Московский государственный университет имени М.В.Ломоносова

Механико-математический факультет

Кафедра Математической теории интеллектуальных систем

КУРСОВАЯ РАБОТА

Анализ свойств квазигрупп, порожденных некоторыми классами перестановок с полным дифференциалом Investigation of properties of quasigroups generated by some classes of full difference permutations

Выполнил студент 5 курса: Р.А.Жигляев Научный руководитель: к.ф.-м.н., с.н.с. А.В.Галатенко

Аннотация

Работа посвящена генерации случайных квазигрупп на основе подстановок с полным дифференциалом. Рассматриваются два варианта таких подстановок — регистры сдвига и обобщенные сети Фейстеля. Приводится описание программной реализации генератора и результаты экспериментов по проверке свойств полученных квазигрупп.

The work is devoted to the generation of random quasigroups based on substitutions with a total differential. Two variants of such substitutions are considered - shift registers and generalized Feistel networks. A description of the software implementation of the generator and the results of experiments to test the properties of the obtained quasigroups are given.

1. Введение

Неассоциативные и некоммутативные алгебраические объекты представляют особый интерес в криптографии. Одним из примеров таких объектов могут выступать конечные квазигруппы. На основе квазигрупп можно построить большое количество различных шифров и хэш-функций [1].

Стойкость криптоалгоритмов можно увеличить за счет нескольких идей. Первая идея заключается в том, чтобы выбирать достаточно большие по размеру квазигруппы. Однако, такой подход может вызвать проблемы в связи с ограниченностью памяти компьютера. Вариантом решения этих проблем может быть задание квазигрупп с помощью функций. Например, как показано в [2], можно задавать квазигруппу с помощью подстановок с полным дифференциалом. Еще одним плюсом функционального задания квазигрупп может быть более быстрая генерация квазигрупп большого размера.

Вторая идея заключается в выборе тех квазигрупп, которые обладают набором интересных свойств. К таким свойством можно отнести неаффиность и простоту, или что тоже самое - полиномиальную полноту [3]. Как известно, почти все квазигруппы являются полиномиально полными [4], поэтому выбор случайной квазигруппы с большой долей вероятности может оказаться успешным.

Наконец, еще одним важным фактором является получение таких квазигрупп, которые не имеют подквазигрупп, так как в противном случае произведение элементов подквазигруппы не будет выходить за пределы этой подквазигруппы.

В задачи данной работы входит разработка программы, которая будет генерировать квазигруппы на основе подстановок с полным дифференциалом. А именно - будут рассмотрены регистры сдвига и обобщенные сети Фейстеля. Разработка программы ведется на языке C++. Сгенерированные объекты проверяются на полиномиальную полноту, а также выясняется наличие у них подквазигрупп. Все эксперименты проводились на компьютере Intel(R) Core(TM) i5-11400H @ 2.70GHz, 8ГБ ОЗУ.

В результате будет представлено описание программы и оценка сложности алгоритма.

Работа устроена следующим образом: в разделе 2 даны основные определения; в разделе 3 даны описания алгоритмов генерации квазигрупп на основе регистров сдвига и обобщенных сетей Фейстеля; раздел 4 посвящен экспериментам с программой; в разделе 5 подводятся итоги работы.

2. Основные определения

Определение 1. Конечное множество Q, на котором задана бинарная операция умножения $f_Q: Q \times Q \to Q$, такая, что для любых элементов $a, b \in Q$ уравнения ax = b и ya = b однозначно разрешимы в Q, называется конечной квазигруппой. Операцию f_Q будем называть квазигрупповой.

Операцию f_Q также можно задать с помощью таблицы умножения, которая будет представлять из себя латинский квадрат.

Определение 2. Квазигруппа (Q, f_Q) называется аффинной, если на множестве Q можно ввести структуру абелевой группы (Q, +), такую, что существуют автоморфизмы α , β группы (Q, +) и элемент $c \in Q$, для которых выполнено тождество

$$f_Q(x,y) = \alpha(x) + \beta(y) + c.$$

Определение 3. Квазигруппа (Q, f_Q) называется простой, если операция f_Q не сохраняет никакое нетривиальное разбиение Q.

Как уже было сказано ранее - неаффинные и простые квазигруппы будем называть полиномиально полными.

