较件说明书

热图绘制系统

简称: oppHeatmap

Version 1.0

作者: 张扬

目录

1.	简介	2
	软件操作主界面	
3.	案例数据(Data.xlsx)	3
4.	普通热图(Heatmap)	3
5.	微板热图(MicroPlatePlot)	7
6.	双边分层聚类(HierarchyClustering)	8
7.	树图(TreeMap)	10
8.	样品相关系数图(SampleCorrelation)	11
9.	基因相关系数图(GeneCorrelation)	14
10.	环形热图 (Polar)	17

1. 简介

热图绘制系统,简称 oppHeatmap,是基于 MATLAB 的 AppDesigner 开发的,带有图形界面的针对组学来源数据的热图绘制软件。oppHeatmap 支持普通热图、双边分层聚类热图、树图(Treemap)、微板图(Microplate)和样品相关系数图(方阵图、上三角图和下三角图)、基因相关系数图(单表和双表)和环状热图的绘制。oppHeatmap 支持热图边框、字体和颜色的修改。oppHeatmap 读取 Excel 来源的组学数据,并在 MATLAB 环境中生成热图,用户可以通过 SaveAs 命令保持成矢量图。

2. 软件操作主界面

先加载程序包: 打开 MATLAB,在 APP 界面下点击"安装 APP",选择 "oppHeatmap.mlappinstall",可以把 oppHeatmap 程序包加载进入 MATLAB。

在 MATLAB 中执行命令"oppHeatmap"。

进入 oppHeatmap 主界面。oppHeatmap 包含 Heatmap、MicroPlatePlot、HierarchyClustering、TreeMap、Sample Correlation、Gene Correlation 和 Polar 共7个主界面。

3. 案例数据(Data.xlsx)

表: oppHeatmap 操作所用到的案列数据。

	* 11	• • • • • • • • • • • • • • • • • • • •
表名	说明	样品数目
Heatmap	蛋白质组部分结果案例	有 4 个样品(A、B、C 和 D),各三次生物学重复。
Proteome	天花粉蛋白质组全部结果	有 3 个样品(A、B 和 C),各三次生物学重复。
TreeMap	TreeMap 图案例数据	
T1	转录组数据案例	有 5 个样品,各 1 次生物学重复。
T2	蛋白组数据案例	有 5 个样品,各 1 次生物学重复。

4. 普通热图 (Heatmap)

4.1 Draw Common Heatmap

在 Heatmap 面板下,点击"Open",选择组学来源的表格数据,一般存在 Excel 中。一般格式如下: 具有 ID 列(是字符串)、每列都是每个样本的表达量,包含重复样品。如下表: 有 4 个样品(A、B、C 和 D),各三次生物学重复。

