PROJECT TITLE	GLOBAL SALES DATA ANALYTICS
ROLL NO	73771921156

Assignment -4

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression

df=pd.read_csv("/content/drive/NyDrive/Colab Notebooks/abalone.csv")

d-F['age'] = d-F['Rings']+1.5
df = df.drop('Rings', axis = 1)
```

Univariate Analysis

```
df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 3B)
                         \verb| array([[<matplotlib.axes._subplots.AxesSubplotobjectat8x7f3d1b8fb698>, array([[<matplotlib.axes._subplots.AxesSubplotobjectat8x7f3d1b8fb698>, array([[<matplotlib.axes._subplots.AxesSubplotobjectat8x7f3d1b8fb698>, array([[<matplotlib.axes._subplots.AxesSubplotobjectat8x7f3d1b8fb698>, array([[<matplotlib.axes._subplots.AxesSubplotobjectat8x7f3d1b8fb698>, array([[<matplotlib.axes._subplots.AxesSubplotobjectat8x7f3d1b8fb698>, array([]<matplotlib.axes._subplotobjectat8x7f3d1b8fb698>, array([]<matplotobjectat8x7f3d1b8fb698>, 
                                                                 \verb|\matplotlib.axes._subplots.AxesSubplotobjectat0x7f3d1ade4d98>|,
                                                        (matplotlib.axes._subplots.AxesSubplotobjectat0x/13d1ade4038),
(matplotlib.axes._subplots.AxesSubplot object at 0x7f3dladaa398),
(matplotlib.axes._subplots.AxesSubplot object at 0x7f3dlad60998)],
(matplotlib.axes._subplots.AxesSubplot object at 0x7f3dlad16f98),
(matplotlib.axes._subplots.AxesSubplot objectatBx7f3dlacda5d8),
(matplotlib.axes._subplots.AxesSubplot objectatBx7f3dlacda5d8),
                                                               <matplotlib.axes._subplots.AxesSubplot object at 8x7f3dlac53ld8>]],
                                                     dtype=object)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Whole weight
                                                                                                     Length
                                                                                                                                                                                                                                                                                           Diameter
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Height
                                                                                                                                                                                                                                                                                                                                                                                                         1600
                             400
                                                                                                                                                                                                                      350
                                                                                                                                                                                                                                                                                                                                                                                                         1400
                              350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       250
                                                                                                                                                                                                                      300
                                                                                                                                                                                                                                                                                                                                                                                                          1200
                              300
                                                                                                                                                                                                                      250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       200
                                                                                                                                                                                                                                                                                                                                                                                                          1000
                            250
                                                                                                                                                                                                                      200
                                                                                                                                                                                                                                                                                                                                                                                                             800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       150
                                                                                                                                                                                                                      150
                                                                                                                                                                                                                                                                                                                                                                                                             600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        100
                                                                                                                                                                                                                      100
                                                                                                                                                                                                                                                                                                                                                                                                             400
                             100
                                                                                                                                                                                                                        50
                                                                                                                                                                                                                                                                                                                                                                                                             200
                                50
                                                                                                                                                                                                                                                                                           0.3
                                                                                                                                                                                                                                                                                                                0.4
                                                                                                                                                                                                                                                                                                                                     0.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.5
                                                                                      Shucked weight
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Shell weight
                                                                                                                                                                                                                                                                                 Viscera weight
                              350
                                                                                                                                                                                                                      350
                                                                                                                                                                                                                                                                                                                                                                                                             350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       600
                              300
                                                                                                                                                                                                                      300
                                                                                                                                                                                                                                                                                                                                                                                                             300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        500
                              250
                                                                                                                                                                                                                                                                                                                                                                                                             250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       400
                             200
                                                                                                                                                                                                                      200
                                                                                                                                                                                                                                                                                                                                                                                                             200
                            150
                                                                                                                                                                                                                     150
                                                                                                                                                                                                                                                                                                                                                                                                             150
                             100
                                                                                                                                                                                                                      100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       200
                                                                                                                                                                                                                                                                                                                                                                                                             100
                                50
                                                                                                                                                                                                                        50
                                                                                                                                                                                                                                                                                                                                                                                                                   50
                                           0.00 0.25 0.50 0.75 100 125 150
                                                                                                                                                                                                                                                                         0.2
```

	Length	Diameter	Height	whole weight	Shucked weight	Viscera weight	Shell weight	age
Sex								
	0.427746	0.326494	0.107996	0.431363	0.191035	0.092010	0.128182	9.390462
M	0.561391	0.439287	0.151381	0.991459	0.432946	0.215545	0.281969	12.205497
F	0.579093	0.454732	0.158011	1.046532	0.446188	0.230689	0.302010	12.629304

Bivariate Analysis

numerical_features = df.select_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical_features])

Descriptive statistics

df.describe	()								
	Length	Diameter	Height	whole weight	Shucked weight	viscera weight	Shell weight	age	
coun	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	
mear	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000	
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000	

Check for missing values

df.isnull().sum()

Outlier handling

