

Elektrotechnické materiály a výrobní procesy I

Neoficiální sbírka příkladů částí dielektrických materiálů a polovodičů

Verze: 0.7 Datum: 12. listopadu 2024

Poznámka: Nejedná sa o oficiálny výukový materiál, iba pomôcku na učenie zostavenú na základe zápiskov z cvičení. Preto neberiem žiadnu zodpovednosť za chyby v tomto dokumente. Oficiálne riešené príklady sú dostupné v skriptách

Elektrotechnické materiály a výrobní procesy 1 z roku 2019.

Príklady sa vzťahujú ku zadaniam z rokov 2023/2024 a 2024/2025, pričom zadania vyzerali byť identické. Všetky práva patria pôvodným autorom výukových materiálov.

Autor: cinanko, Štur

Vybrané konstanty

c	$2{,}998\cdot10^8$	$\rm ms^{-1}$	Rychlost světla
h	$6,626\cdot 10^{-34}$	Js	Planckova konstanta
k	$1,38 \cdot 10^{-23}$	$\rm JK^{-1}$	Boltzmannova konstanta
m_a	$9{,}109\cdot10^{-31}$	kg	Hmotnost elektronu
m_p	$1,\!672\cdot 10^{-27}$	kg	Hmotnost protonu
N_A	$6,023 \cdot 10^{-23}$	mol^{-1}	Avogadrova konstanta
n_L	$2,688 \cdot 10^{25}$	m^{-3}	Loschmidtovo číslo
q	$-1,602 \cdot 10^{-19}$	C	Náboj elektronu
ε_0	$8,854 \cdot 10^{-12}$	${\rm Fm^{-1}}$	Permitivita vakua
μ_0	$4\pi \cdot 10^{-7}$	${\rm H}{\rm m}^{-1}$	Permeabilita vakua
\overline{k}	$8,617 \cdot 10^{-5}$	$ m eVK^{-1}$	Redukovaná Boltzmannova konstanta

Vybrané vlastnosti polovodičových materiálů

Platné při teplotě $T=300\,\mathrm{K}$

Značka	Křemík	Germánium	Vlastnost
n_i	$1,45 \cdot 10^{16} \mathrm{m}^{-3}$	$2,29 \cdot 10^{19} \mathrm{m}^{-3}$	Koncentrace nosičů proudu (elektronů a děr) ve vlastním polovodiči
W_g	$1{,}11\mathrm{eV}$	$0.67\mathrm{eV}$	Šířka zakázaného pásu
μ_n	$0.135\mathrm{m^2V^{-1}s^{-1}}$	$0.39\mathrm{m^2V^{-1}s^{-1}}$	Pohyblivost elektronů
μ_p	$0.048\mathrm{m^2V^{-1}s^{-1}}$	$0.19\mathrm{m^2V^{-1}s^{-1}}$	Pohyblivost děr
N_c	$2.8 \cdot 10^{25} \mathrm{m}^{-3}$	$1,04 \cdot 10^{25} \mathrm{m}^{-3}$	Efektivní hustota stavů ve vodivostním pásu
N_v	$1.04 \cdot 10^{25} \mathrm{m}^{-3}$	$6.0 \cdot 10^{24} \mathrm{m}^{-3}$	Efektivní hustota stavů ve valenčním pásu

1 Oblast dielektrických materiálů a izolantů

1)

Elektronová polarizovatelnost α_e atomu argonu je 1,43 · 10⁻⁴⁰ F m². Určete relativní permitivitu argonu při normálních fyzikálních podmínkách.

$$\begin{aligned} &\alpha_E = 1{,}43 \cdot 10^{-40} \; \mathrm{F} \, \mathrm{m}^2 \\ &\epsilon_r = ? \end{aligned}$$

Claussius - Mossotiho rovnice (C-M):

$$\frac{\varepsilon_r - 1}{\varepsilon_r + 2} = \frac{n \cdot \alpha}{3 \cdot \varepsilon_0}$$

