Evolutionary Computing -2020 Assignment #3: evolutionary strategy

Shiraz University Due Date: 5/Feb

Problem statement

System reliability optimization is very important in real world applications. To design a highly reliable system, there are two main approaches: 1) Add redundant components 2) Increases the component reliability.

For financial reasons, it has to establish a balance between reliability and other resources during designing a highly reliable system. In this project we ask you to design an Evolution Strategy (ES) based approach to reach this goal.

Well-known benchmarks

The notations used in this project are listed in table (1):

Table 1: Notations

Notation	Description						
m	number of subsystems in the system.						
n_i	the number of components in ith subsystem. $1 \le i \le m$. n						
	= $[n_1,,n_m]$, the vector of the number of components in system.						
r_i	the reliability of each component in ith subsystem.						
r	= $[r_1,,r_m]$, the vector of component reliabilities.						
w_i	the weight of each component in ith subsystem.						
Ci	the cost of each component in ith subsystem.						
v_i	the volume of each component in ith subsystem.						
R_i	the reliability of the ith subsystem. $R_i = 1 - (1 - r_i)^{n_i}$.						
R_s	the reliability of the system.						
С	the upper limit on the cost of the entire system. W						
	the upper limit on the weight of the entire system.						
V	the upper limit on the volume of the entire system.						

The reliability—redundancy allocation problem can be modeled in general form as follow:

Max
$$R_s = f(r_i, n_i)$$
. (1)
subject to $g(r_i, n_i) \le predefinedValue$

Where f (.) is the objective function (fitness function) for the overall system and g(.) is the set of constraint functions (e.g., constraints are on system weight, volume and cost). For more information, see:

P. Wu, L. Gao, D. Zou, and S. Li, "An improved particle swarm optimization algorithm for reliability problems," ISA Trans., vol. 50, no. 1, pp. 71–81, 2011.

Assignment #3 Page 1

1.1. Complex (bridge) system (*P1***):** Figure 1 represent a complex system that consists of five subsystems. The objective function for complex system is:

$$Max f(r.nc) = R_1R_2 + R_3R_4 + R_1R_4R_5 + R_2R_3R_5 - R_1R_2R_3R_4 - R_1R_2R_3R_5 - R_1R_2R_4R_5 - R_1R_3R_4R_5 - R_2R_3R_4R_5 + 2R_1R_2R_3R_4R_5$$
 (2)

subject to:

$$g_{1}(\mathbf{r}, \mathbf{n}) = \sum_{i=1}^{m} w_{i} v_{i}^{2} n_{i}^{2} - V \le 0$$

$$g_{2}(\mathbf{r}, \mathbf{n}) = \sum_{i=1}^{m} \alpha_{i} \left(-\frac{1000}{\ln(r_{i})} \right)^{\beta_{i}} [n_{i} + \exp(0.25n_{i})] - C \le 0$$

$$g_{3}(\mathbf{r}, \mathbf{n}) = \sum_{i=1}^{m} w_{i} n_{i} \exp(0.25n_{i}) - W \le 0$$

$$0 \le r_{i} \le 1, \quad n_{i} \in \mathbb{Z}^{+}, \ 1 \le i \le m.$$

1.2. **Series system (***P2***):** Figure 2 represents a series system consisting of five subsystems. The objective function for series system is:

$$Max f(r,n) = \prod_{i=1}^{m} R_i = \prod_{i=1}^{5} (1 - (1 - r_i)^{n_i})$$
 (6)

subject to: $g_1(r.n)$. $g_2(r.n)$, $g_3(r.n)$.

Parameter used for complex (bridge) system (P1) and series system (P2) are listed in table (2):

Table 2. Parameter used for complex and series system

i	$10^5 \alpha_i$	$oldsymbol{eta}_i$	$w_i v_i^2$	w_i	V	С	W
1	2.330	1.5	1	7	110	175	200
2	1.450	1.5	2	8	110	175	200
3	0.541	1.5	3	8	110	175	200
4	8.050	1.5	4	6	110	175	200
5	1.950	1.5	2	9	110	175	200

Assignment #3 Page 2

Notes:

- Your implementation should be functional.
- You should write a complete report for the results you get.
- Allowed programming languages: MATLAB python.
- Feel free to change the model parameters.
- Any sign of cheating would be result in the zero grade for the assignment.
- Your codes should be self-commented.
- Send you codes in a ZIP file named "LASTNAME FIRSTNAME.zip"

Assignment #3 Page 3