

Level Test Result

In This Lecture

Outline

- Order of Complexity
- 2. List

Algorithm Analysis

- Execution time measurement
 - Measures actual execution times of two algorithms
 - Requires actual implementation
 - Should use identical hardware
- Complexity analysis
 - (Roughly) Analyze without actual implementation
 - Count the number of operations during algorithm
 - Time complexity
 - Space complexity

Measurement

An example code of measuring computing time

```
void main( void )
{
  clock_t start, finish;
  double duration;
  start = clock();
  // algorithm...
  // ...
  finish = clock();
  duration = (double)(finish - start) / CLOCKS_PER_SEC;
  printf("%f seconds.\(\frac{\psi}{\psi}\)n", duration);
}
```

Complexity Analysis

- How many algorithms can you imagine for solving a problem?
 - Many!
- Among them, what algorithm should we choose?
 - An efficient one!
 - So algorithm analysis is important!
- How to analyze algorithm (from an efficiency perspective)?
 - Complexity analysis!
 - Without actual implementation, roughly we can compare two algorithms
 - Independent for hardware or software environment

Complexity Analysis

- Computing time complexity
 - Count the number of operations
 - Basic operations: comparison, assignment, arithmetic, etc.
 - Not measure actual execution time!
- Represented by a time complexity function -> T(n)
 - A function of n (input size)
 - Roughly estimate time for running algorithm

An Example

- Problem: sum n for n times
 - Let's count the number of operations
 - Let's not consider the for loop control operations

Algorithm A	Algorithm B	Algorithm C
sum ←n*n;	sum ← 0; for i ← 1 to n do sum ←sum + n;	<pre>sum ← 0; for i←1 to n do for j←1 to n do sum ←sum + 1;</pre>

	Algorithm A	Algorithm B	Algorithm C
Assignment	1	n + 1	n*n + 1
Addition		n	n*n
Multiplication	1		
Division			
Total	2	2n + 1	2n ² + 1

Another Example

 By analyzing the code, we can roughly calculate the time complexity for the given algorithm

```
\begin{array}{lll} \text{ArrayMax}(A,n) & & & & & \\ \text{tmp} \leftarrow A[0]; & & & & \\ \text{for } i \leftarrow 1 \text{ to n-1 do} & & & \\ & \text{if tmp} < A[i] \text{ then} & & \\ & & \text{tmp} \leftarrow A[i]; & & \\ & \text{return tmp}; & & & \\ & & & \\ & & & \text{total} = 2n \text{ (at most)} \end{array}
```

Big O Notation

- If n is large, the highest exponent part actually matters, ignoring other parts
 - E.g., n = 1000, T(n) = 1,001,001, first part accounts for about 99%

So, typically it is enough to consider the part that most affect

Big O Notation

- Big O Definition: (Asymptotic Upper Bound)
 - For given f(n) and g(n),
 for all n≥n₀, if there exist two constants c and n₀ satisfying |f(n)| ≤ c|g(n)|
 then f(n)=O(g(n))
- Big O represents the upper bound
 - E.g., if $n \ge 5$, 2n+1 < 10n -> 2n+1 = O(n)

if $n_0 = 2$, c = 2, for $n \ge 2$, $2n+1 \le 2n^2$ $\rightarrow O(n^2)$

Big O Notation

- O(1): constant
- O(logn): log
- O(n): linear
- O(nlogn) : log-linear
- O(n²) : quadratic
- O(n³) : cubic
- $O(2^n) : exponent$
- O(n!): factorial

Comparisons

Complexity	n					
Complexity	1	2	4	8	16	32
1	1	1	1	1	1	1
logn	0	1	2	3	4	5
n	1	2	4	8	16	32
nlogn	0	2	8	24	64	160
n²	1	4	16	64	256	1024
n³	1	8	64	512	4096	32768
2 ⁿ	2	4	16	256	65536	4294967296
n!	1	2	24	40326	20922789888000	26313 × 10 ³³

Comparisons

	А	В	С	D	E
	100n	$10nlog_2n$	$5n^2$	n^3	2^n
10	10⁻³ sec	1.5*10⁻³ sec	5*10 ⁻⁴ sec	10 -3 sec	10⁻³ , sec
100	10⁻² sec	0.03 sec	5*10⁻² sec	1 sec	4*10¹⁴ cent
1,000	10 ⁻¹ sec	0.45 sec	5 sec	1.6 min	***
10,000	1 sec	6.1 sec	8.3 min	11.57 d	***
100,000	10 sec	1.5 min	13.8 hour	31 .7 y	***