Argon = inertní plyn $\Rightarrow \varepsilon_r \approx 1$

$$\frac{\varepsilon_r - 1}{1 + 2} = \frac{n \cdot \alpha}{3 \cdot \varepsilon_0}$$

$$\frac{\varepsilon_r - 1}{3} = \frac{n \cdot \alpha}{3 \cdot \varepsilon_0}$$

$$\varepsilon_r = \frac{n \cdot \alpha}{\varepsilon_0} + 1$$

 $n=n_L=Loshnidtovo číslo = počet atomů v 1 <math display="inline">m^3$ plynu (pro pevné látky jde o hodnotu o 2 až 3 řády větší)

$$\varepsilon_r = \frac{n_L \cdot \alpha}{\varepsilon_0} + 1 = \frac{2,688 \cdot 10^{25} \cdot 1,43 \cdot 10^{-40}}{8,854 \cdot 10^{-12}} + 1 = 1,000434 \ [-]$$

Vysvětlivky:

 $\alpha \ = \ \mathrm{polarizovatelnost}$

 $\epsilon_0 \ = \ {
m permittivita}$ vakua (konstanta)

n = počet atomů v 1 m³ látky

Relativní permitivita ε_{rs} složeného ze dvou vzájemně nereagujících látek o permitivitách ε_{r1} a ε_{r2} se často určuje Lichteneckerovým mocninovým vztahem

$$\varepsilon_{rs}^{\ k} = V_1 \varepsilon_{r1}^{\ k} + V_2 \varepsilon_{r2}^{\ k} \tag{1.1}$$

v němž V_1 a V_2 jsou poměrné objemové podíly obou látek a k je empirická konstanta. Hodnota konstanty k se mění v rozsahu <-1;+1> podle tvaru a rozložení částic obou látek; při chaotickém uspořádání částic $k\to 0$. Ukažte, že v tomto případě přechází mocninový vztah ve vztah logaritmický:

$$\log \varepsilon_{rs} = V_1 \log \varepsilon_{r1} + V_2 \log \varepsilon_{r2} \tag{1.2}$$

$$\varepsilon_{rs}^k = V_1 \cdot \varepsilon_{r1}^k + V_2 \cdot \varepsilon_{r2}^k$$

$$\alpha^x = 1 + \underbrace{\frac{x \cdot \ln a}{1!}}_{\text{malý příspěvek, kdvž } x \to 0} + \underbrace{\frac{x^2 \cdot \ln a^2}{2!}}_{\text{in } a^2} + \dots$$

Pokud $x \to 0$:

$$a^x \doteq 1 + \frac{x \cdot \ln a}{1}$$

Na základě toho:

$$1 + \frac{k \cdot \ln \varepsilon_{rs}}{1} = V_1 \cdot \left(1 + \frac{k \cdot \ln \varepsilon_{r1}}{1}\right) + V_2 \cdot \left(1 + \frac{k \cdot \ln \varepsilon_{r2}}{1}\right)$$

 V_1 a V_2 jsou objemové podíly, dohromady tedy dají 1

$$1 + k \cdot \ln \varepsilon_{rs} = V_1 + V_1 \cdot k \cdot \ln \varepsilon_{r1} + V_2 + V_2 \cdot k \cdot \ln \varepsilon_{r2}$$

k je v každém členu, možno vykrátit

$$\cancel{k} \cdot \ln \varepsilon_{rs} = V_1 \cdot \cancel{k} \cdot \ln \varepsilon_{r1} + V_2 \cdot \cancel{k} \cdot \varepsilon_{r2}$$

$$\ln \varepsilon_{rs} = V_1 \cdot \ln \varepsilon_{r1} + V_2 \cdot \ln \varepsilon_{r2}$$

A jelikož $\ln x = 2.3 \cdot \log x$:

$$23 \cdot \log \varepsilon_{rs} = V_1 \cdot 23 \cdot \log \varepsilon_{r1} + V_2 \cdot 23 \cdot \log \varepsilon_{r2}$$

$$\log \varepsilon_{rs} = V_1 \cdot \log \varepsilon_{r1} + V_2 \cdot \log \varepsilon_{r2}$$

