A Generalized Focused Information Criterion for GMM Model and Moment Selection

Francis J. DiTraglia

University of Pennsylvania

December 6, 2013

Generalized Focused Information Criterion (GFIC)

- 1. False Assumptions on Purpose: Min MSE
- 2. Focused Choice of Assumptions: User-specified μ
- 3. Asymptotics: Local Mis-specification
- 4. Averaging, Inference post-selection

Example - Dynamic Panel

Data Generating Process

$$y_{it} = \alpha_1 y_{it-1} + \ldots + \alpha_p y_{it-p} + \beta x_{it} + \eta_i + v_{it}$$

Potential Target Parameters μ

- $\mu = \beta/(1-\alpha_1-\ldots-\alpha_p)$
- $\blacktriangleright \mu = \beta$
- $\mu = \alpha_1$

GMM Framework

Example - Dynamic Panel

$$\Delta v_{it} = \Delta y_{it} - (\alpha_1 \Delta y_{it-1} + \ldots + \alpha_p \Delta y_{it-p} + \beta \Delta x_{it})$$

Baseline Assumptions

- \blacktriangleright $E[\Delta v_{it} y_{it-k}] = 0$ for $k \ge 2$
- $E[\Delta v_{it} x_{it-k}] = 0$ for $k \ge 1$

Parameters

- ▶ Full Parameter Vector $(\alpha_1, \alpha_2, \dots, \alpha_p, \beta)$
- ▶ Partition into (θ, γ) depends on μ

Additional Assumption – Parameter Restriction

Example - Dynamic Panel

$$\Delta v_{it} = \Delta y_{it} - (\alpha_1 \Delta y_{it-1} + \dots + \alpha_p \Delta y_{it-p} + \beta \Delta x_{it})$$
Dynamics $\mu = \alpha_1$

$$\gamma = \gamma_0 \iff \beta = \alpha_2 = \dots = \alpha_p = 0$$
SR Effect $\mu = \beta$

$$\gamma = \gamma_0 \iff \alpha_1 = \dots = \alpha_p = 0$$
LR Effect $\mu = \beta/(1 - \alpha_1 - \dots - \alpha_p)$

$$\gamma = \gamma_0 \iff \alpha_2 = \dots = \alpha_p = 0$$

Additional Assumption – Moment Conditions

Example – Dynamic Panel

$$\Delta v_{it} = \Delta y_{it} - (\alpha_1 \Delta y_{it-1} + \ldots + \alpha_p \Delta y_{it-p} + \beta \Delta x_{it})$$

Baseline Assumptions

- $E[\Delta v_{it} y_{it-k}] = 0$ for $k \ge 2$
- $E[\Delta v_{it} x_{it-k}] = 0$ for $k \ge 1$

Additional Assumptions

- Strict Exogeneity
- Initial Conditions
- Homoskedasticity

Both at Once

GFIC Asymptotics - Local Mis-Specification

Overview of GFIC Derivation

Asymptotic Normality of GMM Estimator

- ▶ Biased unless γ estimated, no MCs from h used
- ▶ Smaller variance if γ set to γ_0 , MCs from h used

Asymptotic Normality of Target Parameter $\widehat{\mu}(b,c)$

- ▶ Inherits bias-variance tradeoff from $\widehat{eta}(b,c)$
- ▶ AMSE $(\widehat{\mu}(b,c))$ depends on $B = \begin{bmatrix} \tau \tau' & \tau \delta' \\ \delta \tau' & \delta \delta' \end{bmatrix}$

$\mathsf{GFIC} = \mathsf{Asymptotically} \ \mathsf{Unbiased} \ \mathsf{Estimator} \ \mathsf{of} \ \widehat{\mathsf{AMSE}} \left(\widehat{\mu}(b,c)\right)$

- ▶ Asymptotically unbiased estimator \widehat{B} of B
- ▶ Select (*b*, *c*) to minimize GFIC

Some Notation

$$F = \begin{bmatrix} \nabla_{\gamma'} g(Z, \gamma_0, \theta_0) & \nabla_{\theta'} g(Z, \gamma_0, \theta_0) \\ \nabla_{\gamma'} h(Z, \gamma_0, \theta_0) & \nabla_{\theta'} h(Z, \gamma_0, \theta_0) \end{bmatrix}$$

$$F = \begin{bmatrix} F_{\gamma} & F_{\theta} \end{bmatrix} = \begin{bmatrix} G_{\gamma} & G_{\theta} \\ H_{\gamma} & H_{\theta} \end{bmatrix} = \begin{bmatrix} G \\ H \end{bmatrix}$$

$$\Omega = Var \begin{bmatrix} g(Z, \gamma_0, \theta_0) \\ h(Z, \gamma_0, \theta_0) \end{bmatrix} = \begin{bmatrix} \Omega_{gg} & \Omega_{gh} \\ \Omega_{hg} & \Omega_{hh} \end{bmatrix}$$

These expressions are evaluated in the limit where all MCs have expectation zero at (γ_0, θ_0) .

