Mathematics-II (MATH F112) Linear Algebra

Jitender Kumar

Department of Mathematics
Birla Institute of Technology and Science Pilani
Pilani-333031

Chapter: 5 (Linear Transformations)

- Introduction to Linear Transformations
- The Dimension Theorem
- One-to-One and Onto Linear Transformations
- Isomorphism
- Coordinatization (4.7)
- The Matrix of a Linear Transformation

Let $\mathcal V$ and $\mathcal W$ be real vector spaces.

Let $\mathcal V$ and $\mathcal W$ be real vector spaces. A map $L:\mathcal V\to\mathcal W$ is called a **Linear map** or **Linear transformation (LT)**

Let $\mathcal V$ and $\mathcal W$ be real vector spaces. A map $L:\mathcal V\to\mathcal W$ is called a **Linear map** or **Linear transformation (LT)** if and only if both of the following are true:

Let $\mathcal V$ and $\mathcal W$ be real vector spaces. A map $L:\mathcal V\to\mathcal W$ is called a **Linear map** or **Linear transformation (LT)** if and only if both of the following are true:

• $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathcal{V}$

Let $\mathcal V$ and $\mathcal W$ be real vector spaces. A map $L:\mathcal V\to\mathcal W$ is called a **Linear map** or **Linear transformation (LT)** if and only if both of the following are true:

- $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathcal{V}$
- $L(c\mathbf{u}) = cL(\mathbf{u})$ for all $c \in \mathbb{R}$ and all $\mathbf{u} \in \mathcal{V}$

$$L: \mathcal{M}_{mn} o \mathcal{M}_{nm}$$
 given by $L(A) = A^T.$

$$L: \mathcal{M}_{mn} \to \mathcal{M}_{nm}$$
 given by

$$L(A) = A^T$$
.

Check whether L is a LT.

$$L: \mathcal{M}_{mn} \to \mathcal{M}_{nm}$$
 given by

$$L(A) = A^T$$
.

Check whether L is a LT.

Solution: Let $A, B \in \mathcal{M}_{mn}$ and $c \in \mathbb{R}$. Note that

$$L: \mathcal{M}_{mn} \to \mathcal{M}_{nm}$$
 given by

$$L(A) = A^T$$
.

Check whether L is a LT.

Solution: Let $A, B \in \mathcal{M}_{mn}$ and $c \in \mathbb{R}$. Note that

•
$$L(A+B) = (A+B)^T = A^T + B^T = L(A) + L(B)$$

$$L: \mathcal{M}_{mn} \to \mathcal{M}_{nm}$$
 given by

$$L(A) = A^T$$
.

Check whether L is a LT.

Solution: Let $A, B \in \mathcal{M}_{mn}$ and $c \in \mathbb{R}$. Note that

- $L(A+B) = (A+B)^T = A^T + B^T = L(A) + L(B)$
- $L(cA) = (cA)^T = cA^T = cL(A).$

$$L: \mathcal{M}_{mn} \to \mathcal{M}_{nm}$$
 given by

$$L(A) = A^T$$
.

Check whether L is a LT.

Solution: Let $A, B \in \mathcal{M}_{mn}$ and $c \in \mathbb{R}$. Note that

•
$$L(A+B) = (A+B)^T = A^T + B^T = L(A) + L(B)$$

$$L(cA) = (cA)^T = cA^T = cL(A).$$

Hence, L is a LT.

$$L: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by

$$L([x,y]) = [x,y,xy].$$

Check whether L is a LT.

$$L: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by

$$L([x,y]) = [x,y,xy].$$

Check whether L is a LT.

Solution: For $c=2\in\mathbb{R}$ and $[1,2]\in\mathbb{R}^2$ consider

$$L: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by

$$L([x,y]) = [x,y,xy].$$

Check whether L is a LT.

Solution: For $c=2\in\mathbb{R}$ and $[1,2]\in\mathbb{R}^2$ consider

$$L(2([1,2])) = L([2,4])$$

$$L: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by

$$L([x,y]) = [x,y,xy].$$

Check whether L is a LT.

Solution: For $c=2\in\mathbb{R}$ and $[1,2]\in\mathbb{R}^2$ consider

$$L(2([1,2])) = L([2,4])$$

= $[2,4,8] \neq 2L([1,2])$

$$L: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by

$$L([x,y]) = [x,y,xy].$$

Check whether L is a LT.

Solution: For $c=2\in\mathbb{R}$ and $[1,2]\in\mathbb{R}^2$ consider

$$L(2([1,2])) = L([2,4])$$

= $[2,4,8] \neq 2L([1,2])$

Thus, $L(c([x,y])) \neq cL([x,y]) \ \forall c \in \mathbb{R} \ \text{and} \ [x,y] \in \mathbb{R}^2$

$$L: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by

$$L([x,y]) = [x,y,xy].$$

Check whether L is a LT.

Solution: For $c=2\in\mathbb{R}$ and $[1,2]\in\mathbb{R}^2$ consider

$$L(2([1,2])) = L([2,4])$$

= $[2,4,8] \neq 2L([1,2])$

Thus, $L(c([x,y])) \neq cL([x,y]) \ \forall c \in \mathbb{R} \ \text{and} \ [x,y] \in \mathbb{R}^2$

Hence, L is not a LT.

 \bullet $L: \mathcal{P}_2 \to \mathbb{R}^3$ given by $L(a+bx+cx^2) = [a,b,c]$.

- ① $L: \mathcal{P}_2 \to \mathbb{R}^3$ given by $L(a+bx+cx^2)=[a,b,c]$.
- 2 $L: \mathbb{R}^3 \to \mathbb{R}^2$ given by L([x, y, z]) = [x y, y + z].

- ① $L: \mathcal{P}_2 \to \mathbb{R}^3$ given by $L(a+bx+cx^2)=[a,b,c]$.
- ② $L: \mathbb{R}^3 \to \mathbb{R}^2$ given by L([x, y, z]) = [x y, y + z].
- \bullet $L: \mathbb{R}^2 \to \mathbb{R}^2$ given by L([a,b]) = [a,-b].

- ① $L: \mathcal{P}_2 \to \mathbb{R}^3$ given by $L(a+bx+cx^2)=[a,b,c]$.
- $lacksquare L: \mathbb{R}^3 o \mathbb{R}^2$ given by L([x,y,z]) = [x-y,y+z].
- $L: \mathbb{R}^2 \to \mathbb{R}^2$ given by L([a,b]) = [a,-b].
- \bullet $L: \mathbb{R} \to \Phi$ given by $L(x) = \sin x$.

- ① $L: \mathcal{P}_2 \to \mathbb{R}^3$ given by $L(a+bx+cx^2)=[a,b,c]$.
- $lacksquare L: \mathbb{R}^3 o \mathbb{R}^2$ given by L([x,y,z]) = [x-y,y+z].
- \bullet $L: \mathbb{R}^2 \to \mathbb{R}^2$ given by L([a,b]) = [a,-b].
- $L: \mathbb{R} \to \Phi$ given by $L(x) = \sin x$.
- \bullet $L: \mathbb{R} \to \mathbb{R}$ given by $L(x) = x^2$.

Linear Operator: Let V be a vector space.

Linear Operator: Let $\mathcal V$ be a vector space. A **linear operator** on $\mathcal V$ is a LT whose domain and codomain are both $\mathcal V$.

Linear Operator: Let \mathcal{V} be a vector space. A **linear operator** on \mathcal{V} is a LT whose domain and codomain are both \mathcal{V} .

Example 3: The mapping $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by L([x,y,z]) = [x,y,-z] is a linear operator.

Theorem 1: Let \mathcal{V} and \mathcal{W} be vector spaces, and let $L: \mathcal{V} \to \mathcal{W}$ be a LT.

- 2 $L(-\mathbf{v}) = -L(\mathbf{v})$, for all $\mathbf{v} \in \mathcal{V}$
- \bullet For $n \geq 2$ and $a_1, a_2, \ldots, a_n \in \mathbb{R}$,

If
$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$$
, then

- 2 $L(-\mathbf{v}) = -L(\mathbf{v})$, for all $\mathbf{v} \in \mathcal{V}$
- \bullet For $n \geq 2$ and $a_1, a_2, \ldots, a_n \in \mathbb{R}$,

If
$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$$
, then $L(\mathbf{v}) = L(a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n)$

- 2 $L(-\mathbf{v}) = -L(\mathbf{v})$, for all $\mathbf{v} \in \mathcal{V}$
- \bullet For $n \geq 2$ and $a_1, a_2, \ldots, a_n \in \mathbb{R}$,

If
$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$$
, then $L(\mathbf{v}) = L(a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n)$
= $a_1 L(\mathbf{v}_1) + a_2 L(\mathbf{v}_2) + \dots + a_n L(\mathbf{v}_n)$.

Example 4: Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator such that L([1,0,0]) = [-2,1,0], L([0,1,0]) = [3,-2,1], and L([0,0,1]) = [0,-1,3]. \bullet Find L([-3,2,4]).

- L([0,1,0]) = [3,-2,1], and L([0,0,1]) = [0,-1,3].
 - Find L([-3, 2, 4]).
 - Find L([x,y,z]) for all [x,y,z] in \mathbb{R}^3 .

L([0,1,0]) = [3,-2,1], and L([0,0,1]) = [0,-1,3].

- Find L([-3, 2, 4]).
- Find L([x, y, z]) for all [x, y, z] in \mathbb{R}^3 .

$$L([0,1,0]) = [3,-2,1], \text{ and } L([0,0,1]) = [0,-1,3].$$

- Find L([-3, 2, 4]).
- Find L([x, y, z]) for all [x, y, z] in \mathbb{R}^3 .

$$[-3, 2, 4] = -3[1, 0, 0] + 2[0, 1, 0] + 4[0, 0, 1]$$

$$L([0,1,0]) = [3,-2,1], \text{ and } L([0,0,1]) = [0,-1,3].$$

- Find L([-3, 2, 4]).
- Find L([x,y,z]) for all [x,y,z] in \mathbb{R}^3 .

$$[-3,2,4] = -3[1,0,0] + 2[0,1,0] + 4[0,0,1]$$

$$L([-3,2,4]) = L(-3[1,0,0] + 2[0,1,0] + 4[0,0,1])$$

$$L([0,1,0]) = [3,-2,1], \text{ and } L([0,0,1]) = [0,-1,3].$$

- Find L([-3, 2, 4]).
- Find L([x,y,z]) for all [x,y,z] in \mathbb{R}^3 .

$$[-3, 2, 4] = -3[1, 0, 0] + 2[0, 1, 0] + 4[0, 0, 1]$$

$$L([-3, 2, 4]) = L(-3[1, 0, 0] + 2[0, 1, 0] + 4[0, 0, 1])$$

$$= -3L([1, 0, 0]) + 2L([0, 1, 0]) + 4L([0, 0, 1])$$

$$L([0,1,0]) = [3,-2,1], \text{ and } L([0,0,1]) = [0,-1,3].$$

- Find L([-3, 2, 4]).
- Find L([x,y,z]) for all [x,y,z] in \mathbb{R}^3 .

$$\begin{aligned} [-3,2,4] &= -3[1,0,0] + 2[0,1,0] + 4[0,0,1] \\ L([-3,2,4]) &= L(-3[1,0,0] + 2[0,1,0] + 4[0,0,1]) \\ &= -3L([1,0,0]) + 2L([0,1,0]) + 4L([0,0,1]) \\ &= -3[-2,1,0] + 2[3,-2,1] + 4[0,-1,3] \end{aligned}$$

$$L([0,1,0]) = [3,-2,1], \text{ and } L([0,0,1]) = [0,-1,3].$$

- Find L([-3, 2, 4]).
- Find L([x,y,z]) for all [x,y,z] in \mathbb{R}^3 .

$$[-3, 2, 4] = -3[1, 0, 0] + 2[0, 1, 0] + 4[0, 0, 1]$$

$$L([-3, 2, 4]) = L(-3[1, 0, 0] + 2[0, 1, 0] + 4[0, 0, 1])$$

$$= -3L([1, 0, 0]) + 2L([0, 1, 0]) + 4L([0, 0, 1])$$

$$= -3[-2, 1, 0] + 2[3, -2, 1] + 4[0, -1, 3]$$

$$= [12, 11, 14]$$

$$L([x,y,z]) = L(x[1,0,0] + y[0,1,0] + z[0,0,1])$$

$$\begin{split} L([x,y,z]) &= L(x[1,0,0] + y[0,1,0] + z[0,0,1]) \\ L([x,y,z]) &= x[-2,1,0] + y[3,-2,1] + z[0,-1,3] \end{split}$$

$$\begin{split} L([x,y,z]) &= L(x[1,0,0] + y[0,1,0] + z[0,0,1]) \\ L([x,y,z]) &= x[-2,1,0] + y[3,-2,1] + z[0,-1,3] \\ L([x,y,z]) &= [-2x + 3y, x - 2y - z, y + 3z] \end{split}$$

$$\begin{split} L([x,y,z]) &= L(x[1,0,0] + y[0,1,0] + z[0,0,1]) \\ L([x,y,z]) &= x[-2,1,0] + y[3,-2,1] + z[0,-1,3] \\ L([x,y,z]) &= [-2x + 3y, x - 2y - z, y + 3z] \end{split}$$

Note that

$$L\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -2 & 3 & 0 \\ 1 & -2 & -1 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Answer: $L([x,y]) = \left[\frac{3x+3y}{2}, \frac{-x+y}{2}\right]$.

Answer: $L([x,y]) = \left[\frac{3x+3y}{2}, \frac{-x+y}{2}\right].$

Remark: Let \mathcal{V} and \mathcal{W} be vector spaces, and let $L: \mathcal{V} \to \mathcal{W}$ be a LT. Also, let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for \mathcal{V} .

Answer: $L([x,y]) = \left[\frac{3x+3y}{2}, \frac{-x+y}{2}\right]$.

Remark: Let \mathcal{V} and \mathcal{W} be vector spaces, and let $L: \mathcal{V} \to \mathcal{W}$ be a LT. Also, let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for \mathcal{V} . If $\mathbf{v} \in \mathcal{V}$, $L(\mathbf{v})$ is completely determined by $\{L(\mathbf{v}_1), L(\mathbf{v}_2), \dots, L(\mathbf{v}_n)\}$.

Composition of Linear transformations

Composition of Linear transformations

Theorem 2: Let \mathcal{V}_1 , \mathcal{V}_2 and \mathcal{V}_3 be vector spaces and let $L_1: \mathcal{V}_1 \to \mathcal{V}_2$ and $L_2: \mathcal{V}_2 \to \mathcal{V}_3$ be linear transformations. Then $L_2 \circ L_1: \mathcal{V}_1 \to \mathcal{V}_3$ given by $(L_2 \circ L_1)(\mathbf{v}) = L_2(L_1(\mathbf{v}))$, for all $\mathbf{v} \in \mathcal{V}_1$, is a LT.

Example 5: Let $L_1: \mathcal{P}_2 \to \mathcal{P}_2$ and $L_2: \mathcal{P}_2 \to \mathcal{P}_2$ be linear operators defined as $L_1(ax^2 + bx + c) = 2ax + b$ and $L_2(ax^2 + bx + c) = 2ax^2 + bx$, respectively.

Example 5: Let $L_1: \mathcal{P}_2 \to \mathcal{P}_2$ and $L_2: \mathcal{P}_2 \to \mathcal{P}_2$ be linear operators defined as $L_1(ax^2 + bx + c) = 2ax + b$ and $L_2(ax^2 + bx + c) = 2ax^2 + bx$, respectively. Compute $L_2 \circ L_1$ and $L_1 \circ L_2$.

Example 5: Let $L_1: \mathcal{P}_2 \to \mathcal{P}_2$ and $L_2: \mathcal{P}_2 \to \mathcal{P}_2$ be linear operators defined as $L_1(ax^2+bx+c)=2ax+b$ and $L_2(ax^2+bx+c)=2ax^2+bx$, respectively. Compute $L_2\circ L_1$ and $L_1\circ L_2$.

Answer:

• $L_2 \circ L_1(ax^2 + bx + c) = 2ax$.

Example 5: Let $L_1: \mathcal{P}_2 \to \mathcal{P}_2$ and $L_2: \mathcal{P}_2 \to \mathcal{P}_2$ be linear operators defined as $L_1(ax^2 + bx + c) = 2ax + b$ and $L_2(ax^2 + bx + c) = 2ax^2 + bx$, respectively. Compute $L_2 \circ L_1$ and $L_1 \circ L_2$.

Answer:

- $L_2 \circ L_1(ax^2 + bx + c) = 2ax$.
- $L_1 \circ L_2(ax^2 + bx + c) = 4ax + b$.

Example 5: Let $L_1: \mathcal{P}_2 \to \mathcal{P}_2$ and $L_2: \mathcal{P}_2 \to \mathcal{P}_2$ be linear operators defined as $L_1(ax^2 + bx + c) = 2ax + b$ and $L_2(ax^2 + bx + c) = 2ax^2 + bx$, respectively. Compute $L_2 \circ L_1$ and $L_1 \circ L_2$.

Answer:

- $L_2 \circ L_1(ax^2 + bx + c) = 2ax$.
- $L_1 \circ L_2(ax^2 + bx + c) = 4ax + b$.

Clearly, $L_2 \circ L_1 \neq L_1 \circ L_2$.

Kernel of a linear transformation: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT.

Kernel of a linear transformation: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. The kernel of L, denoted by $\ker(L)$,

Kernel of a linear transformation: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. The kernel of L, denoted by $\ker(L)$, is the subset of all vectors in \mathcal{V} that map to $\mathbf{0}_{\mathcal{W}}$, i.e.

