EE7330: Network Information Theory

2021

Lecture Notes 16: Jointly Typical Lemma

Instructor: Shashank Vatedka Scribe: Ritesh Kumar

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Please email the course instructor in case of any errors.

16.1 Jointly typical lemma

Consider a distribution P_{XYZ} such that $Z \sim i.i.d\ P_{Z|XY}$, if X and Y are typical, then Z will also be typical. If Z is not driven from the distribution $P_{Z|XY}$ but it's driven from another distribution i.e $Z \sim P_{Z|X}$ that is Z is independent to Y.

Lemma1.1: Suppose we have sequences x^n and y^n , then for any (x^n, y^n) , and $Z^n \sim P_{Z|X}^n(.|x^n)$, then for any $\epsilon > 0$,

$$Pr\left[\left(x^{n}, y^{n}, z^{n}\right) \in T_{\epsilon}^{(n)}\left(P_{XYZ}\right)\right] \leqslant 2^{-nI(Y;Z|X)(1+\delta(\epsilon))}$$

$$\tag{16.1}$$

for some $\delta(\epsilon) \to 0$ as $\epsilon \to 0$.

It gives an upper bound on the probability of 3 sequences being jointly typical. For the upper bound x^n and y^n may jointly typical or not. In some cases, we also use a lower bound on the probability that they are jointly typical. Hence similar to the upper bound, we have a lower bound on that as follows

lemma 1.2 For any $\epsilon > \epsilon'$,

$$Pr\left[(x^n, y^n, z^n) \in T_{\epsilon}^{(n)}(P_{XYZ})\right] > 2^{-nI(Y;Z|X)(1+\delta(\epsilon))}$$
 (16.2)

for some $\delta(\epsilon) \to 0$ as $\epsilon \to 0$.

For the lower bound, we have to assume that, x^n and y^n are jointly typical. If they are not jointly typical then, we may not have this lower bound.

Proof.

$$Pr\left[\left(x^{n}, y^{n}, z^{n} \in T_{\epsilon}^{n}\left(P_{XYZ}\right)\right)\right] = \sum_{z^{n}:\left(\left(x^{n}, y^{n}, z^{n}\right) \in T_{\epsilon}^{n}\left(P_{XYZ}\right)\right)} \prod_{i=1}^{n} P_{Z|X}\left(z_{i}|x_{i}\right)$$
(16.3)

 $\prod_{i=1}^{n} P_{Z|X}(z_i|x_i)$ belong to conditional typical set which is $z^n \in T^n_{\epsilon}(P_{XZ|x^n})$ and for conditional typical set, the probability of nay z^n in the set is $\approx 2^{-nH(Z|X)(1-\epsilon)}$, that is

$$Pr_{Z|X}(z^n|x^n) \le 2^{-nH(Z|X)(1-\epsilon)}$$
 (16.4)

In R.H.S. of equation (16.3), we are summing all the possible sequences in the different typical set (which is not conditional typical set). There we are considering z^n for which we are summing over the is $T^n_{\epsilon}(P_{XYZ})$ set. Hence the equation (16.3) can be bounded as:

$$Pr\left[\left(x^{n}, y^{n}, z^{n} \in T_{\epsilon}^{n}\left(P_{XYZ}\right)\right)\right] = \sum_{z^{n}:\left(\left(x^{n}, y^{n}, z^{n}\right) \in T_{\epsilon}^{n}\left(P_{XYZ}\right)\right)} \prod_{i=1}^{n} P_{Z|X}\left(z_{i} | x_{i}\right) \\ \leqslant |T_{\epsilon}^{n}\left(P_{XYZ}\right)| 2^{-nH(Z|X)(1-\epsilon)} \quad (16.5)$$

The size of the typical set is bounded as:

$$|T_{\epsilon}^{n}(P_{XYZ})| \leq 2^{nH(Z|X)(1+\epsilon)} \tag{16.6}$$

Now using equation (16.4) and equation (16.6) in (16.5),

$$\begin{split} \Pr\left[(x^n, y^n, z^n \in T^n_{\epsilon} \left(P_{XYZ} \right) \right) \right] & \leq 2^{nH(Z|X)(1+\epsilon)} \times 2^{-nH(Z|X)(1\epsilon)} \\ & \leq 2^{-n[H(Z|X) - H(Z|XY) - \epsilon(H(Z|X) - H(Z|XY))]} \\ & = 2^{-n[I(Z;Y|X)(1-\epsilon)]} \end{split}$$

Hence,

$$Pr[(x^n, y^n, z^n \in T_{\epsilon}^n(P_{XYZ}))] \le 2^{-n[I(Z;Y|X)(1-\epsilon)]}$$
 (16.7)

Now coming the proof of lemma 1.2

For the lower bound, we have to assume that, x^n and y^n are jointly typical i.e $((x^n, y^n) \in T^n_{\epsilon'})$ and $Z^n \sim P^n_{Z|X}(.|x^n)$

$$Pr\left[\left(x^{n}, y^{n}, z^{n} \in T_{\epsilon}^{n}\left(P_{XYZ}\right)\right)\right] = \sum_{z^{n}:\left(\left(x^{n}, y^{n}, z^{n}\right) \in T_{\epsilon}^{n}\left(P_{XYZ}\right)\right)} P_{Z|X}\left(z^{n}|x^{n}\right) \tag{16.8}$$

$$\sum_{z^{n}:((x^{n},y^{n},z^{n})\in T_{\epsilon}^{n}(P_{XYZ}))} P_{Z|X}(z^{n}|x^{n}) \geqslant \sum_{z^{n}:((x^{n},y^{n},z^{n})\in T_{\epsilon}^{n}(P_{XYZ}))} 2^{-nH(Z|X)(1+\epsilon)}$$

$$= 2^{-nH(Z|X)(1+\epsilon)} \sum_{z^{n}:((x^{n},y^{n},z^{n})\in T_{\epsilon}^{n}(P_{XYZ}))} 1$$

$$(16.10)$$

For this condition the size of the typical set is bounded as:

$$|T_{\epsilon}^{n}(P_{XYZ})| \leq 2^{nH(Z|X)(1-\epsilon)} \tag{16.11}$$

Now using equation (16.11) in equation (16.10) we have,

$$\begin{split} \Pr\left[(x^n, y^n, z^n \in T^n_{\epsilon} \; (P_{XYZ})) \right] &\geqslant 2^{-nH(Z|X)(1+\epsilon)} \times 2^{nH(Z|X)(1-\epsilon)} \\ &= 2^{-n[H(Z|X) - H(Z|XY) - \epsilon(H(Z|X) - H(Z|XY))]} \\ &= 2^{-n[I(Z;Y|X)(1-\epsilon)]} \\ &= 2^{-n[I(Z;Y|X) + \delta(\epsilon)]} \end{split}$$

finally,

$$Pr\left[\left(x^{n}, y^{n}, z^{n} \in T_{\epsilon}^{n}\left(P_{XYZ}\right)\right)\right] \geqslant 2^{-n\left[I\left(Z; Y \mid X\right) + \delta(\epsilon)\right]}$$

$$(16.12)$$

This concludes the proof of lemmas 1.1 and 1.2