Math 3607

# Final Exam

- · Written: 04/26 (T) 12:00 ~ 04/29 (F) 23:59 (Gradescope)
- · Quiz: Entire Friday (3 attempts; 1 hour each) (Carmen)

Lecture 38 Review for Final Exam

Eigenvalue Decomposition A & Rnxn (square)

. Greneral: 
$$AV = VD \leftarrow A\vec{v}_j = \lambda_j \vec{v}_j$$
 for  $j = 1, ..., n$ 

 $D = \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_1 \end{bmatrix}$ 

- EVD:  $A = VDV^{-1}$  (when V is invertible)
  - · Useful in Studying matrix powers

$$A_{k} = (ADA_{1})(ADA_{2}) \cdots (ADA_{n})$$

forward wash (Recursively defined sequences form such as Fibonacci or Pell numbers.)

Singular Value Decomposition  $A \in \mathbb{C}^{m \times n}$  (m > n).  $A = U \sum \sqrt{*} = conjugate transpose (or Hermitian)$ 

· U\*U = UU\* = Fmm, V unitary
i.e. U'= U\*

Thin SVD

 $=(v^*)^* z^* v^*$ 

A = UZV\* · V\*V = VV\* = Inxn i.e. V-1 = V\* analytical properties (2-norm) pseudo inverse. · Useful in studying AT, AH, At, ...  $A^* = (U \Sigma V^*)^*$  $= \bigvee \sum^{T} \bigcup^{*}$ 

· Low-rank approx. : Image Compression

Root finding 
$$f(r) = 0$$

Convergence (series andysis)
$$\mathcal{E}_{k+1} \approx C \varepsilon_k^{\dagger}$$

HW9: #54)

· Multidimensional Newton's method

color) 
$$\lambda_{kH} = \lambda_k - \frac{f(\lambda_k)}{f'(\lambda_k)}$$

(Vector)  $\vec{X}_{k+1} = \vec{X}_k - \left[ \vec{J}(\vec{X}_k) \right] \vec{f}(\vec{X}_k)$ 

· Lambert's W function

$$y = \nu e^{\lambda} \iff \lambda = W(y)$$

| - HW9 #3 | · Week 11 Supp.

# Piecevise pulynomial interpolation and numerical differentiation

· See Supplementary Resources for practice problems

\* Optimal step size

\* Richardson extrapolation

#### Airplane Velocity

The radar stations A and B, separated by the distance a=500 m, track a plane C by recording the angles  $\alpha$  and  $\beta$  at one-second intervals. Your goal, back at air traffic control, is to determine the speed of the plane.



### Data from radar stations

|         |                  |       | Conversion                                  |          |           |                |
|---------|------------------|-------|---------------------------------------------|----------|-----------|----------------|
| time(s) | d(°)             | P(°)  | $\longrightarrow\hspace{-0.5cm}\rightarrow$ | time (s) | 1 (m)     | y (m)          |
| 0.00    | d,               | Bi    | z= d tang                                   | 0.00     | 1/        | y,             |
| 0.01    | d <sub>2</sub>   | β2    | tang-tand                                   | 0.01     | 72        | y2             |
| 0.02    | d3               | B>    | /                                           | 0.02     | <b>43</b> | y <sub>3</sub> |
| 6.03    | 04               | Ba    | v =                                         | · ·      | ,         | ,              |
| Š       | 3                | }     | đ                                           | Č        |           |                |
| 1.00    | ط <sub>اها</sub> | f (01 |                                             | 1.00     | X101      | y 101          |

