TIPE: Gestions des flux de spectateurs autour du stade de France par la théorie des graphes.

Définition d'itinéraires sécurisés pour évacuer le Stade de France.

Noé VINCENT

Comment utiliser la théorie des graphes pour définir les itinéraires piétons aux alentours du stade de France ?

- maintenir la sécurité des spectateurs.
- le plus efficacement.

Plan

- 1. Analyse de la situation
- 2. Modélisation: Graphe de Capacité
- 3. Une méthode naïve
- 4. Une méthode optimale: le flot maximal
- 5. Analyse des résultats
- 6. Annexe

1. Analyse de la situation

Situation Géographique

Le stade de France: 81 500 spectateurs

3 stations de transport en commun aux alentours:

- Saint-Denis Porte de Paris (M13)
- La Plaine Stade de France (RER B)
- Stade de France Saint-Denis (RER D)

Carte des alentours du Stade de France - @OSM

Foules et risques

À partir de 6 personnes/m², -> Potentiel danger On place la limite à 5 personnes/m²

6 people / m²

At six people per square meter, the situation can start to get dangerous. There's more physical contact and it's harder for each person to keep a wider stance, making it much easier for people to tip over. At this point, those in the crowd can easily lose the ability to control their own movement.

Issu de: These are the warning signs that a crowd is

dangerously dense - @CNN

2. Modélisation: Graphe de Capacité

Graphes de capacités

Soit $G_c = (V, E, C)$ un graphe non orienté pondéré par:

 $C:E o\mathbb{N}$ la capacité de chaque arête.

Le graphe des capacités.

Modélisations de la capacité

Modélisation de piétons dans le pire des cas :

$$\delta=5 pers./m^2$$

Capacité d'une rue: débit maximal en pers./s

$$c = \delta * w * v$$

- w la largeur de la rue (approximée)
- v la vitesse de la foule
- δ la densité de la foule

$$v=0,4m/s$$

Étude expérimentale et modélisation des déplacements collectifs de piétons @Mehdi Moussaid

Graphe de capacité

Carte de la zone @OSM

Graphe de capacité

Graphe représentant la zone

3. Une méthode naïve

 \rightarrow les chemins de plus grande capacité entre le stade et les stations

Capacité d'un chemin

$$egin{aligned} p \subset E \ C(p) = min\left\{C(e), e \in p
ight\} \end{aligned}$$

L'algorithme de dijkstra

Chemin de poids minimal dans un graphe.

Algorithme Widest Path

Algorithme de dijkstra modifié \rightarrow chemin de capacité maximale

Chemin le plus large entre le stade et le métro, largeur : 3

Chemin le plus large entre le stade et le RER B, largeur 7

Chemin le plus large entre le stade et le RER D, largeur 4

Analyse de la solution

Zoom sur le sud-est du graph

Goulots d'etranglement

Cannibalisme

Annalyse de la solution

Largeur théorique : 3+4+7=14

Débit théorique : 28pers/s

Largeur réelle: 10

Débit réel : 20pers/s

Temps d'évacuation : 1h08

4. Une methode optimale : Le flot maximal

Algorithme d'Edmond-Karp

Graphes de Flots

Soit $arphi=(V,E,\phi,s,t)$ un graphe orienté pondéré par $\phi:E o\mathbb{N}$ le flot passant dans chaque arètes.

Le graphe de flot.

s: la source

t: le puit

Flot entrants et sortants dans un noeud

On définit:

$$\phi^{\scriptscriptstyle -}: u \in V
ightarrow \sum_{v | (u,v) \in E} \phi(u,v)$$

$$\phi^{\scriptscriptstyle +}: u \in V
ightarrow \sum_{v | (v,u) \in E} \phi(v,u)$$

Propriétés des Flots

Sources et puits

$$\phi^+(s) = 0$$

 $\phi^-(t)) = 0$

Valeur du flot

$$V_\phi = \phi^-(s)$$

Conservation du flot

$$orall u \in Vackslash \{s,t\}, \phi^{{}_{}^{\scriptscriptstyle +}}(u) = \phi^{{}_{}^{\scriptscriptstyle -}}(u)$$

Graphe des augmentations

Soit $G_A = (V, E, C_r)$ un graphe orienté pondéré par:

 $C_r: E o \mathbb{N}$ la capacité restante de chaque arête.

Le graphe des augmentation.

Chemin augmentant

$$P=(p,d\phi)\in \mathbb{P}(E)*\mathbb{N}$$

p : ensemble d'arcs débutant à s et finissant en t

 $d\phi$: variation du flot

Algorithme d'Edmond-Karp

 $EK:G_c o arphi_{max}$

Objectif

Maximiser V_ϕ

Fonctionnement

Trouver des chemins augmentants dans G_a afin d'augmenter le flux.

Pseudo-Code de l'algorithme d'Edmond Karp

- G_c le graphe des capacités
- pr les puits réels

Algorithme d'Edmond-Karp

Recherche du Chemin augmentant

Parcours en largeur : plus court chemin en nombre d'arc

Arc avant

Arc de G_r dans le sens initial, le sens du flot

Arc arrière

Arc de G_r de sens inverse au flot, de capacité égale au flot.

Mise à jour de φ

$$orall e = (u,v) \in p$$

si e est un arc avant:

$$\phi(u,v) \leftarrow \phi(u,v) + d\phi$$

si e=(v,u) est un arc arrière:

$$\phi(u,v) \leftarrow \phi(u,v) - d\phi$$

Mise à jour de G_r

$$orall e = (u,v) \in p, C_r(u,v) \leftarrow C_r(u,v) - d\phi$$

$$orall e = (u,v) \in p, C_r(v,u) \leftarrow C_r(v,u) + d\phi$$

Graphe de Capacité, graphe d'augmentation

Graphe de flot

Graphe d'augmentation, chemin augmentant

Graphe de flot

Graphe d'augmentation

Graphe d'augmentation, chemin augmentant

Graphe de flot

Graphe d'augmentation

Graphe d'augmentation, chemin augmentant

Graphe de flot

Graphe d'augmentation

Graphe d'augmentation, chemin augmentant

Graphe de flot

Graphe d'augmentation

Graphe d'augmentation, chemin augmentant

Graphe de flot

Graphe d'augmentation final

Graphe de flot final

Dans le cas du stade de France

Capacité proportionnelle à la largeur de la rue.

Le puit: un noeud fictif relié par des arêtes de capacité maximale aux stations de transport en commun.

La source : Le stade de France

Objectif:

• Le flot (un débit de personne) maximal, pour évacuer le plus éfficacement la foule.

Graphe de capacité

Résultats expérimentaux

Largeur : 23, débit : 46 pers/s, temps :30min (W-P: 10, 20 p/s)

5. Analyse des Résultats

Comparaison W-P v. E-K

- Chevauchement
- Efficacité
- Performance:

E-K 2 fois plus rapide pour le même niveau de sécurité

Critique du résultat

