

High-capacity hypothesis spaces in modern statistical learning Master thesis by Luca Wellmeier

Supervisor: Prof. Marco Formentin

Co-supervisor: Prof. Ernesto De Vito (MaLGa | UniGe)
Co-supervisor: Prof. Lorenzo Rosasco (MaLGa | UniGe)

Statistical learning theory

The theoretical foundation of machine learning.

$$Y = f^*(X) + \varepsilon$$

- ightharpoonup Random input variable X taking values in some measurable space \mathcal{X} .
- Random *output variable* Y taking values in \mathbb{R} .
- ▶ Regression function $f^*: \mathcal{X} \to \mathbb{R}$.
 - Usually very complicated and unknown!
- ightharpoonup Additive noise term ε .
 - mean $\mathbb{E}[\varepsilon] = 0$, variance $\sigma^2 = \mathbb{E}[\varepsilon^2] < \infty$ and ε is independent of X.

Goal: Find *estimator* f so that $f \approx f^*$

$$Y = f^*(X) + \varepsilon$$

Need performance measure: The *risk* (w.r.t. the squared loss) of a proposed estimator $f: \mathcal{X} \to \mathbb{R}$ is defined as

$$R(f) := \mathbb{E}\left[(Y - f(X))^2 \right] = \mathbb{E}\left[(f^*(X) - f(X))^2 \right] + \sigma^2.$$

- lacktriangle Choose a space ${\mathcal H}$ of functions ${\mathcal X} o {\mathbb R}$; the hypothesis space.
- Our goal: solve

$$\min_{f \in \mathcal{H}} R(f)$$

- **Problem**: Hopeless... computing true risk requires knowing f^* .
- ▶ **Idea**: learn *f** from observations instead!

- ► Let $Z_1 = (X_1, Y_1), Z_2 = (X_2, Y_2),...$ be IID copies of Z = (X, Y)
- ► Consider instead the empirical risk

$$\hat{R}(f) = \hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

Principle (Empirical Risk Minimization (ERM))

Learning methods should be designed so to produce (approximate) solutions of the problem

$$\min_{f \in \mathcal{H}} \hat{R}(f)$$

Is ERM any good? A classical defect bound

- \triangleright \mathcal{X} a compact set and \mathcal{H} compact subset of C(X)
- ▶ Assume there is M > 0 such that a.s. $|Y f(X)| \le M$ for all $f \in \mathcal{H}$
- ▶ For all $\varepsilon > 0$

$$\operatorname{\mathsf{Prob}}\left\{\sup_{f\in H}|\hat{R}(f)-R(f)|\leq \varepsilon\right\}\geq 1-2C_1\exp\left(-\frac{n\varepsilon^2}{4(C_2+M^2\varepsilon/3)}\right)$$

- $C_1 = C_1(H, \varepsilon, M)$ is the minimum number of balls of radius $\varepsilon/(8M)$ needed to cover H
- $C_2 = C_2(H) = \sup_{f \in H} Var[f(X) Y]$

- ▶ larger hypothesis spaces \implies smaller ε possible but confidence gets worse \implies tradeoff!
- Let \hat{f} be a learned estimator. Decompose risk according to tradeoff:

$$\mathbb{E}[R(\hat{f})] = \mathbf{B}^2 + \mathbf{V} + \sigma^2$$

with

$$\mathbf{B}^2 = \mathbb{E}_X \left[\left| \mathbb{E}_{Z_1,...,Z_n} [\hat{f}(X)] - f^*(X) \right|^2 \right],$$
 $\mathbf{V} = \mathbb{E} \left[\left| \hat{f}(X) - \mathbb{E}_{Z_1,...,Z_n} [\hat{f}(X)] \right|^2 \right].$

high bias corresponds to underfitting, high variance to overfitting

Regularization

 Classical cure: regularization. Instead of minimizing the empirical risk, minimize

$$\hat{R}(f) + \lambda ||f||_{\mathcal{H}}^2$$
.

- norm in ${\cal H}$ interpreted as complexity measure of an estimator
- additional term acts as complexity penalty \implies minimizing favors simplier solutions
- Limits the "reachable" size of the hypothesis space

Enter: deep learning

 highly over-paramterized architectures that perform best even when (almost) interpolating noisy data

ightharpoonup classical bounds become void \Longrightarrow new perspectives needed

Reproducing kernel Hilbert spaces

Definition

Let \mathcal{H} be a Hilbert space of functions. If $k \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is such that

- 1. $k_x = k(\cdot, x) \in \mathcal{H}$ and
- 2. for all $x \in \mathcal{X}$ and $f \in \mathcal{H}$ we have the reproducing property $f(x) = \langle f, k_x \rangle$, then k is a reproducing kernel of \mathcal{H} and \mathcal{H} is called reproducing kernel Hilbert space (RKHS).

