4.0 REAL TIME DATA SYSTEMS FOR LOCAL USERS

This section describes the real-time systems which are available for NOAA KLM direct readout users. These systems include the High Resolution Picture Transmission (HRPT), the Automatic Picture Transmission (APT), Direct Sounder Broadcast (DSB) and the Data Collection System (DCS). Transmission characteristics, data frame formats and synchronization details are given for each of the above mentioned systems.

4.1 HRPT SYSTEM

4.1.1 GENERAL

The High Resolution Picture Transmission (HRPT) system provides data from all spacecraft instruments at a rate of 665,400 bps. The S-band realtime transmission consists of the digitized unprocessed output of five AVHRR/3 channels, plus the TIP (HIRS/3, SBUV/2, SEM, and DCS/2) data and AMSU data. All information necessary to calibrate the instrument outputs is included in the data stream.

During NOAA-K activation and evaluation, it was determined that AMSU-A channels 7 and 15 were switched. This switch should be transparent to Level 1b users as the channels were corrected (switched back) by the ingest software, however, direct readout users should be aware of this problem. Only the radiometric data was affected, the housekeeping temperatures of channels 15 and 7 oscillators are correct as they are now. The antenna patterns, beam efficiency and beam widths are correct as they were not affected by the switch. Band pass for channels 7 and 15 was not affected due to extremely broad rf-detectors.

4.1.2 TRANSMISSION CHARACTERISTICS

The S-band transmission of time multiplexed, digital data is in a split phase format. For NOAA KLM, split phase data "0" is defined as being +68 degrees phase during the first half of the bit period and -68 degrees during the second half of the bit period. The split phase data "1" is defined as being -68 degrees phase during the first half of the bit period and +68 degrees phase during the second half of the bit period, for NOAA KLM. Note, the NOAA-N,-N satellites have a slightly different phase angle (see Table 4.1.2-2). Table 4.1.2-1 shows the general characteristics of the HRPT transmission system, while the general HRPT parameters for both NOAA KLM and NOAA-N,-N are shown in Table 4.1.2-2.

Table 4.1.2-1. HRPT Transmission Characteristics.		
Line Rate	360 lines/minute	
Data Channels	5 transmitted, 6 available	
Data Resolution	1.1 km	
Carrier Modulation	Digital split phase, phase modulated	

Transmitter Frequency (MHz)	1698.0 or 1707.0 MHz primary, 1702.5 MHz secondary For the latest information on individual POES spacecraft, refer to NOAA/NESDIS/OSO's website: http://www.oso.noaa.gov/poesstatus/index.asp
Transmitter Power (EOL)	6.35 W (38.03 dBm)
Radiated Power (dBm, @ 63 degrees)	40.13
Polarization:	
STX1	RCP
STX2	LCP*
STX3	RCP
* Except when STX2 is connected to the en	nergency omni antenna which is also RCP.

Table 4.1.2-2. HRPT Parameters for NOAA KLM and NOAA-N,-N'.							
Parameter	NOAA KLM	NOAA-N,-N'					
	Major Frame						
Rate	2 major frames/sec	2 major frames/sec					
Minor Frames/Major Frame	3	3					
	Minor Frame						
Rate	6 minor frames/sec	6 minor frames/sec					
Number of words	11,090	11,090					
Format	See Table 4.1.3.1-1	See Table 4.1.3.2-1					
	Word Parameters						
Rate	66,540 words/sec	66,540 words/sec					
Number of bits/word	10	10					
Order	Bit 1=MSB, Bit 10=LSB	Bit 1=MSB, Bit 10=LSB					
	Bit Parameters						
Rate	665,400 bits/sec	665,400 bits/sec					
Format	Split phase	Split phase					
Data "0"	+68/-68 degrees	+67/-67 degrees					
Data "1"	-68/+68 degrees	-67/+67 degrees					

4.1.3 HRPT MINOR FRAME FORMAT

The MIRP outputs the HRPT format simultaneously with the Automatic Picture Transmission (APT), Global Area Coverage (GAC) and Local Area Coverage (LAC) formats. GAC and LAC data are not considered real time, as these data are stored on the spacecraft digital recorders for readout by the CDA stations. The HRPT data format consists of a major frame which is subdivided into three minor frames.

Of special note is the flag in the telemetry (Word 7, Bit 10) which will indicate which of AVHRR/3 channel 3 sensors (3A or 3B) is operating. When channel 3B is selected, the patch temperature data is output every scan line (during the backscan), and every other scan line when channel 3A is selected. The data output will switch instantaneously between 3A and 3B upon

command, even if the scan is in the middle of a line. However, the way the flag operates there is one scan line of uncertainty when switching from 3B to 3A, and two lines of uncertainty when switching from 3A to 3B.

4.1.3.1 HRPT Minor Frame Format for NOAA KLM

On NOAA KLM, TIP and AMSU data are updated at the major frame rate. That is, the three minor frames which make up the major frame will contain TIP data in the first minor frame, backfill in the second minor frame, and AMSU data from the AIP, in the third minor frame. In the previous series of satellites (NOAA E-J), the major frame consisted of three minor frames of only the TIP data. The details of the HRPT, AIP, and TIP minor frame formats for NOAA KLM are shown in Tables 4.1.3.1-1, 4.1.5.1-1 and 4.3.3.1-1, respectively.

Of special note here is the flag in the telemetry (Word 7, Bit 10) which will indicate which of AVHRR/3 channel 3 sensors (3A or 3B) is operating. When channel 3B is selected, the patch temperature data is output every scan line (during the backscan), and every other scan line when channel 3A is selected. The data output will switch instantaneously between 3A and 3B upon command, even if the scan is in the middle of a line. However, the way the flag operates there is one scan line of uncertainty when switching from 3B to 3A, and two lines of uncertainty when switching from 3A to 3B.

Table 4.1.3.1-1 describes the minor frame format for HRPT on the NOAA KLM satellites.

Table 4.1.3.1-1. HRPT Minor Frame Format for NOAA KLM.				
Function	No. of	Word	Bit No. Plus Word Code &	Note
	Words	Position	1 2 3 4 5 6 7 8 9 10 Meaning	S
		1	1010000100	
		2	0101101111	
Eromo Cyno	6	3	1 1 0 1 0 1 1 1 0 0	1
Frame Sync	6	4	0110011101	
		5	1000001111	
		6	0010010101	
ID	2	7	Bit 1; 0=Internal Sync; 1=AVHRR Sync Bits 2 & 3; 00=Not an HRPT frame but a GAC frame; 01=Minor Frame #1; 10=Minor Frame #2; 11=Minor Frame #3 Bits 4-7; Spacecraft Addresses; Bit 4=MSB, BIT 7=LSB Bit 8; 0=Frame Stable; 1=Frame Resync Occurred Bit 9; 1=Normal AVHRR input, 0=PN AVHRR Input Bit 10; 0=AVHRR Ch3B, 1=AVHRR Ch3A	
		8	Bits 1-10; undefined Spare	

		9	Bits 1-9; Binary day count; Bit 1 = MSB; Bit 9 = LSB	
			Bit 10; 0; spare	
			Bit 1-3; 101, spare Bits 4-10; Part of Binary	
Time Code	4	10	msec of day	
			count; Bit 4=MSB	
		11	Bit 1-10; Part of Binary msec of day count;	
		12	Bit 1-10; Remainder of Binary msec of day	
		13	count; Bit 10=LSB Ramp Calibration AVHRR Channel #1	
		14	Ramp Calibration AVHRR Channel #2	
		15	Ramp Calibration AVHRR Channel #3	
		16	Ramp Calibration AVHRR Channel #4	
		17	Ramp Calibration AVHRR Channel #5	
Telemetry	10	18	PRT Reading 1	
		19	PRT Reading 2	
		20	PRT Reading 3	2
		21	Channel 3 patch Temp.	<i>Z</i>
		22	<u> </u>	
		22	Spare - Undefined	
		23	10 words of calibration target view data from each AVHRR channel 3, 4, and 5. These data	
Calibration	30	thru	are time multiplexed as chan 3 (word 1), chan	
Target View	30	52	4 (word 1), chan 5 (word 1), chan 3 (word 2),	
		32	chan 4 (word 2), chan 5 (word 2), etc.	
			10 words of space scan data from each	
			AVHRR channel 1, 2, 3, 4, and 5. These data	
		53	are time multiplexed as chan 1 (word 1), chan	
Space Data	50	thru	2 (word 1), chan 3 (word 1), chan 4 (word 1)	
Space Bata		102	chan 5 (word 1), chan 1 (word 2), chan 2	
		102	(word 2), chan 3 (word 2), chan 4 (word 2),	
			chan 5 (word 2), etc.	
			Bit 1; 0 = AVHRR sync early; 1 = AVHRR	
Com a D d	1	102	sync late, Bits 2-10; 9 bit binary count of	
Sync Data	1	103	0.9984 MHz periods; Bit 2 = MSB, Bit	
			10=LSB	
			3 sets of data corresponding to three HRPT	
Data Words			minor frames per HRPT major frame.	
		104	Einst HDDT min on from The 520 1	
	520	104	First HRPT minor frame: The 520 words	2
	520	thru 623	contain 5 TIP minor frames of TIP data (104	3
		023	TIP data words per TIP minor frame) Bits 1-8:	
			Exact format as generated by TIP. Bit 9: Even	ļ
			parity check over Bits 1-8. Bit 10: Inverted Bit 1.	
			DII 1.	

			1	
			Second HRPT minor frame: The 520 words	
			shall consist of five frames (104 words per	
			frame) of spare data in the same form as spare	
			words 624-750.	
			Third HRPT minor frame: The 520 words	
			shall consist of five frames (104 words per	
			frame) of AMSU data from the AIP. Bits 1-8:	
			Exact format as generated by AIP.	
			Bit 9: Even parity check over Bits 1-8. Bit 10: Inverted Bit 1.	
		624	1010001110	
		625	1110001011	
		626	000010111	
		627	1011000111	
Spare Words	127	628	1101010010	
- F				4
		748	1001011010	
		749	1100100010	
		750	100000000	
		751	Chan 1 - Sample 1	
		752	Chan 2 - Sample 1	
		753	Chan 3 - Sample 1	
		754	Chan 4 - Sample 1	
		755	Chan 5 - Sample 1	
		756	Chan 1 - Sample 2	
Earth Data	10,240			5
		10,985	Chan 5 - Sample 2047	
		10,986	Chan 1 - Sample 2048	
		10,987	Chan 2 - Sample 2048	
		10,988	Chan 3 - Sample 2048	
		10,989	Chan 4 - Sample 2048	
		10,990	Chan 5 - Sample 2048	
		10,991	1111100010	
		10,992	1111110011	
	100	10,993	0110110101	
Auxiliary Sync	100	10,994	1010111101	6
		11 000		6
		11,089		
	1	11,090	I	

Notes:

- 1) First 60 bits from 63 bit PN generator started in the all 1's state. The generator polynomial is $X^6+X^5+X^2+X+1$
- 2) AVHRR Internal Target Temperature Data. Three readings from one of the four platinum resistance thermometers (PRT). A different PRT is sampled for each scan; every fifth scan will contain a reference value of 0 in place of each reading.
- 3) 104 words includes 103 words of the AMSU frame plus the first word of TIP
- 4) Derived by inverting the output of a 1023 bit PN sequence provided by a feedback shift register generating the polynomial: $X^{10}+X^5+X^2+X+1$. The generator is started in all 1's state at the beginning of word 7 of each minor frame.
- 5) Each minor frame contains the data obtained during one Earth scan of the AVHRR sensor. The data from the five sensor channels of the AVHRR are time multiplexed as indicated.
- 6) Derived from the non-inverted output of a 1023 bit PN sequence provided by a feedback shift register generating the polynomial: $X^{10}+X^5+X^2+X+1$. The generator is started in the all 1's state at the beginning of word 10,991.

4.1.3.2 HRPT Minor Frame Format for NOAA-N,-N'

On NOAA-N,-N', the HRPT format provides a major frame, which is made up of three minor frames. TIP and AMSU/MHS data are updated at the major frame rate. That is, the three minor frames, which make up a major frame, will contain TIP data in the first minor frame, backfill in the second minor frame, and AMSU/MHS data in the third minor frame. The HRPT is provided in a split phase format to the S-Band Transmitter. The S-band transmission of time multiplexed, digital data is in a split phase format. The split phase data 0" is defined as being $+67^{\circ}$ phase during the first half of the bit period and -67° phase during the second half of the bit period. The split phase data 1" is defined as being -67° phase during the first half of the bit period and $+67^{\circ}$ during the second half of the bit period. The time code contained in each minor frame indicates the spacecraft time 1.13 ± 0.5 milliseconds before the beginning of bit 1 of word 1. The HRPT minor frame format for NOAA-N,-N' is shown in Table 4.1.3.2-1.

