Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

Állománynév: aramkorok_02elemek_lti20.pdf

Irodalom: Tankönyv: R. J. Smith & R. C. Dorf, "Circuits, Devices and Systems," Wiley,

5th Edition, pp. 4-32.

Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

2. A KONCENTRÁLT PARAMÉTERŰ LINEÁRIS ÉS IDŐINVARIÁNS (LTI) HÁLÓZATOK, AZ ÁRAMKÖRI ÉPÍTŐELEMEK ÉS AZOK MODELLJEI

Dekódolás

• Koncentrált: feszültség v(t) és áram i(t) csak az idő függvénye

• Lineáris: (1) szuperpozició f(x+y)=f(x)+f(y) és (2) első rendű homogenitás f(Cx)=Cf(x) \forall C-re

• Időinvariáns: alkotó elemek értékei (pl. ellenállás, kapacitás) nem függnek az időtől

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 1. oldal

Egy TRF6900A típusú Texas adó-vevő áramkör kapcsolási rajza

Vedd észre:

- A legbonyolultabb rendszer ill. áramkör is felépíthető néhány alkatrészből (kondenzátor, ellenállás, stb)
- A rendszer/áramkör jellemzett, ha minden ponton ismerjük a v(t) és i(t) időfüggvényeket
- Ha a belső felépítés nem érdekes, akkor átviteli függvényeket írunk fel (ekkor a linearitás követelmény)

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 2. oldal

Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

A matematikai modell, azaz a differenciál egyenlet megoldása

Időtartomány		Transzformált-tartomány
↓		
LTI rendszer	\Longrightarrow	Transzformált rendszer
	Transzformáció	(PI. impedancia)
	Mérnök	
		
Differenciál egyenlet	\Longrightarrow	Algebrai egyenlet
	Transzformáció	
	Matematikus	
\		↓
Diff. egy. megoldása		Algebrai módszerek
↓		↓
Válaszjel	←	Megoldás a transzformált
	Inverz	tartományban
	transzformáció	

LTI rendszer \Longrightarrow lineáris és állandó együtthatós differenciál egyenlet

Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

2. 1. A rendszer elemeinek modellezése MODELLEZÉS FIZIKAI KÉP ALAPJÁN

- A modellezni kívánt eszköz fizikai működéséből indulunk ki
- Először a fő jelenséget modellezzük majd figyelembe vesszük a másodlagos hatásokat

Vedd észre: • A legbonyolultabb fizikai kép alapján kialakított modellek is néhány elemi, ideális elemből tevődnek össze

MODELLEZÉS A FEKETE DOBOZ (BLACK BOX) SZEMLÉLETTEL

- A modellezendő eszközt egy kellő dimenziójú matematikai modellel írjuk le
- A model paramétereit egy tanítási folyamat során határozzuk meg
- Egy példa: Neurális hálózatok

Vedd észre: • Ha a matematikai model dimenziója nem elégséges, akkor a modellezés nem konvergál

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 5. oldal

AZ ESZKÖZÖK (bipoláris tranzisztor, BJT) REPREZENTÁCIÓI

A fizikai eszköz keresztmetszete Áramköri szimbólum

Áramkör (matematikai) modellje

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 6. oldal

Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

2. 2. A matematikai modell (rendszerjellemző diff. egy.) felírása

2.2.A. Kirchhoff egyenletek: Csomóponti és huroktörvények

- A kapcsolás topológiáját írják le
- Feszültség és/vagy áramirányok tetszőlegesen felvehetők, de utána következetesen betartandók

Emlékeztető:

Kirchhoff csomóponti törvénye

(Töltésmegmaradás elve)

Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

Emlékeztető:

Kirchhoff huroktörvénye (Energiamegmaradás elve)

$$\sum_{l} v = 0$$

2.2.B. Áramköri elemekre vonatkozó egyenletek

- Az áramköri elemen fellépő feszültség és áram összefüggését adja meg
- Feszültség és áramirányok adottak, tilos megváltoztatni őket
- Feszültség vagy áramirány felcserélése vált az áramköri elem passzív ill. aktív volta között

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 9. oldal

2.3. Lineáris áramköri elemek

Pázmány Péter Katolikus Egyetem

Fontos: A lineáris áramköri elemekből felépített áramkörök és rendszerek szintén lineárisak lesznek!

