MATH2022 Linear and Abstract Algebra

Semester 1

Week 8 Longer Solutions

1. Certainly \mathbb{C} is an abelian group under addition. To become a real vector space we just take scalar multiplication to be multiplication of a complex number by a real number. Since \mathbb{C} is a field, and \mathbb{R} is a subset of \mathbb{C} , we immediately have

$$(\forall \lambda, \mu \in \mathbb{R})(\forall \mathbf{v}, \mathbf{w} \in \mathbb{C}) \quad (\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v} \quad \text{and} \quad \lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$$

and

$$(\forall \mathbf{v} \in \mathbb{C}) \quad 1\mathbf{v} = \mathbf{v} .$$

This verifies that \mathbb{C} is a vector space over \mathbb{R} . We may identify a complex number z = a + bi, where $a, b \in \mathbb{R}$ with the geometric vector \mathbf{v} that is the position vector of the point (a, b) in the xy-plane. Mapping z to \mathbf{v} clearly yields a bijection that respects vector addition and scalar multiplication, so yields a vector space isomorphism between \mathbb{C} and the vector space of geometric vectors in the xy-plane. Further

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \} = \{ a1 + bi \mid a, b \in \mathbb{R} \} = \langle 1, i \rangle ,$$

so that $\{1, i\}$ spans \mathbb{C} . (This corresponds to the fact that the usual unit vectors \mathbf{i} and \mathbf{j} span the vector space of geometric vectors in the plane.)

2. Geometrically, S_1 describes a line in the plane of slope -1 passing through the origin. We claim it is a subspace of \mathbb{R}^2 . Certainly S_1 is nonempty, since $(0,0) \in S_1$. Suppose that $\mathbf{v}, \mathbf{w} \in S_1$ and $\lambda, \mu \in \mathbb{R}$. Then $\mathbf{v} = (x_1, y_1)$ and $\mathbf{w} = (x_2, y_2)$ for some $x_1, x_2, y_1, y_2 \in \mathbb{R}$, and, by definition of membership of S_1 ,

$$x_1 + y_1 = 0 = x_2 + y_2$$
.

But, we have

$$\lambda \mathbf{v} + \mu \mathbf{w} = \lambda(x_1, y_1) + \mu(x_2, y_2) = (\lambda x_1 + \mu x_2, \lambda y_1 + \mu y_2) = (x', y'),$$

where $x' = \lambda x_1 + \mu x_2$, $y' = \lambda y_1 + \mu y_2$, and, further,

$$x' + y' = \lambda x_1 + \mu x_2 + \lambda y_1 + \mu y_2$$

= $\lambda (x_1 + y_1) + \mu (x_2 + y_2) = \lambda (0) + \mu (0) = 0$.

This shows that $\lambda \mathbf{v} + \mu \mathbf{w} \in S_1$, so that S_1 is closed under taking linear combinations, completing the verification that it is a subspace of \mathbb{R}^2 .

Geometrically, S_2 is a line of slope -1 with y-intercept 1. It does not pass through the origin, so does not contain the zero vector (0,0), so cannot be a subspace of \mathbb{R}^2 .

Geometrically, S_3 is a "half-plane" including all points on the line S_1 and all points in the plane situated vertically above points on S_1 , where we think of "vertical" as meaning in the positive y-direction. This is not a subspace of \mathbb{R}^2 , however, as it is not closed under scalar multiplication. To see this, for example, observe that $(1,0) \in S_3$, since $1+0=1 \geq 0$, but $-(1,0)=(-1,0) \notin S_3$, since -1+0=-1 < 0.

Geometrically, S_4 is the perimeter of the circle of radius 1 centred at the origin. It is not a subspace of \mathbb{R}^2 since it does not contain the origin.