Tab	Table 4.1.3.2-1. HRPT Minor Frame Format for NOAA-N, -N'.			
Function	No. of Words	Word Position	Bit No. Plus Word Code & 1 2 3 4 5 6 7 8 9 10 Meaning	Notes
	1	1010000100		
		2	0101101111	
Eromo Cymo	6	3	1 1 0 1 0 1 1 1 0 0	1
Frame Sync	O	4	0110011101	
		5	1000001111	
		6	0010010101	
ID	2	7	Bit 1; 0=Internal Sync; 1=AVHRR Sync Bits 2 & 3; 00=Not an HRPT frame but a GAC frame; 01=Minor Frame #1; 10=Minor Frame #2; 11=Minor Frame #3 Bits 4-7; Spacecraft Addresses; Bit 4=MSB, BIT 7=LSB	

	1		D'4 0. 0 E C4-1.1. 1 E D	
			Bit 8; 0=Frame Stable; 1=Frame Resync	
			Occurred	
			Bit 9; 1=Normal AVHRR input, 0=PN	
			AVHRR Input	
			Bit 10; 0=AVHRR Ch3A, 1=AVHRR Ch3B	
		8	Bits 1-10; undefined Spare	
			Bits 1-9; Binary day count; Bit 1 = MSB; Bit 9	
		9	= LSB	
			Bit 10; 0; spare	
			Bit 1-3; 101, spare Bits 4-10; Part of Binary	
Time Code	4	10	msec of day	
			count; Bit 4=MSB	
		11	Bit 1-10; Part of Binary msec of day count;	
		12	Bit 1-10; Remainder of Binary msec of day	
		12	count; Bit 10=LSB	
		13	Ramp Calibration AVHRR Channel #1	
		14	Ramp Calibration AVHRR Channel #2	
		15	Ramp Calibration AVHRR Channel #3	
		16	Ramp Calibration AVHRR Channel #4	
T 1	10	17	Ramp Calibration AVHRR Channel #5	
Telemetry	10	18	AVHRR Channel #3 Target Temperature	
		19	AVHRR Channel #4 Target Temperature	
		20	AVHRR Channel #5 Target Temperature	2
		21	Channel 3 patch Temp.	
		22	Spare - Undefined	
			10 words of back scan data from each AVHRR	
		23	channel 3, 4, and 5. These data are time	
Back Scan	30	thru	multiplexed as chan 3 (word 1), chan 4 (word	
		52	1), chan 5 (word 1), chan 3 (word 2), chan 4	
			(word 2), chan 5 (word 2), etc.	
			10 words of space scan data from each	
			AVHRR channel 1, 2, 3, 4, and 5. These data	
		53	are time multiplexed as chan 1 (word 1), chan	
Space Data	50	thru	2 (word 1), chan 3 (word 1), chan 4 (word 1)	
		102	chan 5 (word 1), chan 1 (word 2), chan 2	
			(word 2), chan 3 (word 2), chan 4 (word 2),	
			chan 5 (word 2), etc.	
			Bit 1; 0 = AVHRR sync early; 1 = AVHRR	
Sync Data		100	sync late, Bits 2-10; 9 bit binary count of	
	1	103	0.9984 MHz periods; Bit 2 = MSB, Bit	
			10=LSB	
]		~=	

			3 sets of data corresponding to three HRPT minor frames per HRPT major frame.	
		104	First HRPT minor frame: The 520 words contain 5 TIP minor frames of TIP data (104 TIP data words per TIP minor frame) Bits 1-8: Exact format as generated by TIP. Bit 9: Even parity check over Bits 1-8. Bit 10: Inverted Bit 1.	
Data Words	520	thru 623	Second HRPT minor frame: The 520 words shall consist of five frames (104 words per frame) of spare data in the same form as spare words 624-750.	3
			Third HRPT minor frame: The 520 words shall consist of five frames (104 words per frame) of AMSU/MHS data from the AIP. Bits 1-8: Exact format as generated by AIP. Bit 9: Even parity check over Bits 1-8. Bit 10: Inverted Bit 1.	
		624	0100001001	
		625	0111101110	
		626	1110101010	
		627	0011101110	
Spare Words	127	628	0010110000	
		•••		4
		748	1011011101	
		749	0001001110	
		750	1111001001	
		751	Chan 1 - Sample 1	
		752	Chan 2 - Sample 1	
		753	Chan 3 - Sample 1	
		754	Chan 4 - Sample 1	
		755	Chan 5 - Sample 1	
		756	Chan 1 - Sample 2	
Earth Data	10,240			5
		10,985	Chan 5 - Sample 2047	
		10,986	Chan 1 - Sample 2048	
		10,987	Chan 2 - Sample 2048	
		10,988	Chan 3 - Sample 2048	
		10,989	Chan 4 - Sample 2048	
	10-	10,990	Chan 5 - Sample 2048	
Auxiliary Sync	100	10,991	1111100010	

10,992	1111110011	
10,993	0110110101	
10,994	1010111101	
		6
11,089	0111110000	
11,090	1111001100	

NOTES:

- 1. First 60 bits from 63 bit PN generator started in the all 1's state. The generator polynomial is $X^6+X^5+X^2+X+1$
- 2. Each of these words is a 5 channel subcom; 4 words of IR data plus subcom sync (10 A0"s)
- 3. The 104th word of each AMSU/MHS data frame of the MIRP contains 1110110100.
- 4. Derived by inverting the output of a 1023 bit PN sequence provided by a feedback shift register generating the polynomial: $X^{10}+X^5+X^2+X+1$. The generator is started in all 1's state at the beginning of word 7 of each minor frame.
- 5. Each minor frame contains the data obtained during one Earth scan of the AVHRR sensor. The data from the five sensor channels of the AVHRR are time multiplexed as indicated.
- 6. Derived from the non-inverted output of a 1023 bit PN sequence provided by a feedback shift register generating the polynomial: $X^{10}+X^5+X^2+X+1$. The generator is started in the all 1's state at the beginning of word 10,991.

4.1.4 DIGITAL "A" TELEMETRY

The output data signals supplied by the instrument to the spacecraft can be assigned to three categories: 1) instrument Digital "A" (scientific) data; 2) Digital "B" Telemetry; and 3) Analog Telemetry. For purposes of this document, Digital "A" data are described in this section

4.1.4.1 AMSU-A1 for NOAA KLM

The AMSU-A1 Digital "A" telemetry incorporates all of the radiometric data taken during one scan. It also includes the data from the on-orbit calibrations. In the Full Scan Mode, the AMSU-A1 for NOAA KLM and NOAA-N, N' has 1,244 Digital "A" telemetry points, as identified in Table 4.1.4.1-1.

Table 4.1.4.1-1. AMSU-A1 Digital "A" Data Format - Full Scan Mode for NOAA KLM.		
A1 Frame Byte Number	Parameter	
1-3	Sync. Sequence (FF Hex)	
4	Unit Identification and Serial Number	
5	Digital Housekeeping Data 1	
6	Digital Housekeeping Data 2	
7	Digital Housekeeping Data 3	
8	Digital Housekeeping Data 4	
9	Reflector 1, Position 1, MSP, First reading	
10	Reflector 1, Position 1, LSP, First reading	
11	Reflector 2, Position 1, MSP, First reading	

12	Reflector 2, Position 1, LSP, First reading
13	Reflector 1, Position 1, MSP, Second reading
14	Reflector 1, Position 1, MS1, Second reading
15	Reflector 2, Position 1, MSP, Second reading
16	Reflector 2, Position 1, MS1, Second reading
17	
	Scene Position 1, Channel 3, MSP
18	Scene Position 1, Channel 3, LSP
19	Scene Position 1, Channel 4, MSP
20	Scene Position 1, Channel 4, LSP
41	Scene Position 1, Channel 15, MSP
42	Scene Position 1, Channel 15, LSP
43	Reflector 1, Position 2, MSP, First reading
44	Reflector 1, Position 2, LSP, First reading
45	Reflector 2, Position 2, MSP, First reading
46	Reflector 2, Position 2, LSP, First reading
47	Reflector 1, Position 2, MSP, Second reading
48	Reflector 1, Position 2, LSP, Second reading
49	Reflector 2, Position 2, MSP, Second reading
50	Reflector 2, Position 2, LSP, Second reading
51	Scene Position 2, Channel 3, MSP
52	Scene Position 2, Channel 3, LSP
75	Scene Position 2, Channel 15, MSP
76	Scene Position 2, Channel 15, LSP
77	Reflector 1, Position 3, MSP, First reading
78	Reflector 1, Position 3, LSP, First reading
79	Reflector 2, Position 3, MSP, First reading
80	Reflector 2, Position 3, LSP, First reading
81	Reflector 1, Position 3, MSP, Second reading
82	Reflector 1, Position 3, LSP, Second reading
83	Reflector 2, Position 3, MSP, Second reading
84	Reflector 2, Position 3, LSP, Second reading
85	Scene Position 3, Channel 3, MSP
86	Scene Position 3, Channel 3, LSP
1027	Scene Position 30, Channel 15, MSP
1028	Scene Position 30, Channel 15, LSP
1029	Reflector 1, Cold Cal. Position, MSP, First reading
1030	Reflector 1, Cold Cal. Position, LSP, First reading
1031	Reflector 2, Cold Cal. Position, MSP, First reading
1032	Reflector 2, Cold Cal. Position, LSP, First reading
1033	Reflector 1, Cold Cal. Position, MSP, Second reading
1033	recreation 1, cord car, i obtain, wish, second reading

1034	Reflector 1, Cold Cal. Position, LSP, Second reading
1035	Reflector 2, Cold Cal. Position, MSP, Second reading
1036	Reflector 2, Cold Cal. Position, LSP, Second reading
1037	Cold Calibration 1, Channel 3, MSP
1038	Cold Calibration 1, Channel 3, LSP
1039	Cold Calibration 1, Channel 4, MSP
1040	Cold Calibration 1, Channel 4, LSP
1061	Cold Calibration 1, Channel 15, MSP
1062	Cold Calibration 1, Channel 15, LSP
1063	Cold Calibration 2, Channel 3, MSP
1064	Cold Calibration 2, Channel 3, LSP
1065	Cold Calibration 2, Channel 4, MSP
1066	Cold Calibration 2, Channel 4, LSP
1087	Cold Calibration 2, Channel 15, MSP
1088	Cold Calibration 2, Channel 15, LSP
1089	Temp Sensor 1, MSP
1090	Temp Sensor 1, LSP
1091	Temp Sensor 2, MSP
1092	Temp Sensor 2, LSP
1177	Temp Sensor 45, MSP
1178	Temp Sensor 45, LSP
1179	Temp Sensor Reference Voltage, MSP
1180	Temp Sensor Reference Voltage, LSP
1181	Reflector 1 Warm Cal. Position, MSP, First reading
1182	Reflector 1 Warm Cal. Position, LSP, First reading
1183	Reflector 2 Warm Cal. Position, MSP, First reading
1184	Reflector 2 Warm Cal. Position, LSP, First reading
1105	Deflected 1 Wester Col Desides MCD Consultantia
1185	Reflector 1 Warm Cal. Position, MSP, Second reading
1185 1186	Reflector 1 Warm Cal. Position, MSP, Second reading Reflector 1 Warm Cal. Position, LSP, Second reading
1186	Reflector 1 Warm Cal. Position, LSP, Second reading
1186 1187	Reflector 1 Warm Cal. Position, LSP, Second reading Reflector 2 Warm Cal. Position, MSP, Second reading
1186 1187 1188	Reflector 1 Warm Cal. Position, LSP, Second reading Reflector 2 Warm Cal. Position, MSP, Second reading Reflector 2 Warm Cal. Position, LSP, Second reading
1186 1187 1188 1189 1190 	Reflector 1 Warm Cal. Position, LSP, Second reading Reflector 2 Warm Cal. Position, MSP, Second reading Reflector 2 Warm Cal. Position, LSP, Second reading Warm Calibration 1, Channel 3, MSP Warm Calibration 1, Channel 3, LSP
1186 1187 1188 1189	Reflector 1 Warm Cal. Position, LSP, Second reading Reflector 2 Warm Cal. Position, MSP, Second reading Reflector 2 Warm Cal. Position, LSP, Second reading Warm Calibration 1, Channel 3, MSP Warm Calibration 1, Channel 3, LSP Warm Calibration 1, Channel 15, MSP
1186 1187 1188 1189 1190 	Reflector 1 Warm Cal. Position, LSP, Second reading Reflector 2 Warm Cal. Position, MSP, Second reading Reflector 2 Warm Cal. Position, LSP, Second reading Warm Calibration 1, Channel 3, MSP Warm Calibration 1, Channel 3, LSP Warm Calibration 1, Channel 15, MSP Warm Calibration 1, Channel 15, LSP
1186 1187 1188 1189 1190 	Reflector 1 Warm Cal. Position, LSP, Second reading Reflector 2 Warm Cal. Position, MSP, Second reading Reflector 2 Warm Cal. Position, LSP, Second reading Warm Calibration 1, Channel 3, MSP Warm Calibration 1, Channel 3, LSP Warm Calibration 1, Channel 15, MSP
1186 1187 1188 1189 1190 1213	Reflector 1 Warm Cal. Position, LSP, Second reading Reflector 2 Warm Cal. Position, MSP, Second reading Reflector 2 Warm Cal. Position, LSP, Second reading Warm Calibration 1, Channel 3, MSP Warm Calibration 1, Channel 3, LSP Warm Calibration 1, Channel 15, MSP Warm Calibration 1, Channel 15, LSP
1186 1187 1188 1189 1190 1213 1214 1215	Reflector 1 Warm Cal. Position, LSP, Second reading Reflector 2 Warm Cal. Position, MSP, Second reading Reflector 2 Warm Cal. Position, LSP, Second reading Warm Calibration 1, Channel 3, MSP Warm Calibration 1, Channel 3, LSP Warm Calibration 1, Channel 15, MSP Warm Calibration 1, Channel 15, LSP Warm Calibration 2, Channel 3, MSP

1240	Warm Calibration 2, Channel 15, LSP
1241-1243	Sync. Sequence (FF Hex)
1244	nit Identification and Serial Number

Notes:

- 1. The MSP is the most significant portion of a particular measurement; the LSP is the least significant portion of the particular measurement.
- 2. The first set of readings for a particular reflector position are made prior to the integration interval; the second set of readings are made approximately halfway through the integration period.
- 3. Digital "A" data as read by the spacecraft shall contain an undetermined number of "fill words". These fill words shall be 0001H and will be intermingled with valid data. The Digital "A" data as sent by the instrument shall be such that no valid data of 0001H shall be included.
- 4. Format of Position data is: DDDDDDDDDDDDDDDD, where:
- D = Data
- E = Error bit: 0=not in spec, 1=spec.
- 0 = Zero
- 5. Format of Radiometer data is: DDDDDDDDDDDDDDD, where:
- D = Data
- 0 = Zero
- 6. Temperature Sensor Reference Voltage utilized for temperature sensors 36-45 only.

