Fact 1. For a vector space $\mathcal V$ over a field $\mathbb F$, we have: **Fact 6.** Note the following: $a\mathbf u + b\mathbf v \in \mathcal V$, $\forall \mathbf u, \mathbf v \in \mathcal V$, $\forall a, b \in \mathbb F$

Fact 2 (Various facts about subspaces). The following

- An intersection of subspaces $W \cap X$ is always a subspace.
- An union of subspaces $W \cup \mathcal{X}$ does not need to be a subspace.
- A subspace cannot be empty, since a vector space always contains 0.

Theorem 1 (Sum of subspaces is smallest subspace). Let S_1 and S_2 be subspaces of a vector space $\hat{\mathcal{V}}$ over a field \mathbb{F} . Then, $S_1 + \hat{S_2}$ is the smallest subspace containing S_1 and S_2 .

Proof. $S_1 + S_2$ is trivially a subspace. $S_1, S_2 \subseteq$ $S_1 + S_2$. Conversely, every subspace containing $S_1, \overline{S_2}$ must contain $S_1 + S_2$. Hence, $S_1 + S_2$ is the smallest subspace that contains S_1 and S_2 .

Theorem 2 (Uniquely represented as sum). Any $\mathbf{w} \in \mathcal{S}_1 \oplus \mathcal{S}_2$ can be uniquely represented as: $\mathbf{w} =$ $\mathbf{u} + \mathbf{v}, \quad \mathbf{u} \in \mathcal{S}_1, \quad \mathbf{v} \in \mathcal{S}_2$

Proof. Proof by contradiction. By the definition of subspace sum, any vector in $\mathcal{S}_1 \oplus \mathcal{S}_2$ can be written as $\mathbf{w} = \mathbf{u}_1 + \mathbf{v}_1$, $\mathbf{u}_1 \in \mathcal{S}_1, \mathbf{v}_1 \in \mathcal{S}_2$ Suppose we also write $\mathbf{w} = \mathbf{u}_2 + \mathbf{v}_2$, $\mathbf{u}_2 \in \mathcal{S}_1, \mathbf{v}_2 \in \mathcal{S}_2$ Combining these statements gives: $\mathbf{0} = (\mathbf{u}_1 - \mathbf{u}_2) + (\mathbf{v}_1 - \mathbf{v}_2)$ Clearly, $\mathbf{u}_1 \neq \mathbf{u}_2 \implies \mathbf{v}_1 \neq \mathbf{v}_2$ and vice versa. This implies that: $\mathbf{u}_1 - \mathbf{u}_2 = \mathbf{v}_2 - \mathbf{v}_1 \implies \mathcal{S}_1 \cap \mathcal{S}_2 \neq \{\mathbf{0}\}$ This is a contradiction from the fact that we are doing a direct sum, since the intersection must be zero for a direct sum. Therefore, $\mathbf{u}_1 = \mathbf{u}_2$ and $\mathbf{v}_1 = \mathbf{v}_2$.

Fact 3. Note the following two facts:

- ullet Any ${f v}$ \in ${\cal V}$ can be represented uniquely in Any $\mathbf{v} \in \mathcal{V}$ can be represented uniquely interms of elements in \mathcal{B} . There is only one and only one way to choose $\mathbf{b}_1, \dots, \mathbf{b}_k \in \mathcal{B}$ and $\alpha_1, \dots, \alpha_k \in \mathbb{F}$ such that $\mathbf{v} = \sum_{i=1}^k \alpha_i \mathbf{b}_i$.
- Any linearly independent subset of list of \mathcal{V} can be extended, perhaps in may ways, to form a basis of V.

Fact 4. More fun facts about dimensions:

- If W is a subspace of V, then $\dim(W) \leq$ $\dim(\mathcal{V})$.
- If \widehat{W} is a subspace of \mathcal{V} and $\dim(\mathcal{W}) = \dim(\mathcal{V})$, then W = V.
- If $\dim(\mathcal{V}) = d$, then every system of linearly independent vectors of \mathcal{V} has at most d elements, and any basis of \mathcal{V} has exactly d elements (this is called the Dimension Theorem).
- The only vector space with dimension 0 is {0}.

Fact 5 (More facts about orthogonal/normal).

ullet Every orthonormal list of vectors in \mathbb{C}^n is linearly independent;

$$\mathbf{0} = \sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}$$

$$\implies 0 = \left\langle \sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}, \sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i} \right\rangle$$

$$= \sum_{i=1}^{n} |\alpha_{i}|^{2}$$

$$\implies \alpha_{i} = 0, \quad \forall i$$

- For a list of m orthonormal vectors in \mathbb{C}^n , we must have $m \leq n$;
- Any list of m orthonormal vectors in \mathbb{C}^n form a basis for their span as an m-dimensional sub-

Theorem 3 (Inverse of a mapping is unique). An invertible map has a unique inverse.

Proof. Suppose \mathbf{f} is invertible with inverses \mathbf{g}_1 and \mathbf{g}_2 , so we have: $\mathbf{g}_1 = \mathbf{g}_1 \circ \mathbf{I} = \mathbf{g}_1 \circ (\mathbf{f} \circ \mathbf{g}_2) = (\mathbf{g}_1 \circ \mathbf{f}) \circ \mathbf{g}_2 =$ $\mathbf{I} \circ \mathbf{g}_2 = \mathbf{g}_2$ therefore the inverses $\mathbf{g}_1 = \mathbf{g}_2$ and it is

Theorem 4 (Invertibility of linear operators). Suppose $\mathcal V$ is finite dimensional and $\mathbf f$: $\mathcal V$ \to $\mathcal V$ is a linear map. Then the following are equivalent:

- f is invertible;
- f is injective;
- f is surjective.

- Two finite-dimensional vector spaces over the same field are isomorphic if and only if they have the same dimension.
- Any d-dimensional vector space over \mathbb{F} is isomorphic to \mathbb{F}^d .

Fact 7 (Characteristics of matrices). Note the following characteristics of matrices (sum and multipli-

- $\bullet \ (\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top};$
- $(AB)^* = B^*A^*;$ $(A + B)^\top = A^\top + B^\top;$ $(A + B)^* = A^* + B^*;$

Fact 8 (Facts about determinants:).

- $det(\mathbf{A}) = det(\mathbf{A}^{\top});$
- $\det(\mathbf{A}^*) = \det(\bar{\mathbf{A}}) = \overline{\det(\mathbf{A})};$ $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B});$
- $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})};$
- $\det(\alpha \mathbf{A}) = \alpha^n \det(\mathbf{A}), \forall \alpha \in \mathbb{F}.$

Proposition 1. For any unitary matrix $\mathbf{U} \in \mathbb{C}^{n \times n}$, $|\det(\mathbf{U})| = 1.$

Proof. Since **U** is unitary, we have $\mathbf{U}^*\mathbf{U} = \mathbf{I}$. There-

$$\begin{aligned} 1 &= \det(\mathbf{I}) \\ &= \det(\mathbf{U}^* \mathbf{U}) \\ &= \det(\mathbf{U}^*) \det(\mathbf{U}) \\ &= \overline{\det(\mathbf{U})} \det(\mathbf{U}) \\ &= |\det(\mathbf{U})|^2 \\ \implies |\det(\mathbf{U})| &= \sqrt{1} = 1 \end{aligned}$$

Fact 9 (Properties of trace).

- $\operatorname{Trace}(\mathbf{A}) = \operatorname{Trace}(\mathbf{A}^{\top});$

- $\begin{aligned} & \operatorname{Trace}(\mathbf{A}^*) = \operatorname{Trace}(\mathbf{A}); \\ & \operatorname{Trace}(\mathbf{AB}) \neq \operatorname{Trace}(\mathbf{A}); \\ & \operatorname{Trace}(\mathbf{ABC}) = \operatorname{Trace}(\mathbf{CAB}) = \operatorname{Trace}(\mathbf{BCA}) \end{aligned}$ (this is known as the cyclic property)

Theorem 5 (Matrices and linear maps). Let $\mathbf{f} : \mathbb{F}^n \to \mathbb{F}^n$ \mathbb{F}^m be a linear map. Then $\exists ! \mathbf{A} \in \mathbb{F}^{m \times n}$ such that: $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} \quad \forall \mathbf{x} \in \mathbb{F}^n$ Conversely, if $\mathbf{A} \in \mathbb{F}^{m \times n}$ then the function defined above is a linear map from \mathbb{F}^n to

Theorem 6 (Rank-Nullity Theorem). Important! If $\mathbf{A} \in \mathbb{F}^{m \times n}$: dim(Range(\mathbf{A})) + dim(Null(\mathbf{A})) = n

Theorem 7 (Four Fundamental Subspaces). If $A \in$ $\mathbb{C}^{m\times n}$ (an m-by-n matrix in complex space), then: $\text{Null}(\mathbf{A}) = \text{Range}(\mathbf{A}^*)^{\perp} \text{ and } \text{Null}(\mathbf{A}^*) = \text{Range}(\mathbf{A})^{\perp}$

Proof. Let $\mathbf{x} \in \text{Null}(\mathbf{A})$. Take any $\mathbf{y} \in \text{Range}(\mathbf{A}^*)$, we have that $\mathbf{y} = \mathbf{A}^*\mathbf{z}$ for some \mathbf{z} . So we have: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{A}^*\mathbf{z} \rangle = \langle \mathbf{A}\mathbf{x}, \mathbf{z} \rangle = 0$ which implies that $\mathbf{x} \in \text{Range}(\mathbf{A}^*)^{\perp}$, and hence $\text{Null}(\mathbf{A}) \subseteq \text{Range}(\mathbf{A}^*)^{\perp}$.

Conversely, let $\mathbf{x} \in \operatorname{Range}(\mathbf{A}^*)^{\perp}$, which means that for any $\mathbf{y} \in \operatorname{Range}(\mathbf{A}^*)$, we have that their inner product $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. In particular, choosing $\mathbf{y} = \mathbf{A}^* \mathbf{A} \mathbf{x}$ implies: $0 = \langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{A}^* \mathbf{A} \mathbf{x} \rangle = \langle \mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{x} \rangle = \|\mathbf{A} \mathbf{x}\|^2 \text{ which}$ gives $\mathbf{A}\mathbf{x}=0$, which tells us that $\mathrm{Range}(\mathbf{A}^*)^{\perp}\subseteq \mathrm{Null}(\mathbf{A})$. Since we have shown that they are subsets of each other (a common proof technique), they are equal. The other statement is proved similarly.

