Exemplos - Transformações Lineares

Exemplo 1: Seja V um espaço vetorial. A seguinte aplicação é uma transformação linear:

$$\begin{array}{cccc} T: & V & \longrightarrow & V \\ & v & \longmapsto & T(v) = v \end{array}$$

que é a transformação identidade.

Vamos mostrar que esta aplicação satisfaz as duas propriedades para ser transformação linear:

(a) Considere $v_1, v_2 \in V$, temos que:

$$T(v_1 + v_2) = v_1 + v_2 = T(v_1) + T(v_2)$$

pela forma como esta definida a aplicação.

(b) Considere $v \in V$ e $\alpha \in \mathbb{R}$, temos:

$$T(\alpha v) = \alpha v = \alpha T(v)$$

pela forma como esta definida a aplicação.

Assim, mostramos que esta aplicação define uma transformação linear de V em V.

Exemplo 2: Seja V um espaço vetorial. A seguinte aplicação é uma transformação linear:

$$\begin{array}{cccc} T: & V & \longrightarrow & V \\ & v & \longmapsto & T(v) = e_V \end{array}$$

que é a transformação nula, ou seja, que leva todos os elementos do espaço vetorial no elemento nulo deste mesmo espaço vetorial.

Para mostrar que T é uma transformação linear, basta mostrar que $T(v_1+\alpha v_2)=T(v_1)+\alpha T(v_2)$, para todo $v_1, v_2 \in V$ e $\alpha \in \mathbb{R}$. De fato, temos que:

$$T(v_1 + \alpha v_2) = e_V = e_V + e_V = e_V + \alpha e_V = T(v_1) + \alpha T(v_2)$$

O que mostra que a aplicação é uma transformação linear de V em V.

Exemplo 3: A seguinte aplicação de \mathbb{R}^2 em \mathbb{R}^2 é uma transformação linear:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$v \longmapsto T(v) = \alpha v$$

que é uma **expansão** (ou contração), dependendo do valor α . Esta transformação leva cada vetor v do \mathbb{R}^2 num vetor de mesma direção de v, mas com sentido igual a v (caso $\alpha > 0$) ou sentido oposto (caso $\alpha < 0$) e módulo maior (caso $|\alpha| > 1$) ou menor (caso $|\alpha| < 1$). Para $\alpha = 1$ esta é a transformação identidade.

De fato, para todo $v_1, v_2 \in \mathbb{R}^2$ e $\beta \in \mathbb{R}$, temos:

$$T(v_1 + \beta v_2) = \alpha(v_1 + \beta v_2) = \alpha v_1 + \alpha \beta v_2 = T(v_1) + \beta T(v_2)$$

Assim, T é uma transformação linear.

Por exemplo, para $\alpha = 2$, e $v = (x, y) \in \mathbb{R}^2$, temos: T(x, y) = 2(x, y).

Figura 1: A transformação linear T leva todo elemento $(x,y)\in\mathbb{R}^2$ no elemento 2(x,y).

Esta transformação aplicada a uma figura (conjunto de pontos do \mathbb{R}^2) irá expandir esta figura no dobro de seu tamanho.

Figura 2: A transformação linear T leva uma figura no plano na mesma figura ampliada com o dobro do tamanho.

Exemplo 4: A seguinte aplicação de \mathbb{R}^2 em \mathbb{R}^2 é uma transformação linear:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto T((x,y)) = (x,-y)$$

que é uma reflexão em torno do eixo x.

De fato, T é transformação linear, uma vez que, para todo $v_1=(x_1,y_1), v_2=(x_2,y_2)\in\mathbb{R}^2$ e $\alpha\in\mathbb{R}$, temos:

$$T(v_1 + \alpha v_2) = T((x_1, y_1) + \alpha(x_2, y_2)) = T(x_1 + \alpha x_2, y_1 + \alpha y_2) = (x_1 + \alpha x_2, -y_1 - \alpha y_2) =$$

$$= (x_1, -y_1) + (\alpha x_2, -\alpha y_2) = (x_1, -y_1) + \alpha(x_2, -y_2) = T(x_1, y_1) + \alpha T(x_2, y_2) = T(v_1) + \alpha T(v_2)$$
onde usamos o fato de que \mathbb{R}^2 é espaço vetorial e a forma como foi definida a aplicação T .

