Compiled using LATEX 1

${ m IEMS~402~Statistical~Learning}$ - ${ m 2025~Winter}$ ${ m HW4}$

Tuorui Peng¹

Exercise 1 Fast Rate Generalization Error in the Realizable Setting

For 0-1 loss, we notice that: if $L(h^*) = 0$ is reachable, then it means that $\exists h_* \in \mathcal{H}$ s.t. $y^{(i)} = h_*(x^{(i)})$ a.s. (i.e. h_* is the underlying truth, and the data generation y|x has no randomness in the sense of a.s.). Then we have

$$\hat{L}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell\left((x^{(i)}, y^{(i)}), h\right) = \frac{1}{n} \sum_{i=1}^{n} \ell\left((x^{(i)}, h_*(x^{(i)}), h)\right)$$

can reach $\hat{L}(h) = 0$ in some non-empty set $H \subset \mathcal{H}$ (because we would have relation $h_* \in \{h^*\} \subseteq H \subseteq \mathcal{H}$). So the event of interest is that $\hat{h} \in H \setminus \{h^*\}$

For any $h \in \mathcal{H}$ s.t. $L(h) \geq t$, we have:

$$\mathbb{P}\left(\hat{L}(h) = 0\right) = \mathbb{P}\left(\forall i : \ell\left((x^{(i)}, y^{(i)}), h\right) = 0\right)$$

$$= \mathbb{P}\left(\ell\left((x, h_*(x)), h\right) = 0\right)^n$$

$$= \left(1 - \mathbb{E}\left[\ell\left((x, h_*(x)), h\right)\right]\right)^n$$

$$\leq (1 - t)^n \leq \exp\left(-nt\right)$$

So we have

$$\mathbb{P}\left(L(\hat{h}) \ge t\right) = \mathbb{P}\left(\exists h : L(h) \ge t, \, \hat{L}(h) = 0\right)$$

$$\le \sum_{h: L(h) \ge t} \mathbb{P}\left(\hat{L}(h) = 0\right)$$

$$\le |\mathcal{H}| \cdot \exp\left(-nt\right)$$

Now set $\delta = |\mathcal{H}| \cdot \exp(-nt)$ and we have

$$L(\hat{h}) \le \frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{n}$$

Exercise 2 Generalization Error near Interpolate

2.(a)

Note that for any fixed h, we have $\mathbb{E}\left[\hat{L}_n(h)\right] = L(h) = \mathbb{E}\left[\ell(h)\right]$ and we have

$$var(\ell(h)) = \mathbb{E}\left[\ell(h)^2\right] - \mathbb{E}\left[\ell(h)\right]^2 \le \mathbb{E}\left[\ell(h)\right] = L(h)$$

since $\ell(h) \in [0,1]$. Now by Bernstein's inequality we proved in the previous homework, we have

$$\mathbb{P}\left(\hat{L}(h) - L(h) \ge \varepsilon\right) \le \exp\left(-\frac{n\varepsilon^2}{2(var(\ell(h)) + \varepsilon/3)}\right) \le \exp\left(-\frac{n\varepsilon^2}{2(L(h) + \varepsilon/3)}\right)$$

¹TuoruiPeng2028@u.northwestern.edu

2.(b)

By the same argument we also have inequality for the other side:

$$\mathbb{P}\left(\hat{L}(h) - L(h) \le -\varepsilon\right) \le \exp\left(-\frac{n\varepsilon^2}{2(L(h) + \varepsilon/3)}\right)$$

Substitute $\hat{L}_n(h) \mapsto \hat{L}_n(h) - (L(h) - \varepsilon(h) - \varepsilon)$ and we have

$$\mathbb{P}\left(\hat{L}(h) \leq \varepsilon(h)\right) \leq \mathbb{P}\left(\hat{L}(h) - L(h) \leq -\varepsilon\right) \leq \exp\left(-\frac{n\varepsilon^2}{2(\varepsilon(h) + \varepsilon + \varepsilon/3)}\right) = \exp\left(-\frac{n\varepsilon^2}{2(\varepsilon(h) + 4\varepsilon/3)}\right)$$

2.(c)

