МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ УНИВЕРСИТЕТ ИТМО

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Курсовой проект: «Построение математической модели объекта»

по дисциплине Теория автоматического управления

Выполнил: Студент группы

R33362 Осинина Т. С

Преподаватель: Перегудин А.А.

Содержание

Глава 1. Построение математической модели объекта	3
Задание 1.1. Вывод уравнений	3
Задание 1.2. Точки равновесия	8
Задание 1.3. Линеаризация	9
Глава 2. Анализ математической модели	10
Задание 2.1. Анализ матриц	10
Задание 2.2. Передаточные функции	12
Задание 2.3. Линейное моделирование	16
Задание 2.4. Нелинейное моделирование	18
Глава 3. Стабилизация объекта: модальное управление	21
Задание 3.1. Синтез регулятора по состоянию	21
Задание 3.2. Исследование регулятора по состоянию	25
Задание 3.3. Синтез наблюдателя	28
Задание 3.4. Исследование наблюдателя	31
Задание 3.5. Синтез регулятора по выходу	32
Глава 4. Стабилизация объекта: LQR и фильтр Калмана	36
Задание 4.1. Линейно-квадратичный регулятор	36
Задание 4.2. Линейно-квадратичный наблюдатель	
Задание 4.3. LQG для линейной модели	39
Задание 4.4. LQG для нелинейной модели	40
Глава 5. Слежение и компенсация	
Задание 5.1. Компенсация?	42
Задание 5.2. Слежение?	44

Глава 1. Построение математической модели объекта

Задание 1.1. Вывод уравнений

Постройте математическую модель парного маятника на тележке, представленного на $Pucyhok\ I$. В качестве переменных состояния выберите линейную координату тележки x, скорость тележки \dot{x} , углы отклонения маятников от вертикали ϕ_1 и ϕ_2 , угловые скорости маятников $\dot{\phi_1}$ и $\dot{\phi_2}$. В качестве управляющей переменной u примите горизонтальную силу, приложенную к тележке. В качестве внешних возмущений f_1 и f_2 примите вращающие моменты, действующий на каждый из маятников. В качестве выходных (измеряемых) примите величины $y_1 = x, y_2 = \phi_1, y_3 = \phi_2$.

Рисунок 1. Парный маятник на тележке

При построении математической модели считайте, что трение отсутствует, а масса маятников полностью сосредоточена на их свободных концах. Самостоятельно выберите числовые значения массы тележки M, масс маятников m_1 и m_2 , длин маятников l_1 и l_2 (лучше взять их неравными друг другу) и ускорения свободного падения g. Математическая модель должна быть представлена как система уравнений, включающая в себя шесть (нелинейных) дифференциальных уравнений первого порядка и три алгебраических уравнения для выходных переменных, и иметь вид:

$$\begin{cases} \dot{x_1} = F_1(x_1, \dots, x_6, f_1, f_2, u) \\ \dots \\ \dot{x_6} = F_6(x_1, \dots, x_6, f_1, f_2, u) \\ y_1 = G_1(x_1, \dots, x_6) \\ y_2 = G_2(x_1, \dots, x_6) \\ y_3 = G_3(x_1, \dots, x_6) \end{cases}$$
(1)

где x_i — координаты вектора состояния, F_i , G_i — функции, найденные при построении математической модели.

Решение:

$$T_M = \frac{1}{2}Mv^2 = \frac{1}{2}M\dot{x}^2$$
$$T_{m_1} = \frac{1}{2}m_1v_1^2$$

Вычислим v_1 :

$$\begin{aligned} 0X: v_{1x} &= v + \frac{d}{dt}(l_1 \sin \varphi_1) = \frac{d}{dt}(x - l_1 \sin \varphi_1) \\ 0Y: v_{1y} &= \frac{d}{dt}(-l_1 \cos \varphi_1) \\ v_{1x} &= (\dot{x} - l_1 \dot{\varphi}_1 \cos \varphi_1) \\ v_{1y} &= l_1 \dot{\varphi}_1 \sin \varphi_1 \end{aligned}$$

$$\begin{split} v_1 &= \sqrt{v_{1x}^2 + v_{1y}^2} = \sqrt{(\dot{x} - l_1 \dot{\varphi}_1 \cos \varphi_1)^2 + (l_1 \dot{\varphi}_1 \sin \varphi_1)^2} \\ &= \sqrt{\dot{x}^2 - 2\dot{x}l_1 \dot{\varphi}_1 \cos \varphi_1 + l_1^2 \dot{\varphi}_1^2 \cos^2 \varphi_1 + (l_1 \dot{\varphi}_1 \sin \varphi_1)^2} \\ &= \sqrt{\dot{x}^2 - 2\dot{x}l_1 \dot{\varphi}_1 \cos \varphi_1 + l_1^2 \dot{\varphi}_1^2 \cos \varphi_1 + l_1^2 \dot{\varphi}_1^2 \sin^2 \varphi_1} \\ &= \sqrt{\dot{x}^2 - 2\dot{x}l_1 \dot{\varphi}_1 \cos \varphi_1 + l_1^2 \dot{\varphi}_1^2 (\cos \varphi_1 + \sin^2 \varphi_1)} \\ &= \sqrt{\dot{x}^2 - 2\dot{x}l_1 \dot{\varphi}_1 \cos \varphi_1 + l_1^2 \dot{\varphi}_1^2} \end{split}$$

Подставим v_1 в $T_{m_1} = \frac{1}{2} m_1 v_1^2$:

$$T_{m_1} = \frac{1}{2} m_1 \left(\dot{x^2} - 2\dot{x} l_1 \dot{\varphi}_1 \cos \varphi_1 + l_1^2 \dot{\varphi}_1^2 \right).$$

Аналогично,

$$T_{m_2} = \frac{1}{2} m_2 \left(\dot{x^2} - 2\dot{x} l_2 \dot{\varphi}_2 \cos \varphi_2 + l_2^2 \dot{\varphi}_2^2 \right).$$

Тогда кинетическая энергия определяется:

$$T = T_{\mathrm{M}} + T_{m_1} + T_{m_2}$$

Потенциальная энергия: $\Pi=m_1gl_1cos\varphi_1+m_2gl_2cos\varphi_2$

Далее вычислим Лагранжиан, как разницу кинетической и потенциальной энергии:

$$L = T - \Pi = T_{\rm M} + T_{m_1} + T_{m_2} - \Pi$$

$$\begin{split} L &= \frac{1}{2} M \dot{x^2} + \frac{1}{2} m_1 \Big(\dot{x^2} - 2 \dot{x} l_1 \dot{\varphi}_1 \cos \varphi_1 + l_1^2 \dot{\varphi}_1^2 \Big) \\ &+ \frac{1}{2} m_2 \Big(\dot{x^2} - 2 \dot{x} l_2 \dot{\varphi}_2 \cos \varphi_2 + l_2^2 \dot{\varphi}_2^2 \Big) - m_1 g l_1 \cos \varphi_1 + m_2 g l_2 \cos \varphi_2 \\ &= \frac{1}{2} M \dot{x^2} + \frac{1}{2} m_1 \dot{x^2} - m_1 \dot{x} l_1 \dot{\varphi}_1 \cos \varphi_1 + \frac{1}{2} m_1 l_1^2 \dot{\varphi}_1^2 + \frac{1}{2} m_2 \dot{x^2} \\ &- m_2 \dot{x} l_2 \dot{\varphi}_2 \cos \varphi_2 + \frac{1}{2} m_2 l_2^2 \dot{\varphi}_2^2 - m_1 g l_1 \cos \varphi_1 - m_2 g l_2 \cos \varphi_2 \end{split}$$

