1. Problem and Data Description

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
Spaceship Titanic Section
# Reading
#from google.colab import drive
#drive.mount('/content/drive')
ss_train = pd.read_csv('/content/ss_train.csv') ## this might be on the directory
ss test = pd.read csv('/content/ss test.csv')
# Shape and preview
#print('Train set shape:', ss_train.shape)
#print('Test set shape:', ss_train.shape)
#ss train.head()
#! ls 'content/drive/My Drive/ss train.csv'
Housing Prices Section
hp_train = pd.read_csv('/content/hp_train.csv') ## this might be on the directory
hp_test = pd.read_csv('/content/hp_test.csv')
# Shape and preview
print('Train set shape:', hp train.shape)
print('Test set shape:', hp_test.shape)
hp_train.head()
```

```
Train set shape: (1460, 81)
Test set shape: (1459, 80)
```

Id MSSubClass MSZoning LotFrontage LotArea Street Allev LotShape LandContour

2. Data Preprocessing & Exploratory Data Analysis

Spaceship Titanic Section

▼ 2.1 Handing missing values

```
## missing value check
print('Missing values from train set:')
print(ss_train.isna().sum())
print('Missign values from test set:')
print(ss_test.isna().sum())
```

```
Missing values from train set:
PassengerId
                   0
HomePlanet
                 201
CryoSleep
                 217
Cabin
                 199
Destination
                 182
                 179
Age
VIP
                 203
RoomService
                 181
FoodCourt
                 183
                 208
ShoppingMall
                 183
Spa
VRDeck
                 188
Name
                 200
Transported
                   0
dtype: int64
Missign values from test set:
PassengerId
                   0
HomePlanet
                  87
CryoSleep
                  93
Cabin
                 100
                  92
Destination
                  91
Age
VIP
                  93
RoomService
                  82
FoodCourt
                 106
ShoppingMall
                  98
Spa
                 101
VRDeck
                  80
```

Name 94

ss_test.head(3)

	PassengerId	HomePlanet	CryoSleep	Cabin	Destination	Age	VIP	RoomService	Foo
0	0013_01	Earth	True	G/3/S	TRAPPIST- 1e	27.0	False	0.0	
1	0018_01	Earth	False	F/4/S	TRAPPIST-	19.0	False	0.0	>

ss_train.head(3)

	PassengerId	HomePlanet	CryoSleep	Cabin	Destination	Age	VIP	RoomService	Foo
0	0001_01	Europa	False	B/0/P	TRAPPIST- 1e	39.0	False	0.0	
1	0002_01	Earth	False	F/0/S	TRAPPIST- 1e	24.0	False	109.0	
2	0003_01	Europa	False	A/0/S	TRAPPIST- 1e	58.0	True	43.0	
70									
4									•

##spaceship trainset discription
ss_train.describe()

	Age	RoomService	FoodCourt	ShoppingMall	Spa	VRDeck
count	8514.000000	8512.000000	8510.000000	8485.000000	8510.000000	8505.000000
mean	28.827930	224.687617	458.077203	173.729169	311.138778	304.854791
std	14.489021	666.717663	1611.489240	604.696458	1136.705535	1145.717189
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	19.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	27.000000	0.000000	0.000000	0.000000	0.000000	0.000000
75%	38.000000	47.000000	76.000000	27.000000	59.000000	46.000000
max	79.000000	14327.000000	29813.000000	23492.000000	22408.000000	24133.000000

spaceship test set discription
ss_test.describe()

	Age	RoomService	FoodCourt	ShoppingMall	Spa	VRDeck
count	4186.000000	4195.000000	4171.000000	4179.000000	4176.000000	4197.000000
mean	28.658146	219.266269	439.484296	177.295525	303.052443	310.710031
std	14.179072	607.011289	1527.663045	560.821123	1117.186015	1246.994742
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	19.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	26.000000	0.000000	0.000000	0.000000	0.000000	0.000000
75%	37.000000	53.000000	78.000000	33.000000	50.000000	36.000000
max	79.000000	11567.000000	25273.000000	8292.000000	19844.000000	22272.000000
max	79.000000	11567.000000	25273.000000	8292.000000	19844.000000	22272.000000

Fromt this we know taht there will be 6 numerical columns from the train and test datasets.

For the total sum graph transported or not

```
## use countplot to see in bar spot
total=float(len(ss_train['Transported']))
t=sns.countplot(data=ss_train, x='Transported')
for p in t.patches:
    percentage ='{:.1f}%'.format(100*p.get_height()/total)
    x = p.get_x()
    y = p.get_height()
    t.annotate(percentage, (x,y))
plt.show()
```


Graphs with the relationship between transported and other cateogories

barplot

```
plt.figure(figsize=(16,12))
plt.subplot(2,2,1)
totalpl =float(len(ss_train['HomePlanet']))
pl= sns.countplot(data=ss_train, x='HomePlanet', hue='Transported', palette = 'magma')
for p in pl.patches:
    percentage ='{:.1f}%'.format(100*p.get height()/totalpl)
    x = p.get_x()
   y = p.get height()
    pl.annotate(percentage, (x,y))
plt.subplot(2,2,2)
totald = float(len(ss_train['Destination']))
d= sns.countplot(data=ss_train, x='Destination', hue='Transported', palette = 'inferno')
for p in d.patches:
    percentage ='{:.1f}%'.format(100*p.get_height()/totald)
    x = p.get x()
   y = p.get_height()
    d.annotate(percentage, (x,y))
plt.subplot(2,2,3)
totalc =float(len(ss train['CryoSleep']))
c= sns.countplot(data=ss_train, x='CryoSleep', hue='Transported', palette = 'viridis')
for p in c.patches:
    percentage ='{:.1f}%'.format(100*p.get height()/totalc)
    x = p.get_x()
   y = p.get height()
    c.annotate(percentage, (x,y))
plt.subplot(2,2,4)
totalv =float(len(ss_train['VIP']))
v = sns.countplot(data=ss_train, x='VIP', hue='Transported', palette = 'hot')
for p in v.patches:
    percentage ='{:.1f}%'.format(100*p.get_height()/totalv)
   x = p.get x()
   y = p.get_height()
    v.annotate(percentage,(x,y))
plt.show()
```


numeric feats=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']

```
# Plot expenditure features
fig=plt.figure(figsize=(10,20))
for i, var_name in enumerate(numeric_feats):
    # Left plot
    ax=fig.add_subplot(5,2,2*i+1)
    sns.histplot(data=ss_train, x=var_name, axes=ax, bins=30, kde=False, hue='Transported')
    ax.set_title(var_name)

# Right plot (truncated)
    ax=fig.add_subplot(5,2,2*i+2)
    sns.histplot(data=ss_train, x=var_name, axes=ax, bins=30, kde=True, hue='Transported')
    plt.ylim([0,100])
    ax.set_title(var_name)
fig.tight_layout() # Improves appearance a bit
plt.show()
```


Filling in the Missing Values

