Stochastic Gradient Descent (SGD) – Simplified Theory

1. Introduction

- **Gradient Descent** is an optimization algorithm that minimizes a **cost function** to find the best model parameters.
- **SGD** is a **variant of Gradient Descent** that updates parameters **one sample at a time** instead of using the whole dataset (like Batch GD).

2. Problem with Batch Gradient Descent

Batch GD computes gradients using all training samples before updating weights:

$$heta_j = heta_j - lpha rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i) x_{ij}$$

- Issues:
 - Slow for very large datasets because only one update per epoch.
 - o Requires entire dataset in memory for every calculation.
 - o Can get stuck in **local minima** for non-convex functions.

3. What is Stochastic Gradient Descent

• SGD updates parameters using one training example at a time:

$$\theta_j = \theta_j - \alpha(y_i - \hat{y}_i)x_{ij}$$

- This means:
 - 1. **Faster updates** → weights change more frequently.
 - 2. Introduces **noise** (not exact gradient direction), which helps escape local minima.
 - 3. The cost function oscillates but generally approaches the optimum over time.

4. Mathematical Difference between BGD and SGD

Aspect	Batch GD	Stochastic GD (SGD)
Gradient Computation	Uses all samples	Uses one sample
Update Frequency	Once per epoch	Every sample
Convergence	Stable, slow	Faster, but noisy
Memory	High (entire dataset)	Low (one sample)

5. Advantages of SGD

- Faster training for large datasets.
- Works well for online learning (data arriving in streams).
- Helps escape local minima due to noise in updates.

6. Disadvantages of SGD

- Convergence is less stable, cost function fluctuates.
- Requires careful tuning of learning rate.
- If learning rate is too high → algorithm may diverge.

7. When to Use SGD

- When the dataset is:
 - 1. Very large (millions of samples).
 - 2. Streaming or online data where full dataset is unavailable at once.
 - 3. Non-convex cost function where local minima are a problem.

8. Learning Schedules

• To improve convergence, the **learning rate** (α \alpha) can be decreased over time:

$$\alpha_t = \frac{\alpha_0}{1 + decay \cdot t}$$

Where:

- α₀ = initial learning rate.
- t = iteration number.

This ensures **large steps in the beginning**, then **smaller steps** as we approach the minimum.

Key Takeaways

- SGD updates weights one sample at a time, making it faster but noisier than Batch GD.
- Works well for large-scale and online learning problems.
- Requires **learning rate scheduling** for better convergence.
- Update rule:

$$heta_j = heta_j - lpha(y_i - \hat{y}_i)x_{ij}$$