Machine Learning com Python

Prof. Luciano Galdino

Distribuições de probabilidades

Variáveis aleatórias: são variáveis quantitativas cujos valores estão associados a fatores aleatórios.

- 1) Variável aleatória discreta: número contável de possíveis resultados ou atributos (Ex.: Número de pessoas em uma sala, número de gols em uma partida, número de filhos...).
- 2) Variável aleatória contínua: número incontável de possíveis resultados ou atributos(Ex.: intervalo de tempo, temperatura, altura...).

Distribuições de probabilidades discretas

Lista cada valor possível que a variável aleatória pode assumir, assim como a sua probabilidade.

Condições:

- 1) Probabilidade cada valor é entre 0 e 1: $0 \le P(x) \le 1$.
- 2) A soma das probabilidades deve ser igual a 1: $\Sigma P(x)$ = 1

Representação das distribuições de probabilidades discretas

Classifica ção (x)	Frequên cia (f)	P(x)	
1	24	0,16	
2	33	0,22	
3	42	0,28	
4	30	0,20	
5	21	0,14	
Soma	150	1	

Média de variáveis discretas

Representa a média teórica de um experimento de probabilidade.

$$\mu = \sum x.P(x)$$

Classifica ção (x)	Frequên cia (f)	P(x)	x.P(x)
1	24	0,16	1.0,16
2	33	0,22	2.0,22
3	42	0,28	3.0,28
4	30	0,20	4.0,20
5	21	0,14	5.0,14
Soma	150	1	$\mu = 2,94$

Valor esperado de uma variável aleatória é igual a média e pode ser negativa.

$$E(x)=\mu$$

Variância de variáveis discretas: — \(\sum_{i} \)

Desvio padrão de variáveis discretas:

Classificaçã o (x)	Frequênci a (f)	P(x)	x.P(x)	(x - μ) ²	P(x). (x - μ) ²
1	24	0,16	1.0,16	3,764	0,602
2	33	0,22	2.0,22	0,884	0,194
3	42	0,28	3.0,28	0,004	0,001
4	30	0,20	4.0,20	1,124	0,225
5	21	0,14	5.0,14	4,244	0,594
Soma	150	1	μ=2,9		$\sigma^2 =$
	1,616				

Distribuição Binomial

Possibilidade de apenas dois resultados.

Tentativas idênticas e independentes.

$$P(x) = \frac{n!}{(n-x)! \, x!} p^x \, q^{n-x} \qquad 4! = 4.3.2.1 = 24$$
$$5! = 5.4.3.2.1 = 120$$

Fatorial:

n = número de tentativas ou amostras.

p = probabilidade de sucesso em uma tentativa.

q = probabilidade de fracasso em uma tentativa.

x = variável aleatória que representa a contagem do número de sucessos.

Distribuição Geométrica

Probabilidade de repetidas tentativas até que o sucesso ocorra.

Tentativas independentes.

A probabilidade de sucesso é constante para todas as tentativas.

$$P(\mathbf{x}) = p i$$

p = probabilidade de sucesso em uma tentativa.

q = probabilidade de fracasso em uma tentativa.

x = variável aleatória que representa o número de falhas até o sucesso.

Distribuição de Poisson

Número de vezes que um evento ocorre num determinado intervalo (tempo, área ou volume).

Probabilidade do evento ocorrer é a mesma para cada intervalo. Número de ocorrências nos intervalos são independentes.

$$P(x) = \frac{\mu^x e^{-\mu}}{x!}$$

 μ = número médio de ocorrências (frequência).

x = número de ocorrência num dado intervalo.