KIV/VSS

Simulace šíření lesího požáru buněčným automatem

Zdeněk Valeš

1.1. 2019

1 Zadání

Pomocí nástroje NetLogo naprogramujte simulaci lesního požáru. Základem pro semestrální práci bude existující příklad simulace v programu NetLogo, který rozšířím o další parametry (vítr, hořlavost terénu, typy terénu, jiný model šíření ohně, ...) tak, jak je popsáno v článku Simulation of forest fire fronts using cellular automata[1]. Práce bude umět simulovat šíření ohnivé stěny i šíření ohně z předem vybraného bodu. Ideálně by práce měla umět načíst mapu ze souboru a na té provést simulaci.

2 Teorie

2.1 Základy pravděpodobnosti

Název	Značení	Spojité	Diskrétní
Střední hodnota	E(X)	$\int x f(x)$	$\sum s_i p_i$
Rozptyl	$\sigma^2, D(X)$	$\int (x - E(X))^2 p(x)$	$\sum p_i(x_i - E(X))^2$
Směrodatná odchylka	σ, s_x	$\sqrt{D(X)}$	
Variační koeficient	v_x	$\frac{s_x}{\bar{x}}$	

Tabulka 1: Tabulka základních vzorečků

Název	Hustota ppsti	Distribuční fce	Střední	Rozptyl
	(PDF)	(CDF)	hodnota	
Rovnoměrné	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{1}{12}(b-a)^2$
Normální	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$	μ	σ^2
Exponenciální	$\frac{\delta \sqrt{2}x}{\lambda e^{-\lambda x}}$	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Poissonovo	$\frac{\lambda^x}{x!}e^{-\lambda}$	exp. schody	λ	λ
Trojúhelníkové	0 pro x < a	$0 \text{ pro } x \leq a$	$\frac{a+b+c}{3}$	$\frac{a^2+b^2+c^2-ab-ac-bc}{18}$
(a-c-b)	$\begin{vmatrix} \frac{2(x-a)}{(b-a)(c-a)} & \text{pro } x < c \\ \frac{2}{(b-a)} & \text{pro } x = c \\ \frac{2(b-x)}{(b-a)(b-c)} & \text{pro } x \le b \end{vmatrix}$	$\frac{(x-a)^2}{(b-a)(c-a)} \text{ pro } x \le c$		
	$\frac{2}{(b-a)}$ pro $x=c$			
	$\frac{2(b-x)}{(b-a)(b-c)}$ pro $x \le b$	$\begin{vmatrix} 1 - \frac{(b-x)^2}{(b-a)(b-c)} & \text{pro } c < b \\ 1 & \text{pro } x \ge b \end{vmatrix}$		
	0 pro x > b	1 pro $x \ge b$		

Tabulka 2: Tabulka se vzorečky pro základní rozdělení

2.2 Generování náhodných čísel

- Kvazirozměrné rozložení, generátor uniformního rozložení (celé číslo na n bitech)
- Metoda prostředních čtverců
- Lineární rovnice + modulo aritmetika $(y_{i+1} = (ay_i + c) \mod m)$

2.2.1 Generování dalších rozdělení

Transformační metoda Uniformní rozdělení transformujeme podle inverzní distribuční fce $F^{-1}(u)$. Vhodné pokud je $F^{-1}(u)$ snadno zjistitelná.

Vylučovací metoda Musí být známa hustota ppsti f(x). Dvěma uniformními generátory dostanu čísla v prostoru:

- G_2 s uniformním rozdělením na i_0,M_i
- $G_1 => y_1 => x_i = (b-a)y_1 + a$
- $G_2 => y_2 => z_i = My_2$
- Pokud $z_i < f(x_i)$ pak x_i je náhodné číslo s rozdělením f(x); jinak opakuj

Obecné diskrétní rozdělení Pokud znám schodovou distribuční fci, generuji 1 číslo s uniformním rozdělením podle tabulky (CDF) určím výslednou hodnotu.

2.2.2 Generování normálního rozdělení

Součet n náhodných čísel s rovnoměrným rozdělením se asymptoticky blíží k normálnímu rozdělení. $s_n = \sum_1^n y_i$, hodí se volit n = 12 protože $E\{s_n\} = nE\{y_i\} = \frac{n}{2} = 6$ a $D\{s_n\} = nD\{y_i\} = \frac{n}{12} = 1$, je tedy snadné generovat gaussovo rozdělení se $\mu = 6$ a $\sigma = 1$. Pro zadané μ a σ : $\sigma \cdot (\sum_{i=1}^{12} y_i - 6) + a$

Box-Müllerova transformace Stačí dvě hodnoty x_1,x_2 s normovaným rovnoměrným rozdělením:

- $z_1 = \sqrt{-2ln(-x_1)}cos(2\pi x_2)$
- $z_2 = \sqrt{-2ln(-x_1)}sin(2\pi x_2)$

Lze ještě aplikovat parametry normálního rozdělení: $z_1\sigma\mu$.

2.2.3 Testování generátoru

Ověřit, zda má generátor zadané vlastnosti (střední hodnotu, rozptyl, délka periody ...).

 χ^2 test Testuji, že nějaká hypotéza neplatí (nebo, že ji nelze zamínout).

- Hodnoty z $\{y_i\}_1^n$ rozdělím do k intervalů. V každém intervalu spočtu četnost θ_i , ppst p_i , že hodnota y_i spadne do intervalu.
- $\chi^2 = \sum_{i=1}^k \frac{(\theta_i np_i)^2}{np_i}$
- Porovnání s tabulkovou hodnotou. $\chi^2 \leq \chi^2_{tab}$ pak hypotézu nelze zamítnout. Jinak hypotézu zamítnu na hladině ppsi α .

