Chapter 6

Generalizations of regression

REGRESSION TREES

Decision Tree: The Obama-Clinton Divide

Note: a simple linear regression is too restrictive for large data sets.

Regression trees offer a flexible technique with results, which are easy to interpret

General strategy:

• The values of the explanatory variables are split into P disjunct regions (rectangles) R_1, \ldots, R_P : binary splitting

Source: Hastie et al. (2001)

• In each rectangle we fit a simple model e.g. a constant, i.e. the forecast in rectangle R_p is the mean of all Y-values falling into this rectangle.

Source: Hastie et al. (2001)

Question: how to determine the regions?

OLS method:

$$\sum_{i=1}^{n} (y_i - x_i' b)^2 \longrightarrow min, \quad bzgl. \quad b.$$

For regression trees:

$$\sum_{p=1}^{P} \sum_{i \in R_p} (y_i - \hat{y}_{R_p})^2 \longrightarrow min, \quad w.r.t. \quad R_1, \dots, R_p,$$

where \hat{y}_{R_p} is the mean of observations in the p-th rectangle.

Note: direct optimization is hardly possible \leadsto recursive binary splitting

Step 1

• Find the variable X_j and the splitting point s, which separates the space into two regions:

$$R_1(j,s) = \{ X | X_j \le s \} \text{ and } R_2(j,s) = \{ X | X_j > s \}.$$

ullet j and s are determined using the following objective function

$$\sum_{i: \mathbf{x}_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: \mathbf{x}_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2,$$

where \hat{y}_{R_1} and \hat{y}_{R_2} are averages in R_1 and R_2 .

Step 2

Repeat Step 1 to split regions R_1 and R_2 recursively.

Gain Summary for Nodes

Gain Summary for Nodes											
		Node-by-Node		Cumulative							
Node	N	Percent	Mean	N	Percent	Mean					
6	30	5,9%	45,10	30	5,9%	45,10					
5	57	11,3%	31,34	87	17,2%	36,09					
3	245	48,4%	23,18	332	65,6%	26,56					
13	13	2,6%	21,45	345	68,2%	26,37					
14	11	2,2%	17,87	356	70,4%	26,11					
15	53	10,5%	17,17	409	80,8%	24,95					
11	25	4,9%	14,14	434	85,8%	24,33					
16	24	4,7%	14,04	458	90,5%	23,79					
17	14	2,8%	13,92	472	93,3%	23,50					
18	34	6,7%	9,10	506	100,0%	22,53					

- > library("tree")
- > tree.ceo = tree(salary ~ tenure + assets, data=ceo)
- > plot(ceo\$tenure,ceo\$assets, type="p", pch=20, xlab="tenure", ylab="assets")
- > partition.tree(tree.ceo, ordvars=c("tenure", "assets"), add=TRUE)

- > library("rpart")
- > rpart.ceo = rpart(salary ~ .,data=ceo,control=rpart.control(cp = 0.001))
- > fancyRpartPlot(rpart.ceo

Rattle 2017-Nov-16 09:30:27 okhrinya

Note: Using CART we can grow the tree to saturation.

- Fix the maximal number of splittings and a lower bound for the number of observations per region.
- Fix the minimal change in the objective function.
- tree prunning: after the optimal tree is found, it is shortened

$$R_{\alpha}(T) = \frac{1}{\sum_{i} (y_{i} - \bar{y})^{2}} \sum_{m=1}^{|T|} \sum_{i: \boldsymbol{x}_{i} \in R_{m}} (y_{i} - \hat{y}_{R_{m}})^{2} + \alpha |T|$$

where |T| is the number of terminal nodes in a tree and α is the complexity parameter.

Key properties of CARTs

- For given α it is possible to determine the tree $T(\alpha)$ with the smallest $R_{\alpha}(T)$ uniquely
- If $\alpha > \beta$ then $T(\alpha) = T(\beta)$ or $T(\alpha)$ is a strict subtree of $T(\beta)$.

```
> printcp(rpart.ceo)
Regression tree:
rpart(formula = salary ~ ., data = ceo, control = rpart.control(cp = 0.001, xval = 10))
Variables actually used in tree construction:
[1] age
           assets profits sales tenure totcomp
Root node error: 1323386794/447 = 2960597
                 6
                 8
                 9
```

Q: How to choose the overall optimal α or subtree? \rightsquigarrow cross-validation

• The sequence of trees T_0 (no splits) to T_m (m splits) uniquely determines the sequence of possible α 's

$$\infty, \alpha_1, \ldots, \alpha_{m-1}, \alpha_{min}$$

- Any α between $(\alpha_i, \alpha_{i+1}]$ leads to the same optimal subtree
- Define $\beta_i = \sqrt{\alpha_i \alpha_{i+1}}$ as an "average" CP for every interval
- Split the data into B subsets G_1, \ldots, G_B (10 by default)
 - For every subset excluding the G_i 's determine $T_{\beta_1}, \ldots T_{\beta_m}$
 - Compute the relative MSE as the forecast loss for elements in G_i
- Compute the average loss over all G_i 's and choose β (and thus the optimal subtree) which corresponds to the smallest one.

