

Progetto del controllore

Funzione di sensibilità

- Sensibilità parametrica
- Andamento e significati della funzione di sensibilità S(s)
- Implicazioni sul progetto del controllore

Funzione di sensibilità

Sensibilità parametrica

Sensibilità alle variazioni parametriche (1/3)

- Obiettivo: valutare l'influenza di variazioni dei parametri che definiscono le fdt del sistema da controllare e del controllore stesso sulla risposta del sistema controllato
 - Per valutare la robustezza della stabilità del sistema controllato rispetto a variazioni della fdt d'anello sono già stati introdotti i margini di stabilità
 - Obiettivo di questa lezione è lo studio dell'influenza di variazioni parametriche sulla **fedeltà di risposta** del sistema controllato

Sensibilità alle variazioni parametriche (2/3)

- Le funzioni di sensibilità (o sensitività) formalizzano il concetto di "reattività" del sistema alle variazioni, intesa come rapporto tra la variazione relativa di una grandezza (come conseguenza di una variazione parametrica) e la variazione relativa del parametro stesso
- Si definisce **funzione di sensibilità** $S_p^{W_y}$ della fdt in catena chiusa $W_y(s)$ rispetto ad un parametro p la seguente funzione:

$$S_p^{W_y} = \frac{\partial W_y(s)}{W_y(s)} / \frac{\partial p}{p} = \frac{\partial W_y(s)}{\partial p} \cdot \frac{p}{W_y(s)}$$

Sensibilità alle variazioni parametriche (3/3)

- Se la funzione di sensibilità $S_p^{W_y}$ assume valori piccoli (molto minori di 1), la fdt W_y (s) risulta poco sensibile alle variazioni del parametro p e quindi la risposta del sistema non si modifica significativamente al variare di p
- Se la funzione di sensibilità S_p^{W_y} assume valori prossimi a 1 o maggiori, la fdt W_y(s) subisce variazioni relative di entità pari o maggiore di quelle del parametro p e quindi anche la risposta del sistema varia pesantemente al variare di p

La funzione di sensibilità (1/7)

Si consideri il consueto schema di controllo:

- Sia p un parametro variabile in $G_a(s) = C(s)F(s)$
 - Il parametro p potrebbe comparire nell'espressione della fdt del sistema da controllare, F(s), così come nella realizzazione C(s) del controllore: si considera genericamente G_a(s) = G_a(s;p)

La funzione di sensibilità (2/7)

La funzione di sensibilità di W_y(s) rispetto a p può essere riscritta come

$$S_{p}^{W_{y}} = \frac{\partial W_{y}(s)}{\partial G_{a}(s)} \cdot \frac{\partial G_{a}(s)}{\partial p} \cdot \frac{p}{W_{y}(s)}$$

$$\frac{\partial W_{y}(s)}{\partial p} \cdot \dots \cdot W_{y}(s)$$

$$\vdots W \stackrel{\text{è una fine}}{=} \frac{\partial W_{y}(s)}{\partial p} \cdot \dots \cdot W_{y}(s)$$

 W_y è una funzione composta: $W_y = G_a/(1+G_a)$ in cui l'espressione di G_a dipende da p

La funzione di sensibilità (3/7)

La funzione di sensibilità di W_y(s) rispetto a p può essere riscritta come

$$S_p^{W_y} = \frac{\partial W_y(s)}{\partial G_a(s)} \cdot \frac{\partial G_a(s)}{\partial p} \cdot \frac{p}{W_y(s)} \cdot \frac{G_a(s)}{G_a(s)}$$

Moltiplicando e dividendo per $G_a(s)$ non si altera il valore della funzione

La funzione di sensibilità (4/7)

La funzione di sensibilità di W_y(s) rispetto a p può essere riscritta come

$$S_p^{W_y} = \frac{\partial W_y(s)}{\partial G_a(s)} \cdot \frac{\partial G_a(s)}{\partial p} \cdot \frac{p}{W_y(s)} \cdot \frac{G_a(s)}{G_a(s)}$$

$$S_p^{W_y} = \frac{\partial W_y(s)}{\partial G_a(s)} \cdot \frac{G_a(s)}{W_y(s)} \cdot \frac{\partial G_a(s)}{\partial p} \cdot \frac{p}{G_a(s)}$$

 $S_{G_a}^{W_y}$: Sensibilità di W_y rispetto a G_a

S_p^G_a : Sensibilità di G_a rispetto a p

La funzione di sensibilità (5/7)

