2021-2022 代数拓扑期末烤试

郑弃冰 左岸孤单人, 斯文帅中年

2022年4月24日

 $-(44 = 22 \times 2)$ 判断下述命题的正确性.

本题基本是在老师给的期末复习题中抽取,如下所示:

1.
$$\left(\tilde{C}\left(X\right)\times\tilde{C}\left(Y\right),\left(X\times\tilde{C}\left(Y\right)\right)\cup\left(\tilde{C}\left(X\right)\times Y\right)\right)\cong\left(\tilde{C}\left(X\ast Y\right),X\ast Y\right)$$

2.
$$(D^m \times D^n, (S^{m-1} \times D^n) \cup (D^m \times S^{n-1})) \cong (D^{m+n}, S^{m+n-1})$$

3.
$$(S^m \times D^{n+1}) \cup (D^{m+1} \times S^n) \cong S^m * S^n$$

4.
$$(\partial X \times Y) \cup (X \times \partial Y) \cong \partial (X \times Y)$$

5.
$$(S^m \times D^{n+1}) \cup (D^{m+1} \times S^n) \cong S^{m+n+1}$$

6.
$$S^m * S^n \cong S^{m+n+1}$$

7.
$$(X \sqcup Y)^* \cong X^* \vee Y^*$$

8.
$$(\mathbb{R}^m \sqcup \mathbb{R}^n)^* \cong S^m \vee S^n$$

9.
$$(X \times Y)^* \cong X^* \wedge Y^*$$

10.
$$S^m \wedge S^n \cong S^{m+n}$$

11.
$$(X * Y) \setminus X \simeq Y$$

12.
$$S^{m+n+1} \setminus S^m \simeq S^n$$

13.
$$(X * Y) \setminus (X \sqcup Y) \cong X \times Y \times (0,1)$$

14.
$$(X * Y) \setminus (X \sqcup Y) \simeq X \times Y$$

15.
$$S^{m+n+1} \setminus ((S^m, 0) \cup (0, S^n)) \simeq S^m \times S^n$$

16.
$$(X * Y) \setminus \left(\frac{1}{2}X + \frac{1}{2}Y\right) \simeq X \sqcup Y$$

17.
$$S^{m+n+1} \setminus \frac{1}{\sqrt{2}} (S^m, S^n) \simeq S^m \sqcup S^n$$

18.
$$f: X \to Y, \tilde{C}_f \setminus [0, X] \simeq Y$$

19.
$$(S^m \times S^n) \setminus * \simeq S^m \vee S^n$$

20.
$$\mathbb{RP}^{n+1} \setminus * \simeq \mathbb{RP}^n$$

21.
$$S(l_1 \cdots l_n) \setminus 0 \simeq \vee_n S^1$$

22.
$$T(x_1,...,x_n;r_1,...,r_g)$$
 * $\simeq T(x_1,...,x_n;r_1,...,r_{g-1})$ * 为 r_g 对应锥的顶点

