MA101 Midsem online moodle

Question **5** If A and B are similar to identity matrices then is also similar to identity matrix. Correct Mark 1.00 out of 1.00 Select one: ▼ Flag question ● True ○ False The correct answer is 'True'. Question 6 $\begin{bmatrix} 1 & 0 & 0 & 0 & i \end{bmatrix}$ Correct $0 \ 2 \ i \ i \ 0$ Let $A = \begin{bmatrix} 0 & 0 & 3 & i & 0 \end{bmatrix}$ be a matrix of size 4×4 , where i is the last three digits of your student id. Mark 1.00 out of 1.00 $i \quad 0 \quad 0 \quad 4 \quad 0$ Flag question $[0 \ 0 \ 0 \ 0 \ 1]$ Then det(A)=.... (Write down your answer in digits only.) Answer: 24 Question **7** If the columns of a matrix B are linearly dependent then so are the columns of AB. Incorrect This statement is Mark 0.00 out of 1.00 a. Not always true ₹ Flag O b. Always false O c. Some times true O d. Always true The correct answer is: Question 8 We have ${\rm rank}(AB) \leq {\rm rank}(B).$ Then which of the following is always true? Incorrect lacktriangledown a. $\mathrm{rank}(BA) \leq \mathrm{rank}(B)$ Mark 0.00 out of 1.00 \bigcirc b. $\mathrm{rank}(B^TA^T) \leq \mathrm{rank}(B^T)$ ₹ Flag question $\bigcirc \ \, \mathrm{c.\,rank}(B^TA^T) \leq \mathrm{rank}(A^T)$ \bigcirc d. rank $(A) \leq 1$ The correct answer is: $\operatorname{rank}(B^TA^T) \leq \operatorname{rank}(A^T)$

Question 9 Correct Mark 1.00 out of 1.00 F Flag question	If the columns of $A_{n\times n}$ matrix span \mathbb{R}^n , then the columns are a. linearly dependent b. linearly independent c. always form an identity matrix
	Ine correct answer is: linearly independent
Question 10 Incorrect Mark 0.00 out of 1.00 V Flag question	There exists an onto linear transformation $T:\mathbb{R}^4 o \mathbb{R}^6$ O a. False O b. can not say O c. True
	The correct answer is: False
Question 11 Incorrect Mark 0.00 out of 1.00 P Flag question	$\operatorname{Let} A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$
	The correct answer is 'True'.
Question 12 Correct Mark 1.00 out of 1.00 F Flag question	Let <i>H</i> be a nonzero subspace of <i>V</i> , <i>T</i> : <i>V</i> → <i>W</i> a linear transformation and let <i>T</i> (<i>H</i>) be the set of images of vectors in <i>H</i> . If <i>T</i> is a one-to-one, then dim(<i>T</i> (<i>H</i>)) dim(<i>H</i>). Fill in the blank. a. < b. T(H) need not be a subspace of <i>W</i> . Hence no relation. c. = d. >
	The correct answer is:

Question 1.5 Correct Let X,Y,Z,A,B,C be all $n \times n$ matrices, I be an $n \times n$ identity matrix. If $egin{bmatrix} X & 0 \\ Y & Z \end{bmatrix} egin{bmatrix} A & 0 \\ B & C \end{bmatrix} = egin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$ Then Mark 1.00 out of 1.00 ullet a. $Y=-C^{-1}BA^{-1}$ ₹ Flag question \circ b. $Y=C^{-1}BA^{-1}$ \circ c. $Y=CB^{-1}A^{-1}$ $\bigcirc \ \, \mathrm{d.}\ Y = -CB^{-1}A^{-1}$ The correct answer is: $Y = -C^{-1}BA^{-1} \label{eq:Y}$ Question 14 Correct Mark 1.00 out of 1.00 If $A = egin{bmatrix} P & Q \\ R & S \end{bmatrix}$ in block form. Then $A^T = egin{bmatrix} P^T & Q^T \\ R^T & S^T \end{bmatrix}$. Select one: ₹ Flag question O True ⊚ False ✔ The correct answer is 'False'. If $A_{m imes n}$ has r pivot columns, then A^T has how many pivot columns? Correct Mark 1.00 out of 1.00 F Flag question \circ a. $m{n}-m{r}$ b. r \circ c. m-rThe correct answer is: Question 16 Which of the following is not a linear transformation? Correct Mark 1.00 out of 1.00 $^{\bigcirc}$ a. $F:\mathbb{R}^{3}\longrightarrow\mathbb{R}^{2}$ such that $F[x\ y\ z]^{T}=[z\ x+y]^{T}$ ₹ Flag question $^{\bigcirc}$ b. $F:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ such that $F[x\;\;y]^T=[2x-y\;\;x]^T$ $^{\circledcirc}$ C. $F:\mathbb{R}^{3}\longrightarrow\mathbb{R}^{2}$ such that $F[x\ y\ z]^{T}=[x+1\ y.z]^{T}$ $^{\bigcirc}$ d. $F:\mathbb{R}\longrightarrow\mathbb{R}^2$ such that $F([x])=[2x \ \ 3x]^T$ The correct answer is: $F: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ such that $F[x \ y \ z]^T = [x+1 \ y.z]^T$ Question 17 Let M be the plane x+y+z=0 and N be the line x=y=z of \mathbb{R}^3 , where $M+N=\{u+v|u\in M,v\in N\}$ Correct Mark 1.00 out \circ a. M+N=Mof 1.00 lacksquare b. $M+N=\mathbb{R}^3$ ₹ Flag \circ c. M+N is a proper subspace of \mathbb{R}^3 of dimension 2. The correct answer is: $M+N=\mathbb{R}^3$

Question 18 Correct Mark 1.00 out of 1.00 Finag	Let A be an $n \times n$ matrix with rank n . Then which of the following is false? # a. Null space of A contains non zero vectors. b. All columns of A are pivot columns.	~
question	 c. All variables are basic variables. d. There are no free variables. 	
	The correct answer is: Null space of $m{A}$ contains non zero vectors.	
Question 19 Incorrect Mark 0.00 out of 1.00 P Flag question	For every subspace V of \mathbb{R}^3 , there exists a matrix $A_{3\times 3}$ such that $V=Col(A)$. 8 a. False b. True c. True except for trivial spaces	x
	The correct answer is: True	
Coretion ZU Correct Mark 1.00 out of 1.00 F Flag question	Consider $A=\begin{bmatrix}1&0&2\\0&1&3\\1&4&5\end{bmatrix}$. The dimension of null space of A is \bigcirc a. 1 \bigcirc b. 0 \bigcirc c. 3 \bigcirc d. 2	~
	The correct answer is: 0	
Question 21 Incorrect Mark 0.00 out of 1.00 Flag question	If B is the inverse of A^2 , then $AB=BA$ Select one: \bigcirc True \P False X	
	The correct answer is 'True'.	
Question 22 Incorrect Mark 0.00 out of 1.00 F Flag question	Let V be a vector space. Let S_1 and S_2 be two subspaces of V . Then which of the following is false? $oxdots$ a. $S_1\cap S_2$ is a subspace of V \circ b. $S_1\cup S_2$ is a subspace of V	×
	The correct answer is: $S_1 \cup S_2$ is a subspace of V	

Question 23 Incorrect Mark 0.00 out of 1.00 P Flag question	Which of the following sets of vectors in \mathbb{R}^n is a subspace of \mathbb{R}^n ? a. $S = \{X = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_2 \text{ is rational}\}$ b. $S = \{X = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_1 x_2 = 0\}$ c. $S = \{X = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_2 = 0\}$ d. $S = \{X = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_1 \geq 0\}$	×
	The correct answer is: $S=\{X=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n:x_2=0\}$	
Question 24 Correct Mark 1.00 out of 1.00 P Flag question	A row interchange operation on A does not change the determinant of A. 8 a. False 5 b. True	•
	The correct answer is: False	
Question 25 Correct Mark 1.00 out of 1.00 P Flag question	If A and B are singular (not invertible) matrices then a. AB is always nonsingular b. AB is always singular c. $A + B$ is always nonsingular d. $A + B$ is always singular	•
	The correct answer is: AB is always singular	
Question 26 Partially correct Mark 0.67 out of 1.00 F Flag question	Let $Ax = b$ be a linear system with $Au = b$, $Av = b$ where $u \neq v$. Then which one of the following statements is/are false? 2 a. There are exactly two solutions to linear system $AX = b$. 2 b. A must have two identical rows. 3 c. There is a vector $x \neq 0$ such that $Ax = 0$. 4 d. There are infinite number of solutions to the system $Ax = b$	×
	The correct answer is: **A must have two identical rows.**	