- La sensibilità $S_{G_a}^{W_y}$ di W_y (s) rispetto a G_a (s) riveste grande importanza, perché indica come variazioni della fdt d'anello si ripercuotono sul comportamento del sistema ad anello chiuso
- Le variazioni della G_a(s) possono riguardare:
 - Il controllore C(s) nella sua realizzazione analogica o digitale
 - Il sistema da controllare, descritto da F(s)

La funzione di sensibilità (6/7)

- Se le variazioni parametriche riguardano C(s), la sensibilità del sistema in catena chiusa può essere contenuta sia agendo sulla "qualità realizzativa" del controllore per ridurre $S_p^{G_a}$, sia garantendo una bassa $S_{G_a}^{W_y}$
- Se le variazioni parametriche riguardano la F(s) del sistema da controllare, nulla può essere fatto per ridurre la sensibilità S_p^G di G_a(s) rispetto a p
 - In questo caso la possibilità di attenuare gli effetti di variazioni parametriche sul sistema controllato è affidata alla sola $S_{G_s}^{W_y}$

La funzione di sensibilità (7/7)

- La sensibilità S_{G_a}^{W_y} di W_y(s) rispetto a G_a(s) è indicata semplicemente come (funzione di) sensibilità S(s) del sistema
- Tenendo conto che $W_y(s) = G_a(s)/(1 + G_a(s))$, la sensibilità risulta data da

$$S(s) = \frac{\partial W_y(s)}{\partial G_a(s)} \cdot \frac{G_a(s)}{W_y(s)} = \frac{1}{1 + G_a(s)}$$

N.B.:
$$S(s) = S_{G_a}^{W_y} = S_{G_a}^{W}$$
, essendo $W(s) = K_r W_y(s)$

Altre funzioni di sensibilità

- È possibile definire altre funzioni di sensibilità, ad esempio per valutare direttamente la sensibilità dell'uscita o del comando rispetto ad un disturbo agente sul sistema
- La stessa funzione S(s) può assumere altri significati, oltre a quello legato alla sensibilità parametrica, come verrà illustrato nel seguito della lezione

Funzione di sensibilità

Andamento e significati della funzione di sensibilità S(s)

Andamento di $S(j\omega)$ (1/3)

- L'andamento della funzione di sensibilità $S(j\omega) = 1/(1 + G_a(j\omega))$ può essere approssimato tenendo conto di alcune caratteristiche generali di $G_a(j\omega)$
 - Per inseguire correttamente (almeno) i riferimenti costanti ed annullare (almeno) gli effetti di disturbi costanti (offset) sull'uscita, $G_a(j\omega)$ presenta solitamente (almeno) un polo nell'origine: $G_a(j\omega) \to \infty$ per $\omega \to 0 \Rightarrow S(j\omega) \to 0$ per $\omega \to 0$

• In BF, per
$$\omega \ll \omega_c$$
 $\left| G_a(j\omega) \right| \gg 1 \implies \left| S(j\omega) \right| \simeq \frac{1}{\left| G_a(j\omega) \right|}$

Andamento di $S(j\omega)$ (2/3)

- $|G_a(j\omega)| = 1$ per $\omega = \omega_c$ \Rightarrow Per pulsazioni ω prossime a ω_c , $|S(j\omega)|$ assume valori di ordine di grandezza pari all'unità
- La fdt $G_a(j\omega)$ è sicuramente propria, essendo relativa ad un sistema fisico:

$$G_a(j\omega) \to 0 \text{ per } \omega \to \infty \implies S(j\omega) \to 1 \text{ per } \omega \to \infty$$

Sulla base di queste proprietà è possibile tracciare l'andamento qualitativo tipico del DdB di |S(jω)|

Andamento di $S(j\omega)$ (3/3)

Andamento di S(jω) (3/3)

Significati della funzione S(s) (1/4)

Per il consueto schema di controllo:

la funzione di sensibilità coincide

• Con la fdt d'errore:
$$S(s) \equiv W_{e,y_{des}}(s) = \frac{e(s)}{y_{des}(s)}$$

Significati della funzione S(s) (1/4)

Per il consueto schema di controllo:

la funzione di sensibilità coincide

• Con la fdt d'errore:
$$S(s) \equiv W_{e,y_{des}}(s) = \frac{e(s)}{y_{des}(s)}$$

• Con la fdt fra
$$d_y$$
 e y: $S(s) \equiv W_{y,dy}(s) = \frac{y(s)}{d_y(s)}$

Significati della funzione S(s) (1/4)

Per il consueto schema di controllo:

la funzione di sensibilità coincide

• Con la fdt d'errore:
$$S(s) \equiv W_{e,y_{des}}(s) = \frac{e(s)}{y_{des}(s)}$$

