The volume for a cylinder is given by the formula $V = \pi r^2 h$ where r is the radius, and h is the height. Find the following to three significant figures.

- a) the volume of a cylindrical tin can of radius $10\ \mathrm{cm}$ and height $15\ \mathrm{cm}$
- b) the height of a cylinder of radius 4 cm if its volume is $60~{\rm cm}^3$
- c) the radius, in cm, of cable with volume $50\ \mathrm{cm^3}$ and length $45\ \mathrm{cm}$.

The volume for a cylinder is given by the formula $V = \pi r^2 h$ where r is the radius, and h is the height. Find the following to three significant figures.

- a) the volume of a cylindrical tin can of radius 10 cm and height 15 cm
- b) the height of a cylinder of radius 4 cm if its volume is 60 cm³
- c) the radius, in cm, of cable with volume $50\ \mathrm{cm^3}$ and length $45\ \mathrm{cm}$.

Solution

The volume for a cylinder is given by the formula $V = \pi r^2 h$ where r is the radius, and h is the height. Find the following to three significant figures.

- a) the volume of a cylindrical tin can of radius 10 cm and height 15 cm
- b) the height of a cylinder of radius 4 cm if its volume is 60 cm³
- c) the radius, in cm, of cable with volume $50\;\rm cm^3$ and length $45\;\rm cm.$

Solution

a) 4710 cm^3

The volume for a cylinder is given by the formula $V = \pi r^2 h$ where r is the radius, and h is the height. Find the following to three significant figures.

- a) the volume of a cylindrical tin can of radius 10 cm and height 15 cm
- b) the height of a cylinder of radius 4 cm if its volume is 60 cm³
- c) the radius, in cm, of cable with volume $50\ \mathrm{cm^3}$ and length $45\ \mathrm{cm}$.

Solution

a) 4710 cm^3

b) 1.19 cm

The volume for a cylinder is given by the formula $V = \pi r^2 h$ where r is the radius, and h is the height. Find the following to three significant figures.

- a) the volume of a cylindrical tin can of radius 10 cm and height 15 cm
- b) the height of a cylinder of radius 4 cm if its volume is 60 cm³
- c) the radius, in cm, of cable with volume $50~{\rm cm}^3$ and length $45~{\rm cm}$.

Solution

a) 4710 cm^3

b) 1.19 cm

c)0.595 cm

Rearranging Formulae

Standard

MS-A1 Formulae and Equations updated: 2021-01-21

Learning Outcome

Topic:

Rearranging Formulae

Syllabus: · change the subject of a formula

Activities/Tasks:

