Électrocinétique

COMPOSANTS PASSIFS EN TP

résistance	$R \simeq 1$ à 100 k Ω
inductance d'une bobine	$L \simeq 10$ à 100 mH
capacité d'un condensateur	$C \simeq 1 \ \mathrm{nF}$ à 1 $\mu \mathrm{F}$
résistance marron – noir – rouge	$R = 1.0 \text{ k}\Omega$
résistance marron – noir – orange	$R = 10 \text{ k}\Omega$

CONSTANTE DE TEMPS DES DIPÔLES CLASSIQUES

dipôle $RC~(R=1~\mathrm{k}\Omega~~;~C=0,1~\mu\mathrm{F})$	$\tau = RC = 0.1 \text{ ms}$
dipôle $RL~(R=1~{\rm k}\Omega~;L=10~{\rm mH})$	$\tau = \frac{L}{R} = 10 \ \mu \text{s}$
fréquence propre d'un RLC $(L=10 \text{ mH} \; \; ; C=0,1 \; \mu\text{F})$	$f_0 = \frac{1}{2\pi\sqrt{LC}} \simeq 5 \text{ kHz}$

CIRCUIT RÉSONANT RLC

fréquence propre d'un RLC $(L=10 \text{ mH} \; ; C=0,1 \; \mu\text{F})$	$f_0 = \frac{1}{2\pi\sqrt{LC}} = f_0 \simeq 5 \text{ kHz}$
facteur de qualité (avec $R=50~\Omega$ du générateur)	$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \simeq 5$
bande passante	$\Delta f = \frac{f_0}{Q} = 1 \text{ kHz}$

DIODE

diode idéale : tension de seuil ; résistance diode bloquée / diode passante	$V_{\rm d} = 0 ;$ $R_{\rm bloq} = \infty ; R_{\rm pass} = 0$
diode réelle : tension de seuil;	$V_{\rm d} = 0.6 \text{ V} \; ;$
résistance diode bloquée / diode passante	$R_{\rm bloq} = 10^9 \; \Omega \; ; R_{\rm pass} = 100 \; \Omega$

AMPLIFICATEUR OPÉRATIONNEL

tension d'alimentation	±15 V
tension de saturation	$\pm V_{\rm sat} \simeq 14 \text{ V}$

courant de saturation	$I_{\rm sat} \simeq 20 \ {\rm mA}$
slew rate (μ A741; TL081)	$\sigma = 0.1 \text{ V.}\mu\text{s}^{-1} \; ; \; \sigma = 20 \text{ V.}\mu\text{s}^{-1}$

CARACTÉRISTIQUE DES APPAREILS

résistance de sortie d'un GBF	50 Ω
fréquence max d'un GBF	1 MHz
impédance d'entrée d'un oscilloscope	$C = 12 \text{ pF} ; R = 1 \text{ M}\Omega$
impédance d'entrée d'un voltmètre numérique	$R=10~\mathrm{M}\Omega$ à $R=1~\mathrm{G}\Omega$
chute de tension aux bornes d'un ampèremètre	$U_{\rm amp} \simeq 0.2 \text{ V}$
incertitude d'un appareil numérique	$p \sim 1 \%$

SECTEUR

puissance fournie par une tranche de centrale nucléaire	$\mathcal{P} \simeq 1 \text{ GW}$
fréquence et tension efficace du secteur	$50 \text{ Hz} \; ; U_{\text{eff}} = 230 \text{ V}$
prix moyen du kWh (en 2010)	0,115 €

ÊTRE HUMAIN

Intensité mortelle	30 mA
Résistance du corps humain sec	$1~\mathrm{M}\Omega$
Résistance du corps humain humide (norme de sécurité)	$1~\mathrm{k}\Omega$

