Systèmes dynamiques DM n°1

Pour le 06/10/20

Soit $G_n = \mathrm{SL}(n, \mathbf{R})$ que l'on munit de la topologie naturelle, et \mathcal{H} un espace de Hilbert séparable. Une action unitaire ρ de G_n sur \mathcal{H} est un morphisme $\rho: G_n \to \mathrm{Isom}(\mathcal{H})$, où $\mathrm{Isom}(\mathcal{H})$ désigne l'espace des isométries de \mathcal{H} . On dira qu'une telle action est fortement continue si l'application

$$G_n \times \mathcal{H} \longrightarrow \mathcal{H}$$

 $(g, v) \longmapsto \rho(g) \cdot v$

est continue.

Préliminaires

On note $K = SO(n, \mathbf{R})$ et

$$A_{+} = \left\{ \begin{pmatrix} t_{1} & 0 \\ & \ddots & \\ 0 & t_{N} \end{pmatrix}, \ t_{1} \geq \dots \geq t_{n} > 0, \ \prod_{i=1}^{n} t_{i} = 1 \right\}.$$

1. Montrer que pour tout $g \in G_n$, il existe $k_1, k_2 \in K$ et $a \in A_+$ tels que $g = k_1 a k_2$.

Pour tous $1 \le i, j \le n$ on note $E_{ij} \in \operatorname{Mat}_{n \times n}(\mathbf{R})$ la matrice dont les coefficients sont nuls sauf le coefficient en place (i, j) qui vaut 1, et

$$U_{ij} = \{ \mathrm{Id} + \tau E_{ij}, \ \tau \in \mathbf{R} \},$$

$$A_{ij} = \{ \mathrm{Id} + (t-1)E_{ii} + (t^{-1} - 1)E_{jj}, \ t > 0 \},$$

$$S_{ij} = \{ \mathrm{Id} + (a-1)E_{ii} + bE_{ij} + cE_{ji} + (d-1)E_{jj}, \ ad - bc = 1 \}.$$

- **2.** Montrer que le sous-groupe S_{ij} de G_n est isomorphe à G_2 .
- **3.** Montrer que G_n est engendré par les sous-groupes A_{ij} et U_{ij} avec $1 \le i, j \le n$ et $i \ne j$.

Vecteurs G_2 -invariants

Pour tout t > 0 et $\tau \in \mathbf{R}$ on note

$$a_t = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}, \quad u_\tau = \begin{pmatrix} 1 & \tau \\ 0 & 1 \end{pmatrix}, \quad s_\tau = \begin{pmatrix} 1 & 0 \\ \tau & 1 \end{pmatrix}.$$

Soit (\mathcal{H}, ρ) une représentation unitaire et fortement continue de G_2 . Pour tout $v \in \mathcal{H}$, on note $G_v = \{g \in G_2, \rho(g)v = v\}$.

4. Montrer que G_v est un sous-groupe fermé de G et que pour tout $v \in \mathcal{H}$,

$$g \in G_v \iff \langle \rho(g)v, v \rangle = ||v||^2.$$

5. Soit $g \in G_2$ tel qu'il existe des suites (g_m) dans G et (s_m) , (s'_m) dans G_v avec

$$\lim_{m} g_m = g, \quad \lim_{m} s_m g_m s'_m = 1.$$

Montrer que $g \in G_v$.

Pour $g \in G_2$, on dira que $v \in \mathcal{H}$ est g-invariant si $\rho(g)v = v$.

- **6.** Soit $v \in \mathcal{H}$ et $t \neq 1$. Montrer que si v est a_t -invariant, alors pour tout $\tau \in \mathbf{R}$, v est u_{τ} -invariant et s_{τ} -invariant.
- 7. Soit $v \in \mathcal{H}$ et $\tau \neq 0$. Montrer que si v est u_{τ} -invariant ou s_{τ} -invariant, alors pour tout t > 0, v est a_t -invariant.
- 8. En déduire que si $v \in \mathcal{H}$ est invariant par a_t pour un $t \neq 1$ (ou par u_τ , ou par s_τ , pour $\tau \neq 0$), alors $G_v = G$.

