Training models on big data

In this lesson you will learn:

- how to train algorithms on big data
- analytical solution
- gradient descend
- stochastic gradient descend

features - xⁱ

features - xⁱ

labels - \mathcal{Y}^i

$$x^i = \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ x_4 \end{pmatrix}$$

$$y^i \in R$$

$$x^{i} = \begin{pmatrix} x_{1} \\ x_{2} \\ \cdots \\ x_{4} \end{pmatrix}$$

$$y^i \in R$$

$$\hat{y} = w_0 + w_1 x_1 + \dots + w_n x_n$$

$$W_0,...,W_n$$
 - parameters

$$x = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

$$w = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \cdots \\ w_n \end{pmatrix}$$

$$x = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

$$w = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \cdots \\ w_n \end{pmatrix}$$

$$\hat{y} = w^T x$$

$$L(w) = \sum_{i} (y^{i} - w^{T} x^{i})^{2}$$

$$w = \arg\min L(w)$$

$$RMSE = \sqrt{\frac{\sum_{i} (y^{i} - w^{T} x^{i})^{2}}{n}}$$

$$L(w) = \sum_{i} (y^{i} - w^{T} x^{i})^{2}$$

$$w = \arg\min L(w)$$

Analytical solution

$$\frac{\partial L(w)}{\partial w_1} = -2\sum_i (y^i - w^T x^i) \cdot x_1^i = 0$$
...
$$\frac{\partial L(w)}{\partial w_n} = -2\sum_i (y^i - w^T x^i) \cdot x_n^i = 0$$

 \mathcal{W}

Problem: Complexity - $O(n^3)$

10 1000 operations

100 1000000 operations

1000 100000000 operations

Problem 2 - method is not universal

Gradient Descend

	features	label
0	[1.0, 0.0, 1.0, 0.0, 6.0, 2.0, 0.344167, 0.363	985
1	[1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.150833, 0.150	1321
2	[2.0, 0.0, 4.0, 0.0, 0.0, 2.0, 0.426667, 0.426	2895
3	[2.0, 0.0, 4.0, 0.0, 1.0, 2.0, 0.595652, 0.565	3348
4	[2.0, 0.0, 4.0, 0.0, 3.0, 2.0, 0.4125, 0.41728	2162
	•••	
505	[2.0, 0.0, 4.0, 0.0, 1.0, 1.0, 0.573333, 0.542	3115
506	[2.0, 0.0, 4.0, 0.0, 2.0, 2.0, 0.414167, 0.398	1795
507	[2.0, 0.0, 4.0, 0.0, 3.0, 1.0, 0.390833, 0.387	2808
508	[2.0, 0.0, 4.0, 0.0, 5.0, 2.0, 0.335833, 0.324	1471
509	[2.0, 0.0, 4.0, 0.0, 6.0, 2.0, 0.3425, 0.34152	2455

	features	label
0	[1.0, 0.0, 1.0, 0.0, 6.0, 2.0, 0.344167, 0.363	985
1	[1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.150833, 0.150	1321
2	[2.0, 0.0, 4.0, 0.0, 0.0, 2.0, 0.426667, 0.426	2895
3	[2.0, 0.0, 4.0, 0.0, 1.0, 2.0, 0.595652, 0.565	3348
4	[2.0, 0.0, 4.0, 0.0, 3.0, 2.0, 0.4125, 0.41728	2162
	•••	
505	[2.0, 0.0, 4.0, 0.0, 1.0, 1.0, 0.573333, 0.542	3115
506	[2.0, 0.0, 4.0, 0.0, 2.0, 2.0, 0.414167, 0.398	1795
507	[2.0, 0.0, 4.0, 0.0, 3.0, 1.0, 0.390833, 0.387	2808
508	[2.0, 0.0, 4.0, 0.0, 5.0, 2.0, 0.335833, 0.324	1471
509	[2.0, 0.0, 4.0, 0.0, 6.0, 2.0, 0.3425, 0.34152	2455

	features	label
0	[1.0, 0.0, 1.0, 0.0, 6.0, 2.0, 0.344167, 0.363	985
1	[1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.150833, 0.150	1321
2	[2.0, 0.0, 4.0, 0.0, 0.0, 2.0, 0.426667, 0.426	2895
3	[2.0, 0.0, 4.0, 0.0, 1.0, 2.0, 0.595652, 0.565	3348
4	[2.0, 0.0, 4.0, 0.0, 3.0, 2.0, 0.4125, 0.41728	2162
	•••	
505	[2.0, 0.0, 4.0, 0.0, 1.0, 1.0, 0.573333, 0.542	3115
506	[2.0, 0.0, 4.0, 0.0, 2.0, 2.0, 0.414167, 0.398	1795
507	[2.0, 0.0, 4.0, 0.0, 3.0, 1.0, 0.390833, 0.387	2808
508	[2.0, 0.0, 4.0, 0.0, 5.0, 2.0, 0.335833, 0.324	1471
509	[2.0, 0.0, 4.0, 0.0, 6.0, 2.0, 0.3425, 0.34152	2455

