
Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=1; day=23; hr=14; min=41; sec=25; ms=263;]

Validated By CRFValidator v 1.0.3

Application No: 10753646 Version No: 2.0

Input Set:

Output Set:

Started: 2008-01-10 13:56:12.019

Finished: 2008-01-10 13:56:13.756

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 737 ms

Total Warnings: 42

Total Errors: 2

No. of SeqIDs Defined: 51

Actual SeqID Count: 51

Error code		Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (2)
W	213	Artificial or Unknown found in <213> in SEQ ID (3)
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
E	257	Invalid sequence data feature in <221> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
W	213	Artificial or Unknown found in <213> in SEQ ID (13)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)
W	213	Artificial or Unknown found in <213> in SEQ ID (15)
W	213	Artificial or Unknown found in <213> in SEQ ID (16)
W	213	Artificial or Unknown found in <213> in SEQ ID (17)
W	213	Artificial or Unknown found in <213> in SEQ ID (18)
E	257	Invalid sequence data feature in <221> in SEQ ID (18)
W	213	Artificial or Unknown found in <213> in SEQ ID (19)
W	213	Artificial or Unknown found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2008-01-10 13:56:12.019

Finished: 2008-01-10 13:56:13.756

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 737 ms

Total Warnings: 42

Total Errors: 2

No. of SeqIDs Defined: 51

Actual SeqID Count: 51

Err	or code	Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (21)
W	213	Artificial or Unknown found in <213> in SEQ ID (22) This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110> DAVIDSON, DONALD J. GUBBINS, EARL J. WANG, JIEYI <120> NOVEL ANTIANGIOGENIC PEPTIDES, POLYNUCLEOTIDES ENCODING SAME AND METHODS FOR INHIBITING ANGIOGENESIS <130> 5940.US.C3 <140> 10753646 <141> 2004-01-08 <150> 08/851,350 <151> 1997-05-05 <150> 08/643,219 <151> 1996-05-03 <150> 08/832,087 <151> 1997-04-03 <160> 51 <170> PatentIn version 3.3 <210> 1 <211> 791 <212> PRT <213> Homo sapiens <400> 1 Glu Pro Leu Asp Asp Tyr Val Asn Thr Gln Gly Ala Ser Leu Phe Ser 5 10 15 Val Thr Lys Lys Gln Leu Gly Ala Gly Ser Ile Glu Glu Cys Ala Ala 20 25 30 Lys Cys Glu Glu Asp Glu Glu Phe Thr Cys Arg Ala Phe Gln Tyr His 35 40 Ser Lys Glu Gln Gln Cys Val Ile Met Ala Glu Asn Arg Lys Ser Ser 50 55 60

