Experiment 2: Email Spam or Ham Classification using Naïve Bayes, KNN, and SVM

Sri Sivasubramaniya Nadar College of Engineering, Chennai M. Tech (Integrated) Computer Science & Engineering - Semester V Subject Code & Name: ICS1512 – Machine Learning Algorithms Laboratory Academic Year: 2025-2026 (Odd Semester) Batch: 2023-2028

Objective

To classify emails as spam or ham using three classification algorithms — Naïve Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) — and evaluate their performance using accuracy metrics and K-Fold cross-validation.

Dataset

- Source: Spambase Kaggle
- Description: This dataset includes extracted features from emails, labeled as spam or ham.

Task Description

Develop models using Naïve Bayes, KNN, and SVM to classify email data. Evaluate their performance using a test split and K-Fold cross-validation, and interpret results with visualizations.

Implementation Steps

- 1. Load and preprocess the dataset (handle missing values, normalization).
- 2. Perform Exploratory Data Analysis (EDA): class balance, feature distributions.
- 3. Split into training and testing sets.
- 4. Train models:
 - Naïve Bayes (Gaussian, Multinomial, Bernoulli)
 - K-Nearest Neighbors (vary k, KDTree, BallTree)
 - Support Vector Machine (Linear, Polynomial, RBF, Sigmoid kernels)

- 5. Evaluate using:
 - Accuracy, Precision, Recall, F1-Score
 - Confusion Matrix
 - ROC Curve
- 6. Perform K-Fold Cross Validation (K = 5).
- 7. Compare results and record observations.

