FINAL ANÁLISIS PREDICTIVO

Sofía González del Solar

- Base de datos elegida: Airline_Passenger_Satisfaction
- Origen: Kaggle
- Variable a predecir: satisfaction (Satisfied/ Neutral or Dissatisfied)
- Objetivos: lograr un entendimiento profundo de la base elegida y utilizar la información descubierta en el EDA para lograr la mejor predicción posible de la variable satisfaction.
- Hipótesis: Se conseguirá un alto acurracy en la predicción debido a las variables que contiene el dataset. Este acurracy será mayor en la categoría neutral or dissatisfied

DATASET

AIRLINE_PASSENGER_SATISFACTION

- Cantidad de Variables Totales: 23
- Cantidad de variables numéricas: 18
- Cantidad de variables categóricas: 5
- Cantidad de variables score: 14
- Cantidad de Registros: 103.905
- Frecuencia de Actualización: nunca

CASO DE NEGOCIO

Se busca predecir la variable categórica llamada satisfacción.

El objetivo es que las aerolíneas puedan predecir si el cliente quedó satisfecho o neutral/desatisfecho para así poder mejorar el servicio o remediar una mala experiencia del cliente.

EDA

Mapa de correlación

Class y Type of Travel

Tamaño del efecto:

0.5540544

Class

Business		47508		2157
Eco		20257		26488
Eco Plus		3890		3604
Class y Type of Trave	ι			
Type of Travel Business	travel • Personal Trave	I		
40K · · · · · · · · · · · · · · · · · · ·				
SS				
Count of Class				
20К				
ок	Eco Plus	Eco	Business	
		Class		

Business travel

Personal Travel

Class y Satisfaction

Tamaño del efecto:

0.5047498

Relación entre Satisfaction y Class

Class	neutral or dissatisfied	satisfied			
Business	15185	34480			
Eco	38044	8701			
Eco Plus	5650	1844			

Ease of Online Boarding y Satisfaction

Tamaño del efecto:

0.6185259

Online boarding	neutral or dissatisfied	satisfied
0	1077	1351
1	9219	1473
2	15486	2019
3	18845	2959
4	11596	19166
5	2656	18057

Flight distance y Class

Kruskal-Wallis chi-squared 0.1707619

Métricas Generales

Departure Delay in Minutes							
Mínimo	Máximo	0	Varianza	Mediana	Promedio		
	0	1592	1461.59	0	14.82		

Age				
Mínimo	Máximo	Varianza	Mediana	Promedio
7	85	228.46	40	39.38

Arrival Delay in Minutes							
Mínimo	Mínimo Máximo Varianza Mediana Promedio						
	0	1584	1497.57	0	15.18		

Flight Distance							
Mínimo	Máximo	Varianza	Mediana	Promedio			
31	4983	994293.13	843	1189.45			

ANÁLISIS DE MISSINGS

Arrival Delay in Minutes: 310

Departure Delay in Minutes	Arrival Delay in Minutes	Atraso/Adelanto
25		7
1	6	-5
0	0	0
11	9	2
0	0	0
0	0	0
9	23	-14
4	0	4
0	0	0
0	0	0
0	0	0
0	0	0
28	8	20
0	0	0
43	35	8
1	0	1
49	51	-2
0	10	-10
7	5	2
17		-1
0	4	-4

Arrival Delay in Minutes - Departure Delay in Minutes

Promedio =0

ANÁLISIS DE OUTLIERS

Flight Distance: 2.291

Departure Delay: 14.529

Arrival Delay: 13.954

Flight.Distance	e ÷
	4983
	4983
	4983
	4983
	4983
	4983
	4983
	4983
	4983
	4983
	4983
	4983
	4963
	4963
	4963
	4963
	4963
	4963
	4963

Departure.Delay.in.Minutes	Arrival.Delay.in.Minutes
1592	1584
1305	1280
1017	1011
978	970
933	920
930	952
921	924
859	860
853	823
750	729
748	720
729	717
726	691
724	705
692	702
652	638
626	604
610	593

TRATAMIENTO DE LA BASE

¿La variable ID tiene valores duplicados?