Определение 4. Пусть $Q' \subset Q$, $1 \leq |Q'| < |Q|$. Если $f_Q(Q') = Q'$, то будем говорить, что квазигруппа (Q, f_Q) содержит собственную подквазигруппу $(Q', f_{Q'})$, где $f_{Q'}$ - ограничение операции f_Q на $Q' \times Q'$. Если $|Q'| \geq 2$, то такую подквазигруппу будем называть нетривиальной.

Определение 5. Пусть задана конечная абелева группа (G; +), а σ некоторая подстановка на множестве G. Подстановку σ будем называть полной над группой (G; +), если функция $\sigma(x) - x$ является биекцией.

Полные подстановки также будем называть подстановками с полным дифференциалом. Связь между квазигрупповыми операциями и полными подстановками задается следующим образом:

$$f_Q(x,y) = \sigma(x+y) - y.$$

Отметим также конструкции, которые будем использовать в дальнейшем. Следующее соотношение будем называть регистром сдвига с обратной связью:

$$\begin{cases}
f_1 = x_2 \\
f_2 = x_3 \\
... \\
f_{n-1} = x_n \\
f_n = x_1 + g(x_2, ..., x_n)
\end{cases}$$

Выбрав некоторые положительные целые числа k, n и представив элементы $x, y, z \in Q$, такие, что $z = f_Q(x, y)$ в виде k-ичных векторов $(x_1, ..., x_n)$, $(y_1, ..., y_n)$, $(z_1, ..., z_n)$ соответственно, можно задать квазигруппу с помощью регистров сдвига следующим образом:

$$\begin{cases} z_1 = x_2 + y_2 - y_1 \\ z_2 = x_3 + y_3 - y_2 \\ \dots \\ z_{n-1} = x_n + y_n - y_{n-1} \\ z_n = x_1 + y_1 + g(x_2 + y_2, \dots, x_n + x_n) - y_n \end{cases}$$

Для случая, когда n=2 рассмотрем так же конструкцию, называемую обобщенной сетью Фейстеля:

$$\begin{cases} f_1 = s(x_2) \\ f_2 = x_1 + p(x_2) \end{cases}$$

Здесь s и p - две перестановки из k элементов. Квазигруппу из такой конструкции можно получить по формулам:

$$\begin{cases} f_1 = s(x_2 + y_2) - y_1 \\ f_2 = x_1 + y_1 + p(x_2 + y_2) - y_2 \end{cases}$$

Обе конструкции, однако, не всегда позволяют получить квазигруппы. Необходимые для этого условия на функции g, s, p были даны в [5]. В более узкой постановке идея расширения сетей Фейстеля также представлена в [6].

Порядок генерируемых квазигрупп будем обозначать как N. Все сложения и вычитания происходят по модулю k.

3. Описание алгоритмов генерации

Рассмотрим для начала обобщение сетей Фейстеля. Для этого необходимо лишь сгенерировать две случайные перестановки s и s'. Сделать это можно, например, используя алгоритм Фишера-Йетса. После генерации обеих перестановок можно вычислить функцию p(x) = s'(x) - s(x) + x. Общая сложность всех преобразований составляет O(3k) или $O(3\sqrt{N})$. При этом, обе перестановки s и p однозначно задают квазигруппу. Следовательно, сложность алгоритма по памяти составляет O(2k) или $O(2\sqrt{N})$.

Если потребуется вычисление всего латинского квадрата, то для вычисления каждого конкретного значения $f_Q(x,y)$ потребуется преобразовать x и y в k-ичные векторы (x_1,x_2) и (y_1,y_2) соответственно. После этого необходимо вычислить вектор (f_1,f_2) и преобразовать этот k-ичный вектор в $f_Q(x,y)$. Все эти операции выполняются с константной сложностью, а значит, сложность преобразования обобщенных сетей Фейстеля в латинский квадрат составляет $O(N^2)$.

Рассмотрим теперь алгоритм генерации регистров сдвига. Весь алгоритм заключается в генерации функции g из которой однозначно можно получить некоторую квазигруппу. Будем перебирать все наборы вида $(0, x_3, ..., x_n)$. Для каждого такого набора сгенерируем случайную перестановку $(p_0, ..., p_{k-1})$. После этого зададим значение функции g на наборе $(i, x_3 + i, ..., x_n + i)$ равным p_i . Таким образом получится функция g, такая, что любой нетривиальный сдвиг будет менять её значение. При такой функции g регистр сдвига с обратной связью будет являться подстановкой с полным дифференциалом и задавать квазигруппу.