Leu Ser Glu Cys Lys Thr Gly Asn Gly Lys Asn Tyr Arg Gly Thr Met 85 90 95

Ile Ile Ile Arg Met Arg Asp Val Val Leu Phe Glu Lys Lys Val Tyr

75

70

65

Ser Lys Th	r Lys Asn 100	Gly Ile	Thr Cys	Gln Lys	Trp Ser	Ser Thr 110	Ser
Pro His Ar		Phe Ser	Pro Ala	Thr His	Pro Ser 125	Glu Gly	Leu
Glu Glu As	n Tyr Cys	Arg Asn 135	Pro Asp	Asn Asp	Pro Gln 140	Gly Pro	Trp
Cys Tyr Th	r Thr Asp	Pro Glu 150	Lys Arg	Tyr Asp 155	Tyr Cys	Asp Ile	Leu 160
Glu Cys Gl	u Glu Glu 165	_	His Cys	Ser Gly 170	Glu Asn	Tyr Asp 175	Gly
Lys Ile Se	r Lys Thr 180	Met Ser	Gly Leu 185	Glu Cys	Gln Ala	Trp Asp	Ser
Gln Ser Pr 19		His Gly	Tyr Ile 200	Pro Ser	Lys Phe 205	Pro Asn	Lys
Asn Leu Ly 210	s Lys Asn	Tyr Cys 215	Arg Asn	Pro Asp	Arg Glu 220	Leu Arg	Pro
Trp Cys Ph	e Thr Thr	Asp Pro 230	Asn Lys	Arg Trp 235	Glu Leu	Cys Asp	Ile 240
Pro Arg Cy	s Thr Thr 245		Pro Ser	Ser Gly 250	Pro Thr	Tyr Gln 255	Cys
Leu Lys Gl	y Thr Gly 260	Glu Asn	Tyr Arg 265	Gly Asn	Val Ala	Val Thr 270	Val
Ser Gly Hi		Gln His	Trp Ser 280	Ala Gln	Thr Pro 285	His Thr	His
Asn Arg Th	r Pro Glu	Asn Phe 295	Pro Cys	Lys Asn	Leu Asp	Glu Asn	Tyr
Cys Arg As	n Pro Asp	Gly Lys	Arg Ala	Pro Trp	Cys His	Thr Thr	Asn 320

Ser	Gln	Val	Arg	Trp 325	Glu	Tyr	Суз	Lys	Ile 330	Pro	Ser	Суз	Asp	Ser 335	Ser
Pro	Val	Ser	Thr 340	Glu	Gln	Leu	Ala	Pro 345	Thr	Ala	Pro	Pro	Glu 350	Leu	Thr
Pro	Val	Val 355	Gln	Asp	Cys	Tyr	His 360	Gly	Asp	Gly	Gln	Ser 365	Tyr	Arg	Gly
Thr	Ser 370	Ser	Thr	Thr	Thr	Thr 375	Gly	Lys	Lys	Cys	Gln 380	Ser	Trp	Ser	Ser
Met 385	Thr	Pro	His	Arg	His 390	Gln	Lys	Thr	Pro	Glu 395	Asn	Tyr	Pro	Asn	Ala 400
Gly	Leu	Thr	Met	Asn 405	Tyr	Cys	Arg	Asn	Pro 410	Asp	Ala	Asp	Lys	Gly 415	Pro
Trp	Суз	Phe	Thr 420	Thr	Asp	Pro	Ser	Val 425	Arg	Trp	Glu	Tyr	Cys 430	Asn	Leu
Lys	Lys	Cys 435	Ser	Gly	Thr	Glu	Ala 440	Ser	Val	Val	Ala	Pro 445	Pro	Pro	Val
Val	Leu 450	Leu	Pro	Asp	Val	Glu 455	Thr	Pro	Ser	Glu	Glu 460	Asp	Суз	Met	Phe
Gly 465	Asn	Gly	Lys	Gly	Tyr 470	Arg	Gly	Lys	Arg	Ala 475	Thr	Thr	Val	Thr	Gly 480
Thr	Pro	Суз	Gln	Asp 485	Trp	Ala	Ala	Gln	Glu 490	Pro	His	Arg	His	Ser 495	Ile
Phe	Thr	Pro	Glu 500	Thr	Asn	Pro	Arg	Ala 505	Gly	Leu	Glu	Lys	Asn 510	Tyr	Cys
Arg	Asn	Pro 515	Asp	Gly	Asp	Val	Gly 520	Gly	Pro	Trp	Cys	Tyr 525	Thr	Thr	Asn
Pro	Arg	Lys	Leu	Tyr	Asp	Tyr	Cys	Asp	Val	Pro	Gln	Cys	Ala	Ala	Pro