$$\begin{cases} \frac{d}{dt} \cdot \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = F = u \\ \frac{d}{dt} \cdot \frac{\partial L}{\partial \dot{\varphi}_1} - \frac{\partial L}{\partial \varphi_1} = f_1 \\ \frac{d}{dt} \cdot \frac{\partial L}{\partial \dot{\varphi}_2} - \frac{\partial L}{\partial \varphi_2} = f_2 \end{cases}$$

$$\begin{split} \frac{\partial L}{\partial x} &= 0 \\ \frac{\partial L}{\partial \varphi_1} &= m_1 g l_1 \sin \varphi_1 + m_1 \dot{x} l_1 \dot{\varphi}_1 \sin \varphi_1 \end{split}$$

$$\frac{\partial L}{\partial \varphi_2} = m_2 g l_2 \sin \varphi_2 + m_2 \dot{x} l_2 \dot{\varphi}_2 \sin \varphi_2$$

$$\begin{split} \frac{\partial L}{\partial \dot{x}} &= M \dot{x} + m_1 \dot{x} - m_1 l_1 \dot{\varphi}_1 \cos \varphi_1 + m_2 \dot{x} - m_2 l_2 \dot{\varphi}_2 \cos \varphi_2 \\ &= \dot{x} (M + m_1 + m_2) - m_1 l_1 \dot{\varphi}_1 \cos \varphi_1 - m_2 l_2 \dot{\varphi}_2 \cos \varphi_2 \\ \frac{\partial L}{\partial \dot{\varphi}_1} &= -m_1 \dot{x} l_1 \cos \varphi_1 + m_1 l_1^2 \dot{\varphi}_1 \\ \frac{\partial L}{\partial \dot{\varphi}_2} &= -m_2 \dot{x} l_2 \cos \varphi_2 + m_2 l_2^2 \dot{\varphi}_2 \end{split}$$

$$\begin{split} \frac{d}{dt} \cdot \frac{\partial L}{\partial \dot{x}} &= \ddot{x} (M + m_1 + m_2) - m_1 l_1 \ddot{\varphi}_1 \cos \varphi_1 + m_1 l_1 \dot{\varphi}_1^2 \sin \varphi_1 - m_2 l_2 \ddot{\varphi}_2 \cos \varphi_2 \\ &\quad + m_2 l_2 \dot{\varphi}_2^2 \sin \varphi_2 \\ &\quad \frac{d}{dt} \cdot \frac{\partial L}{\partial \dot{\varphi}_1} = m_1 l_1 \dot{x} \dot{\varphi}_1 \sin \varphi_1 - m_1 l_1 \ddot{x} \cos \varphi_1 + m_1 l_1^2 \ddot{\varphi}_1 \\ &\quad \frac{d}{dt} \cdot \frac{\partial L}{\partial \dot{\varphi}_2} = -m_2 l_2 \ddot{x} \cos \varphi_2 + m_2 l_2 \dot{x} \dot{\varphi}_2 \sin \varphi_2 + m_2 l_2^2 \ddot{\varphi}_2 \end{split}$$

$$\begin{split} \frac{d}{dt} \cdot \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} &= u \\ \ddot{x}(M + m_1 + m_2) - m_1 l_1 \ddot{\varphi}_1 \cos \varphi_1 + m_1 l_1 {\dot{\varphi}_1}^2 \sin \varphi_1 - m_2 l_2 \ddot{\varphi}_2 \cos \varphi_2 \\ &+ m_2 l_2 {\dot{\varphi}_2}^2 \sin \varphi_2 = u \end{split}$$

$$\begin{split} \frac{d}{dt} \cdot \frac{\partial L}{\partial \dot{\varphi}_{1}} - \frac{\partial L}{\partial \varphi_{1}} &= f_{1} \\ m_{1}l_{1}\dot{x}\dot{\varphi}_{1} \sin \varphi_{1} - m_{1}l_{1}\ddot{x} \cos \varphi_{1} + m_{1}l_{1}^{2} \ddot{\varphi}_{1} - m_{1}gl_{1} \sin \varphi_{1} - m_{1}\dot{x}l_{1} \dot{\varphi}_{1} \sin \varphi_{1} &= f_{1} \\ m_{1}l_{1}^{2} \ddot{\varphi}_{1} - m_{1}l_{1}\ddot{x} \cos \varphi_{1} - m_{1}gl_{1} \sin \varphi_{1} &= f_{1} \\ \ddot{\varphi}_{1} - \frac{\ddot{x} \cos \varphi_{1}}{l_{1}} - \frac{g \sin \varphi_{1}}{l_{1}} &= \frac{f_{1}}{m_{1}l_{1}^{2}} \\ \ddot{\varphi}_{1} - \frac{g \sin \varphi_{1}}{l_{1}} - \frac{\ddot{x} \cos \varphi_{1}}{l_{1}} &= \frac{f_{1}}{m_{1}l_{1}^{2}} \end{split}$$

$$\begin{split} \frac{d}{dt} \cdot \frac{\partial L}{\partial \dot{\varphi}_2} - \frac{\partial L}{\partial \varphi_2} &= f_2 \\ -m_2 l_2 \ddot{x} \cos \varphi_2 + m_2 l_2 \dot{x} \dot{\varphi}_2 \sin \varphi_2 + m_2 l_2^2 \ddot{\varphi}_2 - m_2 g l_2 \sin \varphi_2 - m_2 \dot{x} l_2 \dot{\varphi}_2 \sin \varphi_2 &= f_2 \\ -m_2 l_2 \ddot{x} \cos \varphi_2 + m_2 l_2^2 \ddot{\varphi}_2 - m_2 g l_2 \sin \varphi_2 &= f_2 \\ \ddot{\varphi}_2 - \frac{\ddot{x} \cos \varphi_2}{l_2} - \frac{g \sin \varphi_2}{l_2} &= \frac{f_2}{m_2 l_2^2} \end{split}$$

$$\ddot{\varphi_2} - \frac{x\cos\varphi_2}{l_2} - \frac{g\sin\varphi_2}{l_2} = \frac{f_2}{m_2 l_2^2}$$
$$\ddot{\varphi_2} - \frac{\ddot{x}\cos\varphi_2}{l_2} - \frac{g\sin\varphi_2}{l_2} = \frac{f_2}{m_2 l_2^2}$$

