ŒUVRES

COMPLÈTES

DE NIELS HENRIK ABEL

NOUVELLE ÉDITION

PUBLIÉE AUX FRAIS DE L'ÉTAT NORVÉGIEN

PAR MM. L. SYLOW ET S. LIE

TOME PREMIER

CONTENANT LES MÉMOIRES PUBLIÉS PAR ABEL

CHRISTIANIA

IMPRIMERIE DE GRØNDAHL & SØN

M DCCC LXXXI

quantités Q, Q', Q'' prend la forme $\frac{0}{0}$, ce qui a lieu, comme on le voit aisément pour

$$\alpha = \beta = 180^{\circ}$$
.

Dans ce cas il faut recourir aux équations fondamentales (1), qui donnent alors

$$P = Q + Q' + Q'',$$

 $Q'b \sin 180^{\circ} = Q''c \sin 180^{\circ},$
 $Qa \sin 180^{\circ} = -Q''c \sin 360^{\circ}.$

Or les deux dernières équations sont identiques puisque

$$\sin 180^{\circ} = \sin 360^{\circ} = 0.$$

Donc dans le cas où

$$\alpha = \beta = 180^{\circ}$$
,

il n'existe qu'une seule équation, savoir

$$P = Q + Q' + Q'',$$

et, par suite, les valeurs de Q, Q', Q'' ne peuvent alors se tirer des équations établies par l'auteur.

IX.

RÉSOLUTION D'UN PROBLÈME DE MECANIQUE.

Journal für die reine und angewandte Mathematik, herausgegeben von Crelle, Bd. I, Berlin 1826.

Soit BDMA une courbe quelconque. Soit BC une B droite horizontale et CA une droite verticale. Supposons qu'un point sollicité par la pesanteur se meuve sur la courbe, un point quelconque D étant son point de départ. Soit τ le temps qui s'est écoulé quand le mobile est parvenu à un point donné A, et soit a la hauteur

EA. La quantité τ sera une certaine fonction de a, qui dépendra de la forme de la courbe. Réciproquement la forme de la courbe dépendra de cette fonction. Nous allons examiner comment, à l'aide d'une intégrale définie, on peut trouver l'équation de la courbe pour laquelle τ est une fonction continue donnée de a.

Soit AM = s, AP = x, et soit t le temps que le mobile emploie à parcourir l'arc DM. D'après les règles de la mécanique on a $-\frac{ds}{dt} = \sqrt{a-x}$, donc $dt = -\frac{ds}{\sqrt{a-x}}$. Il s'ensuit, lorsqu'on prend l'intégrale depuis x = a jusqu'à x = 0,

$$\tau = -\int_a^0 \frac{ds}{\sqrt{a-x}} = \int_0^a \frac{ds}{\sqrt{a-x}},$$

 \int_{α}^{β} désignant que les limites de l'intégrale sont $x = \alpha$ et $x = \beta$. Soit maintenant

$$\tau = \varphi a$$

RÉSOLUTION D'UN PROBLÈME DE MÉCANIQUE.

99

la fonction donnée, on aura

$$\varphi a = \int_0^a \frac{ds}{\sqrt{a - x}},$$

équation de laquelle on doit tirer s en fonction de x. Au lieu de cette équation, nous allons considérer cette autre plus générale

$$\varphi a = \int_0^a \frac{ds}{(a-x)^n},$$

de laquelle nous chercherons à déduire l'expression de s en x.

Désignons par $\Gamma \alpha$ la fonction

$$T\alpha = \int_0^1 dx \left(\log \frac{1}{x}\right)^{\alpha - 1},$$

on a comme on sait

$$\int_{0}^{1} y^{\alpha-1} (1-y)^{\beta-1} dy = \frac{\Gamma \alpha \cdot \Gamma \beta}{\Gamma(\alpha+\beta)},$$

où α et β doivent être supérieurs à zéro. Soit $\beta = 1 - n$, on trouvera

$$\int_0^1 \frac{y^{\alpha-1} dy}{(1-y)^n} = \frac{\Gamma \alpha \cdot \Gamma(1-n)}{\Gamma(\alpha+1-n)},$$

d'où l'on tire, en faisant z = ay,

$$\int_0^a \frac{z^{\alpha-1} dz}{(a-z)^n} = \frac{\Gamma \alpha \cdot \Gamma(1-n)}{\Gamma(\alpha+1-n)} a^{\alpha-n}.$$

