Optimalna hiperravnina za slučaj linearno neodvojivih razreda 1

-SVMs (Support Vector Machines)

- do sada stroj s potpornim vektorima → razredi linearno odvojivi Teži slučaj - linearno neodvojivi uzorci

• za zadani skup uzoraka za učenje (engl. training set) NIJE MOGUĆE KONSTRUIRATI HIPERRAVNINU KOJA RAZDVAJA UZORKE BEZ POGREŠKE

ŽELIMO: Naći optimalnu hiperravninu koja minimizira vjerojatnost klasfikacijske pogreške

Margina razdvajanja naziva se mekom (engl. soft) ako za uzorak $(\vec{X_i}, d_i)$ ne vrijedi $d_i\cdot(\vec{W}^T\vec{X}_i+b)\geq +1,\,i=1,2,\ldots,N$ Povreda uvjeta $d_i(\vec{W}^T\vec{X}_i+b)\geq 1$ može nastupiti na dva načina

- (i) Uzorak $(\vec{X_i}, d_i)$ pada unutar područja odvajanja ALI na "pravu" stranu decizijske hiperravnine (na slici a)
- (ii) Uzorak (\vec{X}_i, d_i) pada na "krivu" stranu decizijske hiperravnine (na slici b)

Slika 1: Prikaz slučajeva povrede uvjeta

- Margina je definirana kao udaljenost između para paralelnih hiperrravnina opisanih s:

 $\vec{W}^T \vec{X} + b = \pm 1$

Uzorci za učenje pripadaju jednoj od tri kategorije uzoraka:

(i) vektori koji padaju izvan pojasa i koji su ispravno klasificirani /ti vektori zadovoljavaju: $d_i \cdot (\vec{W}^T \vec{X}_i + b) \ge 1, i = 1, 2, \dots, N/$

Slika 2: Drugačiji prikaz povrede

- (ii) vektori koji padaju unutar pojasa (margine) ali su pravilno razvrstani:(x)(o) za njih vrijedi: $0 \le d_i \cdot (\vec{W}^T \vec{X}_i + b) < 1$
- (iii) vektori s pogrešnom klasifikacijom: [o][x] za njih vrijedi $d_i \cdot (\vec{W}^T \vec{X}_i + b) < 0$

Sva tri slučaja mogu se objediniti u jedinstveni oblik: $d_i \cdot (\vec{W}^T \vec{X}_i + b) \ge 1 - \zeta_i$ - novi skup varijabli: $\{\zeta_i\}_{i=1}^N$

- (i) slučaj: odgovaraju uzorci za koje je $\zeta_i = 0$
- (ii) slučaj: $0 < \zeta_i \le 1$
- (iii) slučaj: $\zeta_i > 1$
 - Varijable ζ_i se nazivaju "labave" varijable (engl. slack variables) one su mjera odstupanja vektora od idealnog uvjeta separabilnosti uzoraka.
 - za $0 \le \zeta_i \le 1$ uzorak se nalazi unutar područja odvajanja ALI s prave strane decizijske ravnine
 - za $\zeta_i > 1$ uzorak pada na krivu stranu decizijske ravnine
 - potporni vektori su oni posebni uzorci koji zadovoljavaju jednadžbu $d_i \cdot (\vec{W}^T \vec{X}_i + b) \ge 1 \zeta_i, i = 1, 2, \dots, N$ čak i za slučaj $\zeta_i > 0$.

ZADATAK: Naći decizijsku funkciju (hiperravninu razdvajanja) za koju je klasifikacijska pogreška minimalna!

Drugačije interpretirano: Učiniti marginu što je moguće većom ali uz uvjet da je broj uzoraka sa $\zeta_i>0$ što je moguće manji!

