Quantum Bootstrapping

Christopher Granade

Joint work with:
Nathan Wiebe D. G. Cory

Institute for Quantum Computing University of Waterloo, Ontario, Canada

6 January 2015

We want to build a quantum computer.

We want to build a quantum computer.

Need to push past what a classical computer can do. How do we get to 50 qubits?

Building Large Systems: Computational Limits

Computational limits affect many aspects of building large quantum systems:

■ Characterization of *H*

Building Large Systems: Computational Limits

Computational limits affect many aspects of building large quantum systems:

- Characterization of H
- Calibration of controls

Building Large Systems: Computational Limits

Computational limits affect many aspects of building large quantum systems:

- Characterization of H
- Calibration of controls
- Verification of controls

Bootstrapping to 50 Qubits

Express challenges in terms of *simulation*, then use quantum simulators.

Use small quantum simulators to characterize and verify large devices, bootstrap up to 50-qubit scale.

Bootstrapping to 50 Qubits

Express challenges in terms of *simulation*, then use quantum simulators.

Use small quantum simulators to characterize and verify large devices, bootstrap up to 50-qubit scale.

■ Particle filters: platform for Bayesian inference

- Particle filters: platform for Bayesian inference
- Hamiltonian learning w/ quantum resources

- Particle filters: platform for Bayesian inference
- Hamiltonian learning w/ quantum resources
- Bootstrapping Hamiltonian learning

- Particle filters: platform for Bayesian inference
- Hamiltonian learning w/ quantum resources
- Bootstrapping Hamiltonian learning
- Learning control distortions

Modeling Experiments

Likelihood Function

Model data collection as a probability distribution:

Pr(data|model; experiment)

Modeling Experiments

Likelihood Function

Model data collection as a probability distribution:

Pr(data|model; experiment)

The likelihood function describes an experiment and its possible outcomes.

Born's Rule: Quintessential Likelihood

Can interpret Born's Rule as the likelihood for state-learning experiments:

$$Pr(click|\psi;\phi) = |\langle \phi|\psi\rangle|^2$$

Born's Rule: Quintessential Likelihood

Can interpret Born's Rule as the likelihood for state-learning experiments:

$$\begin{aligned} & \text{Pr}(\text{click}|\psi;\phi) = |\left\langle \phi | \psi \right\rangle|^2 \\ & \text{data} & \text{click or no click} \\ & \text{model} & \text{preparation } |\psi\rangle \\ & \text{experiment} & \text{measurement } \left\langle \phi | \right. \end{aligned}$$

Consider Larmor precession at an unknown ω and T_2 :

$$H(\omega) = \frac{\omega}{2}\sigma_z, \quad |\psi_{\rm in}\rangle = |+\rangle, \quad M = \{|+\rangle\langle+|, |-\rangle\langle-|\}$$

$$\Pr(d = 0 | \text{model} = (\omega, T_2); \exp = t) = \frac{1 - e^{-t/T_2}}{2} + e^{-t/T_2} \cos^2(\omega t/2)$$

Consider Larmor precession at an unknown ω and T_2 :

$$H(\omega) = \frac{\omega}{2}\sigma_z, \quad |\psi_{\rm in}\rangle = |+\rangle, \quad M = \{|+\rangle\langle+|, |-\rangle\langle-|\}$$

$$\Pr(d = 0 | \text{model} = (\omega, T_2); \exp(-t)) = \frac{1 - e^{-t/T_2}}{2} + e^{-t/T_2} \cos^2(\omega t/2)$$

Parameterize model as $\underline{x} = (\omega, T_2)$, experiment as $\underline{e} = (t)$.

Once we have a likelihood, we can now reason about

$$\Pr(\underline{x}|d,\underline{e}),$$

Once we have a likelihood, we can now reason about

$$\Pr(\underline{x}|d,\underline{e}),$$

By Bayes' Rule:
$$\Pr(\underline{x}|d,\underline{e}) = \frac{\Pr(\underline{a}|\underline{x};\underline{e})}{\Pr(\underline{d}|\underline{e})} \Pr(\underline{x}).$$
 \Longrightarrow Simulation is a resource for learning.

