

a) Scan of energy and orbital energy from C-N diatance for $\mbox{Ph-}\mbox{N}_{\mbox{\tiny 2}}^{^{+}}$

b) Scan of energy some orbital from C-N diatance for Ph-N₂⁺

Рис. 8. Зависимость общей энергии системы и некоторых молекулярных орбиталей от расстояния C-N при взаимодействии фенильного катиона с азотом.

Общая энергия взаимодействия слабо коррелирует с энергией отдельных молекулярных орбиталей, в том числе с энергией LUMO, HOMO орбиталей.

Рис. 9. Энергия всех молекулярных орбиталей фенилдиазония от расстояния С-N (а) и энергии орбиталей от шага сканирования и номера орбитали. **Рисунки показывают что в общую энергетику взаимодействия вносят вклад практически все орбитали азота и фенильного катиона, даже самые низкие по энергии.**

Рис. 9. Энергия молекулярных орбиталей фенилдиазония от расстояния C-N.

Рассматривая зависимость энергии орбиталей от расстояния C-N можно выделить, какие орбитали были исходными орбиталями фенильного катиона, а какие орбиталями молекулярного азота. Это позволяет вычислить вклад каждой орбитали в общую энергетику взаимодействия и рассчитать суммарный вклад молекулярных орбиталей карбкатиона и молекулы азота в энергию образования диазониевого катиона.

b) Energy of some molecular orbitals of phenildiazonium (wide range)

Рис. 9. Энергия молекулярных орбиталей фенилдиазония от расстояния С-N (а) и при сканировании в более широком диапазоне.

Рис. 10. Трассировка молекулярных орбиталей фенилдиазония и молекулярные орбитали фенильного катиона и молекулярного азота. При сканировании можно определить что заполненные орбитали молекулярного азота трансформируются в орбитали № 1, 2, 9, 18, 20, 23, 24 диазониевого катиона.

Таблица 6. **Энергия молекулярных орбиталей азота, фенильного катиона и фенилдиазония.**

Nº MO	N2	Ph+	Ph-N2+	d(N2)	d(Ph+)	d	d	%
1	-14,450210		-14,730320	-0,280110		-0,280110	-735	22,31
2	-14,448700		-14,694252	-0,245552		-0,245552	-645	19,56
3		-10,524570	-10,479162		0,045408	0,045408	119	-3,62
4		-10,450690	-10,416686		0,034004	0,034004	89	-2,71
5		-10,450660	-10,416673		0,033987	0,033987	89	-2,71
6		-10,437670	-10,399004		0,038666	0,038666	102	-3,08
7		-10,437660	-10,391596		0,046064	0,046064	121	-3,67
8		-10,410400	-10,391565		0,018835	0,018835	49	-1,50
9	-1,134960		-1,384739	-0,249779		-0,249779	-656	19,90
10		-1,124730	-1,114609		0,010121	0,010121	27	-0,81
11		-1,010030	-1,027839		-0,017809	-0,017809	-47	1,42
12		-0,977970	-0,964836		0,013134	0,013134	34	-1,05
13		-0,850790	-0,900474		-0,049684	-0,049684	-130	3,96
14		-0,819240	-0,828073		-0,008833	-0,008833	-23	0,70
15		-0,750170	-0,774976		-0,024806	-0,024806	-65	1,98
16		-0,715300	-0,735005		-0,019705	-0,019705	-52	1,57
17		-0,676470	-0,726364		-0,049894	-0,049894	-131	3,97
18	-0,563250		-0,709931	-0,146681		-0,146681	-385	11,68
19		-0,661270	-0,691514		-0,030244	-0,030244	-79	2,41
20	-0,471900		-0,653550	-0,181650		-0,181650	-477	14,47
21		-0,622720	-0,637464		-0,014744	-0,014744	-39	1,17
22		-0,603800	-0,632285		-0,028485	-0,028485	-75	2,27
23	-0,471900		-0,578563	-0,106663		-0,106663	-280	8,50
23	-0,438470		-0,563639	-0,125169		-0,125169	-329	9,97
25		-0,591790	-0,552743		0,039047	0,039047	103	-3,11
26		-0,492720	-0,474018		0,018702	0,018702	49	-1,49
27		-0,489840	-0,463452		0,026388	0,026388	69	-2,10
Sum	-31,97939	-73,09849	-106,333332	-1,335604	0,080152	-1,255452	-3296,19	100,00
%	30,07	68,74		106,38	-6,38			

После трассировки МО можно рассчитать как изменяются энергии МО азота и фенильного катиона при образовании катиона фенилдиазония. Занятые орбитали молекулярного азота понижают свою энергию на 1,3356 Eh(106,4 %), а орбитали фенильного катиона повышают энергию на 0,0802 Eh (-6,4 %).