5 - power.notebook May 22, 2021

Energy, power and resistance					Power and electrical energy		
	MUST (6)		Recall the meaning of power				
Learning objectives	SI	SHOULD (7)		Derive and apply equations for power			
	COULD (8/9)		Understand how domestic energy is charged and calculate costs of energy				
STARTE	RTER: A metal wire has a length I and a cross-sectional area A . When a potential difference V is applied to the wire, there is a current I in the wire.						
		What is the resistivity of the wire?			f the wire?		
		Α	$\frac{IA}{Vl}$		0	В	
		В	$\frac{VA}{Il}$	[0		
		С	$\frac{I l}{VA}$	[0		
		D	$\frac{Vl}{IA}$	[•	<u>0</u> :04:00	

5 - power.notebook May 22, 2021

E	nergy, power ar	nd resistance Power
	MUST (6)	Recall the meaning of power
	SHOULD (7)	Derive and apply equations for power

Power is the rate of energy transfer, and is measured in watts (W).

Equation 1:

Power = potential difference x current $\,P\!=\!VI\,$

$$P = VI$$

Think about what p.d. and current represent: can you explain why VI is equal to the rate of energy transfer? volts = joules per coulomb

0:05:00

current = coulombs per second so volts x current = joules per second

Equations 2 and 3:

We need to derive two other equations expressing P in terms of V, I and R. We have an equation without R, so now we need one without I and one without V. Use V = IR to derive them.

$$P = I^2 R \qquad P = \frac{V^2}{R}$$

Power in a resistor will be dissipated as heat.

Extension: why does the National Grid transmit electricity at extremely high voltages?

Energy, power and resistance

Power

COULD (8/9)

Understand how domestic power is charged and calculate costs of energy

We use the kWh (kilowatt hour) for energy billing: it means the amount of energy that would be used if a 1 kW appliance was used for an hour.

How many joules in 1 kWh? 3.6 million

Why do we use the kWh?

Energy (kWh) = power (kW) x time (hours)

A 500W appliance runs for 30 minutes. How many kWh?

Summary questions

- 1 Using the appropriate circuit symbols outline a simple experiment that could be used to determine the power of a filament lamp (you should include a circuit diagram in your answer). (2 marks)
- 2 Calculate the rate of energy transfer from a resistor with a current of 5.0 A and a p.d. of 8.0 V. (2 marks)
- 3 A 1.2 kW heater has a p.d. of 20 V when working normally. Calculate:
 - a the current in the heater;
 - b the energy transferred in one hour. (2 marks)
- 4 State and explain the effect on the rate of energy transfer for a component when:
 - a its resistance doubles (the current in the component remains unchanged);
 - b the current in the component doubles (the resistance is unchanged).
- 5 Using base units, show that one watt is equivalent to one volt amp (1W = 1VA).

9.10

- 1 Circuit diagram with power supply/cell/battery, filament lamp in series with an ammeter. Voltmeter connected in parallel across lamp.
- Measure V and I and calculate power using P = IV. [1]
- $P = IV = 5.0 \times 8.0 = 40 W$
- 3 a P = IV therefore $I = \frac{P}{V}$
 - $I = \frac{1200}{20} = 60 \ A$ [1]
 - **b** $P = \frac{W}{t}$ therefore W = Pt
- $W = 1200 \times 3600 = 4.3 \,\text{MJ} \,(2 \,\text{s.f.})$ [1] $P = I^2 R$ therefore at constant current $P \propto R$ [1]
- If R doubles P doubles. $P = I^2 R$ therefore if the resistance remains
 - unchanged $P \propto I^2$ If *I* doubles *P* increases by a factor of 4 (2^2) .

5 Find the watt in base units.

(4 marks)

(4 marks)

From
$$P = \frac{W}{t} \rightarrow [W] = [J s^{-1}]$$

From
$$W = Fx \rightarrow [J] = [N] \times [m]$$

Therefore
$$[W] = [N \text{ m s}^{-1}]$$

From
$$F = ma \rightarrow [N] = [kg m s^{-2}]$$

Therefore the watt in base units is
$$kg m^2 s^{-3}$$
.

Express V A in base units.

From
$$V = \frac{W}{Q} \rightarrow [V] = [J C^{-1}]$$

From
$$W = Fx \rightarrow [J] = [N] \times [m]$$

Therefore
$$[V] = [N m C^{-1}]$$

From
$$F = ma \rightarrow [N] = [kg m s^{-2}]$$

Therefore
$$[V] = [kg m^2 s^{-2} C^{-1}]$$

From
$$\Delta Q = I\Delta t \rightarrow [C] = [A \ s]$$

Therefore
$$[V] = [kg m^2 s^{-3} A^{-1}]$$

Therefore
$$[V A] = [kg m^2 s^{-3} A^{-1} A] = [kg m^2 s^{-3}]$$

5 - power.notebook May 22, 2021

