Supplementary Material

Wenzhuo Yang A0096049@NUS.EDU.SG

Department of Mechanical Engineering, National University of Singapore, Singapore 117576

Melvyn Sim DSCSIMM@NUS.EDU.SG

Department of Decision Sciences, National University of Singapore, Singapore 117576

Huan Xu MPEXUH@NUS.EDU.SG

Department of Mechanical Engineering, National University of Singapore, Singapore 117576

1. Proof of Theorem 1

Proof. Step 1 – the "if" part. Given a function $\rho(\mathbf{u}) = 1 - \sup\{k \in [0,1] | \sup_{\mathbf{v} \in \mathbf{V}_k} (-\mathbf{v}^\top \mathbf{u}) \le 0\}$ for some admissible class $\{\mathbf{V}_k\}$, we show that $\rho(\cdot)$ satisfies all properties required for a CCLF.

Step 1.1 – Complete Classification: If $\mathbf{u} \geq 0$, then by $\mathbf{V}_1 = \Re_m^+$ we have that $\mathbf{v}^\top \mathbf{u} \geq 0$ for all $\mathbf{v} \in \mathbf{V}_1$, which implies that $\sup_{\mathbf{v} \in \mathbf{V}_1} (-\mathbf{v}^\top \mathbf{u}) \leq 0$. Hence $\rho(\mathbf{x}) = 0$. Conversely, if $\mathbf{u} \not\geq 0$, without loss of generality we assume $u_1 < 0$, then we have

$$\sup_{\mathbf{v} \in \mathbf{V}_1} \left(-\mathbf{v}^\top \mathbf{u} \right) = \sup_{\mathbf{v} \in \Re^m_+} (-\mathbf{v}^\top \mathbf{u}) \geq -\mathbf{e}_1 \mathbf{u} > 0.$$

This, combined with $V_1 = \operatorname{cl}(\lim_{k \uparrow 1} V_k)$, leads to that $\exists \delta > 0$ such that

$$\sup_{\mathbf{v} \in \mathbf{V}_{1-\delta}} (-\mathbf{v}^{\top} \mathbf{u}) > 0,$$

which implies that $\rho(\mathbf{u}) > 0$. This shows that $\rho(\cdot)$ satisfies *complete classification*.

Step 1.2 – Misclassification avoidance: Fix u such that u < 0. We have $e \in V_0$ which implies that

$$\sup_{\mathbf{v} \in \mathbf{V}_0} (-\mathbf{v}^\top \mathbf{u}) \ge (-\mathbf{e}^\top \mathbf{u}) > 0.$$

Hence $\rho(\mathbf{u}) = 1$. Thus, $\rho(\cdot)$ satisfies misclassification avoidance.

Step 1.3 – Monotonicity: If $\mathbf{u}_1 \leq \mathbf{u}_2$, then for any $k \in [0,1]$, since $\mathbf{V}_k \subseteq \mathbf{V}_1 = \Re^m_+$, we have that $-\mathbf{v}^\top \mathbf{u}_1 \geq -\mathbf{v}^\top \mathbf{u}_2$ for any $\mathbf{v} \in \mathbf{V}_k$. Thus,

$$\{\sup_{\mathbf{v}\in\mathbf{V}_k}(-\mathbf{v}^{\top}\mathbf{u}_1)\leq 0\}\quad\Longrightarrow\quad \{\sup_{\mathbf{v}\in\mathbf{V}_k}(-\mathbf{v}^{\top}\mathbf{u}_2)\leq 0\}.$$

Hence $\rho(\mathbf{u}_1) \geq \rho(\mathbf{u}_2)$. Thus, $\rho(\cdot)$ satisfies monotonicity.

Step 1.4 – Order & scale invariance: Order invariance follows directly from the fact that V_k is order invariant for all k. Scale invariant holds because for $\alpha > 0$ and $k \in [0, 1]$,

$$\{\sup_{\mathbf{v}\in\mathbf{V}_k}(-\mathbf{v}^{\top}\mathbf{u})\leq 0\}\quad\Longleftrightarrow\quad \{\sup_{\mathbf{v}\in\mathbf{V}_k}(-\mathbf{v}^{\top}\alpha\mathbf{u})\leq 0\}.$$