Kernel of a linear transformation: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. The kernel of L, denoted by $\ker(L)$, is the subset of all vectors in \mathcal{V} that map to $\mathbf{0}_{\mathcal{W}}$, i.e.

$$\ker(L) = \{ \mathbf{v} \in \mathcal{V} \mid L(\mathbf{v}) = \mathbf{0}_{\mathcal{W}} \}.$$

Example 6: Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [0,y].

Example 6: Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [0,y]. Find $\ker(L)$.

Example 6: Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by

$$L([x, y, z]) = [0, y]$$
. Find $ker(L)$.

$$\ker(L) = \{ [x, y, z] \in \mathbb{R}^3 \mid L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \}$$

Example 6: Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x, y, z]) = [0, y]. Find $\ker(L)$.

$$\ker(L) = \{ [x, y, z] \in \mathbb{R}^3 \mid L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \}$$
$$= \{ [x, y, z] \in \mathbb{R}^3 \mid [0, y] = [0, 0] \}$$

Example 6: Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x, y, z]) = [0, y]. Find $\ker(L)$.

$$\ker(L) = \{ [x, y, z] \in \mathbb{R}^3 \mid L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \}$$
$$= \{ [x, y, z] \in \mathbb{R}^3 \mid [0, y] = [0, 0] \}$$
$$= \{ [x, y, z] \in \mathbb{R}^3 \mid y = 0 \}$$

Example 6: Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x, y, z]) = [0, y]. Find $\ker(L)$.

$$\ker(L) = \{ [x, y, z] \in \mathbb{R}^3 \mid L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \}$$

$$= \{ [x, y, z] \in \mathbb{R}^3 \mid [0, y] = [0, 0] \}$$

$$= \{ [x, y, z] \in \mathbb{R}^3 \mid y = 0 \}$$

$$= \{ [x, 0, z] \mid x, z \in \mathbb{R} \}$$

Example 6: Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [0,y]. Find $\ker(L)$.

Solution:

$$\ker(L) = \{ [x, y, z] \in \mathbb{R}^3 \mid L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \}$$

$$= \{ [x, y, z] \in \mathbb{R}^3 \mid [0, y] = [0, 0] \}$$

$$= \{ [x, y, z] \in \mathbb{R}^3 \mid y = 0 \}$$

$$= \{ [x, 0, z] \mid x, z \in \mathbb{R} \}$$

In this Example, Note that

$$\ker(L) = \{ [x, 0, z] \mid x, z \in \mathbb{R} \}$$

Example 6: Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [0,y]. Find $\ker(L)$.

Solution:

$$\ker(L) = \{ [x, y, z] \in \mathbb{R}^3 \mid L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \}$$

$$= \{ [x, y, z] \in \mathbb{R}^3 \mid [0, y] = [0, 0] \}$$

$$= \{ [x, y, z] \in \mathbb{R}^3 \mid y = 0 \}$$

$$= \{ [x, 0, z] \mid x, z \in \mathbb{R} \}$$

In this Example, Note that

$$\ker(L) = \{ [x, 0, z] \mid x, z \in \mathbb{R} \}$$

is a subspace of the vector space \mathbb{R}^3 .

Result: If $L: \mathcal{V} \to \mathcal{W}$ is a LT, then $\ker(L)$ is a subspace of \mathcal{V} .

Range of a linear transformation:

Definition: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT.

Definition: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. The range of L, denoted by range(L), is the subset of all vectors in \mathcal{W} that are image of some vector in \mathcal{V} , i.e.

Definition: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. The range of L, denoted by range(L), is the subset of all vectors in \mathcal{W} that are image of some vector in \mathcal{V} , i.e.

$$\mathsf{range}(L) = \{ L(\mathbf{v}) \mid \mathbf{v} \in \mathcal{V} \}$$

Thus a vector $\mathbf{w} \in \text{range}(L)$

Definition: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. The range of L, denoted by $\operatorname{range}(L)$, is the subset of all vectors in \mathcal{W} that are image of some vector in \mathcal{V} , i.e.

$$\mathsf{range}(L) = \{ L(\mathbf{v}) \mid \mathbf{v} \in \mathcal{V} \}$$

Thus a vector $\mathbf{w} \in \text{range}(L)$ implies there exists some vector $\mathbf{v} \in \mathcal{V}$ such that $L(\mathbf{v}) = \mathbf{w}$.

Result: If $L: \mathcal{V} \to \mathcal{W}$ is a LT, then range(L) is a subspace of \mathcal{W} .

Result: If $L: \mathcal{V} \to \mathcal{W}$ is a LT, then range(L) is a subspace of \mathcal{W} .

Exercise: Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 5 & 1 & -1 \\ -3 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Result: If $L: \mathcal{V} \to \mathcal{W}$ is a LT, then range(L) is a subspace of \mathcal{W} .

Exercise: Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 5 & 1 & -1 \\ -3 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• Is $[1, -2, 3]^T \in \ker(L)$?

Result: If $L: \mathcal{V} \to \mathcal{W}$ is a LT, then range(L) is a subspace of \mathcal{W} .

Exercise: Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 5 & 1 & -1 \\ -3 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Is $[1, -2, 3]^T \in \ker(L)$?
- Is $[2, -1, 4]^T \in \text{range}(L)$?

Hint: Note that $L([1, -2, 3]^T) = [0, 0, 0]^T$

Hint: Note that $L([1, -2, 3]^T) = [0, 0, 0]^T$ implies $[1, -2, 3]^T \in \ker(L)$.

Hint: Note that $L([1, -2, 3]^T) = [0, 0, 0]^T$ implies $[1, -2, 3]^T \in \ker(L)$.

Note that to check $[2,-1,4]^T \in \text{range}(L)$ is same as to check whether given system of linear equations

$$5x + y - z = 2$$
$$-3x + z = -1$$
$$x - y - z = 4$$

is consistent or not.

Hint: Note that $L([1, -2, 3]^T) = [0, 0, 0]^T$ implies $[1, -2, 3]^T \in \ker(L)$.

Note that to check $[2, -1, 4]^T \in \text{range}(L)$ is same as to check whether given system of linear equations

$$5x + y - z = 2$$
$$-3x + z = -1$$
$$x - y - z = 4$$

is consistent or not.

Since above system of equations is inconsistent (show it!),

Hint: Note that $L([1, -2, 3]^T) = [0, 0, 0]^T$ implies $[1, -2, 3]^T \in \ker(L)$.

Note that to check $[2,-1,4]^T \in \text{range}(L)$ is same as to check whether given system of linear equations

$$5x + y - z = 2$$
$$-3x + z = -1$$
$$x - y - z = 4$$

is consistent or not.

Since above system of equations is inconsistent (show it!), $[2, -1, 4]^T \notin \text{range}(L)$.

$$L([x,y,z]) = [0,y]$$
 for all $[x,y,z] \in \mathbb{R}^3$

$$L([x,y,z]) = [0,y]$$
 for all $[x,y,z] \in \mathbb{R}^3$

• Find range(L).

$$L([x,y,z]) = [0,y]$$
 for all $[x,y,z] \in \mathbb{R}^3$

- Find range(L).
- Find the dimension of ker(L) and range(L).

$$L([x,y,z]) = [0,y]$$
 for all $[x,y,z] \in \mathbb{R}^3$

- Find range(L).
- Find the dimension of ker(L) and range(L).

$$\mathsf{range}(L) = \left\{ L([x, y, z]) \mid [x, y, z] \in \mathbb{R}^3 \right\}$$

$$L([x,y,z]) = [0,y]$$
 for all $[x,y,z] \in \mathbb{R}^3$

- Find range(L).
- Find the dimension of $\ker(L)$ and $\operatorname{range}(L)$.

$$\begin{aligned} \mathsf{range}(L) &= \left\{ L([x,y,z]) \mid [x,y,z] \in \mathbb{R}^3 \right\} \\ &= \left\{ [0,y] \mid y \in \mathbb{R} \right\} \end{aligned}$$

$$range(L) = \{y[0, 1] \mid y \in \mathbb{R}\}$$

$$\mathsf{range}(L) = \{ y[0,1] \mid y \in \mathbb{R} \}$$

Note that $range(L) = span\{[0, 1]\}.$

$$\mathsf{range}(L) = \{y[0,1] \mid y \in \mathbb{R}\}$$

Note that $range(L) = span\{[0,1]\}$. Since $\{[0,1]\}$ is LI subset of \mathbb{R}^2 (Why?).

$$\mathsf{range}(L) = \{y[0,1] \mid y \in \mathbb{R}\}$$

$$\mathsf{range}(L) = \{y[0,1] \mid y \in \mathbb{R}\}$$

$$\ker(L) = \{ [x, 0, z] \mid x, z \in \mathbb{R} \}$$

$$\mathsf{range}(L) = \{y[0,1] \mid y \in \mathbb{R}\}$$

Note that $range(L) = span\{[0,1]\}$. Since $\{[0,1]\}$ is LI subset of \mathbb{R}^2 (Why?). Thus, the set $B = \{[0,1]\}$ is a basis of range(L) so that dim(range(L)) = 1

$$\ker(L) = \{ [x, 0, z] \mid x, z \in \mathbb{R} \}$$
 (see Example 6)

$$\mathsf{range}(L) = \{ y[0,1] \mid y \in \mathbb{R} \}$$

$$\begin{split} \ker(L) &= \{ [x,0,z] \mid x,z \in \mathbb{R} \} \quad \text{(see Example 6)} \\ &= \{ x[1,0,0] + z[0,0,1] \mid x,z \in \mathbb{R} \} \end{split}$$

$$\mathsf{range}(L) = \{y[0,1] \mid y \in \mathbb{R}\}$$

$$\begin{split} \ker(L) &= \{ [x,0,z] \mid x,z \in \mathbb{R} \} \quad (\text{see Example 6}) \\ &= \{ x[1,0,0] + z[0,0,1] \mid x,z \in \mathbb{R} \} \\ &= \text{span} \{ [1,0,0], [0,0,1] \} \end{split}$$

$$\mathsf{range}(L) = \{y[0,1] \mid y \in \mathbb{R}\}$$

$$\begin{aligned} \ker(L) &= \{ [x,0,z] \mid x,z \in \mathbb{R} \} &\quad (\text{see Example 6}) \\ &= \{ x[1,0,0] + z[0,0,1] \mid x,z \in \mathbb{R} \} \\ &= \text{span} \{ [1,0,0], [0,0,1] \} \end{aligned}$$

Now, the set $\{[1,0,0],[0,0,1]\}$ of vectors is LI subset of \mathbb{R}^3 (verify!).

$$\mathsf{range}(L) = \{y[0,1] \mid y \in \mathbb{R}\}$$

$$\begin{aligned} \ker(L) &= \{ [x,0,z] \mid x,z \in \mathbb{R} \} & \text{(see Example 6)} \\ &= \{ x[1,0,0] + z[0,0,1] \mid x,z \in \mathbb{R} \} \\ &= \text{span} \{ [1,0,0], [0,0,1] \} \end{aligned}$$

Now, the set $\{[1,0,0],[0,0,1]\}$ of vectors is LI subset of \mathbb{R}^3 (verify!). Hence, the set $\{[1,0,0],[0,0,1]\}$ for a basis of $\ker(L)$ and $\dim(\ker(L))=2$.

$$L([x, y, z]) = [x - 2y, y + z].$$

$$L([x, y, z]) = [x - 2y, y + z].$$

Find ker(L) and range(L).

$$L([x, y, z]) = [x - 2y, y + z].$$

Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

$$L([x, y, z]) = [x - 2y, y + z].$$

Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

$$\ker(L) = \{ [x, y, z] \in \mathbb{R}^3 \mid L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \}$$

$$L([x, y, z]) = [x - 2y, y + z].$$

Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

$$\ker(L) = \{ [x, y, z] \in \mathbb{R}^3 \mid L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \}$$
$$= \{ [x, y, z] \in \mathbb{R}^3 \mid [x - 2y, y + z] = [0, 0] \}$$

$$L([x, y, z]) = [x - 2y, y + z].$$

Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

$$\ker(L) = \{ [x, y, z] \in \mathbb{R}^3 \mid L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \}$$

$$= \{ [x, y, z] \in \mathbb{R}^3 \mid [x - 2y, y + z] = [0, 0] \}$$

$$= \{ [x, y, z] \in \mathbb{R}^3 \mid x = 2y, z = -y \}$$

$$L([x, y, z]) = [x - 2y, y + z].$$

Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

$$\ker(L) = \{ [x, y, z] \in \mathbb{R}^3 \mid L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \}$$

$$= \{ [x, y, z] \in \mathbb{R}^3 \mid [x - 2y, y + z] = [0, 0] \}$$

$$= \{ [x, y, z] \in \mathbb{R}^3 \mid x = 2y, z = -y \}$$

$$= \{ [2y, y, -y] \mid y \in \mathbb{R} \}$$

$$L([x, y, z]) = [x - 2y, y + z].$$

Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

$$\begin{split} \ker(L) &= \left\{ [x,y,z] \in \mathbb{R}^3 \mid L([x,y,z]) = \mathbf{0}_{\mathbb{R}^2} \right\} \\ &= \left\{ [x,y,z] \in \mathbb{R}^3 \mid [x-2y,y+z] = [0,0] \right\} \\ &= \left\{ [x,y,z] \in \mathbb{R}^3 \mid x=2y,z=-y \right\} \\ &= \left\{ [2y,y,-y] \mid y \in \mathbb{R} \right\} \\ &= \operatorname{span}\{[2,1,-1]\} \end{split}$$

$$\mathsf{range}(L) = \left\{ L([x,y,z]) \mid [x,y,z] \in \mathbb{R}^3 \right\}$$

$$\begin{aligned} \mathsf{range}(L) &= \left\{ L([x,y,z]) \mid [x,y,z] \in \mathbb{R}^3 \right\} \\ &= \left\{ [x-2y,y+z] \mid x,y,z \in \mathbb{R} \right\} \end{aligned}$$

$$\begin{split} \mathsf{range}(L) &= \left\{ L([x,y,z]) \mid [x,y,z] \in \mathbb{R}^3 \right\} \\ &= \left\{ [x-2y,y+z] \mid x,y,z \in \mathbb{R} \right\} \\ &= \left\{ x[1,0] + y[-2,1] + z[0,1] \mid x,y,z \in \mathbb{R} \right\} \end{split}$$

$$\begin{split} \mathsf{range}(L) &= \left\{ L([x,y,z]) \mid [x,y,z] \in \mathbb{R}^3 \right\} \\ &= \left\{ [x-2y,y+z] \mid x,y,z \in \mathbb{R} \right\} \\ &= \left\{ x[1,0] + y[-2,1] + z[0,1] \mid x,y,z \in \mathbb{R} \right\} \\ &= \mathsf{span}\{[1,0],[-2,1],[0,1]\} \end{split}$$

$$\begin{split} \mathsf{range}(L) &= \left\{ L([x,y,z]) \mid [x,y,z] \in \mathbb{R}^3 \right\} \\ &= \left\{ [x-2y,y+z] \mid x,y,z \in \mathbb{R} \right\} \\ &= \left\{ x[1,0] + y[-2,1] + z[0,1] \mid x,y,z \in \mathbb{R} \right\} \\ &= \mathsf{span}\{[1,0],[-2,1],[0,1]\} \\ &= \mathsf{span}\{[1,0],[0,1]\} \end{split}$$

$$\begin{split} \mathsf{range}(L) &= \left\{ L([x,y,z]) \mid [x,y,z] \in \mathbb{R}^3 \right\} \\ &= \left\{ [x-2y,y+z] \mid x,y,z \in \mathbb{R} \right\} \\ &= \left\{ x[1,0] + y[-2,1] + z[0,1] \mid x,y,z \in \mathbb{R} \right\} \\ &= \mathsf{span}\{[1,0],[-2,1],[0,1]\} \\ &= \mathsf{span}\{[1,0],[0,1]\} \end{split}$$

Since the set $\{[1,0],[0,1]\}$ is LI. Thus,

$$\{[1,0],[0,1]\}$$

is a basis for range(L).

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(ax^{3} + bx^{2} + cx + d) = 3ax^{2} + 2bx + c.$$

Show that L is a linear transformation.

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(ax^{3} + bx^{2} + cx + d) = 3ax^{2} + 2bx + c.$$

- lacktriangle Show that L is a linear transformation.
- Find $\ker(L)$ and range(L).

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(ax^{3} + bx^{2} + cx + d) = 3ax^{2} + 2bx + c.$$

- Show that L is a linear transformation.
- lacksquare Find $\ker(L)$ and $\operatorname{range}(L)$.

Answer:

$$\ker(L) = \left\{0x^3 + 0x^2 + 0x + d \mid d \in \mathbb{R}\right\}$$
$$\operatorname{range}(L) = \mathcal{P}_2.$$

$$L: \mathbb{R}^4 o \mathcal{P}_2$$
 given by

$$L([a, b, c, d]) = a + (b + c)x + (b - d)x^{2}.$$

• Find ker(L) and range(L).

$$L: \mathbb{R}^4 o \mathcal{P}_2$$
 given by

$$L([a, b, c, d]) = a + (b + c)x + (b - d)x^{2}.$$

- Find $\ker(L)$ and range(L).
- **②** Find a basis for ker(L) and range(L).

$$L: \mathbb{R}^4 o \mathcal{P}_2 \quad ext{given by}$$
 $L([a,b,c,d]) = a + (b+c)x + (b-d)x^2.$

- Find ker(L) and range(L).
- **I** Find a basis for ker(L) and range(L).

