Computergestützte Modellierung

Ieyasu Sugimoto

Institut für Statistik und Operations Research Universität Graz

- 6 Blöcke a 3,5 Std
- 3 Blöcke Stoffpräsentation
 - Einheiten 1, 2 und 3
- 3 Blöcke Präsentationen Programmieraufgaben
 - Einheit 4: Bsp. 1 15
 - Einheit 5: Bsp. 16 23
 - Einheit 6: Bsp. 24 30

Programmieraufgaben

- Präsentation der Aufgabenstellung
- Vorstellung des Lösungsansatzes
- Lösung von Programmieraufgaben mittels Computerprogramm
- o in 2-er Gruppen
- Programmiersprache kann selbst gewählt werden
- Programmierbeispiele sind je nach Schwierigkeitsgrad unterschiedlich bewertet.
- Unterstützend wird Programmiertutorium angeboten (Matlab)
- Einreichen bis Freitag vor jeweiliger Einheit (also eine Woche vorher) über moodle.uni-graz.at

Programmieraufgaben

- Anwesenheit beider Gruppenmitglieder verpflichtend, falls man Beispiel eingereicht hat.
- Falls mehrere Gruppen das selbe Beispiel eingereicht haben, wird per Zufall entschieden, wer präsentieren darf.
- Für das Präsentieren gibt es einen Zusatzpunkt.
- Falls unterschiedliche Lösungswege abgegeben wurden, sollen diese auch präsentiert werden.
- Es können auch Teilpunkte eines Beispiels abgegeben bzw. präsentiert werden.

Programmieraufgaben

- Falls ein Beispiel von keiner Person gelöst wurde, wird ein Teilnehmer der Lehrveranstaltung ausgewählt, um Flussdiagramm mit Hilfe der Kollegen an der Tafel zu erstellen - dafür werden auch Zusatzpunkte je nach ursprünglicher Punkteanzahl vergeben.
- Der Notenschlüssel wird am Angabenblatt mit den Programmierbeispielen angegeben.
- Es werden auch Punkte für Mitarbeit vergeben.

Outline

- Einführung
 - Grundlagen
 - Problemstellungen
 - Simulationsbeispiel: Epidemie
- Simulationstypen
 - Deterministische Simulation
 - Stochastische Simulation
- Exkurs: Strukturierte Programmierung
- Zufallszahlen
 - Überprüfung von Pseudozufallszahlen
- Warteschlangensimulation
 - Ereignisorientierte Simulation
 - Zeitorientierte Simulation
- Simulink
- Kopplung Simulation und Optimierung

Was versteht man unter "Simulation und Modellierung"?

- Vereinfachung realer Systeme zu einem quantitativen Modell
- Umsetzung in Computerprogramm
- Arbeiten mit diesem Modell am Computer zur Bestimmung von Kennzahlen, Optimierung, zeitlichen Entwicklung . . .
- Gegensatz zu
 - analytischem Ansatz, wo Lösung rein theoretischer Natur
 - echtem Experiment, wo Vorgang in Realität beobachtet wird

Welche Vorteile gewinnt man durch Simulation und Modellierung?

- Kosten- und Zeitersparnis
- Analytische Lösung oft nicht möglich, da grundlegendes Modell zu komplex
- Flexibilität (Betrachtung der Modelle in Abhängigkeit von Parametern)
- Wiederholbarkeit mit unterschiedlichen Szenarien
- Bestehende Simulationssoftware kann benutzt werden

2 unterschiedliche Problemsituationen:

- Simuliert man das richtige Modell?
 - Wird die Realität ordnungsgemäß abgebildet?
 - Werden alle wichtigen Einflussfaktoren berücksichtigt?
 - Stimmt die verwendete Zufallsverteilung für die Wahrscheinlichkeitsberechnung?
- Simuliert man das Modell richtig?
 - Stimmt die technische Umsetzung mit dem Modell überein?

Anwendungsgebiete

Wo wird Simulation eingesetzt?

- Betriebswirtschaft
 - Warteschlangen
 - Lagerhaltung
- Technik
 - Karrosserieentwicklung/Crashtests
- Naturwissenschaften
 - Epidemie
- → oftmals verwendet um zeitliche Entwicklung darzustellen

Beispiel: Epidemie (kommt aus der Naturwissenschaft, lässt sich aber auf wirtschaftliche Probleme anwenden), z. B.:

- Werbeaktion in Wohngebiet mit zufälligem Startpunkt
- Nachbarn erzählen sich im Zeitablauf mit gewisser Wahrscheinlichkeit von Werbeaktion
- Wahrscheinlichkeit kann im Zeitablauf abnehmen
- Durch Investitionen kann Wahrscheinlichkeit (Ansteckungsrate) beeinflußt werden
- Ziel: Ausbreitung abschätzen, um Investitionen gering zu halten
- Unterschiedliche Szenarien:
 - Ansteckungsrate verändert sich im Zeitablauf
 - Nachbarn können öfters informiert werden
 - Zeitdauer: Ende nach vorgegebener Zeit oder bis Information verebbt

Epidemie-Beispiel: Umsetzung

- Jeder Haushalt ein Punkt in einem Gittermodell
- Startpunkt bei Knoten 14

- 11 12 13 (14) 15
- 6 7 8 9 10
- 1) (2) (3) (4) (5)

Epidemie-Beispiel: Umsetzung

 Ausgehend vom Startpunkt können je Zeiteinheit nur die direkten Nachbarn informiert (angesteckt) werden

Epidemie-Beispiel: Umsetzung

- Ausgehend vom Startpunkt werden je Zeiteinheit nur die direkten Nachbarn mit einer gewissen Wahrscheinlichkeit informiert werden
- Je höher die Wahrscheinlichkeit, desto eher werden Nachbarn informiert → diese kann von außen beeinflußt werden

Epidemie-Beispiel: Umsetzung

 Im nächsten Schritt wird von den neu hinzugefügten Knoten ausgegangen

Epidemie-Simulation

Umsetzung des Beispiels der Epidemie:

