Ejercicios de Teoría de la Probabilidad

Paco Mora Caselles

13 de diciembre de 2021

CAPÍTULO 1

Hoja 3

Ejercicio 3.

$$F(x) = \frac{1}{24} (5xI_{[0,1)}(x) + (5x+3)I_{[1,2)}(x) + (5x+6)I_{[2,3)}(x) + 24I_{[3,+\infty)}(x))$$

 $Sea\ D=\{1,2,3\},\ los\ puntos\ de\ la\ recta\ con\ probabilidad\ distinta\ de\ 0,\ y\ P(\{1\})=P(\{2\})=P(\{3\})=\frac{3}{24}\ (recordemos\ que\ P(\{1\})=F(1)-F(1^-)).$

Usando el procedimiento visto en la descomposición de Lebesgue: $P(D) = \frac{9}{24} \implies \alpha = \frac{9}{24} \implies F(x) = \alpha F_d(x) + (1-\alpha)F_c(x)$

Además, tenemos que $P_d(B) = \frac{1}{\alpha}P(B \cap D)$ entonces:

$$F_d(x) = \begin{cases} \frac{24}{9} \cdot 0 = 0 & x \in (-\infty, 0) \\ \frac{24}{9} \cdot 0 = 0 & x \in [0, 1) \\ \frac{24}{9} \cdot \frac{3}{24} = \frac{1}{3} & x \in [1, 2) \\ \frac{24}{9} \cdot \frac{6}{24} = \frac{2}{3} & x \in [2, 3) \\ \frac{24}{9} \cdot \frac{9}{24} = 1 & x \in [3, +\infty) \end{cases}$$

Pasando a la parte continua, $P_c(B) = \frac{1}{1-\alpha}P(B \cap D^c)$ y $F_c(x) = P_c((-\infty, x])$ = $\frac{1}{1-\alpha}P((-\infty, x] \cap D^c)$

$$F_c(x) = \begin{cases} \frac{24}{15} \cdot 0 & x \in (-\infty, 0) \\ \frac{24}{15} \cdot \frac{5x}{24} & x \in [0, 1) \\ \frac{24}{15} \cdot \left(\frac{5x+3}{24} - \frac{3}{24}\right) & x \in [1, 2) \\ \frac{24}{15} \cdot \left(\frac{5x+6}{24} - \frac{6}{24}\right) & x \in [2, 3) \\ \frac{24}{15} \cdot \left(\frac{24}{24} \frac{9}{24}\right) & x \in [3, +\infty) \end{cases}$$

CAPÍTULO 2

Hoja 4

Ejercicio 1.

$$f_X(x) = 2(1-x)I_{(0,1)}(x)$$

a)
$$Y = aX - b \ con \ a \neq 0$$

La función usada es la g(x) = ax - b, esta función es continua, biyectiva (al ser monótona). Será creciente o decreciente dependiendo del valor de a. Si $h(y) = g^{-1}(x) = \frac{y+b}{a}$, recordemos que:

$$f_Y(y) = f_X(h(y))|h'(y)| \ si \ y \in g((0,1)) \quad f_Y(y) = 0 \ resto$$

Calculamos $h'(y) = \frac{1}{a} y g((0,1))$:

$$g((0,1)) = \begin{cases} (-b, a-b) & a > 0 \\ (a-b, -b) & a < 0 \end{cases}$$

Con lo que:

$$a > 0 f_Y(y) = 2\left(1 - \frac{y+b}{a}\right)\frac{1}{a} = 2\frac{a-y-b}{a^2}I_{(-b,a-b)}$$

$$a < 0 f_Y(y) = 2\left(1 - \frac{y+b}{a}\right) - \frac{1}{a} = 2\frac{y+b-a}{a^2}I_{(a-b,-b)}$$

b)
$$Z = 3X^2 - X$$

Usaremos la función $g(x) = 3x^2 - x$, esta función no es biyectiva, tendremos que usar dos intervalos E_1, E_2 para hacer el cambio de variable.

En primer lugar, vemos que el mínimo de la parábola está en $x=\frac{1}{6}$, con lo que tenemos los

conjuntos $E_1 = \left(0, \frac{1}{6}\right)$, $E_2 = \left(\frac{1}{6}, 1\right)$, tenemos que:

$$E_1 \to \left(-\frac{1}{12}, 0\right) = F_1 \quad E_2 = \left(\frac{1}{6}, 1\right) \to \left(-\frac{1}{12}, 2\right) = F_2$$

Para cada intervalo, definimos g_i :

$$g_1 = g|_{(0,\frac{1}{6})} : \left(0,\frac{1}{6}\right) \to \left(-\frac{1}{12},0\right)$$
 $g_2 = g|_{(\frac{1}{6},1)} : \left(\frac{1}{6},1\right) \to \left(-\frac{1}{12},2\right)$