Table 4.1.4.1-2. AMSU-A1 Data Word Description			
	Housekeeping Data, Byte Number 1		
Bit #	Description		
0	0		
	Full Scan Mode:		
1	0 = Not Full Scan Mode;		
	1 = Full Scan.		
	Warm Cal Mode:		
2	0 = Not in Warm Cal;		
	1 = Warm Cal.		
	Cold Cal Mode:		
3	0 = Not in Cold Cal;		
	1 = Cold Cal.		
	Nadir Mode:		
4	0 = Not in Nadir;		
	1 = Nadir		
5	Cold Cal Position, LSB		
6	Cold Cal Position, MSB		
7	0		
	Housekeeping Data, Byte Number 2		
0	0		
1	Scanner A1-1 Power:		

11 Local	Oscillator Channel 7		
	Local Oscillator Channel 8 Local Oscillator Channel 15		
	PLL LO #2 Channels 9 through 14 (See Note 1)		
	PLL LO#2 Chamles 9 through 14 (See Note 1) PLL LO#1 Channels 9 through 14		
		- 1 C C/NI 105	
16 PLLC 109	PLLO (Reference Oscillator) for S/N 101-104, Not Used for S/N 105-109		
17 Mixe	c/IF Amplifier Channel 3		
18 Mixe	c/IF Amplifier Channel 4		
19 Mixe	:/IF Amplifier Channel 5		
20 Mixe	/IF Amplifier Channel 6		
	/IF Amplifier Channel 7		
	/IF Amplifier Channel 8		
	:/IF Amplifier Channel 9/14		
	/IF Amplifier Channel 15		
	nplifier Channel 11/14		
	applifier Channel 9		
	nplifier Channel 10		
	nplifier Channel 11		
	C Converter		
	pplifier Channel 13		
	aplifier Channel 14		
	IF Amplifier Channel 15		
	RF Shelf A1-1		
	RF Shelf A1-2		
	Detector/Preamplifier Assembly		
	A1-1 Warm Load 1 – Not Valid for S/N 103		
	A1-1 Warm Load 2		
	A1-1 Warm Load 2		
	A1-1 Warm Load 4		
	A1-1 Warm Load 4 A1-1 Warm Load Center		
	A1-1 Warm Load Center A1-2 Warm Load 1		
	A1-1 Warm Load 2		
	A1-1 Warm Load 3		
	A1-1 Warm Load 4		
	Warm Load Center		
1111	AMSU A-1 Identification Words		
Unit Number	Identification No. (Binary)	S/N	
Engineering Model Module			
A1	0000001	101	
Proto Flight Model Module			
A1	00000101	102	
Flight Model 1 Module A1	00001001	103	
Flight Model 2 Module A1	00001001	104	
i iigiit iviodei 2 iviodule Al	00001101	107	

Flight Model 3 Module A1	00010001	105
Flight Model 4 Module A1	00010101	106
Flight Model 5 Module A1	00011001	107
Flight Model 6 Module A1	00011101	108
Flight Model 7 Module A1	00100001	109

Note:

1) For S/N 102: Read PRT temperature. Read voltage of lock detect signal and covert to temperature using the following formula: t = (8.73 X V) - 23.5 where t is the temperature (in C) and V is the measured lock detect voltage signal. If the temperature given by the PRT reading and the formula are in agreement within \pm 5C, then use the PRT reading as it was intended. If the temperature difference is greater than \pm 5C, then use the temperature interpreted from lock detect signal. At initial power on of PLLO#2 before PLLO#2 is fully self heated and stabilized, use within \pm 5C rule with reference A1-1 (PRT #33) RF -shelf temperature. The within \pm 5C rule does not apply right after PLLO was operational and was switched off and then back on. In this case, wait half an hour for PLLO#2 to cool down before temperature extraction method can be selected correctly. The formula t = (8.75 X V) -23.5 is usable only between 2.5V to +8.4V or -1.6 to 50 C.

4.1.4.2 AMSU-A2 for NOAA KLM

The AMSU-A2 Digital "A" telemetry incorporates all of the radiometric data taken during one scan. It also includes the data from the on-orbit calibrations. The AMSU-A2 has 316 Digital "A" telemetry points, as described in Table 4.1.4.2-1, in the Full Scan Mode.

Table 4.1.4.2-1. AMSU-A2 Digital "A" Format - Full Scan Mode for NOAA KLM.		
A2 Frame Byte Number	Parameter	
1-3	Sync. Sequence (FF Hex)	
4	Unit Identification and Serial Number	
5	Digital Housekeeping Data 1	
6	Digital Housekeeping Data 2	
7	Digital Housekeeping Data 3	
8	Digital Housekeeping Data 4	
9	Reflector, Position 1, MSP, First reading	
10	Reflector, Position 1, LSP, First reading	
11	Reflector, Position 1, MSP, Second reading	
12	Reflector, Position 1, LSP, Second reading	
13	Scene Position 1, Channel 1, MSP	
14	Scene Position 1, Channel 1, LSP	
15	Scene Position 1, Channel 2, MSP	
16	Scene Position 1, Channel 2, LSP	
17	Reflector, Position 2, MSP, First reading	
18	Reflector, Position 2, LSP, First reading	
19	Reflector, Position 2, MSP, Second reading	
20	Reflector, Position 2, LSP, Second reading	

21	Come Position 2 Channel 1 MCD	
21	Scene Position 2, Channel 1, MSP	
22	Scene Position 2, Channel 1, LSP	
23	Scene Position 2, Channel 2, MSP	
24	Scene Position 2, Channel 2, LSP	
25	Reflector, Position 3, MSP, First reading	
26	Reflector, Position 3, LSP, First reading	
27	Reflector, Position 3, MSP, Second reading	
28	Reflector, Position 3, LSP, Second reading	
29	Scene Position 3, Channel 1, MSP	
30	Scene Position 3, Channel 1, LSP	
247	Scene Position 30, Channel 2, MSP	
248	Scene Position 30, Channel 2, LSP	
249	Reflector, Cold Calibration Position, MSP, First reading	
250	Reflector, Cold Calibration Position, LSP, First reading	
251	Reflector, Cold Calibration Position, MSP, Second	
	reading	
252	Reflector, Cold Calibration Position, LSP, Second	
	reading	
253	Cold Calibration 1, Channel 1, MSP	
254	Cold Calibration 1, Channel 1, LSP	
255	Cold Calibration 1, Channel 2, MSP	
256	Cold Calibration 1, Channel 2, LSP	
257	Cold Calibration 2, Channel 1, MSP	
258	Cold Calibration 2, Channel 1, LSP	
259	Cold Calibration 2, Channel 2, MSP	
260	Cold Calibration 2, Channel 2, LSP	
261	Temperature Sensor 1, MSP	
262	Temperature Sensor 1, LSP	
263	Temperature Sensor 2, MSP	
264	Temperature Sensor 2, LSP	
297	Temperature Sensor 19, MSP	
298	Temperature Sensor 19, LSP	
299	Temperature Sensor Reference Voltage, MSP	
300	Temperature Sensor Reference Voltage, LSP	
301	Reflector Warm Calibration Position, MSP, First reading	
302	Reflector Warm Calibration Position, LSP, First reading	
303	Reflector Warm Calibration Position, MSP, Second	
	reading	
304	Reflector Warm Calibration Position, LSP, Second	
	reading	
305	Warm Calibration 1, Channel 1, MSP	

306	Warm Calibration 1, Channel 1, LSP
307	Warm Calibration 1, Channel 2, MSP
308	Warm Calibration 1, Channel 2, LSP
309	Warm Calibration 2, Channel 1, MSP
310	Warm Calibration 2, Channel 1, LSP
311	Warm Calibration 2, Channel 2, MSP
312	Warm Calibration 2, Channel 2, LSP
313-315	Synchronization Sequence (FF Hex)
316	Unit Identification and Serial Number

Notes:

- 1. MSP is the most significant portion of a particular measurement while the LSP is the least significant portion of the particular measurement.
- 2) The first set of readings for a particular reflector position are made prior to the integration interval; the second set of readings are made approximately half way through the integration period.
- 3) Digital "A" data as read by the spacecraft shall contain an undetermined number of "fill words". These fill words shall be 0001H and will be intermingled with valid data. The Digital "A" data as sent by the instrument shall be such that no valid data of 0001H shall be included.
- 4) Format of Position data is DDDDDDDDDDDDDDD., where:

D=Data

E=Error bit: 0=not in spec, 1=spec.

0=Zero

5) Format of Radiometer data is DDDDDDDDDDDDDDD, where:

D=Data

0=Zero

6) Temperature sensor reference voltage is utilized for temperature sensors 13 through 19 only.

	Table 4.1.4.2-2. AMSU-A1 Data Word Description Housekeeping Data, Byte Number 1		
Bit #	Description		
0	0		
	Full Scan Mode:		
1	0 = Not Full Scan Mode;		
1	1 = Full Scan.		
	Warm Cal Mode:		
2	0 = Not in Warm Cal;		
	1 = Warm Cal.		
	Cold Cal Mode:		
3	0 = Not in Cold Cal;		
	1 = Cold Cal.		
	Nadir Mode:		
4	0 = Not in Nadir;		
	1 = Nadir		

5	Cold Cal Position, LSB		
6	Cold Cal Position, MSB		
7	0		
	Housekeeping Data, Byte Number 2		
0	0		
	Scanner A2:		
1	0 = Off		
	1 = On.		
	Scanner Compensator Power:		
2	0 = Off;		
	1 = On.		
3	0		
	Survival Heater Power:		
4	0 = Off;		
	1 = On.		
5	0		
6	0		
7	0		
	Housekeeping Data, Byte 3		
0	0		
1	0		
2	0		
3	0		
4	0		
5	0		
6	0		
7	0		
	Housekeeping Data, Byte 4		
0	0		
1	0		
2	0		
3	0		
4	0		
5	0		
6	0		
7	0		
	Temperature Sensor Assignments		
Number	Location		
1	Scan Motor		
2	Feed Horn		
3	RF Mux		
4	Mixer IF Amplifier Channel 1		
5	Mixer IF Amplifier Channel 2		
6	Local Oscillator Channel 1		

7	Local Oscillator Channel 2		
8	Compensation Motor		
9	Subreflector		
10	DC/DC (Converter	
11	RF Shelf		
12	Detector/	Preamp Assembly	
13	Warm Lo	oad Center	
14	Warm Lo	oad 1	
15	Warm Lo	Warm Load 2	
16	Warm Lo	pad 3	
17	Warm Lo	oad 4	
18	Warm Lo	pad 5	
19	Warm Load 6		
		AMSU A-1 Identification Words	
Unit Numb	er	Identification No. (Binary)	S/N
Engineering Model Module A2		00000010	101
Proto Flight Model Module A2		00000110	102
Flight Model 1 Module A2		00001010	103
Flight Model 2 Module A2		00001110	104
Flight Model 3 Module A2		00010010	105
Flight Model 4 Module A2		00010110	106
Flight Model 5 Module A2		00011010	107
Flight Model 6 Module A2		00011110	108
Flight Model 7 Module A2		00100010	109

4.1.4.3 AMSU-B for NOAA KLM

Digital "A" Data is clocked into the spacecraft AIP at a 16.64 kbps rate by the shift pulse whenever the Data Enable Pulse is presented to the instrument. The AMSU-B data is in the AIP minor frame words 48 through 97. The AIP reads the digital data output from the AMSU-B in 16 bit words.

The AMSU-B telemetry format consists of 78 minor frames of data. Minor frames 1 and 80 in each 8 second cycle are blank: i.e. no data is available in the PEU digital data FIFO during the first and last minor frames of each 8 second format. The 78 minor frames are organized as three blocks of 650 words as follows (representing one scan of the instrument):

36 spare words

540 words of Earth view pixel data (90 x (5 channels + shaft position at mid-pixel)) 26 words of housekeeping data

48 words of space view and target view data (2 x 4 x (5 channels + shaft position))

This structure is maintained for all modes. In static modes, all pixel data locations contain the pixel data for the current antenna position.

The AMSU-B digital format is synchronized to the 8 second synchronization pulse. During each minor frame, 25 words of data are available in the PEU O/P FIFO within 16.7 milliseconds of the start of the minor frame (except in frames 1 and 80). Table 4.1.4.3-1 shows the AMSU-B digital A data format.

