

Tópicos Especiais de Otimização - Técnicas Inteligentes - 210115-IC Programa de Pós-Graduação em Engenharia Elétrica / UFJF Prof. Leonardo Willer de Oliveira/ Prof. Ivo Chaves da Silva Junior

Relatório de Técnicas Inteligentes: Redes Neurais Artificiais

Previsão do regime de ventos a partir de dados da Estação meteorológica automática de Juiz de Fora

Doutorando: Thainan Santos Theodoro Matrícula: 103080112 thainan.theodoro@engenharia.ufjf.br

Juiz de Fora, 10 de abril de 2016

Sumário

1.	CASO 01 – Previsão de vento: curto prazo	3
1.1.	Características gerais	3
1.2.	Configurações testadas	4
1.3.	Definição das métricas de análise de previsão adotadas	4
1.4.	Funções de ativação	5
1.5.	Treinamento da rede	5
1.6.	Resultados dos testes	7
A.	Topologia A - JF21-05	7
B.	Topologia B - JF21-10	8
C.	Topologia C - JF21-15	9
D.	Topologia D - JF21-20	10
E.	Topologia E - JF22-05	11
F.	Topologia F - JF22-10	12
G.	Topologia G - JF22-15	13
H.	Topologia H - JF22-20	14
I.	Topologia I - JF31-05	15
J.	Topologia J – JF31-10	16
K.	Topologia K - JF31-15	17
L.	Topologia L - JF31-20	18
M.	Topologia M JF32-05	19
N.	Topologia N - JF32-10	20
O.	Topologia O - JF32-15	21
P.	Topologia P - JF32-20	22
Q.	Topologia Q - JF41-05	23
R.	Topologia R - JF41-10	24
S.	Topologia S - JF41-15	25
T.	Topologia T - JF41-20	26
U.	Topologia U - JF42-05	27
V.	Topologia V - JF42-10	28
W.	Topologia W - JF42-15	29
X.	Topologia X - JF42-20	30
1.7.	Comparação do desempenho das topologias	31
1.8.	Outros testes de curta duração	34
1.9.	Conclusões parciais	34
2.	CASO 02 – Previsão de vento: longo prazo	34
3.	Bibliografia	3 <i>e</i>

1. CASO 01 - Previsão de vento: curto prazo

1.1. Características gerais

A Tabela 1 resume o objetivo, considerações e metodologia adotada.

Tabela 1 - Objetivo, considerações e metodologia adotada.				
APLICAÇÃO:	Previsão de regime de ventos (velocidade).			
DADOS:	Estação meteorológica automática de Juiz de Fora, valores horários de vento entre abril de 2016 a março de 2017 [1].			
ALGORITMO NEURAL:	Treinamento de rede de duas camadas com método ('trainlm')			
ENTRADAS DE REDE:	Valores passados de velocidade do vento: 2, 3 e 4h anteriores.			
SAÍDA DE REDE:	Valor futuro da velocidade do vento (uma ou duas horas)			
TREINAMENTO:	Valores entre a abril de 2016 e dezembro de 2016 (8 meses ~70%)			
TESTE:	Valores horários entre janeiro de 2017 a março de 2016 (3 meses ~30%)			
SOFTWARE:	MatLab2013a com a toolbox: feedforwardnet			
CRITÉRIOS DE PARADA	Na função <i>feedforwardnet</i> é possível configurar o número máximo de épocas, o erro, o gradiente do erro. O número de testes de validação padrão é seis, e foram mantidos nos testes.			
OBJETIVO:	Efetuar a previsão, um ou dois passos à frente (1 ou 2h), da velocidade do vento em Juiz de Fora variando os seguintes parâmetros da rede neural:			
JANELA ENTRADA:	Tamanho da janela de entrada: 2, 3 e 4 horas.			
JANELA DE SAÍDA:	Tamanho da janela de saída: 1 ou 2 horas.			
N° NEURÔNIOS:	Variação do nº de neurônios da camada oculta. Escolha de 4 valores por configuração (24 topologias).			
A E-42- M-414-1 1	Observed 2 de Consultation Assessation de Leis de Consultation de la late			

A Estação Meteorológica de Observação de Superfície Automática de Juiz de Fora tem os dados de operação mostrados na Tabela 2 [1]:

Tabela 2 – Dados principais da Estação Automática de Juiz de Fora.

