

Model Development Phase Template

Date	15 july 2024
Team ID	739907
Project Title	Price prediction of natural gas using machine learning approach.
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

[]	[] pd.get_dummies(data)										
		Price	Year	Month	Day						
	0	3.82	1997	1	7						
	1	3.80	1997	1	8						
	2	3.61	1997	1	9						
	3	3.92	1997	1	10						
	4	4.00	1997	1	13						
	5933	2.23	2020	8	5						
	5934	2.26	2020	8	6						
	5935	2.15	2020	8	7						
	5936	2.18	2020	8	10						
	5937		2020		11						
	5938 ro	ws × 4 c	olumns	\$							
[]	<pre>[] x_train=data.drop(['Price'],axis=1) y_train=data['Price'] x_test=data.drop(['Price'],axis=1) y_test=data['Price']</pre>										
[]	[] data['Price'].fillna(data['Price'].mean(),inplace=True)										
[]				Regress y_train							
₹		sionTre	_								


```
[ ] y_pred=model.predict(x_test)
    y_pred
→ array([3.82, 3.8, 3.61, ..., 2.15, 2.18, 2.19])
[ ] model.predict([[2023,7,26]])
🚁 /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but DecisionI
      warnings.warn(
    array([1.85])
[ ] from sklearn.metrics import r2_score
     accuracy=r2_score(y_test,y_pred)
     accuracy
→ 1.0
[ ] train_predictions = model.predict(x_train)
     test_predictions = model.predict(x_test)
     train_r2 = r2_score(y_train, train_predictions)
    test_r2 = r2_score(y_test, test_predictions)
    print(f'Training R2 score: {train_r2}')
    print(f'Test R<sup>2</sup> score: {test_r2}')
→ Training R<sup>2</sup> score: 1.0
    Test R<sup>2</sup> score: 1.0
```


Model Validation and Evaluation Report:

Decisio n Tree

```
import numpy as np
import pandas as pd # Use pandas as pd, not np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor

# #loading the datset
data=pd.read_csv('/content/daily_csv.csv')

# Convert 'Date' column to datetime objects
data['Date'] = pd.to_datetime(data['Date'])

# Extract numerical features from the datetime column if needed
data['Year'] = data['Date'].dt.year
data['Month'] = data['Date'].dt.month
data['Day'] = data['Date'].dt.day
data=data.drop(['Date'],axis=1)
```


Random forest

```
from sklearn.ensemble import RandomForestRegressor

# Create a Random Forest Regressor model
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)

# Fit the model to the training data
rf_model.fit(x_train, y_train)

# Make predictions on the test data
y_pred_rf = rf_model.predict(x_test)
```

Gradien t Boostin g

```
from sklearn.ensemble import GradientBoostingRegressor

# Create a Gradient Boosting Regressor model
gb_model = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, random_s

# Fit the model to the training data
gb_model.fit(x_train, y_train)

# Make predictions on the test data
y_pred_gb = gb_model.predict(x_test)
```