This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

; ·· - 171 121 415 VVVV · · · ·

:

(11)特許出國公開番号 € 公赉 盐 华 噩 (E) (19) 日本国格許庁 (JP)

特開平9-43057

(43)公開日 平成9年(1997)2月14日

技術表示箇所 3/38 G 0 1 J 广内整理器号 **BPIICH** 3/28 G011 (51) Int CI.

審査請求 未請求 請求項の数15 〇1 (全 12 頁)

(21) 出資番号	4 四平7—190535	(71)田間人	(71) 出題人 000005223
(22) 山東日	平成7年(1995)7月26日		AIIMASEC 神族川県川南市中原区上小田中4丁目1番145
		(72)発明者	
		(74)代理人	富士道株式会社内 (14)代理人 沖理士 大管 鏡之 (外1名)

故以少汝既 (54) [発明の名称]

(目的) 复数の光を一度に分離できるとともに、分散 角が比較的大きく、随仰な構成で、かつ耐環境性のよい 分故器を提供する。

て、肌射窓33上の焦線36に集光され、平行平板30 歩を起こし、光束37を形成する。光東37は光の波長 は反射率がほぼ100%の反射多関膜32を設け、他方 の面には反射率が100%より小さい反射多固模31を 設ける。反射多階膜31の設けられている面には反射率 がほぼ0%の照射窓33が設けられ、入射光38が入射 される。入財光38は、コリメートレンズ34によって 内で拡がりながら、多重反射を繰り返す。反射多路膜3 2からは1回反射する毎に光の一部が外部に放出され干 毎に異なる角度で放出され、レンズ38で発光されたあ 【構成】 ガラス等でできた平行平板30の一方の面に 平行光にされた光をシリンドリカルレンズ35によっ と、彼長毎に受光器40によって検出される。

不不明の一貫把別 4 水了好代因

請求項1] 相対する第1および第2の互いに平行な 反射面を持ち、 魃却 1 及び第2 の反射面のいずれか一方 の面上もしくはその近傍に面に平行に設定される協分か **らその根分に垂直方向に放射状に広がる光線を、前記算** 1、第2の反射面間に入射させ、多重反射の毎に第1及 それらの干渉の結果、進行方向が光の波長により異なる び第2のいずれか一方の反射面を迅通して光を出力し、 光束を形成することを特徴とする波長分波器。 (特許請求の範囲)

「翻求項2] 前記第1および第2の反射面が、透明体 よりなる平行平板の相対する2つの面に形成されること を特徴とする請求項1記載の波長分波器。 【請求項3】 前記平行平板を形成する前配透明体はガ ラスでできていることを特徴とする間求項2 配載の波長

【請求項4】 前配光束を集光するレンズと、散光束の 規光位置に集光された光泉を受ける受光素子または光伝 蝦路とを更に備えたことを特徴とする請求項1~3のい ずれか1つに記載の波長分波器。

【請求項5】 前記放射状に並がる光線は、光導彼路内 を伝쓆する光棋から形成されることを特徴とする間求項 1~4のいずれか1つに記載の波長分波器。

【韓東項6】 前記放射状に拡がる光線は、3次元空間 によって作られる請求項1~5のいずれか1つに記載の 内の平行光数からし方向のみにレンズ磁能を有する歌子 成長分波器。 前記1方向のみにレンズ機能を有する索 子は、シリンドリカルレンズであることを特徴とする語 **水項8配数の液型分液器。** [請來與7]

【請求項8】 前記第1及び第2の反射面のうち、一方 00%よりも低く80%よりも高いことを特徴とする脚 の反射率が実質的に100%であり、他方の反射率が1 求項1~7のいずれか1つK記載の波長分波器。

区 幸が実質的に100%の反射面上の一部に、反射が無視 できるほどに反射率が低い部分を設け、その部分より光 を入射させるとともに、 眩光が2つの反射面間を1 住復 した際に数反射率の低い部分から光が漏れ出さないよう K. 較光の光軸を前記反射面に対して垂直から傾けたこ || 率が100%より低く80%より高い反射面の上の-け、その部分より光を入射させるとともに、、 酸光加2 つの反射面間を1往復した際に数反射率の低い部分から 光が溢れ出さないように、散光の光軸を前記反射面に対 して垂直入射から傾けたことを特徴とする請求項8配穀 部に、反射が無視できる程度に反射率が低い部分を設 【請求項10】 前記第1及び第2の反射面のうち、 とを特徴とする請求項8配載の波長分波器。

【請求項11】 光を線分上に集光させ、鼓線分が剪1

コジメートレンズ34

時間平9-43057

3

前配第1及び第2の反射面間に光を入射させることを特 【翻求項12】 異なる彼長の光を異なる進行方向を有 **引奉の低い都分の上にくるように構成したことにより、** する光東に分離する波艮分波器の製造方法において、 散とする請求項8または10記載の波及分波器。

少なくとも互いに平行な2つの面を有する平行平板の数 前配反射限のいずれか一方の反射酸の一部に反射率の低 互いに平行なそれそれの面にそれそれ反射数を形成し、 い部分を形成し