Fact 10 (Rank and (col/row)sp). Similar to earlier, we have that: $\dim(\operatorname{colsp}(\mathbf{A})) = \dim(\operatorname{rowsp}(\mathbf{A})) = \operatorname{Rank}(\mathbf{A}) \leq \min\{m,n\}$

Fact 11 (Characteristics of rank).

- $\begin{array}{l} \bullet \ \ \, \operatorname{Rank}(\mathbf{A}) = \operatorname{Rank}(\mathbf{A}^\top) = \operatorname{Rank}(\mathbf{A}^*); \\ \bullet \ \ \, \operatorname{Rank}(\mathbf{A}^*\mathbf{A}) = \operatorname{Rank}(\mathbf{A}). \end{array}$

Theorem 8 (Full-rank factorisation). A has rank r if and only if: $\mathbf{A} = \mathbf{X}\mathbf{Y}^{\top}$ for some $\mathbf{X} \in \mathbb{C}^{m \times r}, Y \in$ $\mathbb{C}^{n \times r}$ (matrix outer product) each having full rank $(independent\ columns.)$

Theorem 9 (Bounds on rank). If $\mathbf{A} \in \mathbb{C}^{m \times p}$ and $\mathbf{B} \in \mathbb{C}^{p \times n}$: Rank (\mathbf{A}) + Rank (\mathbf{B}) - $p \leq \text{Rank}(\mathbf{AB}) \leq$ $\min\{\operatorname{Rank}(\mathbf{A}),\operatorname{Rank}(\mathbf{B})\}$

Fact 12 (Short and fat matrices are necessarily singular). $\mathbf{A} \in \mathbb{F}^{m \times n}$ with m < n (short and fat) is necessarily singular

Fact 13 (Equivalent to non-singular).

• Rank(\mathbf{A}) = n; • $\exists ! \mathbf{A}^{-1} \in \mathbb{F}^{n \times n}$ such that $\mathbf{A}^{-1} \mathbf{A} = \mathbf{I}$;

 $det(\mathbf{A}) \neq 0$

 $\dim(\operatorname{Range}(\mathbf{A})) = n \text{ and } \dim(\operatorname{Null}(\mathbf{A})) = 0;$

 $Null(\mathbf{A}) = \{\mathbf{0}\};$

A has linearly independent rows and columns; The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbb{F}^n$.

Fact 14 (Swapping inverse with transpose). You can swap the inverse with the transpose or Hermitian con-

If $\mathbf{A} \in \mathbb{F}^{n \times n}$ is non-singular, then $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1} \triangleq \mathbf{A}^{-\top}$. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is non-singular, then $(\mathbf{A}^{-1})^* =$

 $(\mathbf{A}^*)^{-1} \stackrel{\bar{\triangle}}{\triangleq} \mathbf{A}^{-*}.$ **Fact 15.** When **A** is full-column rank, we have a left inverse: $\mathbf{A}^{\dagger} = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^*$ and so $\mathbf{A}^{\dagger} \mathbf{A} = \mathbf{I}$.

Fact 16. When A is full-row rank, we have a right inverse: $A^\dagger=A^*(AA^*)^{-1}$ and so $AA^\dagger=I.$

Fact 17 (Pseudoinverse equals inverse). If A is invertible, its pseudoinverse is its inverse.

Fact 18 (More properties of pseudoinverse).

- $\bullet \ (\mathbf{A}^{\dagger})^{\dagger} = \mathbf{A};$
- $\bullet (\mathbf{A}^{\dagger})^{\top} = (\mathbf{A}^{\top})^{\dagger};$ $\bullet (\mathbf{A}^{*})^{\top} = (\mathbf{A}^{*})^{\dagger}.$

Fact 19. Unlike the inverse, where this is valid: $(\mathbf{A}\mathbf{B})^{\dagger} \neq \mathbf{B}^{\dagger}\mathbf{A}^{\dagger}$

Proof. We write:

$$\begin{aligned} \mathbf{x} &= \mathbf{y} + (\mathbf{x} - \mathbf{y}) \implies \|\mathbf{x}\| = \|\mathbf{y} + (\mathbf{x} - \mathbf{y})\| \le \|\mathbf{y}\| + \|(\mathbf{x} - \mathbf{y})\| \le \|\mathbf{y}\| + \|(\mathbf{y} - \mathbf{y})\| \le \|\mathbf{y}\| + \|(\mathbf{y} - \mathbf{y})\| \le \|\mathbf{x}\| + \|(\mathbf{y} - \mathbf{y})\| \le \|\mathbf{y}\| + \|(\mathbf{y} - \mathbf{y})\| + \|(\mathbf{y}$$

Therefore $\|\mathbf{x}\| - \|\mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|$.

Proposition 2 (Equivalence of norms in \mathbb{C}^d). For all $\mathbf{x} \in \mathbb{C}^d$, we have: $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_2 \leq \|\mathbf{x}\|_1 \leq \sqrt{d}\|\mathbf{x}\|_2 \leq$ $d||\mathbf{x}||_{\infty}$

Theorem 10 (Unitary invariance of Euclidean norm in \mathbb{C}^d). Given any matrix $\mathbf{U} \in \mathbb{C}^{m \times d}$ with m > d and orthonormal columns, we have: $\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$

Proof. One-liner:
$$\|\mathbf{U}\mathbf{x}\|_2^2 = \langle \mathbf{U}\mathbf{x}, \mathbf{U}\mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{U}^*\mathbf{U}\mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle = \|\mathbf{x}\|^2$$

Theorem 11 (Unitary invariance of Frobenius norm in $\mathbb{C}^{m \times n}$). Given any matrix $\mathbf{U} \in \mathbb{C}^{p \times m}$ with $p \geq m$ and orthonormal columns, we have: $\|\mathbf{U}\mathbf{A}\|_F = \|\bar{\mathbf{A}}\|_F$

Proof. Another one-liner: $\|\mathbf{U}\mathbf{A}\|_F^2$ $\operatorname{Trace}(\mathbf{A}^*\mathbf{U}^*\mathbf{U}\mathbf{A}) = \operatorname{Trace}(\mathbf{A}^*\mathbf{A}) = \|\mathbf{A}\|_F^2$

Theorem 12 (Sub-multiplicativity of entry-wise matrix norms). For any two matrices $\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{B} \in$ $\mathbb{C}^{n \times p}$:

$$\|\mathbf{A}\mathbf{B}\|_F \le \|\mathbf{A}\|_F \|\mathbf{B}\|_F$$
$$\|\mathbf{A}\mathbf{B}\|_1 \le \|\mathbf{A}\|_1 \|\mathbf{B}\|_1$$

(note Frobenius norm is the entry-wise ℓ_2 norm)

Theorem 13 (Unitary invariance of induced 2-norm in $\mathbb{F}^{m \times n}$). Given any matrix $\mathbf{U} \in \mathbb{F}^{p \times m}$ orthonormal columns, we have: $\|\mathbf{U}\mathbf{A}\|_2 = \|\mathbf{A}\|_2$ where the norm here is the induced 2-norm (Euclidean norm)

Proof. Immediate, by noticing that for any $\mathbf{x} \in \mathbb{F}^m$ we have: $\|\mathbf{U}\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{A}\mathbf{x}\|_2$

Theorem 14 (All induced matrix norms are submultiplicative). Let $\|\cdot\|_p$, $\|\cdot\|_q$, $\|\cdot\|_r$ be vector norms on respectively, Domain(**B**), Range(**B**), Range(**A**). We have: $\|\mathbf{A}\mathbf{B}\|_{p,r} \le \|\mathbf{A}\|_{q,r} \|\mathbf{B}\|_{p,q}$

Proof. For any \mathbf{x} , we have that: $\|\mathbf{A}\mathbf{B}\mathbf{x}\|_r \|\mathbf{A}\mathbf{B}\mathbf{x}\|_q \le \|\mathbf{A}\|_{q,r} \|\mathbf{B}\|_{p,q} \|\mathbf{x}\|_p$

Theorem 15 (Equivalence of induced matrix norms). For any $\mathbf{A} \in \mathbb{C}^{m \times n}$ with $\operatorname{Rank}(\mathbf{A}) = r$, we have:

$$\|\mathbf{A}\|_{2} \leq \|\mathbf{A}\|_{F} \leq \sqrt{r} \|\mathbf{A}\|_{2}$$
$$\|\mathbf{A}\|_{\infty} \leq \sqrt{n} \|\mathbf{A}\|_{2} \leq \sqrt{mn} \|\mathbf{A}\|_{\infty}$$
$$\|\mathbf{A}\|_{1} \leq \sqrt{m} \|\mathbf{A}\|_{2} \leq \sqrt{mn} \|\mathbf{A}\|_{1}$$

Proof. One liner: $1 = \|\mathbf{A}\mathbf{A}^{\dagger}\| \leq \|\mathbf{A}\| \|\mathbf{A}^{\dagger}\|$

Fact 20. (λ, \mathbf{v}) is an eigenpair \iff $(\lambda \mathbf{I} - \mathbf{A})\mathbf{v} =$ $\mathbf{0}$ and $\mathbf{v} \neq \hat{\mathbf{0}}$

Proof. Later; see Rank-Nullity Theorem.

Fact 21. Eigenvalues are the roots of the characteristic polynomial of \mathbf{A} , i.e. $\det(\lambda \mathbf{I} - \mathbf{A}) = 0$. $\det(\lambda \mathbf{I} - \mathbf{A})$ is a polynomial of degree exactly n in λ , i.e.: $\det(\lambda \mathbf{I} - \mathbf{A}) = p_n(\lambda) = \sum_{k=0}^n c_k \lambda^i, c_n \neq 0$

Fact 22 (Facts about eigenpairs and conjugates).