x y

$$(y - w^T x) \cdot x_j$$

	features	label
0	[1.0, 0.0, 1.0, 0.0, 6.0, 2.0, 0.344167, 0.363	985
1	[1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.150833, 0.150	1321
2	[2.0, 0.0, 4.0, 0.0, 0.0, 2.0, 0.426667, 0.426	2895
3	[2.0, 0.0, 4.0, 0.0, 1.0, 2.0, 0.595652, 0.565	3348
4	[2.0, 0.0, 4.0, 0.0, 3.0, 2.0, 0.4125, 0.41728	2162
	•••	
505	[2.0, 0.0, 4.0, 0.0, 1.0, 1.0, 0.573333, 0.542	3115
506	[2.0, 0.0, 4.0, 0.0, 2.0, 2.0, 0.414167, 0.398	1795
507	[2.0, 0.0, 4.0, 0.0, 3.0, 1.0, 0.390833, 0.387	2808
508	[2.0, 0.0, 4.0, 0.0, 5.0, 2.0, 0.335833, 0.324	1471
509	[2.0, 0.0, 4.0, 0.0, 6.0, 2.0, 0.3425, 0.34152	2455
	$oldsymbol{v}$	1,

 χ 3

0	features [1.0, 0.0, 1.0, 0.0, 6.0, 2.0, 0.344167, 0.363 [1.0, 0.0, 1.0, 0.0, 1.0, 0.150833, 0.150	985 1321	
2	[2.0, 0.0, 4.0, 0.0, 0.0, 2.0, 0.426667, 0.426	2895	
3	[2.0, 0.0, 4.0, 0.0, 1.0, 2.0, 0.595652, 0.565	3348	
4	[2.0, 0.0, 4.0, 0.0, 3.0, 2.0, 0.4125, 0.41728	2162	$\partial L(v)$

505	[2.0, 0.0, 4.0, 0.0, 1.0, 1.0, 0.573333, 0.542	3115	∂w
506	[2.0, 0.0, 4.0, 0.0, 2.0, 2.0, 0.414167, 0.398	1795	
507	[2.0, 0.0, 4.0, 0.0, 3.0, 1.0, 0.390833, 0.387	2808	
508	[2.0, 0.0, 4.0, 0.0, 5.0, 2.0, 0.335833, 0.324	1471	
509	[2.0, 0.0, 4.0, 0.0, 6.0, 2.0, 0.3425, 0.34152	2455	
		${\mathcal Y}$	

	features	label	
0	[1.0, 0.0, 1.0, 0.0, 6.0, 2.0, 0.344167, 0.363	985	
1	[1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.150833, 0.150	1321	
2	[2.0, 0.0, 4.0, 0.0, 0.0, 2.0, 0.426667, 0.426	2895	
3	[2.0, 0.0, 4.0, 0.0, 1.0, 2.0, 0.595652, 0.565	3348	
4	[2.0, 0.0, 4.0, 0.0, 3.0, 2.0, 0.4125, 0.41728	2162	$\partial L($
505	[2.0, 0.0, 4.0, 0.0, 1.0, 1.0, 0.573333, 0.542	3115	∂v
506	[2.0, 0.0, 4.0, 0.0, 2.0, 2.0, 0.414167, 0.398	1795	
507	[2.0, 0.0, 4.0, 0.0, 3.0, 1.0, 0.390833, 0.387	2808	
508	[2.0, 0.0, 4.0, 0.0, 5.0, 2.0, 0.335833, 0.324	1471	
509	[2.0, 0.0, 4.0, 0.0, 6.0, 2.0, 0.3425, 0.34152	2455	
		$\boldsymbol{\mathcal{V}}$	

$$w_j^{k+1} = w_j^k - \eta \cdot \frac{\partial L(w^k)}{\partial w_j}$$

Pros and cons

- Method is universal
- Complexity is proportional to number of features
- Problem: can get stuck in local minimum

Stochastic Gradient Descend

	features	label
0	[1.0, 0.0, 1.0, 0.0, 6.0, 2.0, 0.344167, 0.363	985
1	[1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.150833, 0.150	1321
2	[2.0, 0.0, 4.0, 0.0, 0.0, 2.0, 0.426667, 0.426	2895
3	[2.0, 0.0, 4.0, 0.0, 1.0, 2.0, 0.595652, 0.565	3348
4	[2.0, 0.0, 4.0, 0.0, 3.0, 2.0, 0.4125, 0.41728	2162
	•••	
505	[2.0, 0.0, 4.0, 0.0, 1.0, 1.0, 0.573333, 0.542	3115
506	[2.0, 0.0, 4.0, 0.0, 2.0, 2.0, 0.414167, 0.398	1795
507	[2.0, 0.0, 4.0, 0.0, 3.0, 1.0, 0.390833, 0.387	2808
508	[2.0, 0.0, 4.0, 0.0, 5.0, 2.0, 0.335833, 0.324	1471
509	[2.0, 0.0, 4.0, 0.0, 6.0, 2.0, 0.3425, 0.34152	2455
	$\boldsymbol{\chi}$	ν

