Lambda Calculus (λ Calculus)

September 19, 2016

Smallest Universal Programming Language

- ► A single transformation rule (variable substitution)
- ► A single function definition scheme
- $ightharpoonup e ::= x |\lambda x.e| e 0 e 1$

```
<expression> := <name> | <function> | <application> <function> := \lambda <name>.<expression> <application> := <expression> <expression>
```

As a programming language, sometimes a concrete implementation of lambda calculus also supports predefined constants such as '0' '1' and predefined functions such as '+' '*'; we add parenthesis for clarity

Examples

- $\rightarrow \lambda x.x$ (lambda abstraction: building new function)
- $(\lambda x.x)y$ (application)

What is λ Calculus and Why It Is Important?

- A mathematical language; A formal computation model for functional programming; a theoretical foundation for the family of functional programming languages.
- 2. Study interactions between functional abstraction and function applications; study some mathematical properties of effectively computable functions
- 3. By Alonzo Church in the 1930s
- 4. In 1920s 1930s, the mathematicians came up different systems for capturing the general idea of computation:
 - ► Turing machines Turing
 - m-recursive functions Gdel
 - rewrite systems Post
 - ▶ the lambda calculus Church
 - combinatory logic Schnfinkel, Curry

These systems are all computationally equivalent in the sense that each could encode and simulate the others.

The Mathematical Precursor to Scheme

Mathematical formalism to express computation using functions:

- ▶ Everything is a function. There are no other primitive types—no integers, strings, cons objects, Booleans ... If you want these things, you must encode them using functions.
- ▶ No state or side effects. It is purely functional. Thus we can think exclusively in terms of the substitution model.
- ▶ The order of evaluation is irrelevant.
- Only unary (one-argument) functions. No thunks or functions of more than argument.

Implementation in Scheme/DrRacket

Syntax implemented in Scheme:

$$e \rightarrow x$$
 Variable $\left(\begin{pmatrix} x & \lambda & (x) & e \end{pmatrix} \right)_x$ a lambda expression $\left(\begin{pmatrix} e & e \end{pmatrix} \right)$ Application

$$((_{\scriptscriptstyle x} \lambda (x) (+ x 1))_{\scriptscriptstyle x} 2)$$

Compute .(2) where .(x) = x + 1

The AST View (Simplified)

$$((_{_{\times}} \lambda (x) (+ x 1))_{_{\times}} 2)$$

$$expr$$

$$\lambda \qquad arg$$

$$param \qquad expr \qquad 2$$

$$| \qquad \qquad |$$

$$x \qquad + \qquad x \qquad 1$$

The AST View (Simplified)

λ -expression	Function Definition	Invocation
$((_{\times} \lambda (x) (+ x 1))_{\times} 2)$.(x) { x + 1 }	.(2) = 2 + 1

λ -expression	Function Definition	Invocation
$((_{\times} \lambda (x) (+ x 1))_{\times} 2)$.(x) {	.(2) = 2 + 1

$$(((_{x} \lambda (x) (_{y} \lambda (y) (+ x y))_{y})_{x} 1) 2)$$

λ -expression	Function Definition	Invocation
$((_{_{\times}} \lambda (x) (+ x 1))_{_{\times}} 2)$.(x) { x + 1 }	.(2) = 2 + 1
$((((_{\times} \lambda (x) (_{y} \lambda (y) (+ x y))_{y})_{x} 1) 2)$.(x) {(y) { x + y } }	

λ -expression	Function Definition	Invocation
$((_{\scriptscriptstyle \times} \ \lambda \ (x) \ (+ \ x \ 1) \)_{\scriptscriptstyle \times} \ 2)$.(x) { x + 1 }	.(2) = 2 + 1
$(((_{x} \lambda (x) (_{y} \lambda (y) (+ x y))_{y})_{x} 1) 2)$.(x) {(y) { x + y }	.(1) =(y) { 1 + y } (2) = 1 + 2

λ -expression	Function Definition	Invocation
$((_{\scriptscriptstyle \times} \ \lambda \ (x) \ (+ \ x \ 1) \)_{\scriptscriptstyle \times} \ 2)$.(x) { x + 1 }	.(2) = 2 + 1
$(((_{x} \lambda (x) (_{y} \lambda (y) (+ x y))_{y})_{x} 1) 2)$.(x) {(y) { x + y }	.(1) =(y) { 1 + y } (2) = 1 + 2

What have we seen so far...

