GigaDevice Semiconductor Inc.

GD32L233xx Arm® Cortex®-M23 32-bit MCU

Datasheet

Revision 1.2

(Jul. 2022)

Table of Contents

ible c	of Contents	1
st of	Figures	4
st of	Tables	5
Gei	neral description	7
Dev	vice overview	8
2.1.	Device information	8
2.2.	Block diagram	9
2.3.	-	
2.4.		
2.6.2	2. GD32L233Cx LQFP48 pin definitions	23
2.6.	3. GD32L233Kx LQFP32 pin definitions	27
2.6.	4. GD32L233Kx QFN32 pin definitions	30
2.6.	5. GD32L233xx pin alternate functions	33
Fur	nctional description	36
3.1.	Arm® Cortex®-M23 core	36
3.2.	Embedded memory	36
3.3.	Clock, reset and supply management	37
3.4.	Boot modes	37
3.5.	Power saving modes	38
3.6.	Clock trim controller (CTC)	40
3.7.	General-purpose inputs/outputs (GPIOs)	40
3.8.	CRC calculation unit (CRC)	41
3.9.	True Random number generator (TRNG)	41
3.10.	Direct memory access controller (DMA)	41
3.11.	DMA request multiplexer (DMAMUX)	42
3.12.	Analog to digital converter (ADC)	42
3.13.	Digital to analog converter (DAC)	43
	st of st of Ge Dev 2.1. 2.2. 2.3. 2.6. 2.6. 2.6. 2.6. 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. 3.11.	st of Tables General description Device overview 2.1. Device information 2.2. Block diagram 2.3. Pinouts and pin assignment 2.4. Memory map 2.5. Clock tree 2.6. Pin definitions 2.6.1. GD32L233Rx LQFP64 pin definitions 2.6.2. GD32L233Cx LQFP48 pin definitions 2.6.3. GD32L233Kx LQFP32 pin definitions 2.6.4. GD32L233Kx QFN32 pin definitions 2.6.5. GD32L233Kx QFN32 pin definitions 3.1. Arm® Cortex®-M23 core 3.2. Embedded memory 3.3. Clock, reset and supply management 3.4. Boot modes 3.5. Power saving modes 3.6. Clock trim controller (CTC) 3.7. General-purpose inputs/outputs (GPIOs) 3.8. CRC calculation unit (CRC) 3.9. True Random number generator (TRNG) 3.10. Direct memory access controller (DMA) 3.11. DMA request multiplexer (DMAMUX)

	3.15.	Timers and PWM generation	. 43
	3.16.	Universal synchronous/asynchronous receiver transmitter (USART/UART 44	Γ)
	3.17.	Universal asynchronous receiver transmitter (LPUART)	. 45
	3.18.	Inter-integrated circuit (I2C)	. 45
	3.19.	Serial peripheral interface (SPI)	. 46
	3.20.	Inter-IC sound (I2S)	. 46
	3.21.	Cryptographic acceleration Unit (CAU)	. 46
	3.22.	Segment LCD controller (SLCD)	. 47
	3.23.	Comparators (CMP)	. 47
	3.24.	Universal serial bus full-speed device interface (USBD)	. 47
	3.25.	Debug mode	. 48
	3.26.	Package and operation temperature	. 48
4	Ele	ctrical characteristics	. 49
	4.1	Absolute maximum ratings	. 49
	4.2	Operating conditions characteristics	. 49
	4.3	Power consumption	. 51
	4.4	EMC characteristics	. 58
	4.5	Power supply supervisor characteristics	. 58
	4.6	Electrical sensitivity	. 60
	4.7	External clock characteristics	. 60
	4.8	Internal clock characteristics	. 62
	4.9	PLL characteristics	. 64
	4.10	Memory characteristics	. 64
	4.11	NRST pin characteristics	. 64
	4.12	VREF buffer characteristics	. 65
	4.13	GPIO characteristics	. 66
	4.14	ADC characteristics	. 68
	4.15	DAC characteristics	. 70
	4.16	Temperature sensor characteristics	. 71
	4.17	Comparators characteristics	. 71
	4.18	TIMER characteristics	. 73

9	abe vice	ODOZEZOOAA Datasheet
•	4.19	SLCD controller characteristics74
4	4.20	I2C characteristics75
,	4.21	SPI characteristics76
4	4.22	I2S characteristics78
4	4.23	USART/LPUART characteristics 80
4	4.24	USBD characteristics80
	4.25	WDGT characteristics81
4	4.26	Parameter conditions82
5	Pac	kage information83
į	5 .1	LQFP64 package outline dimensions83
į	5 .2	LQFP48 package outline dimensions85
į	5.3	LQFP32 package outline dimensions87
į	5.4	QFN32 package outline dimensions89
į	5.5	Thermal characteristics91
6	Ord	ering information93
7	Rev	ision history94

List of Figures

Figure 2-1. GD32L233xx block diagram	9
Figure 2-2. GD32L233Rx LQFP64 pinouts	10
Figure 2-3. GD32L233Cx LQFP48 pinouts	11
Figure 2-4. GD32L233Kx LQFP32 pinouts	11
Figure 2-5. GD32L233Kx QFN32 pinouts	12
Figure 2-6. GD32L233xx clock tree	16
Figure 4-1. Recommended power supply decoupling capacitors ⁽¹⁾	49
Figure 4-2. Typical supply current consumption in Run mode	56
Figure 4-3. Typical supply current consumption in Sleep mode	57
Figure 4-4. Recommended external NRST pin circuit ⁽¹⁾	65
Figure 4-5. I/O port AC characteristics definition	68
Figure 4-6. CMP hysteresis	72
Figure 4-7. I2C bus timing diagram	75
Figure 4-8. SPI timing diagram - master mode	76
Figure 4-9. SPI timing diagram - slave mode	77
Figure 4-10. I2S timing diagram - master mode	79
Figure 4-11. I2S timing diagram - slave mode	79
Figure 4-12. USBD timings: definition of data signal rise and fall time	80
Figure 5-1. LQFP64 package outline	83
Figure 5-2. LQFP64 recommended footprint	84
Figure 5-3. LQFP48 package outline	85
Figure 5-4. LQFP48 recommended footprint	86
Figure 5-5. LQFP32 package outline	87
Figure 5-6. LQFP32 recommended footprint	88
Figure 5-7. QFN32 package outline	89
Figure 5-8. QFN32 recommended footprint	90

List of Tables

Table 2-1. GD32L233xx devices features and peripheral list	8
Table 2-2. GD32L233xx memory map	13
Table 2-3. GD32L233Rx LQFP64 pin definitions	17
Table 2-4. GD32L233Cx LQFP48 pin definitions	23
Table 2-5. GD32L233Kx LQFP32 pin definitions	27
Table 2-6. GD32L233Kx QFN32 pin definitions	30
Table 2-7. Port A alternate functions summary	33
Table 2-8. Port B alternate functions summary	33
Table 2-9. Port C alternate functions summary	34
Table 2-10. Port D alternate functions summary	35
Table 2-11. Port F alternate functions summary	35
Table 4-1. Absolute maximum ratings ⁽¹⁾⁽⁴⁾	49
Table 4-2. DC operating conditions	49
Table 4-3. Clock frequency ⁽¹⁾	50
Table 4-4. Operating conditions at Power up/ Power down ⁽¹⁾	50
Table 4-5. Start-up timings of Operating conditions ⁽¹⁾	50
Table 4-6. Power saving mode wakeup timings characteristics ^{(1) (2)}	50
Table 4-7. Power consumption characteristics(2)(3)	51
Table 4-8. EMS characteristics ⁽¹⁾	58
Table 4-9. EMI characteristics ⁽¹⁾	58
Table 4-10. Power supply supervisor characteristics ⁽¹⁾	58
Table 4-11. ESD characteristics ⁽¹⁾	60
Table 4-12. Static latch-up characteristics ⁽¹⁾	60
Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic	
characteristics	60
Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode)	61
Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteri	
Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode)	
Table 4-17. High speed internal clock (IRC16M) characteristics	
Table 4-18. Low speed internal clock (IRC32K) characteristics	63
Table 4-19. High speed internal clock (IRC48M) characteristics	
Table 4-20. PLL characteristics	64
Table 4-21. Flash memory characteristics	64
Table 4-22. NRST pin characteristics	
Table 4-23. VREF buffer characteristics	
Table 4-24. I/O port DC characteristics ⁽¹⁾⁽³⁾	
Table 4-25. I/O port AC characteristics ⁽¹⁾	
Table 4-26. ADC characteristics	68
Table 4-27. ADC R _{AIN} max for f _{ADC} = 16 MHz ⁽¹⁾	69

Table 4-28. ADC dynamic accuracy at f _{ADC} = 16 MHz ⁽¹⁾	69
Table 4-29. ADC static accuracy at f _{ADC} = 16 MHz ⁽¹⁾	69
Table 4-30. ADC dynamic accuracy at f _{ADC} = 16 MHz ⁽¹⁾	69
Table 4-31. ADC static accuracy at f _{ADC} = 16 MHz ⁽¹⁾	70
Table 4-32. ADC dynamic accuracy at f _{ADC} = 16 MHz ⁽¹⁾	70
Table 4-33. ADC static accuracy at f _{ADC} = 16 MHz ⁽¹⁾	70
Table 4-34. DAC characteristics	70
Table 4-35. Temperature sensor characteristics	71
Table 4-36. CMP characteristics ⁽¹⁾	
Table 4-37. TIMER characteristics (1)	
Table 4-38. SLCD controller characteristics ⁽¹⁾	74
Table 4-39. I2C characteristics ⁽¹⁾⁽²⁾	75
Table 4-40. Standard SPI characteristics ⁽¹⁾	76
Table 4-41. I2S characteristics ⁽¹⁾	78
Table 4-42. USART/LPUART characteristics ⁽¹⁾	80
Table 4-43. USBD startup time	80
Table 4-44. USBD DC electrical characteristics	
Table 4-45. USBD full speed-electrical characteristics ⁽¹⁾	80
Table 4-46. FWDGT min/max timeout period at 32 kHz (IRC32K) ⁽¹⁾	81
Table 4-47. WWDGT min-max timeout value at 32 MHz (f _{PCLK1}) ⁽¹⁾	82
Table 5-1. LQFP64 package dimensions	83
Table 5-2. LQFP48 package dimensions	85
Table 5-3. LQFP32 package dimensions	
Table 5-4. QFN32 package dimensions	89
Table 6-1. Part ordering code for GD32L233xx devices	93
Table 7-1. Revision history	94

1. General description

The GD32L233xx device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M23 core. The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider.

The GD32L233xx device incorporates the ARM® Cortex®-M23 32-bit processor core operating at up to 64 MHz frequency with Flash accesses 0~3 wait states to obtain maximum efficiency. It provides up to 256 KB embedded Flash memory and up to 32 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and two comparators, up to four general 16-bit timers, two basic timers, and a 32-bit low power timer, as well as standard and advanced communication interfaces: up to two SPIs, three I2Cs, two USARTs, two UARTs, an I2S, and an LPUART.

The device operates from a 1.71 to 3.63 V power supply and available in -40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make the GD32L233xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on.

2. Device overview

2.1. Device information

Table 2-1. GD32L233xx devices features and peripheral list

Part Number						GD32L	_233xx				
1	Part Number		KBQ6	K8T6	КВТ6	C8T6	СВТ6	ССТ6	R8T6	RBT6	RCT6
F	FLASH (KB)	64	128	64	128	64	128	256	64	128	256
;	SRAM (KB)	16	24	16	24	16	24	32	16	24	32
	General	3	3	3	3	3	4	4	3	4	4
	timer(16-bit)	(1, 2, 8)	(1, 2, 8)	(1, 2, 8)	(1, 2, 8)	(1, 2, 8)	(1, 2, 8, 11)	(1, 2, 8, 11)	(1, 2, 8)	(1, 2, 8, 11)	(1, 2, 8, 11)
	Low power	1	1	1	1	1	1	1	1	1	1
ွ	timer(32-bit)	ı	-	•	ı	ı	ı	ı	•	ı	ı
Timers	SysTick	1	1	1	1	1	1	1	1	1	1
_	Basic	2	2	2	2	2	2	2	2	2	2
	timer(16-bit)	(5, 6)	(5, 6)	(5, 6)	(5, 6)	(5, 6)	(5, 6)	(5, 6)	(5, 6)	(5, 6)	(5, 6)
	Watchdog	2	2	2	2	2	2	2	2	2	2
	RTC	1	1	1	1	1	1	1	1	1	1
	UART	1	1	1	1	1	2	2	1	2	2
	UAKT	(3)	(3)	(3)	(3)	(3)	(3, 4)	(3, 4)	(3)	(3, 4)	(3, 4)
	USART	2	2	2	2	2	2	2	2	2	2
/ity		(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)
ctiv	LPUART	1	1	1	1	1	1	1	1	1	1
Connectivity	I2C	2	2	2	2	2	2	2	3	3	3
ၓ		(0-1)	(0-1)	(0-1)	(0-1)	(0-1)	(0-1)	(0-1)	(0-2)	(0-2)	(0-2)
	SPI/I2S	2/1	2/1	2/1	2/1	2/1	2/1	2/1	2/1	2/1	2/1
	0. 17.20	(0-1)/(1)	(0-1)/(1)	(0-1)/(1)	(0-1)/(1)	(0-1)/(1)	(0-1)/(1)	(0-1)/(1)	(0-1)/(1)	(0-1)/(1)	(0-1)/(1)
	USBD	1	1	1	1	1	1	1	1	1	1
	GPIO	29	29	27	27	43	43	43	59	59	59
	Units	1	1	1	1	1	1	1	1	1	1
	Channels	10	10	10	10	10	10	10	16	16	16
ADC	(External)	10	10	-10	10	10	10		10	10	10
	Channels	4	4	4	4	4	4	4	4	4	4
	(Internal)										
	DAC	1	1	1	1	1	1	1	1	1	1
	СМР		2	2	2	2	2	2	2	2	2
	SLCD	0	0	0	0	0	0	0	1	1	1
	Package	QFI	N32	LQF	P32		LQFP48			LQFP64	

2.2. Block diagram

Figure 2-1. GD32L233xx block diagram

2.3. Pinouts and pin assignment

Figure 2-2. GD32L233Rx LQFP64 pinouts

Figure 2-3. GD32L233Cx LQFP48 pinouts

Figure 2-4. GD32L233Kx LQFP32 pinouts

Figure 2-5. GD32L233Kx QFN32 pinouts

2.4. Memory map

Table 2-2. GD32L233xx memory map

Pre-defined Bus		ADDRESS	Peripherals		
		0xE000 0000 - 0xE00F FFFF	Cortex®-M23 internal peripherals		
External Device		0xA000 0000 - 0xDFFF FFFF	Reserved		
External RAM		0x60000000 - 0x9FFFFFF	Reserved		
		0x5006 1000 - 0x5FFF FFFF	Reserved		
		0x5006 0C00 - 0x5006 0FFF	Reserved		
		0x5006 0800 - 0x5006 0BFF	TRNG		
		0x5006 0400 - 0x5006 07FF	Reserved		
	AHB1	0x5006 0000 - 0x5006 03FF	CAU		
		0x5005 0400 - 0x5005 FFFF	Reserved		
		0x5005 0000 - 0x5005 03FF	Reserved		
		0x5004 0000 - 0x5004 FFFF	Reserved		
		0x5000 0000 - 0x5003 FFFF	Reserved		
		0x4800 1800 - 0x4FFF FFFF	Reserved		
		0x4800 1400 - 0x4800 17FF	GPIOF		
		0x4800 1000 - 0x4800 13FF	Reserved		
	AHB2	0x4800 0C00 - 0x4800 0FFF	GPIOD		
		0x4800 0800 - 0x4800 0BFF	GPIOC		
		0x4800 0400 - 0x4800 07FF	GPIOB		
		0x4800 0000 - 0x4800 03FF	GPIOA		
Darinharala		0x4002 4400 - 0x47FF FFFF	Reserved		
Peripherals		0x4002 4000 - 0x4002 43FF	Reserved		
		0x4002 3400 - 0x4002 3FFF	Reserved		
		0x4002 3000 - 0x4002 33FF	CRC		
		0x4002 2400 - 0x4002 2FFF	Reserved		
	AHB1	0x4002 2000 - 0x4002 23FF	FMC		
	АПБІ	0x4002 1400 - 0x4002 1FFF	Reserved		
		0x4002 1000 - 0x4002 13FF	RCU		
		0x4002 0C00 - 0x4002 0FFF	Reserved		
		0x4002 0800 - 0x4002 0BFF	DMAMUX		
		0x4002 0400 - 0x4002 07FF	Reserved		
		0x4002 0000 - 0x4002 03FF	DMA		
		0x4001 8000 - 0x4001 FFFF	Reserved		
		0x4001 7C00 - 0x4001 7FFF	CMP		
	ADDO	0x4001 5C00 - 0x4001 7BFF	Reserved		
	APB2	0x4001 5800 - 0x4001 5BFF	DBG		
		0x4001 5000 - 0x4001 57FF	Reserved		
		0x4001 4C00 - 0x4001 4FFF	TIMER8		

GD32L233xx Datasheet

Pre-defined		ODOZEZOOAA Datas					
Regions	Bus	ADDRESS	Peripherals				
		0x4001 3C00 - 0x4001 4BFF	Reserved				
		0x4001 3800 - 0x4001 3BFF	USART0				
		0x4001 3400 - 0x4001 37FF	Reserved				
		0x4001 3000 - 0x4001 33FF	SPI0				
		0x4001 2C00 - 0x4001 2FFF	Reserved				
		0x4001 2800 - 0x4001 2BFF	Reserved				
		0x4001 2400 - 0x4001 27FF	ADC				
		0x4001 0800 - 0x4001 23FF	Reserved				
		0x4001 0400 - 0x4001 07FF	EXTI				
		0x4001 0000 - 0x4001 03FF	SYSCFG + VREF				
		0x4000 CC00 - 0x4000 FFFF	Reserved				
		0x4000 C800 - 0x4000 CBFF	СТС				
		0x4000 C400 - 0x4000 C7FF	Reserved				
		0x4000 C000 - 0x4000 C3FF	I2C2				
		0x4000 9800 - 0x4000 BFFF	Reserved				
		0x4000 9400 - 0x4000 97FF	LPTIMER				
		0x4000 8400 - 0x4000 93FF	Reserved				
		0x4000 8000 - 0x4000 83FF	LPUART				
		0x4000 7C00 - 0x4000 7FFF	Reserved				
		0x4000 7800 - 0x4000 7BFF	Reserved				
		0x4000 7400 - 0x4000 77FF	DAC0				
		0x4000 7000 - 0x4000 73FF	PMU				
		0x4000 6400 - 0x4000 6FFF	Reserved				
	APB1		0x4000 6000 - 0x4000 63FF	USBD RAM (512 bytes)			
		0x4000 5C00 - 0x4000 5FFF	USBD				
		0x4000 5800 - 0x4000 5BFF	I2C1				
		0x4000 5400 - 0x4000 57FF	I2C0				
		0x4000 5000 - 0x4000 53FF	UART4				
		0x4000 4C00 - 0x4000 4FFF	UART3				
		0x4000 4800 - 0x4000 4BFF	Reserved				
		0x4000 4400 - 0x4000 47FF	USART1				
		0x4000 4000 - 0x4000 43FF	Reserved				
		0x4000 3C00 - 0x4000 3FFF	Reserved				
		0x4000 3800 - 0x4000 3BFF	SPI1/I2S1				
		0x4000 3400 - 0x4000 37FF	Reserved				
		0x4000 3000 - 0x4000 33FF	FWDGT				
		0x4000 2C00 - 0x4000 2FFF	WWDGT				
		0x4000 2800 - 0x4000 2BFF	RTC				
		0x4000 2400 - 0x4000 27FF	SLCD				
		0x4000 2000 - 0x4000 23FF	Reserved				

