Repères de référence géodésiques en France Conversions et transformations de coordonnées

1	Les systèmes de référence de coordonnées et les régistres	3
	1.1 Le registre de l'IGN : IGNF.xml	
	1.2 Le registre EPSG	
	1.2.1 Correspondances entre les SRC français et le registre EPSG :	3
	1.3 Le registre ISO	6
2	Repères de référence géodésiques en France	7
	2.1 Définitions et terminologie	7
	2.2 France Métropolitaine	7
	2.3 Repères de référence géodésiques des départements et ex-départements d'outre-mer	7
	2.3.1 Cas particulier des Antilles Françaises	8
	2.4 Autres territoires d'outre-mer	8
	2.4.1 Cas particulier de la Polynésie Française	9
3	Conversion de coordonnées	10
	3.1 Coordonnées géographiques (λ,φ,h) ► Coordonnées cartésiennes (X,Y,Z)	10
	3.1.1 Clarke 1880 IGN	10
	3.1.2 IAG GRS 80	10
	3.1.3 WGS 84	10
	3.1.4 International HAYFORD 1909 alias International 1924	11
	3.2 Géométrie de l'ellipsoïde	11
	3.3 Coordonnées cartésiennes (X,Y,Z) ► Coordonnées géographiques (λ,φ,h)	11
	3.3.1 Formules de conversion	11
	3.3.2 Remarques sur la fonction ATAN2	11
4	Processus de changement de repère	13
	4.1 Définitions	13
	4.2 Similitude 3D à 7 paramètres	13
	4.3 Transformations standard sur la France métropolitaine	14
	4.3.1 NTF ◀▶ WGS 84	14
	4.3.2 NTF ◄▶ ED50	14
	4.3.3 ED50 ◀▶ WGS 84	15
	4.4 Transformations précises pour la France d'outre-mer	15
	4.4.1 Martinique : Fort-Desaix ► RRAF (WGS 84)	15
	4.4.2 Guadeloupe : IGN 1948 (Sainte-Anne) ► RRAF (WGS 84)	15
	4.4.3 Guadeloupe : IGN 1949 (Fort-Marigot) ► RGAF09	15

		4.4.4 Martinique : Transformation WGS84-RRAF ► RGAF09	15
		4.4.5 Guadeloupe : Transformation WGS84-RRAF ► RGAF09	16
		4.4.6 SaintBarthélemy & Saint-Martin : Transformation RRAF ▶ RGAF09	16
		4.4.7 Guyane : Transformation CSG 1967 ► RGFG95	16
		4.4.8 Polynésie Française	16
		4.4.9 TAAF : Transformations des systèmes géodésiques locaux vers RGTAAF07	16
	4.5	Ile de la Réunion	16
	4.6	Transformations approchées vers WGS 84 pour la France d'outre-mer	17
	4.7	Transformations par grille de paramètres pour la France : NTF ◀▶ RGF93	18
5	Rep	présentations planes de l'ellipsoïde	20
	5.1	Constantes Lambert France	20
	5.2	Lambert zone ► Lambert zone	20
	5.3	Lambert ► coordonnées géographiques	21
	5.4	Coordonnées géographiques ► Lambert	21
	5.5	Latitude à partir de la latitude isométrique	22
	5.6	Coordonnées géographiques RGF93 vers CC 9 Zones	24
	5.7	CC 9 Zones vers coordonnées géographiques RGF93	24
	5.8	Géographiques ◀► UTM	25
	5.9	Géographiques ► Stéréographique Polaire Sud Terre Adélie	25
	5.10	Stéréographique Polaire Sud Terre Adélie ▶ géographiques	25
	5.11	1 Géographiques ◀▶ Gauss Laborde Réunion	25
6	Log	giciel de transformation de coordonnées : Circé	26

1 Les systèmes de référence de coordonnées et les registres

1.1 Le registre de l'IGN : IGNF.xml

L'IGN publie son registre de Systèmes de Références de Coordonnées, qui est le seul registre géodésique ayant un caractère officiel pour la France et ses territoires : http://librairies.ign.fr/geoportail/resources/IGNF.xml. Il a vocation à être exhaustif pour tous les territoires français dispersés à travers le monde.

1.2 Le registre EPSG

Mis en place et entretenu par l'IOGP, il est devenu le registre géodésique le plus utilisé dans le monde, même s'il n'a pas vocation à être exhaustif. Il est accessible à partir de http://www.epsg-registry.org/

1.2.1 Correspondances entre les SRC français et le registre EPSG :

Les tableaux suivants présentent les équivalences des registres pour les représentations planes. La version du registre EPSG est la version 9.2.2 (février 2018).

Les textes en **gras** sont les systèmes légaux des différents territoires en date du 21/05/2019. Les autres entrées sont les systèmes précédents et usuels des territoires.

Territoire	Système	Définition	Ellipsoïde	Projection	Code EPSG	Registre IGN-F
Systèmes légaux						
Métropole	RGF93	ETRF2000 époque 2009.0	IAG-GRS80	Lambert-93	2154	RGF93LAMB93
				CC 42	3942	RGF93CC42
				CC 43	3943	RGF93CC43
				CC 44	3944	RGF93CC44
				CC 45	3945	RGF93CC45
				CC 46	3946	RGF93CC46
				CC 47	3947	RGF93CC47
				CC 48	3948	RGF93CC48
				CC 49	3949	RGF93CC49
				CC 50	3950	RGF93CC50
Guadeloupe	WGS84 (RRAF 91)		IAG-GRS 1980	UTM 20 N	4559	WGS84UTM20
	RGAF 09	ITRS via IGS2005 époque 2009.0	IAG-GRS 1980	UTM 20 N	5490	RGAF09UTM20
Martinique	WGS84 (RRAF 91)		IAG-GRS 1980	UTM 20 N	4559	WGS84UTM20
	RGAF 09	ITRS via IGS2005 époque 2009.0	IAG-GRS 1980	UTM 20 N	5490	RGAF09UTM20
Guyane	RGFG95	ITRF93 époque 1995.0	IAG-GRS 1980	UTM 22 N	2972	RGFG95UTM22
La Réunion	RGR92	ITRF1991 époque 1993.0	IAG-GRS 1980	UTM 40 S	2975	RGR92UTM40S
Saint-Pierre-et-Miquelon	RGSPM06	ITRF2000 époque 2006.0	IAG-GRS 1980	UTM 21 N	4467	RGSPM06U21
Mayotte	RGM04	ITRF2000 époque 2004.0	IAG-GRS 1980	UTM 38 S	4471	RGM04UTM38S
Polynésie Française	RGPF	Polynésie Française : <u>en savoir plus</u>	IAG-GRS 1980	UTM 5 S	3296	RGPFUTM5S
				UTM 6 S	3297	RGPFUTM6S
				UTM 7 S	3298	RGPFUTM7S
				UTM 8 S	3299	RGPFUTM8S
lles Kerguelen	RGTAAF07	ITRF2005 époque 2007.274	IAG-GRS 1980	UTM 42 S	7079	RGTAAFUTM42S
Ile Crozet	RGTAAF07	ITRF2005 époque 2007.274	IAG-GRS 1980	UTM 39 S	7076	RGTAAFUTM39S
lle Europa	RGTAAF07	ITRF2005 époque 2007.274	IAG-GRS 1980	UTM 37 S	7074	RGTAAFUTM37S
lle Saint-Paul	RGTAAF07	ITRF2005 époque 2007.274	IAG-GRS 1980	UTM 43 S	7080	RGTAAFUTM43S

