

Data Analysis

IBM Employees Dataset

Warat Chokulket

Introduction

Introduction

An employee is the power of the company like an engine in a car. High potential employees mean high company capability. In order to obtain high potential employees, company need to invest a lot of time and money. If an employee you have invested so much time and money leaves, this would mean that you would have to spend even more time and money to hire somebody else.

The problem that we are looking to solve is ...

What is the factor that lead to employee attrition?

How can we keep employees happy and satisfied to company?

Exploratory Data Analysis

Dataset contained 1470 samples and 35 columns

16%

To find insight, we use KDE plot to show distribution of each features and display some interesting features.

Age

Age distribution is nearly the same for our target but the left blue area shows that younger people are more likely to quit.

This 4 features are related to one another and related to Age feature too.

- Total working years
- Years at company
- Years in current role
- Years with current manager

Job level and monthly income features seem interesting too.
With low job level and low monthly income, people are more likely to quit.

Stock option level is the most interesting feature.

From blue area, we can presume that people are more likely to quit with zero stock option level. Moreover, stock option level 1 in orange area supports our hypothesis

Exploratory Data Analysis

For categorical features, we use bar plot with percentage of attrition_yes / total_attrition to find insight.

Job role

Sales representative is the highest attrition percentage at 40% that higher than Laboratory technician by 15%

Business travel

People who travel frequently are higher attrition percentage around 10%.

They may relate to sales representative role.

Overtime

Attrition percentage for overtime is higher than no-overtime by 20%.

Overtime may affect to other features such as work life balance or job satisfaction.

Marital status

Single status is higher attrition percentage than married status by 14%.

Feature Engineering

Drop some unnecessary features

From the KDE plot, we will see some features that all values are the same or not have meaning.

- Standard Hours
- Employee Count
- Over18
- Employee Number

Feature Engineering

Drop colinear features

In order to accurate our machine learning model, we need to drop features that highly related to one another.

- Job Level
- Monthly Income
- Performance Rating
- Total Working Years
- Years At Company
- Years In Current Role
- Years Since Last Promotion
- Years With Current Manager

Encode categorical features

In order to train machine learning model, we need to use numerical data. So, we numerically encode all categorical features.

C→		BusinessTravel_Non- Travel	BusinessTravel_Travel_Frequently	BusinessTravel_Travel_Rarely	Department_Human Resources	Department_Resea & Developm
	0	0	0	1	0	2
	1	0	1	0	0	
	2	0	0	1	0	
	3	0	1	0	0	
	4	0	0	1	0	
	4					

Split our dataset into training set and test set

In order to find the factor that lead to employee attrition, we can perform machine learning model and see "What features are importance for model?" and "It is the same as our hypothesis from data analysis or not? ".

Random Forest Model

Gradient Boosting Model

Resampling training data

In order to reduce imbalance target problem, we use over-sampling and under-sampling process. Over-sampling increases the weight of the minority class by replicating the minority class examples and Under-sampling decreases the weight of the majority class by cutting the majority class examples

Result

ROC scores from Gradient Boosting model is higher than Random Forest model at 0.752

Confusion Matrix

Confusion Matrix Create from test set data that we split before training

Random Forest Model

Gradient Boosting Model

Importance Features

Random Forest Model

Importance Features

Gradient Boosting Model

Conclusion

What is the factor that lead to employee attrition?

How can we keep employees happy and satisfied to company?

From EDA, we have 7 importance features

- Age and other that related to age
- Job level
- Monthly Income
- Stock Option Level
- Sales Representative job role
- Overtime
- Marital status

Machin Learning Model

From our two models, we have importance features that are the same from different model

- Overtime = No
- Monthly Income
- Stock Option Level
- Job Satisfaction
- Married
- Age
- Job Involvement

01

What is the factor that lead to employee attrition?

Expected

- Overtime
- Monthly Income (Job level)
- Stock Option Level
- Marital status
- Age

Surprised

- Job Satisfaction
- Job Involvement
- Sales Representative job role

How can we keep employees happy and satisfied to company?

The most importance factor is Overtime. To improve Monthly Income and Stock Option, we need to invest more money. But to reduce Overtime, we may just need to improve working process.

Job Satisfaction and Job Involvement are interesting factor. This two factors seem not related to other factor. So, we need to dig deeper to know "What affect to this two factors".

THANK YOU