Методы оптимизации. Семинар 3. Векторное дифференцирование

Александр Катруца

Московский физико-технический институт

19 августа 2020 г.

Напоминание

- Сопряжённые конусы
- ▶ Свойства сопряжённых множеств
- Опорная гиперплоскость
- Разделяющая гиперплоскость
- Лемма Фаркаша

Основные определения

Более подробно смотрите здесь. Пусть $f:D \to E$, производная $\frac{\partial f}{\partial x} \in G$:

D	E	G	Название
\mathbb{R}	\mathbb{R}	\mathbb{R}	Производная, $f'(x)$
\mathbb{R}^n	\mathbb{R}	\mathbb{R}^n	Градиент, $rac{\partial f}{\partial x_i}$
\mathbb{R}^n	\mathbb{R}^m	$\mathbb{R}^{m \times n}$	Матрица Якоби, $rac{\partial f_i}{\partial x_j}$
$\mathbb{R}^{m \times n}$	\mathbb{R}	$\mathbb{R}^{m \times n}$	$rac{\partial f}{\partial x_{ij}}$

Также квадратная $n\times n$ матрица вторых производных $\mathbf{H}=[h_{ij}]$ в случае $f:\mathbb{R}^n\to\mathbb{R}$ называется гессиан и равна $h_{ij}=\frac{\partial^2 f}{\partial x_i\partial x_j}.$

Основная техника

Примеры

- 1. Линейная функция: $f(\mathbf{x}) = \mathbf{c}^{\top}\mathbf{x}$
- 2. Квадратичная форма: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} + \mathbf{b}^{\top}\mathbf{x}$
- 3. Квадрат ℓ_2 нормы разности: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
- 4. Детерминант: $f(\mathbf{X}) = \det \mathbf{X}$
- 5. След: $f(\mathbf{X}) = \operatorname{trace}(\mathbf{AXB})$
- 6. $f(\mathbf{x}) = (\mathbf{x} \mathbf{A}\mathbf{s})^{\mathsf{T}}\mathbf{W}(\mathbf{x} \mathbf{A}\mathbf{s})$
- 7. $f(\mathbf{A}) = (\mathbf{x} \mathbf{A}\mathbf{s})^{\mathsf{T}}\mathbf{W}(\mathbf{x} \mathbf{A}\mathbf{s})$
- 8. $f(\mathbf{s}) = (\mathbf{x} \mathbf{A}\mathbf{s})^{\mathsf{T}}\mathbf{W}(\mathbf{x} \mathbf{A}\mathbf{s})$

Сложная функция: скалярный случай

- ▶ Пусть $f(\mathbf{x}) = g(u(\mathbf{x}))$, тогда $f'(\mathbf{x}) = \frac{\partial g}{\partial u} \frac{\partial u}{\partial \mathbf{x}}$
- ▶ Важно смотреть на размерности и понимать как записывать $\frac{\partial g}{\partial u}$.

Сложная функция: скалярный случай

- ▶ Пусть $f(\mathbf{x}) = g(u(\mathbf{x}))$, тогда $f'(\mathbf{x}) = \frac{\partial g}{\partial u} \frac{\partial u}{\partial \mathbf{x}}$
- ▶ Важно смотреть на размерности и понимать как записывать $\frac{\partial g}{\partial u}$.

Примеры

- 1. ℓ_2 норма вектора: $f(\mathbf{x}) = \|\mathbf{x}\|_2$
- 2. Экспонента: $f(\mathbf{x}) = -e^{-\mathbf{x}^{\top}\mathbf{x}}$

Сложная функция: векторный случай

- ullet $f(\mathbf{x}) = g(h(\mathbf{x}))$, где $h: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^m \to \mathbb{R}$
- ▶ $\frac{\partial f}{\partial x_k} = \sum_j \frac{\partial g}{\partial h_j} \frac{\partial h_j}{\partial x_k} = \sum_j J_{jk} \frac{\partial g}{\partial h_j} k$ -ый элемент градиента
- $lackbox{
 ightarrow} rac{\partial f}{\partial \mathbf{x}} = \mathbf{J}^{ op} rac{\partial g}{\partial h}$, где \mathbf{J} якобиан h

