高雄中學 109 學年度第二學期高三第二、三類組數學科第一次月考試題

範圍:第三章(全)

(請將答案寫在答案卷上,請小心計算,Good Luck!!)

一、 多選題: (每題 5 分共計 10 分)

說明:每題有5個選項,其中至少有1個是正確的選項。選出正確選項,畫記在答案卷之「答案欄」。各題之選項獨立判定,每個選項答對者,得1分,答錯1個選項者,得0分,所有選項均未作答該題以0分計算。

- 1. 設 $\langle a_n \rangle$ 、 $\langle b_n \rangle$ 為兩實數數列,且對所有的正整數n, $a_n < b_n^2 < a_{n+1}$ 均成立。若已知 $\lim_{n \to \infty} a_n = 9$,試選出正確的選項?
- (1)對所有的正整數 n , $a_n > 8$ 均成立 (2)存在正整數 n , 使得 $a_{n+1} > 9$ (3)對所有的正整數 n , $b_n^2 < b_{n+1}^2$ 均成立
- $(4) \lim_{n}^{2} = 9$

- $(5) \lim_{n\to\infty} b_n = 3 \stackrel{\cdot}{\lesssim} \lim_{n\to\infty} b_n = -3$
- 2. 設 f(x) 為一定義在非零實數上的實數值函數。已知極限 $\lim_{x\to 0} x \xrightarrow{|x|}$ 存在,試選出正確的選項?
- 二、 填充題: (共計 75 分)
- 3. 無窮級數 $\sum_{n=1}^{\infty} x(2x-5)^n$ 收敛至 $-\frac{3}{4}$,求 x =______(A)
- 4. 若 f(x) 為 x 的三次多項式,且滿足 $\lim_{x\to 2} \frac{f(x)}{x-2} = 1$, $\lim_{x\to 4} \frac{f(x)}{x-4} = 1$, 求 $\lim_{x\to 3} \frac{f(x)}{x-3} = \underline{\qquad (B)}$
- 5. 若 a,b 為實數且已知 $\lim_{x\to 1} \frac{\sqrt{x+a}-b}{x-1} = \frac{1}{6}$,試求數對 $(a,b) = \underline{\qquad \qquad (C)}$

- 8. $\not\equiv \lim_{x \to 1} \frac{(1 \sqrt{x})(1 \sqrt[3]{x})(1 \sqrt[4]{x})(1 \sqrt[5]{x})(1 \sqrt[6]{x})}{(1 x)^5} = \underline{\qquad \qquad (F)}$
- 10. 已知座標平面上有隻螞蟻一開始在原點,隨後先向正東方移動1單位距離,然後左轉彎移動 $\frac{2}{3}$ 單位距離,如此不斷重複左轉彎,使得後一段移動距離為前一段的 $\frac{2}{3}$ 倍,試求該螞蟻的極限位置與原點相距_____單位距離

11. 設
$$a,b \in R$$
 ,若函數 $f(x) = \lim_{n \to \infty} \frac{x^{2n-1} + ax + b}{x^{2n} + 1}$ 在整個實數上為連續函數,試求數對 $(a,b) = \underline{\hspace{1cm}}$

12. 求無窮級數
$$\sum_{n=1}^{\infty} \frac{1}{2^{n+(-1)^{\frac{n(n+1)}{2}}}} = \underline{\qquad (J)}$$

13. 已知
$$n \in \mathbb{N}$$
 ,當 $\frac{1}{2^n} < x \le \frac{1}{2^{n-1}}$ 時,函數 $f(x) = a_n (\log_{\frac{1}{2}} x)^n$ 且 $a_1 = 1$,若 $f(x)$ 為區間 $(0,1]$ 上連續函數,求 $a_n = \underline{\qquad (K)}$

14. 設數列
$$\langle a_n \rangle$$
的前 n 項 和 為 S_n 且 $a_1 = 1$, $3S_n^2 = a_n (3S_n - 1)$, $\forall n \geq 2$, 試 求 無 窮 級 數 $\sum_{n=1}^{\infty} \frac{S_n}{3n+1} = \underline{\qquad \qquad (L)}$

三、計算證明題: (第一題7分,第二題8分共計15分)

1. 設一骰子連續投擲n次出現的點數依序為 $x_1 \times x_2 \times \cdots \times x_n$,令 $X_n = x_1 + x_2 + \cdots + x_n$, X_n 為的7的倍數之機率為 P_n ,求 $\lim_{n \to \infty} P_n$?

2. 設 a,b,c 是閉區間 [0,1] 上的三個實數,且 $f(x) = \frac{|x-a|+|x-b|+|x-c|}{3}$,試證明可以在閉區間 [0,1] 上找到實數 x_0 使得 $f(x_0) = \frac{1}{2}$.

高雄中學 109 學年度第二學期高三第二、三類組數學科第一次月考答案

______年_____组 姓名:_____ 座號:____

一、多選題: (10%)

_				
	1.	(3)(4)	2.	(1)(2)(5)

二、填充題: (75%)

1格	2格	3 格	4格	5 格	6格	7格	8格	9格	10 格	11 格	12 格
10 分	20 分	30 分	38 分	46 分	54 分	60 分	63 分	66 分	69 分	72 分	75 分

$(A) \qquad \frac{9}{4}$	(B) $-\frac{1}{2}$	(C) (8,3)	(D) (-1,0)	$(E) \frac{1}{4}$
$(F) \frac{1}{720}$	$(G) \frac{9\pi}{4}$	$(\mathrm{H}) \qquad \frac{3\sqrt{13}}{13}$	(1) (1,0)	$(J) \frac{17}{10}$
$(K) \frac{1}{(n-1)!}$	(L) $\frac{1}{3}$			

三、計算證明題: (15%)

1. (7%)

Sol:依題意可知 $P_{n+1} = \frac{1}{6}(1-P_n)$, $\forall n \in \mathbb{N}$.

因為
$$P_{n+1} - \frac{1}{7} = -\frac{1}{6}(P_n - \frac{1}{7})$$
, $\forall n \in \mathbb{N}$.

所以
$$P_n - \frac{1}{7} = (-\frac{1}{6})^{n-1}(P_1 - \frac{1}{7})$$
, $\forall n \in N$.

又因為 $P_1 = 0$,故得 $P_n = \frac{1}{7} - \frac{1}{7} (-\frac{1}{6})^{n-1}$, $\forall n \in \mathbb{N}$.

所以
$$\lim_{n\to\infty} P_n = \lim_{n\to\infty} \frac{1}{7} - \frac{1}{7} (-\frac{1}{6})^{n-1} = \frac{1}{7}$$
.

2. (8%)

Pf:因為 $f(x) = \frac{|x-a|+|x-b|+|x-c|}{3}$ 為連續函數,且

$$f(0) = \frac{a+b+c}{3}$$
, $f(1) = 1 - \frac{a+b+c}{3}$

若
$$a+b+c \le \frac{3}{2}$$
,則 $f(0) = \frac{a+b+c}{3} \le \frac{1}{2}$, $f(1) = 1 - \frac{a+b+c}{3} \ge \frac{1}{2}$

若
$$a+b+c>\frac{3}{2}$$
 ,則 $f(0)=\frac{a+b+c}{3}>\frac{1}{2}$, $f(1)=1-\frac{a+b+c}{3}<\frac{1}{2}$

根據中間值定理必存在實數 $x_0 \in [0,1]$ 使得

$$f(x_0) = \frac{1}{2}.$$