Entonces tenemos que:

$$f_Z(z) = \sum_r f_X(h_r(z))|h'_r(z)|$$

Siendo $h_r(z)$ la inversa de $g_r(z)$, las calculamos:

$$z = 3x^{2} - x \iff 3x^{2} - x - z = 0 \iff x = \frac{1 \pm \sqrt{1 + 12z}}{6} = \begin{cases} \frac{1 + \sqrt{1 + 12z}}{6} = h_{2}(z) & (creciente) \\ \frac{1 - \sqrt{1 + 12z}}{6} = h_{1}(z) & (decreciente) \end{cases}$$

$$h'_1(z) = -\frac{12}{26\sqrt{1+12z}} = -\frac{1}{\sqrt{1+12z}}$$
$$h'_2(z) = \frac{1}{\sqrt{1+12z}}$$

Entonces tenemos que:

$$z \in \left(-\frac{1}{12}, 0\right) \implies f_Z(z) = 2\left(1 - \frac{1 - \sqrt{1 + 12z}}{6}\right) \frac{1}{\sqrt{1 + 12z}} + 2\left(1 - \frac{1 + \sqrt{1 + 12z}}{6}\right) \frac{1}{\sqrt{1 + 12z}} =$$

$$= 2\frac{1}{\sqrt{1 + 12z}} \left(2 - \frac{2}{6}\right) = \frac{2 \cdot 10}{6\sqrt{1 + 12z}} = \frac{10}{3\sqrt{1 + 12z}}$$

$$z \in (0, 2) \implies f_Z(z) = 2\left(1 - \frac{1 + \sqrt{1 + 12z}}{6}\right) \frac{1}{\sqrt{1 + 12z}}$$

Ejercicio 2.

$$f(x,y) = \frac{2}{(2-x-y)^3} I_E(x,y)$$
 con E el cuadrilátero de vértices $(0,0), (1,0), (\frac{2}{3}, \frac{2}{3}), (0,1)$

Y los cambios de variable:

$$\begin{cases} U = \frac{X}{2 - X - Y} \\ V = \frac{Y}{2 - X - Y} \end{cases}$$

$$\left\{ \begin{array}{l} u(x,y) = \dfrac{x}{2-x-y} \\ v(x,y) = \dfrac{y}{2-x-y} \end{array} \right.$$

Esta transformación es biyectiva.

Como comentario, recordar que los cambios de variable de la forma:

$$u = \frac{ax + by + c}{dx + ey + f} \qquad v = \frac{a'x + b'y + c'}{dx + ey + f}$$

Además de ser biyectivos transforman rectas en rectas.

Entonces tenemos que:

$$f_{U,V}(u,v) = f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right|$$

Vemos en qué se transforman los vértices del cuadrilátero con estas transformaciones:

- 1. $(0,0) \to (0,0)$
- 2. $(1,0) \rightarrow (1,0)$ 3. $(\frac{2}{3}, \frac{2}{3}) \rightarrow (1,1)$ 4. $(0,1) \rightarrow (0,1)$

Calculamos ahora las inversas:

$$u(2-x-y) = x \iff -2u + ux + uy + x = 0 \iff (1+u)x + uy - 2u = 0$$

 $v(2-x-y) = v \iff -2v + vx + vy + y = 0 \iff (1+v)y + ux - 2v = 0$

Espectacular sistema de ecuaciones lineales del que sacamos que $x = \frac{2u}{1+u+v}$ $y = \frac{2v}{1+u+v}$

Ahora,

$$\frac{\partial x}{\partial u} = \frac{2(1+u+v)-2u}{(1+u+v)^2} = \frac{2(1+v)}{(1+u+v)^2}$$
$$\frac{\partial x}{\partial v} = -\frac{2u}{(1+u+v)^2}$$
$$\frac{\partial y}{\partial u} = -\frac{2v}{(1+u+v)^2}$$
$$\frac{\partial y}{\partial v} = \frac{2(1+u)}{(1+u+v)^2}$$

El Jacobiano entonces es $\frac{4}{(1+u+v)^3}$, con lo que la función de densidad $f_{(U,V)}$ es:

$$f_{(U,V)}(u,v) = \frac{2}{\left(2 - \frac{2u}{1 + u + v}\right)^3} \frac{4}{\left(1 + u + v\right)^3} = 1 \quad Si(u,v) \in (0,1) \times (0,1)$$

$$f_{(U,V)}(u,v) = 0 \ Si(u,v) \not\in (0,1) \times (0,1)$$

Recordemos que $E\{(x,y) \in \mathbb{R}^2 : x > 0, y > 0, 2x + y < 2, x + 2y < 2\}$, utilizando las inversas que hemos calculado antes vemos que los elementos de F cumplen:

$$\frac{2u}{1+u+v} > 0 \implies u > 0 \qquad \frac{2v}{1+u+v} > 0 \implies v > 0$$

$$\frac{2 \cdot 2u}{1+u+v} + \frac{2v}{1+u+v} < 2 \implies u < 1 \quad \dots \implies v < 1$$

Lo que nos coincide con lo que habíamos calculado previamente sabiendo que la transformación llevaba rectas a rectas.