```
## historgram for
plt.figure(figsize=(16,8))
plt.subplot(2,2,1)
plt.hist(ss_train.loc[:,'RoomService'], bins = 30, color = 'yellow')

plt.xlabel("Room Service Bill Amount")
plt.subplot(2,2,2)
plt.hist(ss_train.loc[:,'FoodCourt'], bins = 30, color = 'red')
plt.xlabel("Food Court Bill Amount")
plt.subplot(2,2,3)
plt.hist(ss_train.loc[:,'ShoppingMall'], bins = 30, color = 'pink')
plt.xlabel("Shopping Mall Bill Amount")
plt.subplot(2,2,4)
plt.hist(ss_train.loc[:,'Spa'], bins = 30, color = 'purple')
plt.xlabel("Spa Bill Amount")
```


Since age is evenly distributed, which is indicated by the 50 percentile (27) being close to the mean (27), it makes sense to replace missing values in the Age column with the mean value of 27. For the room service, shopping mall, spa however, the data is not evenly distributed since the summary statistics show that the median value is 0 and the histogram shows the vast majority of values are near 0. Therefore, it makes sense to make the missing values 0 for this column, which happens to be the mode too.

```
for i in ss_train.columns:
    if ss_train[i].isnull().sum().any():
        if i == 'Age':
            ss_train[i] = ss_train[i].fillna(ss_train[i].mean())
            ss_test[i] = ss_test[i].fillna(ss_test[i].mean())
        else:
            ss_train[i] = ss_train[i].fillna(ss_train[i].mode()[0])
            ss_test[i] = ss_test[i].fillna(ss_test[i].mode()[0])
```

```
## create the barplot with the cateroical column
plt.figure(figsize = (16,12))
plt.subplot(2,3,1)
## with checking difference between with/ without filling missing values.
## with missing value plot
## plot with HomePlanet to see the relation with Homeplanet and Transported
totalh =float(len(ss_train['HomePlanet']))
h = sns.countplot(x = "HomePlanet", data = ss_train) #fill in missing values of homeplanet v
for p in h.patches:
    percentage ='{:.1f}%'.format(100*p.get height()/totalh)
    x = p.get x()
   y = p.get_height()
    h.annotate(percentage, (x,y))
plt.subplot(2,3,2)
## plot with Destination to see the relation with Destination and Transported
totald =float(len(ss train['Destination']))
d = sns.countplot(x = "Destination", data = ss_train) #fill in missing values of destination
for p in d.patches:
    percentage ='{:.1f}%'.format(100*p.get height()/totald)
    x = p.get x()
   y = p.get_height()
    d.annotate(percentage,(x,y))
plt.show()
```



```
ss_train.loc[:,'HomePlanet'] = ss_train.loc[:, 'HomePlanet'].fillna("Earth")
ss_train.loc[:, 'Destination'] = ss_train.loc[:, 'Destination'].fillna("TRAPPIST-1e")
```

```
##for checking the function worked in proper.
##ss_train.isna().sum()
## barplot after we coved with the missing values
plt.figure(figsize = (16,12))
plt.subplot(2,3,1)
totalh =float(len(ss_train['HomePlanet']))
h = sns.countplot(x = "HomePlanet", data = ss_train) #fill in missing values of homeplanet v
for p in h.patches:
    percentage ='{:.1f}%'.format(100*p.get_height()/totalh)
    x = p.get x()
   y = p.get_height()
    h.annotate(percentage, (x,y))
plt.subplot(2,3,2)
totald =float(len(ss train['Destination']))
d = sns.countplot(x = "Destination", data = ss_train) #fill in missing values of destination
for p in d.patches:
    percentage ='{:.1f}%'.format(100*p.get height()/totald)
    x = p.get_x()
    y = p.get height()
    d.annotate(percentage,(x,y))
plt.show()
```



```
# ## for ages
# figure size
plt.figure(figsize = (16,12))
```

```
## To find the distribution of the Age
plt.subplot(3,1,1)
sns.histplot(data=ss_train, x= 'Age')
plt.subplot(3,1,2)
## to fine the range of the Age
sns.boxplot(data=ss train, x='Age', palette = ["#fc9272", "#fee0d2"])
plt.subplot(3,1,3)
# For the AgeS reformatt in the 0~10, 11~20 ....
ss traina = ss train.copy()
ss_traina['Age_by_decade'] = pd.cut(x=ss_traina['Age'], bins=[9,19,29,39,49,59,69,79,89,99],
# sns.countplot(data = ss_train, x = ss_train['Age_by_decade'], hue='Transported')
## covering all the range of
totala =float(len(ss_traina['Age_by_decade']))
a = sns.countplot(data=ss_traina, x='Age_by_decade', hue='Transported', palette = 'hot')
for p in a.patches:
    percentage ='{:.1f}%'.format(100*p.get height()/totala)
   x = p.get_x()
   y = p.get_height()
    a.annotate(percentage,(x,y))
plt.show()
```


2.2 Exploratory Data Analysis

▼ Total target distribution

Findning correlations between columns

```
cor = ss_train.corr()
plt.figure(figsize = (12,8))
sns.heatmap(cor, annot = True)
rel = cor['Transported'].sort_values(ascending = False)
```


The above correlation matrix shows there is not much correlation between the most of the variables. However, there is a slight relationship between room service and transported, spa and

transported, and VRDeck and transported as the relationship is a negative correlation between -.2 and -.25 for these three relationships. We can explore these relationships further with scatter plots.

For PCA, formating the data

```
## feature
## False = 0 True = 1
ss_trainc = ss_train.copy()
ss_testc = ss_test.copy()
ss trainc.shape
     (8693, 14)
ss_train.shape
     (8693, 14)
ss_train.dtypes
     PassengerId
                       object
     HomePlanet
                       object
     CryoSleep
                         bool
                       object
     Cabin
     Destination
                       object
                      float64
     Age
     VIP
                         bool
     RoomService
                      float64
     FoodCourt
                      float64
     ShoppingMall
                      float64
                      float64
     Spa
     VRDeck
                      float64
                       object
     Name
     Transported
                         bool
     dtype: object
print(ss_trainc.isna().sum())
     PassengerId
                      0
     HomePlanet
                      0
     CryoSleep
                      0
     Cabin
                      0
                      0
     Destination
     Age
                      0
     VIP
                      0
     RoomService
                      0
     FoodCourt
                      0
                      0
     ShoppingMall
```

```
Spa      0
VRDeck      0
Name      0
Transported      dtype: int64
```

```
## for handling the missing values from the cateorical labels
# Drop qualitative/redundant/high cardinality features
ss_trainc.set_index('PassengerId')
ss_trainc.drop([ 'Cabin', 'Name', 'Age'], axis=1, inplace=True)
ss_testc.drop(['Cabin', 'Name', 'Age'], axis=1, inplace=True)
```

passengerId = ss_test['PassengerId']
ss_test.set_index('PassengerId')
passengerId

