10. 整数環 \mathbb{Z} のイデアル、ユークリッドの互除法

整数全体 $\mathbb Z$ の部分集合 I が $\mathbb Z$ のイデアルであるとは, I が次の (i)(ii) を満たすことをいう:

- (i) 任意の $a,b \in I$ について $a+b \in I$,
- (ii) 任意の $r \in \mathbb{Z}$, $a \in I$ について $ra \in I$.

上記の (ii) で r=0 の場合を考えれば、 $\mathbb Z$ の任意のイデアルは 0 を含むことが分かる. また、0 のみからなる集合 $\{0\}$ も $\mathbb Z$ のイデアルである. $\{0\}$ を零イデアルと呼び、誤解の恐れのないときは単に 0 で表すこともある.

問題 10.1. I, J を \mathbb{Z} のイデアルとする.

- (1) $I \cap J$ も \mathbb{Z} のイデアルになることを示せ.
- (2) $I \cup J$ は $\mathbb Z$ のイデアルになるとは限らないが, $I+J=\{a+b\mid a\in I,\ b\in J\}$ は $\mathbb Z$ のイデアルになることを示せ.

問題 ${f 10.2.}$ (1) ${\Bbb Z}$ のイデアルは、 ${\Bbb Z}$ を加法によって群とみなしたときの部分群となることを示せ.

(2) 逆に、 $\mathbb Z$ を加法によって群とみなしたときの部分群はすべて $\mathbb Z$ のイデアルになることを示せ.

既に我々は問題 4.3 等で $\mathbb Z$ の部分群の具体例をいろいろみてきたが、それらはすべて $\mathbb Z$ のイデアルの具体例でもある.巡回群の部分群はすべて巡回群であったから、 $\mathbb Z$ の任意のイデアル I は、ある $d\in\mathbb Z$ を用いて $\langle d\rangle$ と書ける.これは教科書では I(d) という記号でも表されており、さらに $d\mathbb Z$ とも書ける.全部同じ意味なので、この授業ではどの記号を使ってもよい:

$$I(d) = \langle d \rangle = d\mathbb{Z} = \{ md \mid m \in \mathbb{Z} \}.$$

なお、複数の生成元を書きたいときには次のように書く:

$$I(a_1,\ldots,a_n) = \langle a_1,\ldots,a_n \rangle = a_1 \mathbb{Z} + \cdots + a_n \mathbb{Z} = \{ m_1 a_1 + \cdots + m_n a_n \mid m_1,\ldots,m_n \in \mathbb{Z} \}.$$

本によっては $\langle a_1, \ldots, a_n \rangle$ を (a_1, \ldots, a_n) と書くものもある.

問題 10.3. a, b, d を整数とするとき, 次を示せ.

- (1) $I(a) \subset I(b) \Leftrightarrow b$ は a の約数
- $I(a,b) = I(d) \Leftrightarrow d$ は a,b の最大公約数
- (3) $I(a,b) = \mathbb{Z} \Leftrightarrow 1 \in I(a,b) \Leftrightarrow a,b$ の最大公約数が 1 (a,b) が互いに素)

問題 ${f 10.4.}$ 次の a,b の最大公約数 d を求め、さらに d=sa+tb となる整数 s,t の組を一組求めよ.

- (1) a = 52, b = 32
- (2) a = 343, b = 42
- (3) a = 17, b = 23
- (4) a = 222, b = 250
- (5) a = 169, b = 121
- (6) a = 323, b = 154
- (7) a = 2009, b = 21
- (8) a = 2010, b = 22
- $(9) \ a = 65537, \ b = 257$
- (10) a = 596, b = 5963