Anonymous function, functions as first-class elements, inner functions, formal parameters, actual arguments.

Bound Variable

λ -expression	Function Definition	Bound Variables
	.(x) {	
$(_{\times} \lambda (x) (+ x 1))_{\times}$	x + 1	X
	}	

Bound Variable

λ -expression	Function Definition	Bound Variables
	.(x) {	
$(_{\times} \lambda (x) (+ x 1))_{\times}$	x + 1	X
	}	

$$(_{x} \lambda (x) (_{y} \lambda (y) (+ x y))_{y})_{x}$$

Bound Variable

λ -expression	Function Definition	Bound Variables
$(_{\times} \lambda (x) (+ x 1))_{\times}$.(x) { x + 1 }	X
$(_{\times} \lambda (x) (_{y} \lambda (y) (+ x y))_{y})_{x}$.(x) {(y) { x + y }	x, y

Bound Variable

λ -expression	Function Definition	Bound Variables
$(_{\scriptscriptstyle \times} \lambda (x) (+ x 1))_{\scriptscriptstyle \times}$.(x) { x + 1 }	X
$(_{x} \lambda (x) (_{y} \lambda (y) (+ x y))_{y})_{x}$.(x) {(y) { x + y }	x, y
$(_{y} \lambda (y) (+ x y))_{y}$		

Bound Variable

A bound variable is one which appears in an expression after it has appeared in a λ .

λ -expression	Function Definition	Bound Variables
$(_{\scriptscriptstyle \times} \lambda (x) (+ x 1))_{\scriptscriptstyle \times}$.(x) { x + 1 }	X
$(_{\times} \lambda (x) (_{y} \lambda (y) (+ x y))_{y})_{x}$.(x) {(y) { x + y } }	x, y
$(_{y} \lambda (y) (+ x y))_{y}$	(y) { x + y }	У

Free Variables

Any variable that is not bound is free.

• $((_x \lambda (x) e_1)_x e_2)$: Evaluate the expression e_1 by replacing every ("free") occurrences of x in e_1 by e_2 . I.e., $e_1[x \mapsto e_2]$ (β -reduction)

• $((_{\times} \lambda (x) e_1)_{\times} e_2)$: Evaluate the expression e_1 by replacing every ("free") occurrences of x in e_1 by e_2 . I.e., $e_1[x \mapsto e_2]$ (β -reduction)

$$((_{\times} \lambda (x) (_{\vee} \lambda (y) (+ x y))_{\vee})_{\times} 1)$$

• $((_{\times} \lambda (x) e_1)_{\times} e_2)$: Evaluate the expression e_1 by replacing every ("free") occurrences of x in e_1 by e_2 . I.e., $e_1[x \mapsto e_2]$ (β -reduction)

$$((_{x} \lambda (x) (_{y} \lambda (y) (+ x y))_{y})_{x} 1)$$

• $((_x \ \lambda \ (x) \ e_1 \)_x \ e_2)$: Evaluate the expression e_1 by replacing every ("free") occurrences of x in e_1 by e_2 . I.e., $e_1[x \mapsto e_2]$ (β -reduction)

$$((_{x} \lambda (x) (_{y} \lambda (y) (+ x y))_{y})_{x} 1)$$

$$(_{y} \lambda (y) (+ x y))_{y}[x \mapsto 1]$$

• $((_x \ \lambda \ (x) \ e_1 \)_x \ e_2)$: Evaluate the expression e_1 by replacing every ("free") occurrences of x in e_1 by e_2 . I.e., $e_1[x \mapsto e_2]$ $(\beta$ -reduction)

$$((_{\times} \lambda (x) (_{Y} \lambda (y) (+ x y))_{Y})_{X} \mathbf{1})$$

$$(_{y} \lambda (y) (+ x y))_{y}[x \mapsto 1]$$

$$(_{y} \lambda (y) (+ 1 y))_{y}$$

How about

$$\left(\left(\left(\left(\left(\left(\lambda \left(x\right)\left(x\right)\left(x\right)\left(x\right)\left(+xy\right)\right)_{x}\right)_{y}\right)_{x}1\right)2\right)3\right)$$