Ile Amsterdam	RGTAAF07	ITRF2005 époque 2007.274	IAG-GRS 1980	UTM 43 S	7080	RGTAAFUTM43S
Terre Adélie	RGTAAF07	ITRF2005 époque 2007.274	IAG-GRS 1980	UTM 53 S		RGTAAFUTM53S
lle des Pétrels	RGTAAF07	ITRF2005 époque 2007.274	IAG-GRS 1980	UTM 53 S		RGTAAFUTM53S
Iles Glorieuses	MHM 1977	Mission hydrographique 1977	Hayford 1909	UTM 38 S		GLOR77UTM38S
lle Juan de Nova	MHM 1953	Mission hydrographique 1953	Hayford 1909	UTM 38 S		NOVA53UTM38S
Ile Clipperton	Marine 1967		Hayford 1909	UTM 12 N		CLIP67UTM12
lle Tromelin	SGM1956		Hayford 1909	Mercator directe		TROM56MD
Wallis-et-Futuna	RGWF96	Wallis-et-Futuna 1996	IAG-GRS 1980	UTM 1 S	8903	RGWF96UTM1S
	Plus d'information	ns sur les systèmes de Wallis et Futuna		11111		
Nouvelle-Calédonie	Plus d'information	ns sur les systèmes de Nouvelle-Calédonie				

autres systèm	ies				
Métropole	WGS84	IAG-GRS 1980	UTM 30 N	32630	WGS84UTM30
			UTM 31 N	32631	WGS84UTM31
			UTM 32 N	32632	WGS84UTM32
	NTF	Clarke 1880 IGN	Lambert I Nord	27561	NTFLAMB1
			Lambert II Centre	27562	NTFLAMB2
			Lambert III Sud	27563	NTFLAMB3
			Lambert IV Corse	27564	NTFLAMB4
			Lambert I Carto	27571	NTFLAMB1C
			Lambert II Carto	27572	NTFLAMB2C
			Lambert III Carto	27573	NTFLAMB3C
			Lambert IV Carto	27574	NTFLAMB4C
	ED50	Hayford 1909	UTM 30 N	23030	ED50UTM30
			UTM 31 N	23031	ED50UTM31
			UTM 32 N	23032	ED50UTM32
Guadeloupe	Sainte-Anne	Hayford 1909	UTM 20 N	2970	GUADANNUTM20
	Fort Marigot	Hayford 1909	UTM 20 N	2969	GUADFMUTM20

Martinique	Fort Desaix	Hayford 1909	UTM 20 N	2973	MART38UTM20
Guyane	CSG 1967	Hayford 1909	UTM 21 N	3312	CSG67UTM21
			UTM 22 N	2971	CSG67UTM22
La Réunion	Piton des Neiges	Hayford 1909	Gauss-Laborde	3727	REUN49GAUSSL
Saint-Pierre-et-Miquelon	SPM 1950	Clarke 1866	UTM 21 N	2987	STPM50UTM21
Mayotte	Combani 1950	Hayford 1909	UTM 38 S	2980	MAYO50UTM38S
	Cadastre 1997	Hayford 1909	UTM 38 S	4474	CAD97UTM38S
lles Kerguelen	IGN 1962	Hayford 1909	UTM 42 S	3336	KERG62UTM42S
Ile Crozet	IGN 1963-1964	Hayford 1909	UTM 39 S		CROZ63UTM39S
Ile Europa	MHM 1954	Hayford 1909	UTM 37 S		EURO54UTM37S
lle Saint-Paul	Saint-Paul 1969	Hayford 1909	UTM 43 S		STPL69UTM43S
Ile Amsterdam	IGN 1963-1964	Hayford 1909	UTM 43 S		AMST63UTM43S
Terre Adélie	Perroud 1950	Hayford 1909	Sud Terre Adélie	2986	PGP50STPSTA
lle des Pétrels	Pétrels IGN 1972	Hayford 1909	Sud Terre Adélie	2985	PETRE72SPSTA

1.3 Le registre ISO

Mis en place par un groupe d'experts travaillant dans le Comité Technique 211 de l'ISO (International Standards Organization), il doit être rendu public en 2018. Ce registre s'appuie sur la norme ISO 19127.

2.1 Définitions et terminologie

Pour se conformer à la nouvelle terminologie recommandée par le groupe de travail « Nomenclature pour l'Astronomie Fondamentale « de l'Union Astronomique Internationale, et adoptée par l'UGGI en 2007, nous désignerons par système de référence géodésique la définition idéale d'un repère permettant l'expression de coordonnées géodésiques, et par repère de référence géodésique les réalisations pratiques de ces systèmes. Cette terminologie sera progressivement étendue à l'ensemble du site geodesie.ign.fr.

Pour en savoir plus : https://geodesie.ign.fr/index.php?page=srt

2.2 France Métropolitaine

La NTF : https://geodesie.ign.fr/index.php?page=histoire_de_la_geodesie Le RGF93 (repère de référence légal) : https://geodesie.ign.fr/index.php?page=rgf93

Actuellement, le RGF93 (version 2) correspond à l'ETRS89 par réalisation ETRF2000 à l'époque 2009.0.

2.3 Repères de référence géodésiques des départements et ex-départements d'outremer

Repères de référer	Repères de référence et projections cartographiques associées rapportées au méridien international				
Département	Repère de référence géodésique	Ellipsoïde associé	Projection cartographique		
Guadeloupe	WGS84 ¹	IAG-GRS 1980	UTM 20 Nord		
Martinique	WGS84 ²	IAG-GRS 1980	UTM 20 Nord		
Guadeloupe et Martinique	RGAF09 ³ (ITRF2005 époque 2009.0)	IAG-GRS 1980	UTM 20 Nord		
Guyane	RGFG95⁴ (ITRF93 époque 1995.0)	IAG-GRS 1980	UTM 21 et 22 Nord		
Réunion	RGR92 ⁵ (ITRF91 époque 1993.0)	IAG-GRS 1980	UTM 40 Sud		

¹ Réseau de Référence des Antilles Françaises (RRAF) 1991

² Réseau de Référence des Antilles Françaises (RRAF) 1991

³ Réseau Géodésique des Antilles Françaises 2009

⁴ Réseau géodésique Français de Guyane 1995

⁵ Réseau géodésique de la Réunion 1992

Département	Repère de référence géodésique	Ellipsoïde associé	Projection cartographique	Système altimétrique
Guadeloupe	Sainte-Anne ⁶	International Hayford 1909	UTM 20 Nord	IGN 1988
	Fort Marigot ⁷	International Hayford 1909	UTM 20 Nord	IGN 1988
Martinique	Fort Desaix	International Hayford 1909	UTM 20 Nord	IGN 1987
Guyane	CSG 1967 (IGN 1995) ⁸	International Hayford 1909	UTM 21 22 Nord	NGG 1977 ⁹
Réunion	Piton des Neiges (IGN 1992)	International Hayford 1909	Gauss-Laborde Réunion	IGN 1989

2.3.1 Cas particulier des Antilles Françaises

Si vous travaillez aux Antilles Françaises, nous vous conseillons la lecture du document suivant : https://geodesie.ign.fr/contenu/fichiers/documentation/srtom/Antilles-Geodesie-2017-v2-1.pdf

2.4 Autres territoires d'outre-mer

Repères actuels ellipsoïde IAG-GRS 1980

Zone géographique	Repère géodésique	Projection cartographique	Système altimétrique
Mayotte	RGM04 (Réseau Géodésique de Mayotte 2004) (ITRF2000 époque 2004.0)	UTM 38 Sud	SHOM 1953
Saint-Pierre et Miquelon	RGSPM06 (Réseau Géodésique de Saint-Pierre et Miquelon 2006) (ITRF2000 époque 2006.0)	UTM 21 Nord	Danger 1950
Polynésie française	RGPF (Réseau Géodésique de Polynésie Française) ¹⁰ (ITRF92 époque 1993.0)	UTM 5, 6, 7 et 8 Sud	Tahiti IGN 1966 ¹¹
lles Kerguelen	RGTAAF07 (Réseau Géodésique des TAAF 2007) (ITRF2005 époque 2007.274)	UTM 42 Sud	IGN 1962
Iles Crozet	RGTAAF07 (ITRF2005 époque 2007.274)	UTM 39 Sud	IGN 1962
lles St-Paul et Amsterdam	RGTAAF07 (ITRF2005 époque 2007.274)	UTM 43 Sud	-
Terre Adélie	RGTAAF07 (ITRF2005 époque 2007.274)	UTM 53 et 54 Sud	EPF 1952
lles du canal de Mozambique	RGTAAF07 (ITRF2005 époque 2007.274)	UTM 37, 38 et 39 Sud	SHOM 1977
Ile Clipperton	Voir « anciens repères » ci-après »		
Wallis et Futuna	Site de la Direction des infrastructures, de la topo	graphie et des transports t	terrestres (DITTT)
Nouvelle- Calédonie	Site de la Direction des infrastructures, de la topo	graphie et des transports t	terrestres (DITTT)

⁶ Pour Basse-Terre, Grande-Terre, La Désirade, Marie-Galante et Les Saintes

⁷ Pour Saint-Martin et Saint-Barthélémy

⁸ Centre spatial guyanais 1967 (réalisation IGN 1995)

 ⁹ Nivellement général de Guyane 1977
 ¹⁰ Site http://www.shom.fr/les-activites/activites-scientifiques/reseau-geodesique-de-polynesie-francaise-rgpf/
 ¹¹ Une soixantaine d'autres systèmes géodésiques et altimétriques sont recensés en Polynésie Française

Anciens repères

ellipsoïde Hayford International 1909

Zone géographique	Repère géodésique	Projection cartographique	Système altimétrique
Iles Kerguelen	IGN 1962	UTM 42 Sud	IGN 1962
lles Crozet et Amsterdam	IGN 1963-1964	UTM 39 Sud	IGN 1962
lles St-Paul	IGN 1970-1972 (île Saint-Paul)	UTM 43 Sud	-
Terre Adélie	Perroud 1950 (Pointe Géologie) IGN 1972 (île des Pétrels)	Stéréographique polaire sud Terre- Adélie	EPF ¹² 1952
lles du canal de Mozambique	MHM ¹³ 1954 (île Europa) MHG ¹⁴ 1977 (îles Glorieuses) MHM ¹⁵ 1953 (île Juan de Nova)	UTM 37, 38 et 39 Sud	SHOM 1977
Ile Clipperton	Marine 1967	UTM 12 Nord	-

2.4.1 Cas particulier de la Polynésie Française

Si vous travaillez en Polynésie française, nous vous recommandons la lecture des documents du SHOM sur le RGPF :

http://www.shom.fr/les-activites/activites-scientifiques/reseau-geodesique-de-polynesie-francaise-rgpf/lergpf/

¹² Expéditions Polaires Françaises 1952

Mission Hydrographique de Madagascar

Mission hydrographique des Glorieuses

¹⁵ Mission hydrographique de Madagascar

3 Conversion de coordonnées

3.1 Coordonnées géographiques (λ,φ,h) ► Coordonnées cartésiennes (X,Y,Z)

Les paramètres de l'ellipsoïde associé aux coordonnées sont indispensables à ces calculs.

3.1.1 Clarke 1880 IGN

demi grand axe (a)	6 378 249,2 m
demi petit axe (b)	6 356 515,0 m
C'est l'ellipsoïde associé au repère NTF	

3.1.2 IAG GRS 80

demi grand axe (a)	6 378 137,0 m
aplatissement (f)	1 / 298,257 222 101

C'est l'ellipsoïde associé par exemple au repère RGF93, mais aussi à toutes les réalisations de l'ITRS.

3.1.3 WGS 84

demi grand axe (a)	6 378 137,0 m
aplatissement (f)	1 / 298,257 223 563

Les ellipsoïdes WGS 84 et IAG GRS80 ont été définis de la même manière, plus mathématiquement, par le demi grand axe a et l'harmonique zonal du second degré *J2* (pour GRS80) et *C20 arrêté au 8ème chiffre significatif* (pour WGS84). Cette différence explique l'écart de 0.0001 m constaté sur b.

3.1.4 International HAYFORD 1909 alias International 1924

demi grand axe (a)	6 378 388,0 m
aplatissement (f)	1 / 297

C'est l'ellipsoïde associé par exemple au repère ED50.

3.2 Géométrie de l'ellipsoïde

À partir de a et f ci-dessus, il est possible de calculer le demi-petit axe b et l'excentricité e de l'ellipsoïde.

$$b = a(1-f)$$
 $e = \sqrt{\frac{a^2 - b^2}{a^2}}$

3.3 Coordonnées cartésiennes (X,Y,Z) \triangleright Coordonnées géographiques (λ,φ,h)

3.3.1 Formules de conversion

$$f = 1 - \sqrt{1 - e^2}$$

$$R = \sqrt{X^2 + Y^2 + Z^2}$$

$$\lambda = ATAN2(Y, X)$$

$$\mu = arctg \left[\frac{Z}{\sqrt{X^2 + Y^2}} \cdot \left((1 - f) + \left(\frac{e^2 a}{R} \right) \right) \right]$$

$$\varphi = arctg \left[\frac{Z(1 - f) + e^2 a \sin^3 \mu}{(1 - f) \left[\sqrt{X^2 + Y^2} - e^2 a \cos^3 \mu \right]} \right]$$

$$h = \left[\sqrt{X^2 + Y^2} \cdot \cos \varphi \right] + \left[Z \sin \varphi \right] - \left[a \sqrt{1 - e^2 \sin^2 \varphi} \right]$$

Source : Bowring, 1985, The accuracy of geodetic latitude and height equations, Survey Review, 28, pp202-206 (modifié pour l'expression de λ)

3.3.2 Remarques sur la fonction ATAN2

En trigonométrie, la fonction <u>atan2 à deux arguments</u> est une variation de la fonction arctangente (*arctan*, aussi notée *arctg* dans ce document). Pour tout arguments réels x et y non nuls, atan2(y,x) est l'angle (en radians) entre la partie positive de l'axe des x d'un plan et le point de ce plan aux coordonnées (x,y). Cet angle est positif pour les angles dans le sens trigonométrique (moitié haute du plan, y > 0) et négatif dans le sens horaire (moitié basse du plan, y < 0).

