MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

minden vizsgázó számára

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI HIVATAL

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha az útmutatóban egy **megjegyzés** zárójelben szerepel, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. **Mértékegység hiánya esetén** csak akkor jár pontlevonás, ha a hiányzó mértékegység válaszban vagy mértékegység-átváltásban szerepel (zárójel nélkül).
- 7. Egy feladatra adott többféle megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 10. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 11. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás,
$$n!$$
, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 12. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 13. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 14. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 15. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

2313 írásbeli vizsga 3 / 20 2023. május 9.

I.

1. a)		
Értelmezési tartomány: R ⁺ .	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
(A logaritmus azonossága alapján) $\log_3 x(x+2) = 1$	1 pont	$\log_3 x(x+2) = \log_3 3$
(A logaritmus definíciója miatt) $x(x + 2) = 3$.	1 pont	(A logaritmusfüggvény kölcsönösen egyértelmű, ezért) $x(x + 2) = 3$.
$x^2 + 2x - 3 = 0$	1 pont	
x = -3 vagy x = 1.	1 pont	
A –3 nem eleme az értelmezési tartománynak, ezért nem megoldás.	1 pont	Ez a 2 pont akkor is jár,
Az 1 eleme az értelmezési tartománynak, és (az értelmezési tartományon) ekvivalens átalakításokat végeztünk, tehát az 1 megoldás.	1 pont	ha a vizsgázó behelyette- sítéssel ellenőriz.
Összesen:	7 pont	

1. b) első megoldás		
A $\sin^2 x + \cos^2 x = 1$ azonosság felhasználásával $4(1-\cos^2 x) - 16\cos^2 x = -1$.	1 pont	$4\sin^2 x - 16(1-\sin^2 x) = -1$
$20\cos^2 x = 5$ $\cos^2 x = \frac{1}{4}$	1 pont	$20\sin^2 x = 15$ $\sin^2 x = \frac{3}{4}$
Első eset: $\cos x = \frac{1}{2}$.	1 pont	$\sin x = \frac{\sqrt{3}}{2}$
$x = \frac{\pi}{3} + 2k\pi \text{ vagy } x = -\frac{\pi}{3} + 2k\pi, \ k \in \mathbb{Z}.$	1 pont	$x = \frac{\pi}{3} + 2k\pi \ vagy$ $x = \frac{2\pi}{3} + 2k\pi, \ k \in \mathbb{Z}.$
Második eset: $\cos x = -\frac{1}{2}$.	1 pont	$\sin x = -\frac{\sqrt{3}}{2}$
$x = \frac{2\pi}{3} + 2k\pi \text{ vagy } x = -\frac{2\pi}{3} + 2k\pi, \ k \in \mathbf{Z}.$	1 pont	$x = -\frac{\pi}{3} + 2k\pi \ vagy$ $x = -\frac{2\pi}{3} + 2k\pi, \ k \in \mathbb{Z}.$
Ekvivalens átalakításokat végeztünk, ezért mindegyik kapott szám megoldása az eredeti egyenletnek.	1 pont	
Összesen:	7 pont	

1. b) második megoldás		
A $\sin^2 x + \cos^2 x = 1$ azonosság felhasználásával		
$4\sin^2 x - 16\cos^2 x = -(\sin^2 x + \cos^2 x).$	1 pont	
$5\sin^2 x = 15\cos^2 x$		
Mivel $\cos x = 0$ nem lehetséges		
(mert akkor $\sin^2 x = 1$ lenne),	1 pont	
ezért $\frac{\sin^2 x}{\cos^2 x} = 3$, vagyis $tg^2 x = 3$.	1 point	
Első eset: $\operatorname{tg} x = \sqrt{3}$.	1 pont	
$x = \frac{\pi}{3} + k\pi, \ k \in \mathbf{Z}$	1 pont	
Második eset: tg $x = -\sqrt{3}$.	1 pont	
$x = -\frac{\pi}{3} + k\pi, \ k \in \mathbf{Z}$	1 pont	
Ekvivalens átalakításokat végeztünk, ezért mindegyik kapott szám megoldása az eredeti egyenletnek.	1 pont	
Összesen:	7 pont	

Megjegyzések:

- 1. Ha a vizsgázó a megoldásokat fokban helyesen adja meg, akkor legfeljebb 6 pontot kaphat.
- 2. Ha a vizsgázó válaszát periódus nélkül adja meg, akkor legfeljebb 5 pontot kaphat.
- 3. Ha a vizsgázó periódussal adja meg az egyenlet megoldásait, de a $k \in \mathbb{Z}$ feltételt egyszer sem említi, akkor legfeljebb 6 pontot kaphat.