Once we have a likelihood, we can now reason about

$$\Pr(\underline{x}|d,\underline{e}),$$

By Bayes' Rule:
$$\Pr(\underline{x}|d,\underline{e}) = \frac{\Pr(\underline{d}|\underline{x};\underline{e})}{\Pr(\underline{d}|\underline{e})} \Pr(\underline{x}).$$
 \Longrightarrow Simulation is a resource for learning.

Once we have a likelihood, we can now reason about

$$\Pr(\underline{x}|d,\underline{e}),$$

By Bayes' Rule:
$$\Pr(\underline{x}|d,\underline{e}) = \frac{\Pr(\underline{a}|\underline{x};\underline{e})}{\Pr(\underline{d}|\underline{e})} \Pr(\underline{x}).$$
 \Longrightarrow Simulation is a resource for learning.

Once we have a likelihood, we can now reason about

$$\Pr(\underline{x}|d,\underline{e}),$$

what we know having seen some data.

By Bayes' Rule: $\Pr(\underline{x}|d,\underline{e}) = \frac{\Pr(d|\underline{x};\underline{e})}{\Pr(d|\underline{e})} \Pr(\underline{x}).$ \Longrightarrow Simulation is a resource for learning.

Estimate \hat{x} as the expectation over x,

$$\hat{\underline{x}} = \mathbb{E}[\underline{x}] = \int \underline{x} \Pr(\underline{x}) d\underline{x}.$$

Once we have a likelihood, we can now reason about

$$\Pr(\underline{x}|d,\underline{e}),$$

what we know having seen some data.

By Bayes' Rule: $\Pr(\underline{x}|d,\underline{e}) = \frac{\Pr(\underline{a}|\underline{x};\underline{e})}{\Pr(\underline{d}|\underline{e})} \Pr(\underline{x}).$ \Longrightarrow Simulation is a resource for learning.

Estimate \hat{x} as the expectation over x,

$$\hat{\underline{x}} = \mathbb{E}[\underline{x}] = \int \underline{x} \Pr(\underline{x}) d\underline{x}.$$

In many cases, difficult to perform analytically...

SMC (aka *particle filter*): numerical algorithm for generating samples from a distribution, using a transition kernel.

$$\operatorname{prior} \stackrel{\operatorname{Bayes'} \operatorname{Rule}}{\longrightarrow} \operatorname{posterior}$$

Posterior samples then approximate $\int \mathbb{E}$.

SMC Approximation

$$\Pr(\underline{x}) \approx \sum_{i}^{n} w_{i} \delta(\underline{x} - \underline{x}_{i})$$

SMC (aka *particle filter*): numerical algorithm for generating samples from a distribution, using a transition kernel.

$$prior \stackrel{Bayes' \ Rule}{\longrightarrow} posterior$$

Posterior samples then approximate \int /\mathbb{E} .

SMC Approximation

$$\Pr(\underline{x}) \approx \sum_{i}^{n} w_{i} \delta(\underline{x} - \underline{x}_{i})$$

QInfer Open-source implementation for quantum info.

(Doucet and Johansen 2011; Huszár and Houlsby 10/s86; Granade et al. 2012 10/s87)

For Larmor precession:

For Larmor precession:

For Larmor precession:

Ambiguity in SMC approximation:

Ambiguity and Impovrishment

Ambiguity in SMC approximation:

Using weight is less numerically stable, results in smaller *effective* number of particles.

$$n_{\rm ess} := 1/\sum_i w_i^2$$

As data D is collected, $\Pr(\underline{x}_i|D) \to 0$ for most initial particles $\{x_i\}$.

 $\blacksquare \Rightarrow n_{\rm ess} \rightarrow 0$ as data is collected.

Resampling: move information from weights to the density of SMC particles.

- Resampling when $n_{\rm ess}/n \le 0.5$ preserves stability.
- Monitoring n_{ess} can herald some kinds of failures.

Towards Bootstrapping

SMC uses simulation as a resource for learning.

Simulation calls: main cost to SMC (*n* each Bayes update).

Towards Bootstrapping

SMC uses *simulation* as a resource for *learning*.

Simulation calls: main cost to SMC (*n* each Bayes update).

Big Idea

Use quantum simulation to extend SMC past classical resources.

