)
      50 km or more
                           (30 n.m. or more)
```

Direction (taken from NODC Publication M-2) Compass Direction from which Wind, Sea, or Swell is coming

Code

00 01 to 36 Calm, or no value

Each value represents 1/10 of the true direction in degrees, measured clockwise from the north, with 36 representing true north.

State of the Sea - Wind Waves (taken from NODC Publication M-2) WMO Code 3700

Description	Height (Feet)
Calm (Glassy)	0
Calm (Rippled)	0 - 1/3
Smooth (Wavelets)	1/3 - 1 2/3
Slight	1 2/3 - 4
Moderate	4 - 8
Rough	8 - 13
Very Rough	13 - 20
High	20 - 30
Very High	30 - 45
Phenomenal	over 45
	Calm (Glassy) Calm (Rippled) Smooth (Wavelets) Slight Moderate Rough Very Rough High Very High

Swell Conditions (taken from H.O. 606-c or H.O. 607)

Code	Approx. Height in Feet	Des	scription	Approx. Length in Feet
0	0	No swell		0
1 2	1 - 6	Low swell	Short or average Long	0 - 600 Above 600
3 4 5	6 - 12	Moderate	Short Average Long	0 - 300 300 - 600 Above 600
6 7 8	Greater than 12	High	Short Average Long	0 - 300 300 - 600 Above 600
9		Confused		

~
ü
I
EATH
4
1.1
•
-
7
RESEN
w
S
ш
~
*
÷
in
21
m
CODES
×
U
~
ш,
w
EATHER
=
-
-
ш
~
-
1
7
7.
U
RICA
Σ
=
=
Z
7 -7

12	12 22 32 32 42	13 23 33 43	24 34	15 25 35 35 45	16 26 36 36	27 27 37 47	28 28 38 48	29 29 39 49 49
16	11.	11.	[1]	[2]	26	57	1	59
11 11	72	73	74	27	26	77	78 100 mg 11-10 mg 12-10 mg 12	79
+;	82	83	48	885	98	97	88	68
3281	92	6	94	95	96	97	96	66

9

This code will be found in NODC Publ M-2. WMO Ccde 4677

Water Color (taken from NODC Publication M-2)

Forel-Ule scale and conversions from per cent yellow and per cent brown scales

Per Cent	Per Cent	Forel-Ule	Code
Yellow	Brown	Scale	
0 2 5 9 14 20 27 34 54 55	0 2 5 9 4 0 7 35 4 5 6 5	II III VIII VIII VIII VIII VIII VIII V	01 02 03 04 05 06 07 09 10 11 12 13 14 15 16 17 18 19 20 21

Height of Dominant Waves (taken from NODC Publication M-2) WMO Code 1555

Code	Code	If 50 is added to direction
O Less than 1/4 m (1 ft) 1 1/2 m (1 1/2 ft) 2 1 m (3 ft) 3 1 1/2 m (5 ft) 4 2 m (6 1/2 ft) 5 2 1/2 m (8 ft) 6 3 m (9 1/2 ft) 7 3 1/2 m (11 ft) 8 4 m (13 ft) 9 4 1/2 m (14 ft) x Height not determined	1 2 3 4	5 m (16 ft) 5 1/2 m (17 1/2 ft) 6 m (19 ft) 6 1/2 m (21 ft) 7 m (22 1/2 ft) 7 1/2 m (24 ft) 8 m (25 1/2 ft) 8 1/2 m (27 ft) 9 m (29 ft) 9 1/2 m (30 1/2 ft)

Period of Dominant Waves (taken from NODC Publication M-2) WMO Code 3155

Code		CODE
3 4 5 6	5 seconds or less 6 or 7 seconds 8 or 9 seconds 10 or 11 seconds 12 or 13 seconds	8 16 or 17 seconds 9 18 or 19 seconds 0 20 or 21 seconds 1 Over 21 seconds x Calm, or period not determined

Present Weather (taken from NODC Publication M-2) WMO Code 4501

Code figure

- O Clear (no cloud at any level)
- 1 Partly cloudy (scattered or broken)
- 2 Continuous layer(s) or cloud(s)
- 3 Sandstorm, duststorm, or blowing snow
- 4 Fog, thick dust or haze
- 5 Drizzle
- 6 Rain
- 7 Snow, or rain and snow mixed
- 8 Shower(s)
- 9 Thunderstorm(s)

Fig. 1. Station locations Oshawa Cruise OOI, 12-26 March 1963.

OBSERVED VALUES
STATION 001
CRUISE OS1
CNAV OSHAWA

SLAND
TATOOSH I

IND VEL R 24 SH					
A 02 W					
3 X S					
06 28 SECOI	SATN	8 9 9 9 9 9 9 9	885 726 726 726	4 9 9 9 7 1	27
S S S S S S S S S S S S S S S S S S S	AOU.	.027 .038 .038	.107 .285 .314	344 346 348 348 348	.436
-51 W	OXYGE	044000000000000000000000000000000000000	84 89 71 0	41 20 115 01 01 01	63 0
G 124	HGA	0000	0000	0000	0-10
RELHU LE(S)	7.7.	6.27 6.06 5.15 6.15	24 % % % % % % % % % % % % % % % % % % %	2.46 2.37 2.37 2.25	1.83
48-27 N ET 6-1 WIRE ANG	SIGMA-T	24,33	24.61 25.28 26.08	26.36 26.48 26.53 26.59	26.72
03-1 LAT RY 7-2 W	SAL	31.283 31.293 31.407	31.511 32.399 33.405 33.580	33.707 33.816 33.856 33.895	33.984
HR TEMP DAMT 2	TEMP	8.07 7.95 7.66	7.68 7.78 7.50	7.48 7.18 7.09 6.88	6.38
13/03/6 M 25. D TYPE	DEPTH	20000			772
DATE BAROI CLOUI	CST				

DUCTIVITY SAL SAL	CHL-A PRODUCTIVITY SAL
`	NAV USHAWA PRODUCT
	A .

SAL	31.286 31.288 31.401 1.580
PRODUCTIVITY LAB-I DECK-I	
CHL-A	00100
DEPTH	08/m

26.35 - WATER COLUMN VALUES MESSENGER TIME 1911

	RATIO	00 00 00 00 00 00	0.17	9.67
UES	E(0)	0000	0000	000
COMPUTED VAL	OXY ML/L	9955 21.85 2014	4 m m v v v v v v v v v v v v v v v v v	2.24
AND COMPU	POT ENERGY	00.00	00. 00. 00. 00. 00. 00. 00. 00. 00. 00.	3.72
OLATED	GEOPOT	0.0000000000000000000000000000000000000	0.232 0.232 0.381	0.517
INTERP	SP VOL Anomaly	######################################	289.6 208.1 179.8 160.2	148.4
CRUISE OSI STATION 001	SIGMA-T	24.40 24.40 24.48	25.08 26.25 465 465	26.59
	E(S)	0000	00.0010	0.000
	SAL	31.3083 31.3083 31.362	32.138 33.242 33.580	33.949
SHAWA	E(T)	0000	0000	0.00
CNAV OSHAWA	TEMP	8.07 7.99 7.78	7.56	6.86
	DEPTH	9000	1005 1005 150	200

*) .v Am.

DATE 13/03/63 HR 12.3 LAT 49-20 N LONG 126-33 W SNDG 73 WEA 03 WIND VEL 5 DIR 36 BAROM 22. TEMP DRY 6.7 WET 5.0 RELHU 77 WTRCLR SECDI SEA 1 DIR 32 SWELL 3 DIR 27 CLOUD TYPE AMT 2 VIS 7 WIRE ANGLE(S) 0 OBSERVED VALUES ML/L MGA/L ADU SATN CNAV OSHAWA CRUISE OSI STATION 002 SIGMA-T 24-95 24-97 25-14 SAL TEMP CST DEPTH

(e i

1 5 8.49 32.105 1 10 8.59 32.363 1 20 8.71 33.368 1 50 7.99 33.368

26.02

				·		27				
	VAR	1.32	0.75			5 DIR 10 ELL 3 DIR				
UES	E(0)					D VEL				
ED VALUES	OXY ML/L					3 WIND				
O COMPUTED	POT ENERGY	0000	0.27		D VALUES	WEA O				
ATED AND	GEOPOT Anomaly	.000 .030 .057	-119		OBS ERVED	SNDG SECDI	SATN		104W	32
INTERPOLATED	ے۔	0000	0		9	CLRS	SEN -		0.249	0-409
INI	SP VOI	301 283 200	193.		STATION 00	126-50 6 WTR	- OXYGEN		0.331 0.255 0.201	0.189
ATION 002	SIGMA-T	255.15 255.15 255.15 255.15 255.15	56.09		OSI STA	N LONG	#1.1 #1.1		3.71 2.85 2.25	2.12
OS1 STAT	E (S)	0000 0000 0000 0000	0.000		CRUISE (49-16 N 1 3.9 IRE ANGL	SIGMA-T	24.58 24.58 24.58	25.69 26.13 26.45	26.70
CRUISE 0	SAL	32-3105 32-3163 33-915 34-55	33.462		OSHAWA	4.2 LAT Y 5.6 WE VIS 7 W	SAL	32.072. 31.622 31.737	32.985 33.493 33.817 33.938	33.958
DSHAWA	E(T)	0000	00.00		CNAV	EMP OR	TEMP	8888 64.00 64.00 64.08	8.20 7.43 6.67	***
CNAV 0	TEMP	8.549 8.59 7.99	7.96			3/03/63 20 TYPE	ЕРТН	0500	002001	130
	ОЕРТН	9700	20			DATE 1 BAROM CLOUD	CST D			-

			×		
		UES	E(0)		000
		TED VAL	OXY ML/L		3.71 2.85 2.25
49	-	D COMPU	POT ENERGY		
77 PM		ATED AN			
¥		TERPOL/		woo	0-4
8 AT 10N ·	T V			2 2 2 2 2 2 2 2	10001
31.64 LAR RADI	MCUBATED	TI ON 003	SIGMA-T	24.58 24.65 25.69	26.13 26.45 26.65
S			E(S)	000	000
17.8 16.5	00 20	CRUISE C	SAL	31.637 31.737 32.985	33.493 33.817 33.938
E 0620	TEAD OF UT V		E(T)	0000	000
•	COND PRICE INS	CNAV 0	TEMP	8888 4878 6878 6878	7.88
MESSEN	NT TE SEE SEE SEE SEE SEE SEE SEE SEE SEE		DEPTH	0000	50 100
	0.42 I7.80 31.648 16.56 ENGER TIME 0620 INCOMING SOLAR RADIATION — AM 77 PM	U 0.42 IT.80 31.648 ESSENGER TIME 0620 INCOMING SOLAR RADIATION - AM 77 PM HE SECOND PRODUCTIVITY VALUE WAS INCUBATED AT 50 PERCENT LIGHT NTENSITY INSTEAD OF 100 PERCENT	CNAV OSHAWA CRUISE OSI STATION 003 INTERPOLATED AND	CNAV OSHAWA CRUISE OSI STATION OO3 INTERPOLATED AND COMPUTED VALUES EPTH TEMP E(I) SAL E(S) SIGMA-T SP VOL GEOPOT ENERGY ML/L	## SECOND PRODUCTIVITY VALUE WAS INCUBATED AT 50 PERCENT LIGHT **NTENSITY INSTEAD OF 100 PERCENT **CHAV OSHAMA CRUISE OSI STATION 003 INTERPOLATED AND COMPUTED VALUES **CHAV OSHAMA CRUISE OSI STATION 003 INTERPOLATED AND COMPUTED VALUES **PORT TEMP E(T)

VALUES	WEA 60 WIND VEL 10 DIR 15 SEA 1 DIR 15 SWELL 2 DIR 27					17
OBS ERVED	106 1298 SECDI	SATN	103 104 104	103 71 60	4448 8473	7044
004 0	CLR SN	GEN -	-0.015 -0.016 -0.020	-0.017 0.076 0.167 0.235	0.319 0.313 0.333	0°433 0°569 0°609 0°616
OSI STATION O	L DNG 127-09 RELHU 83 WIR LE(S) 10, 6, 5	HGA/L	0.595 0.596 0.600 0.600	0.597 0.499 0.415 0.349	0°264 0°275 0°260 0°2260	0.155 0.055 0.025 0.025
		エンド	6.66 6.67 6.72 6.77	6.68 5.59 4.65 3.91	2.96 2.91 2.91	1.74 0.62 0.28 0.31
CRUI SE	49-08 N ET 4 4 WIRE ANG	SI GMA-T	24.67 24.69 24.67 24.69	24.69 25.38 25.94 26.27	26.41 26.53 26.51 26.51	26.83 27.09 27.24 27.41
OSHAWA	6.5 LAT Y 5.6 W	SAL	31-724 31-756 31-736 31-762	31.766 32.655 33.242 33.609	33.797 33.886 33.868	34.018 34.185 34.422
CNAV	15 HR 1 TEMP DR	TEMP	8888 4444 67444	88. 1.82 7.82 7.82	7.59 7.22 6.88 6.68	5.44 4.63 3.382 3.382
	13/03/6 1 18 5 TYPE	DEPTH	20020	74 14 98 98	123 147 174 199	298 7497 995
	DATE BAROM CLOUD	CST			777	NOMM

	CNA	V DSHAWA	CRUI SE	081	CNAV DSHAWA CRUISE DS1 STATION 004	BIOLOGICAL DATA	ICAL	DATA	
DEPTH	CHL-A	PRODUCTIVITY LAB-I DECK-I	DECK-I		SAL				
0 9	0.65				31-731				
38	0.66				31.752 32.091				
	23.14	- WATER	WATER COLUMN VALUES	ALUES					
MESSEN	ENGER TIME	TIME 0830	INCOMI	108 91	INCOMING SOLAR RADIATION - AM 77 PM 64	. AM 77	Ā	49	

	VAR	66 *0	00.00	1.02 1.26 1.00 0.78	0.99 0.69 0.78 1.21
VALUES	E(0)	0000	00000	0000	0000
	OXY ML/L	6.66 6.72 6.77 6.64	24mm 2000 2000 2000	2.50 2.02 1.73 1.08	0.289
IND COMPUTED	POT ENER GY	0.00 0.00 0.00 0.15	0.39 0.75 1.18 2.23	3.55 5.14 6.99 11.29	16.30 21.98 28.33 35.33
POLATED A	GEOPOT	000000000000000000000000000000000000000	0.2158 0.265 0.347	0.421 0.491 0.556 0.676	0.785 0.886 0.981 1.072
INTERP	SP VOL ANDMALY	328 328.0 328.0 328.0	258.8 175.6 152.2	141.3 133.1 1125.9	102.7 96.7 91.9 87.8
CRUISE OSI STATION 004	SIGMA-T	24°67 24°67 24°69 24°12	25.41 25.96 26.29 26.59	26.67 26.76 26.84 26.98	27.10 27.17 27.22 27.22
	E(S)	0000	0000	0000	0000
	SAL	31.724 31.736 31.762	32.686 33.6261 33.629 39.893	33.959 34.020 34.104	34-187 34-236 34-278 34-316
SHAWA	E(T)	0000	0000	0000	0000
CNAV DSHAWA	TEMP	8888	8.50 7.53 7.18	6.67 6.18 5.70 5.06	4.62 4.33 3.91
	ОЕРТН	30000	50 100 150	4 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$000 \$000 \$000 \$000

	27						
	19 18						
	IR 2 D						
	ر ٥						
	MEL WEL						
	VEL S						
	19						
	Z						
	<u>۵</u>						
ES	A						
VALUE	ME SE						
	6						
BS ERVED	OI	ız					
SER	G 2 E C D	SAT	103	104 104 72	4444	980	11
08	SNDG	ı	യപഗത	972	mnn-	4000	N4N
		0	7777	1002	Samu A	W450	900
900	Z.Z.	GEN	0000	0000	0000	0000	000
	HTR	OXY /L	0000	2523	3770	235	23
NOI	27	CA	5000	20004	2222	7100	000
TAT	6 1 23,	II	0000	0000	0420	0000	000
S	SES	1	25 74 74 74	75 24 72	99 77 65		26 68 85
051	E C	ıξ	0000	0004	6000	2000	000
w	NG L	-	4740	W-44	Noon	4781	ოოო
RUIS	-57 6.	GMA	0000	4450	6669	6.7	7.3
3	48 18	SI	2222	2222	2222	2222	222
Ø	A WE		ഗ മ4ന	~mo:	L440	\$ NM 9	870
MAT	L. 6.7	AL	000	.10 .48 .21	777	298 98 26	500
08	. ×	S	2222	3226		WW 44	444
CNAV OSHAW	20 DRY 8				19		
3	E PE	ENP	8000 8000	527	86 62 54 54	.38 .96	.72 .72
	TE A	F	ထာထာထာ	∞∞∞~		P044	m00
	3/6 E	I					
	3/0 14• TYP	EP T	0268	249 2968 2968	116 139 147 171	195 239 492 739	968 452 743
	E CO	ā				- 3 .	
	AAU TRO	ST			22	2222	mmm
	೧೩೦	J					

					5	_			
					TED VALUE	OXY ML/L	6.66 6.74 6.73	5, 66 2, 11 2, 72	
DATA				4	AND COMPUTED	POT ENERGY	0000	21.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3	•
B 1 0 L 0 C 1 C A L			ις.	77 PM	NTERPOLATED AN	GEOPOT ANGMALY	000000000000000000000000000000000000000	0.152 0.222 0.3279 0.369	
900			MN VALUES	TION - AM	INTER	SP VOL ANOMALY	301.6 302.3 302.0	298.3 258.4 193.3 165.5	
STATION	SAL	32.178 32.162 32.171 32.283	WATER COLUMN	SOLAR RADIATION	STATION 005	SIGMA-T	24.95 24.97 24.95 24.95	24.99 25.41 26.10 26.41	,
E 051			3			E (S)	00000	000000000000000000000000000000000000000	
CRUI SE	TIVITY DECK-I	12.62 11.58 0.00	214.00	INCOMING	CRUISE OSI	SAL	2.105 2.133 2.095 2.107	2.186 2.670 3.432 3.789	
OSHAWA	PRODUC LAB-I			1224	AM	£	0000		
CNAV	CHL-A	000	9.86	TIME	CNAV DSHA	TEMP E	88.8 8.50 8.50 0.00 0.00	8.66 7.73 0.58 0	
	DEPTH CH	0 - m9	53	MESSENGER	ט	ОЕРТН	0000	1005	

000 0000 0000 0000 0000 0000 0000 E(0) 0000 0000 0000 0000 000 000 11000 000 0000 1400 000 00000 0000 00000 00000 3.91 11.11 11.71 11.71 11.03 23.22 37.00 53.45 71.18 0HM 84MM 84NO שפתיה פתשש שפיק 26.95 26.95 26.95 26.97 27.08 27.38 27.38 27.38 33.9908 34.9008 34.00809 34.1080 34.37083 34.3708

	25					21	
VALUES	WEA 01 WIND VEL 6 DIR 27 SEA 2 DIR 27 SWELL 2 DIR						
OBSERVED	DG 274 SECDI	SATN	1000	103 103 74	0444 0800	233 111 5	44
00 900	CLR SNI	GEN -	0.023 0.023 0.026	-0.019 -0.017 0.036	0.225 0.304 0.299 0.298	0000	0.615
ATION	128-00 83 HTR 5,15	HGA/L	0000 0000 0000 0000 0000 0000	0000 0000 0004 0004	0.286 0.286 0.286 0.286	0.00 0.059 0.069	0.028
OS1 STA	RELHU (M.A.	6.70 6.70 6.72 6.65	4004 4008	3.20	3.48 1.78 0.77 0.33	0.31
CRUI SE	48-44 N EI 44 WIRE ANG	SI GMA-T	24.97 25.00 25.00	255 255 255 255 255 255 255 255 255 255	26.43 26.43 26.43 26.43	26.58 26.78 27.01	27.37
OSHAWA	1.3 LAT Y 5.6 W	SAL	32.162 32.164 32.232 32.200	32.212 32.272 32.601 33.175	33.588 33.806 33.782 33.872	33.899 33.992 34.101 34.262	34.384
CNAV	63 HR O TEMP DR	TEMP	8.66 8.66 8.69 8.70	8.72 8.74 8.50 7.67	7.52	6.79 4.79 6.79	3.46
	14/03/ M 09. D TYPE	DEPTH	20020	30 750 100	125 145 150 169	194 291 488 735	983
	BARO	CST			-2-2	2222	77

					AL UES	E(0)	0000	0000	0.00	0000	0.00
					ED V	OXY ML/L	6.65 6.65 6.65 6.65	34.66 34.86 3.86 2.86	3.42 2.71 1.69 0.98	0000	0.32
DATA				*	ID COMPUT	POT ENERGY	000000000000000000000000000000000000000	0.38 0.83 2.36 2.55	3, 95 5.61 7.51 11.99	17.30 23.33 29.98 37.13	52.67
BIOLOGICAL				77 PM	OLATED AN	GEOPOT	000000000000000000000000000000000000000	0.220 0.220 0.280 0.380	0.453 0.525 0.593 0.718	0.834 0.941 1.040 1.133	1.302
900				NO I	INTERP	SP VOL ANOMALY	299.4 294.6 297.3 296.9	293.0 265.5 211.6 164.5	147°7 137°9 130°0 118°4	109.9 102.0 95.1 88.9	78.1
STATION (SAL	32.122 32.120 32.158 32.158	S	LAR RADIAT	ATION 006	SIGMA-T	25.02 25.02 25.00 25.00	25.05 25.34 25.91 26.42	26.40 26.71 26.79 26.92	27.02 27.11 27.19 27.26	27.38
SE 051	-		VALUE	NG SO	OS1 STA	E(S)	0000	0000	000000000000000000000000000000000000000	00000	0000
CRUI	UCTIVITY DECK-		ER COLUMN	INCOMI	CRUISE 09	SAL	32.162 32.232 32.200 32.212	32.272 32.601 33.175 33.782	33.905 33.955 33.998 34.058	34.109 34.175 34.240	34.391
CNAV OSHAWA	PRODU LAB-I		- WATE	E 1800	OSHAWA	E(T)	0000	0000	0000	0000	0.00
S	CHL-A	0.66	36.95	GER TIM	CNAVO	TEMP	8.67 8.70 8.70	8.74 1.67 1.47	55.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	444m -41m 40mp	3.42
	DEPTH	07m9		MESSENGE		DEPTH	3700	50 1000 150	4 w 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8465 0000 0000	1000

	2					6.3	
VALUES	WEA 02 WIND VEL 20 DIR 30 SEA 3 DIR 28 SWELL 1 DIR 29						
OBSERVED V	DG 2651 SECDI	SATN	106	1004 1005 625 62	ንያ ማይያ የ	32 5	12
_	CLR SN	EN -	-0-033	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.317 0.358 0.381 0.395	0.404 0.483 0.598	0.602
TATION 00	128-00 3 WTR	- OXYGI	. 109.0	0.606 0.603 0.502 0.358	0.264 0.225 0.203 0.190	0.188 0.126 0.032 0.028	0.052
OSI STA	RELHU8 E(S) 20	ML/L	6.80	6.79 6.75 6.74 4.01	2.96 2.52 2.27 2.13	2.16 1.41 0.36 0.31	0.58
CRUISE O	48-14 N ET 4.4 H	SIGMA-T	25.22 25.15 25.16 25.16	25.23 25.17 25.16 26.01	26.32 26.41 26.47 26.50	26-90 27-17	27.57
OSHAWA	.8 LAT VIS-7 W	SAL	32.387 32.391 32.402 32.396	32.399 32.406 33.406 33.374	33.711 33.800 33.858 33.880	33.974 34.096 34.438	34.548 34.545
CNAV	3 HR 06 TEMP DRY	TEMP	8.64 8.64 8.68	8.64 8.64 8.08 8.08	7.76 7.60 7.53	6.91 5.66 4.25	2.32
	14/03/6 07 TYPE	DEPTH	0000	24 24 24 24 24	118 163 185	279 468 705 943•	1420•
	DATE BAROM CLOUD	CST			27	2222	22

	VAR	1.06 1.38 1.03	0.86 0.78 0.73	1.29 0.95 0.75	0.87 0.60 3.12	15.46 31.35 22.26	
UES	E(0)	000	0000	0000	0.00		
ED VALUES	OXY ML/L	6.80 6.19 6.19	6,000 2,000 1,000 1,000	2.11.22.11.02.01.02.01.00.00.00.00.00.00.00.00.00.00.00.00.	1.26 0.38 0.38 0.35	0.35# 0.45# 0.70#	
ND COMPUT	POT ENER GY	0.0000000000000000000000000000000000000		3.88 7.75 12.65	18° 35 24° 76 31° 64 38° 85	53.78 69.12 93.61	
POLATED A	GEOPOT Anomaly	00.00 0.00 0.00 0.00 0.00 0.00 0.00	0.143 0.212 0.271 0.360	0°440 0°516 0°590 0°726	0.851 0.965 1.068 1.162	1.325 1.462 1.639	AT I ON.
INTER	SP VOL ANDMALY	282.2 281.3 282.5 282.5	2840 269.6 191.5 162.6	155.0 148.4 141.8 129.6	1118-0 107-2 97:3 88:2	72.9 61.8 54.7	INTERPOL
TI ON 007	SIGMA-T	25.15 25.16 25.15 16.15	25.30 26.12 26.12	26.52 26.60 26.68 26.81	26°94 27°15 27°27	27-42 27-54 27-62	POSES OF
SI STA	E (S)	0000	0.038 0.038 0.014	0000	0000	0.004	FOR PUR
CRUISE 0	SAL	32.387 32.402 32.396 32.400	32.37 32.563 33.563 825 825	33.8896 33.9946 34.0990	34.116 34.176 34.232 34.285	34.380 34.455 34.528	ASSUMED
SHAWA	E(T)	00000	0000	00000	0000	0.09	RATURE
CNAV OSHAWA	TEMP	8.64 8.64 8.68 8.67	8.66 7.98 7.57	7.34 7.07 6.78 6.12	3.78 3.78 3.78	2.87 2.26 1.98	TEMPE
J	DEPTH	3000	50 100 150	4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500 700 800	1200 1500 1500	SURFACE

	WIND VEL 30 DIR 27 DIR 28 SWELL 3 DIR						
VALUES	WEA 01 SEA 3						
OBS ERVED	DG 2560 SECDI	SATA	000	110 100 60 65 65	6476	32 14 6	11
0 800	CLR SN	YGEN -	-0.023 -0.023 -0.025	0.019	0.216 0.297 0.278 0.299	0.405 0.529 0.596 0.611	0.608
ATION	128-32 83 WTR 6,30,43	HGA/L	0.599 0.596 0.596 0.598	0.598 0.591 0.495	0.362 0.284 0.303 0.284	0.193 0.088 0.036	0.046
1 ST	RELHU LE(S) 2	H.1.	6.71 6.67 6.69	6.50 5.42 5.42 5.42 5.43	300 300 100 100 100 100 100 100 100 100	2.16 0.99 0.40 32	0.52
CRUISE OS	48-14 N ET 44 WIRE ANG	SIGMA-T	25.18 25.13 25.13	25.18 25.12 25.13 25.57	26.03 26.32 26.27 26.46	26.70 26.94 27.16 27.33	27.53
OSHAWA	1.2 LAT Y 5.6 W	SAL	32.450 32.451 32.385 38.388	32.448 32.381 32.388 32.888	33.406 33.406 33.653 33.858	33.972 34.071 34.215 34.356	34.494
CNAV	63 HR 1 TEMP DR 8 AMT 3	TEMP	8.78 8.79 8.76	8888 8.86 1.80 8.40 8.40	8-12 7-75 7-80 7-58	69 69 69 69	2.75
	14/03/ 07 TYPE	ОЕРТН	0408	7570 0000	1122	265 442 667 891	1345
	DATE BARUM CLOUD	CST				2222	26

	CNAV	OSHAWA	CNAV DSHAWA CRUISE DSI STATION GOB	51 ST	ATION C		BIDLUGICAL DATA	DATA
DEPTH	DEPTH CHL-A PRODUCTIVITY LAB-I DECK-I	PRODUCT I	1VI TY DECK-I		SAL			
00	0 0.42		4-76		32.506			
MESSEN	MESSENGER TIME 0615	5190	INCOMING	SOLAR	RADIAT	10N - AM	INCOMING SOLAR RADIATION - AM 152 PM 214	512
THE SE	THE SECOND PRODUCTIVITY VALUE WAS INCUBATED AT 50 PERCENT LICHTINTENSITY INSTEAD OF 100 PERCENT	UCTIVITY AD DF 100	VALUE WAS	S INCU	BATED A	1 50 PER	SENT LICH	p

-	CNAV OSHAWA	SHAWA	CRUISE	STA STA	TICH SOA	INTERP	OLATEC A	40 CO 4PUT	55 VAL	UES	
DEPTH	TEMP	E (1 §	SAL	E S	2 E G MA - T	SPUCLANOMALT	GEOPOT ANOMALY	POTENER	NC NC	E(0)	RATIC
3500 3000	8.79 8.79 8.76 8.76	000 000 000	32,390 32,380 32,402 32,443	00000	00000 00000 00000 00000	2000 0000 0000 0000 0000	00000 00000 00000 00000	3620 0020 0020 0020		0000	000
50 100 100 100	8 - 8 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	0000	32.50 32.50 33.50 33.70 39.70 39.70 39.70 39.70	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ではない。 もなれ、ま ・*(ないま) の私のの	60000 60000 60000 60000	0000 2000 3000 3000 3000	00 mm	0044 01:0 04:20 0=0-	0000	0000
7700 0000 0000	7.326.71	0000 4600 4640	30000000000000000000000000000000000000	00000 00000 00000 00000	26.53 26.53 26.53 26.36	233. 233. 233. 233. 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	0000 4000 4000 1000 1000 1000 1000	40.40 40.40 90.00 90.00	2,95 2,37 1,86 1,19	0000	0000
8 9 9 9 9 9 9 9 9 9	44. 34.4 36. 36. 36.	00000	34.107 34.171 34.237 34.302	0,00010	27.01	111.3 102.4 94.9 68.2	0.000 1.005 1.005 1.005 1.005	17.69 23.77 30.42 37.54	0000	0000	0000
1000	293 404 404	00,00	34°402 34°465 34°520	0.000	27.39 27.48 27.51	77.6 69.5 61.1	1.313 1.462 1.661	52.98 69.77 97.22	0.33	000	0.92
SURFACE	TEMPERA	RATURE	ASSUMED	FOR PUR	POSES OF	INTERPOLA	AT 10N°				

	6					27	
	WIND VEL 30 DIR 32 DIR 32 SWELL 4 DIR 2						
VALUES	WEA 02 SEA 4						
OBS ERVED	10G 2834 SECDI	SATN	1006	105 104 93	6523 655 655 655 655 655 655 655 655 655 65	40 4104	٥٢
0 600	W SN	GEN -	-0.034 -0.021 -0.023	-0.027 -0.024 -0.023	0.162 0.223 0.204 0.225	0.341 0.498 0.602 0.615	0.601
STATION 0	129-18 72 WTR 0.25,43	- OXY	000000000000000000000000000000000000000	0000	0.430 0.368 0.368	0.270 0.131 0.033	0.056
0S1 ST	RELHU 7 E(S) 10	エバー	6.76 6.84 6.70 6.72	6.76 6.72 6.12 6.10	4.82 4.12 4.33	3.02 1.47 0.37 0.31	0.63
CRUI SE	48-14 N EI 5-6 WIRE ANGL	SI GMA-T	25.22 25.22 25.27	25.21 25.21 25.21 25.53	26.10 26.36 26.41 26.53	26.76 26.97 27.21 27.35	27.55
OSHAWA	8.8 LAT Y 7.8 W	SAL	32. 432. 32. 434 32. 436	32.427 32.435 32.429 32.722	33.31.2 33.644 33.702 33.829	33.912 34.004 34.364 34.362	34.505
CNAV	63 HR I TEMP DR	TEMP	888 444 445	88. 7.43 8.45 886	7.06 7.08 7.07 6.88	34.46 34.00 00032	2.58
	14/03/6 08 TYPE	DEP ТН	25000	64 48 64 64 64 64	123 154 174	267 454 930 930	1416
	DATE BAROM CLOUD	CST			7177	<i>~~~</i>	ww

BIOLOGICAL DATA	PH 214
BIOLC	1 152
CNAV OSHAWA CRUISE OSI STATION 009 -A PRODUCTIVITY SAL	2.70 4.64 9.70 9.10 90.84 - WATER COLUMN VALUES INCOMING SOLAR RADIATION - AM 152
CRUISE OS1 TIVITY DECK-I	2.70 4.64 0.70 0.10 90.84 - W
V OSHAWA CRUISE PRODUCTIVITY LAB-I DECK-I	1049
CHL-A	0-39 0-36 0-37 0-38 19-98 SER TIME 1049
DEPTH	0 0 8 27 54 0 54 0 19 Messenger

	RATIO	66*0	0.95	1000 0.989 739 75	0.00 0.68 0.958	00.09	
UES	E(0)	0000	0000	0000	0000	000	
TED VALUES	OXY ML/L	6.76 6.70 6.72 6.72	6-73 6-00 4-24	3.24	1.18 0.67 0.24 0.27	0.32	
AND COMPUT	POT ENERGY	00000	0.36 0.81 1.39 2.67	4.08 7.70 7.57 12.00	17.27 23.23 29.72 36.70	52.00 68.81 96.11	
ERPOLATED A	GEOPOT	0000	0.139 0.209 0.275 0.378	0.528	0.832 0.938 1.036	1.293	ATION.
INTER	SP VOL ANGMALY	275.8 2715.9 271.3	277.3 277.3 243.6 167.9	145.7 134.5 127.9 117.4	109.3 100.3 92.5 86.7	77.5 69.7 60.4	INTERPOL
STATION 009	SICMA-T	25.22 25.22 25.22 12.22	25.21 25.22 25.57 26.38	26.62 26.74 26.81 26.93	27-02 27-12 27-21 27-28	27.39	POSES OF
OSI STAT	E (S)	0000 0000 0000	000000000000000000000000000000000000000	0.020 0.016 0.005 0.007	0.000	0.001	FOR PUR
CRUISE O	SAL	32.435 32.435 32.436 32.426	32.432 32.436 32.769 33.665	33.983 33.923 33.929	34.152 34.152 34.250 34.308	34.389 34.453 34.522	ASSUMED
OSHAWA	E(T)	000	0000	0000	0000	000	RATURE
CNAV 0	TEMP	8888 4444 84744 9474	8.44 7.80 7.080	4.5.5.6.5.6.5.6.5.6.1.1.0.6.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0	4-30 3-10 3-74	2.96	TEMPERA
_	ОЕРТН	3000	50 100 150	0000 0000 0000	8 0000 8 4 8 9 9 9	12000 15000 15000	SURFACE

JES	A 62 WIND VEL 22 DIR 28 EA 4 DIR 28 SWELL 4 DIR						
VALUE	T S						
OBS ERVED	VDG SECDI	SATN	104	104 104 105 105	104 70 70 62	14 10 4	148
010	W SN	GEN -	-0.021 -0.021	0.021 0.025 0.025	-0.024 0.051 0.180 0.226	0.322 0.513 0.600 0.616	0.605
STATION 0	130-00 99 HTR 0,0	F GXY	000	0000	0.596 0.542 0.414 0.366	0.290 0.038 0.029	0.053
OS1 ST	RELHU 99	71.1	6.66 6.66 6.66	6.63 6.68 6.68 6.70	6.67 6.07 4.64 4.10	3.55 0.43 0.32	0.59
CRUISE	47-49 N EI 5.6 WIRE ANGL	SIGMA-T	25-19	25.25 25.19 25.19 25.19	25.19 26.65 26.45 26.55	26.77 27.24 27.39	27.55
OSHAWA	2.0 LAT	SAL	32.469 32.466 32.466	32.543 32.473 32.469 32.469	32.465 32.757 33.702 33.861	33.910 34.021 34.257 34.399	34.496
CNAV	63 HR I TEMP DR	TEMP	8.82 8.82 8.81	8888 8888 8448 8446	8.81 7.16 6.80 6.92	24.15 40.15 40.15 70.15	2.53
	15/03/6 M 08. D TYPE	ОЕРТН	20020	100200	125 150 171 194	291 737 984	1482 1698
	DATE BARON CLOU	CST				2222	77

					TED VAL	OXY ML/L	99999 99999 99999	6.68 6.70 6.70	3.67 3.15 2.15	1.27
L DATA			150	I	AND COMPUT	POT ENERGY	00.00	0.3 0.3 1.45 0.45	4.79 6.45 8.36 12.84	18.12
BIOLOGICAL			M 149 PM	RCENT LIG	NTERPOLATED A	GEOPOT	0.000 0.029 0.057	0.140 0.210 0.281 0.411	0.509 0.581 0.649 0.774	0.9889
010			0N - A	AT 50 PEF	INTER	SP VOL ANOMALY	278.3 279.1 276.2 273.8	279.6 280.3 280.6 236.5	149.9 137.6 130.6	109.1
STATION	SAL	32.464	SOLAR RADIATI	I NC UB ATED	AT10N 010	SIGMA-T	25.19 25.19 25.22 25.22	25.19 25.19 25.19 5.65	26.57 26.71 26.92	27-02
SE 051	- 7	40	NCOMING SO	CENTS	OS1 STA	E(S)	0000	0000	0000	000.00
WA CRUISE	UCTIVITY DECK-	3.5	INCO	ITY VALU	CRUISE O	SAL	32.469 32.466 32.506 32.543	32.469 32.469 32.469 32.757	33.879 33.950 33.914 33.966	34-031
CNAV OSHAWA	PROD LAB-1		E 0635	ODUCTIV TEAD OF	SHAWA	E(T)	000	0000	0000	000
S	CHL-A	0.17	GER TIM	COND PR	CNAV 0	TEMP	8.81 8.82 8.81	8.84 8.84 7.16	65.4 64.4 78.7 78.7	3.91
	DEPTH	00	MESSENGER	THE SEINTENSE		DEPTH	9700	50 100 150	2000 3000 4000 7000	000 000 000

VAR 1.32 1-1 E(0) 30.57 52.63 69.35 97.26 1.092 1.347 FOR PURPOSES OF INTERPOLATION. 76.3 70.0 62.7 92.5 86.1 27.47 0.00 0-001 0-011 0-001 34.404 34.221 ASSUMED **TEMPERATURE** 000 000 3-34 3.67 SURFACE 1000 1200 1500 \$00 \$000 800 DE

	28					<i></i>	
	Oα						
	ر 10						
	10						
	28 ELL						
	EL SE						
	30 <						
	Z						
	31						
S	07						
VALUE	E A SEA						
	3						
OBS ERVED		12					
ER	COI	A	4000	4444	98 80 71	51 19 8 6	11
088	NOS SE	100					
	S	1 20	24	2203	19	900	13
_	32	NA	000	0000	0000	0000	0.6
0	00 TRC	XYG	00-0	0200	መመ ው ፋ	0.000	210
STATION	01 °	P _O	NNNN BOD	$\omega \omega \omega \omega$	4495	31000	040
ATI	13 99 7,4	II	0000	0000	0000	0000	00
ST	ONG FC	17	59 59 59	590	2440	404m	44
-	-T-N	Ę	0000	0000	9004	m-00	00
051	N GLE	_					
SE	7.8 A.A.	H H	-19 -17	.121 .23	24.	. 10 . 15 . 32	-57
CRUIS	7 = A	16	222	2222	2222	26 27 27 27	27.
ی	WE T	S					
MA	¥.~		506 540 580 588	577 555 602 516	613 342 669	900 029 172 290	544
SHI	27	SAL	2222	2000	Nmmm	m444	**
CNAV OSHAWA	20 20 20 20		MMMM	MMMM	MMMM	WWWW	MM
YN.	ZO+	d H	17	2002 2002	\$222 \$223	344	33
0	MA	TE	000	0000	8999	94 WW	2.6
	/63 6						
	03 PE	H	0490	2020	-moo	5000	25
	15/ 197	DEP	-	N400	1000	474 693 863 863	131
	A E O O O O O O	-					
	BAN CL	CS			777	2222	77

	CNAV	OSHAWA	CNAV OSHAWA CRUISE OSI STATION GAL	181 81	ATION		BIOLOGICAL DATA	AL.	DATA
DEPTH	DEPTH CHL-A	PRODUCTIVITY LAB-I DECK-I	IVITY DECK-1		SAL				
2780	~~~~ ~~~~ ~~~~		00078		32.501 32.503 32.593 32.599				
	11.68		69.12	- WATE	R COLL	- WATER COLUMN VALUES			
MESSEN	MESSENGER TIME 1216	9171	INCOMEN	SOLAR	RADIA	INCOMING SOLAR RADIATION - AM 149 PM 150	149 Pi	I	20
SURFAC	SURFACE TEMPERATURE ASSUMED FOR PURPOSES OF INTERPOLATION.	TURE ASS	UMED FOR	PURPOS	ES OF	INTERPOLA	TION		

	VAR	0.93 0.93 0.93	00.00	1.000 0.94 0.86 0.86 85	00.71	0.91
ues	E(0)	0000	0000	0000	0000	000
TED VAL	OXY MC/L	666 600 600 600 600 600	0000 0000 0000 0000	3.94 2.68 1.68	0000	0.39
AND COMPUT	POT ENERGY	00.00	0.36 0.881 1.44 2.82	5.83 7.71 12.08	17.22 23.08 29.58 36.62	51.77 67.78 93.32
POLATED	GEOPOT	0.0000000000000000000000000000000000000	0.141 0.211 0.281 0.394	0.472 0.542 0.609 0.732	0.843 0.947 1.045 1.136	1.301
INTER	SP VOL ANOMALY	281.6 280.1 276.2 277.9	278, 4 279, 6 279, 4 168, 2	141°4 137.0 128.1	106.2 999.4 93.5	655 655 660 660 660
STATION 011	SIGMA-T	25.16 25.22 25.22	25.20 25.20 25.20 76.37	26.46 26.71 26.81 26.98	21.13 21.20 27.20	27.52
S1	E(S)	0000	000000000000000000000000000000000000000	0.075 0.002 0.0016	0000	0000
CRUISE 0	SAL	32.506 32.545 32.588	32.568 32.568 32.528 33.507	33.905 33.966 34.026	34.085 34.149 34.205	34.379
SHAWA	E(T)	000	0000	0000	0000	000
CNAV OSHAWA	TEMP	9.28 9.28 9.22 9.24	9.23 9.29 9.05 6.19	45.54 45.54 75.58 75.58	4.26 3.77 3.57	209-11
	ОЕРТН	9000	50 100 150	7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m	8765 0000 0000	1000 1200 1500

-

	٦	•
٠		-

	80					.•5
VALUES	WEA 02 WIND VEL 25 DIR 31 SEA 3 DIR 34 SWELL 7 DIR 20					
OBSERVED V	DG SECDI	SATN	103 104 103	1003 1003 93	8C-9S CC-9S	24 5
	RCLR SNI	YGEN -	-0.019 -0.023 -0.017	-0.016 -0.017 -0.021 0.038	0.076 0.138 0.209 0.246	0.353
STATION 012	130-00 99 WIR 5,12,18	- OXY	0000	0000 0000 0000 0000 0000 0000 0000 0000 0000	0.520 0.458 0.381 0.347	0.257 0.086 0.033
0S1 ST/	RELHU E(S) 1	H./L	66.55 66.55 66.55	0000 0000 0000 0000	5.82 4.27 3.88	2.88 0.96 0.37
CRUISE C	46-06 N ET 5.6 WIRE ANGL	SIGMA-T	25.15 25.17 25.14	25.120 25.120 25.130	26.25 26.45 26.45 54.55	26.77 27.22 27.22
OSHAWA	1.4 LAT	SAL	32.543 32.546 32.584 32.584	32.617 32.546 32.581 32.785	33.147 33.450 33.739 33.850	33.922 34.062 34.248
CNAV	53 HR 03 TEMP DRY AMT 8	TEMP	9.45	9.4.0 9.4.0 0.4.8 0.02	6.84 6.75 6.90 6.90	5.66 4.61 3.87
	16/03/6 196 TYPE	ОЕРТН	0406	6478 6478 6478	122 147 168 191	288 482 725
	DATE BARON CLOUD	CST			NNMM	๓๓๓

BIOLOGICAL DATA CNAV OSHAWA CRUISE OSI STATION 012

DEPTH CHL-A PRODUCTIVITY LAB-I DECK-I

10.56 - MATER COLUMN VALUES

INCOMING SOLAR RADIATION - AM 149 PM 150 MESSENGER TIME 1927

	CNAVO	DSHAWA	CRUISE	OSI STA	STATION 012	INTER	POLATED A	AND COMPUT	ED VALUES	UES	
ЭЕРТН	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	POT ENERGY	OXY ML/L	E(0)	VAR
30000	9.50	000	32.543 32.584 32.586 32.616	0000	25.14 25.17 25.15	283.0 280.6 282.8 278.8	0.000 0.029 0.057 0.086	0.00	666 664 6644 6968	0000	0.88 0.97
100 100 150	9.49	0000	32.543 32.595 32.813 33.496	0000	255.21 255.20 26.20 26.20	284.1 278.5 241.6 176.6	0.2142	0.36 0.82 1.40 2.71	66.00 00,00 0000	0000	0000
200 250 300 400	65.180 6.180 6.56	0000	33.870 33.932 33.931 34.003	0.000	26.71 26.71 26.78 26.92	149.5 137.7 130.7	0.466 0.539 0.606 0.732	5.84 7.75 12.24	3.76 3.21 2.74 1.69	0000	1.17 1.22 0.97 0.76
\$00 \$000 700	4.37	0000	34.075 34.149 34.228	000	27.01 27.10 27.19	110.4	0.848 0.956 1.055	17.57 23.65 30.31	0.82	0.05	15.11 16.84 27.11
SURFACE	E TEMPERA	RATURE	ASSUMED	FOR PUR	POSES OF	INTERPOLA	1110N.				