Question 27 For what value of s, the matrix $A=\begin{bmatrix}6&4&2\\-3&-2&-1\\9&6&s\end{bmatrix}$ has rank 1? Incorrect Mark 0.00 out of 1.00 ₹ Flag question O a. 3 O b. 2 O c. 1 ø d. 0 The correct answer is: Question 28 Let $T:\mathbb{R}_i[X] o\mathbb{R}_i[X]$ be a function such that T(f(x))=Xf'(X) , that is, X times the derivative of f(x) . Then T is Not answered $\mathbb{R}_i[X] \text{ is the set of all of polynomials of degree less or equal to i and i is last two digits of your student id+5}.$ Marked out of 1.00 ₹ Flag question a. not a linear transformation. ☐ b. both one-one and onto linear transformation. $\ \square$ c. onto linear transformation. $\hfill \square$ d. one-one linear transformation. $\hfill \square$ e. neither one-one nor onto linear transformation. onto linear transformation. Question 29 The only non trivial subspaces of \mathbb{R}^3 are Incorrect Mark 0.00 out of 1.00 a. All the lines passing through origin O b. All the lines and planes ♥ Flag

question $\, \bigcirc \,$ c. All the planes passing through origin $\, \bigcirc \,$ d. All the lines and all the planes passing through origin All the lines and all the planes passing through origin Question 30 Volume of the parallelepiped formed by the vectors is $\begin{bmatrix}1\\2\\1\end{bmatrix}, \begin{bmatrix}-2\\3\\2\end{bmatrix}, \begin{bmatrix}-1\\2\\-3\end{bmatrix}$ is Incorrect Mark 0.00 out of 1.00 ₹ Flag question O a. 30 O b. 0 O c. -30 O d. 1 $\, @ \,$ e. none of these The correct answer is:

Question 31 Incorrect Mark 0.00 out of 1.00 F Flag question	If the matrix $A=CD$ is invertible (C and D are square matrices). Then which of the following is true? * a. D is invertible and $D^{-1}=CA^{-1}$ * b. C may not be invertible • c. C is invertible and $C^{-1}=DA^{-1}$
	The correct answer is: C is invertible and $C^{-1} = DA^{-1}$
Question 32 Incorrect Mark 0.00 out of 1.00 V Flag question	Let the augmented matrix of a system of linear equations is reduced as $\begin{bmatrix} A & v \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & a \\ 0 & 4 & 5 & b \\ 0 & 0 & d & c \end{bmatrix}$ Then which variables has no effect on the existence of solution? i. i. b and d iii. c and d iii. a and c iv. a and b
	The correct answer is: a and b
Question 33 Partially correct Mark 0,50 out of 1,00 P Flag question	Let $A = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 &$
	The correct answers are: $det(A)=0.$, There exists $b\in\mathbb{R}^4$, such that the system $AX=b$ does not have a solution.
Question 34 Not answered Marked out of 1.00 P Flag question	The "cyclic" transformation T of \mathbb{R}^3 is defined by $T([v_1\ v_2\ v_3]^T)=([v_2\ v_3\ v_1]^T)$. What is $T^{88}([v_1\ v_2\ v_3]^T)$? (Do not worry about writing subscripts, just write your answer in the parentheses with comma between each element and without any space, e.g. (1,2,3))
	The correct answer is: (v2,v3,v1)

