변수 전처리 + 파생변수(의미 중심)

1 전처리

: 변수 처리 진행 + 파생변수(의미중심)

1. 변수 제거

• ID : 순번

• Surname: 성

2. 이상치

- 의미
 - 의미상 존재할 수 없는 이상치 존재하지 않음
- 시각화
 - o BoxPlot을 통한 이상치 CreditScore, Age 존재
 - 의미상 제거하기엔 무리가 있으므로 데이터 보존

3. 중복치

- 모든 열 동일한 경우는 발생할 수 없는 수치 판단 후 제거
 - 。 30개

4. 인코딩

- Object
 - Geography: OneHot Encoding
 - Gender: Label Encoding
- int64, float64
 - Tenure: Label Encoding
 - NumOfProducts: OneHot Encoding

- HasCrCard: Label Encoding
- IsActiveMember: Label Encoding

5. 로그변환 & 스케일링

- 연속형 변수 대상으로 진행
 - Age, Balance, CreditScore, EstimatedSalary
- 로그 변환
 - o Age, Balance
- 스케일링
 - Age, CreditScore
 - Robust Scaling
 - Balance
 - MinMax Scailing
 - EstimatedSalary
 - Standard Scaling

6. 파생 변수

- 의미 중심으로 생성
 - 변수 파악
 - 이탈
 - 낮은 고객 서비스
 - Tenure, NumOfProducts, HasCrCard, IsActiveMember
 - 시장 이해 부족
 - · Age, Geography, Gender
 - 가격 최적화 부족
 - Balance, EstimatedSalary
 - 상품 시장 적합성 부족
 - Tenure, Balance, EstimatedSalary, NumOfProducts, CreditScore

• 참여도 낮은 상품

• IsActiveMember, NumOfProducts

■ 유입

- 고객 니즈 파악
 - Age, NumOrProducts, Geogrphy
- 선제적 지원 제공
 - CreditScore, IsActiveMember, Balance
- 타겟 고객 파악
 - EstimatedSalary, Geography, NumOfProducts
- 적극적인 소통
 - IsActiveMember, Tenure
- 고객 이탈 경고 징후 인지
 - Balance, CreditScore, NumOfProducts
- 고객 긍정적 경험 이해
 - Age, HasCrCard, EstimatedSalary
- 고객 여정 지도 구축
 - Tenure, NumOfProducts, Balance

○ 단일 변수 범주화

- Age_group
 - Age 이상치 기반
 - 10대, 20대, 30대, 40대, 50대, 57세 이상
- Balance_group
 - 0과 나머지
- NumOfProducts_group
 - 0과 1, 나머지
- 도메인 지식 기반 변수 조합
 - 고객 충성도(Tenure, NumOfPrudcts)
 - Age + Tenure : 연령에 따른 은행과의 관계 지속성
 - Age + NumOfProducts : 연령별 이용 상품 수

- Balance + NumOfProducts : 잔고 수준과 상품 이용 패턴 분석
- EstimatedSalary + NumOfProducts : 상품 이용 개수 대비 예상 소득

■ 경제적 상황(Balance, EstimatedSalary, HasCrCard)

• Balance + EstimatedSalary : 예상 소득 대비 잔고 수준

• Balance + Tenure : 은행 이용 기간 대비 잔고 변화

• Balance + CreditScore : 신용 점수 대비 잔고 수준

• Age + EstimatedSalary : 연령별 예상 소득

■ 고객의 활동성(CreditScore, NumOfProducts, Tenure, IsActiveMember, HasCrCard)

- IsActiveMember + NumOfProducts : 활성회원 여부와 상품 이용 개수 의 관계
- Tenure + NumOfPRoducts : 은행 이용 기간 대비 상품 이용 개수
- IsActiveMember + CreditScore : 활동성과 신용점수의 연관성
- Tenure + IsActivemember : 이용 기간과 고객 활동성의 상관관계

■ 지역적 특성(Geography)

• Geography + Balance : 국가별 잔고 수준 차이 분석

• Geography + IsActiveMember : 국가별 고객 활동성

• Geogrphy + EstimatedSalary : 국가별 예상 소득

■ 리스크 관리(CreditScore, HasCrCard)

• CreditScore + Balance : 신용점수 대비 잔고 수준

• CreditScore + Age : 연령별 신용점수 분포

• CreditScore + Tenure : 은행 이용 기간 대비 신용점수

• Balance + HasCrCard : 신용카드 보유 여부와 잔고의 관계

7. 다중공선성

: VIF 값 10 이상 다중공선성 문제 판단

Feature	VIF	Feature	VIF
CustomerId	0.00015	9EstimatedSalary_Age	1.001223
Gender	1.00082	1IsActiveMember_NumOfProducts	1.009847

