NOTES FOR PDE BY EVANS

Based on the Lecture Notes by Cole Graham

Author Wells Guan

Contents

1 5	\mathbf{Sob}	Sobolev Spaces		
	1.1	Definitions		
	1.2	Sobolev Embedding	4	

1 Sobolev Spaces

1.1 Definitions

Definiton 1.1.1. (Sobolev Space)

The Sobolev space $W^{k,p}(\Omega)$ is the set of distributions on Ω whose weak partial derivatives up to order k are in $L^p(\Omega)$, i.e. for $f \in C_c^{\infty}(\Omega)$, there is always some $u_{\alpha} \in L^p$, $|\alpha| \leq k$ such that

$$\partial^{\alpha} u(f) = \int_{\Omega} u_{\alpha} f$$

Then $W^{k,p}$ is a Banach space under the norm

$$||u||_{W^{k,p}(\Omega)}^p := \sum_{|\alpha| \le k} ||\partial^{\alpha} u||_{L^p(\Omega)}^p$$

where $||\partial_{\alpha}u||_{L^{p}(\Omega)} = ||u_{\alpha}||_{L^{p}(\Omega)}$ where u_{α} is the function satisfying the requirement above.

Definition 1.1.2. The Sobolev space $\widetilde{W}^{k,p}(\Omega)$ is the completion in the $W^{k,p}$ norm of $C^k(\Omega)$ with finite norm.

Proposition 1.1.1. If $k \in \mathbb{N}_0$ and $p \in [1, \infty)$, then $W^{k,p} = \widetilde{W}^{k,p}$

Definition 1.1.3. For p = 2, we can make $W^{k,2}$ a Hilbert space and use $H^k := W^{k,2}$. The inner product is defined by

$$\langle u, v \rangle_{H^k(\Omega)} := \sum_{|\alpha| \le k} \langle \partial^{\alpha} u, \partial^{\alpha} v \rangle_{L^2(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v$$

Theorem 1.1.2. (Caccioppoli Inequality)

Let $u \in C^{(R)}$ satisfy $\Delta u = 0$. Then there is a constant C(d) > 0 such that for all $r \in [0, R)$,

$$\int_{B_r} |\nabla u|^2 \leq \frac{C}{(R-r)^2} \int_{B_R} u^2$$

Proof. Let $0 \le \phi \le 1$ be a smooth function that is supported in B_R and equals one on B_r . We know

$$\Delta(\phi u) = \phi \Delta u + 2\nabla \phi \cdot \nabla u + u\Delta \phi = 2\nabla \phi \cdot \nabla u + u\Delta \phi$$

and we may multiply both sides by $-\phi u$ and integrate by parts:

$$\begin{split} \int_{B_R} -(\phi u) \Delta(\phi u) &= \int_{B_R} |\nabla(\phi u)|^2 + \int_{\partial B_R(\phi u)} (\phi u) \frac{\partial (\phi u)}{\partial \nu} dS \\ &= -\frac{1}{2} \int_{B_R} \nabla(\phi^2) \cdot \nabla(u^2) - \int_{B_R} u^2 \phi \Delta \phi \\ &= \frac{1}{2} \int_{B_R} \Delta(\phi^2) u^2 - \int_{\partial B_R} u^2 \frac{\partial (\phi^2)}{\partial \nu} dS - \int_{B_R} u^2 \phi \Delta \phi \end{split}$$

which means

$$\int_{B_R} |\nabla(\phi u)|^2 = \int_{B_R} \left(\frac{1}{2}\Delta(\phi^2) - \phi \Delta \phi\right) u^2 = \int_{B_R} |\nabla \phi|^2 u^2$$

and we may arrange $|\nabla \phi| \leq \frac{C(d)}{R-r}$ and hence we are done.

Corollary 1.1.3. For all $k \in \mathbb{N}$, if $u \in C^{k+1}(B_R)$ satisfies $\Delta u = 0$, then there is a constant C(d,k) > 0 such that for all $r \in [0,R)$,

$$\int_{B_r} |D^k u|^2 \le \frac{C}{(R-r)^{2k}} \int_{B_R} u^2$$

Proposition 1.1.4. We may devide [r, R] to k subintervals of $\frac{R-r}{k}$.

1.2 Sobolev Embedding

Theorem 1.2.1. There exists a constant C(d) > 0 such that for all $u \in W^{1,1}(\mathbb{R}^d)$, we have

$$||u||_{L^{\frac{d}{d-1}}(\mathbb{R}^d)} \le C||\nabla u||_{L^1(\mathbb{R}^d)}$$

Corollary 1.2.2. For each $p \in [1, d)$, there exists C(d, p) > 0 such that for all $u \in W^{1,p}(\mathbb{R}^d)$, we have

$$||u||_{L^{p^*}(\mathbb{R}^d)} \le C||\nabla u||_{L^p(\mathbb{R}^d)}$$

where $p^* = \frac{dp}{d-p}$.

Theorem 1.2.3. (Morrey's Inequality)

If $p \in (d, \infty]$, there exists C(d, p) > 0 such that for all $u \in W^{1,p}(\mathbb{R}^d)$, and

$$[u]_{C^{1-d/p}(\mathbb{R}^d)} \le C||\nabla u||_{L^p(\mathbb{R}^d)}$$

where

$$[u]_{C^\alpha(\mathbb{R}^d)} := \sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^\alpha}$$

and u is some "version" which means a function.