AKTÍV ÉS PASSZÍV ÁRAMKÖRI ELEMEK DEFINICIÓJA

Egy aktív áramköri elem energiát pumpál az őt befoglaló hálózatba

Egy passzív áramköri elem energiát vesz fel az őt befoglaló hálózatból

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 10. oldal

Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

PASSZÍV ÁRAMKÖRI ELEMEKET DEFINIÁLÓ EGYENLETEK

Fontos: Ezen mérőirányok nem változtathatók meg!!!

(a) Ellenállás,
$$R\left[\Omega\right]$$

 $\hbox{Ohm t\"{o}rv\'{e}ny:}\quad v(t)=R\,i(t)$

Disszipált energia: $w_R = \int_0^T vidt = R \int_0^T i^2 dt \mid_{i=I} = RI^2T$

Fontos: • Ellenállás a teljesítmény disszipálásának a mértéke (képessége)

- A disszipáció irreverzibilis
- A teljesítmény hővé alakul

Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

(b) Kondenzátor (kapacitás), C [F]

$$i = C \frac{dv}{dt}$$

$$v = \frac{1}{C} \int_{-\infty}^{t} i d\tau = v(0) + \frac{1}{C} \int_{0}^{t} i d\tau$$

$$i(t)$$

$$v$$

$$v(t)$$

$$v(t)$$

Tárolt energia: $w_C = \int_0^T vidt = \int_0^T vC\frac{dv}{dt}dt = \int_0^V Cvdv = \frac{CV^2}{2}$, ahol V = v(T)

Fontos: • Az energiatárolás a C-ben generált elektromos erőtérben történik

- A tárolt energia csak a C kondenzátor T időpillanatban mért V=v(T) feszültségétől függ
- A tárolt energia a kisütés során visszanyerődik
- A kondenzátor feszültsége az időnek mindig folytonos függvénye
- Állandósult állapotú DC áramkörben a kondenzátor szakadásként viselkedik

Állítás: A kondenzátor feszültsége az időnek mindig folytonos függvénye

Bizonyítás:

A kondenzátorra írható:

$$v_C(t) = v_C(T) + \frac{1}{C} \int_T^t i_C(\tau) d\tau$$

Legyen t = T + dt, ahol $t \in [t_a, t_b]$ és $t_a < T < t_b, \ t_a < T + dt \le t_b$

Fizikai rendszerben az áram korlátos lehet csak, azaz $i_C(t) < M \ orall \ t \in [t_a,t_b]$

$$v_C(T+dt) - v_C(T) = \frac{1}{C} \int_T^{T+dt} i_C(\tau) d\tau < \frac{M}{C} dt$$

Vizsgáljuk $v_C(t)$ folytonosságát:

$$\lim_{dt\to 0} \left[v_C(T+dt) - v_C(T) \right] = \lim_{dt\to 0} \frac{M}{C} dt = 0$$

QED

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 13. oldal

(c) Induktivitás, L [H]

Pázmány Péter Katolikus Egyetem

$$v = L\frac{di}{dt}$$

$$i = \frac{1}{L} \int_{-\infty}^{t} v d\tau = i(0) + \frac{1}{L} \int_{0}^{t} v d\tau$$

$$v(t)$$

Tárolt energia: $w_L = \int_0^T vidt = \int_0^T L\frac{di}{dt}idt = \int_0^I Lidi = \frac{LI^2}{2}$, ahol I = i(T)

