Лямбда исчисление

Косарев Дмитрий a.k.a. Kakadu

матмех СП6ГУ

17 октября 2019 г.

В этих слайдах

1. Исчисление

2. Стратегии вычислений

ACHTUNG!

Любых слайдов абсолютно недостаточно, чтобы разобраться в теме.

Даже если Вы напишите с нуля интерпретатор λ -исчисления. гарантировать полного понимания невозможно.

Читайте умные книжки, например [2].

Правила вывода в исчислении

Пусть дан некоторый язык L, c помощью которого записываются P_i и C.

(n+1)-местные правила вывода имеют форму

$$\frac{P_1 \qquad \dots \qquad P_n}{C}$$

- P_i посылки (premises)
- C_i заключение (conclusion)

По смыслу означает «если и P_1 , и P_2 , ..., и P_n , то C»

Исчисление

Состоит из

- непустого множества аксиом
- множества правил вывода

Определение

Аксиома – это правило вывода без посылок

Формальное определение можно прочитать в книжке Герамисова [3].

Пример исчисления. Дифференциальное исчисление

Языком L будет язык задания функций (который вообще-то надо формально определять, но не будем)

$$\overline{sin'(x) = cos(x)} \quad \text{sin} \quad \overline{cos'(x) = -sin(x)} \quad \text{cos}$$

$$\frac{f'(x) = u \quad g'(x) = v}{(u \cdot v)'(x) = u'(x) \cdot v(x) + v'(x) \cdot u(x)} \quad \text{mul}$$

$$\frac{f' = u \quad g' = v}{(f(g(x)))' = u'(g(x)) \cdot v'(x)} \quad \text{cmps}$$

Дифференциальное исчисление. Пример вывода

$$\frac{sin'(x) = cos(x)}{sin} \sin \frac{\frac{cos'(x) = -sin(x)}{cos'(2x) = -sin(2x)} \cos \frac{f' = u \quad g' = v}{(f(g(x)))' = u'(g(x)) \cdot v'(x)}}{cos'(2x) = -sin(2x) \cdot (2 \cdot x')} \times \frac{sin'(x) + cos(2x) + sin(x) \cdot (-sin(2x) \cdot (2 \cdot x'))}{(sin(x) \cdot cos(2x))' = cos(x) \cdot cos(2x) + sin(x) \cdot (-sin(2x) \cdot (2 \cdot x'))}$$

На вывод можно смотреть как на **доказательство** того, что производная действительно посчитана правильно.

Результат вывода можно было бы упростить и дальше, но у нас недостаточно правил вывода для этого.

Язык Λ -выражений

В начале нужно выбрать язык ${\cal V}$ имен переменных. Традиционно используются два варианта:

- ✓ Непустая последовательность букв: [a-z]([a-z])*
- □ Натуральные числа

Из алфавита строятся слова (предложения) языка. Алфавитом для Λ будет $\{\mbox{(},\mbox{)},\to,\lambda\}\cup\mathcal{V}$

Слова в языке Λ (*лямбда выражения* или *лямбда термы*) строятся по следующим грамматическим правилам

$$\begin{array}{lll} \langle \exp r \rangle & ::= & \langle \operatorname{varname} \rangle & (\lambda \to \langle \exp r \rangle) & | & (\langle \exp r \rangle \langle \exp r \rangle) \\ \langle \operatorname{varname} \rangle & ::= & \mathcal{V} \end{array}$$

Т.е. λ -выражение это или вхождение переменной, либо λ -абстракция, либо применение (аппликация).

В язык входят скобки, но они часто опускаются.

$$E_1 E_2 \dots E_n \sim (\dots (E_1 E_2) \dots E_n)$$

Например $(\lambda x \to x)$ это функция id из Haskell. Первый x — аргумент λ -абстракции, второй x — τ ело.

Имена аргументов и переменных не несут существенного смысла, т.е.

$$(\lambda x \to x) \equiv (\lambda y \to y) \equiv (\lambda z \to z) \equiv (\lambda t \to t)$$

Синтаксис $A \equiv B$ означает, что A – синоним B.

Подстановка

Функции можно применять к выражениям, например $(\lambda x \to x)y$ вычисляется путём замены в теле λ -абстракции аргумента абстракции на y, т.е.

$$(\lambda x \rightarrow x)y = [y/x]x = y$$

Запись [A/x]B означает, что надо подставить A вместо всех вхождений x в B.

Также есть другая нотация

$$[A/x]B = B[x \mapsto A]$$

Свободные и связанные вхождения переменных

Формально:

- Имя n свободно в λ -выражении n.
- Имя n свободно в ($\lambda x \to E$), если имя $n \neq x$ и n свободно в E.
- Имя n свободно в λ -выражении (MN) если либо оно свободно в M, либо оно свободно в N.

Пример

$$(\lambda x \to xy)(\lambda y \to y)$$

N.B. В одном λ -выражении одно и то же имя может входить и свободно, и связанно.

N.B. В некотором смысле λ – это квантор.

