

EQUILIBRIUM OF PARTICLES AND BODIES

Static Equilibrium of Rigid Bodies

For rigid bodies, the sum of moments is considered in addition to the sum of forces.

$$\vec{R} = \sum F = 0$$

$$\Rightarrow \sum F_x = 0 \qquad \sum F_y = 0 \qquad \sum F_z = 0$$

$$\vec{M} = \sum M = 0$$

$$\Rightarrow \sum M_x = 0 \qquad \sum M_y = 0 \qquad \sum M_z = 0$$

- Reaction at supports of rigid bodies must not be ignored in equilibrium analysis.
- A free body diagram is indispensable in solving problems on equilibrium of rigid bodies.
- ➤ All support reactions must be accounted on the free body diagram in order for the problem to be solved correctly.

DDEK/2014/ ME 161 - BASIC MECHANICS

137

EQUILIBRIUM OF PARTICLES AND BODIES

Statically Determinate and Statistically Indeterminate Reactions

- ➤ Statically Determinate Problems
 - The number of unknowns in the FBD equals the number of equations obtained.
- Statistically Indeterminate Problems
 - The number of unknowns in the FBD exceeds the number of equations obtained. Solving of such problems is beyond the scope of this course.

138

EQUILIBRIUM OF PARTICLES AND BODIES

Static Equilibrium of Rigid Bodies

- ➤ Drawing a free body diagram
 - Select the extent of the free-body and detach it from the ground and all other bodies.
 - ➤Indicate point of application, magnitude, and direction of external forces, including the rigid body weight.
 - ➤ Indicate point of application and assumed direction of unknown applied forces. These usually consist of reactions through which the ground and other bodies oppose the possible motion of the rigid body.
 - ➤ Include the dimensions necessary to compute the moments of the forces.

DDEK/2014/ ME 161 - BASIC MECHANICS

139

EQUILIBRIUM OF PARTICLES AND BODIES Static Equilibrium of Rigid Bodies

Reactions at Supports and Connections for Two-Dimensional Structures

* *		
Support or Connection	Reaction	Number of Unknowns
Rollers Rocker Frictionless surface	Force with known line of action	1
Short cable Short link	Force with known line of action	1
Collar on frictionless rod Frictionless pin in slot	Force with known line of action	1

 Reactions equivalent to a force with known line of action.

Source:

Vector Mechanics for Engineers, Beer et al.

140

DDEK/2014/ ME 161 - BASIC MECHANICS

> Reactions at Supports and Connections for Two-Dimensional Structures

- Reactions equivalent to a force of unknown direction and magnitude.
- Reactions equivalent to a force of unknown direction and magnitude and a couple.of unknown magnitude

DDEK/2014/ ME 161 - BASIC MECHANICS

Source: Vector Mechanics for Engineers, Beer *et al.* # 141

EQUILIBRIUM OF PARTICLES AND BODIESStatic Equilibrium of Rigid Bodies

➤ Drawing a free body diagram

DDEK/2014/ ME 161 - BASIC MECHANICS # **142**

► Example 4.4

A fixed crane has a mass of 1000 kg and is used to lift a 2400 kg crate. It is held in place by a pin at A and a rocker at B. The center of gravity of the crane is located at G. Determine the

components of the reactions at A and B.

DDEK/2014/ ME 161 - BASIC MECHANICS

143

EQUILIBRIUM OF PARTICLES AND BODIESStatic Equilibrium of Rigid Bodies

≻Solution

Taking moments about A,

$$\sum M_A = 0: +B(1.5\text{m}) - 9.81 \text{ kN}(2\text{m}) - 23.5 \text{ kN}(6\text{m}) = 0$$

$$B = +107.1 \text{ kN}$$

$$A_r = -107.1 \text{kN}$$

144

Example

Determine *M* if the link is in equilibrium.

DDEK/2014/ ME 161 - BASIC MECHANICS

145

EQUILIBRIUM OF PARTICLES AND BODIES Static Equilibrium of Rigid Bodies

Example

The 500 kg uniform beam is subjected to the three external loads shown. Compute the reactions at the support point O.

DDEK/2014/ME 161 - BASIC MECHANICS #146

≻Example

Three loads are applied to a beam as shown. The beam is supported by a roller at A and by a pin at B. Neglecting the weight of the beam, determine the reactions at A and B when P is 15 kips.

