# انجينئري حساب

خالد خان بوسفرنگی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹینالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

### عنوان

| vii       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          |           |             |                 |            |       | يباچي                      | . کاد | اب   | بلی کتا<br>ہلی کتا | یپ | مير |
|-----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|-----|---------|------|------|------|------|------|-------|-----|---------|------|-------|---------|----------|-----------|-------------|-----------------|------------|-------|----------------------------|-------|------|--------------------|----|-----|
| 1         |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          |           |             | ات              | سياو       | رقی.  | ه تفر                      | ىساد  | اول  | رجه ا              | ,  | 1   |
| 2         |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          |           |             |                 |            | i.    | ئە<br>نە                   | نمو   |      | 1.1                |    |     |
| 13        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | ر_ | پوا | ·<br>يب | تر ک | اور  | ست   | ماسم | ن ک  | بدا   | ا_م | ب<br>لب | مط   | إنى َ | بىٹر يا | جيو م    | 1 کا      | y'          | _               | f          | (x    | , y                        | )     |      | 1.2                |    |     |
| 22        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       | ت       | باوار    | :<br>ي مس | فر <b>ق</b> | ره <sup>ت</sup> | ۔<br>کی سا | بحدكم | ل <sup>ع</sup> ا           | قال   |      | 1.3                | ,  |     |
| 40        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          |           |             |                 |            |       | می سا                      |       |      | 1.4                | 1  |     |
| 52        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          |           |             |                 | - /        |       | ئ سا                       |       |      | 1.5                | ,  |     |
| 70        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          |           |             |                 |            |       | و ی                        |       |      | 1.6                | )  |     |
| 74        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      | ئيت  | يكتأ  | اور | يت      | جود  | ) وج  | ل ک     | ے:<br>ف: | وات       | مسا         | ر قی            | ن تفر      | قيمت  | رائی                       | ابتا  |      | 1.7                | 7  |     |
| 81        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          |           |             | ات              | ساو        | ق.    | ه تفر                      | ى ساد | روم  | ر جه ۱             | ,  | 2   |
| 81        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       | - (     |          | .;        |             |                 |            |       | نس                         |       |      | 2.1                |    |     |
|           | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | •  | •   | •       | •    | •    | •    | •    | ٠    | •     | •   | ·       | ·    |       |         |          | - /       |             |                 |            |       | ن<br>نقل                   | •     |      | $\frac{2.1}{2.2}$  |    |     |
| 98<br>113 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     | هر د    | נס   | ساد   | U       |          | •         |             | _               |            |       | **                         |       |      | $\frac{2.2}{2.3}$  |    |     |
| 113       | • | • | • | • | • | • | • | • | • |   |   |   |   |   |   |   |    |     |         |      |      |      |      | ٠    |       |     | •       | څ    | •     | •       |          |           |             |                 |            |       | ر فيء<br>سي                |       |      |                    |    |     |
|           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          |           |             |                 |            |       | ر نلد<br>رکون <sup>ا</sup> |       |      | 2.4                |    |     |
| 134       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          |           |             |                 |            | -     |                            | ••    |      | 2.5                |    |     |
| 143       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          |           |             |                 |            |       |                            |       |      | 2.6                |    |     |
| 152       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      | ٠     |         |          |           |             |                 |            |       |                            |       |      | 2.7                |    |     |
| 164       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      | •     |         |          |           |             |                 | _          |       | کاار                       |       |      | 2.8                | 5  |     |
|           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      | •    |      |      |       | _   | ي کمک   | مع   | -,    | **      |          |           |             |                 | •          |       | 2.8                        |       |      |                    |    |     |
| 174       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      | :    |      |      | ٠,    | ;   | ٠.      |      | •     |         |          |           | تى          | نه              | بانمو      | ار کح | ن<br>ن اد و                | برا   |      | 2.9                |    |     |
| 185       | • |   |   |   | • | • | • | • | • | • | • |   | • |   |   |   | Ĺ  | احل | ت کا    | وار  | سياه | رقی. | تفر  | ساده | کمی س | 2)  | فإنسر   | رمتح | غير   | سے      | يقي      | طر        | کے          | لنے             | مبد        | علوه  | رارم                       | مق    | 2    | .10                | )  |     |
| 193       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       |         |          | ٠         | وات         | مساو            | , قی       | ه تفر | ىساد                       | خطح   | . جي | بند در             | ļ  | 3   |
| 193       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      |      |       |     |         |      |       | , .     | • ارد    |           |             |                 |            |       | نس                         |       |      | 3.1                |    | -   |
| 205       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |     |         |      |      |      |      | ت    | ماوار | سەل | فرق     | ده ت | ساد   |         |          |           | - /         |                 |            | -     | نقل<br>نقل                 | •     |      | 3.2                |    |     |

عـــنوان

| غير متجانس خطى ساده تفر قى مساوات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3            |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|
| مقدار معلوم بدلنے کے طُریقے سے غیر متجانس خطی سادہ تفر تی مساوات کا حل 🗼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.4            |   |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |   |
| ر قی مساوات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | نظامِ تف       | 4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1            |   |
| سادہ تفرقی مساوات کے نظام لبطور انجینئری مسائل کے نمونے                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.2            |   |
| نظر به نظام ساده تفرقی مساوات اور ورونسکی                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.3            |   |
| 4.3.1 خطي نظام                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |   |
| مستقل عددی سروالے نظام ۔ شطح مر حلہ کی ترکیب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.4            |   |
| نقطہ فاصل کے جانچ پڑتال کامسلمہ معیار۔اشتخام                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.5            |   |
| کیفی تراکیب برائے غیر مخطی نظام                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6            |   |
| ل در میں واقع کے بیر ان کا تھا ہے ۔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0            |   |
| 4.0.1 کی فرخت پر ایک ورون مساوت میں عبولہ ہے ۔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7            |   |
| عادہ سری مساوات نے پیر ہا ک لکا ہے ۔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7            |   |
| عرون مرن ريب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |   |
| لسل سے سادہ تفر قی مساوات کا حل _ اعلٰی نفاعل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | لاقتى تسر      | 5 |
| ر کے عادہ عربی مساوات کا ب ان کی تھا ن<br>ترکیب طاقتی شکسل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 5 |
| رىيب عالى                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.2            |   |
| ير مدور عارت يروندر بيرون من                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.3            |   |
| 5.3.1 عملي استعال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |   |
| مبادات بييل اور بييل تفاعل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.4            |   |
| بييل تفاعل کی دوسری فشم - عمومی حل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5            |   |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | _ |
| تبادله<br>لا يلاس بدل ـ الشه لا ياس بدل ـ خطيت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | لاپلاس:<br>6.1 | 6 |
| لاپیا ک ہدل۔ اسٹ لاپیا ک ہدل۔ عطیت<br>تفر قات اور محملات کے لاپیا س ہدل۔ سادہ تفر تی مساوات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.2            |   |
| تعر فات اور شعلات نے لاپیل کریا ہے۔ اوپیل کا بہار کے ساوات میں ہوتا ہے۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.3            |   |
| ۵ خور پر کی، تا خور پر کی، افاق شیر کی طاکل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.4            |   |
| دیران دعینان هاش-افان شرب هاش-بزوی شرق چینان در مینان هاشت.<br>الجهاو بر مینان مینان هاشت کردن مینان مینان در مینان مینا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5            |   |
| ر بھاد<br>لایلا تب بدل کی تکمل اور تفرق _ متغیر عددی سروالے سادہ تفرقی مساوات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.6            |   |
| لاپین کا پرن کا کی ادار سرت کا گرافت کا مرافع سرت کا طواقت کا میں کا انتخاب کا میں میں کا میں کا میں کا میں کا<br>تفریق مساوات کے نظام میں میں میں میں میں میں کا میں ک                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.7            |   |
| رن عبرات عبرات المستقل المستق المستقل المستقل المستقل المستقل المستقل المستقل المستقل المستقل | 6.8            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0            |   |
| عارضی باب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | سمتيات         | 7 |
| غير سمتيات ادر سمتيات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |   |
| سمتیہ کے اجزاء                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.2            |   |
| سمتیات کامجموعه، غیرسمتی کے ساتھ ضرب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.3            |   |

| 494 | 7.4 سمتی فضا۔ خطی تابعیت اور غیر تابعیت          |
|-----|--------------------------------------------------|
| 500 | 7.5 اندرونی ضرب (ضرب نقطه) ً                     |
| 513 |                                                  |
| 515 |                                                  |
| 517 | 7.8 اجزاء کی صورت میں سمتی ضرب                   |
| 528 |                                                  |
| 537 | 8 خطى الجبرا: قالب، سمتيه، مقطع له خطى نظام      |
| 538 | 8.1 قالب اور سمتیات به مجموعه اور غیر سمتی ضرب . |
| 548 | 8.2 قالبي ضرب                                    |
| 555 | 8.2.1 تبديلي محل                                 |
| 568 | 8.3 خطی مساوات کے نظام۔ گاوئ اسقاط               |
| 581 |                                                  |
| 589 | 8.4 تخطى غير تابعيت ـ درجه قالب ـ سمتى فضا       |
| 603 | 8.5 خطی نظام کے حل: وجودیت، یکتائی               |
| 608 | 8.6 دودر جی اور تین درجی مقطع قالب               |
| 611 |                                                  |
| 528 | 8.8 معكوس قالب_ گاوس جار دُن اسقاط               |
| 543 | 8.9 سمتى فضا،اندرونى ضرب، خطى تبادله             |
| 561 | ا اضافی ثبوت                                     |
| 565 | ب مفیر معلومات                                   |
| 565 |                                                  |
|     |                                                  |

### میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

ہمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔کوشش کی گئی ہے کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال سکنیکی الفاظ ہی استعال کئے جائیں۔جہاں ایسے الفاظ موجود نہ تھے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ شکنیکی الفاظ کے چناؤ کے وقت اس بات کا دھیان رکھا گیا ہے کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اس مضمون پر لکھی گئی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس كتاب ميں موجود تمام غلطيال مجھ سے ہى ہوئى ہيں البتہ اسے درست بنانے ميں بہت لوگوں كا ہاتھ ہے۔ ميں ان سب كا شكريہ اداكرتا ہوں۔ يہ سلسلہ انجى جارى ہے اور كمل ہونے پر ان حضرات كے تاثرات يہاں شامل كئے جائيں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر كي

28 اكتوبر 2011

### باب8

## خطى الجبرا: قالب، سمتيه، مقطع ـ خطى نظام

خطی الجبرا وسیع مضمون ہے جس میں قالب اور سمتیات، مقطع قالب، خطی مساوات کے نظام، سمتی فضا اور خطی تبادلہ، آنگنی قبت مسائل، اور دیگر موضوعات شامل ہیں۔اس کا استعال انجینئری، طبیعیات، جیومیٹری، کمپیوٹر سائنس، معاشیات اور دیگر میدانوں میں پایا جاتا ہے۔

متعدد اعداد و شار یا متعدد نفاعل کو مربوط طریقے سے قالب<sup>1</sup> اور سمتیات<sup>2</sup> کی مدد سے ظاہر کیا جاتا ہے۔ قالب اور سمتیات ہی خطی الجبرا کی زبان ہیں۔

 ${
m matrices}^1 {
m vectors}^2$ 

#### 8.1 قالب اور سمتیات مجموعه اور غیر سمتی ضرب

مستطیلی ترتیب وار فہرست کو قالب کہتے ہیں۔درج ذیل قالب کی مثال ہیں۔قالب میں درج اعداد یا تفاعل کو قالب کے اندراجات یا قالب کے ارکان<sup>3</sup> کہتے ہیں۔

$$\begin{bmatrix}
0.1 & -2 & 1.2 \\
-6 & 0 & 23
\end{bmatrix}, \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}, \begin{bmatrix}
\ln x & -e^{x} \\
e^{3x} & 3.2x^{2}
\end{bmatrix}, \\
\begin{bmatrix}
a_{1} & a_{2} & a_{3}
\end{bmatrix}, \begin{bmatrix}
3.22 \\
-\frac{4}{5}
\end{bmatrix}$$

بالائی بائیں ہاتھ قالب کے ارکان 0.1 ، 0.1 ، 0.1 ، 0.1 ، 0.1 ، 0.1 وصف اور تین قطار 0.1 بیں۔اس قالب کے دو صف اور عمودی اندراجات کی لکیر کو قطار کہتے ہیں۔بالائی در میانی قالب میں صفوں کی تعداد ، قطار پائے جاتے ہیں۔ایا قالب جس میں صفوں کی تعداد ، قطار ول کی تعداد کے برابر ہو موبع قالب 0.1 ہمانا ہے۔یوں بالائی دائیں ہاتھ قالب بھی مربع قالب ہے۔بالائی در میانی قالب میں ارکان کو 0.1 سے ظاہر کیا گیا ہے جہاں دو عدد اشاریہ 0.1 اور 0.1 بالترتیب اس صف اور قطار کو ظاہر کرتے ہیں جہال یہ رکن پایا جاتا ہو۔ قالب میں اندراجات کے مقام کی وضاحت اس معیاری ترکیب سے کی جاتی ہے۔ یوں 0.1 وصاحت اس معیاری ترکیب سے کی جاتی ہے۔ یوں ورس کے قطار میں پایا جاتا ہے۔

اییا قالب جو صرف ایک عدد صف یا صرف ایک عدد قطار پر مشتمل ہو، سمتیہ 7 کہلاتا ہے۔ یوں نجلے دائیں ہاتھ دو ارکان پر مشتمل سمتیہ قطار 8 پایا جاتا ہے جبکہ نجلے بائیں ہاتھ سمتیہ صف  $^9$  پایا جاتا ہے۔ چو ککہ سمتیہ قطار میں کوئی صف نہیں پایا جاتا لہذا اس میں ارکان کے مقام کو صرف ایک عدد اشاریہ سے ظاہر کیا جاتا ہے۔ اس طرح سمتیہ صف میں بھی ارکان کا مقام صرف ایک عدد اشاریہ سے ظاہر کیا جاتا ہے۔ یوں سمتیہ قطار میں  $a_1 = 3.22$  اور  $a_2 = -\frac{4}{5}$ 

عملی استعال میں مواد کے ذخیرہ اور اس پر عمل کرنے میں قالب کار آمد ثابت ہوتے ہیں۔ورج ذیل مثال دیکھیں

elements<sup>3</sup>

 $rows^4$ 

columns<sup>5</sup>

square matrix<sup>6</sup>

 $vector^7$ 

column vector<sup>8</sup>

row vector<sup>9</sup>

مثال 8.1: تخطی نظام ورج ذیل خطی نظام میں  $x_1$  ،  $x_2$  اور  $x_3$  نا معلوم متغیرات ہیں۔

$$2x_1 + 3x_2 + 2x_3 = 0$$
$$3x_1 - 2x_2 + 4x_3 = 15$$
$$5x_1 + 3x_3 = 11$$

A اور  $x_3$  اور  $x_3$ 

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 2 \\ 3 & -2 & 3 \\ 5 & 0 & 3 \end{bmatrix}$$

 $a_{32}=0$  ہیں A ہیں پایا جاتا للذا اس کا عددی سر صفر کے برابر ہو گا اور یوں  $x_2$  ہیں  $x_2$  ہیں میاوات کے دائیں ہاتھ کی معلومات کا اضافہ کرنے سے افزودہ قالب A میں مساوات کے دائیں ہاتھ کی معلومات کا اضافہ کرنے سے افزودہ قالب A ماتا ہے۔

$$\tilde{A} = \begin{bmatrix} 2 & 3 & 2 & 0 \\ 3 & -2 & 3 & 15 \\ 5 & 0 & 3 & 11 \end{bmatrix}$$

چونکہ افٹرودہ قالب  $\tilde{A}$  سے تینوں مساوات کھے جا سکتے ہیں للذا دیے گئے خطی نظام کو  $\tilde{A}$  مکمل طور ظاہر کرتا ہو کہ اور  $\tilde{x}_3$  عاصل کر سکتے ہیں۔ایسا کرنا جلد سمجھایا جائے گا۔ فی الحال تسلی کر لیس کہ اس نظام کا حل  $\tilde{x}_1=0$  ،  $\tilde{x}_1=0$  ، اور  $\tilde{x}_3=0$  ، اور  $\tilde{x}_3=0$  ہے۔

x نا معلوم متغیرات کو  $x_2$  ،  $x_1$  اور  $x_3$  سے ظاہر کرنے کی بجائے دیگر علامتوں سے ظاہر کیا جا سکتا ہے مثلاً x ، y ، y ، y

coefficient  $matrix^{10}$  augmented  $matrix^{11}$ 

مثال 8.2: فروخت کھاتا

ایک دکان کی تین اثیاء کی ہفتہ وار فروخت درج بالا قالب میں دی گئی ہے۔ ہر ہفتے کی فروخت کو اسی طرح قالبول میں لکھا جا سکتا ہے۔ مہینے کے آخر میں تمام قالبول کے مطابقتی ارکان کا مجموعہ لینے سے ہر دن، تینوں اثیاء کی کل فروخت کی فہرست حاصل ہو گی۔

#### عمومي تصورات اور علامت نوليي

آئیں اب تک پیش کیے گئے تصورات کو با ضابطہ دستوری صورت دیں۔ ہم موٹی کھھائی میں لاطینی حروف تہی کے بڑے حروف سے قالب کو ظاہر کریں گے مثلاً A ہنگا ہم مثلاً A ہنگا ہم مثلاً A ہنگا ہم مثلاً A ہنگا ہم مثلاً A وغیرہ۔اییا قالب جس میں A صف اور A قطار ہوں، A قالب کی سے ظاہر کریں گے مثلاً A وغیرہ۔اییا قالب جس میں میں قطار آئے گا) اور A قالب کی جسامت A سالتی ہے۔یوں A تالب کی صورت کا ہو گا۔

(8.2) 
$$\mathbf{A} = [a_{jk}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

مساوات 8.1 میں بالائی بائیں قالب  $2 \times 3$  جسامت کا ہے جبکہ نچلا بایاں قالب  $3 \times 1$  جسامت کا ہے۔ $\frac{1}{1}$ 

مساوات 8.2 میں ہر رکن کو دو عدد اشاریہ سے پیچانا جاتا ہے جہاں پہلا اشاریہ صف اور دوسرا اشاریہ قطار ہے۔یوں موء دوسرے صف اور تیسرے قطار پر موجود اندراج ہے۔

 $a_{22}$  ،  $a_{11}$  پر میں m=n ہو m>0 چکور قالب کہلاتا ہے۔ چکور قالب کا وہ وتر جس پر m=n ایسا قالب جس میں ایک چکور قالب کے مرکزی وتر  $a_{11}$  ہیں ،  $a_{11}$  ہیں ،  $a_{12}$  ہیں ، قالب کا مرکزی وتر  $a_{13}$  ہیں جبکہ دوسرے چکور قالب کے مرکزی وتر کے ارکان  $a_{11}$  اور  $a_{11}$  دوسرے چکور قالب کے مرکزی وتر کے ارکان  $a_{22}$  ،  $a_{22}$  ،  $a_{23}$  ہیں۔ جبیہا ہم دیکھیں گے، چکور قالب نہایت اہم ہیں۔  $a_{23}$ 

ایا قالب جس میں  $n \neq m$  ہو  $m \times n$  مستطیل  $^{14}$  قالب کہلاتا ہے۔ مستطیل قالب کی ایک مخصوص قسم چور قالب ہے۔

سمتيات

$$\boldsymbol{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 2 & -3 & 0 & 4.2 & \frac{3}{5} \end{bmatrix}$$

اسی طرح سمتیہ قطار کی مثالیں درج ذیل ہیں۔

$$c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix}, \qquad d = \begin{bmatrix} 2 \\ -1 \\ 2.3 \end{bmatrix}$$

سمتہ صف  $m \times n$  جہامت کا سمتہ صف  $m \times n$ 

$$(8.3) A = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}$$

main diagonal<sup>13</sup> rectangular matrix<sup>14</sup>

components<sup>15</sup>

تصور کیا جا سکتا ہے جہال  $oldsymbol{b}_1$  تا  $oldsymbol{b}_n$  از خود m جسامت کے سمتیہ قطار

(8.4) 
$$\boldsymbol{b}_{1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \boldsymbol{b}_{2} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \quad \cdots \quad \boldsymbol{b}_{n} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

ہیں۔اسی طرح A کو m جسامت کا سمتیہ قطار

(8.5) 
$$A = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix}$$

تصور کیا جا سکتا ہے جہاں  $c_1$  تا  $c_m$  از خود n جسامت کے سمتیہ صف ہیں۔

(8.6) 
$$\mathbf{c}_{1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$$

$$\mathbf{c}_{2} = \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix}$$

$$\vdots$$

$$\mathbf{c}_{m} = \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

مجموعه اور غير سمتى ضرب

آئیں قالب مساوی ہونے کی تصور جانتے ہیں۔

تعریف: دو قالب A اور B اس صورت مساوی ہوں گے جب دونوں قالب کی جسامت برابر ہو اور ان کے نظیری ارکان آپس میں برابر ہوں لینی تالب مختلف  $a_{12}=b_{12}$  ،  $a_{11}=b_{11}$  نظیری ارکان آپس میں برابر ہوں لینی تالب می تالب می تالب میں کہلاتے ہیں۔ یوں مختلف ہوں گے۔ مساوات کا تعلق A=B کھا جاتا ہے۔

مثال 8.3: قالبوں کی مساوات اگر درج ذیل قالب مساوی ہوں

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 vi  $B = \begin{bmatrix} 2 & -3 \\ 0 & 3.2 \end{bmatrix}$ 

A=B اور  $a_{22}=3.2$  ہوں گے اور ہم A=B کھ سکت  $a_{21}=0$  ،  $a_{12}=-3$  ،  $a_{11}=2$  ہیں۔ ردرج ذیل تمام قالب آپس میں مختلف ہیں۔

$$\begin{bmatrix} 2 & 7 \\ 5 & 1 \end{bmatrix} \quad \begin{bmatrix} 5 & 1 \\ 2 & 7 \end{bmatrix} \quad \begin{bmatrix} 2 & 7 \\ 1 & 5 \end{bmatrix} \quad \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

تعریف: قالبوں کا مجموعہ دو کیساں جسامت کے قالب  $A=[a_{jk}]$  اور  $B=[b_{jk}]$  کا مجموعہ A+B کھا جائے گا جس کے اندراجات  $a_{jk}+b_{jk}$  کو A اور B کے نظیری ارکان کے مجموعے سے حاصل کیا جائے گا۔ دو مختلف جسامت کے قالبوں کا مجموعہ حاصل کرنا نا ممکن ہے۔

مثال 8.4: اگر

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 0 & -2 \\ 3 & 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & 3 & 0 \\ 1 & 2 & 1 \\ 2 & -1 & 3 \end{bmatrix}, \quad a = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

a+b ، a+B عاصل کریں۔ a+b ، a+B عاصل کریں۔

حل: چونکہ A اور B کی کیساں جسامت ہے لہذا انہیں جمع کیا جا سکتا ہے۔ مجموعہ درج ذیل ہو گا۔

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 2+7 & -1+3 & 3+0 \\ 1+1 & 0+2 & -2+1 \\ 3+2 & 2-1 & 1+3 \end{bmatrix} = \begin{bmatrix} 9 & 2 & 3 \\ 2 & 2 & -1 \\ 5 & 1 & 4 \end{bmatrix}$$

اسی طرح چونکہ a اور b کی جسامت کیسال ہے لہذا انہیں جمع کیا جا سکتا ہے۔ ان کا مجموعہ درج ذیل ہے۔

$$a+b = \begin{bmatrix} 1+0\\3+2\\-2+1 \end{bmatrix} = \begin{bmatrix} 1\\5\\-1 \end{bmatrix}$$

چو ککہ A اور b کی جسامت کیسال نہیں ہے للذا A+b حاصل نہیں کیا جا سکتا ہے۔

تعریف: غیر سمتی ضرب

کسی جمبی c کا حاصل ضوب c کا حاصل ضوب c کسا جاتا  $m \times n$  مقدار (عدد) کسی جمبی  $m \times n$  قالب  $m \times n$  قالب  $m \times n$  ورکسی جمبی کا ہر رکن  $m \times n$  قالب  $m \times n$  قالب  $m \times n$  چرالیا  $m \times n$  کا ہر رکن کا مر رکن کو  $m \times n$  قالب حاصل کیا جاتا ہے۔

> ثال 8.5: غير سمتی ضرب گر

$$\mathbf{A} = \begin{bmatrix} 1.2 & 3.3 \\ 0.6 & -1.5 \\ 0 & 6.0 \end{bmatrix}$$

difference<sup>17</sup>

ہو تب درج ذیل لکھے جا سکتے ہیں۔

$$-\mathbf{A} \begin{bmatrix} -1.2 & -3.3 \\ -0.6 & 1.5 \\ 0 & -6.0 \end{bmatrix}, \quad \frac{10}{3}\mathbf{A} = \begin{bmatrix} 4 & 11 \\ 2 & -5 \\ 0 & 20 \end{bmatrix}, \quad 0\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

اگر قالب B میں مختلف اشیاء کی کلو گرام کمیت درج ہو تب 1000 قالب انہیں اشیاء کی کمیت گرام میں دے گا۔

#### مجموعه قالب اور غیر سمتی ضرب کے قواعد

مجموعہ اعداد کے قواعد سے یکساں جسامت  $m \times n$  کے قالبوں کے مجموعے کے درج ذیل قاعدے حاصل ہوتے ہیں۔

(الف) 
$$A+B=B+A$$
(8.7) 
$$(A+B)+C=A+(B+C) \quad (\ddot{\mathcal{F}}^{*}A+B+C)$$

$$( ) \quad A+0=A \quad ( ) \quad A-A=0$$

ورج بالا موٹی کھائی میں صفر  $oldsymbol{0}$  ایسے  $m \times n$  صفر قالب $^{18}$  کو ظاہر کرتی ہے جس کے تمام ارکان صفر  $m \times n$  کے برابر ہوں۔اگر m = 1 یا m = 1 ہو تب اس کو صفو سمتیہ $^{19}$  کہیں گے۔

يول مجموعه قالب قانون تبادل اور قانون تلازم پر پورا اترتا ہے۔

اسی طرح غیر سمتی ضرب درج ذیل قواعد پر پورا اترتا ہے۔

$$(8.8) \qquad c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$$

$$(\mathbf{c} + k)\mathbf{A} = c\mathbf{A} + k\mathbf{B}$$

$$(\mathbf{c} + k)\mathbf{A} = (ck)\mathbf{A} \qquad (\mathbf{c} + k)\mathbf{A}$$

$$(\mathbf{c} + k)\mathbf{A} = (ck)\mathbf{A} \qquad (\mathbf{c} + k)\mathbf{A}$$

$$(\mathbf{c} + k)\mathbf{A} = \mathbf{A}$$

zero  $matrix^{18}$ zero  $vector^{19}$ 

سوالات

اور  $[a_{12}]$  اور  $[a_{12}]$  عمومی سوالات ہیں۔ سوال  $[a_{12}]$  ہوئے مثال  $[a_{12}]$  ہوئے مثال  $[a_{12}]$  اور  $[a_{12}]$  کیا ہیں۔  $[a_{12}]$  کیا ہیں۔

 $[a_{25}] = 0$  اور  $[a_{12}] = 23$  جوابات:

سوال 8.2: مثال 8.2 میں دیے گئے قالب کی جسامت لکھیں۔

 $3 \times 7$  :واب

سوال 8.3: مثال 8.4 میں قالب A کی مرکزی وتر کھیں۔

جواب: 2 ، 0 اور 1

سوال 8.4 تا سوال 8.10 میں قالبوں کے مجموعے اور غیر سمتی ضرب حاصل کرنے ہوں گے۔ان سوالات میں درکار قالب درج ذیل ہیں۔

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 2 & 3 \\ 0 & 4 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 0 \\ 6 & -2 \\ 4 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 4 \\ 2 & 2 \\ -1 & 3 \end{bmatrix}$$
$$E = \begin{bmatrix} 4 & 0 \\ 12 & -4 \\ 8 & 4 \end{bmatrix}, \quad u = \begin{bmatrix} 2.2 \\ 1.0 \\ 0.0, \end{bmatrix} \quad v = \begin{bmatrix} 1.1 \\ 0.5 \\ 0.0 \end{bmatrix}, \quad w = \begin{bmatrix} 2.0 \\ 1.6 \\ 3.2 \end{bmatrix}$$

 $-2oldsymbol{u}$  ،  $0.2oldsymbol{B}$  ،  $0.5oldsymbol{A}$  :8.4 سوال

جوابات:

$$0.5\mathbf{A} = \begin{bmatrix} 0.5 & 0 & 1.0 \\ 1.5 & -0.5 & 0.5 \\ 1.0 & 0.5 & 0 \end{bmatrix}, \quad 0.2\mathbf{B} = \begin{bmatrix} 0.4 & 0 & 0.6 \\ -0.2 & 0.4 & 0.6 \\ 0 & 0.8 & 0.2 \end{bmatrix}, \quad -2\mathbf{u} = \begin{bmatrix} -4.4 \\ -2.0 \\ 0 \end{bmatrix}$$

3A + 2B, 2C - E, -3u + v - 2w :8.5 سوال

جوابات:

$$\begin{bmatrix} 7 & 0 & 12 \\ 7 & 1 & 9 \\ 6 & 11 & 2 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} -9.5 \\ -5.7 \\ -6.4 \end{bmatrix}$$

 $(3\cdot 6)B$ , 6(3)B, 5A-3A :8.6 سوال :3.6

$$\begin{bmatrix} 18 & 0 & 36 \\ 54 & -18 & 18 \\ 36 & 18 & 0 \end{bmatrix}, \begin{bmatrix} 18 & 0 & 36 \\ 54 & -18 & 18 \\ 36 & 18 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 4 \\ 6 & -2 & 2 \\ 4 & 2 & 0 \end{bmatrix}$$

3(2C+5D), 0.2(0.1E-0.3D) :8.7 عوالي :جوابات

$$\begin{bmatrix} 12 & 60 \\ 66 & 18 \\ 9 & 57 \end{bmatrix}, \begin{bmatrix} 0.08 & -0.24 \\ 0.12 & -0.2 \\ 0.22 & -0.1 \end{bmatrix}$$

 $E+(D+C), \quad (D+E)+C, \quad A+C, \quad 0B+D \quad :8.8$  حوابات: چونکہ  $\quad A$  اور  $\quad C \quad$  کی جسامت کیسال نہیں ہے لہذا انہیں جمع نہیں کیا جا سکتا ہے۔ غیر کیسال جسامت کی بنا  $\quad B+D \quad :3.8$ 

$$E + (D + C) = (D + E) + C = \begin{bmatrix} 6 & 4 \\ 20 & -4 \\ 11 & 9 \end{bmatrix}$$

سوال 8.9: v ، v اور w کو خلاء میں قوت کے اجزاء تصور کرتے ہوئے ان کے مجموعے سے کل قوت دریافت کریں۔

جواب:

سوال 8.10: متوازن صورت تمام قوتوں کا مجموعہ صفر کے برابر ہونے کی صورت کو متوازن<sup>20</sup> حال کہتے ہیں۔

ایا قوت x دریافت کریں کہ u ، v ، u اور x متوازن حال میں ہوں۔

$$x = \begin{bmatrix} -5.3 \\ -3.1 \\ -3.2 \end{bmatrix}$$

#### 8.2 قالبي ضرب

قالبی ضرب سے مراد دو عدد قالبوں کا آپس میں ضرب ہے۔آپ سے گزارش ہے کہ چند مثالیں حل کرتے ہوئے قالبی ضرب کو اچھی طرح سمجھیں۔ قالبی ضرب کی تحریف درج ذیل ہے۔

تعریف: قالبی ضرب تعریف:  $a=[a_{jk}]$  اور  $r\times p$  قالب  $r\times p$  قالب  $m\times n$  قالب  $m\times n$  قالب  $m\times p$  مرف  $m\times p$  کی صورت میں ممکن ہو گا اور سے  $m\times p$  قالب  $m\times p$  ہو گا جس کے اندراجات درج ذیل ہوں گے۔

(8.9) 
$$c_{jk} = \sum_{l=1}^{n} a_{jl} b_{lk} = a_{j1} b_{1k} + a_{j2} b_{2k} + \dots + a_{jn} b_{nk}, \quad j = 1, \dots, m \quad k = 1, \dots, p$$

یوں پہلے جزو A میں قطاروں کی تعداد n دوسرے جزو B کی صفوں کی تعداد r کے برابر ہونا لاز می  $c_{jk}$  میں  $c_{jk}$  کو  $c_{jk}$  میں  $c_{jk}$  میں  $c_{jk}$  میں میاوات 8.9 میں میں جے۔میاوات و

 $equilibrium^{20}$ 

8.2. قالبي ضرب 8.2

دیتے ہوئے تمام n حاصل ضرب کا مجموعہ لینے سے حاصل کیا جاتا ہے۔ ہم کہتے ہیں صف ضوب قطار سے قالبی ضرب ماصل کیا جاتا ہے۔ قالبی ضرب n=3 کی صورت میں درج زیل ہو گا

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \\ c_{41} & c_{42} \end{bmatrix}$$

جہاں A کی پہلی صف کے ارکان کو B کی پہلی قطار کے نظیری ارکان سے ضرب دیتے ہوئے تمام کا مجموعہ لینے سے  $c_{11}$  حاصل ہو گا۔ اس طرح A کی پہلی صف کے ارکان کو B کی دوسری قطار کے نظیری ارکان سے ضرب دیتے ہوئے تمام کا مجموعہ لینے سے  $c_{12}$  حاصل ہو گا اور A کی دوسری صف کے ارکان کو B کی پہلی قطار کے نظیری ارکان سے ضرب دیتے ہوئے تمام کا مجموعہ لینے سے  $c_{21}$  حاصل ہو گا۔ اس عمل کو درج ذیل کھا حائے گا۔

$$c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$

چونکہ سمتیہ در حقیقت قالب کی مخصوص صورت ہے للذا قالب اور سمتیہ کا ضرب بھی بالکل اسی طرح حاصل کیا جائے گا۔ قابی ضرب کی چند مثالیں درج ذیل ہیں۔

مثال 8.6: قالبی ضرب

$$\begin{bmatrix} 1 & 3 \\ 4 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 9 & 7 \\ 8 & 10 \end{bmatrix} = \begin{bmatrix} 1 \cdot 9 + 3 \cdot 8 & 1 \cdot 7 + 3 \cdot 10 \\ 4 \cdot 9 + 6 \cdot 8 & 4 \cdot 7 + 6 \cdot 10 \\ 5 \cdot 9 + 2 \cdot 8 & 5 \cdot 7 + 2 \cdot 10 \end{bmatrix} = \begin{bmatrix} 33 & 37 \\ 84 & 88 \\ 61 & 55 \end{bmatrix}$$

مثال 8.7: قالب اور سمتیه کا ضرب

$$\begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \cdot 4 + 1 \cdot 5 \\ 3 \cdot 4 + 0 \cdot 5 \end{bmatrix} = \begin{bmatrix} 13 \\ 12 \end{bmatrix}$$
 جبکہ  $\begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} = 0$ نا ممکن ا

درج بالا میں قالب اور سمتیہ کی جگہ تبدیل کرنے سے پہلے جزو کی قطاروں اور دوسرے جزو کی صفوں کی تعداد کیساں نہیں رہتی للمذا ایسا ضرب نا ممکن ہے۔ یوں ضروری نہیں ہے کہ AB اور BA برابر ہوں اور یہ کہ دونوں ضرب کا حصول ممکن ہو۔

سوال 8.11:

$$\begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -4 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 0 \\ -4 & -2 & -6 \end{bmatrix}$$

آپ نے دیکھا کہ سمتیات کی جگہ تبدیل کرنے سے حاصل ضرب تبدیل ہوتا ہے لینی قالبی ضوب قانون تبادل پو پورا نہیں اترتا۔

مثال B.8: قالبی ضرب قانون تبادل پر پورا نہیں اترتا للذا عموماً AB 
eq BA ہو گا

$$\begin{bmatrix} 1 & 1 \\ 200 & 200 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 200 & 200 \end{bmatrix} = \begin{bmatrix} 199 & 199 \\ -199 & -199 \end{bmatrix}$$

8.2. قالبي ضرب ...