3. Geometrically, S_1 describes a plane in space that passes through the origin, and we claim it is a subspace of \mathbb{R}^3 . Certainly S_1 is nonempty, since $(0,0,0) \in S_1$. Suppose that $\mathbf{v}, \mathbf{w} \in S_1$ and $\lambda, \mu \in \mathbb{R}$. Then $\mathbf{v} = (x_1, y_1, z_1)$ and $\mathbf{w} = (x_2, y_2, z_2)$ for some $x_1, x_2, y_1, y_2, z_1, z_2 \in \mathbb{R}$, and, by definition of membership of S_1 ,

$$x_1 + y_1 + z_1 = 0 = x_2 + y_2 + z_2$$
.

But, we have

$$\lambda \mathbf{v} + \mu \mathbf{w} = \lambda(x_1, y_1, z_1) + \mu(x_2, y_2, z_2) = (\lambda x_1 + \mu x_2, \lambda y_1 + \mu y_2, \lambda z_1 + \mu z_2) = (x', y', z'),$$

where $x' = \lambda x_1 + \mu x_2$, $y' = \lambda y_1 + \mu y_2$, $z' = \lambda z_1 + \mu z_2$, and, further,

$$x' + y' + z' = \lambda x_1 + \mu x_2 + \lambda y_1 + \mu y_2 + \lambda z_1 + \mu z_2$$

= $\lambda (x_1 + y_1 + z_1) + \mu (x_2 + y_2 + z_2) = \lambda (0) + \mu (0) = 0$.

This shows that $\lambda \mathbf{v} + \mu \mathbf{w} \in S_1$, so that S_1 is closed under taking linear combinations, completing the verification that it is a subspace of \mathbb{R}^3 .

Geometrically, S_2 is a plane is space that does not pass through the origin. Indeed (0,0,0) does not satisfy the criterion for membership of S_2 , since $2(0) + 3(0) + 4(0) = 0 \neq 1$. Since S_2 does not contain the zero vector, it cannot be a subspace of \mathbb{R}^3 .

Geometrically, S_3 is a "half-space" including all points on the plane S_1 . We obtain all points of S_3 by moving, starting from points on S_1 , away from S_1 parallel to the z-axis, but in the direction of the negative z-axis. This is not a subspace of \mathbb{R}^3 , however, as it is not closed under scalar multiplication. To see this, for example, observe that $(0,0,-1) \in S_3$, since $2(0)+3(0)+4(-1)=-4 \le 0$, but $-(0,0,-1)=(0,0,1) \not\in S_3$, since 2(0)+3(0)+4(1)=4>0.

Geometrically, S_4 is the surface and interior of the sphere of radius 1 centred at the origin. It is not a subspace of \mathbb{R}^3 since it is not closed under addition. For example $(1,0,0), (0,1,0) \in S_4$ but $(1,0,0)+(0,1,0)=(1,1,0) \notin S_4$ since $1^2+1^2+0^2=2>1$.

4. We have

$$A = \begin{bmatrix} 1 & 1 & 5 \\ 2 & 3 & 13 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 5 \\ 0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix},$$

$$B = \begin{bmatrix} 1 & -1 & -2 \\ 3 & -2 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \end{bmatrix},$$

which has a different reduced row echelon form to A, so that A and B are not row equivalent. Hence the row spaces of A and B are different. However

$$C = \begin{bmatrix} 1 & -1 & -1 \\ 4 & -3 & -1 \\ 3 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 3 \\ 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix},$$

which has the same nonzero rows as the reduced row echelon form of A. Hence A and C have identical row spaces.

5. Writing \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 as rows of a matrix A and row reducing we get

$$A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & 3 & -8 \\ 0 & 0 & 6 & -16 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 1/3 \\ 0 & 0 & 1 & -8/3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Writing \mathbf{w}_1 and \mathbf{w}_2 as rows of a matrix B and row reducing we get

$$B \ = \ \left[\begin{array}{cccc} 1 & 2 & -4 & 11 \\ 2 & 4 & -5 & 14 \end{array} \right] \ \sim \ \left[\begin{array}{ccccc} 1 & 2 & -4 & 11 \\ 0 & 0 & 3 & -8 \end{array} \right] \ \sim \ \left[\begin{array}{ccccc} 1 & 2 & 0 & 1/3 \\ 0 & 0 & 1 & -8/3 \end{array} \right] \ ,$$

which is in row echelon form with identical nonzero rows as the row echelon form above for A. Hence the rows of A and the rows of B span identical row spaces. This verifies that $S_1 = S_2$.

