

Part 24 TEST REPORT

Product Name Smartisan T1

Model Name SM701

FCC ID 2AEUYSM701

Applicant Smartisan Technology Co., Ltd

Manufacturer Smartisan Technology Co., Ltd

Date of issue June 15, 2015

TA Technology (Shanghai) Co., Ltd.

Page 2of 36 Report No.: RXA1505-0075RF02

GENERAL SUMMARY

	FCC CFR47 Part 2 (2013) Frequency Allocations And Radio Treaty Matters; General Rules And Regulations
Deference	FCC CFR47 Part 24E (2013) Personal Communications Services
Reference Standard(s)	ANSI/TIA-603-C(2004) Land mobile FM or PM Communications Equipment Measurements and Performance Standards.
	KDB 971168 D01 Power Meas License Digital Systems v02r01 Measurement Guidance for Certification of Licensed Digital Transmitters
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 2 of this test report are below limits specified in the relevant standards. General Judgment: Pass
Comment	The test result only responds to the measured sample.

Director

Revised by

Lingling Kang

RF Manager

Performed by

Changxu Wan RF Engineer

TABLE OF CONTENT

1. G	General Information	4
1.1.	Notes of the test report	4
1.2.	Testing laboratory	5
1.3.	Applicant Information	5
1.4.	Manufacturer Information	5
1.5.	Information of EUT	6
1.6.	Test Date	7
2. Te	est Information	8
2.1.	Summary of test results	8
2.2.	RF Power Output	9
2.3.	Effective Isotropic Radiated Power	11
2.4.	Occupied Bandwidth	14
2.5.	Band Edge Compliance	20
2.6.	Frequency Stability	25
2.7.	Spurious Emissions at Antenna Terminals	27
2.8.	Radiates Spurious Emission	30
3. M	Main Test Instruments	34
ANNE	EX A: EUT Appearance and Test Setup	35
A.1	EUT Appearance	35
A.2	Test Setup	36

Report No.: RXA1505-0075RF02 Page 4of 36

1. General Information

1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. The site recognition number is 428261.

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement. The site recognition number is 8510A.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. The sample under test was selected by the Client. This report only refers to the item that has undergone the test.

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of **TA Technology (Shanghai) Co., Ltd.**

If the electronic report is inconsistent with the printed one, it should be subject to the latter.

Report No.: RXA1505-0075RF02 Page 5of 36

1.2. Testing laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.3. Applicant Information

Company: Smartisan Technology Co., Ltd

Address: 7th Floor, Motorola Building, 1 East Wangjing Road, Chaoyang District, Beijing,

100102, P.R. China

1.4. Manufacturer Information

Company: Smartisan Technology Co., Ltd

7th Floor, Motorola Building, 1 East Wangjing Road, Chaoyang District, Beijing, Address:

100102, P.R. China

Report No.: RXA1505-0075RF02 Page 6of 36

1.5. Information of EUT

General information

Product IMEI:	864516020010443				
Hardware Version:	MMR500003C				
Software Version:	V1.5.0	V1.5.0			
Antenna Type:	Internal Antenna				
Device Operating Configurations:					
Test Mode(s):	GSM1900;				
Test Modulation:	(GSM)GMSK,8PSI	K;			
GPRS Multislot Class:	12				
EGPRS Multislot Class:	12				
Maximum E.I.R.P.	GSM 1900: 28.36 dBm				
Power Supply:	Battery or Charger	(AC adaptor)			
Rated Power Supply Voltage:	3.8V				
Extreme Voltage:	Minimum: 3.4V	Maximum: 4.35V			
Extreme Temperature:	Lowest: -10°C	Highest: +55°C			
Test Channel: (Low - Middle - High)	512 - 661 - 810	(GSM 1900)			
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)		
Operating Frequency Kange(s)	GSM1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8		

Report No.: RXA1505-0075RF02 Page 7of 36

Auxiliary equipment details

AE1: Battery

Model: DC701

Capacity: 2570mAh

Manufacturer: Desay Battery Co., Ltd.