Estação:	Juiz de Fora-A518
Código OMM:	86851
Registro:	19 UTC
Aberta em:	26/05/2007
Latitude:	-21.769965°
Longitude:	-43.364329°
Altitude:	937 metros

1.2. Configurações testadas

A tabela mostra as configurações propostas para teste no caso 1.

Tabela 3 – Configurações testadas no Caso 01 (24 topologias).

14		 	Janela de	Janela de	N° de
N°	Item	Topologia	entrada	saída	neurônios
01	A	JF21-05	Cititada	Suru	5
02	В	JF21-10			10
03	C	JF21-15		1	15
04	D	JF21-20			20
05	Е	JF22-05	2		5
06	F	JF22-10		2	10
07	G	JF22-15		2	15
08	Н	JF22-20			20
09	I	JF31-05			5
10	J	JF31-10		1	10
11	K	JF31-15		1	15
12	L	JF31- 20	3		20
13	M	JF32-05	3		5
14	N	JF32-10		2	10
15	О	JF32-15		2	15
16	P	JF32- 20			20
17	Q	JF41-05			5
18	R	JF41-10		1	10
19	S	JF41-15		1	15
20	T	JF41-20	4		20
21	U	JF42-05	4		5
22	V	JF42-10		2	10
23	W	JF42-15			15
24	X	JF42-20			20

1.3. Definição das métricas de análise de previsão adotadas

Para a avaliação da precisão e eficiência da previsão das configurações de rede neurais propostas serão usadas métricas que seguem, começando pelo MAPE ("Mean Absolute Percentage Error"), dado por [2] [3],

$$MAPE = \frac{\sum_{k=1}^{N} \left| \frac{a_k - y_k}{a_k} \right|}{N} 100\%$$
 (1)

onde N é o número de previsões realizadas, a_k é a saída desejada para a previsão (valor real medido) e y_k é a previsão da rede neural. Basicamente, o MAPE indica o valor médio do erro percentual das previsões sobre o conjunto de teste, ou seja, quanto menor seu valor, melhor é previsão.

A segunda métrica que será usada é o RMSE ("Root Mean Square Error"), que penaliza os erros maiores e é dado por [2] [3],

$$RMSE = \sqrt{\frac{\sum_{k=1}^{N} (a_k - y_k)^2}{N}} 100\%$$
 (2)

De maneira geral, uma técnica que apresente ótimos resultados na maioria das previsões, porém tenha erros elevados em uma previsão específica, irá fornecer um valor mais alto de RMSE [2] [3].

A terceira métrica, o coeficiente U de Theil é definido por [2] [3]:

$$U = \frac{\sqrt{\sum_{k=1}^{N} (a_k - y_k)^2}}{\sqrt{\sum_{k=1}^{N} (a_k - a_{k-1})^2}}$$
(3)

onde a_{k-1} é o valor anterior à previsão. O valor U mede o quanto os resultados estão melhores que uma previsão ingênua ou trivial (ou seja, "a melhor estimativa do próximo valor é o valor atual"). Dessa forma, podese analisar a qualidade de uma previsão da seguinte maneira:

- Quando $U \ge 1$, o erro do modelo é maior que o erro ingênuo.
- Quando U < 1, o erro do modelo é menor que o erro ingênuo (boa previsão).

Assim, um coeficiente U de Theil menor que 1 já indica uma previsão melhor que a previsão trivial. Portanto, quanto mais próximo de zero for este coeficiente melhor a previsão.

A quarta e última métrica é o NIAE ("Normalized Integral Absolute-error") proposto por [4] é dado por,

$$NIAE = 1 - \frac{\int_0^t |a_k - y_k|}{\int_0^t a_k}$$
 (4)

Ele normaliza a área do erro em função da área da referência. O autor propôs a seguinte avaliação:

- Se NIAE \geq 0,95, a previsão é boa.
- Se NIAE < 0,95, a previsão não é boa.

1.4. Funções de ativação

Os testes foram feitos com os parâmetros "purelin" x"purelin" para as funções de ativação da camada oculta e de saída. Isto porque, esta combinação se mostrou mais precisa que "tansig" x"tansig" ou "tansig" x"purelin" e vice-versa nos testes das topologias propostas, dessa forma, dados de comparação entre os tipos de função de ativação foram suprimidos nesse documento.