En multipliant par $\frac{da}{(x-a)^{1-n}}$ et prenant l'intégrale depuis a=0 jusqu'à a=x, on trouve

$$\int_{0}^{x} \frac{da}{(x-a)^{1-n}} \int_{0}^{a} \frac{z^{a-1} dz}{(a-z)^{n}} = \frac{\Gamma a \cdot \Gamma(1-n)}{\Gamma(a+1-n)} \int_{0}^{x} \frac{a^{a-n} da}{(x-a)^{1-n}}.$$

En faisant a = xy, on aura

$$\int_{0}^{x} \frac{a^{\alpha-n} da}{(x-a)^{1-n}} = x^{\alpha} \int_{0}^{1} \frac{y^{\alpha-n} dy}{(1-y)^{1-n}} = x^{\alpha} \frac{\Gamma(\alpha-n+1) \Gamma n}{\Gamma(\alpha+1)},$$

donc

$$\int_0^x \frac{da}{(x-a)^{1-n}} \int_0^a \frac{z^{a-1}}{(a-z)^n} dz = \Gamma n \cdot \Gamma(1-n) \frac{\Gamma a}{\Gamma(a+1)} x^a.$$

Or d'après une propriété connue de la fonction I, on a

$$\Gamma(\alpha+1) = \alpha \Gamma \alpha;$$

on aura donc en substituant:

$$\int_0^x \frac{da}{(x-a)^{1-n}} \int_0^a \frac{z^{a-1} dz}{(a-z)^n} = \frac{x^a}{\alpha} \operatorname{\Gamma} n \cdot \Gamma(1-n).$$

En multipliant par $\alpha \varphi \alpha . d\alpha$, et intégrant par rapport à α , on trouve

$$\int_0^x \frac{da}{(x-a)^{1-n}} \int_0^a \frac{(\int q\alpha \cdot \alpha z^{\alpha-1} d\alpha) dz}{(a-z)^n} = \Gamma n \cdot \Gamma(1-n) \int q\alpha \cdot x^{\alpha} d\alpha.$$

Soit

$$\int \varphi \alpha . x^{\alpha} d\alpha = fx,$$

on en tire en différentiant,

$$\int \varphi \alpha \cdot \alpha x^{\alpha - 1} d\alpha = f'x,$$

done

$$\int \varphi \alpha \cdot \alpha z^{\alpha-1} d\alpha = f'z;$$

par conséquent

$$\int_{0}^{x} \frac{da}{(x-a)^{1-n}} \int_{0}^{a} \frac{f'z \cdot dz}{(a-z)^{n}} = \Gamma n \cdot \Gamma(1-n) fx,$$

ou, puisque $\Gamma n \cdot \Gamma(1-n) = \frac{\pi}{\sin n\pi}$

(1)
$$fx = \frac{\sin n\pi}{\pi} \int_0^x \frac{da}{(x-a)^{1-n}} \int_0^a \frac{f'z \cdot dz}{(a-z)^n} .$$

A l'aide de cette équation, il sera facile de tirer la valeur de s de l'équation

$$\varphi a = \int_0^a \frac{ds}{(a-x)^n}$$

Qu'on multiplie cette équation par $\frac{\sin n\pi}{\pi} \frac{da}{(x-a)^{1-n}}$, et qu'on prenne l'intégrale depuis a=0 jusqu'à a=x, on aura

$$\frac{\sin n\pi}{\pi} \int_0^x \frac{ga \cdot da}{(x-a)^{1-n}} = \frac{\sin n\pi}{\pi} \int_0^x \frac{da}{(x-a)^{1-n}} \int_0^a \frac{ds}{(a-x)^n},$$

donc en vertu de l'équation (1)

$$s = \frac{\sin n\pi}{\pi} \int_0^x \frac{\varphi a \cdot da}{(x-a)^{1-n}}.$$

Soit maintenant $n=\frac{1}{2}$, on obtient

$$\varphi a = \int_0^a \frac{ds}{\sqrt{a - x}}$$

et

$$s = \frac{1}{\pi} \int_0^x \frac{\varphi a \cdot da}{\sqrt{x - a}}.$$

Cette équation donne l'arc s par l'abscisse x, et par suite la courbe est entièrement déterminée.

Nous allons appliquer l'expression trouvée à quelques exemples.