	WIND VEL 37 DIR 34 DIR 34 SWELL 7 DIR 30				
	DIR				
VALUES	WEA 90 SEA 3				
OBSERVED VALUES	SNDG SECOI	NAN	60000 0000 	5583	0, 0 0, 5
0		ا ق	00000 00000 00000	00000 00000 00000	9000
013	RC LR	Ş		0020	ಶರ
NOIL	30-0	40	0.575	2000 2000	0.533 0.504
DSI STATION 013	DNG 130-00 W HU 93 WTRCLR				64
150	REI LE (S	12	3000 3000 4000	6666 6666 66666 66666	ישונה
CRUI SE	45-14 T 5-6 IRE AN	SI GMA-I	255.2	25.12	25.51 25.32
	LA TE		57.5 57.2 59.2 59.6	1, r.v.v. 1, v.v.v. 2, v.v.v.	756 067
CNAV OSHAWA	1.2 L	SAL	3222	3335	32.
CNAV	EMP DR	TEMP	9,75	96.79	8.20
	16/03/63 000 TYPE	ОЕРТН	00000	0.174 0.174 0.174	117
	DATE BAROM CLOUD	CST		-41 rai pai	

	CNAV USHAMA	STARE	CKOISE OSI		STO NOTITION	X I I Z	PULATED	AND COMPUT	Et: VAL	UES	
0EPIH	TEMP	E(1)	SAL	. S 1 3	SICHA-T	SP 00 AND	GEOPSE ANOREL	POI ENERGY	OXY Mr/L	E(0)	VAR
0000	0000 	0000	32.55 32.55 32.55 32.55 34.55 34.55	0000	60 000 60 000 60 000 60 000 60 000	00000 00000 4444 00000	4000 0000 0000 0000 0000	0000 0000 0000 0000 0000	1.000 4400 4000	0000	11.72
0.00	000 1:84 1:87	6 8 8	200	0000	25,12	483	217				0000

BIOLOGICAL DATA	3			PH 241	LIGHT
81010	130-0			M 200	RCENT
A	LONG			4 - NO	50 PE
TION 13	N 07	SAL	32.531	RADIATI	ATED AT
SI STA	LAT 44			SOLAR	S INCUB
CNAV OSHAWA CRUISE OSI STATION 13A	DATE 16/03/63 LAT 44-40 N LONG 130-02 W	FIVITY DECK-I	3.84	INCOMING SOLAR RADIATION - AM 200 PM 241	THE SECOND PRODUCTIVITY VALUE WAS INCUBATED AT 50 PERCENT LIGHT INTENSITY INSTEAD OF 100 PERCENT
OSHAWA	DATE	PRODUCTIVITY LAB-I DECK-I		0645	AD OF 10
CNA			.25	MESSENGER TIME 0645	PROD
		<u>=</u>	0.25	NGER	ECON(S I TY
		DEPTH CHL-A	00	MESSE	THE

	30					37	
VALUES	EA 02 WIND VEL 25 DIR 32 SEA 4 DIR 32 SWELL 4 DIR						
	3						
OBSERVED	DG 2195 SECDI	SATN	105 103 103	103 103 103	87 78 72	97 97 97	10
•	CLR SN	GEN -	0.0027	00.0017	0.073 0.132 0.163	0.322 0.517 0.599 0.621	0.589
STATION OF	130-00 99 WTR 3.24	HGA/L	0.574 0.577 0.577	0.578 0.580 0.575 0.575	0.508 0.455 0.393	0.279 0.106 0.037 0.023	0.068
051 ST/	RELHU 9	#1.	666 644 666 666 666	64.4 64.4 64.4 64.4	5.09 4.71 4.00	3.12 1.19 0.41 0.26	0.76
CRUISE 0	44-14 N ITE 8.9	SI GMA-T	25.08 25.07 25.13 25.13	25.14 25.13 25.13	25.68 26.14 26.40	26.69 26.95 27.21 27.40	27.57
CNAV OSHAWA	7.8 LAT V 8.9 WE	SAL	32.556 32.552 32.554 32.574	32.567 32.556 32.556 32.556	32.938 33.428 33.765	33.920 34.242 34.410	34.527 34.556
CNAV	63 HR I TEMP DR	TEMP	9999	9.59 9.59 9.52	7.54.7	4.5 3.95 3.95	2.58
	16/03/ 04 TYPE	ОЕРТН	0506	640 640 640	122 146 165 188	283 478 722 968	1462
	DATE BAROM CLOUD	CST				2000	~~

				AL UES	E(0)	0000	0000	0000	0000	000
				ED V	OXY ML/L	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	0000 4400 0000	46.22 .65.2 .895.2 .815.2	1.07 0.65 0.33	0.27 0.41 0.82
L DATA			241	ND COMPUT	POT ENERGY	0.00	00,37	4.40 6.07 8.03 12.73	18-24-42 31-11 38-18	53.21 69.44 96.37
B 10 L 0G 1 CAL		4.0	H 200 PH	POLATED A	GEOPOT ANOMALY	0.000 0.029 0.058	0.216 0.287 0.287	0.488 0.561 0.630 0.762	0.881 0.991 1.091 1.183	1.347 1.491 1.686
9 71 0		UMN VALUES	4 - NO 11	INTER	SP VOL ANOMALY	288.7 284.5 283.1 283.9	284.8 286.3 279.1 184.8	137.8	113.7 103.7 94.8 87.0	74.8 67.3 60.7
STATION (32.561 32.569 32.569 32.569	ATER COLUI	AR RADIA	TION 014	SIGMA-T	255.13 255.13 255.13 25.15	25.13 25.12 25.20 26.20	26.58 26.71 26.72	26.98 27.19 27.19	27.42 27.50 27.57
SE 051		3	OMING SOL	SI STA	E(S)	0000	0000	0.0000	0000	0.0000
WA CRUI	1200	103.1	INCO	CRUISE O	SAL	32.556 32.554 32.574 32.566	32.556 32.556 32.550 33.554	33.008 33.008 33.008 932	34.047 34.133 34.222 34.302	34-423 34-489 34-530
CNAV OSHA	b		E 0948	OSHAWA	E(T)	0000	0000	0000	0000	000
CHL-A	0000 0000	10.85	ENGER TIM	CNAV 0	TEMP	9.90 9.60 9.60 9.61	000r 0004 0000	7.47 6.85 5.20 5.24	4.68 4.27 4.00 3.75	3.34
DEPTH	2570		MESSEN		DEPTH	9000	50 100 150	200 200 400 000	8 9 9 9 9 9 9 9	1000 1200 1500

	7						41		
S	02 WIND VEL 32 DIR 36								
VALUE	WEA								
OBSERVED	106 3255 SECDI	SATR	103 103 103 103	103 100 63	52 50	27	1740	2327	31
51	CLR SN	GEN -	-0.027 -0.017 -0.024	-0.017 0.003 0.129 0.213	0.276	0.439	0.553 0.602 0.615 0.593	0.551 0.529 0.516 0.507	0.463
ATTON O	130-00 72 WTR 5,10,10	MGA/L	00.55 00.55	00.55 0.55 0.343 0.353 0.353	0.299	0.161	0.065 0.027 0.026 0.064	0.113 0.139 0.154 0.163	0.210
OS1 ST	RELHU LE(S)	H./-	6.29 6.37 6.29	6.29 6.08 4.84 6.01	3.35	1.80	0.13	1.26 1.56 1.72 1.83	2.35
CRUISE	43-12 N ET 5-6 WIRE ANG	SIGMA-T	25.07 25.07 25.10 25.07	25.09 25.11 25.69 26.15	26.35	26.76	27.01 27.23 27.36 27.58	27.68 27.69 27.72	27,75
OSHAWA	1.5 LAT Y 7.8 W	SAL	32.742 32.747 32.790 32.748	32.768 32.785 33.223 33.644	23.823 33.903	34.023	34.140 34.316 34.535	34.624 34.614 34.640	34.657
CNAV	63 HR 01 TEMP DR	TEMP	10.84 10.86 10.87	10.86 10.78 9.36 8.54	8-14 7-70 7-50	.3	23.00 23.00 20.00	2.13 1.89 1.75	1.61
	17/03/ 07 TYPE	ОЕРТН	7500 7500 7500 7500	49 74 99 123	148 172 191	œ	481 725 968 1456	1751 2045 2340 2636	3127
	DATE BAROM CLOUD	CST		000m	ww4	4	4444	4444	4

STATION 015 CNAV OSHAWA CRUISE OSI PRODUCTIVITY LAB-I DECK-I DEPTH CHL-A

34-14

INCOMING SOLAR RADIATION - AM 200 PM 241 - WATER COLUMN VALUES MESSENGER TIME 1732

BIOLOGICAL DATA

	VAR	66.0	0000	1.54 0.97 0.76	0000	0000	0.60
UES	E(0)	0000	0000	0000	0000	0000	0.00
ED VAL	OXY ML/L	66.24 66.24 66.24	9466 3460 3400 3400	2.94 2.32 1.69 1.03	00.047	00.4000.8000000000000000000000000000000	1.77
IND COMPUT	POT ENERGY	0000	0.38 0.38 2.642 6.72	4.11 5.80 7.72 12.22	17-51 23-69 30-02	52.52 69.41 96.43 145.80	203.68
PCLATED A	GEOPOT	0000	0.146 0.219 0.284 0.385	0.466 0.539 0.607 0.733	0.848 0.954 1.052	1.312 1.461 1.657 1.934	2.184
INTER	SP VUL ANOMALY	2890 2890 2890 2890 290 290 290	290.0 285.7 230.7 169.6	1391 1399 1399 1399 1399 1399 1399 1399	109.3 100.7 93.4 87.6	78.04 59.7 89.7	48.2
TI CN 015	SIGMA-T	25.07 25.07 25.07 25.07	25.08 25.13 25.71 26.36	26.56 26.69 26.78 26.93	27.03 27.13 27.21 27.28	27.38 27.48 27.59	27.72
OSI STA	E(S)	0000	0000	0.0010	0000	0000	0000
CRUISE 0	SAL	32.742 32.747 32.790	32.765 33.243 33.8343	33.954 34.010 34.032 34.096	34.155 34.230 34.300 34.343	34.461 34.544 34.544	34.636
SHAWA	E(T)	0000	0000	0000	0000	0000	000
CNAV D	TEMP	10.84 10.86 10.87	10.87 10.73 9.32 8.10	7 6.73 5.20 5.46	44.0 64.0 69.4 69.4	1233 1.02 1.02 1.02	1.78
	DEPTH	3200	50 100 150	4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 4 8 9 9 9 9 9 9 9 9 9 9 9	1000 12000 2000 2000	2500 3000

4.5

	•0∝							
	ND VEL 20 DIR 36 35 SWELL 5 DIR							
	DIR							
VALUES	WEA 03 SEA 3							
OBS ERVED	eoc Secor	SATR	105	103	103	9000 0100	411 641010	84
016 (S W SN	YGEN -	-0.027	-0.019	-0.015 -0.015 0.172	0.23 0.23 0.2885 0.2885	0.311 0.525 0.598 0.608	0.602
AT I ON	129-25 86 WTR 0.20	HGA/L	.57	0.565	00.562	0.339 0.292 0.289	0.288 0.087 0.029 0.030	0.054
OS1 ST	RELHU LE (S)	H.Y.	40	6.33	6.29 6.29 7.39 8.39	33.74	0000 0000 0000 0000 0000	0-60
CRUISE	43-14 N ET 6-7 HIRE ANG	SIGMA-T	25.05	25.06	255.05 255.05 255.05 839	26.12 26.39 26.41 26.41	26.68 26.96 27.27 27.36	27.55
OSHAWA	7.9 LAT Y 7.8 W	SAL	2.69	32.708 32.718	32.701 32.702 32.765 33.397	33.630 33.849 33.864 33.903	33.931 34.103 34.381 34.401	34.511
CNAV	63 HR 07	TEMP	10.74	10.72	10.74 10.72 10.81 9.32	8.65 8.01 7.74	5.25 5.25 3.72	2-68
	17/03/ 11 TYPE	ОЕРТН	04	10 0	30 20 100 100	125 164 185 185	279 706 945	1424
	DATE BAROM CLOUD	CST					2000	~~

	CNAV 0	OSHAWA	CRUISE	OS1 STA	TI ON 016	INTERP	OLATED	AND COMPUT	ED VAL	UES	
DEРТН	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	POT ENERGY	OXY ML/L	E(0)	VAR
3000	10.74 10.72 10.73	0000	32.692 32.708 32.715 32.701	0000	255.05 255.005 255.005	292.2 290.9 290.7 292.1	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	6.23 6.23 6.24	0000	
200 100 150	10.72 10.81 9.32 8.01	0000	32.702 32.765 33.397 33.849	0000	255.06 255.09 26.08 393	292.1 289.5 219.2 167.1	0.147 0.221 0.285 0.382	0.38 0.85 2.41 2.63	6.29	0000	
2200 2000 0000 0000	5.223 5.223 5.223	0000	33.914 33.933 34.0347	00000	26.51 26.62 26.71 26.87	156.3 146.0 137.7 123.8	0.464 0.540 0.611 0.743	4.09 5.84 7.86 12.57	3.22	0000	1.33 0.96 0.96 5.05
500 700 800	5.11 4.43 4.42	0000	34.129 34.205 34.272 34.331	0000	26.99 27.10 27.19 27.26	112.8 103.7 96.0 89.0	0.863 0.972 1.073	18-07 24-23 30-95 38-15	00.042	0.00	0.99
1000 1200 1500	3.58 2.11 5.51	000	34.416 34.465 34.534	0.0000	27.39	78.1	1.336	53.70 70.68 98.23	0.42	000	0.95

	DIR 5 Di						
	WIND VEL 23 D DIR 35 SWELL						
VALUES	WEA 01 SEA 3						
OBS ERVED	PG SECDI	SATA	1100 1003 4	111 110 103 103 103 103 103 103 103 103	9884 9854	099 94	84
017	ICLR SN	GEN -	0000	0.0018	0.178 0.255 0.278 0.324	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.604
STATION	128-40 81 NTR 0,25	HGA/L	0000 0000 0000 0000 0000	0.564 0.564 0.560 0.560	0.389 0.317 0.296 0.256	0.180 0.097 0.028 0.028	0.050
051 ST	RELHU LE(S) 1	H.1.	6666 944 944 944 944 944 944 944 944 944	6.28 6.31 5.27	4645 6645 6645 6645 6645 6645 6645 6645	2.01 0.45 0.31	0.56
CRUISE	43-14 N ET 78 WIRE ANG	SIGMA-T	25.10 25.09 25.11 25.08	25.10 25.14 25.11 25.51	26.22 26.22 26.32 461 461	26.67 26.92 27.16 27.32	27.53
OSHAWA	2-4 LAT	SAL	32.758 32.750 32.784 32.748	32.776 32.822 32.790 33.101	33.450 33.714 33.800 33.929	34.033 34.112 34.250 34.375	34.497
CNAV	63 HR I TEMP DR	TEMP	10.72 10.77 10.78 10.78	10.79 10.80 10.82 9.50	88.88 8.245 7.68 7.968	7.08 4.52 3.882	2.78
	17/03/ 12/03/ 17/05	DEPTH	20020	6446 6446	123 158 181	271 693 929	1404
	DATE BAROM CLOUD	CST		нннн		2222	77

BIOLOGICAL DATA			PM 166	LIGHT	
81010			INCOMING SOLAR RADIATION - AM 214	PRODUCTIVITY VALUE WAS INCUBATED AT 50 PERCENT LIGHT NSTEAD OF 100 PERCENT	
1 017		Ň	ATION) AT 5	
STATION	SAL	32.745	LAR RADI	AC UB ATE [
051			NG SOI	AAS 11	
CNAV OSHAWA CRUISE OSI STATION OI?	DECK-1	8.42	INCOMI	VALUE 1	
OSHAWA	PRODUCTIVITY LAB-I DECK-I		IME 0620	AD OF 10	
CNAV	Chican	0.59	=	-	
	ОЕРТН (00	MESSENGER	THE SECOND INTENSITY	

	VAR	66*0	0000	0.93 0.93 0.75	0.82 0.68 0.96	000 98.0 480
UES	E(0)	0000	0000	0000	0000	000
ED VAL	OXY ML/L	6666 68424 8424	92.00 30.00 00.00	2.52.1.92.1.90	0000	0.31 0.37 0.69
AND COMPUT	POT ENERGY	0.00	0.37 0.83 1.42 2.76	4-26 5-99 8-00 12-74	18.34 24.65 31.54 38.92	54°94 72°39 100°74
POLATED A	GEOPOT	0.000 0.029 0.058 0.087	0.145 0.217 0.284 0.390	0.550 0.550 0.754 0.754	0.876 0.988 1.091	1,361 1,516 1,721
INTER	SP VOL ANOMALY	287.0 286.3 289.1 287.2	285.1 286.4 242.3 181.2	154.5 143.9 137.9	115.5 106.3 98.3	80.6 72.3 62.8
FION 017	SIGMA-T	25.10 25.11 25.08 25.08	255-13 255-13 26-25	26.53 26.65 26.72 26.86	26.97 27.07 27.16 27.24	27°36 27°45 27°56
OS1 STAT	E(S)	0000	0000	00000	0000	0.003
CRUISE (SAL	32.758 32.784 32.748 32.779	32.818 32.799 33.116	33.979 34.639 34.050	34.136 34.194 34.254 34.310	34.399 34.457 34.515
OSHAWA	E(T)	0000	0000	0000	0000	0.00 0.00 0.00 0.00
CNAV 0	TEMP	10.72 10.78 10.78	10.81 10.77 9.46 8.39	7.74 7.25 6.82 6.01	644. 644. 788. 788. 78. 78. 78. 78.	3.51
	DEPTH	3000	50 100 150	4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 9 9 9 9 9 9 9 9 9	1000 1200 1500

VALUES	WEA OZ WIND VEL 12 DIR 32 SEA 2 DIR 32 SWELL 3 DIR 3						
OBS ERVED	NDG 3109 SECDI	SATN	1005 1005 1005	1005 1005 745 105	0044 0469	641 642 74	10
018	CLR S	GEN -	-0.027 -0.020 -0.029	-0.022 -0.027 -0.022	0.202 0.263 0.292 0.313	0.398 0.528 0.597 0.613	0.590
STATION 0	128-06 93 WTR 5,20	HGA/L	0.578 0.572 0.581	00.00	0.367 0.310 0.283 0.265	0.00 0.084 0.032	0.063
OS1 ST	RELHU LE(S) 1	#1.1-	44.0 44.0 600	56.66 54.46 54.88 54.88	3.11 2.11 2.57	2.16 0.94 0.36 0.28	0.71
CRUISE	43-14 N ET 9.4 WIRE ANG	SI GMA-T	25.04 25.06 25.06 25.09	25.07 25.06 25.06 25.06	26.26 26.26 26.35 26.44	26.67 26.93 27.17 27.35	27-54
CNAV OSHAWA	7.8 LAT Y 10.0 W	SAL	32.652 32.627 32.644 32.668	32.635 32.625 32.629 32.977	33.508 33.746 33.836 33.897	34.010 34.239 34.239 34.398	34.515
CNAV	63 HR 1 TEMP DR	TEMP	10.35	10.36 10.37 10.40 9.16	8.73 8.34 8.18 7.92	94.00 135 135 135	2.78
	17/03/ M 16. D TYPE	DEPTH	0506	9448 948 96	121 165 189	283 472 709 946	1423
	DATE BARON CLOUC	CST			1177	2222	77

						VAR RATIO	0.88	0.0000000000000000000000000000000000000	1.18 1.08 0.96 0.75	0.087	0.95 0.89 10.08
					ALUES	E(0)	0000	0000	0000	0000	0.00
					ED V	OXY ML/L	666 66.55 7004 7007	3000 3000 3000 3000	2.87 2.64 2.03 1.33	0000	0.30
L DATA				166	ND COMPUT	POT ENERGY	00000	0.38 0.83 744 744	4.26 6.05 8.09 12.88	18.51 24.84 31.72 39.05	54° 75 71° 75 99° 67
BIOLOGICAL			S	H 214 PH	POLATED A	GEOPOT ANOMALY	000000000000000000000000000000000000000	0.220 0.287 0.387	0.554 0.554 0.627 0.761	0.883 0.995 1.099 1.194	1.365 1.516 1.718
018			MN VALUE	110N -	INTER	SP VOL ANOMALY	2889 2889 2889 2899 8	293.0 289.5 239.7 176.7	159.9 148.2 139.6 126.1	116.0 106.5 98.0	78.4 70.5 62.4
0 <	SAL	32.625 32.627 32.624 32.631	ATER COLU	LAR RADIA	ATION 018	SIGMA-T	255 255 255 255 255 255 255 255 255 255	25.05 25.05 26.25 26.25	26.47 26.60 26.70 26.85	26.96 27.07 27.16 27.25	27.38
(SE 0S1	-	2290	I 1 55	DMING SOL	OS1 STA	E (S)	0000	0.0000000000000000000000000000000000000	00000	0000	0.004
CRU	DECK-	112.0	223.4	INCOM	CRUISE (SAL	32.652 32.644 32.666 32.633	32.618 32.650 33.066 33.775	33.917 33.984 34.022 34.076	34.116 34.173 34.233 34.303	34.419 34.479 34.526
OSHA	LAB-I			E 0950	OSHAWA	E(T)	0000	0000	0000	0000	000
CNAV	CHL	0.0 0.8 0.9 0.9 0.9	39.42	GER TIME	CNAV 0	TEMP	10.35	10.30 10.30 8.00 8.00	7.20 6.27 5.98	6.30 4.35 6.35 6.35	3.63
91	700	0404		MESSENGER		ОЕРТН	3000	50 100 150	22 2000 0000 0000	8760 8760 8760	1000 1200 1500

VALUES	WEA 02 WIND VEL 13 DIR 29 SEA 2 DIR 35 SWELL 3 DIR						
OBSERVED	DG SECDI	SATN	9001	1001 1004 1004	7 2 2 2 2 3	0804	17
0 610	CLR SN	GEN -	00.003	-0.019 -0.024 -0.019	0.164 0.227 0.261 0.280	0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.595
ATION 0	127 <u>-4</u> 2 88 WTR 5.16	HGA/L	0000 880 140 140 140	00.571	0.349 0.305 0.305	0.239 0.078 0.056	0.062
051 ST	RELHU E (S)	エバー	6.55 6.55 6.55 6.55 6.55 6.55	66.49 5.346 5.346 5.346	33.35	2.68 0.87 0.63	0.69
CRUTSE (43-14 N FT 11-7 WIRE ANGI	SIGMA-T	255.06	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25.91 26.20 26.35	26.71 26.98 27.23 27.41	27.56
OSHAWA	1-7 LAT V 12-8 W	SAL	32.644 32.605 32.610 32.618	32.627 32.622 32.620 32.883	33.353 33.633 33.764	33.958 34.109 34.294 34.456	34.520 34.582
	63 HR 2 TEMP DR 8 AMT 4	TEMP	10.45	10.30	8.59 7.86 7.42	94.50 6095 6095	2.58
	17/03/ 18 17PE	ОЕРТН	onge	30 75 100	124 149 168	286 480 729 971	1466
	DATE BAROM CLOUD	CST			77	2222	77

019
TION
STAT
081
CRUI SE
OSHA WA
CNAV
5

				ITED VAL	X	กงกเ	J AWR	ש שטוטיו	U 8000	v 2002
AL DATA			н 166	AND COMPLIT	POT	000	- mag-	000 m	N®0	6.3
8 I O L O G I C A L	•		М 214 р	POLATED ,	GEOPOT	0000	4000	45.00 80.00 60.00	7860-	488
610			TION - A	INTER	SP VOL Anomaly	291.0 291.7 290.9	5000 5000	4797	100m	*~-
STATION		S	OLAR RADIA	TI ON 019	SIGMA-T	25.06 25.05 25.05 70.05	0047	9999	2.2.0	45.5
JISE OSI		MN VALUE	S	OS1 STA	E(S)	0000	0000	0000	000000000000000000000000000000000000000	0.004
SHAWA CRUI RODUCTIVITY B-I DECK-		TER COLUMN	-	CRUISE	SAL	32.644 32.610 32.618 32.627	32.622 32.620 32.883 33.641	33.890 33.958 33.970 34.050	34.124 34.200 34.273 34.347	34.464 34.505 34.522
NAV U		AM I	ME 1342	OSHAWA	E(T)	0000	0000	0000	00000	00.00
CHL-A	0.92 0.95 0.88	45.45	SENGER II	>	TEM	10.30	10.22 10.33 9.19 8.14	7.29 6.67 6.23 5.50	5.00 4.57 4.027	3.59 3.14 2.52
DEPTH	0404		MESSEN		DEPTH	3000 3000	50 100 150	7320 7320 7320 7320	\$000 8000 8000	1000 1200 1500

VAR

0

ALUES

0.92 0.93 0.93 0.93 0.93

S	OZ WIND VEL 15 DIR 30 A Z DIR 30 SWELL 6 DIR						
VALUE	WEA						
OBS ERVED	SECDI	SATN	106 106 105 105	106 103 103	8 66 5 1 5 1	86 80 80 80	13
020 C	CLR SN	GEN -	0000	00000	0.097 0.193 0.251 0.285	0.301	0.590
STATION 0	93 WTR 5,21	HGA/L	0000	0000 0000 0000 0000 0000 0000 0000	0.376 0.322 0.322	0.278 0.237 0.052 0.042	0.062
0S1 ST	L ONG RELHU E (S)	H./L	66.55 6.55 6.55 6.55 6.55	6.55 6.55 5.36 5.36 5.36	5.19 3.60 3.27	2.00 0.58 7.40 7.40	0.69
CKUISE (43-12 N ET 10.0 WIRE ANGL	SIGMA-T	25.09 25.09 25.08 25.08	25.14 25.14 25.10	25.52 26.31 26.31	26-41 26-81 27-09 27-26	27.51
OSHAWA	-7 - LAT VIS-7	SAL	32.678 32.675 32.664 32.690	32.648 32.709 32.655 32.662	33.040 33.406 33.695	33.853 34.002 34.190 34.341	34-493
CNAV	63 HR 01 TEMP DRY AMT 8	TEMP	10.42	10.24	88.43 8.43 8.41	7.91 5.81 4.68	2.91
	18/03/ 18 TYPE	DEPTH	0004	00 8 00	100 124 133	325 325 569 812	1301
	DATE BAROM CLOUD	CST	2			-000	711

	CNAV	DSHAWA	CRUI SE	DS1 ST/	CNAV DSHAWA CRUISE DS1 STATION 020	BIOLOGICAL DATA	AL D	ATA
DEPTH	DEPTH CHL-A	PRODUCTIVITY LAB-I DECK-I	IVITY DECK-I					
0404	0.79 0.79 1.14							
	44-70	WATER	44.70 - MATER COLUMN VALUES	ALUES				
MESSEN	MESSENGER TIME 1747	1741	INCOMIN	S SOLAR	INCOMING SOLAR RADIATION - AM 214 PM 166	AM 214 P	M 16	9

	VAR		1.05	4.39 1.71 0.71	0000	0.90
ALUES	E(0)	0000	0000	0.11 0.13 0.13 0.13	0.0000000000000000000000000000000000000	000
ED V	OXY ML/L	6.560 6.560 6.57 6.51	34.00 24.00 24.00 24.00	2.45	1.10 0.35 0.45	0.50 0.61 0.88
ND COMPUT	POT ENERGY	000000000000000000000000000000000000000	0.37 0.80 1.31 2.49	3.92 5.61 7.54 12.07	17.37 29.95 37.03	52.48 69.41 96.58
POLATED A	GEOPOT	0.000	0.145 0.213 0.270 0.365	0.518 0.586 0.713	0.828 0.935 1.034 1.125	1.293
INTER	SP VOL ANOMALY	288.0 289.2 288.1 283.7	287.9 248.5 209.6 165.0	151.2 140.2 131.9	109.2 101.4 94.1 87.8	78.1 70.2 59.4
TI ON 020	SIGMA-T	25.09 25.09 25.09	25.52 25.93 26.43	26.56 26.78 26.78	27-12 27-12 27-26	27.39
OS1 STATE	E (S)	0000	0000	0.029 0.034 0.0017	0000	0.008
CRUISE 0	SAL	32.664 32.664 32.648	32.0662 33.0662 33.6662 33.6660	33.941 33.992 34.007	34.212 34.277 34.377	34.412 34.470 34.548
OSHAWA	E(T)	0000	0000	0000	0000	000
CNAV 0	TEMP	10.42	10.28 9.53 8.73	7.31 6.71 5.33	444 000 600 600 600	3.55 3.11 2.53
	ОЕРТН	9700	1000	2000 0000 0000	8760 0000 0000	1000 1200 1500

	2					54		
	02 WIND VEL 8 DIR 25 1 DIR 25 SWELL 2 DIR 2				•			
VALUES	WEA							
OBS ERVED	NDG 2880 SECDI	SATN	11000	100 100 400 80 80 80	₩₩4 \$0₩₩	860 860 87	2466	25
21 0	CLR SN	GEN -	000000000000000000000000000000000000000	00.00	0.252 0.352 0.321	0.389 0.536 0.576 0.612	0000 0000 0000 0000	0.500
O NOI	126-32 9 WTR 124, 9	MGA/L	0.578 0.578 0.573	0.571 0.569 0.371	0.324 0.287 0.260 0.250	0.207 0.078 0.054 0.027	0.0058 0.1058 0.1588	0.171
OS1 STAT	RELHU 9	7.7.	66.6 44.4 66.4 67.4 66.6 67.4 67.4 67.4	6.39 4.121 15.151	3.63 2.91 2.91 2.80	2.32 0.87 0.61 0.30	0.65 1.04 1.73	1.91
CRUISE O	43-14 N ET 10-0 WIRE ANGL	SI GMA-T	25.10 25.10 25.09 25.13	25.12 25.13 25.56 25.98	26.40 26.40 26.40 55	26.68 26.97 27.19 27.38	27.55 27.62 27.68 27.71	27.71
OSHAWA	6-0 LAT Y 10-0 WE	SAL	32.697 32.700 32.690 32.726	32.707 32.717 33.109 33.438	33.662 33.834 33.891 33.951	33.965 34.135 34.264 34.420	34.527 34.564 34.601	34.631
CNAV	63 HR OF TEMP OR AMT 8	TENP	10.48	10.40 10.40 9.62 8.58	8-11 7-87 7-74 7-46	6.58 4.27 3.69	2.74 2.28 1.98 1.83	1.79
	18/03/ 20 TYPE	ОЕРТН	0400	0448 0448	124 161 185	24 460 692 925	1392 1671 1952 2326	2607
	DATE BAROM CLOUD	CST			-mnn	2222	7777	7

JES	E(O) VAR	0000	0.00 0.00 0.00 0.00 0.00 0.77	0.00 0.00 0.00 0.03 0.93 0.95 0.05 0.75	0.04 0.07 0.00 0.00 0.00 0.00	0.02 0.04 0.01 0.01 0.01 0.81
TED VALUES	OXY ML/L	6.44 6.42 6.348	307 477 307 477 407 48	2000 2000	0000 1-004 5-004	00.30
AND COMPUT	POT ENERGY	0.00	00.00	4 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30°-10°-10°-10°-10°-10°-10°-10°-10°-10°-1	62.36 68.64 95.47
POLATED A	GEOPOT ANOMALY	000000000000000000000000000000000000000	0.2111000.360	0000 6000 7000 4000 0040	00 00 00 00 00 00 00 00 00	10,420 10,420 10,630 10,030 10
INTER	SP VOL ANOMALY	287.5 288.4 284.6 286.1	284 2643 203 263 265	14904	110.6 101.5 94.1	75.0 60.1 50.1
TION 021	SIGMA-T	25.10 25.09 25.13	25°14 25°58 25°58 26.41	26.58 26.66 26.72 26.88	22,122	27.50
OSI STA	E(S)	0000	0000	0.000	00000	0000
CRUISE 0	SAL	32.697 32.726 32.726	33°,126 33°,126 33°,448	33.963 33.963 34.072	34°217 34°217 34°270	34.0468 34.0503 44.0503 5603
OSHAWA	E (T)	0000	0000	0000	0000	0000
CNAV 0	TEMP	100.449	10 9.58 7.85 8.55	7.80 6.80 5.49	5.10 4.63 3.25 7.95	201.02 95.02 95.03
	DEPTH	3000 3000	100 150 150	00000	8 7 6 0 0 0 0 0 0 0 0 0	10000 12000 2000 2000

	27					20	
	1R 27						
	8 01						
	EL 18 SWEI						
	ND V						
	DIR	٠					
S	62						
VALUE	WEA						
/ED	926 I	ız					
OBS ERVED	NDG 2	SATI	1001 1005 1005	104 103 78 60	50 41	118	15
0	S	100	020 020 026 019	022 017 122 230	291 343 343	5987 5987 614	592
022	Z.R R	YGEN	0000	0000	000	0000	00
	5-57 WTR	A/L	5566 5766 5672	567 436 338	287 270 235	166 070 029 024	063
STATION	125 99 0,22	EG.	0000	0000	000	0000	00
ST	OHO DHO	٦'	449% 849%	7857 7857 7857 7857	21 02 63	86 37 27 27	112
081	REL LE (S	ıξ	0000	0.04M	mmN	-000	<u></u>
ш	A V V	IA-T	6600	0000	4976	3827	26
CRUIS	43-1 T IRE	SIGM	ろろろろ	0000 0000	266.	226.	27.
