JOIO RECUPCIÓNIO 7 5 MAR 2002

THE COURT OF SOLUTION AND ADDRESS OF THE COURT OF THE COU	ATTORNEY'S DOCKET NUMBER			
FORM PTO-1390 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE (REV. 11-2000)	9052-111			
TRANSMITTAL LETTER TO THE UNITED STATES	U.S. APPLICATION NO (If known, see 37 CFR 1 5)			
DESIGNATED/ELECTED OFFICE (DO/EO/US)				
CONCERNING A FILING UNDER 35 U.S.C. 371 10/088245				
INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE 18 September 2000	PRIORITY DATE CLAIMED 17 September 1999			
TITLE OF INVENTION				
APPLICANT(S) FOR DO/EO/US				
ANTECON Alfred, MAITI AND Norman				
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US	s) the following items and other information.			
1.				
2. This is a SECOND or SUBSEQUENT submission of items concerning a fili				
3. This is an express request to begin national examination procedures (35 U.S.C. 371(f)). The submission must include				
• items (5), (6), (9) and (21) indicated below.				
4. The US has been elected by the expiration of 19 months from the priority date (Article 31).				
5. A copy of the International Application as filed (35 U.S.C. 371(c)(2))				
a. is attached hereto (required only if not communicated by the International Bureau).				
b. 🛛 has been communicated by the International Bureau.				
c. is not required, as the application was filed in the United States Receiving Office (RO/US).				
6. An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)).				
a. is attached hereto.				
b. has been previously submitted under 35 U.S.C. 154(d)(4)				
7. Amendments to the claims of the International Application Under PCT Article 19 (35 U.S.C. 371(c)(3))				
a. are attached hereto (required only if not communicated by the International Bureau).				
b. have been communicated by the International Bureau.				
c. have not been made; however, the time limit for making such amendments has NOT expired.				
d. have not been made and will not be made.				
8. An English language translation of the amendments to the claims under PCT	Article 19 (35 U.S.C. 371(c)(3)).			
9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).				
10. An English language translation of the annexes of the International Prelimin	ary Examination Report Under PCT			
Article 36 (35 U.S.C. 371(c)(5)).				
Items 11 to 20 below concern document(s) or information included:				
11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.				
12. An assignment document for recording. A separate cover sheet in complian	ce with 37 CFR 3.28 and 3.31 is included.			
13. A FIRST preliminary amendment.				
14. A SECOND or SUBSEQUENT preliminary amendment.				
15. A substitute specification.				
16. A change of power of attorney and/or address letter.				
17. A computer-readable form of the sequence listing in accordance with PCT Rule 13ter.2 and 35 U.S.C. 1.821 - 1.825.				
18. A second copy of the published international application under 35 U.S.C. 15				
19. A second copy of the English language translation of the international appli	cation under 35 U.S.C. 154(d)(4)			
20. Other items or information:				

TOTAL CHEST OF THE FILTER JC13 Rec'd PCT/PTC 1 5 MAR 2002 INTERNATIONAL APPLICATION NO ATTORNEY DOCKET NO PCT/GB00/03568 21. The following fees are submitted: BASIC NATIONAL FEE (37 CFR 1.492(a) (1) - (5)): CALCULATIONS PTO USE ONLY Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO..... \$1040.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO...... \$890.00 International preliminary examination fee 37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO..... \$740.00 International preliminary examination fee (37 CFR 1.482) paid to USPTO but all claims did not satisfy provisions of PCT Article 33(1)-(4)..... \$710.00 International preliminary examination fee (37 CFR 1.482) paid to USPTO and all claims satisfied provisions of PCT Article 33(1)-(4)..... \$100.00 \$890.00 ENTER APPROPRIATE BASE FEE AMOUNT = Surcharge of \$130.00 for furnishing the oath or declaration later than \(\subseteq 20 \) \(\subseteq 30 months \) from the earliest claimed priority date (37 CFR 1.492(e)). CLAIMS NUMBER FILED **NUMBER EXTRA** RATE \$ Total claims 40 - 20 =20 x \$18.00 \$360.00 Independent Claims 15 - 3 =\$924.00 x \$84.00 MULTIPLE DEPENDENT CLAIM(S) (if applicable) + \$280.00 \$1008.00 TOTAL OF ABOVE CALCULATIONS = \$ Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above are reduced by 1/2 SUBTOTAL = \$ Processing fee of \$130.00 for furnishing the English translation later than 20 30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE = \$ Fee for Recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property TOTAL FEES ENCLOSED = \$2240.00 Amount to be refunded: charged: \$18.00

a.	\boxtimes	A check in the amount of \$2240.00 to cover the above fees is enclosed
----	-------------	--

- Please charge my Deposit Account No. 50-0220 in the amount of \$18.00 to cover the above fees. A duplicate copy of b. this sheet is enclosed.
- \boxtimes The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment C. to Deposit Account No. 50-0220. A duplicate copy of this sheet is enclosed.
- Fees are to be charged to a credit card. WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

PATENT TRADEMARK OFFICE

Date: <u>March 15, 2002</u>

CERTIFICATE OF EXPRESS MAILING

Express Mail Label No EL 920740629 US

Date of Deposit: March 15, 2002

I hereby certify that this correspondence is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to BOX PCT, Attn. DO/EO/US, Commissioner for Patents Washington, DC 20231.

Susan E. Freedman

Attorney's Docket No. 9052-111

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re:

Antson et al.

Examiner:

To be assigned

Serial No.:

PCT/GB00/03568

Group Art Unit:

To be assigned

Filed:

September 18, 2000

For:

Target for Antiviral Therapy

Date: March 15, 2002

Box PCT

U.S. Patent and Trademark Office

P.O. Box 2327

Arlington, VA 22202

Attn: DO/EO/US

PRELIMINARY AMENDMENT

Sir:

Prior to the examination of the above application, please amend the above referenced application as follows. Please enter the following amendments prior to the calculation of the filing fee. Pursuant to the rules for amendments under 37 C.F.R. §1.121, the claims have been amended herein using the rewritten claims format. The present amendment also includes a section entitled "VERSION WITH MARKINGS TO SHOW CHANGES MADE" attached hereto.

IN THE SPECIFICATION:

Please amend the specification as follows:

On page 1 after the title of the invention please add:

RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 371 from PCT/GB00/03568, (published under PCT Article 21(2) in English), filed on September 18, 2000, which claims priority to Great Britain Application Serial No. 9921938.8, filed on September 17, 1999, the disclosures of which are incorporated by reference herein in their entireties.

Antson et al.

Serial No.:

PCT/GB00/03568

Filed:

September 18, 2000

Page 2 of 11

IN THE CLAIMS:

Please enter the amended claims as follows:

- 2. (Amended) The E2NT dimer protein of Claim 1 wherein the residues lie on opposite sides of an N-terminal domain.
- 3. (Amended) The E2NT dimer protein of Claim 1, wherein the residues comprise a plurality of residue clusters associated with a structural role at an interface between N1 and N2 terminal domains of respective monomers within the dimer.
- 4. (Amended) The E2NT dimer protein of Claim 3 comprising three clusters.
- 5. (Amended) The E2NT dimer protein of Claim 3 wherein a first cluster of vital residues is associated with interactions between N1 and N2 domains and comprises any one or more of the following residues: Ile82, Glu90, Trp92, Lys112, Tyrl38, Val145.
- 6. (Amended) The E2NT dimer protein of Claim 3, wherein a second cluster of residues is associated with N1 interactions and comprises either or both of residues Trp33 and Leu94.
- 7. (Amended) The E2NT dimer protein of Claim 3, wherein a third cluster of residues is associated with N2 interactions and comprises any one or more of the following residues: Pro106, Lys111, Phel68, Trp134.
- 8. (Amended) The E2NT dimer protein of Claim 1, further comprising residues associated with transactivation and/or replication properties of E2.
- 9. (Amended) The E2NT dimer of Claim 8, wherein the residues comprise any one or more of the following residues: Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69.

ACCEPTANT OF THE

In re:

Antson et al.

Serial No.:

PCT/GB00/03568

Filed:

September 18, 2000

Page 3 of 11

10. (Amended) A method for determining the structure of a crystallised molecular

complex of an E2 N-terminal module (E2NT) dimer protein, wherein the E2NT dimer

protein and any of its mutations are mapped onto an E2 three-dimensional structure so

as to identify areas of amino acid conservation and the effect of mutations on folding

of the E2 protein.

11. (Amended) The method according to Claim 10 in rationalised antiviral drug

design.

12. (Amended) A method for identifying and/or selecting a candidate therapeutic

agent, the method comprising:

determining interaction of a E2 N-terminal module (E2NT) dimer in a sample

by contacting said sample with said candidate therapeutic agent and measuring DNA

loop formation in E2 in vitro.

13. (Amended) The method according to Claim 12 further comprising identifying

and/or selecting an antiviral candidate therapeutic agent.

14. (Amended) The method according to Claim 13, wherein the identifying and/or

selecting of the antiviral candidate therapeutic agent depends on its ability to interfere

with or block interactions of E2NT so as to interfere or block viral and/or cellular

transcription factors.

15. (Amended) A method of treating an HPV infection in a subject comprising:

introducing an E2NT dimerisation inhibitor in said subject.

16. (Amended) The method according to Claim 15 further comprising treating

warts, proliferative skin lesions and/or cervical cancer.

18. (Amended) Use of a dimerisation surface of an crystallised molecular complex

of an E2 N-terminal module (E2NT) dimer protein or homologue thereof according to

THERE IN THE

In re:

Antson et al.

Serial No.:

PCT/GB00/03568

Filed:

September 18, 2000

Page 5 of 11

Please cancel claim 33 without prejudice or disclaimer.

Please add the following new claims:

34. (New) A method for designing a potential antiviral compound for the prevention

or treatment of an HPV infection, comprising:

a) obtaining crystals of the E2NT dimer protein such that the three dimensional

structure of the crystallized E2NT dimer protein can be determined to a resolution of

about 1.9 Å or better,

b) evaluating the three dimensional structure of the crystallized E2NT dimer protein;

c) synthesizing the potential antiviral compound based on the three-dimensional

crystal structure of the crystallized E2NT dimer protein;

d) contacting an HPV virus with the potential antiviral compound; and

e) assaying the HPV virus for infectivity or monitoring the virus for activity, or both,

whereby a decrease in the infectivity of the virus or a change in the activity of the

virus indicates the compound may be used for the prevention or treatment of an HPV

infection.

35. (New) The method according to claim 34, wherein the antiviral compound is a

peptide or polypeptide.

36. (New) The method according to claim 34, wherein the E2 N-terminal module

dimer protein or homologue thereof comprises residues vital for transcriptional and

replication activities of said protein.

A CHARLE REPORT ... IN PROPERTY.

In re:

Antson et al.

Serial No.:

PCT/GB00/03568

Filed:

September 18, 2000

Page 6 of 11.

37. (New) The method according to claim 36, wherein the residues comprise a plurality of residue clusters associated with a structural role at an interface between N1 and N2 terminal domains of respective monomers within the dimer.

38. (New) The method according to claim 37, wherein said E2NT dimer protein comprises three clusters.

39. (New) A method for designing a candidate compound for screening for binding to or inhibition of an HPV infection, comprising:

a) utilizing the three dimensional structure of a crystallized E2NT module dimer protein wherein the residues comprise a plurality of residue clusters associated with a structural role at an interface between N1 and N2 terminal domains of respective monomers within the dimer; and

b) designing a candidate binding compound based on the three-dimensional crystal structure of the crystallized E2NT dimer protein for binding to said dimer protein.

40. (New) The method of claim 39, wherein the candidate compound is a peptide or polypeptide.

41. (New) A method for determining the crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein, wherein the E2NT dimer protein and any of its mutations is mapped onto an E2 three-dimensional structure so as to identify areas of amino acid conservation and the effect of mutations on folding of the E2 protein.

Antson et al.

Serial No.:

PCT/GB00/03568

Filed:

September 18, 2000

Page 7 of 11

REMARKS

Please note that the claims pending at the time of this filing are the claims of the international application serial no. PCT/GB00/03568, *i.e.* claims 1-33. Claim 33 has been cancelled and claims 34-41 have been added. The pending claims have been amended above to better conform to United States practice. The marked-up version of the changes to the specification and claims are attached hereto in the "Version With Markings to Show Changes Made".

It is respectively submitted that this application is now in condition for substantive examination, which action is respectfully requested.

Respectfully submitted,

Jarett K. Abramson Attorney for Applicants Registration No. 47,376

Enc: Version With Markings to Show Changes Made

CUSTOMER NO.

20792

PATENT TRADEMARK OFFICE

CERTIFICATE OF EXPRESS MAILING

Express Mail Label No. EL 920740629 US

Date of Deposit: March 15, 2002

I hereby certify that this correspondence is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to: BOX/PCT, U.S. Patent and Trademark/Office, P.O. Box 2327, Arlington, VA 22202, Attn: DO/EO/US.

Susan E. Freedman

Date of Signature: March 15, 2002

Antson et al.

Serial No.:

PCT/GB00/03568

Filed:

September 18, 2000

Page 8 of 11

VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE CLAIMS:

The claims have been amended as follows:

- 2. (Amended) [An] <u>The E2NT dimer protein [according to] of Claim 1 wherein the residues lie on opposite sides of an N-terminal domain.</u>
- 3. (Amended) [An] <u>The E2NT dimer protein [according to either preceding claim] of Claim 1</u>, wherein the residues comprise a plurality of residue clusters associated with a structural role at an interface between N1 and N2 terminal domains of respective monomers within the dimer.
- 4. (Amended) [An] <u>The</u> E2NT dimer protein [according to] <u>of</u> Claim 3 comprising three clusters.
- 5. (Amended) [An] <u>The E2NT dimer protein [according to either of Claims] of Claim</u> 3 [or 4] wherein a first cluster of vital residues is associated with interactions between N1 and N2 domains and comprises any one or more of the following residues: Ile82, Glu90, Trp92, Lys112, Tyrl38, Val145.
- 6. (Amended) [An] <u>The E2NT dimer protein [according to any one of Claims 3-5] of Claim 3,</u> wherein a second cluster of residues is associated with N1 interactions and comprises either or both of residues Trp33 and Leu94.
- 7. (Amended) [An] <u>The E2NT dimer protein [according to any one of Claims 3-6] of Claim 3,</u> wherein a third cluster of residues is associated with N2 interactions and comprises any one or more of the following residues: Pro106, Lys111, Phel68, Trp134.
- 8. (Amended) [An] <u>The E2NT dimer protein [according to any preceding claim]</u> of <u>Claim 1</u>, further comprising residues associated with transactivation and/or replication properties of E2.

Antson et al.

Serial No.:

PCT/GB00/03568

Filed:

September 18, 2000

Page 9 of 11

9. (Amended) [An] <u>The E2NT dimer [according to] of Claim 8, wherein the residues comprise any one or more of the following residues:</u> Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69.

- 10. (Amended) [Use of a] A method for determining the structure of a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein, [according to any preceding claim or homologue thereof in mapping mutations] wherein the E2NT dimer protein and any of its mutations are mapped onto an E2 three-dimensional structure so as to identify areas of amino acid conservation and the effect of mutations on folding of the E2 protein.
- 11. (Amended) [Use] <u>The method</u> according to Claim 10 in rationalised antiviral drug design.
- 12. (Amended) [An *in vitro*] <u>A</u> method for identifying and/or selecting a candidate therapeutic agent, the method comprising:

determining interaction of a E2 N-terminal module (E2NT) dimer in a sample by contacting said sample with said candidate therapeutic agent and measuring DNA loop formation in E2 *in vitro*.

- 13. (Amended) [Use of the] <u>The</u> method according to Claim 12 [in] <u>further</u> <u>comprising</u> identifying and/or selecting an antiviral candidate therapeutic agent.
- 14. (Amended) [Use according to] <u>The method according to</u> Claim 13, wherein [identification/selection] <u>the identifying and/or selecting</u> of the <u>antiviral</u> candidate therapeutic agent depends on its ability to interfere with or block interactions of E2NT so as to interfere or block viral and/or cellular transcription factors.
- 15. (Amended) [Use of an E2NT dimerisation inhibitor for the preparation of a medicament for treatment of conditions that arise as a result of] A method of treating an HPV infection in a subject comprising:

Antson et al.

Serial No.:

PCT/GB00/03568

Filed:

September 18, 2000

Page 10 of 11

introducing an E2NT dimerisation inhibitor in said subject.

16. (Amended) [Use] <u>The method</u> according to Claim 15 [for the treatment of] <u>further comprising treating</u> warts, proliferative skin lesions and/or cervical cancer.

18. (Amended) Use of a dimerisation surface of an crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof according to [any one of Claims 1-9] <u>Claim 1</u> as a target site for interaction with putative antiviral agents and/or for measuring efficacy of said agents.

- 20. (Amended) [A] <u>The</u> method of claim 19, wherein the method by which the E2NT crystal structure is obtainable comprises crystallisation using hanging-drop vapour diffusion.
- 21. (Amended) [A] The method of claim 19, [or claim 20] wherein the method by which E2NT crystal structure is obtainable comprises X-ray diffraction using uranium acetate and gold cyanide E2NT derivatives and refining with data extending to 1.9 Å spacing.
- 22. (Amended) [A] <u>The</u> method of [any of claims] <u>Claim</u> 19 [to 21], wherein the crystal structure comprises the portions of amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94.
- 23. (Amended) [A] <u>The</u> method of [any of claims] <u>Claim</u> 19 [to 22], wherein the rationalised drug design comprises designing drugs which interact with the dimerisation surface of E2NT.
- 32. (Amended) A method for evaluating the ability of a chemical entity to associate with a molecule or molecular complex [according to claim 27 or claim 28] comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3 or a homologue of said molecule or

Antson et al.

Serial No.:

PCT/GB00/03568

Filed:

September 18, 2000

Page 11 of 11

molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å, comprising the steps of:

- a. employing computational means to perform a fitting operation between the chemical entity and a dimerisation surface of the molecule or molecular complex; and
- b. analysing the results of said fitting operation to quantify the association between the chemical entity and the dimerisation surface.

Claim 33 has been canceled without prejudice or disclaimer.

WO 01/21645

13/prts

PCT/GB00/03568

Target for Antiviral Therapy

The present invention provides a crystallised module of a nuclear phosphoprotein and an assay and method for determining interactions with human papillomavirus E2 for use in drug design, for use particularly but not exclusively in designing antiviral algents with potential use in treating warts, proliferative skin lesions and carcinoma of the cervix.

Background to the Invention

10

15

Human papillomaviruses (HPVs) cause warts and proliferative lesions in skin and other epithelia. In a minority of HPV types ("high risk", which include HPVs 16, 18, 31, 33, 45 and 56), further transformation of the wart lesions can produce tumours, most notably carcinoma of the cervix. HPVs have evolved a sophisticated system of control, mediated by protein:DNA and protein:protein interactions, that involves both cellular and viral proteins. The 45 kDalton nuclear phosphoprotein, E2, has two central roles in this control. It acts as the principal virally encoded transcription factor and, in association with the viral E1 protein, it creates the molecular complex at the origin of the viral DNA replication.

20

25

E2 has three distinct modules. The N-terminal module (E2NT) of about 200 amino acids is responsible for interactions with viral and host cell transcription factors. It is followed by a flexible, proline-rich, linker module and a C-terminal module (E2CT), each of about 100 amino acids ³ (Fig. 1a). The E2CT binds as a homodimer to DNA sites with a consensus sequence of ACCGN₄CGGT ⁴. In most HPVs a long upstream regulatory region (URR) precedes the viral genes and contains four spatially conserved E2 binding sites: three sites proximal to the transcription start site (p97 in HPV16) and one approximately 500bp upstream.

The dimer of E2CT serves to anchor E2 protein to its recognition sites on the DNA, the function of the E2NT is to bind and localise at least three cellular transcription

factors, Sp1, TFIIB and AMF-1, to the transcription initiation complex. In addition, E2 interacts with another viral protein, E1, which has ATPase and helicase activities. E1 itself binds to the viral origin of replication which consists of about 100 bp and is surrounded by the three E2-binding sites, proximal to the transcription start. The E2:E1 interaction greatly increases the rate of HPV genome replication^{2,5,6}, Fig. 1a. An intact E2 is essential for the normal productive (wart) life cycle of HPV, however during malignant progression HPV DNA is integrated into the host cell genome, which usually results in disruption of the E2/E1 ORFs and loss of E2 protein, in turn leading to dysregulated expression of the viral oncogenes E6 and E7⁷.

10

15

Consistent with its role as a transcription regulator, E2 has been shown to direct the formation of loops in DNA containing E2 binding sites⁸. The loops were only formed with intact E2, and not with the E2CT alone. The E2 binding sites did not function independently and their co-operative effect was mediated by full length E2, leading the authors to suggest that there were specific interactions mediated by E2 that bridged across the set of DNA binding sites through its N-terminal. A similar DNA loop structure could also be achieved with Sp1, a cellular transcription factor, which forms a complex with distally bound E2 ⁹; Sp1/E2 interactions are critical for transcription activation in BPV¹⁰.

20

25

30

Eighty six known E2 proteins from different species and different human subtypes¹¹ are highly conserved, with sequence identities typically of 35% in the N and C-terminal modules (Fig. 1b). The crystal structure of the E2CT has been determined both alone and in complex with cognate DNA¹²⁻¹⁴. The module is a dimer with a barrel fold, and induces substantial bending (42-44°) of the DNA from its B-form double helix¹⁴.

The structure of the proteolytic fragment of HPV18 E2NT, missing 65 N-terminal residues, was recently reported at 2.1 Å spacing¹⁵. This allowed some analysis of mutational effects on function, although the missing 65 amino acids contain residues which are essential for the transcriptional and replication activities of the protein.

â.

10

15

30

We report herein the structure of the complete E2NT determined by X-ray analysis at 1.9 Å. We have found that it is an L-shaped molecule with the residues vital for transcriptional and replication activities of the protein lying on opposite sides of the N-terminal domain. Surprisingly, our results show that the surface, vital for transcription activation, is in fact involved in association of two E2NT's into a dimer. We suggest that dimerisation of E2NT plays an important and key role in induction of DNA loop formation, the mechanism by which distally bound transcription factors would be brought close to the site of transcription initiation. More importantly, our results raise the possibility that dimer formation serves as a molecular switch between early gene expression and viral genome replication during HPV infection.

The process of rationalised drug design requires no explanation or teaching for the skilled person but a brief description is given here of computational design for the lay reader: various computational analyses are necessary to determine whether a molecule is sufficiently similar to the target moiety or structure. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., Waltham, Mass.) version 3.3, and as described in the accompanying User's Guide, Volume 3 pages. 134-135.

The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps: 1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) perform a fitting operation; and 4) analyze the results.

Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses a least squares fitting algorithm that computes the optimum translation and

rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by QUANTA.

One skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with a target. Again, these methods require no elucidation for the skilled person but are described here for the benefit of the unskilled reader. The screening process may begin by visual inspection of the target on the computer screen, generated from a machine-readable storage medium.

Selected fragments or chemical entities may then be positioned in a variety of orientations, or docked, within that binding pocket as defined supra. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimization and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.

Specialized computer programs may also assist in the process of selecting fragments or chemical entities. These include:

15

. 25

30

- GRID (P. J. Goodford, "A Computational Procedure for Determining Energetically
 Favorable Binding Sites on Biologically Important Macromolecules", J. Med. Chem.,
 pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK.
 - 2. MCSS (A. Miranker et al., "Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method." Proteins: Structure, Function and Genetics, 11, pp. 29-34 (1991)). MCSS is available from Molecular Simulations, Burlington, Mass.
 - 3. AUTODOCK (D. S. Goodsell et al., "Automated Docking of Substrates to Proteins by Simulated Annealing", Proteins: Structure, Function, and Genetics, 8, pp. 195-202 (1990)). AUTODOCK is available from Scripps Research Institute, La Jolla, Calif.

PCT/GB00/03568

WO 01/21645

4. DOCK (I. D. Kuntz et al., "A Geometric Approach to Macromolecule-Ligand Interactions", J. Mol. Biol., 161, pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, Calif.

Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound or complex. Assembly may be preceded by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of calcineurin. This would be followed by manual model building using software such as Quanta or Sybyl.

Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include:

- CAVEAT (P. A. Bartlett et al, "CAVEAT: A Program to Facilitate the Structure Derived Design of Biologically Active Molecules". In Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc., 78, pp. 182-196 (1989)). CAVEAT is available from the University of California, Berkeley, Calif.
- 20 2. 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, Calif). This area is reviewed in Y. C. Martin, "3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992).
 - 3. HOOK (available from Molecular Simulations, Burlington, Mass.).

25

As the skilled reader will already know, instead of proceeding to build ligand for the target in a step-wise fashion, one fragment or chemical entity at a time as described above, inhibitory or other target-binding compounds may be designed as a whole or *de novo*. These methods include:

30

1. LUDI (H.-J. Bohm, "The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors", J. Comp. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Biosym Technologies, San Diego, Calif.

- 5 2. LEGEND (Y. Nishibata et al., Tetrahedron, 47, p. 8985 (1991)). LEGEND is available from Molecular Simulations, Burlington, Mass.
 - 3. LeapFrog (available from Tripos Associates, St. Louis, Mo.).
- Other molecular modelling techniques may also be employed. See, e.g., N. C. Cohen et al., "Molecular Modeling Software and Methods for Medicinal Chemistry, J. Med. Chem., 33, pp. 883-894 (1990). See also, M. A. Navia et al., "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

15

20

25

30

Once a compound has been designed or selected by the above methods, the efficiency with which that entity may bind to a target may be tested and optimized by computational evaluation. For example, an effective ligand will preferably demonstrate a relatively small difference in energy between its bound and free states (i.e., a small deformation energy of binding). Thus, the most efficient ligands should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mole, preferably, not greater than 7 kcal/mole. Ligands may interact with the target in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free entity and the average energy of the conformations observed when the inhibitor binds to the protein.

An entity designed or selected as binding to a target may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target enzyme. Such non-complementary (e.g., electrostatic) interactions include repulsive charge-charge, dipole-dipole and charge-dipole

interactions. Specifically, the sum of all electrostatic interactions between the inhibitor or other ligand and the target, when the inhibitor is bound to the target, preferably make a neutral or favourable contribution to the enthalpy of binding.

Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interaction. Examples of programs designed for such uses include: Gaussian 92, revision C [M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa. .COPYRGT.1992]; AMBER, version 4.0 [P. A. Kollman, University of California at San Francisco, .COPYRGT.1994]; QUANTA/CHARMM [Molecular Simulations, Inc., Burlington, Mass. .COPYRGT.1994]; and Insight II/Discover (Biosysm Technologies Inc., San Diego, Calif. .COPYRGT.1994). These programs may be implemented, for instance, using a Silicon Graphics workstation, IRIS 4D/35 or IBM RISC/6000 workstation model 550. Other hardware systems and software packages will be known to those skilled in the art.

15

20

Once the ligand has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit to a calcineurin-like binding pocket by the same computer methods described in detail, above. Again, all these facts are familiar to the skilled person.

25

30

Another approach is the computational screening of small molecule data bases for chemical entities or compounds that can bind in whole, or in part, to a target. In this screening, the quality of fit of such entities to the binding site may be judged either by shape complementarity or by estimated interaction energy. E. C. Meng et al., J. Comp. Chem., 13, pp. 505-524 (1992).

The computational analysis and design of molecules, as well as software and computer systems therefor are described in US Patent No 5,978,740 which is included herein by reference, including specifically but not by way of limitation the computer system diagram described with reference to and illustrated in Fig 3 thereof as well as the data storage media diagram described with reference to and illustrated in Fig 4s and 5 thereof.

Statement of the Invention

5

15

According to a first aspect of the invention there is provided a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof, for use in rationalised drug design. We have found that the dimer comprises residues vital for transcriptional and replicational activities of said protein lying on opposite sides of an N-terminal domain, for use in rationalised drug design.

Preferably the E2NT dimer protein is substantially as depicted in any of Figures 2c and/or 3a-d.

According to a second aspect of the invention there is provided an *in vitro* method for identifying and/or selecting a candidate therapeutic agent, the method comprising determining interaction of a E2 N-terminal module (E2NT) dimer in a sample by contacting said sample with said candidate therapeutic agent and measuring DNA loop formation.

25 Preferably, the method is for use in identifying and/or selecting an antiviral candidate therapeutic agent.

Preferably, the candidate therapeutic agent interferes or blocks interactions of E2NT so as to interfere or block viral and/or cellular transcription factors.

According to a third aspect of the invention there is provided use of an E2NT dimerisation inhibitor in the preparation of a medicament for use in treating warts, proliferative skin lesions and/or cervical cancer.

According to a fourth aspect of the invention there is provided a method of monitoring the efficacy of an antiviral therapy in a patient receiving a medicament for the treatment of warts, proliferative skin lesions and/or cervical cancer comprising taking a sample from said patient and measuring E2NT interactions and/or DNA loop formation.

10

Thus it will be appreciated that a patient can be monitored at the start of therapy to test its effectiveness. Alternatively, a patient can be monitored once a therapy has been established so as to monitor its efficacy with a view to altering a therapy if found to be unsatisfactory.

15

20

25

30

The human papillomavirus E2 protein controls the primary transcription and replication of the viral genome. Both activities are governed by a ~200 amino acid N-terminal module (E2NT) which is connected to a DNA binding C-terminal module by a flexible linker. The crystal structure of the E2NT module from high-risk type 16 human papillomavirus reveals an L-shaped molecule with two closely packed domains, each with a novel fold. It forms a dimer in the crystal and in solution. The dimer structure is important in the interactions of E2NT with viral and cellular transcription factors and is the key to induction of DNA loops by E2. These loops may serve to target distal DNA-binding transcription factors to the region proximal to the start of transcription. The structure has implications for antiviral drug design and cervical cancer therapy.

The invention includes method for identifying and/or selecting a candidate therapeutic agent, comprising applying rationalised drug design to a crystal structure obtainable by crystallising E2NT, cryogenically freezing the crystals and generating the crystal structure using X-ray diffraction. The method by which the E2NT crystal

WO 01/21645

PCT/GB00/03568

structure is obtainable may comprise crystallisation using hanging-drop vapour diffusion. The method by which E2NT crystal structure is obtainable may comprise X-ray diffraction using uranium acetate and gold cyanide E2NT derivatives and refining with data extending to 1.9 Å spacing. The crystal structure may comprise the portions of amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94. The rationalised drug design may comprise designing drugs which interact with the dimerisation surface of E2NT.