GD32L233xx Datasheet

Pre-defined	_		
Regions	Bus	ADDRESS	Peripherals
		0x4000 1C00 - 0x4000 1FFF	Reserved
		0x4000 1800 - 0x4000 1BFF	TIMER11
		0x4000 1400 - 0x4000 17FF	TIMER6
		0x4000 1000 - 0x4000 13FF	TIMER5
		0x4000 0800 - 0x4000 0FFF	Reserved
		0x4000 0400 - 0x4000 07FF	TIMER2
		0x4000 0000 - 0x4000 03FF	TIMER1
		0x4000 0000 - 0x4000 03FF	Reserved
		0x2000 8000 - 0x3FFF FFFF	Reserved
		0x2000 5000 - 0x2000 7FFF	SDAM1(16KD)
SRAM		0x2000 4000 - 0x2000 4FFF	SRAM1(16KB)
SKAW		0x2000 2000 - 0x2000 3FFF	
		0x2000 1000 - 0x2000 1FFF	SRAM0(16KB)
		0x2000 0000 - 0x2000 0FFF	
		0x1FFF F810 - 0x1FFF FFFF	Reserved
		0x1FFF F800 - 0x1FFF F80F	Option bytes(16B)
		0x1FFF D000- 0x1FFF F7FF	System memory(10KB)
		0x1FFF 7200 - 0x1FFF CFFF	Reserved
		0x1FFF 7000 - 0x1FFF 71FF	OTP(512B)
		0x1000 0000 - 0x1FFF 6FFF	Reserved
Code		0x0804 0000 - 0x0FFF FFFF	Reserved
		0x0802 0000 - 0x0803 FFFF	
		0x0801 0000 - 0x0801 FFFF	Main Flash memory(256KB)
		0x0800 0000 - 0x0800 FFFF	
		0x0001 0000 - 0x07FF FFFF	Reserved
		0x0000 0000 - 0x0000 FFFF	Aliased to Flash or
		020000 0000 3 080000 FIFE	system memory

2.5. Clock tree

Figure 2-6. GD32L233xx clock tree

Note:

The TIMERs are clocked by the clock divided from CK_APB2 and CK_APB1. The frequency of TIMERs clock is equal to CK_APBx (APB prescaler is 1), twice the CK_APBx (APB prescaler is not 1).

Legend:

HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC16M: Internal 16M RC oscillator IRC48M: Internal 48M RC oscillator IRC32K: Internal 32K RC oscillator

2.6. Pin definitions

2.6.1. GD32L233Rx LQFP64 pin definitions

Table 2-3. GD32L233Rx LQFP64 pin definitions

	011100		<u> </u>	deminitions
Pin Name	Pins	Pin Typ	I/O Lev	Functions description
PD6	1	I/O	5VT	Default: PD6 Alternate: USART1_RX, EVENTOUT, SPI0_MOSI, L PTIMER_IN1 Additional: VSLCD
VBAT	2	Р		Default: VBAT
PC13	3	I/O		Default: PC13 Alternate: EVENTOUT Additional: RTC_TAMP0, RTC_OUT, RTC_TS, WK UP1
PC14-OSC32 IN	4	I/O		Default: PC14 Alternate: EVENTOUT Additional: OSC32IN
PC15-OSC32 OUT	5	I/O		Default: PC15 Alternate: EVENTOUT Additional: OSC32OUT
PF0-OSCIN	6	I/O		Default: OSCIN Alternate: EVENTOUT, SPI1_NSS, I2S1_WS Additional: PF0
PF1-OSCOU T	7	I/O		Default: OSCOUT Alternate: EVENTOUT, SPI1_SCK, I2S1_CK Additional: PF1
NRST	8	I/O		Default: NRST
PC0	9	I/O		Default: PC0 Alternate: SEG18, I2C2_SCL, LPUART_RX, LPTIM ER_IN0, EVENTOUT Additional: ADC_IN10
PC1	10	I/O		Default: PC1 Alternate: SEG19, I2C2_SDA, LPUART_TX, LPTIM ER_OUT, EVENTOUT Additional: ADC_IN11
PC2	11	I/O		Default: PC2 Alternate: SPI1_MISO, I2S1_MCK, SEG20, EVENT OUT, LPTIMER_IN1 Additional: ADC_IN12
PC3	12	I/O		Default: PC3 Alternate: SPI1_MOSI, I2S1_SD, SEG21, LPTIMER

				GD32L233XX Datasneet
Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
				_ETI0, EVENTOUT
				Additional: ADC_IN13
VSS	13	Р		Default: VSS
VREF	14	Р		Default: VREF
VDD	15	Р		Default: VDD
PA0	16	I/O		Default: PA0 Alternate: USART1_CTS, TIMER1_CH0_ETI, CMP0 _OUT, EVENTOUT, UART3_TX Additional: WKUP0, ADC_IN0, RTC_TAMP1, CMP0 _IM4
PA1	17	I/O		Default: PA1 Alternate: USART1_RTS/USART1_DE, TIMER1_CH 1, I2C0_SMBA, SPI0_SCK, SEG0, EVENTOUT, UA RT3_RX Additional: ADC_IN1, CMP0_IP
PA2	18	I/O		Default: PA2 Alternate: USART1_TX, TIMER8_CH0, TIMER1_CH 2, SPI0_IO2, CMP1_OUT, LPUART_TX, SEG1, EV ENTOUT Additional: ADC_IN2, CMP1_IM4, RTC_TAMP2, WK UP2
PA3	19	I/O		Default: PA3 Alternate: USART1_RX, TIMER8_CH1, TIMER1_CH 3, SPI0_IO3, LPUART_RX, SEG2, EVENTOUT Additional: ADC_IN3, CMP1_IP0
PD8	20	I/O	5VT	Default: PD8 Alternate: LPTIMER_ETI0, LPUART_TX, EVENTOU T, SEG30
PD9	21	I/O	5VT	Default: PD9 Alternate: LPTIMER_IN0, LPUART_RX, EVENTOU T, SEG31
PA4	22	I/O		Default: PA4 Alternate: SPI0_NSS, USART1_CK, SPI1_NSS, I2S 1_WS, LPTIMER_OUT, EVENTOUT Additional: ADC_IN4, DAC_OUT
PA5	23	I/O		Default: PA5 Alternate: SPI0_SCK, TIMER1_CH0_ETI, LPTIMER_ ETI0, EVENTOUT Additional: ADC_IN5
PA6	24	I/O		Default: PA6 Alternate: SPI0_MISO, TIMER2_CH0, LPTIMER_IN 0, CMP0_OUT, LPUART_CTS, SEG3, EVENTOUT Additional: ADC_IN6

				ODOZEZOOAA Datasneet
Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
PA7	25	I/O		Default: PA7 Alternate: SPI0_MOSI, TIMER2_CH1, LPTIMER_ETI 0, I2C2_SCL, CMP1_OUT, SEG4, EVENTOUT Additional: ADC_IN7
PC4	26	I/O		Default: PC4 Alternate: LPUART_TX, USART0_TX, TIMER1_CH0 _ETI, SEG22, EVENTOUT Additional: ADC_IN14
PC5	27	I/O		Default: PC5 Alternate: LPUART_RX, USART0_RX, TIMER1_CH 1, SEG23, EVENTOUT Additional: ADC_IN15
PB0	28	I/O		Default: PB0 Alternate: TIMER2_CH2, LPTIMER_OUT, SPI0_NS S, CMP0_OUT, SEG5, EVENTOUT Additional: ADC_IN8, VREF_OUT
PB1	29	I/O		Default: PB1 Alternate: TIMER2_CH3, LPUART_RTS, LPTIMER_I N0, SEG6, EVENTOUT Additional: ADC_IN9, VREF_OUT
BOOT1-PB2	30	I/O	5VT	Default: BOOT1 Alternate: LPTIMER_OUT, EVENTOUT, RTC_OUT Additional: PB2, WKUP3
PB10	31	I/O	5VT	Default: PB10 Alternate: SPI1_SCK, I2S1_CK, LPUART_TX, I2C1_ SCL, LPUART_RX, TIMER1_CH2, CMP0_OUT, SE G10, EVENTOUT
PB11	32	I/O	5VT	Default: PB11 Alternate: LPUART_RX, I2C1_SDA, LPUART_TX, T IMER1_CH3, CMP1_OUT, SEG11, EVENTOUT
PB12	33	I/O	5VT	Default: PB12 Alternate: SPI1_NSS, I2S1_WS, I2C1_SMBA, LPUA RT_RTS, SEG12, EVENTOUT
PB13	34	I/O	5VT	Default: PB13 Alternate: CK_OUT, SPI1_SCK, I2S1_CK, LPUART _CTS, I2C1_SCL, SEG13, EVENTOUT
PB14	35	I/O	5VT	Default: PB14 Alternate: SPI1_MISO, LPUART_RTS, I2C1_SDA, T IMER11_CH0 ⁽³⁾ , SEG14, EVENTOUT, RTC_OUT
PB15	36	I/O	5VT	Default: PB15 Alternate: SPI1_MOSI, I2S1_SD, TIMER11_CH1 ⁽³⁾ , SEG15, EVENTOUT Additional: RTC_REFIN

				ODOZEZOOAA Datasricet
Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
PC6	37	I/O	5VT	Default: PC6 Alternate: I2S1_MCK, TIMER2_CH0, SEG24, EVEN TOUT Additional: WKUP4
PC7	38	I/O	5VT	Default: PC7 Alternate: TIMER2_CH1, SEG25, EVENTOUT
PC8	39	I/O	5VT	Default: PC8 Alternate: TIMER2_CH2, I2C2_SDA, SEG26, EVEN TOUT
PC9	40	I/O	5VT	Default: PC9 Alternate: TIMER2_CH3, I2C2_SCL, SEG27, EVEN TOUT
PA8	41	I/O	5VT	Default: PA8 Alternate: USARTO_CK, CK_OUT, LPTIMER_OUT, I 2C2_SMBA, COM0, EVENTOUT, CTC_SYNC Additional: VCORE
PA9	42	I/O	5VT	Default: PA9 Alternate: CK_OUT, USART0_TX, I2C0_SCL, COM 1, EVENTOUT, LPTIMER_IN1
PA10	43	I/O	5VT	Default: PA10 Alternate: USART0_RX, I2C0_SDA, COM2, EVENT OUT
PA11	44	I/O	5VT	Default: PA11 Alternate: CMP0_OUT, USART0_CTS, SPI0_MISO, EVENTOUT Additional: USBDM
PA12	45	I/O	5VT	Default: PA12 Alternate: CMP1_OUT, USART0_RTS/USART0_DE, SPI0_MOSI, EVENTOUT Additional: USBDP
PA13	46	I/O	5VT	Default: SWDIO Alternate: LPUART_RX, I2C0_SCL, USART0_TX, S PI0_IO2, SPI0_NSS, EVENTOUT Additional: PA13
PD0	47	I/O	5VT	Default: PD0 Alternate: SPI1_NSS, I2S1_WS, LPTIMER_OUT, U SART1_CK, EVENTOUT, CTC_SYNC
PD1	48	I/O	5VT	Default: PD1 Alternate: SPI1_SCK, I2S1_CK, SPI1_MISO, USAR T1_CTS, EVENTOUT
PA14	49	I/O	5VT	Default: SWCLK

				GD3ZLZ33XX DataSHEEt
Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
				Alternate: LPUART_TX, USART1_TX, I2C0_SDA, USART0_RX, SPI0_IO3, SPI1_NSS, I2S1_WS, EVEN TOUT Additional: PA14
PA15	50	I/O	5VT	Default: PA15 Alternate: SPI1_NSS, I2S1_WS, TIMER1_CH0_ETI, SPI0_NSS, USART1_RX, SEG17, EVENTOUT
PC10	51	I/O	5VT	Default: PC10 Alternate: UART3_TX, LPUART_TX, SPI1_SCK, I2S 1_CK, SEG28, COM4, EVENTOUT
PC11	52	I/O	5VT	Default: PC11 Alternate: UART3_RX, LPUART_RX, SPI1_MISO, S EG29, COM5, EVENTOUT
PC12	53	I/O	5VT	Default: PC12 Alternate: UART4_TX ⁽³⁾ , SPI1_MOSI, I2S1_SD, SE G30, COM6, EVENTOUT
PD2	54	I/O	5VT	Default: PD2 Alternate: LPUART_RTS, TIMER2_ETI, UART4_RX (3), SEG31, COM7, EVENTOUT
PB3	55	I/O	5VT	Default: PB3 Alternate:UART4_TX ⁽³⁾ , SPI1_SCK, I2S1_CK, TIME R1_CH1, SPI0_SCK, USART0_RTS/USART0_DE, S EG7, EVENTOUT, LPTIMER_IN1 Additional: CMP1_IM6
PB4	56	I/O	5VT	Default: PB4 Alternate: UART4_RX ⁽³⁾ , SPI1_MISO, TIMER2_CH0, SPI0_MISO, USART0_CTS, SEG8, EVENTOUT Additional: CMP1_IP1
PB5	57	I/O		Default: PB5 Alternate: LPTIMER_IN0, I2C0_SMBA, SPI1_MOSI, I2S1_SD, TIMER2_CH1, SPI0_MOSI, USART0_CK, CMP1_OUT, SEG9, EVENTOUT Additional: CMP1_IP2
PB6	58	I/O	5VT	Default: PB6 Alternate: LPTIMER_ETI0, I2C1_SCL, I2C0_SCL, U SART0_TX, SPI0_IO2, EVENTOUT Additional: CMP1_IP3
PB7	59	I/O	5VT	Default: PB7 Alternate: I2C1_SDA, I2C0_SDA, USART0_RX, SPI 0_IO3, EVENTOUT Additional: CMP1_IP4
BOOT0-PD3	60	I/O		Default: BOOT0 Alternate: USART1_CTS, SPI1_MISO, I2S1_MCK

GD32L233xx Datasheet

Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
				Additional: PD3
				Default: PB8
PB8	61	I/O	5VT	Alternate: I2C1_SCL, I2C0_SCL, CMP0_OUT, SEG
				16, EVENTOUT
				Default: PB9
PB9	62	I/O	5VT	Alternate: I2C1_SDA, SPI1_NSS, I2S1_WS, I2C0_S
				DA, CMP1_OUT, COM3, EVENTOUT
				Default: PD4
PD4	63	I/O	5VT	Alternate: SPI1_MOSI, I2S1_SD, USART1_RTS/US
				ART1_DE, EVENTOUT, SEG28
				Default: PD5
PD5	64	I/O	5VT	Alternate: USART1_TX, EVENTOUT, SPI0_MISO, S
				EG29

- (1) Type: I = input, O = output, A = analog, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32L233RB/C devices only.

2.6.2. GD32L233Cx LQFP48 pin definitions

Table 2-4. GD32L233Cx LQFP48 pin definitions

Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
VBAT	1	Р		Default: VBAT
PC13	2	I/O		Default: PC13 Alternate: EVENTOUT Additional: RTC_TAMP0, RTC_OUT, RTC_TS, WK UP1
PC14-OSC32 IN	3	I/O		Default: PC14 Alternate: EVENTOUT Additional: OSC32IN
PC15-OSC32 OUT	4	I/O		Default: PC15 Alternate: EVENTOUT Additional: OSC32OUT
PF0-OSCIN	5	I/O		Default: OSCIN Alternate: EVENTOUT, SPI1_NSS, I2S1_WS Additional: PF0
PF1-OSCOU T	6	I/O		Default: OSCOUT Alternate: EVENTOUT, SPI1_SCK, I2S1_CK Additional: PF1
NRST	7	I/O		Default: NRST
VSS	8	Р		Default: VSS
VREF	9	Р		Default: VREF
VDD	10	Р		Default: VDD
PA0	11	I/O		Default: PA0 Alternate: USART1_CTS, TIMER1_CH0_ETI, CMP0 _OUT, EVENTOUT, UART3_TX Additional: WKUP0, ADC_IN0, RTC_TAMP1, CMP0 _IM4
PA1	12	I/O		Default: PA1 Alternate: USART1_RTS/USART1_DE, TIMER1_CH 1, I2C0_SMBA, SPI0_SCK, EVENTOUT, UART3_R X Additional: ADC_IN1, CMP0_IP
PA2	13	1/0		Default: PA2 Alternate: USART1_TX, TIMER8_CH0, TIMER1_CH 2, SPI0_IO2, CMP1_OUT, LPUART_TX, EVENTOU T Additional: ADC_IN2, CMP1_IM4, RTC_TAMP2, WK UP2
PA3	14	I/O		Default: PA3 Alternate: USART1_RX, TIMER8_CH1, TIMER1_CH

Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
				3, SPI0_IO3, LPUART_RX, EVENTOUT
				Additional: ADC_IN3, CMP1_IP0
PA4	15	I/O		Default: PA4 Alternate: SPI0_NSS, USART1_CK, SPI1_NSS, I2S 1_WS, LPTIMER_OUT, EVENTOUT Additional: ADC_IN4, DAC_OUT
PA5	16	I/O		Default: PA5 Alternate: SPI0_SCK, TIMER1_CH0_ETI, LPTIMER_ ETI0, EVENTOUT Additional: ADC_IN5
PA6	17	I/O		Default: PA6 Alternate: SPI0_MISO, TIMER2_CH0, LPTIMER_IN 0, CMP0_OUT, LPUART_CTS, EVENTOUT Additional: ADC_IN6
PA7	18	I/O		Default: PA7 Alternate: SPI0_MOSI, TIMER2_CH1, LPTIMER_ETI 0, CMP1_OUT, EVENTOUT Additional: ADC_IN7
PB0	19	I/O		Default: PB0 Alternate: TIMER2_CH2, LPTIMER_OUT, SPI0_NS S, CMP0_OUT, EVENTOUT Additional: ADC_IN8, VREF_OUT
PB1	20	I/O		Default: PB1 Alternate: TIMER2_CH3, LPUART_RTS, LPTIMER_I N0, EVENTOUT Additional: ADC_IN9, VREF_OUT
BOOT1-PB2	21	I/O	5VT	Default: BOOT1 Alternate: LPTIMER_OUT, EVENTOUT, RTC_OUT Additional: PB2, WKUP3
PB10	22	I/O	5VT	Default: PB10 Alternate: SPI1_SCK, I2S1_CK, LPUART_TX, I2C1_ SCL, LPUART_RX, TIMER1_CH2, CMP0_OUT, EV ENTOUT
PB11	23	I/O		Default: PB11 Alternate: LPUART_RX, I2C1_SDA, LPUART_TX, T IMER1_CH3, CMP1_OUT, EVENTOUT
PB12	24	I/O	5VT	Default: PB12 Alternate: SPI1_NSS, I2S1_WS, I2C1_SMBA, LPUA RT_RTS, EVENTOUT
PB13	25	I/O	5VT	Default: PB13 Alternate: CK_OUT, SPI1_SCK, I2S1_CK, LPUART _CTS, I2C1_SCL, EVENTOUT
PB14	26	I/O	5VT	Default: PB14

