The ergodic theorem for finite Markov chains

Let (\mathcal{X}, P) where $P = (p_{x,y})_{x,y \in \mathcal{X}} = (p(y|x))_{x,y \in \mathcal{X}}$ is the transition matrix, \mathcal{X} . and $\mu = (\mu_x)_{x \in \mathcal{X}}$ start distribution. $\mathbb{P}_{\mu}(X_n)_{n \in \mathbb{N}_0}$ Markov chain

Where is a suitable probability space? It is called trajectory space $\Omega = \mathcal{X}^{\mathbb{N}_0}$ \mathcal{A} is generated by all "cylinder sets". $k \in \mathbb{N}_0, a_0, \ldots, a_k \in \mathcal{X}$: $C(a_0, \ldots, a_k) = \{\omega = (x_n)_{n \in \mathbb{N}_0} : x_0 = a_0, \ldots, x_k = a_k\}$ inclusive Ω $X_n = n$ -th projection

$$\mathbb{P}_{\mu}(C(a_0,\ldots,a_k)) = \mu_{a_0} p_{a_0,a_1} \cdots p_{a_{k-1},a_k}$$

unique continuation to (σ -algebra) probability measure on (Ω, \mathcal{A}) .

add pic

Definition.

$$s^{\times}(\omega) := \inf\{n \ge 0 : X_n(\omega) = x\}$$

 $t^{\times}(\omega) := \inf\{n \ge 1 : X_n(\omega) = x\}$

 $s^{\times}, t^{\times}: (\Omega, \mathcal{A}) \to \mathbb{N}_0 \cup \{\infty\}$ are called stopping times.

$$f_{x,y}^{(n)} = \mathbb{P}_x[s^y = n]$$
$$u_{x,y}^{(n)} = \mathbb{P}_x[t^y = n]$$

$$f_{x,y}^{(0)} = \begin{cases} 1, & y = x \\ 0, & x \neq y \end{cases}$$

If $x \neq y$, then $u_{x,y}^{(n)} = f_{x,y}^{(n)}$ for all n. $u_{x,x}^{(n)}$ is called the "first return probability" for $n \geq 1$. $u^{(0)} \equiv 0$ (always)

$$V_n^y = \begin{cases} 1, & X_n = y \\ 0, & X_n \neq y \end{cases}$$

$$\mathbb{E}_x(V_n^y) = \mathbb{E}(\mathbb{1}_{[\mathbb{X}_{\bowtie} = \curvearrowright]}) = p_{x,y}^{(n)}$$

Consider the generating function

$$G(x,y|z) = G_{x,y}(z) = \sum_{n=0}^{\infty} p_{x,y}^{(n)} z^n$$

$$F_{x,y}(z) = \sum_{n=0}^{\infty} f_{x,y}^{(n)} z^n$$

$$U_{x,y}(z) = \sum_{n=0}^{\infty} u_{x,y}^{(n)} z^n$$

for
$$0 \leq z < 1$$
. since $\underbrace{G_{x,y} = G_{x,y}(1)}_{\mathbb{E}_x(\sum_{n=0}^{\infty} V_n^y) \leq \infty}$, $\underbrace{F_{x,y} = F_{x,y}(1)}_{\mathbb{P}_x[\exists n \geq 0: X_n = y] = \mathbb{P}_x[s^y < \infty]}$, $U_{x,y} = U_{x,y}(1)$ and $U_{x,x} = \mathbb{P}_x[t^x < \infty]$ And remember that $F_{x,x}(z) \equiv 1$.

Remark. We use inf and not min since the infimum of the empty set is $+\infty$.

Remark. Actually, its for $0 \le z \le 1$ since $G_{x,y}$ could be ∞ . But we can neglect

Theorem 0.1. $(0 \le z < 1)$

(a)
$$G_{x,x}(z) = \frac{1}{1 - U_{x,x}(z)}$$

(b)
$$G_{x,y}(z) = F_{x,y}(z)G_{y,y}(z)$$

(c)
$$U_{x,x}(z) = \sum_{y} p_{x,y} z F_{y,x}(z)$$

(d)
$$x \neq y$$
: $F_{x,y}(z) = \sum_{w \in \mathcal{X}} p_{x,w} z F_{w,y}(z)$

(e) $G_{x,y}(z) = \delta_y(x) + \sum_w G_{x,w}(z) p_{w,y} z$; you can think like the following (commutative matrix) $G(z) = (G_{x,y}(z))_{x,y \in \mathcal{X}} = \sum_{n=0}^{\infty} P^n z^n = I + G(z) P z = I + PzG(z)$ If \mathcal{X} is finite and 0 < z < 1 or |z| < 1 for $z \in \mathbb{C}$: G/z) = $I - zP^{-1}$

Proof. $n \geq 1$.

$$p_{x,x}^{(n)} = \mathbb{P}_x[X_n = x] = \sum_{k=1}^n \mathbb{P}_x[X_n = x, t^1 = k]$$

$$= \sum_{k=1}^n \underbrace{\mathbb{P}_x[t^x = k]}_{u_{x,x}^{(k)}} \cdot \underbrace{\mathbb{P}_x[X_n = x | X_k = x, X_j \neq k (j = 1, \dots, k - 1)]}_{p_{x,x}^{(n-k)} \text{ by Markov property}}$$

$$n \ge 1 : p_{x,x}^{(n)} = \sum_{k=0}^{n} u_{x,x}^{(k)} p_{x,x}^{(n-k)}$$
$$n = 0 : p_{x,x}^{(0)} = 1 \text{ and } u_{x,x}^{(0)} = 0$$

Thus,

$$G_{x,x}(z) = 1 + \sum_{n=0}^{\infty} \sum_{k=0}^{n} u_{x,x}^{(k)} p_{x,x}^{(n-k)} z^{n}$$
$$= 1 + \sum_{n=0}^{\infty} 1 + U_{x,x}(z) G_{x,x}(z)$$

for z < 1: this proves (a).

