

Welcome to

3. Mitigate and Monitor

Introduction to Incident Response Elective, KEA

Henrik Kramselund he/him han/ham xhek@kea.dk @kramse

Slides are available as PDF, kramse@Github
3-Mitigate-and-Monitor.tex in the repo security-courses

Goals for today


```
Volatility 3 Framework 2.4.1
Progress: 100.00 PDB scanning finished
PID PPID ImageFileName Offset(V) Threads Handles SessionId Wow64 CreateTime ExitTime
4 0 System 0x823c89c8 53 240 N/A False N/A N/A
* 368 4 smss.exe 0x822f1020 3 19 N/A False 2012-07-22 02:42:31.000000 N/A
** 584 368 csrss.exe 0x822a0598 9 326 0 False 2012-07-22 02:42:32.000000 N/A
** 608 368 winlogon.exe 0x82298700 23 519 0 False 2012-07-22 02:42:32.000000 N/A
*** 664 608 lsass.exe 0x81e2a3b8 24 330 0 False 2012-07-22 02:42:32.000000 N/A
*** 652 608 services.exe 0x81e2ab28 16 243 0 False 2012-07-22 02:42:32.000000 N/A
**** 1056 652 sychost.exe 0x821dfda0 5 60 0 False 2012-07-22 02:42:33.000000 N/A
**** 1220 652 sychost.exe 0x82295650 15 197 0 False 2012-07-22 02:42:35.000000 N/A
**** 1512 652 spoolsv.exe 0x81eb17b8 14 113 0 False 2012-07-22 02:42:36.000000 N/A
**** 908 652 svchost.exe 0x81e29ab8 9 226 0 False 2012-07-22 02:42:33.000000 N/A
**** 1004 652 sychost.exe 0x823001d0 64 1118 0 False 2012-07-22 02:42:33.000000
***** 1136 1004 wuauclt.exe 0x821fcda0 8 173 0 False 2012-07-22 02:43:46.000000
***** 1588 1004 wuauclt.exe 0x8205bda0 5 132 0 False 2012-07-22 02:44:01.000000
**** 788 652 alg.exe 0x820e8da0 7 104 0 False 2012-07-22 02:43:01.000000 N/A
**** 824 652 svchost.exe 0x82311360 20 194 0 False 2012-07-22 02:42:33.000000 N/A
1484 1464 explorer.exe 0x821dea70 17 415 0 False 2012-07-22 02:42:36.000000 N/A
* 1640 1484 reader sl.exe 0x81e7bda0 5 39 0 False 2012-07-22 02:42:36.000000 N/A
```

hlk@debian-lab-11:~/Downloads\$ sudo vol -f cridex.vmem windows.pstree.PsTree

• Live Response

kea

- Memory analysis
- Get annoyed memory analysis is tricky, and why we practice!

Plan for today

- IDIR chapters F3EAD continued
- Getting data while observing the Order of Volatility
- Practice more

Exercise theme:

- Live Response
- Memory analysis with Volatility
- Checklists inspired by NIST SP800-61r2 why, who, what, where, when, ...

Time schedule

- 1) Going over my presentation, first 45min
- 2) Live Response, get to know your systems 45 min
- Break 15min
- 3) Memory Analysis 2x45min including 4)
- 4) Summary of course and today plus questions

Reading Summary

Intelligence-Driven Incident Response (IDIR) Scott Roberts. Rebekah Brown, ISBN: 9781491934944

Once you have identified the threats that you are facing and investigated how those threats have accessed and moved through your network, it is time to remove the threats. This phase is known as Finish and involves not only eradicating the footholds that malicious actors have put in your network, but also working to remediate what- ever enabled them to get access in the first place.

• Chapter 6: Finish

Reading Summary, browse Computer Security Incident Handling Guide NIST SP800-61r2

• Chapter 3: Handling an Incident

Live Response

One of the less appreciated but often effective analysis methods is live response. Live response is analysis of a potentially compromised system without taking it offline.

Most forensics analysis requires **turning the system offline**, losing system state information such as active processes. It also risks tipping off the attacker and is widely dis- ruptive to users as well.

Live response pulls the following information:

- Configuration information
- System state
- Important file and directory information
- Common persistence mechanisms
- Installed applications and versions

Live Response tools

Book list a few tools:

- OSXCollector https://yelp.github.io/osxcollector/
- Kansa powershell https://github.com/davehull/Kansa
- Tools like these have been around for many years, some wrote to 3,5"floppies

Pause, let's discuss which ones would suit your environments, the class, your services, mine etc.

This is the common case, you are in the middle of an incident – which tools do you know, which are available, do you have licenses for commercial ones, etc.

Other tools that might help with data

Processes running without a binary on disk

Frequently, attackers will leave a malicious process running but delete the original binary on disk. This query returns any process whose original binary has been deleted, which could be an indicator of a suspicious process.

Source: https://www.osquery.io/

Many other tools can help identify problems

- osquery https://www.osquery.io/ if installed collect end point information
- Lynis https://cisofy.com/lynis/ audit your system

Exercise

Now lets do the exercise

which is number 18 in the exercise PDF.

