Note: Applicant uses:

- Cross-out-text to indicate deletions
- Underline text to indicate additions

Claims:

1. (Currently Amended) A compound having the formula

$$\begin{array}{c|c}
 & -H \\
 & -A \\
 & -$$

a N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof, wherein:

p represents an integer being 0, 1, 2, 3 or 4;

X represents O, S, NR⁵ or a direct bond;

Y represents O, S, NR⁵, or S(O)₂;

each R¹ independently represents C₁₋₆alkyl, halo, polyhaloC₁₋₆alkyl, hydroxy, mercapto, C₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkylcarbonyloxy, aryl, cyano, nitro, Het³, R⁶, NR⁷R⁸ or C₁₋₄alkyl substituted with Het³, R⁶ or NR⁷R⁸;

represents Het¹, C₃₋₇cycloalkyl, C₁₋₆alkyl or C₁₋₆alkyl substituted with one or two substituents selected from hydroxy, cyano, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxy, C₁₋₆alkylsulfonyloxy, C₁₋₆alkyloxycarbonyl, C₃₋₇cycloalkyl, aryl, aryloxy, arylthio, Het¹, Het¹oxy and Het¹thio; and if X is O, S or NR⁵, then R² may also represent aminocarbonyl, aminothiocarbonyl, C₁₋₄alkylcarbonyl,

C₁₋₄alkylthiocarbonyl, arylcarbonyl, arylthiocarbonyl, Het carbonyl or Het thiocarbonyl;

R³ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl;

R⁴ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl; or

R³ and R⁴ taken together form a C₂₋₆alkanediyl;

R⁵ represents hydrogen or C₁₋₄alkyl;

each R⁶ independently represents C₁₋₆alkylsulfonyl, aminosulfonyl, mono- or di(C₁₋₄alkyl)aminosulfonyl, mono- or di(benzyl)aminosulfonyl, polyhaloC₁₋₆alkylsulfonyl, C₁₋₆alkylsulfinyl, phenylC₁₋₄alkylsulfonyl, piperazinylsulfonyl, aminopiperidinylsulfonyl, piperidinylaminosulfonyl, N-C₁₋₄alkyl-N-piperidinylaminosulfonyl or mono-or di(C₁₋₄alkyl)aminoC₁₋₄alkylsulfonyl; each R⁷ and each R⁸ are independently selected from the group consisting of: hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, aminocarbonyl, arylcarbonyl, Het³carbonyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxyC₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, arylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-O-R¹⁴, -C(=O)-O-R¹⁴, -Y-C₁₋

R⁹ and R¹⁰ are each independently selected from the group consisting of: hydrogen, C₁.

4alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl,

C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, aminocarbonyl, phenylcarbonyl, Het³carbonyl,

C₁₋₄alkylcarbonyloxyC₁₋₄alkylcarbonyl, hydroxyC₁₋₄alkylcarbonyl,

C₁₋₄alkyloxycarbonylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl,

phenylaminocarbonyl, phenylaminothiocarbonyl, Het³aminocarbonyl,

Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-O-R¹⁴, -C(=O)-O-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-O-R¹⁴, Het³, Het⁴ and R⁶;

4alkanediyl-C(=O)-O-R¹⁴, Het³, Het⁴ and R⁶;

each R¹¹ independently being selected from <u>the group consisting of:</u> hydroxy, mercapto, cyano, nitro, halo, trihalomethyl, C₁₋₄alkyloxy, formyl, trihaloC₁₋₄alkylsulfonyloxy, R⁶, NR⁷R⁸, C(=O)NR⁷R⁸, -C(=O)-O-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-O-R¹⁴, aryl, aryloxy, arylcarbonyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkyloxy, phthalimide-2-yl, Het³ and C(=O)Het³;

R¹² and R¹³ are each independently selected from the group consisting of: hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylcarbonyl, phenylcarbonyl, C₁₋₄alkylcarbonyloxyC₁₋₄alkylcarbonyl, hydroxyC₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, C₃.

