Laboratorio: Termodinámica Computacional

Daniel Beltran Argueta

15 de enero, 2024

Resumen de laboratorio

En este laboratorio se hacen, a traves del uso de simulaciones, el cálculo de diferentes variables termodinámicas asociadas a una determinada transformación, y la reproducción de ciclos termodinámicos.

Introducción

Usando el sistema de simulaciones PhET de la Universidad de Colorado Boulder, tomaremos datos de un sistema cerrado en diferentes puntos.

Parte 1

La parte 1 de este laboratorio consiste en realizar cambios de temperatura a un sistema y calcular así diferentes variables termodinámicas asociadas a estas transformaciones.

El cambio que se hizo entre diferentes mediciones fue un aumento arbitrario de la temperatura T, y manteniendo constante el volumen $V=0.00073m^3$

En un principio, estos eran los valores iniciales registrados:

$$T_0 = 25^{\circ}C, P_0 = 19.4 \ atm$$

Se registraron los cambios de presión que se daban con el aumento de la temperatura T, así como sus cambios (Δ) respecto a los valores iniciales:

Valor de T (° C)	Valor de $P(atm)$	$\Delta T \ (^{\circ}C)$	$\Delta P (atm)$
25	19.4	0.0	0.0
28	19.5	3.0	0.2
34	19.9	9.0	0.6
39	20.3	14.0	0.9
47	20.8	22.0	1.4
54	21.3	29.0	1.9
61	21.7	36.0	2.3
68	22.1	43.0	2.8
71	22.4	46.0	3.0
79	22.8	54.0	3.5

Table 1: Tabla con datos registrados y sus respectivos Deltas

Estos datos se tomaron para crear, usando un script de Python, una gráfica mostrando una regresión lineal del cambio de ΔP con respecto a ΔT :

Cálculo de variables termodinámicas asociadas a las transformaciones

Las variables a calcular son:

- n: Cantidad de sustancia (mol)
- W: Trabajo realizado por el sistema (J)
- Q: Calor transferido al sistema (J)
- ΔU : Variación de la energía interna del sistema (J)
- ΔH : Variación de la entalpía del sistema (J)

Para calcular n, usamos la ecuación de estado de los gases ideales y la ajustamos al caso particular del sistema.

Primero necesitamos el valor de la pendiente a de la regresión lineal, esto es $a = \frac{\Delta P}{\Delta T}$

Este valor lo obtenemos con el mismo script de python, y para los datos tomados es $0.065~atm/^{\circ}C$. Esto en Pa/K es 6570.60

Podemos calcular el número de moles sabiendo el valor de a:

$$n = a \cdot \frac{V}{R}$$

$$n = 6570.60 Pa/K \cdot \frac{0.00073 m^3}{8.31 J/mol \cdot K}$$

$$n = 0.58 \ mol$$

El trabajo realizado por el sistema (W) es 0, pues el volumen del gas es constante.

$$W = 0$$

Para calcular el calor transferido al sistema (Q), tomamos en cuenta que el gas usado es un gas diatómico, por lo tanto el calor específico de este es $\frac{5}{2} \cdot R$, siendo R la constante universal de los gases ideales:

$$Q = nCv\Delta T$$

$$Q = (0.58mol)(\frac{5}{2} \cdot 8.31)(327.2^{\circ}K)$$

$$Q = 3.9kJ$$

Ahora podemos calcular la variación de la energía interna del sistema (ΔU).

$$\Delta U = Q + W$$

Entonces:

$$\Delta U = 3.9kJ$$

De esto también se deduce que la variación de entalpía $(\Delta H) = \Delta U = 3.39kJ$

Así, tenemos que para estas transformaciones isocóricas:

- n = 0.58mol
- W = 0.0
- Q = 3.9kJ
- $\bullet \ \Delta U = 3.9kJ$
- $\Delta U = 3.9kJ$