	A MA		0,000	0000	@mm0	4890	00
SHAN	1°6 1°5 1°5	SAL	2.75 2.75 2.76 2.76	2.77 2.74 3.20	33.88	4.13	6.53 4.60
CNAV OSHAWA	11 × × ×	•	MMMM	mmmm	MMMM	MMMM	**
CNA	A T T T T T T T T T T T T T T T T T T T	EMP	775 78 78 78	90 46 78 78	44 112 08 94	80 71 71	.67
	63 TE	=	0000	0000	∞∞∞~	10 N A W	20
	/03/ 00-	PTH	0500	0000	8002 83002	75 90 36	11
	18 12 12 12	DE		-		0440	14
	DATE BARD CLOU	CST				2222	77

.	6	0		1.000 26.36 169	.00 33.833 0.000 26.36 169	•12 0.00 33.833 0.000 26.36 169
	04m0 -00m -0	53 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	002 27.32 153. 004 27.01 1111. 006 27.22 92. 000 27.22 92. 003 27.41 76.	. 002 2 26.55 153. . 004 27.01 1111. . 006 27.22 92. . 009 27.22 92. . 003 27.30 86.	4.000 0.017 26.55 153. 4.049 0.022 26.67 141. 4.105 0.004 27.01 111. 4.251 0.006 27.22 92. 4.374 0.003 27.32 92. 4.486 0.002 27.41 76.	.02 34-000 0.017 26-55 15304 34-049 0.022 26-67 14102 34-105 0.004 27-01 11103 34-251 0.006 27-22 9200 34-374 0.003 27-30 8601 34-486 0.004 27-49 68-

	32) 0	
	2 WIND VEL 10 DIR 32 2 DIR 32 SWELL 3 DIR 3						
VALUES	WEA 02						
OBSERVED	4DG 2980 SECDI	SATN	105 105 105 105 105	& Q & Q & Q & & Q & Q & Q	NN44 CONO	21 21 21 24	10
023 (CLR SN	GEN -	-0.026 -0.037 0.033	0.00 0.00 0.008 0.186 886 886	0.246 0.287 0.319 0.353	00.054	0.588
STATION O	125-36 99 WTR 8,11	- OXY	0.571 0.572 0.574 0.523	0.539 0.539 0.470 0.382	0.323 0.289 0.261 0.231	0.070 0.030 0.039	0.068
OS1 ST.	RELHU E(S) 1	71.1	0.000 0.448 0.040	40.04 20.04 20.05 80.45	2.924	1.67 0.34 0.32	0.76
CP UI SE	ET 9.4 WIRE ANGI	SIGMA-T	2222 2222 2222 2222 2222 2222 2222 2222 2222	25.11 25.11 25.65 97	26.16 26.40 26.48 26.58	26.76 26.99 27.22 27.40	27.56
JSHAWA	4.2 LAT V 9.4 W	SAL	32.768 32.773 32.786 32.760	32.791 32.838 33.259 33.519	33.673 33.961 33.922 33.976	34.052 34.165 34.455	34.518 34.597
CNAV	63 HR 14 TEMP DRY	TEMP	10.85 10.88 10.77	10.81 10.58 9.78	8.62 8.02 7.76 7.40	9.45 3.45 3.46 3.46	2.63
	18/03/ 20 TYPE	ОЕРТН	0500	9440	119 172 197	293 789 934 980	1472
	DATE BARON CLOUD	CST				2222	77

BIOLOGICAL DATA CNAV OSHAWA CRUISE OSI STATION 023 SAL DEPTH CHL-A PRODUCTIVITY LAB-I DECK-I

13.60

32.773

MESSENGER TIME 0625

	CNAV OSHAWA	SHAWA	CRUISE O	OSI STATI	FI DN 023	INTERP	OLATED A	IND COMPUT	ED VALUES	uES	
DEPTH	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANDMALY	GEOPOT ANOMALY	POT ENER GY	OXY ML/L	E(0)	VAR
9700	10.85 10.90 10.77	0000	32.768 32.786 32.762	000000000000000000000000000000000000000	25.09 25.09 25.10 25.11	288.1 288.1 288.0 286.6	000000000000000000000000000000000000000	0000	64.6 64.6 640.6 640.6	0000	0.88
100 100 150	10.52 9.68 8.97	0000	33.868 33.550 33.655	000000000000000000000000000000000000000	25.22 25.70 26.01 26.43	276.6 231.5 202.2 163.5	0.144 0.208 0.353 0.355	0.37 0.77 1.26 2.41	5.01 3.11 1.12 1.12	0000	0.91 0.83 0.77
7300 4000 0000 0000	6.85 6.47 5.84	0000	33.980 34.032 34.056 34.116	00000	26.59 26.70 26.77 26.90	149.1 139.0 132.9	0.506 0.506 0.575 0.703	3.82 7.49 12.02	2.03 1.62 1.04	0000	1.05 0.99 0.77
\$200 \$000 \$000 \$000	444 444 444 744	0000	34.172 34.238 34.302 34.364	000000000000000000000000000000000000000	27.00 27.10 27.19 27.28	112.8 103.8 95.6 88.2	0.822 0.931 1.032 1.125	17.47 23.63 30.34 37.49	0.00 0.00 16.00 18.00	0000	0000
1000 1200 1500	3.70	000	34.459 34.494 34.521	0.002 0.014 0.002	27.41 27.48 27.56	76.3 69.4 61.9	1.291	52.78 69.42 97.04	000	0000	0.00 0.89 0.99

	~						
	DIR 32 2 DIR						
	VEL 3 (
	WIND IR 3						
VALUES	WEA 01 D						
OBSERVED	SNDG 2057 SECDI	SATN	108 108 105 105	107 90 64 55	4000 4400	1124 1124	138
024 0	CLR R	YGEN -	-0.043 -0.030 -0.037	-0.038 0.058 0.201 0.252	0.335 0.335 0.359 0.359	0000 000 000 000 000 000 000 000	0.600
STATION O	125-13 94 WTR 0,18	MGA/L	(3000 (3000 (300) (300) (300) (400)	0.590 0.497 0.359 0.313	0.233 0.177 0.216 0.208	00.0000	0.049
OS1 ST	RELHU LE(S)	#\\ #\\	6000 6006 6006 6006	9.61 9.62 9.57	2.42 2.42 2.33	0.00 0.34 0.34	0.55
CRUISE	43-14 N HET 10.6 WIRE ANG	SIGMA-T	2000 2000 2000 2000 2000 2000 2000	25.14 25.46 26.81	26.28 26.42 26.46 26.51	26.71 26.96 27.22 27.36	27.53
OSHAWA	7-7 LAT	SAL	32.685 32.690 32.686 32.704	32.714 33.045 33.387 33.679	33.928 33.928 33.953	34.058 34.141 34.310	34.526 34.559
CNAV	63 HR I TEMP DR	TEMP	10.39 10.29 10.29	10.29 9.91 9.40 8.94	8.65 8.21 7.87	0.4.0 0.4.0 0.00.0	3.03
	18/03/ M 255 D TYPE	ОЕРТН	0100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	125 150 161	287 482 728 976	1273
	DATE BAROM CLOUD	CST				~~~	77

						VAR			1.10 0.97 57.0	0000	0.91
					ALUES	E(0)	0000	0000	0000	0000	0.00
					ED V	OXY ML/L	6.65 6.52 6.60 6.61	1.502	2.25 1.78 1.31 0.88	0000 94.00 94.00	0.33
AL DATA				193	AND COMPUT	POT ENER GY	00000	0.35 0.73 2.39	3.77 5.50 7.50 12.20	17-72 23-92 30-63 37-81	53.55 70.52 97.17
B 10L 0G 1CA			S	M 235 PM	POLATED A	GEOPOT	0.000 0.029 0.058	0.200 0.253 0.353	0.423 0.569 0.569	0.820 0.931 1.031	1.295
024			LUMN VALUE	T 10N - A	INTER	SP VOL ANOMALY	283 283 283 83 83 83	253.6 220.7 192.5 164.1	154.9 1236.9 1236.9	1113 103-9 895-3	79.8 69.1 58.1
STATION	SAL	32.6651 32.6651 32.669	ATER CO	LAR RADIA	TI ON 024	SIGMA-T	225.12	25.46 26.11 26.42	26.53 26.63 26.73	26.99 27.10 27.19	27-37 27-49 27-60
E 051			1	ING SOL	1 STA	E(S)	0000	0000	00000	0000 0000 0000 0000	0.001
CRUIS	TIVITY DECK-I	30.86 27.38 3.74 0.18	359.66	INCOM	CRUISE OS	SAL	2.685 2.686 2.704 2.714	2000 2000 2000 2000 2000 2000 2000 200	4.030 4.030 4.110	4.222 4.222 4.391	4.500 4.500 4.500 569
I OSHAWA	PRODUC LAB-1			9460	SHAWA CR	E(T)	0000	0000	0000	0000	0.00
CNAV	CHL-A	1.3 1.56 2.66 86 1.66	45.68	ER TINE	CNAV OS	TENP	10.29	9.40 8.940 8.21	5.98	2444 2469 2469 2669	2.538
	DEPTH	0 16 31		MESSENGE		DEPTH	9700	100 150 150	4 W 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8765 0000 0000	1200 1200 1500

S	03 WIND VEL 0 DIR 99 I DIR 32 SWELL 2 DIR					
VALUE	WEA					
OBSERVED VALUES	NDG 384 SECDI	SATN	108 108 108	108 80 50 50 50 70	4466 4080	15
	74 N	GEN -	0000	-0.026 0.112 0.216 0.281	0000 0000 0000 0000 0000	0.517
STATION 025	124-53 9 WTRC	- OXYGI	0000 NNNN 9999 8400	0.581	0.245 0.230 0.186	0.011
	L DNG RELHU 9 E (S) 0	7.7.	66.65 66.65 66.65	9.80 2.80 2.89 1.89	22.574	1.24
CRUISE OS1	43-14 N ET 11-7 RE WIRE ANGLE	SIGMA-T	255.11 255.13 166 166	25.63 26.03 26.22	26.41 26.41 26.41	26.83
CNAV OSHAWA	1.0 LAT Y 11.7 W	SAL	32.677 32.691 32.717 32.699	32.715 33.186 33.585 33.773	33.989 34.015	34.088 34.122
CNAV	63 HR 2 TEMP DR 8 ANT 6	TEMP	10.31 10.27 10.18 10.12	10.12 9.55 9.12 8.72	8.33 7.99 7.32	6.20 5.86
	18/03/ 26 TYPE	DEPTH	0100	100500	3300 3300 1000 1000 1000 1000 1000 1000	289 361
	DATE BAROM CLOUD	CST				77

BIOLOGICAL DATA CNAV OSHAMA CRUISE OSI STATION 025 DEPTH

0 1.548

46.73 - MATER COLUMN VALUES

INCOMING SOLAR RADIATION - AM 235 PM 193 MESSENGER TIME 1302

	VAR			1.26
UES	E(0)	0000	0000	0.00
ED VAL	OXY ML/L	666 666 566 566 566	2440 2440 2440	1.99 1.48 1.19
INTERPOLATED AND COMPUTED VALUES	POT ENERGY	0000	2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00	3.62 5.20 7.03
POLATED A	GEOPOT ANOMALY	0000	0.138 0.242 0.3292	0.476
INTER	SP VOL Andmaly	286.3 281.4 281.0	237.5 201.8 182.2 165.0	143.2 130.5 126.3
STATION 025	SIGMA-T	25.11 25.16 25.16	25.63 26.01 26.22 26.41	26.65 26.79 26.84
	E (S)	0000	0000	0.009
CRUISE OSI	SAL	32.677 32.699 32.699	33.186 33.7785 91.91	34.026 34.077 34.089
SHAWA	E(T)	0000	0000	0.02
CNAV OSHAWA	TEMP	10.31	9.55 8.72 8.20	7.18 6.46 6.16
	DEP TH	3000 3000 3000	50 100 150	200 250 300

OBSERVED VALUES CRUISE 0S1 STATION 026 CNAV OSHAWA

WEA 01 WIND VEL 0 DIR 99 SEA DIR SWELL 2 DIR 28 SNDG 137 SECDI DATE 18/03/63 HR 23.0 LAT 43-14 N LONG 124-39 W BAROM 26. TEMP DRY 12.2 WET 11.7 RELHU 94 WTRCLR CLOUD TYPE 8 AMT 3 VIS 7 WIRE ANGLE(S) 0 FIVE MILE POINT

0000 0000 0000 0000 0000 0000 0.414 ML/L MGA/L ADU 0.609 0.606 0.611 0.607 0.594 0.270 0.216 0.171 6.82 6.78 6.84 6.80 23.4° 23.9° 45.0° 1.92 SI GMA-T 25.11 25.71 26.25 26.47 26.60 32.588 32.588 32.588 32.588 32.644 33.303 33.765 33.932 34.002 SAL 10.27 10.26 10.26 10.18 TEMP 9.613 8.48 88.88 7.37 DEPTH 2500 200 100 100 100 135 CST

		RATA		
	ŭ =	E(0)	0000	000
			6666 6886 68067	2.03
IL DATA	M 193	~ ~	0000	0.94
B I OL OG I CAL	M 235 P	GEDPOT	0000	0.192
920	A - NOITE	SP VOL ANDMALY	292.6 292.2 291.1 286.4	229.8 178.8 158.2
STATION	SOLAR RADIATION	¥	255.05 255.05 25.05 116	26.25 26.25 26.47
UISE OSI TY K-I UMN VALUES	COMING SOL	(S	0000	000
TIVI DEC	INC		32.582 32.588 32.588	33.303 33.765 33.922
CNAV OSHAWA A PRODUC LAB-I 2 11 2 2 2 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 4	ME 1500	E(T)	0000	000
CHL-A CHL-A 1-12 1-32 1-08 37-62	F >		10.27 10.26 10.18 10.13	9.61 8.48 7.88
DEPTH 0 6 31	MESSENGER	DEPTH	30000	50 100

CNAV OSHAWA CRUISE OSI STATION 027 OBSERVED VALUES

	WEA 02 WIND VEL 12 DIR 18 SEA 2 DIR 18 SWELL 2 DIR 30			
	SNDG 64 SECDI	SATN	800 880 809 809	NIN
ATHER	~	SEN	-0.043 0.060 0.115	0.229
CAPE FOULMEATHER	124-09 W 93 WTRCL	- DXYGEN -	0.502 0.502 0.447 0.389	0.333
CAPE	N LONG RELHU 9 GLE(S) 8	F.7.	5.62 5.01 4.36	3.73
	44-44 ET 9-4	SIGNA-T	24-74 24-75 24-79 25-48	25.56
	16-2 LAT	SAL	32.673 32.081 32.122 32.941	33.055
	TEMP DR	TENP	9.68 9.69 9.65 9.34	9.39
	19/03/63 1 26° TE	DEPTH	0506	53
	DATE BAROM CLOUD	CST	HHHH	

	RATIO	0.88
UES	E(0)	0000
COMPUTED VALUES	OXY ML/L	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
AND COMPU	POT	0000
INTERPOLATED	GEOPOT	000000000000000000000000000000000000000
INTERP	SP VOL ANOMALY	321-1 317-1 249-7 245-2
STATION 027	SIGMA-T	24.14 25.50 25.50
ISI STA	E (S)	0000
CRUISE	SAL	32.073 32.972 33.045
SHAMA	E(T)	0000
CNAV OSHAWA	TEMP	9999 9999 9049
	DEPTH	3000 3000

	18 118 2						_		
	DIR						RATIO		
	L 20 SWEL						_	000	0000
	0 vE 18					ÀL UES	E(0	000	0000
	DIR					>	OXY #C/L	004 604	92
JES	A 03					COMPUTED		999	NN40
VALUE	N SE						POT NERGY		
OBS ERVED	238 DI	I Z	-0 4	നഗ⊣ മ	000	AND	— —		
08S E	SNDG	SAS		0000	N44	ATED	OPOT		
_	S E S	FN	.064).059).025	0.027 0.105 0.183	325 346	ERPOL	V GE		21550
4 028	-35 P	OXYGE	2248 2348 10 863 10	27. 29. 81. 81. 00.	306	INT	P VOL	359.8 328.6 299.4	276.2 246.7 212.7 168.0
ATION	124-	HGA)	9990	0000 NN4W	222	80	T AS	· · · · · ·	141414
ST	LONG	ביו	93 97 56	46 92 27	.20 .80 .61	02	GMA	4.34	555 555 555 555 555 555 555 555 555 55
081	N GLE (IX F	~999	40004	222	ATION	SI	NNN	NNNN
UISE	10.0 E AN	GMA	4-17	55.28 55.28 55.28	6.21 6.38 6.48	ST	(8)	000	0000
ຽ	T 44 WET WIR	SI	. 22		777	081	ш	000	01-61
OSHAWA	NO L	¥.	.368 .350	. 423 . 750 . 637	. 857 . 923	CRUISE	SAL	22-00	3.43
	08.5 RY 1	S	32	8888	000 000 000			mmm	mmmm
CNAY	EHP D	TEMP	9.84 9.77 9.76 9.80	9.92 9.96 9.55	8.69 8.12 7.81	OSHAWA	E(T)	0000	0000
	3/63 E	ī	0.0.0.0	0.0.0.0	wwi		EMP	84 80 92	1202
	19/0 24 TYP	DEPTI	2000	10050	125 150 175	CNAV	1	0000	0000
	ATE AROM LOUD	ST (DEPTH	3000	1000 1000 150
	تهت	J					٥		

\

	22					01
VALUES	WEA 02 WIND VEL 18 DIR 21 SEA 3 DIR 18 SWELL 4 DIR					
OBSERVED	SECOI	SATN	111111111111111111111111111111111111111	103 90 84 66	8444 8796	32 13
•	S SN	YGEN -	0.000	0.014 0.057 0.090 0.192	0.266 0.299 0.311 0.326	0.400
STATION 02	124-56 99 WTRC 0,29	- OXYG	0.622 0.624 0.623 0.603	0.574 0.498 0.466 0.370	0.302 0.270 0.261 0.249	0.191
0S1 ST	RELHU LE(S) 1	エバー	6.96 6.99 6.98 6.98	45.55 1.258 1.258	3.38 2.92 2.75	2.14
CRUISE	44-44 N ET 10-0 WIRE ANG	SIGMA-T	24. 24. 24. 54. 54. 54. 54.	25.01 25.01 25.04 25.04 25.04		26.95
/ OSHAWA	10-5 LAT	SAL	31.844 31.844 31.851 32.011	32.308 33.042 33.256 33.515	33.653 33.774 33.825 33.883	33.997
CNAV	63 HR 1 TEMP DR	TEMP	9.84 9.85 9.73	9.78 9.90 9.81	8.78 8.67 8.43	6.94
	19/03/ M 25. D TYPE	DEPTH	0500	6446	123 146 148 169	256
	DATE BAROI CLOUI	CST	mimmed		7777	77

	VAR	66*0	0000 0000 0000 0000	1.42 0.90 7.48 12.44		O DIR 22 LL 4 DIR 2				
AL UES	E(0)	0000	0000	0000		D VEL 2 22 SWE				
ED V	OXY ML/L	6.96 6.98 6.38	24.05	2.57 2.19 1.79 1.10	S	02 WIN 3 DIR				
ND COMPUT	POT ENERGY	0.00	0.37	3.99 5.74 7.72 12.36	ED VALUES	04 WEA SEA				
ATED A	DPOT	000000000000000000000000000000000000000			OBS ERVI	NDG 23	SATN	0000 0000 0000	102 102 84 62	4421
NTERPOL	VOL GE	2600 88wn		94.0 94.0 94.0 94.0 94.0	030	CLR S	GEN -	-0.029 -0.027 -0.029	-0.021 0.0091 0.214	0.281 0.318 0.333
4I 6	T SP V	4400	2232	2462	ATION (125-18 87 WTR	HGA/L	0.579 0.580 0.580	0.572 0.560 0.472 0.354	0.289 0.259 0.251
TION 029	SIGMA-	24.54 24.69 24.69	25.47 25.966 26.294	26.51 26.65 26.74 26.89	OS1 ST/	RELHU E(S) 2	#./-	0000 4444 8860	66.40 3.24 3.24 3.24	3.24 2.90 2.81
OSI STAT	E(S)	0000	0.0000	0000	CRUISE (44-42 N ET 8-9 WIRE ANGL	SIGMA-T	25.18 25.21 25.19 25.19	25.18 25.19 25.69 26.03	26.25 26.41 26.52
CRUISE (SAL	31.844 31.851 32.011 32.349	33.058 33.267 33.522 33.812	33.938 34.938 34.010 34.055	OSHAWA	3.3 LAT V 10.0 WE	SAL	32.784 32.802 32.788 32.794	32.784 32.786 33.188 33.536	33.871 33.918
OSHAWA	E(T)	0000	0000	0000	CNAV	HR 1 EMP DR	TENP	0.00	0.37 0.36 9.20 8.80	8.53 8.00 7.46
CNAV 0	TEMP	9.84	9.40 9.26 9.26 9.50	7.08 5.40 5.42 7.42		9/03/63 22- TYPE	ЕРТН	0266	28 70 94	1117 141 164
	DEP TH	3700	50 100 150	4 W N N O O O O O O O O O O O O O O O O O		DATE 1 BAROM CLOUD	CST D			meted

	VAR	1.00 0.85 0.96	0.85 0.77 0.71 4.70
UES	E(0)	0000	0000
COMPUTED VALUES	OX Y	0000 4444 8080	5.00 2.70 2.83
AND COMPUT	POT ENERGY	0.00	0.36 0.76 2.35 35
NTERPOLATED A	GEOPOT	0.000 0.029 0.057 0.085	0.204 0.257 0.356
030 INTERPO	SP VOL ANOMALY	280.4 278.9 279.0 280.8	274.6 224.6 194.7 160.7
STATION 030	SIGMA-T	25.17 25.19 25.19 71.25	25.24 25.77 26.09 26.46
	E(S)	0000	0000
CRUISE OS1	SAL	32.784 32.788 32.793	32.828 33.268 33.608
SHAWA	E(T)	0000	0000
CNAV OSHAWA	TEMP	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	10.22 9.08 8.74 7.78
	DEPTH	9000	50 100 150

BIOLOGICAL DATA LONG 125-29 W CNAV OSHAWA CRUISE OSI STATION 30A DATE 19/03/63 LAT 44-44 N

SAL PRODUCTIVITY LAB-I DECK-I DEPTH CHL-A

32.06 32.16

1.60

INCUMING SOLAR RADIATION - AM 190 PM 166 32.536

THE SECOND PRODUCTIVITY VALUE WAS INCUBATED AT 50 PERCENT LIGHT INTENSITY INSTEAD OF 100 PERCENT MESSENGER TIME 0625

W 18

	8						
	'EL 25 DIR 20 SWELL 3 DIR						
	WIND V DIR 22						
VALUES	WEA 50 SEA 3						
OBS ERVED	NDG 2834 Secdi	SATN	105 104 104 104	106 104 70 70	3440	32 12 4	641
031 (Z W SF	YGEN -	0.030 0.024 0.024 0.024	0.031 0.024 0.046 0.166	0.27 0.30 0.30 0.30 0.30 0.30 0.30	0000	0.597
STATION (125-4 99 WT 0•22	HGA/L	0000	0.581 0.581 0.398	0.294 0.267 0.243 0.189	0.191 0.023 0.023	0.057
081 81	RELHU LE(S) 1	71.1	64.00 64.00 64.00	6.50 6.50 6.60 6.60 6.60	3.29 2.99 2.12 2.12	2.14 0.84 0.26	25.
CRUISE	T 44-42 N WET 10.0 WIRE ANG	SI GMA-T	25.10 25.11 25.11 25.11	25.10 25.12 25.48 25.48	26.20 26.34 26.37 26.37	26.72 26.98 27.20 27.33	27.53
OSHAWA	5.6 LA Y 10.0	SAL	32.598 32.605 32.610 32.606	32.601 33.609 33.505	33.758 33.836 33.839	33.980 34.124 34.279 34.370	34.502
CNAV	63 HR 1 TEMP DR	TEMP	10,01	10.01 9.94 10.03 9.38	8.78 8.30 8.09 7.60	9.35 3.34 3.34 3.34	2.72
	E 19/03/ OM 21 UO TYPE	DEPTH	0900	646 646 646	123 168 184 187	282 472 7112 952	1434
	DATE BARD CLOU	CST			1110N	7777	~~

	CNAV	AMAHAO	CRITCE OC	CTA	TTON 031	TNTEPD	A DATED A	THOMOS CA	E	HEC	
DEPTH		E (T)	SAL	E (S)	IG MA-	VOL	GEOPOT	POT		E(0)	VAR
000	10.01	000	32.598	000	25.10	287.3 286.6 286.6	0.00			000	-
	0.0	0	2.59	00	2	87.	00	•••	י מור	00	6.
0000	10.00 0.00 0.00 0.00 0.00 0.00 0.00		33.114 33.519	0000	2021 2020 2020 2020 2020 2020 2020 2020	250.6	00.212	00-10 00-10 00-10 00-10	0040 4 0 m 0 2 4 0 v		0000
0	. W	. 0	3.91	00	6.5	54.	• 50	. 6	, 0	0	. 2
4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.23 5.53	0000	33.958 33.995 34.072	0000	26.66 26.75 26.90	142.5 134.4 121.2	0.524 0.594 0.723	5.72 7.68 12.29	1.93 1.39	0.00	1.10 0.96 0.75
0000 0000 0000	2444 096 000	0000	34.213	0000	27.01 27.11 27.19	1111 102.7 25.4	0.840 0.948 1.048	17.69 23.79 30.46	0000	0000	0000
000	979	000	444	000		000	31		140	000	0.00

VALUES	WEA 01 WIND VEL 20 DIR 22 SEA 3 DIR 22 SWELL 3 DIR 27						
OBSERVED VALUES	SNDG 2834 SECDI	SATN	105	105	103	∞ ∙	844
	-4	GEN -	-0.029 -0.034	-0°026	-0.016	217	0.294 0.322 0.344
STATION 032	3 126-01 W 99 WTRCLR 0	- OXYGEN	0.582	0.580	0.569	.35	0.275 0.250 0.235
OS1 ST	RELHU E(S)	FL7.	6,52 6.58	6.49	6.37	40	3.08 2.63 5.63
CRUISE	44-45 N ET 11.1 WIRE ANGI	SIGMA-T	25.07	5.1	25.15	6.0	26.26 26.36 26.50
CNAV OSHAWA	19-3 LAT	SAL	32.626	2.63	32.721	3.05	33.798 33.877 33.964
CNA	63 HR 1 TEMP DR	TEMP	10,30	0.5	10.19	, ,	8.61 8.34 7.85
	19/03/ M 22° D TYPE	DEPTH	owc	20	000	100	125 150 175
	DATE BAROA CLOU	CST		-			end producted

BIOLOGICAL DATA INCOMING SOLAR RADIATION - AM 190 PM 166 WATER COLUMN VALUES CNAV OSHAWA CRUISE OSI STATION 032 32.631 32.666 32.650 32.712 SAL 466.58 27.32 27.60 6.80 0.00 PRODUCTIVITY LAB-I DECK-I MESSENGER TIME 1119 64.65 CHL-A DEPTH

(a)

	VAR	1.12	
UES	E(0)	0000	0000
COMPUTED VALUES	OXY #L/L	6666 94987	45.00 45.00 45.00
AND COMPUT	POT ENERGY	0000	
ERPOLATED	GEOPOT	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.212
INTER	SP VOL ANOMALY	289.9 289.3 287.9	282 251.9 202.7
STATION 032	SIGMA-T	25.03 25.08 25.10 25.15	25.16 25.16 26.01 26.36
OSI STA	E(S)	0000	0000
CRUISE 0	SAL	32.626 32.616 32.638 32.704	2888 2007 2008 1008 1008 1008 1008 1008 1008 1008
SHAWA	E(T)	0000	0000
CNAV DSHAWA	TEMP	10.30	10.20 9.82 9.00 8.34
	ОЕРТН	3000	10050

VALUES	WEA 03 WIND VEL 25 DIR 22 SEA 2 DIR 22 SWELL 3 DIR						
OBS ERVED	NDG 2743 SECDI	SATN	107 108 107 107	107 104 104 80	1074 1074 1076	151 24 34	13 13 13 13 13
033 (CLR S	GEN -	0.039 0.041 0.041	0.039 0.025 0.111	0.219 0.313 0.313	0.408 0.517 0.601 0.616	0.601 0.534 0.539 0.518
ATION 0	126-35 99 WTR 0,27	HGA/L	0000 0000 0000 0000 0000	00.000	000000000000000000000000000000000000000	0.187 0.094 0.027 0.021	0.0054 0.1298 0.1529
OS1 ST	RELHU E (S)	HL/L	6.64 6.64 6.59	5.44.6 5.08 0.08	3.91 2.97 2.97	2.09 1.05 0.30 0.24	0.61 0.99 1.44 1.70
CRUISE (44-44 N	SIGMA-T	255 255 255 255 255 255 255 255 255 255	25°10 25°13 25°21 25°74	26.04 26.23 26.43 26.43	26.70 26.91 27.33	27.55 27.62 27.67
V OSHAWA	22.7 LAT RY 11.1 W	SAL	32.650 32.648 32.653 32.654	32.664 32.676 32.741 33.240	33.545 33.752 33.878 33.921	33.998 34.090 34.369	34.514 34.560 34.590 34.624
CNAV	6 AMT 8	TEMP	10.35	10.31 10.21 10.02 9.12	8.78 8.54 7.71	5.56 3.71	2.69 2.25 1.95 1.80
	19/03/ M 200 D TYPE	DEPTH	70000	30 75 100	155	445 442 442 442	1380 1674 1969 2266
	DATE BAROI CLOU	CST		.4444	4 400	2222	2222

	VAR			1.34 0.89 0.91 76	0.75	0.93 0.88 1.10
UES	E(0)	0000	0000	0000	0000	0000
ED VAL	OXY ML/L	6.56 6.56 6.59 6.59	93.66 2005 74.00 74.00 74.00 88.00	2.59 1.85 1.26	00.25	00.02
AND COMPUT	POT ENERGY	0000	0.37 0.833 2.69	4.18 5.89 7.86 12.53	18.05 24.18 30.75 37.76	53.10 69.86 96.96 147.40
OLATED	GEOPOT Anomaly	0000	0.146 0.217 0.384 0.384	0.468 0.542 0.612	0.852 0.971 1.070 1.161	1.328 1.476 1.673
INTERP	SP VOL ANOMALY	288.9 288.2 289.4 287.8	285.7 278.3 227.8 182.0	152.4	113.5 102.2 93.1 87.1	77.6 69.2 59.9 51.3
ATION 033	SIGMA-T	2255 2255 255 255 255 255 255 255 255 2	25.13 25.21 26.23	26.55 26.67 26.87	26.99 27.21 27.28	27-39 27-48 27-58 27-67
OS1 STA	E(S)	0000	0000	0000	0000	0000
CRUISE 0	SAL	32.653 32.653 32.653 52.664	32.676 32.741 33.240 33.752	33.949 33.991 34.018	34.137 34.219 34.290 34.338	34.411 34.472 34.536 34.593
SHAWA	E(T)	0000	0000	0000	0000	0000
CNAV OSHAWA	TEMP	10.35	10.21 10.02 9.12 8.54	7.44 6.35 5.76	3.44.6	3.03 2.05 1.949 93
	DEP ТН	0000 3000	50 100 150	200 2250 400 400	500 600 700 800	1000 12000 2000 2000

	30					76				
	25 DIR 20 ELL 4 DIR							VAR	0 • 88 0 • 0	0000 0000 0000 0000 0000
	D VEL 20 SW						ALUES	E(0)	0000	0000
S	50 WIN 3 DIR						>	OXY ML/L	5.90 6.33 6.13	6.29 3.72 2.91
D VALUE	1 WEA SEA						D COMPUTE	POT ENERGY	0000	0.37 0.82 2.55 54
OBS ERVE	NDG 287 SECDI	SATN	108 899 102	101 991 60	4.40 8000		ATED AN	OPOT OMALY	0059 0059 0059	
034	Z W S RCLR	YGEN -	-0.043 0.062 0.030	0.008	0.295 0.343 0.318		NTERPOL	VOL GE	3.1 00	24: 24: 24: 0000
ATION C	127-12 99 WTR	MGA/L	0.599 0.495 0.527 0.566	0.550 0.563 0.3663	0.271 0.228 0.262		1	T SP V	2222	22.02.1
0S1 ST	RELHU E(S) 1	ML/L	5.54	6.16 6.30 5.67	3.03		TI ON 03	SIGMA	25.09 25.14 25.10 25.10	25.16 25.21 26.02 26.33
CRUISE	44-42 N T 1000 IRE ANGL	SI GMA-T	25.09 25.11 25.14 25.14	25.14 25.17 25.15 25.97	26.23 26.32 26.44		SI STA	E(S)	0000	0.006 0.0014 0.003
DSHAWA	-2 LAT 10.0 WE VIS 6 W	SAL	32.590 32.590 32.638 32.579	32.614 32.649 32.617 33.378	33.805 33.845 33.864		CRUISE O	SAL	32.590 32.638 32.580 32.617	32.641 32.672 33.451 33.840
CNAV	3 HR 03 TEMP DRY	TEMP	10.00 9.91 9.92 9.94	9.84 9.83 9.78 8.37	8.86 8.46 7.75		USHAWA	E(T)	0000	0000
	20/03/6 16 19PE	DEPTH	0400	24 24 97 97	121 146 170		CNAV	TEMP	10 9 9 9 9 8 4	0000 0000 0000 0000
	DATE BAROM CLOUD	CST						DEP TH	30000	50 100 150

VALUES	WEA 81 WIND VEL 24 DIR 20 SEA 3 DIR 20 SWELL 3 DIR 27					77	
OBSERVED	VDG 2852 SECDI	SATA	105 105 104	102 102 94 94	12 22 22	4.4 Öñ.aw	13
35	CLR SN	GEN -	-0.026 -0.026 -0.034	-0.022 -0.014 -0.014 0.035	0.167 0.239 0.249 0.282	0.5989 0.5989 0.6988	0.601
AT ION 0	127-25 99 WTR 3.27	FGA/L	0.580 0.581 0.588	0.576 0.569 0.569 0.538	00.9442	0.239 0.097 0.036 0.021	0.054
OS1 ST	RELHU E(S) 1	F.7.	6.50 6.50 6.58 6.58	6.37	33.38	2.68 0.40 0.24	0.61
CRUISE	44-44 N ET 10-0 WIRE ANGL	Si GMA-T	25.06 25.09 25.09	25.07 25.10 25.09 25.42	25.97 26.32 26.34 26.34	26-71 27-02 27-18 27-35	27.54
OSHAWA	6.6 LAT Y 10.0 W	SAL	32.593 32.615 32.623 32.595	32.593 32.612 32.598 32.734	33.310 33.592 33.724 33.830	33.936 34.041 34.212 34.377	34.507
CNAV	63 HR OCT TEMP DRY	TEMP	10.19 10.15 10.17	10.05 10.05 10.06 8.64	7.99 7.65 7.65	6.22 3.65 3.65 5.05	2.69
	20/03/ 15 TYPE	ОЕРТН	0406	9340	121 146 161 183	277 463 697 932	1402
	DATE BAROM CLOUD	CST			7777	2222	77

	VAR	0.98 88 88	0000	1.32 1.07 0.94	0.093	000 488 486
UES	E(0)	0000	0000	0000 4000	0000	0.00
ED VAL	OXY ML/L	0000 4044 0870	66 W W W W W W W W W W W W W W W W W W	3.19	0000	0.25
IND COMPUT	POT ENERGY	00.00	0.37 0.84 1.44 2.79	4.31 6.07 8.03 12.51	17.67 23.53 30.14 37.36	52.95 69.86 97.36
POLATED A	GEOPOT	00000	0.146 0.219 0.395	0.481 0.557 0.752	0.865 0.969 1.067	1.331
INTER	SP VOL ANOMALY	290 290 290 290 242	288.2 287.8 251.4	158.1 133.1 16.1 16.1	1005 999°9 999°9	78.1 70.0 61.0
ATION 035	SIGMA-T	25.06 25.09 25.07	25°10 25°11 26°26 26°26	26.49 26.64 26.76 26.94	27.13 27.13 27.13	27.57
OSI STA	E(S)	0000	00000	0000	0000	000 000 000 000 000
CRUISE 0	SAL	32.623 32.623 32.594 32.594	32.610 32.598 32.802 33.631	33.9371 33.936 34.052	34.139 34.214 34.289	34.405 34.470 34.523
SHAWA	E(T)	0000	0000	000000000000000000000000000000000000000	0000	0.00
CNAV OSHAWA	TEMP	10.19	10.06 9.95 7.76	7.00.4 5.00.4 7.00.4	4.04.0 3.09.0 8.09.0 8.09.0	3.51
	ОЕРТН	3000	50 100 150	2200 4000 4000	8 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1200 1200 1500

All Parks

	PIO 5						
	42 WELL						
	VEL S						
	IND R 19						
	MIC						
S	0 Z						
VALUES	WEA SE						
	6						
ERVED	277	Z	2220	153	40		
BS	DG SEC	SA	0000	000	8~		
0	S	٥٥	114	100	75		
96	1 2	MA	0000	000	00		
03	-54 WTRC	OXYG /L	666 - 666 - 672 -	652	84		
ATION	128	MGA	0000	000	4.0		
STA	LONG LHU S 1 23	•	440W	400	215		
_	W-	7.7	6000	6.9	4.0		
081	N NGLE	F	800-8080	20120	mæ		
CRUI SE	N 04	MA	0000	0000	5.73		
CR L	44-4 ET WIRE	SIG	2222	2222	26		
4	LAI		2000 0	4681	20		
OSHAWA	4	SAL	0000	2000	3.0		
	47		MMMM	പയയയ	ww		
CNAV	Ä P	₫.	27 27 29 28	2788	19		
	S3 TEM	16	0000	0000	9.		
	03/6 PE	H	ONO®	8968	v 80		
	207 04 17	DEP	_	N4.00	13		
	ROM	-					
	BA CL	CS					

BIOLOGICAL DATA INCOMING SOLAR RADIATION - AM 48 PM 40 THE SECOND PRODUCTIVITY VALUE WAS INCUBATED AT 50 PERCENT LIGHT INTENSITY INSTEAD OF 100 PERCENT CNAV OSHAWA CRUISE OSI STATION 036 32.630 4-42 PRODUCTIVITY LAB-I DECK-I MESSENGER TIME 0635 DEPTH CHL-A 0.30

	VAR	c	1.04	0.82
UES	E(0)	000	000	000
COMPUTED VALUES	OXY MC/L	64	6.35	00°0 00°0 00°0
AND COMPUT	POT ENERGY		0.06	0.37
LATED	DA	000	00.	0.146 0.219 0.290
۵	OMA OMA	288° 289°3	88	286.9 292.4 269.8
STATION 036	25.00	25.08	20.0	25.06 25.30 25.30
S	C	000	00	0.012
CRUISE OS1	2.63	32.635	2.64	32.612
SHAWA E(T)	•		• 6	0.00
CNAV OSHAWA TEMP E(T)	0.5	100.29	0.2	10.31 9.51
DEPTH	0	200	20	100

	WIND VEL 15 DIR 33 DIR 32 SWELL 4 DIR							
VALUES	WEA 18 SEA 2							
OBSERVED	NDG 2697 SECDI	SATN	103	103	103 102 101 94	8668 7604 7	4M 0N44	10 16 22
37	CLR S	GEN -	-0.019	-0.016	-0.0015 -0.0011 -0.0033	0.089 0.237 0.232 0.268	0.364 0.534 0.611 0.620	0.591 0.561 0.524
ATION O	129-34 WTR 0.13	- OXY	0.573	0.570	0.564 0.564 0.561 0.537	0.377 0.354 0.354	0.023	0.068 0.104 0.146
OS1 ST	RELHU E(S) 10	#./-	6.42	6.38	6.37 6.32 6.28 6.01	39.62	2.04 0.26 0.26	0.76
CRUISE	ET WIRE ANGL	SI GMA-T	25.07	20	25.10 25.10 25.10 25.10	25.89 26.27 26.38 26.53	26-73 27-24 27-24	27.58 27.65 27.70
OSHAWA	0.0 LAT Y 7.8 W	SAL	32.592	2.62	32.629 32.632 32.655 32.751	33.076 33.606 33.728 33.875	33.939 34.100 34.279 34.401	34.530 34.582 34.612
CNAV	'63 HR 2 TEMP DR	TEMP	10.16	0.1	10-17 10-18 10-25 8-89	7.24 7.54 7.154	3.925 3.992 5.992	2.04
	20/03/ M 06. D TYPE	DEPTH	owc	20	0440 0440	123 168 193	290 486 730 978	1776
	DATE BAROI CLOUI	CST		-		7-72	2222	222

CNAV OSHAWA CRUISE OSI STATION 037 A PRODUCTIVITY LAB-I DECK-I
3.06 1.78 0.30
38.68 - WATER COLUMN VALUES
MESSENGER TIME 1202 INCOMING SOLAR RADIATION - AM 48 PM 40

						- ((
	CAAV	SHAMA	CKUISE	USI SEA	110N 037	INIERP	ULATED A	IND COMPUT	ED V	ALUES	
ОЕРТН	TEMP	£(T)	SAL	E (S)	SIGMA-T	SP VOL ANDMALY	GEOPOT	POT ENERGY	OXY ML/L	E(0)	VAR
9700	10.16 10.17 10.18	0000	32.592 32.628 32.628	0000	255.07 255.09 255.09	290.1 289.2 288.2 288.1	0000	0000	6666 4666 4867 4867	0-00	1.13
100 100 100 100	10.20 10.21 8.81 7.54	0000	32.632 32.656 32.760 33.624	0000	25.09 25.11 26.28	288.7 287.7 258.6 177.2	0.146 0.218 0.287 0.397	00.00 20.00	6.32 6.00 4.18	0000	0000
4 M 2 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79.00 94.00 97.00	0000	33.894 33.963 33.947 34.028	0.0010	26.56 26.70 26.75 26.92	151.4 139.0 133.9 118.6	0.553 0.622 0.449	4.28 5.97 7.91 12.45	3.51 2.50 1.69	0000	1.12 1.20 0.98 0.76
\$000 \$000 \$000	44.6 94.1 801 408	0000	34.111 34.189 34.259 34.318	0000	27.05 27.14 27.22 27.28	106.6 98.4 92.2 86.6	0.863 0.966 1.063	17.67 23.51 36.93	0000 0000 7400 0100	0000	0000
1000 1500 2000	22.040	0000	34.409 34.409 34.535	0000	27.40 27.59 27.59	200 200 200 200 200 200 200 200 200 200	1.318 1.465 1.960	52.08 68.64 95.48 145.09	00.27	0000	0.98 0.89 2.87 7.87
2500	1.79	0.00									7.54

	36					04	
	R 03						
	011						
	L 28 SWEL						
	VE						
	IND R 02						
	MO						
ES	A 4						
ALU	WEA						
OBSERVED VALUES	09					o	
ERV	25(N L	0000 6000	0000	888 881 940	ระ เกิกขอ	12
088	NDG SE	S		and and only and			
	S	_ 00	018 018 027	0 1 0 0 2 0 0 1 7 0 0 9	068 114 119	347 514 600 618	604 582
038	Z K	GEN	ဝုဝုဝ	9000	ဝိဝိဝိဝ်	0000	ဝင်
N	8-46 WTR	ACKY	84 84 81 81	3000	2432	247) 52 080
STATION	128 99 1,32	HG.	ဝဝဝဝ ကိုယ်လိုက်	ວວວວ ພະບະນະ	0000	0000	00
ST	ONG HU2	17	2440	5000	41 41 91 91	7444	58 90
150	REL E (S	ıξ	0000	8000	~~~~	2400	00
ш	N N N N N N N N N N N N N N N N N N N	-	00	waar	8m26	4000	22
S I O	7-14	GMA	555	שהייי	25.1 26.1 26.1	6.6 7-1	7.5
S	T 46 WET	SI	7777	2020	MINIMIN	4444	77
AMA	A 8.0	ب.	521 514 530 538	5485 5485	95.19 2.19 504	938 060 340	483 564
OSHAW	.4.7 VIS	SA	322.	32.	99992 99992	334	34.
CNAV	08 Y	_					
ວ	AM T	TEMP	9.61 9.63 9.63	9,66 9,53 9,45 9,36	7.35 6.71 6.80 6.80	6. 71 5. 86 3. 67	2.26
	/63 TE		0.0.0.0	0.0.0.0	1-000		
	/03, 5°E	PTH	0000	8770 800 800 800 800	1350	0000 0000	33
	21 0 H 0 T	DE			-	N400	13
	AROLOU	TS.	mmmmi	,	777	กกกก	77
	മയ	J					

	CNAV 0	OSHAWA	CRUISE	OS1 STA	TI ON 038	INTERP	POLATED A	NND COMPUT	ED VAL	.UES	
ОЕРТН	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT ANOMALY	POT ENERGY	OXY MC/L	E(0)	VAR
3700	9.61	0000	32.521 32.531 32.541 32.561	0000	255-11 255-11 25-11 3-13	286.8 286.6 286.6 286.6	0.000 0.029 0.058	000000000000000000000000000000000000000	6.51	0000	00.00
\$000 1000 1500	9.52 9.52 6.80 78	00000	32.541 32.521 32.655 33.286	0.000	25.13 25.34 26.13	284.8 286.6 266.4 192.1	0.144 0.216 0.286 0.402	00.00 00	6.50 6.50 5.27 5.35	000000000000000000000000000000000000000	0.45 0.75 0.71 0.75
0000 0000 0000	6.79 6.57 6.51	0000	33.693 33.916 34.013	0.0018 0.0030 0.0301	26.44 26.62 26.72 26.83	162.7 146.0 137.5	0.491 0.569 0.640	4.48 6.27 8.28 13.07	4.23 2.99 2.17	0000	1.40 0.91 0.77
8 4 6 00 0000 0000	4 4 8 6	0000	34.103 34.235 34.292	0000	26.94 27.19 27.19	1118.4 105.8 95.4 88.7	0.898 1.011 1.113 1.206	18.79 25.16 31.93	00.74	0000	0.75 0.71 0.82 0.59
1000 1200 1500	2.96	000	34.380	000 000 4000	27.37	78.8	1.376	54.69 71.70 99.04	0.28	0000	0.92

	78					
	IR 1					
	5 [[
	SWE					
	D VE					
	Z Z					
٠,	62 4 D					
VALUES	SEA					
	3					
OBSERVED	2743	I Z	4400	ั ช ุดคง	0~98	490
BS EI	SNDG	SA	0000	0006	900	102
0	S	9	321	24	1289	92
39	CER	Z	0000	0000	0000	900
N 03	-37 ETR	OXYG!	833	886	5000 0000	453 66
STATION	127	HGA	0000	0000	0000	000
STA	ONG HU 5) 23	14	5553	92126	746 545 56	26 47 74
051	RELIS	, <u>₹</u>	0000	0000	4M-0	000
SE 0	NG L	1	4111m	W4.0V	40mr	400
CRU1S	6-14 RE À	I GMA	25.1 25.1 25.1 25.1	25.1 25.1 25.1 25.3	25.9 26.3 27.0	27.2
5	THE TENT	S		14.4.4.4		
AHA	ه. ۲	رپ	532 515 532	523 523 523 582 582 582 582 582 582 582 582 582 582	301 670 992 145	294 477 533
CNAV OSHAWA	2-3 Y VIS	SA	32.	32.		344
NAV	R 08 8	۵	~ 0 C =	1087	2000	621
J	AE	TEM	4440	9.60	8.1 5.5 4.5	2.5
	3/63 E	I				
	1/0 97 1 Y P	EPT	000	448 446 446 446 446 446 446 446 446 446	1115 138 402 617	834 270 533
	16 2 10 M	0				
	DAT	CS T				222

	VAR	0.97 0.98 0.93	0.82 0.72 0.67 1.48	66.0	0000	0.90	
AL UES	E(0)	0000	0000	0.01	0000	0000	
ED V	OXY ML/L	0000 0000 0000 0000	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.20# 2.82# 2.46# 1.77	1.15 0.63 0.37	0.26	
AND COMPUT	POT ENERGY	0.00	0.37 0.83 1.42 7.1	4-12 5-81 7-75 12-39	18.04 24.43 31.44	55.35 72.99 101.06	SO ING.
