Mathematical Proofs

CHAPTER 4 – DIRECT PROOF AND PROOF BY CONTRAPOSITIVE (EXERCISE SOLUTIONS)

LASSE HAMMER PRIEBE

Table of Contents

Section 1: Trivial and Vacuous Proofs	3
Exercises	.3
Section 2: Direct Proofs	3
Exercises	.3

Section 1: Trivial and Vacuous Proofs

Exercises

- 1) Let $x \in \mathbb{R}$. Prove that if 0 < x < 1, then $x^2 2x + 2 \neq 0$
 - a) Since $x^2 2x + 2 = (x 1)^2 + 1 \ge 1$, it follows that $x^2 2x + 2 \ne 0$ for all $x \in \mathbb{R}$. Hence the statement is true trivially.
- 2) Let $x \in \mathbb{N}$. Prove that if $|n-1| + |n+1| \le 1$, then $|n^2 1| \le 4$.
 - a) Since $|n-1| \ge 0$ and $|n+1| \ge 2$, it follows that $|n-1| + |n+1| \ge 2$ and the statement $|n-1| + |n+1| \le 1$ is false for all $n \in \mathbb{N}$. Hence the statement is true vacuously.
- 3) Let $r \in Q^+$. Prove that if $\frac{r^2+1}{r} \le 1$, then $\frac{r^2+2}{r} \le 2$.
 - a) Note that $\frac{r^2+1}{r} = r + \frac{1}{r}$. If $r \ge 1$, then $r + \frac{1}{r} > 1$; while if 0 < r < 1, then $\frac{1}{r} > 1$ and so r + 1 > 1. Thus $\frac{r^2+1}{r} \le 1$ is false for all $r \in Q^+$ and so the statement is true vacuously.
- 4) Let $x \in \mathbb{R}$. Prove that if $x^3 5x 1 \ge 0$, then $(x 1)(x 3) \ge -2$.
 - a) Note that $(x-1)(x-3) = (x-2)^2 1$. Since $(x-2)^2 > 0$, it follows that $(x-2)^2 1 \ge -1 > -2$ and so the statement is true trivially.
- 5) Let $n \in \mathbb{N}$. Prove that if $n + \frac{1}{n} < 2$, then $n^2 + \frac{1}{n^2} < 4$.
 - a) Since $n^2 + \frac{1}{n^2} = (n-1)^2 \ge 0$, it follows that $n^2 + 1 \ge 2n$ and so $n + \frac{1}{n} \ge 2$. Thus the statement is true vacuously.
- 6) Prove that if a, b and c are odd integers such that a+b+c=0, then abc<0. (You are permitted to use well-known properties of integers here.)
 - a) Since the sum of any two odd integers is always even, and the sum of an even and an odd integer is always odd, the sum of a+b+c will always be odd. Hence a+b+c=0 is always false. Thus the statement is true vacuously.
- 7) Prove that if x, y and z are three real numbers such that $x^2 + y^2 + z^2 < xy + xz + yz$, then x + y + z > 0
 - a) Since $(x-y)^2 + (x-z)^2 + (y-z)^2 \ge 0$, it follows that $x^2 2xy + y^2 + x^2 2xz + z^2 + y^2 2yz + z^2 = 2x^2 + 2y^2 + 2z^2 2xy 2xz 2yz \ge 0$ and so $x^2 + y^2 + z^2 \ge xy + xz + yz$. Thus the statement is true vacuously.

Section 2: Direct Proofs

Exercises

- 8) Prove that if x is an odd integer, then 9x + 5 is even.
 - a) Assume that x is an odd integer. Since x is odd, we can write x=2n+1 for some integer n. Now 9x+5=9(2n+1)+5=18n+14=2(9n+7). Since 9n+7 is an integer, 9x+5 is even.

- 9) Prove that if x is an even integer, then 5x-3 is an odd integer.
 - a) Assume that x is an even integer. Since x is even, we can write x=2n for some integer n. Now 5x-3=5(2n)-3=10n-3=2(5n-2)+1. Since 2n-2 is an integer, 5x-3 is odd.