MicPro: Microphone-based Voice Privacy Protection

Shilin Xiao, Xiaoyu Ji*, Chen Yan, Zhicong Zheng, Wenyuan Xu Ubiquitous System Security Lab. (USSLAB), Zhejiang University

Millions of Voices are Recorded Every Minute

Voiceprints are inevitably leaked along with these voice clips!

Two Types of Attacks Utilizing Voiceprints

Spoofing attack

Inference attack

Voiceprint Protection: Speech Anonymization

Existing anonymization methods use audio clips at the software level

Voiceprint Protection: Speech Anonymization

Limitations of existing methods

Sensor-level Anonymization

We can anonymize audio frames at the sensor level

Sensor-level Anonymization

■ What's the benefit?

MicPro: Privacy-by-Design Microphone

Key Challenges for the Design

- □ A privacy-by-design microphone module requires:
- 1. No hardware modification
- 2. Low computational overhead

Q1: How to achieve anonymity without hardware modifications?

A1: Utilize the built-in parameters, e.g. line spectral frequency, in a popular *audio codec*

Q2: How to achieve anonymity and usability at the same time?

A2: Formulate *multi-objective optimization* problems solved by a genetic algorithm

Which feature of voiceprint to modify for anonymization?

Formant

Formant

- ☐ Formants are resonant frequencies and map to identities
 - 1. Formants represent the shape of the vocal tract
 - 2. The shape of the vocal tract is unique for everyone

Formants > Voiceprints

Formants distribution differs among people

How to Change Formants?

- ☐ Linear Prediction Coding (LPC) can model the shape of vocal tract
- ☐ Audio codecs use Line Spectral Frequency (LSF) as LPC's equivalent representations

$$\hat{x}(n) = -\sum_{k=1}^{p} \overline{a_k} x(n-k) + e(n)$$

LPC coefficients

Equivalent Representations

Line spectral frequencies (LSFs)

How to modify LSFs?

Formant Transformations

Func 1: Shifting formants
$$\left| \tilde{\omega}_i = F_1(\omega_i, \xi_1) = \omega_i + \omega_i(\xi_1 - 1)(1 - \omega_i) \right| = 1, \dots, p$$

 $\xi_1 > 1$ ($\xi_1 < 1$) shifts the formants towards higher (lower) frequencies

Formant Transformations

Func 2: Spreading formants
$$\tilde{\omega}_i = F_2(\omega_i, \xi_2) = \omega_i + (\xi_2 - 1)\sin(2\pi\omega_i)/p$$
 $i = 1, \dots, p$

 $\xi_2 > 1$ ($\xi_2 < 1$) means to gather (spread) the formants

Formant Transformations

Func 3: Adjusting bandwidths
$$\left| \tilde{\omega}_i = F_3(\omega_i, \xi_3) = \sum_{k=0}^{i-1} \left\{ \omega_{k+1} - \omega_k + (\xi_3 - 1) \left[\frac{1}{p+1} - \omega_{k+1} + \omega_k \right] \right\} \right|$$

 $\xi_3 > 1$ ($\xi_3 < 1$) means to expand (shrink) the formants bandwidth

CELP Modification for Formant Transformations

☐ CELP: Code Excitation Linear Prediction codec (based on LPC)

CELP Modification for Formant Transformations

☐ CELP: Code Excitation Linear Prediction codec (based on LPC)

How to determine the coefficients of formant transformations?

Objective Function Formulation

■ Multi-Objective Function

We anonymize audios and preserve usability for two objectives:

Objective 1: for human

T1:
$$\min_{\xi} S_{\text{ASV}}[v(x), v(\tilde{x})], S_{\text{pept}}(x, \tilde{x})$$

s.t. $x, \tilde{x} \in [-1, 1]$ and $\xi \in [0, 2]$

$$S_{
m ASV}[v(x),v(ilde{x})]$$
 Cosine distance $S_{
m pept}(x, ilde{x})$ Perception score (STOI) $S_{
m ASR}(x, ilde{x})$ Word Error Rate

Objective 2: for ASRs

T2:
$$\min_{\xi} S_{\text{ASV}}[v(x), v(\tilde{x})], S_{\text{ASR}}(x, \tilde{x})$$

s.t. $x, \tilde{x} \in [-1, 1]$ and $\xi \in [0, 2]$

- x Original signal
- v(x) Voiceprint embeddings of original signal
 - $\tilde{\chi}$ Anonymized signal
- $v(\tilde{x})$ Voiceprint embeddings of anonymized signal