- > cp.min = which.min(rpart.ceo\$cptable[,4]);
- > rpart.ceo.prune=prune(rpart.ceo, cp=rpart.ceo\$cptable[cp.min,1])
- > rpart.ceo.prune\$variable.importance/sum(rpart.ceo.prune\$variable.importance)
 totcomp assets sales profits tenure age
- 0.52984007.0.18398873.0.10229360.0.09962347.0.05557637.0.02867777

Rattle 2017-Nov-16 14:56:49 okhrinya

Generalizations

- Bagging: if you use for CART just a subsample, then you obtain a completely different tree.
 - Fit a CART to B random subsamples (bootstrap).
 - The error is measured on the remaining observations out-of-bag.
 - The final forecast is:

$$\hat{f}_{avr}(\mathbf{x}_0) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(\mathbf{x}_0).$$

- > bagging.ceo= randomForest(salary ~ ., data=ceo, mtry=6)
- > predict(bagging.ceo);
- > cor(ceo\$salary,predict(bagging.ceo))
- [1] 0.6180269

Random Forests: is a generalization of Bagging

- For each splitting you consider not all explanatory variables bus just a subset of size $M \approx \sqrt{J}$
- ... this makes the trees more heterogenous and "uncorrelated" in terms of forecasts
- Each tree is grown on a bootstrap sample (as for bagging)
- The importance of a variable is measured by increase in (a) MSE; (b) in node impurity over the out-of-bag sample if the variable is permuted

$$\Delta MSE_{j,b} = \frac{1}{|\overline{\mathcal{B}}_b|} \sum_{k \in \overline{\mathcal{B}}_b} \hat{u}^2(x_{1k}, \dots, x_{Jk}) - \frac{1}{|\overline{\mathcal{B}}_b|} \sum_{k \in \overline{\mathcal{B}}_b} \tilde{u}^2_k(x_{1k}, \dots, x_{j-1,k}, \tilde{x}_{jk}, x_{j+1,k}, \dots, x_{Jk}),$$

where \tilde{x}_j are the randomly permuted (reordered) observations on the jth variable and $\overline{\mathcal{B}}_b$ is the bth out-of-bag subsample.

> forest.ceo= randomForest(salary ~ ., data=ceo, importance=T)

> varImpPlot(forest.ceo)

forest.ceo

forest.ceo

Partial dependence plots: visualize the marginal impact of a variable/feature

$$\tilde{f}_j(x) = \frac{1}{K} \sum_{k=1}^K \hat{f}(x_{1k}, ..., x_{j-1,k}, x, x_{j+1,k}, ..., x_{Jk})$$

> partialPlot(forest.ceo, pred.data=ceo, x.var=tenure)

CHAID

- An alternative approach is CHAID (Chi-square Automatic Interaction Detectors): allows not only for binary splitting and is similar to ANOVA.
- Analysis is a generalization of two-sample test for the mean.
- Idea: let G be the number of splittings for variable X. We test if there is a significant difference between the means of Y in different regions.

Total sum of squares

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{g=1}^{G} \sum_{i: \boldsymbol{x}_i \in R_g} (y_i - \bar{y})^2$$

Within sum of squares

$$WSS = \sum_{g=1}^{G} \sum_{i: \boldsymbol{x}_i \in R_g} (y_i - \bar{y}_{R_g})^2$$

Between sum of squares

$$BSS = TSS - WSS = \sum_{g=1}^{G} |R_g| (\bar{y}_{R_g} - \bar{y})^2.$$

$$H_0: \mu_1 = \cdots = \mu_G$$
 vs $H_1: \mu_i \neq \mu_j$ for at least one pair i, j

Test statistic:
$$F = \frac{BSS/(G-1)}{WSS/(n-G)} \sim F_{G-1,n-G}$$

Idea:

- For each predictor we determine the optimal splitting, i.e. the regions with the smallest *p*-value of the test.
- The *p*-values should be corrected due to multiple testing (Bonferroni correction).
- The predictor with the smallest corrected *p*-value is used for splitting.

2,367

7,005

9.267

9.515

1,961

6,435

2,738

2,847

3.911

3,698

2.596

3,087

3.094

					Vorhergesager	Übergeordneter	Primäre unabhängige Variable					
Knoten	Mittelwert	Standardabweichung	N	Prozent	Mittelwert	Knoten	Variable	Sig.*	F	df1	df2	Werte aufteilen
0	22,53	9,182	506	100,0%	22,53							
1	32,59	8,973	126	24,9%	32,59	0	Istat	,000	210,346	3	502	<= 6,9
2	24,24	6,159	127	25,1%	24,24	0	Istat	,000	210,346	3	502	(6,9, 11,3)
3	19,36	3,572	127	25,1%	19,36	0	Istat	,000	210,346	3	502	(11,3, 17,0]
4	13,93	4,392	126	24,9%	13,93	0	Istat	,000	210,346	3	502	> 17,0
5	25,48		43	8,5%	25,48	1	m	,000	60,541	1	124	<= 6,6
6	36,28	8,419		16,4%	36,28	1	m	,000	60,541	1	124	> 6,6
7	21,74			11,1%	21,74		m	,000	26,209			<= 6,2
8	23,81	4,678		9,3%	23,81		m	,000	26,209			(6,2, 6,6]
9	30,89		24	4,7%	30,89	2	m	,000	26,209	2		> 6,6
10	22,59			3,4%	22,59		tax	,000	18,192	1		<= 279,0
11	18,86			21,7%	18,86	3	tax	,000	18,192	1		> 279,0
12	19,31	2,881	14	2,8%	19,31		nox	,000	36,153			<= ,5
13	15,72			8,7%	15,72		nox	,000	36,153			(,5, ,6]
14	11,67	3,554		13,4%	11,67		nox	,000	36,153	2		> ,6
15	27,59	6,544	17	3,4%	27,59	5	dis	,050	6,235	1	41	<= 5,2

