# Small sample adjustments to F-tests for cluster robust standard errors

Elizabeth Tipton
Teachers College, Columbia University

January 27, 2016
Presented at NYU PRIISM

## Background

The topic today is a new direction for me.

It grew out of prior work on "robust variance estimation" in meta-analysis.

I also do work developing methods for making generalizations from experiments.

#### Motivation

Econometric data often exhibits dependence, particularly in education contexts.

#### For example, nesting by:

- Schools
- Time points
- Assignment variable (in RDD)

#### Standard practice is cluster robust standard errors:

- Relies on the CLT, though the number of clusters in finite samples are often small/moderate;
- Has become recently scrutinized, e.g., Imbens & Kolesar (2015), Cameron & Miller (2015).

#### Overview

Joint work with James Pustejovsky (at UT-Austin).

- 1) Cluster robust standard errors
- 2) Bias reduced linearization
- 3) New results, with focus on F-test
- 4) Examples

## Overview of CRVE

#### Model

Let's say you have a regression model:

$$\mathbf{Y} = \mathbf{X}\mathbf{\beta} + \mathbf{\epsilon}$$

Note here that **X** might include:

- Policy variables
- Demographic controls
- Fixed effects (for clusters, for time, etc).

We can estimate  $\beta$  using OLS,

$$\mathbf{b} = (\mathbf{X'X})^{-1}\mathbf{X'Y}$$

## Hypothesis testing

You may want to test hypotheses regarding elements of  $\beta$ .

#### For example:

1. Does *Policy A* improve student outcomes?

$$H_0: \beta_1 = 0$$

$$t = b_1/se(b_1)$$

## Hypothesis testing

You may want to test hypotheses regarding elements of  $\beta$ .

#### For example:

1. Does *Policy A* improve student outcomes?

$$H_0$$
:  $\beta_1 = 0$ 

$$t = b_1/se(b_1)$$

2. Do student outcomes vary *across* policies?

$$H_0$$
:  $\beta_1 = \beta_2 = 0$ 

$$F = (\mathbf{b}_{12} - \mathbf{0})[v(\mathbf{b})_{12}]^{-1}(\mathbf{b}_{12} - \mathbf{0})/2$$

#### Clustered standard errors

How do we estimate  $SE(b_1)$  and  $V(\mathbf{b})$ ?

The exact variance of **b** can be written:  $V(\mathbf{b}) = (\mathbf{X}'\mathbf{X})^{-1} \sum_{j=1}^{m} \mathbf{X}_{j}' \mathbf{\Sigma}_{j} \mathbf{X}_{j} (\mathbf{X}'\mathbf{X})^{-1}$ 

#### Assume:

- Observations across clusters are independent; and
- For clusters j = 1 ... m,  $V(\varepsilon_j | X_j) = \Sigma_j$ .

In standard CRVE, V(b) is estimated:  $v(\mathbf{b}) = (\mathbf{X}'\mathbf{X})^{-1} \sum_{j=1}^{m} \mathbf{X}_{j}' \mathbf{e}_{j} \mathbf{e}_{j}' \mathbf{X}_{j} (\mathbf{X}'\mathbf{X})^{-1}$ 

Where for clusters j = 1...m,  $\mathbf{e_j} = (\mathbf{Y_j} - \mathbf{X_j}\mathbf{b})$ .

#### Reference distributions

Returning to the examples:

1. Under  $H_0$ , assume that

$$t \sim t(m-1)$$

2. Under  $H_0$ , assume that

F ~ 
$$F(q = 2, m - 1)$$

The sample size that matters is the number of *clusters*, not the number of *observations*.

## Not so good in small samples



## Not so good in small samples



## Not so good in small samples

Not so good, even with 50 clusters!



# Bias Reduced Linearization + Satterthwaite

#### CRVE is biased

One of the reasons for the poor performance of CRVE is that the variance estimator is biased.

To see why, note that

$$E(\mathbf{e}_{j}\mathbf{e}_{j}') = (\mathbf{I} - \mathbf{H})_{j}\mathbf{\Sigma}(\mathbf{I} - \mathbf{H})_{j}'$$

where  $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}$ .