```
df-pd.get dummies(df)
dummy_da ta = df . copy()
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
# outliers removal
d-F. drop(df[ (d-F[ ' VI scera weight ' ] \gt 0. 5) & (df-[ ' age ' ] \lt 20) ] . Index, inp1ace=True)
df.drop(df[(df['Uiscera weight']<0.5) & (df['age'] > 25)].index, inplace=True)
var - 'Shell weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outliers removal
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outlier removal
\label{eq:df_def} $$ df.drop(df[(df['Shuckedweight'] >= 1) \& (df['age'] < 28)].index, inplace=True) $$
df.drop(df[(df['Shuckedweight']<1) & (df['age'] > 28)].iudex, inplace=True)
var = ' Nhole weight '
pit . scatter (x = df-[var], y = df['age'])
p1t . grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &
          (df['age'] < 25)].index, inplace = True)</pre>
df. drop(df-[ (df[ 'Nhole weight ' ]<2. 5) & (
d-F['age'] \rightarrow 25)]. Index, 1nplace = True)
var = ' Diameter '
pit . scatter (x = df-[var] , y = df[ ' age ' ] )
p1t . grid(True)
df.drop (df-[(df['Diazeten'] <8.1) &
\label{eq:condition} $$ (df['age'] < 5)].index, inplace = True) $$ df. drop(df-[(df['Diameter'] < 0.6) & (
d-F['age'] > 25)]. Index, 1nplace = True)
d-F-. drop(df-[ (d1°[ ' Diameter '] >=0. 6) & (
df-[ ' age ' ] < 25) ] . Index, 1nplace = True)
var = ' Height '
p1t . scatter (x - df[var] , y - df[ 'age '])
p1t . grid(True)
d-F. drop(d-I- [ (df-[ ' Height '] > 6 . 4) &
           (df['age'] < 15)]. Index, Inplace = True)
d-F. drop(df-[ (d-F[ ' Height ' ] <0. 4) & (
d-I°['age'] > 25)].index, 1nplace = True)
var='Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Leugth'] < 8.1) &
          (df['age'] < 5)].index,inplace=True)
dfdropd[df['Leugth]<0.8) & (
df['age'] > 25)].index, inplace = True)
df.dropd[df['Length]>=8.8) & (
df['age'] < 25)].iudex, inplace = True)
```


Categorical columns

 $numerical_features = df.select_dtypes(include = [np.number]).columns \\ categorica1_features = df.select_dtypes(include = [np.object]).columns$

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: Deprecationwarning: 'up.object' is a deprecated alias for the builtin 'object' To siler Deprecated in NumPy 1.20; for more details and guidance: https://numpy_org/devdocs/release/1.20.8-notes.html#deprecations

numerical_features

categonica I_featunes

```
Index(['Sex'], dtype='object')
```

ENCODING

from sklearn.preprocessing import LabelEncoder le=LabelEncoder() print(df.Sex.value_counts())

M 1525 1 1341 F 1301

Name: Sex, dtype: int64

x=df.iloc[:,:5]

10	Nhole we1ght	Helght	Diameter	Length	Sex		
	0.5140	0.095	0.365	0.455	М	0	
	0.2255	0.090	0.265	0.350	М	1	
	0.6770	0.135	0.420	0.530	F	2	
	0.5160	0.125	0.365	0.440	М	3	
	0.2050	0.080	0.255	0.330		4	
	0.8870	0.165	0.450	0.565	F	4172	
	0.9660	0.135	0.440	0.590	М	4173	
	1.1760	0.205	0.475	0.600	М	4174	
	1.0945	0.150	0.485	0.625	F	4175	
	1.9485	0.195	0.555	0.710	М	4176	

y=df.iloc[:,5:]

4167 rows • 5 columns

	Shucked weight	VIscera weight	Shell weight	age	1					
0	0.2245	0.1010	0.1500	16.5						
1	0.0995	0.0485	0.0700	8.5						
2	0.2565	0.1415	0.2100	10.5						
	0.2155	0.1140	0.1550	11.5						
3 4	0.0895	0.0395	0.0550	8.5						
4172	0.3700	0.2390	0.2490	12.5						
4173	0.4390	0.2145	0.2605	11.5						
4174	0.5255	0.2875	0.3080	10.5						
4175	0.5310	0.2610	0.2960	11.5						
4176	0.9455	0.3765	0.4950	13.5						
4167 rows 4 columns										

Train, Test, Split

 $from \ sk1earn.model_selection \ import \ train_test_split \\ x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)$

Model Building

from sklearn.linear_model import LinearRegression mlr=LinearRegression() mlr.fit(x_train,y_train)

Train and Test model

x_test [6:5]

	Sex	Length	Diameter	Height	Nhole we1ght
661		0.535	0.450	0.170	0.781
370) F	0.650	0.545	0.165	1.566
227	2 M	0.635	0.510	0.210	1.598
100	3 M	0.595	0.455	0.150	1.044
114	5 M	0.580	0.455	0.195	1.859

y_test[0:5]

	Shucked we1ght	vlscera we1ght	Shell we1ght	age	
661	0.3055	0.1555	0.295	12.5	
370	0.6645	0.3455	0.415	17.5	
2272	0.6535	0.2835	0.580	16.5	
1003	0.5180	0.2205	0.270	10.5	
1145	0.9450	0.4260	0.441	10.5	

Feature Scaling

from sklearn.preprocessing import StandardScaler ss=StandardScaler() x_train=ss.fit_transform(x_train) mlrpred=mlr.predict(x_test[B:9]) mlrpred

Performance measure

I-rom sklearn .metric s Import r2_score r2_s core(m1r . predict (x_test) , y_test)

0.5597133867640833