AE1: Charger

Name: Adapter Model: CD701

Voltage: 100-240V~50/60 Hz 0.3 A

Manufacture: Xiamen Salom Electronic Co., Ltd.

1.6. Test Date

The test is performed from June 20, 2015 to June 29, 2015.

Report No.: RXA1505-0075RF02 Page 8of 36

2. Test Information

2.1. Summary of test results

Number	Test Case	Clause in FCC rules	Verdict
1	RF power output	2.1046	PASS
2	Effective Isotropic Radiated power	24.232	PASS
3	Occupied Bandwidth	2.1049	PASS
4	Band Edge Compliance	24.238	PASS
5	Peak-to-Average Power Ratio	KDB 971168 D01(5.7)	PASS
6	Frequency Stability	2.1055 / 24.235	PASS
7	Spurious Emissions at Antenna Terminals	2.1051 / 24.238	PASS
8	Radiates Spurious Emission	2.1053 / 24.238	PASS

PASS: The EUT complies with the essential requirements in the standard.

FAIL: The EUT does not comply with the essential requirements in the standard.

Report No.: RXA1505-0075RF02 Page 9of 36

2.2.RF Power Output

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, The EUT is controlled by the Base Station Simulator to ensure max power transmission and proper modulation.

Test Setup

The loss between RF output port of the EUT and the input port of the tester has been taken into consideration.

Limits

No specific RF power output requirements in part 2.1046.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB.

Report No.: RXA1505-0075RF02 Page 10of 36

Test Results

		Conducted Power(dBm)			
GSM	GSM 1900		Channel 661	Channel 810	
		1850.2(MHz)	1880(MHz)	1909.8(MHz)	
GSM	Results	29.035	29.195	29.255	
	1TXslot	29.025	29.145	29.245	
GPRS	2TXslots	28.515	28.705	28.775	
(GMSK)	3TXslots	27.555	27.845	27.715	
	4TXslots	26.535	26.815	26.845	
	1TXslot	25.085	25.315	25.295	
EGPRS	2TXslots	24.555	24.805	24.775	
(GMSK)	3TXslots	23.535	23.765	23.735	
	4TXslots	22.525	22.735	22.745	

Note:

¹⁾ The maximum RF Output Power numbers are marks in bold.

²⁾The following testing in GPRS/EGPRS is set to 1TXslot based on the maximum RF Output Power.

Report No.: RXA1505-0075RF02 Page 11of 36

2.3. Effective Isotropic Radiated Power

Ambient condition

Temperature	Relative humidity
21°C ~25°C	40%~60%

Methods of Measurement

The measurement procedures in TIA- 603C are used.

- 1. The EUT was placed on a turntable with 1.5 meter height in a fully anechoic chamber.
- 2. The EUT was set at 3 meters from the receiving antenna, which was mounted on the antenna tower
- 3. GSM operating modes: Set RBW= 1MHz, VBW= 3MHz, RMS detector over burst; UMTS operating modes: Set RBW= 100 KHz, VBW= 300 KHz, RMS detector over frame, and use channel power option with bandwidth=5MHz, per section 4.0 of KDB 971168 D01.
- 4. The table was rotated 360 degrees to determine the position of the highest radiated power.
- 5. The height of the receiving antenna is adjusted to look for the maximum ERP/EIRP.
- 6. Taking the record of maximum ERP/EIRP.
- 7. A dipole antenna was substituted in place of the EUT and was driven by a signal generator.
- 8. The conducted power at the terminal of the dipole antenna is measured.
- 9. Repeat step 3 to step 5 to get the maximum ERP/EIRP of the substitution antenna.
- 10. ERP/EIRP = Ps + Et Es + Gs = Ps + Rt Rs + Gs

Ps (dBm): Input power to substitution antenna.