```
0
        0013_01
1
        0018 01
2
        0019 01
3
        0021 01
        0023_01
4272
        9266 02
4273
        9269 01
4274
        9271 01
4275
        9273 01
4276
        9277 01
```

Name: PassengerId, Length: 4277, dtype: object

```
ss_test.drop(['Cabin', 'Name','Age'], axis=1, inplace=True)
```

Preview resulting training set
ss_trainc.head()

	PassengerId	HomePlanet	-	Destination		RoomService	FoodCourt	Shopį
0	0001_01	Europa	False	TRAPPIST- 1e	False	0.0	0.0	
1	0002_01	Earth	False	TRAPPIST- 1e	False	109.0	9.0	
2	0003_01	Europa	False	TRAPPIST- 1e	True	43.0	3576.0	
4								•

ss_testc.head()

VIP

RoomService FoodCourt Shop

PassengerId HomePlanet CryoSleep Destination

```
TRAPPIST-
      0
             0013_01
                                                                          0.0
                                                                                     0.0
                            Earth
                                        True
                                                           False
                                                       1e
                                               TRAPPIST-
      1
                                                                                     9.0
             0018 01
                            Earth
                                       False
                                                                          0.0
                                                           False
                                                       1e
      2
             0019_01
                          Europa
                                        True
                                               55 Cancri e
                                                                          0.0
                                                                                     0.0
                                                          False
                                               y=ss_trainc['Transported'].copy().astype(int)
X=ss trainc.drop('Transported', axis=1).copy()
X_test=ss_test.copy()
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.feature selection import mutual info classif
from sklearn.decomposition import PCA
# Indentify numerical and categorical columns
numerical cols = [cname for cname in X.columns if X[cname].dtype in ['int64', 'float64']]
categorical_cols = [cname for cname in X.columns if X[cname].dtype == "object"]
# Scale numerical data to have mean=0 and variance=1
numerical transformer = Pipeline(steps=[('scaler', StandardScaler())])
# One-hot encode categorical data
categorical transformer = Pipeline(steps=[('onehot', OneHotEncoder(drop='if binary', handle ι
# Combine preprocessing
ct = ColumnTransformer(
    transformers=[
        ('num', numerical transformer, numerical cols),
        ('cat', categorical_transformer, categorical_cols)],
        remainder='passthrough')
# Apply preprocessing
X = ct.fit transform(X)
X_test = ct.transform(X_test)
# Print new shape
print('Training set shape:', X.shape)
     /usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_encoders.py:174: UserWarn
       UserWarning,
     Training set shape: (8693, 8706)
```

import plotly.express as px

```
pca = PCA(n_components=3)
components = pca.fit_transform(X)
print(components.shape)

total_var = pca.explained_variance_ratio_.sum() * 100

fig = px.scatter_3d(
    components, x=0, y=1, z=2, color=y, size=0.1*np.ones(len(X)), opacity = 1,
    title=f'Total Explained Variance: {total_var:.2f}%',
    labels={'0': 'PC 1', '1': 'PC 2', '2': 'PC 3'},
    width=800, height=500
)
fig.show()
    (8693, 3)
```

Total Explained Variance: 48.65%

The main component explains only 48.65% from original data For finding number of main Component

```
# Explained variance (how important each additional principal component is)
#pca = PCA().fit(X)
fig, ax = plt.subplots(figsize=(10,4))
xi = np.arange(1, 1+X.shape[1], step=1)
```

```
yi = np.cumsum(pca.explained variance ratio )
plt.plot(xi, yi, marker='o', linestyle='--', color='b')
# Aesthetics
plt.ylim(0.0,1.1)
plt.xlabel('Number of Components')
plt.xticks(np.arange(1, 1+X.shape[1], step=2))
plt.ylabel('Cumulative variance (%)')
plt.title('Explained variance by each component')
plt.axhline(y=1, color='r', linestyle='-')
plt.text(0.5, 0.85, '100% cut-off threshold', color = 'red')
ax.grid(axis='x')
     ValueError
                                                Traceback (most recent call last)
     <ipython-input-33-68f9e50c2e48> in <module>()
           4 xi = np.arange(1, 1+X.shape[1], step=1)
           5 yi = np.cumsum(pca.explained variance ratio )
     ----> 6 plt.plot(xi, yi, marker='o', linestyle='--', color='b')
           7
           8 # Aesthetics
                                         3 frames
     /usr/local/lib/python3.7/dist-packages/matplotlib/axes/_base.py in _plot_args(self,
     tup, kwargs)
         340
                     if x.shape[0] != y.shape[0]:
         341
     --> 342
                         raise ValueError(f"x and y must have same first dimension, but "
         343
                                           f"have shapes {x.shape} and {y.shape}")
                     if x.ndim > 2 or y.ndim > 2:
         344
     ValueError: x and y must have same first dimension, but have shapes (8706,) and (3,)
      SEARCH STACK OVERFLOW
      1.0
      0.8
      0.6
      0.4
      0.2
```

Morethan 7 main component describe the most of distribution.

2.3 Modeling

▼ classifier KNN, NaiveBase, Logistic Regression

I just do it once, if you want we can do it in seperate for the method

To briefly mention the algorithms we will use,

Logistic Regression: Unlike linear regression which uses Least Squares, this model uses Maximum Likelihood Estimation to fit a sigmoid-curve on the target variable distribution. The sigmoid/logistic curve is commonly used when the data is questions had binary output.

K-Nearest Neighbors (KNN): KNN works by selecting the majority class of the k-nearest neighbours, where the metric used is usually Euclidean distance. It is a simple and effective algorithm but can be sensitive by many factors, e.g. the value of k, the preprocessing done to the data and the metric used.

Naive Bayes (NB): Naive Bayes learns how to classify samples by using Bayes' Theorem. It uses prior information to 'update' the probability of an event by incoorporateing this information according to Bayes' law. The algorithm is quite fast but a downside is that it assumes the input features are independent, which is not always the case.

```
## feature (change the string to the numeric)
from sklearn.preprocessing import StandardScaler, LabelEncoder
la = LabelEncoder()
for i in ss_test.columns:
    if ss_train[i].dtype == 'object' or ss_train[i].dtype == 'bool':
        ss_train[i] = la.fit_transform(ss_train[i])
        ss_test[i] = la.fit_transform(ss_test[i])

ss_train['Transported'] = la.fit_transform(ss_train['Transported'])
ss_train.head()
```

	PassengerId	HomePlanet	CryoSleep	Cabin	Destination	Age	VIP	RoomService	Food(
0	0	1	0	B/0/P	2	39.0	0	0.0	

ss_test.head()

	PassengerId	HomePlanet	CryoSleep	Destination	VIP	RoomService	FoodCourt	Shoppi
0	0	0	1	2	0	0.0	0.0	
1	1	0	0	2	0	0.0	9.0	
2	2	1	1	0	0	0.0	0.0	
3	3	1	0	2	0	0.0	6652.0	
4	4	0	0	2	0	10.0	0.0	
4								•