Théorème de Howe-Moore

Soit $\rho: G_n \to \mathcal{H}$ une représentation unitaire fortement continue telle que

$$\{v \in \mathcal{H}, \ \forall q \in G_n, \ \rho(q)v = v\} = \{0\}.$$

Le but est de montrer que pour tous $u, v \in \mathcal{H}$,

$$\lim_{\|g\| \to \infty} \langle \rho(g)u, v \rangle = 0.$$

Pour cela on raisonne par l'absurde et on suppose qu'il existe $\varepsilon > 0$, $v, w \in \mathcal{H}$ et une suite (g_m) de G_n tels que $||g_m|| \to \infty$ et

$$|\langle \rho(g_m)v, w \rangle| > \varepsilon, \quad k \in \mathbf{N}.$$

Pour tout $m \in \mathbb{N}$, on se donne $k_m, k'_m \in K$ et $a_m \in A_+$ tels que $g_m = k_m a_m k'_m$.

On dit qu'une suite (v_m) de \mathcal{H} converge faiblement vers $v \in \mathcal{H}$, ce qu'on notera $v_m \rightharpoonup v$, si pour tout $w \in \mathcal{H}$ on a quand $m \to \infty$,

$$\langle v_m, w \rangle \to \langle v, w \rangle.$$

- 9. Montrer que toute suite bornée de \mathcal{H} admet une sous-suite qui converge faiblement.
- **10.** Montrer que quitte à extraire, on peut supposer qu'il existe $v_0 \in \mathcal{H}$ et $k, k' \in K$ tels que, quand $m \to \infty$,
 - (i) $k_m \to k$ et $k'_m \to k'$,
 - (ii) $\rho(a_m k')v \rightharpoonup v_0$,
 - (iii) $\rho(g_m)v \rightharpoonup \rho(k)v_0$.
- 11. Montrer qu'il existe $k \in \{1, \dots, n-1\}$ tel que pour tous $1 \le i \le k < j \le n$, on a

$$\rho(g)v_0=v_0, \quad g\in U_{ij}.$$

Indication: on pourra montrer l'existence d'un $k \in \{1, ..., n-1\}$ tel que $\lim_m t_m^{(k)}/t_m^{(k+1)} = \infty$ où $t_m^{(j)}$ désigne le coefficient en place (j,j) de la matrice a_m .

12. Conclure.

Application au mélange

Pour tout borélien $A \subset G_n$, on note

$$\nu(A) = \operatorname{Leb}\left(\left\{x \in \operatorname{Mat}_{n \times n}(\mathbf{R}), \ 1 \le \det(x) \le 2, \ \det(x)^{-1/n} x \in A\right\}\right),$$

où Leb désigne la mesure de Lebesgue sur l'espace $\mathrm{Mat}_{n\times n}(\mathbf{R})\simeq\mathbf{R}^{n^2}$ des matrices $n\times n$. On note

$$R_g(x) = xg^{-1}, \quad L_g(x) = gx, \quad g, x \in G_n.$$

13. Montrer que ν définit une mesure borélienne sur G_n telle que $(R_g)_*\nu=(L_g)_*\nu=\nu$.

Soit $\Gamma \subset G_n$ un sous-groupe discret. La mesure ν étant G_n -invariante, elle induit une mesure μ sur $X = \Gamma \backslash G_n$. On suppose que Γ est un réseau, c'est-à-dire que $\mu(\Gamma \backslash G_n) < +\infty$.

14. Montrer que pour tout $g \in G_n$ tel que $\lim_{k \to +\infty} \|g^k\| = +\infty$, on a

$$\lim_{k \to \infty} \int_{X} \varphi(x) \psi(xg^{k}) d\mu(x) = \left(\int_{X} \varphi \ d\mu \right) \left(\int_{X} \psi \ d\mu \right), \quad \varphi, \psi \in L^{2}(X, \mu).$$