Программно алгоритм выглядит так:

- 1) Перебираем числа от 0 до $k^{n-2} 1$.
- 2) Каждое из них преобразуем в k-ичный вектор $(x_2,...,x_n)$.
- 3) После этого формируем новый k-ичный вектор $(0, x_2, ..., x_n)$.
- 4) Генерируем перестановку алгоритмом Фишера-Йетса.
- 5) Перебирая числа от 0 до k-1 формируем набор, на котором хотим задать значение функции g.
- 6) Преобразуем этот набор в десятичное представление и задаем на нём значение функции g.

Общая временная сложность такого алгоритма составит:

$$O(k^{n-2}(2n-4+k(2n-1))).$$

Сложность алгоритма по памяти составляет $O(k^{n-1})$, так как потребуется хранить k^{n-1} значений функции g.

Если потребуется преобразовать регистры сдвига в латинский квадрат, то для этого необходимо для каждого значения функции $f_Q(x,y)$ преобразовать оба аргумента в k-ичные векторы длины n, вычислить k-ичный вектор $(f_1,...,f_n)$, используя значения функции g и преобразовать этот вектор в $f_Q(x,y)$. Общая временная сложность такого преобразования составит $O(5nk^{2n})$.

4. Эксперименты

Скорость генерации

Эксперимент направлен на оценку времени, за которое можно получить достаточно большие квазигруппы. Для этого генерировались по 10 квазигрупп и замерялось среднее время генерации для различных значений k и n.

В таблице ниже приведены результаты эксперимента для квазигрупп на основе регистров сдвига. Время указано с учетом вычисления всех элементов латинского квадрата.

k	n	Порядок квазигруппы	Время генерации в секундах
2	10	1024	0.69392
2	11	2048	3.05952
2	12	4096	13.3623
2	13	8192	58.0302
2	14	16384	255.775
2	15	32768	1084.45
4	5	1024	0.304413
4	6	4096	6.06056
4	7	16384	116.242
8	4	4096	3.46345

Можно заметить, что при фиксированном порядке квазигруппы время генерации уменьшается с ростом k.

Аналогичная таблица для квазигрупп, полученных из обобщенных сетей Фейстеля:

k	Порядок квазигруппы	Время генерации в секундах
16	256	0.003375
24	576	0.015923
32	1024	0.050627
40	1600	0.121838
48	2304	0.263974
56	3136	0.48076
64	4096	0.804098
72	5184	1.30104
80	6400	1.93981
88	7744	2.73405

Можно заметить, что обобщенные сети Фейстеля позволяют генерировать квазигруппы заметно быстрее, чем регистры сдвига. Однако, оба алгоритма показывают себя весьма хорошо и позволяют получать квазигруппы больших размеров достаточно быстро.

Проверка полиномиальной полноты

Проверка аффинности и простоты проводилась с использованием алгоритмов, описанных в [7]. Поскольку число квазигрупп для обоих методов известно и составляет $(k!)^2$ для сетей Фейстеля и $(k!)^{k^{n-2}}$ для регистров сдвига, можно породить их все для небольших порядков. Для того, чтобы получить все квазигруппы нужного порядка, можно сгенерировать достаточно большое количество объектов и хранить их в unordered set. В силу особенностей unordered set, каждый новый сгенерированный объект не будет добавлен в эту структуру данных, если он в ней уже присутствует. Таким образом, можно генерировать квазигруппы до тех пор, пока число объектов в unordered set не станет равно числу квазигрупп заданного порядка. Далее, перебирая все сгенерированные объекты, можно проверить их на аффинность и простоту.

Результаты эксперимента для регистров сдвига:

k	n	Всего квазигрупп	Простых	Аффинных
2	2	2	2	2
2	3	4	4	0
2	4	16	14	0
2	5	256	252	0
3	2	6	6	0
3	3	216	210	0
4	2	24	16	0

Также проводилась попытка сгенерировать 10000 квазигрупп при k=8, n=2, помещая их в unordered set. Среди сгенерированных квазигрупп оказалось 8944 уникальных объекта. Каждый был проверен на аффинность и простоту. Оказалось, что среди них 8636 были простыми и не было ни одной аффинной. Таким образом, за исключением случая k=n=2 не было обнаружено ни одной аффинной квазигруппы, а подавляющее большинство квазигрупп оказывались простыми.

