

Funkcijsko programiranje

Tema: Tipovi i klase.

17. listopada 2018.

Osnovni koncepti

Osnovni tipovi

Liste Torke

Funkcije

Kaskadne funkcije Polimorfni tipovi

Preopterećeni tipovi

Osnovne klase

Osnovni koncepti I

Definicija

Tip je kolekcija/skup međusobno povezanih vrijednosti.

• u sljedećem primjeru navodimo tipove i pripadne vrijednosti u oznaci v::T gdje je v oznaka vrijednosti, a T oznaka tipa

Primjer

False :: Bool True :: Bool

 \neg :: $Bool \rightarrow Bool$

• moguće je koristiti i oznaku e :: T gdje e označava izraz koji će se evaluirati u vrijednost tipa T

Osnovni koncepti II

Primjer

 $\begin{array}{cccc} \neg False & :: & Bool \\ \neg True & :: & Bool \\ \neg (\neg False) & :: & Bool \end{array}$

 Haskell koristi proces zaključivanja o tipovima (eng. type inference) koji se "poziva" prije evaluacije samog izraza:

Osnovni koncepti III

Primjer

$$\neg False :: Bool$$

Haskell zaključuje koristeći pravilo

$$\neg :: Bool \rightarrow Bool \quad False :: Bool$$

$$\neg False :: Bool$$

- Haskell zaključiti o tipu izraza ¬3. Zašto?
- U Haskellu zaključivanje o tipu izraza prethodi evaluaciji izraza
- Haskell izrazi su tipski sigurni
- iako se zaključivanjem o tipovima uklanja veliki broj grešaka, postoje i dalje greške koje ne možemo eliminirati, kao primjerice 1 'div' 0

Osnovni koncepti IV

Primjer

if True then 1 else False

- prethodni izraz bit će odbijen zbog zaključivanja o tipovima jer tipovi vrijednosti koje se vraćaju nisu isti u svim granama
- uočite da ovakav izraz, iako bi imao smisla, producirat će grešku, što se može smatrati nedostatkom zaključivanja o tipovima

Osnovni tipovi

Oznaka	Kratak opis	Detaljan opis
Bool	logičke vrijednosti	Tip sadrži dvije vrijednosti
		False i True
Char	pojedinačni znakovi	Tip sadrži znakove koji se
		mogu unijeti preko standard-
		nog unosa kao i kontrolne
		znakove. Treba naglasiti da je
		znakove, kao i u ostalim pro-
		gramskim jezicima, potrebno
		staviti unutar navodnika.

Osnovni tipovi

Oznaka	Kratak opis	Detaljan opis
String	znakovni nizovi	Tip sadrži sve znakovne ni-
([Char])		zove. Primjerice "abc",
		"1+2+3" kao i prazan string
		"". Znakovni nizovi moraju se
		navoditi unutar ""
Int	cijeli broj fiksne pre-	Tip sadrži cijele brojeve za
	ciznosti, $[-2^{63}, 2^{63} -$	koje je fiksirana količina me-
	1]	morije
Integer	cijeli broj proizvoljne	Tip sadrži brojeve za koje
	preciznosti	se koristi proizvoljna (ras-
		položiva) količina memorije

Osnovni tipovi

Oznaka	Kratak opis	Detaljan opis
Float, Double	brojevi s pomičnom točkom jednostruke i dvostruke preciznosti	Tip sadrži brojeve s decimal- nom točkom i koristi fiksnu količinu memorije za njihovo spremanje. Broj mjesta iza decimalne točke ovisi o fik- siranoj količini memorije za spremanje broja.

Liste

Definicija

Liste je niz elemenata istog tipa koji se stavljaju unutar zagrada i odvajaju zarezom. Tip za listu u kojoj su elementi tipa T označavamo s $\lceil T \rceil$.

Primjer

```
[False, True, False] :: [Bool] ['a', 'b', 'c', 'd'] :: [Char] ["One", "Two", "Three"] :: [String]
```

- [] je lista duljine 0, koja se zove prazna lista
- Koja je razlika između [] i [[]]?
- Koji je tip označen s [[Char]]?
- na osnovu definicije liste nemamo informacije o njezinoj duljini
- u Haskellu su dozvoljene liste beskonačne duljine što omogućava "lazy" evaluacija

Torke I

Definicija

Torka je **konačan** niz elemenata **različitih** tipova koji se stavljaju unutar oblih zagrada i odvajaju zarezom.

