

Eletrônica Digital I

Capítulo VI Flip- Flop

Aula D – Elementos de memória Tipos de Flip-flop, funcionamento

Prof. MSc. Bruno de Oliveira Monteiro Engenheiro de Telecomunicações

Flip-flop RS:

Vimos que um flip-flop difere de um latch por ser disparado por borda, enquanto o latch é disparado por nível.

O circuito interno, o bloco lógico e a tabela verdade de um Flipflop RS são mostrados a seguir:

Circuito Interno de um Flip-flop RS

Flip-flop RS:

S R	CLK	Q _f
0 0		Q _a
0 1	↑	0
1 0	↑	1
1 1	1	Х

Tabela Verdade

Flip-flop RS disparado na borda de subida do clock

Flip-flop RS:

S	R	CLK	Q_f
0	0	\rightarrow	Q_a
0	1	\rightarrow	0
1	0	\downarrow	1
1	1	\downarrow	Х

Bloco Lógico

Tabela Verdade

Flip-flop RS disparado na borda de descida do clock

Flip-flop JK:

O Flip-flop JK utiliza um flip-flop RS realimentado com na figura abaixo.

Flip-flop JK

Flip-flop JK:

No Flip-flop JK, as entradas "J" e "K" controlam o estado lógico do FF, de maneira análoga às entradas "S" e "R" de um flip-flop RS. Entretanto, no FF JK a condição J = K = 1 não gera uma saída ambígua como ocorre para o FF RS quando S = R = 1. Como veremos a seguir, no FF JK a condição de J = K = 1 provoca uma comutação no seu estado lógico no instante em que ocorre a borda de transição do sinal de clock. Esse modo de operação, denominado **modo de comutação** (*toggle mode*) torna o FF JK muito mais versátil que o FF RS.

Um FF JK faz tudo o que um FF RS pode fazer, além de operar no modo comutação.

Flip-flop JK:

J	K	Q _a	$\overline{\mathbf{Q}_{a}}$	S R	Q _f
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Circuito Interno de um Flip-flop JK

Flip-flop JK:

Flip-flop JK

	\mathbf{Q}_{f}	R	S	$\overline{\mathbf{Q}}_{a}$	Q _a	K	J
	\mathbf{Q}_{a}	0	0	1	0	0	0
$ begin{pulse} \mathbf{Q_a} \\ \mathbf{Q_a} \\ \end{bmatrix}$	Q a	0	0	0	1	0	0
	$\mathbf{Q}_{\mathrm{a}} \left(\mathbf{Q}_{\mathrm{a}} = 0 \right)$	0	0	1	0	1	0
0	0	1	0	0	1	1	0
	1	0	1	1	0	0	1
1	\mathbf{Q}_{a} (\mathbf{Q}_{a} = 1)	0	0	0	1	0	1
	$\overline{\mathbf{Q}}_{a}$	0	1	1	0	1	1
$\left.\right\}$ \mathbf{Q}_{a}	$\overline{\mathbf{Q}}_{a}$	1	0	0	1	1	1

Tabela Verdade

(CLK = 1)

Flip-flop JK:

Bloco	Lógico
	3

J K	CLK	\mathbf{Q}_{f}
0 0	←	\mathbf{Q}_{a}
0 1		0
1 0	↑	1
1 1	↑	Q _a

Tabela Verdade

Flip-flop JK disparado na borda de subida do clock

Flip-flop JK:

0 0	\rightarrow	\mathbf{Q}_{a}
0 1	\rightarrow	0
1 0	\rightarrow	1
1 1	\rightarrow	$\overline{\mathbf{Q}}_{a}$

CLK

Bloco Lógico

Tabela Verdade

Flip-flop JK disparado na borda de descida do clock

Exercício 1: Determine a forma de onda na saída de um FF JK disparado pela borda de subida, considerando que em suas entradas sejam aplicadas os sinais abaixo. Adote inicialmente que a saída Q=1.

Resposta Exercício 1

J K	CLK	\mathbf{Q}_{f}
0 0		\mathbf{Q}_{a}
0 1	↑	0
1 0		1
1 1	↑	Q _a

Tabela Verdade

Flip-flop JK com Entradas *Preset* e *Clear* :

Flip-flop JK com Entradas Preset e Clear:

CLR	PRE	\mathbf{Q}_{f}
0	0	
0	1	
1	0	
1	1	

Flip-flop JK com Entradas Preset e Clear:

As entradas **Pre**set (**PRE**) e **Clear** (**CLR**) são utilizadas para colocar o FF no estado "1" ou "0", em qualquer instante, independentemente das condições das outras entradas.