1.5. Treinamento da rede

Foram comparados os treinos:

- 1. 'trainrp': Atualiza os valores de peso e de Bias de acordo com o "resilient backpropagation algorithm" (RPROP);
- 2. *trainlm*: Atualiza os estados de peso e Bias de acordo com a otimização Levenberg-Marquardt *backpropagation*.
- 3. 'trainscg': Atualiza os valores de peso e de Bias de acordo com o método de gradiente conjugado escalado ("scaled conjugate gradient method").
- 4. 'trainbr': Atualiza os valores de peso e de polarização de acordo com a otimização de Levenberg-Marquardt minimizando uma combinação de erros quadrados e pesos e, em seguida, determina a combinação correta para produzir a rede. O processo é chamado de Regularização Bayesiana (BR).

Em todos eles os melhores resultados foram o '*trainlm*' foi muito rápido e mais preciso. A Tabela 4 mostra a título de exemplo os valores para a simulação da topologia JF21-05. O mesmo se repetiu para a maioria das topologias, dessa forma, dados de comparação entre os tipos de treinamento foram suprimidos nesse documento.

Tabela 4 – Avaliação da precisão e velocidade dos tipos de treinamento para a rede JF21-05.

Método	Épocas	MAPE	RMSE	U	NIAE
trainrp	1	8,8496	2,2178	2,7746	0,1509
trainlm	4	4,7706	1,1200	1,5471	0,6041
trainscg	10.000	13,3739	3,0824	2,9948	-0,1739
'trainbr	1.000	4,9526	1,1253	1,6113	0,5999

Assim, como critérios de parada para o treinamento foram:

Tabela 5 – Crtérios de parada para o treinamento "trainlm".

Item	Valor
Épocas	1000
Erro	1.10^{-6}
Gradiente do erro	1.10-9
Número de validações	6 (padrão)

1.6. Resultados dos testes

A. Topologia A - JF21-05

Figura 1 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 2 – Performance da rede.

Figura 3 – Resultados do teste da rede. Tabela 6 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	4,8019	1,0157	1,5255	0,6552
20/01/2017	5,0419	0,9396	1,5471	0,5540
10/02/2017	1,8398	1,0973	1,5250	0,6126
20/02/2017	7,3986	1,4274	1,5906	0,5945
MÉDIA	4,7706	1,1200	1,5471	0,6041

B. Topologia B - JF21-10

Figura 4 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 5 – Performance da rede.

Figura 6 – Resultados do teste da rede. Tabela 7 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	4,8394	1,013	1,503	0,656
20/01/2017	5,0501	0,940	1,527	0,553
10/02/2017	1,8516	1,104	1,502	0,610
20/02/2017	7,4135	1,425	1,557	0,595
MÉDIA	4,7886	1,121	1,522	0,604

C. Topologia C - JF21-15

Figura 7 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 8 – Performance da rede.

Figura 9 – Resultados do teste da rede. Tabela 8 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	4,8031	1,015	1,519	0,656
20/01/2017	5,0368	0,939	1,541	0,554
10/02/2017	1,8422	1,099	1,519	0,612
20/02/2017	7,3949	1,427	1,582	0,595
MÉDIA	4,7692	1,120	1,540	0,604

D. Topologia D - JF21-20

Figura 10 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 11 – Performance da rede.

Figura 12 – Resultados do teste da rede. Tabela 9 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	4,837	1,0171	1,4782	0,6553
20/01/2017	5,0465	0,9387	1,4936	0,5545
10/02/2017	1,8692	1,1102	1,4776	0,6081
20/02/2017	7,4502	1,4259	1,5249	0,5927
MÉDIA	4,8007	1,1230	1,4936	0,6026

E. Topologia E - JF22-05

Figura 13 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 14 – Performance da rede.

Figura 15 – Resultados do teste da rede. Tabela 10 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,1508	1,0094	1,7909	0,6444
20/01/2017	5,4300	0,9733	1,8933	0,5294
10/02/2017	1,7401	1,0810	1,7781	0,6289
20/02/2017	7,4175	1,4142	1,8644	0,6034
MÉDIA	4,9346	1,1195	1,8317	0,6015

F. Topologia F - JF22-10

Figura 16 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 17 – Performance da rede.