```
# Findning correlations between columns
ss_trainco = ss_train.copy()
ss_trainco.drop('Transported', axis = 1, inplace= True)
cor = ss_trainco.corr()
plt.figure(figsize = (12,8))
sns.heatmap(cor, annot = True)
```

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f77025fc350>
      Passengerld
                      -0.0061 -0.0071 -0.0032 -0.0094
                                               0.014 0.00047 -0.0092
                                                                       -0.0051
                                                                              0.016
ss trainm = ss train.copy()
ss_testm = ss_test.copy()
        u yosieep - -0.0071 0.004
from sklearn.metrics import accuracy score
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear model import LogisticRegression
from sklearn.naive bayes import GaussianNB
from sklearn import tree
from xgboost import XGBClassifier
from sklearn.ensemble import RandomForestClassifier
from lightgbm import LGBMClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neural network import MLPClassifier
#from catboost import CatBoostClassifier
import time
features = ['HomePlanet', 'CryoSleep', 'Destination', 'VIP', 'RoomService', 'FoodCourt', 'Shoppi
y = ss trainm['Transported']
X = ss trainm.loc[:, features]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0,shuf
Knn = KNeighborsClassifier()
Logistic regression = LogisticRegression(solver='lbfgs', max iter=1000)
Naive bayes = GaussianNB()
Decision Tree = tree.DecisionTreeClassifier()
Random_forest = RandomForestClassifier(bootstrap= False, n_estimators=529, max_depth=15, min_
XGB = XGBClassifier(gamma= 0.8151728866167003,learning rate= 0.031628174313413464,max depth=
LGBM = LGBMClassifier(learning_rate=0.04183147620569966, max_depth= 25, min_child_samples= 117
GradientBoost = GradientBoostingClassifier(n estimators=100)
#CatBoost = CatBoostClassifier(objective='CrossEntropy', colsample bylevel= 0.075879454763026
NNMLP =MLPClassifier(hidden_layer_sizes = (20,20,), activation='relu', solver='adam',max_iter
models = [Knn,Logistic_regression, Naive_bayes , Decision_Tree, Random_forest, XGB, LGBM, Gra
accuracy =[]
train time =[]
predict time =[]
total_time =[]
for model in models:
    start = time.time()
    model.fit(X_train, y_train)
    end train =time.time()
    y pred = model.predict(X test)
    end_predict = time.time()
```

```
acc_model = round(accuracy_score(y_pred, y_test) * 100, 2)
accuracy.append(acc_model)
t_time = round(end_train-start,2)
train_time.append(t_time)
p_time = round(end_predict-end_train,2)
predict_time.append(p_time)
tt_time = round(end_predict-start,2)
total_time.append(tt_time)
```

model_name = ['KNN', 'Logistic Regression', 'Naive Bayes', 'Decision Tree', 'Random_forest',
models_table = pd.DataFrame({'Model name': model_name, 'Accuracy percentage': accuracy, 'Trai
models_table

	Model name	Accuracy percentage	Train time	Predict time	Total time
0	KNN	71.71	0.01	0.11	0.12
1	Logistic Regression	78.20	0.10	0.00	0.10
2	Naive Bayes	68.54	0.00	0.00	0.01
3	Decision Tree	74.75	0.02	0.00	0.03
4	Random_forest	78.66	3.72	0.19	3.90
5	XGB	78.29	1.50	0.02	1.52
6	LGBM	78.33	0.35	0.04	0.39
7	GradientBoost	78.33	0.60	0.00	0.61
8	NNMLP	77.32	0.93	0.00	0.94

K-Fold Validation

	Model name	K-Fold validation mean scores
6	LGBM	0.793515
4	Random_forest	0.789258
5	XGB	0.789143
7	GradientBoost	0.788798
1	Logistic Regression	0.786841
8	NNMLP	0.770624
0	KNN	0.749920
3	Decision Tree	0.749454

pick the most accurate one

LR = LGBMClassifier(learning_rate=0.04183147620569966,max_depth= 25, min_child_samples= 117,
LR.fit(X_train, y_train)

LR_prediction = LR.predict(X)

from sklearn.metrics import confusion_matrix # For find confusion matrix

```
# Find confusion matrix for this model:
confusion_mat_LR = confusion_matrix(y, LR_prediction)
confusion_mat_dataframe_LR = pd.DataFrame(confusion_mat_LR, index=["Transported", "NotTransposed since the state of the state o
```


from sklearn.metrics import classification_report # For print evaluation report
report_LR = pd.DataFrame(classification_report(y, LR_prediction, output_dict=True, target_name)
report_LR

	Transported	NotTransported	accuracy	macro avg	weighted avg	1
precision	0.826890	0.800437	0.812953	0.813664	0.813568	
recall	0.788181	0.837369	0.812953	0.812775	0.812953	
f1-score	0.807072	0.818486	0.812953	0.812779	0.812820	
support	4315.000000	4378.000000	0.812953	8693.000000	8693.000000	

best_prediction = LR_prediction
best_prediction
print(np.round(100*np.round(best_prediction).sum()/len(best_prediction),2), "%")

52.69 %

ss_test

	PassengerId	HomePlanet	CryoSleep	Destination	VIP	RoomService	FoodCourt	Shc
0	0	0	1	2	0	0.0	0.0	
1	1	0	0	2	0	0.0	9.0	
2	2	1	1	0	0	0.0	0.0	
3	3	1	0	2	0	0.0	6652.0	
4	4	0	0	2	0	10.0	0.0	
4272	4272	0	1	2	0	0.0	0.0	
4273	4273	0	0	2	0	0.0	847.0	
4274	4274	2	1	0	0	0.0	0.0	
4275	4275	1	0	2	0	0.0	2680.0	
4276	4276	0	1	1	0	0.0	0.0	
4277 rc	ws × 10 column	S						
4								

print(X_train)

	HomePlanet	CryoSleep	Destination	VIP	RoomService	FoodCourt	\
3758	2	1	2	0	0.0	0.0	
7328	0	0	1	0	0.0	0.0	
5550	1	0	0	0	0.0	2427.0	
6157	2	0	2	0	1192.0	5.0	
1225	0	0	2	0	0.0	0.0	
4011	0	0	2	0	0.0	252.0	

```
1795
                0
                                            2
                                                 0
                                                              8.0
                             0
                                                                        652.0
                                            2
4668
                0
                             0
                                                 0
                                                              0.0
                                                                          4.0
6142
                0
                             0
                                            2
                                                 0
                                                             89.0
                                                                          0.0
3235
                0
                             0
                                                 0
                                                              1.0
                                                                        467.0
      ShoppingMall
                          Spa VRDeck
3758
                                   0.0
                0.0
                          0.0
7328
              501.0
                                   0.0
                       242.0
5550
               15.0
                          5.0
                                   0.0
6157
             1864.0
                      4287.0
                                   0.0
1225
                0.0
                          0.0
                                   0.0
. . .
                 . . .
                                   . . .
4011
                1.0
                          0.0
                                553.0
1795
                0.0
                          5.0
                                 90.0
4668
              834.0
                          0.0
                                 32.0
6142
              795.0
                          0.0
                                   3.0
                                341.0
3235
                4.0
                          0.0
```