Figura 3: A transformação linear T é a reflexão em torno do eixo x.

Considere agora um triângulo ABC de vértices A=(-1,4), B=(3,1) e C=(2,6). Vamos aplicar a transformação linear T neste triângulo. Para saber qual a imagem do triângulo pela transformação, basta sabermos as imagens de seus vértices:

$$T(-1,4) = (-1,-4)$$
$$T(3,1) = (3,-1)$$
$$T(2,6) = (2,-6)$$

Portanto, o triângulo ABC é levado no triângulo A'B'C', com A' = (-1, -4), B' = (3, -1) e C' = (2, -6), pela transformação linear T, que é a reflexão em torno do eixo x.

Figura 4: A transformação linear T leva o triângulo ABC no triângulo A'B'C'.

Exemplo 5: A seguinte aplicação de \mathbb{R}^2 em \mathbb{R}^2 é uma transformação linear:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto T((x,y)) = (-x,-y)$

que é uma reflexão em torno da origem.

De fato, T é transformação linear, uma vez que, para todo $v_1=(x_1,y_1), v_2=(x_2,y_2)\in\mathbb{R}^2$ e $\alpha\in\mathbb{R}$, temos:

$$T(v_1 + \alpha v_2) = T((x_1, y_1) + \alpha(x_2, y_2)) = T(x_1 + \alpha x_2, y_1 + \alpha y_2) = (-x_1 - \alpha x_2, -y_1 - \alpha y_2) =$$

$$= (-x_1, -y_1) + (-\alpha x_2, -\alpha y_2) = (-x_1, -y_1) + \alpha(-x_2, -y_2) = T(x_1, y_1) + \alpha T(x_2, y_2) = T(v_1) + \alpha T(v_2)$$
onde usamos o fato de que \mathbb{R}^2 é espaço vetorial e a forma como foi definida a aplicação T .

Figura 5: A transformação linear T é a reflexão em torno da origem.

Exemplo 6: A aplicação T de \mathbb{R}^3 em \mathbb{R}^3 , é uma transformação linear:

$$\begin{array}{cccc} T: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ & (x,y,z) & \longmapsto & T(x,y,z) = (x,y,-z) \end{array}$$

que é uma reflexão em torno do plano xy.

De fato, a aplicação T é transformação linear, pois, para todo $v_1 = (x_1, y_1, z_1) \in \mathbb{R}^3$, $v_2 = (x_2, y_2, z_2) \in \mathbb{R}^3$ e $\alpha \in \mathbb{R}$, temos:

$$T(v_1 + \alpha v_2) = T((x_1, y_1, z_1) + \alpha(x_2, y_2, z_2)) = T(x_1 + \alpha x_2, y_1 + \alpha y_2, z_1 + \alpha z_2) =$$

$$= (x_1 + \alpha x_2, y_1 + \alpha y_2, -z_1 - \alpha z_2) = (x_1, y_1, -z_1) + \alpha(x_2, y_2, -z_2) =$$

$$= T(x_1, y_1, z_2) + \alpha T(x_2, y_2, z_2) = T(v_1) + \alpha T(v_2)$$

onde usamos as propriedades de espaço vetorial para \mathbb{R}^3 e a regra da aplicação T.

Figura 6: A transformação linear T é a reflexão em torno do plano xy.

Exemplo 7: Considere a seguinte aplicação:

$$\begin{array}{cccc} T: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & (x,y) & \longmapsto & T(x,y) = (x+a,y) \end{array}$$

com $a \in \mathbb{R}$, que é uma **translação** de comprimento a e direção do eixo x. Essa aplicação NAO é uma transformação linear, a menos que a = 0, pois não satisfaz as condições para ser linear.