6. (a) The zero vector is unique, for if $\mathbf{0}$ and $\mathbf{0}'$ are both zeros in a vector space then they both act as additive identity elements, so that

$$0 = 0 + 0' = 0'$$
.

(b) Suppose that \mathbf{u} is a vector and both \mathbf{v} and \mathbf{w} act as negatives of \mathbf{u} , that is,

$$u+v \ = \ v+u \ = \ 0 \ = \ u+w \ = \ w+u \ .$$

Then, in particular,

$$v = v + 0 = v + (u + w) = (v + u) + w = 0 + w = w$$

which verifies that the negative of **u** is unique.

(c) Let $\mathbf{v} \in V$ and put $\mathbf{w} = 0\mathbf{v}$. We show that $\mathbf{w} = \mathbf{0}$. Observe first that

$$\mathbf{w} + \mathbf{w} = 0\mathbf{v} + 0\mathbf{v} = (0+0)\mathbf{v} = 0\mathbf{v} = \mathbf{w}.$$

Hence

$$0 = -w + w = -w + (w + w) = (-w + w) + w = 0 + w = w$$

that is, $\mathbf{w} = \mathbf{0}$, as required.

(d) Let $\lambda \in F$ and put $\mathbf{w} = \lambda \mathbf{0}$. We show that $\mathbf{w} = \mathbf{0}$. Observe first that

$$\mathbf{w} + \mathbf{w} = \lambda \mathbf{0} + \lambda \mathbf{0} = \lambda (\mathbf{0} + \mathbf{0}) = \lambda \mathbf{0} = \mathbf{w}$$
.

Hence, as in part (c),

$$0 = -w + w = -w + (w + w) = (-w + w) + w = 0 + w = w$$

that is, $\mathbf{w} = \mathbf{0}$, as required.

(e) Observe, for $\mathbf{v} \in V$, that

$$\mathbf{v} + (-1)\mathbf{v} = 1\mathbf{v} + (-1)\mathbf{v} = (1 + (-1))\mathbf{v} = (1 - 1)\mathbf{v} = 0\mathbf{v} = \mathbf{0}$$

by part (c), so that $(-1)\mathbf{v}$ acts as a negative of \mathbf{v} , so must be $-\mathbf{v}$, since the negative of \mathbf{v} is unique, by part (b).

(f) Let $\mathbf{v} \in V$ and $\lambda \in F$, and suppose that $\lambda \mathbf{v} = \mathbf{0}$. Suppose that $\lambda \neq 0$. Then λ^{-1} exists in F so that, by part (d),

$$\mathbf{0} = \lambda^{-1}\mathbf{0} = \lambda^{-1}(\lambda \mathbf{v}) = (\lambda^{-1}\lambda)\mathbf{v} = 1\mathbf{v} = \mathbf{v},$$

that is, $\mathbf{v} = \mathbf{0}$. This proves that either $\lambda = 0$ or $\mathbf{v} = \mathbf{0}$, as required.

7. Suppose first that S is closed under addition and scalar multiplication, and let $\mathbf{v}, \mathbf{w} \in S$ and $\lambda, \mu \in F$. Then $\lambda \mathbf{v} \in S$ and $\mu \mathbf{w} \in S$, since S is closed under scalar multiplication, so that

$$\lambda \mathbf{v} + \mu \mathbf{w} \in S$$
,

now because S is closed under addition. This completes the verification that S is closed under taking linear combinations. Conversely, suppose S is closed under taking linear combinations, and let $\mathbf{v}, \mathbf{w} \in S$ and $\lambda \in F$. Then

$$\mathbf{v} + \mathbf{w} = 1\mathbf{v} + 1\mathbf{w} \in S$$
 and $\lambda \mathbf{v} = \lambda \mathbf{v} + 0\mathbf{w} \in S$.

in each case because S is closed under taking linear combinations. But this verifies that S is closed under addition and scalar multiplication.

