single cell sequencing

	NCT Number	Title	Authors	Description	Identifier	Dates
1	pubmed:36054938	Integrated single-cell transcriptomic analyses reveal that GPNMB-high macrophages promote PN-MES transition and impede T cell activation in GBM	Aizhen Xiong Jiwei Zhang Yan Chen Yi Zhang Fan Yang	BACKGROUND: Glioblastoma (GBM) is the most aggressive type of primary brain tumor and is often resistant to current therapies. Tumor microenvironment-centered therapies may unleash new hope for GBM treatment. Therefore, an in-depth understanding of tumor-stroma communication is urgently needed to identify promising therapeutic targets.	pmid:36054938 doi:10.1016/j.ebiom.2022.104239	Fri, 02 Sep 2022 06:00:00 -0400
2	pubmed:36055193	Modeling human multi-lineage heart field development with pluripotent stem cells	Donghe Yang Juliana Gomez-Garcia Shunsuke Funakoshi Thinh Tran Ian Fernandes Gary D Bader Michael A Laflamme Gordon M Keller	The cardiomyocyte (CM) subtypes in the mammalian heart derive from distinct lineages known as the first heart field (FHF), the anterior second heart field (aSHF), and the posterior second heart field (pSHF) lineages that are specified during gastrulation. We modeled human heart field development from human pluripotent stem cells (hPSCs) by using single-cell RNA-sequencing to delineate lineage specification and progression. Analyses of hPSC-derived and mouse mesoderm transcriptomes enabled the	pmid:36055193 doi:10.1016/j.stem.2022.08.007	Fri, 02 Sep 2022 06:00:00 -0400
3	pubmed:36055201	High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios	Marta Byrska-Bishop Uday S Evani Xuefang Zhao Anna O Basile Haley J Abel Allison A Regier André Corvelo Wayne E Clarke Rajeeva Musunuri Kshithija Nagulapalli Susan Fairley Alexi Runnels Lara Winterkorn Ernesto Lowy Human Genome Structural Variation Consortium None Paul Flicek Soren Germer Harrison Brand Ira M Hall Michael E Talkowski Giuseppe Narzisi Michael C Zody	The 1000 Genomes Project (1kGP) is the largest fully open resource of whole-genome sequencing (WGS) data consented for public distribution without access or use restrictions. The final, phase 3 release of the 1kGP included 2,504 unrelated samples from 26 populations and was based primarily on low-coverage WGS. Here, we present a high-coverage 3,202-sample WGS 1kGP resource, which now includes 602 complete trios, sequenced to a depth of 30X using Illumina. We performed single-nucleotide variant	pmid:36055201 doi:10.1016/j.cell.2022.08.004	Fri, 02 Sep 2022 06:00:00 -0400
4	pubmed:36055241	Whole-genome CRISPR screening identifies genetic manipulations to reduce immune rejection of stem cell-derived islets	Elad Sintov Igor Nikolskiy Victor Barrera Jennifer Hyoje-Ryu Kenty Alexander S Atkin Dario Gerace Shannan J Ho Sui Kyle Boulanger Douglas A Melton	Human embryonic stem cells (hESCs) provide opportunities for cell replacement therapy of insulin-dependent diabetes. Therapeutic quantities of human stem cell-derived islets (SC-islets) can be produced by directed differentiation. However, preventing allo-rejection and recurring autoimmunity, without the use of encapsulation or systemic immunosuppressants, remains a challenge. An attractive approach is to transplant SC-islets, genetically modified to reduce the impact of immune rejection. To	pmid:36055241 doi:10.1016/j.stemcr.2022.08.002	Fri, 02 Sep 2022 06:00:00 -0400