OLATED	GEOPOT	000000000000000000000000000000000000000	0.144 0.282 0.386	0.466 0.541 0.612	0.866 0.980 1.085	1.361 1.518 1.721	200° 2
INTERP	SP VCL ANOMALY	283.8 285.5 284.6 284.6	284.4 281.8 248.5 165.5	153.2 142.7 134.2 126.5	107-6 1007-8 1000-4	82.1 72.5 61.4	OXYGEN AT
TION 039	SIGMA-T	25.14 25.12 25.13 25.13	25.14 25.17 25.52 26.40	26.51 26.62 26.71 26.84	26.95 27.05 27.14 27.21	27.35	CAUSE OF
SI STA	E (S)	0000	0.000	0.009	0000	000000000000000000000000000000000000000	OF SALI
CRUISE O	SAL	32.532 32.512 32.534 32.534	32.522 32.534 32.886 33.764	33.785# 33.840# 33.890# 34.003	34.068 34.135 34.205 34.272	34.379 34.457 34.528	D VALUES UNREASON
SHAWA	3	0000	0000	0.17	0000	000	OLATE
0	W	0000					90
CNAV	TEMP E	9.50 7.44.0 9.50	7.40 7.40 7.40 7.40	6.08 5.93 5.93 5.91	24.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.70	-INTER
> Y N	EMP	7440	4774	876°C	-30C	227	INTER

	27									
	10 DIR 27 ELL 3 DIR							VAR RATIO		0.95 0.94 1.04
	ND VEL						.ues	E(0)	0000	0000
	2 DIR						ED VAL	OXY ML/L	6000 6000 6000	9400 2004 2004
D VALUES	WEA O						D COMPUT	POT ENERGY	0.0000000000000000000000000000000000000	0.37 0.83 2.58
OBSERVED	SNDG SECDI	SATN	5 103 4 105 1 104	1 104 0 103 7 101 3 66	3 2 4 5 6 5 6		ATED AN	EOPOT	0.0000000000000000000000000000000000000	0.145 0.216 0.378 0.374
ON 040	-28 W WIRCLR	OXYGEN /	80 90 10 10 10 10 10 10 10 10 10 10 10 10 10	86 -0.02 84 -0.02 73 -0.00 79 -0.19	23 0.25 87 0.29 62 0.32		INTERPOL	P VOL G NOMALY A	285.4 285.4 285.9	286.9 279.0 211.6 169.0
1 STATIO	L DNG 126 ELHU 99 (S) 10	HL/L MGA	6.649 6.661 6.600 6.560 6.560 6.560 6.560	6.56 0.5 6.54 0.5 6.242 0.3	3.62 0.3 3.21 0.2 2.93 0.2		ON 040	IGMA-T S	25.11 25.12 25.12 25.12	25.11 25.20 25.91 26.37
CRUISE OS	46-14 N I 78 R IRE ANGLE	SIGMA-T	25.11 25.11 25.12 25.12	25.12 25.12 25.12 25.13	26.22 26.36 26.48		S1 STATI	E(S) S	0000	0000
OSHAWA	6.3 LAT Y 15.7 W	SAL	32.482 32.480 32.482	32.486 32.486 32.531 33.321	33.651 33.798 33.882		CRUISE O	SAL	32.482 32.482 32.487	32.5480 32.560 33.340 33.802
CNAV	3 HR OTEMP DR	TEMP	9999	8999 8999 8999	8.09 7.91		OSHAWA	E(T)	0000	0000
	22/03/6 12 17PE	ЕРТН	2002	946	124 149 174		CNAV	TEMP	9999 9989	9.36
	DATE 2 BARON CLOUD	CST D						DEPTH	3000	50 100 150

VALUES	WEA 02 WIND VEL 3 DIR 36 SEA 2 DIR 27 SWELL 3 DIR 27					89	
OBSERVED	VDG 2743 SECDI	SATN	103	103 103 78	3422 3422 3422 3422 3422 3422 3422 3422	103	15
041	CLR SN	GEN -	-0.019 -0.022 -0.022	-0.017 -0.020 -0.011 0.125	0.209 0.261 0.336 0.396	0.461 0.558 0.607 0.614	0.597
ATION	125-54 99 WTR 0.15.15	F OXY	0.583 0.579 0.586	0.581 0.583 0.573	0.367 0.316 0.243 0.189	0.063	0.060
OS1 ST	RELHU LE(S)	#./L	66.0 64.0 66.0 66.0 66.0 66.0 66.0 66.0	6.53 6.53 5.01	3.54 2.72 2.12	1.58 0.70 0.28 0.30	0.67
CRUISE (46-14 N ET 8.9 WIRE ANG	SIGMA-T	255.06 255.04 255.03	25.04 25.05 25.13	25.96 26.14 26.35 26.54	26.79 27.02 27.23 27.41	27.55
OSHAWA	9.3 LAT Y 8.9 W	SAL	32.428 32.407 32.402 32.406	32.408 32.422 32.536 33.032	33.334 33.546 33.784 33.924	34.023 34.135 34.292 34.443	34.509 34.610
CNAV	63 HR O TEMP DR	TEMP	90.00	9.55 9.55 9.55 9.55	8.22 8.07 7.91 7.35	6.14 4.13 3.57	2.58
	22/03/ M 13 D TYPE	ОЕРТН	20000	1000	125 175 194 194	290 725 967	1450
	DATE BARDI CLOU	CST				2400	44

	CNAV OSHAWA	SHAMA	CRUISE	OS1 STA	TATION 041	INTERP	OLATED A	ND COMPUT	ED VAL	UES	
ОЕРТН	TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VOL Anomaly	GEOPOT Anomaly	POT Energy	OXY ML/L	E(0)	VAR RATIO
3000	44.00 44.00 47.00	0000	32-428 32-402 32-406 32-406	0000	255.00 255.00 255.00 64	291.0 293.6 294.0 293.8	00000	00000	6666 50000 50000	0000	
1000 1000 1000	9.52 8.60 8.07	0000	32.422 33.632 33.632	0000	25.05 25.13 26.14	292°7 285°6 235°4 190.4	0.148 0.221 0.287 0.394	0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	9000 0000 0000	0000	
4920 0000 0000	7.54 6.52 5.31	00000	33.941 34.028 34.030 34.093	0.007 0.029 0.001 0.005	26.57 26.80 26.80	150-3 134-9 129-4	0.480 0.552 0.618 0.743	5.09 7.83 12.26	11.00.00 0.00.00 0.00.00	0000	1.10 0.98 0.98
\$200 \$000 \$000	4.0 4.0 3.0 4.0 4.0 4.0 4.0	0000	34°146 34°210 34°375 34°343	0000	27 - 04 27 - 13 27 - 21 27 - 29	108.3 100.2 93.0 86.1	0.856 0.961 1.059	17.49 23.43 29.94 36.90	0000 2440 2000 2000	0000	0.92 0.886 0.886
1000 1200 1500	23.00	000	34.450 34.486 34.517	0.005	27.42 27.49 27.51	74.6 68.3 61.3	1.312	51.84 68.16 95.43	0.31	000	0.96

23	91
DIR.	_
DIR	AAR ATIO
SW E L	∝
ND VE	ALUES F (0) 6 0.00 3 0.00 3 0.00 6 0.00
30	> >> 4mm mm-0
UES A 02 EA 2	T > 00.04 8000 H C = 0.040 Ω Ω 0.040 0.0
VALUE SEA SEA	N
ERVED 2195 003 33 33 34 44 55 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A N D N D N D N D N D N D N D N D N D N
NDG 2 NDG 2 S A T S A T 1033 1034 1044 1452 4452	TED MALY 0000 0900 3882 382
100 100 100 100 100 100 100 100 100 100	A A COOO COOO COOO COOO COOO COOO COOO
0 0 × × × × × × × × × × × × × × × × × ×	8465 HV
NAN LUNUN WWWN DO Y	SP
S T S T S T S T S T S T S T S T S T S T	042 000 000 000 001 153 37
OS 1 RELEGIES OS 05 05 05 05 05 05 05 05 05 05 05 05 05	SUN
A 4 1 1100 0100 1000 0100 0100 0100 0100	V 0000 0000
SI GA 25 CRUI	E (S
SHAWA 6 LAT 1 S 7 W 1 S 7 W 1 S 7 W 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	CRUIS SALANDA WWWW WWWW WWWW WWWWW
CN AV 3 B S S S S S S S S S S S S S S S S S S	A - 0000 0000
MA H 0000 0000 W/Y	H W 0000 0000
22/03/ 12° E TYPE OEPTH 0 20 20 20 105 125 175	CNA
C C C C C C C C C C C C C C C C C C C	DEPTH 10 20 30 30 100 150

BIOLOGICAL DATA CNAY OSHAWA CRUISE OSI STATION 42A

DATE 22/03/63 LAT 45-14 N LONG 125-24 W

SAL

PRODUCTIVITY LAB-I DECK-I DEPTH CHL-A

19.12

1.07

32.295

INCOMING SOLAR RADIATION - AM 155 PM 163

THE SECOND PRODUCTIVITY VALUE WAS INCUBATED AT 50 PERCENT LIGHT INTENSITY INSTEAD OF 100 PERCENT MESSENGER TIME 0630

	2.1						
	DIR 06 2 DIR						
	VEL 10 6 SWELL						
	WIND DIR O						
VALUES	WEA 03						
BSERVED	06 1518 SECDI	SATN	1004 1005 1005	105 105 88 66	4420 4430	28 11 4	6
043 0	CLR SN	GEN -	0.022 0.028 0.027	-0.027 -0.026 0.070 0.194	0.239 0.291 0.312 0.336	0.554 0.603 0.614	0.595
ATION	125-06 78 WTR 0, 4	HGA/L	0.584 0.592 0.590 0.588	0.00 0.589 0.498 0.884 0.884	0.341 0.293 0.273 0.255	0.170 0.065 0.028 0.027	0.058
OS1 ST	RELHU LE(S)	ポル	6.57 6.63 6.58 5.88	6.61 6.60 4.38	23.00 23.00 856 856	1.90 0.31 0.30	0.65
CRUISE	46-12 N ET 6.1 WIRE ANG	SIGMA-T	22.44 22.44 24.86 24.85 24.85 24.85			26.77 27.01 27.23 27.41	27.53
OSHAWA	5.8 LAT Y 7.8 W	SAL	32.174 32.172 32.165 32.165	32.172 32.189 32.776 33.336	33.561 33.814 33.880 33.929	33.998 34.131 34.307 34.438	34.504
CNAV	JEMP DR	TEMP	9999 9440 9769 9769	9.56 8.96 9.08 9.08	7.88 7.49 7.41	6.11 5.00 3.55 3.55	2-85
	22/03/6 111 TYPE	DEPTH	20020	30 20 100	125 173 197	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1384
	DATE BAROM CLOUD	CST			777	2220	7

	CNAV 0	OSHAWA	CRUISE O	OSI STATI	TION 043	INTERP	OLATED	AND COMPUT	ED VALUES	UES	
рертн	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT ANOMALY	POT ENERGY	OXY ML/L	E(0)	VAR
30000	0000 4000 0000	0000	32-174 32-164 32-165 32-172	0000	24.86 24.83 24.84 24.84	312.6 312.6 312.6	0.0000000000000000000000000000000000000	0.00	6.56	0000	
50 100 150	98.96 7.08 7.08 7.08	0000	32.189 32.176 33.336 33.814	0000	24.85 25.98 26.44	311.5 2559.3 162.4	0.158 0.230 0.388 0.381	0.40 0.34 2.34 2.54	004w 0000 0000	0000	
2200 2250 4000 400	0000 0404 04084	000000000000000000000000000000000000000	33.933 33.979 34.001 34.068	000000000000000000000000000000000000000	26.71 26.71 26.78 26.91	147.5 137.7 132.0 120.3	0.531 0.531 0.599	3.93 7.59 12.05	2.82 2.33 1.87	0000	1.05
500 7000 8000	4444 0,000 0,000 0,000	0000	34.135 34.207 34.277	0000	27.01 27.20 27.20	110.8 102.3 94.8 87.7	0.843 0.950 1.050	333.445 34.45 34.15 37.23	0000 2442 2448	0000	0.09 0.09 0.79 0.75
1000	3.54	00.00	34-440	0.000	27.41	75.8	1.308	52.43	0-30	0.00	1.04

	L 17 DIR 36 SWELL 2 DIR 27					95	
VALUES	WEA 02 WIND VE SEA 2 DIR 36						DATA
OBSERVED	SNDG 969 SECDI	SATN	31 105 37 107 34 106 31 106	39 107 10 98 25 78 56 55	94 49 02 48 98 49 14 46	01 20 20 15 93 46 46	BIOLOGICAL
OSI STATION 044	LONG 124-45 W RELHU 81 WTRCLR E(S) 11,31	ML/L MGA/L ACI	6. 66 0. 595 -0.0 6. 73 0. 601 -0.0 6. 69 0. 598 -0.0 6. 66 0. 595 -0.0	6.74 0.602 -0.0 6.18 0.552 0.0 4.93 0.440 0.1 3.52 0.314 0.2	3-14 0-280 0-3 3-14 0-280 0-3 3-18 0-284 0-2 3-03 0-271 0-3	2.20 0.196 0.4 1.04 0.093 0.5 0.39 0.035 0.5 0.26 0.023 0.5	STATION 044 B
CRUISE D	46-14 N ET 78 WIRE ANGL	SIGMA-T	24.71 24.71 24.72 24.76	24.74 25.07 25.56 26.12	26.27	26.71 26.93 27.08	CRUISE OS1
IV OSHAWA	19-1 LAT	SAL	32.005 32.007 32.013 32.016	32.048 32.466 33.021 33.613	33.738 33.886 33.822 33.882	33.989 34.089 34.404	OSHAWA CRI
CNAV	3/63 HR TEMP D	H TEMP	9999	9.53 9.17 1.69 1.69 1.69	7.69 7.69 7.64	0.44 0.44 0.00 0.00 0.00	CNAV 0
	DATE 22/0 BAROM 11. CLOUD TYP	CST DEPT	200	1 749	1 1473	2 2 4 4 6 3 2 2 5 3 3 4 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5	

PM 163 INCOMING SOLAR RADIATION - AM 155 WATER COLUMN VALUES 31.990 32.000 32.044 SAL CNAV OSHAWA CRUISE OSI 20 27 20 20 20 20 20 20 20 20 380.50 PRODUCTIVITY LAB-I DECK-I MESSENGER TIME 1109 45.54 DEPTH CHL-A 316

	CNAV OSHAWA	SHAMA	CRUISE	OSI STA	ATION 044	INTER	POLATED A	AND COMPUT	ED VAL	UES	
ОЕРТН	TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VOL Anomaly	GEOPOT	POT ENER GY	OXY ML/L	E(0)	RATIO
30000	9999 8888 8979	0000	32.005 32.013 32.076 32.061	0000	24°11 24°12 24°16 24°16	324. 3193.8 319.5 31.2	000000	000000000000000000000000000000000000000	6.69 6.69 6.73	0000	0.99
100 100 100 100	99.55 18.55 1.67	00000	32.48 33.650 33.633 8133	0000	25.09 25.59 26.14 26.41	289 241.8 190.1 164.9	0.159 0.226 0.281 0.370	0.40 0.882 2.30 4.30	994.6 94.86 1666	0000	0000
4 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.14 6.62 6.21 5.61	0.00	33.926 33.982 34.015	00.000	26.58 26.69 26.17 26.89	1390.0	0.522 0.591 0.720	3.85 7.63 12.06	2.80 2.33 1.91 1.25	0000	1.41 0.89 0.75 0.76
500 7000 8000	7.44 0.46 0.46 0.46	0000	34.108 34.211 34.311	000000000000000000000000000000000000000	26.98 27.05 27.14	114.6 107.7 99.6 88.6	0.839 0.951 1.056	17.57 23.90 30.88	0000	0000	7.50

CNAV OSHAWA CRUISE OSI STATION 045 OBSERVED VALUES

COLUMBIA RIVER ENTRANCE

WEA 02 WIND VEL 25 DIR 35 SEA 2 DIR 36 SWELL 2 DIR 27				
SNDG 137 SECDI	SATN	11005 1005 1005 1005 1005	105 95 60 60	34
CL R	OXYGEN	-0.027 -0.027 -0.029	-0-027 0-028 0-124 0-228	0.383
124-24 73 WTR	MGA/L	0000	0000 0000 0004 0004 0004	0.202
RELHU 7	ガイ	6.66 6.66 6.67	6.65 4.98 3.85	2.26
46-14 N EI 8-3 WIRE ANG	SI GMA-T	24.522	24.61 25.91 25.37	26.54
2.0 LAT Y 10.6 W	SAL	31.730 31.729 31.726 31.747	31.834 32.181 32.739 33.358	33.926
63 HR 2 TEMP DR 6 AMT 7	TEMP	0000 0000 0000 0000	9.33 8.53 8.53 5.99	7.38
22/03/6 M 08 D TYPE 6	DEPTH	0008	7496 0882 0	135
DATE BARDI CLOUI	CST	HAHA		-

V OSHA		CRUISE OSI SAL E	S	STATION 045	SP VOL Anomaly	בַ ם	AND COMPUT	COMPUTED VAL OT OXY IERGY ML/L	UES E(0)	VAR
9.38 0.00 31.730 0.000 9.40 0.00 31.726 0.000 9.38 0.01 31.761 0.000 9.21 0.05 31.881 0.004	31.730 0. 31.726 0. 31.761 0.	0000		24.52 24.52 24.53 24.67	341-9 342-7 340-1 328-7	0000	0000	9.99	0000	000
8.50 0.07 32.293 0.001 8.91 0.03 32.944 0.011 8.25 0.06 33.605 0.026	32.293 0.32.944 0.33.605 0.	0.001 0.011 0.026		25.08 25.55 26.16	289.4 246.1 187.8	0.165 0.233 0.287	0.41	5.91 4.61 3.38	0.00	0.79

VALUES
OBSERVED
940
STATION
081
CRUISE
OSHAWA
NAV

NORTH HEAD

SNDG 64 WEA 01 WIND VEL 25 DIR 36 SECOI SECOI SEA 2 DIR 00 SWELL 2 DIR 28 3.6 LAT 46-22 N LONG 124-18 W 7 8.9 WET 6.7 RELHU 73 WIRCLR VIS 7 WIRE ANGLE(S) 35 DATE 22/03/63 HR 23.6 BAROM 06. TEMP DRY (CLOUD TYPE 6 AMT 5 VI) CS

YGEN	-0.037 106 -0.030 105 -0.034 106	-0.029 105 -0.012 102 0.116 79
HGA/L	0.60	0.584
ガイ	6.87 6.76 6.74 6.74	0.00 0.00 0.00 0.00
SI GMA-T	22.21 23.03 24.57 24.57	24.58 24.73 25.43
SAL	28.795 29.834 31.771 31.780	31.784 31.912 32.830
TEMP	99.59	9.31 8.99
DEPTH	0489	22 41 57
ST		

BIOLOGICAL DATA STATION 046 CNAV DSHAWA CRUISE DS1

DEPTH CHL-A PRODUCTIVITY LAB-I DECK-I

0 1.43 3 1.43 6 1.28 12 1.18 15.71 - MATER COLUMN VALUES

MESSENGER TIME 1337 INCOMING SOLAR RADIATION - AM 155

PM 163

	VAR	0.639	1.24		25 DIR 35 ELL 2 DIR 3				
UES	E(0)	0000	0.07		D VEL 35 SW				
ED VALUE	OXY ML/L	6-87 6-74 6-71	96.5		3 DIR				
COMPUTED	POT Neagy	0.00 0.02 0.07 0.16	0.41	VALUES	WEA O				
DLATED AND	GEOPOT ANOMALY E	0.000 0.045 0.078 0.112	0.176	OBSERVED	SNDG 124 SECDI	SATN	11 105 105 105 105	5034	07 61
INTERPOL	SP VOL CANOMALY	363.2 337.7 336.7	295.1	0 NO 740	4-30 W WTRCLR	OXYGEN A/L AGU	597 -0.02 590 -0.03 603 -0.03	5564 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	231 0-34
ATION 046	SIGMA-T	22.21 24.54 24.55	25.03	OS1 STATI	RELHU 72 .E (S) 28,2	HILL HG	6.68 6.61 6.75 6.75 0.66	6.32 0.5.84 0.3.25 0.3.25 0.3.25	2.59 0.
USI STAT	E(S)	0.000 0.000 0.003 0.023	0.032	CRUISE C	46-26 N ET 61 WIRE ANGL	SI GMA-T	24. 24. 24. 24. 68 88	24.76 25.10 25.70 26.19	26.44
CRUISE	SAL	28.795 32.015 31.779 31.773	32.284	OSHAWA	V-18-3 W	SAL	31.894 31.891 31.895	32.475 33.155 33.635	33.864
OSHAWA	E (T)	0000	0.04	CNA	TEMP DR	TEMP	9.11 9.17 9.19 9.21	9.21 9.39 8.98	7.74
CNAV	TEMP	9.59 9.30 9.32 9.21	8.94		23/03/6 06 TYPE	ОЕРТН	0 7 6 8 1	74 66 88	106
	ОЕРТН	3000	90		DATE BAROM CLOUD	CST		7222	7

K 15

_	00	,

				27)Ci					
VAR RATIO	0.93 0.75 0.91	0.16		S DIR 34						
E(0)	0000	0.03		0 VEL 32						
OXY ML/L	6.06 6.76 6.29	23.39		2 WIN						
POT NERGY	0.00 0.02 0.07 0.15	0.39	VALUES	WEA O						
POT	0000 0000 0000 0000 0000	158 266	BS ERVE	DG 100 SECDI	SATN	1003 1005 1055	103 101 60 60	4444 0-m-	34 16	4
LY AN	345	919	80	LR S	SEN -	0.024	-0-016 -0-006 0-160 0-232	0.344 0.344 0.344 0.344 0.44	.51	0.612
ANOM	325	2102	0 NO I	124-42 9 HTR	HGA/L	0.584 0.592 0.594 0.593	0.583 0.571 0.417 0.347	0.281 0.237 0.248 0.239	0.200	.02
SIGMA-1	24.69 24.68 24.69 24.81	25.26 25.92 26.38	SI ST	RELHU E(S)	F.7.	665 65 65 65 65 65	6.33 4.67 3.89	3.15 2.65 2.78 2.68	2.24	.2
E (S)	0000	00.000000000000000000000000000000000000	RUISE	6-36 N 5.6 N	SI GMA-T	24-87 24-87 24-87 24-89	24.91 25.10 25.84 26.17	26.35 26.45 26.45 26.53	6-9	27.29
SAL	31.894 31.893 31.909 32.069	32.667 33.377 33.805	OSHAWA (.5 LAT	SAL	32.143 32.142 32.146 32.173	32.195 32.468 33.193 33.548	33. 775 33. 875 33. 902	3.97	34.341
E (T)	0000	0.0000000000000000000000000000000000000	CNAV	HR O EMP DR	TEMP	9.20 9.21 9.24	9.25 9.37 8.23 7.90	7.89 7.75 7.64 7.51	6.47 7.47 7.47	6.
TEMP	9.21 9.21 9.25	9. 4. 8. 8. 8. 8. 9. 9.		23/03/63 05 TYPE	рертн	0406	29 71 97	120 141 151	450 420 639	4
DEPTH	3000	100		DATE BAROM CLOUD	CST	HHHH	A AAA	-2-2	222	7
	EPTH TEMP E(T) SAL E(S) SIGMA-T SP VOL GEOPOT POT OXY E(O) VAR Anomaly anomaly energy ML/L rati	EPTH TEMP E(T) SAL E(S) SIGMA—T SP VOL GEOPOT POT OXY E(O) VAR 0 9-11 0.00 31.894 0.000 24.69 325.7 0.000 0.00 6.68 0.00 10 5-19 0.00 31.893 0.002 24.68 327.2 0.033 0.02 6.76 0.00 20 9.21 0.00 31.909 0.000 24.69 326.4 0.066 0.07 6.59 0.01 0.7 30 9.25 0.02 32.069 0.008 24.81 315.3 0.099 0.15 6.25 0.02 0.99	D 9-11 0.00 31-894 0.000 24-69 325-7 0.000 0.00 6-68 0.00 0.9 0.9 0.00 31-894 0.000 24-69 325-7 0.000 0.00 6-68 0.00 0.9 0.9 0.00 31-893 0.002 24-68 327-2 0.033 0.02 6-76 0.00 0.9 0.9 0.00 0.9 0.00 0.00 0.00 0	## TEMP E(T) SAL E(S) SIGMA—T SP VOL GEOPOT POT OXY E(O) VAR ANDMALY ENERGY ML/L 0	EPTH TEMP E(T) SAL E(S) SIGMA—T SP VOL GEOPOT POT POT POT POT POT POT POT POT POT	EPTH TEMP E(T) SAL E(S) SIGMA—T SP VOL GEOPOT POTY E(O) RATIO 0 9-11 0.00 31-894 0.002 24-69 325-7 0.003 0.02 6-76 0.00 10 5-19 0.00 31-894 0.002 24-69 325-7 0.003 0.02 6-76 0.00 20 9-21 0.00 31-894 0.002 24-69 325-7 0.003 0.02 6-76 0.00 20 9-21 0.00 31-894 0.002 24-69 325-7 0.003 0.02 6-76 0.00 20 9-21 0.00 31-894 0.002 24-69 325-7 0.009 0.02 6-76 0.00 0.07 20 9-21 0.00 31-894 0.002 24-69 325-7 0.009 0.07 6-59 0.00 0.07 20 9-21 0.00 31-894 0.000 24-69 325-7 0.009 0.07 6-59 0.00 0.07 20 9-21 0.00 31-894 0.000 24-69 325-7 0.009 0.07 6-59 0.00 0.07 20 9-21 0.00 31-894 0.000 24-69 325-7 0.009 0.07 6-59 0.00 0.07 20 9-21 0.00 31-894 0.00 0.07 6-29 0.00 0.07 6-29 0.00 0.07 20 9-21 0.00 31-894 0.00 0.07 6-29 0.00 0.07 6-29 0.07 0.07 20 9-21 0.00 31-894 0.00 0.07 6-29 0.00 0.07 6-29 0.07 0.07 21 00 0 15 0 0 0 0 0.07 6-29 0.07 0.07 22 0 0 15 0 0 15 0 0.07 0.07 23 0 0 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	## TEMP E(T) SAL E(S) SIGMA—T SP VOL GEOPOT POTY E(D) RATIO 0	### FEMP E(T) SAL E(S) SIGNA—T SP VOL GEOPOTY POT OXY E(O) RVAR ANDHALY ENERGY OXY E(O) STATION OX S	## TEMP FEMP EIT SAL E(S) SIGMA—T SPONOLLY GEODOLTY POTT POTT	FPTH TEMP E(T) SAL E(S) SIGMA—T SP VALV ACLV GEDPUT PROTY 10 9-111 0:00 31-894 0:000 24-69 325-7 0:000 0:09 6-68 0:00 0:95 20 9-25 0:000 32-893 0:000 24-69 325-7 0:000 0:00 6-68 0:00 0:95 20 9-25 0:000 32-893 0:000 24-69 325-7 0:000 0:000 6-68 0:00 0:95 20 9-25 0:000 32-893 0:000 25-26 0:000 0-000 6-68 0:00 0:95 20 9-25 0:000 32-893 0:000 25-26 0:000 0-000 6-68 0:00 0:001 20 9-25 0:000 32-893 0:000 25-26 0:000 0-000 6-68 0:00 0:001 20 9-25 0:000 32-893 0:000 25-26 0:000 0-000 6-68 0:000 0:001 21 0.000 32-893 0:000 25-26 0:000 0-000 0-000 0-000 0:000 0:000 0-000 0:000 0:000 0-000 0:000 0:000 0-000 0:000

	VAR	0.88	00.90	1.73 1.00 0.87 0.84	3.72 9.70 10.90 2.99
UES	E(0)	0000	0000	0000	0000
ED VALUES	OXY ML/L	6666 6666 6666 6666 6666 6666 6666 6666 6666	2.52	2.22 1.822 1.289	0.79
IND COMPUT	PST ENER GY	0000	0.38 0.77 1.21 2.30	3.67 7.23 11.86	17-31 23-45 30-15 37-31
PCLATED A	GEOPOT	0000	0.215 0.215 0.355	0.568 0.568 0.568	0.815 0.924 1.024
INTER	SP VCL ANGMALY	308.6 307.7 7.505	282.0 210.8 184.3 157.2	146.8 139.1 122.8	1112.3 103.4 95.5
STATION 048	SIGMA-T	24.87 24.87 24.89 24.91	25.16 26.20 26.49	26.61 26.70 26.77 26.89	27-10 27-10 27-19 27-26
OSI STA	E (S)	0000	0000	0000	0000
CRUISE O	SAL	32.143 32.146 32.202	32.530 33.267 33.583 33.909	33.961 34.004 34.064	34-127 34-256 34-317
SHAMA	E (T)	0000	0000	0000	0000
CNAV OSHAWA	TEMP	9.20	9.28 8.14 7.90	2.10 6.55 5.16 6.16	2444 0444 0889
	ОЕРІН	3500	100 150 150	0000 0000	8 9 9 9 9 9 9 9

OBSERVED VALUES CNAV OSHAWA CRUISE OSI STATION 049

77 WEA 02 WIND VEL 18 DIR 34 SNDG WILLAPA BAY ENTRANCE LONG 124-21 H DATE 23/03/63 HR 06.7 LAT 46-40 N

SEA 3			
SECDI	SATR	1005	93 68
	- OXYGEN -	0.0029	0.038
19 4 V		000000000000000000000000000000000000000	0.530
RELHU LE (S)	#._	6.7.9 6.36 6.56	5.93
TEMP DRY 7.2 WET 5.6 RELHU 79 WIRCLE AMI 8 VIS 7 WIRE ANGLE(S) 7	SIGMA-T	22.79 22.87 24.12 24.54	24.77
VIS 7	SAL	29.494 29.585 31.178 31.713	32.023
TEMP DA	TEMP	9.36 9.26 9.23	9.29
M 05. D TYPE	DEPTH	2002	90
CL CC	CST		

					102			59			
	VAR		7.37					S DIR 34 LL 2 DIR			
V AL UES	E(0)	0000	0.19					D VEL 2			
	OXY ML/L	0000 0000 0000	4.51					2 DIR			
COMPUTED	POT NERGY	0000	0.40			VALUES		WEA O			
LATED AND	GEOPOT ANOMALY E	00000	0.175			OBSERVED		SNDG 51	OXYGEN SECO	99 103 55 103 7 103	.522 -0.007 101 .522 0.052 91
INTERPOLATED	SP VOL GANOMALY A	507.9 340.7 319.3	278.1			10N 050	PS RIVER	24-28 W WTRCLR		.603 -0.01 .588 -0.00 .592 -0.01	
TATION 049	SIGMA-T	24.12	25.20			OSI STATION	MOCLI	RELHU 86 E(S) 0	HILL H	66 64 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.84 0
OS1 STA	E (S)	0000	0.092			CRUI SE		ET 6.7 WIRE ANGL	SIGMA-T	24.49	24.58
CRUISE	SAL	29.494 31.178 32.023	32.583			OSHAWA		0.6 LAT VIS 7	SAL	28.757 31.302 31.548 31.519	31.658
OSHAWA	E(T)	0000	60.0			CNAV		TEMP DR	TEMP	99.00 99.668 9.688	8.68 8.72
CNAV	TEMP	9.23	9.29					3/03/6 03. TYPE	БРТН	7000	450
	DEPTH	0000	20					DATE 2 BARON CLOUD	CST D		

	VAR	
UES	E(0)	0000
ED VAL	OXY ML/L	6.63
INTERPOLATED AND COMPUTED VALUES	POT ENERGY	0000
POLATED A	GEOPOT ANOMALY	0000
INTER	SP VOL ANOMALY	345.4
STATION 050	SIGMA-T	22.26
	E (S)	0000
CRUISE OS1	SAL	28.757 31.548 31.519
SHAMA	E (T)	0000
CNAV OSHAWA	TEMP	0.00
	DEРТН	0000

	29			
	34 DIR			
	DIR			
	SWEL			
	VE			
	WIND VEL 22 DIR DIR 34 SWELL 2			
Ś	02			
OBSERVED VALUES	WEA SEA			
/ED \	13			
IS ERV	SNDG 113 SECDI	SATN	1003	102 87 61 51
06	SNO	י וֹ	0000	14 24 82
51	CLR	GEN	0000	0.014
ONO	4-42 WTR	- OXYGEN	595 595 589	590 250 296 296
TATI	6 12 23		0000	0000
CRUISE OS1 STATION 051	N LONG 124-42 7 RELHU 86 WTRC:	1.1	6.66 6.61 6.65 6.60	33%
E 05	NACLE	-	~~~~	41-410
S I O	-14 E.	SI GMA-	777	405.9
	WET WIR	SI	7777	
CNAV OSHAWA	7-8 5-7	SAL		\$ ~ ~ •
V 0S	12.0 RY	S	MAMA.	2000 2000 2000
CNA	E P E	EMP	96499	68 24 03
		16	00000	80 80 80 80
	23/03/63 03. TYPE A	DEPTH	0408	77 64 65 65 65
	TE 23			
	DAT	CST		

						21					
		RATIO	0.97	1.21		O DIR 32					
ED VALUES	E C	E(0)	0000	0.00		D VEL 2 32 SWE					
	E0 <	OXY ML/L	66.66	3.60	S	02 WIN 3 DIR					
	ID COMPUT	POT ENERGY	0000	0.39	D VALUE	2 WEA SEA					
INTERPOLATED AN	TED A	OPOT	00000	.217	OBS ERVE	125-05 W SNDG 62 15 WIRCLR SECDI	MGA/L AOU SATN	102 102 998 998	96 786 700	N44 W 08WD	27 12 8
	TERPOL	OL GEG	0000	v.m	52 (0.0014	0.022 0.016 0.079 0.174	0.25 0.30 0.90 0.90 0.90 0.90	0.542
	Z	ANONA	3223	276	110N 0			0.5887 0.5887 0.5662	0.547 0.552 0.489 0.398	0.322 0.277 0.255 0.232	0.163 0.075 0.048
	TI ON 051	SIGMA-T	24.72 24.73 24.71 24.71	25.22	OS1 STA	RELHU B	#1.1 #1.1	6.55 6.29 7.29 7.29	6.12 6.18 7.48 6.18	3.61 2.85 2.65	1.82 0.84 0.54
SI STAT	1 ST	E (S)	0000	0.036	CRUI SE	47-14 N ET 6:1 WIRE ANG	SI GMA-T	24.81 24.85 24.84 24.91	24.93 24.95 25.33 25.75	26.10 26.39 26.55 26.62	26.84 27.00 27.09
	CRUISE	SAL	31.830 31.854 31.830	32.401 33.548	OSHAWA	4-4 LAT Y 7-2 WE VIS 7	SAL	32.000 32.047 32.037 32.190	32.204 32.232 32.688 33.132	33.471 33.805 33.912 33.973	34.092 34.144 34.189
CNAV OSHAWA	SHAN	E(T)	7000 0000 0000	0.02	CNAV	HR 1 EMP DR	TEMP	9889 9899 9808	9.15 9.15 8.56 8.56	7.94 7.76 7.21 7.08	6.13 6.13 6.13
		TEMP	8888 647 627	8.23		:3/03/63 02. TYPE	ЕРТН	00000	7496 7482 7882	1112 135 166 189	284 474 569
		DEPTH	3000 3000 3000	75		DATE 2 BAROM CLOUD	CST 0		1000	NNMM	mmm

)/.

BIOLOGICAL DATA			∞	
۔			20	H
CA			Q.	116
100			45	Z
018			I	RCE
			A I	PE
~			N O	20
0		=	ATI	AT
	SAL	32.021	IGE	TEC
A		3.5	A.	180
<i>-</i> ,			SOLA	Ž
02			INCOMING SOLAR RADIATION - AM 142 PM 208	SAH
SE	≻ ī	940	INO	ACE.
S C E	VI T	13.46	INC	VAL
- <	C 1 1			1 ¥
I V	000		2	IVI
0	PR		062	ACT TO A
CNAV USHAWA CRUISE USI STATION 052	DEPTH CHL-A PRODUCTIVITY LAB-I DECK-I		MESSENGER TIME 0625	THE SECOND PRODUCTIVITY VALUE WAS INCUBATED AT 50 PERCENT LIGHT INTENSITY INSTEAD OF 100 PERCENT
ں	1-A	.45	Ξ	O.
	5	0 0.45	GER	CON
	H	00	SEN	ENS
	DEP		MES	HI
	_			

	CNAV OSHAWA	SHAWA	CRU1SE	081	STATION 052	INTER	RPOLATED	AND COMPUT	ED VALUES	uES	
DEPIH	TEMP	E (T)	SAL	E (S)	SIGMA-1	SP VOL ANOMALY	GEOPOT ANOMALY	POT ENERGY	OXY HL/L	E(0)	RATIO
0000	9.08	0000	32.000 32.051 32.199 32.199	0000	24.85 24.95 24.93	304.5	0.0000000000000000000000000000000000000	00000	6.27	0000	0.97
50 100 150	9.00 7.30 4.90 9.00	0000	32.312 32.821 33.272 33.883	0.000 0.000 0.001 0.015	25°02 25°45 25°45 26°45	296.1 255.6 213.2 157.2	0.154 0.224 0.283 0.376	00°3 20°3 20°3 20°3	6.08 5.20 2.95	000000000000000000000000000000000000000	0.72
2204 0000 0000	9998 6404 8674	0000	34.065 34.100 34.100	0000	26.65 26.17 26.86 26.96	142-8 131-8 123-8	0.521 0.521 0.585 0.7885	3.87 5.46 7.27 11.59	2.49 2.06 1.71 1.15	0000	1-20 1-15 0.94 0.94
200	5.02	0.01	34.151	0.003	27.02	110.1	0.820	16.84	0.75	00.00	0.85

	2 WIND VEL 15 DIR 31 2 DIR 31 SWELL 2 DIR						
VALUES	WEA O						
OBSERVED	40G 1737 SECOI	SATN	1004	103 103 67	4444	67 58 58 58	œ
053 (S S S	GEN -	-0.018 -0.022 -0.023	-0.00 0.0017 0.0051 0.0051	0.266 0.311 0.316 0.338	0.539 0.539 0.539	0-604
ATION	125-28 72 WTR 6,26	HGA/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.588 0.588 0.516 0.389	0.313 0.271 0.266 0.247	0.193 0.078 0.030 0.023	0.050
OS1 ST	RELHU LE (S) 1	1.1.	6.65 6.65 6.66 6.66	6.5 6.5 7.3 8.3 8.3 8.3	3.50 2.98 2.18	2.16 0.87 0.34 0.26	0.56
CRUISE OS1	ET 5.6 HIRE ANG	SI GMA-T	24.88 24.88 24.88	24.94 24.95 25.35 26.09	26.27 26.42 26.45 26.56	26.71 26.98 27.19 27.34	27.53
CNAV OSHAWA	8-3 LAT	SAL	32.102 32.097 32.095 32.095	32.187 32.199 32.722 33.482	33.684 33.835 33.857	34.116 34.264 34.377	34.499
CNAV	63 HR 1 TEMP DR	TEMP	8888 8.951 9.951	9.00 9.99 9.08 8.11	7.927.707.92	6.51 5.16 3.73 3.73	2.17
	23/03/6 0 TYPE	ОЕРТН	0200	96 87 96	120 144 157 181	271 454 683 914	1376
	DATE BARON CLOU(CST			22	2222	2

					ES	E(0)	0000	00000	0000	0.003	0.05
					ED VALUES	OXY ML/L	66.66 56.66 56.66 56.66	\$ 5.5 \$ 0.0 \$ 0.0	2,63	0.44	0.30
DATA .				208	AND COMPUTED	POT ENER GY	0000	2.833	3.8% 7.51 12.04 12.04	23.37 29.96 37.06	52.54 69.50
BIOLOGICAL				142 PH	NTERPOLATED AN	GEOPOT	0000	00.224	0.519 0.588 0.588	0.833 0.939 1.038 1.130	1.298
053 8			IN VALUES	I ON - AM	INTERP	SP VOL ANDMALY	307.0 308.6 302.4	300°4 255°7 190°0 162°3	139.7	109°5 101°1 94.4 88°2	78.1
STATION 0	SAL	32.067 32.061 32.062 32.149	WATER COLUMN	AR RADIATION	STATION 053	SIGMA-T	24.88 24.88 24.98	24.97 25.44 26.14 26.44	26.61 26.69 26.76 26.91	27.03 27.12 27.20 27.21	27.39
SE 051	-	0000	•	INCOMING SOLAR	DS1 STAT	E(S)	0000	00.000000000000000000000000000000000000	00000	0000	000
HAWA CRUISE	DOUCT IVITY	18.32	286.08	INCO	CRUISE D	SAL	32°102 32°095 32°105 32°186	32.227 32.826 33.537 34.77	33.973 34.005 34.075	34.213 34.213 34.274 34.326	34.410
CNAV OSHA	PROD LAB-1			IME 1021	OSHAWA	E(T)	0000	0000	0000	0000	0.01
5	CHL-A	0000	39.70	-	CNAV	TEMP	9888	9.05 18.05 1.66	7.19 6.70 5.50	44.9	3.54
	DEPTH	0404		MESSENGER		ОЕРТН	0000 0000	15001	2500 2500 00000 0000	84600 80000 80000	1000

VALUES	WEA 02 WIND VEL 8 DIR 32 SEA I DIR 31 SWELL 2 DIR 30					108	
OBS ERVED	NDG 1682 SECDI	SATN	1034	11. 97. 60	7444 7004	133 45	130
54	CLRS	YGEN -	-0.0016 -0.0021 -0.0022	-0.017 -0.022 0.015 0.229	00.30 00.31 00.32 00.32 00.32 00.32 00.32	0.338 0.537 0.601 0.616	0.590
STATION O	125-50 62 WTR 0, 0	HGA/L	0000 •••••••••••••••••••••••••••••••••	00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.271 0.257 0.259 0.259	0.030	0.067
051 51	RELHU (111		6.54 6.59 6.18 3.81	3.03 2.88 2.79 2.85	2.19 0.90 0.34 0.27	0.75
CRUI SE	ET 67 PHIS WIRE ANG	SI GMA-T	225.05	25.05 25.06 25.25 25.25	26.35 26.35 26.35	26.67 26.99 27.22 27.37	27.57
DSHAWA	1-6 LAT V 10-0 W	SAL	32.369 32.367 32.366 32.368	32.369 32.379 32.610 33.463	33.638 33.804 33.855 33.883	34. 126 34. 126 34. 279 34. 399	34.531 34.561
CNAV	63 HR 2 TEMP DR 6 AMT 8	TEMP	9.25	9.22 9.22 9.11 8.70	8.26 8.05 7.91	5.12 5.12 9.63	2.55
	23/03/ M 08 D TYPE	DEPTH	25050	100	125 150 194	748 748 642 642 642	1484
	DATE BARO CLOU	CST			7-72	~~~	22

0.98 1.03 0.94

000

0.28

53.77 70.81 98.24

. 334 . 685 . 684

79.0

27.38 27.47 27.58

0000

34.405 34.470 34.534

3.59 3.12 2.52

1000

0.94

0000

1-11 1-24 0-98 0-76

0000

INTERPOLATED AND COMPUTED VALUES 66.50 66.50 64.60 64.60 6.59 6.18 3.81 2.88 2.83 2.56 2.13 1.43 0.85 5.87 7.93 12.69 0.00 0.38 0.83 2.56 18-17 24-27 30-93 38-11 POT ENERGY BIOLOGICAL DAT 208 GEOPOT 00000 0.148 0.219 0.279 0.374 0.458 0.536 0.610 0.743 0.862 0.971 1.071 1.164 142 M SP VOL ANDMALY 292.1 292.8 293.0 292.6 292.2 273.9 204.9 171.0 161-0 150-8 140-3 1111-8 102-5 95-2 89-2 INCOMING SOLAR RADIATION -STATION 054 STATION 054 SIGMA-T 25.06 25.25 25.98 26.38 26.46 26.58 26.69 26.87 27-00 27-11 27-19 27-26 WATER COLUMN VALUES 0000 0000 00000 0000 150 `E (S) **CRUISE** CRUISE OS1 PRODUCTIVITY LAB-I DECK-I 32.369 32.366 32.368 32.369 32.379 32.610 33.463 33.804 33.943 33.943 34.068 34.134 34.199 34.259 34.314 SAL CNAV OSHAWA 1333 0000 0000 0000 0000 CNAV OSHAWA E(T) MESSENGER TIME 9.22 9.11 8.70 8.05 0.66 0.72 0.79 4.22 9.24 9.25 9.25 7.74 7.24 6.66 5.76 5.06 4.27 4.27 4 TEMP 33.62 I E **DEPTH** 0404 DEPT 3000 50 100 150 200 250 300 400 \$00 800 800

	30					110	
\$:	02 WIND VEL 5 DIR 27 A 0 DIR SWELL 1 DIR						
VALUE	WEA SE						
OBSERVED V	DG 2560 SECDI	SATN	1001 1005 1005 1005	1003 922 65	455 1818	111	15 23
0 550	S W SN	GEN -	0.020	-0.017 -0.022 0.047	0.223 0.263 0.3283 0.322	0.548 0.548 0.598 0.598	0.563
STATION O	126-25 72 HTR 5.20	HGA/L	0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.583 0.588 0.518 0.367	0.355 0.317 0.298 0.261	0.186 0.027 0.058	0.100
051 51	RELHU	. H.A.	0000 0000 0000 0000	6.58 6.58 1.88 1.08	23.50 23.50 24.58	2.00 0.30 0.65	1.12
CRU1SE	ET 6.1 WIRE ANG	SI GMA-T	25.04 25.04 25.04	25.06 25.06 25.29 87	26.26 26.26 26.36 26.36	26.70 27.00 27.36 27.59	27.64 27.74
OSHAWA	1.5 LAT Y 8.3 W	SAL	32.396 32.396 32.396 32.393	32.397 32.401 32.680 33.340	33.426 33.657 33.757 33.859	33.993 34.128 34.382 34.561	34.577 34.524• 34.660
CNAV	TEMP OR	TEMP	9999 9999 9999	9.29 9.28 9.24 8.78	8.05 7.71 7.56	29.05 6.50 6.90 6.90 6.90 6.90 6.90 6.90 6.90 6.9	2.23 1.89 1.78
	24/03/6 M 12 D TYPE	ОЕРТН	70020	1005	124 1659 1885	282 473 959 1453	1751 2048 2347
	DATE BARO CLOU	CST			777	~~~	777

	VAR		06*0	1.22	00.00	0.89 0.74 2.47
UES	E(0)	0000	0000	0000	0000	0000
FED VAL	OXY ML/L	0000 0000 0000	5.80 3.80 3.80 5.80 4.80	2.28 2.28 1.93	00.000.00000000000000000000000000000000	00.30
IND COMPUT	POT ENERGY	0000	0.38 0.83 2.62	4: 13 5:87 7:86 12:47	17.82 23.80 30.35	52.70 69.29 95.84 146.02
POLATED A	GEOPOT	00000	0.218 0.280 0.379	0.539 0.539 0.610 0.739	0.855 0.961 1.060 1.151	1.317 1.465 1.657 1.938
INTER	SP VOL ANOMALY	292.5 292.7 292.2 291.6	291.5 270.6 215.2 178.5	156.9 144.4 135.6	109.6 100.9 93.4 87.1	27. 68.0 518.5 8.10
TION 055	SIGMA-T	255 255 255 255 255 255 255 255 255 255	25.29 25.87 25.87	26.50 26.64 26.74 26.91	27 - 03 27 - 12 27 - 21 27 - 28	27.49
1 STA	E (S)	0000	0000	0000	0005	000000000000000000000000000000000000000
CRUISE OS	SAL	32.396 32.396 32.393	32.401 33.340 33.664	33.890 33.975 34.010	34.145 34.204 34.259 34.310	34.402 34.565 34.565
OSHAWA	E(T)	0000	0000	0000	0.000	0000
CNAV 0	TEMP	9999 7988 7988	9.28 9.24 1.858	7.00° 7.00°	444E 6418 4618	12.55 1.55 1.55 1.55
	DEP TH	100 200 30	50 100 150	700 700 700 700	8 8 8 8 9 9 9 9 9	1000 1200 2000 2000

	20 DIR 14 ELL 2 DIR						VAR	66*0	0.00
	NO VEL					AL UES	E(0)	0000	000
S	O1 WIN					ED V	OXY HC/L	6.60 6.65 6.62	6.60
ED VALUE	60 WEA					IND COMPUT	POT ENERGY	0000	0.37
OBSERV	SNDG 25 SECDI	SATN	9 103 104 104 104	9 103 7 103 23 104 84	72 71 50 57	LATED A	EOPOT NOMALY	0.000 0.029 0.057 0.086	0.143
0N 056	6-59 W WIRCLR	DXYGEN A	589 -0.02 592 -0.02 595 -0.02 591 -0.02	590 -0.01 589 -0.01 595 -0.02 495 -0.09	418 0.17 336 0.25	INTERPOL	SP VOL GANOMALY A	283.3 283.1 279.2 283.1	282.9 280.6 221.4
1 STATI	RELHU 80 E(S) 11,	HL71 HG	6.663	66.94 56.91 56.91 56.91	4.68 0. 3.76 0.	ATION 056	SIGMA-T	25.14 25.14 25.19	25.15 25.18 25.81
CRUISE OS	ET-14 N ET 67 WIRE ANGL	SIGMA-T	255.15 255.15 255.14	25.15 25.16 25.16 25.77	26.17	OS1 STAT	E(S)	0000	0000
OSHAWA	6.3 LAT Y 8.3 W	SAL	32.425 32.427 32.435 32.475	32.422 32.430 32.429 32.972	33.421 33.738	CRUISE	SAL	32-425	32.425 32.447 33.012
CNAV	HR OF	TEMP	8.93 8.93 8.93	8-84 8-81 8-80 7-56	7.20	OSHAWA	E (T)	0000	000
	24/03/63 14pe	DEPTH	20020	8400 8400	123	CNAV	TEMP	88888 8.00 16.00 16.00	8.82 8.75 7.50
	DATE 2 BAROM CLOUD	CST	7-1-1				DEPTH	30000	50 100

	27					11;	
	1 WIND VEL 15 DIR 16 1 DIR 14 SWELL 1 DIR						
VALUES	WEA O						
OBS ERVED	4DG 2560 SECD1	SATA	103 103 104 103	1004	102 889 57 50	W1 0:4:0:4	10
057 (ELR SN	YCEN -	-0.018 -0.018 -0.023	-0.038 -0.024 -0.018	-0.012 0.062 0.255 0.295	0.410 0.536 0.603 0.616	0.591
ATION 0	127-73 86 WER 7,20	FGA/L	00.0000	0.5896 0.5896 0.5899	0.584	0.085 0.032 0.038	0.066
OS1 ST	RELHU E(S) 1	H-11	666 666 666 666 666 666 666 666	6.60	3.726	2.18 0.95 0.36 0.31	0.74
CRUISE (ET 6 7 NEI	SIGMA-T	25.14 25.13 25.13	2255 255 256 155 155 155	200 200 200 200 200 200 200 200 200 200	26.76 27.00 27.21 27.36	27.55
CNAV OSHAWA	9-1 LAT Y 7-8 WE VIS-7	SAL	32.405 32.404 32.402 32.436	32.402 32.414 32.430 32.421	32.431 32.819 33.777 33.876	33.969 34.100 34.241 34.366	34.507
CNAV	TEMP DR	TERO	88888 9999 094	88888 8.88 9.88 8.86 8.82	8-83 7-72 7-28 7-13	6.03 3.089 3.489 3.438	2.58
	24/03/6 M 13*E	DEPTH	0406	6748 6748 6748	119 143 156 180	271 460 698 938	1422
	DATE BAROL CLOUG	CST		нннн	7777	2222	77

	VAR	0.88	00000	00001	0000	0.94
UES	E(0)	0000	0000	0000	0000	0.01
TED VALUES	OXY ML/L	6666 8666 8766	9999	11.23 20.03 20.03	00.00	0.33
ND COMPUT	POT ENERGY	0.00	0.37 0.83 1.47 2.97	4.50 6.15 8.04 12.47	17.71 23.64 30.15	52.39
POLATED A	GEOPOT	000000000000000000000000000000000000000	0.143 0.215 0.287 0.408	0.495 0.567 0.634 0.758	0.871 0.977 1.074 1.165	1-331
INTER	SP VOL ANOMALY	283.2 284.6 284.8 284.8	283.4 283.5 193.6	147.6 136.6 129.0	108.3 100.1 93.1 86.9	76.9
TIGN 057	SIGMA-T	255-12 255-13 25-1	25.15 25.15 25.14 26.07	26.40 26.72 26.80 26.94	27.04 27.13 27.21 27.28	27-39
1 STA	E(S)	0000	0000	0.012 0.013 0.001	0000	0.001
CRUISE OS	SAL	32.405 32.402 32.434 32.434	32.416 32.429 33.429	33.916 33.968 33.992 34.064	34.125 34.242 34.242	34-390
OSHAWA	E(T)	0000	0000	0000	0000	0.00
CNAV 05	TEMP	8888 8000 8000 8000	8.89 8.86 7.46	6.91 5.73 5.19	4.10 3.90 3.72	3.31
	ОЕРТН	0000	100 150 150	78 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 40000 80000	1000

	27					115						
	13 018											
	DIR 3											
	L 28 SWELL											
	2 2											
	N											
S	02 3 D											
VALUE	W SEA SEA								ξ -			
	51 1							Č	5		257	
SERVED	6 26 9 E C 0 1	SATN	1033	1033	237 240 240 240 240 240 240 240 240 240 240	7524	13		3		Q.	LIGHT
OBS	SNDC	" ا	12388	1117	008 71 52	4010 020 030	11	5			139	ENT
58	CL _K	EN AO	0000	0000	0000	0000	0.5	ā			A A	PERCENT
0 NO	E 106	D:YG	1601	883 77 72	200 200 200 200 200 200 200 200 200 200	8 4 8 4 8 4 8	980	a			NO	. 20
ATIC	128 85 3,34	HGA	0000	0000	0000	0000	0.0	2	7	11	IATI	D AT
ST	L ONG L HU S J 2	-1	62 62 62 62	3376 3046	754 754 7454	83 24 54	96•	NO. 1	SA	32.4	RADI	NCUBATE
051	RE LE (1 ₹	0000	NOOO	4 W V	0000	Ó	CTA	,	•••	LAR	
UISE	12 N 6.1 ANG	HA-T	4464	0440 0440	8448 8440	00mm	.61	5	7		NG SD	WAS I
CRU	ET MIRE	S16	2222	2222	7666	7777	27	2	, , ,	90	NIWO	NE N
SHAWA	LAT 7 W	_,	98909 98909	3920 3920 661	354 705 818 990	097 335 486	552			980	I NC	VAL
OSH/	.9. 7. VI S	SAL	322	325		4444 4444	34.	5	13			117
CNAV	R 12 ORY 8	a .	പ്പയമ	0~96	9987	•0.00 ∞	9	AHAU	PROD AB-I		630	CTIV
ں	TEMP AMT	TEM	8888	8888	4478	29.4	2-2	2			E 0	TEAD
	3/6 E	I				VI		đ	1	.46	TIM	D PR
	24/0 12. TYP	DEPT	0000	9 4 48	115 138 170 257	434 658 888 940	1614		CHL	0	NGER	ECOND SITY
	ATE AROM LOUD	ST			7777	7777	2		DEPTH	00	ESSEI	E S TEN
	282	Ü					.4		Õ		M	IN

	AR	.93 .93	. 82 . 67 . 70		74 73 78 60	985
	× ×	000	0000	-000	0000	000
LUES	E(0)	0000	0000	0000	0000	000
ED VA	OXY ML/L	6.67	0000 04mm 104m	2.05 1.75 0.96	0000	0.28
IND COMPUT	POT ENERGY	0000	0.37 1.483 2.668	4.07 5.69 7.48 11.71	16.80 22.64 29.09 36.08	51.39
POLATED A	GEOPOT	000000000000000000000000000000000000000	0.144 0.215 0.281 0.382	0.591 0.591 0.795	0.824 0.927 1.024 1.115	1-281
INTER	SP VOL ANOMALY	283.4 284.3 284.0 284.7	285.3 281.6 238.4 164.3	148.2 131.2 121.9	106.2 98.9 92.6 86.9	77.5
FION 058	SIGMA-T	2555-13 2555-13 255-13 255-13	25.13 25.17 25.63 26.42	26.59 26.88 26.88	27-06 27-14 27-21 27-28	27-39
OSI STATI	E(S)	0000	0.006 0.005 0.029	0000	0000	000
CRUISE C	SAL	32.389 32.390 32.397 32.397	32.383 32.431 32.897 33.775	33.893 33.981 34.031	34.139 34.201 34.260	34.455
OSHAWA	E(T)	0000	0.00	0.00	0000	000
CNAV 0	TEMP	8.73 8.78 8.79 8.79	8.78 8.74 8.12 7.42	00.04 00.40 00.00	44.4 6.0 10.0 10.0 10.0 10.0 10.0	3.40
	DEPTH	9000	50 100 150	0000 0000	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1200

	13					
	DIR 14 3 DIR					
	EL 22 SWELL					
	WIND VE					
VALUES	WEA 01 SEA 3					
OBSERVED	DG 2651 SECDI	SATN	103 103 104 104	102 103 102 76	0464	28
	CLR SN	YGEN -	0.0021	-0.014 -0.015 -0.012	0.177 0.267 0.299 0.330	0.433
STATION 059	129-05 99 WIR 6, 0,	- OXY MGA/L	000000	0000 0000 0000 0000 0000 0000 0000 0000 0000	0.415 0.320 0.288 0.259	0.171
E OS1 ST	L ONG REL HU E (S)	HL/L	6.62 6.64 6.62 6.62	6.55 6.55 4.95	23.00 0.00 0.00 0.00 0.00	1.92
CRUISE	47-17 N T 8-9	SIGMA-T	255-14 255-14 255-14 25-14	25.22 25.14 25.17 25.17	26.17 26.40 26.48 26.54	26-77
CNAV OSHAWA	0.0 LAT	SAL	32.406 32.405 32.405 32.405	32.506. 32.405 32.433 33.080	33.386 33.734 33.832 33.886	33.992
CNAV	HR 19	TEMP	8.79 8.81 8.82 8.84	8.81 8.80 7.89	7.01 7.32 7.32 7.16	6.03
	24/03/6 08 TYPE	DEPTH	100 200 200 200	30 75 100	124 175 200	567
	DATE BAROM CLOUD	CST				3

BIDLOGICAL DATA PM 257 INCOMING SOLAR RADIATION - AM 139 WATER COLUMN VALUES STATION 059 CNAV OSHAWA CRUISE OSI 185.10 9.88 10.68 1.10 PRODUCTIVITY LAB-I DECK-I MESSENGER TIME 1206 00000 CHL-A DEPTH

	VAR			0.95	52.44
UES	E(0)	0000	000	00	00
COMPUTED VALUES	OX)	\$660 \$660 \$660 \$660 \$660 \$660 \$660 \$660	י יייי	2	2-90
AND COMPUT	POT ENERGY	0000	, W.	9	4.04
OLATED	GEOPOT ANOMALY	0000	224	.37	0.456
INTERP	SP VOL ANOMALY	2883 2883 7.08	884	65.	153.2
STATION 059	SIGMA-T	2222 225 25 25 25 25 25 25 25 25 25 25 2	~ ~~.	0.4	26.54
_	E(S)	0000	000	0.00	0000
CRUISE OS	SAL	32.406	22.	3.74	33.886
SHAWA	E(T)	0000	000	0	0000
CNAV OSHAWA	TEMP	8888 8887 8887 8887	00 NO	e m	7-16
	ОЕРТН	3500	50		200

	13					119	
	HELL 4 DIR						
	Z DIR 13 SI						
VALUES	NEA SEA						
O8S ERVED	40G 2834 SECDI	SATE	102 103 102	101 102 1002 82	7999 7906	46 194 194	23
090	CLR SN	YGEN -	0.0010	-0.0012 0.003 0.003	0.155 0.203 0.212 0.244	0.326 0.606 0.572 0.545	0.517
STATION 0	130-00 94 WTR 5,25	HGA/L	000 000 000 000 000 000 000 000 000 00	0.582 0.591 0.577 0.577	0.344 0.394 0.393 0.393	0.281 0.047 0.092 0.124	0.154
OS1 ST.	RELHU LE(S)	F.7.	66.65	6.52 6.62 5.37	4.97 4.40 3.92	3.15 0.53 1.03 1.39	1.72
CRUISE	48-12 N ET 8.9 WIRE ANGE	SI GMA-T	25.21 25.21 25.21 25.20	25.22 25.22 25.26 25.26	26.45 26.45 26.45	26.74 27.54 27.63	27.72
CNAV OSHAWA	3.5 LAT Y 9.4 W	SAL	32.406 32.408 32.412 32.401	32.414 32.409 32.445 32.866	33.352 33.692 33.718	33.922 34.514 34.568 34.568	34.630
CNAV	63 HR 0 TEMP DR	TEMP	8888 840 840 88	8.32 8.30 7.56	6.58 6.70 6.74 6.74	5.84 2.82 2.17 1.88	1.76
	25/03/ 11 TYPE	DEPTH	0500 0000	30 20 100 100	124 149 163*	279 1421 1708 2092	2380
	DATE BAROM CLOUD	CST				กกกก	7

	0		60	7040	0.000V	91-nr
	RATI		0.9	7-10	ww.	NWOW 8444
UES	E(0)	0000	0000	0000	00.18	0000
ED VAL	OXY ML/L	666 500 500 500 500 500 500 500 500 500	67066 9446 9460 9460	20m4 00m4 00m4	1.85 1.39 0.70	0000
AND COMPUT	POT ENERGY	0000	00.80 21.90 59.70	3.97 5.60 7.52 12.11	23.79 30.59 37.90	53.68 70.78 98.57 149.23
POLATED A	GEDPOT	0000	0-140 0-273 0-373	0.520 0.588 0.716	0.835 0.945 1.047	1.314 1.466 1.667 1.952
INTER	SP VOL ANOMALY	277-1 277-1 277-8 276-1	276.5 273.4 233.0 160.3	144.7 132.3 122.3	1113.1 104.8 97.3	79.1 70.7 61.7 50.4
110N 060	SIGMA-T	25.21 25.21 25.20 25.22	255.22 255.26 46.68	26.63 26.72 26.77 26.88	26.98 27.08 27.16 27.23	27.36 27.54 27.51 27.53
OS1 STA	E (S)	0000	0000	0.0022 0.0022 0.002	0.023 0.029 0.034 0.034	0.034 0.0034 0.001
CRUISE 0	SAL	32.406 32.412 32.401 32.401	32.409 32.445 32.866	33.910 33.944 33.934 33.993	34.050 34.105 34.160 34.213	34.4 34.4 34.5 37.5 532 602
SHAMA	E(T)	0000	0000	0000	00.09	0.00
CNAV OSHAWA	TEMP	8888 8086 8086	88.3 7.56 7.56 7.06	6.65 5.19 5.15	44.00 4.00 4.00 4.00 4.00 4.00 4.00	3.02 2.79 2.62 1.91
	DEPTH	3000 3000	50 100 150	2200 3200 400 000	\$00 700 800	1000 1200 1500 2000

\

	13						
	R 12						
	01						
	12 WEL						
	VEL Si						
	ND 13						
	DIR						
10	02 (
VALUES	AM						
VAL	E S						
ERVED	98						
ERV	25 CDI	N T N	0000	9000	82	4004	10
088	NDG SE	1	mmmm				
	S	' 2	0100	0100	091 225	529 529 529 529 529 529 529	591
61	ر ا∓ د ا	GEN	0000	0000	000	0000	00
90 N	113 123	OXY OL	9363	8894 866 866	46 46 70	2403 2603	68
ATION	129	MGA	0000	0000	000	0000	0.0
STAI	NG 1	1					_
v	SEC	בו	9999	50 36 34	69.	258	. 76
081	RE LE (ĮĪ	0000	9999	N44	w=00	0~
SE	A P R C	A-T	2223	2448	2470	9999	53
5	8-1 8	I G M	2222	2222	222	27.2	27.