Vysvětlivky:

k = empirick'a konstanta

Mezi elektrodami deskového kondenzátoru o rozměrech 7x12 cm a vzdálenosti elektrod 5 mm je vložena destička z polystyrenu o tloušťce 3 mm. Zbytek prostoru mezi elektrodami je vyplněn vzduchem za normálních atmosférických podmínek. Vypočtěte kapacitu tohoto kondenzátoru, je-li relativní permitivita polystyrenu při teplotě 20 °C rovna 2,3. Jak se změní kapacita kondenzátoru, je-li celý prostor mezi elektrodami vyplněn pěnovým polystyrenem, v němž je objemový podíl polystyrenu a vzduchu stejný jako v prvém případě?

 $S=7\times 12$ cm = rozměry elektrod kondenzátoru h=5 mm = vzdálenost elektrod kondenzátoru $h_1=3$ mm = tloušťka polystyrenové destičky $\varepsilon_{r1}=2,3$ (polystyren) $\varepsilon_{r2}=1$ (vzduch)

Sériově zapojené kondenzátory (k = -1):

$$\begin{split} \varepsilon_{rs}^{-1} &= V_1 \cdot \varepsilon_{r1}^{-1} + V_2 \cdot \varepsilon_{r2}^{-1} \\ \frac{1}{\varepsilon_{rs}} &= V_1 \cdot \frac{1}{\varepsilon_{r1}} + V_2 \cdot \frac{1}{\varepsilon_{r2}} \\ \frac{1}{\varepsilon_{rs}} &= \frac{3}{5} \cdot \frac{1}{2,3} + \frac{2}{5} \cdot \frac{1}{1} \\ \frac{1}{\varepsilon_{rs}} &= 0,661 \\ \varepsilon_{rs} &= \frac{1}{\varepsilon_{rs}} \\ \varepsilon_{rs} &= 1,513 \ [-] \end{split}$$

$$C = \varepsilon_0 \cdot \varepsilon_{rs} \cdot \frac{S}{h} = 8,854 \cdot 10^{-12} \cdot 1,513 \cdot \frac{0,07 \cdot 0,12}{5 \cdot 10^{-3}} = 22,51 \text{ pF}$$

k = 0 (homogenní směs):

$$\log(\varepsilon_{rs}) = V_1 \cdot \log(\varepsilon_{r1}) + V_2 \cdot \log(\varepsilon_{r2})$$
$$\log(\varepsilon_{rs}) = \frac{3}{5} \cdot \log(2,3) + \frac{2}{5} \cdot \log(1)$$
$$\log(\varepsilon_{rs}) = 0.217$$
$$\varepsilon_{rs} = 10^{0.217} = 1.648 [-]$$

$$C = \varepsilon_0 \cdot \varepsilon_{rs} \cdot \frac{S}{h} = 8,854 \cdot 10^{-12} \cdot 1,648 \cdot \frac{0,07 \cdot 0,12}{5 \cdot 10^{-3}} = 24,51 \text{ pF}$$

Kapacita se změnila cca o 2 pF ($\approx 10 \%$).

Vysvětlivky:

 \mathbf{V}_1 a \mathbf{V}_2 jsou objemové poměry, jejich hodnota vyplývá ze zadání a nákresů.