Answer:

$$\ker(L) = \{[0, b, -b, b] \mid b \in \mathbb{R}\} \text{ and } B = \{[0, 1, -1, 1]\}$$

$$L: \mathbb{R}^4 o \mathcal{P}_2 \quad ext{given by}$$
 $L([a,b,c,d]) = a + (b+c)x + (b-d)x^2.$

- Find $\ker(L)$ and range(L).
- **2** Find a basis for ker(L) and range(L).

Answer:

$$\ker(L) = \{[0, b, -b, b] \mid b \in \mathbb{R}\} \text{ and } B = \{[0, 1, -1, 1]\}$$

$$\mathsf{range}(L) = \mathsf{span}\{1, x + x^2, x, x^2\} \text{ and } B = \{1, x, x^2\}$$

Example 9: Let $L: \mathbb{R}^3 \to \mathbb{R}^4$ be a LT given by

$$L([x, y, z]) = [x, y - z, x - y + z, x + y - z].$$

Example 9: Let $L: \mathbb{R}^3 \to \mathbb{R}^4$ be a LT given by

$$L([x, y, z]) = [x, y - z, x - y + z, x + y - z].$$

Find a basis for ker(L) and range(L).

Example 9: Let $L: \mathbb{R}^3 \to \mathbb{R}^4$ be a LT given by

$$L([x, y, z]) = [x, y - z, x - y + z, x + y - z].$$

Find a basis for ker(L) and range(L).

Answer:

- $\{[0, 1, 1]\}$ is a basis of ker(L).
- $\{[1,0,1,1],[0,1,-1,1]\}$ is a basis for range(L).

Step 1: Express L(X) = AX for some $m \times n$ matrix A.

Step 1: Express L(X) = AX for some $m \times n$ matrix A. In Example 9, note that L(X) = AX where

Step 1: Express L(X) = AX for some $m \times n$ matrix A. In Example 9, note that L(X) = AX where

$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

28 / 122

$$B = \mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$B = \mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 3: Solve the system BX = 0 to find $\ker(L)$ such that $\ker(L) = \operatorname{span}(S)$ for some $S \subseteq \mathbb{R}^n$.

$$B = \mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 3: Solve the system BX = 0 to find $\ker(L)$ such that $\ker(L) = \operatorname{span}(S)$ for some $S \subseteq \mathbb{R}^n$. The system corresponding to B is x = 0, y = z.

$$\ker(L) = \{ X \in \mathbb{R}^n | L(X) = AX = \mathbf{0} \}$$

$$B = \mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 3: Solve the system BX=0 to find $\ker(L)$ such that $\ker(L)=\operatorname{span}(S)$ for some $S\subseteq\mathbb{R}^n$. The system corresponding to B is $x=0,\,y=z$.

$$\ker(L) = \{ X \in \mathbb{R}^n | L(X) = AX = \mathbf{0} \}$$
$$= \{ X \in \mathbb{R}^n | BX = \mathbf{0} \}$$

$$B = \mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 3: Solve the system BX=0 to find $\ker(L)$ such that $\ker(L)=\operatorname{span}(S)$ for some $S\subseteq\mathbb{R}^n$. The system corresponding to B is $x=0,\,y=z.$

$$\begin{aligned} \ker(L) &= \{ X \in \mathbb{R}^n | L(X) = AX = \mathbf{0} \} \\ &= \{ X \in \mathbb{R}^n \mid BX = \mathbf{0} \} \\ &= \{ [0, y, y] \mid y \in \mathbb{R} \} \end{aligned}$$

$$\ker(L) = \operatorname{span}\{[0, 1, 1]\}$$

$$\ker(L) = \text{span}\{[0, 1, 1]\}$$

 $\ker(L) = \text{span}(S)$, where $S = \{[0, 1, 1]\}$

$$\ker(L) = \text{span}\{[0, 1, 1]\}$$

 $\ker(L) = \text{span}(S)$, where $S = \{[0, 1, 1]\}$

Step 4: Find a LI subset of S which forms a basis for $\ker(L)$.

$$\ker(L) = \text{span}\{[0, 1, 1]\}$$

 $\ker(L) = \text{span}(S)$, where $S = \{[0, 1, 1]\}$

Step 4: Find a LI subset of S which forms a basis for $\ker(L)$. Since the set $\{[0,1,1]\}$ is a LI so it is a basis of $\ker(L)$.

Step 1: Find RREF of A.

Step 1: Find RREF of A.

$$\mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 1: Find RREF of A.

$$\mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 2: Column vectors in A corresponding to **pivot columns** of $\mathsf{RREF}(A)$ forms a basis for $\mathsf{range}(L)$.

Step 1: Find RREF of A.

$$\mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 2: Column vectors in A corresponding to **pivot columns** of $\mathsf{RREF}(A)$ forms a basis for $\mathsf{range}(L)$. Note that, Columns I and II have leading entry.

Step 1: Find RREF of A.

$$\mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 2: Column vectors in A corresponding to **pivot columns** of RREF(A) forms a basis for range(L). Note that, Columns I and II have leading entry. Thus, the corresponding column vector of A i.e. $\{[1,0,1,1],[0,1,-1,1]\}$ is a basis of range (L).

The Dimension Theorem:

The Dimension Theorem: If $L: \mathcal{V} \to \mathcal{W}$ is a LT and \mathcal{V} is finite dimensional, then $\operatorname{range}(L)$ is finite dimensional, and

$$\dim(\ker(L)) + \dim(\mathsf{range}(L)) = \dim(\mathcal{V}).$$

The Dimension Theorem: If $L: \mathcal{V} \to \mathcal{W}$ is a LT and \mathcal{V} is finite dimensional, then $\operatorname{range}(L)$ is finite dimensional, and

$$\dim(\ker(L)) + \dim(\mathsf{range}(L)) = \dim(\mathcal{V}).$$

Sometimes $\dim(\ker(L))$ and $\dim(\operatorname{range}(L))$ is also known as $\operatorname{nullity}(L)$ and $\operatorname{rank}(L)$, respectively.

$$L(a + bx + cx^2) = x(a + bx + cx^2).$$

$$L(a + bx + cx^2) = x(a + bx + cx^2).$$

Find $\dim(\ker(L))$ and $\dim(\mathsf{range}(L))$.

$$L(a + bx + cx^2) = x(a + bx + cx^2).$$

Find $\dim(\ker(L))$ and $\dim(\mathsf{range}(L))$.

Solution:

$$\ker(L) = \{a + bx + cx^2 \in \mathcal{P}_2 \mid L(a + bx + cx^2) = \mathbf{0}_{\mathcal{P}_3} \}$$

$$L(a + bx + cx^2) = x(a + bx + cx^2).$$

Find $\dim(\ker(L))$ and $\dim(\mathsf{range}(L))$.

Solution:

$$\ker(L) = \{a + bx + cx^2 \in \mathcal{P}_2 \mid L(a + bx + cx^2) = \mathbf{0}_{\mathcal{P}_3}\}\$$

 $\ker(L) = \{\mathbf{0}_{\mathcal{P}_2}\}\$

$$L(a + bx + cx^2) = x(a + bx + cx^2).$$

Find $\dim(\ker(L))$ and $\dim(\mathsf{range}(L))$.

Solution:

$$\ker(L) = \{a + bx + cx^2 \in \mathcal{P}_2 \mid L(a + bx + cx^2) = \mathbf{0}_{\mathcal{P}_3}\}$$

 $\ker(L) = \{\mathbf{0}_{\mathcal{P}_2}\} \text{ implies } \dim(\ker(L)) = 0.$

$$L(a + bx + cx^2) = x(a + bx + cx^2).$$

Find $\dim(\ker(L))$ and $\dim(\mathsf{range}(L))$.

Solution:

$$\ker(L) = \{a + bx + cx^2 \in \mathcal{P}_2 \mid L(a + bx + cx^2) = \mathbf{0}_{\mathcal{P}_3}\}$$

 $\ker(L) = \{\mathbf{0}_{\mathcal{P}_2}\} \text{ implies } \dim(\ker(L)) = 0.$

Since $\dim \mathcal{P}_2 = 3$ by dimension theorem, we have

$$L(a + bx + cx^2) = x(a + bx + cx^2).$$

Find $\dim(\ker(L))$ and $\dim(\mathsf{range}(L))$.

Solution:

$$\ker(L) = \{a + bx + cx^2 \in \mathcal{P}_2 \mid L(a + bx + cx^2) = \mathbf{0}_{\mathcal{P}_3}\}$$

 $\ker(L) = \{\mathbf{0}_{\mathcal{P}_2}\} \text{ implies } \dim(\ker(L)) = 0.$

Since $\dim \mathcal{P}_2 = 3$ by dimension theorem, we have

$$\dim(\mathsf{range}(L)) = 3 - 0 = 3.$$

$$L(A) = \mathsf{trace}(A)$$

 $L(A) = \operatorname{trace}(A)(\operatorname{sum} \operatorname{of} \operatorname{the diagonal entries of} A).$

L(A) = trace(A)(sum of the diagonal entries of A).

Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

L(A) = trace(A)(sum of the diagonal entries of A).

Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

Answer:

$$\ker(L) = \left\{ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{bmatrix}_{3 \times 3} \mid a, b, c, d, e, f, g, h \in \mathbb{R} \right\}$$

Note that

L(A) = trace(A)(sum of the diagonal entries of A).

Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

Answer:

$$\ker(L) = \left\{ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{bmatrix}_{3 \times 3} \mid a, b, c, d, e, f, g, h \in \mathbb{R} \right\}$$

Note that $\dim(\ker(L)) = 8$ (show it).

L(A) = trace(A)(sum of the diagonal entries of A).

Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

Answer:

$$\ker(L) = \left\{ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{bmatrix}_{3 \times 3} \mid a, b, c, d, e, f, g, h \in \mathbb{R} \right\}$$

Note that $\dim(\ker(L)) = 8$ (show it). Since range $(L) = \mathbb{R}$

L(A) = trace(A)(sum of the diagonal entries of A).

Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

Answer:

$$\ker(L) = \left\{ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{bmatrix}_{3 \times 3} \mid a, b, c, d, e, f, g, h \in \mathbb{R} \right\}$$

Note that $\dim(\ker(L)) = 8$ (show it). Since $\operatorname{range}(L) = \mathbb{R}$ so that $\dim(\operatorname{range}(L)) = 1$.

Exercise: Let \mathcal{W} be the vector space of all 2×2 symmetric matrices. Define a LT $L: \mathcal{W} \to \mathcal{P}_2$ by

$$L\left(\begin{bmatrix} a & b \\ b & c \end{bmatrix}\right) = (a-b) + (b-c)x + (c-a)x^2$$

Exercise: Let \mathcal{W} be the vector space of all 2×2 symmetric matrices. Define a LT $L: \mathcal{W} \to \mathcal{P}_2$ by

$$L\left(\begin{bmatrix} a & b \\ b & c \end{bmatrix}\right) = (a-b) + (b-c)x + (c-a)x^2$$

Find $\dim(\ker(L))$ and $\dim(\mathsf{range}(L))$.

Exercise: Let \mathcal{W} be the vector space of all 2×2 symmetric matrices. Define a LT $L: \mathcal{W} \to \mathcal{P}_2$ by

$$L\left(\begin{bmatrix} a & b \\ b & c \end{bmatrix}\right) = (a-b) + (b-c)x + (c-a)x^2$$

Find $\dim(\ker(L))$ and $\dim(\operatorname{range}(L))$.

Answer: $\dim(\ker(L)) = 1$ and $\dim(\operatorname{range}(L)) = 2$.

Exercise: Let $\{e_1,e_2,e_3,e_4\}$ be standard basis for \mathbb{R}^4 and $L:\mathbb{R}^4\to\mathbb{R}^3$ be a LT given by

Exercise: Let $\{e_1, e_2, e_3, e_4\}$ be standard basis for \mathbb{R}^4 and $L: \mathbb{R}^4 \to \mathbb{R}^3$ be a LT given by

$$L(e_1) = [1, 1, 1], L(e_2) = [1, -1, 1]$$

 $L(e_3) = [1, 0, 0], L(e_4) = [1, 0, 1]$

Exercise: Let $\{e_1, e_2, e_3, e_4\}$ be standard basis for \mathbb{R}^4 and $L: \mathbb{R}^4 \to \mathbb{R}^3$ be a LT given by

$$L(e_1) = [1, 1, 1], L(e_2) = [1, -1, 1]$$

 $L(e_3) = [1, 0, 0], L(e_4) = [1, 0, 1]$

- Find ker(L) and dim(ker(L)).
- Find range(L) and dim(range(L)).

Exercise: Let $\{e_1, e_2, e_3, e_4\}$ be standard basis for \mathbb{R}^4 and $L: \mathbb{R}^4 \to \mathbb{R}^3$ be a LT given by

$$L(e_1) = [1, 1, 1], L(e_2) = [1, -1, 1]$$

 $L(e_3) = [1, 0, 0], L(e_4) = [1, 0, 1]$

- Find ker(L) and dim(ker(L)).
- Find range(L) and dim(range(L)).

Answer: $\dim(\ker(L)) = 1$ and $\dim(\operatorname{range}(L)) = 3$.

Exercise: For each $\mathbf{p} \in \mathcal{P}_2$, consider $L: \mathcal{P}_2 \to \mathcal{P}_4$ given by $L(\mathbf{p}) = x^2 \mathbf{p}$.

• Find ker(L) and dim(ker(L)).

Exercise: For each $\mathbf{p} \in \mathcal{P}_2$, consider $L: \mathcal{P}_2 \to \mathcal{P}_4$ given by $L(\mathbf{p}) = x^2 \mathbf{p}$.

- Find ker(L) and dim(ker(L)).
- Find range(L) and dim(range(L)).

Exercise: For each $\mathbf{p} \in \mathcal{P}_2$, consider $L: \mathcal{P}_2 \to \mathcal{P}_4$ given by $L(\mathbf{p}) = x^2 \mathbf{p}$.

- Find ker(L) and dim(ker(L)).
- Find range(L) and dim(range(L)).

Answer: $\dim(\ker(L)) = 0$ and $\dim(\operatorname{range}(L)) = 3$.

Definition: A linear transformation $L: \mathcal{V} \to \mathcal{W}$ one-to-one if and only if

Definition: A linear transformation $L: \mathcal{V} \to \mathcal{W}$ one-to-one if and only if for all $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$, $L(\mathbf{v}_1) = L(\mathbf{v}_2)$ implies $\mathbf{v}_1 = \mathbf{v}_2$,

Definition: A linear transformation $L: \mathcal{V} \to \mathcal{W}$ one-to-one if and only if for all $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$, $L(\mathbf{v}_1) = L(\mathbf{v}_2)$ implies $\mathbf{v}_1 = \mathbf{v}_2$, or if $\mathbf{v}_1 \neq \mathbf{v}_2$ implies $L(\mathbf{v}_1) \neq L(\mathbf{v}_2)$.

Definition: A linear transformation $L: \mathcal{V} \to \mathcal{W}$ one-to-one if and only if for all $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$, $L(\mathbf{v}_1) = L(\mathbf{v}_2)$ implies $\mathbf{v}_1 = \mathbf{v}_2$, or if $\mathbf{v}_1 \neq \mathbf{v}_2$ implies $L(\mathbf{v}_1) \neq L(\mathbf{v}_2)$.

L is **onto** if and only if,

Definition: A linear transformation $L: \mathcal{V} \to \mathcal{W}$ one-to-one if and only if for all $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$, $L(\mathbf{v}_1) = L(\mathbf{v}_2)$ implies $\mathbf{v}_1 = \mathbf{v}_2$, or if $\mathbf{v}_1 \neq \mathbf{v}_2$ implies $L(\mathbf{v}_1) \neq L(\mathbf{v}_2)$.

L is **onto** if and only if, for each $\mathbf{w} \in \mathcal{W}$, there is some $\mathbf{v} \in \mathcal{V}$ such that $L(\mathbf{v}) = \mathbf{w}$.

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(\mathbf{p}) = \mathbf{p}'.$$

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(\mathbf{p}) = \mathbf{p}'.$$

Check if L is one-to-one and onto.

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(\mathbf{p}) = \mathbf{p}'.$$

Check if L is one-to-one and onto.

Solution: Consider $\mathbf{p}_1 = x + 2$ and $\mathbf{p}_2 = x + 4$.

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(\mathbf{p}) = \mathbf{p}'.$$

Check if L is one-to-one and onto.

Solution: Consider $\mathbf{p}_1 = x + 2$ and $\mathbf{p}_2 = x + 4$.

Since, $L(\mathbf{p}_1) = L(\mathbf{p}_2) = 1$ implies

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(\mathbf{p}) = \mathbf{p}'.$$

Check if L is one-to-one and onto.

Solution: Consider $\mathbf{p}_1 = x + 2$ and $\mathbf{p}_2 = x + 4$.

Since, $L(\mathbf{p}_1) = L(\mathbf{p}_2) = 1$ implies L is not one-to-one.

Example 11: Consider a LT

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(\mathbf{p}) = \mathbf{p}'.$$

Check if *L* is one-to-one and onto.

Solution: Consider $\mathbf{p}_1 = x + 2$ and $\mathbf{p}_2 = x + 4$.

Since, $L(\mathbf{p}_1) = L(\mathbf{p}_2) = 1$ implies L is not one-to-one.

Let **q** be an arbitrary element in \mathcal{P}_2 i.e.

$$\mathbf{q} = a + bx + cx^2.$$

Example 11: Consider a LT

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(\mathbf{p}) = \mathbf{p}'.$$

Check if L is one-to-one and onto.

