RESEARCH PAPER RP1634

Part of Journal of Research of the National Bureau of Standards, Volume 34, February 1945

HEATS, FREE ENERGIES, AND EQUILIBRIUM CONSTANTS OF SOME REACTIONS INVOLVING O2, H2, H2O, C, CO, CO2, AND CH41

By Donald D. Wagman, John E. Kilpatrick, William J. Taylor, Kenneth S. Pitzer,3 and Frederick D. Rossini

ABSTRACT

Values are presented for the following thermodynamic properties: The heat-content function, $(H^\circ - H_0^\circ)/T$, the free-energy function, $(F^\circ - H_0^\circ)/T$, the entropy, S° , the heat content, $H^\circ - H_0^\circ$, and the heat capacity, C_p° , for O_2 (gas) to 5,000 °K, H_2 (gas) to 5,000 °K, H_2 (gas) to 3,000 °K, H_2 (gas) to 5,000 °K, H_2 (gas) to 5,000 °K, H_2 (gas) to 3,500 °K, H_2 (gas) to 1,500 °K, H_2 (gas) to 5,000 °K, H_2 (gas) to 3,500 °K, and H_2 (gas) to 1,500 °K; the standard entropy, H_2 (liq) at 25 °C; the heat of formation, H_2 (high the equilibrium constant of formation, H_2 (from the elements, for H_2 (liq) at 25 °C, and for H_2 (gas), $H_$

From the foregoing, values were calculated for the increment in heat content, ΔH° , the increment in free energy, ΔF° , and the equilibrium constant, K, for the following reactions, most of which are important in connection with the production

of liquid hydrocarbon fuels from natural gas or coal and hydrogen:

 $\begin{array}{l} {\rm C(solid,\;graphite) + CO_2(gas) = 2CO\;\;(gas).} \\ {\rm C(solid,\;graphite) + H_2O\;\;(gas) = CO\;\;(gas) + H_2(gas).} \\ {\rm CO\;\;(gas) + 1/2O_2(gas) = CO_2(gas).} \end{array}$ ${
m CO(gas) + H_2O~(gas) = CO_2(gas) + H_2(gas).} \ {
m CH_4(gas) + 1/2O_2(gas) = CO(gas) + 2H_2(gas).}$ $\begin{array}{l} {\rm CH_4\ (gas) + CO_2(gas) = 2CO(gas) + 2H_2(gas).} \\ {\rm CH_4\ (gas) + H_2O(gas) = CO(gas) + 3H_2(gas).} \\ {\rm CH_4\ (gas) + 2H_2O(gas) = CO_2(gas) + 4H_2(gas).} \end{array}$

A table of the fundamental constants used in the calculations is given.

CONTENTS	
	Page
I. Introduction	144
II. Unit of energy, molecular weights, constants, etc.	144
III. Heat-content function, free-energy function, entropy, heat content,	
and heat capacity	146
1. Method of calculation	146
2. Data used in the calculations	147
3. Results for O ₂ , H ₂ , H ₂ O, N ₂ , C, CO, CO ₂ , and CH ₄	148

¹ This investigation was performed at the National Bureau of Standards jointly by the Thermochemical Laboratory and the American Petroleum Institute Research Project 44 on the "Collection and Analysis of Data on the Properties of Hydrocarbons."

Research Associate on the American Petroleum Institute Research Project 44 at the National Bureau

3 Consultant to the American Petroleum Institute Research Project 44 at the National Bureau of Stand-

ards; Professor of Chemistry, University of California, Berkeley, Calif.

627528-45-

143

Andrew Construction of the contract of the con	Page
IV. Heat of formation, free energy of formation, and equilibrium constant	
of formation	154
1. Method of calculation	154
2. Data used in the calculations	154
3. Results for H ₂ O, CO, CO ₂ , and CH ₄	155
V. Heat and free energy of the transition of graphite into diamond	156
VI. Heats, free energies, and equilibrium constants of some reactions in-	
volving O_2 , H_2 , H_2O , C , CO , CO_2 , and CH_4	158
VII. References	161

I. INTRODUCTION

In connection with the work of the Thermochemical Laboratory and the American Petroleum Institute Research Project 44 at the National Bureau of Standards, values for thermodynamic properties of the simple substances oxygen, hydrogen, water, nitrogen, carbon, carbon monoxide, carbon dioxide, and methane have been recalculated. These data have been used to calculate the heats, free energies, and equilibrium constants of a number of reactions involved in the production of liquid hydrocarbon fuels from natural gas or coal and hydrogen. The results of these calculations are presented in this report.

II. UNIT OF ENERGY, MOLECULAR WEIGHTS, CONSTANTS, ETC.

The unit of energy used in this paper is the conventional thermochemical calorie, defined as follows [1]:⁴

The unit of pressure is the conventional standard atmosphere, defined as follows [2, 7]:

$$1 \text{ atmosphere} = 1,013,250 \text{ dynes/cm}^2.$$
 (2)

The constants in eq 1 and 2 are conventional constants, and are not subject to experimental error.

The molecular weights were calculated from the values given in

the 1941 table of International Atomic Weights [3].

The value of the PV product for an ideal gas (a real gas at zero pressure) at 0° C, $(PV)_{0}^{\circ}$ - $_{0}^{\circ}$, which is equal to the product of the gas constant per mole and the absolute temperature of the ice point, $(RT)_{0^{\circ}}$ C, is taken from the value calculated by Cragoe [4]:

$$(PV)_{0}^{P=0} = (RT)_{0} = 2271.16$$
 absolute joules/mole. (3)

The uncertainty in the foregoing relation is estimated to be ± 0.002

percent.

The relation between the absolute watt and the international watt (NBS) is taken from the value recommended by Crittenden and Curtis [5]:

The uncertainty in the foregoing relation is estimated to be ± 0.005 percent.

⁴ Figures in brackets indicate the literature references at the end of the paper.

The additional constants used in the present calculations are (1) the absolute temperature of the ice point, T_{OC} ; (2) the velocity of light, c; (3) the Avogadro number (chemical scale) N; and (4) the Planck constant, h. The relation between the liter and the cubic centimeter has been utilized to convert several quantities to pressure-volume units, since they are often useful. The values recommended by Birge [6] for these constants have been used.

The foregoing values of the constants lead to the consistent set of fundamental and derived constants that are given in table 1. The uncertainties of the constants have been reestimated in some cases by

the present authors.

The values of the constants in table 1 have been used to calculate the constants in the equations for the contributions of translation and of rotation of a rigid molecule to the several thermodynamic functions. The contribution of translation is given by the Sackur-Tetrode equation, and is exact for all molecules. The contribution of a rigid rotator is a useful approximation to the rotational contribution in actual molecules. See references [8, 9].

Table 1.—Values of the constants

No.	Relation	From
	1 liter=1000.028 ±0.004 cm³	[6]
)	1 atm=1,013,250 dyne/cm ²	Definition, [2]
	1 int. joule (NBS) = 1.00017 ± 0.00005 abs. joule	[5]
	1 cal=4.1833 int. joule (NBS)	Definition, [1]
		d, c
	=41.2930 ±0.0021 cm ³ atm	d, c, b
	=0.0412918 ±0.0000021 liter atm	d, c, b, a
1	$(PV)_{0 \circ C}^{P=0} = (RT)_{0 \circ C} = 2271.16 \pm 0.04$ abs. joule/mole	[4]
	$=22414.6 \pm 0.4 \text{ cm}^3 \text{ atm/mole.}$	h, b
	$=22.4140 \pm 0.0004$ liter atm/mole	h, b, a
	$T_{0^{\circ}C} = 273.160 \pm 0.010 ^{\circ}K_{$	[6]
	$R = (RT)_{0 \circ C}/T_{0 \circ C} = 8.31439 \pm 0.00034$ abs. joule/deg mole	h, k
n	$=8.31298 \pm 0.00054$ int. joule/deg mole	l, c
	$=1.98718 \pm 0.00013 \text{ cal/deg mole}$	1, e
	$=82.0567 \pm 0.0034 \text{ cm}^3 \text{ atm/deg mole}$	1, b
)	$=0.0820544 \pm 0.0000034$ liter atm/deg mole	1, b, a
	$N = (6.02283 \pm 0.0022) \times 10^{23} \text{mole}$	[6]
	$k = (R/N) = (1.38048 \pm 0.00050) \times 10^{-16} \text{ erg/deg}$	[6] [6]
	$h = (6.6242 \pm 0.0044) \times 10^{-27} \text{ erg sec}$	[6]
		[6]
	$Z = Nhc = 11.9600 \pm 0.0036$ abs. joule cm/mole	q, s, t
		u, c
7	$=2.8585 \pm 0.0009 \text{ cal cm/mole}$	u, e
	$(Z/R) = (hc/k) = 1.43847 \pm 0.00045$ cm deg	u, 1

The equations in table 2 yield the values of the thermodynamic functions in units of calories, degrees, and moles. The logarithms are common logarithms, to the base 10. M is the molecular weight in grams, and T is the absolute temperature in degrees Kelvin. I is the value of the two equal moments of inertia, in g-cm², of a linear molecule about axes perpendicular to the axis of the molecule. I_1 , I_2 , and I_3 , are the three principal moments of inertia, in g-cm², not necessarily unequal in value, of a nonlinear molecule. Separate equations are required for the rotational contributions of a diatomic or linear polyatomic molecule, and those of a nonlinear polyatomic molecule. The symmetry number, σ , is the number of ways the molecule may be superimposed upon itself by rotation of the entire molecule. For linear molecules the value of σ is either 1 or 2; the equations for the rotational free energy and entropy of a linear molecule are given explicitly for these two cases.