2.3 Markovské náhodné procesy

Poissonovo (počet jevů v určitém čas. intervalu) vs. Exponenciální rozdělení (délka intervalu mezi dvěma událostmi).

- Stř. doba setrvání ve stavu i: $T_i = \frac{1}{\lambda_i}$
- \bullet Stř. frekvence přechodů po hraně z i do $j\colon f_{i,j}=p_i\cdot \lambda_{i,j}$ (pouze bez abs stavů)
- Stř. doba cyklu průchodů stavem $i: T_{ci} = \frac{1}{f_i}$ (pouze bes abs stavů)

2.4 Systémy hromadné obsluhy

Vstupní proud: a,λ . Doby obsluh: s,μ . Fronta: w. Celý systém: q. Doba: T,t (velká písmena = stř hodnoty, malá konkrétní). Počet požadavků: L. Zátěž systému: $\rho = \frac{T_{obsluha}}{T_{mezi\ prichody}} = \frac{T_s}{T_a}$

Charakteristiky vstupního proudu Veličina τ . Exponenciální proud lze popsat jedním parametrem λ , proto $E\{\tau\} = T_a = \frac{1}{\lambda}$ (viz vzorečky ppsti). Koeficient variace určuje, jak moc je proud náhodný, typicky v intervalu < 0; 1 >, kde 0 jsou pravidelné příchody.

Fronta požadavků Aktuální počet požadavků ve frontě: w. Střední počet požadavků ve frontě L_w . Doba čekání jednoho požadavku t_w . Stř. doba čekání požadavku ve frontě T_w .

Charakteristiky SHO Mezi středními hodnotami platí následující vztahy. Stř. počet prvků v systému: $L_q = L_w + L_s = L_w + m \frac{\lambda}{\mu}$. Stř. doba průchodu systémem: $T_q = T_w + T_s = T_w + \frac{1}{\mu}$.

Littleovy vzorce:

- $L_a = \lambda \cdot T_a$
- $L_w = \lambda \cdot T_w$
- $T_w = L_w \cdot T_a$

2.4.1 Kendallova klasifikace

Znám charakteristiku vstupního proudu $F_a(t)$ a kanálu obsluhy $F_s(t)$, chci určit vlastnosti systému. Systém fron popsán pěticí X/Y/m(/I/disc)

- X: prvd. rozdělení vstupního produ
 - GI = obecné náhodné rozdělení, stat nezáv.; <math>G = obecné náhodné rozdělení; M = exponenciální rozdělení; <math>D = determ. intervaly
- Y: prvd. rozdělení dob obsluh

- m: počet kanálů obsluhy
- I: max. délka fornty (obvykle ∞).
- disc.: frontová disciplína (obvykle FIFO).

M/M/1 Nejjednodušší případ, charakterizováno parametry λ,μ . $\rho=\frac{\lambda}{\mu}$, pro stac. režim $\lambda<\mu$. Pokud stacionární, lze modelovat jako mark. proces: $p_k=\rho^k p_0=\rho^k (1-\rho)$. $E\{k\}=L_q=\sum_{k=0}^{\infty}kp_k=(1-\rho)\frac{\rho}{(1-\rho)^2}$.

M/M/m m obslužných kanálů pro 1 frontu. Koeficient vytížení: $\rho = \frac{1}{m} \frac{\lambda}{\mu} = \frac{1}{m} \frac{T_s}{T_a} = \frac{\lambda T_s}{m}$. Pro $m \in \{1,2\}$ přesný, jink pouze přibližný odhad: $L_q = \frac{m\rho}{1-\rho^m}$; $T_q = \frac{T_s}{1-\rho^m}$. Pokud konečná fronta, některé požadavky zahozeny, proto nelze použít vzorce pro

Pokud konečná fronta, některé požadavky zahozeny, proto nelze použít vzorce pro nekonečnou délku fronty a proto platí, že $\lambda_{realne} < \lambda_{teoreticke}$. Vzorce pro konkrét í případ lze odvodit z mark. modelu.

 $\mathbf{M}/\mathbf{G}/\mathbf{1}$ Nemarkovský model. Potřebuji λ pro vstupní proud a $F_s(t)$, nebo $f_s(t)$ pro popis doby obsluhy. $\rho = \lambda T_s$ kde T_s je stř. doba rozdělení $F_s(t)$. Na zbytek potřebuji koef. variace (C_s^2) . $C_s = \frac{\sigma(\tau)}{T_a}$.

- $L_w = L_{w(M/M/1)} \frac{1 + C_s^2}{2} = \frac{\rho^2}{1 \rho} \frac{1 + C_s^2}{2}$
- $L_q = L_w + L_s (= L_w + \frac{\lambda}{\mu} = L_w + \rho)$
- $T_q = \frac{L_q}{\lambda}$
- $T_w = \frac{L_w}{\lambda}$; $T_w = T_q T_s$

Markovské modely se používají jako odhad nejhoršího průběhu.

- 2.4.2 Složené sítě
- 2.5 Základy teorie spolehlivosti
- 2.6 Diskrétní stochatické modely
- 2.7 Benchmarky
- 3 Závěr

Reference

[1] ENCIAS, Hernández, Hoya WHITE, Martín del RAY a Rodríguez SANCHÉZ. Simulation of forest fire fronts using cellular automata. Advances in Engineering Software: Advances in Numerical Methods for Environmental Engineering. 2007, 2007(6), 372-378. ISSN 0965-9978. Dostupné také z: https://www.sciencedirect.com/science/article/pii/S0965997806001293