7cycloalkyl, pyridinyl C_{1-4} alkyl, C_{1-4} alkanediyl-C(=O)- $O-R^{14}$, -C(=O)- $O-R^{14}$, - $Y-C_{1-4}$ alkanediyl-C(=O)- $O-R^{14}$ and R^6 ;

each R¹⁴ independently represents hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, aminocarbonylmethylene or mono-or di(C₁₋₄alkyl)aminocarbonylmethylene; aryl represents phenyl optionally substituted with one, two or three substituents each independently selected from nitro, azido, cyano, halo, hydroxy, C₁₋₄alkyl, C₃₋₇cycloalkyl, C₁₋₄alkyloxy, formyl, polyhaloC₁₋₄alkyl, NR⁹R¹⁰, C(=O)NR⁹R¹⁰, C(=O)-O-R¹⁴, R⁶, -O-R⁶, phenyl, Het³, C(=O)Het³ and C₁₋₄alkyl substituted with hydroxy, C₁₋₄alkyloxy, C(=O)-O-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-O-R¹⁴, Het³ or NR⁹R¹⁰;

Het¹ represents a heterocycle selected from the group consisting of: pyrrolyl, pyrrolyl, pyrrolyl, imidazolyl, imidazolyl, pyrazolyl, pyrazolyl, pyrazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolyl, isoxazolyl, thiazolyl, thiazolyl, thiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, indolyl, isoindolyl, indolinyl, purinyl, 1*H*-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and imidazo[2,1-b]thiazolyl; wherein said heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with one or two substituents independently selected from Het² and R¹¹; provided Het¹ is other than 2-substituted-pyridin-5-yl;

Het² represents a heterocycle selected from **the group consisting of:** pyrrolyl, pyrrolinyl, imidazolyl, imidazolinyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolinyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzothienyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, indolyl, isoindolyl, indolinyl, purinyl, 1*H*-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl,

D2

isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and imidazo[2,1-b]thiazolyl; wherein said heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het^4 , R^{11} and C_{1-4} alkyl optionally substituted with one or two substituents independently selected from Het^4 and R^{11} ;

Het³ represents a monocyclic heterocycle selected the group consisting of: from pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl; wherein said monocyclic heterocycles each independently may optionally be substituted with, where possible, one, two, three or four substituents each independently selected from hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, piperidinyl, NR¹²R¹³, C(=O)-O-R¹⁴, R⁶ and C₁₋₄alkyl substituted with one or two substituents independently selected from hydroxy, C₁₋₄alkyloxy, phenyl, C(=O)-O-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-O-R¹⁴, R⁶ and NR¹²R¹³;

Het⁴ represents a monocyclic heterocycle selected from the group consisting of:

pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl,
isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl,
pyrazinyl, pyranyl, pyridazinyl and triazinyl.

2. (Currently Amended) A compound as claimed in claim 1 wherein:
each R⁷ and each R⁸ are independently selected from the group consisting of: hydrogen,
C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, aryl, arylC₁₋₄alkyl,
C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, aminocarbonyl, arylcarbonyl, Het³carbonyl,
C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxyC₁₋₄alkylcarbonyl,
C₁₋₄alkyloxycarbonylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl,
arylaminocarbonyl, arylaminothiocarbonyl, Het³aminocarbonyl,
Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl,
C₁₋₄alkanediyl-C(=O)-O-R¹⁴, -C(=O)-O-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-O-R¹⁴, Het³
and R⁶;

R⁹ and R¹⁰ are each independently selected from the group consisting of: hydrogen, C₁-4alkyl, hydroxyC₁-4alkyl, dihydroxyC₁-4alkyl, phenyl, phenylC₁-4alkyl, C₁-4alkyl, C₁-4alkyl, aminocarbonyl, phenylcarbonyl, Page 6 of 20

Da

Het³carbonyl, C_{1-4} alkylcarbonyloxy C_{1-4} alkylcarbonyl, hydroxy C_{1-4} alkylcarbonyl, C_{1-4} alkyloxycarbonylcarbonyl, mono- or di(C_{1-4} alkyl)amino C_{1-4} alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C_{3-7} cycloalkyl, pyridinyl C_{1-4} alkyl, C_{1-4} alkanediyl-C(=O)-O- R^{14} , -C(=O)-O- R^{14} , -Y- C_{1-4} alkanediyl-C(=O)-O- R^{14} , Het³ and R^6 ;

R¹¹ is being selected from <u>the group consisting of:</u> hydroxy, mercapto, cyano, nitro, halo, trihalomethyl, C₁-4alkyloxy, formyl, trihaloC₁-4alkylsulfonyloxy, R⁶, NR⁷R⁸, C(=O)NR⁷R⁸, -C(=O)-O-R¹⁴, -Y-C₁-4alkanediyl-C(=O)-O-R¹⁴, aryl, aryloxy, arylcarbonyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkyloxy, phthalimide-2-yl, Het³, Het⁴ and C(=O)Het³; and

Het² represents a heterocycle selected from the group consisting of: pyrrolyl, pyrrolinyl, imidazolyl, imidazolinyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolyl, thiazolyl, thiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, isobenzofuranyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, indolyl, isoindolyl, indolinyl, purinyl, 1*H*-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and imidazo[2,1-b]thiazolyl; wherein said heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from R¹¹ and C₁₋₄alkyl optionally substituted with one or two substituents independently selected from R¹¹.

