

Dynamical systems method (DSM) for unbounded operators

A.G. Ramm

Mathematics Department, Kansas State University,
 Manhattan, KS 66506-2602, USA
 ramm@math.ksu.edu
<http://www.math.ksu.edu/~ramm>

Abstract

Let L be an unbounded linear operator in a real Hilbert space H , a generator of C_0 semigroup, and $g : H \rightarrow H$ be a C_{loc}^2 nonlinear map. The DSM (dynamical systems method) for solving equation $F(v) := Lv + gv = 0$ consists of solving the Cauchy problem $\dot{u} = \Phi(t, u)$, $u(0) = u_0$, where Φ is a suitable operator, and proving that i) $\exists u(t) \quad \forall t > 0$, ii) $\exists u(\infty)$, and iii) $F(u(\infty)) = 0$.

Conditions on L and g are given which allow one to choose Φ such that i), ii), and iii) hold.

1 Introduction

Let H be a real Hilbert space, L be a linear, densely defined in H , closed operator, a generator of C_0 semigroup (see[1]), $g : H \rightarrow H$ be a nonlinear C_{loc}^2 map, i.e.,

$$\sup_{u \in B(u_0, R)} \|g^{(j)}(u)\| \leq m_j, \quad j = 0, 1, 2, \quad B(u_0, R) := \{u : \|u - u_0\| \leq R\}, \quad (1.1)$$

where $g^{(j)}$ is the Fréchet derivative of order j , $R > 0$ is some number, and $u_0 \in H$ is some element. In many applications the problems can be formulated as the following operator equation:

$$F(v) := Lv + g(v) = 0. \quad (1.2)$$

We want to study this equation by the dynamical sysstems method (DSM), which allows one also to develop numerical methods for solving equation (1.2). The DSM for solving

Math subject classification: 35R25, 35R30, 37B55, 47H20, 47J05, 49N45, 65M32, 65R30

key words: dynamical systems method, nonlinear operator equations, ill-posed problems

equation (1.2) consists of solving the problem:

$$\dot{u} = \Phi(t, u), \quad u(0) = u_0, \quad (1.3)$$

where $\dot{u} := \frac{du}{dt}$, and $\Phi(t, u)$ is a nonlinear operator chosen so that problem (1.3) has a unique global solution which stabilizes at infinity to the solution of equation (1.2):

$$\text{i) } \exists u(t) \forall t > 0, \quad \text{ii) } \exists u(\infty), \quad \text{iii) } F(u(\infty)) = 0. \quad (1.4)$$

In [2] the DSM has been studied and justified for $F \in C_{loc}^2$ and

$$\sup_{u \in B(u_0, R)} \|F'(u)\|^{-1} \leq m_1; \quad (1.5)$$

for monotone $F \in C_{loc}^2$; for monotone hemicontinuous defined on all of H operators F ; for non-monotone $F \in C_{loc}^2$ such that there exists a y such that $F(y) = 0$ and the operator $A := F'(y)$ maps any ball $B(0, r)$ centered at the origin and of sufficiently small radius $r > 0$ into a set which has a non-empty intersection with $B(0, R)$; and for $F \in C_{loc}^2$ satisfying a spectral condition: $\|(F'(u) + \varepsilon)^{-1}\| \leq (c\varepsilon)^{-1}$, $0 < c \leq 1$, in which case F is replaced by $F + \varepsilon I$ in (1.3), and then ε is taken to zero.

In this paper the DSM is justified for a class of nonlinear unbounded operators of the type $L + g$, where L is a generator of a C_0 semigroup, $g \in C_{loc}^2$, and some suitable additional assumptions are made.

Which assumptions are suitable? A simple example is:

$$\|L^{-1}\| \leq m. \quad (1.6)$$

If (1.6) holds, then (1.2) is equivalent to

$$f(u) := u + L^{-1}g(u) = 0, \quad f \in C_{loc}^2. \quad (1.7)$$

Assume

$$\sup_{u \in B(u_0, R)} \|[I + L^{-1}g'(u)]^{-1}\| \leq m_1. \quad (1.8)$$

This assumption, holds, e.g., if $L^{-1}g'(u)$ is a compact operator in H for any $u \in B(u_0, R)$ and the operator $I + L^{-1}g'(u)$ is injective.