Fontos: ullet Az energiatárolás az L-ben generált mágneses erőtérben történik

- A tárolt energia csak a L induktivitáson a T időpillanatban átfolyó I=i(T) áramtól függ
- A tárolt energia a kisütés során visszanyerődik
- Az induktivitás árama az időnek mindig folytonos függvénye
- Állandósult állapotú DC áramkörben az induktivitás rövidzárként viselkedik

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 14. oldal

Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

(d) Összeköttetés

Jelmagyarázat:

- Pont: Összekötött vezetékek
- Nincs pont: Átmenő, elektromosan izolált vezetékek

(e) Rövidzár

v=0 tetszőleges i mellett

Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

(f) Szakadás

i=0 tetszőleges v mellett

Vedd észre:

Rövidzár/szakadás esetén az áramot/feszültséget a befoglaló áramkör határozza meg!!!

AKTÍV ÁRAMKÖRI ELEMEKET DEFINIÁLÓ EGYENLETEK

Emlékezz: Ezen mérőirányok nem változtathatók meg!!!

(g) Független feszültségforrás

Feszültséget kényszerít, áram a befoglaló hálózattól függ

 $v(t) = v_S$ tetszőleges i mellett

(h) Független áramforrás

Áramot kényszerít, feszültség a befoglaló hálózattól függ

 $i=i_S$ tetszőleges v mellett

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 17. oldal

VEZÉRELT GENERÁTOROKAT DEFINIÁLÓ EGYENLETEK (AKTÍV)

(i) Feszültségvezérelt feszültséggenerátor

(Feszültség) erősítés

Pázmány Péter Katolikus Egyetem

$$G_u = \frac{v_2}{v_1}$$

(I) Feszültségvezérelt áramgenerátor

Transzfer admittancia

$$Y_T = \frac{i_2}{v_1}$$

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 18. oldal

Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

(k) Áramvezérelt feszültséggenerátor

Transzfer impedancia

$$Z_T = rac{v_2}{i_1}$$

(I) Áramvezérelt áramgenerátor

Áramerősítés

$$\alpha = \frac{i_2}{i_1}$$

aramkorok_02elemek_lti20.pdf: 19. oldal

Pázmány Péter Katolikus Egyetem

Áramkörök elmélete és számítása

KÉT TOVÁBBI ÁRAMKÖRI ELEM

(m) Girátor

Impedancia konverzióra használható Egyenletei:

$$v_2 = Ri_1$$
$$v_1 = -Ri_2$$

(n) Két csatolt tekercs

$$v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$$
$$v_2 = M \frac{di_1}{dt} + L_2 \frac{di_2}{dt}$$

Transzformátor esetén: $M=L_1\frac{N_2}{N_1}$

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 20. oldal

Ellentmondás?

• 7. oldal, Kirchhoff:

"Feszültség és/vagy áramirányok tetszőlegesen felvehetők"

• 11. oldal, áramköri elemeket definiáló egyenletek:

"Ezen mérőirányok nem változtathatók meg!!!"

Vedd észre:

 i_R vagy v_R mérőirány **egyike** tetszőlegesen felvehető (Kirchhoff), de utána a <u>másik</u>, v_R vagy i_R , **meghatározott** az áramköri elemet definiáló egyenlet által

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 21. oldal

Pázmány Péter Katolikus Egyetem

Illeszkedő egységrendszer

$$V^{[V]} = (i^{[mA]} \times 10^3)(R^{[k\Omega]} \times 10^{-3}) = i^{[mA]}R^{[k\Omega]}$$

$$\downarrow i(t) = 2 \text{ mA}$$

$$\downarrow v(t)$$

$$R = 10 \text{ k}\Omega$$

$$v = R i = 10 \times 2 = 20 \text{ m}$$

Manapság használt félvezetős átlagos teljesítményű áramkörökben

- feszültség 1,5 V 24 V
- áram tipikusan mA
- ullet ellenállás tipikusan k Ω

KOLUMBÁN Géza — Információs Technológiai és Bionikai Kar

aramkorok_02elemek_lti20.pdf: 22. oldal

Áramkörök elmélete és számítása