Further provided is a computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å, wherein said computer comprises:

15

10

(a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3;

20

(b) a working memory for storing instructions for processing said machine-readable data;

25 1

- (c) a central-processing unit coupled to said working memory and to said machinereadable data storage medium for processing said machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said threedimensional representation.

30

In class of embodiments, the three-dimensional representation is of a molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or wherein said three-dimensional representation is of a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

An additional aspect of the invention resides in a computer for determining at least a portion of the structure coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex, wherein said computer comprises:

10

25

5

- (a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises at least a portion of the structural coordinates according to Table 3;
- 15 (b) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
- (c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);
 - (d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structure coordinates; and
 - (e) a display coupled to said central-processing unit for displaying said structure coordinates of said molecule or molecular complex.
- 30 A yet further aspect of the invention relates to a crystallised molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT

amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å. The molecule or molecular complex may be defined by the set of structure coordinates according to Table 3, or a homologue thereof, wherein said homologue has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

27. A machine-readable data storage medium (e.g. a magnetic or optical storage medium, for example a hard disc, a floppy disc or a CD-ROM), comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

20

30

In the machine-readable data storage medium the molecule or molecular complex may be defined by the set of structure coordinates according to Table 3, or a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than

25 1.5Å.

The invention further provides a machine-readable data storage medium comprising a data storage material encoded with a first set of machine readable data which, when combined with a second set of machine readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second

set of machine readable data, wherein: said first set of data comprises a Fourier transform of at least a portion of the structural coordinates according to Table 3; and said second set of data comprises an x-ray diffraction pattern of a molecule or molecular complex.

5

In another aspect, the invention resides in a method for evaluating the ability of a chemical entity to associate with a molecule or molecular complex according to the invention, comprising the steps of:

- 10 a. employing computational means to perform a fitting operation between the chemical entity and a dimerisation surface of the molecule or molecular complex; and
 - b. analysing the results of said fitting operation to quantify the association between the chemical entity and the dimerisation surface.

15

Detailed Description of the Invention

The invention will now be described by way of example only with reference to the following Figures and Tables wherein:

5

Table 1 illustrates X-ray data and phasing statistics;

Table 2 illustrates refinement and model correlation;

10 Table 3 shows the structure coordinates of the E2NT module;

Figure 1a represents functional assignments of HPV 16 E2 protein;

Figure 1b illustrates sequence alignment of E2NT modules from a subset of HPV types;

Figure 2a illustrates a stereo view of electron density with a final model at the dimer interface of the E2NT module, viewed down the crystallographic two-fold axis;

20 Figure 2b represents a stereo ribbon diagram of the E2NT module;

Figure 2c represents the E2NT dimer;

Figure 3a illustrates a schematic view of URR;

25

Figure 3b illustrates a schematic view of loop formation induced by binding of E2 proteins to two cognate sites;

Figure 3c illustrates a model of E2 dimer formation;

30

Figure 3d illustrates loops within URR as shown in Figure 3b;

Figure 4a illustrates the distribution of conserved residues on the E2NT monomer;

Figure 4b illustrates a first cluster of conserved residues on the E2NT monomer;

Figure 4c illustrates a second cluster of conserved residues on the E2NT monomer; and

Figure 4d illustrates conserved residues Gln12 and Glu39.

10

15

20

5

Those of skill in the art understand that a set of structure coordinates for an enzyme or an enzyme-complex or a portion thereof, is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations caused by acceptable errors in the individual coordinates will have little, if any effect on overall shape. In terms of binding pockets, these acceptable variations would not be expected to alter the nature of ligands that could associate with those pockets.

The term "associating with" refers to a condition of proximity between a chemical entity or compound, or portions thereof, and a calcineurin molecule or portions thereof. The association may be non-covalent--wherein the juxtaposition is energetically favored by hydrogen bonding or van der Waals or electrostatic interactions--or it may be covalent.

The invention is also described with reference to US Patent No 5,978,740 which is included herein by reference, including specifically but not by way of limitation the computer system diagram described with reference to and illustrated in Fig 3 thereof as well as the data storage media diagram described with reference to and illustrated in Fig s 4 and 5 thereof.

30

With reference to Figure 1a and functional assignments of E2. There is shown in a schematic view of NT, linker and CT modules of E2 indicating known functions of each module. Amino acid numbers which delimit the modules correspond to E2 from HPV16. In Figure 1b, there is shown the sequence alignment of the E2NT modules from a subset of HPV types (HPV16, HPV18, HPV11 and HPV2a) and one BPV type. Shaded blocks above the alignment indicate the experimentally determined secondary structure. Shaded blocks below the sequences indicate the minimal peptide sequences involved in protein:protein interactions, suggested by mutation studies. Residues with more than 90% identity among 86 PV types are coloured: red for internal structural residues, green for residues within the fulcrum region, blue for surface residues.

5

10

15

20

25

30

With reference to the structural features of E2, in Figure 2a there is shown a stereo view of the electron density with the final model, at the dimer interface of the E2NT module, viewed down the crystallographic two-fold axis. The likelihood weighted map is contoured at the 1.5 σ level. Ribbons of two independent monomers are coloured blue and yellow. Side chains of ARG37 and Ile73 which are known to be critical for transactivation ^{4,31}, are shown in dark green; side chain of other residues at the dimer interface are shown in light green. Oxygen atoms are in red, nitrogen in blue, water molecules are shown as orange spheres and hydrogen bonds as dashed sticks. In Figure 2b, there is shown a stereo ribbon diagram of the E2NT module. The N1 domain is shown in aquamarine and the N2 domain in pink, with the fulcrum in green. In Figure 2c, there is shown the dimer of E2NT, showing the extent of the interface between the two subunits. The view is as in Figure 2a but rotated clockwise by 90°. Side chains of Gln12 and Glu39 which are critical for interactions with E1 ^{31-33,37} are shown in magenta. Side chains of residues at the dimer interface are coloured as per Figure 2a.

With reference to Figures 3a-d there is shown loop formation in the URR of HPV16. In Figure 3a, there is shown a schematic view of the URR. The four E2-binding sites are represented by boxes. Numbers in italics indicate distances between individual

sites upstream of the p97 promoter. Two possible E2 configurations, with separate or dimeric E2NT modules are shown. In Figure 3b, there is shown a schematic view of loop formation induced by binding of E2 proteins to two cognate sites, based on the experiments reported by Knight *et al*⁸. In Figure 3d, there is shown the possible DNA loops within the URR as depicted in Figure 3b. In Figure 3c, there is shown a model of the formation of E2 dimers, showing interactions between both the C-terminal and E2NT modules. The C-terminal dimer, with its bound DNA, is based on the crystal structure of this module¹². The E2NT dimer is proposed from the present work. The relative orientation and position of the E2NT and C-terminal modules is purely schematic.

With reference to Figures 4a-d there are shown functionally important residues. In Figure 4a, there is shown the distribution of conserved residues on the E2NT monomer. In Figures 4b and 4c there is shown the two clusters of conserved residues in the fulcrum of E2NT. In Figure 4d, there are shown conserved residues Gln12 and Glu39. Bonds in ball-and stick models are coloured aquamarine (N1 domain), pink (N2 domain) and green (fulcrum). Hydrogen bonds are shown as dashed lines, water molecules as orange spheres, oxygen atoms are in red, nitrogen atoms in blue and sulphur atoms in yellow.

There is convincing evidence that the E2 protein has an extended structure, is flexible and that its functions depend on this property. This is probably the reason why the intact protein has not yet been crystallised in spite of intensive efforts. A major problem is the extended flexible linker module, with around 100 residues. E2NT proved difficult to crystallise, and a number of different constructs were made and overexpressed before crystallisation with residues 1 to 201 was achieved, but even this construct possessed limited stability. The protein had to be crystallised within 2-3 days of purification; crystals grew within about 48 hours but only retained useful diffraction quality for a further 2-3 days. This necessitated that crystals be rapidly vitrified in cryoprotectant buffer and stored for use as soon as detector time became available 16.

Crystals of E2NT belong to the space group P3₁21 with unit-cell dimensions a=b=54.3 Å, c=155.5 Å. The structure was determined using two heavy atom derivatives and refined with data extending to 1.9 Å spacing (Fig. 2a). The main chain is well defined throughout with the exception of residues 125 and 126 which are in an exposed loop and are mobile. There was density for the last residue of the His-tag at the N-terminus, but none for the remainder of this entity. All amino acids lie in the allowed regions of the Ramachandran (ϕ, ψ) plot¹⁷ with 92.4% in most favoured regions¹⁸.

10

15

20

25

5

The transactivation module is composed of two domains, N1 and N2, arranged so as to give it an overall L-shaped appearance. Analysis of the PDB¹⁹using DALI²⁰shows that both have unique organisation of their secondary structures. Domain N1, which forms the N-terminus of the intact E2, is composed of residues 1 to 92, which fold into three long α -helices, Figure 2 (b,c). There is a tight loop between $\alpha 1$ and $\alpha 2$ and a more extended one between $\alpha 2$ and $\alpha 3$. The three helices pack antiparallel to one another in the form of a twisted plane, with angles of about 20° and 25° between the pairs of consecutive helices. DALI indicated a maximum Z-score of 5.7, that could suggest a significant correlation, for colicin la, a membrane protein which contains three 80 Å long α -helices arranged more or less coplanar²¹. This is the only other known protein that contains a true domain made up of such a packing of three helices. In addition there were 42 other structures which gave Z-scores above 4.0, most of which were four helix bundles, such as bacterioferritin²². However, in these only two of the three N1 helices superimposed simultaneously on two, not always adjacent, bundle helices as a result of a more planar arrangement of helices within N1. The indications are that the similarities observed reflect the optimum stacking angle of antiparallel helices against one another rather than suggesting a common ancestor for the evolution of these molecules.

Domain N2 is made up of residues 110 to 201 and is composed almost entirely of antiparallel β structure, with only one short helical segment from residues 171 to 178,

Figure 2 (b,c). The secondary structure has two short three and four stranded antiparallel β pleated sheets interconnected by two stranded β ribbons. For this domain DALI failed to identify any significant homologies to known structures, with a highest Z-score of only 2.1. From the analysis of Harris and Botchan¹⁵ and the present study, the N2 fold appears to be novel.

The structure between the N1 and N2 domains (residues 93 to 109) contains two consecutive single turns of helical structure, resulting in a compact and tight turn. It packs closely against elements of both domains and is not a truly independent structural domain. Rather it forms a fulcrum in the L-shape formed by N1 and N2 where it could act as a hinge, allowing the two domains to change their relative conformation in a specific way. Several of the interactions between adjacent regions of chain in the fulcrum are mediated indirectly through H-bonds involving water molecules, suggesting the possibility of flexibility.

15

20

25

30

10

5

One of the most striking features of the crystal structure is the association of two E2NT monomers into a tight dimer. The two E2NT monomers pack around the crystallographic 2-fold axis, as shown in Figure 2a. The dimer interface is formed mostly by amino acids from helices $\alpha 2$ and $\alpha 3$ of the N1 domain and by residues 142-144 from the N2 domain. The total buried surface area between the two E2NT is 2026 A° , comparable to the 2444 A° buried between the two E2CT¹², which are known to form a tight dimer with a K_d of 3-6 x 10⁻⁸ M ^{23,24}.

In the E2NT dimer interface, each subunit contributes a cluster of seven equivalent residues, invariant or conserved in the 86 known sequences of E2¹¹, with many direct and water-mediated hydrogen bonds and rather few non-polar contacts, Fig. 2. Analysis of the dimer forming surfaces shows that all the direct hydrogen bonds between monomers are made through these seven amino acids. For the invariant Arg37, all possible side-chain hydrogen bonds are made and all are well defined, Figure 2. Three of them are across the dimer interface. One hydrogen bond is critical, from NH2 to the main chain carbonyl oxygen of Leu77. A second hydrogen bond from NH2 is to OG1 of Thr81; in five out of 86 sequences this residue is

5

10

15

30

glutamine, and modelling shows a hydrogen bond is possible to the NE of Arg37. The NH1 of Arg71 H-bonds to the OE1 of residue 80, which is Glu or Gln in all but six variants. At the NE of Arg37 there is an ideal H-bond to water that itself makes another strong H-bond across the dimer interface to the main-chain carbonyl oxygen of residue 142. The role of the invariant Ile73 is the filling of the intersubunit nonpolar volume made up of the aliphatic parts of Arg37, Gln76 and of Leu77 - in this case from both monomers. The Leu77 is in a few sequences substituted by valine or isoleucine and in 9 out of 86 known sequences by methionine. Inspection of the structure shows that Leu77 is partially exposed to the solvent and therefore different hydrophobic side chains could be easily accommodated at this site. important non-polar side chain is Ala69. Its side chain methyl packs into the surface of the other monomer at van de Waals distance from the main chain of residue 142. The only observed mutation of Ala69 is to Gly, and is easily accommodated. Gln76 is conserved or has homologous substitutions in about 2/3 of E2 sequences; in about 1/4 of the sequences there is methionine or valine at this position¹¹. Although hydrophobic substitutions of Gln76 would disrupt the hydrogen bonding to Glu80 across the dimer interface, and to Arg37 from the same subunit, the hydrophobic side chain at residue 76 could instead make a compensating hydrophobic interaction with the adjacent intersubunit hydrophobic pocket formed by Ile73 and Leu77.

Modelling of the amino acid variations in the 86 known papillomavirus E2 proteins into the other contacts at the dimer interface shows that they generally can be accommodated (data not shown). The consistency of the hydrogen bonds and van de Waals contacts at the monomer-monomer interface in the various sequences suggests therefore that the E2NT dimer interactions are potentially present in all papillomaviruses.

The first experimental evidence for the E2NT dimerisation in the presence of DNA with multiple E2-binding sites was provided by Knight et al in 1991⁸. Their studies showed that intact E2 led to the formation of DNA loops on templates with widely separated E2 binding sites, while a truncated E2, containing the DNA-binding E2CT but missing the N-terminal 161 residues, did not. Such dimerisation is further

supported by the observed synergistic transcription activation by a complex of two DNA-bound E2 dimers²⁵.

5

10

15

20

25

30

To analyse the functional behaviour of the E2NT dimers further, we measured the analytical sedimentation equilibrium using by dissociation constant ultracentrifugation of recombinant E2NT protein containing the 201 N-terminal amino acids. A value of $K_d = 8.1 \pm 4 \times 10^{-6}$ M was obtained, indicating mediumstrength association. The micromolar range of the E2NT dimer K_d is certainly physiologically significant, and compares well with values for other transcription factors which have relatively low dissociation constants, often with the K_d values between 1 µM and 20 µM ^{26,27}. In vivo, the interaction could be enhanced when the two E2NT modules are placed in close proximity. Indeed, E2CT forms dimers which bind to the multiple DNA-binding sites located within the URR of viral DNA with K_d of protein: DNA interactions usually in the nanomolar range²⁸. Consequently, the local concentration of E2NT, bound to the E2CT via the non-conserved, flexible ~80 amino-acid linker, is effectively increased.

E2NT dimer interactions, as seen in the crystal structure, could form either between modules which are already part of a single E2 dimer, formed as a result of E2CT dimerisation interactions and bound to a single E2 binding site on the DNA (Fig. 3a), or between two preformed E2 dimers located on different E2 binding sites (Fig. 3b). The results of the electron microscopy suggest that the latter dimerisation does occur⁸. Although no direct experimental evidence exists for the former dimerisation, it does also seem possible due to the flexibility of the linker connecting the two modules. We propose that E2 molecules may initially keep their N-terminal modules within their internal dimers, but swap N-terminal modules and cross link to E2 molecules bound to distant DNA binding sites to form active loop structures during transcriptional activation and / or HPV DNA replication (Figure 3d). As discussed below, the effects of mutations on transcriptional transactivation can be explained in terms of the dimer being an essential element in this process.

E2 is a regulator of both transcription and viral DNA replication and thus interacts with other viral and host macromolecules in the infected cell. Indication of the possible importance of individual residues in the function comes firstly from the structure, secondly from the extensive set of sequences of the papillomaviral E2's and thirdly from mutagenesis studies on the individual proteins. In the following we make a primary attempt to map the molecule's function onto its structure.

5

10

15

20

25

30

The pattern of amino acid conservation for the 86 available papilloma sequences¹¹ has been analysed using the GCG program suite²⁹. The sequences exhibit striking variation, characteristic of some virus families. However, 33 of the total 201 residues in the E2NT construct were totally or highly conserved. Fig. 4a illustrates the distribution of these 33 residues in the dimer. These were categorised into two sets: those with an essentially structural role and those exposed on the surface with a potential for intermolecular interactions. Thirteen residues (Fig. 1b) are buried or play a purely structural role within the monomer, they are not expected to be of functional importance and will not be discussed here.

A further 12 of these 33 residues stand out as having a structural role in the interface of the N1 and N2 domains. They form three clusters, the first making direct interactions between the two domains (Ile82, Glu90, Trp92, Lys112, Tyr138, Val145) and two separate sets of interactions, one from N2 (Pro106, Lys111, Phe168, Trp134) and the other from N1 (Trp33, Leu94) to the structure connecting them, referred to here as a fulcrum. The first two clusters are shown in Figure 4 b, c and it can be seen that Lys111 and Lys112 play key roles. Their side chains point in opposite directions to one another and their terminal amino groups are involved in near ideal patterns of hydrogen bonds. The flat surfaces of their extended side chains stack against Trp134 and Trp92, respectively. This clustering of invariant residues at the interface indicates a functional importance for the relative orientation of N1 and N2. The fulcrum could indeed provide a flexible pivot between the two domains, but there is no direct evidence for this as yet. Finally, while the side chain of Glu90 is held tightly in place by two H-bonds and could have a structural role, its OE2 atom is

exposed on the surface and is surrounded by near invariant side-chains, which may thus play a part in interactions with other molecules.

Of the remaining eight conserved residues, mutational substitutions of Glu20, Glu100 and Asp122 ³⁰⁻³³ had moderate effects on the transactivation and replication properties of E2, which depended on a particular viral strain. Glu20 lies on the top surface of N1. Asp122 lies far away on the distal surface of N2. Glu100 is completely exposed and points into the solvent at the junction of the L between the N1 and N2 domains. The functional role of these amino acids has yet to be clarified.

10

15

20

5

Three conserved amino acids (Arg37, Glu39 and Ile73) have been subjected to point mutation and the effects on the two principal functions of E2, i.e. transactivation and HPV DNA replication have been assessed (reviewed in⁴,also ^{31,34,35}). Together with the remaining two conserved amino acids, Gln12 and Ala69, these residues form two functionally important surfaces (see below).

Finally, a number of the mutational results (reviewed in ⁴, also ^{31,34,35}) correspond to residues that can be assigned to structural roles. Substitution of these residues will lead to substantial conformational changes and a probable inability to fold correctly. This is particularly true for some of the deletion mutants involving the core of the molecule. Knowledge of the structure will allow a more rational choice and design of mutants in the future.

The induction of DNA loops by E2NT dimerisation could be important for the construction of the active transcription bubble by targeting DNA-binding transcription factors, bound at distal sites, to the region proximal to the start of transcription (reviewed in ³⁶). In support of this, residues Arg37, Ile73 and Gln76 map onto the surface of E2NT involved in dimer formation, and mutations result in considerable disruption of transactivation, while having little effect on replication,

4.15,31. The structure also shows that Ala69 which points its side chain methyl across the dimer interface, is also critical for transactivation. Mutational substitutions to

amino acids with longer side chains should have a knock out effect on E2NT dimer formation and consequently on transactivation.

The sites of association with cellular transcription factors AMF-1 (residues 74-134) and TFIIB (134-216) were previously mapped onto the E2NT module (Figure 1) using a series of deletion mutants as well as point mutations^{34,35}. These sites were mutually exclusive. In the structure, residues 74-134 include the fulcrum, while residues 134-216 correspond to domain N2. Further biochemical and structural studies can now be planned to characterise these interactions in more detail.

10

15

20

25

30

5

Replication of the viral genome is initiated by binding of another viral protein, E1, to the origin of DNA replication⁴ which is itself flanked by two E2 binding sites, Fig. 3a. While the function of E2CT dimers is to bind specifically to the DNA sites, E2NT interaction with E1 enhances the binding of E1 to this region. Mutational substitutions of Glu39 generally retained transcriptional activation while DNA replication was substantially reduced^{31-33,37}. In the structure, the conserved Glu39 makes every possible hydrogen bond by its side chain carboxyl oxygens, Fig. 4d. One hydrogen bond is to NE2 of Gln12, which is absolutely conserved in all known sequences of E2. The other three hydrogen bonds are to the water molecules which are part of an intimate net of well-defined water molecules surrounding Glu39 and mediating its interactions with adjacent residues. Interestingly, a number of these protein interactions with water molecules are conserved as they are made to the protein backbone, including carbonyl oxygens of Gln12, Met36 and Lys68. While mutation of Gln12 in BPV1 only slightly affected both transactivation and replication, it substantially reduced cooperative origin binding^{30,32}. positioning of Gln12 and Glu39 in the three-dimensional structure further enhances the notion that these two resides are involved in interactions with E1. The conserved set of interactions at Gln12/Glu39 suggests that the main chain carbonyl oxygens of Gln12 and Met36 and the conserved water molecules could be also involved in these interactions. Gln12/Glu39 are surrounded by Leu8, Ile15, Met36, Tyr43, Gln57 and

Lys68, which are unlikely to contribute into E2/E1 interactions, as these residues are not well conserved in E2 sequences from different papillomaviruses.

The Gln12/Glu39 cluster lies on a side of the N1 domain which is opposite to the side involved in transactivation (and dimerisation), Figure 2c. Notably, the spatial separation of the two functionally important surfaces suggests that E2NT module could be able to interact with E1 at the same time as it interacts through the dimerisation interface with another E2NT module.

The structure reported here for the entire E2 transactivation module, has several implications for understanding of E2 function. It is now possible to map known mutations onto the E2 three-dimensional structure, and to use the knowledge of amino acid conservation and the effects of mutations to assign roles in folding, structure and function to residues. To this end, our results indicate that molecular surfaces involved in transactivation and E1-binding are located at opposite sides of the N1 domain of E2NT, suggesting that both surfaces could be accessed simultaneously by other protein factors. In line with these observations, E1 has been shown to modulate transactivation by directly interacting with E2, leading to repression of transactivation in the presence of excess E1³⁸. It is not inconceivable that the docking of E2NT dimer with E1 is sufficient to block further association with other target proteins.

The structure shows that the transactivation surface is involved in the formation of the E2NT dimer, which could cross-link E2 molecules bound by their E2CT modules to well-separated DNA sites. Inevitably, such dimerisation would cause DNA to form a loop structure, targeting distally bound transcription factors to regions close to the promoter. While this process has been suggested to be essential for transactivation³⁶, the definition of interacting surfaces between E2 and other cellular transcription factors requires a great deal of further study.

25

5

Our results suggest that the process of DNA loop formation could involve swapping of E2NT modules across E2 dimers bound at separated DNA sites (Fig. 3a-d). The polar components of the monomer-monomer interactions may favour such exchange. Domain swapping is a well-recognised phenomenon that occurs relatively frequently between two individual monomers containing domains connected by a flexible linker ^{39,40}. E2 is to our knowledge the first example where the swapping event is predicted to occur between dimers.

10

15

20

25

30

The dimerisation surface of E2 represents a good target for designing anti-viral drugs, since it is essential for viral transcription, there is no homologous human protein and the residues forming the interface are highly conserved among different viral strains. Dynamic interactions between transcription factors play a central role in the regulation of transcription and replication. Dimerisation, heterodimerisation and the monomer-to-dimer transition may play important roles during the control of the papillomavirus life cycle. These processes themselves can be regulated through phosphorylation, proteolysis, interaction with small ligands or changes in their intracellular concentration. It has been suggested that E2 can regulate the switch between early gene expression and viral genome replication during HPV infection⁴¹. It is possible that dimerisation of E2NT modules plays an essential role during this process. One scenario would be to activate transcription via induction of DNA loop formation at early stages of the viral life cycle. At later stages, when the concentration of expressed E2 proteins within the cell becomes high and comparable with the K_d for E2 dimer formation, free E2NT modules could compete for dimerisation with those involved in DNA loop formation and titrate them away, switching off transcription and stimulating replication. It is also possible that other protein factors could be involved in this process, including, for example, E1.

The invention therefore includes the use of E2NT crystal structure in the design of anti-viral drugs, since it is essential for viral transcription. In the rationalised computational design of drugs using the crystal structure, computational analyses are therefore necessary to determine whether a molecule or the E2NT-binding portion

thereof is sufficiently similar to the E2NT structure. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., Waltham, Mass.) version 3.3, and as described in the accompanying User's Guide, Volume 3 pages. 134-135.

5

10

15

30

The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps: 1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) perform a fitting operation; and 4) analyze the results.

Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Atom equivalency within QUANTA is defined by user input and, for the purpose of this invention equivalent atoms may be defined as protein backbone atoms (N, C.alpha., C and O) for all conserved residues between the two structures being

compared. We will also consider only rigid fitting operations.

When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses a least squares fitting algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number,

25 given in angstroms, is reported by QUANTA.

For the purpose of one class of embodiments this invention, any set of structure coordinates of a molecule or molecular complex that has a root mean square deviation of conserved residue backbone atoms (N, C.alpha., C, O) of less than 1.5 .ANG. when superimposed—using backbone atoms—on the relevant structure coordinates of E2NT are considered identical. More preferably, the root mean square

deviation is less than 1.0 .ANG.. Most preferably, the root mean square deviation is less than 0.5 .ANG..

The term "root mean square deviation" means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For purposes of this invention, the "root mean square deviation" defines the variation in the backbone of a protein from the backbone of E2NT a dimerising portion thereof, for example as defined by the structure coordinates of E2NT described herein.

10

20

25

5

The term "least squares" refers to a method based on the principle that the best estimate of a value is that in which the sum of the squares of the deviations of observed values is a minimum.

15 Materials and Methods

Purification and crystallisation.

Details of the purification and crystallisation of E2NT have been described previously¹⁶. Briefly, the ORF encoding the N-terminal 201 residues of HPV-16 E2 was cloned into the prokaryotic expression plasmid pET15b downstream of the 20-residue His-tag leader sequence; protein was expressed in *E. coli*BL21(DE3)pLysS and purified using nickel affinity and anion exchange chromatography. Crystals were obtained by hanging drop vapour diffusion with 0.8-1.2M ammonium sulphate, 0.1M triethanolamine pH 8.0-8.3 and 3-5% 2-methyl-2,4-pentanediol. Crystals grew only with very fresh protein preparations and deteriorated in terms of diffraction quality in less than a week. This necessitated freezing and storage of crystals in liquid nitrogen immediately after growth, as discussed above.

Structure determination.

All data were recorded on cryogenically frozen crystals. A native crystal was frozen

for which initial data were recorded to 3.4 Å¹⁶. For the screening of derivatives,

crystal stability was even more limiting. Nine crystals were soaked in various heavy atom reagents immediately after growth. The crystals were screened in-house using a MAR research imaging plate on a Rigaku RU200 rotating anode source, by recording 3° of data for each and analysing the fractional isomorphous difference from the native. Three derivatives showed promising differences from the native, in the range of 15-20% after scaling using SCALEPACK⁴² and were stored in liquid nitrogen. The native crystal was transported to EMBL Hamburg where 1.9 Å data were measured using synchrotron radiation from beam line X11, Table 1. In addition data were recorded at EMBL for the three promising derivatives to about 2.7 Å. Two of these derivatives proved useful in phase determination and the structure was solved by multiple isomorphous replacement with anomalous scattering (MIRAS) at 2.7 Å. The two derivatives were solved independently using the CCP4 suite⁴³ from the difference Patterson synthesis and by direct methods as implemented in SHELX44. Both contained a single heavy atom site. Phases, calculated using MLPHARE, were enhanced by solvent flattening45 using a solvent content of 50 %. The resulting high quality density map was easily interpretable and the initial model was built using QUANTA (Molecular Simulations) for all but four residues of the construct, ignoring the His-tag. The model was completed with REFMAC (resolution 20-1.9 Å) using a bulk solvent correction, to an R-factor of 23.3 % (R_{Free} 29.7 % - for 5 % of the data). There are 221 residues in the recombinant protein: the first twenty comprise the His-Tag. The final model contains all but two of the 201 residues of the real protein: residues 125-126 are disordered and lie in a flexible surface loop. Only one residue, His0, of the His-tag has clear density and an ordered conformation. In addition there are 187 water molecules, which were selected using ARP46during the course of refinement. The main statistics of the refined model are shown in Table 2.

Analytical ultracentrifugation.

10

15

20

25

30

Experiments were carried out in an Optima XL-A ultracentrifuge (Beckman-Coultier, CA, USA) using scanning UV optics. During the experiments, the recombinant E2NT was in 10mM TrisHCl pH 8.0, 5mM DTT, 0.2 mM EDTA, 300 mM NaCl.

Data were obtained at rotor speeds of 12,000 and 16,000 rpm, and the time to equilibrium was 10-12 hours. All runs were carried out at 293K, and all radial scans were at a wavelength of 280 nm. Dissociation constants were obtained by nonlinear regression using the Beckman ultracentrifuge software.

