Case of X having less than full column rank

 $\operatorname{Rank}(X_{n \times p}) = r < p$. Since only estimable linear functions $a'\beta$ can be

estimated, assume
$$a'_i\beta$$
, $i=1,2,\ldots,q$ are estimable and $A_{q\times p}=\begin{pmatrix} a'_1\\ \vdots\\ a'_q \end{pmatrix}$.

However, since $a'_i = m'_i X$ for some m'_i , we have $A = M_{q \times n} X_{n \times p}$. Since A has rank q, M also has rank q ($\leq r$). Proceeding as before, let β_0 be any solution of $A\beta = c$. Then consider: $\tilde{Y} = Y - X\beta_0 = X(\beta - \beta_0) + \epsilon$ or $\tilde{Y} = X\gamma + \epsilon$ or

$$\tilde{Y} = \theta + \epsilon, \theta \in \mathcal{M}_C(X) = \Omega$$
, and

 $M\theta=MX\gamma=A\gamma=0$. We want to find $\hat{\beta}_H$, the least squares solution subject to $H:A\beta=c$. If $\omega=\Omega\cap\mathcal{N}(M)$, then $\omega^\perp\cap\Omega=\mathcal{M}_C(P_\Omega M')$, and $P_\Omega M'=X(X'X)^-X'M'=X(X'X)^-A'$. Further, $MP_\Omega M'=MX(X'X)^-X'M'=A(X'X)^-A'$ is nonsingular. This is because, (since $X'P_\Omega=X'$)

$$q = \operatorname{Rank}(M') \ge \operatorname{Rank}(P_{\Omega}M') \ge \operatorname{Rank}(X'P_{\Omega}M')$$

= $\operatorname{Rank}(X'M') = \operatorname{Rank}(A') = q.$

Therefore

$$P_{\Omega} - P_{\omega} = P_{\omega^{\perp} \cap \Omega} = P_{\mathcal{M}_{C}(P_{\Omega}M')}$$

$$= P_{\Omega}M'(MP_{\Omega}M')^{-1}MP_{\Omega}$$

$$= X(X'X)^{-}A' (A(X'X)^{-}A')^{-1}A(X'X)^{-}X'.$$

Hence,

$$X\hat{\beta}_H - X\beta_0 = X\hat{\gamma}_H = P_{\omega}\tilde{Y} = P_{\Omega}\tilde{Y} - P_{\omega^{\perp}\cap\Omega}\tilde{Y}$$
$$= P_{\Omega}Y - X\beta_0 - P_{\Omega}M'(MP_{\Omega}M')^{-1}MP_{\Omega}(Y - X\beta_0), \text{ so that}$$

$$X'X\hat{\beta}_H - X'X\beta_0 = X'P_{\Omega}Y - X'X\beta_0 - X'P_{\Omega}M'(MP_{\Omega}M')^{-1}MP_{\Omega}(Y - X\beta_0).$$

Thus,

$$\begin{split} X'X\hat{\beta}_{H} &= X'Y - X'M'(MP_{\Omega}M')^{-1} \left\{ MP_{\Omega}Y - MP_{\Omega}X\beta_{0} \right\} \\ &= X'Y - X'M'(MP_{\Omega}M')^{-1} \left\{ MX(X'X)^{-}X'Y - MX\beta_{0} \right\} \\ &= X'Y - X'M'(MP_{\Omega}M')^{-1} \left\{ A(X'X)^{-}X'Y - A\beta_{0} \right\} \\ &= X'Y - A' \left(A(X'X)^{-}A' \right)^{-1} \left\{ A\hat{\beta} - c \right\} \\ &= X'X\hat{\beta} - A' \left(A(X'X)^{-}A' \right)^{-1} \left\{ A\hat{\beta} - c \right\}. \end{split}$$

Now recall, a solution of Bu = d is $\hat{u} = B^{-}d$. Therefore, from above, since

$$X'X(\hat{\beta}_H - \hat{\beta}) = -A' \left(A(X'X)^- A' \right)^{-1} \left\{ A\hat{\beta} - c \right\},\,$$

we have that

$$\hat{\beta}_H = \hat{\beta} - (X'X)^- A' (A(X'X)^- A')^{-1} \{A\hat{\beta} - c\}.$$

Also, these two together yield,

$$(\hat{\beta}_{H} - \hat{\beta})'X'X(\hat{\beta}_{H} - \hat{\beta})$$

$$= (A\hat{\beta} - c)' (A(X'X)^{-}A')^{-1} A(X'X)^{-}A' (A(X'X)^{-}A')^{-1} (A\hat{\beta} - c)$$

$$= (A\hat{\beta} - c)' (A(X'X)^{-}A')^{-1} (A\hat{\beta} - c).$$