

CZ2003 Computer Graphics and Visualization

Lab 5: Morphing

ACHARYA ATUL

U1923502C

SSP1

Defining the Required Shapes

Defining two shapes for the following morphing experiment:

Number in attendance list: 1

Numeric part of Lab Group: 1

Therefore, the required shapes are:

- Formula 1:
- Formula 2:

Formula 1	Formula 2
The first shape to be defined is formula 1. It can be found in the file "Lab_5_Formula_1.wrl".	The first shape to be defined is formula 1. It can be found in the file "Lab_5_Formula_2.wrl".
The definition of the shape is:	The definition of the shape is:
$x = 1.6(\cos(\phi))^3$ $y = 1.6(\cos(\theta)\sin(\phi))^3$ $z = 1.6\sin(\theta)\sin(\phi)$	$x = 1.5acos(\theta)$ $y = 1.5asin(\theta)cos(\theta)$ $z = 1.5a(sin(2a\pi))^5$
where 0≤θ≤2π and 0≤φ≤π	where 0≤θ≤2π and 0≤a≤1
By modifying the parameters so that they are in the same range, we get:	By modifying the parameters so that they are in the same range, we get:
x = 1.6(cos(π v)) ³ y = 1.6(cos(2π u) sin(π v)) ³ z = 1.6sin(2π u) sin(π v)	$x = 1.5v\cos(2\pi u)$ $y = 1.5v\sin(2\pi u)\cos(2\pi u)$ $z = 1.5v(\sin(2\pi v))^5$
where 0≤u≤1 and 0≤v≤1	where 0≤u≤1 and 0≤v≤1

Sampling Resolution [50 50]

Below is a snapshot of the file "Lab_5_Formula_1.wrl":

Associated Wireframe:

Sampling Resolution [50 50]

Below is a snapshot of the file "Lab_5_Formula_2.wrl":

Associated Wireframe

Implementing Morphing of Formula 1 to Formula 2

The morphing is implemented as follows:

```
x_1 = 1.6(\cos(\pi v))^3

x_2 = 1.5v\cos(2\pi u)

x = x_1 + t(x_2-x_1)

y_1 = 1.6(\cos(2\pi u)\sin(\pi v))^3

y_2 = 1.5v\sin(2\pi u)\cos(2\pi u)

y = y_1 + t(y_2-y_1)

z_1 = 1.6\sin(2\pi u)\sin(\pi v)

z_2 = 1.5v(\sin(2\pi v))^5

z = z_1 + t(z_2-z_1)
```

The range of t is from [0 1]. But internally it is mapped to a period of 7 seconds. That is, Shape 1 morphs into shape 2 in 7 Seconds.

Domain: [0 1 0 1]

Resolution: [50 50]

Colour:

 $r = fabs(sin(4\pi t))$

g = t

b = 1 - t

Below is a snapshot of "Morphing.wrl":

Below is the associated wireframe:

