Лабораторная работа №2

Шифры перестановки

Ли Тимофей Александрович, НФИмд-02-22

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Реализация шифрования с помощью решеток	8 8 9 9
Выволы	11

Список таблиц

Список иллюстраций

0.1	од1	8
0.2	од 2	6
0.3	од3	1(

Цель работы

Цель данной работы — изучить и программно реализовать шифры перестановки.

Задание

Заданием является:

- Реализовать маршрутное шифрование
- Реализовать шифрование с помощью решеток
- Реализовать таблицу Виженера

Теоретическое введение

Шифры перестановки преобразуют открытый текст в криптограмму путём перестановки его символов. Способ, каким при шифровании переставляются буквы открытого текста, и является ключом шифра. Важным требованием является равенство длин ключа исходного текста.

Выполнение лабораторной работы

Для реализации шифров мы будем использовать Python, так как его синтаксис позволяет быстро реализовать необходимые нам алгоритмы.

Реализация маршрутного шифрования

Код маршрутного шифрования реализуем в виде функции следующего вида:

```
In [1]: rus='абвгдеёжзиклмнопрстуфхцчшщъыьэюя'
        def marsh(text,key,m,n):
            global rus
            textws=text.replace(' ','')
            if len(textws)<m*n:</pre>
                 textws+=rus[:m*n-len(textws)]
            t=iter(textws)
            matrix=[[next(t) for y in range(m)] for x in range (n)]
            ps=[rus.index(x) for x in key]
            pss=sorted(ps)
            output=''
            for letter in pss:
                 for x in range(n):
                     output+=matrix[x][ps.index(letter)]
            return output
In [7]: print(marsh('нельзя недооценивать противника', 'пароль', 6,5))
```

еенпнзоатаьовокннеьвлдирияцтиа

Рис. 0.1: код1

Для проверки ввели текст как в лабораторной работе, получили тот же результат.

Реализация шифрования с помощью решеток

Шифрование с помощью решеток реализуем в виде функции следующего вида:

```
ct=0
import numpy as np
                                                            t=iter(text)
                                                            matrix \dot{t} = [['O' \text{ for y in } range(k**2)] \text{ for x in } range(k**2)]
k_2=[x+1 \text{ for } x \text{ in } range(k**2)]
                                                            for d in range(4):
matrix=[[0 for x in range(2*k)]for y in range(2*k)]
                                                                for x in range(k**2):
matrix=np.array(matrix)
                                                                     for y in range(k**2):
for x in range(k**2):
                                                                         if matrix[x][y]==0:
    c=0
                                                                             matrixt[x][y]=text[ct]
    for x in range(k):
        for y in range(k):
                                                                matrix=np.rot90(matrix,-1)
            matrix[x][y]=k_2[c]
                                                            ps=[rus.index(x) for x in key]
            c+=1
                                                            pss=sorted(ps)
    matrix=np.rot90(matrix)
                                                            output='
ds={k: 0 for k in k_2}
                                                            for letter in pss:
dss={1:2,2:4,3:3,4:3}
for x in range(k**2):
                                                                for x in range(k**2):
                                                                    output+=matrixt[x][ps.index(letter)]
    for y in range(k**2):
                                                            print(output)
        ds[matrix[x][y]]+=1
        if ds[matrix[x][y]]!=dss[matrix[x][y]]:
                                                            овордлгпапиосдои
            matrix[x][y]=-1
            matrix[x][y]=0
text='договорподписали
```

Рис. 0.2: код2

Для проверки ввели текст как в лабораторной работе, получили тот же результат.

Реализация таблицы Виженера

Таблицу Виженера реализуем в виде функций следующего вида:

```
In [17]: def genkey(m,key):
              key.replace(' ','')
m.replace(' ','')
               key=list(key)
               if len(m)==len(key):
                   return(key)
               else:
                                                              m='letsss go first try'
                   for i in range(len(m)-len(key)):
                                                              key='key'
                        key.append(key[i%len(key)])
                                                              print(vig(m,genkey(m,key)))
               return(''.join(key))
          def vig(m,key):
                                                              HUDOICJWYJVSNIDJJBU
               ct=[]
              m.replace(' ','')
               for i in range(len(m)):
                   x=(ord(m[i])+ord(key[i]))%26
                   x+=ord('A')
                   \mathsf{ct.append}(\mathsf{chr}(\mathsf{x}))
               return(''.join(ct))
```

Рис. 0.3: код3

Выводы

Лабораторная работа выполнена.