Calculamos ahora también $f_1(x) = \int f(x,y)dy$:

$$\begin{cases}
Si \ x \in (0, \frac{2}{3}) & f_1(x) = \int_0^{1-\frac{x}{2}} \frac{2}{(2-x-y)^3} dy \\
Si \ x \in (\frac{2}{3}, 1) & f_1(x) = \int_0^{2-2x} \frac{2}{(2-x-y)^3} dy
\end{cases}$$

Ejercicio 3. Vemos los puntos para los que p((i, j)) = cte:

1.
$$p((i,j)) = k \cdot 2 \rightarrow (i,j) = (1,1)$$

2. $p((i,j)) = k \cdot 3 \rightarrow (i,j) = (1,2), (2,1)$

2.
$$p((i,j)) = k \cdot 3 \rightarrow (i,j) = (1,2), (2,1)$$

3.
$$p((i,j)) = k \cdot h \to (i,j) = (i,h-i)$$

 $Para\ cada\ caso\ hay\ h-1\ parejas.$

Entonces,

$$\sum p(i,j) = \sum k(i+j) = \sum_{h=2}^{n} \sum_{i=1}^{h-1} k \cdot h = \sum_{h=2}^{n} k(h-1)h = k \sum_{h=2}^{n} (h^2 - h) =$$

$$= k(\sum_{h=2}^{n} h^2 - \sum_{h=2}^{n} h) = k \left(\frac{n(n+1)(2n+1)}{6} - \cancel{1} - \frac{n(n+1)}{2} + \cancel{1} \right) = k \frac{n(n+1)(2n-2)}{6} =$$

$$= k \frac{n(n+1)(n-1)}{3} = 1 \iff k = \frac{3}{n(n-1)(n+1)}$$

Calcularemos ahora $p_1(i)$:

$$p_1(i) = \sum_{j=1}^{n-i} p((i,j)) = \sum_{j=1}^{n-i} k(i+j) = k \left(\sum_{j=1}^{n-1} i + \sum_{j=1}^{n-1} j \right) = k \left(i(n-i) + \frac{(n-i+1)(n-i)}{2} \right)$$
$$p_1(i) = k \frac{(n-i)(n+i+1)}{2}$$

Vemos ahora la familia de distribuciones $p_{2|1}(j|i)$:

$$p_{2|1}(j|i) = \frac{p((i,j))}{p_1(i)} = \frac{k(i+j)}{\frac{k(n-i)(n+i+1)}{2}} = 2\frac{i+j}{(n-i)(n+i+1)} \text{ si } j = 1,2,...,n-i$$

Ejercicio 4.

$$f(x,y) = \begin{cases} k(1-x-y) & (x,y) \in T \\ 0 & (x,y) \notin T \end{cases}$$

$$T = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0, x + y < 1\}$$

$$f_1(x) = \begin{cases} \int_0^{1-x} k(1-x-y)dy & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

$$\int_0^{1-x} k(1-x-y)dy = k(1-x)y - \frac{y^2}{2} \Big|_0^{1-x} = k\frac{(1-x)^2}{2}$$

$$f_1(x) = \begin{cases} k\frac{(1-x)^2}{2} & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

Con esto podemos calcular el valor de k:

$$\int_{0}^{1} k \frac{(1-x)^{2}}{2} = \frac{k}{2} - \frac{(1-x)^{3}}{3} \Big|_{0}^{1} = \frac{k}{6} = 1 \iff k = 6$$

Sea $x \in (0,1)$, calculemos $f_{2|1}(y|x)$

$$f_{2|1}(y|x) = \frac{f(x,y)}{f_1(x)} = \frac{6(1-x-y)}{3(1-x^2)} = \frac{2(1-x-y)}{(1-x)^2} \text{ si } y \in (0,1-x)$$
$$f_{2|1}(y|x) = 0 \text{ si } y \notin (0,1-x)$$

Vemos ahora $F_1(x)$:

$$F_1(x) = \begin{cases} 0 & x < 0\\ \int_0^x k \frac{(1-u)^2}{2} du = 1 - (1-x)^3 & x \in (0,1)\\ 1 & x > 1 \end{cases}$$

$$F_{2|1}(y|x) = \begin{cases} 0 & y < 0\\ \int\limits_0^y \frac{2(1-x-v)}{(1-x)^2} dv = 1 - \frac{(1-x-y)^2}{(1-x)^2} & y \in (0, 1-x)\\ 1 & y > 1-x \end{cases}$$

Hoja 5

Ejercicio 1.

a) Al ser la distribución uniforme, podemos calcular k como $\frac{1}{V(C)}$. Como C es medio cubo de lado 1, su volumen es $\frac{1}{2}$, con lo que k=2.

