Traffic-related air pollution and pregnancy loss in Eastern Massachusetts, USA

Michael Leung

9/19/2022

Background

- Many pregnancy loss studies rely on losses identified by medical records
 - Almost 50% of all pregnancies not intended
 - Among pregnancy planners, early loss estimated ~30%
- Studying subset of all losses can potentially compromise internal and/or external validity

Challenge

- Pregnancy loss is difficult to study because of the internal, and therefore hidden, nature of conceptions
- How do you study something that cannot be seen directly?

Challenge

- The challenge of studying something that cannot be seen is not unique to epidemiology
- Example: subatomic particles are too small to see
 - Physicists & engineers developed the cloud chamber to visualize tracks that the particles leave as they move to infer properties

Approach

 We look at the shadow (i.e., live births at the end of pregnancy) to infer about what happened during pregnancy

5/14

Approach

Unit of analysis is time (e.g., weeks)

$$TC = PL + LBIC$$

- For a given week, total conceptions (TC) is the sum of conceptions that end in pregnancy loss (PL) and conceptions that end in live births or "live birth-identified conceptions" (LBIC)
- LBIC (observed) driven by TC (unobserved) and PL (unobserved)
- **HOWEVER**, post-conception exposures cannot affect TC, and so associations with LBIC necessitates associations with PL
- ullet Here, we show this approach using NO₂ (tracer for traffic-related air pollution)

Methods: Analysis

- Deliveries from Beth Israel Deaconess MC, 2003-2017, n=20,957
- LBIC outcome: count how many live births per conception week
 - Re-sort live births into their conception weeks based on gestational age
- Assign weekly NO₂ exposure history

Methods: Analysis

- NO_2 from spatiotemporal ensemble model that estimates daily NO_2 in each 1-km grid in the US (R^2 =0.79)
- Temperature from NASA North American Land Data Assimilation Systems (NLDAS-2)
- Distributed lag model
 - Log-linear model (count process)
 - NO2: linear exposure-response, 5 df for lag constraint
 - Temperature: 3 df for exposure-response, 5 df for lag constraint
 - Time trend adjustment using year indicator and sine-cosine pair
 - LBIC count difference per 10-ppb
 - G-computation
 - Bootstrap for 95% confidence intervals

Exposure and outcome distribution

- Mean weekly NO_2 of 23.3 (SD = 6.4)
- ullet Mean weekly LBIC of 30.3 (SD = 6.5)

Results: Main Results

- \bullet A 10-ppb higher NO $_2$ exposure sustained during weeks 5-19 was associated with 6.0 (95% CI: 1.3, 11.3) fewer LBICs
 - That is, out of $\sim \!\! 30$ LBICs per conception week, 6 would be lost if average NO $_2$ was 10-ppb higher

Potential Limitations

- Exposure measurement error (non-differential)
- Error in gestational age dating (non-differential)
- Residual confounding by seasonality and long-term trends
 - Harmonics do well in controlling for time trends (Poster P-0017)

Conclusion & Future Directions

- The approach quantifies the change in the number of pregnancy losses per conception week as it is the complement of the change in live births
- LBIC analysis pregnancy loss associated with NO₂ in weeks 5-19
 - Placental blood flow established ~16 weeks
 - Oxidative stress burst
- Future direction: Important to consider health inequities
 - Identify maternal and neighborhood-level factors that modify the association between air pollution and pregnancy loss

Thank You!

Acknowledgements

- Collaborators
 - Sebastian T. Rowland
 - Anna M. Modest
 - Michele R. Hacker
 - Stefania Papatheodorou
 - Joel Schwartz
 - Brent A. Coull
 - Ander Wilson
 - Marianthi-Anna Kioumourtzoglou
 - Marc G. Weisskopf
- Funding
 - NIEHS R01 ES029943, R21 ES026900, T32 ES007069, P30 ES000002, P30 ES009089 & USEPA RD-835872
- Want to learn more about the approach?
 - Email: mleung@hsph.harvard.edu
 - Twitter: @epimikey
 - Poster P-0017: Bias amplification and concurvity in DLMs

Michael Leung ISEE 2022 9/19/2022 14 / 14