Midterm Examination 1

October 6, 2011

- 1. (15pts) If $A = \{2 \le x \le 5\}$ and $B = \{3 \le x \le 6\}$, find $A \cup B$, $A \cap B$, $(A \cup B) \cap (\overline{A \cap B})$, where \overline{A} implies the complementary set of A
- 2. (15pts) Show that for any two events A and B in a probability space (S,F, P) the following relationship holds:

$$P(A)P(B) - P(A \bigcap B) = P(A \bigcap B) - P(A)P(B) = P(A \bigcap B) - P(A)P(B).$$

- 3. (15pts) A call occurs at time t where t is a random point in the interval (0, 10).
 - **a.** (5pt) Find $P\{6 \le t \le 8\}$.
 - **b.** (10pt) Find $P\{6 \le t \le 8|t > 5\}$.
- 4. (15pts) A pair of dice is rolled 10 times. Find the probability that their sum will equal 7 on at least one roll.
- 5. (25pts) In the die experiment, we assign to the six outcomes f_i the numbers $\mathbf{x}(f_i) = 10i$. Thus, $\mathbf{x}(f_1) = 10, \dots, \mathbf{x}(f_6) = 60$. In the case that the die is fair, then,
 - **a.** (5pt) Find $P\{\mathbf{x} \le 100\}$.
 - **b.** (5pt) Find $P\{x \le 5\}$.
 - **c.** (5pt) Find $P\{15 \le \mathbf{x} \le 35\}$.
 - **d.** (10pt) Draw the cumulative distribution function $F_{\mathbf{x}}(x)$.
- 6. (15pts) The probability density function (pdf) f(x) is defined as $F_{\mathbf{x}}(x) = \int_{-\infty}^{x} f(x)dx$, where $F_{\mathbf{x}}(x)$ is the cumulative distribution function (cdf) of a random variable \mathbf{x} . Suppose that \mathbf{x}_{u} is the u percentile of the random variable \mathbf{x} , that is, $F(\mathbf{x}_{u}) = u$. Show that if f(-x) = f(x), the $\mathbf{x}_{1-u} = \mathbf{x}_{u}$