Introducción a Métodos Numéricos

Uso de Métodos Numericos, Metodos de Bracket: bisección, Metodos Abiertos: Newton - Raphson

Prof. Sebastian Saaibi & David Cardozo¹

 1 Física Lectura 8 Herramientas Computacionales Universidad de los Andes

29 de marzo de 2015

Generalidades

- Métodos Numéricos ¿Por que el énfasis?
- Métodos de Bracket
 - Método de Bisección
- Métodos abiertos

Métodos Númericos

Métodos numéricos es la reunión y estudio de técnicas para resolver problemas matemáticos con operaciones aritméticas, en general requieren de **demasiadas** iteraciones de operaciones aritméticas. Para contrastar:

Métodos no-computacionales	"Malo"	
Soluciones analíticas	La mayoría de problemas no son analíticos	
Soluciones Gráficas	No son exactas "ojimetro"	
Uso de calculadoras	Realizar muchas operaciones	

Métodos Numéricos 2

Hagamos observaciones sobre la siguiente función:

Figura: $f(x) = e^{-x^2} + x - \sin(x)$

Métodos Numéricos 2

$$x \approx -1{,}17426 \implies f(x) \approx 0$$

Metodos de Bracket

Un poco de terminología.

Raiz

Dada una función f(x), en ejemplo, $f(x)=(x+3)(x-2)^2$, llamamos x_0 una raiz si $f(x_0)=0$

Los **métodos de bracket** aprovechan que una función cambia de signos en la vecindad de una raíz. El nombre viene porque se requieren **dos conjeturas o pistas**.

Figura: $g(x) = \sin(10x) + \cos(3x)$

Por el ejemplo anterior nos hemos dado cuenta que g(x) cambia de signos en lados contrarios de la raiz, es decir si f(x) es real y continuos en el intervalo x_i "inferior", x_s "superior":

$$f(x_i)f(x_s) < 0$$

existe una raíz en ese intervalo. Descubramos el algoritmo

 $\begin{tabular}{ll} \blacksquare & \textbf{Escogamos puntos} & x_i \ \textbf{y} & x_s \ \textbf{para los cuales el signo cambie sobre ese} \\ & \textbf{intervalo} \\ \end{tabular}$

Por el ejemplo anterior nos hemos dado cuenta que g(x) cambia de signos en lados contrarios de la raiz, es decir si f(x) es real y continuos en el intervalo x_i "inferior", x_s "superior":

$$f(x_i)f(x_s) < 0$$

existe una raíz en ese intervalo. Descubramos el algoritmo

- **1** Escogamos puntos x_i y x_s para los cuales el signo cambie sobre ese intervalo
- 2 Un estimado de la raiz x_r es dado por

$$x_r = \frac{x_i + x_s}{2}$$

Por el ejemplo anterior nos hemos dado cuenta que g(x) cambia de signos en lados contrarios de la raiz, es decir si f(x) es real y continuos en el intervalo x_i "inferior", x_s "superior":

$$f(x_i)f(x_s) < 0$$

existe una raíz en ese intervalo. Descubramos el algoritmo

- lacktriangle Escogamos puntos x_i y x_s para los cuales el signo cambie sobre ese intervalo
- $oldsymbol{2}$ Un estimado de la raiz x_r es dado por

$$x_r = \frac{x_i + x_s}{2}$$

Encontramos el subintervalo donde la raiz esta:

Por el ejemplo anterior nos hemos dado cuenta que g(x) cambia de signos en lados contrarios de la raiz, es decir si f(x) es real y continuos en el intervalo x_i "inferior", x_s "superior":

$$f(x_i)f(x_s) < 0$$

existe una raíz en ese intervalo. Descubramos el algoritmo

- **1** Escogamos puntos x_i y x_s para los cuales el signo cambie sobre ese intervalo
- 2 Un estimado de la raiz x_r es dado por

$$x_r = \frac{x_i + x_s}{2}$$

- Encontramos el subintervalo donde la raiz esta:
 - $f(x_l) f(x_r) < 0$, devolver all paso 2 con $x_s = x_r$

Por el ejemplo anterior nos hemos dado cuenta que g(x) cambia de signos en lados contrarios de la raiz, es decir si f(x) es real y continuos en el intervalo x_i "inferior", x_s "superior":

$$f(x_i)f(x_s) < 0$$

existe una raíz en ese intervalo. Descubramos el algoritmo

- lacktriangle Escogamos puntos x_i y x_s para los cuales el signo cambie sobre ese intervalo
- $oldsymbol{2}$ Un estimado de la raiz x_r es dado por

$$x_r = \frac{x_i + x_s}{2}$$

- Encontramos el subintervalo donde la raiz esta:
 - $f(x_l)f(x_r) < 0$, devolver all paso 2 con $x_s = x_r$
 - $f(x_l)f(x_r) > 0$ devolver all paso 2 con $x_i = x_r$

Figura: $f(x) = x^3 - x - 2$

Criterio de terminación y estimados de error:

Para este método (preguntar al Profesor o a mi acerca de como elegir este:)

$$\epsilon_a = \left| \frac{x_r^{\text{nuevo}} - x_r^{\text{viejo}}}{x_r^{\text{nuevo}}} \right| \cdot 100 \,\%$$

Algorithm 1 Pseudocodigo para bisección

Require: $f, n_{max}, \epsilon, a, b$

- 1: $n \leftarrow 1$
- 2: while $n \leq n_{max}$ do
- $c \leftarrow \frac{a+b}{2}$ 3:
- if f(c) = 0 or $(b-a)/2 < \epsilon$ then 4.
- Solución encontrada 5:
- **print** c 6:
- 7: end if
- $N \leftarrow N + 1$ { Incrementar el contador} 8.
- if $sign(f(c)) = sign(f(a)) \implies a \leftarrow c \text{ or } b \leftarrow c \text{ then}$ 9:
- Solucion 10.
- end if 11:
- 12: end while

Métodos abiertos

Métodos abiertos

Los métodos abiertos son algoritmos de búsqueda que solo requieren de un solo punto de inicio.

Metodos	Caracteristica	Función de Iteración
Iteracion de punto fijo	secuencia de puntos convergente.	Sea $f(x)$ rescribamos $x = g(x)$
El metodo de la Secante	Se requieren dos puntos de inicio	$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$
Newton Raphson	El mas usado	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$
Metodo Brent	Combina lo mejor de métodos abiertos y cerrados	Tarea