Mécanique

GRANDEURS PHYSIQUES CLASSIQUES

constante universelle de gravitation	$G = 6.67.10^{-11} \text{ m}^3.\text{kg}^{-1}.\text{s}^{-2}$
accélération de pesanteur valeur normalisée	$g = 9.81 \text{ m.s}^{-2}$
accélération de pesanteur au sol	$g = 9.78 \text{ à } 9.83 \text{ m.s}^{-2}$

LA TERRE

jour solaire moyen	$T_{\rm sol} = 1 \text{ jour} = 24 \text{ h} = 86400 \text{ s}$
jour sidéral	$T_{\rm sid} = 23 \text{ h } 56 \text{ min } 04 \text{ s}$ = $86 164 \text{ s}$
vitesse de rotation propre	$\Omega = \frac{2\pi}{T_{\rm sid}} = 7.3.10^{-5} \text{ rad.s}^{-1}$
rayon (périmètre)	$R_{\rm T} = 6.4.10^3 \text{ km} \ (\simeq 40.10^3 \text{ km})$
latitude de Paris	$\lambda \simeq 48 ^{\circ} 51' \simeq 49 ^{\circ}$
vitesse du sol par rapport à $\mathcal{R}_{\text{g\'eoc}}$ équateur / Paris	$v_{\text{\'equa}} = R_{\text{T}} \Omega \simeq 470 \text{ m.s}^{-1} ;$ $v_{\text{Paris}} = R_{\text{T}} (\cos \lambda) \Omega \simeq 310 \text{ m.s}^{-1}$
masse	$M_{\rm T} = 6,0.10^{24} \; {\rm kg}$
champ de gravitation à la surface	$g_0 = \frac{G M_{\rm T}}{R_{\rm T}^2} \simeq 9.81 \text{ m.s}^{-2}$
masse volumique moyenne	$ \rho_{\rm T} = \frac{3 M_{\rm T}}{4 \pi R_{\rm T}^3} \simeq 5.10^3 \text{ kg.m}^{-3} $
altitude d'un satellite géostationnaire	$h_{\mathrm{g\acute{e}osta}} \simeq 36.10^3 \text{ km}$
vitesse de satellisation	$v_{\rm sat} = \sqrt{g_0 R_{\rm T}} \simeq 7.9 \ {\rm km.s^{-1}}$
vitesse de libération au sol	$v_{\rm lib} = \sqrt{2 g_0 R_{\rm T}} = 11.2 \text{ km.s}^{-1}$
rayon de son orbite (unité astronomique)	$d_{\text{S-T}} = 1 \text{ U.A.} = 150.10^6 \text{ km}$
excentricité de l'orbite terrestre	$e_{\rm T} \simeq \frac{1}{60}$
période de révolution (un an)	$T_{ m r\'ev}=1~{ m an}=365{,}25~{ m jours} \ \simeq \pi.10^7~{ m s}$
vitesse moyenne sur l'orbite par rapport à $\mathcal{R}_{\text{hélio}}$	$v = \frac{2 \pi d_{\text{S-T}}}{T_{\text{rév}}} = 30 \text{ km.s}^{-1}$
âge	$\simeq 4.5.10^9 \text{ ans}$

LA LUNE

lunaison (période entre deux pleines lunes)	$T_{\rm lunaison} = 29.5 \text{ jours}$
---	---

période orbitale	$T_{ m orb}=27.3~{ m jours}$
distance Terre – Lune	$d = 3.8.10^5$ km soit une grosse seconde pour la lumière
masse	$M_{\rm L} \simeq \frac{M_{\rm T}}{81}$
diamètre apparent	$\alpha_{\rm L}=32^\prime\simeq0.5$ °
rapport des accélérations de pesanteur sur la Terre et sur la Lune	$\frac{g_{\text{Lune}}}{g_{\text{Terre}}} = \frac{1}{6}$