L'expression d'atan2 en fonction de arctan est : $\operatorname{atan2}(y,x) = \begin{cases} \arctan\left(\frac{y}{x}\right) & x > 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & y \geq 0, x < 0 \\ \arctan\left(\frac{y}{x}\right) - \pi & y < 0, x < 0 \\ +\frac{\pi}{2} & y > 0, x = 0 \\ -\frac{\pi}{2} & y < 0, x = 0 \\ \text{undefined} & y = 0, x = 0 \end{cases}$

Attention: traditionnellement, atan2(0,0) est non défini.

4 Processus de changement de repère

4.1 Définitions

On entend par *changement de repère géodésique* la transformation qui permet d'exprimer les coordonnées cartésiennes, géographique ou planes d'un point dans un autre repère géodésique. Il peut être détaillé selon un modèle général.

Le plus utilisé est la similitude 3D car elle présente l'avantage de pouvoir être utilisée dans les deux sens : les mêmes paramètres servent à transformer des coordonnées du système A vers le système B et réciproquement, moyennant une simple inversion de signe.

Les **formules de Molodensky** sont des développements limités dont, par nature, l'ordre influe sur la précision finale. Le passage inverse nécessite l'application de formules différentes.

La **transformation polynomiale** ne peut s'appliquer que sur des zones restreintes afin de conserver une précision comparable à celle obtenue par une similitude 3D.

4.2 Similitude 3D à 7 paramètres

Compte tenu des faibles rotations utilisées en géodésie, les formules pour passer du système A au système B sont :

$$\begin{pmatrix} X_B \\ Y_B \\ Z_B \end{pmatrix} = \begin{pmatrix} X_A \\ Y_A \\ Z_A \end{pmatrix} + \begin{pmatrix} T_X \\ T_Y \\ T_Z \end{pmatrix} + \Delta \cdot \begin{pmatrix} X_A \\ Y_A \\ Z_A \end{pmatrix} + \begin{pmatrix} 0 & \varepsilon_Z & -\varepsilon_Y \\ -\varepsilon_Z & 0 & \varepsilon_X \\ \varepsilon_Y & -\varepsilon_X & 0 \end{pmatrix} \cdot \begin{pmatrix} X_A \\ Y_A \\ Z_A \end{pmatrix}$$

Les 7 paramètres sont 3 translations (T_X , T_Y , T_Z), 3 rotations (ϵ_X , ϵ_Y , ϵ_Z) et un facteur d'échelle (Δ)

Concernant le signe des rotations et dans toutes ses publications, l'IGN utilise la convention de l'IERS¹⁶ qui consiste à amener les axes du système d'arrivée en parallèle à ceux du système de départ. Cette convention est notamment utilisée dans les programmes <u>Circé</u>. Par contre, dans la plupart des systèmes GPS autonomes ou les systèmes d'information géographique (SIG), les signes des rotations doivent être inversés.

L'IGN utilise les symboles R_1 , R_2 et R_3 pour les rotations exprimées selon la convention IERS, afin de les différencier des notations ϵ_x , ϵ_y , et ϵ_z qui sont plus couramment utilisées. La formule de transformation de coordonnées cartésiennes peut alors s'écrire (T étant le vecteur translation et Δ le facteur d'échelle) :

$$X^{'} = T + (1 + \Delta) \cdot X + R \cdot X \quad \text{avec} \quad R = \begin{pmatrix} 0 & -R_3 & R_2 \\ R_3 & 0 & -R_1 \\ -R_2 & R_1 & 0 \end{pmatrix} \quad \text{et on obtient bien} \quad \begin{aligned} \boldsymbol{\varepsilon}_x &= -R_1 \\ \boldsymbol{\varepsilon}_y &= -R_2 \\ \boldsymbol{\varepsilon}_z &= -R_3 \end{aligned}$$

4.3 Transformations standard sur la France métropolitaine

4.3.1 NTF **◄►** WGS 84

A partir des éléments de géodésie spatiale Doppler des années 1970 et 1980, un modèle réduit à 3 paramètres (translation) a été établi entre la NTF et le système WGS 84. Aucune rotation ou défaut d'échelle n'ont pu être mis en évidence globalement sur la métropole.

$$\begin{pmatrix} T_X \\ T_Y \\ T_Z \end{pmatrix} = \begin{pmatrix} -168 \\ -60 \\ +320 \end{pmatrix}$$

Ces paramètres, valables sur la France, sont officiellement définies par l'IGN dans le document « RT/G n°14 : Nouveaux systèmes géodésiques utilisables en France (WGS84, ED87) ».

La précision de ce modèle à l'époque de sa détermination était estimée à environ 2 m. Les déterminations effectuées lors l'établissement du RBF (environ 1000 points dans les systèmes RGF93 et NTF) confirment les valeurs de translation (à 20 cm près) et la précision annoncée avec des valeurs extrêmes inférieures à 5 m.

Cette transformation, dite « standard » et notée «T0 », a été adoptée dans la quasi-totalité des traitements jusqu'à la mise à disposition de la transformation « par grille de paramètres ».

4.3.2 NTF **◄▶** ED50

 $\begin{pmatrix} T_X \\ T_Y \\ T_Z \end{pmatrix} = \begin{pmatrix} -84 \\ +37 \\ +437 \end{pmatrix}$

La précision de ce modèle à l'époque de sa détermination était estimée à environ 2 m. Il existe plusieurs jeux de paramètres de transformation entre NTF et ED50. Celui-ci donne les valeurs officielles définies par l'IGN pour la

¹⁶ International Earth Rotation and Reference Systems Service (http://www.iers.org/)

France dans le document « RT/G n°7 : Définition des systèmes géodésiques utilisés en France (NTF, ED50, WGS72) ».

4.3.3 ED50 **◄►** WGS 84

$$\begin{pmatrix} T_X \\ T_Y \\ T_Z \end{pmatrix} = \begin{pmatrix} -84 \\ -97 \\ -117 \end{pmatrix}$$

La précision de ce modèle à l'époque de sa détermination a été estimée à environ 2 m. Cette transformation est issue de la composition des transformations ED50►WGS72 et WGS72►WGS84. Ces paramètres de transformation sont officiellement définis par l'IGN dans les documents RT/G n°14 et RT/G n°7.