				ODOZEZOOAA Datasricet
Pin Name	Pins	Pin Typ e ⁽¹⁾	I/O Lev el ⁽²⁾	Functions description
				Alternate: SPI1_MISO, LPUART_RTS, I2C1_SDA, T IMER11_CH0 ⁽³⁾ , EVENTOUT, RTC_OUT
PB15	27	I/O	5VT	Default: PB15 Alternate: SPI1_MOSI, I2S1_SD, TIMER11_CH1 ⁽³⁾ , EVENTOUT Additional: RTC_REFIN
PC6	28	I/O	5VT	Default: PC6 Alternate: I2S1_MCK, TIMER2_CH0, EVENTOUT Additional: WKUP4
PC7	29	I/O	5VT	Default: PC7 Alternate: TIMER2_CH1, EVENTOUT
PA8	30	I/O	5VT	Default: PA8 Alternate: USART0_CK, CK_OUT, LPTIMER_OUT, EVENTOUT, CTC_SYNC Additional: VCORE
PA9	31	I/O	5VT	Default: PA9 Alternate: CK_OUT, USART0_TX, I2C0_SCL, EVEN TOUT, LPTIMER_IN1
PA10	32	I/O	5VT	Default: PA10 Alternate: USART0_RX, I2C0_SDA, EVENTOUT
PA11	33	I/O	5VT	Default: PA11 Alternate: CMP0_OUT, USART0_CTS, SPI0_MISO, EVENTOUT Additional: USBDM
PA12	34	I/O	5VT	Default: PA12 Alternate: CMP1_OUT, USART0_RTS/USART0_DE, SPI0_MOSI, EVENTOUT Additional: USBDP
PA13	35	I/O	5VT	Default: SWDIO Alternate: LPUART_RX, I2C0_SCL, USART0_TX, S PI0_IO2, SPI0_NSS, EVENTOUT Additional: PA13
PA14	36	I/O	5VT	Default: SWCLK Alternate: LPUART_TX, USART1_TX, I2C0_SDA, U SART0_RX, SPI0_IO3, SPI1_NSS, I2S1_WS, EVEN TOUT Additional: PA14
PA15	37	I/O	5VT	Default: PA15 Alternate: SPI1_NSS, I2S1_WS, TIMER1_CH0_ETI, SPI0_NSS, USART1_RX, EVENTOUT
PC10	38	I/O	5VT	Default: PC10 Alternate: UART3_TX, LPUART_TX, SPI1_SCK, I2S 1_CK, EVENTOUT

Pin Name	Pins	Pin Typ e ⁽¹⁾	I/O Lev el ⁽²⁾	Functions description
PC11	39	I/O	5VT	Default: PC11 Alternate: UART3_RX, LPUART_RX, SPI1_MISO, E VENTOUT
PC12	40	I/O	5VT	Default: PC12 Alternate: UART4_TX ⁽³⁾ , SPI1_MOSI, I2S1_SD, EVE NTOUT
PB3	41	I/O	5VT	Default: PB3 Alternate:UART4_TX ⁽³⁾ , SPI1_SCK, I2S1_CK, TIME R1_CH1, SPI0_SCK, USART0_RTS/USART0_DE, E VENTOUT, LPTIMER_IN1 Additional: CMP1_IM6
PB4	42	I/O	5VT	Default: PB4 Alternate: UART4_RX ⁽³⁾ , SPI1_MISO, TIMER2_CH0, SPI0_MISO, USART0_CTS, EVENTOUT Additional: CMP1_IP1
PB5	43	I/O		Default: PB5 Alternate: LPTIMER_IN0, I2C0_SMBA, SPI1_MOSI, I2S1_SD, TIMER2_CH1, SPI0_MOSI, USART0_CK, CMP1_OUT, EVENTOUT Additional: CMP1_IP2
PB6	44	I/O	5VT	Default: PB6 Alternate: LPTIMER_ETI0, I2C1_SCL, I2C0_SCL, U SART0_TX, SPI0_IO2, EVENTOUT Additional: CMP1_IP3
PB7	45	I/O	5\/T	Default: PB7 Alternate: I2C1_SDA, I2C0_SDA, USART0_RX, SPI 0_IO3, EVENTOUT Additional: CMP1_IP4
BOOT0-PD3	46	I/O		Default: BOOT0 Alternate: USART1_CTS, SPI1_MISO, I2S1_MCK Additional: PD3
PB8	47	I/O	5VT	Default: PB8 Alternate: I2C1_SCL, I2C0_SCL, CMP0_OUT, EVE NTOUT
PB9	48	I/O	5VT	Default: PB9 Alternate: I2C1_SDA, SPI1_NSS, I2S1_WS, I2C0_S DA, CMP1_OUT, EVENTOUT

- (1) Type: I = input, O = output, A = analog, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32L233CB/C devices only.

2.6.3. GD32L233Kx LQFP32 pin definitions

Table 2-5. GD32L233Kx LQFP32 pin definitions

Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
VDD	1	Р		Default: VDD
PF0-OSCIN	2	I/O		Default: OSCIN Alternate: EVENTOUT, SPI1_NSS, I2S1_WS Additional: PF0
PF1-OSCOU T	3	I/O		Default: OSCOUT Alternate: EVENTOUT, SPI1_SCK, I2S1_CK Additional: PF1
NRST	4	I/O		Default: NRST
VDDA	5	Р		Default: VDDA
PA0	6	I/O		Default: PA0 Alternate: USART1_CTS, TIMER1_CH0_ETI, CMP0 _OUT, EVENTOUT, UART3_TX Additional: WKUP0, ADC_IN0, RTC_TAMP1, CMP0 _IM4
PA1	7	I/O		Default: PA1 Alternate: USART1_RTS/USART1_DE, TIMER1_CH 1, I2C0_SMBA, SPI0_SCK, EVENTOUT, UART3_R X Additional: ADC_IN1, CMP0_IP
PA2	8	I/O		Default: PA2 Alternate: USART1_TX, TIMER8_CH0, TIMER1_CH 2, SPI0_IO2, CMP1_OUT, LPUART_TX, EVENTOU T Additional: ADC_IN2, CMP1_IM4, RTC_TAMP2, WK UP2
PA3	9	I/O		Default: PA3 Alternate: USART1_RX, TIMER8_CH1, TIMER1_CH 3, SPI0_IO3, LPUART_RX, EVENTOUT Additional: ADC_IN3, CMP1_IP0
PA4	10	I/O		Default: PA4 Alternate: SPI0_NSS, USART1_CK, SPI1_NSS, I2S 1_WS, LPTIMER_OUT, EVENTOUT Additional: ADC_IN4, DAC_OUT
PA5	11	I/O		Default: PA5 Alternate: SPI0_SCK, TIMER1_CH0_ETI, LPTIMER_ ETI0, EVENTOUT Additional: ADC_IN5
PA6	12	I/O		Default: PA6 Alternate: SPI0_MISO, TIMER2_CH0, LPTIMER_IN

				GD32L233XX Datasneet
Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
				0, CMP0_OUT, LPUART_CTS, EVENTOUT Additional: ADC_IN6
PA7	13	I/O		Default: PA7 Alternate: SPI0_MOSI, TIMER2_CH1, LPTIMER_ETI 0, CMP1_OUT, EVENTOUT Additional: ADC IN7
РВ0	14	I/O		Default: PB0 Alternate: TIMER2_CH2, LPTIMER_OUT, SPI0_NS S, CMP0_OUT, EVENTOUT Additional: ADC_IN8, VREF_OUT
PB1	15	I/O		Default: PB1 Alternate: TIMER2_CH3, LPUART_RTS, LPTIMER_I N0, EVENTOUT Additional: ADC_IN9, VREF_OUT
BOOT1-PB2	16	I/O	5VT	Default: BOOT1 Alternate: LPTIMER_OUT, EVENTOUT, RTC_OUT Additional: PB2, WKUP3
VDD	17	Р		Default: VDD
PA8	18	I/O	5VT	Default: PA8 Alternate: USART0_CK, CK_OUT, LPTIMER_OUT, EVENTOUT, CTC_SYNC Additional: VCORE
PA9	19	I/O	5VT	Default: PA9 Alternate: CK_OUT, USART0_TX, I2C0_SCL, EVEN TOUT, LPTIMER_IN1
PA10	20	I/O	5VT	Default: PA10 Alternate: USART0_RX, I2C0_SDA, EVENTOUT
PA11	21	I/O	5VT	Default: PA11 Alternate: CMP0_OUT, USART0_CTS, SPI0_MISO, EVENTOUT Additional: USBDM
PA12	22	I/O	5VT	Default: PA12 Alternate: CMP1_OUT, USART0_RTS/USART0_DE, SPI0_MOSI, EVENTOUT Additional: USBDP
PA13	23	I/O	5VT	Default: SWDIO Alternate: LPUART_RX, I2C0_SCL, USART0_TX, S PI0_IO2, SPI0_NSS, EVENTOUT Additional: PA13
PA14	24	I/O	5VT	Default: SWCLK Alternate: LPUART_TX, USART1_TX, I2C0_SDA, U SART0_RX, SPI0_IO3, SPI1_NSS, I2S1_WS, EVEN TOUT

Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
				Additional: PA14
PA15	25	I/O	5VT	Default: PA15 Alternate: SPI1_NSS, I2S1_WS, TIMER1_CH0_ETI, SPI0_NSS, USART1_RX, EVENTOUT
PB3	26	I/O	5VT	Default: PB3 Alternate: SPI1_SCK, I2S1_CK, TIMER1_CH1, SPI0 _SCK, USART0_RTS/USART0_DE, EVENTOUT, LP TIMER_IN1 Additional: CMP1_IM6
PB4	27	I/O	5VT	Default: PB4 Alternate: SPI1_MISO, TIMER2_CH0, SPI0_MISO, USART0_CTS, EVENTOUT Additional: CMP1_IP1
PB5	28	I/O		Default: PB5 Alternate: LPTIMER_IN0, I2C0_SMBA, SPI1_MOSI, I2S1_SD, TIMER2_CH1, SPI0_MOSI, USART0_CK, CMP1_OUT, EVENTOUT Additional: CMP1_IP2
PB6	29	I/O	5VT	Default: PB6 Alternate: LPTIMER_ETI0, I2C1_SCL, I2C0_SCL, U SART0_TX, SPI0_IO2, EVENTOUT Additional: CMP1_IP3
PB7	30	I/O	5VT	Default: PB7 Alternate: I2C1_SDA, I2C0_SDA, USART0_RX, SPI 0_IO3, EVENTOUT Additional: CMP1_IP4
BOOT0-PD3	31	I/O		Default: BOOT0 Alternate: USART1_CTS, SPI1_MISO, I2S1_MCK Additional: PD3
VSS	32	Р		Default: VSS

- (1) Type: I = input, O = output, A = analog, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.

2.6.4. GD32L233Kx QFN32 pin definitions

Table 2-6. GD32L233Kx QFN32 pin definitions

Table 2-0. Gi		Pin Typ		
Pin Name	Pins	e ⁽¹⁾	el ⁽²⁾	Functions description
PC14-OSC32 IN	1	I/O		Default: PC14 Alternate: EVENTOUT Additional: OSC32IN
PC15-OSC32 OUT	2	I/O		Default: PC15 Alternate: EVENTOUT Additional: OSC32OUT
PF0-OSCIN	3	I/O		Default: OSCIN Alternate: EVENTOUT, SPI1_NSS, I2S1_WS Additional: PF0
PF1-OSCOU T	4	I/O		Default: OSCOUT Alternate: EVENTOUT, SPI1_SCK, I2S1_CK Additional: PF1
NRST	5	I/O		Default: NRST
VDD	6	Р		Default: VDD
PA0	7	I/O		Default: PA0 Alternate: USART1_CTS, TIMER1_CH0_ETI, CMP0 _OUT, EVENTOUT, UART3_TX Additional: WKUP0, ADC_IN0, RTC_TAMP1, CMP0 IM4
PA1	8	I/O		Default: PA1 Alternate: USART1_RTS/USART1_DE, TIMER1_CH 1, I2C0_SMBA, SPI0_SCK, EVENTOUT, UART3_R X Additional: ADC_IN1, CMP0_IP
PA2	9	I/O		Default: PA2 Alternate: USART1_TX, TIMER8_CH0, TIMER1_CH 2, SPI0_IO2, CMP1_OUT, LPUART_TX, EVENTOU T Additional: ADC_IN2, CMP1_IM4, RTC_TAMP2, WK UP2
PA3	10	I/O		Default: PA3 Alternate: USART1_RX, TIMER8_CH1, TIMER1_CH 3, SPI0_IO3, LPUART_RX, EVENTOUT Additional: ADC_IN3, CMP1_IP0
PA4	11	I/O		Default: PA4 Alternate: SPI0_NSS, USART1_CK, SPI1_NSS, I2S 1_WS, LPTIMER_OUT, EVENTOUT Additional: ADC_IN4, DAC_OUT
PA5	12	I/O		Default: PA5

				ODOZEZOOAA Datasneet
Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
				Alternate: SPI0_SCK, TIMER1_CH0_ETI, LPTIMER_ ETI0, EVENTOUT Additional: ADC_IN5
PA6	13	I/O		Default: PA6 Alternate: SPI0_MISO, TIMER2_CH0, LPTIMER_IN 0, CMP0_OUT, LPUART_CTS, EVENTOUT Additional: ADC_IN6
PA7	14	I/O		Default: PA7 Alternate: SPI0_MOSI, TIMER2_CH1, LPTIMER_ETI 0, CMP1_OUT, EVENTOUT Additional: ADC_IN7
PB0	15	I/O		Default: PB0 Alternate: TIMER2_CH2, LPTIMER_OUT, SPI0_NS S, CMP0_OUT, EVENTOUT Additional: ADC_IN8, VREF_OUT
PB1	16	I/O		Default: PB1 Alternate: TIMER2_CH3, LPUART_RTS, LPTIMER_I N0, EVENTOUT Additional: ADC_IN9, VREF_OUT
BOOT1-PB2	17	I/O	5VT	Default: BOOT1 Alternate: LPTIMER_OUT, EVENTOUT, RTC_OUT Additional: PB2, WKUP3
PA8	18	I/O	5VT	Default: PA8 Alternate: USARTO_CK, CK_OUT, LPTIMER_OUT, EVENTOUT, CTC_SYNC Additional: VCORE
PA9	19	I/O	5VT	Default: PA9 Alternate: CK_OUT, USART0_TX, I2C0_SCL, EVEN TOUT, LPTIMER_IN1
PA10	20	I/O	5VT	Default: PA10 Alternate: USART0_RX, I2C0_SDA, EVENTOUT
PA11	21	I/O	5VT	Default: PA11 Alternate: CMP0_OUT, USART0_CTS, SPI0_MISO, EVENTOUT Additional: USBDM
PA12	22	I/O	5VT	Default: PA12 Alternate: CMP1_OUT, USART0_RTS/USART0_DE, SPI0_MOSI, EVENTOUT Additional: USBDP
PA13	23	I/O	5VT	Default: SWDIO Alternate: LPUART_RX, I2C0_SCL, USART0_TX, S PI0_IO2, SPI0_NSS, EVENTOUT Additional: PA13

Pin Name	Pins	Pin Typ	I/O Lev el ⁽²⁾	Functions description
PA14	24	I/O	5VT	Default: SWCLK Alternate: LPUART_TX, USART1_TX, I2C0_SDA, U SART0_RX, SPI0_IO3, SPI1_NSS, I2S1_WS, EVEN TOUT Additional: PA14
PA15	25	I/O	5VT	Default: PA15 Alternate: SPI1_NSS, I2S1_WS, TIMER1_CH0_ETI, SPI0_NSS, USART1_RX, EVENTOUT
PB3	26	I/O	5VT	Default: PB3 Alternate: SPI1_SCK, I2S1_CK, TIMER1_CH1, SPI0 _SCK, USART0_RTS/USART0_DE, EVENTOUT, LP TIMER_IN1 Additional: CMP1_IM6
PB4	27	I/O	5VT	Default: PB4 Alternate: SPI1_MISO, TIMER2_CH0, SPI0_MISO, USART0_CTS, EVENTOUT Additional: CMP1_IP1
PB5	28	I/O		Default: PB5 Alternate: LPTIMER_IN0, I2C0_SMBA, SPI1_MOSI, I2S1_SD, TIMER2_CH1, SPI0_MOSI, USART0_CK, CMP1_OUT, EVENTOUT Additional: CMP1_IP2
PB6	29	I/O	5VT	Default: PB6 Alternate: LPTIMER_ETI0, I2C1_SCL, I2C0_SCL, U SART0_TX, SPI0_IO2, EVENTOUT Additional: CMP1_IP3
PB7	30	I/O	5VT	Default: PB7 Alternate: I2C1_SDA, I2C0_SDA, USART0_RX, SPI 0_IO3, EVENTOUT Additional: CMP1_IP4
BOOT0-PD3	31	I/O		Default: BOOT0 Alternate: USART1_CTS, SPI1_MISO, I2S1_MCK Additional: PD3
VBAT	32	Р		Default: VBAT

- (1) Type: I = input, O = output, A = analog, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.

