

BUNDESREPUBLIK DEUTSCHLAND

E 04 / 7364

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:	103 32 685.5
Anmeldetag:	18. Juli 2003
Anmelder/Inhaber:	Bayer HealthCare AG, 51373 Leverkusen/DE
	<u>Erstanmelder:</u> BAYER AKTIENGESELLSCHAFT, 51368 Leverkusen/DE
Bezeichnung:	Vorhof-selektiv exprimierte Kaliumkanäle
IPC:	A 61 K, A 61 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 29. April 2004
Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Agurks

Vorhof-selektiv exprimierte Kaliumkanäle

Die Erfindung betrifft die Verwendung von Kaliumkanal-Modulatoren zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen, koronaren Herzkrankheiten sowie Bluthochdruck oder einer Kombination der genannten Erkrankungen.

Die Zellen des Sinusknotens im rechten Vorhof des Herzens haben die Funktion eines physiologischen Schrittmachers, da dort in regelmäßigen Intervallen eine elektrische Erregung ihren Ursprung hat. Verantwortlich für die Erregungsleitung ist eine Membranpotentialänderung, die durch die Konzentration verschiedener Ionen auf beiden Seiten einer Zellmembran bestimmt wird (Na^+ , K^+ und Ca^{2+}). Diese Ionen passieren die Zellmembran durch ionenselektive Kanäle, die aus mehreren Untereinheiten bestehen und zusammen eine Pore bilden. Während einer Herzaktion (Systole) durchläuft die Herzmuskelzelle ein Aktionspotential, das sich aus den Phasen 0-3 zusammensetzt und an dem alle drei o. g. Typen von Ionenkanälen beteiligt sind. Die Aktion beginnt mit einer raschen Depolarisation (Phase 0), an der vor allem Na^+ -Kanäle beteiligt sind, gefolgt von einer transienten, unvollständigen Repolarisation (Phase 1) die in die lang anhaltende Plateauphase (Phase 2) übergeht und an der vor allem Ca^{2+} -Kanäle beteiligt sind. Die Phase 3 repräsentiert die Repolarisation und ist damit für die Wiederherstellung des Ruhezustandes verantwortlich. Der zur Repolarisation notwendige K^+ -Ausstrom wird durch Kaliumkanäle vermittelt. Während des gesamten Aktionspotentials ist die Membran vor einem weiteren depolarisierenden Reiz geschützt, sie ist refraktär (1).

Bei Arrhythmien kommt es entweder zu Störungen der Erregungsbildung, der Erregungsleitung oder einer Kombination aus beiden. Ursache hierfür können Ischämien, entzündliche Erkrankungen des Herzmuskels aber auch Intoxikationen oder vegetative Einflüsse sein. Substanzen und Verfahren, die die Erregungsbildung oder Weiterleitung beeinflussen, werden therapeutisch zur Behandlung von

Arrhythmien eingesetzt. Substanzen, die den repolarisierenden K⁺-Strom verzögern und dadurch Aktionspotentialdauer und Refraktärzeit verlängern, gehören zu den sog. Klasse-III-Antiarrhythmika von denen zur Zeit in Deutschland Amiodaron und Sotalol zugelassen sind (1).

5

Beide Substanzen sind allerdings keine selektiven Kaliumkanalblocker: So zeigt Sotalol neben einer Blockade verschiedener K⁺-Kanäle (z. B. HERG) auch antagonistische Eigenschaften für beta-adrenerge Rezeptoren während Amiodaron neben HERG auch den L-Typ Ca²⁺-Kanal und Na⁺-Kanäle blockiert (1), (2).

10

Ebenso wie die anderen Klassen von Antiarrhythmika besitzen auch die Klasse-III Kaliumkanalblocker ein beträchtliches pro-arrhythmisches Potential, welches auf die gleichzeitige Beeinflussung der Kaliumkanäle im Ventrikel zurückgeführt wird und den klinischen Einsatz limitiert. Insofern kommt der Identifizierung von bevorzugt im Vorhof exprimierten Kaliumkanälen als möglichen Antiarrhythmika-targets eine besondere Bedeutung zu, da hierdurch die Nebenwirkungen, die bis zu tödlichem Kammerflimmern reichen, gesenkt werden könnten (3).

15

Neben Kaliumkanalblockern wie Sotalol und Amiodaron sind auch anti-arrhythmische Wirkungen von Kaliumkanalöffnern z. B. für den ATP-abhängigen Kaliumkanal beschrieben (4).

20

In der vorliegenden Arbeit wurden mittels Affymetrix-MicroArray-Technologie Gene identifiziert, die im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden. (s. Fig. 1). Die Verifizierung der differentiellen Expression ausgewählter Gene erfolgte mittels Real-time PCR (TaqMan). Dabei zeigte sich, dass bei allen 6 untersuchten Patienten die Kaliumkanäle TWIK-1 (5), TASK-1 (6), GIRK1 (7), SK2 (8) und PCN1 (9) deutlich stärker im Vorhof als im Ventrikel exprimiert werden (s. Fig. 3).

25
30

Die vorliegende Erfindung betrifft daher die Verwendung von Modulatoren der zuvor genannten Kaliumkanäle zur Herstellung eines Arzneimittels zur Behandlung und/oder der Prophylaxe der oben genannten Krankheiten.

- 5 Kaliumkanalmodulatoren im Sinne der vorliegenden Offenbarung sind Substanzen welche die Öffnungsduer der genannten Kaliumkanäle verlängern oder verkürzen.

Modulatoren im Sinne der Erfindung sind alle Substanzen, die eine Veränderung der biologischen Aktivität der Kanäle bewirken. Besonders bevorzugte Modulatoren sind Nukleinsäuren inklusive „locked nucleic acids“, „peptide nucleic acids“ und „Spiegelmer“, Proteine inklusive Antikörper und niedermolekulare Substanzen, ganz besonders bevorzugte Modulatoren sind niedermolekulare Substanzen.

- 10 Die Erfindung betrifft die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRQ1, SK2 oder PCN1 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

- 15 Desweiteren betrifft die Erfindung die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRQ1, SK2 oder PCN1 mit einem IC_{50} von $< 1 \mu M$, besonders bevorzugt von $< 100 nM$ zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

- 20 Ein weiterer Erfindungsgegenstand ist eine Methode zum Screenen von Testverbindungen zur Identifizierung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRQ1, SK2 oder PCN1, welche geeignet sind für die Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Gegenstand der Erfindung ist ebenfalls eine pharmazeutische Zusammensetzung, enthaltend einen Modulator oder mehrere Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Erfindungsgegenstand ist des weiteren die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 für die Regulation der Aktivität der entsprechenden Kaliumkanäle in einem Lebewesen einschließlich des Menschen zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Die Erfindung betrifft auch Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Erfnungsgemäß ist ebenfalls die Verwendung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Herstellung eines Arzneimittels zur Behandlung von Arrhythmien, koronaren Herzkrankheiten, Bluthochdruck und den Folgen der Atherosklerose. Da in Abhängigkeit von der Funktion des Genproduktes durchaus auch eine verstärkte Expression im Ventrikel bevorzugt sein kann (z. B. für den Endothelin A-Rezeptor), wird hier der Begriff differentielle Genexpression verwendet.

Ein weiterer Erfindungsgegenstand ist eine Methode zum Screenen von Testverbindungen zur Identifizierung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, die geeignet sind für die Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Gegenstand der Erfindung ist ebenfalls eine pharmazeutische Zusammensetzung, enthaltend einen Modulator oder mehrere Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Erfindungsgegenstand ist des weiteren die Verwendung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, für die Regulation der Aktivität der entsprechenden Genprodukte in einem Lebewesen einschließlich des Menschen zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Die Erfindung betrifft auch Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.

