

Course	Methods_Test 4_ Year12
Student name:	Teacher name:
Date: Weds 26 Au	gust
Task type:	Response
Time allowed for this ta	sk:45 mins
Number of questions:	6
Materials required:	Calculator with CAS capability (to be provided by the student)
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Marks available:	46 marks
Task weighting:	10%
Formula sheet provided	: Yes
Note: All part question	s worth more than 2 marks require working to obtain full marks.

Q1 (1, 1, 1 & 3 = 6 marks) Consider a continuous random variable X that is uniformly distributed as follows.

Determine the following:

P(X > 3)

	Solution	
(7 - 3)0.2 = 0.8		
	Specific behaviours	
✓ determines area		

b) $P(X \ge 3)$

	Solution	
(7 - 3)0.2 = 0.8		
(7 - 3)0.2 =0.8 Same result as (a)		
	Specific behaviours	
✓ same result as (a)		

d) P(X > 3 | x < 6)

	Solution	
$\frac{(6-3)0.2}{}$ = $\frac{3}{}$		
(6-2)0.2 - 4		
	Specific behaviours	

- ✓ uses conditional formula/idea
- ✓ correct denominator
- ✓ correct prob

Q2 (3 marks)

Consider a continuous random variable X shown below.

Solve for the constant k exactly. (Show all working)

$$f(x) = \begin{cases} ke^{-3x} & 0 \le x \le 10 \\ 0 & elsewhere \end{cases}$$

$$f(x) = ke^{-3x}$$

Specific behaviours

- ✓ uses integral with correct limits
- ✓ solves backwards from a total area of one
- ✓ states exact value of k

Q3 (1, 4, 1 & 2 = 8 marks)

Consider a continuous random variable X shown below. (Not drawn to scale)

a) Determine the value of the constant K.

$$\frac{1}{2}(6)K = 1$$

$$K = \frac{1}{3}$$
Specific behaviours

✓ states value

b) Determine P(1 < x < 4)

c) Determine E(X)

3 by inspection and the symmetry around x=3

Specific behaviours

✓ states value

d) Determine Standard deviation of X

Q4 (2, 2, 2, 2 & 1 = 7 marks)

$$f(x) = \begin{cases} \frac{3}{16}(x-3)^2 & 1 \le x \le 5\\ 0 & elsewhere \end{cases}$$

A continuous random variable, $\,^{X}\,$ has a pdf Determine:

a)
$$E(x)$$

b) Var(X)

c) Standard deviation

d) Var(3x - 1)

Solution
$$Var(3x-1) = 9Var(x) = 9(\frac{12}{5}) = 21.6$$
Specific behaviours

✓ multiplies by 9

Q5 (2, 2, 2 & 3 = 9 marks)

The results for a class test, X can be modelled by a Normal Distribution given by $X \sim N(60,15^2)$. Determine:

a) The 78th percentile.

$$P(55 \le X \le 72)$$

c) The cut-off for an A grade given that this grade is only given to the top 20%.

d) A second test is a Normal Distribution with a mean of 55. Given that the 58th percentile is 62, determine the standard deviation.

Q6 (3, 3, 3, 2 & 2 = 13 marks)

The time it takes to be served at a supermarket checkout, X seconds, can be modelled by a normal distribution as follows $X \sim N\left(103,30^2\right)$ seconds. The assistant at the check out is paid according to the following scheme.

a) Fill in the probability line of the above table rounded to three decimal places.

		9	Solution			
Time served	$0 \le X < 35$	$35 \le X < 60$	$60 \le X < 150$	$150 \le X < 200$	<i>X</i> ≥200	
In seconds						
Payment \$P	\$5	\$7	\$12	\$15	\$18	
Probability	0.0114	0.0642	0.8655	0.0580	0.0006	
To 4 decimal	Or				Or	
places	0.0117				0.0009	

Specific behaviours

- ✓ contains two correct probs
- ✓ contains five correct probs
- ✓ all probs rounded to 3 or 4 dp
 - b) Determine the expected payment E(P) showing full working.

Solution 5 × 0.0114 + 7 × 0.0642 + 12 × 0.8655 + 15 × 0.0580 + 18 × 0.0006 = 11.7767 Specific behaviours ✓ shows sum of products ✓ uses 5 products ✓ determines mean (accept different values of probs) (2 marks for answer only)

c) Determine the variance of the payment Var(P) showing full working.

Solution $(5 - 11.7767)^2 \times 0.0114 + (7 - 11.7767)^2 \times 0.0642 + (12 - 11.7767)^2 \times 0.8655 + (15 - 11.7767)^2 \times 0.0580 + (18 - 11.7767)^2 \times 0.0006 = 2.6582$ Specific behaviours ✓ uses mean from b in calc

- ✓ uses correct sum of terms
- ✓ determines variance (2 marks for answer only)
 - d) If the payments were all increased by 30% and a bonus of \$2 added to each category, determine the new mean and standard deviation.

e) Explain a limitation of the Normal distribution model and show a calculation to support this.

Solution
Model allows negative times $P(-\infty \le x \le 0) = 0.0003$
Specific behaviours
✓ mentions negative times
✓ states a positive prob that time is less than zero