Figura 18 – Resultados do teste da rede. Tabela 11 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,2137	1,0172	1,8295	0,6400
20/01/2017	5,5025	0,9768	1,9279	0,5275
10/02/2017	1,7371	1,0800	1,8193	0,6319
20/02/2017	7,4909	1,4140	1,9057	0,6018
MÉDIA	4,9860	1,1220	1,8706	0,6003

G. Topologia G - JF22-15

Figura 19 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 20 – Performance da rede.

Figura 21 – Resultados do teste da rede. Tabela 12 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,2103	1,0150	1,7995	0,6416
20/01/2017	5,4919	0,9760	1,8979	0,5276
10/02/2017	1,7466	1,0842	1,7872	0,6297
20/02/2017	7,4876	1,4125	1,8651	0,6018
MÉDIA	4,9841	1,1219	1,8374	0,6002

H. Topologia H - JF22-20

Figura 22 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 23 – Performance da rede.

Figura 24 – Resultados do teste da rede. Tabela 13 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,3013	1,0224	1,9344	0,6346
20/01/2017	5,6091	0,9872	2,0509	0,5214
10/02/2017	1,7088	1,0738	1,9224	0,6377
20/02/2017	7,5092	1,4152	2,0243	0,6031
MÉDIA	5,0321	1,1246	1,9830	0,5992

I. Topologia I - JF31-05

Figura 25 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 26 – Performance da rede.

Figura 27 – Resultados do teste da rede. Tabela 14 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,2095	1,0302	1,6425	0,6541
20/01/2017	5,5252	0,9981	1,6023	0,4975
10/02/2017	1,9603	1,1332	1,6025	0,6176
20/02/2017	8,1340	1,4087	1,7336	0,5786
MÉDIA	5,2073	1,1426	1,6452	0,5869

J. Topologia J – JF31-10

Figura 28 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 29 – Performance da rede.

Figura 30 – Resultados do teste da rede. Tabela 15 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,2085	1,0295	1,6125	0,6568
20/01/2017	5,5281	0,9912	1,5818	0,5021
10/02/2017	1,9681	1,1328	1,5916	0,6164
20/02/2017	8,1207	1,4030	1,7079	0,5811
MÉDIA	5,2063	1,1391	1,6234	0,5891

K. Topologia K - JF31-15

Figura 31 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 32 – Performance da rede.

Figura 33 – Resultados do teste da rede. Tabela 16 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,2036	1,0234	1,5699	0,6555
20/01/2017	5,4386	1,0056	1,5228	0,4909
10/02/2017	1,9941	1,1558	1,4835	0,6088
20/02/2017	8,1258	1,4150	1,6169	0,5740
MÉDIA	5,1905	1,1500	1,5483	0,5823

L. Topologia L - JF31-20

Figura 34 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 35 – Performance da rede.

Figura 36 – Resultados do teste da rede. Tabela 17 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,1190	1,0313	1,6197	0,6566
20/01/2017	5,4583	0,9924	1,5788	0,5008
10/02/2017	1,9632	1,1289	1,5920	0,6162
20/02/2017	8,0737	1,4105	1,7221	0,5789
MÉDIA	5,1535	1,1408	1,6281	0,5881

M. Topologia M JF32-05

Figura 37 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 38 – Performance da rede.

Figura 39 – Resultados do teste da rede. Tabela 18 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,6116	1,0275	1,9820	0,6352
20/01/2017	5,9423	1,0402	1,9703	0,4682
10/02/2017	1,8586	1,1216	1,8780	0,6341
20/02/2017	8,1825	1,4028	2,0595	0,5858
MÉDIA	5,3987	1,1480	1,9725	0,5808

N. Topologia N - JF32-10

Figura 40 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 41 – Performance da rede.

Figura 42 – Resultados do teste da rede. Tabela 19 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,5644	1,0242	1,9106	0,6411
20/01/2017	5,9191	1,0267	1,9253	0,4764
10/02/2017	1,8676	1,1178	1,8559	0,6325
20/02/2017	8,1410	1,3925	2,0087	0,5891
MÉDIA	5,3730	1,1403	1,9251	0,5848

O. Topologia O - JF32-15

Figura 43 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 44 – Performance da rede.

