

CS502: Deep Learning in Biomedicine Deep Learning Basics

Maria Brbić Fall 2023

 École polytechnique fédérale de Lausanne

Traditional Machine Learning

Machine learning lifecycle

- Tedious manual effort on feature engineering
- Does not scale in practice and results in suboptimal features

Traditional Machine Learning: Example

DNA sequences

> F31.01

tattggacgggattgagtttaacgaacgccgttcctcaatgcgggtggttgcta atgtag tgctaccgaacccaaagtccatcccgttagtcccttcaaagctttca acgaggaactgg

> F31.02

aagttttcggcttcaaagggagataccaaatacggcggaaataactttccgcag ccgttttattgagtgttagcagaatgatctcccccatgttgataaggcttaac tggcttaccatctcttggggcacttgggtcctgctagacggtacgtgcctcgcc cgtagctaacgacttgcg agtatgcacacttgtccaataggcaacgcctggct ttgtg

> F31.03

gcccaaatcggtcatatcccgggactggacaactaaatgtattaaagtctacag tcagtgtccaccagccaccacagagctaccgcaccgtagattcattaggcgata tatagacttgggctgagactgacacgggaccataactgattcgatctgtacctc ctcccacgctattattaagattgtttcgtttgagatgctctacacggcgccatt gcggtcataaactgaccaaccacaaacttgtcgcccatgcacgccagtaaggca aactcctcggagatcggaagtcgaagct

ID	AT	AC	AG	AA	TA	тс	TG	TT	•••
F31.01									
F31.02									
F31.03									

What is the problem with such data representation?

Deep Learning

Machine learning lifecycle

Representation Learning

Key idea behind deep learning: Automatically learn underlying representations from the data!

Representation Learning

Key idea behind deep learning: Automatically learn underlying representations from the data!

Representation Learning

n-dimensional embedding space

Key idea behind deep learning: Automatically learn underlying representations from the data!

Overview of neural networks

Inspiration

Neuron

How to transfer this idea to a computational model?

The Perceptron

The structural building block of deep learning

The Perceptron

The structural building block of deep learning

The Perceptron: Forward Propagation

$$\hat{y} = f(w_o + \boldsymbol{x}^T \boldsymbol{w})$$

where
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{bmatrix}$

What is activation function *f*?

The Perceptron: Activation Functions Examples

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$f(x) = \max(0, x)$$

Why is Nonlinearity Important?

Multi-dimensional Output

Input layer

$$z_1 = f(\mathbf{w_{01}} + \mathbf{x}^T \mathbf{w_1})$$

$$z_2 = f(\mathbf{w_{02}} + \mathbf{x}^T \mathbf{w_2})$$

$$\mathbf{z} = f(\mathbf{b} + \mathbf{x}^T \mathbf{W})$$

where
$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
, $\boldsymbol{b} = \begin{bmatrix} w_{01} \\ w_{02} \end{bmatrix}$ and $\boldsymbol{W} = [\boldsymbol{w_1} \boldsymbol{w_2}]$

Fully Connected Neural Network

Input layer

$$\mathbf{z} = f(\mathbf{b}^{(1)} + \mathbf{x}^T \mathbf{W}^{(1)})$$

$$\widehat{\mathbf{y}} = f(\mathbf{b}^{(2)} + \mathbf{z}^T \mathbf{W}^{(2)})$$

Forward propagation

Deep Neural Network

Stacking multiple layers

Neural Network Learning as Optimization

- Supervised learning: we are given input x, and the goal is to predict label y
- Input x can be:
 - Vectors of real numbers
 - Sequences (natural language)
 - Matrices (images)
 - Graphs (potentially with node and edge features)
- We formulate the task as an optimization problem

Neural Network Learning as Optimization

Formulate the task as an optimization problem:

Neural Network Learning as Optimization: Loss Function

What is loss function \mathcal{L} ?