24,10

34,10

41.96

24.92

20,88

36,02

26,55

19,51

17,47

17.24

13.90

10,85

15.53

5 dis

6 crim

6 crim

7 dis

7 dis

9 tax

9 tax

11 nox

11 nox

13 rad

13 rad

14 dis

,050

,000

.000

.030

.030

.000

,000

,007

.007

.022

.022

,000

6,235

17,392

17.392

7.161

7,161

23,296

23,296

9,596

9.596

11,566

11,566

22,769

22,769

41 > 5,2

81 <= ,3

81 > ,3

54 <= 3.2

22 <= 279,0

22 > 279,0

42 2.0: 5.0: 6.0: 24

108 <= ,6 108 > ,6

42 4.0

66 <= 2,1

54 > 3.2

24,10

34,10

41.96

24.92

20,88

36,02

26,55

19,51

17.47

17.24

13.90

10,85

15.53

5,1%

11,9%

4,5%

2.4%

8,7%

2,2%

2,6%

14,8%

6,9%

4.7%

4.0%

11,1%

2.4%

26

60

23

12

44

13

75

35

24

20

56

Nonlinear regression

The general form of a nonlinear regression is:

$$y_k = h(\boldsymbol{x}_k, \boldsymbol{\beta}) + u_k,$$

where $h(\cdot, \cdot)$ is some unknown function of the regressors and parameters.

- $y = e^{\beta_0} e^{\beta_1 x_1} e^{\beta_2 x_2} e^u$ can be linearized
- $y = \beta_0 + \beta_1 e^{\beta_2 x_1} + u$ cannot be linearized
- $y = \beta_0 + \beta_1 x_1^{\gamma} + u$ cannot be linearized

A popular special case of the non-linear regression is the single-index model

$$y_k = h(\boldsymbol{x}_k'\boldsymbol{\beta}) + u_k,$$

thus h is a function of a linear combination of the regressors.

Assumptions

- as before +
- $E(\boldsymbol{u}|\boldsymbol{X}) = \mathbf{0}$ is replaced with $E(u_i|h(\boldsymbol{x}_i,\boldsymbol{\beta})) = 0$: if u is uncorrelated with \boldsymbol{x} it still may be correlated with some function of \boldsymbol{x} . In general $E(\boldsymbol{u}|\boldsymbol{X}) = \mathbf{0}$ is not needed.
- Identifiability of the model parameters: the model is identifiable if there is no a non-zero parameter β_0 , such that $h(x_i, \beta_0) = h(x_i, \beta)$ for all x_i .

Note: in the linear regression it is sufficient to assume rank(X'X) = J + 1. Here it is not enough.

$$y = \frac{\beta_0 + \beta_1 x_1}{\beta_2 + \beta_3 x_2} + u.$$

Estimation: the LS estimation can be used, but the asymptotic theory follows in a straightforward way from the quasi (!) maximum-likelihood estimation.

Assuming Gaussian residuals it holds:

$$\mathcal{L}(y_k|\boldsymbol{x}_k,\boldsymbol{\beta},u_k) = \frac{1}{K} \sum_{k=1}^K \ln f(y_k|\boldsymbol{x}_k,\boldsymbol{\beta},u_k)$$

$$= \frac{1}{K} \sum_{k=1}^K \ln \left\{ \frac{1}{\sqrt{2\sigma^2}} exp\left(-\frac{1}{2\sigma^2}(y_k - h(\boldsymbol{x}_k,\boldsymbol{\beta}))^2\right) \right\}$$

$$= \frac{1}{K} \sum_{k=1}^K \left[-\ln \sqrt{2\sigma^2} - \frac{1}{2\sigma^2}(y_k - h(\boldsymbol{x}_k,\boldsymbol{\beta}))^2 \right] \longrightarrow max$$

Thus the first order conditions for β are

$$\frac{\partial \mathcal{L}(y_k|\boldsymbol{x}_k,\boldsymbol{\beta},u_k)}{\partial \boldsymbol{\beta}} = \sum_{k=1}^K (y_k - h(\boldsymbol{x}_k,\boldsymbol{\beta})) \frac{\partial h(\boldsymbol{x}_k,\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{0}.$$

→ mostly a highly nonlinear system of equations solved numerically.

Consequences: since the resulting $\hat{\beta}$ is a non-linear function of the residuals u_k

- ... the unbiasedness can not be proven in simple fashion;
- ... the variance of $\hat{\beta}$ is not easy to derive;
- ... the exact distribution of $\hat{\beta}$ is not Gaussian;
- ... all the inferences, like tests, are valid only asymptotically.

but the ML estimators are consistent and efficient (they possess the smallest variance among all consistent and asymptotically normal estimators)

Where all this comes from?

