L. Vandenberghe ECE133A (Fall 2018)

- norm
- distance
- *k*-means algorithm
- angle
- complex vectors

Euclidean norm

(Euclidean) norm of vector $a \in \mathbf{R}^n$:

$$||a|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

= $\sqrt{a^T a}$

- if n = 1, ||a|| reduces to absolute value |a|
- measures the magnitude of *a*
- sometimes written as $||a||_2$ to distinguish from other norms, *e.g.*,

$$||a||_1 = |a_1| + |a_2| + \cdots + |a_n|$$

Properties

Positive definiteness

$$||a|| \ge 0$$
 for all a , $||a|| = 0$ only if $a = 0$

Homogeneity

$$\|\beta a\| = |\beta| \|a\|$$
 for all vectors a and scalars β

Triangle inequality (proved on page 2.7)

 $||a+b|| \le ||a|| + ||b||$ for all vectors a and b of equal length

Norm of block vector: if *a*, *b* are vectors,

$$\left\| \left[\begin{array}{c} a \\ b \end{array} \right] \right\| = \sqrt{\|a\|^2 + \|b\|^2}$$

Cauchy-Schwarz inequality

$$|a^T b| \le ||a|| ||b||$$
 for all $a, b \in \mathbf{R}^n$

moreover, equality $|a^Tb| = ||a|| ||b||$ holds if:

- a = 0 or b = 0; in this case $a^T b = 0 = ||a|| ||b||$
- $a \neq 0$ and $b \neq 0$, and $b = \gamma a$ for some $\gamma > 0$; in this case

$$0 < a^T b = \gamma ||a||^2 = ||a|| ||b||$$

• $a \neq 0$ and $b \neq 0$, and $b = -\gamma a$ for some $\gamma > 0$; in this case

$$0 > a^T b = -\gamma ||a||^2 = -||a|| ||b||$$

Proof of Cauchy–Schwarz inequality

- 1. trivial if a = 0 or b = 0
- 2. assume ||a|| = ||b|| = 1; we show that $-1 \le a^T b \le 1$

$$0 \le ||a - b||^{2}$$

$$= (a - b)^{T}(a - b)$$

$$= ||a||^{2} - 2a^{T}b + ||b||^{2}$$

$$= 2(1 - a^{T}b)$$

$$0 \le ||a + b||^{2}$$

$$= (a + b)^{T}(a + b)$$

$$= ||a||^{2} + 2a^{T}b + ||b||^{2}$$

$$= 2(1 + a^{T}b)$$

with equality only if a = b

with equality only if a = -b

3. for general nonzero a, b, apply case 2 to the unit-norm vectors

$$\frac{1}{\|a\|}a, \quad \frac{1}{\|b\|}b$$

Average and RMS value

let a be a real n-vector

• the *average* of the elements of *a* is

$$\mathbf{avg}(a) = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{\mathbf{1}^T a}{n}$$

• the root-mean-square value is the root of the average squared entry

$$\mathbf{rms}(a) = \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} = \frac{\|a\|}{\sqrt{n}}$$

Exercises

- show that $|\mathbf{avg}(a)| \leq \mathbf{rms}(a)$
- show that average of $b = (|a_1|, |a_2|, \dots, |a_n|)$ satisfies $\mathbf{avg}(b) \leq \mathbf{rms}(a)$

Triangle inequality from Cauchy–Schwarz inequality

for vectors a, b of equal size

$$||a + b||^{2} = (a + b)^{T}(a + b)$$

$$= a^{T}a + b^{T}a + a^{T}b + b^{T}b$$

$$= ||a||^{2} + 2a^{T}b + ||b||^{2}$$

$$\leq ||a||^{2} + 2||a|| ||b|| + ||b||^{2}$$
 (by Cauchy–Schwarz)
$$= (||a|| + ||b||)^{2}$$

- taking squareroots gives the triangle inequality
- triangle inequality is an equality if and only if $a^Tb = ||a|| ||b||$ (see page 2.4)
- also note from line 3 that $||a + b||^2 = ||a||^2 + ||b||^2$ if $a^T b = 0$

Outline

- norm
- distance
- *k*-means algorithm
- angle
- complex vectors

Distance

the (Euclidean) distance between vectors a and b is defined as ||a - b||

- $||a-b|| \ge 0$ for all a, b and ||a-b|| = 0 only if a = b
- triangle inequality

$$||a - c|| \le ||a - b|| + ||b - c||$$
 for all a, b, c

• RMS deviation between *n*-vectors *a* and *b* is $\mathbf{rms}(a-b) = \frac{\|a-b\|}{\sqrt{n}}$