3-9. (Canceled)

10. (Currently Amended) A compound of the formula: as claimed in claim 1 wherein the compound is

2-[3,5-dichloro-4-[1-methyl-1-(4-phenyl-2-thiazolyl)ethyl]phenyl]-1,2,4-triazine-3,5(2*H*,4*H*)-dione;

- 2-[3,5-dichloro-4-[1-[4-(3-chlorophenyl)-5-methyl-2-thiazolyl]-1-methylethyl]phenyl]-1,2,4-triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-methyl-1-(5-phenyl-1,2,4-oxadiazol-3-yl)ethyl]phenyl]-1,2,4triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-(4,5-diphenyl-2-thiazolyl)-1-methylethyl]phenyl]-1,2,4-triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-methyl-1-[5-(2-methylphenyl)-1,2,4-oxadiazol-3-yl]ethyl]phenyl]-1,2,4-triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-methyl-1-(4-methyl-5-phenyl-2-thiazolyl)ethyl]phenyl]-1,2,4triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-methyl-1-[4-phenyl-5-(3-pyridinyl)-2-thiazolyl]ethyl]phenyl]-1,2,4-triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-methyl-1-[4-phenyl-5-(phenylmethyl)-2-thiazolyl]ethyl]phenyl]-1,2,4-triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-methyl-1-[5-(4-pyridinyl)-1,2,4-oxadiazol-3-yl]ethyl]phenyl]-1,2,4-triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-methyl-1-[4-(3-thienyl)-2-thiazolyl]ethyl]phenyl]-1,2,4-triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-[4-(2-furanyl)-2-thiazolyl]-1-methylethyl]phenyl]-1,2,4triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-methyl-1-[5-(3-pyridinyl)-1,2,4-oxadiazol-3-yl]ethyl]phenyl]-1,2,4-triazine-3,5(2H,4H)-dione;
- 2-[3,5-dichloro-4-[1-methyl-1-[5-(2-methyl-3-pyridinyl)-1,2, 4-oxadiazol-3yl]ethyl]phenyl]-1,2,4-triazine-3,5(2H,4H)-dione; or
- 2-[3,5-dichloro-4-[1-methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)ethyl]phenyl]-1,2,4triazine-3,5(2H,4H)-dione; or a N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof.
- 14. (Previously Amended) A composition comprising a pharmaceutically acceptable carrier and, as active ingredient, a therapeutically effective amount of a compound as claimed in claim 1.
- 12. through 18. (Previously Canceled)19. through 55. (Currently Canceled)

D2

11

62.

(New) A compound as claimed in claim 1 provided that in those compounds wherein X is a direct bond, at least one of R³ and R⁴ is hydrogen, and R² is 3-pyridinyl optionally substituted in the 6 position with an optionally substituted alkyl or acyl group are excluded.

(New) A compound as claimed in claim 2 provided that in those compounds wherein X is a direct bond, at least one of R³ and R⁴ is hydrogen, and R² is 3-pyridinyl optionally substituted in the 6 position with an optionally substituted alkyl or acyl group are excluded.

(New) A compound as claimed in claim wherein the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.

(New) A compound as claimed in claim 2 wherein the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.

(New) A compound as claimed in claim 56 wherein the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.

(New) A compound as claimed in claim wherein the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.

(New) A compound as claimed in claim 1 wherein R² is a monocyclic heterocycle selected from the group consisting of: pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with Het² or R¹¹.

DD-2839. A compound as claimed in claim 2 wherein R^2 is a monocyclic heterocycle selected from the group consisting of: pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het^2 , R^{11} and C_{1-4} alkyl optionally substituted with Het^2 or R^{11} .

13

A compound as claimed in claim wherein R² is a monocyclic heterocycle selected from the group consisting of: pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with Het² or R¹¹.

94.

