

Compilation Principle 编译原理

第9讲: 语法分析(6)

张献伟

xianweiz.github.io

DCS290, 03/30/2021

Review Questions (1)

What does LR(k) mean?

L: scan the input from left to right

R: construct a rightmost derivation in reverse

k: use k input symbols of lookahead

What are the parts of a LR parser?
 Input buffer, stack, parse table, driver

What are held in the stack of a LR parser?

A sequence of states, and each has an associated grammar symbol

- The LR parsing table is split into two, what are they?
 Action table for terminals, Goto table for non-terminals
- What are the possible actions in Action table?
 Shift, reduce, accept, error

Review Questions (2)

- Action table entries can be si and rj, what are i and j?
 si: shift the input symbol and move to state I
 rj: reduce by production numbered j
- Item/Configuration: what does A → XYZ· mean?

We have seen the body XYZ and it is time to reduce XYZ to A

• State: why we put the items into a configuration set?

We hope to see one symbol in First(Y)

$$Y \rightarrow u \mid w$$
 $A \rightarrow X \cdot YZ$
 $Y \rightarrow \cdot u$

 $Y \rightarrow \cdot w$

What is augmented grammar?

Add one extra rule $S' \rightarrow S$ to guarantee only one 'acc' in the table

- What are the possible items of $S' \rightarrow S$?
 - $S' \rightarrow .S$: initial item, haven't seen any input symbol
 - $S' \rightarrow S$: accept item, have reduced the input string to start symbol

Example

(0	$S' \rightarrow S$	(1) $S \rightarrow BB$	(2) B \rightarrow aB	(3) $B \rightarrow b$	
Initial iter	n	$S \rightarrow \cdot BB$	B → ·aB		D 1 11
	$S' \rightarrow \cdot S$	$S \rightarrow B \cdot B$	$B \rightarrow a \cdot B$	$B o \cdot b$	Reduce item
	$S' \rightarrow S$	$S o BB \cdot$	B → aB·	$B o b \cdot$	

Accept item

- Closure: the action of adding equivalent items to a set
 - Example: $S' \rightarrow \cdot S$ $S \rightarrow \cdot BB$
- B → ·aB

- $B \rightarrow b$
- Intuitively, $A \rightarrow \alpha \cdot B\beta$ means that we might next see a substring derivable from Bβ (sub) as input. The sub will have a prefix derivable from B by applying one of the Bproductions.
 - Thus, we add items for all the B-productions, i.e., if B \rightarrow γ is a production, we add B $\rightarrow \gamma$ in the closure

Example

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Example (cont.)

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION	GOTO		
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s 4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

CLOSURE()[闭包]

- Closure of item sets: if I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:
 - Initially, add every item in I to CLOSURE(I)
 - If $A \to \alpha \cdot B\beta$ is in *CLOSURE(I)* and $B \to \gamma$ is a production, then add item $B \to \gamma$ to *CLOSURE(I)*, if it is not already there
 - Apply this rule until no more new items can be added to CLOSURE(I)

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

GOTO()[跳转]

- GOTO(I, X): returns state (set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items $[A \rightarrow \alpha X \cdot \beta]$ such that $[A \rightarrow \alpha \cdot X\beta]$ is in I
 - Used to define the transitions in the LR(0) automaton
 - \Box The states of the automaton correspond to sets of items, and GOTO(I, X) specifies the transition from the state for I under input X

Grammar:

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

12:

$$S \rightarrow B \cdot B$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

Construct LR(0) States

- Create augmented grammar G' for G
 - Given G: S $\rightarrow \alpha \mid \beta$, create G': S' \rightarrow S S $\rightarrow \alpha \mid \beta$
 - Creates a single rule $S' \rightarrow S$ that when reduced, signals acceptance
- Create 1st state by performing a closure on initial item $S' \rightarrow S$
 - Closure(I): creates state from an initial set of items I
 - Closure($\{S' \rightarrow \cdot S\}$) = $\{S' \rightarrow \cdot S, S \rightarrow \cdot \alpha, S \rightarrow \cdot \beta\}$
- Create additional states by performing a goto on each symbol
 - Goto(I, X): creates state that can be reached from I by advancing X
 - If α was single symbol, the following new state would be created:

```
Goto(\{S' \rightarrow \cdot S, S \rightarrow \cdot \alpha, S \rightarrow \cdot \beta\}, \alpha) = Closure(\{S \rightarrow \alpha \cdot \}) = \{S \rightarrow \alpha \cdot \}
```

 Repeatedly perform gotos until there are no more states to add

Construct DFA

- Compute canonical LR(0) collection[规范LR(0)项集族, C], i.e., set of all states in DFA
 - One collection of sets of LR(0) items provides the basis for constructing a DFA that is used to make parsing decisions
 - Such an automaton is called an LR(0) automaton
 - Each state of the LR(0) automaton represents a set of items in the C
- All new states are added through goto(I, X)
 - State transitions are done on symbol X

LR(0) Automaton[自动机]

- The LR(0) automaton: each time we perform a shift we are following a transition to a new state
 - States: the sets of items in C
 - Start state: CLOSURE($\{[S' \rightarrow \cdot S]\}$)
 - \Box State j refers to the state corresponding to the set of items I_i
 - Transitions are given by the GOTO function

- How can the automaton help with shift-reduce decisions?
 - Suppose that the string γ of grammar symbols takes the LR(0) automaton from the start state 0 to some state j
 - Then, shift on next input symbol a if state j has a transition on a
 - Otherwise, we choose to reduce
 - □ The items in state j tell us which production to use

The Example

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- $(3) B \rightarrow b$
- S_0 = Closure($\{S' \rightarrow .S\}$) = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) S₂ = $\{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({B \rightarrow a.B}) S₃ = {B \rightarrow a.B, B \rightarrow .aB, B \rightarrow .b}
- Goto(S₀, b) = closure({B \rightarrow b.}) S₄ = {B \rightarrow b.}

Build Parse Table from DFA

- ACTION [state, terminal symbol]
- GOTO [state, non-terminal symbol]
- ACTION:
 - If $[A \rightarrow \alpha \cdot a\beta]$ is in S_i and goto $(S_i, a) = S_j$, where "a" is a terminal then ACTION $[S_i, a] = \text{shift } j$ (sj)
 - If [A→α·] is in S_i and A→α is rule number j then ACTION[S_i, a] = reduce j (rj)
 - If $[S' \rightarrow S_0]$ is in S_i then ACTION $[S_i, $]$ = accept
 - If no conflicts among 'shift' and 'reduce' (the first two 'if's)
 then this parser is able to parse the given grammar
- GOTO
 - if $goto(S_i, A) = S_i$ then $GOTO[S_i, A] = j$
- All entries not filled are rejects

The Example

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata		ACTION	GOTO		
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

LR(0) Parsing

Construct LR(0) automaton from the Grammar

- Idea: assume
 - Input buffer contains α
 - Next input is t
 - DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
 - s contains item $X \rightarrow \beta$.
- Shift if
 - s contains item $X \rightarrow \beta \cdot t\omega$
 - Equivalent to saying s has a transition labeled t

LR(0) Parsing (cont.)

- The parser must be able to determine what action to take in each state without looking at any further input symbols
 - i.e. by only considering what the parsing stack contains so far
 - This is the '0' in the parser name
- In an LR(0) table, each state must only shift or reduce
 - Thus an LR(0) configurating set can only have exactly one reduce item
 - cannot have both shift and reduce items
 - E.g., if the grammar contains the production $A \rightarrow \epsilon$, then the item $A \rightarrow \cdot \epsilon$ will create a shift reduce conflict if there is any other nonnull production for A
 - ε-rules are fairly common programming language grammars