Weak and Strong Simulation

Weak and Strong Simulation

Quantum simulation produces data, not likelihoods. Must sample to estimate likelihood.

Introduction Bayes QHL Bootstrapping Conclusions Weak S

Adaptive Likelihood Estimation

Solution

Treat estimating the likelihood as a secondary estimation problem:

Learn likelihood of untrusted system from frequencies of trusted system.

Introduction Bayes QHL Bootstrapping Conclusions Weak Sim. Likelihood Results

Adaptive Likelihood Estimation

Solution

Treat estimating the likelihood as a secondary estimation problem:

Learn likelihood of untrusted system from frequencies of trusted system.

SMC is robust to likelihood estimation errors.

Quantum Likelihood Evaluation

Compare *classical* outcomes of unknown and trusted systems.

For each x_i :

- repeatedly sample from quantum simulation of $e^{-it\underline{x}_i}$, getting D'_i .
- estimate ℓ_i from D'_i .

SMC update:

$$w_i \mapsto w_i \hat{\ell}_i / \sum_i w_i \hat{\ell}_i$$
.

(Wiebe, Granade, Ferrie and Cory 2014 10/tf3)

QLE can work, but as $t \to \infty$, $\Pr(d|x;t) \rightsquigarrow 1/\dim \mathcal{H}$. Thus, $t \ge t_{eq}$ is uninformative.

By the Cramer-Rao Bound, error then scales as $O(1/Nt_{eq}^2)$.

Interactive OLE

Solution: couple unknown system to a quantum simulator, then invert evolution by hypothesis x_- .

Interactive OLE

Solution: couple unknown system to a quantum simulator, then invert evolution by hypothesis \underline{x}_{-} .

Echo

If
$$\underline{x}_{-} \approx \underline{x}_{0}$$
, then $\left| \langle \psi | e^{-it(H(\underline{x}_{0}) - H(\underline{x}_{-}))} | \psi \rangle \right|^{2} \approx 1$.

Particle Guess Heuristic

Inversion connects the model and experiment spaces. Use this duality as a heuristic for experiment design.

- Choose $x_-, x'_- \sim \Pr(x)$, the most recent posterior.
- Choose $t = 1/||x_- x'_-||$.
- Return $e = (x_-, t)$.

Hamiltonian: nearest-neighbor Ising models on a chain of nine qubits.

Interactivity allows for dramatic improvements over QLE.

 \mathcal{P} : adaptive likelihood estimation tolerance. (Wiebe, Granade, Ferrie and Cory 2014 10/tf3)

Ising Model on the Complete Graph

With IQLE, can also learn on complete interaction graphs. We show the performance as a function of the depolarization strength \mathcal{N} .

 \mathcal{N} : depolarizing noise following SWAP gate.

Ising Model with the Wrong Graph

Simulate with spin chains, suppose "true" system is complete, with non-NN couplings $O(10^{-4})$.

Scaling Parameter

 $\dim x$, not $\dim \mathcal{H}$, determines scaling of IQLE.

Figure: 4 qubit (red) and 6 qubit (blue) complete graph IQLE

In spin-chain and complete graph, average error decays

exponentially,

$$L(N) \propto e^{-\gamma N}$$

Scaling and Dimensionality

In spin-chain and complete graph, average error decays exponentially,

$$L(N) \propto e^{-\gamma N}$$

Assess scaling by finding $\gamma = \gamma(\dim x)$:

With quantum simulation, learning may scale efficiently.

(Wiebe, Granade, Ferrie and Cory 2014 10/tf3)

SMC + IOLE:

- Possibly scalable with quantum resources.
- Robust to finite sampling.
- Robust to approximate models.

Still requires simulator be at least as large as system of interest.

Information Locality

To go further, we want to *localize* our experiment, such that we can simulate on a smaller system.

Measure on X, simulate on W, and ignore all terms with support over Y.

Information Locality

To go further, we want to *localize* our experiment, such that we can simulate on a smaller system.

Measure on X, simulate on W, and ignore all terms with support over Y.

Gives *approximate* model that can be used to learn Hamiltonian restricted to *X*.

Local and Global Particle Clouds

To reconstruct the entire system, we need to combine data from different partitions.

