Vaja 34 Hitrost zvoka v plinu

Jure Kos

4.1.2022

Uvod

S pomočjo določanja lastnih frekvenc stoječega valovanja sem poskušal določiti hitrost zvoka. Lastno frekvenco se je določalo na dva načina - 1. način je bilo opazovanje poskakovanja žagovine v nastalih vozlih steklene cevi, 2. način pa je bilo storjeno s pomočjo odčitavanja voltmetra, na katerega je bil vezan mikrofon.

Naloga

Določi hitrost zvoka v zraku z merjenji razmikov med vozli stoječega valovanja ter z opazovanjem frekvenčnih razmikov posameznih akustičnih resonanc v cevi. Izračunaj tudi adiabatno stisljivost plina.

Potrebščine

- cev
- zvočnik
- frekvenčni generator
- mikrofon
- voltmeter

Navodila

Vključimo generator frekvenc in spreminjamo frekvenco in poiščemo prvo stoječe valovanje plina v cevi. Postopoma povečujemo frekvence in pri vsakem stoječem valovanju izmerimo razdaljo med dvema vozloma. Iz razmikov med vozli določimo valovno dolžino in posledično hitrost zvoka. Ponovno se sprehodimo čez frekvence in si zapišemo vrednosti pri katerih se pojavijo akustične resonance. Iz dobljenih frekvenc za njih izračunamo hitrost zvoka. Po formuli za adiabatno stisljivost zraka, jo izračunamo:

$$c = \sqrt{\frac{1}{\chi_s \rho}} \tag{1}$$

Skica

Meritve in hitrost zvoka

Stoječe valovanje	Frekvenca ν [Hz]	Valovna dolžina δ $[m]$
1	118	$0.78 \pm 5 cm$
2	260	$0.61 \pm 3 cm$
3	430	$0.39 \pm 3 cm$
4	550	$0.28\pm 3cm$
5	680	$0.25 \pm 2cm$
6	795	$0.22\pm1cm$
7	960	$0.18\pm 1cm$
8	1120	/
9	1295	/
10	1460	
11	1605	

Dolžina cevi = $0.97m \pm 3mm$

Hitrost zraka z merjenjem razmikov med vozli

Iz ploščine grafa med premico in koordinatnima osema lahko določimo hitrost zvoka:

Vrednost y pri sekanju ordinatne osi: $y=0,77m\pm0,05m$ Vrednost x pri sekanju abcisne osi: $x=1022Hz\pm5Hz$ Hitrost zvoka:

$$c = \frac{yx}{2} = \frac{1022Hz(1\pm0,005)\cdot 0,77(1\pm0,06)m}{2} = 390m/s \pm 30m/s \qquad (2)$$

Hitrost zvoka z akustičnimi frekvencami

Graf rezultatov:

Iz naklona premice in enačbe določimo hitrost zvoka. Naklon premice:

$$k = 147, 7(1 \pm 0, 01)s^{-1}$$

Hitrost zvoka:

$$c = 2lk = 2 \cdot 0,97(1 \pm 0,003)m \cdot 147,7(1 \pm 0,01)s^{-1} = 275m/s \pm 10m/s$$
 (3)

Adiabatna stisljivost zraka

Razmiki:

$$\chi_s = \frac{1}{c^2 \rho} = \frac{1}{(390m/s)^2 \cdot 1.2kg/m^3} = 5, 5 \cdot 10^{-6} (1 \pm 0, 14) m/kgs^2$$
 (4)

Akustične frekvence:

$$\chi_s = \frac{1}{c^2 \rho} = \frac{1}{(275m/s)^2 \cdot 1.2kg/m^3} = 1, 1 \cdot 10^{-5} (1 \pm 0, 05) m/kgs^2$$
 (5)