2. a) első megoldás		
1 gallon üzemanyaggal 25,4 mérföld, azaz $25,4 \cdot 1,61 \approx 40,89$ km tehető meg.	1 pont	
Ezért 100 km megtételéhez $100:40,89\approx2,45$ gallon üzemanyag szükséges.	1 pont	
Ez $2,45 \cdot 3,79 \approx 9,29$ liter,	1 pont	
tehát (a kért kerekítéssel) 9,3 liter/100 km az átlagfogyasztás.	1 pont	
Összesen:	4 pont	

2. a) második megoldás		
(Mivel 1 gallon \approx 3,79 liter, ezért) 1 liter üzemanyaggal 25,4:3,79 \approx 6,70 mérföld,	1 pont	
azaz $6,70 \cdot 1,61 \approx 10,79$ km tehető meg.	1 pont	
Ezért a 100 km megtételéhez szükséges üzemanyag $100:10,79\approx 9,27$ liter,	1 pont	
tehát (a kért kerekítéssel) 9,3 liter/100 km az átlagfogyasztás.	1 pont	
Összesen:	4 pont	

2. b)		
Ha a rendszám két magánhangzóval kezdődik:	1 pont*	
5.5 = 25 eset.	1 point	
Ha a rendszám két mássalhangzóval kezdődik		
(az összes elvileg lehetséges esetből a felsorolt nem	2 mont*	
előforduló esetek számát kivonva):	2 pont*	
$21 \cdot 21 - 7 $ (= 434) eset.		
Ez összesen $25 + 434 = 459$ lehetőség.	1 pont*	
A rendszám további része 26 · 26 · 999	1	
(= 675 324)-féleképpen folytatható.	1 pont	
Tehát összesen $459 \cdot 675\ 324 = 309\ 973\ 716\ rend-$	1	
szám felel meg az összes feltételnek.	1 pont	
Összesen:	6 pont	

Megjegyzés: A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Komplementer módszerrel számolva:		
26 · 26 (= 676)-féleképpen lehet az első és a második	1 pont	
betűt megválasztani.		
Ezek közül nem megfelelő, ha: 1) az első helyen magánhangzó, a második helyen pedig mássalhangzó áll, ez 5·21 (= 105) eset; 2) az első helyen mássalhangzó, a második helyen pedig magánhangzó áll, ez 21·5 (= 105) eset; 3) a letiltott kétjegyű betűk valamelyikével kezdődik a rendszám, ez 7 eset.	2 pont	
Ez összesen $676 - (2 \cdot 105 + 7) = 459$ lehetőség.	1 pont	

2. c)		
С	2 pont	Nem bontható.
Összesen:	2 pont	

3. a)		
A trapéz szárainak hossza:	2 4	
$BC = \sqrt{36^2 + 11^2} \approx 37.6 \text{ m}, AD = \sqrt{8^2 + 11^2} \approx 13.6 \text{ m}.$	2 pont	
A kert kerülete $36 + 37,6 + 8 + 13,6 = 95,2$ m.	1 pont	
A kert területe $\frac{36+8}{2} \cdot 11 = 242 \text{ m}^2$.	1 pont	$T = \frac{36 \cdot 11}{2} + \frac{8 \cdot 11}{2} = 242 \text{ m}^2$
Összesen:	4 pont	

3. b)		
A henger alakú kút sugara 0,05 méter.	1 pont	
Ha a kút mélysége (a henger magassága) h méter, akkor a kút térfogata: $0.1 = 0.05^2 \cdot \pi \cdot h$.	1 pont	
$h \approx 12,7$ (méter mély a kút).	1 pont	
Összesen:	3 pont	

3. c) első megoldás		
D E M X Y A	1 pont	
Az <i>AME</i> háromszög hasonló az <i>ACD</i> háromszöghöz (mert szögeik egyenlők), így $\frac{x}{y} = \frac{8}{11}$. A <i>CMF</i> háromszög hasonló a <i>CAB</i> háromszöghöz (mert szögeik egyenlők), így $\frac{x}{11-y} = \frac{36}{11}$.	2 pont	A CAD szögben a párhuzamos szelőszakaszok tétele alapján $\frac{x}{8} = \frac{y}{11}$. Az ACB szögben a párhuzamos szelőszakaszok tétele alapján $\frac{x}{36} = \frac{11-y}{11}$.
Behelyettesítve az első aránypárból kapott $x = \frac{8y}{11} \text{ kifejezést: } \frac{\frac{8y}{11}}{11-y} = \frac{36}{11}.$	1 pont	
8y = 36(11 - y)	1 pont	
y = 9, tehát a keresett távolság 9 (méter).	1 pont	
	6 pont	