క	WET WITH	S	10.0.0.				
MM	196.	_	400 400 400 400	5009 5009 6067 6067	6225 6225 828 828	924 050 384 384	477
JSH/	-1 8 VI S	SAI	3225	3222	NAMA MAMA MAMA	3449	34.
CNAV DSHAWA	00 7		(Manager)	***************************************	1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(1,11.7
CN	HR TP 20	<u>A</u>	2446	4653	122	3830	10
	HE AM	16	ထထထထ	ထထထထ	~ 666 A	พงคน	77
	3/6 E	I					
	5/0 111 17P	EPT	700	WN/9	124 149 171 195	294 493 741 988	486 786
	E 2 UD	0					
	DATI	CS T			7777	2222	77
		_					

	VAR		0.99	1.09	00.00 6.60 7.00 7.00 7.00 6.00 6.00	00.00
UES	E(0)	0000	0000	0000	0000 0000	000
ED VAL	OXY MC/L	0000 0000 0000	0000 0000 0000	2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0000 0000 0000 0000 0000 0000 0000 0000 0000	0.29
AND COMPUT	POT ENERGY	0.000	0.36 0.80 1.41 2.78	4.25 5.92 7.83 12.32	17.57 23.48 29.98 37.01	52.27 69.13 97.42
POLATED A	GEOPOT	0000	0.139 0.209 0.276 0.388	0.470 0.543 0.610 0.736	0.850 0.955 1.053	1.310 1.459 1.664
INTER	SP VOL ANOMALY	275.1 276.0 276.2 275.2	274.9 275.1 263.3 178.4	149.9 137.0 131.7 118.0	107.8 99.8 93.2 87.3	76.8 70.7 63.8
TATION 061	SIGMA-T	2002 2002 2003 2003 2003 2003	25.24 25.24 25.31 26.21	26.57 26.72 26.77 26.92	27.04 27.13 27.20 27.27	27.39 27.46 27.54
s 1	E (S)	0000	0000	0.009 0.0047 0.001	0000	0.001
CRUISE OS	SAL	32. 4492 32. 4492 32. 4904 32. 4908	32.502 32.506 32.614 33.434	33.847 33.956 33.956	34.056 34.135 34.214	34.434
OSHAWA	E(T)	0000	0000	0000	0000	000
CNAV 0	TEMP	8.70 8.74 8.69	8.67 8.38 6.53	66.00 86.73 86.73	3.80 3.80 3.80 5.80	3.28
	ОЕРТН	30000	50 100 150	2000 0000 0000	0000	1000 1200 1500

	13						
	DIR 15						
	WIND VEL 15 DIR 15 SWELL						
VALUES	WEA 01 SEA 2						
OBSERVED	DG 2468 SECDI	SATN	101	102 103 82 82	92 63 63 74	#H #444	159
062 0	CLR SN	GEN -	0.011	-00.00 -00.00 -00.00 -00.00	0.140 0.206 0.309	0000 6000 1600 1600	0.600
ATION	128-30 92 WTR 7:18	MGA/L	0000	0.5885 0.5885 0.5885	0.448 0.381 0.279	0.258 0.087 0.027	0-057
OS1 ST	RELHU LE(S) 1	11.1	6666	56.55	5.02 4.27 3.18	0000	0.64
CRUISE	48-14 N	SIGMA-T	25.15 25.14 25.14 25.14	25.13 25.14 25.15 25.38	25.95 26.22 26.37 26.51	26.74 26.98 27.20 27.35	27.51
OSHAWA	4-2 LAT Y 8-9 WE VIS 7 W	SAL	32.432 32.424 32.431 32.431	32.424 32.426 32.421 32.651	33.179 33.516 33.664 33.854	33.942 34.068 34.252 34.372	34.459
CNAV	63 HR 14 TEMP OR 1	TEMP	8888 9.999 9.998	8888 6000 4000 4000	7.36 7.16 7.23	6.03 4.85 3.584	2.59
	25/03/ 11 TYPE	ОЕРТН	0806	6748 675 675	119 164 164	280 470 710 950	1434
	DATE BAROM CLOUD	CST				2222	77

						Α	ÖÖ	2000	00	0000	1/6
					UES	E(0)	0000	0000	0000	0000	000
					red VALUES	OXY HL/L	6.59 6.59 6.59 6.59 1	4009 8609 8609	2.63 2.63 1.72	0000	0.29
DATA .			182	Ė	ND COMPUT	POT ENERGY	0000	0.37 0.83 1.43 2.77	5.93 7.86 12.41	17.78 23.86 30.51 37.66	53.25 70.29 98.01
BIOLOGICAL			H 231 PH	RCENT LIGH	OLATED A	GEOPOT	000000000000000000000000000000000000000	0.215 0.282 0.382	0.474 0.547 0.615 0.743	0.859 0.967 1.067	1.329
062			TION - AM	AT 50 PE	INTERP	SP VOL ANOMALY	282 283.7 284.1 284.1	284.6 282.5 177.5	151.7 139.0 132.4 120.0	1011.1 102.4 95.0 88.8	78.6
STATION	SAL	32.418	OLAR RADIA	NCUBATED	ATI ON 062	SIGMA-T	25.15 25.14 25.14	25.14 25.16 26.28	26.56 26.70 26.77 26.91	27-01 27-11 27-19 27-26	27.38
1 SE 051	≻ I	28	OMING SO	RCENTS I	OS1 STA	E (S)	0000	00.000000000000000000000000000000000000	0.022 0.039 0.001	000000000000000000000000000000000000000	0.002
WA CRUI	UCTIVIT DECK	8	INC	ITY VALUE	CRUISE (SAL	32.4432 32.4431 32.4431 42431	32.435 32.435 32.744 33.572	33.900 33.974 33.957 34.025	34-092 34-170 34-245 34-302	34.391 34.451 34.514
CNAV OSHA	PROD LAB-I		E 0625	TEAD OF	SHAWA	E(T)	0000	0000	0000	0000	0000
2	CHL-A	0.39	GER TIM	COND PRITY INS	CNAV 0	TEMP	8888 646. 646.	8.92 8.82 7.29	7.12 6.52 5.852 5.155	4.13 4.16 3.92	203 204 804 804
	DEPTH	00	MESSEN	THE SE		DEPTH	9700	50 100 150	2000 0000 0000	8760 0000 0000	1000 1200 1500

	18					12)	
VALUES	WEA 01 WIND VEL 10 DIR 17 SEA 2 DIR 18 SWELL 3 DIR						
OBS ERVED	10G 2560 SECDI	SATR	103 103 105 105	1002 103 69	WWWW ® 4NW	L446	.,
063	CLR SN	GEN -	-0.019 -0.017 -0.029	-0.014 -0.016 -0.016	0000 0000 0000 0000 0000 0000 0000 0000 0000	0.50 0.604 0.594	0.569
STATION 0	128-00 94 WIR 0.14	HGA/L	0.592	0000 0000 0004 0000 0000 0000	0.221 0.196 0.205 0.195	0.107 0.028 0.024 0.062	960-0
0S1 ST	RELHU LE(S)	- T	6.63 6.52 6.74 6.73	66.60 6.60 6.60 6.60	2.20	1.20 0.31 0.69	1.07
CRUISE (48-14 N	SIGMA-T	25.04 25.06 25.09 25.09	25.10 25.11 25.14 25.84	26.47 26.47 26.47	26.91 27.19 27.58	27.53
DSHAWA	8.8 LAT Y 9.4 WE	SAL	32.300 32.282 32.327 32.335	32.338 32.350 32.382 33.199	33.808 33.871 33.880 33.962	34.056 34.250 34.405 34.472	34.4420
CNAV	3 HR 1 TEMP DR	TEMP	8.73 8.71 8.80 8.76	8.71 8.70 8.68	7.63 7.57 7.48 6.86	23.55 25 25 25 25 25 25 25 25 25 25 25 25 2	2,17
	25/03/6 16 TYPE	DEPTH	2000	30 75 100	125 150 168 289	483* 727 970 1458	1752
	DATE BAROM CLOUD	CST				2222	7

	_	00	J	\supset	081	STATION	690	BIOLOGICAL	AL DATA			
CH.	-A	PRODUC LAB-I	TIVI	¥.		SAL						
0000			9670	788		2000 2000 2000 2000 2000 2000 2000 200	0-04					
34	-92		275	.14	3	ATER CO	LUMN VALUES	S				
SENGER	TIME	1041	Z	COMI	NG SO	LAR RADI	AT10N - A	M 231 PI	н 182			
2	CNAV OSHAW	<	CRUISE	180	STA	ATION 063	INTER	ERPOLATED	AND COMPUTED	>	ALUES	
-	EMP E	(1)	SAL	ш	(8)	SIGMA-T	SP VOL Anomaly	GEOPOT	POT ENERGY	0X \ F / L	E(0)	RAT
დ დ დ	1.73 0.80 0.76 0.71	0000	22.33	0000	0000	25.07 25.08 25.09 25.10	290.0 289.2 288.2 287.4	0000	0.00	6.63 6.73 6.58	0000	
∞∞∞~		0000	32-35 33-36 3-87	0000	0000	25°114 25°14 26°87	286.6 2184.4 159.2	0.217 0.280 0.375	0.83 0.83 2.57	9947 9460 9490	0000	
~000	2000 000 005 000	0.03 0.07 0.11 3.14	33 - 89 33 - 92 34 - 02	0000	0000 0000 0000 0008	26.54 26.60 26.60 26.67	153.8 147.9 142.1	0.530 0.530 0.741	3.98 5.73 7.80 12.72	2.27 2.21 2.12 1.87	00.25	39.
N44W	644 644 644 644 644 644 644 644 644 644	3333	4.09 4.15 4.23 4.30	0000	0000	26.93 27.05 27.16 27.25	119.6 108.7 98.0 89.5	0.867 0.982 1.087 1.181	18.53 25.02 31.98 39.27	1100 0.45 10,45 10,85	0000	30
WWN	505	000								0.28	0000	00-1

VALUES	WEA 03 WIND VEL 3 DIR 15 SEA 2 DIR 18 SWELL 3 DIR 18					127	
OBSERVED	NDG 2560 SECDI	SATN	1000	1004	7447 7447 7447	82524	13
4	CLR SA	GEN -	0.0024	-0.023 -0.025 -0.016	0.327	0.377 0.544 0.602 0.615	0.599
AT 10N 06	127-32 81 WTR 0,20	- OXYG	0000	00.594 00.594 00.588 00.588	0.305 0.258 0.254 0.239	0.227 0.077 0.030 0.025	0.058
0S1 ST	RELHU E (S)	HL/L	0000 0000 4480	4666 65885 65885	3.5.84 2.89 2.89 684 684	0000 0000 0000 0000 0000 0000 0000 0000 0000	0.65
CRUISE C	48-15 N ET 10.0 WIRE ANGL	SIGMA-T	225.13	2222	26.19 26.43 26.43	26.73 26.99 27.22 27.36	27.55
OSHAWA	-3 LAT	SAL	32.140 32.417 32.414 32.422	32.427 32.424 32.418 33.161	33.550 33.817 33.820	33.939 34.091 34.277 34.390	34.508
CNAV	SA HR 22 TEMP DRY	TEMP	8.83 9.00 9.00 9.00	8888 8880 8704	7.76 7.59 7.32	94.6 90.40 90.40	2.57
	25/03/6 1776E 6	ОЕРТН	0500	00000	155 163 1863	274 271 973 953	1448
	DATE BAROM CLOUD	CST	нене			กทกก	77

	CNAV OSHAWA	SHAMA	CRUISE	OS1 STA	TI ON 064	INTER	POLATED A	AND COMPUT	ED VAL	UES	
DEP TH	TEMP	E (T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	POT ENERGY	OXY HL/L	E(0)	VAR
3000	8898 8098 8048	0000	32-140 32-414 32-422 32-427	0000	24.93 25.12 25.14 25.15	303 285 283 283 293 2	00000	00000	4846 4846	0000	
100 100 150	8886 9000 046	0000	32.424 32.418 33.161 33.817	0000	25.15 25.14 25.85 26.43	283.3 284.3 217.7 163.5	0.216 0.279 0.379	0.37 0.833 2.588	444 464 464 464 464 464 464 464 464 464	0000	
200 300 400 400	5.89	0000	939 9009 939 934 936 956	0.000	26.56 26.68 26.76 26.91	151-1 140-9 133-1	0.528 0.528 0.797	5.69 7.64 12.20	222 222 246 246	0000	00.00
\$000 \$000 \$000	443	0000	34.115 34.195 34.268 34.3268	0000	27 - 02 27 - 12 27 - 21 27 - 28	109.9 100.8 93.3 87.4	0.841 0.947 1.046	17.55 23.54 30.08 37.11	0000 4448 8448	0000	2524 646 646 647 647
10000	29.5 20.5 40.0 40.0	000	34.404 34.460 34.517	000000000000000000000000000000000000000	27.38 27.47 27.57	78.0 70.1 61.2	1.404	52.51 69.42 97.00	0.29	0.00	0.96 0.89 11.42

•

-

_

	45					را کسد				
	moz.									
	0 % 0							VAR		
	C							Œ.		
	D VEL						1	E(0)	0000	0000
	E E E						,		6.62 6.68 6.68 6.68	400 400 400 400 400 400 400 400 400 400
ES	A 03						7	j		
VALU	3E						2	POT NERG	0000	0.38 0.838 2.52
RVED	2550 Di	iz	M444	ለግብት-ው	ωm		C 24			
065 EF	200 200 200 200 200 200 200 200 200 200	SAT	0000	2000	ועונט		ATE	OMO	0000	. 149 . 220 . 373
	υς ~	A DO I	0000 0000 0000 0000	0004	.248		0		0000	0000
065	en RCER R3	GE	0000	11	00		7 T Z		~~~~ ~~~~ ~~~~	2000 8000
T SON	1 2 2 1 0 m 1	MGA/i	00000 00000 00000 00000	00,00 00	0,337		\$. **	S A NO	299	229
STA	NG US		(480.40)	ONNE	- 6		065	A	0003	002 46 46
05.1	RELHO	E	2000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3,4		NO	S	2000 4000	255 265 265
SE	4 N ANGL	IA-T	0000	9024	26 46		STA	-	0000	0000
CRUZ	48-1 ET 9	SIGM	40000	ころろろ	26° 26.		180)	0000	0000
AMA	LA TO	1	0000 0000	9578 9758 9758	94		ш		239 238 240 236	248 512 269 801
0SH	1.8 7.10.	SAL	32,72	32.2	33.8		CRUIS	SA	2222	2000 0000
CNAV	AD AND	Q.	26632	8553 8683	23		AMA)	0000	0000
	63 TEH	₩ }••	ဆီတက်ထ	ထဲထဲထိက			OSH		0000	0000
	6/03/0 18 17/PE	EPTH	20000 20000	30 75 100	125		CA A	TE	88.92 86.67 8.63	7.286
	CATE 2 BAROM CLOUD	CST D	e d pod pod eod	данн				ОЕРТН	9000	1500 1500 1500

VALUES	WEA 02 WIND VEL 15 DIR 12 SEA 2 DIR 13 SWELL 4 DIR						
BS ERVED	10G 2377 SEC01	SATN	982 741 87	95 10 10 10	44mm	35	172
0 99		GEN -	0.101 0.162 0.147 0.075	0.043 0.071 0.120 0.176	00.338 00.288 00.288 00.288 00.288 00.288	0.391 0.597 0.613	0.00 0.584 0.554 0.554
ATION 06	126-35 9 WTR	FGA/L	00.469	000.550	0.235 0.246 0.301 0.306	0.208 0.034 0.034	0.035 0.077 0.112 0.123
OS1 STA	RELHU 9	#1.1	7445 7467 7467	2000 0000 0000	2.63 3.37 5.43 6.43	2.33 1.08 0.38 318	0.39 0.39 1.25 1.38
CRUISE C	ET 83 WIRE ANGL	SIGMA-T	24.91 24.95 24.95	22222 22222 2410 2410 2410	26.43 26.43 26.43 26.43	26.71 27.18 27.26	27.46 27.61 27.75
CNAV OSHAWA	4.0 LAT Y 8.3 W	SAL	32.230 32.227 32.235 32.249	32.264 32.365 32.766 33.130	33.646 33.809 33.827	33.968 34.238 34.262	34.553 34.553 34.553 34.630
CNAV	3 HR O TEMP OR AMT 8	TEMP	9999 0000 0000	00000 00000 000000	7.85	6.41 6.25 3.62 1.65	3.12 2.37 2.04 1.85
	26/03/6 18 1YPE	DEPTH	0506	9758	121165	269 453 9195 9195	1200 1671 1954 2170
	DATE BAROM CLOUD	CST	elelele:		22	222	<i>~~~~</i>

	CNAV 0	SHAMA	CRUISE	OS1 STA	110N 066	INTER	POLATED	AND COMPUT	ED VAL	UES	
ЕРТН	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL Anomaly	GEOPOT	POT ENERGY	OXY ML/L	E(0)	VAR
3000	8 9 9 9 9 9 9 9 9	0000	322° 200 322° 200 32° 200 32° 200 30° 30° 30° 30° 30° 30° 30° 30° 30° 30°	0000	24.97 24.97 25.01	299.4 299.7 298.0 296.6	00.000000000000000000000000000000000000	0.0000000000000000000000000000000000000	50.42 50.42 50.45	0000	0.88 0.97
50 100 150	88.87.7.99 7.50	0000	32.394 32.806 33.200	000000000000000000000000000000000000000	25.48 25.88 25.88 26.44	286°0 252°6 214°1 162°2	0°149 0°217 0°371	0. 1.933 2.933 2.933 2.933	0446 0444 0448	0000	0.91 0.86 1.00 1.15
200 300 400 400	6.89	0000	33.906 33.958 34.072	0000	26.59 26.69 26.77 26.93	148.1 139.9 132.8 117.4	0.449 0.522 0.590 0.717	3.91 5.58 7.52 12.02	1,066	00000	1.03
500 500 800 800	44.0 9.0 9.0 9.0 9.0 9.0 9.0	0000	34.1140 34.246 34.246	0000	27 - 06 27 - 13 27 - 19 27 - 26	106 1006 95.04 895.2	0.830 0.934 1.033	17.22 23.10 29.69 36.88	0000 8000 7490	0000	1.05
10000 15000 2000 2000	22.15	0000	34.934.5577	0000	27.38 27.46 27.56 27.67	78.8 71.1 62.0 52.2	1.296 1.448 1.650	52.51 69.63 97.59 149.33	0000	0000	0.73

	14					1)[
	15 DIR 12 ELL 3 DIR					
	WIND VEL 19					
VALUES	WEA 01 SEA 2					
OBSERVED VALUES	DG 1372 SECDI	SATN	1000 0044 2446	101 101 71	₩₩₩ ₩₩₩	OMNN
_	LONG 126-06 W SN RELHU 92 WTRCLR LE(S) 10,20	YGEN -	-0.020 -0.024 -0.026	-0.00 -0.008 0.053	0.247 0.268 0.276 0.306	0.533 0.533 0.533
CRUISE OS1 STATION 06		HGA/L	00.55 00.55	0.592 0.581 0.523 0.410	0.331 0.317 0.285	0.177 0.083 0.032 0.031
		H.Y.	6.65 6.69 6.71 6.73	6.55 4.56 5.65 5.65 5.65 5.65 5.65 5.65	3.55 3.19 19	000.0 0.00 0.00 0.00
	48-14 N ET 72 WIRE ANG	SIGMA-T	24.76 24.75 24.75	25.10 25.38 25.38	26.15 26.44 26.48 26.57	26.76 26.96 27.19 27.39
CNAV OSHAWA	8.0 LAT Y 7.8 W	SAL	31.910 31.902 31.907	32.122 32.330 32.637 33.218	33.838 33.802 33.838 33.900	34-100 34-256 34-409
CNAV	63 HR O TEMP DR	TEMP	88.88 8.88 44.89 7.94	8.32 8.72 8.44 8.25	7.99 7.39 7.01	9.5.38 9.21 5.21
	26/03/6 M 18 D TYPE	DEPTH	20000	0476 0476	124 149 162 186	280 472 713 1041
	DATE BAROI CLOUI	CST		нене		ากกก

	CNAV OSHAWA	SHAWA	CRUISE 0	OS1 STATE	TION 067	INTERP	POLATED A	IND COMPUT	ED VAL	UES	
ОЕРТН	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	POT ENERGY	OXY HC/L	E(0)	VAR
100 300 30	8.78 8.79 8.79	0000	31.910 31.908 32.122	0000	24°76 24°75 24°75	3219-7 3200-3 304-9	00000	0.00 0.02 0.07	6.66 6.73 6.63	0000	
1000 1000 1000	7.088 7.049 9.049	0000	32.660 33.660 33.660	00000	25.10 25.87 25.87	287.6 260.2 215.3 161.5	0.156 0.225 0.285 0.380	2200 2400 2400 2400 2400 2400 2400 2400	გიკო იდიი ი¤აი	0000	0000
2000 0000 0000	6.50 6.50 6.50 6.50 6.50 6.50 6.50	0000	33.927 34.004 34.045	0.002 0.004 0.005 0.013	26.41 26.72 26.79 26.90	146.5 136.7 130.5	0.558 0.558 0.558 0.558 0.558	3.93 5.57 7.47 12.01	2.00 1.835 1.881	0000	1.22 1.04 0.96 0.75
8 4 8 9 9 9 9 9 9 9	2446 9460 7460	0000	34.117 34.247 34.312	000000000000000000000000000000000000000	26.99 27.18 27.27	1113.2 104.2 95.9	0.841 0.951 1.052 1.146	17. 233.64 30.388 7.564	0000 80000 80000	0000	0.88 0.964 1.64
1000	3.56	0.00	34-402	0.005	27.38	78.9	1.315	53.15	0.33	0.02	0.91

12					134					
13 DIR 10 EL 1 DIR								VAR		
D VEL 09 SW							LUES	E(0)	0000	0000
1 DIR								OXY HC/L	4000 4000	2447 2444
WEA								POT ENER GY	0000	0.3 0.3 3.2 3.0 3.1
5100	SATN	10052	100 100 100 100 100 100	6 43			TED	OPOT	00000	25.156 25.156 35.355 35.355
37 W TRCLR	XYGEN -	47-99-99-99-99-99-99-99-99-99-99-99-99-99	0000	4 0.33			INTERPOL	VOL G	20.8 222.4 14.4	\$6000 \$6000
LONG 125 ELHU 99 (S) 0	HILL HGA	6.54 6.57 6.60 6.60 6.60 6.60 6.60 6.60	6.55 5.86 6.54 6.54 0.52 8.53 0.40	3.15* 0.28 2.84 0.25			890 NO1	IGMA-T S	24.75 24.73 24.74 34.81	25.34 2 25.93 2 26.18 1
48-14 N I 8-9 IRE ANGL	SIGMA-T	24-75 24-75 24-73	25.93 25.93 26.18	26.44			S1 ST	E(S)	0000	0000
.5 LAT 8.9 W	SAL	31.872 31.876 31.868 31.876	31.929 32.599 33.234 33.559	33.760			CRUISE	SAL	31.872 31.868 31.876 31.929	333,000 333,000 333,000 3600 460
HR 1 AMT 3	TEMP	8.66 8.74 8.70	8.52 7.85 7.88	7.73			SHAMA	E(T)	0000	0000
6/03/6 17 TYPE	ЕРТН	10°50 20°50	30 75 100	125			CNAV	TEMP	8.74 8.70 8.51	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
DATE 2 BAROM CLOUD	CST D							DEPTH	30000	02001
	ATE 26/03/63 HR 11.5 LAT 48-14 N : UNG 125-37 W SNDG 155 WEA 01 WIND VEL 13 DIR 10 AROM 17. TEMP DRY 8.9 WET 8.9 RELHU 99 WTRCLR SECDI SEA 1 DIR 09 SWELL 1 DIR 1 LOUD TYPE AMT 3 VIS 7 WIRE ANGLE(S) 0	ATE 26/03/63 HR 11.5 LAT 48-14 N LONG 125-37 W SNDG 155 WEA 01 WIND VEL 13 DIR 10 AROM 17. TEMP DRY 8.9 WET 8.9 RELHU 99 WTRCLR SECOI SEA 1 DIR 09 SWELL 1 DIR 1 LOUD TYPE AMT 3 VIS 7 WIRE ANGLE(S) 0 ST DEPTH TEMP SAL SIGMA-T - OXYGEN OXYGEN SATN	AROM 17. TEMP DRY 8.9 WET 8.9 RELHU 99 WTRCLR SECOI SEA 1 DIR 09 SWELL 1 DIR 1 LOUD TYPE AMT 3 VIS 7 WIRE ANGLE(S) 0 ST DEPTH TEMP SAL SIGMA-T OXYGEN OXYGEN SATN B. 6.54 31.872 24.75 6.57 0.587 -0.011 102 1 0 8.66 31.876 24.75 6.57 0.587 -0.014 102 1 20 8.70 31.876 24.75 6.59 0.589 -0.013 102	ATE 26/03/63 HR 11.5 LAT 48-14 N i ONG 125-37 W SPECOI SEA I DIR 09 SWELL I DIR 10 LOUD TYPE AMT 3 VIS 7 WIRE ANGLE(S) 0 ST DEPTH TEMP SAL SIGMA-T - OXYGEN - THAT 102 1 0 8.66 31.872 24.75 6.57 0.587 -0.014 102 1 10 8.74 31.876 24.75 6.57 0.589 -0.013 102 1 20 8.51 31.929 24.81 6.59 0.589 -0.013 102 1 30 8.51 31.929 24.81 6.59 0.585 0.052 191 1 50 8.52 32.599 25.34 5.86 0.553 0.052 191 1 100 7.88 33.559 26.18 3.53 0.315 0.265 54	ATE 26/03/63 HR 11.5 LAT 48-14 N LONG 125-37 W SNDG 155 WEA 01 WIND VEL 13 DIR 10 LOUD 17PE AMT 3 VIS 7 WIRE ANGLE(S) 0 NTRCLR SECOI 5 SEA 1 DIR 09 SWELL 1 DIR 10 ST WIRE ANGLE(S) 0 NTRCLR SECOI 5 SEA 1 DIR 09 SWELL 1 DIR 10 ST WIRE ANGLE(S) 0 NTRCLR SECOI 5 SEC	ATE 26/03/63 HR 11.5 LAT 48-14 N 1 ONG 125-37 W SECDI SEA 1 DIR 09 SWELL 1 DIR 12 LOUD TYPE SAL SIGNAT 3 VIS 7 WIRE ANGLE(S) SECDI SECDI SECDI SEA 1 DIR 09 SWELL 1 DIR 12 LOUD TYPE SAL SIGNA-T — OXYGEN — — OXYGEN — SATN HL/L HGA/L AGA/L AGA 1 102 SATN HL/L HGA/L AGA/L AGA 1 102 SATN HL/L HGA/L AGA/L AGA 1 102 SATN HL/L HGA/L AGA/L AGA	ATE 26/03/63 HR 11.5 LAT 48-14 N LONG 125-37 H SNDG 155 WEA 01 MIND VEL 13 DIR 10 LOUD TYPE TANT 3 VIS T WIFE ANGLE(S) O STAIN STORY TO STAIN SAL SIGNA-T	ATE 26/03/63 HR 11.5 LAT 48-14 N E ONG 125-37 H SNDG 155 WEA 01 MIND VEL 13 DIR 10 LAND MINE AND LOUGH SELDING SECOI SEC	AROM 176 TEMP DAY 18.5 LAT 18.	AND THE SECOND AS HERE AND SECOND AS HERE AND SECOND AS HERE TO THE SECOND AS HERE TO TH

	15					
	DIR 05					
	NELL O					
	VEL					
	WIND VEL 15 DIR 05 SWELL					
.ues	WEA 03 SEA 2					
VAL						
OBSERVED VALUES	SNDG 119 SECDI	SATN		102	84 66 7	43
08	SNO	1_		10	238	3
6.9	Z Z	GEN		00	000	3
E OSI STATION 069	LONG 125-39 W LHU WTRCLF S) 15	ML/L MGA/L ADU		589 585	501 280 258	5
ATI	i 12:	HC		00	000	•
IS 1	LONG	֚֚֚֚֚֡֝֝֝֟֝֝֟֝֟֝֝ <u>֚֚֚֚֚֚</u>		6.60	5-61	•
05.1	RELH NGLE(S)	-				
CRUISE	-14 E À	SI GMA-	4-8	4.81	5.34	6.3
S	T 48 WET WIR	SI	77	100	777	7
AMA	۲.	1	95	28	617 116 634	68
OSF	3.8 Y VIS	SA	-4,	31.	3332	3
CNAV OSHAWA	HR 1 P DR	ď.	68 64	702	111	
	II	16	• •	ωω	887	•
	26/03/63 15. TE	рертн		29	48 97	90
	E 26/	DEI		•		7
	DATE BARC CLOU	CST				-

	VAR	00	000
UES	E(0)	0.00	0.00
EU VAL	OXY ME/L	6.60	5.50 4.05 2.83
AND COMPOSED VALUES	POT ENER GY	0.00	0.38 0.76 1.18
INIEKPOLATED	GEOPOT	00000	0.153 0.213 0.262
INIEK	SP VOL Anomaly	315.2	260.9 214.4 170.0
USI STATION USA	SIGMA-T	24.81 24.82 24.83	25.38 25.88 26.35
	E(S)	0000	0.005
CKUISE O	SAL	31.952 31.959 31.956 31.988	32.666 33.193 33.662
SHAMA	E(T)	0000	0.00
CNAV USHAWA	TEMP	88.64 8.64 8.70	8.54 8.00 7.28
	ОЕРТН	30000	50 100

BIOLOGICAL DATA
STATION 69A
CRUISE OS1
CNAV OSHAWA

DATE 26/03/63 LAT 48-13 N LONG 125-01 W PRODUCTIVITY LAB-I DECK-I

DEPTH CHL-A PRODUCTIVITY

09.0

MESSENGER TIME 0625

CNAV OSHAWA CRUISE OSI STATION 070 OBSERVED VALUES

POINT OF THE ARCHES

WEA 02 WIND VEL 10 DIR 07 SEA 2 DIR 07 SWELL 3 DIR 16			
SNDG 64 SECDI	SATI	102 103 104 104	100
CLR SN	SEN -	000010	0.001
124-52 4 WTRC	- OXYGEN	0.59% 0.59% 0.59% 0.59%	0.576
RELHU 9	#.1.	66.66 69.86 69.86	6.45
48-14 N ET 8.9 R WIRE ANGLE	SI GMA-T	22.8 24.98 24.05 33	24.52
5-3 LAT Y 9-4 H	SAL	29.421 30.144 30.992 31.354	31.584
TEMP DR	TEMP	8.80 8.77 8.73 8.76	8.67
26/03/63 116 1 TYPE	ОЕРТН	0206	28
DATE BAROM CLOUD	CST		

	VAR	1.00 1.85 1.55
UES	E(0)	0000
COMPUTED VALUES	OXY ML/L	6.66 6.66 397 6.397
AND COMPU	POT ENERGY	000000000000000000000000000000000000000
INTERPOLATED	GEOPOT	0.000 0.0045 0.082 0.1882
INTER	SP VOL ANOMALY	5005 93805 94.00 6.14
STATION 070	SIGMA-T	22. 24.12 24.35 24.35
OS1 STA	E(S)	0000
CRUISE	SAL	29.421 31.087 31.384 31.623
SHAWA	E(T)	0000
CNAV OSHAWA	TEMP	888 87.78 65.53
	DEPTH	0000

Fig 2. Station locations <u>Brown Bear</u> Cruise 320, 28 March - 10 April 1963.

BROWN BEAR CRUISE 320 STATION 001 OBSERVED VALUES

TATOOSH ISLAND

23 JIR ;					
01R 3 D					
Z6 WELL					
VEL 3					
HIND IR 2					
1 2 0					
IEA 2 SEA					
81 ×					
co I	ATN	950 950 900 900	988 645 645	0874	77
SNDG	S	noáo	4-4-	ั พีพิพจ์	30
3 ~	ENADU	0000	0.00	00.30	0.33
-51 WTRC	OXYGE!	24 119 16	23 23 73 73	225	66
124 72 5	HGA	0000	0000	0000	0.2
ONG HO	-1	20 81 95 78	8 18 18 18	908	06
REL LE (S	1 ₹	Novo.	~~~	www	2.
27 N 5.8 ANG	MA-T	520 570 66	757 775 35		14.
ET WIRE	S16	7444	7446	700 700 700 700 700 700 700 700 700 700	26
LAT 9 HI	_	447 546 631 764	777 876 886 496	5334 6334 6344 634	061
.5 7 VI S	SAI		32.		33.
