### STATS 8: Introduction to Biostatistics

Hypothesis Testing

Babak Shahbaba UCI, Spring of 2012

## Hypothesis

- In general, many scientific investigations start by expressing a hypothesis.
- For example, Mackowiak et al (1992) hypothesized that the average normal (i.e., for healthy people) body temperature is less than the widely accepted value of 98.6F.
- If we denote the population mean of normal body temperature as  $\mu$ , then we can express this hypothesis as  $\mu < 98.6$ .

## Null and alternative hypotheses

- The null hypothesis usually reflects the "status quo" or "nothing of interest".
- In contrast, we refer to our hypothesis (i.e., the hypothesis we are investigating through a scientific study) as the alternative hypothesis and denote it as H<sub>A</sub>.
- For hypothesis testing, we focus on the null hypothesis since it tends to be simpler.

## Null and alternative hypotheses

- Consider the body temperature example, where we want to examine the null hypothesis  $H_0$ :  $\mu=98.6$  against the alternative hypothesis  $H_A$ :  $\mu<98.6$ .
- To start, suppose that  $\sigma^2 = 1$  is known.
- Further, suppose that we have randomly selected a sample of 25 healthy people from the population and measured their body temperature.

- To decide whether we should reject the null hypothesis, we quantify the empirical support (provided by the observed data) against the null hypothesis using some statistics.
- We use statistics to evaluate our hypotheses.
- We refer to them as test statistics.
- For a statistic to be considered as a test statistic, its sampling distribution must be fully known (exactly or approximately) under the null hypothesis.
- We refer to the distribution of test statistics under the null hypothesis as the null distribution.

• To evaluate hypotheses regarding the population mean, we use the sample mean  $\bar{X}$  as the test statistic.

$$\bar{X} \sim N(\mu, \sigma^2/n)$$
.

• For the above example,

$$\bar{X} \sim N(\mu, 1/25)$$
.

· If the null hypothesis is true, then

$$\bar{X} \sim N(98.6, 1/25).$$

- In reality, we have one value,  $\bar{x}$ , for the sample mean.
- We can use this value to quantify the evidence of departure from the null hypothesis.
- Suppose that from our sample of 25 people we find that the sample mean is  $\bar{x}=98.4$ .

• To evaluate the null hypothesis  $H_0: \mu = 98.6$  versus the alternative  $H_A: \mu < 98.6$ , we use the lower tail probability of this value from the null distribution.



### Observed significance level

- The observed significance level for a test is the probability of values as or more extreme than the observed value, based on the null distribution in the direction supporting the alternative hypothesis.
- This probability is also called the *p*-value and denoted  $p_{obs}$ .
- For the above example,

$$p_{\rm obs} = P(\bar{X} \le \bar{x}|H_0),$$

#### z-score

- In practice, it is more common to use the standardized version of the sample mean as our test statistic.
- We know that if a random variable is normally distributed (as it is the case for  $\bar{X}$ ), subtracting the mean and dividing by standard deviation creates a new random variable with standard normal distribution,

$$Z \sim N(0, 1)$$
.

 We refer to the standardized value of the observed test statistic as the z-score,

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}},$$
$$= \frac{98.4 - 98.6}{0.2} = -1$$

### z-test

- We refer to the corresponding hypothesis test of the population mean as the *z*-**test**.
- In a z-test, instead of comparing the observed sample mean  $\bar{x}$  to the population mean according to the null hypothesis, we compare the z-score to 0.





### Interpretation of *p*-value

- The *p*-value is the conditional probability of extreme values (as or more extreme than what has been observed) of the test statistic assuming that the null hypothesis is true.
- When the p-value is small, say 0.01 for example, it is rare to find values as extreme as what we have observed (or more so).
- As the p-value increases, it indicates that there is a good chance to find more extreme values (for the test statistic) than what has been observed.
- Then, we would be more reluctant to reject the null hypothesis.
- A common **mistake** is to regard the *p*-value as the probability of null given the observed test statistic:  $P(H_0|\bar{x})$ .

# One-sided vs. two-sided hypothesis testing

- The alternative hypothesis  $H_A$ :  $\mu$  < 98.6 or  $H_A$ :  $\mu$  > 98.6 are called *one-sided* alternatives.
- For these hypotheses,  $p_{\rm obs}=P(Z\leq z)$  and  $p_{\rm obs}=P(Z\geq z)$  respectively.
- In contrast, the alternative hypothesis  $H_A$ :  $\mu \neq 98.6$  is two-sided.
- For the above three alternatives, the null hypothesis is the same,  $H_0$ :  $\mu = 98.6$
- In this case,  $p_{\text{obs}} = 2 \times P(Z \ge |z|)$ .

### Hypothesis testing using *t*-tests

- So far, we have assumed that the population variance  $\sigma^2$  is known.
- In reality,  $\sigma^2$  is almost always unknown, and we need to estimate it from the data.
- As before, we estimate  $\sigma^2$  using the sample variance  $S^2$ .
- Similar to our approach for finding confidence intervals, we account for this additional source of uncertainty by using the t-distribution with n-1 degrees of freedom instead of the standard normal distribution.
- The hypothesis testing procedure is then called the **t-test**.

## Hypothesis testing using *t*-tests

• Using the observed values of  $\bar{X}$  and S, the observed value of the test statistic is obtained as follows:

$$t=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}.$$

- We refer to t as the t-score.
- Then,

$$\begin{array}{ll} \text{if } H_{A}: \mu < \mu_{0}, & p_{\mathrm{obs}} = P(T \leq t), \\ \text{if } H_{A}: \mu > \mu_{0}, & p_{\mathrm{obs}} = P(T \geq t), \\ \text{if } H_{A}: \mu \neq \mu_{0}, & p_{\mathrm{obs}} = 2 \times P(T \geq |t|), \end{array}$$

• Here, T has a t-distribution with n-1 degrees of freedom, and t is our observed t-score.

# Hypothesis testing for population proportion

- For a binary random variable X with possible values 0 and 1, we are typically interested in evaluating hypotheses regarding the population proportion of the outcome of interest, denoted as X=1.
- As discussed before, the population proportion is the same as the population mean for such binary variables.
- So we follow the same procedure as described above.
- More specifically, we use the z-test for hypothesis testing.

# Hypothesis testing for population proportion

- Note that we do not use *t*-test, because for binary random variable, population variance is  $\sigma^2 = \mu(1 \mu)$ .
- Therefore, by setting  $\mu = \mu_0$  according to the null hypothesis, we also specify the population variance as  $\sigma^2 = \mu_0(1 \mu_0)$ .

# Hypothesis testing for population proportion

If we assume that the null hypothesis is true, we have

$$\bar{X}|H_0 \sim N(\mu_0, \mu_0(1-\mu_0)/n).$$

This means that

$$Z = rac{ar{X} - \mu_0}{\sqrt{\mu_0(1 - \mu_0)/n}} \sim N(0, 1).$$

As a result, we obtain the z-score as follows:

$$z = \frac{p - \mu_0}{\sqrt{\mu_0 (1 - \mu_0)/n}},$$

where p is the sample proportion (mean).