Note that by (b), we have for all h satisfying $L(h) \geq L(h^*) + 2\varepsilon$ that

$$\mathbb{P}\left(\hat{L}(h) \leq L(h^*) + \varepsilon\right) \leq \exp\left(-\frac{n\varepsilon^2}{2(\varepsilon + 4\varepsilon/3)}\right) = \exp\left(-\frac{n\varepsilon^2}{2(L(h^*) + 7\varepsilon/3)}\right)$$

So we have

$$\mathbb{P}\left(\hat{L}_{n}(\hat{h}_{n}) - L(h^{*}) \geq 2\varepsilon\right) \leq \mathbb{P}\left(\exists h : L(h) \geq L(h^{*}) + 2\varepsilon, \, \hat{L}(h) \leq L(h^{*}) + \varepsilon\right) \\
\leq \sum_{h:L(h)\geq L(h^{*}) + 2\varepsilon} \mathbb{P}\left(\hat{L}(h) \leq L(h^{*}) + \varepsilon\right) \\
\leq |\mathcal{H}| \exp\left(-\frac{n\varepsilon^{2}}{2(L(h^{*}) + 7\varepsilon/3)}\right)$$

On the other hand, by Hoeffding's inequality we have

$$\mathbb{P}\left(\left|\hat{L}_n(\hat{h}_n) - L(\hat{h}_n)\right| \ge \varepsilon\right) \le \mathbb{P}\left(\sup_{h \in \mathcal{H}} \left|\hat{L}_n(h) - L(h)\right| \ge \varepsilon\right) \le |\mathcal{H}| \exp\left(-\frac{n\varepsilon^2}{2}\right)$$

Together, we have

$$\mathbb{P}\left(L(\hat{h}_n) - L(h^*) \le \varepsilon\right) \ge \mathbb{P}\left(\hat{L}_n(\hat{h}_n) - L(h^*) \ge 2\varepsilon, L(\hat{h}_n) - \hat{L}_n(\hat{h}_n) \le \varepsilon\right)$$
$$\ge 1 - |\mathcal{H}| \exp\left(-\frac{n\varepsilon^2}{2(L(h^*) + 7\varepsilon/3)}\right) - |\mathcal{H}| \exp\left(-\frac{n\varepsilon^2}{2}\right)$$

Note that for large ε , the above probability bound is dominated by the second term, so we consider setting $\delta = |\mathcal{H}| \exp\left(-\frac{n\varepsilon^2}{2(L(h^*)+7\varepsilon/3)}\right)$ and we have

$$w.p. \ge 1 - \delta$$
, $L(\hat{h}_n) - L(h^*) \lesssim \sqrt{\frac{L(h^*)\log(|\mathcal{H}|/\delta)}{n}} + \frac{\log(|\mathcal{H}|/\delta)}{n}$.

2.(d)

The naive approach based on Hoeffding's inequality would give us

$$L(\hat{h}_n) - L(h^*) \lesssim \sqrt{\frac{\log|H| + \log\frac{1}{\delta}}{n}}$$

By comparing the two bounds, we notice that: when we have $L(h^*) \ll 1/\log(|\mathcal{H}|/\delta)$ the bound is dominated by $O(n^{-1})$, which is a stronger bound than the naive approach $O(n^{-1/2})$, leading to a faster rate of convergence.

Exercise 3 Random Matrix

3.(a)

Denote the SVD of A as

$$A = U\Sigma V^T$$

and thus

$$||A||_{\text{op}} = \sigma_1 = \max_{u \in S^{m-1}, v \in S^{n-1}} \max_{u \in S^{m-1}, v \in S^{n-1}} u'Av = \max_{u \in S^{m-1}, v \in S^{n-1}} \langle Au, v \rangle$$

by SVD.

3.(b)

(For this part I feel that the best I can do is $\sim \frac{1}{1-2\varepsilon}$ in stead of $\sim \frac{1}{(1-\varepsilon)^2}$)

With ε -net of S^{m-1} and S^{n-1} denoted \mathcal{N}_1 and \mathcal{N}_2 respectively. And denote the maximizer of $\langle Au, v' \rangle$ as (u^*, v^*) , we have some $u_1 \in \mathcal{N}_1$ and $v_1 \in \mathcal{N}_2$ s.t.