Step 1.5 – Quasi-convexity: To show quasi-convexity, let $c = \max(\rho(\mathbf{u}_1), \rho(\mathbf{u}_2))$ and without loss of generality assume c < 1 since otherwise the claim trivially holds. Thus we have that for any $\epsilon > 0$

$$\sup_{\mathbf{v} \in \mathbf{V}_{1-c-\epsilon}} (-\mathbf{v}^{\top} \mathbf{u}_i) \le 0, \quad i = 1, 2,$$

which implies that for $\alpha \in [0, 1]$

$$\sup_{\mathbf{v} \in \mathbf{V}_{1-c-\epsilon}} \{ -\mathbf{v}^{\top} [\alpha \mathbf{u}_1 + (1-\alpha) \mathbf{u}_2] \} \le 0.$$

Thus $1 - \rho(\alpha \mathbf{u}_1 + (1 - \alpha)\mathbf{u}_2) \ge 1 - c$ since ϵ can be arbitrarily close to 0. The quasi-convexity holds.

Step 1.6 – Lower semi-continuity: We show that $\rho(\mathbf{u}_*) \leq \liminf_i \rho(\mathbf{u}_i)$ for $\mathbf{u}_i \stackrel{i}{\to} \mathbf{u}_*$. Let $c > \liminf_i \rho(\mathbf{u}_i)$, then there exists an infinite sub-sequence $\{\mathbf{u}_{i_i}\}$ such that $\rho(\mathbf{u}_{i_i}) < c$. That is

$$-\mathbf{v}^{\top}\mathbf{u}_{i_i} \le 0; \quad \forall \mathbf{v} \in \mathbf{V}_{1-c}, \, \forall j.$$

Note that $\mathbf{u}_{i_i} \to \mathbf{u}_*$, hence

$$-\mathbf{v}^{\top}\mathbf{u}_{*} < 0; \quad \forall \mathbf{v} \in \mathbf{V}_{1-c},$$

i.e., $1 - \rho(\mathbf{u}_*) \ge 1 - c$. Since c can be arbitrarily close to $\liminf_i \rho(\mathbf{u}_i)$, the semi-continuity follows.

Step 2 – the "only if" part. Given a function $\rho(\cdot)$ which is a CCLF, we show that it can be represented as

$$\rho(\mathbf{u}) = 1 - \sup\{k \in [0, 1] | \sup_{\mathbf{v} \in \mathbf{V}_k} (-\mathbf{v}^\top \mathbf{u}) \le 0\},\$$

for some admissible class $\{\mathbf{V}_k\}$. This consists of three steps. We first show that $\rho(\cdot)$ can be represented as $\rho(\mathbf{u}) = 1 - \sup\{k \in [0,1] | \sup_{\mathbf{v} \in \overline{\mathbf{V}}_k} (-\mathbf{v}^\top \mathbf{u}) \le 0\}$, for some $\{\overline{\mathbf{V}}_k\}$. Here $\{\overline{\mathbf{V}}_k\}$ is not necessarily admissible, but satisfies $\overline{\mathbf{V}}_k \subseteq \overline{\mathbf{V}}_{k'}$ for all $k \le k'$. We then show that we can replace $\overline{\mathbf{V}}_k$ by a class of closed, convex, order-invariant, cones \mathbf{V}_k . Finally we show that $\{\mathbf{V}_k\}$ is admissible to complete the proof.

Step 2.1. The representability of $\rho(\cdot)$ follows from Theorem 2 of (Brown & Sim, 2009). For completeness we re-state the result as a lemma, and provide the proof below.

Lemma A-1. Given a CCLF $\rho(\cdot)$, then there exists $\{\overline{\mathbf{V}}_k\}$ that satisfies $\overline{\mathbf{V}}_k \subseteq \overline{\mathbf{V}}_{k'}$ for all $k \leq k'$, such that

$$\rho(\mathbf{u}) = 1 - \sup\{k \in [0, 1] | \sup_{\mathbf{v} \in \overline{\mathbf{V}}_k} (-\mathbf{v}^{\top} \mathbf{u}) \le 0\}.$$

Step 2.2. We construct $\{\mathbf{V}_k\}$ as follows. Let $\hat{\mathbf{V}}_k \triangleq \operatorname{cl}(\operatorname{cc}(\operatorname{or}(\overline{\mathbf{V}}_k)))$. Then we let $\mathbf{V}_k \triangleq \hat{\mathbf{V}}_k$ for $k \in (0,1)$, and $\mathbf{V}_0 \triangleq \bigcap_{k \in (0,1)} \hat{\mathbf{V}}_k$, and $\mathbf{V}_1 \triangleq \operatorname{cl}(\bigcup_{k \in (0,1)} \hat{\mathbf{V}}_k)$. Here $\operatorname{or}(\cdot)$ (respectively $\operatorname{cc}(\cdot)$) is the minimal **or**der invariant (respectively, **c**onvex **c**one) superset, defined as

$$\operatorname{or}(S) = \{ P\mathbf{v} | P \in \mathcal{P}_n, \mathbf{v} \in S \}, \quad \operatorname{cc}(S) = \{ \sum_{i=1}^k \lambda_i \mathbf{v}_i | k \in \mathbb{N}, \mathbf{v}_i \in S, \lambda_i \ge 0 \}.$$