Ser 545	Phe	Asp	Cys	Gly	Lys 550	Pro	Gln	Val	Glu	Pro 555	Lys	Lys	Cys	Pro	Gly 560
Arg	Val	Val	Gly	Gly 565	Cys	Val	Ala	His	Pro 570	His	Ser	Trp	Pro	Trp 575	Gln
Val	Ser	Leu	Arg 580	Thr	Arg	Phe	Gly	Met 585	His	Phe	Cys	Gly	Gly 590	Thr	Leu
Ile	Ser	Pro 595	Glu	Trp	Val	Leu	Thr 600	Ala	Ala	His	Cys	Leu 605	Glu	Lys	Ser
Pro	Arg 610	Pro	Ser	Ser	Tyr	Lys 615	Val	Ile	Leu	Gly	Ala 620	His	Gln	Glu	Val
Asn 625	Leu	Glu	Pro	His	Val 630	Gln	Glu	Ile	Glu	Val 635	Ser	Arg	Leu	Phe	Leu 640
Glu	Pro	Thr	Arg	Lys 645	Asp	Ile	Ala	Leu	Leu 650	Lys	Leu	Ser	Ser	Pro 655	Ala
Val	Ile	Thr	Asp 660	Lys	Val	Ile	Pro	Ala 665	Суз	Leu	Pro	Ser	Pro 670	Asn	Tyr
Val	Val	Ala 675	Asp	Arg	Thr	Glu	Cys 680	Phe	Ile	Thr	Gly	Trp 685	Gly	Glu	Thr
Gln	Gly 690	Thr	Phe	Gly	Ala	Gly 695	Leu	Leu	Lys	Glu	Ala 700	Gln	Leu	Pro	Val
Ile 705	Glu	Asn	Lys	Val	Cys 710	Asn	Arg	Tyr	Glu	Phe 715	Leu	Asn	Gly	Arg	Val 720
Gln	Ser	Thr	Glu	Leu 725	Cys	Ala	Gly	His	Leu 730	Ala	Gly	Gly	Thr	Asp 735	Ser
Cys	Gln	Gly	Asp 740	Ser	Gly	Gly	Pro	Leu 745	Val	Суз	Phe	Glu	Lys 750	Asp	Lys
Tyr	Ile	Leu 755	Gln	Gly	Val	Thr	Ser 760	Trp	Gly	Leu	Gly	Суз 765	Ala	Arg	Pro

Asn Lys Pro Gly Val Tyr Val Arg Val Ser Arg Phe Val Thr Trp Ile

770 775 780

Glu Gly Val Met Arg Asn Asn 785 790 <210> 2 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer <400> 2 attaatggat ccttggacaa gaggctgctt ccagatgtag agact 45 <210> 3 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer <400> 3 45 attaatggat ccttggacaa gagggtccag gactgctacc atggt <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer <400> 4 attaatctcg aggcatgctt aggccgcaca ctgatggaca 40 <210> 5 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer attaatctcg aggcatgctt aaaatgaagg ggccgcacac t 41

<210> 6 <211> 7

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<220>
<221> MOD RES
<222> (5)..(5)
<223> 3-I-Tyr
<400> 6
Pro Arg Lys Leu Xaa Asp Tyr
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 7
                                                                        22
gaaacttcca aaagtcgcca ta
<210> 8
<211> 92
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 8
attaatgaat teetegageg gteegggate eeteggeage ggaaccaaeg gtagtgeaga
                                                                        60
                                                                        92
taactggctg agcgaagaca gattgcaaag ta
<210> 9
<211> 111
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
atgttctctc caattttgtc cttggaaatt attttagctt tggctacttt gcaatctgtc
                                                                       60
ttcgctcagc cagttatctg cactaccgtt ggttccgctg ccgagggatc c
                                                                       111
```

