Lecture 10: Interstellar dust

Paul van der Werf

Course Contents

- 1. Introduction and ecology of the interstellar medium
- 2. Physical conditions and radiative processes
- 3. The atomic interstellar medium
- 4. Ionization and recombination
- 5. HII regions
- 6. Collisional excitation and nebular diagnostics
- 7. Molecules and their spectra
- 8. Molecular clouds
- 9. Thermal balance

10. Interstellar dust

- 11. Molecular clouds and molecular lines
- 12. Shocks, supernova remnants and the 3-phase ISM

Today's lecture

Interstellar dust

- Importance of dust
- Absorption by dust: the extinction curve
- Dust models
- Small grains, PAHs, ices
- Dust formation and destruction
- Dust temperature
- Infrared emission

Corresponding textbook material: Draine, parts of Ch. 21-24 (see Brightspace for details)

Galaxy Spectral Energy Distributions (SEDs)

Galaxy Spectral Energy Distributions (SEDs)

~50% of cosmic emission hidden by dust

M51 optical and infrared

Spiral Galaxy M51 ("Whirlpool Galaxy")

Spitzer Space Telescope • IRAC

NASA / JPL-Caltech / R. Kennicutt (Univ. of Arizona)

ssc2004-19a

Observable effects of interstellar dust

- Dark clouds: absence of stars in optical imaging
- Reddening of starlight
- Reflection nebulae
- Polarization of starlight
- Infrared continuum emission from interstellar clouds

Dark cloud B68 with reddening of starlight

ESO/VLT Alves et al., 2001

The Horsehead Nebula

→THE ORION B MOLECULAR CLOUD AND THE HORSEHEAD NEBULA

Far-infrared

Alnitak Horsehead Nebula NGC 2024

Visible

www.esa.int European Space Agency

Dust emission observed by Planck

Today's lecture

Interstellar dust

- Importance of dust
- Absorption by dust: the extinction curve
- Dust models
- Small grains, PAHs, ices
- Dust formation and destruction
- Dust temperature
- Infrared emission

Extinction curve

Dust extinction can be expressed as optical depth τ_{λ} or extinction A_{λ} in magnitudes with $A_{\lambda} = 1.086 \tau_{\lambda}$

The shape of the extinction curve gives information on:

- dust grain size distribution
- dust chemical composition

Since the dust is well-mixed with the gas, the extinction curve is often shown as A_{λ} / $N_{\rm H}$ (units e.g., mag / 10^{22} H atoms).

Since the extinction rises towards the blue (in the optical region) it is sometimes referred to as the "reddening law".

Extinction curve

(Draine, Fig. 21.1)

Extinction curves

Extinction curves vary with line-of-sight.

This is parametrized by the reddening parameter R_V (which measures 1/slope of the extinction curve between B and V bands): A_V

(Draine, Fig. 21.2)

The "standard" Milky Way extinction curve has $R_V = 3.1$ and $N(H) / A_V \approx 1.9 \cdot 10^{22}$ cm⁻² mag⁻¹.

The Galactic Centre observed in K-band

 $\left| \frac{A_K}{A_V} \approx 0.12 \right|$

(see Draine, Table 21.1)

Today's lecture

Interstellar dust

- Importance of dust
- Absorption by dust: the extinction curve
- Dust models
- Small grains, PAHs, ices
- Dust formation and destruction
- Dust temperature
- Infrared emission

Cross sections for absorption and scattering

Definitions:

- Absorption cross section at wavelength λ : $C_{abs}(\lambda)$ [cm²]
- Scattering cross section at wavelength λ : $C_{sca}(\lambda)$ [cm²]
- Extinction cross section at wavelength λ : $C_{\text{ext}}(\lambda) = C_{\text{abs}} + C_{\text{sca}}$ [cm²]
- Albedo at wavelength λ : $\omega(\lambda) = \frac{C_{\text{sca}}}{C_{\text{ext}}} \sim 0.5$ in the optical

Absorption and scattering efficiencies

In practice we often use efficiencies, which are cross sections normalized by the geometric cross section (of a volume-equivalent sphere):

• Absorption efficiency at wavelength λ :

$$Q_{\rm abs}(\lambda) = \frac{C_{\rm abs}}{\pi a_{\rm eff}^2}$$

• Scattering efficiency at wavelength λ :

$$Q_{\rm sca}(\lambda) = \frac{C_{\rm sca}}{\pi a_{\rm eff}^2}$$

where a_{eff} (for a grain with volume V) is defined by

$$V = \frac{4\pi}{3} a_{\text{eff}}^3$$

How do these depend on intrinsic dust grain properties? This requires solving Maxwell's equations. Result depends on material (dielectric function), size and shape of grain.