Let

$$\rho'(\mathbf{u}) = 1 - \sup\{k \in [0, 1] | \sup_{\mathbf{v} \in \hat{\mathbf{V}}_k} (-\mathbf{v}^\top \mathbf{u}) \le 0\},$$

and observe that $\overline{\mathbf{V}}_k \subseteq \hat{\mathbf{V}}_k$, hence $\rho(\mathbf{u}) \le \rho'(\mathbf{u})$. To show that $\rho(\mathbf{u}) \ge \rho'(\mathbf{u})$, it suffices to show that for any k, ϵ and \mathbf{u} , the following holds,

$$\{\sup_{\mathbf{v}\in\overline{\mathbf{V}}_k}(-\mathbf{v}^{\top}\mathbf{u})\leq 0\} \implies \{\sup_{\mathbf{v}\in\hat{\mathbf{V}}_{k-\epsilon}}(-\mathbf{v}^{\top}\mathbf{u})\leq 0\}.$$
(A-1)

Note that $\{\sup_{\mathbf{v}\in\overline{\mathbf{V}}_k}(-\mathbf{v}^{\top}\mathbf{u})\leq 0\}$ implies $k\leq 1-\rho(\mathbf{u})$, and hence by order invariance of $\rho(\cdot)$, we have $k\leq 1-\rho(P\mathbf{u})$ for all $P\in\mathcal{P}_n$. This means

$$\sup_{\mathbf{v} \in \overline{\mathbf{V}}_{k-\epsilon}} \sup_{P \in \mathcal{P}_n} (-\mathbf{v}^\top P \mathbf{u}) \le 0,$$

which is equivalent to

$$\sup_{\mathbf{v} \in \text{or}(\overline{\mathbf{V}}_{k-\epsilon})} (-\mathbf{v}^{\top}\mathbf{u}) \leq 0.$$

By definition of $cc(\cdot)$, this leads to

$$\sup_{\mathbf{v}\in\operatorname{cc}(\operatorname{or}(\overline{\mathbf{V}}_{k-\epsilon}))}(-\mathbf{v}^{\top}\mathbf{u})\leq 0,$$

which further implies, by continuity of $-\mathbf{v}^{\top}\mathbf{u}$, that

$$\sup_{\mathbf{v} \in \operatorname{cl}(\operatorname{cc}(\operatorname{or}(\overline{\mathbf{V}}_{k-\epsilon})))} (-\mathbf{v}^{\top}\mathbf{u}) \leq 0.$$

Thus we have $\rho(\mathbf{u}) = \rho'(\mathbf{u})$. Finally note that $\hat{\mathbf{V}}_k \subseteq \hat{\mathbf{V}}_{k'}$ for $k \le k'$, which leads to the following

$$\sup_{\mathbf{v} \in \hat{\mathbf{V}}_0} (-\mathbf{v}^\top \mathbf{u}) \le \sup_{\mathbf{v} \in \bigcap_{k \in (0,1)} \hat{\mathbf{V}}_k} (-\mathbf{v}^\top \mathbf{u}) \le \sup_{\mathbf{v} \in \hat{\mathbf{V}}_\epsilon} (-\mathbf{v}^\top \mathbf{u});$$

$$\sup_{\mathbf{v} \in \hat{\mathbf{V}}_{1-\epsilon}} (-\mathbf{v}^{\top}\mathbf{u}) \leq \sup_{\mathbf{v} \in \bigcup_{k \in (0,1)} \hat{\mathbf{V}}_k} (-\mathbf{v}^{\top}\mathbf{u}) \leq \sup_{\mathbf{v} \in \hat{\mathbf{V}}_1} (-\mathbf{v}^{\top}\mathbf{u}).$$

