Machine Learning for Graphs and Sequential Data Exercise Sheet 03

VAE & GAN

Problem 1: Below we show pseudocode for implementing 3 autoencoder-like neural net architectures. The observed data is denoted as $\boldsymbol{x} \in \mathbb{R}^D$. Here, $g_{\boldsymbol{\lambda}} : \mathbb{R}^D \to \mathbb{R}^L$ and $f_{\boldsymbol{\psi}} : \mathbb{R}^L \to \mathbb{R}^D$ are fully connected feedforward neural networks with learnable parameters $\boldsymbol{\lambda}$ and $\boldsymbol{\psi}$. The output layers of $g_{\boldsymbol{\lambda}}$ and $f_{\boldsymbol{\psi}}$ have no (i.e. have linear) activation functions. \mathcal{N} denotes the normal distribution, I_N is the $N \times N$ identity matrix, and $\mathbf{0}_N$ is the vector of all zeros of length N.

For each of the architectures below, explain whether it's **necessary** to use the reparametrization trick to compute the gradient of the loss \mathcal{L} w.r.t. **both** λ and ψ . Answer "Yes" or "No" and provide a justification. If the answer is "Yes", modify the code to implement the reparametrization trick.

a) Model 1

$$egin{aligned} oldsymbol{z}_i &\sim \mathcal{N}(oldsymbol{x}_i, oldsymbol{I}_D) \ oldsymbol{h}_i &= g_{oldsymbol{\lambda}}(oldsymbol{z}_i) \ & ilde{oldsymbol{x}}_i &= f_{oldsymbol{\psi}}(oldsymbol{h}_i) \ \mathcal{L} &= \|oldsymbol{x}_i - ilde{oldsymbol{x}}_i\|_2^2 \end{aligned}$$

b) Model 2

$$egin{aligned} m{h}_i &= g_{m{\lambda}}(m{x}_i) \ m{z}_i &\sim \mathcal{N}(m{h}_i, m{I}_L) \ & ilde{m{x}}_i &= f_{m{\psi}}(m{z}_i) \ &\mathcal{L} &= \|m{x}_i - \tilde{m{x}}_i\|_2^2 \end{aligned}$$

c) Model 3

$$egin{aligned} m{h}_i &= g_{m{\lambda}}(m{x}_i) \ m{z}_i &\sim \mathcal{N}(m{0}_L, m{I}_L) \ & ilde{x}_i &= f_{m{\psi}}(m{h}_i + m{z}_i) \ \mathcal{L} &= \|m{x}_i - \tilde{m{x}}_i\|_2^2 \end{aligned}$$

Problem 2: Consider the same setup as in the previous problem. The model specified below is **not well defined**. Your task is to find the problem with the model and modify the pseudo code to fix it.

In addition, if you think it's **necessary** to use the reparametrization trick, include it in your implementation.

$$egin{aligned} m{h}_i &= g_{m{\lambda}}(m{x}_i) \ m{z}_i &\sim \mathcal{N}(m{0}_L, \mathrm{diag}(m{h}_i)) \ & ilde{m{x}}_i &= f_{m{\psi}}(m{z}_i) \ \mathcal{L} &= \|m{x}_i - ilde{m{x}}_i\|_2^2 \end{aligned}$$

Problem 3: The loss used in generative adversarial networks (GANs) can be written in the following form:

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \mathbb{E}_{p^*(\boldsymbol{x})}[\log D_{\boldsymbol{\phi}}(\boldsymbol{x})] + \mathbb{E}_{p(\boldsymbol{z})}[\log(1 - D_{\boldsymbol{\phi}}(f_{\boldsymbol{\theta}}(\boldsymbol{z})))]$$

where $p^*(x)$ is the true data distribution, p(z) is the distribution of the noise, f_{θ} is the generator, and D_{ϕ} is the discriminator.

a) For a given generator (fixed parameters θ) assume there exists a discriminator $D_{\phi^*}(x)$ with parameters ϕ^* such that for all x:

$$D_{\boldsymbol{\phi}^*}(\boldsymbol{x}) = \frac{p^*(\boldsymbol{x})}{p^*(\boldsymbol{x}) + p_{\boldsymbol{\theta}}(\boldsymbol{x})}$$

where $p_{\theta}(x)$ is the distribution learned by the generator. Show that D_{ϕ^*} is **optimal**, i.e. $\phi^* = \arg\max_{\phi} \mathcal{L}(\theta, \phi)$.

Hint: $\arg \max_y [a \log(y) + b \log(1-y)] = \frac{a}{a+b}$ for any $a, b \in \mathbb{R}_0^+, a+b > 0$.

- b) What is value of the optimal $D_{\phi^*}(x)$ when:
 - The generator is optimal i.e. $p_{\theta}(x) = p^*(x)$
 - The generator assigns a zero probability $p_{\theta}(x) = 0$ to a sample x whereas $p^*(x) \neq 0$
 - The generator assigns a non-zero probability $p_{\theta}(x) \neq 0$ to a sample x whereas $p^*(x) = 0$