Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Tarea 02:

Convexidad, vecindarios, búsqueda local: Hill Climbing y Búsqueda Tabú

Pablo A. Trinidad Paz - 419004279

1. Teoría

1. Sean $f_2, f_2 : \mathbb{R} \to \mathbb{R}$ dadas por

$$f_1(x) = x^2 - 2ex + e^2 - 2,$$

 $f_2(x) = x^6 - 6ex^5 + 15e^2x^4 - 20e^3x^3 + 15e^4x^2 - 6e^5x + e^6 - 6$

a) Demuestre que f_1 y f_2 son funciones convexas

Solución:

Una función f es convexa si se cumple que:

$$\forall x, y \in Dom(f) \ y \ \forall a \in [0, 1]$$
$$f(ax + (1 - a)y) \le af(x) + (1 - a)f(y).$$

Además, se cumple que si la función es doblemente derivable (y de una sola variable) es convexa en un intervalo sí y solo sí su segunda derivada no es negativa.

Para $f_1(x)$:

$$f_1'(x) = 2x - 2e$$

$$f_1''(x) = 2$$

$$\Rightarrow f_1''(x) > 0$$

$$\therefore f_1 \text{ es convexa} \quad \blacksquare$$

Para $f_2(x)$:

$$f_2'(x) = 6x^5 - 30ex^4 + 60e^2x^3 - 60e^3x^2 + 30e^4x - 6e^5$$

$$f_2''(x) = 30x^4 - 120ex^3 + 180e^2x^2 - 120e^3x + 30e^4$$

$$f_2''(x) = 30(e - x)^4$$

$$\Rightarrow f_2''(x) > 0$$

$$\therefore f_2 \text{ es convexa} \quad \blacksquare$$

b) Utilice el algoritmo del descenso por gradiente implementado para minimizarlas. Use $x_0 = 0$ como punto inicial y α arbitrario. ¿Qué valores de α hacen más eficiente el algoritmo para cada función?

Solución:

Para responder a la pregunta anterior se corrió el descenso por gradiente con múltiples valores de α y se determinó que el valor de α más eficiente sería aquel que lograra encontrar un óptimo en el menor número de iteraciones. Para saber si el valor óptimo obtenido a partir de dicha α era aceptable, se calculó la desviación estándar, promedio y media de los resultados de cada prueba.

Para ambas funciones, el gradiente corrió bajo los siguientes parámetros:

1

■ Precisión: 1×10^{-8}

■ Número máximo de iteraciones: 10¹⁰

Resultados de f_1 :

Valores de α para la función f_1

α	Número de iteraciones	Valor mínimo
0.000005	790773	2.71728184
0.00001	430042	2.71778184
0.00005	102100	2.71818185
0.0001	54513	2.71823184
0.0005	12508	2.71827184
0.001	6598	2.71827684
0.005	1476	2.71828085
0.01	769	2.71828134
0.05	164	2.71828174
0.1	81	2.71828179
0.5	2	2.71828183

Con una desviación estándar $\sigma \approx 0.000303$, promedio $\mu \approx 2.7181303273$ y media ≈ 2.7182768400 se puede concluir de forma segura que el valor óptimo de α para f_1 es **0.5** y que el mínimo se encuentra en x=2.718281828459045.

Resultados de f_2 :

Valores de α para la función f_2

α	Número de iteraciones	Valor mínimo
5e-06	5266300	2.45496429845281
1e-05	4691757	2.4836925848909828
5e-05	3587912	2.538885692619941
0.0001	3196467	2.5584580445544773
0.0005	2444410	2.59606066860143
0.001	2163480	2.60939515596596

Performance of F2 on different alpha values

10°

10°

10°

10°

10°

Value for alpha

Con una desviación estándar $\sigma \approx 0.0558$, promedio $\mu \approx 2.5402427408$ y media ≈ 2.5486718686 Se puede utilizer **el valor más óptimo de** $\alpha = 0.001$ y su mínimo hallado x = 2.60939515596596 ya que se encuentra dentro de $[\sigma - \mu, \sigma + \mu]$.

2. Práctica