آپ نے دیکھا کہ قالبی ضرب میں اجزاء کی جگہ تبدیل نہیں کی جاسکتی ہے۔اس کے علاوہ قالبی ضرب، عام اعدادی ضرب کے درج ذیل قواعد پر پورا اترتا ہے۔

درج بالا میں k کوئی عدد ہے اور یہ قواعد اس صورت درست ہوں گے کہ بائیں ہاتھ کے قالب، قالبی ضرب کی تحریف پر پورا اترتے ہوں۔ درج بالا میں مساوات-ب قانون تلازہ  $^{21}$  کہلاتا ہے جبکہ مساوات-پ اور مساوات-ت قانون جزئیتی تقسیم  $^{22}$  کہلاتا ہے۔

چونکہ قالبی ضرب صف ضرب قطار کو کہتے ہیں للذا مساوات 8.9 کو زیادہ خوش اسلوبی سے درج ذیل کھا جا سکتا ہے  $c_{jk}=a_jb_k,\quad j=1,\cdots,m\quad k=1,\cdots,p$  جہال  $a_j$  قالب  $a_j$  کا صف j اور  $b_k$  قالب  $a_j$  کا قطار  $a_j$  قالب  $a_j$  کا قطار  $a_j$ 

$$\boldsymbol{a}_{j}\boldsymbol{b}_{k}=\begin{bmatrix}a_{j1}&a_{j2}&\cdots&a_{jn}\end{bmatrix}\begin{bmatrix}b_{1k}\\b_{2k}\\\vdots\\b_{nk}\end{bmatrix}=\begin{bmatrix}a_{j1}b_{1k}+a_{j2}b_{2k}+\cdots+a_{jn}b_{nk}\end{bmatrix}$$

مثال 8.9: صف اور قطار سمتیہ کی صورت میں ضرب ارکان  $m{B}=[b_{jk}]$  ورج کھا جا سکتا ہے۔  $m{A}=[a_{jk}]$  کو ضرب دینے سے درج کھا جا سکتا ہے۔

(8.12) 
$$AB = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 & a_1b_4 \\ a_2b_1 & a_2b_2 & a_2b_3 & a_2b_4 \\ a_3b_1 & a_3b_2 & a_3b_3 & a_3b_4 \end{bmatrix}$$

associative  $law^{21}$  distributive  $law^{22}$ 

مثال  $\mathbf{B} = [b_{jk}]$  اور  $\mathbf{A} \times \mathbf{A}$  اور  $\mathbf{A} = [a_{jk}]$  ورج ذیل ہیں۔ ساوات  $\mathbf{A} = [a_{jk}]$  عاصل کریں۔  $\mathbf{A} = [a_{jk}]$  عاصل کریں۔

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 2 & 2 & 1 & 2 \\ 1 & 2 & 0 & 3 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$

 $a_3=[3 \quad 2 \quad 1]$  اور  $a_2=[2 \quad 1 \quad 1]$  ،  $a_1=[1 \quad 0 \quad 2]$  بین لول درج  $a_3=[3 \quad 2 \quad 1]$  اور الحما جا سکتا ہے۔

$$a_1b_1 = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = 2 + 0 + 4 = 6$$

اسی طرح بقایا ارکان حاصل کرتے ہوئے درج ذیل ملتا ہے۔

$$\mathbf{AB} = \begin{bmatrix} 6 & 4 & 7 & 4 \\ 7 & 7 & 5 & 8 \\ 10 & 11 & 6 & 13 \end{bmatrix}$$

#### قالبی ضرب بذریعه کمپیوٹر

مساوات 8.12 کو ذرہ مختلف طریقے سے کھتے ہیں۔ A کو جول کا تول جبکہ B کو سمتیہ قطار کی صورت میں کھتے ہوئے درج ذیل ماتا ہے۔

(8.13) 
$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_p \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$$

8.2. قالبي ضرب 8.2

متعدد متوازی جڑے کمپیوٹر کو علیحدہ علیحدہ  $b_1$  ،  $b_2$  ،  $b_3$  یا آنہیں کئی کئی علیحدہ سمتیہ قطار فراہم کیے جاتے ہیں اور ساتھ ہی تمام کو A بھی فراہم کیا جاتا ہے۔ یوں قالبی ضرب کے اجزاء  $Ab_1$  ،  $Ab_2$  ،  $Ab_3$  ہوتے ہیں۔  $Ab_p$ 

مثال 8.11: درج ذیل کو مساوات 8.13 کی مدد سے حل کریں۔

$$AB = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 1 & 7 \\ -1 & -1 & -1 \end{bmatrix}$$

حل: مساوات 8.13 سے قالبی ضرب کے قطار حاصل کرتے ہیں جنہیں ایک ہی قالب میں کیجا کرتے ہوئے درج بالا جواب ملتا ہے۔

$$\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$$

خطى تبادل اور قالبى ضرب

دو متغیرات پر مبنی خطی تبادل درج ذیل لکھا جانا ہے۔

(8.14) 
$$y_1 = a_{11}x_1 + a_{12}x_2 y_2 = a_{21}x_1 + a_{22}x_2$$

جس کو سمتیات کی مدد سے درج ذیل لکھا جا سکتا ہے۔

(8.15) 
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{bmatrix}$$

اب اگر  $x_1x_2$  نظام ازخود  $w_1w_2$  یر مبنی ہو لیعنی

(8.16) 
$$x_1 = b_{11}w_1 + b_{12}w_2 x_2 = b_{21}w_1 + b_{22}w_2$$

يا

(8.17) 
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{B}\mathbf{w} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} b_{11}w_1 + b_{12}w_2 \\ b_{21}w_1 + b_{22}w_2 \end{bmatrix}$$

تب  $y_1y_2$  نظام بالواسطه  $w_1w_2$  پر بنی ہو گا۔ آئیں اس تعلق کو جانیں۔

مساوات 8.14 میں مساوات 8.16 استعال کرتے ہوئے

$$y_1 = a_{11}(b_{11}w_1 + b_{12}w_2) + a_{12}(b_{21}w_1 + b_{22}w_2)$$

$$= (a_{11}b_{11} + a_{12}b_{21})w_1 + (a_{11}b_{12} + a_{12}b_{22})w_2$$

$$y_2 = a_{21}(b_{11}w_1 + b_{12}w_2) + a_{22}(b_{21}w_1 + b_{22}w_2)$$

$$= (a_{21}b_{11} + a_{22}b_{21})w_1 + (a_{21}b_{12} + a_{22}b_{22})w_2$$

لعيني

(8.18) 
$$y_1 = c_{11}w_1 + c_{12}w_2 y_2 = c_{21}w_1 + c_{22}w_2$$

ملتا ہے جہاں

(8.19) 
$$c_{11} = a_{11}b_{11} + a_{12}b_{21}, \quad c_{12} = a_{11}b_{12} + a_{12}b_{22}$$
$$c_{21} = a_{21}b_{11} + a_{22}b_{21}, \quad c_{22} = a_{21}b_{12} + a_{22}b_{22}$$

لیا گیا ہے۔اس تعلق کو سمتیات کی مدد سے درج ذیل لکھا جا سکتا ہے۔

(8.20) 
$$\mathbf{y} = C\mathbf{w} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} c_{11}w_1 + c_{12}w_2 \\ c_{21}w_1 + c_{22}w_2 \end{bmatrix}$$

C = AB ماصل کرتے ہوئے ثابت کریں کہ AB ہے۔

(8.21) 
$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix} = \mathbf{C}$$

 8.2. قالبي ضرب 8.2

#### 8.2.1 تبديلي محل

قالب کے صفوں کو بطور قطار (یعنی قطاروں کو بطور صف) کھے کر تبدیل محل قالب  $2^3$  حاصل ہوتا ہے اور اس عمل کو  $2^4$  کہتے ہیں۔ سمتیے کی تبدیل محل محل اس طرح کی جاتی ہے۔ اس طرح قالب کا صف، تبدیل محل قالب کا قلام ہوگا ۔ قطار ہو گا اور یو نہی قالب کا قطار ، تبدیل محل قالب کا صف ہو گا۔ چکور قالب کے ارکان کا مرکزی و تر میں "عکس" لینے سے بھی تبدیل محل قالب حاصل ہو گا۔ مرکزی و تر کے دونوں اطراف کیساں مقامات پر ارکان کی آپس میں جگہ تبدیل کریں گے، قالب عاصل ہو گا۔ یول  $a_{12}$  اور  $a_{21}$  آپس میں جگہ تبدیل کریں گے، وغیرہ وغیرہ وغیرہ و قالب A سے حاصل تبدیل محل قالب کو A سے ظاہر کیا جائے گا۔ درج ذیل مثال دیکھیں۔

مثال 8.12: تبدیل محل قالب  $A^T$  کا تبدیل محل  $A^T$  درج ذیل ہے۔

$$A = \begin{bmatrix} 5 & 1 & -2 \\ 3 & 6 & 4 \end{bmatrix}, \quad A^T = \begin{bmatrix} 5 & 3 \\ 1 & 6 \\ -2 & 4 \end{bmatrix}$$

درج بالا کو درج ذیل بھی لکھا جا سکتا ہے۔

$$\begin{bmatrix} 5 & 1 & -2 \\ 3 & 6 & 4 \end{bmatrix}^T = \begin{bmatrix} 5 & 3 \\ 1 & 6 \\ -2 & 4 \end{bmatrix}$$

چکور قالب اور اس کا تبدیل محل درج ذیل ہیں۔ چکور قالب اور اس کے تبدیل محل قالب میں مرکزی وتر کے ارکان جگہ تبدیل نہیں کرتے ہیں۔

$$\begin{bmatrix} 5 & -2 & 6 \\ 7 & 1 & 0 \\ 4 & 8 & 3 \end{bmatrix}^{T} = \begin{bmatrix} 5 & 7 & 4 \\ -2 & 1 & 8 \\ 6 & 0 & 3 \end{bmatrix}$$

transpose matrix<sup>23</sup> transposition<sup>24</sup>

سمتیه صف کا تبدیل محل، سمتیه قطار ہو گا اور یو نہی سمتیه قطار کا تبدیل محل، سمتیه صف ہو گا۔

$$\begin{bmatrix} 3 & 7 & -1 \end{bmatrix}^T = \begin{bmatrix} 3 \\ 7 \\ -1 \end{bmatrix}, \qquad \begin{bmatrix} 4 \\ 5 \\ 2 \end{bmatrix}^T = \begin{bmatrix} 4 & 5 & 2 \end{bmatrix}$$

تبدیل محل کا تبدیل محل اصل قالب ہو گا۔

$$\begin{bmatrix} 2 & 1 & 4 \end{bmatrix}^T = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \qquad \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}^T = \begin{bmatrix} 2 & 1 & 4 \end{bmatrix}$$

تعریف: قالب اور سمتیه کا تبدیل محل  $n \times m$  قالب اور سمتیه کا تبدیل محل  $n \times m$  قالب  $n \times m$  کا پیلا قطار،  $m \times n$  قالب  $m \times n$  کا تبدیل محل  $n \times m$  کا دوسرا قطار، وغیرہ وغیرہ ہول گے۔ یول مساوات 8.2 میں دیے گئے A کا تبدیل محل A

(8.22) 
$$\mathbf{A}^{T} = [a_{kj}] = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & & & & \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

سمتیه صف کا تبدیل محل سمتیه قطار ہو گا جبکه سمتیه قطار کا تبدیل محل سمتیه صف ہو گا۔

بعض او قات قالب اور بعض او قات تبدیل محل کے ساتھ کام کرنا زیادہ آسان ثابت ہوتا ہے۔ تبدیلی محل کے قواعد درج ذیل ہیں۔

(الف) 
$$\left( \mathbf{A}^{T} \right)^{T} = \mathbf{A}$$
(8.23) 
$$(\mathbf{A} + \mathbf{B})^{T} = \mathbf{A}^{T} + \mathbf{B}^{T}$$

$$(\mathbf{C} \mathbf{A})^{T} = c\mathbf{A}^{T}$$
(ث) 
$$(c\mathbf{A})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$$

8.2. قالبي ضرب ...

دھیان رہے کہ مساوات 8.23-ت میں دائیں ہاتھ قالبوں کی ترتیب بائیں ہاتھ کی ترتیب کے الٹ ہے۔سوال 8.25 میں آپ کو درج بالا تعلقات ثابت کرنے کو کہا گیا ہے۔

مثال 8.13: درج ذیل قالب کو استعال کرتے ہوئے مساوات 8.23-ت ثابت کریں۔

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

حل: پہلے مساوات 8.23-ت کا بایاں ہاتھ حاصل کرتے ہیں۔ قالبی ضرب AB لینے کے بعد

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

اس کا تبدیل محل حاصل کرتے ہیں۔

(8.24) 
$$(\mathbf{A}\mathbf{B})^T = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{21}b_{11} + a_{22}b_{21} \\ a_{11}b_{12} + a_{12}b_{22} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

آئیں اب مساوات 8.23-ت کا دایاں ہاتھ حاصل کرتے ہیں۔یوں  $oldsymbol{B}^T$  اور  $oldsymbol{A}^T$  حاصل کرنے کے بعد

$$m{B}^T = egin{bmatrix} b_{11} & b_{21} \ b_{12} & b_{22} \end{bmatrix}, \quad m{A}^T = egin{bmatrix} a_{11} & a_{21} \ a_{12} & a_{22} \end{bmatrix}$$

ان کا قالبی ضرب لیتے ہیں۔

(8.25) 
$$\mathbf{B}^{T}\mathbf{A}^{T} = \begin{bmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{bmatrix} \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix} = \begin{bmatrix} b_{11}a_{11} + b_{21}a_{12} & b_{11}a_{21} + b_{21}a_{22} \\ b_{12}a_{11} + b_{22}a_{12} & b_{12}a_{21} + b_{22}a_{22} \end{bmatrix}$$

چو ککہ  $a_{11}a_{11}=b_{11}a_{11}$  ،  $a_{12}b_{21}=b_{21}a_{12}$  ،  $a_{11}b_{11}=b_{11}a_{11}$  ورائیں پوک ہیں برابر ہیں لہذا ان کے بائیں ہاتھ بھی آپس میں برابر ہوں گے۔اس طرح مساوات 8.23-ت ثابت موا۔

مخصوص قالب

چند اقسام کے قالب عملی استعال کے لحاض سے زیادہ اہم ہیں۔ان پر غور کرتے ہیں۔

تشاكلي قالب اور منحرف تشاكلي قالب

ایا چور قالب جو اینے تبدیل محل قالب کے برابر  $A=A^T$  ہو تشاکلی $^{25}$  قالب کہلاتا ہے۔ایہا قالب جو اینے تبدیل محل قالب کے نفی کے برابر  $A=-A^T$  ہو منحرف تشاکلی $^{26}$  قالب کہلاتا ہے۔

(8.26) 
$$\mathbf{A} = \mathbf{A}^{T}, \quad (a_{jk} = a_{kj})$$
  $\mathbf{A} = -\mathbf{A}^{T}, \quad (a_{jk} = -a_{kj})$  منحرف تشاکلی  $a_{jj} = 0$ 

مثال 8.14: تشاکلی اور منحرف تشاکلی قالب C نه تشاکلی اور نه منحرف تشاکلی C نه تشاکلی اور نه منحرف تشاکلی ہے۔ A

ر شاکل 
$$A = \begin{bmatrix} 2 & 7 & 5 \\ 7 & 1 & -2 \\ 5 & -2 & 3 \end{bmatrix}$$
  $B = \begin{bmatrix} 0 & 3 & -1 \\ -3 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$   $C = \begin{bmatrix} 1 & 3 \\ 2 & -4 \end{bmatrix}$ 

8.2. قالبي ضرب ...

تكونى قالب

بالائی تکونی قالب<sup>27</sup>اس چکور قالب کو کہتے ہیں جس میں غیر صفر مقدار صرف مرکزی وتر اور اس سے بالائی جانب پائے جاتے ہیں جبکہ مرکزی وتر سے نیچے کی طرف تمام ارکان صفر ہوں۔اسی طرح نچلا تکونی قالب<sup>28</sup> اس چکور قالب کو کہتے ہیں جبکہ مرکزی وتر اور مرکزی وتر کے نیچے پائے جاتے ہیں جبکہ مرکزی وتر کے بال کی جانب تمام ارکان صفر کے برابر ہوں۔

#### مثال 8.15: بالائي تكوني اور نجيلا تكوني قالب

يالا ئى تكونى قالب 
$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 3 & -7 & 2 \\ 0 & 0 & 5 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & -4 \\ 0 & 0 & 1 \end{bmatrix}$$
 
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ -1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

وترى قالب

اییا چکور قالب جس میں غیر صفر ارکان صرف مرکزی وتر پر پائے جاتے ہوں وتری قالب<sup>29</sup> کہلاتا ہے۔مرکزی وتر سے ہٹ کر تمام ارکان صفر ہوں گے۔

اگر وتری قالب S کے تمام ارکان یکسال، مثلاً c کے برابر ہوں، تب S غیر سمتی قالب $^{30}$  کہلائے گا۔ کسی بھی چور قالب A جس کی جسامت S کی جسامت کے برابر ہو، کا S کے ساتھ قالبی ضرب کا حاصل، غیر سمتی مقدار S اور S کے حاصل ضرب کے برابر ہو گا۔

$$(8.27) AS = SA = cA$$

اییا غیر سمتی قالب جس کے ارکان اکائی  $I_n$  کے برابر ہوں اکائی قالب $^{31}$  کہلاتا ہے جے  $I_n$  یا  $I_n$  خاہر کیا

upper triangular matrix<sup>27</sup>

lower triangular matrix<sup>28</sup>

diagonal  $matrix^{29}$ 

scalar matrix<sup>30</sup>

unit  $matrix^{31}$ 

جاتا ہے۔اکائی قالب کی صورت میں درج بالا مساوات درج ذیل صورت اختیار کرتی ہے۔

$$(8.28) AI = IA = A$$

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -4 \end{bmatrix}, \quad S = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

مثال 8.17: کارخانے کے اخراحات

ایک کارخانے میں تین اقسام کے تھلونے (الف، ب اور پ) تیار ہوتے ہیں۔ایک تھلونا تیار کرنے کے اخراجات قالب A میں دیے گئے ہیں۔ قالب B ایک ہفتے کی پیداوار دیتا ہے۔ جمع اور جمع رات کے دن تعطیل ہوتی ہے۔ایسا قالب C حاصل کریں جو اس ایک ہفتے میں پیدا کیے گئے تھلونوں پر خرچ اخراجات پیش کرے۔

جفتہ اتوار پیر منگل برھ  

$$A = \begin{bmatrix} 200 & 100 & 50 \\ 15 & 12 & 10 \\ 5 & 4 & 2 \end{bmatrix}$$
 خام مال  $B = \begin{bmatrix} 13 & 18 & 11 & 19 & 20 \\ 2.0 & 2.2 & 2.3 & 2.1 & 2.2 \\ 0.8 & 0.9 & 1.0 & 1.1 & 0.9 \end{bmatrix}$  ب

8.2. قالبي ضرب ...

مثال 8.18: امکانی شاریاتی قالب ایک شہر کے رقبے کا استعال <u>2018</u> میں درج ذیل ہے۔

ر باکثی 
$$R = 60\%$$
, تجارتی  $R = 60\%$ , ر باکثی  $S = 15\%$ 

پانچ سالوں میں رقبے کا استعال تبدیل ہو گا۔اس تبدیلی کو درج ذیل امکانی شماریاتی قالب $^{32}$  دیتا ہے جو سالہا سال اس شہر کے لئے قابل استعال ہے۔

$$A = \begin{bmatrix} 0.8 & 0.1 & 0 \\ 0.2 & 0.7 & 0.1 \\ 0 & 0.2 & 0.9 \end{bmatrix}$$
 تجارتی کو منتقل  $A = \begin{bmatrix} 0.8 & 0.1 & 0 \\ 0.2 & 0.7 & 0.1 \\ 0 & 0.2 & 0.9 \end{bmatrix}$ 

ورج بالا امکانی شاریاتی قالب A کے تمام ارکان مثبت ہیں جبکہ ہر قطار کے ارکان کا مجموعہ اکائی کے برابر ہو (چونکہ تمام مکنہ امکانات کا مجموعہ اکائی کے برابر ہوتا ہے)۔ پانچ سال بعد 2023 میں رقبے کی تقسیم درج ذیل ہو گی۔

$$y = \begin{bmatrix} 0.8 & 0.1 & 0 \\ 0.2 & 0.7 & 0.1 \\ 0 & 0.2 & 0.9 \end{bmatrix} \begin{bmatrix} 60 \\ 25 \\ 15 \end{bmatrix} = \begin{bmatrix} 0.8 \cdot 60 + 0.1 \cdot 25 + 0 \cdot 15 \\ 0.2 \cdot 60 + 0.7 \cdot 25 + 0.1 \cdot 15 \\ 0.6 \cdot 60 + 0.2 \cdot 25 + 0.9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 50.5 \\ 31.0 \\ 18.5 \end{bmatrix}$$

اس عمل کو A کی مدو سے سیجھتے ہیں۔ پانچ سالوں میں 0.8 امکان ہے کہ رہائش رقبہ، رہائش ہی رہے گا جبکہ 0.1 امکان ہے کہ تجارتی رقبے پر رہائش ہو گی۔ یوں 0.1 امکان ہے کہ صنعتی رقبے پر رہائش ہو گی۔ یوں 0.1 مہائش رقبہ درج ذیل ہو گا۔

$$0.8 \cdot 60 + 0.1 \cdot 25 + 0 \cdot 15 = 50.5 \%$$

اس بورے عمل کو درج ذیل لکھا جا سکتا ہے

$$y = Ax = A \begin{bmatrix} 60 & 25 & 15 \end{bmatrix}^T$$

 $\rm stochastic\ matrix^{32}$ 

جہاں x سمتیہ حال $^{33}$  ہے جو  $\frac{2018}{20}$  میں رقبے کی تقسیم بیان کرتا ہے۔ اس طرح  $\frac{2028}{200}$  اور  $\frac{2030}{200}$  میں صورت حال بالترتیب درج ذیل ہو گی۔

$$z = Ay = A(Ax) = A^{2}x = \begin{bmatrix} 43.50 \\ 33.65 \\ 22.85 \end{bmatrix}$$
$$u = Az = A(A^{2}x) = A^{3}x = \begin{bmatrix} 38.165 \\ 34.540 \\ 27.295 \end{bmatrix}$$

یوں <u>2033</u> میں % 38.165 علاقہ رہائش، % 34.54 تجارتی اور % 27.295 صنعتی ہو گا۔یاد رہے کہ رقبہ مستقل قیمت ہے۔

سوالات

سوال 8.12: چکور قالب ایسا چکور قالب جو تشاکلی اور منحرف تشاکلی ہو، کی صورت کیا ہو گ۔

حل: صفر قالب

سوال 8.13 تا سوال 8.25 میں درج ذیل قالب استعال کریں۔

$$A = \begin{bmatrix} -3 & 2 & 4 \\ 0 & 1 & 2 \\ 2 & 3 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 4 & 0 \\ -4 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & 0 \\ 1 & 2 \\ 2 & -1 \end{bmatrix}$$
$$a = \begin{bmatrix} 2 & -1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$

state  $vector^{33}$ 

8.2. قالبي ضرب

$$m{A}^T = egin{bmatrix} -3 & 0 & 2 \ 2 & 1 & 3 \ 4 & 2 & 5 \end{bmatrix}$$
 ,  $m{B}^T = egin{bmatrix} 3 & -4 & 0 \ 4 & -1 & 0 \ 0 & 0 & 2 \end{bmatrix}$  ,  $m{a}^T = egin{bmatrix} 2 \ -1 \ 0 \end{bmatrix}$  ,  $m{b}^T = egin{bmatrix} 1 & 3 & -2 \end{bmatrix}$  . Evaluate:

$$AB = egin{bmatrix} -17 & -14 & 8 \ -4 & -1 & 4 \ -6 & 5 & 10 \end{bmatrix}, \quad BA = egin{bmatrix} AB, BA & :8.14 \ -9 & 10 & 20 \ 12 & -9 & -18 \ 4 & 6 & 10 \end{bmatrix}$$
جوابات:

$$(m{A}m{B})^T, m{B}^Tm{A}^T, m{A}^Tm{B}^T$$
 :8.15 وابات:  $(m{A}m{B})^T = m{B}^Tm{A}^T = egin{bmatrix} -17 & -4 & -6 \\ -14 & -1 & 5 \\ 8 & 4 & 10 \end{bmatrix}, m{A}^Tm{B}^T = egin{bmatrix} -9 & 12 & 4 \\ 10 & -9 & 6 \\ 20 & -18 & 10 \end{bmatrix}$ 

$$AA^T, A^2$$
 :8.16 عوال  $AA^T = egin{bmatrix} 29 & 10 & 20 \ 10 & 5 & 13 \ 20 & 13 & 38 \end{bmatrix}$  ,  $A^2 = egin{bmatrix} 17 & 8 & 12 \ 4 & 7 & 12 \ 4 & 22 & 39 \end{bmatrix}$  : قوابات:

$$m{B}m{B}^T = egin{bmatrix} 25 & -16 & 0 \ -16 & 17 & 0 \ 0 & 0 & 4 \end{bmatrix}$$
 ,  $m{B}^2 = egin{bmatrix} B B^T, B^2 & :8.17 \ -7 & 8 & 0 \ -8 & -15 & 0 \ 0 & 0 & 4 \end{bmatrix}$  . وابات:

$$CC^T$$
 ,  $BC$   $:8.18$  روال  $CC^T = egin{bmatrix} 9 & 3 & 6 \ 3 & 5 & 0 \ 6 & 0 & 5 \end{bmatrix}$  ,  $BC = egin{bmatrix} 13 & 8 \ -13 & -2 \ 4 & -2 \end{bmatrix}$  : وابات:

$$2A - 3B, (2A - 3B)^T, 2A^T - 3B^T$$
 :8.19 عوال  $2A - 3B = \begin{bmatrix} -15 & -8 & 8 \\ 12 & 5 & 4 \\ 4 & 6 & 4 \end{bmatrix}, (2A - 3B)^T = 2A^T - 3B^T = \begin{bmatrix} -15 & 12 & 4 \\ -8 & 5 & 6 \\ 8 & 4 & 4 \end{bmatrix}$  :3.19 عوابات:

$$egin{aligned} egin{aligned} egin{aligned} oldsymbol{Ba}, oldsymbol{Ba}^T, oldsymbol{Bb}, oldsymbol{Bb}^T &: 8.20 \ 2 \ -7 \ 0 \ \end{bmatrix}, oldsymbol{Bb}^T &= oldsymbol{Bb} = egin{bmatrix} 15 \ -7 \ -4 \ \end{bmatrix} :$$
وابات:

$$oldsymbol{Aa} oldsymbol{Aa} = oldsymbol{Aa}^T = egin{bmatrix} -8 \ -8 \ -1 \ 1 \end{bmatrix}, oldsymbol{Ab} = oldsymbol{Ab}^T = egin{bmatrix} -5 \ -1 \ 1 \end{bmatrix}$$
 بابات:

$$(m{A}m{b})^T, m{b}^Tm{A}^T$$
 :8.22 بوال  $(m{A}m{b})^T = m{b}^Tm{A}^T = egin{bmatrix} -5 & -1 & 1 \end{bmatrix}$  بوابات:

$$ABC, ABa, ABb$$
 :8.23 يوال  $\begin{bmatrix} -49 & -36 \\ -5 & -6 \\ 7 & 0 \end{bmatrix}$  ,  $\begin{bmatrix} -20 \\ -7 \\ -17 \end{bmatrix}$  ,  $\begin{bmatrix} -75 \\ -15 \\ -11 \end{bmatrix}$  : يوابات:

$$ab, ba, aB, Bb$$
 :8.24 وال  $\begin{bmatrix} 2 & -1 & 0 \\ 6 & -3 & 0 \\ -4 & 2 & 0 \end{bmatrix}$  ,  $\begin{bmatrix} 10 & 9 & 0 \end{bmatrix}$  ,  $\begin{bmatrix} 15 \\ -7 \\ -4 \end{bmatrix}$  . وابات:

$$a + b, a^{T} + b, a + b^{T}$$
 :8.25 عوال

$$oldsymbol{a}^T+oldsymbol{b}=egin{bmatrix}3\\2\\-2\end{bmatrix}$$
 ,  $oldsymbol{a}+oldsymbol{b}^T=egin{bmatrix}3&2&-2\end{bmatrix}$  وابات:  $oldsymbol{a}+oldsymbol{b}$ 

موال AB: AB کو موال B: B میں حاصل کیا گیا ہے۔اس کو دوبارہ A کے قطار اور B کے صف استعمال کرتے ہوئے دوبارہ حاصل کریں۔

سوال 8.27: مساوات 8.23 کو عمومی 2 × 2 قالب کے لئے ثابت کریں۔

$$A=egin{bmatrix}2&3\3&4\end{bmatrix}$$
 اليا  $2 imes2$  قالب  $B$  دريافت كرين كم  $AB=BA$  هو جهال  $2 imes2$ 

8.2. قالبي ضر \_\_\_ 565

$$\boldsymbol{B} = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix} : \boldsymbol{\mathfrak{F}}$$

منحرف تشاكلي ہیں۔

سوال 8.30: درج بالا سوال کے تحت  $M=rac{1}{2}(m{C}-m{C}^T)$  اور  $T=rac{1}{2}(m{C}+m{C}^T)$  کھا جا سکتا ہے جہاں T تشاکلی اور M منحرف تشاکلی قالب ہیں۔ کسی بھی قالب کو تشاکل قالب اور منحرف تشاکلی قالب کا مجموعه لکھا جا سکتا ہے۔ یوں سوال 8.13 تا سوال 8.25 میں استعال کے گئے 🖈 کو تشاکل اور منحرف تشاکل قالب کا مجموعه لکھا جا سکتا ہے۔ان قالبوں کو دریافت کریں۔

$$T = egin{bmatrix} -3 & 1 & 3 \ 1 & 1 & 2.5 \ 3 & 2.5 & 5 \end{bmatrix}$$
 ,  $M = egin{bmatrix} 0 & 1 & 1 \ -1 & 0 & -0.5 \ -1 & 0.5 & 0 \end{bmatrix}$  : يوابات:

سوال 8.31: قابل تبادل  $m{B}$  کا قالبی ضرب  $m{AB}$  اس صورت تشاکلی ہو گا جب  $m{A}$  اور  $m{B}$  ثابت کریں کہ تشاکلی ہو گا جب AB = BA ہو۔ AB = BA ہوں لین جب AB = BA ہو۔

$$AB = (AB)^T = B^T A^T = BA$$
 : باب

سوال 8.32: کن صورتوں میں منحرف تشاکلی قالبوں کا قالبی ضرب منحرف تشاکلی قالب دے گا؟

AB = -BA :واب

سوال 8.33: امكاني شارياتي عمل

ایک مشین اگر آج ٹھیک ہو تب 0.9 امکان ہے کہ وہ ایک دن بعد (کل) بھی ٹھیک ہو گا۔ پیل 0.1 امکان ہے کہ وہ کل خراب ہو گا۔اس طرح اگر مشین آج خراب ہو تب 🛛 0.4 امکان ہے کہ وہ کل بھی خراب ہو گا۔یوں 0.6 امکان ہے کہ وہ کل ٹھیک ہو گا۔ آج ٹھیک اور خراب کو بالترتیب t اور k سے ظاہر کریں جبکہ ایک دن بعد انہیں T اور K سے ظاہر کریں۔ اس پیش گوئی سے امکانی شاریاتی قالب A کھیں۔ اگر آج مثین ٹھک ہو تب دو دن بعد (پرسوں) مشین ٹھک ہونے کا کتنا فی صد امکان ہے۔

 $commutative^{34}$ 

جاب و دون البعد % 87 امكان ہے كہ مشين شيك ہو گا۔ 
$$T$$
  $K$  امكان ہے كہ مشين شيك ہو گا۔  $T$   $K$   $A = \begin{bmatrix} 0.9 & 0.6 \\ 0.1 & 0.4 \end{bmatrix}$   $K$  ہوابات: دو دن البعد % 87 امكان ہے كہ مشين شيك ہو گا۔

سوال 8.34: امكاني شارياتي عمل ایک شہر کی آبادی 000 00 ہے۔ایک بینک میں آج کھاتے دار کا % 90 امکان ہے کہ وہ اگلے سال بھی اس بینک کا کھاتے دار ہو گا جبکہ یہاں کھاتا نہ رکھنے والے کا %1 امکان ہے کہ وہ اگلے سال یہاں کا کھاتا دار ہو گا۔اگر آج 1000 افراد اس بینک کے کھاتے دار ہوں تب ایک سال، دو سال اور تین سال بعد کتنے افراد یہاں کے کھاتے دار ہوں گے؟

جوابات: 1090 ، 1170 ، 1241

سوال 8.35: ایک کارخانه لامور، یثاور اور کراچی میں تین اشیاء الف، ب اور پ فروخت کرتا ہے۔ فی کلو گرام منافع 

الیا "سمتیه منافع" m دریافت کریں که y=Am هر شهر میں روزانه کمائی دے۔

$$m = \begin{bmatrix} 8 & 10 & 6 \end{bmatrix}^T$$
 جواب:

سوال 8.36: خطى تبادليه گهومنا

کار تیسی محدد کی y=Ax ظاہر کرتی ہے کا الٹ رخ گھومنے کو الٹ y=A ظاہر کرتی ہے جال A ، اور x درج ذیل ہیں۔

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

ثابت کریں کہ y=Ax کسی بھی سطح پر  $x_1x_2$  کارتیسی محدد کے نظام کو، مرکز کے گرد، گھڑی کی الٹ رخ، θ زاویہ گھما کر ناکار تیسی محدد γ11/2 دیتا ہے۔

8.2. قالبي ضرب ...

