Lecture 17: Capacitance, Resistance, and the Method of Images

ECE221: Electric and Magnetic Fields

Prof. Sean V. Hum

Winter 2019

Outline

- Relationship Between Resistance and Capacitance
- 2 Resistance Examples

Method of Images

Resistance and Capacitance

$$R = \frac{V}{I} = \frac{-\int_{C} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} (\mathbf{E}) \cdot d\mathbf{s}}$$

$$C = \frac{\oint_{S} (\mathbf{E}) \cdot d\mathbf{s}}{-\int_{C} \mathbf{E} \cdot d\mathbf{l}}$$

$$\int_{S} \nabla \mathbf{E} \cdot d\mathbf{s}$$

Procedure for Solving for Resistance

- Choose a suitable coordinate system.
- 2 Solve for the electric field in the region of interest (resistive material region)
 - Find E from Q or $\rho_{v|s|l}$ using Gauss' Law or Coulomb's Law; or ∇ Find V from solving Laplace's equation, and find $E = -\nabla V$.
- Find I:

$$I = \iint \boldsymbol{J} \cdot d\boldsymbol{s}$$

Determine

$$R = \frac{V_0}{I}$$

C remains unchanged if $\tau \neq D \rightarrow \text{now there's resistance between two plates.}$

$$I = \iint_{\widehat{J}} \cdot d\widehat{S} = \iint_{\widehat{J}} - \underline{\nabla} V_0 \widehat{Z} \cdot (\widehat{Z}) \, dy dx$$

match!

In parallel.

Image Credit: Ulaby and Ravaioli

$$RC = \frac{\varepsilon}{T} \rightarrow R = \frac{\varepsilon}{TC}$$
 Reall $C = \frac{\varepsilon A}{OI} \Rightarrow R = \frac{d}{TA}$

matches

Winter 2019

only applies when \vec{E}/\vec{J} is uniform in resistive region.

5/11

ECE221: Electric and Magnetic Fields

Coaxial Capacitor/Resistor

$$I = \iint ds = \iint \frac{1}{r} ds = \iint \frac{1}{r$$

Image Credit: Ulaby and Ravaioli

Spherical Capacitor/Resistor

Recall:
$$\overrightarrow{E} = \overrightarrow{r} \frac{V_0}{r^2} \frac{1}{4 - b}$$

$$I = \iint_0^{\pi} \frac{TV_0}{V} \frac{1}{4 - b} \cdot (\overrightarrow{r} \overrightarrow{r} \sin \theta \cos \theta)$$

$$=\frac{7\sqrt{0}}{4\pi}(4\pi)$$

Parallel Plate Capacitor/Resistor: Case 1

Parallel Plate Capacitor/Resistor: Case 2

Method of Images

Given a charge configuration above an infinite grounded PEC plane may be replaced by the charge configuration itself, its image, and an equipotential surface in place of the conducting plane.

Method of Images