b

$$f_{12}(x,y) = \int_{\mathbb{R}} f(x,y,z)dz = \int_{0}^{1} kdz = 2 \ si(x,y) \in T_{1}^{a}$$
$$f_{12}(x,y) = 0 \ si \ (x,y) \notin T_{1}$$

$$f_{13}(x,z) = \int_{\mathbb{R}} f(x,y,z)dy = \int_{0}^{1-x} 2dy = 2(1-x) \ si(x,y) \in C_1^b$$
$$f_{13}(x,z) = 0 \ si \ (x,z) \notin C_1$$

Análogamente tenemos que:

$$f_{23}(y,z) = 2(1-y) \text{ si } y \in C_2$$

 $f_{23}(y,z) = 0 \text{ si } (y,z) \notin C_2$

Para obtener las unidimensionales, integramos a partir de las que hemos calculado:

$$f_1(x) = \int f(x, y, z) dy dz = \int f_{12}(x, y) dy = \int_0^{1-x} 2dy = 2(1-x) \text{ si } x \in (0, 1)$$
$$f_1(x) = 0 \ x \notin (0, 1)$$

$$f_3(z) = \int_{\mathbb{R}} f_{13}(x, z) dx = \int_0^1 2(1 - x) dx = 2\left[x - \frac{x^2}{2}\right]_0^1 = 1 \text{ si } z \in (0, 1)$$
$$f_3(z) = 0 \ z \notin (0, 1)$$

El que queda te lo imaginas, un saludo.

c)

Observamos en este apartado que partimos de una distribución uniforme en el triangulo T_1 .

Para el primer punto, observamos que el punto está dentro del triángulo, luego:

$$F(\frac{1}{3}, \frac{1}{2}) = 2 \cdot A(rect) = 2\frac{1}{2}\frac{1}{3} = \frac{1}{3}$$

Para el segundo caso, sin embargo, el punto está fuera del triángulo, luego tendremos que calcular el área de la intersección del rectángulo formado por este punto con el triángulo T_1 .

Esta región está formada por un rectángulo y un triángulo, tendremos que:

$$F(\frac{4}{3}, \frac{1}{3}) = 2\left(\frac{2}{3}\frac{1}{3} + \frac{1}{2}\frac{1}{3}\frac{1}{3}\right)$$

d)

Importante notar que **no** nos piden la función de distribución, es suficiente con la de densidad en este caso (al ser continuo).

Sea $y \in (0,1)$

$$f_{1|2}(x|y) = \frac{f(x,y)}{f_2(y)} = \frac{2}{2(1-y)} = \frac{1}{1-y} \text{ si } x \in (0,1-y)$$
$$f_{1|2}(x|y) = 0 \text{ } x \notin (0,1-y)$$

$$\overline{{}^aT_1 = \{(x,y) \in \mathbb{R}^2: \ 0 < x < 1, 0 < y < 1, x + y < 1\}}$$

$${}^bC_1 = \{(x,z) \in \mathbb{R}^2: \ 0 < x < 1, 0 < z < 1\}$$

Ejercicio 2.

$$F_x(t) = P(x \le t) = P(x + y \le t)$$

$$F_x(t) = \begin{cases} 0 & t \le 0 \\ \text{ área del triangulo con catetos } t = \frac{t^2}{2} & 0 < t < 1 \\ 1 - \text{ área triánglo cateto } (2 - t) = 1 - \frac{(2 - t)^2}{2} = \frac{2 - (2 - t)^2}{2} & 1 \le t < 2 \\ 1 & t \ge 2 \end{cases}$$

Derivando obtenemos que:

$$f_x(t) = \begin{cases} t & 0 < t < 1\\ 2 - t & 1 < t < 1\\ 0 & resto \end{cases}$$

Este problema lo podríamos ver de otra forma: Sean U, V variables aleatorias independientes ambas con distribución uniforme en (0,1). Calcular la función de densidad de U+V. En este caso podremos usar las convoluciones.

$$f_U(u) = I_{(0,1)}(u)$$
 $f_V(v) = I_{(0,1)}(v)$

$$F_U(u) = \begin{cases} 0 & u < 0 \\ u & 0 < u < 1 \\ 1 & u > 1 \end{cases} \qquad F_V(v) = \begin{cases} 0 & v < 0 \\ v & 0 < v < 1 \\ 1 & v > 1 \end{cases}$$

 $Si\ Z = U + V$

$$f_Z(z) = \int\limits_{\mathbb{R}} f_u(z-t) f_V(t) dt = \int\limits_{\mathbb{R}} I_{(0,1)}(z-t) I_{(0,1)}(t) dt = \int\limits_{0}^{1} I_{(0,1)}(z-t) dt$$

Como $0 < z - t < 1 \implies z - 1 < t < z$, luego tendremos:

$$f_Z(z) = \begin{cases} 0 & z < 0\\ \int_0^z dt = z & 0 < z < 1\\ \int_0^1 dt = 1 - (z - 1) = 2 - z & 1 < z < 2\\ 0 & z > 2 \end{cases}$$

Lo que es igual a lo que hemos calculado antes.