سوال 8.37: نطی تبادلہ۔ گھومنا درج بالا سوال میں زاویہ گھومنا دیکھا گیا۔ ثابت کریں کہ درج ذیل قالب، مرکز کے گرد، گھڑی کی الٹ رخ، n0 زاویہ گھومنے کو ظاہر کرتا ہے۔

$$A^n = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}$$

سوال 8.38: خطی تبادلہ۔ گھومنا درج بالا دو سوالات کو دیکھیں۔درج ذیل قالب، مرکز کے گرد، گھڑی کی الٹ رخ، α اور β زاویہ گھومنے کو ظاہر کرتے ہیں۔

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, \quad B = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$$

یوں باری باری lpha اور eta گھومنے کو  $oldsymbol{AB}$  ظاہر کرے گا۔یوں درج ذیل ثابت کریں۔

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} = \begin{bmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix}$$

بين جبك  $oldsymbol{y}=\begin{bmatrix}y_1 & y_2 & y_3\end{bmatrix}^T$  ،  $oldsymbol{x}=\begin{bmatrix}x_1 & x_2 & x_3\end{bmatrix}^T$  ويتا ہے جبال  $oldsymbol{y}=\mathbf{A}x$  بين جبك  $oldsymbol{y}=\mathbf{A}$  ورج ذیل ہو سکتے ہیں۔

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}, \quad \begin{bmatrix} \cos\phi & 0 & -\sin\phi \\ 0 & 1 & 0 \\ \sin\phi & 0 & \cos\phi \end{bmatrix}, \quad \begin{bmatrix} \cos\gamma & -\sin\gamma & 0 \\ \sin\gamma & \cos\gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

کیا آپ ذہن میں اس عمل کو دیکھ پاتے ہیں؟

# 8.3 خطی مساوات کے نظام۔ گاوسی اسقاط

قالب کا ایک اہم استعال، خطی تفرقی مساوات کے نظام کا حل ہے۔ ہم یہاں گاوسی اسقاط<sup>35</sup> کی ترکیب سیکھتے ہیں جو خطی الجبرا میں کلیدی کردار ادا کرتا ہے۔ آپ سے گزارش ہے کہ اس ترکیب کو اچھی طرح سمجھیں۔

خطی تفرقی مساوات کے نظام کا نام چھوٹا کرتے ہوئے اس کو خطبی نظام <sup>36 بھ</sup>ی کہتے ہیں۔انجینئری، معاشیات، شاریات، اور دیگر شعبوں کے کئی مسائل کی نمونہ کشی خطی نظام کی مدد سے کی جاتی ہے مثلاً برتی ادوار اور گاڑیوں کی آمد و رفت کا نظام۔

خطی نظام،عددی سر قالب اور افنر وده قالب

n متغیرات پر مبنی n مساوات کا نظام درج ذیل ہے۔

(8.29) 
$$a_{11}x_1 + \dots + a_{1n}x_n = b_1 a_{21}x_1 + \dots + a_{2n}x_n = b_2 \vdots a_{mn}x_1 + \dots + a_{mn}x_n = b_m$$

چونکہ اس نظام میں تمام متغیرات کی طاقت اکائی (1) ہے لہذا یہ نظام خطبی کہلاتا ہے (سیدھے خط کی طرح جس کی مستقل میں تمام متغیرات کی طاقت اور y کی طاقت ایر ہے۔ ان مساوات میں y=mx+c کی مستقل میں جنہیں نظام کے عددی سرx=1 کہتے ہیں۔ x=1 تا x=1 کی مستقل قیمتیں ہیں۔ تمام کی قیمت صفر ہونے کی صورت میں وی 8.29 کا نظام ہم جنسی 38 نظام کہلاتا ہے جبکہ ایسا نہ ہونے کی صورت میں یہ غیر ہم جنسی x=1 جنسی x=1 نظام کہلاتا ہے۔

Gauss elimination<sup>35</sup>

linear system<sup>36</sup>

coefficients<sup>37</sup> homogeneous<sup>38</sup>

 $<sup>{\</sup>rm nonhomogeneous}^{39}$ 

نظام 8.29 کے حل سے مراد  $x_n$  تا  $x_n$  کی وہ قیتیں ہیں جو اس نظام کے تمام مساواتوں پر پورا اترتے ہوں۔ نظام کے حل سمتیہ  $^{40}$  کے ارکان نظام  $^{8.29}$  کے حل  $^{1}$  تا  $^{10}$  ہیں۔ ہم جنسی نظام کا ہر صورت میں ایک  $x_n = 0$  من  $x_1 = 0$  ہو گا جو غیر اسم صفر حل  $x_1 = 0$  کہلاتا ہے۔

نظام 8.29 کی قالبی صورت

قالبی ضرب کے استعال سے نظام 8.29 کو درج ذیل لکھا جا سکتا ہے Ax = b(8.30)

جبال  $m{A}$  ، اور  $m{b}$  ورج ذیل ہیں۔  $m{A}$  عددی سو قالب $^{42}$  کہاتا ہے۔

(8.31) 
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

اور b سمتیہ قطار ہیں۔ہم فرض کرتے ہیں کہ  $a_{ik}$  تمام صفر نہیں ہیں لہذا A صفر قالب نہیں ہو گا۔ xدھیان رہے کہ x کے m ارکان ہیں۔ A اور b کو ایک ہی قالب میں کھے کر افزودہ قالب A ماتا ہے۔

(8.32) 
$$\tilde{\mathbf{A}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

افنرودہ قالب میں عمودی کلیر کو ہٹایا جا سکتا ہے۔ہم بھی ایسا ہی کریں گے، بس یاد رہے کہ کے ساتھ آخری قطار b کا اضافہ کرنے سے افنرودہ قالب  $ilde{A}$  حاصل ہوتا ہے۔

solution vector<sup>40</sup> trivial solution<sup>41</sup>

coefficient matrix<sup>42</sup>

augmented matrix<sup>43</sup>

چونکہ افنرودہ قالب میں نظام 8.29 کے تمام معلومات شامل ہیں للذا افنرودہ قالب اس نظام کو مکمل طور پر ظاہر کرتا ہے۔

مثال 8.19: حل کی وجودیت اور یکتائی۔ جیومیٹریائی نقطہ نظر m=n=2 کی صورت میں نظام دو عدد متغیرات m=n=2

$$a_{11}x_1 + a_{12}x_2 = b_1$$
  
$$a_{21}x_1 + a_{22}x_2 = b_2$$

 $x_1$  اگر ہم  $x_2$  اور  $x_2$  کو سطح  $x_1$  پر محور فرض کریں تب درج بالا مساوات اس سطح پر سیدھے خطوط کے مساوات ہوں گے۔ان مساوات کا صرف اس صورت حل  $(x_1, x_2)$  ہو گا جب نقطہ  $x_1$  جس کے محور  $x_2$  مساوات ہوں، ان دونوں خطوط پر بایا جاتا ہو۔ یوں تین ممکنہ صور تیں یائی جاتی ہیں۔ شکل  $x_1$  دیکھیں۔

- اگر خطوط ایک دونوں کو قطع کرتے ہوں تب مکتا حل پایا جائے گا۔
  - ہم مکان خطوط کی صورت میں لا متناہی تعداد کے حل ہوں گے۔
- متوازی اور ایک دونول سے ہٹ کر خطوط کی صورت میں کوئی حل ممکن نہیں ہو گا۔

رو متغیرات اور رو مساوات کے نظام کو ہم نے دیکھا۔ تین متغیرات اور تین مساوات کے نظام کو بھی جیومیٹریائی نقطہ نظر سے دیکھا جا سکتا ہے۔اب خطوط کی بجائے نظام کے تین مساوات تین سطحوں کو ظاہر کریں گی۔شکل میں اس نظام کے حل دکھائے گئے ہیں۔

مثال 8.19 میں ہم نے دیکھا کہ عین ممکن ہے کہ نظام کا کوئی حل ممکن نہ ہو۔یوں کسی بھی نظام کے بارے میں ہم جاننا چاہیں گے کہ آیا اس کا حل موجود ہے اور آیا ایسا حل میکتا ہے۔آئیں اب خطی نظام کو حل کرنے کا منظم طریقہ سیکھیں۔



گاوسی اسقاط

ہم درج ذیل خطی نظام پر غور کرتے ہیں۔

$$2x_1 + x_2 = 7$$
$$4x_2 = 12$$

اس نظام کے عددی سر قالب میں غیر صفر قیمتیں، مرکزی وتر اور اس سے اوپر ہیں لہذا یہ بالائی تکونی نظام ہے۔ اس نظام کی نجلی مساوات کو حل کرتے ہوئے  $x_2 = \frac{12}{4} = 3$  ملتا ہے جس کو پہلی مساوات میں واپس پر کرتے ہوئے نظام کی نظام کو با آسانی حل کیا جا سکتا  $x_1 = \frac{7-x_2}{2} = \frac{7-3}{2} = 2$  حاصل ہوتا ہے۔ اس عمل سے ہم دیکھتے ہیں کہ تکونی نظام کو با آسانی حل کیا جا سکتا ہے۔ یوں ہم کسی بھی نظام کو تکونی صورت میں کھنا چاہیں گے۔

کسی بھی نظام کو تکونی صورت میں لانے کے عمل کو درج ذیل نظام کی مدد سے سکھتے ہیں جس کا افنرودہ قالب بھی دیا گیا ہے۔ دیا گیا ہے۔ افنرودہ قالب کی پہلی صف کو  $S_1$  اور دوسری صف کو  $S_2$  کہا گیا ہے۔

$$S_1 \begin{bmatrix} 2 & 3 & 12 \\ S_2 & 4 & -2 & 8 \end{bmatrix}$$
  $2x_1 + 3x_2 = 12$   
 $4x_1 - 2x_2 = 8$ 

اس کو تکونی صورت میں لکھنے کی خاطر نجلی مساوات سے  $x_1$  حذف کرنا ہو گا۔ایبا کرنے کے لئے بالائی مساوات کو 2 سے ضرب دے کر  $4x_1+6x_2=24$  حاصل کرتے ہوئے اس کو نجلی مساوات سے منفی کرتے ہیں جس سے  $-8x_2=-16$  ملتا ہے۔یوں درج بالا نظام درج ذیل لکھا جائے گا جو بالائی تکوئی صورت ہے۔افزودہ قالب پر بھی یہی عمل کیا گیا ہے جہال نجلی صف کے ساتھ الجبرائی عمل  $(S_2-2S_1)$  کھا گیا ہے۔

$$\begin{bmatrix} 2 & 3 & 12 \\ 0 & -8 & -16 \end{bmatrix} S_2 - 2S_1 \qquad 2x_1 + 3x_2 = 12 \\ -8x_2 = -16$$

تکونی صورت حاصل کرنے کی اس عمل کو گاوسسی اسقاط  $^{44}$  کہتے ہیں۔گاوسی اسقاط کی ترکیب وسیع تر نظام پر قابل استعال ہے۔یوں کچلی مساوات سے  $x_2=2$  حاصل کرتے ہوئے  $x_1=3$  ماتا ہے۔ $x_1=3$ 

Gaussian elimination<sup>44</sup>

مثال 8.20: \_ گاوسی اسقاط

درج ذیل نظام کو گاوسی اسقاط سے بالائی تکونی صورت میں لائیں۔نظام کا افنرودہ قالب بھی دیا گیا ہے۔

$$\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & -3 & 1 & 0 \\ -1 & 2 & 3 & -3 \end{bmatrix} \qquad \begin{aligned} x_1 + 2x_2 - x_3 &= 5 \\ 2x_1 - 3x_2 + x_3 &= 0 \\ -x_1 + 2x_2 + 3x_3 &= -3 \end{aligned}$$

پہلی قدم میں ہم بالائی مساوات کو استعال کرتے ہوئے کچلی دونوں مساواتوں سے  $x_1$  حذف کرتے ہیں۔ پہلی مساوات کو  $x_1$  حذف ہو گا۔ ای طرح کو 2 سے ضرب دے کر دوسری مساوات سے منفی کرنے سے دوسری مساوات سے  $x_1$  حذف ہو گا۔ ای طرح پہلی مساوات کو تیسری مساوات کے ساتھ جمع کرتے ہوئے تیسری مساوات سے  $x_1$  حذف ہوتا ہے۔ اس عمل کو افزودہ قالب کے لئے بیان کرتے ہیں۔ ہم ہر قدم پر گزشتہ قالب کی پہلی صف کو  $x_1$  ، دوسری کو  $x_2$  اور تیسری کو  $x_3$  کرتے ہیں۔ ہم ہر قدم پر گزشتہ قالب کی پہلی صف کو  $x_1$  ، دوسری کو  $x_2$  اور تیسری کو  $x_3$  کہیں گے۔ یوں درج ذیل میں  $x_3$  سے مراد درج بالا قالب کی پہلی صف  $x_3$  کے بیاں درج ذیل میں  $x_3$  سے مراد درج بالا قالب کی پہلی صف  $x_3$ 

 $S_2-2S_1$  پہلی صف کو 2 سے ضرب دیتے ہوئے دوسری صف سے منفی کریں لینی  $S_3+S_1$  پہلی صف کو تیسری صف کے ساتھ جمع کریں لینی  $S_3+S_1$ 

ان عمل صف (یعنی  $S_2-2S_1$  اور  $S_3+S_1$  ) کو درج ذیل قالب کے دائیں جانب مطابقتی صف کے سامنے کھا گیا ہے۔

$$\begin{bmatrix} 1 & 2 & -1 & 5 \\ 0 & -7 & 3 & -10 \\ 0 & 4 & 2 & 2 \end{bmatrix} S_2 - 2S_1 & x_1 + 2x_2 - x_3 = 5 \\ S_2 - 2S_1 & -7x_2 + 3x_3 = -10 \\ S_3 + S_1 & 4x_2 + 2x_3 = 2 \end{bmatrix}$$

صف پر عمل کو الجبرائی صورت میں قالب کے دائیں جانب کھا گیا ہے جہاں  $S_1$ ،  $S_2$ ،  $S_3$ ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ،

دوسری قدم میں (درج بالا حاصل کردہ کی) مجلی مساوات سے  $x_2$  حذف کرتے ہیں۔

تبدیل شدہ افزودہ قالب کی دوسری صف کو  $\frac{4}{7}$  سے ضرب دیتے ہوئے اسی قالب کی تیسری صف کے ساتھ جمع  $S_2$  اور  $S_3$  اور  $S_3$  سے مراد درج بالا قالب کی دوسری اور تیسری صف ہے۔ یوں  $S_3$  کے مراد  $S_3$  کے مراد  $S_3$  کے اس مراد کی دوسری اور تیسری صف کے ساتھ جمع کی دوسری اور تیسری صف کے ساتھ جمع کے ساتھ جمع کی دوسری صف کے ساتھ جمع کے ساتھ جمع کی دوسری صف کے ساتھ جمع کے ساتھ جمع کی دوسری صف کے ساتھ جمع کی دوسری اور دوسری صف کے ساتھ جمع کی دوسری صف کے ساتھ جمع کی دوسری صف کے ساتھ کی دوسری صف کے ساتھ جمع کی دوسری صف کے ساتھ کی دوسری صفح کی دوسری صف کے ساتھ کی دوسری صف کے ساتھ کی دوسری صف کے ساتھ کی دوسری صفح کے ساتھ کی دوسری صفح کے ساتھ کی دوسری صفح کے ساتھ کی دوسری کی دوسری صفح کے ساتھ کی دوسری کے دوسری کی دوسری کی دوسری کی دوسری کے دوسری کی دوسری کی دوسری کے دوسری کے دوسری کی دوسری کی دوسری کی دوسری کی دوسری کی دوسری کی دوسری کے دوسری کی دوسری کی دوسری کے دوسری کی دوسری کی دوسری کے دوسری کی دوسری کے دوسری کی دوسری کی دوسری کی دوسری کی دوسری کی دوسری کی دوسری کے دوسری کی دوسری کی دوسری کی دوسری کے دوسری کی دوسری کے دوسری کی دوسری کے دوسری کے

(8.33) 
$$\begin{bmatrix} 1 & 2 & -1 & 5 \\ 0 & -7 & 3 & -10 \\ 0 & 0 & \frac{26}{7} & -\frac{26}{7} \end{bmatrix} S_3 + \frac{4}{7}S_2$$
 
$$\begin{aligned} x_1 + 2x_2 - x_3 &= 5 \\ -7x_2 + 3x_3 &= -10 \\ \frac{26}{7}x_3 &= -\frac{26}{7} \end{aligned}$$

 $x_3 = -1$  ماتا ہے جس ماوات سے  $x_3 = -1$  ماتا ہے جس کو نظام 8.33 کی مخلی مساوات سے  $x_3 = -1$  ماتا ہے جس کو نظام 8.33 کی در میانی مساوات میں واپس پر کرتے ہوئے  $x_2 = 1$  ماتا ہے۔ ان دونوں جوابات کو پہلی مساوات میں پر کرتے ہوئے  $x_1 = 2$  ماتا ہے۔

اگر دوسری قدم پر آپ پہلی مساوات کو 2 سے ضرب دے کر تیسری مساوات سے منفی کریں تو حاصل مساوات میں  $x_1$  میں دوبارہ حاضر ہو جائے گا جو پہلی قدم کی محنت کو ضائع کر دے گا۔ ہم ایسا نہیں چاہتے ہیں۔ یوں آپ دکھ سکتے ہیں کہ کسی بھی جسامت کی نظام کو حل کرتے ہوئے پہلی قدم پر ، نظام کی پہلی مساوات کو استعمال کرتے ہوئے ، اس سے نیچے تمام مساوات سے  $x_1$  حذف کیا جاتا ہے۔ دوسری قدم پر ، پہلی قدم کی حاصل نظام کی دوسری مساوات کو استعمال کرتے ہوئے ، اس سے نیچے تمام مساواتوں سے  $x_2$  حذف کیا جاتا ہے۔ اسی طرح تیسری قدم پر ، تیسری مساوات کو استعمال کرتے ہوئے ، اس سے نیچے تمام مساواتوں سے  $x_3$  حذف کیا جائے گا۔ یہی سلسلہ آخر تک دہرایا حائے گا۔ اس سے نیجے تمام مساواتوں سے  $x_3$  حذف کیا جائے گا۔ یہی سلسلہ آخر تک دہرایا حائے گا۔

اس نظام کو افخرودہ قالب استعال کرتے ہوئے حل کیا جا سکتا تھا۔ بار بار مکمل مساوات لکھنے کی کوئی ضرورت نہیں تھی۔ہم عموماً ایسا ہی کرتے ہوئے،نظام کو افغرودہ قالب کی صورت میں لکھ کر، اس کی تکونی صورت گاوسی اسقاط کی مدد سے حاصل کریں گے۔

مثال 8.21: برقی دور کو شکل 8.2 میں د کھایا گیا ہے۔اس کو حل کریں۔ حل: کرخوف قانون دباو سے درج ذیل لکھا



شكل 8.21: برقى دور په مثال 8.21

جا سکتا ہے

$$2I_1 + 8I_3 = 10$$
  
 $4I_3 + 8I_2 = 8$ 

جبکه کرخوف قانون رو سے درج ذیل لکھا جا سکتا ہے۔

$$I_1 + I_3 = I_2$$

ان تینوں مساوات کو ترتیب دیتے ہوئے ایک ساتھ لکھتے ہیں۔ ساتھ ہی بائیں جانب اس نظام کا افنر ورہ قالب بھی لکھتے ہیں۔

$$\begin{bmatrix} 2 & 0 & 8 & 10 \\ 0 & 8 & 4 & 8 \\ 1 & -1 & 1 & 0 \end{bmatrix} \qquad \begin{aligned} 2I_1 + 8I_3 &= 10 \\ 8I_2 + 4I_3 &= 8 \\ I_1 - I_2 + I_3 &= 0 \end{aligned}$$

پہلا قدم: چونکہ دوسری صف کا پہلا رکن صفر ہے لہذا اس کو کچھ کرنے کی ضرورت نہیں ہے البتہ تیسرے صف کے پہلے رکن I<sub>1</sub> کو حذف کرنا ہو گا۔

پہلی صف کو  $\frac{1}{2}$  سے ضرب دے کر تیسری صف سے منفی کرتے ہیں۔درج ذیل میں  $S_3$  سے مراد درج بالا قالب کی تیسری صف  $\left[ 1 \quad -1 \quad 1 \quad 0 \right]$  ہے۔

$$\begin{bmatrix} 2 & 0 & 8 & 10 \\ 0 & 8 & 4 & 8 \\ 0 & -1 & -3 & -5 \end{bmatrix} S_3 - \frac{1}{2}S_1 \qquad \begin{array}{c} 2I_1 + 8I_3 = 10 \\ 8I_2 + 4I_3 = 8 \\ -I_2 - 3I_3 = -5 \end{array}$$

دوسرا قدم: درج بالا کے تیسرے صف سے I2 حذف کرتے ہیں۔

دوسرے صف کو  $\frac{1}{8}$  سے ضرب دے کر تیسرے صف کے ساتھ جمع کرتے ہیں۔

$$\begin{bmatrix} 0 & -1 & -3 & -5 \end{bmatrix}$$
 درج ذیل کلھتے ہوئے  $S_3$  سے مراد گزشتہ (درج بالا) قالب کی تیسری صف  $S_3$ 

$$\begin{bmatrix} 2 & 0 & 8 & 10 \\ 0 & 8 & 4 & 8 \\ 0 & 0 & -\frac{5}{2} & -4 \end{bmatrix} S_3 + \frac{1}{8}S_2 \qquad \begin{array}{c} 2I_1 + 8I_3 = 10 \\ 8I_2 + 4I_3 = 8 \\ -\frac{5}{2}I_3 = -4 \end{array}$$

تیسرا قدم: آخری صف یا آخری مساوات سے  $\frac{8}{5}=I_3$  ملتا ہے۔اس قیت کو درج بالا پہلی اور اور در میانی مساوات میں یہ کرتے ہوئے بقایا برقی رو حاصل کرتے ہیں۔

$$2I_1 + 8\left(\frac{8}{5}\right) = 10 \quad \Longrightarrow \quad I_1 = -\frac{7}{5}$$
$$8I_2 + 4\left(\frac{8}{5}\right) = 8 \quad \Longrightarrow \quad I_2 = \frac{1}{5}$$

## مثال 8.22: درج زیل نظام کو گاوسی اسقاط سے حل کریں۔

$$\begin{bmatrix} 2 & -1 & 1 & 5 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & -1 & -3 \\ 1 & -1 & -1 & 0 \end{bmatrix} \qquad \begin{aligned} 2x_1 - x_2 + x_3 &= 5 \\ x_1 + x_2 + x_3 &= 2 \\ x_1 + 2x_2 - x_3 &= -3 \\ x_1 - x_2 - x_3 &= 0 \end{aligned}$$

حل: پہلی قدم میں دوسری، تیسری اور چوتھی صف سے  $x_1$  حذف کرتے ہیں۔

$$\begin{bmatrix} 2 & -1 & 1 & 5 \\ 0 & \frac{3}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{5}{2} & -\frac{3}{2} & -\frac{11}{2} \\ 0 & -\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \end{bmatrix} S_2 - \frac{1}{2}S_1 \qquad \frac{3}{2}x_2 + \frac{1}{2}x_3 = -\frac{1}{2} \\ S_3 - \frac{1}{2}S_1 & \frac{5}{2}x_2 - \frac{3}{2}x_3 = -\frac{11}{2} \\ S_4 - \frac{1}{2}S_1 & -\frac{1}{2}x_2 - \frac{3}{2}x_3 = -\frac{5}{2} \end{bmatrix}$$

دوسری قدم میں تیسری اور چو تھی مساوات سے x<sub>2</sub> حذف کرتے ہیں۔

$$\begin{bmatrix} 2 & -1 & 1 & 5 \\ 0 & \frac{3}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & -\frac{7}{3} & -\frac{14}{3} \\ 0 & 0 & -\frac{4}{3} & -\frac{8}{3} \end{bmatrix} S_3 - \frac{5}{3}S_2$$

$$\begin{bmatrix} 2x_1 - x_2 + x_3 = 5 \\ \frac{3}{2}x_2 + \frac{1}{2}x_3 = -\frac{1}{2} \\ -\frac{7}{3}x_3 = -\frac{14}{3} \\ S_4 + \frac{1}{3}S_2 \\ -\frac{4}{3}x_3 = -\frac{8}{3} \end{bmatrix}$$

ہم تیسرے قدم پر تیسری یا چو تھی مساوات سے  $x_3=2$  حاصل کرتے ہیں جس کو دوسری مساوات میں پر کرتے ہوئے  $x_1=1$  ماتا ہے۔  $x_2=-1$  ماتا ہے۔

#### بنيادى اعمال صف

قالب کی صفوں پر درج ذیل تین عمل سے نظام تبدیل نہیں ہوتا ہے۔گاوس اسقاط پہلی دو اعمال سے حاصل ہوتا ہے۔

- دو صفول کا آپس میں تبادلہ
- صف کو کسی مستقل قیمت سے ضرب دے کر کسی دوسرے (یااتی) صف کے ساتھ جمع کرنا
  - کسی صف کو غیر صفر مستقل قیت c کے ساتھ ضرب دینا

دھیان رہے کہ یہ اعمال افنرودہ قالب کے صفول پر قابل اطلاق ہیں نہ کہ قطاروں پر۔یہ اعمال، نظام کی مساوات پر درج ذیل کے مترادف ہیں۔

- دو مساواتوں کی جگہ آپس میں تبدیل کرنا۔
- ایک مساوات کو کسی مستقل سے ضرب دے کر دوسری (یااسی) مساوات کے ساتھ جمع کرنا۔

## • نظام کی مساوات کو غیر صفر مستقل c سے ضرب دینا۔

اب ظاہر ہے کہ ہمزاد مساواتوں کو آگے پیچھے لکھنے سے ان کا حاصل حل تبدیل نہیں ہوتا۔ اس طرح کسی مساوات کو مستقل قیت سے ضرب دے کر دوسری مساوات کے ساتھ جمع کرنے سے بھی حل تبدیل نہیں ہوتا اور نہ ہی کسی مساوات کو عفو سے ضرب دینے سے مساوات کو عفو سے ضرب دینے سے مساوات کو عفو سے ضرب دینے سے مساواتوں کی تعداد کم ہوگی جس سے عین ممکن ہے کہ ان کا حل ممکن نہ رہے۔)

دو عدد خطی نظام  $N_1$  اور  $N_2$  اس صورت صف برابر  $^{45}$  کہلاتے ہیں جب  $N_1$  پر محدود عمل صف کے ذریعہ  $N_2$  حاصل کرنا ممکن ہو۔ یہ حقیقت جسے درج ذیل طور پر بیان کیا جا سکتا ہے، گاوسی اسقاط کی جواز ہے۔

مسئلہ 8.1: صف برابر نظام صف برابر خطی نظام کے سلسلہ حل<sup>46</sup> کیساں ہوں گے۔

اس مسکے کی بنا اگر ایک نظام کا سلسلہ حل دوسرے نظام کے سلسلہ حل کے عین مطابق ہو، تب انہیں صف بوابو نظام کہتے ہیں۔ یاد رہے کہ یہاں عمل صف کی بات کی جارہی ہے۔افزودہ قالب کے قطار تبدیل کرنے سے نظام تبدیل ہو گا اور اس کا حل بھی تبدیل ہو گا لہذا افزودہ قالب پر کسی بھی عمل قطار کی اجازت نہیں ہے۔

اییا نظام جس کی نامعلوم متغیرات سے مساواتوں کی تعداد زیادہ ہو زائد معلوم <sup>47</sup> کہلاتا ہے۔ نظام کی نامعلوم متغیرات اور مساواتوں کی تعداد برابر ہونے کی صورت میں اس کو معلوم <sup>48</sup> کہتے ہیں جبکہ نظام کی نامعلوم متغیرات سے مساواتوں کی تعداد کم ہونے کی صورت میں اس کو کم معلوم <sup>49</sup> کہتے ہیں۔

اییا نظام جس کا کوئی حل نہ ہو متضاد<sup>50</sup> نظام کہلاتا ہے جبکہ اییا نظام جس کا ایک یا ایک سے زیادہ حل ممکن ہوں بلا تضاد<sup>51</sup> نظام کہلاتا ہے۔

row equivalent<sup>45</sup>

solution set<sup>46</sup>

overdetermined<sup>47</sup>

determined<sup>48</sup>

 $<sup>{\</sup>rm underdetermined}^{49}$ 

 $inconsistent^{50}\\$ 

 $<sup>{\</sup>rm consistent}^{51}$ 

گاوسی اسقاط۔ نظام کی تین ممکنہ صور تیں

یکتا حل کا نظام مثال 8.20 میں دیکھا گیا۔ آئیں اب لامتناہی تعداد کے حل والے نظام (مثال 8.23) کو اور بغیر کسی حل والے نظام (مثال 8.24) کو گاوسی اسقاط سے حل کرنے کی کوشش کریں۔

مثال 8.23: لا متناہی تعداد کے حل والا نظام درج ذیل نظام جو تین مساوات پر مبنی ہے میں چار متغیرات پائے جاتے ہیں۔ اس کو گاوسی اسقاط سے حل کریں۔

$$\begin{bmatrix} 2 & 1 & 2 & -1 & 6 \\ 4 & -2 & 1 & 2 & 2 \\ 8 & -4 & 2 & 4 & 4 \end{bmatrix} \qquad \begin{aligned} 2x_1 + x_2 + 2x_3 - x_4 &= 6 \\ 4x_1 - 2x_2 + x_3 + 2x_4 &= 2 \\ 8x_1 - 4x_2 + 2x_3 + 4x_4 &= 4 \end{aligned}$$

حل: پہلی قدم میں مجلی دو مساواتوں سے x<sub>1</sub> حذف کرتے ہیں۔

$$\begin{bmatrix} 2 & 1 & 2 & -1 & 6 \\ 0 & -4 & -3 & 4 & -10 \\ 0 & -8 & -6 & 8 & -20 \end{bmatrix} S_2 - 2S_1 & 2x_1 + x_2 + 2x_3 - x_4 = 6 \\ -4x_2 - 3x_3 + 4x_4 = -10 \\ -8x_2 - 6x_3 + 8x_4 = -20 \end{bmatrix}$$

دوسری قدم میں درج بالا تبدیل شدہ افنرودہ قالب استعال کرتے ہوئے، دوسرے صف کی مدد سے تیسری صف سے x2 حذف کرتے ہیں۔دوسری صف کو دوسے ضرب دیتے ہوئے تیسری صف سے منفی کرتے ہیں۔

$$\begin{bmatrix} 2 & 1 & 2 & -1 & 6 \\ 0 & -4 & -3 & 4 & -10 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} S_3 - 2S_2$$

$$2x_1 + x_2 + 2x_3 - x_4 = 6$$

$$-4x_2 - 3x_3 + 4x_4 = -10$$

$$0 = 0$$

روسری مساوات سے  $x_1=rac{7}{4}-rac{5}{8}x_3$  اور یول پہلی مساوات سے  $x_2=rac{5}{2}-rac{3}{4}x_3+x_4$  ملتا ہے۔اب  $x_3$  اور  $x_4$  کی لامحدود مختلف قیمتیں پر کرتے ہوئے  $x_1$  اور  $x_2$  حاصل کیے جا سکتے ہیں۔

عموماً اختیاری مستقل کو  $t_1$  ،  $t_2$  ،  $t_3$  اور  $t_3$  اور  $t_3$  اور  $t_4$  اور  $t_5$  اور کصتے ہوئے درج ذیل کھا جائے گا۔

$$x_1 = \frac{7}{4} - \frac{5}{8}t_1$$
  
$$x_2 = \frac{5}{2} - \frac{3}{4}t_1 + t_2$$

مثال 8.24: گاوسی اسقاط بلا حل نظام

اییا نظام جس کا حل ممکن نہ ہو کو گاوی اسفاط سے حل کرتے ہوئے تضاد کی صورت حاصل ہو گی۔آئیں درج ذیل نظام حل کرنے کی کوشش کرتے ہیں۔

$$\begin{bmatrix} 4 & -2 & 2 & 6 \\ 2 & 4 & -2 & 6 \\ -2 & 16 & -10 & 14 \end{bmatrix} \qquad \begin{aligned} 4x_1 - 2x_2 + 2x_3 &= 6 \\ 2x_1 + 4x_2 - 2x_3 &= 6 \\ -2x_1 + 16x_2 - 10x_3 &= 14 \end{aligned}$$

دوسری اور تیسری مساوات سے  $x_1$  حذف کرتے ہیں۔

پہلی صف کو  $\frac{1}{2}$  سے ضرب دے کر دوسری صف سے منفی کرتے ہیں۔ پہلی صف کو  $\frac{1}{2}$  سے ضرب دے کر تیسری صف کے ساتھ جمع کرتے ہیں۔

$$\begin{bmatrix} 4 & -2 & 2 & 6 \\ 0 & 5 & -3 & 3 \\ 0 & 15 & -9 & 17 \end{bmatrix} S_2 - \frac{1}{2}S_1 \qquad 4x_1 - 2x_2 + 2x_3 = 6 \\ 5x_2 - 3x_3 = 3 \\ 15x_2 - 9x_3 = 17$$