Solution: Consider $\mathbf{p}_1 = x + 2$ and $\mathbf{p}_2 = x + 4$.

Since, $L(\mathbf{p}_1) = L(\mathbf{p}_2) = 1$ implies L is not one-to-one.

Let **q** be an arbitrary element in \mathcal{P}_2 i.e.

 $\mathbf{q} = a + bx + cx^2$. Note that $a + bx + cx^2 = \mathbf{p}'$, where

$$\mathbf{p} = ax + \left(\frac{b}{2}\right)x^2 + \left(\frac{c}{3}\right)x^3$$
 so that $L(\mathbf{p}) = \mathbf{q}$.

Example 11: Consider a LT

$$L: \mathcal{P}_3 \to \mathcal{P}_2$$
 given by

$$L(\mathbf{p}) = \mathbf{p}'.$$

Check if L is one-to-one and onto.

Solution: Consider $\mathbf{p}_1 = x + 2$ and $\mathbf{p}_2 = x + 4$.

Since, $L(\mathbf{p}_1) = L(\mathbf{p}_2) = 1$ implies L is not one-to-one.

Let **q** be an arbitrary element in \mathcal{P}_2 i.e.

 $\mathbf{q} = a + bx + cx^2$. Note that $a + bx + cx^2 = \mathbf{p}'$, where

 $\mathbf{p} = ax + \left(\frac{b}{2}\right)x^2 + \left(\frac{c}{3}\right)x^3$ so that $L(\mathbf{p}) = \mathbf{q}$. Hence, $L(\mathbf{p}) = \mathbf{q}$

- ① $L: \mathbb{R}^2 \to \mathbb{R}^3$ given by L([x,y]) = [2x, x-y, 0].
- \bullet $L: \mathcal{M}_{22} \to \mathcal{M}_{22}$ given by $L(A) = A^T$.

- \bullet $L: \mathbb{R}^2 \to \mathbb{R}^3$ given by L([x,y]) = [2x, x-y, 0].
- $lacksquare L: \mathbb{R}^3 o \mathbb{R}^4$ given by L([x,y,z]) = [y,z,-y,0].
- \bullet $L: \mathcal{M}_{22} \to \mathcal{M}_{22}$ given by $L(A) = A^T$.

Answer:

one-to-one but not onto.

- \bullet $L: \mathbb{R}^2 \to \mathbb{R}^3$ given by L([x,y]) = [2x, x-y, 0].
- $lacksquare L: \mathbb{R}^3 o \mathbb{R}^4$ given by L([x,y,z]) = [y,z,-y,0].
- \bullet $L: \mathcal{M}_{22} \to \mathcal{M}_{22}$ given by $L(A) = A^T$.

Answer:

- one-to-one but not onto.
- neither one-to-one nor onto

- \bullet $L: \mathbb{R}^2 \to \mathbb{R}^3$ given by L([x,y]) = [2x, x-y, 0].
- \bullet $L: \mathcal{M}_{22} \to \mathcal{M}_{22}$ given by $L(A) = A^T$.

Answer:

- one-to-one but not onto.
- neither one-to-one nor onto
- one-to-one and onto.

Theorem 3: Let \mathcal{V} and \mathcal{W} be vector spaces, and let $L: \mathcal{V} \to \mathcal{W}$ be a LT. Then

Theorem 4: Let V and W be vector spaces, and let $L: V \to W$ be a LT.

Theorem 4: Let $\mathcal V$ and $\mathcal W$ be vector spaces, and let $L:\mathcal V\to\mathcal W$ be a LT. If $\mathcal W$ is finite dimensional, then L is onto

Theorem 4: Let \mathcal{V} and \mathcal{W} be vector spaces, and let $L: \mathcal{V} \to \mathcal{W}$ be a LT. If \mathcal{W} is finite dimensional, then L is onto if and only if $\dim(\operatorname{range}(L)) = \dim(\mathcal{W})$.

$$L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix}$$

$$L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix}$$

Is L one-to-one and onto?

$$L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix}$$

Is L one-to-one and onto?

Solution: Let
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \in \ker(L)$$
.

$$L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix}$$

Is L one-to-one and onto?

Solution: Let $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(L)$. Then

$$L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix}$$

Is L one-to-one and onto?

Solution: Let $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(L)$. Then

$$L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-b & 0 & c-d \\ c+d & a+b & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

We have a - b = c - d = c + d = a + b = 0 implies a = b = c = d = 0.

Hence, $\ker(L)$ contains only the zero matrix (the zero vector of \mathcal{M}_{22}).

Note that

Note that

$$\dim(\mathsf{range}(L)) = \dim(\mathcal{M}_{22}) - \dim(\ker(L))$$
$$= 4$$
$$\neq \dim(\mathcal{M}_{23}).$$

Note that

$$\dim(\mathsf{range}(L)) = \dim(\mathcal{M}_{22}) - \dim(\ker(L))$$
$$= 4$$
$$\neq \dim(\mathcal{M}_{23}).$$

Hence, L is not onto.

Note that

$$\dim(\mathsf{range}(L)) = \dim(\mathcal{M}_{22}) - \dim(\ker(L))$$
$$= 4$$
$$\neq \dim(\mathcal{M}_{23}).$$

Hence, L is not onto.

Try to find a basis of range(L).

Example 13: Consider a LT $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -7 & 4 & -2 \\ 16 & -7 & 2 \\ 4 & -3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Example 13: Consider a LT $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -7 & 4 & -2 \\ 16 & -7 & 2 \\ 4 & -3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Is *L* one-to-one and onto?

Example 13: Consider a LT $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -7 & 4 & -2 \\ 16 & -7 & 2 \\ 4 & -3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Is L one-to-one and onto?

Solution: The RREF of matrix
$$A = \begin{bmatrix} -7 & 4 & -2 \\ 16 & -7 & 2 \\ 4 & -3 & 2 \end{bmatrix}$$
 is

$$\begin{bmatrix} 1 & 0 & -\frac{2}{5} \\ 0 & 1 & -\frac{6}{5} \\ 0 & 0 & 0 \end{bmatrix}.$$

From range method,

44 / 122

From range method, $\dim(\mathsf{range}(L)) = 2$

From range method, $\dim(\text{range}(L)) = 2$ and by Dimension theorem, $\dim(\ker(L)) = 1$.

From range method, $\dim(\operatorname{range}(L)) = 2$ and by Dimension theorem, $\dim(\ker(L)) = 1$. Hence, L is neither one-to-one nor onto.

Solution: $L(I_n) =$

Solution: $L(I_n) = AI_n - I_nA = \mathbf{0}_{n \times n}$.

Solution:
$$L(I_n) = AI_n - I_nA = \mathbf{0}_{n \times n}$$
. Hence, $I_n \in \ker(L)$

Solution: $L(I_n) = AI_n - I_nA = \mathbf{0}_{n \times n}$. Hence, $I_n \in \ker(L)$ and so, L is not one-to-one.

Solution: $L(I_n) = AI_n - I_nA = \mathbf{0}_{n \times n}$. Hence, $I_n \in \ker(L)$ and so, L is not one-to-one. By Dimension theorem, we see that

Example 14: Let A be a fixed $n \times n$ matrix, and consider a LT $L: \mathcal{M}_{nn} \to \mathcal{M}_{nn}$ given by L(B) = AB - BA. Is L one-to-one and onto?

Solution: $L(I_n) = AI_n - I_nA = \mathbf{0}_{n \times n}$. Hence, $I_n \in \ker(L)$ and so, L is not one-to-one. By Dimension theorem, we see that

$$\dim(\mathsf{range}(L)) = n^2 - \dim(\ker(L))$$

Example 14: Let A be a fixed $n \times n$ matrix, and consider a LT $L: \mathcal{M}_{nn} \to \mathcal{M}_{nn}$ given by L(B) = AB - BA. Is L one-to-one and onto?

Solution: $L(I_n) = AI_n - I_nA = \mathbf{0}_{n \times n}$. Hence, $I_n \in \ker(L)$ and so, L is not one-to-one. By Dimension theorem, we see that

$$\dim(\mathsf{range}(L)) = n^2 - \dim(\ker(L))$$

$$\neq n^2$$

$$\neq \dim \mathcal{M}_{nn}$$

Example 14: Let A be a fixed $n \times n$ matrix, and consider a LT $L: \mathcal{M}_{nn} \to \mathcal{M}_{nn}$ given by L(B) = AB - BA. Is L one-to-one and onto?

Solution: $L(I_n) = AI_n - I_nA = \mathbf{0}_{n \times n}$. Hence, $I_n \in \ker(L)$ and so, L is not one-to-one. By Dimension theorem, we see that

$$\dim(\mathsf{range}(L)) = n^2 - \dim(\ker(L))$$

$$\neq n^2$$

$$\neq \dim \mathcal{M}_{nn}$$

Hence, L is not onto.

Example 15: Consider a LT $L: \mathcal{P} \to \mathcal{P}$ given by L(p(x)) = xp(x).

Solution:

$$\ker(L) = \{p(x)|L(p(x)) = 0_{\mathcal{P}}\}\$$

Solution:

$$\ker(L) = \{p(x)|L(p(x)) = 0_{\mathcal{P}}\}\$$

implies $\ker(L) = \{0_{\mathcal{P}}\}.$

Solution:

$$\ker(L) = \{p(x)|L(p(x)) = 0_{\mathcal{P}}\}\$$

implies $\ker(L) = \{0_{\mathcal{P}}\}$. Hence, L is one-to-one.

Solution:

$$\ker(L) = \{p(x)|L(p(x)) = 0_{\mathcal{P}}\}\$$

implies $\ker(L) = \{0_{\mathcal{P}}\}$. Hence, L is one-to-one. Note that the nonzero constant polynomials is not in $\operatorname{range}(L)$,

Solution:

$$\ker(L) = \{p(x)|L(p(x)) = 0_{\mathcal{P}}\}\$$

implies $\ker(L) = \{0_{\mathcal{P}}\}$. Hence, L is one-to-one. Note that the nonzero constant polynomials is not in $\operatorname{range}(L)$, L is not onto.

Solution:

$$\ker(L) = \{p(x)|L(p(x)) = 0_{\mathcal{P}}\}\$$

implies $\ker(L) = \{0_{\mathcal{P}}\}$. Hence, L is one-to-one. Note that the nonzero constant polynomials is not in $\operatorname{range}(L)$, L is not onto.

Question: Can we apply Dimension theorem here?

$$L\left(\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}\right) = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

$$L\left(\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}\right) = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Is L one-to-one and onto?

$$L\left(\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}\right) = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Is L one-to-one and onto?

Answer: *L* is onto but not one-to-one.

$$L\left(\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}\right) = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Is L one-to-one and onto?

Answer: *L* is onto but not one-to-one.

Exercise: Consider a LT $L: \mathcal{P}_2 \to \mathcal{P}_2$ given by

$$L(ax^{2} + bx + c) = (a+b)x^{2} + (b+c)x + (a+c).$$

$$L\left(\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}\right) = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Is L one-to-one and onto?

Answer: *L* is onto but not one-to-one.

Exercise: Consider a LT $L: \mathcal{P}_2 \to \mathcal{P}_2$ given by

 $L(ax^2 + bx + c) = (a + b)x^2 + (b + c)x + (a + c)$. Is *L* one-to-one and onto?

$$L\left(\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}\right) = \begin{bmatrix} a+b & a+c \\ d+e & d+f \end{bmatrix}$$

Is L one-to-one and onto?

Answer: L is onto but not one-to-one.

Exercise: Consider a LT $L: \mathcal{P}_2 \to \mathcal{P}_2$ given by

$$L(ax^2 + bx + c) = (a + b)x^2 + (b + c)x + (a + c)$$
. Is *L* one-to-one and onto?

Answer: L is one-to-one and onto.

$$L\left(\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}\right) = \begin{bmatrix} -5 & 3 & 1 & 18\\ -2 & 1 & 1 & 6\\ -7 & 3 & 4 & 19 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}$$

$$L\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \begin{bmatrix} -5 & 3 & 1 & 18 \\ -2 & 1 & 1 & 6 \\ -7 & 3 & 4 & 19 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Is *L* one-to-one and onto?

$$L\left(\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}\right) = \begin{bmatrix} -5 & 3 & 1 & 18\\ -2 & 1 & 1 & 6\\ -7 & 3 & 4 & 19 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}$$

Is L one-to-one and onto?

Answer: *L* is not one-to-one but onto.

48 / 122

$$L\left(\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}\right) = \begin{bmatrix} -5 & 3 & 1 & 18\\ -2 & 1 & 1 & 6\\ -7 & 3 & 4 & 19 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}$$

Is L one-to-one and onto?

Answer: *L* is not one-to-one but onto.

48 / 122

Invertible linear transformation:

Invertible linear transformation: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. Then L is an invertible LT if and only if

Invertible linear transformation: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. Then L is an invertible LT if and only if there is a function $M: \mathcal{W} \to \mathcal{V}$ such that $(M \circ L)(\mathbf{v}) = \mathbf{v}$, for all $v \in \mathcal{V}$, and $(L \circ M)(\mathbf{w}) = \mathbf{w}$, for all $\mathbf{w} \in \mathcal{W}$.

Invertible linear transformation: Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. Then L is an invertible LT if and only if there is a function $M: \mathcal{W} \to \mathcal{V}$ such that $(M \circ L)(\mathbf{v}) = \mathbf{v}$, for all $v \in \mathcal{V}$, and $(L \circ M)(\mathbf{w}) = \mathbf{w}$, for all $\mathbf{w} \in \mathcal{W}$.

Such a function M, denoted by L^{-1} , is called an inverse of L.

Example 16: Show that $L: \mathcal{P}_n \to \mathcal{P}_n$ given by $L(\mathbf{p}) = \mathbf{p} + \mathbf{p}'$ is an isomorphism.

Example 16: Show that $L: \mathcal{P}_n \to \mathcal{P}_n$ given by $L(\mathbf{p}) = \mathbf{p} + \mathbf{p}'$ is an isomorphism.

Example 16: Show that $L: \mathcal{P}_n \to \mathcal{P}_n$ given by $L(\mathbf{p}) = \mathbf{p} + \mathbf{p}'$ is an isomorphism.

$$L(\mathbf{p} + \mathbf{q}) = (\mathbf{p} + \mathbf{q}) + (\mathbf{p} + \mathbf{q})'$$

Example 16: Show that $L: \mathcal{P}_n \to \mathcal{P}_n$ given by $L(\mathbf{p}) = \mathbf{p} + \mathbf{p}'$ is an isomorphism.

$$L(\mathbf{p} + \mathbf{q}) = (\mathbf{p} + \mathbf{q}) + (\mathbf{p} + \mathbf{q})'$$
$$= \mathbf{p} + \mathbf{p}' + \mathbf{q} + \mathbf{q}'$$

Example 16: Show that $L: \mathcal{P}_n \to \mathcal{P}_n$ given by $L(\mathbf{p}) = \mathbf{p} + \mathbf{p}'$ is an isomorphism.

$$\begin{split} L(\mathbf{p}+\mathbf{q}) &= (\mathbf{p}+\mathbf{q}) + (\mathbf{p}+\mathbf{q})' \\ &= \mathbf{p} + \mathbf{p}' + \mathbf{q} + \mathbf{q}' \\ &= L(\mathbf{p}) + L(\mathbf{q}) \text{ for all } \mathbf{p}, \mathbf{q} \in \mathcal{P}_n. \end{split}$$

Similarly, (show that) $L(c|\mathbf{p}) = cL(\mathbf{p})$ for all real c and $\mathbf{p} \in \mathcal{P}_n$.

Similarly, (show that) $L(c|\mathbf{p}) = cL(\mathbf{p})$ for all real c and $\mathbf{p} \in \mathcal{P}_n$. Hence, L is a linear operator.

Similarly, (show that) $L(c|\mathbf{p}) = cL(\mathbf{p})$ for all real c and $\mathbf{p} \in \mathcal{P}_n$. Hence, L is a linear operator.

$$\ker L = \{ \mathbf{p} \in \mathcal{P}_n \mid L(\mathbf{p}) = \mathbf{0}_{\mathcal{P}_n} \}$$

Similarly, (show that) $L(c|\mathbf{p}) = cL(\mathbf{p})$ for all real c and $\mathbf{p} \in \mathcal{P}_n$. Hence, L is a linear operator.

$$ker L = \{ \mathbf{p} \in \mathcal{P}_n \mid L(\mathbf{p}) = \mathbf{0}_{\mathcal{P}_n} \}$$
$$= \{ \mathbf{p} \in \mathcal{P}_n \mid \mathbf{p} + \mathbf{p}' = \mathbf{0}_{\mathcal{P}_n} \}$$

$$ker L = \{ \mathbf{p} \in \mathcal{P}_n \mid L(\mathbf{p}) = \mathbf{0}_{\mathcal{P}_n} \}$$

$$= \{ \mathbf{p} \in \mathcal{P}_n \mid \mathbf{p} + \mathbf{p}' = \mathbf{0}_{\mathcal{P}_n} \}$$

$$= \{ \mathbf{0}_{\mathcal{P}_n} \}$$

$$\ker L = \{ \mathbf{p} \in \mathcal{P}_n \mid L(\mathbf{p}) = \mathbf{0}_{\mathcal{P}_n} \}$$

$$= \{ \mathbf{p} \in \mathcal{P}_n \mid \mathbf{p} + \mathbf{p}' = \mathbf{0}_{\mathcal{P}_n} \}$$

$$= \{ \mathbf{0}_{\mathcal{P}_n} \}$$

implies L is one-to-one.

$$ker L = \{ \mathbf{p} \in \mathcal{P}_n \mid L(\mathbf{p}) = \mathbf{0}_{\mathcal{P}_n} \}$$
$$= \{ \mathbf{p} \in \mathcal{P}_n \mid \mathbf{p} + \mathbf{p}' = \mathbf{0}_{\mathcal{P}_n} \}$$
$$= \{ \mathbf{0}_{\mathcal{P}_n} \}$$

implies L is one-to-one.