Сложная функция: векторный случай

- ullet $f(\mathbf{x})=g(h(\mathbf{x}))$, где $h:\mathbb{R}^n o \mathbb{R}^m$, $g:\mathbb{R}^m o \mathbb{R}$
- ▶ $\frac{\partial f}{\partial x_k} = \sum_j \frac{\partial g}{\partial h_j} \frac{\partial h_j}{\partial x_k} = \sum_j J_{jk} \frac{\partial g}{\partial h_j} k$ -ый элемент градиента
- lacksquare $rac{\partial f}{\partial \mathbf{x}} = \mathbf{J}^{ op} rac{\partial g}{\partial h}$, где \mathbf{J} якобиан h

Примеры

- $oldsymbol{b} h(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$, $g(\mathbf{u}) = \|\mathbf{u}\|_2^2$. Найти $f'(\mathbf{x})$
- $lackbox{lack} h(\mathbf{x}) = \cos(\mathbf{x})$ поэлементно, $g(\mathbf{u}) = \sum_i u_i$. Найти $rac{\partial f}{\partial \mathbf{x}}$

Chain rule and autodiff¹

Мотивирующий пример

- $f = h(q(\mathbf{x}))$, где $h: \mathbb{R}^k \to \mathbb{R}^m$, $q: \mathbb{R}^n \to \mathbb{R}^k$
- ▶ $\mathbf{J}_f = \mathbf{J}_h(g(\mathbf{x}))\mathbf{J}_g(\mathbf{x})$ или $J_f^{(i,j)} = \frac{\partial f_i}{\partial x_i} = \sum_{l=1}^k \frac{\partial h_i}{\partial g_k} \frac{\partial g_k}{\partial x_j}$

¹Griewank A., Walther A. Evaluating derivatives: principles and techniques of algorithmic differentiation. – Society for Industrial and Applied Mathematics, 2008.

Chain rule and autodiff¹

Мотивирующий пример

- ullet $f = h(q(\mathbf{x}))$, где $h: \mathbb{R}^k \to \mathbb{R}^m$, $q: \mathbb{R}^n \to \mathbb{R}^k$
- $oldsymbol{J}_f=oldsymbol{J}_h(g(\mathbf{x}))oldsymbol{J}_g(\mathbf{x})$ или $J_f^{(i,j)}=rac{\partial f_i}{\partial x_j}=\sum_{l=1}^krac{\partial h_i}{\partial g_k}rac{\partial g_k}{\partial x_j}$

Обобщение

- $lacktriangledown f = f_L \circ \ldots \circ f_1$ представление в виде графа

¹Griewank A., Walther A. Evaluating derivatives: principles and techniques of algorithmic differentiation. – Society for Industrial and Applied Mathematics, 2008.

Chain rule and autodiff¹

Мотивирующий пример

- $f = h(q(\mathbf{x}))$, где $h: \mathbb{R}^k \to \mathbb{R}^m$, $q: \mathbb{R}^n \to \mathbb{R}^k$
- $oldsymbol{J}_f = oldsymbol{J}_h(g(\mathbf{x})) oldsymbol{J}_g(\mathbf{x})$ или $J_f^{(i,j)} = rac{\partial f_i}{\partial x_j} = \sum_{l=1}^k rac{\partial h_i}{\partial g_k} rac{\partial g_k}{\partial x_j}$

Обобщение

- $lacktriangledown f = f_L \circ \ldots \circ f_1$ представление в виде графа
- $\mathbf{J}_f = \mathbf{J}_L \cdot \ldots \cdot \mathbf{J}_1$

Способы вычисления \mathbf{J}_f

- ► Справа налево forward mode
- ▶ Слева направо backward mode

¹Griewank A., Walther A. Evaluating derivatives: principles and techniques of algorithmic differentiation. – Society for Industrial and Applied Mathematics, 2008.