- $(\lambda, c\mathbf{v})$ is an eigenpair for **A** for any $c \in \mathbb{C}$ e.g.
- $c = \frac{1}{\|\mathbf{v}\|_2};$ If $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, then $\bar{\mathbf{A}}\bar{\mathbf{v}} = \bar{\lambda}\bar{\mathbf{v}}$; If $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, then $\mathbf{A}\bar{\mathbf{v}} = \bar{\lambda}\bar{\mathbf{v}}$, i.e. for real matrices, if (λ, \mathbf{v}) is an eigenpair, then
- If $\mathbf{A} \in \mathbb{C}^{n \times n}$ and λ is an eigenvalue of \mathbf{A} , then $\bar{\lambda}$ is an eigenvalue of \mathbf{A}^* , but eigenvectors

Fact 23 (Determinants and trace). Amazingly: $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i, \quad \operatorname{Trace}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$

Fact 24 (Facts about spectrum and its radius).

- $\operatorname{spec}(\underline{\mathbf{A}}) = \operatorname{spec}(\mathbf{A}^\top);$
- $\operatorname{spec}(\bar{\mathbf{A}}) = \operatorname{spec}(\mathbf{A}^*)';$ $\operatorname{spec}(\mathbf{A}) \neq \operatorname{spec}(\mathbf{A}^*)$ but always $\rho(\mathbf{A}) =$ $\rho(\mathbf{A}^*);$
- $\forall \alpha \in \mathbb{C}$: $\rho(\alpha \mathbf{A}) = |\alpha| \rho(\mathbf{A}), \quad \rho(\mathbf{A}^k) = [\rho(\mathbf{A})]^k$

Fact 25. The polynomial is monic if $a_k = 1$. Polynomial factorisation also carries over to matrices: $p(\mathbf{A}) =$ $\prod_{i=1}^{\kappa} (\mathbf{A} - \beta_i \mathbf{I}), \beta_i \in \mathbb{C}, i = 1, \dots, k$

Theorem 16 (Spectral mapping theorem for matrix polynomials).

- ullet If (λ, \mathbf{v}) is an eigenpair $\mathbf{A} \in \mathbb{C}^{n \times n}$, then
- $(p(\lambda), \mathbf{v})$ is an eigenpair of $p(\mathbf{A})$. Conversely, if $k \geq 1$ and μ is an eigenvalue of $p(\mathbf{A})$, then there is some eigenvalue of λ of \mathbf{A} such that $\mu = p(\lambda)$.

Proof. Note that $\mathbf{A}^i \mathbf{v} = \mathbf{A}^{i-1} \mathbf{A} \mathbf{v} = \lambda \mathbf{A}^{i-1} \mathbf{v} = \dots = \lambda^i \mathbf{v}$. So: $p(\mathbf{A})\mathbf{v} = \sum_{i=0}^k a_i \lambda^i \mathbf{v} = p(\lambda)\mathbf{v}$ Let's define $q(t) = p(t) - \mu$. Since $k \ge 1$, $q(\mathbf{A}) = p(\mathbf{A}) - \mu \mathbf{I}$ has degree k, so it can be factorised as: $p(\mathbf{A}) - \mu \mathbf{I} = q(\mathbf{A}) = \mathbf{I}$ $\prod_{i=1}^{k} (\mathbf{A} - \beta_i \mathbf{I}) \ p(\mathbf{A}) - \mu \mathbf{I} \text{ is singular so some factor}$ $(\mathbf{A} - \beta_i \mathbf{I})$ recall $(\mathbf{A} - \beta_j \mathbf{I})$ must be singular, which means that β_j is an eigenvalue of \mathbf{A} . But: $0 = q(\beta_j) = p(\beta_j) - \mu \implies \mu = \mathbf{I}$

Theorem 17. A is singular if and only if $0 \in$ $\operatorname{spec}(\mathbf{A})$.

Proof. A lot of if and only ifs:

$$\begin{aligned} \mathbf{A} \text{ is singular } &\iff \exists \mathbf{x} \neq \mathbf{0} \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{0} \\ &\iff \exists \mathbf{x} \neq \mathbf{0} \text{ s.t. } \mathbf{A}\mathbf{x} = 0\mathbf{x} \\ &\iff \mathbf{0} \in \operatorname{spec}(\mathbf{A}) \end{aligned}$$

Theorem 18. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\lambda, \mu \in \mathbb{C}$. Then: $\lambda \in \operatorname{spec}(\mathbf{A}) \iff \lambda + \mu \in \operatorname{spec}(\mathbf{A} + \mu \mathbf{I})$

Proof. More iffs:

$$\begin{split} \lambda \in \operatorname{spec}(\mathbf{A}) &\iff \exists \mathbf{v} \neq \mathbf{0} \text{ s.t. } \mathbf{A}\mathbf{v} = \lambda \mathbf{v} \\ &\iff \mathbf{A}\mathbf{v} + \mu \mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v} \\ &\iff (\mathbf{A} + \mu \mathbf{I})\mathbf{v} = (\lambda + \mu)\mathbf{v} \\ &\iff \lambda + \mu \in \operatorname{spec}(\mathbf{A} + \mu \mathbf{I}) \end{split}$$

Theorem 19. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian, then all its eigenvalues are real.

Proof. Suppose $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}, \ v \neq \mathbf{0}$. We have: $\lambda\mathbf{v}^*\mathbf{v} = \mathbf{v}^*\mathbf{A}\mathbf{v} = \mathbf{v}^*\mathbf{A}^*\mathbf{v}$ On the other hand: $\lambda\mathbf{v}^*\mathbf{v} = \mathbf{v}^*\mathbf{A}\mathbf{v} \iff (\lambda\mathbf{v}^*\mathbf{v})^* = (\mathbf{v}^*\mathbf{A}\mathbf{v})^* \iff \bar{\lambda}\mathbf{v}^*\mathbf{v} = \mathbf{v}^*\mathbf{A}^*\mathbf{v}$ So $\lambda = \bar{\lambda}$, which means that $\lambda \in \mathbb{R}$.

Theorem 20. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian, then eigenvectors corresponding to distinct eigenvalues $are \ mutually \ orthogonal.$

Proof. Suppose we have two vectors \mathbf{v} , \mathbf{w} such that:

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}, \mathbf{v} \neq \mathbf{0}$$
$$\mathbf{A}\mathbf{w} = \mu \mathbf{w}, \mathbf{w} \neq \mathbf{0}$$

with $\lambda \neq \mu$ (unique eigenpairs). We have:

$$\begin{split} \lambda \langle \mathbf{v}, \mathbf{w} \rangle &= \langle \lambda \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{A} \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{A}^* \mathbf{w} \rangle \\ &= \langle \mathbf{v}, \mathbf{A} \mathbf{w} \rangle = \langle \mathbf{v}, \mu \mathbf{w} \rangle = \mu \langle \mathbf{v}, \mathbf{w} \rangle \end{split}$$

So $(\lambda - \mu)\langle \mathbf{v}, \mathbf{w} \rangle = 0$, which since $\mu \neq \lambda$, we get $\langle \mathbf{v}, \mathbf{w} \rangle = 0$. Recall that an inner product of 0 is equivalent to orthogonality.

Theorem 21. Let $m(\lambda)$ be the algebraic multiplicity of λ . Then there are bounds on the geometric multiplicity: $1 \leq \dim(\mathcal{E}_{\lambda}(\mathbf{A})) \leq m(\lambda)$

Fact 26. Two similar matrices share the same spectrum and the same characteristic polynomial.

Theorem 22. If A and B are similar, then they have the same characteristic polynomial.

Proof.

$$p_{\mathbf{B}}(\lambda) = \det(\mathbf{B} - \lambda \mathbf{I})$$

$$= \det(\mathbf{S}^{-1}\mathbf{A}\mathbf{S} - \lambda \mathbf{S}^{-1}\mathbf{S})$$

$$= \det(\mathbf{S}^{-1}(\mathbf{A} - \lambda \mathbf{I})\mathbf{S})$$

$$= \det(\mathbf{S}^{-1}\det(\mathbf{A} - \lambda \mathbf{I})\det(\mathbf{S}))$$

$$= \det(\mathbf{A} - \lambda \mathbf{I}) = p_{\mathbf{A}}(\lambda)$$

Theorem 23. (λ, \mathbf{v}) is an eigenpair of \mathbf{A} if and only if $(\lambda, \mathbf{S}^{-1}\mathbf{v})$ is an eigenpair for $\mathbf{B} = \mathbf{S}^{-1}\mathbf{AS}$.

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \iff \mathbf{A}\mathbf{S}\mathbf{S}^{-1}\mathbf{v} = \lambda \mathbf{v}$$

$$\iff \mathbf{S}^{-1}\mathbf{A}\mathbf{S}\mathbf{S}^{-1}\mathbf{v} = \lambda \mathbf{S}^{-1}\mathbf{v}$$

$$\iff \mathbf{B}\mathbf{S}^{-1}\mathbf{v} = \lambda \mathbf{S}^{-1}\mathbf{v}$$

$$\iff \mathbf{B}\mathbf{w} = \lambda \mathbf{w}$$

where we define $\mathbf{w} = \mathbf{S}^{-1}\mathbf{v}$.

Theorem 24. The matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is diagonalisable if and only if it has n linearly independent eigenvectors. In other words, A is diagonalisable if and only if it is not defective, i.e.:

$$\dim(\mathcal{E}_{\lambda}(\mathbf{A})) = m(\lambda), \quad \forall \lambda \in \operatorname{spec}(\mathbf{A})$$

A simple criterion: if all eigenvalues of A are sim $ple, \ then \ {\bf A} \ is \ diagonalisable.$

Theorem 25 (Eigendecomposition). Let A be diagonalisable and define $\mathbf{V} = \begin{pmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_n \end{pmatrix} \in \mathbb{C}^{n \times n}$ to be the set of linearly independent eigenvectors of A.

Then:
$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \triangleq \mathbf{\Lambda}$$

Theorem 26 (Schur decomposition/triangularisation). For any $\mathbf{A} \in \mathbb{C}^{n \times n}$, there exists unitary $\mathbf{U} \in$

$$\mathbb{C}^{n \times n} \text{ such that: } \mathbf{U}^* \mathbf{A} \mathbf{U} = \begin{pmatrix} \lambda_1 & b_{12} & \dots & b_{1n} \\ & \lambda_2 & b_{23} & b_{2n} \\ & & \ddots & \vdots \\ & & & \lambda_n \end{pmatrix}$$

Theorem 27 (Jordan canonical form). For any $A \in$ $\mathbb{C}^{n\times n}$, there is a non-singular $\mathbf{S}\in\mathbb{C}^{n\times n}$, positive integers k, n_1, n_2, \dots, n_k with $n_1 + n_2 + \dots + n_k = n$ and scalars $\lambda_1, \dots, \lambda_k \in \mathbb{C}$ such that: $\mathbf{A} = \mathbf{A}$

$$\mathbf{S} \overbrace{\begin{pmatrix} \mathbf{J}_{n_1}(\lambda_1) & & & \\ & \ddots & & \\ & & \mathbf{J}_{n_k}(\lambda_k) \end{pmatrix}} \mathbf{S}^{-1}$$

Fact 27 (Facts about Jordan).

