properties at the date
properties of the data.
(2) With respect to integrity mechanisms in DBS, <u>trigger</u> defines actions to be executed
automatically when some events occur and corresponding conditions are satisfied.
(3) An entity set that does not have sufficient attributes to form a primary key is termed a
weak entity set
(4) The commonly-used schemes of organization of records in files are heap file
organization, sequential file organization, and hashing file organization.
(5) The three steps in query processing are parsing and translation, optimization, and
evaluation .
(6) The recovery-management component of a database system implements the support for
transaction atomicity and durability .
(7) A cascadeless schedule ensures that the abort of a transaction does not result in
cascading aborts of other transactions.
(8) The <u>stric</u> two-phase lock protocol requires that all exclusive-mode locks taken by a
transaction be held until that transaction commits.
(9) The three types of failures in DBS are the transaction failures, system crash, and <u>disk</u>
failures/crash.
Tanures/Crash.
2. Choice (1×11 points)
(1) With respect to DBS design, the index is designed at the D phase.
(1) With respect to DBS design, the index is designed at the phase. A. requirement analysis B. conceptual design
A. requirement analysis B. conceptual design
A. requirement analysis C. logical design D. physical design
A. requirement analysis B. conceptual design C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B isC
A. requirement analysis C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B is 01
A. requirement analysis B. conceptual design C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B isC
A. requirement analysis C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B is O1 A B B B
A. requirement analysis B. conceptual design C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B is 01 35
A. requirement analysis B. conceptual design C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B is O1 R B A. one-to-many B. one-to-one C. many-to-one D. many-to-many
A. requirement analysis C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B is O1 A B B B
A. requirement analysis B. conceptual design C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B is O1 R B A. one-to-many B. one-to-one C. many-to-one D. many-to-many
A. requirement analysis B. conceptual design C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B is
A. requirement analysis B. conceptual design C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B is O1 R B A. one-to-many B. one-to-one C. many-to-one D. many-to-many (3) The following SQL statement corresponds to the expression C Select *
A. requirement analysis B. conceptual design C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B is O1 R B A. one-to-many B. one-to-one C. many-to-one D. many-to-many (3) The following SQL statement corresponds to the expression C Select * From r, s
A. requirement analysis B. conceptual design C. logical design D. physical design (2) For the E-R diagram given below, the mapping cardinality from A to B is C

1. Fill in blanks. (1×9 points)

attributes	data types	definitions
c_id	int	unique identifier for the customer; similar definitionss for
		a_id, p_id, ord_no
c_name	varchar(10)	name of the <i>customer</i> ; similar definitions for <i>a_name</i> and
		p_name
c_city	varchar(10)	city where the customer is located; similar definitions for
		a_city and p_city
discount	real	each customer has a negotiated discount (折扣) on prices
quantity	real	quantity of the product on hand for sale, in standard units
price	real	price of each unit product
o_date	date	the year and month the order was pacled
qty	real	the total quantity ordered for the product
dollars	real	the cost for the ordered product in this order

Use the SQL statements to implement the following operations:

- (1) Define the table *orders*, it is assumed that the *null* value is inappropriate for the attribute *qty* and the attribute *dollars* ranges from 100 to 10,000. (4 points)
- (2) Find out the name of each customer who orders all his products through only one agent.
 (5 points)
- (3) Give every *customer*, who places some *orders* and the total cost (in *dollars*) of all these *orders* is more than \$2000, a 10% increase in the *discount* he receives. (5 points)
- (4) Create a new table called *Huabei_customers*, and add into it all *customers* who purchase the *product* "TV" and are located in Beijing, Tianjing and Shijz. (4 points)

Answer:

(1) create table orders(

```
ord_no int,

o_date date,

c_id int,

a_id int,

p_id int,
```

```
not null,
                   real
         qty
         dollars
                   real,
         primary key (ord_no),
         foreign key (c_id) references customer,
         foreign key (a_id) references agents,
         foreign key (p_id) references products,
         check (dollars between 100 and 10000))
(2) 解法一:
    select c_name
    from customer, orders
    where customer.c_id = order.c_id
    group by c_id,c_name
    having count(distinct a_id) = 1
    解法二:
    select c_name
    from (select distinct customer. c_name,count (orders.a_id) as agent_number
          from customer, orders
          where customer.c_id = orders.c_id
          group by orders.c_id)
    where agent_number = 1
    解法三:
    with cAgent(c id,a num) as
         select c_id,count (distinct a_id)
         from orders
         group by c_id
    select c_name
    from customer, cAgent
    where customer.c_id = cAgent.c_id and cAgent.a_num = 1
```

```
(3) update customer
    set discount = discount * 1.1
     where c_id in (select c_id
                   from orders
                   group by c_id
                   having sum (dollars) > 2000)
(4) 解法一:
    create table Huabei_customers(
              c_id
                        int,
                        varchar(10),
              c_name
              c city
                        varchar(10),
              discount real;
              primary key (c_id)
    insert into Huabei_customers
         select customer.c_id ,c_name,c_city,discount
         from customer, orders, products
         where customer.c_id = orders.c_id and products.p_id = orders.p_id
         and p_name = 'TV'and p_city in {'Beijing', 'Tianjing', 'Shijz'}
解法二:
    create table Huabei customers(
                        int,
              c_id
              c_name varchar(10),
              c_city
                        varchar(10),
              discount real;
              primary key (c_id)
     select customer.c_id ,c_name,c_city,discount into Huabei_customers
     from customer, orders, products
```

```
where customer.c_id = orders.c_id and products.p_id = orders.p_id
and p_name = 'TV'and p_city in ('Beijing','Tianjing','Shijz')
```

4. (12 points) The functional dependency set $F = \{AB \rightarrow C, A \rightarrow DEI, B \rightarrow FH, F \rightarrow GH, D \rightarrow IJ \}$

holds on the relation schema R = (A, B, C, D, E, F, G, H, I, J),

- a. Compute (AF)⁺ (3 points)
- b. List all the candidate keys of R. (2points)
- c. Compute the canonical cover F_c (3 points)
- d. Give a lossless and dependency-preserving decomposition of R into 3NF. (4 points)

Answer:

```
(3 points)
     (AF)+
               result=AF
     A→DEI result=AFDEI
     F→GH result=AFDEIGH
     D→IJ result=AFDEIGHJ
b.(2 points)
     (AB) + = ABCDEFGH
c. (3 points)
     Fc = \{AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH, D \rightarrow IJ\}
d. (4 points)
     R1(A,B,C)
     R2(A,D,E)
     R3(D,I,J)
     R4(B,F)
     R5(F,G,H)
```

- 5. (20 points) Notown Records company needs to store information about songs, albums and musicians who perform on its albums in a database. Consider the following information:
- Each musicians that records at company has an Id (which is unique), a name, an address, and a phone number.
- Each instrument used in company has a name and an ID, ID is unique.
- Each album recorded on the Notown label has a title, a copyright date, a format, and an album identifier.
- Each song recorded at Notown has a title and an author, and each song can be identified by title.
- Each musician may play several instruments, and a given instruments may be played by several musicians.
- Each album has a number of songs on it, but no song may appear on more than one

album.

- Each song is performed by one or more musicians, and a musician may perform a number of songs.
- Each album has exactly one musician who acts as its producer. A musician may produce several albums, of course.
- (1) Design the E/R diagram for hospital database on basis of the information mentioned above .(10 points)

Note: mapping cardinality of each relationship and participation of each entity to the relationship should be described in the diagram.

(2) Convert the E-R diagram to the proper relational schemas, and give the primary keys of each relation schemas by underlines. (10 points)

Answers:

全参与和部分参与可有不同答案。

(2) musician(m_id, name, address, phone_number) instrument(I_id,I_name) album(a_identifier, title, copyright_date, format, m_id) song(s_title, author, a_identifier) play(<u>m_id, I_id</u>) perform(<u>m_id, s_title</u>)