By definitions of V_0 and V_1 , together with the fact (due to continuity)

$$\sup_{\mathbf{v} \in \operatorname{cl}(\bigcup_{k \in (0,1)} \hat{\mathbf{V}}_k)} (-\mathbf{v}^\top \mathbf{u}) = \sup_{\mathbf{v} \in \bigcup_{k \in (0,1)} \hat{\mathbf{V}}_k} (-\mathbf{v}^\top \mathbf{u}),$$

we conclude that

$$\rho(\mathbf{u}) = 1 - \sup\{k \in [0, 1] | \sup_{\mathbf{v} \in \mathbf{V}_k} (-\mathbf{v}^\top \mathbf{u}) \le 0\}.$$

Step 2.3. Now we check that $\{V_k\}$ is indeed admissible. Property 1-3 are straightforward from the definition of V_k . To see that V_0 is closed, recall that the intersection of a class of closes sets is close.

We next show Property 4: $V_1 = \Re^m_+$. By definition of V_1 , we have

$$\lim_{k \to 1} \sup_{\mathbf{v} \in \mathbf{V}_k} (-\mathbf{v}^\top \mathbf{u}) = \sup_{\mathbf{v} \in \mathbf{V}_1} (-\mathbf{v}^\top \mathbf{u}).$$

Hence $\rho(\mathbf{u}) = 0$ if and only if $\sup_{\mathbf{v} \in \mathbf{V}_1} (-\mathbf{v}^{\top} \mathbf{u}) \leq 0$. Thus by the property of *complete classification* we have the following

$$\{\sup_{\mathbf{v}\in\mathbf{V}_1}(-\mathbf{v}^{\top}\mathbf{u})\leq 0\}\quad\Longleftrightarrow\quad \{\mathbf{u}\geq 0\}. \tag{A-2}$$

Denote the dual cone of a cone X by X^* and recall that for any k, V_k is a closed convex cone, hence we have

$$(\mathbf{V}_{1}^{*})^{*} = \mathbf{V}_{1}.$$

The definition of dual cone states that

$$\mathbf{V}_1^* = \{ \mathbf{u} | \mathbf{u}^\top \mathbf{v} \ge 0; \forall \mathbf{v} \in \mathbf{V}_1 \},$$

which combined with Equation (A-2) implies that

$$\mathbf{V}_1^* = \Re^m_{\perp}$$
.

Since \Re^m_+ is self-dual, we have

$$\mathbf{V}_1 = \Re^m_+.$$

We now turn to Property 5. Fix k > 0. Consider $\mathbf{u} = -\mathbf{e}$. By misclassification avoidance, $\rho(\mathbf{u}^*) = 1$, which means there exists $\mathbf{v}^* \in \mathbf{V}_k$ such that $\mathbf{v}^{*\top}\mathbf{u} < 0$, i.e., $\sum_{i=1}^m v_i > 0$. Define a permutation matrix $P \in \mathcal{P}_m$:

$$P = \left[\begin{array}{cccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{array} \right].$$

Thus, by order invariance of \mathbf{V}_k , $P^t\mathbf{v}^* \in \mathbf{V}_k$ for $t=0,\cdots,m-1$. By convexity, this implies $\frac{1}{m}\sum_{t=0}^{m-1}P^t\mathbf{v}^* \in \mathbf{V}_k$. Note that $\frac{1}{m}\sum_{t=0}^{m-1}P^t\mathbf{v}^* = [\sum_{i=1}^m v_i^*]\mathbf{e}/m$, thus

$$\frac{\sum_{i=1}^{m} v_i^*}{m} \mathbf{e} \in \mathbf{V}_k.$$

Since $\sum_{i=1}^{m} v_i^* > 0$ and \mathbf{V}_k is a cone, we have $\lambda \mathbf{e} \in \mathbf{V}_k$ for all $\lambda \geq 0$ and k > 0. By definition of \mathbf{V}_0 , this implies $\lambda \mathbf{e} \in \mathbf{V}_0$.

The rest of this appendix provides a proof to Lemma A-1.

Proof. We recall the following results adapted from (Brown & Sim, 2009).

Definition A-1. Let \mathcal{U} be the set of random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. A function $\overline{\rho}(\cdot) : \mathcal{U} \to [0, 1]$ is a collective satisfying measure if the following holds for all $U, U' \in \mathcal{U}$.