ID	A1	A2	A3	B1	B2	В3	C1	C2	C3	D1	D2	D3
UBA6_HUMAN	823.7	593.33	863.77	155.2	780.71	183.53	966.26	294.44	1356.9	171.57	204.13	722.93
ESYT2_HUMAN	3244	2408.4	3167.3	1216.6	5012.2	2105	2048.3	957.98	8168.4	596.77	630.09	2308.9
TM223_HUMAN	2117.7	640.63	1071	3611.8	816.26	1043.4	707.25	89.022	2810.4	302.56	845.15	2925.4
NBAS_HUMAN	371.27	366.72	696.96	315.98	940.35	1812.4	390.05	152.67	850.45	119.5	112.22	160.77
SYTC2_HUMAN	560.42	305.94	503.43	775.84	1121.3	180.2	433.7	240.25	386.35	311.56	150.92	479.71
VWA8_HUMAN	1286.5	1522.8	5861.8	3054.3	5830.8	3932.7	1461.1	1616.7	3528.7	1045.1	1864.2	4007.4
GTPBA_HUMAN	119.56	284.73	711.08	143.93	1353.7	493.78	69.883	412.48	868.78	259.11	131.15	338.72
XIRP2_HUMAN	337.78	250.59	1643.1	3011.6	4706.4	3874.7	1164.6	849.2	1376.1	783.39	1426.3	2185.7
FITM1_HUMAN	4288.4	1601.6	1802.4	1788.1	1216.8	3821.6	1814	623.98	2792.4	1468.2	808.23	1375.6
PGP_HUMAN	5972.4	7800	6176.9	3054.7	17778	8502.3	4955.5	5562.1	14266	5263.1	2823.7	10624
NDUA2_HUMAN	111160	105730	156890	84013	220170	300200	90270	105150	363490	22654	17287	366000
ASNA_HUMAN	8412.7	11904	10140	6885.1	14979	10775	6377.3	3545.5	20434	1039.7	3229.9	16335
BUB3_HUMAN	1591.5	1189.1	1717.4	2205.6	2527.2	880.83	1310.6	753.57	3460.5	546.51	1934.9	1617.7
ACTN4_HUMAN	30645	33573	29262	52697	18986	40494	19679	10342	73003	9314	19989	40326
MAAI_HUMAN	2578.2	6090.2	9451.3	1528.3	15811	11139	2155.2	5319.8	11691	465.02	3263.2	13129
SUN1_HUMAN	3179.2	3447.9	3606.7	1788.8	3685.1	3807.6	2473.8	1315.7	7839.7	1113.7	1081	2048.2
PROSC_HUMAN	3751.5	5484	4601.8	1874	5920.7	3865.1	4303.7	790.15	9424.2	1035.2	735.64	4126.3
ERLN2_HUMAN	5145	9210.4	16706	3558.2	12608	9522.3	13412	4134	19961	6709.2	6045.2	9047.2
PRP6_HUMAN	252.89	150.79	45.776	55.294	83.288	98.244	124.76	88.799	451.81	40.655	162.56	459.82
ABCA8_HUMAN	3956.7	2927.4	3441.9	902.22	3427.1	2391.7	2500.1	2527.6	7834.8	865.62	1463.4	3779.4
FRYL_HUMAN	120.06	40.967	20.883	35.202	161.21	55.629	49.192	4.684	29.449	34.372	77.989	
ENDD1_HUMAN	1961.6	1494.7	5840	282.51	2518.2	2000.6	1769.4	669.06	2992.2	303.96	429.49	525.84
GLSK_HUMAN	3482.1	2485.9	6168.8	1017.4	2848	1018.6	4167.5	638.71	11923	545.21	1302.4	1127.3
ABLM3_HUMAN	1310	925.58	1667.8	516.81	1787.7	3104.1	975.45	754.26	1298.8	233.27	732.13	4087.8
NDUC2_HUMAN	3085.1	20996	6076.1	83540	37061	113270	55218	42730	75815	25025	21734	53547
NDUAA_HUMAN	101610	84579	84193	81880	154200	160990	84328	68095	182940	51920	56142	169130
FKBP9_HUMAN	1265.6	1502.3	1210	1051.2	689.98	1851.4	891.59	448.69	3770	240.75	710.36	1747.3
CELF2_HUMAN	660.06	698.41	2794.7	964	1149.9	1013.3	1255.6	1595.3	2855.5	466.54	260.33	1035.6
6PGL_HUMAN	6009.9	8063.7	9731.8	2337.2	9907.5	8998.7	7233.3	3943.4	18919	1289.7	4903.8	10233
TACC2_HUMAN	1629.4	1505	3131.3	283.78	3253	2003.3	1130	858.48	2327.5	393.98	1045.4	2190.8
SYFM_HUMAN	1906	394.18	494.81	477.47	1948.2	559.67	596.74	1033.6	1601.4	665	1483	1500
LYPA2_HUMAN	6526	3572.6	3015.8	686.33	4048.1	209.55	2473	738.28	8567.6	920.36	652.77	811.78
IPO7_HUMAN	1799.7	2102.1	3478.4	1034.4	1740.6	2373.6	1783.3	997.31	3483.5	1625.7	1851.3	2101.3
ARI2_HUMAN	158.82	297.74	416.41	96.123	2053.4	186.67	283.48	404.63	1238.1	267.8	485.2	218.25

