Assignment -4

Python Programming

Assignment Date	4 November 2022
Student Name	Mr. S. Sugumaran
Student Roll Number	621319205047
Maximum Marks	2 Marks

Questions:

import numpy as np
import seaborn as sns
import pandas as pd
from matplotlib import pyplot as plt

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

data=pd.read_csv('/content/drive/MyDrive/Details/IBM/abalone.csv')

data

₽		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
	1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
	3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
	4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
	4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
	4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
	4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
	4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
	4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

data.head(5)

data.tail(5)

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rir
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	
4175	F	0 625	0 485	0 150	1 0945	0 5310	0 2610	0 2960	•

plt.hist(data['Height'])

plt.boxplot(data['Height'])

data.isnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	R
0	False	False	False	False	False	False	False	False	F
1	False	False	False	False	False	False	False	False	F
2	False	False	False	False	False	False	False	False	F
3	False	False	False	False	False	False	False	False	F
4	False	False	False	False	False	False	False	False	F
4172	False	False	False	False	False	False	False	False	F
4173	False	False	False	False	False	False	False	False	F
4174	False	False	False	False	False	False	False	False	F
4175	False	False	False	False	False	False	False	False	F
4									•

data.notnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	True	True	True	True	True	True	True	True	True

data['Rings'].hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7f825d9a1bd0>

data.dtypes

Sex	object
Length	float64
Diameter	float64
Height	float64
Whole weight	float64
Shucked weight	float64
Viscera weight	float64
Shell weight	float64
Rings	int64
dtype: object	

plt.scatter(data.index,data['Diameter'])

<matplotlib.collections.PathCollection at 0x7f825d87fcd0>

sns.stripplot(y=data['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f825d831310>

sns.stripplot(x=data['Sex'],y=data['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f825d7aa790>

plt.figure(figsize=(5,5))

<Figure size 360x360 with 0 Axes>
<Figure size 360x360 with 0 Axes>

data['Height'].plot(kind='density')

<matplotlib.axes._subplots.AxesSubplot at 0x7f825d7a3350>

sns.barplot(x='Sex',y='Height',data=data)

<matplotlib.axes._subplots.AxesSubplot at 0x7f825d71dcd0>

sns.pairplot(data,hue="Sex",size=3)

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:2076: UserWarning: Th warnings.warn(msg, UserWarning)

<seaborn.axisgrid.PairGrid at 0x7f825d625590>


```
x = np.array(data['Sex'])
```

y = np.power(data['Height'],2)

plt.plot(x,y)

plt.title("Line chart")

plt.xlabel("x-Axis")

plt.ylabel("y-Axis")

Text(0, 0.5, 'y-Axis')


```
sns.set(rc={'figure.figsize': (7,7)})
sns.set (font_scale=1.5)
fig=sns.lineplot (x=data.index, y=data['Length'], markevery=1, marker='d', data=data,
fig.set(xlabel='index')
```


TRAIN AND TEST:

from sklearn.model_selection import train_test_split

```
X=data.iloc[ : , :-1]
y=data.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05, random_state
X_train
```

		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight		
	678	F	0.450	0.380	0.165	0.8165	0.2500	0.1915	0.2650		
	3009	I	0.255	0.185	0.065	0.0740	0.0305	0.0165	0.0200		
	1906	I	0.575	0.450	0.135	0.8245	0.3375	0.2115	0.2390		
	768	F	0.550	0.430	0.155	0.7850	0.2890	0.2270	0.2330		
	2781	M	0.595	0.475	0.140	1.0305	0.4925	0.2170	0.2780		
y_tra	ain										
	678 3009 1906 768 2781	23 4 11 11 10									
	1033 10 3264 12 1653 10 2607 9 2732 8 Name: Rings, Length: 3968, dtype: int64										
print	('Trai	n dat	a points	_split(dat :', len(t :', len(te	rain))	size=0.25,	random_state	e=1)			
Train data points : 3132 Test data points : 1045											
<pre>train.Sex = train.Sex.replace({"M":1, "I":0, "F":-1}) test.Sex = test.Sex.replace({"M":1, "I":0, "F":-1}) numerical_features = ["Length", 'Diameter', 'Height', 'Whole weight', 'Shucked weight', categorical_feature = "Sex" features = numerical_features + [categorical_feature] target = 'Rings'</pre>											
<pre>fig, axes = plt.subplots(ncols=2,figsize=(16, 5)) train[target].plot.hist(color='blue', ax=axes[0]) axes[0].set(title="Train") test[target].plot.hist(color='blue', ax=axes[1]) axes[1].set(title="Test") plt.tight_layout() plt.show()</pre>											

X_train = train[features]
y_train = train[target]
X_test = test[features]
y_test = test[target]

X_train.head()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Sex	
4014	0.625	0.480	0.175	1.0650	0.4865	0.2590	0.285	1	
3252	0.480	0.380	0.130	0.6175	0.3000	0.1420	0.175	1	
305	0.200	0.145	0.060	0.0370	0.0125	0.0095	0.011	0	
1857	0.505	0.400	0.145	0.7045	0.3340	0.1425	0.207	0	
439	0.500	0.415	0.165	0.6885	0.2490	0.1380	0.250	1	

from sklearn.compose import make_column_selector as selector
categorical_columns_selector = selector(dtype_include=object)
categorical_columns = categorical_columns_selector(data)
categorical_columns

['Sex']

data_categorical = data[categorical_columns]
data_categorical.head()

Double-click (or enter) to edit

- _
- 3 M
- 4

Colab paid products - Cancel contracts here