The University of Texas at Dallas Database Design – Prof. Nurcan, Yuruk **Assignment 04**

1. Are the following sets of FDs equivalent? Explain why.

$$E = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, EC \rightarrow DH, DE \rightarrow CH\}$$

 $F = \{A \rightarrow CD, E \rightarrow AH\}$

Ans.

F covers E := E covers F := $A^{+} = \{A, C, D\}$ $A^{+} = \{A, C, D\}$ $E^+ = \{E, A, H, C, D\}$ $A \rightarrow A, A \rightarrow C, A \rightarrow D, \dots A \rightarrow CD \dots$ $A \rightarrow A, A \rightarrow C, A \rightarrow D, \dots$ $E \rightarrow E, E \rightarrow A, E \rightarrow AD \dots$ $E^+ = \{E, A, D, C, H\}$ $AC^{+} = \{A, C, D\}$ $EC^{+} = \{E, C, A, D, H\}$ $E \rightarrow E, E \rightarrow A, \dots E \rightarrow AH \dots$ $AC \rightarrow D, \dots$ EC → DH, ... $[A \rightarrow CD ==> AC \rightarrow CD ==>$ $DE^{+} = \{D, E, A, C, H\}$ $AC \rightarrow D$ DE → CH, . . .

Here E covers F and vice-versa. Hence, E and F are quivalent.

2. Find a 3NF decomposition of a relation R(ABCDEFGHIJ) that satisfies the following FDs: $\{AB \rightarrow C, BD \rightarrow EF, AD->GH, A \rightarrow I, H \rightarrow J, GD \rightarrow ABH \}$ (follow regular normalization steps and successively normalize to 3NF)

Ans.

Let
$$M = \{AB \rightarrow C, BD \rightarrow EF, AD \rightarrow GH, A \rightarrow I, H \rightarrow J, GD \rightarrow ABH \}$$

As using minimal cover we will be able to find and cross-check our solution. We will first find it and then follow regular normalization method.

Doing steps: canonical form \rightarrow redundant LHS part removal (none) \rightarrow Transitive FD removal, we get:

$$AB \rightarrow C$$
, $BD \rightarrow E$, $AD \rightarrow H$ ($AD \rightarrow G$, $AD \rightarrow GD$, $AD \rightarrow H$), $AD \rightarrow G$, AD

Here, we can either remove AD \rightarrow H or GD \rightarrow H. NOT both at the same time. Because, for one's removal we need other. So, Minimal Cover of M, removing only GD \rightarrow H,

$$G := \{ AB \rightarrow C, BD \rightarrow E, AD \rightarrow H, AD \rightarrow G, H \rightarrow J, A \rightarrow J, BD \rightarrow F, GD \rightarrow A, GD \rightarrow B, \}$$

As 'D' is not present on RHS of any FD. We'll look for those having 'D' in the LHSs. $BD^+ = \{B, D, E, F\}$ $AD^+ = \{A, D, G, I, B, H, E, F, J, C\}$ $GD^+ = \{G, D, A, I, B, H, E, F, J, C\}$

So, candidate keys = {AD, GD}. Prime attributes = {A, D, G}

1 NF: As we have keys, then we can derive all the attribute of Relation R. And given M (or G), R and the keys, there is no Multi-valued attribute, no Composite attribute and no Nested Relation.

```
2 NF: for R(A, B, C, D, E, F, G, H, I, J) with given keys, prime attributes = {A, D, G} A^+ = \{A, I\} D^+ = \{D\} G^+ = \{G\} So, A \rightarrow I is the only violation for 2 NF. So, R = {R1, R2} where R1(\underline{A}, B, C, \underline{D}, E, F, G, H, J) and R2(\underline{A}, I)
```

3 NF: we can look for violating FDs, and the decomposition, with Primary key = {AD}

```
AB \rightarrow C
                       R1(<u>A</u>, B, <u>D</u>, E, F, G, H, J)
                                                                      R2(<u>A</u>, I)
                                                                                             R3(<u>A</u>, <u>B</u>, C)
BD \rightarrow EF
                       R1(<u>A</u>, B, <u>D</u>, G, H, J)
                                                                      R4(<u>B</u>, <u>D</u>, E, F)
H \rightarrow J
                       R1(<u>A</u>, B, <u>D</u>, G, H)
                                                                      R5(<u>H</u>, J)
GD \rightarrow ABH
                       R1(A, B, D, G, H) Here AD \rightarrow GD \rightarrow ABH, GD being a candidate key. Hence, no violation.
AD \rightarrow HG
                       R1(<u>A</u>, B, <u>D</u>, G, H)
                                                          R2(A, I)
                                                                                 R3(A, B, C)
                                                                                                         R4(B, D, E, F) R5(H, J)
```

**Doubt: But, if we follow minimal cover method we get same decomposition, R2 to R5, except R1 is where split into R1(A, D, G, H) and R6(A, B, D, G).

