Logica per l'informatica - Lezione 1.75.

Andrea Malvezzi

25 settembre 2024

Contents

1		ria insiemistica ZF, assiomi fondamentali
	1.1	Assioma di estensionalità
	1.2	Definizione di essere sottoinsieme
	1.3	Assioma di separazione
	1.4	Assioma dell'insieme vuoto
	1.5	Definizione di insieme vuoto
	1.6	Definizione di intersezione binaria
	1.7	Definizione di intersezione
	1.8	Assioma dell'unione

1 Teoria insiemistica ZF, assiomi fondamentali

1.1 Assioma di estensionalità

Due insiemi sono uguali se hanno gli stessi elementi:

$$\forall X, \forall Y, (X = Y \Leftrightarrow \forall Z. (Z \in X \Leftrightarrow Z \in Y)) \tag{1}$$

Per ogni X ed Y, X ed Y sono uguali sse per ogni Z, Z appartiene a X sse Z appartiene ad Y.

1.2 Definizione di essere sottoinsieme

X è sottoinsieme di Y se ogni suo elemento è contenuto all'interno di Y:

$$X \subseteq Y := \forall Z . (Z \in X \Rightarrow Z \in Y) \tag{2}$$

X è sottoinsieme di Y se per ogni Z di X, se Z appartiene ad X allora Z appartiene anche ad Y.

1.3 Assioma di separazione

Dato un insieme, è possibile formare un suo sottoinsieme che soddisfi una certa proprietà.

$$\forall X, \exists Y, \forall Z, (Z \in Y \Leftrightarrow Z \in X \land P(Z))$$

Ed indicando Y come $\{Z \in X : P(X)\}$, scriviamo ora:

$$\forall X, \exists Z, (Z \in \{W \in X : P(W)\} \Leftrightarrow Z \in X \land P(Z)) \tag{3}$$

Tramite questo assioma possiamo evitare il paradosso di Russell, scrivendo:

$$X = \{ Y \in U : Y \notin Y \}$$

dove U è una classe, non un insieme.

1.4 Assioma dell'insieme vuoto

Avendo un insieme X che è vuoto:

$$\exists X, \forall Z, Z \in X \tag{4}$$

1.5 Definizione di insieme vuoto

Sia Y un insieme di cui un altro assioma conferma l'esistenza, allora:

$$\emptyset := \{ X \in Y : false \} \tag{5}$$

1.6 Definizione di intersezione binaria

Con questo si spiega l'intersezione tra due insiemi:

$$A \cap B := \{ X \in A : X \in B \} \tag{6}$$

1.7 Definizione di intersezione

Dato un insieme di insiemi, esiste l'insieme che ne è l'intersezione.

$$\cap F := \{ x \in A : \forall Y, (Y \in F \Rightarrow X \in Y) \} \text{ dove } A \in F$$
 (7)

F è l'insieme di TUTTI gli insiemi da intersecare, mentre l'insieme intersezione viene indicato come $\bigcap_{Y \in F} Y$, ad esempio $A \cap B \cap C = \bigcap_{Y \in (A,B,C)} Y$.

1.8 Assioma dell'unione

$$\forall F, \exists X, \forall Z. (Z \in X \Leftrightarrow \exists Y, (Y \in F \land Z \in Y)) \tag{8}$$

Preso un qualunque insieme F di insiemi da unire, esiste un insieme unione X t.c. per ogni elemento qualsiasi Z, Z appartiene ad X sse esiste almeno un insieme Y appartenente a F nel quale Z è contenuto.