Standard deviation

let a be a real n-vector

• the *de-meaned* vector is the vector of deviations from the average

$$a - \mathbf{avg}(a)\mathbf{1} = \begin{bmatrix} a_1 - \mathbf{avg}(a) \\ a_2 - \mathbf{avg}(a) \\ \vdots \\ a_n - \mathbf{avg}(a) \end{bmatrix} = \begin{bmatrix} a_1 - (\mathbf{1}^T a)/n \\ a_2 - (\mathbf{1}^T a)/n \\ \vdots \\ a_n - (\mathbf{1}^T a)/n \end{bmatrix}$$

• the standard deviation is the RMS deviation from the average

$$\mathbf{std}(a) = \mathbf{rms}(a - \mathbf{avg}(a)\mathbf{1}) = \frac{\left\| a - ((\mathbf{1}^T a)/n)\mathbf{1} \right\|}{\sqrt{n}}$$

the de-meaned vector in standard units is

$$\frac{1}{\mathbf{std}(a)}(a - \mathbf{avg}(a)\mathbf{1})$$

Mean return and risk of investment

- vectors represent time series of returns on an investment (as a percentage)
- average value is *(mean) return* of the investment
- standard deviation measures variation around the mean, i.e., risk

Exercise

show that

$$\mathbf{avg}(a)^2 + \mathbf{std}(a)^2 = \mathbf{rms}(a)^2$$

Solution

$$\mathbf{std}(a)^{2} = \frac{\|a - \mathbf{avg}(a)\mathbf{1}\|^{2}}{n}$$

$$= \frac{1}{n} \left(a - \frac{\mathbf{1}^{T}a}{n} \mathbf{1} \right)^{T} \left(a - \frac{\mathbf{1}^{T}a}{n} \mathbf{1} \right)$$

$$= \frac{1}{n} \left(a^{T}a - \frac{(\mathbf{1}^{T}a)^{2}}{n} - \frac{(\mathbf{1}^{T}a)^{2}}{n} + \left(\frac{\mathbf{1}^{T}a}{n} \right)^{2} n \right)$$

$$= \frac{1}{n} \left(a^{T}a - \frac{(\mathbf{1}^{T}a)^{2}}{n} \right)$$

$$= \mathbf{rms}(a)^{2} - \mathbf{avg}(a)^{2}$$

Exercise: nearest scalar multiple

given two vectors $a, b \in \mathbb{R}^n$, with $a \neq 0$, find scalar multiple ta closes to b

Solution

• squared distance between ta and b is

$$||ta - b||^2 = (ta - b)^T (ta - b) = t^2 a^T a - 2ta^T b + b^T b$$

a quadratic function of t with positive leading coefficient a^Ta

derivative with respect to t is zero for

$$\hat{t} = \frac{a^T b}{a^T a} = \frac{a^T b}{\|a\|^2}$$

Exercise: average of collection of vectors

given N vectors $x_1, \ldots, x_N \in \mathbf{R}^n$, find the n-vector z that minimizes

$$||z - x_1||^2 + ||z - x_2||^2 + \dots + ||z - x_N||^2$$

z is also known as the *centroid* of the points x_1, \ldots, x_N

Solution: sum of squared distances is

$$||z - x_1||^2 + ||z - x_2||^2 + \dots + ||z - x_N||^2$$

$$= \sum_{i=1}^n \left((z_i - (x_1)_i)^2 + (z_i - (x_2)_i)^2 + \dots + (z_i - (x_N)_i)^2 \right)$$

$$= \sum_{i=1}^n \left(Nz_i^2 - 2z_i \left((x_1)_i + (x_2)_i + \dots + (x_N)_i \right) + (x_1)_i^2 + \dots + (x_N)_i^2 \right)$$

here $(x_j)_i$ is *i*th element of the vector x_j

term i in the sum is minimized by

$$z_i = \frac{1}{N}((x_1)_i + (x_2)_i + \dots + (x_N)_i)$$

• solution z is component-wise average of the points x_1, \ldots, x_N :

$$z = \frac{1}{N}(x_1 + x_2 + \dots + x_N)$$

Outline

- norm
- distance
- *k*-means algorithm
- angle
- complex vectors

k-means clustering

a popular iterative algorithm for partitioning N vectors x_1, \ldots, x_N in k clusters

Algorithm

choose initial 'representatives' z_1, \ldots, z_k for the k groups and repeat:

- 1. assign each vector x_i to the nearest group representative z_i
- 2. set the representative z_i to the mean of the vectors assigned to it

- as a variation, choose a random initial partition and start with step 2
- initial representatives are often chosen randomly
- solution depends on choice of initial representatives or partition
- can be shown to converge in a finite number of iterations
- in practice, often restarted a few times, with different starting points