3. Find a minimal cover of the following set of dependencies: $\{AB \rightarrow CDE, C \rightarrow BD, CD \rightarrow E, DE \rightarrow B\}$

```
Ans.
```

```
i. canonical form
```

```
AB \rightarrow C, C \rightarrow B, CD \rightarrow E, AB \rightarrow D, C \rightarrow D, DE \rightarrow B
```

 $AB \rightarrow E$

ii. redundant LHS part removal

```
AB \rightarrow C, C \rightarrow B, CD \rightarrow E (redundant: C \rightarrow D, C \rightarrow CD, hence C \rightarrow E), C \rightarrow D, C \rightarrow CD, hence C \rightarrow
```

iii. Transitive FD removal

```
AB \rightarrow C, C \rightarrow E, C \rightarrow B (C \rightarrow DE, DE \rightarrow B), C \rightarrow D, C \rightarrow D
```

Minimal Cover:

```
AB \rightarrow C, C \rightarrow E, DE \rightarrow B, C \rightarrow D
```

Assignment 04 2

4. Consider a relation R(ABCDEFGHIJ) satisfying the following FDs: $FI \rightarrow EHJC$, $H \rightarrow GB$, $F \rightarrow EA$, $HI \rightarrow FGD$, $A \rightarrow C$

- (a) Find all candidate keys for R. Show all the steps. List prime attributes of R.
- (b) Based on given functional dependencies and candidate keys that you have found, find a 3NF decomposition of R.

(follow regular normalization steps and successively normalize to 3NF)

Ans.

(a) Given set M = {FI \rightarrow EHJC, H \rightarrow GB, F \rightarrow EA, HI \rightarrow FGD, A \rightarrow C} And as 'I' is not present on RHS of any FD. We'll look for those having 'I' in the LHSs. FI⁺ = {F, I, E, H, J, C, G, B, A, D} HI⁺ = {H, I, F, G, D, E, J, C, B, A}

So, candidate keys = {FI, HI}. Prime attributes = {F, I, H}

(b) Given R(A, B, C, D, E, F, G, H, I, J) is already in 1 NF (no Multi-valued attribute, no Composite attribute and no Nested Relation).

2 NF: Considering closures of prime attributes,

$$F^+ = \{F, E, A, C\}$$
 $I^+ = \{I\}$

$$= \{I\}$$
 $H^+ = \{H, G, B\}$

So, $F \rightarrow E$, $F \rightarrow A$, $F \rightarrow C$, $H \rightarrow G$, $H \rightarrow B$ violates the 2 NF condition, being partially dependent on the candidate keys { FI, HI }. So, decomposing R, we get R1(D, F, H, H, H, H) R2(H) R3(H) R3(H

3 NF: we can look for violating FDs, and the decomposition, with Primary key = {HI}

FI
$$\rightarrow$$
 EHJC, R1(D, F, H, I, J) R2(F, E, A, C) R3(H, G, B) No violation, FI being candidate key. FI \rightarrow EC is redundant. H \rightarrow GB, R1(D, F, H, I, J) R2(F, E, A, C) R3(H, G, B) F \rightarrow EA, R1(D, F, H, I, J) R2(F, E, A, C) R3(H, G, B) HI \rightarrow FGD, R1(D, F, H, I, J) R2(F, E, A, C) R3(H, G, B) HI \rightarrow G is redundant. No violation. A \rightarrow C R1(D, F, H, I, J) R2(F, E, A) R3(H, G, B) R4(A, C) Creating R4.

**Doubt: But, if we follow minimal cover method we get same decomposition, R2 to R4, except R1 is where split into R1(D, F, H, I) and R5(F, I, H, J).

5. Find a lossless (non-additive), dependency preserving 3NF decomposition of R(EFGHI) using the minimal cover method. R satisfies the following dependencies:

$$FG \rightarrow E$$
, $HI \rightarrow E$, $F \rightarrow G$, $FE \rightarrow H$, $H \rightarrow I$

Ans.

i. canonical form:

 $\mathsf{FG} \to \mathsf{E}, \qquad \mathsf{HI} \to \mathsf{E}, \qquad \mathsf{F} \to \mathsf{G}, \qquad \mathsf{FE} \to \mathsf{H}, \qquad \mathsf{H} \to \mathsf{I}$

ii. redundant LHS part removal:

$$H \rightarrow I$$
, $FG \rightarrow E (F \rightarrow G, F \rightarrow FG, F \rightarrow E)$, $F \rightarrow G$, $HI \rightarrow E (H \rightarrow I, H \rightarrow HI, H \rightarrow E)$,

Assignment 04 3

$$FE \rightarrow H (F \rightarrow E, F \rightarrow FE, F \rightarrow H)$$

iii. Transitive FD removal

$$H \rightarrow I$$
, $F \rightarrow E (F \rightarrow H, H \rightarrow E)$, $H \rightarrow E$, $F \rightarrow G$, $F \rightarrow H$

Minimal Cover:

$$H \rightarrow I$$
, $F \rightarrow H$, $H \rightarrow E$, $F \rightarrow G$

So, R is decomposed into R1(\underline{H} , I, E) and R2(\underline{F} , H, G)

6. Consider a relation R(ABCDEFGHIJ) satisfying the following FDs: DG \rightarrow CFHB, D \rightarrow CJ, F \rightarrow EA, J \rightarrow B, FG \rightarrow DEI

- (a) Find all candidate keys for R. Show all the steps. List prime attributes of R.
- (b) Based on given functional dependencies and candidate keys that you have found, find a 3NF decomposition of R.

