Business Analyst course

Introduction to the course

- 1 This video is dedicated to bureaucracies
- The course has statistics as the base
- A business analyst needs to know 3 Analytics types
- The course is practice-focused
- The course materials are in the next lecture

The Modernday Business Analyst

- 1 Being only good with numbers is a thing of past
- 2 Proficient with Statistics & Analytics methodologies
- A bridge between technical and non-technical people

The impact of weather on sales

- 1 Weather influences seasonal industries
- 2 External factors are uncontrollable by nature
- 3 How to prove weather influences sales?
- If weather influences, then sales move when weather changes and are constant, all else being equal
- The Technique I used was Google Causal Impact

Predicting the future

- 1 Commercial teams are belief-driven in nature
- 2 Advanced Analytics give numbers to beliefs
- 3 But making the change is difficult
- 4 Simple and interpretable usually has high errors
- One of the techniques used was Facebook Prophet

BASIC STATISTICS

Game Plan

- 1 Backbone for the full course
- 2 Master the principles to make it easier in the future
- 3 You will do an exercise for each statistic learned
- 4 Moneyball case study at the end

(Arithmetic) Mean

Description

Same thing as average

When we say mean, we refer to the arithmetic mean

Represents the expected value

Methodological Representation

$$\bar{x} = \frac{\sum x_i}{n}$$

Visualization

Case Study Briefing – Baseball

- We have a dataset with baseball teams' data from 1962 to 2012
- There are 12 KPIs for each Team, League and Year
- We will practice statistical concepts on the dataset

Mode and Median

Mode

The most frequent number in a set

Fashion is a statistical term ©

Visualization

Mode is 3

Median

The central number of an ordered set

If even numbers, then you average both middle points

Used with skewed dataset

Visualization

Median is 3

Median is 4

(Pearson) Correlation

Description

Measures the relationship strength between 2 variables

Varies between -1 and 1

1 means strong positive relationship

-1 means strong negative relationship

0 indicates no relationship

Correlation does not imply causation

Visualization

Methodological Representation

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

Standard Deviation

Description

Measures the variation or dispersion of a set of values

High values mean higher variability

Methodological Representation

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$$

High variability

Low variability

Moneyball Case Study

- 1 Money ball is set on the world of baseball
- The A's had success despite financial struggles
- The team looked for undervalued players
- 4 Other teams did not look at statistics
- The General Manager looked at specific statistics
- 6 With the right system, you can beat anyone

INTERMEDIARY STATISTICS

Game Plan

- 1 Level up our statistics game
- 2 Please use the Q&A
- We have 2 datasets

Normal Distribution aka Gaussian Distribution

Description

Symmetric distribution with the mean in the middle

Data occuring near the mean is more frequent

Graph is similar to bell shaped curve

Statistical methods, i.e. regression assumes normalization of errors

In real-life, there will be some degree of similarity in most problems

Visualization

68-95-99 Rule in Normal Distributions

Description

Within +- 1 standard distributions, you can find 68% of observations

Within +-2 SD, you should encounter 95% of deviations

Within +-3 SD, it is 99.7%

Key Idea

A normal distributions is a pattern, and patterns enables us to categorize data with more confidence

Visualization

Case Study – Wine Quality

Description

You are a wanna be Wine Statistics Connoisseur

Challenge¹

- 1 Normal Distribution
- 2 Standard Errors
- 3 Confidense Intervals

P-value is all about likelihood

Description

The probability of obtaining results at least as extreme as the observed results of a statistical hypothesis test, assuming the null hypothesis is correct.

It helps us understand what is the likelihood of "accepting" aka "fail to reject" the hypothesis

A small p-value (small probability) would mean we favor the alternate hypothesis

P-value threshold usually used: 0.05

Examples

H0: The average salary of business analysts is €60k

H1: business analysts' average salary **is not** €60k

P-value = 0.2 -> We fail to reject the null hypothesis

H0: Blueberries prevent cancer

H1: Blueberries do not prevent cancer

P-value = 0.01 -> We reject the null hypothesis

Shapiro-Wilk test

Description

Quantifies how likely it is that the data was drawn from a Gaussian distribution

Created in 1965 and is one of many normality tests

Interpretation

H0: The distribution is gaussian

If p-value > 0.05

The distribution appears to have a normal distribution

If p-value < 0.05

The distribution does not look Gaussian -> reject the null hypothesis

Standard Error (of the sample mean)

Description

The standard error of the sample mean is an estimate of how far the sample mean is likely to be from the population mean.