Gs (dBi or dBd): Substitution antenna Gain.

Et = Rt + AF

Es = Rs + AF

AF (dB/m): Receive antenna factor

Rt: The highest received signal in spectrum analyzer for EUT.

Rs: The highest received signal in spectrum analyzer for substitution antenna.

Test Setup

Report No.: RXA1505-0075RF02 Page 12of 36

Limits

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts EIRP. Peak power" and Rule Part 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage".

Limit (EIRP)	≤ 2 W (33 dBm)

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 1.19 dB

Test Results:Pass

		GSM1	1900		
		Horizontal P	olarization		
Frequency(MHz)	Rt(dBm)	Rs(dBm)	Ps(dBm)	Gs(dBi)	EIRP(dBm)
1850.2	-29.640	-53.21	0	1.92	25.49
1880	-29.669	-53.42	0	1.94	25.69
1909.8	-29.266	-53.67	0	1.90	26.3
		Vertical Po	larization		<u> </u>
Frequency(MHz)	Rt(dBm)	Rs(dBm)	Ps(dBm)	Gs(dBi)	EIRP(dBm)
1850.2	-28.058	-53.70	0	1.92	27.56
1880	-27.929	-53.91	0	1.94	27.92
1909.8	-28.092	-54.55	0	1.90	28.36
		GPRS	1900		
		Horizontal P	olarization		
Frequency(MHz)	Rt(dBm)	Rs(dBm)	Ps(dBm)	Gs(dBi)	EIRP(dBm)
1850.2	-32.230	-53.21	0	1.92	22.9
1880	-32.049	-53.42	0	1.94	23.31
1909.8	-31.576	-53.67	0	1.90	23.99
,		Vertical Po	larization		T
Frequency(MHz)	Rt(dBm)	Rs(dBm)	Ps(dBm)	Gs(dBi)	EIRP(dBm)
1850.2	-31.338	-53.70	0	1.92	24.28
1880	-31.029	-53.91	0	1.94	24.82
1909.8	-30.962	-54.55	0	1.90	25.49
		EGPRS	: 1000		

Horizontal Polarization

Report No.: RXA1505-0075RF02 Page 13of 36

Frequency(MHz)	Rt(dBm)	Rs(dBm)	Ps(dBm)	Gs(dBi)	EIRP(dBm)		
1850.2	-32.940	-53.21	0	1.92	22.19		
1880	-32.999	-53.42	0	1.94	22.36		
1909.8	-33.056	-53.67	0	1.90	22.51		
		Vertical Po	olarization				
Frequency(MHz)	Frequency(MHz) Rt(dBm) Rs(dBm) Ps(dBm) Gs(dBi) EIRP(dBm)						
1850.2	-31.668	-53.70	0	1.92	23.95		
1880	-31.619	-53.91	0	1.94	24.23		
1909.8	-31.592	-54.55	0	1.90	24.86		

Report No.: RXA1505-0075RF02 Page 14of 36

2.4. Occupied Bandwidth

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 3kHz,VBW is set to 10kHz for GSM 1900. 99% power and -26dBc occupied bandwidths are recorded. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

No specific occupied bandwidth requirements in part 2.1049.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 624Hz.

Report No.: RXA1505-0075RF02 Page 15of 36

Test Result

	Channel	Frequency (MHz)	99% Power Bandwidth (kHz)	-26dBc Bandwidth(kHz)
	512	1850.2	246.8814	308.509
GSM 1900	661	1880.0	245.5037	306.588
	810	1909.8	247.3930	313.341
	512	1850.2	245.9314	317.456
GPRS (GMSK)	661	1880.0	247.2215	308.713
(GMOR)	810	1909.8	247.4630	304.186
	512	1850.2	243.6118	311.485
EGPRS (8-PSK)	661	1880.0	249.0074	308.818
(0.014)	810	1909.8	239.6008	303.615