2.6.5. GD32L233xx pin alternate functions

Table 2-7. Port A alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PA0		TIMER1_					CMP0_O	USART1	UART3_	EVENTO
1 70		CH0_ETI					UT	_CTS	TX	UT
PA1		TIMER1_ CH1		SEG0 ⁽²⁾	I2C0_SM BA	SPI0_SC K		USART1 _RTS/US ART1_D E	UART3_ RX	EVENTO UT
PA2		TIMER1_ CH2	TIMER8_ CH0	SEG1 ⁽²⁾		SPI0_IO2	CMP1_O UT	USART1 1_TX	LPUART _TX	EVENTO UT
PA3		TIMER1_ CH3	TIMER8_ CH1	SEG2 ⁽²⁾		SPI0_IO3		USART1 _RX	LPUART _RX	EVENTO UT
PA4			LPTIMER _OUT			SPI0_NS S	SPI1_NS S/I2S1_ WS	USART1 _CK		EVENTO UT
PA5		TIMER1_ CH0_ETI	LPTIMER _ETI0			SPI0_SC K				EVENTO UT
PA6		TIMER2_ CH0	LPTIMER _IN0	SEG3 ⁽²⁾		SPI0_MI SO	CMP0_O UT		LPUART _CTS	EVENTO UT
PA7		TIMER2_ CH1	LPTIMER _ETI0	SEG4 ⁽²⁾	I2C2_SC L ⁽²⁾	SPI0_MO SI	CMP1_O UT			EVENTO UT
PA8	CK_OUT		LPTIMER _OUT	COM0 ⁽²⁾	I2C2_SM BA ⁽²⁾			USART0 _CK	CTC_SY NC	EVENTO UT
PA9	CK_OUT		LPTIMER _IN1	COM1 ⁽²⁾	I2C0_SC L			USART0 _TX		EVENTO UT
PA10				COM2 ⁽²⁾	I2C0_SD A			USART0 _RX		EVENTO UT
PA11						SPI0_MI SO	CMP0_O UT	USART0 _CTS		EVENTO UT
PA12						SPI0_MO SI	CMP1_O UT	USART0 _RTS/US ART0_D E		EVENTO UT
PA13	SWDIO		LPUART _RX		I2C0_SC L	SPI0_IO2	SPI0_NS S	USART0 _TX		EVENTO UT
PA14	SWCLK		LPUART _TX		I2C0_SD A	SPI0_IO3	SPI1_NS S/I2S1_ WS	USART0 _RX	USART1 _TX	EVENTO UT
PA15		TIMER1_ CH0_ETI		SEG17 ⁽²⁾		SPI0_NS S	SPI1_NS S/I2S1_ WS	USART1 _RX		EVENTO UT

Table 2-8. Port B alternate functions summary

			aitoiiie			,				
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PB0		TIMER2_ CH2	LPTIMER _OUT	SEG5 ⁽²⁾		SPI0_NS S	CMP0_O UT			EVENTO UT
PB1		TIMER2_ CH3	LPTIMER _IN0	SEG6 ⁽²⁾					LPUART _RTS	EVENTO UT
PB2	RTC_OU T		LPTIMER _OUT							EVENTO UT
PB3		TIMER1_ CH1	LPTIMER _IN1	SEG7 ⁽²⁾		SPI0_SC K	SPI1_SC K/I2S1_C K	USART0 _RTS/US ART0_D E	UART4_ TX ⁽¹⁾	EVENTO UT
PB4		TIMER2_ CH0		SEG8 ⁽²⁾		SPI0_MI SO	SPI1_MI SO	USART0 _CTS	UART4_ RX ⁽¹⁾	EVENTO UT
PB5		TIMER2_ CH1	LPTIMER _IN0	SEG9 ⁽²⁾	I2C0_SM BA	SPI0_MO SI	SPI1_MO SI/I2S1_ SD	USART0 _CK	CMP1_O UT	EVENTO UT
PB6			LPTIMER _ETI0		I2C0_SC L	SPI0_IO2		USART0 _TX	I2C1_SC L	EVENTO UT

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PB7					I2C0_SD A	SPI0_IO3		USART0 _RX	I2C1_SD A	EVENTO UT
PB8				SEG16 ⁽²⁾	I2C0_SC L		CMP0_O UT		I2C1_SC L	EVENTO UT
PB9				COM3 ⁽²⁾	I2C0_SD A	SPI1_NS S/I2S1_ WS	CMP1_O UT		I2C1_SD A	EVENTO UT
PB10		TIMER1_ CH2		SEG10 ⁽²⁾	I2C1_SC L	SPI1_SC K/I2S1_C K	CMP0_O UT	LPUART _TX	LPUART _RX	EVENTO UT
PB11		TIMER1_ CH3		SEG11 ⁽²⁾	I2C1_SD A		CMP1_O UT	LPUART _RX	LPUART _TX	EVENTO UT
PB12				SEG12 ⁽²⁾	I2C1_SM BA		SPI1_NS S/I2S1_ WS		LPUART _RTS	EVENTO UT
PB13	CK_OUT			SEG13 ⁽²⁾	I2C1_SC L		SPI1_SC K/I2S1_C K		LPUART _CTS	EVENTO UT
PB14	RTC_OU T		TIMER11 _CH0 ⁽¹⁾	SEG14 ⁽²⁾	I2C1_SD A		SPI1_MI SO		LPUART _RTS	EVENTO UT
PB15			TIMER11 _CH1 ⁽¹⁾	SEG15 ⁽²⁾			SPI1_MO SI/I2S1_ SD			EVENTO UT

Table 2-9. Port C alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PC0			LPTIMER IN0	SEG18 ⁽²⁾	I2C2_SC L ⁽²⁾				LPUART RX	EVENTO UT
PC1			LPTIMER OUT	SEG19 ⁽²⁾	I2C2_SD A ⁽²⁾				LPUART TX	EVENTO UT
PC2			LPTIMER _IN1	SEG20 ⁽²⁾		SPI1_MI SO	I2S1_MC K		_	EVENTO UT
PC3			LPTIMER _ETI0	SEG21 ⁽²⁾		SPI1_MO SI/I2S1_ SD				EVENTO UT
PC4		TIMER1_ CH0_ETI		SEG22 ⁽²⁾				USART0 _TX	LPUART _TX	EVENTO UT
PC5		TIMER1_ CH1		SEG23 ⁽²⁾				USART0 _RX	LPUART _RX	EVENTO UT
PC6		TIMER2_ CH0		SEG24 ⁽²⁾		I2S1_MC K				EVENTO UT
PC7		TIMER2_ CH1		SEG25 ⁽²⁾						EVENTO UT
PC8		TIMER2_ CH2		SEG26 ⁽²⁾	I2C2_SD A ⁽²⁾					EVENTO UT
PC9		TIMER2_ CH3		SEG27 ⁽²⁾	I2C2_SC L ⁽²⁾					EVENTO UT
PC10				SEG28 ⁽²⁾ /COM4 ⁽²⁾		SPI1_SC K/I2S1_C K		UART3_T X	LPUART _TX	EVENTO UT
PC11				SEG29 ⁽²⁾ /COM5 ⁽²⁾		SPI1_MI SO		UART3_ RX	LPUART _RX	EVENTO UT
PC12				SEG30 ⁽²⁾ /COM6 ⁽²⁾		SPI1_MO SI/I2S1_ SD		UART4_T X ⁽¹⁾		EVENTO UT
PC13										EVENTO UT
PC14										EVENTO UT
PC15										EVENTO UT

Table 2-10. Port D alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PD0			LPTIMER _OUT				SPI1_NS S/I2S1_ WS	USART1 _CK	CTC_SY NC	EVENTO UT
PD1						SPI1_MI SO	SPI1_SC K/I2S1_C K	USART1 _CTS		EVENTO UT
PD2		TIMER2_ ETI		SEG31 ⁽²⁾ /COM7 ⁽²⁾				UART4_ RX ⁽¹⁾	LPUART _RTS	EVENTO UT
PD3						SPI1_MI SO	I2S1_MC K	USART1 _CTS		
PD4				SEG28 ⁽²⁾		SPI1_MO SI/I2S1_ SD		USART1 _RTS/US ART1_D E		EVENTO UT
PD5				SEG29 ⁽²⁾		SPI0_MI SO		USART1 _TX		EVENTO UT
PD6			LPTIMER _IN1			SPI0_MO SI		USART1 _RX		EVENTO UT
PD8			LPTIMER _ETI0	SEG30 ⁽²⁾					LPUART _TX	EVENTO UT
PD9			LPTIMER _IN0	SEG31 ⁽²⁾					LPUART _RX	EVENTO UT

Table 2-11. Port F alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PF0						SPI1_NS S/I2S1_ WS				EVENTO UT
PF1						SPI1_SC K/I2S1_C K				EVENTO UT

- (1) Functions are available on GD32L233RC/RB/CC/CB devices only.
- (2) Functions are available on GD32L233Rx devices only.

3. Functional description

3.1. Arm[®] Cortex[®]-M23 core

The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.

32-bit ARM® Cortex®-M23 processor core

- Up to 64 MHz operation frequency.
- Single-cycle multiplication and hardware divider.
- Ultra-low power, energy-efficient operation.
- Excellent code density.
- Integrated Nested Vectored Interrupt Controller (NVIC).
- 24-bit SysTick timer.

The Cortex®-M23 processor is based on the ARMv8-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M23:

- Internal Bus Matrix connected with AHB master, Serial Wire Debug Port and Singlecycle IO port.
- Nested Vectored Interrupt Controller (NVIC).
- Breakpoint Unit(BPU).
- Data Watchpoint and Trace (DWT).
- Serial Wire Debug Port.

3.2. Embedded memory

- Up to 256 Kbytes of Flash memory.
- Up to 32 Kbytes of SRAM with hardware parity checking.

256 Kbytes of inner Flash memory, and 32 Kbytes of inner SRAM at most is available for storing programs and data, and Flash is accessed (read) at CPU clock speed with 0~3 wait states. <u>Table 2-2. GD32L233xx memory map</u> shows the memory map of the GD32L233xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

3.3. Clock, reset and supply management

- Internal 16 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator.
- Internal 48 MHz factory-trimmed RC.
- Internal 32 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator.
- Integrated system clock PLL.
- 1.71 to 3.63 V application supply and I/Os.
- Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD).

The Clock Control Unit (CCTL) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 64 MHz/64 MHz/32 MHz. See *Figure 2-6. GD32L233xx clock tree* for details on the clock tree.

The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.60 V and down to 1.56V. The device remains in reset mode when V_{DD} is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

Power supply schemes:

- V_{DD} range: 1.71 to 3.63 V, external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- Vss is 0 V.
- V_{DDA} range: 1.71 to 3.63 V, external analog power supplies for ADC, reset blocks, RCs and PLL.
- V_{BAK} range: 1.71 to 3.63 V, power supply for RTC unit, LXTAL oscillator, BPOR, and two pads, including PC13 to PC15 when V_{DD} is not present.

3.4. Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main Flash memory (default).
- Boot from system memory.
- Boot from on-chip SRAM.

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash

memory by using USART0 (PA9 and PA10) or USART1 (PA2 and PA3) or USBD (PA11 and PA12).

3.5. Power saving modes

The MCU supports ten kinds of power saving modes to achieve even lower power consumption. They are Run, Run1, Run2, Sleep, Sleep1, Sleep2, Deep-sleep, Deep-sleep 1, Deep-sleep 2 and Standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.

■ Run mode

After system reset/ power reset or wakeup from standby mode, the MCU enters Run mode. And the NPLDO (normal power LDO) works in 1.1V mode.

■ Run1 mode

When in Run mode, the NPLDO should be selected as 0.9V by configuring the LDOVS bits in PMU_CTL0. In this mode, the system clock frequency should not exceed 16MHz.

■ Run2 mode

When in Run mode or Run1 mode, the NPLDO can be selected as 0.9V by configuring the LDOVS bits in PMU_CTL0. The LDNP in PMU_CTL0 register should be configured to select the low-dirver mode. In this mode, the system clock frequency should not exceed 2MHz.

Sleep mode

The Sleep mode is corresponding to the SLEEPING mode of the Cortex®-M23. In Sleep mode, only clock of Cortex®-M23 is off. To enter the Sleep mode, it is only necessary to clear the SLEEPDEEP bit in the Cortex®-M23 System Control Register, and execute a WFI or WFE instruction. If the Sleep mode is entered by executing a WFI instruction, any interrupt can wake up the system. If it is entered by executing a WFE instruction, any wakeup event can wake up the system (If SEVONPEND is 1, any interrupt can wake up the system, refer to Cortex®-M33 Technical Reference Manual). The mode offers the lowest wakeup time as no time is wasted in interrupt entry or exit.

■ Sleep1 mode

The Sleep1 mode is corresponding to the SLEEPING mode of the Cortex®-M23 When in Run1 mode. The NPLDO should be selected as 0.9V by configuring the LDOVS bits in PMU_CTL0.

■ Sleep2 mode

The Sleep2 mode is corresponding to the SLEEPING mode of the Cortex®-M23 When in Run2 mode. The NPLDO should be selected as 0.9V by configuring the LDOVS bits in PMU_CTL0. The LDNP in PMU_CTL0 should be configured to select the low-dirver mode.

■ Deep-sleep mode

The Deep-sleep mode is based on the SLEEPDEEP mode of the Cortex®-M23. In

Deep-sleep mode, all clocks in the 1.1V domain are off, and all of IRC16M, IRC48M, HXTAL and PLLs are disabled. The contents of SRAM and registers are preserved. The NPLDO can operate normally or in low driver mode depending on the LDNPDSP bit in the PMU_CTL0 register. Before entering the Deep-sleep mode, it is necessary to set the SLEEPDEEP bit in the Cortex®-M23 System Control Register, and set LPMOD bits to "00" in the PMU_CTL0 register. Then, the device enters the Deep-sleep mode after a WFI or WFE instruction is executed. If the Deep-sleep mode is entered by executing a WFI instruction, any interrupt from EXTI lines can wake up the system. If it is entered by executing a WFE instruction, any wakeup event from EXTI lines can wake up the system (If SEVONPEND is 1, any interrupt from EXTI lines can wake up the system, refer to Cortex®-M23 Technical Reference Manual). When exiting the Deep-sleep mode, the IRC16M is selected as the system clock. Notice that an additional wakeup delay will be incurred if the LDO operates in low driver mode.

■ Deep-sleep 1 mode

The Deep-sleep 1 mode is based on the SLEEPDEEP mode of the Cortex®-M23. In Deep-sleep 1 mode, all clocks in the 1.1V domain are off, and all of IRC16M, IRC48M, HXTAL and PLLs are disabled. The LPLDO (low power LDO) can operate normally instead of NPLDO. Before entering the Deep-sleep 1 mode, it is necessary to set the SLEEPDEEP bit in the Cortex®-M23 System Control Register, set LPMOD bits to "01" in the PMU_CTL0 register. Then, the device enters the Deep-sleep 1 mode after a WFI or WFE instruction is executed. If the Deep-sleep 1 mode is entered by executing a WFI instruction, any interrupt from EXTI lines can wake up the system. If it is entered by executing a WFE instruction, any wakeup event from EXTI lines can wake up the system (If SEVONPEND is 1, any interrupt from EXTI lines can wake up the system, refer to Cortex®-M23 Technical Reference Manual). When exiting the Deep-sleep 1 mode, the IRC16M is selected as the system clock. Waking up from Deep-sleep 1 mode needs an additional delay to wakeup NPLDO.

■ Deep-sleep 2 mode

The Deep-sleep 2 mode is based on the SLEEPDEEP mode of the Cortex®-M23. In Deep-sleep 2 mode, all clocks in the 1.1V domain are off, and all of IRC16M, IRC48M, **HXTAL** and **PLLs** are disabled. The power of COREOFF0/SRAM1/COREOFF1 domain is cut off. The contents of COREOFF0/SRAM1/COREOFF1 domain are lost. The LPLDO can operate normally instead of NPLDO. Before entering the Deep-sleep 2 mode, it is necessary to set the SLEEPDEEP bit in the Cortex®-M23 System Control Register, set LPMOD bits to "10" in the PMU CTL0 register. Then, the device enters the Deep-sleep 2 mode after a WFI or WFE instruction is executed. If the Deep-sleep 2 mode is entered by executing a WFI instruction, any interrupt from EXTI lines can wake up the system. If it is entered by executing a WFE instruction, any wakeup event from EXTI lines can wake up the system (If SEVONPEND is 1, any interrupt from EXTI lines can wake up the system, refer to Cortex®-M23 Technical Reference Manual). When exiting the Deep-sleep 2 mode, the IRC16M is selected as the system clock. Waking up from Deep-sleep 2 mode needs an additional delay to wakeup NPLDO.

Standby mode

The Standby mode is based on the SLEEPDEEP mode of the Cortex®-M23, too. In Standby mode, the whole 1.1V domain is power off, the NPLDO/LPLDO is shut down, and all of IRC16M, IRC48M, HXTAL and PLLs are disabled. Before entering the Standby mode, it is necessary to set the SLEEPDEEP bit in the Cortex®-M23 System Control Register, and set the LPMOD bits to "11" in the PMU_CTL0 register, and clear WUF bit in the PMU_CS register. Then, the device enters the Standby mode after a WFI or WFE instruction is executed, and the STBF status flag in the PMU_CS register indicates that the MCU has been in Standby mode. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm/time stamp/tamper/auto wakeup events, the FWDGT reset, and the rising edge on WKUP pins. The Standby mode achieves the lowest power consumption, but spends longest time to wake up. Besides, the contents of SRAM and registers in 1.1V power domain are lost in Standby mode. When exiting from the Standby mode, a power-on reset occurs and the Cortex®-M23 will execute instruction code from the 0x00000000 address.

3.6. Clock trim controller (CTC)

- Three external reference signal source: GPIO, LXTAL clock, USBD_SOF.
- Provide software reference sync pulse.
- Automatically trimmed by hardware without any software action.
- 16 bits trim counter with reference signal source capture and reload.
- 8 bits clock trim base value to frequency evaluation and automatically trim.

The Clock Trim Controller (CTC) is used to trim internal 48MHz RC oscillator (IRC48M) automatically by hardware. If using IRC48M clock to USBD, the IRC48M must be 48 MHz with 500ppm. The internal oscillator without such a high degree of accuracy needs to be trimmed. The CTC unit trim the frequency of the IRC48M based on an external accurate reference signal source. It can automatically adjust the trim value to provide a precise IRC48M clock.

3.7. General-purpose inputs/outputs (GPIOs)

- Up to 59 fast GPIOs, all mappable on 16 external interrupt lines.
- Analog input/output configurable.
- Alternate function input/output configurable.

There are up to 59 general purpose I/O pins (GPIO) in GD32L233xx, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0~PD6, PD8~PD9, PF0~ PF1 to implement logic input/output functions. Each GPIO port has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/Event

Controller Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins.

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), input, peripheral alternate function or analog mode. Most of the GPIO pins are shared with digital or analog alternate functions.

3.8. CRC calculation unit (CRC)

- Supports 7/8/16/32 bit data input.
- For 7(8)/16/32 bit input data length, the calculation cycles are 1/2/4 AHB clock cycles.
- Free 8-bit register is unrelated to calculation and can be used for any other goals by any other peripheral devices.
- User configurable polynomial value and size.

A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to raw data. This CRC calculation unit can be used to calculate 7/8/16/32 bit CRC code within user configurable polynomial.

3.9. True Random number generator (TRNG)

- About 40 periods of TRNG_CLK are needed between two consecutive random numbers.
- Disable TRNG module will reduce the chip power consumption.
- 32-bit random value seed is generated from analog noise, so the random number is a true random number.

The true random number generator (TRNG) module can generate a 32-bit random value by using continuous analog noise.

3.10. Direct memory access controller (DMA)

- 7 channels for DMA controller.
- DMA request from DMAMAX: peripherals (Timers, ADC, DAC, SPIs, I2S, I2Cs, USARTs, CAU and LPUART) and request generator.

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby increasing system performance by off-loading the MCU from copying large amounts of data and avoiding frequent interrupts to serve peripherals needing more data or having available data. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.

Each channel is connected to flexible hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

3.11. DMA request multiplexer (DMAMUX)

- 7 channels for DMAMUX request multiplexer.
- 4 channels for DMAMUX request generator.
- Support 21 trigger inputs and 21 synchronization inputs.