25	53 53
Question 35 Correct	Let j be the last two digits of your student id and $u=\begin{bmatrix}j\\j\\j\end{bmatrix}$, $v=\begin{bmatrix}1\\1\end{bmatrix}$. Then $\{u,v\}$ is linearly independent set.
Mark 1.00 out	
of 1.00	Select one:
question	® True ✓
	O False
	The correct answer is 'True'.
Question 36	The Alice and the commence and the commence of
Correct	Let A be an $n imes n$ square matrix and A is invertible. Then which of the following is false ?
Mark 1.00 out of 1.00	\circ a. A is row equivalent to $n imes n$ identity matrix
₹ Flag	$^{ ext{@}}$ b. The system $Ax=0$ has non trivial solution
question	\circ c. $m{A}$ has $m{n}$ pivot elements
	$^{\circ}$ d. The columns of A span $\mathbb{R}^{\mathbf{n}}$
	Cu. The Columns of A span inc
	The current answer is:
	The system $Ax=0$ has non trivial solution
Question 37	[-1 2 5] [9 7 12]
Incorrect	$(A+B)^2=A^2+2AB+B^2$ where $A=egin{bmatrix} -1 & 2 & 5 \ -1 & 0 & 1 \ 2 & 1 & 1 \end{bmatrix}, B=egin{bmatrix} 9 & 7 & 12 \ 1 & -1 & -4 \ 3 & 5 & 12 \end{bmatrix}$
Mark 0.00 out of 1.00	
₹ Flag	® a. True
question	○ b.False
	The correct answer is: False
- 20	
Question 38 Incorrect	Let $A = \begin{bmatrix} a & b \\ c & * \end{bmatrix}$ be a matrix with $a \neq 0$. For what values of $*$, A has rank 1.
Mark 0.00 out	[c *]
of 1.00	○ a. * = a
Flag question	$0 \text{ b.} \star = \frac{bc}{a}$
question	
	® c *= bc
	\circ d.* = $\frac{-bc}{a}$
	·
	The correct answer is:
	$* = \frac{bc}{a}$
Question 39	If the columns of a matrix A are linearly independent then so are the columns of matrix AB.
Correct	The statement is
Mark 1.00 out of 1.00	
₹ Flag	O a. Always true
question	® b. Not always true
	O c. Always false
	v mings not
	The correct answer is:
	Not always true

Question 40 Meena wishes to invest her inheritance of 100,000 so that her return on investment is maximized, but she also wishes to keep her risk level relatively low. She has decided to invest her money in any of three possible ways-CDs Incorrect that pay a guaranteed 8 percent, stocks that have an expected return of 12 percent, and a money market mutual fund that is expected to return 10 percent. She has decided that the total 100,000 will be invested, but any part Mark 0.00 out of 1.00 (or all) of it may be put in any of the three alternatives. Thus, she may have some money invested in all three alternatives. In formulating this as a linear programming problem, define the variables as follows: C = dollars invested in CDs ₹ Flag question S = dollars invested in stocks M = dollars invested in money market mutual fund Which of the following would be the most appropriate constraint in the linear programming problem? $^{\odot}$ a. $0.08C + 0.12S + 0.10M \leq 100000$ \circ b. $C + S + M \geq 100000$. $^{\circ}$ c. C + S + M = 100000. \circ d. $0.08C + 0.12S + 0.10M \ge 100000$ The correct answer is: C + S + M = 100000.Question 41 Let V be the vector space of all 2×2 real matrices. Then the subset $\left\{ egin{bmatrix} x & -x \\ y & z \end{bmatrix} : x, y, z \in \mathbb{R} \right\}$ is not a subspace of V. Incorrect Mark 0.00 out of 1.00 Select one: ₹ Flag question ⊚ True 🗶 O False The correct answer is 'False'. Question 42 For which real numbers λ , the following set of vectors is linearly dependent? Incorrect $v_1 = \begin{bmatrix} \lambda \\ -1 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ \lambda \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} -1 \\ -1 \\ \lambda \end{bmatrix}$ Mark 0.00 out of 1.00 ₹ Flag question \circ a. $\lambda_1=-2$ and $\lambda_2=1$ \circ b. $\lambda_1=2$ and $\lambda_2=-1$ lacksquare c. $\lambda_1=0$ and $\lambda_2=-1$ \circ d. $\lambda_1=-2$ and $\lambda_2=-1$ The correct answer is: $\lambda_1=2$ and $\lambda_2=-1$ Question **43** Correct Can there be a 2 imes 2 matrix $\emph{\textbf{A}}$, whose null space is equal to its column space? Mark 1.00 out of 1.00 o a. No ₹ Flag question

The correct answer is:

Consider the following matrix $A=\begin{bmatrix}1&a&bc\\1&b&ac\\1&c&ab\end{bmatrix}$ Then $\det(\mathbf{A})$ is a multiple of Question 44 Incorrect Mark 0.00 out of 1.00 P Flag question O a. a+b+c O b. a+b O c. a-b d. abc The correct answer is: Question **45** Incorrect Let V be the vector space of all 2×2 matrices with real entries. Then the dimension of V is Mark 0.00 out of 1.00 P Flag question O a. 4 b. 2 O c. 1 O d. 3 The correct answer is: Question 46 Let A be a 3 imes 3 with determinant zero. Then AX = 0 does not have non-trivial solution. Incorrect Mark 0.00 out of 1.00 b. depends on entries of A. ₹ Flag question o c. False The correct answer is: False Question 47 If ${m A}^T$ is not invertible then ${m A}$ is not invertible. Correct Mark 1.00 out of 1.00 Select one: ⊚ True ✔ ₹ Flag O False question The correct answer is 'True'.

Question 48 Correct Mark 1.00 out	Let $A=egin{pmatrix} 0 & -2 \ 2 & 0 \end{pmatrix}$. Which of the following is the correct geometric interpretation of the associated linear transformation?
of 1.00 P Flag	a. rotates clockwise through 90 degrees and doubles the length.
question	b. rotates clockwise through 90 degrees and halves the length.
	○ c. rotates counterclockwise through 90 degrees and halves the length.
	■ d. rotates counterclockwise through 90 degrees and doubles the length.
	The correct answer is: rotates counterclockwise through 90 degrees and doubles the length.
Question 49	Which of the following is true always?
Correct Mark 1.00 out	\circ a. An $m imes n$ matrix has always more than n basic variables.
of 1.00	b. A square matrix has no free variables.
♥ Flag question	c. An invertible matrix has no basic variables.
	● d. An invertible matrix has no free variables.
	The correct answer is: An invertible matrix has no free variables.
Question 50 Incorrect	Let V be a set of all $n imes n$ matrices with real entries. Then which of the following is true?
Mark 0.00 out of 1.00	\circ a. The set of all $n imes n$ singular matrices ($\det A = 0$) is a subspace of V
₹ Flag question	$^{\circ}$ b. The set of all $n imes n$ unsymmetric matrices ($A eq A^T$) is a subspace of V
question	\circ c. The set of all $n imes n$ symmetric matrices ($A=A^T$) is a subspace of V
	\P d. The set of all invertible $n imes n$ matrices is a subspace of V
	The correct answer is: The set of all $n imes n$ symmetric matrices ($A = A^T$) is a subspace of V
	The set of all $n \wedge n$ symmetric matrices ($\mathbf{A} = \mathbf{A}$) to a subspace of \mathbf{V}
Question 51 Correct	Let A,b be given. Then $AX=b$ has infinitely many solutions if and only if $AX=0$ has infinitely many solutions.
Mark 1.00 out	Select one:
of 1.00	○ True
question	® False ✔
	The correct answer is 'False'.
Question 52 Correct	The system $X+2Y+3Z=4$ has
Mark 1.00 out of 1.00	o a. no solution
₹ Flag	O b. unique solution
question	® c. infinitely many solution.
	The correct answer is:
	infinitely many solution.

```
Question 53
                             Let S = \{(x,y,z) \in \mathbb{R}^3 \colon x + 2y + 3z = 0\}. Then dimension of S is
  Incorrect
  Mark 0.00 out
of 1.00
                              O a. 0
                              b. 1
                               O c. 3
                               O d. 2
                             The correct answer is:
  Question 54
                             The set of solutions of following system of linear equations:
  Correct
                             5x_1 - x_2 + 4x_3 = 7
  Mark 1.00 out
of 1.00
                             -2x_1+6x_2+4x_3=14
  ₹ Flag
question
                             -7x_1+5x_2-2x_3=1 is a subspace \mathbb{R}^3 of dimension 1.
                             Select one:
                              ● False ✔
                             The correct answer is 'False'.
                                           \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}
    Question 55
    Incorrect
    Mark 0.00 out
of 1.00
                               Let {m A}=
                                                                            . Then det(A) is .....
    ₹ Flag
question
                                a. 30
                                o b. None of these
                                O c. 6
                                O d. -30
                                ● e. 0
                               O f. 1
                             The correct answer is:
Question 56
Incorrect
                           Let V be the vector space of all real valued functions f from \mathbb R into \mathbb R. Which of the following set is a subspace of V?
Mark 0.00 out
of 1.00
                             egin{array}{ll} egin{array}{ll} \bullet & {
m a.} \ S = \{f \in V \colon \! f(x^2) = (f(x))^2 \} \end{array}
                             \bigcirc \text{ b. } S = \{f \in V ; f(0) = f(1)\}
₹ Flag
question
                              \bigcirc \ \operatorname{c.} S = \{f \in V \colon f(-1) = 1\} 
                           The correct answer is: S = \{f \in V \colon f(0) = f(1)\}
Question 57
                           If a matrix m{A} has column space same as row space then it is a symmetric matrix.
Incorrect
                           Select one:
Mark 0.00 out
of 1.00
                            ⊚ True 🗶
₹ Flag
question
                            O False
                           The correct answer is 'False'.
                           Let I be the identity linear transformation of the finite dimensional vector space oldsymbol{V}, then the nullity of I is
Correct
Mark 1.00 out
of 1.00
                             a. 0
₹ Flag
question
                             0 b. V
                            o c. {0}
                             o d. dim(V)
```