3. c) második megoldás		
(Az e egyenes az AC átlót az M pontban metszi. A feltétel szerint $EM = MF = x$. Keressük az $AM = y$ távolságot.)	1 pont	
Az ábrán jelölt α és β szögek tangensei az ABC , illetve az ADC háromszögben: $tg \alpha = \frac{11}{36} \text{ és } tg \beta = \frac{11}{8}.$	1 pont	$\alpha = 16,99^{\circ}$ $\beta = 53,97^{\circ}$
Az MFC , illetve az AEM háromszögben a tangensek segítségével felírható: $x \cdot tg \alpha + x \cdot tg \beta = 11$.	1 pont	
$\frac{11}{36}x + \frac{11}{8}x = 11$	1 pont	
$x = \frac{72}{11}$	1 pont	
$y = \frac{72}{11} \cdot \frac{11}{8} = 9$, tehát a keresett távolság 9 (méter).	1 pont	
	6 pont	

4. a) első megoldás		
A számtani sorozat első 20 tagjának összege		
$\frac{a_1 + 108}{2} \cdot 20 = 1115.$	1 pont	
$a_1 + 108 = 111,5$, így a sorozat első tagja: $a_1 = 3,5$.	2 pont	
(Mivel $a_{20} = a_1 + 19d$, így) a sorozat differenciája:		
$d = \frac{108 - 3.5}{19} =$	1 pont	
= 5,5.	1 pont	
Összesen:	5 pont	

4. a) második megoldás		
A számtani sorozat 20. tagja: $a_1 + 19d = 108$.	1 pont	
Az első 20 tag összege: $\frac{2a_1 + 19d}{2} \cdot 20 = 1115$.	1 pont	
$a_1 = 108 - 19d$ -t behelyettesítve és 10-zel osztva: 2(108 - 19d) + 19d = 111,5.	1 pont	
Innen $d = 5,5$.	1 pont	
$a_1 = (108 - 19 \cdot 5, 5 =) 3,5$	1 pont	
Összesen:	5 pont	

4. b)		
(A sorozat tagjai 3, 3 · 3, 3 · 3^2 , így) az első n tag szorzata: $3 \cdot 3^2 \cdot 3^3 \cdot \cdot 3^n = 3^{435}$.	1 pont	
(A hatványozás azonossága miatt) $3^{1+2++n} = 3^{435}$.	1 pont	
(Az exponenciális függvény kölcsönösen egyértelmű, ezért) $1 + 2 + + n = 435$.	1 pont	
Az első <i>n</i> egész szám összege: $\frac{n(n+1)}{2} = 435$.	1 pont	
$n^2 + n - 870 = 0$	1 pont	
n = -30 vagy n = 29.	1 pont	
$(n \in \mathbb{Z}^+ \text{ miatt})$ az n értéke 29 (ami valóban megfelel).	1 pont	
Összesen:	7 pont	

II.

5. a)		
A $Kocka 2 + 3 = 5$ pontot, $A k\ddot{o}r 1 + 2 = 3$ pontot, a $K\acute{e}plet$ pedig $3 + 1 = 4$ pontot kapna.	1 pont	
A kör című filmet néznék meg.	1 pont	
Összesen:	2 pont	

5. b)		
A három filmre adott pontszámok összege 12,	1 pont	
tehát mindhárom filmnek 4 pontot kell kapnia.	1 point	
(Pontegyenlőség pontosan akkor lehetséges, ha		
az egyik film Palitól 1 pontot és Lillától 3 pontot kap;		
egy másik film Palitól és Lillától is 2 pontot kap;	1	
a harmadik film Palitól 3 és Lillától 1 pontot kap.)	1 pont	
Tehát a Pali által adott pontszámok egyértelműen		
meghatározzák a Lilla által adott pontszámokat.		
Pali az 1, 2, 3 pontszámokat 3! = 6-féleképp oszthatja	1	
ki a három film között, tehát 6 ilyen eset van.	1 pont	
Összesen:	3 pont	

Megjegyzés: Ha a vizsgázó felsorolja a megfelelő lehetőségeket, és ez alapján helyesen válaszol, akkor teljes pontszámot kapjon.

