Complete_Dataset - Merged_Dataset.csv.csv Grapevine_Annotated_Dataset Grapevine_Annotated_Dataset.zip image_metadata.csv organized_dataset raw_dataset Untitled.ipynb Dataset shape: (99, 25) First few rows: Dataset shape: (99, 25) First few rows: Out[4]: Presence Leaf Spot Spot Yellowing Leaf Leaf Vine Absence Discoloration Image_Name Leaf_Condition Z_order Width Height Source Occluded Leaf_Color Leaf_ID ... of Leaves Texture Shape Pattern Curling Color Shape vitality of Spots Lesions semi-0 2 BlackRot_3.JPG 256 256 NaN 13 BR_Advanced Back Irregular ... NaN NaN NaN NaN NaN NaN NaN NaN auto semi-1 3 BlackRot_4.JPG 256 256 NaN NaN 13 BR_Advanced 0 Black Irregular ... NaN NaN NaN NaN NaN NaN NaN auto semi-2 4 BlackRot_5.JPG BR_Advanced 256 256 NaN NaN 0 0 Black Irregular ... NaN NaN NaN NaN NaN NaN NaN 1 auto semi-256 NaN NaN 1! 5 BlackRot_6.JPG BR_Advanced 256 0 Black Round ... NaN NaN NaN NaN NaN NaN NaN auto semi-6 BlackRot_7.JPG BR_Advanced 256 256 NaN 13 0 Black Round ... NaN NaN NaN NaN NaN NaN NaN NaN auto 5 rows × 25 columns In [5]: #Exploratory Data Analysis # Display information about the dataset print("\nDataset Info:") df.info() # Display statistical summary print("\nStatistical Summary:") df.describe() # Check for missing values print("\nMissing values in each column:") df.isnull().sum() Dataset Info: <class 'pandas.core.frame.DataFrame'> RangeIndex: 99 entries, 0 to 98 Data columns (total 25 columns): Non-Null Count Dtype # Column O Leaf_ID 99 non-null int64

I Image_Name 99 non-null object

Leaf_Condition 99 non-null object

Z_order 99 non-null int64

Width 99 non-null int64

Height 99 non-null int64

Source 99 non-null int64

Source 99 non-null object

Occluded 99 non-null int64

Spot Color 16 non-null object

Spot Shape 25 non-null object

Leaf Area Affected(%) 49 non-null float64

Presence of Fungal Growth 25 non-null object _____ ---11 Presence of Fungal Growth 25 non-null object 12 Spot_Color 9 non-null
13 Leaf Vein Color 25 non-null object object 14 Visible White/Black Growth 25 non-null object 14 Visible White/Black Growth 25 non-null
15 Yellowing of Leaves 25 non-null
16 Leaf_Color 25 non-null
17 Leaf Texture 25 non-null
18 Leaf Shape 25 non-null
19 Vine vitality 25 non-null
20 Absence of Spots 25 non-null
21 Discoloration Pattern 24 non-null
22 Leaf Curling 24 non-null
23 Presence of Lesions 24 non-null
24 LeafAnnotated_points 99 non-null
25 dtypes: float64(1), int64(5), object (19) object dtypes: float64(1), int64(5), object(19) memory usage: 19.5+ KB Statistical Summary: Missing values in each column: Leaf_ID Image_Name Leaf_Condition Z_order Width 0 Height Source 0 Occluded 0 Spot Color Spot Shape Leaf Area Affected(%) Presence of Fungal Growth 74 Spot_Color 90 Leaf Vein Color 74 Visible White/Black Growth 74 Yellowing of Leaves 74 Leaf_Color 74 Leaf Texture 74 Leaf Shape 74 Vine vitality Absence of Spots Discoloration Pattern 75 75 Leaf Curling 75 Presence of Lesions LeafAnnotated_points dtype: int64 In [6]: # Count the distribution of Leaf_Condition plt.figure(figsize=(10, 6)) sns.countplot(data=df, x='Leaf_Condition') plt.xticks(rotation=45) plt.title('Distribution of Leaf Conditions') plt.tight_layout() plt.show() # Print the counts print("\nLeaf Condition Distribution:") print(df['Leaf_Condition'].value_counts()) Distribution of Leaf Conditions 25 20 15 count 10 5 Leaf_Condition Leaf Condition Distribution: Leaf_Condition Healthy Esca_Advanced 21 LB_Advanced 21 BR_Advanced 16 BR_EarlyStage 9 Esca_EarlyStage LB_EarlyStage Name: count, dtype: int64 In [7]: # Analyze the image dimensions plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) sns.histplot(data=df, x='Width') plt.title('Distribution of Image Widths') plt.subplot(1, 2, 2) sns.histplot(data=df, x='Height') plt.title('Distribution of Image Heights') plt.tight_layout() plt.show() Distribution of Image Widths Distribution of Image Heights

In [4]: # Import necessary libraries import pandas as pd import numpy as np

import seaborn as sns

print(file)

Load the dataset

import os

df.head()

df.head()

100

80

.git

import matplotlib.pyplot as plt

print("Files in directory:")

df = pd.read_csv(file_path)