Standard deviation is the degree to which individuals within the sample differ from the sample mean.

Methodological Representation

$$SE = \frac{\sigma}{\sqrt{n}}$$

Z-Score

Description

Gives you an idea of how far from the mean is a data point.

Z-scores are a way to compare results to a "normal" population

It is a way to standardize values

Methodological Representation

$$z = \frac{x - \mu}{\sigma}$$

Example – Diogo College grades

Uni:
$$Z = (16 - 13) / (2) = 1.5$$

GMAT:
$$Z = (680 - 560) / (120) = 1$$

Confidence Interval (when n > 30)

Description

A range that gives a sense of how precisely a statistic estimates a parameter.

The associated confidence level gives the probability with which an estimated interval will contain the true value of the parameter

Methodological Representation

$$CI = \bar{x} \pm z * \frac{\sigma}{\sqrt{n}}$$

Z-values table

Confidence Interval	Z-Value
80%	1.28
85%	1.44
90%	1.65
95%	1.96
99%	2.58
99.9%	3.29

Visualization - 95% CI

T-Tests

Visualization

T Test formally

Test any statistical hypothesis in which the test statistic follows a Student's t-distribution under the null hypothesis.

In practical terms

Helps us understand whether one group is (statistically) different than from the other

How do we know?

If p-value less than 0.05, then the groups are statistically different

Challenge – Understanding Remote Work predictions

Challenge¹

Stack Overflow dataset

Worker's characteristics, and job related queries

- 1 T-tests
- 2 Chi-square tests

(Person) Chi-square test

Visualization

Null hypothesis

There is no relationship between variables

Chi-square test

Determine whether there is a statistically significant difference between the expected frequencies and the observed frequencies

Difference from t-test

A t-test tests a null hypothesis about two means;

A chi-square test requires categorical variables, each having any number of levels.

Powerposing and p-hacking

- 1 You put your body in a powerpose
- You would perform better in high-pressure moments
- 3 Powerposing is not backed up by science
- 4 Powerposing results were not replicated by others
- P-hacking is the removal of some individuals to achieve statistical significance

LINEAR REGRESSION

Game Plan

- 1 Building block in our learning capacity
- I learned how to do it by hand. Yeah, really!
- We will have a practice-focused approach

Case Study Briefing – Pricing Diamonds

- 1 We have a dataset of roughly 300 diamonds
- 2 We have the price, carats and other KPIs
- We want to understand how carats influence Diamond Prices

(Linear) Regression crash course

Visualization

Definition

Study of a relationship between a dependent variable and at least one independent variable

Intuition perspective

Method for "What is the impact of X on Y?

How is it different from a correlation?

- Correlation studies the direction
- Regression studies the impact

Linear Regression

Visualization

Methodological View

$$Y = a + b * X + e$$

Interpretation

If I increase X by 1, Y increases by b

If X happens, Y increases by b

How to read a Regression result

Dummy variable trap

Observation	Coca cola	Pepsi
а	1	0
b	1	0
С	1	0
d	1	0
е	0	1
f	0	1
g	0	1
h	0	0
j	0	1

Multicollinearity

Correlation between Coca-Cola and Pepsi is -1

Solution: remove one dummy variable

Removing does not mean information is lost

A zero also represents information

The removed dummy variable becomes part of the intercept.

You can see it as being your baseline.

Dummy variable trap

Observation	Coca cola	Pepsi	White Label
а	1	0	0
b	1	0	0
С	1	0	0
d	0	0	1
е	0	0	1
f	0	1	0
g	0	1	0
h	0	0	1
j	0	1	0

Multicollinearity

Correlation between Coca-Cola and Pepsi is -1

Solution: remove one dummy variable

Removing does not mean information is lost

A zero also represents information

The removed dummy variable becomes part of the intercept.

You can see it as being your baseline.