Feature	VIF	Feature	VIF
Tenure	1.10964	NumOfProducts_Tenure	8.294561
HasCrCard	1.00041	9 IsActiveMember_CreditScore	1.00526
IsActiveMember	1.001078	B Tenure_IsActiveMember	1.109744
Age_group	1.01023	5 Balance_Geography	2.129831
Balance_group	7.06032	2Geography_IsActiveMember	1.228856
CreditScore_Scaled	1.00524	3EstimatedSalary_Geography	1.000013
EstimatedSalary_Scaled	1.00007	9CreditScore_Age	1.006829
Age_Scaled	1.01035	7 CreditScore_Tenure	10.72824
Balance_Scaled	7.03589	Balance_HasCrCard	4.92636
NumOfProducts_group	1.02423	1Geography_France	1.113864
Tenure_Age	1.09078	3Geography_Germany	1.367807
NumOfProducts_Age	1.411414	Geography_Spain	1.016694
NumOfProducts_Balance	3.84424	4NumOfProducts_1	1.68119
EstimatedSalary_NumOfProducts	1.168519	NumOfProducts_2	1.603802
Balance_EstimatedSalary	1.00054	1NumOfProducts_3	1.007192
Balance_Tenure	2.13825	6NumOfProducts_4	1.001844
Balance_CreditScore	4.43513		

• 5 - 10

• Balance_group: 7.060322

• Balance_Scaled: 7.03589

• NumOfProducts_Tenure: 8.294561

> 10

• CreditScore_Tenure: 10.72824

• 의미적으로 유의할 수 있는 가능성이 있으므로 유지하고 분석 진행

 최종 모델에서의 Feature importance, Permutation importance를 통해 제거 여부 재차 확인

8. 추가 시각화

: 더미변수끼리의 상관계수 비교 제외

[Correlation Heatmap]

Exited

- 。 양
 - Age(0.34)
 - 연령이 높을수록 이탈 가능성이 다소 증가
 - Age_group(0.33)
 - 연령대가 높을수록 이탈 가능성이 다소 증가

- NumOfProducts_1(0.31)
 - 이용중인 상품이 1개일 경우 이탈 가능성 다소 증가

o **음**

- NumOfProducts_2(-0.38)
 - 이용중인 상품이 2개일 경우 이탈 가능성이 다소 감소
- NumOfProducts_Age(-0.32)
 - 연령 대비 이용 상품 수가 높을수록 이탈 가능성 다소 감소
- CreditScore_Age(-0.29)
 - 연령 대비 신용점수 높을수록 이탈 가능성 다소 감소

• 전체 상관계수

- 다수의 파생변수 생성으로 변수간 상관관계가 복잡해지고 중복성이 높아짐
- 。 수치의 신뢰성과 해석력 저하
- 。 전체 상관계수 분석은 참고용으로 활용

② 분석 모델링

1. 데이터 분리

- train = 70%
- test = 30%

2. 사용 모델 결정

- AutoML Top 5(AUC 기준)
 - GBC : Gradient Boosting Classifier
 - LightGBM: Light Gradient Boosting Machine
 - Catboost : CatBoost Classifier
 - XGBoost: Extreme Gradient Boosting
 - AdaBoost : Ada Boost Classifier

3. 하이퍼 파라미터 최적화

• Optuna + StratifiedKFold: AWS에서 제공하는 모델 별 하이퍼 파라미터 목록 사용

GBC Hyper Parameters

Best AUC: 0.8882353624113233

Best hyperparameters: n_estimators: 449

learning_rate: 0.044150878877115926

max_depth: 6

min_samples_split: 2 min_samples_leaf: 4

subsample: 0.9731842381863204

max_features: log2 loss: exponential

ccp_alpha: 4.9347750239549366e-05 validation_fraction: 0.2518351573156265

n_iter_no_change: 18

tol: 0.004088217530008802

min_impurity_decrease: 0.03799795246825141

max_leaf_nodes: 95

LightGBM Hyper Parameters

Best AUC: 0.8891460901206308

Best hyperparameters: num_boost_round: 532

learning_rate: 0.04137208387151803

num_leaves: 46
max_depth: -1

min_data_in_leaf: 86

feature_fraction: 0.8139255851821137 bagging_fraction: 0.8082068952185747

bagging_freq: 4

min_gain_to_split: 0.5814034631622789

lambda_l1: 0.07098715189710325 lambda_l2: 0.07241610219010308

tree_learner: feature

max_bin: 343

early_stopping_rounds: 50

num_threads: 3

scale_pos_weight: 2.872248166434921

XGBoost Hyper Parameters

Best AUC: 0.8872248463597316

Best hyperparameters:

num_round: 349

alpha: 0.10967146719877353 base_score: 0.8675191316221191

booster: gbtree

colsample_bylevel: 0.6587236837621269 colsample_bynode: 0.4542054877542777 colsample_bytree: 0.8836850766965889

eta: 0.23332571464656857

eval_metric: auc

gamma: 0.2762294374380138

grow_policy: depthwise

lambda: 4.034139666189761

max_bin: 497 max_delta_step: 8 max_depth: 12

max_leaves: 48

min_child_weight: 9.477651521287859

objective: binary:logistic

scale_pos_weight: 8.433168368359874

seed: 434

subsample: 0.9545112785469709

verbosity: 1

early_stopping_rounds: 54

AdaBoost Hyper Parameters

Best AUC: 0.8874794558932251

Best hyperparameters:

n_estimators: 312

learning_rate: 0.06668653847352878

algorithm: SAMME random_state: 853

max_depth: 8

min_samples_split: 3 min_samples_leaf: 6 max_features: log2 max_leaf_nodes: 16

min_impurity_decrease: 0.00026999077869702197

CatBoost Hyper Parameters

Best AUC: 0.8891316004587454

Best hyperparameters:

iterations: 193

learning_rate: 0.05731626408645584

depth: 5

I2_leaf_reg: 0.12172037289908884

random_strength: 0.11159304953837404 bagging_temperature: 2.0950687664171803

grow_policy: Lossguide

border_count: 147

od_wait: 40

4. 보팅

- 4_1 : 조합 생성
 - 사용 모델
 - LightGBM, CatBoost, GradientBoosting, AdaBoost, XGBoost
 - 단일 모델부터 최대 5개 모델의 조합까지, 모든 경우의 수를 생성
 - 총 31개의 조합에 대해 소프트 보팅 방식으로 평가 진행
- 4_2: 가중치 생성
 - 。 각 모델의 ROC AUC 점수 기반 가중치 생성
 - 가중치 계산
 - 전체 모델 ROC AUC 점수 합산하여 전체 점수 계산
 - 각 모델의 가중치
 - 해당 모델 ROC AUC score / 전체 모델 ROC AUC 점수 합산

o 단일 모델 점수

LightGBM: 0.8891460901206308

CatBoost: 0.8891316004587454

■ GBC: 0.8882353624113233

AdaBoost: 0.8874794558932251

XGBoost: 0.8872248463597316

○ 생성된 가중치

LightGBM: 0.20020323686045985

CatBoost: 0.20019997431761935

■ GBC: 0.19999817423090124

AdaBoost: 0.1998279716810968

XGBoost: 0.19977064290992266

5. 보팅 최적 모델

- 모델
 - CatBoost + LightGBM + Ada
- 성능
 - Best AUC: 0.8892
- Fold AUCs
 - 0.8875412534269587
 - 0.8897113821342711
 - 0.8917677196721903
 - 0.8890633795677888
 - 0.8880000832908077
- 가중치
 - 0.20020323686045985
 - 0.1998279716810968
 - 0.20019997431761935
- Feature Importance & Permutation Importance

Feature Importance

Top 5

- CustomerID
- CreditScore_Age
- CreditScore_Scaled
- CreditScore_Tenure
- EstimatedSalary_Age

Permutation importance

Top 5

- NumOfProducts_2
- Age_Scaled
- IsActiveMember
- Gender
- Balance_Geography

。 결론

- Age가 포함된 변수가 공통적으로 다수 포함
- 제거 할 변수
 - Balance_group

• Feature importance: 0.01

• Permutation importance: 0.0000

VIF: 7.06

• CreditScore_Tenure

• Feature importance: 681.00

• Permutation importance: 0.0000

VIF: 10.72824

6. 중요도 기반 추가 모델링

6_1. 사용모델

AutoML

- GBC
- LightGBM
- CatBoost
- AdaBoost
- XGBoost

• 6_2. 하이퍼 파라미터 최적화

GBC Hyper Parameters

Best AUC: 0.8881716017412291

Best hyperparameters:

n_estimators: 306

learning_rate: 0.13703881640424945

max_depth: 4

min_samples_split: 3 min_samples_leaf: 3

subsample: 0.9445270800712589

max_features: log2 loss: exponential

ccp_alpha: 2.8384467094309904e-05 validation_fraction: 0.28861432470314685

n_iter_no_change: 18

tol: 0.003292168493890127

min_impurity_decrease: 0.06206179531947495

max_leaf_nodes: 63

LightGBM Hyper Parameters

Best AUC: 0.8894890596238593

Best hyperparameters: num_boost_round: 787

learning_rate: 0.01655085455833034

num_leaves: 40 max_depth: 9

min_data_in_leaf: 56

feature_fraction: 0.6418202481719244 bagging_fraction: 0.645916077947058

bagging_freq: 2

min_gain_to_split: 0.5064123433302721

lambda_l1: 0.07012143653987062 lambda_l2: 0.09764150870955571

tree_learner: serial max_bin: 386

early_stopping_rounds: 25

num_threads: 4

scale_pos_weight: 3.8434903468270747

CatBoost Hyper Parameters

Best AUC: 0.8894422429062463

Best hyperparameters:

iterations: 524

learning_rate: 0.08616825811471435

depth: 3

I2_leaf_reg: 0.3995590038558608

random_strength: 0.32389909847293613 bagging_temperature: 0.09678886582783942

grow_policy: SymmetricTree

border_count: 96

od_wait: 40

AdaBoost Hyper Parameters

Best AUC: 0.8874169652866769

Best hyperparameters: n_estimators: 146

learning_rate: 0.08520098897894984

algorithm: SAMME.R random_state: 802

max_depth: 5

min_samples_split: 20 min_samples_leaf: 3

max_features: None max_leaf_nodes: 15

min_impurity_decrease: 0.0003927552574830781

XGBoost Hyper Parameters

Best AUC: 0.8877248497094786

Best hyperparameters:

num_round: 454

alpha: 0.40652589353810326 base_score: 0.8480874400205671

booster: gbtree

colsample_bylevel: 0.8469354484548803 colsample_bynode: 0.9995135598162135 colsample_bytree: 0.9891525620754378

eta: 0.27890538121311964

eval_metric: auc

gamma: 0.9890045644329901

grow_policy: depthwise

lambda: 8.316565190053003

max_bin: 264

max_delta_step: 9 max_depth: 6 max_leaves: 47

min_child_weight: 1.3266241122837017

objective: binary:logistic

scale_pos_weight: 8.66718236582756

seed: 775

subsample: 0.8855554855188931

verbosity: 3

early_stopping_rounds: 31

6_3. 보팅

○ 6_3_1. 조합 생성

■ 사용 모델

- LightGBM, CatBoost, GBC, AdaBoost, XGBoost
- 단일 모델부터 최대 5개 모델의 조합까지, 모든 경우의 수를 생성
 - 총 31개의 조합에 대해 소프트 보팅 방식으로 평가 진행

○ 6_3_2. 가중치 생성

- 각 모델의 ROC AUC 점수 기반 가중치 생성
 - 가중치 계산
 - 。 전체 모델 ROC AUC 점수 합산하여 전체 점수 계산
 - 。 각 모델의 가중치
 - 해당 모델 ROC AUC score / 전체 모델 ROC AUC 점수 합산

■ 단일 모델 점수

• LightGBM: 0.8894890596238593

CatBoost: 0.8894422429062463

• GBC: 0.8881716017412291

• AdaBoost: 0.8874794558932251

• XGBoost: 0.8877248497094786

■ 생성된 가중치

LightGBM: 0.20020323686045985

• CatBoost: 0.2002236029565053

• GBC: 0.19993756712432656

AdaBoost: 0.1997676898433026

• XGBoost: 0.19983699814175504

6_4. 보팅 최적 모델

- 。 모델
 - LightGBM + AdaBoost + CatBoost
- 。 성능
 - Best AUC: 0.8897
- Fold AUCs
 - 0.887680390844541

- **0.8901420151662042**
- **0.8925261036359157**
- **0.8896599080597734**
- **0.8885884801161994**

。 가중치

- 0.20023414193411043
- **0.1997676898433026**
- **0.2002236029565053**

7. 최종 모델 선정

• Kaggle 점수 기반 판단

	중요도 반영 전	중요도 반영 후 🗸
Colab ROC Score	0.8905	0.8907
Kaggle Roc Score_Private	0.88829	0.88871
Kaggle Roc Score_Public	0.88581	0.88589