$$\begin{aligned} \ddot{\varphi_1} &= \dot{v} \\ \dot{\varphi_1} &= \dot{\omega_1} \\ \dot{\varphi_2} &= \dot{\omega_2} \\ \ddot{\varphi_1} &= \dot{\omega_1} = \frac{g \sin \varphi_1}{l_1} + \frac{\ddot{x} \cos \varphi_1}{l_1} + \frac{f_1}{m_1 l_1^2} \\ \ddot{\varphi_2} &= \dot{\omega_2} = \frac{\ddot{x} \cos \varphi_2}{l_2} + \frac{g \sin \varphi_2}{l_2} + \frac{f_2}{m_2 l_2^2} \\ \ddot{x} &= \dot{v} = \frac{m_1 l_1 \ddot{\varphi_1} \cos \varphi_1}{(M + m_1 + m_2)} - \frac{m_1 l_1 \dot{\varphi_1}^2 \sin \varphi_1}{(M + m_1 + m_2)} + \frac{m_2 l_2 \ddot{\varphi_2} \cos \varphi_2}{(M + m_1 + m_2)} \\ &- \frac{m_2 l_2 \dot{\varphi_2}^2 \sin \varphi_2}{(M + m_1 + m_2)} + \frac{u}{(M + m_1 + m_2)} \end{aligned}$$

Эти уравнения являются нелинейными, но, поскольку цель системы управления - удерживать маятники вертикально, то уравнения можно линеаризовать, приняв $\varphi_2 = \varphi_1 = 0$:

$$\ddot{x}(M+m_1+m_2) = m_1 l_1 \cos \varphi_1 \left(\frac{g \sin \varphi_1}{l_1} + \frac{\ddot{x} \cos \varphi_1}{l_1} + \frac{f_1}{m_1 l_1^2} \right) - m_1 l_1 \dot{\varphi_1}^2 \sin \varphi_1 + \frac{\ddot{x} \cos \varphi_1}{l_1} + \frac{\ddot{x} \cos \varphi_$$

$$+ m_{2} l_{2} \cos \varphi_{2} \left(\frac{\ddot{x} \cos \varphi_{2}}{l_{2}} + \frac{g \sin \varphi_{2}}{l_{2}} + \frac{f_{2}}{m_{2} l_{2}^{2}} \right) - m_{2} l_{2} \dot{\varphi_{2}}^{2} \sin \varphi_{2} + u$$

$$\ddot{x}(M+m_1+m_2) - \ddot{x}m_1\cos^2\varphi_1 - \ddot{x}m_2\cos^2\varphi_2 = m_1g\cos\varphi_1\sin\varphi_1 + \frac{f_1\cos\varphi_1}{l_1} - m_1l_1\dot{\varphi_1}^2\sin\varphi_1 + g\,m_2\cos\varphi_2\sin\varphi_2 + \frac{\cos\varphi_2\,f_2}{l_2} - m_2l_2\dot{\varphi_2}^2\sin\varphi_2 + u$$

$$\ddot{x}((M+m_1+m_2)-m_1\cos^2\varphi_1-m_2\cos^2\varphi_2) = m_1g\cos\varphi_1\sin\varphi_1 + \frac{f_1\cos\varphi_1}{l_1} - m_1l_1\dot{\varphi_1}^2\sin\varphi_1 + g\,m_2\cos\varphi_2\sin\varphi_2 + \frac{\cos\varphi_2\,f_2}{l_2} - m_2l_2\dot{\varphi_2}^2\sin\varphi_2 + u$$

$$\begin{split} \ddot{x} &= \frac{\frac{1}{2} m_1 g \sin 2\varphi_1 + \frac{f_1 \cos \varphi_1}{l_1} - m_1 l_1 \dot{\varphi_1}^2 \sin \varphi_1}{(M + m_1 + m_2 - m_1 \cos^2 \varphi_1 - m_2 \cos^2 \varphi_2)} \\ &\quad + \frac{\frac{1}{2} m_2 g \sin 2\varphi_2 + \frac{\cos \varphi_2 f_2}{l_2} - m_2 l_2 \dot{\varphi_2}^2 \sin \varphi_2 + u}{(M + m_1 + m_2 - m_1 \cos^2 \varphi_1 - m_2 \cos^2 \varphi_2)} \end{split}$$

$$f_1, f_2, u = 0:$$

$$\ddot{x} = \frac{\frac{1}{2}m_1g\sin 2\varphi_1 - m_1l_1\dot{\varphi_1}^2\sin \varphi_1}{(M+m_1+m_2-m_1\cos^2\varphi_1 - m_2\cos^2\varphi_2)} + \frac{\frac{1}{2}m_2g\sin 2\varphi_2 - m_2l_2\dot{\varphi_2}^2\sin \varphi_2}{(M+m_1+m_2-m_1\cos^2\varphi_1 - m_2\cos^2\varphi_2)}$$

$$u'v + uv'$$

$$f_{\varphi_1} = \frac{u'v + uv'}{v^2}$$

$$=\frac{(m_1g\cos\varphi_1-m_1{l_1}\dot{\varphi_1}^2\cos\varphi_1)(M+m_1+m_2-m_1\cos^2\varphi_1-m_2\cos^2\varphi_2)}{(M+m_1+m_2-m_1\cos^2\varphi_1-m_2\cos^2\varphi_2)^2}$$

$$=\frac{(\frac{1}{2}m_1g\sin2\varphi_1-m_1{l_1}\dot{\varphi_1}^2\sin\varphi_1+\frac{1}{2}m_2g\sin2\varphi_2-m_2{l_2}\dot{\varphi_2}^2\sin\varphi_2)(2m_1\cos\varphi_1\sin\varphi_1)}{(M+m_1+m_2-m_1\cos^2\varphi_1-m_2\cos^2\varphi_2)^2}$$

$$\begin{aligned} \varphi_1 &= \varphi_2 = x = 0 \\ f_{Q_1} &= \frac{m_1 g M}{M^2} - 0 = \frac{m_1 g}{M} \end{aligned}$$

Аналогично, $f_2 = \frac{m_2 g}{M}$.

$$f_{\phi_1} = 0$$

Аналогично, $f_{\phi_2} = 0$.

Задание 1.2. Точки равновесия

Найдите все точки равновесия объекта при $u, f_1, f_2 \equiv 0$.

Решение:

$$0 = -\frac{g}{l_1} \sin \varphi_1$$
$$0 = -\frac{g}{l_2} \sin \varphi_2$$
$$\varphi_1 = \varphi_2 = 0$$

Задание 1.3. Линеаризация

Линеаризуйте уравнения объекта около точки равновесия (x, u, f) = 0 и получите математическую модель в виде:

$$\begin{cases} \dot{x} = Ax + Bu + Df \\ y = Cx \end{cases}$$
 (2)

где A, B, C, D — постоянные матрицы, $x = (x_1, ..., x_6)$ — совокупный вектор состояния (не только координата тележки), $f = (f_1, f_2)$ — вектор внешних возмущений, $y = (y_1, y_2, y_3)$ — вектор измеряемых величин.