Separate out one partition at a time, maintain a *global* cloud of particles.

Local and Global Particle Clouds

Initialize $\{\underline{x}_i\}$ over entire system. Then, for each simulated subregister W_k :

- **1** Make "local" particle cloud $\{\underline{x}_i|_{W_k}\}$ by slicing $\{\underline{x}_i\}$.
- **2** Run SMC+IQLE with $\{\underline{x}_i|_{W_k}\}$ as a prior.
- Ensure that the final "local" cloud has been resampled (has equal weights).
- 4 Overwrite parameters in "global" cloud $\{\underline{x}_i\}$ corresponding to post-resampling $\{\underline{x}_i|_{W_k}\}$.

In this way, all parameters are updated by an SMC run.

O50 Example

Goal: characterize a 50-qubit Ising model (complete graph) with unknown ZZ couplings.

All Hamiltonian terms commute, but initial state doesn't. Let A_X be observable, $A_{X'}$ be sim. observable.

$$||A_X(t) - A_{X'}(t)|| \le ||A_X(t)|| (e^{2||H|_Y||t} - 1)$$

 $\Rightarrow t \le \ln\left(\frac{\delta}{||A_X(t)||} + 1\right) (2||H|_Y||)^{-1},$

where δ is the tolerable likelihood error.

Example Q50 Run

$$|X_k| = 4$$
, $|W_k| = 8$, $n = 20,000$, $N = 500$, exp. decaying interactions.

NB: 1225 parameter model, L_2 error of 0.3%.

Example Q50 Run

 $|X_k| = 4$, $|W_k| = 8$, n = 20,000, N = 500, exp. decaying interactions.

NB: 1225 parameter model, L_2 error of 0.3%.

Scaling With *N*

We expect from uncompressed quantum Hamiltonian learning that the error decays exponentially with more data. This remains the case even with compression.

More generally, for $[H|_W, H_Y] \neq 0$, use Lieb-Robinson bound. If interactions between *X* and *Y* decay sufficiently quickly, then there exists C, μ and v s. t. for any observables $A_X(t)$, B_Y :

$$||[A_X(t), B_Y]|| \le C||A_X(t)|||B_Y|||X||Y|(e^{v|t|} - 1)e^{-\mu d(X,Y)}$$

This *guarantees* that error due to truncation is bounded if we choose small t.

Lieb-Robinson Bounds

Can find bound in terms of Hamiltonian by considering H site-by-site.

Let H_i be the Hamiltonian term containing distance-iinteractions between W and Y, acting on sites Ω_i .

$$||A(t) - e^{iH|_W t} A e^{-iH|_W t}|| \le \sum_j C||A|| ||H_j|| |X|| \Omega_j |e^{-\mu j} (e^{v|t|} - 1)$$

"Shaking"

Can improve the Lieb-Robinson bound by alternating between simulator and system. Using $r \approx vt$ swap gates, error is O(t).

Bootstrapping Algorithm

Consider H an affine map H(C) of control settings C:

$$H(\underline{C}) = \underline{C} \cdot (H_1, H_2, \dots, H_M) + H_0. \tag{1}$$

E.g.: cross-talk.

We can learn this with compressed IQLE:

- Learn H(0) to estimate \hat{H}_0 .
- Learn $H(\underline{e}_i)$ for $j \in \{1, ..., M\}$.
- Subtract H_0 from each of the learned Hamiltonians to estimate the other terms.
- Use the pseudoinverse to derive control settings to generate desired Hamiltonians.

Consider H(C) such that C_i nominally controls the coupling $H_i = \sigma_z^{(i)} \sigma_z^{(i+1)}$. For a 50-qubit device, dim C = 49, so this is a $(49+1) \times 1225 \approx 61 \times 10^3$ parameter model.

We collect 200 bits of data per scan, for a total of $50 \times 49 \times 200 = 490 \times 10^3$ bits of data. We use 20×10^3 particles, for a total of 10 million likelihood calls.

Results for Bootstrapping 50-Qubit Simulator

Figure: Frequencies of error $||H(\hat{C}_i) - H_i||_2$ for Q50 bootstrapping.

