```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: df=pd.read_csv(r"C:\Users\Admin\Downloads\22_countries.csv")
 df

Out[2]:

	id	name	iso3	iso2	numeric_code	phone_code	capital	currency	currency_nai
0	1	Afghanistan	AFG	AF	4	93	Kabul	AFN	Afghan afgh
1	2	Aland Islands	ALA	AX	248	+358-18	Mariehamn	EUR	Ει
2	3	Albania	ALB	AL	8	355	Tirana	ALL	Albanian
3	4	Algeria	DZA	DZ	12	213	Algiers	DZD	Algerian dir
4	5	American Samoa	ASM	AS	16	+1-684	Pago Pago	USD	US Do
245	243	Wallis And Futuna Islands	WLF	WF	876	681	Mata Utu	XPF	CFP fre
246	244	Western Sahara	ESH	EH	732	212	El-Aaiun	MAD	Morocc Dirha
247	245	Yemen	YEM	ΥE	887	967	Sanaa	YER	Yemeni ı
248	246	Zambia	ZMB	ZM	894	260	Lusaka	ZMW	Zambi kwac
249	247	Zimbabwe	ZWE	ZW	716	263	Harare	ZWL	Zimbab Do
250 rows × 19 columns									

In [3]: df1=df.head(100)

```
In [4]: df1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 100 entries, 0 to 99
        Data columns (total 19 columns):
             Column
                              Non-Null Count Dtype
        _ _ _
             -----
                                               ----
         0
             id
                              100 non-null
                                               int64
         1
             name
                              100 non-null
                                               object
         2
             iso3
                              100 non-null
                                               object
         3
                                               object
             iso2
                              100 non-null
                                               int64
         4
             numeric code
                              100 non-null
         5
                              100 non-null
                                               object
             phone_code
         6
             capital
                              97 non-null
                                               object
         7
             currency
                              100 non-null
                                               object
         8
             currency_name
                              100 non-null
                                               object
         9
                                               object
             currency_symbol 100 non-null
         10 tld
                              100 non-null
                                               object
         11 native
                              99 non-null
                                               object
         12 region
                              98 non-null
                                               object
                                               object
         13 subregion
                              97 non-null
         14 timezones
                              100 non-null
                                               object
                                               float64
         15 latitude
                              100 non-null
         16 longitude
                              100 non-null
                                               float64
         17 emoji
                              100 non-null
                                               object
         18 emojiU
                              100 non-null
                                               object
        dtypes: float64(2), int64(2), object(15)
        memory usage: 15.0+ KB
In [5]: |df1.columns
Out[5]: Index(['id', 'name', 'iso3', 'iso2', 'numeric_code', 'phone_code', 'capital',
                'currency', 'currency_name', 'currency_symbol', 'tld', 'native',
                'region', 'subregion', 'timezones', 'latitude', 'longitude', 'emoji',
                'emojiU'],
              dtype='object')
In [6]: | x=df1[['numeric_code','latitude']]
        y=df1[['longitude']]
In [7]: from sklearn.model selection import train test split
        x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [8]: | from sklearn.linear_model import LinearRegression
        lr= LinearRegression()
        lr.fit(x_train,y_train)
Out[8]: LinearRegression()
```

```
In [9]:
         prediction= lr.predict(x_test)
         plt.scatter(y_test,prediction)
 Out[9]: <matplotlib.collections.PathCollection at 0x267ddb422e0>
           10
            5
            0
           -5
          -10
          -15
          -20
                      -50
                                                100
                                                         150
            -100
In [10]:
         print('Linear Regresion(score):',lr.score(x_test,y_test))
         print('Linear Regression(train score)',lr.score(x train,y train))
         Linear Regresion(score): -0.05756899428301443
         Linear Regression(train score) 0.014278302041548785
In [11]:
         from sklearn.linear_model import Ridge,Lasso
         rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[11]: Ridge(alpha=10)
In [12]: | print('Ridge(test score):',rr.score(x_test,y_test))
         Ridge(test score): -0.05756902281977183
In [13]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[13]: Lasso(alpha=10)
In [14]: |print('Lasso (test score)',la.score(x_test,y_test))
         Lasso (test score) -0.057534003174442905
         from sklearn.linear_model import ElasticNet
In [15]:
         en=ElasticNet()
         en.fit(x_train,y_train)
```

Out[15]: ElasticNet()