Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра интеллектуальных информационных технологий

Отчет по лабораторной работе №1 по курсу «МРЗвИС» на тему: «Сжатие графической информации линейной рециркуляционной сетью»

 Выполнил студент группы 021703:
 Чиж Г.И.

 Проверил:
 Жук А. А.

МИНСК 2022 **Цель:** Ознакомиться, проанализировать и получить навыки реализации модели линейной рециркуляционной сети для задачи сжатия графической информации.

Задание: Реализовать модель линейной рециркуляционной сети с адаптивным шагом обучения с нормированными весами.

Программа реализована на языке Python.

В процессе работы исходные изображения преобразуются в трёхмерные матрицы (с помощью библиотеки matplotlib), разбиваются на квадратные блоки (размер блоков задаётся пользователем), каждый блок проходит через двухслойную нейронную сеть: в первом преобразовании вектор цветов блока сжимается до количества нейронов первого скрытого слоя, во втором преобразовании он разжимается до исходного состояния. Сжатие и разжатие происходит путём перемножения матриц входа и весов (матриц весов две: для сжатия и разжатия). В процессе обучения обучающая выборка из L блоков (в нашем случае L это общее количество блоков) проходит через нейронную сеть и корректирует матрицы весов такое количество раз, которое нужно, чтобы снизить суммарную квадратическую ошибку до порогового значения. Корректировка матриц и подсчёт ошибки происходит по известным заданным формулам.

После обучения двух матриц весов до состояния, когда ошибка приемлема, каждый блок проходит через эти матрицы и сохраняется в векторах, которые потом трансформируются в готовые матрицы изображений. Из этих матриц с помощью библиотеки matplotlib потом формируются нужные изображения.

Хотя первый скрытый слой (сжатое изображение) необязательно должен быть выводимым в качестве изображения, он выводится в целях наглядности (а потому количество нейронов на этом слое должно соответствовать формуле $a^2 * 3$, $a \in Z$ (кратно 3, так как количество цветов в пикселе 3; квадрат, так как сжатые блоки квадратные).

Графики

1. График зависимости количества итераций от коэффициента сжатия Z $e = 2500 \qquad \qquad alpha = 0.0001$

Z	Число итераций
3,941565991	6
15,76387345	164
6,026307436	5
8,480014244	33

Число итераций относительно параметра "Z"

2. График зависимости числа итераций для разных изображений e=2500 alpha = 0.0001 p=12 размер блоков = 4x4

Номер изображения	Число итераций	Размеры
1	8	340x604
2	6	256x256
3	4	225x225

Число итераций относительно параметра "Номер изображения"

е	Число итераций
1000	39
2500	8
5000	3
10000	2

Число итераций относительно параметра "е"

4. График зависимости количества итераций от коэффициента обучения alpha

$$e = 2500$$
 $p = 12$ размер блоков = $4x4$

alpha	Число итераций
0.0001	8
0.0005	3
0.001	2
0.005	1

Число итераций относительно параметра "alpha"

Выводы:

Количество итераций растёт в нелинейной зависимости от коэффициента сжатия.

Число итераций растёт с размером картинки.

Число итераций падает с ростом максимальной ошибки (за счёт конечного совпадения восстановленной картинки с оригиналом)

Число итераций растёт с увеличением коэффициента обучения (за счёт точности снижения ошибки)