Primjer

- s obzirom na broj elemenata razlikujemo prazne liste, parove, uređene trojke, itd.
- nisu dozvoljene liste s jednim elementom zbog kolizije s izrazima koji koriste obične zagrade

Torke II

• ne postoji ograničenje na tip elemenata torki

Primjer

```
 \begin{array}{lll} (\mbox{`a', (False, 'b')}) & & :: & (Char, (Bool, Char)) \\ (\mbox{$[(\mbox{`a', 'b'], [False, True]})$} & :: & ([Char], [Bool]) \\ \mbox{$[(\mbox{`a', False,}), (\mbox{`b', True})]$} & :: & [(Char, Bool)] \\ \end{array}
```

 torke moraju imati konačan broj elemenata kako bi se o tipovima torki zaključivalo prije evaluacije

Funkcije I

Definicija

Funkcija je preslikavanje koje vrijednostima (argumentima) jednog tipa pridružuje rezultat drugog tipa. S $T1 \to T2$ označavamo tip funkcija koje argumentu tipa T1 pridružuju rezultat tipa T2.

Primjer

$$\neg \qquad :: \quad Bool \rightarrow Bool \\ isDigit \quad :: \quad Char \rightarrow Bool \\$$

nema ograničenja tipove

Funkcije II

Primjer

```
\begin{array}{ccc} add & :: & (Int, Int) \rightarrow Int \\ add(x,y) & = & x+y \\ zeroto & :: & Int \rightarrow [Int] \\ zeroton & = & [0..n] \end{array}
```

Tipovi i klase

- moguće je da funkcija vrati drugu funkciju kao rezultat (eng. curried function)
- na taj način mogu se zaobići funkcije koje primaju više argumenata.

Primjer

$$add'$$
 :: $Int \rightarrow (Int \rightarrow Int)$
 $add' x y = x + y$

Primjer

$$\begin{array}{lll} mult & & :: & Int \rightarrow (Int \rightarrow (Int \rightarrow Int)) \\ mult \; x \; y \; z & = & x * y * z \end{array}$$

Kaskadne funkcije II

 kaskadne funkcije mogu biti korisnije od funkcija kojima proslijeđujemo torke

Primjer

Moguće je primijeniti funkciju add^\prime na parcijalnu listu argumenata. Primjerice, pomoću funkcije add^\prime moguće je dobiti funkciju koja će povećati broj za 1:

$$add' 1 :: Int \rightarrow Int$$

- umjesto $Int \to (Int \to (Int \to Int))$ možemo koristiti $Int \to Int \to Int \to Int$
- sve funkcije koje primaju više argumenata u Haskellu su definirane kao kaskadne funkcije

Polimorfni tipovi I

- funkcija length koja vraća duljinu **bilo koje** liste trebala bi biti sljedećeg tipa: length :: $[a] \rightarrow Int$
- kažemo da je a varijabilan tip

Definicija

Tip koji sadrži jedan ili više varijabilnih tipova naziva se polimorfni tip.

Primjer

$$\begin{array}{lll} fst & :: & (a,b) \rightarrow a \\ head & :: & [a] \rightarrow a \\ take & :: & Int \rightarrow [a] \rightarrow [a] \\ zip & :: & [a] \rightarrow [b] \rightarrow [(a,b)] \\ id & :: & a \rightarrow a \end{array}$$

Preopterećeni tipovi I

- operator zbrajanja + možemo primijeniti na različite numeričke tipove
- to postižemo uvođenjem ograničenja na klasu u obliku Ca

$$(+)$$
 :: $Num\ a \Rightarrow a \rightarrow a \rightarrow a$

Definicija

Tipovi koji sadrže jedan ili više ograničenja na klasu nazivaju se **preopterećeni tipovi**, dok se funkcije, koji na njih djeluju, nazivaju **preopterećene funkcije**.

Preopterećeni tipovi II

Primjer

 $\begin{array}{lll} (-) & :: & Num \ a \Rightarrow a \rightarrow a \rightarrow a \\ (*) & :: & Num \ a \Rightarrow a \rightarrow a \rightarrow a \\ negate & :: & Num \ a \Rightarrow a \rightarrow a \\ abs & :: & Num \ a \Rightarrow a \rightarrow a \\ signum & :: & Num \ a \Rightarrow a \rightarrow a \end{array}$

- brojevi su preopterećeni tipovi
- $3::Num\ a\Rightarrow a$ znači da je za bilo koji numerički tip a, broj 3 tipa a

Osnovne klase I

Definicija

Klasa je skup tipova koji podržavaju određene preopterećene operacije koje se nazivaju **metode**.

