

Accelerating lemma learning using joins LPAR 2008 – Doha, Qatar

100

Nikolaj Bjørner, <u>Leonardo de Moura</u> Microsoft Research

Bruno Dutertre SRI International

- Arithmetic
- Bit-vectors
- Arrays
- **e**

Research

$$x+2=y \Rightarrow f(read(write(a, x, 3), y-2) = f(y-x+1)$$

Arithmetic

$$x+2=y \Rightarrow f(read(write(a, x, 3), y-2)) = f(y-x+1)$$

Array Theory

$$x+2=y \Longrightarrow f(read(write(a,x,3),y-2)=f(y-x+1)$$

Uninterpreted Functions

SMT: Some Applications @ Microsoft

HAVOC

Hyper-V *Microsoft** | Virtualization[©]

Terminator T-2

VCC

Continue to the Continue to th

NModel

Vigilante

SAGE

F7

Research

Accelerating lemma learning using joins

SMT@Microsoft: Solver

- Z3 is a new solver developed at Microsoft Research.
- Development/Research driven by internal customers.
- Free for academic research.
- Interfaces:

http://research.microsoft.com/projects/z3

SMT = DPLL + Theories

$$\neg a=b \lor f(a)=f(b)$$
, $a < 5 \lor a > 10$, $a > 6 \lor b = 2$

- Guessing (case-splitting)
- Deducing (BCP + Theory propagation)
- Conflict resolution Backtracking + Lemma

Most SMT solvers use only the literals from the given formula!

Is SMT fast???

```
a[0] = 0

if (c_1) { a[1] = 0; } else { a[1] = 1; }

...

if (c_n) { a[n] = 0; } else { a[n] = 1; }

assert(a[0] == 0);
```


Is SMT fast???

$$a_1$$
= write(a_0 , 0, 0)
($\neg c_1 \lor a_2$ = write(a_1 , 1, 0))
($c_1 \lor a_2$ = write(a_1 , 1, 1))
...
($\neg c_n \lor a_{n+1}$ = write(a_n , n, 0))
($c_n \lor a_{n+1}$ = write(a_n , n, 1))
read(a_{n+1} , 0) \neq 0

It takes O(2ⁿ) time if lemmas do not use new literals!

"Diamonds are eternal"

$$a_1 \not\simeq a_{50} \wedge \bigwedge_{i=1}^{49} \left[(a_i \simeq b_i \wedge b_i \simeq a_{i+1}) \vee (a_i \simeq c_i \wedge c_i \simeq a_{i+1}) \right]$$

SP(E) calculus

It can solve "diamonds" in polynomial time.

$$\begin{split} \operatorname{Sup} \frac{C \ \lor \ a \simeq b \quad D[a]}{C \lor D[b]} \quad \operatorname{E-Res} \frac{C \ \lor \ a \not\simeq a}{C} \quad \operatorname{E-Fact} \frac{C \ \lor \ a \simeq b \ \lor \ a \simeq c}{C \ \lor \ a \simeq b \ \lor \ b \not\simeq c} \\ \operatorname{Res} \frac{C \ \lor \ \ell \quad D \ \lor \ \lnot \ell}{C \lor D} \quad \operatorname{Fact} \frac{C \ \lor \ \ell \ \lor \ell}{C \ \lor \ \ell} \end{split}$$

The $\mathcal{SP}(E)$ calculus

Very slow in practice!

DPLL $(E + \Delta)$

- New literals can be created
 - Case-splitting (guessing)
 - Lemma Learning

Any SP(E) inference can be simulated by DPLL($E+\Delta$)

How do we create Δ ?

Look ahead

Look ahead

"The plan"

- Define language L (of new literals). Examples:
 - (Bounds) x > 5
 - (Equality) x = y
 - (Difference) x y < 3</p>
- Theory propagation for L

Join operator for L

S

S

S

Microsoft

Accelerating lemma learning using joins

$$\neg p \lor q$$
, $\neg q \lor x>5$, $p \lor x>y$, $y > 4$

$$\neg p \lor q, \neg q \lor x>5, p \lor x>y, y>4$$

$$p$$

$$\{x>5\}$$

$$\neg p \lor q, \ \neg q \lor x > 5, \ p \lor x > y, \ y > 4$$

$$p \qquad \neg p$$

$$\{x > 5\}$$

$$\{x > 4\}$$

$$\neg p \lor q, \ \neg q \lor x > 5, \ p \lor x > y, \ y > 4$$

$$\{x > 5\} \qquad \{x > 4\}$$

$$\{x > 5\} \sqcup \{x > 4\} = \{x > 4\}$$

Join: Examples (Equalities)

$$\{ x = y, y = z, x = z \} \sqcup \{ x = z, z = w, x = w \} = \{x = z \}$$

Join: Examples (Difference constraints)

$$\{x-y<3\}\sqcup\{x-y<2, y-z<1, x-z<3\}=\{x-y<3\}$$

Join

- Other examples:
 - Linear arithmetic: polyhedral.
 - Array partial equalities:

$$a =_i b$$
 (forall x: $x = i \lor a[x] = b[x]$)

k-look ahead.

Conclusion

- SMT solvers are fast, but they may choke in simple formulas.
- DPLL(join) = SMT + "Abstract Interpretation".
- Future work: new literals during conflict resolution.
- http://research.microsoft.com/projects/z3

Thank You!