[6519 rows x 9 columns]

#passengerId = ss_test['PassengerId']
ss_test = ss_test.drop('PassengerId', axis = 1)
print(ss_test)

	HomePlanet	CryoSleep	Destination	VIP	RoomService	FoodCourt	\
0	0	1	2	0	0.0	0.0	
1	0	0	2	0	0.0	9.0	
2	1	1	0	0	0.0	0.0	
3	1	0	2	0	0.0	6652.0	
4	0	0	2	0	10.0	0.0	
	• • •	• • •	• • •		• • •	• • •	
4272	0	1	2	0	0.0	0.0	
4273	0	0	2	0	0.0	847.0	
4274	2	1	0	0	0.0	0.0	
4275	1	0	2	0	0.0	2680.0	
4276	0	1	1	0	0.0	0.0	

	ShoppingMall	Spa	VRDeck
0	0.0	0.0	0.0
1	0.0	2823.0	0.0
2	0.0	0.0	0.0
3	0.0	181.0	585.0
4	635.0	0.0	0.0
4272	0.0	0.0	0.0
4273	17.0	10.0	144.0
4274	0.0	0.0	0.0
4275	0.0	0.0	523.0
4276	0.0	0.0	0.0

[4277 rows x 9 columns]

LR = LGBMClassifier(learning_rate=0.04183147620569966, max_depth= 25, min_child_samples= 117,

```
Most = LR.fit(X_train, y_train)
Most.predict(ss_test)
pred1 = pd.DataFrame(Most.predict(ss_test))
pred1.columns =['Transported']
pred1['PassengerId'] = passengerId
pred1 = pred1[['PassengerId', 'Transported']]
for i in range(len(pred1)):
   if pred1.iloc[i,1] == 1:
      pred1.iloc[i,1] = 'True'
   else:
      pred1.iloc[i,1] = 'False'
      #pred1.iloc[i,1] = pred1.iloc[i,1]
pred1.to_csv("ss_submission.csv", index =False)
pred1
```

	PassengerId	Transported	7
0	0013_01	True	
1	0018_01	False	
2	0019_01	True	
3	0021_01	True	
4	0023_01	False	
4272	9266_02	True	
4273	9269_01	False	
4274	9271_01	True	
4275	9273_01	True	
4276	9277_01	True	
4277 ro	ws × 2 columns		

Housing Prices Section

▼ 2.1 Handing missing values

```
hp_train = pd.read_csv('/content/hp_train.csv') ## this might be on the directory
hp_test = pd.read_csv('/content/hp_test.csv')
hp_train
```

Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCo
1	60	RL	65.0	8450	Pave	NaN	Reg	
2	20	RL	80.0	9600	Pave	NaN	Reg	
3	60	RL	68.0	11250	Pave	NaN	IR1	
4	70	RL	60.0	9550	Pave	NaN	IR1	
5	60	RL	84.0	14260	Pave	NaN	IR1	
1456	60	RL	62.0	7917	Pave	NaN	Reg	
1457	20	RL	85.0	13175	Pave	NaN	Reg	
1458	70	RL	66.0	9042	Pave	NaN	Reg	
1459	20	RL	68.0	9717	Pave	NaN	Reg	
1460	20	RL	75.0	9937	Pave	NaN	Reg	
	1 2 3 4 5 1456 1457 1458 1459	1 60 2 20 3 60 4 70 5 60 1456 60 1457 20 1458 70 1459 20	1 60 RL 2 20 RL 3 60 RL 4 70 RL 5 60 RL 1456 60 RL 1457 20 RL 1458 70 RL 1459 20 RL	1 60 RL 65.0 2 20 RL 80.0 3 60 RL 68.0 4 70 RL 60.0 5 60 RL 84.0 1456 60 RL 62.0 1457 20 RL 85.0 1458 70 RL 66.0 1459 20 RL 68.0	1 60 RL 65.0 8450 2 20 RL 80.0 9600 3 60 RL 68.0 11250 4 70 RL 60.0 9550 5 60 RL 84.0 14260 1456 60 RL 62.0 7917 1457 20 RL 85.0 13175 1458 70 RL 66.0 9042 1459 20 RL 68.0 9717	1 60 RL 65.0 8450 Pave 2 20 RL 80.0 9600 Pave 3 60 RL 68.0 11250 Pave 4 70 RL 60.0 9550 Pave 5 60 RL 84.0 14260 Pave 1456 60 RL 62.0 7917 Pave 1457 20 RL 85.0 13175 Pave 1458 70 RL 66.0 9042 Pave 1459 20 RL 68.0 9717 Pave	1 60 RL 65.0 8450 Pave NaN 2 20 RL 80.0 9600 Pave NaN 3 60 RL 68.0 11250 Pave NaN 4 70 RL 60.0 9550 Pave NaN 5 60 RL 84.0 14260 Pave NaN 1456 60 RL 62.0 7917 Pave NaN 1457 20 RL 85.0 13175 Pave NaN 1458 70 RL 66.0 9042 Pave NaN 1459 20 RL 68.0 9717 Pave NaN	1 60 RL 65.0 8450 Pave NaN Reg 2 20 RL 80.0 9600 Pave NaN Reg 3 60 RL 68.0 11250 Pave NaN IR1 4 70 RL 60.0 9550 Pave NaN IR1 5 60 RL 84.0 14260 Pave NaN IR1 1456 60 RL 62.0 7917 Pave NaN Reg 1457 20 RL 85.0 13175 Pave NaN Reg 1458 70 RL 66.0 9042 Pave NaN Reg 1459 20 RL 68.0 9717 Pave NaN Reg

1460 rows × 81 columns

hp_train.describe()

	Id	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	
count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000	1460.000000	1
mean	730.500000	56.897260	70.049958	10516.828082	6.099315	5.575342	1
std	421.610009	42.300571	24.284752	9981.264932	1.382997	1.112799	
min	1.000000	20.000000	21.000000	1300.000000	1.000000	1.000000	1
25%	365.750000	20.000000	59.000000	7553.500000	5.000000	5.000000	1
50%	730.500000	50.000000	69.000000	9478.500000	6.000000	5.000000	1
75%	1095.250000	70.000000	80.000000	11601.500000	7.000000	6.000000	2
max	1460.000000	190.000000	313.000000	215245.000000	10.000000	9.000000	2

8 rows × 38 columns

→

```
categorical = (hp_train.dtypes == object)
categorical1 = (hp_test.dtypes == object)
categorical

for col in range(len(hp_train.columns)):
    if categorical[col] == True :
        le = preprocessing.LabelEncoder()
        hp_train.iloc[:, col] = le.fit_transform(hp_train.iloc[:,col])

for col in range(len(hp_test.columns)):
    if categorical1[col] == True :
        le = preprocessing.LabelEncoder()
        hp_test.iloc[:, col] = le.fit_transform(hp_test.iloc[:,col])
hp_test
```

