APPENDIX B

INSTRUCTION LIST

ALPHABETIC BY MNEMONIC

WITH OP CODES, EXECUTION CYCLES

AND MEMORY REQUIREMENTS

The following notation applies to this summary:

A	Accumulator
Х, Ү	Index Registers
М	Memory
P	Processor Status Register
S	Stack Pointer
√	Change
	No Change
+	Add
Λ	Logical AND
-	Subtract
₩ .	Logical Exclusive Or
†	Transfer from Stack
‡	Transfer to Stack
→	Transfer to
<	Transfer to
V	Logical OR
PC	Program Counter
PCH	Program Counter High
PCL	Program Counter Low
OPER	OPERAND
#	IMMEDIATE ADDRESSING MODE

Note: At the top of each table is located in parentheses a reference number (Ref: XX) which directs the user to that Section in the MCS6500 Microcomputer Family Programming Manual in which the instruction is defined and discussed.

Operation: $A + M + C \rightarrow A$, C

N Z C I D V

(Ref: 2.2.1)

√ √ √ -- √

Addressing Mode	Assem	bly Language Form	OP CODE	No. Bytes	No. Cycles
Immediate	ADC	# Oper	69	2	2
Zero Page	ADC	Oper	65	2	3
Zero Page, X	ADC	Oper, X	75	2	4
Absolute	ADC	Oper	6D	3	4
Absolute, X	ADC	Oper, X	7D	3	4*
Absolute, Y	ADC	Oper, Y	79	3	4*
(Indirect, X)	ADC	(Oper, X)	61	2	6
(Indirect), Y	ADC	(Oper), Y	71	2	5*

^{*} Add 1 if page boundary is crossed.

BIT

BIT Test bits in memory with accumulator

BIT

2

24

2C

3

4

Operation: A \wedge M, M₇ \rightarrow N, M₆ \rightarrow V

Zero Page

Absolute

Bit 6 and 7 are transferred to the status register. N Z C I D V If the result of A \bigwedge M is zero then Z = 1, otherwise $Z = \emptyset$ (Ref: 4.2.1.1)

BIT

Addressing Assembly Language OP No. No. Mode Form CODE Bytes Cycles BIT

0per

0per

B-6

SBC

SBC Subtract memory from accumulator with borrow

SBC

Operation: A - M - \overline{C} \rightarrow A

NZCIDV

Note: $\overline{C} = Borrow$ (Ref: 2.2.2)

√ √ √ -- √

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles
Immediate	SBC #Oper	E9	2	2
Zero Page	SBC Oper	E5	2	3
Zero Page, X	SBC Oper, X	F5	2	4
Absolute	SBC Oper	ED	3	4
Absolute, X	SBC Oper, X	FD	3	4*
Absolute, Y	SBC Oper, Y	F9	3	4*
(Indirect, X)	SBC (Oper, X)	E1	2	6
(Indirect), Y	SBC (Oper), Y	F1	2	5*

^{*} Add 1 when page boundary is crossed.

APPENDIX C

INSTRUCTION ADDRESSING

MODES AND

RELATED EXECUTION TIMES

beilqml Aslative (X ,tseribnl) (Y,(tseribnl) tseribnl etulosdA	
Accumulator Immediate Zero Page, X Zero Page, Y Zero Page, Y Absolute X testulosdA Y Absolute, X	
Pelative (X.) (Indirect, X.) Y.(Indirect).	6 5* LDA 2** LDA 2** LDA 2** LDA 2** LDA 2** LDA 2** LSR 2** ROP 2** ROL 2** R
Page One Nege X Sero Page X X Page X X Page Y X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	22 .2 <td< td=""></td<>
rotelumusaA	AND

APPENDIX E

SUMMARY OF ADDRESSING MODES

This appendix is to serve the user in providing a reference for the MCS650X addressing modes. Each mode of address is shown with a symbolic illustration of the bus status at each cycle during the instruction fetch and execution. The example number as found in the text is provided for reference purposes.

