Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Основы механики жидкости и газа

Отчёт по лабораторной работе N2

Работу
выполнил:
Тептев М.А.
Цопанов М.Т.
Дубовой И.В.
Корейкина Н.В.
Балакишиев Э.М.
Группа:
5030301/00102
Преподаватель:
Синицына Д.Э.

 ${
m Caнкт-} \Pi$ етербург 2023

Содержание

1.	Задание	3
2.	Измерительные приборы	3
3.	Выполнение работы	4
4.	Вывод	7

1. Задание

- 1. Измерить распределение давления по поверхности обтекаемого тела, представляющего собой макет (модель) приемной части (насадка) скоростной трубки.
- 2. Построить график зависимости коэффициента давления от продольной координаты и определить место оптимального расположения «щели статического давления» на трубке Пито-Прандля.

Рисунок 1.1. Схема установки.

Схема экспериментального участка, подготовленного для выполнения лабораторной работы, изображена на рисунке 1.1, где МТ — модель скоростной трубки; ЭТ - эталонная скоростная трубка; M_0 — микроманометр для измерения скоростного напора; M_1 — микроманометр для измерения распределения давления (относительного) по поверхности модели. К микроманометру M_1 поочерёдно подключаются пронумерованные шланги для передачи давления от разных приёмных отверстий, расположенных на поверхности модели.

2. Измерительные приборы

Название прибора	№ прибора	Масштаб, т
Режимный микроманометр	27	0.501
Микроманометр, M_0	27	0.501
Микроманометр, M_1	40	0.520

3. Выполнение работы

1. При одном режиме работы аэродинамической трубы (соответствующем показанию режимного микроманометра 50-55 мм) измеряется величина относительного давления $(p-p_0)$ в разных точках на поверхности модели трубки и скоростной напор. Результаты записаны в таблицу 3.1.

Таблица 3.1 Результаты измерений давления на поверхности модели

	$m_0 = 0.501$	$m_1 = 0.520$	$a_0 = 0$	$a_1 = 0$		
№ точки	$\overline{s_i}$	A_0	A_1	$A_0 - a_0$	$A_1 - a_1$	$\overline{p_i}$
1	6,5	48	0	48	0	0
2	5,5	48	0	48	0	0
3	4,5	48	1	48	1	0,0216234198270126
4	3,75	48	2	48	2	0,0432468396540253
5	3	48	0	48	0	0
6	2,25	25 48		48	0	0
7	1,5	48	0	48	0	0
8	1	48	0	48	0	0
9	0,5	48	-20	48	-20	-0,432468396540253
10	0,15	48	8	48	8	0,172987358616101
11	0	48	46	48	46	0,994677312042582
12	0,15	48	4	48	4	0,0864936793080506
13	0,5	48	-20	48	-20	-0,432468396540253
14	1	48	-18	48	-18	-0,389221556886228
15	1,75	48	-2	48	-2	-0,0432468396540253
16	2,5	48	-1	48	-1	-0,0216234198270126
17	3,25	48	0	48	0	0
18	4,25	48	0	48	0	0
19	5,25	48	0	48	0	0
20	6,25	48	8	48	8	0,172987358616101

В таблице 3.1: A_0, A_1 — показания манометров M_0 и $M_1; m_0, m_1$ — масштабный коэффициент и начальное показание микроманометра $M_0; m_1, a_1$ — то же для микроманометра $M_1; \overline{s_i}$ — безразмерная координата і-ой точки, отсчитанная от носика трубки и отнесенная к диаметру модели трубки d=20 мм (исходные данные в таблице 3.2); $\overline{p_i}$ — рассчитываемое локальное значение безразмерного коэффициента давления.

2. С применением формулы:

$$\overline{p_i} \equiv \frac{p_i - p_0}{\frac{\rho V^2}{2}} = \frac{(A_1 - a_1)_i m_1 \gamma_1}{(A_0 - a_0) m_0 \gamma_0}$$

рассчитаем значения коэффициента давления, и по полученным данным построим график зависимости $\overline{p} = f(\overline{s})$:

Рисунок 3.1. График распределения безразмерного коэффициента давления по поверхности модели скоростной трубки.

3. Проведем анализ полученной зависимости и определим место, где целесообразно располагать щель статического давления на скоростной трубке Пито-Прандля.

Таблица 3.2 Расстояние от точек измерения давления до носика трубки

№ точки	1	2	3	4	5	6	7	8	9	10
S, MM	130	110	90	75	60	45	30	20	10	3
№ точки	11	12	13	14	15	16	17	18	19	20
S, MM	0	3	10	20	35	50	65	85	105	125

Как видно из графика, в точке 11 ($\overline{s_i}=0$) происходит скачок безразмерного коэффициента давления. Значения давления на контрольной и на измеряемой трубках сравнялись. В данной точке можно наблюдать давление полного напора потока. В точках 2 и 13 давление достигает минимальных значений. Далее в измерениях наблюдаются шумы и в точках находящихся на расстоянии 2.5 и 3.25 давление приходит к одному значению. После идут возмущения, связанные с ножкой установки. В точках 17 и 5 давление принимает значения

невозмущённого трубкой потока, поэтому в данных точках и следует располагать статические щели для измерения динамического давления.

4. Вывод

Было проведено исследование распределения давления по поверхности носика скоростной трубки для определения положения статического отверстия. Скачок давления был обнаружен на кончике трубки, в точке 11, что соответствует полному напору от лобового столкновения.

В точках 5 и 17, расположенных в 2.5 и 3.25 условных единицах, наблюдается сравнение давления на трубке с давлением невозмущённого потока, что позволяет исключить статическое давление из полного напора. Не симметричность «хвоста» графика (дальние точки сверху и снизу трубки) объясняется обтеканием ножки подставки, попадающей в поток.

Таким образом лучше всего располагать статическую щель в точках 5 или 17.