By Dimension theorem,

$$\dim \mathsf{range}(L) = \dim \mathcal{P}_n = n+1$$

so that $range(L) = \mathcal{P}_n$.

$$ker L = \{ \mathbf{p} \in \mathcal{P}_n \mid L(\mathbf{p}) = \mathbf{0}_{\mathcal{P}_n} \}$$

$$= \{ \mathbf{p} \in \mathcal{P}_n \mid \mathbf{p} + \mathbf{p}' = \mathbf{0}_{\mathcal{P}_n} \}$$

$$= \{ \mathbf{0}_{\mathcal{P}_n} \}$$

implies L is one-to-one.

By Dimension theorem,

$$\dim \mathsf{range}(L) = \dim \mathcal{P}_n = n+1$$

so that $range(L) = \mathcal{P}_n$. Thus, L is onto.

$$ker L = \{ \mathbf{p} \in \mathcal{P}_n \mid L(\mathbf{p}) = \mathbf{0}_{\mathcal{P}_n} \}$$
$$= \{ \mathbf{p} \in \mathcal{P}_n \mid \mathbf{p} + \mathbf{p}' = \mathbf{0}_{\mathcal{P}_n} \}$$
$$= \{ \mathbf{0}_{\mathcal{P}_n} \}$$

implies L is one-to-one.

By Dimension theorem,

$$\dim \mathsf{range}(L) = \dim \mathcal{P}_n = n+1$$

so that $range(L) = \mathcal{P}_n$. Thus, L is onto. Hence, L an isomorphism.

 $L: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3$$
 is an isomorphism.

 $L: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3$$
 is an isomorphism.

Hint: First find L([x, y, z]) for all $[x, y, z] \in \mathbb{R}^3$.

 $L: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$L(e_1)=e_1+e_2, L(e_2)=e_2+e_3, L(e_3)=e_1+e_2+e_3$$
 is an isomorphism.

Hint: First find L([x,y,z]) for all $[x,y,z] \in \mathbb{R}^3$. Note that

$$L([x, y, z]) = [x + z, x + y + z, y + z].$$

 $L: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$L(e_1)=e_1+e_2, L(e_2)=e_2+e_3, L(e_3)=e_1+e_2+e_3$$
 is an isomorphism.

Hint: First find L([x,y,z]) for all $[x,y,z] \in \mathbb{R}^3$. Note that

$$L([x, y, z]) = [x + z, x + y + z, y + z].$$

and $\ker(L) = \{0_{\mathbb{R}^3}\}.$

 $L: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3$$
 is an isomorphism.

Hint: First find L([x,y,z]) for all $[x,y,z] \in \mathbb{R}^3$. Note that

$$L([x, y, z]) = [x + z, x + y + z, y + z].$$

and $\ker(L) = \{0_{\mathbb{R}^3}\}$. Thus, L is one-to-one.

$$L: \mathbb{R}^3 \to \mathbb{R}^3$$
 such that

$$L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3$$
 is an isomorphism.

Hint: First find L([x,y,z]) for all $[x,y,z] \in \mathbb{R}^3$. Note that

$$L([x, y, z]) = [x + z, x + y + z, y + z].$$

and $\ker(L)=\{0_{\mathbb{R}^3}\}$. Thus, L is one-to-one. Use dimension theorem and Theorem 4 to conclude L is onto. Hence, L is an isomorphism.

Result: Let $L: \mathcal{V} \to \mathcal{W}$ be a linear transformation, where \mathcal{V} and \mathcal{W} be finite dimensional vector spaces such that $\dim(\mathcal{V}) = \dim(\mathcal{W})$. Then L is one-to-one if and only if L is onto.

Exercise: Show that the linear operator $L: \mathcal{P}_2 \to \mathcal{P}_2$ given by $L(a+bx+cx^2) = (b+c)+(a+c)x+(a+b)x^2$ is an isomorphism.

Exercise: Show that the linear operator $L: \mathcal{P}_2 \to \mathcal{P}_2$ given by $L(a+bx+cx^2) = (b+c)+(a+c)x+(a+b)x^2$ is an isomorphism.

Exercise: Show that the linear transformation $L: \mathcal{M}_{mn} \to \mathcal{M}_{nm}$ given by $L(A) = A^T$ is an isomorphism.

Theorem: A LT $L: \mathcal{V} \to \mathcal{W}$ is an isomorphism if and only if L is an invertible LT.

Example 18: Let $L: \mathbb{R}^3 \to \mathcal{P}_2$ be a LT given by

$$L([x, y, z]) = x + (x + y - z)t + (x + y + z)t^{2}.$$

Example 18: Let $L: \mathbb{R}^3 \to \mathcal{P}_2$ be a LT given by

$$L([x, y, z]) = x + (x + y - z)t + (x + y + z)t^{2}.$$

Is L invertible?

Example 18: Let $L: \mathbb{R}^3 \to \mathcal{P}_2$ be a LT given by

$$L([x, y, z]) = x + (x + y - z)t + (x + y + z)t^{2}.$$

Is L invertible? If yes, find L^{-1} .

Example 18: Let $L: \mathbb{R}^3 \to \mathcal{P}_2$ be a LT given by

$$L([x, y, z]) = x + (x + y - z)t + (x + y + z)t^{2}.$$

Is L invertible? If yes, find L^{-1} .

Solution: First show that L is both one-to-one and onto. Hence, invertible.

$$L^{-1}(a + bt + ct^{2}) = [x, y, z]$$

$$L^{-1}(a + bt + ct^{2}) = [x, y, z]$$

$$\Rightarrow L([x, y, z]) = a + bt + ct^2$$

$$L^{-1}(a + bt + ct^{2}) = [x, y, z]$$

$$\Rightarrow L([x, y, z]) = a + bt + ct^2$$

$$\Rightarrow x + (x + y - z)t + (x + y + z)t^2 = a + bt + ct^2$$

$$L^{-1}(a+bt+ct^2) = [x, y, z]$$

$$\Rightarrow L([x, y, z]) = a+bt+ct^2$$

$$\Rightarrow x + (x+y-z)t + (x+y+z)t^2 = a+bt+ct^2$$

$$\Rightarrow x = a, x+y-z = b, x+y+z = c$$

$$L^{-1}(a+bt+ct^2) = [x,y,z]$$

$$\Rightarrow L([x,y,z]) = a+bt+ct^2$$

$$\Rightarrow x+(x+y-z)t+(x+y+z)t^2 = a+bt+ct^2$$

$$\Rightarrow x = a, x+y-z = b, x+y+z = c$$

$$\Rightarrow x = a, y = \frac{b+c-2a}{2}, z = \frac{c-b}{2}.$$

$$L^{-1}(a + bt + ct^{2}) = [x, y, z]$$

$$\Rightarrow L([x, y, z]) = a + bt + ct^{2}$$

$$\Rightarrow x + (x + y - z)t + (x + y + z)t^{2} = a + bt + ct^{2}$$

$$\Rightarrow x = a, x + y - z = b, x + y + z = c$$

$$\Rightarrow x = a, y = \frac{b + c - 2a}{2}, z = \frac{c - b}{2}.$$

Hence, $L^{-1}(a + bx + cx^2) = \left[a, \frac{b+c-2a}{2}, \frac{c-b}{2}\right].$

Exercise: Let $L: \mathcal{P}_2 \to \mathcal{P}_2$ be a LT given by $L(a+bx+cx^2) = (b+c) + (a+c)x + (a+b)x^2$.

Exercise: Let $L: \mathcal{P}_2 \to \mathcal{P}_2$ be a LT given by $L(a+bx+cx^2)=(b+c)+(a+c)x+(a+b)x^2$. Is L invertible?

Exercise: Let $L: \mathcal{P}_2 \to \mathcal{P}_2$ be a LT given by $L(a+bx+cx^2)=(b+c)+(a+c)x+(a+b)x^2$. Is L invertible? If yes, find L^{-1} .

Exercise: Let $L: \mathcal{P}_2 \to \mathcal{P}_2$ be a LT given by $L(a+bx+cx^2) = (b+c) + (a+c)x + (a+b)x^2$. Is L invertible? If yes, find L^{-1} .

Answer:

$$L^{-1}(a+bx+cx^2) = \frac{1}{2}(b+c-a) + \frac{1}{2}(a+c-b)x + \frac{1}{2}(a+b-c)x^2.$$

$$L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3.$$

 $L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3.$ Is L invertible?

 $L(e_1)=e_1+e_2, L(e_2)=e_2+e_3, L(e_3)=e_1+e_2+e_3.$ Is L invertible? If yes, find L^{-1} .

 $L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3.$ Is L invertible? If yes, find L^{-1} .

Answer: $L^{-1}([x, y, z]) = [y - z, y - x, x - y + z].$

Isomorphic vector spaces: Let \mathcal{V} and \mathcal{W} be vector spaces. Then \mathcal{V} is isomorphic to \mathcal{W} , denoted by $\mathcal{V} \cong \mathcal{W}$, if and only if there exists an isomorphism $L: \mathcal{V} \to \mathcal{W}$.

Isomorphic vector spaces: Let \mathcal{V} and \mathcal{W} be vector spaces. Then \mathcal{V} is isomorphic to \mathcal{W} , denoted by $\mathcal{V} \cong \mathcal{W}$, if and only if there exists an isomorphism $L: \mathcal{V} \to \mathcal{W}$.

Theorem 5: Suppose $\mathcal{V}\cong\mathcal{W}$ and \mathcal{V} and \mathcal{W} are finite dimensional. Then \mathcal{V} is isomorphic to \mathcal{W} if and only if $\dim(\mathcal{V})=\dim(\mathcal{W})$.

Solution: Since, $\dim(\mathbb{R}^n) = n \neq n + 1 = \dim(\mathcal{P}_n)$,

Solution: Since, $\dim(\mathbb{R}^n) = n \neq n + 1 = \dim(\mathcal{P}_n)$, \mathbb{R}^n and \mathcal{P}_n are not isomorphic.

Solution: Since, $\dim(\mathbb{R}^n) = n \neq n + 1 = \dim(\mathcal{P}_n)$, \mathbb{R}^n and \mathcal{P}_n are not isomorphic.

Exercise: Let W be the vector space of all symmetric 2×2 matrices. Show that W is isomorphic to \mathbb{R}^3 .

Exercise: Show that the subspace

$$W = \{ \mathbf{p} \in \mathcal{P}_3 \mid \mathbf{p}(0) = 0 \}$$

is isomorphic to \mathcal{P}_2 .

Section 4.7

Ordered Basis: An **ordered basis** for vector space \mathcal{V} is an ordered n-tuple of vectors $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ such that the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for \mathcal{V} .

Section 4.7

Ordered Basis: An **ordered basis** for vector space \mathcal{V} is an ordered n-tuple of vectors $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ such that the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for \mathcal{V} .

• (e_1, e_2) and (e_2, e_1) are two ordered bases for \mathbb{R}^2 .

Coordinatization: Let $B = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ be an ordered basis for a vector space \mathcal{V} .

Coordinatization: Let $B = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ be an ordered basis for a vector space \mathcal{V} . Suppose that $\mathbf{w} \in \mathcal{V}$ such that

$$\mathbf{w} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$$

Coordinatization: Let $B = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ be an ordered basis for a vector space \mathcal{V} . Suppose that $\mathbf{w} \in \mathcal{V}$ such that

$$\mathbf{W} = a_1 \mathbf{V}_1 + \dots + a_n \mathbf{V}_n$$

Then $[\mathbf{w}]_B$, the coordinatization or coordinates of \mathbf{w} with respect to B is the n-vector $[a_1, a_2, \ldots, a_n]$.

Example 19: Let B = ([4, 2], [1, 3]) be an ordered basis for \mathbb{R}^2 .

Example 19: Let B = ([4, 2], [1, 3]) be an ordered basis for \mathbb{R}^2 . Note that

$$[4,2] = 1[4,2] + 0[1,3].$$

Example 19: Let B = ([4,2],[1,3]) be an ordered basis for \mathbb{R}^2 . Note that

$$[4,2] = 1[4,2] + 0[1,3].$$

Hence, $[4,2]_B = [1,0]$.

Example 19: Let B = ([4, 2], [1, 3]) be an ordered basis for \mathbb{R}^2 . Note that

$$[4,2] = 1[4,2] + 0[1,3].$$

Hence, $[4, 2]_B = [1, 0]$. Similarly,

$$[11, 13] = 2[4, 2] + 3[1, 3].$$

Example 19: Let B = ([4, 2], [1, 3]) be an ordered basis for \mathbb{R}^2 . Note that

$$[4,2] = 1[4,2] + 0[1,3].$$

Hence, $[4,2]_B = [1,0]$. Similarly,

$$[11, 13] = 2[4, 2] + 3[1, 3].$$

Hence, $[11, 13]_B = [2, 3]$.

$$B = ([-4, 5, -1, 0, -1], [1, -3, 2, 2, 5], [1, -2, 1, 1, 3])$$

be an ordered basis of the subspace V of \mathbb{R}^5 .

$$B = ([-4, 5, -1, 0, -1], [1, -3, 2, 2, 5], [1, -2, 1, 1, 3])$$

be an ordered basis of the subspace V of \mathbb{R}^5 .

Compute $[-23, 30, -7, -1, -7]_B$, $[1, 2, 3, 4, 5]_B$.

$$B = ([-4, 5, -1, 0, -1], [1, -3, 2, 2, 5], [1, -2, 1, 1, 3])$$

be an ordered basis of the subspace V of \mathbb{R}^5 .

Compute $[-23, 30, -7, -1, -7]_B$, $[1, 2, 3, 4, 5]_B$.

Solution: To find $[-23, 30, -7, -1, -7]_B$,

$$B = ([-4, 5, -1, 0, -1], [1, -3, 2, 2, 5], [1, -2, 1, 1, 3])$$

be an ordered basis of the subspace V of \mathbb{R}^5 .

Compute
$$[-23, 30, -7, -1, -7]_B$$
, $[1, 2, 3, 4, 5]_B$.

Solution: To find $[-23, 30, -7, -1, -7]_B$, we need to solve the following equation

$$[-23, 30, -7, -1, -7] = a[-4, 5, -1, 0, -1] + b[1, -3, 2, 2, 5] + c[1, -2, 1, 1, 3]$$

or equivalently

or equivalently

$$-4a + b + c = -23$$

$$5a - 3b - 2c = 30$$

$$-a + 2b + c = -7$$

$$2b + c = -1$$

$$-a + 5b + 3c = -7$$

or equivalently

$$-4a + b + c = -23$$

$$5a - 3b - 2c = 30$$

$$-a + 2b + c = -7$$

$$2b + c = -1$$

$$-a + 5b + 3c = -7$$

To solve this system, note that the RREF of the augmented matrix

$$\begin{bmatrix} -4 & 1 & 1 & -23 \\ 5 & -3 & -2 & 30 \\ -1 & 2 & 1 & -7 \\ 0 & 2 & 1 & -1 \\ -1 & 5 & 3 & -7 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 1 & -23 \\ 5 & -3 & -2 & 30 \\ -1 & 2 & 1 & -7 \\ 0 & 2 & 1 & -1 \\ -1 & 5 & 3 & -7 \end{bmatrix}$$
 is

$$\begin{bmatrix} -4 & 1 & 1 & -23 \\ 5 & -3 & -2 & 30 \\ -1 & 2 & 1 & -7 \\ 0 & 2 & 1 & -1 \\ -1 & 5 & 3 & -7 \end{bmatrix} \text{ is } \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 1 & -23 \\ 5 & -3 & -2 & 30 \\ -1 & 2 & 1 & -7 \\ 0 & 2 & 1 & -1 \\ -1 & 5 & 3 & -7 \end{bmatrix} \text{ is } \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence, the unique solution for the system is

$$a = 6, b = -2, c = 3$$

implies

$$\begin{bmatrix} -4 & 1 & 1 & -23 \\ 5 & -3 & -2 & 30 \\ -1 & 2 & 1 & -7 \\ 0 & 2 & 1 & -1 \\ -1 & 5 & 3 & -7 \end{bmatrix} \text{ is } \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence, the unique solution for the system is

$$a = 6, b = -2, c = 3$$

implies

$$[-23, 30, -7, -1, -7]_B = [6, -2, 3].$$

To find $[1,2,3,4,5]_B$, we need solve the following system

To find $[1, 2, 3, 4, 5]_B$, we need solve the following system

$$-4a+b+c=1$$

$$5a-3b-2c=2$$

$$-a+2b+c=3$$

$$2b+c=4$$

$$-a+5b+3c=5$$

To find $[1, 2, 3, 4, 5]_B$, we need solve the following system

$$-4a + b + c = 1$$

$$5a - 3b - 2c = 2$$

$$-a + 2b + c = 3$$

$$2b + c = 4$$

$$-a + 5b + 3c = 5$$

To solve this system, note that the RREF of

$$\begin{bmatrix} -4 & 1 & 1 & 1 \\ 5 & -3 & -2 & 2 \\ -1 & 2 & 1 & 3 \\ 0 & 2 & 1 & 4 \\ -1 & 5 & 3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 1 & 1 \\ 5 & -3 & -2 & 2 \\ -1 & 2 & 1 & 3 \\ 0 & 2 & 1 & 4 \\ -1 & 5 & 3 & 5 \end{bmatrix} \text{ is } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 1 & 1 \\ 5 & -3 & -2 & 2 \\ -1 & 2 & 1 & 3 \\ 0 & 2 & 1 & 4 \\ -1 & 5 & 3 & 5 \end{bmatrix} \text{ is } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This system has no solution,

$$\begin{bmatrix} -4 & 1 & 1 & 1 \\ 5 & -3 & -2 & 2 \\ -1 & 2 & 1 & 3 \\ 0 & 2 & 1 & 4 \\ -1 & 5 & 3 & 5 \end{bmatrix} \text{ is } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This system has no solution, implies that the vector [1, 2, 3, 4, 5] is not in span(B) = V.

