SEQUENCE LISTING

(1) GENERAL INFORMATION:

and the second of the second o

- (i) APPLICANT: BECKMANN, M. P.
 CERRETTI, DOUGLAS P.
- (ii) TITLE OF INVENTION: CYTOKINE THAT BINDS THE CELL SURFACE RECEPTOR HEK
- (iii) NUMBER OF SEQUENCES: 4
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: IMMUNEX CORPORATION
 - (B) STREET: 51 UNIVERSITY STREET
 - (C) CITY: SEATTLE
 - (D) STATE: WASHINGTON
 - (E) COUNTRY: USA
 - (F) ZIP: 98101
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: Apple Macintosh
 - (C) OPERATING SYSTEM: Apple System 7.1
 - (D) SOFTWARE: Microsoft Word for Apple, Version 5.1a
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/161,132
 - (B) FILING DATE: 03-DEC-1993
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/114,426
 - (B) FILING DATE: 30-AUG-1993
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/109,745
 - (B) FILING DATE: 20-AUG-1993
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: SEESE, KATHRYN A.
 - (B) REGISTRATION NUMBER: 32,172
 - (C) REFERENCE/DOCKET NUMBER: 2814-C
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (206) 587-0430
 - (B) TELEFAX: (206) 233-0644
 - (C) TELEX: 756822

(2) INFORMATION FOR SEQ ID NO:1:														
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1037 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 														
(ii) MOLECULE TYPE: cDNA to mRNA														
(iii) HYPOTHETICAL: NO														
(iv) ANTI-SENSE: NO														
(vii) IMMEDIATE SOURCE: (B) CLONE: hek-L A2														
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 83799														
<pre>(ix) FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION: 83139</pre>														
(ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 140796														
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	60													
GGATCTTGGA ACGAGACGAC CTGCTGGAGA AGCCGGGAGC GCGGGGCTCA GTCGGGGGGC	112													
GGCGGCGCG GCGCTCCGG GG ATG GCG GCG GCT CCG CTG CTG CTG CTG Met Ala Ala Pro Leu Leu Leu Leu -19 -15	112													
CTG CTC GTG CCC GTG CCG CTG CCG CTG CTG	160													
GGG GCG CTG GGA AAC CGG CAT GCG GTG TAC TGG AAC AGC TCC AAC CAG Gly Ala Leu Gly Asn Arg His Ala Val Tyr Trp Asn Ser Ser Asn Gln 10 15 20	208													
CAC CTG CGG CGA GAG GGC TAC ACC GTG CAG GTG AAC GTG AAC GAC TAT His Leu Arg Arg Glu Gly Tyr Thr Val Gln Val Asn Val Asn Asp Tyr 25 30 35	256													
CTG GAT ATT TAC TGC CCG CAC TAC AAC AGC TCG GGG GTG GGC CCC GGG Leu Asp Ile Tyr Cys Pro His Tyr Asn Ser Ser Gly Val Gly Pro Gly 40 45 50	304													
GCG GGA CCG GGG CCC GGA GGC GGG GCA GAG CAG TAC GTG CTG TAC ATG Ala Gly Pro Gly Pro Gly Gly Ala Glu Gln Tyr Val Leu Tyr Met 60 65 70	352													

								TGC Cys 80								400
								GCC .Ala								448
								GCC Ala								496
								ATC Ile								544
								GTG Val								592
								CCC Pro 160								640
								CTG Leu								688
								AGC Ser								736
								GGC Gly								784
	TTG Leu			TAG0	CTCTC	SCC (CCTC	CCCT	rg go	GGGG	GAGA	GA7	regeo	GCGG		836
GGC1	TGG	AG C	GAGC	\GGG!	G CC	CTTTC	GCCI	CTC	CCAAC	GGA	AGCC	TAGI	rgg (CCTA	AGACCC	896
CTCC	CTCCC	CAT C	GCT <i>F</i>	GAAC	FT GO	GGCC	TGC	CCF	TACA	ATCT	GTG1	CCGC	ccc c	CTCI	CACCCC	956
TTCC	cccc	CAC C	STAGO	GCAC	CT GI	TAGTO	GACC	AAC	CACC	GGG	ACAC	CCAI	GG G	STCCC	CGAGCA	1016
GGTC	GTCI	CG T	TCCA	AGAT	c c											1037

