Boolean Algebra

Logic Gates

B.Sc. 2nd Semester

Introduction

- Developed by English Mathematician George Boole in between 1815 -1864.
- It is described as an algebra of logic or an algebra of two values i.e True or False.
- The term logic means a statement having binary decisions i.e True/Yes or False/No.

Application of Boolean algebra

- It is used to perform the logical operations in digital computer.
- In digital computer True represent by '1' (high volt) and False represent by '0' (low volt).
 - Why BINARY? instead of Decimal or other number system?

* Consider electronic signal

* Consider the calculation cost - Add

	0	1_
0	0	1
1	1	10

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4		_	6		_	_	_			_
5	5	6	7	8	9	10	11	12	13	14
6			8							
7			9							
8			10							
9	9	10	11	12	13	14	15	16	17	18

- Logical operations are performed by logical operators. The fundamental logical operators are:
 - 1. AND (conjunction)
 - 2. OR (disjunction)
 - 3. NOT (negation/complement)

AND operator

• It performs logical multiplication and denoted by (.) dot.

X	Y	X.Y	
0	0	0	AND
0	1	0	
1	0	0	
1	1	1	

OR operator

• It performs logical addition and denoted by (+) plus.

X	Y	X+Y
0	0	0
0	1	1
1	0	1
1	1	1

NOT operator

• It performs logical negation and denoted by (-) bar. It operates on single variable.

\boldsymbol{X}	\overline{X}	(means complement of x)
0	1	
1	0	

Truth Table

- Truth table is a table that contains all possible values of logical variables/statements in a Boolean expression.
- No. of possible combination = 2^n , where n=number of variables used in a Boolean expression.

Example

• The truth table for X.Y + Z is as follows:

Dec	X	Y	Z	X.Y	X.Y + Z
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	0
3	0	1	1	0	1
4	1	0	0	0	0
5	1	0	1	0	1
6	1	1	0	1	1
7	1	1	1	1	1

Many different logic diagrams are possible for a given Function

Tautology & Fallacy

- If the output of Boolean expression is always True or 1 is called Tautology.
- If the output of Boolean expression is always False or 0 is called Fallacy.

Р	Ρ'	P ∩ P ′	$\mathbf{P} \cup \mathbf{P}'$
0	1	0	1
1	0	0	1

$$P \cup P' \rightarrow Tautology$$

$$P \cap P' \rightarrow Fallacy$$

Exercise

 Evaluate the following Boolean expression using Truth Table.

- Verify that P+(PQ)' is a Tautology.
- Verify that (X+Y)'=X'Y'

Function of Boolean variables

X_1	X_2	Y
0	0	0
0	1	0
1	0	0
1	1	1

$$Y = 1$$
 when $X_1 = 1$ and $X_2 = 1$
 $Y = X_1$. X_2

Function of Boolean variables

X_1	X_2	Y
0	0	0
0	1	0
1	0	0
1	1	1

$$Y = 1$$
 when $X_1 = 1$ and $X_2 = 1$
 $Y = X_1$. X_2

$$Y = (\overline{X_1} + \overline{X_2}).(\overline{X_1} + X_2).(X_1 + \overline{X_2})$$

X_1	X_2	Y
0	0	0
0	1	1
1	0	1
1	1	0

X_1	X_2	Y
0	0	0
0	1	1
1	0	1
1	1	0

$$Y = (X_1 + X_2).(\overline{X_1} + \overline{X_2})$$

 $Y = \overline{X_1}.X_2 + X_1.\overline{X_2}$

X_1	X_2	X_3	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

X_1	X_2	X_3	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$Y = (X_1 + X_2 + X_3). (X_1 + \overline{X_2} + X_3). (\overline{X_1} + X_2 + X_3). (X_1 + \overline{X_2} + \overline{X_3})$$
 (POS)

$$Y = (\overline{X_1}.\overline{X_2}.X_3) + (\overline{X_1}.X_2.X_3) + (X_1.\overline{X_2}.X_3) + (X_1.X_2.X_3)$$
 (SOP)