Complexe Getallen: Machten

Dr. M. van Ee & Dr.ir. D.A.M.P. Blom

Analyse 1 (TAN1), collegejaar 2024-2025

2 mei 2025

"Gewone" vlakke meetkunde

Een punt in het vlak kan worden weergegeven met

• Cartesische coördinaten: (x, y)

"Gewone" vlakke meetkunde

Een punt in het vlak kan worden weergegeven met

- Cartesische coördinaten: (x, y)
- Poolcoördinaten: (r, θ)

r heet de voerstraal, θ heet de poolhoek.

Het verband tussen de Cartesische coördinaten (x, y) en de poolcoördinaten (r, θ) is gegeven door

$$r = \sqrt{x^2 + y^2}$$

$$\cos \theta = \frac{x}{r} = \frac{x}{\sqrt{x^2 + y^2}}$$

$$\sin \theta = \frac{y}{r} = \frac{y}{\sqrt{x^2 + y^2}}$$

$$x = r\cos\theta$$
$$y = r\sin\theta$$

Straal is gelijk aan **modulus**, i.e., $r = |z| = \sqrt{a^2 + b^2}$.

Straal is gelijk aan **modulus**, i.e., $r = |z| = \sqrt{a^2 + b^2}$. Voor $z \neq 0$ is het **argument** van z, notatie $\arg z$, de hoek die gedefinieerd is door:

$$\cos(\arg z) = \frac{a}{|z|}$$
, $\sin(\arg z) = \frac{b}{|z|}$ en $0 \le \arg z < 2\pi$.

leder complex getal $z \neq 0$ kan worden geschreven in de vorm

$$z = |z|(\cos(\arg z) + i\sin(\arg z)),$$

Herschrijf $z = -1 + \sqrt{3}i$ in de vorm $z = |z|(\cos(\arg z) + i\sin(\arg z))$.

Text-modus

> argument(1+I);
$$\frac{1}{4}\pi$$

> readlib(polar): polar(1+I);

$$\operatorname{polar}\left(\sqrt{2},\frac{1}{4}\pi\right)$$

> evalc(polar(4,Pi/3));

$$2+2I\sqrt{3}$$

Text-modus

with(plots): complexplot({polar(2,1/6*Pi), polar(2,3/6*Pi), polar(2,5/6*Pi), polar(2,7/6*Pi), polar(2,9/6*Pi), polar(2,11/6*Pi)},x=-3..3, style=point, symbol = solidcircle, symbolsize = 32);

Math-modus

> argument(1 + I);
$$\frac{1}{4}\pi$$

 \rightarrow readlib (polar) : polar(1 + I);

$$polar\left(\sqrt{2}, \frac{1}{4}\pi\right)$$

> $evalc\left(polar\left(4, \frac{\pi}{3}\right)\right)$;

$$2 + 2I\sqrt{3}$$

Math-modus

> with(plots): complexplot $\left\{ \text{polar} \left(2, \frac{1}{6} \cdot \pi \right), \text{polar} \left(2, \frac{3}{6} \cdot \pi \right), \text{polar} \left(2, \frac{5}{6} \cdot \pi \right), \text{polar} \left(2, \frac{7}{6} \cdot \pi \right), \text{polar} \left(2, \frac{9}{6} \cdot \pi \right), \text{polar} \left(2, \frac{11}{6} \cdot \pi \right) \right\}, x = -3$..3, style = point, symbol = solidcircle, symbolsize = 32 \right\};

Stel $z = |z|(\cos(\arg z) + i\sin(\arg z))$ en $w = |w|(\cos(\arg w) + i\sin(\arg w))$, dan is

$$zw = |z||w|(\cos(\arg z + \arg w) + i\sin(\arg z + \arg w)).$$

Formule van De Moivre

Voor alle gehele getallen $n \ge 0$ en alle reële getallen θ geldt:

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$$

Gevolg: als $z = |z|(\cos(\arg z) + i\sin(\arg z))$, en n is geheel getal, dan

$$z^{n} = |z|^{n}(\cos(n\arg z) + i\sin(n\arg z))$$

Opdracht: gegeven is $z = -1 + \sqrt{3}i$. Schrijf z^5 in de vorm a + bi.

Kun je getallen ook tot een complexe macht verheffen?

Kun je getallen ook tot een complexe macht verheffen?

Later in dit vak gaan we aantonen dat

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + \dots$$

Deze gelijkheid gebruiken we ook voor complexe *e*-machten.

Kun je getallen ook tot een complexe macht verheffen?

Later in dit vak gaan we aantonen dat

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + \dots$$

Deze gelijkheid gebruiken we ook voor complexe e-machten.

Stel z en w zijn complexe getallen, dan geldt

$$e^{z+w} = e^z \cdot e^w$$

Gevolg: als a en b reële getallen zijn, dan geldt

$$e^{a+bi} = e^a \cdot e^{bi}$$

Formule van Euler

Voor alle reële getallen θ geldt:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Formule van Euler

Voor alle reële getallen θ geldt:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Gevolgen:

- leder complex getal *z* is the schrijven in de vorm:
- $z = |z|(\cos(\arg z) + i\sin(\arg z)) = |z|e^{i\arg z}.$
- Vermenigvuldigen: $zw = (|z|e^{i \arg z})(|w|e^{i \arg w}) = |z||w|e^{i(\arg z + \arg w)}$.
- Formule van De Moivre: $(\cos(\arg z) + i\sin(\arg z))^n = (e^{i\arg z})^n = e^{in\arg z} = \cos(n\arg z) + i\sin(n\arg z)$.
- Machtsverheffen: $z^n = (|z|e^{i\arg z})^n = |z|^n e^{in\arg z}$.

