Lesson Objectives

- 1. Perform Arithmetic Operations $(+, -, \times, \div)$ on Two Functions
 - a. Symbolically (with formula)
 - b. Numerically (with table)
 - c. Graphically
- 2. Perform a Composition of Two Functions
 - a. Symbolically (with formula)
 - b. Numerically (with table)
 - c. Graphically

A. Perform Arithmetic Operations $(+, -, \times, \div)$ on Two Functions

1. Symbolically (by hand)

Properties

If f(x) and g(x) both exist, the sum, difference, product, and quotient are defined as:

Sum of Functions: (f + g)(x) = f(x) + g(x)

Difference of Functions: (f - g)(x) = f(x) - g(x)

Product of Functions: $(fg)(x) = f(x) \cdot g(x)$

Quotient of Functions $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$, with $g(x) \neq 0$

• **EXAMPLE:** Let f(x) = 3x + 2 and $g(x) = \frac{1}{x}$. Evaluate each expression symbolically. [5.1.9]

(a)
$$(f + g)(4)$$

(b)
$$(f-g)\left(\frac{1}{3}\right)$$

(c)
$$(fg)(2)$$

(d)
$$\left(\frac{f}{g}\right)$$
 (0)

(a)
$$(f+g)(4) = f(4)$$
 + $g(4)$ $f(x) = 3x + 2$ and $g(x) = \frac{1}{x}$
= $3(4) + 2 + \frac{1}{4} = \frac{57}{4}$

(b)
$$(f-g)\left(\frac{1}{3}\right) = f\left(\frac{1}{3}\right) - g\left(\frac{1}{3}\right)$$
 $f(x) = 3x + 2$ and $g(x) = \frac{1}{x}$

$$=3\left(\frac{1}{3}\right)+2-\frac{1}{\frac{1}{3}}$$
 $=3-3$ $=0$

(c)
$$(fg)(2) = f(2)$$
 $g(2)$ $f(x) = 3x + 2$ and $g(x) = \frac{1}{x}$

$$= 3(2) + 2 \cdot \frac{1}{2} = 8 \cdot \frac{1}{2} = 4$$

$$(d)\frac{f}{g}(0) = \frac{f(0)}{g(0)} = \frac{3(0)+2}{\frac{1}{0}}$$
 but, $\frac{1}{0}$ is Undefined

$$f(x) = 3x + 2$$
 and $g(x) = \frac{1}{x}$

2. Numerically (with table)

• **EXAMPLE:** Use the given table to complete the table below. [5.1.47]

Given table:

Х	f(x)	g(x)
-2	0	8
0	6	0
2	7	-4
4	14	7

Complete the table. (Simplify your answers. Type N if the answer is undefined.)

X	(f+g)(x)	$(\boldsymbol{f}-\boldsymbol{g})(x)$	(fg)(x)	$\left(\frac{f}{g}\right)(x)$
-2	0 + 8 = 8	0 - 8 = -8	$0 \cdot 8 = 0$	$\frac{0}{8} = 0$
0	6 + 0 = 6	6 - 0 = 6	$6 \cdot 0 = 0$	$\frac{6}{0} = N$
2	7 + (-4) = 3	7 - (-4) = 11	$7 \cdot -4 = -28$	$\frac{7}{-4} = -\frac{7}{4}$
4	14 + 7 = 21	14 - 7 = 7	14 · 7 = 98	$\frac{14}{7} = 2$

3. Graphically

EXAMPLE: Use the graph to the right to evaluate the following functions. [5.1.39]

(a) (f + g)(0)

$$= f(0) + g(0)$$

(get the y-coordinates at x = 0)

$$= 0 + 3 = 3$$

$$= 0 + 3 = 3$$
(b) $(f - g)(-1)$

$$= f(-1) - g(-1)$$

(get the y-coordinates at x = -1)

$$= 3 - 2 = 1$$

= 3 - 2 = 1(c) (fg)(1)

$$= f(1) \cdot g(1)$$

(get the y-coordinates at x = 1)

$$= -3 \cdot 2 = -6$$

(d)
$$\left(\frac{f}{g}\right)$$
 (2) = $\frac{f(2)}{g(2)}$
= $\frac{-6}{-1}$ = 6

(get the y-coordinates at x = 2)

B. Perform a **Composition** of Two Functions

Definition

Function Composition is defined as follows:

$$(f \circ g)(x) = f(g(x))$$

"
$$f$$
 of g of x ."

