PRAKTIKUM: EXPLORING THE RELATIONSHIP BETWEEN DESIGN METRICS AND SOFTWARE DIAGNOSABILITY USING MACHINE LEARNING

HANDE KARATAY & FURKAN MERT ALGAN

JULY 13, 2018

What have we done?

Defects4J

Gzoltar

D-Star Implementation

Gathering features

Model Building

Gathering Features: Static Features

At first...

Abstractness	Lines of Code		
Average Block Depth	Number of Characters		
Average Cyclomatic Complexity	Number of Comments		
Average Lines of Code Per Method	Number of Constructors		
Average Number of Constructors Per Type	Number of Fields		
Average Number of Fields Per Type	Number of Lines		
Average Number of Methods Per Type	Number of Methods		
Average Number of Parameters	Number of Packages		
Comments Ratio	Number of Semicolons		
Efferent Couplings	Number of Types		

Gathering Features: Static Features

Gathering Features: Test Suite Characteristics

Gathering Features: Bug Characteristics

Extracted from the ARP Platform

File Count

Line Count

Statement Coverage/Dynamic

Relevant Test Count

Triggering Test Count

Gathering Features: Dynamic Features

Our Target Value

- Use D-Star algorithm to rank methods
 - 1: Rank 5 between 200 methods
 - 2: Rank 5 between 100 methods
- Proposed Solution: Normalize

$$DStar(s) = \frac{(N_{cf})^*}{N_{uf} + N_{cs}}$$

N_{cf}: Number of failed test cases that cover the statement

N_{uf}: Number of failed test cases that do not cover the statement

N_{cs}: Number of successful test cases that cover the statement

$$target\ value = \frac{Dstar\ rank}{number\ of\ methods\ in\ buggy\ version}$$

Model Building

Metric Statistics

Metric Statistics

Target Statistics

With More Features

With More Data

Feature Selection

Correlations of Metrics

Adaboost

- Augmentation
- Fast

Adaboost(2 Classes)

Adaboost

Adaboost with Math

Adaboost with Math

SVM

- Kernel
- Robust

SVM(2 classes)

SVM(2 classes)

SVM (3 classes)

SVM (3 classes)

SVM (4 classes)

SVM(4 classes)

ExtRa

Bonus: ElasticNet

Regression

Bonus: ElasticNet

MSE = 0.128

Neural Network - MLP

- Layers
- Activation

Neural Network - MLP (2 hidden layer)

Neural Network - MLP (2 hidden layer)

Acc. = 94.4%

Neural Network - (4 classes)

Neural Network - (4 classes)

Acc. = 75%

Neural Network - MLP(4 C 4 L)

Neural Network - MLP (4 classes 4 Layer)

Acc. = 72%

Neural Network - MLP with Math

Neural Network - MLP with Math

Acc. = 86.6%

Final Results

	2 Class	3 Class	4 Class	5 Class	6 Class
Adaboost	0.83	0.61	0.55	0.5	0.58
SVM	0.8	0.58	0.63	0.58	0.47
ExtraTrees	0.8	0.55	0.61	0.61	0.55
MLP	0.94	0.72	0.75	0.66	0.61

Figure 1: Final accuracy results with less data more features

	2 Class	3 Class	4 Class	5 Class	6 Class
2 Layers	0.94	0.75	0.75	0.61	0.61
3 Layers	0.88	0.72	0.69	0.66	0.61
4 Layers	0.88	0.72	0.72	0.52	0.61
5 Layers	0.88	-	-	-	-

Figure 2: MLP's accuracy with respect to layers

	2 Class	3 Class
ExtraTrees	0.75	0.57
MLP	0.84	0.71

Figure 3: Final accuracy results with less features more data

Best Features so Far

With More Features

- Weighted Methods
- Cyclomatic Complexity
- Number of Methods
- Line Count
- Density

With More Data

- Number of Methods
- Weighted Methods
- Passed Tests
- Density
- FailedTestsDontCoverStatemen

t

What have we learned?

- Parsing data
- Technologies
- Target representation
- Correlation helps
- Dynamic metrics JDCall Graph Problems
- Visualization!
- Neural Network
- More data is better than more features?
- Cross validation
- Suggestions

Thank you! Questions?