Figura 45 – Resultados do teste da rede. Tabela 20 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,6133	1,0298	2,0556	0,6334
20/01/2017	5,9826	1,0372	2,0624	0,4706
10/02/2017	1,8332	1,1072	2,0021	0,6385
20/02/2017	8,1437	1,4004	2,1822	0,5886
MÉDIA	5,3932	1,1436	2,0756	0,5828

P. Topologia P - JF32-20

Figura 46 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 47 – Performance da rede.

Figura 48 – Resultados do teste da rede. Tabela 21 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,5963	1,0236	1,9970	0,6355
20/01/2017	5,9217	1,0416	1,9923	0,4674
10/02/2017	1,8521	1,1196	1,8823	0,6331
20/02/2017	8,1243	1,4021	2,0728	0,5872
MÉDIA	5,3736	1,1467	1,9861	0,5808

Q. Topologia Q - JF41-05

Figura 49 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 50 – Performance da rede.

Figura 51 – Resultados do teste da rede. Tabela 22 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,7317	0,9930	1,5048	0,6542
20/01/2017	6,2182	1,0282	1,6146	0,4879
10/02/2017	1,8704	1,1168	1,7134	0,6282
20/02/2017	8,9147	1,4235	1,7904	0,5669
MÉDIA	5,6838	1,1404	1,6558	0,5843

R. Topologia R - JF41-10

Figura 52 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 53 – Performance da rede.

Figura 54 – Resultados do teste da rede. Tabela 23 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,6748	0,9816	1,4728	0,6569
20/01/2017	6,1401	1,0329	1,6097	0,4836
10/02/2017	1,8801	1,1217	1,6583	0,6234
20/02/2017	8,7784	1,4241	1,7697	0,5700
MÉDIA	5,6184	1,1401	1,6276	0,5835

S. Topologia S - JF41-15

Figura 55 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 56 – Performance da rede.

Figura 57 – Resultados do teste da rede. Tabela 24 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,6940	0,9832	1,3920	0,6598
20/01/2017	6,1194	1,0233	1,5215	0,4889
10/02/2017	1,9178	1,1355	1,5749	0,6189
20/02/2017	8,8405	1,4178	1,6548	0,5702
MÉDIA	5,6429	1,1400	1,5358	0,5845

T. Topologia T - JF41-20

Figura 58 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 59 – Performance da rede.

Figura 60 – Resultados do teste da rede. Tabela 25 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	5,6437	0,9898	1,4926	0,6578
20/01/2017	6,1714	1,0244	1,6096	0,4903
10/02/2017	1,8712	1,1110	1,7213	0,6275
20/02/2017	8,8348	1,4242	1,7951	0,5680
MÉDIA	5,6303	1,1373	1,6546	0,5859

U. Topologia U - JF42-05

Figura 61 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 62 – Performance da rede.

Figura 63 – Resultados do teste da rede. Tabela 26 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	6,2246	0,9984	1,9623	0,6282
20/01/2017	6,7667	1,0936	2,1580	0,4469
10/02/2017	1,7227	1,0975	2,1014	0,6461
20/02/2017	8,8805	1,4305	2,3510	0,5716
MÉDIA	5,8986	1,1550	2,1432	0,5732

V. Topologia V - JF42-10

Figura 64 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 65 – Performance da rede.

Figura 66 – Resultados do teste da rede. Tabela 27 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	6,1925	0,9991	1,8926	0,6321
20/01/2017	6,7293	1,0783	2,0764	0,4529
10/02/2017	1,7431	1,0982	2,0715	0,6438
20/02/2017	8,9059	1,4226	2,2436	0,5739
MÉDIA	5,8927	1,1495	2,0710	0,5757

W. Topologia W - JF42-15

Figura 67 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 68 – Performance da rede.

Figura 69 – Resultados do teste da rede. Tabela 28 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	6,1833	0,9961	1,8253	0,6357
20/01/2017	6,7419	1,0729	2,0321	0,4572
10/02/2017	1,7533	1,1000	2,0200	0,6433
20/02/2017	8,9037	1,4160	2,1783	0,5747
MÉDIA	5,8955	1,1463	2,0139	0,5777

X. Topologia X - JF42-20

Figura 70 – Rede neural do teste da rede. Resultados dos testes realizados.