8. Since S and T are subspaces of V then they are both nonempty and closed under addition and scalar multiplication. In particular, there is some $\mathbf{v} \in S$, so that

$$\mathbf{0} = 0\mathbf{v} \in S$$
.

since S is closed under scalar multiplication. Similarly $\mathbf{0} \in T$, so that $\mathbf{0} \in S \cap T$. Thus $S \cap T$ is nonempty. If $\mathbf{v}, \mathbf{w} \in S \cap T$ and $\lambda \in F$ then certainly $\mathbf{v}, \mathbf{w} \in S$, so that $\mathbf{v} + \mathbf{w}$ and $\lambda \mathbf{v} \in S$, by closure properties of S, and similarly for T, so that

$$\mathbf{v} + \mathbf{w} \in S \cap T$$
 and $\lambda \mathbf{v} \in S \cap T$.

Thus $S \cap T$ is closed under addition and scalar multiplication, so is a subspace of V.

- 9. Let S be a subspace of a vector space V. Certainly S is nonempty and, because of its closure properties, the addition and scalar multiplication of V restricts to addition and scalar multiplication in S. As in the solution to the previous exercise, S contains the zero vector. Also, if $\mathbf{v} \in S$ then $-\mathbf{v} = (-1)\mathbf{v} \in S$, since S is closed under scalar multiplication. Thus addition is associative and commutative (inherited from V) and S contains an additive identity element (the zero from V) and has additive inverses (because of closure under taking negatives of vectors). Thus S is an abelian group with respect to addition. Compatibility with scalar multiplication is inherited from V, so S is a vector space over the same underlying field.
- **10.** The zero vector in F^X is the so-called zero function $\mathbf{0}: X \to F$ that maps each $x \in X$ to $0 \in F$. This is because, by definition of addition of functions, if $f \in F^X$ then

$$(\mathbf{0} + f)(x) = \mathbf{0}(x) + f(x) = 0 + f(x) = f(x),$$

so that $\mathbf{0} + f = f$. If $f \in F^X$ then the negative of f denoted by -f is given by the rule

$$(-f)(x) = -f(x)$$

for all $x \in X$. This is because

$$(f + (-f))(x) = f(x) + (-f)(x) = f(x) + (-f(x)) = f(x) - f(x) = 0$$

for all $x \in X$, so that $f + (-f) = \mathbf{0}$, the zero function.

11. Certainly, we have

$$M\mathbf{0}^{\top} = \mathbf{0}$$

(interpreting the first $\mathbf{0}$ as an element of F^n and the second $\mathbf{0}$ as a column vector with m 0's), so that $\mathbf{0} \in S$. Hence S is nonempty. Suppose that $\mathbf{v}, \mathbf{w} \in S$ and $\lambda, \mu \in F$. Then $M\mathbf{v}^{\top} = \mathbf{0}$ and $M\mathbf{w}^{\top} = \mathbf{0}$, so that

$$M(\lambda \mathbf{v} + \mu \mathbf{w})^{\top} = \lambda M \mathbf{v}^{\top} + \mu M \mathbf{w}^{\top} = \lambda \mathbf{0} + \mu \mathbf{0} = \mathbf{0}$$
.

Thus $\lambda \mathbf{v} + \mu \mathbf{w} \in S$, so that S is closed under taking linear combinations, so that S is a subspace of F^n .