• Taylor expansion of f(x) in neighborhood of x_0

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \dots$$

 \bullet Exact Taylor expansion of f(x) in neighborhood of x_0 (mean-value theorem)

$$f(x) = f(x_0) + f'(x_+)(x - x_0),$$

where x_+ lies between x and x_0 .

$$\frac{\partial \mathcal{L}(y_k | \boldsymbol{x}_k, \boldsymbol{\beta}_k, u_k)}{\partial \boldsymbol{\beta}} \bigg|_{\hat{\boldsymbol{\beta}}} = \left. \frac{\partial \mathcal{L}(y_k | \boldsymbol{x}_k, \boldsymbol{\beta}_k, u_k)}{\partial \boldsymbol{\beta}} \right|_{\boldsymbol{\beta}} + \frac{\partial^2 \mathcal{L}(y_k | \boldsymbol{x}_k, \boldsymbol{\beta}_k, u_k)}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta'}} \bigg|_{\boldsymbol{\beta}_+} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$

$$\sqrt{K}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = -\left(\left.\frac{\partial^2 \mathcal{L}(y_k|\boldsymbol{x}_k, \boldsymbol{\beta}_k, u_k)}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'}\right|_{\boldsymbol{\beta}_+}\right)^{-1} \sqrt{K} \left.\frac{\partial \mathcal{L}(y_k|\boldsymbol{x}_k, \boldsymbol{\beta}_k, u_k)}{\partial \boldsymbol{\beta}}\right|_{\boldsymbol{\beta}}$$

$$\sqrt{K}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \overset{approx}{\sim} N(\boldsymbol{0}, \boldsymbol{A}^{-1}\boldsymbol{B}\boldsymbol{A}^{-1})$$

Example:

- Model 1 : $y = \beta_0 + \beta_1 x + u$
- Model 2 : $y = \beta_0 + \beta_1 x^{\beta_2} + u$


```
> z1 = lm(v^x):
  > z2 = nls(v^*b0+b1*x^b2, start=list(b0=0, b1=1, b2=2))
  > summary(z1)
  Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.44547 0.09694 4.595 1.29e-05 ***
           2.78805 0.09787 28.488 < 2e-16 ***
Y
Residual standard error: 0.604 on 98 degrees of freedom
Multiple R-squared: 0.8923. Adjusted R-squared: 0.8912
F-statistic: 811.5 on 1 and 98 DF. p-value: < 2.2e-16
  > summary(z2)
 Formula: y \sim b0 + b1 * x^b2
Parameters:
  Estimate Std. Error t value Pr(>|t|)
b0 1.08702 0.09345 11.63 <2e-16 ***
b1 1.77926 0.13041 13.64 <2e-16 ***
b2 1.56810 0.08382 18.71 <2e-16 ***
```

Residual standard error: 0.4678 on 97 degrees of freedom

Number of iterations to convergence: 5 Achieved convergence tolerance: 2.905e-06

True model: $y = 1 + 2x^{1.5} + u$, $u \sim N(0, 0.5^2)$.

 $Im(y \sim x)$

Lasso regression

Problems:

- accuracy: In K is much larger than J, then the variances are small and the inferences are precise. Low number of observations per parameter implies general high variability.
- interpretability: In large data sets there always irrelevant variables which make the economic interpretability difficult.
- sparsity: only a subset of the explanatory variables is relevant economically and statistically.

Solution: stepwise variable selection procedures based on statistical properties of the estimators or lasso regression

Idea: minimize the sum of squared residuals with constrains on the parameters.

The objective function of the OLS procedure is replaced with

$$\sum_{k=1}^{K} (y_k - \beta_0 - \sum_{j=1}^{J} \beta_j x_{kj})^2 + \lambda \sum_{j=1}^{J} |\beta_j| \longrightarrow min, \text{ w.r.t } \beta_j\text{'s}$$

Note:

• The problem is equivalent to the following problem, i.e. for each λ there exists s such that both problems lead to the same lasso-coefficients.

$$\sum_{k=1}^{K} (y_k - \beta_0 - \sum_{j=1}^{J} \beta_j x_{kj})^2 \longrightarrow min, \text{ w.r.t. } \beta_j\text{'s}$$
s.t.
$$\sum_{j=1}^{J} |\beta_j| \le s.$$

- Minimizing the objective is not trivial and there many specific numerical methods developed for this purpose.
- Selecting a good value for λ is crucial. The optimal value is chosen by cross-validation.

Special case

Assume an individual constant for each observation:

$$\sum_{k=1}^{K} (y_k - \beta_k)^2$$

with the OLS solution $\hat{\beta}_k = y_k$.