- If A is real and has only real eigenvalues, then S can be chosen to be real;
- ullet The number of Jordan blocks, k, is the maximum number of linearly independent eigenvectors. tors of A;
- Given an eigenvalue λ , its geometric multiplicity is the number of its corresponding Jordan blocks;
- The sum of the sizes of all Jordan blocks corresponding to an eigenvalue λ is its algebraic multiplicity:
- If an eigenvalue is defective, the size of at least one of its corresponding Joradn blocks is greater than one, so a matrix is diagonalisable if and only if all its Jordan blocks are 1×1 .

Fact 28. For diagonalisable matrices, we have: Jordan canonical form ≡ eigendecomposition

Theorem 28. A matrix is unitarily diagonalisable if $and\ only\ if\ it\ is\ normal.$

 $\textit{Proof.} \ (\implies)$ Suppose $\mathbf A$ is unitarily diagonalisable, that is $\mathbf{U}^* \mathbf{A} \mathbf{U} = \mathbf{\Lambda}$. So we have $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^*$, hence:

$$AA^* = U\Lambda U^* U\Lambda^* U^*$$

$$= U\Lambda \Lambda^* U^*$$

$$= U\Lambda^* \Lambda U^*$$

$$= U\Lambda^* U^* U\Lambda U^*$$

$$= A^* A$$

($\ \ \, \ \ \, =$) Conversely, suppose A is normal and consider its Schur decomposition, ie $U^*AU=T.$ We have:

$$\begin{split} \mathbf{T}^*\mathbf{T} &= \mathbf{U}^*\mathbf{A}^*\mathbf{U}\mathbf{U}^*\mathbf{A}\mathbf{U} \\ &= \mathbf{U}^*\mathbf{A}^*\mathbf{A}\mathbf{U} \\ &= \mathbf{U}^*\mathbf{A}\mathbf{A}^*\mathbf{U} \\ &= \mathbf{U}^*\mathbf{A}\mathbf{U}\mathbf{U}^*\mathbf{A}^*\mathbf{U} \\ &= \mathbf{T}\mathbf{T}^* \end{split}$$

but since T is upper-triangular, it has to be diago-

 $\begin{array}{ll} \textbf{Theorem} & \textbf{29.} & \textit{For} \\ \textit{Schur decomposition} & \equiv \end{array}$ normalmatrices: eigendecomposition or: $\mathbf{A} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^* = \sum_{i=1}^n \lambda_i \mathbf{u}_i \mathbf{u}_i^*$

Fact 29 (Some final facts on matrices).

- Among complex matrices, all unitary, Hermitian and skew-Hermitian matrices are normal;
- Among real matrices, all orthogonal, symmetric and skew-symmetric matrices are normal;
- It is **not** the case that all normal matrices are either unitary or (skew-) Hermitian, e.g. $\forall a,b \in$ $\mathbb{C}, \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ is normal and has $\lambda_i = a \pm ib$;
- A normal matrix is Hermitian \iff all its eigenvalues are real

Theorem 30 (Singular value decomposition). Let $\mathbf{A} \in \mathbb{C}^{m \times n}, q = \min\{m, n\} \text{ and } \operatorname{Rank}(\mathbf{A}) \triangleq r \leq q.$ There exists two unitary matrices $\mathbf{U} \in \mathbb{C}^{m \times m}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$, and a square diagonal matrix:

Theorem 31. For any $\mathbf{A} \in \mathbb{C}^{m \times n}$, we have:

$$\sigma_i = \sqrt{\lambda_i(\mathbf{A}^*\mathbf{A})} = \sqrt{\lambda_i(\mathbf{A}\mathbf{A}^*)}, \quad i = 1, 2, \dots, \text{Rank}(\mathbf{A})$$

Proof. Assume without loss of generality that $m \geq n$. let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$. We have:

$$\mathbf{A}^* \mathbf{A} = \mathbf{V} \mathbf{\Sigma}^\top \mathbf{U}^* \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$$
$$= \mathbf{V} \mathbf{\Sigma}^\top \mathbf{\Sigma} \mathbf{V}^*$$
$$= \mathbf{V} \mathbf{\Sigma}_n^2 \mathbf{V}^*$$

Similarly:

$$\begin{aligned} \mathbf{A}\mathbf{A}^* &= \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^*\mathbf{V}\boldsymbol{\Sigma}^\top\mathbf{U}^* \\ &= \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^*\mathbf{U}^* \\ &= \mathbf{U}\begin{pmatrix} \boldsymbol{\Sigma}_n^2 & \mathbf{0}_{n\times(m-n)} \\ \mathbf{0}_{(m-n)\times n} & \mathbf{0}_{(m-n)\times(m-n)} \end{pmatrix} \mathbf{U} \\ &\Longrightarrow \dots \end{aligned}$$

Theorem 32. Let $A = U\Sigma V^*$ be an SVD of A $\mathbb{C}^{m \times n}$ and assume that for some r, we have $\sigma_r \neq 0$ and $\sigma_{r+1} = 0$. (Since singular values are conventionally ordered, this implies all singular values past this point are zero).

Then we have the following:

- $Rank(\mathbf{A}) = r$
- Null(\mathbf{A}) = Span{ $\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \dots, \mathbf{v}_n$ } Range(\mathbf{A}) = Span{ $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r$ }. $\mathbf{A}^{\dagger} = \mathbf{V} \mathbf{\Sigma}^{\dagger} \mathbf{U}^* = \mathbf{V}_r \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^*$

Theorem 33. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a normal matrix whose (not necessarily distinct) eigenvalues are $\lambda_1, \ldots, \lambda_n$. Show that the singular values of **A** are $|\lambda_1|, |\lambda_2|, \ldots, |\lambda_n|.$

Proof. Since **A** is a normal matrix, \Longrightarrow unitarily diagonalisable as $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^*$, where $\mathbf{\Lambda}$ is the diagonal matrix of eigenvalues of **A**. Now, we have:

$$\sigma_i = \sqrt{\lambda_i(\mathbf{A}^*\mathbf{A})}$$

$$= \sqrt{\bar{\lambda}_i(\mathbf{A})\lambda_i(\mathbf{A})}$$

$$= \sqrt{|\lambda_i(\mathbf{A})|^2} = |\lambda_i(\mathbf{A})|$$

Theorem 34 (Matrix low-rank approximation: spectral norm). $\|\mathbf{A} - \mathbf{A}_k\|_2 = \min_{\substack{A \in \mathbb{C}^{m \times n} \\ \text{Rank}(\mathbf{B}) \le k}} \|\mathbf{A} - \mathbf{B}\|_2 =$

 $\begin{array}{c} \operatorname{Rank}(\mathbf{B}) \leq k \\ \sigma_{k+1} \ \ where \ \|\cdot\|_2 \ \ is \ the \ matrix \ spectral \ norm \ and \\ \sigma_{k+1} = 0 \ for \ k = \min\{m,n\}. \end{array}$

Theorem 35 (Matrix low-rank approximation: Frobenius norm). $\|\mathbf{A} - \mathbf{A}_k\|_{\mathbf{F}} = \min_{\substack{\mathbf{A} \in \mathbb{C}^m \times n \\ \text{Rank}(\mathbf{B}) \leq k}} \|\mathbf{A} - \mathbf{B}\|_{\mathbf{F}} =$

$$\sqrt{\sum_{i=k+1}^{r} \sigma_i}$$
 where $\|\cdot\|_{\mathbf{F}}$ is the matrix Frobenius norm.

Theorem 36.
$$\mathcal{E} = \mathbf{U}\mathcal{E}_0$$
, where $\mathcal{E}_0 = \{\mathbf{y} \in \mathbb{R}^n \mid \sum_{i=1}^n \frac{y_i^2}{\sigma_i^2} = 1\}$.

Proof. Suppose $\mathbf{z} \in \mathcal{S}$. We have $\mathbf{A}\mathbf{z} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{z} = \mathbf{U}\mathbf{y}$ where $\mathbf{y} = \boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{z}$. We just need to show that $\mathbf{y} \in \mathcal{E}_0$. We have $\mathbf{z} = \mathbf{V}\boldsymbol{\Sigma}^{-1}\mathbf{y}$, which implies that:

$$1 = \|\mathbf{z}\|^{2}$$

$$= \|\mathbf{V}\mathbf{\Sigma}^{-1}\mathbf{y}\|^{2}$$

$$= \|\mathbf{\Sigma}^{-1}\mathbf{y}\|^{2}$$

$$= \sum_{i=1}^{n} \frac{y_{i}^{2}}{\sigma_{i}^{2}}$$

This implies that $\mathbf{y} \in \mathcal{E}_0$.

Fact 30 (Properties of a diagonal matrix).

- $\operatorname{spec}(\mathbf{D}) = \{d_{11}, d_{22}, \dots, d_{nn}\};$
- $\det(\mathbf{D}) = \prod_{i=1}^{n} d_{ii}$ \mathbf{D} is non-singular $\iff d_{ii} \neq 0, \forall i$

Fact 31 (Properties of block-diagonal matrices).

- $\operatorname{spec}(\mathbf{D}) = \bigcup_{i=1}^{k} \operatorname{spec}(\mathbf{D}_{ii})$ $\det(\mathbf{D}) = \prod_{i=1}^{k} \det(\mathbf{D}_{ii})$ \mathbf{D} is non-singular $\iff \mathbf{D}_{ii}$ is nonsingular

Fact 32 (Properties of a triangular matrix).