4.4 Transformations précises pour la France d'outre-mer

4.4.1 Martinique : Fort-Desaix ► RRAF (WGS 84)

T _X = 126,926 m	T _Y = 547,939 m	$T_Z = 130,409 \text{ m}$
R _X = -2,78670"	R _Y = 5,16124"	$R_Z = -0.85844$ "
	Facteur d'échelle : 13,82265 x 10 ⁻⁶	

4.4.2 Guadeloupe : IGN 1948 (Sainte-Anne) ► RRAF (WGS 84)

À partir des éléments de géodésie spatiale des années 1990/1991 (GPS), il a pu être établi pour la Guadeloupe un modèle entre IGN 1948 et le repère RRAF (WGS 84). C'est un modèle à 7 paramètres qui a été retenu (et surtout largement utilisé).

$T_X = -472,29 \text{ m}$	$T_Y = -5,63 \text{ m}$	$T_Z = -304,12 \text{ m}$
$R_X = 0,4362$ "	$R_Y = -0.8374$ "	$R_Z = 0.2563$ "
	Facteur d'échelle : 1,8984 x 10 ⁻⁶	

Les valeurs de ces paramètres correspondent à la valeur officielle définie par l'IGN pour la Guadeloupe.

La précision de ce modèle à l'époque de sa détermination est estimée à environ 10 cm.

4.4.3 Guadeloupe : IGN 1949 (Fort-Marigot) ▶ RGAF09

$T_X = 151.613 \text{ m}$	T _Y = 253.832 m	$T_z = -429.084 \text{ m}$
$R_X = -0.0506$ "	$R_Y = 0.0958$ "	$R_Z = -0.5974$ "
	Facteur d'échelle : Δ = -0.3971 * 10-6	

4.4.4 Martinique : Transformation WGS84-RRAF ▶ RGAF09

$T_X = 0.7696 \text{ m}$	$T_Y = -0.8692 \text{ m}$	$T_Z = -12.0631 \text{ m}$
R _X = -0.32511"	$R_Y = -0.21041$ "	$R_Z = -0.02390$ "
	Facteur d'échelle : Δ = 0.2829 * 10-6	

4.4.5 Guadeloupe: Transformation WGS84-RRAF ▶ RGAF09

$T_X = 1.2239 \text{ m}$	$T_Y = 2.4156 \text{ m}$	$T_Z = -1.7598 \text{ m}$
$R_X = 0.03800$ "	$R_Y = -0.16101$ "	$R_Z = -0.04925$ "
	Facteur d'échelle : Δ = 0.2387 * 10-6	

4.4.6 Saint--Barthélemy & Saint-Martin: Transformation RRAF ▶ RGAF09

$T_X = 14.6642 \text{ m}$	$T_Y = 5.2493 \text{ m}$	$T_Z = 0.1981 \text{ m}$
$R_X = -0.06838$ "	$R_Y = 0.09141$ "	$R_Z = -0.58131$ "
	Facteur d'échelle : Δ = -0.4067 * 10-6	

4.4.7 Guyane: Transformation CSG 1967 ▶ RGFG95

À partir des éléments de géodésie spatiale de l'année 1995 (GPS), il a pu être établi pour la Guyane un modèle entre CSG 1967 et le système RGFG95 (WGS 84). C'est un modèle réduit à 7 paramètres qui a été retenu.

$T_X = -193,066 \text{ m}$	$T_Y = 236,993 \text{ m}$	$T_Z = 105,447 \text{ m}$
R _X = 0,4814"	R _Y = -0,8074"	$R_Z = 0,1276$ "
	Facteur d'échelle : 1,5649 * 10 ⁻⁶	

4.4.8 Polynésie Française

Pour obtenir les paramètres sur la Polynésie Française, s'adresser au <u>service de l'aménagement et de</u> l'urbanisme de Papeete.

4.4.9 TAAF: Transformations des systèmes géodésiques locaux vers RGTAAF07

DOM-COM	Tx (m)	Ty (m)	Tz (m)	Da (m)	Df × 10 ⁶	Ellipsoïde	Projection
Terre Adélie Pointe Géologie-Perroud 1950 Zone de l'île des Pétrels	324.912	153.282	172.026	-251	-14,192686	International 1924	Stéréographique polaire sud
Kerguelen Kerguelen K0 (IGN 1962) Zone de Port-aux- Français	144.899	-186.770	100.923	-251	-14,192686	International 1924	UTM 42 Sud

Nota

L'exactitude des transformations vers RGTAAF07 est décimétrique (10 à 50 cm) pour l'île des Pétrels et infradécimétrique (5 à 10 cm) pour Port-aux-Français.

4.5 Ile de la Réunion

L'île de la Réunion présente un cas particulier, dû à la grande différence de positionnement entre les repères de référence anciens et nouveaux (respectivement Piton des Neiges et RGR92). En effet, l'importance d'une des rotations rend difficile l'utilisation classique d'un modèle à 7 paramètres qui suppose que l'on néglige les termes de

second ordre. Le problème réside dans le fait que cette transformation n'est pas réversible si on l'utilise un seul et même algorithme dans les deux sens en changeant simplement le signe de chaque paramètre.

Si vous travaillez à la Réunion, nous vous conseillons la lecture du document suivant : https://geodesie.ign.fr/contenu/fichiers/documentation/srtom/systemeReunion.pdf

4.6 Transformations approchées vers WGS 84 pour la France d'outre-mer

Lorsque les besoins en exactitude sont d'ordre de grandeur métrique, des transformations simplifiées, réduites à trois paramètres de translation, peuvent être utilisées.

Avertissement : pour les départements et territoires d'outre-mer, différents facteurs limitent la précision des transformations dont les paramètres sont fournis ci-dessous (consistance des systèmes locaux, modélisation simplifiée à trois paramètres...). En conséquence, l'utilisateur doit être informé que le niveau de précision ne saurait être garanti en deçà du seuil des dix mètres. Ce niveau est suffisant pour la plupart des applications cartographiques et de navigation. Les différents renvois indiquent où trouver des paramètres à usage géodésique entre les systèmes géodésiques locaux et les dernières réalisations de l'ITRF sur chacun des territoires concernés.

