Introduction to multiparameter models

Stat 340: Bayesian Statistics

- 1. Multiparameter models
- 2. Grid approximation

(Problem topics 6 & 7)

Example

- Partial census data for the Dobe area !Kung San, a foraging population
- Compiled from Nancy Howell's interviews

```
##
                                 5.5%
                                          94.5%
                                                      histogra
              mean
## height 154.59709
                   7.7423321 142.8750 167.00500
## weight 44.99049
                    6.4567081
                              35.1375
                                       55.76588
          41.13849 15.9678551 20.0000
                                       70.00000 _
## age
## male
         0.46875 0.4997328
                               0.0000
                                        1.00000
```


Life Histories of the DOBE !KUNG

FOOD, FATNESS, AND WELL-BEING OVER THE LIFE-SPAN

NANCY HOWELL

Example

Suppose interest is in analyzing the average height of an adult

Anthropologists would be interested in more complex relationships, but we have to start somewhere.

Informative analysis

NORMAL MODEL

$$y_i \sim \mathcal{N}(\mu, \sigma)$$

$$\mu \sim \mathcal{N}(178,~20)$$

$$\sigma \sim \mathrm{Unif}(0,50)$$

Prior predictive distribution

What do these priors imply about the height, before we see data?

```
sample_mu <- rnorm(1e4, 178, 20)
sample_sigma <- runif(1e4, 0, 50)
sim_heights <- rnorm(1e4, sample_mu, sample_sigma)</pre>
```

We can approximate the joint posterior using a grid

Create a grid over the coordinate plane

```
param_grid <- expand.grid(
   mu = seq(from = 118, to = 238, length.out = 1000),
   sigma = seq(from = 0, to = 50, length.out = 1000)
)</pre>
```

Create a vectorized log-likelihood function

```
# log likelihood function
log_lik_norm <- function(x, mu, sigma) {
   sum(dnorm(x, mean = mu, sd = sigma, log = TRUE))
}

# Vectorize so we can pass in all mu and sigma at once
log_lik_norm <- Vectorize(log_lik_norm, vectorize.args = c("mu", "sigma"))</pre>
```

Evaluate log prior, log-likelihood on the grid, then derive the posterior

```
posterior <- param_grid %>%
  mutate(
   log_prior = dnorm(mu, 178, 20, log = TRUE) +
      dunif(sigma, 0, 50, log = TRUE),
   log_lik = log_lik_norm(adults$height, mu = mu, sigma = sigma),
   log_post = log_prior + log_lik,
   unstd_post = exp(log_post - max(log_post)),
   post = unstd_post / sum(unstd_post)
)
```

```
## # A tibble: 1,000,000 × 7
## mu sigma log_prior log_lik log_post unstd_post post
## (dbl> (dbl) (dbl> (dbl) (dbl> (dbl) (dbl> (dbl) (dbl
```

Sample from your grid posterior

```
# dplyr needs to be loaded
posterior_draws <- sample_n(
   posterior,
   size = 1e4,
   replace = TRUE,
   weight = post
)</pre>
```


Approximate marginal posteriors


```
quantile(posterior_draws$mu,
          probs = c(0.05, 0.95))
```

```
## 5% 95%
## 153.9159 155.2372
```

```
## 5% 95%
## 7.307307 8.258258
```