Rezistivitu elektroizolačních kapalin ρ_v lze v závislosti na teplotě vyjádřit vztahem

$$\rho = A \cdot \exp^{\frac{B}{T}} \tag{1.3}$$

v němž $A[\Omega\,\mathrm{m}]$ a $B[\mathrm{K}]$ jsou materiálové konstanty; teplota T je udána v K. Kabelový impregnant složený z minerálního oleje s přídavkem 25 % (hmotnostních) rafinované kalafuny má při teplotě 20 °C rezistivitu $2\cdot10^{10}\,\Omega\,\mathrm{m}$. Stanovte rezistivitu tohoto impregnantu při teplotách 50 °C a 80 °C, je li součinitel B roven $7\cdot10^3\,\mathrm{K}$.

$$\rho = A \cdot e^{\frac{B}{T}}$$

 $A [\Omega m], B [K] = materiálové konstanty (neměnné s teplotou)$

 $B = 7 \cdot 10^3 \, \mathrm{K}$

 $20 \, ^{\circ}\text{C} = 293,15 \text{ K}$:

$$\rho_{20} = 2 \cdot 10^{10} \ \Omega \, \mathrm{m}$$

$$A = \frac{\rho_{20}}{e^{\frac{B}{T}}} = \frac{2 \cdot 10^{10}}{e^{\frac{7 \cdot 10^3}{293,15}}} = 0,8525 \ \Omega \,\mathrm{m}$$

 $50 \, ^{\circ}\text{C} = 323,15 \, \text{K}$:

$$\rho_{50} = A \cdot e^{\frac{B}{T}} = 0.8525 \cdot e^{\frac{7 \cdot 10^3}{323,15}} = 2.179 \cdot 10^9 \ \Omega \,\mathrm{m}$$

 $80 \, ^{\circ}\text{C} = 353,15 \, \text{K}$:

$$\rho_{80} = A \cdot e^{\frac{B}{T}} = 0.8525 \cdot e^{\frac{7 \cdot 10^3}{353.15}} = 0.346 \cdot 10^9 \ \Omega \,\mathrm{m}$$

Z výpočtu vyplývá, že s rostoucí teplotou klesá rezistivita elektroizolačních materiálů.

Měřením dynamické viskozity transformátorového oleje BTS2 na Höpplerově viskozimetru byly při několika teplotách zjištěny údaje uvedené v tabulce. Stanovte rezistivitu tohoto oleje při teplotách 50 °C a 85 °C, je li hodnota rezistivity při teplotě 20 °C rovna $3\cdot 10^{11}\,\Omega$ m. Při výpočtu předpokládejte, že při změně teploty se nemění koncentrace volných iontů v oleji.

Tabulka:

ϑ[°C]	20	40	60	80	100
$\eta [{\rm Nsm^{-2}}]$	$4,35 \cdot 10^{-2}$	$1,21\cdot 10^{-2}$	$3,95 \cdot 10^{-3}$	$1,46 \cdot 10^{-3}$	$6,01 \cdot 10^{-4}$

$$\begin{split} &\rho_{20} = 3 \cdot 10^{11} \; \Omega \, \mathrm{m} \\ &\rho_{50,85} = ? \\ &\rho = A \cdot e^{\frac{B}{T}} \\ &\eta \cdot \gamma = k \end{split}$$

Neznáme A, B, můžeme vytvořit soustavu se 2 teplotami z tabulky.

$$\frac{\eta}{\rho} = k \Rightarrow \rho = \frac{\eta}{k}$$

$$\frac{\eta_1}{k} = A \cdot e^{\frac{B}{T_1}}$$
$$\frac{\eta_2}{k} = A \cdot e^{\frac{B}{T_2}}$$

$$\ln\left(\frac{\eta_1}{k}\right) = \ln A + \frac{B}{T_1}$$

$$\ln\left(\frac{\eta_2}{k}\right) = -\ln A - \frac{B}{T_2}$$

$$\ln\left(\frac{\frac{\eta_1}{k}}{\frac{\eta_2}{k}}\right) = \frac{B}{T_1} - \frac{B}{T_2}$$

$$\ln\left(\frac{\eta_1}{\eta_2}\right) = B \cdot \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$B = \frac{\ln\left(\frac{\eta_1}{\eta_2}\right)}{\left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$$

Dosadíme z tabulky pro 20 °C a 40 °C:

$$B = \frac{\ln\left(\frac{4,35\cdot10^{-2}}{1,21\cdot10^{-2}}\right)}{\left(\frac{1}{293,15} - \frac{1}{313,15}\right)} = 5873,15 \text{ K}$$

Nalezení A:

$$\begin{split} \rho_{20} &= A \cdot e^{\frac{B}{T_{20}}} \\ 3 \cdot 10^{11} &= A \cdot e^{\frac{5873,15}{293,15}} \\ A &= \frac{3 \cdot 10^{11}}{e^{\frac{5873,15}{293,15}}} = 597,3 \; \Omega \, \mathrm{m} \end{split}$$

Nyní můžeme spočítat rezistivity stejným způsobem jako v příkladu 4.