Figura 71 – Performance da rede.

Figura 72 – Resultados do teste da rede. Tabela 29 – Métrica dos teste da rede.

DIA	MAPE	RMSE	U	NIAE
10/01/2017	6,1230	0,9906	1,7959	0,6368
20/01/2017	6,6348	1,0755	1,9949	0,4553
10/02/2017	1,7669	1,1064	1,9461	0,6389
20/02/2017	8,8526	1,4209	2,1379	0,5745
MÉDIA	5,8443	1,1484	1,9687	0,5764

1.7. Comparação do desempenho das topologias

A Tabela 30 mostra a comparação das **métricas médias** das topologias A-L.

Tabela 30 – Comparação das métricas médias das topologias.

Tabela 30 — Comparação das métricas médias das topologias.							
Item	Topologia	MAPE (%)	RMSE (%)	U (adm)	NIAE (adm)		
A	JF21-05	4,7706	1,1200	1,5471	0,6041		
В	JF21-10	4,7886	1,1207	1,5220	0,6035		
С	JF21-15	4,7692	1,1200	1,5403	0,6040		
D	JF-21-20	4,8007	1,1230	1,4936	0,6026		
Е	JF22-05	4,9346	1,1195	1,8317	0,6015		
F	JF22-10	4,9860	1,1220	1,8706	0,6003		
G	JF22-15	4,9841	1,1219	1,8374	0,6002		
Н	JF22-20	5,0321	1,1246	1,9830	0,5992		
I	JF31-05	5,2073	1,1426	1,6452	0,5869		
J	JF31-10	5,2063	1,1391	1,6234	0,5891		
K	JF31-15	5,1905	1,1500	1,5483	0,5823		
L	JF31-20	5,1535	1,1408	1,6281	0,5881		
M	JF32-05	5,3987	1,1480	1,9725	0,5808		
N	JF32-10	5,3730	1,1403	1,9251	0,5848		
О	JF32-15	5,3932	1,1436	2,0756	0,5828		
P	JF32-20	5,3736	1,1467	1,9861	0,5808		
Q	JF41-05	5,6838	1,1404	1,6558	0,5843		
R	JF41-10	5,6184	1,1401	1,6276	0,5835		
S	JF41-15	5,6429	1,1400	1,5358	0,5845		
T	JF41-20	5,6303	1,1373	1,6546	0,5859		
U	JF42-05	5,8986	1,1550	2,1432	0,5732		
V	JF42-10	5,8927	1,1495	2,0710	0,5757		
W	JF42-15	5,8955	1,1463	2,0139	0,5777		
X	JF42-20	5,8443	1,1484	1,9687	0,5764		
	Média	5,3112	1,1367	1,7792	0,5888		
V	ariação	19,15%	3,07%	30,31%	5,12%		

Com a observação dos dados, pode-se concluir que as previsões de todas as topologias não tiveram erros consideráveis, já que o erro absoluto, o MAPE, varia em torno de 5,3112% e o RMSE em torno de 1,1367%.

Contudo, o NIAE apresenta uma média de 0,5888 o que é um valor bem baixo dada a restrição proposta pelo autor, que é de 0,95, ou seja, o sistema de previsões não foi satisfatório nessa métrica.

O que mais chama a atenção é o coeficiente U de Theil, que é maior que 1 nas previsões de todas as redes, ou seja, uma previsão ingênua ("a melhor estimativa do próximo valor é o valor atual") seria melhor e mais precisa que as previsões encontradas. Dessa forma, essa métrica reprova o sistema de previsões à primeira vista.

Figura 73 – Grafico de barras das métricas empreregadas.

Ainda assim, é possível fazer uma avalição de precisão entre as topologias. A Figura 73 mostra o gráfico comparativo de cada métrica empregada. As topologias de melhor desempenho foram, de forma geral, a C, A e B nesta ordem. Todas com 2 entradas e 1 saída e 15, 5 e 10 neurônios, respectivamente, conforme destaca a Tabela 31.