Code Implementation

Listing 1: Spam/Ham Classification Code

```
import pandas as pd
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4 import numpy as np
  df=pd.read_csv(r'/content/drive/MyDrive/Ml_Experiment3/
     spambase_csv.csv')
  data=df.copy()
  df.columns
  df.head()
  df.select_dtypes(include='object').columns
  df.select_dtypes(include='number').columns
  df.isnull().sum()
12
13
  numerical_cols = df.select_dtypes(include=np.number).columns
14
15
16
  n_{cols} = 3
  n_rows = (len(numerical_cols) + n_cols - 1) // n_cols
19
20
  fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, n_rows * 5)
21
  axes = axes.flatten() # Flatten the 2D array of axes for easy
     iteration
23
  for i, col in enumerate(numerical_cols):
24
      sns.boxplot(y=df[col], ax=axes[i])
25
      axes[i].set_title(col)
26
      axes[i].set_ylabel('')
28
  for j in range(i + 1, len(axes)):
29
      fig.delaxes(axes[j])
30
31
  plt.tight_layout()
33 plt.show()
```

```
from sklearn.preprocessing import StandardScaler
  scaler=StandardScaler()
37 d_columns=df.columns
38 d_columns=d_columns.drop('class')
39 print(d_columns)
  df[d_columns]=scaler.fit_transform(df[d_columns])
41 len(d_columns)
42 df
43 from sklearn.model_selection import train_test_split
44 x=df.drop('class',axis=1)
45 | y=df['class']
  x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,
     random_state=42)
47
48
  from sklearn.naive_bayes import GaussianNB, MultinomialNB,
49
     BernoulliNB
  from sklearn.metrics import accuracy_score, classification_report
50
  # Gaussian Naive Bayes
  gaussian_nb = GaussianNB()
54 gaussian_nb.fit(x_train, y_train)
  y_pred_gaussian = gaussian_nb.predict(x_test)
  print("Gaussian_Naive_Bayes:")
  print("Accuracy:", accuracy_score(y_test, y_pred_gaussian))
print(classification_report(y_test, y_pred_gaussian))
60 bernoulli_nb = BernoulliNB()
61 bernoulli_nb.fit(x_train, y_train)
  y_pred_bernoulli = bernoulli_nb.predict(x_test)
63
64 | print("\nBernoulli∟Naive∟Bayes:")
print("Accuracy:", accuracy_score(y_test, y_pred_bernoulli))
66 print(classification_report(y_test, y_pred_bernoulli))
  data
  from sklearn.preprocessing import MinMaxScaler
69
70
 # Create a MinMaxScaler
71
  scaler_minmax = MinMaxScaler()
72
73
  # Apply MinMaxScaler to the features (excluding the 'class'
     column) of the 'data' variable
  x_scaled_minmax = scaler_minmax.fit_transform(data.drop('class',
     axis=1))
76
# Convert the scaled data back to a DataFrame
  x_scaled_minmax_df = pd.DataFrame(x_scaled_minmax, columns=data.
     drop('class', axis=1).columns)
79
```

```
# Display the first few rows of the scaled data
  display(x_scaled_minmax_df.head())
  from sklearn.model_selection import train_test_split
83
  # Assuming 'class' is your target variable in the original 'data'
84
       DataFrame
  y = data['class']
85
  # Split the scaled data into training and testing sets
87
  x_train_minmax, x_test_minmax, y_train_minmax, y_test_minmax =
     train_test_split(x_scaled_minmax_df, y, test_size=0.2,
     random_state=42)
89
  print("Shape of x_train_minmax:", x_train_minmax.shape)
  print("Shapeuofux_test_minmax:", x_test_minmax.shape)
  print("Shape_of_y_train_minmax:", y_train_minmax.shape)
  print("Shape_of_y_test_minmax:", y_test_minmax.shape)
  from sklearn.naive_bayes import MultinomialNB
  from sklearn.metrics import accuracy_score, classification_report
95
  # Multinomial Naive Bayes with MinMax scaled data
97
  multinomial_nb_minmax = MultinomialNB()
98
  multinomial_nb_minmax.fit(x_train_minmax, y_train_minmax)
  y_pred_multinomial_minmax = multinomial_nb_minmax.predict(
100
     x_test_minmax)
  print("Multinomial_Naive_Bayes_with_MinMax_Scaled_Data:")
102
  print("Accuracy:", accuracy_score(y_test_minmax,
103
      y_pred_multinomial_minmax))
  print(classification_report(y_test_minmax,
      y_pred_multinomial_minmax))
