Feuille d'exercice n° 06 : Résolution d'équations différentielles - fiche d'entraı̂nement

Exercice 1 Résoudre les équations différentielles suivantes (on donnera les solutions réelles) :

1)
$$t^2y' + 3ty = e^t$$
, pour $t > 0$.

2)
$$ty' + 3y = 3$$
, et $y(1) = 2$, pour $t > 0$.

3)
$$ty' + y = \cos t \text{ et } y(\pi) = 1.$$

4)
$$y' + 3y = e^{2t}$$
.

5)
$$y' + 3y = \cos(2t)$$
.

6)
$$y' + 2y = te^{-2t}$$
.

7)
$$ty' + y = t(3t + 4), t > 0.$$

8)
$$y' - \frac{ay}{t} = bt^3$$
 (avec $a, b \in \mathbb{R}, a \neq 4$).

9)
$$2ty' - y = t^3 - t$$
.

10)
$$y' + (2t - 1)y = 0.$$

11)
$$y' = 1 + t^2 + y + t^2 y$$
.

Exercice 2 Donner les solutions réelles des équations différentielles suivantes :

1)
$$y'' - 4y' + 4y = 0$$
.

2)
$$y'' - 4y' + 5y = 0$$
.

3)
$$y'' - 4y = 0$$
, $y(0) = 4$ et $y'(0) = 4$.

4)
$$y'' + y = 5te^{2t}$$
.

5)
$$y'' - 2y' + y = 2e^t$$
, $y(0) = 2$ et $y'(0) = 3$.

6)
$$y'' - y' - 30y = e^{6t}$$
.

7)
$$y'' - 2y' + y = e^t$$
.

8)
$$y'' + 3y' + 2y = 10\cos(2t)$$
, $y(0) = 1$ et $y'(0) = 0$.