Table 2.—Summary of equations, with constants, for calculating the values of the thermodynamic functions for translation (of all molecules) and rotation (of rigid molecules)

[Units: $(H^{\circ}-H^{\circ})/T$, C° , $(F^{\circ}-H^{\circ})/T$, and S° in cal/deg mole; T in ${}^{\circ}K$; M in g/mole; I, I_1 , I_2 , and I_3 in g-cm²; σ , a dimensionless integer; logarithms to the base 10.]

TRANSLATION (OF ALL MOLECULES)

 $(H^\circ-H^\circ)/T=C^\circ_p=4.9680$ $(F^\circ-H^\circ_0)/T=-6.8635\log\ M+7.2820-11.4391\log\ T$ $S^\circ=6.8635\log\ M-2.3141+11.4391\log\ T$

ROTATION (OF RIGID MOLECULES)

I. Diatomic or linear polyatomic molecules. $(H^{\circ}-H^{\circ}_{0})/T=C^{\circ}=1.9872$

(H° -Hb)/ $T = C^\circ = 1.9872$ (a) σ (symmetry number) = 1: (F° -Hb)/ $T = -4.5757 \log (I \times 10^{39}) + 2.7676 - 4.5757 \log T$ $S^\circ = 4.5757 \log (I \times 10^{39}) - 0.7804 + 4.5757 \log T$ (b) σ (symmetry number) = 2: (F° -Hb)/ $T = -4.5757 \log (I \times 10^{39}) + 4.1450 - 4.5757 \log T$ $S^\circ = 4.5757 \log (I \times 10^{39}) - 2.1578 + 4.5757 \log T$ II. Nonlinear polyatomic molecules. (H° -Hb)/ $T = C^\circ = 2.9808$ (F° -Hb)/ $T = C^\circ = 2.2878 \log (I \times 12 \times 10^{117}) + 4.5757 \log \sigma + 3.0140 - 6.8635 \log T$ $S^\circ = 2.2878 \log (I \times 12 \times 10^{117}) - 4.5757 \log \sigma - 0.0332 + 6.8635 \log T$

III. HEAT-CONTENT FUNCTION, FREE-ENERGY FUNC-TION, ENTROPY, HEAT CONTENT, AND HEAT CAPACITY

1. METHOD OF CALCULATION

Values of the thermodynamic properties of the simple molecules, O₂, H₂, H₂O, N₂, CO, and CO₂, in the ideal gaseous state and to high temperatures, were calculated statistically from spectroscopic and other molecular data by Johnston, et. al. [10, 11, 12, 13], Giauque, et. al. [14, 15, 16], Gordon [17, 18], and Kassel [19]. Since such new spectroscopic data as have become available would not lead to values of the thermodynamic functions significantly different than those obtained in the foregoing calculations, it was not considered necessary or justified to repeat these calculations in detail. The values required for the present investigation were obtained by converting the existing values to new ones based on the new values of the fundamental constants and the unit of energy.

The important corrections required to be made arise from the following: (a) Change in the value of the gas constant R from 1.9869 to 1.98718 cal/deg mole, the ratio being 1.00014; (b) change in the value of the constant of the Sackur-Tetrode equation for entropy of translation from -2.300 to -2.3141 cal/deg mole; (c) change in the value hc/k from 1.43242 to 1.43847 cm deg, the ratio being 1.004224; (d) changes in the atomic weights of hydrogen and carbon from 1.0078 to 1.0080 and from 12.00 to 12.010, respectively; (e) correction for

rotational stretching in CO₂ and H₂O.

The foregoing corrections were handled in the following manner: (a) Each thermodynamic function was increased in value by the factor 1.00014, the ratio of the new to the old value of the gas constant.

(b) A constant amount of +0.014 was subtracted from the value of the entropy for translation and added to the value of the free-

energy function for translation, for each molecule.

The values previously calculated for the rotational and vibrational contributions to a given thermodynamic property were taken to be correct for a new, slightly higher temperature T*, such that $T^*/T=1.004224$, the ratio of the new to the old value of hc/k. This procedure is possible because the previous calculations involved summations with the partition function, in which hc/k appears as a multiplier of 1/T, as in the expression

$$Q = \sum_{i} p_{i} e^{-(hc/k) \left(\bar{v}_{i}/T \right)} \tag{5}$$

The tabulated functions were interpolated from the temperatures T^* to even temperatures, after subtraction of the temperature-dependent term of the Sackur-Tetrode equation for the translational contribution to the entropy and the free-energy function. On a plot of any function f(T) against T, the temperature for which the calculation was originally made, the corrected value of f(T) for the temperature T is the value of the function at (1-1/1.004224)T=0.00421T degrees below T. In practice, the slope of the function at T was calculated by averaging $\Delta f(T)/\Delta T$ for the intervals above and below T. The correction to f(T) due to the change in hc/k is then -0.00421T df(T)/dT. The correction varies slowly with the temperature.

(d) The entropy and the free-energy function were increased and decreased, respectively, by $3/2R\ln(1+\Delta M/M)$, where M is the molecular weight and ΔM the change in the molecular weight for the given substance. Since $\Delta M/M$ is very small, this expression reduces to

 $3/2R\Delta M/M$ or $2.98\Delta M/M$.

(e) A small additive correction for rotational stretching, as given by Wilson [20], was made to each of the thermodynamic functions of H_2O and CO_2 .

The complete equations used for the conversion are as follows, with

the old values primed:

$$(H^{\circ} - H_{\rm o}^{\circ})/T = 1.00014 \{ [(H^{\circ} - H_{\rm o}^{\bullet})/T]' - 0.00421Td[(H^{\circ} - H_{\rm o}^{\bullet})/T]'/dT \} \cdot (6)$$

$$\begin{array}{c} (F^{\circ}-H^{\bullet}_{\rm 0})/T\!=\!1.00014\{[(F^{\circ}-H^{\bullet}_{\rm 0})/T]'\!-\!0.00421[Td[(F^{\circ}-H^{\bullet}_{\rm 0})/T]'/dT\\ +5/2R']\!+\!0.014\}\!-\!2.98\Delta M/M. \end{array} \eqno(7)$$

$$S^{\circ} = 1.00014\{(S^{\circ})' - 0.00421[Td(S^{\circ})'/dT - 5/2R'] - 0.014\} \\ + 2.98\Delta M/M. \quad (8)$$

$$C_{p}^{\circ} = 1.00014\{(C_{p}^{\circ})' - 0.00421Td(C_{p}^{\circ})'/dT\}$$
 (9)

In the case of methane, the statistical calculations made by one of the authors [21] were extended to include other temperatures.

In the case of carbon (graphite) and carbon (diamond), the existing calorimetric data were subjected to graphical analysis to yield selected "best" values for the heat-content function, free-energy function, entropy, heat content, and heat capacity, to 1,500° K for graphite and to 1,200° K for diamond.

2. DATA USED IN THE CALCULATIONS

The data used in the present calculations, according to the procedure described in the preceding section, were from the following sources:

 $O_2(gas)$.—Statistical calculations from Johnston and Walker [10, 11], who gave values for the free-energy function, the entropy, the heat

content, and the heat capacity, to 5,000° K. See also Gordon and

Barnes [22].

H₂ (gas).—Statistical calculations from Davis and Johnston [12], who gave values for the free-energy function, entropy, heat content, and heat capacity to 5,000° K, and from Giauque [14], who gave values for the free-energy function. See also Gordon and Barnes [23] and Libby [24].

H₂O (gas).—Statistical calculations from Gordon [17, 18], who gave values for the free-energy function, entropy, and heat capacity,

to 3,000° K. See also Libby [24].

N₂ (gas).—Statistical calculations from Johnston and Davis [13], who gave values for the entropy, heat content, and heat capacity to 5,000° K, and from Giauque and Clayton [15], who gave values for

the free-energy function to 5,000° K.

CO (gas).—Statistical calculations from Johnston and Davis [13], who gave values for the entropy, heat content, and heat capacity, to 5,000° K, and from Clayton and Giauque [16], who gave values for the free-energy function to 5,000° K. See also Gordon and Barnes [22], and Kassel [25].

CO₂ (gas).—Statistical calculations from Kassel [19], who gave values for the free-energy function, heat content, and heat capacity, to 3,500° K. See also Gordon [26] and Gordon and Barnes [23]. CH₄ (gas).—Statistical calculations from Pitzer [21], who gave

values for the free-energy function, heat content, entropy, and heat

capacity to 1,500° K.

C (solid, graphite).—Experimental data on heat capacity and heat content from Nernst [27] from 30° to 85° K, from Worthing [28] (indirect measurements) from 1,170° to 2,400° K, from Magnus [29] from 370° to 1,200° K, from Schläpfer and Debrunner [30] from 370° to 1,400° K, and from Jacobs and Parks [31] from 87° to 300° K. See also Magnus [32]. C (solid, diamond).—Experimental data on heat capacity and heat

content from Weber [33, 34] from 283° to 600° K, from Magnus and Hodler [35] from 670° to 1,180° K, and from Pitzer [36] from 70° to 288° K. See also Bettendorf and Wüllner [37], Nernst and Linde-

mann [38], and Robertson, Fox, and Martin [39].