Matematička interpretacija:

- minimizirati funkciju koštanja (funkcional)

$$J(\vec{W}, b, \vec{\zeta}) = \frac{1}{2} \|\vec{W}\|^2 + C \sum_{i=1}^{N} I(\zeta_i), \text{ gdje je } \vec{\zeta} \text{ vektor s komponentama } \zeta_i \text{ i}$$

$$I(\zeta_i) = \begin{cases} 1 & \zeta_i > 0 \\ 0 & \zeta_i = 0 \end{cases}$$

Parametar C je pozitivna konstanta kojom se upravlja relativan međuutjecaj $\frac{1}{2} \|\vec{W}\|^2$ i $\sum_{i=1}^{N} I(\zeta_i)$

- S. Haykin (1999.) predlaže dva moguća načina izbora C:
 - (i) eksperimentalno preko standardne uporabe uzoraka za učenje i validaciju
 - (ii) C se određuje analitički procjenom VC (Vapnik-Chervonenkis) dimenzije - koja je mjera ekspresivnosti porodice klasifikacijskih funkcija koje su ostvarene strojem za učenje:

dimenzija h, $h \leq \min \left\{ \left\lceil \frac{D^2}{\rho^2} \right\rceil, m_0 \right\} + 1$

D - dijametar najmanje kugle koja sadrži sve ulazne vektore $\vec{x_1}, \vec{x_2}, \dots, \vec{X_N}$ ρ - margina = $\frac{2}{\|\vec{W}\|}$ i

 m_0 - je dimenzionalnost ulaznosg prostora

Optimizacija izraza: $J(\vec{W}, b, \vec{\zeta}) = \frac{1}{2} \|\vec{W}\|^2 + C \sum_{i=1}^{N} I(\zeta_i)$, teška je jer je uključena i funkcija I(.) koja je diskontinuirana!

Uobičajen pristup \rightarrow izabrati optimizaciju funkcije koja je "bliska" funkciji koš-

$$J(\vec{W}, b, \vec{\zeta}) = \frac{1}{2} \|\vec{W}\|^2 + C \sum_{i=1}^{N} \zeta_i$$
, uz $d_i \cdot (\vec{W}^T \vec{X}_i + b) \ge 1 - \zeta_i$, $i = 1, 2, ..., N$ i $\zeta_i \ge 0$, $i = 1, 2, ..., N$

Formalno: primarni problem za neseparatibilne razrede

- Za zadani skup uzoraka za učenje $\left\{ \vec{X_i}, d_i \right\}_{i=1}^N$ naći optimalne vrijednosti težinskog vektora \vec{W} i pomaknuća b tako da su zadovoljena sljedeća ograničenja: $d_i \cdot (\vec{W}^T \vec{X}_i + b) \ge 1 - \zeta_i$, za $i = 1, 2, \dots, N$ i $\zeta_i \ge 0$, za sve i

i to takve da \vec{W} i labave varijable ζ_i minimiziraju funkciju koštanja

 $J(\vec{W},b,\vec{\zeta}) = \frac{1}{2}\vec{W}^T\vec{W} + C\sum_{i=1}^N \zeta_i$, pri čemu je C korisničko definiran pozitivni

Uporabom metode Lagrangeovih multiplikatora i postupkom sličnim za lin. sep-

$$\mathcal{L}(\vec{W}, b, \vec{\zeta}, \vec{\lambda}, \vec{\mu}) = \frac{1}{2} \left\| \vec{W} \right\|^2 + C \sum_{i=1}^{N} \zeta_i - \sum_{i=1}^{N} \mu_i \zeta_i - \sum_{i=1}^{N} \lambda_i \cdot [d_i(\vec{W}^T \vec{X}_i + b) - 1 + \zeta_i]$$