- Ausdehnung der Epidemie in einem gewissen Gebiet
- Darstellung des Gebiets in einer Matrix (oder Liste)
- Jedes Element der Matrix (oder Liste) entspricht einem Punkt innerhalb des untersuchten Gebiets
- ullet Der Wert des Elements entspricht dem Zustand des Punktes o geeignete Codierung notwendig
 - Bsp.: mögliche Zustände eines Punktes: lebendig (0), infiziert (1) oder tot (2)
 - Der Wert jedes Elementes muss doppelt vorkommen, da Wert unterschiedlich für t oder t + 1
 - Über Codierung kann man einzelne Elemente aus der Simulation auch ausnehmen

Epidemie-Simulation (Fortsetzung)

Generelle Vorgehensweise (hier: Element ist nur eine Zeiteinheit infiziert und stirbt dann):

- Ist Punkt lebendig zur Zeit $t \rightarrow$ keine Auswirkung auf t + 1
- Ist Punkt infiziert zu Zeit $t \rightarrow$
 - er kann Nachbarn anstecken, dann sind diese in t+1 infiziert \rightarrow Zufallsgröße
 - er selbst ist in t+1 tot.
- Ist Punkt tot zur Zeit $t \rightarrow$ keine Auswirkung auf t + 1
- Erhöhung des Zeitzählers \rightarrow Werte von t+1 werden zu Werte von t
- Berücksichtigen von Abbruchkriterium
- Berücksichtigen von Gebietsgrenzen (in welcher Richtung gibt es Nachbarn?)

Deterministisch vs. Stochastisch

- Deterministische Simulation
 - Zur Lösung von deterministischen Problem
 - Inputparameter stehen schon vor der Simulation fest
 - neuerlicher Durchlauf liefert exakt das selbe Ergebnis
- Stochastische Simulation
 - Zur Lösung stochastischer Problem, d.h. der Ablauf von Ereignissen ist von zufälligen Einflüssen abhängig.
 - Trotz konstanter Inputfaktoren kommt neuerlicher Durchlauf nicht notwendigerweise zu dem selben Ergebnis
 - Erst bei mehreren Durchläufen aussagekräftiges Ergebnis
 - Stabilisierungsphase am Anfang beachten

Diskret vs. Kontinuierlich

- Diskrete Systeme (Discrete Event Dynamic Systems, DEDS models)
 - Zu gewissen, vorher nicht bekannten Zeitpunkten treten Zustandsänderungen ein
 - Simulationszeit verändert sich in diskreten Zeitabständen
- Kontinuierliche Systeme (Continuous Time Dynamic Systems, CTDS models)
 - Im Idealfall treten Zustandsänderungen kontinuierlich ein
 - In Realität werden auch hier diskrete Zeitsprünge verwendet, da man die Zustände nicht zu jedem Zeitpunkt in einem kontinuierlichen Modell beobachten kann.
- Mischung aus Diskreten und Kontinuierlichen Systemen
 - z. B. Fließband, wo Produkte erhitzt werden.

Beispiel deterministische Simulation

- Keine stochastischen Elemente
- Ablauf steht schon vorher fest
- Bsp.: Produktionsmodell
 - Betrieb produziert ein Produkt (1 EH Rohstoff → 1 EH des Produkts)
 - Lagerbestand abhängig von Nachfrage
 - Bestellmenge entspricht Abgang aus Rohstofflager
 - Wochenweise Simulation

Produktionsmodell (Fortsetzung): Variablen

- Variablen zu Beginn d. Woche t:
 - R(t): Bestand im Rohstofflager
 - F(t): Bestand im Auslieferungslager
 - B(t): Bestellungen
 - T(t): gewünschter Lagerbestand (target)
- Veränderungen innerhalb der Woche:
 - P(t, t + 1): Produktion innerhalb der Woche t
 - D(t, t + 1): Verkaufte Stückzahl (delivery)
 - M(t, t + 1): Gelieferte Rohstoffmenge
 - X(t, t + 1): eingegangene Bestellungen

Produktionsmodell (Fortsetzung): Zusammenhänge

- offene Bestellungen: B(t+1) = B(t) + X(t,t+1) D(t,t+1)
- Rohstoffbestand: R(t+1) = R(t) + M(t, t+1) P(t, t+1)
- 3 Auslieferungslager: F(t+1) = F(t) + P(t,t+1) D(t,t+1)
- gewünschter Lagerbestand: 5x durchschnittliche Nachfrage der letzten 4 Wochen (willkürlich)

•
$$T(t+1) = \frac{5}{4} \cdot (X(t,t+1) + X(t-1,t) + X(t-2,t-1) + X(t-3,t-2))$$

- **1** Einkauf: M(t, t + 1) = P(t 1, t)
- Produktion: $P(t, t+1) = \min\{\max\{T(t) F(t) + D(t, t+1), 0\}, R(t)\}$

Produktionsmodell (Fortsetzung): Simulationsablauf

- 5 Wochen konstante Startphase (stabiles System):
 - Produktion, Verkauf, Rohstoffeingang, existierende Bestellungen, neue Bestellungen = 50
 - gewünschter Lagerbestand: 250 (⁵/₄ · 4 · 50)
 - Ausliegerungslager: 250
 - Rohstoffbestand: 150
- \bullet Simulationsstart: in Woche 2 Sonderangebot \to in Woche 2 verdoppeln sich die Bestelleingänge und reduzieren sich zu 0 in Woche 3
- danach wieder stabiles System

Welche Auswirkungen hat bei den gegebenen Produktionsabläufen das Modell?

