Projet de Simulation 2019 - Modèles Théoriques

Maxime Gonthier - Benjamin Guillo
t $17~\mathrm{mai}~2019$

Table des matières

1	Intr	roduction		
2	Mo	dèles n°1 - File $ m M/M/N$		
	2.1	description du modèle		
		2.1.1 représentation		
	2.2	Données et Formules		
		2.2.1 Temps moyen d'attente et 90 percentile		
$3 \mod e$ le n° 2 - File $M/M/1$				
	3.1	description du modèle		
		3.1.1 représentation		
3.2 Données et Formules		Données et Formules		
		3.2.1 Temps moven d'attente et 90 percentile		

1 Introduction

Ce Rapport à pour but de présenter les trois modèles théoriques étudié pour ce projet de Simulation.

Il sera composé de trois parties, chacune d'entre elles étant dédié à un modèle précis.

2 Modèles n°1 - File M/M/N

2.1 description du modèle

Le premier modèle est décris de la façon suivante :

 $Le\ patron\ donne\ au\ client\ un\ ticket\ num\'erot\'e.$

Dès qu'un ordinateur se libère, la personne en attente avec le plus petit numéro de ticket accède à l'ordinateur.

2.1.1 représentation

Modélisation graphique de la file M/M/N.

Dans l'état i il y à i clients dans la file.

L'espace d'état est défini par $E = \mathbb{N}$

Les transitions peuvent s'exprimer de la façon suivante :

$$\forall i \geq 0,$$

$$i^{\lambda} \to i+1$$

$$i^{\mu} \rightarrow i - 1$$

La condition de convergence pour ce modèle est :

$$\rho > 1$$

2.2 Données et Formules

On à besoin pour ce modèles de définir certaines données :

 λ : probabilité d'arrivée de client.

 μ : le temps de service.

 ρ : l'intensité du trafic.

N: le nombre de serveur, fixé à 10.

On calcule l'intensité du trafic de la façon suivante pour chaque λ : $\rho = \frac{\lambda}{N*\mu}$

On à également besoin du nombre moyen de client théorique Nmoyen:

$$Nmoyen = E[nq(???)] = \frac{\rho * \varrho}{1-\rho}$$

$$\begin{split} N moyen &= E[nq(???)] = \frac{\rho * \varrho}{1-\rho} \\ \text{ou } &\varrho = Proba???? (\geq N) = \frac{(N*\rho)^N}{N!(1-\rho)^{\rho_0}}. \end{split}$$

Ici, ρ_0 représente la probabilité que la file soit vide et se calcule de la façon

suivante :
$$\rho_0 = 1 + (\frac{(N*\rho)^N}{N!(1-\rho)} + \sum_{n=1}^{N-1} \frac{(N*\rho)^N}{n!})$$

2.2.1 Temps moyen d'attente et 90 percentile

Maintenant que l'on a toute ces données, on peut écrire une formule pour le temps moyen d'attente de ce modèle :

$$E[A] = \frac{E[n_q]}{\lambda} = \frac{\varrho}{N * \mu(1-\rho)}$$

On peut donc écrire une formule pour calculer de 90 percentile du temps d'attente de ce modèle :

$$t_{90}[A] = \frac{E[A]}{\varrho} * ln(10\varrho)$$

Modèle n°2 - File M/M/13

description du modèle 3.1

Le second modèle est décris de la façon suivante :

Le patron choisit au hasard, uniformément un ordinateur parmis les N puis il donne au client un ticket numéroté pour l'ordinateur choisi.

Dès que le client d'un ordinateur a fini, c'est le client qui a le plus petit numéro parmis ceux affecté à cet ordinateur qui prend la place.

3.1.1 représentation

Modélisation graphique de la file M/M/1.

Les transitions peuvent s'exprimer de la façon suivante :

	0	1	2
0	$-\lambda$	λ	0
1	μ	$-(\lambda + \mu)$	λ
2	0	μ	$-(\lambda + \mu)$

 $\forall i \epsilon N$,

$$Q_{i,i+1} = \lambda$$

$$Q_{i,i-1} = \mu$$

La condition de convergence pour ce modèle est :

$$\rho < 1$$

Données et Formules 3.2

Pour ce modèles, on utilise les même données que pour le modèles précédent soit :

 λ : probabilité d'arrivée de client.

 μ : le temps de service.

 ρ : l'intensité du trafic.

Cependant on calcule ρ différemment :

$$\rho = \frac{\lambda}{\mu}$$

Le nombre moyen de client s'exprime ainsi :

$$Nmoyen = \frac{\rho}{1-\rho}$$

3.2.1 Temps moyen d'attente et 90 percentile

Le temps d'attente moyen est :

$$E[A] = \rho * \frac{\frac{1}{\mu}}{1 - \rho}$$

 $E[A] = \rho * \frac{\frac{1}{\mu}}{1-\rho}$ Le 90 percentile du temps d'attente s'exprime donc de la façon suivante : $max(0,\frac{E[A]}{\rho}ln(10*\rho))$