Національний Технічний Університет України "КПІ ім. Ігоря Сікорського"

Інститут прикладного системного аналізу

Моделювання економіки перехідного періоду

ЛАБОРАТОРНА РОБОТА № 4

Побудова математичних моделей з трендом та прогнозів на їх основі за допомогою пакету Eviews

Виконавці роботи	Прийняв
студенти гр. КА-ХХ бригада № Ү	Кузнєцова Наталія Володимирівна
ФІО – 1	
$\Phi IO - 2$	
ФІО – 3	
	(підпис, дата)

Опис даних: назва ряду, кількість даних в часовому ряді. Розмір навчальної вибірки: Розмір перевірочної вибірки: ____. Моделі: $\log y(k) = 25,4749 + 0.0157 \cdot k$ тренд 1-го порядку $\log y(k) = 25,4749 + 0.0157 \cdot k + 0.666 \cdot k^2$ тренд 2-го порядку $\log y(k) = 25,4749 + 0.0157 \cdot k + 0.666 \cdot k^2 + 0.13 \cdot k^3$ тренд 3-го порядку $\log y(k) = d \log y(k) + \log y(k-1)$ $\frac{\pi e}{d \log y(k)} = 0.0228 - 0.0151 \cdot d \log y(k-1) - 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0228 - 0.0151 \cdot d \log y(k-1) - 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0228 - 0.0151 \cdot d \log y(k-1) - 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0028 - 0.0151 \cdot d \log y(k-1) - 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0028 - 0.0151 \cdot d \log y(k-1) - 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0028 - 0.0151 \cdot d \log y(k-1) - 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k-3) + \frac{\pi e}{d \log y(k)} = 0.0073 \cdot d \log y(k) + \frac{\pi e}{d \log y(k)} = 0$ APIKC(4,1,4) $+0.9817 \cdot d \log y(k-4) - 0.9389 \cdot ma(k-4)$ $\log y(k) = 0.0838 + 1.0037 \cdot \log y(k-1)$ AP(4) $\log y(k) = 22,8322 + 1,004 \cdot \log y(k-1) + 0,2542 \cdot ma(k-1) - 1$

Таблиця статистичних характеристик моделей:

 $-0.2756 \cdot ma(k-3) + 0.6569 \cdot ma(k-4)$

	R2	Sum squared resid	\mathbf{DW}	
Тренд 1-го порядку				
Тренд 2-го порядку				
Тренд 3-го порядку				
APIKC(4,1,4)	Для APIKC моделі можете не заповнювати у зв'язку з необхідністю написання власної програми для обчислення відповідних характеристик (бажаючі можуть реалізовувати)			
AP(4)				

APKC(4,4)

APKC(4,4)		

Таблиця результатів статичного прогнозування на					кроки вперед
	Реальне	Математична модель			
Час	значення	Тренд 1-го			
	ряду <i>"logy"</i>	порядку	APIKC(4,1,4)	AP(1)	APKC(1,4)
1991/1	27.4578	27.4406	27.4529	27.4914	27.462
1991/2	27.4768	27.4563	27.4925	27.4763	27.4875
1991/3	27.4736	27.4721	27.4865	27.4953	27.4907
1991/4	27.5518	27.4878	27.5237	27.4922	27.5066
Середньо	квадратична				
похибк	а прогнозу	0.0173	0.0087	0.0179	0.0124
N	MAE	0,0628	0,0108	0,315	0,315
\mathbf{N}	IAPE	140	57	67	67
Коефіцієнт Theil-a		0,2426	0,2266	0,4476	0,4476

Рис. 1 Графіки реальних та прогнозних значень отриманих при статичному прогнозуванні

вперед

	Реальне	Математична модель			
Час	значення				
	ряду <i>"logy"</i>	APIKC(4,1,4)	AP(1)	APKC(1,4)	
1991/1	27.4578	27.4525	27.4914	27.462	
1991/2	27.4768	27.4873	27.51	27.4907	
1991/3	27.4736	27.4969	27.5288	27.502	
1991/4	27.5518	27.5463	27.5475	27.5295	
-	ьоквадратична				
похиб	ка прогнозу	0.00666	0.01819	0.00971	
	MAE	0,0628	0,0108	0,315	
	MAPE	140	57	67	
Коефі	цієнт Theil-a	0,2426	0,2266	0,4476	

Рис. 2 Графіки реальних та прогнозних значень отриманих при динамічному прогнозуванні

Дайте письмові висновки за виконаною роботою.

Яка модель дала в якому випадку кращі результати? Як ви вважаєте, чому саме ця модель дала кращі результати?