5 P32059WO

Table 1
X-ray data and phasing statistics

Data set	Native	UAc	AuCN		
Space Group	P3 ₁ 21	P3 ₁ 21	P3 ₁ 21		
a ,b (Å)	54.68	54.49	54.58		
c (Å)	155.73	155.66	156.50		
Resolution (Å)	30-1.9	20-2.7	20 - 2.7		
Temperature, K	120	120	120		
Wavelength (Å)	0.86	0.86	0.86		
Unique reflections	21751	7873	7937		
Completeness (%)	98.8 (89.3)	99.8 (96.1)	99.7 (93.8)		
(outer shell)					
R-merge (outer shell)	0.058 (0.339)	0.073 (0.271)	0.061 (0.268)		
Phasing Power: (centric	/ acentric)	1.55 / 2.07	0.95 / 1.40		
FOM: MIRAS		0.59			
FOM: DM 20-2.7 Å (2.1	7 - 1.9 Å)	0.88 (0.61)			
DM: Mean phase chang	e (20-2.7 Å)	32 °			
R-factor (FreeR)	0.223 (0.295)				

Table 2
Refinement and model correlation

	Resolution		1.9 – 10.0 Å
	Number of protein atoms		1622
5	Number of solvent sites		211
	Number of reflections used in refinement		20637
	Number of reflections used for Rfree calculation	1111	
	R-factor ‡		0.232
	Rfree ‡		0.305
10	Average atomic B-factor*, Å ²	protein atoms	38.0
		water molecules	48.5
	R.m.s. deviations from ideal geometry (Å). Targets	in parentheses	
		bond distance	0.013 (0.020)
	,	angle distance	0.026 (0.040)
15		chiral volume	0.142 (0.200)

 $[\]label{eq:crystallographic R-factor} \begin{cal} \updownarrow Crystallographic R-factor, $R_{(free)} = \sum \|F_o\| - |F_c\| / \sum |F_o| \;. \end{cal}$

20	Table	3

	CRYST	54.	680	54	. 680	155.730	90.00	90.00	120.00	P3121	
	SCALE1			1829		01056	0.00000		0.00000		
25	SCALE2			0000		02112	0.00000		0.00000		
	SCALE3			0000		00000	0.00642		0.00000		
	ATOM	1	N	HIS		0	5.469 -26	.512	52.262	1.00	61.92
	MOTA	2	CA	HIS	Α	0	6.434 -25	. 669	51.568	1.00	61.84
	ATOM	3	С	HIS	A	0	6.263 -25	.743	50.051	1.00	53.91
30	ATOM	4	0	HIS	Α	0	6.089 -24	.713	49.607	1.00	69.59
	ATOM	5	CB	HIS	A	0	7.837 -26	.127	51.965	1.00	54.18
	ATOM	6	CG	HIS	A	0	7.848 -26	.468	53.431	0.00	99.00
	MOTA	7	ND1	HIS	Α	0	7.914 - 25	.533	54.412	0.00	99.00
	MOTA	8	CD2	HIS	A	0	7.732 -27	.728	54.027	0.00	99.00
35	MOTA	9	CE1	HIS	A	0	7.828 -26	.215	55.570	0.00	99.00
	ATOM	10	NE2	HIS	A	0	7.723 -27	.531	55.370	0.00	99.00
	ATOM	11	N	MET	A	1	6.663 -26	.896	49.478	1.00	56.24
	ATOM	12	CA	MET	A	1		.076	48.053	1.00	56.42
	ATOM	13	С	MET	A	1	5.209 -26		47.619		56.07
40	MOTA	14	0	MET	A	1		.299	46.911	1.00	56.51
	ATOM	15	CB	MET	Α	1	6.216 -28		47.788	1.00	60.46
	MOTA	16	CG	MET	Α	1		.020	46.477	0.00	99.00
	MOTA	17	SD	MET	A	1	7.244 -30	.775	46.483	0.00	99.00
	ATOM	18	CE	MET	A	1	7.499 -30	. 975	44.711	0.00	99.00
45	MOTA	19	N	GLU	A	2	4.035 -26		48.064,	1.00	54.92
	MOTA	20	CA	GLU	A	2	2.803 -26	.044	47.744	1.00	53.59

					_	_				0 00 00 00
	MOTA	16	CG	MET A	1			-29.020	46.477	0.00 99.00
	ATOM	17	SD	MET A	1	7	.244	-30.775	46.483	0.00 99.00
	MOTA	18	CE	MET A	1	7	. 499	-30.975	44.711	0.00 99.00
	ATOM	19	N	GLU A	2	4	.035	-26.755	48.064	1.00 54.92
5	ATOM	20	CA	GLU A	2	2	.803	-26.044	47.744	1.00 53.59
•	ATOM	21	C	GLU A	2	2	870	-24.570	48.154	1.00 52.81
	ATOM	22	ŏ	GLU A	2			-23.664	47.393	1.00 51.69
		23	СВ	GLU A	2			-26.740	48.482	1.00 56.88
	ATOM				- 2			-28.092	49.054	0.00 99.00
10	ATOM	24	CG	GLU A	2				49.983	0.00 99.00
10	ATOM	25	CD	GLU A	2			-28.610		
	ATOM	26		GLU A	2			-27.819	50.722	0.00 99.00
	ATOM	27	OE2	GLU A	2		.761	-29.811	49.963	0.00 99.00
	ATOM	28	N	THR A	3	3	.260	-24.346	49.424	1.00 52.06
	ATOM	29	CA	THR A	3			-22.980	49.940	1.00 51.61
15	ATOM	30	С	THR A	3	4	.161	~22.059	49.070	1.00 50.30
	ATOM	31	0	THR A	3	3	.731	-21.006	48.617	1.00 49.91
	ATOM	32	СВ	THR A	3	3	.858	-23.023	51.364	1.00 54.31
	ATOM	33		THR A	3			-23.789	52.187	1.00 56.98
	ATOM	34		THR A	3			-21.605	51.935	1.00 55.18
20				LEU A	4			-22.498	48.717	1.00 50.11
20	MOTA	35	N						47.808	1.00 50.48
	ATOM	36	CA	LEU A	4			-21.696		
	ATOM	37	С	LEU A	4			-21.516	46.444	1.00 50.18
	ATOM	38	0	LEU A	4			-20.410	45.877	1.00 50.73
	ATOM	39	CB	LEU A	4			-22.286	47.626	1.00 52.72
25	ATOM	40	CG	LEU A	4			-22.252	48.826	1.00 56.58
	ATOM	41	CD1	LEU A	4	9	.819	-23.035	48.583	1.00 55.37
	ATOM	42	CD2	LEU A	4	8	.829	-20.828	49.288	1.00 56.27
	ATOM	43	N	CYS A	5	5	.028	-22.615	45.885	1.00 49.77
	ATOM	44	CA	CYS A	5		.362	-22.530	44.587	1.00 48.93
30	ATOM	45	C	CYS A	5		.218	-21.534	44.589	1.00 48.27
50			Ö	CYS A	5			-20.698	43.682	1.00 47.03
	ATOM	46						-23.879	44.075	1.00 49.50
	ATOM	47	СВ	CYS A	5					
	ATOM .	48	SG	CYS A	5		.217		43.626	1.00 50.79
	MOTA	49	N	GLN A	6		.356	-21.627	45.610	1.00 46.85
35	MOTA	50	CA	GLN A	6		. 227	-20.718	45.675	1.00 47.22
	ATOM	51	С	GLN A	6	1	. 666	-19.276	45.865	1.00 46.83
	ATOM	52	0	GLN A	6	1	.050	-18.382	45.276	1.00 48.60
	ATOM	53	CB	GLN A	6	0	.272	-21.079	46.817	1.00 50.54
	MOTA	54	CG	GLN A	6	-0	.681	-22.221	46.515	1.00 55.34
40	ATOM	55	CD	GLN A	6			-22.875	47.806	1.00 59.63
	ATOM	56		GLN A	6			-22.222	48.853	1.00 61.52
	ATOM	57		GLN A	6			-24.156	47.775	1.00 57.45
	ATOM		N	ARG A	7			-19.035	46.757	1.00 46.33
		58			7			-17.700	46.938	1.00 46.38
15	ATOM	59	CA	ARG A					45.650	1.00 44.90
45	ATOM	60	C	ARG A	7			-17.145		1.00 45.29
	ATOM	61	0	ARG A	7			-15.986	45.355	
	ATOM	62	CB	ARG A	7			-17.682	48.013	1.00 50.84
	ATOM	63	CG	ARG A	7			-17.869	49.418	1.00 62.38
	ATOM	64	CD	ARG A	7			-16.616	49.765	1.00 71.41
50	ATOM	65	NE	ARG A	7			-15.539	50.171	1.00 78.82
	MOTA	66	CZ	ARG A	7	3	.406	-14.307	50.474	1.00 83.50
	MOTA	67	NH1	ARG A	7	2	.122	-13.965	50.423	1.00 85.24
	ATOM	68		ARG A	7	4	.316	-13.410	50.841	1.00 85.59
	ATOM	69	N	LEU A	8			-17.918	44.984	1.00 45.22
55	ATOM	70	CA	LEU A	8			-17.429	43.728	1.00 45.85
در				LEU A	. В			-17.110	42.672	1.00 46.67
	ATOM	71	C					-16.055	42.025	1.00 46.25
	MOTA	72	0	LEU A	8					1.00 40.23
	ATOM	73	CB	LEU A	8			-18.477	43.194	
<i>(</i> 0	MOTA	74	CG	LEU A	8			-18.054	41.944	1.00 44.17
60	MOTA	75		LEU A	8			-16.924	42.283	1.00 44.96
	MOTA	76	CD2	LEU A	8			-19.246	41.373	1.00 44.18
	MOTA	77	N	ASN A				-18.014	42.508	1.00 47.73
	ATOM	78	CA	ASN A	9	2	065	-17.825	41.610	1.00 48.73

					_		1 1
	MOTA	79	С	ASN A	9	1.351 -16.516	41.925 1.00 48.98
	MOTA	80	0	ASN A	9	1.136 -15.727	40.999 1.00 48.98
	MOTA	81	CB	ASN A	9	1.011 -18.923	41.725 1.00 54.35
_	ATOM	82	CG	ASN A	9	1.220 -20.167	40.912 1.00 58.01
5	ATOM	83		ASN A	9	2.281 -20.427	40.356 1.00 60.06 40.841 1.00 63.02
	ATOM	84		ASN A	9	0.174 -20.991	
	ATOM	85	N	VAL A	10	1.047 -16.267 0.388 -15.003	
	ATOM	86	CA	VAL A	10	1.338 -13.837	43.528 1.00 48.22 43.252 1.00 48.34
10	ATOM	87 88	C	VAL A	10 10	0.931 -12.816	42.688 1.00 47.81
10	ATOM ATOM	89	O CB	VAL A	10	-0.111 -14.918	44.981 1.00 53.07
	ATOM	90		VAL A	10	-0.501 -13.487	45.353 1.00 53.77
	ATOM	91		VAL A	10	-1.328 -15.827	45.176 1.00 54.90
	ATOM	92	N	CYS A	11	2.601 -14.011	43.661 1.00 47.68
15	ATOM	93	CA	CYS A	11	3.570 -12.938	43.426 1.00 47.78
	ATOM	94	C	CYS A	11	3.747 -12.615	41.954 1.00 47.29
	ATOM	95	Ö	CYS A	11	3.632 -11.473	41.499 1.00 47.31
	ATOM	96	CB	CYS A	11	4.893 -13.269	44.144 1.00 48.13
	ATOM	97	SG	CYS A	11	6.077 -11.884	44.082 1.00 44.06
20	MOTA	98	N	GLN A	12	3.903 -13.633	41.120 1.00 47.63
	MOTA	99	CA	GLN A	12	4.150 -13.484	39.702 1.00 48.32
	ATOM	100	С	GLN A	12	2.936 -12.946	38.951 1.00 48.82
	ATOM	101	0	GLN A	12	3.103 -12.258	37.946 1.00 48.64
	ATOM	102	CB	GLN A	12	4.657 -14.783	39.092 1.00 45.97
25	MOTA	103	CG	GLN A	12	6.018 -15.213	39.590 1.00 45.90
	MOTA	104	CD	GLN A	12	6.659 -16.359	38.862 1.00 46.71
	MOTA	105		GLN A	12	6.028 -17.320	38.425 1.00 45.33
	ATOM	106		GLN A	12	7.983 -16.294	38.702 1.00 49.43
20	ATOM	107	N	ASP A	13	1.736 -13.199	39.470 1.00 48.93 38.853 1.00 49.49
30	ATOM	108	CA	ASP A	13	0.516 -12.691	38.853 1.00 49.49 39.085 1.00 49.55
	MOTA	109	C	ASP A	13 13	0.413 -11.198 0.082 -10.444	38.171 1.00 49.73
	ATOM	110	0	ASP A	13	-0.732 -13.392	39.411 1.00 52.95
	ATOM	111	CB CG	ASP A	13	-0.955 -14.680	38.932 0.00 99.00
35	ATOM	112 113		ASP A	13	-0.110 -15.160	38.175 0.00 99.00
25	MOTA MOTA	114		ASP A	13	-2.054 -15.191	39.132 0.00 99.00
	ATOM	115	N N	LYS A	14	0.801 -10.735	40.269 1.00 48.95
	ATOM	116	CA	LYS A	14	0.809 -9.313	40.556 1.00 49.25
	ATOM	117	C	LYS A	14	1.794 -8.575	39.658 1.00 49.07
40	ATOM	118	ō	LYS A	14	1.470 -7.519	39.119 1.00 49.78
-	ATOM	119	CB	LYS A	14	1.109 -9.040	42.030 1.00 52.53
	ATOM	120	CG	LYS A	14	-0.070 -8.421	42.768 1.00 62.87
	ATOM	121	CD	LYS A	14	-0.269 -6.975	42.329 1.00 66.42
	MOTA	122	CE	LYS A	14	-1.227 -6.247	43.257 1.00 70.58
45	MOTA	123	NZ	LYS A	14	-0.835 -4.824	43.452 1.00 72.01
	MOTA	124	N	ILE A	15	2.984 -9.131	39.468 1.00 48.82
	ATOM	125	CA	ILE A	15	3.992 -8.530	38.595 1.00 49.56
	MOTA	126	С	ILE A	15	3.467 -8.390	37.165 1.00 50.17
50	ATOM	127	0	ILE A		3.538 -7.324	36.561 1.00 50.19
50	ATOM	128	CB	ILE A	15	5.288 -9.359	38.669 1.00 43.08 40.054 1.00 45.94
	ATOM	129	CG1		15	5.931 -9.100	
	ATOM	130	CG2	ILE A	15	6.286 -8.951 6.960 -10.120	37.597 1.00 47.46 40.472 1.00 42.94
	ATOM	131			15		36.623 1.00 51.16
55	ATOM	132	N	LEU A	16 16	2.880 -9.437 2.272 -9.406	35.291 1.00 52.54
"	ATOM	133	CA	LEU A	16	1.135 -8.414	35.191 1.00 52.81
	ATOM	134 135	С 0	LEU A	16	1.023 -7.678	34.194 1.00 53.37
	ATOM ATOM	136	СВ	LEU A	16	1.859 -10.810	34.847 1.00 56.20
	MOTA	137	CG	LEU A	16	3.067 -11.696	34.504 1.00 61.93
60	ATOM	138		LEU A	16	2.816 -13.139	34.904 1.00 65.17
	ATOM	139		LEU A	16	3.456 -11.572	33.041 1.00 62.31
	ATOM	140	N	THR A	17	0.274 -8.336	36.204 1.00 52.95
	MOTA	141	CA	THR A	17	-0.789 -7.332	36.217 1.00 53.67

							-	-	
	ATOM	142	С	THR A	17	-0.232	-5.916	36.173	1.00 54.28
	ATOM	143	0	THR A		-0.860	-5.026	35.590	1.00 54.21
	MOTA	144	CB	THR A		-1.677	-7.468	37.468	1.00 55.51
_	ATOM	145	OG1	THR A		-2.321	-8.742	37.469	1.00 54.73
5	MOTA	146	CG2			-2.713	-6.355	37.551	1.00 52.35
	MOTA	147	N	HIS A		0.879	-5.647	36.878	1.00 53.99
	MOTA	148	CA	HIS A		1.495	-4.331	36.754	1.00 54.39
	ATOM	149	С	HIS A		1.960	-4.115	35.313	1.00 55.01
10	ATOM	150	0	HIS A		1.722	-3.036	34.757	1.00 54.91
10	ATOM	151	CB	HIS A		2.663	-4.168	37.735	1.00 53.19
	MOTA	152	CG	HIS A	18	2.198	-3.867	39.130	1.00 52.86
	ATOM	153		HIS A	18	1.486	-2.733	39.432	1.00 52.60
	ATOM	154		HIS A	18	2.362	-4.553	40.296	1.00 52.72
15	ATOM	155		HIS A	18	1.216	-2.720	40.730	1.00 53.99
13	ATOM	156	NE2		18	1.735	-3.817	41.269	1.00 53.27
	ATOM	157	N	TYR A	19	2.580	-5.122	34.721	1.00 56.14
	ATOM	158	CA	TYR A	19	3.044	-5.034	33.337	1.00 58.17
	ATOM ATOM	159	С	TYR A	19	1.890	-4.733	32.380	1.00 58.92
20	ATOM	160 161	O CB	TYR A	19 19	1.957 3.759	-3.827 -6.320	31.552 32.950	1.00 59.36 1.00 59.47
20	ATOM	162	CG	TYR A	19	5.097	-6.621	33.580	1.00 59.47
	ATOM	163		TYR A	19	5.983	-5.607	33.934	1.00 62.03
	ATOM	164	CD2		19	5.513	-7.934	33.787	1.00 63.22
	ATOM	165	CE1		19	7.212	-5.891	34.488	1.00 63.58
25	ATOM	166	CE2		19	6.745	-8.226	34.345	1.00 63.50
	ATOM	167	CZ	TYR A	19	7.597	-7.199	34.703	1.00 63.46
	ATOM	168	ОН	TYR A	19	8.828	-7.470	35.274	1.00 62.56
	ATOM	169	N	GLU A	20	0.779	-5.451	32.499	1.00 59.63
	ATOM	170	CA	GLU A	20	-0.426	-5.196	31.734	1.00 59.76
30	ATOM	171	C	GLU A	20	-0.990	-3.804	31.918	1.00 59.59
	ATOM	172	0	GLU A	20	~1.198	-3.103	30.928	1.00 59.90
	ATOM	173	CB	GLU A	20	-1.499	-6.241	32.056	1.00 66.29
	ATOM	174	CG	GLU A	20	-1.176	-7.583	31.409	1.00 73.88
	ATOM	175	CD	GLU A	20	-2.142	-8.678	31.815	1.00 78.60
35	ATOM	176	OE1	GLU A	20	-1.749	-9.862	31.692	1.00 82.52
	MOTA	177	OE2	GLU A	20	-3.272	-8.365	32.242	1.00 78.94
	MOTA	178	N	ASN A	21	-1.186	-3.340	33.145	1.00 59.04
	ATOM	179	CA	ASN A	21	-1.784	-2.053	33.404	1.00 57.97
	ATOM	180	С	ASN A	21	-1.002	-0.853	32.918	1.00 57.50
4 0	MOTA	181	0	ASN A	21	-1.637	0.118	32.496	1.00 57.19
	ATOM	182	CB	ASN A	21	-2.149	-1.876	34.875	1.00 61.71
	MOTA	183	CG	ASN A	21	-3.089	-2.964	35.362	1.00 63.07
	ATOM	184		ASN A	21	-3.691	-3.685	34.563	1.00 60.88
45	ATOM	185		ASN A	21	-3.161	-3.066	36.685	1.00 62.59
45	ATOM	186	N	ASP A	22	0.327	-0.826	33.022	1.00 56.38
	ATOM	187	CA	ASP A	22	1.080	0.299	32.480	1.00 54.54
	ATOM ATOM	188	C	ASP A	22	0.710	1.630	33.112	1.00 53.00
		189 190	0	ASP A	22 22	0.632	2.652	32.424	1.00 52.65
50	ATOM ATOM		CB	ASP A		0.818	0.369	30.967	
50	ATOM	191 192	CG OD1	ASP A	22 22	2.107	0.655	30.214	1.00 65.99
	ATOM	193		ASP A	22	2.946	1.402	30.765	1.00 64.95
	ATOM	194	N	SER A	23	2.235 0.616	0.116	29.099	1.00 69.58
	ATOM	195	CA	SER A			1.683	34.440	1.00 50.98
55	ATOM	196	C	SER A	23 23	0.213	2.879	35.148	1.00 49.25
55	ATOM	197	0		23	1.294	3.960	35.095	1.00 48.02
	ATOM	198	CB	SER A	23	2.450 -0.101	3.746 2.633	34.740 36.640	1.00 47.57 1.00 46.04
	ATOM	199	OG	SER A	23	0.549	1.424	36.984	1.00 46.04
	ATOM	200	N	THR A	24	0.847	5.152	35.441	1.00 36.16
60	ATOM	201	CA	THR A	24	1.724	6.312	35.512	1.00 47.42
	ATOM	202	C	THR A	24	1.731	6.860	36.920	1.00 47.34
	ATOM	203	ŏ	THR A	24	2.328	7.898	37.173	1.00 47.34
	ATOM	204	CB	THR A	24	1.369	7.421	34.505	1.00 50.50
						2.000		5555	2.00 00.00

	ATOM	205	OG1	THR A	24	`	0.042	7.871	34.734	1.00 51.02
	ATOM	206	CG2	THR A	24		1.558	6.901	33.094	1.00 48.60
	ATOM	207	N	ASP A	25		1.124	6.096	37.828	1.00 46.98
_	ATOM	208	CA	ASP A	25		1.058	6.453	39.234	1.00 46.50
5	ATOM	209	С	ASP A	25		2.193	5.788	40.013	1.00 45.63
	ATOM .	210	0	ASP A	25		2.376	4.578	40.042	1.00 44.95
	ATOM	211	CB	ASP A	25	-	0.286	6.024	39.847	1.00 53.36
	ATOM	212	CG	ASP A	25	-	1.442	6.789	39.202	1.00 62.10
	ATOM	213		ASP A	25		1.605	7.997	39.498	1.00 64.72
10	ATOM	214		ASP A	25	-	2.185	6.192	38.392	1.00 62.72
	MOTA	215	N	LEU A	26		3.000	6.633	40.614	1.00 45.40
	ATOM	216	CA	LEU A	26		4.167	6.207	41.381	1.00 45.37
	ATOM	217	C	LEU A	26		3.834	5.157	42.418	1.00 45.85
15	ATOM	218	0	LEU A	26		4.563	4.170	42.565	1.00 46.38
15	ATOM	219	CB	LEU A	26		4.763	7.483	41.982	1.00 44.87
	ATOM	220	CG	LEU A	26		6.056	7.341	42.783	1.00 44.69
	MOTA	221		LEU A	26		7.128	6.688	41.931	1.00 40.20
	MOTA	222		LEU A	26		6.529	8.703	43.267	1.00 46.93
20	ATOM ATOM	223 224	N CA	ARG A	27 27		2.741 2.266	5.281 4.241	43.178	1.00 45.28 1.00 45.19
20	ATOM	225	CA	ARG A	27		2.251	2.841	44.065 43.483	1.00 45.19
	ATOM	225	0	ARG A	27		2.231	1.886	44.187	1.00 44.47
	ATOM	227	CB	ARG A	27		0.852	4.494	44.607	1.00 44.36
	ATOM	228	CG	ARG A	27		0.713	5.531	45.690	1.00 51.04
25	ATOM	229	CD	ARG A	27		0.715	6.081	45.714	1.00 66.89
	ATOM	230	NE	ARG A	27		0.927	6.984	46.839	1.00 75.54
	ATOM	231	CZ	ARG A	27		2.083	7.555	47.170	1.00 79.36
	ATOM	232		ARG A	27		3.184	7.331	46.456	1.00 80.70
	ATOM	233		ARG A	27		2.152	8.359	48.228	1.00 79.78
30	ATOM	234	N	ASP A	28		1.771	2.632	42.255	1.00 43.06
	ATOM	235	CA	ASP A	28		1.785	1.318	41.648	1.00 41.77
	ATOM	236	С	ASP A	28		3.195	0.797	41.385	1.00 41.18
	ATOM	237	0	ASP A	28		3.408	-0.409	41.402	1.00 40.08
	ATOM	238	CB	ASP A	28		1.014	1.325	40.303	1.00 44.91
35	MOTA	239	CG	ASP A	28	-	0.450	1.655	40.560	1.00 53.31
	ATOM	240	OD1	ASP A	28	-	1.014	2.560	39.920	1.00 53.29
	ATOM	241	OD2	ASP A	28	-	1.022	0.983	41.446	1.00 52.80
	ATOM	242	N	HIS A	29		4.132	1.700	41.062	1.00 40.87
4.0	ATOM	243	CA	HIS A	29		5.510	1.269	40.787	1.00 40.10
40	ATOM	244	С	HIS A	29		6.208	0.795	42.073	1.00 39.08
	MOTA	245	0	HIS A	29		6.987	-0.143	42.045	1.00 38.12
	MOTA	246	CB	HIS A	29		6.246	2.473	40.166	1.00 40.60
	ATOM	247	CG	HIS A	29		5.590	2.806	38.837	1.00 42.13
4.5	ATOM	248		HIS A	29		5.069	1.810	38.042	1.00 42.28
45	ATOM	249		HIS A	29		5.373	3.980	38.192	1.00 44.10
	MOTA	250		HIS A	29		4.552	2.348	36.943	1.00 43.73
	ATOM	251		HIS A	29		4.738	3.656	37.014	1.00 42.95
	ATOM	252	N	ILE A	30		5.896	1.454	43.152	1.00 39.44
50	ATOM	253	CA	ILE A	30		5.339		44.501	
30	ATOM	254	C	ILE A	30		5.899	-0.426	44.746	1.00 40.09
	ATOM	255	0	ILE A	30		6.658	-1.303	45.181	1.00 41.16
	ATOM	256	CB	ILE A	30 30		5.843	1.991 3.321	45.550	1.00 40.65
	ATOM	257					5.563		45.334	1.00 40.86
55	ATOM	258 259		ILE A ILE A	30 30		5.125 5.060	1.537	47.004	1.00 41.39 1.00 42.24
"	ATOM ATOM	260		ASP A	31		1.631	4.498 -0.764	46.138 44.485	1.00 42.24
	ATOM	261	N CA	ASP A	31		1.031	-2.089	44.485	1.00 41.09
	ATOM .	262	CA	ASP A	31		1.718	-3.130	44.756	1.00 40.59
	ATOM	263		ASP A	31		1.965	-4.277	43.836	1.00 40.39
60	ATOM	264		ASP A	31		2.566	-2.080	44.459	1.00 40.70
-	ATOM	265		ASP A	31		1.886	-3.379	44.801	1.00 44.66
	ATOM	266		ASP A	31		1.799	-4.311	43.991	1.00 46.03
	ATOM	267		ASP A	31		.495	-3.517	45.987	1.00 53.28
						_		2.017		

	ATOM	268	N	TYR .	Α	32	4.945	-2.735	42.589	1.00 39.00
	ATOM	269	CA	TYR .	A	32	5.636	-3.647	41.677	1.00 38.51
	ATOM	270	C	TYR		32	7.017	-4.030	42.231	1.00 36.55
	ATOM	271	ō	TYR .		32	7.359	-5.204	42.252	1.00 36.44
5	ATOM	272	CB	TYR		32	5.765	-2.921	40.324	1.00 39.37
•	ATOM	273	CG	TYR		32	6.750	-3.532	39.369	1.00 42.61
	ATOM	274	CD1	TYR		32	6.374	-4.668	38.646	1.00 45.04
	ATOM	275	CD2	TYR .		32	8.005	-2.989	39.141	1.00 43.12
						32	7.245	-5.272	37.758	1.00 46.06
10	MOTA	276	CE1	TYR .					38.235	1.00 44.10
10	MOTA	277	CE2	TYR .		32	8.871	-3.576	37.545	1.00 45.75
	ATOM	278	CZ	TYR .		32	8.489	-4.707		1.00 43.73
	ATOM	279	OH	TYR .		32	9.322	-5.303	36.633	
	ATOM	280	N	TRP .		33	7.850	-3.064	42.552	1.00 36.14
	MOTA	281	CA		A	33	9.183	-3.384	43.061	1.00 36.59
15	ATOM	282	С	TRP .		33	9.144	-4.146	44.391	1.00 36.80
	ATOM	283	0	TRP .		33	10.050	-4.951	44.634	1.00 37.42
	ATOM	284	CB	TRP .		33	10.054	-2.131	43.159	1.00 37.44
	MOTA	285	CG	TRP .	A	33	10.588	-1.813	41.780	1.00 34.77
	MOTA	286	CD1	TRP .	A	33	10.244	-0.745	40.979	1.00 35.47
20	ATOM	287	CD2	TRP .	Α	33	11.522	-2.605	41.047	1.00 32.86
	MOTA	288	NE1	TRP .	Α	33	10.974	-0.822	39.805	1.00 32.84
	ATOM	289	CE2	TRP .	A	33	11.735	-1.947	39.799	1.00 35.43
	ATOM	290	CE3	TRP .	A	33	12.209	-3.792	41.301	1.00 32.38
	ATOM	291	CZ2	TRP .		33	12.595	-2.444	38.832	1.00 35.55
25	ATOM	292	CZ3	TRP .		33	13.061	-4.282	40.337	1.00 37.27
	ATOM	293		TRP		33	13.245	-3.626	39.108	1.00 38.28
	ATOM	294	N	LYS .		34	8.150	-3.912	45.246	1.00 37.05
	ATOM	295	CA	LYS		34	7.990	-4.765	46.437	1.00 37.56
	ATOM	296	C	LYS		34	7.687	-6.205	46.060	1.00 37.90
30	ATOM	297	õ	LYS		34	8.220	-7.124	46.684	1.00 37.29
50		298	СВ	LYS		34	6.860	-4.261	47.345	1.00 36.29
	ATOM	299	CG	LYS .		34	7.111	-2.871	47.891	1.00 41.05
	ATOM						6.095	-2.498	48.945	1.00 47.20
	MOTA	300	CD	LYS .		34			48.964	1.00 47.20
25	ATOM	301	CE	LYS .		34	5.764	-1.032		1.00 43.86
35	MOTA	302	NZ	LYS .		34	5.046	-0.625	50.219	
	ATOM	303	N	HIS 2		35	6.853	-6.411	45.025	1.00 37.50
	ATOM	304	CA	HIS A		35	6.670	-7.779	44.525	1.00 36.43
	ATOM	305	С	HIS I		35	7.913	-8.328	43.875	1.00 35.96
	ATOM	306	0	HIS 2		35	8.237	-9.523	43.986	1.00 34.61
40	ATOM	307	CB	HIS A	A	35	5.446	-7.901	43.587	1.00 40.23
	MOTA	308	CG	HIS A	A	35	4.200	-7.883	44.428	1.00 44.09
	ATOM	309	ND1	HIS 7	A	35	3.567	-6.711	44.788	1.00 48.39
	ATOM	310	CD2	HIS A	A	35	3.539	-8.879	45.058	1.00 48.71
	ATOM	311	CE1	HIS A	A	35	2.538	-6.985	45.574	1.00 48.93
45	ATOM	312	NE2	HIS A	A	35	2.524	-8.283	45.774	1.00 47.98
	ATOM	313	N	MET I	A	36	8.665	-7.457	43.180	1.00 35.13
	MOTA	314	CA	MET I	A	36	9.927	-7.985	42.606	1.00 35.12
	ATOM	315	С	MET I	A	36	10.836	-8.474	43.753	1.00 35.05
	ATOM	316	Ō	MET I		36	11.472	-9.504	43.634	1.00 34.78
50	ATOM	317	СВ	MET I		36	10.584	-6.890	41.772	1.00 36.78
	ATOM	318	CG	MET I		36	9.832	-6.601	40.454	1.00 38.38
	ATOM	319	SD	MET 2		36	10.026	-7.870	39.206	1.00 39.79
	ATOM	320	CE	MET 2		36	11.681	-7.505	38.605	1.00 43.43
									44.853	1.00 35.39
55	ATOM	321	N	ARG A		37	10.903	-7.746 -8.145		1.00 35.09
رر	ATOM	322	CA	ARG A		37	11.729	-8.145	46.004	
	ATOM	323	C	ARG A		37	11.240	-9.438	46.667	1.00 34.61
	ATOM	324	0_	ARG A		37		-10.319	46.996	1.00 33.53
	ATOM	325	СВ	ARG A		37	11.555	-7.001	47.018	1.00 34.72
	ATOM	326	CG	ARG A		37	12.370	-7.186	48.305	1.00 34.13
60	MOTA	327	CD	ARG A	A	37	12.132	-5.981	49.197	1.00 34.07
	ATOM	328	NE	ARG A	Α	37	12.665	-6.189	50.551	1.00 35.48
	MOTA	329	CZ	ARG A	A	37	12.420	-5.313	51.520	1.00 33.64
	ATOM	330	NH1	ARG A		37	11.676	-4.228	51.375	1.00 38.49

