Large-Sample Normal Approximation to the Posterior

Poisson Model

- Observe $X_1,\ldots,X_n;$ X_i is the number of seedlings in quadrat number i.• Data Model: $X_i|\Lambda=\lambda\stackrel{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\lambda)$
- Suppose we use a Gamma prior for Λ
 - Example: $\Lambda \sim \text{Gamma}(1, 0.01)$ is fairly non-informative
- Decomposing the log-posterior pdf into contributions from prior and likelihood

 $\log\{f_{\Theta|X_1,...,X_n}\} = \log\{c \cdot f_{\Theta}(\theta) \cdot \prod_{i=1}^n f_{X_i|\Theta}(x_i|\theta)\} = \log(c) + \log\{f_{\Theta}(\theta)\} + \sum_{i=1}^n \log\{f_{X_i|\Theta}(x_i|\theta)\}$

Simulation: $\lambda = 10$

n = 1

$log\{f(x_i|\theta)\}$

 $log\{f(\theta|x_1, ..., x_n)\}$

 $log\{f(\theta|x_1,\,...,\,x_n)\}$, zoomed in to [9.95, 10.25], width 0.3