	features	label		
0	[1.0, 0.0, 1.0, 0.0, 6.0, 2.0, 0.344167, 0.363	985		$\partial L(w^k)$
1	[1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.150833, 0.150	1321	→	$w_{i}^{n-1} = w_{i}^{n} - \eta \cdot \underline{\hspace{1cm}}$
2	[2.0, 0.0, 4.0, 0.0, 0.0, 2.0, 0.426667, 0.426	2895	→	∂w_i
3	[2.0, 0.0, 4.0, 0.0, 1.0, 2.0, 0.595652, 0.565	3348	───	
4	[2.0, 0.0, 4.0, 0.0, 3.0, 2.0, 0.4125, 0.41728	2162		
	***			$\partial L(w^{k+1})$
505	[2.0, 0.0, 4.0, 0.0, 1.0, 1.0, 0.573333, 0.542	3115		$w_{i}^{\kappa+2}=w_{i}^{\kappa+1}-\eta\cdot\underline{\hspace{1cm}}$
506	[2.0, 0.0, 4.0, 0.0, 2.0, 2.0, 0.414167, 0.398	1795		∂W_i
507	[2.0, 0.0, 4.0, 0.0, 3.0, 1.0, 0.390833, 0.387	2808	→	
508	[2.0, 0.0, 4.0, 0.0, 5.0, 2.0, 0.335833, 0.324	1471	→	-
509	[2.0, 0.0, 4.0, 0.0, 6.0, 2.0, 0.3425, 0.34152	2455	→	
	Y	1,		

- The acceleration of convergence
- Global minimum
- Online learning

	features	label		
0	[1.0, 0.0, 1.0, 0.0, 6.0, 2.0, 0.344167, 0.363	985		$\partial L(w^k)$
1	[1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.150833, 0.150	1321	→	$w_{i}^{n-1} = w_{i}^{n} - \eta \cdot \underline{\hspace{1cm}}$
2	[2.0, 0.0, 4.0, 0.0, 0.0, 2.0, 0.426667, 0.426	2895	→	∂w_i
3	[2.0, 0.0, 4.0, 0.0, 1.0, 2.0, 0.595652, 0.565	3348	───	
4	[2.0, 0.0, 4.0, 0.0, 3.0, 2.0, 0.4125, 0.41728	2162		
	***			$\partial L(w^{k+1})$
505	[2.0, 0.0, 4.0, 0.0, 1.0, 1.0, 0.573333, 0.542	3115		$w_{i}^{\kappa+2}=w_{i}^{\kappa+1}-\eta\cdot\underline{\hspace{1cm}}$
506	[2.0, 0.0, 4.0, 0.0, 2.0, 2.0, 0.414167, 0.398	1795		∂W_i
507	[2.0, 0.0, 4.0, 0.0, 3.0, 1.0, 0.390833, 0.387	2808	→	
508	[2.0, 0.0, 4.0, 0.0, 5.0, 2.0, 0.335833, 0.324	1471	→	-
509	[2.0, 0.0, 4.0, 0.0, 6.0, 2.0, 0.3425, 0.34152	2455	→	
	Y	1,		

	features	label
C	[1.0, 0.0, 1.0, 0.0, 6.0, 2.0, 0.344167, 0.363	985
1	[1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.150833, 0.150	1321
2	[2.0, 0.0, 4.0, 0.0, 0.0, 2.0, 0.426667, 0.426	2895
3	[2.0, 0.0, 4.0, 0.0, 1.0, 2.0, 0.595652, 0.565	3348
4	[2.0, 0.0, 4.0, 0.0, 3.0, 2.0, 0.4125, 0.41728	2162
•••	•••	
505	[2.0, 0.0, 4.0, 0.0, 1.0, 1.0, 0.573333, 0.542	3115
506	[2.0, 0.0, 4.0, 0.0, 2.0, 2.0, 0.414167, 0.398	1795
507	[2.0, 0.0, 4.0, 0.0, 3.0, 1.0, 0.390833, 0.387	2808
508	[2.0, 0.0, 4.0, 0.0, 5.0, 2.0, 0.335833, 0.324	1471
509	[2.0, 0.0, 4.0, 0.0, 6.0, 2.0, 0.3425, 0.34152	2455
	$\boldsymbol{\chi}$	$\boldsymbol{\mathcal{V}}$

What have you learned:

- How to formulate machine learning problem
- How to solve it analytically
- How to solve it by gradient descend
- How to solve it by stochastic gradient descend