

End Term (Odd) Semester Examination December 2024

Name of the Course and semester: MCA III

Name of the Paper: Theory of Computation and Paper Code: TMC 304	Compiler Construction
Time: 3 hour	Maximum Marks: 100
Note: (i) All the questions are compulsory. (ii) Answer any two sub questions from a, b ar (iii) Total marks for each question is 20 (twenty (iv) Each sub-question carries 10 marks.	
Q1.	(2X10=20 Marks)(CO1)
	$0,1$ * wL = \{w \in \{0, 1\}^* wL=\{w \in \{0,1}* w} equivalent DFA using the subset construction
b. Consider the DFA given by the following state States $ 0\rangle 1\rangle$	table:
A B C B A D C D E D C F E E E F F F Minimize the DFA and draw the minimized state of	diagram. Show each step of the process, including
the partitioning of states.	
c) Design a Mealy machine that detects the input outputs I at the end of the sequence (and 0 otherw provide a state transition table to explain its behav	ise). Draw the state transition diagram and
Q2. a. Convert the regular expression ab* + ba* to a D steps, including the intermediate NFA. b. Construct a regular expression for the language even number of 0s. Describe how regular expression Provide examples to show how tokens are matched c. What is a regular expression? Provide an examp containing the substring "101". Write the regular extends a, b\{a, b\}{a,b} that begin and end with 'a'.	containing all strings over {0,1} that contain an ons are used in lexical analysis in compilers. I using regular expressions.
Q3. a. Design a CFG that generates palindromes over t	(2X10=20 Marks)(CO3) he alphabet {a,b}. Demonstrate how the grammar

Page 1 of 2

End Term (Odd) Semester Examination December 2024

works by deriving the strings "aba" and "abba".

b. Show that the following grammar is ambiguous:

$$E \rightarrow E + E \mid E * E \mid id$$

Provide two different parse trees for the string "id + id * id".

c. Define Context-Free Grammar (CFG). Differentiate between leftmost derivation and rightmost derivation with examples.

Q4.

(2X10=20 Marks)(CO4)

- a. Describe the phases of a compiler with a neat diagram and explain the function of each phase with an example.
- b. Describe the role of a lexical analyzer. Explain how a deterministic finite automaton (DFA) is used for token recognition.
- c. Explain input buffering in detail.

Q5.

(2X10=20 Marks) (CO5)

a. Consider the following grammar:

$$S \rightarrow AB$$

$$A \rightarrow aA \mid \epsilon$$

$$B \rightarrow bB \mid \epsilon$$

Construct a parse table and demonstrate the working of a predictive parser for the string "ash".

b. Explain the working of an LR parser with a detailed example using the grammar:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

Show the parsing table and parse the string "id + id * id".

c. List and briefly describe any four types of parsing techniques.