Решение:

$$\begin{bmatrix} \dot{x} \\ \dot{v} \\ \dot{\varphi_1} \\ \dot{\omega_1} \\ \dot{\varphi_2} \\ \dot{\omega_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{m_1 g}{M} & 0 & \frac{m_2 g}{M} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{g(m_1 + M)}{Ml_1} & 0 & \frac{m_2 g}{l_1 M} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{m_1 g}{l_2 M} & 0 & \frac{g(m_2 + M)}{Ml_2} & 0 \end{bmatrix} \begin{bmatrix} x \\ v \\ \varphi_1 \\ \omega_1 \\ \varphi_2 \\ \omega_2 \end{bmatrix}$$

$$+\begin{bmatrix} \frac{0}{1} \\ \frac{1}{M} \\ 0 \\ \frac{1}{Ml_1} \\ 0 \\ \frac{1}{Ml_2} \end{bmatrix} u + \begin{bmatrix} \frac{0}{1} & \frac{0}{1} \\ \frac{1}{Ml_1} & \frac{1}{Ml_2} \\ 0 & 0 \\ \frac{M+m_1}{Mm_1l_1^2} & \frac{1}{Ml_1l_2} \\ 0 & 0 \\ -\frac{1}{Ml_1l_2} & -\frac{M+m_2}{Mm_2l_2^2} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ v \\ \varphi_1 \\ \omega_1 \\ \varphi_2 \\ \omega_2 \end{bmatrix}$$

Глава 2. Анализ математической модели

Задание 2.1. Анализ матриц

Найдите собственные числа и собственные вектора матрицы А модели (2), укажите их физический смысл. Сделайте вывод об устойчивости системы (1). Проанализируйте управляемость, наблюдаемость, стабилизируемость и обнаруживаемость системы (2).

Решение:

Возьмем следующие значения для параметров.

Пусть, масса тележки и маятников равны: M = 2, $m_1 = 1$, $m_2 = 0.5$.

Длина маятников: $l_1=1$, $l_2=2$

Тогда система приобретает следующий вид:

$$\begin{bmatrix} \dot{x} \\ \dot{v} \\ \dot{\varphi_1} \\ \dot{\omega_1} \\ \dot{\varphi_2} \\ \dot{\omega_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 2.5 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 15 & 0 & 2.5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2.5 & 0 & 6.25 & 0 \end{bmatrix} \begin{bmatrix} x \\ v \\ \varphi_1 \\ \omega_1 \\ \varphi_2 \\ \omega_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 0.25 \end{bmatrix} u + \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ v \\ \varphi_1 \\ \omega_1 \\ \omega_1 \\ \varphi_2 \\ \omega_2 \end{bmatrix}$$

Найдем собственные числа и собственные вектора матрицы А:

$$\det(A - \lambda I) = \det\begin{pmatrix} -\lambda & 1 & 0 & 0 & 0 & 0\\ 0 & -\lambda & 5 & 0 & 2.5 & 0\\ 0 & 0 & -\lambda & 1 & 0 & 0\\ 0 & 0 & 15 & -\lambda & 2.5 & 0\\ 0 & 0 & 0 & 0 & -\lambda & 1\\ 0 & 0 & 2.5 & 0 & 6.25 & -\lambda \end{pmatrix}$$

$$\lambda_1 = \lambda_2 = 0$$

$$\lambda_{3,4} = \pm 3.9578$$

$$\lambda_{5,6} = \pm 2.3635$$

Система неустойчива, так как есть собственные числа меньше 0.

Собственные вектора:

$$v_{1} = \begin{bmatrix} 1\\0\\0\\0\\0\\0 \end{bmatrix} \quad v_{2} = \begin{bmatrix} -1\\0\\0\\0\\0 \end{bmatrix} \quad v_{3} = \begin{bmatrix} -0.0808\\-0.3199\\-0.2235\\0.8846\\-0.0594\\0.2349 \end{bmatrix} \quad v_{4} = \begin{bmatrix} 0.0808\\0.3199\\0.2235\\0.8846\\0.0594\\0.2349 \end{bmatrix}$$

$$v_{5} = \begin{bmatrix} -0.0774\\0.1831\\0.098\\-0.2317\\-0.3691\\0.8723 \end{bmatrix} \quad v_{6} = \begin{bmatrix} 0.0774\\0.1831\\-0.098\\-0.2317\\0.3691\\0.8723 \end{bmatrix}$$

Вычислим матрицу управляемости и определим ее ранг.

$$U = \begin{bmatrix} B & A \cdot B & A^2 \cdot B & A^3 \cdot B & A^4 \cdot B & A^5 \cdot B \end{bmatrix}$$

 $rank(U) = 6 = n \Rightarrow$ система полностью управляема и стабилизируема, так как неустойчивые моды управляемы.

Вычислим матрицу наблюдаемости и ее ранг:
$$V = \begin{bmatrix} C \\ CA \\ CA^2 \\ CA^3 \\ CA^4 \\ CA^5 \end{bmatrix}$$
.

 $rank(V) = 6 = n \Rightarrow$ система полностью наблюдаема, а следовательно, обнаруживаема.

Физический смысл собственных чисел заключается в определении мод свободного движения. Моды равны: $1, t, e^{3.9578t}, e^{-3.9578t}, e^{2.3635t}, e^{-2.3635t}$. Мода t позволяет системе совершать равномерное движение, экспоненциальные моды могут затухать и расти. Мода, равная единице, позволяет тележке покоиться в любой точке.

Физический смысл собственных векторов в системе тележки с двумя перевернутыми маятниками заключается в представлении конкретных форм колебаний системы и определении состояний, в которых система может находиться. Собственные векторы позволяют описать различные колебательные режимы и характеристики колебаний, которые могут проявляться в такой системе. По векторам $v_{1,2}$ можно понять, что x — координата тележки не зависит от остальных компонент вектора состояний. То есть тележка может покоиться в любой точку координатной прямой — не влияет на процесс стабилизации.

Задание 2.2. Передаточные функции

Найдите передаточные матрицы: $W(s)_{u\to y}$, $W(s)_{f\to y}$.

Для каждой из передаточных функций определите динамический порядок, относительный динамический порядок, значения нулей и полюсов. Дайте физическую интерпретацию найденных величин.

Решение:

Найдем передаточные функции: $W_{u o y_1}(s) = \mathcal{C}(sI - A)^{-1}B$

$$W_{u \to y}(s) = C(sI - A)^{-1}B =$$

$$= \begin{bmatrix} \frac{1}{2s^2} + \frac{10(s^2 - 5)}{4s^6 - 85s^2 + 350s^2} + \frac{5(s^2 - 10)}{2(4s^6 - 85s^2 + 350s^2)} \\ \frac{4s^2 - 25}{2(4s^4 - 85s^2 + 350)} + \frac{5}{2(4s^4 - 85s^2 + 350)} \\ \frac{5}{(4s^4 - 85s^2 + 350)} + \frac{s^2 - 15}{(4s^4 - 85s^2 + 350)} \end{bmatrix}$$

$$W_{u \to y_1}(s) = \frac{1}{2s^2} + \frac{10(s^2 - 5)}{4s^6 - 85s^4 + 350 s^2} + \frac{2.5(s^2 - 10)}{4s^6 - 85s^2 + 350 s^2}$$

$$= \frac{1}{2s^2} + \frac{10(s^2 - 5) + 2.5(s^2 - 10)}{4s^6 - 85s^4 + 350 s^2}$$

$$= \frac{1}{2s^2} + \frac{10s^2 - 50 + 2.5s^2 - 25}{4s^6 - 85s^4 + 350 s^2}$$

$$= \frac{(4s^4 - 85s^2 + 350)}{2s^2(4s^4 - 85s^2 + 350)} + \frac{25s^2 - 150}{2s^2(4s^4 - 85s^2 + 350)}$$

$$= \frac{4s^4 - 85s^2 + 350 + 25s^2 - 150}{2s^2(4s^4 - 85s^2 + 350)} = \frac{4s^4 - 60s^2 + 200}{2s^2(4s^4 - 85s^2 + 350)}$$

$$= \frac{s^4 - 15s^2 + 50}{s^2(2s^4 - 42.5s^2 + 175)} = \frac{s^4 - 15s^2 + 50}{(2s^6 - 42.5s^4 + 175s^2)}$$

