PAŽRAVÉ ALGORITMY (GREEDY) A BACKTRACKING

PROBLÉM MINCOVKA

- o rozmeňme danú sumu peňazí čo najmenším počtom mincí 10c, 20c, 50c
- o strom všetkých možností rozmenenia sumy 60c:

- o vrcholy výpočtového stromu obsahujú sumu, ktorú treba rozmeniť, z toho vyplýva, že v listoch je 0
- o rozdiel medzi rodičom a potomkom je hodnota vyplatenej mince
- o hľadáme najkratšiu cestu v strome od koreňa k listu

Problém mincovka – pažravý algoritmus

o v každom kroku výpočtu vyberieme najväčšiu možnú mincu, ktorá sa dá použiť (v poradí 50c, 20c, 10c)

$$60c = 50c + 10c$$

Problém mincovka – pažravý algoritmus

o rozmeňme danú sumu peňazí čo najmenším počtom mincí 2€, 1€, 50c, 20c, 10c, 5c, 2c, 1c

NESPRÁVNE RIEŠENIE PAŽRAVÝM ALGORITMOM:

- o rozmeňme mincami 1, 3, 4 sumu 6
- o pažravý algoritmus nájde: 6 = 4 + 1 + 1
- o optimálne riešenie je: 6 = 3 + 3

Pažravý (greedy) algoritmus

- o z viacerých možností sa vyberá lokálne najlepšia
- o nie vždy vedie k optimálnemu riešeniu problému, napr. majme mince s hodnotami: 1, 7, 10
 - Rozmeňme sumu 14
 - pažravým algoritmom: 10, 1, 1, 1,
 - optimálne riešenie: 7, 7
- ak áno, čas je oveľa lepší ako pri prehľadávaní všetkých možností
 - *n* je suma na rozmenenie, *k* je počet mincí
 - pažravý algoritmus O(n)
 - prehľadávanie všetkých možností $O(k^n)$

MINIMÁLNA KOSTRA GRAFU

 Vydláždime chodníky v meste tak, aby existovala cesta z každého domu do každého a dĺžka vydláždených chodníkov bola čo najkratšia.

Pažravý algoritmus 1 (Kruskalov)

- Dláždime cesty od najkratších k najdlhším. Ak je cesta zbytočná, t.j. spája domy, ktoré sú už spojené, zostáva nevydláždená.
- o Možné riešenie:

KRUSKALOV ALGORITMUS

Vstup: graf G=(V,E) s ohodnotenými hranami daný zoznamom hrán, |V| = n, |E| = m

Výstup: minimálna kostra – množina hrán $T \subset E$ taká, že T je strom a súčet ohodnotení hrán je minimálny

```
T \leftarrow \emptyset
usporiadaj E=\{e_j, j=1..m\} podľa ohodnotenia hrán vzostupne;
for each v_i \in V do komponent[v_i] \leftarrow i;
j \leftarrow 0;
while |T| \le n - 1 do begin
    j \leftarrow j + 1;
    if j > m then break;
    (u,v) \leftarrow e_i;
    if komponent[u] \neq komponent[v] then begin
        T \leftarrow T \cup \{e_i\};
         for each w \in V do
             if komponent[w] = komponent[v] then
                komponent[w] \leftarrow komponent[u]
    end;
end;
```

KRUSKALOV ALGORITMUS

- časová výpočtová zložitosť závisí od implementácie grafu a komponentov súvislosti
- pre graf daný zoznamom *m* hrán s najviac *n* komponentmi súvislosti implementovanými poľom:
 - usporiadanie hrán: $O(m \log m)$
 - inicializácia komponentov súvislosti pre všetky vrcholy: O(n)
 - pridávanie hrán do kostry $T: O(m \cdot n)$

$$T(n,m) = O(m \cdot n)$$

Pažravý algoritmus 2 (Primov)

- Začneme z ľubovoľného domu. K nemu pripojíme najbližšieho suseda. Spomedzi nepripojených domov pripájame vždy ten, ktorý vieme pripojiť najkratšou cestou k minimálnej kostre.
- Možné riešenie:

Pažravý algoritmus 3

 Všetky cesty prehlásime za vydláždené. Nájdeme najdlhšiu cestu, ktorá nerozpojí cestnú sieť a tú zrušíme. Postup opakujeme, kým nezostane o jednu menej ciest ako domčekov.

