INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON INSTITUT NA DES SCIENCES APPLIQUÉES DE LYON LYON

Département du Premier Cycle - SCAN1 MTES - Semester 1

2017-2018

TEST $1 \frac{17}{10} \frac{17}{17}$ DURATION 1H

Warnings and advices

- Documents, dictionaries, phones, and calculators are FORBIDDEN.
- The marking scheme is only given as an indication.

EXERCISE 1

EXERCISE 1
$$\Delta = (3+4i)^2 - 4(-1+5i) = -7+4+24i - 20i = -3+4i = 1^2 - 2^2 + 2*1*2i = (1+2i)^2 \neq 0.$$
Two solutions $z_1 = \frac{-3-4i+1+2i}{2} = -1-i$ and $z_1 = \frac{-3-4i-1-2i}{2} = -2-3i$.

EXERCISE 2

EXERCISE 2
Let
$$\theta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$
, $n \in \mathbb{N}$ and $z = (1 + ie^{i\theta})^n$.

1.
$$z = (1+ie^{i\theta})^n = (1+e^{i(\theta+\frac{\pi}{2})})^n = e^{in(\frac{\theta}{2}+\frac{\pi}{4})} \left(e^{-i(\frac{\theta}{2}+\frac{\pi}{4})} + e^{in(\frac{\theta}{2}+\frac{\pi}{4})}\right)^n = e^{i(\frac{\theta}{2}+\frac{\pi}{4})} \left(2\cos\left(\frac{\theta}{2}+\frac{\pi}{4}\right)\right)^n$$
So $u = e^{i(\frac{\theta}{2}+\frac{\pi}{4})}$.

So
$$u = e^{r \cdot \alpha_2 + 4r}$$
.

2. If n is even, then $\left(2\cos\left(\frac{\theta}{2} + \frac{\pi}{4}\right)\right)^n \ge 0$ so $|z| = 2^n \cos^n\left(\frac{\theta}{2} + \frac{\pi}{4}\right)$ and $Arg(z) = n(\frac{\theta}{2} + \frac{\pi}{4})$

3. Since
$$\theta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$
, then $\frac{\theta}{2} + \frac{\pi}{4} \in \left[\frac{\pi}{2}, \pi\right]$ so $\cos\left(\frac{\theta}{2} + \frac{\pi}{4}\right) \leqslant 0$. Since n is odd, then
$$-\left(2\cos\left(\frac{\theta}{2} + \frac{\pi}{4}\right)\right)^n \geqslant 0 \text{ and } z = -\left(2\cos\left(\frac{\theta}{2} + \frac{\pi}{4}\right)\right)^n e^{i n(\frac{\theta}{2} + \frac{\pi}{4}) + i\pi}$$
So $|z| = -2^n \cos^n\left(\frac{\theta}{2} + \frac{\pi}{4}\right))^n$ and $Arg(z) = n(\frac{\theta}{2} + \frac{\pi}{4}) + \pi$

EXERCISE 3

- 1. The barycenter G of (A, m_A) and (B, m_B) is a point $G \in \mathbb{R}^3$ s.t. $m_A \overrightarrow{GA} + m_B \overrightarrow{GB} = \overrightarrow{0}$.
- 2. $m_A + m_B \neq 0$.

3.
$$\overrightarrow{AC} = \frac{\overrightarrow{m_A}}{m_A + m_B} \overrightarrow{AA} + \frac{m_B}{m_A + m_B} \overrightarrow{AB} \text{ so } C = G.$$

EXERCISE 4

Consider the points A(0,2,3) and B(3,2,0) in \mathbb{R}^3 .

1.
$$x_G = 0\frac{1}{3} + 3\frac{2}{3} = 2$$
, $x_G = 2\frac{1}{3} + 2\frac{2}{3} = 2$ and $x_G = 3\frac{1}{3} + 0\frac{2}{3} = 1$.

1.
$$x_G = 0\frac{1}{3} + 3\frac{1}{3} = 2$$
, $x_G = 2\frac{1}{3} + 2\frac{1}{3} = 2$ and $x_G = 0\frac{1}{3} + 3\frac{1}{3} = 2$. $V = |(\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OG})| = |\begin{vmatrix} 0 & 3 & 2 \\ 2 & 2 & 2 \\ 3 & 0 & 1 \end{vmatrix}| = 0$ which was expected since the three vectors are coplanar. Indeed, $\overrightarrow{OG} = \frac{1}{3}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB}$.

- 1. $P \in (AC)$ so \overrightarrow{AP} and \overrightarrow{AC} are collinear and since $\overrightarrow{AC} \neq 0$, there exists $u \in \mathbb{R}$ such that $\overrightarrow{AP} = u\overrightarrow{AC}$. The same for \overrightarrow{DQ} .
- 2. $\overrightarrow{PQ} \cdot \overrightarrow{AC} = (\overrightarrow{PA} + \overrightarrow{AD} + \overrightarrow{DQ}) \cdot \overrightarrow{AC}$

And $\overrightarrow{PA} \cdot \overrightarrow{AC} = -u\overrightarrow{AC} \cdot \overrightarrow{AC} = -u\|\overrightarrow{AC}\|^2 = -2u$, $\overrightarrow{AD} \cdot \overrightarrow{AC} = (0,0,1) \cdot (1,0,1) = 1$ and $\overrightarrow{DQ} \cdot \overrightarrow{AC} = v\overrightarrow{DF} \cdot \overrightarrow{AC} = v(0, 1, -1) \cdot (1, 0, 1) = -v.$

Similarly $\overrightarrow{PQ} \cdot \overrightarrow{DF} = (\overrightarrow{PA} + \overrightarrow{AD} + \overrightarrow{DQ}) \cdot \overrightarrow{DF}$

And $\overrightarrow{PA} \cdot \overrightarrow{DF} = -u\overrightarrow{AC} \cdot \overrightarrow{DF} = -u(1,0,1) \cdot (0,1,-1) = u$, $\overrightarrow{DC} \cdot \overrightarrow{DF} = (0,0,1) \cdot (0,1,-1) = u$ $-1 \text{ and } \overrightarrow{DQ} \cdot \overrightarrow{DF} = v\overrightarrow{DF} \cdot \overrightarrow{DF} = v ||\overrightarrow{DF}||^2 = 2v.$

3. Since (PG) is orthogonal to (AC) and (FD), we have that $\overrightarrow{PQ} \cdot \overrightarrow{AC} = \overrightarrow{PQ} \cdot \overrightarrow{DF} = 0$. So 2u + v = 1 and u + 2v = 1 which lead to $u = v = \frac{1}{3}$ so $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AC} = \left(\frac{1}{3}, 0, \frac{1}{3}\right)$ and

$$\overrightarrow{AQ} = \overrightarrow{AD} + \overrightarrow{DQ} = (0, 0, 1) + \frac{1}{3}(0, 1, -1) = \left(0, \frac{1}{3}, \frac{2}{3}\right)$$

4. $A = \frac{1}{2} ||\overrightarrow{AP} \wedge \overrightarrow{AQ}|| = \frac{1}{18} ||(-1, -2, 1)|| = \frac{\sqrt{6}}{18}.$

Graph of function f

Graph of function g