With lasso we obtain:

$$\sum_{k=1}^{K} (y_k - \beta_k)^2 + \lambda \sum_{k=1}^{K} |\beta_k| \longrightarrow min$$

with the solution

$$\hat{\beta}_k^{(lasso)} = \begin{cases} y_k - \lambda/2, & \text{if } y_k \ge \lambda/2\\ y_k + \lambda/2, & \text{if } y_k \le -\lambda/2\\ 0, & \text{if } |y_k| \le \lambda/2 \end{cases}$$

Example:

```
> grid = 10^seq(2,-2, length=100)
> lasso = glmnet(X, y.boston, alpha=1, lambda=grid);
> plot(lasso$beta)
```



```
> cv.lasso = cv.glmnet(X, y.boston, alpha=1);
> plot(cv.lasso)
> cv.lasso$lambda.min
[1] 0.0255856
```



```
> lasso.coef = predict(lasso, type="coefficients", s=cv.lasso$lambda.min);
> lasso.coef
16 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) -4.392079e+02
lon
         -4.250433e+00
lat
          4.017435e+00
          -9.553123e-02
crim
           4.149031e-02
          2.557345e+00
         -1.432740e+01
nox
            3.816713e+00
rm
age
dis
rad
           2.572257e-01
         -1.071061e-02
tax
ptratio -8.520927e-01
          8.974756e-03
```

-5.326668e-01

lstat

Chapter 7

Modeling binary, nominal and count data

Modeling binary variables

Practical question: a bank should decide about granting loans to new clients, i.e. forecast of the solvency

$$Y_i = \begin{cases} 0, & \text{the client } i \text{ is solvent} \\ 1, & \text{the client } i \text{ is insolvent} \end{cases}$$

 X_{1i} - debt-to-income ratio ($\times 100$);

 X_{2i} — years with the current employer;

 X_{3i} - other debts (in 1000 Euro);

 X_{4i} – age (in years).

Question: can we use a linear regression model for binary variales? \leadsto linear probability model

Linear Prob.-model

$$Y_i = \beta_0 + \beta_1 \cdot X_i + u_i$$

Note:

ullet (+) the forecast \hat{Y}_i can be seen as probability

$$E(Y_i|X_i) = 1 \cdot P(Y_i = 1|X_i) + 0 \cdot P(Y_i = 0|X_i) = p_i$$

- (-) \hat{Y}_i may lie outside of [0,1]
- (-) R^2 is useless as a goodness-of-fit measure
- (-) the residuals are not normally distributed
- (-) $Var(Y_i|X_i) = p_i(1-p_i) \neq const \rightsquigarrow heteroscedastic$

Transition to Logit/Probit

Let Y_i be the observed binary variable and Y_i^* the corresponding unobserved metric variable. For Y_i^* it holds:

$$Y_i^* = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + u_i = X_i' \beta + u_i.$$

Example: Y_i^* is an unobserved solvency of the client i with

$$Y_i = 1 \text{ if } Y_i^* > 0 \text{ and } Y_i = 0 \text{ if } Y_i^* \le 0.$$

$$P(Y_i = 1 | \mathbf{X}_i) = P(Y_i^* > 0 | \mathbf{X}_i) = P(\mathbf{x}_i' \boldsymbol{\beta} + u_i > 0 | \mathbf{X}_i)$$

= $P(-u_i < \mathbf{X}_i' \boldsymbol{\beta} | \mathbf{X}_i) = F(\mathbf{X}_i' \boldsymbol{\beta}),$

where $F(\cdot)$ is the cdf of the residuals.

- $F(z) = \frac{1}{1+e^{-z}}$ the cdf of the logistic distribution \rightsquigarrow logit
- F(z) the cdf of the normal distribution \rightsquigarrow probit

Logistic regression

Idea: transformation with the logistic function

$$P(Y_i = 1 | \mathbf{X}_i) = \frac{1}{1 + e^{-z_i}};$$

for logits z_i it holds

$$z_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$$

Note: Alternatively we may use the CDF $\Phi(z_i)$ of $N(0,1) \rightsquigarrow$ probit-model

Estimation of the parameters

The parameters are estimated using ML:

$$L = \prod_{i=1}^{n} \underbrace{\left(\frac{1}{1+e^{-z_i}}\right)^{y_i}}_{P(Y_i=1)} \underbrace{\left(1-\frac{1}{1+e^{-z_i}}\right)^{1-y_i}}_{P(Y_i=0)} \longrightarrow max, \text{ w.r.t. } \beta_0, \dots, \beta_k.$$

Note:

- In contrary to the LR the estimation is always numeric.
- Likelihood-Ratio tests can be used to check the significance of the parameters.
- \mathbb{R} : glm(y \sim X,data=data, family=binomial(logit))

Coefficients:

Example: a data set with 700 observations

	debtinc	employer	debts	age
$ \begin{array}{c c} \hat{\beta}_i \\ e^{\hat{\beta}_i} \end{array} $	0.121*	-0.162*	0.093*	-0.004
$e^{\hat{\beta}_i}$	1.129	0.851	1.098	0.996

(*) - significant with $\alpha = 0.05$

Odds of the logistic regression

$$Odds = \frac{P(Y=1|\mathbf{X})}{P(Y=0|\mathbf{X})} = e^{z}$$

	Logit (z)	Odds	$P(Y=1 \boldsymbol{X})$
$\beta > 0$	rises by β	rises by e^{β}	rises
$\beta < 0$	rises by β falls by β	falls by e^{β}	falls

