习题 2.5

$$f(x_0) = f(x_0^-) = f(x_0^+) \Rightarrow f(x)$$
在 x_0 处连续

1.(1) 证明:
$$f(x_0^-) = \lim_{x \to x_0^-} f(x) = \cos x_0$$

 $f(x_0^+) = \lim_{x \to x_0^+} f(x) = \cos x_0$
 $f(x_0) = \cos x_0 = f(x_0^-) = f(x_0^+)$
∴ $f(x)$ 在 x_0 处连续.

(2) 证明:
$$f(x_0^-) = \lim_{x \to x_0^-} f(x) = a^{x_0}$$

 $f(x_0^+) = \lim_{x \to x_0^+} f(x) = a^{x_0}$
 $f(x_0) = a^{x_0} = f(x_0^-) = f(x_0^+)$
∴ $f(x)$ 在 x_0 处连续.

2.(1) f (x) =
$$\begin{cases} 1+x, x \ge 0 \\ x, x < 0 \end{cases}$$

$$f(0^+) = \lim_{x \to 0^+} f(x) = 1$$
 $f(0^-) = \lim_{x \to 0^-} f(x) = 0$

:.f(x)在分段点处不连续.

(2)
$$f(x) = \begin{cases} x \sin \frac{1}{x}, x > 0 \\ 1, x = 0 \\ 2 + x, x < 0 \end{cases}$$

$$f(0^+) = \lim_{x \to 0^+} f(x) = 0$$
 $f(0^-) = \lim_{x \to 0^-} f(x) = 2$

:.f(x)在分段点处不连续.

- 3.[补充 1] x_0 为 f(x)的间断点的三种情况:
 - (1) f (x)在 x₀处无定义
 - ② $\lim_{x\to x_0} f(x)$ 不存在

[补充 2]判断间断点类型

(1)
$$f(x) = \frac{x}{\sin x}$$

 $f(0^+) = \lim_{x \to 0^+} \frac{x}{\sin x} = 1$ $f(0^-) = \lim_{x \to 0^-} \frac{x}{\sin x} = 1$

 \therefore x=0 为 f (x)的可去间断点.

(2)
$$f(x) = [x]$$

 $f(0^+) = \lim_{x \to 0^+} [x] = 0$ $f(0^-) = \lim_{x \to 0^-} [x] = -1$

 \therefore x=0 为 f (x)的跳跃间断点.

(3)
$$f(x) = \frac{1}{\sin x}$$

 $f(0^+) = \lim_{x \to 0^+} \frac{1}{\sin x} = \infty$ $f(0^-) = \lim_{x \to 0^-} \frac{1}{\sin x} = \infty$
∴ $x=0$ 为 $f(x)$ 的无穷间断点.

(4)
$$f(x) = sin \frac{1}{x}$$

 $f(0) = \lim_{x \to 0} sin \frac{1}{x}$,不存在
∴ x=0 为 $f(x)$ 的振荡间断点.

(5)
$$f(x) = \frac{1}{1 - e^{\frac{x}{1 - x}}}$$

 $f(0) = \lim_{x \to 0} \frac{1}{1 - e^{\frac{x}{1 - x}}}$ 不存在

∴x=0 为 f (x)的振荡间断点.

(6)
$$f(x) = \frac{\tan x}{x}$$

 $f(0^+) = \lim_{x \to 0^+} \frac{\tan x}{x} = 1$ $f(0^-) = \lim_{x \to 0^-} \frac{\tan x}{x} = 1$
∴ $x=0$ 为 $f(x)$ 的可去间断点.

$$4.(1) f(x) = x-[x]$$

∴f(x)在所有整数点处不连续,而在其他点处是连续的.

(2) f (x) =
$$\frac{x}{\sin x}$$

间断点: $x=n\pi$, $n \in Z$ (无定义)

: f(x)在 x=nπ ($n \in Z$) 处不连续,而在其他点是连续的.

(3) f (x) =
$$\cot x = \frac{\cos x}{\sin x}$$

x=nπ, $n \in Z$ 时无定义,同上

: f(x)在 x=nπ (n ∈ Z) 处不连续,而在其他点是连续的.

