A Report of Type Theory and Formal Proof

Juan Pablo Royo Sales

Universitat Politècnica de Catalunya

February 12, 2021

Contents

1	Inti	roduction	2
2	Unt	typed lambda calculus	2
	2.1	Definition	2
		2.1.1 Lambda-terms	3
	2.2	Free and bound variables	3
		2.2.1 Alpha conversion	4
	2.3	Substitution	4
	2.4	Beta reduction	4
	2.5	Fixed Point Theorem	5
	2.6	Exercises	5
		2.6.1 1.10 Church numerals	5
		2.6.2 1.11 - Successor	6
		2.6.3 1.12 - If then else	7
3	Sim	aply typed lambda calculus	8
	3.1	Simple types	8
		3.1.1 Remarks	8
	3.2	Church-typing and Curry-typing	8
		3.2.1 Typing à la Church	8
		3.2.2 Typing à la Curry	9
	3.3	Derivation rules for Church's $\lambda \to \dots \dots$	9
	3.4	Flag notation	10
\mathbf{R}_{0}	efere	ences	10

1 Introduction

This report is going to provide a summary over the book [NG14]. Alongside the different chapters of the book I am going to describe briefly the most important parts of each chapter and, at the same time, I am going to solve 1 or 2 of the exercises proposed by the authors.

The organization of the report is going to be the same as the chapters of the book.

2 Untyped lambda calculus

In this first chapter the authors define and describe Lambda Calculus (λ -calculus) system which encapsulates the formalization of basic aspects of mathematical functions, in particular construction and use. In λ -calculus formalization system there are typed and untyped formalization of the same system. In this first case authors introduced the first basic and simple formalization which is untyped.

2.1 Definition

There are two constructions principles and one evaluation rule

Construction principles:

- Abstraction: Given an expression M and a variable x we can construct the expression: $\lambda x.M$. This is abstraction of x over M Example: $\lambda y.(\lambda x.x y)$ Abstraction of y over $\lambda x.x y$
- Application: Given 2 expressions M and N we can construct the expression: M N. This is the application of M to N. Example: $(\lambda x.x^2+1)(3)$ Application of 3 over $\lambda x.x^2+1$

Evaluation Rule: Formalization of this process is called Beta Reduction (β -reduction). β -reduction: An expression ($\lambda x.M$)N can be rewritten to M[x:=N], which means every x should be replaced by N in M. This process is called β -reduction of ($\lambda x.M$)N to M[x:=N].

Example: $(\lambda x.x^2 + 1)(3)$ reduces to $(x^2 + 1)[x := 3]$, which is $3^2 + 1$.

In this book, functions on λ -calculus notation are Curried.

2.1.1 Lambda-terms

Expressions in λ -calculus are called Lambda Terms (λ -term)

Definition 2.1. The set Λ of all λ -term

- 1. (Variable) If $u \in V$, then $u \in \Lambda$ Example: x, y, z
- 2. (Application) If M and $N \in \Lambda$, then $(MN) \in \Lambda$ Example: (xy), (x(xy))
- 3. (Abstraction) If $u \in V$ and $M \in \Lambda$, then $(\lambda u.M) \in \Lambda$ Example: $(\lambda x.(xz)), (\lambda y.(\lambda z.x))$

Definition 2.2. Multiset of subterms Sub

- 1. (Basis) $Sub(x) = \{x\}$, for each $x \in V$
- 2. (Application) $Sub((MN)) = Sub(M) \cup Sub(N) \cup \{(MN)\}$
- 3. (Abstraction) $Sub((\lambda x.M)) = Sub(M) \cup \{(\lambda x.M)\}$

Lemma 2.1. (1) (Reflexivity) For all λ -term M, we have $M \in Sub(M)$. (2) (Transitivity) If $L \in Sub(M)$ and $M \in Sub(N)$, then $L \in Sub(N)$.

Definition 2.3 (Proper subterm). L is a proper subterm of M if L is a subterm of M, but $L \not\equiv M$

- Parenthesis can be omitted
- Application is lef-associative, MNL is ((MN)L)
- Application takes precedence over Abstraction

2.2 Free and bound variables

Variables can be *free*, bound and binding. A variable x which is *free* in M becomes bound in $\lambda x.M.$ M is called a binding variable occurrence.

Definition 2.4 (FV, set of free variables of a λ -term).

