IMPERIAL

A Systematic Comparison of Machine Learning Models for Reconstructing Atmospheric Fields from Sparse Observations

Masters Thesis Presentation

Supervisor: Dr. Sibo Cheng

Author: Vincent Lefeuve

Introduction

Motivation

Increasing frequency of climate disasters

- Floods, storms, droughts, extreme temperatures, wildfires
- Sharp rise since the 1970s

Fig. 2. Observation components of the global observing system (WMO, 2020)

Fig. 1. Numbers of extreme weather events globally, by year (Simpson and Burpee 2014)

Reliance on the Global Observing System

- Satellites, aircraft, ships, buoys, radars, automatic stations
- Data remains sparse and unevenly distributed
- Need for improved reconstruction methods

Imperial College London Department of Computing 2 24/09/2025

Motivation

Current Methods

- Current practice: Data assimilation (accurate but costly, multiple steps)
- Alternatives: Kriging (O(n³), expensive) or
 Cubic interpolation (fast but inaccurate)
- Both only blend observations, limited physical insight
- Yet, we now have massive observational
 & reanalysis datasets

Fig. 3. Schematic of how data assimilation adds value to observational and model information (Lahoz et. Al, 2014)

<u>Fig. 4. Example of one-dimensional data interpolation</u> by kriging (Wikipedia, 2016)

<u>Fig. 5. Comparison of Bicubic interpolation with some</u> <u>1- and 2-dimensional interpolations. (Wikipedia, 2020)</u>

Machine Learning could be a scalable and powerful new approach

Imperial College London Department of Computing 3 24/09/2025

Motivation

Machine Learning

Current ML approaches are fragmented

- Deterministic models (e.g. U-Nets, trained with MSE)
- Probabilistic models (e.g. diffusion models like DDPM)

Lack of systematic evaluation

- No unified benchmark for field reconstruction
- Unlike other domains (e.g. ImageNet for image classification, GLUE for NLP, ClimateNet for extreme weather detection)

Need for this study

- Provide comparative analysis of deterministic vs. generative ML methods
- Establish benchmarks for weather field reconstruction

Fig. 6. Example of a U-Net Architecture (T. Alves, 2020)

Fig. 7. Schematic of a DDPM

Imperial College London Department of Computing 4 24/09/2025

Data Preparation

Dataset

Random selection of 10% of the grid points

Train/Test split

Dataset

- Weatherbench2
- Variables:
 - Temperature
 - Sea-level pressure
 - Total Column Water Vapour
 - Wind

Subsampling Strategy

- Random selection of K% pixels
- Selected pixels = observations
- Remaining pixels = ignored

Imperial College London Department of Computing 5 24/09/2025

Voronoi Tessellation

Most of this work uses Voronoi Tessellation as input to the models

- Transform sparse sensor measurements into a structured image
- Construct Voronoi cells around each observation point
- Each cell assigned the value of its nearest observation
- Produces a continuous input field for the neural network
- Enables deep learning-based field reconstruction from irregular data

<u>Fig. 8. Voronoi tessellation-assisted global data recovery from discrete sensor locations (Fukami et. Al. 2021)</u>

$$s_{c,i} = \{x \in \Omega \mid d(x, \operatorname{Pos}(y_{c,i})) \le d(x - \operatorname{Pos}(y_{c,j})), \forall j \ne i\}, \quad \text{with } s_{c,i}(x) = y_{c,i}, \ \forall x \in s_{c,i}.$$

Imperial College London Department of Computing 6 24/09/2025

VT-UNet

Architecture

- Encoder-decoder with conv. down/upsampling.
- Skip connections → preserve scales
 & fine details.

1/0

- Input: Sparse fields (Voronoïtessellated) + sensor locs (6 ch).
- Output: Reconstructed fields (5 ch).

Training

MSE loss.

Advantages

- Learns multi-scale features.
- Captures global + local context.
- · Lightweight, proven baseline.

