3адача 1. В цепи, показанной на рис. 1, рассчитать закон изменения напряжения $u_{\text{\tiny obst}}(t)$. Построить график.

$$E=10~B,\quad R_{_{1}}=R_{_{3}}=6~\kappa O \text{M},\quad R_{_{2}}=4~\kappa O \text{M},~C=0.01~\text{MkV}.$$

<u>Задача 2</u>. Рассчитать ток в резисторе $R_{_3}$ после замыкания ключа. Построить график. $E=50B, R_{_1}=400~Om, R_{_2}=300~Om, R_{_3}=600~Om, L=0,2~\Gamma \mu$.

Задача 1. Записать комплексную амплитуду гармонического напряжения

$$u(t) = 120\sqrt{2}\cos(\omega t + 45^{\circ}).$$

Задача 2. Определить активное и реактивное сопротивления двухполюсной цепи, если $i(t) = 5\sin(\omega t + 30^{\circ})$ A, $u(t) = 150\sin(\omega t + 60^{\circ})$ B.

Задача 3. Вычислить комплексное сопротивление Z_{9} , если $R_{1}=80\,$ Ом, $R_{2}=60\,$ Ом, $X_{C}=50\,$ Ом, $X_{L}=60\,$ Ом.

Задача 4. Построить векторную диаграмму для схемы, показанной на рис. 1.

Задача 5. Определить значение сопротивления X_L , при котором в цепи, показанной на рис. 2, наступает резонанс, если R=80 Ом, $X_C=50$ Ом.