DOM-COM (référentiel local)	Tx (m)	Ty (m)	Tz (m)	Da (m)	Df × 10 ⁶	Ellipsoïde	Projection
Guadeloupe (Fort-Marigot)	137	248	-430	-251	-14,192686	International 1924 ¹⁷	UTM 20 Nord
Guadeloupe (Ste-Anne) (2)	-467	-16	-300	-251	-14,192686	International 1924	UTM 20 Nord
Guyane (CSG67) (2)	-186	230	110	-251	-14,192686	International 1924	UTM 21 ou UTM 22 Nord
Martinique (Fort-Desaix) (2)	186	482	151	-251	-14,192686	International 1924	UTM 20 Nord
Réunion (Piton-des-Neiges)	94	-948	-1262	-251	-14,192686	International 1924	Gauss Laborde Réunion
Îles de la Société (Tahaa)	65	342	77	-251	-14,192686	International 1924	UTM 5 Sud
Îles Marquises (Nuku Hiva) IGN72	84	274	65	-251	-14,192686	International 1924	UTM 7 Sud
Mayotte (Combani 1950) (7)	-382	-59	-262	-251	-14,192686	International 1924	UTM 38 Sud
Nouvelle-Calédonie				<u>Portai</u>	l de la DITTT		
Terre Adélie (Petrels-IGN 1972)	365	194	166	-251	-14,192686	International 1924	Stéréographique polaire sud
Saint-Pierre-et-Miquelon 1950 ⁽⁸⁾	11.363	424.148	373.130	-69,4	-37,264639	Clarke 1866	UTM 21 Nord
Îles de la Société (Tahiti – Terme Nord) (IGN 1952) ⁽⁶⁾	162	117	154	-251	-14,192686	International 1924	UTM 6 ou UTM 7 Sud
Tahiti (IGN79 Tahiti) ⁽⁶⁾	161	116	154	-251	-14,192686	International 1924	UTM 6 Sud
Tetiaroa (MOP90)	-11	-2	13	-251	-14,192686	International 1924	UTM 6 Sud
Huahiné (IGN Raiatéa – Tahaa) (IGN53) ⁽⁶⁾	65	342	77	-251	-14,192686	International 1924	UTM 5 Sud
Maupiti (MOP 1983) ⁽⁶⁾	217	87	24	-251	-14,192686	International 1924	UTM 5 Sud
Wallis (MOP 1978) (UEVA SHOM 1978)	253	-133	-127	-251	-14,192686	International 1924	UTM 1 Sud

¹⁷ Également désigné par Hayford 1909

4.7 Transformations par grille de paramètres pour la France : NTF ◀▶ RGF93

Dans le contexte de l'établissement d'un nouveau système géodésique de référence pour la France métropolitaine (le RGF93), l'IGN a développé un nouveau processus de transformation de coordonnées de manière à faciliter le passage de la NTF au RGF93. Le principe du processus de transformation est l'interpolation dans un semis de points régulièrement répartis, une *grille de paramètres tridimensionnels de translation entre systèmes*.

La grille de paramètres de transformation de coordonnées NTF ◀▶ RGF93 est la grille GR3DF97A au pas régulier de 0.1° en longitude et latitude. Elle est fournie sous forme d'un fichier texte (ASCII).

GR3D 002024 024 20370201

GR3D1 -5.5000 10.0000 41.0000 52.0000 .1000 .1000

GR3D2 INTERPOLATION BILINEAIRE

GR3D3 PREC CM 01:5 02:10 03:20 04:50 99>100

-5.500000000 41.000000000 -165.027 -67.100 315.813 99 -0158

-5.500000000 41.100000000 -165.169 -66.948 316.007 99 -0157

-5.500000000 41.200000000 -165.312 -66.796 316.200 99 -0157

Entête du fichier

GR3D	002024 : 002(NTF) [vers] 024(RGF93)
(codes IGN)	024 : RGF93
	20370201 : 2 (coordonnées géographiques) – 037 (ellipsoïde IAG GRS 80)
	– 02 (degrés décimaux) – 01 (méridien international de Greenwich)
GR3D1	longitude minimale – longitude maximale – latitude minimale – latitude maximale – pas en
	longitude et en latitude en degrés décimaux (ici les deux pas de grilles sont égaux : 0.1°).
GR3D2	mode d'interpolation (ici, bilinéaire)
GR3D3	codes de précision de la transformation

Corps du fichier (1 enregistrement par nœud de la grille)

longitude, latitude	en degrés décimaux
T_X, T_Y, T_Z	paramètres de transformation de coordonnées cartésiennes (translation) de NTF vers RGF93
code de précision	XX
feuille au 50000e	-xxxx : feuille à l'échelle du 1 / 50000 existante
	L: feuille fictive en limite de zone d'application de la grille
	-: feuille fictive hors zone d'application de la grille

La grille de paramètres est exprimée en longitude et latitude dans le système géodésique RGF93 (ellipsoïde IAG GRS80, méridien international, degrés décimaux) et les 3 paramètres de transformation sont donnés en mètres dans le sens NTF ► RGF93. Ils correspondent aux coordonnées de l'origine de la NTF exprimées en RGF93.

Le processus de transformation de coordonnées dépend donc du sens de la transformation. L'interpolation est directe à partir des coordonnées géographiques dans le sens RGF93 ► NTF. Dans le sens inverse, elle nécessite un premier calcul approché utilisant les paramètres de la <u>transformation standard (T0)</u>.

Schéma du processus de transformation de coordonnées utilisant la grille de paramètres GR3DF97A

Pour en savoir plus, nous vous recommandons la <u>notice d'utilisation complète de la grille GR3DF97A</u> et de la <u>Notice Technique n° 111</u> du SGM (pour la description du format NTV2 de la même grille)

5 Représentations planes de l'ellipsoïde

Les conversions des coordonnées géographiques en coordonnées planes dépendent de formules spécifiques à chaque projection cartographique. Tous les aspects ne sont pas détaillées ici mais tous les algorithmes relatifs aux représentations planes utilisées en France sont disponibles sur le <u>site de la géodésie de l'IGN</u>.

5.1 Constantes Lambert France

	Lambert I	Lambert II	Lambert III	Lambert IV	Lambert 93
n	0,7604059656	0,7289686274	0,6959127966	0,6712679322	0,7256077650
С	11603796,98	11745793,39	11947992,52	12136281,99	11754255,426
xs	600000,000	600000,000	600000,000	234,358	700000,000
YS	5657616,674	(*) 6199695,768	6791905,085	7239161,542	12655612,050

^(*) Lambert II étendu : Lambert II avec $Y_S = 8199695,768 \text{ m}$

 $\lambda_0 = 0$ grades Paris (soit 2° 20' 14,025" E Greenwich)

e = 0.08248325676

Pour en savoir plus sur la projection Lambert-93, nous vous recommandons la lecture du document suivant :

• https://geodesie.ign.fr/contenu/fichiers/documentation/rgf93/Lambert-93.pdf

5.2 Lambert zone ► Lambert zone

Attention : cet algorithme ne peut pas être utilisé avec le Lambert 93

en entrée	en sortie
n, C, X _S , Y _S : constantes de la projection <i>(avec indices let F pour « initial » et « final »)</i>	X _F , Y _F : coordonnées Lambert finales
X _I , Y _I : coordonnées Lambert initiales	
$\gamma_{F} = \frac{n_{F}}{n_{I}} \arctan \frac{X_{SI} - X_{I}}{Y_{I} - Y_{SI}}$	$\mathcal{E} = \frac{1}{n_{I}} \ln \frac{C_{I}}{\sqrt{(X_{I} - X_{SI})^{2} + (Y_{I} - Y_{SI})^{2}}}$
$R_F = C_F \exp(-n_F \pounds)$	
$X_F = X_{SF} + R_F \sin \gamma_F$	$Y_F = Y_{SF} - R_F \cos \gamma_F$