- 1. (Variable) $FV(x) = \{x\}$
- 2. (Application) $FV(MN) = FV(M) \cup FV(N)$
- 3. (Abstraction) $FV(\lambda x.M) = FV(M) \setminus \{x\}$

Definition 2.5 (Closed λ -term; combinator; Λ^0). The λ -term M is closed if $FV(M) = \emptyset$. This is also called a combinator. The set of all closed λ -term is denoted by Λ^0

2.2.1 Alpha conversion

It is based on the possibility of renaming bound and binding variables.

Definition 2.6 (Renaming; $M^{x\to y}$; $=_{\alpha}$). Let $M^{x\to y}$ denote the result of replacing every free ocurrence of x in M by y. Renaming, expressed by $=_{\alpha}$ is defined as: $\lambda x.M =_{\alpha} \lambda y.M^{x\to y}$, provided that $y \notin FV(M)$ and y is not binding in M

Definition 2.7 (α -convertion or α -equivalence; $=_{\alpha}$).

- 1. (Renaming) same as 2.6
- 2. (Compatibility) If $M =_{\alpha} N$, then $ML =_{\alpha} NL$, $LM =_{\alpha} LN$ and, for any arbitrary z, $\lambda z.M =_{\alpha} \lambda z.N$
- 3. (Reflexivity) $M =_{\alpha} M$
- 4. (Symmetry) If $M =_{\alpha} N$ then $N =_{\alpha} M$
- 5. (Transitivity) If both $L =_{\alpha} M$ and $M =_{\alpha} N$, then $L =_{\alpha} N$

2.3 Substitution

Definition 2.8 (Substitution).

- 1. $x[x := N] \equiv N$
- 2. $y[x := N] \equiv y \text{ if } x \not\equiv y$
- 3. $(PQ)[x := N] \equiv (P[x := N])(Q[x := N])$
- 4. $(\lambda y.P)[x := N] \equiv \lambda z.(P^{y\to z}[x := N])$, if $\lambda z.P^{y\to z}$ is α -variant of $\lambda y.P$ such that $z \notin FV(N)$

2.4 Beta reduction

Definition 2.9 (One-step β -reduction, \rightarrow_{β}).

- 1. (Basis) $(\lambda x.M)N \to_{\beta} M[x := N],$
- 2. (Compatibility) If $M \to_{\beta} N$, then $ML \to_{\beta} NL$, $LM \to_{\beta} LN$ and $\lambda x.M \to_{\beta} \lambda x.N$

In 1 the left part of \rightarrow_{β} is called *redex* (reducible expression), and the right side is called *contractum* (of the redex).

Definition 2.10 (β -reduction (zero-or-more-step), $\twoheadrightarrow_{\beta}$). $M \twoheadrightarrow_{\beta} N$ if there is an $n \geq 0$ and there are terms M_0 to M_n such that $M_0 \equiv M$, $M_n \equiv N$ and for all $i, 0 \leq i < n$:

$$M_i \to_{\beta} M_{i+1}$$

Hence, if $M \to_{\beta} N$, there exists a chain of single-step β -reductions, starting with M and ending with N:

$$M \equiv M_0 \to_{\beta} M_1 \to_{\beta} M_2 \to_{\beta} \dots \to_{\beta} M_{n-2} \to_{\beta} M_{n-1} \to_{\beta} M_n \equiv N$$

Definition 2.11 (β -conversion, β -equality; $=_{\beta}$). $M =_{\beta} N$ if there is an $n \geq 0$ and there are terms M_0 to M_n such that $M_0 \equiv M$, $M_n \equiv N$ and for all $i, 0 \leq i < n$:

either
$$M_i \rightarrow_{\beta} M_{i+1}$$
 or $M_{i+1} \rightarrow_{\beta} M_i$

2.5 Fixed Point Theorem

Theorem 2.1. For all $L \in \Lambda$ there is $M \in \Lambda$ such that $LM =_{\beta} M$

Proof. For given L, define $M:=(\lambda x.L(xx))(\lambda x.L(xx))$ This M is a redex, so we have:

$$M \equiv (\lambda x. L(xx))(\lambda x. L(xx)) \tag{1a}$$

$$\rightarrow_{\beta} L((\lambda x.L(xx))(\lambda x.L(xx)))$$
 (1b)

$$\equiv LM$$
 (1c)

Therefore, $LM =_{\beta} M$

2.6 Exercises

2.6.1 1.10 Church numerals

Having that:

- $zero := \lambda fx.x$
- one := $\lambda fx.fx$
- $two := \lambda fx.f(fx)$
- $add := \lambda mnfx.mf(nfx)$
- $mult := \lambda mnfx.m(nf)x$

(a). Show that: (add one one \rightarrow_{β} two)

Proof. Replacing by lambda expressions

add one one :=
$$(\lambda mnfx.mf(nfx))(\lambda fx.fx)(\lambda fx.fx)$$
 (2a)

$$\rightarrow_{\beta} (\lambda n f x. (\lambda f x. f x) f (n f x)) (\lambda f x. f x)$$
 (2b)

$$\rightarrow_{\beta} (\lambda f x.(\lambda f x.f x) f((\lambda f x.f x) f x)) \tag{2c}$$

$$\rightarrow_{\beta} (\lambda f x.(\lambda f x. f x) f(f x))$$
 (2d)

$$\rightarrow_{\beta} (\lambda f x. f(f x))$$
 (2e)

$$:= two$$
 (2f)

(b). Show that: (add one one \neq_{β} mult one zero)

Proof. We need to reduce (mult one zero) and show that is not two

$$mult\ one\ zero\ := (\lambda mnfx.m(nf)x)(\lambda fx.fx)(\lambda fx.x)$$
 (3a)

$$\rightarrow_{\beta} (\lambda n f x. (\lambda f x. f x) (n f) x) (\lambda f x. x) \tag{3b}$$

$$\rightarrow_{\beta} (\lambda f x.(\lambda f x.f x)((\lambda f x.x)f)x) \tag{3c}$$

$$\to_{\beta} (\lambda f x.(\lambda x.((\lambda f x.x)f)x)x) \tag{3d}$$

$$\rightarrow_{\beta} (\lambda f x.(\lambda x.(\lambda x.x)x)x)$$
 (3e)

$$\to_{\beta} (\lambda f x.(\lambda x.x)x) \tag{3f}$$

$$\rightarrow_{\beta} (\lambda f x. x)$$
 (3g)

$$:= zero$$
 (3h)

2.6.2 1.11 - Successor

Having that $suc := \lambda mfx.f(mfx)$. Check the following

(a). $suc\ zero =_{\beta} one$

Proof.

$$suc\ zero\ =_{\beta} (\lambda mfx.f(mfx))(\lambda fx.x)$$
 (4a)

$$\rightarrow_{\beta} (\lambda f x. f((\lambda f x. x) f x))$$
 (4b)

$$\rightarrow_{\beta} (\lambda f x. f((\lambda x. x) x))$$
 (4c)

$$\rightarrow_{\beta} (\lambda f x. f x)$$
 (4d)

$$:= one$$
 (4e)

Page 6 of 10

(b). $suc\ one =_{\beta} two$

Proof.

$$suc\ one\ =_{\beta} (\lambda mfx.f(mfx))(\lambda fx.fx)$$
 (5a)

$$\to_{\beta} (\lambda f x. f((\lambda f x. f x) f x)) \tag{5b}$$

$$\to_{\beta} (\lambda f x. f((\lambda x. f x) x)) \tag{5c}$$

$$\to_{\beta} (\lambda f x. f(f x)) \tag{5d}$$

$$:= two (5e)$$

2.6.3 1.12 - If then else

The term 'If x then u else v' is represented by $\lambda x.xuv$. Check this by calculating β -normal forms of $(\lambda x.xuv)$ true and $(\lambda x.xuv)$ false, having that:

• $true := \lambda xy.x$

• $false := \lambda xy.y$

 $(\lambda x.xuv)true.$

$$:= (\lambda x. xuv)(\lambda xy. x) \tag{6a}$$

$$\rightarrow_{\beta} (\lambda xy.x)uv$$
 (6b)

$$\rightarrow_{\beta} (\lambda y.u)v$$
 (6c)

$$\rightarrow_{\beta} u$$
 (6d)

 $(\lambda x.xuv)$ false.

 $:= (\lambda x. xuv)(\lambda xy. y) \tag{7a}$

$$\rightarrow_{\beta} (\lambda xy.y)uv$$
 (7b)

$$\rightarrow_{\beta} (\lambda y.y)v$$
 (7c)

$$\rightarrow_{\beta} v$$
 (7d)

(7e)

(6e)

Page 7 of 10

3 Simply typed lambda calculus

In this chapter authors introduce Types to λ -calculus Formalization system. When we are acting on mathematical functions, the natural thing is to restrict over some domain, both the image and the pre-image. The addition of types to the formalization system prevents some anomalies that are present in the regular λ -calculus model.