3. RESULTS FOR O2, H2, H2O, N2, C, CO, CO2, AND CH4

The resulting values of the thermodynamic properties for O₂ (gas), H₂ (gas), H₂O (gas), N₂ (gas), C (solid, graphite), C (solid, diamond), CO (gas), CO₂ (gas), and CH₄ (gas) are presented in tables 3, 4, 5, 6, and 7, which give, respectively, values of the heat-content function, $(H^{\circ}-H_{0}^{\circ})/T$, the free-energy function, $(F^{\circ}-H_{0}^{\circ})/T$; the entropy, S° , the

heat content, $H^{\circ}-H^{\circ}_{0}$, and the heat capacity, C_{p}° .

A value for the entropy of liquid water at 25° C may be obtained from the value for gaseous water at 25° C and the standard entropy

who gave values for the free-energy function the entropy, the heat

of vaporization of water, as given by eq 20:

 $H_2O(\text{liq.})$; $S_{298\cdot 16}^{\circ}=16.716\pm0.016$ cal/deg mole.

Table 3.—Values of the heat-content function, $(H^{\circ}-H_{0}^{\circ})/T$, for O_{2} (gas), H_{2} (gas), H_{2} 0 (gas), N_{2} (gas), C0 (solid, graphite), C0 (solid, diamond), CO0 (gas), CO_{2} 0 (gas), and CH_{4} 1 (gas)

								Tempe	erature in	degrees	Kelvin					
Compound	Formula	State	0	100	150	200	250	298.16	300	400	500	600	700	800	900	1,000
						Heat-	content	function,	(H°-H	$\delta)/T$, in δ	alories p	er degree	mole			
Oxygen Hydrogen Water Nitrogen Carbon (graphite) Carbon (diamond) Carbon monoxide Carbon dioxide Methane	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gasdodododododo	0 0 0 0 0 0	0. 1445 . 01664	0. 28770	6. 9221 6. 9465 0. 45986 . 14528 6. 9470	6. 9307 6. 7771 6. 9482 0. 64987 . 27549 6. 9495	6. 9418 6. 7877 7. 934 6. 9502 0. 84369 . 4297 6. 9514 7. 5064 8. 039	6. 9424 6. 7882 7. 933 6. 9503 0. 85101 . 4360 6. 9515 7. 5154 8. 042	6. 9811 6. 8275 7. 975 6. 9559 1. 2565 0. 8125 6. 9594 7. 9870 8. 307	7. 0484 6. 8590 8. 039 6. 9701 1. 6416 1. 204 6. 9799 8. 4455 8. 730	7. 1320 6. 8810 8. 122 6. 9967 1. 9968 1. 583 7. 0159 8. 8707 9. 249	7. 2248 6. 9022 8. 222 7. 0361 2. 3171 1. 936 7. 0654 9. 2590 9. 816	7. 3176 6. 9218 8. 333 7. 0857 2. 6021 2. 255 7. 1247 9. 6117 10. 401	7. 4107 6. 9423 8. 452 7. 1422 2. 8549 2. 538 7. 1895 9. 9332 10. 985	7. 4970 6. 9658 8. 580 7. 2025 3. 0746 2. 782 7. 2565 10. 222 11. 56
			1,100	1,200	1,250	1,300	1,400	1,500 function.	1,750 (H°-H	2,000 8)/T, in o	2,500	3,000 er degree	3,500	4,000	4,500	5,000
Oxygen Hydrogen Nitrogen Carbon (graphite) Carbon (diamond)	H ₂ O N ₂	Gasdodo do Soliddo	7. 5775 6. 9927 8. 709 7. 2650 3. 269 2. 990	7. 6533 7. 0230 8. 844 7. 3273 3. 442 3. 168	7. 6893 7. 0387 8. 912 7. 3580 3. 522	7. 7238 7. 0563 8. 981 7. 3882 3. 600	7. 7893 7. 0919 9. 116 7. 4467 3. 744	7. 8509 7. 1295 9. 251 7. 5024 3. 876	7. 9885 7. 2307 9. 57 7. 6327	8. 1094 7. 3358 9. 88 7. 7497	8. 3196 7. 5402 10. 42 7. 9356	8. 5000 7. 7286 10. 86 8. 0816	8. 6595 7. 8963 8. 1986	8. 8038 8. 0420 8. 2944	8. 9295 8. 1733 8. 3756	9. 0440 8. 2898 8. 4405
Carbon monoxide Carbon dioxide Methane	CO	Gasdodo	7. 3238 10. 487 12. 11	7. 3898 10. 727 12. 65	7. 4221 10. 841 12. 90	7. 4538 10. 949 13. 15	7. 5149 11. 151 13. 63	7. 5725 11. 336 14. 09	7. 7033 11. 74	7. 8182 12. 07	8. 0028 12. 59	8. 1448 12. 98	8. 2572 13. 29	8. 3487	8. 4238	8. 490

Table 4.—Values of the free-energy function $(F^{\circ}-H_{0}^{\circ})/T$, for O_{2} (gas), H_{2} (gas), H_{2} (gas), N_{2} (gas), C (solid, graphite), C (solid, diamond), CO (gas), CO_{2} (gas), and CH_{4} (gas)

								Temper	ature, in	degrees K	elvin					
Compound	For-	State	0	100	150	200	250	298.16	300	400	500	600	700	800	900	1,000
						F	ree-energy	function	, (F°-H ₅)/ <i>T</i> , in ca	lories per	degree r	nole			
Oxygen Iydrogen	H2	Gas	0			-39. 297	-40. 835 -23. 331	-42.061 -24.423	-42. 106 -24. 465	-44. 112 -26. 422	-27.950	-46.968 -29.203	-30.265	-31.186	-49. 911 -32. 004	-32.73
Water Vitrogen Darbon (graphite) Darbon (diamond)	N2	Solid	0		-0. 1582 -0. 0186		-37. 595 -0. 3866 -0. 0919	-37.172 -38.817 -0.5172 -0.1532	-37. 221 -38. 859 -0. 5227 -0. 1558	-39. 508 -40. 861 -0. 8245 -0. 331			-44.769 -1.810	-45.711 -2.138	-46.550 -2.459	$\begin{vmatrix} -47.30 \\ -2.77 \end{vmatrix}$
Carbon monoxide Carbon dioxide Methane	CO	Gasdodo	0 0			-37. 574	-39. 124	-40. 350 -43. 555 -36. 46	-40. 391 -43. 601 -36. 51	-42. 393 -45. 828 -38. 86	-43. 947 -47. 667 -40. 75	-45.222	-46. 308 -50. 636 -43. 86	-47.254	-48.097	-48.86
			1,100	1,200	1,250	1,300	1,400	1,500	1,750	2,000	2,500	3,000	3,500	4,000	4,500	5,000
						Fre	ee-energy	function,	$(F^{\circ}-H_0^{\circ})/$	T, in calc	ries per	degree m	ole			
Oxygen Hydrogen Water	H2	Gasdo	-33.402	-52. 0 77 -34. 012 -48. 605	-34.305	-34.576	-53. 272 -35. 098 -49. 989	-35.590	-55. 027 -36. 696 -52. 08		-57. 930 -39. 328 -55. 65	-59. 468 -40. 719 -57. 59	-60. 798 -41. 922	-61. 958 -42. 988		
Nitrogen Carbon (graphite) Carbon (diamond)	N2	do		-48. 629 -3. 365	-48.929	-49.218	-49. 768 -3. 919	-50.284	-52.449			-55. 687	-56. 941	-58. 043	-59. 025	-59. 91
Darbon (diamond) Darbon monoxide Darbon dioxide Methane	CO	Gasdo		-50.196	-50. 497 -56. 460 -50. 38		-51. 345 -57. 706 -51. 88		-53.041 -60.26	-54. 078 -61. 85		-57.314 -67.11	-58. 578 -68. 98	-59.688	-60. 676	-61. 56

Table 5.—Values of the entropy, S° , for O_2 (gas), H_2 (gas), H_2O (gas), N_2 (gas), C (solid, graphite), C (solid, diamond), CO (gas), CO_2 (gas), and CH_4 (gas)

