

Black Box

Milestone 1

Team LOST: Shahed Bader, Atticus Cameron, Anjali Dhamsania, Bebo Harraz, Nicole Kwok, Vladimir Leung, William Mah, Nicholas Ruei, Julia Zhiteneva

Overview

- Mission Objectives
- Team Organization
- Gantt Chart
- Design Concept & Calculations
 - Subsystems: structure, propulsion, drivetrain, steering, power, mission performance, navigation, sensors, communication, controls, and programming
- Expected Bill of Materials
- Expected Mass Chart
- Anticipated Problems + Solutions

Mission Objectives

- Navigate to within 250 mm of the black box locator beacon
- Measure and transmit the coordinates of the black box

Advanced Objectives

- Acquire the black box by lifting it entirely off of the sand
- Deliver the black box to the landing zone

Team Organization: Roles

- Team Leaders: Bahaa Harraz, Vladimir Leung
- Programming: Bahaa Harraz
- Circuitry: Vladimir Leung, Anjali Dhamsania
- Design/CAD: Nicole Kwok, Atticus Cameron
- Structure/Building: Nicholas Ruei, William Mah
- Mission Performance: Julia Zhiteneva, Shahed Bader

Team Organization: Meeting Arrangements and Communication

- Meeting Times:
 - Fridays 10-12
 - Second meeting after class on Wednesday
- Team GroupMe
- Advance notification of absences
- Place all purchase receipts into a shared folder
- Decision Making:
 - All decisions are arguable
 - In event of a disagreement, the majority opinion takes precedence
 - If a group member is absent, decisions are made by remaining members

Gantt Chart

Dimensions

Calculations at 0 Degrees

 F_N = normal force F_S = Force of gravity = (2.50)(9.81) = 24.5 N C_{RR} = coefficient of rolling resistance F_{RR} = force of rolling resistance F_{sf} = force of static friction TE = tractive effort T = torque W = angular velocity T = radius of the wheels = 5.00 cm T = vident of the wheels = 3.60 cm T = diameter of the wheels = 10.0 cm T = Coefficient of static friction = 0.700

$$F_N = \frac{F_g}{4} = \frac{2.50(9.81)}{4}$$

= 6.13 N on each wheel

$$C_{RR} = \left[3.33 \ x \left(\frac{6.13}{3.60(10.0)^2}\right)\right]^{1/3} = .384$$

$$F_{RR} = C_{RR} \cdot F_N = (.384)(6.13) = 2.35 \ N$$

$$F_{sf} = \mu \cdot F_N = (0.700)(6.13) = 4.29 \ N$$

$$F_{RR} < TE < F_{sf} \rightarrow 2.35 \ N < TE < 4.29 \ N$$

Calculations at 35 Degrees

•
$$F_N = \frac{F_g \cos(35)}{4} = \frac{2.50(9.81)\cos(35)}{4} = 5.02 N \text{ on each wheel}$$

•
$$C_{RR} = \left[3.33 \, x \, \left(\frac{5.02}{3.60(10.0)^2} \right) \right]^{1/3} = 0.359$$

- $F_{RR} = C_{RR} \cdot F_N = (.359)(5.02) = 1.80 N$
- $F_{sf} = \mu \cdot F_N = (0.700)(5.02) = 3.51 N$
- $F_{RR} < TE < F_{sf} \rightarrow 1.80 N < TE < 3.51 N$

Calculations

02.35 N < TE < 4.29 N01.80 N < TE < 3.51 NCombined2.35 N < TE < 3.51 N

TORQUE $\tau = r x F$

@0 $11.75 N \cdot cm < \tau < 21.45 N \cdot cm$

@35 $9.00 N \cdot cm < \tau < 17.55 N \cdot cm$

Combined: $11.75 N \cdot cm < \tau < 17.55 N \cdot cm$

Selecting a Motor

Chosen Motor:

No-load speed: 0.200 kRPM

Stall torque: 4.00 kg·cm

Linear equation:

$$\tau = (-20)\omega + 4.00$$

$$17.0 N \cdot cm \to 1.224 kg \cdot cm$$

$$1.224 kg \cdot cm = (-20)\omega + 4.00$$

$$\omega = 0.1388 \ kRPM = 138.8 \ RPM = 14.535 \frac{rad}{s}$$

Torque Vs. Angular Velocity

Selected Motor

Voltage = 12vdc

RPM = 200

37

Reduction = 30:1

Stall Torque = 55.6 oz-in (4 kg-cm)

42

Outside Diameter = 37mm

 α

Mass = 0.120769 kg

 13.5 ± 1

Expected Bill of Materials

Material	Cost (USD)	
APC220	\$	26.44
Wheels	\$	24.43
Infrared Sensor	\$	7.49
Romeo Microcontroller	\$	29.98
Ultrasonic Distance Sensor	\$	5.38
Fiberglass Base	\$	5.00
Control System	\$	34.95
Battery	\$	29.95
Forklift Motor (2x)	\$	45.96
Forklift Arms (2x)	\$	5.00
Motors	\$	21.95
Total:	\$	236.53

Expected Mass Chart

Items	Quantity	Estimated Mass(kg)	Source
APC220	1	0.03	Web
Wheels	4	0.8	Web
Infrared Sensor	1	0.005	Web
Romeo Microcontroller	1	0.06	Web
Ultrasonic Distance Sensor	3	0.009	Web
Base	1	0.366	Actual
Control System	1	0.15	Estimated
Battery	1	0.251	Web
Forklift Motor	4	0.18824084	Web
Forklift Arms	2	0.05	Estimated
Motors	4	0.4831	Web
Total		2.39234084	

Anticipated Problems + Solutions

- Parts breaking
 - Buy new materials when needed
- Disagreement
 - Majority rules, resolve problems in a mature fashion
- If lifting the black box lead to the OSV tilting from the weight
 - Add more counterweights to the back of the OSV
- If forklift arms can't correctly orient themselves around the black box
 - Write code to allow the OSV to have a greater scope of navigation