DAY 4

TRIGONOMETRIC RATIOS OF SOME SPECIAL ANGLES

T-Table for T-Ratios

θ	00	30 ⁰	45 ⁰	60 ⁰	90 ⁰
sinθ	$\sqrt{\frac{0}{4}} = 0$	$\sqrt{\frac{1}{4}} = \frac{1}{2}$	$\sqrt{\frac{2}{4}} = \frac{1}{\sqrt{2}}$	$\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$	$\sqrt{\frac{4}{4}} = 1$
cosθ	$\sqrt{\frac{4}{4}} = 1$	$\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$	$\sqrt{\frac{2}{4}} = \frac{1}{\sqrt{2}}$	$\sqrt{\frac{1}{4}} = \frac{1}{2}$	$\sqrt{\frac{0}{4}} = 0$
tanθ	$\sqrt{\frac{0}{4-0}}=0$	$\sqrt{\frac{1}{4-1}} = \frac{1}{\sqrt{3}}$	$\sqrt{\frac{2}{4-2}} = 1$	$\sqrt{\frac{3}{4-3}} = \sqrt{3}$	$\sqrt{\frac{4}{4-4}} = \infty$
$\cot\theta = \frac{1}{\tan\theta}$	∞	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
$\sec\theta = \frac{1}{\cos\theta}$	1	$\frac{2}{\sqrt{3}}$ con	ne-be⁄2me-e	ducat <mark>e</mark> d	∞
$\csc\theta = \frac{1}{\sin\theta}$	8	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1

0 30 45 60 90 SIN 0 1 2 3 4 4 3 2 1 0

2

Hand Method For T-Table

$$\sin \theta$$
 and $\cos \theta = \frac{\sqrt{x}}{2}$

where,

x = number of fingers towards T-ratio

For 30°

$$\sin 30^{\circ} = \frac{\sqrt{x}}{2} = \frac{\sqrt{1}}{2} = \frac{1}{2}$$

$$\cos 30^{\circ} = \frac{\sqrt{x}}{2} = \frac{\sqrt{3}}{2}$$

$$\tan 30^{\circ} = \frac{\sin 30^{\circ}}{\cos 30^{\circ}} = \frac{1}{\sqrt{3}}$$

For 45°

$$\sin 45^{\circ} = \frac{\sqrt{x}}{2} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

$$\cos 45^{\circ} = \frac{\sqrt{x}}{2} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

$$\tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = 1$$

For 60°

$$\sin 60^{\circ} = \frac{\sqrt{x}}{2} = \frac{\sqrt{3}}{2}$$

$$\cos 60^{\circ} = \frac{\sqrt{x}}{2} = \frac{\sqrt{1}}{2} = \frac{1}{2}$$

$$\tan 60^{\circ} = \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \sqrt{3}$$

1. If $\sin \theta = \frac{1}{2}$, then find θ .

Sol:- $\sin \theta = \frac{1}{2} = \sin 30^{\circ}$

{As $sin\theta$ is given, so we shall check the Table value in sin}

Now If T Ratios are equal then angles are also equal.

$$\Rightarrow \theta = 30^{\circ}$$

2. If $\tan A = \sqrt{3}$, then find A.

Sol:- $\tan A = \sqrt{3} = \tan 60^{\circ}$

Now If T Ratios are equal then angles are also equal.

$$\Rightarrow A = 60^{\circ}$$

3. Find the value of the following:

i) sin 45⁰

ii) $\cos 60^{\circ}$

iii) $tan^2 30^0$

Sol:- i)
$$\sin 45^0 = \frac{1}{\sqrt{2}}$$

ii)
$$\cos 60^0 = \frac{1}{2}$$

iii)
$$\tan^2 30^0 = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}} = \frac{1}{3}$$

EXERCISE

- **1.** If $\sin A = \frac{\sqrt{3}}{2}$, then find A.
- **2.** If $\cos \theta = \frac{1}{\sqrt{2}}$, then find θ .
- **3.** If $\tan \theta = 1$, then find θ .
- **4.** If sec A = $\frac{2}{\sqrt{3}}$, then find A.
- **5.** Find the value of the following:

i) $\sin 30^{\circ}$

ii) $\cos^2 45^0$

iii) $\tan^2 60^0$ iv) $\sec 30^0$ v) $\cos^2 60^0$