· Cambridge Ex 3E Q1-21

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

$$V=\pi r^2 h$$

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

$$V = \pi r^2 h$$
$$V \div \pi r^2 = \pi r^2 h \div \pi r^2$$

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

$$V = \pi r^{2} h$$

$$V \div \pi r^{2} = \pi r^{2} h \div \pi r^{2}$$

$$\frac{V}{\pi r^{2}} = h$$

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

$$V = \pi r^{2} h$$

$$V \div \pi r^{2} = \pi r^{2} h \div \pi r^{2}$$

$$\frac{V}{\pi r^{2}} = h$$

$$h = \frac{V}{\pi r^{2}}$$

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

$$V = \pi r^{2} h$$

$$V \div \pi r^{2} = \pi r^{2} h \div \pi r^{2}$$

$$\frac{V}{\pi r^{2}} = h$$

$$h = \frac{V}{\pi r^{2}}$$

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

$$V = \pi r^{2}h$$

$$V \div \pi r^{2} = \pi r^{2}h \div \pi r^{2}$$

$$\frac{V}{\pi r^{2}} = h$$

$$h = \frac{V}{\pi r^{2}}$$

$$V = \pi r^{2}h$$

$$V \div \pi h = \pi r^{2}h$$

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

$$V = \pi r^{2} h$$

$$V \div \pi r^{2} = \pi r^{2} h \div \pi r^{2}$$

$$\frac{V}{\pi r^{2}} = h$$

$$h = \frac{V}{\pi r^{2}}$$

$$V = \pi r^{2} h$$

$$V \div \pi h = \pi r^{2} h \div \pi h$$

$$\frac{V}{\pi h} = r^{2}$$

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

$$V = \pi r^{2} h$$

$$V \div \pi r^{2} = \pi r^{2} h \div \pi r^{2}$$

$$\frac{V}{\pi r^{2}} = h$$

$$h = \frac{V}{\pi r^{2}}$$

$$V = \pi r^{2} h$$

$$V \div \pi h = \pi r^{2} h \div \pi h$$

$$\frac{V}{\pi h} = r^{2}$$

$$r^{2} = \frac{V}{\pi h}$$

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

$$V = \pi r^{2} h$$

$$V \div \pi r^{2} = \pi r^{2} h \div \pi r^{2}$$

$$\frac{V}{\pi r^{2}} = h$$

$$h = \frac{V}{\pi r^{2}}$$

$$V = \pi r^{2} h$$

$$V \div \pi h = \pi r^{2} h \div \pi h$$

$$\frac{V}{\pi h} = r^{2}$$

$$r^{2} = \frac{V}{\pi h}$$

$$\sqrt{r^{2}} = \sqrt{\frac{V}{\pi h}}$$

By performing operations to both sides of a formula, they can be **rearranged** to make **equivalent** formulae where other variables are the subjects.

$$V = \pi r^{2} h$$

$$V \div \pi r^{2} = \pi r^{2} h \div \pi r^{2}$$

$$\frac{V}{\pi r^{2}} = h$$

$$h = \frac{V}{\pi r^{2}}$$

$$V = \pi r^{2} h$$

$$V \div \pi h = \pi r^{2} h \div \pi h$$

$$\frac{V}{\pi h} = r^{2}$$

$$r^{2} = \frac{V}{\pi h}$$

$$\sqrt{r^{2}} = \sqrt{\frac{V}{\pi h}}$$

$$r = \sqrt{\frac{V}{\pi h}} \qquad (r > 0)$$

Make a the subject of 2a - 7b = 23.

Example 1 Make a the subject of 2a-7b=23. Solution 2a-7b=23 2a-7b+7b=23+7b

Example 1 Make a the subject of 2a - 7b = 23. Solution

$$2a - 7b = 23$$

$$2a - 7b + 7b = 23 + 7b$$

$$2a = 23 - 7b$$

Example 1 Make
$$a$$
 the subject

Make a the subject of 2a - 7b = 23.

$$2a - 7b = 23$$

$$2a - 7b + 7b = 23 + 7b$$

 $2a = 23 - 7b$

$$2a = 23 - 7b$$

$$2a = 23 - 7b$$

$$2a = 23 - 7b$$
$$\frac{2a}{2} = \frac{23 - 7b}{2}$$

$$7b \ 7b$$

Example 1 Make
$$a$$
 the subject of $2a - 7b = 23$.

$$2a - 7b = 23$$
$$2a - 7b + 7b = 23 + 7b$$

$$2a = 23 - 7b$$

$$\frac{2a}{2} = \frac{23 - 7b}{2}$$

Rearranging then substituting

Previously, during formula substitution, the variables were replaced by numbers and then the equation was solved. However, often we need to substitute several values for the unknowns and solve the equation for each case. In this situation it is quicker to rearrange the formula before substituting.

The surface area of a sphere is given by $A=4\pi r^2$ where r is the sphere's radius.

- a) Rearrange this formula to make r the subject.
- b) Hence find the radius to 3 significant figures when the surface area is:
 - i) 10 cm² ii) 20 cm² iii) 30 cm²

The surface area of a sphere is given by
$$\ A=4\pi r^2$$
 where r is the sphere's radius. a) Rearrange this formula to make r the subject.

iii) 30 cm²

b) Hence find the radius to 3 significant figures when the surface area is:

Example 2

The surface area of a sphere is given by
$$A=4\pi r^2$$
 where r is the sphere's radius.

a) Rearrange this formula to make r the subject.

$$A = A$$

a)
$$A=47$$

Example 2

$$A = 4\pi r^2$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

iii) 30 cm²

- b) Hence find the radius to 3 significant figures when the surface area is: i) 10 cm² ii) 20 cm²

Solution

a)
$$A = 4$$

a)
$$A = 4$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is: i) 10 cm² ii) 20 cm²

