

NiLearn

First and second level analysis of a BIDS dataset with NiLearn in Python

Sophia Haake, Henrike Zimmermann, 08.05.2025

Overview

- NiLearn and BIDS dataset format
- Processing pipeline
- SPM vs. Nilearn
- Demo code
- Exercises

What is NiLearn?

Python library designed for analyzing neuroimaging data

Features:

Statistical tools
Visualization tools
Machine learning tools

Recap: Brain Imaging Data Structure

Describes a way of organizing neuroimaging and behavioral data

Standardize the process → facilitates reusing and reproducibility

Compatibility with preprocessing and analysis tools

Supports different modalities (EEG, fMRI ...)

'fetch_language_localizer_demo_dataset' function

Experiment: "language localizer" -> rapid serial visual presentation of stimuli

- Condition1:

- Condition 2:

NiLearn — First and second level analysis of BIDS dataset with NiLearn in Python Sophia Haake, Henrike Zimmermann

SPM vs. NiLearn

SPM	Nilearn
MATLAB-based tool (License)	Python-based library (OpenSource)
Voxel-wise statistics using parametric methods	GLM and machine-learning approaches
Visualisation relies on MATLAB-based figures	Visualisation via Matplotlib → individualised
	Easy integration with predictive modeling
GUI-dependent workflows, though scripting is possible	Easier scripting and integration into reproducible pipelines
	Works well with Jupyter Notebooks → interactive and flexible analysis
Uses RFT for spatial autocorrelation	No implementation of RFT

Demo code on Jupyter Notebook

Scan me!