(follow regular normalization steps and successively normalize to 3NF)

Ans. (a) Given set M = {DG
$$\rightarrow$$
 CFHB, D \rightarrow CJ, F \rightarrow EA, J \rightarrow B, FG \rightarrow DEI}

And as 'G' is not present on RHS of any FD. We'll look for those having 'G' in the LHSs.

$$DG^+ = \{D, G, C, F, H, B, J, E, A, I\}$$

$$FG^+ = \{F, G, D, E, I, A, B, C, H, J\}$$

So, candidate keys = {DG, FG}. Prime attributes = {D, F, G}

(b) Given R(A, B, C, D, E, <u>F, G</u>, H, I, J) is already in 1 NF (no Multi-valued attribute, no Composite attribute and no Nested Relation).

$$D^+ = \{D, C, J, B\}$$

$$F^+ = \{F, E, A\}$$

$$G^+ = \{G\}$$

So, D \rightarrow CJB, F \rightarrow EA violates the 2 NF condition, being partially dependent on the candidate keys { DG, FG }. So, decomposing R, we get

$$R2(\underline{D}, C, J, B)$$
 $R3(\underline{F}, E, A)$

3 NF: we can look for violating FDs, and the decomposition, with Primary key = {FG}

$DG \rightarrow CFHB$,	R1(D, <u>F, G</u> , H, I)	R2(<u>D</u> , C, J, B)	R3(<u>F</u> , E, A)	No violation, DG being candidate key.
				DG \rightarrow CB is redundant here.
$D \rightarrow CJ$,	R1(D, <u>F, G</u> , H, I)	R2(<u>D</u> , C, J, B)	R3(<u>F</u> , E, A)	
$F \rightarrow EA$,	R1(D, <u>F, G</u> , H, I)	R2(<u>D</u> , C, J, B)	R3(<u>F</u> , E, A)	
$J \rightarrow B$,	R1(D, <u>F, G</u> , H, I)	R2(<u>D</u> , C, J)	R4(<u>J</u> , B)	Non-prime (Not C.K.) \rightarrow Non-prime.
$FG \rightarrow DEI$	R1(D, <u>F, G</u> , H, I)	R2(<u>D</u> , C, J)	R3(<u>F</u> , E, A)	R4(<u>J</u> , B) No violation.
				$FG \rightarrow E$ is redundant. & $FG \rightarrow DG \rightarrow H$.

**Doubt: But, if we follow minimal cover method we get same decomposition, R2 to R4, except R1 is where split into R1(D, <u>F</u>, <u>G</u>, I) and R5(<u>D</u>, <u>G</u>, F, H).

Assignment 04 4

7. Find a lossless, dependency preserving 3NF decomposition of R(CDEFG) using the minimal cover method. R satisfies the following dependencies:

$$F \rightarrow G$$
, $D \rightarrow E$, $DC \rightarrow F$, $DE \rightarrow C$, $FG \rightarrow C$

Ans.

i. canonical form

$$F \rightarrow G$$
, $D \rightarrow E$, $DC \rightarrow F$, $DE \rightarrow C$, $FG \rightarrow C$

$$DE \rightarrow C$$

$$FG \rightarrow C$$

ii. redundant LHS part removal

$$\begin{array}{ll} F \rightarrow G, & FG \rightarrow C \ (F \rightarrow G, F \rightarrow FG, \textbf{F} \rightarrow \textbf{C}), \\ D \rightarrow E, & DE \rightarrow C \ (D \rightarrow E, D \rightarrow DE, \textbf{D} \rightarrow \textbf{C}), \\ DC \rightarrow F \ (D \rightarrow C, D \rightarrow DC, \textbf{D} \rightarrow \textbf{F}) \end{array}$$

iii. Transitive FD removal

$$F \rightarrow G$$
, $F \rightarrow C$,

$$\begin{array}{ccc} \mathsf{D} \to \mathsf{E}, & \mathsf{D} \to \mathsf{C} \; (\mathsf{D} \to \mathsf{F}, \, \mathsf{F} \to \mathsf{C}), \\ \mathsf{D} \to \mathsf{F} & \end{array}$$

Minimal Cover:

$$F \rightarrow G$$
, $F \rightarrow C$,

$$D \rightarrow E$$
, $D \rightarrow F$

So, R is decomposed in R1(\underline{F} , G, C) and R2(\underline{D} , E, F).

Assignment 04