$$||u_1 - u^*|| \le \varepsilon, \quad ||v_1 - v^*|| \le \varepsilon$$

Then we have for $u^* \in S^{m-1}, v^* \in S^{m-1}$ and their corresponding u_1, v_1 we have

$$\begin{aligned} \|A\|_{\text{op}} &= \langle Au, v \rangle \\ &= \langle A(u - u_1 + u_1), (v - v_1 + v_1) \rangle \\ &= \langle Au_1, v_1 \rangle + \langle A(u - u_1), v_1 \rangle + \langle Au, (v - v_1) \rangle \\ &\leq \max_{u \in \mathcal{U}, v \in \mathcal{V}} \langle Au, v \rangle + \|A\|_{\text{op}} \, \varepsilon + \|A\|_{\text{op}} \, \varepsilon \\ \Rightarrow \|A\|_{\text{op}} &\leq \frac{1}{1 - 2\varepsilon} \max_{u \in \mathcal{U}, v \in \mathcal{V}} \langle Au, v \rangle \end{aligned}$$

3.(c)

Note that for any $u \in S^{m-1}, v \in S^{n-1}$, we have

$$\langle Au, v \rangle \sim N(0, 1)$$

And for ε covering set of S^{m-1} and S^{n-1} , we have

$$|\mathcal{U}| \le |\mathcal{N}(B_m(1)), \varepsilon| \le \left(1 + \frac{2}{\varepsilon}\right)^m$$

 $|\mathcal{V}| \le |\mathcal{N}(B_n(1)), \varepsilon| \le \left(1 + \frac{2}{\varepsilon}\right)^n$

We have

$$\mathbb{E}\left[\|A\|_{\text{op}}\right] \leq \frac{1}{1 - 2\varepsilon} \mathbb{E}\left[\max_{u \in \mathcal{U}, v \in \mathcal{V}} \langle Au, v \rangle\right]$$
$$\lesssim \frac{1}{1 - 2\varepsilon} \sqrt{\log|U| + \log|V|}$$
$$\lesssim \sqrt{m} + \sqrt{n}$$

where the last step can be done by taking some small constant ε .

3.(d)

For S^{n-1} , we construct a $\sqrt{2}$ -net \mathcal{N} formed by all unit vectors. This can be easily verified to be a covering by noticing that for $\sum_{i=1}^{n} x_i^2 \leq 1$ with WLOG $x_1 \geq 0$ we have

$$(1-x_1^2) + \sum_{i=2}^n x_i^2 \le 2$$

Using this method we obtain covering for S^{m-1} and S^{n-1} respectively, and we have their size bounded by $(1+2/\sqrt{2})^m$ and $(1+2/\sqrt{2})^n$ respectively.

With this construction, we have

$$\langle u_i, u_j \rangle = \delta_{ij}, \quad \langle v_i, v_j \rangle = \delta_{ij}, \quad u_i, u_j \in \mathcal{N}_1; v_i, v_j \in \mathcal{N}_2$$

and thus for any $u_1, u_2 \in \mathcal{N}_1$ and $v_1, v_2 \in \mathcal{N}_2$ we have

$$cov\left(\left\langle Au_{1}, v_{1}\right\rangle, \left\langle Au_{2}, v_{2}\right\rangle\right) = cov\left(\sum_{i=1}^{m} u_{1i}v_{1j}A_{ij}, \sum_{i=1}^{n} u_{2i}v_{2j}A_{ij}\right)$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} u_{1i}v_{1j}u_{2i}v_{2j}$$

$$= \left\langle u_{1}, u_{2}\right\rangle \left\langle v_{1}, v_{2}\right\rangle$$

$$= 0$$

i.e. any two $\langle Au_1, v_1 \rangle$, $\langle Au_2, v_2 \rangle$ are uncorrelated. Using this covering set, we have

$$\mathbb{E}\left[\|A\|_{\text{op}}\right] \ge \mathbb{E}\left[\sup_{u \in \mathcal{U}, v \in \mathcal{V}} \langle Au, v \rangle\right]$$

$$\stackrel{(*)}{\gtrsim} \sqrt{\log |\mathcal{U}| + \log |\mathcal{V}|}$$

$$\stackrel{\gtrsim}{\sim} \sqrt{m} + \sqrt{n}$$

where (*) by Martin J. Wainwright's book, page 53, Exercise 2.11 (Upper and lower bounds for Gaussian maxima).