	MOTA	331	NH2	ARG A	37	12.948 -5.572	52.719 1.00 32.86
	ATOM	332	N	LEU A	38	9.920 -9.544	46.841 1.00 33.92
	MOTA	333	CA	LEU A	38	9.330 -10.768	47.372 1.00 34.82
_	ATOM	334	С	LEU A	38	9.592 -11.985	46.532 1.00 36.08
5	MOTA	335	0	LEU A	38	9.879 -13.050	47.066 1.00 35.88
	ATOM	336	CB	LEU A	38	7.806 -10.549	47.542 1.00 37.00
	ATOM	337	CG	LEU A	38	7.048 -11.843	47.862 1.00 39.41
	ATOM	338		LEU A	38	7.338 -12.303	49.271 1.00 36.17
	ATOM	339		LEU A	38	5.544 -11.698	47.633 1.00 42.91
10	MOTA	340	N	GLU A	39	9.532 -11.873	45.176 1.00 36.01
	ATOM	341	CA	GLU A	39	9.903 -12.982	44.328 1.00 35.41
	ATOM	342	С	GLU A	39	11.310 -13.492	44.650 1.00 35.95
	ATOM	343	0	GLU A	39	11.524 -14.706	44.610 1.00 34.71
1 =	ATOM	344	CB	GLU A	39	9.826 -12.621	42.814 1.00 33.83
15	MOTA	345	CG	GLU A	39	9.999 -13.858	41.944 1.00 35.55
	ATOM	346	CD	GLU A	39	10.153 -13.499	40.467 1.00 44.56 40.106 1.00 42.84
	ATOM	347	OE1		39	11.229 -12.997	40.106 1.00 42.84 39.690 1.00 42.80
	ATOM	348		GLU A	39	9.219 -13.700	44.916 1.00 35.37
20	MOTA	349	N	CYS A	40 40	12.280 -12.600 13.616 -13.054	45.262 1.00 35.02
20	ATOM	350	CA	CYS A	40	13.603 -13.852	46.574 1.00 35.78
	ATOM	351	C		40	14.329 -14.842	46.621 1.00 35.14
	ATOM	352	O	CYS A	40	14.587 -11.879	45.434 1.00 34.19
	ATOM ATOM	353 354	CB SG	CYS A	40	14.743 -10.845	43.945 1.00 35.07
25	ATOM	355	N	ALA A	41	12.796 -13.419	47.540 1.00 36.59
23	MOTA	356	CA	ALA A	41	12.772 -14.160	48.820 1.00 38.13
	ATOM	357	C	ALA A	41	12.191 -15.553	48.590 1.00 37.52
	ATOM	358	Ö	ALA A	41	12.659 -16.527	49.200 1.00 38.32
	ATOM	359	СВ	ALA A	41	11.955 -13.380	49.827 1.00 36.08
30	ATOM	360	N	ILE A	42	11.221 -15.674	47.663 1.00 37.54
	ATOM	361	CA	ILE A	42	10.629 -16.995	47.397 1.00 36.18
	MOTA	362	C	ILE A	42	11.626 -17.922	46.753 . 1.00 36.44
	ATOM	363	ō	ILE A	42	11.856 -19.069	47.133 1.00 35.31
	ATOM	364	СВ	ILE A	42	9.325 -16.907	46.581 1.00 36.30
35	ATOM	365		ILE A	42	8.225 -16.165	47.345 1.00 38.51
	ATOM	366	CG2	ILE A	42	8.865 -18.282	46.108 1.00 38.23
	ATOM	367	CD1	ILE A	42	7.114 -15.700	46.390 1.00 41.57
	ATOM	368	N	TYR A	43	12.321 -17.436	45.707 1.00 35.53
	ATOM	369	CA	TYR A	43	13.341 -18.254	45.060 1.00 36.20
40	ATOM	370	С	TYR A	43	14.479 -18.536	46.047 1.00 36.21
	ATOM	371	0	TYR A	43	15.091 -19.597	45.993 1.00 36.69
	ATOM	372	CB	TYR A	43	13.884 -17.474	43.838 1.00 36.61
	ATOM	373	CG	TYR A	43	13.065 -17.637	42.572 1.00 38.55
	ATOM	374		TYR A	43	12.717 -16.512	41.820 1.00 39.59
45	ATOM	375	CD2	TYR A	43	12.644 -18.871	42.116 1.00 39.53
	ATOM	376		TYR A	43	11.998 -16.626	40.646 1.00 41.22
	ATOM	377	CE2	TYR A	43	11.943 -19.006	40.918 1.00 40.40
	ATOM	378	CZ	TYR A	43	11.604 -17.884	40.210 1.00 40.78
50	ATOM	379	ОН	TYR A	43	10.847 -17.954	
50	ATOM	380	N	TYR A	4 4	14.794 -17.563	46.906 1.00 35.43 47.811 1.00 37.45
	ATOM	381	CA	TYR A	44	15.933 -17.815	
	ATOM	382	C	TYR A	44	15.547 -19.008 16.329 -19.945	48.716 1.00 37.65 48.876 1.00 38.00
	ATOM	383	0	TYR A	44		48.635 1.00 38.20
55	ATOM	384	CB	TYR A	44	16.205 -16.555	49.503 1.00 40.09
رر	ATOM	385	CG	TYR A	44	17.445 -16.670 17.398 -17.286	50.756 1.00 41.30
	ATOM	386	CD1	TYR A	44	18.663 -16.206	49.041 1.00 40.77
	ATOM	387	CD2	TYR A	4 4 4 4	18.569 -17.412	51.492 1.00 42.23
	ATOM	388		TYR A	44	19.833 -16.312	49.776 1.00 42.80
60	ATOM	389 390	CZ	TYR A TYR A	44	19.746 -16.907	51.023 1.00 43.39
JU	ATOM ATOM	391	OH	TYR A	44	20.863 -17.049	51.798 1.00 45.51
		391		LYS A	45	14.334 -18.982	49.224 1.00 38.11
	ATOM ATOM	392 393	N CA	LYS A	45 45	13.891 -20.078	50.118 1.00 40.98
	ATOM	222	CM.	א כזה	3.5	13.031 -20.070	30.110 1.00 40.90

	MOTA	394	С	LYS 2		13.832 -21.	403 49.387	1.00 41.49
	MOTA	395	0	LYS A	A 45	14.315 -22.	472 49.789	1.00 42.02
	MOTA	396	CB	LYS 2	A 45	12.537 - 19.		1.00 40.25
_	ATOM	397	CG	LYS I		11.968 -20.		1.00 48.19
5	ATOM	398	CD	LYS 2	A 45	12.824 -21.	269 52.813	1.00 51.93
	ATOM	399	CE	LYS I	A 45	12.671 -20.	308 53.983	1.00 59.68
	MOTA	400	NZ	LYS A	45	13.979 -20.	145 54.698	1.00 61.34
	ATOM	401	N	ALA A	4 46	13.307 -21.	357 48.139	1.00 42.39
	ATOM	402	CA	ALA A	46	13.230 -22.	586 47.356	1.00 41.88
10	MOTA	403	С	ALA A	46	14.613 -23.		1.00 41.96
	MOTA	404	0	ALA A	46	14.828 -24.	368 47.347	1.00 42.06
	MOTA	405	CB	ALA A	46	12.561 -22.	294 46.004	1.00 45.41
	ATOM	406	N	ARG A	47	15.605 -22.	341 46.839	1.00 42.18
	MOTA	407	CA	ARG A	47	16.967 -22.	806 46.649	1.00 42.89
15	MOTA	408	С	ARG A	47	17.567 -23.		1.00 44.97
	MOTA	409	0	ARG A	4. 47	18.270 -24.	377 47.899	1.00 44.85
	ATOM	410	CB	ARG A	47	17.873 -21.	700 46.134	1.00 39.95
	ATOM	411	CG	ARG A	47	19.278 -22.	115 45.751	1.00 44.08
	ATOM	412	CD	ARG A	47	19.323 -23.	087 44.564	1.00 51.87
20	ATOM	413	NE	ARG A	47	20.701 -23.	450 44.306	1.00 57.92
	MOTA	414	CZ	ARG A	47	21.372 -24.	042 43.351	1.00 62.27
	ATOM	415	NH1	ARG A	47	20.819 -24.	506 42.243	1.00 60.85
	ATOM	416	NH2	ARG A	47	22.696 -24.	175 43.516	1.00 66.76
	ATOM	417	N.	GLU A	48	17.287 -22.	673 49.051	1.00 45.14
25	ATOM	418	CA	GLU A	48	17.783 -23.	090 50.364	1.00 48.18
	MOTA	419	С	GLU A	48	17.266 -24.	500 50.681 :	1.00 48.66
	ATOM	420	0	GLU A	48	18.009 -25.	362 51.122 :	1.00 49.01
	ATOM	421	CB	GLU A	48	17.202 -22.		1.00 50.97
	ATOM	422	CG	GLU A	48	17.987 -21.	039 51.955 3	1.00 59.37
30	ATOM	423	CD	GLU F	48	17.911 -20.	689 53.432	1.00 58.91
	ATOM	424	OE1	GLU P	48	16.891 -20.	144 53.912	1.00 64.65
	MOTA	425	OE2	GLU A		18.904 -20.	949 54.156 :	1.00 64.43
	ATOM	426	N	MET A	49	16.000 -24.	730 50.361	1.00 49.75
	MOTA	427	CA	MET A	49	15.358 -26.		1.00 50.42
35	ATOM	428	С	MET A	49	15.738 -27.	106 49.543 I	1.00 50.69
	ATOM	429	0	MET A		15.197 -28.		1.00 51.52
	ATOM	430	CB	MET A		13.840 -25.		1.00 53.09
	MOTA	431	CG	MET A		13.351 -25.		1.00 55.67
40	ATOM	432	SD	MET A		11.617 -24.		1.00 64.13
40	ATOM	433	CE	MET A		10.922 -24.		1.00 64.34
	ATOM	434	N	GLY A		16.616 -26.		1.00 50.09
	ATOM	435	CA	GLY A		17.159 -27.		1.00 48.51
	MOTA	436	С	GLY A		16.332 -27.5		1.00 48.34
A.E.	ATOM	437	0	GLY A		16.603 -28.9		1.00 47.16
45	ATOM	438	N	PHE A		15.383 -27.0		1.00 48.32
	ATOM	439	CA	PHE A		14.628 -27.2		1.00 48.99
	ATOM	440	C	PHE A		15.442 -26.0		1.00 49.10
	ATOM	441	0	PHE A		16.187 -25.0		1.00 48.66
50	ATOM	442	CB	PHE A		13.266 -26.5		1.00 54.66
30	ATOM	443	CG	PHE A		12.370 -27.0		1.00 62.30
	ATOM	444		PHE A		12.237 -28.3		1.00 66.64
	ATOM	445		PHE A		11.648 -26.1		00 64.64
	ATOM	446		PHE A		11.418 -28.8		1.00 67.20
55	ATOM	447		PHE A		10.813 -26.5		1.00 65.80
55	MOTA	448	CZ	PHE A		10.708 -27.9		00 65.88
	ATOM	449	N	LYS A		15.455 -27.3		00 49.49
	ATOM	450	CA	LYS A		16.204 -26.8		00 48.93
	ATOM	451	C	LYS A		15.254 -26.1		00 47.94
60	MOTA	452	0	LYS A	52	15.644 -25.4		.00 46.65
60	ATOM	453	CB	LYS A	52	16.905 -28.0		00 54.00
	ATOM	454	CG	LYS A	52	17.964 -28.6		00 61.04
	ATOM	455	CD	LYS A	52	18.931 -29.5		.00 64.27
	ATOM	456	CE	LYS A	52	19.717 -30.5	37 41.711 0	0.00 99.00

-											
	n mond	457	117	7 V C 7	52		20 20/	31 674	41 001	0 00	
	ATOM	457	NZ	LYS A				0 -31.674	41.001		99.00
	MOTA	458	N	HIS A				3 -26.480	40.589	1.00	46.17
	ATOM	459	CA	HIS A	53		12.924	4 -25.816	39.834	1.00	45.58
	ATOM	460	С	HIS A	53		11.697	7 -25.685	40.724	1.00	44.64
5	ATOM ·	461	0	HIS A	53		11.566	5 -26.465	41.649	1.00	44.95
	ATOM	462	CB	HIS A				3 -26.542	38.531		44.28
	ATOM	463	CG	HIS A				5 -27.700	38.758		46.45
	ATOM	464	ND:	L HIS A	53		10.277	7 -27.525	38.978	1.00	45.21
	MOTA	465	CD2	2 HIS A	53		11.868	3 -29.026	38.829	1.00	45.27
10	ATOM	466		L HIS A				-28.698	39.163		45.18
				-							
	MOTA	467		HIS A				-29.629	39.076		49.44
	ATOM	468	N	ILE A	54		10.895	-24.693	40.468	1.00	43.90
	ATOM	469	CA	ILE A	54		9.598	3 -24.513	41.100	1.00	44.62
	ATOM	470	С	ILE A	54	•	8.589	-24.354	39.976	1.00	43.53
- 15	MOTA	471	Ó	ILE A	54			-23.454	39.123		44.50
10	ATOM						0.703	23.434			
		472	CB	ILE A	54			-23.258	41.996		51.01
	MOTA	473	CG1	ILE A	54			2 -22.740	42.337	1.00	51.18
	MOTA	474	CG2	ILE A	54	1	10.420	-22.138	41.313	1.00	54.51
	ATOM	475	CD1	ILE A	54		8.293	-22.022	43.690	1 00	55.08
20	ATOM	476	N	ASN A	55			-25.327	39.853		42.57
20											
	ATOM	477	CA	ASN A	55			-25.332	38.748	1.00	41.98
	ATOM	478	С	ASN A	55		7.391	-25.383	37.389	1.00	41.70
	ATOM	479	0	ASN A	55		6.958	-24.848	36.368	1.00	41.10
	ATOM	480	CB	ASN A	55			-24.266	38.828		41.18
25	•			ASN A							
20	ATOM	481	CG		55			-24.596	39.915		45.37
	MOTA	482		ASN A	55		-	-25.766	40.285	1.00	42.95
	ATOM	483	ND2	ASN A	55		3.908	-23.589	40.393	1.00	49.59
	ATOM	484	N	HIS A	56			-26.115	37.343		42.09
	ATOM	485	CA	HIS A	56			-26.336	36.155		41.80
30											
50	ATOM	486	C	HIS A	56			-25.085	35.651		42.37
	MOTA	487	0	HIS A	56	1	.0.579	-25.115	34.573	1.00	41.39
	ATOM	488	CB	HIS A	56		8.509	-27.081	35.059	1.00	38.13
	ATOM	489	CG	HIS A	56			-28.417	35.639		39.93
	ATOM	490		HIS A	56			-29.476			
35									35.683		40.64
33	MOTA	491		HIS A	56		7.000	-28.811	36.253	1.00	40.69
	MOTA	492	CEl	HIS A	56		8.401	-30.496	36.292	1.00	46.16
	ATOM	493	NE2	HIS A	56		7.192	-30.108	36.648	1.00	44.07
	ATOM	494	N	GLN A	57	1		-24.074	36.492		42.01
	ATOM				-						
40		495	CA	GLN A	57			-22.845	36.209		43.31
40	ATOM	496	С	GLN A	57	1	2.178	-22.922	37.011	1.00	42.73
	MOTA	497	0	GLN A	57	1	2.135	-23.367	38.159	1.00	42.65
	ATOM	498	CB	GLN A	57	1	0.017	-21.730	36.771	1.00	44.03
	ATOM	499	CG	GLN A	57			-20.286	36.476		54.62
	ATOM	500									
15			CD	GLN A	57			-19.530	36.723		54.38
45	ATOM	501	OE1	-	57			-18.332	36.990	1.00	54.35
	ATOM	502	NE2	GLN A	57		7.774	-20.248	36.641	1.00	57.38
	ATOM	503	N	VAL A	58	1	3.308	-22.526	36.435	1.00	41.67
	ATOM	504	CA	VAL A	58			-22.695	37.122		41.06
50	MOTA	505	C	VAL A	58			-21.870	38.395		39.90
50	ATOM	506	0	VAL A	58	1	4.141	-20.751	38.425	1.00	40.26
	ATOM	507	CB	VAL A	58	1	5.766	-22.343	36.168	1.00	41.94
	ATOM	508	CG1	VAL A	58			-20.860	35.859		41.59
	ATOM	509		VAL A	58			-22.872	36.676		43.75
EE	ATOM	510	N	VAL A	59			-22.451	39.461		40.08
55	MOTA	511	CA	VAL A	59	1	5.414	-21.673	40.713	1.00	40.24
	ATOM	512	С	VAL A	59	1	6.878	-21.205	40.635	1.00	39.98
	ATOM	513	ō	VAL A	59			-22.042	40.559		41.27
	ATOM	514	CB	VAL A	59			-22.591	41.945		40.48
	ATOM	515	CG1		59			-21.777	43.243	1.00	44.12
60	MOTA	516	CG2	VAL A	59	1	3.830	-23.161	42.037	1.00	39.62
	ATOM	517	N	PRO A	60			-19.911	40.686		40.13
	ATOM	518	CA	PRO A							
					60			-19.380	40.576		40.49
	ATOM	519	С	PRO A	60	1	9.312	-19.737	41.806	1.00	40.57

	ATOM	520	0	PRO	Α	60	18.766 -20.039	42.863	1.00 39.38
	ATOM	521	CB	PRO	Α	60	18.272 -17.874	40.580	1.00 40.12
	MOTA	522	CG	PRO	Α	60	16.837 -17.576	40.657	1.00 40.26
	MOTA	523	CD	PRO	A	60	16.069 -18.866	40.722	1.00 39.33
5	ATOM	524	N	THR	A	61	20.627 -19.662	41.632	1.00 39.59
	ATOM	525	CA	THR		61	21.502 -19.731	42.799	1.00 39.51
	ATOM	526	С	THR		61	21.145 -18.651	43.803	1.00 38.37
	ATOM	527	Ō	THR		61	20.503 -17.621	43.545	1.00 37.40
	ATOM	528	СВ	THR		61	23.000 -19.670	42.486	1.00 42.80
10	ATOM	529	OG1			61	23.259 -18.498	41.695	1.00 42.80
	ATOM	530	CG2			61	23.435 -20.914	41.722	1.00 42.91
	ATOM	531	N	LEU		62	21.544 -18.931	45.058	1.00 37.77
	ATOM	532	CA	LEU		62	21.280 -17.966	46.132	1.00 36.91
	ATOM	533	Č	LEU		62	21.841 -16.582	45.847	1.00 36.03
15	ATOM	534	0	LEU		62	21.248 -15.566	46.209	1.00 36.36
15	MOTA	535	CB	LEU		62	21.904 -18.492	47.447	1.00 35.93
	ATOM	536	CG	LEU		62	21.278 -19.807	47.950	1.00 36.47
		537		LEU		62	22.090 -20.339	49.139	1.00 30.47
	MOTA			LEU		62	19.850 -19.557	49.139	1.00 33.58
20	ATOM	538				63		45.336	1.00 36.59
20	ATOM	539	N	ALA			23.053 -16.511	45.091	
	ATOM	540	CA	ALA		63	23.729 -15.236		
	ATOM	541	C	ALA		63	22.946 -14.476	44.014	1.00 36.28
	ATOM	542	0	ALA		63	22.808 -13.263	44.128	1.00 35.61
25	MOTA	543	СВ	ALA		63	25.153 -15.402	44.601	1.00 39.35
25	ATOM	544	N	VAL		64	22.430 -15.198	43.013	1.00 35.11
	ATOM	545	CA	VAL		64	21.587 -14.456	42.054	1.00 35.89
	MOTA	546	C	VAL		64	20.370 -13.842	42.720	1.00 35.12
	ATOM	547	0	VAL		64	20.062 -12.664	42.487	1.00 34.59
20	ATOM	548	CB	VAL		64	21.180 -15.331	40.855	1.00 37.44
30	ATOM	549		VAL		64	20.071 -14.660	40.053	1.00 40.96
	ATOM	550		VAL		64	22.390 -15.680	40.014	1.00 36.95
	ATOM	551	N	SER		65	19.616 -14.592	43.540	1.00 35.09
	ATOM	552	CA	SER	Α	65	18.477 -14.039	44.238	1.00 34.42
	ATOM	553	С	SER		65	18.854 -12.961	45.225	1.00 34.48
35	ATOM	554	0	SER		65	18.110 -11.986	45.326	1.00 34.19
	MOTA	555	CB	SER		65	17.583 ~15.074	44.940	1.00 34.49
	ATOM	556	OG	SER	Α	65	17.165 -16.015	43.951	1.00 35.80
	ATOM	557	N	LYS		66	19.977 -13.079	45.922	1.00 34.79
4.0	ATOM	558	CA	LYS	Α	66	20.365 -11.976	46.828	1.00 35.44
40	ATOM	559	С	LYS		66	20.611 -10.670	46.044	1.00 35.50
	ATOM	560	0	LYS		66	20.219 -9.590	46.478	1.00 35.28
	MOTA	561	СВ	ĻYS	Α	66	21.709 -12.362	47.478	1.00 36.28
	ATOM	562	CG	LYS	A	66	21.492 -13.207	48.738	1.00 43.87
	ATOM	563	CD	LYS	Α	66	22.772 -13.202	49.570	1.00 52.29
45	ATOM	564	CE	LYS	Α	66	23.722 -14.338	49.256	1.00 56.53
	ATOM	565	NZ	LYS	Α	66	24.326 -14.857	50.541	1.00 60.41
	ATOM	566	N	ASN	Α	67	21.345 -10.788	44.956	1.00 35.53
	ATOM	567	CA	ASN	Α	67	21.679 ~9.615	44.136	1.00 35.43
	ATOM	568	С	ASN	Α	67	20.452 -8.955	43.544	1.00 34.46
50	ATOM	569	0	ASN	Α	67	20.370 -7.741	43.518	1.00 33.85
	MOTA	570	CB	ASN	Α	67	22.657 -10.003	43.019	1.00 39.24
	ATOM	571	CG	ASN	Α	67	22.999 -8.797	42.163	1.00 49.34
	MOTA	572	OD1	ASN	Α	67	22.646 -8.711	40.977	1.00 55.32
	MOTA	573	ND2	ASN	Α	67	23.611 -7.794	42.784	1.00 51.11
55	ATOM	574	N	LYS		68	19.505 -9.746	43.007	1.00 34.69
	MOTA	575	CA	LYS		68	18.245 -9.160	42.532	1.00 33.90
	ATOM	576	C	LYS		68	17.421 -8.525	43.620	1.00 33.51
•	ATOM	577	ō	LYS		68	16.726 -7.530	43.412	1.00 32.16
	ATOM	578		LYS		68	17.439 -10.259	41.811	1.00 35.44
60	ATOM	579	CG	LYS		68	18.132 -10.664	40.503	1.00 38.74
	ATOM	580	CD	LYS		68	17.352 -11.710	39.729	1.00 44.24
	ATOM	581		LYS		68	15.976 -11.178	39.345	1.00 46.97
	ATOM	582		LYS		68	15.414 -12.058	38.260	1.00 51.68
	-	_	-						

	ATOM	583	N	ALA A	69	17.395	-9.098	44.856	1.00 33.48
	ATOM	584	CA	ALA A	69	16.654	-8.440	45.924	1.00 33.17
	ATOM	585	С	ALA A	69	17.299	-7.103	46.282	1.00 31.99
	MOTA	586	0	ALA A	69	16.620	-6.105	46.498	1.00 31.80
5	ATOM	587	CB	ALA A	69	16.642	-9.315	47.213	1.00 31.02
	ATOM	588	N	LEU A	70	18.627	-7.019	46.312	1.00 32.54
	ATOM	589	CA	LEU A	70	19.278	-5.715	46.511	1.00 32.22
	ATOM	590	C	LEU A	70	18.830	-4.668	45.471	1.00 32.04
	ATOM	591	ŏ	LEU A	70	18.604	-3.504	45.815	1.00 32.18
10	ATOM	592	СВ	LEU A	70	20.800	-5.876	46.425	1.00 35.34
10	ATOM	593	CG	LEU A	70	21.431	-6.582	47.652	1.00 41.35
	ATOM	594		LEU A	70	22.952	-6.614	47.488	1.00 47.21
	ATOM	595		LEU A	70	21.124	-5.797	48.927	1.00 42.20
	MOTA	596	N N	GLN A	71	18.732	-5.068	44.222	1.00 32.28
15				GLN A			-4.184	43.118	1.00 32.20
13	MOTA	597	CA	-	71	18.336	-3.744		1.00 32.00
	MOTA	598	C	GLN A	71	16.888		43.319	
	ATOM	599	0	GLN A	71	16.599	-2.548	43.262	1.00 34.13
	ATOM	600	CB	GLN A	71	18.506	-4.847	41.767	1.00 32.48
20	ATOM	601	CG	GLN A	71	19.933	-5.100	41.321	1.00 36.30
20	ATOM	602	CD	GLN A	71	20.143	-5.912	40.083	1.00 36.39
	ATOM	603		GLN A	71	21.103	-5.642	39.339	1.00 42.50
	ATOM	604	NE2	GLN A	71	19.349	-6.917	39.755	1.00 33.68
	ATOM	605	N	ALA A	72	16.008	-4.697	43.668	1.00 32.97
	ATOM	606	CA	ALA A	72	14.624	-4.358	43.963	1.00 32.73
25	MOTA	607	С	ALA A	72	14.529	-3.414	45.129	1.00 33.36
	ATOM	608	0	ALA A	72	13.741	-2.468	45.153	1.00 33.02
	MOTA	609	CB	ALA A	72	13.751	-5.597	44.164	1.00 31.63
	MOTA	610	N	ILE A	73	15.314	-3.700	46.205	1.00 32.96
	MOTA	611	CA	ILE A	73	15.341	-2.754	47.321	1.00 32.98
30	ATOM	612	С	ILE A	73	15.756	-1.358	46.932	1.00 33.05
	ATOM	613	0	ILE A	73	15.173	-0.371	47.407	1.00 31.52
	ATOM	614	CB	ILE A	73	16.262	-3.309	48.450	1.00 32.37
	ATOM	615	CG1	ILE A	73	15.549	-4.497	49.099	1.00 34.48
	ATOM	616	CG2	ILE A	73	16.564	-2.217	49.479	1.00 36.05
35	ATOM	617	CD1	ILE A	73	16.442	-5.452	49.895	1.00 36.56
	ATOM	618	N	GLU A	74	16.821	-1.221	46.107	1.00 33.20
	ATOM	619	CA	GLU A	74	17.249	0.135	45.770	1.00 34.02
	ATOM	620	C	GLU A	74	16.127	0.888	45.042	1.00 33.88
	ATOM	621	Ō	GLU A	74	15.924	2.077	45.333	1.00 33.58
40	ATOM	622	СВ	GLU A	74	18.483	0.128	44.849	1.00 42.88
	MOTA	623	CG	GLU A	74	19.730	-0.391	45.551	1.00 50.60
	ATOM	624	CD	GLU A	74	20.121	0.534	46.697	1.00 55.46
	ATOM	625		GLU A	74	19.809	0.219	47.869	1.00 54.43
	ATOM	626		GLU A	74	20.627	1.630	46.386	1.00 51.96
45	ATOM	627	N	LEU A	75	15.444	0.203	44.142	1.00 34.25
	ATOM	628	CA	LEU A	75	14.353	0.814	43.393	1.00 34.85
	ATOM	629	C	LEU A	75	13.181	1.091	44.339	1.00 35.22
	ATOM	630	ŏ	LEU A	75	12.683	2.215	44.292	1.00 35.32
	ATOM	631	СВ	LEU A	75		-0.038		1.00 33.68
50	ATOM	632	CG	LEU A	75 75	14.632	0.175	40.849	1.00 40.28
50	ATOM	633		LEU A	75 75	14.246	1.524	40.263	1.00 38.74
					75 75	16.134			1.00 30.74
	ATOM	634		LEU A			0.148	41.044	1.00 35.20
	ATOM	635	N	GLN A	76	12.769	0.098	45.129	
55	ATOM	636	CA	GLN A	76	11.711	0.401	46.107	1.00 34.63
55	ATOM	637	C	GLN A	76 76	12.023	1.622	46.951	1.00 34.20
	ATOM	638	0	GLN A	76	11.197	2.539	47.032	1.00 33.10
	ATOM	639	CB	GLN A	76	11.439	-0.800	47.043	1.00 37.30
	ATOM	640	CG	GLN A	76	10.346	-0.570	48.086	1.00 36.76
60	ATOM	641	CD	GLN A	76	10.511	-1.541	49.275	1.00 38.06
60	ATOM	642		GLN A	76	11.019	-2.647	49.179	1.00 36.12
	ATOM	643		GLN A	76	10.136	-1.178	50.481	1.00 39.68
	ATOM	644	N	LEU A	77	13.195	1.702	47.596	1.00 34.42
	MOTA	645	CA	LEU A	77	13.533	2.857	48.402	1.00 34.29