Solution

a)
$$A = 4$$

a)
$$A =$$

$$1 = 4\pi r^2$$

$$A = 4\pi r^2$$

$$A = 4\pi r^2$$

$$A = 4\pi r^2$$

$$A = 4\pi r^2$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is: i) 10 cm² ii) 20 cm²

Solution

a)
$$A =$$

$$A \div 4\pi = 4\pi r$$

$$\frac{4\pi}{4} = 4\pi r^2$$

$$rac{\pi}{4\pi} = 4\pi r^2$$

$$\div 4\pi$$

$$4\pi$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is:
- i) 10 cm² ii) 20 cm² iii) 30 cm²

Solution
a)
$$A = 4\pi r^2$$
 bi) $r = \sqrt{\frac{A}{4\pi}}$
 $A \div 4\pi = 4\pi r^2 \div 4\pi$
 $\frac{A}{4\pi} = r^2$
 $\sqrt{\frac{A}{4\pi}} = \sqrt{r^2}$
 $r = \sqrt{\frac{A}{4\pi}}$ $(r > 0)$

$$1 \div 4\pi = 4\pi r^2 \div$$

$$A \div 4\pi = 4\pi r^2 \div 4$$

$$\frac{A}{r} = r^2$$

$$\frac{A}{4\pi} = r^2$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is:
- i) 10 cm² ii) 20 cm²

Solution

$$A = 4\pi r^2$$

Solution a)
$$A=4\pi r^2$$
 bi) $r=\sqrt{\frac{A}{4\pi}}$ $A\div 4\pi=4\pi r^2\div 4\pi$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$

$$4\pi r^2 \div 47$$

$$\div 4\pi$$

$$r = \sqrt{\frac{A}{4\pi}}$$

$$\sqrt{\frac{4\pi}{4\pi}}$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is:
- i) 10 cm² ii) 20 cm²

Solution

a)
$$A =$$

a)
$$A=4\pi r^2$$
 bi) $r=\sqrt{\frac{A}{4\pi}}$ $A\div 4\pi=4\pi r^2\div 4\pi$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=0.892~\mathrm{cm}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$

$$r = 4\pi r^2 \div 4$$

$$\div 4\pi$$

$$4\pi$$

$$r = \sqrt{\frac{A}{4\pi}}$$

$$\frac{A}{4\pi}$$

$$\frac{\overline{A}}{4\pi}$$

$$\frac{1}{\pi}$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is:
- i) 10 cm² ii) 20 cm²

Solution

Solution a)
$$A=4\pi r^2$$
 bi) $r=\sqrt{\frac{A}{4\pi}}$ $A \div 4\pi = 4\pi r^2 \div 4\pi$ $r=\sqrt{\frac{10}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=0.892 \text{ cm}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$

$$4\pi$$

-
$$4\pi$$

$$4\pi$$

$$r =$$

$$=\sqrt{\frac{10}{4\pi}}$$

bii)
$$r = \sqrt{rac{A}{4\pi}}$$

oii)
$$r = \sqrt{\frac{1}{2}}$$

$$\sqrt{\frac{A}{}}$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is:
- i) 10 cm² ii) 20 cm²

Solution

Solution a)
$$A=4\pi r^2$$
 bi) $r=\sqrt{\frac{A}{4\pi}}$ bii) $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{10}{4\pi}}$ $r=\sqrt{\frac{20}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{20}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$

$$A = 4\pi r$$

$$4\pi = 4\pi r^2 \div 4\pi$$

$$\frac{\pi}{4} = 4\pi r^2 \div 4\pi$$

$$\frac{A}{4\pi} = 4\pi r \div 4\pi$$

$$\frac{A}{4\pi} = r^2$$

$$\frac{A}{4\pi} = r^2$$

$$r = \sqrt{\frac{4\pi}{4\pi}}$$

$$\frac{A}{4\pi}$$
 $\sqrt{10}$

bii)
$$r=$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is:
- i) 10 cm² ii) 20 cm²