Example: first iteration

assignment to groups

updated representatives

assignment to groups

updated representatives

Final clustering

Image clustering

- MNIST dataset of handwritten digits
- N = 60000 grayscale images of size 28×28 (vectors x_i of size $28^2 = 784$)
- 25 examples:

Group representatives (k = 20)

- k-means algorithm, with k = 20 and randomly chosen initial partition
- 20 group representatives

Group representatives (k = 20)

result for another initial partition

Document topic discovery

- N = 500 Wikipedia articles, from weekly most popular lists (9/2015–6/2016)
- dictionary of 4423 words
- each article represented by a word histogram vector of size 4423
- result of k-means algorithm with k = 9 and randomly chosen initial partition

Cluster 1

largest coefficients in cluster representative z₁

word	fight	win	event	champion	fighter	
coefficient	0.038	0.022	0.019	0.015	0.015	

• documents in cluster 1 closest to representative

"Floyd Mayweather, Jr", "Kimbo Slice", "Ronda Rousey", "José Aldo", "Joe Frazier", ...

largest coefficients in cluster representative z₂

word	holiday	celebrate	festival	celebration	calendar	
coefficient	0.012	0.009	0.007	0.006	0.006	

documents in cluster 2 closest to representative

```
"Halloween", "Guy Fawkes Night", "Diwali", "Hannukah", "Groundhog Day", ...
```

Cluster 3

• largest coefficients in cluster representative *z*₃

word	united	family	party	president	government	
coefficient	0.004	0.003	0.003	0.003	0.003	

documents in cluster 3 closest to representative

"Mahatma Gandhi", "Sigmund Freund", "Carly Fiorina", "Frederick Douglass", "Marco Rubio", ...

largest coefficients in cluster representative z₄

word	album	release	song	music	single	
coefficient	0.031	0.016	0.015	0.014	0.011	

documents in cluster 4 closest to representative

"David Bowie", "Kanye West", "Celine Dion", "Kesha", "Ariana Grande", ...

Cluster 5

largest coefficients in cluster representative z₅

word	game	season	team	win	player	
coefficient	0.023	0.020	0.018	0.017	0.014	

documents in cluster 5 closest to representative

"Kobe Bryant", "Lamar Odom", "Johan Cruyff", "Yogi Berra", "José Mourinho", ...

largest coefficients in representative z₆

word	series	season	episode	character	film	
coefficient	0.029	0.027	0.013	0.011	0.008	

documents in cluster 6 closest to cluster representative

"The X-Files", "Game of Thrones", "House of Cards", "Daredevil", "Supergirl", ...

Cluster 7

largest coefficients in representative z₇

word	match	win	championship	team	event	
coefficient	0.065	0.018	0.016	0.015	0.015	

documents in cluster 7 closest to cluster representative

"Wrestlemania 32", "Payback (2016)", "Survivor Series (2015)", "Royal Rumble (2016)", "Night of Champions (2015)", ...

largest coefficients in representative z₈

word	film	star	role	play	series	
coefficient	0.036	0.014	0.014	0.010	0.009	

documents in cluster 8 closest to cluster representative

```
"Ben Affleck", "Johnny Depp", "Maureen O'Hara", "Kate Beckinsale", "Leonardo DiCaprio", . . .
```

Cluster 9

• largest coefficients in representative z₉

word	film	million	release	star	character	
coefficient	0.061	0.019	0.013	0.010	0.006	

documents in cluster 9 closest to cluster representative

"Star Wars: The Force Awakens", "Star Wars Episode I: The Phantom Menace", "The Martian (film)", "The Revenant (2015 film)", "The Hateful Eight", ...

Outline

- norm
- distance
- *k*-means algorithm
- angle
- complex vectors

Angle between vectors

the angle between nonzero real vectors a, b is defined as

$$\arccos\left(\frac{a^Tb}{\|a\| \|b\|}\right)$$

• this is the unique value of $\theta \in [0, \pi]$ that satisfies $a^T b = ||a|| ||b|| \cos \theta$

Cauchy–Schwarz inequality guarantees that

$$-1 \le \frac{a^T b}{\|a\| \|b\|} \le 1$$

Terminology

$$\theta = 0 \qquad a^{T}b = ||a|| ||b||$$

$$0 \le \theta < \pi/2 \qquad a^{T}b > 0$$

$$\theta = \pi/2 \qquad a^{T}b = 0$$

$$\pi/2 < \theta \le \pi \qquad a^{T}b < 0$$

$$\theta = \pi \qquad a^{T}b = -||a|| ||b||$$

vectors are aligned or parallel vectors make an acute angle vectors are orthogonal $(a \perp b)$ vectors make an obtuse angle vectors are anti-aligned or opposed

