Moore-Penrose Pseudoinverse Classical least squares problem

J. Antonio Ortega

UNAM

November 11, 2021

Consider the following equation:

$$\begin{bmatrix}
1 & 1 \\
1 & 2 \\
1 & 6
\end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 8 \end{bmatrix}$$

It can be seen as tree different subsystems:

$$\Sigma_1 := \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \implies [i, j]^T = [1, 1]^T \right\}$$

$$\Sigma_2 := \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \end{bmatrix} \implies [i, j]^T = [0.8, 1.2]^T \right\}$$

$$\Sigma_3 := \left\{ \begin{bmatrix} 1 & 2 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \end{bmatrix} \implies [i, j]^T = [0.5, 0.25]^T \right\}$$

Consider the following equation:

$$\underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 6 \end{bmatrix}}_{} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Consider the following equation:

$$\underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 6 \end{bmatrix}}_{} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Is there solution for this system?

Consider the following equation:

$$\underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 6 \end{bmatrix}}_{A} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Is there solution for this system?

There will be solution iff $b = [b_1 \ b_2 \ b_3]^T \in \mathcal{C}(A)$ column space of A i.e., b is a linear combination of the columns of A

How to solve it in the best possible way?

ightharpoonup Ax = b may have no solution

Denote a_1 and a_2 as the columns of the matrix A, thus,

$$C(A) := \{ b \in \mathbb{R}^3 | Ax = b, x \in \mathbb{R}^2 \}$$

that is, all the linear combinations of the columns of A.

There exists a unique vector on C(A) nearest to b

$$p = a_1\hat{x}_1 + a_2\hat{x}_2 = A\hat{x}$$

where p is the projection of b onto the column space!

A possible alternative $A\hat{x} = p$

Lemma: Let x be a vector and \mathcal{L} is a linear manifold in \mathbb{R}^n (i.e., if $p, q \in \mathcal{L}$, then $\alpha i + \beta j \in \mathcal{L}$ for any scalars α, β). Then if

$$b = p + e$$

where $p \in \mathcal{L}$ and $e \perp \mathcal{L}$, then p is "nearest" to b, or, in other words, it is the projection of b to the manifold \mathcal{L} .

Proof.: For any $q \in \mathcal{L}$ we have

$$||b - q||^{2} = ||p + e - q||^{2}$$

$$= ||(p - q) + e||^{2}$$

$$= ||(p - q)||^{2} + 2(p - q)^{T}e + ||e||^{2}$$

$$= ||(p - q)||^{2} + ||e||^{2}$$

$$\geq ||e||^{2}$$

A little recall

The four subspaces of lineal algebra

Theorem: Let *b* be an *n*-dimensional real vector and $A \in \mathbb{R}^{n \times m}$.

▶ 1. There is always a vector, in fact a unique vector \hat{x} of minimal (Euclidian norm), which minimizes

$$\hat{x} = argmin\left(\|b - Ax\|^2\right).$$

 \triangleright 2. The vector \hat{x} is the unique vector in the range

$$\mathcal{R}(A^T) := \{x : x = A^T b, b \in \mathbb{R}^n\}$$

which satisfies the equation

$$A\hat{x} = p$$

where p is the projection of b on $\mathcal{R}(A) = \mathcal{C}(A)$.

1. There is always a vector, in fact a unique vector \hat{x} of minimal (Euclidian norm), which minimizes

$$||b - Ax||^2$$
.

$$e \perp C(A)$$

 $b - p \perp C(A)$
 $b - A\hat{x} \perp C(A)$

$$\begin{bmatrix} a_1^T \\ a_2^T \end{bmatrix} (b - A\hat{x}) = 0$$

$$A^{T}(b-A\hat{x})=0$$

$$A^Te=0 \implies e \in \mathcal{N}(A^T)$$

$$A^T A \hat{x} = A^T b$$

Proof.: We can write

$$b = \hat{b} + \tilde{b}$$

where \hat{b} is the projection of b on the kernel (null space)

$$\mathcal{N}(A^T) := \{b \in \mathbb{R}^n | A^T b = 0\}.$$

Since $Ax \in \mathcal{R}(A)$ for any $x \in \mathbb{R}^m$, it follows that

$$\hat{b} - Ax \in \mathcal{R}(A)$$

and, since $\tilde{b} \in \mathcal{R}^{\perp}(A)$,

$$\tilde{b}\perp\hat{b}-Ax$$
, :.

$$||b - Ax||^2 = ||(\hat{b} - Ax) + \tilde{b}||^2$$

= $||\hat{b} - Ax||^2 + ||\tilde{b}||^2 \ge ||\tilde{b}||^2 = ||b - \hat{b}||^2$

 $||b - Ax||^2 \ge ||b - \hat{b}||^2$ This low bound is attainable since \hat{b} , being the range of A, is the afterimage of some x^* , that is, $\hat{b} = Ax^*$.