Word Length: 16 bits

Serial Output: 25 - 16 bit words per 100 sec (MSB first)

	T	able 4.1.4	3-1. AM	SU-B Dig	ital "A" D	ata Form	at for NO	AA KLM		
Word					Mino	r Frame				
Number	1	2	3	4	5	6	7	8	9	10
01		SP1	SP26	17/03	18/07	19/11	20/15	P/20	16/24	17/28
02		SP2	SP27	18/03	19/07	20/11	P/16	16/20	17/24	18/28
03		SP3	SP28	19/03	20/07	P/12	16/16	17/20	18/24	19/28
04		SP4	SP29	20/03	P/08	16/12	17/16	18/20	19/24	20/28
05		SP5	SP30	P/04	16/08	17/12	18/16	19/20	20/24	P/29
06		SP6	SP31	16/04	17/08	18/12	19/16	20/20	P/25	16/29
07		P7	SP32	17/04	18/08	19/12	20/16	P/21	16/25	17/29
08		SP8	SP33	18/04	19/08	20/12	P/17	16/21	17/25	18/29
09		SP9	SP34	19/04	20/08	P/13	16/17	17/21	18/25	19/29
10		SP10	SP35	20/04	P/09	16/13	17/17	18/21	19/25	20/29
11	1	SP11	SP36	P/05	16/09	17/13	18/17	19/21	20/25	P/30
12	Blank	SP12	P/01	16/05	17/09	18/13	19/17	20/21	P/26	16/30
13	1	SP13	16/01	17/05	18/09	19/13	20/17	P/22	16/26	17/30
14		SP14	17/01	18/05	19/09	20/13	P/18	16/22	17/26	18/30
15	1	SP15	18/01	19/05	20/09	P/14	16/18	17/22	18/26	19/30
16		SP16	19/01	20/05	P/10	16/14	17/18	18/22	19/26	20/30
17		SP17	20/01	P/06	16/10	17/14	18/18	19/22	20/26	P/31
18		SP18	P/02	16/06	17/10	18/14	19/18	20/22	P/27	16/31
19		SP19	16/02	17/06	18/10	19/14	20/18	P/23	16/27	17/31
20		SP20	17/02	18/06	19/10	20/14	P/19	16/23	17/27	18/31
21		SP21	18/02	19/06	20/10	P/15	16/19	17/23	18/27	19/31
22		SP22	19/02	20/06	P/11	16/15	17/19	18/23	19/27	20/31
23		SP23	20/02	P/07	16/11	17/15	18/19	19/23	20/27	P/32

24]	SP24	P/03	16/07	17/11	18/15	19/19	20/23	P/28	16/32
25		SP25	16/03	17/07	18/11	19/15	20/19	P/24	16/28	17/32
Word		1 22 20	10,00	17707		Frame	20/12	172.	10/20	17762
Number	11	12	13	14	15	16	17	18	19	20
01	18/32	9/36	20/40	P/45	16/49	17/53	18/57	19/61	20/65	P/70
02	19/32	20/36	P/41	16/45	17/49	18/53	19/57	20/61	P/66	16/70
03	20/32	P/37	16/41	17/45	18/49	19/53	20/57	P/62	16/66	17/70
04	P/33	16/37	17/41	18/45	19/49	20/53	P/58	16/62	17/66	18/70
05	16/33	17/37	18/41	19/45	20/49	P/54	16/58	17/62	18/66	19/70
06	17/33	18/37	19/41	20/45	P/50	16/54	17/58	18/62	19/66	20/70
07	18/33	19/37	20/41	P/46	16/50	17/54	18/58	19/62	20/66	P/71
08	19/33	20/37	P/42	16/46	17/50	18/54	19/58	20/62	P/67	16/71
09	20/33	P/38	16/42	17/46	18/50	19/54	20/58	P/63	16/67	17/71
10	P/34	16/38	17/42	18/46	19/50	20/54	P/59	16/63	17/67	18/71
11	16/34	17/38	18/42	19/46	20/50	P/55	16/59	17/63	18/67	19/71
12	17/34	18/38	19/42	20/46	P/51	16/55	17/59	18/63	19/67	20/71
13	18/34	19/38	20/42	P/47	16/51	17/55	18/59	19/63	20/67	P/72
14	19/34	0/38	/43	16/47	17/51	8/55	19/59	20/63	P/68	16/72
15	20/34	P/39	16/43	17/47	18/51	19/55	20/59	P/64	16/68	17/72
16	P/35	16/39	17/43	18/47	19/51	20/55	P/60	16/64	17/68	18/72
17	16/35	17/39	18/43	19/47	20/51	P/56	16/60	17/64	18/68	19/72
18	17/35	18/39	19/43	20/47	P/52	16/56	17/60	18/64	19/68	20/72
19	18/35	19/39	20/43	P/48	16/52	17/56	18/60	19/64	20/68	P/73
20	19/35	20/39	P/44	16/48	17/52	18/56	19/60	20/64	P/69	16/73
21	20/35	P/40	16/44	17/48	18/52	19/56	20/60	P/65	16/69	17/73
22	/36	16/40	17/44	18/48	19/52	20/56	P/61	16/65	17/69	18/73
23	16/36	17/40	18/44	19/48	20/52	P/57	16/61	17/65	18/69	19/73
24	17/36	18/40	19/44	20/48	P/53	16/57	17/61	18/65	19/69	20/73
25	18/36	19/40	20/44	P/49	16/53	17/57	18/61	19/65	20/69	P/74
Word			•		Minor	Frame		1	•	
Number	21	22	23	24	25	26	27	28	29	30
01	16/74	17/78	18/82	19/86	20/90	A25	20/S4	SP1	TST09	17/03
02	17/74	18/78	19/82	20/86	A01	A26	P/T1	SP2	TST10	18/03
03	18/74	19/78	20/82	P/87	A02	P/S1	16/T1	SP3	TST11	19/03
04	19/74	20/78	P/83	16/87	A03	16/S1	17/T1	SP4	TST12	20/03
05	20/74	P/79	16/83	17/87	A04	17/S1	18/T1	SP5	TST13	P/04
06	P/75	16/79	17/83	18/87	A05	18/S1	19/T1	SP6	TST14	16/04
07	16/75	17/79	18/83	19/87	A06	19/S1	20/T1	SP7	TST15	17/04
08	17/75	18/79	19/83	20/87	A07	20/S1	P/T2	SP8	TST16	18/04
09	18/75	19/79	20/83	P/88	A08	P/S2	16/T2	SP9	TST17	19/04
10	19/75	20/79	P/84	16/88	A09	16/S2	17/T2	SP10	TST18	20/04
11	20/75	P/80	16/84	17/88	A10	17/S2	18/T2	SP11	TST19	P/05
12	P/76	16/80	17/84	18/88	A11	18/S2	19/T2	SP12	P/01	16/05

13	16/76	17/80	18/84	19/88	A12	19/S2	20/T2	SP13	16/01	17/05
14	17/76	18/80	19/84	20/88	A13	20/S2	P/T3	SP14	17/01	18/05
15	18/76	19/80	20/84	P/89	A14	P/S3	16/T3	SP15	18/01	19/05
16	19/76	20/80	P/85	16/89	A15	16/S3	17/T3	SP16	19/01	20/05
17	20/76	P/81	16/85	17/89	A16	17/S3	18/T3	SP17	20/01	P/06
18	P/77	16/81	17/85	18/89	A17	18/S3	19/T3	TST01	P/02	16/06
19	16/77	17/81	18/85	19/89	A18	19/S3	20/T3	TST02	16/02	17/06
20	17/77	18/81	19/85	20/89	A19	20/S3	P/T4	TST03	17/02	18/06
21	18/77	19/81	20/85	P/90	A20	P/S4	16/T4	TST04	18/02	19/06
22	19/77	20/81	P/86	16/90	A21	16/S4	17/T4	TST05	19/02	20/06
23	20/77	P/82	16/86	17/90	A22	17/S4	18/T4	TST06	20/02	P/07
24	P/78	16/82	17/86	18/90	A23	18/S4	19/T4	TST07	P/03	16/07
25	16/78	17/82	18/86	19/90	A24	19/S4	20/T4	TST08	16/03	17/07
Word			1	1	Minor	Frame	ı			
Number	31	32	33	34	35	36	37	38	39	40
01	18/07	19/11	20/15	P/20	16/24	17/28	18/32	19/36	20/40	P/45
02	19/07	20/11	P/16	16/20	17/24	18/28	19/32	20/36	P/41	16/45
03	20/07	P/12	16/16	17/20	18/24	19/28	20/32	P/37	16/41	17/45
04	P/08	16/12	17/16	18/20	19/24	20/28	P/33	16/37	17/41	18/45
05	16/08	17/12	18/16	19/20	20/24	P/29	16/33	17/37	18/41	19/45
06	17/08	18/12	19/16	20/20	P/25	16/29	17/33	18/37	19/41	20/45
07	8/08	19/12	20/16	P/21	16/25	17/29	18/33	19/37	20/41	P/46
08	19/08	20/12	P/17	16/21	17/25	18/29	19/33	20/37	P/42	16/46
09	20/08	P/13	16/17	17/21	18/25	19/29	20/33	P/38	16/42	17/46
10	P/09	16/13	17/17	18/21	19/25	20/29	P/34	16/38	17/42	18/46
11	16/09	17/13	18/17	19/21	20/25	P/30	16/34	17/38	18/42	19/46
12	17/09	18/13	19/17	20/21	P/26	16/30	17/34	18/38	19/42	20/46
13	18/09	19/13	20/17	P/22	16/26	17/30	18/34	19/38	20/42	P/47
14	19/09	20/13	P/18	16/22	17/26	18/30	19/34	20/38	P/43	16/47
15	20/09	P/14	16/18	17/22	18/26	19/30	20/34	P/39	16/43	17/47
16	P/10	16/14	17/18	18/22	19/26	20/30	P/35	16/39	17/43	18/47
17	16/10	17/14	18/18	19/22	20/26	P/31	16/35	17/39	18/43	19/47
18	17/10	18/14	19/18	20/22	P/27	16/31	17/35	18/39	19/43	20/47
19	18/10	19/14	20/18	P/23	16/27	17/31	18/35	19/39	20/43	P/48
20	19/10	20/14	P/19	16/23	17/27	18/31	19/35	20/39	P/44	16/48
21	20/10	P/15	16/19	17/23	18/27	19/31	20/35	P/40	16/44	17/48
22	P/11	16/15	17/19	18/23	19/27	20/31	P/36	16/40	17/44	18/48
23	16/11	17/15	18/19	19/23	20/27	P/32	16/36	17/40	18/44	19/48
24	17/11	18/15	19/19	20/23	P/28	16/32	17/36	18/40	19/44	20/48
25	18/11	19/15	20/19	P/24	16/28	17/32	18/36	19/40	20/44	P/49
Word		1	1			Frame	1	1	T	T
Number	41	42	43	44	45	46	47	48	49	50
1	16/49	17/53	18/57	19/61	20/65	P/70	16/74	17/78	18/82	19/86

02	17/49	18/53	19/57	20/61	P/66	16/70	17/74	18/78	19/82	20/86
03	18/49	19/53	20/57	P/62	16/66	17/70	18/74	19/78	20/82	P/87
04	19/49	20/53	P/58	16/62	17/66	18/70	19/74	20/78	P/83	16/87
05	20/49	P/54	16/58	17/62	18/66	19/70	20/74	P/79	16/83	17/87
06	P/50	16/54	17/58	18/62	19/66	20/70	P/75	16/79	17/83	18/87
07	16/50	17/54	18/58	19/62	20/66	P/71	16/75	17/79	18/83	19/87
08	17/50	18/54	19/58	20/62	P/67	16/71	17/75	18/79	19/83	20/87
09	18/50	19/54	20/58	P/63	16/67	17/71	18/75	19/79	20/83	P/88
10	19/50	20/54	P/59	16/63	17/67	18/71	19/75	20/79	P/84	16/88
11	20/50	P/55	16/59	17/63	18/67	19/71	20/75	P/80	16/84	17/88
12	P/51	16/55	17/59	18/63	19/67	20/71	P/76	16/80	17/84	18/88
13	16/51	17/55	18/59	19/63	20/67	P/72	16/76	17/80	18/84	19/88
14	17/51	18/55	19/59	20/63	P/68	16/72	17/76	18/80	19/84	20/88
15	18/51	19/55	20/59	P/64	16/68	17/72	18/76	19/80	20/84	P/89
16	19/51	20/55	P/60	16/64	17/68	18/72	19/76	20/80	P/85	16/89
17	20/51	P/56	16/60	17/64	18/68	19/72	20/76	P/81	16/85	17/89
18	P/52	16/56	17/60	18/64	19/68	20/72	P/77	16/81	17/85	18/89
19	16/52	17/56	18/60	19/64	20/68	P/73	16/77	17/81	18/85	19/89
20	17/52	18/56	19/60	20/64	P/69	16/73	17/77	18/81	19/85	20/89
21	18/52	19/56	20/60	P/65	16/69	17/73	18/77	19/81	20/85	P/90
22	19/52	20/56	P/61	16/65	17/69	18/73	19/77	20/81	P/86	16/90
23	20/52	P/57	16/61	17/65	18/69	19/73	20/77	P/82	16/86	17/90
24	P/53	16/57	17/61	18/65	19/69	20/73	P/78	16/82	17/86	18/90
25	16/53	17/57	18/61	19/65	20/69	P/74	16/78	17/82	18/86	19/90
Word					Minor	Frame				
Number	51	52	53	54	55	56	57	58	59	60
01	20/90	A25	20/S4	SP1	TST09	17/03	18/07	19/11	20/15	P/20
02	A01	A26	P/T1	SP2	TST10	18/03	19/07	20/11	P/16	16/20
03	A02	P/S1	16/T1	SP3	TST11	19/03	20/07	P/12	16/16	17/20
04	A03	16/S1	17/T1	SP4	TST12	20/03	P/08	16/12	17/16	18/20
05	A04	17/S1	18/T1	SP5	TST13	P/04	16/08	17/12	18/16	19/20
06	A05	18/S1	19/T1	SP6	TST14	16/04	17/08	18/12	19/16	20/20
07	A06	19/S1	20/T1	SP7	TST15	17/04	18/08	19/12	20/16	P/21
08	A07	20/S1	P/T2	SP8	TST16	18/04	19/08	20/12	P/17	16/21
09	A08	P/S2	16/T2	SP9	TST17	19/04	20/08	P/13	16/17	17/21
10	A09	16/S2	17/T2	SP10	TST18	20/04	P/09	16/13	17/17	18/21
11	A10	17/S2	18/T2	SP11	TST19	P/05	16/09	17/13	18/17	19/21
12	A11	18/S2	19/T2	SP12	P/01	16/05	17/09	18/13	19/17	20/21
13	A12	19/S2	20/T2	SP13	16/01	17/05	18/09	19/13	20/17	P/22
14	A13	20/S2	P/T3	SP14	17/01	18/05	19/09	20/13	P/18	16/22
15	A14	P/S3	16/T3	SP15	18/01	19/05	20/09	P/14	16/18	17/22
16	A15	16/S3	17/T3	SP16	19/01	20/05	P/10	16/14	17/18	18/22
17	A16	17/S3	18/T3	SP17	20/01	P/06	16/10	17/14	18/18	19/22