MULTILINEAR REGRESSION

Game Plan

- 1 Topics: outliers, assessment ad overfitting
- 2 Practice tutorial: Teacher's salaries
- 3 Challenge: Retail Store drivers
- 4 Regression value adding is interpretability

Multilinear Regression

Linear Regression

Multilinear Regression

Description

It is very rare that one input explains the output

We often need more predictors to improve the models

Beware of multicollinearity or overfitting

Case Study Briefing – Professors' salaries

- The 2008-09 academic salary for Professors in a college in the U.S.
- The data was collected to monitor salary differences between male and female faculty members.
- 3 Use Multilinear Regression to study

Outliers

Visualization

Interpretation

Outliers can damage your analysis

You must distinguish between noise and valuable information

Consider using models good with outliers or non-linearity (e.g., Random Forest)

Modelling is finding the balance between under and overfitting

Underfitting

Overfitting

Insights

Having a too simple model will get you nowhere

Too complex will not yield results in other testing scenarios

You should iterate based on results

Let's imagine this is our full data set

Splitting between training and test enables an unbiased model assessment

Mean Absolute Error (MAE) vs Root Squared Mean Error (RSME)

Visualization

Key ideas

MAE and RSME are performance indicators for Regression models with continuous outputs

$$MAE = \frac{\sum |y - \hat{y}|}{n}$$

$$RSME = \sqrt{\frac{\sum (\hat{y} - y)^2}{n}}$$

RSME is useful for models with extremes / outliers

MAE is more interpretable.

Challenge

Description

Use Multilinear Regression to study a Store sales' drivers

- 1 Pick variables for your model
- 2 Analyze the data i.e. summary statistics
- 3 Correlation Matrix
- 4 Create a Training a Test Set
- 5 Use Multilinear Regression
- 6 Assess Accuracy

Dataset: Ecdat package

LOGISTIC REGRESSION

Game Plan

- 1 We now face a classification problem
- The question influences the analytical technique
- 3 How do we measure accuracy?
- 4 Case study: Which emails are spam?
- 5 Challenge: the sex of penguins

Case Study Briefing – Is it spam?

- 1 Dataset with ~5k emails
- What makes an email spammy?
- Can we predict which emails are spam?

Logistic Regression crash course

Visualization

What is a Logistic Regression?

Relationship study between a discrete dependent variable and at least one independent variable

From an Intuition Perspective?

What is the impact of X on Y happening?

How is it different from a Linear Regression

Linear is for continuous, logistic is discrete

Linear we fit a straight line, logistic a curve

How to read a Logistic Regression coefficients1

Linear Regression

$$Y = a + b * X + e$$

Logistic Regression

$$Y = \frac{e^{a+bX}}{1 + e^{a+bX}}$$

Interpretation

For each X unit increase, Y increases by b

B = **0.5**: For each X unit increase, Y increases by **0.5**

For each X unit increase, the probability of Y happening increases by exp(b) - 1 * 100 %

B = 0.5: For each X unit increase, the probability of Y happening increases by *64%*

The Confusion Matrix allows to access the results of a classifier

Confusion Matrix

Predicted

Actuals

	False	True
False	True Negative	False Positive
True	False Negative	True Positive

Accuracy

Accuracy = (True positive + True negative) / All

Balanced dataset

F1-Score

F1-score = 2 * TP / (2 * TP + FP + FN)

Unbalanced dataset

The Confusion Matrix allows to access the results of a classifier

Confusion Matrix

Predicted

Actuals

	False	True
False	True Negative	False Positive
True	False Negative	True Positive

Specificity or True Negative Rate

True Negative / (True Negative + False Positive)

When we focus in False values accuracy

Sensitivity, Recall or True Positive Rate

True Positive / (True Positive + False Negative)

Focus is on True values

Challenge

Description

Use Logistic Regression to predict the sex of penguins

- 1 Pick variables for your model
- 2 Plot Histograms of the character variables
- 3 Transform the character variables into binary
- 4 Create a Training a Test Set
- 5 Use Logistic Regression
- 6 Assess Accuracy through the classification report

GOOGLE CAUSAL IMPACT

Why Econometrics and Causal Inference

- 1 Decision-Making
- 2 Understand and tacking biases

According to BNP Paribas, Sustainability-focused companies perform better

Exhibit 1: Sustainability practices and business results

BNP Paribas

- Are there other differences between sustaibanility-focused companies and others?
- People define politics and decision
- Not including all factors is falling into the omitted variable bias

Does Smoking prevent Parkinson's?

Topics » Movement Disorders

December 10, 2015

The Troubling Link Between Parkinson's and Smoking: Can We Deny the Benefits?