少なくとも前記反射率の低い部分が形成された面の上に 透明体を形成することを特徴とする波及分波器の製造方 유

の一部をエッチングにより取り除くことにより形成され (請水項13) 前配反射率の低い部分は、前配反射段 の一部を機械的に削り取ることにより形成されることを (開水項14) 前記反射率の低い部分は、前記反射膜 ることを特徴とする朝水項12配穀の波長分波器の製造 特徴とする間求項12配載の改長分波器の製造方法。

【間求項15】 前記反射率の低い部分は、マスキング とにより形成されることを特徴とする翻求項12記載の により予めこの部分に反引数を形成しないようにするこ 彼長分波器の製造方法。 2

【発明の詳値な説明】

[000]

【産業上の利用分野】本発明は、複数の異なる彼長を有 パを介して彼母の異なる散送彼にのせられて行送されて する光を分波する波長分波器に係り、特には、光ファイ くる信号を各撤送液母の信号に分波する構成に関する。 更には、そのような波長分波器の製造方法に関する。 옸

【従来の技術】近年、光通信によって高速かつ大量のデ に、一度に大量のデータを送るために、1本の光ファイ パ内を異なる彼長を有する協送彼ののせて光信号を送る 一夕通信を行うシステムの研究開発が盛んである。特 [0002]

[0003] このように、1本の光ファイバで複数の異 なる彼及を持つ撤送彼にのせられた光信号が送られてき た場合、受信則では、これらの異なる波長の光信号をそ 被長多重の光伝送方式が開発されている。

[0004]従って、受信闘での波長分波の精度によっ 受信側での波長分波和度が思いと、送信回で多くの信号 を異なる彼長の批送彼にのせで送信したとしても、これ ちの個号を受信することができないということになるの て、光信号の受信特性が大きく左右されることになる。 で、精度の良い波長分波器が留まれるところである。 れぞれの液虫に分波して核田しなくてはならない。

[0005] 従来知られている波長分波方法にはさまざ まな租圾のものがある。例えば、2つの改長を分離する 方法としては、多個の干渉段によるフィルタおよびファ 及び第2のいずれか一方の反射菌の一部に設けられた反 50 ブリ・ヘロ型やマイケルソン型などの干渉計が知られて

一直記を禁み

ង 基版80上に形成されており、レンズ等により平行光線 【0006】図8は、上記2つの波長を分離する方法を 資用した装置の供路図である。図8(a)は、多層の干 砂段によるフィルタの例である。多困干沙債81は透明 ることができる。透過する条件を消たさない波長入。の 光83は多層干渉膜81を透過することができないので となった入射光82が入射される。多層干遊戯81に入 りかえす。このとき、多뛈干渉膜81を透過する条件を 反射される。このように、多層干渉験フィルタを用いる 引した人射光82は、多層干遊戯81の内部で反射をく ことにより2つの異なる彼長の光を分離することができ 道たす波長入,の光84だけが多層干渉戦81を透過す

仮85の映画から入射し、反射板85と86の間で多数 4.はファブリ・ベロ型干砂計を透過し、条件を満たさな [0007] 図8 (b) は、ファブリ・ベロ型干渉計の **朝略図である。ファブリ・ペロ型干渉計は、高い反射率** を有する反射板85と86を所定の間隔をおいて平行に **設置したものである。この場合も多쭴干逆膜フィルタの** 場合と同様に、平行光線に変換された入射光82が反射 回反射する。そして、透過条件を満たす波長入。の光8 い放長〉、の光83は反射されて、2つの異なる波長の 光の分類が行われる。

[0008]図8 (c)は、マイケルソン型干渉軒の概 略図である。中央にはハーフミラー89が据えられ、平 行光棉である人射光82が直交する2方向へ分離される 材成となっている。分徴された光の進む方向には、それ それ反射ミラー87、88が設けられ、それぞれに向か って進んできた光を直角に反射する。ハーフミラー89 から反射ミラー87、88への距離は適当な光路差を生 じるように異なっている。反射ミラー87、88で反射 されたそれぞれの光は共化ハーフミラー89の同じ場所 に帰ってきて干渉を超こし、異なる波長ス。、ス。の光 83.84は分離される。

しては、奥川的には回折格子およびその変形として光導 **数路を使ったアレイ導波路格子がある。図9は、複数の** 【0009】一方、複数の被長を同時に分離する方法と **仮長を同時に分離する方法を採用した分波器の駅路図で**

さられる。それぞれの導液路94の先端には光の出射口 [0010]図9 (a)は回折格子の概略図である。回 路格子の供略構成図である。入射口93から複数の波長 **所格子は、良く知られているように分光器として用いら れるものであり、複数の波長の光を含んだ平行光線の入** 5. それぞれの凹凸で反射された入射光90は互いに干 の光を含んだ光が入射され、多数の導波路94に分岐さ 【0011】図9(b)は光導波路を使ったアレイ導波 対光90を照射すると、教面の凹凸によって反射され **歩しあい、異なる波長の光は異なる角度で出射される。**

