Matching Games

Game Theory

Vincent Knight

$$c: (B, A, C) \bullet \qquad \bullet C: (c, a, b)$$
 $b: (C, B, A) \bullet \qquad ? \qquad \bullet B: (a, c, b)$
 $a: (A, B, C) \bullet \qquad \bullet A: (c, b, a)$

c: (B, A, C) • C: (c, a, b)

 $b: (C, B, A) \bullet B: (a, c, b)$

a: $(A, B, C) \bullet A$: (c, b, a)

Gale-Shapley Algorithm:

- 1. Assign every $s \in S$ and $r \in R$ to be unmatched
- 2. Pick some unmatched $s \in S$, let r be the top of s's preference list:
 - 2.1 If r is unmatched set M(s) = r
 - 2.2 If r is matched:
 - 2.2.1 If r prefers s to $M^{-1}(r)$ then set M(r) = s
 - 2.2.2 Otherwise *s* remains unmatched and remove *r* from *r*'s preference list.

3. Repeat step 2 until all $s \in S$ are matched.

 $c: (B, A, C) \bullet \qquad \bullet C: (c, a, b)$

b: $(C, B, A) \bullet$ $\bullet B$: (a, c, b)

• A: (c, b, a)

a: $(A, B, C) \bullet$

c: (*B*, *A*, *C*)•

b: $(C, B, A) \bullet$

a: (A, B, C) •-

• C: (c, a, b)

• B: (a, c, b)

 $\rightarrow A: (c, b, a)$

 $c: (B, A, C) \bullet \qquad \bullet C: (c, a, b)$ $b: (C, B, A) \bullet \qquad \bullet B: (a, c, b)$

 $\rightarrow A: (c, b, a)$

$$c: (B, A, C) \bullet C: (c, a, b)$$
 $b: (C, B, A) \bullet B: (a, c, b)$

a: (A, B, C) •-

 $\rightarrow A: (c, b, a)$

 $c: (B, A, C) \bullet \qquad \bullet C: (c, a, b)$

• B: (a, c, b)

 $\rightarrow A: (c, b, a)$

b: (B, C, A) •

 $c: (B, A, C) \bullet \qquad \bullet C: (c, a, b)$

 \longrightarrow B: (a, c, b)

 \longrightarrow A: (c, b, a)

b: (*B*, *C*, *A*) •──

 $c: (B, A, C) \bullet \qquad \bullet C: (c, a, b)$ $b: (B, C, A) \bullet \qquad \bullet B: (a, c, b)$

 $\rightarrow A: (c, b, a)$

 $c: (B, A, C) \bullet \qquad \bullet C: (c, a, b)$ $b: (B, C, A) \bullet \qquad \bullet B: (a, c, b)$

 $\rightarrow A: (c, b, a)$

$$c: (B, A, C) \bullet \qquad \bullet C: (c, a, b)$$
 $b: (C, A) \bullet \qquad \bullet B: (a, c, b)$

 $\rightarrow A: (c, b, a)$

$$c: (B, A, C) \bullet C: (c, a, b)$$
 $b: (C, A) \bullet B: (a, c, b)$

a: (A, B, C) •-

 $\rightarrow A: (c, b, a)$