Otra forma análoga)

Sea (U,V) uniforme, se obtiene una nueva variable (X,Y) mediante la siguiente transformación:

$$\begin{cases} X = U + V \\ Y = V \end{cases}$$

Calcular la función de distribución marginal de la v.a. X

$$f_{(X,Y)}(x,y) = f_{(U,V)}(u(x,y),v(x,y)) |\frac{\partial (x,y)}{\partial (u,v)}|$$

Y luego calcularíamos f_X

Ejercicio 3.

$$f_X(t) = I_{(0,1)}(t) = \begin{cases} 1 & t \in (0,1) \\ 0 & t \notin (0,1) \end{cases}$$
$$f_Z(z) = \int f_X(z-t)dF_Y(t) = \int I_{(0,1)}(z-t)dF_Y(t) = \int I_{($$

Como Y es discreta y toma valores en t = 0, 1, la integral la podemos calcular como:

$$=I_{(0,1)}(z)\frac{1}{2}+I_{(0,1)}(z-1)\frac{1}{2}=I_{(0,1)}(z)\frac{1}{2}+I_{(1,2)}(z)\frac{1}{2}=\frac{1}{2}(I_{(0,1)}(z)+I_{(1,2)}(z))=I_{(0,2)}(z)\frac{1}{2}$$

$$f_{Z}(z)=\left\{\begin{array}{ll} \frac{1}{2} & z\in(0,2)\\ \\ 0 & z\not\in(0,2) \end{array}\right.$$

Integrando llegamos a:

$$F_Z(z) = \begin{cases} 0 & z < 0 \\ \frac{1}{2}z & 0 < z < 2 \\ 1 & z > 2 \end{cases}$$

Ejercicio 4.

a)

Los valores que se pueden tomar son los que cumplen que $i \leq j$. El caso (i,j) con i < j se cumple cuando se saca ese par en el orden (i,j) o en el orden (j,i). Para el caso i=j, solo hay un modo de sacarlo. Entonces:

$$p((i,j)) = P(X = i, Y = j) = \begin{cases} \frac{2}{n^2} & i < j \\ \frac{1}{n^2} & i = j \\ 0 & i > j \end{cases}$$

b)

$$p_1(i) = \sum_{j=1}^n p((i,j)) = \sum_{j=i}^n p((i,j)) = p(i,j) + \sum_{j=i+1}^n p((i,j)) = \frac{1}{n^2} (n-i) \frac{2}{n^2} \quad \forall i$$
$$p_1(i) = \frac{2n-2i+1}{n^2}$$

c)
$$p_2(j) = \sum_{i=1}^{j} p((i,j)) = \sum_{i=1}^{j-1} p((i,j)) + p((j,j)) = (j-1)\frac{2}{n^2} + \frac{1}{n^2} \quad \forall j$$
$$p_2(j) = \frac{2j-1}{n^2}$$

d)

$$p_{2|1}(j|i) = \frac{p((i,j))}{p_1(i)}$$

$$Sea \ i \in \{1, 2, ..., n\}$$

$$Si \ j = i + 1, ..., n$$

$$p_{2|1}(j|i) = \frac{2/n^2}{(2n-2i+1)/n^2} = \frac{2}{2(n-i)+1}$$

$$Si j = i$$

$$p_{2|1}(j|i) = \frac{1/n^2}{(2n-2i+1)/n^2} = \frac{1}{2(n-i)+1}$$

En el resto de casos

$$p_{2|1}(j|i) = 0$$

e)

$$Sea \ j \in \{1,2,...,n\}$$

$$Si \ i=1,...,j-1$$

$$p_{1|2}(i|j) = \frac{((i,j))}{p_2(j)} = \frac{2/n^2}{(2j-1)/n^2} = \frac{2}{2j-1}$$

$$Si \ i = j$$

$$p_{1|2}(i|j) = \frac{((i,j))}{p_2(j)} = \frac{1}{2j-1}$$

En el resto de casos

$$p_{1|2}(i|j) = 0$$

Ejercicio 5.

$$E(X) = \sum x_i P(A_i) = \sum i P(\{i\}) = \sum i Ci$$

Calculamos el valor de C:

$$\sum_{i=1}^{n} C \cdot i = C \frac{n(n+1)}{2} = 1 \implies C = \frac{2}{n(n+1)}$$

Luego tenemos que:

$$E(X) = \frac{2}{n(n+1)} \sum_{i=1}^{n} i^2 = \frac{2}{n(n+1)} \frac{n(n+1)(2n+1)}{6} = \frac{2n+1}{3}$$

Ejercicio 6.

