Задача 3. Списки инцидентности

Источник: базовая II

Имя входного файла: --Имя выходного файла: --

Ограничение по времени: 3 секунды* Ограничение по памяти: 128 мегабайт

Дан неориентированный граф из N вершин и M рёбер. Рёбра заданы одним списком, каждое ребро задаётся парой концевых вершин и весом. Возможны кратные рёбра и петли. Требуется за один проход по списку рёбер составить списки инцидентности для всех вершин.

От вас требуется отправить один файл sol.c. В нём следует подключить хедер sol.h следующего содержания:

```
#ifndef EDGELISTS_SOL_579846984654
#define EDGELISTS_SOL_579846984654
typedef struct {
    int from, to;
    int weight;
} Edge;
//call these functions to get the graph data:
//returns N -- the number of vertices in the graph
int getVerticesCount();
//reads the next edge from the edge list
//if there is next edge, returns 1 and stores that edge to *oEdge
//if there is no next edge, returns 0 without touching pointer
int readEdge(Edge *oEdge);
//implement these functions in your solution:
//this function is called first to initialize graph
//you are expected to read graph here and fill internal data structures
void init();
//returns number of edges indicent to vertex iVertex
int getEdgesCount(int iVertex);
//returns iIndex-th edge incident to the vertex iVertex
//it must have .from == Vertex and .to denoting the other end
Edge getIncidentEdge(int iVertex, int iIndex);
```

#endif

B sol.c нужно реализовать функции init, getEdgesCount и getIncidentEdge. Функции getVerticesCount, readEdge будут реализованы в другой единице трансляции и слинкованы вместе с вашим кодом. Для тестирования "у себя" вам желательно тоже их где-то реализовать, но отправлять в систему их не нужно.

Ограничения на размер графа: $N\leqslant 3\cdot 10^5,\, M\leqslant 3\cdot 10^5.$ В данной задаче всё нумеруется

Императивное программирование 2 Контест 4,

начиная с нуля.

Гарантируется, что при тестировании функция init будет вызвана один раз до всех остальных вызовов. Остальные две функции могут вызываться в произвольном порядке и объёме. Гарантируется, что все вызовы корректны: iVertex лежит в пределах от 0 до (N-1), а iIndex в пределах от 0 до того, что вернула ваша функция getEdgesCount, минус один. Всего количество вызовов getEdgesCount и getIncidentEdge не превышает 10^6 .

Обратите внимание, что каждое ребро должно входить в список инцидентности обеих своих концевых вершин. Петля должна входить дважды в список рёбер своей вершины. Порядок рёбер в каждом списке инцидентности значения не имеет.

Пример

Ниже схематично приведён порядок вызовов функций на первом тесте. Для кратности getIncidentEdge обозначается как getIE.

omorada do do do mana na mana go one.	
5 = getVerticesCount()	init()
1 = readEdge() : [0, 2, 178]	2 = getEdgesCount(0)
1 = readEdge() : [3, 4, 207]	[0, 2, 178] = getIE(0, 0)
1 = readEdge() : [1, 1, 356]	[0, 2, 101] = getIE(0, 1)
1 = readEdge() : [2, 0, 101]	4 = getEdgesCount(1)
1 = readEdge() : [4, 1, 286]	[1, 1, 356] = getIE(1, 0)
1 = readEdge() : [4, 1, 213]	[1, 4, 286] = getIE(1, 3)
<pre>0 = readEdge()</pre>	[1, 1, 356] = getIE(1, 2)
<pre>0 = readEdge()</pre>	[1, 4, 213] = getIE(1, 1)
	2 = getEdgesCount(2)
	[2, 0, 178] = getIE(2, 0)
	[2, 0, 101] = getIE(2, 1)
	1 = getEdgesCount(3)
	[3, 4, 207] = getIE(3, 0)
	3 = getEdgesCount(4)
	[4, 3, 207] = getIE(4, 2)
	[4, 1, 286] = getIE(4, 0)
	[4, 1, 213] = getIE(4, 1)