る。 名導波路94は長さ等が一本づつ異なっており、 導 彼路 8 4 を伝搬して出射口 8 1 から光が出るまでに光が る。このような導波路84を通過した光は、互いに位相 **が異なるので、出射口91から出るときに互いに干渉し** あう。これにより、回折格子と同様な作用で異なる波長 91が設けられ、入射光が出射光92として出射され 伝数する光路長がそれぞれ異なるように構成されてい の光を異なる方向へと出射させる。 [0012]

の光が多重された光多重通信において光信号の受信に使 にも連結して用いる必要があり、受信器の大型化がまね [発明が解決しようとする課題] ところで、2つの異な る波長を分離するのみの分波器では、多数の異なる波長 うとすると、それぞれの光を分徴するのに分波器を何段 がわない。 【0013】一方、回折格子等においては波長の異なる が、一般に、回折格子は互いに異なる光を偏向する角度 の差が、すなわち分散角が小さい。 光多重通信におい 光を波長に応じた方向に偏向して分波するものである

い。分散角が小さい回折格子を受信器の分波器として使 用している場合は、このような信号波を誤受信する可能 性が大きい。従って、受信器の信頼性を著しく損ねるこ とになる。また、回折格子は、入射する光の偏光状態に 影響を受けやすく、特性が不安定になる傾向がある。更 に、回折格子はその表面の細かな凹凸を規則正しく、契 造しなければならず性能の良い回折格子を得るための契 て、できるだけ多くの情報を一度に送信しようとする と、異なる信号波の波長の差は小さくならざるを得な 造工程が難しくなるという面も有している。 2

【0014】また、アレイ導波路格子は導波路の構成の 仕方によって分散角をある程度調整可能であるが、所望 の構成を得るための構成の調整が非常に微妙であり、温 **度変化などによる影響を受けやすく、耐環境性が悪いと** いう欠点がある。

分離できるとともに、分散角が比較的大きく、簡単な構 成で、かつ耐環境性のよい分波器を提供することを目的 【0015】 したがって、本発明は、複数の光を一度に とする。特には、1つの光伝脫路内を伝撒する光波長が **ことなる複数の光を、波長毎に分離し、それぞれの空間** 彼長多単の光伝送を可能とすることができる彼長分波器 的に異なる位置にある光伝撤路または受光素子で受け、

を提供する。 [0018]

の原理を説明する図であり、本発明の分波器を横方向か 【課題を解決するための手段及び作用】図1は、本発明 5見た断面図である。

の反射率は適度に定められるべきものである。しかし、 ここでは、説明の更宜のために、反射面12、13のい [0017] 本発明においては、間隔4をおけて2つの 反射面12、13を平行に配置する。反射面12、13 ន

ずれか一方の反射率がほぎ100%であり、他方は数% の透過率を有する、あるいは反射率が100%より小さ く反射面 1 2から光の一部を透過させるように構成され ているものとする。 [0018] ただし、反射面12、13のうち、どちら を反射率がほぼ100%を有するように構成するかは任 意であり、例えば、反射面13が数%の透過率、あるい せるような反射率を有し、反射面12がほぼ100%の は100%より小さく反射面12かち光の一部を透過さ 反射率を有するように構成してもよい。

[0019]図1においては、反射面13がほぼ100 %の反射率を有し、反射面12が100%より小さい反 射率を有して光の一部を透過させるように構成されてい ることとして説明する。

8

[0020] 反射面12の一部には光をほとんど、ある いは全く反射しない照射窓11を設けるようにして、こ は、必ずしも必要ではないが、光の損失を考えると設け こから光を入射するようにしてもよい。この原則窓11 ることが望ましい。 [0021] 入射光10は、シリンドリカル・レンズ等 を用いて 1 線分上に集束されるようになっている。 この ようにシリンドリカルレンズ等によって光が堪光させち れる根分のことを、以下焦線と呼ぶ。同図に1で示され 5点は入射光10の焦線を積から見たものである。

[0022] なお、同図の場合、焦線;は照射窓11が **数けられている面内に存在することを仮定して記載して** あるが、実際には焦線は必ずしも照射窓11が設けられ ている面内に存在する必要はない。ただし、このように は根の位置がずれることにより、本発明の彼長分波器の 分波特性に若干の変化を生じる可能性がある。

後、焦線:を軸として放射状に次第に並がっていき反射 面13に達する。反射面13では入射光10はので示さ る。そして、反射面13によって反射され反射面12に 向かう。反射面12は光を一部透過する性質を有してい るのでOから反射されてきた光は一部がO'として外部 [0023] 無線; に収束された入射光] 0は、その れる点(正確には橑)の間の幅にまで光が拡がってい **に**校田される。