	NCT Number	Title	Authors	Description	Identifier	Dates
5	pubmed:36055412	Novel skewed usage of B-cell receptors in COVID-19 patients with various clinical presentations	Junpeng Ma Han Bai Tian Gong Weikang Mao Yijun Nie Xuan Zhang Yanyan Da Xiaorui Wang Hongyu Qin Qiqi Zeng Fang Hu Xin Qi Bingyin Shi Chengsheng Zhang	B cell-mediated immune responses play important roles in controlling SARS-CoV infection. Here, we performed the single-cell B cell receptor sequencing (scBCR-seq) of the PBMC samples from eleven healthy controls, five asymptomatic subjects and 33 symptomatic COVID-19 patients with various clinical presentations, and subsequently analyzed the abundance and diversity of the BCR repertoires in different groups, respectively. We revealed the skewed usage of the IGHV, IGLV and IGKV genes and	pmid:36055412 doi:10.1016/j.imlet.2022.08.006	Fri, 02 Sep 2022 06:00:00 -0400
6	pubmed:36055600	A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron	Mark E Corkins MaryAnne Achieng Bridget D De Lay Vanja Krneta-Stankic Margo P Cain Brandy L Walker Jichao Chen Nils O Lindström Rachel K Miller	The kidney is an essential organ that ensures bodily fluid homeostasis and removes soluble waste products from the organism. Nephrons, the functional units of the kidney, comprise a blood filter, the glomerulus or glomus, and an epithelial tubule that processes the filtrate from the blood or coelom and selectively reabsorbs solutes, such as sugars, proteins, ions, and water, leaving waste products to be eliminated in the urine. Genes coding for transporters are segmentally expressed, enabling	pmid:36055600 doi:10.1016/j.kint.2022.07.027	Fri, 02 Sep 2022 06:00:00 -0400
7	pubmed:36056412	scMTD: a statistical multidimensional imputation method for single-cell RNA-seq data leveraging transcriptome dynamic information	Jing Qi Qiongyu Sheng Yang Zhou Jiao Hua Shutong Xiao Shuilin Jin	CONCLUSIONS: scMTD maintains the gene expression characteristics, enhances the clustering of cell subpopulations, assists the study of gene expression dynamics, contributes to the discovery of rare cell types, and applies to both UMI-based and non-UMI-based data. Overall, scMTD's reliability, applicability, and scalability make it a promising imputation approach for scRNA-seq data.	pmid:36056412 doi:10.1186/s13578-022-00886-4	Fri, 02 Sep 2022 06:00:00 -0400
8	pubmed:36056685	TNFAIP3 mutation is an independent poor overall survival factor for patients with T-cell acute lymphoblastic leukemia	Cunte Chen Lingling Zhou Lihua Zhu Gengxin Luo Liang Wang Chengwu Zeng Hongsheng Zhou Yangqiu Li	CONCLUSION: TNFAIP3 mutation mainly occurs in adult T-ALL patients, and it was associated with adverse clinical outcomes for T-ALL patients; thus, it might be a biomarker for prognostic stratification.	pmid:36056685 doi:10.1002/cam4.5196	Sat, 03 Sep 2022 06:00:00 -0400
9	pubmed:36056872	Exploring plausible therapeutic targets for Alzheimer's disease using multi-omics approach, machine learning and docking	S Akila Parvathy Dharshini Nela Pragathi Sneha Dhanusha Yesudhas A Kulandaisamy Uday Rangaswamy Anusuya Shanmugam Y-H Taguchi M Michael Gromiha	The progressive deterioration of neurons leads to Alzheimer's disease (AD), and developing a drug for this disorder is challenging. Substantial gene/transcriptome variability from multiple cell types leads to downstream pathophysiologic consequences that represent the heterogeneity of this disease. Identifying potential biomarkers for promising therapeutics is strenuous due to the fact that the transcriptome, epigenetic, or proteome changes detected in patients are not clear whether they are the	pmid:36056872 doi:10.2174/1568026622666220902110115	Sat, 03 Sep 2022 06:00:00 -0400

NCT Number	Title	Authors	Description	Identifier	Dates
10 pubmed:36056959	Genome-wide analysis reveals allelic variation and chromosome copy number variation in paromomycin-resistant Leishmania donovani	Sushmita Ghosh Vinay Kumar Aditya Verma Tanya Sharma Dibyabhaba Pradhan Angamuthu Selvapandiyan Poonam Salotra Ruchi Singh	In the absence of adequate diagnosis and treatment, leishmaniasis remains a major public health concern on a global scale. Drug resistance remains a key obstacle in controlling and eliminating visceral leishmaniasis. The therapeutic gap due to lack of target-specific medicine and vaccine can be minimized by obtaining parasite's genomic information. This study compared whole-genome sequence of paromomycin-resistant parasite (K133PMM) developed through in vitro adaptation and selection with	pmid:36056959 doi:10.1007/s00436-022-07645-x	Sat, 03 Sep 2022 06:00:00 -0400