• Con la fdt fra
$$d_y$$
 e y: $S(s) \equiv W_{y,dy}(s) = \frac{y(s)}{d_y(s)}$

• Con la fdt fra
$$d_u$$
 e u: $S(s) \equiv W_{u,du}(s) = \frac{u(s)}{d_u(s)}$

Significati della funzione S(s) (2/4)

S(s) come fdt d'errore:

• L'errore di inseguimento massimo in regime permanente a $r(t) = \sin(\omega_0 t)$ vale $E = |W_e(j\omega_0)|$, ove $W_e(s) = K_r S(s) \Rightarrow$ Il sistema riesce ad inseguire con buona precisione i segnali sinusoidali per cui $|S(j\omega_0)|$ è molto piccolo, cioè **interni alla banda passante** $(\omega_0 < \omega_c < \omega_B)$

Significati della funzione S(s) (3/4)

S(s) come fdt fra d_y e y: |S(jω)|

• L'effetto massimo sull'uscita in regime permanente di $d_y(t) = D_s \sin(\omega_d t)$ vale $Y_{d,p} = D_s |S(j\omega_d)|$ \Rightarrow La risposta del sistema è poco sensibile a disturbi su y per cui $|S(j\omega_d)|$ è molto piccolo; cioè di bassa frequenza rispetto alla banda passante $(\omega_d < \omega_c < \omega_B)$

Significati della funzione S(s) (4/4)

S(s) come fdt fra d_u e u:

• L'effetto massimo sul comando in regime permanente di $d_u(t) = D_s \sin(\omega_d t)$ vale $Y_{d,p} = D_s |S(j\omega_d)|$ \Rightarrow Il comando risulta poco sensibile a disturbi su u per cui $|S(j\omega_d)|$ è molto piccolo, cioè di bassa frequenza rispetto alla banda passante $(\omega_d < \omega_c < \omega_B)$

Relazione fra S(s) e $W_y(s)$ (1/2)

- Appare evidente l'impossibilità di imporre specifiche sulla sensibilità in modo indipendente da eventuali requisiti imposti sul comportamento del sistema in catena chiusa descritto da W_y(s) = y(s)/y_{des}(s) (o da W(s) = y(s)/r(s))
- Qualunque specifica formulata su S(s) (per garantire una soddisfacente robustezza della fedeltà della risposta, secondo i significati discussi) determina implicazioni sull'andamento di G_a(s) e sulla banda passante del sistema

Relazione fra S(s) e $W_v(s)$ (2/2)

Per qualunque sistema controllato secondo lo schema ad un grado di libertà considerato, vale la seguente relazione fra S(s) e W_v(s):

$$\mathsf{S}(\mathsf{s}) + \mathsf{W}_{\mathsf{y}}(\mathsf{s}) = 1$$

- In virtù di tale relazione, la fdt del sistema in catena chiusa W_y(s) è detta anche sensibilità complementare
- L'imposizione e l'analisi delle specifiche svolta su W_y(s) (o su W(s)) può essere condotta in modo equivalente su S(s)

Funzione di sensibilità

Implicazioni sul progetto del controllore

Specifiche sulla sensibilità (1/5)

- Specifiche sull'andamento della funzione di sensibilità possono essere formulate per
 - Mantenere complessivamente inalterate le prestazioni del sistema controllato a fronte di variazioni parametriche
 - Garantire un buon inseguimento di segnali sinusoidali ed in generale di segnali aventi contenuto in frequenza all'interno della banda passante del sistema
 - Garantire una bassa sensibilità dell'uscita e del comando a disturbi di BF rispettivamente su y e su u

Specifiche sulla sensibilità (2/5)

La specifica più "semplice" che può essere formulata in merito alla sensibilità è della forma

$$|S(j\omega)| < 1 \text{ per } \omega < \omega_{M} \implies \omega_{c} > \omega_{M}$$

- La specifica è equivalente ad un requisito di banda passante minima
- Si può imporre come valore desiderato per ω_c (per non allargare eccessivamente la banda)

$$\omega_{\text{c,des}} = 1.5 \cdot \omega_{\text{M}}$$

verificando successivamente che sia sufficiente al soddisfacimento della specifica su S(s)

Specifiche sulla sensibilità (3/5)

Specifiche più restrittive, della forma

$$\left| \mathsf{S}(\mathsf{j}\omega) \right| < \mathsf{S}_{\mathsf{M}}$$
 (con $\mathsf{S}_{\mathsf{M}} < 1$) per $\omega < \omega_{\mathsf{M}}$ o $\omega_{\mathsf{m}} < \omega < \omega_{\mathsf{M}}$

possono essere imposte per garantire una desiderata fedeltà della risposta a riferimenti collocati in una certa banda e/o per ottenere una prefissata attenuazione di disturbi, ed in generale per assicurare una adeguata "insensibilità" alle variazioni parametriche