Tenemos que:

$$\left\{ \begin{array}{ll} u = \arctan \frac{y}{x} \\ v = \sqrt{x^2 + y^2} \end{array} \right. \Longrightarrow$$

$$\frac{y}{x} = \tan u \implies k' \sin(u) = y \ k' \cos(u) = x$$

$$v = \sqrt{k'^2 \sin^2(u)k'^2 \sin^2(u)} = k'$$

$$\begin{cases} y = v \sin(u) \\ x = v \cos(u) \end{cases}$$

Calculamos ahora el Jacobiano:

$$\frac{\partial x}{\partial u} = -v\sin(u)$$

$$\frac{\partial y}{\partial u} = v\cos(u)$$

$$\frac{\partial x}{\partial v} = \cos(u)$$

$$\frac{\partial y}{\partial v} = \sin(u)$$

El Jacobiano entonces es $-v\sin^2(u) - v\cos^2(u) = -v$

Vemos ahora el conjunto imagen de E por la transformación, que llamaremos F. Observamos en primer lugar que u es el ángulo formado por la recta que pasa por el origen y el punto (x,y), tendremos que $u \in (0,\frac{\pi}{4})$. Es fácil ver que v se moverá entre 0 $y+\infty$. Tendremos entonces que:

$$f_{(U,V)}(u,v) = f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| (u,v) \in F$$

$$f_{(U,V)} = \begin{cases} ke^{-v^2}v & (u,v) \in F \\ 0 & (u,v) \notin F \end{cases}$$

Para calcular el valor de k, integramos en la función que acabamos de obtener (porque en este caso es más fácil):

$$\int\limits_{0}^{+\infty} \int\limits_{0}^{\pi/4} e^{-v^2} v du dv = k \frac{\pi}{4} \int\limits_{0}^{+\infty} v e^{-v^2} = -k \frac{\pi}{4} \left. \frac{e^{-v^2}}{2} \right|_{0}^{+\infty} = k \frac{\pi}{8} = 1 \implies k = \frac{8}{\pi}$$

Eiercicio 7.

Observamos que el número total de posibilidades es 4ⁿ (cada objeto tiene cuatro opciones).

a)

Para verlo, pensemos primero en la probabilidad de que un solo cajón quede vacío:

$$A_i = \{el\ caj\'on\ i\ quede\ vac\'io\}$$

$$P(A_i) = \frac{3^n}{4^n}$$

Entonces la probabilidad de que tres cajones queden vacíos podría calcularse como la unión (usaríamos que $P(A_i \cap A_j) = \frac{2^n}{4^n} \ y \ P(A_i \cap A_j \cap A_k) = \frac{1}{4^n}$).

La probabilidad de que tres cajones queden vacíos es:

$$P(\cup (A_i \cap A_j \cap A_k)) = \sum P(A_i \cap A_j \cap A_k) = \frac{4}{4^n} = \frac{1}{4^{n-1}}$$

b)

Calcularemos primero $P(A_1 \cap A_2 \cap A_3^c \cap A_4^c)$. Usando que $A \cap B = A - (A \cap B^c)$ tenemos que

$$A_1 \cap A_2 \cap A_3^c \cap A_4^c = A_1 \cap A_2 \cap A_3^c - (A_1 \cap A_2 \cap A_3^c \cap A_4) =$$
$$= (A_1 \cap A_2 - A_1 \cap A_2 \cap A_3) - A_1 \cap A_2 \cap A_4$$

$$P(A_1 \cap A_2 \cap A_3^c \cap A_4^c) = P(A_1 \cap A_2)P(-A_1 \cap A_2 \cap A_3) - P(A_1 \cap A_2 \cap A_4) = \frac{2^n}{4^n} - \frac{2}{4^n} = \frac{2^n - 2}{4^n}$$

Entonces la probabilidad de que dos cajones queden vacíos es $\binom{4}{2}\frac{2^n-2}{4^n}$.

c)

El resultado es $\frac{3^{n-3} \cdot 2 \cdot 3}{4^{n-1}}$

CAPÍTULO 4

Hoja 6

Ejercicio 1.

$$X = 0, 1, 2, ..., n P(X = i) = \frac{1}{n+1}$$

$$E(X) = \sum_{i=0}^{n} i \frac{1}{n+1} = \frac{1}{n+1} \sum_{i=0}^{n} i = \frac{n(n+1)}{2(n+1)} = \frac{n}{2}$$

$$E(X^{2}) = \sum_{i=0}^{n} \frac{i^{2}}{n+1} = \frac{1}{n+1} \sum_{i=0}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6(n+1)} = \frac{n(2n+1)}{6}$$

$$Var(X) = E(X^{2}) - (E(X))^{2} = \frac{n(2n+1)}{6} - \frac{n^{2}}{4}$$

Ejercicio 2.