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 238 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

and the state of t

Met Ala Ala Pro Leu Leu Leu Leu Leu Leu Val Pro Val Pro -19 -15 -10 -5

Leu Leu Pro Leu Leu Ala Gln Gly Pro Gly Gly Ala Leu Gly Asn Arg
1 5 10

His Ala Val Tyr Trp Asn Ser Ser Asn Gln His Leu Arg Arg Glu Gly 15 20 25

Tyr Thr Val Gln Val Asn Val Asn Asp Tyr Leu Asp Ile Tyr Cys Pro 30 45

His Tyr Asn Ser Ser Gly Val Gly Pro Gly Ala Gly Pro Gly Pro Gly 50 55 60

Gly Gly Ala Glu Gln Tyr Val Leu Tyr Met Val Ser Arg Asn Gly Tyr 65 70 75

Arg Thr Cys Asn Ala Ser Gln Gly Phe Lys Arg Trp Glu Cys Asn Arg 80 85 90

Pro His Ala Pro His Ser Pro Ile Lys Phe Ser Glu Lys Phe Gln Arg 95 100 105

Tyr Ser Ala Phe Ser Leu Gly Tyr Glu Phe His Ala Gly His Glu Tyr 110 125 120

Tyr Tyr Ile Ser Thr Pro Thr His Asn Leu His Trp Lys Cys Leu Arg 130 135 140

Met Lys Val Phe Val Cys Cys Ala Ser Thr Ser His Ser Gly Glu Lys 145 150 155

Pro Val Pro Thr Leu Pro Gln Phe Thr Met Gly Pro Asn Val Lys Ile 160 165 170

Asn Val Leu Glu Asp Phe Glu Gly Glu Asn Pro Gln Val Pro Lys Leu 175 185

Glu Lys Ser Ile Ser Gly Thr Ser Pro Lys Arg Glu His Leu Pro Leu 190 195 200 205

Ala Val Gly Ile Ala Phe Phe Leu Met Thr Phe Leu Ala Ser 210 215

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 636 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO

	(vii		MEDI B) C				C6						
	(i)	. (ATUR A) N B) L	AME/				tide					
	(i)	. (ATUR A) N B) L	AME/			.633						
	(i)	(ATUR A) N. B) L	AME/				tide					
	-		QUEN										
GCC.	AGAC	CAA	ACCG	GACC'	TC G	GGGG	M	rg Co et A: 22	rg L			eu A	
			TGG Trp										9
			CAC His										1
		Asp	GCC Ala										1
	Cys		CAC										2
			TAC Tyr										2
			CGG Arg 70										3
			TTC Phe										3
		: Glu	TTC				Glu				Ile		4

(iv) ANTI-SENSE: NO

483

ACT CCA GAG AGT TCT GGC CAG TGC TTG AGG CTC CAG GTG TCT GTC TGC Thr Pro Glu Ser Ser Gly Gln Cys Leu Arg Leu Gln Val Ser Val Cys 115 120 125 125

								GCC Ala								531
								GGG Gly 155								579
								CTG Leu								627
CTG Leu	TGA0	GCC														636
(2) INFORMATION FOR SEQ ID NO:4:																
		(i) {	(A) (B)		NGTH:	201 amino	l ami			5						
(ii) MOLECULE TYPE: protein																
	(2	(i) {	SEQUE	ENCE	DESC	CRIPT	: NOI	SEÇ) ID	NO:	1:					
Met -22	Arg	Leu -20	Leu	Pro	Leu	Leu	Arg -15	Thr	Val	Leu	Trp	Ala -10	Ala	Phe	Leu	
Gly	Ser -5	Pro	Leu	Arg	Gly	Glý 1	Ser	Ser	Leu	Arg 5	His	Val	Val	Tyr	Trp 10	
Asn	Ser	Ser	Asn	Pro 15	Arg	Leu	Leu	Arg	Gly 20	Asp	Ala	Val	Val	Glu 25	Leu	
Gly	Leu	Asn	Asp 30	Tyr	Leu	Asp	Ile	Val 35	Cys	Pro	His	Tyr	Glu 40	Gly	Pro	
Gly	Pro	Pro 45	Glu	Gly	Pro	Glu	Thr 50	Phe	Ala	Leu	Tyr	Met 55	Val	Asp	Trp	
Pro	Gly 60	Tyr	Glu	Ser	Cys	Gln 65	Ala	Glu	Gly	Pro	Arg 70	Ala	.Tyr	Lys	Arg	
Trp 75	Val	Cys	Ser	Leu	Pro 80	Phe	Gly	His	Val	Gln 85	Phe	Ser	Glu	Lys	Ile 90	
Gln	Arg	Phe	Thr	Pro 95	Phe	Ser	Leu	Gly	Phe 100	Glu	Phe	Leu	Pro	Gly 105	Glu	
Thr	Tyr	Tyr	Tyr 110	Ile	Ser	Val	Pro	Thr 115	Pro	Glu	Ser	Ser	Gly 120	Gln	Cys	
Leu	Arg	Leu 125	Gln	Val	Ser	Val	Cys 130	Cys	Lys	Glu	Arg	Lys 135	Ser	Glu	Ser	

Ala His Pro Val Gly Ser Pro Gly Glu Ser Gly Thr Ser Gly Trp Arg 140 145 150

Gly Gly Asp Thr Pro Ser Pro Leu Cys Leu Leu Leu Leu Leu Leu 165 170

Leu Ile Leu Arg Leu Leu Arg Ile Leu 175