Application numérique : Lambert I ► Lambert 2 étendu		
X _I = 750000,00 m	X _{Ilétendu} = 750283,12 m	
$Y_{I} = 300000,00 \text{ m}$	$Y_{\text{Ilétendu}} = 2600360,77 \text{ m}$	

5.3 Lambert ▶ coordonnées géographiques

en entrée	en sortie
n, C, X _S , Y _S : constantes de la projection	λ,ϕ : longitude, latitude
λ_0 : longitude du méridien central	
e : excentricité de l'ellipsoïde	
X, Y : coordonnées Lambert	

$$|R| = \sqrt{(X - X_{S})^{2} + (Y - Y_{S})^{2}}$$

$$\gamma = \arctan \frac{X - X_{S}}{Y_{S} - Y}$$

$$\lambda = \lambda_{0} + \frac{\gamma}{n}$$

$$\mathbf{f} = -\frac{1}{n} \ln \left| \frac{R}{C} \right|$$

$$\phi = \mathbf{f}^{-1}(\mathbf{f}, \mathbf{e})$$

 $NB: \pounds^{-1}(\pounds,e)$ représente la latitude isométrique inverse, obtenue à l'aide de l'algorithme latitude à partir de la latitude isométrique.

Application numérique : Lambert I ▶ Coordonnées NTF

X = 1 029 705,083 m	λ (rad) = 0,145512099 E
Y = 272 723,849 m	φ (rad) = 0,872664626 N

5.4 Coordonnées géographiques ▶ Lambert

en entrée	en sortie
n, C, X _S , Y _S : constantes de la projection	X, Y : coordonnées Lambert
λ_0 : longitude du méridien central	
e : excentricité de l'ellipsoïde	
λ , ϕ : longitude, latitude	
$\mathfrak{E} = \frac{1}{2} \ln \frac{1 + \sin \varphi}{1 - \sin \varphi} - \frac{e}{2} \ln \frac{1 + e \sin \varphi}{1 - e \sin \varphi}$	$R = C \exp(-n \pounds)$
$\gamma = n (\lambda - \lambda_0)$	
X = X _S + R sinγ	Y = Y _S - R cosγ

Application numérique : Coordonnées NTF ▶ Lambert 2		
λ = 0,4721669 gr E Paris	X = 632 542,058 m	
$\phi = 51,8072313 \text{ gr N}$	Y = 180 804,145 m	

5.5 Latitude à partir de la latitude isométrique

en entrée	en sortie
£ : latitude isométrique	φ : latitude
e : excentricité de l'ellipsoïde	

$$\varphi_0 = 2 \arctan (\exp (\pounds)) - \frac{\pi}{2}$$

φ est obtenu par itérations successives

$$\phi_i = 2 \arctan\left(\left(\frac{1 + e \sin \varphi_{i-1}}{1 - e \sin \varphi_{i-1}} \right)^{(e/2)} \exp(\pounds) \right) - \frac{\pi}{2}$$

Application numérique

£ = 1,005 526 536 48

 φ (rad) = 0,872 664 626 00

0,999 877 42

e = 0,081 991 889 98

Paramètres des projections coniques conformes de Lambert			
	Lambert I	Lambert II	Lambert III
Zone d'application (latitude)	de 57,0 gr à 53,5 gr	de 53,5 gr à 50,5 gr	de 50,5 gr à 47,0 gr
Latitude origine	55 gr (49°30')	52 gr (46°48')	49 gr (44°06')
Longitude origine	(*) 0 gr Paris	(*) 0 gr Paris	(*) 0 gr Paris
Parallèles automécoïques	48°35'54,682" 50°23'45,282"	45°53'56,108" 47°41'45,652"	43°11'57,449" 44°59'45,938"
E ₀	600 000 m	600 000 m	600 000 m
N_0	200 000 m	200 000 m	200 000 m
Facteur d'échelle	0,999 877 34	0,999 877 42	0,999 877 50
	Lambert IV	Lambert II étendu	Lambert 93
Zone d'application (latitude)	de 47,8 gr à 45,9 gr	de 57,0 gr à 45,9 gr	de 41° à 51°
Latitude origine	46,85 gr (42°09'54")	52 gr (46°48')	46°30'
Longitude origine	(*) 0 gr Paris	(*) 0 gr Paris	3° 00' est Grenwich
Parallèles automécoïques	41°33'37,396" 42°46'03,588"	45°53'56,108" 47°41'45,652"	44° 49°
Eo	234,358 m	600 000 m	700 000 m
N_{O}	185 861,369 m	2 200 000 m	6 600 000 m

^{(*) 0} grade Paris = 2° 20′ 14,025″ Est Greenwich

Facteur d'échelle

0,999 051 03

0,999 944 71

	Lambert I, II, III, IV, II étendu	Lambert 93
Référentiel géodésique	NTF	RGF93
Ellipsoïde	Clarke 1880 IGN	IAG GRS 80
Demi grand axe (a)	6 378 249,2 m	6 378 137,00 m
Aplatissement (f)	1 / 293,466 021	1/298,257 222 101
Première excentricité (e)	0,082 483 256 76	0,081 819 191 12

Paramètres des projections Coniques Conformes 9 Zones (CC 9 Zones)		
Latitude origine : φ ₀	(*) 41+ <i>NZ</i> °	
Zone d'application	φ ₀ +/- 111 km	
Parallèle automécoïque φ ₁	φ ₀ - 0.75°	
Parallèle automécoïque φ ₂	$\varphi_0 + 0.75^{\circ}$	
Longitude origine ou méridien central de la projection : λ_{0}	3 ° Est Greenwich	
E_0	1 700 000 m	
N_0	(*) (NZ * 1 000 000) +200 000 m	

(*) NZ : numéro de la zone (de 1 à 9)

Pour des éléments de comparaison entre cette projection et la projection Lambert-93 : https://geodesie.ign.fr/contenu/fichiers/documentation/pedagogiques/comparaisonLambert93cc9zones.pdf

5.6 Coordonnées géographiques RGF93 vers CC 9 Zones

en entrée	en sortie
$\phi_0,\phi_1,\phi_2,E_0,N_0$: paramètres de la projection	X, Y : coordonnées CC 9 Zones
λ_0 : longitude du méridien central	
a : demi grand axe de l'ellipsoïde	
e : excentricité de l'ellipsoïde	
λ,ϕ : longitude, latitude RGF93	
$L(\varphi, e) = \frac{1}{2} \ln \frac{1 + \sin \varphi}{1 - \sin \varphi} - \frac{e}{2} \ln \frac{1 + e \sin \varphi}{1 - e \sin \varphi}$	
$n = \frac{\ln\left(\frac{a}{\sqrt{1 - e^2 \sin^2 \varphi_2}} \cdot \cos(\varphi_2)\right)}{\frac{a}{\sqrt{1 - e^2 \sin^2 \varphi_1}} \cdot \cos(\varphi_1)}$ $L(\varphi_1, e) - L(\varphi_2, e)$	$C = \frac{\frac{a}{\sqrt{1 - e^2 \sin^2 \varphi_1}} \cdot \cos(\varphi_1)}{n} \cdot \exp(n \cdot L(\varphi_1, e))$
$X_S = E_0$	$Y_S = N_0 + c \cdot \exp(-n \cdot L(\varphi_0, e))$
$R = C \exp(- n L_{\phi,e})$	$\gamma = n (\lambda - \lambda_0)$
$X = X_S + R \sin \gamma$	$Y = Y_S - R \cos \gamma$