Forecasts:

$$P(\widehat{Y_0 = 1} | \mathbf{X}_0) = \hat{\pi}_0 = \frac{1}{1 + e^{-\hat{b}_0 - \hat{b}_1 X_{10} - \dots - \hat{b}_k X_{k0}}}.$$

Goodness of the model

Problem: classical measures, such as R^2 , cannot be used \rightsquigarrow pseudo- R^2 ; classification tables; graphical measures (ROC-curve)

- pseudo- R^2 :
 - Let LL_0 be the Log-Likelihood of the null model $(b_1 = \cdots = b_k = 0)$
 - Let LL_v be the Log-Likelihood of the full model (with all variables)
 - Let LL_s be the Log-Likelihood of the saturated model (model with perfect fit, here $LL_s=0$)
 - Deviance: $D = -2 \cdot LL_v$ (close 0)
 - Mc-Faddens- R^2 : $1 LL_v/LL_0$ (starting from 0.4)

Null deviance: 804.36 on 699 degrees of freedom Residual deviance: 626.49 on 695 degrees of freedom

• Classification table

		pred		
		$\hat{Y} = 1$	$\hat{Y} = 0$	
truth	1	$n_{11} = TP$	$n_{01} = FN$ $n_{00} = TN$	$n_{\cdot 1} = P$
or don	0	$n_{10} = FP$	$n_{00} = TN$	$n_{\cdot 0} = N$
		n_1 .	n_0 .	

Let $\hat{y}_i = 1$ if $P(Y_i = 1 | X_i) > 0.5$ and 0 else.

 $\rightsquigarrow (479+72)/700 = 78,71\%$ are correctly predicted.

But: there are 73,86% solvent clients in the sample.

Quaestion: is the threshold 0.5 a good choice?

Goodness of the model and the choice of the threshold

• ROC (receiver operating characteristics), Lift and Gain curves are used to visualize and to quantify the goodness of the classification algorithms.

sensitivity =
$$\frac{n_{11}}{n_{\cdot 1}} = \frac{n_{11}}{n_{11} + n_{01}}$$

specifity = $\frac{n_{00}}{n_{\cdot 0}} = \frac{n_{00}}{n_{10} + n_{00}}$

Sensitivity: the fraction of correctly classified 1-values

among all true 1-objects.

Specifity: the fraction of correctly classified 0-values

among all true 0-object.

- Sensitivity= 72/(72 + 111) = 0.39 only 39% of insolvent clients are classified as insolvent
- Specifity= 479/(479 + 38) = 0.92 92% of solvent clients are classified as solvent

PPV or PV+ =
$$\frac{n_{11}}{n_{1.}} = \frac{n_{11}}{n_{11} + n_{10}}$$

NPV or PV- = $\frac{n_{00}}{n_{0.}} = \frac{n_{00}}{n_{01} + n_{00}}$

PPV: the fraction of correctly classified 1-values among all objects classified as 1.

NPV: the fraction of correctly classified 0-values among all objects classified as 0.

(PPV-positive predicted value, NPV-negative predicted value)

- PPV= 72/(72+38)=0.65 only 65% of all as insolvent classified clients are really insolvent
- NPV= 479/(479+111)=0.81 81% of all as solvent classified clients are really solvent

ROC-curve: senstitivity values as a function of specifity

- The steeper the function, the better the algorithm. ROC-value is the square under the curve.
- If the curve is close to the diagonal, then the algorithm is as good as random assignments.

R: roc-function from the pROC-package

Now let $\hat{y}_i = 1$ if $P(Y_i = 1 | X_i) > 0.245$ and 0 else.

The CART method can be applied to binary data: classification trees

Classification						
	Predicted					
Observed	No	Yes	Percent Correct			
No	446	71	86,3%			
Yes	96	87	47,5%			
Overall Percentage	77.4%	22.6%	76 1%			

Growing Method: CRT

Dependent Variable: Previously defaulted

■ No

■ Yes

Total

Modelling nominal data

Practical question:

- Choice of the political party depending of the characteristics of the voters;
- Choice of a product brand depending on the characteristics of the client;

Example:

```
mode - "car", "air", "train", oder "bus"
choice - decision
wait - waitnning time, 0 for "car"
vcost - variable costs
travel - time
gcost - total costs
income - income
size - number of persons
```


	individual	L mode	choice	wait	vcost	travel	gcost	income	size
1	1	air	no	69	59	100	70	35	1
2	1	train	no	34	31	372	71	35	1
3	1	bus	no	35	25	417	70	35	1
4	1	car	yes	0	10	180	30	35	1
5	2	air	no	64	58	68	68	30	2
6	2	train	no	44	31	354	84	30	2

Multinomial logit model

For the simple logit model it holds:

$$P(Y = 1|\mathbf{x}) = \frac{exp(\mathbf{x}'\boldsymbol{\beta})}{1 + exp(\mathbf{x}'\boldsymbol{\beta})}$$
$$\ln\left(\frac{P(Y = 0|\mathbf{x})}{P(Y = 1|\mathbf{x})}\right) = \mathbf{x}'\boldsymbol{\beta}$$

For the k categories of Y we define:

$$\ln\left(\frac{P(Y=r|\boldsymbol{x})}{P(Y=k|\boldsymbol{x})}\right) = \boldsymbol{x}'\boldsymbol{\beta}_r, \quad r=1,...,k-1$$

with

$$P(Y = r | \boldsymbol{x}) = \frac{exp(\boldsymbol{x}'\boldsymbol{\beta}_r)}{1 + \sum_{s=1}^{k-1} exp(\boldsymbol{x}'\boldsymbol{\beta}_s)}, \quad r = 1, ..., k-1$$

$$P(Y = k | \boldsymbol{x}) = \frac{1}{1 + \sum_{s=1}^{k-1} exp(\boldsymbol{x}'\boldsymbol{\beta}_s)}.$$

One category, i.e. the k-th, is the reference category.