Question 59 Correct Mark 1.00 out of 1.00 *Flag question	How many rows does matrix B have if BA is a 2 × 6 matrix?
	The correct answer is: 2
Question 60 Incorrect Mark 0.00 out of 1.00 Y Flag question	If the dimension of null space of a 5×6 matrix \mathbf{A} is 4 , then the dimension of row space of \mathbf{A} is 6 . define 6 is 6 . define 6 is 6 . define 6 in
	The correct answer is: 2
Question 61 Incorrect Mark 0.00 out of 1.00 P Flag question	Let u,v be two vectors in \mathbb{R}^2 . Then $\{u,v\}$ is linearly independent if and only if $\{u+v,u-v\}$ is linearly independent. Select one: O True False X
	The correct answer is 'True'.
Question 62 Incorrect Mark 0.00 out of 1.00 P Flag question	If $S: V \to V, T: V \to V$ are linear transformations. Then their composition SoT is not a linear transformation. Select one: True X O False
	The correct answer is 'False'.
Question 63 Correct Mark 1.00 out of 1.00 P Flag question	The set $B=\{(1,0,-1),(1,2,1),(0,-3,2)\}$ forms a basis of \mathbb{R}^3 . Select one: $ ext{@ True } \checkmark$ $ ext{ }$ $ ext{\bigcirc}$ False
	The correct answer is 'True'.

Question 64 Correct Mark 1.00 out of 1.00 P Flag question	Let $A_{4\times4}$ be a matrix with $\det(A)=0$. Then which of the following always true? a. Dimension of column space of A is equal to 4 b. Dimension of column space of A is equal to 0 c. Dimension of column space of A is equal to 0
	The correct answer is: Dimension of column space of $m{A}$ is $<$ $m{4}$
Question 65 Incorrect Mark 0.00 out of 1.00 IP Flag question	Let $T: \mathbb{R}^9 \to \mathbb{R}^9$ be a one-to-one linear transformation. $U = \{v = [x_1 \ x_2 \cdots x_9]^T \in \mathbb{R}^9 3x_1 - 2x_3 + x_8 + 11x_9 = 0\}$. Then dimension of $T(U)$ is a. 0 b. 4 c. can not say d. 8 e. 1 f. 9
	The correct answer is: 8
Question 66 Correct Mark 1.00 out of 1.00 F Flag question	If A is a 6 × 8 matrix, what is the smallest possible dimension of null space A? ○ a. 0 ○ b. 3 ○ c. 1 ● d. 2
	The correct answer is: 2
Question 67 Correct Mark 1.00 out of 1.00 F Flag question	Let A be a 9×12 matrix with real entries. If the system $Ax = b$ has solution for every b , then Column space of A is • a. \mathbb{R}_0 • b. \mathbb{R}_{11} • c. \mathbb{R}_{12}
	The correct answer is: \mathbb{R}_{0}