I. Soit

$$\varphi a = \alpha_0 a^{\mu_0} + \alpha_1 a^{\mu_1} + \cdots + \alpha_m a^{\mu_m} = \sum \alpha a^{\mu},$$

la valeur de s sera

$$s = \frac{1}{\pi} \int_0^x \frac{da}{\sqrt{x - a}} \sum a a^{\mu} = \frac{1}{\pi} \sum \left(a \int_0^x \frac{a^{\mu} da}{\sqrt{x - a}} \right).$$

Si l'on fait a = xy, on aura

$$\int_0^x \frac{a^{\mu}da}{\sqrt{x-a}} = x^{\mu+\frac{1}{2}} \int_0^1 \frac{y^{\mu}dy}{\sqrt{1-y}} = x^{\mu+\frac{1}{2}} \frac{\Gamma(\mu+1)\Gamma(\frac{1}{2})}{\Gamma(\mu+\frac{3}{2})},$$

donc

$$s = \frac{\Gamma(\frac{1}{2})}{\pi} \sum \frac{\alpha \Gamma(\mu + 1)}{\Gamma(\mu + \frac{3}{2})} x^{\mu + \frac{1}{2}},$$

ou, puisque $\Gamma(\frac{1}{2}) = \sqrt{\pi}$,

$$s = \sqrt{\frac{x}{\pi}} \left[\alpha_0 \frac{\Gamma(\mu_0 + 1)}{\Gamma(\mu_0 + \frac{3}{2})} x^{\mu_0} + \alpha_1 \frac{\Gamma(\mu_1 + 1)}{\Gamma(\mu_1 + \frac{3}{2})} x^{\mu_1} + \dots + \alpha_m \frac{\Gamma(\mu_m + 1)}{\Gamma(\mu_m + \frac{3}{2})} x^{\mu_m} \right].$$

Si l'on suppose p. ex. que m=0, $\mu_0=0$, c'est-à-dire que la courbe cherchée soit isochrone, on trouve

$$s = \sqrt{\frac{x}{\pi}} \alpha_0 \frac{\Gamma(1)}{\Gamma(\frac{3}{2})} = \frac{\alpha_0}{\frac{1}{2} \Gamma(\frac{1}{2})} \sqrt{\frac{x}{\pi}} = \frac{2\alpha_0}{\pi} \sqrt{x},$$

or $s = \frac{2\alpha_0}{\pi} \sqrt{x}$ est l'équation connue de la cycloide.

II. Soit

$$\varphi a \text{ depuis } a = 0 \text{ jusqu'à } a = a_0, \text{ égal à } \varphi_0 a$$
 $\varphi a \text{ depuis } a = a_0 \text{ jusqu'à } a = a_1, \text{ égal à } \varphi_1 a$
 $\varphi a \text{ depuis } a = a_1 \text{ jusqu'à } a = a_2, \text{ égal à } \varphi_2 a$
 \vdots
 $\varphi a \text{ depuis } a = a_{m-1} \text{ jusqu'à } a = a_m, \text{ égal à } \varphi_m a,$

on aura

$$\pi s = \int_{0}^{x} \frac{\varphi_{0} a \cdot da}{\sqrt{a - x}}, \text{ depuis } x = 0 \text{ jusqu'à } x = a_{0},$$

$$\pi s = \int_{0}^{a_{0}} \frac{\varphi_{0} a \cdot da}{\sqrt{a - x}} + \int_{a_{0}}^{x} \frac{\varphi_{1} a \cdot da}{\sqrt{a - x}}, \text{ depuis } x = a_{0} \text{ jusqu'à } x = a_{1},$$

$$\pi s = \int_{0}^{a_{0}} \frac{\varphi_{0} a \cdot da}{\sqrt{a - x}} + \int_{a_{0}}^{a_{1}} \frac{\varphi_{1} a \cdot da}{\sqrt{a - x}} + \int_{a_{1}}^{x} \frac{\varphi_{2} a \cdot da}{\sqrt{a - x}}, \text{ depuis } x = a_{1} \text{ jusqu'à } x = a_{2},$$

$$\pi s = \int_{0}^{a_{0}} \frac{\varphi_{0} a \cdot da}{\sqrt{a - x}} + \int_{a_{0}}^{a_{1}} \frac{\varphi_{1} a \cdot da}{\sqrt{a - x}} + \cdots + \int_{a_{m-2}}^{a_{m-1}} \frac{\varphi_{m-1} a \cdot da}{\sqrt{a - x}} + \int_{a_{m-1}}^{x} \frac{\varphi_{m} a \cdot da}{\sqrt{a - x}},$$

$$\text{depuis } x = a_{m-1} \text{ jusqu'à } x = a_{m},$$

où il faut remarquer que les fonctions $\varphi_0 a$, $\varphi_1 a$, $\varphi_2 a$. . . $\varphi_m a$ doivent être telles que

 $\varphi_0 a_0 = \varphi_1 a_0, \ \varphi_1 a_1 = \varphi_2 a_1, \ \varphi_2 a_2 = \varphi_3 a_2, \ \text{etc.},$

car la fonction qa doit nécessairement être continue.