Substanzen, die eine modulierende Wirkung auf die Aktivität der genannten Kanäle haben, können mit dem unten beschriebenen Assay identifiziert werden (Screening).

Die Testung der anti-arrhythmischen Wirkung *in vivo* erfolgt mit dem unten beschriebenen Tierversuch.

25

Beschreibung der Figuren

Figur 1: Tabellarisch aufgelistet sind Gene, die bei allen 6 untersuchten Patienten übereinstimmend differentiell exprimiert zwischen Vorhof und Ventrikel gefunden wurden.

Figur 2: Tabellarisch aufgelistet sind die Genbank Accession-Nummern der mittels TaqMan-PCR verifizierten Gene sowie die dafür verwendeten Primer/Sonden-Sequenzen.

Figur 3: Dargestellt ist die relative mRNA-Expression der Kaliumkanäle TWIK-1, TASK-1, GIRK1 SK2 und PCN1 in humanen Herzen (linker Vorhof [schwarz] und linker Ventrikel [weiss]).

Beispiele

Beispiel 1: Identifizierung differentiell exprimierter Gene zwischen humanem Ventrikel und Vorhof

5

Kleine Stücke (ca. 0,5 g) vom linken Ventrikel bzw. vom linken Vorhof explantiert 10 Herzen wurden mit Einverständnis der Spender vom Herzzentrum Halle (Prof. Morawietz) erhalten. Die Gesamt-RNA hieraus wurde nach Homogenisierung der Gewebe mittels RNAesy-Säulen (Fa. Qiagen) gemäß der Anleitung isoliert. Die Umschreibung von jeweils 10 µg Gesamt-RNA in cDNA, deren anschließende lineare Amplifikation sowie die Hybridisierung der biotinylierten cRNA auf 15 humanen HG-U133A Arrays erfolgte gemäß dem „Affymetrix User Guide“ unter Verwendung von Superscript-II (Fa. Gibco) und des „High Yield cRNA labeling Kits (Fa. Enzo). Der HG-U133A Array erlaubt prinzipiell die simultane mRNA-Analyse 20 von ca. 22.600 humanen Genen. Die Auswertung der Arrays erfolgte mit der Software MAS 5.0 (Fa. Affymetrix) und Gene Spring 5.0 (Fa. Silicon Genetics). In Fig. 1 sind die Gene zusammengefasst, die in allen 6 untersuchten Patienten zwischen Vorhof und Ventrikel differentiell exprimiert wurden. Angegeben ist der Quotient der normierten Expression aus Vorhof und Ventrikel, und zwar jeweils als Mittelwert 25 aus allen 6 Probanden.

Die mittels Array zwischen Vorhof und Ventrikel gefundene differentielle Expression der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 und PCN1 wird durch die Quantifizierung der mRNA in einer Echtzeit-Polymerasekettenreaktion verifiziert 30 (10). Hierzu wird die Gesamt-RNA wie oben beschrieben aus den humanen Myokardproben isoliert und je 1 µg davon zur Entfernung von Kontaminationen genetischer DNA mit 1 Einheit DNase I (Fa. Gibco) für 15 min bei Raumtemperatur umgesetzt. Die Inaktivierung der DNase I erfolgt durch Zugabe von 1 µl EDTA (25 mM) und nachfolgendes Erhitzen auf 65°C (10 min). Anschließend wird im selben Reaktionsansatz die cDNA-Synthese gemäß der Anleitung zum „SUPERSCRIPT-II

RT cDNA synthesis kit“ (Fa. Gibco) durchgeführt und das Reaktionsvolumen mit destilliertem Wasser auf 200 µl aufgefüllt.

Für die PCR wird zu je 5 µl der verdünnten cDNA-Lösung 7,5 µl Gemisch von 5 Primer und Sonde sowie 12,5 µl TaqMan-Reaktionslösung [Universal Master Mix (Fa. Applied Biosystems] gegeben. Die Endkonzentration der Primer ist jeweils 300 nM, die der Sonde 150 nM. Die Sequenzen der Primer sowie die Genbank 10 Accession-Nummern der analysierten Gene sind in Fig. 2 angegeben. Die Identifizierung geeigneter Primer- und Sondensequenzen erfolgte mit dem Programm Primer Express 5.0 (Fa. Applied Biosystems), die PCR erfolgt auf einem ABI-Prism-SDS-7700-Gerät (Fa. Applied Biosystems) gemäß der Anleitung des Herstellers. Aufgezeichnet wird bei der Real-time PCR der sog. Ct-Wert, der für das betreffende Gen im untersuchten Gewebe erhalten wird. Dieser entspricht dem Zyklus, in dem die Fluoreszenzintensität der freigesetzten Sonde ca. 10 Standardabweichungen über 15 dem Hintergrundsignal liegt. Je niedriger der Ct-Wert, umso früher beginnt also die Vervielfältigung, d. h. je mehr mRNA ist in der ursprünglichen Probe enthalten. Zum Ausgleich eventueller Schwankungen bei der cDNA-Synthese wird in allen untersuchten Geweben auch die Expression eines sog. „Haushaltsgenes“ analysiert. Dieses sollte in allen Geweben ungefähr gleich stark exprimiert werden. Für die Normierung 20 der Kaliumkanalexpressionen wurde für Vorhof und Ventrikel einheitlich β-Actin verwendet. Für die graphische Darstellung der relativen mRNA-Expression wird für jedes Gen und jedes Gewebe der dCt-Wert berechnet. Der dCt-Wert ist die Differenz zwischen dem Ct-Wert des untersuchten Kaliumkanals und dem Ct-Wert des Haushaltsgens im jeweiligen Gewebe. Aus diesem Wert wird nach folgender Formel die 25 relative Expression rE berechnet: $rE = 2^{(20-dCt)}$ Diese ist in Fig. 3 als dimensionslose Zahl angegeben.

Beispiel 2: Identifizierung von Kaliumkanalmodulatoren

30 Die Identifizierung von Kaliumkanalmodulatoren erfolgt in einem zellulären Assay bei dem CHO-Zellen den jeweiligen Ionenkanal rekombinant exprimieren und unter

Verwendung des potential-sensitiven Farbstoffs Dye B aus dem „FLIPR membrane potential assay kit“ (Fa. Molecular Probes). Eine Depolarisation der Zellen durch eine chemische Substanz führt zu einer vermehrten Aufnahme des Farbstoffs „Dye B“ und dadurch zu einer erhöhten intrazellulären Fluoreszenzintensität. Eine Hyperpolarisation der Zelle durch eine chemische Substanz führt dagegen zu einer Abnahme der Farbstoffkonzentration in der Zelle und damit auch zu einer Abnahme der Fluoreszenzintensität, da die Quantenausbeute von Dye B in wässriger Lösung geringer ist. Zur Messung werden konfluente Zellen verwendet, die nach Entfernen des Mediums entsprechend den Vorschriften des Kit-Herstellers (Molecular Probes) bei Raumtemperatur mit dem Farbstoff Dye B beladen werden. Die Fluoreszenzmessung erfolgt ebenfalls bei Raumtemperatur in einer Fluobox (Fa. Tecan) bei einer Anregungswellenlänge von 520 nm und einer Absorptionswellenlänge von 575 nm, wie zum Beispiel beschrieben in (11).

