11 Sommation d'Abel pour les séries de Fourier

Leçons 209, 235, 241, 246

Ref: [Bernis & Bernis]

On note $C^0_{\mathrm{pm}}(0,2\pi)$ l'ensemble des fonctions continues par morceaux sur $[0,2\pi]$ étendues à $\mathbb R$ par 2π -périodicité, et $C^0(0,2\pi)$ l'ensemble des fonctions continues sur $[0,2\pi]$ étendues à $\mathbb R$ par 2π -périodicité. On appelle également $r\acute{e}gularis\acute{e}e$ d'un élément $f\in C^0_{\mathrm{pm}}(0,2\pi)$ la fonction \widetilde{f} définie par

$$\widetilde{f}(x) = \frac{1}{2} \left(f(x)_+ + f(x)_- \right), \quad \forall x \in \mathbb{R},$$

 $f(x)_+$ et $f(x)_-$ désignant les limites respectivement à droite et à gauche de f en x. Ce développement consiste à démontrer le résultat suivant.

Proposition 1 Soit $f \in C^0_{pm}(0, 2\pi)$, et $r \in (0, 1)$. La série

$$c_0(f) + \sum_{n>1} r^n \left(c_n(f)e_n + c_{-n}(f)e_{-n} \right)$$

converge normalement sur \mathbb{R} , et on note f_r sa somme. On a de plus les résultats qui suivent :

- f_r converge simplement vers \widetilde{f} sur \mathbb{R} , quand r tend vers 1_-
- si de plus f est continue sur $[0, 2\pi]$, alors f_r converge uniformément vers f sur \mathbb{R} , quand r tend vers 1_- .

Démonstration. Étape 1. Convergence normale de la série.

On fixe $r \in (0,1)$. On rappelle le lemme de Riemann-Lebesgue : les coefficients de Fourier de f tendent vers 0. En particulier, la suite $(c_n(f))_{n\in\mathbb{Z}}$ est bornée, disons par M>0. On a alors

$$|r^n(c_n(f)e_n(x) + c_{-n}(f)e_{-n}(x))| \le 2Mr^n, \quad \forall x \in \mathbb{R}, \forall n \in \mathbb{N}.$$

En particulier, comme la série $2M\sum_{n\geq 1}r^n$ converge dans $\mathbb R$ puisque |r|<1, la série

$$c_0(f) + \sum_{n\geq 1} r^n \left(c_n(f)e_n + c_{-n}(f)e_{-n} \right)$$

converge normalement, et on peut donc définir la somme f_r de sa série (car elle est à valeurs dans \mathbb{C} , qui est complet).

Étape 2. Introduction des noyaux de Poisson.

On cherche ici à exprimer f_r comme un produit de convolution. Soit donc $x \in \mathbb{R}$. On a

$$f_r(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{2\pi} \sum_{n=1}^{+\infty} r^n \left(\int_{-\pi}^{\pi} f(t) e^{-int} e^{inx} dt + \int_{-\pi}^{\pi} f(t) e^{int} e^{-inx} dt \right).$$

On rappelle que l'on raisonne à x fixé, et on pose

$$\varphi_n(t) := r^n f(t) \left(e^{in(x-t)} + e^{in(t-x)} \right), \quad \forall t \in \mathbb{R},$$

de sorte que

$$f_r(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{2\pi} \sum_{n=1}^{+\infty} \int_{-\pi}^{\pi} \varphi_n(t) dt.$$

On a, pour $n \in \mathbb{N}$ et $t \in \mathbb{R}$, $|\varphi_n(t)| \le 2 ||f||_{\infty} r^n$, et donc, toujours car |r| < 1, la série $\sum_{n \ge 1} \varphi_n$ converge normalisation de la conver

malement sur le segment $[-\pi, \pi]$. D'après le théorème d'interversion série-intégrale, puisque les fonctions φ_n sont également continues, et donc intégrables sur $[-\pi, \pi]$, alors on a

$$\sum_{n=1}^{+\infty} \int_{-\pi}^{\pi} \varphi_n(t) \ dt = \int_{-\pi}^{\pi} \left(\sum_{n=1}^{+\infty} \varphi_n(t) \right) \ dt,$$

et donc

$$f_r(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \left(1 + \sum_{n=1}^{+\infty} r^n \left(e^{in(x-t)} + e^{-in(x-t)} \right) dt \right).$$

On reconnaît alors le produit de convolution recherché : si on définit

$$P_r(x) = 1 + \sum_{n=1}^{+\infty} r^n \left(e^{inx} + e^{-inx} \right),$$

alors on a

$$f_r(x) = f * P_r(x).$$

On appelle les P_r noyaux de Poisson, et on a en calculant la somme infinie

$$P_r(x) = \frac{1 - r^2}{1 - 2r\cos(x) + r^2}.$$

En particulier, P_r hérite de la parité du cosinus en x.