- $\operatorname{spec}(\mathbf{T}) = \{t_{11}, t_{22}, \dots, t_{nn}\};$
- $\det(\mathbf{T}) = \prod_{i=1}^k t_{ii}$
- \mathbf{T} is non-singular \iff all $t_{ii} \neq 0$ $\mathrm{Rank}(\mathbf{T}) \geq \mathrm{the}$ number of nonzero t_{ii} . For example, the singular values of the strictly upper triangular ma-• Rank(T)

trix:
$$\begin{pmatrix} 0 & t_{12} & & & & & \\ & 0 & t_{23} & & & & \\ & & \ddots & \ddots & & \\ & & & & t_{n-1,n} \\ & & & & & 0 \end{pmatrix} \quad \text{ar}$$

- $0, |t_{12}|, \ldots, |t_{n-1,n}|$. Sparsity patterns: the inverse of a triangular matrix is triangular.
- The product of two triangular matrices is triangular.

Fact 33 (Properties of block-triangular matrices).

- $\operatorname{spec}(\mathbf{T}) = \bigcap_{i=1}^{k} \operatorname{spec}(\mathbf{T}_{ii})$ $\det(\mathbf{T}) = \prod_{i=1}^{k} \det(\mathbf{T}_{ii})$ \mathbf{T} is non-singular \iff all \mathbf{T}_{ii} are non-singular
- Rank(\mathbf{T}) $\geq \sum_{i=1}^{k} \operatorname{Rank}(\mathbf{T}_{ii})$ The sparsity pattern is similar to the triangular case, but with respect to blocks.

Fact 34 (Facts about permutation matrices).

- $\mathbf{P}^{\top}\mathbf{P} = \mathbf{P}\mathbf{P}^{\top} = \mathbf{I}$, i.e. \mathbf{P} is orthogonal;
- $det(\mathbf{P}) = \pm 1$, that is, permutation matrices are non-singular
- Left-multiplication of a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $n \times n$ permutation matrix **P**, i.e. **PA**, permutes the rows of A;
- Right-multiplication of a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, and $n \times n$ permutation matrix **P**, i.e. **AP**, permutes the columns of A.

 If P and Q are permutation matrices, then so is \mathbf{PQ} and \mathbf{QP} (generally $\mathbf{PQ} \neq \mathbf{QP}$)

Fact 35. The rank of an unreduced matrix is at least n-1 since its first n-1 columns are independent.

Theorem 37 (Various facts about projections which should be proven).

- 1. $\mathbf{P}\mathbf{v} = \mathbf{v} \iff \mathbf{v} \in \text{Range}(\mathbf{P})$
- 2. If \mathbf{P} is a projection, then so is $\mathbf{I} \mathbf{P}$ 3. Range $(\mathbf{I} \mathbf{P}) = \text{Null}(\mathbf{P})$ 4. Range $(\mathbf{P}) \cap \text{Range}(\mathbf{I} \mathbf{P}) = \{\mathbf{0}\}$

- 5. Range(\mathbf{P}) \oplus Range($\mathbf{I} \mathbf{P}$) = \mathbb{C}
- $\lambda \in \{0,1\}$

Proof.

- 1. $(\Longrightarrow) \mathbf{v} = \mathbf{P}\mathbf{v} \implies \exists \mathbf{w} \in \mathbb{C}^n \text{s.t.} \mathbf{v} = \mathbf{P}\mathbf{w},$ namely $\mathbf{w} = \mathbf{v}$.
 - (\Leftarrow) $\mathbf{v} \in \text{Range}(\mathbf{P}) \implies \exists \mathbf{w} \in \mathbb{C}^n \text{ such that } \mathbf{v} = \mathbf{P}\mathbf{w} \implies \mathbf{P}\mathbf{v} = \mathbf{P}^2\mathbf{w} = \mathbf{P}\mathbf{w} = \mathbf{v}.$ $(\mathbf{I} \mathbf{P})^2 = \mathbf{I} 2\mathbf{P} + \mathbf{P}^2 = \mathbf{I} \mathbf{P}$
- $\begin{array}{c} (\Longrightarrow) \ \mathbf{v} \in \operatorname{Range}(\mathbf{I} \mathbf{P}) \Longrightarrow \exists \mathbf{w} \in \mathbb{C}^n \ \operatorname{such} \\ \operatorname{that} \ \mathbf{v} = (\mathbf{I} \mathbf{P}) \mathbf{w} \Longrightarrow \mathbf{P} \mathbf{v} = \mathbf{P}(\mathbf{I} \mathbf{P}) \mathbf{w} = \\ (\mathbf{P} \mathbf{P}^2) \mathbf{w} = \mathbf{0} \Longrightarrow \mathbf{v} \in \operatorname{Null}(\mathbf{P}) \end{array}$ $(\Leftarrow) \ \mathbf{v} \in \text{Null}(\mathbf{P}) \implies \mathbf{P} \ \mathbf{v} = \mathbf{0} \implies \mathbf{v} = \mathbf{v}$
- $(\mathbf{I} \mathbf{P})\mathbf{v} \implies \mathbf{v} \in \operatorname{Range}(\mathbf{I} \mathbf{P})$ $\mathbf{v} \in \operatorname{Range}(\mathbf{P}) \cap \operatorname{Range}(\mathbf{I} \mathbf{P}) \implies \mathbf{v} = \mathbf{P}\mathbf{v} =$
- $\begin{array}{l} \mathbf{F} \cdot \mathbf{V} \in \operatorname{Range}(\mathbf{I}) + \operatorname{Range}(\mathbf{I} \mathbf{I}) & \rightarrow \mathbf{V} \mathbf{I} \cdot \mathbf{V} \mathbf{I} \cdot \mathbf{V} \\ \mathbf{P}(\mathbf{I} \mathbf{P})\mathbf{v} = \mathbf{0} \\ 5. & \operatorname{Range}(\mathbf{P}) \oplus \operatorname{Range}(\mathbf{I} \mathbf{P}) \subseteq \mathbb{C}^n, \text{ but also} \\ \mathbf{x} = \mathbf{P}\mathbf{x} + (\mathbf{I} \mathbf{P})\mathbf{x} & \Longrightarrow \mathbb{C}^n \subseteq \operatorname{Range}(\mathbf{P}) \oplus \\ \operatorname{Range}(\mathbf{I} \mathbf{P}) & \Longrightarrow \mathbb{C}^n \subseteq \operatorname{Range}(\mathbf{P}) \oplus \mathbb{R} \end{array}$
- $\mathbf{P}\mathbf{v} = \lambda \mathbf{v} \implies \mathbf{P}^2 \mathbf{v} = \lambda \mathbf{P} \mathbf{v} \implies \mathbf{P} \mathbf{v} = \mathbf{v}$ $\lambda^2 \mathbf{v} \implies \lambda = \lambda^2 \implies \lambda \in \{0, 1\}.$

Fact 36 (Facts about orthogonal projections).

- Range(\mathbf{P}) \perp Range($\mathbf{I} \mathbf{P}$) $\|\mathbf{v}\|^2 = \|\mathbf{P}\mathbf{v}\|^2 + \|(\mathbf{I} \mathbf{P})\mathbf{v}\|^2$
- Given any matrix $\mathbf{Q} \in \mathbb{C}^{m \times n}$ with orthonormal columns, $\mathbf{P} = \mathbf{Q}\mathbf{Q}^*$ is an orthogonal projection onto the Range(\mathbf{Q})
- Given any matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{P} = \mathbf{A} \mathbf{A}^{\dagger}$ is an orthogonal projection onto the Range(A).
- Rank-one orthogonal projector: $\mathbf{P} = \mathbf{v}\mathbf{v}^*/\|\mathbf{v}\|^2$ is an orthogonal projection along the direction given by $\mathbf{v} \in \mathbb{C}^n$.

Fact 37 (Facts about positive (semi-)definite matri-

- $\begin{array}{ccc} \mathbf{A} \in \mathbb{C}^{m \times n} & \Longrightarrow & \mathbf{A}^* \mathbf{A} \succeq \mathbf{0} \\ \mathbf{A} \in \mathbb{C}^{m \times n} & \Longrightarrow & \mathbf{A} \mathbf{A}^* \succeq \mathbf{0} \end{array}$
- $\mathbf{A} \succeq \mathbf{0} \iff \lambda_i(\mathbf{A}) > 0, i = 1, \dots, n$ $\mathbf{A} \succeq \mathbf{0} \iff \lambda_i(\mathbf{A}) \geq 0, i = 1, \dots, n$
- $\mathbf{A} \preceq \mathbf{0} \iff \lambda_i(\mathbf{A}) < 0, i = 1, \dots, n$ $\mathbf{A} \preceq \mathbf{0} \iff \lambda_i(\mathbf{A}) \le 0, i = 1, \dots, n$
- Every PD matrix is invertible, and its inverse is also PD
- For $\mathbf{A}, \mathbf{B} \succ \mathbf{0}$ and $\alpha > 0$, $\alpha \mathbf{A} \succ \mathbf{0}$ and $\mathbf{A} + \mathbf{B} \succ \mathbf{0}$
- $\mathbf{A} \succeq \mathbf{0} \iff \exists ! \mathbf{B} \succeq \mathbf{0} \text{ such that } \mathbf{B}^2 = \mathbf{A} \text{ (not)}$ to be confused with Cholesky factor)
- For $A \succ 0$, the Schur decomposition, spectral decomposition and SVD all coincide If $\mathbf{A} \succeq \mathbf{0}$, then $\mathbf{B}^* \mathbf{A} \mathbf{B} \succeq \mathbf{0}$, $\forall \mathbf{B} \in \mathbb{C}^{n \times m}$
- If $A \;\succ\; 0$ and B has full column rank, then $\mathbf{B}^*\mathbf{AB} \succ \mathbf{0}$.

Fact 38 (Properties of the Loewner partial-order).

- $\begin{array}{lll} \bullet & \mathbf{A} \succeq \mathbf{B}, \text{ then } \lambda_i(\mathbf{A}) \geq \lambda_i(\mathbf{B}), i=1,2,\ldots,n \\ \bullet & \mathbf{A} \succeq \mathbf{B} \text{ and } \mathbf{A} \neq \mathbf{B}, \text{ then } \exists i \in \\ \{1,2,\ldots,n\}, \lambda_i(\mathbf{A}) > \lambda_i(\mathbf{B}) \\ \end{array}$
- $\mathbf{A} \succ \mathbf{B}$, then $\lambda_i(\mathbf{A}) > \lambda_i(\mathbf{B}), i = 1, 2, \dots, n$ (after ordering eigenvalues).

Fact 39 (Properties of the Schur complement).