 $50 \, ^{\circ}\text{C} = 323,15 \, \text{K}$:

$$\rho_{50} = A \cdot e^{\frac{B}{323,15}} = 597,3 \cdot e^{\frac{5873,15}{323,15}} = 46,704 \cdot 10^9 \ \Omega \,\mathrm{m}$$

 $85 \, ^{\circ}\text{C} = 358,15 \, \text{K}$:

$$\rho_{85} = A \cdot e^{\frac{B}{358,15}} = 597.3 \cdot e^{\frac{5873,15}{358,15}} = 7.907 \cdot 10^9 \ \Omega \,\mathrm{m}$$

S rostoucí teplotou se tedy snižuje viskozita a zároveň klesá rezistivita.

V obvodu střídavého elektrického proudu je zapojen kondenzátor, jehož dielektrikum vykazuje ztráty. Chování tohoto kondenzátoru lze za předpokladu, že pochody v dielektriku jsou lineární vyšetřit sledováním ekvivalentního dvouprvkového náhradního zapojení kondenzátoru s ideálním, bezztrátovým dielektrikem a odporu představujícího ztráty. Uvažujte, že kondenzátor s ideálním dielektrikem o kapacitě C_p a odpor R_p jsou v náhradním zapojení spojeny paralelně a že je na uvedenou soustavu připojeno napětí U.

Nakreslete pro tento případ fázorový diagram napětí a proudů soustavy a určete ztrátový činitel, celkovou impedanci a celkové ztráty energie v soustavě.

Paralelní náhradní zapojení:

Kondenzátor (C) - nejprve proud, potom napětí tan (tg) - protilehlá ku přilehlé

 $X_{\rm C}$ - kapacitní reaktance

Z_C - komplexní impedance

$$\tan \delta = \frac{I_R}{I_C} = \frac{\frac{\mathcal{U}}{R_p}}{\frac{\mathcal{U}}{\omega \cdot C_p}} = \frac{\frac{1}{\omega \cdot C_p}}{\frac{R_p}{1}} = \frac{1}{R_P \cdot \omega \cdot C_p} = \frac{X_c}{R_p} = \frac{1}{\omega \cdot R_p \cdot C_p}$$

$$\Rightarrow R_p = \frac{1}{\tan \delta \cdot \omega \cdot C_p}$$

$$P_z = U \cdot I_R = U \cdot \frac{U}{R_p} = \frac{U^2}{\frac{1}{\tan \delta \cdot \omega \cdot C_p}} = U^2 \cdot \tan \delta \cdot \omega \cdot C_p$$

$$Z_C = \frac{1}{j \cdot \omega \cdot C_p} \cdot \frac{j}{j} = -\frac{j}{\omega \cdot C_p}$$

$$\begin{split} Z_p &= \frac{Z_C \cdot R_p}{Z_C + R_p} = \frac{-\frac{j \cdot R_p}{\omega \cdot C_p}}{-\frac{j}{\omega \cdot C_p} + R_p} = \frac{\frac{-j \cdot R_p}{\omega \cdot C_p \cdot R_p}}{\frac{-j + \omega \cdot C_p \cdot R_p}{\omega \cdot C_p}} = \frac{j \cdot R_p}{j - \omega \cdot C_p \cdot R_p} \cdot \underbrace{\frac{j + \omega \cdot C_p \cdot R_p}{j + \omega \cdot C_p \cdot R_p}}_{\text{Cmpx sdružené číslo}} = \frac{-R_p + j \cdot \omega \cdot C_p \cdot R_p^2}{-1 - \omega^2 \cdot C_p^2 \cdot R_p^2} = \frac{R_p - j \cdot \omega \cdot C_p \cdot R_p^2}{\omega^2 \cdot C_p^2 \cdot R_p^2 + 1} \end{split}$$