DMAMUX is a transmission scheduler for DMA requests. The DMAMUX request multiplexer is used for routing a DMA request line between the peripherals / generated DMA request (from the DMAMUX request generator) and the DMA controller. Each DMAMUX request multiplexer channel selects a unique DMA request line, unconditionally or synchronously with events from its DMAMUX synchronization inputs. The DMA request is pending until it is served by the DMA controller which generates a DMA acknowledge signal (the DMA request signal is de-asserted).

3.12. Analog to digital converter (ADC)

- 12-bit SAR ADC's conversion rate is up to 1.07 MSPS.
- Hardware oversampling ratio adjustable from 2x to 256x improves resolution to 16-bit.
- Input voltage range: V_{SS}/V_{SSA} to V_{DD}/V_{DDA}.
- Temperature sensor.

A 12-bit multi-channel ADC is integrated in the device. It has a total of 20 multiplexed channels: up to 16 external channels, 1 channel for internal temperature sensor (V_{SENSE}), 1 channel for internal reference voltage (V_{REFINT}), 1 channel for external battery power supply (V_{BAT}), and 1 channel for LCD voltage (V_{SLCD}). The input voltage range is between V_{SS}/V_{SSA} and V_{DD}/V_{DDA} . An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. The analog watchdog allows the application to detect whether the input voltage goes outside the user-defined higher or lower thresholds. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.

The ADC can be triggered from the events generated by the general level 0 timers (TIMERx, x=1, 2) and the general level 1 timers (TIMERx, x=8, 11) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

To ensure a high accuracy on ADC, the independent power supply V_{DDA} is implemented

to achieve better performance of analog circuits. V_{DDA} can be externally connected to V_{DD} through the external filtering circuit that avoids noise on V_{DDA} .

3.13. Digital to analog converter (DAC)

- One12-bit DAC with one output channel.
- 8-bit or 12-bit mode in conjunction with the DMA controller.
- Support references from internal 2.5 V precision reference or external V_{REF} pin.

The 12-bit buffered DAC is used to generate variable analog outputs. The DAC channels can be triggered by the timer or EXTI with DMA support. The maximum output value of the DAC is VREF.

3.14. Real time clock (RTC)

- Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.
- Calendar with sub-second, second, minute, hour, week day, day, month and year automatically correction.
- Alarm function with wake up from deep-sleep and standby mode capability.
- On-the-fly correction for synchronization with master clock. Digital calibration with
 0.95 ppm resolution for compensation of quartz crystal inaccuracy.

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler.

3.15. Timers and PWM generation

- Up to four 16-bit general timers (TIMER1, TIMER2, TIMER8, TIMER11), two 16-bit basic timer (TIMER5, TIMER6), and one 32-bit low power timer (LPTIMER).
- Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input.
- Encoder interface controller with two inputs using quadrature decoder.
- Two 24-bit SysTick timers down counter.
- 2 watchdog timers (free watchdog timer and window watchdog timer).

The LPTIMER is a 32-bit timer and it is able to keep running in all power modes except for Standby mode with its diversity of clock sources. The LPTIMER provides one PWM out and also supports an encoder interface with two inputs using quadrature decoder.

The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 and TIMER2 are based on a 16-bit auto-reload up/down/center-aligned counter and a 16-bit prescaler. TIMER8 and TIMER11 is based on a 16-bit auto-reload up counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.

The basic timer TIMER5 and TIMER6, are mainly used as a simple 16-bit time base.

The GD32L233xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.

The free watchdog timer includes a 12-bit down-counting counter and an 8-stage prescaler. It is clocked from an independent 32 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:

- A 24-bit down counter.
- Auto reload capability.
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source.

3.16. Universal synchronous/asynchronous receiver transmitter (USART/UART)

- Up to two USARTs and two UARTs with operating frequency up to 8 MBits/s.
- Supports both asynchronous and clocked synchronous serial communication modes.
- IrDA SIR encoder and decoder support.
- LIN break generation and detection.
- ISO 7816-3 compliant smart card interface.
- Dual clock domain.
- Wake up from Deep-sleep mode.

The USART (USART0, USART1) and UART (UART3, UART4) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using

synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART/UART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART/UART transmitter and receiver. The USART/UART also supports DMA function for high speed data communication.

3.17. Universal asynchronous receiver transmitter (LPUART)

- Maximum speed up to 21 MBits/s.
- Supports asynchronous serial communication modes.
- Supports hardware modem operations (CTS/RTS) and RS485 drive.
- Dual clock domain.
- Wake up from Deep-sleep mode.

The Low-power universal Asynchronous Receiver/Transmitter (LPUART) provides a flexible serial data exchange interface with a limited power consumption. LPUART can perform asynchronous serial communication even with low power consumption. Data frames can be transferred in full duplex or half duplex mode, asynchronously through this interface. A programmable baud rate generator divides the clock to produces a dedicated wide range baudrate clock for the LPUART transmitter and receiver.

3.18. Inter-integrated circuit (I2C)

- Support both master and slave mode with a frequency up to 1 MHz (Fast mode plus).
- Provide arbitration function, optional PEC (packet error checking) generation and checking.
- Supports 7-bit and 10-bit addressing mode and general call addressing mode.
- Multiple 7-bit slave addresses (2 address, 1 with configurable mask).
- SMBus 3.0 and PMBus 1.3 compatible.
- Wakeup from Deep-sleep / Deep-sleep1 / Deep-sleep2 mode on I2C address match (only in I2C2).
- Wakeup from Deep-sleep1 / Deep-sleep2 mode on I2C address match (in I2C0 and I2C1).

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

3.19. Serial peripheral interface (SPI)

- Up to two SPI interfaces with a frequency of up to 16 MHz.
- Support both master and slave mode.
- Hardware CRC calculation and transmit automatic CRC error checking.
- Separate transmit and receive 32-bit FIFO with DMA capability (only in SPI0).
- Data frame size can be 4 to 16 bits (only in SPI0).
- Quad-SPI configuration available in master mode (only in SPI0).

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). All SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Quad-SPI master mode is also supported in SPI0.

3.20. Inter-IC sound (I2S)

- Sampling frequency from 8 KHz to 192 KHz.
- Support either master or slave mode.

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 4-wire serial lines. GD32L233xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1. The audio sampling frequency from 8 KHz to 192 KHz is supported.

3.21. Cryptographic acceleration Unit (CAU)

- Supports DES, TDES or AES (128, 192, or 256) algorithms.
- DES/TDES supports Electronic codebook (ECB) or Cipher block chaining (CBC) mode
- AES supports 128bits-key, 192bits-key or 256 bits-key.
- AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode, Counter mode (CTR) mode, Galois/counter mode (GCM), Galois message authentication code mode (GMAC), Counter with CBC-MAC (CCM), Cipher Feedback mode (CFB) and Output Feedback mode (OFB).
- DMA transfer for incoming and outgoing data is supported.

The Cryptographic Acceleration Unit supports acceleration of DES, TDES or AES (128, 192, or 256) algorithms. The DES/TDES supports Electronic codebook (ECB) or Cipher block chaining (CBC) mode. The AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode, Counter mode (CTR) mode, Galois/counter mode (GCM), Galois message authentication code mode (GMAC), Counter with CBC-MAC (CCM), Cipher

Feedback mode (CFB) and Output Feedback mode (OFB).

3.22. Segment LCD controller (SLCD)

- Configurable frame frequency.
- Blinking of individual segments or all segments.
- Supports Static, 1/2, 1/3, 1/4, 1/6 and 1/8 duty.
- Supports 1/2, 1/3 and 1/4 bias.
- Double buffer up to 8x32 bits registers to store SLCD_DATAx.
- The contrast can also be adjusted by configuring dead time.
- Optional voltage output driver for enhance SLCD driving capability.

The SLCD controller directly drives LCD displays by creating the AC segment and common voltage signals automatically. It can drive the monochrome passive liquid crystal display (LCD) which composed of a plurality of segments (pixels or complete symbols) that can be converted to visible or invisible. The SLCD controller can support up to 32 segments and 8 commons.

3.23. Comparators (CMP)

- Two fast rail-to-rail low-power comparators with software configurable.
- Programmable reference voltage (internal or external I/O).

Two Comparators (CMP) is implemented within the device. It can wake up from deep-sleep mode to generate interrupts and breaks for the timers and also can be combined as a window comparator. The internal voltage reference is also connected to ADC_IN17 input channel of the ADC.

3.24. Universal serial bus full-speed device interface (USBD)

- USB 2.0 full-speed device controller.
- Support USB 2.0 Link Power Management.
- Dedicated 512-byte SRAM used for data packet buffer.
- Support embedded pull-up on the DP line.
- Integrated USB PHY.

The Universal Serial Bus full-speed device interface (USBD) module contains a full-speed internal USB PHY and no more external PHY chip is needed. USBD supports all the four types of transfer (control, bulk, interrupt and isochronous) defined in USB 2.0 protocol. USBD supports 8 USB bidirectional endpoints that can be individually configured.

3.25. Debug mode

■ Serial wire debug port (SW-DP).

Debug capabilities can be accessed by a debug tool via Serial Wire (SW - Debug Port).

3.26. Package and operation temperature

- LQFP64 (GD32L233RxT6), LQFP48 (GD32L233CxT6), LQFP32 (GD32L233KxT6) and QFN32 (GD32L233KxQ6).
- Operation temperature range: -40°C to +85°C (industrial level)

4 Electrical characteristics

4.1 Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 4-1. Absolute maximum ratings(1)(4)

Symbol	Parameter	Min	Max	Unit
V_{DD}	External voltage range ⁽²⁾	Vss - 0.3	V _{SS} + 3.63	V
V_{DDA}	External analog supply voltage	V _{SSA} - 0.3	V _{SSA} + 3.63	V
Vin	Input voltage on 5V tolerant pin ⁽³⁾	Vss - 0.3	V _{DD} + 3.63	V
VIN	Input voltage on other I/O	Vss - 0.3	3.63	V
ΔV _{DDx}	Variations between different V _{DD} power pins	_	50	mV
Vssx -Vss	V _{SSX} –V _{SS} Variations between different ground pins		50	mV
lio	Maximum current for GPIO pins	_	±25	mA
TA	Operating temperature range	-40	+85	°C
	Power dissipation at T _A = 85°C of LQFP64	_	733	
D-	Power dissipation at T _A = 85°C of LQFP48	_	574	~\^/
P _D	Power dissipation at T _A = 85°C of LQFP32	_	724	mW
	Power dissipation at T _A = 85°C of QFN32	_	940	
T _{STG}	T _{STG} Storage temperature range		+150	°C
TJ	Maximum junction temperature	_	+125	°C

⁽¹⁾ Guaranteed by design, not tested in production.

4.2 Operating conditions characteristics

Table 4-2. DC operating conditions

Symbol	Symbol Parameter		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V_{DD}	Supply voltage	_	1.71	3.3	3.63	٧
V_{DDA}	Analog supply voltage	_	1.71	3.3	3.63	V
V_{BAT}	Battery supply voltage	_	1.71	3.3	3.63	V

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-1. Recommended power supply decoupling capacitors⁽¹⁾

⁽²⁾ All main power and ground pins should be connected to an external power source within the allowable range.

⁽³⁾ V_{IN} maximum value cannot exceed 5.5 V.

⁽⁴⁾ It is recommended that V_{DD} and V_{DDA} are powered by the same source. The maximum difference between V_{DD} and V_{DDA} does not exceed 300 mV during power-up and operation.

(1) All decoupling capacitors need to be as close as possible to the pins on the PCB board.

Table 4-3. Clock frequency(1)

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK1}	AHB1 clock frequency	_	0	64	MHz
f _{HCLK2}	AHB2 clock frequency	_	0	64	MHz
f _{APB1}	APB1 clock frequency	_	0	32	MHz
f _{APB2}	APB2 clock frequency	_	0	64	MHz

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-4. Operating conditions at Power up/ Power down(1)

Symbol	Parameter	Conditions	Min	Max	Unit
4	V _{DD} rise time rate		0	∞	110/11
t∨DD	V _{DD} fall time rate	_	50	8	us/v

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-5. Start-up timings of Operating conditions(1)

Symbol	Parameter	Conditions	Тур	Unit
4	Ctart up time	Clock source from HXTAL	1.24	ms
Tstart-up	Start-up time	Clock source from IRC16M	16.6	us

⁽¹⁾ Based on characterization, not tested in production.

Table 4-6. Power saving mode wakeup timings characteristics(1)(2)

Symbol	Parameter	Тур	Unit
	Wakeup from Sleep mode	1.29	
t_{Sleep}	Wakeup from Sleep 1 mode (NPLDO=0.9V)	1.30	us
	Wakeup from Sleep 2 mode (NPLDO=0.9V and	1.32	

⁽²⁾ After power-up, the start-up time is the time between the rising edge of NRST high and the first I/O instruction conversion in SystemInit function.

⁽³⁾ PLL is off.

Symbol	Parameter	Тур	Unit
	NPLDO in Low-driver mode)		
	Wakeup from Deep-sleep mode (NPLDO in normal driver mode)	9.95	
4	Wakeup from Deep-sleep mode (NPLDO in low driver mode)	9.93	
tDeep-sleep	Wakeup from Deep-sleep 1 mode	13.74	
	Wakeup from Deep-sleep 2 mode	15.50	
tStandby	Wakeup from Standby mode	20.92	

⁽¹⁾ Based on characterization, not tested in production.

4.3 Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

Table 4-7. Power consumption characteristics (2)(3)

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 64 MHz, All peripherals enabled	_	9.38	_	
		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 64 MHz, All peripherals disabled	_	4.39		
		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals enabled		7.23		
		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals disabled	_	3.46	_	
		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 36 MHz, All peripherals enabled	_	5.06		
	Supply current (Run mode)	V_{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 36 MHz, All peripherals disabled	-	2.2		
I _{DD} +I _{DDA}		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 24 MHz, All peripherals enabled	_	4.47		mA
		V_{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 24 MHz, All peripherals disabled	_	2.54		
		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 16 MHz, All peripherals enabled		3.24		
		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 16 MHz, All peripherals disabled	_	1.92	_	
		V_{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 8 MHz, All peripherals enabled	_	1.98	_	
		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 8 MHz, All peripherals disabled		1.29		
		V_{DD} = 3.3 V, HXTAL = 8 MHz, System clock = 4 MHz, All peripherals enabled	_	1.36	_	

⁽²⁾ The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: $V_{DD} = V_{DDA} = 3.3 \text{ V}$, IRC16M = System clock = 16MHz.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock		0.06		
		= 4 MHz, All peripherals disabled	_	0.96	_	
		V _{DD} = 3.3 V, HXTAL = 8 MHz, System clock		1.04		
		= 2 MHz, All peripherals enabled		1.04	-	
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$				
		System clock = 2 MHz, All peripherals	_	0.81	_	
		disabled				
		V _{DD} = 3.3 V, HXTAL = 4 MHz, System clock	_	0.9	_	
		= 1 MHz, All peripherals enabled		0.5		
		$V_{DD} = 3.3 \text{ V}$, HXTAL = 4 MHz, System clock	_	0.75	_	
		= 1 MHz, All peripherals disabled		0.70		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 16	_	1.91	_	
		MHz, All peripherals enabled		1.51		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 16		0.77		
		MHz, All peripherals disabled		0.77		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 8		1.29		
		MHz, All peripherals enabled		1.23		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 8	_	0.69	_	
		MHz, All peripherals disabled		0.00		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 4	_	0.8	_	
	Supply current	MHz, All peripherals enabled		0.0		
	(Run 1 mode)	V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 4	<u>-</u>	0.47	<u>-—</u>	
		MHz, All peripherals disabled		0.17		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 2	_	0.56	_	
		MHz, All peripherals enabled		0.00		mA
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 2	_	0.36	_	1117 (
		MHz, All peripherals disabled		0.00		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 1	_	0.43	_	
		MHz, All peripherals enabled		00		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 1		0.3		
		MHz, All peripherals disabled		0.0		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 2	_	0.45	_	
		MHz, All peripherals enabled		00		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 2	_	0.25	_	
	Supply current	MHz, All peripherals disabled		0.20		
	(Run 2 mode)	V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 1	<u>-</u>	0.35	<u>-</u> —	
		MHz, All peripherals enabled		0.00		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, HCLK = 1	_	0.22	_	
		MHz, All peripherals disabled		J		
	Supply current	V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
	(Sleep mode)	off, System clock = 64 MHz, All peripherals	_	7.73	_	mΑ
	(Sieep illoue)	enabled				

	Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 64 MHz, All peripherals	_	2.33	_	
			disabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 48 MHz, All peripherals		5.99		
			enabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 48 MHz, All peripherals	_	1.92	_	
			disabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 36 MHz, All peripherals	_	4.68	_	
			enabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 36 MHz, All peripherals		1.6		
			disabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 24 MHz, All peripherals	_	3.38	_	
			enabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 24 MHz, All peripherals	_	1.29	_	
			disabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 16 MHz, All peripherals		2.51		
			enabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 16 MHz, All peripherals	_	1.09	_	
			disabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 8 MHz, All peripherals	_	1.62	_	
			enabled				
			$V_{DD} = 3.3 \text{ V}$, HXTAL = 8 MHz, CPU clock				
			off, System clock = 8 MHz, All peripherals		0.86		
			disabled				
			$V_{DD} = 3.3 \text{ V}$, HXTAL = 8 MHz, CPU clock				
			off, System clock = 4 MHz, All peripherals	_	1.18	_	
			enabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
			off, System clock = 4 MHz, All peripherals	_	0.75	_	
			disabled				
			V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock		00:		
			off, System clock = 2 MHz, All peripherals	_	0.94	_	
Ĺ			enabled				

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		V _{DD} = 3.3 V, HXTAL = 8 MHz, CPU clock				
		off, System clock = 2 MHz, All peripherals	_	0.7	_	
		disabled				
		V _{DD} = 3.3 V, HXTAL = 4 MHz, CPU clock				
		off, System clock = 1 MHz, All peripherals		0.86		
		enabled				
		V _{DD} = 3.3 V, HXTAL = 4 MHz, CPU clock				
		off, System clock = 1 MHz, All peripherals	_	0.7	_	
		disabled				
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock				
		off, HCLK = 16 MHz, All peripherals	_	1.74	_	
		enabled				
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock				
		off, HCLK = 16 MHz, All peripherals		0.52		
		disabled				
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock	_	1.03	_	
		off, HCLK = 8 MHz, All peripherals enabled		1.00		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock	_	0.38	_	
		off, HCLK = 8 MHz, All peripherals disabled		0.00		
	Supply current	V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock	_	0.67	_	
	(Sleep 1 mode)	off, HCLK = 4 MHz, All peripherals enabled		0.07		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock		0.31	<u>-</u>	
		off, HCLK = 4 MHz, All peripherals disabled		0.01		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock	_	0.49	_	
		off, HCLK = 2 MHz, All peripherals enabled		0.40		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock	_	0.28	_	
		off, HCLK = 2 MHz, All peripherals disabled		0.20		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock		0.4	<u>-—</u>	
		off, HCLK = 1 MHz, All peripherals enabled		0.1		
		$V_{DD} = 3.3 \text{ V, IRC16M} = 16 \text{ MHz, CPU clock}$	_	0.26	_	
		off, HCLK = 1 MHz, All peripherals disabled		0.20		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock	_	0.43	_	
		off, HCLK = 2 MHz, All peripherals enabled		0.10		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock	_	0.22	_	
	Supply current	off, HCLK = 2 MHz, All peripherals disabled		0.22		mA
	(Sleep 2 mode)	V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock	_	0.34	_	1117
		off, HCLK = 1 MHz, All peripherals enabled		0.04		
		V _{DD} = 3.3 V, IRC16M = 16 MHz, CPU clock		0.21		
		off, HCLK = 1 MHz, All peripherals disabled		0.21		
	Supply current	V _{DD} = 3.3 V, NPLDO in Low driver mode,				
	(Deep-sleep	IRC40K off, RTC off, All GPIOs analog	_	40.09	_	μΑ
	mode)	mode				