The output of the second function is the input into the first function

1. Symbolically (by hand)

• **EXAMPLE:** Find
$$(g \circ f)(5)$$
 when $f(x) = -3x - 2$ and $g(x) = -5x^2 - 2x - 9$. [5.1-26]

Always start with the **SECOND** function, and use the given input value.

$$(g \circ f)(5)$$
 $f(5) = -3(5) - 2 = -17$

Take that **OUTPUT** (answer) from 2ND function and **INPUT** into **FIRST** function:

$$g(-17) = -5(-17)^2 - 2(-17) - 9$$

= -5(289) + 34 - 9
= -1445 + 25 = -1420

2. Numerically (with table)

• **EXAMPLE**: Use the tables to evaluate the expressions. [5.1.89]

x	1	2	5	7
f(x)	5	7	1	2

x	1	2	5	7
g(x)	2	5	7	8

Find $(g \circ f)(2)$

You do these similar to the symbolic (formula) way.

Always start with the SECOND function,	Take that OUTPUT (answer) from 2 ND
and use the given input value.	function and INPUT into FIRST function:
$(g \circ f)(2)$	$g(7) = 8$ So, $(g \circ f)(2) = 8$
f(2) = 7	

(continued from previous page – same problem)

• **EXAMPLE:** Use the tables to evaluate the expressions. [5.1.89]

x	1	2	5	7
f(x)	5	7	1	2

x	1	2	5	7
g(x)	2	5	7	8

Find $(f \circ g)(5)$

You do these similar to the symbolic (formula) way.

Always start with the SECOND function,	Take that OUTPUT (answer) from 2 ND
and use the given input value.	function and INPUT into FIRST function:
$(f \circ g)(5)$ $g(5) = 7$	$f(7) = 2$ So, $(f \circ g)(5) = 2$

(continuation of same problem)

• **EXAMPLE:** Use the tables to evaluate the expressions. [5.1.89]

х	1	2	5	7
f(x)	5	7	1	2

x	1	2	5	7
g(x)	2	5	7	8

Find $(g \circ g)(7)$

You do these similar to the symbolic (formula) way.

Always start with the SECOND function,	Take that OUTPUT (answer) from 2 ND
and use the given input value.	function and INPUT into FIRST function:
$(g \circ g)(7)$	g(8) is not in the table. There's no $x=8$ in the $g(x)$ table.
g(7) = 8	So, $(g \circ g)(7) = $ undefined

3. **Graphically**

- **EXAMPLE:** Use the graph to evaluate the following expressions. [5.1.87]
 - (a) $(f \circ g)(1)$
 - **(b)** $(g \circ f)(1)$
 - (c) $(g \circ g)(0)$

SOLUTION

(a) $(f \circ g)(1)$

g(1) means using the g(x) graph, find the y-coordinate when x=1.

$$g(1) = 2$$

f(2) means using the f(x) graph, find the y-coordinate when x = 2. f(2) = 0

So,
$$(f \circ g)(1) = \mathbf{0}$$

(b) $(g \circ f)(1)$

f(1) means using the f(x) graph, find the y-coordinate when x = 1.

$$f(1) = -1$$

g(-1) means using the g(x) graph, find the y-coordinate when x = -1. g(-1) = 0

So,
$$(g \circ f)(1) = \mathbf{0}$$

(c) $(g \circ g)(0)$

g(0) means using the g(x) graph, find the y-coordinate when x = 0.

$$g(0) = 1$$

g(1) means using the g(x) graph, find the y-coordinate when x = 1. g(1) = 2

So,
$$(g \circ g)(0) = 2$$

Source Used: MyLab Math for College Algebra with Modeling and Visualization, 6th Edition, Rockswold, Pearson Education Inc.