Introduction Bayes QHL Bootstrapping Conclusions

■ Bayesian inference: simulation as a characterization/validation resource.

- Bayesian inference: simulation as a characterization/validation resource.
- Sequential Monte Carlo: numerical algorithm for inference.

- Bayesian inference: simulation as a characterization/validation resource.
- Sequential Monte Carlo: numerical algorithm for inference.
- Robust to many practical concerns.

- Bayesian inference: simulation as a characterization/validation resource.
- Sequential Monte Carlo: numerical algorithm for inference.
- Robust to many practical concerns.
- Can use quantum simulation to offer potential scaling.

- Bayesian inference: simulation as a characterization/validation resource.
- Sequential Monte Carlo: numerical algorithm for inference.
- Robust to many practical concerns.
- Can use quantum simulation to offer potential scaling.
- Using robustness of SMC, can truncate simulation → bootstrapping.

Further Information

Slides, a journal reference for this work, a full bibliography and a software implementation can be found at http://www.cgranade.com/research/talks/iqc/01-06-2015/.

Thank you for your kind attention!

Decision Theory

A few definitions help us evaluate estimates \hat{x} of \underline{x} :

Loss How well have we learned?

$$L_{\underline{\underline{Q}}}(\hat{\underline{x}},\underline{x}) := (\hat{\underline{x}} - \underline{x})^{\mathrm{T}} \underline{\underline{Q}}(\hat{\underline{x}} - \underline{x})$$

Decision Theory

A few definitions help us evaluate estimates \hat{x} of \underline{x} :

Loss How well have we learned?

$$L_{\underline{\underline{Q}}}(\hat{\underline{x}},\underline{x}) := (\hat{\underline{x}} - \underline{x})^{\mathrm{T}} \underline{\underline{\underline{Q}}}(\hat{\underline{x}} - \underline{x})$$

Risk On average, how well will we learn a particular model?

$$R(\hat{\underline{x}}, \underline{x}) := \mathbb{E}_D[L(\hat{\underline{x}}(D), \underline{x})]$$

Decision Theory

A few definitions help us evaluate estimates \hat{x} of \underline{x} :

Loss How well have we learned?

$$L_{\underline{\underline{Q}}}(\hat{\underline{x}},\underline{x}) := (\hat{\underline{x}} - \underline{x})^{\mathrm{T}} \underline{\underline{\underline{Q}}}(\hat{\underline{x}} - \underline{x})$$

Risk On average, how well will we learn a particular model?

$$R(\hat{\underline{x}},\underline{x}) := \mathbb{E}_D[L(\hat{\underline{x}}(D),\underline{x})]$$

Bayes risk On average, how well will we learn a range of models?

$$r(\underline{\hat{x}}, \pi) = \mathbb{E}_{\underline{x} \sim \pi}[R(\underline{\hat{x}}, \underline{x})]$$

Decision Theory

A few definitions help us evaluate estimates \hat{x} of \underline{x} :

Loss How well have we learned?

$$L_{\underline{\underline{Q}}}(\hat{\underline{x}},\underline{x}) := (\hat{\underline{x}} - \underline{x})^{\mathrm{T}} \underline{\underline{\underline{Q}}}(\hat{\underline{x}} - \underline{x})$$

Risk On average, how well will we learn a particular model?

$$R(\hat{\underline{x}}, \underline{x}) := \mathbb{E}_D[L(\hat{\underline{x}}(D), \underline{x})]$$

Bayes risk On average, how well will we learn a range of models?

$$r(\underline{\hat{x}}, \pi) = \mathbb{E}_{\underline{x} \sim \pi}[R(\underline{\hat{x}}, \underline{x})]$$

Cramér-Rao Bound On average, how well can we learn?

