Del:

Sei Vein K-Vertorraum und sei MEV.

(i) $span(M) := \langle M \rangle := \{ (M) := \{ (M$

heißt lineare Hülle von M.

(ii) M heißt Erzeugendensystem von V: (=> span(M) = V.

Bem.:

(i) $span(\emptyset) = \{0\}$

(ii) Ist M = { v1,..., vn } = V, so ist span(M) = { 11. v1+...+ 1n. vn | 11,..., 1n ∈ K} = · < v1,..., vn >

Del:

Sei Vein K-Vertorraum.

V heißt endlich erzeugt : (=> V hat ein endliches Erzeugendensystem.

Satz:

Sei Vein K-Vektorraum und sei M = V. Dann gilt:

- (i) span (M) ist ein Unterraum von V mit M ⊆ span (M)
- (ii) 1st WEV ein Unterranm von V mit MEW, dann silt: span(M) = W.

(d.L.: span(M) ist der kleinste Untervanm von V der Menthält.)

Del:

Sei Vein K-Ventorraum und seien un, ..., un EV.

(i) Vy,..., vn sind linear unabhänsis

:(=) (v1,..., vn) ist linear unalhängig

:(=) $\forall 1_{1,...,1} 1_n \in K : 1_1 \cdot v_1 + ... + 1_n \cdot v_n = 0 => 1_1 = 0,..., 1_n = 0.$ ((=>)

(ii) V1,..., vn sind linear abhängig

:= (v1,..., vn) ist linear athangig

: (=) U1,..., Un sind nicht linear unabhängig

(=) 31,..., 2n EK: 1, v, + ... + 2n · vn = 0 1 3i E {1,..., n} : 1; + 0.

(iii) va,..., vn heißt Erzeugendensystem von V

:(=) (v1,..., vn) ist ein Erzengendensystem von V

:(=) Span {U1,..., Un} = /

(iv) vy,..., vn heißt Basis von V

: (=) (v1,..., vn) ist eine Basis von V

:(=) (v1,...,vn) ist linear unabhängig und ein Erzengendensystem von V.

Also:

Die Vertoren va, ..., von sind genau dann linear una Chänzig, wenn gilt:

Die Gleichung: An un + ... + An un = 0 hat nur die triviale Lösung In = 0, ..., In = 0.

Del:

Sei Vein K-Ventorraum und sei MEV.

- (i) M heißt linear unabhängig : (=) Vun,..., un e M paarw. versch. : vn, ..., un sind linear unabhängig
- (ii) M heißt linear abhängig : > Bun,..., un e M paarw. versch: un, ..., un sind linear abhängig.
- (iii) M heißt Basis von V : Mist ein Erzengendensystem und Mist linear unalchängig.

Bsp.:

- (i) Ø ist linear unabhängig und daher eine Basis von {O}.
- (ii) {v} ist linear unathängig (=) v + 0.

"=>" Es selle v = 0. Setze 1:= 1 & K. Dann ist 1.v = 1.0 = 0 und 1 + 0.

Also ist (v) linear abhängig.

"=" Es gelte (v) ist linear abhängig. Dann ex. ein 16K, 1 +0 mit 1.v = 0

Also ist v = 1-1.1. v = 1-1.0 = 0.

(iii) Sind v1, v2 ∈ V mit v1 + v2, so gilt:

{v1, v2} ist linear allängig => 31 EK: v1 = 1.v2 oder v2 = 1.v1

=>" Es gelle {v1, v2} ist linear ablängig. Dann ex. 11, 12 = K mit 11. v1 + 12. v2 = 0

und 1, +0 oder 1, +0. O.B.J.A. sei 1, +0. Dann ist v, = - 12.

"=" Es gelle: 31 EK: Un = 1. Uz oder Uz = 1. Un.

O.B. d.A sei $u_1 = A \cdot u_2$. Dann ist $1 \cdot u_1 + (-A) \cdot u_2 = 0$

Also ist {w, wz} linear abhängig.

Bsp:

(1) Ø ist eine Basis von {0}.

(2)
$$\{e_1,...,e_n\}$$
 ist eine Basis von K^n $(e_1:=\begin{pmatrix} 1\\0\\0\\0\end{pmatrix}, e_2:=\begin{pmatrix} 0\\1\\0\\0\end{pmatrix}, ..., e_n:=\begin{pmatrix} 0\\1\\1\\0\end{pmatrix} \in K^n)$

· Seien 11 ... , Inf Kund gelte 11 ent... + In en = 0

$$=) \begin{pmatrix} 3_1 \\ \vdots \\ 3_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow 3_1 = 0, \dots, 3_n = 0.$$

$$\Rightarrow \lambda_0, \lambda_1 = 0, ..., \lambda_n = 0.$$

Satz:

Sei V ein endlich erzeugter K-Ventorraum. Dann gilt:

- (i) V hat eine endliche Basis und jede Basis von Vist endlich.
- (ii) De zwei Basen von V haben gleich viele Elemente.