- $\begin{array}{ll} \bullet & M \succ 0 \iff A \succ 0 \ \mathrm{and} \ C B^*A^{-1}B \succ 0; \\ \bullet & M \succeq 0 \iff A \succ 0 \ \mathrm{and} \ C B^*A^{-1}B \succeq 0. \end{array}$

Theorem 38 (Levy-Desplanques Theorem). strictly diagonally dominant matrix is non-singular.

Fact 40 (Implications on positive (semi-)definiteness).

- If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian, diagonally dominant with non-negative diagonals $a_{ii} \geq 0 \ \forall i$, then **A**
- is positive semi-definite.

 If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian, strictly diagonally dominant with positive diagonals $a_{ii} > 0 \ \forall i$, then A is positive definite.

Fact 41. If A is invertible, then it admits an LU factorisation if and only if all its leading principal minors

Fact 42. We can uniquely write A = LDU, where ${f D}$ is a diagonal matrix and ${f L}, {f U}$ are unit triangular matrices:

$$\begin{pmatrix} 1 & & & & \\ \frac{\ell_{21}}{\ell_{11}} & 1 & & & \\ \vdots & \vdots & \ddots & \ddots & \\ \frac{\ell_{n1}}{\ell_{11}} & \frac{\ell_{n2}}{\ell_{22}} & \cdots & 1 \end{pmatrix} \begin{pmatrix} \ell_{11}u_{11} & & & \\ & \ell_{22}u_{22} & & & \\ & & \ddots & & \\ & & & \ell_{nn} \end{pmatrix}$$

Theorem 39 (PLU Factorisation). For each $A \in$ $\mathbb{C}^{n \times n}$, there exists a permutation matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$, a unit lower triangular $\mathbf{L} \in \mathbb{C}^{n \times n}$ and an upper triangular $\mathbf{U} \in \mathbb{C}^{n \times n}$ such that $\mathbf{A} = \mathbf{PLU}$.

Theorem 40 (Cholesky factorisation). Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be Hermitian. Then the following are true:

- A is positive semidefinite (respectively, positive definite) if and only if there is a lower triangular matrix $\mathbf{L} \in \mathbb{C}^{n \times n}$ with nonnegative (respectively, positive) diagonal entries such that $\mathbf{A} = \mathbf{L}\mathbf{L}^*$;
- Furthermore, if A is positive definite, L is unique, i.e. there is only one lower triangular $matrix \mathbf{L}$ with strictly positive diagonal entries such that $\mathbf{A} = \mathbf{L}\mathbf{L}^*$;
- A is real ⇒ L is real.

Proof. Is this even a theorem?

Theorem 41 (QR factorisation). Let $\mathbf{A} \in \mathbb{C}^{m \times n}$

- There exists a unitary $\mathbf{Q} \in \mathbb{C}^{m \times m}$ and an upper triangular $\mathbf{R} \in \mathbb{C}^{m \times n}$ with nonnegative diagonal entries such that $\mathbf{A} = \mathbf{Q}\mathbf{R}$. If $m \geq n$, there exists a $\mathbf{Q} \in \mathbb{C}^{m \times n}$ with orthonormal columns and an upper triangular $\mathbf{R} \in \mathbb{C}^{n \times n}$ with nonnegative main diagonal entries such that $\mathbf{A} = \mathbf{Q}\mathbf{R}$. This is called "Thin $\mathbf{Q}\mathbf{R}$ " or "Reduced $\mathbf{Q}\mathbf{R}$ ". If \mathbf{R} ank $(\mathbf{A}) = n$, then the factors \mathbf{Q} and \mathbf{R} con
- If $Rank(\mathbf{A}) = n$, then the factors \mathbf{Q} and \mathbf{R} are uniquely determined and the diagonal entries of $\hat{\mathbf{R}}$ are all positive.
- If m = n, then the factor **Q** is unitary.
- If A is real, then the factors Q and R may be taken to be real.

Fact 43 (Different forms of QR).

- Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ with $\operatorname{Rank}(\mathbf{A}) = n \leq m$. Then: $\mathbf{A} = \mathbf{Q}\mathbf{R} = \begin{pmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{pmatrix} \begin{pmatrix} \mathbf{R}_1 \\ \mathbf{0} \end{pmatrix} = \mathbf{Q}_1\mathbf{R}_1$ • Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ with $\mathrm{Rank}(\mathbf{A} = m \leq n)$. Then:
- $A = QR = Q(R_1 R_2)$

Fact 44 (Permuting QR). Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ with $\mathrm{Rank}(\mathbf{A}) = r < n \le m$. Then we have $r_{ii} = 0$ for some i. One can permute the columns of ${\bf A}$ to ob-

tain
$$\mathbf{AP} = \mathbf{P} \begin{pmatrix} \mathbf{R}_1 & \mathbf{R}_2 \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \mathbf{Q}_r \begin{pmatrix} \mathbf{R}_1 & \mathbf{R}_2 \end{pmatrix}$$
, where \mathbf{P}

is a permutation matrix, $\mathbf{R}_1 \in \mathbb{C}^{r \times r}$ is non-singular and upper triangular and $\mathbf{Q}_r \in \mathbb{C}^{m \times r}$ has orthonormal columns. Amazingly, this holds in the case where $\mathrm{Rank}(\mathbf{A}) = r < m < r$ $Rank(\mathbf{A}) = r < m \leq \tilde{n}.$

Fact 45 (Two strokes of luck). We obtain "two strokes of luck" from this result:

1. We can obtain the inverse of $\tilde{\mathbf{L}}^{(i)}$ simply taking the negative:

$$\begin{bmatrix} \frac{-a_{32}}{a_{11}} & 1 \\ 22 & & \\ \vdots & \ddots & \\ \frac{-a_{n2}^{(1)}}{a_{22}^{(1)}} & 1 \end{bmatrix} = \begin{bmatrix} 1 & & \\ \frac{a_{32}^{(1)}}{a_{22}^{(1)}} & 1 \end{bmatrix}$$
$$[\tilde{\mathbf{L}}^{(2)}]^{-1} = \begin{bmatrix} 1 & & \\ & \frac{a_{32}^{(1)}}{a_{22}^{(1)}} & 1 \end{bmatrix}$$

2. Let ℓ_k denote a vector with 0s above and at the diagonal, and $\ell_{k+1,k}$ below. It can be seen that a matrix formed with these vectors plus identity gives us the L matrix:

$$\boldsymbol{\ell}_{k} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \ell_{k+1,k} \\ \vdots \\ \ell_{n,k} \end{bmatrix} \implies \left[\tilde{\mathbf{L}}^{(k)}\right]^{-1} \left[\tilde{\mathbf{L}}^{(k+1)}\right]^{-1} =$$

From this we can gather:
$$[\tilde{\mathbf{L}}^{(1)}]^{-1}[\tilde{\mathbf{L}}^{(2)}]^{-1} = \begin{pmatrix} \frac{1}{a_{21}} & 1 & & \\ \frac{a_{21}}{a_{11}} & \frac{1}{a_{22}^{(1)}} & 1 & & \\ \vdots & \vdots & \ddots & \ddots & \\ \frac{a_{n1}}{a_{11}} & \frac{a_{n2}^{(1)}}{a_{10}^{(1)}} & 1 & & 1 \end{pmatrix}$$

Fact 46. For all $\mathbf{b} \in \mathbb{R}^p$ and $\mathbf{B} \in \mathbb{R}^{p \times p}$, we have:

$$f(\mathbf{x}) = \langle \mathbf{b}, \mathbf{x} \rangle \implies \nabla f(\mathbf{x}) = \mathbf{b}$$

$$f(\mathbf{x}) = \langle \mathbf{b}, \mathbf{B} \mathbf{x} \rangle \implies \nabla f(\mathbf{x}) = (\mathbf{B} + \mathbf{B}^{\top}) \mathbf{x}$$

Proposition 3. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be full column rank. We have $\kappa(\mathbf{A}^{\top}\mathbf{A}) = \kappa^2(\mathbf{A})$.

Proof. Let
$$\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}$$
 be the economy SVD of \mathbf{A} . We have $\mathbf{A}^{\top}\mathbf{A} = \mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{\top}$ and hence $\kappa(\mathbf{A}^{\top}\mathbf{A}) = \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} = \kappa^{2}(\mathbf{A})$.

Fact 47 (General stationary iterations). $\mathbf{x}_{k+1} = \mathbf{M}^{-1}(\mathbf{N}\mathbf{x}_k + \mathbf{b}) = \mathbf{x}_k + \mathbf{M}^{-1}(\mathbf{b} - \mathbf{A}\mathbf{x}_k)$

Fact 48 (Types of iteration methods).

- M = D: Jacobi method (simultaneous relaxation)
- $\mathbf{M} = \mathbf{D} + \mathbf{E}$: Gauss-Seidel method (GS)
- $\mathbf{M} = \omega^{-1}\mathbf{D} + \mathbf{E}$: Successive over-relaxation (SOR). $0 < \omega < 2$ is necessary for convergence (for \mathbf{A} that has nonzero diagonal elements), and sufficient for PD systems. $\omega = 1$ then just Gauss-Seidel the best results are usually obtained for $1 \le \omega < 2$. There is also symmetric SOR (SSOR), and other variants.
- Block version of these splittings.

Proposition 4 (Sufficient condition on convergence). $\|\mathbf{T}\| < 1 \implies \lim_{k \to \infty} \mathbf{e}_k = 0$

Proof.

$$\begin{aligned} \|\mathbf{e}_{k+1}\| &= \left\| \mathbf{T}^{k+1} \mathbf{e}_{k} \right\| \\ &\leq \left\| \mathbf{T}^{k+1} \right\| \|\mathbf{e}_{0}\| \\ &\leq \left\| \mathbf{T} \right\|^{k+1} \|\mathbf{e}_{0}\| \end{aligned}$$

Theorem 42 (Necessary and sufficient condition on convergence). $\rho(\mathbf{T}) < 1 \iff \lim_{k \to \infty} \mathbf{e}_k = 0$

Proof. It follows immediately from the fact that: $\lim_{k\to\infty} \mathbf{A}^k = \mathbf{0} \iff \rho(\mathbf{A}) < 1$

 $\begin{array}{ll} \textbf{Theorem} & \textbf{43} & \text{(Asymptotic rate of convergence).} \\ \lim \sup_{k \to \infty} \left(\frac{\|\mathbf{e}_k\|}{\|\mathbf{e}_0\|} \right)^{1/k} \leq \rho(\mathbf{T}), \quad \forall \mathbf{x}_0 \end{array}$

Theorem 44 (Cayley-Hamilton). Let $p_n(\lambda) = \sum_{i=0}^n c_i \lambda^i$ be the characteristic polynomial of the matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then we have $p_n(\mathbf{A}) = 0$.

