NLP до 2017

Елена Кантонистова

NLP ROADMAP

ТЕРМИНОЛОГИЯ

- документ = текст
- корпус набор документов
- токен формальное определение "слова"; токен может не иметь смыслового значения (например, "12fdh" или "авыдшл"), но обычно отделен от остальных токенов пробелами или знаками препинания

ТОКЕНИЗАЦИЯ ТЕКСТА

Чтобы работать с текстом, необходимо разбить его на токены. В простейшем случае токены — это слова (а также наборы букв, знаки препинания и т.д.).

```
Text

"The cat sat on the mat."

Tokens

"the", "cat", "sat", "on", "the", "mat", "."
```

МЕТОДЫ КОДИРОВАНИЯ ТЕКСТОВЫХ ДАННЫХ

BAG OF WORDS (МЕШОК СЛОВ)

• По корпусу создадим словарь из всех встречающихся в нем слов (можно убрать общеупотребительные часто встречающиеся слова и очень редкие слова).

Каждое слово закодируем
 вектором, в котором стоит
 единица на месте,
 соответствующем месту этого
 слова в словаре, все остальные
 компоненты вектора – 0.

• Для кодирования документа сложим коды всех его слов.

BAG OF WORDS (ПРИМЕР)

Пусть корпус состоит из следующих документов:

- D1 "I am feeling very happy today"
- D2 "I am not well today"
- D3 "I wish I could go to play"

Кодировка этих документов будет такой:

	I	am	feeling	very	happy	today	not	well	wish	could	go	to	play
D1	1	1	1	1	1	1	0	0	0	0	0	0	0
D2	1	1	0	0	0	1	1	1	0	0	0	0	0
D3	2	0	0	0	0	0	0	0	1	1	1	1	1

BAG OF WORDS

Используя bag of words (BOW), мы теряем информацию о порядке слов в документе.

<u>Пример:</u> векторы документов "I have no cats" и "No, I have cats" будут идентичны.

N-GRAM BAG OF WORDS

В качестве слов в словаре можно использовать:

- N-граммы из букв (наборы букв длины N в слове)
- N-граммы из слов (наборы фраз длины N в документе)

Такой подход поможет учесть сходственные слова и опечатки.

TF-IDF

- слова, которые редко встречаются в корпусе, но присутствуют в документе, могут оказаться важными для характеристики документа.
- слова, которые встречаются во всех документах, наоборот, не важны.

TF-IDF

Tf-Idf (term frequency - inverse document frequency):

• tf(t,d) - частота вхождения слова t в документ d:

$$tf(t,d) = rac{n_t}{\sum_k n_k} = rac{$$
число вхождений слова t в документ общее число слов в документе

tf(t,d) показывает важность слова t в документе d.

TF-IDF

• tf(t,d) - частота вхождения слова t в документ d:

$$tf(t,d) = rac{n_t}{\sum_k n_k} = rac{$$
число вхождений слова t в документ общее число слов в документе

tf(t,d) показывает важность слова t в документе d.

• idf(t,D) - величина, обратная частоте, с которой слово t встречается в документах корпуса D.

$$idf(t,D) = \log \frac{|D|}{|\{d_i \in D \mid t \in d_i\}|},$$

|D| — число документов *в корпусе*,

 $|\{d_i \in D \mid t \in d_i\}|$ - число документов, в которых встречается слово t

Учёт idf уменьшает вес часто используемых в корпусе слов.

WORD2VEC

<u>Цель:</u> для каждого слова из текста получить такой числовой вектор, чтобы векторы похожих по смыслу слов были "близки".

WORD2VEC

<u>Цель:</u> для каждого слова из текста получить такой числовой вектор, чтобы векторы похожих по смыслу слов были "близки".

<u>Идея:</u> слова, встречающиеся в похожих контекстах, имеют близкие значения.

• В 2013 году Томаш Миколов и его коллеги предложили word2vec — нейронную сеть, которую можно быстро обучить на огромном объеме текстов для получения векторов слов.

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

- будем предсказывать вероятность слова по его окружению (контексту)
- будем учить такие вектора слов, чтобы вероятность, присваиваемая моделью слову была близка к вероятности встретить это слово в этом окружении в реальном тексте.

WORD2VEC

Есть две разные модели word2vec - CBOW и Skip-gram.

- CBOW (Continuous Bag of Words) предсказывает вероятность слова по данному контексту
- Skip-gram ("словосочетание с пропуском") предсказывает по данному слову вектор контекста

МОДЕЛЬ CBOW

Обучаем модель с помощью нейронной сети.