Coordinatization Method:

Let \mathcal{V} be a nontrivial subspace of \mathbb{R}^n , let $B=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k)$ be an ordered basis for \mathcal{V} , and let $\mathbf{v}\in\mathbb{R}^n$.

Let $\mathcal V$ be a nontrivial subspace of $\mathbb R^n$, let $B=(\mathbf v_1,\mathbf v_2,\dots,\mathbf v_k)$ be an ordered basis for $\mathcal V$, and let $\mathbf v\in\mathbb R^n$. To compute $[\mathbf v]_B$, we perform the following steps:

• Form an augmented matrix $[A|\mathbf{v}]$

Let $\mathcal V$ be a nontrivial subspace of $\mathbb R^n$, let $B=(\mathbf v_1,\mathbf v_2,\dots,\mathbf v_k)$ be an ordered basis for $\mathcal V$, and let $\mathbf v\in\mathbb R^n$. To compute $[\mathbf v]_B$, we perform the following steps:

• Form an augmented matrix $[A|\mathbf{v}]$ by using the vectors in B as the columns of A, in order,

Let $\mathcal V$ be a nontrivial subspace of $\mathbb R^n$, let $B=(\mathbf v_1,\mathbf v_2,\dots,\mathbf v_k)$ be an ordered basis for $\mathcal V$, and let $\mathbf v\in\mathbb R^n$. To compute $[\mathbf v]_B$, we perform the following steps:

• Form an augmented matrix $[A|\mathbf{v}]$ by using the vectors in B as the columns of A, in order, and using \mathbf{v} as a column on the right.

- Form an augmented matrix $[A|\mathbf{v}]$ by using the vectors in B as the columns of A, in order, and using \mathbf{v} as a column on the right.
- Find RREF($[A|\mathbf{v}]$),

- Form an augmented matrix $[A|\mathbf{v}]$ by using the vectors in B as the columns of A, in order, and using \mathbf{v} as a column on the right.
- Find RREF($[A|\mathbf{v}]$), say $[C|\mathbf{w}] = RREF([A|\mathbf{v}])$.

- Form an augmented matrix $[A|\mathbf{v}]$ by using the vectors in B as the columns of A, in order, and using \mathbf{v} as a column on the right.
- Find RREF($[A|\mathbf{v}]$), say $[C|\mathbf{w}] = RREF([A|\mathbf{v}])$.
- If there is a row of [C|w] that contains all zeros on the left and has a nonzero entry on the right,

- Form an augmented matrix $[A|\mathbf{v}]$ by using the vectors in B as the columns of A, in order, and using \mathbf{v} as a column on the right.
- Find RREF($[A|\mathbf{v}]$), say $[C|\mathbf{w}] = RREF([A|\mathbf{v}])$.
- If there is a row of [C|w] that contains all zeros on the left and has a nonzero entry on the right, then v ∉ span(B) = V,

- Form an augmented matrix $[A|\mathbf{v}]$ by using the vectors in B as the columns of A, in order, and using \mathbf{v} as a column on the right.
- Find RREF($[A|\mathbf{v}]$), say $[C|\mathbf{w}] = RREF([A|\mathbf{v}])$.
- If there is a row of $[C|\mathbf{w}]$ that contains all zeros on the left and has a nonzero entry on the right, then $\mathbf{v} \notin \operatorname{span}(B) = \mathcal{V}$, i.e., coordinatization is not possible.

- Form an augmented matrix $[A|\mathbf{v}]$ by using the vectors in B as the columns of A, in order, and using \mathbf{v} as a column on the right.
- Find RREF($[A|\mathbf{v}]$), say $[C|\mathbf{w}] = RREF([A|\mathbf{v}])$.
- If there is a row of [C|w] that contains all zeros on the left and has a nonzero entry on the right, then v ∉ span(B) = V, i.e., coordinatization is not possible. Otherwise, v ∈ span(B) = V.

• Eliminate all rows consisting entirely of zeros in $[C|\mathbf{w}]$ to obtain $[I_k|\mathbf{y}]$.

• Eliminate all rows consisting entirely of zeros in $[C|\mathbf{w}]$ to obtain $[I_k|\mathbf{y}]$. Then, $[\mathbf{v}]_B = \mathbf{y}$,

• Eliminate all rows consisting entirely of zeros in $[C|\mathbf{w}]$ to obtain $[I_k|\mathbf{y}]$. Then, $[\mathbf{v}]_B = \mathbf{y}$, the last column of $[I_k|\mathbf{y}]$.

$$B = \left(\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 3 & 1 \end{bmatrix} \right)$$

be an ordered basis of the subspace W of \mathcal{M}_{22} .

$$B = \left(\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 3 & 1 \end{bmatrix} \right)$$

be an ordered basis of the subspace W of \mathcal{M}_{22} .

Compute
$$[\mathbf{v}]_B$$
 if exists, where $\mathbf{v} = \begin{bmatrix} -3 & -2 \\ 0 & 3 \end{bmatrix}$.

Solution: Consider

$$[A|\mathbf{v}] = \begin{bmatrix} 1 & 2 & 1 & -3 \\ -2 & -1 & -1 & -2 \\ 0 & 1 & 3 & 0 \\ 1 & 0 & 1 & 3 \end{bmatrix}$$

Solution: Consider

$$[A|\mathbf{v}] = \begin{bmatrix} 1 & 2 & 1 & -3 \\ -2 & -1 & -1 & -2 \\ 0 & 1 & 3 & 0 \\ 1 & 0 & 1 & 3 \end{bmatrix}$$

Note that the row reduced echelon form is

$$\mathsf{RREF}[A|\mathbf{v}] = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The row reduced matrix contains no rows with all zero entries on the left and a nonzero entry on the right, so $[\mathbf{v}]_B$ exists,

The row reduced matrix contains no rows with all zero entries on the left and a nonzero entry on the right, so $[\mathbf{v}]_B$ exists, and

$$[\mathbf{v}]_B = [2, -3, 1].$$

Fundamental properties of Coordinatization: Let $B = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ be an ordered basis for a vector space \mathcal{V} . Suppose $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k \in \mathcal{V}$ and a_1, a_2, \dots, a_k are scalars. Then

Fundamental properties of Coordinatization: Let

 $B = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ be an ordered basis for a vector space \mathcal{V} . Suppose $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k \in \mathcal{V}$ and a_1, a_2, \dots, a_k are scalars. Then

$$\bullet$$
 [$\mathbf{w}_1 + \mathbf{w}_2$]_B = [\mathbf{w}_1]_B + [\mathbf{w}_2]_B

Fundamental properties of Coordinatization: Let

 $B = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ be an ordered basis for a vector space \mathcal{V} . Suppose $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k \in \mathcal{V}$ and a_1, a_2, \dots, a_k are scalars. Then

- \bullet [$\mathbf{w}_1 + \mathbf{w}_2$]_B = [\mathbf{w}_1]_B + [\mathbf{w}_2]_B
- $a_1 \mathbf{w}_1 B = a_1 [\mathbf{w}_1]_B$

Fundamental properties of Coordinatization: Let

 $B=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k)$ be an ordered basis for a vector space \mathcal{V} . Suppose $\mathbf{w}_1,\mathbf{w}_2,\ldots,\mathbf{w}_k\in\mathcal{V}$ and a_1,a_2,\ldots,a_k are scalars. Then

$$\bullet$$
 [$\mathbf{w}_1 + \mathbf{w}_2$]_B = [\mathbf{w}_1]_B + [\mathbf{w}_2]_B

$$a_1 \mathbf{w}_1]_B = a_1 [\mathbf{w}_1]_B$$

$$B = (3x^2 - x + 2, x^2 + 2x - 3, 2x^2 + 3x - 1)$$

be an ordered basis of the subspace W of P_2 .

$$B = (3x^2 - x + 2, x^2 + 2x - 3, 2x^2 + 3x - 1)$$

be an ordered basis of the subspace W of P_2 . Compute $[\mathbf{v}]_B$ if exists, where $\mathbf{v} = 13x^2 - 5x + 20$.

$$B = (3x^2 - x + 2, x^2 + 2x - 3, 2x^2 + 3x - 1)$$

be an ordered basis of the subspace W of P_2 . Compute $[\mathbf{v}]_B$ if exists, where $\mathbf{v} = 13x^2 - 5x + 20$.

Answer: $[\mathbf{v}]_B = [4, -5, 3].$

$$B = ([-4, 5, -1, 0, -1], [1, -3, 2, 2, 5], [1, -2, 1, 1, 3])$$

be an ordered basis of the subspace W of \mathbb{R}^5 .

$$B = ([-4, 5, -1, 0, -1], [1, -3, 2, 2, 5], [1, -2, 1, 1, 3])$$

be an ordered basis of the subspace \mathcal{W} of \mathbb{R}^5 . Consider x=[1,0,-1,0,4],y=[0,1,-1,0,3] and z=[0,0,0,1,5].

$$B = ([-4, 5, -1, 0, -1], [1, -3, 2, 2, 5], [1, -2, 1, 1, 3])$$

be an ordered basis of the subspace \mathcal{W} of \mathbb{R}^5 . Consider x=[1,0,-1,0,4],y=[0,1,-1,0,3] and z=[0,0,0,1,5]. Compute $[2x-7y+3z]_B.$

$$B = ([-4, 5, -1, 0, -1], [1, -3, 2, 2, 5], [1, -2, 1, 1, 3])$$

be an ordered basis of the subspace \mathcal{W} of \mathbb{R}^5 . Consider x=[1,0,-1,0,4],y=[0,1,-1,0,3] and z=[0,0,0,1,5]. Compute $[2x-7y+3z]_B.$

Answer: $[2x - 7y + 3z]_B = [-2, 9, -15].$

C = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace \mathcal{W} of \mathbb{R}^5 .

C=([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace \mathcal{W} of \mathbb{R}^5 . Using simplified span method on C, compute an ordered basis B=(x,y,z) for \mathcal{W} .

C=([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace $\mathcal W$ of $\mathbb R^5$. Using simplified span method on C, compute an ordered basis B=(x,y,z) for $\mathcal W$. Also, compute $[x]_C,[y]_C,[z]_C$.

C = ([-4, 5, -1, 0, -1], [1, -3, 2, 2, 5], [1, -2, 1, 1, 3]) be an ordered basis of the subspace \mathcal{W} of \mathbb{R}^5 . Using simplified span method on C, compute an ordered basis B = (x, y, z) for \mathcal{W} . Also, compute $[x]_C, [y]_C, [z]_C.$

Solution: We have the following augmented matrix

$$\begin{bmatrix} A \mid x \mid y \mid z \end{bmatrix} = \begin{bmatrix} -4 & 1 & 1 & 1 & 0 & 0 \\ 5 & -3 & -2 & 0 & 1 & 0 \\ -1 & 2 & 1 & -1 & -1 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \\ -1 & 5 & 3 & 4 & 3 & 5 \end{bmatrix}$$

Row reduce echelon form of the above matrix is

Row reduce echelon form of the above matrix is

Row reduce echelon form of the above matrix is

$$\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & -5 & -4 & -3 \\
0 & 0 & 1 & 10 & 8 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Clearly, $[x]_C = [1, -5, 10]$, $[y]_C = [1, -4, 8]$ and $[z]_C = [1, -3, 7]$.

Row reduce echelon form of the above matrix is

$$\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & -5 & -4 & -3 \\
0 & 0 & 1 & 10 & 8 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Clearly, $[x]_C = [1, -5, 10]$, $[y]_C = [1, -4, 8]$ and $[z]_C = [1, -3, 7]$. Here, the matrix $P = \begin{bmatrix} 1 & 1 & 1 \\ -5 & -4 & -3 \\ 10 & 8 & 7 \end{bmatrix}$

Row reduce echelon form of the above matrix is

$$\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & -5 & -4 & -3 \\
0 & 0 & 1 & 10 & 8 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Clearly,
$$[x]_C = [1, -5, 10]$$
, $[y]_C = [1, -4, 8]$ and $[z]_C = [1, -3, 7]$. Here, the matrix $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

$$P = \begin{bmatrix} 1 & 1 & 1 \\ -5 & -4 & -3 \\ 10 & 8 & 7 \end{bmatrix}$$
 is called the transition matrix

from \bar{B} -coordinates to C-coordinates.

Transition Matrix:

Transition Matrix: Suppose that V is a nontrivial n-dimensional vector space with ordered bases B and C.

Transition Matrix: Suppose that \mathcal{V} is a nontrivial n-dimensional vector space with ordered bases B and C. Let P be the $n \times n$ matrix whose i^{th} column, for $1 \le i \le n$, equals $[\mathbf{b}_i]_C$, where \mathbf{b}_i is the i^{th} basis vector in B.

Transition Matrix: Suppose that \mathcal{V} is a nontrivial n-dimensional vector space with ordered bases B and C. Let P be the $n \times n$ matrix whose i^{th} column, for $1 \le i \le n$, equals $[\mathbf{b}_i]_C$, where \mathbf{b}_i is the i^{th} basis vector in B. Then P is called the transition matrix from B-coordinates to C-coordinates

Transition Matrix: Suppose that \mathcal{V} is a nontrivial n-dimensional vector space with ordered bases B and C. Let P be the $n \times n$ matrix whose i^{th} column, for $1 \le i \le n$, equals $[\mathbf{b}_i]_C$, where \mathbf{b}_i is the i^{th} basis vector in B. Then P is called the transition matrix from B-coordinates to C-coordinates (or transition matrix from B to C).

Transition Matrix Method:

Transition Matrix Method: To find the transition matrix P from B to C,

Transition Matrix Method: To find the transition matrix P from B to C, we apply row reduction on

	1^{st}	2^{nd}		k^{th}	1^{st}	2^{nd}	k^{th} -
	vector	vector	••	vector	vector	vector	 vector
l	in	in		in	in	in	in
-	C	C		C	B	B	B

Transition Matrix Method: To find the transition matrix P from B to C, we apply row reduction on

$$\begin{bmatrix} 1^{st} & 2^{nd} & k^{th} \\ \text{vector vector} & \cdots & \text{vector} \\ \text{in} & \text{in} & \text{in} \\ C & C & C \end{bmatrix} \begin{bmatrix} 1^{st} & 2^{nd} & k^{th} \\ \text{vector vector} & \cdots & \text{vector} \\ \text{in} & \text{in} & \text{in} & \text{in} \\ B & B & B \end{bmatrix}$$

to produce

$$\begin{bmatrix} I_k & P \\ \hline \text{rows of zeroes} \end{bmatrix}$$

Example 23: For the ordered bases

$$B = \left(\begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right)$$

Example 23: For the ordered bases

$$B = \left(\begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right)$$

and

$$C = \left(\begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix} \right)$$

of U_2 (the set of 2×2 upper triangular matrices),

Example 23: For the ordered bases

$$B = \left(\begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right)$$

and

$$C = \left(\begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix} \right)$$

of U_2 (the set of 2×2 upper triangular matrices), find the transition matrix P from B to C.

Solution: Apply row reduction on

Solution: Apply row reduction on

$$\begin{bmatrix}
22 & 12 & 33 & 7 & 1 & 1 \\
7 & 4 & 12 & 3 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 2 & 0 & -1 & 1
\end{bmatrix}$$

Solution: Apply row reduction on

$$\begin{bmatrix}
22 & 12 & 33 & 7 & 1 & 1 \\
7 & 4 & 12 & 3 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 2 & 0 & -1 & 1
\end{bmatrix}$$

we get

$$\left[\begin{array}{ccc|ccc|c}
1 & 0 & 0 & 1 & -2 & 1 \\
0 & 1 & 0 & -4 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

The transition matrix P from B to C is

The transition matrix P from B to C is

$$\begin{bmatrix} 1 & -2 & 1 \\ -4 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}.$$

C = (a,b,c) = ([1,0,1],[1,1,0],[0,0,1]) and B = (x,y,z) be ordered bases of \mathbb{R}^3 .

C = (a,b,c) = ([1,0,1],[1,1,0],[0,0,1]) and B = (x,y,z) be ordered bases of \mathbb{R}^3 . Let

$$P = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

be the transition matrix from B to C.

$$C = (a,b,c) = ([1,0,1],[1,1,0],[0,0,1])$$
 and $B = (x,y,z)$ be ordered bases of \mathbb{R}^3 . Let

$$P = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

be the transition matrix from B to C. Find the basis B.

$$C = (a,b,c) = ([1,0,1],[1,1,0],[0,0,1])$$
 and $B = (x,y,z)$ be ordered bases of \mathbb{R}^3 . Let

$$P = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

be the transition matrix from B to C. Find the basis B.

