The precise topics discussed in the course may decide on the interests of the class (and the whims of the instructor), but to give a flavor of the material to be covered, I have listed here some references which suggest the central concerns of the course:

- Kashiwara-Schapira, Sheaves on Manifolds
- Guillermou, Sheaves and symplectic geometry of cotangent bundles, https://arxiv.org/pdf/1905.07341.pdf
- Tamarkin, Microlocal criterion for non-displaceability, https://arxiv.org/pdf/0809.1584.pdf
- Zhang, Quantitative Tamarkin category, https://arxiv.org/pdf/1807.09878.pdf
- Kuwagaki, Introduction to sheaf quantization https://arxiv.org/pdf/2205.02661.pdf
- Nadler-Shende, Sheaf quantization in Weinstein symplectic manifolds, https://arxiv.org/pdf/2007.10154.pdf

Possible additional topics to be discussed: The role of the J-homomorphism in microlocal sheaf theory; irregular Riemann-Hilbert correspondence; perverse sheaves and perverse schobers.

Undergraduate students interested in taking this course should seek permission from me first. Undergraduates and pre-quals graduate students, who require grades for the course, will be required to prepare a final project or presentation, and possibly also to complete exercises I assign during the course.

Further references:

Hyperfunctions:

- Komatsu, An introduction to the theory of hyperfunctions https://link-springer-com.ezp-prod1.hul.harvard.edu/content/pdf/10.1007/BFb0068144
- Martineau, Les hyperfonctions de M. Sato http://www.numdam.org/item/SB 1960-1961 6 127 0.pdf
- Bony, Hyperfonctions et A®quations aux dA®rivA®es partielles http://archive.numdam.org/article/SB 1976-1977 19 73 0.pdf

Background on sheaves:

- Dimca, Sheaves in Topology
- Virk, some operations on sheaves: http://rvirk.com/notes/topology2012/operations.pdf

Background on derived categories:

- Mazel-Gee, An invitation to higher algebra https://etale.site/teaching/w21/math-128-lecture-notes.pdf
- Mazel-Gee, The Zen of infinity-categories, https://etale.site/writing/zen-of-infty-cats.pdf

Helpful notes:

- Li, Sheaf theory in symplectic geometry
- Notes from Nadler seminar on microlocal sheaves: https://math.berkeley.edu/~phaine/#GRT-2021-2022

Legendrian knots and front projections:

- Ng, Gallery of Legendrian knots
- Entyre, <u>Legendrian and transversal knots</u>
- Casals, Mastering the Art of Front Cooking
- Shende-Treumann-Zaslow, Legendrian knots and constructible sheaves

Persistent homology:

- Jun Zhang, Quantitative Tamarkin Category (linked at top)
- Žiga Virk, Introduction to persistent homology
- Gary Koplik Persistent Homology: A Non-Mathy Introduction with Examples
- Gunnar Carlsson, Topology and data