105
  from sklearn.metrics import confusion_matrix
106
107
108
  # Calculate the confusion matrix
109
  cm = confusion_matrix(y_test_minmax, y_pred_multinomial_minmax)
111
  # Display the confusion matrix using seaborn heatmap
112
  plt.figure(figsize=(8, 6))
113
  sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['
114
     Not_Spam', 'Spam'], yticklabels=['Not_Spam', 'Spam'])
  plt.xlabel('Predicted')
  plt.ylabel('Actual')
116
plt.title('Confusion_Matrix_for_Multinomial')
plt.show()
| cm = confusion_matrix(y_test, y_pred_gaussian)
121 # Display the confusion matrix using seaborn heatmap
plt.figure(figsize=(8, 6))
```

```
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['
     NotuSpam', 'Spam'], yticklabels=['NotuSpam', 'Spam'])
  plt.xlabel('Predicted')
124
  plt.ylabel('Actual')
125
  plt.title('Confusion_Matrix_for_Gaussian')
126
127
  cm = confusion_matrix(y_test, y_pred_bernoulli)
128
  # Display the confusion matrix using seaborn heatmap
130
  plt.figure(figsize=(8, 6))
131
  sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['
132
     Not_Spam', 'Spam'], yticklabels=['Not_Spam', 'Spam'])
  plt.xlabel('Predicted')
  plt.ylabel('Actual')
  plt.title('ConfusionuMatrixuforubernoulli')
  plt.show()
136
  from sklearn.metrics import roc_curve, auc
137
138
  # Gaussian Naive Bayes
139
  y_pred_prob_gaussian = gaussian_nb.predict_proba(x_test)[:, 1]
  fpr_gaussian, tpr_gaussian, thresholds_gaussian = roc_curve(
141
     y_test, y_pred_prob_gaussian)
  auc_gaussian = auc(fpr_gaussian, tpr_gaussian)
142
143
  # Multinomial Naive Bayes with MinMax scaled data
144
  y_pred_prob_multinomial_minmax = multinomial_nb_minmax.
     predict_proba(x_test_minmax)[:, 1]
  fpr_multinomial, tpr_multinomial, thresholds_multinomial =
146
     roc_curve(y_test_minmax, y_pred_prob_multinomial_minmax)
  auc_multinomial = auc(fpr_multinomial, tpr_multinomial)
147
  # Bernoulli Naive Bayes
  y_pred_prob_bernoulli = bernoulli_nb.predict_proba(x_test)[:, 1]
150
  fpr_bernoulli, tpr_bernoulli, thresholds_bernoulli = roc_curve(
151
     y_test, y_pred_prob_bernoulli)
  auc_bernoulli = auc(fpr_bernoulli, tpr_bernoulli)
152
  print("Gaussian_Naive_Bayes_AUC:", auc_gaussian)
154
  print("Multinomial_Naive_Bayes_AUC_(MinMax_Scaled):",
155
     auc_multinomial)
  print("Bernoulli_Naive_Bayes_AUC:", auc_bernoulli)
156
  plt.figure(figsize=(10, 8))
  plt.plot(fpr_gaussian, tpr_gaussian, label='GaussianuNBu(AUCu=u
     %0.2f)' % auc_gaussian)
  plt.plot(fpr_multinomial, tpr_multinomial, label='MultinomialuNBu
159
     plt.plot(fpr_bernoulli, tpr_bernoulli, label='BernoulliuNBu(AUCu=
     ""0.2f), % auc_bernoulli)
  plt.plot([0, 1], [0, 1], 'k--') # Diagonal random classifier
     line
162 | plt.xlabel('False∟Positive∟Rate')
```

```
plt.ylabel('True_Positive_Rate')
   plt.title('ROC__Curve__for__Naive__Bayes__Models')
   plt.legend(loc='lower_right')
  plt.grid(True)
166
   plt.show()
167
168
   from sklearn.model_selection import cross_val_score
169
170
   cv_scores = cross_val_score(bernoulli_nb, x, y, cv=5)
171
172
   i = 1
173
   for score in cv_scores:
174
     print(f"Foldu{i}uaccuracy:u{score}")
175
     i += 1
177
   print("Meanucross-validationuaccuracy:", cv_scores.mean())
178
   <h1>KNN CLASSIFICATION </h1>
179
   from sklearn.neighbors import KNeighborsClassifier
180
181
   k_{values} = [1, 3, 5, 7]
183
   for k in k_values:
184
       print(f"\nK-Nearest_Neighbors_(k={k}):")
185
       knn=KNeighborsClassifier(n_neighbors=k)
186
       knn.fit(x_train,y_train)
187
       y_pred_knn=knn.predict(x_test)
       print("Accuracy:", accuracy_score(y_test, y_pred_knn))
189
       print("Classification LReport:")
190
       print(classification_report(y_test, y_pred_knn))
191
       cn=confusion_matrix(y_test,y_pred_knn)
192
       sns.heatmap(cn,annot=True,fmt='d',cmap='Blues',xticklabels=['