Por outro lado, a topologia de melhor desempenho, considerando a comparação com a previsão ingênua foi a D – JF21-20 (20 neurônios, 2 entradas e 1 saída) com $U_{JF21-20}=1,4936$. A topologia de pior desempenho foi a K – JF42-20 (20 neurônios, 4 entradas e 2 saídas).

Tabela 31 – Classificação das métricas médias das topologias.

Tabeta 31 – Ciassificação das metricas medias das topologias.									
Lugar	M	APE (%)	Rl	MSE (%)	J	U (adm)		NIAE (adm)	
1	C	JF21-15	E	JF22-05	D	JF-21-20	A	JF21-05	
2	A	JF21-05	C	JF21-15	В	JF21-10	C	JF21-15	
3	В	JF21-10	A	JF21-05	S	JF41-15	В	JF21-10	
4	D	JF-21-20	В	JF21-10	С	JF21-15	D	JF-21-20	
5	Е	JF22-05	G	JF22-15	A	JF21-05	Е	JF22-05	
6	G	JF22-15	F	JF22-10	K	JF31-15	F	JF22-10	
7	F	JF22-10	D	JF-21-20	J	JF31-10	G	JF22-15	
8	Н	JF22-20	Н	JF22-20	R	JF41-10	Н	JF22-20	
9	L	JF31-20	T	JF41-20	L	JF31-20	J	JF31-10	
10	K	JF31-15	J	JF31-10	I	JF31-05	L	JF31-20	
11	J	JF31-10	S	JF41-15	T	JF41-20	I	JF31-05	
12	Ι	JF31-05	R	JF41-10	Q	JF41-05	T	JF41-20	
13	N	JF32-10	N	JF32-10	E	JF22-05	N	JF32-10	
14	P	JF32-20	Q	JF41-05	G	JF22-15	S	JF41-15	
15	О	JF32-15	L	JF31-20	F	JF22-10	Q	JF41-05	
16	M	JF32-05	I	JF31-05	N	JF32-10	R	JF41-10	
17	R	JF41-10	О	JF32-15	X	JF42-20	О	JF32-15	
18	T	JF41-20	W	JF42-15	M	JF32-05	K	JF31-15	
19	S	JF41-15	P	JF32-20	Н	JF22-20	M	JF32-05	
20	Q	JF41-05	M	JF32-05	P	JF32-20	P	JF32-20	
21	X	JF42-20	X	JF42-20	W	JF42-15	W	JF42-15	
22	V	JF42-10	V	JF42-10	V	JF42-10	X	JF42-20	
23	W	JF42-15	K	JF31-15	О	JF32-15	V	JF42-10	
24	U	JF42-05	U	JF42-05	U	JF42-05	U	JF42-05	

1.8. Outros testes de curta duração

Além dos testes apresentados, foram conduzidos outros nos quais as entradas foram, além do vento, a temperatura e a pressão que estão disponíveis nos dados de [1]. Os resultados não foram satisfatórios, talvez por imperícia do autor deste documento, e foram suprimidos aqui.

1.9. Conclusões parciais

Dessa forma, considerando as constatações, pode-se levantar algumas hipóteses:

- 1. Quanto menor a janela de entrada, neste caso, melhor a precisão (MAPE, RMSE e NIAE);
- 2. Quanto mais neurônios na rede, neste caso, melhor a precisão;
- 3. Para janelas de entrada pequenas a previsão ingênua á mais precisa na maioria dos casos.

Em resumo, tanto do ponto de vista do coeficiente U de Theil, quanto do ponto de vista do tamanho da janela de entrada, pode-se concluir que para as previsões de vento no horizonte de uma hora a frente, uma previsão ingênua foi mais precisa que a rede neural, ou seja, nas condições de rede e treinamento descritas aqui, a rede neural não foi precisa o suficiente. É evidente que um melhor desempenho pode ser alcançado com a aplicação técnicas e redes mais desenvolvidas.

2. CASO 02 – Previsão de vento: longo prazo

Adicionalmente aos testes de curto prazo, foram conduzidos testes para previsões de longo prazo motivados pelos resultados de [5], [6] e [7]. Foram aplicados as mesmas condições teste elencadas na Tabela 1: mesma toolbox, mesmo banco de dados, e etc., porém neste caso foram incluídas as variáveis pressão e temperatura.