Our first result is the following theorem:

Theorem 1.1. *Assume (1.6), (1.8), and let $\Phi := -[I + L^{-1}g'(u)]^{-1}[u + L^{-1}g(u)]$. If*

$$\|u_0 + L^{-1}g(u_0)\|m_1 \leq R, \quad (1.9)$$

then equation (1.2) has a unique solution $v \in B(u_0, R)$, the conclusions i), ii), and iii) hold for (1.3), and $u(\infty) = v$.

Remark 1.1. *If L is not boundedly invertible, i.e., (1.6) fails, then one can use the following assumption (A):*

Assumption (A). *There exists a sector $S = \{z : 0 < |z| \leq a, |\arg z - \pi| \leq \delta\}$, which consists of regular points of L . Here $a > 0$ and $\delta > 0$ are arbitrary small fixed numbers.*

If assumption (A) holds, then

$$\|(L + \varepsilon)^{-1}\| \leq \frac{1}{\varepsilon \sin(\delta)}. \quad (1.10)$$

This estimate holds in particular if $L = L^* \geq 0$, and in this case $\sin(\delta) = 1$.

The following theorem is our next result:

Theorem 1.2. *Assume that $L^* = L \geq 0$ is a densely defined linear operator, $g \in C_{loc}^2$, $g'(u) \geq 0 \forall u \in H$, equation (1.2) is solvable and v is its (unique) minimal-norm solution. Define $\Phi(u) = -[I + (L + \varepsilon)^{-1}g'(u)]^{-1}[u + (L + \varepsilon)^{-1}g(u)]$, $\varepsilon = \text{const} > 0$. Assume that (1.8) holds with $L_\varepsilon := L + \varepsilon I$ replacing L , and $m_1 = m_1(\varepsilon) > 0$. Then problem (1.3) has a unique global solution $u_\varepsilon(t)$, there exists $u_\varepsilon(\infty) := v_\varepsilon$, and $F(v_\varepsilon) := Lv_\varepsilon + g(v_\varepsilon) = 0$. Moreover, there exists the limit $\lim_{\varepsilon \rightarrow 0} v_\varepsilon = v$, which is the unique minimal-norm solution to (1.2).*

In section 2 proofs are given.

2 Proofs

Proof of Theorem 1.1. If $\Phi = -[I + L^{-1}g'(u)]^{-1}[u + L^{-1}g(u)]$, and $p(t) := \|u + L^{-1}g(u)\|$, then $\dot{p} = -p^2$. Thus

$$p(t) = p(0)e^{-t}. \quad (2.1)$$

From (2.1), (1.8) and (1.3) one gets

$$\|\dot{u}\| \leq m_1 p(0)e^{-t}, \quad p(0) = \|u_0 + L^{-1}g(u_0)\|. \quad (2.2)$$

Inequality (2.2) implies the global existence of $u(t)$, the existence of $u(\infty) := \lim_{t \rightarrow \infty} u(t)$, and the estimates:

$$\|u(t) - u(\infty)\| \leq m_1 p(0)e^{-t}, \quad \|u(t) - u_0\| \leq m_1 p(0). \quad (2.3)$$

If (1.9) holds, then (2.3) implies $\|u(t) - u_0\| \leq R$, so the trajectory $u(t)$ stays in the ball $B(u_0, R)$, that is, $u(t) \in B(u_0, R) \forall t \geq 0$. Passing to the limit $t \rightarrow \infty$ in equation (1.3) yields

$$0 = -[I + L^{-1}g'(u(\infty))]^{-1}[u(\infty) + L^{-1}g(u(\infty))]. \quad (2.4)$$

Thus $u(\infty) := v$ solves the equation $v + L^{-1}g(v) = 0$, so v solves (1.2), and therefore i), ii) and iii) hold. Theorem 1.1 is proved. \square

