Bases formelles du TAL Partiel

Pierre-Léo Bégay

1 mars 2018

Dans tout ce partiel, on utilise l'alphabet $\Sigma = \{a, b\}$. Quand on parle d'automate non-déterministe, on autorise à la fois la définition "classique" et celle avec ϵ -transitions.

Exercice 1 [4 points]

Soit $L = [ab^*a]$

Question 1 [1] Donnez un automate fini qui reconnaît L

Question 2 [1] Donnez un automate fini qui reconnaît \overline{L}

Question 3 [2] Donnez une expression régulière qui décrit \overline{L} (c'est sans doute plus facile en s'aidant de l'automate de la question précédente)

Exercice 2 [10 points]

Soit $L_1 = \{u \in \Sigma^* | aa \text{ est un sous-mot de } u\}.$

Question 1 [1] Donnez un automate fini déterministe complet reconnaissant L_1

Question 2 [1] Donnez une expression rationnelle décrivant L_1

Soit $L_2 = \{u \in \Sigma^* | aba \text{ est un facteur de } u\}.$

Question 3 [1] Donnez un automate fini déterministe complet reconnaissant L_2

Soit $L_3 = L_1 \cap L_2$

Question 4 [2] Donnez un automate déterministe complet reconnaissant L_3

Question 5 [2 + 1 bonus] Minimisez l'automate obtenu.

Bonus: Qu'observez-vous? Comment l'expliquez-vous?

Question 6 (bonus) [1] Donnez une expression rationnelle décrivant L_3

Soit $L_4 = L_1 \setminus L_2$

Question 7 [1] Donnez un automate déterministe complet reconnaissant L_4 .

Question 8 [2] Minimisez l'automate obtenu.

Exercice 3 [3 points]

Déterminisez l'automate suivant :

Exercice 4 [3 points]

Question 1 [1] Donnez un automate qui reconnaît le langage décrit par l'expression rationnelle a^*b^* .

Question 2 [2] Montrez que le langage $\{u \in \Sigma^* \mid |u|_a = |u|_b\}$ n'est pas reconnaissable par automate.