	ATOM	646	С	LEU	Α	77	13.506	4.183	47.638	1.00	34.87
	ATOM	647	0	LEU	Α	77	13.070	5.221	48.149	1.00	32.77
	MOTA	648	CB	LEU	Α	77	14.906	2.756	49.079	1.00	31.33
	MOTA	649	CG	LEU	Α	77	14.976	1.566	50.093		33.32
5	ATOM	650		l LEU		77	16.417	1.466	50.566		35.24
_	ATOM	651		2 LEU		77	14.094	1.902	51.303		32.76
	ATOM	652	N	THR		78	14.094	4.162	46.440		35.43
	ATOM	653	CA	THR		78	14.147	5.391	45.644		35.16
	ATOM	654	C	THR		78					
10	ATOM	655	ŏ			78	12.754	5.938	45.407		34.62
10				THR			12.561	7.128	45.655	1.00	
	MOTA	656	CB	THR		78	14.869	5.117	44.306	1.00	
	MOTA	657		LTHR		78	16.212	4.853	44.644		36.55
	ATOM	658		2 THR		78	14.710	6.309	43.359		35.96
1.5	ATOM	659	N	LEU		79	11.867	5.059	44.971		35.23
15	ATOM	660	CA	LEU		79	10.492	5.458	44.646	1.00	35.59
	MOTA	661	С	LEU	A	79	9.738	5.941	45.879	1.00	36.24
	MOTA	662	0	LEU	Α	79	8.923	6.848	45.814	1.00	34.44
	ATOM	663	CB	LEU	Α	79	9.744	4.326	43.961	1.00	37.56
	MOTA	664	CG	LEU	Α	79	10.302	3.825	42.611	1.00	40.81
20	ATOM	665	CD1	LEU	Α	79	9.415	2.708	42.066	1.00	
	ATOM	666		LEU		79	10.404	4.981	41.632		44.33
	ATOM	667	N	GLU		80	10.058	5.284	47.023		35.96
	ATOM	668	CA	GLU		80	9.487	5.773	48.285		35.25
	MOTA	669	C	GLU		80	10.002	7.132			35.25
. 25	ATOM	670	0	GLU					48.672		
. 23	ATOM					80	9.241	7.941	49.182		36.57
		671	CB	GLU		80	9.805	4.764	49.414		33.47
	ATOM	672	CG	GLU		80/	8.923	3.555	49.368		36.03
	ATOM	673	CD	GLU		80	9.390	2.431	50.293		39.80
20	MOTA	674		GLU		80	10.528	2.453	50.789		38.34
30	ATOM	675	OE2			80	8.587	1.482	50.397		40.54
	ATOM	676	N	THR		81	11.266	7.474	48.443	1.00	35.85
	MOTA	677	CA	THR		81	11.759	8.819	48.714		37.65
	ATOM	678	С	THR	Α	81	11.074	9.798	47.742	1.00	39.27
	MOTA	679	0	THR	Α	81	10.711	10.894	48.159	1.00	38.93
35	MOTA	680	CB	THR	Α	81	13.277	8.895	48.523	1.00	38.88
	ATOM	681	OG1	THR	Α	81	13.854	8.188	49.626	1.00	41.45
	ATOM	682	CG2			81	13.827	10.315	48.511	1.00	37.76
	ATOM	683	N	ILE	Α	82	10.887	9.360	46.500		39.69
	ATOM	684	CA	ILE		82	10.176	10.260	45.568		41.32
40	ATOM	685	С	ILE		82	8.727	10.458	45.979		42.17
	ATOM	686	0	ILE		82	8.195	11.566	45.910		42.11
	ATOM	687	CB	ILE		82	10.199	9.735	44.134		38.27
	ATOM	688	CG1				11.619	9.500	43.651		39.22
	ATOM	689	CG2			82	9.462	10.697	43.194		37.66
45	ATOM	690	CD1			82	12.489	10.717	43.731		43.59
	ATOM	691	N	TYR		83	8.097	9.376			
	ATOM								46.426		43.95
		692	CA	TYR		83	6.726	9.469	46.924		45.07
	ATOM	693	C	TYR		83	6.597	10.496	48.038		45.84
50	MOTA	694	0	TYR		83	5.613	11.234	48.097		44.82
50	ATOM	695	CB	TYR		83	6.229	8.097	47.364		47.55
	ATOM	696	CG	TYR		83	4.745	8.146	47.683		52.04
	ATOM	697		TYR		83	3.826	8.070	46.643	1.00	53.71
	ATOM	698		TYR		83	4.292	8.292	48.987	1.00	53.75
_	ATOM	699	CE1	TYR	Α	83	2.469	8.119	46.899	1.00	55.59
. 55	MOTA	700		TYR		83	2.932	8.343	49.245		55.42
	ATOM	701	CZ	TYR		83	2.036	8.252	48.199	1.00	
	ATOM	702	ОН	TYR		83	0.691	8.313	48.454	1.00	
	ATOM	703	N	ASN		84	7.594	10.600	48.932	1.00	
	MOTA	704	CA	ASN		84	7.519	11.621	49.959	1.00	
60	ATOM	705	C	ASN		8.4	7.965	12.989			
	ATOM	706	0	ASN		84	7.812	13.930	49.446 50.226	1.00	
	ATOM	707	СВ	ASN		84	8.199			1.00	
								11.252	51.257	1.00	
	ATOM	708	CG	ASN	M	84	7.995	9.970	52.011	1.00	42.21

	3.000				_	٠.						
	ATOM	709		1 ASN				6.960				0 48.67
	ATOM ATOM	710 711		2 ASN SER		84 85		9.032				0 40.72
	ATOM	712				85		8.351 8.830		48.201		0 44.95
5	ATOM	713		SER		85		7.800		47.823 46.988		0 43.57 0 43.08
	ATOM	714		SER		85		6.747		46.627		0 41.05
	ATOM	715	CB	SER		85		10.108				3 43.41
	MOTA	716		SER	Α	85		9.782	14.024	45.656		38.06
10	MOTA	717		GLN	Α	86		8.199	16.543	46.586		43.58
10	MOTA	718		GLN		86		7.377		45.725	1.00	44.93
	ATOM	719		GLN		86		7.185		44.331	1.00	45.37
	ATOM	720		GLN		86		6.311		43.581		45.62
	ATOM	721 722	CB	GLN		86		8.100		45.588		52.00
15	ATOM ATOM	723	CG CD	GLN GLN		86		9.448		44.909		58.47
1.5	ATOM	724		1 GLN		86 86		10.263 11.330		44.692		64.18
	ATOM	725	NE.			86		9.786		45.303 43.810		70.12 65.51
	ATOM	726	N	TYR		87		8.002		43.915) 45.13
	ATOM	727	CA	TYR		87		7.886	15.277	42.601		44.09
20	ATOM	728	С	TYR	Α	87		6.898	14.125	42.585		44.50
	MOTA	729	0	TYR	Α	87	*	6.682	13.536	41.536		43.83
	MOTA	730	CB	TYR	Α	87		9.231	14.748	42.072		42.80
	MOTA	731	CG	TYR	Α	87		10.318	15.782	42.226		41.15
25	MOTA	732	CDI			87		11.376	15.539	43.084	1.00	41.11
25	ATOM	733	CD2			87		10.272	17.010	41.567		39.57
	ATOM	734		TYR		87		12.344	16.496	43.319		41.24
	ATOM ATOM	735 736		TYR		87		11.243	17.967	41.779		39.89
	ATOM	737	CZ OH	TYR TYR		87 87		12.295	17.693	42.614		40.85
30	ATOM	738	N	SER		88		13.302 6.318	18.594	42.842		41.44
•	ATOM	739	CA	SER		88		5.478	13.805 12.626	43.743 43.844		45.60 46.49
	ATOM	740	C	SER		88		4.368	12.534	42.814		47.16
	ATOM	741	ō	SER		88		4.080	11.467	42.270		46.71
	ATOM	742	CB	SER		88		4.816	12.633	45.245		48.13
35	ATOM	743	OG	SER	Α	88		4.092	11.417	45.346		51.98
	ATOM	744	N	ASN .	Α	89		3.667	13.642	42.565		48.16
	MOTA	745	CA	ASN.		89		2.563	13.593	41.604	1.00	49.94
	ATOM	746	C	ASN.		89		2.888	13.746	40.138	1.00	50.05
40	ATOM	747	0	ASN .		89		1.922	13.898	39.362		49.81
70	ATOM ATOM	748 749	CB	ASN .		89		1.500	14.616	42.040		57.17
	ATOM	750	CG OD1	ASN A		89 89		1.003	14.286	43.439		62.53
	ATOM	751		ASN A		89		0.732	15.195 12.995	44.234 43.737		67.35 64.39
	ATOM	752	N	GLU I		90		4.149	13.696	39.690		49.64
45	ATOM	753	CA	GLU A		90		4.384	13.669	38.238		49.09
	ATOM	754	C	GLU A		90		3.952	12.346	37.610		48.60
	ATOM	755	0	GLU A	Ą	90		3.715	11.386	38.327		47.76
	ATOM	756	CB	GLU A	Ą	90		5.891	13.782	37.891	1.00	47.16
50	ATOM	757	CG	GLU A		90			14.906		1.00	42.61
50	ATOM	758	CD	GLU A		90		7.981	15.219	38.359		44.84
	ATOM	759		GLU A		90		8.767	14.356	37.961		46.86
	ATOM ATOM	760		GLU A		90		8.343	16.400	38.592		45.57
	ATOM	761 762	N CA	LYS A		91		3.961	12.276	36.269		47.66
55	ATOM	763	CA	LYS F		91 91		3.798 5.099	10.985	35.595		47.27
	ATOM	764	Õ	LYS A		91		6.181	10.180 10.745	35.749 35.610		46.58
	ATOM	765	СВ	LYS A		91		3.615	11.124	34.076		45.68 48.52
	ATOM	766	CG	LYS A		91		2.234	10.887	33.509		55.86
	MOTA	767	CD	LYS F		91		2.206	11.249	32.017		56.83
60	ATOM	768	CE	LYS A		91		2.934	10.173	31.214		56.89
	MOTA	769	NZ	LYS A		91		3.771	10.752	30.132		54.96
	ATOM	770	N	TRP A		92		4.971	8.888	36.019	1.00	46.05
	MOTA	771	CA	TRP A		92		6.082	7.961	36.101		45.89

	ATOM	772	. c	TRP A	92		5	702	6.699	35.343	1 00	0 46.10
	ATOM	773		TRP F				701	6.079	35.668		
	ATOM	774					6.	454	7.556	37.550	1.00	42.18
5	MOTA	775						876	8.733	38.372		37.28
,	ATOM ATOM	776 777						025 170	9.494	39.126		35.98
	ATOM	778						703	9.326 10.512	38.526 39.704		35.45 37.68
	ATOM	779						031	10.426	39.359		34.31
10	MOTA	780					9.	436	9.034	38.009		35.29
10	ATOM	781						085	11.251	39.784		37.71
	ATOM ATOM	782 783						489	9.844	38.391		34.81
	ATOM	784		THR A				320 468	10.920 6.302	39.272 34.333		37.49 46.29
	ATOM	785						122	5.105	33.583		40.29
15	MOTA	786		THR A				901	3.910	34.110		48.41
	ATOM	787		THR A	93		7.	846	4.126	34.862		48.37
	ATOM	788						370	5.242	32.077		46.70
	MOTA	789		1 THR A				740	4.928	31.792		44.41
20	ATOM ATOM	790 791	CG N	2 THR A LEU A				037	6.666	31.629		44.27
20	ATOM	792	CA					507 213	2.716 1.494	33.705 34.076	1.00	48.40
	ATOM	793	C	LEU A				647	1.507	33.559		48.72
	MOTA	794	Ó	LEU A				587	1.053	34.225		47.67
25	ATOM	795	СВ	LEU A			6.	462	0.294	33.479	1.00	56.38
25	ATOM	796	CG	LEU A				488	-1.036	34.232		61.49
	ATOM	797 798		1 LEU A	94			452	-0.872	35.741		61.80
	ATOM ATOM	799	N N	2 LEU A GLN A	94 95			310 818	-1.900	33.781		62.20
	ATOM	800	CA	GLN A	95		10.		2.022 2.149	32.332 31.805		45.95 43.86
30	ATOM	801	C	GLN A	95		10.		3.201	32.555		41.09
	ATOM	802	0	GLN A	95		12.		2.966	32.803		42.10
	ATOM	803	CB	GLN A	95		10.2	226	2.431	30.291		47.51
	ATOM	804	CG	GLN A	95		10.9		1.311	29.532		55.82
35	ATOM ATOM	805	CD	GLN A	95		12.4		1.369	29.531		58.57
33	ATOM	806 807		l GLN A 2 GLN A	95 95		13.(13.(2.191 0.470	28.850 30.270		63.35
	ATOM	808	N	ASP A	96		10.3		4.296	32.984		53.71 39.88
	ATOM	809	CA	ASP A	96		11.0		5.272	33.814		39.85
40	MOTA	810	С	ASP A	96	:	11.6	551	4.615	35.076		40.22
40	MOTA	811	0	ASP A	96		12.7		5.042	35.499		39.43
	ATOM ATOM	812 813	CB CG	ASP A ASP A	96 06	J	10.1		6.397	34.246		40.26
	ATOM	814	OD1		96 96	-	9.6 10.2		7.287 7.391	33.110 32.079		43.09
	ATOM	815		ASP A	96	-	8.5		7.883	33.274		38.82 41.58
45	MOTA	816	N	VAL A	97	1	10.9		3.643	35.651		39.44
	ATOM	817	CA	VAL A	97	1	11.3	71	3.024	36.913		38.84
	MOTA	818	C	VAL A	97		11.9		1.641	36.744		38.61
	ATOM ATOM	819 820	O CB	VAL A	97 97		.2.0		0.843	37.707		38.87
50	ATOM	821		VAL A VAL A	97 97	1	.0.1 9.5		2.955 4.325	37.903 38.123		40.58 37.24
	ATOM	822		VAL A	97		9.1		1.929	37.569		39.40
	ATOM	823	N	SER A	98	1	2.4		1.314	35.539		37.55
1	ATOM	824	CA	SER A	98 .		2.9		0.014	35.183		36.27
) = =	ATOM	825	С	SER A	98		4.4		-0.046	35.652		36.46
55	ATOM	826	0	SER A	98		5.0		1.015	35.744		36.95
	ATOM ATOM	827	CB	SER A	98		2.9		-0.142	33.637	1.00	41.66
	ATOM	828 829	og N	SER A LEU A	98 99		3.8 4.9		0.716 -1.247	32.996		41.12
	ATOM	830	CA	LEU A	99		6.3		-1.247	35.831 36.203		36.38 36.81
60	ATOM	831	c	LEU A	99		7.2		-0.939	35.042		36.83
	ATOM	832	0	LEU A	99	1	8.2	97	-0.341	35.258		36.14
	ATOM	833	CB	LEU A	99		6.6		-2.829	36.589	1.00	
	ATOM	834	CG	LEU A	99	1	8.0	56	-3.111	37.080	1.00	45.46

							-	•	
	ATOM	835	CD	1 LEU A 9	9	18.330	-2.481	38.442	1.00 43.84
	ATOM	836	CD	2 LEU A 9	9 /	18.341			1.00 45.55
	ATOM	837		GLU A 10		16.797	-1.199	33.818	1.00 36.41
	ATOM	838	CA			17.488	-0.765	32.611	1.00 37.21
5	ATOM	839		GLU A 10		17.790	0.722		
	ATOM	840	Õ	GLU A 10				32.622	1.00 36.02
						18.972	1.068	32.470	1.00 37.81
	ATOM	841	CB			16.690	-1.126	31.340	1.00 40.11
	ATOM	842	CG			17.528	-0.836	30.096	1.00 49.41
1.0	ATOM	843	CD			16.866	-1.247	28.790	1.00 56.89
10	MOTA	844		1 GLU A 10		15.724	-1.755	28.761	1.00 57.99
	MOTA	845	OE	2 GLU A 10	0	17.534	-1.025	27.753	1.00 62.25
	ATOM	846	N	VAL A 10	1	16.808	1.580	32.792	1.00 35.41
	ATOM	847	CA	VAL A 10	1	17.044	3.010	32.973	1.00 34.54
	ATOM	848	С	VAL A 10		17.897	3.329	34.185	1.00 34.62
15	ATOM	849	ō	VAL A 10		18.899	4.082	34.151	1.00 33.43
	ATOM	850	ČВ			15.666	3.714		
	ATOM	851		1 VAL A 10				33.047	1.00 36.71
						15.797	5.167	33.459	1.00 34.93
	ATOM	852		2 VAL A 10		15.013	3.600	31.651	1.00 37.61
20	ATOM	853	N	TYR A 10		17.555	2.678	35.314	1.00 33.28
20	MOTA	854	CA	TYR A 10		18.202	3.008	36.583	1.00 33.58
	ATOM	855	С	TYR A 10	2	19.711	2.817	36.484	1.00 33.46
	MOTA	856	0	TYR A 10	2	20.424	3.624	37.071	1.00 33.95
	ATOM	857	CB	TYR A 10	2	17.653	2.091	37.691	1.00 34.23
	MOTA	858	CG	TYR A 10		17.996	2.494	39.103	1.00 36.50
25	ATOM	859	CD:			17.325	3.559	39.676	1.00 36.36
	ATOM	860	CD			18.961	1.811		
	ATOM	861	CE:					39.855	1.00 36.63
						17.582	3.949	40.979	1.00 37.25
	ATOM	862	CE			19.237	2.202	41.162	1.00 37.64
20	ATOM	863	CZ	TYR A 10:		18.537	3.253	41.707	1.00 36.95
30	ATOM	864	OH	TYR A 10		18.795	3.693	42.966	1.00 36.81
	ATOM	865	N	LEU A 10	3	20.170	1.800	35.766	1.00 32.90
	ATOM	866	CA	LEU A 10:	3	21.575	1.513	35.625	1.00 34.69
	MOTA	867	С	LEU A 10:	3	22.225	2.188	34.422	1.00 35.97
	ATOM	868	0	LEU A 103		23.434	2.037	34.247	1.00 37.11
35	ATOM	869	СВ	LEU A 103		21.811	0.003	35.568	1.00 34.47
	ATOM	870	CG	LEU A 103		21.363			
	ATOM	871	CD1				-0.757	36.853	1.00 39.98
						21.588	-2.261	36.702	1.00 40.37
	ATOM	872		LEU A 103		22.104	-0.231	38.073	1.00 40.86
40	MOTA	873	N	THR A 104		21.460	2.913	33.614	1.00 35.72
40	ATOM	874	CA	THR A 104		22.115	3.606	32.468	1.00 34.87
	ATOM	875	С	THR A 104	1	22.792	4.825	33.060	1.00 35.15
	ATOM	876	0	THR A 104	ļ	22.206	5.345	34.004	1.00 35.03
	MOTA	877	CB	THR A 104		21.074	4.013	31.409	1.00 36.04
	MOTA	878	OG1	THR A 104	ļ	20.507	2.790	30.928	1.00 34.78
45	ATOM	879	CG2			21.709	4.722	30.211	1.00 36.74
	ATOM	880	N	ALA A 105		23.907	5.292	32.541	1.00 35.32
	ATOM	881	CA	ALA A 105		24.595	6.446	33.150	
	ATOM	882	C	ALA A 105		23.662			1.00 36.34
							7.647	33.117	1.00 36.12
50	ATOM	883	0	ALA A 105		23.031		32.074	1.00 35.49
50	ATOM	884	CB	ALA A 105		25.840	6.710	32.281	1.00 36.09
	ATOM	885	N	PRO A 106		23.556	8.404	34.195	1.00 35.90
-	ATOM	886	CA	PRO A 106		24.273	8.154	35.428	1.00 36.06
	ATOM	887	С	PRO A 106		23.617	7.057	36.275	1.00 35.41
	ATOM	888	0	PRO A 106		22.426	7.141	36.602	1.00 34.13
55	ATOM	889	CB	PRO A 106		24.167	9.484	36.175	1.00 36.61
	ATOM	890	CG	PRO A 106		22.880	10.077	35.695	
	ATOM	891	CD	PRO A 106					1.00 36.41
	ATOM					22.862	9.725	34.223	1.00 36.94
		892	N	THR A 107		24.407	6.045	36.646	1.00 35.50
60	ATOM	893	CA	THR A 107		23.833	4.857	37.287	1.00 34.62
UU	ATOM	894	C	THR A 107		23.256	5.142	38.651	1.00 34.93
	ATOM	895	0	THR A 107		23.639	6.108	39.324	1.00 34.98
	ATOM	896	CB	THR A 107		24.820	3.666	37.301	1.00 39.51
	MOTA	897	OG1	THR A 107		24.114	2.516	37.812	1.00 36.86

	MOTA	898		2 THR A		26.016		38.203	1.00 39.22
	MOTA	899		GLY A		22.272		39.091	1.00 35.80
	ATOM	900	CA			21.709	4.504	40.436	1.00 35.25
_	ATOM	901	С	GLY A	108	20.719	5.660	40.527	1.00 35.77
5	ATOM	902	0	GLY A	108	20.469	6.140	41.646	1.00 35.22
	ATOM	903	N	CYS A	109	20.099	6.080	39.427	1.00 34.86
	ATOM	904	CA	CYS A	109	19.226	7.257	39.416	1.00 35.48
	MOTA	905	С	CYS A	109	17.997	6.934	38.551	1.00 35.39
	ATOM	906	0	CYS A	109	18.179	6.397	37.449	1.00 36.31
10	ATOM	907	CB	CYS A	109	19.987	8.395	38.610	1.00 35.03
	ATOM	908	SG	CYS A	109	21.181	9.249	39.651	1.00 42.26
	MOTA	909	N	ILE A	110	16.785	7.158	39.035	1.00 34.76
	ATOM	910	CA	ILE A		15.613	7.181	38.156	1.00 34.74
	ATOM	911	C	ILE A		15.774	8.456	37.264	1.00 34.48
15	ATOM	912	ō	ILE A		16.234	9.494	37.723	1.00 32.60
	ATOM	913	СВ	ILE A		14.315	7.414	38.954	1.00 32.00
	ATOM	914		l ILE A		14.117	6.274	39.951	1.00 37.09
	ATOM	915		ILE A		13.100	7.594	38.049	1.00 39.85
	ATOM	916		l ILE A 1		13.770	4.943		
20	ATOM	917	N	LYS A				39.384	1.00 43.84
20	ATOM	918		LYS A		15.373	8.287	36.013	1.00 34.15
			CA			15.522	9.400	35.086	1.00 35.30
	ATOM	919	C	LYS A 1		14.453	9.355	34.002	1.00 35.93
	ATOM	920	0	LYS A 1		13.942	8.285	33.702	1.00 35.35
25	ATOM	921	CB	LYS A 1		16.879	9.488	34.449	1.00 39.11
25	ATOM	922	CG	LYS A 1		17.713	8.300	34.171	1.00 44.79
	ATOM	923	CD	LYS A 1		19.195	8.574	34.494	1.00 41.27
	ATOM	924	CE	LYS A 1		19.930	7.270	34.207	1.00 41.21
	ATOM	925	ΝZ	LYS A 1		19.943	6.341	35.377	1.00 36.81
20	MOTA	926	N	LYS A 1		14.181	10.569	33.482	1.00 36.64
30	ATOM	927	CA	LYS A 1		13.194	10.511	32.410	1.00 37.12
	ATOM	928	С	LYS A 1		13.553	11.477	31.283	1.00 38.56
	ATOM	929	0	LYS A 1	.12	14.382	12.368	31.442	1.00 37.40
	ATOM	930	CB	LYS A 1	.12	11.784	10.464	32.883	1.00 45.17
	ATOM	931	CG	LYS A 1	12	11.274	11.108	34.092	1.00 43.77
35	ATOM	932	CD	LYS A 1	12	9.855	10.826	34.592	1.00 42.31
	ATOM	933	CE	LYS A 1	12	9.625	11.830	35.702	1.00 40.92
	ATOM	934	NZ	LYS A 1	12	8.251	12.207	36.085	1.00 41.42
	ATOM	935	N	HIS A 1	13	12.734	11.353	30.256	1.00 38.75
	ATOM	936	CA	HIS A 1	13	12.848	12.198	29.053	1.00 39.66
40	ATOM	937	С	HIS A 1	13	14.221	12.110	28.430	1.00 39.88
	MOTA	938	0	HIS A 1		14.895	13.102	28.197	1.00 40.77
	ATOM	939	СВ	HIS A 1		12.341	13.611	29.366	1.00 38.57
	ATOM	940	CG	HIS A 1		11.036	13.636	30.115	1.00 38.81
	ATOM	941		HIS A 1		9.924	12.958	29.655	1.00 42.21
45	ATOM	942		HIS A 1		10.680	14.172	31.299	1.00 41.13
	ATOM	943		HIS A 1		8.934	13.113	30.518	1.00 37.50
	ATOM	944		HIS A 1		9.378	13.838	31.529	1.00 43.65
	ATOM	945	N	GLY A 1		14.678	10.906	28.098	1.00 40.03
	ATOM	946	CA			15.948	10.634		1.00 40.03
50	ATOM	947	C	GLY A 1		15.982	10.869	25.944	
50	ATOM	948						25.944	1.00 42.05
			0	GLY A 1		15.006	10.756	25.196	1.00 43.10
	ATOM	949	N	TYR A 1		17.172	11.210	25.445	1.00 42.78
	ATOM	950	CA	TYR A 1		17.369	11.441	24.019	1.00 42.59
E E	ATOM	951	С	TYR A 1		18.822	11.155	23.637	1.00 42.83
55	ATOM	952	0	TYR A 1		19.673	11.182	24.526	1.00 40.37
	ATOM	953	CB	TYR A 1		17.029	12.863	23.612	1.00 43.99
	ATOM	954	CG	TYR A 1		17.877	13.912	24.298	1.00 45.80
	ATOM	955	CDl	TYR A 1		18.944	14.514	23.648	1.00 47.34
	ATOM	956	CD2			17.628	14.263	25.614	1.00 47.05
60	MOTA	957	CE1			19.718	15.463	24.291	1.00 47.70
	ATOM	958	CE2	TYR A 1	15	18.375	15.230	26.260	1.00 47.78
	MOTA	959	CZ	TYR A 1	15	19.398	15.845	25.579	1.00 48.85
	ATOM	960	OH	TYR A 1	15	20.194	16.754	26.228	1.00 49.73
							-		

					_								
	ATOM	961				116		.071	10.953		2.342		0 41.33
	ATOM ATOM	962 963				116		.415	10.564		1.938		0 42.28
	ATOM	964				116		.285	11.789 12.791		1.697		0 42.08
5	ATOM	965				116		.858 .365	9.722		1.136		0 42.54
_	ATOM	966		1 THE				.589	8.542		0.643 0.949		0 46.87 0 49.86
	ATOM	967		2 THP				.753	9.272	_	0.209		0 46.71
	ATOM	968				117		.552	11.650		2.045		0 40.95
	ATOM	969				117		.575	12.638		1.686		0 40.83
10	ATOM	970	С	VAL	A	117		. 538	11.818		0.830		41.40
	ATOM	971	0	VAL	A	117	24.	.850	10.689		1.222		41.22
	MOTA	972		VAL	A	117	24.	. 297	13.196	2:	2.928		39.95
	MOTA	973		l VAL			25.	. 599	13.915	2:	2.569	1.00	41.09
16	MOTA	974		2 VAL				. 375	14.216	2:	3.617	1.00	38.93
15	ATOM	975	N			118		986	12.396		9.713		41.76
	ATOM	976	CA			118		908	11.573		3.905		42.29
	ATOM	977	C			118		254	12.265		3.832		42.60
	MOTA	978	0			118		288	13.498		3.801		42.94
20	ATOM ATOM	979 980	CB CG			118 118		266	11.262		7.556		46.34
20	ATOM	981	CD			118		923	11.896		5.365		53.27
	ATOM	982		1 GLU				542 442	11.270 10.707		5.029		55.37
	ATOM	983		2 GLU				425	11.358		1.879 1.155		54.40
	ATOM	984	N			119		322	11.485		3.947		41.77
. 25	ATOM	985	CA			119		661	12.031		3.909		42.33
	ATOM	986	C			119		408	11.363		7.735		43.93
	MOTA	987	o			119		499	10.136		.672		42.59
	MOTA	988	CB	VAL	Α	119		486	11.790		187		42.91
	MOTA	989		l VAL			31.	894	12.330		.963	1.00	40.51
30	MOTA	990		VAL			29.	868	12.517	21	.398	1.00	38.33
	ATOM	991	N			120	30.	927	12.212	16	.870	1.00	44.65
	MOTA	992	CA			120		698	11.727		.723		47.49
	ATOM	993	C			120		182	11.912		.001		50.11
35	ATOM	994	0			120		676	13.040		.117		48.28
22	ATOM	995	CB			120	31.		12.541		.481		48.85
	ATOM ATOM	996 997	CG CD	GLN		120	29.		12.547		.248		52.37
	ATOM	998	OE I				29. 30.		13.089		.884		55,.34
	MOTA	999	NE2				28.		13.536 13.016		.135		59.08
40	ATOM	1000	N	PHE			33.		10.771		.580		56.41 52.87
	ATOM	1001	CA	PHE			35.		10.771		.382		58.51
	ATOM	1002	C	PHE			36.		11.092		.162		62.63
	ATOM	1003	0	PHE			37.		11.134		.318		63.15
	ATOM	1004	CB	PHE	Α	121	35.		9.660		.219		54.96
45	ATOM	1005	CG	PHE	Α	121	35.	110	9.596	18	.571	1.00	55.06
	ATOM	1006	CD1				33.		8.822	18	.763	1.00	54.70
	ATOM	1007		PHE			35.		10.295	19	.641	1.00	52.63
	ATOM	1008		PHE			33.		8.726		.000		54.52
50	ATOM	1009		PHE			35.		10.209				53.27
30	ATOM	1010	CZ	PHE			33.		9.438		.065		53.03
	ATOM	1011	N	ASP			35.		11.249		.988		66.78
	ATOM ATOM	1012	CA	ASP			36.2		11.801		.847		72.12
	ATOM	1013 1014	С 0	ASP ASP			35.4		12.152		. 632		74.59
55	ATOM	1014	СВ	ASP			35.5 37.4		13.228		.042		75.06
	ATOM	1016	CG	ASP			38.6		10.970		.495 .201		80.67
	ATOM	1017		ASP			38.3		13.018		. 687		84.98 87.13
	ATOM	1018		ASP			39.7		11.512		. 508		89.25
	ATOM	1019	N	GLY			34.5		11.277		. 204		77.06
60	ATOM	1020	CA	GLY			33.6		11.544		.050		79.12
	MOTA	1021	С	GLY			32.4		10.546		975		80.59
	ATOM	1022	0	GLY .			32.7		9.332		.039	1.00	80.64
	ATOM	1023	N	ASP .	Α	124	31.2	278	11.063		813		81.67