Vemos que se PRE = 0, Q = 1 e se CLR = 0, Q = 1, logo,

 $\mathbf{Q} = 0$. Para $\mathbf{PRE} = \mathbf{CLR} = 1$, o FF funciona normalmente e para $\mathbf{PRE} = \mathbf{CLR} = 0$ a resposta será ambígua, pois teremos $\mathbf{Q} = \overline{\mathbf{Q}} = 1$.

Portanto, as entradas Preset e Clear não podem assumir valor "0" simultaneamente.

Flip-flop JK com Entradas *Preset* e *Clear* :

Os círculos na simbologia do bloco indicam que as entradas PRE e CLR são ativas em "0". Para que elas se tornem ativas em '1", basta introduzir inversores no circuito interno do FF e eliminar os círculos da simbologia do bloco lógico.

Flip-flop JK com Entradas *Preset* e *Clear* (invertidas):

Flip-flop JK com Entradas *Preset* e *Clear* (invertidas):

CLR	PRE	\mathbf{Q}_{f}
0	0	
0	1	
1	0	
1	1	

Flip-flop JK com Entradas *Preset* e *Clear* (invertidas):

Vemos que se PRE = 1, $\mathbf{Q} = 1$ e se $\mathbf{CLR} = 1$, $\overline{\mathbf{Q}} = 1$, logo,

 $\mathbf{Q} = 0$. Para $\mathbf{PRE} = \mathbf{CLR} = 0$, o FF funciona normalmente e para $\mathbf{PRE} = \mathbf{CLR} = 1$ a resposta será ambígua, pois teremos $\mathbf{Q} = \overline{\mathbf{Q}} = 1$.

Portanto, as entradas Preset e Clear não podem assumir valor "1" simultaneamente.

Flip-flop JK com Entradas Preset e Clear:

Na simbologia do bloco indicam que as entradas PRE e CLR são ativas em "1".

Resumo das entradas Preset e Clear

CLR	PRE	\mathbf{Q}_{f}
0	0	Não Permitido
0	1	0
1	0	1
1	1	Funcionamento Normal

Tabela Verdade

CLR	PRE	\mathbf{Q}_{f}
0	0	Funcionamento Normal
0	1	1
1	0	0
1	1	Não Permitido

Tabela Verdade

Flip-flop T (Toggle):

O Flip-flop T é obtido a partir do FF JK Mestre-Escravo, bastando, para tal, curto-circuitar as entradas "J" e "K", como ilustrado abaixo.

J	K	Т	\mathbf{Q}_{f}
0	0		
0	1		
1	0		
1	1		$\overline{\mathbf{Q}}_{a}$

Flip-flop JK Mestre-Escravo funcionando como Flip-flop T

Flip-flop T (*Toggle*): Característica: T = 1 complementa a saída. Usado em contadores assíncronos.

J	K	Т	\mathbf{Q}_{f}
0	0	0	Q _a
0	1	Não Existe	-
1	0	Não Existe	-
1	1	1	Q _a

Т	\mathbf{Q}_{f}
0	Q _a
1	$\overline{\mathbf{Q}}_{a}$

Flip-flop JK Mestre-Escravo funcionando como Flip-flop T

Flip-flop D (Data):

O Flip-flop D é obtido a partir do FF JK Mestre–Escravo com a entrada "K" invertida em relação à entrada "J", como ilustrado abaixo.

J	K	D	\mathbf{Q}_{f}
0	0		
0	1		
1	0		
1	1		

Flip-flop JK Mestre-Escravo funcionando como Flip-flop D

Flip-flop D (*Data*): Característica: armazena o dado aplicado à entrada D. Usado em registradores de deslocamento e em outros sistemas de memória.

J	K	D	\mathbf{Q}_{f}
0	0	Não Existe	ı
0	1	0	0
1	0	1	1
1	1	Não Existe	ı

D	Q _f
0	0
1	1

Flip-flop JK Mestre-Escravo funcionando como Flip-flop D

Resumo dos tipos de FFs

J	K	\mathbf{Q}_{f}
0	0	\mathbf{Q}_{a}
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}_{a}$

S	R	Q_f
0	0	Q_a
0	1	0
1	0	1
1	1	Х

Η	Q _f
0	\mathbf{Q}_{a}
1	Q _a

D	Q _f
0	0
1	1

Exercício 1: Dadas as formas de onda de entrada de um flip-flop T, mostradas abaixo, determine as formas de onda em suas saídas.

Exercício 2: Dadas as formas de onda de entrada de um flip-flop D, mostradas abaixo, determine as formas de onda em suas saídas.

Bons Estudos

Prof. MSc. Bruno de Oliveira Monteiro Engenheiro de Telecomunicações