Tori Rodriguez, MA, LPC

Smoking and Parkinson's

- The incidence of Parkinson's in people between 55 and 75 is twice as significant in non-smokers
- Is there a causal relationship between smoking and Parkinson's?
- People are more likely to get Parkinson's the older they get
- 4 Smokers' life expectancy is lower than non-smokers'
- Non-smokers are more likely to have Parkinson's because they live longer, not because they don't smoke

Game Plan

- 1 Causal Impact was developed by Google
- 2 Practice Case Study: Paypal and Bitcoin
- Challenge: Volkswagen CO2 scandal
- 4 Causal Impact is my most-used technique

Case study: Paypal x Bitcoin

Description

Use Google Causal Impact to estimate the impact of Paypal allowing crypto payments on Bitcoin price

- In October 21st, 2020, Paypal announced entered the Crypto industry.
- Given the bull market and other volatilities, we cannot compare the price before and after
- We need to find comparable control groups

What is Time Series Data?

Visualization

Key ideas

Sequence of data points in time order (oldest to newest)

Most commonly, it is data recorded in equally distanced time periods

Type of Panel Data (multidimensional dataset)

Comparing before and after impact leads to omitted variable bias

Context

How to measure the impact of Paypal on Bitcoin price?

This graph shows the sales in the market. The event started where the red line is

Comparing before and after would subject you to ommitted bias.

Visualization

Brodersen, Kay H.; Gallusser, Fabian; Koehler, Jim; Remy, Nicolas; Scott, Steven L. Inferring causal impact using Bayesian structural time-series models. Ann. Appl. Stat. 9 (2015), no. 1, 247--274. doi:10.1214/14-AOAS788. https://projecteuclid.org/euclid.aoas/1430226092

Difference-in-differences framework

Key ideas

We use Google to create an artificial control group

The delta between what actually happened and the what-if scenario is the **treatment impact**

Visualization

Causal Impact Step by Step

Assumptions

Parallel Trends Assumption

The Treatment and Control Groups are assumed to have the same evolution for the KPI

Visualization

Confounding Policy Change

There must be only one policy or initiative that differentiates the treatment from control groups.

You can only measure the impact of one treatment.

How to Strengthen the assumptions

Use More control groups

Use a longer training period

Keep post-period to the bare minimum

Correlation in Time Series

Description

Measures the relationship strength between 2 variables

If the Time-Series grows over time, then the correlation might be random

The data must be stationary

Visualization

Stationarity

Key idea

Mean, variance and covariance are not time dependent

Stationary Time Series have a defined pattern

Statistical test:

Dickey-Fuller test. If p-value is less than 0.05, time series is considered stationary

Making Data Stationary

Impact evolution

Context

Let's discuss what should be the impact of Paypal adopting Bitcoin:

Greater in the beggining

Impact gradually increases

You can also point out that the impact should continue days after the announcement

Causal Impact allows the impact variations over time

Visualization

• Brodersen, Kay H.; Gallusser, Fabian; Koehler, Jim; Remy, Nicolas; Scott, Steven L. Inferring causal impact using Bayesian structural time-series models. Ann. Appl. Stat. 9 (2015), no. 1, 247--274. doi:10.1214/14-AOAS788. https://projecteuclid.org/euclid.aoas/1430226092

Challenge

Description

Use Causal Impact to measure the impact of the CO2 scandal in Volkswagen stock Price

- 1 Pick Stocks for the control groups
- 2 Perform a correlation matrix
- 3 Measure the impact

MATCHING

Game Plan

- 1 There is no comparable control group
- 2 Helps us with (self)-selection bias
- 3 How to measure referral programs?
- What is the incremental value of Mobile Shopping?
- 5 Practice case study: Catholic Schools and scores
- 6 Challenge: Remote work and career satisfaction

How do you figure out the value of Amazon Prime?

Context

Amazon Prime is a loyalty program that provides free shipping, discounts and other services

The goal of program is fourfold:

- Increase customer loyalty
- Increase revenue per customer
- Decrease marketing spendings in customer re-activation
- Decrease paid advertising in conversion

The subscription lasts 1 year

If you were to asked to provide the impact of Amazon Prime on its financials, how would you do it?

You cannot just simply compare the average Prime and non-prime subscriber

Context

Both groups may be inerently different from the start. Hence, they are not comparable.

Beware of (self-)selection bias

A possible solution is Matching.

In a nutshell, you create a counterfactual group with similar characteristics to your treatment group

You cannot just simply compare the average Prime and non-prime subscriber

Context

Both groups may be inerently different from the start. Hence, they are not comparable.

Beware of (self-)selection bias

A possible solution is Matching.