18	A17	18/S3	19/T3	TST01	P/02	16/06	17/10	18/14	19/18	20/22
19	A18	19/S3	20/T3	TST02	16/02	17/06	18/10	19/14	20/18	P/23
20	A19	20/S3	P/T4	TST02	17/02	18/06	19/10	20/14	P/19	16/23
21	A20	P/S4	16/T4	TST04	18/02	19/06	20/10	P/15	16/19	17/23
22	A21	16/S4	17/T4	TST05	19/02	20/06	P/11	16/15	17/19	18/23
23	A22	17/S4	18/T4	TST06	20/02	P/07	16/11	17/15	18/19	19/23
24	A23	18/S4	19/T4	TST07	P/03	16/07	17/11	18/15	19/19	20/23
25	A24	19/S4	20/T4	TST08	16/03	17/07	18/11	19/15	20/19	P/24
Word	112	15/15	20/11	10100	l .	r Frame	10/11	15/10	20/17	1,2,
Number	61	62	63	64	65	66	67	68	69	70
01	16/24	17/28	18/32	19/36	20/40	P/45	16/49	17/53	18/57	19/61
02	17/24	18/28	19/32	20/36	P/41	16/45	17/49	18/53	19/57	20/61
03	18/24	19/28	20/32	P/37	16/41	17/45	18/49	19/53	20/57	P/62
04	19/24	20/28	P/33	16/37	17/41	18/45	19/49	20/53	P/58	16/62
05	20/24	P/29	16/33	17/37	18/41	19/45	20/49	P/54	16/58	17/62
06	P/25	16/29	17/33	18/37	19/41	20/45	P/50	16/54	17/58	18/62
07	16/25	17/29	18/33	19/37	20/41	P/46	16/50	17/54	18/58	19/62
08	17/25	18/29	19/33	20/37	P/42	16/46	17/50	18/54	19/58	20/62
09	18/25	19/29	20/33	P/38	16/42	17/46	18/50	19/54	20/58	P/63
10	19/25	20/29	P/34	16/38	17/42	18/46	19/50	20/54	P/59	16/63
11	20/25	P/30	16/34	17/38	18/42	19/46	20/50	P/55	16/59	17/63
12	P/26	16/30	17/34	18/38	19/42	20/46	P/51	16/55	17/59	18/63
13	16/26	17/30	18/34	19/38	20/42	P/47	16/51	17/55	18/59	19/63
14	17/26	18/30	19/34	20/38	P/43	16/47	17/51	18/55	19/59	20/63
15	18/26	19/30	20/34	P/39	16/43	17/47	18/51	19/55	20/59	P/64
16	19/26	20/30	P/35	16/39	17/43	18/47	19/51	20/55	P/60	16/64
17	20/26	P/31	16/35	17/39	18/43	19/47	20/51	P/56	16/60	17/64
18	P/27	16/31	17/35	18/39	19/43	20/47	P/52	16/56	17/60	18/64
19	16/27	17/31	18/35	19/39	20/43	P/48	16/52	17/56	18/60	19/64
20	17/27	18/31	19/35	20/39	P/44	16/48	17/52	18/56	19/60	20/64
21	18/27	19/31	20/35	P/40	16/44	17/48	18/52	19/56	20/60	P/65
22	19/27	20/31	P/36	16/40	17/44	18/48	19/52	20/56	P/61	16/65
23	20/27	P/32	16/36	17/40	18/44	19/48	20/52	P/57	16/61	17/65
24	P/28	16/32	17/36	18/40	19/44	20/48	P/53	16/57	17/61	18/65
25	16/28	17/32	18/36	19/40	20/44	P/49	16/53	17/57	18/61	19/65
Word		_		_		r Frame	_	_	T	
Number	71	72	73	74	75	76	77	78	79	80
01	20/65	P/70	16/74	17/78	18/82	19/86	20/90	A25	20/S4]
02	P/66	16/70	17/74	18/78	19/82	20/86	A01	A26	P/T1	_
03	16/66	17/70	18/74	19/78	20/82	P/87	A02	P/S1	16/T1	Blank
04	17/66	18/70	19/74	20/78	P/83	16/87	A03	16/S1	17/T1	_ Diunk
05	18/66	19/70	20/74	P/79	16/83	17/87	A04	17/S1	18/T1	1
06	19/66	20/70	P/75	16/79	17/83	18/87	A05	18/S1	19/T1]

07	20/66	P/71	16/75	17/70	18/83	19/87	106	10/01	20/T1
	20/66		16/75	17/79			A06	19/S1	20/T1
08	P/67	16/71	17/75	18/79	19/83	20/87	A07	20/S1	P/T2
09	16/67	17/71	18/75	19/79	20/83	P/88	A08	P/S2	16/T2
10	17/67	18/71	19/75	20/79	P/84	16/88	A09	16/S2	17/T2
11	18/67	19/71	20/75	P/80	16/84	17/88	A10	17/S2	18/T2
12	19/67	20/71	P/76	16/80	17/84	18/88	A11	18/S2	19/T2
13	20/67	P/72	16/76	17/80	18/84	19/88	A12	19/S2	20/T2
14	P/68	16/72	17/76	18/80	19/84	20/88	A13	20/S2	P/T3
15	6/68	17/72	18/76	19/80	20/84	P/89	A14	P/S3	16/T3
16	17/68	18/72	19/76	20/80	P/85	16/89	A15	16/S3	17/T3
17	18/68	19/72	20/76	P/81	16/85	17/89	A16	17/S3	18/T3
18	19/68	20/72	P/77	16/81	17/85	18/89	A17	18/S3	19/T3
19	20/68	P/73	16/77	17/81	18/85	19/89	A18	19/S3	20/T3
20	P/69	16/73	17/77	18/81	19/85	20/89	A19	20/S3	P/T4
21	16/69	17/73	18/77	19/81	20/85	P/90	A20	P/S4	16/T4
22	17/69	18/73	19/77	20/81	P/86	16/90	A21	16/S4	17/T4
23	18/69	19/73	20/77	P/82	16/86	17/90	A22	17/S4	18/T4
24	19/69	20/73	P/78	16/82	17/86	18/90	A23	18/S4	19/T4
25	20/69	P/74	16/78	17/82	18/86	19/90	A24	19/S4	20/T4

NOTES ON THE PREVIOUS TABLES:

The format consists of minor frames (1 to 80). Minor frames 1 and 80 are blank. This means that no data is available in the PEU output FIFO for reading by the AIP and therefore the AIP should not send any sample pulses to AMSU-B during these minor frame periods.

Table 4.1.4.3-2 indicates the meanings for the variables used in Table 4.1.4.3-1:

Ta	ble 4.1.4.3-2. Meaning of Variables in Table 4.1.4.3-1.
Key	Meaning
SP	Spare word (Data is 5555H except for spare words 34 to 36)
TSTxx	Test Data
P/n	Shaft position at mid-integration time for FOV n.
16/n	Integrated output for channel 16 for FOV n.
17/n	Integrated output for channel 17 for FOV n.
18/n	Integrated output for channel 18 for FOV n.
19/n	Integrated output for channel 19 for FOV n.
20/n	Integrated output for channel 20 for FOV n.
/Sn	Space view FOV n.
/Tn	Internal Target view FOV n.
AXX	Multiplexed Housekeeping data.

Table 4.1.3-3. AMSU-B Data Word Description					
Digital Sub-mult	iplexed Channels				
A01	Unit ID + Flags				
A02	Digital b Telemetry				
A03	Mixer 16 Temperature				
A04	Mixer 17 Temperature				
A05	Mixer 18/19/20 Temperature				
A06	FET Amplifier 16 Temperature				
A07	FET Amplifier 17 Temperature				
A08	FET Amplifier 18 Temperature				
A09	FET Amplifier 19 Temperature				
A10	FET Amplifier 20 Temperature				
A11	Calibration Target Temperature 1				
A12	Calibration Target Temperature 2				
A13	Calibration Target Temperature 3				
A14	Calibration Target Temperature 4				
A15	Calibration Target Temperature 5				
A16	Calibration Target Temperature 6				
A17	Calibration Target Temperature 7				
A18	Sub-reflector Temperature 1				
A19	Local Oscillator Monitor Current 16				
A20	Local Oscillator Monitor Current 17				

A21	Local Oscillator Monitor Current 18/19/20						
A22	Local Oscillator 16 Temperature						
A23	Local Oscillator 17 Temperature						
A24	Local Oscillator 18/19/20 Temperature						
A25	PRT Bridge Voltage						
A26	PRT Board Temperature						
Bit	A01						
00	Module ID (LSB)						
01	Module ID						
02	Module ID						
03	Module ID						
04	Module ID						
05	Module ID						
06	Module ID						
07	Module ID (MSB)						
08	Mode Transition Flag						
09	Scan Synchronization						
10	Pixel Data Invalid Flag						
11	Scan Control Status						
12	Processor Check Flag						
13	Not Defined						
14	Not Defined						
15 (MSB)	Not Defined						
Module Identifica	tion (Bits 00 to 07)						
Unit Number	Identification Number						
	(MSB) (LSB)						
EM	(MSB) (LSB) 0000 0000						
	(MSB) (LSB)						
EM	(MSB) (LSB) 0000 0000						
EM PFM	(MSB) (LSB) 0000 0000 0000 0100						
EM PFM FM2	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100						
EM PFM FM2 FM3	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100						
EM PFM FM2 FM3 Mode Trans	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100 ition (Bit 08)						
EM PFM FM2 FM3 Mode Trans 0	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100 ition (Bit 08) Transition complete						
EM PFM FM2 FM3 Mode Trans 0	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100 ition (Bit 08) Transition complete Transition in progress						
EM PFM FM2 FM3 Mode Trans 0 1 Scan Synchron	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100 ition (Bit 08) Transition complete Transition in progress ization (Bit 09)						
EM PFM FM2 FM3 Mode Trans 0 1 Scan Synchron 0	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100 ition (Bit 08) Transition complete Transition in progress ization (Bit 09) Error <0.1 degrees at 8 second sync pulse Error 0.1 degrees at 8 second sync pulse						
EM PFM FM2 FM3 Mode Trans 0 1 Scan Synchron 0 1	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100 ition (Bit 08) Transition complete Transition in progress ization (Bit 09) Error <0.1 degrees at 8 second sync pulse Error 0.1 degrees at 8 second sync pulse						
EM PFM FM2 FM3 Mode Trans 0 1 Scan Synchron 0 1 Pixel Data In	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100 ition (Bit 08) Transition complete Transition in progress ization (Bit 09) Error <0.1 degrees at 8 second sync pulse Error 0.1 degrees at 8 second sync pulse valid (Bit 10)						
EM PFM FM2 FM3 Mode Trans 0 1 Scan Synchron 0 1 Pixel Data In	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100 ition (Bit 08) Transition complete Transition in progress ization (Bit 09) Error <0.1 degrees at 8 second sync pulse Error 0.1 degrees at 8 second sync pulse valid (Bit 10) Valid Invalid						
EM PFM FM2 FM3 Mode Trans 0 1 Scan Synchron 0 1 Pixel Data In 0 1	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100 ition (Bit 08) Transition complete Transition in progress ization (Bit 09) Error <0.1 degrees at 8 second sync pulse Error 0.1 degrees at 8 second sync pulse valid (Bit 10) Valid Invalid						
EM PFM FM2 FM3 Mode Trans 0 1 Scan Synchron 0 1 Pixel Data In 0 1 Scan Control	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 0000 1100 ition (Bit 08) Transition complete Transition in progress ization (Bit 09) Error <0.1 degrees at 8 second sync pulse Error 0.1 degrees at 8 second sync pulse valid (Bit 10) Valid Invalid Status (Bit 11)						
EM PFM FM2 FM3 Mode Trans 0 1 Scan Synchron 0 1 Pixel Data In 0 1 Scan Control 0	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 ition (Bit 08) Transition complete Transition in progress ization (Bit 09) Error <0.1 degrees at 8 second sync pulse Error 0.1 degrees at 8 second sync pulse valid (Bit 10) Valid Invalid Status (Bit 11) Running Aborted						
EM PFM FM2 FM3 Mode Trans 0 1 Scan Synchron 0 1 Pixel Data In 0 1 Scan Control 0	(MSB) (LSB) 0000 0000 0000 0100 0000 1000 ition (Bit 08) Transition complete Transition in progress ization (Bit 09) Error <0.1 degrees at 8 second sync pulse Error 0.1 degrees at 8 second sync pulse valid (Bit 10) Valid Invalid Status (Bit 11) Running Aborted						

Bit	A02 (See Note 1)
00 (LSB)	Power On/Off (Relay 1 status)
01	Survival heater On/Off (Relay 2 status)
02	Scan normal mode
03	Parked in target view mode
04	Parked in nadir view mode
05	Parked in space view mode
06	Investigation mode
07	Stepped Mode
08	Channel 16 On/Off (Relay 3 status)
09	Channel 17 On/Off (Relay 4 Status)
10	Channel 18/19/20 On/Off (Relay 5 status)
11	Space View Select (MSB)
12	Space View Select (LSB)
13	Memory checks status
14	ROM check flag
15 (MSB)	RAM check flag
Note:	
1. A "1" status indicates "ON" and a "0" (ze	ro) status indicates "OFF."

The format structure and definition is identical for all modes. In scanning modes, n, Sn and Tn represent pixel identification. In static modes, n, Sn and Tn have no meaning; all data values relate to the IFOV.