Ad b: replace $p_{x,x}^{(n)}$ with $p_{x,y}^{(n)}$ and start sum at 0. Replace t^x by s^y . Do as an exercise. (Special case 0 is already in s included. Then

$$p_{x,y}^{(n)} = \sum_{k=0}^{n} f_{x,y}^{(k)} p_{y,y}^{(n-k)}$$

for all $n \geq 0$.

Definition. $x \in \mathcal{X}$ is called recurrent if $U_{x,x} = 1$, $\mathbb{P}_x[t^x < \infty] = 1$. Otherwise x is called transient.

Lemma 0.2. $x \in \mathcal{X}$ recurrent if and only if $U_{x,x} = 1$.

Remark. $\Rightarrow x \text{ is recurrent} \Rightarrow G_{x,x} = \infty \Rightarrow U_{x,x} = 1$

Proof. (a) (0 < z < 1) z is monotone increasing. + blabla

Lemma 0.3. (\mathcal{X}, P) irreducible then we distinguish two cases:

rec. $G_{x,y} = \infty$ for all x, y

trans $G_{x,y} < \infty$ for all x, y.

Proof. $x, y, x', y' \in \mathcal{X}$ irreducible $\exists k, l : p_{x,x'}^{(k)} > 0, p_{y',y}^{(l)} > 0$ Now consider $p_{x,x'}^{(k)} p_{x',y'}^{(n)} p_{y',y}^{(l)} \leq p_{x,y}^{k+n+l}$ Use $p^k p^n p^l = p^{k+n+l}$.

$$\underbrace{\sum_{n=0}^{\infty} p_{x,x'}^{(k)} p_{x',y'}^{(n)} p_{y',y}^{(l)} \leq \sum_{n=0}^{\infty} p_{x,y}^{k+n+l}}_{p_{x,y}} \underbrace{P_{x,x'}^{(k)} G_{x',y'} \underbrace{p_{y',y}}_{>0} \leq G_{x,y}}_{p_{x,y}} \leq G_{x,y}$$

Thus we have the following theorem.

Theorem 0.4. Let (\mathcal{X}, P) be irreducible. Then the following are equivalent

- 1. There exist x, y such that $G_{x,y} = \infty$
- 2. For all x, y: $G_{x,y} = \infty$
- 3. There exists an x such that $U_{x,x} = 1$
- 4. For all $x: U_{x,x} = 1$
- 5. $F_{x,y} = 1 \text{ for all } x, y$.

Proof. No proof (yet).

Lemma 0.5. If (\mathcal{X}, P) is finite and irreducible, then it is recurrent.

Proof.

$$\sum_{y} p_{x,y}^{(n)} = 1$$

$$\sum_{x=0}^{\infty} \sum_{x} p_{x,y}^{(n)} = \infty$$

Since we can use Fubini and get

$$\sum_{n=0}^{\infty} \sum_{y} p_{x,y}^{(n)} = \sum_{y \in \mathcal{X}} G_{x,y} \implies \exists y : G_{x,y} = \infty$$

$$\mathbb{E}_x(t^x) = \sum_{n=1}^{\infty} n \underbrace{\mathbb{P}_x[t^x = n]}_{u_x^{(n)}} = U'_{x,x}(1-)$$
 Think about $u_{x,x}^{(n)} z^{n-1}$ to get the

derivate of $U_{x,x}$

Recall and add z^n to the proof before:

$$\sum_{y} p_{x,y}^{(n)} z^n = 1 \cdot z^n$$

$$\sum_{n=0}^{\infty} \sum_{y} p_{x,y}^{(n)} z^n = \frac{1}{1-z}$$

Then for 0 < z < 1:

$$\sum_{y \in \mathcal{X}} G_{x,y}(z) = \frac{1}{1-z}$$

$$G_{x,x}(z) = 1 + \sum_{y} G_{x,y}(z) p_{y,x} z$$

$$\sum_{y \in \mathcal{X}} F_{x,y}(z) \frac{1 - z}{1 - U_{y,y(z)}} = 1$$

Now let z be monotone increasing towards 1:

$$\sum_{x \in \mathcal{X}} F_{x,y} \frac{1}{U'_{y,y}(1-)} = 1$$

Since \mathcal{X} is finite.

Assume: $U'_{y,y}(1-) = \infty$ for all y. Thus, there exists a y such that $U'_{y,y}(1-) < \infty$.

Variante 1: Like right before the theorem of (\mathcal{X}, P) is irreducble,..., you can find a $C_{x,y}$ such that

$$C_{x,y} \ge \frac{G_{x,x}(z)}{G_{y,y}(z)} = \frac{1 - U_{y,y}(z)}{1 - U_{x,x}(z)}$$

Definition. (\mathcal{X}, P) is called positive recurrent if $\mathbb{E}_x(t^x) < \infty$ for an (all) x. It is called null-recurrent if $\mathbb{E}_x(t^x) = \infty$ for an (all) x.

Lemma 0.6. (\mathcal{X}, P) finite and irreducible. then it is positive recurrent.

Our goal:

$$\frac{1}{n}\sum_{k=0}^{n-1}f(X_k)$$

where $f: \mathcal{X} \to \mathbb{R}$.