Politecnico di Milano Scuola di Ingegneria Industriale e dell'Informazione

APPLIED STATISTICS February 15th, 2023

©All rights reserved. Note: data may be simulated and should not be used outside the scope of the present exam.

Problem n.1

The file ElectronicSales.txt contains data regarding 30 electronic stores, identified with the variable store_id, located in Switzerland. For each store, we have data on:

- Whether it is located within a metropolitan area ($metro_area \in \{0, 1\}$);
- The total floor area of the store in m^2 (size $\in \mathbb{R}^+$);
- The quarterly sales revenue for 2023 (identified with the variables sales $\in \mathbb{R}^+$ and quarter $\in \{1, 2, 3, 4\}$).

Additionally, we have baseline information for the fourth quarter of 2022, including the initial sales revenue (sales0 $\in \mathbb{R}^+$) and a measure of customer satisfaction (satisfaction $\in \{0,1\}$).

a) Implement the following linear regression model M0:

```
\mathtt{sales} = \beta_0 + \beta_{1,q} + \beta_2 \, \mathtt{sales0} + \beta_{3,q} \, \mathtt{satisfaction} + \beta_4 \, \mathtt{metro\_area} + \beta_5 \, \mathtt{size} + \epsilon \,, \quad \epsilon \sim \mathcal{N}(0,\sigma^2) \, \, \mathrm{i.i.d.}, \quad (\mathbf{M0}) \, \mathrm{i.i.d.}
```

for every quarter $q \in \{1, 2, 3, 4\}$.

Briefly detail the implementation choices for **M0** reporting also the relevant R code. Report the estimates of β_0 and β_5 , the standard deviation σ of the error term and the AIC.

- b) Analyze the standardized residuals. Plot the residuals versus the fitted values and comment the plot. Visualize the conditional distribution of the residuals given quarter and comment it.
 - In your opinion, what factors or aspects of the problem does M0 fail to consider?
- c) Implement a model M1 in which the error term for store i and quarter q is $\epsilon_{i,q} \sim \mathcal{N}(0, \sigma^2 |\mu_{i,q}|^{2\delta})$ distributed where $\mu_{i,q}$ is the mean value of sales.
 - Briefly detail the implementation choices for M1 reporting also the relevant R code. Report the estimates of β_0 , δ , σ and the AIC of M1.
- d) What is the criticality when estimating the parameters in this group?
- e) Implement now a model **M2** with VarPower() variance function in the $<\delta>$ -group, stratifying by metro_area (assume $\delta = [\delta_0, \delta_1]$ with δ_0 if metro_area = 0 and δ_1 if metro_area = 1).
 - Briefly detail the implementation choices for M2 reporting also the relevant R code. Report δ_0 and δ_1 ; interpret their values. Is there statistical evidence to assume $\delta_0 \neq \delta_1$?
- f) Implement a model M3 with the same within-group heteroscedasticity structure of M2, but with general correlation matrix for residual errors. Estimate the unknown parameters in the correlation matrix, reporting also the relevant R code, and the standard deviation σ of the error term.

What is the best model among M1, M2 and M3?

Upload your solution https://forms.office.com/e/qhvhfeM41W