In a nutshell, you create a counterfactual group with similar characteristics to your treatment group

Case Study Briefing – Are catholic schools better?

Description

Use Matching to understand whether catholic schoolsare better than others (from a standardized test score view)

- We have a dataset with kids' background, their parents upbringing among others
- The key metric of success is the standardized test scores
- We need to re-create a comparable control group

Unconfoundedness

Context

The variables (confonders) used are enough to describe the people or entities (W)

The characteristics affect the likelihood of someone being part of the treatment (X)

The combination of the confounders and the treatment leads to the outcome (Y)

Meeting the Uncondoundedness assumption is a tall order

Visualization

Curse of Dimensionality

Visualization

Context

Imagine you have a variable with 3 options

Then you had a second with 3 more

Finally, a third

The observations needed to fill each bucket grows exponentially

The Matching outcome can be spurious, when few elements belong to a "dimension"

Key Idea

Make sure when you create a model as simple as possible

How to determine the Common Support Region

Visualization

Examples

Key ideas

We preditct whether someone is part of the treatment group

There will be people with high likelihood of participating.

You are not likely to find a control group for them.

The greater the overlap, the higher the matching quality

Probability of the treated group being treated

Probability of the non-treated group bring treated

Robustness checks

Repeated experiment

Removing 1 confounders

Challenge

Description

Use Matching to figure out whether Remote workers have higher Career Satisfaction

- 1 Pick variables for your model
- 2 T-test Loop
- 3 Transform the character variables into binary
- 4 Perform Matching
- 5 Perform a robustness check

My experience with Matching

- 1 Introducing English in the Zalando.de website
- What is the incrementality?
- 3 Difference audiences means non-comparability
- Tiny treatment group = good common support region
- 5 Practice case study: Catholic Schools and scores
- 6 I used the repeated experiments for robustness

RECENCY FREQUENCY MONETARY

Game Plan

- 1 Introducing value-based segmentation
- 2 Case study: online shoppers segmentation
- 3 Challenge: purchasing behavior
- 4 Simple yet powerful concepts in this section

Value-based segmentation

Profit

80%

20%

What is RFM?

Description	Typical RFM	Our Model	Meaning
Recency	Days gone	Days gone	How long since they last purchased
Frequency	Frequency (Q)	Frequency (Q)	How often have they purchased
Moneratary	Sales (P*Q)	Basket (P)	Average Purchase Value

What else?

Include Churn or Customer Retention

Include Time Horizon

Change Average Purchase by Average Profit

How does it work?

Case Study Briefing

Description

A Dataset with Online Shoppers data

- We have a dataset with purchases of customers, detailed by items
- Create a customer dataset with the Recency, Frequency and Monetary variables
- 3 Create an RFM model and apply to the dataset

Challenge

Customer

Value segmentation

Description

A dataset with customer data

- 1 Prepare basket variable
- 2 Rename variables
- 3 Create a RFM model with 3 levels
- 4 Define 3 segments
- 5 Prepare final table overview

GAUSSIAN MIXTURE MODEL

Game Plan

- 1 Clustering is a lazy person's favorite
- 2 Case study: Credit Card applicants
- 3 Challenge: Credit card users
- 4 New concepts: AIC and BIC

What are clustering techniques?

Visualization

Key ideas

Groups observations in terms of their characteristics

Main task of exploratory data mining

Clustering is an art rather than Science

Gaussian Mixture Model

Visualization

Key ideas

Gaussian Mixture Model is a probabilistic method for clustering

Better to use than traditional clustering algorithms, like Kmeans

The probabilities allow to better evaluate edge cases

Case Study Briefing

Description

A Dataset with Credit Card applicants

- Determine the optimal number of segments for the dataset
- 2 Use Gaussian Mixture Model
- Interpret the segments and name them according to their characteristics

Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC)

Key Ideas

- AIC and BIC helps us determining the optimal number of clusters
- AIC and BIC provide a means to select a model
- Trade-off between simplicity and goodness of fit
- Deal with overfitting
- BIC penalizes overfitting more than the AIC

Pseudo-visualization

Challenge – Gaussian Mixture Model

Description

A Dataset with customer data

- 1 Prepare data set
- 2 Determine optimal number of clusters
- 3 Create GMM model
- 4 Interpret segments

My experience with Segmentation

- 1 A closed contest for a big conglomerate
- 2 Their status-quo was a value-based segmentation
- They wanted a behavioral segmentation
- The first difficulty was how massive the data was
- We tried to be hypothesis-driven
- 6 We had 7 interpretable segments in the end
- We were complex and did not consider scalability

RANDOM FOREST

Game Plan

- 1 Random Forest is an advanced analytics technique
- 2 Learn about Decion Trees and Ensemble Learning
- 3 Practice case study: Credit card applicants
- 4 Challenge: Customer's income prediction

Random Forest is an Ensemble Learning Algorithm

What is it?