Primera parte

Observamos primero que los números de la forma $i/3^n$ son:

$$\frac{1}{3^n}, \frac{2}{3^n}, \frac{3}{3^n}, \frac{4}{3^n}, ..., \frac{3^{n-1}}{3^n}, \frac{3^n}{3^n}$$

Y vemos que los numeradores múltiplos de 3 en este conjunto son 3^{n-1} : $3, 2 \cdot 3, 3 \cdot 3, ..., 3^{n-1}3$. Luego $|D| = 3^n - 3^{n-1} = 3^{n-1} \cdot 2$. Por tanto:

$$k = \frac{1}{2 \cdot 3^{n-1}}$$

$$F(\frac{1}{3}) = \sum_{x_i \in D} \sum_{x_i \le 1/3} k$$

Observamos que el número de sumandos es $3^{n-1}-3^{n-2}$ (quitamos los numeradores $3, 2 \cdot 3, ..., 3^{n-2} \cdot 3$) para los casos n > 1. Por tanto:

$$F(\frac{1}{3}) = \frac{2 \cdot 3^{n-2}}{2 \cdot 3^{n-1}} = \frac{1}{3}$$

Si
$$n = 1$$
, $D = \{\frac{1}{3}, \frac{2}{3}\}$ y $F(\frac{1}{3}) = \frac{1}{2}$

Segunda parte

Para usar el ejercicio anterior, dividimos el sumatorio en dos:

$$\sum_{n=1}^{+\infty} \sum_{x_i \in D} \sum_{x_i = i/3^n} P(\{\frac{i}{3^n}\}) = \sum_{n=1}^{+\infty} \sum_{x_i = i/3^n} \frac{k}{irred} =$$

$$= \sum_{n=1}^{\infty} 2 \cdot 3^{n-1} \frac{k}{6^n} = \sum_{n=1}^{+\infty} \frac{k}{2^{n-1}3} = \frac{k}{3} \sum_{n=1}^{+\infty} \frac{1}{2^{n-1}} = \frac{2}{3} k = 1 \implies k = \frac{3}{2}$$

Ejercicio 3.

Integramos para calcular la constante C:

$$\int_{a}^{b} C(x-a)^{p-1} (b-x)^{q-1} dx = C \int_{a}^{b} (x-a)^{p-1} (x-b)^{q-e} dx$$

Esta integral nos recuerda a B(p,q), hacemos el cambio

$$t = \frac{x-a}{b-a}$$
 $x = (b-a)t + a$ $dx = (b-a)dt$ $b-x = b - (b-a)t - a = (b-a)(1-t)$

con límites de integración 0 y 1

La integral entonces queda:

$$= C \int_{0}^{1} (b-a)^{p-1} t^{p-1} (b-a)^{q-1} (1-t)^{q-1} (b-a) dt =$$

$$= C \int_{0}^{1} (b-a)^{p+q-1} t^{p-1} (1-t)^{q-1} dt = C(b-a)^{p+q+1} B(p,q) = 1 \iff$$

$$\iff C = \frac{1}{(b-a)^{p+q+1} B(p,q)}$$

 $Calculamos \ ahora \ E(X)$

$$E(X) = \int x f(x) dx = \int x C(x-a)^{p-1} (b-x)^{q-1} dx =$$

$$= C \int_{a}^{b} (x - a + a)(x - a)^{p-1} (b - x)^{q-1} dx = C \int_{a}^{b} (x - a)^{p} (b - x)^{q-1} dx + C \int_{a}^{b} a(x - a)^{p-1} (b - x)^{q-1} dx$$

$$= C(b - a)^{p+q} B(p + 1, q) + a = \frac{1}{(b - a)^{p+q-1} B(p, q)} (b - a)^{p+q} B(p, q) + a =$$

Utilizando ahora la equivalencia de B y Γ , y usando que $\Gamma(x+1) = x\Gamma(x)$

$$= a + \frac{(b-a)\Gamma(p+q)\Gamma(p+1)\Gamma(q)}{\Gamma(p)\Gamma(q)\Gamma(p+q+1)} =$$

$$= a + \frac{(b-a)p}{p+q} = \frac{\cancel{ap} + aq + bp - \cancel{ap}}{p+q}$$

Ejercicio 4.

Apartado a)

Observamos primero que el área de C es 3/2, luego $f(x,y) = 2/3I_C(x,y)$:

Ahora:

$$f_2(y) = \int f(x,y)dx = \begin{cases} \int_0^y \frac{2}{3}dx = \frac{2}{3}y & y \in (0,1) \\ \int_0^1 \frac{2}{3}dx = \frac{2}{3} & y \in (1,2) \\ 0 & resto \end{cases}$$

La condicionada se calcula como sique:

$$f_{2|1}(y|x) = \frac{f(x,y)}{f_1(x)}$$

Los valores de x donde esta expresión tiene sentido los calculamos ahora junto a $f_1(x)$:

$$f_1(x) = \int f(x,y)dy = \begin{cases} \int_{x}^{2} \frac{2}{3}dy = \frac{2}{3}(2-x) & x \in (0,1) \\ 0 & resto \end{cases}$$