Del:

Sei Vein K-Vektorraum.

- (i) 1st Vendlich erzeuzt und hat Veine Basis B mit |B| = n, so def. wir dim(V): = n
- (ii) Ist V nicht endlich erzeust, so def. wir dim (V) = 00

dim (V) heißt Dimension von V.

Bsp:

- (1) dim({0}) = 0, denn Ø ist eine Basis von {0}.
- (2) $\dim(\mathsf{IK}^n) = n$
- (3) $\dim(K_{\leq n}(x)) = n+1$

	Sa	ł z :																															
	(۵.	V ei		/	17.	1				. 1	.J	<i>(</i> 1	/\ _			0						6	17	U	••••	•	01						
	381	VEI	u i	n -	VE	Kto	rra	um	m	IT .	aiu	^(b	// -	- N	И	W (X	Se	ieh	_የ	, · · · ·	, U _W	_	U.	יט	SUL	י לי	(1	•					
	(1)	lst	{	_{لاء} ر	,	Um	3	eiu	۸ E	H.	Sყ.	sł.	Vol	n l	′, ′	lan	u g	ilt	u	1 ≥	n.												
		1.1		0	14				L		Ş	1.0		, ,	ર્	Ko i	. l	-62	5.	, [11.	10	ي ٧										
		120	u	< >0	γ.	1 ~	,	>0	γ.	. 010	, (י רט	,	UM	ر	116.	,	_ • •	. 25) - 1 .	01	, , ,	Y -	>610									
	(2)	lst	{	υ 1	, · _/	UM	3	l.	Ь ,	,	da	ии	sil	4	M	€ V	1 .																
		ls.£	اء	0	14	Λ ¬	١٥	C a	: 6	ιş	10.		Um	ર	0	_																	
_																																	
	(3)	lst	{	ر _ا ر	,	Um	3	eic	16	Ba	sis	VO	h	V,	d	-64	5i (24	m	= v	١.												
_	(4)	15{	· LA	n =	6	d	ادر	ı la	ist		taitt	ره و	2101																				
	.,									•		и C (
		(i)		{ _{V1}	···	, ഗ	ک م	is	.+ (2. h	•																						
		(ii)		{ v.	١ , , ,	., Մ։	<u>,</u> 3	is	ŧ,	eiu	E	7 S	555	Ι.	lov	v																	
													_																				
		(iii)		ኒ ሆ	17	, ഗ്യ	ر س	isl	ei	ue	Ba	sis	υď	2W	V																		
((5)	ls (. {	υı		, ن	٤,	eiv	ne [365	is	υo	n l	Ι,	da	หห	ail	l4 :															
		+i	ir	je d	e 5	υ <i>E</i>	V	٤×	. e	ind	eut	ig (sest	imi	nte	1/2	1,	,1,	n E	K :		U	=	1/	رل .	+.	+	1	٧. ر	_{ال} ى .			
_																																	
_																																	
_																																	

Satz (Basiserganzungssatz): Sei Vein K-Vektorraum mit dim(V) = n und sei {v1,..., vm} linear unabhängig. Dann silt : ∃ vm+1,..., vn ∈ V: {v1,..., vm, vm+1,..., vn} ist eine Basis von V. Man kaun jede linear unabhängige Menge {v1,..., vm} <V zh einer Basis von Vergänzen. Satz: Sei V ein K-Vertorraum, seien vy,..., un E V paarw. verschieden und sei M = {vy,..., un}. Dann ist äquivalent: {v1 ..., vn} ist linear allanging (i) Di ∈ {1,..., n}: v; ∈ span {v1,..., v; -1, v; +1,..., vn} (ii)] i { 1, ..., n }: span { vn, ..., vi-1, vi+1, ..., vn } = span { vn, ..., vn } (iii) Bew.: Es selte: (vn,..., vn) ist linear alhängig. $(ii) \Leftarrow (i)$ => 31,..., 1n EK: 1, v1+...+ 2n. vn = 0 1 3ie {1,...,n}: 1; +0. $3i \neq 0$ $S_{i} = \left(-\frac{A_{1}}{A_{i}}\right) \cdot S_{1} + ... + \left(-\frac{A_{i-1}}{A_{i}}\right) \cdot S_{i-1} + \left(-\frac{A_{i+1}}{A_{i}}\right) \cdot S_{i+1} + ... + \left(-\frac{A_{N}}{A_{i}}\right) \cdot S_{N}$ E Span { v1,..., v1-1, v1+1,..., vn } Es selte: Die {1,..., n}: vi & span { va, ..., vi-a, vita, ..., vn } (ii) ⇒ (iii) 2.2. : Span { v1,..., vi-1, vi+1,..., vn } = span { v1,..., vn }. span { va, ..., vi-1, vita, ..., vn } ist ein Unterraum von V mit {v1,..., vn} = span {v1,..., v1-1, v1+1,..., vn}

