Grid Plan Validation Checklist (Geometry-Style Coordinates, 4-Neighbor Adjacency)

Variables & Contract (fixed for the sandbox)

- Grid: width W, height H, nodes $N = W \cdot H$.
- Coordinates: origin at bottom-left, (x, y) with $x \to \text{right}$, $y \to \text{up}$.
- Node ID: $id = y \cdot W + x$ (row-major with upward y).
- Adjacency: **4-neighbor** (Manhattan distance = 1), no wrap.
- Districts: K, tolerance ε (e.g., 0.05), ideal population $P^* = (\sum population)/K$.
- Files to validate: ..._nodes.csv, ..._edges_grid.csv, ..._partition_seeded.csv.

A) Preflight Invariants (lattice must be valid)

A1. Nodes table integrity \Box PASS \Box FAIL

- 1. Count is exactly N.
- 2. id covers $0, \dots, N-1$ with no gaps or duplicates.
- 3. (x,y) are in bounds: $0 \le x < W$, $0 \le y < H$, and are unique per id.
- 4. Spot-check the mapping: for several rows, confirm id = yW + x.

A2. Grid edges integrity \Box PASS \Box FAIL

- 1. Each edge (u, v) satisfies $u \neq v$ and endpoints are in [0, N-1].
- 2. Edges are only 4-neighbor pairs: letting (x_u, y_u) and (x_v, y_v) be coordinates of u, v, y_v

$$|x_u - x_v| + |y_u - y_v| = 1.$$

- 3. No duplicate undirected pairs; store one row with u < v.
- 4. Sanity edge count matches

$$E_4 = H(W-1) + W(H-1).$$

If A1 or A2 fails: stop and fix the lattice before checking any partition.

B) Partition File Integrity (hard checks)
B3. Coverage & uniqueness \square PASS \square FAIL
Every id appears exactly once inpartition_seeded.csv, with district $\in \{0, \dots, K-1\}$ (no -1, no out-of-range).
B4. Non-empty districts \square PASS \square FAIL
For each district d , the set $V_d = \{ id : district(id) = d \}$ satisfies $ V_d \ge 1$.
C) Contiguity (hard check)
C5. One connected component per district \Box PASS \Box FAIL
For each d , consider the subgraph induced by V_d on the $grid$ edges; require the number of connected components to be $components_d = 1 \forall d \in \{0, \dots, K-1\}.$
Any components $_d>1$ indicates an $island\Rightarrow$ invalid plan.
D) Population Balance (hard check)
D6. Deviation vs. ideal \square PASS \square FAIL
For each d , compute $\operatorname{Pop}_d = \sum_{v \in V_d} \operatorname{population}(v)$ and
$\operatorname{dev}_d = \frac{ \operatorname{Pop}_d - P^* }{P^*}.$
Require $\max_d \operatorname{dev}_d \leq \varepsilon$ and verify $\sum_d \operatorname{Pop}_d = \sum \operatorname{population}$.

E) Cross-Edges & Perimeter (consistency & diagnostics)

E7. Cut-edge accounting (consistency) \Box PASS \Box FAIL

Let Cut be the number of grid edges whose endpoints lie in different districts. For each district d, let B_d be the number of its incident grid edges that cross to another district. Check the invariant:

$$\sum_{d=0}^{K-1} B_d = 2 \operatorname{Cut}.$$

A mismatch indicates boundary accounting bugs.

E8. Perimeter (diagnostic)

Optionally compute $\operatorname{Perimeter}_d = B_d + (\# \text{ outer-border edges touching } d)$ as a compactness proxy; record values but do not gate on them here.

F) Hole (Enclave) Test (policy choice)
F9. No holes inside a district \Box PASS \Box WARN/ ALLOW
Flood-fill the complement of V_d from the rectangle boundary; if the complement has > 1 component district d contains an enclave (a "hole"). Policy (choose one and document):
• Strict: forbid holes \Rightarrow any hole \Rightarrow FAIL.
• Lenient: allow holes \Rightarrow WARN only (common in research).
G) Determinism & Reproducibility (pipeline hard check)
G10. Deterministic rebuild \square PASS \square FAIL
Re-run the same seed-and-grow procedure with the same RNG seed and tie-break rule (e.g., smaller y then x). Require the $exact$ same assignment vector. Optionally compute a plan hash (e.g., SHA-256 of the district label vector) and compare.
H) Visual QA (human-in-the-loop, but mandatory)
H11. Two plots \Box PASS \Box FAIL
• District map: color by district, overlay grid boundaries; verify no islands/stray cells.
• Opinion heatmap: underlying opinion field looks plausible (gradients/blocs); borders not obviously broken.
I) Acceptance Summary
A plan is ACCEPTED if and only if:
• A1–A2 PASS (lattice integrity),
• B3–B4 PASS (coverage & non-empty),
• C5 PASS (contiguity),
• D6 PASS (population balance),
• E7 invariant holds (boundary consistency),
• G10 PASS (determinism),
• F9 satisfies your declared policy,
• H11 looks sane to a human inspector.

Record on acceptance (attach to plan):

Metric Value

 $\operatorname{Max} \, \operatorname{deviation} \, \operatorname{max}_d \operatorname{dev}_d$

Total cut edges Cut

Boundary counts $\{B_d\}$

Perimeters $\{Perimeter_d\}$

District populations $\{Pop_d\}$

Plan hash (e.g., SHA-256)

Notes / anomalies