- Eq tipovi čije se vrijednosti mogu uspoređivati prema jednakosti.
 - Metode ove klase su:

$$(==) \quad :: \quad a \to a \to Bool$$
$$(\neq) \quad :: \quad a \to a \to Bool$$

- Bool, Char, String, Int, Integer i Float su instance klase Eq, kao i liste i torke čiji su elementi tipa iz Eq klase
- funkcijski tipovi nisu u klasi Eq
- Ord tipovi iz klase Eq čije nad čijim vrijednostima se može definirati potpuni (linearni) uređaj.

Osnovne klase II

- Metode ove klase su:
 - (<) :: $a \rightarrow a \rightarrow Bool$
 - $\begin{array}{ccc} (\leq) & :: & a \rightarrow a \rightarrow Bool \\ (>) & :: & a \rightarrow a \rightarrow Bool \\ \end{array}$

 - (>) :: $a \rightarrow a \rightarrow Bool$
 - min :: $a \rightarrow a \rightarrow a$ max :: $a \rightarrow a \rightarrow a$
- Bool, Char, String, Int, Integer i Float su instance klase Ord, kao i liste i torke čiji su elementi tipa iz Ord klase
- String, liste i torke su uređene leksikografski
- leksikografski poredak $<_l$: razmotrimo dva para (a_1, b_1) i (a_2, b_2)
- Kada je $(a_1, b_1) <_l (a_2, b_2)$?
- Ako ie $a_1 <_i a_2$ ili $(a_1 = a_2 i b_1 <_i b_2)$

Osnovne klase III

Primjer

$$False < True$$
 True $min'a''b'$ 'a', "fakultet"> "faks" True $[1,2,3] < [1,2]$ False $('a',2) < ('b',1)$ True

Tipovi i klase

 Show - tipovi čije se vrijednosti mogu konvertirati u vrijednost tipa String pomoću metode:

$$show$$
 :: $a \rightarrow String$

Osnovne klase IV

 Bool, Char, String, Int, Integer i Float su instance klase Show, kao i liste i torke čiji su elementi tipa iz Show klase

Primjer

$$show \ False$$
 "False" $show \ 'a'$ "'a," $show \ [1,2,3]$ "[1,2,3]"

ullet Read - ova klasa je dualna klasi Show koja sadrži tipove čije vrijednosti možemo dobiti konverzijom stringova

$$read$$
 :: $String \rightarrow Bool$

• Bool, Char, String, Int, Integer, Float i Double su instance klase Read, kao i liste i torke čiji su elementi tipa iz Read klase

Osnovne klase V

 Num - ova klasa sadrži numeričke tipove nad čijim vrijednostima možemo provesti sljedeće operacije:

$$\begin{array}{lllll} (+) & & :: & a \rightarrow a \rightarrow a \\ (-) & & :: & a \rightarrow a \rightarrow a \\ (*) & & :: & a \rightarrow a \rightarrow a \\ (negate) & :: & a \rightarrow a \\ abs & :: & a \rightarrow a \\ signum & :: & a \rightarrow a \end{array}$$

Tipovi i klase

- ullet Int, Integer, Float i Double su instance klase Num
- ullet Integral ova klasa sadrži numeričke tipove koji su instance klase Num, a koji podržavaju operaciju cjelobrojnog djeljenja s ostatkom

$$div$$
 :: $a \rightarrow a \rightarrow a$
 mod :: $a \rightarrow a \rightarrow a$

• Int i Integer su instance klase Integral

Osnovne klase VI

• Fractional - ova klasa sadrži numeričke tipove koji su instance klase Num, koji ne podržavaju operaciju cjelobrojnog djeljenja s ostatkom već operaciju djeljenja i računanja inverza (recipročnog broja) na skupu racionalnih brojeva:

$$(/)$$
 :: $a \rightarrow a \rightarrow a$
 $recip$:: $a \rightarrow a \rightarrow a$

• Float i Double su instance klase Fractional