Ve smyslu zadání úlohy č. C-7 uvažujte sériové zapojení odporu R_s a kondenzátoru s ideálním dielektrikem C_s . K soustavě obou prvků nechť je přiloženo napětí U. Nakreslete fázorový diagram napětí a proudů soustavy, určete ztrátový činitel, celkovou impedanci a celkové ztráty energie v soustavě.

Sériové náhradní schéma:

$$\tan \delta = \frac{U_R}{U_C} = \frac{\cancel{I} \cdot R_s}{\cancel{I} \cdot X_C} = \frac{R_s}{\frac{1}{\omega \cdot C_s}} = R_s \cdot \omega \cdot C_s$$

$$Z_s = R_s - j \cdot \frac{1}{\omega \cdot C_s}$$

$$\begin{split} P_z &= U_R \cdot I_R = (R_s \cdot I_R) \cdot I_R = R_s \cdot I_R^2 = R_s \cdot \frac{U^2}{\left| \hat{Z} \right|^2} = R_s \cdot \frac{U^2}{\left(\sqrt{R_s^2 + \left(-\frac{1}{\omega \cdot C_s} \right)^2} \right)^2} = \\ &= R_s \cdot \frac{U^2}{R_s^2 + \frac{1}{\omega^2 \cdot C^2}} = R_s \cdot \frac{U^2}{\frac{\omega^2 \cdot R_s^2 \cdot C_s^2 + 1}{\omega^2 \cdot C^2}} = \frac{U^2 \cdot \omega^2 \cdot R_s \cdot C_s^2}{\omega^2 \cdot R_s^2 \cdot C_s^2 + 1} \end{split}$$

Určete ztrátový činitel vzduchu za normálních fyzikálních podmínek a při kmitočtu 50 Hz, má-li rozhodující vliv na velikost ztrát elektrická vodivost vzduchu. Relativní permitivita vzduchu je za normálních fyzikálních podmínek rovna 1,000 584, rezistivita je za stejných podmínek $10^{16}\,\Omega\,\mathrm{m}$.

$$f = 50 \text{ Hz}$$

$$\varepsilon_r = 1{,}000584$$

$$\rho = 10^{16} \text{ } \Omega \text{ m (rezistivita vzduchu)}$$

$$\tan \delta = \frac{1}{\omega \cdot R_p \cdot C_p} = \frac{1}{2 \cdot \pi \cdot f \cdot \rho \cdot \frac{1}{16} \cdot \varepsilon_0 \cdot \varepsilon_r \cdot \frac{1}{16}} = \frac{1}{2 \cdot \pi \cdot f \cdot \rho \cdot \varepsilon_0 \cdot \varepsilon_r} = \frac{1}{2 \cdot \pi \cdot 50 \cdot 10^{16} \cdot 8,854 \cdot 10^{-12} \cdot 1,000584} = 3,59 \cdot 10^{-8} [-]$$

Komplexní permitivita ε^* dielektrika je definována vztahem $\varepsilon^* = \varepsilon' - j\varepsilon''$. V závislosti na kmitočtu lze podle Debyeho vyjádřit komplexní permitivitu rovnicí

$$\varepsilon^* = \varepsilon_\infty + \frac{\varepsilon_s - \varepsilon_\infty}{1 + j\omega\tau} \tag{1.4}$$

v níž ε_s značí relativní (statickou) permitivitu dielektrika určenou při kmitočtu $f \to 0$, ε_∞ relativní (optickou) permitivitu určenou při velmi vysokých kmitočtech; τ je relaxační doba, která je mimo jiné i funkcí teploty. **Vyjděte z obou uvedených vztahů a určete reálnou** část ε' a imaginární část ε'' komplexní permitivity.