5.7 CC 9 Zones vers coordonnées géographiques RGF93

en entrée	en sortie
$\phi_0,\phi_1,\phi_2,E_0,N_0$: paramètres de la projection $\lambda_0 : \text{longitude du méridien central}$	λ,ϕ : longitude, latitude RGF93
e : excentricité de l'ellipsoïde	
X, Y : coordonnées CC 9 Zones	
$\ln \left(\frac{\frac{a}{\sqrt{1 - e^2 \sin^2 \varphi_2}} \cdot \cos(\varphi_2)}{\frac{a}{\sqrt{1 - e^2 \sin^2 \varphi_1}} \cdot \cos(\varphi_1)} \right)$ $n = \frac{L(\varphi_1, e) - L(\varphi_2, e)}{L(\varphi_1, e) - L(\varphi_2, e)}$ $X_S = X_0$	$C = \frac{\frac{a}{\sqrt{1 - e^2 \sin^2 \varphi_1}} \cdot \cos(\varphi_1)}{n} \cdot \exp(n \cdot L(\varphi_1, e))$ $Y_s = Y_0 + c \cdot \exp(-n \cdot L(\varphi_0, e))$
$ R = \sqrt{(X - Xs)^2 + (Y - Ys)^2}$	$\gamma = \arctan \frac{X - Xs}{Ys - Y}$
$\mathfrak{L} = -\frac{1}{n} \ln \left \frac{\mathbf{R}}{\mathbf{C}} \right $	13 1
$\lambda = \lambda_0 + \frac{\gamma}{n}$	$\varphi = \pounds^{-1}(\pounds, e)$

 $NB: \pounds^{-1}(\pounds, e)$ représente la latitude isométrique inverse, obtenue à l'aide de l'algorithme <u>latitude</u> à partir de la latitude isométrique.

5.8 Géographiques **◄** ► UTM

Les algorithmes se trouvent dans

https://geodesie.ign.fr/contenu/fichiers/documentation/algorithmes/notice/NTG 76.pdf.

L'algorithme complémentaire permettant de déterminer les paramètres en fonction du fuseau se trouve https://geodesie.ign.fr/contenu/fichiers/documentation/algorithmes/alg0071.pdf.

5.9 Géographiques ► Stéréographique Polaire Sud Terre Adélie

Les algorithmes se trouvent dans

https://geodesie.ign.fr/contenu/fichiers/documentation/algorithmes/alg0069.pdf.

5.10 Stéréographique Polaire Sud Terre Adélie ▶ géographiques

Les algorithmes se trouvent dans

https://geodesie.ign.fr/contenu/fichiers/documentation/algorithmes/alg0070.pdf.

5.11 Géographiques **◄** ► Gauss Laborde Réunion

Les algorithmes se trouvent dans

https://geodesie.ign.fr/contenu/fichiers/documentation/algorithmes/notice/NTG_73.pdf.

Logiciel de transformation de coordonnées : Circé

Circé (Conversion interactive de coordonnées) convertit des coordonnées géographiques ou cartographiques d'un système de référence de coordonnées dans un autre, en permettant l'accès aux réalisations du système ITRS et aux références d'altitudes.

Un système de référence de coordonnées (SRC) sert à décrire et identifier les coordonnées des différentes publications géodésiques ou cartographiques (fiches signalétiques, cartes topographiques...). Il comprend le référentiel (ou système géodésique de référence), le type de coordonnées (cartésiennes X, Y, Z; géographiques λ , φ , h_e ; planes E, N), les unités et le méridien origine et la projection cartographique 19.

Des transformations multiples

Circé France propose pour la métropole des paramètres standards de transformation (notamment entre WGS 84 et NTF) ainsi que des conversions par grille de transformation de coordonnées fournissant les paramètres de translation (Tx, Ty, Tz) entre RGF93 et NTF. La précision des paramètres standards est métrique et celle de la grille est centimétrique.

Circé France réalise la majeure partie des transformations de coordonnées sur la France métropolitaine. Il traite les coordonnées planes telles que Lambert (I, II, III, IV), Lambert-93, Coniques Conformes 9 zones, UTM fuseaux 30, 31 et 32, les coordonnées géographiques et les transformations entre les systèmes ED50, WGS84, NTF et RGF93.

De même, des versions de Circé existent pour les départements et collectivités et autres territoires d'outre-mer, et permettent les conversions et les transformations de coordonnées usuelles.

Des altitudes précises

La composante verticale prise en compte peut être une altitude ou une hauteur au-dessus de l'ellipsoïde de référence lié à l'un des systèmes géodésiques concernés par la transformation. L'altitude d'un point de la France métropolitaine est calculée avec les surfaces de conversion issues du modèle de géoïde le plus récent : la Référence des Altitudes Françaises 2018 (RAF18) et la Référence des Altitudes de la Corse 2009 (RAC09).

Précision

¹⁸ pour des coordonnées géographiques19 pour les coordonnées planes

La précision obtenue sur les coordonnées transformées peut varier entre le mètre et le millimètre. Une estimation en est fournie par le logiciel, mais l'exactitude est liée à plusieurs facteurs :

- la précision des coordonnées des points dans le système géodésique initial,
- la définition intrinsèque du système,
- la définition relative du système par rapport aux autres, c'est-à-dire le choix des points communs et des processus utilisés lors de l'élaboration des paramètres de transformation.

Selon le type de coordonnées choisi, Circé offre la possibilité de choisir unités métriques, degrés sexagésimaux, degrés et minutes décimales, grades ou encore radians.

Une installation et une utilisation simples

L'installation de Circé nécessite un PC avec 16 Mo de RAM disponibles et 10 Mo de ROM. Il fonctionne avec les systèmes Windows courants.

Circé fonctionne en mode *manuel* pour des conversions ponctuelles ou en mode *fichier* pour des traitements par lots de points. L'utilisateur spécifie les caractéristiques des coordonnées en entrée (moitié haute de la fenêtre) et en sortie (moitié basse de la fenêtre). Il est en outre possible d'éditer un rapport de l'opération, structuré pour l'impression.

Des versions en mode *commande* et pour Linux sont également disponibles.

Circé est téléchargeable gratuitement sur geodesie.ign.fr

IGN • Service de Géodésie et de Métrologie Information Géodésique (+33) 1 43 98 83 17 geodesie@ign.fr