          Not_Spam', 'Spam'], yticklabels = ['Not_Spam', 'Spam'])
       plt.xlabel('Predicted')
194
       plt.ylabel('Actual')
195
       plt.title(f'Confusion_Matrix_for_k={k}')
196
       plt.show()
197
       y_pred_probab=knn.predict_proba(x_test)[:,1]
198
       fpr,tpr,thresholds=roc_curve(y_test,y_pred_probab)
199
       auc_score=auc(fpr,tpr)
200
       print(f"AUC_Score_for_k={k}:_{{auc_score}}")
201
       plt.figure(figsize=(8,6))
202
       plt.plot(fpr,tpr,label=f'KNNu(AUC={auc_score:.2f})')
203
       plt.show()
  knn_kd = KNeighborsClassifier(n_neighbors=5, algorithm='kd_tree')
205
  knn_kd.fit(x_train, y_train)
206
  y_pred_kd = knn_kd.predict(x_test)
207
  accuracy_kd = accuracy_score(y_test, y_pred_kd)
208
209 | print(f"Accuracy with KD-Tree: {accuracy kd:.4f}")
  print(classification_report(y_test, y_pred_kd))
211 # Using Ball Tree
```

```
knn_ball = KNeighborsClassifier(n_neighbors=5, algorithm='
      ball_tree')
   knn_ball.fit(x_train, y_train)
213
   y_pred_ball = knn_ball.predict(x_test)
214
   accuracy_ball = accuracy_score(y_test, y_pred_ball)
215
   print(f"Accuracy_with_Ball_Tree:_{accuracy_ball:.4f}")
216
   print(classification_report(y_test, y_pred_ball))
217
   knn=KNeighborsClassifier(n_neighbors=5)
219
   cv_scores = cross_val_score(knn, x, y, cv=5)
220
221
   i = 1
222
223
   for score in cv_scores:
     print(f"Fold_{i}_accuracy:__{score}")
     i += 1
225
226
   print("Meanucross-validationuaccuracy:", cv_scores.mean())
227
   <h1>SVM</h1>
228
229
  from sklearn.svm import SVC
  lsvc=SVC(kernel='linear',C=1.0,random_state=42)
231
  lsvc.fit(x_train,y_train)
232
  y_pred_lsvc=lsvc.predict(x_test)
233
   print("Accuracy:", accuracy_score(y_test, y_pred_lsvc))
234
   print("Classification_Report:")
   print(classification_report(y_test, y_pred_lsvc))
   psvc=SVC(kernel='poly',C=1.0,random_state=42,gamma=0.1,degree=2)
237
  psvc.fit(x_train,y_train)
238
   y_pred_psvc=psvc.predict(x_test)
239
  print("Accuracy:", accuracy_score(y_test, y_pred_psvc))
240
   print("Classification Lagranter Report:")
   print(classification_report(y_test, y_pred_psvc))
  p3svc=SVC(kernel='poly',C=1.0,random_state=42,gamma=0.1,degree=3)
243
  p3svc.fit(x_train,y_train)
244
   y_pred_p3svc=p3svc.predict(x_test)
245
   print("Accuracy:", accuracy_score(y_test, y_pred_p3svc))
246
   print("Classification_Report:")
  print(classification_report(y_test, y_pred_p3svc))
248
  rbfsvc=SVC(kernel='rbf',C=1.0,random_state=42,gamma=0.01)
249
  rbfsvc.fit(x_train,y_train)
250
   y_pred_rbfsvc=rbfsvc.predict(x_test)
251
  print("Accuracy:", accuracy_score(y_test, y_pred_rbfsvc))
252
  print("Classification_Report:")
  print(classification_report(y_test, y_pred_rbfsvc))
254
  sigmoidsvc=SVC(kernel='sigmoid', C=1.0, random_state=42, gamma=0.01)
255
   sigmoidsvc.fit(x_train,y_train)
256
  | y_pred_sigmoidsvc=sigmoidsvc.predict(x_test)
257
  print("Accuracy:", accuracy_score(y_test, y_pred_sigmoidsvc))
258
  print("Classification_Report:")
  print(classification_report(y_test, y_pred_sigmoidsvc))
260
261 cv_score=cross_val_score(lsvc,x,y,cv=5)
```

```
print(cv_score)
   print("Meanucross-validationuaccuracy:", cv_score.mean())
   cv_score=cross_val_score(psvc,x,y,cv=5)
264
  print(cv_score)
265
   print("Meanucross-validationuaccuracy:", cv_score.mean())
266
   cv_score=cross_val_score(p3svc,x,y,cv=5)
267
   print(cv_score)
268
   print("Meanucross-validationuaccuracy:", cv_score.mean())
   cv_score=cross_val_score(rbfsvc,x,y,cv=5)
270
   print(cv_score)
271
   print("Meanucross-validationuaccuracy:", cv_score.mean())
272
   cv_score=cross_val_score(sigmoidsvc,x,y,cv=5)
273
   print(cv_score)
   print("Meanucross-validationuaccuracy:", cv_score.mean())import
      pandas as pd
   import matplotlib.pyplot as plt
276
   import seaborn as sns
277
   import numpy as np
278
   df=pd.read_csv(r'/content/drive/MyDrive/Ml_Experiment3/