5. c) első meg	oldás							
Feltehetjük, hogy Pali a Kocka című filmnek 1,								
	A kör-nek 2, a Képlet-nek pedig 3 pontot adott. Lilla 6-féleképpen pontozhat, megvizsgáljuk, hogy az						1 pont	
egyes esetekber				vizsga	iijuk, i	nogy az	_	
P	L	L	L	L	L	L		
Kocka: 1	1	1	2	2	3	3		
A kör: 2	2	3	1	3	1	2	1 nont	
Képlet: 3	3	2	3	1	2	1	4 pont	
Összegek	2,4,6	2,5,5	3,3,6	3,5,4	4,3,5	4,4,4		
Filmnézés	I	I	N	I	I	N		
(Mivel Pali bárr	nely p	ontso	rendje	eseté	n a 6 1	ehetsé-		
ges esetből 4-ben néznek filmet, ezért) a kérdezett				1				
valószínűség $\frac{4}{6} = \frac{2}{3}$.				1 pont				
6	3							
					Ös	szesen:	6 pont	

5. c) második megoldás		
(A pontszámokat Pali is és Lilla is $3! = 6$ -féleképpen oszthatja ki.) Az összes eset száma $6 \cdot 6 = 36$.	1 pont	
A megnézendő film pontösszege csak 2 vagy 3 lehet.	1 pont	

I. eset (az összeg 2): Ekkor az egyik film mindkettőjüktől 1 pontot kap. Ekkor a másik két film $2 \cdot 2 = 4$ féleképpen kaphatja meg a maradék pontokat. Mivel a megnézendő film 3-féle lehet, ez $4 \cdot 3 = 12$ lehetőség.	1 pont	
II. eset (az összeg 3): Ekkor a megnézendő film például Palitól 1 pontot, Lillától pedig 2 pontot kap. Mivel több film nem kaphat 3 pontot, ezért amelyik film Lillától 1 pontot kap (ez 2-féle film lehet), annak Palitól 3-at kell kapnia. A harmadik film pontszámai ezek után egyértelműek. Mivel Pali és Lilla szerepe felcserélhető, és a megnézendő film 3-féle lehet, ez 2·2·3 = 12 lehetőség. (A kedvező esetek száma tehát 12 + 12 = 24.)	2 pont	
A kérdezett valószínűség így $\frac{12+12}{36} = \frac{2}{3}$.	1 pont	
Összesen:	6 pont	

5. c) harmadik megoldás		
(A pontszámokat Pali is és Lilla is 3! = 6-féleképpen	1 pont	
oszthatja ki.) Az összes eset $6 \cdot 6 = 36$ lehetőség.	1 point	
Komplementer módszerrel dolgozva: abban az eset-		
ben nem néznek filmet, ha a pontszámokban az első		
helyen holtverseny van.	1 pont	
Ekkor a kapott pontösszegek a következők lehetnek:		
4, 4, 4 vagy 3, 3, 6 (valamilyen sorrendben).		
I. eset (4, 4, 4): Ekkor az egyik film mindkettőjüktől		
2 pontot kap. A másik két film az egyiktől 1 pontot,		
a másiktól pedig 3 pontot kap.		
Az a film, amelyik mindkettőjüktől 2 pontot kap,	1 pont	
3-féle lehet, a másik két film pedig 2-féleképpen kap-	_	
hatja meg a maradék pontokat.		
Ez $3 \cdot 2 = 6$ lehetőség.		
II. eset (3, 3, 6): Ekkor az egyik film mindkettőjüktől		
3 pontot kap. A másik két film az egyiktől 1 pontot,		
a másiktól pedig 2 pontot kap.		
Az a film, amelyik mindkettőjüktől 3 pontot kap,	1 pont	
3-féle lehet, a másik két film pedig 2-féleképpen kap-	_	
hatja meg a maradék pontokat.		
Ez $3 \cdot 2 = 6$ lehetőség.		
Annak a valószínűsége tehát, hogy nem néznek fil-		
	1 pont	
met, $\frac{6+6}{36} = \frac{1}{3}$.	1	
A kérdezett valószínűség így $\left(1 - \frac{1}{3} = \right) \frac{2}{3}$.	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó rendezetten (például az alábbihoz hasonló táblázat alapján) felsorolja a megfelelő lehetőségeket, és ez alapján helyesen válaszol, akkor teljes pontszámot kapjon.

