LEFT FACTORING

Example-

Grammar with common prefixes

Left Factored Grammar

Problem-01:

Do left factoring in the following grammar-

 $S \rightarrow iEtS / iEtSeS / a$

 $E \ \to \ b$

Solution-

The left factored grammar is-

 $S \rightarrow iEtSS'/a$

 $S' \rightarrow eS / \in$

 $E \rightarrow b$

Problem-02:

Do left factoring in the following grammar-

 $A \rightarrow aAB / aBc / aAc$

Solution-

Step-01:

 $A \rightarrow aA'$

 $A' \rightarrow AB / Bc / Ac$

Again, this is a grammar with common prefixes.

Step-02:

 $A \rightarrow aA'$

 $A' \rightarrow AD / Bc$

 $D \rightarrow B/c$

This is a left factored grammar.

Problem-03:

Do left factoring in the following grammar-

 $S \rightarrow bSSaaS / bSSaSb / bSb / a$

Solution-

Step-01:

 $S \rightarrow bSS'/a$

S' → SaaS / SaSb / b

Again, this is a grammar with common prefixes.

Step-02:

 $S \rightarrow bSS'/a$

 $S' \rightarrow SaA/b$

 $A \rightarrow aS / Sb$

This is a left factored grammar.

Problem-04:

Do left factoring in the following grammar-

 $S \rightarrow aSSbS / aSaSb / abb / b$

Solution-

Step-01:

 $S \rightarrow aS'/b$

 $S' \rightarrow SSbS / SaSb / bb$

Again, this is a grammar with common prefixes.

Step-02:

 $S \rightarrow aS'/b$

 $S' \rightarrow SA/bb$

 $A \rightarrow SbS / aSb$

This is a left factored grammar.

Problem-05:

Do left factoring in the following grammar-

 $S \rightarrow a / ab / abc / abcd$

Solution-

Step-01:

 $S \rightarrow aS'$

 $S' \rightarrow b/bc/bcd/ \in$

Again, this is a grammar with common prefixes.

Step-02:

 $S \rightarrow aS'$

```
S' \rightarrow bA/ \in
A \rightarrow c/cd/ \in
Again, this is a grammar with common prefixes.
```

Step-03:

 $S \rightarrow aS'$

 $S' \rightarrow bA/ \in$

 $A \rightarrow cB / \in$

 $B \rightarrow d/ \in$

This is a left factored grammar.

Problem-06:

Do left factoring in the following grammar-

 $S \rightarrow aAd/aB$

 $A \rightarrow a / ab$

 $B \rightarrow ccd / ddc$

Solution-

The left factored grammar is-

 $S \rightarrow aS'$

 $S' \rightarrow Ad/B$

A → aA'

 $A' \rightarrow b / \in$

1. Left Recursion-

- •A production of grammar is said to have left recursion if the leftmost variable of its RHS is same as variable of its LHS.
- •A grammar containing a production having left recursion is called as Left Recursive Grammar.

Example-

 $S \rightarrow Sa/ \in$

(Left Recursive Grammar)

Left recursion is considered to be a problematic situation for Top down parsers.

•Therefore, left recursion has to be eliminated from the grammar.

Elimination of Left Recursion

Left recursion is eliminated by converting the grammar into a right recursive grammar.

If we have the left-recursive pair of productions-

 $A \rightarrow A\alpha / \beta$

(Left Recursive Grammar)

where β does not begin with an A.

Then, we can eliminate left recursion by replacing the pair of productions with-

 $A \to \beta A'$

 $A' \rightarrow \alpha A' / \in$

(Right Recursive Grammar)

This right recursive grammar functions same as left recursive grammar.

Problem-01:

Consider the following grammar and eliminate left recursion-

A → ABd / Aa / a

 $B \rightarrow Be/b$

Solution-

The grammar after eliminating left recursion is-

 $A \rightarrow aA'$

```
A' \rightarrow BdA'/aA'/ \in
```

 $B \to bB'$

 $B' \rightarrow eB' / \in$

Problem-02:

Consider the following grammar and eliminate left recursion-

$$E \rightarrow E + E / E \times E / a$$

Solution-

The grammar after eliminating left recursion is-

E → aA

 $A \rightarrow +EA/xEA/ \in$

Problem-03:

Consider the following grammar and eliminate left recursion-

 $E \rightarrow E + T/T$

 $T \rightarrow TxF/F$

 $F \rightarrow id$

Solution-

The grammar after eliminating left recursion is-

 $E \rightarrow TE'$

 $E' \rightarrow +TE' / \in$

 $T \rightarrow FT'$

 $T' \rightarrow xFT' / \in$

 $F \rightarrow id$

Problem-04:

Consider the following grammar and eliminate left recursion-

 $S \rightarrow (L) / a$

 $L \rightarrow L, S/S$

Solution-

The grammar after eliminating left recursion is-

 $S \rightarrow (L) / a$

 $L \ \to \ SL'$

 $L' \rightarrow ,SL'/ \in$

Problem-05:

Consider the following grammar and eliminate left recursion-

 $S \rightarrow SOS1S / 01$

Solution-

The grammar after eliminating left recursion is-

 $S \rightarrow 01A$

 $A \rightarrow 0S1SA/ \in$

Problem-06:

Consider the following grammar and eliminate left recursion-

 $S \,\to\, A$

 $A \rightarrow Ad / Ae / aB / ac$

 $B \rightarrow bBc/f$

Solution-

The grammar after eliminating left recursion is-

 $S \rightarrow A$

A → aBA' / acA'

 $A' \rightarrow dA' / eA' / \in$

 $B \rightarrow bBc/f$

Problem-07:

Consider the following grammar and eliminate left recursion-

 $A \rightarrow AA\alpha / \beta$

Solution-

$$A \ \to \ \beta A'$$

$$A' \rightarrow A\alpha A' / \in$$

Problem-08:

Consider the following grammar and eliminate left recursion-

```
A → Ba/Aa/c
```

 $B \rightarrow Bb/Ab/d$

Solution-

This is a case of indirect left recursion.

Step-01:

First let us eliminate left recursion from A → Ba / Aa / c

Eliminating left recursion from here, we get-

A → BaA' / cA'

 $A' \rightarrow aA' / \in$

Now, given grammar becomes-

A → BaA' / cA'

 $A' \rightarrow aA' / \in$

 $B \rightarrow Bb/Ab/d$

Step-02:

Substituting the productions of A in B → Ab, we get the following grammar-

A → BaA' / cA'

 $A' \rightarrow aA' / \in$

 $B \rightarrow Bb / BaA'b / cA'b / d$

Step-03:

Now, eliminating left recursion from the productions of B, we get the following grammar-

A → BaA' / cA'

 $A' \rightarrow aA' / \in$

 $B \rightarrow cA'bB'/dB'$

 $B' \rightarrow bB' / aA'bB' / \in$

This is the final grammar after eliminating left recursion.

Problem-09:

Consider the following grammar and eliminate left recursion-

 $X \rightarrow XSb/Sa/b$

 $S \rightarrow Sb/Xa/a$

Solution-

This is a case of indirect left recursion.

Step-01:

First let us eliminate left recursion from $X \rightarrow XSb / Sa / b$

Eliminating left recursion from here, we get-

 $X \rightarrow SaX'/bX'$

 $X' \rightarrow SbX' / \in$

Now, given grammar becomes-

 $X \rightarrow SaX' / bX'$

 $X' \rightarrow SbX' / \in$

 $S \rightarrow Sb/Xa/a$

Step-02:

Substituting the productions of X in S $\,\rightarrow\,$ Xa, we get the following grammar-

 $X \rightarrow SaX' / bX'$

 $X' \rightarrow SbX' / \in$

 $S \rightarrow Sb / SaX'a / bX'a / a$

Step-03:

Now, eliminating left recursion from the productions of S, we get the following grammar-

 $X \rightarrow SaX' / bX'$

 $X' \rightarrow SbX' / \in$

```
S \rightarrow bX'aS' / aS'
```

$$S' \rightarrow bS' / aX'aS' / \in$$

This is the final grammar after eliminating left recursion.

Problem-10:

Consider the following grammar and eliminate left recursion-

 $S \rightarrow Aa/b$

 $A \rightarrow Ac/Sd/ \in$

Solution-

This is a case of indirect left recursion.

Step-01:

First let us eliminate left recursion from $S \rightarrow Aa/b$

This is already free from left recursion.

Step-02:

Substituting the productions of S in A \rightarrow Sd, we get the following grammar-

 $S \rightarrow Aa/b$

 $A \rightarrow Ac/Aad/bd/ \in$

<u>Step-03:</u>

Now, eliminating left recursion from the productions of A, we get the following grammar-

 $S \rightarrow Aa/b$

 $A \rightarrow bdA'/A'$

 $A' \rightarrow cA' / adA' / \in$

This is the final grammar after eliminating left recursion.