HR 12 P DRY T 2	٩	~8-18 8-18	0785	4544	8
3 TEN AM	TEM	@@@@	7.988	7 0667	7.1
03/6 PE 7	H	0400	040 0	0NW4	œ
297 M 28 D TY	DEP	-	749	113	21
DATE BAROI CLOUI	CST		-		-
)				

00.94 00.94 00.65 00.65 00.65 00.65 00.65 00.65 00.65 00.65 00.65

							VALUES	E(0)	0000	0000	0.02
							ED	OXY #L/L	5.00 8.00 8.00 8.00 8.00 8.00	2000 0000 0000	2.78
001 BIDLOGICAL DATA		30.590 30.590 30.590	COLUMN VALUES	SOLAR RADIATION - AM 162 PM 121	- TIME 0211-0221 DEPTHS 100, 70 0250-0300 35, 0		AND COMPUT	POT ENERGY	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	4-40
							NTERPOLATED	GEOPOT	0.000	0.167 0.246 0.314 0.419	0.507
							INTER	SP VOL Anomaly	351.2 326.9 327.3	323.1 299.5 239.9 180.3	165.3
STATION	SAL						TATION 001	SIGMA-T	24.43 24.58 24.66 24.68	24.73 24.98 25.61 26.25	26.41
I SE 320	۲ï		WATER CO	NCOMING SI) HORIZ		320 STA	E(S)	00000	0.024 0.027 0.001 0.012	0.026
EAR CRUI	DUCTIVITY I DECK	9085 9085 838	7 I 05	INC	-BUMPUS		CRUISE 3	SAL	31.447 31.650 31.771 31.798	31.855 32.103 32.801 33.544	33.719
BROWN B	PROI LAB-	7000	24.	E 0315	CLARKE		BEAR	E(T)	0000	0000	0.01
8	CHL-A	1.23	15.43	SER TIME	4K TON		BROWN	TEMP	8888 7662 1097	8.68 8.29 7.71	7.14
	DEPTH	7690		MESSENGER	200PL ANK TON			ОЕРТН	37000	50 100 150	200

BIOLOGICAL DAT STATION 01A 320 **CRUISE** BEAR BROWN

DATE 29/03/63 LAT 48-24 N LONG 124-59 W	SAL	31.840
DATE 29/03/63 LAT 4	PRODUCTIVITY LAB-I DECK-I	
	CHL-A	0.51
	DEPTH CHL-A	c

121 INCOMING SOLAR RADIATION - AM 162 MESSENGER TIME 0626

23 WEA 02 WIND VEL 30 DIR 23 SEA 3 DIR 23 SWEIL 4 DIR OBSERVED VALUES SNDG 113 SECDI UATE 30/03/63 HR 00.0 LAT 48-14 N LUNG 125-23 W BAROM 97.0 TEMP DRY 6.9 WET 5.2 RELHU 78 WIRCLR CLOUD TYPE 8 AMT 7 VIS 7 WIRE ANGLE(S) 15 CRUISE 320 STATION 002 BROWN BEAR

, - - -

U SATN 92 98 92 93 0.044 0.051 0.050 0.046 0.040 ML/L MGA/L AOU 0.529 0.529 0.522 0.564 0.527 56.90 92.80 90 90.80 90 90.80 90 90 90.80 90 90 90 90 90 90 90 90 5.92 4.89 2.77 SIGMA-T 24.83 24.84 24.84 24.83 25.39 26.08 32.022 32.022 32.026 32.019 32.753 SAL 88888 88888 8448 TEMP 8.96 8.66 7.50 DEPTH 2520 44 90 90 90 90 CST

	SIL	0008		01			
•	A T	~~~~		5.4			
BIDLOGICAL DATA	PHOS	0000		0.91		PM 121	
B 10L 0G 1	SAL	32.111 32.111 32.107		32-142	VALUES	SOLAR RADIATION - AM 162	
STATION 002	SAT	100	1354 1324 1324	4	WATER COLUMN VALUES	RADIATION	22200
320 STA	PROD	0.21	00.24	0.03	- WATER		4I NATION
CRUISE 320	UCTIVITY DECK-I	4400 0980 0900			86.46	INCOMING	UBATOR ILLUMINATION 22200
BROWN BEAR	PRODUCT LAB-I	0000.0000.00000000000000000000000000000		0.23	39.74	1146	ON INCUBA
88	CHL-A	00.55		0.61	34.05	MESSENGER TIME 1146	LIGHT SATURATION INC
	ОЕРТН	0746		100		MESSEN	LIGHT

DEDIN TEND	Z	DRUMN BEAK	CRUISE	320 STA	STATION 002	INTER	OLATED	INTERPOLATED AND COMPUTED VALUES	FED VAL	UES	
•			SAL	E(3)	SIGMA	ANOMALY	GEOPOT Anomaly	POT ENER GY	NY NY	E(0)	RATIO
		00	2.02		24.83	312.8	0.000	00.00	5.92	00.0	
80	980	000	32.010	00.00	24.82 24.82 24.95	313.8	000	000	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	000	000
Ø Ø	435	0.01	3.		25.61	239.3	0.149	0.36	5.17	0.00	1.66

	D VEL 24 DIR 20 20 SWELL 1 DIR 18					143	
	DIR						
VALUES	WEA 02 SEA 2						
BSERVED	DG 1646 SECDI	SATN	1004 1005 1005	105 103 71	40294 4029	11 5 4	100
003 0	W SN	GEN -	0.0029 0.0029 0.030	-0.030 -0.015 0.046 0.167	0.211 0.236 0.279 0.324	0.554 0.554 0.603	0.591
ATION 0	125-57 71 WTR	HGA/L	0.594 0.594 0.594	0.5885 0.5885 0.528	0.369 0.347 0.307 0.265	0.141 0.066 0.029 0.024	0.065
320 ST	L ONG RELHU E (S) 2	デバー	6.43 6.43 6.43	6.73 5.55 6.95 60 60	2.44	1.58 0.32 0.27	0.13
CRUISE 3	47-50 N ET 50 N WIRE ANGL	SIGMA-T	24.92 24.92 24.92 24.93	24.94 25.33 25.33	26.26 26.26 26.41 26.54	26.82 27.02 27.21 27.37	27.56
WN BEAR	7-4 LAT Y 7-2 W	SAL	32.165 32.141 32.135 32.178	32.183 32.252 32.611 33.163	33.396 33.597 33.873	34.018 34.131 34.273 34.391	34.519
BRO	63 HR O TEMP DR 8 AMT 3	TENP	8888 9872 9827	89.09 9.00 1.00 1.00 1.00	7.96 7.358 7.125	5.84 3.17 3.57	2.53
	30/03/ 00.7 TYPE	DEPTH	700	31 75 100	125 150 174 190	286 478 719 960	1445
	DATE BAROM CLOUD	CST	2222	~~~	7777		

BIOLOGICAL DATA ZOOPLANKTON (CLARKE-BUMPUS) HORIZ - TIME 0108-0118 DEPTHS 100, 70 0139-0149 BROWN BEAR CRUISE 320 STATION 003 INCOMING SOLAR RADIATION - AM 163 PM 146

	RATIO	0.84	0.92	1.41 0.97 0.75	0000	1.01
UES	E(0)	0000	0000	0000	0000	0.00
ED VAL	OXY ML/L	6.65	6.95 7.00 7.00 7.00 7.00 7.00	1.92 1.47 0.90	0000 2346 2366 2366	0.30
AND COMPUT	POT ENERGY	0000	2.00 2.00 5.00 5.00 5.00 5.00 5.00 5.00	4.12 5.74 7.57 11.89	23.08 23.05 29.64 36.75	52-17 68-91 96-43
POLATED /	GEOPOT	00.000	0.224 0.288 0.3885 0.3885	0.5339 0.604 0.725	0.837 0.943 1.042	1.302
INTER	SP VOL ANOMALY	3024.2	299.6 266.2 218.9 179.7	148.6 131.9 125.4 114.4	108.5 101.1 94.4 88.2	77.5 69.2 61.7
TION 003	SIGMA-T	24.94 24.92 24.95	25.33 25.33 25.33 26.33	26.59 26.77 26.84 26.97	27 - 04 27 - 12 27 - 20 27 - 20	27.39 27.48 27.56
320 STA	E(S)	0000	0000	0.037 0.0037 0.009	0000	000
CRUISE 3	SAL	32.165 32.135 32.178 32.183	32.245 33.611 33.163	33.915 34.027 34.030 34.099	34.144 34.204 34.362	34.407 34.473 34.524
BEAR	E(T)	0000	0000	00.00	0000	000
BROWN	TEMP	8888 9929 9629	7889 7.160 7.130 8.130	6.97 5.78 5.13	3444 34.58 3021 3021	3.047
	DEPTH	0 20 30 30	50 100 150	7300 7300 7300 7300	\$000 800 800	1000 1200 1500

BIOLOGICAL DATA DATE 30/03/63 LAT 47-35 N LONG 126-35 W BROWN BEAR CRUISE 320 STATION 03A

UNIE 30/03/03 LAI 41-33 N

0 0.20 0.16

INCOMING SOLAR RADIATION - AM 163 PM 146 MESSENGER TIME 0632

DEPTH CHL-A PRODUCTIVITY LAB-I DECK-I

	54						
	WIND VEL 24 DIR 20 DIR 24 SWELL 5 DIR						
VALUES	WEA 90 SEA 2						
OBSERVED	40G 2377 SECDI	SATA	104	105 104 104	00 s 00 s	75 10 10 10 10	80
004	CLR SN	SEN -	-0.024	-0.026 -0.023 -0.023	0.231	0.343 0.526 0.611 0.620	0.601
STATION O	126-34 76 WIR 0,16	- OXYGEN	00.591	000000	0.356 0.336 0.326	0.024 0.024 0.024	0.055
320 ST	RELHU LE(S) 2	#.1.	6.62 6.78 6.63 6.63	6.61 6.61 6.61	3.96 3.76 3.65	2.77 1.10 0.27 0.28	0.62
CRUISE 3	47-32 N ET 5.8 WIRE ANG	SIGMA-T	25.15	25.14 25.15 25.15 63	26.95 26.30 26.30 5.450	26.60 27.22 27.22 27.32	27.55
WN BEAR	6-0 LAT Y 7-2 WE VIS-7	SAL	32.490 32.504 32.491 32.487	32.487 32.487 32.492 32.895	33.640 33.640 33.746	33.934 34.049 34.253 34.359	34.508
BRO	63 HR 1 TEMP DR 3 AMT 6	TEMP	9.17	9.19 9.18 9.16 8.07	7.60	3.98 3.98 3.98 3.98	2.59
	30/03/ 01:0 TYPE	DEPTH	2500	9475 9189 918	125 1684 1900	287 477 719 961	1447
	DATE BAROM CLOUD	CST	กกกกั	2222	nn n		⊶.

						> ∀	0	000-	4400	0000	120
					UES	E(0)	0000	0000	0000	0000	0.01
					TED VÄLUES	OXY ML/L	6666 6666 6624	94.00 14.00 14.00 14.00	3.58	0000	0.32
DATA				146	D COMPUTED	POT ENERGY					
B 1010G ICAL				н 163 рн	POLATED AND	GEOPOT	·				
700			S	ATION - A	INTERPOLA	SP VOL ANOMALY	282.9 283.4	284.4 276.8 230.7 170.3	1555 1766.5 186.5 186.5	1111-1 101-0 93-6 87-5	78.0
STATION	SAL	32.4494 22.4834 32.4834 82.4834	UMN VALUE	SOLAR RADIA	ATION 004	SIGMA-T	25.15	25.12 25.12 26.31 26.31	26.52 26.58 26.63 26.63	27-01 27-12 27-20 27-20	27.38
I SE 320	-		WATER COLUMN	NCOMING SO	320 STA	E (S)	0000	000000000000000000000000000000000000000	0000	0.002	900-0
AR CRUI	UCTIVIT	225	1 80	N H	CRUISE	SAL	32.490 32.491 32.487 32.487	32.547 32.547 32.969 33.696	33.864 33.917 33.942 34.004	34.069 34.155 34.238 34.298	34.371
BROWN BEA	PRODI LAB-I	000	9.36	0817	BEAR (E(T)	00	0000	0.000	0000	0.00
BR	CHL-A	0.23	10.80	ER TIME	BROWN	TEMP	9.17	9.20 8.99 7.95	7.18 7.08 6.86 5.70	4.59 3.99 16.79	3.28 2.93 5.93
	DEPTH	00104		MESSENGER		DEPTH	0000 3000	50 100 150	200 300 400 400	8000 8000 8000	1000 1200 1500

	2						147
VALUES	WEA 03 WIND VEL 16 DIR 26 SEA 2 DIR 26 SWELL 3 DIR 2						
OBSERVED 1	06 2468 SEC01	SATN	104	108	104 104 103 86	7 5 5 8 7 8 7	1+
	SNDG CLR SE	YGEN	-0.021	-0.045	0.00 0.00 0.00 0.00 0.00	0.128 0.228 0.246 0.272	0.362
STATION 005	126-51 65 WIR 1	HGA/L	. 590	0.614	000000000000000000000000000000000000000	0.467 0.364 0.343 0.319	0.247
320 ST	RELHU (FL7.		96.99 9.99	6.65 6.65 5.59	5.23 3.84 3.84 3.74	2.17
CRUISE	47-26 N EI 4.4 WIRE ANG	SIGMA-T	25.12	25.13 25.12	25.12 25.12 25.12 25.55	26.12 26.36 26.48 26.57	26.76
OWN BEAR	V 7-3 WE	SAL	2-42	32.421 32.421 32.418	32.417 32.416 32.452 32.809	33.297 33.685 33.807 33.887	33.921
8R0	63 HR 2 TEMP DR 7 AMT 6	TEMP	9.02	8.98 8.98	8.03 8.03 8.03	6.88 7.29 7.17 6.96	5.69
	30/03/ M 05.1 D TYPE	ОЕРТН	Ov	1001	29 71 96	120 145 170 193	282
	DATE BAROI CLOUI	CST	~-				-

	SIL	∞∞~		60				VALUES
_	NITR	44W @40		5.0				4PUT ED
AL DAT	PHOS	0.88		0.91		PM 146		AND CO!
BIOLOGICAL DATA	SAL	32.406 32.401 32.407		32.405	s	AH 163 P		INTERPOLATED AND COMPUTED VALUES
	IRRAD	20		-	WATER COLUMN VALUES	RADIATION - A		INTER
STATION 005	SAT	100	34 132 44 4		COLUM	RADIAT	22100	900
20 STA	PROD	0.22	00000			SOLAR	II NATI ON	STATION 005
CRUISE 320	UCTIVITY DECK-I	1.87 1.98 0.40		0.08	51.28 -	INCOMING	UBATOR ILLUMINATION 22100	CRUISE 320
BROWN BEAR	PRODUCTI LAB-I D	0.24		0.17	11.47	1130	INCUBAT	BEAR CRUI
BROW	CHL-A	00.00		0.30	19.93	MESSENGER TIME 1	LIGHT SATURATION INC	BROWN BE
	DEPIR	319		49		MESSENG	LIGHT S	

	BYCKN	BEAK	CKUISE	320 STA	STATION 005	INTER	INTERPOLATED	AND COMPUTED VALUES	I EU VAL	UES	
ЭЕР ТН	TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	POT	OXY ML/L	E(0)	RATIO
3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9888 9988 8888	0000	32.420 32.421 32.421 32.418	0000	25.12 25.13 25.12	2885 2885 2885 855 855 5	000000000000000000000000000000000000000	0000	6.988 6.938 6.438	0000	0.88
1002 1005 1006	0677	0000		0000	25.12 25.20 25.67 26.39	286.4 279.4 234.5 166.5	0.144 0.216 0.280 0.381	00-12 00-12 00-13	9904 9400 9000	0000	0.90 0.81 0.79
200	6.88 6.18	0.00	33.905	0.000	26.59	148.1	0.461	5.71	3.48	0.01	2.15

	2						
S	10 WIND VEL 18 DIR 27 2 DIR 27 SWELL 1 DIR 2						
VALUE	WEA						
BSERVED	DG 2670 SECD1	SATN	105 105 105	106 104 95	855 55 55 55 55 55 55 55 55 55 55 55 55	41 44 90	9
0 900	CLR SN	GEN -	0.029	0.035 0.022 0.025 0.031	0.108 0.194 0.252 0.252	0.354 0.536 0.600 0.610	0.595
ATTON	127-51 65 WIR 5, 7	MGA/L	0.590 0.580 0.5887 0.889	000000000000000000000000000000000000000	0.484 0.333 0.334	0.252 0.089 0.037 0.031	0.062
320 ST	RELHU LE(S) 2	71.1	6.61 6.57 6.60 7.80	66.00 0.00 0.00 0.00	5.45 3.16 3.16	2.82 1.00 0.41 0.35	0.69
CRUI SE	46-56 N ET 5.0 WIRE ANG	SI GMA-T	25.13 25.14 25.14 25.14	25.14 25.13 25.14 25.42	25.99 26.27 26.51 26.53	26.74 26.99 27.21 27.35	27.55
OWN BEAR	05.0 LAT RY 7.8 W	SAL	32.551 32.551 32.544 32.546	32.552 32.556 32.556	33.175 33.850 33.867	33.929 34.056 34.237 34.371	34.509 32.559
8R(63 HR TEMP D	TEMP	0000 0000 0000 0000 0000	99.50 99.50 156	7.10 7.38 7.21 7.12	24.04 9.04 9.04 9.04	2.59
	31/03/ M 11:2 D TYPE	ОЕРТН	200	9700 940 940	124 149 174 185	7468 468 468 468	1425
	DATE BARON CLOU	CST	2222	2222	777		

					UES	E(0)	0000	0000	0.0200.00000000000000000000000000000000	0000	000
					ED VAL	OXY ML/L	6.60	6004 6006 6006 6006	2.04 1.55 1.55 89 89	00.52	0.37
DATA				146	ND COMPUT	POT ENERGY	0000	0.37 0.83 1.44 2.79	4.23 5.86 7.76 12.28	17.58 23.54 30.04 37.05	51.64 65.39 94.29
IGLOGICAL				163 PM	OLATED AN	GEOPOT Anomaly	0.0000	0.215 0.283 0.383 0.393	0.545 0.545 0.612 0.739	0.854 0.960 1.057 1.148	1.308 1.431 1.633
900 B			S	TION - AM	INTERP	SP VOL ANOMALY	284-1 284-0 284-0 283-9	285.4 284.3 256.0 177.8	145.3 134.8 132.1	109.1 100.2 92.9 87.2	70.4 51.2 81.9
STATION	185	32.561 32.55481 32.55481 55481	OLUMN VALUE	AR RADIA	110N 006	SIGMA-T	255.14 255.14 255.14	25.13 25.14 26.27	26.62 26.74 26.77 26.91	27.03 27.13 27.21 27.28	27.47 27.68 27.34
1 SE 320	,		ATER COLI	NCOMING SOL	320 STA	E(S)	0000	0000	000000000000000000000000000000000000000	0000	0.068 0.166 0.052
AR CRUI	DUCTIVITY I DECK-	1046	17 - VI	INC	CRUISE	SAL	32.551 32.544 32.546 32.552	32.546 32.546 32.863 33.847	33.954 33.996 33.996 34.009	34.081 34.158 34.233 34.296	34.497 34.715 34.231
ROWN BE	PROC LAB-1	0000	7.1	2128	BEAR	E(T)	0000	0000	00.00	000000000000000000000000000000000000000	0.00
80	CHL-A	00.20	11.83	GER TIME	BROWN	TEMP	9999 80000 80000	9.56 9.56 7.38	6.94 5.74 4.98	4.14 3.90 3.73	23. 20. 40. 40. 40.
	DEPIH	3 9 9 9 9		MESSENGE		DEPTH	0 20 30 30	50 100 150	4320 4320 0000	\$ 70 000	1000 1200 1500

	30						-/-	
	DIR 30 L 3 DIR							
	WIND VEL 22 DIR 30 SWEL							
VALUES	WEA 90 SEA 2							
OBSERVED	1DG 2706 SECDI	SATR	102 102 101 101	101101	83	75	42 7204	12
007	I W SN	YGEN -	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.102	0.151	0.324 0.515 0.599 0.618	0.601
320 STATION OC	LONG 128-31 RELHU 79 WTR LE(S) 32,15	MGA/L	0.570 0.573 0.573 0.569	0.570	0.483	0.443	0.105 0.105 0.034	0.054
		#1.1	6.38 6.41 6.31	6.38 6.38 6.38	5.41	4.96	3.16 1.18 0.38 0.27	0.60
CRUI SE	46-35 ET 5.8 WIRE AN	SIGMA-T	25.13 25.13 25.14 25.15	25.14 25.13 25.13 25.28	5.7	26.25	26.74 26.93 27.16 27.32	27.54 27.61
OWN BEAR	12-1 LAT	SAL	32.548 32.552 32.553 32.553	32.555 32.555 32.550 32.548 32.636	3.00	33.473	33.922 34.028 34.206	34.501
BRC	63 HR 1 TEMP DR 3 AMT 6	TEMP	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.58	94	6.88	2.4 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	2.70
	31/03/ 3M 14.0 JD TYPE	DEPTH	0.00	749E	0	152	257 430 649 871	1315
	DATE BARD CLOU	CST	2020	2222	~~	-7-		

BIOLOGICAL DATA					INCOMING SOLAR RADIATION . AM 195 PM 211
BROWN BEAR CRUISE 320 STATION 007	SAL	9922 9922 9925 9955 9955 9955	32.556	LUMN VALUES	OLAR RADIATION .
CRUISE 320	PRODUCTIVITY LAB-I DECK-I	1.64		- MATER COLUMN VALUES	INCOMING
JWN BEAR	PRODUC LAB-I	00.28	0.20	15.05	0554
BRC	CHL-A	4777 777 777 0000	0.22	14.30	MESSENGER TIME 0554
	DEPTH CHL-A	00-4	100		MESSEN

	BROWN	BEAR	CRUISE	320 STA	ATION 007	INTER	POLATED A	IND COMPUT	ED VAL	UES	
ОЕРТН	TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VOL Anomaly	GEOPOT	POT ENERGY	OXY ML/L	E(0)	VAR
0000	9999 9779 9498	0000	32.558 32.558 32.555 32.555	0000	255.13 255.13 135.13	284 2833 2833 2833 5833 5833 5833 5833 5833	00°000 00°00 00°00 00°00	0.00 0.02 0.06 0.13	66.48 6.34 841 841	0000	0.97 0.75 0.91
50 75 100 150	9.65 8.76 8.86 8.86	0000	32.544 32.564 32.864 33.444	000000000000000000000000000000000000000	25.12 25.51 25.57 26.24	286.0 282.6 244.1 181.1	0.144 0.215 0.282 0.389	0.37 0.83 1.42 2.75	6.3 6.3 7.7 98	0000	0000 449 996
200 250 300 400	55.03	00000	33.879 33.936 33.966 34.023	0.0055	26.59 26.73 26.81 26.91	148.5 135.6 128.4 119.2	0.472 0.543 0.610 0.735	4.22 5.87 7.75 12.22	2.03 2.03 1.53 2.53	00000	1.65 0.91 0.89
\$00 400 800 800	4.68	0000	34.085 34.167 34.237 34.293	0000	27-01 27-12 27-21 27-28	110.9 101.4 93.4	0.851 0.958 1.057	17.57 23.61 30.17	0000	0000	0.73
1000 1200 1500	3.27 2.89 2.40	0000	34.389 34.467 34.536	00.000	27.39 27.49 27.59	76.5 67.8 58.8	1.313 1.460 1.652	52.41 68.88 95.48	0.32	0.02	0.91 0.88 0.66

VALUES	WEA OI WIND VEL 22 DIR 32 Sea 3 dir 23 Swell 4 dir						
SERVED	36 2597 SEC01	SATN	1001	10000	56.00 50.00 50.00	25 4 9	
80 08	N SNDG	EN -	0000	00000	0.079 0.118 0.182 0.297	0.487 0.590 0.615 0.615	
ATTON OO	129-10 0 WTRC	- OXYG	0.572 0.576 0.577 0.579	0.573 0.572 0.569	0.512 0.481 0.412 0.305	0.134 0.041 0.033 0.038	
320 STA	RELHU 7	1.1.	0444 0444 0444	6.42 6.38 6.40 6.37	5.73 5.38 3.42	1.50 0.26 0.26 0.43	
CRUISE 3	46-13 N ITRE 5.8	SIGMA-T	25.14 25.15 25.15	25.15 25.15 25.15 25.16	25.80 26.13 26.42 26.69	26-91 27-14 27-28 27-51	
NN BEAR	0.4 LAT Y 8.1 WE	SAL	32.526 32.526 32.526	32.526 32.523 32.531 32.531	32.962 33.277 33.676 33.918	33.997 34.187 34.304 34.474	
8 80	63 HR 2 TEMP DR 6 AMT 5	TEMP	9.39 9.36 9.35 9.35	9.37 9.35 9.35	7.27 6.63 6.85 6.20	4.91	2.36
	31/03/ 17.3 TYPE	ОЕРТН	0500	933	121 145 230	395 606 819 1246	1510
	DATE BARON CLOUD	CST	2222	~~~	777-		-

1 27

	RATIO	0.99	0000 0.8888 0.40	0.0000	0000 96.48	12.65
UES	E(0)	0000	0000	0000	0000	0.03
ED VAL	MY.	9999 9444 9980	56.00 50.00 50.00 50.00 50.00	1.44.0 44.10	00.00	0.39
AND COMPUT	POT ENERGY	0000	0.3 0.83 2.66 8.93 8.93 8.93	6.038 7.886 12.27	23.47	52.43
POLATED A	GEOPOT	0.00 0.029 0.057 0.085	0000 420 400 600 600 600 600 600 600 600 600 60	0.5557	0.860 0.965 1.063	1.322
INTER	SPVOL	283 282 282 283 283 293 200	283 2746 185 5.55 5.55	1256 1756 1856 1866 1866	108.5 99.8 93.2 87.7	77.8
STATION 008	SIGMA-T	25.14 25.15 25.15 15.15	25 25 25 25 25 25 25 25 25 25 25 25 25 2	26°39 26°34 26°84 26°92	27:03 27:13 27:21 27:21	27.38
320 STAT	E(S)	0000	0000	000000000000000000000000000000000000000	0000	0.004
CRUISE 3	SAL	32°526 32°526 32°526	32°5523 32°5523 33°574	33.852 34.003 34.003	34.090 34.245 34.245	34.374
BEAR	E(T)	0000	0000	0000	0000	0000
BROWN	TEMP	9999 9999 9986	6.099	45.05 60.05 80.00	3444	2.84
	DEPTH	30000	100 150 150	27.64 0000 0000	8760 8000 8000	12000

	31					1)0	
	WIND VEL 20 DIR 32 DIR 32 SWELL 3 DIR 3						
VALUES	WEA 61 SEA 2						
OBSERVED	10G 1829 SECDI	SATN	103 103 105 105	106 102 103 97	94 78 58 58	ネー でき	15
600	CLR SN	GEN -	-0.014 -0.041 -0.027	-0.032 -0.014 0.019	0.096 0.130 0.228 0.249	0.334 0.524 0.603 0.623	0.602
320 STATION OC	L GNG 130-00 RELHU 68 WTRC LE(S) 23.15	HGA/L	0.579 0.606 0.582 0.591	0.597 0.579 0.583 0.583	0.497 0.468 0.364 0.343	0.033	0.054
		FL7.	6.48 6.78 6.52 6.62	6.53 6.53 6.53 6.53	5.24 4.07 3.84	3.07 1.16 0.37 0.24	0.60
CRUI SE	45-47 N ET 5.4 WIRE ANG	SI GMA-T	25.15 25.15 25.15 25.15	25.16 25.16 25.15 25.32	25.95 26.26 26.50 26.50	26.74 26.99 27.22 27.37	27.55
WN BEAR	7 8.1 W	SAL	32.532 32.528 32.524 32.534	32.533 32.531 32.533 32.640	33.112 33.433 33.796 33.835	33.913 34.036 34.252 34.370	34.511
BRO	63 HR O TEMP DR O AMI 6	TEMP	99.34	9.00 9.00 9.00 9.00 9.00 9.00	7.07 6.63 6.98 6.98	5.81 3.89 3.89	2.64
	1/04/ M 19.6 D TYPE	DEPTH	0500	946 946	124 149 174 186	280 468 704 940	1413
	DATE BARON CLOUD	CST	2222	7777	2222		

600
STATION
320
CRUISE
N BEAR
B R O E N
-

	_	BROWN BEAR	CRUI SE	320	BROWN BEAR CRUISE 320 STATION 009	BIOLCGICAL DATA	ICAL D	A T A
ОЕРТН	CHL-A	PRODUCTIVITY LAB-I DECK-I	IVITY DECK-1		SAL			
0644	0000	0000			32.533 32.533 32.533 531 531			
100	0.18				32.527			
	12.07	7.39	- WATER	יוסט צ	- WATER COLUMN VALUES			
MESSEN	GER TI	MESSENGER TIME 2202	INCOMI	AG SD	INCOMING SOLAR RADIATION - AM 195 PM 211	- AM 195	PM 21	_
200PLA	NK TON	(CLARKE-BL	JMPUS) H(JR12	200PLANKTON (CLARKE-BUMPUS) HORIZ - TIME 0025-0035 DEPTHS 100, 70 0055-0105 35, 0	35 DEPTHS	100,	00

	BROWN	BEAR	CRUISE	320 STA	STATION 009	INTERP	OLATED	AND COMPUT	ED VAL	UES	
ОЕРТН	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	POT ENERGY	OXY ML/L	E(0)	VAR
3000	9.32	0000	32.532 32.524 32.530 32.533	0000	25.15 25.15 25.15 25.15	282 2822 2822-33 282-33	0.000	000000000000000000000000000000000000000	6662 667 667 667 667	0000	
50 100 150	9.34 9.36 8.74 6.64	0000	32.533 32.533 32.657 33.451	000000000000000000000000000000000000000	25.16 25.35 26.27	282.8 283.3 265.3 178.0	0.143 0.214 0.283 0.395	0.37 0.82 1.44 2.82	6.53 6.53 5.20 5.10	0000	0000
2200 3250 000 000	6.81 5.62 4.87	0.00	33.860 33.911 33.926 33.992	0.008 0.0014 0.003	26.57 26.68 26.77 26.91	150.5 139.9 131.8 119.0	0.478 0.551 0.619 0.746	4-29 5-98 7-91 12-43	3.22 2.82 1.85	0000	1.97 2.26 0.95 0.75
500 600 800 800	44. 9.000 9.000	0000	34.159 34.159 34.248 34.308	0000	27 - 03 27 - 13 27 - 22	109.0 99.7 91.7 85.4	0.861 0.966 1.063	17-72 23-66 30-10 37-00	0.98	0000	0.85 0.97 0.97
10000 12000 15000	3.26 2.95 2.50	0.00	34.393 34.459 34.529	0.001	27.40 27.48 27.58	76.1 69.0 60.5	1.316 1.463 1.660	52.04 68.62 95.81	0.35	0000	00.0 0.0 488.4

_-,

	36					-/.		
	WINC VEL 8 DIR 36 DIR 36 SWELL 2 DIR							
VALUES	WEA 02 SEA 1							
OBSERVED	NDG 2468 SECDI	SATA	103	102 103 103	86 78 60	4H M1M4	10 17 23	7.2
010	CLR S	GEN -	-0.016 -0.015 -0.014	-0-011 -0-014 -0-015	0.080 0.129 0.198 0.236	0.350 0.557 0.615	0.540 0.561 0.551	0.486
ATICN 0	130-00 60 WTR 0. 8. 7	HGA/L	0.573 0.573 0.572 0.572	0.569 0.572 0.573 0.569	0.512 0.467 0.393 0.354	0.260 0.071 0.021 0.025	0.069 0.104 0.114 0.153	0.184
320 ST	RELHU LE(S) 1	H.A.	6.42 6.41 6.40 6.41	6.37 6.40 6.41 6.31	3.52 9.63 9.63 9.63	2.91 0.79 0.24 0.28	0.77 1.16 1.28 1.71	2.06
CRUISE	45-00 N ET 6.1 WIRE ANG	SIGMA-T	25.11 25.11 25.12 25.12	25.11 25.11 25.12 25.12	25.86 26.18 26.45 26.54	26.76 27.03 27.25 27.40	27.57	27.72
WN BEAR	4.5 LAT Y 9.6 W	SAL	32.597 32.594 32.593 32.587	32.591 32.587 32.592 32.599	33.022 33.360 33.747 33.864	33.919 34.090 34.284 34.404	34.525 34.573 34.567 34.614	34.643
BRO	63 HR I TEMP DR	TEMP	9.93 9.90 9.81 9.88	9.83 9.87 9.85	7.18 6.76 7.06 7.06	34.06 34.06 34.06	2.47 2.10 2.07 1.87	1.81
	1/04/0 M 21.0 D TYPE	ОЕРТН	2000	9 9 9 9 9 9	123 148 173 196	294 737 984	1479 1776 1780 2077	2428
	DATE BARON CLOU	CST	๛๛๛๛	๛๛๛	mmmN	7777	77-1	-

S	•			NM			
NITR	1.5		1.5	1.9 6.9 26.3 27.5			
PHOS	09.0		79.0	0.72 0.98 1.63 1.96		PM 211	
SAL	32.591 32.586		32.586	32.589 32.826 33.352 33.884	ES		
IRRAD	20		10	-	IN VALUE	10N -	
SAT	100	132	•		COLUM	RADIAT	20600
L1GHT PR00	000	0.22				SOLAR F	INATION
1V1TY DECK-1	1-18		0.10	90.0	30.78	INCOMING	INCUBATOR ILLUMINATION 20600
PRODUCT LAB-I	0.30		0.26	0.20	14.30	1123	
CHL-A	0.16		0.19	000000000000000000000000000000000000000	11.07	GER TIME	LIGHT SATURATION
DEP TH	00		56	100 100 200 200		MESSEN	LIGHT
	CHL-A PRODUCTIVITY LIGHT SAT IRRAD SAL PHOS NITR	CHL-A PRODUCTIVITY LIGHT SAT IRRAD SAL PHOS NITR LAB-I DECK-I PROD FILT 0.16 0.30 1.18 0.33 100 50 32.591 0.57 0.9 0.16 0.22 1.72 0.33 100 50 32.586 0.60 1.5	CHL—A PRODUCTIVITY LIGHT SAT IRRAD SAL PHOS NITR LAB—I DECK—I PROD FILT 0.16 0.30 1.18 0.33 100 50 32.591 0.57 0.9 0.22 1.72 0.32 59 44 0.29 44	CHL-A PRODUCTIVITY LIGHT SAT IRRAD SAL PHOS NITR 0.16 0.30 1.18 0.33 100 50 32.591 0.57 0.9 0.27 0.39 44 0.19 0.26 0.10 0.00 13 0.20 13 0.20 13 0.20 1.59	CHL—A PRODUCTIVITY LIGHT SAT IRRAD SAL PHOS NITR 0.16 0.22 1.18 0.33 100 50 32.586 0.60 1.5 0.29 44 0.19 0.26 0.10 0.00 13 0.20 0.00 13 0.20 0.00 15 0.19 0.26 0.00 10 0.20 0.00 10 0.21 0.20 0.00 10 0.20 0.00 2.00 10 0.21 0.20 0.00 10 0.22 0.00 10 0.23 0.00 10 0.24 0.00 10 0.25 0.00 10 0.26 0.00 10 0.27 0.98 6.99 0.00 10 0.00 0.00 100 100 100 100 100 100 100 10	CHL—A PRODUCTIVITY 0.16 0.16 0.22 1.18 0.29 44 0.19 0.20	CHL—A PRODUCTIVITY LIGHT SAT IRRAD SAL PHOS NITR 0.16 0.22 1.18 0.32 59 50 32.586 0.60 1.5 0.17 0.26 0.00 0.00 0.00 0.00 0.00 0.00 11.07 14.30 30.78 WATER COLUMN VALUES

SATURATION INCUBATOR ILLUMINATION

	VAR		0.90 0.89 0.89	1.08 1.32 0.99 0.77	0.96 0.68 0.81 0.72	0.98 0.89 3.97
UES	E(0)	0000	0000	0000	0000	0000
ED VAL	OXY ML/L	6.440 6.440 6.440	66. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	3, 30 3, 30 1, 83 1, 83	0.37	00.02
AND COMPUT	POT ENERGY	0.00	0°37 0°84 1°48 2°93	4.43 6.13 8.06 12.55	17.80 23.67 30.07 36.94	51.94 68.40 95.30 145.82
POLATED A	GEOPOT ANOMALY	0.00 0.029 0.058 0.087	0.145 0.217 0.289 0.407	0,491 0.565 0.634 0.760	0.873 0.978 1.074 1.163	1.326 1.472 1.667 1.950
INTER	SP VOL ANOMALY	286.1 285.7 286.4 286.5	286.9 288.1 282.5 184.0	152.3 140.0 131.8 118.0	107.7 98.7 91.3 85.3	75 68.3 59.3 51.5
20 STATION 010	SIGMA-T	25.11 25.12 25.11 25.11	25.11 25.17 26.21	26.55 26.68 26.77 26.93	27 - 04 27 - 14 27 - 53 27 - 30	27.40 27.58 27.58
	E (S)	0000	0000	0000	0000	0000
CRUISE 3	SAL	32.593 32.583 32.581	32.587 32.687 33.627	33.873 33.924 34.006	34.097 34.181 34.258 34.320	34.410 34.528 34.528
BEAR	E (T)	0000	0000	0.02 0.12 0.01	0000	0000
BROWN	TEMP	9.63 9.88 9.88 9.89	9.87 9.91 9.72 6.78	7.05 6.40 5.60 7.86	4.4. 3.92 3.92	3.34 2.95 1.72
	DEPTH	3000 3000	50 100 150	4 M 2 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$00 400 800 800	1000 12000 2000 2000

BIOLOGICAL DATA DATE 1/04/63 LAT 45-00 N LONG 130-00 W BROWN BEAR CRUISE 320 STATION 10A

DEPTH CHL-A PRODUCTIVITY LAB-I DECK-I

0 0.22 0.42 2.68
MESSENGER TIME 0550 INCOMIN

INCOMING SOLAR RADIATION - AM 200 PM 211

	20						
	WIND VEL 4 DIR 20 DIR 20 SWELL I DIR						
VALUES	WEA 02 SEA 1						
DBS ERVED	NDG 2642 SECDI	SATN	105 105 104 103	104 103 103 89	83 78 63	4m 6444	10
0111 0	6 W SI	YGEN -	0.029 0.025 0.024	-0.023 -0.019 -0.065	0.101	0.350 0.540 0.612 0.618	0.591
ATION	129-1 65 WT	HGA/L	0.581 0.577 0.581 0.573	0.581 0.579 0.577 0.503	0.479	0.261 0.087 0.024 0.026	0.068
320 ST	RELHU LE(S)	ボバ	6.50 6.50 6.50 6.50	6.50 6.48 6.48 6.48	5.36 5.19 4.16	2.92 0.97 0.27 0.29	0.76
CRUI SE	1 44-53 N WET 6.1 WIRE ANG	SIGMA-T	25.08 25.06 25.10 25.11	25.11 25.12 25.12 25.12	25.80 26.16 26.43 26.51	26.77 27.01 27.24 27.40	27.58
OWN BEAR	RY 9.0 LA	SAL	32.640 32.613 32.593 32.597	32.583 32.552 32.554 32.929	33.089 33.358 33.788	33.923 34.068 34.270 34.411	34.529
BR	63 HR TEMP D	TEMP	10.33 10.32 9.96	9.68 9.68 9.68	8.00 7.42 7.00	24.00 4.00 4.00 4.00 8.00	2.45
	E 2/04/ OM 20.0 UD TYPE	ОЕРТН	0400	00×6 040	124 174 190	764 7497 740 740	1484
	DATE BARO CLOU	CST	2222	2222	777		

DAT						211
BIOLOGICAL DATA						PM 211
1000						200
60						AA
BROWN BEAR CRUISE 320 STATION 011	SAL	32.626	32.546	32.931	- WATER COLUMN VALUES	INCOMING SOLAR RADIATION - AM 200
ST					LUMN	OLAR
320					R C0	NG S
RUI SE	× 1				WATE	COM
5	TIV				ı	ī
WN BEAR	PRODUCTIVITY LAB-I DECK-I	0.34	0.35	10.0	21.82	1637
BRC	CHL-A	0-17	0.31	90-0	17.19	MESSENGER TIME 1637
	DEPTH CHL-A	00%	009	100		MESSEN

	BROWN	BEAR	CRUISE	320 STA	TI ON 011	INTER	POLATED A	IND COMPUT	ED VAL	UES	
DEPTH	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	POT ENERGY	OXY ML/L	E(0)	VAR
3000	10.33 9.96 9.94 9.89	0000	32.540 32.593 32.597 32.597	0000	25.08 25.10 25.11 25.11	289.3 287.1 286.6 287.1	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	0070 0070	0000	
50 75 100 150	99.00 99.00 99.00 99.00	0000	32.552 32.567 32.936 33.378	0000	25.12 25.13 25.54 26.13	286.5 285.5 247.2 187.3	0.145 0.217 0.284 0.394	0.37 0.83 1.43 2.80	6.48 5.63 5.61	0000	0 . 9 . 9 . 9 . 9
200 250 400 400	66. 69. 69. 69. 69. 69.	0000	33.833 33.890 33.928 34.004	000000000000000000000000000000000000000	26.55 26.69 26.78 26.92	152.5 139.0 131.3	0.553 0.621 0.747	4.31 6.00 7.92 12.42	3,99 2,32 1,137	0000	1.44 2.14 0.98 0.75
\$00 700 800	4.51 3.99 3.78	0000	34.158 34.158 34.239 34.309	0000	27 - 02 27 - 12 27 - 20 27 - 28	109.8 101.1 93.5	0.862 0.969 1.067	17.73 23.74 30.29 37.30	0000 0000	0000	0000
1000 1200 1500	3.36	000	34.415 34.477 34.531	000000000000000000000000000000000000000	27.41 27.49 27.58	75.7 67.8 59.5	1.323	52.41 68.78 95.51	0.29	000	0.99

IES	O3 WIND VEL 10 DIR 14 SAELL 2 DIR						
VALUE	AEA						
BSERVED	1DG 2287 SECDI	SATN	102 103 103	102 102 101 90	004 04 04 04 04	44 0400	10
012 0	CLR SN	GEN -	-0.013 -0.022 -0.019	-0.013 -0.009 -0.008	0.105 0.209 0.262 0.315	0.348 0.541 0.605 0.611	0.591
ATION O	128-32 40 WTR 3,10	MGA/L	0.569 0.566 0.566	0.552 0.558 0.556	0.469 0.368 0.267	0.257 0.086 0.030 0.032	0.068
20 ST	RELHU E(S) 1	#.1.	6.37 6.34 6.33	6.23 6.23 5.63 6.83	5.25 3.12 2.99	2.88 0.96 0.34 0.36	0.76
CRUISE 3	44-48 N ET 5.4 WIRE ANGL	SIGMA-T	25.09 25.07 25.09	25.09 25.09 25.03 25.39	25.73 26.05 26.38 26.47		27.58
OWN BEAR	05-8 LAT RY 11-0 W	SAL	32.737 32.709 32.707	32.710 32.702 32.703 32.864	33.092 33.442 33.786	33.929 34.074 34.255 34.389	34.530
6 81	63 HR TEMP D	TEMP	10.70 10.68 10.66 10.55	100.55	8.46 8.14 7.71 7.66	2464 2646 2646	2.47
	2/04/ 18.3 TYPE	ОЕРТН	100	9400 6400	124 149 174 195	293 736 983	1476
	DATE BAROM CLOUD	CS T	2222	2222	7771		~~

BIOLOGICAL DATA					- AM 200 PM 211	39 DEPTHS 100, 70
BROWN BEAR CRUISE 320 STATION 012	IVITY SAL	32.702 32.698 32.658 32.694	32.953	- MATER COLUMN VALUES	INCOMING SOLAR RADIATION - AM 200	ZOOPLANKTON (CLARKE-BUMPUS) HORIZ - TIME 2259-2309 DEPTHS 100, 70 2326-2336 35, 0
DWN BEAR	PRODUCTIVITY LAB-I DECK-I	00000	00 00	14.86	5119	CLARKE-BU
88	CHL-A	0000	0.05	21.87	MESSENGER TIME 2119	NKTON
	DEPTH	0890	001		MESSEN	X0007

	VAR		0000	1.12 1.44 0.98 0.77	0.05	5.85 12.71 12.36
UES	E(0)	0000	0000	0.000	00000	000
ED VAL	OXY ML/L	6.334 6.334 6.334	6.25 6.21 5.67	2. 94 2. 70 2. 82 1. 90	0000	0.36
AND COMPUT	POT ENERGY	0000	0.37 0.84 1.46 2.90	4, 48 6, 24 8, 22 12, 79	18-10 24-09 30-66 37-77	53.16 69.78
PCLATED	GEOPOT	0.0000000000000000000000000000000000000	0.219 0.288 0.403	0.569 0.569 0.639 0.767	0.883 0.989 1.088	1.347
INTER	SP VOL ANOMALY	288°2 289°9 288°3 288°3	289.3 289.0 260.0 197.6	158.1 144.1 134.4	109.3 101.0 94.3 88.2	77.2
TI ON 012	SIGMA-T	25.09 25.07 25.09 25.09	25.09 25.10 25.40 26.07	26.49 26.64 26.75 26.91	27.02 27.12 27.20 27.27	27.39
20 STATE	E (S)	0000	0000	0000	0000	000
CRUISE 3	SAL	32.737 32.707 32.707	32.702 32.707 32.871 33.458	33.901 33.956 33.933 34.002	34.082 34.158 34.230	34.397
BEAR	E(T)	0000	0-00	00.02	0000	000
BROWN	TEMP	10.70 10.66 10.55	10.55 10.53 9.44 8.12	7.55 6.81 5.988	44.8 3.00 8.00 2.00 2.00 2.00	3.38 2.97 2.43
	DEРТН	100 300 30	\$0 100 150	200 300 400 400	\$00 700 800	1000 1200 1500

VALUES
OBSERVED
STATION 013
CRU1SE 320
BROWN BEAR

	3 WIND VEL 18 DIR 1 DIR 12 SWELL 3 D						
VALUES	WEA O						
OBSERVED	NDG 2834 SECDI	SATN	1004 1005 1005	103 103 95	73 62 51 51	97 00 20 20	-
013	CLR S	GEN -	0.023 0.020 0.025 0.025	-0.021 -0.016 -0.018	0.158 0.221 0.277 0.283	0.358 0.501 0.590 0.605	0.605
STATION	3 127-48 67 WIR 32,20	MG 3/L	0.579 0.577 0.582 0.578	0.578 0.573 0.575 0.536	0.420 0.359 0.305	0.243 0.121 0.045 0.035	0.048
320 ST	RELHU LE(S) 3	- איא	6.52 6.52 6.52 6.52	66.44 66.47 64.47	4.10 3.42 3.36	2.72 1.36 0.50	0.54
CRUISE	44-34 N ET 7.2 WIRE ANG	SIGMA-T	25.10 25.10 25.11 25.11	25.10 25.10 25.10 25.35	26.00 26.29 26.46 26.46	26.71 26.93 27.16 27.31	27.52
BRUMN BEAR	12.7 LAT RY 9.7 W	SAL	32.592 32.590 32.587 32.591	32.590 32.589 32.589 32.741	33.362 33.689 33.868 33.878	33.955 34.017 34.184 34.328	34.494
BK	63 HR I	TEMP	9.99	9.96 9.93 9.93	8.08 7.81 7.61	6.30 4.86 3.66	2.78
	2/04/ M 18.0 D TYPE	DEPTH	20020	9700 9400	124 149 171	######################################	1334
	DATE BARO CLOU	CST	7777	7777	77-7		

.6 "

-6)

BIOLOGICAL DATA					14
ICAL					Ā
IOLOG					55
60					E A I
BROWN BEAR CRUISE 320 STATION 013	SAL	32.601	32.590	VALUES	INCOMING SOLAR RADIATION - AM 55 PM 47
120 ST				COLUMN	SOLAR
CRUISE 3	IVITY DECK-I	5.54		- WATER COLUMN VALUES	INCOMING
WN BEAR	PRODUCTIVITY LAB-I DECK-I	0.39	0.27	16.74	0604
BRC	CHL-A		0.24	15.16	MESSENGER TIME
	ОЕРТН	000	26 60		MESSEN(

	VAR		0.94 0.94 0.95	1.38 0.88 0.91 0.78	0.74 0.73 0.78 0.60	11.24 9.61 6.44
UES	E(0)	0000	0000	0000	0000	000
DVAL	OXY ML/L	66.57 66.57 64.77	900° 9440 9400	3.03 2.73 1.61	1.02 0.64 0.45 0.38	0.37
ND COMPUTE	POT ENER GY	0.00	0.37 0.84 1.46 2.82	5.93 7.84 12.31	17.75 23.82 30.46 37.61	53.19
POLATED A	GEOPOT	0,000 0,029 0,058 0,087	0.145 0.287 0.397	0.479 0.551 0.619 0.746	0.862 0.970 1.070 1.163	1.332
INTER	SP VOL Anomaly	287.4 286.7 287.1 287.7	287.6 287.7 262.6 175.2	148.5 138.1 131.2 120.0	1111-1 102-3 94-9 88-9	78.5
TI ON 013	SIGMA-T	25.10 25.11 25.10 25.10	25.10 25.11 25.38 26.30	26.59 26.70 26.78 26.90	27.10 27.10 27.19 27.26	27.38
320 STATI	E(S)	0000	0000	0.00%	0000	0.001
CRUISE 3	SAL	32.587 32.591 32.591	32.589 32.589 32.764 33.699	33.956 33.969 34.008	34.062 34.137 34.213 34.279	34.389 34.466
BEAR	E(T)	0000	0000	0000	0000	000
BROWN	TEMP	9.99 9.99 9.96	9.93 9.91 9.09 7.80	- 000 - 1480 0 000	4.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3	3.44
	рертн	200 300 300	50 100 150	200 250 300 400	500 4000 8000 8000	1000 1200 1500

		SIL	•		101	(7)			
		NITR	7.3		1.9	2.0			
CAL DATA	~	PHOS	0.68		0.68	0.45		PM 47	
BIOLOGICAL DATA	LONG 127-24 W	SAL	32.561		32.557	32.560	ES	55	
14	LONG						WATER COLUMN VALUES	NOI	
O NOIL	-28 N	SAT	100 59 44 32	13	t		COLUM	RADIAT	19500
CRUISE 320 STATION 014	2/04/63 LAT 44-28 N	PROD	0000 www.	0.17	0.0			INCOMÍNG SOLAR RADIATION - AM	INCUBATOR ILLUMINATION 19500
E 3	63					_	1	J. NG	LUM
CRUIS	2/04/	DECK-I	3.12		2.06	00.0	45.50	INCOM	A TOR IL
UMN BEAR	DATE	PRODUCTIVITY LAB-1 DECK-1	0.76		0.38	0.21	22.62	1120	
BROW		CHL-A	0.32		0-27	0.38	18.60	MESSENGER TIME 1	LIGHT SATURATION
		DEP TH	0		9 5 8	09		MESSEN(LIGHT !