E.1 IMPLIED ADDRESSING

Example 5.3: Illustration of implied addressing

Clock Cycle	Address Bus	Program Counter	Data Bus	Comments
1	PC	PC + 1	O.? CODE	Fetch OP CODE
2	PC + 1	PC + 1	New OP CODE	Ignore New OP CODE; Decode Old OP CODE
3	PC + 1	PC + 2	New OP CODE	Fetch New OP CODE; Execute Old OP CODE

E.2 IMMEDIATE ADDRESSING

Example 5.4: Illustration of immediate addressing

Clock Cycle	Address Bus	Program Counter	Data Bus	Comments
1	PC	PC + 1	OP CODE	Fetch OP CODE
2	PC + 1	PC + 2	Data	Fetch Data, Decode OP CODE
3	PC + 2	PC + 3	New OP CODE	Fetch New OP CODE, Execute Old OP CODE

E.3 ABSOLUTE ADDRESSING

Example 5.5: Illustration of absolute addressing

Clock Cycle	Address Bus	Program Counter	<u>Data Bus</u>	Comments
1	PC	PC + 1	OP CODE	Fetch OP CODE
2	PC + 1	PC + 2	ADL	Fetch ADL, Decode OP CODE
3	PC + 2	PC + 3	ADH	Fetch ADH, Retail ADL
4	ADH, ADL	PC + 3	Data	Fetch Data
5	PC + 3	PC + 4	New OP CODE	Fetch New OP CODE, Execute Old OP CODE

E.4 ZERO PAGE ADDRESSING

Example 5.6: Illustration of zero page addressing

Clock Cycle	Address Bus	Program Counter	<u>Data Bus</u>	Comments
1	PC	PC + 1	OP CODE	Fetch OP CODE
2	PC + 1	PC + 2	ADL	Fetch ADL, De- code OP CODE
3	00, ADL	PC + 2	Data	Fetch Data
4	PC + 2	PC + 3	New OP CODE	Fetch New OP CODE, Exe- cute Old OP CODE

E.5 RELATIVE ADDRESSING – (Branch Positive, no crossing of page boundaries)

Example 5.8: Illustration of relative addressing-branch positive taken, no crossing of page boundaries

Cycle	Address Bus	Data Bus	External Operation	Internal Operation
1	0100	OP CODE	Fetch OP CODE	Finish Previous Oper- ation, Increment Pro- gram Counter to 101
2	0101	+50	Fetch Offset	Interpret Instruction, Increment Program Counter to 102
3	0102	Next OP CODE	Fetch Next OP CODE	Check Flags, Add Relative to PCL, Increment Program Counter to 103
4	0152	Next OP CODE	Fetch Next OP CODE	Transfer Results to PCL, Increment Program Counter to 153

E.6 ABSOLUTE INDEXED ADDRESSING - (with page crossing)

Step 5 is deleted and the data in step 4 is valid when no page crossing occurs.

Example 6.7: Absolute Indexed; With Page Crossing

Cycle	Address Bus	Data Bus	External Operation	Internal Operation
1	0100	OP CODE	Fetch OP CODE	Finish Previous Operation Increment PC to 101
2	0101	BAL	Fetch BAL	Interpret Instruction Increment PC to 102
3	0102	ван	Fetch BAH	Add BAL + Index Increment PC to 103
4	BAH,BAL +X	Data (Ignore)	Fetch Data (Data is ignored)	Add BAH + Carry
5	BAH+1, BAL+X	Data	Fetch Data	
6	0103	Next OP CODE	Fetch Next OP CODE	Finish Operation

E.7 ZERO PAGE INDEXED ADDRESSING

Example 6.8: Illustration of Zero Page Indexing

<u>Cycle</u>	Address Bus	Data Bus	External Operation	Internal Operation
1	0100	OP CODE	Fetch OP CODE	Finish Previous Operation
2	0101	BAL	Fetch Base Address Low (BAL)	Interpret Instruct- ion
3	00,BAL	Data (Dis- carded	Fetch Discarded Data	Add: BAL + X
4	00,BAL +X	Data	Fetch Data	
5	0102	Next OP CODE	Fetch Next OP	Finish Operation