15 Beispiel 3: Testung der *in vivo* Wirkung von Kaliumkanalmodulatoren

Der Einfluss der Kaliumkanalmodulatoren auf die Herzfrequenz wird an narkotisierten Ratten untersucht. Hierzu werden männliche Wistaratten (250-300g) mit 10mg/kg Thiobutabarital i. p. (Inactin, Byk Gulden) narkotisiert und anschließend getötet. Nach Thoraxeröffnung wird das Herz freigelegt, der rechte Vorhof isoliert und unter einer 1g-Vorspannung in einer 30°C warmen Krebs-Henseleit-Lösung (in einem 10 ml Organbad) aufbewahrt. Diese Lösung wird mit Carbogen (95% O₂, 5% CO₂) bei pH 7.2-7.4 begast. Die Vorhöfe schlagen spontan und nach Aufzeichnung einer Kontrollperiode (Parameter: Frequenz) werden die Testsubstanzen in einer Dosisreihe appliziert. Pro Dosis wird die Veränderung der Frequenz im Vergleich zu Placebo-behandelten Kontrollen ausgewertet.

Beispiel 4: Kaliumkanalmodulator-Formulierungen

30 Die Kaliumkanalmodulatoren können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulate, Aerosole, Si-

rupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von 0,5 bis 90 Gew.-% der Gesamtmasse vorhanden sein, d.h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

Die Formulierungen werden beispielsweise hergestellt durch Strecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z.B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungen verwendet werden können.

Die Applikation erfolgt in üblicher Weise, vorzugsweise oral, transdermal, intravenös oder parenteral, insbesondere oral oder intravenös. Sie kann aber auch durch Inhalation über Mund oder Nase, beispielsweise mit Hilfe eines Sprays erfolgen, oder topisch über die Haut.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, Mengen von etwas 0,001 bis 10 mg/kg, bei oraler Anwendung vorzugsweise etwa 0,005 bis 3 mg/kg Körpergewicht zur Erzielen wirksamer Ergebnisse zu verabreichen.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchen die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

Literatur

1. Forth, Henschler, Rummel; Allgemeine und spezielle Pharmakologie und Toxikologie; Urban & Fischer Verlag München, 8. Auflage 2001, 429-433.
2. Numaguchi H. et al., Probing the interaction between inactivation gating and D_d-solatol block of HERG, Circ. Res. 11 (2000) 1012-1018.
5. 3. Nattel, S. et al., Evolution, mechanisms, and classification of antiarrhythmic drugs: focus on class III actions, Am. J. Cardiol. 84 (1999) 11R-19R.
4. Workmann, A. J. et al., A K(ATP) channel opener inhibited myocardial reperfusion action potential shortening and arrhythmias.
5. Lesage, F. et al., TWIK-1, a ubiquitous human weakly inward rectifying K⁺ channel with a novel structure, EMBO J. 15 (1996) 1004-1011.
6. Duprat, F. et al., TASK, a human background K⁺ channel to sense external pH variations near physiological pH, EMBO J. 16 (1997) 5464-5471.
7. Stoffel, M. et al., Human G-protein-coupled inwardly rectifying potassium channel (GIRK1) gene (KCNJ3): localization to chromosome 2 and identification of a simple tandem repeat polymorphism, Genomics 21 (1994) 254-256.
- 15 8. Desai, R. et al., Ca²⁺-activated K⁺ channels in human leukemic Jurkat T cells. Molecular cloning, biochemical and functional characterization, J. Biol. Chem. 275 (2000) 39954-39963.
9. Tamkun M. et al., Molecular cloning and characterization of two voltage-gated K⁺ channel cDNAs from human ventricle, FASEB J. 5 (1991) 331-337.
10. Heid C. et al., Real time quantitative PCR, Genome Res. 6 (1996) 986-9954.
- 20 11. EP906572(B1)

Patentansprüche

1. Verwendung von Modulatoren oder eines Modulators der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.
2. Eine Methode zum Screenen von Testverbindungen zur Identifizierung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1, welche geeignet sind für die Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.
3. Eine pharmazeutische Zusammensetzung, enthaltend einen Modulator oder mehrere Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.
4. Modulator der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten oder Bluthochdruck.
5. Verwendung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Herstellung eines Arzneimittels zur Behandlung von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten, oder Bluthochdruck.

Verwendung von Kaliumkanalmodulatoren zur Behandlung von Arrhythmien

Z u s a m m e n f a s s u n g

Die Erfindung betrifft die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1 SK2 und PCN1 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten, sowie Bluthochdruck.

Fig. 1

Gen	x-fach stärker im Vorhof MW n =6	Genbank-Acc. No.
sarcolipin	9,6	NM_003063
myosin, light polypeptide 4, alkali; atrial, embryonic	9,2	M36172
A kinase (PRKA) anchor protein 3	8,7	NM_006422
potassium channel, subfamily K, member 1 (TWIK-1)	6,7	U90065
up-regulated by BCG-CWS	5,6	AB040120
myosin, heavy polypeptide 6, cardiac muscle, alpha (cardiomyopathy, hypertrophic 1)	5,3	D00943
titin immunoglobulin domain protein (myotilin)	5,2	NM_006790
signal transducer and activator of transcription 4	4,9	NM_003151
nuclear receptor subfamily 2, group F, member 1 (COUP-TF 1)	4,2	AI951185
NADP-dependent retinol dehydrogenase/reductase	4,2	NM_005771
natriuretic peptide precursor B	4,2	NM_002521
desmocollin 1	4,1	NM_004948
potassium voltage-gated channel, shaker-related subfamily, member 5 (KCNA5)	4,0	NM_002234
secreted frizzled-related protein 1	4,0	NM_003012
phospholipase A2, group IIA (platelets, synovial fluid)	3,8	NM_000300
keratin 18	3,7	NM_000224
dickkopf homolog 3 (Xenopus laevis)	3,7	NM_013253
natriuretic peptide precursor A	3,5	M30262
guanine nucleotide binding protein (G protein), beta 5	3,4	NM_006578

Gen	x-fach stärker im Vorhof MW n = 6	Genbank-Acc. No.
potassium channel, subfamily K, member 3 (TASK-1)	3,3	NM_002246
H factor 1 (complement)	3,1	X04697
up-regulated by BCG-CWS	3,0	NM_022154
phosphodiesterase 8B	3,0	AK023913
cartilage oligomeric matrix protein (pseudoachondroplasia, epiphyseal dysplasia 1, multiple)	2,9	NM_000095
complement component 3	2,7	NM_000064
sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican)	2,7	AF231124
phospholipase C, beta 1 (phosphoinositide-specific)	2,7	AL049593
actin, alpha 2, smooth muscle, aorta	2,7	NM_001613
chromosome 1 open reading frame 15	2,6	AF288395
corin	2,6	NM_006587
myosin light chain 2a	2,5	NM_021223
transmembrane 6 superfamily member 1	2,4	NM_023003
FK506 binding protein 11, 19 kDa	2,4	NM_016594
visinin-like 1	2,4	NM_003385
angiotensin II receptor, type 1	2,4	NM_004835
H factor (complement)-like 2	2,3	X56210
NY-REN-58 antigen	2,3	NM_016122
similar to neuralin 1	2,2	AL049176
Duffy blood group	2,1	NM_002036
transgelin	2,0	NM_003186
potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2	2,0	NM_021614