								Tempera	ture in d	egrees K	elvin					
Compound	For- mula	State	0	100	150	200	250	298. 16	300	400	500	600	700	800	900	1,000
							En	tropy, S	, calories	per deg	ree mole					
Oxygen Hydrogen Water	O ₂ H ₂ H ₂ O	Gas do	0 0			46. 219	47. 766 30. 108	49. 003 31. 211 45. 106	49. 048 31. 253 45. 154	51. 093 33. 250 47. 483	52. 723 34. 809 49. 334	54. 100 36. 084 50. 890	55. 296 37. 167 52. 248	56. 362 38. 108 53. 464	57. 322 38. 946 54. 572	58. 19- 39. 70- 55, 598
Nitrogen Carbon (graphite) Carbon (diamond) Carbon monoxide	N2	Solid Gas	0 0 0	0. 2184 0. 0221	0. 4459 0. 0778	42. 990 0. 7238 0. 1915 44. 521	44. 543 1. 0365 0. 3674 46. 074	45. 767 1. 3609	45. 809 1. 3737	47. 818 2. 081	49. 385 2. 788 1. 76 50. 927	50. 685 3. 474 2. 39 52. 238	51. 805 4. 127 3. 01 53. 373	52. 797 4. 740 3. 61 54. 379	53. 692 5. 314 4. 18 55. 287	54. 509 5. 840 4. 70 56. 110
Carbon dioxide	CO2	do	0					51. 061 44. 50	51. 116 44. 55	53. 815 47. 17	56. 113 49. 48	58. 109 51. 64	59. 895 53. 68	61. 507 55. 61	62. 980 57. 45	64. 33: 59. 21
			1, 100	1,200	1,250	1,300	1,400	1,500	1,750	2,000	2,500	3,000	3,500	4,000	4,500	5,000
								Entropy,	S°, in ca	alories pe	r degree	mole				
Oxygen Hydrogen Water	O ₂ H ₂ H ₂ O	Gasdodo	58. 992 40. 395 56. 551	59. 730 41. 035 57. 449	60. 079 41. 344 57. 880	60. 419 41. 632 58. 299	61. 061 42. 190 59. 105	61. 659 42. 720 59. 873	63. 015 43. 928 61. 65	64. 212 45. 005 63. 26	66. 250 46. 868 66. 07	67. 968 48. 448 68. 45	69. 458 49. 818	70. 762 51. 030	71. 920 52. 115	72. 99 53. 09
Nitrogen Carbon (graphite)	N2	Soliddo	55. 259 6. 342 5. 18	55. 955 6. 807 5. 63	56. 287 7. 031	56. 606 7. 247	57. 215 7. 663	57. 786 8. 057	59. 082	60. 228	62. 163	63. 770	65. 141	66. 338	67. 402	68. 35
Carbon (diamond) Carbon monoxide Carbon dioxide Methane	CO CO ₂ CH ₄	Gasdodo	56. 878 65. 583 60. 89	57. 586 66. 746 62. 50	57. 919 67. 301 63. 28	58. 243 67. 836 64. 04	58. 860 68. 857 65. 51	59. 436 69. 817 66. 93	60. 744 72. 00	61. 896 73. 92	63. 845 77. 19	65. 459 80. 09	66. 835 82. 27	68. 037	69. 100	70. 056

Table 6.—Values of the heat content, $(H^{\circ}-H_{0}^{\circ})$, for O_{2} (gas), H_{2} (gas), $H_{2}O$ (gas), N_{2} (gas), C (solid, graphite), C (solid, diamond), CO (gas), CO_{2} (gas), and CH_{4} (gas)

								Tempe	erature in	degrees	Kelvin					
Compound	For- mula	State	0	100	150	200	250	298.16	300	400	500	600	700	800	900	1,000
							Heat	content,	$(H^{\circ}-H)$), in calo	ries per 1	nole				
Oxygen Hydrogen Water Nitrogen Carbon (graphite) Carbon (diamond) Carbon monoxide Carbon dioxide Methane	$\begin{array}{c} H_2 \\ H_2O \\ N_2 \\ C \\ C \\ CO \\ \end{array}$	Gasdo do do Soliddo do Gasdo	0 0 0 0 0 0 0	14. 451 1. 664	43, 155 8, 880				2082. 72 2036. 47 2379. 9 2085. 09 255. 31 130. 81 2085. 45 2254. 6 2413	2792. 4 2731. 0 3190. 0 2782. 4 502. 6 325 2783. 8 3194. 8 3323	3524. 2 3429. 5 4019. 5 3485. 0 820. 8 602 3490. 0 4222. 8 4365	4279. 2 4128. 6 4873. 2 4198. 0 1198. 0 950 4209. 5 5322. 4 5549	5057. 4 4831. 5 5755. 4 4925. 3 1622. 0 1355. 4 4945. 8 6481. 3 6871	5537. 4 6666. 4 5668. 6 2081. 7 1804 5699. 8	6669. 6 6248. 0 7606. 8 6428. 0 2569. 4 2284 6470. 6 8939. 9 9887	6965. 8580. 7202. 3074. 2782
			1,100	1,200	1,250	1,300	1,400	1,500	1,750	2,000	2,500	3,000	3,500	4,000	4,500	5,000
							Heat	content,	(H°-H	å), in calc	ories per	mole				
Oxygen Hydrogen Water Nitrogen Carbon (graphite) Carbon (diamond)	$egin{array}{c} H_2 \\ H_2 O \\ N_2 \\ C \end{array}$	Gasdo	8335. 2 7692. 0 9579. 9 7991. 5 3596	9183. 9 8427. 5 10613 8792. 8 4130	9611. 6 8798. 4 11140 9197. 5 4403	9173. 2 11675		10694. 2 13876	13980 12653. 7 16748 13357	16219 14672 19760 15499	20799 18851 26050 19839	25500 23186 32580 24245	30308 27637 28695	35215 32168 33178	40183 36780 37690	4522 4144 4220
Carbon (diamond) Carbon monoxide Carbon dioxide Methane	CO	Gasdodo	3289 8056. 2 11536 13320	3802 8867. 8 12872 15170	9277.6 13551 16130	9689. 9 14234 17100	10520. 9 15611 19090	11358.8 17004 21130	13481 20542	15636 24144	20007 31480	24434 38950	28900 46520	33395	37907	4245

Table 7.—Values of the heat capacity, C_p° for O_2 (gas), H_2 (gas), H_2O (gas), N_2 (gas), C (solid, graphite), C (solid, diamond), CO (gas), CO_2 (gas), and CH_4 (gas)

								Temper	ature in	degrees I	Kelvin					
Compound	Form-ula	State	0	100	150	200	250	298.16	300	400	500	600	700	800	900	1,000
							Heat	capacity	, C_p° , in	calories p	oer degre	e mole				
Oxygen Hydrogen Water Nitrogen Carbon (graphite) Carbon (diamond) Carbon monoxide Carbon dioxide	$\begin{array}{c} H_2 \\ H_2O \\ \\ N_2 \\ \\ C \\ \\ C \\ \\ CO \\ \\ CO_2 \\ \end{array}$	Gasdododododododo	0 0 0 0 0 0 0 0	0.394 0.0673	0. 767 0. 246	6. 961 	6. 970 6. 769 6. 959 1. 632 1. 013 6. 958	7. 017 6. 892 8. 025 6. 960 2. 066 1. 449 6. 965 8. 874 8. 536	7. 019 6. 895 8. 026 6. 961 2. 083 1. 466 6. 965 8. 894 8. 552	7. 194 6. 974 8. 185 6. 991 2. 851 2. 38 7. 013 9. 871 9. 736	7. 429 6. 993 8. 415 7. 070 3. 496 3. 14 7. 120 10. 662 11. 133	7. 670 7. 008 8. 677 7. 197 4. 03 3. 79 7. 276 11. 311 12. 546	7. 885 7. 035 8. 959 7. 351 4. 43 4. 29 7. 451 11. 849 13. 88	8. 064 7. 078 9. 254 7. 512 4. 75 4. 66 7. 624 12. 300 15. 10	8. 212 7. 139 9. 559 7. 671 4. 98 4. 90 7. 787 12. 678 16. 21	8. 335 7. 217 9. 869 7. 816 5. 14 5. 03 7. 932 12. 995 17. 21
			1,100	1,200	1,250	1,300	1,400	1,500	1,750	2,000	2,500	3,000	3,500	4,000	4,500	5,000
							Hea	t capacit	y, C_p° , in	n calories	per degr	ee mole				
Oxygen Hydrogen Water	H_2 H_2 O	do	8. 440 7. 308 10. 172	8. 530 7. 404 10. 467	8. 570 7. 454 10. 611	8. 608 7. 505 10. 749	8. 676 7. 610 11. 015	8. 739 7. 713 11. 263	8. 885 7. 957 11. 80	9. 024 8. 175 12. 24	9. 305 8. 526 12. 9	9. 518 8. 791 13. 3	9. 711 8. 993	9. 879 9. 151	10. 003 9. 282	10. 105 9. 389
Nitrogen Carbon (graphite) Carbon (diamond)	C	Solid	7. 947 5. 27 5. 10	8. 063 5. 42 5. 16	8. 116 5. 50	8. 165 5. 57	8. 253 5. 67	8. 330 5. 76	8. 486	8. 602	8. 759	8. 862	8. 934	8. 989	9. 036	9. 076
Carbon monoxide Carbon dioxide Methane	CO	Gas do	8. 058 13. 26 18. 09	8. 167 13. 49 18. 88	8. 218 13. 59 19. 23	8. 265 13. 68 19. 57	8. 349 13. 85 20. 18	8. 419 13. 99 20. 71	8. 561 14. 3	8. 665 14. 5	8. 806 14. 8	8. 899 15. 0	8. 963 15. 2	9. 015	9. 059	9. 099

IV. HEAT OF FORMATION, FREE ENERGY OF FORMATION. AND THE EQUILIBRIUM CONSTANT OF FORMATION

1. METHOD OF CALCULATION

Values of ΔH_0° , the increment in heat content for the given reaction, with all the reactants and products in their appropriate standard states at 0° K, were calculated by combining values of $\Delta H_{298.16}^{\circ}$, the increment in heat content for the given reaction at 25° C, with values of $H_{298.16}^{\circ}-H_{0}^{\circ}$ for the reactants and products, by means of the relation

 $\Delta H_0^{\circ} = \Delta H_{208,16}^{\circ} - \Delta (H_{208,16}^{\circ} - H_0^{\circ}),$ (11)

where the last term on the right is the sum for the products less the sum for the reactants of $H_{298.16}^{\circ}-H_{0}^{\circ}$, the heat content at 298.16° K (25° C) less that at 0° K.