A táblázatban a filmek sorrendje Kocka, A kör, Képlet. Az első sorban vannak a Pali által, az első oszlopban pedig a Lilla által adott pontszámok a filmek sorrendjében. A többi cellában a pontszámok összegei vannak a filmek sorrendjében. A szürke hátterű cellákban a félkövér betűtípussal kiemelt pontösszegű filmet nézi meg Pali és Lilla. A fehér hátterű cellákban a két legkisebb pontösszeg egyenlő, ekkor nem néznek filmet.

Pali/ Lilla	123	132	213	231	312	321
123	2 46	2 55	336	3 54	435	444
132	2 55	2 64	3 45	363	444	453
213	336	3 45	4 2 6	444	5 2 5	534
231	3 54	363	444	46 2	543	55 2
312	435	444	5 2 5	543	6 2 4	633
321	444	453	534	55 2	633	642

5. d)		
A 83 értékelés összege $83 \cdot 5 = 415$.	1 pont	
46 darab 1-es értékelés esetén a maradék 37 értékelés összege $415 - 46 = 369$.	1 pont	
Ez az összeg csak úgy adódhat, ha 36 darab 10-es értékelés mellett 1 darab 9-es értékelést kapott a film.	1 pont	
A szórás: $\sqrt{\frac{46 \cdot (1-5)^2 + (9-5)^2 + 36 \cdot (10-5)^2}{83}} = \sqrt{\frac{1652}{83}} \approx$	1 pont	Ez a pont akkor is jár, ha a vizsgázó számológéppel helyesen számol.
≈ 4,46.	1 pont	
Összesen:	5 pont	

2313 írásbeli vizsga 12 / 20 2023. május 9.

6. a)		
(A test a 6 cm-es él felezőpontján átmenő függőleges síkra szimmetrikus, ezért) csak kétféle hosszúságú testátló van.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A rövidebb testátló hossza (egy $6 \times 8 \times 2$ cm élű téglatest testátlója:) $\sqrt{6^2 + 8^2 + 2^2}$ (= $\sqrt{104}$) ≈ 10.2 cm.	1 pont	2 6 8
A hosszabb testátló hossza (egy $6 \times 8 \times 5$ cm élű téglatest testátlója:) $\sqrt{6^2 + 8^2 + 5^2} (= \sqrt{125}) \approx 11,2$ cm.	1 pont	5
Összesen:	3 pont	

6. b) első megoldás		
A téglalap területe, amelyből a test hálója kivágható:	1 pont	
$(15 \cdot 16 =) 240 \text{ cm}^2.$	1	
A test hálójában		
a 3 téglalap együttes területe $(6 \cdot 15 =) 90 \text{ cm}^2$,	1 pont	
a két trapéz területe együtt $(8 \cdot 7 =) 56 \text{ cm}^2$.		
A test hálójának területe $(90 + 56 =) 146 \text{ cm}^2$,	1 pont	
ez a téglalap területének (146:240 ≈) 60,8%-a,	1 pont	
tehát 39,2% hulladék keletkezik.	1 pont	
Összesen:	5 pont	

6. b) második megoldás		
A téglalap területe, amelyből a test hálója kivágható: $(15 \cdot 16 =) 240 \text{ cm}^2$.	1 pont	
A hulladék összetevői: két 5 cm oldalú négyzet, melyek összterülete 50 cm²; két 2×5 cm-es téglalap, melyek összterülete 20 cm²; két derékszögű háromszög, melyek befogói 3 cm és 8 cm hosszúak, ezek összterülete 24 cm².	2 pont	
A hulladék területe összesen $(50 + 20 + 24 =) 94 \text{ cm}^2$,	1 pont	
tehát (94:240 ≈) 39,2% hulladék keletkezik.	1 pont	
Összesen:	5 pont	_