图. 导入的组学原始数据。

图. 普通热图的参数面板。

"No. of Sheet in Excel"是填写获取 Excel 中哪张表; "Data Column"是获取具体哪些列; "Row Range"是截取哪些行进行热图绘制; "yLabel Column"是热图中纵坐标的文字来源。

Grid Line 是在热图中添加网格线。"Color"按钮可以激活调色板,选择的颜色 RGB 值会出现在右侧方框中,是网格线的颜色;"Width"是网格线的粗细。缺省以红绿方式显示热图,即红色表示上调,绿色表示下调。整个软件颜色的表述方式一致。

图. 利用红绿方式显示普通热图。

若在"Color Schema"中选择"Red&Blue",便以红蓝方式显示热图。即红色表示上调,蓝色表示下调。在 MALTAB,键入"colormap redgreencmap"或"colormap redbluecmap"也可以实现红绿和红蓝转换。

图. 利用红蓝方式显示普通热图。

4.2 Plot to Excel

oppHeatmap 可以实现将表格数据以热图的方式输出到 Excel 中,以代替 Excel 中根据数据产生热图的"条件格式"功能。"Row Standardize"表示输入表格 进行 zscore 的行归一化,即行数据控制在(-1,1)之间,以优化热图的可视化 效果。

图. 在 Excel 中产生热图的面板。

图. 在 Excel 中产生热图的效果。

5. 微板热图 (MicroPlatePlot)

在 MicroPlatePlot 面板中,"Excel Path"填写组学的来源数据;"No. of Sheet in Excel"是填写获取 Excel 中哪张表;"Data Column"是获取具体哪些列;"Name Column"是微板图纵坐标中显示的文字来源列。

图. 微板图的参数界面。

图. 微板图的显示结果。颜色深浅与原始数据的表达量相关。

6. 双边分层聚类 (HierarchyClustering)

"No. of Sheet in Excel"是填写获取 Excel 中哪张表;"Data Column"是获取具体哪些列;"GeneName Column"是热图中纵坐标的文字来源;"Replicates Number"是样品重复性的分组情况。

Calculation 面板中"Distance for Row"和"Distance for Column"是聚类计算中距离的公式,常用欧氏距离或 Pearson 相关系数;"Linkage"表示多个距离合并时所采用的公式。

Color Schema 面板中"Red & Green"和"Red & Blue"分别是红绿和红蓝方式显示聚类热图。红色表示上调;绿色和蓝色表示下调。

"Row Standardize"是原始数据经过行归一化后再显示热图。

"Export Result"是将聚类重排的结果输出到当前路径下的 HC.txt 文件中。

图. 分层聚类热图的参数面板。

图. 红绿显色的双边聚类热图。

图. 行归一化后的红蓝显色的双边聚类热图。

7. 树图 (TreeMap)

在 TreeMap 面板中,Single TreeMap 是做一级的树图,Nested TreeMap 是多级树图。"Excel Path"填写组学的来源数据;"No. of Sheet in Excel"是填写获取 Excel 中哪张表;"Data Column"是获取具体哪些列;"Name Column"是树图中每个格子中显示的文字来源列。"Add Color"不选时,树图是黑白的;选择时,树图是彩色的。"Font Size"是网格中文字的大小;"Font Color"是网格中文字的颜色。

图. 树图的参数面板。

图. 彩色方式显示的一级树图。

图. 彩色方式显示的多级树图。

8. 样品相关系数图 (SampleCorrelation)

8.1 相关系数全图

用以计算单表格内,每列之间的相关系数,形成热图。

在 SampleCorrelation 面板的 Full 面板中,"Excel Path"填写组学的来源数据;"No. of Sheet in Excel"是填写获取 Excel 中哪张表;"Data Column"是获取具体哪些列;"Replicates Column"是样品的重复性分类。每两个样品的表达量都会做相关系数,采用 Distance 中选择的参数进行计算。

Grid Line 面板中,"Color"表示网格线的颜色;"Width"表示网格线的粗细。 "Sort Column"表示热图展示的时候,接近的样品是否要重新排序,显示在一起;"Add SampleLine"表示热图的上方是否要显示样品 barcode,重复的样品会出现相同的颜色。"Export Result"是将计算得到的相关系数结果输出到文本中。

