

Etude théorique de la translocation de biomolécules à travers un nanopore

Timothée Menais

28 février 2012

Introduction

Translocation d'ADN à travers un nanopore

Introduction

Translocation d'ADN à travers un nanopore Intérêts technologiques et fondamentaux

Introduction

Translocation d'ADN à travers un nanopore Intérêts technologiques et fondamentaux Arrivée du graphène

- Outils analytiques
- 2 Dynamique moléculaire
- Graphène

$$Z_{ideal} = z^N o Z_{nonideal} = \tilde{z}^N N^{\gamma-1}$$

$$Z_{ideal} = z^N \rightarrow Z_{nonideal} = \tilde{z}^N N^{\gamma - 1}$$

 $<\mathbf{r}> = 0 \text{ et } <\mathbf{r}^2> = d^2t$

$$Z_{ideal} = z^N \rightarrow Z_{nonideal} = \tilde{z}^N N^{\gamma - 1}$$
 $< \mathbf{r} >= 0 \text{ et } < \mathbf{r}^2 >= d^2 t$
 $R_0 = \lambda N^{\frac{1}{2}} \rightarrow R_0 = \lambda N^{\nu}$

$$\begin{split} &Z_{ideal} = z^N \rightarrow Z_{nonideal} = \tilde{z}^N N^{\gamma-1} \\ &< \mathbf{r}> = 0 \text{ et } < \mathbf{r}^2> = d^2t \\ &R_0 = \lambda N^{\frac{1}{2}} \rightarrow R_0 = \lambda N^{\nu} \\ &F(r) = F(0) + \frac{3K_BTr^2}{2R_0^2} \text{ de type ressort} \end{split}$$

Modèle de Rouse

Modèle de Rouse

$$rac{d\mathbf{r}_n}{dt} = -rac{1}{\epsilon} rac{\partial F_{tot}}{\partial \mathbf{r}_n} + \mathbf{g}_n$$

Modèle de Rouse

$$rac{d\mathbf{r}_n}{dt} = -rac{1}{\epsilon}rac{\partial F_{tot}}{\partial \mathbf{r}_n} + \mathbf{g}_n \ < (\mathbf{r}_{CM}(t) - \mathbf{r}_{CM}(0))^2 > = rac{6K_BT}{N\epsilon}t = 6D_Rt$$

[référence] A Milchev. Single-polymer dynamics under constraints: scaling theory and computer experiment. J Phys Condens Matter 23(10):103101 (2011).

[référence] A Milchev. Single-polymer dynamics under constraints: scaling theory and computer experiment. J Phys Condens Matter 23(10):103101 (2011).

$$F(N,n) = K_B T[(1-\gamma_1) ln[n(N-n)] - N ln(\tilde{z})]$$

[référence gauche] H Vocks. Simulation of polymer translocation. Phd Thesis, Utrecht University, 2008.

[référence droite] W. Sung and P. J. Park k. Polymer translocation through a pore in a membrane . Phys. Rev. Lett., vol. 77, pp. 783–786, Jul 1996.

$$F(N,n) = K_B T[(1-\gamma_1) ln[n(N-n)] - Nln(\tilde{z})]$$

$$\tau \text{ est proportionnel à } \frac{R_0^2}{D} \sim N^{1+2\nu}$$

[référence gauche] H Vocks, Simulation of polymer translocation, Phd Thesis, Utrecht University, 2008,

[référence droite] W. Sung and P. J. Park k. Polymer translocation through a pore in a membrane . Phys. Rev. Lett., vol. 77, pp. 783–786, Jul 1996.

$$F(N,n) = K_B T[(1-\gamma_1) ln[n(N-n)] - Nln(\tilde{z})]$$

$$\tau \text{ est proportionnel à } \frac{R_0^2}{D} \sim N^{1+2\nu}$$

[référence gauche] H Vocks. Simulation of polymer translocation. Phd Thesis, Utrecht University, 2008.

[référence droite] W. Sung and P. J. Park k. Polymer translocation through a pore in a membrane. Phys. Rev. Lett., vol. 77, pp. 783–786, Jul 1996.

Nature de l'ADN

Structure
Liaisons covalentes
Liaisons hydrogènes
Interactions

orbitalaires

Modélisation

[référence] M. C. Linak, R. Tourdot, and K. D. Dorfman. Moving beyond watson-crick models of coarse grained dna dynamics. The Journal of Chemical Physics, vol. 135, no. 20, p. 205102, 2011.

Modélisation

$$\frac{d\mathbf{r}_n}{dt} = -\frac{1}{\epsilon} \frac{\partial F_{tot}}{\partial \mathbf{r}_n} + \mathbf{g}_n$$

[référence] M. C. Linak, R. Tourdot, and K. D. Dorfman. Moving beyond watson-crick models of coarse grained dna dynamics. The Journal of Chemical Physics, vol. 135, no. 20, p. 205102, 2011.

Graphène

anciens pores rigides : biologiques et artificiels

[référence] H. Bayley. Nanotechnology: Holes with an edge. NATURE, vol. 467, p. 542, SEP 2010.

Graphène

anciens pores rigides : biologiques et artificiels problèmes d'épaisseur

[référence] H. Bayley. Nanotechnology: Holes with an edge. NATURE, vol. 467, p. 542, SEP 2010.

Graphène

Conclusion

Utilisation d'outils analytiques et numériques

Conclusion

Utilisation d'outils analytiques et numériques

Modélisation du graphène

Conclusion

Utilisation d'outils analytiques et numériques

Modélisation du graphène

Temps de translocation, flexibilité et séquençage.

Conclusion

Merci de votre attention.

Conclusion

Merci de votre attention.

Des questions?