	doc_1		doc_2		decision	id
cases			authors	Stefano Markidis		
			title	The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?]	
	authors	Stefano Markidis	publication_date	date 2021-11-19 00:00:00		
			source	SupportedSources.SEMANTIC_SCHOLAR		
	title	The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?	journal	Frontiers in Big Data		
			volume	4		
	publication_date 2021-03-12 00:00:00		doi	10.3389/fdata.2021.669097	<u> </u>	
	source	SupportedSources.OPENALEX	urls	• https://www.semanticscholar.org/paper/34c84d6e196280f9ceba634dc4be5ee134ca83c6	DUPLICATES	ΓES 217
	journal	arXiv (Cornell University)				
	volume		id	id3009276380749929507		
	doi	None	abstract	nformed Neural Networks (PINN) are neural networks encoding the problem governing equations, such as Partial Differential Equations (PDE), as a part of the twork. PINNs have emerged as a new essential tool to solve various challenging problems, including computing linear systems arising from PDEs, a task for which	y as	
	urls	https://openalex.org/W3177797101		several traditional methods exist. In this work, we focus first on evaluating the potential of PINNs as linear solvers in the case of the Poisson equation, an omnipresent equation in scientific computing. We characterize PINN linear solvers in terms of accuracy and performance under different network configurations (depth, activation		
	id	id-4264341238140259959		functions, input data set distribution). We highlight the critical role of transfer learning. Our results show that low-frequency components of the solution converge quickly as		
	abstract			an effect of the F-principle. In contrast, an accurate solution of the high frequencies requires an exceedingly long time. To address this limitation, we propose integrating PINNs into traditional linear solvers. We show that this integration leads to the development of new solvers whose performance is on par with other high-performance		
	versions			solvers, such as PETSc conjugate gradient linear solvers, in terms of performance and accuracy. Overall, while the accuracy and computational performance are still a		
				limiting factor for the direct use of PINN linear solvers, hybrid strategies combining old traditional linear solver approaches with new emerging deep-learning techniques are among the most promising methods for developing a new class of linear solvers.		
			versions]	