Gen	x-fach stärker im Vorhof MW n =6	Genbank-Acc. No.
endothelin receptor type A	2,0	NM_001957
spermidine/spermine N1-acetyltransferase	2,0	NM_002970
transmembrane 4 superfamily member 2	2,0	NM_004615
B-cell translocation gene 1, anti-proliferative	2,0	NM_001731
phospholipase A2, group V	1,9	AL158172
fibulin 1	1,9	Z95331
spermidine/spermine N1-acetyltransferase	1,9	M55580
peptidylglycine alpha-amidating monooxygenase	1,9	BF038548
spermidine/spermine N1-acetyltransferase	1,9	BE971383
hephaestin	1,9	NM_014799
Ras-related associated with diabetes	1,9	NM_004165
growth hormone receptor	1,8	NM_000163
peptidylglycine alpha-amidating monooxygenase	1,8	NM_000919
WNT1 inducible signaling pathway protein 2	1,8	NM_003881
melanophilin	1,8	NM_024101
B-cell translocation gene 1, anti-proliferative	1,8	AL535380
adipose specific 2	1,8	NM_006829
reticulon 4	1,8	AF333336
protein kinase, AMP-activated, gamma 2 non-catalytic subunit	1,8	NM_016203
proteolipid protein 2 (colonic epithelium-enriched)	1,8	NM_002668
CD44 antigen (homing function and Indian blood group system)	1,8	BE903880
T-box 5	1,8	NM_000192
actinin, alpha 1	1,7	AI082078
D123 gene product	1,7	NM_006023
Ris	1,7	NM_016563

Gen	x-fach stärker im Vorhof MW n = 6	Genbank-Acc. No.
complement component 1, r subcomponent	1,7	AL573058
peroxiredoxin 1	1,7	L19184
S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, murine placental homolog)	1,6	NM_002961
annexin A4	1,6	NM_001153
phospholipase A2, group V	1,6	NM_000929
tubulin, beta polypeptide	1,6	NM_001069
prostaglandin I2 (prostacyclin) synthase	1,6	NM_000961
Homo sapiens clone 24416 mRNA sequence	1,6	AV712602
complement component 7	1,6	NM_000587
epidermal growth factor receptor pathway substrate 8	1,6	NM_004447
aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile acid binding protein; 3-alpha hydroxysteroid dehydrogenase, type III)	1,6	M33376
C1q and tumor necrosis factor related protein 1	1,6	NM_030968
reticulon 4	1,5	AB015639
CD47 antigen (Rh-related antigen, integrin- associated signal transducer)	1,5	BG230614
hypothetical protein FLJ10097	1,5	AL523320
peptidylglycine alpha-amidating monooxygenase	1,5	AJ022882
glutathione peroxidase 3 (plasma)	1,5	AW149846
catenin (cadherin-associated protein), alpha-like 1	1,5	NM_003798
DKFZP586A0522 protein	1,5	NM_014033
integrin associated protein mRNA	1,5	Z25521
homolog of yeast long chain polyunsaturated fatty	1,5	AL136939

Gen	x-fach stärker im Vorhof MW n =6	Genbank-Acc. No.
acid elongation enzyme 2		
reticulon 4	1,5	AF320999
annexin A1	1,5	NM_000700
HIV-1 TAR RNA binding protein (TARBP-b)	1,5	L22453
DEK oncogene (DNA binding)	1,5	NM_003472
CCAAT/enhancer binding protein (C/EBP), delta	1,5	NM_005195
aldo-keto reductase family 1, member A1 (aldehyde reductase)	1,5	NM_006066
KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2	1,4	NM_006854
tropomyosin 1 (alpha)	1,4	Z24727
hydroxysteroid (17-beta) dehydrogenase 12	1,4	NM_016142
tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy, pseudoinflammatory)	1,4	NM_000362
ADP-ribosylation factor-like 5	1,4	NM_012097
nucleosome assembly protein 1-like 1	1,4	NM_004537
peptidylprolyl isomerase B (cyclophilin B)	1,4	NM_000942
delta-like 1 homolog (Drosophila)	0,1	U15979
myosin, light polypeptide 3, alkali; ventricular, skeletal, slow	0,1	NM_000258
HSKM-B protein	0,1	AF070592
ankyrin repeat domain 2 (stretch responsive muscle)	0,2	NM_020349
KIAA1733 protein	0,2	AW054711
four and a half LIM domains 2	0,2	NM_001450
carboxypeptidase, vitellogenin-like	0,3	NM_031311

- 6/11 -

Gen	x-fach stärker im Vorhof MW n =6	Genbank-Acc. No.
protein tyrosine phosphatase, non-receptor type 3	0,3	NM_002829
myosin, light polypeptide 2, regulatory, cardiac, slow	0,3	AF020768
gamma-aminobutyric acid (GABA) A receptor, alpha 4	0,3	NM_000809
dihydropyrimidinase-like 4	0,3	NM_006426
hypothetical protein FLJ20156	0,4	NM_017691
hypothetical protein FLJ14054	0,4	NM_024563
potassium inwardly-rectifying channel, subfamily J, member 2	0,4	AF153820
hypothetical protein FLJ32389	0,4	AL551046
ribosomal protein L3-like	0,4	NM_005061
NDRG family member 4	0,4	AV724216
hairy/enhancer-of-split related with YRPW motif 2	0,4	NM_012259
Homo sapiens, clone MGC:8772 IMAGE:3862861, mRNA, complete cds	0,4	BG332462
isocitrate dehydrogenase 2 (NADP+), mitochondrial	0,4	U52144
likely ortholog of mouse limb-bud and heart gene	0,5	NM_030915
hypothetical protein FLJ21901	0,5	NM_024622
phospholipase C-like 1	0,5	NM_006226
lipoprotein lipase	0,5	NM_000237
LRP16 protein	0,5	NM_014067
phosphofructokinase, muscle	0,5	U24183
LIM domain binding 3	0,5	AA211481
protein kinase (cAMP-dependent, catalytic) inhibitor alpha	0,6	NM_006823
potassium inwardly-rectifying channel, subfamily J,	0,6	BF514158

Gen	x-fach stärker im Vorhof MW n =6	Genbank-Acc. No.
member 8		
H2B histone family, member Q	0,6	NM_003528
NS1-binding protein	0,6	AF205218
acetyl-Coenzyme A acetyltransferase 1 (acetoacetyl Coenzyme A thiolase)	0,6	NM_000019
hyaluronoglucosaminidase 1	0,6	AF173154
potassium inwardly-rectifying channel, subfamily J, member 4	0,6	NM_004981
ras-like protein TC10	0,6	BF348067
crystallin, mu	0,6	NM_001888
ubiquitin specific protease 13 (isopeptidase T-3)	0,6	NM_003940
ras-like protein TC10	0,7	BF348067
actin, alpha 1, skeletal muscle.	0,7	NM_001100
L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain	0,7	AF001903
heat shock 27kDa protein family, member 7 (cardiovascular)	0,7	NM_014424

- 8/11 -

Fig. 2:

Gen	Genbank Accession Nummer.	Sequenz Primer 1 5'-3'	Sequenz Primer 2 5'-3'	Sequenz Sonde/"Probe" 5'-3'
TWIK-1	NM_002245 SEQ ID NO:1	tgaagaaggacaagg acgagga SEQ ID NO:2	gcctggctgtgatcgaa gga SEQ ID NO:3	cagggtcacatcatagaa agcatgaccaa SEQ ID NO:4
TASK-1	AF065163 SEQ ID NO:5	acgtctacgcggaggt gct SEQ ID NO:6	tctcgccggctttgtac c SEQ ID NO:7	cacttccagtccatgt gctcgtgcct SEQ ID NO:8
GIRK1	NM_002239 SEQ ID NO:9	gttccacgcaacatttg aag SEQ ID NO:10	gggacgacatgagaa gcatt SEQ ID NO:11	cccaccccaccttaca gtgtgaaa SEQ ID NO:12
SK2	AF239613 SEQ ID NO:13	tgcacagccctggtgg tag SEQ ID NO:14	tccatcatgaaatttgt cacg SEQ ID NO:15	tggcaaggaagctag aacttaccaaagcag a SEQ ID NO:16
PCN1	NM_002234 SEQ ID NO:17	cagggaacccatttctc tagcat SEQ ID NO:18	tgtccccgtagccac agt SEQ ID NO:19	acgccttctggggc agtggtc SEQ ID NO:20
beta-Aktin	NM_001101 SEQ ID NO:21	tccacacctccagcagat gtg SEQ ID NO:22	ctagaagcattgcgggt ggac SEQ ID NO:23	atcagcaagcaggag tatgacgagtccg SEQ ID NO:24

- 9/11 -

Fig. 3

- 10/11 -

Fig. 3, Fortsetzung

Fig. 3, Fortsetzung

SEQUENCE LISTING

<110> Bayer AG, BHC

<120> Vorhof-selektiv exprimierte Kaliumkanäle

<130> Le A 36 823

<160> 24

<170> PatentIn version 3.1

<210> 1

<211> 1901

<212> DNA

<213> Homo sapiens

<400> 1

gggcaggaag acggcgctgc ccggaggagc ggggcgggcg' ggccgcgcggg' ggagcggcg	60
gcgggcggga gccaggccccg ggcgggggcg ggggcggcg ggccagaaga ggccggcg	120
cgcgcgtccgg ccgggtctgcg gcgttggcct tggctttggc tttggcgccg gcggtggaga	180
agatgctgca gtccctggcc ggcagctcggt gcgtgcgcct ggtggagcgg caccgctcg	240
cctggtgctt cggcttcctg gtgctggctt acttgctcta cctggctttc ggccgagtgg	300
tcttcttcctc ggtggagctg ccctatgagg acctgctcgcc ccaggagctg cgcaagctga	360
agcgacgctt cttggaggag cacgagtgcc tgtctgagca gcagctggag cagttcctgg	420
gccgggtgct ggaggccagc aactacggcg tgcgggtgct cagcaacgcc tcgggcaact	480
gaaactggga cttcacacctc gcgcctttct tcgcccagcac cgtgccttc accacaggtt	540
atggccacac cgtcccccttgc tcagatggag gtaaggcctt ctgcacatcatc tactccgtca	600
ttggcattcc cttcacccctc ctgttccctga cggctgtggt ccagcgcac caccgtgcac	660
tcaccccgac gccggtcctc tacttccaca tccgctgggg cttctccaag caggtggtag	720
ccatcgatcca tgccgtgctc cttgggtttg tcactgtgtc ctgccttc ttcatcccg	780
ccgctgtctt ctcagtcctg gaggatgact ggaacttcctt ggaatccttt tattttgtt	840
ttatccctt gagcaccatt ggcctgggg attatgtgcc tggggaaaggc tacaatcaa	900
aattcagaga gctctataag attggatca cgtgttacct gctacttggc cttattgcca	960
tgttggtagt tctggaaacc ttctgtgaac tccatgagct gaaaaaatc agaaaaatgt	1020
tctatgtcaa gaaggacaag gacgaggatc aggtgcacat catagagcat gaccaactgt	1080

- 2 -

ccttctcctc gatcacagac caggcagctg gcatgaaaga ggaccagaag caaaatgagc	1140
cttttgtggc cacccagtc tctgcctgcg tggatggccc tgcaaaccat tgagcgtagg	1200
atttgtgca ttatgttaga gcaccagggt cagggtgcaa ggaagaggct taagtatgtt	1260
çatttttatac agaatgcaaa agcgaaaatt atgtcacttt aagaaatagc tactgtttgc	1320
aatgtcttat taaaaaacaa caaaaaaaga cacatggAAC aaagaagctg tgaccccagc	1380
aggatgtcta atatgtgagg aaatgagatg tccacctaattt attcatatgt gacaaaatta	1440
tctcgacctt acataggagg agaatacttg aagcagtatg ctgctgtgg tagaaggcaga	1500
ttttatactt ttaactggaa actttgggt ttgcatttag atcatttagc tgatggctaa	1560
atagcaaaat ttatatttag aagaaaaaaaaaaaagcata gagatgtgtt ttataatag	1620
gtttatgtgt actggttgc atgtacccac caaaaatgat tattttggaa gaatctaagt	1680
caaactcaactt atttataatg cataggtaac cattaactat gtacatataa agtataaata	1740
tgtttatattt ctgtacatat ggtttaggtc accagatcct agttagttc tggaaactaag	1800
actatagata ttttgggttct tttgatttct ctttatacta aagaatccag agttgctaca	1860
ataaaaataag gggaaaaataataaacttgagag tgaataacca t	1901

<210> 2
<211> 22
<212> DNA
<213> artificial sequence

<220>
<223> primer 1

<400> 2

tgaagaagga caaggacgag ga

22

<210> 3
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 3

gcctggtctg tgatcgagga

20

<210> 4
<211> 27
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 4

caggtgcaca tcatagagca tgaccaa

27

<210> 5
<211> 2590
<212> DNA
<213> Homo sapiens

<400> 5

tgcctgcgc ggagagcggc gagcgcagcc atgccccagg ccgcctccgg ggcagcagca	60
gcggcggccg gggccgatgc gcgggccggg ggccgcgggg ggccggcggc ggcccgggcg	120
ggacgatgaa gccccagaac gtgcgcacgc tggcgctcat cgtgtgcacc ttcacctacc	180
tgctggtggg cgccgcggtc ttgcacgcgc tggagtcgga gcccgagctg atcgagcggc	240
agccgctgga gctgcggcag caggagctgc gggcgcgcta caacctcagc cagggcggct	300
acgaggagct ggagcgcgtc gtgcgtgcgc tcaagccgca caaggccggc gtgcagtggc	360
gcttcgcgg ctcccttctac ttgcgcata cctgcatac caccatcgcc tacgggcacg	420
cggcacccag cacggatggc ggcaagggtgt tctgcattttt ctacgcgtgc ctgggcattcc	480
cgtcatgttc cagagcctgg gcgagcgcata caacaccttg gtgaggtaacc	540
tgctgcaccg cgccaagaag gggctggca tgcggcgccgc cgacgtgtcc atggccaaca	600
tggtgctcat cggcttcttc tcgtgcata gcacgctgtg catcgccgc gccccttct	660
ccactacga gcactggacc ttcttccagg cctactacta ctgcattcatc accctcacca	720
ccatcggttt cggcgactac gtggcgctgc agaaggacca ggcctgcag acgcagccgc	780
agtacgtggc ttccagtttc gtctacatcc ttacgggcct cacggtcatc ggccgcatttc	840
tcaacctcggt ggtgcgtgc ttcatgacca tgaacgcccga ggacgagaag cgccgcgc	900
agcaccgcgc gctgcgtacg cgcaacgggc aggccggcgg cggccggagggg ggtggcagcg	960
cgcacactac ggacaccgc tcatccacgg cggcagcggg cggccggcggc ttccgcacg	1020
tctacgcggaa ggtgcgtcac ttccagttca tgtgcgtgtg cctgtggtac aagagccgc	1080