Multi-objective Optimization Perceptual score default threshold

Coefficients of feasible solutions are used for anonymization

Evaluation: Setup

Datasets

- 6 datasets (subsets)

 VoxCeleb1, LibriSpeech, VCTK, AISHELL
- 2272 speakers
- 262,790 utterances
- 2 Language
 English & Chinese

Dataset	Subset	#Speaker	#Utterance	Duration (s)
VoxCeleb1 (E)	dev	1,211	148,642	3.9 ~ 144.9
LibriSpeech (E)	train-clean-360	921	104,014	$1.1 \sim 29.7$
VoxCeleb1 (E)	test	40	4,874	$3.9 \sim 69.1$
LibriSpeech (E)	test-clean	40	2,260	$1.3 \sim 35$
VCTK (E)	wav48	40^*	$2{,}000^{\dagger}$	$2.1 \sim 15.1$
AISHELL (C)	test	20	$1{,}000^{\dagger}$	$1.9 \sim 14.7$

☐ ASVs & ASRs

- 3 ASV models, EER < 2.8%

 ECAPA-TDNN, X-Vector, I-Vector
- 3 ASR models, WER < 3.9% transformer, wav2wec, crdnn-rnn
- 2 Language
 English & Chinese

ASV Model	Catagory	EER	ASR Model	Language	WER
ECAPA-TDNN	DNN-based	0.7%	transformer	E&C	2.27%
X-Vector	DNN-based	2.5%	wav2vec2	E	1.90%
I-Vector	Statistic	2.8%	crdnn-rnn	E	3.90%

Evaluation: Setup

■ Physical Setup

Microphone module: Respeaker Core V2

RK3229 MCU with Linux system

MicPro Microphone: Records and anonymizes audio

Evaluation: Setup

- Baselines, two existing anonymization methods based on signal processing
 - 1. McAdam Transformation (MT) [1]
 - 2. VoiceMask (VM) [2]

Evaluation Metrics

Anonymity

1. Miss-Match Rate (MMR): the rate anonymized audio mismatched with the correct speaker;

2. Equal Error Rate (EER): the rate when False Accept Rate = False Rejection Rate; **3. Latency:** the delay of the codec; Usability

4. Short-Time Objective Intelligibility (STOI). STOI indicates speech intelligibility;

5. Subjective quality: clearness, naturalness, similarity, and acceptability; 6. Word Error Rate (WER): the dissimilarity of ASR results between original and anonymized audio

- [1] Jose Patino, Natalia Tomashenko, Massimiliano Todisco, et.al. Speaker Anonymisation Using the McAdams Coefficient. In Interspeech 2021.
- [2] Jianwei Qian, Haohua Du, Jiahui Hou, et.al. 2017. Voicemask: Anonymize and sanitize voice input on mobile devices. arXiv preprint.

□ Anonymity performance

MicPro anonymity outperforms baseline methods in SOTA ASV

□ Usability performance

MicPro usability outperforms VM and is comparable with MT

□ Usability performance

Latency increase after modifying the CELP codec

t_{dur} (s)	t_{enc} (ms)	\tilde{t}_{enc} (ms)	l (ms)	\tilde{l} (ms)	Δl (ms)	$\delta l(\%)$
5	683 ± 18	685 ± 10	16.366	16.370	0.004	0.02
30	$3,864 \pm 22$	$3,868 \pm 24$	16.288	16.289	0.001	0.01
120	$15,289 \pm 45$	$15,293 \pm 32$	16.274	16.274	0.000	0.00
Avg.	-	-	16.309	16.311	0.002	0.01

MicPro has latency lower than 17ms

The latency increase is only 0.01%

☐ Resistance to attacks

Accuracy of inference attack

The attack successful rate is only 0.44%

MicPro performs best against inference attack

Conclusion

1. The first privacy-by-design microphone modules which can produce anonymous recordings

2. We design formant transformations within a CELP codec and formulate optimization problems to determine the coefficients

3. We implement MicPro on an off-the-shelf microphone, validate the performance and resistance to attacks

MicPro: Microphone-based Voice Privacy Protection

Find our demo and code at:

https://github.com/USSLab/MicPro

Contact the authors at:

xshilin@zju.edu.cn

xji@zju.edu.cn

yanchen@zju.edu.cn

zheng zhicong@zju.edu.cn

wyxu@zju.edu.cn

Homepage: www.usslab.org