Theorem 45 (Grade of \mathbf{v} with respect to \mathbf{A}). There exists a positive integer $t \triangleq t(\mathbf{v}, \mathbf{A})$ called the grade of \mathbf{v} with respect to \mathbf{A} such that: $\dim(\mathcal{K}_k(\mathbf{A}, \mathbf{v})) = \begin{cases} k & k \leq t \\ t & k \geq t \end{cases}$ In words, for all $k \leq t$, the vectors forming a Krylov subspace, i.e. $\mathbf{A}^i \mathbf{v}, i = 0, \ldots, k-1$ remian linearly independent, i.e. they form a basis, and hence $\mathcal{K}_{k-1}(\mathbf{A}, \mathbf{v}) \subsetneq \mathcal{K}_k(\mathbf{A}, \mathbf{v})$. After the cutoff, new vectors will be linearly dependent on previous and hence for k > t: $\mathcal{K}_{k-1}(\mathbf{A}, \mathbf{v}) = \mathcal{K}_k(\mathbf{A}, \mathbf{v})$

Proof. Suppose t is the smallest integer such that $\mathbf{A}^t\mathbf{v} + \sum_{i=0}^{t-1} \alpha_i \mathbf{A}^i \mathbf{v} = \mathbf{0}$ for some α_i . In other words, the vectors $\mathbf{v}, \mathbf{A}\mathbf{v}, \mathbf{A}^2\mathbf{v}, \dots, \mathbf{A}^t\mathbf{v}$ are linearly dependent. So we must have that $\dim(\mathcal{K}_{t+1}(\mathbf{A}, \mathbf{v})) \leq t$. It easily follows that: $\mathbf{A}^{t+1}\mathbf{v} + \sum_{i=0}^{t-1} \alpha_i \mathbf{A}^{i+1}\mathbf{v} = \mathbf{A}\left(\mathbf{A}^t\mathbf{v} + \sum_{i=0}^{t-1} \alpha_i \mathbf{A}^i \mathbf{v}\right) = \mathbf{0}$ In other words, the vectors $\mathbf{A}\mathbf{v}, \dots, \mathbf{A}^{t+1}\mathbf{v}$ will also be linearly dependent, which in turn implies that $\mathbf{v}, \mathbf{A}\mathbf{v}, \dots, \mathbf{A}^{t+1}\mathbf{v}$ are linearly dependent. So we must have that

 $\dim(\mathcal{K}_{t+1}(\mathbf{A}, \mathbf{v})) \leq t$. We can continue this way, hence we have $\dim(\mathcal{K}_k(\mathbf{A}, \mathbf{v})) \leq t, \forall k \geq t$.

Since t is the smallest integer with such property, for any k < t, we have $\mathbf{A}^k \mathbf{v} + \sum_{i=0}^{k-1} \alpha_i \mathbf{A}^i \mathbf{v} \neq \mathbf{0}$ for all $\alpha_i, i = 0, \dots, k-1$. This implies that all the vectors $\mathbf{v}, \mathbf{A}\mathbf{v}, \mathbf{A}^2\mathbf{v}, \dots, \mathbf{A}^k\mathbf{v}$ are linearly independent. Indeed, consider any $\alpha_i, i = 0, \dots, k$ with $\alpha_k \neq 0$. From the above assumption, we have: $\alpha_k \mathbf{A}^k \mathbf{v} + \sum_{i=0}^{k-1} \alpha_i \mathbf{A}^i \mathbf{v} = \mathbf{A}^k \mathbf{v} + \sum_{i=0}^{k-1} \frac{\alpha_i}{\alpha_k} \mathbf{A}^i \mathbf{v} \neq \mathbf{0}$ Now consider the case where $\alpha_k = 0$ and suppose $\sum_{i=0}^{k-1} \alpha_i \mathbf{A}^i \mathbf{v} = \mathbf{0}$ for some $\alpha_i, i = 0, \dots, k-1$ that are not all zero. Let i be the largest index with non-zero α_i . We have $\mathbf{A}^i \mathbf{v} = \sum_{\ell=0}^{i} \binom{\alpha_\ell}{\alpha_i} \mathbf{A}^\ell \mathbf{v}$ which contradicts the assumption on t. So $\dim(\mathcal{K}_k(\mathbf{A}, \mathbf{v})) = k \ \forall k \leq t$.

Corollary 1. $t = \min\{k \mid \mathbf{A}^{-1}\mathbf{v} \in \mathcal{K}_k(\mathbf{A}, \mathbf{v})\}\$

Proof. Recall that an application of the Cayley-Hamilton theorem implied that: $\mathbf{A}^{-1}\mathbf{v} = \sum_{i=0}^{n-1} \alpha_i \mathbf{A}^i \mathbf{v}$ But since $\mathcal{K}_k(\mathbf{A}, \mathbf{v}) = \mathcal{K}_{K+1}(\mathbf{A}, \mathbf{v}), k \geq t$, we can write: $\mathbf{A}^{-1}\mathbf{v} = \sum_{i=0}^{t-1} \beta_i \mathbf{A}^i \mathbf{v}$ So $\mathbf{A}^{-1}\mathbf{v} \in \mathcal{K}_k(\mathbf{A}, \mathbf{v}), k \geq t$. Now suppose this also holds for k = t - 1, i.e. $\mathbf{A}^{-1}\mathbf{v} = \sum_{i=0}^{t-2} \gamma_i \mathbf{A}^i \mathbf{v}$. But then this gives $\mathbf{v} = \sum_{i=0}^{t-2} \gamma_i \mathbf{A}^{i+1} \mathbf{v}$. In other words, $\{\mathbf{v}, \mathbf{A}\mathbf{v}, \dots, \mathbf{A}^{t-1}\mathbf{v}\}$ are linearly dependent, which implies $\dim(\mathcal{K}_t(\mathbf{A}, \mathbf{v})) < t$ which is a contradiction.

Corollary 2. For any \mathbf{x}_0 , we have $\mathbf{x}^* \in \mathbf{x}_0 + \mathcal{K}_t(\mathbf{A}, \mathbf{r}_0)$ where $\mathbf{r}_0 = b - \mathbf{A}\mathbf{x}_0$ and t is the grade of \mathbf{r}_0 with respect to \mathbf{A} .

Theorem 46. Assume the Arnoldi process does not terminate before k steps. Then the vectors $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k\}$ form an orthonormal basis for $\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0)$.

Proof. First note that $\mathcal{K}_k\left(\mathbf{A},\mathbf{r}_0\right)=\mathcal{K}_k\left(\mathbf{A},\mathbf{q}_1\right)$. Orthonormality is clear from the construction. For j=1, we trivially have $\mathbf{q}_1=p_0(\mathbf{A})\mathbf{q}_1$, where $p_{i-1}(t)$ $p_0(\mathbf{A})=1$. Suppose for all $i\leq j$ we have $\mathbf{q}_i=p_{i-1}(\mathbf{A})\mathbf{q}_1$, where $p_{i-1}(t)$ is a polynomial of degree i-1. For j+1, it follows that $h_{j+1,j}\mathbf{q}_{i+1}=\mathbf{A}\mathbf{q}_j-\sum_{i=1}^j h_{ij}\mathbf{q}_i=\mathbf{A}p_{j-1}(\mathbf{A})\mathbf{q}_1-\sum_{i=1}^j h_{ij}p_{i-1}(\mathbf{A})\mathbf{q}_i$ so we have $\mathbf{q}_{j+1}=p_j(\mathbf{A})\mathbf{q}_1$. In other words, each column of \mathbf{Q}_k can be written as linear combination of vectors $\left\{\mathbf{q}_1,\mathbf{A}\mathbf{q}_1,\ldots,\mathbf{A}^{k-1}\mathbf{q}_1\right\}$, and since \mathbf{q}_j 's are independent, they must span the same space, i.e., $\mathcal{K}_k\left(\mathbf{A},\mathbf{q}_1\right)$.

Theorem 47. The Arnoldi process breaks down at step j, i.e. $h_{j+1,j} = 0$ if and only if the grade of \mathbf{r}_0 with respect to \mathbf{A} is j, i.e. $t(\mathbf{r}_0, \mathbf{A}) = j$.

Proof. (\Leftarrow) First, note that $t(\mathbf{r}_0, \mathbf{A}) = t(\mathbf{q}_1, \mathbf{A})$. Suppose $t(\mathbf{q}_1, \mathbf{A}) = j$ which implies $\dim (\mathcal{K}_{j+1}(\mathbf{A}, \mathbf{q}_1)) = j$. Hence, we must have $\mathbf{A}\mathbf{q}_j - \sum_{i=1}^j h_{ij}\mathbf{q}_i = \mathbf{0}$. Otherwise \mathbf{q}_{i+1} could be defined, which in turn implies that $\dim (\mathcal{K}_{j+1}(\mathbf{A}, \mathbf{q}_1)) = \dim (\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_{j+1}\}) = j+1$, which is a contradiction. Hence we get $h_{j+1,j} = \left\|\mathbf{A}\mathbf{q}_j - \sum_{i=1}^j h_{ij}\mathbf{q}_i\right\| = 0$.

(⇒) To prove the converse, suppose $h_{j+1,j} = 0$, which means $\mathbf{A}\mathbf{q}_j - \sum_{i=1}^j h_{ij}\mathbf{q}_i = 0$. Now since by previous theorem, Span $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_j\} = \mathcal{K}_j (\mathbf{A}, \mathbf{q}_1)$, we have $\mathbf{A}\mathbf{q}_j \in \mathcal{K}_j (\mathbf{A}, \mathbf{q}_1)$. But similar to the proof of the previous theorem, we can get that $\mathbf{A}\mathbf{q}_j = p_j(\mathbf{A})\mathbf{q}_1$, where $p_j(\mathbf{A})$ is a matrix polynomial of degree exactly j. This in particular implies $\mathbf{A}^j\mathbf{q}_1 \in \mathcal{K}_j (\mathbf{A}, \mathbf{q}_1)$. Hence, we must have $t(\mathbf{q}_1, \mathbf{A}) \leq j$. However, we cannot have $t(\mathbf{q}_1, \mathbf{A}) < j$, as otherwise by the first part of the proof, the algorithms would have already stopped. ■

Proposition 5. The matrix $\mathbf{L}^{\top} \mathbf{A} \mathbf{K}$ is non-singular if either:

- 1. $\mathbf{A} \succ \mathbf{0}$ and $\mathcal{L} = \mathcal{K}$ or;
- 2. $\det(\mathbf{A}) \neq 0$ and $\mathcal{L} = \mathbf{A}\mathcal{K}$.