DDEK/2014/ ME 161 - BASIC MECHANICS

147

EQUILIBRIUM OF PARTICLES AND BODIESStatic Equilibrium of Rigid Bodies

≻Solution

Taking moments about A (clockwise to be + ve),

$$(+\sum_{x} M_{A} = 0: (15 \text{ kips})(3 \text{ ft}) + (6 \text{ kips})(11 \text{ ft}) - (B_{y})(9 \text{ ft}) + (6 \text{ kips})(13 \text{ ft})$$

$$B_{y} = -21.0 \text{ kips} = 21.0 \text{ kips (acting upwards)}$$

$$(+) \sum M_B = 0: (A)(9 \text{ ft}) + (-15 \text{ kips})(6 \text{ ft}) + (6)(2 \text{ ft}) + (6 \text{ kips})(4 \text{ ft})$$

$$A = -6 \text{ kips} = (6 \text{ kips upwards})$$

OR

$$A = 27 - B_v = 27 \text{ kips} - 21.0 \text{ kips} = 6 \text{ kips}.$$

148

DDEK/2014/ ME 161 - BASIC MECHANICS

Example

For the beam determine the support reactions at C and D.

DDEK/2014/ ME 161 - BASIC MECHANICS

149

EQUILIBRIUM OF PARTICLES AND BODIES Static Equilibrium of Rigid Bodies

Example

A 150 kg crate rests on the 100 kg pickup tailgate as shown. Calculate the tension T in each of the two restraining cables, one of which is shown. The centres of gravity are at G_1 and G_2 the crate is located midway between the two cables.

DDEK/2014/ ME 161 - BASIC MECHANICS # **150**

➤ Reactions at Supports and Connections for Three-Dimensional Structures

DDEK/2014/ ME 161 - BASIC MECHANICS

Source:

Vector Mechanics for Engineers, Beer et al.

151

EQUILIBRIUM OF PARTICLES AND BODIESStatic Equilibrium of Rigid Bodies

> Reactions at Supports and Connections for Three-Dimensional Structures

DDEK/2014/ ME 161 - BASIC MECHANICS

Source:

Vector Mechanics for Engineers, Beer et al.

➤ Example 4.6

A 5 38-ft sign of uniform density weighs 270 lb and is supported by a ball-and-socket joint at A and by two cables. Determine the tension in each cable and the reaction at A.

DDEK/2014/ ME 161 - BASIC MECHANICS

153

EQUILIBRIUM OF PARTICLES AND BODIES Static Equilibrium of Rigid Bodies

➤Example 4.6

$$\vec{T}_{BD} = -\frac{2}{3}T_{BD}i + \frac{1}{3}T_{BD}j - \frac{2}{3}T_{BD}k$$

$$\vec{T}_{EC} = -\frac{6}{7}T_{EC}i + \frac{3}{7}T_{EC}j - \frac{2}{7}T_{EC}k$$

$$W = -270 \, \mathrm{lb} i$$

$$\sum F_x = \sum F_i = 0$$
: $A_x - \frac{2}{3}T_{BD} - \frac{6}{7}T_{EC} = 0$ --- (1)

$$\sum F_y = \sum F_j = 0$$
: $A_y + \frac{1}{3}T_{BD} + \frac{3}{7}T_{EC} - 270 \text{ lb} = 0$ --- (2)

$$\sum F_z = \sum F_k = 0 : A_z - \frac{2}{3} T_{BD} - \frac{2}{7} T_{EC} = 0 \qquad ---(3)$$

154

➤ Example 4.6

Taking moments about A,

$$\sum M_B = 0: (\vec{r}_B)(\vec{T}_{BD}) + \vec{r}_E(\vec{T}_{EC}) + \vec{r}_W(W)$$

$$= (8 \text{ ft})i \left(-\frac{2}{3} T_{BD}i + \frac{1}{3} T_{BD}j - \frac{2}{3} T_{BD}k \right) + (6 \text{ ft})i \left(-\frac{6}{7} T_{EC}i + \frac{3}{7} T_{EC}j - \frac{2}{7} T_{EC}k \right) + (4 \text{ ft})i(-270 \text{ lb}j)$$

$$(2.667T_{C} + 2.571T_{C} - 1080 \text{ lb})k + (5.333T_{C} - 1.714T_{C})i = 0$$

$$(2.667T_{BD} + 2.571T_{EC} - 1080\,\mathrm{lb})k + (5.333T_{BD} - 1.714T_{EC})j = 0$$

$$\therefore 2.667T_{BD} + 2.571T_{EC} - 1080 \text{ lb} = 0 \qquad --- (4)$$

$$5.333T_{BD} - 1.714T_{EC} = 0 --- (5)$$

Solvingb (1) to (5) simultaneously,

$$T_{BD} = 101.3 \, \text{lb}$$
 $T_{EC} = 315 \, \text{lb}$

$$A_x = 338 \text{ lb } i$$
 $A_y = 101.2 \text{ lb} j$ $A_z = -22.5 \text{ lb } k$

155

DDEK/2014/ ME 161 - BASIC MECHANICS