Big Ω Notation

- Big Omega Definition: (Asymptotic Lower Bound)
 - For given f(n) and g(n),
 for all n≥n₀, if there exist two constants c and n₀ satisfying |f(n)| ≥ c|g(n)|
 then f(n)= Ω(g(n))
- Big Omega represents the lower bound
 - E.g., if $n \ge 1$, $2n+1 \ge 10n -> 2n+1 = \Omega(n)$

Big θ **Notation**

- Big Theta Definition: (Asymptotic Tight Bound)
 - For given f(n) and g(n),
 for all n≥n₀, if there exist three constants c₁, c₂, and n₀ satisfying c₁|g(n)| ≤ |f(n)| ≤ c₂|g(n)|
 then f(n)= θ(g(n))
- Big Theta represents the lower and upper (tight) bound
 - f(n)=O(g(n)) and $f(n)=\Omega(g(n)) \rightarrow f(n)=\theta(n)$
 - E.g., if $n \ge 1$, $n \le 2n+1 \le 3n -> 2n+1 = \theta(n)$

List

Definition

- An abstract data type (ADT) that represents a countable number of ordered values, where the same value may occur more than once
- Examples
 - Days (Monday, Tuesday, …)
 - Alphabet (A, B, ...)
 - Card (Ace, 2, 3, ...)
 - Phone numbers

ADT

·Object:

A sequence with n values

- ·Operations:
- add_last(list, item)
- add_first(list, item)
- add(list, pos, item)
- delete(list, pos)
- clear(list)
- replace(list, pos, item)
- is_in_list(list, item)
- get_entry(list, pos)
- get_length(list)
- is_empty(list)
- is_full(list)
- display(list)

List Implementation

- Array List
 - Simple
 - Insertion and deletion may not be easy
 - Limited capacity
- Linked List
 - Difficult
 - Efficient in insertion and deletion
 - No limitation in capacity

Array List

- Store data in one-dimensional array sequentially
 - L = (A, B, C, D, E)

Insertion

Deletion

Array List: Insertion

- Inserting an item into a list
 - (a) the array elements are shifted to the right one at a time, traversing from right to left
 - (b) the new value is then inserted into the array at the given position
 - (c) the result after inserting the item

Array List: Deletion

- Removing an item from a list
 - (a) a copy of the item is saved
 - (b) the array elements are shifted to the left one at a time, traversing left to right
 - (c) the size of the list is decremented by one

Linked Representation

Linked Representation

Node: Data & Link

Data: data value

Link: next node

The sequence of link may not be identical to that in physical memory

Linked Representation

- Pros
 - Insertion/deletion are easy
 - Need not continuous memory space
 - No space limitation
- Cons
 - Difficult to implement
 - Possible errors

Structure

Node = (data, link)

```
class ListNode :
    def __init__( self, data ) :
      self.data = data
      self.next = None
```

"Head" indicates the first node

link

- Node creation
 - a = ListNode(11); a.next = b
 - b = ListNode(52); b.next = c
 - c = ListNode(18)

Linked List Types

Singly linked list

Circular linked list

Doubly linked list

Insertion

Basic idea


```
insert_node(L, before, new)

if L = NULL
then L←new
else new.link←before.link
before.link←new
```

Insertion

- 3 cases
 - Empty list

Add to first

General case

Deletion

Basic idea


```
remove_node(L, before)

if L ≠ NULL

then before.link←removed.link
```

Deletion

- 2 cases
 - First node

General case

Merge Two Lists

An example of list operations: merging two lists

Circular Linked List

The last node points the first node

- We can traverse the list starting from any node
- Easier than single linked list in insertion / deletion
- If head points to the last node, "addFirst" and "addLast" can be easily implemented compared to single linked list

Insertion

- Two cases
 - Insertion in the first

Insertion in the last

Double Linked List

- Double linked list
 - Node has two links for previous and next data
 - Link => bidirectional

Practically, "double linked list + circular linked list" type is widely used

Insertion

- new_node.llink = before; (1)
- new_node.rlink = before.rlink; (2)
- before.rlink.llink = new_node; (3)
- before.rlink = new_node; (4)

Deletion

- removed.llink.rlink = removed.rlink (1)
- removed.rlink.llink = removed.llink (2)

Application: Polynomial

- A polynomial (in one variable) can be expressed as a list
 - $A=3x^{12}+2x^8+1$


```
class _PolyTermNode( object ):
    def __init__( self, degree, coefficient ):
        self.degree = degree
        self.coefficient = coefficient
        self.next = None
```

Polynomial Addition

① p.expon == q.expon

2 p.expon < q.expon

Polynomial Addition

3 p.expon > q.expon

What You Need to Know

Summary

- Algorithm analysis
 - Time complexity
- List
 - Array list
 - Linked list
 - Linked representations
 - Singly linked list
 - Circular linked list
 - Double linked list
 - Application: Polynomials

