MA 201, Mathematics III, July-November 2022, Laplace Transform (Contd.)

Lecture 17

ODEs with constant coefficients

Example ODE1 (First-order ODE):

$$\frac{dx}{dt} + 3x = 0, \ x(0) = 1.$$

By taking Laplace transform on both sides of the equation,

$$\mathcal{L}\left\{\frac{dx}{dt}\right\} + \mathcal{L}\left\{3x\right\} = 0$$

$$\Rightarrow s\mathcal{L}\left\{x\right\} - x(0) + 3\mathcal{L}\left\{x\right\} = 0$$

$$\Rightarrow (s+3)\mathcal{L}\left\{x\right\} = 1$$

$$\Rightarrow \mathcal{L}\left\{x\right\} = \frac{1}{s+3}.$$

Taking inverse transform

$$x = e^{-3t}$$
.

ODEs with constant coefficients

Example ODE2 (Second-order ODE):

$$\frac{d^2x}{dt^2} + x = t, \ x(0) = 1, \frac{dx}{dt}(0) = -2.$$

By taking Laplace transform on both sides of the equation,

$$\begin{split} \mathcal{L}\left\{\frac{d^2x}{dt^2}\right\} + \mathcal{L}\{x\} &= \mathcal{L}\{t\} \\ \Rightarrow s^2\mathcal{L}\{x\} - sx(0) - \dot{x}(0) + \mathcal{L}\{x\} &= 1/s^2 \\ \Rightarrow (s^2 + 1)\mathcal{L}\{x\} &= \frac{1}{s^2} + s - 2 \\ \Rightarrow \mathcal{L}\{x\} &= \frac{1}{s^2(s^2 + 1)} + \frac{s - 2}{s^2 + 1} = \frac{1}{s^2} + \frac{s}{s^2 + 1} - \frac{3}{s^2 + 1}. \end{split}$$

Taking inverse transform

$$x = t + \cos t - 3\sin t$$
.

ODEs with variable coefficients

Example ODE3 (Second-order ODE):

$$t\frac{d^2x}{dt^2} + 2(t-1)\frac{dx}{dt} + (t-2)x = 0.$$

By taking Laplace transform on both sides of the equation,

$$\mathcal{L}\left\{t\frac{d^2x}{dt^2}\right\} + 2\mathcal{L}\left\{(t-1)\frac{dx}{dt}\right\} + \mathcal{L}\left\{(t-2)x\right\} = 0$$

$$\Rightarrow -\frac{d}{ds}\mathcal{L}\{\ddot{x}\} - 2\frac{d}{ds}\mathcal{L}\{\dot{x}\} - 2\mathcal{L}\{\dot{x}\} - \frac{d}{ds}\mathcal{L}\{x\} - 2\mathcal{L}\{x\} = 0,$$

which will ultimately lead to the first-order ODE:

$$\frac{d}{ds}\mathcal{L}\{x\} + \frac{4s+4}{s^2+2s+1}\mathcal{L}\{x\} = \frac{3x_0}{(s+1)^2}, \text{ where } x(0) = x_0.$$

The solution (find the integrating factor as $(s+1)^4$) is

$$\mathcal{L}\{x\} = \frac{x_0}{s+1} + \frac{C}{(s+1)^4}.$$

Taking inverse transform,

$$x = x_0 e^{-t} + C \frac{t^3}{6} e^{-t}.$$

Simultaneous ODEs

Example ODE4 (First-order system):

$$\frac{\frac{dx}{dt}}{\frac{dy}{dt}} = 2x - 3y, \frac{dy}{dt} = y - 2x,$$
 $x(0) = 8, y(0) = 3.$

Taking Laplace transform on both sides of the first equation,

$$(s-2)\mathcal{L}{x} + 3\mathcal{L}{y} = 8.$$
 (1)

Similarly, taking Laplace transform on both sides of the second equation,

$$2\mathcal{L}\lbrace x\rbrace + (s-1)\mathcal{L}\lbrace y\rbrace = 3. \tag{2}$$

By application of Cramer's rule in (1) and (2),

$$\mathcal{L}{x} = \frac{5}{s+1} + \frac{3}{s-4}, \ \mathcal{L}{y} = \frac{5}{s+1} - \frac{2}{s-4}.$$

By taking the inverse transform,

$$x(t) = 5e^{-t} + 3e^{4t}, \ y(t) = 5e^{-t} - 2e^{4t}.$$

Example A: Find $\mathcal{L}^{-1}\left\{\frac{s}{(s^2+1)(s-2)}\right\}$

We can easily observe that the Laplace transforms of $F(t)=e^{2t}$ and $G(t)=\cos t$, are, respectively, $f(s)=\frac{1}{s-2}$ and $g(s)=\frac{s}{s^2-1}$.

