Exercises FYS4480, week 38, September 16-20, 2024

Exercise 1

This exercise is a continuation of the exercises from last week on the so-called Lipkin model. We considered a state with all fermions in the lowest single-particle state

$$|\Phi_{J_z=-2}\rangle = a_{1-}^{\dagger} a_{2-}^{\dagger} a_{3-}^{\dagger} a_{4-}^{\dagger} |0\rangle.$$

This state has $J_z = -2$ and belongs to the set of projections for J = 2. We will use the shorthand notation $|J, J_z\rangle$ for states with different spon J and spin projection J_z . The other possible states have $J_z = -1$, $J_z = 0$, $J_z = 1$ and $J_z = 2$.

Use the raising or lowering operators J_+ and J_- in order to construct the states for spin $J_z = -1$ $J_z = 0$, $J_z = 1$ and $J_z = 2$. The action of these two operators on a given state with spin J and projection J_z is given by $(\hbar = 1)$ by $J_+ |J, J_z\rangle = \sqrt{J(J+1) - J_z(J_z+1)} |J, J_z+1\rangle$ and $J_- |J, J_z\rangle = \sqrt{J(J+1) - J_z(J_z-1)} |J, J_z-1\rangle$.

Exercise 2

a) Show that the onebody part of the Hamiltonian

$$\hat{H}_0 = \sum_{pq} \langle p | \, \hat{h}_0 \, | q \rangle \, a_p^{\dagger} a_q$$

can be written, using standard annihilation and creation operators, in normal-ordered form as

$$\begin{split} \hat{H}_{0} &= \sum_{pq} \left\langle p \right| \hat{h}_{0} \left| q \right\rangle a_{p}^{\dagger} a_{q} \\ &= \sum_{pq} \left\langle p \right| \hat{h}_{0} \left| q \right\rangle \left\{ a_{p}^{\dagger} a_{q} \right\} + \delta_{pq \in i} \sum_{pq} \left\langle p \right| \hat{h}_{0} \left| q \right\rangle \\ &= \sum_{pq} \left\langle p \right| \hat{h}_{0} \left| q \right\rangle \left\{ a_{p}^{\dagger} a_{q} \right\} + \sum_{i} \left\langle i \right| \hat{h}_{0} \left| i \right\rangle \end{split}$$

Explain the meaning of the various symbols. Which reference vacuum has been used?

b) Show that the twobody part of the Hamiltonian

$$\hat{H}_{I} = \frac{1}{4} \sum_{pqrs} \langle pq | \hat{v} | rs \rangle a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}$$

can be written, using standard annihilation and creation operators, in normal-ordered form as

$$\begin{split} \hat{H}_{I} &= \frac{1}{4} \sum_{pqrs} \left\langle pq \right| \hat{v} \left| rs \right\rangle a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r} \\ &= \frac{1}{4} \sum_{pqrs} \left\langle pq \right| \hat{v} \left| rs \right\rangle \left\{ a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r} \right\} + \sum_{pqi} \left\langle pi \right| \hat{v} \left| qi \right\rangle \left\{ a_{p}^{\dagger} a_{q} \right\} + \frac{1}{2} \sum_{ij} \left\langle ij \right| \hat{v} \left| ij \right\rangle \end{split}$$

Explain again the meaning of the various symbols. The two-body matrix elements are anti-symmetrized.