6. c) első megoldás			
Az 50 cm²-es téglalap oldalai x cm és $\frac{50}{x}$ cm hoszszúak, és az x cm-es oldal legyen párhuzamos a kartonlap felső és alsó élével $(x > 0)$.	1 pont	$ \begin{array}{c c} \hline & 4 \text{ cm} \\ \hline & 2 \text{ cm} \\ \hline & 50 \text{ cm}^2 \end{array} $	
A kartonlap területe $(x+4) \cdot \left(\frac{50}{x} + 8\right) = 82 + 8x + \frac{200}{x} \text{ cm}^2.$ A $T: \mathbf{R}^+ \to \mathbf{R}; T(x) = 82 + 8x + \frac{200}{x}$ függvénynek	2 pont		
A $T: \mathbf{R}^+ \to \mathbf{R}; T(x) = 82 + 8x + \frac{200}{x}$ függvénynek ott lehet minimuma, ahol a deriváltja 0.	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.	
$T'(x) = 8 - \frac{200}{x^2} = 0$	1 pont*		
Innen $x = 5$ (mert $x > 0$).	1 pont*		
$T''(x) = \frac{400}{x^3}$, tehát $T''(5) > 0$. A függvénynek ezért az 5 (lokális és egyben abszolút) minimumhelye.	1 pont*	Ha $x < 5$, akkor $T' < 0$, ha $x > 5$, akkor $T' > 0$, ezért az 5 abszolút mini- mumhelye a T -nek.	
Mivel $\frac{50}{x} = \frac{50}{5} = 10$, ezért a legkisebb területű kartonlap méretei $(5 + 2 \cdot 2 =) 9$ cm, illetve $(10 + 2 \cdot 4 =) 18$ cm.	1 pont		
Osszesen:	8 pont		

Megjegyzés: A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

megjegyzes. 11 garjeron i pomoi az arassi gonastam	enterent is i	11051101911011901 01 11255020.
A $82+8x+\frac{200}{x}$ összeg második és harmadik tagjára alkalmazva a számtani és mértani közép közötti egyenlőtlenséget: $82+8x+\frac{200}{x} \ge 82+2\cdot\sqrt{8x\cdot\frac{200}{x}} = 82+80=162.$	2 pont	
Egyenlőség pontosan akkor teljesül, ha $8x = \frac{200}{x}$,	1 pont	
amiből $x^2 = 25$, azaz $x = 5$ (mert $x > 0$).	1 pont	

6. c) második megoldás		
Ha a kartonlap oldalhosszai a cm, illetve b cm, akkor az 50 cm² területű téglalap oldalai $a-4$ cm, illetve $b-8$ cm ($a>4$ és $b>8$).	1 pont	$ \begin{array}{c c} \hline 4 \text{ cm} \\ \hline 2 \text{ cm} \\ \hline 50 \text{ cm}^2 \\ b-8 \\ a-4 \end{array} $
Ekkor $(a-4)(b-8) = 50$.	1 pont	
Ekkor $(a-4)(b-8) = 50$. Ebből $b = \frac{50}{a-4} + 8$, a kartonlap területe pedig $ab = a\left(\frac{50}{a-4} + 8\right) = \frac{50a}{a-4} + 8a.$	1 pont	
A $T:]4; \infty[\rightarrow \mathbf{R}; T(a) = \frac{50a}{a-4} + 8a$ függvénynek ott lehet minimuma, ahol a deriváltja 0.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$T'(a) = 8 - \frac{200}{(a-4)^2} = 0$	1 pont	
Innen $a = 9$ (mert $a > 4$).	1 pont	
Innen $a = 9$ (mert $a > 4$). $T''(a) = \frac{400}{(a-4)^3}$, tehát $T''(9) > 0$. A függvénynek ezért a 9 (lokális és egyben abszolút) minimumhelye.	1 pont	Ha $a < 9$, akkor $T' < 0$, ha $a > 9$, akkor $T' > 0$, ezért a 9 abszolút mini- mumhelye a T -nek.
Ha $a = 9$, akkor $b = 18$, tehát a legkisebb területű kartonlap oldalhosszai 9 cm, illetve 18 cm.	1 pont	
Összesen:	8 pont	

7. a) első megoldás		
A 600 termékből 15 elemű (visszatevés nélküli)		
minta összesen $\binom{600}{15}$ ($\approx 3,014 \cdot 10^{29}$) -féleképpen vá-	1 pont	
lasztható ki (összes eset száma).		
Az 594 nem hibás termékből $\binom{594}{15}$ ($\approx 2,588 \cdot 10^{29}$) - féleképpen választható ki 15 elemű minta (kedvező esetek száma).	1 pont	
Tehát a kérdezett valószínűség $\frac{\binom{594}{15}}{\binom{600}{15}} \approx 0,859.$	1 pont	
Összesen:	3 pont	