Fig. 9. Architecture of the U-Net Model

VT-ResNet

Description

 Residual learning with skip connections → deeper, more stable training.

Advantages

- Captures local + global dependencies.
- More accurate than plain CNNs.

Architecture

- Input: Sparse fields (Voronoï-tessellated) + sensor locs (6 ch).
- Core: 6 × ResBlocks.
- Exit: Conv → output field.
- Trained with MSE loss.

Limitations

- Limited receptive field → weak on long-range deps (earth curvature).
- Deterministic

Fig. 10. Architecture of the ResNet Model

Imperial College London Department of Computing 8

VITAE-SL

Description

- Vision Transformer-based AutoEncoder.
- Inputs split into patches → linear projection + positional embeddings.
- Transformer encoder models spatial relationships and long-range dependencies.

Advantages

- Captures global context beyond CNN receptive fields.
- Learns interactions across distant regions.
- Hybrid design (transformer + conv) balances global and local detail.

Architecture

- Linear projection of patches + positional embeddings.
- Transformer encoder → feature representations.
- Linear decoder reshapes to grid; conv decoder refines local structure.
- Trained with MSE loss.

Output

• Reconstructed atmospheric fields (5 channels).

Fig. 11. Architecture of the ViTAE-SL model@x

Imperial College London Department of Computing 9 24/09/2025

CWGAN-GP

Conditional Wasserstein GAN with Gradient Penalty

- Generator learns to reconstruct fields from sparse observations
- Discriminator distinguishes between real and generated fields
- U-net Generator, Small Discriminator

Training objective

- Wasserstein loss for stable training
- Gradient penalty to enforce Lipschitz constraint
- Additional L1 loss for reconstruction accuracy

Advantage

- Captures data distribution
- Produces realistic and diverse reconstructions

Fig. 12. Schematic of the Conditional GAN

$$\mathcal{L}_{G}^{\text{CWGAN}} = -\mathbb{E}_{\tilde{X} \sim P_{g}} \left[D(\tilde{X} \mid Z') \right] + \lambda_{2} \mathbb{E}_{X, \tilde{X}} \left[\|X - \tilde{X}\|_{1} \right]$$

$$\mathcal{L}_{D}^{\text{CWGAN}} = \mathbb{E}_{\tilde{X} \sim P_{g}} \left[D(\tilde{X} \mid Z') \right] - \mathbb{E}_{X \sim P_{r}} \left[D(X \mid Z') \right] + \lambda_{1} \mathbb{E}_{\hat{X} \sim P_{\hat{X}}} \left[\left(\left\| \nabla_{\hat{X}} D(\hat{X} \mid Z') \right\|_{2} - 1 \right)^{2} \right]$$

DDIM

Denoising Diffusion Implicit Model

Forward process

- Gradually adds Gaussian noise to data
- Transforms input into pure noise

Reverse process

- Neural network learns to denoise step by step
- Recovers clean data distribution from noise

Advantages

- Stable training compared to GANs
- High-quality and realistic reconstructions

Inconvenients

- Inference is Expensive
- Can be sensitive to hyperparameters

Fig. 13. Schematic of the DDIM reverse sampling process

Parameters:

- T=1000, 50 steps DDIM
- Average of 5 predictions

Imperial College London Department of Computing 11 24/09/2025

Model and Conditioning

Architecture

- We use the same U-net as the VT-Unet
- Time embedding is added with cosine embedding

Spatial conditioning

- Encodes sensor observations into feature maps
- Convolutional layers extract spatial structure

Integration with diffusion model

- Conditioning maps resized to match feature maps
- Added to intermediate network layers (feature fusion)

Advantage

- Preserves spatial correlations from observations
- Guides diffusion process toward physically consistent reconstructions

Fig. 14. Schematic of the spatial conditioning method

<u>Fig. 15. Schematic of the U-Net architecture with time and condition</u> <u>embedding</u>