Odgovarajući K-K-T (Karush-Kuhn-Tucker) uvjeti su

$$\frac{\partial \mathcal{L}}{\partial \vec{W}} = \vec{0}$$
ili $\vec{W} = \sum\limits_{i=1}^{N} \lambda_i d_i \vec{X_i}$

$$\frac{\partial \mathcal{L}}{\partial b} = 0$$
ili $\sum\limits_{i=1}^{N} \lambda_i d_i = 0$

$$\frac{\partial \mathcal{L}}{\partial \zeta_i} = \vec{0} \text{ ili } C - \mu_i - \lambda_i = 0$$

$$i = 1, 2, \dots, N$$

$$i = 1, 2, \dots, N$$

$$i = 1, 2, \dots, N$$

 $\lambda_i[d_i(\vec{W}^T\vec{X}_i + b) - 1 + \zeta_i] = 0 , i = 1, 2, \dots, N$
 $\mu_i\zeta_i = 0 , i = 1, 2, \dots, N$

$$\mu_i \geq 0$$
, $\lambda_i \geq 0$, $i = 1, 2, \dots, N$

Pridružena Wolfeova dualna reprezentacija postaje: maksimiziraj $\mathcal{L}(\vec{W}, b, \vec{\lambda}, \vec{\zeta}, \vec{\mu})$ uz ograničenja :

$$\vec{W} = \sum_{i=1}^{N} \lambda_{i} d_{i} \vec{X}_{i}$$

$$C - \mu_{i} - \lambda_{i} = 0 , i = 1, 2, ..., N$$

$$\lambda_{i} \ge 0 , \mu_{i} \ge 0 , i = 1, 2, ..., N$$

$$\lambda_i \geq 0 \;,\; \mu_i \geq 0 \;,\; i=1,2,\ldots,N$$
 Uvrštavanjem nejednadžbi u \mathcal{L} dobiva se:
$$\max_{\vec{\lambda}} (\sum_{i=1}^N \lambda_i - \frac{1}{2} \sum_{i=1}^N \lambda_i \lambda_j d_i d_j \vec{X_i}^T \vec{X_j}) \; \text{uz uvjete} \; 0 \leq \lambda_i \leq C \;,\; i=1,2,\ldots,N \; \text{i}$$

$$\sum_{i=1}^N \lambda_i d_i = 0$$

Lagrangeovi multiplikatori koji odgovaraju točkama (uzorcima) koji leže unutar margine ili na krivoj stani klasifikatora, tj. $\zeta_i > 0$ su svi jednaki maksimalno dopuštenoj vrijednosti C.

- promotrimo izraz:

$$\max_{\vec{\lambda}} (\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i=1}^{N} \lambda_i \lambda_j d_i d_j \vec{X_i}^T \vec{X_j})$$

 $\max_{\vec{\lambda}}(\sum_{i=1}^N \lambda_i - \tfrac{1}{2}\sum_{i=1}^N \lambda_i \lambda_j d_i d_j \vec{X_i}^T \vec{X_j})$ vidimo da niti labave varijable ζ_i niti Lagrangeovi multiplikatori pridruženi labavim varijablama μ_i ne ulaze eksplicitno u problem

- oni su prisutni neizravno kroz C, odnosno kroz uvjet: $0 \le \lambda_i \le C$

Razlika u odnosu na linearno separatibilni slučaj:

Lagrangeovi multiplikatori su (moraju biti) ograničeni sa C. / $0 \le \lambda_i \le C$ /

-za linearno separatibilni slučaj $C \to \infty / \lambda_i \ge 0/$

Osim ove modifikacije

$$\lambda_i \ge 0 \to 0 < \lambda_i \le C$$

postupak računanja optimalnih vrijednosti vektora \vec{W} i pomaknuća b je jednak kao i kod separatibilnog slučaja

Rješenje:

$$\vec{W_0} = \sum_{i=1}^{N_s} \lambda_{0,i} d_i \vec{X_i}$$
, gdje je N_S broj vektora koji su potporni, a $0 < \lambda_{0,i} < C$

pomaknuće b_0 se može odrediti uzimajući bilo koji $(\vec{X_i},d_i)$ iz skupa za učenje za koji vrijedi $0 < \lambda_{0,i} < C$ i zato je $\zeta_i = 0$