7. a) második megoldás		
Annak a valószínűsége, hogy a mintavétel első eleme		
nem hibás, $\frac{594}{600}$. Ezt követően annak a valószínű-	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg-
sége, hogy a mintavétel második eleme nem hibás,	1 point	oldásból derül ki.
$\frac{593}{599}$. És így tovább mind a 15 elemre.		
Tehát a keresett valószínűség: $\frac{594}{600} \cdot \frac{593}{599} \cdot \dots \cdot \frac{580}{586} \approx$	1 pont	
≈ 0,859.	1 pont	
Összesen:	3 pont	

7. b) első megoldás		
Hibás termék választásának valószínűsége 0,005, nem hibás termék választásának valószínűsége 0,995.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
(A komplementer esemény: 0 db vagy 1 db hibás termék van a 15 elemű mintában.) Annak a valószínűsége, hogy nincs hibás termék a mintában: $P(0) = 0.995^{15}$ (≈ 0.9276).	1 pont	
Annak a valószínűsége, hogy pontosan 1 hibás termék van a mintában: $P(1) = {15 \choose 1} \cdot 0,005 \cdot 0,995^{14} \ (\approx 0,0699),$	2 pont	
tehát a kérdezett valószínűség $1 - P(0) - P(1) = 0,0025$.	1 pont	
Ez valóban kisebb 1%-nál.	1 pont	
Osszesen:	6 pont	

7. b) második megoldás		
Hibás termék választásának valószínűsége 0,005, nem hibás termék választásának valószínűsége 0,995.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A kérdezett valószínűség: $\sum_{k=2}^{15} {15 \choose k} \cdot 0,005^k \cdot 0,995^{15-k}.$	1 pont	
Az összeg első tagja:		
$P(2) = {15 \choose 2} \cdot 0,005^2 \cdot 0,995^{13} \ (\approx 0,0025),$	1 pont	
$(P(3) \approx 5,36 \cdot 10^{-5} \text{ kiszámítása és valószínűségi meg-}$		
fontolások alapján arra jutunk, hogy) a fenti 14 tagú összeg minden további tagja kisebb $5,4\cdot10^{-5}$ -nél, ezért az összeg kisebb $(0,0025+13\cdot5,4\cdot10^{-5}=)\ 0,003202$ -nál.	2 pont	
A keresett valószínűség így valóban biztosan kisebb 1%-nál.	1 pont	
Összesen:	6 pont	

Megjegyzések:

1. $A \sum_{k=2}^{15} {15 \choose k} \cdot 0,005^k \cdot 0,995^{15-k}$ összeg első 5 tagja és a megfelelő tagok összege az alábbi

táblázatban látható.

i	$\binom{15}{i} \cdot 0,005^i \cdot 0,995^{15-i}$	$\sum_{k=2}^{i} {15 \choose k} \cdot 0,005^{k} \cdot 0,995^{15-k}$
2	≈ 0,002459	≈ 0,002459
3	$\approx 5,36\cdot 10^{-5}$	≈ 0,002513
4	$\approx 8,07\cdot 10^{-7}$	≈ 0,002514
5	$\approx 8,93\cdot10^{-9}$	≈ 0,002514
6	$\approx 7,48\cdot 10^{-11}$	≈ 0,002514

2. Ha a vizsgázó az a) feladatban rossz modellt használ (visszatevés nélküli helyett visszatevés sest), akkor erre a részfeladatra nem jár pont.

Ha a vizsgázó a b) feladatban rossz modellt használ (visszatevéses helyett visszatevés nélkülit), akkor erre a részfeladatra legfeljebb 2 pontot kaphat.

2313 írásbeli vizsga 17 / 20 2023. május 9.

Γ		
7. c)		
Az adatokat halmazábrán szemléltetve:		
$ \begin{array}{c cccc} T & & & & & & & \\ x & & & & & & & \\ \hline 2y & 0 & z & & & & \\ & & & & & & \\ & & & & & & \\ E & & & & & & \\ \end{array} $	1 pont	
A feladat szövege alapján:		
(1) $x + 3y = 35$; (2) $x + y + z = 40$; (3) $x + 2y + z = 45$.	2 pont	
A (3) egyenletből kivonva a (2) egyenletet kapjuk, hogy $y = 5$.	1 pont	
Ezt behelyettesítve az (1) egyenletbe: $x = 20$.	1 pont	
Végül a (2) egyenletből: 20 + 5 + z = 40, tehát $z = 15$.	1 pont	
Tehát a selejtraktárban $3 \cdot 20 + 3 \cdot 5 + 15 = 90$ selejtes termék van.	1 pont	T 20 5 20 H 20 E
Összesen:	7 pont	
O SSECSCII:	Pont	