Volviendo a la distribución condicionada, fijado $x \in (0,1)$:

$$f_{2|1}(y|x) = \begin{cases} \frac{2/3}{2/3(2-x)} = \frac{1}{2x} & y \in (x,2) \\ 0 & y \notin (x,2) \end{cases}$$

Vamos a calcular también $f_{1|2}(x|y)$:

• $Sea\ y \in (0,1)$:

$$f_{1|2}(x|y) = \begin{cases} \frac{2/3}{2/3y} = \frac{1}{y} & x \in (0,y) \\ 0 & x \notin (0,y) \end{cases}$$

• $Sea\ y \in (1,2)$:

$$f_{1|2}(x|y) = \begin{cases} \frac{2/3}{2/3} = 1 & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

Apartado b)

Dada la transformación:

$$\begin{cases} u = x \\ v = \frac{y - x}{2 - y} \end{cases}$$

Nos sacamos de la manga su inversa:

$$\begin{cases} x = u \\ y = \frac{u + 2v}{1 + v} \end{cases}$$

Vemos el Jacobiano:

$$\begin{vmatrix} \frac{\partial x}{\partial u} = 1 & \frac{\partial x}{\partial v} = 0 \\ \frac{\partial y}{\partial u} = & \frac{\partial y}{\partial v} = \frac{2-u}{(1+v)^2} \end{vmatrix} = \frac{2-u}{(1+v)^2}$$

La imagen del recinto C, $C' = \{(u, v) \in \mathbb{R}^2 : 0 < u < 1, v > 0\} = (0, 1) \times (0, +\infty)$ Solo queda ver el valor de $f_{U,V}$:

$$f_{U,V}(u,v) = \begin{cases} \frac{2}{3} \frac{2-u}{(1+v)^2} & (u,v) \in C' \\ 0 & resto \end{cases}$$

Apartado c)

$$g_1(u) = \begin{cases} \frac{2}{3} \int_0^{+\infty} \frac{2-u}{(1+v)^2} dv = \frac{2}{3}(2-u) \left[-\frac{1}{1+v} \right]_0^{+\infty} = \frac{2}{3}(2-u) & u \in (0,1) \\ 0 & resto \end{cases}$$

Buscaremos un punto m_e tal que $F(m_e^-) = \frac{1}{2} = F(m_e)$ (ya que $f_{(U,V)}$ es continua).

$$F(m_e) = \int_0^{m_e} \frac{2}{3} (2 - u) du = \frac{2}{3} \left(2m_e - \frac{m_e^2}{2} \right) =$$
$$= \frac{4}{3} m_e - \frac{1}{3} m_e^2 = \frac{1}{2}$$

Resolviendo la ecuación de segundo grado obtenemos las soluciones $2\pm\frac{\sqrt{10}}{2}$, el valor $2+\frac{\sqrt{10}}{2}\not\in(0,1)$, luego no nos sirve. El otro, sin embargo, sí esta entre 0 y 1, luego $m_e=2-\frac{\sqrt{10}}{2}$

Apartado d)

$$g_2(v) = \begin{cases} \int_0^1 \frac{2}{3} \frac{2-u}{(1+v)^2} du = \frac{2}{3} \frac{1}{(1+v)^2} \left[2u - \frac{u^2}{2} \right]_0^1 = \frac{2}{3} \frac{1}{(1+v)^2} \frac{3}{2} = \frac{1}{(1+v)^2} \quad v \in (0, +\infty) \\ 0 \quad resto \end{cases}$$

Para empezar, vemos que sí pueden ser independientes porque C' es un producto de intervalos (y por tanto, rectangular). Además, $f_{U,V} = f_U f_V$ luego sí son independientes. De hecho, antes de ver las distribuciones marginales ya podemos saber que son independientes porque $f_{U,V} = g(u)h(v)$ con g una función que solo depende de u y h una función que solo depende de v.

Además, X, Y no son independientes porque C no es un rectángulo.

Apartado e)

$$E(U^n) = \int_0^1 u^n \frac{2}{3} (2 - u) = \frac{2}{3} \left[\frac{2u^{n+1}}{n+1} - \frac{u^{n+2}}{n+2} \right]_0^1 = \frac{2}{3} \left(\frac{2}{n+1} - \frac{1}{n+2} \right)$$

En particular:

$$E(U) = \frac{2}{3} \left(1 - \frac{1}{3} \right) = \frac{4}{9}$$

Vamos a calcular también la esperanza de V:

$$E(V) = \int_{0}^{+\infty} \frac{v}{(1+v)^2} dv = \int_{0}^{+\infty} \frac{v+1}{(1+v)^2} dv - \int_{0}^{+\infty} \frac{1}{(1+v)^2} dv =$$
$$= \log(1+v) \Big|_{0}^{+\infty} + \dots = +\infty$$