Display basic information

print("\nFirst few rows:")

print("\nFirst few rows:")

Files in directory:

.ipynb_checkpoints

print("Dataset shape:", df.shape)

print("Dataset shape:", df.shape)

Display basic information about the dataset

Automated Data Collection and Organisation.ipynb

for file in os.listdir(directory):

from sklearn.model_selection import train_test_split

directory = r"C:\Users\matim\Downloads\Agritech project"

file_path = r"C:\Users\matim\Downloads\Agritech project\Complete_Dataset - Merged_Dataset.csv.csv"

100

80

256.4

In [11]: # Pie chart for leaf conditions 3.0% LB EarlyStage 4.0% 21.2% Esca_EarlyStage 9.1% LB_Advanced 16.2% BR EarlyStage BR_Advanced In [13]: # Pie chart code for missing vs. available data def create_missing_data_pie(column_name, missing_count, total_count): labels = ['Available', 'Missing'] sizes = [total_count - missing_count, missing_count] colors = ['#66b3ff', '#ff9999'] plt.figure(figsize=(8, 6)) plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%') plt.title(f'Data Availability: {column_name}') plt.axis('equal') plt.show() metadata = { 'total_samples': len(df), 'conditions': df['Leaf_Condition'].unique().tolist(), 'image_dimensions': { 'width_range': f"{df['Width'].min()} to {df['Width'].max()}", 'height_range': f"{df['Height'].min()} to {df['Height'].max()}" **}**, 'missing_value_summary': {

column: { 'missing_count': int(missing), 'missing_percentage': f"{(missing/len(df))*100:.2f}%" for column, missing in df.isnull().sum().items() if missing > 0 print("\nDataset Metadata:") for key, value in metadata.items(): print(f"\n{key}:") print(value) Dataset Metadata: total_samples: 99 conditions:

In [9]: # Create metadata summary ['BR_Advanced', 'BR_EarlyStage', 'Esca_Advanced', 'Esca_EarlyStage', 'Healthy', 'LB_Advanced', 'LB_EarlyStage'] image_dimensions: {'width_range': '256 to 256', 'height_range': '256 to 256'} missing_value_summary: {'Spot Color': {'missing_count': 83, 'missing_percentage': '83.84%'}, 'Spot Shape': {'missing_count': 74, 'missing_percentage': '74.75%'}, 'Leaf Area Affected (%): {'missing_count': 50, 'missing_percentage': '50.51%'}, 'Presence of Fungal Growth': {'missing_count': 74, 'missing_percentage': '74.75%'}, 'Spot_Color': 5.76%'}, 'Presence of Lesions': {'missing_count': 75, 'missing_percentage': '75.76%'}} In [10]: # First, let's identify which features we want to keep # We'll focus on columns with complete or near-complete data complete_columns = df.columns[df.isnull().sum() < len(df)/2].tolist()</pre> print("\nColumns with less than 50% missing values:")

{'missing_count': 90, 'missing_percentage': '90.91%'}, 'Leaf Vein Color': {'missing_count': 74, 'missing_percentage': '74.75%'}, 'Visible White/Black Growth': {'missing_count': 74, 'missing_percentage': '74.75%'}, 'Yellowing of Leaves': {'missing_count': 74, 'missing_percentage': '74.75%'}, 'Leaf_Color': {'missing_percentage': '74.75%'}, 'Leaf_Color': {'missing_perce ount': 74, 'missing_percentage': '74.75%'}, 'Leaf Texture': {'missing_count': 74, 'missing_percentage': '74.75%'}, 'Leaf Shape': {'missing_percentage': '74.75%'}, 'Missing_percentage': '74.75%'}, 'Missing_percentage': '74.75%'}, 'Missing_percentage': '74.75%'}, 'Missing_percentage': '74.75%'}, 'Missing_percentage': '74.75%'}, 'Missing_percentage' g_percentage': '74.75%'}, 'Vine vitality': {'missing_count': 74, 'missing_percentage': '74.75%'}, 'Absence of Spots': {'missing_count': 74, 'missing_percentage' e': '74.75%'}, 'Discoloration Pattern': {'missing_count': 75, 'missing_percentage': '75.76%'}, 'Leaf Curling': {'missing_count': 75, 'missing_percentage': '7 print(complete_columns) # Create a clean dataset with selected features df_clean = df[complete_columns] # Split the data (60% train, 20% validation, 20% test) X = df_clean.drop(['Leaf_Condition', 'Image_Name', 'LeafAnnotated_points'], axis=1) # adjust features as needed y = df_clean['Leaf_Condition'] # First split: separate test set X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Second split: create validation set X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random_state=42) # 0.25 of 0.8 = 0.2 print("\nData split sizes:") print(f"Training set: {len(X_train)} samples")

['Leaf_ID', 'Image_Name', 'Leaf_Condition', 'Z_order', 'Width', 'Height', 'Source', 'Occluded', 'LeafAnnotated_points']

print(f"Validation set: {len(X_val)} samples") print(f"Test set: {len(X_test)} samples")

Columns with less than 50% missing values:

Data split sizes:

Test set: 20 samples

Training set: 59 samples Validation set: 20 samples