آخری صف سے x3 حذف کرتے ہیں۔

$$\begin{bmatrix} 4 & -2 & 2 & 6 \\ 0 & 5 & -3 & 3 \\ 0 & 0 & 0 & 8 \end{bmatrix} S_3 - 3S_2$$

$$4x_1 - 2x_2 + 2x_3 = 6$$

$$5x_2 - 3x_3 = 3$$

$$0 = 8$$

آخری مساوات کے تحت 8=0 ہے جو تضاد کی صورت ہے۔بلا حل نظام کی گاوسی اسقاط تضاد کی صورت دے گی۔

#### 8.3.1 صف زينه دار صورت

گاوسی اسقاط کے بعد حاصل عددی سر قالب، افنرودہ قالب اور نظام صف زینہ دار<sup>52</sup> کہلاتے ہیں جن میں صفر کے صف میں، اگر موجود ہوں تو یہ، آخر پر پائے جاتے ہیں اور صف میں بائیں جانب پہلی غیر صفر اندراج، ہر اگلے صف میں، مزید دور ہوگی۔ مثال 8.24 میں عددی سر قالب اور افنرودہ قالب کی زینہ دار صورت درج ذیل ہیں۔

$$\begin{bmatrix} 3 & 2 & 1 & 3 \\ 0 & -\frac{1}{3} & \frac{1}{3} & -2 \\ 0 & 0 & 0 & 12 \end{bmatrix} \qquad \begin{bmatrix} 3 & 2 & 1 \\ 0 & -\frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

دھیان رہے کہ ہم بائیں ترین اندراج کو اکائی (1) کی صورت میں لانے کی کوشش نہیں کرتے ہیں چو تکہ اس سے کوئی فائدہ حاصل نہیں ہو گا۔ (سادہ زینہ دار صورت 53 جس میں بائیں ترین اندراج اکائی ہو گی پر بعد میں بحث کی حائے گی۔)

 $\begin{bmatrix} R \mid f \end{bmatrix}$  ہے جس سے زینہ دار صورت  $\begin{bmatrix} A \mid b \end{bmatrix}$  ہے جس سے زینہ دار صورت  $\begin{bmatrix} a \mid b \end{bmatrix}$  ہا مساوات اور ax = b ایک ہی نظام کی جاتی ہے۔ نظام ax = b اور ax = b ایک نظام کا حل موجود ہو، تب یہی حل دوسرے نظام کا مجھی حل ہو گا۔

گاوس اسقاط سے زینہ دار افزودہ قالب کی درج ذیل عمومی صورت حاصل ہو گا۔

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & \cdots & \cdots & r_{1n} & f_1 \\ 0 & r_{22} & r_{23} & \cdots & \cdots & r_{2n} & f_2 \\ \vdots & & & & & & \\ 0 & 0 & \cdots & r_{rr} & \cdots & r_{rn} & f_r \\ 0 & 0 & 0 & \cdots & \cdots & 0 & f_{r+1} \\ \vdots & & & & & \\ 0 & 0 & 0 & \cdots & \cdots & 0 & f_m \end{bmatrix}$$

ورج بالا زینہ دار افغرودہ قالب میں m نام  $r_{rr} 
eq 0$  ،  $r \leq m$  اندراج والے صف میں تمام  $r_{ii} = 0$ 

echelon form<sup>52</sup> reduced echelon form<sup>53</sup>

زینہ دار عددی سر قالب R میں غیر صفر صفول کی تعداد r کو A کا درجہ  $^{54}$  کہتے ہیں جو A کا بھی درجہ ہو گا۔ یہ جاننا کہ نظام Ax=b کا حل موجود ہے یا نہیں اور اس حل کو حاصل کرنا درج ذیل طریقے سے ممکن ہے۔

• (الف) بلا حل: اگر m ہو (جس کا مطلب ہے کہ R میں کم از کم ایک صف ایبا ہے جس کے تمام اندراجات صفر (0) ہیں) اور  $f_m$  تا  $f_m$  تا  $f_{r+1}$  تا مقدار غیر صفر ہو تب Rx=f متضاد نظام ہو گا جس کا کوئی حل ممکن نہیں ہے۔ یوں Rx=f بھی متضاد نظام ہو گا جس کا کوئی حل ممکن نہیں ہے۔ یوں حمد خبیں پایا جاتا ہے۔ جس کا کوئی حل نہیں پایا جاتا ہے۔

بلا تضاد نظام (جس میں یا m=r ہو اور یا r<m کے ساتھ ساتھ  $f_{r+1}$  تا m صفر کے برابر ہوں) تب نظام کا حل درج ذیل ہو گا۔

- $(\predef)$  =  $(x_1)$  =  $(x_1)$  =  $(x_n)$  =

سوالات

سوال 8.40 تا سوال 8.53 کو گاوسی اسقاط سے حل کریں۔

سوال 8.40:

$$2x - 3y = -4$$
$$x + y = 3$$

x = 1, y = 2 جوابات:

rank of matrix<sup>54</sup>

سوال 8.41:

$$\begin{bmatrix} 1 & -2 & -3 \\ 2 & 1 & -1 \end{bmatrix}$$

 $x_1 = -1, x_2 = 1$  جوابات:

سوال 8.42:

$$x-2y+z = -1$$
$$y-z = -1$$
$$2x + y + z = 1$$

x = -1, y = 1, z = 2 جوابات:

سوال 8.43:

$$\begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & 2 & 1 & -1 \\ 2 & -1 & 2 & 5 \end{bmatrix}$$

 $x_1 = 1$ ,  $x_2 = -1$ ,  $x_3 = 1$  جوابات:

سوال 8.44:

$$\begin{bmatrix} 3 & -2 & 4 \\ 2 & -1 & 3 \\ 1 & 1 & 3 \end{bmatrix}$$

 $x_1 = 2, x_2 = 1$  جوابات:

سوال 8.45:

$$\begin{bmatrix} 4 & -8 & 3 & 16 \\ -1 & 2 & -5 & -21 \\ 3 & -6 & 1 & 7 \end{bmatrix}$$

جوابات: t اختیاری متعقل ہے۔  $x_3=4,\,x_2=t,\,x_1=2t+1$ 

سوال 8.46:

$$\begin{bmatrix} 2 & 4 & 1 & 0 \\ -1 & 1 & -2 & 0 \\ 4 & 0 & 6 & 0 \end{bmatrix}$$

جوابات: 
$$t$$
 اختیاری مستقل ہے۔  $x_3=t,\,x_2=rac{t}{2},\,x_1=-rac{3}{2}t$  جوابات:

سوال 8.47:

$$x - y = 1$$
$$y + z = -1$$
$$2x - y = 6$$

$$x = 2, y = -2, z = 1$$
 جوابات:

سوال 8.48:

$$2x + y - 3z = -1$$
$$x + y + z = 1$$

جوابات: 
$$z=t, y=3-5t, x=4t-2$$
 جہال  $t$  اختیاری مستقل ہے۔

سوال 8.49:

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & -1 & -1 & 3 \end{bmatrix}$$

جوابات: 
$$x = \frac{1}{3}(7-t), y = -\frac{1}{3}(4t+2), z = t$$
 جہاں ہ

سوال 8.50:

$$\begin{bmatrix} 1 & -1 & 2 & 3 & 0 \\ 2 & 1 & -1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

جوابات: 
$$x_4=t, x_3=-rac{4}{7}t, x_2=rac{5}{7}t, x_1=-rac{8}{7}t$$
 جہال نتیاری متنقل ہے۔

سوال 8.51:

$$\begin{bmatrix} 0 & 1 & -2 & -3 & 6 \\ 2 & 1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & -1 \end{bmatrix}$$

جوابات:  $x_1 = -\frac{10}{7}(t+1)$ ,  $x_2 = \frac{1}{7}(5t+12)$ ,  $x_3 = -\frac{1}{7}(8t+15)$  جہاں کا اختیاری مستقل ہے۔ بالائی صف کی جگہ تبدیل کرتے ہوئے حل کریں اور یا نجلی عکونی صورت حاصل کرتے ہوئے حل کریں۔

سوال 8.52:

$$3x_1 + x_2 - 2x_3 - 3x_4 = 7$$

$$2x_1 + x_2 - x_3 + x_4 = 0$$

$$x_1 - x_2 - x_3 + x_4 = -5$$

$$x_1 + x_2 + x_3 - x_4 = 7$$

$$x_1 = 1$$
,  $x_2 = x_3 = 2$ ,  $x_4 = -2$  جوابات:

سوال 8.53:

$$\begin{bmatrix} 1 & 2 & 1 & -2 & -1 \\ 2 & 2 & 1 & 1 & 4 \\ 3 & -6 & -4 & 6 & 16 \\ 1 & 1 & 1 & -4 & -3 \end{bmatrix}$$

$$x_1 = 2, x_2 = 0, x_3 = -1, x_4 = 1$$
 جرابات:

سوال 8.54 تا سوال 8.58 برقی ادوار کے نظام ہیں۔

سوال 8.54: شكل 8.3-الف مين برقى دور دكھايا گيا ہے۔اس كو حل كريں۔

$$I_3 = \frac{9}{11}\,\mathrm{A}$$
 ،  $I_2 = \frac{19}{33}\,\mathrm{A}$  ،  $I_1 = \frac{8}{33}\,\mathrm{A}$  : ابات

$$I_5 = \frac{200}{171}\,\mathrm{A}$$
 ،  $I_4 = \frac{55}{57}\,\mathrm{A}$  ،  $I_3 = \frac{170}{171}\,\mathrm{A}$  ،  $I_2 = \frac{65}{57}\,\mathrm{A}$  ،  $I_1 = \frac{10}{57}\,\mathrm{A}$  .



شكل 8.3: برتى دور ـ سوال 8.54 اور سوال 8.55



شكل 8.4: ادوار برائے سوال 8.56 اور سوال 8.57



شكل 8.58: ويك ستون بل-سوال 8.58

سوال 8.56: شکل 8.4-الف میں تینوں برقی رو دریافت کریں۔ برقی رو  $I_2$  کی قیمت منفی ہے۔ اس کا کیا مطلب ہے؟ جوابات:  $I_3=\frac{50}{11}\,\mathrm{A}$  ،  $I_2=-\frac{20}{11}\,\mathrm{A}$  ،  $I_1=\frac{30}{11}\,\mathrm{A}$  ، منفی برقی رو کا مطلب ہے کہ رو کی سمت و کھائی گئی سمت کے الٹ ہے۔

 $R_1$  ، I ،  $V_s$  اور  $R_1$  ،  $R_1$  ،  $R_2$  اور  $R_3$  اور  $R_3$  اور  $R_3$  کا تعلق کصیں۔اس نظام کو حل کرتے ہوئے  $R_3$  حاصل کریں۔حاصل کا تعلق ککھیں۔اس نظام کو حل کرتے ہوئے  $R_3$  حاصل کریں۔حاصل کلیہ نقسیم دباو $R_3$  کلیہ نقسیم دباو $R_3$  کا کلیہ کہلاتا ہے۔ جواب:  $R_3$  کلیہ نقسیم دباو $R_3$ 

سوال 8.58: ويث سلون يل

 $R_1$  اور  $R_1$  اور  $R_1$  اور  $R_2$  اور  $R_3$  این  $R_3$  اور  $R_3$  اور  $R_3$  این  $R_3$  اور  $R_3$  این  $R_3$  اور  $R_3$  این  $R_3$ 

voltage division formula<sup>55</sup>

<sup>&</sup>lt;sup>56</sup> برطانوی سائنسدان چارکس ویٹ سٹون [1875-1802] سے اس دور کانام منسوب ہے۔

wheatstone bridge<sup>57</sup>

 $<sup>\</sup>mathrm{ammeter}^{58}$ 

 $<sup>\</sup>rm bridge^{59}$ 



شكل 8.59: آمد ورفت په سوال 8.59

ہو گا $\left(rac{R_x}{R_1+R_x}
ight)V_s=\left(rac{R_3}{R_2+R_3}
ight)V_s$  ہو گا۔ چونکہ ہے دونوں رباہ برابر ہیں للذا جس سے در کار جواب حاصل ہوتا ہے۔

سوال 8.59: آمد و رفت برقی ادوار حل کرنے کے طریقے دیگر شعبوں میں بھی استعال کیے جا سکتے ہیں۔شکل 8.6 میں شہر کی سڑکوں پر فی گھنٹہ گاڑیوں کی آمد و رفت د کھائی گئی ہے۔کرخوف قانون رو کی مماثل استعال کرتے ہوئے فی گھنٹہ نا معلوم آمد و  $x_3 = -x_1 - 150$  ،  $x_2 = x_1 + 100$  : جوابات:  $x_4$  تا  $x_4$  تا  $x_4$  تا  $x_4$  تا  $x_5$  ماصل کریں۔ کیا حل کیا علی علی حل ہے؟ جوابات اور  $x_4 = x_1 + 300$  ؛ حل یکتا نہیں ہے۔

سوال 8.60: منڈی کی رسد و طلب

اشاء کی مانگ، قیت اور دستمانی کو بالترتیب O ، M اور D سے ظاہر کرتے ہیں۔دو شیر وں میں رسد و طلبی کی متوازن مساوات  $M_1=D_1,\,M_2=D_2$  کا حل درج ذیل خطی تعلقات سے حاصل کریں، جہال زیر  $M_1=D_1,\,M_2=D_2$ نوشت میں 1 پہلے شہر اور 2 دوسرے شہر کو ظاہر کرتے ہیں۔

سوال 8.61: ضيائى تاليف

 $O_2$  اور گاری آستعال کرتے ہوئے پودے، پانی  $H_2O$  اور کاربن ڈائی آسائٹ  $CO_2$  سے آسیجن اور گلوکوز  $C_6H_{12}O_6$  حاصل کرتے ہیں۔ یہ عمل، جے درج ذیل کیمیائی مساوات میں پیش کیا گیا ہے، ضیائی تالیف $C_6H_{12}O_6$  تالیف $C_6$ کہلاتی ہے۔

$$x_1 CO_2 + x_2 H_2 O \xrightarrow{\mathcal{C}U_3} x_3 C_6 H_{12} O_6 + x_4 O_2$$

کیمیائی مساوات متوازن کرنے سے مراد ہ<sub>1</sub> ، ، ، ، کی الیمی کمتر قیمتیں دریافت کرنا ہے کہ مساوات کے بائیں ہاتھ ہر قسم کی ایٹم کی تعداد دائیں ہاتھ اسی ایٹم کی تعداد کے برابر ہو۔ضیائی تالیف کی مساوات کو متوازن کریں۔

$$x_4 = 6$$
 ،  $x_3 = 1$  ،  $x_2 = 6$  ،  $x_1 = 6$  برابت:

## 8.4 خطى غير تابعيت درجه قالب ـ سمتى فضا

ہم خطی نظام کے خصوصیات کو مکمل طور پر حل کی موجودگی اور یکتائی کی نقطہ نظر سے دیکھنا چاہتے ہیں۔ ایسا کرنے کی خاطر ہم خطی الجبرا کے نئے اور بنیادی تصورات متعارف کرتے ہیں۔ ان میں خطی غیر تابعیت اور درجہ قالب زیادہ اہم ہیں۔ یاد رہے کہ گاوسی اسقاط انہیں پر مخصر ہے۔

سمتيات كى خطى تابعيت اور غير تابعيت

 $a_{(m)}$  عدد سمتیات  $a_{(m)}$   $\cdots$   $a_{(m)}$   $\cdots$   $a_{(m)}$  عداد کیسال ہے) کی خطبی مجموعہ  $a_{(m)}$  ورج ذیل مساوات دیتی ہے،

$$c_1\boldsymbol{a}_{(1)}+c_2\boldsymbol{a}_{(2)}+\cdots+c_m\boldsymbol{a}_{(m)}$$

 $<sup>{\</sup>rm photosynthesis}^{60} \\ {\rm linear~combination}^{61}$ 

جہال 
$$c_1$$
 تا  $c_m$  غیر ستی قیتیں ہیں۔اب درج ذیل مساوات پر غور کریں۔

(8.34) 
$$c_1 \mathbf{a}_{(1)} + c_2 \mathbf{a}_{(2)} + \dots + c_m \mathbf{a}_{(m)} = \mathbf{0}$$

ظاہر ہے کہ تمام  $c_j$  کی قیمت صفر ہونے کی صورت میں مساوات 8.34 درست ہو گا چو تکہ ایک صورت میں ماوات 8.34 درست ہو تب  $c_j$  حاصل ہوتا ہے۔ اگر m عدد  $c_j$  کی یہ واحد قیمت ہو جس کے لئے مساوات 8.34 درست ہو تب  $a_{(m)}$  تا  $a_{(m)}$  تا تا  $a_{(m)}$  تا a

$$a_{(1)} = k_2 a_{(2)} + \dots - k_m a_{(m)}$$
  $(k_j = -\frac{c_j}{c_1})$ 

جہاں چند  $k_j$  صفر ہو سکتے ہیں (  $oldsymbol{a}_{(1)}=oldsymbol{0}$  کی صورت ہیں تمام  $k_j$  صفر ہو سکتے ہیں)۔

خطی طور تابع سمتیات کے سلسلہ سے کم از کم ایک عدد سمتیہ، اور عین ممکن ہے کہ ایک سے زیادہ سمتیات، خارج کرتے ہوئے خطی طور غیر تابع سمتیات کا سلسلہ وہ کمتر تعداد کے سمتیات ہوں کم کر سکتے ہیں۔ سمتیات ہیں جن کے ساتھ ہم کام کر سکتے ہیں۔

مثال 8.25: تنظى طور غير تالع اور خطى طور تابع سمتيات درج ذيل سمتيات

$$\mathbf{a}_{(1)} = \begin{bmatrix} 1 & 2 & 0 & -3 \end{bmatrix}$$
$$\mathbf{a}_{(2)} = \begin{bmatrix} 4 & -2 & 2 & 6 \end{bmatrix}$$
$$\mathbf{a}_{(3)} = \begin{bmatrix} 1 & -3 & 1 & 6 \end{bmatrix}$$

linearly independent set<sup>63</sup> linearly dependent <sup>64</sup> خطی طور تابع ہیں چونکہ انہیں استعال کرتے ہوئے مساوات 8.34 کی طرح درج ذیل لکھا جا سکتا ہے۔

$$2a_{(1)} - a_{(2)} + 2a_{(3)} = 0$$

درج بالا کو با آسانی الجبرا سے ثابت کیا جا سکتا ہے البتہ اس تعلق کو حاصل کرنے اتنا آسان نہیں ہے۔ تابعیت ثابت کرنے کا منظم طریقہ نیچے دیا گیا ہے۔

اس مثال کے پہلے دو عدد سمتیات خطی طور غیر تابع ہیں۔

قالب كادرجه

تعریف: قالب A میں خطی طور غیر تابع صفول کی زیادہ سے زیادہ تعداد کو A کا درجہ  $^{65}$  کہتے ہیں۔

قالبوں اور خطی مساوات کے نظاموں کی عمومی خصوصیات سبھنے میں درجہ قالب کا تصور کار آمد ثابت ہو گا۔

مثال 8.26: درجه قالب

جيساً گزشته مثال مين ديكها گيا، درج ذيل قالب مين دو عدد صف خطى طور غير تاليع بين للذا اس قالب كا درجه 2 ہے۔

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & -3 \\ 4 & -2 & 2 & 6 \\ 1 & -3 & 1 & 6 \end{bmatrix}$$

دھیان رہے کہ درج A اس صورت 0 ہو گا جب A=0 ہو۔ یہ حقیقت درجہ قالب کی تعریف سے اخذ ہوتی ہے۔

رو عدر قالب  $A_1$  اور  $A_2$  اس صورت صف برابر  $^{66}$  کہلاتے ہیں جب  $A_1$  پر محدود عمل صف کے ذریعہ  $A_2$  حاصل کرنا ممکن ہو۔

اب قالب میں خطی طور غیر تابع صفوں کی تعداد، صفوں کی جگہ تبدیل کرنے سے تبدیل نہیں ہوتی اور نا ہی کسی صف کو غیر صفر قیمت دوتی ہے۔ یوں اعمال صف کی صورت من کو غیر صفر قیمت درجہ مستقل قیمت ہوگا۔

مسکه 8.2: صف برابر قالب صف برابر قالبول کا درجه ایک حبیبا ہو گا۔

یوں گاوسی اسقاط (حصہ 8.3) سے تکونی قالب حاصل کرتے ہوئے درجہ قالب حاصل کیا جا سکتا ہے۔ تکونی قالب میں غیر صفر صفوں کی تعداد درجہ قالب ہو گی۔

مثال 8.27: مثال 8.26 میں دیے گئے قالب کا درجہ، اس کی شکونی قالب کی مدد سے دریافت کرتے ہیں۔ قالب کے دائیں جانب عمل صف کھھے گئے ہیں جہال  $S_1 \cdot S_2 \cdot S_3 \cdot S_4 \cdot S_5 \cdot S_6$  کو ظاہر کرتے ہیں۔

$$A = \begin{bmatrix} 1 & 2 & 0 & -3 \\ 4 & -2 & 2 & 6 \\ 1 & -3 & 1 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -10 & 2 & 18 \\ 0 & -5 & 1 & 9 \end{bmatrix} S_2 - 4S_1$$

$$= \begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -10 & 2 & 18 \\ 0 & 0 & 0 & 0 \end{bmatrix} S_3 - \frac{1}{2}S_2$$

آخری قالب تکونی ہے جس کے آخری صف کے تمام اندراجات صفر کے برابر ہیں للذا یہ صفر صف ہے۔ غیر صفر صف مے۔ غیر صفر صفوں کی تعداد 2 ہے للذا A کا درجہ بھی 2 ہے۔

row equivalent<sup>66</sup>

مثال 8.25 تا مثال 8.27 میں p=3 ، p=3 اور درجی قالب 2 لیتے ہوئے درج ذیل مسکے کو پڑھیں۔ مثال 8.33 سمتیات کی تابعیت اور غیر تابعیت

ایسے p عدد سمتیات جن میں ہر سمتیہ کے n عدد ارکان ہوں کو بطور قالب کے صف کھیں۔ اگر حاصل قالب کا درجہ p سے کم ہو کا درجہ p ہوتب یہ سمتیات خطی طور غیر تابع ہوں گے۔اس کے برعکس اگر اس قالب کا درجہ p سے کم ہو تب یہ سمتیات خطی طور تابع ہوں گے۔

دیگر اہم خصوصیات درج ذیل مسلے سے حاصل ہول گے۔

مسكه 8.4: سمتيات قطاركي صورت مين درجه قالب

قالب A کا درجہ ۲، اس قالب میں غیر تالغ سمتیہ قطار کی تعداد کے برابر ہو گا۔

یوں قالب A اور تبدیل محل قالب  $A^T$  کا درجہ ایک دونوں کے برابر ہو گا۔

 $r \in A$  کا درجہ r ہے۔درجہ قالب کی تعریف سے یوں  $m \times n$  قالب کی میں  $a_{(1)}$  مصف  $a_{(1)}$  مصف ہوں گے جنہیں ہم  $v_{(r)}$  ، · · · · ،  $v_{(1)}$  مصف ہوں گے جنہیں ہم مصل میں درج ویل کا کا میں میں اور  $a_{(m)}$  کا درجہ تابع کی صورت میں درج ویل کا کا جا

$$a_{(1)} = c_{11}v_{(1)} + c_{12}v_{(2)} + \cdots + c_{1r}v_{(r)}$$
  
 $a_{(2)} = c_{21}v_{(1)} + c_{22}v_{(2)} + \cdots + c_{2r}v_{(r)}$   
:

 $a_{(m)} = c_{m1}v_{(1)} + c_{m2}v_{(2)} + \cdots + c_{mr}v_{(r)}$ 

 $v_{11}$  ہے مساوات سمتیات ہیں جن میں سے ہر  $v_{11}$  عدد مساوات پر مشمل ہے۔  $v_{(1)}$  کے ارکان کو  $v_{(1)}$  مستیات کے ارکان کو بھی کھتے ہوئے درج ذیل ملتا ہے جہاں  $v_{1n}$  کھتے ہوئے درج ذیل ملتا ہے جہاں  $v_{1n}$  کے  $v_{1n}$  کہتے ہوئے درج ذیل ملتا ہے جہاں  $v_{1n}$  کے  $v_{1n}$  کے درج درج دیل ملتا ہے جہاں ہے۔

$$a_{1k} = c_{11}v_{1k} + c_{12}v_{2k} + \dots + c_{1r}v_{rk}$$

$$a_{2k} = c_{21}v_{1k} + c_{22}v_{2k} + \dots + c_{2r}v_{rk}$$

$$\vdots$$

$$a_{mk} = c_{m1}v_{1k} + c_{m2}v_{2k} + \dots + c_{mr}v_{rk}$$

اس کو درج ذیل لکھا جا سکتا ہے۔

$$\begin{pmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{mk} \end{pmatrix} = v_{1k} \begin{pmatrix} c_{11} \\ c_{21} \\ \vdots \\ c_{m1} \end{pmatrix} + v_{2k} \begin{pmatrix} c_{12} \\ c_{22} \\ \vdots \\ c_{m2} \end{pmatrix} + \dots + v_{rk} \begin{pmatrix} c_{1r} \\ c_{2r} \\ \vdots \\ c_{mr} \end{pmatrix}$$

بائیں ہاتھ سمتیہ A قالب کا k شار پر قطار ہے۔یوں درج بالا مساوات کے تحت A کا ہر قطار، دائیں ہاتھ کے r عدد سمتیات کا خطی مجموعہ ہے للذا A کے خطی طور غیر تابع قطاروں کی تعداد r سے تجاوز نہیں کر سکتی ہے جو خطی طور غیر تابع صفوں کی تعداد ہے۔

A اب یہی کچھ تبدیل محل قالب  $A^T$  کے بارے میں بھی کہا جا سکتا ہے۔ چونکہ  $A^T$  کے سمتیات صف A کے سمتیات قطار، اور  $A^T$  کے سمتیات قطار A کے سمتیات صف ہیں، للذا (درج بالا نیتیج کے تحت) A کی خطی طور غیر تابع صف سمتیات کی زیادہ سے زیادہ تعداد (جو r کی ممکن ہے۔ یول ثبوت مکمل ہوتا ہے۔ سمتیات قطار کی تعداد r ہی ممکن ہے۔ یول ثبوت مکمل ہوتا ہے۔

مثال 8.27 میں قالب A کا درجہ 2 ہے۔یوں A کے دو قطار خطی طور غیر تابع ہوں گے۔بائیں جانب سے پہلی اور دوسری قطار کو خطی طور غیر تابع لیتے ہوئے تیسرے اور چوشھ قطار کو درج ذیل لکھا جا سکتا ہے۔

$$\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \frac{2}{5} \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} - \frac{1}{5} \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} -3 \\ 6 \\ 6 \end{pmatrix} = \frac{3}{5} \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} - \frac{9}{5} \begin{pmatrix} 2 \\ -2 \\ -3 \end{pmatrix}$$

مسکہ 8.3 اور مسکہ 8.4 کی مدد سے درج ذیل مسکہ اخذ ہوتا ہے۔ مسکہ 8.5: سمتیات کی خطی طور تابعیت فرض کریں کہ p سمتیات کا ہر رکن n ارکان پر مشمل ہے۔اگر p ہوتب یہ سمتیات خطی طور تابع ہوں گے۔

n < p جہاں n

ررچہ $\mathbf{A} \leq n < p$ 

ہو گا جو مسکلہ 8.3 کے تحت خطی تابعیت کو ظاہر کرتی ہے۔

سمتي فضا

فرض کریں کہ V سمتیات کا ایبا غیر خالی سلسلہ  $^{67}$  ہے جس کے تمام سمتیات میں ارکان کی تعداد کیسال  $\alpha$  اور  $\alpha+\beta b$  ہیں موجود کسی بھی دو سمتیات  $\alpha$  اور  $\alpha$  اور  $\alpha$  کے تمام ممکنہ مجموعے  $\alpha+\beta b$  (جہال  $\alpha$  اور  $\alpha$  میں موجود کسی بھی دو سمتیات  $\alpha$  اور  $\alpha$  مساوات  $\alpha$  اور  $\alpha$  مساوات  $\alpha$  ہیں۔) بھی کہ کے ارکان ہوں، اور مزید سے کہ،  $\alpha$  اور  $\alpha$  مساوات  $\alpha$  مساوات  $\alpha$  ہیں کوئی بھی سمتیات  $\alpha$  مساوات  $\alpha$  مساوات  $\alpha$  ہیں۔) بھی فضا $\alpha$  کہلائے گا۔

V میں خطی طور غیر تابع سمتیات کی تعداد کو V کی بُعد $^{69}$  کہتے ہیں۔ یہاں ہم فرض کرتے ہیں کہ V کی بُعد محدود ہے۔ لا متناہی بُعد کے سلسلے پر بعد میں غور کیا جائے گا۔

V میں موجود خطی طور غیر تابع سمتیات کی زیادہ سے زیادہ تعداد پر بنی سلسلے کو V کا اساس  $^{70}$  کہتے ہیں۔ اس (اساسی) سلسلے میں کسی بھی ایک یا ایک سے زیادہ سمتیات کو شامل کرنے سے یہ سلسلہ خطی طور تابع ہو جائے گا۔ یوں V کی اساس میں سمتیات کی تعداد، V کی بُعد کے برابر ہو گی۔

کسی بھی دیے گئے، کیسال تعداد کے ارکان والے سمتیات  $a_{(p)}$   $\cdots$  ،  $a_{(1)}$  کس مکنہ مجموعوں کا سلسلہ، ان سمتیات کا احاطہ  $a_{(p)}$   $\cdots$  ، خطی طور ان سمتیات کا احاطہ  $a_{(p)}$   $\cdots$  کہ احاطہ از خود سمتی فضا ہے۔ اگر  $a_{(p)}$   $\cdots$  نظام کی اساس میتیات ہوں گے۔

اس سے اساس کی نئی تعریف ملتی ہے۔ سمتیات کا سلسلہ اس صورت سمتی فضا V کا اساس ہو گا (الف) اگر اس سلسلے میں سمتیات خطی طور غیر تابع ہوں اور (ب) اگر V میں کسی بھی سمتیہ کو سلسلے کے سمتیات کا خطی مجموعہ ککھنا ممکن ہو۔

ستی فضا کی ذیلی فضا $^{72}$  سے مراد V کا وہ غیر خالی ذیلی سلسلہ $^{73}$  ہے (جو پورے V پر بھی مشمل ہو سکتا ہے۔) جو V کی سمتیات پر لا گو جمع اور غیر سمتی ضرب کے قواعد پر پورا اثر تا ہوا سمتی فضا ہو۔

nonempty set<sup>67</sup>

vector space<sup>68</sup>

 $dimension^{69}$ 

basis<sup>70</sup>

span<sup>71</sup>

subspace<sup>72</sup> subset<sup>73</sup>

مثال 8.28: سمتی فضا، بُعد، اساس مثال 8.25 کے تین سمتیات کے احاطے کی بُعد 2 ہے۔ اس سمتی فضا کی اساس ان میں سے کسی بھی دو سمتیات پر مشتمل ہو گا مثلاً  $a_{(1)}$  اور  $a_{(2)}$  یا  $a_{(1)}$  اور  $a_{(3)}$  اور یا  $a_{(2)}$  اور یا مشتمل ہو گا مثلاً مثل ہو گا مثلاً ہو گا مثلاً مثل ہو گا مثلاً ہو گا ہو

 $R^n$  مسئله R6.3: مستى فضا  $R^n$  مسئله R6.3 مسئل مستى فضا  $R^n$  كى بُعد R7 موگى R8.

ثبوت: n سمتیات کی اساس درج ذیل ہے۔

$$\mathbf{a}_{(1)} = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$\mathbf{a}_{(2)} = \begin{bmatrix} 0 & 1 & \cdots & 0 \end{bmatrix}$$

$$\vdots$$

$$\mathbf{a}_{(n)} = \begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix}$$

قالب A کے سمتیات صف کے احاطے کو A کا صف فضا $^{74}$  کہتے ہیں۔ ای طرح قالب A کے سمتیات قطار کے احاطے کو A کا قطار فضا $^{75}$  کہتے ہیں۔

اب مسله 8.4 کے تحت قالب کے خطی طور غیر تابع قطاروں کی تعداد اس کے خطی طور غیر تابع صفوں کی تعداد کے برابر ہوتی ہے۔ بُعد کی تعریف کے تحت، یہ عدد صف فضا یا قطار فضا کی بُعد ہو گا۔اس سے درج ذیل مسله ثابت ہوتا ہے۔

مسکلہ 8.7: صف فضا اور قطار فضا قالب A کی قطار فضا کی بُعد، اس کی صف فضا کی بُعد اور درجہ A عین برابر ہوں گے۔

 $<sup>\</sup>begin{array}{c} {\rm row~space^{74}} \\ {\rm column~space^{75}} \end{array}$ 

آخر میں کی بھی قالب A کی غیر متجانس مساوات Ax=0 کا سلسلہ حل، سمتی فضا ہو گا جس کو A کی معدوم فضا $^{77}$  کہتے ہیں۔ اگلے جے میں درج ذیل بنیادی تعلق کو ثابت کیا جائے گا۔

(8.35) 
$$A = cرجه A$$
 کی تعداد قطار  $A$  معدومیت  $A$ 

سوالات

سوال 8.62 تا سوال 8.71 کی تکونی صورت گاوسی اسقاط سے حاصل کرتے ہوئے درجہ قالب حاصل کریں۔ صف فضا اور قطار فضا کی اساس بھی حاصل کریں۔

سوال 8.62:

$$\begin{bmatrix} 6 & -2 & 8 \\ -3 & 1 & -4 \end{bmatrix}$$

جوابات: درجہ = 1 ؛ [8 - 6] ؛ [1 - 2] ۔ آخری سمتیہ کو [6 - 3] کی جگہ [1 - 2] کھا گیا ہے۔ بقایا سوالات کے جوابات میں بھی بعض او قات سمتیہ کی سادہ ترین صورت دی گئی ہے۔

سوال 8.63:

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

جوابات: 3 : [ 0 2 1 ]، [ 2 1 0 ]، [ 1 2 0 ] <sup>7</sup> ( 1 2 1 ]، <sup>7</sup> ( 1 1 0 0 ) <sup>7</sup> ( 1 0 0 1 )

سوال 8.64:

$$\begin{bmatrix} 8 & 0 & 4 & 0 \\ 0 & 2 & 0 & 4 \\ 4 & 0 & 2 & 0 \end{bmatrix}$$

null set<sup>76</sup> nullity<sup>77</sup>  $[0\ 1\ 0]^T$  ( $[0\ 1\ 0]^T$  ))

سوال 8.65:

$$\begin{bmatrix} 2 & 0 & 4 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 5 & -1 \end{bmatrix}$$

 $[0\ 0\ 1\ -1]^T$  ( $[0\ 0\ 1\ -1]^T$  ( $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ -1]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ -1]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\ 1\ 0]^T$  ( $[0\ 0\ 1\ 0]^T$  )  $[0\ 0\$ 

سوال 8.66:

$$\begin{bmatrix} 2 & 3 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$

 $[0\ 0\ 1]$  ،  $[0\ 0\ 2]$  ،  $[1\ 2\ 0]^T$  :  $[0\ 0\ 1]$  ،  $[0\ 9\ -1]$  ،  $[3\ 0\ 2]$  : 3

سوال 8.67:

$$\begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

 $[0 \ a^2-b^2]^T$  ( $[a \ b]^T$  :  $[0 \ a^2-b^2]$  ( $[a \ b]$  : 2) جوابات:

سوال 8.68:

$$\begin{bmatrix} 1 & 2 & 4 & 8 \\ 2 & 1 & 8 & 4 \\ 4 & -1 & 16 & -4 \\ 8 & 1 & 32 & 4 \end{bmatrix}$$

جوابات: 2 ؛ [ 2 4 8 ] ، [ 1 0 1 0 4 ] ؛ <sup>7</sup> [ 1 2 4 8 ] <sup>7</sup> .

