Отчёт по лабораторной работе №7

Дисциплина: Администрирование локальных сетей

Выполнил: Танрибергенов Эльдар

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Ответы на контрольные вопросы	18
5	Выводы	20

Список иллюстраций

3.1	Проект предыдущеи лабораторнои работы	7
3.2	Именование города в физической рабочей области	8
3.3	Здания для территорий Donskaya и Pavlovskaya	8
3.4	Размещение изображения серверного помещения	9
3.5	Отображение серверных стоек в физической рабочей области	10
3.6	Перемещение коммутатора	11
3.7	Перемещение оконечного устройства 1	11
3.8	Перемещение оконечного устройства 2	12
3.9	Пингование коммутатора: успех	12
3.10	Разрешение на учёт физических характеристик среды передачи .	13
3.11	Размещение территорий на расстоянии 1200 м в физической ра-	
	бочей области	13
3.12	Пингование коммутатора: неудача	14
3.13	Размещение повторителей	14
	Замена модулей у повторителя 1	15
	Замена модулей у повторителя 2	15
3.16	Перемещение повторителя на другую территорию в физической	
	рабочей области	16
3.17	Соединение устройств кабелями	16
3.18	Пингование коммутатора: успех	17

Список таблиц

1 Цель работы

Получить навыки работы с физической рабочей областью Packet Tracer, а также учесть физические параметры сети.

2 Задание

Требуется заменить соединение между коммутаторами двух территорий на соединение, учитывающее физические параметры сети, а именно - расстояние между двумя территориями.

3 Выполнение лабораторной работы

1. Открыл проект предыдущей лабораторной работы

Рис. 3.1: Проект предыдущей лабораторной работы

2. Перешёл в физическую рабочую область Packet Tracer. Присвоил название городу - Moscow.

Рис. 3.2: Именование города в физической рабочей области

3. Щёлкнув на изображении города, увидел изображение здания. Присвоил ему название Donskaya. Добавил здание для территории Pavlovskaya.

Рис. 3.3: Здания для территорий Donskaya и Pavlovskaya

4. Щёлкнув на изображении здания Donskaya, переместил изображение, обо-

значающее серверное помещение, в него.

Рис. 3.4: Размещение изображения серверного помещения

5. Щёлкнув на изображении серверной, увидел отображение серверных стоек.

Рис. 3.5: Отображение серверных стоек в физической рабочей области

6. Переместил коммутатор msk-pavlovskaya-etanribergenov-sw-1 и два оконечных устройства dk-pavlovskaya-etanribergenov-1 и other-pavlovskaya-etanribergenov-1 на территорию Pavlovskaya, используя меню Move физической рабочей области Packet Tracer.

Рис. 3.6: Перемещение коммутатора

Рис. 3.7: Перемещение оконечного устройства 1

Рис. 3.8: Перемещение оконечного устройства 2

7. Вернувшись в логическую рабочую область Packet Tracer, пропинговал с коммутатора msk-donskaya-etanribergenov-sw-1 коммутатор msk-pavlovskaya-etanribergenov-sw-1. Убедился в работоспособности соединения.

```
msk-donskaya-etanribergenov-sw-l>enable
Password:
msk-donskaya-etanribergenov-sw-l#ping 10.128.1.6

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.128.1.6, timeout is 2 seconds:
    .!!!
Success rate is 60 percent (3/5), round-trip min/avg/max = 0/0/0 ms

msk-donskaya-etanribergenov-sw-l#ping 10.128.1.6

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.128.1.6, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

msk-donskaya-etanribergenov-sw-l#
```

Рис. 3.9: Пингование коммутатора: успех

8. В меню *Options -> Preferences* во вкладке *Interface* активировал разрешение на учёт физических характеристик среды передачи (Enable Cable Length Effects).

Рис. 3.10: Разрешение на учёт физических характеристик среды передачи

9. В физической рабочей области Packet Tracer разместил две территории на расстоянии более 1000 м друг от друга.