Note:

- Estimation via ML assuming independence of the observations. This is a questionable assumption:
 - similar categories;
 - odds do not depend on other categories, etc.
 - Solution: Hausmann/McFadden test
- Goodness-of-fit, tests as for logit.

Global and category specific variables

$$m{x}'m{eta}_r \;\; \mapsto \;\; m{x}'_{glob}m{eta}^*_r + m{x}'_{spec,r}m{lpha}$$

• Global variables (income, number of persons) do not depend on the categories and have individual parameters for each category: $x'_{alab}\beta_r^*$.

The sign of the parameters cannot be interpreted.

• The category specific variables (waiting time, costs) depend on the categories and are evaluated relatively to the reference category.

$$(\boldsymbol{x}_{spec,r} - \boldsymbol{x}_{spec,k})' \boldsymbol{\alpha}$$
 or $\boldsymbol{x}_{spec,r}' \boldsymbol{\alpha}$

The sign of the parameters can be interpreted.

Let *gcost* and *wait* be category specific and *income* and *size* are global variables. The reference category is *air*.

```
> library("mlogit")
> mlogit(choice~wait+gcost|income+size, ...)
```

Coefficients:

```
Estimate Std. Error t-value Pr(>|t|)
train:(intercept) -2.3115942  0.7525161 -3.0718  0.0021276 **
bus:(intercept)
                -3.4504941 0.9064886 -3.8064 0.0001410 ***
car:(intercept)
               -7.8913907 0.9880615 -7.9867 1.332e-15 ***
wait.
                -0.1013180 0.0112207 -9.0296 < 2.2e-16 ***
                -0.0197064 0.0053844 -3.6599 0.0002523 ***
gcost
train:income
                bus:income
                -0.0277037
                           0.0169812 -1.6314 0.1027991
car:income
                -0.0041153 0.0127301 -0.3233 0.7464866
                1.3289497 0.3141683 4.2301 2.336e-05 ***
train:size
bus:size
                 1.0090796 0.3952899 2.5528 0.0106874 *
car:size
                 1.0392585 0.2665513 3.8989 9.663e-05 ***
```

Log-Likelihood: -176.77 McFadden R^2: 0.37705

Likelihood ratio test : chisq = 213.98 (p.value = < 2.22e-16)

With the estimated paremeters we can estimate the probabilities $P(Y_i = r | \mathbf{x}_i)$ for all r.

	air	train	bus	car
[1,]	0.2368302	0.00000000	0.24496423	0.5182056
[2,]	0.2083323	0.27785076	0.00000000	0.5138170
[3,]	0.0000000	0.12686485	0.23058033	0.6425548
[4,]	0.1151004	0.05063597	0.02141839	0.8128452
[5,]	0.3405917	0.20694648	0.05624436	0.3962174
[6]	0 1316850	0 36065202	0 261//217	0 2372200

Modelling for count data

Practical questions:

- the number of claims by an insurance company per time period;
- the number of cosultations by a doctor per year ;
- the number of insolvent companies per time period;
- occurrences of a seldom disease per season;
-

Note: the modelling is particularly important for small values of the target variable (rare events) and the distribution is heavily skewed.

Poisson distribution

The Poisson distribution is frequently used to model rare events

$$P(Y = y) = \begin{cases} \frac{\lambda^y}{y!} e^{-y}, & \text{for } y = 0, 1, 2, ... \\ 0, & \text{else,} \end{cases}$$

with the intensity parameter λ . It fulfils the equidispersion-condition:

$$E(Y) = Var(Y) = \lambda$$

Poisson regression model

Let Y_i, x_i be independent realisations, while Y_i follows Poisson distribution with

$$E(Y_i|\mathbf{x}_i) = h(\mathbf{x}_i'\boldsymbol{\beta}) = exp(\mathbf{x}_i'\boldsymbol{\beta}) = \lambda_i.$$

- The interpretation of the parameters follows as for the logit model.
- The parameters are estimated via ML:

$$LL(\boldsymbol{\beta}) = \sum_{i=1}^{n} y_i \ln(h(\boldsymbol{x}_i'\boldsymbol{\beta})) - h(\boldsymbol{x}_i'\boldsymbol{\beta}) - \ln(y_i!) \longrightarrow max, \text{ w.r.t. } \boldsymbol{\beta}$$