Can we have

$$\mathcal{L}^{-1}\{f(s)g(s)\} = F(t)G(t)?$$

In other sense, whether

$$\mathcal{L}\{F(t)G(t)\} = \{f(s)g(s)\}?$$

This result is true for a special product of functions, known as convolution.

A convolution is an integral that expresses the amount of overlap of one function G as it is shifted over another function F.

It, therefore, "blends" one function with another.

In other words, the output which produces a third function can be viewed as a modified version of one of the original functions.

Definition The convolution of two given functions F(t) and G(t) is written as $F\ast G$ and is defined by the integral

$$F * G = \int_0^t F(\tau) G(t - \tau) d\tau. \tag{3}$$

Note that the commutative, associative and distributive properties hold true.

Example B:

$$\begin{split} t*e^{at} &= \int_0^t \tau e^{a(t-\tau)} d\tau = e^{at} \int_0^t \tau e^{-a\tau} d\tau \\ &= \frac{1}{a^2} (e^{at} - at - 1). \end{split}$$

Example C:

$$\begin{aligned} \sin at * \sin at &= \int_0^t \sin a\tau \sin a(t-\tau)d\tau \\ &= \frac{1}{2a}(\sin at - at\cos at). \end{aligned}$$

Theorem

If F(t) and G(t) are two functions of exponential order and given $\mathcal{L}^{-1}\{f(s)\}=F(t)$ and $\mathcal{L}^{-1}\{q(s)\}=G(t)$, then

$$\mathcal{L}^{-1}\{f(s)g(s)\} = \int_0^t F(\tau) \ G(t-\tau) \ d\tau = F * G, \tag{4}$$

where * is the convolution operator defined in (3) earlier.

Proof: By definition

$$\mathcal{L}\{F(t) * G(t)\} = \int_0^\infty e^{-st} \int_0^t F(\tau)G(t-\tau) \ d\tau \ dt.$$

The domain of this repeated integral takes the form of a wedge in the t, τ -plane.

Write

$$\mathcal{L}\{F(t)*G(t)\} = \int_0^\infty \int_0^t e^{-st} F(\tau)G(t-\tau) \ d\tau \ dt.$$

9 / 23

Integrating with respect to t first

$$\mathcal{L}\{F(t)*G(t)\} = \int_0^\infty \int_\tau^\infty e^{-st} F(\tau) G(t-\tau) \ d\tau \ dt$$

$$= \int_0^\infty F(\tau) \left\{ \int_\tau^\infty e^{-st} G(t-\tau) \ dt \right\} \ d\tau.$$

In the inner integral above, put u=t- au so that it can be written as

$$\int_{\tau}^{\infty} e^{-st} G(t-\tau) dt = \int_{0}^{\infty} e^{-s(u+\tau)} G(u) du$$
$$= e^{-s\tau} g(s).$$

Therefore

$$\mathcal{L}\{F(t) * G(t)\} = \int_0^\infty F(\tau)e^{-s\tau}g(s) d\tau$$
$$= f(s)g(s),$$

which gives us the following desired result:

$$\mathcal{L}^{-1}\{f(s)g(s)\} = \int_{-t}^{t} F(\tau) \ G(t-\tau) \ d\tau = F * G.$$

Example: Find
$$\mathcal{L}^{-1}\left\{\frac{s}{(s^2+1)(s-2)}\right\}$$
.

We know

$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+1}\right\} = \cos(t), \ \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} = e^{2t}.$$

Now, use convolution theorem to have

$$\mathcal{L}^{-1}\left\{\frac{s}{(s^2+1)(s-2)}\right\} = \mathcal{L}^{-1}\{f(s)g(s)\} = F(t)*G(t)$$

$$= e^{2t}*\cos(t) = \int_0^t e^{2\tau}\cos(t-\tau) d\tau$$

$$= \frac{2}{5}e^{2t} + \frac{1}{5}(\sin t - 2\cos t).$$

If s is considered as complex, then

the inverse Laplace transform F(t) of f(s) is given by

$$F(t) = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} f(s)e^{st}ds,$$

where the integration takes place along the vertical line Re(s) = a.

We can use the method of residues to find inverse Laplace transform.

The following theorem is to be used for evaluating inverse Laplace transform.