- 23. 已知 $f: X \to Y$ 零伦, $\tilde{C}_f \simeq \tilde{S}(X) \vee Y$
- 24. $f: S^m \to S^{m+n} (n > 0), \tilde{C}_f \simeq S^{m+1} \vee S^{m+n}$
- 25. $D^m \cup S^{m+n} \simeq S^m \vee S^{m+n} (n > 0)$
- 26. $(S^m \times S^n)/S^m \simeq S^{m+n} \vee S^n$
- 27. A 为 X 非退化子空间, $X \cup CA \simeq X/A$
- 28. $S^{m+n}/S^m \simeq S^{m+1} \vee S^{m+n} (n > 0)$
- 29. K 为紧 T_2 空间 X 的非退化紧子空间, $(X\backslash K)^* \simeq X/K$
- 30. $((S^m \times S^n) \setminus (0, S^n))^* \simeq S^{m+n} \vee S^m$
- 31. K 为 S^n 的非退化紧子空间, $(S^n \backslash K)^* \simeq S^n \vee \tilde{S}(K)$
- 32. $(S^{m+n} \setminus S^n)^* \simeq S^{m+1} \vee S^{m+n} (n > 0)$
- 33. K 为局部紧 T_2 空间 X 的非退化闭子空间, $(X\backslash K)^* \simeq X^*/K^*$
- 34. $(\mathbb{R}^{m+n}\backslash\mathbb{R}^n)^* \simeq S^{m+1} \vee S^{m+n} (n>0)$
- 35. K 为局部紧 T_2 空间 X 的非退化紧子空间, $(X\backslash K)^* \simeq X^*/K^*$
- 36. $(\mathbb{R}^{m+n} \setminus S^m)^* \simeq S^1 \vee S^{m+1} \vee S^{m+n} (n > 0)$
- 37. $f: X \to S^n (n > 0) \Rightarrow f$ 零伦
- 38. $[S^m; S^{m+n}]$ (m, n > 0) 群结构仅有一种
- 39. $\deg\left(S^n \xrightarrow{\cong} S^n\right) = \pm 1$
- 40. 可逆线性变换 $A \in \mathrm{GL}(n,\mathbb{R})$ 扩张到一点紧化空间 $S^n = (\mathbb{R}^n)^*$ 上的 $\tilde{A}, \ \deg\left(\tilde{A}\right) = \pm 1$
- 41. $A \in SO(n, \mathbb{R})$ 作用在 $S^{n-1}(n > 1)$ 上 deg(A) = 1
- 42. 将 S^n 坐标按置换 $\sigma \in S_{n+1}$ 重新排列的映射之映射度为 $\operatorname{sgn}(\sigma)$
- 43. $f: S^n \to S^n$, \tilde{C}_f 同伦于某一 $T_n(x; kx)$ $(k \in \mathbb{Z})$
- 44. $\pi_n(X \times Y, (x, y)) \cong \pi_n(X, x) \times \pi_n(Y, y)$
- 45. $\pi_n(S^1 \times S^1, (*, *)) \cong \mathbb{Z} \oplus \mathbb{Z}$
- 46. 射影平面、Klein 瓶是 $S^1 \times S^1$ 的覆盖空间
- 47. 紧空间 B 的覆盖空间 E 仍是紧的 $\Leftrightarrow \pi_1(B)$ 关于子群 $\pi_1(E)$ 的右陪集有限
- 48. 基本群有限的紧空间之任何覆盖空间仍是紧的
- 49. (n-1)-连通的 (n+1) 维 CW 复形同伦于某一 $T_n(S; \{r_\alpha\}_{\alpha\in\Lambda})$
- 50. $T(x_1, x_2, x_3, y; yx_1^3x_2^{-1}x_3^5) \simeq S^1 \vee S^1 \vee S^1$
- 51. $T(x_1, x_2, x_3; x_1x_2x_3, x_1x_2x_3x_1x_2x_3) \simeq S^1 \vee S^1 \vee S^2$
- 52. $T(x; x^4) \simeq T(x; x^2) \vee T(x; x^3)$

- 53. $T_n(x_1, x_2, x_3, y; y + 3x_1 x_2 + 5x_3) \simeq S^{n-1} \vee S^{n-1} \vee S^{n-1}$
- 54. $T_n(x_1, x_2, x_3; x_1 + x_2 + x_3, 2x_1 + 2x_2 + 2x_3) \simeq S^n \vee S^n \vee S^{n+1}$
- 55. $T_n(x; x^4) \simeq T_n(x; x^2) \vee T_n(x; x^3) (n > 1)$
- 56. $T_n(x_1,\ldots,x_n;r_1,\ldots,r_m)$ 之标准型 $(\vee_k S^n)\vee M^n\left(p_1^{k_1}\right)\vee\cdots\vee M^n\left(p_l^{k_l}\right)\vee(\vee_l S^{n+1})$ 中的 (n-k) 是否为群 $\mathbb{Z}(x_1,\ldots,x_n;r_1,\ldots,r_m)$ 最少生成元个数? (m-l) 是否为表示矩阵的秩?

除此之外,还有:

- 1. 映射 $z^2: S^1 \to S^1$ 的映射锥 \tilde{C}_{z^2} 是 \mathbb{RP}^2 .
- 2. 映射 $i: A \hookrightarrow X$ 是嵌入, A 可缩. 是否有 $\tilde{C}_i \simeq X/A$? 若 A, X 是 CW 复形呢?
- 3. 度为 n 的复多项式 p(z) 延拓为 S^2 到 S^2 的映射. 其映射度为? 此结论对 e^z 是否成立?
- 二 $(26 = 2 \times 13)$ 写出下列空间的基本伦型.

三(10)求如下纽结的基本群及一阶同调群.

四 (10) 求 $T(x,y,z,w;r_1,r_2,r_3,r_4)$ 的各阶 CW 复形包腔同调群. (零关系 r 忘了) 五 (10) 考虑 3-单形 $\Delta=\{1,2,3,4\}$,定义等价关系: $\{1,2,3\}\sim\{1,2,4\}$, $\{1,3,4\}\sim\{2,3,4\}$. 求 $X=\Delta/\sim$ 的各阶单纯同调群.