Rozdelením rovnice (1.4) na reálnu a imaginárnu zložku dostaneme:

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + j\omega\tau} = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + j\omega\tau} \cdot \frac{1 - j\omega\tau}{1 - j\omega\tau} = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + \omega^2\tau^2} - j\frac{\omega\tau(\varepsilon_s - \varepsilon_{\infty})}{1 + \omega^2\tau^2}$$

Porovnaním s rovnicou $\varepsilon^* = \varepsilon' - j\varepsilon''$ dostávame:

$$\varepsilon' = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + \omega^2 \tau^2} = \frac{\varepsilon_s + \varepsilon_{\infty} \omega^2 \tau^2}{1 + \omega^2 \tau^2}$$
 (Reálna časť)

$$\varepsilon'' = \frac{\omega \tau(\varepsilon_s - \varepsilon_\infty)}{1 + \omega^2 \tau^2}$$
 (Imaginárna časť)

Poznámka: Tento príklad **nebol riešený vrámci cvičenia**. Je prevzatý zo skrípt (BPC-EMV skripta 2019, strana 86 č. 10) a takisto ho možno nájsť aj v prednáškach (Prednáška č. 2, strany 14 - 18).

2 Polovodičové materiály

1)

Tři vzorky příměsového polovodiče křemíku N typu jsou dotovány postupně 10^{20} , 10^{22} a 10^{24} atomy fosforu v $1\,\mathrm{m}^3$ polovodiče. Stanovte koncentrace elektronů a děr a konduktivitu těchto polovodičových materiálů při teplotě $20\,^{\circ}\mathrm{C}$ (stav plné ionizace příměsí). Vypočtěte polohu Fermiho energetické hladiny v jednotlivých vzorcích polovodičů. Polohy Fermiho hladiny v závislosti na měnící se koncentraci donorů graficky znázorněte v pásovém modelu příměsového polovodiče pro $T=300\,\mathrm{K}$.

Šířka zakázaného pásu u křemíku je $W_g=1,11\,\mathrm{eV}$, efektivní hustota stavů v pásu vodivostním je $N_C=2,8\cdot 10^{25}\,\mathrm{m}^{-3}$, efektivní hustota stavů v pásu valenčním je $N_V=1,04\cdot 10^{25}\,\mathrm{m}^{-3}$. Pohyblivost elektronů v křemíku je $\mu_n=0,135\,\mathrm{m}^2\,\mathrm{V}^{-1}\,\mathrm{s}^{-1}$ a pohyblivost děr $\mu_n=0,048\,\mathrm{m}^2\,\mathrm{V}^{-1}\,\mathrm{s}^{-1}$. Rovnovážná koncentrace elektronů a děr v křemíku je $n_i=1,45\cdot 10^{16}\,\mathrm{m}^{-3}$.

Příklad řešte pro případ příměsového polovodiče křemíku P typu dotovaného postupně 10^{19} , 10^{21} a 10^{23} atomu bóru v $1\,\mathrm{m}^3$ polovodiče.

Monokrystal křemíku je dotován atomy fosforu o koncentraci $10^{22}\,\mathrm{m}^{-3}$ a atomy boru o koncentraci $10^{21}\,\mathrm{m}^{-3}$ (kompenzovaný polovodič). Vypočítejte koncentraci elektronů a děr v polovodiči a jeho konduktivitu při $T=300\,\mathrm{K}$. Uvažujte, že při této teplotě jsou všechny příměsi ionizovány. Rovnovážná koncentrace elektronů a děr v křemíku při této teplotě je $n_i=1,45\cdot 10^{16}\,\mathrm{m}^{-3}$. Pohyblivost elektronů v křemíku je $\mu_n=0,135\,\mathrm{m}^2\,\mathrm{V}^{-1}\,\mathrm{s}^{-1}$ a pohyblivost děr $\mu_n=0,048\,\mathrm{m}^2\,\mathrm{V}^{-1}\,\mathrm{s}^{-1}$. Stanovte polohu Fermiho úrovně v tomto polovodiči při teplotě 300 K. Šířka zakázanéhov pásu u křemíku je $1,11\,\mathrm{eV}$; efektivní hustota stavů v pásu vodivostním je $N_C=2,8\cdot 10^{25}\,\mathrm{m}^{-3}$, efektivní hustota stavů v pásu valenčním je $N_V=1,04\cdot 10^{25}\,\mathrm{m}^{-3}$.