4.1.4.4 <u>MHS for NOAA-N,-N'</u>

The Microwave Humidity Sounder (MHS) instrument replaced the AMSU-B instrument on NOAA-N and -N'. Scientifically, the MHS is very similar to the AMSU-B instrument, but the manner in which the data are output is quite different. The equivalent of "Digital" data on AMSU-B is referred to as "science data telemetry" or just "science data" for the MHS instrument, and comes packaged in a "science data telemetry packet" or "Science Packet" (SCI PKT) for short.

The NOAA-N, N' MHS instrument science data is delayed by two scan lines (or 5 2/3 seconds). The operational Level 1b data accounts for the delay and provides correct geo-location information. The delay, however, is not accounted for in the HRPT broadcast. The two scan line delay is caused by data buffering within the MHS instrument and the spacecraft data handling subsystem.

Consultative Committee for Space Data Systems (CCSDS) is composed of space agencies and industrial associates worldwide, working together to provide well-engineered, standardized solutions for common space data handling needs. The benefits of using CCSDS include: reduced cost, risk and development time, as well as enhanced interoperability and cross-support. For more information on CCSDS, refer to their website at: http://www.ccsds.org/. The data packets for MHS are in CCSDS format (i.e., a primary header, secondary header and checksum).

The MHS instrument and its associated interface unit (the MIU) on the NOAA satellites can operate in a variety of different modes and output several different packets, or formats, of data. There are nine different modes for the MHS (see Table 4.1.4.4-1 for details). In addition, all the MHS output must be funneled through a new processor, the MHS Interface Unit (MIU), which may ignore the MHS data completely and output its own telemetry instead. Depending on what mode the MIU is in, different information will be output. For purposes of this Users Guide, only the modes in which MHS data are output will be documented.

The MHS instrument, and its associated interface unit (the MIU) on the NOAA satellites, can operate in a variety of different modes and output several different packets, or formats, of data. There are nine different modes for the MHS (see Table 4.1.4.4-1 for details). In addition, all the MHS output must be funneled through a new processor, the MHS Interface Unit (MIU), which may ignore the MHS data completely and output its own telemetry instead. Depending on what mode the MIU is in, different information will be output. For purposes of this Users Guide, only the modes in which MHS data are output will be documented.

	Table 4.1.4.4-1. MHS modes.
MHS Mode	MHS Output
Power-on	Empty Science Data Packet
Warm-up	Empty Science Data Packet
Standby	Empty Science Data Packet
Scan	Science Data Packet
Fixed View	Science Data Packet
Self-test	Extended Test Data Packet
Safeing	Empty Science Data Packet
Fault	Empty Science Data Packet
Memory Dump	Extended Memory Data Packet

The MHS instrument only interfaces to the MIU box. The MIU interfaces to the rest of the NOAA-N, N spacecraft through the TIROS Command and Control Subsystem (CCS), the TIROS Data Handling Subsystem (DHS) and the TIROS Electrical Power Subsystem (EPS). The EPS portion interfacing to the MIU is the Power Subsystem Electronics (PSE) consisting of the 28 v Bus Main, Pulse Load, and Survival Buses. All power is distributed to the MHS through the MIU. The AMSU Information Processor (AIP), the Cross-Strapping Unit (XSU) and the TIROS Information Processor (TIP) boxes comprise the DHS part, while the Control Interface Unit (CIU) is the CCS interface portion of the MIU unit. All of these boxes utilize legacy bus architecture interfaces to the MIU while the MIU implements a Military Standard (MIL-STD) 1553B redundant interface to the MHS instrument. A single 1553 bus is used for commanding (CMD), housekeeping (HK) telemetry and for science (SCI) data telemetry packets between the MHS and the MIU. However, the MIU, being the bus controller, determines whether the primary or redundant 1553 bus is utilized. Other than the 1553 bus, there is no redundancy in the MIU. The MHS is redundant internally, having both A and B sides to its

electronics. The MIU supplies telemetry (MHS and MIU) to the ground during all operational modes. It also provides MHS survival temperature telemetry to the TIP even when the MHS and MIU are not powered.

The AIP provides a serial data stream from the spacecraft, which may be transmitted to the ground or embedded into other composite data streams. Within the AIP data, information is collected from the TIP, AMSU-A1, AMSU-A2, and the MIU. The TIP controls the basic data frame timing, generating a minor frame every tenth of a second (in Orbit Mode) and repeating the entire sequence every 32 seconds, called a major frame. The AIP is synchronized to the TIP timing using the 32-second major frame synchronization, and the harmonically related one-tenth second (10 Hz) pulse. The AIP itself has an 8-second major frame, which means it repeats its sequence four times during a TIP major frame.

Since the TIP and AIP minor frames are both 10 Hz, they are locked together, using the TIP synch timing. The TIP 32-second major frame pulse synchronizes the AIP. AIP generates its own 8-second timing, but since that period is harmonically related, it will not drift significantly from the 32-second pulse. AIP keeps the data from the AMSU's and MIU synchronized by passing on the timing pulses as appropriate.

The AIP stores the data from all four inputs in serial buffers during one minor frame, and sequences it into the data steam in the subsequent frame. This is mechanized using two sets of alternate buffers. AIP will initiate the data transfer with the 10 Hz sync, followed by the appropriate number of word strobes, 56 in the case of the MIU. The sync serves only to define the start of the transfer. The actual timing of the strobes will differ for each data source, and in the case of the MIU may not even be continuous, but it will always follow the sync.

The MIU provides a total of 80 sets of 56 8-bit words, called minor cycles, each of which will be inserted into an AIP minor frame. A minor cycle counter within the MIU keeps track of the frame sequence, and its content is included in the 56-word data sequence. Because of the double buffer arrangement, the MIU minor cycle count may not agree exactly with the AIP minor frame. However, the 8-second sync pulse will ensure that they are sequencing together uniformly, counting the same 80 frames.

The 56-word count is synchronized using the 10 Hz pulse, so that the first word will be transferred by the strobe following the synch. The data from the MHS is partially synchronized to the TIP timing, but the MIL-STD-1553 interface bus and MHS scanning mechanics prevent an exact match. Therefore, the MIU receives the MHS data packets, and packages them along with housekeeping telemetry, to produce the 56-word AIP data.

The 10 Hz and the 8-second sync pulses are received at the MIU and applied to the software using two discrete interrupts. Although both signals are intended to be continuous over long periods, a change in system clocking may result in a jump in either one, which causes it to be early or late with respect to previous pulse timing. The MIU is expected to resynchronize itself to the new sequence.

All AIP telemetry includes the Telemetry Frame Header data in words 6-7 of every minor frame.

This is the same data and format as in the TIP Telemetry described in Table 4.1.4.4-5. Table 4.1.4.4-2 contains the format of the MIU AIP data for bytes 6-7.

	Table 4.1.4.4-2. MIU AIP Bytes 6 and 7.								
MIU	Bytes	Bits	Description/Definition	State	MIU				
Minor					Subsystem				
Cycle									
		0-1	RESERVED		TLM				
			Telemetry Mode: Normal (NORM)	000					
			Fast Dump (FADU)	001					
		2-4	Slow Dump (SLDU)	010					
			Very Slow Dump (VSDU)	011					
			Bus Eng Mode (BEM)	100					
			Undefined (UNDF)	101					
A 11	6		Undefined	110					
All			Undefined	111					
		5	TIP ENGR Frame Enabled; 1=ENAB,	0/1					
)	0=DISABLE						
			MIU ID:						
		6-7	MIU1	00					
		0-7	MIU 2	01					
			Single MIU	11					
	7	0-7	MIU Minor Cycle (Integer)	Hex	TIME				

MIU Normal Mode telemetry is included in AIP bytes 48-97. Science Data is organized by minor frame as depicted in Table 4.1.4.4-4.

	Table 4.1.4.4-3. AIP Normal Mode Telemetry Data.				
MIU Minor Cycle	Data Description				
0	1553B Bus Data / MHS CCSDS Data (PKT 2)	1,3			
1-25	25 words MHS CCSDS Data (PKT 2)	1			
26	Last 17 words MHS CCSDS Data / 1553B Data	1, 2			
27	1553B Bus Data / MHS CCSDS Data (PKT 0)	1, 2,3			
28-52	25 words MHS CCSDS Data (PKT 0)	1			
53	Last 17 words MHS CCSDS Data / 1553B Data	1, 2			
54	1553B Bus Data / MHS CCSDS Data (PKT 1)	1,3			
55-79	25 words MHS CCSDS Data (PKT 1)	1			

Notes:

- 1. CCSDS is the Consultative Committee for Space Data Systems
- 2. 1553B is the military standard for a multiplexed data bus.
- 3. OBT is On-Board Time, a six-byte time tag associated with each MHS SCI PKT and composed of a 4-byte coarse time (resolution: seconds) and a 2-byte fine time (resolution: 2⁻¹⁶ seconds).

Table 4.1.4.4-4 contains the MIU AIP data for bytes 48-97 (the normal telemetry mode).

	Table 4.1.4.4-4 MIU AIP Bytes 48-97 (Normal Telemetry Mode).								
MIU Minor Cycle	Bytes	Bits	Description	State	MIU Sub- system	Note			
		0	NIL BUS Trans Enable, 0=Disable	0/1					
		1	MISC BUS Trans Enable, 0=Disable	0/1					
	48-49	2	HK BUS Trans Enable, 0=Disable	0/1					
		3	SCI BUS Trans Enable, 0=Disable	0/1					
		4	CMD BUS Trans Enable, 0=Disable	0/1					
		5-15	RESERVED						
	50-51	0-15	HK BUS Fail Periods Count	Hex					
	52-53	0-15	HK BUS Error Table Index	Hex					
	54-55	0-15	SCI BUS Fail Periods Count	Hex					
	56-57	0-15	SCI BUS Error Table Index	Hex					
	58-59	0-15	BUS SKIPPED CMD Count	Hex					
	60-61	0-15	BUS CMD Error Table Index	Hex					
	62-63	0-15	MISC BUS Fail Periods Count	Hex					
	64-65	0-15	MISC BUS Error Table Index	Hex					
	66	0-7	WRAP TEST Failure Count	Hex					
	67	0-7	BIT TEST Failure Count	Hex					
0	68-69	0-14	RESERVED	1553					
		15	WRAP TEST Pattern Mod Enable,	0/1	Bus				
			0=Disable		BCRT				
	70-71	0-15	BIT Timeouts Count	Hex					
	72-73	0-15	BIT Timeouts Count	Hex					
	74-75	0-15	BUS RESET Timeouts Count	Hex					
	76-77	0-14	RESERVED						
		15	BUS Overrun Occurred, 0=no; 1=yes	0/1					
	78-79	0-15	Last Cmd During Bus Overrun	Hex					
		0-12	RESERVED						
		13	LAST BUS USED, Bus A=1; B=0	0/1					
	80-81	14	GROUND PREFERRED BUS, Bus	0/1					
	80-81		A=1; B=0						
		15	MIU PREFERRED BUS, Bus A=1;	0/1					
			B=0						
	82-83	0-15	BIT ITERATIONS	Hex					
	84-85	0-15	HK BUS REQUEST RETRY LIMIT	Hex					
	86-87	0-15	HK TVW RETRY LIMIT	Hex					
	88-89	0-15	HK RES RETRY LIMIT	Hex					
	90-95	0-47	CCSDS TIME TAG SCI PKT 2, LSB=2 ⁻¹⁶	Hex	MHS	1			

	96-97	0-15	FIRST WORD OF SCI PKT 2			1
1-25	48-97		NEXT 25 WORDS OF SCI PKT 2			1
	48-81		LAST 17 WORDS of SCI PKT 2			1
		0	NIL BUS TRNS ENABLED, 0=Disable	0/1		
		1	MISC BUS TRNS ENABLED,	0/1		
		1	0=Disable			
	02.02	2	HK BUS TRNS ENABLED, 0=Disable	0/1		
	82-83	3	SCI BUS TRNS ENABLED, 0=Disable	0/1		
		4	CMD BUS TRNS ENABLED,	0/1		
26			0=Disable			
26		5-15	RESERVED			
	84-85	0-15	HK BUS FAILED PERIODS COUNT	Hex		
	86-87	0-15	HK BUS ERROR TABLE INDEX	Hex		
	88-89	0-15	SCI BUS FAILED PERIODS COUNT	Hex		
	90-91	0-15	SCI BUS ERROR TABLE INDEX	Hex		
	92-93	0-15	BUS SKIPPED COMMAND COUNT	Hex		
	94-95	0-15	BUS CMND ERROR TABLE INDEX	Hex		
	96-97	0-15	MISC BUS FAIL PERIODS COUNT	Hex		
	48-49	0-15	MISC BUS ERROR TABLE INDEX	Hex		
	50	0-7	WRAP TEST FAILURE COUNT	Hex		
	51	0-7	BIT TEST FAILURE COUNT	Hex	Second	
	52-53	0-14	RESERVED		iteration	
		15	WRAP TEST PATTERN MOD	0/1	1553	
			ENABLED, 0=Disable	0/1	Bus	
	54-55	0-15	BIT TIMEOUTS CONT	Hex	BCRT	
	56-57	0-15	BIT RESULTS	Hex		
	58-59	0-15	BUS RESET TIMEOUTS CONT	Hex		
	60-61	0-14	RESERVED			
		15	BUS OVERRUN OCCURRED, 0=no;	0/1		
			1=yes	0/1		
27		0-15	LAST COMMAND During BUS	Hex		
- '			Overrun			
		0-12	RESERVED			
		13	LAST BUS USED, Bus A=1; B=0	0/1		
	64-65	14	GROUND PREFERRED BUS, Bus	0/1		
		1.	A=1; B=0	0/1		
		15	MIU PREFERRED BUS, Bus A=1;	0/1		
			B=0			
	66-67	0-15	RESET ITERATIONS	Hex		
	68-69	0-15	SCI BUS REQUEST RETRY LIMIT	Hex		
	70-71	0-15	SCI TVW RETRY LIMIT	Hex		
	72-73	0-15	SCI RES RETRY LIMIT	Hex		
	74-79	-79 0-47	CCSDS TIMETAG SCI PKT 0, LSB= -	Hex	MHS	
			16			