Values of ΔH° for the given reaction at other temperatures were

then calculated by means of the relation

$$\Delta H^{\circ} = \Delta H_0^{\circ} + \Delta (H^{\circ} - H_0^{\circ}). \tag{12}$$

Values of ΔF° , the increment in free energy for the given reaction, with all the reactants and products in their appropriate standard states at the given temperature, were calculated by combining values of ΔH_0° for the given reaction with appropriate values of $(F^{\circ}-H_0^{\circ})/T$, the free-energy function, by means of the relation:

$$\Delta F^{\circ}/T = \Delta H_0^{\circ}/T + \Delta [(F^{\circ} - H_0^{\circ})/T], \tag{13}$$

where the last term on the right is the sum for the products less the sum for the reactants of $(F^{\circ} - H_0^{\circ})/T$, the free-energy function at the given temperature.

Values of the equilibrium constant, and its logarithm, for the given

reaction, were calculated from the relation [40]

$$\Delta F^{\circ} = -RT \ln K. \tag{14}$$

2. DATA USED IN THE CALCULATIONS

The following data were used in calculating the heat and free energy of formation of H₂O(liq) at 25° C and of the formation of $\rm H_2O$ (gas), CO (gas), CO₂ (gas), and CH₄ (gas) at various temperatures to 1,500° K:

For the heat of formation of liquid water,

$$H_2(gas) + 1/2 O_2(gas) = H_2O(liq),$$
 (15)

the value previously reported from this laboratory [41] was corrected to the present molecular weight of water, yielding for the formation of liquid water according to eq 15:

$$\Delta H_{298.16}^{\circ} = -68,317.4 \pm 9.6 \text{ cal/mole.}$$
 (16)

On the basis of the present molecular weight, the values previously reported for the standard heat, free energy, and entropy of vaporization of water at 25° C [41], including a small change resulting from an improved value for the vapor pressure of water at 25° C [42], become

$$H_2O(liq) = H_2O(gas). \tag{17}$$

$$\Delta H_{298.16}^{\circ} = 10,519.5 \pm 3.1 \text{ cal/mole.}$$
 (18)

$$\Delta F_{298.16}^{\circ} = 2,054.8 \pm 1.0 \text{ cal/mole.}$$
 (19)

$$\Delta S_{298\cdot 16}^{\circ} = 28.390 \pm 0.012 \text{ cal/deg mole.}$$
 (20)

A new value for the heat of formation of carbon dioxide was recently reported [43]:

$$C(\text{solid, graphite}) + O_2(\text{gas}) = CO_2(\text{gas}).$$
 (21)

$$\Delta H_{298.16}^{\circ} = -94,051.8 \pm 10.8 \text{ cal/mole.}$$
 (22)

The value previously reported [41] for the heat of combustion of carbon monoxide to carbon dioxide remains unchanged:

$$CO(gas) + 1/2 O_2(gas) = CO_2(gas).$$
 (23)

$$\Delta H_{298\cdot 16}^{\circ} = -67,636.1 \pm 28.7 \text{ cal/mole.}$$
 (24)

Combination of eq 21, 22, 23, and 24 yields a new value for the heat of formation of carbon monoxide:

C(solid, graphite)
$$+1/2$$
 O₂(gas) = CO(gas). (25)

$$\Delta H_{298\cdot 16}^{\circ} = -26,415.7 \pm 30.7 \text{ cal/mole.}$$
 (26)

The value for the heat of formation of methane is taken from reference [44]:

C(solid, graphite)+
$$2H_2(gas)$$
= $CH_4(gas)$. (27)

$$\Delta H_{298.16}^{\circ} = -17,889 \pm 75 \text{ cal/mole.}$$
 (28)

3. RESULTS FOR H2O, CO, CO2, AND CH4

The resulting values of the thermodynamic properties for the formation of $\rm H_2O(gas)$, $\rm CO(gas)$, $\rm CO_2(gas)$, and $\rm CH_4(gas)$, from the elements, $\rm O_2(gas)$, $\rm H_2(gas)$, and $\rm C(solid, graphite)$, are presented in

table 8, which gives values of the heat of formation, $\Delta H f^{\circ}$, the free energy of formation, $\Delta F f^{\circ}$, the equilibrium constant of formation, K f, and the logarithm of the equilibrium constant of formation, $\log_{10} K f$, all to 1,500° K.

For the formation of liquid water from its elements at 25° C, the values of the standard heat, free energy, and entropy of formation

are

$$H_2 \text{ (gas)} + 1/2 O_2 \text{ (gas)} = H_2O \text{ (liq)}.$$
 (29)

$$\Delta H_{298.16} = -68,317.4 \pm 9.6 \text{ cal/mole.}$$
 (30)

$$\Delta F_{6298.1}^{\circ} = -56,689.9 \pm 11.2 \text{ cal/mole.}$$
 (31)

$$\Delta S_{298.16}^{\circ} = -38.997 \pm 0.019 \text{ cal/mole.}$$
 (32)

V. HEAT AND FREE ENERGY OF TRANSITION OF GRAPHITE INTO DIAMOND

The value for the heat of transition of graphite into diamond at 25° C is taken from reference [43]:

$$\Delta H_{298.16}^{\circ} = 453.2 \pm 20.3 \text{ cal/mole.}$$
 (34)

From the foregoing value and the values for diamond and graphite given in tables 3, 4, 5, and 6, values were calculated for the change in heat content and free energy for the transition of graphite into diamond at 1 atmosphere, as presented in table 9.

Table 9.—Values of the change in heat content and free energy for the transition of graphite into diamond, at a pressure of 1 atmosphere

C (solid, graphite) = C				Temp	peratu	ire in	degre	es Kel	vin			
(solid, diamond)	0	298. 16	300	400	500	600	700	800	900	1,000	1, 100	1, 200
Heat of reaction, ΔH°, in cal/mole	576. 6	453. 2	452. 1	399. 0	358	328	310	299	291	284	270	249
Free energy of reaction, ΔF° , in cal/mole	576. 6	685. 0	686. 7	774. 0	873	978	1, 089	1, 201	1, 314	1, 428	1, 543	1, 663

The expressions for the thermal expansion and compressibility of graphite and diamond have been reported previously [45]. Assuming that (1/V) $(\partial V/\partial P)_T$ for graphite and diamond are constants independent of temperature and pressure, these values may be combined with the thermodynamic relation $(\partial \Delta F/\partial P)_T = \Delta V$ to calculate the change in free energy for the transition of graphite to diamond at temperatures up to 1,200° K and pressures up to 20,000 atmospheres:

$$\Delta F^p = \Delta F^\circ + \Delta (F^p - F^\circ). \tag{35}$$

Table 8.—Values of the heat of formation, ΔHf° , free energy of formation, ΔFf° , logarithm of the equilibrium constant of formation, $\log_{10}Kf$, and the equilibrium constant of formation, Kf, of H_2O (gas), CO (gas), CO (gas), CO (gas), from the elements in their standard states