Динамический порядок: 6. Относительный порядок: 2. Определим полюса.

$$s^{2}(2s^{4} - 42.5s^{2} + 175) = 0$$

 $s_{1,2} = 0$ $s_{3,4} = \pm 3.9578$ $s_{5,6} = \pm 2.3635$

Определим нули.

$$s^4 - 15s^2 + 50 = 0$$

 $s_{1,2} = \pm \sqrt{10}$ $s_{3,4} = \pm \sqrt{5}$

$$W_{u \to y_2}(s) = \frac{4s^2 - 20}{2(4s^4 - 85s^2 + 350)}$$

Динамический порядок: 4. Относительный порядок: 2. Определим полюса.

$$2(4s^4 - 85s^2 + 350) = 0$$

$$s_{1,2} = \pm 30.1358 \quad s_{3,4} = \pm 29.9681$$

Определим нули.

$$4s^2 - 20 = 0$$
$$s_{1,2} = \pm \sqrt{5}$$

$$W_{u \to y_3}(s) = \frac{5}{(4s^4 - 85s^2 + 350)} + \frac{s^2 - 15}{(4s^4 - 85s^2 + 350)} = \frac{s^2 - 10}{(4s^4 - 85s^2 + 350)}$$

Динамический порядок: 4. Относительный порядок: 2. Определим полюса.

$$4s^4 - 85s^2 + 350 = 0$$

$$s_{1,2} = \pm 30.1358 \quad s_{3,4} = \pm 29.9681$$

Определим нули.

$$s^2 - 10 = 0$$

$$s_{1,2} = \pm \sqrt{10}$$

$$W(s)_{f \to y} = C(sI - A)^{-1}D$$

$$W(s)_{f_1 \to y_1} = \frac{(4s^6 - 85s^4 + 350s^2)}{2s^2(4s^4 - 85s^2 + 350)} + \frac{60(s^2 - 5)}{2s^2(4s^4 - 85s^2 + 350)} - \frac{5(s^2 - 10)}{2s^2(4s^4 - 85s^2 + 350)}$$

$$= \frac{(4s^6 - 85s^4 + 350s^2) - 5(s^2 - 10) + 60(s^2 - 5)}{2s^2(4s^4 - 85s^2 + 350)}$$

$$= \frac{4s^6 - 85s^4 + 350s^2 - 5s^2 - 50 + 60s^2 - 300}{2s^2(4s^4 - 85s^2 + 350)}$$

$$= \frac{4s^6 - 85s^4 + 405s^2 - 350}{2s^2(4s^4 - 85s^2 + 350)}$$

Динамический порядок: 6. Относительный порядок: 0. Определим полюса.

$$2s^{2}(4s^{4} - 85s^{2} + 350)$$

 $s_{1,2} = 0$ $s_{3,4} = \pm 3.9578$ $s_{5,6} = \pm 2.3635$

Определим нули.

$$4s^6 - 85s^4 + 405s^2 - 350 = 0$$

 $s_{1,2} = \pm 3.85$ $s_{3,4} = \pm 2.3$ $s_{5,6} = \pm 1.05$

$$W(s)_{f_1 \to y_2} = \frac{6s^2 - 40}{4s^4 - 85s^2 + 350}$$

Динамический порядок: 4. Относительный порядок: 2. Определим полюса.

$$4s^4 - 85s^2 + 350$$

 $s_{1,2} = \pm 3.9578$ $s_{3,4} = \pm 2.3635$

Определим нули.

$$6s^{2} - 40 = 0$$

$$s^{2} = \frac{40}{6} = \frac{20}{3}$$

$$s_{1,2} = \pm \sqrt{\frac{20}{3}}$$

$$W(s)_{f_1 \to y_3} = \frac{-s^2 + 30}{4s^4 - 85s^2 + 350}$$

Динамический порядок: 4. Относительный порядок: 2. Определим полюса.

$$4s^4 - 85s^2 + 350$$

 $s_{1,2} = \pm 3.9578$ $s_{3,4} = \pm 2.3635$

Определим нули.

$$-s^{2} + 30 = 0$$

$$s^{2} = 30$$

$$s_{1,2} = \pm \sqrt{30}$$

$$\begin{split} W(s)_{f_2 \to y_1} &= \frac{1}{4s^2} + \frac{5s^2 - 25}{(4s^6 - 85s^4 + 350s^2)} - \frac{25s^2 - 250}{4(4s^6 - 85s^4 + 350s^2)} = \\ &= \frac{(4s^6 - 85s^4 + 350s^2)}{4s^2(4s^6 - 85s^4 + 350s^2)} + \frac{20s^4 - 100s^2}{4s^2(4s^6 - 85s^4 + 350s^2)} \\ &= \frac{25s^4 - 250s^2}{4s^2(4s^6 - 85s^4 + 350s^2)} = \\ &= \frac{4s^6 - 85s^4 + 350s^2 + 20s^4 - 100s^2 - 25s^4 - 250s^2}{4s^2(4s^6 - 85s^4 + 350s^2)} = \\ &= \frac{4s^6 - 90s^4}{4s^2(4s^6 - 85s^4 + 350s^2)} = \frac{s^2 - 22.5}{4s^6 - 85s^4 + 350s^2} \end{split}$$

Динамический порядок: 6. Относительный порядок: 4. Определим полюса.

$$4s^4 - 85s^2 + 350$$

 $s_{1,2} = \pm 3.9578$ $s_{3,4} = \pm 2.3635$

Определим нули.

$$s^{2} - 22.5 = 0$$

$$s^{2} = 22.5$$

$$s_{1,2} = \pm \sqrt{22.5}$$

$$W(s)_{f_2 \to y_2} = \frac{s^2 - 12.5}{4s^4 - 85s^2 + 350}$$

Динамический порядок: 6. Относительный порядок: 4. Определим полюса.

$$4s^4 - 85s^2 + 350$$

 $s_{1,2} = \pm 3.9578$ $s_{3,4} = \pm 2.3635$

Определим нули.

