English Language

- Alphabet Σ={a,b,c,d,e,f,g....x,y,z}
- A sentence is nothing but string over alphabet.
- There can be infinitely many strings possible. Some of them may belong to the language.
- String 1 : I am a student .
- String 1 belongs to english language
- String 2: student i a am
- String 2 does not belong to english language.
- How do we say a given string is in the language or not? By checking grammar. (Set of rules)
- So we need grammar to define language. Grammar is a language generating device.

C++ Language

- Alphabet Σ={a,b..z,0,1..9,#,;,",(,),+,-,*,/,{,},[,],<,>,=....}
- A program is nothing but string over alphabet.
- ► We can write infinitley many programs. Some of these may belong to c++ language.
- Which one?
- Program written using c++ syntax rules/gramnar.
- Compiler checks whether program belongs to c++ language or not.
- We also define language using automata which accepts string belonging to the language.
- Automata is a language accepting device.

Operations on Languages

- Union
- Intersection
- Complement
- Set Difference
- Concatenation
- **■** Closure

Operation on Languages Union

- $ightharpoonup L_1$ U L₂ is defined as a set consiting of strings which are either in language L₁ or Language L₂.
- $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}$
- $ightharpoonup L_1 = \{a,ab,aab,aaab\}$
- \blacksquare $L_2 = \{a,aba,aabaa\}$
- $ightharpoonup L_1 U L_2 = \{a,ab,aab,aaab,aba,aabaa\}$

Operation on Languages Intersection

- ▶ $L_1 \cap L_2$ is defined as a set consiting of strings which are both in language L_1 and L_2 .
- $ightharpoonup L_1 = \{a,ab,aab,aaab\}$
- \blacksquare $L_2 = \{a,aba,aabaa\}$
- $L_1 \cap L_2 = \{a\}$

Operation on Languages Complement

- L' is defined as a set consiting of strings which are not in language L
- ightharpoonup L' = { x | x \notin L } or L' = \Sigma^* L
- L={ w ε Σ^* | w begins with a '0'}
- L'={ w ε Σ^* | w does not begin with a '0'}

Operation on Languages Difference

- L_1 L_2 is defined as a set consiting of strings which are in language L_1 but not in L_2 .
- $L_1 L_2 = \{ x \mid x \in L_1 \text{ and } x \notin L_2 \}$
- $ightharpoonup L_1 = \{a,ab,aab,aaab\}$
- \blacksquare $L_2 = \{a,aba,aabaa\}$
- $ightharpoonup L_1 L_2 = \{ab, aab, aaab\}$

Operation on Languages Concatenation

- Arr L₁L₂ is defined as a set consiting of strings xy such that x belongs to Language L₁ and y belongs to Language L₂.
- ► $L_1L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \}$
- $ightharpoonup L_1 = \{a,b\}$
- $L_2 = \{c,d\}$
- $L_1L_2 = \{a,b\}\{c,d\} = \{ac,ad,bc,bd\}$
- $L_2L_1 = \{c,d\} \{a,b\} = \{ca,cb,da,db\}$
- Note $L_1L_2 \neq L_2L_1$ in general but
- \blacksquare $L_1L_2 = L_2L_1$ if $L_1 = L_2$

Operation on Languages Power of alphabet Σ^i as Concatenation

- Power of an alphabet Σⁱ may be defined as concatenation of Σ
- $\Sigma = \{0,1\}$
- $\triangleright \Sigma^0 = \{\epsilon\}$: set of strings of length 0
- $ightharpoonup \Sigma^1 = \{0,1\}$: set of strings of length $1 = \Sigma$
- Σ^2 ={00,01,10,11} : set of strings of length 2 ={0,1}{0,1}= ΣΣ
- Σ ³={000,001,010,011,100,101,110,111} : set of strings of length $3 = \Sigma \Sigma \Sigma \Sigma \Sigma^2 \Sigma$ or $\Sigma \Sigma^2$
- $\Sigma^4 = \Sigma^3 \Sigma$ or $\Sigma \Sigma^3$, $\Sigma^5 = \Sigma^4 \Sigma$ or $\Sigma \Sigma^4$ and so on....

Operation on Languages Closure

- Kleene closure L*
- Positive closure L+