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
	Supply current	V _{DD} = 3.3 V, NPLDO off, LPLDO on,				
	(Deep-sleep 1	IRC40K off, RTC off, All GPIOs analog	_	3.144	_	
	mode)	mode				
		V _{DD} = 3.3 V, NPLDO off, LPLDO on,				
	Supply current	COREOFF0/SRAM1/COREOFF1 off,		4 700		
	(Deep-sleep 2	IRC40K off, RTC off, All GPIOs analog	_	1.702	_	
	mode)	mode				
	Supply current (Standby mode)	V _{DD} = 3.3 V, LXTAL off, IRC32K off, RTC off	_	0.442	_	μA
		V _{DD} off, V _{BAT} = 3.6V, LXTAL on with external crystal, RTC on, Higher driving	_	1.22	_	μA
		V _{DD} off, V _{BAT} = 3.3V, LXTAL on with	_	1.09	_	μA
		external crystal, RTC on, Higher driving V _{DD} off, V _{BAT} = 2.6V, LXTAL on with	_	0.93		μA
		external crystal, RTC on, Higher driving V _{DD} off, V _{BAT} = 1.71V, LXTAL on with	_	0.79	_	μA
		external crystal, RTC on, Higher driving VDD off, VBAT = 3.6V, LXTAL on with				
		external crystal, RTC on, Medium High driving	_	1.09	_	μA
		V _{DD} off, V _{BAT} = 3.3V, LXTAL on with				
		external crystal, RTC on, Medium High	_	0.97	_	μΑ
		driving				
		V _{DD} off, V _{BAT} = 2.6V, LXTAL on with				
		external crystal, RTC on, Medium High —	0.8	_	μΑ	
		driving				
I _{LXTAL+RTC}	LXTAL+RTC	V _{DD} off, V _{BAT} = 1.71V, LXTAL on with				
	current	external crystal, RTC on, Medium High	_	0.66	_	μΑ
		driving				
		V_{DD} off, $V_{BAT} = 3.6V$, LXTAL on with				
		external crystal, RTC on, Medium Low	_	0.92	_	μΑ
		driving				
		V_{DD} off, $V_{BAT} = 3.3V$, LXTAL on with				
		external crystal, RTC on, Medium Low	_	0.79	_	μΑ
		driving				
		V_{DD} off, $V_{BAT} = 2.6V$, LXTAL on with				
		external crystal, RTC on, Medium Low	_	0.63		μA
		driving				
		V_{DD} off, $V_{BAT} = 1.71V$, LXTAL on with				
		external crystal, RTC on, Medium Low	_	0.49	_	μΑ
		driving				
		V_{DD} off, $V_{BAT} = 3.6V$, LXTAL on with	_	0.87	_	μA
		external crystal, RTC on, Low driving				
		V_{DD} off, $V_{BAT} = 3.3V$, LXTAL on with	_	0.74	_	μA

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		external crystal, RTC on, Low driving				
		V_{DD} off, $V_{BAT} = 2.6V$, LXTAL on with		0.57		μA
		external crystal, RTC on, Low driving		0.57		μΑ
		V_{DD} off, $V_{BAT} = 1.71V$, LXTAL on with		0.43		μA
		external crystal, RTC on, Low driving		0.43		μΑ

- (1) Based on characterization, not tested in production.
- (2) When analog peripheral blocks such as ADCs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered.
- (3) The system clock 36MHZ (inclusive) to 64MHZ (inclusive) adopts FMC_WAIT_STATE_1, the system clock 24MHZ (inclusive) to 1MHZ (inclusive) adopts FMC_WAIT_STATE_0.

Figure 4-2. Typical supply current consumption in Run mode

4.4 EMC characteristics

EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in <u>Table 4-8. EMS characteristics</u>, based on the EMS levels and classes compliant with IEC 61000 series standard.

Table 4-8. EMS characteristics(1)

Symbol	Parameter	Conditions	Level/Class	
	Voltage applied to all device pins to	$V_{DD} = 3.3 \text{ V, LQFP64,}$		
VESD	induce a functional disturbance	f _{HCLK} = 64 MHz	ЗА	
	induce a functional disturbance	conforms to IEC 61000-4-2		
	Fast transient voltage burst applied to	V _{DD} = 3.3 V, LQFP64,		
V _{FTB}	induce a functional disturbance through	f _{HCLK} = 64 MHz	4A	
	100 pF on V_{DD} and V_{SS} pins	conforms to IEC 61000-4-4		

⁽¹⁾ Based on characterization, not tested in production.

EMI (Electromagnetic Interference) emission test result is given in the <u>Table 4-9. EMI characteristics</u>⁽¹⁾, The electromagnetic field emitted by the device are monitored while an application, executing EEMBC code, is running. The test is compliant with SAE J1752-3:2017 standard which specifies the test board and the pin loading.

Table 4-9. EMI characteristics(1)

Symbol	Parameter	Conditions	Tested frequency band	Max vs. [f _{HXTAL} /f _{HCLK}] 8/64 MHz	Unit
		$V_{DD} = 3.6 \text{ V}, T_A = +25 ^{\circ}\text{C},$	0.15 MHz to 30 MHz	-11.89	
Semi	Peak level	LQFP64, fhclk = 64 MHz,	30 MHz to 130 MHz	-1.54	dΒμV
OL.WII		conforms to SAE J1752- 3:2017	130 MHz to 1 GHz	3.05	μ.

⁽¹⁾ Based on characterization, not tested in production.

4.5 Power supply supervisor characteristics

Table 4-10. Power supply supervisor characteristics(1)

	ODJZLZJJAA Datasiieet					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LVDT[2:0] = 000, rising edge	_	2.15	_	V
		LVDT[2:0] = 000, falling edge		2.05		V
		LVDT[2:0] = 001, rising edge	_	2.30	_	V
		LVDT[2:0] = 001, falling edge	_	2.20	_	V
		LVDT[2:0] = 010, rising edge	_	2.45	_	V
		LVDT[2:0] = 010, falling edge	_	2.35	_	V
V _{LVD} ⁽¹⁾	Low Voltage Detector	LVDT[2:0] = 011, rising edge	_	2.60	_	V
VLVD(·)	Threshold	LVDT[2:0] = 011, falling edge	_	2.50	_	V
		LVDT[2:0] = 100, rising edge	_	2.75	_	V
		LVDT[2:0] = 100, falling edge	_	2.65	_	V
		LVDT[2:0] = 101, rising edge	_	2.90	_	V
		LVDT[2:0] = 101, falling edge	_	2.80	_	V
		LVDT[2:0] = 110, rising edge	_	3.00	_	V
		LVDT[2:0] = 110, falling edge	_	2.90	_	V
V _{LVDhyst} ⁽²⁾	LVD hysteresis	_	_	100	_	mV
V	Brown-out reset	rising edge	_	1.60	_	V
V _{BOR0}	threshold 0	falling edge	_	1.56		V
V	Brown-out reset	rising edge	_	2.10	_	V
V _{BOR1}	threshold 1	falling edge	_	2.00	_	V
V	Brown-out reset	rising edge		2.30		V
V _{BOR2}	threshold 2	falling edge		2.20		V
V _{BOR3}	Brown-out reset	rising edge		2.60		V
V BUR3	threshold 3	falling edge	_	2.50	_	V
V _{BOR4}	Brown-out reset	rising edge	_	2.90	_	V
V DUK4	threshold 4	falling edge	_	2.80	_	, v
V _{POR} ⁽¹⁾	Power on reset		1.56	1.60	1 63	V
V FOR . /	threshold		1.00	1.00	1.00	,
V _{PDR} ⁽¹⁾	Power down reset		1.52	1.56	1 50	V
A PDK, ,	threshold	_	1.02	1.50	1.00	v
V _{PDRhyst} ⁽²⁾	PDR hysteresis		_	40	_	mV
t _{RSTTEMPO} (2)	Reset temporization		_	550	_	us

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

4.6 Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods.

Table 4-11. ESD characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ESD(HBM)}	Electrostatic discharge	IC 004 2047			2000	\/
VESD(HBM)	voltage (human body model)	JS-001-2017		_	2000	V
\/	Electrostatic discharge	10,000,0040			F00	
V _{ESD(CDM)}	voltage (charge device model)	JS-002-2018	_	_	500	V

⁽¹⁾ Based on characterization, not tested in production.

Table 4-12. Static latch-up characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
111	I-test	JESD78	_		±200	mA
LU	V _{supply} over voltage	JESD/6	_	_		٧

⁽¹⁾ Based on characterization, not tested in production.

4.7 External clock characteristics

Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL} ⁽¹⁾	Crystal or ceramic frequency	$V_{DD} = 3.3 \text{ V}$	4	8	48	MHz
R _F ⁽²⁾	Feedback resistor	$V_{DD} = 3.3 \text{ V}$	_	400	_	kΩ
	Recommended matching					
C _{HXTAL} ^{(2) (3)}	capacitance on OSCIN and	_	_	20	30	pF
	OSCOUT				48	
Ducy _(HXTAL) ⁽²⁾	Crystal or ceramic duty cycle	_	30	50	70	%
g _m ⁽²⁾	Oscillator transconductance	Startup	_	20	_	mA/V
1(1)	Crystal or ceramic operating	Vnn = 3.3 V		0.32		A
I _{DD(HXTAL)} (1)	current	v טט – ט.ט V	_	0.32		mA
tsuhxtal ⁽¹⁾	Crystal or ceramic startup time	V _{DD} = 3.3 V	_	1.27	_	ms

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ $C_{HXTAL1} = C_{HXTAL2} = 2*(C_{LOAD} - C_S)$, For C_{HXTAL1} and C_{HXTAL2} , it is recommended matching capacitance on OSCIN and OSCOUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S , it is PCB and MCU pin stray capacitance.

Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{HXTAL_ext} (1)	External clock source or oscillator	\/ = 2 2 \/	1	8	50	MHz	
THXTAL_ext' /	frequency	V _{DD} = 3.3 V 1		0	30	IVII IZ	
V _{HXTALH} ⁽²⁾	OSCIN input pin high level voltage	V _{DD} = 3.3 V	$0.7 V_{DD}$	_	V_{DD}	V	
V _{HXTALL} ⁽²⁾	OSCIN input pin low level voltage	VDD - 3.3 V	Vss	_	$0.3\ V_{DD}$	V	
t _{H/L(HXTAL)} (2)	OSCIN high or low time	_	5	_	_	20	
tr/f(hxtal)(2)	OSCIN rise or fall time	_	_	_	10	ns	
C _{IN} ⁽²⁾	OSCIN input capacitance — 5 —		pF				
Ducy _(HXTAL) (2)	Duty cycle	_	30	50	70	%	

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LXTAL} ⁽¹⁾	Crystal or ceramic frequency	$V_{DD} = 3.3 \text{ V}$		32.768		kHz
(2)(2)	Recommended matching			40		
C _{LXTAL} ⁽²⁾⁽³⁾	capacitance on OSC32IN and OSC32OUT	_	_	10	_	p⊦
Ducy _(LXTAL) (2)	Crystal or ceramic duty cycle	_	30		70	%
		Lower driving capability		3.6	1	
(2)		Medium low driving capability	-	4.8		
gm ⁽²⁾	Oscillator transconductance	Medium high driving capability	_	8.4	_	μΑν
		Higher driving capability	-	10.8		
		Lower driving capability		332		
(1)	Crystal or ceramic operating	Medium low driving capability	ı	392	1	
I _{DDLXTAL} (1)	current	Medium high driving capability	_	562		nA
		Higher driving capability	VDD = 3.3 V — 32.768 — kHz — — 10 — pF — 30 — 70 % ower driving capability — 3.6 — ium low driving capability — 4.8 — um high driving capability — 10.8 — ium low driving capability — 332 — ium low driving capability — 392 — um high driving capability — 562 — igher driving capability — 692 —			
tsulxtal ⁽¹⁾⁽⁴⁾	Crystal or ceramic startup time	V _{DD} = 3.3 V	_	0.32	_	s

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) C_{LXTAL1} = C_{LXTAL2} = 2*(C_{LOAD} C_S), For C_{LXTAL1} and C_{LXTAL2}, it is recommended matching capacitance on OSC32IN and OSC32OUT. For C_{LOAD}, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S, it is PCB and MCU pin stray capacitance.
- (4) tsulxtal is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer.

Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LXTAL_ext} (1)	External clock source or	V _{DD} = 3.3 V		32.768	1000	kHz
TLXTAL_ext\ /	oscillator frequency	V DD - 3.3 V		32.700	768 1000 k - V _{DD} - 0.3 V _{DD}	KI IZ
V _{LXTALH} ⁽²⁾	OSC32IN input pin high level	0.7 V _{DD}				
VLXTALH\-'/	voltage	V _{DD} = 3.3 V	U.7 VDD		VDD	V
VLXTALL ⁽²⁾	OSC32IN input pin low level	VDD - 3.3 V	Vss		0.2.1/	V
V LXTALL(=)	voltage		VSS	_	0.3 V _{DD}	
t _{H/L(LXTAL)} (2)	OSC32IN high or low time	_	250	_	_	no
t _{R/F(LXTAL)} (2)	OSC32IN rise or fall time	time —	_	_	50	ns
C _{IN} ⁽²⁾	OSC32IN input capacitance	_	_	5	_	pF
Ducy _(LXTAL) (2)	Duty cycle		30	50	70	%

⁽¹⁾ Based on characterization, not tested in production.

4.8 Internal clock characteristics

Table 4-17. High speed internal clock (IRC16M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	High Speed Internal	al l				
f _{IRC16M}	Oscillator (IRC16M)	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	_	16	_	MHz
	frequency					
	IRC16M oscillator	$V_{DD} = V_{DDA} = 3.3 V$,	-1.5 to			%
	Frequency accuracy,	$T_A = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$		1.5 ⁽¹⁾		70
ACC:===	Factory-trimmed	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	-1.0	_	+1.0	%
ACCIRC16M	IRC16M oscillator					
	Frequency accuracy, User	_	_	0.3(1)	_	%
	trimming step ⁽¹⁾					
D _{IRC16M} ⁽²⁾	IRC16M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	45	50	55	%
IDDIRC16M ⁽¹⁾	IRC16M oscillator operating	$V_{DD} = V_{DDA} = 3.3 \text{ V},$		440		
IDDIRC16M\'''	current	f _{IRC8M} = 16 MHz	_	110	_	μA
+ (1)	IRC16M oscillator startup	$V_{DD} = V_{DDA} = 3.3 \text{ V},$	V _{DD} = V _{DDA} = 3.3 V,	0.75		
tsuirc _{16M} ⁽¹⁾	time	$f_{IRC8M} = 16 \text{ MHz}$	_	0.75	_	μs

 $[\]hbox{(1)} \quad \hbox{Based on characterization, not tested in production.}$

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

Table 4-18. Low speed internal clock (IRC32K) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{IRC32K}	Low Speed Internal oscillator	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 \sim 85 ^{\circ}\text{C}^{(2)}$		31.7 to 32.3		kHz
	(IRC32K) frequency	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	30	_	35	
IDDAIRC32K ⁽²⁾	IRC32K oscillator operating current	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	_	160	_	nA
tsuirc32K ⁽²⁾	IRC32K oscillator startup time	V _{DD} = V _{DDA} = 3.3 V	_	40	_	μs

- (1) Guaranteed by design, not tested in production.
- (2) Based on characterization, not tested in production.

Table 4-19. High speed internal clock (IRC48M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	High Speed Internal					
f _{IRC48M}	Oscillator (IRC48M)	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	_	48	_	MHz
	frequency					
	IRC48M oscillator	$V_{DD} = V_{DDA} = 3.3 V$,		-3.3 to -0.25 ⁽¹⁾		%
	Frequency accuracy,	$T_A = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$		-3.3 10 -0.23	_	70
ACC _{IRC48M}	Factory-trimmed	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	-2.0	_	+2.0	%
ACCIRC48M	IRC48M oscillator				_	
	Frequency accuracy, User	_	_	0.12		%
	trimming step					
D _{IRC48M} ⁽²⁾	IRC48M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	45	50	55	%
I (1)	IRC48M oscillator operating	$V_{DD} = V_{DDA} = 3.3 V$		327		
I _{DDAIRC48M} ⁽¹⁾	current	$f_{IRC28M} = 48 \text{ MHz}$		321		μA
tsuirc48M ⁽¹⁾	IRC48M oscillator startup	$V_{DD} = V_{DDA} = 3.3 V$		1.8		2.5
ISUIRC48M(1)	time	$f_{IRC28M} = 48 \text{ MHz}$		1.0		μs

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

4.9 PLL characteristics

Table 4-20. PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN} (1)	PLL input clock		2		16	MHz
IPLLIN ^(*)	frequency				10	IVITZ
f _{PLLOUT} ⁽²⁾	PLL output clock		16		64	MHz
IPLLOUT\-/	frequency	_	16	_	64	IVITZ
fvco ⁽²⁾	PLL VCO output clock				64	MHz
	frequency	_	_		04	IVITZ
t _{LOCK} (2)	PLL lock time	_	_	_	200	μs
I _{DD} ⁽¹⁾	Current consumption	\(CO from = 64 MHz		400		
IDD(·/	on V _{DD}	VCO freq = 64 MHz		400	_	μΑ
	Cycle to cycle Jitter			120		
Jitter _{PLL} ⁽³⁾	(rms)			120	_	20
	Cycle to cycle Jitter	System clock		000		ps
	(peak to peak)		_	900		

⁽¹⁾ Based on characterization, not tested in production.

4.10 Memory characteristics

Table 4-21. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Number of guaranteed					
PEcyc ⁽¹⁾	program /erase cycles	T _A = -40 °C ~ +85 °C	10	_	_	kcycles
	before failure (Endurance)					
t _{RET} ⁽¹⁾	Data retention time	10k cycles at T _A = 85 °C	10	_	_	years
t _{PROG} (2)	Word programming time	T _A = -40 °C ~ + 85 °C	_	37.5		μs
t _{ERASE} (2)	Page erase time	T _A = -40 °C ~ + 85 °C	_	11	1	ms
t _{MERASE} (2)	Mass erase time	T _A = -40 °C ~ + 85°C	_	12	_	ms

⁽¹⁾ Based on characterization, not tested in production.

