Protokoll:

- Aufgabe 1:
 - Störgrößen: externe Weganregung z_r
 - o Stellgrößen: Aktorkraft Fa
 - o Regelgrößen: Auslenkung z₅ der Aufbaumasse m₅
- Aufgabe 2:
 - O Wirkungsplan nach Abbildung 4.1.:

- Aufgabe 3:
 - o Differentialgleichungen des Viertelfahrzeuges:

Für die Masse m_u :

$$-c_u(z_u - z_r) + c_s(z_s - z_u) + d_s(\dot{z}_s - \dot{z}_u) + F_a = m_u \ddot{z}_u$$

Für die Masse m_s :

$$-c_{s}(z_{s}-z_{u})-d_{s}(\dot{z}_{s}-\dot{z}_{u})-F_{a}=m_{s}\ddot{z}_{s}$$

• Aufgabe 4: Wirkungsplan Viertelfahrzeug:

- Aufgabe 5:
 - o Teilübertragungsfunktionen:
- 1.: Führungsverhalten: $z_r = 0$:

$$G_{s,u} = \frac{m_u s^2 + c_u}{(d_s s + c_s)^2 - (m_s s^2 + d_s s + c_s)(m_u s^2 + d_s s + c_s + c_u)}$$

2.: Störverhalten: F_a = 0:

$$G_{s,z} = \frac{c_u(d_s s + c_s)}{(m_s s^2 + d_s s + c_s)(m_u s^2 + d_s s + c_s + c_u) - (d_s s + c_s)^2}$$

- Aufgabe 6:
 - o siehe Aufgabe_6.mdl
- Aufgabe 7:
 - o siehe Aufgabe_7.m
 - o Ergebnisdiskussion:

- o Ergebnis der Reglerauslegung mit dem Sisotool für eine Phasenreserve von 30°:
 - P-Regler: K_p = -144,87.
 - I-Regler: K_I = 800000.
- o mit P-Regler: bleibende Regelabweichung und Überschwingen vorhanden.
- P-Regler mit der geforderten Phasenreserve von 30° folglich nicht zur Regelung des Viertelfahrzeugs geeignet.
- mit I-Regler: für die geforderte Phasenreserve von 30° wird das System mit einem I-Regler instabil.
- I-Regler mit der geforderten Phasenreserve von 30° folglich nicht zur Regelung des Viertelfahrzeugs geeignet.

• Aufgabe 8:

- o siehe Aufgabe_8.m
- Ergebnis der PID-Reglerauslegung:
- \circ T_v = 0.0598
- \circ T_N = 0.0146
- \circ K_p = -5,4201 (Phasenreserve: 24.8°)
- o die Werte T_v und T_N wurden über die Kompensation der dominanten Streckenpole berechnet. Der statische Übertragungsfaktor K_p wurde mit dem Sisotool für die geforderte Phasenreserve bestimmt.

• Aufgabe 9:

- siehe Aufgabe_9.m
- Reglerauslegung mit dem Sisotool anhand der Sprungantwort:
- o Verschieben der Pole in der Wurzelortskurve, sodass das auftretende Überschwingen möglichst gering ist. Für den PID-Regler ergeben sich folgende Übertragungsfaktoren: $K_p = -346,7$. $K_d = -32$. $K_l = -888,9$.

Aufgabe 10:

- Vergleich der Sprungantworten aus Aufgabe 7,8,9:
- Sprungantwort mit PID-Regler aus Aufgabe 9: geringes (einmaliges) Überschwingen, keine bleibende Regelabweichung, nach ca. 2 Sekunden wird der stationäre Endwert erreicht. (Abbildung s.o)
- Sprungantwort mit P-Regler aus Aufgabe 7: mehrmaliges, etwas stärkeres Überschwingen (im Vgl. zu Aufgabe 9), bleibende Regelabweichung (ca. 0,55), stationärer Endwert wird später (nach ca. 6 Sekunden) erreicht (im Vgl. zu Aufgabe 9). (Abbildung s.o.)
- o Sprungantwort mit I-Regler aus Aufgabe 7: instabiles System (Abbildung s.o.)
- Sprungantwort mit PID-Regler aus Aufgabe 8: deutlich häufigeres Überschwingen mit größerer Amplitude (im Vgl. zu Aufgabe 9), keine bleibende Regelabweichung durch integrierenden Anteil im Regler, stationärer Endwert wird erst deutlich später (nach ca. 50-60 Sekunden) erreicht.

Sprungantwort mit PID-Regler aus Aufgabe 8

- o Fazit: Regler aus Aufgabe 9 am besten geeignet.
- o siehe Aufgabe_10.mdl

Aufgabe 11:

- PID-Reglerauslegung mit Sisotool ergibt: $K_p = -2528$. $K_l = -12639$. $K_d = -182$.
- o siehe Aufgabe_11.m
- o Validierung siehe Aufgabe_11_simu.mdl