How about

```
 \left( \left( \left( \left( \left( \left( x \right) \right) \right)_{x} \right)_{y} \right)_{x} 1 \right) 2 \right) 3 \right) ) 
 . (x) \left\{ \\ . . . (y) \left\{ \\ . . . . (x) \left\{ \\ x + y \\ \right\} \\ \right\} 
 \}
```

How about

```
((((_{\scriptscriptstyle X} \lambda (x) (_{\scriptscriptstyle Y} \lambda (y) (_{\scriptscriptstyle X} \lambda (x) (+ \times y))_{\scriptscriptstyle X})_{\scriptscriptstyle Y})_{\scriptscriptstyle X} (_{\scriptscriptstyle Y} 1) 2) 3))
(x)
      ..(y) {
          ...(x) {
                 x + y
.(1) = ...(y) {
                           ...(x) {
                                   x + y
```

Resolving Name Capture

α -Conversion

Rename variables

$$\left(\left(\left(\left(\left(\left(\lambda \left(x\right)\left(x\right)\left(x\right)\left(x\right)\left(+xy\right)\right)_{x}\right)_{y}\right)_{x}1\right)2\right)3\right)$$

Resolving Name Capture

α -Conversion

Rename variables

$$\left(\left(\left(\left(\left(\left(\lambda \left(x\right)\left(x\right)\left(x\right)\left(x\right)\left(z\right)\left(+z\right)\right)\right)_{z}\right)_{y}\right)_{x}1\right)2\right)3\right)$$

Currying

Pure lambda calculus pairs one variable with one λ

- Functions with many parameters $(x, y, \lambda, (x, y), e, x, y)$: two formal parameters x and y
- Semantically equivalent expression: $(x \lambda(x) (y \lambda(y) e)_y$

Concept introduced by Haskell Curry.

More on this in subsequent lectures.

$$((_{x} \lambda (x) (+ x 1))_{x} ((_{y} \lambda (y) (+ y 1))_{y} 2))$$

Ordering in Evaluation

$$((_{\scriptscriptstyle x} \lambda (x) (+ x 1))_{\scriptscriptstyle x} ((_{\scriptscriptstyle y} \lambda (y) (+ y 1))_{\scriptscriptstyle y} 2))$$

After β -reduction

Either
$$(+((_{y} \lambda (y) (+ y 1))_{y} 2) 1)$$

Or
$$((x \lambda (x) (+ x 1))_{x} (+ 2 1))$$

Recap

- $(x \lambda(x) e)_x$: a lambda expression representing definition of function
- $((_x \lambda (x) e)_x p)$: a lambda expression representing application of a function.
 - Formal parameter: x
 - Actual argument: p
 - Computation: $e[x \mapsto p]$, replace free occurrences of x in e with p (β -reduction)
- Order of β -reduction does not impact the result if each β -reduction terminates

$$((_{x} \lambda (x) (+ x 1))_{x} ((_{y} \lambda (y) (+ y 1))_{y} 2))$$

Examples

What is the result of

$$((x \lambda (x) x)_x (y \lambda (y) y)_y)$$

Examples

What is the result of

$$((_{x} \lambda (x) x)_{x} (_{y} \lambda (y) y)_{y})$$

• $(_{\times} \lambda (x) x)_{\times}$: identify function. The function applied to any entity returns the entity itself.

Adding and subtracting 0 from an arith. expression returns the expression. Multiplying and dividing by 1

Examples

• $(_{\times} \lambda (x) (x x))_{\times}$: self application function. The function when applied to an entity, applies the entity to itself. What is the result of $((_{\times} \lambda (x) (x x))_{\times} 3)$?

What is the result of $((x \lambda (x) (x x))_x (y \lambda (y) y)_y$

 $(f_t \lambda(f)(x \lambda(x)(f x))_x)_f$: Application of function f_t on f_t .

$$(((_f \lambda (f) (_x \lambda (x) (f x))_x)_f (_y \lambda (y) y)_y) (_z \lambda (z) (z z))_z)$$
?