4.11 NRST pin characteristics

Table 4-22. NRST pin characteristics

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ Value given with main PLL running.

⁽²⁾ Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} (1)	NRST Input low level voltage	4741/41/	-0.5	_	0.35 V _{DD}	.,
V _{IH(NRST)} (1)	NRST Input high level voltage	$1.71 \text{ V} \leq \text{V}_{DD} = \text{V}_{DDA}$	0.65 V _{DD}		V _{DD} + 0.5	V
V _{hyst} ⁽¹⁾	Schmidt trigger Voltage hysteresis	≤ 3.63 V		400		mV
R _{pu} ⁽²⁾	Pull-up equivalent resistor	_		40		kΩ

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

Figure 4-4. Recommended external NRST pin circuit⁽¹⁾

(1) Unless the voltage on NRST pin go below $V_{\text{IL}(NRST)}$ level, the device would not generate a reliable reset.

4.12 VREF buffer characteristics

Table 4-23. VREF buffer characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA} ⁽¹⁾	Analog Supply Voltage	_	2.7	3.3	3.63	V
		V _{DDA} = 3.3 V	2.49	2.50	2.51	
V _{REF}	Output Reference Voltage	V _{DDA} = 3.3 V,	2.455	2.50	2.545	V
	-	$T_A = -40 ^{\circ}\text{C} \sim + 85 ^{\circ}\text{C}^{(2)}$	2.455	2.50	2.040	
PSRR ⁽¹⁾	Power Supply	DC (I _O = 0)	_	57	_	dB
FORK	Rejection	DC (I _O = 200 μA)	_	57	_	uБ
Tsu ⁽¹⁾	Setup Time	C _L = 1 μF + 10 nF	_		200	μs
I _{LOAD_R} ⁽¹⁾	Load Regulation	I_{LOAD} from 0 to 200 μA	_	5	_	μV/μΑ
C _{LOAD} ⁽¹⁾	Load Capacitor		_	1	_	μF
TRIM ⁽¹⁾	Trim Step	_		3	_	mV

- (1). Guaranteed by design, not tested in production.
- (2). Based on characterization, not tested in production.

4.13 **GPIO** characteristics

Table 4-24. I/O port DC characteristics⁽¹⁾⁽³⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Standard IO Low level	$1.71 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.63$			0.01/	
M	input voltage	V	_		0.3 V _{DD}	
VIL	5V-tolerant IO Low	$1.71 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.63$			0.2.1/	
	level input voltage	V	_	_	0.3 V _{DD}	V
	Standard IO High	$1.71 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.63$	0.7.1/			V
Vih	level input voltage	V	0.7 V _{DD}			
VIH	5 V-tolerant IO High	$1.71 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.63$	0.7 V _{DD}			
	level input voltage	V	0.7 VDD			
	Low level output	V _{DD} = 1.71 V	_	0.26		
	voltage for an IO Pin	V _{DD} = 3.3 V	_	0.13	_	
Va	$(I_{IO} = +8 \text{ mA})$	V _{DD} = 3.6 V	_	0.13	_	
V _{OL} (IO_speed=50MHz)	(I _{IO} = +10 mA)	V _{DD} = 1.71 V	_	0.20	_	
(IO_speed=50MHZ)	Low level output	V _{DD} = 3.3 V	_	0.33	_	V
	voltage for an IO Pin	\/ - 2.6.\/		0.22		V
	(I _{IO} = +20 mA)	$V_{DD} = 3.6 \text{ V}$	_	0.32	_	
	High level output	V _{DD} = 1.71V	_	1.46	_	
	voltage for an IO Pin	V _{DD} = 3.3 V	_	3.15	_	
Vari	$(I_{IO} = +8 \text{ mA})$	V _{DD} = 3.6 V	_	3.45	_	
VoH	(I _{IO} = +10 mA)	V _{DD} = 1.71 V	_	1.38	_	
(IO_speed=50MHz)	High level output	V _{DD} = 3.3 V	_	2.91	_	V
	voltage for an IO Pin					V
	(I _{IO} = +20 mA)	$V_{DD} = 3.6 \text{ V}$	_	3.22		
	$(I_{IO} = +4 \text{ mA})$	V _{DD} = 1.71 V	_	0.31		
	Low level output	V _{DD} = 3.3 V	_	0.36		
Vol	voltage for an IO Pin					
(IO_speed=10MHz)	(I _{IO} = +8 mA)	V _{DD} = 3.6 V	_	0.35	_	V
(10_3pcca=10W112)	Low level output	V _{DD} = 1.71 V	_	_	_	
	voltage for an IO Pin	V _{DD} = 3.3 V	_	0.73	_	
	$(I_{IO} = +15 \text{ mA})$	V _{DD} = 3.6 V	_	0.70	_	
	$(I_{IO} = +4 \text{ mA})$	V _{DD} = 1.71 V		1.33		
	High level output	$V_{DD} = 3.3 \text{ V}$		2.87	_	
Vон	voltage for an IO Pin					
(IO_speed=10MHz)	$(I_{IO} = +8 \text{ mA})$	$V_{DD} = 3.6 \text{ V}$		3.19		V
(10_speed=10lvll12)	High level output	V _{DD} = 1.71 V	_	_	_	
	voltage for an IO Pin	V _{DD} = 3.3 V	_	2.42	_	
	(I _{IO} = +15 mA)	V _{DD} = 3.6 V	_	2.78	_	
VoL	$(I_{IO} = +1 \text{ mA})$	V _{DD} = 1.71 V		0.32	_	٧

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
(IO_speed=2MHz)	Low level output voltage for an IO Pin	V _{DD} = 3.3 V	_	0.55	_	
	(I _{IO} = +4 mA)	V _{DD} = 3.6 V	_	0.53	_	
	$(I_{IO} = +1 \text{ mA})$	$V_{DD} = 1.71 \text{ V}$	_	1.32		
V _{OH} (IO speed=2MHz)	High level output voltage for an IO Pin	V _{DD} = 3.3 V	_	2.65	_	
(10_0p00d 2M112)	(I _{IO} = +4 mA)	V _{DD} = 3.6 V	_	2.99	_	
R _{PU} ⁽²⁾	Internal pull-up			40	_	kΩ
TOPO .	resistor			40		11.52
R _{PD} ⁽²⁾	Internal pull-down	_	_	40	_	kΩ
TAPD* 7	resistor	_		70		1/22

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current, the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode(maximum load: 30 pF).

Table 4-25. I/O port AC characteristics(1)

GPIOx_OSPD[1:0] bit value ⁽²⁾	Parameter	Conditions	Max	Unit
		$1.71 \le V_{DD} \le 3.63 \text{ V},$	6	
CDION OCDD COCDD IA OL VO	Massinasson	C _L = 10 pF	O	
GPIOx_OSPD->OSPDy[1:0] = X0	Maximum	$1.71 \le V_{DD} \le 3.63 \text{ V},$	5	MHz
(IO_Speed = 2 MHz)	frequency	C _L = 30 pF	5	
		$1.71 \le V_{DD} \le 3.63 \text{ V}, C_L = 50 \text{ pF}$	4	
		$1.71 \le V_{DD} \le 3.63 \text{ V},$	17	
		C _L = 10 pF	17	
GPIOx_OSPD->OSPDy[1:0] = 01	Maximum	$1.71 \le V_{DD} \le 3.63 \text{ V},$	14	MHz
(IO_Speed = 10 MHz)	frequency	C _L = 30 pF	14	IVIITZ
		$1.71 \le V_{DD} \le 3.63 \text{ V},$	12	
		$C_L = 50 \text{ pF}$	12	
		$1.71 \le V_{DD} \le 3.63 \text{ V},$	81	
		C _L = 10 pF	01	
GPIOx_OSPD->OSPDy[1:0] = 11	Maximum	$1.71 \le V_{DD} \le 3.63 \text{ V},$	72	MHz
(IO_Speed = 50 MHz)	frequency	C _L = 30 pF	12	IVII IZ
		1.71 ≤ V _{DD} ≤ 3.63 V,	60	
		C _L = 50 pF	00	

- (1) Based on characterization, not tested in production.
- (2) The I/O speed is configured using the GPIOx_OSPD->OSPDy [1:0] bits. Refer to the GD32L233 user manual which is selected to set the GPIO port output speed.

Figure 4-5. I/O port AC characteristics definition

4.14 ADC characteristics

Table 4-26. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA} ⁽¹⁾	Operating voltage	_	1.8	3.3	3.6	V
V _{IN} ⁽¹⁾	ADC input voltage range	_	0	_	V _{REF}	V
f _{ADC} ⁽¹⁾	ADC clock	_	0.125	_	16	MHz
		12-bit	0.008	_	1.067	
fs ⁽¹⁾	Compling rate	10-bit	0.009	_	1.23	MSP
IS ^(·)	Sampling rate	8-bit	0.011	_	1.45	S
		6-bit	0.013	_	1.78	
V _{AIN} 1)	Analog input voltage	16 external; 4 internal	0	_	V_{DDA}	٧
R _{AIN} ⁽²⁾	External input impedance	See Equation 1	_	_	513.6	kΩ
R _{ADC} ⁽²⁾	Input sampling switch resistance	_	_	_	0.5	kΩ
C _{ADC} ⁽²⁾	Input sampling capacitance	No pin/pad capacitance included	_	_	3	pF
t _{CAL} ⁽²⁾	Calibration time	f _{ADC} = 16 MHz	_	13.4	_	μs
t _s (2)	Sampling time	f _{ADC} = 16 MHz	0.156	_	14.97	μs
	Total conversion	12-bit	_	15	_	
t _{CONV} (2)	Total conversion	10-bit	_	13	_	1/
(CONV-	time(including sampling time)	8-bit	_	11	_	f _{ADC}
	une)	6-bit	_	9	_	
	ADC consumption from	fs = 1M	_	133	_	
I _{DDA(ADC)}	V _{DDA}	f _S = 0.5M	_	77	_	uA
	V DDA	f _S = 10k	_	17.5	_	
	ADC consumption from	$f_S = 1M$		14.7		
I _{DDV(ADC)}	V _{REFP}	f _S = 0.5M		7.6		uA
	V KEFP	f _S = 10k	_	0.4	_	
t _{SU} ⁽²⁾	Startup time	_	_	5	_	us

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

$$\textit{Equation 1}: \text{R}_{\text{AIN}} \text{ max formula } \text{ } R_{\text{AIN}} < \frac{T_{\text{S}}}{f_{\text{ADC}}*C_{\text{ADC}}*ln(2^{N+2})} - \text{ } R_{\text{ADC}}$$

The formula above ($\underline{\textbf{Equation 1}}$) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 4-27. ADC R_{AIN} max for $f_{ADC} = 16 \text{ MHz}^{(1)}$

T _s (cycles)	t _s (µs)	R _{AINmax} (kΩ)
2.5	0.16	4.8
7.5	0.47	15.6
13.5	0.85	28.4
28.5	1.79	60.6
41.5	2.60	88.5
55.5	3.47	118.6
71.5	4.47	153.0
239.5	14.97	513.6

⁽¹⁾ Based on characterization, not tested in production.

Table 4-28. ADC dynamic accuracy at f_{ADC} = 16 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	$f_{ADC} = 16 \text{ MHz}$	10.8	11.2	ı	bits
SNDR	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 \text{ V}$	66.7	69.1		
SNR	Signal-to-noise ratio	Input Frequency = 20	66.9	69.3		dB
THD	Total harmonic distortion	kHz	_	-82	-78	

⁽¹⁾ Based on characterization, not tested in production.

Table 4-29. ADC static accuracy at f_{ADC} = 16 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Тур	Max	Unit
Offset	Offset error	f 16 MU=	_	_	
DNL	Differential linearity error	$f_{ADC} = 16 \text{ MHz}$ $V_{DDA} = V_{REF+} = 3.3 \text{ V}$	±0.6	±1	LSB
INL	Integral linearity error	VDDA = VREF+ = 3.3 V	±0.8	±1.5	

⁽¹⁾ Based on characterization, not tested in production.

Table 4-30. ADC dynamic accuracy at f_{ADC} = 16 MHz⁽¹⁾

Symbol	Parameter Test conditions		Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} = 16 MHz	10.7	11.2		bits
SNDR	Signal-to-noise and distortion ratio	V _{DDA} = 3.3V V _{REF+} = 2.5	66.2	69.1	_	
SNR	Signal-to-noise ratio	V		69.3	_	dB
THD	Total harmonic distortion	Input Frequency = 20 kHz	_	-82	-78	uБ

⁽¹⁾ Based on characterization, not tested in production.

Table 4-31. ADC static accuracy at f_{ADC} = 16 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Тур	Max	Unit
Offset	Offset error				
DNL	Differential linearity error		±0.6	±1	LSB
INL	Integral linearity error	$V_{DDA} = 3.3V V_{REF+} = 2.5 V$	±0.8	±1.5	

⁽¹⁾ Based on characterization, not tested in production.

Table 4-32. ADC dynamic accuracy at f_{ADC} = 16 MHz⁽¹⁾

, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	$f_{ADC} = 16 \text{ MHz},$	10.5	10.8		bits
SNDR	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.8 \text{ V}$	64.9	66.7	_	
SNR	Signal-to-noise ratio	Input Frequency = 20	65.1	66.9	_	dB
THD	Total harmonic distortion	kHz	_	-71	-68	

⁽¹⁾ Based on characterization, not tested in production.

Table 4-33. ADC static accuracy at f_{ADC} = 16 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Тур	Max	Unit
Offset	Offset error	4 40 MH-		_	
DNL	Differential linearity error	f _{ADC} = 16 MHz, V _{DDA} = V _{REF+} = 1.8 V		±1	LSB
INL	Integral linearity error			±1.5	

⁽¹⁾ Based on characterization, not tested in production.

4.15 DAC characteristics

Table 4-34. DAC characteristics

Symbol	Parameter	Conditions		Тур	Max	Unit
V _{DDA} ⁽¹⁾	Operating voltage	_	1.71	3.3	3.63	V
V _{REF+} ⁽²⁾	Positive Reference Voltage	_	1.71	_	V_{DDA}	V
V _{RFF-} (2)	Negative Reference			Vssa		V
V REF-\ /	Voltage	_		VSSA		V
R _{LOAD} ⁽²⁾	Resistive load	Resistive load with buffer ON	5	_	_	kΩ
Ro ⁽²⁾	Impedance output	Impedance output with buffer OFF		15	kΩ	
C _{LOAD} ⁽²⁾	Capacitive load	Capacitive load with buffer ON	_	_	50	pF
		Lower DAC_OUT voltage with	0.2 –			V
DAC_OUT	Lower DAC_OUT voltage	buffer ON	0.2			V
min ⁽²⁾	Lower DAC_OUT voltage	Lower DAC_OUT voltage with	0.5			mV
		buffer OFF	0.5		_	
		Higher DAC_OUT voltage with		V_{DDA} -	V	
DAC_OUT	Higher DAC_OUT voltage	buffer ON			0.2	v
max (2)	Trigiter b/to_oo1 voltage	Higher DAC_OUT voltage with			V_{DDA}	V
		buffer OFF			1LSB	V
I _{DDA} ⁽¹⁾	DAC current consumption	With no load, middle	_	400		μΑ
IDDA\''	in quiescent mode	code(0x800) on the input,	— 4 00		_	μΛ

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V _{REFP} = 3.3 V				
	DAG sussessitions	With no load, middle				
I _{DDVREF+} (1)	DAC current consumption in quiescent mode	code(0x800) on the input,		114	_	μΑ
	1	$V_{REFP} = 3.3 V$				
DNI ⁽¹⁾	Differential non linearity	10-bit configuration	_	_	±0.5	LSB
DINL	Differential flori lifearity	12-bit configuration	_	_	±2	
INI ⁽¹⁾	Integral non linearity	10-bit configuration		±1	LSB	
IINL	integral non linearity	12-bit configuration		_	±4	LOD
Offset ⁽¹⁾	Offset error	DAC in 12-bit mode	_	_	±12	LSB
GE ⁽¹⁾	Gain error	DAC in 12-bit mode		±0.5	_	%
T _{setting} (1)	Settling time	$C_{LOAD} \le 50 \text{ pF, } R_{LOAD} \ge 5 \text{ k}\Omega$	_	0.5	_	μs
T _{wakeup} (2)	Wakeup from off state	_	_	5	_	μs
Undata	Max frequency for a correct					
Update rate ⁽²⁾	DAC_OUT change from	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$		_	4	MS/s
rate	code i to i±1LSB					
DCDD(2)	Power supply rejection	No B C = 50 pE	0.	-80		40
PSRR ⁽²⁾	ratio(to V _{DDA})	No R _{Load} , C _{LOAD} =50 pF		-80	_	dB

⁽¹⁾ Based on characterization, not tested in production.

4.16 Temperature sensor characteristics

Table 4-35. Temperature sensor characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Voff	Uncalibrated Offset	$T_A = 30^{\circ}C$	_	1022.8	_	mV
E _{OFF} ⁽¹⁾	Uncalibrated Offset Error	$T_A = 30^{\circ}C$	_	2	_	mV
М	Slope	_	_	3.3	_	mV/°C
E _M ⁽¹⁾	Slope Error	_	_	30	_	μV/°C
LIN ⁽³⁾	Linearity	$T_A = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$	_	-0.4 to1.2	_	°C
ton	Turn-on Time	_	_	_	_	μs
ETOT ⁽²⁾⁽³⁾	Temp Sensor Error Using Typical Slope and Factory-Calibrated Offset	T _A = -40 °C to 85 °C	-3.5	_	4.7	°C

⁽¹⁾ Represents one standard deviation from the mean.

4.17 Comparators characteristics

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ The factory-calibrated offset value is stored in the read-only area of flash in locations 0x1FFFF7F8.

⁽³⁾ Based on characterization, not tested in production.

GD32L233xx Datasheet

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Operating voltage	_	1.71	3.3	3.63	V
V _{IN}	Input voltage range	_	0	_	V_{DDA}	V
V_{BG}	Scaler input voltage	_	_	8.0	_	V
Vsc	Scaler offset voltage	_	_	±5	_	mV
I(SCALED)	Scaler static consumption	BEN=0 (bridge disable)	_	200	_	nA
I _{DDA} (SCALER)	from V_{DDA}	BEN=1 (bridge enable)	_	8.0	_	μA
tstart_scaler	Scaler startup time	_	_	100	_	μs
	Propagation delay for 200	Ultra low power mode	_	3.63	_	μs
t_D	mV step with 100 mV	Medium power mode	_	0.18	_	μs
	overdrive	High speed power mode	_	55	_	ns
		Ultra low power mode	_	0.5	_	
I _{DD}	Current consumption	Medium power mode	_	4.7	_	·
		High speed power mode	_	47	_	
Voffset	Offset error	_	_	±5	_	mV
		No Hysteresis	_	0	_	
V	I brotomonio Voltomo	Low Hysteresis	_	8	_	\/
V _{hyst}	Hysteresis Voltage	Medium Hysteresis	_	16	_	mV
		High Hysteresis	_	32	_	

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-6. CMP hysteresis

4.18 TIMER characteristics

Table 4-37. TIMER characteristics (1)

Symbol	Parameter	Conditions	Min	Max	Unit
4	Timer resolution time		1	_	timerxclk
t _{res}	Timer resolution time	ftimerxclk = 64 MHz	15.6	_	ns
fехт	Timer external clock	_	0	ftimerxclk/2	MHz
IEXI	frequency	f _{TIMERxCLK} = 64 MHz	0	32	MHz
RES	Timer resolution		_	16	bit
	16-bit counter clock period	_	1	65536	tTIMERXCLK
tcounter	when internal clock is selected	ftimerxclk = 64 MHz	0.0156	1024	μs
tury count	Maximum possible count		_	65536 × 65536	timerxclk
tmax_count	waximum possible count	ftimerxclk = 64 MHz	_	67.11	s

⁽¹⁾ Guaranteed by design, not tested in production.