This means that: 
$$E[v(\mathbf{b})] = (\mathbf{X}'\mathbf{X})^{-1} \sum_{j=1}^{m} \mathbf{X}_{j}' (\mathbf{I} - \mathbf{H})_{j} \mathbf{\Sigma} (\mathbf{I} - \mathbf{H})_{j}' \mathbf{X}_{j} (\mathbf{X}'\mathbf{X})^{-1}$$

$$\neq \mathbf{V}(\mathbf{b}).$$

#### An unbiased estimator

The goal then is to find an *adjustment matrix*  $A_i$ :

$$v_{s}(\mathbf{b}) = (\mathbf{X}'\mathbf{X})^{-1} \sum_{j=1}^{m} \mathbf{X}_{j}' \mathbf{A}_{j} \mathbf{e}_{j} \mathbf{e}_{j}' \mathbf{A}_{j}' \mathbf{X}_{j} (\mathbf{X}'\mathbf{X})^{-1}$$

such that:  $E[v_s(\mathbf{b})] = V(\mathbf{b})$ .

 $A_i$  must thus be defined so:

$$\mathbf{A}_{j}\big[(\mathbf{I}-\mathbf{H})_{j}\mathbf{\Sigma}(\mathbf{I}-\mathbf{H})_{j}'\big]\mathbf{A}_{j}'=\mathbf{\Sigma}_{j}$$

Which means we need to know  $\Sigma_i$ .

#### BRL

Bell & McCaffrey using a "working" model for  $\Sigma_i$ .

For example, they propose setting  $\Sigma_j = I_j$ .

This seems contradictory:

- The goal is an estimator that *does not* require specification of the dependence structure,
- Yet the estimator *requires* a dependence structure to be specified.

Yet, simulation results consistently show:

- that the BRL approach reduces bias,
- even when the working model is far from the truth.

#### But that's not all

We can then use this BRL estimator  $v_s(\mathbf{b})$  in:

- t-tests
- F-tests

So the problem is solved?

- Bias isn't the only problem.
- The sampling distribution is also problematic.

## Distributional problems

Bell & McCaffrey show that in small samples,

$$t \sim /\sim t(m-1)$$
.

Instead,

$$t \sim t(v)$$

where the degrees of freedom v can be estimated using a Satterthwaite approximation.

## Degrees of freedom (v)

These estimated degrees of freedom depend not only on the number of clusters (*m*) but on *features of the covariate*.

For example, imagine a model with a single covariate, a policy indicator.

- If the policy is divided evenly across the *m* clusters, then  $v \approx m-1$ .
- If the policy is rare, e.g, found in only 3 clusters, then v can be quite small.

Importantly, in multiple regression, the degrees of freedom can vary considerably from covariate to covariate.

## Degrees of freedom



## Degrees of freedom



### BRL + Satterthwaite



#### Other research

The BRL + S t-test has been shown to perform well under a wide variety of conditions:

- Simulations in survey-sampling conditions (Bell & McCaffrey, 2002; McCaffrey, Bell, and Botts, 2001).
- Simulations in meta-analytic conditions (Tipton, 2015);
- Simulations in econometric conditions (Imbens & Kolesar, 2015; Cameron & Miller, 2015).

# This paper

### What about economics?

While the BRL+S approach is promising, there are three problems that limit it's application:

- 1. To date, there is no multi-parameter F-test.
- 2. The adjustment  $(A_j)$  matrices are not defined when fixed effects are included in a model (the Angrist-Pischke problem).
- 3. The degrees of freedom (v) can differ depending on the estimation strategy (the Cameron-Miller problem).

## This paper

We solve these problems.

The result is a unified framework for hypothesis testing with CRVE in finite samples.

#### F-test

Previous papers by Bell & McCaffrey, Imbens & Kolesar, and Cameron & Miller all focus on small-sample corrections to t-tests.

But analysts often also conduct F-tests:

- In experiments with multiple arms;
- In approximate Hausman tests;
- When comparing the joint influence of covariates on a model;
- When testing hypotheses about categorical variables;
- When testing baseline equivalence.

#### Standard F-test

Consider a hypothesis test of general form,

$$H_0$$
:  $C\beta = c$ 

 $\mathbf{C}$  is a  $q \times p$  contrast matrix and  $\mathbf{c}$  is a  $q \times 1$  vector.

This results in the "standard" F-test (based on the Wald test),

$$F = Q/q = (Cb - c)'[Cv(b)C']^{-1}(Cb - c)/q$$

And under  $H_0$ , in large samples it is assumed that  $F \sim F(q, m-1)$ .

# But this test is no good





# But this test is no good

Even with 50 clusters!



