ECE 6310 - Advanced Electromagnetic Fields: Homework Set #3

Miguel Gomez

2024-02-15

Preliminaries

In this document, we use standard notation for electromagnetic theory. Key equations and concepts are summarized below:

Vector Notation

- **%**: Electric field intensity
- **%**: Magnetic field intensity
- **2**: Electric flux density
- **3**: Magnetic flux density
- **J**: Current density
- ρ_v : Volume charge density

Differential Operators

- $\nabla \cdot$: Divergence of a vector field
- $\nabla \times$: Curl of a vector field
- \bullet ∇ : Gradient of a scalar field
- \bullet $\,\partial_i\,$: Partial derivative with respect to the independent basis element i

Maxwell's Equations

In integral form, Maxwell's equations are given by:

$$\oint_{\partial V} \mathcal{E} \cdot d\mathcal{E} = -\frac{d}{dt} \int_{V} \mathcal{B} \cdot d\mathcal{S} \qquad \text{(Faraday's Law of Induction)}$$

$$\oint_{\partial V} \mathcal{H} \cdot d\mathcal{E} = \int_{V} \mathcal{J} \cdot d\mathcal{S} + \frac{d}{dt} \int_{V} \mathcal{D} \cdot d\mathcal{S} \qquad \text{(Ampère's Circuital Law)}$$

$$(2)$$

$$\iint_{\partial V} \mathcal{D} \cdot d\mathcal{S} = \int_{V} \rho_{v} dV \qquad \text{(Gauss's Law for Electricity)}$$

$$\iint_{\partial V} \mathcal{B} \cdot d\mathcal{S} = 0 \qquad \text{(Gauss's Law for Magnetism)}$$

$$(4)$$

Other Relevant Equations

- Continuity Equation: $\nabla \cdot \mathbf{J} + \partial_t \rho_v = 0$
- Relationship between \mathcal{E} , \mathcal{D} : $\mathcal{D} = \epsilon \mathcal{E}$
- Relationship between \mathcal{H} , \mathcal{B} : $\mathcal{B} = \mu \mathcal{H}$

Boundary Conditions

Discuss the boundary conditions for \mathcal{E} , \mathcal{H} , \mathcal{D} , and \mathcal{B} at interfaces between different media.

1 - 6.19

Show that for observations made at very large distances ($\beta r \gg 1$) the electric and magnetic fields of Example 6-3 reduce to the following:

$$E_{\theta} = \\ H_{\phi} \approx \\ E_{r} \approx 0 \\ E_{\phi} = H_{r} = H_{\theta} = 0$$

- 2 6.20
- 3 6.25
- 4 6.26
- 5 6.38
- 6 7.3
- 7 7.15
- 8 7.37

References

[1] Constantine A. Balanis. advanced engineering electromagnetics, chapter 1, page 2–3. John Wiley & Sons, 2024.