1. Let us show that x^* has a minimal norm.

$$x^* = \hat{x}^* + \tilde{x}^*$$

where $\hat{x}^* \in \mathcal{R}(A^{\perp})$ and $\tilde{x}^* \in \mathcal{N}(A)$.

Thus, $Ax^* = A\hat{x}$ we have $||b - Ax^*||^2 = ||b - A\hat{x}||^2$ and $||x^*||^2 \ge ||\hat{x}^*||^2$.

So, x^* may be selected equal to \hat{x}^* .

2. Show that $x^* = \hat{x}^*$ is unique. Suppose that $Ax^* = Ax^{**} = p$. Then

$$(x^* - x^{**}) \in \mathcal{R}(A^T)$$

But, $A(x^* - x^{**}) = 0$, therefore $(x^* - x^{**}) \in \mathcal{N}(A) = \mathcal{C}^{\perp}(A^{\perp})$ Thus, $(x^* - x^{**})$ is orthogonal to itself! i.e., $||x^* - x^{**}||^2 = 0 \implies x^* = x^{**}$.

Theorem: Among those vectors x, which minimize $||b - Ax||^2$, \hat{x} , the one having minimal norm, is the unique vector of the form:

$$\hat{x} = A^T y,$$

satisfying

$$A^T A \hat{x} = A^T b.$$

Therefore,

$$\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}.$$

The Moore-Penrose Pseudoinverse is defined by

$$(A^TA)^{-1}A^T$$

Ps. Try to proof that if A is *full-column rank* the square matrix is invertible.

$A^{T}A$ is invertible if it's full-column rank

Consider that

$$A^T A x = 0.$$

Thus, the column space C(A) is in the null space of A^T . But we know that $C(A) \perp \mathcal{N}(A^T)$, which implies that Ax = 0.

If A is full-column rank, the columns are linearly independient, which implies that if $Ax = 0 \implies x = 0$.

Therefore $\mathcal{N}(A^TA) = \{0\}$ which implies that A^TA is invertible.

Consider the following equation:

$$\underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 6 \end{bmatrix}}_{A} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 8 \end{bmatrix}$$

We need to minimize $||Ax - b||^2$

$$||Ax-b||^2 = (i+j-2)^2 + (i+2j-3)^2 + (i+6j-8)^2$$

$$||Ax - b||^2 = (i + j - 2)^2 + (i + 2j - 3)^2 + (i + 6j - 8)^2$$

$$\frac{\partial}{\partial i}(\|Ax - b\|^2) = 0 \implies 3i + 9j = 13$$
$$\frac{\partial}{\partial j}(\|Ax - b\|^2) = 0 \implies 9i + 41j = 56$$

$$\Sigma_m := \begin{cases} 3i + 9j = 13 \\ 9i + 41j = 56 \end{cases}$$

$$[i, j]_{\Sigma m} = [0.6905, 1.2143]$$

Do you remember the expression $A^T A \hat{x} = A^T b$

$$A^T A = \begin{bmatrix} 3 & 9 \\ 9 & 41 \end{bmatrix}$$
 and $A^T b = \begin{bmatrix} 13 & 56 \end{bmatrix}$

Consider the following equation:

$$\begin{bmatrix}
1 & 1 \\
1 & 2 \\
1 & 6
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix} = \begin{bmatrix}
2 \\
3 \\
8
\end{bmatrix}$$

So, the best possible solution of this system is:

$$Ax = b$$

$$A^{+}Ax = A^{+}b$$

$$x = A^{+}b$$

$$x = [0.6905 \quad 1.2143]^{T}$$

Example

Consider a classical least square problem, find the line that mimize the distance of all the points to the line.

We consider a line $y = \alpha x + \beta$, thus we can write the following system

$$\beta + 2\alpha = 2$$
$$\beta + 3\alpha = 4$$
$$\beta + 4\alpha = 6$$
$$\beta + 6\alpha = 5$$