	15						
	WIND VEL 20 DIR 22 DIR 22 SWELL 6 DIR						
VALUES	WEA 02 SEA 1						
OBSERVED	NDG 2834 SECDI	SATN	103 103 103	103	გიგი გიგი	46 46 40 40	10
115	S S S	GEN -	-0.017 -0.016 -0.018	-0-017 -0-017 -0-020 0-149	0.261 0.262 0.278 0.295	0.398 0.529 0.597 0.609	0.593
ATION 0	126-52 88 WIR 0.14.14	FGA/L	0.577 0.578 0.578 0.578	0.578 0.578 0.581 0.420	0.308 0.318 0.308 0.294	0.204 0.094 0.035 0.035	0.063
320 ST	RELHU E(S) 2	アル	0000	6.47 6.47 6.50 7.00	24.04 24.04 24.04 20.00	2.28 1.05 0.39	0.71
CRUISE 3	44-25 N ET 9.7 WIPE ANGL	SI GMA-T	25.12 25.12 25.13 25.13	255-114 255-113 255-113	26.34 26.34 26.49 26.56	26.74 26.98 27.21 27.38	27.56
WN BEAR	4-8 LAT	SAL	32.569 32.564 32.568 32.570	32.571 32.565 32.568 33.144	33.659 33.745 33.847 33.901	33.973 34.069 34.267 34.399	34.518 34.558
BRO	63 HR 1 TEMP DR 3 AMT 8	TEMP	9.73 9.74 9.68 9.70	9.00 9.00 9.00 9.00 9.00 9.00	8.68 7.80 7.31	6.19 4.78 3.50	2.61
	3/04/ 115.0 TYPE	ОЕРТН	100	30 20 30 40 40	124 149 174 188	279 474 714 955	1437
	DATE BAROM CLOUD	CST	7777	๓๓๓๓	mmm -		

						RA		000	00	0000	000
					UES	E(0)	0000	0000	0000	0000	000
					UTED VAL	OXY ML/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.47 6.47 3.53 5.63	3-15 2-58 2-10 1-11	00000	00.38
DATA				106	O COMP	POT ENERGY	0.00 0.02 0.06 0.13	0.37 0.83 1.40 2.66	4.09 5.75 7.67 12.22	17.58 23.64 30.25 37.33	52°54 65°05 96.22
BIOLOGICAL				н 136 рм	POLATED AN	GEOPOT ANOMALY	0.029	0.216 0.216 0.280 0.381	0.534 0.602 0.729	0.845 0.953 1.052 1.144	1,310
015			S	T 10N -	INTER	SP VOL ANOMALY	285.1 284.5 284.9 284.4	285.2 283.9 228.1 171.2	148°2 138°0 132°2 120°1	110.7 102.1 94.5 87.5	76.1 68.5 60.8
STATION	SAL	32.562 32.562 32.561 32.561	UMN VALUE	LAR RADIA	110N 015	SIGMA-T	25.12 25.13 25.13 25.14	25.13 25.13 26.33	26.59 26.71 26.77 26.91	27-01 27-11 27-20 27-28	27.40
SE 320	_ #		ATER COLUM	OMING SO	320 STA	E (S)	0000	000000000000000000000000000000000000000	0.009 0.002 0.002 0.005	000000000000000000000000000000000000000	0.002
AR CRUI	UCTIVITY DECK-	wew.	1 0	INC	CRUISE	SAL	32.569 32.568 32.570 32.571	32.586 32.586 33.169 33.749	33.925 33.977 33.984 34.034	34.090 34.172 34.255 34.321	34.416 34.476 34.526
ROWN BE	PRODI LAB-I	0000 40mN	22.0	0440	BEAR	E(T)	0000	0000	0000	0.02	0.01 0.02 0.01
BR	CHL-A	0000	26.37	GER TIME	BROWN	TEMP	9.73 9.68 9.70 9.66	9.66 9.65 7.73	7.00 6.47 5.25 22	4. 4.38 3.92 92	3.40
	DEPTH	0890		MESSENC		ОЕРТН	350 300 300 300	50 100 150	2200 3000 4000	200 400 800 800	1000 1200 1500

ues	EA 03 WIND VEL 18 DIR 23 SEA 2 DIR 23 SWELL 8 DIR 23				
VAI	3				
OBSERVED VALUES	SNDG 2926 SECDI	SATN	1004 1005 1005	118 104 103	68 728 48
	CLR SN	GEN -	0.020	-0.102 -0.020 -0.018	0.184 0.278 0.302
320 STATICN 016	126-31 84 WTR	- OXYGEN	0.577 0.581 0.585 0.585	0.659 0.577 0.575 0.434	0.399 0.304 0.282
120 ST	HOH	#1.1-	66.50 6.50 5.50 5.50	7 6 6 7 7 8 8 8 8 8	4.47
CRUISE 3	44-15 N L	SIGMA-T	25.00 25.00 25.00 25.00 25.00	255.08 255.08 25.09	26.22 26.42 26.50
WN BEAR	9.8 LAT VIS.5 W	SAL	32.558 32.561 32.557 32.557	32.555 32.558 32.559 33.191	33.564 33.823 33.899
BRO	63 HR 1 TEMP DR 7 AMT 8	TEMP	9.00 9.00 9.00 9.00	6.90 6.90 8.00 8.00	7.61 7.65 7.49
	3/04/ 20.7 TYPE	ОЕРТН	20020	00MB	123 148 172
	DATE BAROM CLOUD	CST			

	SIL	410WW					
<u> </u>	NI TR	100 1084 7					
AL DALA	PHOS	0000				PM 106	
BIOLUGICAL DATA	SAL	32.570 32.565 32.565 32.567			ES		
910	IRRAD	50 10 1			WATER COLUMN VALUES	1 - NOI	0
NOL	SAT	001	844 137 137	4	COLUP	RADIAT	19700
20 STA	L IGHT PROD	0.38	0.36 0.27 0.18	0.03		INCOMING SOLAR RADIATION - AM 136	11 NAT1 ON
BEAR CRUISE 320 STATION 016	DECK-I	0.00 0.00 0.00 0.00			44.28 -	I NCOMI NO	LIGHT SATURATION INCUBATOR ILLUMINATION 19700
BROWN BEAR	PRODUCTIVITY LAB-I DECK-I	0000 0000 0000 0000			22.52	1127	ON INCUBA
88	CHL-A	0.37			21.57	MESSENGER TIME 1127	SATURATI
	DEPTH	0940				MESSEN	LIGHT

	BROWN	BEAR	CRUISE 3	320 STATE	110N 016	INTER	POLATED	AND COMPUT	FD VALUES	UES	
ОЕРТН	TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VOL ANOMALY	GEOPOT ANOMALY	POT ENERGY	OXY ML/L	E(0)	VAR
3000	9.99 9.99 9.90 9.90	0000	32.558 32.557 32.557 32.557	0000	25.09 25.09 25.09 25.08	289.2 288.6 289.0 289.3	0.0000000000000000000000000000000000000	0000	66.55 6.55 381 8	0000	
1005 1005 150	9.92 9.77 8.02	0000	32.558 32.602 33.228 33.837	0.000	25.08 25.14 25.90 26.43	289.8 284.5 212.5 162.9	0.146 0.218 0.281 0.376	0.37 0.84 2.57	3400 3400 3400 3400	0000	0.90

VALUES	FEA OO WIND VEL 18 DIR 22 SEA 2 DIR 22 SWELL 4 DIR						
	3						
OBSERVED	4DG 2926 SECDI	SATN	106 106 106	105 104 104 78	334 334 341 341 341	28 16 55 4	9
017 (CLR SN	GEN -	0.032 0.034 0.031	-0.028 -0.022 -0.024 0.124	0.312 0.336 0.348 0.358	0.514 0.514 0.595 0.607	0.592
MITTON	125-59 97 WTR 3	MGA/L	0000	0.583	0.257 0.237 0.227 0.220	0.168 0.097 0.030 0.028	0.062
320 ST	RELHU LE(S) 3	M./L	6.50 5.50 5.50 7.00	6.50 6.50 6.50 6.50	2.68 2.54 2.54 2.54	1.88 1.09 0.34 0.31	0.69
CRUI SE	44-01 N ET 10.1 WIRE ANG	SIGMA-T	25.09 25.10 25.10 25.10	25.11 25.11 25.71 26.13	26.29 26.39 26.43 6.43	26.67 26.90 27.15	27.54
OWN BEAR	00-2 LAT	SAL	32.598 32.602 32.595 32.599	32.631 32.632 33.320 33.706	33.834 33.884 33.923 33.943	34.019 34.074 34.249 34.318	34.515
88	763 HR TEMP D 3 AMT 8	TEMP	10.07	10.07 10.09 9.71 9.00	8.31 8.13 8.08	004W ••••• 0000 0000	2.76
	4/04/ 24.0 TYPE	ОЕРТН	0500	940	124 149 169 174	453 663 865 863 863	1363 1650
	DATE BAROM CLOUD	CST	2222	222	22-2		

	BROWN	BEAR	CRUISE	320 STA	TION 017	INTER	POLATED A	ND COMPUT	ED VAL	UES	
ОЕРТН	TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	POT ENERGY	OXY ML/L	E(0)	VAR
9700 9700 9700	10.07 10.02 10.02	0000	32.598 32.595 32.599 32.631	0000	25.09 25.09 25.10	288.3 287.9 287.8 286.4	0.000 0.030 0.059 0.087	0.00	66.66 66.66 7.76 7.76	0000	
50 100 150	10.09 9.68 8.98	0000	32.632 33.341 33.714 33.898	0000	25.11 25.73 26.14 26.38	287.0 228.5 190.5 167.7	0.245 0.263 0.263	0.37 0.78 1.25 2.39	944 944 944 944 944	0000	000
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.08 6.55 5.75	00.00	33.965 34.012 34.035	0000	26.52 26.65 26.74 26.87	12000	0.435 0.510 0.580 0.711	3.85 5.58 7.57 12.25	2.31 1.95 1.66 1.22	0000	1.57 0.89 0.91 0.78
\$000 \$000 \$000 \$000	444 1444 8008	0000	34.123 34.200 34.263 34.295	00.000	26.98 27.09 27.17 27.23	114-1 104-4 97-0 92-3	0.832 0.942 1.044 1.140	17.79 24.00 30.79 38.16	0.82	0000	0.75 0.81 0.89
1000 1200 1500	3.66 2.15 4.8	000	34.366 34.452 34.547	0.007	27.34 27.46 27.59	82.7 71.9 58.9	1.317	54.47 72.10 99.48	0.36	0.00	0.92

	1					777		
	WIND VEL 12 DIR 22 DIR 22 SWELL 4 DIR							
VALUES	WEA 02 SEA 2							
BSERVED	106 2825 SECDI	SATN	105 105 105	105 103 87	376 370 370 370	27 11 5	116	26 28
0 18 0	ACLR SN	YGEN -	-0.030 -0.028 -0.029	-0.026 -0.017 0.074	0.246 0.318 0.349 0.362	0.644 0.549 0.605	0.00 0.5557 0.5557 0.5557	0.499
ATION	125-1 92 HT 5.12.	MGA/L	0.5882 0.5882 0.5883	0.581 0.572 0.481 0.397	0.319 0.254 0.226 0.216	0.161 0.068 0.024 0.031	0.073 0.106 0.108 0.123	0.171
320 ST	RELHU LE(S) 2	H. 1.	6.53 6.53 6.53	6.50 6.30 6.38 6.38	22.84	1.80 0.76 0.27 0.35	0.82 1.19 1.21 1.38	1.92
CRUISE	44-01 N ET 10.4 WIRE ANG	SIGMA-T	25.17 25.11 25.12 25.12	25.12 25.12 25.56 25.84	26.10 26.32 26.42 26.50	26.72 26.99 27.23 27.36	27.55 27.63 27.63	27.72
OWN BEAR	06-1 LAT RY 11-2 W	SAL	32.731. 32.642 32.652 32.647	32.644 33.176 33.436	33.666 33.830 33.913 33.961	34.030 34.131 34.309 34.404	34.522 34.564 34.572 34.601	34.630 34.628
80	'63 HR TEMP D	TEMP	10.18	10.12 10.09 9.97 9.47	8.38 8.15 7.86	6.71 5.17 4.31 3.70	2.11 2.19 2.21 2.05	1.77
	4/04/ 36.2 TYPE	ОЕРТН	100 200 200	9400	124 149 174 198	297 494 741 988	1484 1781 1815 1963	2356
	DATE BAROM CLOUD	CS T	2222	2222	~~~~	തതതത	mmaa	

BIOLOGICAL DAIA				PM 106	100 - 70
81000				AM 136	DEPTHS
BROWN BEAK CRUISE 320 STATION 018	SAL	32.630 32.630 32.630 32.630	24.81 - WATER COLUMN VALUES	INCOMING SOLAR RADIATION - AM 136 PM 106	ZOOPLANKTON (CLARKE-BUMPUS) HORIZ - TIME 0050-0100 DEPTHS 100. 70
CRUISE 3	DECK-I		- WATER	INCOMING	JMPUS) HOR
JWN BEAK	DEPTH CHL-A PRODUCTIVITY LAB-I DECK-I	0000 0000 0000 0000 0000	24.81		LARKE-BL
BK	CHL-A	1111 2882 28821	33.36	MESSENGER TIME 2107	WKTON (
	DEPTH	0004		MESSEN(ZOOPLA

	8 X O X S	BEAR	CRUISE 3	20 ST	ATION 018	INTER	POLATED A	AND COMPUT	ED VALUES	UES	
ОЕРТН	TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VOL Anomaly	GEOPOT ANOMALY	POT ENERGY	OXY ML/L	E(0)	VAR
100 200 30	10.18 10.12 10.12	0000	32.731 32.652 32.647 32.643	0000	25.12	280.2 285.2 285.5 286.3	0.0000000000000000000000000000000000000	0.00 0.02 0.06 0.13	66.53 6.53 6.53 6.53 6.53	0000	
50 100 150	10.09 9.95 9.45	0000	32.644 33.190 33.446 33.834	0000	25.51 25.85 25.85 26.32	286.1 244.1 217.6 173.4	0.144 0.211 0.269 0.368	0.37 0.79 1.31 2.55	04.34 04.34 04.34	0000	0000
200 250 300 400	7.84 6.68 5.80	0000	33.963 34.011 34.032 34.084	00000	26.51 26.63 26.72 26.88	156.9 145.8 137.5 123.5	0.527	4.03 5.79 7.80 12.50	2, 41 2, 11 1, 78 1, 20	0000	1.31
\$000 \$000 \$000 \$000	2444 4444 4444 4444	0000	34.135 34.209 34.280	000000000000000000000000000000000000000	27.00 27.10 27.19	112.7 103.2 95.2 89.0	0.849 0.959 1.059	17.99 24:13 30:81 37.98	0.74 0.30 0.26 0.26	0000	0.97 0.68 0.80 0.73
1000 1200 1500 2000	3.67	0000	34.408 34.464 34.524 34.606	0000	27.37 27.56 27.55 27.58	79.8 72.2 63.0 51.4	1.323 1.477 1.682 1.973	53.70 71.06 99.43 151.13	0.36 0.51 0.84	0000	0000
2500	1.72	00.0	34.630	0.002	27.72	47.8	2.225	209.60	2.05	0.02	1.60

BIOLOGICAL DATA LONG 124-36 W BROWN BEAR CRUISE 320 STATION 18A DATE 4/04/63 LAT 44-20 N SAL PRODUCTIVITY LAB-I DECK-I DEPTH CHL-A

PM 135 INCOMING SOLAR RADIATION - AM 101 15.04 MESSENGER TIME 0602

32.594

2.44

1.05

O

BROWN BEAR CRUISE 320 STATION 019 OBSERVED VALUES

FRANCE	
BAY ENI	
DOINA	
YA	

WEA 45 WIND VEL 6 DIR 18 SEA 1 DIR 18 SWELL 2 DIR 25			
SNDG 40	SATN	1055 1055 1055 1055	104
. 124-08 W 94 WIRCLR 5	- OXYGEN HGA/L ADU	0.599 -0.029 0.593 -0.029 0.591 -0.028 0.585 -0.024	0.579 -0.020 0.581 -0.021
RELHU LE(S)	117	6.71 6.64 6.55	6.48
LAT 44-34 N 7 WET 11-2 2 WIRE ANG	SIGMA-I	21.96 23.35 24.25	24-43
DRY 11.7	SAL	28.576 30.353 30.866 31.436	31.741
AHA	TEMP	100.01	10.04
4/04/63 H 26.1 D TYPE 7	DEPTH	0504	19
DATE BAROM CLOUD	CST		

BROWN BEAR CRUISE 320 STATION 019 BIGLGGICAL DATA

				PM 13
PRODUCTIVITY SAL	28.386 29.435 30.377 30.771	31.756	- MATER COLUMN VALUES	INCOMING SOLAR RADIATION - AM 101 PM 13
PRODUC LAB-I	13.94 14.06 13.91	8.53	135.43	0950
CHL-A	20mb 20mb 20mb	1.99	29.93	MESSENGER TIME 0920
DEPTH CHL-A	0290	52		MESSEN

AND COMPUTED VALUES	POT OXY E(O) VAR ENERGY ML/L RATIO	0.00 6.71 0.00 0.02 6.62 0.00 0.08 6.47 0.00 1.19
ED AND		
INTERPOLATED	L GEOPOT LY ANOMALY	3 0.000 7 0.051 2 0.090
	SP VOL Anomaly	587.3 415.7 350.2
20 STATION 019	SIGMA-T	21.96 23.75 24.44
320 ST	E(S)	000
CRUISE	SAL	28.576 30.866 31.762
BEAR	E(T)	000
BROWN	TEMP	10.01
	DEРТН	100 200

. 0	28				
	WIND VEL 6 DIR 18 DIR 18 SWELL 1 DIR				
VALUES	WEA 02 SEA 0				
CSS ERVED VALUES	SNDG 62 SECDI	SATN	111 108 103	100 103 102 102	101
320 STATION 020 (ONG 124-07 W SP HU 92 WTRCLR) 20	MGA/L ADU	0.625 -0.061 0.606 -0.044 0.587 -0.027 0.577 -0.019	0.560 -0.002 0.573 -0.015 0.567 -0.009 0.570 -0.012	0.565 -0.007
120 ST	N LONG S RELHU NGLE(S) 2	#L7L	7.00 6.78 6.57 6.54	6.27 6.35 6.38	6.33
CRUISE 3	44-52 N EI 11.5 WIRE ANGL	SIGMA-T	22. 23. 24. 24. 42 24. 84	24.87 24.90 24.91 24.92	24.93
BROWN BEAR	0.3 LAT Y 12.3 W	SAL	29.335 31.066 31.726 32.256	32.300 32.319 32.334 32.347	32.352
BRO	/63 HR 2 TEMP DR 7 AMT 8	TEMP	10.39 10.03 9.98 9.96	9.97 9.92 9.90 9.91	9.88
	4/04 24.7 TYPE	ОЕРТН	0004	4333	52
	DATE BAROM CLOUD	CST			-

	SIL	24 110 140		∞•									
	NITR	746		1.3									
AL DATA	РНОЅ	0.61		0.64		PM 135							
BIOLOGICAL	SAL	29.459 30.289 31.201		31.816		101							
020	IRRAD	000		-		10N - AM							
STATION 0	SAT	100	461 4064		VALUES	RADIATION	18500						
320 STA	PROD	18.56 13.84	9.70 9.27 0.75 0.75		WATER COLUMN	SOLAR	11 NATION						
CRUI SE	VI IY ECK-1					I NCOMI NG	BATOR ILLUMINATION						
BEAR	PRODUCTIV LAB-I DE	6-66 13-87 11-11		8.05 1.59	130.88 -	1232	N INCUBAT						
BROWN	CHL-A	2.94		2.59	34.32	TIME	SATURATION INCU						
	DEP TH	021		12 52		MESSENGER	LIGHT S						

	BROWN	BEAR	CRUISE	320 STA	20 STATION 020	INTER	POLATED	INTERPOLATED AND COMPUTED VALUES	<i>IED VAL</i>	UES	
ОЕРТН	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	POT ENERGY	OXY HC/L	E(0)	VAR
30000	10.39 9.97 9.96 9.96	0000	29.335 31.865 32.306	0000	22.50 24.53 24.88	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.000	0.00	66.00 66.00 66.00	0000	0.00
20	9.89	00.0	32.352	0.000	24.93	•	0.170	07.0	6.36 0.01	0.01	0.80

VALUES		WEA 45 WIND VEL 8 DI SEA O DIR 20 SWELL 1			
OBSERVED VALUES		SNCG 38 SECDI	SATN	109 107 105 104	103
	EAD		GEN -	0.050 0.038 0.026	-0.015
ATION 0	CASCADE HEAD	124-02 96 WTR	MGA/L ADU	0.612 0.601 0.589 0.581	0.574
20 ST	CA	RELHU E(S) 1	11.	6.85 6.73 6.59 6.50	6.43
CRUISE 320 STATION 021		AT 45-07 N LONG 124-02 W WET 11.3 RELHU 96 WTRCLR WIRE ANGLE(S) 10	SIGMA-T	233. 233. 233. 244. 244. 244.	24-46
ROWN BEAR		DRY 11.8 W	SAL	30.008 30.462 30.790 31.538	31.770
BR		TEMP	TEMP	10.30 10.07 10.00	9.96
		4/04/6 M 23.0 ID TYPE 7	DEPTH	0505	30

CST

	BROWN	BEAR	CRUISE	320 STA	20 STATION 021	INTER	OLATED	INTERPOLATED AND COMPUTED VALUES	FED VAL	UES	
DEP ТН	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VCL ANOMALY	GEOPOT	POT ENERGY	OXY ML/L	GXY E(O)	RATIO
100 300 30	10.30 10.00 9.96 9.91	0000	30.008 30.790 31.770 32.082	0000	23.04 23.69 24.46 24.71	483 421.3 348.2 324.5	0.00 0.00 0.00 0.119 9.119	0.00	66.66 6.45 6.49 6.49	0000	

VALUES	WEA 10 WIND VEL 4 DIR 18 SEA 2 DIR 18 SWELL 1 DIR 1					
OBSERVED	SNDG 366 SECDI	U SATN	38 107 39 107 35 106 25 104	24 104 21 104 88 84 95 65	64 995 333 63 43 63	42 27
022	A K	YGEN	0000	0000	0000	4.0
STATION	124-4 93 WT	MGA/L	0.598 0.598 0.595	0.584 0.581 0.369	0.308 0.279 0.247 0.221	0.160
SE 320 ST	RELHU LE (S)	77	6.69 6.69 6.56	6.50 6.50 4.20 135 135	3.45	1.79
CRUISE	45-07 N	SIGMA-T	24.68 24.68 24.69	24.76 25.84 25.46	26.16 26.30 26.45 26.61	26.71
OWN BEAR	03.0 LAT RY 10.4 WE VIS 1 W	SAL	32.045 32.042 32.038 32.051	32.222 33.023 33.438	33-632 33-751+ 33-877+ 34-019+	33.934
88	63 HR TEMP D	TEMP	9.99 9.94 9.85 7.55	9.80 9.83 9.11	8.41 8.11 7.74	6.18
	5/04/ 19.3 TYPE	DEPTH	0500	30 50 100	125 180 203	253
	DATE BAROM CLOUD	CST				1

	88(DWN BEAR	BROWN BEAR CRUISE 320 STATION 022	20 ST	ATION 022	BIDLOGICAL DATA	ICAL	DATA
DEPTH	DEPTH CHL-A	PRODUCTIVITY LAB-I DECK-I	TIVITY DECK-I		SAL			
02	1.39	1.80		(4)(4	32.043			
12	1.58	2.06		10101	32.047			
	17.81	24.01	- WATER COLUMN VALUES	COLUMN	VALUES			
MESSEN	MESSENGER TIME 1918	8161	INCOMING	SOLAR	INCOMING SOLAR RADIATION - AM 101 PM 135	AM 101	M d	35

	BROWN	BEAR	CRUISE 320		STATION 022	INTER	OLATED A	INTERPOLATED AND COMPUTED VALUES	ED VAL	UES	
DEPTH	TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VOL ANOMALY	GEOPOT ANOMALY	POT ENERGY	OXY ML/L	E(0)	VAR
30000	9.93 9.85 9.75 9.80	0000	32.045 32.038 32.051 32.117	0000	24.68 24.12 24.12	327.0 326.5 324.1 320.2	000000000000000000000000000000000000000		0000 0000 0000	0000	
50 100 150	9.83 9.80 9.11	0000	32.222 33.023 33.438	000	24.84 25.46 25.90	313, 2 253, 9 212, 9	0.234	0.41 0.85 1.38	94.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00	0000	
200	7.43	000							v, æ		0.77

	_					100	
	=						
	1 N						
	م						
	012						
	וו						
	HE.						
	JE S						
	7						
	Žα						
	310						
	7-						
E S	A S						
VALUE	SEA						
>	3						
ED	20						
× >	10	IZ	væ~0	077	6261	-450	29
SE	سې	SA	001	100	NAMA	6-	
08	NON		0.00	***	~100101	~~~	
	S	' 2	029 043 037 055	003 009 107 188	33057	417 532 598 601	577 557
E	3 2	EN A	0000	0000	0000	0000	00
02	AC.	۲G	1111	11			
Z	12 H	2	984 98 12	9950	9289	8878 8728	76
01	25	GA	NNNO	244	2223	-000	0:0
FAT	6 83 16,	ĮΣ	0000	0000	0000	0000	00
ST	SEC.	i₹	37 40 85 85	202	37 50 52	95	85 18
0	SEL	I	9999	4000	SNAW	0000	10
32	<u>-</u> هس						
w	ZOZ	-	4460	26	000-	400	53
UISI	-07 E 0.	MA	4440	2000	66.3	6.9	7.5
CR	45- TRE	S I G	2222	2222	2222	2222	77
	EH.	•	• •				
AR	1 A 7		224 65 65	64 67 67 67	24 54 54 54	94 02 69 99	11
8 E		AL	4444	4044	97-88	3219	S
z	• · · · · · · · · · · · · · · · · · · ·	S	2222	9000 0000		9999 94499	34
ROM	07 9						
9	¥a.	ā.	90012	94 94 96 96 96 96 96 96 96 96 96 96 96 96 96	1025	21 18 30 65	81
	MA	1E	0000	0000	8	010 4 m	25
	63 7						
	40m	I	0.000	00.00			
	5/0 13. TYP	EP T	0500	9400	124 149 174 188	281 471 707 943	451 706
	X.C	0			~~~	.441-0	17
	A POOL	-					
	BAA	CS	2222	2222	7771		

BIOLOGICAL DATA 200PLANKTON (CLARKE-BUMPUS) HORIZ - TIME 0123-0133 DEPTHS 100, 70 0151-0201 BROWN BEAR CRUISE 320 STATION 023 INCOMING SOLAR RADIATION - AM 134 PM 156

	RATIO		0000	1.062 0.987 0.75	0000	900
UES	E(0)	0000	0000	90000	0000	000
TED VALUES	MC/L	2000 2000 4000 4000	30.40 40.00 4135	2000 2000 2000 2000 2000 2000	0000 81000 4004	0.62
INTERPOLATED AND COMPUTED	POT ENER GY					
POLATED A	GEOPOT					
INTER	SP VOL ANOMALY	297.5 297.1 296.5	23827 2383 1813 1813 1813 1813 1813 1813 1813	130,72	112.6 103.7 95.4 88.3	77.4
STATION 023	SIGMA-T	24.99	25.62 25.63 26.24 26.24	26°46 26°64 26°79 26°92	27.00 27.10 27.12	27.39
320 STA	E(S)	000	0000	0000	0000	0.003
CRUISE 3	SAL	32.461	32.592 33.201 33.449	33.915 34.007 34.068	34-123	34.418
BEAR	E(T)	0000	0000	00000	0000	000
BROWN	TENP	10.15	9.00 9.00 8.318	5.09	2444 0360 226	3.54
	DEPTH	9000	15001150	6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80000	12000

	5 WIND VEL 4 DIR 12 1 DIR 13 SWELL 0 DIR						
VALUES	WEA 4						
OBSERVED	NDG 2779 SECDI	SATN	113 109 108 107	105 103 87	444 600	30 5 6	12
024	CLR	GEN -	-0.071 -0.051 -0.037	-0.028 -0.018 0.074	0.301 0.313 0.348	0.549 0.549 0.597	0.576
STATION O	126-15 93 HTR 0, 7	HGA/L	0.627 0.607 0.599 0.593	0.584 0.574 0.485 0.392	0.272 0.265 0.235	0.182 0.070 0.034 0.041	0.080
	RELHU LE(S)	#./-	7.02 6.80 6.71 6.64	0004 4000 4000	3.04 2.97 2.63	2.04 0.78 0.38 0.46	0.90
CRUISE 320	45-06 N HET 11.1 WIRE ANG	SIGMA-T	25.06 25.07 25.11 25.13	25.13 25.14 25.48 25.48	26.18 26.36 26.48	26.75 27.01 27.23 27.40	27.57
OWN BEAR	15.2 LAT	SAL	32.545 32.560 32.606 32.636	32.638 32.649 33.011 33.406	33.644 33.790 33.884	34.012 34.138 34.296 34.420	34.529
88	7 AMT 9	TEMP	10.002	10.02 9.99 9.63 9.13	8.74 8.37 7.93 7.60	94.00 94.00 94.00 94.00	2.58
	5/04/ M 03.7	DEPTH	20000	9400 9400	124 149 174 198	291 496 999	1486
	DATE BARO CLOU	CST	2222	2222	7771		

PRODUCTIVITY AB-1 DECK-1	32.556 32.557 32.625 32.624	33.420	
PRODUCT LAB-I	0.91 1.591 0.95	0.01	10.01
CHL-A	0.90	0.05	77.77
DEPTH CHL-A	3160	100	

PM 156

INCOMING SOLAR RADIATION - AM 134

MESSENGER TIME 0750

BIOLOGICAL DATA

BROWN BEAR CRUISE 320 STATION 024

	VAR		0.95	1.04	0.98 0.68 0.79	00.99
UES	E(0)	0000	0000	0000	0000	000
ED VAL	OXY ML/L	7.02 6.71 6.54 6.54	4000 4000 4000	2.24 2.24 1.302	00.00 00.00 00.00 00.00	000
AND COMPUT	POT ENERGY	0.00	0.37 0.80 1.32 2.60	4-14 5.90 7-88 12:46	23.90 30.53 37.64	52.90 69.43 96.69
POLATED	GEDPOT Andmaly	0.030	0.212 0.212 0.270 0.372	0.459 0.535 0.735	0.850 0.958 1.057	1.316
INTER	SP VOL ANOMALY	291.4 286.7 284.6 285.1	284.2 250.6 214.8 186.8	158.7 143.8 134.4 120.2	110.9 102.2 94.8 88.0	76.1 68.6 61.0
TION 024	SIGMA-T	25.06 25.11 25.13 25.13	25.14 25.80 25.88 26.18	26.49 26.65 26.75 26.91	27:01 27:11 27:20 27:27	27.40
20 STATE	E (S)	0000	0000	000000000000000000000000000000000000000	0000	0000
CRUISE 3	SAL	32.545 32.606 32.636 32.638	32.028 33.028 33.414 550	33.889 33.980 34.015 34.088	34.141 34.206 34.270 34.328	34.423 34.480 34.531
BEAR	E(T)	0000	0000	0000	0000	000
BROWN	TEMP	10.02	9.99 9.61 9.11 8.35	6.92 6.92 6.93 6.93	64.4 64.6 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	000 000 000
	ОЕРТН	30000	50 100 150	720 720 7300 7300 7300	\$000 \$000 \$000 \$000	1200

. 7.,

VALUES	WEA 02 WIND VEL 12 DIR 25 SEA 1 DIR 25 SWELL 1 DIR 25				
OBSERVED VALUES	VDG 2761 SECDI	SATN	107 107 107	106 104 64	3426 3926
	ILR SN	YGEN -	0000	0.031 0.020 0.115 0.204	0.250 0.331 0.349
320 STATION 025	126-41 95 WTRC	HGA/L	0.591 0.591 0.594	0.586 0.576 0.356	0.317 0.240 0.228
120 ST	RELHU LE(S)	#1.1-	6.62 6.65 6.65	6.56 3.992 3.992	3.55 2.69 2.55
CRUISE 3	45-15 N ET 10.7 WIRE ANGL	SIGMA-T	25.09 25.09 25.11 25.11	25.12 25.14 25.68 25.95	26.22 26.36 26.47
WN BEAR	9.9 LAT Y 11.2 W	SAL	32.635 32.631 32.633 32.633	32.644 33.655 33.535 552	33.772 33.888 33.942
BRO	63 HR 1 TEMP DR	TEMP	10.25 10.19 10.11	10.09 9.90 9.90 9.90	8.75 8.39 7.97
	5/04/ 03.7	ОЕРТН	1000	946 946	124
	DATE BAROM CLOUD	CST		AAAA	

	SIL	44		4	60 0			
	N T N	3.8		5.4	23.1 34.0			
CAL DAT	PHOS	0.66		19.0	0.69 1.68 2.19		PM 156	
BIOLOGICAL DATA	SAL	32.631 32.629		32.634	32.645 33.522 33.963	S		
25	IRRAD	20		10	-	WATER COLUMN VALUES	I ON - A	
O NOIL	SAT	100	32	•		COLUM	RADIAT	18800
EAR CRUISE 320 STATION 025	LIGHT SAT PROD FILT	2.38 2.22 1.57	1.19			- WATER	INCOMING SOLAR RADIATION - AM 134	CUBATOR ILLUMINATION 18800
I SE	٠ <u>.</u>	04		96	40)N I WC	וררח
CRU	DUCTIVITY I DECK-I	17.00		1.86	0.04	24 206.30	INC	A TOR
BROWN BEAR	PRODUC LAB-I	2.61		1.90	1.10	78.24	1136	ON INCUBA
BR	CHL-A	1.17			1.12 0.10 0.00	50.34	MESSENGER TIME 1136	LIGHT SATURATION IN
	ОЕРТН	04		20	45 100 200		MESSEN	LIGHT

	BROWN	BEAR	CRUISE	320 STA	STATION 025	INTER	OLATED	AND COMPUTED	ED VALUES	UES	
DEPTH	TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	POT ENERGY	OXY ML/L	E(0)	VAR
3000	10.25 10.11 10.09	0000	32.693 32.693 32.693 4493	0000	25.09 25.11 25.11 25.12	288.4 286.5 286.7 285.7	0.0000000000000000000000000000000000000	0000	0000 2000 2000	0000	
50 100 150	10.00 9.38 8.38	0000	32.655 33.330 33.562 33.891	0000	25.14 25.69 25.97 26.37	283.9 232.5 206.8 169.3	0.145 0.210 0.265 0.360		6.45 3.97 2.66	0000	0.94 0.94 1.04

	=					-93	
	3 WIND VEL 10 DIR 20 2 DIR 20 SWELL 2 DIR 2						
VALUES	WEA O						
BSERVED	DG 2834 SECDI	SATR	106 106 106	104 103 79 56	42 38 40 40	28 14 5 5	10
026 D	1 W SN RCLR	YGEN -	-0.033 -0.037 -0.031	-0.020 -0.019 0.121 0.253	0.316 0.341 0.360 0.354	0.532 0.532 0.591 0.607	0.587
ATION	127-4 82 WT	MGA/L	0.592 0.597 0.591 0.591	0.581 0.581 0.322	0.261 0.2240 0.224 0.231	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.067
320 ST	RELHU LE(S) 1	ML/L	6.63 6.68 6.62 6.62	6.50 6.50 5.08 3.61	2.92 2.69 2.51 2.51	1.89 0.96 0.44 0.38	0.75
CRUI SE	45-38 N ET 9.0 WIRE ANG	SI GMA-T	25.10 25.10 25.11 25.12	25.14 25.14 25.71 26.13	26.37 26.47 26.55 26.55	26.75 26.98 27.21 27.38	27.54
WN BEAR	7 10-6 W	SAL	32.547 32.547 32.544 32.555	32.568 32.568 33.051 33.566	33.827 33.888 33.944 33.926	34.008 34.108 34.276 34.409	34.507 34.558
BRO	63 HR O TEMP DR	TEMP	9.78 9.75 9.70	9.64 9.60 8.40 8.24	7.67	5.32 3.26 3.586	2.76
	6/04/ 03.0	ОЕРТН	100	30 30 34 30	123	276 466 706 948	1432
	DATE BAROM CLOUD	CST	7777	2000	22-2		

						RA		000	00	0000	000
					ALUES	E(0)	0000	0000	0000	0000	0000
					ED V	OXY ML/L	6666 5660 5660 5660	24.50 24.50 27.50 27.50	2.34	0000 8004 8008 8008	00.50
DATA				156	ND COMPUT	POT ENERGY	00000	0.37 0.77 1.24 2.35	3.73 5.37 7.28 11.80	17-15 23-21 29-83 36-89	52.09 68.78 96.78
BIOLOGICAL				н 134 РИ	POLATED AN	GEDPOT	0.000 0.029 0.058	0.209 0.261 0.369	0.427 0.498 0.566 0.692	0.808 0.916 1.015	1.272
970			S	TION - A	INTER	SP VOL ANOMALY	287.5 286.6 286.0 284.3	284.0 228.7 189.3 160.0	146.0 137.0 131.0	110.7 102.1 94.3 87.2	76.2 69.8 63.2
STATION	SAL	32.555 32.555 32.555 32.555 566	JAN VALUE	AR RADÍA	ATION 026	SIGMA-T	255.10 255.11 255.12 25.14	25.14 26.15 26.15	26.62 26.72 26.79 26.91	27-01 27-20 27-28	27.40 27.48 27.55
SE 320	. =		WATER COLUMN	COMING SOL	20 ST	E (S)	0000	0000	000000000000000000000000000000000000000	0000	0.000
AR CRUI	UCTIVITY DECK-	.4000	6	INCO	CRUISE 3	SAL	32.547 32.544 32.555 32.568	32.568 33.074 33.881	33.975 34.010 34.022 34.075	34.201 34.201 34.272 34.333	34.425 34.475 34.516
BROWN BEA	PRODU LAB-I	0000	17.21	E 1950	BEAR	E(T)	0000	0000	0000	0000	000
88	CHL-A	0000	24.51	W I I	BROWN	TEMP	9.78 9.70 9.64	9.60 8.38 7.71	7-11 6-58 6-12 5-44	44. 44.57 3.08 9.08	3.48
	DEPTH	0907		MESSENGER		DEP TH	3000	100 100 150	222 0004 0000 0000	\$ 100 400 8 000 8 000	1200 1200 1500

VALUES	WEA 21 WIND VEL O DIR 00 SEA O DIR 00 SPELL 1 DIR 24				
OBSERVED VALUES	SNDG 2761 SECDI	SATN	106 107 106	105 105 80 540	488 809
	_~	GEN -	-0.031 -0.037 -0.038	-0.029 -0.026 0.117 0.265	0.319 0.351 0.372
320 STATION 027	127-13 P	- OXYGEN AGEN AGO	0.591 0.597 0.598 0.598	0.589 0.586 0.457 0.310	0.257 0.229 0.211
320 ST	RELHU LE(S)	ボバー	6.68 6.68 6.69 6.65	6.56 9.56 9.12 4.12	2.98 2.56 366
CRUISE	45-51 N ET 7.6 WIRE ANG	SIGMA-T	25.05 25.07 25.09 25.10	25.11 25.10 25.68 26.14	26.33 26.43 26.52
WN BEAR	9.3 LAT Y 9.0 W	SAL	32.474 32.506 32.528 32.539	32.546 32.536 33.020 33.579	33.774 33.859 33.920
BROWN	TEMP DR	TEMP	9.70 9.74 9.74 9.70	9.69 9.68 8.44 8.24	8.05 7.82 7.53
	6/04/6 1 02.0 TYPE 7	DEPTH	20050	9400 9400	124 149 170
	DATE BAROM CLOUD	CST	HAAAA		

BIOLOGICAL DATA ZOOPLANKTON (CLARKE-BUMPUS) HORIZ - TIME 0012-0022 DEPTHS 100, 70 0039-0049 35, 0 BROWN BEAR CRUISE 320 STATION 027 INCOMING SOLAR RADIATION - AM 330 PM 302

	BROWN	BEAR	CRUISE 3.	20	STATION 027	INTER	INTERPOLATED	AND COMPUT	COMPUTED VALUES	UES	
DEPTH	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL Anomaly	GEOPOT	POT ENERGY	OXY MC/L	E(0)	VAR
0000	9.70	0000	32.5528 32.5538 32.5538	0000	255.05 255.09 255.10 255.10	291.6 288.4 287.2 286.7	0000	00000	6666 6666 6666 6666	0000	
100 100 150	9.68 7.68 7.83 81	0000	32.535 33.045 33.891	0000	25.10 25.70 26.16 26.43	287.7 231.4 188.6 163.3	0.145 0.251 0.352	0.37 0.78 1.25 7.37	0040 0040 0040	0000	0.94

									197		
	21										
	24 IR										
	R.O.										