سوال 8.69:

$$\begin{bmatrix} 8 & 4 & 8 & 2 \\ 16 & 8 & 4 & 4 \\ 8 & 4 & -4 & 2 \\ 2 & 8 & 8 & 4 \end{bmatrix}$$

 $[ \ 0 \ 0 \ 0 \ 1 \ ]^T \cdot [ \ 0 \ 2 \ 2 \ -1 \ ]^T \cdot [ \ 8 \ 16 \ 8 \ 2 \ ]^T \cdot [ \ 0 \ 0 \ 1 \ 0 \ ] \cdot [ \ 0 \ 56 \ 48 \ 28 \ ] \cdot [ \ 8 \ 4 \ 8 \ 2 \ ] \cdot \\$ 

سوال 8.70:

$$\mathbf{A} = [a_{jk}] = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \end{bmatrix} \qquad (a_{jk} = j + k)$$

جوابات: 2 : [ 2 3 4 5 ] <sup>7</sup> : [ 0 1 2 3 ] ، [ 2 3 4 5 ] <sup>7</sup> : [ 2 3 4 5 ] <sup>7</sup>

سوال 8.71:

$$\mathbf{A} = [a_{jk}] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{bmatrix} \qquad (a_{jk} = j + k - 1)$$

وابات: 2 ؛ [ 2 2 3 ] أ [ 2 2 4 ] أ [ 2 3 4 ] أ تا الله عند الله عنه الله عنه الله عنه الله عنه الله عنه الله ع

سوال  $a_{jk}=j+k-1$  ، جہاں  $A=[a_{jk}]$  ، جہاں  $A=[a_{jk}]$  ، جہاں  $a_{jk}=j+k-1$  ، جہاں  $a_{jk}=j+k-1$  ، جہاں محقیقت کو گابت کی سوال  $a_{jk}=j+k-1$  میں  $a_{jk}=j+k-1$  ، جہاں محقیقت کو گابت کی گیا ہے۔

سوال 8.73: قالب  $A=[a_{jk}]$  ، جہال  $A=[a_{jk}]$  کے برابر ہے ( $a_{jk}=j+k+c$ )، کا درجہ n=4 کے برابر ہے۔ اس حقیقت کو n=4 لیتے ہوئے ثابت کریں۔

سوال 8.74: قالب  $[a_{jk}]$  ، جہال  $a_{jk}=2^{j+k-2}$  ، جہال ہے۔ اس جہاں ہوال 3.74: قالب  $[a_{jk}]$  ، جہال ہوئے ثابت کریں۔

سوال 8.75 تا سوال 8.79 میں قالبول کی عمومی خصوصیات پر غور کیا گیا ہے۔ دیے گئے تعلق ثابت کریں۔

سوال 8.75:

$$AB \Rightarrow \mathcal{O} = B^T A^T \Rightarrow \mathcal{O}$$

سوال  $A^2$  اگر درجہ A ورجہ B ہو تب ضروری نہیں ہے کہ درجہ  $A^2$  ورجہ  $B^2$  ہو گا۔

سوال 8.77: غیر چکور قالب <math>A کے یا تو صف خطی طور غیر تابع ہوں گے اور یا اس کے قطار خطی طور غیر تابع ہوں گے۔

سوال 8.78: اگر چکور قالب کے صف خطی طور غیر تابع ہوں، تب اس کے قطار بھی خطی طور غیر تابع ہوں گے۔اس طرح اگر اس قالب کے قطر خطی طور غیر تابع ہوں، تب اس کے صف بھی خطی طور غیر تابع ہوں گے۔

سوال 8.79: مثال دے کر ثابت کریں درجہ AB کسی صورت درجہ A یا درجہ B سے زیادہ نہیں ہو گا۔

سوال 8.80 تا سوال 8.88 میں ثابت کریں کہ آیا دیے گئے سمتیات خطی طور تابع ہیں یا خطی طور غیر تابع ہیں۔ سوال 8.80:

$$\begin{bmatrix} 1 & 2 & 0 & 1 \end{bmatrix}$$
,  $\begin{bmatrix} 2 & 0 & -3 & 2 \end{bmatrix}$ ,  $\begin{bmatrix} 0 & 4 & 3 & 0 \end{bmatrix}$ 

جواب: خطی طور تابع

سوال 8.81:

$$\begin{bmatrix}1&0&2&1\end{bmatrix},\quad\begin{bmatrix}0&1&1&2\end{bmatrix},\quad\begin{bmatrix}1&2&1&2\end{bmatrix}$$

جواب: خطی طور غیر تابع۔ سمتیات کو بطور قالب کے صف سمتیہ لکھتے ہوئے گاوسی اسقاط سے قالب کا درجہ حاصل کرتے ہوئے سمتیات کی تابعیت یا غیر تابعیت دریافت کی جا سکتی ہے۔

سوال 8.82:

$$\begin{bmatrix}1&0&2&1\end{bmatrix},\quad\begin{bmatrix}0&1&1&2\end{bmatrix},\quad\begin{bmatrix}1&2&1&2\end{bmatrix},\quad\begin{bmatrix}2&1&1&2\end{bmatrix}$$

جواب: خطی طور غیر تابع

سوال 8.83:

$$\begin{bmatrix}1&0&2&1\end{bmatrix},\quad\begin{bmatrix}0&1&1&2\end{bmatrix},\quad\begin{bmatrix}1&2&1&2\end{bmatrix},\quad\begin{bmatrix}3&1&4&2\end{bmatrix}$$

جواب: خطی طور تابع

سوال 8.84:

$$\begin{bmatrix} 0.2 & 0.0 & 0.1 & 0.6 \end{bmatrix}, \quad \begin{bmatrix} 0.1 & 0.2 & 0.1 & 0.0 \end{bmatrix}, \\ \begin{bmatrix} 0.4 & 0.2 & 0.1 & 0.4 \end{bmatrix}, \quad \begin{bmatrix} 0.0 & 0.1 & 0.1 & 0.4 \end{bmatrix}$$

جواب: خطی طور غیر تابع

سوال 8.85:

 $\begin{bmatrix} 0.4 & 0.0 & 0.1 & 0.2 \end{bmatrix}, \quad \begin{bmatrix} 0.2 & 0.2 & 0.1 & 0.4 \end{bmatrix}, \quad \begin{bmatrix} 0.0 & 0.2 & 0.1 & 0.4 \end{bmatrix}$ 

جواب: خطی طور غیر تابع

سوال 8.86:

$$\begin{bmatrix} 0.2 & -0.2 & 0.1 & 0.4 \end{bmatrix}, \quad \begin{bmatrix} 0.4 & 0.0 & 0.1 & -0.2 \end{bmatrix}$$
$$\begin{bmatrix} 0.0 & 0.2 & 0.1 & 0.4 \end{bmatrix}, \quad \begin{bmatrix} 0.1 & 0.2 & 0.4 & 0.4 \end{bmatrix}$$

جواب: خطی طور غیر تابع

سوال 8.87:

$$\begin{bmatrix} \frac{1}{2} & -\frac{2}{3} & 0 & \frac{3}{2} \end{bmatrix}, \quad \begin{bmatrix} \frac{1}{5} & 1 & -\frac{1}{2} & -\frac{1}{3} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & \frac{2}{3} & -\frac{1}{2} \end{bmatrix}, \quad \begin{bmatrix} \frac{9}{5} & -\frac{1}{3} & \frac{7}{6} & \frac{17}{6} \end{bmatrix}$$

جواب: خطی طور تابع

سوال 8.88:

$$\begin{bmatrix} -\frac{1}{2} & -\frac{3}{2} & 0 \end{bmatrix}, \quad \begin{bmatrix} \frac{2}{5} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}, \quad \begin{bmatrix} 1 & 2 & \frac{2}{3} \end{bmatrix}$$

جواب: خطی طور غیر تابع

سوال 8.89: خطى طور غير تابع ذيلي سلسله

درج ذیل سمتیات کے دائیں ترین سمتیہ [ 10 4 1- 10 ] سے شروع کرتے ہوئے باری باری ایک ایک سمتیہ کم کرتے ہوئے خطی طور غیر تابع ذیلی سلسلہ دریافت کریں۔

 $\begin{bmatrix} 4 & 1 & 2 & 6 \end{bmatrix}, \quad \begin{bmatrix} 1 & 2 & 1 & 4 \end{bmatrix}, \quad \begin{bmatrix} 5 & -4 & 1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 10 & -1 & 4 & 10 \end{bmatrix}$ 

جوابات: [4126] اور [4126]

سوال 8.90 تا سوال 8.90: کیا دیے گئے سمتیات، سمتی فضا ہیں۔ سمتی فضا ہونے کی صورت میں اس کی بُعد اور اساس (  $v_2$  ،  $v_2$  ،  $v_2$  ) دریافت کریں ۔

بوال 8.90: $oldsymbol{v}_1-oldsymbol{v}_2+2oldsymbol{v}_3=0$  سوال تجال ہوں ہوتا ہے۔  $R^3$ 

روابات: 2 : [ -2 0 1 ] ، [ -2 0 1 ] ، [ 1 2 0 1 ] ، [

 $v_1 \geq v_2$  ہوال  $v_1 \geq v_2$  ہے۔ جہال  $v_1 \geq v_2$  ہے۔

جواب: سمتی فضا نہیں ہے۔

سوال  $R^5$ : 8.92 کے تمام مثبت ارکان۔

جواب: سمتی فضا نہیں ہے۔

 $2v_1+3v_2-4v_3=0$  اور  $3v_1-v_3=0$  اور  $R^3$  (8.93) برال  $R^3$  (8.93) برال  $R^3$  (8.93)

 $[1 \frac{10}{3} 3]$  اور اساس  $c[1 \frac{10}{3} 3]$  اور اساس ال

 $v_1 = 2v_2 = 3v_3 = 4v_4$  سوال 8.94 کے تمام سمتیات جہاں  $R^4$ 

 $[4\ 2\ \frac{4}{3}\ 1]$  : 1 : [4 2  $\frac{4}{3}$  1]

# 8.5 خطی نظام کے حل: وجودیت، یکتائی

خطی نظام کے حل کی وجودیت، یکنائی اور عمومی ساخت کی مکمل معلومات اس کی درجہ سے حاصل ہوتی ہے۔ اس پر غور کرتے ہیں۔

اگر n متغیرات پر مبنی مساوات کے خطی نظام کی عددی سر قالب اور افنرودہ قالب کا درجہ کیساں n کے برابر ہوتب اس نظام کا حل میکن ہوتب اس نظام کا حل میک تعداد میں حل ممکن ہوتب نظام کا حل میک تعداد میں حل ممکن ہوں گے۔ اگر ان قالبوں کے درجہ آپس میں مختلف ہوں تب نظام کا کوئی حل ممکن نہ ہوگا۔

اس حقیقت کو ثابت کرتے ہیں۔ایبا کرنے کی خاطر ہم A کا ذیلی قالب $^{78}$  بروئے کار لائیں گے۔ A سے چند صف یا چند قطار (یا دونوں) خارج کرتے ہوئے اس کا ذیلی قالب حاصل ہوتا ہے۔ A سے صفر صف اور صفر قطار خارج کرتے ہوئے ہی اس کا ذیلی قالب حاصل کیا جا سکتا ہے جو ظاہر ہے کہ A ہی ہو گا۔

مسّله 8.8: خطى نظام كا بنيادي مسّله

(الف) وجودیت $^{79}$  ایبا خطی نظام جو n متغیرات  $x_n \cdot \cdots \cdot x_1$  کے درج ذیل m مساوات پر مبنی ہو،

(8.36) 
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$
$$\vdots$$
$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

A صرف اور صرف اس صورت بلا تضاد ہو گا، یعنی اس کے عل ممکن ہوں گے، جب نظام کے عددی سر قالب کا درجہ اس نظام کے افغرودہ قالب درج  $\widetilde{A}$  کا درجہ اس نظام کے افغرودہ قالب درج  $\widetilde{A}$  کے درجے کے برابر ہو۔ عددی سر قالب اور افغرودہ قالب درج ویل ہیں۔

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad \tilde{\mathbf{A}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

 $<sup>\</sup>begin{array}{c} {\rm submatrix}^{78} \\ {\rm existence}^{79} \end{array}$ 

(+) یکتائی $^{80}$  نظام  $^{8.36}$  کا حل اس صورت یکتا ہو گا جب A کا درجہ اور  $\tilde{A}$  کا درجہ، n کے برابر ہو۔

 $(\ \ \ )$  لا متناہی تعداد کیے حل۔ اگر A اور A کا کیسال درجہ r ، نا معلوم متغیرات کی تعداد n سے کم ہو تب نظام 8.36 کے لا متناہی تعداد میں حل ممکن ہوں گے۔ ایسے تمام حل، r موزوں متغیرات (جس کے ذیلی عددی سر قالب کا درجہ لازمی طور پر r ہو۔) کو بقایا n-r اختیاری متغیرات کی صورت میں معلوم کرتے ہوئے حاصل کے جا سکتے ہیں۔ اختیاری متغیرات کی قیمتیں چنتے ہوئے مختلف حل حاصل ہوں گے۔ (مثال 8.23 دیکھیں۔)

(ت) گاوسی اسقاط (حصہ 8.3)۔ گاوی اسقاط سے تمام حل حاصل کیے جا سکتے ہیں۔ (جیسا حصہ 8.3 میں بتلایا گیا ہے، گاوی اسقاط سے خود بخود حل کی موجودگی کا پتہ لگے گا۔)

ثبوت :

$$c_{(n)}$$
 نظام 8.36 کو سمتی مساوات  $Ax = b$  یا  $Ax = b$  کی سمتیات قطار (8.37) نظام 8.36 کو سمتی مساوات  $c_{(1)}x_1 + c_{(2)}x_2 + \cdots + c_{(n)}x_n = b$ 

8.4 کھا جا سکتا ہے۔ A کے ساتھ b کی قطار شامل کرتے ہوئے افٹرودہ قالب  $\tilde{A}$  حاصل ہوتا ہے۔ مسکلہ  $\tilde{A}$ 

$$ilde{A}$$
 ورچ  $A$  = درچ  $\tilde{A}$ 

اب اگر نظام 8.36 کا حل x ہو تب مساوات 8.37 کے تحت b کو قطار  $c_{(n)}$   $\cdots$   $c_{(n)}$   $\cdots$  کی صورت a میں بطور خطی مجموعہ کھا جا سکتا ہے (یعنی b خطی طور غیر تابع نہیں ہو گا) لہذا  $\tilde{A}$  اور A میں خطی طور غیر تابع سمتیات قطار کی تعداد ایک جیسی ہو گی اور یوں ان قالبوں کا درجہ بھی ایک جیسا ہو گا۔

راتھ ہی ساتھ اگر درجہ  $m{A}$  ورجہ  $m{A}$  ہو تب  $m{b}$  لازماً  $m{b}$  کے سمتیات قطار کا خطی مجموعہ ہو گا لیعنی  $m{b} = lpha_1 m{c}_{(1)} + \dots + lpha_n m{c}_{(n)}$ 

ورنه

$$ilde{A}$$
 درجہ  $1+A$ 

ہو گا۔اب مساوات 8.38 کا مطلب ہے کہ نظام 8.36 کا حل موجود ہے لینی  $x_1=\alpha_1$  جو ہو گا۔اب مساوات 8.38 کو د کیچ کر لکھا جا سکتا ہے۔

 $uniqueness^{80}$ 

(+) اگر درجہ n=A ہو تب مسکلہ 8.4 کے تحت مساوات 8.37 کے معنیات قطار، خطی طور غیر تابع ہوں گے۔ ہم دعویٰ کرتے ہیں کہ مساوات 8.37 میں b کا دیا گیا تعلق بکتا ہے ورنہ درج ذیل لکھنا ممکن ہو گا

$$c_{(1)}x_1 + c_{(2)}x_2 + \dots + c_{(n)}x_n = c_{(1)}\tilde{x}_1 + c_{(2)}\tilde{x}_2 + \dots + c_{(n)}\tilde{x}_n$$

جس کو ترتیب دیتے ہوئے

$$(x_1 - \tilde{x}_1)\mathbf{c}_{(1)} + (x_2 - \tilde{x}_2)\mathbf{c}_{(2)} + \dots + (x_n - \tilde{x}_n)\mathbf{c}_{(n)} = \mathbf{0}$$

 $x_n - \tilde{x}_n = 0$  ....  $x_1 - \tilde{x}_1 = 0$  ہے۔  $x_n - \tilde{x}_n = 0$  ہور خطی طور غیر تابعیت کی بنا اس سے مراد  $x_n - \tilde{x}_n = 0$  ... نظام 8.36 کا حل بکتا ہیں اس کا مطلب ہے کہ مساوات 8.36 میں  $x_n$  تا  $x_n$  غیر سمتی مقدار بکتا ہیں اور یوں نظام 8.36 کا حل بکتا ہوں آب

$$\hat{c}_{(1)}\hat{x}_1 + \dots + \hat{c}_{(r)}x_r + \hat{c}_{(r+1)}\hat{x}_{r+1} + \dots + \hat{c}_{(n)}\hat{x}_n = b$$

 $\hat{c}_{(r+1)}\hat{x}_{r+1}$  جہاں  $\hat{c}_{(r+1)}\hat{x}_{r+1}$  کو  $\hat{c}_{(n)}$  کو  $\hat{c}_{(n)}$  ہموعہ کھا جا سکتا ہے۔اییا ہی کرتے ہوئے انہیں K کی قطاروں کے مجموعہ کھا جا سکتا ہے۔اییا ہی کرتے ہوئے انہیں K کی قطاروں کے مجموعہ کھے ہوئے اجزاء اکھے کر کے درج ذیل حاصل ہو گا

(8.39) 
$$\hat{c}_{(1)}\hat{y}_1 + \dots + \hat{c}_{(r)}y_r = b$$

جہال  $\hat{c}_{(n)}\hat{x}_n$  ، · · · · ،  $\hat{c}_{(r+1)}\hat{x}_{r+1}$  اجزاء n-r اجزاء  $y_j=x_j+\beta_j$  سے حاصل جہال  $y_j=x_j+\beta_j$  اور  $y_j=x_j+\beta_j$  از خود  $y_j=x_j+\beta_j$  اجزاء  $y_j=x_j+\beta_j$  تا  $y_j=x_j+\beta_j$  کی قیمتیں چنے سے  $y_j=x_j+\beta_j$  اور مطابقتی  $y_j=x_j+\beta_j$  کی قیمتیں قطعی طور تعین ہوتی ہیں، جہال  $\hat{x}_j=y_j-\beta_j$  اور مطابقتی  $\hat{x}_j=y_j-\beta_j$  کی قیمتیں قطعی طور تعین ہوتی ہیں، جہال  $\hat{x}_j=x_j+\beta_j$  کی قیمتیں قطعی طور تعین ہوتی ہیں، جہال  $\hat{x}_j=x_j+\beta_j$  کی تیمتیں قطعی طور تعین ہوتی ہیں، جہال  $\hat{x}_j=x_j+\beta_j$ 

(ت) حصہ 8.3 میں اس پر بحث کی گئی ہے المذا اس پر دوبارہ بات نہیں کی جائے گا۔

درج بالا مسلے کا استعال حصہ 8.3 میں کیا گیا ہے جہاں مثال 8.22 کے آخر میں  $\frac{4}{7}S_3''$  کے عمل سے آخری صف، صفر کے برابر حاصل ہوتا ہے اور یوں درجہ قالب 3 حاصل ہوتا ہے جو نظام میں مستغیرات کی تعداد کے برابر ہے n=3 کے درجہ n=3 لہذا نظام کا یکتا حل پایا گیا۔

مثال 8.23 میں (n=4) ورجہ (A) ورجہ (A) ہے لہذا اس مثال کی نظام کے یوں لا متناہی تعداد میں علی ممکن ہیں۔  $(x_4)$  اور  $(x_4)$  افتیاری متغیرات کی قیمتیں چنتے ہوئے  $(x_4)$  اور  $(x_4)$  عاصل کیے جاتے ہیں۔

مثال 8.24 میں (S=0 ورجہ  $ilde{A}=0$  ورجہ (A=0) ہے لہذا اس نظام کا کوئی بھی حل ممکن نہیں ہے۔

## متجانس خطى نظام

جیسا حصہ 8.3 میں بتلایا گیا ہے، نظام 8.36 میں تمام  $b_j$  صفر ہونے کی صورت میں یہ متجانس کہلائے گا۔ اگر ایک یا ایک سے زیادہ  $b_j$  غیر صفر ہوں تب یہ غیر متجانس نظام کہلائے گا۔ مسئلہ 8.8 سے متجانس نظام کے لئے درج ذیل حاصل ہوتا ہے۔

مسكه 8.9: متجانس خطى نظام متجانس نظام

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

کا ہر صورت ایک عدد غیر اہم صفر حل  $x_1=0$  ، · · · ·  $x_1=0$  ہو گا۔ غیر صفر اہم حل صرف اور صرف اس صورت موجود ہول گے جب درجہ n>A ہو۔ اگر درجہ n>r=A ہو تب، یہ طل اور غیر اہم حل مل کر n-r بُعد کی سمتی فضا (حصہ 8.4 دیکھیں۔) بناتے ہیں جو نظام 8.40 کی حل فضا  $x_1=0$  کہلاتا ہے۔

 $solution space^{81}$ 

خاص کر اگر  $x_{(1)}$  اور  $x_{(2)}$  نظام 8.40 کے حل سمتیات ہوں تب  $x_{(2)}$  اور  $x_{(1)}$  اور  $x_{(2)}$  عظام 8.40 کا حل سمتی ہو گا۔ (دھیان رہے کہ یہ غیر متجانس نظام  $x_{(2)}$  کا حل سمتیہ ہو گا۔ (دھیان رہے کہ یہ غیر متجانس نظام کے لئے درست نہیں ہے۔مزید یہ کہ حل فضاکی اصطلاح صرف متجانس نظام کے لئے استعال کی جاتی ہے۔)

ثبوت: پہلا دعویٰ نظام کو دکھ کر سمجھا جا سکتا ہے۔ یہ اس حقیقت کے عین مطابق ہے کہ b=0 سے مراد ورجہ A=0 درجہ A=0 بر مسلہ 8.8 ہوں ہوں جہ نظام ہم صورت بلا تضاد ہو گا۔ اگر درجہ A=0 ہو تب مسلہ 8.8 ہوں گئت غیر صفو تحت غیر اہم صفو حل اس نظام کا کیٹا عل ہو گا۔ اگر درجہ A>0 ہو تب مسلہ 8.8 ہے تحت غیر صفو اہم حل موجود ہوں گے۔ یہ حل مل کر حل فضا بناتے ہیں چونکہ اگر  $x_{(1)}$  اور  $x_{(2)}$  ان میں سے کوئی دو عدد حل ہوں تب A اور A ور A ور A ہو گاجس سے مراد

$$m{A}(m{x}_{(1)} + m{x}_{(2)}) = m{A}m{x}_{(1)} + m{A}m{x}_{(2)} = m{0}$$
 ) If  $m{A}(cm{x}_{(1)}) = cm{A}m{x}_{(1)} = m{0}$ 

ہے جہال c اختیاری متعقل ہے۔اگر درجہ n>r=A ہو تب مسکہ  $e^{-2}$  گت ہم کسی بھی ترتیب ہے  $e^{-2}$  موزول متغیرات، جنہیں ہم  $e^{-2}$  ہیں  $e^{-2}$  ہیں، چن کر ان کی قیمتیں مقرر کرتے ہوئے ہر  $e^{-2}$  ہیں، چن کر ان کی قیمتیں مقرر کرتے ہوئے ہر حل حاصل کر سکتے ہیں۔ یوں نظام  $e^{-2}$  گل فضا کی اساس، جس کو ہم مختصراً امساس حل کہیں گے،  $e^{-2}$  اور  $e^{-2}$  ہوں کے اساسی سمتیہ  $e^{-2}$  ہوں گل ہوتے ہوئے اساسی سمتیہ  $e^{-2}$  ہوں گل جہاں  $e^{-2}$  ہوں اس حل سمتیہ کے پہلے  $e^{-2}$  مطابقتی ارکان حاصل ہوتے ہیں۔ یوں نظام  $e^{-2}$  ہوں نظام  $e^{-2}$  ہوں خور کے اساسی سمتیہ کے پہلے  $e^{-2}$  مطابقتی ارکان حاصل ہوتے ہیں۔ یوں نظام  $e^{-2}$  ہوں ہوں کے گہر ہوتا ہے۔

 $^{82}$ چونکہ نظام 8.40 کی حل فضا میں ہر x کے لئے Ax=0 ہے لہذا نظام 8.40 کے حل فضا کو معدوم فضا $^{83}$  بھی کہتے ہیں اور اس کی بُعد کو A کی معدومیت $^{83}$  کہتے ہیں۔ یوں مسئلہ 8.9 درج ذیل کہتا ہے

$$(8.41) A معدومیت  $A = c c c$$$

جہاں نا معلوم متغیرات کی تعداد ( A میں قطاروں کی تعداد) n ہے۔

مزید تعریف درجہ کے تحت نظام 8.40 کا درجہ  $A\geq m$  ہو گا۔یوں m< n کی صورت میں درجہ n>A ہو گا۔اس طرح مسکہ 8.9 سے درج ذیل مسکہ اخذ ہوتا ہے۔

null space<sup>82</sup> nullity<sup>83</sup>

مسئلہ 8.10: متغیرات کی تعداد سے کم مساوات کا متجانس نظام ایسا متغیرات کی تعداد سے کم ہو کے ہر صورت غیر صفر اہم حل موجود ہوں گے۔ ایسا متجانس نظام جس میں مساوات کی تعداد، متغیرات کی تعداد سے کم ہو کے ہر صورت غیر صفر اہم حل موجود ہوں گے۔

# غير متجانس خطى نظام

نظام 8.36 کے تمام حل درج ذیل ہوں گے۔

مسكله 8.11: غير متجانس خطى نظام

اگر غیر متجانس نظام 8.36 بلا تضاد ہو تب اس کے تمام حل درج ذیل ہول گے

$$(8.42) x = x_0 + x_h$$

جہاں  $x_0$  نظام 8.36 کا کوئی بھی (معین) حل ہے جبکہ  $x_h$  ، مطابقتی متجانس نظام 8.40 کا، باری باری ہر حل ہو گا۔

ثبوت: چونکہ  $Ax_h = A(x-x_0) = Ax - Ax_0 = b - b = 0$  بہت کہ بھی کا فرق  $x_h = x - x_0$  مطابقتی نظام 8.40 کا بھی حل ہوگا۔ چونکہ  $x_h = x - x_0$  نظام 8.36 کا کوئی بھی حل ہو گا۔ چونکہ  $x_h = x - x_0$  مطابقتی نظام 8.36 کا کوئی بھی حل ہو گا۔ چونکہ  $x_h = x - x_0$  ہو سکتا ہے لہذا ہم مساوات 8.5 میں نظام 8.36 کا کوئی بھی حل  $x_0$  اور نظام 8.40 کے تمام حل حاصل کر سکتے ہیں۔

## 8.6 دودر جی اور تین در جی مقطع قالب

دو درجی مقطع قالب<sup>84</sup> درج ذیل ہے۔

(8.43) 
$$D = \mathbf{A} \overset{\text{def}}{\mathcal{C}} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

دھیان رہے کہ قالب چکور قوسین میں لکھا جاتا ہے جبکہ مقطع کو سیر ھی عمودی لکیروں میں لپیٹ کر لکھا جاتا ہے۔ مقطع A کو |A| سے بھی ظاہر کیا جاتا ہے۔

 ${\rm determinant}^{84}$ 

قاعده كريمر برائے دومساوات كاخطى نظام

دو عدد متجانس مساوات

(8.44) 
$$(b) \quad a_{11}x_1 + a_{12}x_2 = b_1$$

$$(a) \quad a_{21}x_1 + a_{22}x_2 = b_2$$

کا حل

 $D \neq 0$ 

کی صورت میں بزریعہ قاعدہ کریمو<sup>85</sup> ورج زیل ہے

(8.45) 
$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{vmatrix}}{D} = \frac{b_{1}a_{22} - a_{12}b_{2}}{D},$$

$$x_{2} = \frac{\begin{vmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{vmatrix}}{D} = \frac{a_{11}b_{2} - b_{1}a_{21}}{D}$$

جہاں مساوات 8.43 مقطع D=0 دیتی ہے۔غیر صفر اہم حل والے متجانس نظام کی صورت میں D=0 پایا جاتا ہے۔

ثبوت : ہم مساوات 8.44 کو ثابت کرتے ہیں۔  $x_2$  حذف کرنے کی خاطر مساوات 8.44-الف کو  $a_{22}$  اور مساوات 8.44-ب کو  $-a_{12}$  سے ضرب دے کر جمع کرتے ہیں۔

$$(a_{11}a_{22} - a_{12}a_{21})x_1 = b_1a_{22} - a_{12}b_2$$

ای طرح  $x_1$  حذف کرنے کی خاطر مساوات 8.44-الف کو  $-a_{21}$  اور مساوات 8.44-ب کو  $a_{11}$  سے ضرب وے کر جمع کرتے ہیں۔

$$(a_{11}a_{22} - a_{12}a_{21})x_2 = a_{11}b_2 - b_1a_{21}$$

اب  $a_{11}a_{22}-a_{12}a_{21}=D 
eq 0$  کی صورت میں درج بالا دونوں مساوات کو  $a_{11}a_{22}-a_{12}a_{21}=D \neq 0$  تقسیم کرتے ہوئے، دائیں اطراف کو قالبول کی صورت میں لکھ کر، مساوات 8.45 حاصل ہوتے ہیں۔

Cramer's rule<sup>85</sup>

مثال 8.29: درج ذیل کو قاعدہ کریمر کی مدد سے حل کریں۔

$$2x_1 + x_2 = 1 x_1 - x_2 = 5$$

عل: قاعدہ کریمر سے درج ذیل ملتا ہے۔

$$x_1 = \frac{\begin{vmatrix} 1 & 1 \\ 5 & -1 \end{vmatrix}}{\begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix}} = \frac{-1-5}{-2-1} = 2, \quad x_2 = \frac{\begin{vmatrix} 2 & 1 \\ 1 & 5 \end{vmatrix}}{\begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix}} = \frac{10-1}{-2-1} = -3$$

#### تين درجي مقطع

تین درجی مقطع قالب کی تعریف درج ذیل ہے۔

(8.46) 
$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

درج بالا میں دائیں ہاتھ علامتوں کی ترتیب +-+ ہے۔دائیں ہاتھ مقطع کے عددی سر بالترتیب بائیں ہاتھ مقطع کی پہلی قطار کے ارکان (ضرب +-+) ہیں۔ بائیں ہاتھ مقطع سے پہلی صف اور پہلی قطار حذف کرنے سے دائیں ہاتھ کا پہلا مقطع ملتا ہے۔ای طرح دوسری صف اور پہلی قطار حذف کرنے سے دوسرا مقطع ملتا ہے اور تیسری صف اور پہلی قطار حذف کرنے سے دوسرا مقطع ملتا ہے۔دائیں ہاتھ کے تین مقطع بالترتیب D میں D میں اور پہلی قطار حذف کرنے سے تیسرا مقطع ملتا ہے۔دائیں ہاتھ کے تین مقطع بالترتیب D میں D میں اور D میں اور D میں اصغر D کیا جاتا ہے۔

مساوات 8.46 میں دائیں ہاتھ اصغر کو پھیلا کر درج ذیل ملتا ہے۔

 $\frac{(8.47) \ D = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{21}a_{13}a_{32} - a_{21}a_{12}a_{33} + a_{31}a_{12}a_{23} - a_{31}a_{13}a_{22}}{\min^{86}}$ 

8.7. مقطع به تاعب ه کریمب ر

قاعدہ کریمر برائے تین مساوات کا خطی نظام

تین مساوات کے خطی نظام

(8.48) 
$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$
$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$
$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

کا حل بذریعہ قاعدہ کریمر درج ذیل ہے

(8.49) 
$$x_1 = \frac{D_1}{D}, \quad x_2 = \frac{D_2}{D}, \quad x_3 = \frac{D_3}{D}, \quad (D \neq 0)$$

جہال مساوات 8.46 اور مساوات 8.47 نظام كا مقطع D ديتے ہيں جبكه

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}, \quad D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}, \quad D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}$$

ہیں۔ دھیان رہے کہ D کی پہلی، دوسری اور تیسری قطار کی جگہ مساوات 8.48 کا دایاں ہاتھ پر کرنے سے بالترتیب  $D_2$  ،  $D_1$  اور  $D_3$  ملتے ہیں۔

درج بالا قاعدہ کر یمر کو بھی اسقاط کی ترکیب سے حاصل کیا جا سکتا ہے۔ مسئلہ 8.15 سے بھی اس کو حاصل کیا جا سکتا ہے۔