Proof of Theorem 1.2. If $L^* = L \geq 0$ in H and $g'(u) \geq 0$, then, for any $\varepsilon > 0$, Theorem 1.1 yields the existence of a unique solution v_ε to equation (1.2) with L replaced by $L + \varepsilon I$. This solution $v_\varepsilon = u_\varepsilon(\infty)$, where $u_\varepsilon(t)$ is the solution to (1.3) with

$$\Phi = -[I + (L + \varepsilon)^{-1}g'(u)]^{-1}[u + (L + \varepsilon)^{-1}g(u)].$$

Let us prove that $\lim_{\varepsilon \rightarrow 0} v_\varepsilon = v$, where v solves (1.2). We do not assume that (1.2) has a unique solution.

Let $v_\varepsilon - v := w$. Then $Lw + \varepsilon v_\varepsilon + g(v_\varepsilon) - g(v) = 0$, so, using the assumptions $L \geq 0$ and $g'(u) \geq 0$, one gets $\varepsilon(v_\varepsilon, v_\varepsilon - v) \leq 0$, $\|v_\varepsilon\|^2 \leq \|v_\varepsilon\|\|v\|$, and $\|v_\varepsilon\| \leq \|v\|$, $\forall \varepsilon > 0$. Thus $v_\varepsilon \rightharpoonup v_0$ and $Lv_\varepsilon + g(v_\varepsilon) \rightarrow 0$, where \rightharpoonup stands for the weak convergence in H and the convergent subsequence is denoted v_ε again.

In the above argument the element v can be an arbitrary element in the set $N_F := \{v : Lv + g(v) = 0\}$. Thus, we have proved that $\|v_0\| \leq \|v\|$ for all $v \in N_F$.

Let us prove that $L(v_0) + g(v_0) = 0$, i.e., $v_0 \in N_F$.

Assume first that $v_0 \in D(L)$. We prove this assumption later. The monotonicity of $L + g$ yields:

$$(L(v_\varepsilon) + g(v_\varepsilon) + \varepsilon v_\varepsilon - L(v_0 - tz) - g(v_0 - tz) - \varepsilon(v_0 - tz), v_\varepsilon - v_0 + tz) \geq 0, \quad (2.5)$$

where $t > 0$, and $z \in D(L)$ is arbitrary. Let $\varepsilon \rightarrow 0$ in (2.5). Then, using $v_\varepsilon \rightharpoonup v_0$ and $Lv_\varepsilon + g(v_\varepsilon) \rightarrow 0$, one gets:

$$(-L(v_0 - tz) - g(v_0 - tz), z) \geq 0 \quad \forall z \in D(L). \quad (2.6)$$

Let $t \rightarrow 0$ in (2.6). Then $(Lv_0 + g(v_0), z) \leq 0 \quad \forall z \in D(L)$. Since $D(L)$ is dense in H , it follows that $Lv_0 + g(v_0) = 0$, so $v_0 \in N_F$.

We have proved above that $\|v_0\| \leq \|v\|$ for any $v \in N_F$. Because N_F is a closed and convex set, as we prove below, and H is a uniformly convex space, there is a unique element $v \in N_F$ with minimal norm. Therefore, it follows that $v_0 = v$, where v is the minimal-norm solution to (1.2) and v_0 is the weak limit of v_ε .

Let us prove the strong convergence $v_\varepsilon \rightarrow v$.

We know that $v_\varepsilon \rightharpoonup v$. The inequality $\|v_\varepsilon\| \leq \|v\|$ implies

$$\|v\| \leq \liminf_{\varepsilon \rightarrow 0} \|v_\varepsilon\| \leq \limsup_{\varepsilon \rightarrow 0} \|v_\varepsilon\| \leq \|v\|.$$

Therefore $\lim_{\varepsilon \rightarrow 0} \|v_\varepsilon\| = \|v\|$. Consequently one gets:

$$\lim_{\varepsilon \rightarrow 0} \|v_\varepsilon - v\|^2 = \lim_{\varepsilon \rightarrow 0} [\|v_\varepsilon\|^2 + \|v\|^2 - 2\Re(v_\varepsilon, v)] \leq 2[\|v\|^2 - (v, v)] = 0.$$

Thus, $v_\varepsilon \rightarrow v$, as claimed.