討され反射面130ので示される範囲に到達する。同図 [0024] 一方、透過しなかった光は反射面12で反 伏に次第に拡がっていく光線なので、反射面13と反射 面12の間で反射を繰り返しながら次第に光線の幅を拡 より明らかなように入射光10は焦線;を軸として放射 げていく。これは、中の間の間隔よりものの間の間隔の 方がより並がっていることによって示されている。

hた光の内、反射面12で反射された光は2つのので示 [0025] 同様に、〇かち反射された光は反射面12 で反射されると共に、一部がの、として外部に放出され 5. 以下同様に、ので反射された光の内、反射面12で 支射された光は2つのので示される範囲で、ので反射さ

される反射面13上の範囲で反射される。

初平9-43057

€

(0026)それぞれの及びので示される範囲で反射さ れた光は反射面12で反射されるとともに、一部が

の、、の、として外部に放出される。このように、反射 面13と反射面12との間では何回も反射が行われ(多 虹反射)、反射されるごとに反射面12かち一部の光が 外部へ放出される。外部に放出された光の、~の、等は 数長の光からなる光束は、異なる進行方向を有し、反射 互いに干渉しあい、光状を形成するようになる。異なる 面12から異なる角度で放射される。

であり、反射面12、13がなかったとしたときに、焦 【0027】図2は、本発明の多重反射の原理を同等な モデルに置き換えたものである。 旗線 i から放出された 光は反射面13で反射されるが、反射面13は放と同じ Oから反射面12、13の凹隔dの2倍だけ触れた焦線 回多重反射を行った光 (反射面12で反射され、再び反 封面13で反射されて外部に放出された光)は、焦線; した光は焦線;2から、3回多班反射した光は焦線;3 から、4回多重反射した光は焦根;4からそれそれ故出 から放出された光と同等である。回様に、2回多重反射 模:0から光が放出された作用と同等である。また、 された光と回等である。 2

される光は、焦線 11から焦線 14 にいくに従って、次 を繰り返して外部に放出される光は、反射を繰り返す毎 に強度が弱くなっていくので、それぞれの焦极から放出 【0028】とこで、実際には集段;から放出され反射 **類に光の強度が弱くなっていくようになっている。**

与明らかなように、それぞれの焦償から放出される光は [0029]また、焦袋:0~i4のそれぞれの国際は 常K反射面12、13の間隔dの2倍K等しい。 同図か 焦線;から放出される光が複数の波長の光を含んでいた 並がる光であるので多くのフーリエ成分、すなわち波長 とする。焦煅;から放出される光はある角度で放射状に が同じ光に関して多くの異なる進行方向を持った光を含 むことになる。光が弦め合う条件式は、波長を入、反射 面12、13間の間隔をd、反射面12、13に垂直な 方向を0. としたときの光の進行方向の角度を8とする 互いに重なり合っており、互いに干渉しあう。ここで、

とることによって、彼長入の光が出引する方向8が決定 て、 dと λ が一定であるとすると、mがある特定の値を と表せる。 ここで、 mは圧衝の整数である。 したがっ 2d×cosθ=mλ 6

[0030]反射面12、13間に入射する光が投数の 彼長を含む平行光線であったばあいには、全ての波長の 光が同一の方向を目指して進んでいくので(8が決定さ れているので)、式(1)を消たす波長の光は多くとも 1つに限られてしまう。したがって、この場合は2つの 彼長を分離することができるだけである (これはファブ されることになる。 ន

にそれぞれの波長の光が異なる進行方向を持つ光の重ね 出されて光泉を形成するように作用する。しがって、複 [0031] 一方、本発明の場合は、焦線 1 から放出さ れる光がある角度をもって放射状に拡がる光であるため 合わせとなっているので、式(1)において、入が異な る光は式(1)を消たす進行方向りを持つ成分だけが抽 数の異なる彼長の光を含む光を彼長毎に異なる方向へと 故出し、一度に複数の光の分波を行うことができる。

同図においては、例えば厚き100ヵmのガラスの平行 平板30の両面に、反射率の高い多角の干渉膜である反 射多階膜31、32を施してある。ことで、平行平板3 0の厚さdとしては、50~100um程度が実用的に (実施例)図3は、本発明の一実施例の斜視図である。

[0032]

て95%程度とする。しかし、他方の面の反射率は特に 小さい値であれば特に問題はない。従って、便宜上、他 95%でなくてはならないわけではなく、人好した光が 反射多階以31、32の間で十分な多単反射を行うこと ができればよく、実用上は80%以上で100%よりも [0034]また、反射多層膜31と32のどちらをほ [0033]反射多層膜31、32の垂直入射ねよびそ れに近い入射角度、例えば20度以下の光に対する反射 事は、一方の商に対してほぼ100%、他方の画に対し 方の回の反射率は85%として説明する。

[0035] 反射率が95%の干渉膜を施した反射多層 ぼ100%の反射率を有する膜とするかは全くの任意で あるが、図3においては、反射多階膜32の方をほぼ1 00%の反射率を有する構成としている。