agaagctgca	gtactccatc	cccatgatca	tcccgcgaaa	cctctccacg	tccgacacgt	1140
gcgtggagca	gagccactcg	tcgcgggag	ggggcgcccg	ctacagcgac	acggccctcg	1200
gacgctgcct	gtgcagcggg	gcccacgct	ccgccatcag	ctcggtgtcc	acgggtctgc	1260
acagcctgtc	caccccccgc	ggccatcata	agcgcaggag	ctccgtgtga	ctggccccag	1320
ggacctggag	cacctggggg	cgcggcggg	ggacccctgc	tgggaggcca	ggagactgccc	1380
cctgctgcct	tctgcccagt	gggaccccccgc	acaacatccc	tcaccactct	cccccagcac	1440
cccatctcc	gactgtgcct	gcttgcacca	gccggcagga	ggccgggctc	tgaggacccc	1500
ttggggccccc	atcgagcccc	tgcaattcc	gagaaatgtg	aaacttggtg	gggtcaggga	1560
ggaaaggcag	aagctggag	cctcccttcc	ctttgaaaat	ctaagaagct	cccagtccctc	1620
agagaccctg	ctggtaccac	acccacccctt	cggaggggac	ttcatgttcc	gtgtacgttt	1680
gcacatctat	ttatacctct	gtcctgctag	gtctccacc	ttcccttgg	tccaaaagcc	1740
agggtgtcta	tgtccaaagtc	acccctactc	agccccactc	cccttcctca	tccccagctg	1800
tgtctcccaa	cctcccttcg	tgttgggg	catggcttg	cagttatgg	gaaagtggaa	1860
acccagcagt	ccctaaagct	ggccccaga	aagcaggaca	gaaagaagga	ggcacaggca	1920
ggcagcagga	ggggcgagct	gggaggcagg	aggcagcggc	ctgtcagtct	gcagaatgg	1980
cgcactggag	gttcaagcta	actggcctcc	agccacattc	tcatagcagg	taggacttca	2040
gccttccaga	cactgccctt	agaatctgg	acagaagact	tcaagactcac	cataattgct	2100
gataattacc	cactctaaa	tttgcgagt	gattttagc	ctctgaaaac	tctatgtgg	2160
ccactgattc	ctttgagct	cacaaaaccc	tacttaggtc	atcagggcag	gagttctcac	2220
tcccattta	cagatgagaa	tactgaggcc	tggacaggtg	aagtgaccag	agagcaaaag	2280
gcaaagggt	ggggctggg	.tgcagtggct	cacacctgta	ttcccaacac	tttggaggc	2340
tgagggttgg	ggattgcttg	agcccaggaa	ttcgagacca	gcctaggtga	catagtgaga	2400
ccccatctct	acaaaaaaaata	aaaaattaac	caggtgttgt	ggcacgtgcc	tgggagtccc	2460
agcgacttgg	gaggctgagg	tgggaggatt	gtttgagct	gggaggtcga	ggctgttagtg	2520
agccctgatt	gcaccactgt	actccagcct	gggtgacagg	gcaagaccct	gtctaaaaaa	2580
aaaaaaaaaaa						2590

<210> 6
 <211> 19
 <212> DNA
 <213> artificial sequence

<220>
<223> primer 1

<400> 6

acgtctacgc ggaggtgct

19

<210> 7
<211> 18
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 7

tctcgccgct cttgtacc

18

<210> 8
<211> 26
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 8

cacttccagt ccatgtgctc gtgcct

26

<210> 9
<211> 2890
<212> DNA
<213> Homo sapiens

<400> 9

ctccgtccca ggggagaagg agaggcgtct gcagggggca gagaccgcag ctacctgccg 60
ggtgtgcggccccc acacccagga gcgcgcgttt cgcccccttt cctccccccgc cccccacctcc 120
ttattggtgc tagtttcagc cgcgcgccttc gcttcgcgtt tgaatctggc 180
tcgcgcgccttc gtattatgtc tgcaactccga aggaaatttg gggacgatta tcaggttagtg 240
accacatcgt ccagcggctc gggcttgcag ccccaaggggc caggccagga ccctcagcag 300

cagcttgtgc ccaagaagaa	gccccggcgg ttcgtggaca	agaacggccg	gtgcaatgt	360
cagcacggca	acctgggcag	cgagacaagg	cgctacacct	420
gtggacctca	agtggcgctg	gaacctcttc	atcttcattc	480
cttttcatgg	cgtccatgtg	gtgggtgate	gcctacactc	540
cacgtcggta	actacacgccc	ttgcgtggcc	aatgtctata	600
ttcttcatcg	agacggaggc	caccatcgcc	tatggctacc	660
cccgaggcga	tcatccttctt	cctttccag	tccatcctgg	720
ctcatcggt	gcatgttcat	caagatgtcc	cagccaaaga	780
ttcagcgagc	acgcgggtgat	ctccatgagg	gacggaaaac	840
ggcaacctgc	gcaacagcca	catggcttcc	gccccggcga	900
cgccagacac	ctgagggtga	gttccttccc	cttgaccaac	960
agtacagggg	cagatcaact	ttttcttgtg	tccccctca	1020
gccaaaagcc	ccttttatga	cctatcccag	cgaagcatgc	1080
gtgtcatcc	tagaaggcat	tgtggaaaca	actggatga	1140
tatactgaag	atgaagtct	ttgggtcat	cgtttttttc	1200
ggattcttta	aagttgatta	ctcccaagttc	catgcaacat	1260
tacagtgtga	aagagcagga	ggaaatgctt	ctcatgtcgt	1320
ataactaaca	gcaaagaaaag	acataattct	gtggaatgct	1380
actacaaaac	taccatctaa	gctgcagaaa	attactggaa	1440
ctcttgagga	ttagttctac	aacttcagaa	aaagctaca	1500
aaacttcaac	gaataaggtc	agttccgggc	aactcagaag	1560
accaagatgt	tatctgatcc	catgagccag	tctgtggctg	1620
aagatggctg	gaggagcagc	taggatggaa	gggAACCTTC	1680
aactctgtac	gtttcacata	acaaagcact	cccttaggca	1740
taatagtcca	atatttggcg	atgaggtaat	tctccctaag	1800
ctcccaagttc	tacaagcata	tttgagaacc	tttcctttcc	1860
aaagcaacag	ttacggaggg	aggacatcat	aaggaagttt	1920
catcaagcat	gcaataatgt	gcaaattttg	catttagttt	1980
gcataattat	attgtatatt	ctggaaaaaa	aatatatata	2040
tctccctgac	atttctaaaca	tatgtattaa	gccaaacatg	2100
ataaaaactaa	atatatgtct	gtgtgtgtgt	gtgtatgtat	2160

- 7 -

atacacatac atacacatac atacatacat acatatatat ctgataaaat tgtgatgttt	2220
tgttcaaaagt tgttagttctt gtgcattttt actttattag agtaggaagg ctactggcat	2280
taattattaa taccaaataat tttagcccta aattttgtc atttaaaat ctgatttaat	2340
gtttctgct gtttaaggct ttgggaggct ttcatttgta ttatgtatga gagaatcaca-	2400
caagtttgcg ctatctatgg ccctgcaaaa atataaccat tacatgtta aattgtaaat	2460
tttagagcat accagtactc agtatacgat tgaacatttc ttatgatttt taaaagttgc	2520
tagtactggg gagaataat tggtgattaa ttggagaatt attccccc tagactaatt	2580
aaaatctgga aatctgtttt gtatatgatc taatacacaag atgagctcg aacaaacact	2640
aatcatgtt aatagacagt agccaagttt tattgaatat atcagaatct gtgtgaagtt	2700
acacaattaa ttgtccctgt ttcaactga gtaaatttggaa aacattttct ttctttttct	2760
ggaaattttg tccattttaa aaaccaatca tttaagaag acatgacaat gcaatgaaac	2820
agatgataaa tatttatgct taaaatatgt atgtctaatt gagtctctt tttattctgt	2880
tttcttgg	2890

