Homework I

Question 1:

- (a) we use the function in Matlab rand() to randomly assign masses, m = rand(1,100)
- **(b)** The problem can be restated as a set of equations,

$$\begin{cases} m_1 = d_1 \\ m_1 + m_2 = d_2 \\ m_1 + m_2 + m_3 = d_3 \\ m_2 + m_3 + m_4 = d_4 \\ \dots \\ m_{98} + m_{99} + m_{100} = d_{100} \end{cases}$$

Which can be rewritten as matrix forms, and the size is 100×100 .

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ \dots \\ m_{99} \\ m_{100} \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ \dots \\ d_{99} \\ d_{100} \end{bmatrix}$$

And G is,

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 1 & 1 & 1 \end{bmatrix}$$

- (c) we use the function in Matlab to create observed data with Gaussian random numbers, dobs = G1*m' + normrnd(0, sigmad, 100, 1)
- (d) Solve the inverse problem by simple least squares,

$$m_{est} = (G^T G)^{-1} (G^T d)$$

- (e) The variance of the estimated model parameters can use the command, var = std2(mest), and different calculation will return different values.
- **(f)** The counted number is 100 after calculating.

Question 2:

This method can be restated as follows,

$$\begin{cases} m_1 = d_1 \\ m_1 + m_2 = d_2 \\ m_1 + m_2 + m_3 = d_3 \\ m_1 + m_2 + m_3 + m_4 = d_4 \\ \dots \\ m_1 + \dots + m_{98} + m_{99} + m_{100} = d_{100} \end{cases}$$

The second weighing method will construct a different kernel G, which is quite easy, a lower triangular matrix.

$$G = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ 1 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & 1 & 0 \\ 1 & 1 & \dots & 1 & 1 \end{bmatrix}$$

The same as the Method 1, After calculating the variance of the estimated model parameters, we get the answer for (f), counted number is 100.

(g) In fig.1 and fig.2 we can see the difference.

According to the two figures below, comparing the two ways to weigh a set of boxes, we can find the second way can be better, for the inverse value fits the initial value well.

fig.1 first measurement result

fig.2 second measurement result

Question 3:

Consider the cubic equation and answer the questions.

The problem can be restated as a set of equations as follows,

$$d_j = m_1 + m_2 z_j + m_3 z_j^2 + m_4 z_j^3, j = 1,2,3,...,11$$

which can be rewritten as the matrix form,

$$\begin{bmatrix} 1 & z_1 & z_1^2 & z_1^3 \\ 1 & z_2 & z_2^2 & z_2^3 \\ \dots & \dots & \dots & \dots \\ 1 & z_{11} & z_{11}^2 & z_{11}^3 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ \dots \\ d_{11} \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & z_1 & z_1^2 & z_1^3 \\ 1 & z_2 & z_2^2 & z_2^3 \\ \dots & \dots & \dots & \dots \\ 1 & z_{11} & z_{11}^2 & z_{11}^3 \end{bmatrix}$$

We use the function in Matlab: normrnd(0,0.05,11,1) to create synthetic data with Gaussian random numbers with zero means and $\sigma_d = 0.05$.

The formula of simple least squares method is,

$$m_{est} = (G^T G)^{-1} (G^T d)$$

And the predicted data can be calculated by,

$$d_{mre} = Gm_{est}$$

Finally, we get the figure below.

fig.3 plot in question 3(no constraint added)

Question 4:

Add a constraint that the predicted data pass through a fixed point, and go through the steps above in Question 3.

We can solve this problem only to reconstruct the kernel G, let the row 5 in G be zero. In this way, the fifth element in vector d can always be the value we want.