8

頃31の一部に、この干渉戯の代わりに反射率ほば0% 人射光の照射窓33とし、反射多層膜31と照射窓33 [0036]入射光は、例えば、不図示の光ファイバか 5川で、コリメートレンズ34で平行光磁に変換された のも、シリンドリカルレンズ35によって100様分の の干渉殿(あるいは反射防止閥)を摘した領域を設け、 の境界を直線となるように構成する。

光軸の掻きθ, Zn (a+p) /4d 上に蛍光される。このように光が煤光される緑分のこと*

CCで、nは平行平仮30の屈折率である。図3に戻っ 40 た本売明の実施的についての説明をする。

[0042] 平行平仮30の中に入った光は多重反射を 繰り返すが、その際、反射率95%の反射多層膜31の 5. 平行平板30中から外へ出た各透過光は相互に干渉 し、1本の光束37を作るが、その光束37の進行方向 1点に集光すると、その集光位配は波聂変化に伴って直 は光の波長に依存する。その結果、光東37をレンズで 段上を移動する。この直線上に複数の受光器40を配列 面で反射する毎に5%の光がこの面を透過して外へ出

*を焦線36と呼ぶことにする。光を1点に集光しないの は、反射多層膜31と照射窓33の境界に平行な方向に は多血反射による干渉が生じないからである。

多層膜31と照射窓33の境界に平行でしかも十分に近 くなるように設定する。また、この入射光38の光軸は 垂直入射から傾け、反射多層脳31、32間を1往復し [0037]との集光された光は入射光38として反射 率がほば0%の上配照射窓33の部分を通って反射多層 頃31、32間に入る。この際、焦線38は、上記反射 て低かった光が照射窓33から端れ出ないようにする。 2

仮30の中をその厚さの2倍の距離進んだ位置における 光線の太さと入射光38の集光位置(すなわち、焦線3 dの2倍との比に、ガラスの屈折率を乗じたものより大 【0038】この時の入射光軸の傾き角は、光が平行平 6)における光紋の太さの平均値と、ガラス平板の厚さ

[0039]図4 (a)を用いて上記入射光軸の傾きに ついて説明する。光が平行平板30の中をその厚さの2 **倍の距離進んだ位置における光線の太さとは、図4** きくなるようにする。

(a) でaと示されている。このaは、例えば入射光3 8 がシリンドリカルレンズによって烘光されたものであ る場合、光の回折限界程度の大きさである。そしてこれ 5の平均値とは、同図のcで現される長さが0のときの 点8, , b, の間の距離を現す。このこが0の時が、入 (a) においては、bで現される光線の幅である。入射 光38の集光位置即ち焦線38での光線の太さとは図4 光軸41が反射多層膜31が設けられている面と交わる 射光38が反射多層膜32から反射して戻ってきたとき 照射窓33から涸れ出さない最小の条件である。

た値から得られ、特化、θ、が小さいときにはこの値に 3から竭れ出さないための光輪41の傾きの条件は、屈 **所率の異なる媒体に光が入射すると屈折することを考慮** の間の距離を平行平板30の厚さ dを2倍した値で割っ まば等しいことが知られている。 従って、人射光38が 反射多層膜32で反射されて戻ってきたときに照射窓3 [0040] ところで、光袖の傾きり, は点a, 、b, して、以下の式のように表せる。 [0041]

. . . . (2)

[0043] 図4(b)を用いて光束の進行方向が光の 彼長によって異なることをより詳しく説明する。 先に述 べたように、本発明においては複数の波長を含む光を棋 協38に集光させ、その後無限38を軸にして放射状に **並がるように反射面44と45の間に入射させる。ここ** で、反射面44は反射多層膜31化、反射面45は反射 8個膜32に対応する。

【0044】複数の波長を含んだ光を焦線38から一定 り、この光は個々の波長の光がさまざまな進行方向を持 の角度で放射状に拡がる光として入射させることによ

路

fれば、波長毎に異なる受光器40で受けることができ

って重ね合わされたものになる。すなわち、多くのフー ノエ成分を含むものとなる。

になる。 同図には、 この内の3つの異なる進行方向を有 一波長の光が様々な角度で平行平板30に入射すること (0045) そこで、一つの波長の光に注目すると、 する光が図示されている。

5ためには、前記式(1)を満たす必要があるが、平行 平板30の厚きdが固定されていた場合、ある彼長の光 [0046]平行平板30内で多選反射した光が外部に 故出され干渉を起こし、互いに強め合って光東を形成す 60光束を形成するようにするためには、入射角度が条件 を潜たすようにならなければならない。特に、人射光が 平行光線であった場合は、光の進行方向は一定に定めら hるので、入射角と平行平板30の厚きdによって決め られる彼母の光しか光束を形成することはできない。

【0047】しかしながら、本発明のように、人射光を 焦線36を軸として放射状に拡がる光を用いることによ り、同一波長の光でも異なる進行方向の光の集まりとす ることができる。すなわち、入射角を一々設定しなくて は、干渉によって互いに強めあう条件を満たす角度で入 も、これら異なる進行方向を有する光の集まりの中に 射する光が必ず存在する。

