单元7.2 哈密顿图

第二编图论 第八章欧拉图与哈密顿图

8.2 哈密顿图

内容提要

- 哈密顿回路、哈密顿通路
- 哈密顿图、半哈密顿图
- 哈密顿图的必要条件
- 半哈密顿图的必要条件
- 哈密顿图的充分条件
- 半哈密顿图的充分条件

周游世界

• Sir William Rowan Hamilton, 1857, Icosian game:

Willam Rowan Hamilton (1805~1865)

- · 爱尔兰神童(child prodigy)
- 三一学院(Trinity college)
- · 光学(optics)
- 1827, Astronomer Royal of Ireland.
- 1837, 复数公理化, a+bi
- 四元数(quaternion): a+bi+cj+dk, 放弃乘法交换律!

马的周游路线(knight's tour)

• Leohard Euler, 1759

马的周游路线(knight's tour)

• Leohard Euler, 1759, 详细分析

哈密顿通(回)路、(半)哈密顿图

• 哈密顿通路: 经过图中所有顶点的初级通路

• 半哈密顿图: 有哈密顿通路的图

• 哈密顿回路: 经过图中所有顶点的初级回路

• 哈密顿图: 有哈密顿回路的图

无向哈密顿图的必要条件

- 定理8.6: 设G=<V,E>是无向哈密顿图,则对V的任意 非空真子集 V_1 有 $p(G-V_1) \le |V_1|$ 。
- 证明: 设C是G中任意哈密顿回路,当 V_1 中顶点在C中都不相邻时, $p(C-V_1)=|V_1|$ 最大; 否则, $p(C-V_1)<|V_1|$. C是G的生成子图, 所以 $p(G-V_1)\le P(C-V_1)\le |V_1|$. #

无向半哈密顿图的必要条件

• 定理8.7: 设G=<V,E>是无向半哈密顿图,则对V的任意非空真子集V₁有

$$p(G-V_1) \le |V_1| + 1$$
 #

判断是否哈密顿图

选择 V_1

$$p(G-V_1)=6 > 5=|V_1|$$

非充分条件的反例

- Petersen图
 - $-\forall V_1 \neq \emptyset, p(G-V_1) \leq |V_1|$
 - 不是哈密顿图, 是半哈密顿图

无向半哈密顿图的充分条件

• 定理8.7: 设G是n(≥2)阶无向简单图, 若对G中任意 不相邻顶点u与v有

$$d(u)+d(v)\geq n-1$$

则G是半哈密顿图.

- 证: 只需证明
 - (1) G连通
 - (2) 由极大路径可得圈
 - (3) 由圈可得更长路径

定理8.7证明(1)

• (1) G连通: ∀u∀v((u,v)∉E→∃w((u,w)∈E∧(w,v)∈E)

定理8.7证明(2)

• 设极大路径 $\Gamma = v_0 v_1 ... v_k$, $k \le n-2$. 若 $(v_0, v_k) \notin E$, 则 $\exists i (1 \le i \le k-1 \land (v_i, v_k) \in E \land (v_0, v_{i+1}) \in E$), 否则, $d(v_0) + d(v_k)$ $\le d(v_0) + k-1 - (d(v_0) - 1) = k \le n-2 (矛盾)$. 于是得圈 $C = v_0 ... v_i v_k v_{k-1} ... v_{i+1} v_0$.

定理8.7证明(3)

• (3) 由圈得更长路径: 连通. #

无向哈密顿图的充分条件一

• 推论1: 设G是n(≥3)阶无向简单图,若对G中任意不相邻顶点u与v有

$$d(u)+d(v)\geq n$$

则G是哈密顿图.

证: 由定理8.7知G连通且有哈密顿通路 Γ=ν₀ν₁...ν_n.
 若(ν₀,ν_n)∈E,则得哈密顿回路

$$C = v_0 v_1 ... v_n v_0$$
.

若 (v_0,v_k) ∉E,则与定理8.7证明(2)类似,也存在哈密顿回路. #

无向哈密顿图的充分条件二

• 推论2: 设G是n(≥3)阶无向简单图,若对G中任意顶点 u有

d(u)≥n/2

则G是哈密顿图. #

 定理8.8: 设u,v是无向n阶简单图G中两个不相 邻顶点,且d(u)+d(v)≥n,则

G是哈密顿图⇔

G∪(u,v)是哈密顿图. #

有向半哈密顿图的充分条件

- 定理8.9: 设D是n(≥2)阶竞赛图,则D是半哈密顿图. #
- 推论:设D是n阶有向图, 若D含n阶竞赛图作为子图, 则D是半哈密顿图. #

有向哈密顿图的充分条件

- 定理8.10: 强连通的竞赛图是哈密顿图.
- · 证: n=1时,平凡图是哈密顿图.

n=2时,不可能强连通.