 $(f_t \lambda(f)(x) \lambda(x)(f_t x))_x$: Application of function f_t on f_t .

$$(((_f \lambda (f) (_x \lambda (x) (f x))_x)_f (_y \lambda (y) y)_y) (_z \lambda (z) (z z))_z)$$
?

let
$$g = (_{_{_{\boldsymbol{y}}}} \lambda (y) y)_{_{_{\boldsymbol{y}}}}$$
 and $v = (_{_{\boldsymbol{z}}} \lambda (z) (z z))_{_{\boldsymbol{z}}}$. Then,

 $(f_t \lambda(f)(x) \lambda(x)(f_t x))_x$: Application of function f_t on f_t .

let
$$g = (y \lambda (y) y)_y$$
 and $v = (z \lambda (z) (z z))_z$. Then,

result is
$$(g \ v) = ((_{_{V}} \lambda (y) y)_{_{V}} v) =$$

 $(f_t \lambda(f)(x) \lambda(x)(f_t x))_x$: Application of function f_t on f_t .

let
$$g = (y \lambda (y) y)_y$$
 and $v = (z \lambda (z) (z z))_z$. Then,

result is
$$(g \ v) = ((_{_{V}} \lambda (y) y)_{_{V}} v) = v =$$

 $(f_t \lambda(f)(x) \lambda(x)(f_t x))_x$: Application of function f_t on f_t .

$$\left(\left(\left(\left(\left(\left(\left(\lambda \right) \left(f \right) \right) \right)_{x} \right) \right)_{f} \left(\left(\left(\lambda \right) \right) \right)_{y} \right) \left(\left(\left(\left(\left(\left(\left(\left(\lambda \right) \right) \right) \right) \right) \right) \right) \right) \right) \right)$$

let
$$g = (y \lambda (y) y)_y$$
 and $v = (z \lambda (z) (z z))_z$. Then,

result is
$$(g \ v) = ((_{_{\boldsymbol{y}}} \ \lambda \ (y) \ y)_{_{\boldsymbol{y}}} \ v) = v = (_{_{\boldsymbol{z}}} \ \lambda \ (z) \ (z \ z))_{_{\boldsymbol{z}}}$$

Syntax Revisited

$$e \rightarrow x$$
 Variable $\left(\begin{array}{c} (x \lambda (x) e)_x \end{array}\right)_x$ a lambda expression $\left(\begin{array}{c} (e \ e) \end{array}\right)$ Application

What about the data? Boolean, Integers, ...

Natural Numbers (Church Numerals)

Encoding of numbers: 0, 1, 2, ..., as functions such that their semantics follows the natural number semantics.

Intuition: The number *n* means how many times one can do certain operation.

Encoding Natural Numbers

zero
$$(f_t \lambda(f))(f_t \lambda(x) x)_t$$

one $(f_t \lambda(f))(f_t \lambda(x))(f_t x)_t$
two $(f_t \lambda(f))(f_t \lambda(x))(f_t x)_t$
 $(f_t \lambda(f))(f_t \lambda(x))(f_t x)_t$
 $(f_t \lambda(f))(f_t \lambda(x))(f_t x)_t$

Assume f is operation and x is the object on which the operation is done.

Encoding Natural Numbers

```
zero (f \lambda (f) (x \lambda (x) x)_{x})_{x}
one (f \lambda (f) (f \lambda (x) (f x))_{f}
two (f \lambda (f) (f \lambda (x) (f (f x)))_{f}
    n \left( \int_{f} \lambda \left( f \right) \left( \int_{X} \lambda \left( x \right) \left( f \ldots \left( f \right) \ldots \right) \right) \right) \right)
Assume f is operation and x is the object on which the operation is done.
       E.g.: f is adding '1' to the list
       E.g.: x is an empty list
 Then,
 meaning of zero is empty list ( )
meaning of one is (1)
meaning of two is (11)
meaning of three is (111)
```

Encoding Natural Numbers

A natural number is represented by the number of application of some function on some entity.

A natural number function takes two arguments (function and entity on which the function is to be applied).