- Скользящим окном ширины 2C+1 (слово и его контекст) проходим по всей коллекции
- Вход (признаки): one-hot представление слов контекста (векторы длины V)
- Ответ (целевая переменная): one-hot представление слова
- **Выход:** распределение вероятностей на словах коллекции (вектор длины V)
- Оптимизируемый функционал минус логарифм правдоподобия:

$$-\sum_{i=1}^{l} \sum_{j=1}^{n_i} \sum_{\substack{k=-C,\\k\neq 0}}^{C} \log p(w_{j+k}|w_j) \to \min_{\{w\}}$$

МОДЕЛЬ CBOW На вход подается контекст (С Input layer слов), на выходе имеем вектор вероятностей, где на і-м месте стоит вероятность того, что і-е x_{lk} слово из словаря стоит внутри $\mathbf{W}_{{\scriptscriptstyle{\mathcal{V}}\! imes\!N}}$ данного контекста. Output layer Hidden layer $\mathbf{W}_{\mathit{V}\times N}$ x_{2k} N-dim V-dim $\mathbf{W}_{v\!\times\! N}$ x_{Ck}

МОДЕЛЬ SKIP-GRAM

МОДЕЛЬ SKIP-GRAM

На скрытом слое активации нет, на выходном слое — softmax.

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

КОСИНУСНОЕ РАССТОЯНИЕ

• Скалярное произведение векторов x и y:

$$(x,y) = ||x|| \cdot ||y|| \cdot \cos(x,y)$$

В качестве расстояния между словами используется косинусное расстояние:

$$\rho(w_i, w_j) = \frac{(w_i, w_j)}{||w_i|| \cdot ||w_j||}$$

ВЕКТОРЫ СЛОВ

Числа, стоящие в i-м столбце в полученной матрице весов — это word2vec-вектор длины N, представляющий i-е слово из словаря.

ВЕКТОРНЫЕ СООТНОШЕНИЯ МЕЖДУ СЛОВАМИ

За счёт использования косинусного расстояния между векторами слов, к векторам слов, полученных в результате применения word2vec, можно применять векторные операции сложения и вычитания, которые будут иметь смысл:

В архитектурах CBOW и SkipGram есть некоторая вычислительная трудность. Давайте рассматривать SkipGram, но в CBOW дела обстоят аналогично.

Когда мы для входного слова вычисляем вероятности слов быть в контексте данного слова, мы пользуемся формулой:

$$p(w_o|w_i) = rac{exp^{(v_{w_o},v_{w_i})}}{\sum_{w=1}^{W} exp^{(v_w,v_{w_i})}}.$$

Здесь

- ullet w_i входное слово, w_o слово, для которого мы считаем вероятность быть в контексте слова w_i
- ullet v_{w_o}, v_{w_i} word2vec-векторы входного и выходного слов

В знаменателе суммирование идет по всем словам словаря в количестве W - их может быть очень много.

Затем после вычисления этой вероятности мы подставляем ее в функцию потерь и считаем по ней градиент.

В этом алгоритме кроется вычислительная сложность, так как в знаменателе стоит сумма по всем словам из словаря, которых может быть очень много.

Решением является negative sampling.

Давайте попробуем перейти от задаче многоклассовой классификации (где число классов = числу слов в словаре) к своего рода задаче бинарной классификации!

Для каждого входного слова мы имеем:

- положительные примеры: это слова, которые действительно находятся в контексте вокруг этого слова
- достанем из нашего обучающего корпуса *отрицательные примеры*: это случайные контексты. В силу случайности можно сказать, что эти слова не находятся в контексте вокруг входного слова

Модифицируем функцию потерь - теперь она похожа на двухклассовый Log-Loss:

$$Loss = \sum_{(w, c_{true})} log(p(c_{true}|w)) + \sum_{(w, c_{false})} log(1 - p(c_{false}|w)).$$

Здесь

- (w, c_{true}) все пары входное слово реальный контекст этого слова. Для них мы считаем штраф при помощи первого слагаемого
- (w, c_{false}) все пары входное слово случайный (неверный) контекст этого слова. Для них мы считаем штраф при помощи второго слагаемого
- ullet $p(c\mid w)$ вероятность того, что слово c находится в контексте слова w

На практике мы можем взять $k \in [2,20]$ случайных отрицательных контекстов. Тем самым мы сильно снизим вычислительную сложность алгоритма - ведь для каждого входного слова **мы будем обновлять веса не у всех слов из словаря, а только у небольшого фиксированного количества слов**.

Эта процедура при этом сохраняет очень высокое итоговое качество модели.

Vanilla Skip-Gram

W_output (old)			Learning R.			grad_W_output				W_output (new)			
-0.560	0.340	0.160	-	0.05	×	0.064	0.071	-0.014	=	-0.563	0.336	0.161	
-0.910	-0.440	1.560				0.098	0.015	0.063		-0.915	-0.441	1.557	
-1.210	-0.130	-1.320				0.069	0.089	0.045		-1.213	-0.134	-1.322	
1.670	-0.150	-1.030				0.014	0.085	0.079		1.669	-0.154	-1.034	
1.720	-1.460	0.730	0.40			-0.021	0.067	0.071	0.40	1.721	-1.463	0.726	
0.000	1.390	-0.120 ^{SZ}	048.gitl	nub.io		-0.098	-0.088	0.091	048.gith	ub. 0.005	1.394	-0.125	
-0.060	1.520	-0.790				-0.072	-0.078	-0.089		-0.056	1.524	-0.786	
0.800	1.850	-1.670				0.046	-0.079	-0.053		0.798	1.854	-1.667	
-1.370	1.320	-0.480				-0.049	-0.087	0.025		-1.368	1.324	-0.481	
0.670	1.990	-1.850				-0.060	0.092	0.042		0.673	1.985	-1.852	
-1.520	-1.740	-1.860				0.074	0.050	0.070		-1.524	-1.743	-1.864	
(11X3)						(11X3)				(11X3)			

