クラスター分析

富島諒

2021年5月27日

1 クラスター分析

クラスター分析とは

クラスタとは、"群れ"や"集団"という意味を持つ. そして、クラスター分析とは、与えられたデータを"似たものどうしの群れに分ける方法"である. クラスター分析ではデータのことを"個体"と呼び、個体と個体とが集まって、クラスタを構成することになる.

しかし、このままではクラスタに分類する基準が曖昧であるため、"似ている"とは何かを数学的に定義する必要がある。そこでまず、"似ている程度"を測る方法として、以下のようなものがあげられる。

´ ユークリッド距離 ユークリッド距離の2乗 マハラノビスの距離 相関係数

これらの方法は、距離の概念を一般化したものと考えられるので、これらを広い意味で"距離"と呼ぶこととする.

クラスタ間の距離

分析の際, "2 つのクラスタ間の距離 D をどのように決めるか"という問題が発生する. もし, 各クラスタの成分が 1 個だけならば, 個体間の距離をそのまま D とすればよい. では, 各クラスタの成分が 2 個以上から成る場合は, どのように距離 D を測ればよいだろうか? (図 1)

図 1: 成分の個数によるクラスタ分析の違い

この"2 つのクラスタ間の距離 D の決め方"には、多くの方法が存在しており、 $\S 2$ では、そのうち

の6つの手法について説明する.

2 クラスタ間の距離の決め方

最短距離法

クラスタ A の個体とクラスタ B の個体とのすべての組み合わせについて距離を求め、その中で最も短い距離をクラスタ間の距離 D と定義する. (図 2)

図 2: 最短距離法

最長距離法

クラスタ A の個体とクラスタ B の個体とのすべての組み合わせについて距離を求め、その中で最も長い距離をクラスタ間の距離 D と定義する. (図 3)

図 3: 最長距離法

群平均法

クラスタ A の個体とクラスタ B の個体との全ての組み合わせについて距離を求め、その距離の 平均値をクラスタ間の距離 D と定義する. (図 4)

メディアン法

クラスタ A の個体とクラスタ B の個体との全ての組み合わせについて距離を求め、その距離を順番に並べたときの中央値 (メディアン) をクラスタ間距離 D と定義する. (図 5)

図 4: 群平均法

図 5: メディアン法

重心法

クラスタ A の重心とクラスタ B の重心との距離を, クラスタ間距離 D と定義する. (図 6)

図 6: 重心法

ウォード法

例えば、シャムネコとペルシャネコをまとめてネコたちと呼んでしまうと、もともとどんなネコいたのかわからなくなってしまう.このように、異なるものを1つにまとめると、元の情報が少し失われてしまう.これをクラスタの情報損失量と呼ぶこととする.

ウォード法では、2 つのクラスタ A, B を 1 つのクラスタにまとめたとき、その情報損失量をクラスタ間の距離 D とする. (図 7)

具体的に、クラスタ間の距離 Dは、以下のような式で定義される.

クラスタ間の距離
$$D = L(A \cup B) - L(A) - L(B)$$

ここで L(A) は、クラスタ A の各個体から重心までの距離の 2 乗和を計算したもので、クラスタ内

図 7: ウォード法

でのデータの散らばり具合を表現している. L(B) 及び $L(A \cup B)$ 同様である.

3 クラスター分析の手順

表 1 のデータを使って, 実際にクラスター分析をしてみる. クラスター分析は, 以降のような手順で進んでいき, 次々にまとまっていくクラスタをデンドログラム (樹形図) というグラフで表現する. なお今回, 距離は平方ユークリッド距離, クラスタ間距離は重心法を用いて求めていく.