27 / 117

Produktionsmodell (Fortsetzung): Berechnungen - Ausgangslage

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	M $(t, t+1)$	P (t, t+1)	<i>D</i> (t, t+1)
1	50	50	250	250	150	50	50	50
2	100							
3	0							
4	50							
5	50							
6	50							
7	50							
8	50							
9	50							
10	50							

Produktionsmodell (Fortsetzung): Berechnungen - Verkauf

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	<i>X</i> (<i>t</i> , <i>t</i> +1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	M $(t, t+1)$	<i>P</i> (<i>t</i> , <i>t</i> +1)	D $(t, t+1)$
1	50	50	250	250	150	50	50	50
2	100				·			50

$$D(t, t + 1) = \min(F(t), B(t)) = \min(250, 50) = 50$$

Produktionsmodell (Fortsetzung): Berechnungen - offene Bestellungen

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	$M \ (t,t+1)$	P (t, t+1)	<i>D</i> (<i>t</i> , <i>t</i> +1)
1	50	50	250	250	150	50	50	50
2	100	100		·				50

$$B(t, t+1) = B(t) + X(t, t+1) - D(t, t+1) =$$

$$= 50 + 100 - 50 = 100$$

Produktionsmodell (Fortsetzung): Berechnungen - gewünschter Lagerbestand

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	<i>B</i> (<i>t</i> , <i>t</i> +1)	T(t+1)	F(t+1)	R(t+1)	$M \ (t,t+1)$	<i>P</i> (<i>t</i> , <i>t</i> +1)	<i>D</i> (<i>t</i> , <i>t</i> +1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5					50

$$T(t,t+1) = \frac{5}{4} \cdot (X(t,t+1) + X(t-1,t) + X(t-2,t-1) + X(t-3,t-2)) =$$

$$= \frac{100 + 50 + 50 + 50}{4} \cdot 5 = 312.5$$

Produktionsmodell (Fortsetzung): Berechnungen - Produktion

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	$M \choose (t, t+1)$	P (t, t+1)	$D \ (t,t+1)$
1	50	50	250	250	150	50	50	50
2	100	100	312.5				50	50

$$P(t, t+1) = \min\{\max\{T(t) - F(t) + D(t, t+1), 0\}, R(t)\} =$$

$$= \min \begin{cases} \max \begin{cases} 250 - 250 + 50 \\ 0 \end{cases} = 50 \end{cases}$$
150

Produktionsmodell (Fortsetzung): Berechnungen - Auslieferungslager

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	M $(t, t+1)$	<i>P</i> (<i>t</i> , <i>t</i> +1)	D $(t, t+1)$
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250			50	50

$$F(t+1) = F(t) + P(t, t+1) - D(t, t+1) =$$

$$= 250 + 50 - 50 = 250$$

Produktionsmodell (Fortsetzung): Berechnungen - Einkauf

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	<i>X</i> (<i>t</i> , <i>t</i> +1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	M $(t, t+1)$	<i>P</i> (<i>t</i> , <i>t</i> +1)	D $(t, t+1)$
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250		50	50	50

$$M(t+1) = P(t-1,t) = 50$$

Produktionsmodell (Fortsetzung): Berechnungen - Rohstoffbestand

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	<i>B</i> (<i>t</i> , <i>t</i> +1)	T(t+1)	F(t+1)	R(t+1)	M $(t, t+1)$	<i>P</i> (<i>t</i> , <i>t</i> +1)	$D \ (t,t+1)$
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50

$$R(t+1) = R(t) + M(t, t+1) - P(t, t+1) =$$

$$= 150 + 50 - 50 = 150$$

Produktionsmodell (Fortsetzung): Berechnungen - Verkauf

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	M $(t, t+1)$	P $(t, t+1)$	<i>D</i> (<i>t</i> , <i>t</i> +1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0							100

$$D(t, t + 1) = \min(F(t), B(t)) = \min(250, 100) = 100$$

Produktionsmodell (Fortsetzung): Berechnungen - offene Bestellungen

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	<i>X</i> (<i>t</i> , <i>t</i> +1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	M $(t, t+1)$	<i>P</i> (<i>t</i> , <i>t</i> +1)	D (t, t+1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0						100

$$B(t, t+1) = B(t) + X(t, t+1) - D(t, t+1) =$$

$$= 100 + 0 - 100 = 0$$

Produktionsmodell (Fortsetzung): Berechnungen - gewünschter Lagerbestand

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	<i>F</i> (<i>t</i> +1)	R(t+1)	$M \ (t,t+1)$	<i>P</i> (<i>t</i> , <i>t</i> +1)	D (t, t+1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250					100

$$T(t, t+1) = \frac{5}{4} \cdot (X(t, t+1) + X(t-1, t) + X(t-2, t-1) + X(t-3, t-2)) =$$

$$= \frac{0 + 100 + 50 + 50}{4} \cdot 5 = 250$$

Produktionsmodell (Fortsetzung): Berechnungen - Produktion

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	<i>F</i> (<i>t</i> +1)	R(t+1)	$M \ (t,t+1)$	P (t, t+1)	D (t, t+1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250				150	100

$$P(t, t+1) = \min\{\max\{T(t) - F(t) + D(t, t+1), 0\}, R(t)\} =$$

$$= \min \begin{cases} \max \begin{cases} 312.5 - 250 + 100 \\ 0 \end{cases} = 150 \end{cases}$$

Produktionsmodell (Fortsetzung): Berechnungen - Auslieferungslager

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	<i>F</i> (<i>t</i> +1)	R(t+1)	M $(t, t+1)$	P $(t, t+1)$	D $(t, t+1)$
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300			150	100

$$F(t+1) = F(t) + P(t,t+1) - D(t,t+1) =$$

$$= 250 + 150 - 100 = 300$$

Produktionsmodell (Fortsetzung): Berechnungen - Einkauf

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	M $(t, t+1)$	P $(t, t+1)$	D $(t, t+1)$
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300		50	150	100

$$M(t+1) = P(t-1,t) = 50$$

Produktionsmodell (Fortsetzung): Berechnungen - Rohstoffbestand

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	<i>X</i> (<i>t</i> , <i>t</i> +1)	B (t, t+1)	T(t+1)	<i>F</i> (<i>t</i> +1)	R(t+1)	M $(t, t+1)$	P $(t, t+1)$	D $(t, t+1)$
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300	50	50	150	100

$$R(t+1) = R(t) + M(t, t+1) - P(t, t+1) =$$

$$= 150 + 50 - 150 = 50$$

Produktionsmodell (Fortsetzung): Berechnungen - Verkauf

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	$M \ (t,t+1)$	P (t, t+1)	D (t, t+1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300	50	50	150	100
4	50							0

$$D(t, t + 1) = \min(F(t), B(t)) = \min(300, 0) = 0$$

Produktionsmodell (Fortsetzung): Berechnungen - offene Bestellungen

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	<i>X</i> (<i>t</i> , <i>t</i> +1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	$M \choose (t, t+1)$	P (t, t+1)	<i>D</i> (t, t+1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300	50	50	150	100
4	50	50						0