Proof. For all $x \in \mathbb{R}^d$ and R > 0, we have

$$\left| \frac{1}{|\partial B_R|} \int_{\partial B_R(x)} (u - u(x)) \right| = \frac{1}{|S^{d-1}|} \int_{S^{d-1}} |u(x + R\theta) - u(x)| d\theta$$

$$\leq \frac{1}{|S^{d-1}|} \int_{S^{d-1}} \int_0^R |\nabla u(x + r\theta)| dr d\theta$$

$$= \frac{1}{|S^{d-1}|} \int_{B_R(x)} |\nabla u(y)| |y - x|^{-(d-1)} dy$$

$$\leq \frac{1}{|S^{d-1}|} ||\nabla u||_{L^p(B_R(x))} \left(\int_{B_R} r^{-(d-1)p/(p-1)} \right)^{(p-1)/p}$$

$$= ||\nabla u||_{L^p(B_R(x))} \frac{p - d}{p - 1} R^{(p-d)/p}$$

$$= C(d, p) R^{1 - d/p} ||\nabla u||_{L^p(B_R(x))}$$

Suppose $|x-z| \le R/2$ and we have

$$\left| \frac{1}{|\partial B_R|} \int_{\partial B_R(z)} (u - u(x)) \right| = \frac{1}{|S^{d-1}|} \int_{S^{d-1}} |u(z + R\theta) - u(x)| d\theta$$

$$\leq \frac{1}{|S^{d-1}|} \int_{S^{d-1}} \int_0^{3R/2} |\nabla u(x + r\phi)| dr \left| \det \frac{D\theta}{D\phi} \right| d\phi$$

$$\leq C(d, p) R^{1 - d/p} ||\nabla u||_{L^p(B_{3R/2}(x))}$$

Now for $x \neq y$ in \mathbb{R}^d and R := |x - y|, z = (x + y)/2 and then

$$|u(x) - u(y)| \le |u(x) - \frac{1}{\partial B_R} \int_{\partial B_R(z)} u| + |u(y) - \frac{1}{\partial B_R} \int_{\partial B_R(z)} u| \le CR^{1 - d/p} ||\nabla u||_{L^p(\mathbb{R}^d)}$$

Theorem 1.2.4. Let U be a bounded open subset of \mathbb{R}^d and suppose ∂U is C^1 . Assume $d and <math>u \in W^{1,p}(U)$. Then u has a version $u^* \in C^{\gamma}(\overline{U})$ for $\gamma = 1 - n/p$ with the estimate

$$||u^*||_{C^{\gamma}(\overline{U})} \le C||u||_{W^{1,p}(U)}$$

where C = C(p, n, U)

Corollary 1.2.5. If $p \in (d, \infty)$, there exists C(d, p) > 0 such that for all $u \in W^{1,p}(\mathbb{R}^d)$ we have

$$||u||_{C^{1-d/p}(\mathbb{R}^d)} \le C||u||_{W^{1,p}(\mathbb{R}^d)}$$

In particular, $W^{1,p} \hookrightarrow C^{1-d/p}$. The same holds for $p = \infty$ and then we replace $C^{0,1}$ the Lipschitz functions instead of C^1 .

Proof. We know that

$$\left| \frac{1}{|B_R|} \int_{B_R(z)} (u - u(x)) \right| \le CR^{1 - d/p} ||\nabla u||_{L^p(B_R(x))}$$

and let R = 1 and we have

$$|u(x)| \le C|\int_{B_1(x)} u| + C||\nabla u||_{L^p(B_1(x))} \le C||u||_{W^{1,p}(\mathbb{R}^d)}$$

by Holder. \Box

Proposition 1.2.6. (General Sobolev Inequality)

Let Ω be a bounded C^1 domain. If $p \in [1, d)$, there exists a constant $C(d, p, \Omega) > 0$ such that for all $u \in W^{1,p}(\Omega)$,

$$||u||_{L^{p^*}(\Omega)} \le C||u||_{W^{1,p}(\Omega)}$$

and if $p \in (d, \infty]$, we similarly have

$$||u||_{C^{1-d/p}(\Omega)} \le C||u||_{W^{1,p}(\Omega)}$$

Theorem 1.2.7. (Rellich-Kondrachov)

Let Ω be a bounded C^1 domain. If $1 \leq p < d$ and $1 \leq q < p^*$, then $W^{1,p}(\Omega)$ is compactly embedded in $L^q(\Omega)$. That is, closed bounded sets in $W^{1,p}(\Omega)$ are cinoact in $L^q(\Omega)$.

Corollary 1.2.8. Let Ω be \mathbb{R}^d or a bounded C^1 domain. Then there exists a constant $l(d) \in \mathbb{N}$ such that for all $k \in \mathbb{N}$, $H^{k+l(\Omega)} \hookrightarrow C^k(\Omega)$.

Proof. If $u \in C^2(B_R)$ is harmonic, then for all $k \in \mathbb{N}$ and $r \in (0, R]$, there exists C(d, k, r, R) > 0 such that

$$||u||_{C^k(B_r)} \le C||u||_{L^2(B_R)}$$