Подстановки

Корректный пример:

$$\mathfrak{II} = (\lambda x \to x)(\lambda x \to x) = (\lambda x \to x)(\lambda z \to z) =$$
$$= [(\lambda z \to z)/x]x = (\lambda z \to z) = \mathfrak{I}$$

Подстановки

Корректный пример:

$$\Im \Im = (\lambda x \to x)(\lambda x \to x) = (\lambda x \to x)(\lambda z \to z) =$$
$$= [(\lambda z \to z)/x]x = (\lambda z \to z) = \Im$$

Некорректный пример:

$$(\lambda x \!\to\! (\lambda y \!\to\! xy))y \neq (\lambda y \!\to\! yy)$$

А нужно делать так

$$(\lambda x \to (\lambda y \to xy))y = (\lambda x \to (\lambda t \to xt))y = (\lambda t \to yt)$$

Основная идея:

- Если у нас есть $(\lambda x \to e)E$, то мы заменяем все *свободные* вхождения x на E.
- Если при замене свободная переменная в E вдруг становится связанной, то мы переименовываем связанную переменную в e перед выполнением подстановки.

Пример:

$$(\lambda x \rightarrow (\lambda y \rightarrow (x(\lambda x \rightarrow xy))))y$$

В $(\lambda y \to (x(\lambda x \to xy)))$ только первый x может быть заменен. Но перед подстановкой необходимо переименовать y в теле на новое имя t.

$$[y/x](\lambda t \to (x(\lambda x \to xt))) = (\lambda t \to (y(\lambda x \to xt)))$$

Редексы (REDucible EXpressions)

Редекс – это подвыражение (подтерм) вида $((\lambda x \rightarrow e)e_2)$

Стратегия вычислений – способ, по которому мы выбираем какие редексы и в каком порядке будет упрощать (вычислять, β -редуцировать).

Будем обозначать как $e \longrightarrow_{\beta} e'$ β -редукцию терма e в e'.

Редекс находится *левее*, если его λ в записи левее.

Редекс считается *самый левый внешний* (*leftmost outermost*), если он самый левый и не содержится ни в каком другом редексе.

Редекс считается *самый левый внутренний*(*leftmost innermost*), если он самый левый и не содержит ни какого другого редекса.

Нормальные формы

У нас четыре возможности

- Редуцируем ли под абстракциями? (да/нет)
- Редуцируем ли аргументы перед подстановкой? (да/нет)

Редуцируем	Редуцируем под абстракциями?	
аргументы?	Да	Нет
Да	Normal form $E ::= \lambda x { ightarrow} E \mid x E_1 \dots E_n$	Weak Normal form $E ::= \lambda x \rightarrow e \mid x E_1 \dots E_n$
Нет	Head normal form $E::=\lambda x \mathop{ ightarrow} E\mid xe_1\dots e_n$	Weak head normal form $E::=\lambda x \rightarrow e \mid xe_1\dots e_n$

В таблице E_j – это выражение в соответствующей нормальной форме, а e_i – произвольный λ -терм.

N.B. Нормальной формы может не быть!

Call-By-Name → Weak Head Normal Form

Редуцирует самый левый внешний терм, который не под абстракцией.

$$\frac{x \xrightarrow{cbn} x} (\lambda x \to e) \xrightarrow{cbn} (\lambda x \to e)$$

$$\frac{e_1 \xrightarrow{cbn} (\lambda x \to e) \quad [e_2/x]e \xrightarrow{cbn} e'}{(e_1e_2) \xrightarrow{cbn} e'}$$

$$\frac{e_1 \xrightarrow{cbn} e' \neq (\lambda x \to e)}{(e_1e_2) \xrightarrow{cbn} (e'_1e_2)}$$

B lazy языках (например, Haskell) используется вариация CBN под названием Call-By-Need.

Call-by-Value → Weak Normal Form

Редуцирует самый левый внутренний терм, который не под абстракцией.

Applicative Order \rightarrow Normal Form

Редуцирует самый левый внутренний терм, и под абстракцией тоже.

$$\frac{e \xrightarrow{ao} e'}{x \xrightarrow{ao} x}$$

$$\frac{e \xrightarrow{ao} e'}{(\lambda x \to e) \xrightarrow{ao} (\lambda x \to e')}$$

$$e_1 \xrightarrow{ao} (\lambda x \to e) \qquad e_2 \xrightarrow{ao} e'_2 \qquad [e'_2/x]e \xrightarrow{ao} e'$$

$$(e_1e_2) \xrightarrow{ao} e'$$

$$\frac{e_1 \xrightarrow{ao} e' \neq (\lambda x \to e) \qquad e_2 \xrightarrow{ao} e'_2}{(e_1e_2) \xrightarrow{ao} (e'_1e'_2)}$$

N.B. Аппликативный порядок совершает больше редукций и выдает более простой ответ по сравнению с CBV, но не гарантирует, что редукция завершится.

Ссылки І

- Демки на HaskellGitlab repo
 - Lambda-Calculus and Combinators, an Introduction

 J. ROGER HINDLEY & JONATHAN P. SELDIN
 PDF
 - Курс математической логики и теории вычислимости $Fepacumos\ A.C.$ PDF
 - Demonstrating Lambda Calculus Reduction
 Peter Setsoft
 PDF

Ссылки II

A Tutorial Introduction to the Lambda Calculus *Raúl Rojas*PDF

Lecture Notes on Natural Deduction Frank Pfenning
PDF