(4)
$$f(x) = \sqrt{\frac{(x-1)(x-3)}{x+1}}$$

$$\frac{(x-1)(x-3)}{x+1} \ge 0 \implies 定义域: [-1,1] \cup [3,+\infty)$$
∴ $f(x)$ 在其定义域上连续.

(1)
$$\lim_{x \to 0^{+}} \arcsin \frac{1-x}{1-x^{2}}$$
 (2) $\lim_{x \to 0} \ln(1+e^{x})$ $= \lim_{x \to 0^{+}} \arcsin \frac{1-x}{(1-x)(1+x)}$ $= \ln \lim_{x \to 0} (1+e^{x})$ $= \ln 2$ $= \frac{\pi}{2}$

(3)令 F (x) =
$$\frac{\sqrt[3]{x+1}\ln(2+x^2)}{(1-x^3)+\cos x}$$
 (4)令 F (x) = $\frac{x^2+e^{1-x}}{\ln(2+x)}$ 由于初等函数在其定义域内连续 同 (3) $\lim_{x\to 1} F(x) = F(1) = \frac{2}{\ln 3}$ 故 $\lim_{x\to 0} F(x) = F(0) = \frac{\ln 2}{2}$

(5)
$$\lim_{x\to 0} \sqrt{\frac{1+x}{1-x}} = \lim_{x\to 0} \sqrt{\frac{2}{1-x}} - 1$$
 (6) $\lim_{x\to 2} \frac{1}{\sin(\pi x + \frac{\pi}{2})}$ = 1 = $\frac{1}{\sin\frac{\pi}{2}} = 1$ 6.证明: (1) $\because f(x) \hat{a} x_0 \hat{b} \hat{b} \hat{a} \hat{b} \Rightarrow 0$, $\Rightarrow 0 < |x-x_0| < \delta, \hat{a} |f(x) - f(x_0)| < \varepsilon$, $\because |f(x) - f(x_0)| \ge ||f(x)| - |f(x_0)||$ $\therefore ||f(x)| - |f(x_0)|| < \varepsilon, \mathcal{D}||f(x)| + |f(x_0)|| < \varepsilon, \mathcal{D}||f(x)| + |f(x_0)|| < \varepsilon$ $\Rightarrow f(x)^2 \hat{a} x_0 \hat{b} \hat{b} \hat{b} \hat{b}$ (2) 反之不成立

例如
$$f(x) = \begin{cases} 1, x \ge 0 \\ -1, x < 0 \end{cases}$$
在 x=0 处不连续

7.
$$|x| > 1$$
 Ht, $\lim_{n \to \infty} \frac{x^{2n+1} + (a-1)x^n - 1}{x^{2n} - ax^n - 1}$

$$= \lim_{n \to \infty} \frac{x + \frac{a-1}{x^n} - \frac{1}{x^{2n}}}{1 - \frac{a}{x^n} - \frac{1}{x^{2n}}} = x$$

$$|x| < 1$$
 $\exists f$, $\exists f = \lim_{n \to \infty} \frac{0 + 0 - 1}{0 - 0 - 1} = 1(|x| < 1, n \to \infty \exists f, x^n \to 0)$

$$x = -1 \text{ Hy}, \quad f(-1) = \lim_{n \to \infty} \frac{-1 + (-1)^n (a-1) - 1}{1 - (-1)^n a - 1}$$
$$= \lim_{n \to \infty} \frac{-2 + (-1)^n (a-1)}{(-1)^{n+1} a}$$

$$= \begin{cases} -\frac{a+1}{a}, & n \text{ β} \\ \frac{3-a}{a}, & n \text{ β} \end{cases}$$
 故 f (-1) 不存在

$$x = 1$$
 By, $f(-1) = \lim_{n \to \infty} \frac{1+a-1-1}{1-a-1} = \frac{1-a}{a}$

$$\therefore f(x) \begin{cases} 1, |x| < 1 \\ \frac{1-a}{a}, x = 1 \end{cases} \quad \cancel{\cancel{E}}x = -1 \, \cancel{\cancel{E}}\cancel{\cancel{E}}\cancel{\cancel{E}}$$

要使
$$f(x)$$
在 $\left[0, +\infty\right)$ 上连续, $\frac{1-a}{a} = 1$, $\therefore a = \frac{1}{2}$