### 8.7 مقطع ـ قاعده كريمر

ابتدائی طور پر مقطع قالب، خطی نظام کے حل کے لئے استعال کیا جاتا رہا۔ اب یہ انجینئری کے دیگر مسائل، مثلاً آتگنی مسائل، تفرقی مساوات اور سمتی الجبرا، میں بھی اہم کردار ادا کرتا ہے۔اس کو کئی طریقوں سے متعارف کرایا جا سکتا ہے۔ہم اس کو خطی نظام کے نقطہ نظر سے متعارف کرتے ہیں۔ درجہ n مقطع قالب سے مراد ایک غیر سمتی مقدار ہے جو  $n \times n$  (چکور) قالب  $A = [a_{jk}]$  سے منسوب  $n \times n$  منسوب ہے اور جس کو درج ذیل سے ظاہر کیا جاتا ہے۔

(8.50) 
$$D = A \overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}}{\overset{\text{dist}}{\overset{\text{dist}}}{\overset{\text{dist}}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{d}}{\overset{\text{dist}}{\overset{\text{dist}}}{\overset{\text{dist}}}}{\overset{\text{dist}}}{\overset{\text{dist}}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{\text{dist}}{\overset{d}}{\overset{\text{dist}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}}$$

n=1 کے لئے مقطع قالب کی تعریف درج ذیل ہے۔

$$(8.51) D = a_{11}$$

 $n \geq 2$  کے لئے مقطع کی تعریف  $n \geq 2$ 

(8.52) 
$$D = a_{j1}C_{j1} + a_{j2}C_{j2} + \dots + a_{jn}C_{jn} \qquad (j = 1 \ \ 2 \cdots \ \ n)$$

$$D = a_{1k}C_{1k} + a_{2k}C_{2k} + \dots + a_{nk}C_{nk} \qquad (k = 1 \ \ 2 \cdots \ \ n)$$

$$(k = 1 \ \ 2 \cdots \ \ n)$$

(8.53) 
$$C_{jk} = (-1)^{j+k} M_{jk}$$

ہے اور  $M_{jk}$  از خود درجہ n-1 مقطع قالب ہے، جو A سے  $a_{jk}$  رکن کا صف اور قطار، لینی j صف اور k عظار، حذف کرتے ہوئے حاصل ذیلی قالب کا مقطع ہے۔

یوں D کی تعریف n عدد، درجہ n-1 مقطع کے ذریعہ کی جاتی ہے، جہاں ہر درجہ n-1 مقطع کی تعریف از خود n-1 عدد درجہ n-2 مقطع کے ذریعہ کی جاتی ہے، اور یہی سلسلہ چاتا رہتا ہے حتی کہ آخر کا درجہ n-1 ذیلی قالب آن پنچے جس کا مقطع، قالب کا داحد رکن ہو گا۔

مقطع کی تعریف کے تحت ہم D کو کئی بھی صف یا قطار سے پھیلا سکتے ہیں۔یوں D کو پہلی قطار سے بھیلانے کی خاطر مساوات 8.52-الف میں j=1 لیا جائے گا۔اس طرح تیسری قطار سے D کو پھیلانے کی خاطر مساوات 8.52-ب میں k=3 لیا جائے گا۔ہر  $C_{jk}$  کو بھی بالکل اسی طرح کئی صف یا قطار سے پھیلایا جا سکتا ہے۔

مقطع کی یہ تعریف غیر مبہم ہے (ثبوت کتاب کے آخر میں ضمیمہ امیں پیش کیا گیا ہے)۔ کسی بھی صف یا قطار سے D کو پھیلا کر ایک جیسا جواب حاصل ہو گا۔ 8.7. مقطعته قاعب ه کریمب ر

یہاں یہ بتلانا ضروری ہے کہ بڑے جسامت کے مقطع کو صف یا قطار سے پھیلا کر حاصل کرنا عملًا نا قابل استعال ہے۔ یہ سمجھنے کی خاطر سوال 8.101 دیکھیں۔

مقطع کی بات کرتے ہوئے، قالب کی اصطلاحات ہی استعال کی جاتی ہیں۔ یوں ہم کہیں گے کہ D ہیں  $a_{nn}$  ارکان  $a_{jk}$  یائے جاتے ہیں، اس کے j صف اور k قطار ہیں اور اس کی مرکزی وتو پر  $a_{nn}$   $a_{nn}$  ارکان ہیں۔ و نئے اصطلاحات درج ذیل ہیں۔

کو  $a_{jk}$  کو  $a_{jk}$  کا اصغو $^{87}$  کہتے ہیں اور  $a_{jk}$  کو D کا ہم ضربی  $^{88}$  کہتے ہیں۔  $M_{jk}$ 

مساوات 8.52 کو اصغر کی مدد سے درج ذیل لکھا جا سکتا ہے۔

(الف) 
$$D = \sum_{k=1}^{n} (-1)^{j+k} a_{jk} M_{jk} \qquad (j = 1 \ \ 2 \cdots \ \ n)$$
(8.54) 
$$D = \sum_{k=1}^{n} (-1)^{j+k} a_{jk} M_{jk} \qquad (k = 1 \ \ 2 \cdots \ \ n)$$

مثال 8.30: تین درجی مقطع کے اصغر اور ہم ضربی

مساوات 8.46 میں مقطع کو پہلی قطار سے پھیلایا گیا ہے۔ہم یہاں دوسری صف کے ارکان کے اصغر اور ہم ضربی لکھتے۔ ہیں۔ اصغر درج ذیل ہیں

$$M_{21} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}, \quad M_{22} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}, \quad M_{23} = \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}$$

جبکہ ہم ضربی  $C_{21}=M_{21}$  ،  $C_{21}=M_{22}$  ، اور  $C_{23}=-M_{23}$  ہیں۔بقایا تمام ارکان کے اصغر اور ہم ضربی حاصل کریں۔آپ دیکھیں گے کہ درج ذیل خانہ دار نقش پیدا ہوتا ہے۔

 $\frac{\rm minor^{87}}{\rm cofactor^{88}}$ 

مثال 8.31: تین در جی مقطع ایک ہی تین در جی مقطع کو پہلی صف اور دوسری صف سے حاصل کرتے ہیں۔

$$D = \begin{vmatrix} 2 & 0 & -3 \\ 1 & 2 & 5 \\ 3 & 4 & 1 \end{vmatrix} = 2 \begin{vmatrix} 2 & 5 \\ 4 & 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} - 3 \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
$$= 2(2 - 20) - 0(1 - 15) - 3(4 - 6) = -30$$

$$D = \begin{vmatrix} 2 & 0 & -3 \\ 1 & 2 & 5 \\ 3 & 4 & 1 \end{vmatrix} = -1 \begin{vmatrix} 0 & -3 \\ 4 & 1 \end{vmatrix} + 2 \begin{vmatrix} 2 & -3 \\ 3 & 1 \end{vmatrix} - 5 \begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}$$
$$= -1(0+12) + 2(2+9) - 5(8-0) = -30$$

مثال 8.32: تكونى قالب كالمقطع

(8.55) 
$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ 0 & a_{33} \end{vmatrix} = a_{11} a_{22} a_{33}$$

درج بالا مثال میں آپ نے دیکھا کہ تکونی قالب کا مقطع، مرکزی وتر کے تمام اجزاء کا حاصل ضرب ہے۔

8.7. مقطع \_ قاعب ده کريمب ر

مقطع کی عمو می خصوصیات

مقطع کی تعریف (مساوات 8.52) استعال کرتے ہوئے مقطع حاصل کرنا نہایت لمباکام ہے۔انمال صف سے نہایت عمد گی کے ساتھ مقطع حاصل کیا جا سکتا ہے۔ انمال صف سے بالائی تکونی مقطع کی صورت حاصل کی جاتی ہے، جس کے مرکزی و تر کے اندراجات کا حاصل ضرب ورکار مقطع ہو گا۔یہ ترکیب قالب پر لا گو انمال صف کی طرح ضرور ہے لیکن بالکل اس کی طرح ہر گزنہیں ہے۔بالخصوص، مقطع کے دو صف کی جگہ آپس میں تبدیل کرنے سے مقطع کی قیت منفی اکائی (1-) سے ضرب ہو گا۔ تفصیل درج ذیل ہے۔

مسكه 8.12: بنيادي اعمال صف اور مقطع كي خصوصيات

- (الف) دو صفول کا آپی میں تبادلہ کرنے سے مقطع کی قیمت -1 سے ضرب ہو گا۔
- (ب) ایک صف کے مضرب کو دوسرے صف کے ساتھ جمع کرنے سے مقطع کی قیت تبدیل نہیں ہو گا۔
- (پ) کسی صف کو غیر صفر مستقل c سے ضرب دینے سے مقطع کی قیمت c سے ضرب ہو گا۔ (بید c علی درست ہے لیکن ایسا کرنا بنیادی عمل صف نہ ہو گا۔)

ثبوت: (الف) ہم اس حقیقت کو الکواجی ماخوذ سے ثابت کرتے ہیں۔ دو درجی (n=2) مقطع کے لئے (الف) درست ہے یعنی

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc, \quad \begin{vmatrix} c & d \\ a & b \end{vmatrix} = bc - ad$$

ہم اب الکراجی مانوذ کا قیاس کرتے ہوئے کہتے ہیں کہ درجہ  $2 \leq n-1$  مقطع کے لئے بھی (الف) درست ہے اور اس کو درجہ n مقطع ہے اور اس کے دو صفوں اور اس کو درجہ n مقطع ہے اور اس کے دو صفوں کا آپس میں تبادلہ کرنے سے کے مقطع حاصل ہوتا ہے۔ D اور E کو کسی الی صف سے پھیلائیں جس کی جگہ تبدیل نہ کی گئی ہو۔اس کو ہم j صف کہتے ہیں۔ مساوات 8.54-الف سے درج ذیل لکھا جائے گا

(8.56) 
$$D = \sum_{k=1}^{n} (-1)^{j+k} a_{jk} M_{jk}, \quad E = \sum_{k=1}^{n} (-1)^{j+k} a_{jk} N_{jk}$$

جہاں E میں  $a_{jk}$  کے اصغر کو  $N_{jk}$  ککھا گیا ہے۔اب چونکہ  $M_{jk}$  اور  $N_{jk}$  درجہ  $N_{jk}$  ہو  $N_{jk}=-N_{jk}$  ہو لیکن اہمارے قیاس کے تحت درجہ  $N_{jk}=-N_{jk}$  کے الف درست ہے لیکنا  $N_{jk}=-N_{jk}$  ہو گا۔ گا اور پول میاوات  $N_{jk}=-N_{jk}$  کے تحت  $N_{jk}=-N_{jk}$  ہو گا۔

( ) صف ( ) ( ) صف ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(پ) مقطع اس صف سے پھیلا کر حاصل کریں جس کو c سے ضرب دیا گیا ہے۔

خبردار!  $n \times n$  قالب کو c سے ضرب دینے سے مقطع  $n \times n$  عضرب ہو گا۔

مثال 8.33: تکونی صورت حاصل کرتے ہوئے مقطع کا حصول تکونی صورت حاصل کرتے ہوئے۔ قالب کے دائیں جانب عمل صف لکھے گئے ہیں جہاں  $S_3$  ،  $S_2$  ،  $S_3$  ، اور

8.7. مقطع به تاعب ه کریمب ر

S4 گزشتہ قدم کے قالب کی پہلی، دوسری، تیسری اور چوتھی صف کو ظاہر کرتے ہیں۔

$$D = \begin{vmatrix} 2 & 6 & 0 & 4 \\ 4 & 2 & 6 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 4 & 1 & 6 \end{vmatrix}$$

$$= \begin{vmatrix} 2 & 6 & 0 & 4 \\ 0 & -10 & 6 & -7 \\ 0 & 1 & 1 & 2 \\ 0 & -2 & 1 & 2 \end{vmatrix} S_2 - 2S_1$$

$$= \begin{vmatrix} 2 & 6 & 0 & 4 \\ 0 & -10 & 6 & -7 \\ 0 & 0 & \frac{8}{5} & \frac{13}{10} \\ 0 & 0 & -\frac{1}{5} & \frac{17}{5} \end{vmatrix} S_3 + \frac{1}{10}S_2$$

$$= \begin{vmatrix} 2 & 6 & 0 & 4 \\ 0 & -10 & 6 & -7 \\ 0 & 0 & \frac{8}{5} & \frac{13}{10} \\ 0 & -10 & 6 & -7 \\ 0 & 0 & \frac{8}{5} & \frac{13}{10} \\ 0 & 0 & 0 & \frac{57}{16} \end{vmatrix} S_4 + \frac{1}{8}S_3$$

اب مثال 8.32 کی طرح، مرکزی وتر کے اندراجات کا حاصل ضرب، مقطع ہو گا۔

$$D = (2)(-10)\left(\frac{8}{5}\right)\left(\frac{57}{16}\right) = -114$$

#### مسکلہ 8.13: n درجی مقطع کے دیگر خصوصات

- (الف، ب، ب) مسكله 8.12 كے شق-الف، ب اور پ قطاروں كے لئے بھى درست ہے۔
  - (ت) تبدیلی محل سے مقطع تبدیل نہیں ہو گا۔
  - (ك) صفر صف يا قطاركي صورت مين مقطع صفر هو گا-

• (ث) راست تناسب صف یا قطار کی صورت میں مقطع صفر کے برابر ہو گا۔ بالخصوص دو ایک جیسے صف یا قطار کی صورت میں مقطع کی قیمت صفر ہو گی۔

ثبوت: (الف تا ٹ) ہیہ تمام شق اس حقیقت سے اخذ کیے جا سکتے ہیں کہ مقطع کو کسی بھی صف یا کسی بھی قطار سے کھیلا کر حاصل کیا جا سکتا ہے۔مقطع کی تبدیلی محل بالکل قالب کی تبدیلی محل کی طرح ہو گی۔یوں مقطع کا ز صف تبدیل محل کا ز قطار ہو گا۔

(ث) اگرصف i ضرب c برابر ہو صف j تب  $D=cD_1$  ہو گا جہاں  $D_1$  کے صف i اور  $D_1$  اگر میں تبادلہ کرنے سے دوبارہ  $D_1$  حاصل ہوتا  $D_1$  ایک جیسے ہوں گے۔یوں  $D_1$  کے صف  $D_1$  اور  $D_1$  بوتا  $D_2$  حاصل  $D_3$  جبکہ مسکلہ 8.12-الف کے تحت اس کی قیمت  $D_1$  ہو گا۔یوں  $D_1$  یا  $D_1$  عاصل ہوتا ہے۔بالکل اسی طرز کا ثبوت راست تناسب قطاروں کے لئے بھی پیش کیا جا سکتا ہے۔

یہ قابل توجہ ہے کہ درجہ قالب، جو قالب میں زیادہ سے زیادہ خطی طور غیر تابع صفوں یا قطاروں کی تعداد ہے (حصہ 8.4 دیکھیں)، اور مقطع کے مابین تعلق پایا جاتا ہے۔چونکہ صرف صفر قالب کا درجہ صفر کے برابر ہوتا ہے (حصہ 8.4 دیکھیں) لہٰذا ہم یہاں فرض کر سکتے ہیں کہ درجہ A>0ہے۔

مسكله 8.14: درجه قالب بذريعه مقطع

m imes n جسامت کے قالب  $A = [a_{jk}]$  کا صرف اور صرف اس صورت (غیر صفر) درجہ، m imes n جب m imes n کا ایباذیلی m imes r imes 1 قالب پایا جاتا ہو جس کا مقطع غیر صفر ہو، جبکہ ایسے ہر ذیلی قالب جس میں m imes n یا اس سے زیادہ صف ہوں کا مقطع صفر ہو۔

A 
eq 0 = A کا درجہ صرف اور صرف اس صورت n imes n ہو گا جب مقطع A 
eq 0 ہو۔

ثبوت: بنیادی انتمال صف (حصہ 8.3) درجہ قالب پر اثر انداز نہیں ہوتے (مسئلہ 8.2) اور ناہی مقطع قالب کے غیر صفر ہونے پر اثر انداز ہوتے ہیں (مسئلہ 8.13)۔ A کی زینہ دار صورت (حصہ 8.3) کو  $\widetilde{A}$  سے ظاہر کرتے ہوئے r=A برطحتے ہیں۔  $\widetilde{A}$  کے (پہلے) r صف، صف، صرف اور صرف اس صورت غیر صفر ہوں گے جب درجہ r ہو۔ فرض کریں کہ r کے بالائی بائیں کونے کا  $r \times r$  ذیلی قالب r ہے (کیوں r کے پہلے r صفر اور r کے طار پر r مشتمل ہوگا۔ چونکہ r تکونی ہے اور اس کے مرکزی وتر پر تمام اندراجات غیر صفر ہیں للذا r

8.7. مقطع \_ قاعب ه کريمسر

مقطع  $\tilde{R} \neq 0$  ہو گا۔ چونکہ A سے حاصل کردہ، مطابقتی  $r \times r$  ذیلی قالب R سے بنیادی انگمال صف کے ذریعہ  $\tilde{R}$  عاصل کیا گیا ہے لہٰذا مقطع  $R \neq 0$  ہو گا۔ ای طرح چونکہ  $\tilde{A}$  کے بالائی بائیں r+1 (یا اس سے زیادہ مکنہ) صف اور قالب کے چکور ذیلی قالب  $\tilde{S}$  میں کم از کم ایک عدد صفر صف ہو گا (ورنہ درجہ  $R + 1 \leq A$  ہوتا) للذا مقطع  $\tilde{S} = 0$  ہو گا (مسکلہ 8.13) اور چونکہ R سے حاصل کردہ مطابقتی R ذیلی قالب سے بذریعہ بنیادی انگمال صف،  $\tilde{S}$  کو حاصل کیا گیا ہے للذا مقطع R و گا۔ یوں مسکلے میں R قالب کی شق کا خابت مکمل ہوا۔

 $n \times n$  کی اور  $n \times n$  قالب ہو تب درج بالا ثبوت کے تحت درجہ n = A صرف اور صرف اس صورت ہو گا  $n \times n$  کا ایسا  $n \times n$  ذیلی قالب پایا جاتا ہو جس کا درجہ غیر صفر ہو لیخی جب مقطع  $n \times n$  و (چونکہ  $n \times n$  کا  $n \times n$  ذیلی قالب  $n \times n$  ہی ہو گا)۔

#### قاعده كريمر

اس مسکے کو استعال کرتے ہوئے ہم قاعدہ کریمو <sup>89</sup> حاصل کرتے ہیں جو خطی نظام کے حل کو مقطع کی صورت میں پیش کرتا ہے۔ اگرچہ عملًا قاعدہ کریمر <sup>90</sup> زیادہ مقبول نہیں ہے، اس کی اہمیت تفرقی مساوات کی نظام اور انجینئری کے دیگر مسائل میں پائی جاتی ہے۔

(8.57) 
$$a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{nn}x_{n} = b_{n}$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{nn}x_{n} = b_{n}$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{nn}x_{n} = b_{n}$$

\_\_\_

Cramer's rule<sup>89</sup> 20مو ئزرلینڈ کاریاضی دان، ج<sub>ب</sub>رائیل کریم [1704-1752]

(8.60)

کے عددی سر قالب کا غیر صفر مقطع D=A ہو تب اس نظام کا واحد ایک حل ہو گا۔یہ حل درج ذیل مساوات رہتے ہیں

(8.58) 
$$x_1 = \frac{D_1}{D}, \quad x_2 = \frac{D_2}{D}, \dots, \quad x_n = \frac{D_n}{D}$$

جہاں  $D_k$  وہ مقطع ہے جو D میں قطار k کی جگہ  $b_n$  ،  $\dots$  ہوگا۔

 $x_1=0$  ہو تب اس نظام کا صرف غیر اہم صفر حل  $D\neq 0$  ہو تب اس نظام کا صرف غیر اہم صفر حل  $x_1=0$  ہو گا۔ البتہ D=0 کی صورت میں نظام کے غیر صفر اہم حل بھی پائے جائیں  $x_n=0$   $x_n=0$   $x_n=0$  کی صورت میں نظام کے غیر صفر اہم حل بھی پائے جائیں گے۔

ثبوت : افنرودہ قالب  $ilde{A}$  کی جسامت n imes (n+1) ہے للذا اس کا درجہ زیادہ سے زیادہ n ممکن ہے۔اب n

(8.59) 
$$D = \mathbf{A} \overset{\bullet}{\mathcal{L}} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \neq 0$$

ہو تب مسئلہ 8.14 کے تحت درجہ n=A ہو گا۔یوں درجہ  $ilde{A}=cرجہ <math>n=A$  ہو گا۔اس طرح مسئلہ 8.8 کے تحت نظام 8.57 کا حل کیتا ہو گا۔

آئیں اب مساوات 8.58 کو ثابت کریں۔ D کو قطار k سے پھیلاتے ہیں $D=a_{1k}C_{1k}+a_{2k}C_{2k}+\cdots+a_{nk}C_{nk}$ 

جہاں D میں  $a_{ik}$  کا ہم ضربی  $a_{ik}$  ہے۔ اگر D میں قطار k کی جگہ کوئی اور اعداد بھر دیے جائیں تو ہمیں نیا مقطع ملے گا جس کو ہم  $\hat{D}$  ہم سکتے ہیں۔ ظاہر ہے کہ  $\hat{D}$  کو اس k قطار سے پھیلانے سے مساوات k کی مرز کی مساوات ملے گی جس میں  $a_{1k}$  میں  $a_{nk}$  میں خگہ یہی نئے اعداد ہوں گے جبکہ  $a_{nk}$  میں  $a_{nk}$  میں قطار  $a_{nk}$  میں قطار  $a_{nk}$  میں  $a_{nk}$  والے میں میں جب کریں تب نئے مقطع  $a_{nk}$  میں قطار  $a_{nk}$  سے اعداد میں میں میں میں میں جب کریں تب بیل باد وروز قطار  $a_{nk}$  میں کہ جس کی جگہ یہ اعداد پر کیے گئے۔ یوں مسئلہ 8.13-ث کے تحت بطور قطار  $a_{nk}$  اور دوسری مرتبہ بلطور قطار  $a_{nk}$  جس کی جگہ یہ اعداد پر کیے گئے۔ یوں مسئلہ 8.13-ث

8.7. مقطعت قاعب ه کریمب ر

ہو گا۔ یوں  $\hat{D}$  کو قطار k (جس میں  $a_{1l}$  ہو گا۔ یوں  $\hat{D}$  کو قطار k (جس میں  $\hat{D}$  ہو گا۔ یوں  $\hat{D}$  ہو گا۔ یوں  $\hat{D}$  ہو گا۔ یوں  $\hat{D}$  ہو گا۔ یوں کا جب کے بین کے جس کا جس میں میں ہوں کا جس کے جس کا جس کے جس کا جس کے جس کا جس کے جس کے جس کا جس کی جس کے جس کے جس کے جس کی جس کے جس کی جس کے جس کی جس کے جس کی جس کی جس کی جس کی جس کے جس کی جس کی جس کی جس کے جس کی جس کے جس کی جس کے

$$(8.61) a_{1l}C_{1k} + a_{2l}C_{2k} + \dots + a_{nl}C_{nk} = 0 (l \neq k)$$

اب ہم نظام 8.57 کی بہلی مساوات کے دونوں اطراف کو  $C_{1k}$  ، دوسری مساوات کے دونوں اطراف کو  $C_{2k}$  ، اور اسی طرح چلتے ہوئے آخری مساوات کے دونوں اطراف کو  $C_{nk}$  سے ضرب دیتے ان کا مجموعہ لیتے ہیں۔

(8.62) 
$$C_{1k}(a_{11}x_1 + \dots + a_{1n}x_n) + \dots + C_{nk}(a_{n1}x_1 + \dots + a_{nn}x_n)$$
  
=  $b_1C_{1k} + \dots + b_nC_{nk}$ 

ایک جیسے بن کے عددی سر اکٹھ کرتے ہوئے اس کے بائیں ہاتھ کو درج ذیل کھا جا سکتا ہے۔

$$x_1(a_{11}C_{1k} + a_{21}C_{2k} + \cdots + a_{n1}C_{nk}) + \cdots + x_n(a_{1n}C_{1k} + a_{2n}C_{2k} + \cdots + a_{nn}C_{nk})$$

مساوات 8.60 کے تحت درج بالا میں  $a_k$  کا جزو ضربی D کے برابر ہے جبکہ  $x_l$  (جہاں  $t \neq k$  ہے) کا جزو ضربی صفر کے برابر ہے المذا مساوت 8.62 کا بایاں ہاتھ  $x_k$  کے برابر ہے اور یوں اس سے ورج ذیل ماتا ہے۔

$$x_l D = b_1 C_{1k} + \dots + b_n C_{nk}$$

اس مساوات کا دایاں ہاتھ، قطار k سے پھیلایا گیا  $D_k$  ہے ( $D_k$  کی تعریف اس مسئلے میں دی گئی ہے)۔ یوں درج بالا کے دونوں اطراف کو D سے تقسیم کرتے ہوئے قاعدہ کر میر حاصل ہوتا ہے۔

اگر نظام 8.57 متجانس ہو اور  $0 \neq 0$  ہو تب ہر  $D_k$  میں ( $b_n$  ، · · · · ،  $b_1$  پر بنی ) قطار صفر کے برابر ہو گا لہذا (مسئلہ 8.13 - ٹ کے تحت) تمام  $D_k$  صفر ہوں گے اور مساوات 8.58 غیر اہم صفر حل دے گا۔

آخر میں اگر نظام 8.57 متجانس ہو اور D=0 ہو تب مسکلہ 8.14 کے تحت درجہ n>A ہو گا لہذا مسکلہ 8.9 کے تحت اس کا غیر صفر اہم حل پایا جائے گا۔

مثال 8.34: قاعدہ کریمر (مسلہ 8.15) درج ذیل خطی نظام کو قاعدہ کریمر سے حل کریں۔

$$x_1 - x_2 + x_3 = 4$$
$$x_1 + x_2 + x_3 = 2$$
$$x_1 - 2x_2 - x_3 = 3$$

طن:

$$x_{1} = \frac{\begin{vmatrix} 4 & -1 & 1 \\ 2 & 1 & 1 \\ 3 & -2 & -1 \end{vmatrix}}{\begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -2 & -1 \end{vmatrix}} = \frac{-8}{-4} = 2, \quad x_{2} = \frac{\begin{vmatrix} 1 & 4 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & -1 \end{vmatrix}}{\begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -2 & -1 \end{vmatrix}} = \frac{4}{-4} = -1$$

$$x_{3} = \frac{\begin{vmatrix} 1 & -1 & 4 \\ 1 & 1 & 2 \\ 1 & -2 & 3 \end{vmatrix}}{\begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -2 & -1 \end{vmatrix}} = \frac{-4}{-4} = 1$$

سوالات

سوال 8.95 تا سوال 8.102 عمومی نوعیت کے ہیں۔

وہ و قطاروں کی جگہ آپس میں تبدیل کرنے سے قالب B حاصل کیا گیا ہے۔ ای طرح B میں دو A قالب کا آپس میں تبادلہ کرتے ہوئے C حاصل کیا گیا ہے۔ A میں دو مرتبہ تبادلہ سے بھی C حاصل ہو گا۔ مسلہ B گا۔ مسلہ B استعال کیے بغیر ان کا مقطع حاصل کریں۔

$$A = \begin{vmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \\ 1 & 2 & 3 \end{vmatrix}, \quad B = \begin{vmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{vmatrix}, \quad C = \begin{vmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 3 & 1 \end{vmatrix}$$

8.7. مقطعية قاعب ده كريمب ر 623

$$C=(-1)(-1)6=6$$
 ،  $B=-6$  ،  $|A|=6$  جرابات:

سوال 8.96:مسئلہ 8.12 درج ذیل کا مقطع حاصل کریں۔ پہلی صف کے ساتھ دوسری صف جمع کرتے ہوئے نیا قالب حاصل کریں۔مسئلہ 8.12 استعال کے بغیر, اس نئے قالب کا مقطع حاصل کریں۔

$$\begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix}$$

جوابات: 7- ، 7-

کی پہلی صف کو 2 سے ضرب دیتے ہوئے B حاصل ہوتا ہے جس کے تیسری قطار کو Aدیتے ہوئے C حاصل ہوتا ہے۔ان کے مقطع حاصل کریں۔

$$A = \begin{vmatrix} 1 & -1 & 1 \\ -1 & 3 & 4 \\ 1 & 2 & -3 \end{vmatrix}, \quad B = \begin{vmatrix} 2 & -2 & 2 \\ -1 & 3 & 4 \\ 1 & 2 & -3 \end{vmatrix}, \quad C = \begin{vmatrix} 2 & -2 & 6 \\ -1 & 3 & 12 \\ 1 & 2 & -9 \end{vmatrix}$$

-138 ، -46 ، -23 جوابات:

سوال 8.98: مسئله 8.13 درج ذمل کا مقطع حاصل کریں۔

$$m{A} = egin{array}{cccc} 2 & -1 & 3 \ -1 & 3 & 4 \ 1 & 2 & -3 \ \end{pmatrix}, \quad m{A}^T = egin{array}{cccc} 2 & -1 & 1 \ -1 & 3 & 2 \ 3 & 4 & -3 \ \end{pmatrix}$$

جوابات: 50 · -50 ، 50-

$$A = \begin{vmatrix} 2 & 0 & 3 \\ -1 & 0 & 4 \\ 1 & 0 & -3 \end{vmatrix}, \quad B = \begin{vmatrix} 2 & -1 & 3 \\ -1 & 3 & 2 \\ 0 & 0 & 0 \end{vmatrix}, \quad C = \begin{vmatrix} 2 & 1 & 2 \\ 4 & 1 & 4 \\ -1 & 2 & -1 \end{vmatrix}$$

جوابات: 0 ، 0 ، 0

سوال 8.100: درج ذیل قالب کا مقطع، باری باری، پہلی صف، دوسری صف، پہلی قطار اور دوسری قطار سے پھیلا کر حاصل کریں۔

> > جواب: 10

سوال 8.101: پھیلا کر مقطع حاصل کرنا عملًا نا قابل استعال ہے n فابت کریں کہ درجہ n مقطع کے لئے n ضرب در کار ہوں گے۔ یوں اگر ایک ضرب حاصل کرنے کے لئے  $-10^{-9}$  سکیٹر درکار ہوں تب درج ذیل وقت درکار ہوں گے۔

$$\frac{25}{6}$$
  $\frac{20}{15}$   $\frac{10}{10}$   $\frac{n}{10}$   $\frac{25}{10}$   $\frac{10}{10}$   $\frac{10}{10}$   $\frac{10}{10}$   $\frac{10}{10}$   $\frac{10}{10}$   $\frac{10}{10}$ 

سوال 8.102: قالب ضرب غیر سمتی مقدار ثابت کریں کہ درجہ  $k \times k$ )۔ یہاں k غیر سمتی مقدار ہے۔ ثابت کریں کہ درجہ  $k \times k$ )۔ یہاں k غیر سمتی مقدار ہے۔

سوال 8.103 تا سوال 8.110 مين مقطع دريافت كرين-

سوال 8.103:

 $\begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \beta & \cos \beta \end{vmatrix}$ 

 $\cos(\alpha + \beta)$  :واب

سوال 8.104:

 $\begin{vmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{vmatrix}$ 

جواب: 1

سوال 8.105:

 8.7. مقطع ـ قاعب ه کريمسر

جواب: 1

سوال 8.106:

$$A = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}, \quad B = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}, \quad C = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix}$$

جوابا**ت**: 1− ، 2 ، 3

سوال 8.107:

$$A = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}, \quad B = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}, \quad C = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

جوابات: 1 ، 1 ، 1

سوال 8.108:

 $a^3 + b^3 + c^3 - 3abc$  :براب

سوال 8.109:

$$\begin{vmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

جواب: 1-

سوال 8.110:

$$\begin{vmatrix} 3 & 2 & 1 & 0 \\ 1 & 2 & -3 & -1 \\ 2 & 3 & 4 & -5 \\ 5 & 3 & 2 & 1 \end{vmatrix}$$

*جواب:* 15

سوال 8.111 تا سوال 8.114 متجانس مساوات کی غیر صفر اہم حل کے سوالات ہیں۔

سوال 111.8: متجانس نظام کا غیر صفر اہم حل۔ سیدھا خط ax+by=0 کی صورت میں غیر صفر اہم حل پایا جائے گا۔ سیدھے خط کی عمومی مساوات D=0 کی صورت میں غیر صفر اہم حل پایا جائے گا۔ سیدھے خط کی عمومی مساوات D=0 اور D=0 اور D=0 کے گزرتے خط کی مساوات دریافت کریں۔ اس مسئلے کو بطور درج ذیل نظام کھا جا سکتا ہے۔

$$xa + yb - c \cdot 1 = 0$$
$$a - 2b - c \cdot 1 = 0$$
$$4a + 3b - c \cdot 1 = 0$$

b · a اور c کا عددی سر مقطع صفر کے برابر شہرا کر اس سیدھے خط کی مساوات حاصل کریں۔

5x - 3y = 11 :واب

سوال 11.2: متجانس نظام کا غیر صفر اہم حل ہید تھی سطح سید تھی سطح کی عمومی مساوات ax + by + cz = p اور (0,5,4) اور (0,5,4) اور (0,5,4) کی عمومی مساوات (0,5,4) اور (0,5,4) کا نظام کھیں ہوگ (0,5,4) کی مساوات دریافت کریں۔ کی مساوات دریافت کریں۔

جواب:

$$\begin{aligned} xa + yb + zc - p &= 0 \\ a + b + c - p &= 0 \\ 3a &+ 2c - p &= 0' \\ 5b + 4c - p &= 0 \end{aligned} \quad D = \begin{vmatrix} x & y & z & -1 \\ 1 & 1 & 1 & -1 \\ 3 & 0 & 2 & -1 \\ 0 & 5 & 4 & -1 \end{vmatrix}, \quad x + y - z &= -1$$

سوال 8.113: متجانس نظام کا غیر صفر اہم حل۔دائرہ  $x^2+y^2+ax+by=c$  ثابت کریں کہ xy سطح پر دائرے کی عمومی مساوات  $x^2+y^2+ax+by=c$ 

8.7. مقطع ـ قاعب ه کريمب ر

(3,2) اور (5,-1) سے گزرتے ہوئے دائرے کا نظام کھیں۔ اس نظام کے عددی سر مقطع سے دائری کی مساوات حاصل کریں۔