Example

What is the semantics of

• ((two g) z): two applications of g on z.

$$\left(\left(\left(\begin{smallmatrix} f & \lambda & (f) & (_{x} & \lambda & (x) & (f & (f & x)) &)_{x} &)_{f} & g\right) z\right) = \left(g & (g & z)\right)$$

- ((n g) z): n applications of g on z, where n is a natural number.
- $(z \lambda (z) ((n g) z))_z$: n applications of g on the formal parameter z, where n is a natural number. This result is a function (z if the formal parameter of the function).

Encoding Natural Number

- successor function: succinct representation of any number
- addition
- multiplication
- subtraction

succ:
$$\binom{n}{n} \lambda (n) \binom{n}{f} \lambda (f) \binom{n}{k} \lambda (x) (f ((n f) x)) \binom{n}{k} \binom{n}{f}$$

n: the number whose successor we want to compute. $((n \ f) \ x)$: n applications of the function f on x, i.e., $(f^n x)$. Therefore,

(f(n f) x) is $(f(f^n x))$, which is representation of n + 1.

Succ:
$$\binom{n}{n} \lambda (n) \binom{n}{f} \lambda (f) \binom{n}{k} \lambda (x) (f ((n f) x)) \binom{n}{k} \binom{n}{f} \binom{n}{f$$

Succ:
$$\binom{n}{n} \lambda (n) \binom{f}{f} \lambda (f) \binom{f}{f}$$

Succ:
$$\binom{n}{n} \lambda (n) \binom{f}{f} \lambda (f) \binom{f}{f}$$

succ:
$$\binom{n}{n} \lambda (n) \binom{f}{f} \lambda (f) \binom{f}{f}$$

Succ:
$$\binom{n}{n} \lambda \binom{n}{f} \binom{n}$$

Succ:
$$\binom{n}{k} \binom{n}{k} \binom{f}{k} \binom{f}{k$$

Succ:
$$\binom{n}{n} \lambda (n) \binom{f}{f} \lambda (f) \binom{f}{f}$$

```
Succ: \binom{n}{n} \lambda \binom{n}{f} \binom{f}{g} \binom{f}
```

How about?

(succ (succ zero))

$$\binom{m}{m} \lambda (m) \binom{n}{m} \lambda (n) \binom{n}{m} \lambda (f) \binom{n}{m} \lambda (x) ((((m succ) n) f) \binom{n}{m} \binom{$$

 $\binom{m}{m} \lambda \binom{m}{m} \binom{n}{m} \binom{$

add: $\binom{m}{m} \lambda \binom{m}{m} \binom{n}{m} \lambda \binom{n}{m} \binom{n}{m} \lambda$

