Tree Path Labeling of Path Hypergraphs

A Generalization of Consecutive Ones Property

Anju Srinivasan

as part of M. S. by Research advised by Dr. N. S. Narayanaswamy CSE, IITM, Chennai - 36

15 Dec 2011

Characterization of a feasible TPL ICPPL Filtering algorithm

- Computing a feasible TPL on k-subdivided trees Algorithm
- 4 Conclusion
 Application

Consecutive Ones → **Path Labeling**

The motivation

[get a better image!		
m1.pdf		

[A 30 sec slide on COP? TBD IN THE END]

An Illustration

[say something less apologetic!]

[CHUCK THE TEXTUAL SET DEFINITIONS. ONLY DIAGRAMS.]

A set of n students arrive for a summer course, say
 {Pa, Pi, Sn, Wo, Vi, Li, Ch, Sa, Fr, Sc, Lu},
 n = 11 [a venn diagram of just the universe]

[CHUCK THE TEXTUAL SET DEFINITIONS. ONLY DIAGRAMS.]

- A set of n students arrive for a summer course, say
 {Pa, Pi, Sn, Wo, Vi, Li, Ch, Sa, Fr, Sc, Lu},
 n = 11 [a venn diagram of just the universe]
- They form m study groups, say $\{\mathbb{B}, \mathbb{T}, \mathbb{W}, \mathbb{F}\}$, m = 4 [a venn diagram of the grouping]

 A student may be in more than one study group but will be in at least one, say

 A student may be in more than one study group but will be in at least one, say

• There are *n* single occupancy apartments in *Infinite Loop*. [image of infinite loop]

 A student may be in more than one study group but will be in at least one, say

- There are *n* single occupancy apartments in *Infinite Loop*. [image of infinite loop]
- Streets connecting them do not form loops.

The problem

How should the students be allocated apartments such that each study group has the least distance to travel for a discussion?

[update to the example in synopsis doc]	
al.pdf	
ai.pui	

[update to the example in synopsis doc]	
20 ndf	
a2.pdf	

[update to the example in synopsis doc]
a3.pdf

The combinatorial problem terminology

[SPLIT THIS INTO FOUR SLIDES WITH CORRESPONDING PREVIOUS IMAGES REPEATED]

Terminology

• The set of study groups $\{\mathbb{B}, \mathbb{T}, \mathbb{W}, \mathbb{F}\} \to \text{Hypergraph}$

The combinatorial problem terminology

[SPLIT THIS INTO FOUR SLIDES WITH CORRESPONDING PREVIOUS IMAGES REPEATED]

Terminology

- The set of study groups $\{\mathbb{B}, \mathbb{T}, \mathbb{W}, \mathbb{F}\} \to \mathrm{Hypergraph}$
- *Infinite Loop* block → TARGET TREE

The combinatorial problem terminology

[SPLIT THIS INTO FOUR SLIDES WITH CORRESPONDING PREVIOUS IMAGES REPEATED]

Terminology

- The set of study groups $\{\mathbb{B}, \mathbb{T}, \mathbb{W}, \mathbb{F}\} \to \text{Hypergraph}$
- Infinite Loop block o Target tree
- Study group path allocation \rightarrow Tree Path Labeling (TPL)

The combinatorial problem terminology

[SPLIT THIS INTO FOUR SLIDES WITH CORRESPONDING PREVIOUS IMAGES REPEATED]

Terminology

- The set of study groups $\{\mathbb{B}, \mathbb{T}, \mathbb{W}, \mathbb{F}\} \to \mathrm{HYPERGRAPH}$
- Infinite Loop block → TARGET TREE
- Study group path allocation \rightarrow Tree Path Labeling (TPL)
- The apartment allocation → PATH HYPERGRAPH ISOMORPHISM

The combinatorial problem

[DELETE.]

Terminology [contd.]

There *exists* an apartment allocation that "fits" the route mapping

The combinatorial problem

[DELETE.]

Terminology [contd.]

There exists a hypergraph isomorphism that "fits" the TPL

The combinatorial problem

[DELETE.]

Terminology [contd.]

There *exists* a hypergraph isomorphism that "fits" the TPL → the TPL is FEASIBLE

The combinatorial problem

[DELETE.]

Terminology [contd.]

There *exists* a hypergraph isomorphism that "fits" the TPL \rightarrow the TPL is FEASIBLE

There *exists* an apartment allocation that gives the optimal route mapping

The combinatorial problem

[DELETE.]

Terminology [contd.]

There *exists* a hypergraph isomorphism that "fits" the TPL \rightarrow the TPL is FEASIBLE

There *exists* a hypergraph isomorphism that gives paths/adjacent vertices in tree

The combinatorial problem

[DELETE.]

Terminology [contd.]

There *exists* a hypergraph isomorphism that "fits" the TPL → the TPL is FEASIBLE

There *exists* a hypergraph isomorphism that gives paths/adjacent vertices in tree

→ the hypergraph is a PATH HYPERGRAPH

Tree path labeling of path hypergraphs

The two problems

1

Characterization of a *feasible TPL* and finding the certificate for feasibility i.e. *hypergraph isomorphism*

Tree path labeling of path hypergraphs

The two problems

1

Characterization of a *feasible TPL* and finding the certificate for feasibility i.e. *hypergraph isomorphism*

2

Computation of a feasible TPL if any

1

Characterization of feasible TPL

Given

- i. a set system or hypergraph \mathcal{F} ,
- ii. a feasible TPL $\ell: \mathcal{F} \to \mathcal{P}$ where \mathcal{P} is a path system from tree T and $supp(\mathcal{P}) = V(T)$,

what is the hypergraph isomorphism

$$\underline{\phi: \mathsf{supp}\,(\mathcal{F}) o \mathsf{supp}\,(\mathcal{P})}$$

such that the induced labeling $\ell_\phi = \ell$?

[DELETE]

2

Computing a feasible TPL

Given hypergraph \mathcal{F} with certain properties and a k-subdivided star T, can we find a feasible TPL ℓ to T?

1

Characterization of feasible TPL

The characterization

ICPPL + a filtering algorithm

^{a:} [TBD Write the theorem]

The characterization

ICPPL + a filtering algorithm

^{a:} [TBD Write the theorem]

[DELETE]

2

Computing a feasible TPL

Given hypergraph \mathcal{F} with certain properties and a k-subdivided star T, can we find a feasible TPL ℓ to T?

Special case

Interval assignment problem / COP

- **1** T is a path \Longrightarrow paths in T are intervals a^{a} [quick illustration]
- ② Only pairwise intersection cardinality needs to be preserved ⇒ ICPIA [NS09]
- Higher level intersection cardinalities preserved by Helly Property – [Gol04]
- filter_1, filter_2 do not need the the exit conditions. a: [is this cryptic?]

This problem is equivalent to Consecutive Ones Property of binary matrices [NS09]

Path Labeling - Graph Isomorphism

Application

[get a better image!]
m1.pdf

Path Labeling - Graph Isomorphism

Application

Path Labeling \rightarrow **Graph Isomorphism**

Application

[get a better image!]	
m3.pdf	

Thank You

Q & A

References

[improve - add some jazz. this is a notional slide only for offline reference.]

beamericonarticatin Charles Golumbic.

Algorithmic graph theory and perfect graphs, volume 57 of Annals of Discrete Mathematics.

Carron Deletion

beamericonarnicis. Narayanaswamy and R. Subashini.

A new characterization of matrices with the consecutive ones property.

Discrete Applied Mathematics, 157(18):3721-3727, 2009.