2

[0048] 回図にしめされるように、同一波長の光が 母、母、母の角度で一度に入射することになる。このう ちのの光が互いに強めあう条件を満たす場合、のとのの 光は条件を消たさないので外部に放出された後は干渉に よって弱め合って光束をつくらない。 一方のの光は互い に強め合うために、ゆの矢印で示される方向に光束を作 [0049]また、他の波長の光の場合には、O. OO 光が条件を満たさず、〇の光が条件を溜たすということ が起こる。すると、この波長の場合には、図の矢印で示 される方向に光束を作ることになる。

買許することができるので、分数角も大きく取ることが できる。すなわち、回折格子の場合は分散角を大きくす [0050] このように、複数の異なる波長の光が重ね 合わされて入射された場合は、前述したように、波長毎 に異なる方向に光束を作ることになる。以上のような作 用により、波長多取信号を異なる波及毎に同時に分波可 能である。更に、分散角は平行平板30の厚きdにより るために、凹凸の間隔を狭くしなければならないが、間 隔の狭い四凸を精度良く製造するのは困難であり、分散 角を大きくするには限界が生じる。一方、本発明は、平 行平板30の厚さを変えるだけでよいので、製造するの [0051]また、平行平板30を平行に作るだけで、 が容易であり、分散角を大きくすることができる。

存四年9-43057

9

【0052】図5は、本発明の他の実舫例の構成図であ る。同図においては、反射多甾膜31'の反射串がほぼ したものである。との場合、作用は図3、4に関して述 | 0 0 %であり、反射多層版32.の反射率が95%と へたものと回じであって、異なるのは光の多姐反射によ って生じる光東37.が入射光38とは反対側に形成さ れている点である。

Œ

【0053】 すなわち、コリメートレンズ34で単行光 保にされた光はシリンドリカルレンズ35によって焦燥 36化集光する入射光38となる。平行平板30に入射 した入射光38は反射多周膜31'、32'の間で多瓜 反射を超こす。本英施例では、反射多階膜31。は反射 **卑がほぼ100%であるので、反射多困膜31。側かち** は光は放出されず、反射多層膜32、の側から放出され る。故出された光は互いに干渉しあい進行方向がその故 長に依存した光束37、を形成する。これをレンズ38 では光し、 史光器40で検出する。 ន

行平板30をガラス等で形成し、その両面に其登恭着や イオンスパッタリング毎の方法で反引数60及び61を 形成する。このとき、反射膜60と81のうち、どちら かを反射率がほば100%に近い値になるようにすると ともに、もう一方を反射率が100%より小さく、好ま [0054]図6は本発明の分波器の製造方法の一例で ある。まず、図6(8)では、なるへく平行性のよい平 しくは80%以上になるように形成しておく。

[0055]次化図6(b)においては、反射数80と は、反射版60の側が削り取られているが、削り取る面 はいずれでもよく、反射膜60、61の反射率の設定に より図3の実施例のような構成になるか、図5の実施例 61のいずれか一方の一部を削り取る。回図において のような構成になるかが変わるだけである。

8

ある。すなわち、この反射膜が削り取られた部分は、図 [0058] また、この削り取る方法としては、エッチ ング等を用いても良いが壊戯的に削り取るのが最も安価 平行平板30をあまり傷つけないように注意する必要が 3あるいは図5の英値例の照射窓33になる部分である ので、あまり偽が大きいと光の入時に際して不要な散乱 **に行うことができる。但し、徴核的に削り取る場合に、** 光を多く生じる可能性があるからである。

[0057]なお、照射窓の部分を形成するのに上記方 法のように反射膜を最初に形成しておき削り取るという 方法を用いなくても良く、予め照射窓に対応する部分に マスクを描しておき、この部分だけ反射膜が形成されな いようにすることも可能である。

[0058]図6(c)の工程では、反射膜60とこれ が削り取られた部分の上に透明な接着剤62を塗る。 こ の接着剤62は、照射窓の部分にも強ちれるためなるペ く光の損失を生じないものが好ましい。

【0058】図6 (d)では、透明な接着剤62の上か ら透明な透明保護仮63を取り付け、反射殴等が傷つく

奥施例の構成は、光の偏光状態による特性の変化も少な 多重反射された光の位相差を正確に所定の値だけずらす

ことができるので、耐収境性にも優れている。また、

:

1 1日にかなり

持関平9-43057 S

のを保護するようにする。この時、透明な接着剤60は 反射債60を削り取ったためにてきた段差を埋めるよう に充満するので、透明保護板63を平行平板30の上面 に平行に接着することができる。

することがなく、接箸剤や保護板は必ずしも透明なもの 封膜 8 1 を保護するために、こちらの面にも接着剤を塗 [0080]また、同様に、図示されてはいないが、反 って、保護板を取り付けることも可能である。なお、同 図の場合、反射膜61が反射率約100%なちば、照射 窓33が設けられていないので、光がこちらの面を透過