Étape 3. Approximation de l'unité.

On va montrer que $(P_r)_{r\in(0,1)}$ vérifie trois axiomes qui font qu'elle est une approximation de l'unité améliorée.

(i) P_r est positif, pour tout $r \in (0,1)$.

Le numérateur de P_r est bien positif. On étudie le dénominateur. On cherche donc le signe du trinôme $1 - 2X\cos(x) + X^2$ sur \mathbb{R} . Son discriminant est $\Delta = 4(\cos^2(x) - 1) \ge 0$, donc le trinôme est bien positif ou nul sur (0,1) (et même strictement positif en étudiant le cas d'égalité).

(ii) P_r est d'intégrale 2π , pour tout $r \in (0,1)$.

On prend simplement à cette endroit de la preuve $f \equiv 1$. On a alors

$$\left\{ \begin{array}{ll} c_0(f)=1 \\ c_n(f)=0, & \forall n \in \mathbb{Z}^\times \end{array} \right.$$

Ainsi, on a

$$1 = f_r(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) P_r(-t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t) dt.$$

(iii) P_r se concentre en 0.

Ici, on va montrer précisément

$$\forall \delta \in (0, \pi) \sup_{x \in (-\pi, -\delta) \cup (\delta, \pi)} |P_r(x)| \underset{r \to 1_-}{\longrightarrow} 0. \tag{1}$$

On se donne donc $\delta \in (0, \pi)$. Comme r est positif et le cosinus décroissant sur $[0, \pi]$, on a pour $x \in (\delta, \pi)$

$$1 - 2r\cos(x) + r^2 \ge 1 - 2r\cos(\delta) + r^2 \ge 0.$$

Par parité de P_r , on en déduit

$$\sup_{x \in (-\pi, -\delta) \cup (\delta, \pi)} |P_r(x)| \leq \frac{1 - r^2}{1 - 2r \cos(\delta) + r^2},$$

et en faisant tendre r vers 1, on déduit (1).

En plus de ces trois résultats, on déduit par parité de P_r , en utilisant (ii), le résultat suivant :

$$\frac{1}{2\pi} \int_0^{\pi} P_r(t) \ dt = \frac{1}{2\pi} \int_{-\pi}^0 P_r(t) \ dt = \frac{1}{2}.$$
 (2)

Étape 3. Convergence simple vers la régularisée.

Soit $x \in \mathbb{R}$. On étudie la convergence de $(f_r(x))_{r \in (0,1)}$. En utilisant (2), on remarque que pour $r \in (0,1)$, on a

$$f_{r}(x) - \widetilde{f}(x) = P_{r} * f(x) - \frac{1}{2} (f(x)_{+} + f(x)_{-})$$
 par commutativité de *
$$f_{r}(x) - \widetilde{f}(x) = \frac{1}{2\pi} \left(\int_{-\pi}^{0} P_{r}(t) (f(x-t) - f(x)_{+}) dt + \int_{0}^{\pi} P_{r}(t) (f(x-t) - f(x)_{-}) dt \right)$$

On fixe alors $\varepsilon > 0$. Par définition des limites $f(x)_+$ et $f(x)_-$, il existe $\delta = \delta(\varepsilon) \in (0,\pi)$ tel que

$$\left\{ \begin{array}{l} \forall t \in (-\delta,0) \quad |f(x-t) - f(x)_+| \leq \varepsilon \\ \forall t \in (0,\delta) \quad |f(x-t) - f(x)_-| \leq \varepsilon \end{array} \right.$$