Specifiche di questo tipo pongono vincoli sulle caratteristiche di G_a(s)

Specifiche sulla sensibilità (4/5)

Interpretazione grafica delle specifiche su S(jω)

Specifiche sulla sensibilità (5/5)

Interpretazione grafica delle specifiche su S(jω)

36

Implicazioni sulle scelte progettuali (1/2)

- ▶ Una specifica della forma $|S(j_{\omega})| < 1$ per $_{\omega} < _{\omega_{M}}$ determina un **vincolo sul valore minimo di** $_{\omega_{c}}$ e può essere trattata utilizzando le opportune reti di compensazione in modo che la $_{\omega_{c}}$ soddisfi tale requisito
- ▶ Una specifica della forma $|S(j\omega)| < S_M$ con $S_M < 1$ per $\omega < \omega_M$ (o $\omega_M < \omega < \omega_M$) impone che le scelte progettuali fatte per soddisfare i requisiti su m_{ϕ} e su $\omega_{c,des}$ (sicuramente con $\omega_{c,des} > \omega_M$) siano tali da garantire che $|G_a(j\omega)|$ sia sufficientemente elevato in BF

Implicazioni sulle scelte progettuali (2/2)

- Particolare attenzione deve essere prestata ogni volta in cui altre specifiche richiedano l'inserimento in C(s) di una rete attenuatrice:
 - Il modulo di G_a(s) viene attenuato a partire
 dalla pulsazione del polo della rete attenuatrice
 - Affinché la perdita di fase associata sia "tollerabile" in corrispondenza di $\omega_{c,des}$, tale polo è sempre di bassa frequenza

Per soddisfare specifiche su S(s), è necessario evitare l'inserimento di reti attenuatrici collocate a pulsazioni troppo basse

Esempio (1/5)

Si riconsideri l'esempio 3 della lezione "Principali reti di compensazione"

- Il controllore C(s) progettato in tale lezione soddisfa le specifiche date con
 - $|e_{r,\infty}| = 0.2 \text{ per } r(t) = t (\le 0.2)$
 - $\hat{s} = 22.9\% (< 25\%)$
 - $\omega_{\rm B} = 1.61 \text{ rad/s} (< 1.8 \text{ rad/s})$

Esempio (2/5)

- Il controllore utilizzato è costituito dal guadagno (K_c = 4) e da una rete attenuatrice avente le seguenti caratteristiche:
 - $m_i = 5$, $\omega_{c,des} \tau_i = 50 \implies \tau_i = 55.5$ (\implies polo in 0.018 rad/s)
- Si supponga ora di collocare la rete a pulsazioni molto basse (ad esempio per ridurre la perdita di fase ed abbassare ulteriormente la sovraelongazione):
 - $m_i = 5$, $\omega_{c,des}\tau_i = 150 \implies \tau_i = 166.7 (\implies polo in 0.006 rad/s)$

Esempio (3/5)

DdB di G_a(s): confronto

Esempio (4/5)

Risposta al gradino: confronto

Esempio (5/5)

Sensibilità: confronto

Osservazioni finali (1/3)

- L'utilizzo di un certo tipo di rete di compensazione (anticipatrice o attenuatrice) è dettato dall'azione "principale" di controllo ad essa associata, necessaria per il soddisfacimento delle specifiche prioritarie
- Nel progetto delle reti è opportuno però tenere conto degli "effetti collaterali" di ciascuna tipologia di rete, che potrebbero influenzare le prestazioni generali del sistema controllato

Osservazioni finali (2/3)

- L'utilizzo di reti anticipatrici fa aumentare l'attività sul comando
 - Quando è necessario introdurre una forte azione anticipatrice, è fondamentale confrontare l'attività sul comando richiesta con i vincoli tecnologici del sistema
 - Per ridurre l'attività sul comando è opportuno contenere per quanto possibile il valore del parametro m_d delle reti anticipatrici (soprattutto se non accompagnate dall'inserimento di reti attenuatrici); in caso di più reti anticipatrici, la scelta dovrà essere fatta in modo da minimizzare il prodotto dei loro parametri m_d

Osservazioni finali (3/3)

- L'utilizzo di reti attenuatrici rende in generale il sistema più sensibile alle variazioni parametriche e fa peggiorare la capacità di attenuazione dei disturbi di BF
 - È opportuno evitare di collocare le reti attenuatrici a pulsazioni eccessivamente basse, non solo per ridurre l'effetto coda nella risposta al gradino, ma anche per ridurre la sensibilità del sistema controllato