Imperial College London Department of Computing 12 24/09/2025

Results

Benchmark

Table 1. performance comparison of the Field Reconstruction Methods

Model	↓ RRMSE	↓ MAE	↑ SSIM¹
Kriging	0.4338	0.6757	0.5325
Cubic Interp.	0.5037	0.7265	0.3750
VT-UNet	0.284	0.191	0.835
VT-ResNet	0.299	0.207	0.810
ViTAE-lite	0.3108	0.2202	0.7785
ViTAE-base	0.2718	0.1878	0.8292
ViTAE-large	0.2494	0.1692	0.8555
CWGAN-GP	0.2664	0.1805	0.8407
DDIM (spatial cond.)	0.2578	0.1764	0.8621

- All ML models outperform the baselines (Kriging, Cubic Interpolation).
- ViTAE-Large shows the best raw reconstruction performance (↓RRMSE, ↓MAE).
- DDIM achieves the highest structural similarity (↑SSIM), with more spatially consistent fields.
- Generative approaches (DDIM, CWGAN-GP)
 consistently outperform CNNs (U-Net, ResNet).
- Results are statistically significant due to the large evaluation sample size.

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)} \qquad RRMSE \stackrel{\star}{=} \frac{\sqrt{\frac{1}{N}\sum_{i=1}^N (\hat{y}_i - y_i)^2}}{\bar{y}}, \quad \bar{y} = \frac{1}{N}\sum_{i=1}^N y_i$$

* In this case the standard deviation was used because data is normalised and can take negative values.

Imperial College London Department of Computing 13

^{1.} SSIM: Structural Similarity Index Measure

Evaluation

Error distribution

- **ML models**: Relative L2 error concentrated at small values.
- **Narrow histograms** → stable & reliable reconstruction.
- Wind fields: consistently harder to reconstruct for all models.
- Baselines: worse accuracy and more unstable (wider error distributions).

Fig. 16. Relative L2 error distribution across all fields for Cubic Interpolation and ViTAE-Large

10m_u_component_of_wind

Relative L2 Error

mean_sea_level_pressure

0.06 0.08 0.10

Relative L2 Error

0.12 0.14

0.02 0.04

Imperial College London **Department of Computing** 24/09/2025

Evaluation

Visual Assessment

- ML reconstructions: visually very close to ground truth, hard to distinguish between models.
- DDIM: slightly sharper fields → thanks to multi-step generative process.
- ViTAE-Lite: oversmoothed, lacks smallscale detail.
- Model size trend: more parameters → richer small-scale variations.
- ML models go beyond interpolation → produce realistic, physically consistent fields.

Fig. 17. An example of field reconstructions across all 5 fields

Evaluation

Sparsity robustness

- Evaluated models at 0.5, 1, 2, 5, 7.5, 10, 20, 50% observations in order to benchmark the models' robustness to sparsity
- ViTAE family: most robust under high sparsity
- Probabilistic models (DDIM, CWGAN) outperform standard CNNs (U-Net) by a significant margin
- Suggests:
 - Probabilistic approaches are more robust:
 - Adversarial training
 - Multi-step generation process
 - Transformer architectures bring clear benefits

Fig. 19. RRMSE VS sensor coverage on WeatherBench 2 (log-% on x)

Imperial College London Department of Computing 16 24/09/2025

Results

Extreme Weather Events

- Selected extreme events (temperature extremes, Tropical Cyclones, Extratropical Cyclones, Atmospheric Rivers) from test set using statistical procedure.
- ML models maintain performance close to full-dataset results.
- Small event sample sizes → differences not statistically significant. (Between ML models)
- Baselines (Kriging, Cubic Interp.) degrade substantially under extremes.

