Course Code: ESC106A

Course Title: Construction Materials and Engineering Mechanics

Lecture No. 44:

Problems on Centre of gravity and Moment of Inertia

Delivered By: Dr. T. Valsa Ipe

Lecture Intended Learning Outcomes

At the end of this lecture, students will be able to:

- Calculate the co-ordinates of the centroid of the composite area after converting the composite section into simple regular areas.
- Solve for the Moment of Inertia of sections with respect to the considered axis.

Contents

Problems on Center of Gravity and Moment of Inertia

Problems on CG and MI

1. Determine the moment of inertia of the beam's cross-sectional area about the y axis

 $I_{yy} = 43,335,000cm^4$

Problems on CG and MI

2. Determine the moment of inertia of the beam's cross-sectional area with respect to the x' axis passing through the centroid C of the cross section.

Ans:

$$y = 104.3mm$$

$$I_{yy} = 30,239,475mm^4$$

Problems on CG and MI

3.Locate the centroid x of the beam's cross-sectional area, and then determine the moment of inertia of the area about the centroidal y axis.

Ans:

$$x = 71.32mm$$

$$I_{yy} = 3,600,088mm^4$$

Summary

- The composite areas are divided into simple areas and the coordinates of the centre of gravity can be determined
- Moment of inertia with respect to centroidal axis is calculated on the basis of parallel axis theorem and perpendicular axis theorem