4.19 SLCD controller characteristics

Table 4-38. SLCD controller characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vslcd	SLCD ext	ernal voltage	_	_	3.63	
V _{SLCD0}	SLCD internal r	eference voltage 0	_	2.65		
V _{SLCD1}	SLCD internal r	eference voltage 1	_	2.80	_	
V _{SLCD2}	SLCD internal r	eference voltage 2	_	2.92		
V _{SLCD3}	SLCD internal r	eference voltage 3	_	3.08	_	V
V _{SLCD4}	SLCD internal r	eference voltage 4	_	3.23	_	
V _{SLCD5}	SLCD internal r	eference voltage 5	_	3.37	_	
V _{SLCD6}	SLCD internal r	eference voltage 6	_	3.52	_	
V _{SLCD7}	SLCD internal r	eference voltage 7	_	3.67	_	
		Buffer OFF (VODEN=0 is	0.0		0	
Coxt	V _{SLCD} external	SLCD_CTL register)	0.2	_	2	
Cext	capacitance	Buffer ON (VODEN=1 is	1		2	uF
		SLCD_CTL register)	-	_	2	
	Supply current from VDD	Buffer OFF (VODEN=0 is		3.2		
I _{SLCD} (2)	at V _{DD} = 2.2 V	SLCD_CTL register)	_	3.2		
ISLCD(=/	Supply current from VDD	Buffer OFF (VODEN=0 is		2.4	_	uA
	at $V_{DD} = 3.0 \text{ V}$	SLCD_CTL register)		2.4		
		Buffer OFF (VODEN = 0,		0.5	_	
		PULSE = 0)		0.5		
		Buffer ON (VODEN = 1, 1/2	_	0.65	_	
Ivslcd	Supply current from	Bias)		0.00		пΔ
IVOLOD	V_{SLCD} ($V_{SLCD} = 3.0 \text{ V}$)	Buffer ON (VODEN = 1, 1/3		0.8		uA
		Bias)		0.0		
		Buffer ON (VODEN = 1, 1/4	_	0.95	_	
		Bias)		0.00		uA
R _{HN}	Total High Resistor val	ue for Low drive resistive			_	ΜΩ
	ne	twork				17122
R_{LN}	Total Low Resistor value	ue for High drive resistive	_	_	_	kΩ
		twork				
V ₄₄	Segment/Common	highest level voltage	_	V _{SLCD}	_	
V ₃₄	Segment/Common 3/4 level voltage			3/4V _{SLCD}	_	
V ₂₃	Segment/Common 2/3 level voltage			2/3V _{SLCD}	_	
V ₁₂	Segment/Common 1/2 level voltage			1/2V _{SLCD}		V
V ₁₃	-	on 1/3 level voltage	_	1/3V _{SLCD}		
V ₁₄	Segment/Comm	on 1/4 level voltage	_	1/4V _{SLCD}	_	
V ₀	Segment/Commor	n lowest level voltage	_	0	_	

⁽¹⁾ Guaranteed by design, not tested in production.

⁽²⁾ SLCD enabled with 3V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no SLCD connected.

4.20 I2C characteristics

Table 4-39. I2C characteristics(1)(2)

Symbol	Parameter	Conditi	Stan mo		Fast	mode	Fast pl	mode us	Unit
		ons	Min	Max	Min	Max	Min	Max	
t _{SCL(H)}	SCL clock high time	_	4.0	_	0.6		0.2		μs
t _{SCL(L)}	SCL clock low time	_	4.7	_	1.3		0.5		μs
t _{su(SDA)}	SDA setup time	_	250	_	100		50		ns
t _{h(SDA)}	SDA data hold time	_	0(3)	3450	0	900	0	450	ns
t _{r(SDA/SCL)}	SDA and SCL rise time	_		1000		300	_	120	ns
t _f (SDA/SCL)	SDA and SCL fall time	_		300		300	_	120	ns
t _{h(STA)}	Start condition hold time	_	4.0	_	0.6		0.26		μs
t _{s(STA)}	Repeated Start condition setup time	_	4.7	_	0.6	_	0.26	-	μs
t _{s(STO)}	Stop condition setup time		4.0		0.6	_	0.26	_	μs
t _{buff}	Stop to Start condition time (bus free)	_	4.7	_	1.3	ı	0.5	_	μs

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 4-7. I2C bus timing diagram

⁽²⁾ To ensure the standard mode I2C frequency, f_{PCLK1} must be at least 2 MHz. To ensure the fast mode I2C frequency, f_{PCLK1} must be at least 4 MHz. To ensure the fast mode plus I2C frequency, f_{PCLK1} must be at least a multiple of 10 MHz.

⁽³⁾ The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL.

4.21 SPI characteristics

Table 4-40. Standard SPI characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{SCK}	SCK clock frequency	_	_	_	16	MHz		
t _{sck(H)}	SCK clock high time	Master mode, f _{PCLKx} = 64 MHz, presc = 4	_	20	_	ns		
t _{sck (L)}	SCK clock low time Master mode, f _{PCLKx} = 64 MHz, presc = 4		_	20	_	ns		
	SPI master mode							
t _{V(MO)}	Data output valid time	_	_	_	10	ns		
t _{SU(MI)}	Data input setup time	_	1	_	_	ns		
t _{H(MI)}	Data input hold time	_	0	1		ns		
		SPI slave mode						
t _{SU(NSS)}	NSS enable setup time	_	0	_	_	ns		
t _{H(NSS)}	NSS enable hold time	_	1	_	_	ns		
t _{A(SO)}	Data output access time	_	_	8	_	ns		
t _{DIS(SO)}	Data output disable time	_	_	9	_	ns		
t _{V(SO)}	Data output valid time	_		9		ns		
t _{SU(SI)}	Data input setup time	_	0	_		ns		
t _{H(SI)}	Data input hold time	_	1	_	_	ns		

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-8. SPI timing diagram - master mode

Figure 4-9. SPI timing diagram - slave mode

4.22 I2S characteristics

Table 4-41. I2S characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fck	Clock frequency	Master mode (data: 16 bits, Audio frequency = 96 kHz)	_	6.25	_	MHz
		Slave mode	_	_	12.5	
tн	Clock high time		_	80		ns
t∟	Clock low time			80		ns
t _{V(WS)}	WS valid time	Master mode	_	3	_	ns
t _{H(WS)}	WS hold time	Master mode	_	3	_	ns
tsu(ws)	WS setup time	Slave mode	0	_	_	ns
t _{H(WS)}	WS hold time	Slave mode	3	_	_	ns
Ducy _(sck)	I2S slave input clock duty cycle	Slave mode	_	50	_	%
t _{SU(SD_MR)}	Data input setup time	Master mode	1	_	_	ns
t _{SU(SD_SR)}	Data input setup time	Slave mode	0	_		ns
t _{H(SD_MR)}	Data input hold time	Master receiver	0	_	_	ns
t _{H(SD_SR)}	Data iriput riolu time	Slave receiver	1	_	_	ns
tv(sd_st)	Data output valid time	Slave transmitter (after enable edge)	_	_	10	ns
t _{H(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	3	_	_	ns
t _{V(SD_MT)}	Data output valid time	Master transmitter (after enable edge)	_	_	10	ns
th(SD_MT)	Data output hold time	Master transmitter (after enable edge)	0	_	_	ns

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-10. I2S timing diagram - master mode

Figure 4-11. I2S timing diagram - slave mode

4.23 USART/LPUART characteristics

Table 4-42. USART/LPUART characteristics(1)

Symbol	Parameter Conditions		Min	Тур	Max	Unit
fsck	SCK clock frequency	f _{PCLKx} = 64 MHz	1	_	32	MHz
tsck(H)	SCK clock high time	f _{PCLKx} = 64 MHz	15.625	_	_	ns
t _{SCK(L)}	SCK clock low time	f _{PCLKx} = 64 MHz	15.625	_	_	ns

⁽¹⁾ Guaranteed by design, not tested in production.

4.24 USBD characteristics

Table 4-43. USBD startup time

Symbol	Parameter	Max	Unit
tstartup ⁽¹⁾	USBD startup time	1	μs

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-44. USBD DC electrical characteristics

Symb	ool	Parameter	Parameter Conditions		Тур	Max	Unit
	V_{DD}	USBD operating voltage	_	3.0	_	3.63	
Input	V_{DI}	Differential input sensitivity	_	0.2	_	_	V
levels ⁽¹⁾	els ⁽¹⁾ V _{CM} Differential common mode range		Includes V _{DI} range	0.8	_	2.5	V
	VsE	Single ended receiver threshold	_	0.8	_	2.0	
Output	V_{OL}	Static output level low	$R_Lof1.0~k\Omega$ to $3.63~V$	_	_	0.3	V
levels (2)	V _{OH}	Static output level high	R_L of 15 $k\Omega$ to V_{SS}	2.8	3.3	3.63	V
R _{PU} (2)	USBDP	$V_{IN} = V_{SS}$	1.2	1.5	1.8	ΚΩ

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-45. USBD full speed-electrical characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _R	Rise time	$C_L = 50 pF$	4	5	20	ns
t _F	Fall time	$C_L = 50 pF$	4	5	20	ns
trfm	Rise/ fall time matching	t _R / t _F	90	_	111	%
Vcrs	Output signal crossover voltage	_	1.09	_	2.0	V

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 4-12. USBD timings: definition of data signal rise and fall time

⁽²⁾ Based on characterization, not tested in production.

4.25 WDGT characteristics

Table 4-46. FWDGT min/max timeout period at 32 kHz (IRC32K)(1)

		·		
Prescaler divider	PSC[2:0] bits	Min timeout RLD[11:0]= 0x000	Max timeout RLD[11:0]= 0xFFF	Unit
1/4	000	0.03125	511.90625	
1/8	001	0.03125	1023.78125	
1/16	010	0.03125	2047.53125	
1/32	011	0.03125	4095.03125	ms
1/64	100	0.03125	8190.03125	
1/128	101	0.03125	16380.03125	
1/256	110 or 111	0.03125	32760.03125	

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-47. WWDGT min-max timeout value at 32 MHz (f_{PCLK1})⁽¹⁾

Prescaler divider	PSC[3:0]	Min timeout value CNT[6:0] = 0x40	Unit	Max timeout value CNT[6:0] = 0x7F	Unit
1/1	0000	128		8.192	
1/2	0001	256	μs	16.384	
1/4	0010	512		32.768	
1/8	0011	1.024		65.536	
1/16	0100	2.048		131.072	
1/32	0101	4.096		262.144	
1/64	0110	8.192		524.288	
1/128	0111	16.384		1048.576	
1/256	1000	32.768	ms	2097.152	ms
1/512	1001	65.536		4194.304	
1/1024	1010	131.072		8388.608	
1/2048	1011	262.144		16777.216	
1/4096	1100	524.288		33554.432	
1/8192	1101	1048.576		67108.864	
1/1	1110	128	ш	4.096	
1/1	1111	128	μs	4.096	

⁽¹⁾ Guaranteed by design, not tested in production.

4.26 Parameter conditions

Unless otherwise specified, all values given for $V_{DD} = V_{DDA} = 3.3 \ V, \ T_A = 25 \ ^{\circ}\!\! C \, .$

5 Package information

5.1 LQFP64 package outline dimensions

Figure 5-1. LQFP64 package outline

Table 5-1. LQFP64 package dimensions

Symbol	Min	Тур	Max
А	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	11.80	12.00	12.20
D1	9.90	10.00	10.10
Е	11.80	12.00	12.20
E1	9.90	10.00	10.10
е	_	0.50	_
eB	11.25	— 11.4	
L	0.45	45 — 0.7	
L1		1.00 —	
θ	0°		7°

Figure 5-2. LQFP64 recommended footprint

5.2 LQFP48 package outline dimensions

Figure 5-3. LQFP48 package outline

Table 5-2. LQFP48 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	_	0.50	_
eB	8.10	_	8.25
L	0.45	_	0.75
L1		1.00	
θ	0°	_	7°

Figure 5-4. LQFP48 recommended footprint

5.3 LQFP32 package outline dimensions

Figure 5-5. LQFP32 package outline

Table 5-3. LQFP32 package dimensions

Symbol	Min	Тур	Max
А	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.33	_	0.41
b1	0.32	0.35	0.38
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	_	0.80	_
eB	8.10	_	8.25
L	0.45	_	0.75
L1	_	1.00	_
θ	0°	_	7°

Figure 5-6. LQFP32 recommended footprint

5.4 QFN32 package outline dimensions

Figure 5-7. QFN32 package outline

Table 5-4. QFN32 package dimensions

Symbol	Min	Тур	Max
Α	0.70	0.75	0.80
A1	0	0.02	0.05
b	0.15	0.20	0.25
b1	_	0.14	_
С	_	0.20	_
D	3.90	4.00	4.10
D2	2.60	2.70	2.80
E	3.90	4.00	4.10
E2	2.60	2.60 2.70	
е	_	0.40	
h	0.25	0.30	0.35
K	_	0.30	
L	0.30 0.35		0.40
Nd	_	2.80	_
Ne	_	2.80	

Figure 5-8. QFN32 recommended footprint

5.5 Thermal characteristics

Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter " θ ". For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface.

 θ_{JA} : Thermal resistance, junction-to-ambient.

θ_{JB}: Thermal resistance, junction-to-board.

 θ_{JC} : Thermal resistance, junction-to-case.

ΨЈВ: Thermal characterization parameter, junction-to-board.

Ψ_{JT}: Thermal characterization parameter, junction-to-top center.

$$\theta_{JA} = (T_J - T_A)/P_D \tag{5-1}$$

$$\theta_{JB} = (T_J - T_B)/P_D \tag{5-2}$$

$$\theta_{JC} = (T_J - T_C)/P_D \tag{5-3}$$

Where, T_J = Junction temperature.

 T_A = Ambient temperature

T_B = Board temperature

T_C = Case temperature which is monitoring on package surface

P_D = Total power dissipation

 θ_{JA} represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower θ_{JA} can be considerate as better overall thermal performance. θ_{JA} is generally used to estimate junction temperature.

 θ_{JB} is used to measure the heat flow resistance between the chip surface and the PCB board.

 θ_{JC} represents the thermal resistance between the chip surface and the package top case. θ_{JC} is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package).

Table 5-6. Package thermal characteristics⁽¹⁾

Symbol	Condition	Package	Value	Unit
θја		LQFP64	54.57	°C/W
	Natural convection, 2S2P PCB	LQFP48	69.64	
		LQFP32	55.26	
		QFN32	42.57	
ӨЈВ	Cold plate 2020 DCD	LQFP64	35.08	°C/W
	Cold plate, 2S2P PCB	LQFP48	43.16	C/VV

GD32L233xx Datasheet

Symbol	Condition	Package	Value	Unit
		LQFP32	26.24	
		QFN32	19.21	
		LQFP64	18.11	
Өлс	Cold plata 252B BCB	LQFP48	25.36	°C/W
OJC	Cold plate, 2S2P PCB	LQFP32	25.23	C/VV
		QFN32	19.10	
	Natural convention 2020 DCD	LQFP64	35.41	°C/W
l		LQFP48	47.75	
ΨЈВ	Natural convection, 2S2P PCB		32.03	C/VV
		QFN32	19.18	
Ψлт	N. J. G. GOOD DOD	LQFP64	1.10	
		LQFP48	2.45	°C/W
	natural convection, 252P PCB	Natural convection, 2S2P PCB LQFP32 2.06	2.06	
		QFN32	QFN32 0.62	

⁽¹⁾ Thermal characteristics are based on simulation, and meet JEDEC specification.

6 Ordering information

Table 6-1. Part ordering code for GD32L233xx devices

Table 0-1. Falt ordering code for GD32L233XX devices					
Ordering code	Flash (KB)	Package	Package type	Temperature operating range	
GD32L233RCT6	256	LQFP64	Green	Industrial	
GD32L233KC10	250	LQFF04	Green	-40°C to +85°C	
GD32L233RBT6	128	LQFP64	Green	Industrial	
GD32L233KB10	120	LQFF04	Green	-40°C to +85°C	
GD32L233R8T6	64	LQFP64	Green	Industrial	
GD32L233R616	04	LQFF04	Green	-40°C to +85°C	
GD32L233CCT6	256	LQFP48	Green	Industrial	
GD32L233CC10	250	LQFF40	Green	-40°C to +85°C	
GD32L233CBT6	128	LQFP48	Green	Industrial	
GD32L233CB10	120	LQFF40	Green	-40°C to +85°C	
GD32L233C8T6	64	LQFP48	Green	Industrial	
GD32L233C616	04	LQFF40	Green	-40°C to +85°C	
GD32L233KBT6	128	LQFP32	Green	Industrial	
GD32L233KB10	120	LQFF32	Green	-40°C to +85°C	
GD32L233K8T6	64	LQFP32	Green	Industrial	
GD32L233K616	04	LQFF32	Green	-40°C to +85°C	
GD32L233KBQ6	128	QFN32	Green	Industrial	
GD3ZLZ33NBQ0	120	QFNOZ	Gleen	-40°C to +85°C	
GD32L233K8Q6	64	QFN32	Green	Industrial	
GD3ZLZ33NOQ0	04	QFN3Z	Gleen	-40°C to +85°C	

7 Revision history

Table 7-1. Revision history

Revision No.	Description	Date
1.0	Initial Release	Oct.19, 2021
	Modify description in <u>Debug mode.</u>	
	Modify description in <u>Embedded memory.</u>	
	3. Add EMI parameter in <i>Table 4-9. EMI characteristics(1)</i> .	
1.1	4. Modify <u>table 4-17</u> and <u>table 4-19</u> .	Apr.13, 2022
	5. Modify power consumption value in <u>Table 4-7. Power</u>	
	consumption characteristics(2)(3)	
	6. Update QFN32 recommended footprint figure.	
	Modify USART pin function description from USARTx_RTS	
	to USARTx_RTS/USARTx_DE in Pin definitions .	
	2. Fixed the description of Flash memory and SRAM waiting	
1.2	state in <i>Embedded memory</i> .	Jul. 27, 2022
1.2	3. Add note of Figure 4-4. Recommended external NRST pin	
	<u>circuit</u> .	
	4.Update 4.12 VREF buffer characteristics.	
	5. Update 5.1 LQFP64 package outline dimensions.	

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.