	ה ה ה										
	ΝШ										
	VEL										
	ND \										
	X										
	77										
ES	0										
VALUE	WEA SE										
	—										
OBS ERVED	1 2	12		10.0		_	4.00	_			
SER	6 2 E C D	SAT	105	105	1001		457		33	r (m)	15
08	S NDG SE	1	6	77	2	50	m@~	٠	4ma	200	~ 5
		_0	02	03	2000	90	325	33	450 A	9	597
028	Z.R.	YGEN	0	00	000		000		000		00
	-24 HTR	OXY /L	16	93	2000		122		98		98
AT ION	26	GA	.5	S	NIVIN	•	400	.2	700	0	00
TAT	6 80 20•	I	0	00	000	9	000	0	000	00	00
ST	SHOW	1	- 62	64.	555				97	10	.63
20	E E	1 =	9	99	000	ň	400	7	700		o-i
E 3	NG N	-	6	0-	404	0	86-	S	400) N	നന
RUIS	-15 -8 E A	GHA	5.0	5.1	S S S S S S S S S S S S S S S S S S S	•	669	•	6.9	• •	7.5
CR	146 IR	S1 (5	22	2000		222		200		77
œ	A T T T T T T T T T T T T T T T T T T T		2	76	4040	0	220	7	o mo	19	5-
BEA	0.7 S.7	AL	64.	50	522	20	. 26 . 69 . 87	0	96	14	550
	×	S	32	32	2222	7		3	W 44	-	34
ROMN	15 7										
60	HE.	EMP	S	527	647	1	954	M	10.	10	. 17
	~D⊢ MA	F		00	0000				ON4		NO
	4/6 E01	I				_					
	6/0 02: TYP	EPT	Ov	700	0007	7	124 148 173	œ	284	110	433
	WE CO	ā									
	AAA	ST	70	100	222	7	222	_		4,-4	
	200	J									

						VAR		0.00 446.00 468.00	1.45 0.96 0.75	0000 692 692	0.95 0.88 0.96
					ALUES	E(0)	0000	0000	0000	0000 0000	000
					ED V	OXY ML/L	6.662	295W 2000 2000 2000 2000	2.32 2.35 2.10 1.43	0000	0.25
AL DATA				H 302	AND COMPUT	POT ENERGY	0.00	0.97	4.18 7.83 12.43	17.90 24.07 30.80 37.99	53.66 70.93 99.39
BIOL 0G ICAL				M 330	POLATED	GEOPOT	0.000 0.029 0.058	0.144 0.216 0.283 0.388	0.470 0.543 0.612 0.741	0.860 0.969 1.070 1.164	1.334 1.487 1.693
028			S	T 10N - A	INTER	SP VOL Anomaly	287.9 287.0 286.8 284.3	285.3 283.4 243.6 174.2	150.5 141.1 133.4 122.1	113.1 103.9 95.8 89.1	79.1
STATION	SAL	32.296 32.480 32.480 32.480	VALUE	AR RADIA	TION 028	SIGMA-T	25.10 25.11 25.11	25.13 25.15 25.58 26.31	26.57 26.68 26.76 26.89	26.99 27.09 27.18	27.38 27.46 27.55
ISE 320	≻ I		ATER COLUMN	OMING SOL	320 STA	E(S)	0000	0000	0.007 0.0015 0.000	000000000000000000000000000000000000000	0.002
EAR CRUI	DUCTIVIT I DECK	25 00 91	26 - WA	INCOM	CRUISE	SAL	32.495 32.502 32.509 32.524	32.513 32.533 32.856 33.714	33.933 33.971 33.974 34.028	34.092 34.166 34.241 34.306	34.403 34.462 34.516
BROWN BE	PROF LAB-	0	44-	0719	BEAR	E (T)	0000	0000	0000	0000	0.02
88	CHL-A	0.70	22-48	GER TIME	BROWN	TEMP	99.00	9.42 9.36 8.26 7.81	7.21 6.66 5.35	4.51 4.21 3.97	3.59
	DEPTH	0907		MESSEN		DEPTH	3000	50 100 150	4 920 0000 0000	\$00 \$000 \$000 \$000	1000 1200 1500

A I V	
<u> </u>	
BIOLOGICAL	07 071
28A	
2 2	2
_	71-04
320 \$	LAI
•	0
CRUI SE	6/104/63
BEAR	DAIL
BROWN	

PRODUCTIVITY LAB-I DECK-I DEPTH CHL-A

0.37 MESSENGER TIME 0558 0 0.39

2-26 INCOMING SOLAR RADIATION - AM 330 PM 302

VALUES	WEA OI WIND VEL 20 DIR 24 SEA 2 DIR 24 SWELL 3 DIR 3							
OBSERVED	NDG 2578 SECDI	SATR	106 106 105	105 103 70	744m	1044	6 E G B	20
59	CLR SP	GEN -	0.032	-0.028 -0.017 0.015	0.248 0.333 0.371	0.556 0.556 0.605 0.619	00.59	0.538
ATION O	125-50 77 WTR 0.10.12	- OXY	0.594 0.598 0.597 0.597	00 00 00 00 00 00 00 00 00 00 00 00 00	0.330 0.272 0.253 0.219	0.163 0.064 0.027 0.024	0.062 0.087 0.104 0.117	0.132
320 ST	RELHU E(S) 3	- H. Y.	66.69 66.69 65.69	6.62 6.51 6.15	3.70 2.83 4.83 4.53	1.83 0.72 0.27	0.69 0.97 1.17	1.48
CRUISS 3	46-14 N ET 8-8 WIRE ANGL	SIGMA-T	24.94 24.95 24.95	25.04 25.06 25.18 848	26.14 26.42 26.51 26.51	26.78 27.22 27.32	27.56 27.61 27.65 27.65	27.72
ROWN BEAR	20-6 LAT RY 10-0 W	SAL	32.316 32.313 32.314 32.320	32.419 32.565 33.265	33.527 33.807 33.881 33.937	33.992 34.113 34.284 34.391	34.510 34.550 34.579 34.578	34.606 34.628
BR	63 HR TEMP D	TEMP	9.59	9.48 9.37 8.33	8.01 7.57 7.03	94.00 94.17 94.17 95.17	2.24	1.79
	6/04/ 06.4	ОЕРТН	2000	9400 9400	124 1749 194	292 489 735 980	1475 1676 1776 1842	2062 2186
	DATE BAROM CLOUD	CST	กกกก	ากกก	NNNM	мммім	m= m =	

	88	BROWN BEAR	CRUI SE	BEAR CRUISE 320 STATION 029	110N 029	BIOL 06 1	BIOLOGICAL DATA	124	
ОЕРТН	CHL-A	PRODUCTIVITY LAB-I DECK-I	FIVITY DECK-I	LIGHT SAT PROD FILT	SAT	SAL	PHOS	NITR	SIL
0	0.98	1.95	.95 14.78	2.21 2.06 1.87 1.23	100 77 59 32	32.316	0.56	1.8	-
				0.00	21				
50	1.02	1.63	14.66	•	•	32.311	0.58	1.0	งง
42	1.12	1.05	94.0			32.311	0.61	1.5	9
	43.90	63.57	264.40	- WATER	WATER COLUMN VALUES	LUES			
HESSEN	MESSENGER TIME 1151	1151	INCOMIN	IG SOLAR	INCOMING SOLAR RADIATION - AM 330	- AM 330	PM 302		
IGHT	SATURATI	ON INCUB!	ATOR ILLU	LIGHT SATURATION INCUBATOR ILLUMINATION 18000	18000				

	RATIO		0000	1.16 1.51 0.78	0.00	1.01 0.89 1.73 1.06
VALUES	E(0)	0000	0000	0000	0000	0000
ED	OXY MC/L	6666 6666 7880 7880		2.38 1.97 1.18	0.000	0.27
AND COMPUT	POT ENERGY	0000	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	3.98 5.61 7.51	23.43 30.07 37.20	52.62 69.45 97.14 147.79
POLATED /	GEOPOT ANOMALY	00000	0.150 0.222 0.384 0.380	0.458 0.529 0.723	0.839 0.946 1.046	1.306 1.456 1.656
INTER	SP VOL ANOMALY	302.0 301.2 300.6 293.7	292.0 278.8 217.4 163.4	145.9 135.7 130.5	110.7 102.4 94.9	47.5 69.9 61.9
FI ON 029	SIGMA-T	24 94 24 95 25 95 25 96	25 25 25 25 26 43 26 43	26.62 26.73 26.79 26.91	27.11 27.11 27.27	27.39 27.547 27.56 27.68
STATI	E (S)	0000	0000	000000000000000000000000000000000000000	0000	0000
CRUISE 3	SAL	32.316 32.316 32.320 32.408	32.419 32.589 33.221 33.812	33.946 33.991 34.097	34.121 34.193 34.261 34.317	984. 44. 46. 9950 9926
BEAR	E(T)	0000	0000	0000	0000	0000
BROWN	TEMP	99999	7889 7889 7889 7889	5.94	444 9020 4650	222 222 2080 2080
	ОЕРТН	30000	250 100 150	2200 2200 4300 0000	\$00000 \$000000000000000000000000000000	1000 1200 1500 2000

WIND VEL 4 DIR 20 DIR 20 SWELL 2 DIR WEA 02 SEA 0 OBSERVED VALUES SNDG 777 SATN 9000 0.033 0.033 0.030 0.010 0.002 0.032 0.161 0°255 0°298 0°324 0.424 0.550 0.607 MGA/L ADU DATE 7/04/63 HR 04.4 LAT 46-14 N LONG 124-55 W BAROM 06.1 TEMP DRY 12.8 WET 9.9 RELHU 70 WTRCLR CLOUD TYPE 0 AMT 1 VIS 8 WIRE ANGLE(S) 4 CRUISE 320 STATION 030 0.313 0.281 0.258 0.239 0.178 0.068 0.027 0.574 0.582 0.532 0.402 3.51 2.89 2.68 77. 6.63 6.63 6.57 SIGMA-T 26.73 26.97 27.26 24.72 25.00 25.19 25.74 26.12 26.35 26.45 26.55 31.857 31.857 31.861 32°017 32°354 32°582 33°582 33.638 33.768 33.856 33.969 34.101 34.315 BROWN BEAR SAL 9999 9999 99329 9.56 7.84 6.23 4.05 05 TEMP DEPTH 2002 9409 124 149 174 198 297 496 759

CST

22

DAT 302 BIOLOGICAL STATION 030 WATER COLUMN VALUES 31.853 31.853 31.853 SAL CRUI SE 320 PRODUCTIVITY LAB-I DECK-I . BROWN BEAR 0.67 1.02 1.13 26.65 MESSENGER TIME 1950 0.81 0.98 1.06 25.80 CHL-A DEPTH 0764

I INCCMING SOLAR RADIATION - AM 330 A. A. A.

Total and the same of

	VAR		000 000 446	1.00 0.991 7.991	13.62 19.85 16.98			O DIR 09 LL I DIR 2			
ALUES	E(0)	0000	0000	0000	0.00			D VEL 20			
ED V	OXY ML/L	6666	3.41 3.41 3.41 4.51	2.66 1.94 1.29	0.36	S		53 WIN 2 DIR			
D COMPUT	POT ENER GY	0.00 0.02 0.07 0.16	0.41 0.87 1.44 2.68	4.14 5.86 7.85 12.52	18.06 24.32 31.12	D VALUES		7 WEA SEA			
ATED AND	OPOT	.0035 0035 1029	.165 .301 .401	. 5583 7527 598 9	.879 .950 .092	OBS ERVE	CE	NDG 3	SATN	1001	100 100
NTERPOL	VOL GE	9.9.9	7.9 6.7 6.1 0	9899 	5.8	031	ENTRANC	2 W S RCLR	YGEN -	0.0016	0000
0	T SP ANO	WWWW	222	11111	106	ATION	RIVER	124-1 76 WT	MGA/L	0.594 0.594 0.581 0.581	0.562 0.553 0.562
TI ON 03	SIGHA-	2222 2222 2222 2222	25.20 25.21 25.76 26.36	26.54 26.65 26.14 26.87	26.98 27.07 27.18	320 ST	OLUMBIA	RELHU LE(S) 2	#1.	66.65 66.65 66.65 66.65	6.29 6.19 6.29
20 STA	E(S)	0000	0000	0000	0000	CRUI SE	Ç	46-13 N T 7.5 IRE ANG	SIGMA-T	20.96 23.91 24.08	
CRUISE 3	SAL	31.857 31.861 31.858	32.354 32.608 33.282 33.772	33.905 33.951 33.971 34.036	34-104 34-177 34-260	OWN BEAR		0.9 LAT Y 9.4 WE VIS 8 W	SAL	27.251 29.649 31.040 31.262	31.437 31.508 31.756
BEAR	E(T)	0000	0000	0000	000	BRO		EMP DR	TEMP	9-89 9-90 9-87 9-86	9.76 9.70 9.73
BROWN	TEMP	\$000 \$000 \$000 \$000 \$000	9.47 9.36 9.26 7.83	7.30 6.72 6.21 5.53	5.08 4.74			7/04/63 98.0 T TYPE 9	ЕРТН	0264	18 23
	ОЕРТН	3000	100 100 150		500 500 700			DATE BAROM CLOUD	CST D	мама	

								RATIO	0.80
							2	E(0)	0000
							STILL AND CARLIES	OXY ML/L	6.65
AL DATA				182	75, 50 35, 0				000
BIOLOGICAL				AM 134 PM	DEPTHS 3		INTERPORTATION	GEOPOT	0.000
031			S	RADIATION - A	0022-0032			SP VOL ANDMALY	682.6 392.5 367.6
STATION	SAL	26.566 27.039 30.381 31.231	UMN VALUES		- 11 ME 00		CTATION 031	} {	20.96 24.00 24.26
1 SE 320	- I-		WATER COLUMN	INCOMING SOLAR) HORIZ		AT2 OCE	(5	0.000
IR CRUISE	PRODUCTIVITY AB-I DECK-I	0.000	•	INC	BUMPUS-		COLLEGE		27.251 31.152 31.459
BROWN BEAR	PRODU LAB-I	3.79 3.36 1.83 1.40	24.01	0245	(CLARKE-BUMPUS)		REAR		000
88	CHI -A	1.08 0.69 0.69	8.73	MESSENGER TIME			230	TEMP	9.89 9.87 9.73
	DEPTH	10620		MESSENG	ZOOPLANKTON			DEPTH	2000

5	
_	
2	
_	
VALUE	
>	
0	
III	
=	
BSERVED	
S	
0	
032	
M	
0	
Z	
0	
-	
TATION	
-	
_	
_	
0	
320	
3	
W	
S	
-	
-	
=	
CRUISE	
•	
æ	
AR	
EAR	
BEAR	
BEAR	
BROWN BEAR	

	46-52 N LONG 124-14 W SNDG 33 WEA 03 WIND VEL 36 DIR 17 T 8.7 RELHU 73 WTRCLR SECDI SEA 3 DIR 17 SWELL 6 DIR 1			
	SNDG 33	U SATN	10 102 11 102 14 103 16 103	08 101 02 100 24 96
GRAYLAND	73 WIRCLR	SIGNA-T OXYGEN - SATN	20.90 6.62 0.591 -0.010 102 22.02 6.57 0.587 -0.011 102 23.90 6.52 0.582 -0.016 103	0.574 -0.0 0.568 -0.0 0.542 0.0
	RELHU LE (S) 3	1	99.52	666
	IET 8.7	SIGMA-T	20.00	24.21
	16.0 LAT	SAL	27.134 27.149 28.573 30.986	31.363
	TENP D	TENP	90.09	9.58
	7/04/ 8 93.9	DEPTH	0400	222
	CLOUC	CST		

TEMO	E . T.	261020	320 318	STEMPT	INIEK CO VOI	NI EXPOLATED	AND CUMPUTED	>	VALUES	943
		140	1613	SIGNAL	ANOMALY	ANOMALY	ENERGY	1	1013	RATIO
	000	27-134	000	20-90	688.3	0.00	0.00	6-62	00	0.70
4	00	31.494	0.014	24.32	362.0	0.107	000	6-40	0.0	0.71

IES	A 02 WIND VEL 30 EA 4 DIR 19 SWELL									
VALUES	38							DAT A		
OBSERVED	NDG 744	SATN	102 102 103 103	102 94 63	0464 0464	13		IOI. 0G I CAL		
33	r S	GEN -	0.0012	-0.009 0.032 0.213	0.294 0.322 0.333 0.345	0.442 0.538 0.619		B I OL.		
STATION 0		MGA/L	0.577 0.577 0.581 1881	0.574 0.535 0.369 0.369	0.281 0.257 0.249 0.240	0.160 0.079 0.010		IN 033	01 26 26	UES
320 ST	RELH LE(S)	F. 7.	6.50 6.50 6.50 6.50	40.00 40.00 40.00	3.15 2.88 2.79 2.69	1.79 0.88 0.11		STATION	3222 3222 3223	COLUMN VALUE
CRUI SE	1 46-51 N WET 7.8 WIRE ANG	SIGMA-1	24.89 24.89 24.90	24.92 25.10 25.77	26.26 26.37 26.46 26.52	26.75 26.95 27.15		UI SE 320 TY K-I		WATER COL
WN BEAR	1.5 LAT VIS 6	SAL	32.207 32.204 32.209 32.209	32.234 32.422 32.833 33.078	33.707 33.800 33.862 33.900	33.995 34.080 34.227	,	EAR CRU DUCTIVIT I DECK	69 11 74	29 - W
BROWN	TEMP DR	TEMP	99.38	9.36 9.16 8.14	8.17 7.86 7.60	6.23 5.18 4.39	17	BROWN BI	0440	33.
	8/04/6 000 TYPE 8	ОЕРТН	0206	9745 918 918	1119 143 180 197	244 476 666		CHL-A	1.11	37.57
	DATE BAROM CLOUD	CST D						DEPTH	9120	

BROWN	BEAR	CRUISE	320 STA	STATION 033	INTER	POLATED A	AND COMPUT	ED VAL	UES	
TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VCL ANOMALY	GEOPOT	POT ENERGY	OXY ML/L	E(0)	VAR
9999 4.994 7.884	0000	32.207	0000	24.90	307.1	00.000000000000000000000000000000000000	00000	\$ \$ \$	0000	0.00
• -	•	*7.7		· ·	5 6	60 ,	-	4.	Ŏ	6
8.53 8.53	900	32.867	000	25°13	246.2	0.219	00.	70°0	000	1.00
180	00	3.81	0000	6.9	66.	.37	S. O.	20 CC	00	- 8
.2	00	3.99	00	6.5	33	545	6	90	00	00
5.71	0.18	34-033	0.018	26.85	124.9	0.592	7.47	1.37	000	1.39
4.32 5.03	0.50	34.082 34.130	0.004	27.04	107.1	0.826	17.02	0.19	0.39	50.91

VALUES	WEA 21 WIND VEL 18 DIR 13 SEA 3 DIR 13 SWELL 5 DIR						
OBSERVED	4DG 2505 SECDI	SATN	105 106 105	105 99 90 63	2446 4640	128	7-71
	IR SN	EN	.026 .031 .037	.027 .007 .058 .213	34685 34685 34685	546	606
O STATION 034	LONG 125-58 V ELHU 83 WTRCI (S) 21, 5	HL/L MGA/L	6.60 0.589 0 6.66 0.595 0 6.73 0.601 0 6.61 0.590 0	6.61 0.590 -0 6.26 0.559 0 5.69 0.508 0 4.05 0.362 0	2.80 0.250 0 2.64 0.236 0 2.58 0.236 0	0.81 0.072 0 0.31 0.028 0 0.25 0.022 0	0.55 0.049 0
CRUISE 320	46-51 N ET 7.2 R WIRE ANGLE	SI GMA-T	24.96 24.97 24.97 24.96	25.11 25.29 25.29 25.95	26.24 26.38 26.47 26.51	26.76 26.97 27.19	27.53
OWN BEAR	RY 8-9 W	SAL	32.314 32.318 32.313 32.314	32.334 32.448 32.672 33.346	33.635 33.822 33.885 33.905	33.990 34.095 34.247 34.368	34.495
88	63 HR TEMP DI 8 AMT 9	TEMP	0000 0444 0000	84.04 9.23 9.23 9.23	7.92 7.96 7.64	6.17 5.07 3.65	2-67
	8/04/ 01:0 TYPE	ОЕРТН	0500	WW-6	124 178 173 187	280 470 708 947	1429
	DATE BARON CLOUD	CST	<i>~~~</i>	7777	777-		

BIOLOGICAL DATA				PM 175	100, 70
B10L0G				INCOMING SOLAR RADIATION - AM 244	(CLARKE-BUMPUS) HORIZ - TIME 0028-0038 DEPTHS 100, 70 0054-0104 35, 0
N 034	۔	14 27 27	UES	IATION	0028-00
STATIO	SAL	32.314 32.311 32.311 32.321	WATER COLUMN VALUES	AR RAD	TI ME
320			י כסרי	1CS 91	- 218C
CRUISE 320 STATION 034	LIVITY DECK-I		- WATE	INCOMI	JMPUS) HE
BROWN BEAR	PRODUCTIVITY LAB-I DECK-I	1.421	40.67	TIME O113	CLARKE-BI
88	CHL-A	11.00.	45.88	_	
	DEPTH	317		MESSENGER	ZOOPLANKTON

	VAR		0000	1.67 1.83 0.96 0.75	0000	0.95
UES	E(0)	0000	0000	0000	0000	000
ED VAL	OXY ML/L	6.60 6.73 6.61	5.28 2.02 2.12	2,5 2,13 1,15 1,5	00.00	000
AND COMPUT	POT ENERGY	0.00	0.3 10.88 2.96 2.56	3.98 5.68 7.61 12.12	17.49 23.61 30.30	53.25 70.55 98.75
POLATED A	GEOPOT	000000000000000000000000000000000000000	0.150 0.220 0.280 0.374	0.529 0.529 0.597 0.723	0.840 0.949 1.049	1.314 1.467 1.671
INTER	SP VOL ANOMALY	300.1 300.1 299.5	287.2 268.2 206.9 167.4	152.7 140.3 130.7 119.4	1111.7 103.1 95.5 89.4	79.7 71.8 62.5
TION 034	SIGMA-T	24.96 24.97 24.96 24.96	255.31 255.31 26.39 26.39	26.55 26.68 26.79 26.91	27-10 27-19 27-19	27.37 27.49 27.55
20 STA	E(S)	0000	0000	0000	0000	0.002
CRUISE 3	SAL	3000 3000 3000 3000 3000 3000 3000 300	889988 88098 88098 88098	33.920 34.968 34.063	34-114 34-242 34-298	34.387 34.447 34.508
BEAR	E(T)	0000	0000	00000	0000	000
BROWN	TENP	0000 0444 0988	9-23 9-17 8-32 7-94	6.60 5.33	44.6 •••••• ••••• •••• •••• ••• ••• ••• ••	3.53 2.55 5.54
	DEPTH	3000	50 100 150	4 w 2 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1000 1200 1500

BIOLOGICAL DATA LONG 126-35 W BROWN BEAR CRUISE 320 STATION 34A 8/04/63 LAT 46-51 N SAL DATE

DEPTH CHL-A PRODUCTIVITY
LAB-I DECK-I
0 1.10 2.08 14.74 3

INCOMING SOLAR RADIATION - AM 244 PM 175

MESSENGER TIME 0548

32.257

	32					213	
VALUES	WEA 02 WIND VEL 10 DIR 36 SEA 2 DIR 36 SWELL 4 DIR						
OBSERVED	SNDG 2606 SECDI	SATN	1000 4000 4000	104 104 803 803	ծլ ւ լս ա ळ 4	36 14 5	100
2	CLR SN	GEN -	0.020 0.026 0.025	000000000000000000000000000000000000000	0.219 0.247 0.272	0000	0.588
STATION 03	126-44 84 WTR 2,10	- OXYG	00.58 00.58 00.58 00.58 00.58	0.584 0.583 0.577 0.577	0°464 0°368 0°344 0°320	0.219 0.085 0.042 0.034	0.069
320 ST	RELHU E (S)	M.7.	6.50 6.57 6.55 6.55	50 50 50 50 50 50 50 50 50 50 50 50 50 5	5, 20 3, 85 5, 85 85	2.000 0.95 0.47 0.38	0.77
CRUISE	46-50 N ET 8.9 WIRE ANG	SIGMA-T	25.09 25.08 25.10 25.09	255° 12 255° 12 25° 13 25° 13	25.97 26.35 26.52	26.76 27.01 27.22 27.38	27.55
DWN BEAR	5.0 LAT Y 10.3 W	SAL	32.510 32.505 32.511 32.507	32.503 32.528 32.538 32.920	33.204 33.623 33.823	33.932 34.064 34.353	34.512
BRO	63 HR 1 TEMP DR	TEMP	9.67 9.61 9.63	9.64 9.57 9.49 7.97	7.30 7.45 7.05 6.95	3.93 3.93 3.93 3.93	2.59
	8/04/ 03.0 TYPE	ОЕРТН	100	9400	152 153 195 195	293 490 736 982	1477
	DATE BAROM CLOUD	CST	7777	2222	777		

BIOLOGICAL DATA					75
AL					x
21:					Q.
010					INCOMING SOLAR RADIATION - AM 244 PM 175
B II					I
					~
					ž
035				s	TIC
z	-	0000	36	.UE	AIC
TIC	SAL	32.50 32.50 5002 5002	32.736	VAL	RAD
STA		WWWW	י יי	Z	×
_				LU	0
320				5	S
m M	r.=1			ER	Ž
5	¥			- WATER COLUMN VALUES	00
2	IVI				Z
ď	ב				
BEA		0000	0.08	26.10	3
Z	ABA	0000	0	26	375
ROT	_				<u> </u>
BROWN BEAR CRUISE 320 STATION 035	4	9775	11	54	TIM
•	Ĭ	0000	0.11	20.54	œ
	J			•	NGE
	PTH	7380	100		MESSENGER TIME 0753
	DEPTH CHL-A PRODUCTIVITY LAB-I DECK-I		7		I

	BROWN	BEAR	CRU1SE	320 STA	ATION 035	INTER	POLATED A	ND COMPUT	ED V	ALUES	
ОЕРТН	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT ANOMALY	POT ENERGY	OXY ML/L	E(0)	VAR
3000	9.67 9.63 9.63	0000	32.510 32.511 32.507 32.503	0000	25.09 25.10 25.09	288.5 287.7 288.5 289.1	0.000	0.00	66.55 66.55 66.55 66.55 66.55 66.55	0000	
100 100 100 100	9.00 10.00 1	0000	32.528 32.544 32.924 33.184	0000	255.112 255.112 25.685 95855	286.5 283.7 233.8 208.3	0.146 0.217 0.283 0.394	C-37 0-83 1-41 2-82	66.5 6.5 6.5 6.5 6.5 7 8	0000	0.99
7 3 3 2 2 0 0 0 0 0 0 0 0 0	6.90 6.34 5.72 7.97	0000	33.846 33.975 33.938 34.010	0000	26.55 26.77 26.92	132.7 136.5 132.1 118.9	0.558 0.558 0.626 0.752	4.42 6.10 8.01 12.53	3.52 2.91 2.38 1.51	0000	1-13 1-52 0-98 0-77
\$000 800 800	4.49 4.18 3.96 3.78	0000	34.150 34.226 34.292	000000000000000000000000000000000000000	27-02 27-11 27-20 27-27	109.8 101.3 94.1 87.9	0.868 0.974 1.073 1.165	17.85 23.85 30.43 37.51	00.00	0000	0.95
1000 1200 1500	3.00	0000	34.391 34.456 34.515	0000	27.38 27.47 27.56	77.8 70.4 62.1	1.333 1.483 1.684	52.94 69.87 97.70	000 648 880	0000	0.98

	14				
	OVEL 10 DIR 35 35 SWELL 1 DIR				
	WIND VE DIR 35				
VALUES	WEA 02 SEA 1				
CBSERVED VALUES	NDG 2472 SECDI	SATN	105 106 105 105	105 104 67 67	004 046 146
	S W SA	GEN -	000035	-0.026 0.020 0.038 0.189	0.252
STATION 036	126-2 85 WT	MGA/L ADU	0.598 0.598 0.598 0.598	0.591 0.586 0.3886 0.886	0.326
320 S1	RELHU LE(S)	- T. T.	6.62 6.69 6.69	6.62 6.56 5.91 4.30	3.65
CRUISE 320	47-01 N ET 8.5 F WIRE ANGL	SI GMA-T	24.92 24.93 24.96 24.96	24.96 25.08 25.26 87	26.18 26.38
WN BEAR	9.6 LAT Y 9.8 W	SAL	32.279 32.275 32.291 32.281	32.286 32.424 32.635 33.278	33.578
BROWN	/63 HR 1 TEMP DR 8 AMT 6	TEMP	9.99.97 7.8.9 7.8.9	9.53 9.29 4.80 4.80	8.01 7.78
	8/04 05.1 TYPE	ОЕРТН	20020	9400 9400	124
	DATE BAROM CLOUD	CST			

0.94 0.94 5.20

本 五

										~		
	1.	9829		28 39					VALUES	E(0)	0000	0000
	TR S	1997		~0					ED	OXY ML/L	6.65	24.55 90.85 96.50
DATA	IN S	22 - 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 23		2			COMPUT	OT ERGY	0.00	0.38 0.83 1.37 2.58
	PHO	0000		1.7		PM 17			O AND	I EN	01-2	1286
BIOL 0G ICAL	SAL	32.283 32.282 32.280 32.314		33.362	S	H 244			POLATE	GEOPO	0000	00-22
36	IRRAD	50 10			N VALUE	10N - A			INTER	SP VOL ANOMALY	304.1 300.3 301.3 301.3	289.9 271.1 213.8 167.2
TION O	SAT	100	77 332 21	4	COLUMN	RADIATI	18700		980	HA-T	96 96 96 96	3988
STA	LIGHT	0.30	0.31	00.00	WATER	SOLAR	LLUMINATION		ATION	S 1 G	7575	2222
E 320	•				ı		LUMIA		0 \$1	E (S)	0000	000000000000000000000000000000000000000
CRUIS	IVITY DECK-1	16.02 10.16 0.05 0.00			190.62	INCOMING	TOR I		1SE 32	AL	.279 .291 .281 .286	424 660 294 801
BEAR	ODUCT	4787 784 784			46.79	2	INCUBA		CRU	S	2222 2222	8888 8888
BROWN	PR	7110			94	£ 111			BEAR	E(T)	0000	0000
æ	CHL-A	11.00		0.0	38.78	IGER TIP	SATURATION		BROWN	TEMP	60.00 60.00 70.00 70.00 70.00	9.29 9.17 8.46
	ОЕРТН	3000		100		MESSENGER	LIGHT			DEPTH	3000	50 1005 150

VALUES	WEA 02 WIND VEL 6 DIR 08 SEA 2 DIR 08 SWELL 1 DIR 14					218		
OBS ERVED	NDG 2395 SECDI	SATN	106 106 106	106 102 92 67	74 44 10 10 10 10 10 10 10 10 10 10 10 10 10	56 × 5	119	22
AT 1 0N 037	CLR SI	GEN -	0.0032	-0.034 0.047 0.188	0.243 0.266 0.317 0.347	0.380 0.575 0.592 0.607	0000	0.523
	126-06 81 WTR 2: 6: 5	- OXY	0.594 0.598 0.598	0.576 0.576 0.386	0.337 0.316 0.267 0.239	0.221 0.044 0.039	0.072 0.105 0.124 0.125	0-147
320 ST	RELHU E(S)	711	6.73 6.73 6.10	45. 38. 32. 32. 32. 32. 32.	3.54	0000 3449 8449	1.39	1:65
CRUISE 3	T 47-11 N WET 8.4	SIGMA-T	24.98 24.98 25.00 25.00	255.03 255.11 255.30 255.30	26.15 26.30 26.46 56.53	26.74 26.98 27.21 27.35	27.56 27.66 27.64 27.64	27.70
BROWN BEAR	63 HR 22-1 LA TEMP DRY 10-0 8 AMT 6 VIS-8	SAL	32.356 32.356 32.355 32.355	32.364 32.456 32.651 33.242	33.518 33.669 33.836 33.895	33.981 34.106 34.267 34.376	34.508 34.587 34.563 34.583	34.609
		TEMP	9.59	8999 6999 6999	7.91 7.69 7.48	5.02 3.03 3.03 3.03	2.52 2.08 2.05 1.96	1.81
	8/04/ 05.0 TYPE	ОЕРТН	2200	0046	124 149 176 197	7707 7707 738 738 7407 7407 7407 7407 7407 7407 7407 740	1486 1776 1782 1925	2173
	DATE BAROM CLOUD	CST	0000	2222	NNNm	ጠጠጠጠ	กศตศ	

	BROWN	BEAR	CRUISE 3	320 STA	STATION 037	INTER	OLATED A	INTERPOLATED AND COMPUTED VAL	FED VAL	NES	
DEPTH	TEMP	E(T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEOPOT	ENERGY	EX.	E(0)	RATIO
0000	9999 9466 1900	0000	322.33	00000	255 255 255 255 255 255 255 255 255 255	299.0	000000000000000000000000000000000000000	00000	6.65	0000	
1005	9.23	0000	32.676	00000	2000 2000 2000 2000 2000 2000 2000 200	286.6 267.6 215.7 175.2	000000	00-45 66-36	2024U 4000 2000	8588	0000 4460 4860
4 9000 0000 0000	50.12	0000	333 333 433 433 508 508 508 508 508 508 508 508 508 508	0000	4000 4000 4000 4000	13423	0000 0000 0000 0000 0000 0000 0000	2010 0010 0010 0010	5454 5454 5604	00.00	1.00 1.00 1.00 1.00 87
00000	44.5 00262 00262	0000	34-112	00000	277.109	104.09 906.09 90.09	0044 0004 0004 0004 0004 0004	36,00	0000	2180	00.00
2000 2000 2000 2000 2000	WW.	0000	34.548	0000	27.36	80°4 61°7 50°8	1.689	53.93 71.34 99.41 150.29	0000 0000 0000 0000	0000	0000

	16					
	WIND VEL 6 DIR 15 DIR 15 SWELL 1 DIR					
VALUES	WEA 02 SEA 0					
OBSERVED	SNDG 1188 SECDI	SATN	0000 00000 00000	1033	44mm 81L9	131
038	7 W S RCLR	YGEN -	-0.027 -0.031 -0.026	-0.019 -0.019 0.081	0.345 0.345 0.345	0.533 0.602 0.617
ATION 0	125-2 31 HT	MGA/L	0000 0000 0000 0000 0000 0000 0000	0.587 0.587 0.490	0.236 0.236 0.218 0.213	0.188 0.084 0.029
320 ST	RELHU E	H.1.	6.65 6.65 6.65 6.65	6.03 7.03 7.03 7.03	3.11 2.64 2.39	2.11 0.94 0.32 0.27
CRUISE	T 47-33 N WET 7.5 WIRE ANG	SI GMA-T	77. 77. 77. 77. 77. 77. 77. 77. 77. 77.	24.94 25.36 25.36	26.28 26.43 26.53	26.70 26.95 27.18 27.18
OWN BEAR	05.2 LA RY 8.9 L	SAL	32.187 32.177 32.176 32.184	32.226 32.253 32.684 33.065	33.678 33.840 33.895 33.902	33.966 34.078 34.242 34.350
8 8 8	/63 HR TEMP D 6 AMT 6	TEMP	9.24	9.21 9.21 8.79 8.39	7-87 7-72 7-44 7-32	5.18 3.26 3.60
	E 9/04/ OM 90-0 UD TYPE	DEPTH	2000	0076 0076	124 149 174 190	285 712 998
	DATE	CST	2000	2222	1777	

							red va	OXY PL/L	6.66
AL DATA					PM 340	35. 0	INTERPOLATED AND COMPUTED VA	POT ENERGY	000
BIOLOGICAL DATA					AM 305 PI	DEPTHS 1	POLATED	GEOPOT	305-9 0-000
				S	A - NOIT	21–2331 49–2359	INTER	SP VUL ANGMALY	305-9
CRUISE 320 STATION 038	SAL	32.175 32.175 32.176	33.017	WATER COLUMN VALUES	INCOMING SOLAR RADIATION -	CLARKE-BUMPUS) HORIZ - TIME 2321-2331 DEPTHS 100, 70 2349-2359	TION 038	SIGMA-T	24.90
1 SE 320	- "			ATER COL	DMING SO) HOR12	CRUISE 320 STATION 038	E (S)	0.00 32-187 0.000 24-90
AR CRU	PRODUCTIVITY LAB-I DECK-I	6412	7.0	. 1	INC	-BUMPUS	CRUISE	SAL	32-187
OWN BEAR	PROF LAB-1	0.82 1.11 1.04	0.07	39.81	2213	ICLARKE	BEAR	E(T)	0000
88	CHL-A	1.19 1.28 1.39	0.12	49.85	MESSENGER TIME	NKTON	BROWN	TEMP	9-24
	DEPTH	9000	100		MESSEN	200PL ANK TON		DEPTH	0

	BROWN	BEAR	CRUISE 3	320 STA	TATION 038	INTER	POLATED	AND COMPUT	TED VAL	UES	
DEP TH	TEMP	E(T)	SAL	E (S)	SIGMA-T	SP VUL ANGMALY	GEOPOT ANOMALY	POT ENERGY	OXY ML/L	E(0)	RAT
775 0000 0000	99.50	0000	32-187 32-176 32-184 32-226	0000	24°90 24°90 24°90 24°90	305 306 306 304 1	0.000 0.031 0.062 0.093	0°000 0°00 0°00 0°10 0°10	6,65 6,65 7,75	0000	
50 75 100 150	9.21 8.77 8.37 7.71	0000	32.693 32.693 33.692 33.844	0000	25.37 25.37 26.74	301°4 262°3 227°6 163.2	0.154 0.225 0.286 0.385	0°39 0°34 1°34 2°61	24°57 24°57 24°57 24°57	0000	ဝီဝီဝ
220 2000 0000 0000	6.33 6.33 6.33 6.23	00000	33,908 33,940 33,975 34,034	000000000000000000000000000000000000000	26.55 26.64 26.72 26.86	152.6 144.8 137.0	0.465 0.539 0.611 0.743	5. 76 7. 77 12. 49	2.36 2.22 2.02 1.41	0000	7700
500 500 800 000	0.444 0.00 0.00 0.00 0.00	000000000000000000000000000000000000000	34.096 34.167 34.234 34.292	0,000	26.97 27.08 27.17 27.24	1114.6 1055.2 97.3	0.864 0.975 1.077 1.172	18:05 24:31 31:13 645	0000 0000 0000 0000 0000 0000	0.000	ဝီဝဝီစ

OBSERVED VALUES

STATION 039

CRUISE 320

BROWN BEAR

BIOLOGICAL DATA				340
ICAL	3			Ĭ.
10106	24-50			305
€	NG 1			-
ON 38A	8 N LO	SAL	32.749	DIATION
STATI	48-0	S	32.	AR RA
20	LAT			SOL
BROWN BEAR CRUISE 320 STATION 38A	DATE 9/04/63 LAT 48-08 N LONG 124-50 W	DECK-1	2.69 26.32	INCOMING SOLAR RADIATION - AM 305 PM 340
UNN BEAR	DATE	PRODUCTIVITY LAB-I DECK-I	5.69	IME 0543
BR		CHL-A	6.93	Ξ
		DEPTH	0	MESSENGER

	WEA 60 WIND VEL 26 DIR 14 SEA 2 DIR 14 SWELL 1 DIR 20		
	SNDG 73	SATN	1000
TOLEAK POINT		OXYGEN 1/L ADU	587 -0.021 587 -0.020 576 -0.010 566 0.000
TOLEAN	LONG 124-50 W RELHU 80 WTRCLR LE(S) 15	ML/L MGA/L ADU	6.57
	17-52 N	SIGMA-T	24.40
	12.2 LAT	SAL	31.591 31.604 31.604 31.605
	S HR O	TEMP	9.50
	9/04/63 1 09:0 1 TYPE 6 DEPTH	DEPTH	0506
	DATE BARON CLOUD	CST	

101 102 101 97

6.4.48 1.44.88 15.44.88

31.610 31.606 31.623 31.631

588 588 67

-0.013

0.581

6.50

24-46

31.656

The same

	VAR	0.88	0.78			LL I DIR					
ALUES	E(0)	0000	0.03			D VEL					
ED V	OXY ML/L	6666 6446 6457	6.36			O DIR					
COMPUT	POT ENERGY	0000	95.0	D VALUES		4 WEA O					
ATED AND	DPOT DMALY E	.000 .036 .072 .107	.178	OBSERVE		NDG 1554 SECDI	SATN	1003	1001	\$00.4 \$00.0	45
TERPOL	OL GE	0000	.7 0	040	LAND	CLR S	GEN -	-0.018 -0.0018 -0.005	-0.0023 -0.008 -0.0011	0.215 0.215 0.291 0.318	0.342
Z	SP V ANOM	WWWW NOWN AWWW	351	ATION 0	00SH 1S	124-40 7 WTR	MGA/L	0.599 0.599 0.599 0.599	0.575	0.384 0.362 0.293 0.269	0.248
ATION 039	SIGMA-T	24.40	24.43	320 STA	TATO	LONG RELHU 6 LE(S) 24	MA	6.71 6.71 6.56 6.70	0000 0444 0444	3.50 3.00 3.00 0.00 0.00 0.00 0.00 0.00	2.78
20 ST	E (S)	0000	0.001	CRUISE		48-27 N T 5-7 IRE ANG	SIGMA-T	21.93 22.01 22.68	23. 24. 24. 60 24. 82	25.43 25.76 26.14 26.26	26.41
CRUISE 3	SAL	31.604 31.606 31.606	31.624	WN BEAR		6-2 LAT Y 11-1 WE VIS 7 W	SAL	28.385 28.481 28.593 29.341	30.524 31.693 51.827 32.082	32.607 33.083 33.454 33.571	33.703
BEAR	E (T)	0000	00.0	BRO		HR I EMP OR	TEMP	9.30	9.40 9.40 9.26	7.94 7.63 7.39	7.07
BROWN	TEMP	0.00 0.00 0.00 0.00	9.45			9/04/63 12.0 T TYPE 6	DEPTH	0500	24.0 24.0 24.0	1126 148 168	210
	DEPTH	9000	20			DATE BAROM CLOUD	CST		N2	<i>~~~</i>	~

BIOLOGICAL DATA						340	
ICAL						PM 340	
10106						305	
80						¥	
BROWN BEAR CRUISE 320 STATION 640	SAL	28.967 29.096 29.738	29.696	32.105	WATER COLUMN VALUES	INCOMING SOLAR RADIATION - AM 305	
120					COLU	SOL	
UI SE 3	₹				WATER	ICOMI NG	
ຽ	TIVI				ı	=	
IN BEAR	PRODUCTIVITY LAB-I DECK-I	6.23 6.09 4.83	5.19	1.06	64.92	IME 0836	
880	CHL-A	1.99 2.07 1.75	8	0.75	22.73		
	DEPTH	040	12	100		MESSENGER	

	BROWN	BEAR	CRUISE	320 STA	STATION 040	INTER	POLATED	AND COMPUT	TED VALUES	UES	
ОЕРТН	TEMP	E (T)	SAL	E(S)	SIGMA-T	SP VOL ANOMALY	GEDPOY	POT Y ENERGY	OXY ML/L	E(0)	RATIC
9000	99.32	0000	28.385 28.648 229.668 30.8603	0.000	21.93 22.14 22.88 23.80	589 569.9 411.6	0.0000000000000000000000000000000000000	0000 7100 0000	6.71 6.56 6.70 6.62	0000	0.00
100 150 150	9.40 8.29 7.59	0000	31.760 31.937 32.446 33.477	0.030	24.55 25.25 26.25 16.25	340.8 378.3 188.3	0.234 0.395 0.395	0.53 1.07 3.19	4046 4000 4000	0000	00.00
200	7.06	00.00	33.691	0.010	26.40	166.4	0.601	4.78	2.75	0.01	15.97

Security Classification

(Security classification of title heaty of abstract and index	NTROL DATA - R&		he everall report to clossified)			
1 ORIGINATING ACTIVITY (Comporers suther)		2. REPOR	T SECURITY CLASSIFICATION			
University of Washington, Department	of	Urc	lassified			
Oceanography, Seattle, Washington 98	3105	28 SRGUP				
3 REPORT TITLE						
MYSICAL, CHUMICAL, AND BIOLOGICAL DA COLUMBIA RIVÉR EFFLUENT AREA, JANUARY						
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) Interim Peport January - June 1963			,			
S AUTHOR(3) (Last name, first name, initial) Love, Cuthbert M. With the Data Analysis Staff						
November 1965	7. TOTAL NO OF P. 224	AGES	35 (in Vol. I only)			
Nonr-1:77(10) AT(1:5-1)-172" Nonr-1:77(37) PROJECT NO TR 083 012	Technical F		o. 134, Vol. II			
#b. OTHER REPORT NO(3) (Any other numbers that may be accigned this report) Peference Mc						
10 A VAILABILITY/LIMITATION NOTICES						
This report has been furnished to the through these agencies.	OTS and DDC.	Copies	may be requested			
11. SUPPLEMENTARY NOTES	12) SPONSORING MILITARY ACTIVITY					
•	Office of N	aval Res	search			
13 ABSTRACT	1					

This report contains tabulated physical, chemical, and biological data collected during Cruise Oshawa-1 of the CNAV Oshawa and Cruise 320 of the Research Vessel Brown Bear during the months of March - April 1943 in an area within 255 miles of the coasts of Varcouver Island. Washington, and Oregon. These data were collected as part of a year-round study which has as its objective the determination of the gross features of the movement and dispersion of Columbia River effluent water in the northeast Pacific.

DD 15884 1473

Unclassified

Security Classification

Security Classification

14.	MBW 9000	· ·	LINK A		LINK D		LIN	KC
	KEY WORDS		ROLE	WT	ROLE	WT	ROLE	WT
	Oceanographic data Physical oceanographic data Chemical oceanographic data Biological oceanographic data Oceanographic cruises Research Vessel Brown Bear CNAV Oshawa Northeast Pacific Ocean Washington - Oregon coast Columbia River Effluent water							

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GRQUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summery, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DAT: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 85, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S) If the report has been assigned any other report numbers (either by the originator or by the aponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 1L SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13 ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14 KEY WORDS: Key words are technically meaningful terms or short phrases that cherecterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, raises, and weights is optional.

DD 15884, 1473 (BACK)

Unclassified

Security Classification