GSM1900 CH512 Occupied Bandwidth

GSM 1900 CH661 Occupied Bandwidth

GSM 1900 CH810 Occupied Bandwidth

GSM1900 GPRS CH512 Occupied Bandwidth

GSM 1900 GPRS CH661 Occupied Bandwidth

GSM 1900 GPRS CH810 Occupied Bandwidth

GSM1900 EGPRS CH512 Occupied Bandwidth

Report No.: RXA1505-0075RF02 Page 19of 36

GSM 1900 EGPRS CH661 Occupied Bandwidth

GSM 1900 EGPRS CH810 Occupied Bandwidth

Report No.: RXA1505-0075RF02 Page 20of 36

2.5. Band Edge Compliance

Ambient condition

Temperature	Relative humidity	Pressure			
23°C ~25°C	45%~50%	101.5kPa			

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The band edge of the lowest and highest channels were measured. The Average detector is used and RBW is set to 3kHz,VBW is set to 10kHz for GSM 1900. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB."

Limit	-13 dBm
LIIIII	- 13 dbiii

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U=0.684dB.

Report No.: RXA1505-0075RF02 Page 21of 36

Test Result:

	Carrier frequency (MHz)	Reference value (dBm)	Limit	Conclusion
GSM 1900	1850.0	-21.99	-13	PASS
GSW 1900	1910.0	-17.41	-13	PASS
GPRS	1850.0	-19.46	-13	PASS
(GMSK)	1910.0	-22.50	-13	PASS
EGPRS	1850.0	-25.46	-13	PASS
(8-PSK)	1910.0	-28.32	-13	PASS

GSM 1900 512 Channel

GSM1900 810 Channel

GSM 1900 GPRS 512 Channel

GSM1900 GPRS 810 Channel

GSM 1900 EGPRS 512 Channel

Report No.: RXA1505-0075RF02 Page 24of 36

GSM1900 EGPRS 810 Channel

Report No.: RXA1505-0075RF02 Page 25of 36

2.6. Frequency Stability

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

1. Frequency Stability (Temperature Variation)

The temperature inside the climate chamber is varied from -10°C to +60°C in 10°C step size,

- (1) With all power removed, the temperature was decreased to -10°C and permitted to stabilize for three hours.
- (2) Measure the carrier frequency with the test equipment in a "call mode". These measurements should be made within 1 minute of powering up the mobile station, to prevent significant self warming.
- (3) Repeat the above measurements at 10°C increments from -10°C to +60°C. Allow at least 1.5 hours at each temperature, un-powered, before making measurements.
- 2. Frequency Stability (Voltage Variation)

The frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery-operating end point which shall be specified by the manufacturer.

This transceiver is specified to operate with an input voltage of between 3.4 V and 4.35 V, with a nominal voltage of 3.8V.

Test setup

Report No.: RXA1505-0075RF02 Page 26of 36

Limits

No specific frequency stability requirements in part 24.235

Measurement Uncertainty

The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 3, U = 0.01ppm.

Test Result

	Test Results (ppm) / 3.8 V Power supply				
Temperature (°C)	Channel 661				
ĺ	GSM(GMSK) GPRS(GMSK)		EGPRS(8PSK)		
-10	0.026941	0.033899	0.038691		
0	0.027	0.03867	0.038479		
10	0.027399	0.038654	0.038729		
20	0.027245	0.033803	0.038186		
30	0.027207	0.03691	0.037404		
40	0.026665	0.037005	0.037766		
50	0.027016	0.032096	0.03892		
60	0.027154	0.03258	0.037894		

	Test Results(ppm) / 20°C				
Voltage (V)	Channel 661				
	GSM(GMSK) GPRS(GMSK) EGPRS		EGPRS(8PSK)		
3.4	0.027293	0.037016	0.037346		
3.8	0.027245	0.033803	0.038186		
4.35	0.026734	0.03359	0.038027		

Report No.: RXA1505-0075RF02 Page 27of 36

2.7. Spurious Emissions at Antenna Terminals

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The measurement is carried out using a spectrum analyzer. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. For GSM 1900, RBW and VBW are set to 100 kHz, RBW and VBW are set to 100 kHz for the carrier frequency, or RBW and VBW are set to 1MHz(other frequency), Sweep is set to ATUO.