Correlation coefficient

the *correlation coefficient* between non-constant vectors a, b is

$$\rho_{ab} = \frac{\tilde{a}^T \tilde{b}}{\|\tilde{a}\| \|\tilde{b}\|}$$

where $\tilde{a} = a - \mathbf{avg}(a)\mathbf{1}$ and $\tilde{b} = b - \mathbf{avg}(b)\mathbf{1}$ are the de-meaned vectors

- only defined when a and b are not constant ($\tilde{a} \neq 0$ and $\tilde{b} \neq 0$)
- ullet ho_{ab} is the cosine of the angle between the de-meaned vectors
- a number between −1 and 1
- ullet ρ_{ab} is the average product of the deviations from the mean in standard units

$$\rho_{ab} = \frac{1}{n} \sum_{i=1}^{n} \frac{(a_i - \mathbf{avg}(a))}{\mathbf{std}(a)} \frac{(b_i - \mathbf{avg}(b))}{\mathbf{std}(b)}$$

Examples

Regression line

- scatter plot shows two n-vectors a, b as n points (a_k, b_k)
- straight line shows affine function $f(x) = c_1 + c_2 x$ with

$$f(a_k) \approx b_k, \quad k = 1, \dots, n$$

Least squares regression

use coefficients c_1 , c_2 that minimize $J = \frac{1}{n} \sum_{k=1}^{n} (f(a_k) - b_k)^2$

• J is a quadratic function of c_1 and c_2 :

$$J = \frac{1}{n} \sum_{k=1}^{n} (c_1 + c_2 a_k - b_k)^2$$
$$= \left(nc_1^2 + 2n \operatorname{avg}(a) c_1 c_2 + \|a\|^2 c_2^2 - 2n \operatorname{avg}(b) c_1 - 2a^T b c_2 + \|b\|^2 \right) / n$$

• to minimize J, set derivatives with respect to c_1 , c_2 to zero:

$$c_1 + \mathbf{avg}(a)c_2 = \mathbf{avg}(b), \qquad n \mathbf{avg}(a)c_1 + ||a||^2 c_2 = a^T b$$

solution is

$$c_2 = \frac{a^T b - n \operatorname{avg}(a) \operatorname{avg}(b)}{\|a\|^2 - n \operatorname{avg}(a)^2}, \qquad c_1 = \operatorname{avg}(b) - \operatorname{avg}(a)c_2$$

Interpretation

slope c_2 can be written in terms of correlation coefficient of a and b:

$$c_2 = \frac{(a - \operatorname{avg}(a)\mathbf{1})^T (b - \operatorname{avg}(b)\mathbf{1})}{\|a - \operatorname{avg}(a)\mathbf{1}\|^2} = \rho_{ab} \frac{\operatorname{std}(b)}{\operatorname{std}(a)}$$

• hence, expression for regression line can be written as

$$f(x) = \mathbf{avg}(b) + \frac{\rho_{ab} \operatorname{std}(b)}{\operatorname{std}(a)} (x - \operatorname{avg}(a))$$

• correlation coefficient ρ_{ab} is the slope after converting to standard units:

$$\frac{f(x) - \mathbf{avg}(b)}{\mathbf{std}(b)} = \rho_{ab} \frac{x - \mathbf{avg}(a)}{\mathbf{std}(a)}$$

Examples

- dashed lines in top row show average ± standard deviation
- bottom row shows scatter plots of top row in standard units

Outline

- norm
- distance
- *k*-means algorithm
- angle
- complex vectors

Norm

norm of vector $a \in \mathbb{C}^n$:

$$||a|| = \sqrt{|a_1|^2 + |a_2|^2 + \dots + |a_n|^2}$$

= $\sqrt{a^H a}$

• positive definite:

$$||a|| \ge 0$$
 for all a , $||a|| = 0$ only if $a = 0$

homogeneous:

$$\|\beta a\| = |\beta| \|a\|$$
 for all vectors a , complex scalars β

• triangle inequality:

$$||a + b|| \le ||a|| + ||b||$$
 for all vectors a, b of equal size

Cauchy-Schwarz inequality for complex vectors

$$|a^H b| \le ||a|| ||b||$$
 for all $a, b \in \mathbb{C}^n$

moreover, equality $|a^H b| = ||a|| ||b||$ holds if:

- a = 0 or b = 0
- $a \neq 0$ and $b \neq 0$, and $b = \gamma a$ for some (complex) scalar γ

- exercise: generalize proof for real vectors on page 2.4
- we say a and b are *orthogonal* if $a^Hb=0$
- we will not need definition of angle, correlation coefficient, ... in \mathbb{C}^n