5	MOTA MOTA MOTA MOTA MOTA	1024 1025 1026 1027 1028	CA C O CB CG	ASP A ASP A ASP A ASP A	124 124 124	30.000 29.673 28.828	10.180 9.574 9.777 10.863 9.968	9.717 8.324 7.400 10.141 11.019	1.00 82.77 1.00 82.74 0.00 99.00 1.00 87.39 1.00 91.94
	ATOM ATOM ATOM ATOM	1029 1030 1031 1032	OD1 OD2 N CA		124	26.779 34.160	8.933 10.288 6.401 5.964	11.489 11.244 13.268 14.601	1.00 93.18 1.00 93.68 1.00 58.22 1.00 58.81
10	ATOM ATOM ATOM ATOM	1033 1034 1035 1036	C O CB CG	ASN A ASN A ASN A	127 127 127	32.728	6.983 8.096 5.955 4.889	15.144 15.487 15.579 15.347	1.00 58.26 1.00 58.82 1.00 58.33 1.00 62.63
15	ATOM ATOM ATOM ATOM	1037 1038 1039 1040	OD1 ND2 N CA		127 128	35.660 37.179 31.462 30.411	3.697 5.307 6.617 7.522	15.490 15.008 15.180 15.665	1.00 64.16 1.00 60.87 1.00 57.71 1.00 57.23
20	ATOM ATOM ATOM MOTA	1041 1042 1043 1044	C O CB OG1	THR A THR A THR A THR A	128 128	29.652 29.065 29.452 30.208	6.846 5.792 7.842 8.579	16.795 16.534 14.501 13.536	1.00 56.48 1.00 57.24 1.00 56.65 1.00 57.99
25	MOTA MOTA MOTA	1045 1046 1047 1048	CG2 N CA C	MET A MET A MET A	129 129 129	28.244 29.705 29.082 27.768	8.653 7.406 6.817 7.511	14.901 18.002 19.175 19.533	1.00 56.34 1.00 54.99 1.00 52.19 1.00 50.42
	ATOM ATOM ATOM ATOM	1049 1050 1051 1052	O CB CG SD	MET A MET A MET A	129 129 129	27.588 30.009 31.164 30.652	8.705 6.909 5.934 4.263	19.319 20.391 20.458 20.904	1.00 48.93 1.00 58.00 1.00 62.68 1.00 68.26
30	ATOM ATOM ATOM ATOM	1053 1054 1055 1056	CE N CA C	MET A HIS A HIS A	130 130	29.906 26.859 25.554 25.485	4.518 6.735 7.194 7.057	22.510 20.126 20.571 22.095	1.00 68.01 1.00 49.01 1.00 47.13 1.00 46.21
35	ATOM ATOM ATOM ATOM	1057 1058 1059 1060	O CB CG ND1	HIS A HIS A HIS A	130 130	26.009 24.436 23.967 24.816	6.118 6.345 6.751 7.119	22.678 19.956 18.602 17.581	1.00 45.61 1.00 53.82 1.00 62.48 1.00 66.97
40	ATOM ATOM ATOM MOTA	1061 1062 1063 1064 1065	CD2 CE1	HIS A HIS A HIS A TYR A	130 130 130 131	22.711 24.114 22.831 24.998 24.923	6.825 7.424 7.252 8.097 8.130	18.084 16.505 16.784 22.775	1.00 65.45 1.00 67.80 1.00 68.13 1.00 43.95
45	ATOM ATOM ATOM ATOM	1065 1066 1067 1068 1069	C O CB CG	TYR A TYR A TYR A TYR A TYR A	131 131 131	23.536 22.956 25.948 27.390	8.666 9.497 9.151 8.830	24.227 24.576 23.829 24.762 24.392	1.00 42.51 1.00 41.94 1.00 41.77 1.00 42.89 1.00 42.97
50	ATOM ATOM ATOM ATOM	1070 1071 1072 1073	CD1 CD2 CE1	TYR A TYR A TYR A TYR A	131 131 131	27.910 28.205 29.207 29.502	9.421 7.993 9.187 7.765	23.240 25.131 22.828 24.728	1.00 42.76 1.00 43.24 1.00 44.91 1.00 45.47
	ATOM ATOM ATOM ATOM	1074 1075 1076 1077	CZ OH N CA	TYR A TYR A THR A THR A	131 132	29.991 31.295 22.979 21.666	8.365 8.087 8.297 8.825	23.587 23.222 25.721 26.098	1.00 46.72 1.00 49.71 1.00 40.16 1.00 37.97
55	ATOM ATOM ATOM ATOM	1078 1079 1080 1081	C O CB	THR A THR A THR A THR A	132 132 132	21.835 22.535 20.792 20.603	9.967 9.779 7.731 6.712	27.066 28.077 26.746 25.757	1.00 37.49 1.00 38.05 1.00 38.81 1.00 36.51
60	ATOM ATOM ATOM ATOM ATOM	1082 1083 1084 1085 1086	CG2 N CA C	THR A ASN A ASN A ASN A	132 133 133 133	19.452 21.212 21.188 19.749	8.267 11.104 12.167 12.266 11.616	27.216 26.792 27.803 28.321 27.771	1.00 36.18 1.00 35.61 1.00 36.33 1.00 35.53 1.00 35.34

	ATOM	1087	CB AS	N A 133	21 660	12 500		1 00 07 00
	ATOM	1088		N A 133 N A 133		13.500 14.518	27.280 28.327	1.00 36.82 1.00 42.70
	ATOM	1089		N A 133		15.696	27.956	1.00 42.70
	ATOM	1090		N A 133		14.088	29.562	1.00 37.77
5	ATOM	1091		P A 134		12.925	29.444	1.00 35.65
	MOTA	1092	CA TR	P A 134	18.238	12.908	30.127	1.00 36.02
	ATOM	1093		P A 134	17.856	14.318	30.510	1.00 36.37
	ATOM	1094		P A 134		15.002	31.095	1.00 37.57
10	ATOM	1095		P A 134		12.078	31.423	1.00 34.98
10	ATOM	1096		P A 134		10.691	31.221	1.00 35.16
	ATOM	1097 1098		P A 134		10.320	31.363	1.00 36.78
	MOTA MOTA	1098		P A 134 P A 134		9.511	30.845	1.00 37.83
	ATOM	1100		P A 134		8.987 8.458	31.103 30.802	1.00 33.83
15	ATOM	1101		P A 134		9.240	30.802	1.00 34.86
	ATOM	1102		P A 134	18.770	7.136	30.516	1.00 35.07
	ATOM	1103		P A 134	16.498	7.932	30.308	1.00 30.32
	MOTA	1104		P A 134	17.449	6.905	30.240	1.00 38.59
	MOTA	1105		R A 135	16.634	14.807	30.259	1.00 36.82
20	ATOM	1106		R A 135	16.349	16.149	30.758	1.00 36.51
	ATOM	1107	C TH	R A 135	16.094	16.125	32.270	1.00 37.13
	ATOM	1108		R A 135	16.234	17.149	32.927	1.00 35.77
	ATOM	1109		R A 135		16.871	30.031	1.00 41.31
25	ATOM	1110		R A 135	13.979	16.175	30.224	1.00 39.42
23	ATOM ATOM	1111 1112		R A 135 B A 136	15.461	16.910	28.512	1.00 43.30
	MOTA	1113		6 A 136	15.650	15.007	32.831	1.00 36.50
	ATOM	1114		A 136	15.236 16.017	14.974 13.856	34.227 34.948	1.00 37.55
	ATOM	1115		S A 136	15.783	12.717	34.570	1.00 36.41 1.00 37.39
30	ATOM	1116		A 136	13.731	14.716	34.346	1.00 37.39
	ATOM	1117		A 136	12.843	15.884	34.044	1.00 45.85
	ATOM	1118	ND1 HIS	A 136	12.928	16.585	32.850	1.00 44.57
	MOTA	1119	CD2 HIS		11.847	16.467	34.751	1.00 47.41
25	ATOM	1120	CE1 HIS	A 136	12.039	17.564	32.853	1.00 45.33
35	ATOM	1121	NE2 HIS		11.362	17.512	33.987	1.00 49.47
	ATOM	1122		A 137	16.941	14.223	35.827	1.00 35.44
	ATOM	1123		A 137	17.696	13.165	36.526	1.00 34.42
	ATOM ATOM	1124 1125		A 137	17.396	13.291	38.023	1.00 34.06
40	ATOM	1125		A 137 A 137	17.573 19.209	14.396 13.314	38.537	1.00 34.29
	ATOM	1127	_	A 137	19.527	13.314	36.268 34.780	1.00 33.02 1.00 33.98
	ATOM	1128		A 137	19.995	12.315	37.126	1.00 33.98
	ATOM	1129		A 137	20.948	13.484	34.427	1.00 35.15
	MOTA	1130		A 138	16.902	12.217	38.643	1.00 33.10
45	MOTA	1131	CA TYR	A 138	16.497	12.371	40.067	1.00 34.35
	ATOM	1132	C TYR	A 138	17.618	11.920	40.998	1.00 34.35
	ATOM	1133		A 138	17.925	10.740	40.954	1.00 35.52
	ATOM	1134		A 138	15.196	11.604	40.319	1.00 35.05
50	ATOM	1135		A 138		12.281		1.00 37.41
30	ATOM	1136	CD1 TYR		13.904	11.924	38.203	1.00 38.75
	ATOM ATOM	1137	CD2 TYR		13.272	13.267	40.084	1.00 40.04
	ATOM	1138 1139	CE1 TYR		12.922	12.525	37.431	1.00 39.64
	MOTA	1140		A 138	12.281 12.128	13.870 13.492	39.308 37.999	1.00 41.81 1.00 41.16
55	ATOM	1141		A 138	11.171	14.050	37.192	1.00 41.16
=	ATOM	1142		A 139	18.255	12.823	41.721	1.00 43.38
	ATOM	1143		A 139	19.360	12.458	42.607	1.00 35.01
	ATOM	1144		A 139	18.756	12.127	43.996	1.00 34.60
<i>~</i>	MOTA	1145	O ILE	A 139	18.312	13.089	44.613	1.00 35.20
60	ATOM	1146		A 139	20.353	13.612	42.774	1.00 34.61
	ATOM	1147	CG1 ILE		20.926	14.098	41.421	1.00 38.01
	ATOM	1148	CG2 ILE		21.546	13.200	43.637	1.00 37.55
	MOTA	1149	CD1 ILE	A 139	21.487	12.956	40.588	1.00 38.91

5	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1150 1151 1152 1153 1154 1155 1156	CA C CB CB SG N CA	CYS CYS CYS CYS GLU	A 140 A 140 A 140 A 140 A 140 A 141 A 141	18.581 17.938 18.952 19.865 17.483 18.799	10.511 10.174 9.384 9.251 9.689	44.301 45.590 46.664 46.448 45.411 44.680 47.831 48.966	1.00 1.00 1.00 1.00	0 35.26 0 37.11 0 37.66 0 37.82 0 42.45 0 49.17 0 37.14
10	ATOM ATOM ATOM ATOM ATOM	1158 1159 1160 1161 1162	O CB CG	GLU GLU	A 141 A 141 A 141 A 141 A 141	18.845 17.678 20.509 21.392 22.122	9.929 9.579 11.709 12.145 13.446	50.125 49.925 49.297 48.129 48.352	1.00 1.00 1.00	36.63 35.72 43.42 53.61 58.09
15	ATOM ATOM ATOM	1163 1164 1165 1166	OE2 N CA	GLU GLU GLU GLU	A 141 A 141 A 142 A 142	21.544 23.308 19.445 18.783	14.528 13.339 9.883 9.263	48.139 48.747 51.315 52.479	1.00 1.00 1.00	57.53 64.14 36.78 36.84
20	ATOM ATOM ATOM ATOM ATOM	1167 1168 1169 1170 1171	C O CB CG CD	GLU GLU	A 142 A 142 A 142 A 142 A 142	17.515 16.496 19.780 21.150 22.322	9.941 9.267 9.360 8.763 9.696	52.907 53.166 53.654 53.466 53.311	1.00	35.85 36.59 43.10 54.03 60.55
25	MOTA MOTA MOTA ATOM	1172 1173 1174 1175	OE2 N CA	GLU ALA ALA	A 142 A 142 A 143 A 143	22.260 23.401 17.477 16.241	10.679 9.470 11.272 11.960	52.543 53.924 52.922 53.308	1.00 1.00 1.00	59.21 64.17 34.96 36.52
30	MOTA MOTA MOTA MOTA MOTA	1176 1177 1178 1179 1180	C O CB N CA	ALA ALA SER	A 143 A 143 A 144 A 144	15.739 15.239 16.560 16.163 15.754	12.999 14.019 12.620 12.881	52.312 52.787 54.652 51.031	1.00 1.00 1.00	36.98 38.22 34.45 36.01
35	MOTA MOTA MOTA MOTA	1181 1182 1183 1184	C O CB OG	SER SER SER	A 144 A 144 A 144 A 144	15.754 15.959 16.665 16.607 17.965	13.884 13.477 12.520 15.158 14.791	50.048 48.583 48.259 50.246 49.965	1.00 1.00 1.00	35.70 35.68 34.04 39.92 46.64
	ATOM ATOM ATOM ATOM	1185 1186 1187 1188	N CA C	VAL VAL VAL	A 145 A 145 A 145 A 145	15.361 15.576 15.546 14.806	14.287 14.054 15.410 16.307	47.712 46.260 45.563 45.979	1.00 1.00 1.00	36.14 35.49 36.78 34.89
40	ATOM ATOM ATOM ATOM	1189 1190 1191 1192	CB CG1	VAL VAL VAL	A 145 A 145 A 145 A 146	14.580 13.141 14.730 16.453	13.058 13.446 12.908 15.595	45.707 46.028 44.192 44.600	1.00 1.00 1.00	36.75 36.76 37.20 37.23
45	ATOM ATOM ATOM MOTA	1193 1194 1195 1196 1197	CA C O CB OG1	THR THR THR THR	A 146 A 146 A 146 A 146 A 146	16.434 16.529 17.361 17.709 17.833	16.814 16.390 15.521 17.657 17.886	43.769 42.297 41.981 44.040 45.432	1.00 1.00 1.00 1.00	39.11 39.36 39.50 43.57 49.29
50	MOTA MOTA MOTA MOTA	1198 1199 1200 1201	CG2 N CA C	THR VAL VAL VAL	A 146 A 147 A 147 A 147	17.686 15.699 15.774 16.800	18.953 16.998 16.719 17.682	43.244 41.454 40.017 39.433	1.00 1.00 1.00	46.55 39.48 38.72 39.04
55	ATOM ATOM ATOM ATOM ATOM	1202 1203 1204 1205 1206	CG2	VAL . VAL .	A 147 A 147 A 147 A 147 A 148	16.921 14.451 13.871 14.532	18.842 16.800 18.209 16.183	39.851 39.268 39.197 37.873	1.00 1.00 1.00	38.28 40.51 42.34 36.37
60	ATOM ATOM ATOM ATOM ATOM ATOM	1206 1207 1208 1209 1210 1211 1212	CA C O CB CG1	VAL A VAL A VAL A VAL A	A 148 A 148 A 148 A 148 A 148 A 148 A 148	17.711 18.685 18.569 18.093 20.117 20.196 20.543	17.103 17.909 17.615 16.554 17.663 17.921 16.227	38.634 37.910 36.406 35.994 38.437 39.948 38.135	1.00 1.00 1.00 1.00	39.16 38.86 38.03 38.38 37.94 37.81 39.08

	ATOM	1213	N	GLU A		19.105 19.010	18.521	35.575	1.00 37.21
	MOTA MOTA	1214 1215	CA C	GLU A GLU A		20.309	18.272 17.767	34.118 33.517	1.00 37.63 1.00 36.45
	ATOM	1216	ŏ	GLU A		21.385	18.214	33.912	1.00 37.57
5	ATOM	1217	CB	GLU A	149	18.519	19.530	33.403	1.00 48.95
	MOTA	1218	CG	GLU A		19.598	20.527	33.046	1.00 53.64
	ATOM	1219	CD	GLU A		19.100	21.544	32.022	1.00 58.00
	ATOM	1220	OE1			19.440	22.716	32.229	1.00 55.36
10	ATOM ATOM	1221 1222	OE2 N	GLU A		18.363 20.200	21.228 16.861	31.067 32.559	1.00 61.49 1.00 37.43
10	MOTA	1223	CA	GLY A		21.399	16.289	31.923	1.00 37.43
	ATOM	1224	č	GLY A		21.910	17.392	30.970	1.00 37.55
	MOTA	1225	0	GLY A	150 .	21.071	18.016	30.338	1.00 37.62
	MOTA	1226	N	GLN A		23.181	17.714	31.014	1.00 37.21
15	MOTA	1227	CA	GLN A		23.713	18.812	30.210	1.00 36.92
	MOTA	1228	C	GLN A		24.833	18.247	29.331	1.00 37.46
	ATOM ATOM	1229 1230	O CB	GLN A		25.351 24.280	17.166 19.937	29.610 31.078	1.00 35.27 1.00 37.56
	ATOM	1231	CG	GLN A		23.177	20.667	31.852	1.00 37.36
20	ATOM	1232	CD	GLN A		23.691	21.877	32.581	1.00 48.78
	ATOM	1233		GLN A		23.987	22.896	31.946	1.00 49.56
	ATOM	1234	NE2	GLN A	151	23.820	21.769	33.905	1.00 44.12
	MOTA	1235	N	VAL A		25.173	19.028	28.294	1.00 36.05
25	MOTA	1236	CA	VAL A		26.097	18.488	27.284	1.00 36.80
25	MOTA	1237	C	VAL A		27.209	19.494	26.986	1.00 37.21
	ATOM ATOM	1238 1239	O CB	VAL A		26.949 25.385	20.667 18.266	26.795 25.921	1.00 36.72 1.00 40.17
	ATOM	1240		VAL A		26.394	17.345	25.148	1.00 40.17
	ATOM	1241		VAL A		24.181	17.350	26.088	1.00 42.64
30	ATOM	1242	N	ASP A		28.420	19.032	27.005	1.00 37.01
	ATOM	1243	CA	ASP A	153	29.712	19.530	26.819	1.00 37.91
	MOTA	1244	С	ASP A		30.452	19.060	25.554	1.00 36.17
	MOTA	1245	0	ASP A		30.094	18.059	24.955	1.00 37.68
25	MOTA	1246	CB	ASP A		30.713	19.123	28.066	1.00 30.79
35	ATOM	1247	CG	ASP A		30.890	20.514	28.634	1.00 39.47
	MOTA MOTA	1248 1249		ASP A		30.469 31.411	21.441 20.767	27.840 29.695	1.00 53.60 1.00 41.06
	ATOM	1250	N N	TYR A		31.550	19.785	25.263	1.00 36.73
	MOTA	1251	CA	TYR A		32.497	19.232	24.299	1.00 38.06
40	ATOM	1252	C	TYR A		33.107	17.950	24.912	1.00 38.77
	MOTA	1253	٥	TYR A	154	33.386	16.934	24.276	1.00 38.93
	MOTA	1254	ÇВ	TYR A		33.624	20.200	23.920	1.00 38.36
	MOTA	1255	CG	TYR A		34.637	19.489	23.038	1.00 38.72
45	MOTA	1256	CD1 CD2	TYR A		34.295	19.193	21.714	1.00 39.88
47	ATOM ATOM	1257 1258	CE1	TYR A		35.875 35.184	19.104 18.532	23.514 20.873	1.00 39.51 1.00 39.95
	ATOM	1259	CE2	TYR A		36.759	18.454	22.687	1.00 33.33
	ATOM	1260	CZ	TYR A		36.412	18.174	21.376	1.00 41.17
	ATOM	1261	ОН	TYR A		37.332	17.516	20.610	1.00 42.16
50	ATOM	1262	N	TYR A	155	33.319	18.027	26.224	1.00 38.13
	MOTA	1263	CA	TYR A		33.883	16.968	27.018	1.00 38.84
	MOTA	1264	С	TYR A		32.959	15.819	27.350	1.00 37.80
	ATOM	1265	0	TYR A		33.530	14.735	27.543	1.00 37.77
55	MOTA	1266	CB	TYR A		34.500	17.518	28.323	1.00 40.03
JJ	ATOM ATOM	1267 1268	CG CD1	TYR A		35.364 34.854	18.745 20.021	28.031 28.230	1.00 43.75 1.00 44.64
	ATOM	1269	CD2	TYR A		36.655	18.604	27.562	1.00 44.86
	ATOM	1270	CE1	TYR A		35.628	21.136	27.950	1.00 46.55
	ATOM	1271	CE2	TYR A		37.440	19.709	27.271	1.00 46.37
60	ATOM	1272	CZ	TYR A		36.920	20.963	27.485	1.00 48.04
	ATOM	1273	OH	TYR A		37.708	22.064	27.230	1.00 50.62
	MOTA	1274	N	GLY A		31.651	16.005	27.491	1.00 36.89
	ATOM,	1275	CA	GLY A	126	30.784	14.894	27.833	1.00 36.27

	ATOM	1276	С	GLY A	156		29.374	15.297	28.278	1.00 36.29
	ATOM	1277	0	GLY A	156		28.845	16.351	27.962	1.00 36.73
	MOTA	1278	N	LEU A	157		28.737	14.367	28.989	1.00 35.47
	ATOM	1279	CA	LEU A	157		27.410	14.593	29.547	1.00 36.71
5	ATOM	1280	С	LEU A	157		27.570	14.782	31.061	1.00 36.98
	MOTA	1281	0	LEU A	157		28.299	14.009	31.703	1.00 37.91
	ATOM	1282	CB	LEU A			26.472	13.404	29.348	1.00 36.06
	ATOM	1283	CG	LEU A	157		26,409	12.902	27.878	1.00 39.11
	ATOM	1284		LEU A			25.362	11.777	27.835	1.00 40.34
10	ATOM	1285		LEU A			25.944	14.021	26.948	1.00 37.66
	ATOM	1286	N	TYR A			26.860	15.773	31.583	1.00 36.59
	ATOM	1287	CA	TYR A			27.043	16.018	33.020	1.00 37.29
	ATOM	1288	C	TYR A			25.778	16.579	33.654	1.00 37.06
	ATOM	1289	ō	TYR A		•	24.813	16.941	32.968	1.00 36.78
15	ATOM	1290	ČВ	TYR A			28.202	17.007	33.172	1.00 37.24
~~	ATOM	1291	CG	TYR A			27.948	18.410	32.664	1.00 38.25
	ATOM	1292	CD1			-	27.547	19.427	33.526	1.00 37.59
	ATOM	1293	CD2	TYR A			28.158	18.721	31.322	1.00 38.51
	ATOM	1294	CE1	TYR A			27.355	20.718	33.056	1.00 38.42
20	ATOM	1295	CE2	TYR A			27.955	20.009		1.00 38.42
20									30.839	
	ATOM	1296	CZ	TYR A			27.573	21.006	31.711	1.00 38.61
	MOTA	1297	OH	TYR A			27.359	22.290	31.260	1.00 37.90
	MOTA	1298	N ~-	TYR A	159		25.799	16.661	34.979	1.00 36.65
25	MOTA	1299	CA	TYR A			24.758	17.394	35.694	1.00 37.45
25	ATOM	1300	C	TYR A			25.493	18.169	36.801	1.00 37.16
	ATOM	1301	0_	TYR A			26.659	17.920	37.045	1.00 37.16
	MOTA	1302	CB	TYR A			23.638	16.543	36.301	1.00 37.42
	MOTA	1303	CG	TYR A	159		24.161	15.441	37.222	1.00 37.53
20	MOTA	1304	CD1		159		24.429	14.181	36.732	1.00 39.31
30	MOTA	1305	CD2	TYR A			24.352	15.689	38.574	1.00 38.15
	ATOM	1306	CE1	TYR A			24.902	13.169	37.564	1.00 39.89
	ATOM	1307		TYR A			24.823	14.699	39.407	1.00 38.54
	ATOM	1308	CZ	TYR A			25.101	13.454	38.893	1.00 39.58
	ATOM	1309	OH	TYR A	159		25.613	12.488	39.741	1.00 40.63
35	ATOM	1310	N	VAL A			24.779	19.122	37.356	1.00 36.88
	MOTA	1311	CA	VAL A	160		25.251	19.943	38.452	1.00 38.20
	ATOM	1312	С	VAL A	160		24.277	19.714	39.629	1.00 38.68
	ATOM	1313	0	VAL A	160		23.078	19.922	39.514	1.00 38.89
	MOTA	1314	CB	VAL A	160		25.295	21.439	38.094	1.00 41.01
40	ATOM	1315	CG1	VAL A	160		25.815	22.251	39.288	1.00 39.83
	ATOM	1316	CG2	VAL A	160		26.254	21.687	36.916	1.00 36.61
	ATOM	1317	N	HIS A	161		24.818	19.208	40.708	1.00 39.08
	ATOM	1318	CA	HIS A	161		24.018	18.916	41.919	1.00 39.84
	MOTA	1319	С	HIS A	161		24.734	19.569	43.095	1.00 39.51
45	MOTA	1320	0	HIS A	161		25.900	19.316	43.322	1.00 38.92
	MOTA	1321	CB	HIS A	161		23.939	17.418	42.140	1.00 37.10
	MOTA	1322	CG	HIS A	161		23.189	16.976	43.377	1.00 36.87
	MOTA	1323	ND1	HIS A			21.908	17.363	43.665	1.00 42.27
	ATOM	1324		HIS A			23.571	16.163	44.374	1.00 38.66
50	ATOM	1325		HIS A			21.508	16.811	44.805	1.00 34.42
- •	ATOM	1326		HIS A			22.503	16.079	45.262	1.00 40.76
	ATOM	1327	N	GLU A			24.031	20.404	43.832	1.00 41.45
	ATOM	1328	CA	GLU A			24.557	21.115	44.998	1.00 43.07
	ATOM	1329	C	GLU A			25.795	21.928	44.616	1.00 42.85
55		1330	0	GLU A			26.806	21.828	45.304	1.00 42.83
55	ATOM ATOM	1331	CB	GLU A			24.930	20.138	46.121	1.00 45.43
	ATOM	1332	CG	GLU A			23.750	19.235	46.415	1.00 59.55
	ATOM	1333	CD	GLU A			23.494	18.891	47.854	1.00 61.68
60	ATOM	1334		GLU A			22.551	19.508	48.387	1.00 66.02
60	ATOM	1335		GLU A			24.226	18.027	48.364	1.00 65.49
	ATOM	1336	N	GLY A			25.786	22.518	43.432	1.00 43.79
	MOTA	1337	CA	GLY A			26.930	23.253	42.929	1.00 43.51
	MOTA,	1338	С	GLY A	163		28.023	22.409	42.306	1.00 43.73