Negative Sampling

(11X3)						(11X3)				(11X3)		
W_output	(old)		_	Learning R.		grad_W_out	tput			W_output (n	ew)	
-0.560	0.340	0.160	l _	0.05	×				=	-0.560	0.340	0.160
-0.910	-0.440	1.560	l		^				_	-0.910	-0.440	1.560
-1.210	-0.130	-1.320	l			Not	compute	dI.		-1.210	-0.130	-1.320
1.670	-0.150	-1.030	l			NOU	compute	u:		1.670	-0.150	-1.030
1.720	-1.460	0.730	l							1.720	-1.460	0.730
0.000	1.390	-0.120s4	048.	github.io				aegis4	048.gith	ub.0:000	1.390	-0.120
-0.060	1.520	-0.790								-0.060	1.520	-0.790
0.800	1.850	-1.670		Positive samp	ple, w_o	0.031	0.030	0.041		0.798	1.849	-1.672
-1.370	1.320	-0.480		Negative sam	ple, k=1	-0.090	0.031	-0.065		-1.366	1.318	-0.477
0.670	1.990	-1.850	l	Negative sam	ple, k=2	0.056	0.098	-0.061		0.667	1.985	-1.847
-1.520	-1.740	-1.860		Negative sam	ple, k=3	0.069	0.084	-0.044		-1.523	-1.744	-1.858
(11X3)			-			(11X3)				(11X3)	·	

ДРУГИЕ ВАРИАНТЫ

- FastText https://amitness.com/2020/06/fasttext-embeddings/
- GLoVe https://nlp.stanford.edu/projects/glove/

3. litoria

4. leptodactylidae

5. rana

7. eleutherodactylus

FASTTEXT

У алгоритма word2vec есть недостаток: если в новых текстах встречаются слова, отсутствующие в обучающей выборке, их не получится закодировать при помощи word2vec.

FastText - это модификация word2vec, которая решает эту проблему при помощи использования символьных N-грамм. То есть в качестве токенов используются не только слова, но и их кусочки, N-граммы.

- Например, 3-граммы слова кошка: *кош, ошк, шка*. В этом случае fasttext будет обучаться на следующих токенах: *ко, кош, ошк, шка, ка, кошка* (Токены ко и ка на самом деле трехсимвольные: START_TOKEN + к + о и к + а + END_TOKEN, где START_TOKEN и END_TOKEN специальные символы начала и конца слова).
- Чтобы посчитать вектор слова, мы суммируем векторы всех его N-грамм.

Поэтому, если встретится новое слово, то мы все равно сможем его векторизовать, так как оно состоит из N-грамм, которые с большой вероятностью присутствуют в обучении.

GLOVE

Еще один недостаток word2vec - учет только локального контекста, то есть модель берет в расчет только ближайших соседей слова для его векторизации, при этом игнорируя глобальную структуру корпуса текста. В результате модель может упустить некоторые важные семантические отношения между словами.

Модель GloVe решает эту проблему, объединяя как локальную, так и глобальную статистику появления слов в корпусе текста. Она использует матрицу совместной встречаемости слов, чтобы учесть глобальные закономерности в данных. Такой подход позволяет учитывать не только ближайшие слова, но и все слова в корпусе текста при вычислении векторных представлений.

Разберемся чуть подробнее.

- Первый шаг в GloVe это создание матрицы совместной встречаемости X. Эта матрица содержит статистику того, как часто слова i и j появляются вместе в корпусе текста. Обычно для этого используется окно контекста это количество слов слева и справа от данного слова, которое учитывается.
- Для каждой пары слов i и j значение X_{ij} определяется как частота, с которой слово j появляется в контексте слова i. Матрица совместной встречаемости может быть оценена с использованием эмпирических данных из корпуса текста.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

GLOVE

- Далее мы вводим некоторую функцию $f(X_{ij})$, чтобы определить, насколько важна каждая пара слов для модели. Эта функция обычно определяется некоторыми эмпирическими формулами (далее опустим ее для простоты)
- Наконец, при обучении модели мы минимизируем следующую функцию:

$$J=\sum_{i,j=1}^V((w_i,w_j)-log(X_{ij}))^2,$$

то есть обучаем модель таким векторам, чтобы скалярное произведение слов i и j было близко к логарифму совместной встречаемости слов (суммирование в формуле идет по всем парам слов из словаря размера V).