UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

Desarrollo de Software y Tecnologías Emergentes

Lenguaje C

ALUMNO: Barrios Retana Lizeth
MATRÍCULA: 372813

GRUPO: 932

PROFESOR: Yulith Vanessa Altamirano Flores

Ensenada, Baja California a 10 de octubre de 2023.

Práctica 4. Funciones con retorno y sin retorno

instrucciones

Desarrollen el código en lenguaje C y elaboren el diagrama de flujo correspondiente para los ejercicios. Será suficiente con un archivo .cpp que contenga todos los ejercicios organizados en un menú implementado mediante una estructura switch.

Repositorio

https://github.com/LizBarrios/practica4_FuncionesCon RetornoySinRetorno_BarriosRetana_Lizeth.git

Diagrama de Flujo

Problemos

- 1. Fibonacci sin Recursión: Crea un programa que calcule y muestre los primeros n términos de la serie de Fibonacci sin utilizar recursión.
 - Instrucciones:
 - En la función main, solicita al usuario que ingrese el valor de n, que representará el término de la serie de Fibonacci que desea calcular.
 - calcularFibonacci: Esta función debe tomar un número entero como entrada y calcular el término n de la serie de Fibonacci. El resultado debe mostrarse en pantalla de manera clara, indicando cuál es el término n de la serie. No debe devolver ningún valor, solo mostrar el resultado.
 - Utiliza la función calcularFibonacci para que calcule el término n de la serie de Fibonacci.
 - Asegúrate de que el programa maneje correctamente los casos base (n igual a 0 o 1).
 - Pregunta al usuario si desea calcular el término de la serie de Fibonacci para otro valor de n. Si es así, permite al usuario ingresar otro valor y calcular el término correspondiente. Si no, muestra un mensaje de despedida y termina el programa.
- 2. Fibonacci con Recursión: Crea un programa en C que calcule y muestre el término n de la serie de Fibonacci utilizando una función recursiva.
 - Instrucciones:
 - Implementa una función llamada calcularFibonacciRecursion que tome un número entero n como argumento y devuelva el término n de la serie de Fibonacci.

- En la función main, solicita al usuario que ingrese el valor de n, que representará el término de la serie de Fibonacci que desea calcular.
- Útiliza la función calcularFibonacciRecursion para calcular el término n de la serie de Fibonacci.
- Muestra el resultado en pantalla de manera clara, indicando cuál es el término n de la serie de Fibonacci.
- Asegúrate de que el programa maneje correctamente los casos base, es decir, cuando n es igual a 0 o 1, y devuelve el valor correspondiente.
- Pregunta al usuario si desea calcular el término de la serie de Fibonacci para otro valor de n. Si es así, permite al usuario ingresar otro valor y calcular el término correspondiente. Si no, muestra un mensaje de despedida y termina el programa.
- 3. Triángulo de Pascal: Crea un programa en C que genere y muestre las primeras n filas del Triángulo de Pascal.
 - Instrucciones:
 - Implementa una función llamada generarTrianguloPascal que tome un número entero n como argumento y muestre el Triángulo de Pascal con n filas.
 - En la función main, solicita al usuario que ingrese el número de filas n que desea en el Triángulo de Pascal.
 - Utiliza la función generarTrianguloPascal para generar y mostrar el Triángulo de Pascal con las n filas especificadas.
 - Asegúrate de que el Triángulo de Pascal se muestre de manera clara y legible, con los números alineados correctamente.
 - Pregunta al usuario si desea generar el Triángulo de Pascal con otro número de filas n. Si es así, permite al usuario ingresar otro valor y generar el Triángulo correspondiente. Si no, muestra un mensaje de despedida y termina el programa.

```
/*
   Nombre del archivo: Practica4.c
   Autor: Lizeth Barrios Retana
   Fecha de creación: 20 de septiembre de 2023
   Descripción: programa que contiene un menu donde hay 3 opciones: uno que hace los
numero de fibonacci sin recursion, fibonacci con recursion y el triangulo de pascal.
*/
#include <stdio.h>
#include "BRL.h"

int calcularFibonacciRecursion(int num);
void calcularFibonacci(int num);
int Coeficiente(int n, int k);
void generarTrianguloPascal(int num);
int main()
{
```

```
int op;
    int menu = 0;
    int num;
    do
        op = validarnumeros("\nQue actividad desea hacer?\n1. Fibonacci sin recursion\n2.
Fibonacci con recursion\n3. Triangulo de Pascal\n4. Salir\n", 1, 4);
        switch (op)
        case 1:
            num = validarnumeros("Ingresa la posicion del numero de la serie de Fibonacci
que deseas conocer: ", 0, 100000000);
            calcularFibonacci(num);
            menu = 1;
            break;
        case 2:
            num = validarnumeros("Ingresa la posicion del numero de la serie de Fibonacci
que deseas conocer: ", 0, 100000000);
            for (int i = 1; i \leftarrow num; i++)
                printf("%d ", calcularFibonacciRecursion(i));
            printf("\n");
            menu = 1;
            break;
        case 3:
            num = validarnumeros("Ingrese el numero de filas del Triangulo de Pascal: ", 0,
100000000);
            generarTrianguloPascal(num);
            menu = 1;
            break;
        case 4:
            system("cls");
            printf("FIN DEL PROGRAMA");
            return 0;
            break;
    } while (menu);
   Función: calcularFibonacci
  Parámetros:
    - num1: El primer número de la sucesion.
    - num2: El segundo número de la sucesion.
void calcularFibonacci(int num)
    int num1 = 0, num2 = 1, res;
    for (i = 0; i < num; i++)
```

```
res = num1 + num2;
        printf("%d ", res);
        num2 = num1;
       num1 = res;
   Función: calcularFibonacciRecursion
     - num: es el numero que ingresa el usuario.
int calcularFibonacciRecursion(int num)
       return num;
    else
        return calcularFibonacciRecursion(num - 1) + calcularFibonacciRecursion(num - 2);
  Descripción: calcula el factorial para el triangulo de pascal.
  Parámetros:
int factorial(int n)
       return 1;
       return n * factorial(n - 1);
   Función: coeficiente
  Descripción: calcula el coeficiente para el triangulo de pascal.
  Parámetros:
int Coeficiente(int n, int k)
```

```
return factorial(n) / (factorial(k) * factorial(n - k));
}

/*
Función: generarTrianguloPascal
Descripción: genera el triangulo.
Parámetros:
    - num: es el numero que ingresa el usiario.
    - i: recorre los numeros para las lineas.
    - j: recorre los numeros para imprimir.
    - k: recorre el valor para imprimir los numeros.
Valor de retorno: los numeros y las filas del triangulo.
*/

void generarTrianguloPascal(int num)
{
    int i, j, k;
    for (i = 0; i < num; i++)
    {
        printf(" ");
        }
        for (k = 0; k <= i; k++)
        {
            printf("%d ", Coeficiente(i, k));
        }
        printf("\n");
    }
    printf("\n");
}</pre>
```