Funkcionalna analiza: 2. domača naloga

Skrajni rok za oddajo rešitev je do **12. 6. 2020.** Rešitve oddajte po elektronski pošti na naslov marko.kandic@fmf.uni-lj.si. Dovoljena je uporaba dostopne literature v knjižnici ali na spletu. Sodelovanje s kolegi je prepovedano. **Vse odgovore dobro utemeljite!**

- 1. Naj bo $T: X \to Y$ izometrični izomorfizem normiranih prostorov.
 - (a) Dokaži, da T preslika ekstremne točke (če obstajajo) zaprte enotske krogle B_X prostora X v ekstremne točke zaprte enotske krogle B_Y prostora Y.
 - (b) Dokaži, da je preslikava $T: c \to c_0$, definirana s predpisom

$$T: (x_1, x_2, \ldots) \mapsto \left(\lim_{n \to \infty} x_n, \lim_{n \to \infty} x_n - x_1, \lim_{n \to \infty} x_n - x_2, \ldots\right),$$

dobro definirani topološki izomorfizem Banachovih prostorov.

- (c) Ali sta Banachova prostora c in c_0 izometrično izomorfna?
- 2. Naj bo K kompaktna podmnožica normiranega prostora X in naj bo $(f_n)_{n\in\mathbb{N}}$ omejeno zaporedje omejenih funkcionalov na X.
 - (a) Dokaži, da obstaja tako podzaporedje $(f_{n_k})_{k\in\mathbb{N}}$ ki konvergira enakomerno na K.
 - (b) Naj bo K kompaktna podmnožica v Banachovem prostoru $(C^1[0,1], \|\cdot\|_1)$. Dokaži, da za vsako zaporedje $(x_n)_{n\in\mathbb{N}}$ v [0,1] obstaja tako podzaporedje $(x_{n_k})_{k\in\mathbb{N}}$, da za vsak $\epsilon>0$ obstaja tak $k_0\in\mathbb{N}$, da za vse $k,l\geq k_0$ velja

$$|f'(x_{n_k}) - f'(x_{n_l})| < \epsilon$$

za vse $f \in K$.

- 3. Naj bo T tak omejen operator na kompleksnem Banachovem prostoru X, da je $\sigma(T) = E \cup F$ za neki neprazni disjunktni zaprti podmnožici spektra $\sigma(T)$.
 - (a) Utemelji, da je funkcija $f := \chi_E \in \text{Hol}(T)$.
 - (b) Dokaži, da je f(T) idempotenten operator, ki komutira z operatorjem T.
 - (c) Dokaži, da obstajata taka zaprta podprostora Y in Z prostora X, da je $X=Y\oplus Z$, ki sta invariantna za operator T.
- 4. Prostor n-krat zvezno odvedljivih funkcij $C^n[a,b]$ opremimo z normo

$$||f|| := \sum_{k=0}^{n} \frac{1}{k!} ||f^{(k)}||_{\infty}$$

tako, da je $(C^n[a,b], \|\cdot\|)$ komutativna Banachova algebra z enoto.

- (a) Dokaži, da je norma $\|\cdot\|$ res submultiplikativna na $C^n[a,b]$.
- (b) Dokaži, da je

$$\mathcal{J}_r = \{ f \in C^n[a, b] : f(x) = 0 \}$$

maksimalni ideal v $C^n[a,b]$.

- (c) S posnemanjem dokaza o karakterizaciji maksimalnih idealov Banachove algebre C[a,b] dokaži, da je \mathcal{J} maksimalni ideal v $C^n[a,b]$ natanko takrat, ko je oblike \mathcal{J}_x za nek $x \in [a,b]$.
- (d) Dokaži, da je $(C^n[a, b], \|\cdot\|)$ polenostavna Banachova algebra, Gelfandova reprezentacija algebra $(C^n[a, b], \|\cdot\|)$ pa ni ne izometrična ne surjektivna.