	80-97		FIRST 9 WORDS OF SCI PKT 0]
28-52	48-97		NEXT 25 WORDS OF SCI PKT 0		
20 32	48-65		LAST 9 WORDS OF SCI PKT 0		
	.5 55	0	NIL BUS TRNS ENABLED, 0=Disable	0/1	
		1	MISC BUS TRNS ENABLED,		
		1	0=Disable	0/1	
		2	HK BUS TRNS ENABLED, 0=Disable	0/1	
	66-67				
		4	CMD BUS TRNS ENABLED,	0/1	
			0=Disable	0/1	
		5-15	RESERVED		
	68-69	0-15	HK BUS Failed Periods Count	Hex	
	70-71	0-15	HK BUS Error Table Index	Hex	
	72-73	0-15	SCI BUS Failed Periods Count	Hex	
	74-75	0-15	SCI BUS Error Table Index	Hex	
	76-77	0-15	BUS Skipped Command Count	Hex	
53	78-79	0-15	BUS CMD Error Table Index	Hex	
	80-81	0-15	MISC BUS Failed Periods Count	Hex	
	82-83	0-15	MISC BUS Error Table Index	Hex	
	84	0-7	WRAP TEST Failure Count	Hex	Third
	85	0-7	BIT TEST FAILURE COUNT	Hex	iteration
	86-87	0-14	RESERVED		1553
		15	WRAP TEST Pattern Mod Enabled,	0/1	Bus
			0=Disable	0/1	BCRT
	88-89	0-15	BIT TIMEOUTS COUNT	Hex	
	90-91	0-15	BIT RESULTS	Hex	
	92-93	0-15	BUS RESET Timeouts Count	Hex	
		0-14	RESERVED		
	94-95	15	BUS OVERRUN OCCURRED, 0=no;	0/1	
			1=yes		
	96-97	0-15	LAST CMD During BUS Overrun	Hex	
		0-12	RESERVED		
		13	LAST BUS USED, Bus A=1; B=0	0/1	
	48-49	14	GROUND PREFERRED BUS, Bus	0/1	
			A=1; B=0	J/ 1	<u> </u>
54		15	MIU PREFERRED BUS, Bus A=1;	0/1	
	50.51	0.17	B=0		
	50-51	0-15	BCRTM Last INTR LOG List PNTR	Hex	
	52-53	0-15	CMD RETRY LIMIT		
	54-55	0-15	MISC RETRY LIMIT	Hex	
	56-61	0-47	CCSDS TIMETAG SCI PKT 1, SB=2-	Hex	
	62.07		16	 	MHS
<i>55.70</i>	62-97		FIRST 18 WORDS OF SCI PKT 1		
55-79	48-97		NEXT 25 WORDS OF SCI PKT 1		

Note:

1. Packet 2 (PKT 2) reports the prior 8-second period (n-1).

Some of the terms used in the above table are explained here. There are five transaction types: NIL, MISC (Miscellaneous), HK (Housekeeping), SCI (Science) and CMD (Command). The NIL cycle is described as a placeholder (No Operation) mode. Its purpose is to kill time until time to perform another operation. MISC cycle outputs test results from WRAP and BIT for the housekeeping and Science RT channels. Housekeeping Cycle sends failed and re-try counters on Housekeeping issues from bytes 48-73. Science Cycle sends various failed and re-try counters on SCI issues from bytes 48-73. Command Cycle sends various failed and re-try counters on CMD issues from bytes 48-73.

Table 4.1.4.4-5 depicts the data sent in bytes 98-101 during AIP Normal Telemetry mode. This data repeats four times per major frame beginning with major and minor cycle counts in minor frames 0, 20, 40 and 60. Telemetry data I/O Reads are sent in bytes 98-99 during minor frames 2, 22, 42 and 62. Some of the key telemetry data from these AIP bytes 98-101 include TIP and AIP First In First Out (FIFO) status, Bus Controller state, CIU State, Uplink queue, CMD VERIF word, Error counts, Memory dump stats, Time and Error Log Indices.

	Table 4.1.4.4-5. MIU AIP Telemetry Bytes 98-101 - Normal Telemetry Mode.									
M	IU Mir	or C	ycle	Byte	Bits	Description	State			
0	20	40	60	98-101	0-31	Major Cycle Count: MSW LSW	Hex Hex			
				98-99	0-15		Hex			
						Minor Cycle Error Count RESERVED	пех			
1	21	41	61	100-101	0-14	i i i i i i i i i i i i i i i i i i i	0./4			
					15	MIU in Sync with Major Cycle: 1=yes, 0=no	0/1			
				98-99	0-15	Results of I/O Read				
					0	TIP FIFO was reset; 1=yes, 0=no	0/1			
					1	TIP FIFO was full; 1=yes, 0=no	0/1			
					2	TIP FIFO was empty; 1=yes, 0=no	0/1			
					3	AIP FIFO was reset; 1=yes, 0=no	0/1			
				100	4	AIP FIFO was full; 1=yes, 0=no	0/1			
				100	5	AIP FIFO was empty; 1=yes, 0=no	0/1			
					6	Minor Cycle Sync Received; 1=yes,	0/1			
2	22	42	42	42	42	62			0=no	
						7	Major Cycle Sync Received; 1=yes,	0/1		
						0=no				
					0	FIFO Reset Under S/W Control; 1=yes,	0/1			
						0=no				
				101	1	Reset AIP FIFO Commanded; 1=yes,	0/1			
				101		0=no				
					2	Reset TIP FIFO Commanded; 1=yes,	0/1			
						0=no				

]	Ī	I	3	TIP FIFO Data inverted; 1=yes, 0=no	0/1
						AIP FIFO Data inverted; 1=yes, 0=no	0/1
					5 TIP FIFO Enabled; 1=yes, 0=no		
					6	•	0/1 0/1
					7	AIP FIFO Enabled; 1=yes, 0=no	
					/	INT Reset Under S/W Control; 1=yes, 0=no	0/1
					0-13	Reserved	
					14-	BUS Controller State: Off	00
				98-99		Enabling	00
						On	10
						Disabling	11
3	23	43	63		0-13	Reserved	11
					14-	Bus Controller MODE:	
					14-	TLM	00
				100-101		HK Dump	01
						SCI Dump	10
						Undefined	11
					0-14	Reserved	11
				98-99	15	Housekeeping Bus Process:	0/1
					10	0=TLM; 1=Dump	0/1
4	24	44	64	100-101	0-14	Reserved	
					15	Science Bus Processing Mode: 0=TLM;	0/1
						1=DUMP	0, 0
_	25	4.5	<i></i>	98-99	0-15	BC Unexplained Exceptions CNT	Hex
5	25	45	65	100-101	0-15	MHS CMD Queue Count	Hex
					0-1	CIU ISR STATE:	
						Waiting for next CMD	00
						Collecting CMD hdr	01
				98		Collecting CMD hdr	10
				70		Collecting datawords	11
6	26	46	66	6	2	Uplink Queue is full; 0=no, 1=yes	0/1
					3	Uplink Queue was reset; 0=no, 1=yes	0/1
					4-7	Reserved	
				99	0-7	Number of data words transferred (8	Hex
						bits)	
				100-101	0-15	CMD Verification Word	Hex
7	27	47	67	98-99	0-15	Exception Occurred Count	Hex
	_			100-101	0-15	Unhandled Interrupt Count	Hex
8	28	48	68	98-99	0-14	Reserved	
					15	Memory Scrub Enabled; 0=no, 1=yes	0/1
				100-101	0-15	Single Bit Error Count	Hex
9	29	49	69	98-101	0-31	Last Ram Address Scrubbed:	
						MSW	Hex
						LSW	Hex

10	30	50	70	98-99	0-15	Machine Error Count	Hex
				100-101	0-14	Reserved	
					15	Stuck Bit Detected; 0=yes, 1=no	0/1
11	31	41	71		0-31	Address of Stuck Bit:	
						MSW	Hex
						LSW	Hex
12	32	52	72	98-99	0-14	Reserved	
					15	Memory Checksum Enabled; 0=yes,	0/1
						1=no	
				100-101	0-15	Memory Checksum Error Count	Hex
13	33	53	73	98-101	0-31	Ram Dump Start Address:	
						MSW	Hex
						LSW	Hex
14	34	54	74	98-101	0-31	HK Bus Memory Dump Start Address:	
						MSW	Hex
						LSW	Hex
15	35	55	75	98-101	0-31	SCI Bus Memory Dump Start Address:	
						MSW	Hex
						LSW	Hex
16	36	56	76	98-101	0-31	Ram Dump Requested Word Count:	
						MSW	Hex
						LSW	Hex
17	37	57	77	98-99	0-15	HK Dump Requested Word Count	Hex
				100-101	0-15	SCI Dump Requested Word Count	Hex
18	38	58	78	98-99	0-15	Main Cycle Count	Hex
				100-101	0-15	Minor Frame Reception Tolerance	Hex
19	39	59	79	98-99	0-15	Exception Log Save Index	Hex
17	37	37	17	100-101	0-15	Interrupt Log Save Index	Hex

TIROS Information Processor (TIP) telemetry from the MIU is supplied as 8-bits in Byte 102 of each TIP minor frame (this corresponds to AIP minor frame byte 205). The content of an MHS telemetry packet is essentially a subset of the science data packet. It contains telemetry data, except not as much as is found in a science data packet, but no science data (i.e., no views of earth and the warm and cold targets). The format of the MIU TIP Telemetry Frame (normal) is given in Table 4.1.4.4-6.

	Table 4.1.4.4-6. MIU TIP Telemetry Frame - Normal.							
TIP Bits Description/Definition Minor Frame Count				MIU Subsystem	Notes			
	0-1	Reserved						
1	2-4	Telemetry Mode: Normal Fast Dump	000 001	TLM				

		Clay Dump	010	1	
		Slow Dump Very Slow Dump	010		
		Bus Engr Mode	100		
		Undefined	100		
		Undefined	110		
		Undefined	110		
	_			4	2
	5	TIP Engineering Frame Enabled; 0=Disabled	0/1		2
		MIU ID:		MIU H/W	
		MIU 1	00	IVIIO II/ VV	
	6-7	MIU 2	01		
		Single MIU	11		
2	0-7	MIU Minor Cycle Number (Integer)	Hex	Time	
3-4	0-7	Command Verification Word (Refer to	Hex	CMD	
3-4	0-13	CV Word Definition)	HEX	CIVID	
	0-13	Reserved			
	14-15	BUS Controller Mode:			
	14-13	TLM	00		
5-6		HK Dump	01	BUS	
		SCI Dump	10	Control	
		Undefined	11		
7-10	0-31	Scan Period 2 Coarse Time; LSB=1	Sec		1
7-10	0-31	second	Sec		1
11-12	0-15	Scan Period 2 Fine Time; LSB-216	Sec	-	1
11-12	0-13	seconds	Sec	MHS HK	1
13-28	0-127	Scan Period 2 Housekeeping Packet,		1	1
13 20	0 127	16 bytes HK/packet			1
29-30	0-15	Command Verification Word	Hex	CMD	
31-32	0-15	HK Failed Collection Count (Integer)	Hex	BUS	
33-36	0-31	Scan Period 0 Whole Time, LSB=1 sec	Sec	202	
37-38	0-15	Scan Period 0 Fractional Time; LSB-	Sec	1	
2, 20		216 seconds		MHS HK	
39-54	0-127	Scan Period 0 Housekeeping Packet;		1	
-, -,		16 bytes HK/packet			
55-56	0-15	Command Verification Word	Hex	CMD	
57-58	0-15	HK Valid Packets Count	Hex	BUS	
59-62	0-31	Scan Period 2 Whole Time; LSB=1	Sec		
		second			
63-64	0-15	Scan Period 1 Fractional Time; LSB-	Sec	MIIGHIZ	
		216 seconds		MHS HK	
	0.400	<u> </u>	1	1	
65-79, 0	0-128	Scan Period 1 Housekeeping Packet;			

Notes:

- 1. Scan Period 2 is reporting prior 8-second frame (n-1).
- 2. When TIP ENGR Frame is enabled, disregard MIU 1 indications of Normal in this mode.

Table 4.1.4.4-7 lists the telemetry packet types that are generated on the Science Data Bus:

Table 4.1.4.4-7. Science Data Bus telemetry packet types.						
Packet Type	Total Packet Length (octets)					
Science Data Packet	1300					
Extended Memory Data Packet (EMDP)	1042					
Extended Test Data Packet (ETDP)	1300					

The Packets are in Consultative Committee for Space Data Systems (CCSDS) format (i.e., a primary header, secondary header and checksum). The detailed structure of the Source Data field is given in the following sections.

Table 4.1.4.4-8 shows the fields that the Science Data Packets contain.

Table 4.1.4.4-8. Science Data Packet Fields.					
Field Name	Size (Octets)				
Full Housekeeping Data	39				
Status Word	1				
Signal Processing Status	9				
Pixel Data	1176				
OBCT Temperature Data	16				
Spares	45				

The format of the Full Housekeeping Data field is described at the end of this section. In modes which do not generate Science Data (i.e. all modes except Scan Mode and Fixed View Mode), an Empty Science Data Packet is generated, in which the remaining fields of the Science Data Packet are undefined.

The format of the spares field is unallocated at present. All octets will be set to "00". Table 4.1.4.4-9 shows the format of the Status Word.

	Table 4.1.4.4-9. Format of the Status Word Field.							
MSB							LSB	
DC	Scan	Profile		Unused				
Offset	Control							
Valid	Valid							

The DC Offset Valid bit is set to a 1" when all channels calibration targets readings lie within acceptable limits, as determined by the DC Offset Algorithm. This bit will be set only in Scan Mode when the calibration targets are sampled.