E.8 INDEXED INDIRECT ADDRESSING

Example 6.10: Illustration of Indexed Indirect Addressing

<u>Cycle</u>	Address Bus	Data Bus	External Operation	Internal Operation
1	0100	OP CODE	Fetch OP CODE	Finish Previous Operation
2	0101	BAL	Fetch BAL	Interpret In- struction
3	00,BAL	DATA (Dis- carded)	Fetch Discard- ed DATA	Add BAL + X
4	00,BAL + X	ADL	Fetch ADL	Add 1 to BAL + X
5	00,BAL + X +	1	Fetch ADH	Hold ADL
6	ADH, ADL	DATA	Fetch DATA	
7	0102	Next OP	Fetch Next Ol'	Finish Operation

E.9 INDIRECT INDEXED ADDRESSING (with page crossing)

Step 6 is deleted and the data in step 5 is valid when no page crossing occurs.

Example 6.12: Indirect Indexed Addressing (With Page Crossing)

	Address	Data	External	Internal
<u>Cycle</u>	Bus	Bus	Operation	Operation
1	0100	OP CODE	Load OP CODE	Finish Previous Operation
2	0101.	IAL	Fetch IAL	Interpret In- struction
3	00,IAL	BAL	Fetch BAL	Add 1 to IAL
4	00,IAL + 1	ВАН	Fetch BAH	Add BAL to Y
5	BAH,BAL + Y	DATA (Dis- carded)	Fetch DATA (Discarded)	Add 1 to BAH
6	BAH + 1 BAL + Y	DATA	Fetch Data	
7	0102	Next OP CODE	Fetch Next OP CODE	Finish This Operation

APPENDIX H

REVIEW OF BINARY

AND

BINARY CODED DECIMAL

ARITHMETIC

The microprocessor automatically takes this into account and corrects for the fact that

Decimal		BCD	<u>Hex</u>	
79	=	01111001	79 =	01111001
+ <u>12</u>	=	00010010	12 =	00010010
91	=	10010001	88 =	10001011

The only difference between Hex and BCD representation is that the microprocessor automatically adjusts for the fact that BCD does not allow for Hex values A - F during add and subtract operations.

The offset which follows a branch instruction is in signed two's complement form which means that

$$$+50 = +80 = 01010000$$

and $$-50 = -80 = \frac{10110000}{00000000}$
Proof = $\frac{000000000}{0000000000}$

The sign for this operation is in bit 7 where an O equals positive and a 1 equals negative.

This bit is correct for the two's complement representation but also flags the microprocessor whether to carry or borrow from the address high byte.

The following 4 examples represent the combinations of offsets which might occur (all notations are in hexadecimal):

Example H.4.1: Forward reference, no page crossing

0105		ENE	E
0106		+.55	,
0107	Next	C·P	CODE

To calculate next instruction if the branch is taken

with no carry, giving 015C as the result.

Example H.4.2: Backward reference, no page crossing

015A BNE 015B -55

015C Next OP CODE

To calculate if branch is taken,

Offset -55 = AB = 10101011+ Address Low for Next OP CODE $\frac{+5C}{07} = \frac{5C}{07} = \frac{01011100}{00000111}$

The carry is expected because of the negative offset and is ignored, thus giving 0107 as the result.

Example H.4.3: Backward reference if page boundary crossed

0105 BNE 0106 -55 0107 Next OP CODE

To calculate if branch is taken, first calculate a low byte

Offset -55 = AB = 10101011Address Low for Next OP CODE 07 = 07 = 00000111 07 = 07 = 0000011107 = 07 = 00000111

There is no carry from a negative offset; therefore, a carry must be made:

This gives 00 B2 as a result.

Example H.4.4: Forward reference across page boundary

00B0 BNE 00B1 +55

00B2 Next OP COLE

To calculate next instruction if branch is taken,

Offset 55 = 0101(101)
Address Low for Next
OP CODE $\frac{B2}{07} = \frac{1011(010)}{0000(111)}$

with carry on positive number.

Address High $\frac{1}{00} = \frac{00000000}{00000000}$ Address High $\frac{00}{1} = \frac{00000000}{0000000}$

which gives 0107.