<210> 10
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer 1

<400> 10
gttccacgca acatttgaag 20

<210> 11
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 11
gggacgacat gagaaggatt 20

<210> 12
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 12

cccacccac cttacagtgt gaaa

24

<210> 13
<211> 2510
<212> DNA
<213> Homo sapiens

<400> 13

cgccggcagc agcccatgcc tccggtgcaa cagctgcgcc tcctccggtg ccccgccggc	60
ggggggcgaaaa gataacctgt ccctgctgct ccgcacctcc tcgcccggcg ggcacctccg	120
gaccggcacc tcctcgccgc tgtcgggctc gtctgctgc tgctgctgct gtcgtcgcg	180
ccggggcagc cagctcaatg tgagcgagct gacgcccgtcc agccatgcca gtgcgtccg	240
gcagcagtagc gcgcagcagt ccgcgcagca gtccggcgtcc gcctcccaagt accaccagg	300
ccacagcctg cagcccccccg ccagcccccac gggcagcctc ggcagtcctgg gtcggcgcc	360
cccgctctcg caccaccacc accacccgca cccggcgcac caccaggcacc accagcccc	420
ggcgccgcgc gagagcaacc ctttaccga aatagccatg agcagctgca ggtacaacgg	480
gggcgtcatg cggccgctca gcaacttgag cgctgtcccg cggAACCTCC acgagatgga	540
ctcagaggcg cagccccctgc agccccccgc gtctgtcgga ggaggtggcg ggcgtccctc	600
cccgctctcgca gacgctgcgg ccggccgcgc tgtttcgtcc tcagcccccg agatcgtgg	660
gtctaagcccc gagcacaaca actccaacaa cttggcgctc tatggAACCG gggcggagg	720
cagcacttggaa ggaggcggcg ggggtggagg gagcgggcac ggcagcagca gtggcaccaa	780
gtccagcaaa aagaaaaacc agaacatcggtt ctacaagctg ggccaccggc ggcctgttt	840
cggaaagcgc aaggcgctca ggcactacgc gtcatcttc ggcattgtcg gcatcgttgt	900
catggtcatc gagaccgagc tgctgtgggg cgcctacgac aaggcgctcg ttttccctt	960
agctctgaaa tgccatatca gtctctccac gatcatctgtt ctcggctctga tcatcgtgt	1020
ccacggccagg gaaatacagt tggtcatgggt ggacaatggaa gcagatgact ggagaatagc	1080
catgacttat gagcgtatcc ttcatctgtt cttggaaata ctgggtgtgtg ctattcatcc	1140

catacctggg aattatacat tcacatggac ggcccggtt gccttcct atgccccatc	1200
cacaaccacc gctgatgtgg atattatttt atctatacca atgttcttaa gactctatct	1260
gattgccaga gtcatgctt tacatagcaa actttcaact gatgcctcct ctagaagcat	1320
tggagcacctt aataagataa acttcaatac acgttttgtt atgaagactt taatgactat	1380
atgcccagga actgtactct tggtttttag tatctcatta tggataattg ccgcattggac	1440
tgtccgagct tgtgaaaggt accatgatca acaggatgtt actagcaact tccttgagc	1500
gatgtggttt atatcaataa ctttctctc cattggttat ggtgacatgg tacctaacac	1560
atactgtgga aaaggagtct gcttacttac tggattatg ggtgctggtt gcacagccct	1620
ggtagtgcgt gtatggcaa ggaagctaga acttacaaa gcagaaaaac acgtgcacaa	1680
tttcatgatg gatactcagc tgactaaaag agtaaaaaat gcagctgcca atgtactcag	1740
ggaaaatgg ctaatttaca aaaataaaaaa gctatgaaa aagatagatc atgaaaaatgt	1800
aagaaaaat caacgaaaat tcctgcaagc tattcatcaa ttaagaatgt taaaaatgg	1860
gcagaggaaa ctgaatgacc aagcaaacac tttggggac ttggcaaaga cccagaacat	1920
catgtatgat atgatttctg actttaaacga aaggagtgaa gacttcgaga agaggattgt	1980
taccctggaa acaaaaactag agactttgat tggtagcatc cacgcctcc ctgggctcat	2040
aagccagacc atcaggcagc agcagagaga tttcattgag gtcagatgg agagctacga	2100
caagcacgac acttacaatg ctgagcggtc ccggctctcg tccaggaggc ggcggccctc	2160
ttccacagca ccaccaactt catcagagag tagctagaag agaataagtt aaccacaaaa	2220
taagactttt tgccatcata tggtaatat tttatgtttt attgtaaagc ccctatggtt	2280
ctaattcagcg ttatccgggt tctgatgtca gaatcctggg aacctgaaca ctaatgtttt	2340
ggccaaaaatg agtggaaaact cttttttttt ctttcagatg cacaggaaat gcacctatta	2400
ttgctatata gattgttcct cctgtaattt cactaacttt ttattcatgc acttcaaaaca	2460
aactttacta ctacattata tgatataaa taaaaaaatg taatttcgga	2510

<210> 14
 <211> 19
 <212> DNA
 <213> artificial sequence

<220>
 <223> primer 1

<400> 14

tgcacagccc tggtaggtgg 19

<210> 15
<211> 21
<212> DNA
<213> artificial sequence.