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCo
0	1461	20	2	80.0	11622	1	2	3	
1	1462	20	3	81.0	14267	1	2	0	
2	1463	60	3	74.0	13830	1	2	0	
3	1464	60	3	78.0	9978	1	2	0	
4	1465	120	3	43.0	5005	1	2	0	
1454	2915	160	4	21.0	1936	1	2	3	
1455	2916	160	4	21.0	1894	1	2	3	
1456	2917	20	3	160.0	20000	1	2	3	
1457	2918	85	3	62.0	10441	1	2	3	
1458	2919	60	3	74.0	9627	1	2	3	
4.450									

1459 rows × 80 columns

▼ 2.2 Exploratory Data Analysis

```
corr_matrix = hp_train.corr()
corr_df = pd.DataFrame(corr_matrix["SalePrice"].sort_values(ascending=False))
corr_df
#print(len(corr_matrix))
```

	SalePrice
SalePrice	1.000000
OverallQual	0.790982
GrLivArea	0.708624
GarageCars	0.640409
GarageArea	0.623431
FireplaceQu	-0.459605
GarageFinish	-0.549247
KitchenQual	-0.589189
BsmtQual	-0.620886
ExterQual	-0.636884

81 rows × 1 columns

correlation matrix might need correaltion with the sale prices
hp_train_subset = hp_train[["SalePrice","OverallQual","GrLivArea", "GarageCars","GarageArea",
hp_train_subset
hp_test_subset = hp_test[["OverallQual","GrLivArea", "GarageCars","GarageArea","TotalBsmtSF",
hp_test_subset

```
OverallQual GrLivArea GarageCars GarageArea TotalBsmtSF 1stFlrSF FullBath
       Λ
                      ۲
                                             1 ∩
                                                      730 0
                                മമ
                                                                    ያይኃ በ
                                                                                മമ
                                                                                            1
## finding the missing value
print(hp_train_subset.isna().sum())
  compare with the missing values from the original data
print(hp train['SalePrice'].isna().sum())
print(hp train['OverallQual'].isna().sum())
print(hp_train['GrLivArea'].isna().sum())
print(hp_train['GarageCars'].isna().sum())
print(hp_train['GarageArea'].isna().sum())
print(hp train['TotalBsmtSF'].isna().sum())
print(hp train['1stFlrSF'].isna().sum())
print(hp_train['FullBath'].isna().sum())
print(hp_train['TotRmsAbvGrd'].isna().sum())
print(hp train['YearBuilt'].isna().sum())
print(hp train['YearRemodAdd'].isna().sum())
print(hp_train['GarageYrBlt'].isna().sum())##
print(hp train['MasVnrArea'].isna().sum())##
print(hp_train['Fireplaces'].isna().sum())
print(hp_test_subset.isna().sum())
     SalePrice
     OverallOual
                       0
                       0
     GrLivArea
     GarageCars
                       0
     GarageArea
                       0
                       0
     TotalBsmtSF
                       0
     1stFlrSF
                       0
     FullBath
                       0
     TotRmsAbvGrd
     YearBuilt
                       0
     YearRemodAdd
                      0
     GarageYrBlt
                     81
     MasVnrArea
                       8
     Fireplaces
     dtype: int64
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     81
     8
     OverallQual
                       0
```

GrLivArea

0

GarageCars

1

```
GarageArea
                        1
     TotalBsmtSF
                        1
     1stFlrSF
                        0
     FullBath
                        0
     TotRmsAbvGrd
                        0
                        0
     YearBuilt
                        0
     YearRemodAdd
                       78
     GarageYrBlt
                       15
     MasVnrArea
     Fireplaces
                        0
     dtype: int64
hp test subset.isna().sum()
#len(hp_test_subset)
hp test subset['GarageCars'] = hp test subset['GarageCars'].replace(np.nan, np.nanmean(hp tes
hp test subset['GarageArea'] = hp test subset['GarageArea'].replace(np.nan, np.nanmean(hp tes
hp test subset['TotalBsmtSF'] = hp test subset['TotalBsmtSF'].replace(np.nan, np.nanmean(hp t
#hp_test_subset = hp_test_subset[hp_test_subset['TotalBsmtSF'].notna()]
hp test subset['GarageYrBlt'] = hp test subset['GarageYrBlt'].replace(np.nan, np.nanmean(hp t
hp test subset['MasVnrArea'] = hp test subset['MasVnrArea'].replace(np.nan,0)
hp test subset.isna().sum()
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:3: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
        This is separate from the ipykernel package so we can avoid doing imports until
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
        after removing the cwd from sys.path.
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:5: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:9: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
        if name == ' main ':
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:10: SettingWithCopyWarning
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user
Remove the CWD from sys.path while we load stuff.

OverallOual 0 GrLivArea 0 GarageCars 0 GarageArea 0 TotalBsmtSF 0 1stFlrSF FullBath 0 TotRmsAbvGrd YearBuilt YearRemodAdd 0 GarageYrBlt 0 MasVnrArea 0 Fireplaces 0 dtype: int64

import statistics
hp_train_subset.describe()

	SalePrice	OverallQual	GrLivArea	GarageCars	GarageArea	TotalBsmtSF	
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	14
mean	180921.195890	6.099315	1515.463699	1.767123	472.980137	1057.429452	1
std	79442.502883	1.382997	525.480383	0.747315	213.804841	438.705324	;
min	34900.000000	1.000000	334.000000	0.000000	0.000000	0.000000	;
25%	129975.000000	5.000000	1129.500000	1.000000	334.500000	795.750000	{
50%	163000.000000	6.000000	1464.000000	2.000000	480.000000	991.500000	1(
75%	214000.000000	7.000000	1776.750000	2.000000	576.000000	1298.250000	1;
max	755000.000000	10.000000	5642.000000	4.000000	1418.000000	6110.000000	4(

MSZoning

```
259
LotFrontage
LotArea
                    0
MoSold
                    0
YrSold
SaleType
                    0
SaleCondition
SalePrice
Length: 81, dtype: int64
TEST SET MISSING VALUES:
Ιd
MSSubClass
                    0
MSZoning
                    0
LotFrontage
                  227
LotArea
                    0
MiscVal
                    0
MoSold
                    0
YrSold
SaleType
SaleCondition
Length: 80, dtype: int64
```