$$B(t, t+1) = B(t) + X(t, t+1) - D(t, t+1) =$$

$$= 0 + 50 - 0 = 50$$

Produktionsmodell (Fortsetzung): Berechnungen - gewünschter Lagerbestand

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	<i>X</i> (<i>t</i> , <i>t</i> +1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	$M \ (t,t+1)$	<i>P</i> (<i>t</i> , <i>t</i> +1)	<i>D</i> (<i>t</i> , <i>t</i> +1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300	50	50	150	100
4	50	50	250					0

$$T(t, t+1) = \frac{5}{4} \cdot (X(t, t+1) + X(t-1, t) + X(t-2, t-1) + X(t-3, t-2)) =$$

$$= \frac{50 + 0 + 100 + 50}{4} \cdot 5 = 250$$

Produktionsmodell (Fortsetzung): Berechnungen - Produktion

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	(t,t+1) M P $(t,t+1)$ $(t,t+1)$		D $(t, t+1)$
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300	50	50	150	100
4	50	50	250				0	0

$$P(t, t+1) = \min\{\max\{T(t) - F(t) + D(t, t+1), 0\}, R(t)\} =$$

$$= \min \begin{cases} \max \left\{ 250 - 300 + 0 \\ 0 \right\} = 0 \end{cases}$$

Produktionsmodell (Fortsetzung): Berechnungen - Auslieferungslager

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	$M \ (t,t+1)$	P (t, t+1)	$D \ (t,t+1)$
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300	50	50	150	100
4	50	50	250	300			0	0

$$F(t+1) = F(t) + P(t,t+1) - D(t,t+1) =$$

$$= 300 + 0 - 0 = 300$$

Produktionsmodell (Fortsetzung): Berechnungen - Einkauf

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	$M \ (t,t+1)$	P (t, t+1)	D (t, t+1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300	50	50	150	100
4	50	50	250	300		150	0	0

$$M(t+1) = P(t-1,t) = 150$$

Produktionsmodell (Fortsetzung): Berechnungen - Rohstoffbestand

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X (t, t+1)	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	$M \choose (t, t+1)$	P (t, t+1)	D (t, t+1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300	50	50	150	100
4	50	50	250	300	200	150	0	0

$$R(t+1) = R(t) + M(t,t+1) - P(t,t+1) =$$

$$= 50 + 150 - 0 = 200$$

Produktionsmodell (Fortsetzung): Berechnungen

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X $(t, t+1)$	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	M $(t, t+1)$	P (t, t+1)	<i>D</i> (<i>t</i> , <i>t</i> +1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	300	50	50	150	100
4	50	50	250	300	200	150	0	0
5	50	50	250	250	200	0	0	50
6	50	50	187.5	250	150	0	50	50
7	50	50	250	200	200	50	0	50
8	50	50	250	250	100	0	100	50
9	50	50	250	250	150	100	50	50
10	50	50	250	250	150	50	50	50

Produktionsmodell (Fortsetzung): Auswertung

• Problematik mit hoher Schwankungsbreite bei Produktion

Produktionsmodell II: neue Berechnung der Produktionsmenge

- Einkauf basierend auf Verhältnis von gewünschtem Lagerbestand und Bestand im Auslieferungslager: $M(t, t + 1) = 50 \cdot (T(t)/F(t))$
- Produktionsmenge: ein Drittel der Rohstoffmenge wird umgewandelt P(t, t + 1) = R(t)/3
- Rest bleibt gleich
 - 5 Wochen konstant (stabiles System)
 - Simulationsstart: in Woche 2 Sonderangebot → in Woche 2 verdoppeln sich die Bestelleingänge und reduzieren sich zu 0 in Woche 3
 - danach wieder stabiles System

Welche Auswirkungen hat bei den gegebenen Produktionsabläufen das Modell?

Produktionsmodell II (Fortsetzung): Berechnungen

Reihenfolge	ext. Input	2	3	5	7	6	4	1
Woche	X $(t, t+1)$	B (t, t+1)	T(t+1)	F(t+1)	R(t+1)	M $(t, t+1)$	<i>P</i> (<i>t</i> , <i>t</i> +1)	<i>D</i> (t, t+1)
1	50	50	250	250	150	50	50	50
2	100	100	312.5	250	150	50	50	50
3	0	0	250	200	163	63	50	100
4	50	50	250	254	171	63	54	0
5	50	50	250	261	163	49	57	50
6	50	50	187.5	265	157	48	54	50
7	50	50	250	268	140	35	52	50
8	50	50	250	264	140	47	47	50
9	50	50	250	261	141	47	47	50
10	50	50	250	258	142	48	47	50

Produktionsmodell II (Fortsetzung): Auswertung

Problematik mit hoher Schwankungsbreite bei Produktion gelöst

54 / 117

Stochastische Simulation

- Bei deterministischem Modell waren Abläufe vorgegeben:
 - Änderungen bei Bestelleingängen bekannt
 - Materialversorgung gesichert, Produktion konstant, Nachfrage bekannt . . .
- In stochastischen Modellen können sich diese Parameter ändern
- → Zufallszahlen

Beispiel Instandhaltungsmodell

- Maschine mit 2 Motoren
- Ausfallswahrscheinlichkeiten (abhängig von Tagen sei der letzten Reparatur):

Tage seit letzter Reparatur	1	2	3	4	5	6	> 6
p_i	0.05	0.15	0.2	0.3	0.2	0.1	0

- Reparatur eines Motors kostet 50 GE
- Wartung eines Motors kostet 25 GE

Beispiel Instandhaltungsmodell Fortsetzung

- 2 Strategien
 - Strategie 1: Reparatur, wenn Motor ausfällt
 - Strategie 2: Bei Ausfall eines Motors wird dieser repariert und der andere Motor automatisch gewartet
 - Durch Simulation über 50 Tage entscheiden, welche Strategie besser ist.