- 1. If U > 0, then $\overline{\rho}(U) = 1$;
- 2. If U < 0, then $\overline{\rho}(U) = 0$;
- 3. If $U \geq U'$ then $\overline{\rho}(U) \geq \overline{\rho}(U')$;
- 4. $\lim_{\alpha>0} \overline{\rho}(U+\alpha) = \overline{\rho}(U)$;
- 5. If $\lambda \in [0,1]$, then $\overline{\rho}(\lambda U + (1-\lambda)U') \ge \min(\overline{\rho}(U), \overline{\rho}(U'))$;
- 6. If k > 0, then $\overline{\rho}(kU) = \overline{\rho}(U)$.

Theorem A-1. Any collective satisfying measure $\overline{\rho}(\cdot)$ can be represented as

$$\overline{\rho}(U) = \sup\{k \in [0,1] | \sup_{\mathbb{Q} \in \mathcal{Q}_k} \mathbb{E}_{\mathbb{Q}}(-U) \le 0\},\$$

for a class of sets of probability measures Q_k satisfying $Q_k \subseteq Q_{k'}$ for $k \leq k'$.

Given this general result, we focus on a special case where $\Omega = \{1, 2 \cdots, m\}$. Note that in this case each random variable $U: \Omega \mapsto \Re$ can be represented as a vector $\mathbf{u} \in \Re^m$ where $u_i = U(i)$. Given a CCLF $\rho(\cdot): \Re^m \to \Re$, we define $\overline{\rho}: \mathcal{U} \mapsto \Re$ as following

$$\overline{\rho}(U) = 1 - \rho(\mathbf{u}); \text{ where } u_i = U(i), i = 1, \dots, m.$$

It is straightforward to check that $\overline{\rho}(\cdot)$ is a collective satisfying measure. Thus, Theorem A-1 states there exists a class of sets of probability measure Q_k such that

$$1 - \rho(\mathbf{u}) = \overline{\rho}(U) = \sup\{k \in [0, 1] | \sup_{\mathbb{Q} \in \mathcal{Q}_k} \mathbb{E}_{\mathbb{Q}}(-U) \le 0\}.$$

Note that any probability measure Q on $\Omega = \{1, \cdots, m\}$ can be represented by a vector $\mathbf{v} \in \Re^m$ such that $v_i = Q(i)$. Thus $\mathbb{E}_Q(-X) = -\mathbf{v}^\top \mathbf{x}$ where \mathbf{v} and \mathbf{u} are the vector form for Q and U respectively. Hence we have there exists $\overline{\mathbf{V}}_k$ such that

$$\rho(\mathbf{u}) = 1 - \sup\{k \in [0, 1] | \sup_{\mathbf{v} \in \overline{\mathbf{V}}_k} (-\mathbf{v}^\top \mathbf{u}) \le 0\}.$$

Note that for $k \leq k'$, $\overline{\mathbf{V}}_k \subseteq \overline{\mathbf{V}}_{k'}$ since $Q_k \subseteq Q_{k'}$. This concludes the proof of Lemma A-1.

2. Proof of Theorem 2

Proof. Claim 1: We check that all conditions of Definition 1 are satisfied by $\overline{\rho}(\cdot)$. The only condition needs a proof is the semi-continuity. Consider a sequence $\mathbf{u}^j \to \mathbf{u}^0$, and let $t^0 = \max\{t : \sum_{i=1}^t u^0_{(i)} < 0\}$. Without loss of generality we let $u^0_1 \leq u^0_2 \leq \cdots \leq u^0_m$. Thus we have that $\sum_{i=1}^{t^0} u^0_i < 0$. This implies that $\limsup_j \sum_{i=1}^{t^0} u^j_i < 0$, which further leads to $\liminf_j (\max\{t : \sum_{i=1}^t u^j_{(i)} < 0\}) \geq t^0$. Hence $\liminf_j \overline{\rho}(\mathbf{u}^j) \geq \overline{\rho}(\mathbf{u}^0)$, which established the semi-continuity. Thus, we conclude that $\overline{\rho}(\cdot)$ is a CCLF. Further, observe that $\max\{t : \sum_{i=1}^t u_{(i)} < 0\} \geq \sum_{i=1}^m \mathbf{1}(u_i < 0)$, which established the first claim.