<u>Table 2. performance comparison of the Field Reconstruction Methods on</u> <u>Extreme Weather Events</u>

Model	↓ RRMSE	↓ Difference
Kriging	0.87	+0.15
Cubic Interp.	1.21	+0.54
VT-UNet	0.28	0
VT-ResNet	0.32	+0.02
ViTAE-lite	0.34	+0.03
ViTAE-base	0.288	+0.01
ViTAE-large	0.26	+0.01
CWGAN-GP	0.28	+0.01
DDIM (spatial cond.)	0.26	0

Imperial College London Department of Computing 17 24/09/2025

Results

Computational cost and efficiency

- **DDIM**: worse ratio, though performance could improve with better model design.
- GANs: outperform CNNs without extra inference cost (unless sampling multiple passes).
- Overall:
 - At 10% obs., probabilistic ≈ deterministic (small gains).
 - At high sparsity, probabilistic models perform much better.
 - Probabilistic models are a lot harder to train (instability, hyperparameters...)

Fig. 20. RRMSE VS GFLOPs required per inference across all models

Imperial College London Department of Computing 18

Conclusion

Contributions and Limitations

- **Problem Recap**: Field reconstruction from sparse observations is crucial, current methods (DA, kriging, cubic interpolation) are costly or limited.
- Our Contribution: Comparative study of deterministic (U-Nets, ViTAE) vs probabilistic (DDIM, CWGAN) ML models on WeatherBench2 under varying sparsity.

Key Findings:

- Probabilistic approaches show higher robustness under extreme sparsity.
- Transformer-based architectures (ViTAE family) consistently more stable.
- CNN baselines degrade quickly with fewer observations.
- **Implication**: Evidence that generative + transformer-based models are promising directions for robust field reconstruction.
- **Next Steps**: Larger-scale evaluation, integration with data assimilation pipelines, exploration of hybrid methods.

Imperial College London Department of Computing 19 24/09/2025

IMPERIAL

Thank you

A Systematic Comparison of Machine Learning Models for Reconstructing Atmospheric Fields from Sparse Observations 16/09/2025

Sources

Bibliography*

[1]. Fukami K, Romit Maulik, Ramachandra N, Koji Fukagata, Taira K. Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning. Nature Machine Intelligence. 2021 Oct 28:3(11):945–51.

[2]. Fan H, Cheng S, de Nazelle AJ, Arcucci R. ViTAE-SL: A vision transformer-based autoencoder and spatial interpolation learner for field reconstruction. Computer Physics Communications [Internet]. 2024 Dec 16;308:109464. Available from: https://www.sciencedirect.com/science/article/pii/S0010465524003874?via%3Dihub

[3]. Zhuang Y, Cheng S, Duraisamy K. Spatially-aware diffusion models with cross-attention for global field reconstruction with sparse observations. Computer Methods in Applied Mechanics and Engineering [Internet]. 2024 Dec 6;435:117623. Available from: https://www.sciencedirect.com/science/article/pii/S0045782524008776

[4]. Wikipedia Contributors. Kriging [Internet]. Wikipedia. Wikimedia Foundation; 2018. Available from: https://en.wikipedia.org/wiki/Kriging

[5]. Wikipedia Contributors. Bicubic interpolation [Internet]. Wikipedia. Wikimedia Foundation; 2019. Available from: https://en.wikipedia.org/wiki/Bicubic_interpolation

[6]. Hu C, Kikumoto H, Zhang B, Jia H. Fast estimation of airflow distribution in an urban model using generative adversarial networks with limited sensing data . Building and Environment [Internet]. 2023 Dec 19;249:111120. Available from: https://www.sciencedirect.com/science/article/pii/S0360132323011472

[7]. Carrassi A, Bocquet M, Bertino L, Evensen G. Data assimilation in the geosciences: An overview of methods, issues, and perspectives. WIREs Climate Change. 2018 Jul 9;9(5).

[8]. Rasp S, Hoyer S, Merose A, Langmore I, Battaglia P, Russel T, et al. WeatherBench 2: A benchmark for the next generation of data-driven global weather models. arXiv (Cornell University). 2023 Aug 29:

* All the sources are available in the report

Imperial College London Department of Computing 21 24/09/2025