Calculating efficiencies

Three regimes:

• $\lambda << a$ (geometric optics regime) : $Q_{abs}(\lambda) \approx 1$ $Q_{sca}(\lambda)$ small (independent of material)

• $\lambda >> a$ (Rayleigh scattering) : $C_{abs}(\lambda) \propto \lambda^{-2}$ $C_{sca}(\lambda) \propto \lambda^{-4}$ (independent of material)

so: 1) at long λ , absorption will dominate.

2) dust becomes transparent at long $\lambda \rightarrow$ reddening

• $\lambda \sim a$: Mie theory (Mie 1908), see Draine Sect. 22.5

Extinction efficiencies for different grain radii

Constraints on dust grain models

- UV-rise of extinction curve: there must be grains with $a << \lambda_{\rm UV}$ $\rightarrow a_{\rm min} < 10$ nm
- slope of extinction curve → grain size distribution
- features on the extinction curve → dust composition
- dust mass limit: $M_{\text{dust}} < 0.013 M_{\text{gas}}$ (from Milky Way metallicity)
- scattering
- polarization (shapes, material)
- long-wavelength emission

Extinction curve features

Features on the extinction curve require combination of:

- silicate grains
- Carbonaceous grains

(Draine, Fig. 23.2)

Dust models

Classical model: MRN model (Mathis, Rumpl & Nordsieck 1977): power law size distribution of graphite and silicate grains; in approximately equal number densities n

$$\frac{dn}{da} \propto a^{-3.5}$$
 $a_{\min} < a < a_{\max}$

- $a_{\text{max}} \approx 0.25 \, \mu\text{m}$ from fit to visual/NIR extinction curve
- $a_{\min} \approx 0.005 \, \mu \text{m}$ from fit to UV extinction curve
- MRN power law has most mass in large particles, most area in small particles:

$$\int_{a_{\min}}^{a_{\max}} a^3 \frac{dn}{da} da \propto a_{\max}^{0.5} - a_{\min}^{0.5}$$

$$\int_{a_{\min}}^{a_{\max}} a^3 \frac{dn}{da} da \propto a_{\max}^{0.5} - a_{\min}^{0.5}$$

$$\int_{a_{\min}}^{a_{\max}} a^2 \frac{dn}{da} da \propto a_{\min}^{-0.5} - a_{\max}^{-0.5}$$

More recent dust models

A typical Milky Way dust model:

- more complex size distribution than MRN (but broadly similar)
- ~ 2/3 of carbon in carbonaceous grains
- essentially all Mg, Fe, Si and 20% of O in silicate grains: (Mg,Fe)₂SiO₄

Gas/dust ratio:

$$\frac{M_{\rm gas}}{M_{\rm dust}} \approx 100$$

(Draine, Fig. 23.11b)

Today's lecture

Interstellar dust

- Importance of dust
- Absorption by dust: the extinction curve
- Dust models
- Small grains, PAHs, ices
- Dust formation and destruction
- Dust temperature
- Infrared emission

Additional features required by observations

- 1. Very small dust grains
- 2. PAHs
- 3. Ices

Evidence for very small grains

(Draine, Fig. 21.6)

Temperature fluctuations of small grains

(Draine, Fig. 24.5)

 \geq 5% of grain mass must be in very small particles with $a \sim 5 - 50 \text{ Å}$

Evidence for very small grains

(Draine, Fig. 21.6)

PAHs

- The smallest "graphite" particles are molecules known as "PAH"s (= Polycyclic Aromatic Hydrocarbons)
- Collections of benzene rings but can also be viewed as fragments of graphite sheets with hydrogen atoms at the edge
- Characteristic emission features at 3.3 μ m, 6.2 μ m, 7.7 μ m, 11.3 μ m etc., which have been observed in spectra of reflection nebulae, HII regions, AGB stars, local and high-redshift galaxies

PAH spectrum

Ices

- Grains may acquire mantles of molecular ices consisting of mix of H₂O, CO, CO₂, CH₃OH, ...
- This produces absorption bands due to solid-state features in dense clouds towards embedded and background IR sources.