Beispiel Instandhaltungsmodell Fortsetzung

- 1. Strategie
 - Zufallszahlen für Motoren generieren und Lebensdauer bestimmen
 - Anzahl der Motoren für zwei Einheiten unabhängig bestimmen, bis Summe der Lebensdauern bei beiden 50 erreicht
 - Anzahl mit Reparaturkosten multiplizieren

Beispiel Instandhaltungsmodell Fortsetzung

2. Strategie

- Zufallszahlen für Motoren generieren und Lebensdauer bestimmen
- ullet Anzahl der Motoren für zwei Einheiten abhängig bestimmen o es gibt nur eine (gemeinsame) Gesamtlebensdauer
- Falls Lebensdauer bei beiden Motoren unterschiedlich→
 Gesamtlebensdauer um kleinere Lebensdauer erhöhen,
 Gesamtkosten um Reparaturkosten (1x) und Wartungskosten (1x)
 erhöhen
- Falls Lebensdauer bei beiden Motoren gleich →
 Gesamtlebensdauer um Einzellebensdauer erhöhen,
 Gesamtkosten um Reparaturkosten (2x) erhöhen.

Bestimmung der Lebensdauer der Motoren

Kumulierte Wahrscheinlichkeiten	1	2	3	4	5	6
h _i	0.05	0.2	0.4	0.7	0.9	1

Zufallszahl

14159265358979323846264338327950288419716939937510582 09749445923078164062862089986280348253421170679821480 86513282306647093844609550582231725359408128481117450 28410270193852110555964462294895493038196442881097566 59334461284756482337867831652712019091456485669234603

Strukturierte Programmierung

Programmablauf besteht aus folgenden Kontrollstrukturen:

- Sequenz: hintereinander ausgeführte Anweisungen
- Selektion: Anweisungen werden nur unter bestimmten Voraussetzungen ausgeführt
- Repetition: Anweisungen werden mehrfach hintereinander ausgeführt, bis ein bestimmter Zustand erreicht ist

Abbildung über Flussdiagramm

Strukturierte Programmierung: Sequenz

- Anweisungen: Ausführen von Operationen/Funktionen
- Eingabe/Ausgabe

Strukturierte Programmierung: Selektion

Start if (Bedingung == wahr) then Anweisung 1 Anweisung else if (Bedingung == wahr) then Anweisung Bedingung wahr? else Anweisung Nein end if Anweisung 2A Anweisung 2B Anweisung 3 Stop

Strukturierte Programmierung: Repetition

Start FOR Laufvariable := Laufvarable = Startwert Startwert TO Endwert DO BEGIN Anweisung 1; Laufvariable == Stop Endwert? Anweisung 2; END: Nein Laufvariable erhöht um 1 Anweisung 1 Anweisung 2

Strukturierte Programmierung: Repetition

```
WHILE (Abbruchkriterium == falsch)
DO
BEGIN
Anweisung 1;
Anweisung 2;
END:
```


Zufallszahlen

- Elementarer Bestandteil von Simulationen
 - echte Zufallszahlen
 - Pseudozufallszahlen: Zufallszahlen werden von deterministischen Algorithmen erzeugt, sind also nicht wirklich zufällig
- sollen der Realität entsprechen
- Basis bilden gleichverteilte Zufallszahlen im Bereich [0; 1]
 - X heißt gleichverteilt in [0; 1], falls

$$f(x) = \begin{cases} 1 & \text{wenn } x \in [0; 1] \\ 0 & \text{sonst} \end{cases}$$

- Konstruktion von Zufallszahlen beruht meist auf (nicht umkehrbarer) rekursiver Funktion
- Forderungen an guten Pseudo-Zufallszahlengenerator:
 - Jede Zahl $\{1, ..., n\}$ soll mit gleich hoher Wahrscheinlichkeit 1/n vorkommen, bzw. jedes Intervall [a, b] in [0, 1] hat die ungefähre Häufigkeit b a.
 - ② Die k-Tupel, die aus *k* aufeinanderfolgenden Zahlen bestehen, sollen gleichverteilt sein (z. B. Paare von aufeinanderfolgenden Zahlen sollen gleich häufig sein).

Bsp.:

- • 1 – 2 – 3 – 4 – 5 – 1 – 2 – 3 – 4 – 5 \rightarrow gleich hohe WK für alle Zahlen
- $(1-2)(2-3)(3-4)(4-5)(5-1)(1-2)... \rightarrow$ nur fünf verschiedene Paare (von 25 möglichen)

Midsquare Methode:

- primitiver Algorithmus zur Erzeugung von Zufallszahlen, entwickelt von John v. Neumann
- Für eine vierstellige Zufallszahl startet man mit einer beliebigen vierstelligen Zahl.
- Diese Zahl wird quadriert => man erhält eine achtstellige Zahl.
 Sollte das Resultat nicht achtstellig sein, werden 0-er vorangestellt.
- Die mittleren vier Zahlen sind nächste Zufallszahl und bilden den Ausgangswert für die nächste Quadratur.

Midsquare Methode - Beispiel zweistellige Zufallszahl

- Startwert: 25
- Quadratur: → 625
- 0 voranstellen → 0625
- mittleren zwei Zahlen sind n\u00e4chste Zufallszahl → 62
- Quadratur: → 3844
- mittleren zwei Zahlen sind n\u00e4chste Zufallszahl → 84

Kongruenzgeneratoren: $z_{i+1} = f(z_{i-k}, \dots, z_i)$, mit $k \ge 0$, i > k.