[0061] 更には、光が入引あるいは出射する面の透 図6 (d) の透明保護板63には、この面に照射窓33 明保護板には、反射防止脳を設けるのもよい。例えば、 があることから、反射防止膜64が設けられている。 でなくてもよい。

入射される。この光には波長の異なる複数の撤送彼にの がるように光ファイバ等から出てくるので、光ファイバ [0062]図7は、本発明の彼長分波器73を導波路 型分波器に適用した一構成例の図である。 基板65上に ている。 入財導波路70からは光ファイバ等からの光が せられた光信号が含まれている。一般に光はその幅が拡 苧からの入引光はコリメートレンズ7 1 によって平行光 はニオブ酸リチウム等で形成された導液路等が設けられ 做に変換される。

2

[0083] 平行光線に変換された入射光はシリンドリ カルレンズ72によって、阿図の図面の表面に平行な方 向にのみ集光させられる。そして、同図の図面の表面に 垂直な魚袋上に集光させられた入射光は、照射窓76か 5波長分波器73に入引させられる。

[0064] 本様成例においては、彼長分波器73は前 る。また、平行平板79で多重反射した光の光東は照射 窓76と反対側に出射するように構成されている。 すな わち、反射数75の反射率は約100%であり、反射脚 74の反射率は100%よりも小さく、平行平板79内 で多重反射する光の一部を外部に出射するように構成さ 他方の面に反射膜75と照射窓76とが設けられてい 述したように平行平板78の一方の国に反射膜74が、

7によって集束される。そして、図7に図示されている [0085] 波長分波器73を通過した光は波長毎に異 なる進行方向に向かって光束となって出射し、レンズフ ように、レンズ17によって集光させられることによっ て、異なる角度で被長分波器73を出てきた光は、異な る点に集光する。すなわち、例えば、彼長入」、入1、

ぞれ単一の波長の撤送彼にのせられた光信号を導くよう 18が複数設けられている。各受光導波路78は、それ は、波長毎に集光された光を受光するための受光導波路 [0088]レンズ77によって光が供光される場所に

λ, のそれぞれの光は、図示されているような点に集光

その後段に各受光導波路78に1対1に対応して散けら **れるフォトダイオード等の受光器により検出され、信号** [0067] 各受光導波路78によって導かれる光は、 に設けられており、波長多重方式によって送られてき た、各チャンネルの信号を同時に受光する。

[0068]なお、上起実施例においては、焦損は照射 **窓の表面内に含まれることを仮定して説明したが、必ず** しもこれに限られるものではなく、焦線が平行平板の中 に入り込んでいても、また照射窓の手前で入射光が焦線

として処理される。

[0069]また、上記実施例においては、2つの反射 **に集光される構成であってもよい。**

유

が、必ずしもこの構成に限られない。ずなわち、例えば、両方の反射多菌膜の反射率を85%としたばあいに から外部に光線が漏れ、干渉の結果、進行方向が波長に 多層膜の一方の反射率がほぼ100%の構成のみ示した も同様の作用が得られる。この場合、両方の反射多層膜 **依存した光束を平行平板の両側に形成することになる。** [0000]

[発明の効果] 本発明によれば、複数の波長の光を一度 に分離することができるので、光多重方式の光通信にお ける受信機を小型化することができる。

に対する分散角が大きいので、多重度の大きい光多重運 [0071]回折格子を用いた受信器に比べ、波長変化 信においても光信号を正確に受光することができる。ま た、構造が単純で、安価となりうる。更に、多取反射を 使うため、各光線の位相差が常に一定しており、特性が 安定であり、回折格子を用いた場合には避けることので

[0072] また、アレイ導波路格子と比較しても、様 造が単純であると共に、多重反射を利用することによる きない個光による特性の変化を小さくできる。 特性の安定性が良く、耐環境性に優れている。

유

【図画の簡単な説明】

[図1]本発明の原理を説明する図(その1)である。 [図2] 本発明の原理を説明する図 (その2) である。 【図3】本発明の一実施例を示す斜視図である。

【図4】 奥施例の構成及び作用を説明する図である。 【図5】本発明の他の実施例を示す斜視図である。

【図8】本発明の波長分波器の製造工程を示す図であ

5

[図8] 従来の波長分波器を説明する図 (その1) であ [図7] 本発明の波長分波器を導波路型波長分波器に適 用した正面図である。

【図9】従来の彼長分波器を説明する図(その2)であ

[作号の説明] 10,38

照射窓 反射面 50 12, 13, 44, 45 11, 33, 78

// ・・・ 川田中にくくくく・・ロー・・ 四日の本有事な

四次八人名次 28次1条人 68条件录

C9 X14

(P)

特開平9-43057

£

從東の波長分汲點を說明 15回 (Po1)

[図7]

[⊠8]

[発行日] 平成14年4月28日 (2002. 4.26)

[公開番号] 特開平8-43057

[公顷日] 平成8年2月14日 (1987, 2, 14)

[年通导数] 公园特許公银9-431 [出頭番号] 特類平7-190535

(国院特計分類第7版)

