Определение 1. Граф называется *ориентированным* или *орграфом*, если на каждом ребре указано направление (тем самым у каждого ребра есть начало и конец). Определения для графа (путь, цикл, изоморфизм, компонента связности, . . .) переносятся на ориентированные графы с учётом ориентации рёбер. К примеру, *путь* в орграфе определяется как и в графе, но начало каждого следующего ребра должно быть концом предыдущего (двигаемся только по стрелкам).

Задача 1. Житель Врунии утверждает, что там есть несколько озёр, соединённых между собой реками. Из каждого озера вытекают 3 реки, и в каждое озеро впадает 4 реки. Докажите, что он ошибается.

Задача 2. Сколько всего на данных n вершинах есть ориентированных графов, у которых нет петель и каждые две вершины соединены не более чем одним ребром?

Задача 3 $^{\varnothing}$. Нарисуйте все неизоморфные орграфы из предыдущей задачи для n=3.

Задача 4. Докажите, что на рёбрах любого связного графа можно так расставить стрелки, что из некоторой вершины можно будет добраться по стрелкам до любой другой.

Задача 5°. В связном графе степени всех вершин чётны. Докажите, что на рёбрах этого графа можно расставить стрелки так, что для каждой вершины число входящих рёбер будет равно числу выходящих, и из каждой вершины можно будет добраться до каждой, двигаясь по стрелкам.

Задача 6. На рёбрах связного графа стоят стрелки так, что у каждой вершины числа входящих и выходящих рёбер равны. Докажите, что от каждой вершины можно добраться (по стрелкам) до каждой.

Задача 7°. а) Можно ли записать по кругу 100 цифр так, чтобы каждая двузначная комбинация от 00 до 99 при движении по часовой стрелке встречалась ровно по разу? б) Строка из 36 нулей и единиц начинается с 5 нулей. Среди пятёрок подряд стоящих цифр встречаются все 32 возможные комбинации. Найдите 5 последних цифр строки. в) Почему такая строка есть? г)* Имеются флажки k цветов. Надо сделать гирлянду, в которой каждая комбинация из n подряд идущих цветов встречается ровно по разу. Докажите, что следующий алгоритм всегда это делает: начинаем с n красных флажков, и добавляем по флажку любого цвета, чтобы комбинации не повторялись, но, если возможно, берём не красный.

Задача 8*. Схема проезда по городу — связный граф (рёбра — улицы, вершины — перекрёстки). Докажите, что можно ввести на всех улицах, кроме мостов, одностороннее движение (а на мостах двустороннее) так, чтобы от любого перекрёстка можно было доехать по правилам до любого другого.

Задача 9 $^{\varnothing}$. В турнире каждая команда сыграла с каждой по разу. Ничьих не было. Всегда ли можно расположить команды в таком порядке, чтобы 1-я команда выиграла у 2-й, 2-я — у 3-й, и т. д.?

Задача 10. В некоторой стране каждый город соединен с каждым дорогой с односторонним движением. Докажите, что а) найдется город такой, что от него можно добраться до любого другого города не более, чем с одной пересадкой; б) если городов больше двух, можно поменять направление движения не более чем на одной дороге так, чтобы от любого города можно было доехать до любого другого.

Задача 11 На сайте «Болтовня.ru» зарегистрировалось 2000 человек. Каждый из них пригласил к себе в друзья по 1000 человек. Два человека объявляются друзьями тогда и только тогда, когда каждый из них пригласил другого в друзья. Какое наименьшее количество пар друзей могло образоваться?

Задача 12. Каждый из 450 депутатов дал пощёчину ровно одному своему коллеге. Докажите, что из них можно выбрать 150 человек, среди которых никто никому не давал пощёчины.

Задача 13. а) (*Топологическая сортировка*) В орграфе нет циклов. Докажите, что его вершины можно так упорядочить, что ни из какой вершины с большим номером не будет пути в вершину с меньшим номером. б) Процесс изготовления финтифлюшек состоит из множества взаимосвязанных шагов. Про каждый известно, какие шаги должны быть выполнены до него. Докажите, что финтифлюшку можно собрать, не нарушая процесс, если и только если в зависимостях нет циклов.

Задача 14*. На рёбрах выпуклого многогранника расставлены стрелки так, что нет вершины, в которую только входят стрелки и нет вершины, из которой только выходят стрелки. Докажите, что найдется грань (а на самом деле и две), контур которой можно обойти по стрелкам.

1	2	3	4	5	6	7 a	7 б	7 в	7 г	8	9	10 a	10 6	11	12	13 a	13 6	14