Allgemeiner Kongruenzgenerator:

$$y_i = \left(\left(\sum_{k=1}^n a_k y_{i-k}\right) + b\right) \mod m$$

- $n \in \mathbb{N}^+$: Anzahl der Zustandswerte
- $m \in \{2, 3, 4, ...\}$: Modul (Restwert der Division durch m)
- $a_1, \ldots, a_n \in \{0, \ldots, m-1\}$: Multiplikatoren
- $b \in \{0, ..., m-1\}$: Inkrement
- $y_1, \ldots, y_n \in \{0, \ldots, m-1\}$: Startwert

Für Zufallszahlen in [0, 1]: $u_i = \frac{y_i}{m}$

71 / 117

linearer Kongruenzgenerator: n = 1

$$y_i = ay_{i-1} + b \mod m$$

- Voraussetzungen für maximale Periodenlänge L=m (Knuth 1997):
 - Das Inkrement b ist zum Modul m teilerfremd.
 - 2 Jeder Primfaktor von m teilt a-1.
 - Wenn m durch 4 teilbar ist, dann auch a 1.
- falls $m = 2^b$, dann ist L = m, wenn c ungerade und $a \equiv 1 \mod 4$
- multiplikativer Kongruenzgenerator: b = 0
- gemischter Kongruenzgenerator: $b \neq 0$

- Periodenlänge nicht ausreichend
- k-Tupel müssen gleichverteilt sein

Bsp1: $y_{i+1} = 7 y_i \mod 11$ voller Zyklus: 1, 7, 5, 2, 3, 10, 4, 6, 9, 8 2-Tupel: (1,7),(7,5),(5,2),... 10 8 6 2 4 6 8 10

Parameterbeispiele:

- $m = 2^{35}$, c ungerade, $a \equiv 1 \mod 4$
- $m = 2^{31} 1$, c beliebig, a = 1

Derzeit bester Zufallszahlengenerator:

Mersenne-Twister (Makoto Matsumoto, Takuji Nishimura 97,98)

- $m = 2^{28}$
- *a* = 532393
- Periode = $2^{19937} 1$
- 623 Ebenen

Erzeugung von

- nicht (0,1)-gleichverteilter Zufallszahlen z aus (0,1)-gleichverteilter Zufallszahl u, bzw.
- nicht [0, 1]-gleichverteilter Zufallszahlen z aus [0, 1]-gleichverteilter Zufallszahl u:

$$z = (b - a)u + a$$

Falls Randstellen nicht inkludiert \rightarrow über Abfragen ausschließen

Bsp.: In [a, b] = [5, 8]-gleichverteilte Zufallszahl

и	(b-a)u+a				
0.0	5.0				
0.1	5.3				
0.2	5.6				
1.0	8.0				

Endliche diskrete Verteilung zu gegebenener Wahrscheinlichkeitsverteilung

- $Q_0 = 0$
- $Q_j := \sum_{k=1}^{j} p_k$ für j = 1, ..., n
- zu u_i bestimme j: $Q_{i-1} \le u_i < Q_i$
- $z := \xi_j$

Beispiel: Würfel

ξ_k	1	2	 6
p_k	1/6	1/6	 1/6
Q_k	1/6	2/6	 6/6

Erzeugung von ZZ mittels Verwerfungsmethode

- Dichtefunktion f bekannt mit
 - f nach oben beschränkt (f(x) < M)
 - endliches Intervall $(x \in [a, b])$
- Generation von 2 gleichverteilten Zufallszahlen:
 - ZZ1 im Bereich [a, b]
 - ZZ2 im Bereich [0, M]
- ZZ1 in f einsetzen
- **3** wenn $ZZ2 > f(ZZ1) \rightarrow Verwerfe ZZ1, ansonsten behalte ZZ1$

Erzeugung von ZZ mittels Inversionsmethode

- Erzeugung stetig verteilter Zufallszahlen zur Verteilungsfunktion F(x)
- Voraussetzung: F(x) ist invertierbar mit Umkehrfunktion F^{-1}
- Erzeuge stetig gleichverteilte Zufallszahl u (zwischen 0 und 1)
- 2 $ZZ = F^{-1}(u)$

Beispiel:

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - \frac{1}{1+x^2} & x \ge 0 \end{cases}$$
Erzeuge $u(0, 1)$

$$ZZ = \sqrt{\frac{1}{1-u} - 1}$$

Erzeugung von Exponentialverteilten Zufallszahlen

• Parameter $\lambda > 0$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda \cdot x} & \text{sonst} \end{cases}$$

• erzeuge stetig gleichverteilte Zufallszahl $u \in [0, 1]$

$$ZZ = -\frac{1}{\lambda} \ln(ZZ1)$$

$$1 - e^{-\lambda \cdot x} = y$$

$$e^{-\lambda \cdot x} = 1 - y$$

$$-\lambda \cdot x = \ln(1 - y)$$

$$x = -\frac{1}{\lambda} \ln(1 - y)$$

Erzeugung von Normalverteilten N(0,1) bzw. $N(\mu,\sigma)$ Zufallszahlen

- N(0,1):
 - erzeuge stetig gleichverteilte Zufallszahlen $u_1, u_2 \ (\in [0, 1])$

$$ZZ1 := \sqrt{-2 \ln u_1} \cdot \sin(2\pi u_2)$$
$$ZZ2 := \sqrt{-2 \ln u_1} \cdot \cos(2\pi u_2)$$

- (nur eine der beiden Methoden verwenden)
- $N(\mu, \sigma)$:
 - erzeuge Zufallszahl zz N(0,1)-verteilt (siehe oben)
 - $ZZ1 := \sigma \cdot zz + \mu$

Erzeugung von Geometrisch verteilten Zufallszahlen

$$Q_z(k) = p(1-p)^{k-1}$$
 $k = 1, 2, ...$

• erzeuge stetig gleichverteilte Zufallszahl $u \in [0, 1]$

$$z := \operatorname{int} \left[\frac{\ln u}{\ln(1-p)} \right] + 1$$

Erzeugung von Binomialverteilten (B(n, p)) Zufallszahlen

• Erzeuge *n* stetig gleichverteilte Zufallszahlen *u_i*:

$$z := |\{i|u_i < p\}|$$

• d.h. z ist die Zahl der u_i, die kleiner als p sind

Erzeugung von Poisson-verteilten Zufallszahlen mit Parameter $\lambda > 0$

• Erzeuge sukzessive Zufallszahlen u_i , bis

$$\prod_{i=1}^k u_i \le e^{-\lambda} < \prod_{i=1}^{k-1} u_i$$

k-1 ist $P(\lambda)$ -verteilte Zufallszahl

• theoretischer Hintergrund: Anzahl an stochastisch unabhängigen identisch mit Parameter λ exponentialverteilten Zufallsvariablen, die benötigt werden, damit ihre Summe das erste Mal größer als 1 ist, ist Poisson-verteilt mit λ .

