ルールアンサンブルを用いた マイノリティクラスの識別

情報認識学研究室修士2年横山 祐也

背景

パターン認識において度々, **『クラスインバランス』**が問題となっている.

例: 癌が陰性か陽性かの分類問題

	データセット				
		クラス名	陰性	陽性	
	_	データ数	90	10	
	モデル	真陰性	 真陽性		 通常の精度
0	識別モデル1	81/90	1/10		82%
×	識別モデル2	63/90	7/10		70%

医療分野などでは、識別モデル2が望ましい。

目的

1. データ数によるマジョリティクラスの影響をなるべく抑えて, マイノリティクラスの識別率の向上を図る.

	モデル	真陰性	真陽性
×	識別モデル1	81/90	1/10
0	識別モデル2	63/90	7/10
×	識別モデル3	1/90	10/10

2. 加えて, 識別モデルがマイノリティクラスと判断した根拠を知りたい.

提案

1. 識別モデルでバランスされた精度(Balance Accuracy)の最大化を図る

	モデル	真陰性	真陽性	バランスされた精度
×	識別モデル1	81/90	1/10	50%
0	識別モデル2	63/90	7/10	70%
×	識別モデル3	1/90	10/10	51%

計算の例: 識別モデル2

$$\frac{1}{2} \cdot \left(\frac{63}{90} + \frac{7}{10}\right) \cdot 100 = 70\%$$

2. ルールアンサンブル法の採用

決定木から抽出したルールをベースにした**線形回帰**モデル.

決定ルールの重要度を測定することができる