

Regression modelling using I-priors

NUS Department of Statistics & Data Science Seminar

Haziq Jamil

Mathematical Sciences, Faculty of Science, UBD

https://haziqj.ml

Wednesday, 16 November 2022

Abstract

Introduction

Regression analysis is undoubtedly an important tool to understand the relationship between one or more explanatory and independent variables of interest. The problem of estimating a generic regression function in a model with normal errors is considered. For this purpose, a novel objective prior for the regression function is proposed, defined as the distribution maximizing entropy (subject to a suitable constraint) based on the Fisher information on the regression function. This prior is called the I-prior. The regression function is then estimated by its posterior mean under the I-prior, and accompanying hyperparameters are estimated via maximum marginal likelihood. Estimation of I-prior models is simple and inference straightforward, while predictive performances are comparative, and often better, to similar leading state-of-the-art models—as will be illustrated by several data examples. Further plans for research in this area are also presented, including variable selection for interaction effects and extending the I-prior methodology to non-Gaussian errors. Please visit the project website for further details: https://phd.haziqj.ml/

Estimation

Introduction

- Introduction
- Some basic functional analysis (?)
- The I-prior
- Estimation
- Inference
- Examples
- Further work (variable selection, interaction effects, non-gaussian errors)

Introduction

For $i = 1, \dots, n$, consider the regression model

$$y_i = f(x_i) + \epsilon_i$$

$$(\epsilon_1, \dots, \epsilon_n)^{\top} \sim N_n(0, \Psi^{-1})$$
(1)

where each $y_i \in \mathbb{R}$, $x_i \in \mathcal{X}$ (some set of covariates), and f is a regression function. This forms the basis for a multitude of statistical models:

- 1. Ordinary linear regression when f is parameterised linearly.
- 2. Varying intercepts/slopes model when \mathcal{X} is grouped.
- 3. Smoothing models when f is a smooth function.
- 4. Functional regression when \mathcal{X} is functional.

Goal

To estimate the regression function f given the observations $\{(y_i, x_i)\}_{i=1}^n$.

Suppose
$$f(x_i) = x_i^{\top} \beta$$
 for $i = 1, ..., n$, where $x_i, \beta \in \mathbb{R}^p$.

Varying intercepts/slopes model

Suppose each unit $i=1,\ldots,n$ relates to the kth observation in group $j\in\{1,\ldots,m\}$. Model the function f additively:

$$f(x_{kj},j) = f_1(x_{kj}) + f_2(j) + f_{12}(x_{kj},j).$$

5 / 17

Х

Varying intercepts/slopes model

Introduction

Suppose each unit i = 1, ..., n relates to the kth observation in group $j \in \{1, \dots, m\}$. Model the function f additively:

$$f(x_{kj},j) = \underbrace{x_{kj}^{\top} \beta_1}_{f_1} + \underbrace{\beta_{0j}}_{f_2} + \underbrace{x_{kj}^{\top} \beta_{1j}}_{f_{1j}}$$

Х 5 / 17

Smoothing models

Introduction

Suppose $f \in \mathcal{F}$ where \mathcal{F} is a space of "smoothing functions" (models like LOESS, kernel regression, smoothing splines, etc.).

Introduction

Suppose the input set \mathcal{X} is functional. The (linear) regression aims to estimate a coefficient function $\beta:\mathcal{T}\to\mathbb{R}$

$$y_i = \underbrace{\int_{\mathcal{T}} x_i(t)\beta(t) dt + \epsilon_i}_{f(x_i)}$$

The I-prior

Introduction

For the regression model stated in (1), we assume that f lies in some RKHS of functions \mathcal{F} , with reproducing kernel h over \mathcal{X} .

Definition 1 (I-prior)

The entropy maximising prior distribution for f, subject to constraints, is

$$f(x) = \sum_{i=1}^{n} h(x, x_i) w_i$$

$$(w_1, \dots, w_n)^{\top} \sim N_n(0, \Psi)$$
(2)

Therefore, the covariance kernel of $\mathbf{f} = (f(x_1), \dots, f(x_n))^{\top}$ is determined by the function

$$k(x, x') = \sum_{i=1}^{n} \sum_{j=1}^{n} \Psi_{i,j} h(x, x_i) h(x', x_j),$$

which happens to be **Fisher information** between two linear forms of f.

The I-prior (cont.)

Interpretation:

The more information about f, the larger its prior variance, and hence the smaller the influence of the prior mean (and vice versa).

The I-prior (cont.)

Interpretation:

The more information about f, the larger its prior variance, and hence the smaller the influence of the prior mean (and vice versa).

Of interest then are

1. Posterior distribution for the regression function,

$$p(\mathbf{f} \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f})}{\int p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f}) d\mathbf{f}}.$$

2. Posterior predictive distribution (given a new data point x_{new})

$$p(y_{new} \mid \mathbf{y}) = \int p(y_{new} \mid f_{new}) p(f_{new} \mid \mathbf{y}) \, \mathrm{d}f_{new},$$

where $f_{new} = f(x_{new})$.

00000000000

Observations $\{(y_i, x_i) \mid y_i, x_i \in \mathbb{R} \ \forall i = 1, ..., n\}$.

Introduction (cont.)

Choose $h(x,x')=e^{-\frac{\|x-x'\|^2}{2l^2}}$ (Gaussian kernel). Sample paths from the I-prior:

Introduction

000000000000

Sample paths from the posterior of f:

Introduction

Posterior mean estimate for y = f(x) and its 95% credibility interval.

Why I-priors?

Advantages

- Provides a unifying methodology for regression.
- Simple and parsimonious model specification and estimation.
- Often yield comparable (or better) predictions than competing ML algorithms.

Competitors:

Tikhonov regulariser (e.g. cubic spline smoother)

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(x)^2 dx$$

Gaussian process regression

Regression using I-priors
Reproducing kernel Hilbert spaces

Estimation

Examples

The Fisher information

Suppose further that $f \in \mathcal{F}$ where \mathcal{F} is a reproducing kernel Hilbert space (RKHS) with reproducing kernel $h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Then (1) can be expressed as

$$y_{i} = \langle f, h(\cdot, x_{i}) \rangle_{\mathcal{F}} + \epsilon_{i}$$

$$(\epsilon_{1}, \dots, \epsilon_{n})^{\top} \sim \mathsf{N}(\mathbf{0}, \boldsymbol{\Psi}^{-1})$$
(3)

The Fisher information for f is given by

$$\mathcal{I}_f = \sum_{i=1}^n \sum_{j=1}^n \psi_{ij} h(\cdot, x_i) \otimes h(\cdot, x_j)$$

It's helpful to think of \mathcal{I}_f as a bilinear form $\mathcal{I}_f: \mathcal{F} \times \mathcal{F} \to \mathbb{R}$ defined by

$$\mathcal{I}_f = - \mathsf{E} \nabla^2 L(f|y)$$

so between two linear functionals of f....

where each $y_i \in \mathbb{R}$, and $f \in \mathcal{F}$ a reproducing kernel Hilbert space (RKHS) with kernel $h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. The I-prior (Bergsma, 2019) for the regression function f is the random function defined

$$f(x_i) = f_0(x_i) + \sum_{k=1}^n h(x_i, x_k) w_k$$

$$(w_1, \dots, w_n)^\top \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi})$$
(4)

where f_0 is some prior mean for the regression function.

Regression using I-priors

Estimation

Examples

Regression using I-priors

Estimation

Examples

Regression using I-priors

Estimation

Examples

Further research

Hello

