

Task 2: Tree Cutting

Lugh Tuatha Dé is the world's finest assasin, whom is in love with Dia Viekone. Lugh is eager to flex his financial muscle in a bid to win over Dia's heart. Lugh plans to buy an entire acre of land, carve out the shape of a **tree** with N vertices, and propose to Dia in front of it.

There is one problem. *Lugh* has one particular request, that **exactly** 1 edge of the tree be removed and 1 new edge added such that the **longest** path is maximised. Can you help *Lugh* impress the love of his life?

Input

Your Program must read from standard input.

The first line contains an integer, N, the number of vertices.

In the next N-1 lines, each line contains 2 distinct integers u and v, representing an edge in the tree.

Output

Your program must print to standard output.

The output should contain a single integer on a single line, the new longest path.

Subtasks

The maximum execution time on each instance is 1.0s. For all testcases, the input will satisfy the following bounds:

- 1 < N < 300 000
- $1 \le u, v \le N$

Your program will be tested on input instances that satisfy the following restrictions:

Subtask	Marks	Additional Constraints
1	5	$N \le 10$
2	10	$N \le 100$
3	10	$N \le 3000$
4	20	$N \leq 300000$, there is at most one vertex with degree ≥ 3
5	55	-

Sample Testcase 1

This testcase is valid for all subtasks.

Input	Output
4	3
1 2	
1 3	
3 4	

Sample Testcase 1 Explanation

No matter which edge we choose to remove, we cannot increase the longest path on the tree beyond 3.

Sample Testcase 2

This testcase is valid for all subtasks

Input	Output
6	5
1 2	
2 3	
2 5	
4 5	
5 6	

Sample Testcase 2 Explanation

We can remove edge 2-5, this splits the tree into 2 components containing:

- 1. Vertices 1, 2 and 3
- 2. Vertices 4, 5 and 6

Next, we can add a new edge 3-4, the longest path will now be 1-2-3-4-5-6 with a length of 5.