```
<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 10
gtccaggact gctaccat
                                                                       18
<210> 11
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 11
ctgcttccag atgtagaga
                                                                       19
<210> 12
<211> 2497
<212> DNA
<213> Homo sapiens
<400> 12
catcctggga ttgggaccca ctttctgggc actgctggcc agtcccaaaa tggaacataa
                                                                       60
ggaagtggtt cttctacttc ttttatttct gaaatcaggt caaggagagc ctctggatga
                                                                      120
ctatqtqaat acccaqqqqq cttcactqtt caqtqtcact aaqaaqcaqc tqqqaqcaqq
                                                                      180
aagtatagaa gaatgtgcag caaaatgtga ggaggacgaa gaattcacct gcagggcatt
                                                                      240
ccaatatcac agtaaagagc aacaatgtgt gataatggct gaaaacagga agtcctccat
                                                                      300
aatcattagg atgagagatg tagttttatt tgaaaagaaa gtgtatctct cagagtgcaa
                                                                      360
                                                                      420
gactgggaat ggaaagaact acagagggac gatgtccaaa acaaaaaatg gcatcacctg
tcaaaaatgg agttccactt ctccccacag acctagattc tcacctgcta cacacccctc
                                                                      480
agagggactg gaggagaact actgcaggaa tccagacaac gatccgcagg ggccctggtg
                                                                      540
ctatactact gatccagaaa agagatatga ctactgcgac attcttgagt gtgaagagga
                                                                      600
atgtatgcat tgcagtggag aaaactatga cggcaaaatt tccaagacca tgtctggact
                                                                      660
ggaatgccag gcctgggact ctcagagccc acacgctcat ggatacattc cttccaaatt
                                                                      720
tccaaacaag aacctgaaga agaattactg tcgtaacccc gatagggagc tgcggccttg
                                                                      780
                                                                      840
gtgtttcacc accgacccca acaagcgctg ggaactttgt gacatccccc gctgcacaac
```

acctccacca	tcttctggtc	ccacctacca	gtgtctgaag	ggaacaggtg	aaaactatcg	900
cgggaatgtg	gctgttaccg	tgtccgggca	cacctgtcag	cactggagtg	cacagacccc	960
tcacacacat	aacaggacac	cagaaaactt	cccctgcaaa	aatttggatg	aaaactactg	1020
ccgcaatcct	gacggaaaaa	gggccccatg	gtgccataca	accaacagcc	aagtgcggtg	1080
ggagtactgt	aagataccgt	cctgtgactc	ctccccagta	tccacggaac	aattggctcc	1140
cacagcacca	cctgagctaa	cccctgtggt	ccaggactgc	taccatggtg	atggacagag	1200
ctaccgaggc	acatcctcca	ccaccaccac	aggaaagaag	tgtcagtctt	ggtcatctat	1260
gacaccacac	cggcaccaga	agaccccaga	aaactaccca	aatgctggcc	tgacaatgaa	1320
ctactgcagg	aatccagatg	ccgataaagg	cccctggtgt	tttaccacag	accccagcgt	1380
caggtgggag	tactgcaacc	tgaaaaaatg	ctcaggaaca	gaagcgagtg	ttgtagcacc	1440
tccgcctgtt	gtcctgcttc	cagatgtaga	gactccttcc	gaagaagact	gtatgtttgg	1500
gaatgggaaa	ggataccgag	gcaagagggc	gaccactgtt	actgggacgc	catgccagga	1560
ctgggctgcc	caggagcccc	atagacacag	cattttcact	ccagagacaa	atccacgggc	1620
gggtctggaa	aaaaattact	gccgtaaccc	tgatggtgat	gtaggtggtc	cctggtgcta	1680
cacgacaaat	ccaagaaaac	tttacgacta	ctgtgatgtc	cctcagtgtg	cggccccttc	1740
atttgattgt	gggaagcctc	aagtggagcc	gaagaaatgt	cctggaaggg	ttgtaggggg	1800
gtgtgtggcc	cacccacatt	cctggccctg	gcaagtcagt	cttagaacaa	ggtttggaat	1860
gcacttctgt	ggaggcacct	tgatatcccc	agagtgggtg	ttgactgctg	cccactgctt	1920
ggagaagtcc	ccaaggcctt	catcctacaa	ggtcatcctg	ggtgcacacc	aagaagtgaa	1980
tctcgaaccg	catgttcagg	aaatagaagt	gtctaggctg	ttcttggagc	ccacacgaaa	2040
agatattgcc	ttgctaaagc	taagcagtcc	tgccgtcatc	actgacaaag	taatcccagc	2100
ttgtctgcca	tccccaaatt	atgtggtcgc	tgaccggacc	gaatgtttcg	tcactggctg	2160
gggagaaacc	caaggtactt	ttggagctgg	ccttctcaag	gaagcccagc	tecetgtgat	2220
tgagaataaa	gtgtgcaatc	gctatgagtt	tctgaatgga	agagtccaat	ccaccgaact	2280
ctgtgctggg	catttggccg	gaggcactga	cagttgccag	ggtgacagtg	gaggteetet	2340
ggtttgcttc	gagaaggaca	aatacatttt	acaaggagtc	acttcttggg	gtcttggctg	2400
tgcacgcccc	aataagcctg	gtgtctatgt	tcgtgtttca	aggtttgtta	cttggattga	2460
gggagtgatg	agaaataatt	aattggacgg	gagacag			2497