On a alors, comme P_r est positif (2.(i)), et en utilisant l'expression précédente,

$$\left| f_r(x) - \widetilde{f}(x) \right| \leq \frac{1}{2\pi} \left(\int_{-\pi}^{-\delta} P_r(t) \left| f(x-t) - f(x)_+ \right| dt + \int_{-\delta}^{0} P_r(t) \left| f(x-t) - f(x)_+ \right| dt \right) + \int_{0}^{\delta} P_r(t) \left| f(x-t) - f(x)_- \right| dt + \int_{\delta}^{\pi} P_r(t) \left| f(x-t) - f(x)_- \right| dt \right).$$

Une nouvelle fois, la positivité de P_r permet d'affirmer, en appliquant aussi le point 2.(ii) ainsi que (2),

$$\frac{1}{2\pi} \int_{-\delta}^{0} P_r(t) \left| f(x-t) - f(x)_+ \right| dt \le \frac{\varepsilon}{2\pi} \int_{-\delta}^{0} P_r(t) \ dt \le \frac{\varepsilon}{2\pi} \int_{-\pi}^{0} P_r(t) \ dt \le \frac{\varepsilon}{2\pi} \int_{-\pi}^{0$$

et de même

$$\frac{1}{2\pi} \int_0^{\delta} P_r(t) |f(x-t) - f(x)| dt \le \frac{\varepsilon}{2}.$$

De plus, on a

$$\frac{1}{2\pi} \int_{-\pi}^{-\delta} P_r(t) |f(x-t) - f(x)| dt \le 2(\pi - \delta) \|f\|_{\infty} \sup_{x \in (-\pi, -\delta)} P_r(x) \le 2\pi \|f\|_{\infty} \sup_{x \in (-\pi, -\delta) \cup (\delta, \pi)} P_r(x)$$

et de même

$$\frac{1}{2\pi} \int_{\delta}^{\pi} P_r(t) |f(x-t) - f(x)| dt \le 2\pi \|f\|_{\infty} \sup_{x \in (-\pi, -\delta) \cup (\delta, \pi)} P_r(x).$$

Ainsi, en se donnant grâce à la convergence (1) un réel $r_0 = r_0(\delta) = r_0(\varepsilon) \in (0,1)$, tel que pour tout $r \in (r_0,1)$ on a

$$\sup_{x \in (-\pi, -\delta) \cup (\delta, \pi)} P_r(x) \le \varepsilon,$$

on obtient pour $r \in (r_0, 1)$

$$\left| f_r(x) - \widetilde{f}(x) \right| \le \varepsilon \left(1 + 4\pi \|f\|_{\infty} \right).$$

On en déduit bien que $f_r(x)$ tend vers $\widetilde{f}(x)$ quand r tend vers 1_- .

Étape 4. Convergence uniforme vers f.

Le problème vient ici du fait que l'on a raisonné dans toute l'étape 3 à x fixé, ce qui implique que δ et r_0 dépendent également de x. On doit donc s'affranchir de cette dépendance en utilisant un argument de continuité uniforme. Ici, la périodicité de f nous sauve : pour démontrer le point (ii) de la proposition, on suppose que f est continue sur $[0,2\pi]$; d'après le théorème de Heine, elle est y est donc uniformément continue, et sa périodicité permet d'affirmer qu'elle est uniformément continue sur \mathbb{R} . Cette fois, on dispose donc de $\delta_0 = \delta_0(\varepsilon) > 0$ tel que

$$\forall x, y \in \mathbb{R} \quad (|x-y| < \delta_0 \Longrightarrow |f(x) - f(y)| < \varepsilon$$

On peut une nouvelle fois choisir de prendre $\delta_0 \in (0,\pi)$ (quitte à le diminuer), et donc on a cette fois par la convergence (1) l'existence de $r_0 \in (0,1)$ qui ne dépend cette fois plus que du réel ε tel que pour $r \in (r_0,1)$

$$\sup_{x \in (-\pi, -\delta_0) \cup (\delta_0, \pi)} P_r(x) \le \varepsilon.$$

Un calcul presque identique à celui de l'étape 3 donne alors

$$\left| f_r(x) - \widetilde{f}(x) \right| \le \varepsilon \left(1 + 4\pi \|f\|_{\infty} \right),$$

mais cette fois-ci pour tout réel x, ce qui permet de conclure sur le point (ii) de la proposition.