=> span { v1,..., vn } = span { v1,..., v1-1, v1+1,..., vn }

Problem:	
Gezeben seien an,,am EK"	
· Untersuchen Sie ob {a1,, am} linear unabhängig, ein Erzeugendensy	stem baw.
eine Basis von Knist.	
· Bestimmen Sie eine Basis von spanfan,, am}	
· Ergänzen Sie eine Basis von spanfaz, am } zu einer Basis von Ku.	
Kochrezept:	
Schreibe an,, am als Zeilenvertoren untereinander und mache darans eine A	Natrix
$A = \begin{pmatrix} \vdots \\ \vdots \\ \alpha_{m} \end{pmatrix} \in \mathbb{K}^{m \times n}$	
Bringe A and ZSF.	
	les
$A \rightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$	/ <mark>ს</mark> ვ
	Cr Crtn
	\ em /
mit b1,, br ∈ K" \ 103 and br+1,, bm = 0, 1 ≤ r ≤ m.	
Dann gilt: { By, Br } ist eine Basis von span { ay, am } , lenn:	
• span { b1,, br } = span { b1,, bm} = span { a1,, am},	
(elementare Zeilenamformungen ändern die lineare Hälle nicht, denn die lineare Hälle	Tolan
	IST PIN ICICIALM
· { b1,, br } ist linear unabhängig.	
(Die Zeilenvertoren einer Matrix in ZSF sind immer linear unabhängig.)	
lusbesondere gilt dim(span {a1,, am }) = r (= Rang(A) = r)	
Zusatz:	
Sind an,, an Ekm die Spaltenverktoren von A, so gilt: {ain, air } ist eine Basis vo	u span {a1,,am}.

```
Es silt:
     {an, ..., am} ist linear unabhängig
(1)
                                                     (=) r = m
     {an, ..., am} ist ein Erzeugendensystem von Kh = r= n
(2)
     {a1,..., am } ist eine Basis von Kh
(3)
                                                     (=) r= w= u
     { b, ..., br } v { ej | j ∈ {1,..., n} \ { j,..., jr }} ist eine Basis von K
(4)
Bew.:
(1) ,=>" Sei { an, ..., am } linear unabhängig. { an, ..., am } ist ein Erzeugendensystem von
           V:= span {a1,..., am }, also eine Basis von V. Wegem dim (V)= r, folgt r= m
     (=" Sci r = m. Dann gilt für V:= span {an,..., am}, dass dim(V) = r = m.
           {an,..., am} ist ein Erzeugendensystem von V.
           Also ist { a1, ..., am } linear unabhängig
(2) = " Sei {a1,..., am } ist ein Erzeugendensystem von Kh
            => dim(span {a1,.., am}) = n. Andererseits silt: dim(span {a1,.., am}) = r
            Also ist r = u
     "=" Sei r = n. Dann ist dim (span {an ..., am }) = n. Wegen dim (Kn) = n folgt
           span {a1,..., am} = K", d.h. {a1,..., am} ist ein Erzeugendensystem von K".
      Folgt ans (1) und (2).
(3)
```

$$a_1 = \begin{pmatrix} 1 \\ -2 \\ -1 \\ 3 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 1 \end{pmatrix}$, $a_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $a_4 = \begin{pmatrix} 2 \\ -1 \\ 3 \\ 4 \end{pmatrix} \in \mathbb{R}^4$.

- (1) Untersuchen Sie ob {a1,a2,a3,a4} linear anabhängig, ein Erzengendensystem bzw.
 eine Basis von IR4 ist.
- (2) Bestimmen Sie eine Basis von spantan, az, az, a4) und ergänzen Sie diese zu einer Basis von IR4.

Lösung:

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 1 & -2 & -1 & 3 \\ 1 & -1 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 2 & -1 & 3 & 4 \end{pmatrix}$$

linear unablinging.

{ B1, B2, B3 } ist eine Basis von spanfa1, a2, a3, a4}.

Die Pivot indizes sind jn=1, j2 = 2, j3 = 3.