

SCAN 2 — Quiz #7 — 10'

November 15, 2018

Name: Beenardo Convallo

Exercise 1. Let f be the function defined by

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}$$

 $(x,y,z) \longmapsto x^3 - 2xy + yz + z^2$

Let $\mathscr S$ be the surface in $\mathbb R^3$ of equation

$$\mathcal{S}: f(x,y,z) = 1$$
. $3x^{2} - 2y$ - 1

1. Give the gradient vector of f at (1, 1, -2).

2. Deduce an equation of the tangent plane (P) to $\mathscr S$ at (1,1,-2). You don't need to check that $(1,1,-2) \in \mathscr S$. No justifications required.

Exercise 2. Find all functions $f: \mathbb{R}^3 \to \mathbb{R}$ such that $\partial_1 f$ exists and such that

$$\partial_1 f = 0.$$

No justifications required.

There exists,
$$g: \mathbb{R}^2 \to \mathbb{R}$$
 st $\forall (x,y,z) \in \mathbb{R}^3$, $f(x,y,z) = g(y,z)$

Exercise 3. Let f be the function defined by

$$f: \mathbb{R}^3 \to \mathbb{R}$$

$$(a,b,c) \mapsto ab\cos(ac).$$

Let $(x, y, z) \in \mathbb{R}^3$. Compute (please mind the name of the variables):

$$\partial_{1,2}^2 f(x,y,z) = \partial_{\mathcal{A}} \left(\partial_3 \left\{ (x,y,z) \right\} \right) = - \partial_{\mathcal{A}} y \, \operatorname{con}(x \, z) + x^2 y \, z \, \cos(x \, z)$$

Exercise 4. Let f be the function defined by

Exercise 4. Let
$$f$$
 be the function defined by
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{x^3 - y^3}{x^2 + 2y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

You're given that the first-order partial derivatives of f at (0,0) exist, but you're asked to determine them. No justifications required.

$$\partial_1 f(0,0) = 1$$

$$\partial_2 f(0,0) = -\frac{1}{2}$$