A compound as claimed in claim \mathcal{F} wherein R^2 is a monocyclic heterocycle selected from the group consisting of: pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R^{11} and C_{1-4} alkyl optionally substituted with Het² or R^{11} .

15 266. A compound as claimed in claim wherein R² is a monocyclic heterocycle selected from the group consisting of: pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with Het² or R¹¹.

A compound as claimed in claim wherein R² is a monocyclic heterocycle selected from the group consisting of: pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with Het² or R¹¹.

A compound as claimed in claim 60 wherein R² is a monocyclic heterocycle selected from the group consisting of: pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with Het² or R¹¹.

A compound as claimed in claim of wherein R² is a monocyclic heterocycle selected from the group consisting of: pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with Het² or R¹¹.

76. (New) A compound as claimed in claim wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim 2 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim 56 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim 59 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim 60 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim of wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim 2 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim 3 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim 24 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim 65 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

31
82. (New) A compound as claimed in claim 66 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim 67 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

Da

(New) A compound as claimed in claim 68 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim 39 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

(New) A compound as claimed in claim\(\frac{1}{2}\) wherein p is 1 or 2 and each R\(^1\) is chloro.

(New) A compound as claimed in claim wherein p is 1 or 2 and each R¹ is chloro.

(New) A compound as claimed in claim 56 wherein p is 1 or 2 and each R¹ is chloro.

(New) A compound as claimed in claim 27 wherein p is 1 or 2 and each R¹ is chloro.

(New) A compound as claimed in claim 38 wherein p is 1 or 2 and each R¹ is chloro.

(New) A compound as claimed in claim wherein p is 1 or 2 and each R¹ is chloro.

(New) A compound as claimed in claim of wherein p is 1 or 2 and each R¹ is chloro.

93. (New) A compound as claimed in claim of wherein p is 1 or 2 and each R¹ is chloro.

94. (New) A compound as claimed in claim 2 wherein p is 1 or 2 and each R¹ is chloro.

49 98.

(New) A compound as claimed in claim 63 wherein p is 1 or 2 and each R¹ is chloro.

1)2

6. (New) A compound as claimed in claim 64 wherein p is 1 or 2 and each R¹ is chloro.

46 97.

(New) A compound as claimed in claim \$5 wherein p is 1 or 2 and each R¹ is chloro.

47

(New) A compound as claimed in claim wherein p is 1 or 2 and each R¹ is chloro.

48°

(New) A compound as claimed in claim of wherein p is 1 or 2 and each R¹ is chloro.

449 400.

(New) A compound as claimed in claim 68 wherein p is 1 or 2 and each R¹ is chloro.

52 101.

(New) A compound as claimed in claim wherein p is 1 or 2 and each R¹ is chloro.

رگی 102

(New) A compound as claimed in claim wherein R³ and R⁴ are both methyl, -X-R² is optionally substituted 2-thiazolyl or 3-oxadiazolyl, the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents, and p is 2 whereby both R¹ substituents are chloro positioned ortho relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.

50

(New) A compound as claimed in claim 2 wherein R³ and R⁴ are both methyl, -X-R² is optionally substituted 2-thiazolyl or 3-oxadiazolyl, the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents, and p is 2 whereby both R¹ substituents are chloro positioned ortho relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.

53 104.

(New) A compound having the formula

Express Mail Label No. EL 710 606 350 US Docket No. JAB 1409

a N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof, wherein:

p represents an integer being 0, 1 or 2;

X represents O, S, NR⁵ or a direct bond;

Y represents O, S, NR⁵, or S(O)₂;

each R independently represents chloro or trifluoromethyl;

R² represents Het¹ or C₁₋₆alkyl substituted with one or two substituents selected from hydroxy, cyano, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxy, C₁₋₆alkylsulfonyloxy, C₁₋₆alkyloxycarbonyl, C₃₋₇cycloalkyl, aryl, aryloxy, arylthio, Het¹, Het¹oxy and Het¹thio; and if X is O, S or NR⁵, then R² may also represent aminocarbonyl, aminothiocarbonyl, C₁₋₄alkylcarbonyl, C₁₋₄alkylthiocarbonyl, arylthiocarbonyl, Het¹carbonyl or Het¹thiocarbonyl;

R³ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl;

 R^4 represents hydrogen, C_{1-6} alkyl or C_{3-7} cycloalkyl; or R^3 and R^4 taken together form a C_{2-6} alkanediyl;

