TAOCP Section 1.1 Exercises

Yuchong Pan

December 16, 2017

1. $t \leftarrow a$, $a \leftarrow b$, $b \leftarrow c$, $c \leftarrow d$, $d \leftarrow t$.

2.

Proof. Consider 2 cases, m > n and $m \le n$ for original inputs.

For the first case (i.e., m > n originally), we have $0 \le r < n$ after step E1.

If r = 0, then the algorithm terminates in step E2.

Otherwise, since r < n, we have n < m, or m > n, after step E3.

For the second case (i.e., $m \le n$ originally), we have $0 \le r \le m$ after E1.

If r = 0, then m = n and the algorithm terminates in step E2.

Otherwise, r = m < n, so we have n < m, or m > n, after step E3.

Therefore, step E3 always gives m > n, so m is always n at the beginning of step E1, except possibly the first time this step occurs.

- **3.** Algorithm F. Given two positive integers m and n, find their greatest common divisor, i.e., the largest positive integer that evenly divides both m and n.
- **F1.** [Find remainder.] Divide m by n and let r be the remainder. Set $m \leftarrow r$. (We will have $0 \le m < n$.)
- **F2.** [Does m equal zero?] If m = 0, the algorithm terminates; n is the answer.
- **F3.** [Exchange.] Exchange $m \leftrightarrow n$. (We will have m > n > 0.)
- **4.** Let m = 2166, and let n = 6099.

m	n	r
2166	6099	2166
6099	2166	1767
2166	1767	399
1767	399	171
399	171	57
171	57	0

Therefore, 57 is the greatest common divisor of 2166 and 6099.

- **5.** The "Procedure for Reading This Set of Books" fails to meet the following three features of algorithms.
 - Finiteness: as shown in the flow chart, the procedure never terminates because readers will return to Chapter 1 after they finish all of the 12 chapters.
 - Output: the procedure does not have an output that is returned to readers.

- Effectiveness: some steps of the procedure are not effective; e.g., "work exercises" is not effective to most readers because they may be stuck in some exercise problems (forever).
- **6.** As stated in the text, only the remainder of m after division by n is relevant. Therefore, we will find T_5 by trying the algorithm for m = 1, 2, 3, 4, 5.

Therefore, $T_5 = \frac{2+3+4+3+1}{5} = \frac{13}{5}$.

7. Consider m < n.

Since m is fixed, the contributions of the cases for which $m \geq n$ are negligible to U_m .

Let r be the remainder of m after division by n, and we have r = m.

After the first execution of Algorithm E, we set $m' \leftarrow n$, $n' \leftarrow r = m$.

Let r' be the remainder of m' after division by n'.

Since m' = n and n' = m, then r' is the remainder of n after division by m.

After the second execution of Algorithm E, we set $m'' \leftarrow n' = m$, $n'' \leftarrow r'$.

Therefore, after the first two executions of Algorithm E, only the remainder of n after division by m is relevant, so we can find U_m by trying the algorithm for n = 1, 2, ..., m.

Hence, U_m is well defined.

Recall that after the first execution of Algorithm E, we set $m' \leftarrow n, n' \leftarrow m$.

Since m is known and n is allowed to range over all positive integers, then n' is known and m' is allowed to range over all positive integers.

Therefore, we have $U_m = T_{n'} + 1 = T_m + 1$.

8. Let N = 2.

Define $\theta_j, \phi_j, a_j, b_j$ for $0 \le j < N$ as follows.

9. Let $C_1=(Q_1,I_1,\Omega_1,f_1)$ and $C_2=(Q_2,I_2,\Omega_2,f_2)$ be computational methods.

Suppose that there exists a surjective function $F: Q_2 \to Q_1$ such that for all $q_1, q_2 \in Q_2$ with $f_2(q_1) = q_2$, we have either $F(q_1) = F(q_2)$ or $f_1(F(q_1)) = F(q_2)$.

Suppose furthermore that for all $i \in I_2$, $F(i) \in I_1$, and for all $\omega \in \Omega_2$, $F(\omega) \in \Omega_1$.

Then we say that " C_2 is a representation of C_1 " or " C_2 simulates C_1 ".