VÝPOČTOVÁ ZLOŽITOSŤ PAŽRAVÝCH ALGORITMOV

- \circ Pažravý algoritmus typicky robí $\mathrm{O}(n)$ výberov pri riešení problému rozsahu n
- \circ Nech výber(n) je zložitosť výberu z n objektov
- \circ Zložitosť pažravého algoritmu je $O(n \cdot O(v \circ ber(n)))$
- o mincovka:
 - *n* je vstupná suma peňazí, *k* je počet mincí
 - zložitosť výberu najväčšej mince použitej na vyplatenie je O(k), čo je O(1), lebo k je konštanta
 - zložitosť algoritmu je O(n)

ČO JE NEDETERMINISTICKÝ ALGORITMUS

- Príklad: Prejdime všetky polia šachovnice šachovým koňom tak, že každé pole navštívi práve raz.
- o Riešenie:

20	17	4	27	46	15	2	29
5	26	19	16	3	28	45	14
18	21	32	47	44	13	30	1
25	6	43	34	31	62	49	56
22	33	24	53	48	55	12	63
7	38	35	42	61	52	57	50
36	23	40	9	54	59		11
39	8	37	60	41	10	51	58

Nedeterministický algoritmus

rekurzívna procedúra **skok(x,y)**:

```
ak sú obsadené všetky polia šachovnice, tak:
    nájdené riešenie
inak
    ak existuje prázdne pole (x', y') dosiahnuteľné jedným
    skokom koňa, tak:
        obsaď ho
        skok(x', y')
    inak
        riešenie neexistuje
```

- o polí (x', y') môže byť viac
- o nedeterministický algoritmus môže generovať pre jeden vstup viac možných výpočtov
- od koreňa k listu predstavuje jeden možný výpočet

VÝPOČTOVÝ STROM – NEÚPLNÝ

VÝPOČTOVÝ STROM – NEÚPLNÝ

- výpočet nedeterministického algoritmu cesta od koreňa k listu (hľadáme cestu dĺžky 64)
- o dĺžka nedeterministického výpočtu hĺbka stromu
- deterministický algoritmus prehľadanie stromu, dĺžka výpočtu – súčet dĺžok všetkých ciest

Backtracking – prehľadávanie s návratom

- o prehľadávanie výpočtového stromu do hĺbky
- procedúra na prehľadanie podstromu s koreňom vo vrchole V: prehľadaj(V)

```
ak V je cieľový vrchol, tak
nájdené riešenie
zastav prehľadávanie
inak
ak V je list, tak
nenájdené riešenie
inak
pre každý potomok P vrcholu V:
prehľadaj(P)
```

- Výpočtová zložitosť prehľadávania:
 - o $T(n) = O(c^{f(n)})$, kde c je konštanta stupeň stromu, f(n) je dĺžka najdlhšej vetvy (zložitosť nedeterministického algoritmu)

BACKTRACKING

- systematicky simuluje všetky možné výpočty nedeterministického algoritmu
- o ak existuje výpočet, ktorý vedie k riešeniu problému, nájde ho
- výpočtová zložitosť nedeterministického algoritmu je hĺbka výpočtového stromu (dĺžka najdlhšej vetvy)
- výpočtová zložitosť deterministického algoritmu je súčet výpočtových zložitostí všetkých možných výpočtov nedeterministického algoritmu – exponenciálna

Funkcie zložitosti pre n=10, 100, 1000

	10	100	1000
O(1)	1	1	1
$O(\log n)$	3,32	6,64	9,97
$\mathrm{O}(n)$	10	100	1000
$O(n \log n)$	$33,\!22$	664,39	9965,78
$\mathrm{O}(n^2)$	100	10000	1000000
$\mathrm{O}(n^3)$	1000	1000000	1000000000
$\mathrm{O}(2^n)$	1024	1,26765E+30	1,0715E+301
$\mathrm{O}(n!)$	3628800	9,3326E+157	veľa
$\mathrm{O}(n^n)$	10000000000	1E+200	veľa

TRIEDY ZLOŽITOSTI

- o Trieda PTIME (P) je množina problémov, ktoré sa dajú riešiť deterministickým algoritmom v polynomiálnom čase $O(n^{\text{konšt}})$.
- o Trieda NPTIME (NP) je množina problémov, ktoré sa dajú riešiť nedeterministickým algoritmom v polynomiálnom čase $O(n^{\text{konšt}})$.

Polynomiálna funkcia:

$$p(n) = a_0 + a_1 n + a_2 n^2 + \dots + a_c n^c = O(n^c)$$

ČO JE NP ÚLOHA?

- o je taká úloha (problém), ktorá sa dá riešiť nedeterministicky v polynomiálnom čase
 - hĺbka výpočtového stromu závisí od vstupu polynomiálne
 - každá vetva stromu nedeterministický výpočet má polynomiálnu dĺžku
 - ak existuje riešenie problému, vieme overiť jeho správnosť deterministicky v polynomiálnom čase
 - na overenie neexistencie riešenia treba prehľadať celý výpočtový strom – v exponenciálnom čase