R⁵ represents hydrogen or C₁₋₄alkyl;

each R⁶ independently represents C₁₋₆alkylsulfonyl, aminosulfonyl, mono- or di(C₁₋₄alkyl)aminosulfonyl, mono- or di(benzyl)aminosulfonyl, polyhaloC₁₋₆alkylsulfonyl, C₁₋₆alkylsulfinyl, phenylC₁₋₄alkylsulfonyl, piperazinylsulfonyl, aminopiperidinylsulfonyl, piperidinylaminosulfonyl, N-C₁₋₄alkyl-N-piperidinylaminosulfonyl or mono-or di(C₁₋₄alkyl)aminoC₁₋₄alkylsulfonyl;

each R⁷ and each R⁸ are independently selected from hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, aminocarbonyl, arylcarbonyl, Het³carbonyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxyC₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, arylaminocarbonyl, arylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl,

 C_1 -4alkanediyl-C(=O)-O- R^{14} , -C(=O)-O- R^{14} , -Y- C_{1-4} alkanediyl-C(=O)-O- R^{14} , Het³, Het⁴ and R^6 ;

R⁹ and R¹⁰ are each independently selected from hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, aminocarbonyl, phenylcarbonyl, Het³carbonyl, C₁₋₄alkylcarbonyloxyC₁₋₄alkylcarbonyl, hydroxyC₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-O-R¹⁴, -C(=O)-O-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-O-R¹⁴, Het³, Het⁴ and R⁶;

each R¹¹ independently being selected from hydroxy, cyano, nitro, halo, C₁₋₄alkyloxy, formyl, NR⁷R⁸, C(=O)NR⁷R⁸, -C(=O)-O-R¹⁴, aryl, arylcarbonyl, Het³ and C(=O)Het³; each R¹⁴ independently represents hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, aminocarbonylmethylene or mono-or di(C₁₋₄alkyl)aminocarbonylmethylene;

aryl represents phenyl optionally substituted with one, two or three substituents each independently selected from nitro, azido, cyano, halo, hydroxy, C₁₋₄alkyl, C₃₋₇cycloalkyl, C₁₋₄alkyloxy, formyl, polyhaloC₁₋₄alkyl, NR⁹R¹⁰, C(=O)NR⁹R¹⁰, C(=O)-O-R¹⁴, R⁶, -O-R⁶, phenyl, Het³, C(=O)Het³ and C₁₋₄alkyl substituted with hydroxy, C₁₋₄alkyloxy, C(=O)-O-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-O-R¹⁴, Het³ or NR⁹R¹⁰;

Het¹ represents a heterocycle selected from pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with Het² or R¹¹; provided Het¹ is other than 2-substituted-pyridin-5-yl;

Het² represents a heterocycle selected from furanyl, thienyl, pyridinyl or benzothienyl, wherein said aromatic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het⁴, R¹¹ and C₁₋₄alkyl optionally substituted with R¹¹;

Het³ represents a monocyclic heterocycle selected from piperidinyl, piperazinyl, morpholinyl and tetrahydropyranyl each independently and optionally substituted with, where possible, one, two, three or four substituents each independently selected from hydroxy, C₁₋₄alkyl,

Express Mail Label No. EL 710 606 350 US Docket No. JAB 1409

C(=O)-O-R¹⁴, C₁₋₄alkylcarbonyl, R⁶, piperidinyl and C₁₋₄alkyl substituted with one or two substituents independently selected from hydroxy, C₁₋₄alkyloxy, C(=O)-O-R¹⁴ and phenyl; Het⁴ represents a monocyclic heterocycle selected from thienyl or pyridinyl.

(New) A compound as claimed in claim 104, wherein when X is a direct bond, at least one of R³ and R⁴ is hydrogen, and R² is 3-pyridinyl, then R² is not substituted in the 6 position with an optionally substituted alkyl or acyl group.

106. (New) A compound as claimed in claim 104 wherein the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.

(New) A compound as claimed in claim 194 wherein R² is a monocyclic heterocycle selected from the group consisting of: pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with Het² or R¹¹.

108. (New) A compound as claimed in claim 104 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.

109. (New) A compound as claimed in claim 104 wherein p is 1 or 2 and each R¹ is chloro.

110. (New) A compound as claimed in claim 124 wherein R³ and R⁴ are both methyl, -X-R² is optionally substituted 2-thiazolyl or 3-oxadiazolyl, the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents, and p is 2 whereby both R¹ substituents are chloro positioned ortho relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.