      spambase_csv.csv')
   data=df.copy()
280
   df.columns
281
   df.head()
282
   df.select_dtypes(include='object').columns
283
   df.select_dtypes(include='number').columns
   df.isnull().sum()
286
287
   numerical_cols = df.select_dtypes(include=np.number).columns
288
289
   n_{cols} = 3
291
   n_rows = (len(numerical_cols) + n_cols - 1) // n_cols
292
293
294
        axes = plt.subplots(n_rows, n_cols, figsize=(15, n_rows * 5)
   fig,
295
   axes = axes.flatten() # Flatten the 2D array of axes for easy
296
      iteration
297
   for i, col in enumerate(numerical_cols):
298
       sns.boxplot(y=df[col], ax=axes[i])
299
       axes[i].set_title(col)
300
       axes[i].set_ylabel('')
301
302
   for j in range(i + 1, len(axes)):
303
       fig.delaxes(axes[j])
304
305
  plt.tight_layout()
  plt.show()
307
308 from sklearn.preprocessing import StandardScaler
```

```
scaler=StandardScaler()
   d columns=df.columns
311
312 d_columns=d_columns.drop('class')
  print(d_columns)
313
  df[d_columns] = scaler.fit_transform(df[d_columns])
314
  len(d_columns)
315
  from sklearn.model_selection import train_test_split
317
x=df.drop('class',axis=1)
  v=df['class']
319
   x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,
320
      random_state=42)
321
322
   from sklearn.naive_bayes import GaussianNB, MultinomialNB,
323
      BernoulliNB
   from sklearn.metrics import accuracy_score, classification_report
324
325
   # Gaussian Naive Bayes
   gaussian_nb = GaussianNB()
327
   gaussian_nb.fit(x_train, y_train)
328
   y_pred_gaussian = gaussian_nb.predict(x_test)
329
330
   print("Gaussian \ Naive Bayes:")
   print("Accuracy:", accuracy_score(y_test, y_pred_gaussian))
   print(classification_report(y_test, y_pred_gaussian))
333
  bernoulli_nb = BernoulliNB()
334
   bernoulli_nb.fit(x_train, y_train)
335
   y_pred_bernoulli = bernoulli_nb.predict(x_test)
336
   print("\nBernoulli_Naive_Bayes:")
338
   print("Accuracy:", accuracy_score(y_test, y_pred_bernoulli))
   print(classification_report(y_test, y_pred_bernoulli))
340
   data
341
   from sklearn.preprocessing import MinMaxScaler
344
   # Create a MinMaxScaler
345
   scaler_minmax = MinMaxScaler()
346
347
   # Apply MinMaxScaler to the features (excluding the 'class'
348
      column) of the 'data' variable
   x_scaled_minmax = scaler_minmax.fit_transform(data.drop('class',
349
      axis=1))
350
   # Convert the scaled data back to a DataFrame
351
   x_scaled_minmax_df = pd.DataFrame(x_scaled_minmax, columns=data.
352
      drop('class', axis=1).columns)
353
354 # Display the first few rows of the scaled data
```

```
display(x_scaled_minmax_df.head())
   from sklearn.model_selection import train_test_split
357
  # Assuming 'class' is your target variable in the original 'data'
358
       DataFrame
  y = data['class']
359
360
  # Split the scaled data into training and testing sets
361
  x_train_minmax, x_test_minmax, y_train_minmax, y_test_minmax =
362
      train_test_split(x_scaled_minmax_df, y, test_size=0.2,
      random_state=42)
363
  print("Shapeuofux_train_minmax:", x_train_minmax.shape)
364
  print("Shapeuofux_test_minmax:", x_test_minmax.shape)
   print("Shapeuofuy_train_minmax:", y_train_minmax.shape)
  print("Shape_of_y_test_minmax:", y_test_minmax.shape)
367
   from sklearn.naive_bayes import MultinomialNB
368
  from sklearn.metrics import accuracy_score, classification_report
369
370
  # Multinomial Naive Bayes with MinMax scaled data
  multinomial_nb_minmax = MultinomialNB()
372
  multinomial_nb_minmax.fit(x_train_minmax, y_train_minmax)
373
  y_pred_multinomial_minmax = multinomial_nb_minmax.predict(
374
      x_test_minmax)
   print("Multinomial_Naive_Bayes_with_MinMax_Scaled_Data:")
   print("Accuracy:", accuracy_score(y_test_minmax,
377
      y_pred_multinomial_minmax))
   print(classification_report(y_test_minmax,
378