Question 68	Suppose a homogeneous linear system has no. of equations less than no. of variables then
Incorrect Mark 0.00 out	a. it may not have a solution.
of 1.00	□ b. it has infinitely many solutions.
question	□ c. it has unique solution
	d. set of solutions is always a vector space.
	The correct answers are:
	it has infinitely many solutions., set of solutions is always a vector space.
Question 69	The matrix $m{A}$ and $m{A}^T$ have same null space.
Correct Mark 1.00 out	Select one:
of 1.00	O True
question	® False ✔
	The correct answer is 'False'.
Question 70 Correct	Column space of Zero $3 imes 3$ matrix (i.e., matrix with all entries 0) is $\{0\}$
Mark 1.00 out of 1.00	Select one: ® True ✓
₹ Flag question	● nue ▼ ○ False
	The correct answer is 'True'.
	me correct answer is mue.
Question 71	If a 4×4 is not invertible then its row echelon form will
Correct	
Mark 1.00 out of 1.00	O a. zero matrix
₹ Flag	● b. have at least one row zero
question	
	C. identity matrix
	The correct answer is:
	have at least one row zero
Question 72	em n2 , n2 re rr mt \ // rr
Incorrect	If $T\colon \mathbb{R}^2 o \mathbb{R}^2$ defined by $T(x,y)=(x+y ,x+y).$ Then
Mark 0.00 out	O a. T is linear and onto
of 1.00	○ h Tir linear and ana-ana
₹ Flag question	Ob. T is linear and one-one
	C. T is not a linear transformation
	® d. T is a linear transformation X
	The correct answer is:
	T is not a linear transformation

If a linear transformation $T:\mathbb{R}^3\longrightarrow\mathbb{R}^5$ is one-to-one with standard matrix A, then A has Correct a. The rank is three and the nullity is two. Mark 1.00 out of 1.00 O b. The rank is two and the nullity is three. ₹ Flag question o c. we can not say anything about rank and nullity. O d. The rank is five and the nullity is zero. The correct answer is: The rank is three and the nullity is two. If $A=egin{bmatrix} 1&0&0&0\\3&1&0&0\\1&0&-1&0\\0&1&-3&1 \end{bmatrix}$ then Question 74 Incorrect Mark 0.00 out of 1.00 ₹ Flag question lacksquare a. $A^2=0$ $\ \, \circ \, \text{ b. } A^2 = A$ \circ c. $A^4=A^2=I$ $\ \, \circ \, \text{ d. } A^3 = I$ The correct answer is: $A^4=A^2=I$ Question **75** Suppose A is an 5×3 matrix with the property that for all $b \in \mathbb{R}^5$ the equation Ax = b has at most one solution. Then the columns of A must be linearly independent. Incorrect Select one: Mark 0.00 out of 1.00 O True ₹ Flag question ⊚ False 🗶 The correct answer is 'True'. $\text{Vector } b = (3,-1,0,1) \text{ belongs to } Span\{(2,-1,3,2),(-1,1,1,-3),(1,1,9,-5)\}.$ Incorrect Mark 0.00 out of 1.00 Select one ⊚ True 🗶 O False The correct answer is 'False'. $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ defined by $T(egin{bmatrix}x_1\\x_2\end{bmatrix})=egin{bmatrix}x_1+x_2\\x_1-x_2+1\end{bmatrix}$ is Question **77** Correct Mark 1.00 out of 1.00 a. a one to one linear transformation. ₹ Flag question b. not a linear transformation. O d. a bijective linear transformation. The correct answer is: not a linear transformation. Question 78 Let V be the vector space of all 3×3 matrices. Let S be the set of all 3×3 invertible matrices. Then Not answered Marked out of $\, \circ \,$ a. ${m S}$ is not a subspace of ${m V}$ \circ b. $m{S}$ is a subspace of $m{V}$ ₹ Flag question \circ c. $S \cup I$ (3 imes 3 identity matrix) is a subspace of V ${}^{\bigcirc}\,$ d. $S \cup 0$ (3 imes 3 ${f zero matrix})$ is a subspace of VThe correct answer is: ${m S}$ is not a subspace of ${m V}$

Question **79**Not answered The dimension of the null space of the matrix $A=\begin{bmatrix}1&5&7\\0&0&9\end{bmatrix}$ is Marked out of 1.00 O a. 3 P Flag question O b. 0 O c. 2 O d. 1 The correct answer is: Question **80**Not answered Suppose a consistent linear system has no. of equations more than no. of variables then Marked out of 1.00 o a. it has unique solution O b. it always has a solution. ₹ Flag question o c. It has no solutions. O d. it has infinitely many solutions. The correct answer is: it always has a solution.