Limit Distribution of GMM Estimators

$$\sqrt{n}\left(\widehat{eta}(b,c)-eta_0^{(b)}
ight)$$
 converges in distribution to

$$\boxed{-K(b,c)\Xi_{c}\left(\mathscr{N}+\left[\begin{array}{c}0\\\tau\end{array}\right]-F_{\gamma}\delta\right)}$$

$$K(b,c) = [F(b,c)'W_cF(b,c)]^{-1}F(b,c)'W_c$$

 $\Xi_c = \text{Moment Selection Matrix}$
 $\mathcal{N} \sim N(0,\Omega)$

Limit Distribution of Target Parameter Estimators

 $\sqrt{n}(\widehat{\mu}(b,c)-\mu_n)$ converges in distribution to

$$\boxed{ -\nabla_{\beta}\varphi_0'\Xi_b'K(b,c)\Xi_c\left(\mathscr{N}+\left[\begin{array}{c}0\\\tau\end{array}\right]-F_{\gamma}\delta\right)-\nabla_{\gamma}\varphi_0'\delta}$$

$$\mu = \varphi(\theta, \gamma)$$

$$\varphi_0 = \varphi(\gamma_0, \theta_0)$$

$$\mu_n = \varphi(\theta_0, \gamma_0 + \delta/\sqrt{n})$$

$$\Xi_b = \text{Model Selection Matrix}$$

$$\Xi_c = \text{Moment Selection Matrix}$$

$$N \sim N(0, \Omega)$$

Estimating δ, τ

Estimating δ, τ – Details

Limit Distribution of Bias Parameter Estimators

$$\left[\begin{array}{c} \widehat{\delta} \\ \widehat{\tau} \end{array}\right] = \sqrt{n} \left[\begin{array}{c} (\widehat{\gamma}_{v} - \gamma_{0}) \\ h_{n}(\widehat{\beta}_{v}) \end{array}\right] \rightarrow_{d} \left[\begin{array}{c} \delta \\ \tau \end{array}\right] + \Psi \mathcal{N}$$

▶ Both Ψ and $\Omega = Var(\mathcal{N})$ can be estimated consistently!

Asymptotically Unbiased Estimator of B

$$B = \begin{bmatrix} \tau \tau' & \tau \delta' \\ \delta \tau' & \delta \delta' \end{bmatrix}$$

$$\widehat{B} = \begin{bmatrix} \widehat{\tau} \widehat{\tau}' & \widehat{\tau} \widehat{\delta}' \\ \widehat{\delta} \widehat{\tau}' & \widehat{\delta} \widehat{\delta}' \end{bmatrix} - \widehat{\Psi} \widehat{\Omega} \widehat{\Psi}'$$

Valid Post-Selection Inference

Post Selection Estimator

Randomly Weighted Average of candidate estimators (0-1 weights).

Standard Cls are Invalid

Nonstandard limit distribution since weights are data dependent

What about consistent selection?

No *pointwise* effect on the limiting distribution, but the same is *not* true uniformly (Pötscher, 1991).

Post-Selection Inference via Model Average Estimators

Consider an estimator of the form

$$\widehat{\mu} = \sum_{(b,c) \in \mathcal{BC}} \widehat{\omega}(b,c) \widehat{\mu}(b,c)$$

where $\widehat{\omega}(b,c)$ is a set of data-dependent weights.

Key Point: Joint Convergence

$$\sqrt{n}\left(\widehat{\mu}\left(b,c\right)-\mu_{n}\right)$$
 converge jointly $orall\left(b,c
ight)\in\mathcal{BC}$ along with $\left(\widehat{\delta},\widehat{ au}
ight)$

- lacktriangle Only source of randomness in the limit is ${\mathscr N}$
- Everything except δ and τ is consistently estimable.
- Just need to impose some conditions on the weights...