Claim 2: It is straightforward to check that $\overline{\mathbf{V}}_k$ satisfies all conditions of Definition 2, and hence is an admissible set. Thus, we proceed to show that $\overline{\mathbf{V}}_k$ is an admissible set *corresponding to* $\overline{\rho}(\cdot)$, i.e., to show

$$\overline{\rho}(\mathbf{u}) = 1 - \sup\{k \in [0, 1] | \sup_{\mathbf{v} \in \overline{\mathbf{V}}_k} (-\mathbf{v}^{\top}\mathbf{u}) \le 0\}.$$

Fix a $\mathbf{u} \in \Re^m$. If $\mathbf{u} \geq 0$, then we have $\overline{\rho}(\mathbf{u}) = 0$, as well as $\sup_{\mathbf{v} \in \overline{\mathbf{V}}_1} (-\mathbf{v}^\top \mathbf{u}) \leq 0$, and hence the equivalence holds trivially. Thus we assume $\mathbf{u} \not\geq 0$, and let $t^0 = \max\{t : \sum_{i=1}^t u_{(i)} < 0\}$. By definition we have

$$\overline{\mathbf{V}}_{1-t^0/m} = \operatorname{conv}\left\{\lambda \mathbf{e}_{N'} | \lambda > 0, |N'| = t^0 + 1\right\}.$$

Note that by definition of t^0

$$\min_{|N'|=t^0+1} \sum_{i \in N'} u_i \ge 0,$$

which implies that

$$\sup_{\mathbf{v} \in \{\mathbf{e}_{N'} | |N'| = t^0 + 1\}} (-\mathbf{v}^\top \mathbf{u}) \le 0.$$

This leads to

$$\sup_{\mathbf{v} \in \overline{\mathbf{V}}_{1-t^0/m}} (-\mathbf{v}^{\top} \mathbf{u}) \le 0. \tag{A-3}$$

On the other hand for arbitrarily small $\epsilon > 0$, by definition

$$\overline{\mathbf{V}}_{1-t^{0}/m+\epsilon} = \operatorname{conv}\left\{\lambda \mathbf{e}_{N} | \lambda > 0, |N| = t^{0}\right\}.$$

Because $\min_{N:|N|=t^0} \sum_{i\in N} u_i < 0$, we have

$$\sup_{\mathbf{v} \in \overline{\mathbf{V}}_{1-t^0/m+\epsilon}} (-\mathbf{v}^{\top} \mathbf{u}) > 0.$$

Combining with Equation (A-3) we established the second claim

Claim 3: Let $\rho'(\cdot)$ be a CCLF satisfying that $\rho'(\mathbf{u}) \geq \varrho(\mathbf{u})$ for all $\mathbf{u} \in \Re^m$, and let $\{\mathbf{V}_k'\}$ be its corresponding admissible set. Thus, it suffices to show that $\overline{\mathbf{V}}_k \subseteq \mathbf{V}_k'$ for all k. This holds trivially for k=0, since $\rho'(\mathbf{u})=1$ for all $\mathbf{u}<\mathbf{0}$ implies that $\lambda\mathbf{e} \in \mathbf{V}_0'$. When k>0, let $s/m < k \leq (s+1)/m$ for some integer s. Then, since \mathbf{V}_k' is an order-invariant convex cone, it suffices to show that $\mathbf{e}_{[1:m-s]} \in \mathbf{V}_k'$ to establish the third claim. Consider $\mathbf{u}^* \triangleq -\mathbf{e}_{[1:m-s]}$. Then, by $\rho'(\mathbf{u}^*) \geq \sum_i \mathbf{1}(u_i^* < 0)/m = s/m < k$, we have

$$\sup_{\mathbf{v} \in \mathbf{V}_{k}'} (-\mathbf{v}^{\top} \mathbf{u}^{*}) > 0$$

$$\Longrightarrow \quad \exists \mathbf{v}^{*} \in \mathbf{V}_{k}' : \sum_{i=1}^{m-s} v_{i}^{*} > 0.$$

Define a permutation matrix P:

$$P = \left[\begin{array}{cc} P_1 & 0_{(m-s)\times s} \\ 0_{(m-s)\times s} & 0_{s\times s} \end{array} \right],$$

where P_1 is a $(m-s) \times (m-s)$ matrix:

$$P_1 = \left[\begin{array}{cccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{array} \right].$$

Thus, by order invariance of \mathbf{V}_k' , $P^t\mathbf{v}^* \in \mathbf{V}_k'$ for $t = 0, \dots, m - s - 1$. By convexity, this implies $\frac{1}{m - s} \sum_{t=0}^{m - s - 1} P^t\mathbf{v}^* \in \mathbf{V}_k'$. Note that $\frac{1}{m - s} \sum_{t=0}^{m - s - 1} P^t\mathbf{v}^* = [\sum_{i \in [1:m - s]} v_i^*]\mathbf{e}_{[1:m - s]}/(m - s)$, thus

$$\frac{\sum_{i=1}^{m-s} v_i^*}{m-s} \mathbf{e}_{[1:m-s]} \in \mathbf{V}_k'.$$

Since $\frac{\sum_{i=1}^{m-s} v_i^*}{m-s}$ is positive, and \mathbf{V}_k' is a cone, we have $\mathbf{e}_{[1:n-s]} \in \mathbf{V}_k'$, which completes the proof.