8. a)		
$f(g(x)) = 2\sqrt{x} - 1$	1 pont	
$g(f(x)) = \sqrt{2x - 1}$	1 pont	
Így megoldandó a $2\sqrt{x}-1=\sqrt{2x-1}$ egyenlet $(x \ge 1)$. (Mindkét oldal pozitív az értelmezési tartomány miatt.) Négyzetre emelve: $4x-4\sqrt{x}+1=2x-1$.	1 pont	
Rendezve és kettővel osztva: $x+1=2\sqrt{x}$.	1 pont	$x - 2\sqrt{x} + 1 = 0$
(Mindkét oldal pozitív.) Négyzetre emelve: $x^2 + 2x + 1 = 4x$, majd nullára rendezve: $x^2 - 2x + 1 = 0$.	1 pont	$(\sqrt{x} - 1)^2 = 0$
Amiből $x = 1$ (amely eleme mindkét függvény értelmezési tartományának).	1 pont	
Ellenőrzés behelyettesítéssel, vagy (az értelmezési tartományon) ekvivalens átalakításokra hivatkozással.	1 pont	
Összesen:	7 pont	

8. b)		
$\int_{a}^{b} (2x-1)dx = \left[x^2 - x\right]_{a}^{b} =$	1 pont	
$=b^2-b-a^2+a=$	1 pont	
$=b^{2}-a^{2}-(b-a)=(b-a)(b+a)-(b-a)=$ = $(b-a)(b+a-1)$ valóban.	2 pont	
Összesen:	4 pont	

8. c)		
Felhasználjuk, hogy		
$\int_{a}^{b} (2x-1)dx = (b-a)(b+a-1) = 8.$ Mivel $b > a$, ezért $b-a > 0$, tehát $(b+a-1)$ -nek is pozitívnak kell lennie.	1 pont	
Továbbá a és b egészek, tehát mindkét szorzótényező egész, így (a sorrendet is figyelembe véve) a 8 négyféleképpen bontható két tényező szorzatára: $8 = 8 \cdot 1 = 4 \cdot 2 = 2 \cdot 4 = 1 \cdot 8$.	1 pont	
Amiből: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 pont	
Mivel a és b egészek, így két megoldása van a feladatnak: $a = -3$, $b = 5$ vagy $a = 4$, $b = 5$.	1 pont	
Összesen:	5 pont	

9. a)		
A medence tervrajzának x tengely feletti része egy olyan háromszög, amelynek a harmadik csúcsa az $y = x$ és az $y = -2x + 2$ egyenesek metszéspontja.	1 pont	
$x = -2x + 2$, amiből $x = \frac{2}{3}$ és $y = x = \frac{2}{3}$.	1 pont	
A háromszög alakú rész területe tehát $\left(\frac{1}{2} \cdot 1 \cdot \frac{2}{3} = \right) \frac{1}{3}$.	1 pont	
Az x tengely alatti rész területe: $-\int_{0}^{1} (x^{3} - x) dx = -\left[\frac{x^{4}}{4} - \frac{x^{2}}{2}\right]_{0}^{1} =$	1 pont	
$=\frac{1}{4}$.	1 pont	
A tervrajzon a medence területe $\left(\frac{1}{3} + \frac{1}{4} = \right) \frac{7}{12}$ (területegység).	1 pont	
Mivel a tervrajzon 1 egység a valóságban 12 m, ezért 1 területegység a valóságban (12 ² =) 144 m ² .	1 pont	
A medence területe $\frac{7}{12} \cdot 144 = 84 \text{ m}^2 \text{ lesz.}$	1 pont	
Összesen:	8 pont	

9. b)		
$f'(x) = -3x^2 + k$	1 pont	
Az érintőegyenesek meredeksége: $f'(1) = k - 3$, illetve $f'(2) = k - 12$.	1 pont	
Az érintési pontok $(1; k-1)$, illetve $(2; 2k-8)$,	1 pont	
az érintők egyenlete: $y = (k-3)(x-1) + k - 1$,	1 pont	y = kx - 3x + 2
illetve $y = (k-12)(x-2) + 2k - 8$.	1 pont	y = kx - 12x + 16
A metszéspont első koordinátájára fennáll: $kx - 3x + 2 = kx - 12x + 16$.	1 pont	
$x = \frac{14}{9}$	1 pont	
A metszéspont első koordinátája tehát (k értékétől függetlenül) $x = \frac{14}{9}$ valóban.	1 pont	
Összesen:	8 pont	