Limit Distribution of Averaging Estimator

Weights Sum to 1

$$\sqrt{n}(\widehat{\mu} - \mu_n) = \sum_{(b,c) \in \mathcal{BC}} \widehat{\omega}(b,c) \sqrt{n} (\widehat{\mu}(b,c) - \mu_n)$$

Joint Convergence in Distribution

$$\sqrt{n}(\widehat{\mu}-\mu_n)\rightarrow_d \Lambda(\tau,\delta)$$

$$\Lambda(\tau, \delta) = -\nabla_{\beta} \varphi'_0 \sum_{(b,c) \in \mathcal{BC}} \psi(\mathcal{N}, \delta, \tau | b, c) \left\{ \Xi'_b K(b, c) \Xi_c \mathcal{N} + M(b, c) \begin{bmatrix} \delta \\ \tau \end{bmatrix} \right\}$$

Non-normal limit distribution that depends on (δ, τ)

Generalized Focused Information Criterion

Purpose

Simultaneous Model and Moment Selection for GMM Estimation

Key Features

- Local mis-specification framework
- Estimator of AMSE of user-specified target parameter
- Focused Selection
- Select "wrong" specification on purpose
- Valid Post-Selection Inference

Didn't Discuss Today

- Model Averaging
- Simulation-based Procedure for Confidence Intervals
- Simulation Results

Supplementary Material

Simple Dynamic Panel Example - Large N, Small T

True Data Generating Process

$$y_{it} = \gamma y_{it-1} + \theta x_{it} + \eta_i + v_{it}$$

- ▶ Dynamics unless $\gamma = 0$
- ▶ Correlated effects $\eta_i \Rightarrow$ first differences
- x_{it} predetermined but not strictly exogenous

Goal – Estimate θ with minimum MSE

- ▶ Model Selection Decision: set $\gamma = 0$?
- ▶ Moment Selection Decision: treat x_{it} as strictly exogenous?

Anderson & Hsiao-esque 2SLS Estimators (1982)

LW Moment Conditions:

$$\mathbb{E}\left[\left(\begin{array}{c} y_{i,t-2} \\ x_{i,t-1} \end{array}\right) \left(\Delta y_{it} - \gamma \Delta y_{i,t-1} - \theta \Delta x_{it}\right)\right] = 0, \text{ for } t = 3, \dots, T$$

LS Adds the Moment Conditions:

$$\mathbb{E}\left[x_{it}\left(\Delta y_{it} - \gamma \Delta y_{i,t-1} - \theta \Delta x_{it}\right)\right] = 0, \text{ for } t = 3, \dots, T$$

Only the LW conditions are correct

Anderson & Hsiao-esque 2SLS Estimators (1982)

W Moment Conditions:

$$\mathbb{E}\left[x_{i,t-1}\left(\Delta y_{it} - \theta \Delta x_{it}\right)\right] = 0, \text{ for } t = 2, \dots, T$$

S Adds the Moment Conditions:

$$\mathbb{E}\left[x_{it}\left(\Delta y_{it} - \theta \Delta x_{it}\right)\right] = 0$$
, for $t = 2, \dots, T$

None of these moment conditions are correct

Why Use an Incorrect Specification?

$$\Delta y_{it} = \gamma \Delta y_{it-1} + \theta \Delta x_{it} + \Delta v_{it}$$

Wrong Model

- $ightharpoonup \gamma$ small \implies ignore dynamics
- Adds small bias
- Much lower variance: extra time period, fewer parameters

Invalid MCs

- ▶ $E[x_{it}v_{it-1}]$ small \implies add x_{it} as instrument for period t
- Adds small bias
- ▶ Much lower variance: x_{it} is a strong instrument for Δx_{it}

Simulation Setup

Similar to Andrews & Lu (2001)

- $y_{i0} = 0$
- $y_{it} = \frac{\gamma}{\gamma} y_{it-1} + 0.5 x_{it} + \eta_i + v_{it}$ (t = 1, ..., T)

$$\begin{bmatrix} x_i \\ \eta_i \\ v_i \end{bmatrix} \sim \text{iid } N \begin{pmatrix} \begin{bmatrix} 0_T \\ 0 \\ 0_T \end{bmatrix}, \begin{bmatrix} I_T & 0.2\iota_T & \sigma_{XV} \Gamma \\ 0.2\iota_T' & 1 & 0_T' \\ \sigma_{XV} \Gamma' & 0_T & I_T \end{bmatrix} \end{pmatrix}$$

 $E[x_{it}v_{it-1}] = \sigma_{xv} \text{ but } E[x_{it}v_{is}] = 0, s \neq t-1$

Vary γ and σ_{xv} over a grid

Figure: Minimum RMSE Specification at each combination of parameter values. Shading gives RMSE relative to second best specification.

Figure: % RMSE Advantage of Best Specification (vs. LW)

Competing Procedure: Downward J-test

- 1. Use S unless J-test rejects.
- 2. If S rejected, use W unless J-test rejects.
- 3. If W rejected, use LS unless J-test rejects.
- 4. Only use LW if all others rejected.