LE SOLEIL

distance Terre – Soleil	$d_{\text{T-S}} = 150.10^6 \text{ km soit}$ 8 min 20 s pour la lumière
masse	$M_{\mbox{$\stackrel{.}{lpha}$}} = 2.10^{30} \ { m kg}$
diamètre	$d_{\rm Sun} = 1.5.10^6 \text{ km}$
diamètre apparent	$\alpha_{rec} = 32' \simeq 0.5$ °
température au centre	$T_{\rm centre} \simeq 15.10^6 \text{ K}$
température à la surface	$T_{\rm surf} \simeq 5{,}7.10^3 {\rm K}$
pression au centre	$P_{\rm centre} \simeq 2, 2.10^{11} \ {\rm bar}$
puissance rayonnée	$\mathscr{P}_{\mbox{\tiny $\not \cong$}} \simeq 4.10^{26} \; \mathrm{W}$
puissance reçue à la surface de la Terre	$\mathscr{P}_{\mbox{\tiny $\!\!\!/\!\!\!\!/}}\simeq 1.5~{\rm kW.m^{-2}}$

LE RESTE DE L'UNIVERS

étoile la plus proche (proxima du Centaure)	d = 4.2 a.l.
une année de lumière	$1 \text{ a.l.} = 10^{16} \text{ m}$
un parsec	1 pc = 3 a.l.
diamètre du système solaire	$d_{\text{syst}} = 60 \text{ U.A.}$
diamètre de notre galaxie	$d_{\rm galaxie} = 1,0.10^5 \text{ al}$
âge de l'Univers	$\simeq 15.10^9 \text{ ans}$

Ondes mécaniques

Matériaux solides élastiques

métal : masse volumique, module d'Young	$\rho = 1 \text{ à } 10.10^3 \text{ kg.m}^{-3} ;$ $E \simeq 10^{11} \text{ Pa}$
non métal : masse volumique, module d'Young	$ ho \simeq 10^3 \ {\rm kg.m^{-3}} \ \ ; E \simeq 10^{11} \ {\rm Pa}$

L'AIR (GAZ PARFAIT)

masse molaire	$M = 29 \text{ g.mol}^{-1}$
masse volumique (à 20 °C et 1 bar)	$\rho = \frac{MP}{RT} = 1.2 \text{ kg.m}^{-3}$
compressibilité isotherme à 1 bar	$\chi_T = \frac{1}{P} = 10^{-5} \text{ Pa}^{-1}$
compressibilité isentropique à 1 bar	$\chi_S = \frac{1}{\gamma P}$
vitesse quadratique moyenne à 20 °C	$u = \sqrt{\frac{3RT}{M}} \simeq 500 \text{ m.s}^{-1}$

L'EAU

masse molaire	$M = 18 \text{ g.mol}^{-1}$
masse volumique	$\rho = 10^3 \; {\rm kg.m^{-3}}$
compressibilité	$\chi = 5.10^{-10} \text{ Pa}^{-1}$

VITESSE DU SON

dans l'air (gaz parfait) à 20 °C	$c = \sqrt{\frac{\gamma RT}{M}} = 340 \text{ m.s}^{-1}$
dans l'eau	$c = \frac{1}{\sqrt{\rho \chi}} = 1,4.10^3 \text{ m.s}^{-1}$
dans les solides	$c = \sqrt{\frac{E}{\rho}} = 3 \text{ à } 5.10^3 \text{ m.s}^{-1}$

L'OREILLE HUMAINE

plage de détection $0 < I_{dB} < 120 dB$
--

bande passante	$20 \; \mathrm{Hz} < f < 20 \; \mathrm{kHz}$

Onde dans l'air de 60 dB à 1,0 kHz

pression acoustique	$p_{\text{eff}} = 2.10^{-5} \times 10^{I_{\text{dB}}/20}$ = $2.10^{-2} \text{ Pa} \ll P_0$
déplacement particulaire	$\xi_{\text{eff}} = \frac{p_{\text{eff}}}{\rho_0 c \omega} = 8 \text{ nm}$
vitesse particulaire	$v_{\text{eff}} = \frac{p_{\text{eff}}}{\rho_0 c} = 50 \ \mu \text{m.s}^{-1} \ll c$
écart en température	$\Delta T_{\text{eff}} = (\gamma - 1) \frac{p_{\text{eff}} T_0}{\gamma P_0}$ = 2.10 ⁻⁵ K \leftleq T_0