表 1: エイズ患者数と新聞の発行部数

国名	エイズ患者	新聞の発行部数		
A	6.6	35.8		
В	8.4	22.1		
\mathbf{C}	24.2	19.1		
D	10.0	34.4		
\mathbf{E}	14.5	9.9		
\mathbf{F}	12.2	31.1		
G	4.8	53.0		
Η	19.8	7.5		
I	6.1	53.4		
J	26.8	50.0		
K	7.4	42.1		

手順1

はじめに、すべての組み合わせにおける"距離"を計算すると、以下の表 2 のようになる. この中で、G と I の間の距離が

$$(4.8 - 6.1)^2 + (53.0 - 53.4)^2 = 1.85 \approx 1.9$$

図 8: エイズ患者数と新聞の発行部数

190.9 588.7 53.5 40.3 13.5 733.2 299.1 975.1 310.0 609.7 В 258.6 153.9 186.1 95.4 967.8 343.1 985.0 1117.0 401.0 С 1504.1 435.7 178.7 288.0 1525.6 153.9 961.6 811.2 D 620.5 15.7 373.0 819.7 376.2 525.6 66.1 Ε 454.7 1951.7 33.9 1962.8 1759.3 1087.3 F 534.4 614.7 534.5 570.4 144.04 G 2295.3 1.9 493.0 125.6 Н 2294.5 1855.3 1350.9 440.1 129.4

表 2: 手順 1 による距離の計算結果

となり、すべての組み合わせの中で最小になる.よって、G と I が最初のグラスタ $\{G,I\}$ を構成する.これをデンドログラムに描くと、 \emptyset 9 のようになる.

438.8

また, クラスタ $\{G, I\}$ の重心を求めると (5.45, 53.2) であり, 以降の手順ではこの重心を基点として, クラスタ $\{G, I\}$ との距離を計算していく.

手順2

J

次に残りすべての組み合わせにおける"距離"を計算すると、以下の表3のようになる.

この中で A と D の組み合わせが最小となる. よって, A と D が 2 つ目のクラスタ $\{A, D\}$ を構成する. これをデンドログラムに描き加えると, 図 10 のようになる.

また, クラスタ $\{A, D\}$ の重心を求めると (8.3, 35.1) であり, 以降の手順ではこの重心を基点として, クラスタ $\{A, D\}$ との距離を計算していく.

図 9: 手順 1 によるデンドログラム

表 3: 手順 2 による距離の計算結果

	В	С	D	E	F	G·I	Н	J	K
А	190.9	588.7	13.5	733.2	53.5	304.1	975.1	609.7	40.3
В		258.6	153.9	186.1	95.4	975.9	343.1	1117.0	401.0
С			435.7	178.7	288	1514.4	153.9	961.6	811.2
D				620.5	15.7	374.1	819.7	525.6	66.1
E					454.7	1956.8	33.9	1759.3	1087.3
F						534.0	614.7	570.4	144.0
G·I							2294.4	466.1	127.0
Н								1855.3	1350.9
J									438.8

図 10: 手順 2 によるデンドログラム

手順3

以上の作業を繰り返していき, 10 回目で最後のクラスタが構成されて終了となる. 最終的に完成したデンドログラムは, 次の図 11 のようになる.

図 11: 完成したデンドログラム

4 デンドログラム

デンドログラムの見方

デンドログラムは個体とクラスタ間の"距離"の関係をまとめたものであり、クラスター分析において非常に重要なグラフ表現である.

縦軸が類似度を表す"距離"となっており、横軸に平行な線を引いたとき、デンドログラムの縦線 とぶつ かった個数がクラスタの個数になる. またこのとき、クラスタを構成している個体の内訳を みることが できる.

例えば、クラスタの個数を 4 個にしたい場合は、図 12 のようにオレンジ色の平行線を引けばよい. そして、4 つのクラスタはそれぞれ $\{G, I\}$ 、 $\{A, D, F, K, B\}$ 、 $\{J\}$ 、 $\{E, H, G\}$ という個体で構

成されることが読み取れる.

図 12: デンドログラムを用いたクラスター分析

また, 4 つのクラスタを散布図に描くと, 次の図 13 のようになる.

図 13: クラスター分析によって 4 つ分類した結果

最適なクラスタの個数

デンドログラムに平行線を引くことで、任意の個数のクラスタを求めることができた.しかし、クラスター分析を行う際、"最適なクラスタの個数は何個なのか?"という問題がある.実は、はっきりとした基準はなく、何個のクラスタに分類するかは、そのデータを研究している人次第である.