Mathematik 3 für Physikstudierende

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 8.

Abgabe bis Mi, 13.12.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Es sei f holomorph auf $B_1(0)\setminus\{0\}$, beschränkt und besitze eine isolierte Singularität in 0. Zeigen Sie, dass es g holomorph auf $B_1(0)$ existiert, sodass g(z)=f(z) für alle $z\in B_1(0)\setminus\{0\}$. Hinweis: Laurent Reihe betrachten.

Aufgabe 2. (10 Punkte)

- (i) Berechnen Sie die Laurent-Reihe in $z_0 = 0$ für $f(z) = e^{z+1/z}$ für $z \in \mathbb{C} \setminus \{0\}$.
- (ii) Finden Sie alle Singularitäten und Residuen von $f(z) = \frac{\cos(z)}{z\sin(z)}$.
- (iii) Finden Sie das Residuum von $f(z) = \frac{\cos(z)}{z\sin(z)^2}$ in 0.

Aufgabe 3. (10 Punkte)

Sei $f: \mathbb{R} \to \mathbb{C}$, $f(x) = \sum_{k=0}^{N} \alpha_k \cos(kx) + \beta_k \sin(kx)$, mit $\alpha_k, \beta_k \in \mathbb{C}$. Finden Sie Koeffiezienten $\gamma_k \in \mathbb{C}$, $k = -N, \dots, N$ mit $f(x) = \sum_{k=-N}^{N} \gamma_k e^{ikx}$.