10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1. $x = t^2 + t$, $y = 3^{t+1}$, t = -2, -1, 0, 1, 2

t	-2	-1	0	1	2
x	2	0	0	2	6
y	$\frac{1}{3}$	1	3	9	27

Therefore, the coordinates are $(2, \frac{1}{3}), (0, 1), (0, 3), (2, 9),$ and (6, 27).

2. $x = \ln(t^2 + 1)$, y = t/(t+4), t = -2, -1, 0, 1, 2

t	-2	-1	0	1	2
x	$\ln 5$	$\ln 2$	0	$\ln 2$	$\ln 5$
y	-1	$-\frac{1}{3}$	0	$\frac{1}{5}$	$\frac{1}{3}$

Therefore, the coordinates are $(\ln 5, -1)$, $(\ln 2, -\frac{1}{3})$, (0, 0), $(\ln 2, \frac{1}{5})$, and $(\ln 5, \frac{1}{3})$.

3. $x = 1 - t^2$, $y = 2t - t^2$, $-1 \le t \le 2$

t	-1	0	1	2
x	0	1	0	-3
y	-3	0	1	0

4. $x = t^3 + t$, $y = t^2 + 2$, $-2 \le t \le 2$

t	-2	-1	0	1	2
x	-10	-2	0	2	10
y	6	3	2	3	6

5. $x = 2^t - t$, $y = 2^{-t} + t$, $-3 \le t \le 3$

t	-3	-2	-1	0	1	2	3
x	3.125	2.25	1.5	1	1	2	5
y	5	2	1	1	1.5	2.25	3.125

936 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

6.	$r = \cos^2 t$	$y = 1 + \cos t$	$0 < t < \pi$
υ.	$x = \cos \iota$	$y = 1 + \cos \iota$	$0 < \iota < \pi$

t	0	$\pi/4$	$\pi/2$	$3\pi/4$	π
x	1	0.5	0	0.5	1
y	2	1.707	1	0.293	0

7.
$$x = 2t - 1$$
, $y = \frac{1}{2}t + 1$

(a)

t	-4	-2	0	2	4
x	-9	-5	-1	3	7
y	-1	0	1	2	3

(b)
$$x = 2t - 1 \implies 2t = x + 1 \implies t = \frac{1}{2}x + \frac{1}{2}$$
, so
$$y = \frac{1}{2}t + 1 = \frac{1}{2}(\frac{1}{2}x + \frac{1}{2}) + 1 = \frac{1}{4}x + \frac{1}{4} + 1 \implies y = \frac{1}{4}x + \frac{5}{4}$$

8.
$$x = 3t + 2$$
, $y = 2t + 3$

(a)

t	-4	-2	0	2	4
x	-10	-4	2	8	14
y	-5	-1	3	7	11

(b)
$$x = 3t + 2 \implies 3t = x - 2 \implies t = \frac{1}{3}x - \frac{2}{3}$$
, so $y = 2t + 3 = 2(\frac{1}{3}x - \frac{2}{3}) + 3 = \frac{2}{3}x - \frac{4}{3} + 3 \implies y = \frac{2}{3}x + \frac{5}{3}$

9.
$$x = t^2 - 3$$
, $y = t + 2$, $-3 \le t \le 3$

(a)

t	-3	-1	1	3
x	6	-2	-2	6
y	-1	1	3	5

(b)
$$y = t + 2 \implies t = y - 2$$
, so

$$x = t^{2} - 3 = (y - 2)^{2} - 3 = y^{2} - 4y + 4 - 3 \implies x = y^{2} - 4y + 1, -1 \le y \le 5$$

10.	$x = \sin t$,	$y = 1 - \cos t$	$0 < t < 2\pi$
-----	----------------	------------------	----------------

t	0	$\pi/2$	π	$3\pi/2$	2π
x	0	1	0	-1	0
y	0	1	2	1	0

(b)
$$x = \sin t$$
, $y = 1 - \cos t$ [or $y - 1 = -\cos t$] \Rightarrow
 $x^2 + (y - 1)^2 = (\sin t)^2 + (-\cos t)^2 \Rightarrow x^2 + (y - 1)^2 = 1$.

As t varies from 0 to 2π , the circle with center (0,1) and radius 1 is traced out.

11.
$$x = \sqrt{t}, y = 1 - t$$

(a)

t	0	1	2	3	4
x	0	1	1.414	1.732	2
y	1	0	-1	-2	-3

So the curve is the right half of the parabola $y = 1 - x^2$.

12. $x = t^2$, $y = t^3$

(a)

	t	-2	-1	0	1	2
	x	4	1	0	1	4
-	y	-8	-1	0	1	8

(b)
$$y=t^3 \quad \Rightarrow \quad t=\sqrt[3]{y} \quad \Rightarrow \quad x=t^2=\left(\sqrt[3]{y}\right)^2=y^{2/3}. \quad t\in\mathbb{R}, y\in\mathbb{R}, x\geq 0.$$

^{© 2021} Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.