```
plt.figure(figsize=(16,8))
plt.subplot(2,2,1)
plt.title("Gross Living Area and Sale Price")
line_params = np.polyfit(hp_train.loc[:,'GrLivArea'], hp_train.loc[:,'SalePrice'], 1)
line = line params[1] + line params[0] * hp train.loc[:,'GrLivArea']
plt.plot(hp train.loc[:,'GrLivArea'], line, 'r')
plt.scatter(x = hp_train.loc[:,'GrLivArea'],y = hp_train.loc[:,'SalePrice'] , color = 'yellow
plt.subplot(2,2,2)
plt.title("Year Built and Sale Price")
line_params = np.polyfit(hp_train.loc[:,'YearBuilt'], hp_train.loc[:,'SalePrice'], 1)
line = line params[1] + line params[0] * hp train.loc[:,'YearBuilt']
plt.plot(hp_train.loc[:,'YearBuilt'], line, 'r')
plt.scatter(x = hp_train.loc[:,'YearBuilt'],y= hp_train.loc[:,'SalePrice'] , color = 'orange'
plt.subplot(2,2,3)
plt.title("Garage Area and Sale Price")
line_params = np.polyfit(hp_train.loc[:,'GarageArea'], hp_train.loc[:,'SalePrice'], 1)
line = line params[1] + line params[0] * hp train.loc[:,'GarageArea']
plt.plot(hp_train.loc[:,'GarageArea'], line, 'r')
plt.scatter(x = hp_train.loc[:,'GarageArea'],y= hp_train.loc[:,'SalePrice'] , color = 'purple
plt.subplot(2,2,4)
plt.title("Year of Remodel and Sale Price")
line_params = np.polyfit(hp_train.loc[:,'YearRemodAdd'], hp_train.loc[:,'SalePrice'], 1)
```

```
line = line_params[1] + line_params[0] * hp_train.loc[:,'YearRemodAdd']
plt.plot(hp_train.loc[:,'YearRemodAdd'], line, 'r')
plt.scatter(x = hp_train.loc[:,'YearRemodAdd'],y = hp_train.loc[:,'SalePrice'], color = 'green'
```

<matplotlib.collections.PathCollection at 0x7f76f7d82210>

Understanding Attribute Distributions

```
print(hp_train_subset.head(5))
plt.figure(figsize = (16,12))

plt.subplot(2,4,1)
sns.distplot(hp_train.loc[:,'SalePrice'], color = 'red')

plt.subplot(2,4,2)
sns.distplot(hp_train.loc[:,'GrLivArea'], color = 'blue')

plt.subplot(2,4,3)
sns.distplot(hp_train.loc[:,'YearBuilt'], color = 'yellow')

plt.subplot(2,4,4)
sns.distplot(hp_train.loc[:,'YearRemodAdd'], color = 'green')
```

```
plt.subplot(2,4,5)
plt.hist(hp_train.loc[:,'OverallQual'], color = 'orange')

plt.subplot(2,4,6)
plt.hist(hp_train.loc[:,'GarageCars'], color = 'blue')

plt.subplot(2,4,7)
plt.hist(hp_train.loc[:,'FullBath'], color = 'pink')

plt.subplot(2,4,8)
plt.hist(hp_train.loc[:,'TotRmsAbvGrd'], color = 'purple')
```

```
SalePrice OverallOual GrLivArea
                                              GarageCars
                                                           GarageArea
                                                                        TotalBsmtSF
                                        1710
            208500
                                                                                 856
     0
                                                        2
                                                                   548
                               6
                                                        2
     1
            181500
                                        1262
                                                                   460
                                                                                 1262
     2
            223500
                               7
                                        1786
                                                         2
                                                                   608
                                                                                 920
     3
            140000
                               7
                                        1717
                                                         3
                                                                   642
                                                                                 756
                                                         3
     4
            250000
                               8
                                        2198
                                                                   836
                                                                                 1145
        1stFlrSF
                   FullBath
                              TotRmsAbvGrd
                                             YearBuilt YearRemodAdd
                                                                         GarageYrBlt
     0
              856
                                                   2003
                                                                  2003
                                                                              2003.0
                           2
                                          8
     1
             1262
                           2
                                          6
                                                   1976
                                                                  1976
                                                                              1976.0
     2
                           2
              920
                                          6
                                                   2001
                                                                  2002
                                                                              2001.0
     3
                           1
                                          7
                                                   1915
                                                                  1970
                                                                              1998.0
              961
     4
             1145
                           2
                                          9
                                                   2000
                                                                  2000
                                                                              2000.0
        MasVnrArea
                     Fireplaces
     0
              196.0
     1
                0.0
                               1
     2
              162.0
                               1
     3
                               1
                0.0
     4
              350.0
                               1
     /usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `d
       warnings.warn(msg, FutureWarning)
     (array([ 18., 97., 275., 402., 329., 262., 47., 18., 11.,
      array([ 2. , 3.2, 4.4, 5.6, 6.8, 8. , 9.2, 10.4, 11.6, 12.8, 14. ]),
      <a list of 10 Patch objects>)
import statistics
hp train subset['GarageYrBlt'] = hp train subset['GarageYrBlt'].replace(np.nan, np.nanmean(hr
hp train subset['MasVnrArea'] = hp train subset['MasVnrArea'].replace(np.nan,0)
hp train subset.isna().sum()
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:2: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:3: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
       This is separate from the ipykernel package so we can avoid doing imports until
     SalePrice
                       0
     OverallQual
                       0
     GrLivArea
                       0
                       0
     GarageCars
                       0
     GarageArea
     TotalBsmtSF
                       0
     1stFlrSF
```

```
FullBath 0
TotRmsAbvGrd 0
YearBuilt 0
YearRemodAdd 0
GarageYrBlt 0
MasVnrArea 0
Fireplaces 0
dtype: int64
```

Sale price has a slightly right skewed normal distribution

```
plt.figure(figsize=(16,12))

plt.subplot(2,2,1)
sns.boxplot(x = hp_train["FullBath"], y = hp_train["SalePrice"])

plt.subplot(2,2,2)
sns.boxplot(x = hp_train["Fireplaces"], y = hp_train["SalePrice"])

plt.subplot(2,2,3)
sns.boxplot(x = hp_train["TotRmsAbvGrd"], y = hp_train["SalePrice"])

plt.subplot(2,2,4)
sns.boxplot(x = hp_train["OverallQual"], y = hp_train["SalePrice"])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f76f789d4d0>

plt.boxplot(hp_train.loc[:,'SalePrice'])


```
#standardize the columns
import statistics
for col in range(len(hp_train_subset.columns) - 1):
    mean = hp_train_subset.iloc[:,col].mean()
    std = statistics.stdev(hp_train_subset.iloc[:,col])
    for row in range(len(hp_train_subset.columns)):
        hp_train_subset.iloc[row,col] = hp_train_subset.iloc[row,col] - mean / std
for col in range(len(hp_test_subset.columns) - 1):
    mean = hp_test_subset.iloc[:,col].mean()
    std = statistics.stdev(hp_test_subset.iloc[:,col])
    for row in range(len(hp_test_subset.columns)):
        hp_test_subset.iloc[row,col] = hp_test_subset.iloc[row,col] - mean / std
hp_test_subset
```

/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: SettingWithCopyWar A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user self._setitem_single_column(loc, value, pi)