      y_pred_multinomial_minmax))
   from sklearn.metrics import confusion_matrix
380
381
382
  # Calculate the confusion matrix
383
   cm = confusion_matrix(y_test_minmax, y_pred_multinomial_minmax)
384
  # Display the confusion matrix using seaborn heatmap
386
  plt.figure(figsize=(8, 6))
387
  sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['
388
      Not_Spam', 'Spam'], yticklabels=['Not_Spam', 'Spam'])
  plt.xlabel('Predicted')
389
  plt.ylabel('Actual')
  plt.title('Confusion_Matrix_for_Multinomial')
  plt.show()
392
   cm = confusion_matrix(y_test, y_pred_gaussian)
393
394
  # Display the confusion matrix using seaborn heatmap
  plt.figure(figsize=(8, 6))
  sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['
397
     Not_Spam', 'Spam'], yticklabels=['Not_Spam', 'Spam'])
```

```
plt.xlabel('Predicted')
  plt.ylabel('Actual')
  plt.title('Confusion_Matrix_for_Gaussian')
400
  plt.show()
401
   cm = confusion_matrix(y_test, y_pred_bernoulli)
402
403
  # Display the confusion matrix using seaborn heatmap
404
  plt.figure(figsize=(8, 6))
  sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['
406
      Not_Spam', 'Spam'], yticklabels=['Not_Spam', 'Spam'])
  plt.xlabel('Predicted')
407
  plt.ylabel('Actual')
408
  plt.title('Confusion Matrix for bernoulli')
409
  plt.show()
  from sklearn.metrics import roc_curve, auc
411
412
  # Gaussian Naive Bayes
413
  y_pred_prob_gaussian = gaussian_nb.predict_proba(x_test)[:, 1]
414
  fpr_gaussian, tpr_gaussian, thresholds_gaussian = roc_curve(
415
      y_test, y_pred_prob_gaussian)
   auc_gaussian = auc(fpr_gaussian, tpr_gaussian)
416
417
  # Multinomial Naive Bayes with MinMax scaled data
418
  y_pred_prob_multinomial_minmax = multinomial_nb_minmax.
419
      predict_proba(x_test_minmax)[:, 1]
   fpr_multinomial, tpr_multinomial, thresholds_multinomial =
420
      roc_curve(y_test_minmax, y_pred_prob_multinomial_minmax)
   auc_multinomial = auc(fpr_multinomial, tpr_multinomial)
421
422
  # Bernoulli Naive Bayes
423
  y_pred_prob_bernoulli = bernoulli_nb.predict_proba(x_test)[:, 1]
  fpr_bernoulli, tpr_bernoulli, thresholds_bernoulli = roc_curve(
      y_test, y_pred_prob_bernoulli)
   auc_bernoulli = auc(fpr_bernoulli, tpr_bernoulli)
426
427
  print("Gaussian_Naive_Bayes_AUC:", auc_gaussian)
428
  print("Multinomial_Naive_Bayes_AUC_(MinMax_Scaled):",
      auc_multinomial)
  print("Bernoulli_Naive_Bayes_AUC:", auc_bernoulli)
430
  plt.figure(figsize=(10, 8))
431
  plt.plot(fpr_gaussian, tpr_gaussian, label='GaussianuNBu(AUCu=u
432
      %0.2f)' % auc_gaussian)
  plt.plot(fpr_multinomial, tpr_multinomial, label='Multinomial_{\sqcup}NB_{\sqcup}
      plt.plot(fpr_bernoulli, tpr_bernoulli, label='Bernoulli_NB_(AUC_=
434
      "\"0.2f)' % auc_bernoulli)
  plt.plot([0, 1], [0, 1], 'k--') # Diagonal random classifier
435
      line
  plt.xlabel('False_Positive_Rate')
  plt.ylabel('True_Positive_Rate')
| plt.title('ROC_Curve_for_Naive_Bayes_Models')
```

```
plt.legend(loc='lower_right')
   plt.grid(True)
   plt.show()
441
442
   from sklearn.model_selection import cross_val_score
443
444
   cv_scores = cross_val_score(bernoulli_nb, x, y, cv=5)
445
446
   i = 1
447
   for score in cv_scores:
448
     print(f"Foldu{i}uaccuracy:u{score}")
449
     i += 1
450
451
   print("Meanucross-validationuaccuracy:", cv_scores.mean())
   <h1>KNN CLASSIFICATION </h1>
453
   from sklearn.neighbors import KNeighborsClassifier
454
455
   k_{values} = [1, 3, 5, 7]
456
457
   for k in k_values:
458
       print(f"\nK-Nearest_Neighbors_(k={k}):")
459
       knn=KNeighborsClassifier(n_neighbors=k)
460
       knn.fit(x_train,y_train)
461
       y_pred_knn=knn.predict(x_test)
462
       print("Accuracy:", accuracy_score(y_test, y_pred_knn))
463
       print("Classification LReport:")
464
       print(classification_report(y_test, y_pred_knn))
465
       cn=confusion_matrix(y_test,y_pred_knn)
