ㅇ 주제

IRIS 데이터 클러스터링

최연석, 오서영

데이터 확인

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
import pandas as pd
from sklearn.cluster import AgglomerativeClustering
import mglearn
```

```
In [2]: dataset = load_iris()
```

In [3]: # 판다스로 데이터 확인하기
| labels = pd.DataFrame(dataset.target)
| labels.columns=['labels']
| data = pd.DataFrame(dataset.data)
| data.columns=dataset['feature_names']
| data = pd.concat([data,labels],axis=1)
| data

Out[3]:

	_				
	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	labels
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2
	l e				

150 rows × 5 columns

OAgglomerative clustering O

```
In [8]: agg_2 = AgglomerativeClustering(n_clusters=2).fit(x_train)
    print(agg_2.labels_)

agg_3 = AgglomerativeClustering(n_clusters=3).fit(x_train)
    print(agg_3.labels_)

agg_4 = AgglomerativeClustering(n_clusters=4).fit(x_train)
    print(agg_4.labels_)

agg_5 = AgglomerativeClustering(n_clusters=5).fit(x_train)
    print(agg_5.labels_)

agg_6 = AgglomerativeClustering(n_clusters=6).fit(x_train)
    print(agg_6.labels_)

agg_7 = AgglomerativeClustering(n_clusters=7).fit(x_train)
    print(agg_7.labels_)

agg_8 = AgglomerativeClustering(n_clusters=8).fit(x_train)
    print(agg_8.labels_)
```

```
0 01
```

그래프 표현

In [10]: mglearn.discrete_scatter(x1 = x_train[:,0], x2 = x_train[:,1], y=agg_6.labels_, markers='X')
plt.show()

IRIS DATA

Iris Versicolor

Iris Setosa

Iris Virginica

ㅇ 실루엣 계수 (

- 1. 실루엣 계수는 한 클러스터 안에 데이터들이 다른 클러스터와 비교해서 얼마나 비슷한가를 나타낸다
 - 2. 1에 가까울수록 잘 부합하는 데이터

```
In [11]: from sklearn.metrics.cluster import silhouette_score print(silhouette_score(x_train, agg_3.labels_)) print(silhouette_score(x_train, agg_4.labels_)) print(silhouette_score(x_train, agg_5.labels_)) print(silhouette_score(x_train, agg_6.labels_)) print(silhouette_score(x_train, agg_7.labels_)) print(silhouette_score(x_train, agg_8.labels_)) 0.3653346819163389
```

- 0.38231594211850395
- 0.38724618388871157
- 0.3918000357829499
- 0.34449589365226896
- 0.32799364657656743

실루엣 계수

```
In [12]: from matplotlib import font_manager, rc
font_name = font_manager.FontProperties(fname="c:/Windows/Fonts/malgun.ttf").get_name()
rc('font', family=font_name)

In [13]: sil = []
num = np.arange(3,9)
for i in range(3,9):
    agg = AgglomerativeClustering(n_clusters=i).fit(x_train)
    sil.append(silhouette_score(x_train, agg.labels_))

plt.plot(num, sil)
plt.xlabel("클러스터 개수", fontsize = 15)
plt.ylabel("실루엣 계수", fontsize = 15)
plt.show()
```


ㅇ 결과 시각화

In [10]: mglearn.discrete_scatter(x1 = x_train[:,0], x2 = x_train[:,1], y=agg_6.labels_, markers='X')
plt.show()

Cluster Dendrogram

```
In [15]:

from scipy.cluster.hierarchy import dendrogram, ward
p t.rcParams["figure.figsize"] = (30,30)
l nkage_array = ward(x_train)
dendrogram(linkage_array)

ax = plt.gca()
bounds = ax.get_xbound()
ax.plot(bounds, [2.5, 2.5], '--', c='k')
ax.plot(bounds, [5, 5], '--', c='k')

ax.text(bounds[1], 2.5, ' 여섯 개 클러스터', va='center', fontdict={'size': 25})
ax.text(bounds[1], 5, ' 세 개 클러스터', va='center', fontdict={'size': 25})
p t.xlabel("샘플 변호", fontsize = 25)
p t.ylabel("클러스터 거리", fontsize = 25)
p t.xticks(fontsize=16)
p t.yticks(fontsize=16)
p t.show()
```


o End o

감사합니다