Spencer Wallace

□ 520 461 4480 | @ spencerw530@gmail.com | the LinkedIn | • GitHub | • Portfolio | • Tucson, AZ

EDUCATION

University of Washington

Seattle, Washington

PhD Astronomy

Oct 2015 - Summer 2023 (Expected, flexible)

University of Arizona

Tucson, Arizona

BS Computer Science, Astronomy and Physics

Aug 2009 - May 2014

Work Experience

Simulating the assembly of terrestrial planets

University of Washington, Astronomy Department

Jan 2018 - Present

- Designed, ran and analyzed a suite of N-body simulations that follow the planet formation process from 10⁶ asteroid-sized bodies up to full terrestrial worlds (Python, Numpy, Pandas, Git)
- Extended an existing large-scale hydrodynamics code to model collisions between solid bodies (C++, Git)
- Tested, debugged and ran large-scale simulations across multiple compute nodes on a variety of national supercomputers (C++, Git, Bash)
- Created and developed set of analysis tools to track the orbits of particles and follow their collision histories (Python, Numpy, Pandas, Git)
- Led weekly meetings to train and mentor undergraduate researchers to use python data analysis tools, develop modules for our N-body simulation code, and run supercomputer simulations

Detecting stellar flares with the Transiting Exoplanet Survey Satellite

University of Washington, DIRAC Institute

Jun 2019 - Jun 2020

- Designed, tested and used an analysis pipeline to construct a catalog of non-periodic flaring events in time series data of brightness for tens of thousands of stars (Python, Numpy, Pandas, Git)
- Used a gaussian process machine learning model to automatically remove periodic signals and quantify the reliability of flare detections

Synthesizing new data from existing simulation results

University of Washington, eScience Institute

Jan 2023 - Present

- Designed a pipeline to train a generative adversarial network to produce an infinite supply of qualitatively similar, but numerically distinct simulation results to apply to chaotic systems (Python, PyTorch, Pandas, Numpy, Git)
- Verified the accuracy and robustness of the model through a combination of statistical tests and additional simulations

Exploring parallel algorithms for spatial tree traversal

University of Illinois Urbana-Champaign, Computer Science Department

 $Jun\ 2019-Apr\ 2021$

- Participated in a multi-institution interdisciplinary collaboration to develop and test PARATREET, a toolkit for quickly testing and tuning parallel spatial tree traversal algorithms (C++, Python, Bash, Git)
- Worked with a team of computer scientists to apply and test their algorithms on a number of real-world astronomy applications

Verifying the robustness of galaxy simulation codes

University of Washington, Astronomy Department

Oct 2015 - Dec 2016

- Ran and analyzed a set of hydrodynamics simulations to assess the scientific validity of the most commonly used galaxy simulation codes (C++, Python, Numpy, Bash, Git)
- Worked with a mult-national team from over thirty institutions to highlight and understand and reconcile differences between state-of-the-art galaxy simulation codes asked to solve an identical problem

Graduate teaching assistant

University of Washington, Astronomy Department

Oct 2015 - Jun 2020

- Led weekly discussion sections, graded assignments and occasionally preformed lectures and designed homework exercises for undergraduate students
- Collaborated with a team of other teaching assistants to ensure assignments, quizzes and exams were graded consistently and fairly

${\rm Skills}$

Programming: C++, Python, NumPy, Pandas, PyTorch, scikit-learn, matplotlib, Seaborn, SQL

 $\textbf{Communication:} \ 3 \ \text{first-authored publications}, \ 3 \ \text{co-authored publications}, \ 7 \ \text{conference talks}, \ 3 \ \text{conference posters}, \ 20 \ \text{pop-sci articles published}$

 $\textbf{Leadership:} \ \ \text{Worked on 5 separate science collaboration teams, Mentored and directed research for 6 undergraduate students}$