							Tempera	ture in degre	es Kelvin				_		
Reaction	0	298.16	300	400	500	600	700	800	900	1,000	1,100	1,200	1,300	1,400	1,500
						Hea	t of formation	n, Δ <i>Hf</i> °, in k	ilocalories pe	er mole					
$\begin{array}{ll} H_1(gas) + 1/2O_1\ (gas) = H_2O\ (gas) \\ C\ (solid,\ graphite) + 1/2O_2\ (gas) = CO\ (gas) \\ C\ (solid,\ graphite) + O_1\ (gas) = CO_2\ (gas) \\ C\ (solid,\ graphite) + 2H_2\ (gas) = CH_4\ (gas) \\ \end{array}$	57. 1043 27. 2019 93. 9686 15. 987	-57. 7979 -26. 4157 -94. 0518 -17. 889	-57.8022 -26.4131 -94.0520 -17.903	-58. 042 -26. 317 -94. 069 -18. 629	-58. 276 -26. 295 -94. 091 -19. 302	-58. 499 -26. 330 -94. 123 -19. 893	-58. 709 -26. 407 -94. 167 -20. 401	-58.902 -26.511 -94.215 -20.823	-59. 080 -26. 635 -94. 268 -21. 166	-59. 239 -26. 768 -94. 318 -21. 43	-59.384 -26.909 -94.364 -21.65	-59. 511 -27. 056 -94. 410 -21. 79	-59. 623 -27. 212 -94. 456 -21. 92	$ \begin{array}{r} -59.724 \\ -27.376 \\ -94.505 \\ -22.00 \end{array} $	-59.811 -27.545 -94.555 -22.06
						Free ene	rgy of format	ion, $\Delta F f^{\circ}$, in	kilocalories	per mole					
$\begin{array}{l} H_1(gas) + 1/2O_1\ (gas) = H_2O\ (gas) = CO\ $	-57. 1043 -27. 2019 -93. 9686 -15. 987	-54. 6351 -32. 8079 -94. 2598 -12. 140	-54. 6152 -32. 8464 -94. 2603 -12. 104	-53.516 -35.007 -94.325 -10.048	-52.358 -37.184 -94.392 -7.840	-51. 154 -39. 358 -94. 444 -5. 49	-49. 912 -41. 526 -94. 497 -3. 05	$\begin{array}{r} -48.643 \\ -43.677 \\ -94.539 \\ -0.55 \end{array}$	-47.349 -45.816 -94.578 $+2.01$	$\begin{array}{ c c c c c } -46.036 \\ -47.942 \\ -94.610 \\ 4.61 \end{array}$	-44.710 -50.053 -94.637 7.22	-43. 370 -52. 153 -94. 661 9. 85	-42. 017 -54. 235 -94. 677 12. 50	$\begin{array}{c} -40.661 \\ -56.308 \\ -94.690 \\ 15.14 \end{array}$	-39. 296 -58. 370 -94. 707 17. 80
						Logarithm	of the equilib	brium consta	nt of format	ion, log ₁₀ Kf					
$\begin{array}{l} {\rm H_{2}(gas) + 1/2O_{2}~(gas) = H_{2}O~(gas) \dots } \\ {\rm C~(solid,~graphite) + 1/2O_{2}~(gas) = CO~(gas) \dots } \\ {\rm C~(solid,~graphite) + O_{2}~(gas) = CO_{2}~(gas) \dots } \\ {\rm C~(solid,~graphite) + 2H_{2}~(gas) = CH_{4}~(gas) \dots } \end{array}$		40. 04695 24. 04790 69. 09145 8. 8985	39. 78683 23. 92845 68. 66801 8. 8177	29. 23972 19. 12672 51. 53648 5. 4899	22. 88551 16. 25283 41. 25820 3. 4268	18. 63228 14. 33621 34. 40107 2. 0001	15, 58315 12, 96479 29, 50309 0, 9526	13. 22846 11. 93193 25. 82664 0. 1494	11. 49776 11. 12559 22. 96647 -0. 4881	10.47772	8. 88300 9. 94448 18. 80256 -1. 4345	7. 89864 9. 49826 17. 23998 —1. 7936	7. 06367 9. 11762 15. 91654 -2. 1006	$\begin{array}{c} 6.34747 \\ 8.78999 \\ 14.78159 \\ -2.3638 \end{array}$	5. 72542 8. 50449 13. 79863 —2. 5927
							Equilibrium	constant of f	ormation, K	f		7			
$\begin{array}{lll} H_{1}(gas) + 1/2O_{1} \; (gas) = H_{1}O \; (gas) & \\ & \text{C (solid, graphite)} + 1/2O_{1} \; (gas) = CO \; (gas) & \\ & \text{C (solid, graphite)} + O_{1} \; (gas) & = CO_{1} \; (gas) & \\ & \text{C (solid, graphite)} + 2H_{2} \; (gas) & = CH_{4} \; (gas) & \\ \end{array}$		1. 114×10 ⁴⁰ 1. 117×10 ²⁴ 1. 234×10 ⁶⁹ 7. 916×10 ⁸	8.481×10^{23} 4.656×10^{68}	1. 339×10 ¹⁹ 3. 439×10 ⁵¹	1. 790×10 16	$\begin{array}{c} 2.\ 169 \times 10^{14} \\ 2.\ 518 \times 10^{34} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 8.549 \times 10^{11} \\ 6.709 \times 10^{25} \end{array}$	1. 335×10 11	$\begin{array}{c} \textbf{1.} \ 151 \times 10^{10} \\ \textbf{3.} \ 004 \times 10^{10} \\ \textbf{4.} \ 751 \times 10^{20} \\ \textbf{9.} \ 829 \times 10^{-2} \end{array}$	8.800×10 9 6.347×10 18	3. 150×10 ⁹ 1. 738×10 ¹⁷	1. 311×10 9 8. 252×10 15	2. 226×10 ⁶ 6. 166×10 ⁸ 6. 040×10 ¹⁴ 4. 327×10 ⁻³	5. 314×10 ⁵ 3. 195×10 ⁸ 6. 290×10 ¹³ 2. 554×10 ⁻³

Table 11.—Values of the logarithm of the equilibrium constant, log10K, and the equilibrium constant, K, for some reactions involving O2, H2, H2O, C(graphite), CO, CO2, and CH4

							Temperat	ure in degree	es Kelvin						
Reaction	0	298. 16	300	400	500	600	700	800	900	1,000	1,100	1,200	1,300	1,400	1,500
						Log	arithm of th	e equilibriu	n constant, le	$\log_{10} K$					
$ \begin{array}{l} C \ (solid, graphite) + CO_2(gas) = 2CO \ (gas) \\ C \ (solid, graphite) + H_2O \ (gas) = CO \ (gas) + H_1 \ (gas) \\ CO \ (gas) + H_2O \ (gas) = CO_2 \ (gas) \\ CO \ (gas) + H_2O \ (gas) = CO_2 \ (gas) + H_1 \ (gas) \\ CH_4 \ (gas) + H_2O \ (gas) = CO \ (gas) + 2H_1 \ (gas) \\ CH_4 \ (gas) + CO_2 \ (gas) = CO \ (gas) + 2H_2 \ (gas) \\ CH_4 \ (gas) + H_2O \ (gas) = CO_2 \ (gas) + 3H_2 \ (gas) \\ CH_4 \ (gas) + 2H_2O \ (gas) = CO_2 \ (gas) + 4H_2 \ (gas) \\ \end{array} $		$\begin{array}{c} -20.\ 99575 \\ -15.\ 99896 \\ +45.\ 04367 \\ +4.\ 99679 \\ +15.\ 14943 \\ -29.\ 89351 \\ -24.\ 89745 \\ -19.\ 90067 \end{array}$	-20. 81089 -15. 85786 44. 73973 4. 95303 15. 11042 -29. 62931 -24. 67628 -19. 72325	-13. 28281 -10. 11277 32. 40960 3. 17004 13. 62866 -18. 78203 -15. 61144 -12. 44091	-8. 75242 -6. 65217 25. 00541 2. 10025 12. 82615 -12. 17882 -10. 05889 -7. 93898	-5, 72851 -4, 29593 20, 06491 1, 43258 12, 33631 -7, 72859 -6, 29601 -4, 86343	-3. 57358 -2. 61852 16. 53817 0. 95506 12. 01203 -4. 52613 -3. 57077 -2. 61571	-1. 96284 -1. 35664 13. 89475 0. 60620 11. 78248 -2. 11227 -1. 50580 -0. 89960	-0. 71538 37226 11. 84070 0. 34312 11. 61365 -0. 22705 +. 11607 +. 45919	+. 41655 10. 19920 0. 13790 11. 48514	1. 08638 1. 06373 8. 85796 -0. 02484 11. 37881 2. 52066 2. 49602 2. 47118	1. 59959	2. 31863 2. 05385 6. 79887 -0. 26478 11. 21808 4. 41921 4. 15460 3. 88982	2. 44243 5. 99165 -0. 35592 11. 15376 5. 16211 4. 80634	3. 21033 2. 77906 5. 29444 —0. 43127 11. 09718 5. 80286 5. 37177 4. 94050
							Equili	brium const	ant, K						
$ \begin{array}{l} C \; (solid,\; graphite) + CO_2 \; (gas) = 2CO \; (gas) \\ C \; (solid,\; graphite) + H_2O \; (gas) = CO \; (gas) + H_3 \; (gas) \\ CO \; (gas) + H_2O \; (gas) = CO_2 \; (gas) \\ CO \; (gas) + H_2O \; (gas) = CO_2 \; (gas) + H_3 \; (gas) \\ CO \; (gas) + H_2O \; (gas) = CO \; (gas) + 2H_2 \; (gas) \\ CO \; (gas) + H_2O \; (gas) = 2CO \; (gas) + 2H_3 \; (gas) \\ CO \; (gas) + CO_2 \; (gas) = 2CO \; (gas) + 2H_3 \; (gas) \\ CO \; (gas) + H_3O \; (gas) = CO_2 \; (gas) + 4H_2 \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) = CO_3 \; (gas) + 4H_3 \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) = CO_3 \; (gas) + 2H_3 \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) = CO_3 \; (gas) + 2H_3 \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) = CO_3 \; (gas) + 2H_3 \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) + 2H_3O \; (gas) \\ CO \; (gas) + 2H_3O \; (gas)$		$\begin{array}{c} 1.012 \times 10^{-21} \\ 1.002 \times 10^{-16} \\ 1.106 \times 10^{45} \\ 9.926 \times 10^{4} \\ 1.411 \times 10^{15} \\ 1.278 \times 10^{-30} \\ 1.266 \times 10^{-25} \\ 1.257 \times 10^{-20} \end{array}$	1.387×10^{-16} 5.492×10^{44} 8.975×10^{4} 1.290×10^{15} 2.348×10^{-30}	$\begin{array}{c} 7.713\times 10^{-11} \\ 2.568\times 10^{32} \\ 1.479\times 10^{3} \\ 4.253\times 10^{13} \\ 1.652\times 10^{-19} \\ 2.447\times 10^{-16} \end{array}$	2.228×10^{-7} 1.013×10^{25} 1.260×10^{2} 6.710×10^{12} 6.625×10^{-13} 8.732×10^{-11}	5.059×10^{-5} 1.161×10^{20} 27.08	2.407×10^{-3} 3.453×10^{16} 9.017 1.028×10^{12} 2.978×10^{-5} 2.687×10^{-4}	$\begin{array}{c} 1.098\times10^{-2}\\ 4.399\times10^{-2}\\ 7.848\times10^{13}\\ 4.038\\ 6.060\times10^{11}\\ 7.722\times10^{-3}\\ 3.120\times10^{-2}\\ 0.1260 \end{array}$	$\begin{array}{c} 0.1926 \\ 4244 \\ 6.930 \times 10^{11} \\ 2.204 \\ 4.108 \times 10^{11} \\ 0.5929 \\ 1.306 \\ 2.879 \end{array}$	$\begin{array}{c} 1.900 \\ 2.609 \\ 1.582 \times 10^{10} \\ 1.374 \\ 3.056 \times 10^{11} \\ 19.32 \\ 26.56 \\ 36.49 \end{array}$	$\begin{array}{c} 12.20 \\ 11.58 \\ 7.210 \times 10^8 \\ 0.9444 \\ 2.392 \times 10^{11} \\ 3.316 \times 10^2 \\ 3.133 \times 10^2 \\ 2.959 \times 10^2 \end{array}$	$\begin{array}{c} 57.09 \\ 39.77 \\ 5.519 \times 10^7 \\ 0.6966 \\ 1.957 \times 10^{11} \\ 3.548 \times 10^3 \\ 2.473 \times 10^3 \\ 1.723 \times 10^3 \end{array}$	$\begin{array}{c} 2.083 \times 10^2 \\ 1.135 \times 10^2 \\ 6.293 \times 10^6 \\ 0.5435 \\ 1.652 \times 10^{11} \\ 2.626 \times 10^4 \\ 1.428 \times 10^4 \\ 7.759 \times 10^3 \end{array}$	$\begin{array}{c} 6.286\times10^2\\ 2.770\times10^2\\ 9.810\times10^5\\ 0.4406\\ 1.425\times10^{11}\\ 1.452\times10^5\\ 6.402\times10^4\\ 2.821\times10^4\\ \end{array}$	$\begin{array}{c} 1.623 \times 10^3 \\ 6.013 \times 10^2 \\ 1.970 \times 10^5 \\ 0.3704 \\ 1.251 \times 10^{11} \\ 6.352 \times 10^5 \\ 2.354 \times 10^5 \\ 8.720 \times 10^4 \end{array}$