#### The AHT Test

We propose instead the Approximate Hotelling's T<sup>2</sup> test,

$$F = [(\eta + q - 1)/\eta] Q/q$$

where η is empirically estimated using a Satterthwaite approach.

Under  $H_0$ , we show that  $F \sim F(q, \eta + q - 1)$ .

## Degrees of freedom

The degrees of freedom are a function of  $\eta$ , which is estimated.

Like with the t-test,  $\eta \ll m-1$ , especially when the covariates tested are unbalanced.

Unbalance or skewness are harder to detect in multivariate form.

The simplest case is a generalization of the t-test: three policies being compared.

- Balanced means m/3 are allocated to each;
- If there is one policy that is rarer, unbalance results in smaller df.

Degrees of freedom are typically:

- Largest for covariates varying \*within\* clusters; and
- Smaller for covariates at the cluster level.

## Degrees of freedom smaller than m-1



## The AHT test is nearly level-α





#### Two other results

The BRL approach as developed was originally focused on problems in survey-sampling.

In econometric applications, following Bertrand, Duflo, & Mullainathan (2004), it is typical to account for clustering with \*both\*:

- The inclusion of fixed effects;
- AND the use of CRVE.

## Angrist-Pischke problem

**Problem**: It is possible that there is a covariate that is constant within a cluster (e.g. the whole cluster receives a policy).

If dummy fixed effects are included in the model, there is an identification problem.

The result is that the  $A_j$  matrices cannot be defined (because the  $(I - H)_j$  matrix is not full rank, thus making inversion impossible).

In the paper, we provide a method for calculating  $A_j$  using the *generalized inverse*, and a theorem indicating the conditions under which this inverse is estimable.

## Cameron-Miller problem

**Problem**: In practice, instead of including dummy fixed effects, for computational purposes the fixed effects are first "absorbed" (i.e., demeaned, the within estimator).

But the set of variables in **X** then changes depending upon the approach.

This means that you can get *different* degrees of freedom depending on the approach you use.

In the paper, we provide a theorem indicating the conditions under which results from absorption and dummy fixed effects are equivalent.

Does this matter in practice?

# Angrist & Lavy example

| Hypothesis                        | Test                 | F     | df    | p       |
|-----------------------------------|----------------------|-------|-------|---------|
| ATE - upper half $(q = 1)$        | Standard             | 5.746 | 34.00 | 0.02217 |
|                                   | $\operatorname{AHT}$ | 5.169 | 15.86 | 0.03726 |
| ATE - joint $(q = 2)$             | Standard             | 3.848 | 34.00 | 0.03116 |
|                                   | AHT                  | 3.371 | 15.46 | 0.06096 |
| Moderation - upper half $(q = 2)$ | Standard             | 3.186 | 34.00 | 0.05393 |
|                                   | AHT                  | 0.091 | 3.19  | 0.91520 |
| Moderation - joint $(q = 4)$      | Standard             | 8.213 | 34.00 | 0.00010 |
|                                   | $\operatorname{AHT}$ | 2.895 | 3.21  | 0.19446 |

# Panel data example

| Hypothesis     | Test         | F     | df    | p       |
|----------------|--------------|-------|-------|---------|
| Random effects | Standard     | 8.261 | 49.00 | 0.00598 |
|                | $_{ m AHT}$  | 7.785 | 24.74 | 0.00999 |
| Fixed effects  | Standard     | 9.660 | 49.00 | 0.00313 |
|                | AHT          | 9.116 | 22.72 | 0.00616 |
| Hausman test   | Standard     | 2.930 | 49.00 | 0.06283 |
|                | $\Lambda$ HT | 2.489 | 8.69  | 0.13980 |

#### Conclusions

The standard t- and F-tests used in CRVE do not perform well in small *or even moderate* samples.

It is hard to detect a priori when they will fail, since "small" depends not only on the number of clusters, but also covariate features.

The AHT F-test performs well in a broad range of applications and is nearly always level- $\alpha$ . In large-samples it converges to the standard estimator.

**Therefore** we recommend analysts use the AHT F-test (and t-test) in \*all\* analyses, not just when the number of clusters seems "small".

#### Future work:

- Will focus on comparing this approach to the cluster Wild bootstrap.
- Includes development of a Stata macro.

#### Contact information

Elizabeth Tipton

tipton@tc.columbia.edu

James Pustejovsky

pusto@austin.utexas.edu