Zusammenhang Poisson-Verteilung \leftrightarrow Exponentialverteilung über Warteschlange

- Wenn Zwischenankunftszeiten einer Warteschlange exponentialverteilt mit Erwartungswert 1 \rightarrow Anzahl der Ankünfte im Intervall $[0,\lambda]$ poissonverteilt mit Parameter λ
- ullet Simulation von exponentialverteilten Zwischenankunftszeiten y_i mit Parameter 1, bis Summe der Zwischenankunftszeiten die Intervallgrenze λ erreicht \to Anzahl an erzeugten Zufallszahlen ist poissonverteilt mit Parameter λ

$$\sum_{i=1}^k y_i \le \lambda < \sum_{i=1}^{k+1} y_i$$

Chi-Quadrat-Anpassungs-Test

 χ^2 -Test auf Akzeptanz von *n* erzeugten Zufallszahlen für Q_0

- Terlegung des Wertebereiches der zugrundeliegenden Wahrscheinlichkeitsverteilung in r disjunkte Teilmengen (sinnvoll: $r \approx \sqrt(n)$) A_1, \ldots, A_r , sodass für die Wahrscheinlichkeiten $p_i = Q_0(A_i)$ gilt $np_i \geq 5$, für $i = 1, \ldots, r$.
- ② Berechne aus den *n* Zufallszahlen ξ_1, \ldots, ξ_n die Anzahl der Werte in A_i :

$$n_i = |\{\xi_j | \xi_j \in A_i\}|$$

Berechne die Testgröße:

$$\chi_0^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i}$$

- 3 Bestimme aus der Tabelle der χ^2 -Verteilung mit r-1 Freiheitsgraden zu α die Ablehngrenze χ^{α}_{r-1}
- **5** Falls $\chi_0^2 \leq \chi_{r-1}^{\alpha}$, akzeptiere Zufallszahlen, ansonsten verwerfen

86 / 117

Chi-Quadrat-Anpassungs-Test: Beispiel

Beispiel: 100 gleichverteilte Zufallszahlen zwischen 0 und 1

- Zerlegung in r Teilmengen
 - $np_i \geq 5$
 - $n = 100 \rightarrow p_i > 0.05$
 - → höchstens 20 Klassen
- Bei 10 Klassen:

	[0, 0.1[[0.1, 0.2[[0.2, 0.3[[0.3, 0.4[[0.9, 1]
ist	9	15	12	10	 12
soll (np _i)	10	10	10	10	 10

- $\alpha = 0.05 \rightarrow \text{mit WK } 0.05 \text{ wird } H_0 \text{ abgelehnt, obwohl sie richtig ist.}$
- laut Tabelle: $\chi_0^{0.05} = 16.92$
- falls $\chi_0^2 \leq \chi_9^{0.05} \rightarrow \text{Nicht verwerfen}$

Runtest auf Unabhängigkeit

- Besitzen I+1 Zufallszahlen u_1,u_2,\ldots,u_I+1 die Eigenschaft $u_1 < u_2 < \ldots < u_I > u_I+1$, so spricht man von einem Run der Länge I
- Bezeichnet R die Zufallsvariablen "Länge des Runs", so besitzt R die Wahrscheinlichkeitsverteilung

$$P(R = I) = \frac{1}{I!} - \frac{1}{(I+1)!}$$

mit Erwartungswert E(R) = e - 1

- Für $u_1, u_2, \ldots, u_l + 1$ bestimme
 - K : Anzahl der Runs und
 - k_i Anzahl der Runs mit Länge I
- Teste mit Chi-Quadrat-Anpassungstest

Runtest: Beispiel

Beispiel bei 39 Runs:

Länge	1	2	3	4
k _l	k _l 24			1
$p_i = P(R = I)$	$\frac{1}{1!} - \frac{1}{2!} = \frac{1}{1} - \frac{1}{2} = \frac{1}{2}$	<u>2</u>	3 24	4 120
np _i	19.5	13	4.875	1.625

$$\chi_0^2 = \frac{5,5^2}{19.5} + \frac{3^2}{13} + \frac{0.875^2}{4.875} + \frac{0.625^2}{1.625} = 2.64$$

$$\chi_3^{0.95} = 7.82 \rightarrow \text{ nicht ablehnen}$$

Kunden werden nach unterschiedlichen Kriterien bedient

- Gesuchte Parameter:
 - mittlere Wartezeit
 - Auslastungsgrad
 - mittlere Schlangenlänge
- simulierte Parameter:
 - Ankunftsrate, Zwischenankunftszeit
 - Bedienzeit
- Simulationsdauer/Abbruchkriterium:
 - Zeit
 - Kundenanzahl

Version 1:

- Zwischenankunftszeit zufällig gleichverteilt in Minuten im Intervall {1;5}
- Bedienzeit zufällig gleichverteilt in Minuten im Intervall {1;3}
- Abbruchkriterium: 50 Kunden
- Abarbeitung in FIFO Reihenfolge

- Zufallsparameter (RND gleichverteilt zwischen (0, 1))
 - Zwischenankunftszeit für Kunde i:

$$a_i = (int)(RND * 5) + 1$$

Bedienzeit für Kunde i:

$$b_i = (int)(RND * 3) + 1$$

(int) $x \to \text{Abrundung von } x$ (Streichung der Nachkommastellen) Da Nachkommastellen abgeschnitten werden, ist Intervall um 1 größer

Ankunftszeit von Kunde i:

$$t_i = \sum_{j=1}^i a_j$$

• Endzeit von Kunde i:

$$f_1 = t_1 + b_1$$

 $f_i = \max\{f_{i-1}, t_i\} + b_i$

Wartezeit von Kunde i

$$w_i = \max\{f_{i-1} - t_i, 0\}$$

- $f_{i-1} \le t_i \to \text{ keine Wartezeit, } f_i = t_i + b_i$
- $f_{i-1} > t_i \rightarrow \text{Wartezeit}, f_i = f_{i-i} + b_i$

Parameter

- mittlere Wartezeit: ^{wges}/_n
- ullet Auslastungsgrad: $rac{b_{ges}}{t_{ges}}$
- mittlere Schlangenlänge: $\frac{w_{ges}}{t_{qes}}$

ID	a _i	b _i	t _i	fi	w _i
1	2	1	2	3	0
2	3	2	5	7	0
3	1	3	6	10	1
4	1	3	7	13	3
5	1	2	8	15	5
6	5	1	13	16	2
7	3	2	16	18	0
\sum		14			11

