Dawid Pawliczek Lista 5, Zadanie 7

Teza

W modelu drzew decyzyjnych każde scalanie $dw \acute{o} ch$ posortowanych ciągów długości n wymaga w najgorszym przypadku co najmniej 2n-1 porównań.

Gra z adwersarzem

Oznaczmy elementy pierwszego ciągu $a_1 < a_2 < \cdots < a_n$, drugiego $b_1 < b_2 < \cdots < b_n$. Adwersarz ogranicza przestrzeń wejść do

$$\mathcal{X} = \{X_0, X_1, \dots, X_{2n-1}\},\$$

gdzie

$$X_0 = a_1, b_1, a_2, b_2, \dots, a_n, b_n,$$

$$X_{2k-1} = X_0 \text{ z zamian} a_k \leftrightarrow a_k,$$

$$X_{2k} = X_0 \text{ z zamian} a_k \leftrightarrow a_{k+1} \quad (1 \le k \le n-1).$$

Każdy X_i jest poprawnym wynikiem scalania i wszystkie są różne, więc algorytm musi ostatecznie rozróżnić wszystkie 2n kandydatów.

Odpowiedzi adwersarza. Algorytm pyta tylko o relacje a_i vs b_j .

- |i j| > 1: adwersarz odpowiada $a_i < b_j$ (nie eliminuje żadnego X_k).
- i = j: adwersarz odpowiada $b_i < a_i$, eliminując wyłącznie X_{2i-1} .
- i = j + 1: odpowiada $a_i < b_j$, eliminując wyłącznie X_{2j} .

Każde pytanie usuwa z \mathcal{X} co najwyżej jeden ciąg; aby pozostał jeden, potrzeba co najmniej 2n-1 pytań.

Przykład dla n=3

Zestaw kandydatów

$$X_0 = a_1, b_1, a_2, b_2, a_3, b_3,$$

 $X_1 = b_1, a_1, a_2, b_2, a_3, b_3,$
 $X_2 = a_1, a_2, b_1, b_2, a_3, b_3,$
 $X_3 = a_1, b_1, b_2, a_2, a_3, b_3,$
 $X_4 = a_1, b_1, a_2, a_3, b_2, b_3,$
 $X_5 = a_1, b_1, a_2, b_2, b_3, a_3.$

Jak adwersarz odpowiada na pytania

Typ	Przykład pytania	Odp.	Elim. X_k Dlaczego				
i-j >1	$a_3 ? b_1$	$a_3 < b_1$		w żadnym X_k nie ma $b_1 < a_3$			
i = j	$a_2 ? b_2$	$b_2 < a_2$	X_3	bo tylko w X_3 : $a_2 < b_2$			
i = j + 1	$a_2 ? b_1$	$a_2 < b_1$	X_2	bo tylko w X_2 : $b_1 < a_2$			

 ${\bf W}$ każdym wierszu najwyżej jedenkandydat staje się sprzeczny z odpowiedzią, zgodnie z ogólnym dowodem.

Wniosek

Aby zredukować $ \mathcal{X} = 2n$ kandydatów	do	jednego,	algorytm	musi	zadać	przynajmniej	2n - 1
pytań, co dowodzi dolnej granicy							
		2n - 1					

porównań dla scalania dwóch *n*-elementowych ciągów.