Theorem

If the Laplace transform f(s) of F(t) is an analytic function of s, except at a finite number of singular points — the poles — each of which lies to the left of the vertical line Re(s)=a and if sf(s) is bounded as s approaches infinity through the half-plane $Re(s)\leq a$, then

$$\mathcal{L}^{-1}\{f(s)\} = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} f(s)e^{st} ds$$

$$= \sum_{s} \text{Residues of } f(s)e^{st} \text{ at all poles}$$

$$= R_1 + R_2 + R_3 + \cdots$$

$$(5)$$

where

$$R_k = \begin{cases} \lim_{s \to a_k} \{(s - a_k) f(s) e^{st}\}, & k = 1, 2, \dots, n; \ a_k \text{ simple pole,} \\ \lim_{s \to a_k} \frac{1}{r!} \frac{d^r}{ds^r} \{(s - a_k)^{r+1} f(s) e^{st}\}, & a_k \text{ multiple pole of order } r + 1. \end{cases}$$
 (6)

Lecture 17 MA 201, PDE (2022) 13 / 23

Example D: Evaluate

$$\mathcal{L}^{-1}\left\{\frac{s^2 - s + 3}{s^3 + 6s^2 + 11s + 6}\right\}.$$

Solution D:

We can see that $\lim_{s\to\infty} sf(s)=1$ which is bounded. The poles are found to be s=-1,-2,-3 which are all simple poles. In order to evaluate the inverse Laplace transform using (6), we need to calculate the residues of the function due to the poles. We get

$$\begin{split} R_1 &= (\text{residue at } s=-1) = \frac{5}{2}e^{-t}, \\ R_2 &= (\text{residue at } s=-2) = -9e^{-2t}, \\ R_3 &= (\text{residue at } s=-3) = \frac{15}{2}e^{-3t}. \end{split}$$

Therefore

$$\mathcal{L}^{-1}\left\{\frac{s^2-s+3}{s^3+6s^2+11s+6}\right\} = \frac{5}{2}e^{-t} - 9e^{-2t} + \frac{15}{2}e^{-3t}.$$

Example E: Evaluate

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+1)(s-2)^2}\right\}.$$

Solution E:

Here s=-1 is a simple pole whereas s=2 is a double pole.

$$R_1 = (\text{residue at } s = -1) = \frac{e^{-t}}{9},$$

$$R_2 = (\text{residue at } s = 2) = \left(\frac{t}{3} - \frac{1}{9}\right)e^{2t}.$$

Therefore

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+1)(s-2)^2}\right\} = \frac{e^{-t}}{9} + \left(\frac{t}{3} - \frac{1}{9}\right)e^{2t}.$$

Definition

The Laplace transform of a function u(x,t) with respect to t is defined as

$$\mathcal{L}\{u(x,t)\} = \int_0^\infty e^{-st} u(x,t) \ dt = \overline{u}(x,s). \tag{7}$$

The Laplace transforms of the partial derivatives

$$\frac{\partial u(x,t)}{\partial t}, \ \frac{\partial u(x,t)}{\partial x}, \ \frac{\partial^2 u(x,t)}{\partial t^2}, \ \frac{\partial^2 u(x,t)}{\partial x^2}$$
 are as follows:

$$\mathcal{L}\left\{\frac{\partial u(x,t)}{\partial t}\right\} = s\bar{u}(x,s) - u(x,0),\tag{8}$$

$$\mathcal{L}\left\{\frac{\partial u(x,t)}{\partial x}\right\} = \frac{d}{dx}\,\bar{u}(x,s),\tag{9}$$

$$\mathcal{L}\left\{\frac{\partial^2 u(x,t)}{\partial t^2}\right\} = s^2 \bar{u}(x,s) - su(x,0) - u_t(x,0),\tag{10}$$

$$\mathcal{L}\left\{\frac{\partial^2; u(x,t)}{\partial x^2}\right\} = \frac{d^2}{dx^2} \,\bar{u}(x,s). \tag{11}$$

Lecture 17 MA 201, PDE (2022) 16 / 23

Example PDE1: (First-order)

Find a bounded solution of the following problem:

$$\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u \quad \text{subject to} \quad u(x,0) = 6 \; e^{-3x}.$$

Solution PDE1:

Taking Laplace transform on both sides of the given PDE and using the initial condition.

$$\frac{d\bar{u}}{dx} - (2s+1)\bar{u} = -12e^{-3x}.$$

After finding the integrating factor,

$$\bar{u}(x,s) = \frac{6}{s+2} e^{-3x} + C e^{(2s+1)x}.$$

u(x,t) should be bounded when $x\to\infty$.

Hence its Laplace transform $\bar{u}(x,s)$ should also be bounded as $x\to\infty$ and we take C=0.

$$\bar{u}(x,s) = \frac{6}{s+2} e^{-3x}.$$

Taking the inverse transform

$$u(x,t) = 6e^{-(2t+3x)}.$$

Example PDE2: (Second-order)

Consider the following one-dimensional heat conduction equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \ 0 < x < 1, \ t > 0$$

subject to the following conditions:

$$u(0,t) = 1$$
, $u(1,t) = 1$, $t \ge 0$; $u(x,0) = 1 + \sin \pi x$, $0 < x < 1$.