Nach 7 Kunden:

• mittlere Wartezeit: $\frac{w_{ges}}{n} = \frac{11}{7}$

• Auslastungsgrad: $\frac{b_{ges}}{f_n} = \frac{14}{18}$

• mittlere Schlangenlänge: $\frac{w_{ges}}{f_n} = \frac{11}{18}$

Version 2:

- Mit WK p kommt ein neuer Kunde in einem fixen Zeitintervall (z. B. pro Minute) an
- Wenn zumindest ein Kunde anwesend ist, wird mit WK q ein Kunde fertig bedient.
- Ankünfte und Bedienungen sind über die Perioden hin unabhängige Ereignisse
- Abbruchkriterium: n Perioden

Parameter für jeden Zeitraum *i* berechnen:

- Summe anwesender Kunden zu Beginn von Zeitpunkt i: ai
- Neuer Kunde zu Zeitpunkt i: K_i
- Kunde fertig bedient zu Zeitpunkt i: f_i
- Summe anwesender Kunden zu Ende von Zeitpunkt i: ei
- Summe Wartezeit zu Zeitpunkt i: w_i = max{a_i − 1,0}
- Falls zumindest ein Kunde anwesend zu Zeitpunkt i: Bedienzeit $b_i = 1$

- Zufallszahlen ZZ1; und ZZ2; (gleichverteilt zwischen 0 und 1)
 - Wenn $ZZ1_i neuer Kunde kommt zu Zeitpunkt <math>i$ an $\rightarrow k_i = 1$, ansonsten $k_i = 0$
 - Wenn $ZZ2_i < q \rightarrow$ wenn Kunde anwesend, dann wird einer zu Zeitpunkt i fertig bedient $\rightarrow f_i = 1$, ansonsten $f_i = 0$
- $a_i = e_{i-1} + k_i$
- $e_i = \max\{a_i f_i, 0\}$

t	neuer	Summe Kunden	Kunde	Summe Kunden	Wartenden	Bedienung
'	Kunde	Anfang	fertig	Ende	Kunden	Decienting
1	1	1	0	1	0	1
2	1	2	0	2	1	1
3	1	3	1	2	2	1
4	0	2	0	2	1	1
5	1	3	1	2	2	1
6	0	2	1	1	1	1
7	0	1	1	0	0	1
8	0	0	0	0	0	0
\sum	4				7	7

Nach 7 Kunden:

mittlere Wartezeit: $\frac{w_{ges}}{n} = \frac{7}{4}$

Auslastungsgrad: $\frac{b_{ges}}{t_{ges}} = \frac{7}{8}$

mittlere Schlangenlänge: $\frac{w_{ges}}{t_{ges}} = \frac{7}{8}$

- Kommerzielle Software der Firma MathWorks
- Interaktive, graphische Entwicklungsumgebung
- Vorgefertigte und erweiterbare Bibliotheken
- In Matlab integriert
- Bibliotheken werden mittels Matlab-Funktionen bzw. Matlab-Code erweitert
- Ähnlich wie in Matlab Basisbibliotheken und Erweiterungen

Library Browser

Beispiel: Zwei Server mit zwei Warteschlangen

Beispiel: Zwei Server mit einer Warteschlange

Beispiel: Zwei parallele Server

Drei Server mit kürzester Warteschlange

Kopplung Simulation und Optimierung

Vorteile Simulation

- Berücksichtigung praxisrelevanter Komplexität
- Berücksichtigung von real auftretenden Zufallsereignissen (Mengen- und Zeitschwankung, Ausfälle) durch Stochastik

Vorteile Optimierung

- Auffindung besserer (im Idealfall optimaler) Lösungen
- Einblick die Lösungsfindung

Klassifizierungen von Kopplungen

Verschiedene Kriterien für Klassifizierung von Verknüpfungen zwischen Simulation und Optimierung \rightarrow Entscheidend für Kopplungsart ist gegenseitige Abhängigkeit der Simulations- und Optimierungsprozedure

- ullet Hierarchische Architektur \to eine Methode ist dominant und steuert die andere Methode
- Sequentielle Architektur: Ergebnisse der einen Methode ist abgeschlossene Methode
- Mischung aus den beiden Architekturen

Optimierung in Simulation integriert

- Hierarchische Architektur
- Falls Simulation dominant → Optimierung löst Problemstellung aufgrund des aktuellen Status des Simulationsmodell und gibt Daten für nächsten Simulationslauf zurück
- Bsp.: Bewertung einer Reihenfolgeoptimierung bei Engpass (vgl. Beispiel Warteschlange; bislang davon ausgegangen, dass Engpass mittels FIFO Sequenz abgearbeitet wird; muss nicht der Fall sein → Abarbeitung wird optimiert, mit neuer Sequenz wird weitersimuliert)

Simulation als Bewertungsfunktion der Optimierung

- Hierarchische Architektur
- Simulation stellt Ergebnisdaten für Optimierung zur Verfügung
- Simulation ist Prognosefunktion
- Bsp.: Problem wird mittels Genetischem Algorithmus gelöst → Fitness-Function wird mittels Simulation berechnet.

Simulationsergebnisse als Startwert der Optimierung

- Sequentielle Architektur
- Zunächst wird über Gesamtzeitraum simuliert
- Ergebnisse werden als Eingangsgröße bei Optimierung verwendet
- Bsp.: Zur Abschätzung von initialen Kapazitätsgrenzen kann eine Simulation verwendet weden; diese Kapazitätsgrenzen können dann mittels Optimierung neu berechnet werden.

Optimierungsergebnisse zur Konfiguration von Simulation

- Sequentielle Architektur
- Optimierung wird vorher durchgeführt, Simulation dient zur Überprüfung des Ergebnisse
- Oft können nicht alle Faktoren in einem Modell zur mathematischen Optimierung abgebildet werden (oder es ist nicht sinnvoll, da danach z. B. Rechenzeit zu lange wird) → Modell auf elementare Kriterien beschränken
- Lösung mittels Simulation auf Realisierbarkeit (Machbarkeitsstudie) verifizieren.

