Scan Alignment

Not-Aligned

Aligned

Scan Alignment: SVD

- Optimal alignment between corresponding points
 - Assuming that for each source point, we know where the corresponding target point is

Slide Credit: http://www.cse.wustl.edu/~taoju/cse554/lectures/lect05 Alignment

Scan Alignment: SVD

- · SVD algorithm:
 - Let P be a matrix whose i-th column is vector $p_i c_s$
 - Let Q be a matrix whose *i*-th column is vector $q_i c_T$
 - Consider the cross-covariance matrix:

$$M = PQ^{\top}$$

- Find SVD of M:

$$M = U\Sigma V^{\top}$$

– Find Rotation R:

$$R = UV^{\top}$$

– Find Translation:

$$\vec{t} = c_T - R * c_S$$

Scan Alignment: SVD

- SVD algorithm:
 - Let P be a matrix whose i-th column is vector $p_i c_s$
 - Let Q be a matrix whose *i*-th column is vector $q_i c_T$
 - Consider the cross-covariance matrix:

$$M = PQ^{\top}$$

- Find SVD of M:

$$M = U\Sigma V^{\top}_{\omega}$$

– Find Rotation R:

$$R = UV^{\top}$$

– Find Translation:

$$\vec{t} = c_T - R * c_S$$

Limitations of SVD

- Requires correct point correspondences
 - Generally correspondences are not known!!

Iterative Closest Point (ICP)

Besl, P. J. and McKay, N. D. (1992). A Method for Registration of 3-D Shapes. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 14(2):239-255.

Generalized ICP

 Generalized-ICP is based on attaching a probabilistic model to the minimization step of the standard ICP algorithm.

$$A = \{a_i\}_{i=1,2...N}$$
 $B = \{b_i\}_{i=1,2...N}$ (st $a_i == b_i$)

$$a_i \sim N(\mu_{ai}, \Sigma_{Ai}) \; ; \; b_i \sim N(\mu_{bi}, \Sigma_{Bi})$$

Reference: "Generalized ICP" by A. Segal, D. Haehnel, S. Thrun. RSS 2009

Introduction to Computer Vision for Robotics

AE640A Autonomous Navigation

Mangal Kothari

Credit: Harsh Sinha

What is Computer Vision?

What is Computer Vision?

- Vision is about discovering from images what is present in the scene and where it is.
- In *Computer Vision* a camera (or several cameras) is linked to a computer. The computer interprets images of a real scene to obtain information useful for tasks such as navigation, manipulation and recognition.

Image Credits: Karpathy, CVPR'15

What kind of Information?

Primary themes in Computer Vision are:

- 1. Object Detection
- 2. Segmentation

Segmentation: Which pixels belong to which object?
Credits: Own Work

Primary themes in Computer Vision are:

- Object Detection
- 2. Segmentation
- 3. Image Modifications/Enhancements

Image Colorization: From Grayscale to Colored Images Credits: Richard Zhang, CVPR 2016

Primary themes in Computer Vision are:

- Object Detection
- 2. Segmentation
- 3. Image Modifications/Enhancements
- Image to Text
- Image Generation
- 6. Motion Estimation
- 7. 3D reconstruction from Images

3D Reconstruction: REMODE, Real Time Reconstruction Credits: Matia Pizzoli, ICRA 2014

A look at history

- Robert Nathan started writing computer programs for enhancing images from NASA's spacecraft's at Jet Propulsion Lab, NASA.
- The Summer Vision Project: Project at MIT to solve a significant part of visual system. Primary Objective was to divide the image into object, background and chaos regions, over the course of a summer.

Credits: EE604, nasa.gov

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Artificial Intelligence Group Vision Heno. No. 100. July 7, 1966

THE SUMMER VISION PROJECT

Saymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

Credits: https://tinyurl.com/y6bpo4nk

Hard Problem?

- Why are we still working on roughly the same problem as the "summer vision project"?
- Why is it that creating 3D models of chairs is easier than identifying them?

- → There is a large between some ~1920x1080x3 numbers and the high-level abstract meaning we associate with them.
- → Images are 2D representation of information from 3D world.

The (human) (computer) vision system

Credits: CS131, Stanford

Camera Models

Camera Models

- Like so many things in engineering, we create a simple "model" of a camera to which is easy to understand and can approximate the actual functioning of a camera to a good degree.
- There are different models:
 - Pinhole camera model
 - Lens model
 - **...**

Cameras

Demosaicing interpolates RGB subsamples to get colour image

World Simplest Camera?

- Just hold up a piece of film
- Do we get an image on the film?
 - For each piece of the film, where do the photons come from?

Let's add an aperture

- An aperture blocks all but a small subset of the rays
 - Causes the image to appear in focus!

Aperture Size

- Why not make the aperture super small?
 - A "pin-hole" lens.
 - Not enough light to "register" on our film
- What happens when the aperture is bigger?
 - More rays can fit through--- blurrier image
- Is there any way of getting a sharp image, but allow more light through?
 - Yes! A lens.

Lenses

- A lens collects rays with a particular divergence and refocuses them to a point.
 - ▶ But points at the "wrong" distance won't be refocused exactly.
- Depth of field: how much of the scene is in focus
- We're going to ignore this today, however--- we're going to assume a "pin-hole" model.

Pinhole camera model

Credits: Wikipedia, Pinhole Camera Model

The Perspective Matrix

 Suppose we write a point in the world (like the position of the candle flame) as a vector:

$$p = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• Can we write a matrix so that p' = Mp?

$$p' = \left[\begin{array}{c} fx/z + c_x \\ fy/z + c_y \end{array} \right]$$

Do homogeneous coordinates help?

Eureka!

$$p' = \begin{bmatrix} fx/z + c_x \\ fy/z + c_y \\ 1 \end{bmatrix} = \begin{bmatrix} fx + c_x z \\ fy + c_y z \\ z \end{bmatrix} = \begin{bmatrix} f & 0 & c_x & 0 \\ 0 & f & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$2d \\ homogeneous \\ coordinates \end{bmatrix}$$

Rigid-Body Transformations

- The product of two rigid-body transformations is always another rigid-body transformation!
- So no matter how the object has been translated or rotated, we can describe its position with a single 4x4 matrix, which has the structure:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} R_{00} & R_{01} & R_{02} & T_x \\ R_{10} & R_{11} & R_{12} & T_y \\ R_{20} & R_{21} & R_{22} & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Putting it all together

$$\begin{bmatrix} x' \\ y' \\ s \end{bmatrix} = \begin{bmatrix} f & 0 & c_x & 0 \\ 0 & f & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R_{00} & R_{01} & R_{02} & T_x \\ R_{10} & R_{11} & R_{12} & T_y \\ R_{20} & R_{21} & R_{22} & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous pixel (camera) coordinates

Focal length and focal center of camera

"Intrinsics"

Rigidly move every object in the world to simulate the camera's true position

"Extrinsics"

homogenous (world) coordinates