The first term on the right is given in table 9, and the second term on the right is the increment in free energy from 1 atmosphere to P atmospheres for diamond less that of graphite, at a given temperature. Values of $(F^p - F^\circ)$ and $\Delta(F^p - F^\circ)$ for various pressures and temperatures are given by the relations:

For C (solid, graphite)-

$$(F^{p}-F^{o}) = [0.12843 + 7.617 \times 10^{-7}T + 4.848 \times 10^{-10}T^{2}]$$

$$[(P-1)-1.52 \times 10^{-6}(P^{2}-1) + 1.54 \times 10^{-12}(P^{3}-1)]$$
 cal/mole, (36)

For C (solid, diamond)—

$$(F^{\flat}-F^{\circ}) = [0.082777 - 1.505 \times 10^{-7}T + 5.631 \times 10^{-10}T^{2} + 3.6224 \times 10^{-13}T^{3}][(P-1) - 8.0 \times 10^{-8}(P^{2}-1) + 4.0 \times 10^{-15}(P^{3}-1)] \text{ cal/mole,}$$

$$(37)$$

FIGURE 1.—Plot of the free energy change for the transition of graphite into diamond.

The scale of ordinates gives the increment in free energy, ΔF° , in cal/mole, for the transition, C (solid, graphite) = C (solid, diamond). The scale of abscissas gives the absolute temperature in degrees Kelvin. As indicated, the three curves are for pressures of 1, 10,000, and 20,000 atmospheres. Values below zero indicate, within the limits of uncertainty, the region in which diamond is thermodynamically more stable than graphite. See text.

For the transition-

$$\begin{array}{l} \Delta(F^{p}-F^{\circ}) = -[0.045653 + 9.122 \times 10^{-7}T - 7.83 \times 10^{-11}T^{2} \\ -3.6224 \times 10^{-13}T^{3}][P - 1] + [1.886 \times 10^{-6} + 1.17 \times 10^{-12}T \\ +6.92 \times 10^{-16}T^{2} - 2.9 \times 10^{-20}T^{3}][P^{2} - 1] - [1.974 \times 10^{-13} \\ +1.174 \times 10^{-18}T + 7.44 \times 10^{-22}T^{2} - 1.45 \times 10^{-27}T^{3}][P^{3} - 1] \text{cal/mole.} \end{array}$$

In eq 36, 37, and 39, P is in atmospheres, and T is in degrees Kelvin.

Values of the change in free energy for the transition of graphite into diamond at various temperatures and pressures are plotted in figure 1.

VI. HEATS, FREE ENERGIES, AND EQUILIBRIUM CONSTANTS OF SOME REACTIONS INVOLVING O₂, H₂, H₂O, C, CO, CO₂, AND CH₄

From the data given in the preceding sections, values were calculated for the increment in heat content, the increment in free energy, the logarithm of the equilibrium constant, and the equilibrium constant, to 1,500° K, for the following reactions:

C(solid, graphite+
$$CO_2(gas)=2CO(gas)$$
. (40)

C(solid, graphite)+
$$H_2$$
O(gas)= $CO(gas)+H_2(gas)$. (41)

$$CO(gas) + 1/2O_2(gas) = CO_2(gas).$$
 (42)

$$CO(gas) + H_2O(gas) = CO_2(gas) + H_2(gas).$$
 (43)

$$CH_4(gas) + 1/2O_2(gas) = CO(gas) + 2H_2(gas).$$
 (44)

$$CH_4(gas) + CO_2(gas) = 2CO(gas) + 2H_2(gas).$$
 (45)

$$CH_4(gas) + H_2O(gas) = CO(gas) + 3H_2(gas).$$
 (46)

$$CH_4(gas) + 2H_2O(gas) = CO_2(gas) + 4H_2(gas).$$
 (47)

Values are presented for the above reactions, to 1,500° K, in table 10 for the increment in heat content, ΔH° , and the increment in free energy, ΔF° , and in table 11 (facing p. 156) for the logarithm of the equilibrium constant, $\log_{10}K$, and for the equilibrium constant, K.

62		Temperature in degrees Kelvin														
627528	Reaction	0	298.16	300	400	500	600	700	800	900	1,000	1,100	1,200	1,300	1,400	1,500
145		Heat of reaction, ΔH° , in calories per mole														
1	$ \begin{array}{l} C \ (solid, graphite) + CO_2 \ (gas) = 2CO \ (gas) + \\ C \ (solid, graphite) + H_2O \ (gas) = CO \ (gas) + H_2 \ (gas) \\ CO \ (gas) + H_2O \ (gas) = CO_2 \ (gas) + H_2 \ (gas) + \\ CO \ (gas) + H_2O \ (gas) = CO_2 \ (gas) + H_2 \ (gas) \\ CH_4 \ (gas) + H_2O_2 \ (gas) = CO \ (gas) + 2H_2 \ (gas) \\ CH_4 \ (gas) + CO_2 \ (gas) = 2CO \ (gas) + 2H_2 \ (gas) \\ CH_4 \ (gas) + H_2O \ (gas) = CO \ (gas) + 3H_2 \ (gas) \\ CH_4 \ (gas) + 2H_2O \ (gas) = CO_2 \ (gas) + 4H_2 \ (gas) \\ \end{array} $	39565 29902 -66767 -9662 -11215 55552 45889 36227	41220 31382 -67636 -9838 -8527 59109 49271 39433	41226 31389 -67639 -9837 -8511 59128 49291 39454	41435 31725 -67752 -9710 -7688 60063 50353 40643	41501 31981 -67796 -9520 -6993 60803 51283 41763	41463 32169 -67793 -9294 -6437 61356 52062 42768	41353 32302 -67760 -9051 -6006 61754 52703 43652	41193 32391 -67704 -8802 -5689 62016 53214 44412	40997 32445 -67632 -8552 -5470 62162 53610 45058	40781 32470 -67550 -8311 -5335 62214 53903 45592	$\begin{array}{c} 40545 \\ 32474 \\ -67455 \\ -8071 \\ -5262 \\ 62192 \\ 54122 \\ 46051 \end{array}$	$\begin{array}{c} 40298 \\ 32454 \\ -67355 \\ -7844 \\ -5254 \\ 62100 \\ 54257 \\ 46413 \end{array}$	$\begin{array}{c} 40031 \\ 32411 \\ -67243 \\ -7620 \\ -5299 \\ 61944 \\ 54324 \\ 46704 \end{array}$	39754 32348 -67129 -7406 -5379 61750 54344 46938	39464 32265 67010 7199 5486 61524 54325 47126
		Free energy of reaction, ΔF° , in calories per mole														
	$ \begin{array}{l} \textbf{C} \;\; (\text{solid, graphite}) + \textbf{CO}_2 \;\; (\text{gas}) = 2\textbf{CO} \;\; (\text{gas}) \\ \textbf{C} \;\; (\text{solid, graphite}) + \textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO} \;\; (\text{gas}) + \textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CO} \;\; (\text{gas}) + 1/2\textbf{O}_2 \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) \\ \textbf{CO} \;\; (\text{gas}) + 1/2\textbf{O}_2 \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + \textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 1/2\textbf{O}_2 \;\; (\text{gas}) = \textbf{CO} \;\; (\text{gas}) + 2\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 1/2\textbf{O}_2 \;\; (\text{gas}) = 2\textbf{CO} \;\; (\text{gas}) + 2\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + \textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO} \;\; (\text{gas}) + 3\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 4\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 4\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 4\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 4\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 4\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 4\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 4\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 4\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 2\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 2\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2\textbf{O} \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 2\textbf{H}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{H}_2 \;\; (\text{gas}) = \textbf{CO}_2 \;\; (\text{gas}) + 2\textbf{H}_3 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{CO}_2 \;\; (\text{gas}) + 2\textbf{CO}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{CO}_2 \;\; (\text{gas}) + 2\textbf{CO}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{CO}_2 \;\; (\text{gas}) + 2\textbf{CO}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{CO}_2 \;\; (\text{gas}) + 2\textbf{CO}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 \;\; (\text{gas}) + 2\textbf{CO}_2 \;\; (\text{gas}) + 2\textbf{CO}_2 \;\; (\text{gas}) \\ \textbf{CH}_4 $	39565 29902 -66767 -9662 -11215 55552 45889 36227	28644 21827 -61452 -6817 -20668 40783 33967 27150	28567 21768 -61414 -6799 -20742 40672 33873 27074	24311 18509 -59318 -5802 -24944 34376 28573 22771	20024 15219 -57208 -4850 -29344 27863 23013 18163	15727 11794 -55086 -3933 -33868 21218 17285 13352	11446 8387 -52971 -3059 -38474 14497 11437 8378	7185 4966 -50862 -2219 -43130 7732 5512 3293	2946 1533 -48761 -1413 -47826 935 -478 -1891	$\begin{array}{c} -1275 \\ -1906 \\ -46668 \\ -631 \\ -52552 \\ -5884 \\ -6517 \\ -7148 \end{array}$	$\begin{array}{r} -5468 \\ -5354 \\ -44584 \\ +125 \\ -57272 \\ -12687 \\ -12563 \\ -12438 \end{array}$	$\begin{array}{c} -9645 \\ -8783 \\ -42509 \\ 862 \\ -62000 \\ -19492 \\ -18631 \\ -17769 \end{array}$	$\begin{array}{c} -13792 \\ -12217 \\ -40442 \\ 1575 \\ -66729 \\ -26287 \\ -24713 \\ -23138 \end{array}$	-17926 -15646 -38382 2280 -71450 -33068 -30789 -28509	-22034 -19074 -36338 2960 -76168 -39828 -36868 -33908

