Competências Transferíveis

Microcontroladores e Interação com Sensores e Atuadores

V3_2

Rui Escadas Martins

Um microcontrolador (MCU) é um pequeno computador implementado num único Circuito Integrado tipicamente baseado num CPU (Central Processing Unit) relativamente simples, integrando um razoável número de periféricos, como:

- Memória RAM;
- Memória Flash;
- I/Os programáveis;
- Timers e contadores;
- A/D Conversores Analógico/Digitais;
- D/A Conversores Digital/Analógicos;
- Etc...

Características mais importantes:

- Arquitectura: nº de bits, ARM, RISC V, MIPS, ...
- Potência consumida + Clock freq./Desempenho
- Nº de I/O pins
- Tamanho memória programa
- Tamanho memória RAM
- Possibilidades Analógicas:
 - Nº de ADCs + resolução + tempo de conversão
 - Nº de DACs + resolução + tempo de conversão
 - Nº de comparadores analógicos, opamps, etc...
- Nº de Timers + resolução
- Funções especiais

Características mais importantes:

Arquitectura: nº de bits, ARM, RISC V, MIPS, ...

- 8-bits é excelente para pequenas aplicações;
- 16-bit ok para aplicações mais complicadas;
- 32-bit para aplicações exigentes;
- ARM é a dominante para 32 bits.

Características mais importantes:

Potência consumida + Clock freq./Desempenho

- Mais clock -> Melhor desempenho;
- Mais clock -> Maior consumo;
- Maior consumo -> Menor duração da bateria.

Características mais importantes:

Nº de I/O pins

- Mais pinos -> Mais possibilidades de ligar periféricos;
- Mais pinos -> packages maiores -> maior custo;
- Mais pinos nem sempre implica maior desempenho.

23:07

Características mais importantes:

Tamanho memória programa (memória não volátel - actualmente quase sempre do tipo FLASH)

- Mais memória -> Permite maiores programas (o que por sua vez permite algoritmos mais complexos ou que usem mais dados fixos);
- Mais memória nem sempre implica maior desempenho.

Características mais importantes:

Tamanho memória RAM (volátil)

- Mais memória RAM-> Melhor desempenho em programs mais complexos;
- Mais memória permite mais fácil processamento de grande quantidade de dados.

Características mais importantes:

Possibilidades Analógicas

- Muito importante no interface e interacção com o mundo;
- A maioria das grandezas a medir são analógicas e precisam de ser convertidas em representação digital para processamento por um computador (é semelhante para a actuação);
- Nº ADCs, sua resolução e canais de entrada;
- Nº de DACs e sua resolução.

Características mais importantes:

Nº de Timers + resolução

- Muito importante para sistemas que são "disciplinados" por tempo;
- Muito importante para contagem muito precisa de tempo e eventos.

Características mais importantes:

Funções especiais

- Há muitas funções especiais.
- Por exemplo: comunicações:
 - USB
 - U(S)ART
 - CAN
 - LIN
 - BLE
 - WiFi
 - Etc...

Placa desenvolvimento:

System

Power supply 1.2 V internal regulator POR/PDR/PVD/BOR

Xtal oscillators 32 kHz + 4 ~26 MHz

Internal RC oscillators 32 kHz + 16 MHz

PLL

Clock control

RTC/AWU

2x watchdogs (independent and window)

36/50/81 I/Os

Cyclic Redundancy Check (CRC)

96-bit unique ID

Voltage scaling

ART Accelerator™

100 MHz ARM® Cortex®-M4 CPU

Floating Point Unit (FPU)

Nested Vector Interrupt Controller (NVIC)

JTAG/SW debug

Embedded Trace Macrocell (ETM)

Memory Protection Unit (MPU)

AHB-Lite bus matrix

APB bus

16-channel DMA with Batch Acquisition Mode (BAM) 512-Kbyte Flash memory

128-Kbyte SRAM

80-byte backup data

Connectivity

3x PC

3x USART LIN, smartcard, IrDA, modem control

5x SPI or 5x I2S (2x I2S with full duplex)

