Amendments the Specification:

Please replace paragraph [0028] beginning on pages 14-15 with the following amended paragraph [0028]:

FIG. 2 is a simplified schematic diagram of a portion of a feedback circuit 200 of the regulator device 100 employing margin control according to an exemplary embodiment of the present invention. Similar components from FIG. 1 assume identical reference numbers. The current mirror 115 has a pair of current output terminals coupled across a resistor RMU/D for generating the up margining voltage VMARG UP. The current mirror 117 has a pair of current output terminals coupled across a resistor RMD/D for generating the down margining voltage VMARG The current from the current mirror 117 is shown reversed through the resistor RMD/D to effectively generate the down margining voltage as -VMARG DOWN. VMARG UP is provided to a selectable terminal A and -VMARG DOWN is provided to a selectable terminal B of a SPDT switch SW3, having a common pole coupled to a selected margining voltage VMARG. The switch SW3 is controlled (or signal MARCTRL or by the MARCTRL pin 105 103 thereof), so that VMARG UP is selected as VMARG when MARCTRL is high and -VMARG DOWN is selected as VMARG when MARCTRL is low. The VMARG signal is applied to one input of a two-input combiner or adder 201, which receives VREF at its other input. The adder 201 adds VREF and VMARG together to generate a reference voltage with margin signal VRM. The VRM signal is provided to the input of an operational transconductance amplifier (OTA) circuit 203, which has an output that generates a set point voltage VSP used to control the output voltage level of the regulator device 100. The output of the OTA circuit 203 is coupled to one end of a soft-start capacitor CSS and to the non-inverting input of an error amplifier (EA) 205. In the embodiment shown, the capacitor CSS is implemented off-chip and coupled through a pin 207. EA 205 receives a feedback voltage signal VFB at its inverting input, and generates a compensation signal COMP at its output.