Solvatione Compitino del 31/05/2013 - Film B

Es #1

a)
$$M_{K}(i) = E\left[X(t)\right] = A \operatorname{red}\left(\frac{t+t_{0}}{2T}\right) \frac{t}{2T} \operatorname{red}\left(\frac{t_{0}}{2T}\right) dl_{0}$$

. A red $\left(\frac{t_{0}}{2T}\right) \operatorname{vert}\left(\frac{t_{0}+t_{0}}{2T}\right) df_{0}$

. A red $\left(\frac{t_{0}}{2T}\right) \operatorname{vert}\left(\frac{t_{0}+t_{0}}{2T}\right) df_{0}$

. A red $\left(\frac{t_{0}}{2T}\right) \operatorname{vert}\left(\frac{t_{0}+t_{0}}{2T}\right) df_{0}$

. A red $\left(\frac{t_{0}}{2T}\right) \operatorname{vert}\left(\frac{t_{0}}{2T}\right) \operatorname{vert}\left(\frac{t_{0}}{2T}\right) df_{0}$

. A red $\left(\frac{t_{0}}{2T}\right) \operatorname{vert}\left(\frac{t_{0}}{2T}\right) \operatorname{vert}\left(\frac{t_{0}}{2T}\right) df_{0}$

. A red $\left(\frac{t_{0}}{2T}\right) \operatorname{vert}\left(\frac{t_{0}}{2T}\right) df_{0}$

.

Es #2

a) E₅ . E[x²] E₇ = 31 . 37 . 33 T

E[x³] =
$$\frac{1}{4}(-z)^{2}$$
 . $\frac{2}{3}(3)^{2}$. 1. $\frac{27}{7}$ = 31

p(1): 25inc(2b) + 5inc($\frac{2}{7}(b-\frac{7}{2}))$ + 7inc($\frac{2}{7}(b-\frac{7}{2})$ + 7inc($\frac{2}{7}(b-\frac{7}{2}))$ + 7inc($\frac{2}{7}(b-\frac{7}{2})$ + 7inc($\frac{2}{7$

$$M_{x} = E\left[x\right] = \frac{1}{4}(-2) = \frac{3}{4}(3) = -\frac{2}{4} + \frac{9}{4} = \frac{7}{4}$$

$$C_{x} = \frac{7}{4} = \frac{7}{4} = \frac{7}{4}$$

$$C_{x} = \frac{7}{4} = \frac{7}{4} = \frac{7}{4}$$

$$\frac{7}{4} = \frac{7}{4} = \frac{7}{4} = \frac{7}{4}$$

$$\frac{7}{4} = \frac{7}{4} = \frac{7}{4} = \frac{7}{4}$$

$$\frac{7}{4} = \frac{7}{4} = \frac{7}{4} = \frac{7}{4} = \frac{7}{4}$$

$$\frac{7}{4} = \frac{7}{4} = \frac{7$$

d)
$$H(t) = P(t) H_{n}(t) = P(t)$$
 $h(t) = p(t)$
 $h(nt) = 2 \sin c (2n) + \sin c (2n-1) + \sin c (2n+1)$
 $= 2 \cos 3$
 $= 2 \cos 3$
 $= 2 \cos 3$
 $= 4 \cos 4$
 $= 6 \cos 4$

b)
$$P_{n_{m_{0}}} = P_{n_{m_{0}}} = P_{n_{m_{$$