466
       sns.heatmap(cn,annot=True,fmt='d',cmap='Blues',xticklabels=['
467
          Not_Spam', 'Spam'], yticklabels = ['Not_Spam', 'Spam'])
       plt.xlabel('Predicted')
468
       plt.ylabel('Actual')
469
       plt.title(f'Confusion_Matrix_for_k={k}')
470
       plt.show()
471
       y_pred_probab=knn.predict_proba(x_test)[:,1]
472
       fpr,tpr,thresholds=roc_curve(y_test,y_pred_probab)
473
       auc_score=auc(fpr,tpr)
474
       print(f"AUC_Score_for_k={k}:_{auc_score}")
475
       plt.figure(figsize=(8,6))
476
       plt.plot(fpr,tpr,label=f'KNNu(AUC={auc_score:.2f})')
477
       plt.show()
478
   knn_kd = KNeighborsClassifier(n_neighbors=5, algorithm='kd_tree')
479
  knn_kd.fit(x_train, y_train)
   y_pred_kd = knn_kd.predict(x_test)
481
  accuracy_kd = accuracy_score(y_test, y_pred_kd)
482
   print(f"Accuracy_with_KD-Tree:_{|}{accuracy_kd:.4f}")
483
  print(classification_report(y_test, y_pred_kd))
484
  # Using Ball Tree
  knn_ball = KNeighborsClassifier(n_neighbors=5, algorithm='
      ball_tree')
487 knn_ball.fit(x_train, y_train)
```

```
y_pred_ball = knn_ball.predict(x_test)
488
   accuracy_ball = accuracy_score(y_test, y_pred_ball)
   print(f"Accuracy_with_Ball_Tree:_{accuracy_ball:.4f}")
490
   print(classification_report(y_test, y_pred_ball))
491
492
   knn=KNeighborsClassifier(n_neighbors=5)
493
   cv_scores = cross_val_score(knn, x, y, cv=5)
494
495
   i = 1
496
   for score in cv_scores:
497
     print(f"Foldu{i}uaccuracy:u{score}")
498
     i += 1
499
500
   print("Meanucross-validationuaccuracy:", cv_scores.mean())
   <h1>SVM</h1>
502
503
   from sklearn.svm import SVC
504
  lsvc=SVC(kernel='linear',C=1.0,random_state=42)
505
  lsvc.fit(x_train,y_train)
506
  y_pred_lsvc=lsvc.predict(x_test)
   print("Accuracy:", accuracy_score(y_test, y_pred_lsvc))
508
   print("Classification_Report:")
509
  print(classification_report(y_test, y_pred_lsvc))
510
   psvc=SVC(kernel='poly',C=1.0,random_state=42,gamma=0.1,degree=2)
511
   psvc.fit(x_train,y_train)
   y_pred_psvc=psvc.predict(x_test)
   print("Accuracy:", accuracy_score(y_test, y_pred_psvc))
514
  print("Classification_Report:")
515
   print(classification_report(y_test, y_pred_psvc))
516
   p3svc=SVC(kernel='poly',C=1.0,random_state=42,gamma=0.1,degree=3)
517
   p3svc.fit(x_train,y_train)
   y_pred_p3svc=p3svc.predict(x_test)
  print("Accuracy:", accuracy_score(y_test, y_pred_p3svc))
520
   print("Classification_Report:")
521
   print(classification_report(y_test, y_pred_p3svc))
522
   rbfsvc=SVC(kernel='rbf',C=1.0,random_state=42,gamma=0.01)
523
   rbfsvc.fit(x_train,y_train)
   y_pred_rbfsvc=rbfsvc.predict(x_test)
525
   print("Accuracy:", accuracy_score(y_test, y_pred_rbfsvc))
526
   print("Classification_Report:")
527
   print(classification_report(y_test, y_pred_rbfsvc))
528
   sigmoidsvc=SVC(kernel='sigmoid', C=1.0, random_state=42, gamma=0.01)
   sigmoidsvc.fit(x_train,y_train)
   y_pred_sigmoidsvc=sigmoidsvc.predict(x_test)
531
   print("Accuracy:", accuracy_score(y_test, y_pred_sigmoidsvc))
532
   print("Classification_Report:")
533
  print(classification_report(y_test, y_pred_sigmoidsvc))
534
   cv_score=cross_val_score(lsvc,x,y,cv=5)
535
  print(cv_score)
  print("Meanucross-validationuaccuracy:", cv_score.mean())
537
538 cv_score=cross_val_score(psvc,x,y,cv=5)
```

```
print(cv_score)
print("Mean_cross-validation_accuracy:", cv_score.mean())
cv_score=cross_val_score(p3svc,x,y,cv=5)
print(cv_score)
print("Mean_cross-validation_accuracy:", cv_score.mean())
cv_score=cross_val_score(rbfsvc,x,y,cv=5)
print(cv_score)
print("Mean_cross-validation_accuracy:", cv_score.mean())
cv_score=cross_val_score(sigmoidsvc,x,y,cv=5)
print("Mean_cross-validation_accuracy:", cv_score.mean())
cv_score=cross_val_score(sigmoidsvc,x,y,cv=5)
print(cv_score)
print("Mean_cross-validation_accuracy:", cv_score.mean())
```