3. Proof of Theorem 3

Proof. We prove the theorem by constructing such a function $\rho(\cdot)$. To do this, first consider $\check{\rho}: \mathcal{R}^m \mapsto [0,1]$ defined as

$$\check{\rho}(u) = \min_{\gamma > 0} \hat{\rho}(u/\gamma).$$

Then it is easy to check that $\check{\rho}(\cdot)$ satisfies complete classification, misclassification avoidance, monotonicity, order invariance, and scale invariance. To see that $\check{\rho}(u) \geq \varrho(u)$, note that if u has t negative coefficients, than for any $\gamma > 0$, u/γ also has t negative coefficients, which means

$$\hat{\rho}(u/\gamma) \ge t/m$$
.

Taking minimization over γ , we have $\check{\rho}(u) \geq \varrho(u)$ holds. Finally, we show quasi-convexity of $\check{\rho}(\cdot)$. Fix u_1 , u_2 , and $\alpha \in [0,1]$, let γ_1, γ_2 be ϵ -optimal, i.e.,

$$\hat{\rho}(u_i/\gamma_i) \le \check{\rho}(u_i) + \epsilon, \quad i = 1, 2.$$

Since $\hat{\rho}$ is quasi-convex, we have

$$\hat{\rho}\left(\frac{\alpha u_1 + (1 - \alpha)u_2}{\alpha \gamma_1 + (1 - \alpha)\gamma_2}\right) = \hat{\rho}\left(\frac{\alpha \gamma_1}{\alpha \gamma_1 + (1 - \alpha)\gamma_2} \cdot \frac{u_1}{\gamma_1} + \frac{(1 - \alpha)\gamma_2}{\alpha \gamma_1 + (1 - \alpha)\gamma_2} \cdot \frac{u_2}{\gamma_2}\right)$$

$$\leq \max\{\hat{\rho}\left(\frac{u_1}{\gamma_1}\right), \hat{\rho}\left(\frac{u_2}{\gamma_2}\right)\}$$

which implies

$$\check{\rho}(\alpha u_1 + (1 - \alpha)u_2) \le \hat{\rho}(\frac{\alpha u_1 + (1 - \alpha)u_2}{\alpha \gamma_1 + (1 - \alpha)\gamma_2}) \le \max\{\hat{\rho}(\frac{u_1}{\gamma_1}), \hat{\rho}(\frac{u_2}{\gamma_2})\} \le \max\{\check{\rho}(u_1), \check{\rho}(u_2)\} + \epsilon.$$

Hence $\check{\rho}(\cdot)$ is quasi-convex. Note that the only property that is not satisfied is the semi-continuity. To handle this, define $\rho: \mathcal{R}^m \mapsto [0,1]$ as

$$\rho(u) = \lim_{\epsilon \downarrow 0} \check{\rho}(u + \epsilon e)$$

Because of monotonicity of $\check{\rho}(\cdot)$, $\rho(\cdot)$ is well-defined. In addition, it can be shown that $\rho(\cdot)$ is lower-semicontinuous. Complete classification, misclassification avoidance, monotonicity, order invariance, scale invariance, and quasi-convexity all follows easily from the fact that same property holds for $\check{\rho}(\cdot)$. Thus, $\rho(\cdot)$ is a CCLF w.r.t. m. Next, we show that

$$\hat{\rho}(u) \ge \rho(u) \ge \varrho(u)$$
.

The first inequality holds due to $\hat{\rho}(u) \geq \check{\rho}(u) \geq \check{\rho}(u + \epsilon e)$. The second inequality holds because for any u, there exists $\epsilon > 0$ small enough such that $\varrho(u + \epsilon e) = \varrho(u)$. Thus, taking limit over $\check{\rho}(u + \epsilon e) \geq \varrho(u + \epsilon e)$ establishes the second inequality. Recall that $\bar{\rho}(u)$ is the minimal CCLF, we establish the lemma by

$$\varrho(u) \le \bar{\rho}(u) \le \rho(u).$$

4. Proof of Theorem 5

Proof. To prove Theorem 5, we start with establishing the following lemma. Observe that $\overline{\rho}(\mathbf{u})$ only takes value in $\{0, 1/m, 2/m, \cdots 1\}$.