Memory Analysis

Similar to live response, memory analysis focuses on collecting volatile system state in memory. Given that every process on a system requires memory to run, this tech- nique provides an excellent vantage point to gather information, especially from tools that attempt to run stealthily with limited system footprint.

Source: Source: Intelligence-Driven Incident Response (IDIR)

FireEye's Redline memory analysis tool (created by Mandiant)

Volatility memory-analysis framework

Volatility is a Python-based, open source memory-analysis framework. Volatility does not gather memory itself the way Redline does. Instead, it reads the memory formats from a wide variety of collection tools that run on a wide variety of operating systems. What Volatility provides is a framework and set of scripts for analyzing memory; detecting malware running in memory, extracting cryptographic keys—in fact any- thing you can find a plug-in to do.

- https://www.volatilityfoundation.org/
- Again, more tools exist for Memory Analysis
- Often virtualisation can provide memory dumps, pause VM, take snapshot and download file easy access!

Disk Analysis – not today

Traditional disk forensics typically involves using specialized tools to extract filesys- tem information from the raw bits and bytes on a hard drive. The information on a hard drive is unintelligible at first glance. It contains endlessly nested structures at the hardware, filesystem, operating system, and data-format level, similar to the OSI model. Peeling through these layers is a process called file carving.

Source: Source: Intelligence-Driven Incident Response (IDIR)

Important subject: We will do this another day

Exercise

Now lets do the exercise

A Volatility framework 45 min

which is number 19 in the exercise PDF.

IDIR Chapter 6: Finish

Finish involves more than removing malware from a system, which is why we spend so much time in the Find and Fix stages. To properly finish an attacker's activity, it is critical to understand how that threat actor operates and to remove not just malware or artifacts left behind by an attack, but also communications channels, footholds, redundant access, and any other aspects of an attack that we uncovered in the Fix phase. Properly finishing an adversary requires a deep understanding of the attacker, their motives, and their actions, which will allow you to act with confidence as you secure the systems and regain control of your network.

- This is critical to success
- When handling real incidents, make sure to work in teams and schedule time off!

Stages of Finish

The Finish phase has three stages: mitigate, remediate, and rearchitect. These stages acknowledge that you can't do everything at once. Even after a comprehensive investigation, some tactical response actions can take place quickly, but many strategic response actions, such as rearchitecting, will take longer. We will discuss the three phases next.

- Mitigate
- Remediate
- Rearchitect

Mitigate

Mitigation is the process of taking **temporary steps** to keep an intrusion from **getting worse** while **longer-term corrections** are taken. Ideally, mitigation should take place **quickly and in a coordinated fashion** to avoid giving the adversary a chance to react before you have cut off their access. Mitigation takes place at several phases of the **kill chain**, including delivery, command and control, and actions on target.

- Stop the delivery by blocking known entry ways
- Patch remaining systems to avoid new infections
- Block known bad IP addresses

Remediate

Remediation is the process of removing all adversary capabilities and invalidating any compromised resources so that they can no longer be used by the adversary to con- duct operations. Remediation generally focuses on a different set of kill-chain phases than mitigation does, most notably exploitation, installation, and actions over target, which we will break down in this section.

Source: Source: Intelligence-Driven Incident Response (IDIR)

Clean and Patch systems

Rearchitect

One of the most effective uses of **intelligence-driven incident-response data** is an advanced form of remediation: the incident-response team looks at **past incident trends, identifies common patterns,** and works to mitigate these at a strategic level. These mitigations are generally not small changes, and may range from small things like tweaks to system configurations or additional user training, to massive shifts in tooling such as the development of a new security tools or even complete network rearchitecture.

Source: Source: Intelligence-Driven Incident Response (IDIR)

• Why did the attacks succeed in the first place, can we change the environment

Taking action

Active Defense (5D)

- Deny
- Disrupt
- Degrade
- Deceive
- Destroy

Checklists

The incident response team should maintain records about the status of incidents, along with other pertinent information. ⁴⁰ Using an application or a database, such as an issue tracking system, helps ensure that incidents are handled and resolved in a timely manner. The issue tracking system should contain information on the following:

- The current status of the incident (new, in progress, forwarded for investigation, resolved, etc.)
- A summary of the incident
- Indicators related to the incident
- Other incidents related to this incident
- Actions taken by all incident handlers on this incident
- Chain of custody, if applicable
- Impact assessments related to the incident
- Contact information for other involved parties (e.g., system owners, system administrators)
- A list of evidence gathered during the incident investigation
- Comments from incident handlers
- Next steps to be taken (e.g., rebuild the host, upgrade an application).⁴¹
- Checklists inspired by NIST SP800-61r2 why, who, what, where, when, ...

Summary Where are we in the course!

Questions to ask:

- What is a tool? Are programs the only tools, can a checklist become a tool
- Which things are generic, which things need to be decided in a specific environment

For Next Time

Think about the subjects from this time, write down questions
Check the plan for chapters to read in the books
Visit web sites and download papers if needed
Retry the exercises to get more confident using the tools
Buy the books! Create your VMs