Optique

La lumière

célérité de la lumière dans le vide (valeur exacte / valeur à utiliser)	$c = 299792458 \text{ m.s}^{-1}$ = 3,00.10 ⁸ m.s ⁻¹
constante de Planck	$h = 6.62.10^{-34} \text{ J.s}$
onde radio (longueur d'onde / fréquence)	$30 \text{ cm} \lesssim \lambda \ ; f \lesssim 1 \text{ GHz}$
micro-onde	$100 \ \mu \text{m} \lesssim \lambda \lesssim 30 \ \text{cm} ;$ $1 \ \text{GHz} \lesssim f \lesssim 3 \ \text{THz}$
infra-rouge	$0.8 \ \mu \mathrm{m} \lesssim \lambda \lesssim 100 \ \mu \mathrm{m}$; $3 \ \mathrm{THz} \lesssim f \lesssim 375 \ \mathrm{THz}$
visible	$0.4 \ \mu\mathrm{m} \lesssim \lambda \lesssim 0.8 \ \mu\mathrm{m}$; $375 \ \mathrm{THz} \lesssim f \lesssim 750 \ \mathrm{THz}$
ultra-violet	$10 \text{ nm} \lesssim \lambda \lesssim 0.4 \ \mu\text{m} ;$ $750 \text{ THz} \lesssim f \lesssim 3.10^{17} \text{ Hz}$
X	$1 \text{ pm} \lesssim \lambda \lesssim 10 \text{ nm} ;$ $3.10^{17} \text{ Hz} \lesssim f \lesssim 3.10^{20} \text{ Hz}$
γ	$\lambda \lesssim 1 \text{ pm } ; 3.10^{20} \text{ Hz} \lesssim f$

L'ŒIL

pouvoir séparateur	$\epsilon \simeq 1' = 3.10^{-4} \text{ rad soit environ}$ 1/10 de mm au PP
ponctum remotum d'un œil emmétrope	$PR = \infty$
ponctum proximum d'un œil emmétrope	PP = 25 cm ou PP = 10 cm en forçant
temps de réponse	0,1 s

INDICES OPTIQUES

vide	n = 1
air	$n = 1,00029 = 1 + 3.10^{-4}$
eau	n = 1,33
verre	n = 1.5 (ordinaire) à $n = 1.8$ (flint)
huile	n = 1.5
diamant	n = 2.4

En TP

lentille convergente, divergente	10 cm < f' < 50 cm
précision du goniomètre	$1' = 3.10^{-4} \text{ rad}$
précision du palmer du michelson	(1/100) mm
temps de réponse d'une photorésistance	10 ms
temps de réponse d'une photodiode	$1~\mu \mathrm{s}$
temps de réponse d'un photomultiplicateur (PM)	10 ns

LONGUEURS D'ONDES USUELLES

visible	$400 \text{ nm} \lesssim \lambda \lesssim 750 \text{ nm}$
doublet jaune du sodium	$\lambda_1 = 589.0 \text{ nm} \; \; ; \; \lambda_2 = 589.6 \text{ nm}$
doublet jaune du mercure	$\lambda_1 = 577,0 \text{ nm} ; \lambda_2 = 579,1 \text{ nm}$
raie verte du mercure	546 nm
rouge du laser He-Ne	632,8 nm