Lemma A-2. The level set of Problem (4), i.e., $U_i \triangleq \{(\mathbf{u}, \mathbf{w}) | \overline{\rho}(\mathbf{u}) \leq 1 - i/m; f_j(\mathbf{u}, \mathbf{w}) \leq 0, \forall j \}$ for $i = 1, \dots, m$, equals the following

$$\{(\mathbf{u}, \mathbf{w}) | \exists d : \sum_{i=1}^{m} [d - u_i]^+ \le (m - i + 1)d; \ f_j(\mathbf{u}, \mathbf{w}) \le 0, \ \forall j. \}$$

Proof. From Property 2 of Theorem 2, we have that \mathcal{U}_i equals to the feasible set of the following program

$$\sup_{\mathbf{v} \in \overline{\mathbf{V}}_{i/m}} (-\mathbf{v}^{\top} \mathbf{u}) \leq 0;$$

$$f_j(\mathbf{u}, \mathbf{w}) \leq 0; \quad j = 1, \dots, n.$$

Recall that $\overline{\mathbf{V}}_{i/m} = \operatorname{conv}\left\{\lambda\mathbf{e}_N|\ \lambda>0, |N|=m-i+1\right\}$ we have that $\sup_{\mathbf{v}\in\overline{\mathbf{V}}_{i/m}}(-\mathbf{v}^{\top}\mathbf{u})\leq 0$ is equivalent to

$$\inf_{\mathbf{v}: \mathbf{0} \leq \mathbf{v} \leq \mathbf{e}, \mathbf{e}^{\top} \mathbf{v} = m - i + 1} \mathbf{v}^{\top} \mathbf{u} \geq 0,$$

which left-hand-side by duality theorem is equivalent to the following optimization problem on (\mathbf{c}, d)

Maximize:
$$\sum_{i=1}^{m} c_i + (m-i+1)d$$
Subject to:
$$c_i + d \le u_i$$

$$c_i < 0.$$

Thus we have $\mathbf{u} \in \mathcal{U}_i$ if and only if there exists \mathbf{c} , d, and \mathbf{w} such that

$$\mathbf{e}^{\top}\mathbf{c} + (m - i + 1)d \ge 0;$$

 $\mathbf{c} + d\mathbf{e} \le \mathbf{u};$
 $\mathbf{c} \le \mathbf{0};$
 $f_j(\mathbf{u}, \mathbf{w}) \le 0; \quad j = 1, \dots, n.$

Note that this can be further simplified, since optimal $c_i = -[d - u_i]^+$, as

$$\sum_{i=1}^{m} [d - u_i]^+ \le (m - i + 1)d$$

$$f_j(\mathbf{u}, \mathbf{w}) \le 0; \quad j = 1, \dots, n.$$
(A-4)

This establishes the lemma.

Now we turn to prove Theorem 5. Recall the assumption that there are no \mathbf{u} , \mathbf{w} such that $\mathbf{u} \geq 0$, and $f_j(\mathbf{u}, \mathbf{w}) \leq 0$ for all j. Thus any feasible solution to (A-4) must have d > 0. Hence the feasible set to Problem (A-4) is equivalent to that of

$$\sum_{i=1}^{m} [1 - u_i/d]^+ \le (m - i + 1)$$

 $f_j(\mathbf{u}, \mathbf{w}) \le 0; \quad j = 1, \dots, m.$

Thus, finding the optimal solution to Problem (4) is equivalent to solve the following

Minimize:
$$\sum_{i=1}^{m} [1 - u_i/d]^+$$
 Subject to:
$$f_j(\mathbf{u}, \mathbf{w}) \le 0; \quad j = 1, \cdots, n;$$

$$d > 0.$$
 (A-5)

By a change of variable where we let h=1/d, $\mathbf{s}=\mathbf{u}h$, $\mathbf{t}=\mathbf{w}h$, this is equivalent to

Minimize:
$$\sum_{i=1}^m [1-s_i]^+$$
 Subject to:
$$hf_j(\mathbf{s}/h,\mathbf{t}/h) \leq 0; \quad j=1,\cdots,n;$$

$$h>0.$$

Hence Theorem 5 is established.

Supplementary Material

References

Brown, D.B. and Sim, M. Satisficing measures for analysis of risky positions. *Management Science*, 55(1):71–84, 2009.