Определим нули.

$$s^{2} - 12.5 = 0$$

$$s^{2} = 12.5$$

$$s_{1,2} = \pm \sqrt{12.5}$$

$$W(s)_{f_2 \to y_3} = \frac{-5s^2 + 80}{2(4s^4 - 85s^2 + 350)}$$

Динамический порядок: 6. Относительный порядок: 4. Определим полюса.

$$4s^{4} - 85s^{2} + 350$$

$$s_{1,2} = \pm 3.9578 s_{3,4} = \pm 2.3635$$

$$-5s^{2} + 80 = 0$$

$$s^{2} = \frac{80}{5} = 16$$

$$s_{1,2} = \pm 4$$

Собственные значения совпали со значением полюсов. Они порождают моду и их связи со свободным движением.

Задание 2.3. Линейное моделирование

Выполните компьютерное моделирование свободного движения линеаризованного объекта согласно уравнениям (2) при различных начальных условиях, несильно отличающихся от нуля. Постройте графики координат вектора состояния $x_i(t)$.

Решение:

Рисунок 2. Графики координат вектора состояния линеаризованного объекта согласно уравнениям (2) при начальных условиях $x(0) = [0.05\ 0\ 0\ 0\ 0]^T$

Рисунок 3. Графики координат вектора линеаризованного объекта согласно уравнениям (2) при начальных условиях $x(0) = [0.05 \ 0.1 \ 0 \ 0 \ 0]^T$

Рисунок 4. Графики координат вектора линеаризованного объекта согласно уравнениям (2) при начальных условиях $x(0) = [0.05\ 0\ 0.1\ 0\ 0]^T$

Рисунок 5. Графики координат вектора линеаризованного объекта согласно уравнениям (2) при начальных условиях $x(0) = [0.05\ 0\ 0\ 0.1\ 1\ 0.15]^T$

Рисунок 6. Графики координат вектора линеаризованного объекта согласно уравнениям (2) при начальных условиях $x(0) = [0.05 \ 0 \ 1 \ 0.1 \ 1 \ 0.15]^T$

Задание 2.4. Нелинейное моделирование

Выполните компьютерное моделирование свободного движения объекта согласно уравнениям (1) при тех же начальных условиях, что и в предыдущем задании. Постройте графики координат вектора состояния $x_i(t)$ и сравните их с графиками, полученными в результате выполнения предыдущего задания (при малом и при большом времени моделирования).

Решение:

Рисунок 7. Графики координат вектора состояния нелинейного объекта

согласно уравнениям (1) при начальных условиях $x(0) = [0.05\ 0\ 0\ 0\ 0]^T$

Рисунок 8. Графики координат вектора нелинейного объекта согласно уравнениям (1) при начальных условиях $x(0) = [0.05 \ 0.1 \ 0 \ 0 \ 0]^T$

Рисунок 9. Графики координат вектора нелинейного объекта согласно уравнениям (1) при начальных условиях $x(0) = [0.05\ 0\ 0.1\ 0\ 0]^T$

Рисунок 10. Графики координат вектора нелинейного объекта согласно уравнениям (1) при начальных условиях $x(0) = [0.05\ 0\ 0\ 0.1\ 1\ 0.15]^T$

Рисунок 11. Графики координат вектора нелинейного объекта согласно уравнениям (1) при начальных условиях $x(0) = [0.05\ 0\ 1\ 0.1\ 1\ 0.15]^T$

Графики линеаризованного объекта и нелинейного очень схожи, однако график линеаризованного объекта точнее при небольшом времени моделирования.

Глава 3. Стабилизация объекта: модальное управление

Задание 3.1. Синтез регулятора по состоянию

С помощью решения уравнения Сильвестра произведите расчет регулятора

$$u = Kx$$
, (3)

основываясь на линейной модели (2) и выбранном вами наборе желаемых собственных чисел замкнутой системы. Исследуйте работоспособность синтезированного регулятора при управлении нелинейной системой (1) с различными начальными условиями в отсутствии внешних возмущений f. Покажите, при каких начальных условиях регулятор работает, при каких – уже нет.

Решение:

Так как выясняли, что система управляема, зададим желаемы спектр при условии, что собственные числа матрицы Г не равны собственным числам матрицы A:

$$\Gamma = \begin{bmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ -1 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2.5 & 0 \\ 0 & 0 & 0 & 0 & 0 & -3 \end{bmatrix}$$

Выберем матрицу Y так, чтобы пара (Y, Γ) была наблюдаема.

$$Y = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Находим матрицу P через уравнение Сильвестра $AP - P\Gamma = BY$:

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 2.5 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 15 & 0 & 2.5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2.5 & 0 & 6.25 & 0 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} & p_{15} & p_{16} \\ p_{21} & p_{22} & p_{23} & p_{24} & p_{25} & p_{26} \\ p_{31} & p_{32} & p_{33} & p_{34} & p_{35} & p_{36} \\ p_{41} & p_{42} & p_{43} & p_{44} & p_{45} & p_{46} \\ p_{51} & p_{52} & p_{53} & p_{54} & p_{55} & p_{56} \\ p_{61} & p_{62} & p_{63} & p_{64} & p_{65} & p_{66} \end{bmatrix}$$

$$-\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} & p_{15} & p_{16} \\ p_{21} & p_{22} & p_{23} & p_{24} & p_{25} & p_{26} \\ p_{31} & p_{32} & p_{33} & p_{34} & p_{35} & p_{36} \\ p_{41} & p_{42} & p_{43} & p_{44} & p_{45} & p_{46} \\ p_{51} & p_{52} & p_{53} & p_{54} & p_{55} & p_{56} \\ p_{61} & p_{62} & p_{63} & p_{64} & p_{65} & p_{66} \end{bmatrix} \begin{bmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ -1 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2.5 & 0 \\ 0 & 0 & 0 & 0 & 0 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 0.25 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} & p_{15} & p_{16} \\ p_{21} & p_{22} & p_{23} & p_{24} & p_{25} & p_{26} \\ p_{31} & p_{32} & p_{33} & p_{34} & p_{35} & p_{36} \\ p_{41} & p_{42} & p_{43} & p_{44} & p_{45} & p_{46} \\ p_{51} & p_{52} & p_{53} & p_{54} & p_{55} & p_{56} \\ p_{61} & p_{62} & p_{63} & p_{64} & p_{65} & p_{66} \end{bmatrix} =$$

$$=\begin{bmatrix} 0.0362 & -0.0720 & -0.2677 & -0.8431 & -0.0600 & -0.0098 \\ -0.0003 & 0.1802 & 0.2677 & 0.5754 & 0.1500 & 0.0293 \\ 0.0415 & 0.0278 & 0.0297 & 0.0276 & 0.1000 & 0.0879 \\ -0.1109 & -0.0141 & -0.0297 & 0.0022 & -0.2500 & -0.2637 \\ 0.0451 & 0.0001 & 0.0335 & 0.0217 & -0.1500 & -0.0110 \\ -0.0902 & 0.0449 & -0.0335 & 0.0117 & 0.3750 & 0.0330 \end{bmatrix}$$

Вычислим матрицу регулятора $K = -YP^{-1}$:

$$K = [-1.5000 -5.3000 -344.3000 -105.7000 388.6000 176.0000]$$

Вычислим собственные числа матрицы A + BK, чтобы проверить систему:

$$\lambda_{1,2} = -2 \pm i$$

$$\lambda_{3,4} = -1$$

$$\lambda_5 = -2.5$$

$$\lambda_6 = -3$$

Исследуем работоспособность синтезированного регулятора с различными начальными условиями в отсутствии внешних воздействий.