TRAINS D'ONDE

source	$\Delta \nu$	$\Delta \lambda$	au	$L_{\rm c} = c \tau$
lumière blanche	$3.10^{14} \; \mathrm{Hz}$	400 nm	$5.10^{15} { m s}$	$0.1~\mu\mathrm{m}$
doublet jaune du sodium	$5.10^{11} \; \mathrm{Hz}$	0,6 nm	$0,3.10^{-12} \text{ s}$	0,1 mm
raie de lampe spectrale	$10^9~{ m Hz}$	1 pm	0,1 ns	5 cm
laser	$10^6~{ m Hz}$	2.10^{-15} m	$0.2~\mu \mathrm{s}$	50 m

Le laser He – Ne

longueur d'onde	$\lambda = 632.8 \text{ nm}$
longueur de cohérence	$L_{\rm c} > 1 \; { m m}$
diamètre, divergence angulaire (par diffraction)	$d=1 \text{ mm} \; \; ; \; \alpha=\frac{\lambda}{d}=10^{-3} \text{ rad}$
puissance, puissance surfacique	$P = 1 \text{ mW} \text{ ; } \mathscr{P} \simeq 1 \text{ kW.m}^{-2}$
champ électrique	$E = \sqrt{\frac{2\mathscr{P}}{\varepsilon_0 c}} = 1 \text{ kV.m}^{-1}$
champ magnétique	$B = \frac{E}{c} \simeq 10^{-6} \text{ T}$

Instruments d'optique

grossissement d'un microscope optique	$G \simeq 20 \to 1000$
grossissement d'un télescope amateur	$G \simeq 20 \to 500$
taille d'une cellule CCD	$\ell \simeq 2~\mu\mathrm{m}$

Thermodynamique

Constantes

constante des gaz parfaits	$R = 8.314 \text{ J.K}^{-1}.\text{mol}^{-1}$
constante d'Avogadro	$\mathcal{N}_{\rm A} = 6.02.10^{23} \; {\rm mol}^{-1}$
constante de Boltzmann	$k_{\rm B} = \frac{R}{\mathcal{N}_{\rm A}} = 1,38.10^{-23} \text{ J.K}^{-1}$

L'AIR (GAZ PARFAIT)

masse molaire	$M = 29 \text{ g.mol}^{-1}$
masse volumique (à 20 °C et 1 bar)	$\rho = \frac{MP}{RT} = 1.2 \text{ kg.m}^{-3}$
volume molaire (à 20 °C et 1 bar)	$V_{\rm m} = \frac{RT}{P} = 24 \text{ L.mol}^{-1}$
compressibilité isotherme à 1 bar	$\chi_T = \frac{1}{P} = 10^{-5} \text{ Pa}^{-1}$
compressibilité isentropique à 1 bar	$\chi_S = \frac{1}{\gamma P}$
densité particulaire à 20 °C et 1 bar	$n^* = \frac{P}{k_{\rm B}T} \simeq 2,5.10^{25} \text{ m}^{-3}$
vitesse quadratique moyenne à 20 ${\rm ^{\circ}C}$	$u = \sqrt{\frac{3RT}{M}} \simeq 500 \text{ m.s}^{-1}$
libre parcours moyen	$\ell = 0.1 \; \mu \mathrm{m}$
durée moyenne entre deux chocs	$\tau = \frac{\ell}{u} = 1.10^{-10} \text{ s}$
capacité thermique molaire à volume constant	$C_{V,m} = \frac{5 R}{2} = 21 \text{ J.K}^{-1}.\text{mol}^{-1}$
capacité thermique molaire à pression constante	$C_{P,m} = \frac{7 R}{2} = 29 \text{ J.K}^{-1}.\text{mol}^{-1}$
capacité thermique massique à pression constante	$c_P = 1.0 \text{ kJ.K}^{-1}.\text{kg}^{-1}$
rapport des capacités thermiques	$\gamma = \frac{c_P}{c_V} = \frac{C_{P,m}}{C_{V,m}} = \frac{7}{5}$
coefficient d'autodiffusion	$D = \frac{\ell u}{3} = 2.10^{-5} \text{ m}^2.\text{s}^{-1}$
conductivité thermique	$\lambda = 0.6 \text{ W.m}^{-1}.\text{K}^{-1}$
coefficient de diffusion thermique	$a = \frac{\lambda}{\rho c_P} = 2.10^{-5} \text{ m}^2.\text{s}^{-1}$