12. Every subspace of V contains the zero vector, using the argument given above in a previous solution, so the zero vector lies in the intersection of all subspaces of V. Certainly $\{\mathbf{0}\}$ is a subspace of V since $\mathbf{0} + \mathbf{0} = \mathbf{0} = \lambda \mathbf{0}$ for all scalars λ . Further it contains \emptyset (as do all sets). Thus

$$\{\mathbf{0}\} \ \subseteq \ \bigcap \{S \mid S \ \text{ is a subspace of } V \text{ containing } \emptyset \} \ \subseteq \ \{\mathbf{0}\} \ ,$$

so these sets are in fact equal. This verifies that $\{0\}$ is the smallest subspace of V containing \emptyset , as required.

13. The zero square matrix is symmetric so is in S, so S is nonempty. Suppose that $A, B \in S$ and $\lambda, \mu \in F$. Then

$$(\lambda A + \mu B)^{\top} = \lambda A^{\top} + \mu B^{\top} = \lambda A + \mu B ,$$

so that S is closed under taking linear combinations. This verifies that S is a subspace of $\mathrm{Mat}_{n,n}$. If n=2 then

$$S \ = \ \left\{ \left[\begin{array}{cc} a & b \\ b & c \end{array} \right] \ \left| \ a,b,c \in F \right\} \ = \ \left\{ a \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + b \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] + c \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \ \left| \ a,b,c \in F \right\} \ .$$

Hence a spanning set for S in this case is

$$\left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\}.$$

- 14. (a) The zero polynomial is in \mathbb{P}_n for each n, so certainly also in \mathbb{P} , so both are nonempty. A linear combination of two polynomials is clearly a polynomial, and if both have degree at most n, then so does the linear combination. This shows that both \mathbb{P}_n and \mathbb{P} are closed under taking linear combinations. Hence \mathbb{P} is a subspace of $\mathbb{R}^{\mathbb{R}}$ and \mathbb{P}_n is a subspace of \mathbb{P} .
 - (b) By definition of a polynomial of degree at most n, it is a linear combination of powers of x from $1 = x^0$ up to and including x^n . Thus $\{1, x, \ldots, x^n\}$ spans \mathbb{P}_n .
 - (c) The mapping

$$a_0 + a_1 x + \ldots + a_n x^n \mapsto (a_0, a_1, a_2, \ldots, a_n)$$

for $a_0, a_1, \ldots, a_n \in \mathbb{R}$, is a bijection from \mathbb{P}_n to \mathbb{R}^{n+1} , which clearly preserves addition and scalar multiplication, so is a vector space isomorphism.

5

- (d) Suppose that S is a finite subset of \mathbb{P} . Then there is a positive integer n such that all polynomials in S have degree less than n. Hence $\langle S \rangle \subseteq \mathbb{P}_n$, since \mathbb{P}_n is closed under taking linear combinations. But $x^{n+1} \in \mathbb{P} \backslash \mathbb{P}_n$, so certainly $x^{n+1} \notin \langle S \rangle$, so that S cannot span \mathbb{P} .
- **15.** Let S be the set of bounded functions from $\mathbb{R}^{\mathbb{R}}$. Certainly the zero function is bounded so is in S. Hence S is nonempty. Suppose that $f,g\in S$ and $\lambda,\mu\in\mathbb{R}$. There there exist $K,L\geq 0$ such that

$$|f(x)| < K$$
 and $|g(x)| < L$,

for all $x \in \mathbb{R}$. But then, by definition of addition and scalar multiplication of functions, and the triangle inequality,

$$|(\lambda f + \mu g)(x)| = |\lambda f(x) + \mu g(x)| \le |\lambda f(x)| + |\mu g(x)| = |\lambda||f(x)| + |\mu||g(x)| \le |\lambda|K + |\mu|L$$
,

for all $x \in \mathbb{R}$, which shows that $\lambda f + \mu g$ is bounded. Thus S is closed under taking linear combinations so is a subspace of $\mathbb{R}^{\mathbb{R}}$.