	OverallQual	GrLivArea	GarageCars	GarageArea	TotalBsmtSF	1stFlrSF	FullBa ¹
0	0.769229	892.93956	0.887345	727.821082	879.637209	893.095344	-1.8295
1	1.769229	1325.93956	0.887345	309.821082	1326.637209	1326.095344	-1.8295
2	0.769229	1625.93956	1.887345	479.821082	925.637209	925.095344	-0.8295
3	1.769229	1600.93956	1.887345	467.821082	923.637209	923.095344	-0.8295
4	3.769229	1276.93956	1.887345	503.821082	1277.637209	1277.095344	-0.8295
1454	4.000000	1092.00000	0.000000	0.000000	546.000000	546.000000	1.00000
1455	4.000000	1092.00000	1.000000	286.000000	546.000000	546.000000	1.00000
1456	5.000000	1224.00000	2.000000	576.000000	1224.000000	1224.000000	1.00000
1457	5.000000	970.00000	0.000000	0.000000	912.000000	970.000000	1.00000
1458	7.000000	2000.00000	3.000000	650.000000	996.000000	996.000000	2.00000

1459 rows × 13 columns

2.3 Modeling

▼ Linear Regression

```
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.model_selection import cross_val_score

hp_train_subset = hp_train_subset.reindex(columns = ["OverallQual","GrLivArea", "GarageCars",
hp_X_train = hp_train_subset.iloc[:,0:len(hp_train_subset.columns) - 1]
hp_y_train = hp_train_subset.iloc[:,len(hp_train_subset.columns) - 1]
reg = LinearRegression()
```

```
lr scores = cross val score(reg, hp X train, hp y train, cv=5)
hp_train = pd.read_csv('/content/hp_train.csv')
hp X train full = hp train.iloc[:, 0:len(hp train.columns) - 1]
hp_y_train_full = hp_train.iloc[:, len(hp_train.columns) - 1]
reg = LinearRegression().fit(hp X train, hp y train)
pred = pd.DataFrame(reg.predict(hp_test_subset))
pred.columns = ['SalePrice']
pred['Id'] = hp_test['Id']
hp train subset.isna().sum()
pred = pred.reindex(columns = ['Id', 'SalePrice'])
print(pred)
pred.to csv("submission.csv", index=False)
#print(scores)
             Ιd
                     SalePrice
           1461
                  58114.927867
     1
           1462
                89835.112915
           1463 103810.539143
     3
           1464 117212.228092
     4
                132953.982061
           1465
     . . .
           . . .
     1454
           2915
                81046.712429
     1455 2916 93208.511338
     1456
          2917 161259.328396
     1457
          2918 111863.312787
     1458 2919 232832.633124
     [1459 rows x 2 columns]
```

Random Forest Regressor

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score

rfg = RandomForestRegressor().fit(hp_X_train,hp_y_train )
    rfg_scores = cross_val_score(rfg, hp_X_train, hp_y_train, cv=5)
    pred1 = pd.DataFrame(rfg.predict(hp_test_subset))
    pred1.columns = ['SalePrice']
    pred1['Id'] = hp_test['Id']
    pred1 = pred1[['Id','SalePrice']]
    pred1 = pred1[['Id','SalePrice']]
    pred1.to_csv("submission.csv", index=False)

pred1
    rfg_scores
    array([0.76807923, 0.78449284, 0.87399543, 0.86700697, 0.80936675])
```

Support Vector Regressor

```
from sklearn.svm import SVR
svr_scores = cross_val_score(SVR(), hp_X_train, hp_y_train, cv=5)
svr = SVR().fit(hp_X_train, hp_y_train)
svr_pred = pd.DataFrame(svr.predict(hp_test_subset))
print(svr_scores)
svr_pred
     [-0.06927692 -0.05999983 -0.0551195 -0.01513612 -0.05462687]
       0
            162936.387675
       1
            162999.134207
       2
            162988.573970
       3
            162986.255755
       4
            162995.021121
      1454
           162906.776748
      1455
           162912.508115
      1456
           162988.323566
      1457 162927.521726
      1458 163032.714801
     1459 rows × 1 columns
```

Gradient Boosting Regressor

```
from sklearn.ensemble import GradientBoostingRegressor

gbreg = GradientBoostingRegressor().fit(hp_X_train, hp_y_train)
gbr_scores = cross_val_score(GradientBoostingRegressor(), hp_X_train, hp_y_train, cv=5)

pred = pd.DataFrame(gbreg.predict(hp_test_subset))
pred.columns = ['SalePrice']
pred['Id'] = hp_test['Id']
hp_train_subset.isna().sum()
```

```
pred = pred.reindex(columns = ['Id', 'SalePrice'])
print(pred)
pred.to_csv("submission.csv", index=False)
            Ιd
                    SalePrice
     0
          1461 134410.831533
     1
          1462 156822.989297
     2
          1463 208628.594480
          1464 209180.132000
          1465 154486.149391
          2915
     1454
                77680.706957
     1455
          2916 86527.857133
     1456 2917 164220.687821
     1457
          2918 125396.013922
          2919 240039.416163
     [1459 rows x 2 columns]
```

Decision Tree Regressor

```
from sklearn.tree import DecisionTreeRegressor

dt_scores = cross_val_score(DecisionTreeRegressor(), hp_X_train, hp_y_train, cv = 5)
```

▼ Bayesian Ridge Regression

```
from sklearn.linear_model import BayesianRidge

br_scores = cross_val_score(BayesianRidge(), hp_X_train, hp_y_train,cv = 5)
np.mean(br_scores)

0.7218043323668085
```

Lasso Regression

```
from sklearn import linear_model
lass_scores = cross_val_score(linear_model.Lasso(alpha = .1), hp_X_train, hp_y_train,cv = 5)
lass_scores
```

array([0.63444421, 0.77987323, 0.78212899, 0.79386776, 0.60062576])

MLP Regressor

```
from sklearn.neural_network import MLPRegressor

mlp_scores = cross_val_score(MLPRegressor(max_iter = 1000), hp_X_train, hp_y_train, cv = 5)
mlp_scores

/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py
        ConvergenceWarning,
    /usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py
        ConvergenceWarning,
    /usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py
        ConvergenceWarning,
    /usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py
        ConvergenceWarning,
    array([0.75319014, 0.7157468 , 0.72456153, 0.6903468 , 0.53314154])
```

▼ KNN Regressor

```
from sklearn import neighbors
knn_scores = cross_val_score(neighbors.KNeighborsRegressor(n_neighbors = 5) , hp_X_train, hp_
knn_scores
    array([0.72401033, 0.70709032, 0.78441373, 0.73140826, 0.6622646 ])

df_scores = pd.DataFrame(columns = ['Model','Score'])
df_scores['Model'] = ['Linear Regression', 'Random Forest Regression','Support Vector Regress df_scores['Score'] = [np.mean(lr_scores), np.mean(rfg_scores), np.mean(svr_scores), np.mean({\xi} #df_scores.loc[0,'Model'] = 'Linear Regression'
#df_scores #.sort_values(by = 'Score', ascending = False)
```