COMO LA VARIABLE ID NO TIENE DUPLICADOS SE ELIMINÓ

Se agregaron las variables Arrival Delay Indicator, Departure Delay Indicator

```
#Creo dos nuevas variables que marquen si hubo atraso en el aterrizage o en el despegue
```

```
df['Arrival Delay Indicator'] = df['Arrival Delay in Minutes'].apply(lambda x: 1 if x > 0 else 0)  
    df['Departure Delay Indicator'] = df['Departure Delay in Minutes'].apply(lambda x: 1 if x > 0 else 0)
```


Se reemplazó a la Variable Arrival Delay in Minutes por Atraso/Adelanto

```
#Reemplazo la variable de arrival delay por la resta entre departure delay y arrival

df['Arrival Delay in Minutes']=df['Departure Delay in Minutes'] - df['Arrival Delay in Minutes']

print(df['Arrival Delay in Minutes'])

#Agrego otra variable que indique si el vuelo duró menos o igual a lo esperado

df['Atraso/Adelanto Indicator'] = df['Atraso/Adelanto'].apply(lambda x: 1 if x >= 0 else 0)
```


Nueva variable Grupo Edad

5 categorías:

- Grupo 2 -> 13-19 años
- Grupo 4 20-40 años
- Grupo 8 —> 65-100 años

Encoding de variables categóricas

1- Creación de Dummys

```
#Paso la variable Gender, costumer type, Type of travel a una dummy

df['Gender'] = pd.get_dummies(df['Gender'], prefix='Gender', drop_first=True).astype(int)

df['Customer Type'] = pd.get_dummies(df['Customer Type'], prefix='Customer Type', drop_first=True).astype(int)

df['Type of Travel'] = pd.get_dummies(df['Type of Travel'], prefix='Type of Travel', drop_first=True).astype(int)
```

2- Encoding Ordinal

```
# Definir el diccionario de codificación ordinal
encoding_dict = {'Eco': 1, 'Business': 3, 'Eco Plus': 2}
# Aplicar el encoding ordinal a la columna 'Class'
df['Class'] = df['Class'].map(encoding_dict)
```


Creación de la variable Promedio Ponderado segun grupo etario

Inflight wifi se [Departure/Arı	Ease of Online	Gate location	Food and drin	Online boardi	Seat comfort	Inflight entert	On-board sen	Leg room serv	Baggage hand	Checkin servi	Inflight servic	Cleanliness
3	4	3	1	5	3	5	5	4	3	4	4	5	5
3	2	3	3	1	3	1	1	1	5	3	1	4	1
2	2	2	2	5	5	5	5	4	3	4	4	4	5
2	5	5	5	2	2	2	2	2	5	3	1	4	2
3	3	3	3	4	5	5	3	3	4	4	3	3	3
3	4	2	1	1	2	1	1	3	4	4	4	4	1
2	4	2	3	2	2	2	2	3	3	4	3	5	2
4	3	4	4	5	5	5	5	5	5	5	4	5	4
1	2	2	2	4	3	3	1	1	2	1	4	1	2
3	3	3	4	2	3	3	2	2	3	4	4	3	2
4	5	5	4	2	5	2	2	3	3	5	3	5	2
2	4	2	2	1	2	1	1	1	2	5	5	5	1
1	4	4	4	1	1	1	1	1	1	3	4	4	1
4	2	4	3	4	4	4	4	4	5	2	2	2	4
3	2	3	2	2	3	2	2	4	3	2	2	1	2
2	1	2	3	4	2	1	4	2	1	4	1	3	4
2	2	2	2	4	4	4	Λ	г	2	A	г	4	A