下面设n≥3. 只需证明:

- (1) D中存在长度为3的圈.
- (2) D中存在长度为k的圈 \Rightarrow D中存在长度为k+1的圈.

• 证: $\forall v \in V(D)$, D强连通 $\Rightarrow \Gamma_{D}^{-}(v) \neq \emptyset$, $\Gamma_{D}^{+}(v) \neq \emptyset$. D竞赛图 $\Rightarrow \Gamma_{D}^{-}(v) \cup \Gamma_{D}^{+}(v) = V(D) - \{v\}$ D强连通 $\Rightarrow \exists s \in \Gamma_{D}^{+}(v)$, $\exists t \in \Gamma_{D}^{-}(v)$, $\langle s,t \rangle \in E(D)$. 于是C=vstv是长度为3的圈.

设D中有圈C=v₁v₂...v_kv₁, (3≤k≤n) 若∃v∈V(D-C), ∃v_s,v_t∈V(C), 使得 <v_sv>∈E(D), <v,v_t>∈E(D), 则 ∃v_{i-1},v_j∈V(C), 使得<v_{i-1},v>∈E(D),<v,v_i>∈E(D).

• 则 C'=v₁v₂...v_{i-1}vv_i...v_kv₁ 是长度为k+1的圈.

否则,令
 V₁={v∈V(D-C) | ∀u∈V(C), <u,v>∈E(D) }
 V₂={v∈V(D-C) | ∀u∈V(C), <v,u>∈E(D) }
 则 V₁≠∅,V₂≠∅, V₁∩V₂ = ∅.

• 于是 $\exists s \in V_1$, $\exists t \in V_2$, $\langle s, t \rangle \in E(D)$. 在C上任取相邻3点 v_{i-1}, v_{i}, v_{i+1} , 则C'= $v_1v_2...v_{i-1}stv_{i+1}...v_kv_1$ 是长度为k+1的圈.

· 推论: 设D是n阶有向图, 若D含n阶强连通竞赛图作 为子图, 则D是哈密顿图. #

边不重的哈密顿回路

 C_1 与 C_2 都是图G的哈密顿回路 $E(C_1) \cap E(C_2) = \emptyset$

问题

• K_n(≥3)中同时存在多少条边不重的哈密顿回路?

定理8.11

- 完全图K_{2k+1}(k≥1)中同时有k条边不重的哈密顿回路, 且这k条边不重的哈密顿回路含有K_{2k+1}中所有边
- 证: 设V(K_{2k+1})={v₁,v₂,...,v_{2k+1}},
 对 i=1,2,...,k, 令 P_i=v_iv_{i-1}v_{i+1}v_{i-2}v_{i+2}...v_{i-(k-1)}v_{i+(k-1)}v_{i-k},
 下标mod(2k)转换到{1,2,...,2k+1}中, 0转换成2k.
 令C_i=v_{2k+1}P_iv_{2k+1}. 可以证明:
 - (1) C_i都是哈密顿回路,
 - (2) $E(C_i) \cap E(C_i) = \emptyset$ ($i \neq j$),
 - (3) $\cup_{i=1}^{n} E(C_i) = E(K_{2k+1})$. #

定理8.11举例: K7

 $V(K_{7})=\{v_{1},v_{2},...,v_{7}\}, k=3, mod 6$ $P_{1}=v_{1}v_{0}v_{2}v_{-1}v_{3}v_{-2}=v_{1}v_{6}v_{2}v_{5}v_{3}v_{4},$ $P_{2}=v_{2}v_{1}v_{3}v_{0}v_{4}v_{-1}=v_{2}v_{1}v_{3}v_{6}v_{4}v_{5},$ $P_{3}=v_{3}v_{2}v_{4}v_{1}v_{5}v_{0}=v_{3}v_{2}v_{4}v_{1}v_{5}v_{6},$

定理8.11推论

- 完全图K_{2k}(k≥2)中同时有k-1条边不重的哈密顿回路,除此之外,剩下的是k条彼此不相邻的边
- 证: k=2时, K₄显然. 下面设k≥3.

$$K_{2k} = K_{2(k-1)+1} + K_1$$
 (联图)

K_{2k-1}中有k-1条边不重的哈密顿回路,

设为C'₁, C'₂,...,C'_{k-1}, 依次把v_{2k} "加入" C'_i, 得到满足要求的C_i. #

小结

- 欧拉图 Easy
 - 充要条件
- 哈密顿图 Hard
 - 必要条件
 - 充分条件