SDIO

USB 2.0 OTG FS

Control

5x 16-bit timer

1x 16-bit motor control PWM synchronized AC timer

2x 32-bit timer

Analog

1x 12-bit ADC 2.4 MSPS 16 channels / 0.41µs

Temperature sensor

Rui Escadas 23:07 19

Procedimento:

É só ligar a placa a um PC através de um cabo USB - Mini-USB

Procedimento:

É só ligar a placa a um PC através de um cabo USB - Mini-USB

Procedimento:

É só ligar a placa a um PC (se tiverem um Hub ficam mais protegidos contra acidentes)

23:07

Procedimento:

Arrancar o IDE

Procedimento:

Criar um Projecto tipo "STM32"

Procedimento:

Selecionar a placa: NUCLEO-F411RE

Procedimento:

Selecionar nome e local destino

Procedimento:

Selecionar pinos e funções

Procedimento:

Selecionar oscilador e frequência de relógio

Procedimento:

Gerar Código (automaticamente)

E agora é só escrever o Código...

```
SystemClock Config();
 83
 84
      /* USER CODE BEGIN SysInit */
 85
      /* USER CODE END SysInit */
 86
 87
      /* Initialize all configured peripherals */
 89
      MX GPIO Init();
 90
      MX USART2 UART Init();
 91
      /* USER CODE BEGIN 2 */
 92
 93
      /* USER CODE END 2 */
 94
 95
       /* Infinite loop */
 96
       /* USER CODE BEGIN WHILE */
 97
       while (1)
 98
 99
           //HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET); // Forca o pino ao estado "1"
100
           //HAL GPIO WritePin(LD2 GPIO Port, LD2 Pin, GPIO PIN RESET); // Força o pino ao estado "0"
101
           HAL GPIO TogglePin(LD2 GPIO Port, LD2 Pin); // Muda o estado do pino
102
           HAL Delay(1000); //Espera sem fazer nada durante 1000 milisegundos
103
104
         /* USER CODE END WHILE */
105
106
         /* USER CODE BEGIN 3 */
107
108
       /* USER CODE END 3 */
109
110
1119 /**
      * @brief System Clock Configuration
113
      * @retval None
      */
114
115@ void SystemClock_Config(void)
116 {
117
      RCC_OscInitTypeDef RCC_OscInitStruct = {0};
      RCC ClbTni+TyneDef RCC ClbTni+Struct - Sal.
```

E agora é só escrever o Código...

```
SystemClock Config();
 83
 84
      /* USER CODE BEGIN SysInit */
 85
      /* USER CODE END SysInit */
 86
 87
      /* Initialize all configured peripherals */
 89
      MX GPIO Init();
 90
      MX USART2 UART Init();
      /* USER CODE BEGIN 2 */
 91
 92
 93
      /* USER CODE END 2 */
 94
 95
        /* Infinite loop */
 96
       /* USER CODE BEGIN WHILE */
 97
       while (1)
 98
 99
           //HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET); // Forca o pino ao estado "1"
100
           //HAL GPIO WritePin(LD2 GPIO Port, LD2 Pin, GPIO PIN RESET); // Força o pino ao estado "0"
101
           HAL GPIO TogglePin(LD2 GPIO Port, LD2 Pin); // Muda o estado do pino
102
           HAL Delay(1000); //Espera sem fazer nada durante 1000 milisegundos
103
104
         /* USER CODE END WHILE */
105
106
          /* USER CODE BEGIN 3 */
107
108
        /* USER CODE END 3 */
109
110
1119 /**
      * @brief System Clock Configuration
112
113
      * @retval None
      */
114
115@ void SystemClock_Config(void)
116 {
117
      RCC_OscInitTypeDef RCC_OscInitStruct = {0};
      RCC ClbTni+TyneDef RCC ClbTni+Struct - Sal.
```

Compilar o Código e Criar executável (selecionar Build All)

Para enviar o executável para o microcontrolador fazer Debug.

Pode acontecer que o firmware da placa de desenvolvimento já seja antigo, pelo que possa necessitar de ser actualizado. Se aparecer a janela da figura, carreguem em "Open in update mode" e depois no botão "Update"

GPIO pin – General Purpose Input/Output pin

GPIO pin – General Purpose Input/Output pin