Important properties:

- ightharpoonup Equivalent definition: the evaluation functionals in ${\mathcal H}$ is continuous.
- Reproducing kernels are unique.
- ▶ All Gram matrices $[k(x_i, x_i)]_{ii}$ are symmetric and PSD.

Kernel ridge(less) regression

- ▶ sampling operator $\hat{S}: \mathcal{H} \to \mathbb{R}^n$ defined component-wise by $(\hat{S}f)_i := f(X_i)$
- ightharpoonup adjoint is the *realization operator* $\hat{S}^*c = \sum_{i=1}^n c_i k_{X_i}$
- ► Representer theorem: any solution to $\min_{f \in H} \hat{R}(f) + \lambda \|f\|_{\mathcal{H}}^2$ admits the explicit form $f = \hat{S}^*c$ for some $c \in \mathbb{R}^n$
- Least squares theory allows us to give explicit solutions

$$\hat{f}_{\lambda} = (\hat{\Sigma} + \lambda I)^{-1} \hat{S}^* \hat{Y}$$
$$= \hat{S}^* (\hat{K} + \lambda I)^{-1} \hat{Y},$$

with covariance $\hat{\Sigma} = \hat{S}^*\hat{S}$ and kernel matrix $\hat{K} = \hat{S}\hat{S}^*$ (gram matrix).

Kernel methods as a study proxy

- Very complicated hypothesis spaces (e.g. certain Sobolev spaces).
- ► No iterative training needed: can apply linear least squares.
- ► Interpolation works well in many cases: e.g. Laplacian kernel $k(x,x') = \exp(-\|x-x'\|)$

- ► The neural tangent kernel encodes the learning behavior of gradient descent in infinite-width ReLU neural nets
 - same RKHS as the Laplacian kernel (a Sobolev space)!

Mercer kernels on the torus

- ▶ the *d*-dimensional torus $\mathbb{T}^d := \mathbb{R}^d/\mathbb{Z}^d$ parameterized by $[0,1]^d$
- ▶ ONB of $L^2(\mathbb{T}^d)$:

$$\mathbf{e}_{\mathbf{k}} \colon \mathbb{T}^d o \mathbb{C}, \mathbf{x} \mapsto \exp(2\pi i \mathbf{k} \cdot \mathbf{x}) \quad \mathbf{k} \in \mathbb{Z}^d$$

toral Mercer kernel are of the form

$$k(x, x') = \sum_{\mathbf{k}} \lambda_{\mathbf{k}} \mathbf{e}_{\mathbf{k}}(x') \overline{\mathbf{e}_{\mathbf{k}}(x)}.$$

such that

$$\lambda_{\boldsymbol{k}} \geq 0, \quad \lambda_{\boldsymbol{k}} = \lambda_{-\boldsymbol{k}}, \quad \sum_{\boldsymbol{k}} \lambda_{\boldsymbol{k}} < \infty.$$

- ightharpoonup Examples (d=1):
 - Dirichlet kernel: $\lambda_k = 1$ for all $k \in \Lambda = [-R, R] \cap \mathbb{Z}$.
 - Sobolev kernel: $\lambda_k = |k|^{-2s}$ for real $s > \frac{1}{2}$

Explicit risk decomposition

If $f^* \in \mathcal{H}$, we have the following risk decomposition for toral Mercer kernels and kernel ridge(less) regression

$$\mathbb{E}[R(\hat{f}_{\lambda}) \mid Z_1, \dots, Z_n] = \hat{\mathbf{B}}^2 + \hat{\mathbf{V}} + \sigma^2$$

with bias term

$$\hat{\mathbf{B}}^2 = \|\Sigma^{1/2} \hat{Q}(\lambda) f_H\|_{\mathcal{H}}^2, \qquad \hat{Q}(\lambda) = I - (\hat{\Sigma} + \lambda I)^{-1} \hat{\Sigma},$$

and variance term

$$\hat{\mathbf{V}} = \frac{\sigma^2}{n} \operatorname{trace} \left(\Sigma (\hat{\Sigma} + \lambda I)^{-2} \hat{\Sigma} \right).$$

Double descent