Рисунок 12. Устойчивая работа модального регулятора при $x_0 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

Рисунок 13. Устойчивая работа модального регулятора при $x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Рисунок 14. Неустойчивая работа модального регулятора при $x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

Таким образом, регулятор по состоянию корректно работает лишь при начальных значениях ненулевых значений у координаты тележки, иначе графики расходятся.

Задание 3.2. Исследование регулятора по состоянию

Исследуйте влияние выбранных собственных чисел на максимальное отклонение маятников от вертикали, максимальное горизонтальное смещение тележки и максимальное значение управляющего сигнала при управлении нелинейной системой (1).

Решение:

Рассмотрим нелинейную систему при одинаковых начальных условиях и различных собственных числах матрицы A + BK.

$$\sigma_1(A) = \{-2 -1 -1.5 -0.5 -2.5 -3\},\$$
 $K = \begin{bmatrix} 2.2738 & 5.6939 & -54.5037 & -14.0410 & -34.4836 & -13.2002 \end{bmatrix}$

Рисунок 16. График компонент для $\sigma_1(A)$

Рисунок 17. График управления для $\sigma_1(A)$

Максимальное отклонение маятника от вертикали: $\varphi_{1max} = 2.5$

Максимальное отклонение маятника от вертикали: $\varphi_{2max} = 4.8$

Максимальное горизонтальное смещение тележки: $x_{max} = -25$

Максимальное значение управляющего сигнала: $u_{max} = 66.5$

$$\sigma_2(A) = \{-2 \quad -2 \quad -2 \quad -2 \quad -2 \},$$

$$K = [-2.5600 \quad -7.6800 \quad -388.5600 \quad -119.6800 \quad 457.2400 \quad 206.7200]$$

Рисунок 18. График компонент для $\sigma_2(A)$

Рисунок 19. График управления для $\sigma_2(A)$

Максимальное отклонение маятника от вертикали: $\varphi_{1max}=3$

Максимальное отклонение маятника от вертикали: $\varphi_{2max}=2$

Максимальное горизонтальное смещение тележки: $x_{max} = -20$

Максимальное значение управляющего сигнала: $u_{max}=87$

$$\sigma_3(A) = \{-200 -200 -200 -200 -200 -200 \},$$

$$K = [-2.5600 -7.6800 -388.5600 -119.6800 457.2400 206.7200]$$

Рисунок 20. График компонент для $\sigma_3(A)$

Рисунок 21. График управления для $\sigma_3(A)$

Максимальное отклонение маятника от вертикали: $\varphi_{1max} = 500$ Максимальное отклонение маятника от вертикали: $\varphi_{2max} = 250$

Максимальное горизонтальное смещение тележки: $x_{max} = 21000$

Максимальное значение управляющего сигнала: $u_{max} = 8 \cdot 10^6$

Сравнивая значения, можно заметить, что при увеличении значении собственных, значение максимальных значений отклонений и смещения сильно возрастают.

Задание 3.3. Синтез наблюдателя

С помощью решения уравнения Сильвестра произведите расчет наблюдателя:

$$\begin{cases} \dot{\hat{x}} = A\hat{x} + Bu + L(\hat{y} - y) \\ \hat{y} = Cx \end{cases}$$

основываясь на линейной модели (2) и выбранном вами наборе желаемых собственных чисел для ошибки наблюдателя. Исследуйте работоспособность синтезированного наблюдателя при получении выходных значений $y = (y_1, y_2, y_3)$ от нелинейной системы (1), замкнутой регулятором.

Решение:

Из первого задания — пара (C, A) наблюдаема.

Выберем желаемый спектр и матрицу Г:

$$\Gamma = \begin{bmatrix}
-2 & 1 & 0 & 0 & 0 & 0 \\
-1 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -2.5 & 0 \\
0 & 0 & 0 & 0 & 0 & -3
\end{bmatrix}$$

Выберем матрицу *Y*:

Находим матрицу подобия через уравнение Сильвестра $\Gamma Q - QA = YC$

И с помощью матрицы Q вычислим матрицу наблюдателя $L = Q^{-1}Y$:

$$L = \begin{bmatrix} -3.7333 & -3.7333 & -3.7333 \\ -17.1667 & -17.1667 & -17.1667 \\ -26.0444 & -26.0444 & -26.0444 \\ -93.3444 & -93.3444 & -93.3444 \\ 18.2778 & 18.2778 & 18.2778 \\ 34.7611 & 34.7611 & 34.7611 \end{bmatrix}$$

Далее найдем собственные числа матрицы A + LC:

$$\lambda_{1,2} = -2 \pm i$$

$$\lambda_{3,4} = -1$$

$$\lambda_5 = -2.5$$

$$\lambda_6 = -3$$

Рисунок 22. График нелинейной системы и наблюдателя при
$$x_0 = \begin{bmatrix} -2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Рисунок 23. График нелинейной системы и наблюдателя при нулевых начальных значениях

Рисунок 24. Графики выходов системы и наблюдателя

По графикам видно, что при ненулевом начальном значении координаты тележки наблюдатель может проследить за системой. Также можно заметить, что наблюдатель следит за выходом, но с колебаниями.

Задание 3.4. Исследование наблюдателя

Исследуйте влияние выбранных собственных чисел на работу наблюдателя.

Решение:

Рисунок 25. Графики выходов системы и наблюдателя для $\sigma_1(A)$

$$\sigma_3(A) = \{-20 \quad -20 \quad -20 \quad -20 \quad -20 \},$$

Рисунок 26. Графики выходов системы и наблюдателя для $\sigma_2(A)$

По графикам можно заметить, что при увеличении

Задание 3.5. Синтез регулятора по выходу

Постройте регулятор, стабилизирующий маятник и тележку в условиях, когда измерению доступны только сигналы y_1, y_2, y_3 . Для этого используйте наблюдатель (4) и основанный на нем закон управления

$$u = K\hat{x}$$
, (4)

Проведите небольшое исследование и постарайтесь подобрать такие наборы желаемых собственных чисел, при которых переходные процессы в замкнутой нелинейной системе (1), (4), (5) будут наилучшими (на ваш субъективный взгляд). Помните, что хороший переходный процесс предполагает малое время переходного процесса, малое перерегулирование (максимальное горизонтальное смещение тележки и отклонение маятников от вертикали), а также малую величину управляющего воздействия.