<220>
<223> primer 2

<400> 15

tccatcatga aattgtgcac g 21

<210> 16
<211> 31
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 16

tggcaaggaa gctagaactt accaaaggcag a 31

<210> 17
<211> 2865
<212> DNA
<213> Homo sapiens

<400> 17

tttcggctg cttggtaacg ggctgccaga agagagagag gcagagagca gggcagcggc 60

tttttgacgt cagggccaag cgaggggatc gcgccagcaa cccccagctct ccccaagagag 120

ggggccggccg accgctggag cggagcctga cgccaggcgc ccgcggagcg tgagttaggg 180

gcgcgggagc cggtcagctg gggcgcagca tgccctctgc tcccgccca tggagatcgc 240

cctggtgccc ctggagaacg gcggtgccat gaccgtcaga ggaggcgatg aggccccggc 300

aggctgcggc caggccacag ggggagagct ccagtgtccc ccgacggctg ggctcagcga 360

tggggcccaag gagccggcgc caaaggggcg cggcgcgcag agagacgcgg actcgggagt 420

gcggcccttg cctccgcgtgc cggacccggg agtgcggccc ttgcctccgc tgccagagga 480

gctgccacgg cctcgacggc cgccctcccga ggacgaggag gaagaaggcg atccggcct	540
ggcacggtg gaggaccagg ctctggcac gggtccctg caccaccgc gcgtccacat	600
caacatctcc gggctgcgt ttgagacgca gctgggcacc ctggcgcagt tccccaaacac	660
actcctgggg gaccccgcca agcgcctgcg ctacttcgac cccctgagga acgagtaactt	720
cttcgaccgc aaccggccca gttcgacgg tatcctctac tactaccagt ccggggggccg	780
cctgcggagg ccggtaacg ttccttggc cgtttcgcg gacgagatac gttctacca	840
gctggggac gaggccatgg agcgcttccg cgaggatgag ggcttcatta aagaagagga	900
gaagccctg ccccgcaacg agttccagcg ccagggtgtgg cttatctcg agtatccgga	960
gagctctggg tccgcgcggg ccatcgccat cgttcggc ttggttatcc tcattccat	1020
catcacccatc tgcttggaga ccctgcctga gttcaggat gaacgtgagc tgctccgcca	1080
ccctccggcg ccccaccagc ctcccgccgc cgccctggg gccaacggca gccccgtcat	1140
ggccccgccc tctggcccta cggtggcacc gtcctgccc aggaccctgg cccgaccctt	1200
cttcatcgta gagaccacgt gtcgtcatctg gttcacccatc gagctgtcg tgcgttctt	1260
cgccctgcccc agcaaggcag gttctcccg gaacatcatg aacatcatcg atgtggtggc	1320
catttcccc tacttcatca ccctggcac cgaactggca gagcagcagc caggggggtgg	1380
aggaggcggc cagaatgggc agcaggccat gtcctggcc atcctccag tcatccgcct	1440
ggtccgggtg ttccgcattc tcaagctctc ccgcactcc aaggggctgc agatcctggg	1500
caagaccttgc caggcctcca tgaggagct ggggctgctc atcttcttcc tttcatcg	1560
ggtcattccctc ttctccagtg ccgtctactt cgcagaggct gacaaccagg gaaccattt	1620
ctctagcatc cctgacgcct tctggggc accgttccacc atgaccactg tggctacgg	1680
ggacatgagg cccatcactg ttggggcaa gatcggtggc tcgctgtgtg ccatcgccgg	1740
ggtcctcacc attgcctgc ctgtccccgt catgtctcc aacttcaact acttctacca	1800
ccggaaaacg gatcacgagg agccggcgt ctttaaggaa gagcaggca ctcagagcca	1860
ggggccgggg ctggacagag gatccagcg gaaggcagc gggagcagg gatcctctg	1920
caaggctggg gggaccctgg agaatgcaga cagtgcggc agggggcagct gccccctaga	1980
gaagtgtaac gtcaaggcca agagcaacgt ggacttgcgg aggtcccttt atgcctctg	2040
cctggacacc agccggaaa cagatttgtg aaaggagatt caggcagact ggtggcagt	2100
gagtagggaa tgggaggctt gctgaacatg gatatctaca ttataccgca gagatgttga	2160
agtacactg taacctcgt ctaccctct ctttcactc ctttctccc tccctcgatc	2220
cccccatttt ctctattctt tccatgacac ccaagggtcg cctattttta aaaagtacca	2280
cattccatga cgcaggagct gtggaaatgg tgagcgctgt gagatggatg tatttgtac	2340

- 12 -

cagtctccta tacccagcag agggataacc caaacaaaaa tgactctaaa tagcccagat	2400
cccaagagat tatgttaactc ctccatccat gtgttccaa tttgctttac atatgattgt	2460
atttgtgtat agggaaaaat attatttta tgcctggtaa gtggctttt gtactgttagt	2520
tcaagatagag atatttggg tatatttca agatacatgt tgtatTTatg gaagaaagag	2580
ttgtcctgat gttttctgt gttacttata ttagagtca agatcttggt atgggctgtt	2640
ctgtttcctg tgtctccaag cctctgtctt ttctggatg tggattggc gctttgtgtc	2700
tagggcagag tatgttcttg aagaaaggca aatctgactt tttctgtgcg ccttaaaca	2760
ttcttgtaac ttcttcaaa aagcatttttta atgatattgg aggaataactt ctgataattt	2820
attgtcttta ttttatccc agggaaataaa aggtaacctt gttga	2865

<210> 18

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> primer 1

<400> 18

cagggAACCC atttctctag cat

23

<210> 19
<211> 19
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 19

tgtccccgta gcccacagt

19

<210> 20
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 20

acgccttctg gtgggcatgt gtc

23

<210> 21
<211> 1793
<212> DNA
<213> Homo sapiens

<400> 21

cgcgtccgcc ccgcgagcac agagcctcg ctttgccgat ccgcgcggcc tccacacccg 60
ccgccagctc accatggatg atgatatcgc cgcgatcg tc gtcgacaacg gtcggcat 120
gtgcaaggcc ggcttcgccc gcgacgatgc ccccccggcc gtcttccctt ccatcgtgg 180
gcgcggccagg caccaggcg tgatggtggg catgggtcg aaggattcct atgtggcga 240
cgaggccccag agcaagagag gcatacctcac cctgaagtac cccatcgagc acggcatcgt 300
caccaactgg gacgacatgg agaaaatctg gcaccacacc ttctacaatg agctgcgtgt 360
ggctcccgag gacgcaccccg tgctgctgac cgaggccccctt gaaacccca aggccaacccg 420
cgagaagatg acccagatca tgttttagac cttcaacacc ccagccatgt acgttgctat 480
ccaggctgtg ctatccctgt acgcctctgg ccgtaccact ggcacatcgtga tggactccgg 540

tgacggggtc acccacactg tgcccatcta cgaggggtat gccctcccc atgccatcct	600
gcgtctggac ctggctggcc gggacctgac tgactacctc atgaagatcc tcaccgagcg	660
cggctacagc ttcaccacca cggccgagcg ggaaatcgtg cgtgacatta aggagaagct	720
gtgctacgtc gccctggact tcgagcaaga gatggccacg gctgcttcca gtcctccc	780
ggagaagagc tacgagctgc ctgacggcca ggtcatcacc attggcaatg agcggttccg	840
ctgcccctgag gcactcttcc agcccttccct cctggcatg gagtcctgtg gcatccacga	900
aactacccctc aactccatca tgaagtgtga cgtggacatc cgcaaagacc tgtacgcca	960
cacagtgctg tctggcggca ccaccatgta ccctggcatt gccgacagga tgcagaagga	1020
gatcaactgcc ctggcaccca gcacaatgaa gatcaagatc attgctcctc ctgagcgcaa	1080
gtactccgtg tggatcggcg gctccatcct ggccctcgctg tccaccccttcc agcagatgt	1140
gatcagcaag caggagtatg acgagtccgg cccctccatc gtccaccgca aatgcttcta	1200
ggcggactat gacttagttg cgttacaccc tttcttgaca aaacctaact tgcgcagaaa	1260
acaagatgag attggcatgg ctttatttgt tttttttgtt ttgttttggt tttttttttt	1320
tttttggctt gactcaggat ttaaaaactg gaacggtgaa ggtgacagca gtcgggttgg	1380
gcgagcatcc cccaaagtcc acaatgtggc cgaggacttt gattgcacat tgggtttttt	1440
ttaatagtca ttccaaatat gagatgcatt gttacaggaa gtcccttgcc atcctaaaag	1500
ccaccccaact tctctctaag gagaatggcc cagtcctctc ccaagtccac acaggggagg	1560
tgatagcatt gcttcgtgt aaattatgta atgaaaaatt ttttaatct tcgccttaat	1620
acttttttat tttgttttat tttgaatgat gagccttcgt gccccccctt cccccctttt	1680
gtcccccaac ttgagatgta tgaaggctt tggtctccct gggagtgggt ggaggcagcc	1740
agggcttacc tgtacactga cttgagacca gttgaataaa agtgcacacc tta	1793

<210> 22
 <211> 20
 <212> DNA
 <213> artificial sequence

<220>
 <223> primer 1

<400> 22

tccaccccttcc agcagatgtg

- 15 -

<210> 23
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> primer 2

<400> 23

ctagaagcat ttgcggtgga c

21

<210> 24
<211> 28
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 24

atcagcaagc aggagtatga cgagtccg

28