Дискретная математика. Коллоквиум весна 2017. Задачи

Орлов Никита

9 марта 2017 г.

Задача 6

Докажите, что множество непересекающихся отрезков на прямой конечно или счетно.

Решение

Для любого отрезка $[a_i,b_i]$ сделаем следующую операцию: возьмем достаточно больше $n \in N$ и возьмем среднее рациональных приближений сверху и снизу числа $c_i = \frac{a_i + b_i}{2}$ с точностью $\frac{1}{10^n}$. Это число лежит в интервале, так как оно больше левой границы и меньше правой границы.

Так как интервалы не пересекаются, и для каждого интверала можно найти хотя бы одно рациональное число, поставим в соответствие интервалу это число. Получили биекцию из множества интервалов во множество рациональных чисел, а оно не более, чем счетно.

[:|||:]

Задача 8

Докажите, что биекций на множестве натуральных чисел континуум.

Решение

Любую биекцию $\varphi:\mathbb{N}\to\mathbb{N}$ можно записать в виде

$$\begin{pmatrix} 1 & 2 & 3 & \dots & n & \dots \\ \varphi(1) & \varphi(2) & \varphi(3) & \dots & \varphi(n) & \dots \end{pmatrix}$$

Значит нам надо показать, что множество перестановок $\psi = \{1, 2, \dots, n, \dots\}$ континуально.

Определим инъекцию $\psi\mapsto 2^{\mathbb{N}}$: будем выписывать перестановку в унарном коде, где $n\mapsto\underbrace{11\dots 1}_n 0$. Значит $\psi\precsim 2^{\mathbb{N}}(1)$.

Определим инъекцию $2^{\mathbb{N}} \mapsto \psi$: для каждой последовательности если на n месте стоит 0, то в последовательность выписываем последовательно числа 2n и 2n+1, иначе 2n+1 и 2n. Следовательно, $\psi \succeq 2^{\mathbb{N}}(2)$.

Получили, что из (1) и (2) следует $\psi \sim 2^{\mathbb{N}}$.

[:|||:]

Задача 16

Треугольником в графе называется тройка вершин, попарно соединенных между собой. Постройте схему полиномиального размера для функции $f:\{0,1\}^{\binom{n}{2}} \to \{0,1\}$, равную единице тогда и только тогда, когда в данном на вход графе нет треугольников.

0.1 Решение

Пусть на вход подаются переменные x_{ij} , i < j, означающие, есть ли ребро между вершинами і и ј. Если в графе есть такие вершины і, ј, k , i < j < k, которые образуют треугольник, то $x_{ij}x_{jk}x_{ik}=1$. Всего троек вершин в графе $C_3^n=\frac{n(n-1)(n-2)}{6}$. Тогда схема будет иметь вид $g=\overline{(\bigvee x_{ij}x_{jk}x_{ik})}, i \neq j \neq k$ - отрицание дизъюнкции всех конъюнкций троек вершин. Размер схемы будет равен $O(n^3)$.

Задача 24

Докажите, что декартово произведение перечислимых множеств перечислимо.

Решение

Будем выполнять поочередно шаги вычисления перечислителей A и B. Всякий раз, когда перечислитель выводит число, будем записывать его в соответствующий аккумулятор и выводить все пары, состоящие из этого числа и всех чисел другого аккумулятора. Мы получим все возможные пары.

Задача 25

Постройте пример универсальной вычислимой функции U, для которой множество $\{U(p^2,p):p\in\mathbb{N}\}=\{0\}.$

Решение

Задача 26

Пусть U – универсальная функция. Определим функцию V(n,x) следующим образом:

$$V(n,x) = \begin{cases} U(n-1,x), & n > 0 \\ 0, & n = 0 \end{cases}$$

Является ли V универсальной?

Решение

Да, является. Пусть f — вычислимая функция. Значит $\exists p \in \mathbb{N}: \ U(p,x) = f(x)$. При этом выполняется равенство V(p+1,x) = U(p,x) = f(x). Получается, что V «сдвигает» нумерацию U на +1. Значит V — универсальна.

Задача 6

Решение

Задача 7

Решение