$(0,0,0) \notin S$.

Universidade do Minho **Algebra Linear** LCC Exame de recurso 29/01/2020 Duração: 2h30 Nome: Número: Grupo I Em cada questão deste grupo deve ser assinalada apenas uma das opções de resposta. A uma resposta correta é atribuída uma cotação de 1.25 valores (apenas uma resposta está correta) e a uma resposta errada é atribuída uma cotação de -0.25 valores. A cotação mínima total deste grupo é de 0 valores. 1. Seja $A = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}$ uma matriz real. Para quaisquer valores de $a, b \in c$, $A + A^T$ é simétrica. 2. Seja $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. O sistema $(A - 2I_3)x = 0$ é impossível. $A - 2I_3$ é invertível. O sistema Ax = b tem solução única $(A-2I_3)^T$ é invertível. para qualquer b. 3. Se A é uma matriz de ordem 4 tal que det(A) = 3, então $\det\left(A^{T}A\right) = 1$ $\det(-A) = -3.$ $\det(A^T) = \frac{1}{3}.$ $\det(A^{-1}A^2) = 3.$ 4. Sejam V um espaço vetorial real de dimensão 3 e v_1, v_2 e v_3 três vetores de V linearmente independentes. Então $\{v_1, v_2\}$ é um conjunto linearmente $\{v_1, v_2, v_1 + v_3\}$ é um conjunto lineardependente. mente dependente. $\{v_1,v_2,v_3\}$ é um conjunto gerador de $\{\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}, 2\boldsymbol{v_1} + \boldsymbol{v_3}\}$ é um conjunto linearmente independente. fjaslghaslk 5. Seja $S = \langle (1,1,0), (0,2,0), (4,3,0) \rangle$. Então $\dim(S) = 3.$ $(3,3,0) \in S$.

6. Seja
$$G$$
 uma aplicação linear cuja representação matricial é $A_G = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 3 \end{bmatrix}$.

$$G(x,y,z) = (x-y,y,-y+z), \text{ para}$$
 Tem-se $H(1,1,1) = (-1,1,-3)$ para qualquer $(x,y,z) \in \mathbb{R}^3$. $H = G \circ G$.

Grupo II

Neste grupo as respostas a todas as questões devem ser devidamente justificadas.

- 1. [1.5 valores] Considere a matriz $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 3 & 0 & 1 \end{bmatrix}$.
 - (a) Verifique que $A^{-1} = \begin{bmatrix} -1 & 1 & 1 \\ 3 & -2 & -2 \\ 3 & -3 & -2 \end{bmatrix}$ (sem calcular A^{-1}).
 - (b) Determine a matriz X que satisfaz a equação

$$AX - 2A = 3I + A,$$

onde I é a matriz identidade de ordem 3.

- 2. [2.5 valores] Para $\alpha, \beta \in \mathbb{R}$, seja $\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 0 & 3 & \beta \\ -1 & 1 & \alpha & -\beta \end{bmatrix}$ a matriz ampliada de um sistema com 3 incógnitas e 3 equações.
 - (a) Discuta a existência e unicidade de soluções do sistema, em função dos parâmetros α e β .
 - (b) Use o método de eliminação de Gauss para resolver o sistema quando

i.
$$\alpha = 0$$
 e $\beta = 0$;

ii.
$$\alpha = -5$$
 e $\beta = 2$.

3. [1.5 valores] Considere a seguinte matriz

$$A = \begin{bmatrix} 1 & 0 & 4 & 0 \\ 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 3 \\ 2 & 2 & -1 & 2 \end{bmatrix}.$$

2

Calcule $\det(A)$.

Dada uma matriz invertível P, qual o valor de $\det(PA^{-1}P^{-1})$?

4. [1.5 valor] Considere, no espaço vetorial \mathbb{R}^3 , o conjunto de vetores

$$W = \{(1,0,2), (-1,2,-3), (1,4,k)\}, k \in \mathbb{R}.$$

Determine os valores de k para os quais W é uma base de \mathbb{R}^3 .

5. [2 valores] Seja $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ a aplicação linear definida por

$$T(x, y, z, w) = (x + 2y - w, -x + 3y + z + w).$$

- (a) Determine a representação matricial de T relativamente às bases canónicas.
- (b) Determine uma base para Im(T).
- 6. [2 valores] Considere a matriz

$$A = \begin{bmatrix} 3 & -1 & -2 \\ 0 & 2 & 1 \\ 0 & 4 & 2 \end{bmatrix}$$

- (a) Determine os valores próprios de A.
- (b) Quais os valores próprios da matriz $A I_3$?
- (c) Verifique que $\mathbf{x} = \begin{bmatrix} -5 & 1 & 2 \end{bmatrix}^T$ é um vetor próprio de A e diga a que valor próprio está associado.
- 7. [1.5 valores] Uma matriz $R \in M_{n \times n}(\mathbb{R})$ diz-se de rotação se $R^{-1} = R^T$ e $\det(R) = 1$, onde R^T denota a matriz transposta de R.

Dada uma matriz de rotação $R \in M_{3\times 3}(\mathbb{R})$, prove que existem vetores não nulos $v \in \mathbb{R}^3$ que são fixados por R, ou seja, tais que Rv = v.

Sugestão: Observe que v será um vetor próprio de R e use a relação de valores e vetores próprios com o conceito de determinante.