

Andi Rasuna Darsono¹⁾, Dr. Sri C. Haryanti, S.T., M.T.²⁾ Computer Science, Faculty of Information Technology, Yarsi University

Motivation

This research aims to examine the performance of load balan cing on a cluster. Load balancing is a solution for large acces s load and minimizes downtime in serving requests from users. Load balancing distributes loads of traffic evenly to se rvers with particular algorithms.

Our Works

Scenario 1

Implemented using Linux Virtual Server (LVS) topology via direct routing on Proxmox VE and use round-robin algorithm for load balancing

Scenario 2

Performed to find out the number of requests per second and packet loss with load o f 250, 500, and 1000 users as many as 3 times for 1 minute between single server wit h load balancing on cluster computing.

Scenario 3

Intends to prove that the failover on load balancing can manage to requests copying of the process and configuration from Master to Backup with an average value of downtime.

Topology

Hardware & Software

Host

CPU Octa Core @ 2.5 GHz
Memory 4 GB DDR3
Storage 300 GB (IDE)
Operating System Proxmox VE 4.1
Network Adapter 1 : Custom (PCnet –FAST III)

CPU Single Core @ 2.5 GHz Memory 500 MB DDR3 Storage 50 GB (Local-LVM) Operating System CentOS 6.0 Final (i386-mi nimal)

> Network Adapter 1-4 : Bridge (vmbr) Ipvsadm (Piranha)

LAMP (Linux-Apache-MySQL-PHP)

Net Uptime Monitor

User

CPU Octa Core @ 1.9 GHz
Memory 8 GB DDR3
Storage 500 GB
Operating System Windows 10
Network Adapter : VB Ethernet Adapte
r
WebServer Stress Tool 8

Guest

Scenario 1

Implemented using Linux Virtual Server (LVS) topology via direct routing on Proxmox VE and use round-robin algorithm for load balancing

Scenario 1

Implemented using Linux Virtual Server (LVS) topology via direct routing on Proxmox VE and use round-robin algorithm for load balancing

Scenario 2

Performed to find out the number of requests time and packet loss with load of 250, 500, and 1000 users as many as 3 times for 1 minute between single server with load balancing on cluster computing.

Name	Clicks	Errors	Errors [%]	Time Spent [ms]	Avg. Click Time [ms]
Load Balancer	4,291	0	0.00	12,325,289	2,872
Single Server	3,941	36	0.91	12,792,645	3,276

Scenario 2

Performed to find out the number of requests time and packet loss with load of 250, 500, and 1000 users as many as 3 times for 1 minute between single server with load balancing on cluster computing.

Name	Clicks	Errors	Errors [%]	Time Spent [ms]	Avg. Click Time [ms]
Load Balancer	3,784	0	0.00	15,220,957	4,022
Single Server	3,594	239	6.65	19,424,124	5,790

Scenario 2

Performed to find out the number of requests time and packet loss with load of 250, 500, and 1000 users as many as 3 times for 1 minute between single server with load balancing on cluster computing.

Name	Clicks	Errors	Errors [%]	Time Spent [ms]	Avg. Click Time [ms]
Load Balancer	3,395	0	0.00	14,138,671	4,165
Single Server	3,934	884	22.47	22,170,186	7,269

Scenario 3

Intends to prove that the failover on load balancing can manage to requests copying of the process and configuration from Master to Backup with an average value of downtime.

Failover	Downtime
1	16 s
2	17 s
3	17 s
4	19 s
5	16 s
6	13 s
7	18 s
8	19 s
9	17 s
10	1 <i>1</i> e

Thank You