Of those disturbances below (limit – 20 dB), the mark is not required for the EUT.

Test setup

Limits

Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB."

Limit	-13 dBm
-------	---------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-18GHz	1.407 dB

Report No.: RXA1505-0075RF02 Page 28of 36

Test Result

GSM 1900 CH 512

Note: The signal beyond the limit is carrier. GSM 1900 512 Channel 30MHz~18GHz

GSM 1900 CH 661

Note: The signal beyond the limit is carrier. GSM 1900 661 Channel 30MHz~18GHz

Report No.: RXA1505-0075RF02 Page 29of 36

GSM 1900 CH 810

Note: The signal beyond the limit is carrier. GSM 1900 810 Channel 30MHz~18GHz

Report No.: RXA1505-0075RF02 Page 30of 36

2.8. Radiates Spurious Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The measurements procedures in TIA -603C are used.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment.

. The procedure of Radiates Spurious Emission is as follows:

Step 1:

The measurement is carried out in the semi-anechoic chamber. EUT was placed on a 1.5 meters high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used while RBW and VBW are both set to 3MHz. During the measurement, the highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna moved up and down over a range from 1 to 4 meters in both horizontally and vertically polarized orientations. The test setup refers to figure below.

Step 2:

A dipole antenna shall be substituted in place of the EUT. The antenna will be driven by a signal generator with a adjustable S.G. applied through a Tx cable. Adjust the level of the signal generator output until the value of the receiver reach the previously recorded analyzer power level (LVL). Then The E.R.P. /E.I.R.P. of the EUT can be calculated through the level of the signal generator, Tx cable loss and the gain of the substitution antenna. The test setup refers to figure below.

Report No.: RXA1505-0075RF02 Page 31of 36

E.R.P (peak power) =S.G. - Tx Cable loss + Substitution antenna gain – 2.15. EIRP= E.R.P+2.15

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization(horizontal and vertical), The worst emission was found in position (Z axis, vertical polarization) and the worst case was recorded.

Of those disturbances below (limit – 20 dB), the mark is not required for the EUT.

Limits

Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB."

Limit	-13 dBm

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

Report No.: RXA1505-0075RF02 Page 32of 36

Test Result

GSM 1900 CH 512

Harmonic	TX ch.512 Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	3700.4	-54.33	2	10.15	V	-48.33	-13	35.33	180
3	5550.4	-49.19	2.51	11.35	V	-42.50	-13	29.50	45
4	7400.8	-60.30	4.2	10.85	V	-55.80	-13	42.80	90
5	9251	-58.25	5.2	11.35	V	-54.25	-13	41.25	180
6	11101.2	-58.00	5.5	11.95	V	-53.70	-13	40.70	270
7	12951.4	-60.50	5.7	13.55	V	-54.80	-13	41.80	0
8	14801.6	-54.79	6.3	13.75	V	-49.49	-13	36.49	180
9	16651.8	-45.72	6.8	13.85	V	-40.82	-13	27.82	90
10	18502	-43.34	6.9	14.25	V	-38.14	-13	25.14	0

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is vertical position.

GSM 1900 CH 661

Harmonic	TX ch.661 Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	3760	-56.46	2	10.75	V	-49.86	-13	36.86	0
3	5640	-49.03	2.51	11.05	V	-42.64	-13	29.64	45
4	7520	-58.56	4.2	11.15	V	-53.76	-13	40.76	180
5	9400	-60.62	5.2	11.15	V	-56.82	-13	43.82	270
6	11280	-58.89	5.5	11.95	V	-54.59	-13	41.59	0
7	13160	-56.89	5.7	13.55	V	-51.19	-13	38.19	180
8	15040	-53.24	6.3	13.75	V	-47.94	-13	34.94	90
9	16920	-44.48	6.8	13.85	V	-39.58	-13	26.58	0
10	18800	-42.30	6.9	14.25	V	-37.10	-13	24.10	270

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is vertical position.