LR(0) Conflicts

- LR(0) has a reduce/reduce conflict if:
 - Any state has two reduce items:
 - $-X \rightarrow \beta \cdot \text{ and } Y \rightarrow \omega \cdot$
- LR(0) has a shift/reduce conflict if:
 - Any state has a reduce item and a shift item:
 - $X \rightarrow \beta \cdot \text{ and } Y \rightarrow \omega \cdot t\sigma$

LR(0) Summary

- LR(0) is the simplest LR parsing
 - Table-driven shift-reduce parser
 - Action table[s, a] + Goto table[s, X]
 - Weakest, not used much in practice
 - Parses without using any lookahead

- Adding just one token of lookahead vastly increases the parsing power
 - -LR(1)
 - SLR(1)
 - LALR(1)

SLR(1) Parsing

- LR(0) conflicts are generally caused by reduce actions
 - If the item is complete, the parser must choose to reduce
 - Is this always appropriate?
 - The next upcoming token may tells us something different
 - What tokens may tell the reduction is not appropriate?
 - Perhaps Follow(A) could be useful here

• **SLR** = Simple LR

- Use the same LR(0) configurating sets and have the same table structure and parser operation
- The difference comes in assigning table actions
 - Use one token of lookahead to help arbitrate among the conflicts
 - Reduce only if the next input token is a member of the follow set of the nonterminal being reduced

SLR(1) Parsing (cont.)

- In the SLR(1) parser, it is allowable for there to be both shift and reduce items in the same state as well as multiple reduce items
 - The SLR(1) parser will be able to determine which action to take as long as the follow sets are disjoint.

Example

- First two LR(0) configurating sets entered if id is the first token of the input
 - LR(0) parser: the set on the right side has a shift-reduce conflict
 - SLR(1) parser:
 - Compute Follow(T) = { +,),], \$ }, i.e., only reduce on those tokens
 - Follow(T) = Follow(E) = {+,),], \$}
 - The input [will shift and there is no conflict

Example (cont.)

- The first two LR(0) configurating sets entered if id is the first token of the input
 - LR(0) parser: the right set has a reduce-reduce conflict
 - SLR(1) parser:
 - Capable to distinguish which reduction to apply depending on the next input token
 - \blacksquare Compute Follow(T) = { +,), \$ } and Follow(V) = { = }

SLR(1) Grammars

- A grammar is SLR(1) if the following two conditions hold for each configurating set
- (1) For any item A \rightarrow u·xv in the set, with terminal x, there is no complete item B \rightarrow w· in that set with x in Follow(B)
 - In the tables, this translates no shift-reduce conflict on any state
- (2) For any two complete items $A \to u \cdot$ and $B \to v \cdot$ in the set, the follow sets must be disjoint, e.g. Follow(A) \cap Follow(B) is empty
 - This translates to no reduce-reduce conflict on any state
 - If more than one nonterminal could be reduced from this set, it must be possible to uniquely determine which using only one token of lookahead

SLR(1) Limitations

- SLR(1) vs. LR(0)
 - Adding just one token of lookahead and using the Follow set greatly expands the class of grammars that can be parsed without conflict
- When we have a completed configuration (i.e., dot at the end) such as X -> u·, we know that it is reducible
 - We allow such a reduction whenever the next symbol is in Follow(X).
 - However, it may be that we should not reduce for every symbol in Follow(X), because the symbols below u on the stack preclude u being a handle for reduction in this case
 - In other words, SLR(1) states only tell us about the sequence on top of the stack, not what is below it on the stack
 - We may need to divide an SLR(1) state into separate states to differentiate the possible means by which that sequence has appeared on the stack

References

 Bottom-up Parsing, <u>https://web.stanford.edu/class/archive/cs/cs143/cs143.1</u> <u>128/handouts/100%20Bottom-Up%20Parsing.pdf</u>

 SLR and LR(1) Parsing, https://web.stanford.edu/class/archive/cs/cs143/cs143.1 128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

• MOOC-编译原理, https://www.icourse163.org/course/HIT-1002123007

