- **9.** Si f(x) es una función suave de una variable, ¿será $\mathbf{F}(x,y) = f(x)\mathbf{i} + f(y)\mathbf{j}$ un gradiente?
- **10.** (a) Demostrar que $\mathbf{F} = -\mathbf{r}/\|\mathbf{r}\|^3$ es el gradiente de f(x, y, z) = 1/r.
 - (b) ¿Cuál es el trabajo realizado por la fuerza $\mathbf{F} = -\mathbf{r}/\|\mathbf{r}\|^3$ al mover una partícula de un punto $\mathbf{r}_0 \in \mathbb{R}^3$ "hasta ∞ ", donde $\mathbf{r}(x,y,z) = (x,y,z)$?
- **11.** Sea $\mathbf{F}(x, y, z) = xy\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. ¿Puede existir una función f tal que $\mathbf{F} = \nabla f$?
- **12.** Sea $\mathbf{F} = F_1\mathbf{i} + F_2\mathbf{j} + F_3\mathbf{k}$ y supóngase que cada componente F_k satisface la condición de homogeneidad

$$F_k(tx, ty, tz) = tF_k(x, y, z), \qquad k = 1, 2, 3.$$

Supongamos también $\nabla \times \mathbf{F} = \mathbf{0}$. Demostrar que $\mathbf{F} = \nabla f$, donde

$$2f(x, y, z) = xF_1(x, y, z) + yF_2(x, y, z) + zF_3(x, y, z).$$

[SUGERENCIA: utilizar el Ejercicio de repaso 31 del Capítulo 2].

- **13.** Sea $\mathbf{F}(x, y, z) = (e^x \operatorname{sen} y)\mathbf{i} + (e^x \cos y)\mathbf{j} + z^2\mathbf{k}$. Calcular la integral $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$, donde $\mathbf{c}(t) = (\sqrt{t}, t^3, \exp \sqrt{t}), 0 \le t \le 1$.
- **14.** Sea un fluido con campo de velocidades $\mathbf{F}(x,y,z) = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$. ¿Cuál es la circulación a lo largo de la circunferencia unidad en el plano xy? Interpretar la respuesta.
- **15.** La masa de la Tierra es aproximadamente 6×10^{27} g y la del Sol es is 330,000 veces mayor. La constante gravitatoria es 6.7×10^{-8} cm³/s²·g. La distancia de la Tierra al Sol es aproximadamente 1.5×10^{12} cm. Calcular de manera aproximada el trabajo necesario para incrementar la distancia de la Tierra al Sol en 1 cm.
- **16.** (a) Demostrar que $\int_C (x\,dy-y\,dx)/(x^2+y^2)=2\pi$, donde C es la circunferencia unidad.
 - (b) Concluir que el campo vectorial asociado $[-y/(x^2+y^2)]\mathbf{i}+[x/(x^2+y^2)]\mathbf{j}$ no es un campo conservativo.
 - (c) Demostrar no obstante que $\partial P/\partial y = \partial Q/\partial x$. ¿Contradice esto al corolario del Teorema 7? Si no es así, explicar por qué.
- 17. Determinar si los siguientes campos vectoriales \mathbf{F} son campos gradientes. Si existe una función f tal que $\nabla f = \mathbf{F}$, hallar f.

- (a) $\mathbf{F}(x, y, z) = (2xyz, x^2z, x^2y)$.
- (b) $\mathbf{F}(x,y) = (x\cos y, x\sin y)$.
- (c) $\mathbf{F}(x, y, z) = (x^2 e^y, xyz, e^z).$
- (d) $\mathbf{F}(x,y) = (2x\cos y, -x^2\sin y).$
- **18.** Determinar si los siguientes campos vectoriales \mathbf{F} son campos gradientes. Si existe una función f tal que $\nabla f = \mathbf{F}$, hallar f.
 - (a) $\mathbf{F}(x,y) = (2x + y^2 y \sin x, 2xyz + \cos x)$
 - (b) $\mathbf{F}(x,y,z) = (6x^2z^2, 5x^2y^2, 4y^2z^2)$
 - (c) $\mathbf{F}(x,y) = (y^3 + 1, 3xy^2 + 1)$
 - (d) $\mathbf{F}(x,y) = (xe^{(x^2+y^2)} + 2xy, ye^{(x^2+y^2)} + 4y^3z, y^4)$
- 19. Demostrar que los siguientes campos vectoriales son conservativos. Calcular $\int_C \mathbf{F} \cdot d\mathbf{s}$ para la curva dada.
 - (a) $\mathbf{F} = (xy^2 + 3x^2y)\mathbf{i} + (x+y)x^2\mathbf{j}$; C es la curva formada por los segmentos de (1,1) a (0,2) y de este a (3,0).
 - (b) $\mathbf{F} = \frac{2x}{y^2 + 1}\mathbf{i} \frac{2y(x^2 + 1)}{(y^2 + 1)^2}\mathbf{j}$; C está parametrizada por $x = t^3 1, y = t^6 t, 0 \le t \le 1$.
 - (c) $\mathbf{F} = [\cos(xy^2) xy^2 \sin(xy^2)]\mathbf{i} 2x^2y \sin(xy^2)\mathbf{j}; C \text{ es la curva } (e^t, e^{t+1}), -1 \le t \le 0.$
- **20.** Probar el Teorema 8. [SUGERENCIA: definir $\mathbf{G} = G_1\mathbf{i} + G_2\mathbf{j} + G_3\mathbf{k}$ mediante

$$G_1(x, y, z) = \int_0^z F_2(x, y, t) dt$$

$$G_2(x, y, z) = -\int_0^z F_1(x, y, t) dt$$

y
$$G_3(x, y, z) = 0$$
].

- **21.** Indicar si cada uno de los siguientes campos vectoriales es el rotacional de algún otro campo vectorial. En caso afirmativo, hallar el campo vectorial.
 - (a) $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.
 - (b) $\mathbf{F} = (x^2 + 1)\mathbf{i} + (z 2xy)\mathbf{j} + y\mathbf{k}$.
- **22.** Sea $\mathbf{F} = xz\mathbf{i} yz\mathbf{j} + y\mathbf{k}$. Verificar que $\nabla \cdot \mathbf{F} = 0$. Hallar un \mathbf{G} tal que $\mathbf{F} = \nabla \times \mathbf{G}$.
- **23.** Repetir el Ejercicio 22 para $\mathbf{F} = y^2 \mathbf{i} + z^2 \mathbf{j} + x^2 \mathbf{k}$.
- **24.** Sea $\mathbf{F} = xe^y\mathbf{i} (x\cos z)\mathbf{j} ze^y\mathbf{k}$. Hallar \mathbf{G} tal que $\mathbf{F} = \nabla \times \mathbf{G}$.