Solution:

$$x = 1 \cdot a + 2 \cdot b - 1 \cdot c = [3, 2, 0]$$

$$C = (a,b,c) = ([1,0,1],[1,1,0],[0,0,1])$$
 and $B = (x,y,z)$ be ordered bases of \mathbb{R}^3 . Let

$$P = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

be the transition matrix from B to C. Find the basis B.

Solution:

$$x = 1 \cdot a + 2 \cdot b - 1 \cdot c = [3, 2, 0]$$

$$C = (a,b,c) = ([1,0,1],[1,1,0],[0,0,1])$$
 and $B = (x,y,z)$ be ordered bases of \mathbb{R}^3 . Let

$$P = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

be the transition matrix from B to C. Find the basis B.

Solution:

$$x = 1 \cdot a + 2 \cdot b - 1 \cdot c = [3, 2, 0]$$

$$y = 1 \cdot a + 1 \cdot b - 1 \cdot c = [2, 1, 0]$$

$$z = 2 \cdot a + 1 \cdot b + 1 \cdot c = [3, 1, 3].$$

Hence,

$$B = ([3, 2, 0], [2, 1, 0], [3, 1, 3]).$$

Hence,

$$B = ([3, 2, 0], [2, 1, 0], [3, 1, 3]).$$

Change of Coordinates Using the Transition Matrix

Theorem: Suppose that \mathcal{V} is a nontrivial n-dimensional vector space with ordered bases B and C.

Hence,

$$B = ([3, 2, 0], [2, 1, 0], [3, 1, 3]).$$

Change of Coordinates Using the Transition Matrix

Theorem: Suppose that \mathcal{V} is a nontrivial n-dimensional vector space with ordered bases B and C. Let P be an $n \times n$ matrix.

Hence.

$$B = ([3, 2, 0], [2, 1, 0], [3, 1, 3]).$$

Change of Coordinates Using the Transition Matrix

Theorem: Suppose that \mathcal{V} is a nontrivial n-dimensional vector space with ordered bases Band C. Let P be an $n \times n$ matrix. Then P is the transition matrix from B to C if and only if for every $\mathbf{v} \in \mathcal{V}, P[\mathbf{v}]_B = [\mathbf{v}]_C.$

Example 25: For the ordered bases

$$B = \left(\begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right)$$

Example 25: For the ordered bases

$$B = \left(\begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right)$$

and

$$C = \left(\begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix} \right)$$

of U_2 (set of 2×2 upper triangular matrices).

Example 25: For the ordered bases

$$B = \left(\begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right)$$

and

$$C = \left(\begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix} \right)$$

of \mathcal{U}_2 (set of 2×2 upper triangular matrices). Find

$$[\mathbf{v}]_B$$
 and $[\mathbf{v}]_C$, where $\mathbf{v} = \begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix}$.

Solution: Clearly,

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = 4 \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - 6 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Solution: Clearly,

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = 4 \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - 6 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Hence, $[\mathbf{v}]_B = [4, 3, -6]^T$.

Solution: Clearly,

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = 4 \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - 6 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Hence, $[\mathbf{v}]_B = [4, 3, -6]^T$. Now, since $[\mathbf{v}]_C = P[\mathbf{v}]_B$ and

$$P = \begin{bmatrix} 1 & -2 & 1 \\ -4 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
(see Example 23)

implies

Solution: Clearly,

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = 4 \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - 6 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Hence, $[\mathbf{v}]_B = [4, 3, -6]^T$. Now, since $[\mathbf{v}]_C = P[\mathbf{v}]_B$ and

$$P = \begin{bmatrix} 1 & -2 & 1 \\ -4 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
(see Example 23)

implies $[\mathbf{v}]_C = [-8, -19, 13]^T$.

Solution: Clearly,

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = 4 \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - 6 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Hence, $[\mathbf{v}]_B = [4, 3, -6]^T$. Now, since $[\mathbf{v}]_C = P[\mathbf{v}]_B$ and

$$P = \begin{bmatrix} 1 & -2 & 1 \\ -4 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
(see Example 23)

implies $[\mathbf{v}]_C = [-8, -19, 13]^T$. Clearly,

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = -8 \begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix} - 19 \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix} + 13 \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix}$$

Theorem: Let B and C be be ordered bases for a nontrivial finite dimensional vector space \mathcal{V} , and let P be the transition matrix from B to C. Then P is nonsingular, and P^{-1} is the transition matrix from C to B.

B = ([1, -4, 1, 2, 1], [6, -24, 5, 8, 3], [3, -12, 3, 6, 2]) of a subspace \mathcal{V} of \mathbb{R}^5 .

B=([1,-4,1,2,1],[6,-24,5,8,3],[3,-12,3,6,2]) of a subspace $\mathcal V$ of $\mathbb R^5.$

 Use the Simplified Span Method to find a second ordered basis C.

 $B=([1,-4,1,2,1],[6,-24,5,8,3],[3,-12,3,6,2]) \text{ of a subspace } \mathcal{V} \text{ of } \mathbb{R}^5.$

 Use the Simplified Span Method to find a second ordered basis C.

Solution: Consider

$$B = \begin{bmatrix} 1 & -4 & 1 & 2 & 1 \\ 6 & -24 & 5 & 8 & 3 \\ 3 & -12 & 3 & 6 & 2 \end{bmatrix}$$

B=([1,-4,1,2,1],[6,-24,5,8,3],[3,-12,3,6,2]) of a subspace $\mathcal V$ of $\mathbb R^5.$

 Use the Simplified Span Method to find a second ordered basis C.

Solution: Consider

$$B = \begin{bmatrix} 1 & -4 & 1 & 2 & 1 \\ 6 & -24 & 5 & 8 & 3 \\ 3 & -12 & 3 & 6 & 2 \end{bmatrix}$$

Note that

$$\mathsf{RREF}(B) = \begin{bmatrix} 1 & -4 & 0 & -2 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C = ([1, -4, 0, -2, 0], [0, 0, 1, 4, 0], [0, 0, 0, 0, 1]).$$

$$C = ([1, -4, 0, -2, 0], [0, 0, 1, 4, 0], [0, 0, 0, 0, 1]).$$

• Find the transition matrix P from B to C.

$$C = ([1, -4, 0, -2, 0], [0, 0, 1, 4, 0], [0, 0, 0, 0, 1]).$$

Find the transition matrix P from B to C.

Answer:

$$P = \begin{bmatrix} 1 & 6 & 3 \\ 1 & 5 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$

• Find the transition matrix Q from C to B.

Find the transition matrix Q from C to B.

Answer:

$$Q = P^{-1} = \begin{bmatrix} 1 & -3 & 3 \\ 1 & -1 & 0 \\ -2 & 3 & -1 \end{bmatrix}$$

$$[B|\mathbf{v}] = \begin{bmatrix} 1 & 6 & 3 & 2 \\ -4 & -24 & -12 & -8 \\ 1 & 5 & 3 & -2 \\ 2 & 8 & 6 & -12 \\ 1 & 3 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 17 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & -13 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$[B|\mathbf{v}] = \begin{bmatrix} 1 & 6 & 3 & 2 \\ -4 & -24 & -12 & -8 \\ 1 & 5 & 3 & -2 \\ 2 & 8 & 6 & -12 \\ 1 & 3 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 17 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & -13 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus,

$$[\mathbf{v}]_B = [17, 4, -13]$$

$$[B|\mathbf{v}] = \begin{bmatrix} 1 & 6 & 3 & 2 \\ -4 & -24 & -12 & -8 \\ 1 & 5 & 3 & -2 \\ 2 & 8 & 6 & -12 \\ 1 & 3 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 17 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & -13 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus,

$$[\mathbf{v}]_B = [17, 4, -13]$$

Since $P[\mathbf{v}]_B = [\mathbf{v}]_C$ implies

$$[B|\mathbf{v}] = \begin{bmatrix} 1 & 6 & 3 & 2 \\ -4 & -24 & -12 & -8 \\ 1 & 5 & 3 & -2 \\ 2 & 8 & 6 & -12 \\ 1 & 3 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 17 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & -13 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus,

$$[\mathbf{v}]_B = [17, 4, -13]$$

Since $P[\mathbf{v}]_B = [\mathbf{v}]_C$ implies

$$[\mathbf{v}]_C = [2, -2, 3].$$

Exercise: For the ordered bases

$$B = (2x^2 + 3x - 1, 8x^2 + x + 1, x^2 + 6)$$

and

$$C = (x^2 + 3x + 1, 3x^2 + 4x + 1, 10x^2 + 17x + 5)$$

of \mathcal{P}_2 , find the transition matrix P from B to C.

Exercise: For the ordered bases

$$B = (2x^2 + 3x - 1, 8x^2 + x + 1, x^2 + 6)$$

and

$$C = (x^2 + 3x + 1, 3x^2 + 4x + 1, 10x^2 + 17x + 5)$$

of \mathcal{P}_2 , find the transition matrix P from B to C.

Answer:
$$P = \begin{bmatrix} 20 & -30 & -69 \\ 24 & -24 & -80 \\ -9 & 11 & 31 \end{bmatrix}$$

Exercise: Let $P = \begin{bmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ be the transition matrix from B to C. If $C = \left\{ \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$, find the basis B.

Exercise: Let $P = \begin{bmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ be the transition matrix from B to C. If $C = \left\{ \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$, find the basis B.

Answer:
$$B = \left\{ \begin{bmatrix} 6\\3\\3 \end{bmatrix}, \begin{bmatrix} 4\\-1\\3 \end{bmatrix}, \begin{bmatrix} 5\\5\\2 \end{bmatrix} \right\}$$

Exercise: For an ordered basis

$$B = ([3, -1, 4, 6], [6, 7, -3, -2], [-4, -3, 3, 4], [-2, 0, 1, 2])$$

of a subspace W of \mathbb{R}^4 , perform the following steps:

- Use the Simplified Span Method to find a second ordered basis C.
- ② Find the transition matrix P from B to C.
- **1** Find the transition matrix Q from C to B.
- For the given vector $\mathbf{v} = [10, 14, 3, 12]$, calculate $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$.

The Matrix of a linear transformation:

The Matrix of a linear transformation: Let \mathcal{V} and \mathcal{W} be two finite dimensional real vector spaces such that $\dim(\mathcal{V}) = n$ and $\dim(\mathcal{W}) = m$. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $C = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ be an ordered basis of \mathcal{V} and \mathcal{W} , respectively.

The Matrix of a linear transformation: Let \mathcal{V} and \mathcal{W} be two finite dimensional real vector spaces such that $\dim(\mathcal{V}) = n$ and $\dim(\mathcal{W}) = m$. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $C = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ be an ordered basis of \mathcal{V} and \mathcal{W} , respectively.

Let $L: \mathcal{V} \to \mathcal{W}$ be any linear transformation.

The Matrix of a linear transformation: Let \mathcal{V} and \mathcal{W} be two finite dimensional real vector spaces such that $\dim(\mathcal{V}) = n$ and $\dim(\mathcal{W}) = m$. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $C = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ be an ordered basis of \mathcal{V} and \mathcal{W} , respectively.

Let $L: \mathcal{V} \to \mathcal{W}$ be any linear transformation. For $\mathbf{v}_j \in \mathcal{V}$, $L(\mathbf{v}_j) \in \mathcal{W}$. For each $j, 1 \leq j \leq n$. Since C is a basis of \mathcal{W} , for $a_{ij} \in \mathbb{R}$, we can write

The Matrix of a linear transformation: Let \mathcal{V} and \mathcal{W} be two finite dimensional real vector spaces such that $\dim(\mathcal{V})=n$ and $\dim(\mathcal{W})=m$. Let $B=\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}$ and $C=\{\mathbf{w}_1,\mathbf{w}_2,\ldots,\mathbf{w}_m\}$ be an ordered basis of \mathcal{V} and \mathcal{W} , respectively.

Let $L: \mathcal{V} \to \mathcal{W}$ be any linear transformation. For $\mathbf{v}_j \in \mathcal{V}$, $L(\mathbf{v}_j) \in \mathcal{W}$. For each $j, 1 \leq j \leq n$. Since C is a basis of \mathcal{W} , for $a_{ij} \in \mathbb{R}$, we can write

$$L(\mathbf{v}_j) = a_{1j}\mathbf{w}_1 + a_{2j}\mathbf{w}_2 + \dots + a_{mj}\mathbf{w}_m$$

Thus, we have

Define

$$A_{BC} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n}.$$

The matrix A_{BC} is called the matrix of linear transformation L w.r.t. the bases B and C.

Define

$$A_{BC} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n}.$$

The matrix A_{BC} is called the matrix of linear transformation L w.r.t. the bases B and C.

Remark: i^{th} column of the matrix A_{BC} is $[L(\mathbf{v}_i)]_C$.

Theorem: Let \mathcal{V} and \mathcal{W} be non-trivial vector spaces, with $\dim(\mathcal{V}) = n$ and $\dim(\mathcal{W}) = m$. Let $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ and $C = (\mathbf{w}_1, \dots, \mathbf{w}_m)$ be ordered bases for \mathcal{V} and \mathcal{W} , respectively. Let $L: \mathcal{V} \to \mathcal{W}$ be a LT.

Theorem: Let \mathcal{V} and \mathcal{W} be non-trivial vector spaces, with $\dim(\mathcal{V}) = n$ and $\dim(\mathcal{W}) = m$. Let $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ and $C = (\mathbf{w}_1, \dots, \mathbf{w}_m)$ be ordered bases for \mathcal{V} and \mathcal{W} , respectively. Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. Then there is a unique $m \times n$ matrix A_{BC} such that $A_{BC}[\mathbf{v}]_B = [L(\mathbf{v})]_C$, for all $\mathbf{v} \in \mathcal{V}$.

Theorem: Let \mathcal{V} and \mathcal{W} be non-trivial vector spaces, with $\dim(\mathcal{V}) = n$ and $\dim(\mathcal{W}) = m$. Let $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ and $C = (\mathbf{w}_1, \dots, \mathbf{w}_m)$ be ordered bases for \mathcal{V} and \mathcal{W} , respectively. Let $L: \mathcal{V} \to \mathcal{W}$ be a LT. Then there is a unique $m \times n$ matrix A_{BC} such that $A_{BC}[\mathbf{v}]_B = [L(\mathbf{v})]_C$, for all $\mathbf{v} \in \mathcal{V}$. Furthermore, for $1 \leq i \leq n$, the i^{th} column of $A_{BC} = [L(\mathbf{v}_i)]_C$.

Example: Consider the LT $L: \mathcal{P}_1 \to \mathcal{P}_2$, given by

$$L(\mathbf{p}(x)) = x\mathbf{p}(x)$$

with ordered bases B=(x,1) and $C=(x^2,x-1,x+1)$ of \mathcal{P}_1 and \mathcal{P}_2 , respectively.

Example: Consider the LT $L: \mathcal{P}_1 \to \mathcal{P}_2$, given by

$$L(\mathbf{p}(x)) = x\mathbf{p}(x)$$

with ordered bases B=(x,1) and $C=(x^2,x-1,x+1)$ of \mathcal{P}_1 and \mathcal{P}_2 , respectively. Compute A_{BC} .

Example: Consider the LT $L: \mathcal{P}_1 \to \mathcal{P}_2$, given by

$$L(\mathbf{p}(x)) = x\mathbf{p}(x)$$

with ordered bases B=(x,1) and $C=(x^2,x-1,x+1)$ of \mathcal{P}_1 and \mathcal{P}_2 , respectively. Compute A_{BC} .

Solution: Since

$$L(x) = x^2 = 1(x^2) + 0(x-1) + 0(x+1)$$
 so that

$$L(\mathbf{p}(x)) = x\mathbf{p}(x)$$

with ordered bases B=(x,1) and $C=(x^2,x-1,x+1)$ of \mathcal{P}_1 and \mathcal{P}_2 , respectively. Compute A_{BC} .

Solution: Since

$$L(x) = x^2 = 1(x^2) + 0(x-1) + 0(x+1)$$
 so that

$$[L(x)]_C = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Similarly, $L(1) = x = 0(x^2) + \frac{1}{2}(x-1) + \frac{1}{2}(x+1)$ implies

Similarly, $L(1) = x = 0(x^2) + \frac{1}{2}(x-1) + \frac{1}{2}(x+1)$ implies

$$[L(1)]_C = \begin{bmatrix} 0\\1/2\\1/2 \end{bmatrix}.$$

Similarly, $L(1) = x = 0(x^2) + \frac{1}{2}(x-1) + \frac{1}{2}(x+1)$ implies

$$[L(1)]_C = \begin{bmatrix} 0\\1/2\\1/2 \end{bmatrix}.$$

Hence,

$$A_{BC} = \begin{bmatrix} 1 & 0 \\ 0 & 1/2 \\ 0 & 1/2 \end{bmatrix}.$$

• Compute $L(\mathbf{v}_i)$ for all $i = 1, 2, \dots, n$.