- Ensemble Learning is when you have a plurality of models predicting your output
- 2 Ensemble is an average of Models
- 3 A Random Forest is a combination of decision trees
- 4 Can be used for Regression and Classification problems

How do Decision trees work?

Visualization

Decision tree

Key Ideas:

- A split or leaf is done taken a maximum entropy logic
 - Where would it yield more information
- The prediction would be done based on the relative frequency

Case Study Briefing

Description

A Dataset with credit card applicants

- The key metric of success is whether someone was accepted or not
- 2 We want to predict the acceptance
- 3 We also want to generate insights

Random Forest quirks

What is it?

- 1 Tendency to overfit
- 2 Good with multicollinearity
- Works well with non-linearity
- 4 Robust to Outliers

Parameter Tuning

Context

Advanced models have parameters to tune to optimize accuracy

Challenge – Random Forest

Description

What is the income of your customers?

- 1 Prepare data set
- 2 Create Random Forest Regressor model
- 3 Measure accuracy
- 4 Tune the model
- 5 Generate insights

FACEBOOK PROPHET

Game Plan

- 1 Technique to predict the future
- 2 Forecasting is a common task for Business analysts
- 3 Practice case study: Udemy Wikipedia page visits
- 4 Challenge: Shelter Demand in New York City

Structural Time Series

Visualization

Trend

Seasonality

Exogenous impacts

Description

Structural Time Series is the decomposition of the data in at least:

Trend

Seasonality

Exogenous impacts

Error Term

Methodological framework

$$y(t) = c(t) + s(t) + x(t) + \epsilon$$

Facebook Prophet quick facts

Which?

Description

- 1 Built by facebook
- Stan background probabilistic programming language for statistical inference
- 3 Dynamic Holidays
- Prophet is customizable in ways that are intuitive to non-experts
- 5 Built-in Cross Validation

Prophet Mechanics

Methodological framework

$$y(t) = c(t) + s(t) + h(t) + x(t) + \epsilon$$

Where:	
c(t)	Trend +
s(t)	Seasonality +
h(t)	Holiday effects +
x(t)	External regressors +
е	error

Case Study Briefing

Description

A Dataset with Daily Udemy Wikipedia Visits

- Predict the number of visits to the Wikipedia page of Udemy
- 2 Learn cross-validation
- 3 Combine with Parameter Tuning

Dynamic Holidays – Valentine's example

Visualization

Facebook Prophet

You state Valentine's as a key event and specify how many days before/after

Other models:

You must create dummy variables for each day, if you believe they have different impacts

Training and Test Set in Time Series

Key Ideas

Forecasting Models are usually split into a pre and post period from a time perspective. The Test Set should be of the size of a real-world forecast.

Facebook Prophet Model

(Component	Description
	Growth	Linear or Logistic

Holidays	Dataframe that we prepared

Seasonality Yearly, weekly or daily. True or False
--

Seasonality_mode Multiplicative or additive

Additive vs. Multiplicative

Additive

Multiplicative

Key ideas

If we talk about seasonality in terms of percentage, the seasonality is multiplicative

If it is in adding absolute values, then it is additive.

Cross Validation

Key Idea

Repeating the assessment of our model reinforces its evaluation

Parameters to tune

Component

Description

Seasonality_prior_scale

Strength of the seasonality

Holiday_prior_scale

Smaller values allow the model to fit larger seasonal fluctuations

Changepoint_prior_scale

flexibility of the automatic changepoint selection

Challenge Demand Forecasting

Shelter Demand

How many people need a shelter?

- 1 Prepare dataframe
- 2 Training and test set
- 3 Create model and assess accuracy
- 4 Visualize the output
- 5 Perform parameter tuning

Forecasting at Uber

Description

- 1 They need strategic and tactical forecasts
- 2 They need marketplace forecasts to allocate cars
- 3 But they also need it to measure investments
- They need to forecast at scale
- 5 They use simple statistical models
- Machine Learning when exogenous regressors are available
- 7 They try multiple approaches to find the best result