3/26

ខ្ល

(FI)

3

3/26

[提出日] 平成14年1月25日(2002.1.2 (手統施正性)

【補正対象借拠名】明細當 (手統補正1)

【相正対象項目名】特許請求の範囲

[楠正方法] 変更

(特許額水の範囲) 祖正小容)

上もしくはその近傍に面に平行に設定される線分からそ 【間本項1】相対する第1及び第2の互いに平行な反射 泊を持ち、数第1及び第2の反射面のいずれか一方の面 の段分に独直方向に放射状に広がる光線を、前記第1、

2のいずれか一方の反射面を透過して光を出力し、それ 第2の反射面間に入射させ、多虫反射の毎に第1及び第 ちの干渉の結果、進行方向が光の波長により異なる光東 【請求項2】前記第1及び第2の反射面が、透明体より を形成することを特徴とする彼長分波器。

なる半行平板の相対する2つの面に形成されることを特 [請求項3] 前記半行平板を形成する前記透明体はガラ 散とする請求項1配銀の液長分波器。

【請求項4】前配光束を築光するレンズと、散光束の集

光位置に果光された光東を受ける受光紫子または光伝燈 路とを更に協えたことを特徴とする請求項 1 ~3 のいず

[副本項5] 前記放射状に拡がる光線は、光導波路内を **伝散する光線から形成されることを特徴とする絹水項 1** ~4のいずれか1つに記観の波長分波器。 **れか1つに記載の波取分波器。**

[動求項6] 前記放引状に並がる光線は、3次元空間内 の平行光線から1方向のみにレンズ機能を有する紫子に よって作られる都求項1~5のいずれか1つに記載の数

は、シリンドリカルレンズであることを特徴とする間状 [語水瓜7] 煎記1方向のみにレンズ粒部を有する聚子 页6 配載の被長分数器。 - 韓 1-

F 4 1 ((((. .

受射率が実質的に100%であり、他方の反射率が10 【間水項9】前記第1及び第2の反射面のうち、反射率 【間水項8】前配第1及び第2の反射面のうち、一方の 0%よりも低く80%よりも高いことを特徴とする請求 頃1~7のいずれか1つに記載の波長分波器。

入射させるとともに、較光が2つの反射面間を1柱復し が実質的に100%の反射面上の一部に、反射が無視で きるほどに反射率が低い部分を設け、その部分より光を **に、散光の光釉を前記反射面に対して垂直から傾けたこ** と際に敢反射率の低い部分から光が漏れ出さないよう とを特徴とする請求項8配載の波長分波器。

射面間を1往復した際に数反射率の低い部分から光が福 串が100%より低く80%より高い反射面の上の一部 その部分より光を入射させるとともに、眩光が2つの反 **h出さないように、政光の光釉を前配反射面に対して垂** 「請求項10] 前記第1及び第2の反射面のうち、反射 直入射から傾けたことを特徴とする請求項 8 記載の波長 に、反射が無視できる程度に反射率が低い部分を設け

【請求項11】光を協分上に集光させ、散假分が第1及 **率の低い部分の上にくるように構成したことにより、前** 記算1及び第2の反射面間に光を入射させることを特数 少なくとも互いに平行な2つの面を有する平行平板の数 前記反射膜のいずれか一方の反射膜の一部に反射率の低 び第2のいずれか一方の反射面の一部に殴けられた反射 (闘水項12)異なる波長の光を異なる進行方向を有す 互いに平行なそれぞれの固にそれぞれ反射膜を形成し、 る光束に分離する波長分波器の製造方法において、 とする請求項9または10記載の波長分波器。

少なくとも前記反射率の低い部分が形成された面の上に 透明体を形成することを特徴とする被長分波器の製造方 い部分を形成し、

一部を機械的に削り取ることにより形成されることを特 散とする請求項12記載の波長分波器の製造方法。

ることで該算2の反射面を透過して放射状に放出された 光が互いに干渉し、光分波を行うことを特徴とする波艮 りながら多瓜反射するように光を収収するレンズを殴け

請求項14]前記反射率の低い部分は、前配反射膜の 一部をエッチングにより取り除くことにより形成される ことを特徴とする請求項12配載の波長分波器の製造方 【請求項15】前記反引率の低い部分は、マスキングに より予めこの部分に反射酸を形成しないようにすること により形成されることを特徴とする静水項12記載の故

りながら多項反射をするようにし、眩抑2の反射面を透 過して放射状に放出された光で互いに干渉させ、光分波 光を酸第1の反射面と酸第2の反射面間で放射状に広が 光の一部を透過し、他は反射する第2の反射面を設け [請求項17] 光を反射する第1の反射値と、

を行うことを特徴とする波長分波方法。

改第1の反射面と該第2の反射面間で光が放射状に広が 光の一部を透過し、他は反射する第2の反射固と 【韓宋項16】光を反射する第1の反射面と、

長分波器の製造方法。

-拉 二二

THIS PAGE BLANK (USPTO)