Formation of ice mantles on dust grains

Today's lecture

Interstellar dust

- Importance of dust
- Absorption by dust: the extinction curve
- Dust models
- Small grains, PAHs, ices
- Dust formation and destruction
- Dust temperature
- Infrared emission

Dust formation and destruction

Formation of dust grains (very poorly understood!):

- envelopes of AGB stars
- supernova explosions
- growth in the ISM

Destruction of dust grains:

- sputtering (abrasion) and shattering in shocks
- consumption by star formation

Today's lecture

Interstellar dust

- Importance of dust
- Absorption by dust: the extinction curve
- Dust models
- Small grains, PAHs, ices
- Dust formation and destruction
- Dust temperature
- Infrared emission

Dust heating and cooling

- Heating: photon absorption
 - \rightarrow need expression for attenuation coefficient κ_{ν}
- Cooling: infrared radiation
 - \rightarrow need expression for emissivity j_v

Consider grains with number density $n_{\rm gr}$ and radius a then attenuation coefficient is $\kappa_{\nu} = n_{\rm gr} C_{\rm abs} = n_{\rm gr} Q_{\rm abs} \pi a^2$

Then the emissivity follows from Kirchhoff's Law

$$\left|\frac{j_{\nu}}{\kappa_{\nu}} = B_{\nu}(T_d)\right|$$

so
$$j_{\nu} = n_{\rm gr} Q_{\rm abs} \pi a^2 B_{\nu} (T_d)$$

Calculating the dust temperature

Energy gain per grain by photon absorption:

$$\left(\frac{dE}{dt}\right)_{abs} = \frac{1}{n_{gr}} \iint \kappa_{\nu} I_{\nu} \ d\nu \ d\Omega = \iint Q_{abs} \pi a^{2} I_{\nu} \ d\nu \ d\Omega = \int Q_{abs} \pi a^{2} c u_{\nu} \ d\nu$$

Energy loss per grain by infrared emission:

$$\left(\frac{dE}{dt}\right)_{\text{em}} = \frac{1}{n_{\text{gr}}} \iint j_{\nu} \, d\nu \, d\Omega = 4\pi \int Q_{\text{abs}} \pi a^2 B_{\nu}(T_d) \, d\nu$$

This must be solved numerically, using $Q_{abs}(a,v)$, material).

The resulting temperature will depend on a and material.

Resulting dust temperature

The resulting dust temperature is approximately:

$$T_d \approx 16.4 \text{ K} \left(\frac{a}{0.1 \text{ } \mu\text{m}}\right)^{-\frac{1}{15}} \left(\frac{u}{u_{\text{ISRF}}}\right)^{\frac{1}{6}}$$
 for silicate grains

$$T_d \approx 22.3 \text{ K} \left(\frac{a}{0.1 \text{ } \mu\text{m}}\right)^{-\frac{1}{40}} \left(\frac{u}{u_{\text{ISRF}}}\right)^{\frac{1}{6}}$$
 for graphite grains

For calculating the infrared emission spectrum (at fixed radiation field u), we then need to integrate over the grain size distribution and sum over materials.

Today's lecture

Interstellar dust

- Importance of dust
- Absorption by dust: the extinction curve
- Dust models
- Small grains, PAHs, ices
- Dust formation and destruction
- Dust temperature
- Infrared emission

Resulting infrared emission

U = 1: ISRF

Draine, Fig. 24.7

Galaxy Spectral Energy Distributions (SEDs)

Next lecture

Molecular clouds

- Radiative trapping
- Optically thick molecular emission lines
- Measuring molecular gas mass