Competing Procedures: Andrews & Lu (2001)

J-test Statistic Minus Penalty Term

BIC-Type
$$J-(|c|-|b|)\log n$$

AIC-Type $J-2(|c|-|b|)$
HQ-Type $J-2.01(|c|-|b|)\log\log n$

- ▶ |b| = # (parameters estimated)
- |c| = #(MCs used)
- Select specification with *lowest* value of criterion

	N = 250		N = 500	
	T = 4	T = 5	T = 4	T = 5
LW	19	10	13	7
LS	30	44	54	79
W	24	34	46	64
S	31	50	64	94
GFIC	17	13	15	10
J-test 10%	32	45	55	74
J-test 5%	31	47	57	79
GMM-BIC	32	48	62	87
GMM-HQ	32	46	57	77
GMM-AIC	31	39	47	57

Table: Average RMSE minus Pointwise Optimal (% points)

	M 250 M 500				
	N = 250		N = 500		
	T = 4	T = 5	T = 4	T = 5	
LW	0	0	0	0	
LS	42	81	94	154	
W	49	88	105	158	
S	48	92	107	171	
GFIC	3	8	6	11	
J-test 10%	43	78	91	140	
J-test 5%	45	83	98	153	
GMM-BIC	48	89	106	168	
GMM-HQ	46	85	102	154	
GMM-AIC	39	68	81	118	

Table: Worst-case RMSE minus Minimax Optimal (% points)

Requirements for the Weights

Weights Sum to 1

$$\sum_{(b,c)\in\mathcal{BC}}\widehat{\omega}(b,c)=1$$

Joint Convergence

$$\widehat{\omega}(b,c) \to_d \psi(\mathscr{N},\delta,\tau|b,c) \text{ jointly for all } (b,c) \in \mathcal{BC}$$

Limit Function ψ

Depends only on $\mathcal{N}, \delta, \tau$, and consistently estimable quantities.

Assumptions cover GFIC, J-test, Andrews & Lu (2001), etc.

"Bootstrapping the Limit Experiment"

Suppose δ and τ were known:

- (i) For each j = 1, 2, ..., J, generate $\mathcal{N}_i \sim \mathcal{N}(0, \widehat{\Omega})$
- (ii) For each for $j = 1, 2, \dots, J$ set

$$\Lambda_{j}(\boldsymbol{\tau}, \boldsymbol{\delta}) = -\nabla_{\beta}\widehat{\varphi}'_{0} \sum_{(b,c) \in \mathcal{BC}} \widehat{\psi}(\mathcal{N}_{j}, \boldsymbol{\delta}, \boldsymbol{\tau}|b,c) \left\{ \Xi'_{b}\widehat{K}(b,c) \Xi_{c} \mathcal{N}_{j} + \widehat{M}(b,c) \begin{bmatrix} \boldsymbol{\delta} \\ \boldsymbol{\tau} \end{bmatrix} \right\}$$

(iii) Using $\{\Lambda_j(\boldsymbol{\delta}, \boldsymbol{\tau})\}_{j=1}^J$, calculate $\widehat{a}(\boldsymbol{\delta}, \boldsymbol{\tau})$, $\widehat{b}(\boldsymbol{\delta}, \boldsymbol{\tau})$ such that

$$P\left\{\widehat{a}(\delta, \tau) \leq \Lambda(\delta, \tau) \leq \widehat{b}(\delta, \tau)\right\} = 1 - \alpha$$

Accounting for Estimated (δ, τ)

Let $R(\alpha_1)$ be a $(1 - \alpha_1) \times 100\%$ confidence region for (δ, τ) .

1. For each $(\delta, \tau) \in R(\alpha_1)$ construct a confidence interval

$$\mathbb{P}\left\{\widehat{a}(\underline{\delta}, \underline{\tau}) \leq \Lambda(\underline{\delta}, \underline{\tau}) \leq \widehat{b}(\underline{\delta}, \underline{\tau})\right\} = 1 - \alpha_2$$

using the simulation procedure from the previous slide.

2. Define

$$\widehat{a}_{min}(\widehat{\delta}, \widehat{\tau}) = \min_{\substack{(\delta, \tau) \in R(\alpha_1)}} \widehat{a}(\underline{\delta}, \tau)$$

$$\widehat{b}_{max}(\widehat{\delta}, \widehat{\tau}) = \max_{\substack{(\delta, \tau) \in R(\alpha_1)}} \widehat{b}(\underline{\delta}, \tau)$$

3. The following CI has asymptotic coverage of at least $1-(\alpha_1+\alpha_2)$

$$\mathsf{CI}_{sim} = \left[\widehat{\mu} - \frac{\widehat{b}_{max}(\widehat{\delta}, \widehat{\tau})}{\sqrt{n}}, \quad \widehat{\mu} - \frac{\widehat{a}_{min}(\widehat{\delta}, \widehat{\tau})}{\sqrt{n}} \right]$$