Creación de la variable Promedio Ponderado segun grupo etario

Niños		Jóvenes			Adultos			Ancianos			
0,Inflight wifi service	0.221155	4,Inflight wifi service	0.096004		6,Inflight wifi service	0.062273		8,Inflight wifi service	0.150080		
0,Departure/Arrival time c	-0.01906	4,Departure/Arrival time c	-0.00063		6,Departure/Arrival time c	-0.02200		8,Departure/Arrival time c	-0.03929		
0,Ease of Online booking	0.167323	4,Ease of Online booking	0.062184		6,Ease of Online booking	0.030558		8,Ease of Online booking	0.078931		
0,Gate location	-0.00805	4,Gate location	-0.00208		6,Gate location	0.001755		8,Gate location	-0.00331		
0,Food and drink	0.070595	4,Food and drink	0.081625		6,Food and drink	0.042858		8,Food and drink	0.041008		
0,Online boarding	0.217978	4,Online boarding	0.164681		6,Online boarding	0.116642		8,Online boarding	0.078048		
0,Seat comfort	0.055102	4,Seat comfort	0.102525		6,Seat comfort	0.093390		8,Seat comfort	0.038356		
0,Inflight entertainment	0.068722	4,Inflight entertainment	0.108990		6,Inflight entertainment	0.117437		8,Inflight entertainment	0.127561		
0,On-board service	0.045976	4,On-board service	0.077032		6,On-board service	0.103180		8,On-board service	0.095794		
0,Leg room service	0.007050	4,Leg room service	0.050157		6,Leg room service	0.119927		8,Leg room service	0.149386		
0,Baggage handling	0.025957	4,Baggage handling	0.051214		6,Baggage handling	0.090629		8,Baggage handling	0.089004		
0,Checkin service	0.044818	4,Checkin service	0.064589		6,Checkin service	0.070419		8,Checkin service	0.046342		
0,Inflight service	0.033806	4,Inflight service	0.050192		6,Inflight service	0.090390		8,Inflight service	0.090221		
0,Cleanliness	0.068622	4,Cleanliness	0.093518		6,Cleanliness	0.082539		8, Cleanliness	0.057874		

Agrego la variable TipoDestino

Agrego la variable TipoPasajero

Crear un objeto KMeans con el número deseado de grupos
kmeans = KMeans(n_clusters=3)

Ajustar el modelo a los datos estandarizados
kmeans.fit(data_scaled)

Agrego la variable TipoPasajero

V V	index ↓	Componente Principal 1	Componente Principal 2
≣			
3	Type of Travel	0.7187308457	-0.1372490682
0	Gender	0.0082997733	-0.0872834151
1	Customer Type	-0.2017592637	0.7064088597
4	Class	-0.6547030205	-0.2536657629
2	Age	-0.1183817544	-0.6404564797

MODELOS PREDICTORES

Modelos Testeados

- Random Forest
- Regresión Logística
- Catboost
- Naive Bayes
- Extra Trees

Tipo de Partición:

80% train 20% test

Random Forest

Grid Search!

Hiperparámetros utilizados:

- min_samples_split=5
- n_estimators=300

AUC-ROC: 0.99

Reporte de Clasificación:

Matriz de confusión

Precisión del modelo:

Extra Trees

Grid Search!

Hiperparámetros utilizados:

- min_samples_split=5
- n_estimators=300

AUC-ROC: 0.99

Reporte de Clasificación:

Matriz de confusión

Precisión del modelo:

Catboost

Grid Search!

Hiperparámetros utilizados:

- iterations=200
- depth=8
- learning_rate=0.1

Reporte de Clasificación:

Matriz de confusión

Precisión del modelo:

Conclusiones:

- Los modelos muestran un rendimiento sólido y altamente preciso.
- La matriz de confusión revela que el modelo logra una alta cantidad de predicciones correctas con un número relativamente bajo de predicciones incorrectas.
- El reporte de clasificación muestra altos valores de precisión, recall y F1-score para ambas clases, lo que indica una capacidad confiable para clasificar correctamente las instancias positivas y negativas. El recall de la clase 1 es especialmente alto, lo cual ayuda al objetivo principal del trabajo.
- Además, el valor del AUC-ROC de 0.99, el modelo es capaz de mantener un buen equilibrio entre la sensibilidad (recall) y la especificidad (tasa de verdaderos negativos)

Análisis Predictivo

Profesores:

- Ezequiel Martín Eliano Sombory
- Leonardo Andrés Caravaggio
- Francisco Valentini

1er cuatrimestre - 2023 Trabajo final

Sofía Gonzalez del Solar