Considere $v_1 = (x_1, y_1)$ e $v_2 = (x_2, y_2)$ pertencentes a \mathbb{R}^2 , temos que:

$$T(v_1 + v_2) = T((x_1, y_1) + (x_2, y_2)) = T(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + a, y_1 + y_2)$$

mas por outro lado,

$$T(v_1) + T(v_2) = T(x_1, y_1) + T(x_2, y_2) = (x_1 + a, y_1) + (x_2 + a, y_2) = (x_1 + x_2 + 2a, y_1 + y_2)$$

Ou seja, $T(v_1 + v_2) \neq T(v_1) + T(v_2)$, para $a \neq 0$, logo a aplicação T não é uma transformação linear.

Figura 7: A aplicação T é a translação de comprimento a e direção do eixo x.

Exemplo 8: Considere a seguinte transformação linear:

$$\begin{array}{cccc} T: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & (x,y) & \longmapsto & T(x,y) = (2x+y,x+2y) \end{array}$$

Considere o círculo $S = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Vamos obter a imagem do círculo S pela transformação linear T.

Temos que T(x,y)=(2x+y,x+2y), assim, toda coordenada x é levada em 2x+y e toda coordenada y é lavada em x+2y, desta forma, o círculo $x^2+y^2=1$ é levado em $(2x+y)^2+(x+2y)^2=1 \Rightarrow 5x^2+8xy+5y^2=1$, que é uma elipse em \mathbb{R}^2 , com centro (0,0), focos $(\frac{2}{3},-\frac{2}{3})$ e $(-\frac{2}{3},\frac{2}{3})$, medida do semi-eixo maior igual a 1 e medida do semi-eixo menor igual a $\frac{1}{3}$.

Figura 8: A transformação linear T leva o círculo $x^2 + y^2 = 1$ na elipse $5x^2 + 8xy + 5y^2 = 1$.

Exemplo 9: Considere a seguinte transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que:

$$T(1,0,0) = (1,0), \quad T(0,1,0) = (1,-1), \quad T(0,0,1) = (0,1)$$

Vamos determinar explicitamente a expressão da transformação linear T.

Considerando o espaço vetorial \mathbb{R}^3 com a base

$$B = \{(1,0,0), (0,1,0), (0,0,1)\}$$

Dado um elemento qualquer $(x, y, z) \in \mathbb{R}^3$, podemos representá-lo de modo único como combinação linear dos elementos da base B:

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

Então:

$$T(x, y, z) = T(x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1))$$

e como T é transformação linear:

$$T(x, y, z) = xT(1, 0, 0) + yT(0, 1, 0) + zT(0, 0, 1) \Rightarrow$$

$$\Rightarrow T(x, y, z) = x(1, 0) + y(1, -1) + z(0, 1) \Rightarrow$$

$$\Rightarrow T(x, y, z) = (x + y, -y + z)$$

Assim, obtemos explicitamente a transformação linear T.

Exemplo 10: Considere a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que:

$$T(1,0) = (1,0), T(0,1) = (2,1)$$

Vamos determinar explicitamente a transformação linear T.

Estamos considerando o espaço vetorial \mathbb{R}^2 com a base canônica $B = \{(1,0),(0,1)\}$. Podemos escrever um elemento qualquer de \mathbb{R}^2 de forma única como:

$$(x,y) = x(1,0) + y(0,1)$$

Sabendo como a transformação T atua nos elementos da base B, e que T é transformação linear, temos que:

$$T(x,y) = T(x(1,0) + y(0,1)) = xT(1,0) + yT(0,1) \Rightarrow$$
$$\Rightarrow T(x,y) = x(1,0) + y(2,1) \Rightarrow T(x,y) = (x+2y,y)$$

Assim, obtemos a expressão da transformação linear T.

Considere o quadrado de vértices $A=(0,0),\ B=(1,0),\ C=(1,1)$ e D=(0,1). Temos que as imagens dos vértices do quadrado pela transformação T são:

$$T(0,0) = (0,0), \quad T(1,0) = (1,0), \quad T(1,1) = (3,1), \quad T(0,1) = (2,1)$$

Assim, o quadrado ABCD é levado no paralelogramo A'B'C'D' de vértices A' = (0,0), B' = (1,0), C' = (3,1) e D' = (2,1) pela transformação linear T.

Figura 9: A transformação linear T leva o quadrado ABCD no paralelogramo A'B'C'D'.