add: $\binom{m}{m} \lambda \binom{m}{m} \binom{n}{m} \lambda \binom{n}{m} \binom{n}{m} \lambda$

```
true: (_{\times} \lambda (x) (_{y} \lambda (y) x)_{y})_{\times} Select the first argument false: (_{\times} \lambda (x) (_{y} \lambda (y) y)_{y})_{\times} Select the second argument ite: (_{c} \lambda (c) (_{t} \lambda (t) (_{e} \lambda (e) ((c t) e))_{e})_{t})_{c}
```

```
true: \binom{x}{x} \lambda(x) \binom{y}{y} \lambda(y) x \binom{y}{y} \binom{
```

```
true: \binom{x}{x} \lambda(x) \binom{y}{y} \lambda(y) x \binom{y}{y} \binom{
```

```
true: \binom{x}{x} \lambda(x) \binom{y}{y} \lambda(y) x \binom{y}{y} \binom{
```

```
true: (_{\times} \lambda (x) (_{y} \lambda (y) x)_{y})_{\times} Select the first argument false: (_{\times} \lambda (x) (_{y} \lambda (y) y)_{y})_{\times} Select the second argument ite: (_{c} \lambda (c) (_{t} \lambda (t) (_{e} \lambda (e) ((c t) e))_{e})_{t})_{c} (((ite true) s_{1}) s_{2}) = (((_{c} \lambda (c) (_{t} \lambda (t) (_{e} \lambda (e) ((c t) e))_{e})_{t})_{c} true) s_{1}) s_{2}) = ((_{t} \lambda (t) (_{e} \lambda (e) ((true t) e))_{e})_{t} s_{1}) s_{2}) = ((_{e} \lambda (e) ((true s_{1}) e))_{e} s_{2})
```

```
true: \binom{x}{x} \lambda(x) \binom{y}{y} \lambda(y) x \binom{y}{y} \binom{
```

```
true: (_{\times} \lambda (x) (_{y} \lambda (y) x)_{y})_{\times} Select the first argument false: (_{\times} \lambda (x) (_{y} \lambda (y) y)_{y})_{\times} Select the second argument ite: (_{c} \lambda (c) (_{t} \lambda (t) (_{e} \lambda (e) ((c t) e))_{e})_{t})_{c} (((ite true) s_{1}) s_{2}) = ((((_{c} \lambda (c) (_{t} \lambda (t) (_{e} \lambda (e) ((c t) e))_{e})_{t})_{c} true) s_{1}) s_{2}) = ((((_{t} \lambda (t) (_{e} \lambda (e) ((true t) e))_{e})_{t} s_{1}) s_{2}) = (((_{x} \lambda (x) (_{y} \lambda (y) x)_{y})_{\times} s_{1}) s_{2})
```

```
true: (x \lambda(x)(y \lambda(y)x)_y)_x Select the first argument
false: (x \lambda(x)(y \lambda(y) y)_x Select the second argument
  ite: ((\lambda (c) (\lambda (t) (\lambda (e) ((c t) e)))_{e})_{e}
    (((ite\ true)\ s_1)\ s_2) =
    (((( ( \lambda (c) ( \lambda (t) ( \lambda (e) ((c t) e) ) , ), true) s_1) s_2) =
                  (((_{t} \lambda (t) (_{e} \lambda (e) ((true t) e))_{e})_{t} s_{1}) s_{2}) =
                                 (( \lambda (e) ((true s_1) e) ) s_2) =
                                                ((true s_1) s_2) =
    (((_{\scriptscriptstyle x} \lambda (x) (_{\scriptscriptstyle y} \lambda (y) x)_{\scriptscriptstyle y})_{\scriptscriptstyle x} s_1) s_2) =
                  ((_{V} \lambda (y) s_1)_{V} s_2)
```

```
true: (x \lambda(x)(y \lambda(y)x)_y)_x Select the first argument
false: (x \lambda(x)(y \lambda(y) y)_x Select the second argument
  ite: ((\lambda (c) (\lambda (t) (\lambda (e) ((c t) e)))_{e})_{e}
   (((ite\ true)\ s_1)\ s_2) =
   (((( ( \lambda (c) ( \lambda (t) ( \lambda (e) ((c t) e) ) , ), true) s_1) s_2) =
                (((_{t} \lambda (t) (_{e} \lambda (e) ((true t) e))_{e})_{t} s_{1}) s_{2}) =
                              (( \lambda (e) ((true s_1) e) ) s_2) =
                                           ((true s_1) s_2) =
   ((((_{x} \lambda (x) (_{y} \lambda (y) x)_{y})_{x} s_{1}) s_{2}) =
                ((\ \ \lambda \ (y) \ s_1)_{\ \ } s_2) = s_1
```

Boolean Operators

```
not a: if a then false else true. (((ite\ a)\ false)\ true) a b: if a then b else false. (((ite\ a)\ b)\ false)
```

What is the adequate set of operators for boolean logic?

Recursion

- λ -calculus does not allow recursive definition, i.e., a definition of a function must not include the name of the function.
- Relies on fixed point characterization of recursions to realize the results of recursions.

Do we program in lambda calculus

No

The objective to learn about Lambda Calculus:

- Better understanding of functional computation and functional programming
- Design of new languages/new features to existing languages

Review and Further Reading

- Concepts: Lambda abstraction and function application, high order functions
- bound and free variables
- currying
- ▶ β —reduction and α —conversion
- church encoding

Further reading: pass by name, pass by value, lazy evaluation

- Programming Languages: Lambda Calculus 1 https://www.youtube.com/watch?v=v1IlyzxP6Sg
- Programming Languages: Lambda Calculus 2 https://www.youtube.com/watch?v=Mg1pxUKeWCk