```
<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 13
                                                                       23
ttattaggcc gcacactgag gga
<210> 14
<211> 128
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 14
agcgtctcat gaagagctgg ctcaccttcg ggtgggcctt tctgcgcctt ggcgcgccaa
                                                                       60
ccttaattaa ccgggagccc gcctaatgag cgggcttttt tttgctcttc atagtgactg
                                                                      120
                                                                      128
agacgtcg
<210> 15
<211> 175
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 15
agcgtctcag gtggtggtca tcaccatcac catcacggtg gtggtctggt gccgcgcggc
                                                                       60
agctgaagag ctggctcacc ttcgggtggg cctttctgcg ccttggcgcg ccaaccttaa
                                                                      120
ttaaccggga gcccgcctaa tgagcgggct tttttttgct cttcacgaga cgtcg
                                                                      175
<210> 16
<211> 156
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 16
agcgtctcag gtggtggtca tcaccatcac catcacggtg gtggttgaag agctggctca
                                                                       60
                                                                    120
ccttcgggtg ggcctttctg cgccttggcg cgccaacctt aattaaccgg gagcccgcct
```

```
<210> 17
<211> 172
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 17
agcgtctcag gtggtggtca tcaccatcac catcacggtg gtggtgatga cgatgacaag
                                                                       60
tgaagagctg gctcaccttc gggtgggcct ttctgcgcct tggcgcgcca accttaatta
                                                                      120
accgggagcc cgcctaatga gcgggctttt ttttgctctt cacgagacgt cg
                                                                      172
<210> 18
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<220>
<221> MOD_RES
<222> (7)..(7)
<223> 3-I-Tyr
<400> 18
Pro Arg Lys Leu Tyr Asp Xaa
<210> 19
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 19
                                                                        12
catgtgaaga gc
<210> 20
<211> 12
<212> DNA
<213> Artificial Sequence
```

```
<223> Description of Artificial Sequence: Synthetic primer
<400> 20
gatcgctctt ca
                                                                        12
<210> 21
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 21
                                                                        18
agatctcgat cccgcgaa
<210> 22
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 22
                                                                        18
atccggatat agttcctc
<210> 23
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 23
cgggcttttt tttgctcttc a
                                                                        21
<210> 24
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 24
cagattttcg tcaagactt
                                                                        19
<210> 25
<211> 18
```

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 25
accacctctt agccttag
                                                                        18
<210> 26
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 26
catggtatat ctccttctt
                                                                        19
<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 27
tgagcaataa ctagcataac
                                                                        20
<210> 28
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 28
agatctcgat cccgcgaa
                                                                        18
<210> 29
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 29
ttaggtctca ggggagt
                                                                        17
```

```
<210> 30
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 30
ttcagaacct ttcctggca
                                                                        19
<210> 31
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 31
agcggcgacg acgacgacaa g
                                                                        21
<210> 32
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<400> 32
                                                                        21
cttgtcgtcg tcgtcgccgc t
<210> 33
```

<211>