Аналогичный эксперимент был проведен с сетями Фейстеля. Таблица с результатами:

k	Всего квазигрупп	Простых	Аффинных
2	4	4	4
3	36	27	0
4	576	512	16
5	14400	14250	50

Как и в предыдущем случае, проводилась попытка сгенерировать 10000 квазигрупп при k=8. Все они оказались уникальными. 9994 из них были простыми и не оказалось ни одной аффиной.

Результаты эксперимента показывают, что оба метода генерации порождают множества, содержащии достаточно большое количество полиномиально полных квазигрупп.

Проверка наличия подквазигрупп

Наличие подквазигрупп проверялось с использованием алгоритма, описанного в [8]. Таким же образом, как в предыдущем эксперименте, можно получить все квазигруппы нужного порядка. Над каждым полученным объектом проводилось две операции — поиск тривиальных и поиск нетривиальных подквазигрупп. Результаты для регистров сдвига приведены ниже:

k	n	Всего	Имеющих	Имеющих
		квазигрупп	тривиальные	нетривиальные
			подквазигруппы	подквазигруппы
2	2	2	1	0
2	3	$\mid 4 \mid$	2	
2	4	16	8	1
2	5	256	128	16
3	2	6	6	0
3	3	216	216	24
4	2	24	12	4

Интересным является тот факт, что при k=2 и k=4 в этих экспериментах ровно половина от всех квазигрупп имели подквазигруппу порядка 1. При k=3 в обоих случаях все квазигруппы имели подквазигруппу порядка 1.

Аналогичная таблица для сетей Фейстеля:

k	Всего	Имеющих	Имеющих
	квазигрупп	тривиальные	нетривиальные
		подквазигруппы	подквазигруппы
2	4	1	0
3	36	36	9
4	576	144	16
5	14400	14400	150

Таким образом, по результатам экспериментов кажется, что оба метода генерации порождают множества квазигрупп, в которых не менее четверти квазигрупп имеют подквазигруппы порядка 1. Нетривиальные подквазигруппы имеются у гораздо меньшего количества квазигрупп, а в ряде случаев отсутствуют вовсе.

5. Заключение

Рассмотренные классы перестановок с полным дифференциалом оказываются эффективным способом задания квазигрупп. Множества, получаемые таким образом, являются достаточно большими, а алгоритмы генерации позволяют быстро получить случайную квазигруппу из этих множеств. Несмотря на то, что многие такие квазигруппы обладают "неподвижными точками", этот факт можно учесть при построении криптоалгоритмов. В остальном, подавляющее число получаемых объектов обладают "хорошими" свойстами с точки зрения криптографии.

В дальнейшем, с целью улучшения множеств порождаемых квазигрупп, хочется узнать какими свойствами должны обладать функция g в регистрах сдвига и перестановки s и p в сетях Фейстеля, чтобы порождаемые квазигруппы всегда оказывались полиномиально полными.

Список литературы

- [1] М. М. Глухов, "О применениях квазигрупп в криптографии", Прикладная дискретная математика, 2008, № 2, 28–32.
- [2] Sade, A. 1957. Quasigroups automorphes par le groupe cyclique. Canadian Journal of Mathematics 9:321-335.
- [3] J. Hagemann, C. Herrmann, "Arithmetical locally equational classes and representation of partial functions", Universal Algebra, Esztergom (Hungary), 29 (1982), 345-360.

- [4] P.J. Cameron Almost all quasigroups have rank 2. Discrete Mathematics, 1992. Vol. 106-107. P. 111-115.
- [5] Личное общение с А.В. Галатенко, А.Е. Панкратьевым и В.А. Носовым
- [6] Markovski, S., and A. Mileva. 2009. Generating huge quasigroups from small non-linear bijections via extended Feistel function. Quasigroups and Related Systems 17:97-106.
- [7] А.В. Галатенко, А.Е. Панкратьев, "О сложности проверки полиномиальной полноты конечных квазигрупп", Дискрет. матем., 30:4 (2018), 3-11
- [8] Галатенко А.В., Панкратьев А.Е., Староверов В.М. Об одном алгоритме проверки существования подквазигрупп. Чебышевский сборник. 2021;22(2):76-89.