Cramér-Rao Bound

Fisher Information

How much information about \underline{x} is obtained by sampling data?

$$\underline{\underline{I}}(\underline{x}) = \mathbb{E}_D[(\underline{\nabla}_{\underline{x}} \log \Pr(D|\underline{x}))(\underline{\nabla}_{\underline{x}} \log \Pr(D|\underline{x}))^{\mathrm{T}}]$$

Cramér-Rao Bound

Fisher Information

How much information about \underline{x} is obtained by sampling data?

$$\underline{\underline{I}}(\underline{x}) = \mathbb{E}_D[(\underline{\nabla}_{\underline{x}} \log \Pr(D|\underline{x}))(\underline{\nabla}_{\underline{x}} \log \Pr(D|\underline{x}))^{\mathrm{T}}]$$

The Cramér-Rao Bound tells how well any unbiased estimator can do. If $\underline{\underline{Q}} = \mathbb{1}$, then

$$R(\hat{\underline{x}}, \underline{x}) = \text{Tr}(\text{Cov}(\hat{\underline{x}})) \ge \text{Tr}(\underline{I}(\underline{x})^{-1}).$$

Bayesian Cramér-Rao Bound

Expectation of Fisher information over prior π : the *Bayesian* Cramér-Rao bound.

$$\underline{\underline{B}} := \mathbb{E}_{\underline{x} \sim \pi}[\underline{\underline{I}}(\underline{x})], \quad r(\pi) \ge \underline{\underline{B}}^{-1}$$

For adaptive experiments, the posterior is used instead of the prior.

The BCRB can be computed iteratively: useful for tracking optimality online.

$$\underline{\underline{B}}_{k+1} = \underline{\underline{B}}_k + \begin{cases} \mathbb{E}_{\underline{x} \sim \pi}[\underline{\underline{I}}(\underline{x}; \underline{e}_{k+1})] & \text{(non-adaptive)} \\ \mathbb{E}_{\underline{x}|d_1, \dots, d_k}[\underline{\underline{I}}(\underline{x}; \underline{e}_{k+1})] & \text{(adaptive)} \end{cases}$$

Liu and West Algorithm

Draw new particles \underline{x}' from kernel density estimate:

$$\Pr(\underline{x}') \propto \sum_{i} w_{i} \exp\left((\underline{x}' - \underline{\mu}_{i})^{T} \underline{\underline{\Sigma}} (\underline{x}' - \underline{\mu}_{i})\right)$$
$$\underline{\mu}_{i} := a\underline{x}_{i} + (1 - a)\mathbb{E}[\underline{x}] \qquad \underline{\underline{\Sigma}} := h^{2} \operatorname{Cov}[\underline{x}] \qquad w'_{i} := 1/n$$

Liu and West Algorithm

Draw new particles \underline{x}' from kernel density estimate:

$$\Pr(\underline{x}') \propto \sum_{i} w_{i} \exp\left((\underline{x}' - \underline{\mu}_{i})^{T} \underline{\underline{\Sigma}} (\underline{x}' - \underline{\mu}_{i})\right)$$
$$\underline{\mu}_{i} := a\underline{x}_{i} + (1 - a)\mathbb{E}[\underline{x}] \qquad \underline{\underline{\Sigma}} := h^{2} \operatorname{Cov}[\underline{x}] \qquad w'_{i} := 1/n$$

Parameters *a* and *h* can be set based on application:

- a = 1, h = 0: Bootstrap filter, used in state-space applications like Condensation.
- $a^2 + h^2 = 1$: Ensures $\mathbb{E}[\underline{x}'] = \mathbb{E}[\underline{x}]$ and $Cov(\underline{x}') = Cov(\underline{x})$, but assumes unimodality.
- $a = 1, h \ge 0$: Allows for multimodality, emulating state-space with synthesized noise.

Putting it All Together: The SMC Algorithm

- **1** Draw $\{\underline{x}_i\} \sim \pi$, set $\{w_i\} = 1/n$.
- **2** For each datum $d_j \in D$:

 - **2** Renormalize $\{w_i\}$.
 - If $n_{\rm ess}/n \leq 0.5$, resample.
- **3** Report $\hat{\underline{x}} := \mathbb{E}[\underline{x}] \approx \sum_{i} w_i \underline{x}_i$.

State-Space SMC

Can move particles at each timestep $\underline{x}(t_k) \sim \Pr(\underline{x}(t_k)|\underline{x}(t_{k-1}))$. This represents *tracking* of a stochastic process.

Confidence and Credible Regions

Characterizing uncertainty of estimates is critical for many applications:

Definition (Confidence Region)

 X_{α} is an α -confidence region if $Pr_D(\underline{x}_0 \in X_{\alpha}(D)) \geq \alpha$.