Proof.

1. Since $\mathcal{L} = \mathcal{K}$, any basis of \mathcal{L} is also a basis for \mathcal{K} . In fact, we can write $\mathbf{L} = \mathbf{K}\mathbf{B}$ where $\mathbf{B} \in \mathbb{R}^{K \times K}$ is non-singular. Now, we have $\mathbf{L}^{\top} \mathbf{A} \mathbf{K} = \mathbf{B}^{\top} \mathbf{K}^{\top} \mathbf{A} \mathbf{K}$ and since $\mathbf{A} \succ \mathbf{0}$, we have $\mathbf{K}^{\top} \mathbf{A} \mathbf{K} \succ \mathbf{0}$ and hence the entire product is non-singular.

2. Since $\mathcal{L} = \mathbf{A}\mathcal{K}$, we can write $\mathbf{L} = \mathbf{A}\mathbf{K}\mathbf{B}$ where $\mathbf{B} \in \mathbb{R}^{k \times k}$ is non-singular. Now we have $\mathbf{L}^{\mathsf{T}}\mathbf{A}\mathbf{K} = \mathbf{B}^{\mathsf{T}}\mathbf{K}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{K}$ and since \mathbf{A} is non-singular, we have $\mathbf{A}^{\mathsf{T}}\mathbf{A} \succ \mathbf{0}$, which as above, implies that the entire product is non-singular.

Theorem 48. The case where $\mathbf{A}\succ\mathbf{0}$ and $\mathcal{L}_k=\mathcal{K}_k$ is equivalent to $\mathbf{x}_k=\mathop{\arg\min}_{\mathbf{x}\in\mathbf{x}_0+\mathcal{K}_k}\|\mathbf{x}-\mathbf{x}^\star\|_{\mathbf{A}}=\mathop{\arg\min}_{\mathbf{x}\in\mathbf{x}_0+\mathcal{K}_k}\frac{1}{2}\langle\mathbf{x},\mathbf{A}\mathbf{x}\rangle-\langle\mathbf{b},\mathbf{x}\rangle$

Proof. Let $\mathbf{x} = \mathbf{x}_0 + \mathbf{K}_k \mathbf{y}$ for $\mathbf{y} \in \mathbb{R}^k$, where \mathbf{K}_k is a basis matrix for \mathcal{K}_k . So:

$$\mathbf{x}_{k} = \underset{\mathbf{x} \in \mathbf{x}_{0} + \mathcal{K}_{k}}{\min} \frac{1}{2} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle$$

$$= \underset{\mathbf{y} \in \mathbb{R}^{k}}{\arg \min} \frac{1}{2} \langle \mathbf{x}_{0} + \mathbf{K}_{k} \mathbf{y}, \mathbf{A} (\mathbf{x}_{0} + \mathbf{K}_{k} \mathbf{y}) \rangle - \langle \mathbf{b}, \mathbf{x}_{0} + \mathbf{K}_{k} \mathbf{y} \rangle$$

$$= \underset{\mathbf{y} \in \mathbb{R}^{k}}{\arg \min} \frac{1}{2} \langle \mathbf{K}_{k} \mathbf{y}, \mathbf{A} \mathbf{K}_{k} \mathbf{y} \rangle - \langle \mathbf{b} - \mathbf{A} \mathbf{x}_{0}, \mathbf{K} \mathbf{y} \rangle$$

Since $\mathbf{A} \succ \mathbf{0}$, it is necessary and sufficient for the optimal \mathbf{y}_k to satisfy $\mathbf{K}_k^{\top} \mathbf{A} \mathbf{K}_k \mathbf{y}_k - \mathbf{K}_k^{\top} (\mathbf{b} - \mathbf{A} \mathbf{x}_0) = \mathbf{0}$, which is the same as $\mathbf{K}_k^{\top} (\mathbf{A} \mathbf{x}_k - \mathbf{b}) = \mathbf{0}$, i.e., $\mathbf{r}_k \perp \mathcal{K}_k$

Theorem 49. The case where det $(\mathbf{A}) \neq 0$ and $\mathcal{L}_k = \mathbf{A}\mathcal{K}_k$ is equivalent to $\mathbf{x}_k = \underset{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k}{\arg \min} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$

Proof. Similarly as above, let $\mathbf{x} = \mathbf{x}_0 + \mathbf{K}_k \mathbf{y}$ for $\mathbf{y} \in \mathbb{R}^k$, where \mathbf{K}_k is a basis matrix for \mathcal{K}_k :

$$\begin{aligned} \mathbf{x}_k &= \mathop{\arg\min}_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 \\ &= \mathop{\arg\min}_{\mathbf{y} \in \mathbb{R}^k} \frac{1}{2} \|\mathbf{A} \left(\mathbf{x}_0 + \mathbf{K}_k \mathbf{y}\right) - \mathbf{b}\|^2 \end{aligned}$$

Now, since A is non-singular, it is necessary and sufficient for the optimal y_k to satisfy $\mathbf{K}_k^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{K} \mathbf{y}_k = \mathbf{K}_k^{\top} \mathbf{A}^{\top} (\mathbf{b} - \mathbf{A} \mathbf{x}_0)$ which is the same as $\mathbf{K}_k^{\top} \mathbf{A}^{\top} (\mathbf{A} \mathbf{x}_k - \mathbf{b}) = \mathbf{0}$, i.e., $\mathbf{r}_k \perp \mathbf{A} \mathcal{K}_k$

Proposition 6. If Arnoldi (or Lanczos) Process breaks down at step $t = t(\mathbf{A}, \mathbf{r}_0)$, then \mathbf{x}_t from any projection method onto $\mathcal{K}_t(\mathbf{A}, \mathbf{r}_0)$ or $\mathbf{A} \cdot \mathcal{K}_t(\mathbf{A}, \mathbf{r}_0)$ would be exact.

Proof. We show the proof for Arnoldi, as that for Lancsoz is identical. First consider the projection method onto \mathcal{K}_t (\mathbf{A}, \mathbf{r}_0), i.e., $\mathcal{L}_t = \mathcal{K}_t$. Recall again that $\mathbf{x}_t = \mathbf{x}_0 + \mathbf{Q}_t \mathbf{y}$, Range (\mathbf{Q}_t) = \mathcal{K}_t (\mathbf{A}, \mathbf{r}_0), $\mathbf{y} \in \mathbb{R}^t$. Since $\mathbf{r}_0 \in \operatorname{Range}(\mathbf{Q}_t)$, we have $\mathbf{Q}_t \mathbf{Q}_t^\top \mathbf{r}_0 = \mathbf{r}_0$. Also, since $h_{t+1,t} = 0$, we have $\mathbf{A}\mathbf{Q}_t = \mathbf{Q}_{t+1}\mathbf{H}_{t+1,t} = \mathbf{Q}_t\mathbf{H}_t$. It follows that $\mathbf{Q}_t\mathbf{Q}_t^\top (\mathbf{A}\mathbf{Q}_t \mathbf{y}) = \mathbf{Q}_t\mathbf{H}_t \mathbf{y} = \mathbf{A}\mathbf{Q}_t \mathbf{y}$. Hence, we have:

$$egin{aligned} \mathbf{0} &= \mathbf{Q}_t^ op (\mathbf{r}_0 - \mathbf{A} \mathbf{Q}_t \mathbf{y}) \Longleftrightarrow \mathbf{0} &= \mathbf{Q}_t \mathbf{Q}_t^ op (\mathbf{r}_0 - \mathbf{A} \mathbf{Q}_t \mathbf{y}) \ &= \mathbf{r}_0 - \mathbf{A} \mathbf{Q}_t \mathbf{y} \ &= \mathbf{b} - \mathbf{A} \mathbf{x}_0 - \mathbf{A} \mathbf{Q}_t \mathbf{y} \ &= \mathbf{b} - \mathbf{A} \mathbf{x}_t \end{aligned}$$

In other words, \mathbf{x}_t is the exact solution. Now consider the projection method onto $\mathbf{A} \cdot \mathcal{K}_t(\mathbf{A}, \mathbf{r}_0)$. Just as before, we get:

$$\mathbf{y} = \underset{\mathbf{y} \in \mathbb{R}^t}{\operatorname{arg \, min}} \frac{1}{2} \left\| \mathbf{H}_{t+1,t} \mathbf{y} - \mathbf{Q}_{t+1}^{\top} \mathbf{r}_0 \right\|^2$$
$$= \underset{\mathbf{y} \in \mathbb{R}^t}{\operatorname{arg \, min}} \frac{1}{2} \left\| \mathbf{H}_t \mathbf{y} - \mathbf{Q}_t^{\top} \mathbf{r}_0 \right\|^2$$
$$= \mathbf{H}_t^{-1} \mathbf{Q}_t^{\top} \mathbf{r}_0$$

where the last equality follows since H_t is an invertible square matrix. Again, noting that $\mathbf{r}_0 \in \text{Range}(\mathbf{Q}_t)$, we have

$$\mathbf{H}_{t}\mathbf{y} = \mathbf{Q}_{t}^{\top}\mathbf{r}_{0} \iff \mathbf{Q}_{t}\mathbf{H}_{t}\mathbf{y} = \mathbf{Q}_{t}\mathbf{Q}_{t}^{\top}\mathbf{r}_{0} = \mathbf{r}_{0} \iff \mathbf{A}\mathbf{Q}_{t}\mathbf{y}$$
$$\iff \mathbf{A}\left(\mathbf{x}_{0} + \mathbf{Q}_{t}\mathbf{y}\right) = \mathbf{b} \iff \mathbf{A}\mathbf{x}_{t} = \mathbf{b}$$

In other words, \mathbf{x}_t is the exact solution.