In figure 2 are plotted the values of the logarithm of the equilibrium constant for these reactions and for reaction (27).

Figure 2.—Plot of the logarithm of the equilibrium constant for eight reaction involving O₂, H₂, H₂O, C (graphite), CO, CO₂, and CH₄.

The scale of ordinates gives the logarithm (to the base 10) of the equilibrium constant, $\log_{10} K$, for the given reaction. The scale of abscissas gives the temperature in degrees Kelvin. The curves apply to the following reactions (see text):

- $\begin{array}{ll} \text{(a) } C(\text{solid, graphite}) + CO_2(\text{gas}) = 2CO(\text{gas}), \\ \text{(b) } C(\text{solid, graphite}) + H_2O(\text{gas}) = CO(\text{gas}) + H_2(\text{gas}), \\ \text{(c) } CO(\text{gas}) + H_2O(\text{gas}) = CO_2(\text{gas}), \\ \text{(d) } CO(\text{gas}) + H_2O(\text{gas}) = CO_2(\text{gas}) + H_2(\text{gas}), \\ \text{(e) } CH_4(\text{gas}) + CO_2(\text{gas}) = 2CO(\text{gas}) + 2H_2(\text{gas}), \\ \text{(f) } CH_4(\text{gas}) + H_2O(\text{gas}) = CO(\text{gas}) + 3H_2(\text{gas}), \\ \text{(g) } CH_4(\text{gas}) + 2H_2O(\text{gas}) = CO_2(\text{gas}) + 4H_2(\text{gas}), \\ \text{(h) } C(\text{solid, graphite}) + 2H_2(\text{gas}) = CH_4(\text{gas}). \\ \end{array}$

VII. REFERENCES

- [1] E. F. Mueller and F. D. Rossini, Am. J. Phys. 12, 1 (1944).
- G. K. Burgess, BS J. Research 1, 635 (1928) RP22.
 G. P. Baxter, M. Guichard, O. Hönigschmid, and R. Whytlaw-Gray, J. Am. Chem. Soc. 63, 845 (1941).
 C. S. Cragoe, J. Research NBS 26, 495 (1941) RP1393.
 E. C. Crittenden, National Bureau of Standards (1943), Private communi-
- cation; H. L. Curtis, J. Research NBS 33, 235 (1944) RP1606.

- cation; H. L. Curtis, J. Research NBS 33, 235 (1944) RP1606.
 [6] R. T. Birge, Rev. Modern Phys. 13, 233 (1941).
 [7] R. T. Birge, Rev. Modern Phys. 1, 1(1929).
 [8] R. C. Tolman, The Principles of Statistical Mechanics (Oxford University Press, New York, N. Y., 1938.)
 [9] J. E. Mayer and M. G. Mayer, Statistical Mechanics (John Wiley & Sons, Inc., New York, N. Y., 1940.)
 [10] H. L. Johnston and M. K. Walker, J. Am. Chem. Soc. 55, 172 (1933).
 [11] H. L. Johnston and M. K. Walker, J. Am. Chem. Soc. 57, 682 (1935).
 [12] C. O. Davis and H. L. Johnston, J. Am. Chem. Soc. 56, 1045 (1934).
 [13] H. L. Johnston and C. O. Davis, J. Am. Chem. Soc. 56, 271 (1934).
 [14] W. F. Giauque, J. Am. Chem. Soc. 52, 4816 (1930).
 [15] W. F. Giauque and J. O. Clayton, J. Am. Chem. Soc. 55, 4875 (1933).
 [16] J. O. Clayton and W. F. Giauque, J. Am. Chem. Soc. 55, 5071 (1933).
 [17] A. R. Gordon, J. Chem. Phys. 2, 65 (1934).
 [18] A. R. Gordon, J. Chem. Phys. 2, 549 (1934).

- [18] A. R. Gordon, J. Chem. Phys. 2, 549 (1934).
 [19] L. S. Kassel, J. Am. Chem. Soc. 56, 1838 (1934).
 [20] E. B. Wilson, Jr., J. Chem. Phys. 4, 526 (1936).
 [21] K. S. Pitzer, Ind. Eng. Chem. 36, 829 (1944).
 [22] A. R. Gordon and C. Barnes, J. Chem. Phys. 1, 297 (1933).
 [23] A. R. Gordon and C. Barnes, J. Phys. Chem. 36, 1143 (1932).
 [24] W. F. Libby, J. Chem. Phys. 1, 101 (1942).
- [24] W. F. Libby, J. Chem. Phys. 11, 101 (1943).
 [25] L. S. Kassel, J. Chem. Phys. 1, 576 (1933).

- [26] A. R. Gordon, J. Chem. Phys. 1, 308 (1933).
 [27] W. Nernst, Ann. Physik [4] 36, 395 (1911).
 [28] A. G. Worthing, Phys. Rev. 12, 199 (1918).
 [29] A. Magnus, Ann. Physik [4] 70, 303 (1923).
 [30] P. Schläpfer and P. Debrunner, Helv. Chim. Acta 7, 31 (1924).
 [31] C. J. Jacobs and G. S. Parks, J. Am. Chem. Soc. 56, 1513 (1934).
 [32] A. Magnus, Ann. Physik [4] 48, 083 (1915). [32] A. Magnus, Ann. Physik [4] 48, 983 (1915).
- [33] H. F. Weber, Ann. Physik [2] 154, 367 (1875).
 [34] H. F. Weber, Ann. Physik [2] 154, 553 (1875).
 [35] A. Magnus and A. Hodler, Ann. Physik [4] 89, 808 (1926). [35] [36]
- K. S. Pitzer, J. Chem. Phys. 6, 68 (1938).
 A. Bettendorff and A. Wüllner, Ann. Physik [2] 133, 293 (1868).
 W. Nernst and F. A. Lindemann, Z. Elektrochem. 17, 817 (1911). [37]
- [38] [39] R. Robertson, J. J. Fox, and A. E. Martin, Proc. Roy. Soc (London) A157,
- 579 (1936). [40]N. Lewis and M. Randall, Thermodynamics, p. 294 (McGraw-Hill Book Co. Inc., 1923). D. Rossini, J. Research NBS 22, 407 (1939) RP1192.
- [41]
- F. D. Rossini, J. Research NBS 22, 407 (1999) In 1102.
 C. H. Meyers and C. S. Cragoe, National Bureau of Standards. Unpublished.
 C. H. Meyers and F. D. Rossini, J. Research NBS 33, 447 [42]
- [43] E. J. Prosen, R. S. Jessup, and F. D. Rossini, J. Research NBS 33, 447 (1944) RP1620.
- E. J. Prosen and F. D. Rossini, J. Research NBS 34, 263 (1945) RP1642. [45] F. D. Rossini and R. S. Jessup, J. Research NBS 21, 491 (1938) RP1141.

Washington, October 31, 1944.