Visualizing Data using t-SNE

Taran Lynn, Xiaoli Yang, Xiaoxin Chen

October 26, 2020

Data Visualization and Manifold Learning

1. What is the goal of data visualization?

Data Visualization and Manifold Learning

- 1. What is the goal of data visualization?
- 2. We want to preserve as much structure between data points when mapping to a lower dimension
- 3. What is the ideal case when reducing to 2D from a higher dimension?

Data Visualization and Manifold Learning

- 1. What is the goal of data visualization?
- 2. We want to preserve as much structure between data points when mapping to a lower dimension
- 3. What is the ideal case when reducing to 2D from a higher dimension?

High-Level Overview

- 1. Each pair of data points has a measurable neighbor relationship with every other point
- 2. This relationship is non-symmetric
- 3. Stochastic neighbor embedding tries to preserve this relationship

What is $p_{j|i}$?

1.
$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

2. Probability datapoint x_i views x_j as its neighbor given Gaussian with variance σ_i

Determining σ_i

σ_i	Determined via binary search on perplexity
Perplexity	Smooth approximation of number of neighbors
	$Perp(P_i) = 2^{H(P_i)}$
Shannon Entropy	Information present in probability space
	$H(P_i) = -\sum_j p_{j i} \log_2 p_{j i}$

Cost Function

- 1. $q_{j|i}$ is analogous to $p_{j|i}$ for lower dimension points y_i and y_j . $\sigma = 1/\sqrt{2}$ for all $q_{i|i}$
- 2. Cost function is $C = \sum_i KL(P_i||Q_i) = \sum_i \sum_j p_{j|i} \log \frac{p_{j|i}}{q_{i|i}}$
- 3. Cost function uses Kullbeck-Leibler divergence to measure the difference between the set of $q_{j|i}$ and $p_{j|i}$

Gradient Descent Optimization

1.
$$\frac{\partial C}{\partial y_i} = 2 \sum_j \left(p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j} \right) \left(y_i - y_j \right)$$

2.
$$Y^{(t)} = Y^{(t-1)} + \nu \frac{\partial C}{\partial Y} + \alpha(t) \left(Y^{(t-1)} - Y^{(t-2)} \right)$$

3. Simulated annealing through decaying Gaussian noise

Problems with SNE

- Cost function is not convex
 - Possible to get stuck on local minima
- Computational inefficiency
 - Must compute $p_{i|i}$ many times, especially when estimating σ_i
 - Simulated annealing is slow. Suffers compared to convex optimization
- Overcrowding