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

Реализация

ightharpoonup Выбираем элемент x_j

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

- ightharpoonup Выбираем элемент x_j
- lacktriangle Задаём вектор $\mathbf{u}=\mathbf{e}_j-j$ -ый орт

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

- ightharpoonup Выбираем элемент x_j
- lacktriangle Задаём вектор $\mathbf{u}=\mathbf{e}_j-j$ -ый орт
- lacktriangle Умножаем рекурсивно ${f J}_L \dots {f J}_2 {f J}_1 {f u}$ справа налево

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

- ightharpoonup Выбираем элемент x_j
- lacktriangle Задаём вектор $\mathbf{u} = \mathbf{e}_j j$ -ый орт
- lacktriangle Умножаем рекурсивно ${f J}_L \dots {f J}_2 {f J}_1 {f u}$ справа налево
- Умножение происходит одновременно с вычислением $f_L \circ \ldots \circ f_1$

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

- ightharpoonup Выбираем элемент x_j
- lacktriangle Задаём вектор $\mathbf{u}=\mathbf{e}_j-j$ -ый орт
- lacktriangle Умножаем рекурсивно ${f J}_L \dots {f J}_2 {f J}_1 {f u}$ справа налево
- Умножение происходит одновременно с вычислением $f_L \circ \ldots \circ f_1$
- ightharpoonup Для каждой f_i необходимо реализовать действие самой функции и умножение \mathbf{J}_i на вектор

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

Реализация

lacktriangle Выбираем компоненту f_k

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

- ightharpoonup Выбираем компоненту f_k
- lacktriangle Задаём вектор $\mathbf{u} = \mathbf{e}_k k$ -ый орт

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

- lacktriangle Выбираем компоненту f_k
- lacktriangle Задаём вектор $\mathbf{u} = \mathbf{e}_k k$ -ый орт
- lacktriangle Умножаем рекурсивно $\mathbf{u}^{ op}\mathbf{J}_{L}\dots\mathbf{J}_{2}\mathbf{J}_{1}$ слева направо

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

- lacktriangle Выбираем компоненту f_k
- lacktriangle Задаём вектор $\mathbf{u} = \mathbf{e}_k k$ -ый орт
- lacktriangle Умножаем рекурсивно $\mathbf{u}^{ op}\mathbf{J}_{L}\dots\mathbf{J}_{2}\mathbf{J}_{1}$ слева направо
- Сначала вычисляем f, потом произведение выше два обхода графа

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

- lacktriangle Выбираем компоненту f_k
- lacktriangle Задаём вектор $\mathbf{u} = \mathbf{e}_k k$ -ый орт
- lacktriangle Умножаем рекурсивно ${f u}^{ op}{f J}_L\dots{f J}_2{f J}_1$ слева направо
- Сначала вычисляем f, потом произведение выше два обхода графа
- lacktriangle Для каждой f_i необходимо реализовать действие самой функции и умножение $\mathbf{J}_i^{ op}$ на вектор

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

Реализация

- lacktriangle Выбираем компоненту f_k
- lacktriangle Задаём вектор $\mathbf{u} = \mathbf{e}_k k$ -ый орт
- lacktriangle Умножаем рекурсивно ${f u}^{ op}{f J}_L\dots{f J}_2{f J}_1$ слева направо
- ightharpoonup Сначала вычисляем f, потом произведение выше два обхода графа
- lacktriangle Для каждой f_i необходимо реализовать действие самой функции и умножение $\mathbf{J}_i^ op$ на вектор

Если m=1, то ${f u}=1$ и результат совпадает с градиентом!

Forward vs backward modes

Вычислительная сложность

- ► Forward mode: $C(f(\mathbf{x}), \mathbf{Ju}) \leq 2.5C(f(\mathbf{x}))$
- ▶ Backward mode: $C(f(\mathbf{x}), \mathbf{J}^{\top}\mathbf{u}) \leq 4C(f(\mathbf{x}))$

Forward vs backward modes

Вычислительная сложность

- ► Forward mode: $C(f(\mathbf{x}), \mathbf{Ju}) \leq 2.5C(f(\mathbf{x}))$
- ▶ Backward mode: $C(f(\mathbf{x}), \mathbf{J}^{\top}\mathbf{u}) \leq 4C(f(\mathbf{x}))$

Требуемая память

- ightharpoonup Forward mode: не требует, все вычисления делаются в процессе вычисления f
- lacktriangle Backward mode: требует, промежуточные значения f_{i-1} надо сохранить для вычисления $\mathbf{J}_i^{ op}\mathbf{u}$

Forward vs backward modes

Вычислительная сложность

- ► Forward mode: $C(f(\mathbf{x}), \mathbf{Ju}) \leq 2.5C(f(\mathbf{x}))$
- ▶ Backward mode: $C(f(\mathbf{x}), \mathbf{J}^{\top}\mathbf{u}) \leq 4C(f(\mathbf{x}))$

Требуемая память

- ightharpoonup Forward mode: не требует, все вычисления делаются в процессе вычисления f
- ightharpoonup Backward mode: требует, промежуточные значения f_{i-1} надо сохранить для вычисления $\mathbf{J}_i^{ op}\mathbf{u}$

Вывод

- ▶ Если $m \ll n$, используйте backward mode
- Если $m \ge n$, используйте forward mode

Различные реализации могут оптимизировать промежуточные вычисления!