Solution

Solution a)
$$A=4\pi r^2$$
 bi) $r=\sqrt{\frac{A}{4\pi}}$ bii) $r=\sqrt{\frac{A}{4\pi}}$ bii) $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{20}{4\pi}}$ $r=\sqrt{\frac{20}{4\pi}}$ $r=0.892~\mathrm{cm}$ $r=1.26~\mathrm{cm}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{$

$$r^2 \div 4\pi$$

$$4\pi$$

$$r = \sqrt{\frac{1}{4}}$$

$$\sqrt{\frac{10}{4\pi}}$$

$$=\sqrt{\frac{A}{4\pi}}$$

r = 1.26 cm

$$\frac{\overline{A}}{\pi}$$

$$\frac{\overline{4}}{\pi}$$

$$\frac{4}{\pi}$$

$$\frac{A}{\pi}$$

$$\frac{A}{4\pi}$$

$$\frac{A}{4\pi}$$

$$\frac{\overline{A}}{\pi}$$

$$\sqrt{A}$$

$$\mathsf{n}^2$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is: i) 10 cm² ii) 20 cm²

Solution

Solution a)
$$A=4\pi r^2$$
 bi) $r=\sqrt{\frac{A}{4\pi}}$ bii) $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{20}{4\pi}}$ $r=\sqrt{\frac{20}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{20}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A}{$

$$=4\pi r^2 \div 4\pi$$

$$\div 4\pi$$

$$r = \sqrt{\frac{10}{4\pi}}$$

$$\sqrt{rac{10}{4\pi}}$$

DII)
$$r$$
 =

$$\dot{}=\sqrt{rac{4}{4}}$$

r = 1.26 cm

$$\sqrt{\frac{A}{4\pi}}$$

$$\sqrt{\frac{A}{4\pi}}$$

bii)
$$r=\sqrt{rac{A}{4\pi}}$$

biii)
$$r = \sqrt{\frac{A}{4\pi}}$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is:

Solution

i) 10 cm² ii) 20 cm²

a)
$$A=4\pi r^2$$

$$A = 4\pi r^2$$
$$4\pi = 4\pi r^2 \div 4\pi$$

Solution a)
$$A=4\pi r^2$$
 bi) $r=\sqrt{\frac{A}{4\pi}}$ bii) $r=\sqrt{\frac{A}{4\pi}}$ biii) $r=\sqrt{\frac{A}{4\pi}}$ biii) $r=\sqrt{\frac{A}{4\pi}}$ biii) $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{20}{4\pi}}$ $r=\sqrt{\frac{30}{4\pi}}$ $r=\sqrt{\frac{30}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A$

$$e^2 \div 4\pi$$

$$r =$$

$$\sqrt{rac{10}{4\pi}}$$

$$r = \sqrt{$$

$$\sqrt{A}$$

$$\sqrt{\frac{A}{A}}$$

The surface area of a sphere is given by $A = 4\pi r^2$ where r is the sphere's radius. a) Rearrange this formula to make r the subject.

- b) Hence find the radius to 3 significant figures when the surface area is: i) 10 cm²

Solution

ii) 20 cm²

bi)
$$r=$$

bi)
$$r = \sqrt{\frac{A}{4\pi}}$$

Solution a)
$$A=4\pi r^2$$
 bi) $r=\sqrt{\frac{A}{4\pi}}$ bii) $r=\sqrt{\frac{A}{4\pi}}$ biii) $r=\sqrt{\frac{A}{4\pi}}$ biii) $r=\sqrt{\frac{A}{4\pi}}$ biii) $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{30}{4\pi}}$ $r=\sqrt{\frac{30}{4\pi}}$ $r=\sqrt{\frac{30}{4\pi}}$ $r=\sqrt{\frac{A}{4\pi}}$ $r=\sqrt{\frac{A$

$$A \div 4\pi = 4\pi r^2 \div 4\pi$$
$$\frac{A}{4\pi} = r^2$$

$$r = \sqrt{rac{A}{4\pi}}$$

$$r = \sqrt{\int$$

$$\sqrt{\frac{4\pi}{4\pi}}$$

$$\sqrt{\frac{20}{4\pi}}$$

iii) 30 cm²

II)
$$r =$$

r = 1.55 cm

$$\sqrt{A}$$

$$\sqrt{A}$$

$$\sqrt{\frac{A}{4\pi}}$$

Today's work

· Cambridge Ex 3E Q1-21