L'EAU

masse molaire	$M = 18 \text{ g.mol}^{-1}$
masse volumique (liquide)	$\rho = 1.0.10^3 \text{ kg.m}^{-3}$
masse volumique (glace)	$\rho = 0.92.10^3 \text{ kg.m}^{-3}$
masse volumique (vapeur à 100 °C et 1 bar)	$\rho = 0.59 \text{ kg.m}^{-3}$
densité moléculaire (liquide)	$n^* = \frac{\rho \mathcal{N}_{\rm A}}{M} \simeq 10^{28} {\rm m}^{-3}$
compressibilité (liquide à 20 °C)	$\chi \simeq 5.10^{-10} \; \mathrm{Pa^{-1}}$
capacité thermique (liquide)	$c = 4.18 \text{ kJ.K}^{-1}.\text{kg}^{-1}$
capacité thermique (glace)	$c = 2.1 \text{ kJ.K}^{-1}.\text{kg}^{-1}$
capacité thermique (vapeur à 100 °C et 1 bar)	$c_P = 2.0 \text{ kJ.K}^{-1}.\text{kg}^{-1}$
enthalpie de fusion de la glace à 0 $^{\circ}\mathrm{C}$	$\ell_{\rm f}=334~\rm kJ.kg^{-1}$
enthalpie de vaporiation de l'eau liquide à 100 °C et 1 bar	$\ell_{\rm v}=2260~\rm kJ.kg^{-1}$
point triple de l'eau	$T_{\rm T} = 273,16 \; {\rm K} \; ;$ $P_{\rm T} \simeq 6.10^{-3} \; {\rm bar}$
point critique de l'eau	$T_{\rm c} = 370~{\rm ^{\circ}C}~; P_{\rm c} \simeq 220~{\rm bar}$

AUTRES MATÉRIAUX

rapport des capacités thermique à pression et volume constant d'un gaz parfait	$ \gamma_{\text{monoato}} = \frac{5}{3} \text{ et } \gamma_{\text{diato}} = \frac{7}{5} $
température de fusion d'un matériau réfractaire	$T_{\rm fus} = 1.5.10^3 \ {\rm a} \ 3.10^3 \ {\rm K}$
capacité thermique molaire d'un solide (loi de DULONG et PETIT)	$c \simeq 3 R \simeq 25 \text{ J.K}^{-1}.\text{mol}^{-1}$
coefficient d'autodiffusion dans un gaz	$D \simeq 10^{-4} \text{ à } 10^{-5} \text{ m}^2.\text{s}^{-1}$
coefficient d'autodiffusion dans un liquide	$D \simeq 10^{-8} \text{ à } 10^{-10} \text{ m}^2.\text{s}^{-1}$
coefficient d'autodiffusion dans un solide	$D \simeq 10^{-17} \text{ à } 10^{-30} \text{ m}^2.\text{s}^{-1}$
conductivité thermique de mauvais conducteurs (gaz, polystyrène)	$\lambda < 0.1 \text{ W.m}^{-1}.\text{K}^{-1}$
conductivité thermique de conducteurs moyens (bois, verre, eau, béton)	$\lambda = 0.1 \text{ à } 10 \text{ W.m}^{-1}.\text{K}^{-1}$
conductivité thermique de bons conducteurs (métaux)	$\lambda = 200 \text{ à } 400 \text{ W.m}^{-1}.\text{K}^{-1}$