As a result, we have

$$\mathbb{E}\left[\|A\|_{\mathrm{op}}\right] \asymp \sqrt{m} + \sqrt{n}$$

Exercise 4 Rademacher Complexity Leads to Suboptimal Bounds

4.(a)

We have by CLT:

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} N(0, I)$$

and we have

$$\mathbb{E}\left[\left\|\hat{\theta} - \theta\right\|_{2}^{2}\right] = \frac{d}{n}$$

4.(b)

We have the hypothesis space $\Theta = \mathbb{R}^d$. We consider the following:

1. Bound covering number: We consider the covering of $\mathbb{B}_n(\delta,\Theta)$ under norm $\frac{1}{n}\sum_{i=1}^n (X_i-\cdot)^2$:

$$\log N(t, \mathbb{B}_n(\delta, \Theta), \|\cdot\|_2) \le d \log(1 + \frac{2\delta}{t}).$$

2. We determine some δ satisfying the following:

$$\frac{16}{\sqrt{n}} \int_0^{\delta} \sqrt{\log N(t, \mathbb{B}_n(\delta, \Theta), \|\cdot\|_2)} \, \mathrm{d}t \le \frac{\delta^2}{4}$$

$$\Leftarrow \frac{1}{\sqrt{n}} \int_0^{\delta} \sqrt{d \log(1 + \frac{2t}{\delta})} \, \mathrm{d}t \lesssim \delta^2$$

$$\Leftarrow \frac{\sqrt{d}}{\sqrt{n}} \delta \lesssim \delta^2$$

$$\Leftarrow \delta \gtrsim \sqrt{\frac{d}{n}}$$

3. By Martin J. Wainwright's book, page 426, Corollary 13.7, we have

$$\mathbb{E}\left[\left\|\hat{\theta} - \theta\right\|_{n}^{2}\right] \lesssim \frac{d}{n}$$

So we see that we have the same optimal rate of convergence, but the constant is undetermined.

Exercise 5 Curse of Dimensionality

We consider the following segment to [-B,+B] and partition of $[-R,+R]^d$:

- [-B, +B] into segments of length ε , which gives $\lceil \frac{2B}{\varepsilon} \rceil$ segments (with trivial edges omitted). The set is denoted as $\mathcal{S} = \{S_1, \dots, S_{2B}\}$.
- $[-R, +R]^d$ into cubes of side length $\varepsilon/2\rho$, which gives $\lceil \frac{4\rho(R+\varepsilon)}{\varepsilon} \rceil^d$ cubes (with trivial edges omitted). So we haved a lattice \mathcal{C} of side length ε/ρ .

For any function f in function class $\mathcal{F}: [-R, +R]^d \to [-B, +B]$, there exists some $S_f \in \mathcal{S}$ s.t. $|f(0) - S_f| \le \varepsilon/2$. Next, for any $x \in \mathcal{C}$, we do the following:

- 1. Find the $S_x \in \mathcal{S}$ s.t. $|f(x) S_x| \leq \varepsilon/2$.
- 2. For any $x' \in x + \varepsilon/2\rho \cdot [-1, 1]^d$, we have

$$|f(x') - S_x| \le |f(x') - f(x)| + |f(x) - S_x| \le \varepsilon/2 + \varepsilon/2 = \varepsilon$$

So at least one of $S_x, S_x + \varepsilon, S_x - \varepsilon$ would satisfy:

$$\forall x' \in x + \varepsilon/2\rho \cdot [-1, 1]^d, \quad \exists S_{x'} \in \{S_x, S_x + \varepsilon, S_x - \varepsilon\} \quad |f(x') - S_{x'}| \le \varepsilon$$

By doing so iteratively, we can determine that there are $3^{|\mathcal{C}|}$ possible functions in the covering set (after f(0) is given).

So in total, we have the size of the covering set begin:

$$\begin{split} \log \mathcal{N}(\mathcal{F}, \varepsilon, \|\cdot\|_{\infty}) &\leq \log \left[\lceil \frac{2B}{\varepsilon} \rceil \times 3^{|\mathcal{C}|} \vee 1 \right] \\ &\leq \log \left[\lceil \frac{2B}{\varepsilon} \rceil \times 3^{\lceil \frac{4\rho(R+\varepsilon)}{\varepsilon} \rceil^d} \vee 1 \right] \\ &= 0 \vee \left[\lceil \frac{4\rho(R+\varepsilon)}{\varepsilon} \rceil^d \log 3 + \log \lceil \frac{2B}{\varepsilon} \rceil \right] \end{split}$$

(which is a stronger bound than required in the homework question).