Решение:

Выберем желаемый спектр, по нему построим

$$\sigma_1(A) = \{-2 \quad -1 \quad -1.5 \quad -0.5 \quad -2.5 \quad -3\},$$

$$\Gamma = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & -0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2.5 & 0 \\ 0 & 0 & 0 & 0 & 0 & -3 \end{bmatrix}$$

Находим матрицу P и Q с помощью уравнений Сильвестра:

$$AP - PG = BY_1, \qquad GQ - QA = YC$$

Определяем матрицы регулятора K и наблюдателя L:

$$K = -Y_1 P^{-1} =$$

$$= [2.2738 \quad 5.6939 \quad -54.5037 \quad -14.0410 \quad -34.4836 \quad -13.2002]$$

$$L = Q^{-1} Y = \begin{bmatrix} 2.9316 & -2.5593 & -1.4179 \\ -8.0774 & -17.1683 & -8.0614 \\ -2.5593 & -8.1327 & -0.9133 \\ -12.4438 & -36.2626 & -7.5846 \\ -1.4179 & -0.9133 & -5.0892 \\ -5.6487 & -8.1199 & -13.8724 \end{bmatrix}$$

Рисунок 27. График управляющего воздействия

Рисунок 28. График ошибки наблюдателя по выходу

Рисунок 29. График вектора состояний системы и наблюдателя

Глава 4. Стабилизация объекта: LQR и фильтр Калмана

Задание 4.1. Линейно-квадратичный регулятор

Синтезируйте LQR-регулятор на основе модели (2) и примените его для управления системой (1).

Решение:

Для того, чтобы синтезировать LQR, необходимо решить уравнения Риккати:

$$\begin{cases}
A^{T}P + PA + Q - PBR^{-1}B^{T}P = 0 \\
K = -R^{-1}B^{T}P
\end{cases}$$

Где матрицы Q и R мы выбираем предварительно: если Q - неотрицательно определенная, R положительно определенная матрицы, (Q, A) – обнаруживаема, а (A, B) – стабилизируема, то уравнение Риккати будет иметь единственное решение (значение K), которое приведет систему к асимптотической устойчивости.

Пусть
$$Q = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}, R = 1$$

$$K = 10^3 \cdot [-0.0014 \ -0.0103 \ -2.8096 \ -0.8821 \ 2.9465 \ 1.3222]$$

Определим критерий качества: $J = x0^T \cdot P \cdot x0 = 14.5437$

Рисунок 31. График критерия качества

Рисунок 32. Входное воздействие

Задание 4.2. Линейно-квадратичный наблюдатель

Синтезируйте LQE-наблюдатель в непрерывном времени на основе линейной модели (2) и примените его для оценки вектора состояния нелинейной системы (1).

Решение:

Чтобы синтезировать наблюдатель, решим уравнение Риккати:

$$\begin{cases}
AP + PA^{T} + Q - PC^{T}R^{-1}CP = 0 \\
L = -PC^{T}R^{-1}
\end{cases}$$

$$\begin{cases} AP + PA^{T} + Q - PC^{T}R^{-1}CP = 0 \\ L = -PC^{T}R^{-1} \end{cases}$$

$$R = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Вычислим LQE:

$$L = \begin{bmatrix} -1.4241 & -0.3997 & -0.2386 \\ -0.8724 & -1.9029 & -0.9168 \\ -0.3997 & -6.6480 & -0.1598 \\ -1.3618 & -21.9408 & -0.9408 \\ -0.2386 & -0.1598 & -4.6318 \\ -0.5923 & -0.9567 & -10.5181 \end{bmatrix}$$

Рисунок 34. Оценка векторов состояния

Рисунок 35. Ошибка наблюдателя

Задание 4.3. LQG для линейной модели

Примените LQR-регулятор совместно с фильтром Калмана для управления линейной моделью:

$$\begin{cases} \dot{\hat{x}} = A\hat{x} + Bu + L(\hat{y} - y) \\ \hat{y} = Cx + \xi \end{cases}$$

в которой задайте сигналы f и ξ как белый шум c известными параметрами (используйте их при расчёте параметров фильтра).

Решение:

$$R = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Рисунок 36. График выхода

Рисунок 37. Оценка выхода

Рисунок 38. График ошибки наблюдателя

Задание 4.4. LQG для нелинейной модели

Примените LQR-регулятор совместно с фильтром Калмана для управления нелинейной моделью (1), в которую также добавьте сигнал помехи ξ . Задайте сигналы f и ξ как белый шум с известными параметрами. Исследуйте работоспособность получившегося регулятора.

Решение:

$$R = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Рисунок 39. График выхода

Рисунок 40. Оценка выхода

Рисунок 41. График ошибки наблюдателя

Глава 5. Слежение и компенсация

Задание 5.1. Компенсация?

Исследуйте, при каких сигналах $f_1(t)$ и $f_2(t)$ возможно построить компенсирующий регулятор, гарантирующий равенства

$$\lim_{t\to\infty}\varphi_1(t)=0,\ \lim_{t\to\infty}\varphi_2(t)=0$$

для линейной модели (2). Считайте, что весь вектор состояния доступен для измерений.

Решение:

$$\begin{cases} PA_2 + AP = BY + D \\ C_2P = 0 \\ K_2 = Y - K_1P \end{cases}$$

$$A_2 = \begin{bmatrix} 0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & -4 & 0 \end{bmatrix}$$

$$C2 = [0 \ 0 \ 1 \ 0 \ 1 \ 0]$$

Выберем начальные условия: $x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

$$K_2 = \begin{bmatrix} -626.4405 & 138.1616 & -421.6663 & -56.5301 \end{bmatrix}$$

Рисунок 42. График управления

Рисунок 43. Графики вектора состояния

Рисунок 44. График регулируемого выхода

Рисунок 45. Графики внешних возмущений f_1 , f_2

Задание 5.2. Слежение?

Положите $f_1, f_2 \equiv 0$. Исследуйте, для каких векторных сигналов g(t) возможно построить следящий регулятор, гарантирующий выполнение равенства:

$$\lim_{t\to\infty}||y(t)-g(t)||=0,$$

для линейной модели (2). Считайте, что весь вектор состояния доступен для измерений.

Решение:

$$\begin{cases} PA_2 + AP = BY + D \\ C_2P + D_2 = 0 \\ K_2 = Y - K_1P \end{cases}$$

$$A_2 = \begin{bmatrix} 0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & -4 & 0 \end{bmatrix}$$

$$C2 = [1 \ 0 \ 1 \ 0 \ 1 \ 0]$$

$$D2 = [1 \ 1 \ 1 \ 1]$$

Выберем начальные условия: $x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

$$K_2 = \begin{bmatrix} -28.2532 & 56.5184 & -104.4831 & -0.0432 \end{bmatrix}$$

Рисунок 46. График управления

Рисунок 47. Графики вектора состояния

Рисунок 48. График выхода

Рисунок 49. График регулируемого выхода

Рисунок 50. Задающий сигнал g(t)

Вывод:

В процессе курсовой работы повторили почти весь материал, который изучили за год (и даже больше). Вспомнили выведение формулы для построения модели с помощью Лангранжиана, построили математическую модель тележки с парным маятником, проанализировали полученную систему. После применили следующие регуляторы и наблюдатели для системы: модальный регулятор, наблюдатель, LQR, LQE и LQG. В последних заданиях построили компенсирующий регулятор при сигналах $f_1(t)$ и $f_2(t)$, также построили следящий регулятор.