Clasificación de tipos de viajes Walmart

Metodología CRISP-DM

- 1. Comprensión del Negocio
- 2. Comprensión de los Datos
- 3. Preparación de los datos
- 4. Modelado
- 5. Evaluación
- 6. Implantación

Metodología CRISP-DM

Walmart >

1

Comprensión del Negocio 2

Comprensión de los datos

3

Preparación de los Datos 4 Modelado 5

Evaluación

Objetivo

El objeto del presente trabajo es recrear la clasificación realizada por Walmart, mediante el empleo de técnicas de ciencia de datos, con el fin de ayudar a mejorar la toma de decisiones en cuanto al plan de mercadotecnia de la empresa y mejorar la experiencia de compra del cliente.

Calidad de los datos

Los datos aportados por Kaggle presentaron algunas inconsistencias como registros mal escritos, datos faltantes y no tenían formato Tidy.

EDA

Mediante el Análisis Exploratorio de Datos se pudo identificar a algunas de las variables relevantes que explican la clasificación de los viajes de los clientes en función del consumo.

Limpieza de los Datos

Mediante herramientas estadísticas se procedió a limpiar los datos capturados con el fin de prepararlos para la etapa de transformación.

Transformación de los Datos

Con el fin de obtener un mayor poder de predicción se le realizaron diversas transformaciones a los datos.

Modelos

Con base en el desarrollo de distintos modelos estadísticos y de aprendizaje automático se buscó clasificar el tipo de viaje con base en las probabilidades obtenidas aplicando los modelos.

Función de Perdida

Evaluamos nuestros modelos con la función de perdida logarítmica multiclase.

Comparamos los resultados de los modelos propuestos y elegimos el que tenía mejor puntuación.

$$-rac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{M}y_{ij}\log(p_{ij}),$$

6. Implementación

Intentamos correr Flask pero por limitaciones de tiempo no se logró ese parte del proyecto.

2 COMPRENSIÓN DE LOS DATOS

2.EDA

Count of VisitNumber by DepartmentDescription and TripType

3. PREPARACIÓN DE LOS DATOS

4. MODELADO

5. EVALUACIÓN Y RESULTADOS

6. CONCLUSIONES

- 1. Feature Engineering fue clave para resolver este problema, pues permitió reducir el error del modelo significativamente.
- 2. El problema más grande encontrado fue el tamaño del dataset, lo cual nos dificulto un poco hacer las transformaciones necesarias.
- 3. Usando herramientas como Azure ML Studio facilita y reduce el tiempo para entrenar y probar los modelos.
- 4. El mejor modelo fue gradient boosting después de aplicar feature engineering con un error de 1.32 lo cual nos dejo en el lugar 534

			**			
531	+ 1	Munch	#	1.32293	9	4y
532	- 1	joaop		1.32599	1	4y
533	4	Yilun Zhang	, San	1.32637	5	4y
534	-1	NileshGupta		1.33045	1	4y

BONUS SLIDES - ANEXO

Hackeando Kaggle: resultados interesantes

0.0% 0.0% 0.2% 1.6% 0.7% 0.1% 0.1% 0.1% 2.0% 72.3% 0.8% 0.8% 0.2% 0.3% 0.2% 1.3% 1.0% 2.8% 1.3% 0.2% 16.7% 4.5% 1.7% 22.0% 1.3% 2.3% 0.3% 0.3% 1.0% 1.0% 2.15 30.9% 23.7% 3.1% 2.1% 3.1% 2.1% 20.6% 2.1% 3.1% 32% 303% 17% 02% 07% 0.6% 0.1% 1.3% 1.0% 0.1% 0.5% 0.6% 4.1% 27.6% 32% 02% 03% 4.2% 27.8% 1.9% 1.7% 5.8% 19.5% 2.3% 27.8% 0.3% 1.0% 0.1% 0.8% 1.8% 0.1% 22% 102%

0.3%

0.1% 0.0%

0.1% 0.0%

2.6% 0.1%

0.9% 0.1%

0.5%

0.1%

0.8%

0.5%

52% 02% 0.6%

2.1% 0.5% 1.7%

12% 03% 07%

23% 03% 03%

Resultados Azure ML Studio

Metrics

0.2%

0.4%

14% 49.5%

1,5%

29.6% 0.0%

1.7%

0.5%

0.2%

0.7%

0.7%

0.4%

Overall accuracy	0.348963
Average accuracy	0.965735
Micro-averaged precision	0.348963
Macro-averaged precision	NaN
Micro-averaged recall	0.348963
Macro-averaged recall	0.262886