Performance Comparison Tables

Table 1: Performance Comparison of Naïve Bayes Variants

Metric	Gaussian NB	Multinomial NB	Bernoulli NB
Accuracy	0.822	0.872	0.900
Precision	0.830	0.890	0.910
Recall	0.840	0.850	0.890
F1 Score	0.820	0.860	0.900

Table 2: KNN Performance for Different k Values

k	Accuracy	Precision	Recall	F1 Score
1	0.896	0.890	0.890	0.890
3	0.894	0.895	0.890	0.890
5	0.896	0.900	0.890	0.890
7	0.896	0.900	0.890	0.890

Table 3: KNN Comparison - KDTree vs BallTree

Metric	KDTree	BallTree
Accuracy	0.896	0.896
Precision	0.900	0.900
Recall	0.890	0.890
F1 Score	0.890	0.890

Table 4: SVM Performance with Different Kernels and Parameters

Kernel	Hyperparameters	Accuracy	F1 Score	Training Time (s)
--------	-----------------	----------	----------	-------------------

Linear	C = 1.0	0.925	0.920	0.0265
Polynomial	$C = 1.0, degree = 3, \gamma = 0.01$	0.931	0.930	0.711
RBF	$C = 1.0, \gamma = 0.01$	0.935	0.930	0.3874
Sigmoid	$C = 1.0, \gamma = 0.01$	0.904	0.900	0.2830

Table 5: K-Fold Cross-Validation Results (K = 5)

Fold	Naïve Bayes Accuracy	KNN Accuracy	SVM Accuracy
Fold 1	0.913	0.889	0.899
Fold 2	0.912	0.902	0.915
Fold 3	0.915	0.921	0.911
Fold 4	0.930	0.918	0.911
Fold 5	0.818	0.788	0.817
Average	0.898	0.884	0.891

References

• scikit-learn: Naïve Bayes

• scikit-learn: KNN

• scikit-learn: SVM

ullet Spambase Dataset – Kaggle