- Compute $L(\mathbf{v}_i)$ for all $i = 1, 2, \dots, n$.
- Form the augmented matrix

$$[\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \mathbf{w}_m \mid L(\mathbf{v}_1) \mid L(\mathbf{v}_2) \mid \dots \mid L(\mathbf{v}_n)]$$

- Compute $L(\mathbf{v}_i)$ for all $i = 1, 2, \dots, n$.
- Form the augmented matrix

$$[\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \mathbf{w}_m \mid L(\mathbf{v}_1) \mid L(\mathbf{v}_2) \mid \dots \mid L(\mathbf{v}_n)]$$

Apply row reduction on

$$[\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \mathbf{w}_m \ | \ L(\mathbf{v}_1)| \ L(\mathbf{v}_2)| \ \dots | L(\mathbf{v}_n)].$$

- Compute $L(\mathbf{v}_i)$ for all i = 1, 2, ..., n.
- Form the augmented matrix

$$[\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \mathbf{w}_m \mid L(\mathbf{v}_1) \mid L(\mathbf{v}_2) \mid \dots \mid L(\mathbf{v}_n)]$$

Apply row reduction on

$$[\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \mathbf{w}_m \mid L(\mathbf{v}_1)| \ L(\mathbf{v}_2)| \ \dots |L(\mathbf{v}_n)].$$
 to produce $[I_m \mid A_{BC}].$

$$L([a,b]) = (-a+5b)x^2 + (3a-b)x + 2b$$

with ordered bases B = ([5,3],[3,2]) and

$$C = (3x^2 - 2x, -2x^2 + 2x - 1, x^2 - x + 1)$$

of \mathbb{R}^2 and \mathcal{P}_2 , respectively.

$$L([a,b]) = (-a+5b)x^2 + (3a-b)x + 2b$$

with ordered bases B = ([5,3],[3,2]) and

$$C = (3x^2 - 2x, -2x^2 + 2x - 1, x^2 - x + 1)$$

of \mathbb{R}^2 and \mathcal{P}_2 , respectively. Compute A_{BC} .

$$L([a,b]) = (-a+5b)x^2 + (3a-b)x + 2b$$

with ordered bases B = ([5, 3], [3, 2]) and

$$C = (3x^2 - 2x, -2x^2 + 2x - 1, x^2 - x + 1)$$

of \mathbb{R}^2 and \mathcal{P}_2 , respectively. Compute A_{BC} .

Solution: Since $L[5,3] = 10x^2 + 12x + 6$

$$L([a,b]) = (-a+5b)x^2 + (3a-b)x + 2b$$

with ordered bases B = ([5,3],[3,2]) and

$$C = (3x^2 - 2x, -2x^2 + 2x - 1, x^2 - x + 1)$$

of \mathbb{R}^2 and \mathcal{P}_2 , respectively. Compute A_{BC} .

Solution: Since $L[5,3] = 10x^2 + 12x + 6$ and $L[3,2] = 7x^2 + 7x + 4$. Consider

$$L([a,b]) = (-a+5b)x^2 + (3a-b)x + 2b$$

with ordered bases B = ([5,3],[3,2]) and

$$C = (3x^2 - 2x, -2x^2 + 2x - 1, x^2 - x + 1)$$

of \mathbb{R}^2 and \mathcal{P}_2 , respectively. Compute A_{BC} .

Solution: Since $L[5,3] = 10x^2 + 12x + 6$ and $L[3,2] = 7x^2 + 7x + 4$. Consider

$$\left[\begin{array}{ccc|c}
3 & -2 & 1 & 10 & 7 \\
-2 & 2 & -1 & 12 & 7 \\
0 & -1 & 1 & 6 & 4
\end{array}\right]$$

RREF of the above matrix is

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & 22 & 14 \\
0 & 1 & 0 & 62 & 39 \\
0 & 0 & 1 & 68 & 43
\end{array}\right]$$

RREF of the above matrix is

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & 22 & 14 \\
0 & 1 & 0 & 62 & 39 \\
0 & 0 & 1 & 68 & 43
\end{array}\right]$$

so that

$$A_{BC} = \begin{bmatrix} 22 & 14 \\ 62 & 39 \\ 68 & 43 \end{bmatrix}$$

Example: Consider the LT $L: \mathcal{P}_3 \to \mathcal{P}_2$, given by $L(\mathbf{p}) = \mathbf{p}'$.

106 / 122

Solution: Standard basis of \mathcal{P}_3 is

Solution: Standard basis of \mathcal{P}_3 is $\{x^3, x^2, x, 1\}$.

106 / 122

Solution: Standard basis of \mathcal{P}_3 is $\{x^3, x^2, x, 1\}$. Since

$$L(x^3) = 3x^2$$
, $L(x^2) = 2x$, $L(x) = 1$, $L(1) = 0$, we have

Solution: Standard basis of \mathcal{P}_3 is $\{x^3, x^2, x, 1\}$. Since

$$L(x^3) = 3x^2$$
, $L(x^2) = 2x$, $L(x) = 1$, $L(1) = 0$, we have

$$A_{BC} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$[L(4x^3 - 5x^2 + 6x - 7)]_C = A_{BC}[(4x^3 - 5x^2 + 6x - 7)]_B$$

$$[L(4x^3 - 5x^2 + 6x - 7)]_C = A_{BC}[(4x^3 - 5x^2 + 6x - 7)]_B$$

$$[L(4x^{3} - 5x^{2} + 6x - 7)]_{C} = A_{BC}[(4x^{3} - 5x^{2} + 6x - 7)]_{B}$$

$$= A_{BC} \begin{bmatrix} 4 \\ -5 \\ 6 \\ 7 \end{bmatrix} = \begin{bmatrix} 12 \\ -10 \\ 6 \end{bmatrix}$$

Thus,
$$L(4x^3 - 5x^2 + 6x - 7) = 12x^2 - 10x + 6$$

$$[L(4x^{3} - 5x^{2} + 6x - 7)]_{C} = A_{BC}[(4x^{3} - 5x^{2} + 6x - 7)]_{B}$$

$$= A_{BC} \begin{bmatrix} 4 \\ -5 \\ 6 \\ -7 \end{bmatrix} = \begin{bmatrix} 12 \\ -10 \\ 6 \end{bmatrix}$$

Thus,
$$L(4x^3 - 5x^2 + 6x - 7) = 12x^2 - 10x + 6$$

Also, note that

$$L(4x^3 - 5x^2 + 6x - 7) = (4x^3 - 5x^2 + 6x - 7)' = 12x^2 - 10$$

Example: Let the matrix of LT $L: \mathcal{P}_1 \to \mathcal{P}_1$ with respect to basis B = (x+1, x-1) be $\begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$.

Example: Let the matrix of LT $L: \mathcal{P}_1 \to \mathcal{P}_1$ with respect to basis B = (x+1, x-1) be $\begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$. Find the matrix of L with respect to basis C = (x, 1).

Example: Let the matrix of LT $L: \mathcal{P}_1 \to \mathcal{P}_1$ with respect to basis B = (x+1,x-1) be $\begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$. Find the matrix of L with respect to basis C = (x,1).

Solution: Since $A_{BB} = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$, we have

$$L(x+1) = 2(x+1) - 1(x-1) = x+3$$

$$L(x-1) = 3(x+1) - 2(x-1) = x+5$$

$$L(ax + b) = L\left(\frac{a+b}{2}(x+1) + \frac{a-b}{2}(x-1)\right)$$

$$L(ax+b) = L\left(\frac{a+b}{2}(x+1) + \frac{a-b}{2}(x-1)\right)$$
$$L(ax+b) = \left(\frac{a+b}{2}(x+3) + \frac{a-b}{2}(x+5)\right)$$

$$L(ax+b) = L\left(\frac{a+b}{2}(x+1) + \frac{a-b}{2}(x-1)\right)$$
$$L(ax+b) = \left(\frac{a+b}{2}(x+3) + \frac{a-b}{2}(x+5)\right)$$

so that L(x) = x + 4 and L(1) = -1.

$$L(ax+b) = L\left(\frac{a+b}{2}(x+1) + \frac{a-b}{2}(x-1)\right)$$
$$L(ax+b) = \left(\frac{a+b}{2}(x+3) + \frac{a-b}{2}(x+5)\right)$$

so that L(x) = x + 4 and L(1) = -1. Hence,

$$A_{CC} = \begin{bmatrix} 1 & 0 \\ 4 & -1 \end{bmatrix}.$$

Exercise: Consider the LT $L: \mathbb{R}^3 \to \mathbb{R}^2$, given by L([x,y,z]) = [x+y,y-z].

Exercise: Consider the LT $L: \mathbb{R}^3 \to \mathbb{R}^2$, given by L([x,y,z]) = [x+y,y-z]. Compute A_{BC} with respect to bases B = ([1,0,1],[0,1,1],[1,1,1]) and C = ([1,2],[-1,1]).

Exercise: Consider the LT $L: \mathbb{R}^3 \to \mathbb{R}^2$, given by L([x,y,z]) = [x+y,y-z]. Compute A_{BC} with respect to bases B = ([1,0,1],[0,1,1],[1,1,1]) and C = ([1,2],[-1,1]).

Answer:
$$A_{BC} = \begin{bmatrix} 0 & 1/3 & 2/3 \\ -1 & -2/3 & -4/3 \end{bmatrix}$$

Exercise: Consider the LT $L: \mathcal{P}_3 \to \mathcal{M}_{22}$, given by

$$L(ax^{3} + bx^{2} + cx + d) = \begin{bmatrix} -3a - 2c & -b + 4d \\ 4b - c + 3d & -6a - b + 2d \end{bmatrix}.$$

Compute A_{BC} with respect to standard bases for \mathcal{P}_3 and \mathcal{M}_{22} .

Exercise: Consider the LT $L: \mathcal{P}_3 \to \mathcal{M}_{22}$, given by

$$L(ax^{3} + bx^{2} + cx + d) = \begin{bmatrix} -3a - 2c & -b + 4d \\ 4b - c + 3d & -6a - b + 2d \end{bmatrix}.$$

Compute A_{BC} with respect to standard bases for \mathcal{P}_3 and \mathcal{M}_{22} .

Answer:

$$A_{BC} = \begin{bmatrix} -3 & 0 & -2 & 0 \\ 0 & -1 & 0 & 4 \\ 0 & 4 & -1 & 3 \\ -6 & -1 & 0 & 2 \end{bmatrix}$$

Exercise: Consider the LT $L: \mathbb{R}^2 \to \mathcal{P}_2$, given by

$$L([a,b]) = (-a+5b)x^2 + (3a-b)x + 2b.$$

Exercise: Consider the LT $L: \mathbb{R}^2 \to \mathcal{P}_2$, given by

$$L([a,b]) = (-a+5b)x^2 + (3a-b)x + 2b.$$

Compute A_{BC} with respect to bases B = ([5, 3], [3, 2]) and $C = (3x^2 - 2x, -2x^2 + 2x - 1, x^2 - x + 1)$.

Exercise: Consider the LT $L: \mathbb{R}^2 \to \mathcal{P}_2$, given by

$$L([a,b]) = (-a+5b)x^2 + (3a-b)x + 2b.$$

Compute A_{BC} with respect to bases B = ([5,3],[3,2]) and $C = (3x^2 - 2x, -2x^2 + 2x - 1, x^2 - x + 1)$.

Answer:

$$A_{BC} = \begin{bmatrix} 22 & 14 \\ 62 & 39 \\ 68 & 43 \end{bmatrix}$$

Exercise: Let B = ([1, 2], [2, -1]) and

C=([1,0],[0,1]) be ordered bases for $\mathbb{R}^2.$ If

L([5,5]), Also, find L([x,y]) for all $[x,y] \in \mathbb{R}^2$.

$$L:\mathbb{R}^2 o\mathbb{R}^2$$
 be a LT such that $A_{BC}=egin{bmatrix}4&3\\2&-4\end{bmatrix}$. Find

Exercise: Let B = ([1, 2], [2, -1]) and

C=([1,0],[0,1]) be ordered bases for $\mathbb{R}^2.$ If

L([5,5]), Also, find L([x,y]) for all $[x,y] \in \mathbb{R}^2$.

 $L:\mathbb{R}^2 o\mathbb{R}^2$ be a LT such that $A_{BC}=egin{bmatrix} 4 & 3 \ 2 & -4 \end{bmatrix}$. Find

Answer: L([5,5]) = [15,2].

Exercise: Let

$$B=([1,1,0,0],[0,1,1,0],[0,0,1,1],[0,0,0,1]) \mbox{ and }$$

$$C=([1,1,1],[1,2,3],[1,0,0])$$

be ordered bases for \mathbb{R}^4 and \mathbb{R}^3 , respectively. If

$$L:\mathbb{R}^4 o\mathbb{R}^3$$
 be a LT such that $A_{BC}=egin{bmatrix}1&1&0&0\\0&1&1&0\\0&1&0&1\end{bmatrix}.$

Find L?

Exercise: Let

$$B=([1,1,0,0],[0,1,1,0],[0,0,1,1],[0,0,0,1]) \mbox{ and }$$

$$C=([1,1,1],[1,2,3],[1,0,0])$$

be ordered bases for \mathbb{R}^4 and \mathbb{R}^3 , respectively. If

$$L: \mathbb{R}^4 o \mathbb{R}^3$$
 be a LT such that $A_{BC} = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 \end{bmatrix}$.

Find L?

Answer:

$$L([x_1, x_2, x_3, x_4]) = [-2x_1 + 3x_2 + x_4, x_2 + 2x_3, x_2 + 3x_4]$$

Matrix for the composition of Linear Transformations:

Matrix for the composition of Linear Transformations:

Theorem: Let V_1 , V_2 and V_3 be nontrivial finite dimensional vector spaces with ordered bases B, C and D, respectively.

Matrix for the composition of Linear Transformations:

Theorem: Let $\mathcal{V}_1, \mathcal{V}_2$ and \mathcal{V}_3 be nontrivial finite dimensional vector spaces with ordered bases B, C and D, respectively. Let $L_1: \mathcal{V}_1 \to \mathcal{V}_2$ be a linear transformation with matrix A_{BC} and let $L_2: \mathcal{V}_2 \to \mathcal{V}_3$ be a linear transformation with matrix A_{CD} . Then matrix

$$A_{BD} = A_{CD}A_{BC}$$

is the matrix of linear transformation

 $L_2 \circ L_1 : \mathcal{V}_1 \to \mathcal{V}_3$ with respect to the bases B and

Example: Let $L_1: \mathbb{R}^2 \to \mathbb{R}^2$ and $L_2: \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$L_1([x, y]) = [y, x]$$

 $L_2([x, y]) = [x + y, x - y, y]$

• Find the matrix of L_1 and L_2 with respect to the standard basis in each case.

Example: Let $L_1: \mathbb{R}^2 \to \mathbb{R}^2$ and $L_2: \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$L_1([x,y]) = [y,x]$$

 $L_2([x,y]) = [x+y, x-y, y]$

- Find the matrix of L_1 and L_2 with respect to the standard basis in each case.
- Find the matrix of $L_2 \circ L_1$ with respect to standard basis of \mathbb{R}^2 and \mathbb{R}^3 .

Answer: The matrix of L_1 w.r. to $B = \{[1, 0], [0, 1]\}$ is

$$A_{BB} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Answer: The matrix of L_1 w.r. to $B = \{[1, 0], [0, 1]\}$ is

$$A_{BB} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

The matrix of L_2 w. r. to the bases C=[1,0],[0,1] and $D=\{[1,0,0],[0,1,0],[0,0,1]\}$ is

$$A_{CD} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Thus, the matrix A_{BD} of the linear transformation $L_2 \circ L_1 : \mathbb{R}^2 \to \mathbb{R}^3$ w.r. to the bases B and D is

$$A_{BD} = A_{CD}A_{BB} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 0 \end{bmatrix}$$

Theorem: Let $L: \mathcal{V} \to \mathcal{W}$ be a linear transformation between n-dimensional vector spaces \mathcal{V} and \mathcal{W} and let B and C are ordered bases for \mathcal{V} and \mathcal{W} , respectively. Then L is an isomorphism (or invertible) if and only if the matrix representation A_{BC} for L with respect to B and C is nonsingular.

Theorem: Let $L: \mathcal{V} \to \mathcal{W}$ be a linear transformation between n-dimensional vector spaces \mathcal{V} and \mathcal{W} and let B and C are ordered bases for \mathcal{V} and \mathcal{W} , respectively. Then L is an isomorphism (or invertible) if and only if the matrix representation A_{BC} for L with respect to B and C is nonsingular.

In this case If D_{CB} is the matrix for L^{-1} with respect to C and B then $A_{BC}^{-1} = D_{CB}$.

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & -3 & 0 \end{bmatrix}$$

be matrices for L_1 and L_2 respectively, with respect to standard basis.

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & -3 & 0 \end{bmatrix}$$

be matrices for L_1 and L_2 respectively, with respect to standard basis.

• Show that L_1 and L_2 are isomorphisms.

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & -3 & 0 \end{bmatrix}$$

be matrices for L_1 and L_2 respectively, with respect to standard basis.

• Show that L_1 and L_2 are isomorphisms.

Answer: Since rank(A) = 3 and rank(B) = 3, the matrices A and B are nonsingular.

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & -3 & 0 \end{bmatrix}$$

be matrices for L_1 and L_2 respectively, with respect to standard basis.

• Show that L_1 and L_2 are isomorphisms.

Answer: Since rank(A) = 3 and rank(B) = 3, the matrices A and B are nonsingular. Hence, L_1 and are isomorphisms.

Answer: Since $L_1^{-1}(\mathbf{v}) = A^{-1}(\mathbf{v})$.

121 / 122

Answer: Since $L_1^{-1}(\mathbf{v}) = A^{-1}(\mathbf{v})$. Using row reduction (see Chapter 3), we have

$$A^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & -2 & 0 \end{bmatrix}$$

Answer: Since $L_1^{-1}(\mathbf{v}) = A^{-1}(\mathbf{v})$. Using row reduction (see Chapter 3), we have

$$A^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & -2 & 0 \end{bmatrix}$$

Similarly, $L_2^{-1}(\mathbf{v}) = B^{-1}(\mathbf{v})$, where

$$B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1/3 \\ 2 & 1 & 0 \end{bmatrix}.$$

Thank You