Stanovte potenciální rozdíl na PN přechodu křemíkové diody za předpokladu, že oblast přechodu je v tepelné rovnováze; koncentrace donorových příměsí je $3.5 \cdot 10^{23} \, \mathrm{m}^{-3}$, koncentrace akceptorových příměsí je $1.5 \cdot 10^{18} \, \mathrm{m}^{-3}$. Při výpočtu uvažujte teplotu $300 \, \mathrm{K}$.

Přechod mezi oblastí vodivosti typu P a N v křemíkové diodě má tvar kruhové plošky o poloměru $0.15\,\mathrm{mm}$. Vypočtěte celkový proud procházející přechodem při teplotě $300\,\mathrm{K}$, působí-li na přechodu v přímém směru vnější stejnosměrné napětí $0.1\,\mathrm{V}$. Koncentrace donorových příměsí nechť je $5\cdot10^{18}\,\mathrm{m}^{-3}$, koncentrace akceptorových příměsí $3\cdot10^{20}\,\mathrm{m}^{-3}$. Předpokládejte, že pohyblivost elektronů je $0.135\,\mathrm{m}^2\,\mathrm{V}^{-1}\,\mathrm{s}^{-1}$, pohyblivost děr je $0.048\,\mathrm{m}^2\,\mathrm{V}^{-1}\,\mathrm{s}^{-1}$ a doba života je $100\,\mathrm{\mu s}$ pro oba druhy nosičů.

Uvažujte, že vnější napětí působí na PN přechodu v závěrném směru. Jaký bude v tomto případě celkový proud procházející přechodem?

Stanovte šířku PN přechodu v křemíku, je-li koncentrace donorových příměsí $1.5 \cdot 10^{20} \,\mathrm{m}^{-3}$ a koncentrace akceptorových příměsí $3.5 \cdot 10^{17} \,\mathrm{m}^{-3}$. Relativní permitivita křemíku je 11.7. Jak se změní šířka uvedeného přechodu, působí-li na něj současně vnější stejnosměrné napětí $0.2 \,\mathrm{V}$

- a) v přímém směru
- b) v závěrném směru

Úlohu řešte pro $T = 300 \,\mathrm{K}$.

Popsaný přechod nechť má tvar kruhové plošky o poloměru $3\,\mathrm{mm}$. Stanovte kapacitu daného přechodu v nezatíženém stavu i v případě, kdy na přechodu působí v přímém nebo v závěrném směru stejnosměrné napětí o hodnotě $0.2\,\mathrm{V}$.

Vyjděte z Einsteinova universálního vztahu vyjadřujícího závislost mezi pohyblivostí nosičů nábojů a difúzním koeficientem a odvoďte rozměr difúzního koeficientu.

Stanovte číselnou hodnotu difúzního koeficientu elektronů a děr v monokrystalu křemíku při teplotě 300 K, je-li při téže teplotě pohyblivost elektronů μ_n rovna $0.135\,\mathrm{m^2\,V^{-1}\,s^{-1}}$ a pohyblivost děr μ_p rovna $0.048\,\mathrm{m^2\,V^{-1}\,s^{-1}}$.

Z prvního Fickova zákona lze pro hustotu proudu J_{dif} podmíněného difusí nosičů nábojů psát rovnici

$$J_{dif} = \pm q \ D \ grad \ n \tag{2.1}$$

v níž noznačuje koncentraci nosičů o náboji q a D je difúzní koeficient. Jaký je rozměr veličiny D?