CS500-Data Science Tools and Technique Model Evaluation

Bahar Ali PhD Scholar, National University Of Computer and Emerging Sciences, Peshawar.

Model Evaluation

Central Question:

How good is a model at classifying unseen records?

4.1 Metrics for Model Evaluation

How to measure the performance of a model?

4.2 Methods for Model Evaluation

How to obtain reliable estimates?

Metrics for Model Evaluation

- Focus on the predictive capability of a model
- Rather than how much time it takes to classify records or build models.

Confusion Matrix

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	True Positives	False Negatives
	Class=No	False Positives	True Negatives

Accuracy and Error Rate

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{\text{Correct predictions}}{\text{All predictions}}$$

Error Rate = 1 - Accuracy

	PREDICTED CLASS		
ACTUAL CLASS		Class= Yes	Class= No
	Class= Yes	TP 25	FN 4
	Class= No	FP 6	TN 15

$$Acc = \frac{25+15}{25+15+6+4} = 0.80$$

The Class Imbalance Problem

- Sometimes, classes have very unequal frequency
 - Fraud detection: 98% transactions OK, 2% fraud
 - E-commerce: 99% surfers don't buy, 1% buy
 - Intruder detection: 99.99% of the users are no intruders
 - Security: >99.99% of Pakistani are not terrorists
- The class of interest is commonly called the positive class, and the rest negative classes.
- Consider a 2-class problem
 - Number of negative examples = 9990
 Number of positive examples = 10
 - If model predicts all examples to belong to the negative class, the accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any positive example.

Precision and Recall

Alternative: Use measures from information retrieval which are biased towards the positive class.

	Classified Positive	Classified Negativ	ve
Actual Positive	TP	FN	
Actual Negative	FP	TN	
$n = \frac{TP}{T}$) 	<u>TP</u>	Majority
P = TP +	FP $r = TI$	P + FN	

Precision *p* is the number of correctly classified <u>positive</u> examples divided by the total number of examples that are classified as <u>positive</u>.

Recall *r* is the number of correctly classified <u>positive</u> examples divided by the total number of actual <u>positive</u> examples in the test set.

Precision and Recall – A Problematic Case

	Classified Positive	Classified Negative
Actual Positive	1	99
Actual Negative	0	1000

- This confusion matrix gives us
 - precision p = 100%
 - recall r = 1%
- because we only classified one positive example correctly and no negative examples wrongly.
- Thus, we want a measure that
 - 1. combines precision and recall and
 - 2. is large if both values are large.

F₁-Measure

F₁-score combines precision and recall into one measure.

$$F_1 = \frac{2pr}{p+r}$$

F₁-score is the harmonic mean of precision and recall.

$$F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}}$$

- The harmonic mean of two numbers tends to be closer to the smaller of the two.
- Thus, for the F₁-score to be large, both p and r must be large.

Methods for Model Evaluation

- Methods for estimating the performance measures discussed:
 - 1. Holdout Method
 - 2. Random Subsampling
 - 3. Cross Validation

Holdout Method

- The holdout method reserves a certain amount of the labeled data for testing and uses the remainder for training.
- Usually: One third for testing, the rest for training

- For unbalanced datasets, random samples might not be representative
 - few or no records of the minority class/classes
- Stratified sample: Sample each class independently, so that records
 of the minority class are present in each sample.

Random Subsampling

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training
 - The error rates on the different iterations are averaged

Cross-Validation

- Cross-validation avoids overlapping test sets
 - First step: data is split into *k* subsets of equal size
 - Second step: each subset in turn is used for testing and the remainder for training

- This is called k-fold cross-validation
- The error estimates are averaged to yield an overall error estimate
- Frequently used: k = 10 (90% training, 10% testing)
 - Why ten? Experiments have shown that this is the good choice to get an accurate estimate and still use as much data as possible for training.
- Often the subsets are generated using stratified sampling

Evaluation Summary

- Performance Metrics
 - Use accuracy
 - If interesting class is infrequent, use precision, recall and F1
- Estimation
 - Use cross-validation
 - If dataset is large and computation takes to too much time, use holdout method