FMI, Info, Anul I

Logică matematică și computațională

Seminar 12

(S12.1) Fie \mathcal{L} un limbaj de ordinul întâi care conține

- două simboluri de relații unare P, S și două simboluri de relații binare P, Q;
- un simbol de funcție unară f și un simbol de funcție binară g;
- două simboluri de constante c, d.

Să se găsească forme normale prenex pentru următoarele formule ale lui \mathcal{L} :

$$\varphi_{1} = \forall x (f(x) = c) \land \neg \forall z (g(y, z) = d)$$

$$\varphi_{2} = \forall y (\forall x P(x, y) \rightarrow \exists z Q(x, z))$$

$$\varphi_{3} = \exists x \forall y P(x, y) \lor \neg \exists y (S(y) \rightarrow \forall z R(z))$$

$$\varphi_{4} = \exists z (\exists x Q(x, z) \lor \exists x R(x)) \rightarrow \neg (\neg \exists x R(x) \land \forall x \exists z Q(z, x))$$

(S12.2)

- (i) Considerăm limbajul $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} -structura canonică peste acest limbaj $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$. Să se dea exemplu de \mathcal{L}_{ar} -formule $\varphi_1, \varphi_2, \varphi_3$ astfel încât pentru orice $e: V \to \mathbb{N}$,
 - (a) $\mathcal{N} \vDash \varphi_1[e] \Leftrightarrow e(v_0)$ este par;
 - (b) $\mathcal{N} \vDash \varphi_2[e] \Leftrightarrow e(v_0)$ este prim;
 - (c) $\mathcal{N} \vDash \varphi_3[e] \Leftrightarrow e(v_0)$ este putere a lui 2 cu exponent strict pozitiv.
- (ii) Considerăm limbajul $\mathcal{L}_r = (\dot{+}, \dot{\times})$ şi \mathcal{L}_r -structura canonică peste acest limbaj $\mathcal{R} := (\mathbb{R}, +, \cdot)$. Să se dea exemplu de \mathcal{L}_r -formulă ψ astfel încât pentru orice $e: V \to \mathbb{R}$,

$$\mathcal{R} \vDash \psi[e] \Leftrightarrow e(v_0) \leq e(v_1).$$

(S12.3) Considerăm limbajul \mathcal{L} ce conține un singur simbol, anume un simbol de funcție de aritate 2. Să se găsească un enunț φ astfel încât $(\mathbb{Z}, +) \models \varphi$, dar $(\mathbb{Z} \times \mathbb{Z}, +) \not\models \varphi$.