图. 样品相关系数全图的参数界面。

图. 样品相关系数图的显示结果。蓝色的方框表示重复的样品之间的相关系数。用户可以右键点击右侧的 ColorBar,进行热图的颜色对比度修改。

图. 对比度选择器。

8.2 相关系数半图

在 SampleCorrelation 面板的 Triangle 面板中,"Excel Path"填写组学的来源数据;"No. of Sheet in Excel"是填写获取 Excel 中哪张表;"Data Column"是获取具体哪些列;"Replicates Column"是样品的重复性分类。每两个样品的表达量都会做相关系数,采用 Distance 中选择的参数进行计算。

Grid Line 面板中,"Color"表示网格线的颜色;"Width"表示网格线的粗细。Orientation 面板中,"Upper Triangle"表示上三角热图;"Lower Triangle"表示下三角热图。"Sort Column"表示热图展示的时候,接近的样品是否要重新排序,显示在一起;"Add SampleLine"表示热图的上方是否要显示样品 barcode,重复的样品会出现相同的颜色。"Export Result"是将计算得到的相关系数结果输出到文本中。

图. 样品相关系数半图的参数界面。

图. 样品相关系数半图, 上三角热图。

9. 基因相关系数图 (GeneCorrelation)

9.1 单表格自相关 (1 Table)

用以计算单表格内,每行之间的相关系数,形成热图。

在 GeneCorrelation 面板的 1 Table 面板中,"Excel Path"填写组学的来源数据;"No. of Sheet in Excel"是填写获取 Excel 中哪张表;"Data Column"是获取具体哪些列;"GeneName Column"是哪一列是行名称列。输入表格中每两个基因(每两行)之间的表达量都会做相关系数,采用 Distance 中选择的参数进行计算。

"Sort Column"表示热图展示的时候,接近的样品是否要重新排序,显示在一起; "Show Label"表示是否在热图旁显示基因和样品名称。"Export Result"是将计算得到的相关系数结果(矩阵和基因 ID 配对)输出到文本中。

图. 基因相关系数图的参数界面,单表格。

输出结果的行列对应的颜色值是特定行与列之间的相关系数。文本结果可以通过点选"Export Result"输出。

图. 单表格基因相关系数图的输出案例。

9.2 单表格自相关 (2 Table)

用以计算1张表格内的某行与另一张表格中的某行之间的相关系数,形成 热图。

在 GeneCorrelation 面板的 2 Table 面板中,"Excel Path"填写组学的来源数据;"No. of Sheet1"是填写第 1 个 Excel 的 Sheet 名;"No. of Sheet2"是填写第 2 个 Excel 的 Sheet 名;"Data Column"是获取具体哪些列;"GeneName Column"是哪一列是行名称列。输入表格中每两个基因(每两行)之间的表达量都会做相关系数,采用 Distance 中选择的参数进行计算。

"Sort Column"表示热图展示的时候,接近的样品是否要重新排序,显示在一起; "Show Label"表示是否在热图旁显示基因和样品名称。"Export Result"是将计算得到的相关系数结果(矩阵和基因 ID 配对)输出到文本中。

图. 基因相关系数图的参数界面, 双表格。

输出结果的行列对应的颜色值是特定行与列之间的相关系数。文本结果可以通过点选"Export Result"输出。

图. 双表格基因相关系数图的输出案例。

图. 双表格基因相关系数的分层聚类图的输出案例。

10. 环形热图 (Polar)

用极坐标的方式显示热图。

在 Polar 的面板中,"Excel Path"填写组学的来源数据;"No. of Sheet in Excel"是填写 Excel 的 Sheet 名;"Data Column"是获取具体哪些列;"GeneName Column"是哪一列是行名称列;"Replicates Number"表示每组样品的重复数。"Structure"面板表示形成环状热图的结构;"Genes"面板表示对基因文字的修改;"Groups"面板表示组内样品的颜色、字体和宽度等修改。

"Grid Color"表示热图中网格线的颜色设置;"Offset"表示文字标签与图之 间的间隔。

图. 环形热图参数界面。

图.3/4 形热图案例。

图. 半热图案例。