DIVERS

cheval vapeur	1 ch = 735 W
puissance d'un moteur de petite voiture	$\mathcal{P} = 70 \text{ ch}$

puissance d'un moteur de ferrari	$\mathcal{P} = 500 \text{ ch}$
puissance produite par une tranche de centrale nucléaire	$\mathcal{P} = 1 \text{ GW}$
1 kilotonne équivalent TNT	1 kt(TNT) = 4.1 TJ
Énergie des bombes atomiques historiques	$\mathscr{E} \sim 15 \text{ kt(TNT)}$
Énergie estimée des bombes H actuelles	$\mathscr{E} \sim 1 \; \mathrm{Mt}(\mathrm{TNT})$

Électromagnétisme

CONSTANTES

célérité de la lumière dans le vide (valeur exacte / valeur à utiliser)	$c = 299792458 \text{ m.s}^{-1}$ = 3,00.10 ⁸ m.s ⁻¹
perméabilité magnétique du vide (valeur exacte)	$\mu_0 = 4 \pi.10^{-7} \; \mathrm{H.m^{-1}}$
permittivité électrique du vide	$\varepsilon_0 = \frac{1}{c^2 \mu_0} = 8,85.10^{-12} \text{ F.m}^{-1}$
charge élémentaire	$e = 1,6.10^{-19} \text{ C}$
masse de l'électron	$m_{\rm e} = 9.11.10^{-31} \text{ kg}$
masse du proton	$m_{\rm p} = 1,67.10^{-27} \text{ kg}$
rapport des masses du proton et de l'électron	$\frac{m_{\rm p}}{m_{\rm e}} = 1836$
rapport des masses du neutron et de l'électron	$\frac{m_{\rm n}}{m_{\rm e}} = 1839$

CHAMPS USUELS

champ électrique ambiant par beau temps	$E = 100 \text{ V.m}^{-1}$
champ de claquage (air sec)	$E \simeq 2.10^6 \; \rm V.m^{-1}$
composante horizontale du champ magnétique terrestre (sous nos latitudes)	$B = 2.10^{-5} \text{ T}$
champ magnétique créé par un magnet	$B = 10^{-3} \text{ T}$

LE CUIVRE

masse molaire	$M = 63.5 \text{ g.mo}^{-1}$
masse volumique	$\rho = 8.9.10^3 \text{ kg.m}^{-3}$
densité volumique de porteurs (un électron libre par atome)	$n = \frac{\rho \mathcal{N}_{\rm A}}{M} \simeq 10^{29} \mathrm{m}^{-3}$
temps entre deux chocs (modèle de Drüde)	$\tau = 10^{-14} \text{ s}$
conductivité	$\gamma = \frac{n e^2 \tau}{m_e} \simeq 6.10^7 \text{ S.m}^{-1}$
constante de HALL	$R_{\rm H} = -\frac{1}{n e} = -10^{-10} \text{m}^3.\text{C}^{-1}$
épaisseur de peau	$\delta = \sqrt{\frac{2}{\mu_0 \gamma \omega}} \simeq 1 \text{ cm à 50 Hz}$ $\delta = 10 \ \mu\text{m à 50 MHz}$

Un courant de 0,1 A dans un fil de cuivre de section $s=1~\mathrm{mm}^2$

densité de courant volumique	$j = \frac{I}{s} = 10^5 \text{ A.m}^{-2}$
densité volumique de porteurs	$n \simeq 10^{29} \text{ m}^{-3}$
vitesse de dérive	$\frac{j}{n e} \simeq 10 \ \mu \text{m.s}^{-1}$

LE PLASMA

densité de plasma dans une décharge gazeuse	$n \simeq 10^{20} \; \mathrm{m}^{-3}$
densité de plasma dans l'ionosphère	$n \simeq 10^{12} \text{ m}^{-3}$
pulsation et fréquence plasma de l'ionosphère	$\omega_{\rm p} = \sqrt{\frac{n e^2}{m \varepsilon_0}} ; f_{\rm p} = 10 \text{ MHz}$