Пример

Для функции
$$f(x_1,x_2)=\cos^2(x_1+x_2^3)$$
. Найти $\frac{\partial f}{\partial x_1},\frac{\partial f}{\partial x_2}$ $f(x_1,x_2)=f_1(f_2(f_3(x_1,f_4(x_2))))$

Пример

Для функции
$$f(x_1,x_2)=\cos^2(x_1+x_2^3)$$
. Найти $\frac{\partial f}{\partial x_1},\frac{\partial f}{\partial x_2}$ $f(x_1,x_2)=f_1(f_2(f_3(x_1,f_4(x_2))))$

Forward mode

- ▶ Вычислим $\frac{\partial f}{\partial x_2}$
- $w_1 = x_1, w_2 = x_2$

- $w_6 = 2\cos(w_1 + w_2^3)w_5$

Пример

Для функции
$$f(x_1,x_2)=\cos^2(x_1+x_2^3)$$
. Найти $\frac{\partial f}{\partial x_1},\frac{\partial f}{\partial x_2}$ $f(x_1,x_2)=f_1(f_2(f_3(x_1,f_4(x_2))))$

Forward mode

- ▶ Вычислим $\frac{\partial f}{\partial x_2}$
- $w_1 = x_1, w_2 = x_2$

- $b w_5 = -\sin(w_1 + w_2^3)w_4$
- $w_6 = 2\cos(w_1 + w_2^3)w_5$

Backward mode

- $w_0 = 1$
- $w_2 = \frac{\partial f_2}{\partial f_3} w_1 = -\sin(f_3)w_1$

- $w_5 = \frac{\partial f}{\partial x_2} = \frac{\partial f_4}{\partial x_2} w_4 = 3x_2^2 w_4$

▶ Дан вектор \mathbf{z} , нужно вычислить $f''(\mathbf{x})\mathbf{z}$

- lacktriangle Дан вектор ${f z}$, нужно вычислить $f''({f x}){f z}$
- ▶ Вспомним, что $f''(\mathbf{x}) = (f'(\mathbf{x}))'$

- lacktriangle Дан вектор ${f z}$, нужно вычислить $f''({f x}){f z}$
- ▶ Вспомним, что $f''(\mathbf{x}) = (f'(\mathbf{x}))'$
- lacktriangleright Вычислим градиент $f'(\mathbf{x})$ с помощью backward mode

- lacktriangle Дан вектор ${f z}$, нужно вычислить $f''({f x}){f z}$
- ▶ Вспомним, что $f''(\mathbf{x}) = (f'(\mathbf{x}))'$
- ightharpoonup Вычислим градиент $f'(\mathbf{x})$ с помощью backward mode
- ightharpoonupИ вычислим $f''(\mathbf{x})\mathbf{z} = \mathbf{J}_{f'}\mathbf{z}$ с помощью forward mode

- lacktriangle Дан вектор ${f z}$, нужно вычислить $f''({f x}){f z}$
- ▶ Вспомним, что $f''(\mathbf{x}) = (f'(\mathbf{x}))'$
- ightharpoonup Вычислим градиент $f'(\mathbf{x})$ с помощью backward mode
- ightharpoonup И вычислим $f''(\mathbf{x})\mathbf{z} = \mathbf{J}_{f'}\mathbf{z}$ с помощью forward mode

Почему это хорошо?

- Полный гессиан не хранится экономия памяти
- ▶ Выбор режимов вычисления градиентов и умножения гессиана на вектор обоснованы размерностями входа и выхода функций f и f'

Резюме

- Производная по скаляру
- Производная по вектору
- Производная по матрице
- ▶ Производная сложной функции
- Автоматическое дифференцирование