	ATOM ATOM	1339 1340	0 N	GLY A 10 ILE A 10		28.958 27.986	23.011 21.079	41.746 42.371	1.00 43.41 1.00 42.17
	ATOM	1341	CA	ILE A 1		29.078	20.258	41.896	1.00 42.17
	ATOM	1342	C	ILE A 1		28.743	19.687	40.513	1.00 41.11
5	MOTA	1343	0	ILE A 1	54	27.677	19.110	40.314	1.00 40.21
	MOTA	1344	CB	ILE A 16		29.442	19.081	42.820	1.00 41.77
	ATOM	1345	CG			29.730	19.597	44.228	1.00 46.60
	ATOM ATOM	1346 1347	CG	2 ILE A 16 1 ILE A 16		30.651 29.708	18.346 18.526	42.258	1.00 43.25 1.00 50.89
10	MOTA	1348	N	ARG A 16		29.613	20.004	45.303 39.561	1.00 30.83
• •	ATOM	1349	CA	ARG A 16		29.428	19.508	38.202	1.00 40.37
	MOTA	1350	C	ARG A 16		29.979	18.082	38.132	1.00 40.18
	MOTA	1351	0	ARG A 16	55	31.139	17.889	38.436	1.00 40.87
1.5	MOTA	1352	CB	ARG A 16		30.211	20.389	37.205	1.00 43.98
15	ATOM	1353	CG	ARG A 16		30.190	19.775	35.799	1.00 48.81
	ATOM	1354	CD	ARG A 16		31.056	20.614	34.844	1.00 50.67
	ATOM ATOM	. 1355 1356	NE CZ	ARG A 16		30.374 30.245	21.882 22.592	34.644 33.535	1.00 54.50 1.00 51.25
	ATOM	1357		L ARG A 16		30.788	22.211	32.399	1.00 51.25
20	MOTA	1358		2 ARG A 16		29.552	23.727	33.612	1.00 46.13
	ATOM	1359	N	THR A 16		29.159	17.127	37.747	1.00 38.84
	MOTA	1360	CA	THR A 16	6	29.502	15.722	37.710	1.00 37.91
	MOTA	1361	С	THR A 16		29.318	15.152	36.310	1.00 36.66
25	MOTA	1362	0	THR A 16		28.167	15.109	35.857	1.00 36.77
25	MOTA	1363	CB	THR A 16		28.621	14.911	38.700	1.00 42.71
	ATOM	1364 1365		. THR A 16		28.895	15.399	40.034	1.00 43.09
	ATOM ATOM	1366	N N	THR A 16 TYR A 16		28.934 30.398	13.427 14.733	38.662 35.667	1.00 40.93 1.00 36.29
	MOTA	1367	CA	TYR A 16		30.309	14.112	34.342	1.00 36.25
30	ATOM	1368	C	TYR A 16		29.970	12.639	34.466	1.00 37.76
	MOTA	1369	0	TYR A 16		30.561	11.961	35.335	1.00 39.69
	MOTA	1370	CB	TYR A 16	7	31.611	14.231	33.518	1.00 37.91
	ATOM	1371	CG	TYR A 16		31.797	15.617	32.933	1.00 38.45
25	MOTA	1372	CD1			32.311	16.637	33.726	1.00 39.32
35	ATOM	1373	CD2			31.397	15.937	31.646	1.00 39.69
	ATOM ATOM	1374 1375	CE1			32.458 31.535	17.919 17.214	33.243 31.133	1.00 38.98 1.00 39.08
	ATOM	1376	CZ	TYR A 16		32.064	18.201	31.946	1.00 40.35
	MOTA	1377	ОН	TYR A 16		32.216	19.488	31.494	1.00 39.61
40	ATOM	1378	N	PHE A 16		28.924	12.172	33.821	1.00 37.39
	MOTA	1379	CA	PHE A 16	8	28.547	10.772	33.818	1.00 38.28
	MOTA	1380	С	PHE A 16		28.987	10.058	32.559	1.00 39.29
	MOTA	1381	0	PHE A 16		28.980	8.825	32.494	1.00 38.30
45	ATOM ATOM	1382 1383	CB	PHE A 16		27.085	10.508	34.167	1.00 38.07
43	ATOM	1384	CG CD1	PHE A 16		26.068 25.596	11.226 10.661	33.320 32.153	1.00 34.93 1.00 36.11
	ATOM	1385	-	PHE A 16		25.609	12.470	33.722	1.00 35.04
	ATOM	1386		PHE A 16		24.656	11.337	31.364	1.00 34.93
_	ATOM	1387	CE2	PHE A 16	8	24.672	13.140	32.951	1.00 35.38
50	MOTA	1388	CZ	PHE A 16	8	24.215	12.564	31.799	1.00 30.80
	ATOM	1389	N	VAL A 16		29.331	10.849	31.524	1.00 39.59
	MOTA	1390	CA	VAL A 16		30.019	10.310	30.354	1.00 40.03
	ATOM	1391	C	VAL A 16		31.149	11.322	30.039	1.00 41.32
55	ATOM ATOM	1392 1393	O	VAL A 16		30.904	12.530	30.018	1.00 39.98
23	ATOM	1394	CB CG1	VAL A 16		29.136 29.988	10.155 9.684	29.112 27.917	1.00 39.59 1.00 41.55
	ATOM	1395		VAL A 16		28.019	9.107	29.242	1.00 38.14
•	ATOM	1396	N	GLN A 170		32.377	10.844	29.870	1.00 41.92
	ATOM	1397	CA	GLN A 170		33.464	11.693	29.396	1.00 42.70
60	MOTA	1398	С	GLN A 170		33.833	11.215	27.990	1.00 43.33
	MOTA	1399	0	GLN A 170		34.348	10.097	27.861	1.00 43.22
	ATOM	1400	CB	GLN A 170		34.696	11.627	30.293	1.00 39.48
	ATOM	1401	CG	GLN A 170	J	34.448	12.220	31.676	1.00 45.31

	MOTA	1402 1403	CD	GLN A			. 691 . 649	12.212	32.542 33.717		46.68 52.69
	ATOM ATOM	1403		GLN A			.816	11.848 12.618	31.998		47.58
	ATOM	1405	N	PHE A			. 678	12.076	26.982		43.04
5	ATOM	1406,	CA	PHE P	171	33.	. B84	11.606	25.629	1.00	44.34
	MOTA	1407	С	PHE A			. 302	11.186	25.340		45.84
	MOTA	1408	0	PHE A			. 508	10.343	24.446		45.10
	MOTA	1409 1410	CB CG	PHE A	171. 171.		.422 .961	12.612	24.597		39.68
10	MOTA MOTA	1411		PHE A			016	12.978 11.986	24.639 24.875		38.24 40.47
10	ATOM	1412		PHE A			530	14.269	24.412		35.50
	ATOM	1413		PHE A			673	12.310	24.905		37.70
	MOTA	1414		PHE A	171		187	14.604	24.441		37.98
	MOTA	1415	CZ	PHE A			248	13.621	24.690		37.99
15	MOTA	1416	N	LYS A			287	11.662	26.080		45.69
	MOTA	1417	CA	LYS A			660	11.223	25.889		47.54
	ATOM ATOM	1418 1419	0	LYS A			949	9.748 9.175	26.138 25.570		48.27 48.26
	ATOM	1420	CB	LYS A			594	12.102	26.708		52.42
20	ATOM	1421	CG	LYS A			022	12.159	26.201		57.12
	MOTA	1422	CD	LYS A			904	12.971	27.157		64.24
	ATOM	1423	CE	LYS A		42.	362	12.543	27.018		65.59
	MOTA	1424	NZ	LYS A			304	13.691	26.949		65.87
25	ATOM	1425	N	ASP A			154	9.132	27.009		48.25
25	ATOM	1426	CA	ASP A			212	7.712	27.287		49.23
	ATOM ATOM	1427 1428	C O	ASP A			954 788	6.925	26.007		49.36
	MOTA	1429	CB	ASP A			263	6.072 7.269	25.701 28.394		49.13 46.27
	MOTA	1430	, CG	ASP A			627	7.869	29.740		50.82
30	ATOM	1431		ASP A			740	8.056	30.605		51.86
	MOTA	1432		ASP A			817	8.158	29.970		52.02
	MOTA	1433	N	ASP A	174	35.	901	7.144	25.248	1.00	49.89
	ATOM	1434	CA	ASP A			671	6.430	24.007		50.79
35	ATOM	1435	C	ASP A			647	6.784	22.897		52.00
33	MOTA MOTA	1436 1437	0	ASP A			085 231	5.884	22.165		51.37
,	ATOM	1438	CB CG	ASP A			276	6.582 5.662	23.539 24.274		51.65 51.83
	ATOM	1439		ASP A			751	4.664	24.847		48.40
	ATOM	1440		ASP A			060	5.942	24.269		52.72
40	ATOM	1441	N	ALA A	175	37.	040	8.053	22.808	1.00	52.36
	ATOM	1442	CA	ALA A		38.		8.476	21.821	1.00	53.78
	ATOM	1443	c	ALA A		39.		7.759	21.964		54.22
	ATOM	1444	0	ALA A			999	7.417	20.974		54.32
45	ATOM ATOM	1445 1446	CB N	ALA A GLU A		38. 39.		9.986 7.508	21.910 23.186		51.67 55.55
	ATOM	1447	CA	GLU A		41.		6.865	23.409		56.73
	ATOM	1448	C	GLU A		41.		5.357	23.234		57.74
	ATOM	1449	0	GLU A		42.		4.646	23.187		58.14
	ATOM	1450	CB	GLU A		41.		7.170	24.806	1.00	56.85
50	ATOM	1451	CG	GLU A		41.		8.632	25.116		59.30
	ATOM	1452	CD	GLU A		42.		8.743	26.537		99.00
	MOTA MOTA	1453 1454	OE1 OE2			41. 43.		8.063 9.574	27.454		99.00
	MOTA	1455	N N	LYS A		39.		4.852	26.687 23.170		99.00 58.44
55	ATOM	1456	CA	LYS A		39.		3.420	23.024		59.70
	ATOM	1457	C	LYS A		39.		3.069	21.561		60.20
	ATOM	1458	0	LYS A		39.		1.895	21.198		60.71
	ATOM	1459	СВ	LYS A	177	38.	350	3.040	23.887		63.58
60	MOTA	1460	CG	LYS A		38.		1.569	24.029		67.87
60	ATOM	1461	CD	LYS A		37.0		1.277	25.140		70.02
	ATOM	1462	CE N2	LYS A		36.		-0.235	25.242		73.46
	ATOM ATOM	1463 1464	NZ N	LYS A TYR A		36.2 38.5		-0.638 4.057	26.517 20.758		75.57 60.36
	111061	7-0-3	14	1111 M	270	50.	-00	4.00/	20.150	1.00	50.50

	ATOM	1465	CA	TYR A		38.551	3.798	19.381	1.00 61.69
	MOTA	1466	C	TYR A		39.369	4.563	18.361	1.00 62.23
	ATOM	1467	0	TYR A		39.821	3.923	17.409	1.00 63.37
•	MOTA	1468	CB	TYR A		37.057	3.988	19.100	1.00 61.34
5	ATOM	1469	CG	TYR A		36.139	3.197	20.010	1.00 61.39
	ATOM	1470	CD1			36.249	1.811	20.081	1.00 62.10
	ATOM	1471	CD2			35.189	3.821	20.798	1.00 61.28
	MOTA	1472	CE1			35.440	1.072	20.929	1.00 62.32 1.00 62.22
10	ATOM ATOM	1473 1474	CE2	TYR A		34.378 34.505	3.097	21.651 21.707	1.00 62.22
10	ATOM	1475	OH	TYR F		33.696	0.989	22.540	1.00 62.31
	ATOM	1476	N	SER A		39.573	5.858	18.525	1.00 62.15
	MOTA	1477	CA	SER A		40.159	6.703	17.498	1.00 64.19
	ATOM	1478	C.	SER A		41.662	6.923	17.631	1.00 64.98
15	ATOM	1479	0	SER A		42.279	6.550	18.630	1.00 64.79
	ATOM	1480	СВ	SER A		39.470	8.077	17.505	1.00 65.34
	ATOM	1481	OG	SER A		39.982	8.923	16.491	1.00 69.64
	MOTA	1482	N	LYS A	180	42.254	7.552	16.609	1.00 65.75
	ATOM	1483	CA	LYS A	180	43.672	7.876	16.658	1.00 66.93
20	MOTA	1484	С	LYS A	180	43.886	9.316	17.107	1.00 67.25
	MOTA	1485	0	LYS A		44.806	9.591	17.887	1.00 67.85
	ATOM	1486	CB	LYS A		44.431	7.615	15.360	1.00 69.83
	MOTA	1487	CG	LYS A		45.938	7.673	15.581	1.00 73.65
0.5	ATOM	1488	CD	LYS A		46.681	8.326	14.427	1.00 76.04
25	MOTA	1489	CE	LYS A		48.016	8.889	14.887	1.00 75.99
	ATOM	1490	NZ	LYS A		47.829	10.056	15.790	1.00 78.28
	MOTA	1491	N	ASN A		43.017	10.216	16.652	1.00 66.93
	MOTA	1492	CA	ASN A		43.126	11.609	17.113	1.00 66.52
30	ATOM	1493	C	ASN A		42.128	11.842	18.240	1.00 65.58
30	MOTA MOTA	1494 1495	O CB	ASN A		41.133 43.174	11.131 12.454	18.348 16.113	1.00 65.86 0.00 99.00
	ATOM	1496	CG	ASN A		44.528	12.902	15.624	0.00 99.00
	ATOM	1497		ASN A		45.545	12.248	15.833	0.00 99.00
	ATOM	1498		ASN A		44.525	14.056	14.935	0.00 99.00
35	ATOM	1499	N	LYS A		42.432	12.756	19.155	1.00 65.06
	ATOM	1500	CA	LYS A		41.483	13.086	20.232	1.00 62.47
	ATOM	1501	С	LYS A		40.755	14.370	19.855	1.00 60.44
	ATOM	1502	0	LYS A		40.951	15.405	20.491	1.00 60.89
	ATOM	1503	CB	LYS A	182	42.257	13.224	21.544	1.00 68.03
40	MOTA	1504	CG	LYS A	182	41.462	13.626	22.774	1.00 70.69
	MOTA	1505	CD	LYS A	182	42.223	14.606	23.651	1.00 73.12
	MOTA	1506	CE	LYS A		41.360	15.246	24.718	1.00 73.28
	ATOM	1507	NZ	LYS A		40.729	16.534	24.325	1.00 74.63
15	MOTA	1508	N	VAL A		40.007	14.401	18.761	1.00 58.04
45	ATOM	1509	CA	VAL A		39.240	15.559	18.324	1.00 55.16
	ATOM	1510	C	VAL A		37.899	15.073	17.781	1.00 52.42
	ATOM	1511	O	VAL A		37.902	14.220	16.898 17.302	1.00 52.43 1.00 58.84
	ATOM ATOM	1512 1513	CB CC1	VAL A		39.936 38.965	16.462 17.219	16.395	1.00 58.84
50	ATOM	1514		VAL A		40.809	17.504	18.010	1.00 60.87
-	ATOM	1515	N	TRP A		36.785	15.581	18.302	1.00 49.48
	ATOM	1516	CA	TRP A		35.495	15.042	17.878	1.00 45.59
	MOTA	1517	C	TRP A		34.490	16.159	17.706	1.00 44.01
	ATOM	1518	ō	TRP A		34.791	17.353	17.913	1.00 42.88
55	ATOM	1519	СВ	TRP A		35.049	13.926	18.839	1.00 42.62
	ATOM	1520	CG	TRP A		35.075	14.460	20.253	1.00 39.47
	ATOM	1521				34.123	15.236	20.830	1.00 37.50
	MOTA	1522	CD2	TRP A	184	36.109	14.271	21.216	1.00 41.84
	ATOM	1523		TRP A		34.491	15.541	22.123	1.00 36.00
60	MOTA	1524		TRP A		35.717	14.963	22.380	1.00 39.37
	ATOM	1525		TRP A		37.328	13.587	21.201	1.00 39.30
	ATOM	1526		TRP A		36.504	14.983	23.529	1.00-41.08
	ATOM ,	1527	CZ3	TRP A	184	38.105	13.599	22.341	1.00 41.95

								00 400	1 00 42 27
	MOTA	1528	CH2	TRP A		37.692	14.293	23.486	1.00 42.37
	MOTA	1529	N	GLU A		33.292	15.809	17.270	1.00 42.34
	ATOM	· 1530	CA	GLU A	185	32.211	16.770	17.099	1.00 42.70
	ATOM	1531	С	GLU A	185	30.950	16.204	17.765	1.00 43.74
5	ATOM	1532	0	GLU A	185	30.589	15.062	17.506	1.00 43.14
	ATOM	1533 ⁻	CB	GLU A	185	31.903	17.074	15.635	1.00 42.03
	ATOM	1534	CG	GLU A	185	33.023	17.900	14.999	1.00 38.91
	ATOM	1535	CD	GLU A	185	32.851	18.134	13.528	1.00 42.12
	ATOM	1536		GLU A		31.953	17.527	12.910	1.00 40.53
10	ATOM	1537	OE2	GLU A		33.641	18.955	13.015	1.00 39.53
10	ATOM	1538	N	VAL A		30.374	17.021	18.653	1.00 43.76
	ATOM	1539	CA	VAL A	_	29.211	16.563	19.400	1.00 43.51
	ATOM	1540	C	VAL A	_	27.943	17.165	18.791	1.00 45.37
		1541	.0	VAL A	_	27.804	18.379	18.647	1.00 43.51
15	ATOM			VAL A		29.339	17.008	20.872	1.00 41.67
13	ATOM	1542	CB	VAL A		28.159	16.494	21.688	1.00 41.68
	ATOM	1543				30.697	16.596	21.452	1.00 34.89
	ATOM	1544		VAL A		27.012	16.272	18.454	1.00 46.62
	MOTA	1545	N	HIS A			16.656	18.003	1.00 50.05
	MOTA	1546	CA	HIS A		25.679		19.023	1.00 52.23
20	ATOM	1547	Ċ	HIS A		24.620	16.257	19.023	1.00 52.25
	ATOM	1548	0	HIS A		24.447	15.055		
	ATOM	1549	CB	HIS A		25.329	15.949	16.672	1.00 51.22
	MOTA	1550	CG	HIS A		26.356	16.159	15.600	1.00 53.27
	MOTA	1551		HIS A		26.135	16.916	14.467	1.00 55.72
25	ATOM	1552	CD2	HIS A	187	27.633	15.710	15.495	1.00 54.05
	ATOM	1553	CE1	HIS A	187	27.216	16.925	13.713	1.00 49.24
	MOTA	1554	NE2	HIS A	187	28.134	16.205	14.329	1.00 53.78
	MOTA	1555	N	ALA A	188	23.836	17.199	19.524	1.00 54.61
	ATOM	1556	CA	ALA A	188	22.883	16.882	20.591	1.00 57.68
30	ATOM	1557	C	ALA A		21.502	17.477	20.393	1.00 59.90
50	ATOM	1558	Ö	ALA A		20.747	17.673	21.356	1.00 60.86
	ATOM	1559	СВ	ALA A		23.501	17.291	21.929	1.00 57.50
	ATOM	1560	N	GLY A		21.107	17.773	19.155	1.00 61.42
	ATOM	1561	CA	GLY A		19.809	18.381	18.867	1.00 62.45
35		1562	C	GLY A		19.862	19.892	18.710	1.00 62.76
33	ATOM		Ö	GLY A		18.863	20.613	18.809	1.00 63.40
	ATOM	1563		GLY A		21.051	20.429	18.448	1.00 62.37
	ATOM	1564	N			21.211	21.883	18.338	1.00 60.60
	ATOM	1565	CA	GLY A		22.551	22.159	17.660	1.00 58.62
40	MOTA	1566	C	GLY A		23.029	21.274	16.958	1.00 58.39
40	ATOM	1567	0	GLY A			23.285	17.983	1.00 56.77
	ATOM	1568	N	GLN A		23.173		17.336	1.00 54.69
	ATOM	1569	CA	GLN A		24.466	23.554		1.00 52.57
	MOTA	1570	С	GLN A		25.462	22.451	17.687	1.00 52.69
	MOTA	1571	0 -	GLN A		25.599	22.082	18.858	1.00 52.03
45	ATOM	1572	CB	GLN A		24.972	24.927	17.760	1.00 58.33
	MOTA	1573	CG	GLN A		26.437	25.200	17.502	
	MOTA	1574	CD	GLN A	191	26.166	26.948	17.561	0.00 99.00
	ATOM	1575	OE1	GLN A	191	25.459	27.683	16.891	0.00 99.00
	ATOM	1576	NE2	GLN A	191	27.070	27.403	18.451	0.00 99.00
50	ATOM	1577	N	VAL A	192	26.162	21.943	16.684	1.00 49.07
	ATOM	1578	CA	VAL A		27.264	21.012	16.898	1.00 45.59
	ATOM	1579	С	VAL A	192	28.237	21.647	17.875	1.00 44.47
	ATOM	1580	ō	VAL A	192	28.473	22.853	17.803	1.00 45.15
	ATOM	1581	CB	VAL A		27.960	20.717	15.544	1.00 42.50
55		1582		VAL A		29.047	19.665	15.684	1.00 39.90
23	ATOM		CGI	VAL A	192	26.874	20.237	14.584	1.00 40.84
	ATOM	1583		ILE A		28.831	20.882	18.775	1.00 41.81
	ATOM	1584	N			29.875	21.406	19.636	1.00 39.71
	ATOM	1585	CA	ILE A		31.246	21.400	19.127	1.00 40.00
60	MOTA	1586	C	ILE A			19.822	19.009	1.00 40.12
60	ATOM	1587	0	ILE A		31.569		21.104	1.00 36.14
	MOTA	1588	CB	ILE A		29.715	20.868	21.104	1.00 38.63
	MOTA	1589	CG1			28.303	21.218		
	MOTA	1590	CG2	ILE A	193	30.765	21.585	21.957	1.00 38.85

									1 00 41 20
	ATOM	1591	CD1	ILE A		27.916	20.591	22.922	1.00 41.29
	ATOM	1592	N	LEU A		32.075	22.008	18.852	1.00 39.67
	ATOM	1593	CA	LEU A	194	33.436	21.783	18.388	1.00 40.23
	ATOM	1594	С	LEU A	194	34.455	21.944	19.486	1.00 40.97
5	MOTA	1595	0	LEU A	194	34.136	22.489	20.557	1.00 40.07
	ATOM	1596	CB	LEU A	194	33.741	22.794	17.252	1.00 38.19
	ATOM	1597	CG	LEU A		32.736	22.764	16.101	1.00 42.91
	ATOM	1598		LEU A	194	33.203	23.702	14.980	1.00 42.33
	ATOM	1599		LEU A		32.593	21.362	15.514	1.00 41.05
10	ATOM	1600	N	CYS A		35.658	21.430	19.269	1.00 41.29
	ATOM	1601	CA	CYS A		36.711	21.575	20.273	1.00 43.15
	ATOM	1602	C	CYS A		36.956	23.045	20.562	1.00 45.32
	MOTA	1603	Ö	CYS A		37.083	23.872	19.671	1.00 44.47
	ATOM	1604	СВ	CYS A		37.981	20.893	19.785	1.00 44.75
15	ATOM	1605	SG	CYS A		39.358	21.057	20.920	1.00 43.19
13		1605	N	PRO A		36.918	23.423	21.847	1.00 46.44
	MOTA	-		PRO A		36.978	24.814	22.245	1.00 47.49
	ATOM	1607	CA			38.376	25.335	22.514	1.00 48.05
	MOTA	1608	C	PRO A			26.531	22.759	1.00 49.91
20	ATOM	1609	0	PRO A		38.575			1.00 48.09
20	MOTA	1610	CB	PRO A		36.123	24.820	23.515	
	MOTA	1611	CG	PRO A		36.293	23.449	24.079	1.00 47.48
	MOTA	1612	CD	PRO A		36.834	22.513	23.018	1.00 47.09
	ATOM	1613	N	THR A		39.365	24.477	22.488	1.00 48.20
	ATOM	1614	CA	THR A		40.753	24.821	22.766	1.00 49.51
25	MOTA	1615	С	THR A		41.610	24.697	21.491	1.00 48.70
	MOTA	1616	0	THR A		41.132	24.143	20.508	1.00 47.51
	ATOM	1617	CB	THR A	197	41.337	23.819	23.789	1.00 54.19
	ATOM	1618	OG1	THR A	197	42.063	22.755	23.133	1.00 60.20
	MOTA	1619	CG2	THR A	197	40.249	23.146	24.620	1.00 60.00
30	ATOM	1620	N	SER A	198	42.874	25.104	21.600	1.00 48.43
	MOTA	1621	CA	SER A	198	43.755	25.011	20.443	1.00 49.41
	ATOM	1622	С	SER A	198	44.106	23.572	20.088	1.00 51.13
	ATOM	1623	0	SER A	198	44.340	22.748	20.974	1.00 50.32
	ATOM	1624	CB	SER A		45.022	25.837	20.600	1.00 41.67
35	ATOM	1625	OG	SER A		44.689	27.176	20.863	1.00 42.21
	ATOM	1626	N	VAL A		44.135	23.321	18.783	1.00 51.78
	ATOM	1627	CA	VAL A		44.448	22.018	18.210	1.00 54.21
	ATOM	1628	C	VAL A		45.846	22.063	17.593	1.00 55.85
	ATOM	1629	Õ	VAL A		46.229	23.043	16.958	1.00 55.32
40	ATOM	1630	CB	VAL A		43.415	21.673	17.105	1.00 55.83
40	ATOM	1631		VAL A		43.848	20.450	16.311	1.00 58.48
		1632		VAL A		42.081	21.363	17.794	1.00 58.90
	ATOM ATOM		N CG2	PHE A		46.643	21.031	17.823	1.00 57.80
	ATOM	1633	CA	PHE A		48.033	20.977	17.458	1.00 60.84
45		1634				48.501	19.863	16.538	1.00 63.34
43	ATOM	1635	C	PHE A				16.373	1.00 63.71
	ATOM	1636	0	PHE A	200	47.988	18.771	18.695	1.00 56.48
	ATOM	1637	CB	PHE A		48.976	20.962	19.286	1.00 50.40
	MOTA	1638	CG	PHE A		49.009	22.350		1.00 50.53
50	MOTA	1639		PHE A		49.867	23.304	18.779	1.00 52.06
50	MOTA	1640		PHE A		48.118	22.686	20.298	
	ATOM	1641		PHE A		49.844	24.596	19.289	1.00 48.79
	ATOM	1642		PHE A		48.104	23.972	20.813	1.00 46.67
	MOTA	1643	CZ	PHE A		48.952	24.921	20.283	1.00 48.73
	MOTA	1644	N	SER A		49.612	20.201	15.906	1.00 65.54
55	ATOM	1645	CA	SER A		50.520	19.367	15.151	1.00 67.49
	ATOM	1646	С	SER A		50.543	17.927	15.652	1.00 68.56
	ATOM	1647	0	SER A		50.873	17.710	16.841	1.00 69.46
	ATOM	1648	CB	SER A		51.928	19.984	15.374	1.00 69.06
	MOTA	1649	OG	SER A	201	51.799	21.376	15.666	1.00 64.56
60	ATOM	1650	OT	SER A		50.201	17.025	14.856	1.00 71.71
	ATOM	1651		WAT W	1	16.850	8.350	41.749	1.00 33.70
	ATOM	1652		WAT W	2	14.700	3.706	36.739	1.00 34.70
	ATOM	1653		W TAW	3	23.512	-21.581	45.725	1.00 35.04

	ATOM	1654	OW0	WAT	W	4		-16.192	51.826	1.00	
	MOTA	1655	OW0	WAT	W	5	27.151	6.021	35.728	1.00	
	MOTA	1656	OWO		W	6	35.841	19.641	17.028	1.00	
	MOTA	1657		WAT		7	12.924	7.105	31.382		36.46
5	ATOM	1658		WAT		8	22.396	20.058	35.878	1.00	
	MOTA	1659		WAT		9	17.562		44.759	1.00	
	ATOM	1660		WAT		10	23.931	7.992	29.610		38.76
	MOTA	1661	OW0		W	11	32.085	22.981	25.237		38.96
	MOTA	1662		WAT		12	18.237	6.493	43.333		38.84
10	ATOM	1663		TAW		13	19.973	21.293	36.711		39.29
	ATOM	1664		TAW		14	14.757	-3.264	32.978 48.084		39.94
	MOTA	1665		WAT		15	19.948	-2.552			40.05
	MOTA	1666			W	16	13.394	-3.627	35.420 40.503		40.12
	ATOM	1667		WAT		17	24.218	1.873 -9.846	41.166		40.24
15	MOTA	1668		TAW		18	12.970	23.835	36.728		40.10
	MOTA	1669		TAW		19	29.332	14.615	37.196		40.03
	MOTA	1670		TAW		20	32.982		41.801		40.85
	MOTA	1671			W	21	15.963	14.124	27.538		41.62
	MOTA	1672		TAW		22	36.115 36.759	24.316	27.854		41.58
20	ATOM	1673		TAW		23	24.232	-12.120	40.700		41.18
	MOTA	1674		TAW		24	20.170	8.808	43.184		41.55
	MOTA	1675		WAT		25	14.174	8.391	52.525		43.14
	ATOM	1676		TAW		26 27	25.412	3.713	30.549		41.48
25	MOTA	1677		WAT		28	14.723	-7.678	41.271		41.77
25	MOTA	1678		WAT		29	19.317	13.171	52.356		41.81
	MOTA	1679		WAT		30	23.266	21.233	27.612		42.08
	ATOM	1680		TAW TAW		31	11.768	12.568	50.507		42.04
	ATOM	1681		WAI		32	13.539	-13.131	41.639		42.18
20	MOTA	1682		WAT		33	11.508	10.524	52.379		42.93
30	ATOM	1683		WAT		34	3.363	-0.753	38.246		42.96
	MOTA	1684		WAT		35	22.835	-3.224	40.382		43.01
	MOTA	1685		WAT		36	26.824	22.825	28.526		43.00
	MOTA	1686		WAT		37	18.644	-1.265	41.392		43.97
35	ATOM	1687 1688		WAT		38	8.736	-6.966	49.493		43.69
33	ATOM ATOM	1689		WAT		39		-14.676	38.985	1.00	43.87
	ATOM	1690		WAT		40	8.333	-12.297	37.586	1.00	44.06
	ATOM	1691		WAT		41	25.939	7.843	39.161	1.00	44.11
	ATOM	1692		WAT		42	10.384	9.683	30.485	1.00	44.27
40	MOTA	1693		WAT		43	0.943	8.083	43.152	1.00	44.34
70	ATOM	1694		WAT		44	21.071	2.692	43.998	1.00	44.65
	ATOM	1695		WAT		45	16.203	7.540	48.658	1.00	44.83
	ATOM	1696		WAT		46	21.491	-11.431	40.332	1.00	
	ATOM	1697		WAT		47	21.292	-1.593	41.871	1.00	45.24
45	MOTA	1698				48	33.051	8.145	30.148	1.00	
	ATOM	1699	OWO	WAT	W	49	11.644	15.303	50.268	1.00	
	MOTA	1700	OWO	WAT	W	50	35.864	19.699	14.264	1.00	
	ATOM	1701	OW0	WAT	W	51	7.067	6.695	50.824		46.58
	ATOM	1702	OW0	TAW	W	52	27.033	16.432	44.207	1.00	47.45
50	MOTA	1703		WAT		53	12.107	-10.902	38.882		47.44
	ATOM	1704	OWO	WAT	W	54	31.232	24.588	19.293	1.00	
	MOTA	1705	OWO	WAT	W	55	21.781	-3.130	44.031		47.48
	MOTA	1706	OWO	WAT	W	56	7.169	-27.314	41.711		48.17
	ATOM	1707		WAT		57	33.861	-1.778	23.374	1.00	
55	ATOM	1708		WAT		58	33.357	8.082	26.362		48.51
	ATOM	1709		WAT		59	26.396	24.163	13.998		49.70
	ATOM	1710		WAT		60	21,233	20.044	43.429	1.00	49.73
	ATOM	1711		WAT		61	39.604	24.739	18.318		49.28
	ATOM	1712	OW0	WAT	W	62	24.974	-18.827	45.601		50.87
60	ATOM	1713		WAT		63	21.207	-0.654	31.876		49.81
	ATOM	1714	OWO	WAT	W	64	13.203	8.179	28.792		50.30
	ATOM	1715		WAT		65	21.887	5.385	43.977		50.58
	ATOM	1716		WAT		66	24.468	6.206	27.276	1.00	50.23