Solution PDE2:

Taking Laplace transform on both sides and applying the given initial condition,

$$\frac{d^2}{dx^2} \, \bar{u}(x,s) - s\bar{u}(x,s) = -(1+\sin \pi x).$$

The complementary function and the particular integral of the above equation can be derived as

$$\bar{u}_c(x,s) = Ae^{\sqrt{s}x} + Be^{-\sqrt{s}x},$$

 $\bar{u}_p(x,s) = \frac{1}{s} + \frac{\sin \pi x}{s + \pi^2}.$

$\bar{u}(x,s)$:

$$\bar{u}(x,s) = Ae^{\sqrt{s}x} + Be^{-\sqrt{s}x} + \frac{1}{s} + \frac{\sin \pi x}{s + \pi^2}.$$
 (12)

Convert the boundary conditions in u(x,t) to boundary conditions in $\bar{u}(x,s)$:

$$\begin{split} u(0,t) &= 1 \Rightarrow \bar{u}(0,s) = \frac{1}{s}, \\ u(1,t) &= 1 \Rightarrow \bar{u}(1,s) = \frac{1}{s}. \end{split}$$

Using these in (12)

$$\frac{1}{s} = A + B + \frac{1}{s} \Rightarrow A + B = 0,$$

$$\frac{1}{s} = Ae^{\sqrt{s}} + Be^{-\sqrt{s}} + \frac{1}{s} \Rightarrow Ae^{\sqrt{s}} + Be^{-\sqrt{s}} = 0.$$

Both these conditions together imply A=0=B.

$$\bar{u}(x,s) = \frac{1}{s} + \frac{\sin \pi x}{s + \pi^2}.$$
 (13)

Solution is obtained by taking the inverse

$$u(x,t) = 1 + e^{-\pi^2 t} \sin \pi x.$$
 (14)

Example PDE3: (Second-order)

$$U_{tt} = c^2 U_{xx} + \sin\left(\frac{\pi x}{L}\right) \sin(\sigma t), \ 0 < x < L, \ t > 0,$$

$$U(0,t) = 0, \ U(L,t) = 0, \ t \ge 0,$$

$$U(x,0) = 0, \ U_t(x,0) = 0, \ 0 < x < L.$$

Taking Laplace transform on the equation, it gets reduced to

$$\frac{d^2}{dx^2}\overline{u}(x,s) - \frac{s^2}{c^2}\overline{u}(x,s) = -\frac{\sigma\sin(\pi x/L)}{c^2(s^2 + \sigma^2)},$$

the solution of which can be obtained as

$$\overline{u}(x,s) = A(s)e^{\frac{s}{c}x} + B(s)e^{-\frac{s}{c}x} + \frac{\sigma}{c^2} \frac{\sin(\pi x/L)}{(s^2 + \sigma^2)(\frac{s^2}{c^2} + \frac{\pi^2}{l^2})}.$$

It can be simplified to

$$\overline{u}(x,s) = A(s)e^{\frac{s}{c}x} + B(s)e^{-\frac{s}{c}x} + \frac{\sigma\sin(\pi x/L)}{(\frac{c^2\pi^2}{L^2} - \sigma^2)} \left(\frac{1}{s^2 + \sigma^2} - \frac{1}{s^2 + \frac{c^2\pi^2}{L^2}}\right).$$

Taking transforms on the boundary conditions

$$\overline{u}(0,s) = 0, \ \overline{u}(L,s) = 0$$

 \Rightarrow

$$A(s) = 0 = B(s).$$

This reduces $\overline{u}(x,s)$ simply to

$$\overline{u}(x,s) = \frac{L^2 \sigma}{c^2 \pi^2 - \sigma^2 L^2} \left(\frac{1}{s^2 + \sigma^2} - \frac{1}{s^2 + \frac{c^2 \pi^2}{L^2}} \right) \sin(\pi x/L).$$

Inverting

$$U(x,t) = \frac{L^2 \sigma}{c^2 \pi^2 - \sigma^2 L^2} \left[\frac{1}{\sigma} \sin(\sigma t) - \frac{L}{c \pi} \sin(\pi c t/L) \right] \sin(\pi x/L).$$

That is,

$$U(x,t) = \frac{L^2}{c^2\pi^2 - \sigma^2L^2} \left[\sin(\sigma t) - \frac{L\sigma}{c\pi} \sin(\pi c t/L) \right] \sin(\pi x/L)$$