Kennzahlen_Klassifizierung

April 19, 2021

1 Wichtige Kennzahlen für die Klassifizierung

Hier werden die wichtigsten Kennzahlen für ein Klassifizierungsmodell vorgestellt.

Als Datensatz verwenden wir eine CSV-Datei, die direkt die Ergebnisse des Modells enthält (Feature PROGNOSE). In der ersten Spalte sind die realen Werte enthalten (Feature REALITAET).

0 entspricht hier NEGATIV 1 entspricht hier POSITIV

	REALITAET	PROGNOSE
0	1	0
1	1	0
2	1	0
3	1	0
4	1	0
	•••	•••
172	0	0
173	0	0
174	0	0
175	0	0
176	0	0
	1 2 3 4 172 173 174 175	1 1 2 1 3 1 4 1 1 172 0 173 0 174 0 175 0

[177 rows x 2 columns]

Zuerst erstellen wir einen Report für diesen Datensatz. Mit Seaborn erstellen wir zudem eine Confusion Matrix mit Hilfe der Funktion heatmap. Man beachte hier, dass die Zeilen / Spalten gegenüber üblicher Darstellung in der Literatur vertauscht sind. Spaltenweise sind hier die Prognosen angegeben, zeilenweise die Realität.

```
[33]: from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import seaborn as sns
```


	precision	recall	f1-score	support
NEGATIV	0.84	0.82	0.83	109
POSITIV	0.72	0.75	0.73	68
accuracy			0.79	177
macro avg	0.78	0.78	0.78	177
weighted avg	0.79	0.79	0.79	177

Man kann natürlich jede dieser Kennzahlen (und noch viele weitere) mit Hilfe von Funktionen

berechnen lassen:

```
[54]: from sklearn.metrics import *
      TN, FP, FN, TP = cm[0][0], cm[0][1], cm[1][0], cm[1][1]
      accuracy = accuracy_score(df.REALITAET, df.PROGNOSE) # Accuracy
      sensitivity = TP / (TP+FN) # Sensitivit \ddot{a}t
      specificity = TN / (TN+FP) # Spezifität
      precision = precision_score(df.REALITAET, df.PROGNOSE) # Precision
      balanced_acc = balanced_accuracy_score(df.REALITAET, df.PROGNOSE) # balanced_
      \rightarrowaccuracy
      f1 = f1_score(df.REALITAET, df.PROGNOSE) # F1-Score
      mcc = matthews_corrcoef(df.REALITAET, df.PROGNOSE) # Mattews_
       \rightarrowKorrelationskoeffizient
      print("Accuracy = ", accuracy)
      print("Sensitivitaet / Recall = ", sensitivity)
      print("Spezifität = " , specificity)
      print("Precision = ", precision)
      print("Balanced Accuracy = " , balanced_acc)
      print("F1-Score = " , f1)
      print("Matthews Korrelationskoeffizient = " , mcc)
     Accuracy = 0.7909604519774012
```

```
Accuracy = 0.7909604519774012

Sensitivitaet / Recall = 0.75

Spezifität = 0.8165137614678899

Precision = 0.7183098591549296

Balanced Accuracy = 0.783256880733945

F1-Score = 0.7338129496402879

Matthews Korrelationskoeffizient = 0.5622067587610047
```