GL1F20

■ Features

1. IrDA1.0 compatible infrared emitting diode (Transmission rate : 2.4 to 115.2kbps)

- 2. Built-in infrared emitting diode circuit
- 3. Recommended use in combination with detector (IS1U20)

■ Applications

- 1. Personal computers
- 2. Portable information terminal equipment
- 3. Printers
- 4. Word processors

IrDA: Abbreviation of the Infrared Data Association established for standardization of infrared communication specifications

■ Absolute Maximum Ratings

 $(Ta=25^{\circ}C)$

Parameter	Symbol	Rating	Unit_
Forward current	\mathbf{I}_{F}	50	mA
*1Peak forward current	I_{FM}	400	mA
Operating temperature	T_{opr}	- 10 to + 70	°C
Storage temperature	T_{stg}	- 20 to + 85	°C
*2 Soldering temperature	T_{sol}	260	°C

^{*1} Pulse width 78.1 \mu s, Duty ratio=3/16

Infrared Communication (IrDA1.0 Compatible) InfraredEmitting Diode

■ Outline Dimensions

(Unit: mm)

■ Electro-optical Characteristics

(Ta=25 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Driving voltage	$V_{\rm CC}$		4.75	-	5.25	V
High level input voltage	VIII		4.5	-	$v_{\rm cc}$	V
Low level input voltage	Vπ.		-	-	0.4	V
Peak emission wavelength	λp	$I_F = 20 \text{mA}$	850	870	900	nm
Radiant intensity	IE	$V_{CC} = 5V, R_{L} = 7.5\Omega$	40	-	350	mW/sr
Light pulse width	tw	$V_{in} = 4.5V$	1.41	1.6	2.71	μs
Light rise time	t _r	t_{win} = 1.63 μ s, Duty ratio : 3/16	-	0.23	0.6	μs
Light fall time	lf	φ <=15°,*3	-	0.17	0.6	μs
Input current	l _{III}	$V_{in} = 4.5V$	1.0	-	3.0	mA
Half intensity wavelength	Δλ	$I_{\rm F}$ = 20mA	-	40	-	nm
Half intensity angle	Δθ	$I_F = 20 \text{mA}$	-	± 20	-	•

^{*3} Direction of mechanical axis of the lens portion of the element : $\phi = 0^{\circ}$

^{*2} For MAX. 3 seconds at the position of 2 mm from the resin edge