Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа № 2 Синтез помехоустойчивого кода

Вариант 93

Выполнил:

Петров Вячеслав Маркович Р3108

Проверил:

Балакшин Павел Валерьевич

Кандидат технических наук, ординарный доцент факультета ПИиКТ

Содержание

Задание	3
Основные этапы вычисления	4
1. Задание 1 — №77	4
2. Задание 2 – №7	4
3. Задание 3 — №49	5
4. Задание 4 – №38	6
5. Задание 5 — №91	6
6. Задание 6 — $N_{\underline{0}}$ (77 + 7 + 49 + 38 + 91) * 4 = 1048	7
7. Задание 7 - Программа	7
8. Задание 8 – Схема декодирования классического кода Хэмминга (7, 4)	8
Заключение	10
Список использования и истонников	11

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления

1. Задание 1 – №77

Построим таблицу входных битов (Таблица 1) и таблицу соответствия синдромов и конфигураций (Таблица 2).

Таблица 1

r1	r2	i1 r3		i2	i3	i4
0	1	1	1	1	0	1

$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

Таблица 2

	1	2	3	4	5	6	7	
2 ^x	r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	<mark>i</mark> 4	S
1	X	-	X	-	X	-	X	S ₁
2	-	X	X	-	-	X	X	S ₂
4	-	-	-	X	X	X	X	S ₃

$$s = (s_1, s_2, s_3) = 111 \Rightarrow$$
 ошибка в символе i_4

Правильное сообщение: 1100

2. Задание 2 – №7

Построим таблицу входных битов (Таблица 3) и таблицу соответствия синдромов и конфигураций (Таблица 4).

Таблица 3

$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

Таблица 4

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	<u>i2</u>	i ₃	i ₄	S
1	X	-	X	-	X	-	X	S ₁
2	-	X	X	-	-	X	X	S ₂
4	-	-	-	X	X	X	X	S 3

$$s = (s_1, s_2, s_3) = 101 \Rightarrow$$
 ошибка в символе i_2

Правильное сообщение: 1100

3. Задание 3 – №49

Построим таблицу входных битов (Таблица 5) и таблицу соответствия синдромов и конфигураций (Таблица 6).

Таблица 5

r1	r2	i1	r3	i2	i3	i4
0	1	1	1	0	1	1

$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

$$s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$$

$$s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

Таблица 6

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i ₂	i ₃	i 4	S
1	X	-	X	-	X	-	X	S ₁
2	-	X	X		-	X	X	S ₂
4	-	-	-	X	X	X	X	S 3

$$s = (s_1, s_2, s_3) = 001 \Rightarrow$$
 ошибка в символе r_3

Правильное сообщение: 1011

4. Задание 4 – №38

Построим таблицу входных битов (Error! Reference source not found.) и таблицу соответствия синдромов и конфигураций (Таблица 8).

Таблица 7

r1	r2	i1	r3	i2	i3	i4
1	0	1	0	0	1	0

$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$$

Таблица 8

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r ₂	\mathbf{i}_1	r 3	i ₂	i ₃	i ₄	S
1	X	-	X		X	-	X	S ₁
2	-	X	X		-	X	X	S ₂
4	-	-	-	X	X	X	X	S 3

$$s = (s_1, s_2, s_3) = 001 \Rightarrow$$
 ошибка в символе r_3

Правильное сообщение: 1010

5. Задание 5 – №91

Построим таблицу входных битов (Таблица 9) и таблицу соответствия синдромов и конфигураций (Таблица 10).

Таблица 9

r	1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11
C)	0	1	0	1	0	1	1	0	1	1	0	1	0	1

$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 \oplus i5 \oplus i7 \oplus i9 \oplus i11 = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 0$$

$$s2 = r2 \oplus i1 \oplus i3 \oplus i4 \oplus i6 \oplus i7 \oplus i10 \oplus i11 = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

 $s3 = r3 \oplus i2 \oplus i3 \oplus i4 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 0$ $s4 = r4 \oplus i5 \oplus i6 \oplus i7 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 1$ Таблица 10

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i ₂	i ₃	i 4	r ₄	i 5	i 6	i ₇	i ₈	i 9	i ₁₀	i ₁₁	S
1	X	-	X	-	X	-	X	-	X	-	X	-	X	-	X	S ₁
2	-	X	X	-	-	X	X	-	-	X	X	-	-	X	X	S2
4	-	-	-	X	X	X	X	-	-	-	-	X	X	X	X	S ₃
8	-	-	-	-	-	-	-	X	X	X	X	X	X	X	X	S4

$$s=(s_1,\,s_2,\,s_3,\,s_4)=0101\Rightarrow$$
 ошибка в символе i_7

Правильное сообщение: 1101011<mark>1</mark>101

6. Задание 6 – №
$$(77 + 7 + 49 + 38 + 91) * 4 = 1048$$

Информационных разрядов в передаваемом сообщении: 1048

Пусть будет r проверочных разрядов. Тогда всего бит в сообщении: 2^r-1 , а информационных бит (т.е. разрядов) 2^r-r-1 . Найдем r такое, что $2^{r-1}-(r-1)-1<1048$ $\leqslant 2^r-r-1$

Подходит r = 11:

$$2^{11} - 11 - 1 = 2036 > 1048 > 1013 = 2^{10} - 10 - 1$$

Значит, коэффициент избыточности = $r / (i + r) = 11 / (1048 + 11) \approx 0,0103872$

Ответ: r = 11, коэффициент избыточности ≈ 0.0103872

7. Задание 7 - Программа

Была написана программа, которая анализирует полученное сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии, листинг программы представлен ниже (Рисунок 1).

```
code = input("Введите код, который надо проверить (7 символов): ")
d = {'r1': code[0],
     'r2': code[1],
     'i1': code[2],
     'r3': code[3],
     'i2': code[4],
     'i3': code[5],
     'i4': code[6]}
s2 = (int(d['r2']) + int(d['i1']) + int(d['i3']) + int(d['i4'])) % 2
s3 = (int(d['r3']) + int(d['i2']) + int(d['i3']) + int(d['i4'])) % 2
s = str(s3) + str(s2) + str(s1)
        print('Ошибка в символе i1')
        ans[0] = str(1 - int(ans[0]))
        print('Ошибка в символе i2')
        ans[1] = str(1 - int(ans[1]))
        print('Ощибка в символе i3')
        print('Ошибка в символе i4')
        ans[3] = str(1 - int(ans[3]))
        print('Ошибка в символе r1')
        print('Ошибка в символе r2')
        print('Ошибка в символе r3')
    print('Нет ошибок в информационных битах')
print('Правильное сообщение - ' + ''.join(ans))
```

Рисунок 1 - Код программы

8. Задание 8 — Схема декодирования классического кода Хэмминга (7, 4) Схема представлена ниже (Рисунок 2).

Рисунок 2 - Схема декодирования классического кода Хэмминга (7, 4)

Заключение

Во время выполнения лабораторной работы я узнал, что такое код Хэмминга и как с ним взаимодействовать, также поработал в Word-файле с таблицами и подсветкой текста.

Список использованных источников

- 1. Теория кодирования и теория информации: Пер. с англ. М.: Радио и связь, 1983. 176 с., ил.
- 2. Коды и устройства помехоустойчивого кодирования информации / сост. Королев А.И. – Мн.: , 2002. – c.286.