(科目: linear Algely)

数 学 作 业 纸

班级: CS 01

姓名: 多速訊

编号: 2020010869

页

Problem 2.1.1

Sal. We have $\begin{cases} x=2 \\ y=3 \end{cases}$ and the row picture is: The column vectors are $i=\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$

Problem 2.1.4

If z=2, then $\int x+y=0$ $\int x=1$ and (1,-1,2) is the point we want. Sul

The third point halfway between is $\left(\frac{541}{2}, \frac{1-1}{2}, \frac{2^{40}}{2}\right) = (3, 0, 1)$

2.1.17 Problem

We can see [00] [4] = [4] and [00] [4] = [4] Sol so, P= [00] and Q= [00] is the answer.

2.1.22. Problem

dot product Ax = E1 4 57 [] Sol.

The solution of Ax=0 lie on a plane in R3 perpendicular to the vector [4]

and the colmuns of A are vectors in one-dimensional space.

Problem 2, 1.26

Two colour vector are i=[] andj=[-2] and the combination +i+ 2j = 4[1] + 2[-] = [6]

(科目: Linear Algebra)

数学作业纸

班级: CS o1

姓名: 多逸剧

编号: 20201069

第 2 页

Problem 2.1.29

Sol.
$$u_z = Au_1 = \begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix} \begin{bmatrix} .8 \\ .2 \end{bmatrix} = \begin{bmatrix} .64 + .06 \\ .16 + .14 \end{bmatrix} = \begin{bmatrix} .7 \\ .3 \end{bmatrix}$$

$$u_3 = Au_2 = \begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix} \begin{bmatrix} .7 \\ .3 \end{bmatrix} = \begin{bmatrix} .56 + .09 \\ .14 + .21 \end{bmatrix} = \begin{bmatrix} .65 \\ .35 \end{bmatrix}$$

We can mention that the sum of the components alway equal to 1.

Problem 2.2.6

We can make it singular by b=4 because 4x+2y is two times 2x+4y, then we can make it solvable by g=32 so that two equation become the same, and the possible solution could be (8,0) and (6,1).

Problem 2.2.9

Sel. We can mention that $3x-2y=b_1 \iff 6x-4y=2b_1$, with equation $6x-4y=b_2$ we can see $2b_1=b_2$ make the equations have solutions. There would have infinitely many solutions as two equation become the same.

Colonum picture: 6 7 [6]

[-2] x (b=[2] and b=[0] share the same column pictures.

Problem 2.2.13

Sol.
$$2x-3y=3$$
 subtract 2 times row 1 $2x-3y=3$ subtract 2 times row 2 $2x-3y=3$ $x=3$

$$4x-5y+2=7$$
 from row 2 $y+2=1$ from row 3 $y+2=1=1$

$$2x-y-3z=5$$
 subtract 1 time row 1
$$-5z=0$$

Problem 2.2.18

Sel. $\begin{bmatrix} 1 & 4 & 13 \\ 2 & 8 & 26 \\ 3 & 12 & 39 \end{bmatrix}$ is one possible matrix, and there has infinitely many solutions for $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ because three equation are the same, and no solution for $b = \begin{bmatrix} 10 \\ 100 \end{bmatrix}$.

数 学 作 业 纸

班级: 08 01

姓名: 洛逸朗

编号: 2020010869

第 3 页

Problem 2.2.21

Sel.
$$2x+y = 0$$
 $2x+y = 0$ $2x+y = 0$ $2x+y = 0$ $2x+y = 0$ $x+2y+2 = 0$ $7x-\frac{1}{2}r_1$ $\frac{3}{2}y+2 = 0$ $\frac{3}{2}x+2+1 = 0$ $\frac{3}{2}x+1 = 0$ $\frac{3}{2}x+1 = 0$ $\frac{4}{3}x+1 = 0$

Pivots of A are 2,
$$\frac{3}{2}$$
, $\frac{4}{3}$, $\frac{5}{4}$, by back substitution we have $t = 4$, $z = -3$, $y = 2$, $x = -1$.

 $2x - y = 0$
 $-x + 3y - z = 0$
 $-y + 2z - t = 0$
 $-y + 2z - t = 0$
 $-z + zt = 5$
 $2x - y = 0$
 $3zy - z =$

Pivots of K are 2, 3, 7, by back substitution we have t=4, z=3, y=2, x=1.

Problem 2.2.27

Sal
$$3x$$
 = 3 r_3-3r_1 $3x$ = 3 r_3-3r_1 $3x$ = 3 r_3-2r_1 $2y$ = 2 r_3+r_2 $2y$

Problem 1.

Sal. Matrix-vector equation:
$$\begin{bmatrix} 2 & -2 \\ -1 & 2 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

vector equation:
$$x \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix} + y \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

If
$$b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ | $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, which means $1 \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

If
$$b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ | $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ |

Problem 2

Sol. ax+by=f $r_2-\frac{C}{ar_1}$ ax+by=f cx+dy=g ad-bc ad-bc

If there is a unique solution, ad-bc+0 is the condition we went.

(If a=0 and cto, we can change two equation so that the new coefficient a'=c to and we can do the elimination as above.

If a and c both zero, the equation can't have unique solution as x could be anything no matter that bis.