Confidence and Credible Regions

Characterizing uncertainty of estimates is critical for many applications:

Definition (Credible Region)

 X_{α} is an α -credible region if $\Pr_{\underline{x}}(\underline{x} \in X_{\alpha}|D) \geq \alpha$.

Confidence and Credible Regions

Characterizing uncertainty of estimates is critical for many applications:

Definition (Credible Region)

 X_{α} is an α -credible region if $\Pr_{\underline{x}}(\underline{x} \in X_{\alpha}|D) \geq \alpha$.

Credible regions can be calculated from posterior $Pr(\underline{x}|D)$ by demanding

$$\int_{X_{\alpha}} d \Pr(\underline{x}|D) \ge \alpha.$$

High Posterior Density

Want credible regions that are *small* (most powerful).

- Posterior covariance ellipses (PCE)— good for approximately normal posteriors
- Convex hull— very general, but verbose description
- Minimum volume enclosing ellipses (MVEE)— good approximation to hull

Comparison of HPD Estimators

For multimodal distributions, clustering can be used to exclude regions of small support.

For a noisy coin model (heads probability p, visibility η):

Left, no clustering. Right, DBSCAN.

Bayes Factors and Model Selection

Drunk Under the Streetlights

In SMC update
$$w_i \mapsto w_i \times \Pr(d|\underline{x};\underline{e})/\mathcal{N}$$
,

$$\mathcal{N} = \mathcal{N}(d) \approx \Pr(d|\underline{e}).$$

Is this useful?

Bayes Factors and Model Selection

Drunk Under the Streetlights

In SMC update $w_i \mapsto w_i \times \Pr(d|\underline{x};\underline{e})/\mathcal{N}$,

$$\mathcal{N} = \mathcal{N}(d) \approx \Pr(d|\underline{e}).$$

Is this useful?

Collecting normalizations \mathcal{N}_A and \mathcal{N}_B for models A, B at each step gives

Bayes factor =
$$\frac{\Pr(D|A;\underline{e})\Pr(A)}{\Pr(D|B;\underline{e})\Pr(B)} \approx \frac{\prod_{d \in D} \mathcal{N}_A(d)}{\prod_{d \in D} \mathcal{N}_B(d)} \times \frac{\Pr(A)}{\Pr(B)}$$

For full data record, can multiply normalization records to select *A* versus *B*.

(Wiebe, Granade, Ferrie and Cory 2014 10/tdk)

For example, deciding between linear- (left) and complete-graph (right) Ising models:

Method of Hyperparameters

If "true" model $\underline{x} \sim \Pr(\underline{x}|\underline{y})$, for some *hyperparameters* \underline{y} , can est. \underline{y} directly:

$$\Pr(d|\underline{y};\underline{e}) = \int \Pr(d|\underline{x},\underline{y};\underline{e}) \Pr(\underline{x}|\underline{y};\underline{e}) d\underline{x}.$$

Method of Hyperparameters

If "true" model $\underline{x} \sim \Pr(\underline{x}|\underline{y})$, for some *hyperparameters* \underline{y} , can est. y directly:

$$\Pr(d|\underline{y};\underline{e}) = \int \Pr(d|\underline{x},\underline{y};\underline{e}) \Pr(\underline{x}|\underline{y};\underline{e}) d\underline{x}.$$

Example

For Larmor precession with $\omega \sim \text{Cauchy}(\omega_0, T_2^{-1})$,

$$\Pr(d|(\omega_0, T_2^{-1}); t) = e^{-tT_2^{-1}} \cos^2(\omega_0 t/2) + (1 - e^{-tT_2^{-1}})/2.$$

Let
$$\underline{y} = (\omega_0, T_2^{-1})$$
.

(Granade et al. 2012 10/s87)

Hyperparameters and Region Estimation

In some hyperparameter models, can also express as region estimator on underlying parameters.

Figure: Larmor precession model w/ $\omega \sim N(\mu, \sigma^2)$, three exp. design strategies

Critically, the covariance region for ω is not smaller than the true covariance given by the hyperparameter σ^2 .

(Granade et al. 2012 10/887)