Aplicación Shiny para Comparación de Grupos con Prueba T y ANOVA

Salome Margaret Quispe Hilasaca

1. Introducción teórica

En estadística inferencial, es común comparar el comportamiento de una variable cuantitativa en distintos grupos. Las pruebas más utilizadas para este fin son:

- Prueba T de Student: compara las medias de dos grupos independientes. Requiere normalidad y varianzas homogéneas.
- ANOVA (Análisis de Varianza): compara tres o más grupos y determina si al menos uno difiere significativamente en su media.

Estas pruebas tienen amplias aplicaciones en salud, educación, economía, entre otros campos.

2. Objetivo de la aplicación

La aplicación permite:

- Cargar archivos .csv o .xlsx.
- Detectar variables numéricas disponibles.
- Ejecutar automáticamente la prueba t o ANOVA según los datos seleccionados.
- Interpretar los resultados en español usando la librería report.
- Visualizar resultados con gráficos boxplot.

3. Código R de la Aplicación

```
library(shiny)
library(readx1)
library(ggplot2)
library(bslib)
library(report)
library(DT)

handle_decimal_separator <- function(x) {
    x <- gsub(",", ".", x)</pre>
```

```
as.numeric(x)
10
  }
11
12
  ui <- fluidPage(
13
     theme = bs_theme(bootswatch = "minty", primary = "#3D9970",
14
        base_font = font_google("Poppins")),
     titlePanel("An lisis_{\square}Inteligente:_{\square}Prueba_{\square}T_{\square}o_{\square}ANOVA_{\square}con_{\square}
15
         Interpretaci n"),
     sidebarLayout (
16
       sidebarPanel (
17
          fileInput("datafile", "Sube Ltu Larchivo CSV Lo Excel", accept
              = c(".csv", ".xlsx")),
          tags$hr(),
19
          uiOutput("var_select"),
20
          actionButton("run", "Ejecutar an lisis", class = "btn btn -
21
             success")
       ),
22
       mainPanel(
23
          h4("Vista previa de los datos"), DTOutput("preview"),
24
         h4("Resultado_del_an lisis"), verbatimTextOutput("analysis
25
         h4("Interpretaci n"), verbatimTextOutput("interpretacion")
26
         h4("Gr fico"), plotOutput("boxplot")
27
       )
28
     )
29
  )
30
```

```
server <- function(input, output, session) {</pre>
1
     data_input <- reactive({</pre>
2
       req(input$datafile)
3
       ext <- tools::file_ext(input$datafile$name)</pre>
4
       if (ext == "csv") {
5
         df <- read.csv(input$datafile$datapath, stringsAsFactors =</pre>
6
             FALSE)
       } else if (ext == "xlsx") {
7
         df <- read_excel(input$datafile$datapath)</pre>
8
       } else {
9
         showNotification("
                                 "Formato" no compatible ", type = "error
10
             ")
         return(NULL)
11
       }
12
       df[] <- lapply(df, function(col) if (is.character(col))</pre>
13
          handle_decimal_separator(col) else col)
       return(df)
14
     })
15
16
     output$preview <- renderDT({</pre>
17
       req(data_input())
18
       datatable(data_input(), options = list(pageLength = 5))
19
     })
20
```

```
21
     output$var_select <- renderUI({
22
        df <- data_input()</pre>
23
       num_vars <- names(df)[sapply(df, is.numeric)]</pre>
24
        checkboxGroupInput("vars", "Selecciona variables num ricas:"
25
           , choices = num_vars)
     })
26
27
     observeEvent(input$run, {
28
        output$analysis_result <- renderPrint({</pre>
29
          df <- data_input()</pre>
          df_sel <- df[, input$vars, drop = FALSE]</pre>
          if (ncol(df_sel) == 2) {
32
            print(t.test(df_sel[[1]], df_sel[[2]]))
33
          } else if (ncol(df_sel) >= 3) {
34
            modelo <- aov(values ~ ind, data = stack(df_sel))</pre>
35
            print(summary(modelo))
36
          } else {
37
            cat("Seleccionaualumenosudosuvariables.")
38
          }
39
       })
40
41
        output$interpretacion <- renderPrint({</pre>
42
          df_sel <- data_input()[, input$vars, drop = FALSE]</pre>
43
          if (ncol(df_sel) == 2) {
44
            modelo <- t.test(df_sel[[1]], df_sel[[2]])</pre>
45
          } else {
46
            modelo <- aov(values ~ ind, data = stack(df_sel))</pre>
47
          }
48
          rep <- capture.output(report(modelo))</pre>
49
          rep <- gsub("Student's ut-test", "Prueba uTude Student", rep)
50
          rep <- gsub("TheuANOVAu\\(AnalysisuofuVariance\\)", "Elu
51
             ANOVA (An lisis de Varianza), rep)
          rep <- gsub("founduaustatisticallyusignificantueffect", "
52
             encontr \sqcup un \sqcup efecto \sqcup estad sticamente \sqcup significativo", rep
          rep <- gsub("didunotufinduaustatisticallyusignificantu
53
             effect", "nouencontr uunuefectouestad sticamenteu
             significativo", rep)
          rep <- gsub("p_{\sqcup}=_{\sqcup}", "valor_{\sqcup}p_{\sqcup}=_{\sqcup}", rep)
54
          rep <- gsub("CI_{\sqcup}=_{\sqcup}", "IC_{\sqcup}=_{\sqcup}", rep)
          cat(paste(rep, collapse = "\n"))
56
        })
57
58
        output$boxplot <- renderPlot({</pre>
59
          df_sel <- data_input()[, input$vars, drop = FALSE]</pre>
60
          if (ncol(df_sel) == 2) {
61
            boxplot(df_sel, col = c("skyblue", "salmon"))
62
          } else {
63
            boxplot(values ~ ind, data = stack(df_sel), col = rainbow
64
                (ncol(df_sel)))
```

4. Enlace a la Aplicación

https://salomemargaretqh.shinyapps.io/REPORTANOVA/

5. Capturas de Pantalla

```
library(shiny)
library(readxl)
library(ggplot2)
library(bslib)
library(report)
library(DT)
# Función para detectar comas y transformarlas a punto decimal
handle_decimal_separator <- function(x) {
  x <- gsub(",", ".", x)</pre>
  as.numeric(x)
# UI
  theme = bs_theme(bootswatch = "minty", primary = "#3D9970", base_font = font_google("Poppins")),
  titlePanel(" Análisis Inteligente: Prueba T o ANOVA con Interpretación"),
  sidebarLayout(
    sidebarPanel(|
fileInput("datafile", " Sube tu archivo CSV o Excel", accept = c(".csv", ".xlsx")),
      tags$hr(),
uiOutput("var_select"),
      actionButton("run", "Ejecutar análisis", class = "btn btn-success")
    mainPanel(
      h4("m Vista previa de los datos"),
```

Figura 1: Parte del código en RStudio

📊 Resultado del análisis

```
✓ Se realiza un ANOVA para varias variables:

Df Sum Sq Mean Sq F value Pr(>F)

ind 1 12557 12557 856 <2e-16 ***

Residuals 58 851 15

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

30 observations deleted due to missingness
```

📌 Interpretación

```
The ANOVA (formula: values ~ ind) suggests that:

- The main effect of ind is statistically significant and large (F(1, 95% CI [0.91, 1.00])

Effect sizes were labelled following Field's (2013) recommendations.
```

Gráfico

Figura 2: Aplicación Shiny en ejecución

Figura 3: Vista gráfica del resultado (boxplot)