Since g is continuous, it follows that $g(v_\varepsilon) \rightarrow g(v)$.

Equation

$$Lv_\varepsilon + \varepsilon v_\varepsilon + g(v_\varepsilon) = 0, \quad (2.7)$$

the inequality $\|v_\varepsilon\| \leq \|v\|$, and the relation $g(v_\varepsilon) \rightarrow g(v)$ imply $Lv_\varepsilon \rightarrow \eta := -g(v)$.

Let us prove that $v_0 \in D(L)$.

Because $v_0 = v$, it is sufficient to check that $v \in D(L)$. Since L is selfadjoint, and $Lv_\varepsilon \rightarrow \eta$, one has:

$$(\eta, \psi) = \lim_{\varepsilon \rightarrow 0} (Lv_\varepsilon, \psi) = \lim_{\varepsilon \rightarrow 0} (v_\varepsilon, L\psi) = (v, L\psi) \quad \forall \psi \in D(L).$$

Thus $v \in D(L)$ and $Lv = \eta$.

Let us finally check that N_F is closed and convex.

Assume $F(v_n) := Lv_n + g(v_n) = 0$, $v_n \rightarrow v$. Then $g(v_n) \rightarrow g(v)$ because g is continuous. Thus, $Lv_n \rightarrow \eta := -g(v)$. Since L is closed, the relations $v_n \rightarrow v$ and $Lv_n \rightarrow \eta$ imply $Lv = \eta = -g(v)$. So, $v \in N_F$, and consequently N_F is closed.

Assume that $0 < s < 1$, $v, w \in N_F$ and $\psi = sv + (1-s)w$. Let us show that $\psi \in N_F$. One has $w \in N_F$ if and only if

$$(F(z), z - w) \geq 0 \quad \forall z \in D(L). \quad (2.8)$$

Indeed, if $F(w) = 0$, then $F(z) = F(z) - F(w)$, and (2.8) holds because F is a monotone operator. Conversely, if (2.8) holds, then take $z - w = t\eta$, $t = \text{const} > 0$, $\eta \in D(L)$ is arbitrary, and get $(F(w + t\eta), \eta) \geq 0$. Let $t \rightarrow 0$, then $(F(w), \eta) \geq 0 \quad \forall \eta \in D(L)$. Thus, since $D(L) = H$, one gets $w \in N_F$. If $\psi = sv + (1-s)w$, and $v, w \in N(F)$, then $(F(z), z - sv - (1-s)w) = s(F(z), z - v) + (1-s)(F(z), z - w) \geq 0$. Thus, N_F is convex.

Theorem 1.2 is proved. \square

Remark 2.1. *Theorem 1.2 gives a theoretical framework for a study of nonlinear ill-posed operator equations $F(u) = f$, where $F(u) = Lu + g(u)$, where the operator $F'(u)$ is not boundedly invertible. In this short paper, we do not discuss the case when the data f are given with some error: f_δ is given in place of f , $\|f_\delta - f\| \leq \delta$. In this case one can use DSM for a stable solution of the equation $F(v) = f$ with noisy data f_δ , and one uses an algorithm for choosing stopping time t_δ such that $\lim_{\delta \rightarrow 0} \|u_\delta(t_\delta) - v\| = 0$, where $u_\delta(t)$ is the solution to (1.3) with $\Phi = \Phi_\delta$ chosen suitably (see [2]).*

References

- [1] Pazy, A. , **Semigroups of linear operators and applications to partial differential equations**, Springer-Verlag, New York, 1983.
- [2] Ramm, A. G. Dynamical systems method for solving operator equations, Communic. in Nonlinear Sci. and Numer. Simulation, 9, N2, (2004)