Goodness of the model

To measure the goodness of the model we use deviance, i.e. the difference between the log-likelihood for the actual observations (perfect/saturiertes model) and the log-likelihood for the predicted values:

$$D = -2\sum_{i=1}^{n} [LL_i(\hat{Y}_i) - LL_i(Y_i)] = 2\sum_{i=1}^{n} [Y_i \ln(Y_i/\hat{\lambda}_i)] \sim \chi_{n-p}^2$$

Example: number of children

child - number of children

age - age of the woman

dur - years at school/college

nation - nationality, 0 = german, 1 = else

 $\mbox{god} \quad \mbox{-} \quad \mbox{trust in God: } 1 = \mbox{strong}, \,, \, 6 = \mbox{never thought about it}$

univ - university degree: 0 = no, 1 = yes

mean(children\$child)
[1] 1.57297
> var(children\$child)
[1] 1.552769


```
glm(formula = child ~ age + I(age^2) + I(age^3) + I(age^4) +
dur + I(dur^2) + nation + god + univ, family = poisson(link = log),
data = children)
```

Deviance Residuals:

Min 1Q Median 3Q Max -2.1514 -0.7559 0.0102 0.4832 3.6715

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.228e+01 1.484e+00 -8.277 < 2e-16 ***
            9.359e-01 1.239e-01
                                  7.553 4.26e-14 ***
age
I(age^2)
           -2.490e-02 3.786e-03 -6.577 4.80e-11 ***
I(age^3)
           2.842e-04 4.915e-05
                                  5.781 7.42e-09 ***
I(age<sup>4</sup>)
           -1.180e-06 2.297e-07 -5.137 2.80e-07 ***
dur
           1.118e-01 6.652e-02
                                  1.680 0.092904 .
I(dur^2)
           -8.328e-03 2.997e-03 -2.779 0.005454 **
nation1
           5 686e-02 1 386e-01
                                  0.410.0.681599
           -1.025e-01 5.903e-02
                                  -1.736 0.082599 .
god2
god3
           -1.448e-01 6.780e-02
                                  -2.136 0.032683 *
god4
           -1.279e-01 7.088e-02
                                  -1.805.0.071128
god5
           -3.621e-02 6.695e-02
                                  -0.541 0.588569
god6
           -9.241e-02 7.505e-02 -1.231 0.218239
univ1
            6.372e-01 1.729e-01
                                  3 686 0 000228 ***
```

(Dispersion parameter for poisson family taken to be 1)

```
Null deviance: 2067.4 on 1760 degrees of freedom
Residual deviance: 1718.6 on 1747 degrees of freedom
AIC: 5196.8
```


Note: for the Poisson distribution it should hold $E(Y_i) = Var(Y_i) = \lambda_i$.

If this assumption is not fulfilled then we have overdispersion/underdispersion.

Solution: as an alternative we can use Quasi-Poisson- or the negative binomial distribution (negbin). Both distributions allow for different expectations and variances.

For negbin it holds:

$$P(Y_i|\boldsymbol{x}_i) = \frac{\Gamma(Y_i + \nu)}{\Gamma(\nu)\Gamma(Y_i + 1)} \cdot \left(\frac{\lambda_i}{\lambda_i + \nu}\right)^{Y_i} \cdot \left(\frac{\nu}{\lambda_i + \nu}\right)^{\nu}$$

with
$$E(Y_i) = \lambda_i = exp(\mathbf{x}_i'\boldsymbol{\beta})$$
 and $Var(Y_i) = \lambda_i + \lambda_i^2/\nu$.


```
glm(formula = child ~ age + I(age^2) + I(age^3) + I(age^4) +
    dur + I(dur^2) + nation + god + univ, family = negative.binomial(theta = 1,
    link = log), data = children)
Deviance Residuals:
    Min
                      Median
                                    30
                                             Max
-1.56820 -0.50984 -0.01054
                            0.29990
                                         1.90633
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.338e+01 1.267e+00 -10.555 < 2e-16 ***
            1.022e+00 1.075e-01
                                 9.502 < 2e-16 ***
age
I(age^2)
           -2.730e-02 3.342e-03 -8.169 5.90e-16 ***
I(age^3)
          3.126e-04 4.395e-05
                                 7 113 1 65e-12 ***
I(age^4)
           -1.302e-06 2.074e-07 -6.277 4.34e-10 ***
dur
           1.269e-01 5.990e-02 2.118 0.034294 *
I(dur^2)
           -9.577e-03 2.637e-03 -3.632 0.000289 ***
nation1
          8 309e-02 1 349e-01 0 616 0 538128
           -1.186e-01 5.849e-02
                                 -2.028 0.042743 *
god2
god3
           -1.681e-01 6.642e-02
                                 -2.530 0.011483 *
god4
           -1.563e-01 6.923e-02
                                 -2 258 0 024075 *
god5
           -3.273e-02 6.602e-02 -0.496 0.620135
god6
           -1.205e-01 7.384e-02 -1.632 0.102848
univ1
           7.749e-01 1.581e-01 4.900 1.04e-06 ***
```

(Dispersion parameter for Negative Binomial(1) family taken to be 0.3516262)

```
Null deviance: 1023.1 on 1760 degrees of freedom
Residual deviance: 852.3 on 1747 degrees of freedom
```

ATC: 5911.9

