\mathcal{D}_2

Exercice 1: Bissectrice de deux droites

On se place dans le plan rapporté à un repère orthonormé.

Introduisons la notion de mesure de l'angle orienté de deux droites.

Supposons que \mathcal{D}_1 et \mathcal{D}_2 sont deux droites de vecteurs normaux respectifs $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$. On suppose que $\overrightarrow{n_1}$ a pour affixe $r_1e^{i\theta_1}$ et $\overrightarrow{n_2}$ pour affixe $r_2e^{i\theta_2}$ (où

 r_1 et r_2 sont des réels strictement positifs).

On dira que $\theta_2 - \theta_1$ est une mesure de l'angle orienté de \mathcal{D}_1 et \mathcal{D}_2 (dans cet ordre). Tout autre nombre de la

forme $\theta_2 - \theta_1 + k\pi$ (où $k \in \mathbb{Z}$) est également une mesure de l'angle orienté de \mathcal{D}_1 et \mathcal{D}_2 (voir dessin ci-contre).

Dans la suite, \mathcal{D} est une droite d'équation cartésienne ax + by + c = 0 et \mathcal{D}' une droite d'équation cartésienne a'x + b'y + c' = 0 (où a, b, c, a', b', c' sont des réels tels que $(a, b) \neq (0, 0)$ et $(a', b') \neq (0, 0)$).

- (a) Montrer que M:(x,y) appartient à Δ si et seulement si $r' \times |ax + by + c| = r \times |a'x + b'y + c'|$.
- (b) En déduire que Δ est la réunion de deux droites Δ_1 et Δ_2 dont les équations sont données ci-dessous :

$$\Delta_1$$
: $(\cos\theta + \cos\theta')x + (\sin\theta + \sin\theta')y + \frac{c}{r} + \frac{c'}{r'} = 0$

$$\Delta_2$$
: $(\cos\theta - \cos\theta')x + (\sin\theta - \sin\theta')y + \frac{c}{r} - \frac{c'}{r'} = 0$

 $(\Delta_1 \text{ et } \Delta_2 \text{ sont les } bissectrices \text{ des deux droites sécantes } \mathcal{D} \text{ et } \mathcal{D}')$

- 2. Montrer que Δ_1 et Δ_2 sont perpendiculaires.
- 3. Déterminer, sous forme exponentielle, l'affixe d'un vecteur normal à Δ_1 .
- 4. En déduire qu'une mesure de l'angle orienté de \mathcal{D} et \mathcal{D}' est le double d'une mesure de l'angle orienté de \mathcal{D} et Δ_1 .
- 5. Déterminer des équations cartésiennes des bissectrices des deux droites d'équations 5x 12y + 7 = 0 et 3x + 4y 7 = 0.

Exercice 2:

On se place dans le plan muni d'un repère orthonormé.

On considère les trois points A, B et C de coordonnées respectives (-2, -4), (2, -8) et (4, -4).

- 1. On se propose de déterminer une équation du cercle \mathcal{C} passant par A, B et C par deux méthodes. On note Ω le centre du cercle \mathcal{C} .
 - (a) Première méthode :

En utilisant le fait que A, B et C sont équidistants du centre Ω , déterminer les coordonnées de Ω puis le rayon de C. En déduire une équation cartésienne de C.

(b) Deuxième méthode:

On rappelle que la médiatrice d'un segment [PQ] est l'ensemble des points équidistants de P et Q. Soit P et Q deux points du plan. On note Δ la médiatrice du segment [PQ] et I le milieu de [PQ].

- i. Soit M un point du plan. Montrer : $M \in \Delta \Leftrightarrow \overrightarrow{QP}.\overrightarrow{MI} = 0$. En déduire que Δ est une droite dont on précisera un point et un vecteur normal.
- ii. En déduire des équations cartésiennes des médiatrices de [AB] et [AC] puis déterminer Ω , le rayon et enfin une équation de C.
- 2. On note \mathcal{C}' l'ensemble des points du plan dont les coordonnées (x,y) satisfont à l'équation :

$$x^2 + y^2 + 16x + 4y + 28 = 0.$$

- (a) Montrer que \mathcal{C}' est un cercle dont on précisera le centre et le rayon.
- (b) Déterminer le lieu d'intersection de \mathcal{C} et \mathcal{C}' .

Exercice 3:

On travaille dans l'espace affine euclidien rapporté à un repère orthonormé.

On considère les droites \mathcal{D} : $\begin{cases} x = 1 + 2t \\ y = -2 - 2t \text{ et } \mathcal{D}' : \begin{cases} x = 3 + \lambda \\ y = 2 + 2\lambda \\ z = -5 - \lambda \end{cases}$

- 1. Montrer que \mathcal{D} et \mathcal{D}' sont concourantes en un point que A que l'on déterminera.
- 2. Donner une équation cartésienne du plan contenant \mathcal{D} et \mathcal{D}' .
- 3. Donner des équations cartésiennes de chacune de ces droites.
- 4. Donner une équation cartésienne de la perpendiculaire commune à \mathcal{D} et \mathcal{D}' , c'est-à-dire la droite passant par A et perpendiculaire à \mathcal{D} et \mathcal{D}' .