- Depends on a problem
- Quantifies discrepancy between the truth y and prediction f(x)
- Example regression task: L2 loss

$$\mathcal{L}(\mathbf{y}, f(\mathbf{x})) = \|\mathbf{y} - f(\mathbf{x})\|_2$$

Common loss for classification: cross entropy (CE)

$$CE(y, f(x)) = -\sum_{i=1}^{C} y_i \log f(x)_i,$$

where C is the number of classes.

Optimization: Gradient Descent

How to optimize the objective function?

 Iterative algorithm: Repeatedly update weights in the (opposite) direction of gradients until convergence

$$\Theta \leftarrow \Theta - \eta \nabla_{\Theta} \mathcal{L}$$
| learning rate (controls size of the gradient step)
| ute gradient using a chain rule

- Backpropagation: compute gradient using a chain rule
 - We will derive it in the exercise session!
 - Nowadays done using automatic differentiation
- Training: Optimize ⊕ iteratively
 - Iteration: 1 step of gradient descent

CS502

Optimization: Gradient Descent

How to optimize the objective function?

Input: input dataset (X, y), loss function \mathcal{L} , learning rate η ,

neural network *f*

- Initialize parameters ⊕
- 2. Loop until convergence
- 3. Compute gradient $\nabla_{\Theta} \mathcal{L}$
- 4. Update weights $\Theta \leftarrow \Theta \eta \nabla_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{X}))$

Output: parameters •

Problem with gradient descent: Exact gradient requires computing $\nabla_{\Theta} \mathcal{L}(y, f(X))$, where X is the entire dataset.

Stohastic Gradient Descent (SGD)

- Solution: Stochastic gradient descent
 - At every step, pick a different minibatch B containing a subset of the dataset, use it as input x

Concepts:

- Batch size: the number of data points in a minibatch
- Iteration: 1 step of SGD on a minibatch
- Epoch: one full pass over the dataset (# iterations is equal to ratio of dataset size and batch size)

——— Full data loss surface

Full data loss surface

Batch loss surface

Full data loss surface

Loss Surface: Reality

Optimization in Practice

- How to choose learning rate
 - Too small → slow convergence
 - Too large → can cause the loss function to fluctuate around the minimum or even diverge
- Common strategies for improvement:
 - Momentum: helps accelerate gradients in the right direction
 - Adaptive learning rate
- Common optimizers: Adam, Adagrad, Adadelta, RMSprop...

Nice overview here: https://www.ruder.io/optimizing-gradient-descent/

How to Avoid Overfitting?

Use regularization!

Double descent phenomena

Early stopping

 Stop training when performance on a validation dataset starts to degrade

Weight regularization

- Penalizing a network based on the size of the network weights during training
- E.g., L1 or L2 vector norm penalty

Dropout

Randomly drop out neurons during training with some probability

Dropout

Randomly drop out neurons during training with some probability

Batch normalization

- More than "just regularization"
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Usually applied after a fully connected/convolutional layer and before a non-linearity

More details in exercise session!

Hyperparameter Optimization

- Hyperparameters: Parameters used to control the learning the learning process; they are not learnt
 - E.g., learning rate, number of neural network layers, mini-batch size
- How to find hyperparameters:
 - Grid search, random search, Bayesian optimization
- Cross-validation is often used to estimate generalization performance of the model
 - Partition the data in non-overlapping subsets of train, validation and test data and evaluate model's performance on the heldout data

Recap

Objective function:

$$\min_{\Theta} \mathcal{L}(\boldsymbol{y}, f(\boldsymbol{x}))$$

- Sample a minibatch of input x
- Forward propagation: compute \mathcal{L} given x
- Back-propagation: obtain gradient $\nabla_{\Theta} \mathcal{L}$ using a chain rule
- Use stochastic gradient descent (SGD) to optimize for ⊕ over many iterations
- f can be any neural network

CS502

Any Feedback?

Give us feedback on the lecture:

 https://docs.google.com/forms/d/e/1FAIpQLSdgn11OklAvx9iIK LpviRwJ9gruCdLGUREFWPIpYR0QycY6jA/viewform

Next lectures: Different neural network architectures

- CNNs for images
- GNNs for graphs
- Transformers for sequence data