3.1 Simple types

It is done adding type *variables* with an infinite set $\mathbb{V} = \{\alpha, \beta, \gamma, \dots\}$

Definition 3.1 (The set \mathbb{T} of all simple types).

- 1. (Type variable) If $\alpha \in \mathbb{V}$, then $\alpha \in \mathbb{T}$
- 2. (Arrow type) If $\sigma, \tau \in \mathbb{T}$, then $(\sigma \to \tau) \in \mathbb{T}$

Also, $\mathbb{T} = \mathbb{V} \mid \mathbb{T} \to \mathbb{T}$.

Parenthesis in arrow types are right-associative

3.1.1 Remarks

- Type variable represent simple types like Nat, Lists, etc.
- Arrow types represent functions such as $nat \rightarrow real$
- 'term M has type σ ' (typing statement) is represented as $M:\sigma$
- 'variable x has type σ ' is represented as $x : \sigma$
- If $x : \sigma$ and $x : \tau$ then $\sigma \equiv \tau$
- Application: If $M: \sigma \to \tau$ and $N: \sigma$, then $MN: \tau$
- Abstraction: If $x : \sigma$ and $M : \tau$, then $\lambda x.M : \sigma \to \tau$

3.2 Church-typing and Curry-typing

3.2.1 Typing à la Church

Unique type for each variable upon its introduction [Chu40].

Example: If x has type $\alpha \to \alpha$ and y has type $(\alpha \to \alpha) \to \beta$, then yx has type β .

If z has type β and u has type γ , then $\lambda zu.z$ has type $\beta \to \gamma \to \beta$. Therefore application $(\lambda zu.z)(yx)$ is permitted.

3.2.2 Typing à la Curry

Not give the types of variables, leave them *implicit*, therefore is called *implicit* typing.

Example: Suppose we have $M \equiv (\lambda z u.z)(yx)$ but types are not given. Guessing we have $\lambda z u.z$ should have some type $A \to B$, so (yx) must be of type A, then M is of type B. If we continue with the guessing assigning type variables after replacing we end up with the same expression as explicit typing.

Most of the book use *Typing a la Church* because in math and logic types are usually fixed and known beforehand.

3.3 Derivation rules for Church's $\lambda \rightarrow$

Definition 3.2 (Pre-typed λ -term, $\Lambda_{\mathbb{T}}$).

$$\Lambda_{\mathbb{T}} = V \mid (\Lambda_{\mathbb{T}} \Lambda_{\mathbb{T}}) \mid (\lambda V : \mathbb{T}.\Lambda_{\mathbb{T}})$$
(8)

We want to express things like ' λ -term M has type σ ' relative to context Γ

Definition 3.3 (Statement, declaration, context, judgement).

- 1. **Statement**: $M: \sigma$, where $M \in \Lambda_{\mathbb{T}}$ and $\sigma \in \mathbb{T}$. M is called *subject* and σ *type*
- 2. **Declaration**: Is a statement with a *variable* as subject. Example $x: \alpha \to \beta \varsigma$
- 3. Context: List of Declarations with different subjects
- 4. **Judgement**: $\Gamma \vdash M : \sigma$, where Γ is a *Context* and $M : \sigma$ is a *Statement*.

Definition 3.4 (Derivation rules for $\lambda \rightarrow$).

(var)
$$\Gamma \vdash x : \sigma \text{ if } x : \sigma \in \Gamma$$

$$(appl) \ \ \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau}$$

$$(abst) \ \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x : \sigma.M : \sigma \rightarrow \tau}$$

This rules are *universal*.

Definition 3.5 (Legal $\lambda \to \text{-terms}$). A pre-typed term M in $\lambda \to \text{is called}$ legal if there exist a context Γ and type ρ such that $\Gamma \vdash M : \rho$

3.4 Flag notation

Flag notation is a succinct and useful way to represent Derivation rules on Typed- λ -calculus. It is represented using a flag (rectangular box) as a declaration, and everything that is bellow and attached to this flag are statements that belong to it. This is also called flag pole. Lets see an example of derivation:

Having the following derivation:

References

- [Chu40] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5(2):56–68, 1940.
- [NG14] Rob Nederpelt and Herman Geuvers. Type Theory and Formal Proof. Cambridge University Press, Cambridge CB2 8BS, United Kindom, 2014.