02 - Sushlucii Tigorometrus.

1	$\sqrt{a^2-x^2}$	$\sqrt{a^2 + x^2}$	$\sqrt{x^2-a^2}$
x :	= a sen θ	$x = a \tan \theta$	$x = a \sec \theta$
dx =	= a cos θ dθ	$dx = a \sec^2 \theta \ d\theta$	$dx = a \sec \theta \tan \theta d\theta$
$\sqrt{a^2}$	$-x^2 = a \cos \theta$	$\sqrt{a^2 + x^2} = a \sec \theta$	$\sqrt{x^2 - a^2} = a \tan \theta$
$\frac{a}{\sqrt{\theta}}$	$\frac{1}{2-x^2}$	$\sqrt{a^2 + x^2}$ x θ a	$\int_{\theta}^{x} \sqrt{x^2 - a^2}$

$$4 \int \cos^2 \theta \, d\theta = 4 \int \frac{1 + \cos 2\theta}{2} \, d\theta = 4 \int \frac{1}{2} + \frac{\cos 2\theta}{2} \, d\theta$$

=
$$2 \operatorname{Crc} \left(\frac{x}{z} \right) + 2 \cdot \frac{x}{z} \cdot \sqrt{\frac{4-x^2}{2}} + C$$

=
$$2 \operatorname{arc} \operatorname{sen} \left(\frac{x}{2} \right) + x \sqrt{4 - x^2} + C$$

$$x = 4 \tan \theta \rightarrow x^{2} + 16 = 16 \tan^{2} \theta + 16$$

$$= 16 (Sec^{2} \theta)$$

$$d_{x} = 4 Sec^{2} \theta d\theta$$

$$\frac{x}{4} = \tan \theta \rightarrow \theta = \tan^{2} \left(\frac{x}{4}\right)$$

$$4\int \frac{\operatorname{Sec}^{2}\theta}{(16\operatorname{Sec}^{2}\theta)^{2}} \qquad \frac{x}{4} = \operatorname{tm}\theta \quad \neg \tau \quad \theta = \operatorname{tan}^{-1}\left(\frac{x}{4}\right)$$

$$\frac{4}{256}\int \frac{\operatorname{Sec}^{2}\theta}{\operatorname{Sec}^{4}\theta} d\theta$$

$$\frac{1}{64} \int \frac{1}{Sec^26} de$$

$$\frac{1}{64} \int \cos^2 \theta \, d\theta = \frac{1}{64} \int \frac{1}{z} + \frac{\cos(z\theta)}{z} \, d\theta$$

 $\int \frac{d\gamma}{(1-\gamma^2+1)^2}$

4 Sec 20 do

$$\cos^2\theta \, d\theta = \frac{1}{64} \int \frac{1}{z} + \frac{\cos(2\theta)}{z} \, d\theta$$

$$= \frac{1}{128} \int \Theta + \frac{1}{2} \operatorname{Sen}(2\Theta) \int + C$$

$$= \frac{1}{128} \left[\frac{1}{128} \left[\frac{1}{128} \left(\frac{1}{128} \right) + \frac{1}{128} \left(\frac{1}{128} \right) + \frac{1}{128} \left(\frac{1}{128} \right) \right] + C$$

 $=\frac{1}{128}\left[\left(\frac{4}{4}\right) + \frac{\gamma}{\sqrt{\chi^2+16}} + \frac{4}{\sqrt{\chi^2+16}} \right] + C$

$$\frac{1}{4} \int \frac{1}{z} + \frac{\cos(z\theta)}{z} d\theta$$

$$\frac{1}{8} \int 1 + \cos(z\theta) d\theta$$