And the result(fig.4) is as follows,

fig.4 plot in question 4(constraint added)

Programming code

```
(1) question1:
clear;
clc;
m = rand(1,100);%randomly assigns masses mtrue in the range of 0-1kg
% build the appropriate kernel G
% G is a 100*100 matrix
G1 = zeros(100,100);
G1(1,1) = 1;
G1(2,1) = 1;
G1(2,2) = 1;
for i = (3:100)
G1(i,i-2) = 1;
G1(i,i-1) = 1;
G1(i,i) = 1;
end
G = sparse(G1);
% create synthetic observed data by adding Gaussian random vector
sigmad = 0.01;
dobs = G1*m' + normrnd(0, sigmad, 100, 1);
%solve the inverse problem by simple least squares
mest = (G'*G)\setminus(G'*dobs);
\% to calculate the variance of each of the estimated model parameters
var = std2(mest);
sigmam = sqrt(var);
count = 0;
for j = (1:length(mest))
a = mest(j);
b = m(j);
if abs(a-b) <= 2*sigmam</pre>
count = count + 1;
end
end
fprintf("the number of estimated model parameters that are within 2σ of their
true value is %d\n",count)
%draw the picture
x = [1:100];
clf;
plot(x,m,x,mest,'r-','linewidth',2),title('Fitting result(the 1st
measurement)'),xlabel('parameter number'),ylabel('mass/kg'),legend('initial
value','inversed value')
```

```
(2) question 2:
clear;
clc;
m = rand(1,100);%randomly assigns masses mtrue in the range of 0-1kg
% build the appropriate kernel G
% G is a 100*100 matrix
G1 = tril(ones(100));
G = sparse(G1);
% create synthetic observed data by adding Gaussian random vector
sigmad = 0.01;
dobs = G1*m' + normrnd(0, sigmad, 100, 1);
%solve the inverse problem by simple least squares
mest = (G'*G)\setminus(G'*dobs);
% to calculate the variance of each of the estimated model parameters
var = std2(mest);
sigmam = sqrt(var);
count = 0;
for j = (1:length(mest))
a = mest(j);
b = m(j);
if abs(a-b) <= 2*sigmam</pre>
count = count + 1;
end
end
fprintf("the number of estimated model parameters that are within <math>2\sigma of their
true value is %d\n",count)
%draw the picture
figure(2)
x = [1:100];
clf;
plot(x,m,x,mest,'r-','linewidth',2),title('Fitting result(the 2nd
measurement)'),xlabel('parameter number'),ylabel('mass/kg'),legend('initial
value','inversed value')
(3) question 3:
clear;
clc;
%construct a vector z with 11 elements equally spaced 0.1
z = [1:0.1:2];
%randomly assigns elements of mtrue
m = [0.1, 0.3, -0.2, 0.5]';
```

```
%build the appropriate kernel G
G = zeros(11,4);
G(:,1) = ones(1,11)';
G(:,2) = z';
G(:,3) = z'.^2;
G(:,4) = z'.^3;
%create synthetic data with Gaussian random numbers
mean = 0;
sigmad = 0.05;
dobs = G*m + normrnd(mean, sigmad, 11, 1);
%solve the inverse problem by simple least squares
mest = (G'*G)\setminus(G'*dobs);
dpre = G*mest;
figure(3)
clf;
x = [1:11]';
plot(x,dobs,x,dpre,'r-.','linewidth',2),legend('dobs','dpre')
(4) question 4:
clear;
clc;
%construct a vector z with 11 elements equally spaced 0.1
z = [1:0.1:2];
%randomly assigns elements of mtrue
m = [0.1, 0.3, -0.2, 0.5]';
%build the appropriate kernel G
G = zeros(11,4);
G(:,1) = ones(1,11)';
G(:,2) = z';
G(:,3) = z'.^2;
G(:,4) = z'.^3;
%create synthetic data with Gaussian random numbers
mean = 0;
sigmad = 0.05;
dobs = G*m + normrnd(mean, sigmad, 11, 1);
%solve the inverse problem by simple least squares
%add the prior constriants
```

```
G(5,:) = zeros(1,4);
mest = (G'*G)\(G'*dobs);

dpre = G*mest;
figure(3)
clf;
x = [1:11]';
plot(x,dobs,x,dpre,'r-.','linewidth',2),legend('dobs','dpre')
```