 $x^2+y^2+2x+by=c$  کو پھیلا کر  $(y-y_0)^2+(x-x_0)^2=r^2$  جواب: دائرے کی عمومی مساوات  $y_0=x^2+y^2+2x+by=c$  ملتا ہے۔ نظام، عددی سر قالب اور دائرے کی مساوات درج ذیل ہیں۔

$$x^{2} + y^{2} + xa + yb - c = 0$$

$$5 + a + 2b - c = 0$$

$$13 + 3a + 2b - c = 0$$

$$26 + 5a - b - c = 0$$

$$x \quad y \quad -1$$

$$D = \begin{vmatrix} x^2 + y^2 & x & y & -1 \\ 5 & 1 & 2 & -1 \\ 13 & 3 & 2 & -1 \\ 26 & 5 & -1 & -1 \end{vmatrix}, \quad 6x^2 + 6y^2 - 24x + 10y = 26$$

سوال 11.4 ... متجانس نظام کا غیر صفر اہم حل کے کروی سطح میں عمومی مساوات  $(z-z_0)^2+(y-y_0)^2+(x-x_0)^2=r^2$  مساوات کی عمومی مساوات وریافت کریں۔ (z,0,5) ، (z,0,5)

$$x^2 + y^2 + z^2 - 10z = -21$$
 جواب:

سوال 8.115 تا سوال 8.119 کو قاعدہ کریمر سے حل کریں۔

سوال 8.115:

$$3x_1 - 2x_2 = 8$$
$$2x_1 + x_2 = 3$$

 $x_2 = -1$  ،  $x_1 = 2$  جوابات:

سوال 8.116:

$$0.8x_1 - 1.2x_2 = 1.76$$
$$0.6x_1 + 0.2x_2 = 0.88$$

$$x_2 = -0.4$$
 ،  $x_1 = 1.6$  جوابات:

سوال 8.117:

$$2x_1 + 2x_2 - x_3 = -1$$
 $2x_1 + x_2 + x_3 = -4$ 
 $x_1 - 2x_2 + 3x_3 = -7$ 
 $x_3 = -1$  ،  $x_2 = 1$  ،  $x_1 = -2$  :8.118

$$x_1 - x_2 - x_3 = 6$$
 $2x_2 + x_3 = -7$ 
 $x_1 + 3x_3 = -8$ 
 $x_3 = -3$   $x_2 = -2$   $x_1 = 1$  :3.119

$$x_1 + x_2 - 2x_3 = 5$$
 $x_2 - x_3 + x_4 = 5$ 
 $x_1 + 3x_3 = -6$ 
 $x_1 + 2x_2 - x_4 = 0$ 
 $x_4 = 2$  •  $x_3 = -2$  •  $x_2 = 1$  •  $x_1 = 0$  :

#### 8.8 معكوس قالب\_گاوس جار ڈن اسقاط

اس جھے میں صرف چکور قالبوں پر غور کیا جائے گا۔

 $n \times n$  قالب  $[a_{jk}]$  معکوس  $q^{-1}$  کو  $q^{-1}$  کے طاہر کیا جاتا ہے ہے مراد ایسا  $q^{-1}$  تالب ہے جو درج ذیل پر پورا اترتا ہو

(8.63) 
$$A^{-1}A = AA^{-1} = I$$

 $inverse^{91}$ 

 $n \times n$  قالب ہے (حصہ 8.2 ویکھیں)۔ جہال  $n \times n$  اکائی

اییا A جس کا معکوس پایا جاتا ہو غیر نادر قالب $^{92}$  کہلاتا ہے جبکہ اییا A جس کا معکوس نہ پایا جاتا ہو نادر قالب $^{92}$  کہلاتا ہے۔

اگر A کا معکوس اگریایا جانا ہو، پیہ معکوس کیتا ہو گا۔

یقیناً اگر B اور C دونوں A کے معکوس ہوں تب AB=I اور CA=I ہوں گے جن سے کیتائی کا درج ذیل ثبوت ماتا ہے۔

$$B = IB = (CA)B = C(AB) = CI = C$$

اب ہم ثابت کرتے ہیں کہ A کا معکوس< صرف اور صرف<اس صورت میں پایا جائے گا جب A کا درجہ Ax=b ہو، جو زیادہ سے زیادہ مکنہ درجہ ہے۔ اسی ثبوت سے ظاہر ہو گا کہ اگر  $A^{-1}$  موجود ہو تب a=b سے مراد a=b ہے۔ یہ ہمیں معکوس کی افادیت اور اس کا خطی نظام سے تعلق دکھلائے گا۔ (البتہ جیسا سوال 8.101 سے صاف ظاہر ہوتا ہے، اس سے ہمیں خطی نظام حل کرنے کا بہتر طریقہ میسر نہیں ہو گا۔)

مسئله 8.16: معکوس کی موجودگی

 $n \times n$  قالب A کا معکوی  $A^{-1}$  صرف اور صرف ای صورت میں موجود ہو گا جب درجہ n=A ہو،  $n \times n$  یعنی (مسکلہ 8.14 کے تحت) صرف اور صرف ای صورت جب مقطع  $A \neq 0$  ہو۔ یوں درجہ n=A کی صورت میں  $n \times n$  نادر ہو گا جبکہ درجہ n > A کی صورت میں  $n \times n$  نادر ہو گا۔

 $n \times n$  قال A اور درج ذیل نظام  $n \times n$ 

$$(8.64) Ax = b$$

پر غور کریں۔اگر معکوس  $A^{-1}$  موجود ہو تب درج بالا کے بائیں جانب کو  $A^{-1}$  سے ضرب دیتے ہوئے، مساوات 8.63 کی مدد سے درج ذیل لکھا جا سکتا ہے

$$(8.65) A^{-1}Ax = x = A^{-1}b$$

nonsingular matrix<sup>92</sup> singular matrix<sup>93</sup>

 $u=A^{-1}b=x$  جو نظام 8.64 کا طل x دیتا ہے۔اگر دوسرا حل u ہو تب Au=b ہو گا جس سے x دیتا ہے۔اگر دوسرا حل ملا ہے لہذا x کیتا حل ہے۔یوں مسکلہ 8.8 کے تحت درجہ n=A ہو گا۔

الٹ چلتے ہوئے، اگر درجہ A=n ہو تب مسکلہ 8.8 کے تحت کسی بھی b کے لئے نظام 8.64 کا حل مکتا ہو گا۔گاوسی اسقاط کے بعد قیمتیں واپس پر کرتے ہوئے ہم دیکھتے ہیں کہ x کے ارکان کے اندور b کے ارکان کے خطی مجموعے ہیں۔یوں ہم درج ذیل لکھ سکتے ہیں

$$(8.66) x = Bb$$

جہاں B حاصل کرنا باتی ہے۔ مساوات 8.64 میں پر کرنے ہے، کسی بھی b کے لئے، ورج ذیل ملتا ہےAx=A(Bb)=(AB)b=Cb (C=AB)

لہذا C=AB=I لین کائی قالب ہو گا۔ای طرح مساوات 8.64 کو مساوات 8.66 میں پر کرنے سے، کسی بھی x کے لئے،

$$x = Bb = B(Ax) = (BA)x$$

ماتا ہے لہذا BAI ہو گا۔ان نتائح کو ملا کر ثابت ہوتا ہے کہ معکوس  $B=A^{-1}$  موجود ہے۔

گاوس جار ڈن اسقاط سے معکوس کا حصول

غیر نادر  $n \times n$  قالب A کا معکوس  $A^{-1}$  حاصل کرنے کی خاطر تبدیل شدہ گاوی اسقاط کی ترکیب استعال کی جاسکتی ہے جس کو گاوس جارڈن اسقاط  $^{94}$  کہتے  $^{95}$  ہیں۔اس ترکیب کی تفصیل درج ذیل ہے۔

استعال کرتے ہوئے ہم n عدد خطی مساوات A

$$Ax_{(1)}=e_{(1)}, \quad \cdots, \quad Ax_{(n)}=e_{(n)}$$

Gauss-Jordan elimination Gauss-Jordan elimination Gauss-Jordan elimination Gauss-Jordan elimination  $^{95}$ 

1 قالب 1 قالب n imes n قالب  $e_{(n)}$   $\cdots$   $e_{(1)}$  قالب n imes n قالب  $e_{(n)}$ 

$$\boldsymbol{e}_{(1)} = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^T, \, \boldsymbol{e}_{(2)} = \begin{bmatrix} 0 & 1 & \cdots & 0 \end{bmatrix}^T, \, \cdots, \, \boldsymbol{e}_{(n)} = \begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix}^T$$

ان n عدد سمتی مساوات کے نا معلوم سمتیات  $x_{(n)}$   $\dots$   $x_{(n)}$   $x_{(n)}$   $\dots$   $x_{(n)}$   $x_{(n)}$   $\dots$   $x_{(n)}$ 

درج ذیل مثال میں گاوس جارڈن کی ترکیب استعال کی گئی ہے۔

مثال 8.35: گاوس جارڈن کی ترکیب سے قالب کے معکوس کا حصول درج ذیل قالب A کا معکوس  $A^{-1}$  دریافت کریں۔

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & -2 \\ 4 & 2 & 1 \\ -1 & -2 & 6 \end{bmatrix}$$

حل: درج ذیل "افنرودہ قالب" پر گاوی اسقاط کی ترکیب لاگو کرتے ہوئے  $\begin{bmatrix} U & H \end{bmatrix}$  حاصل کرتے ہیں۔ قالب کے دائیں جانب عمل صف کھھ گئے ہیں جہاں  $S_2$  ،  $S_1$  اور  $S_3$  گزشتہ قدم کے قالب کی پہلی، دوسری اور تیسری صف کو ظاہر کرتے ہیں۔

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 1 & 4 & -2 & 1 & 0 & 0 \\ 4 & 2 & 1 & 0 & 1 & 0 \\ -1 & -2 & 6 & 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 4 & -2 & 1 & 0 & 0 \\ 0 & -14 & 9 & -4 & 1 & 0 \\ 0 & 2 & 4 & 1 & 0 & 1 \end{bmatrix} S_2 - 4S_1$$
$$\begin{bmatrix} 1 & 4 & -2 & 1 & 0 & 0 \\ 0 & 2 & 4 & 1 & 0 & 1 \end{bmatrix} S_3 + S_1$$
$$\begin{bmatrix} 1 & 4 & -2 & 1 & 0 & 0 \\ 0 & -14 & 9 & -4 & 1 & 0 \\ 0 & 0 & \frac{37}{7} & \frac{3}{7} & \frac{1}{7} & 1 \end{bmatrix} S_3 + \frac{1}{7}S_2$$

حاصل  $\begin{bmatrix} U & H \end{bmatrix}$  پر گاوس جارڈن اسقاط لا گو کرتے ہیں۔پہلے U کے وتر پر اکائی حاصل کی گئی ہے اور بعد میں اس وتر کے بالائی جانب U کے ارکان کو صفر کیا گیا ہے۔

$$\begin{bmatrix} 1 & 4 & -2 & 1 & 0 & 0 \\ 0 & 1 & -\frac{9}{14} & \frac{2}{7} & -\frac{1}{14} & 0 \\ 0 & 0 & 1 & \frac{3}{37} & \frac{1}{37} & \frac{7}{37} \end{bmatrix} - \frac{1}{14}S_2 \\ 0 & 0 & 1 & \frac{3}{37} & \frac{1}{37} & \frac{7}{37} \end{bmatrix} S_1 + 2S_3$$

$$\begin{bmatrix} 1 & 4 & 0 & -\frac{43}{37} & \frac{2}{37} & \frac{14}{37} \\ 0 & 1 & 0 & \frac{25}{74} & -\frac{2}{37} & \frac{9}{74} \\ 0 & 0 & 1 & \frac{3}{37} & \frac{1}{37} & \frac{7}{37} \end{bmatrix} S_1 + 2S_3$$

$$\begin{bmatrix} 1 & 0 & 0 & -\frac{7}{37} & \frac{10}{37} & -\frac{4}{37} \\ 0 & 1 & 0 & \frac{25}{74} & -\frac{2}{37} & \frac{9}{74} \\ 0 & 0 & 1 & \frac{3}{37} & \frac{1}{37} & \frac{7}{37} \end{bmatrix} S_1 - 4S_2$$

آخری تین قطار معکوس  $A^{-1}$  ہو گا لینی:

$$\mathbf{A}^{-1} = \begin{bmatrix} -\frac{7}{37} & \frac{10}{37} & -\frac{4}{37} \\ \frac{25}{74} & -\frac{2}{37} & \frac{9}{74} \\ \frac{3}{37} & \frac{1}{37} & \frac{7}{37} \end{bmatrix}$$

آپ اس کو درج ذیل سے ثابت کر سکتے ہیں۔

$$\begin{bmatrix} -\frac{7}{37} & \frac{10}{37} & -\frac{4}{37} \\ \frac{25}{74} & -\frac{2}{37} & \frac{9}{74} \\ \frac{3}{37} & \frac{1}{37} & \frac{7}{37} \end{bmatrix} \begin{bmatrix} 1 & 4 & -2 \\ 4 & 2 & 1 \\ -1 & -2 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

یوں  $oldsymbol{A}oldsymbol{A}^{-1}=oldsymbol{I}$  ہو گا۔  $oldsymbol{A}oldsymbol{A}^{-1}oldsymbol{A}=oldsymbol{I}$  ہو گا۔

#### معکوس کے کلیات

چونکہ معکوس کا حصول در حقیقت میں خطی مساوات کے نظام کا حل معلوم کرنا ہے للذا قاعدہ کریمر (مسکلہ 8.15) یہاں قابل استعال ہو گا۔ یہاں بھی قاعدہ کریمر نظریاتی مطالعہ کے لئے مفید ثابت ہوتا ہے مگر اس سے (مسکلہ 8.17) کی مدد سے) 2 × 2 سے زیادہ جسامت کے قالب کی معکوس حاصل کرنا زیادہ مفید ثابت نہیں ہوتا۔

مئلہ 8.17: معکوس بذریعہ مقطع  $n \times n$  قالب  $a = [a_{jk}]$  کا معکوس درج ذیل ہے  $n \times n$ 

(8.67) 
$$A^{-1} = \frac{1}{A \overset{\text{def}}{C}} [C_{jk}]^T = \frac{1}{A \overset{\text{def}}{C}} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & & & & \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

 $A^{-1}$  جبال مقطع A میں  $a_{jk}$  کا ہم ضربی  $C_{jk}$  بہر رہے  $C_{jk}$  جہاں مقطع A کی جبال دھیان رہے کہ  $C_{jk}$  میں A کی جبال دھیان رہے کہ  $C_{jk}$  میں  $C_{jk}$  میں درج ذیل ہیں۔

(8.68) 
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \qquad A^{-1} = \frac{1}{A^{\frac{1}{2}}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

ثبوت : ہم مساوات 8.67 کے وائیں ہاتھ کو  $oldsymbol{B}$  کھے کر ثابت کرتے ہیں کہ  $oldsymbol{BA}=oldsymbol{I}$  ہے۔ہم درج ذیل کھھ کر  $oldsymbol{C}$ 

$$(8.69) BA = G = [g_{kl}]$$

ثابت کرتے ہیں کہ G=I ہے۔ قالبی ضرب کی تعریف اور مساوات 8.67 میں B کی صورت سے درج ذیل ماتا ہے۔

(8.70) 
$$g_{kl} = \sum_{s=1}^{n} \frac{C_{sk}}{A z^{b}} a_{sl} = \frac{1}{A z^{b}} (a_{1l} C_{1k} + \dots + a_{nl} C_{nk})$$

اب مساوات 8.60 اور مساوات 8.61 کے تحت l=k کی صورت میں درج بالا کے دائیں ہاتھ میں قوسین مقطع D=A ہو گا جبکہ  $l\neq k$  کی صورت میں یہ صفر ہو گا لہذا:

$$g_{kk} = rac{1}{A \, \mathcal{L}^{b \ddot{a} \star}} (A \, \mathcal{L}^{b \ddot{a} \star}) = 1$$
 $g_{kl} = 0 \qquad (l 
eq k)$ 

n=2 کی صورت میں مساوات 8.68 حاصل ہوتی ہے۔

جیو میٹری میں n=2 کی صورت عموماً یائی جاتی ہے للذا مساوات 8.68 کو یاد رکھنا مفید ثابت ہو گا۔

مثال 8.36: 2 × 2 قالب كا معكوس درج ذيل قالب كا معكوس دريافت كرين\_

$$A = \begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix}$$

حل: مساوات 8.68 سے معکوس لکھتے ہیں۔

$$A^{-1} = \frac{1}{22} \begin{bmatrix} 5 & 3 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} \frac{5}{22} & \frac{3}{22} \\ -\frac{2}{11} & \frac{1}{11} \end{bmatrix}$$

مثال 8.37: 3 × 3 قالب كا معكوس درج ذيل قالب كا معكوس مساوات 8.67 كى مدوسے حاصل كريں۔

$$\mathbf{A} = \begin{bmatrix} 2 & -3 & 4 \\ 1 & 0 & -1 \\ 4 & 3 & 2 \end{bmatrix}$$

 $C_{jk}$  ما ہے جبکہ ورج زیل ہیں

$$C_{11} = \begin{bmatrix} 0 & -1 \\ 3 & 2 \end{bmatrix} = 3, \quad C_{12} = -\begin{bmatrix} 1 & -1 \\ 4 & 2 \end{bmatrix} = -6, \quad C_{13} = \begin{bmatrix} 1 & 0 \\ 4 & 3 \end{bmatrix} = 3$$

$$C_{21} = -\begin{bmatrix} -3 & 4 \\ 3 & 2 \end{bmatrix} = 18, \quad C_{22} = \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix} = -12, \quad C_{23} = -\begin{bmatrix} 2 & -3 \\ 4 & 3 \end{bmatrix} = -18$$

$$C_{31} = \begin{bmatrix} -3 & 4 \\ 0 & -1 \end{bmatrix} = 3, \quad C_{32} = -\begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} = 6, \quad C_{33} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix} = 3$$

للذا معكوس درج ذيل ہو گا۔

$$A^{-1} = \frac{1}{36} \begin{bmatrix} 3 & 18 & 3 \\ -6 & -12 & 6 \\ 3 & -18 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{2} & \frac{1}{12} \\ -\frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\ \frac{1}{12} & -\frac{1}{2} & \frac{1}{12} \end{bmatrix}$$

آپ قالبی ضرب سے  $A^{-1}A=I$  ثابت کر سکتے ہیں۔

وتری قالب  $A=[a_{jk}]$  جہاں  $k\neq k$  کی صورت میں  $a_{jk}=0$  ہے کا معکویں صرف اس صورت میں موجود ہو گا جب تمام  $a_{jj}\neq 0$  ہوں۔ایسی صورت میں معکویں  $A^{-1}$  بھی وتری ہو گا جس کے وتری اندراجات  $\frac{1}{a_{nn}}$  ہوں گے۔

ثبوت: وتری قالب کے لئے مساوات 8.67 میں درج ذیل ہوں گے۔

$$\frac{C_{11}}{D} = \frac{a_{22} \cdots a_{nn}}{a_{11} a_{22} \cdots a_{nn}} = \frac{1}{a_{11}}, \quad \cdots$$

مثال 8.38: وتری قالب کا معکوس درج ذیل وتری قالب کا معکوس دریافت کریں۔

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -0.5 & 0 \\ 0 & 0 & 1.6 \end{bmatrix}$$

 $\frac{1}{2}=0.5$  حل: ہر وتری اندراج کا معکوس کھتے ہوئے قالب کا معکوس حاصل ہو گا لہذا پہلی اندارج 2 کی جگہ  $\frac{1}{2}=0.5$  کھھا جائے گا۔ یوں درج ذیل ماتا ہے۔

$$\mathbf{A}^{-1} = \begin{bmatrix} 0.5 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & 0.625 \end{bmatrix}$$

دو قالبوں کے حاصل ضرب کا معکوس لیتے ہوئے ہر قالب کا انفرادی معکوس لیتے ہوئے ان کے حاصل ضرب الٹ ترتیب سے حاصل کریں یعنی:

(8.71) 
$$(AB)^{-1} = B^{-1}A^{-1}$$

اسی طرح دو سے زیادہ قالبوں کے حاصل ضرب کا معکوس درج ذیل ہو گا۔

(8.72) 
$$(AB \cdots MN)^{-1} = N^{-1}M^{-1} \cdots B^{-1}A^{-1}$$

AB کے کیے ہیں۔ AB کی جبائے AB کے لئے کھتے ہیں۔ $AB(AB)^{-1}=I$ 

دونوں اطراف کے بائیں جانب کو  $A^{-1}$  سے ضرب دیتے ہیں

$$A^{-1}AB(AB)^{-1} = IB(AB)^{-1} = B(AB)^{-1} = A^{-1}I = A^{-1}$$

 $B(AB)^{-1}=A^{-1}$  اور B=B کا استعال کیا گیا ہے۔اب حاصل  $A^{-1}A=I$  اور B=B اور  $B^{-1}$  کا استعال کیا گیا ہے۔اب حاصل کرتے ہیں۔ دونوں اطراف کے بائیں جانب کو  $B^{-1}$  سے ضرب دے کر مساوات 8.71 عاصل کرتے ہیں۔

$$B^{-1}B(AB)^{-1} = (AB)^{-1} = B^{-1}A^{-1}$$

اس سے مساوات 8.72 بذریعہ الکراجی ماخوذ حاصل ہوتا ہے۔

A توالب A کے معکوس کا معکوس وہی قالب A ہو گا۔ A تاب A A A تاب کا معکوس کا معکوس وہی A تاب کا معکوس کا معکوس وہی تاب کی تاب کا معکوس وہی تاب کا معکوس وہی تاب کا معکوس وہی تاب کی تاب

قالبی ضرب کے غیر معمولی خصوصیات۔ قواعد تنییخ

قالبی ضرب اور اعداد کے ضرب کے قواعد میں درج ذیل نمایاں فرق پائے جاتے ہیں۔انہیں سمجھنا ضروری ہے۔شق ب اور پ قالبی ضرب کے قواعد تنتیخ ہیں۔

• (الف) قالبی ضرب قابل تبادل نہیں ہے یعنی عموماً درج ذیل ہو گا۔

$$(8.74) AB \neq BA$$

أرب) AB=0 اور یا BA=0 اور یا A=0 اور یا AB=0 اور یا AB=0 اور یا AB=0

$$\begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

A 
eq 0 ہے۔

ور اگر  $A \neq 0$  ہوتب بھی) نہیں لیا جا سکتا ہے۔ A = AC (پ $A \neq 0$  ہوتب بھی) نہیں لیا جا سکتا ہے۔

شق ب اور پ کی تفصیل درج ذیل مسئلے میں پیش کی گئی ہے۔

مئلہ 8.18: تواعد تنیخ فرض کریں کہ B ، A اور C تالبوں کی جسامت n imes n ہے۔

- والفB=C اور AB=AC اور AB=A ہوں تبB=C ہوگا۔
- AB=0 بیکن کرد وجد AB=0 بیکن کرد و بیکن کرد
  - اور BA اور BA نادر ہوں گے۔ A

 $A^{-1}$  کے خت  $A^{-1}$  کا معکوس موجود ہے۔ یوں بائیں طرف کو  $A^{-1}$  سے ضرب دے B=C سے  $A^{-1}AB=A^{-1}AC$  کر

 $A^{-1}AB = 0$  ب خرض کریں کہ درجہ A = 0 ہے لہذا  $A^{-1}$  موجود ہے۔ یوں  $A^{-1}$  ہور درجہ AB = 0 ہے۔ اس طرح درجہ AB = 0 کی صورت میں  $B^{-1}$  موجود ہو گا اور AB = 0 ہے مراد AB = 0 ہے۔ اس طرح درجہ AB = 0 کی صورت میں جانب کو  $ABB^{-1} = A = 0$ 

(y-1) مسئلہ 8.16 کے تحت درجہ A>0 ہو گا۔ یوں مسئلہ 8.9 کے تحت A=0 کے غیر صفر اہم ملکہ 8.40 کے مسئلہ 8.40 کے تحت درجہ A=0 سے ضرب دے کر ثابت ہوتا ہے کہ یہی عل میادات کو A=0 سے ضرب دے کر ثابت ہوتا ہے کہ یہی عل A=0 نادر ہو گا۔ کے بھی حل ہوں گے لہذا مسئلہ 8.40 کے تحت درجہ A=0 ہو گا اور مسئلہ 8.10 کے تحت درجہ A=0 ہو گا۔

(پ-2) مسئلہ 8.13-ت کے تحت  $A^T$  نادر ہو گا۔ یوں ثبوت پ-1 کے تحت  $B^TA^T$  نادر اور مساوات  $A^T$  نادر ہو گا۔ یوں مسئلہ 8.13-ت کے تحت AB نادر ہو گا۔

حاصل قالبي ضرب كالمقطع

اگرچہ عموماً  $AB \neq BA$  ہو گا۔ قالبتہ یہ دلچیپ بات ہے کہ مقطع BA = AB ہو گا۔ قالبی حاصل ضرب کا مقطع درج ذیل مسلہ دیتا ہے۔

مئلہ 8.19: حاصل قالبی ضرب کا مقطع  $n \times n$  اور  $n \times n$  اور  $n \times n$ 

(8.75) 
$$AB \mathcal{C}^{b\vec{z}} = BA \mathcal{C}^{b\vec{z}} = (A \mathcal{C}^{b\vec{z}})(B \mathcal{C}^{b\vec{z}})$$

ثبوت : اگر A یا B نادر ہوں تب مسکلہ 8.18 کے تحت AB اور BA بھی نادر ہوں گے اور مساوات B فروت مسکلہ 8.14 کے تحت B=0 ہو گی۔

اب فرض کریں کہ A اور B غیر نادر ہیں۔ یوں ہم A کو گاوی جارڈن ترکیب سے وتری صورت A میں لا سکتے ہیں۔ مسکلہ 8.12-الف اور ب اعمال صف سے مقطع کی قیت A سے ضرب ہونے کے علاوہ تبدیل نہیں ہوتی جبکہ مسکلہ 8.12-پ گاوی جارڈن ترکیب استعال کرتے ہوئے وتری صورت حاصل کرنے میں استعال نہیں ہوتا ہے۔ اب یہی اعمال صف AB کو AB میں تبدیل کرتے ہوئے مقطع AB کرنے میں اثر کریں گے۔ یوں اگر AB کے لئے مساوات 8.75 درست ہو تب سے AB کے لئے بھی درست ہو گاہ کو کھیلا کر کھتے ہیں۔

$$\hat{A}B = \begin{bmatrix} \hat{a}_{11} & 0 & \cdots & 0 \\ 0 & \hat{a}_{22} & \cdots & 0 \\ \vdots & & & & \\ 0 & 0 & \cdots & \hat{a}_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & & & & \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & \cdots & a_{11}b_{1n} \\ a_{22}b_{21} & a_{22}b_{22} & \cdots & a_{22}b_{2n} \\ \vdots & & & & \\ a_{nn}b_{n1} & a_{nn}b_{n2} & \cdots & a_{nn}b_{nn} \end{bmatrix}$$

اب ہم مقطع ÂB لیتے ہیں۔

$$\hat{A}B$$
  $\hat{C}^{b}$  = 
$$\begin{vmatrix} \hat{a}_{11}b_{11} & \hat{a}_{11}b_{12} & \cdots & \hat{a}_{11}b_{1n} \\ \hat{a}_{22}b_{21} & \hat{a}_{22}b_{22} & \cdots & \hat{a}_{22}b_{2n} \\ \vdots & & & & \\ \hat{a}_{nn}b_{n1} & \hat{a}_{nn}b_{n2} & \cdots & \hat{a}_{nn}b_{nn} \end{vmatrix}$$

دائیں ہاتھ ہم پہلی صف سے  $\hat{a}_{11}$  ، دوسری صف سے  $\hat{a}_{22}$  اور اسی طرح چلتے ہوئے آخری صف سے  $\hat{a}_{11}$  باہر لکھ سکتے ہیں۔

$$\hat{m{A}}m{B}$$
  $\hat{m{C}}^{ba} = \hat{a}_{11}\hat{a}_{22}\cdots\hat{a}_{nn}egin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \ b_{21} & b_{22} & \cdots & b_{2n} \ dots & & & & \ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$ 

اب مقطع مے ہیں مقطع ہے جبکہ بقایا مقطع ہے جبکہ بقایا مقطع ہے ہیں مقطع ہے ہیں مقطع AB کے لئے مساوات 8.75 ثابت کیا جا سکتا ہے۔ مساوات 8.75 ثابت کیا جا سکتا ہے۔

سوالات

سوال 8.120 تا سوال 8.124 میں A اور اس کا معکوس  $A^{-1}$  دیے گئے ہیں۔ گاوس جارڈن اسقاط کی مدد سے  $A^{-1}$  سے A

سوال 8.120:

$$A = \begin{bmatrix} -3 & 4 \\ -2 & -1 \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} -\frac{1}{11} & -\frac{4}{11} \\ \frac{2}{11} & -\frac{3}{11} \end{bmatrix}$$

سوال 8.121:

$$m{A} = egin{bmatrix} 2 & 4 & 0 \ 0 & 2 & 4 \ 2 & 0 & 4 \end{bmatrix}, \quad m{A}^{-1} = egin{bmatrix} rac{1}{6} & -rac{1}{3} & rac{1}{3} \ rac{1}{6} & rac{1}{6} & -rac{1}{6} \ -rac{1}{12} & rac{1}{6} & rac{1}{12} \end{bmatrix}$$

سوال 8.122:

$$\mathbf{A} = \begin{bmatrix} -0.2 & 0 & 0.4 \\ 0 & 0.2 & 1 \\ 1 & 0.4 & -0.1 \end{bmatrix}, \quad \mathbf{A}^{-1} = \begin{bmatrix} -105 & 40 & -20 \\ 250 & -95 & 50 \\ -50 & 20 & -10 \end{bmatrix}$$

سوال 8.123:

$$\mathbf{A} = \begin{bmatrix} -\frac{2}{3} & 0 & \frac{1}{3} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \\ 1 & \frac{2}{3} & -1 \end{bmatrix}, \quad \mathbf{A}^{-1} = \begin{bmatrix} -5 & -\frac{4}{3} & -1 \\ -3 & -2 & 0 \\ -7 & -\frac{8}{3} & -2 \end{bmatrix}$$

سوال 8.124:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}, \quad \boldsymbol{A}^{-1} = \begin{bmatrix} -\frac{5}{18} & \frac{1}{18} & \frac{7}{18} \\ \frac{1}{18} & \frac{7}{18} & -\frac{5}{18} \\ \frac{7}{18} & -\frac{5}{18} & \frac{1}{18} \end{bmatrix}$$

A اور اس کا معکوس  $A^{-1}$  دیے گئے ہیں۔ مساوات A یا مساوات A اور اس کا معکوس  $A^{-1}$  دیے گئے ہیں۔ مساوات A یا  $A^{-1}$  یا  $A^{-1}$  سے A دریافت کریں۔

سوال 8.125:

$$\mathbf{A} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}, \quad \mathbf{A}^{-1} = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$$

سوال 8.126:

$$A = \begin{bmatrix} 4 & -2 \\ 1 & 3 \end{bmatrix}$$
,  $A^{-1} = \begin{bmatrix} \frac{3}{14} & \frac{1}{7} \\ -\frac{1}{14} & \frac{2}{7} \end{bmatrix}$ 

سوال 8.127:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{A}^{-1} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & 0 \\ -\frac{1}{3} & \frac{2}{3} & 0 \\ -\frac{2}{3} & \frac{1}{3} & 1 \end{bmatrix}$$

سوال 8.128:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ -1 & 0 & 0 \end{bmatrix}, \quad \mathbf{A}^{-1} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

سوال 8.129:

$$\mathbf{A} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & -1 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \quad \mathbf{A}^{-1} = \begin{bmatrix} 1 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & -\frac{1}{2} & 0 \end{bmatrix}$$

سوال 8.130: سوال 8.120 ميں  $AA^{-1}$  عاصل كريں۔

I:واب $\mathcal{F}$ 

سوال 8.131: سوال 8.125 ميں  $AA^{-1}$  حاصل كريں۔

جواب: 1

سوال 8.132 تا سوال 8.137 عمومي نوعيت کے سوالات ہيں۔

 $(A^2)^{-1} = (A^{-1})^2$  عن البت کریں کہ A کے لئے ثابت کریں کہ A عنابت کریں کہ 8.132 سوال 8.132 سوال

سوال 8.133: سوال 8.132 میں دیے گئے کلیے کا عموی ثبوت پیش کریں۔

 $(A^T)^{-1} = (A^{-1})^T$  اسوال 8.134: سوال 8.125 میں دیے گئے A کے لئے ثابت کریں کہ 8.134: سوال

سوال 8.135: سوال 8.134 میں دیے گئے کلیے کا عمومی ثبوت پیش کریں۔

 $(A^{-1})^{-1}=A$  : ثابت کریں: 8.136

سوال 8.137: زاویائی تبادله

سوال 8.125 میں A گھڑی کی ایک رخ اور  $A^{-1}$  گھڑی کی دوسری رخ گھومنے کو ظاہر کرتی ہے۔اس کو سمجھ کر آپ معکوس کا مطلب بہتر سمجھ سکیں گے۔

## 8.9 سىمتى فضا،اندرونى ضرب، خطى تبادله

ہم حصہ 8.4 میں سمتی فضاکی لب لباب سمجھ چکے ہیں۔ وہاں ہم نے قالب اور خطی نظام میں قدرتی طور پر پائے جانے والے مخصوص سمتی فضاکی بات کی۔ ان سمتی فضاکے ارکان، جنہیں سمتیات کہتے ہیں، مساوات 8.7 اور مساوات 8.8 میں دیے گئے قواعد (جو اعداد کے قواعد کی طرح ہیں) پر پورا اترتے ہیں۔ ان خصوصی سمتی فضاکو احاطمے جنم دیتے ہیں، یعنی محدود تعداد کے سمتیات کے خطی مجموعے۔ مزید، ہر سمتیہ کے ارکان ۱۱ اعداد ہیں۔

ہم اس تصور کو عمومی جامہ پہناتے ہوئے، n عدد ارکان پر مشتمل تمام سمتیات کو لے کر حقیقی n بعدی سمتی فضا  $R^n$  حاصل کرتے ہیں۔ سمتیات کو "حقیقی سمتیات" کہیں گے۔یوں  $R^n$  میں ہر سمتی n عدد منظم اعداد پر مشتمل ہو گا۔