Рис. 3.11: Размещение территорий на расстоянии 1200 м в физической рабочей области

10. Вернувшись в логическую рабочую область Packet Tracer, пропинговал с коммутатора msk-donskaya-etanribergenov-sw-1 коммутатор msk-pavlovskaya-etanribergenov-sw-1. Убедился в неработоспособности соединения.

```
msk-donskaya-etanribergenov-sw-l#ping 10.128.1.6

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.128.1.6, timeout is 2 seconds:
....

Success rate is 0 percent (0/5)

msk-donskaya-etanribergenov-sw-l#
```

Рис. 3.12: Пингование коммутатора: неудача

11. Удалил соединение между коммутаторами. Добавил в логическую рабочую область два повторителя (Repeater-PT). Присвоил им соответствующие названия msk-donskaya-etanribergenov-mc-1 и msk-pavlovskaya-etanribergenov-mc-1.

Рис. 3.13: Размещение повторителей

Заменил имеющиеся модули на PT-REPEATERNM-1FFE и PT-REPEATER-NM-1CFE для подключения оптоволокна и витой пары по технологии Fast Ethernet.

Рис. 3.14: Замена модулей у повторителя 1

Рис. 3.15: Замена модулей у повторителя 2

12. Переместил msk-pavlovskaya-etanribergenov-mc-1 на территорию Pavlovskaya (в физической рабочей области Packet Tracer).

Рис. 3.16: Перемещение повторителя на другую территорию в физической рабочей области

13. Подключил коммутатор msk-donskaya-etanribergenov-sw-1 к msk-donskaya-etanribergenov-mc-1 по витой паре, msk-donskaya-etanribergenov-mc-1 и msk-pavlovskaya-etanribergenov-mc-1 - по оптоволокну, msk-pavlovskaya-etanribergenov-sw-1 к msk-pavlovskaya-etanribergenov-mc-1 - по витой паре.

Рис. 3.17: Соединение устройств кабелями

14. Убедился в работоспособности соединения между msk-donskaya-etanribergenov-sw-1 и msk-pavlovskaya-etanribergenov-sw-1.

```
msk-donskaya-etanribergenov-sw-l#ping 10.128.1.6

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.128.1.6, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

msk-donskaya-etanribergenov-sw-l#
```

Рис. 3.18: Пингование коммутатора: успех

4 Ответы на контрольные вопросы

- 1. Среды передачи данных: коаксиальный кабель, оптоволоконный кабель, витая пара (медный кабель), радиоволны, инфракрасное излучение. При планировании сети нужно обратить внимание на: максимальную дальность передачи данных, стоимость, скорость передачи данных.
- 2. Категори витой пары: CAT1, CAT2, CAT3, CAT4, CAT5, CAT5e, CAT6, CAT6a, CAT7. Отличаются эффективным пропускаемым частотным диапазоном.
- 3. В одномодовом волокне отсутствует межмодовая дисперсия, то есть искажение сигнала во времени из-за разницы в скорости распространения мод. Из-за влияния межмодовой дисперсии ММ-волокно имеет ограничения по скорости и дальности распространения сигнала по сравнению с SM-волокном. Длину многомодовых линий связи ограничивает также большое по сравнению с одномодовым волокном затухание. Одномодовое волокно требуется для передачи данных на расстояние 500 км и более. Многомодовое для меньших расстояний и экономии денег.
- 4. На оптических патч-кордах встречаются следующие типы разъёмов:
- LC коннектор (Lucent Connector) один из наиболее распространённых. Компактный размер оптического LC разъема позволяет существенно повысить плотность портов на кроссе. Вместе с тем, из-за недостаточного пространства усложняется коммутация. При большой плотности портов коммутацию удобно выполнять только при помощи специализированного инструмента

- Коннектор SC (Subscriber Connector) разработан для абонентских сетей доступа. К преимуществам оптического SC разъема можно отнести простоту коммутации. Для фиксации в розетке достаточно просто вставить его до щелчка. Аналогично производится и его извлечение. Вместе с тем, он плохо адаптирован к механическим и вибрационным нагрузкам.
- Коннектор FC (Ferrule Connector) предназначен для важных соединений или контрольно-измерительного оборудования. Он имеет металлический корпус и фиксируется в розетке при помощи резьбового соединения. Последнее придает такому соединению механической прочности и вибрационной устойчивости. Но в удобстве коммутации он явно проигрывает. Оптические разъемы FC по умолчанию устанавливаются на все измерительные приборы для ВОЛС.

5 Выводы

Я получил навыки работы с физической рабочей областью Packet Tracer, а также учёл физические параметры сети.