PCT/GB00/03568

1.00 50.79 -6.928 39.274 MOTA 1717 W TAW OWO 67 16.159 1718 OWO WAT W 68 18.759 17.803 28.696 1.00 50.80 ATOM 1719 W TAW OWO 69 13.821 14.472 25.933 1.00 52.01 MOTA MOTA 1720 OWO WAT W 70 5.992 2.145 50.465 1.00 52.52 W TAW OWO 71 22.450 0.866 42.331 1.00 52.86 MOTA 1721 1.00 52.16 14.455 MOTA 1722 OWO WAT W 72 37.480 29.856 MOTA 1723 W TAW OWO 73 7.914 14.799 34.609 1.00 52.26 74 33.074 12.928 1.00 52.80 ATOM W TAW OWO 14.728 1724 75 ATOM 1725 OWO WAT W -2.1395.177 35.817 1.00 53.07 10 ATOM 1726 W TAW OWO 76 8.849 6.339 29.567 1.00 53.08 1.00 53.22 77 2.499 MOTA 1727 OWO WAT W 9.596 40.507 MOTA 1728 TAW 0WO W 78 8.453 -4.31350.928 1.00 53.22 MOTA 1729 OWO WAT W 79 13.988 -16.279 37.477 1.00 54.52 1730 80 29.311 1.00 53.94 ATOM W TAW OWO 23.613 25.169 15 MOTA 1731 TAW 0WO W 81 10.698 17.607 37.556 1.00 53.87 1732 1.00 54.34 10.533 -28.803 42.420 ATOM OWO WAT W 82 MOTA 1733 W TAW OWO 83 1.674 -0.659 35.990 1.00 54.11 MOTA OWO WAT W 84 13.238 5.649 29.129 1.00 54.35 1734 1.00 53.98 MOTA 1735 TAW 0WO W 85 23.172 23.184 42.047 20 ATOM 1736 OWO WAT W 86 25.591 -14.157 41.467 1.00 54.33 39.505 1.00 55.10 ATOM OWO WAT W 87 4.678 27.285 1737 MOTA 1738 TAW OWO W 88 33.071 24.177 22.504 1.00 53.92 -14.306 47.361 1.00 55.09 1739 OWO WAT W 89 2.865 ATOM MOTA 1740 W TAW DWO 90 10.824 5.199 27.990 1.00 54.87 25 MOTA 1741 W TAW OWO 91 13.268 -18.76237.013 1.00 55.07 1.00 56.03 1742 19.672 34.883 MOTA TAW 0WO W 92 23.135 1743 W TAW OWO 93 3.899 3.408 32.498 1.00 56.24 MOTA 94 17.326 5.781 ATOM 1744 50.106 OWO WAT W 1.00 56.35 MOTA 1745 TAW OWO W 95 46.420 28.753 20.001 1.00 56.50 30 ATOM 1746 OWO WAT W 96 18.033 -25.950 38.021 1.00 56.78 16.668 20.729 MOTA 1747 W TAW OWO 97 11.173 1.00 57.28 98 -0.327 37.865 MOTA 1748 TAW 0WO W -1.130 1.00 56.31 13.791 -29.887 42.473 1.00 56.28 1749 TAW OWO W 99 MOTA 1.00 56.78 MOTA 1750 W TAW OWO 100 14.138 -6.120 36.256 35 ATOM 1751 OWO WAT W 101 -0.503 -1.004 43.200 1.00 56.68 102 29.920 MOTA 1752 TAW OWO W 7.034 2.268 1.00 57.78 MOTA 1753 TAW OWO W 103 39.612 16.983 21.840 1.00 57.56 34.772 MOTA 1754 OWO WAT W 104 12.322 -7.683 1.00 57.82 OWO WAT W 105 21.186 39.197 1.00 58.10 MOTA 1755 21.778 40 1.00 58.04 OWO WAT W 106 25.213 27.127 14.493 1756 ATOM MOTA 1757 OWO WAT W 107 37.189 5.450 11.613 1.00 58.31 ATOM 1758 OWO WAT W 108 25.799 -17.600 47.916 1.00 58.58 1.00 57.70 25.505 ATOM 1759 OWO WAT W 109 0.503 36.518 MOTA 1760 OW0 WAT W 110 21.154 19.292 24.315 1.00 58.80 45 OWO WAT W 111 1.00 58.45 MOTA 23.932 29.269 1761 23.123 MOTA 1762 TAW 0WO W 112 30.025 16.034 12.701 1.00 58.92 1.00 60.00 5.440 -12.369 ATOM 1763 OWO WAT W 113 36.445 45.949 MOTA 1764 OWO WAT W 114 18.908 19.720 1.00 59.22 1.00 59.38 ATOM 1765 OWO WAT W 115 3.882 16.171 43.893 1.00 58.92 50 ATOM 1766 TAW 0WO W 116 26.040 -17.629 41.513 ATOM 1767 13.942 -10.256 1.00 60.39 OWO WAT W 117 37.298 7.840 ATOM 1768 OW0 WAT W 118 10.062 31.734 1.00 60.14 MOTA 1769 TAW OWO W 119 -1.860 -20.559 43.212 1.00 60.45 1770 16.851 47.879 1.00 60.32 ATOM OWO WAT W 120 18.311 55 26.658 MOTA 1771 OWO WAT W 121 38.093 15.693 1.00 61.27 44.769 ATOM 1772 OWO WAT W 122 7.557 -26.4181.00 61.39 1.00 60.41 MOTA 17.200 32.783 1773 OWO WAT W 123 -4.612 MOTA 1774 OWO WAT W 124 33.055 9.791 13.378 1.00 61.34 ATOM 1775 OWO WAT W 125 29.579 10.149 37.422 1.00 60.84 60 MOTA 1776 126 26.196 13.297 42.367 1.00 60.80 OWO WAT W OWO WAT W 127 ATOM 1777 23.556 -4.737 42.642 1.00 61.18 ATOM 1778 OW0 WAT W 128 10.687 -3.37535.374 1.00 61.88 13.030 -13.947 ATOM 1779 OWO WAT W 129 38.339 1.00 62.52

WO 01/21645

							•
	ATOM	1780	OWO WA	T W 130	9.747 -0.992	36.212	1.00 59.32
	ATOM	1781	OWO WA	T W 131	24.814 -11.997	45.661	1.00 62.19
	MOTA	1782	AW OWO	T W 132	23.200 4.574	23.546	1.00 61.90
_	MOTA	1783	AW OWO	T W 133	24.938 30.370	17.496	1.00 62.23
5	MOTA	1784	AW OWO	T W 134	35.459 1.260	16.603	1.00 62.66
	ATOM	1785	AW OWO	T W 135	24.178 20.068	20.090	1.00 61.73
	ATOM	1786	AW OWO	T W 136	40.127 0.350	18.771	1.00 62.44
	MOTA	1787	AW OWO	T W 137	19.279 14.663	46.778	1.00 63.59
	MOTA	1788	AW OWO	T W 138	20.090 20.354	46.023	1.00 62.81
10	ATOM	1789	OWO WA	T W 139	15.250 18.974	46.516	1.00 63.68
	ATOM	1790	OWO WA		21.267 -25.030	39.386	1.00 63.31
	ATOM	1791	OWO WA		26.107 2.756	33.033	1.00 63.89
	ATOM	1792	OWO WA		13.216 16.259	48.398	1.00 64.51
	ATOM	1793		T.W 143	23.474 19.596	51.112	1.00 65.45
15	ATOM	1794		T W 144	6.778 10.141	28.981	1.00 64.57
• •	MOTA	1795	OWO WA		23.613 15.848	49.685	1.00 64.50
	ATOM	1796	OWO WA		21.834 -6.518	36.556	1.00 65.24
	ATOM	1797	OWO WA		10.139 -10.444	36.806	1.00 65.85
	ATOM						
20		1798		T W 148		33.677	1.00 64.60
20	ATOM	1799	OWO WAY		31.655 6.263	27.510	1.00 64.29
	ATOM	1800	OWO WA		4.585 -20.934	39.031	1.00 66.94
	MOTA	1801	OWO WA		38.484 11.674	18.085	1.00 65.84
	MOTA	1802	OWO WAS		42.438 8.992	21.219	1.00 65.71
0.5	ATOM	1803	OWO WAS		33.971 24.173	27.259	1.00 66.15
25	MOTA	1804	OWO WA		24.597 -9.268	45.286	1.00 67.06
	ATOM	1805	OWO WAT		-2.112 -26.008	50.039	1.00 66.08
	ATOM	1806	CAW OWO	r W 156	9.030 -32.481	39.896	1.00 66.14
	MOTA	1807	OWO WAT		-3.216 -18.835	45.004	1.00 67.94
	ATOM	1808	OWO WAT	r w 158	-3.398 4.020	40.260	1.00 65.32
30	MOTA	1809	OWO WAT	r W 159	25.878 24.231	20.622	1.00 68.10
	MOTA	1810	CAW OWO	r w 160	27.187 4.546	24.805	1.00 67.75
	ATOM	1811	OWO WAT	r W 161	24.071 24.303	35.784	1.00 67.51
	ATOM	1812	OWO WAT	r w 162	7.746 17.585	52.663	1.00 70.19
	ATOM	1813	CAW OWO		19.301 4.980	47.873	1.00 68.23
35	ATOM	1814	CAW OWO		10.439 -4.135	32.539	1.00 65.45
	ATOM	1815	OWO WAT		23.798 -0.930	41.113	1.00 68.64
	ATOM	1816	OWO WAT		2.464 5.318	30.549	1.00 65.77
	ATOM	1817	OWO WAT		9.665 -14.876	35.700	1.00 65.21
	ATOM	1818	CAU OWO		1.759 10.431	44.227	1.00 69.25
40	ATOM	1819	TAW OWO		20.960 4.214	26.258	1.00 69.23
10	ATOM	1820	TAW OWO				
						27.878	1.00 67.86
	ATOM	1821	OWO WAT		30.212 14.473	8.293	1.00 69.23
	ATOM	1822	OWO WAT		20.178 0.312	50.589	1.00 70.29
45	ATOM	1823	OWO WAT		19.736 6.852	23.117	1.00 70.72
45	MOTA	1824	TAW OWO		8.978 16.807	50.514	1.00 70.10
	ATOM	1825	OWO WAT		25.144 -1.759	34.429	1.00 71.96
	ATOM	1826	OWO WAT		26.946 25.298	35,563	1.00 68.69
	ATOM	1827	OWO WAT		44.918 5.619	13.054	1.00 70.16
	ATOM	1828	OWO WAT	W 178	22.370 24.094	38.170	1.00 71.66
50	MOTA	1829	TAW OWO	W 179	-0.624 10.187	33.201	1.00 72.23
	MOTA	1830	OWO WAT	W 180	11.015 17.856	47.520	1.00 71.42
	ATOM	1831	OWO WAT	W 181	7.766 0.898	52.950	1.00 71.64
	MOTA	1832	OWO WAT		3.469 -28.368	52.511	1.00 70.10
				. –			

References

10

15

25

- 1. zur Hausen, H. Molecular pathogenesis of cancer of the cervix and its causation by specific human papillomavirus types. *Curr. Top. Microbiol. Immunol.* **186**, 131-156 (1994).
- 5 2. Mohr, I. J., Clark, R., Sun, S., Androphy, E. J., MacPherson, P. & Botchan, M. R. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. *Science* **250**, 1694-1699 (1990).
 - 3. Giri, I. & Yaniv, M. Structural and mutational analysis of E2 trans-activating proteins of papillomaviruses reveals three distinct functional domains. *EMBO J.* 7, 2823-2829 (1988).
 - 4. McBride, A. & Myers, G. in *Human Papillomaviruses 1997* (eds Myers, G., Sverdrup, F., Baker, C., McBride, A., Münger, K. & Bernard, H.-U.) III-54-III-73 (Theoretical Biology and Biophysics, Los Alamos, 1997).
 - 5. Berg, M. & Stenlund, A. Functional interactions between papillomavirus E1 and E2 proteins. J. Virol. 71, 3853-3863 (1997).
 - 6. Gillette, T. G. & Borowiec, J. A. Distinct roles of two binding sites for the bovine papillomavirus (BPV) E2 transactivator on BPV DNA replication. *J. Virol.* **72**, 5735-5744 (1998).
- Choo, K. B., Pan, C. C. & Han, S. H. Integration of human papillomavirus type 16
 into cellular DNA of cervical carcinoma: Preferential deletion of the E2 gene and invariable retention of the long control region and E6/E7 open reading frames.
 Virology 161, 261(1987).
 - 8. Knight, J. D., Li, R. & Botchan, M. The activation domain of the bovine papillomavirus E2 protein mediates association of DNA-bound dimers to form DNA loops. *Proc. Natl. Acad. Sci. USA* 88, 3204-3208 (1991).
 - 9. Li, R., Knight, J. D., Jackson, S. P., Tjian, R. & Botchan, M. R. Direct interaction between Sp1 and the BPV enhancer E2 protein mediates synergistic activation of transcription. *Cell* 65, 493-505 (1991).
- Sandler, A. B., Baker, C. C. & Spalholz, B. A. Sp1 is critical for basal and E2-transactivated transcription from the bovine papillomavirus type 1 P₈₉ promoter. J. Gen. Virol. 77, 189-198 (1996).

11. E2 sequence database. (1999). http://hpv-web.lanl.gov:

- 12. Hegde, R. S., Grossman, S. R., Laimins, L. A. & Sigler, P. B. Crystal structure at
- 1.7 Å of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. *Nature* **359**, 505-512 (1992).
- 13. Hegde, R. S. & Androphy, E. J. Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: Implications for its DNA binding-site selection mechanism. J. Mol. Biol. 284, 1479-1489 (1998).
 - 14. Hegde, R. S., Wang, A. F., Kim, S. S. & Schapira, M. Subunit rearrangement accompanies sequence-specific DNA binding by the bovine papillomavirus-1 E2 protein. J. Mol. Biol. 276, 797-808 (1998).
 - 15. Harris, S. F. & Botchan, M. R. Crystal structure of the human papillomavirus type 18 E2 activation domain. *Science* **284**, 1673-1677 (1999).
 - 16. Burns, J. E., Moroz, O. V., Antson, A. A., Sanders, C. M., Wilson, K. S. & Maitland, N. J. Expression, crystallization and preliminary X-ray analysis of the E2
- transactivation domain from papillomavirus type 16. Acta Crystallog. **D54**, 1471-1474 (1998).
 - 17. Ramakrishan, C. & Ramachandran, G. N. Stereochemical criteria for polypeptide and protein chain conformations. *Biophys. J.* 5, 909-933 (1995).
 - 18. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M.
- 20 PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallog. 26, 283-291 (1993).
 - 19. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., et al. The protein data bank: a computer based archival file for macromolecular structures. *J. Mol. Biol.* 112, 535-542 (1977).
- 25 20. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123-138 (1993).
 - 21. Wiener, M., Freymann, D., Ghosh, P. & Stroud, R. M. Crystal structure of colicin 1a. Nature 385, 461-464 (1997).
- 22. Frolow, F., Kalb, A. G. & Yariv, J. The structure of a unique, two-fold symmetric, haem-binding protein. *Nature Struct. Biol.* 1, 453-460 (1994).

23. Mok, Y. K., Gay, G. D., Butler, P. J. & Bycroft, M. Equilibrium dissociation and unfolding of the dimeric human papillomavirus strain-16 E2 DNA-binding domain. *Protein Sci.* 5, 310-319 (1996).

- 24. Foguel, D., Silva, J. L. & de Prat-Gay, G. Characterization of a partially folded monomer of the DNA-binding domain of human papillomavirus E2 protein obtained at high pressure. J. Biol. Chem. 273, 9050-9057 (1998).
 - 25. Gauthier, J.-M., Dostatni, N., Lusky, M. & Yaniv, M. Two DNA-bound E2 dimers are required for strong transcriptional activation and for cooperation with cellular factors in most cells. *The New Biologist* 3, 498-509 (1991).
- 26. Estojak, J., Brent, R. & Golemis, E. Correlation of two-hybrid affinity with in vitro measurements. *Mol. Cell. Biol.* 15, 5820-5829 (1995).
 - 27. Sengchanthalangsy, L., Datta, S., Huang, D., Anderson, E., Braswell, E. & Ghosh, G. Characterisation of the dimer interface of transcription factor NKkB p50 homodimer. *Journal of Molecular Biology* **289**, 1029-1040 (1999).
- 15 28. Chao, S.-F., Rocque, W. J., Daniel, S., Czyzyk, L. E., Phelps, W. C. & Alexander, K. A. Subunit affinities and stoichiometries of the human papillomavirus type 11 E1:E2:DNA complex. *Biochemistry* 38, 4586-4594 (1999).
 - 29. Program manual for the Wisconsin package. (8): Madison, Wisconsin, USA: Genetics computer group. (1994).
- 30. Abroi, A., Kurg, R. & Ustav, M. Transcriptional and replicational activation functions in the bovine papillomavirus type 1 E2 protein are encoded by different structural determinants. J. Virol. 70, 6169-6179 (1996).

- 31. Cooper, C. S., Upmeyer, S. N. & Winokur, P. L. Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions. *Virology* **241**, 312-322 (1998).
- 32. Brokaw, J. L., Blanco, M. & McBride, A. A. Amino acids critical for the functions of the bovine papillomavirus type 1 E2 transactivator. *J. Virol.* **70**, 23-29 (1996).

33. Sakai, H., Yasugi, T., Benson, J. D., Dowhanick, J. J. & Howley, P. M. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions. *J. Virol.* 70, 1602-1611 (1996).

- 34. Breiding, D. E., Sverdrup, F., Grossel, M. J., Moscufo, N., Boonchai, W. & Androphy, E. J. Functional interaction of a novel cellular protein with the papillomavirus E2 transactivation domain. *Mol. Cell. Biol.* 17, 7208-7219 (1997).
 - 35. Yao, J. M., Breiding, D. E. & Androphy, E. J. Functional interaction of the bovine papillomavirus E2 transactivation domain with TFIIB. *J. Virol.* **72**, 1013-1019 (1998).
- (1998).36. Semenza, G. L. Transcription factors and human disease (Oxford University
 - 37. Ferguson, M. K. & Botchan, M. R. Genetic analysis of the activation domain of bovine papillomavirus protein E2: its role in transcription and replication. *J. Virol.*
- 15 **70**, 4193-4199 (1996).

20

25

Press, New York and Oxford, 1998).

- 38. Le Moal, M. A., Yaniv, M. & Thierry, F. The bovine papillomavirus type 1 (BPV1) replication protein E1 modulates transcriptional activation by interacting with BPV1 E2. *J. Virol.* **68**, 1085-1093 (1994).
- 39. Bennett, M. J., Schlunegger, M. P. & Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. *Protein Science* 4, 2455-2469 (1995).
- 40. Yang, F., Bewley, C. A., Louis, J. M., et al. Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping. *Journal of Molecular Biology* **288**, 403-412 (1999).
- 41. Desaintes, C. & Demeret, C. Control of papillomavirus DNA replication and transcription. Semin. Cancer. Biol. 7, 339-347 (1996).
 - 42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Meth. Enzymol.* 276, 307-326 (1997).
 - 43. Collaborative Computational Project, N. 4. The CCP4 suite: programs for protein crystallography. *Acta Crystallog.* **D50**, 760-763 (1994).
- 30 44. Sheldrick, G. M. & Schneider, T. R. SHELXL: high-resolution refinement. *Meth. Enzymol.* 277, 319-343 (1997).

WO 01/21645

PCT/GB00/03568

45. Cowtan, K. D. & Main, P. Phase combination and cross-validation in iterated density-modification calculations. *Acta Crystallog.* **D52**, 43-48 (1996).

46. Lamzin, V. S. & Wilson, K. S. Automated refinement of protein models. *Acta Crystallog.* **D49**, 129-147 (1993).

15

30

Claims

- 5 1. A crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof, comprising residues vital for transcriptional and replicational activities of said protein.
- 2. An E2NT dimer protein according to Claim 1 wherein the residues lie on opposite sides of an N-terminal domain.
 - 3. An E2NT dimer protein according to either preceding claim wherein the residues comprise a plurality of residue clusters associated with a structural role at an interface between N1 and N2 terminal domains of respective monomers within the dimer.
 - 4. An E2NT dimer according to Claim 3 comprising three clusters.
- 5. An E2NT dimer according to either of Claims 3 or 4 wherein a first cluster of vital residues is associated with interactions between N1 and N2 domains and comprises any one or more of the following residues Ile82, Glu90, Trp92, Lys112, Tyr138, Val145.
- An E2NT dimer according to any one of Claims 3-5 wherein a second cluster
 of residues is associated with N1 interactions and comprises either or both of residues
 Trp33 and Leu94.
 - 7. An E2NT dimer according to any one of Claims 3-6 wherein a third cluster of residues is associated with N2 interactions and comprises any one or more of the following residues Pro106, Lys111, Phe168, Trp134.

8. An E2NT dimer according to any preceding claim further comprising residues associated with transactivation and/or replication properties of E2.

- An E2NT dimer according to Claim 8 wherein the residues comprise any one
 or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69.
- Use of a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein according to any preceding claim or homologue thereof in mapping
 mutations onto an E2 three-dimensional structure so as to identify areas of amino acid conservation and the effect of mutations on folding of the E2 protein.
 - 11. Use according to Claim 10 in rationalised antiviral drug design.
- 15 12. An *in vitro* method for identifying and/or selecting a candidate therapeutic agent, the method comprising determining interaction of a E2 N-terminal module (E2NT) dimer in a sample by contacting said sample with said candidate therapeutic agent and measuring DNA loop formation in E2.
- 20 13. Use of the method according to Claim 12 in identifying and/or selecting an antiviral candidate therapeutic agent.
- Use according to Claim 13 wherein identification/selection of the candidate therapeutic agent depends on its ability to interfere with or block interactions of
 E2NT so as to interfere or block viral and/or cellular transcription factors.
 - 15. Use of an E2NT dimerisation inhibitor for the preparation of a medicament for treatment of conditions that arise as a result of HPV infection.
- 30 16. Use according to Claim 15 for the treatment of warts, proliferative skin lesions and/or cervical cancer.

17. A method of monitoring the efficacy of an antiviral therapy in a patient receiving a medicament for the treatment of an HPV infection comprising taking a sample from said patient and measuring E2NT interactions and/or DNA loop formation.

5

10

15

- 18. Use of a dimerisation surface of an crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof according to any one of Claims 1-9 as a target site for interaction with putative antiviral agents and/or for measuring efficacy of said agents.
- 19. A method for identifying and/or selecting a candidate therapeutic agent, comprising applying rationalised drug design to a crystal structure obtainable by crystallising E2NT, cryogenically freezing the crystals and generating the crystal structure using X-ray diffraction.
- 20. A method of claim 19, wherein the method by which the E2NT crystal structure is obtainable comprises crystallisation using hanging-drop vapour diffusion.
- 20 21. A method of claim 19 or claim 20 wherein the method by which E2NT crystal structure is obtainable comprises X-ray diffraction using uranium acetate and gold cyanide E2NT derivatives and refining with data extending to 1.9 Å spacing.
- A method of any of claims 19 to 21, wherein the crystal structure comprises
 the portions of amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94.
 - 23. A method of any of claims 19 to 22, wherein the rationalised drug design comprises designing drugs which interact with the dimerisation surface of E2NT.
 - 24. A computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises or a

three-dimensional representation of a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å, wherein said computer comprises:

5

(a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3;

10

(b) a working memory for storing instructions for processing said machine-readable data;

(c)

(c) a central-processing unit coupled to said working memory and to said machinereadable data storage medium for processing said machine readable data into said three-dimensional representation; and

20

- (d) a display coupled to said central-processing unit for displaying said threedimensional representation.
- 25. The computer according to claim 24, wherein said three-dimensional representation is of a molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or wherein said three-dimensional representation is of a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

25 hc

30

26. A computer for determining at least a portion of the structure coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex, wherein said computer comprises:

(a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises at least a portion of the structural coordinates according to Table 3;

- 5 (b) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
- (c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);
 - (d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structure coordinates; and

15

- (e) a display coupled to said central-processing unit for displaying said structure coordinates of said molecule or molecular complex.
- 27. A crystallised molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
 - 28. The crystallized molecule or molecular complex according to claim 27, wherein said molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or a homologue thereof, wherein said homologue has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

29. A machine-readable data storage medium, comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

10

30. The machine-readable data storage medium according to claim 7, wherein said molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

15

31. A machine-readable data storage medium comprising a data storage material encoded with a first set of machine readable data which, when combined with a second set of machine readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, wherein: said first set of data comprises a Fourier transform of at least a portion of the structural coordinates according to Table 3; and said second set of data comprises an x-ray diffraction pattern of a molecule or molecular complex.

25

20

32. A method for evaluating the ability of a chemical entity to associate with a molecule or molecular complex according to claim 27 or claim 28 comprising the steps of:

a. employing computational means to perform a fitting operation between the chemical entity and a dimerisation surface of the molecule or molecular complex; and

b. analysing the results of said fitting operation to quantify the association between the chemical entity and the dimerisation surface.

5

10

33. A drug or therapeutic agent identified, assessed or selected using a crystallised molecular complex of an E2NT protein or its crystal structure or using a complex of any of claims 1 to 9, a method of claim 12, a use of any of claims 13, claim 14 or 18. a method of any of claims 20 to 24 or 32 or a product of any of claims 25 to 31.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 March 2001 (29.03.2001)

PCT

(10) International Publication Number WO 01/21645 A2

(51) International Patent Classification7:

C07K 14/00

- (21) International Application Number: PCT/GB00/03568
- (22) International Filing Date:

18 September 2000 (18.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

GB9921938.8 17 September 1999 (17.09.1999)

(71) Applicant (for all designated States except US): THE UNIVERSITY OF YORK [GB/GB]; Heslington Hall, York YO10 5DD (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ANTSON, Alfred [GB/GB]; Department of Chemistry, University of York, York YO10 5DD (GB). MAITLAND, Norman [GB/GB]; Department of Biology, University of York, York YO10 5DD (GB).

(74) Agent: HARRISON GODDARD FOOTE; Tower House, Merrion Way, Leeds LS2 8PA (GB).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TARGET FOR ANTIVIRAL THERAPY

(57) Abstract: A crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof, that comprises residues vital for viral transcription and/or replication. The invention also provides for the use of the dimer protein and interactions at its dimerisation surface in rationalised antiviral drug design.

FIG. I. A

HPV 16 E2 Protein: Functional assignments

C= blue; monomer ribbon: D= yellow; monomer ribbon: £. dark green; side chauns of Arg37 and Ile 73; F = light green; side chauns of other residues: G = O2; red: H = blue; N2; I = orange 1120: J = dashod sticks; hydrogen bonds]

tique . 2 B

N = N1 domain = a quamorine M = fulcrum = green L = N2 domain = pink

SUBSTITUTE SHEET (RULE 26)

FIG. 3B

Fig. 3. C

10/13

Fig. 4 A.

0 = yellow; sulphur atoms.

11/13

Fig. 4.B

12/13

Fig. 4C

Flaure 4D.

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION Attorney Docket No. 9052-111

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled **TARGET FOR ANTIVIRAL THERAPY**,

the specification of which
is attached hereto
OR
was filed on September 18, 2002 as United States Application No. or PCT International
Application Number PCT/GB00/03568 and was amended on (if applicable).
I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37 Code of Federal Regulations, §1.56, including material information that became available between the filing date of the prior application and the National or PCT International filing date of the continuation-in-part application, if applicable.

I hereby claim foreign priority benefits under Title 35, United States Code, § 119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States of America, listed below and have also identified below any foreign application for patent or inventor's certificate, or of any PCT International application having a filing date before that of the application on which priority is claimed.

9921938.8	Great Britain	09/17/1999	⊠ Yes □ No
Number	Country	MM/DD/YYYY Filed	Priority Claimed
			☐ Yes ☐ No
Number	Country	MM/DD/YYYY Filed	Priority Claimed
			☐ Yes ☐ No
Number	Country	MM/DD/YYYY Filed	Priority Claimed

Page 1 of 4

I hereby claim the benefit under Title 35, United States Code, § 119(e) of any United States provisional application(s) listed below.

None Application Number(s)	Filing Date (MM/DD/YYYY)	
Application Number(s)	Filing Date (MM/DD/YYYY)	

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) or § 365(c) of any PCT international application designating the United States of America, listed below.

PCT/GB00/03568 Appln. Serial No.	09/18/00 Filing Date	Published Status Patented/Pending/Abandoned	
Appln. Serial No.	Filing Date	Status Patented/Pending/Abandoned	
Appln. Serial No.	Filing Date	Status Patented/Pending/Abandoned	

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following registered attorney(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. I also appoint the following registered attorney(s) to represent me before all competent International Authorities in connection with any and all international applications filed by me with an appropriate receiving office claiming priority to the U.S.

application. I also appoint the following registered attorney(s) to make or receive payment on my behalf in connection with the filing of such international applications.

Customer Number:

Send correspondence to:

Jarett K. Abramson

Customer Number:

20792 PATENT TRADEMARK OFFICE

Direct telephone calls to:

Jarett K. Abramson

(919) 854-1400

Facsimile:

(919) 854-1401

Full name of first inventor:

Alfred Antson

Inventor's

Signature:

Date: 67.05.02

Residence:

York, Great Britain, United Kingdom

Citizenship:

Great Britain

Mailing Address:

Department of Chemistry

University of York

York YO10 5DD, Great Britain

United Kingdom

2-00

Full name of second inventor:

Norman Maitland

Inventor's

Signature: Mma

Date:

105/02

Residence:

York, Great Britain, United Kingdom

Citizenship:

Great Britain

GB

Mailing Address:

Department of Biology University of York

YO10 5DD, Great Britain

United Kingdom