اب ہم n کی مخصوص قیمتیں لیتے ہوئے آگے بڑھتے ہیں۔ یوں n=2 کے لئے n=3 ماتا ہے جو تمام منظم اعدادی جوڑیوں پر مشتمل ہے۔ یہ اعدادی جوڑیاں سطح پر سمتیات کو ظاہر کرتی ہیں۔ اس طرح n=3 سے n=3 ماتا ہے جو تمام منظم سہ اعدادی جوڑیوں پر مشتمل ہے۔ یہ سہ اعدادی جوڑیاں تین بُعدی خلا میں سمتیات کو ظاہر کرتی ہیں۔ یہ سمتیات میکانیات، طبیعیات، جیومیٹری اور علم الاحصاء میں کلیدی کردار ادا کرتے ہیں۔

اسی طرح اگر ہم n عدد مخلوط اعداد کے تمام جوڑیاں لیں، اور ان مخلوط اعداد کو حقیقی تصور کریں، تو ہمیں مخلوط سمتی فضا Cn ملے گا۔

ان کے علاوہ عملی دلچپی کے دیگر سلسلیے جو قالب، تفاعل، تبادل وغیرہ پر مبنی ہوں، پائے جاتے ہیں۔ان کے جمع اور غیر سمتی ضرب کی بالکل قدرتی تعریف کی جا سکتی ہے لہذا یہ بھی سمتی فضا بناتے ہیں۔

آئیں اب مساوات 8.7 اور مساوات 8.8 میں دیے گئے بنیادی خصوصیات کو لے کر حقیقی سمتی فضا V کی تعریف بیان کریں۔

مسّله 8.20: حقیقی سمتی فضا

ور اگر ایک ان پر مشتمل غیر خالی سلسله V حقیقی سمتی فضا $^{96}$  یا حقیقی خطی فضا کہلاتا ہے اور اگر میں درج زیل دو الجبرائی ائمال (جنہیں سمتی جمع اور غیر سمتی ضرب کہتے ہیں) موجود ہوں تب یہ ارکان (جن V خصوصیات کچھ بھی ہو سکتے ہیں) سمتیات کہلاتے ہیں۔

(الف) سمتی جمع V کے ہر دوسمتیات a اور b کے ساتھ V کا ایبا منفر در کن، جو a اور b کا مجموعہ کہلاتا اور a+b سے ظاہر کیا جاتا ہے، وابتہ کرتا ہے کہ جو درج ذیل مسلمات پر پورا اترتا ہو۔

(الف-1 قانون تبادل۔ V کے ہر دوارکان a اور b کے لئے درج زیل ہو گا۔

$$(8.76) a+b=b+a$$

 $b\cdot a$  اور c کے لئے درج ذیل ہو گا۔  $b\cdot a$  اور V کے لئے درج ذیل ہو گا۔

(8.77) 
$$(a+b)+c=a+(b+c)$$
 (4.77)  $(a+b+c)$ 

الفV میں ایبا منفرد سمتیہ، جو صفو سمتیہ کہلاتا اور V سے ظاہر کیا جاتا ہے، پایا جاتا ہے کہ V میں ایبا منفرد سمتیہ ہو گا۔

$$(8.78) a + 0 = a$$

-a میں ہر سمتیہ a کے لئے V میں ایبا سمتیہ v فیل ہو گا۔ V (4-فالفV (4-فالفV (8.79) a+(-a)=0

(+) غیر سمتی ضوب حقیق اعداد غیر سمتی کہلاتے ہیں۔ غیر سمتی ضرب، ہر غیر سمتی c اور V کے ہر سمتی a سمتیہ a کا ایبا منفرد رکن، جو a اور c کا حاصل ضوب کہلاتا اور c کا ایبا منفرد رکن، جو a اور c کا حاصل ضوب کہلاتا اور c کا ایبا منفرد رکن، جو درج ذیل مسلمات پر پورا اترتا ہو۔

real vector space<sup>96</sup>

(-1) قانون جزئیتی تقسیم ہر غیر سمتی c اور V میں موجود ہر سمتیات a اور b کے لئے درج ذیل ہو گا۔

$$(8.80) c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$

(-2) قانون جزئیتی تقسیم- n غیر سمت c c n اور v میں موجود n سمتی a b c c ورج ذیل ہو گا۔

$$(8.81) (c+k)\mathbf{a} = c\mathbf{a} + k\mathbf{a}$$

 $(\mu-3)$  قانون وابستگی۔ ہر غیر سمتی c ، ہر غیر سمتی k اور V میں موجود ہر سمتی a کے لئے درج ذیل ہو گا۔

یں ہر سمتی  $a \geq b$  درج ذیل ہوگا۔ V (4-1)

$$(8.83) 1 \cdot a = a$$

درج بالا تعریف میں حقیقی اعداد کی جگہ مخلوط اعداد کو غیر سمتی لینے سے مخلوط سمتی فضا کی مسلمی تعریف حاصل ہو گی۔

درج بالا میں ہر مسلمہ V کی ایک خصوصیت بیان کرتا ہے۔ یہ تمام مسلمات مل کر V کے تمام خصوصیات بیان کرتے ہیں۔

درج ذیل تصورات جو سمتی فضا سے تعلق رکھتے ہیں بالکل حصہ 8.4 میں بیان کیے گئے تصورات کی طرح ہیں۔ یوں میں موجود سمتیات  $a_{(m)}$  ، · · · ·  $a_{(1)}$  میں موجود سمتیات V

$$c_1 a_{(1)} + \cdots + c_m a_{(m)}$$
 (رین تخیی غیر سمتی بین  $c_m c_1 \cdots c_1$  کوئی بھی غیر سمتی بین میں دریا

يه سمتيات اس صورت خطى طور غير تابع سلسله بناتے ہيں جب درج ذيل

(8.84) 
$$c_1 a_{(1)} + \dots + c_m a_{(m)} = 0$$

ے مراد  $c_m=0$  ، · · · ·  $c_1=0$  ہو۔ایی صورت میں ہم کہتے ہیں کہ سمتیات خطی طور غیر تابع ہیں۔  $c_m=0$  ، · · · ·  $c_1=0$  اس کے برعکس اگر کسی ایک یا ایک سے زیادہ  $c_j$  کی قیمت غیر صفر ہونے کی صورت میں بھی مساوات 8.84 ورست ہو تب  $a_{(m)}$  تا  $a_{(m)}$  تا  $a_{(m)}$  تا ہور تابع  $c_m$  میں جمعی طور تابع  $c_m$  کہلاتے ہیں۔

اس a کی صورت میں مساوات a=0 سے a=0 ملتا ہے جس سے ظاہر ہے کہ واحد سمتیہ m=1 صورت خطی طور غیر تابع ہو گا جب  $a \neq 0$  ہو۔

V میں N عدد غیر تابع سمتیات ہوں اور V میں N سے زائد تمام سمتیات خطی طور تابع ہوں تب V کا اُبعد N ہوگا اور V کو N بعدی کہیں گے۔ ان خطی طور غیر تابع N عدد سمتیات کو V کی اساس V کا بعد V کی اساس کتے ہیں اور V میں ہر سمتیہ کو ان اساس کا خطی مجموعہ کھا جا سکتا ہے۔ کسی مخصوص اساس کو استعال کرتے ہوئے V میں خطی مجموعہ منفود ہوگا (مثال 8.39 سے رجوع کریں)۔

مثال 8.39: كتائي

 $oldsymbol{v} = c_1 oldsymbol{a}_{(1)} + \cdots + c_n oldsymbol{a}_{(n)}$  کا خطی مجموعہ  $oldsymbol{v} = a_{(1)} + \cdots + a_{(1)} + \cdots + a_{(n)}$  کو اسمان کے فرق  $oldsymbol{v} = oldsymbol{v} + oldsymbol{v}$  کو درج ذیل کھیا جا سکتا ہے۔

$$v - v = (c_1 - c'_1)a_{(1)} + \cdots + (c_n - c'_n)a_{(n)} = 0$$

مساوات 8.84 کے تحت اساس (یعنی خطی طور غیر تابع سمتیات) کے لئے درج بالا صرف اس صورت لکھا جا سکتا  $c_n' = c_n \cdots c_1' = c_1$  ہوں، لیکن ہے جب  $c_n - c_n' - 0 \cdots c_1 - c_1' - 0$  ہوں لیکن جب جب جب ونوں مجموعے بالکل کیسال حاصل ہوں گے۔ یوں کسی بھی سمتیہ کو ظاہر کرنے والا خطی مجموعہ منفر د ہوگا۔

 $\begin{array}{c} {\rm linearly\ dependent}^{97} \\ {\rm basis}^{98} \end{array}$ 

مثال 8.40: قالب كالسمتى فضا

میں ہے۔ استعال کرتے ہوئے کے استعال کرتے ہوئے میں میں نشا ہو گی۔ اس کی اساس درج ذیل ہے جسے استعال کرتے ہوئے

$$(8.85) B_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, B_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

مثال 8.41: کثیر رکنی کی سمتی فضا bx + c ، a اور  $dx^2 + ex + f$  کے سمتی فضا کا بُعد a ہے جس کی اساس a a ہے۔

اگر سمتی فضا V میں n خطی طور غیر تالع سمتیات ہوں جہاں n کتنا بھی بڑا عدد ہو، تب V لامتناہی بعدی v بعدی v کور کے کسی وقفے v استمراری تفاعل کی فضا ہے۔

infinite dimensional  $^{99}$ 

اندرونی ضرب فضا

میں موجود قطاری سمتیات a اور b کا ضرب  $a^Tb$  ، جسامت  $1 \times 1$  کا قالب ہو گا جس کا واحد  $R^n$  اعدادی رکن  $a \cdot b$  اور  $a \cdot b$  کا اندرونی ضرب کو  $a \cdot b$  اور  $a \cdot b$  کیا جاتا ہے اندرونی ضرب کو  $a \cdot b$  اور  $a \cdot b$  سے بھی ظاہر کیا جاتا ہے اور یوں اس کو ضرب نقطہ  $a \cdot b$  کیا جاتا ہے اور یوں اس کو ضرب نقطہ  $a \cdot b$  کیا جاتا ہے اور یوں اس کو ضرب نقطہ  $a \cdot b$  کیا جاتا ہے اور یوں اس کو صرب نقطہ  $a \cdot b$  کیا جاتا ہے اور یوں اس کو صوب نقطہ  $a \cdot b$  کیا جاتا ہے اور یوں اس کو صوب نقطہ  $a \cdot b$  کیا جاتا ہے اور یوں اس کو صوب نقطہ  $a \cdot b$  کیا جاتا ہے اس کا خوا میں معرب کی میں جاتا ہے اور یوں اس کو صوب نقطہ  $a \cdot b$  کیا ہو کیا ہو کیا ہو کیا ہو کیا ہو گاہ

(8.86)

$$\boldsymbol{a}^T \boldsymbol{b} = (\boldsymbol{a}, \boldsymbol{b}) = \boldsymbol{a} \cdot \boldsymbol{b} = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \sum_{i=1}^n a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$$

آئیں اب اندرونی ضرب کے اس تصور کو وسعت دے کر، (a,b) کی بنیاد کی خصوصیات کو لیتے ہوئے، عمومی سمتی فضا کی "تصوراتی اندرونی ضرب" (a,b) حاصل کرتے ہیں، یعنی:

مسّله 8.21: حقیقی اندرونی ضرب فضا

حقیقی سمتی فضا V اس صورت حقیقی اندرونی ضرب فضا (یا حقیقی قبل از ملبرٹ 102 فضا) کہلاتا ہے جب وہ درج ذیل خصوصیت رکھتا ہو۔

میں ہر a اور b سمتیات کے ساتھ ایبا حققی عدد وابستہ ہے، جو a اور b کا اندرونی ضوب کہلاتا اور V میں ہر a کیا جاتا ہے، جو درج ذیل مسلمات پر پورا اترتا ہے۔ (a,b)

• (الف) ہر غیر سمتیات  $q_2$  ،  $q_1$  اور V میں موجود ہر سمتیات b ، a اور c کے لئے درج زبل ہو گا۔

$$(q_1a + q_2b, c) = q_1(a, c) + q_2(b, c)$$
 (خطیت)

اور b اور b کے لئے درج ذیل ہو گا۔ V (ب) •

$$(a,b)=(b,a)$$
 (تثاکل)

inner product $^{100}$ 

 $<sup>\</sup>rm dot\ product^{101}$ 

 $<sup>^{102}</sup>$  جر من ریاضی دان داؤد بلبر ئے [1943-1862] متنابی اُبعدی V کو بلبر ٹ فضا کہتے ہیں۔

فی کے لئے V (پ) •

$$(oldsymbol{a},oldsymbol{a})\geq 0$$
 (قطعی ثبت )

ہو گا جبکہ a=0 صرف اور صرف اس صورت ہو گا جب (a,a)=0 ہو۔

ایسے سمتیات جن کا اندرونی ضرب صفر کے برابر ہو عمودی 103 کہلاتے ہیں۔

یں موجود سمتیہ a کی لمبائی یا معیاد $\|a\|^{-104}$  سے مراد درج ذیل ہے۔ V

$$\|a\|=\sqrt{(a,a)}\quad (\geq 0)$$
معيار (8.87)

ایبا سمتیہ جس کا معیار اکائی (1) ہو اکائی سمتیہ 105 کہلاتا ہے۔

ان مسلمات اور مساوات 8.87 سے درج ذیل بنیادی کوشی شوارز 106 عدم مساوات 107 حاصل ہوتی ہے۔

(8.88) 
$$|(a,b)| \leq ||a|| ||b||$$
 (1.88)

 $^{108}$ اس سے تکونی عدم مساوات

$$\|a+b\| \le \|a\| + \|b\|$$
 (8.89) (الكونى عدم مساوات)

ورج ذيل متواذى الاضلاع مساوات 109 بهي ثابت كيا جا سكتا ہے۔

(8.90) 
$$||a+b||^2 + ||a-b||^2 = 2(||a||^2 + ||b||^2)$$
 (and in the solution)

 $orthogonal ^{103}\\$ 

 $norm^{104}$ 

unit vector<sup>105</sup>

<sup>106</sup> جر من رياضي دان هر من امندس شوارز [1843-1921]

Cauchy-Schwarz inequality<sup>107</sup>

triangle inequality 108

parallelogram equality 109

مثالِ 8.42: n بُعدى اقليد سي فضا 110

اور b کا اندرونی ضرب درج ذیل ہو گا اور a کا اندرونی ضرب درج ذیل ہو گا اندرونی ضرب درج ذیل ہو گا

(8.91) 
$$(\boldsymbol{a}, \boldsymbol{b}) = \boldsymbol{a}^T \boldsymbol{b} = a_1 b_1 + \dots + a_n b_n$$

جو مسّلہ 8.21 کے شق الف، ب اور پ پر پورا اترتا ہے۔مساوات 8.87 استعال کرتے ہوئے اقلید سی معیار درج ذیل ہو گا۔

(8.92) 
$$\|a\| = \sqrt{(a,b)} = \sqrt{a^T b} = \sqrt{a_1 b_1 + \dots + a_n b_n}$$

اقلیدسی فضا کو عموماً  $E^n$  سے ظاہر کیا جاتا ہے۔

مثال 8.43: تفاعل كى اندرونی ضرب

وقفہ g(x) ، f(x) قاعل اور وقفہ  $\alpha \leq x \leq \beta$  پر حقیقی قیمت والے تمام استمراری تفاعل  $\alpha \leq x \leq \beta$  بیر حقیقی قیمت والے تمام استمراری تفاعل فضا" پر اندرونی ضرب سے مراد درج غیر سمتی سے ضرب کے اصولوں کے تحت، حقیقی سمتی فضا ہو گا۔ اس "تفاعل فضا" پر اندرونی ضرب سے مراد درج ذیل تکمل ہے

(8.93) 
$$(f,g) = \int_{\alpha}^{\beta} f(x)g(x) dx$$

جو مسئلہ 8.21 کے شق الف، ب اور پ پر پورا اترتا ہے۔مساوات 8.87 معیار دیتا ہے۔

(8.94) 
$$||f|| = \sqrt{(f,f)} = \sqrt{\int_{\alpha}^{\beta} f(x)g(x) \, dx}$$

خطى تبادله

فرض کریں کہ X اور Y سمتی فضا ہیں۔ X میں ہر سمتیہ x کے ساتھ ہم Y کا منفر د سمتیہ y وابستہ کرتے ہیں۔ ہم کہتے ہیں کہ X کا Y پر تبادلہ کیا گیا ہے، یا کہ X کی Y پر نقشہ کشبی کی گئی ہے اور یا کہ X کا عامل X اور یا گیا ہے۔ ایکی نقشہ کثی کو بڑے حرف مثلاً X سے ظاہر کیا جاتا ہے۔ X کے سمتیہ X کے سمتیہ X کے ساتھ وابستہ کیا گیا ہے، X میں X کا عکس X کیا جاتا ہے۔ Y کے ساتھ وابستہ کیا گیا ہے، X میں X کا عکس X کیا جاتا ہے۔ Y کے ساتھ وابستہ کیا گیا ہے، Y میں X کا عکس Y کیا جاتا ہے۔

x کو اس صورت خطی نقشہ کشیx اور x یا خطی تبادلہx اور کتے ہیں جب تمام غیر سمتی x اور x میں موجود تمام سمتیات x اور x درج ذیل پر پورا اترتے ہوں۔

(8.95) 
$$F(\mathbf{v} + \mathbf{x}) = F(\mathbf{v}) + F(\mathbf{x})$$
$$F(c\mathbf{x}) = cF(\mathbf{x})$$

فضا  $R^n$  كافضا  $R^m$  ير خطى تبادله

 $A = [a_{jk}]$  اور  $M \times n$  قالب  $Y = R^m$  قالب  $X = R^n$  ہم  $X = R^n$  فضا  $X = R^n$  کا فضا  $X = R^m$  پر تبادلہ کر سکتا ہے، یعنی:

$$(8.96) y = Ax$$

اب چونکہ A(cx)=cAx اور A(u+x)=Au+Ax بین لہذا درجی بالا خطی تبادلہ ہے۔

 $R^m$  کی اساس اور  $R^n$  کی اساس اور  $R^m$  کی اساس اور  $R^m$  کی اساس اور  $R^m$  کی اساس اور  $R^m$  کی اساس یفنے کے بعد،  $R^m$  قالب  $R^m$  سے ظاہر کیا جا سکتا ہے۔

operator<sup>111</sup>

image<sup>112</sup>

linear mapping<sup>113</sup>

linear transformation 114

فرض کریں کہ  $R^n$  کی کوئی اساس  $e_{(1)}$  ہیں  $e_{(1)}$  ہیں موجود ہر x کو ان کا خطی مجموعہ کھا جا سکتا ہے۔

$$\boldsymbol{x} = x_1 \boldsymbol{e}_{(1)} + \cdots + x_n \boldsymbol{e}_{(n)}$$

جونکہ F خطی ہے لہذا x کا عکس F(x) ورج ذیل ہو گا۔

$$F(\mathbf{x}) = F(x_1 \mathbf{e}_{(1)} + \dots + x_n \mathbf{e}_{(n)}) = x_1 F(\mathbf{e}_{(1)}) + \dots + x_n F(\mathbf{e}_{(n)})$$

یوں  $R^n$  کی اساس  $e_{(1)}$   $\cdots$  و کا عکس  $E_{(n)}$  کو کیکا طور پر تعین کرتا ہے۔ ہم اب  $E_{(n)}$  کی ورج ذیل  $E_{(n)}$  درج ذیل "معیاری اساس" چنتے ہیں جہال  $E_{(j)}$  کا  $E_{(j)}$  عدد رکن  $E_{(j)}$  عدد اساس چنتے ہیں جہال و کے برابر ہیں۔

(8.97) 
$$\mathbf{e}_{(1)} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}_{(2)} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \cdots, \quad \mathbf{e}_{(n)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

X اور X

$$(8.98) y = F(x) = Ax$$

یقیناً  $oldsymbol{y}$  ہے درج زیل ماتا ہے  $oldsymbol{y}^{(1)} = F(oldsymbol{e}_{(1)})$  ہتا ہے ہورج زیل ماتا ہے

$$\boldsymbol{y}^{(1)} = \begin{bmatrix} y_1^{(1)} \\ y_2^{(1)} \\ \vdots \\ y_m^{(1)} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

جس سے A کی پہلی قطار  $a_{m1}=y_m^{(1)}$   $\cdots$   $a_{21}=y_2^{(1)}$   $a_{11}=y_1^{(1)}$  واس ہوتی ہے۔ ای A کی آخری A کی آخری A کی آخری A کی آخری وظار حاصل ہوگی اور آخر کار A کی آخری وظار حاصل ہوگی۔ یوں ثبوت پورا ہوتا ہے۔

A ، F اور  $R^m$  کے جننے گئے اساس کے لحاض سے A کو F ظاہر کرتا ہے یا کہ  $R^n$ کا اظہاد ہے۔ ہم الی شہ، جس کے خصوصات غیر واضح ہوں، کو الی شہ سے ظاہد کرتے ہیں جس کے خصوصات نسبتاً زياده واضح ہوں۔

تین بُعدی اقلیدسی فضا  $e_{(3)}=k$  کی معیاری اساس کو عموماً و  $e_{(1)}=i$  ، و و کسما جاتا  $e_{(3)}=k$  اور  $e_{(3)}=k$  کسما جاتا ہے لیعنی

(8.99) 
$$\mathbf{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

جو فضا میں کارتیسی نظام محدد 115 کے، محور کی مثبت ست میں، تین آپس میں عمودی اکائی سمتیات ہیں۔

مثال 8.44: تبادلہ فضا میں کار تیسی نظام کے محور کا تبادلہ درج ذیل قالب دیتے ہیں۔ یہ تبادلے کیا کام سر انجام دیتے ہیں؟

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad D = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$$

جوابات: A: d خط  $x_1 = x_2 = x_1$  میں انعکاس ہے۔ A: d خط  $x_2 = x_1$  علی انعکاس ہے۔ جبکه D محور  $x_1$  کی سمت میں لمائی میں اضافہ (a>1) ما کمی (a<1) پیدا کرتی ہے۔

> مثال 8.45: خطی تبادله الی خطی تبادلہ وریافت کریں جو  $(x_1, x_2)$  کا نقش  $(x_1, x_2)$  وے۔

> > Cartesian coordinate system<sup>115</sup>

حل: ظاہر ہے کہ ہمیں درج ذیل تعلق چاہیے ہے

$$y_1 = 5x_1 - 3x_2$$
  
$$y_2 = -3x_1 + 7x_2$$

جس سے ہمیں درج ذیل قالب A ماتا ہے۔

$$\mathbf{A} = \begin{bmatrix} 5 & -3 \\ -3 & 7 \end{bmatrix}$$

اگر مساوات 8.96 میں A چکور  $n \times n$  قالب ہو تب یہ  $R^n$  کا نقش  $R^n$  دے گا۔ اگر یہ A غیر نادر قالب (حصہ 8.8 سے رجوع کریں) ہو تب مساوات 8.96 کے دونوں اطراف کے بائیں جانب کو  $A^{-1}$  سے ضرب دے کر  $A^{-1}$  استعال کرتے ہوئے درج ذیل الٹ بدل  $A^{10}$  ماتا ہے۔

$$(8.100) x = A^{-1}y$$

یوں مساوات 8.96 جس  $x_0$  کا نقش  $y_0$  دیتا ہے، مساوات 8.100 اس  $y_0$  کا نقش وہی  $x_0$  دیتا ہے۔ خطی مبدل کا الث، مساوات 8.100 وے گا لہذا ہے بھی خطی ہو گا۔

نظم خطی تبادله

فرض کریں کہ X ، Y اور W عمومی سمتی فضا ہیں۔ پہلے کی طرح X کو Y پر Y فقش کرتا ہے جبکہ W کو X پر نقش G کرتا ہے۔ اب پہلے G اور بعد میں G ، بالکل اسی ترتیب سے، لاگو کرتے ہوئے تبادلہ W کی نظیم W عاصل ہوتا ہے۔

$$H = F \circ G = FG = F(G)$$

 $\begin{array}{c} \text{inverse transform}^{116} \\ \text{composition}^{117} \end{array}$ 

یوں اگر فضا W میں سمتیہ w ہو تب سمتیہ G(w) ، فضا X میں ہوگا جبکہ سمتیہ w ، فضا W میں ہوگا۔یوں W کا W پر نقش، تبادلہ W دے گا جو درج ذیل کھا جاتا ہے۔

(8.101) 
$$H(w) = (F \circ G)(w) = (FG)(w) = F(G(w))$$

عمومی فضا میں درج بالا خطی تبادلہ کے نظم کی تعریف ہے۔ نظم کی خطیت کو مثال 8.46 میں ثابت کیا گیا ہے۔

مثال 8.46: خطی نظام کا نظم خطی ہوگا H کی خطیت ثابت کرنا ہوگا کہ H مساوات 8.95 پر پورا اترتا ہے۔ فضا W میں دو عدد سمتیات  $w_1$  اور  $w_2$  کے لئے درج ذمل کھا جا سکتا ہے۔

$$H(w_1 + w_2) = (F \circ H)(w_1 + w_2)$$
 $= (FG)(w_1 + w_2)$ 
 $= F(G(w_1 + w_2))$ 
 $= F(G(w_1) + G(w_2))$ 
 $= F(G(w_1)) + F(G(w_2))$ 
 $= (F \circ G)(w_1) + (F \circ G)(w_2)$ 
 $= H(w_1) + H(w_2)$ 
 $\longrightarrow G$ 
 $\longrightarrow G$ 

اسی طرح درج ذیل بھی لکھا جا سکتا ہے۔

$$H(cw_2) = (F \circ G)(cw_2) = F(G(cw_2)) = F(cG(w_2))$$
 
$$= cF(G(w_2)) = c(F \circ G)(w_2) = cH(w_2)$$
 يوں ثابت ہوا کہ  $H$  خطی ہے۔

ہم نے عمومی سمتی فضا میں خطی تبادلہ کے کی تعریف بیان کی اور ثابت کیا کہ خطی تبادلہ کا نظم خطی ہے۔ اب ہم خطی تبادلہ کے نظم کا قالبی ضرب کے ساتھ تعلق جاننا چاہیں گے۔

(8.103)

ایبا کرنے کی خاطر ہم  $Y=R^m$  ،  $X=R^n$  ور  $Y=R^p$  اور  $Y=R^p$  کلھتے ہیں۔ نصا کی یہ مخصوص صور تیں چنتے ہوئے ہم خطی تبادلہ کو قالبی صورت میں لکھ کر مساوات 8.96 کے طرز کی قالبی مساوات لکھ پاتے ہیں۔ اس طرح  $B=[b_{jk}]$  محومی قالب  $A=[a_{jk}]$  اور B کو عمومی  $A=[b_{jk}]$  محومی قالب  $A=[a_{jk}]$  سے خاہر کیا جا سکتا ہے۔ یوں ہم  $A=[a_{jk}]$  کے لئے درج ذیل لکھ سکتے ہیں جہاں سمتیہ قطار  $A=[a_{jk}]$  رکن اور سمتیہ  $A=[a_{jk}]$  رکن ہوں گے۔  $A=[a_{jk}]$  رکن ہوں گے۔

$$(8.102) y = Ax$$

p رکن ہوں گے۔p کے لئے درج ذیل کھا جا سکتا ہے جہاں سمتیہ قطار p کے لئے درج ذیل کھا جاp کہ اسکتا ہے جہاں سمتیہ قطار p کے درج ذیل کھا جا ہوں گے۔

مساوات 8.103 کو مساوات 8.102 میں پر کرتے ہیں۔

(8.104) 
$$y = Ax = A(Bw) = (AB)(w) = ABw = Cw$$
  $(C = AB)$ 

درج بالا 8.101 کی قالبی صورت ہے۔یوں تبادلہ کی نظم کو قالبی ضرب کی صورت میں لکھا جا سکتا ہے۔درج بالا  $m \times p$  کا نقش  $m \times p$  کا نقش  $m \times p$  کا مساوات میں حقیقی  $p \times m \times p$  قالب  $p \times m \times p$  کا خطی تبادلہ  $m \times p$  کو ظاہر کرتی ہے جو  $p \times m \times p$  کا نقش  $p \times p$  کا سمتیہ  $p \times p$  کا نقش  $p \times p$  کا نقش  $p \times p$  کا نقش ہیں۔

مثال 8.47: خطى تبادلهـ نظم

$$\boldsymbol{AD} = \begin{bmatrix} 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$$

اب مساوات 8.104 کی طرح درج ذیل ہو گا

$$\boldsymbol{y} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} w_2 \\ 2w_1 \end{bmatrix}$$

جو وہی پہلا جواب ہے۔آپ نے دیکھا کہ یقیناً C = AD کھے کر خطی تبادلہ کے نظم کو خطی تبادلہ C = DA خاہر کیا جا سکتا ہے جس میں انفرادی تبادلہ کی ترتیب بر قرار رکھنا ضروری ہے۔ آپ ایسا نہ کرتے ہوئے C = DA کے کر تسلی کر لیس کہ حاصل جواب درست نہ ہو گا۔

سوالات

سوال R2: 138 کے مکنہ تین مختلف اساس لکھیں۔

 $[1\ 0]^T$ ,  $[0\ 1]^T$ ;  $[1\ 0]^T$ ,  $[0\ -1]^T$ ;  $[1\ 1]^T$ ,  $[-1\ 1]^T$ ;  $[-1\ 1]^T$ ;

سوال 8.139 تا سوال 8.142 میں خطی تبادلہ دیا گیا ہے۔آپ سے گزارش ہے کہ الٹ خطی تبادلہ دریافت کریں۔

سوال 8.139:

$$y_1 = 0.5x_1 - 1.5x_2$$
  
 $y_2 = -x_1 + 2x_2$   
 $x_2 = -2y_1 - y_2$   $x_1 = -4y_1 - 3y_2$  :باب

سوال 8.140:

$$y_1 = -2x_1 + 3x_2$$
  
 $y_2 = 3x_1 - 2x_2$   
 $x_2 = 0.6y_1 + 0.4y_2$  :  $x_1 = 0.4y_1 + 0.6y_2$  : يواب

سوال 8.141:

$$y_1 = -2x_1 + 3x_2 + x_3$$
  

$$y_2 = 3x_1 - 2x_2 - 2x_3$$
  

$$y_3 = x_1 - x_2 + x_3$$

 $x_1 = \frac{1}{2}y_1 + \frac{1}{2}y_2 + \frac{1}{2}y_3, \ x_2 = \frac{5}{8}y_1 + \frac{3}{8}y_2 + \frac{1}{8}y_3, \ x_3 = \frac{1}{8}y_1 - \frac{1}{8}y_2 + \frac{5}{8}y_3 : 9$ 

سوال 8.142:

$$y_1 = x_1 + x_3$$
  
$$y_2 = -2x_3$$

$$y_3 = x_1 - x_2$$

 $x_1 = y_1 + 0.5y_2$ ,  $x_2 = y_1 + 0.5y_2 - y_3$ ,  $x_3 = -0.5y_2$ : يواب:

سوال 8.143 تا سوال 8.147 کی اقلیدسی معیار حاصل کریں۔

سوال 8.143:

$$\begin{bmatrix} 2 & -1 & 3 \end{bmatrix}^T$$

 $\sqrt{14}$  جواب:

سوال 8.144:

$$\begin{bmatrix} 2 & 0 & 3 & 1 \end{bmatrix}^T$$

 $\sqrt{14}$  جواب:

سوال 8.145:

$$\begin{bmatrix} 2 & -3 & 0 & 1 & 0 & 0 & 1 & -1 & 2 & 0 \end{bmatrix}^T$$

 $2\sqrt{5}$  جواب:

سوال 8.146:

 $\begin{bmatrix} \frac{1}{2} & 1 & \frac{2}{3} \end{bmatrix}^T$ 

 $\frac{\sqrt{61}}{6}$  :جواب

سوال 8.147:

 $\begin{bmatrix} 0.2 & 0.1 & -0.5 \end{bmatrix}^T$ 

 $\sqrt{0.3}$  :جواب

سوال 8.148 تا سوال 8.151 اندرونی ضرب اور عمودیت کے سوالات ہیں۔

سوال  $[-1 \ 1 \ a \ 2]^T$  اور  $[-1 \ 1 \ a \ 2]^T$  آپس میں عمودی ہیں۔

a = -3 :واب

سوال 8.149: کوشی شوارز عدم مساوات  $b = \begin{bmatrix} 3 & 2 & 5 \end{bmatrix}^T$  اور  $a = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}^T$ 

 $|a \cdot b| = 23$  جبکہ  $||a|| \|b\|| = 23.065$  جواب:  $||a|| \|b\|| = \sqrt{38}$  ،  $||a|| = \sqrt{14}$  بین لہذا مساوات 8.88 کی تصدیق ہوتی ہے۔

سوال 8.150: تكونى عدم مساوات

اور  $oldsymbol{a} = \begin{bmatrix} 3 & 2 & 5 \end{bmatrix}^T$  اور  $oldsymbol{a} = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}^T$ 

جواب:  $\|a\|=\sqrt{14}$  ،  $\|a\|=\sqrt{38}$  ،  $\|a\|=\sqrt{14}$  ، جواب:  $\|a+b\|=7\sqrt{2}$  ، اور  $\|b\|=\sqrt{38}$  ،  $\|a\|=\sqrt{14}$  بين للذا مساوات

اور  $a=\begin{bmatrix} 3 & 2 & 5 \end{bmatrix}^T$  اور  $a=\begin{bmatrix} 2 & 1 & 3 \end{bmatrix}^T$  اور  $a=\begin{bmatrix} 2 & 1 & 3 \end{bmatrix}^T$ 

جواب:  $4 - b \|^2 = \|a - b\|^2$  ،  $\|a + b\|^2 = 98$  ،  $\|b\| = \sqrt{38}$  ،  $\|a - b\|^2 = \sqrt{14}$  . اور  $4 - b\|^2 = \sqrt{14}$  بین للذا  $4 - b\|^2 = \sqrt{14}$  ماصل ہوتا ہے جو مساوات 8.90 کی تصدیق کرتی ہے۔

حواليه

- [1] Coddington, E. A. and N. Levinson, Theory of Ordinary Differential Equations. Malabar, FL: Krieger, 1984.
- [2] Ince, E. L., Ordinary Differential Equations. New York: Dover, 1956.
- [3] Watson, G. N., A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge: University Press, 1944.