WHAT IS CLAIMED IS:

1	1. A spectrometer comprising:
2	a first collection device that includes an adjustable-optical path and configured
3	to collect a first portion of a wavefront;
4	a second collection device configured to collect a second portion of the
5	wavefront;
6	combiner optics configured to interfere the first and second portions of the
7	wavefront at an image plane of the first and second collector devices to form interference
8	patterns at the image plane; and
9	a Fourier transformation module configured to derive spectral information
10	from the interference patterns.
1	2. The spectrometer of claim 1, wherein the Fourier transformation
2	module is configured to Fourier transform the interference patterns to derive the spectral
3	information.
1	3. The spectrometer of claim 1, wherein, to derive the spectral
2	information, the Fourier transform module is configured to Fourier transform the interference
3	patterns of the wavefront with the adjustable-optical path set at a variety of path lengths.
	pain set at a variety of pain lengths.
1	4. The spectrometer of claim 1, wherein the Fourier transformation
2	module is configured to generate a spectrogram of the wavefront.
1	
1	5. The spectrometer of claim 1, wherein the Fourier transformation
2	module includes an image-capture array disposed at the image plane configured to capture
3	images of the interference pattern.
1	6. The spectrometer of claim 5, wherein the image-capture array includes
2	a charge-coupled device (CCD) array or a complimentary metal oxide (CMOS) array.
	i i i i i i i i i i i i i i i i i i i
1	7. The spectrometer of claim 1, wherein the Fourier transformation
2	module includes software code configured to perform the Fourier transformation.
1	8. The spectrometer of claim 1, wherein the Fourier transformation
2	module includes a electronic hardware configured to perform the Fourier transformation.
-	module morades a electronic hardware configured to perform the Fourier transformation.

1	9. The spectrometer of claim 1, wherein the first collection device is a
2	first telescope and the second collection device is a second telescope.
1	10. The spectrometer of claim 1, wherein the spectrometer is configured to
2	be deployed in space.
1	11. The spectrometer of claim 1, wherein the a first collection device
2	includes an optical-path-delay mechanism configured to vary the adjustable-optical path.
1	12. The spectrometer of claim 1, wherein the second collection device
2	includes an adjustable-optical path.
1	13. The spectrometer of claim 12, wherein the second collection device
2	includes an optical-path-delay mechanism configured to vary a path length of the adjustable-
3	optical path of the second collection device.
1	14. A spectrometer comprising:
2	a plurality of sub-aperture telescopes forming an extended aperture telescope,
3	• •
4	wherein each sub-aperture telescope includes an adjustable-optical path and is configured to collect a select portion of a wavefront;
5	
	combiner optics configured to interfere the select portions of the wavefront at
6	an image plane of the plurality of sub-aperture telescopes to form interference patterns at the
7	image plane; and
8	a Fourier transformation module configured to derive spectral information
9	from the interference patterns.
1	15. The spectrometer of claim 14, wherein, to derive the spectral
2	information, the Fourier transform module is configured to Fourier transform the interference
3	patterns with one or more of the adjustable-optical paths set at a variety of path lengths.
1	The system of claim 15, wherein the variety of path lengths represent a
2	relative path-length difference between one or more of the adjustable-optical paths.
1	17. The spectrometer of claim 14, wherein the Fourier transformation
2	module includes an image-capture array disposed at the image plane configured to capture
3	images of the interference pattern.

ı	18. The spectrometer of claim 17, wherein the Fourier transformation
2	module is configured to Fourier transform intensity profiles generated by one or more pixel
3	included in the image-capture array.
1	19. The spectrometer of claim 17, wherein the image-capture array
2	includes a charge-coupled device (CCD) array or a complimentary metal oxide (CMOS)
3	array.
1	20. A spectrometer comprising:
2	a Fizeau interferometer having plurality of optical collectors, wherein one or
3	more of the optical collectors includes an adjustable-optical path, and wherein each optical
4	collector is configured to collect a select portion of a wavefront; and
5	a Fourier transformation module configured to derive spectral information of
6	the wavefront from interference patterns of the select portions of the wavefront.
1	21. The spectrometer of claim 20, wherein the Fizeau interferometer form
2	an extended aperture telescope.
1	22. The spectrometer of claim 20, wherein the spectrometer is configured
2	to be deployed in space.
1	23. The spectrometer of claim 20, wherein, to derive the spectral
2	information, the Fourier transform module is configured to Fourier transform the interference
3	patterns of the wavefront with one or more of the adjustable-optical paths set at a variety of
4	path lengths.
1	24. A method for deriving a spectral information from a wavefront, the
2	method comprising:
3	collecting a plurality of select portions of a wavefront with a corresponding
4	plurality of multi-aperture telescopes;
5	interfering the select portions of the wavefront at an image plane of the multi
6	aperture telescope to form interference patterns at the image plane; and
7	Fourier transforming the interference patterns to derive spectral information
8	for the wavefront

1	25. The method of claim 24 further comprising generating a spectrogram
2	from the spectral information.
1	26. The method of claim 24, wherein interfering the select portions of the
2	wavefront includes interfering the select portions of the wavefront with a combiner telescope.
1	27. The method of claim 24 further comprising collecting images of the
2	interference pattern with an imaging array.
1	28. The method of claim 27, wherein Fourier transforming the interference
2	patterns includes Fourier transforming interference patterns of the interference patterns
3	collected by the imaging array.
1	29. The method of claim 24 further comprising locating the imaging array
2	at an image plane of the multi-aperture telescope.
1	30. The method of claim 24 further comprising:
2	pistoning adjustable-optical paths of the sub-aperture telescopes at plurality of
3	positions; wherein each of the interference patterns corresponds to a select piston position of
4	the adjustable-optical paths.
1	31. The method of claim 30 further comprising:
2	Fourier transforming one or more intensity profiles generated by a one or more
3	pixels, respectively, of an image-capture array.