Nenhum deles teve resultados promissores, a Tabela 32 resume os problemas encontrados que serão comentados a seguir.

N° de Neurônios Conjunto Entrada Treino Saída **Problemas** topologias C.O. 70 dias (1680h) 2000 trainlm 7 dias 30 dias (720h) 1500 Falta de memória (I) 21 trainrp (168h)14 dias (336h) 1000 trainbr 30 dias (720h) 1000 trainlm Falta de memória 4 dias 14 dias (336h) (II) 21 500 Tempo de processamento trainrp (96h) Result. Imprecisos 10 dias (240h) 100 trainbr 21 dias (504h) 500 trainlm Falta de memória 1 dia 200 (III)21 14 dias (336h) trainrp Tempo de processamento (24h)Result. Imprecisos 7 dias (168h) 100 trainbr

Tabela 32 – Resumo dos testes de previsão de longo prazo.

O primeiro conjunto de testes teve o intuito de prever o perfil de vento de 7 dias adiante considerando 70, 30 e 14 dias anteriores. Foram considerados algumas combinações de número de neurônios e tipos de treinamento, porém todos os resultados foram os mesmos, falta de memória e travamento do computador.

No segundo conjunto houve uma redução do número de horas de entrada e saída, a tentativa de prever 4 dias adiante a partir de dados de 30, 14 e 10 dias. Dessa vez, alguns treinamentos foram completados após um período longo, porém sem boa performance, o que foi confirmado com testes com baixíssima precisão.

O terceiro conjunto, apesar da grande redução do número de horas envolvido, os resultados foram idênticos: falta de memória, longo tempo de treinamento e baixa precisão nos testes.

Em nenhum dos conjuntos de testes foi cogitado o aumento do número de neurônios (o que poderia aumentar a precisão), pois isso agravaria o problema da falta de memória. De maneira geral a aplicação da rede neural simples (toolbox feedfowardnet) para previsão de longo prazo não foi boa, talvez pela simplicidade e métodos envolvidos na solução numérica da ferramenta.

Desse ponto de vista, foram feitas tentativas empregando métodos prontos do MatLab mais direcionados à previsão com séries temporais, com redes mais elaboradas, como a ferramenta "ntstool" mostrada na Figura 74. Os mesmos problemas descritos anteriormente aconteceram nesta ferramenta, talvez por imperícia do autor.

Figura 74 – Ferramenta ntstool do MatLab para previsão de séries temporais.

De forma geral, é necessário mais horas de empenho e dedicação ao estudo das redes neurais aplicadas a previsão de series temporais para produzir bons resultados de curto e longo prazo. Mas ainda assim, é fácil notar o auspiciosa capacidade das RNAs para aplicação de previsão de series temporais.

3. Bibliografia

- [1] INMET Instituto Nacional de Meteorologia , [Online]. Available: http://www.inmet.gov.br.
- [2] D. C. Montgomery, Introduction to Time Series Analysis And Forecasting, Hoboken, New Jersey: John Wiley & Sons, Inc., 2015.
- [3] S. N. O. Barroso, *Modelo HPA para a modelagem de dados de alta frequência: aplicação à previsão horária de carga elétrica*, Rio de Janeiro: Tese de Mestrado, 2010.
- [4] H. Pereira, "High Performance Reduced Order Models for Wind Turbines with Full-Scale Converters Applied on Grid Interconnection Studies," 2014.
- [5] A. R. G. V. Finamore, "Artificial Neural Network Application in Wind Forecasting: an One-Hour-Ahead Wind Speed Prediction," *IEEE RPG (London)*, 2016.
- [6] I. Colak, "Data mining and wind power prediction: A literature review," *ELSEVIER Renewable Journal*, 2012.
- [7] A. A. Moghaddam, "Study of forecasting renewable energies in smart grids using linear predictive filters and neural networks," *IET Renewable Power Generation*, 2011.
- [8] L. Wiler, Técnicas Inteligentes: Redes Neurais Artificiais, Banco de dados, PPEE/UFJF, 2017.
- [9] MATLAB, "Correlation coefficients," 2017. [Online]. Available: https://www.mathworks.com/help/matlab/ref/corrcoef.html. [Acesso em 30 Março 2017].