ÉNERGIE TRANSPORTÉE PAR LES PHOTONS

photon visible	$E \simeq 1 \text{ eV}$
photon X	$E \simeq 1 \text{ keV}$
photon γ	$E \simeq 1 \mathrm{MeV}$

 \bigcirc Matthieu Rigaut Valeurs à connaître 16 / 18

Mécanique des fluides

CONSTANTES

constante des gaz parfaits	$R = 8.314 \text{ J.K}^{-1}.\text{mol}^{-1}$
constante d'Avogadro	$\mathcal{N}_{\rm A} = 6.02.10^{23} \; {\rm mol}^{-1}$
constante de Boltzmann	$k_{\rm B} = \frac{R}{\mathcal{N}_{\rm A}} = 1,38.10^{-23} \text{ J.K}^{-1}$

L'AIR (GAZ PARFAIT)

masse molaire	$M = 29 \text{ g.mol}^{-1}$
masse volumique (à 20 °C et 1 bar)	$\rho = \frac{MP}{RT} = 1.2 \text{ kg.m}^{-3}$
volume molaire (à 20 °C et 1 bar)	$V_{\rm m} = \frac{RT}{P} = 24 \text{ L.mol}^{-1}$
compressibilité isotherme à 1 bar	$\chi_T = \frac{1}{P} = 10^{-5} \text{ Pa}^{-1}$
compressibilité isentropique à 1 bar	$\chi_S = \frac{1}{\gamma P}$
densité particulaire à 20 °C et 1 bar	$n^* = \frac{P}{k_{\rm B} T} \simeq 2.5.10^{25} \text{ m}^{-3}$
température dans la troposphère ($z < 10 \text{ km}$)	$T(z) = T_0 - az$ avec $a = 6.5 \text{ K.km}^{-1}$

L'EAU

masse molaire	$M=18~\mathrm{g.mol^{-1}}$
masse volumique	$\rho = 1.0 \text{ kg.m}^{-3}$
densité moléculaire	$n^* = \frac{\rho \mathcal{N}_{\rm A}}{M} \simeq 10^{28} {\rm m}^{-3}$
compressibilité (20 °C)	$\chi \simeq 5.10^{-10} \; \mathrm{Pa^{-1}}$
augmentation de pression dans l'eau	1 bar tous les 10 m de profondeur
profondeur moyenne des océans	$h_{\text{oc\'ean}} = 3.8 \text{ km}$
prix moyen du m³ (en 2010)	3 €

ATMOSPHÈRE

pression au sol (valeur moyenne)	$P_0 = 1 \text{ atm} = 760 \text{ mmHg}$ = 1,013.10 ⁵ Pa
dépression	$\simeq 990~\mathrm{hPa}$ ou moins
anticyclone	$\simeq 1030~\mathrm{hPa}$ ou plus
modèle de l'atmosphère isotherme	$P(z) = P_0 e^{-z/H} \text{ avec}$ $H = \frac{RT}{Mg} = 8.6 \text{ km}$
hauteur de l'atmosphère	h = 40 km

Viscosité dynamique η et cinématique $\nu = \frac{\eta}{\rho}$

air	$\eta = 1.8.10^{-5} \text{ Pl} ;$ $\nu = 1.8.10^{-5} \text{ m}^2.\text{s}^{-1}$
eau	$\eta = 1.0.10^{-3} \text{ Pl} ;$ $\nu = 1.0.10^{-6} \text{ m}^2.\text{s}^{-1}$
lait	$\eta = 2.10^{-3} \text{ Pl}$
huile de cuisine	$\eta = 0.07 \text{ Pl}$
glycérine	$\eta = 0.87 \text{ Pl}$
encre de stylo bille	$\eta = 2 \text{ Pl}$
pâte dentifrice	$\eta = 100 \text{ Pl}$