Report No.: RXA1505-0075RF02 Page 33of 36

GSM 1900 CH 810

Harmonic	TX ch.810 Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	3819.6	-56.43	2	10.15	V	-50.43	-13	37.43	180
3	5729.4	-47.77	2.51	11.05	V	-41.38	-13	28.38	90
4	7639.2	-60.22	4.2	11.15	V	-55.42	-13	42.42	0
5	9549	-60.60	5.2	11.15	V	-56.80	-13	43.80	180
6	11458.8	-59.97	5.5	11.95	V	-55.67	-13	42.67	90
7	13368.6	-58.37	5.7	13.55	V	-52.67	-13	39.67	0
8	15278.4	-52.24	6.3	13.75	V	-46.94	-13	33.94	90
9	17188.2	-47.90	6.8	13.85	V	-43.00	-13	30.00	0
10	19098	-43.22	6.9	14.25	V	-38.02	-13	25.02	0

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

^{2.} The worst emission was found in the antenna is vertical position.

Report No.: RXA1505-0075RF02 Page 34of 36

3. Main Test Instruments

					0		
No.	Name	Туре	Manufacturer	Serial Number	Calibration	Expiration	Valid
		71			Date	Time	Period
01	Base Station	CMU200	R&S	118133	2015-03-26	2016-03-25	1 year
	Simulator	0111/ 055					
02	Power Splitter	SHX-GF2 -2-13	Hua Xiang	10120101	NA	NA	NA
	Spectrum	E 4 4 4 E A	A . 11 (ND/40404440	0045 00 00	2012 22 25	
03	Analyzer E4445A		Agilent	MY46181146	2015-03-26	2016-03-25	1 year
	Universal Radio						
04	Communication	E5515C	Agilent	MY48367192	2015-03-26	2016-03-25	1 year
	Tester						
05	Signal Analyzer	FSV30	R&S	100815	2015-03-26	2016-03-25	1 year
00	Signal	SMB	Dec	102594	2015-03-26	2016-03-25	1 year
06	generator	100A	R&S				
07	EMI Test	ESCI	R&S	100948	2015-03-26	2016-03-25	1 year
	Receiver	LOCI			2010-00-20		
08	Trilog Antenna	VUBL	SCHWARZBE	9163-201	2015-03-19	2018-03-18	3 years
		9163	CK	9103-201			
09	Trilog Antenna	VUBL	SCHWARZBE	9163-391	2015-03-19	2018-03-18	3 years
		9163	CK	9103-391			
10	Horn Antenna	HF907	R&S	100126	2015-03-01	2018-02-30	3 years
11	Horn Antenna	HF907	R&S	100125	2015-03-01	2018-02-30	3 years
12	Climatic	PT-30B	Re Ce	20101891	2014-09-01	2017-08-31	3 years
	Chamber						
13	Horn Antenna	3160-09	ETS-Lindgren	00102643	2015-03-17	2018-03-16	3 years
14	Horn Antenna	3160-09	ETS-Lindgren	00102644	2015-03-17	2018-03-16	3 years
15	RF Cable	SMA 15cm	Agilent	0001	2015-06-07	2015-08-06	Two months

*****END OF REPORT *****

Report No.: RXA1505-0075RF02 Page 35of 36

ANNEX A: EUT Appearance and Test Setup

A.1 EUT Appearance

EUT
Picture 1 EUT

Report No.: RXA1505-0075RF02 Page 36of 36

A.2 Test Setup

Picture 2: Radiated Spurious Emissions Test setup