The Scan Control Valid bit is set to a 1" if all mid-pixel positions of the reflector during Earth, Space and On-Board Calibration Target (OBCT) views are within the limits for the Scan Mode

profile, or within the limits of the requested position in Fixed View Mode. This bit will be set only in Scan Mode or Fixed View Mode.

The Profile code is set to:

00 : Profile 0 01 : Profile 1 10 : Profile 2

11 : No Profile calculated (profile will be manually loaded/modified)

It is intended that Profile 0 will define the Nominal Scan Mode Profile with nominal Space View position. Profiles 1 and 2 will nominally be used for the alternate Space view positions. However, any profile can be reprogrammed to another position versus time profile by reloading the Scan Control Table profile parameters.

The format of the Signal Processing Status field is shown in Table 4.1.4.4-10.

Table 4.1.4.4-10. Format of Signal Processing Status Field.										
MSB	ISB LSB									
	Channel H1 DC Offset Word									
		Chan	nel H2 DC Offs	set Word						
		Chan	nel H3 DC Off	set Word						
		Chan	nel H4 DC Offs	set Word						
		Chan	nel H5 DC Off	set Word						
H1 VALID	H1 VALID H2 VALID H3 VALID H4 VALID H5 VALID SPE MUX CODE									
H1 GAIN	H1 GAIN UNUSED									
H3 GAIN H4 GAIN UNUSED										
H5 GAIN			UNUSED		UNU	JSED				

The Valid bit is set to a "1" when all samples of this channel for this scan revolution lie within the ADC dynamic range. H1..H5 are the five input channels from the Receiver. The Electronics Equipment (EE) has six signal processing channels, SPE1..SPE6. In the nominal configuration, the Receiver channel is connected to the corresponding EE channel, e.g., H1 to SPE1, and SPE6 is unused.

The SPE Mux Code is used to identify which Receiver channel, if any, is connected to the EE redundant channel, as shown in Table 4.1.4.4-11.

Table 4.1.4.4-11. SPE MUX Code Subfield format.					
SPE MUX Code	Configuration				
000	H1 to SPE 6				
001	H2 to SPE 6				
010	H3 to SPE 6				
011	SPE 6 not used				
100	H4 to SPE 6				
101	H5 to SPE6				

110	SPE6 not used
111	SPE6 not used

The H1...H5 Gain Fields identify the gain settings of the Receiver video output channels as in Table 4.1.4.4-12.

Table 4.1.4.4-12. Receiver Gains Sub Field.					
Gain Code	Gain				
000	0 dB				
001	1 dB				
010	2 dB				
011	3 dB				
1xx	not used				

The Science Data field can be separated into Earth, Space and OBCT View Data fields, which all follow a common format. They are differentiated only by the source of the data that is written to them. The fields are arranged as shown in Table 4.1.4.4-13.

Table 4.1.4.4-13. Science Data Field Format.						
Field name Number of Pixel subfields						
Earth	90					
Space	4					
OBCT	4					

In Fixed View Mode, the Science Data Packet is the same format as Scan Mode, but the concept of Earth, Space and OBCT pixels does not apply. All 98 pixels are for the fixed view position. The (90 + 4 + 4) pixels are however collected with the same timing as though Scan Mode were performed.

Each of the Pixel sub-fields contain a position and five pixel values. The format of a Pixel Subfield is shown in Table 4.1.4.4-14.

	Table 4.1.4.4-14. Pixel Subfield Format.								
MSB				LSB					
	Mid-pixel Position MS Byte								
	Mid-pixel Positi	ion LS Byte							
	Channel H1 Da	ta MS Byte							
	Channel H1 Data LS Byte								
Channel H2 Data MS Byte									
	Channel H2 Data LS Byte								
	Channel H3 Da	ta MS Byte							
	Channel H3 Data LS Byte								
	Channel H4 Data MS Byte								
_	Channel H4 Da	ta LS Byte							

Channel H5 Data MS Byte
Channel H5 Data LS Byte

The Mid-pixel position data is the angular position of the Reflector at the mid-point of the pixel integration period defined by.

The OBCT Temperature Data field contains the On-Board Calibration Target high precision temperature parameters. The format of this block is given in Table 4.1.4.4-15.

	Table 4.1.4.4-15. OBCT Subfield Format.											
MSB						LSB						
Unused	ed On-Board Target Temperature 1											
	On-Boa	ard Target Ter	nperature 1 (P	RT1)								
Unused	nused On-Board Target Temperature 2											
	On-Boa	ard Target Ten	nperature 2 (P	RT 2)								
Unused	nused On-Board Target Temperature 3											
	On-Boa	ard Target Ter	nperature 3 (P	RT 3)								
Unused	On-Board Target Temperature 4											
	On-Boa	ard Target Ten	nperature 4 (P	RT 4)								
Unused			On-Board Ta	rget Tempe	erature 5							
	On-Boa	ard Target Ten	nperature 5 (P	RT 5)								
Unused			Calibration C	Channel 1								
	Calibrati	on Channel 1	(PRT CAL 1:	118Ω)								
Unused			Calibration C	Channel 2								
	Calibratio	on Channel 2	PRT CAL 2: 9	95.3Ω)								
Unused			Calibration C	Channel 3								
	Calibratio	on Channel 3	PRT CAL 3: 8	30.6Ω)								

The full Housekeeping Telemetry Data blocks contain the following fields as shown in Table 4.1.4.4-16.

Table 4.1.4.4-16. Full Housekeeping Telemetry Data Block.									
Field Name	Size (Octets)								
Mode and Subcommutation Code	1								
Telecommand Acknowledgement and Fault Code	5								
Switch Status	3								
Temperature Data	24								
Raw Current Consumption Data	6								

The Sub-Commutation code is not significant for the Science Data packet as all telemetry is returned.

As with other packets, the Mode Code identifies the packet as either a Science Data Packet (Scan and Fixed View Modes), an Extended Test Packet (self-test mode), an Extended Memory Data

Packet (Mode Code = "1111") or an Empty Science Data Packet (all other Modes). Note that the Telecommand Acknowledgement field of Science Data packets provides acknowledgement of commands received on the Science Data Bus. (Commands on the Command/telemetry Bus are acknowledged in HK Telemetry Packets.)

The Temperature Data Field of each packet will contain all twenty-four thermistor telemetry channel parameters, instead of the multiplexed four of the Housekeeping telemetry packet. The OBCT temperatures are not contained here, as all such values are allocated a separate field in the Science Data Bus.

The Raw Current Consumption Data Field is the internal PSU Current analog telemetry as defined in Table 4.1.4.4-17.

	Table 4.1	.4.4-17. R	aw Current (Consumption	Data Field	Format.					
MSB						LSB					
	+5V Secondary Current										
	+8V Receiver Current										
			+15V Rece	iver Current							
			-15V Recei	ver Current							
	RDM Motor Current										
			FDM Mot	or Current							

4.1.5 AIP MINOR FRAME FORMATS

The spacecraft's AMSU Instrument Processor (AIP) collects digital data from the AMSU-A and AMSU-B sensors. This data consists of earth view pixel data, housekeeping data and space and blackbody view data.

4.1.5.1 AIP Minor Frame Format for NOAA KLM

Figure 4.1.5.1-1 shows the AIP telemetry word location in the frame format, and Table 4.1.5.1-1 contains AIP telemetry word titles, locations within the frame, and word descriptions in tabular form.

	Figure 4.1.5.1-1. AIP Output Format for NOAA KLM.											
0 2 22-bit s	1 ync	3 ///	4 MFC	5 1)	6 ///	7	8 20 >	AMSU-A1 (Words 8 through 33)				
21 33 <			 		A	34 40 AMSU-A2 (Words 34 through 47)>						
41												

47 <		60 AMSU-A2											h 97)		
								AM	SU-B						
	98 /// >												100		
101	102 2)	02 103 106		107 3), 4)	108 4)	109 110 CMMD VER	111 5)	112 114 Anal og subc om 32/1 6/1 seco nds	115 5)	116 6)	117 DA U-1	118 DA U-2	119 HIR S/3	120 HIR S/3	
121 DCS-	122	12 125 126 127 3 HIRS/3 DCS-2 4 S E M		128	129 130 HIRS/3	131 132 DC S-2	133 134 HIR S/3	135 136 137 DCS-2 HIR		137 HIRS			140		
141 HIRS	142	14 3 14 4 D C S- 2	145 HIRS/3	146	147 DCS-	148	149 15 <cpu-a Telemetry> </cpu-a 			155 156 157 DCS-2 HIRS			158	159 DCS-2	160
161 HIRS	162 /3/	16 3 16 4 D C S- 2	165 HIRS/3	166	167 HIRS	168 /3	169 170 HIRS/3	171 172 DC S-2	173 174 HIR S/3	175 176 177 DCS-2 HIR:		177 HIRS	178 179 S/3 DCS-2		180
181 HIRS		18 3 18 4 S B U V/ 2	185 HIRS/3	186	187 HIRS		189 190 DCS-2	191 192 HI RS/ 3	193 194 DCS -2	195 HIRS		197 DCS-		199 Cl	200 PU-B >

|--|

NOTES: /// indicates spare bits and reads 010101, etc.

- 1) Words 5 and 106: Bit 1-Command Verification Status, Bits 2 & 3- TIP status, Bits 4, 5 & 6- Major Frame Counter
- 2) Word 102: Bits 1 & 2 spare, followed by 6 bits AMSU parity
- 3) Words 106 and 107: 9 Bit Dwell address
- 4) Words 107 and 108: 9 Bit Subcommutation counter
- 5) Digital-B Subcommutation (32 second)
- 6) Analog Subcommutation
- 7) Word 206: 2 bits CPU data status followed by 6 bits TIP parity; word 207: 2 bits spare followed by 6 bits TIP parity calculated by AIP

	Table 4.1.5.1-1. AIP Minor Frame Format for NOAA KLM.									
Function	No. of	Word	Bit No. 1 2 3 4 5 6 7 8							
	Words	Position	Plus Word Code & Meaning							
	3	0	1 1 1 1 0 0 1 1 Frame sync is first 22 bits. Last 2 bits of							
г с			word 2 are: 00							
Frame Sync		1	01101011							
		2	0000000							
Spare	1	3	01010101							
Minor Frame	1	4	0 0 0 0 0 0 0 Represents minor frame 0							
Counter			0 1 0 0 1 1 1 1 Represents minor frame 79							
			MSB is first.							
	1	5	First six bits are 000000. Last 2 bits are major (8 sec)							
			frame counter. The major frame counter is incremented							
Major frame			every 80 minor frames. Bits 7 and 8 of minor frame 5							
Counter			will count 8-second intervals, the count overflowing to							
			0 synchronous with the TIP 32-second major frame							
			pulse.							
Spare	2	6	01010101							
		7	01010101							
AMSU-A1	26	8	8 Bit words are formed by the AMSU-A1 experiment							
		thru	and are read out by the AMSU Information Processor							
		33	at an average rate of 260 words per second.							
AMSU-A2	14	34	8 Bit words are formed by the AMSU-A2 experiment							
		thru	and are read out by the AMSU Information Processor							
		47	at an average rate of 140 words per second.							
AMSU-B	50	48	8 Bit words are formed by the AMSU-B experiment							
		thru	and are read out by the AMSU Information Processor							
		97	at an average rate of 500 words per second.							
	4	98	0 1 0 1 0 1 0 1							
Spare		thru	01010101							
		101								
AMSU Parity	1	102	Bit 1: 0							

•										
			Bit 2: 1							
			Bit 3: Even parity check words 2 thru 18							
			Bit 4: Even parity check words 19 thru 35							
			Bit 5: Even parity check words 36 thru 52							
			Bit 6: Even parity check words 53 thru 69							
			Bit 7: Even parity check words 70 thru 86							
			Bit 8: Even parity check words 87 thru Bit 7 of word							
			102							
TIP Data	104	103	Identical to TIP minor frame format in Table 4.3.3.1-1.							
		thru								
		206								
TIP Parity	1	207	Bit 1: 0							
			Bit 2: 1							
			Bit 3: Even parity check words 105 thru 121							
			Bit 4: Even parity check words 122 thru 138							
			Bit 5: Even parity check words 139 thru 155							
			Bit 6: Even parity check words 156 thru 172							
			Bit 7: Even parity check words 173 thru 189							
			Bit 8: Even parity check words 190 thru Bit 7 of word							
			206							
			This parity word amounts to an AIP recalculation of							
			the TIP parity which was calculated by the TIP in TIP							
			word 103 (AIP word 206).							

4.1.5.2 <u>AIP Minor Frame Format for NOAA-N,-N</u>'

Figure 4.1.5.2-1 and Table 4.1.5.2-1 contain AIP telemetry word titles, locations within the frame, and word descriptions in tabular form for NOAA-N,-N'.

0 1 22 BIT	2 SYNC	3	4 MAJOR FRAME COUNT	5 SEE NOTE	6 MIU/ STA		8					A	MSU-A	1 (WOR	DS 8 T	HROUG	Н 33)					23
24 AMSU	-A1				33 34 AMSU-A2 (WORDS 34 THOUGH 47)										47							
48	48 71 MHS (WORDS 48 THOUGH 101)									71												
72										95												
96 9	7	98	99 100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
MH			MHS Status Words See			See	See	See	See	See	See	Com		DIG	ANA	ANA	ANA	DIG	ANA	DAU	DAU	HIRS/
1,111		1,11	25 5 111 115 11 02	Note Note Note No					Note	Note	Note		cation	В	SUB	SUB	SUB	В	SUB	1	2	4
					11000	1,000	11000	1,000	11000	1,000	1,000	, 61111		3.2	32	16	1	SUB	2	-	_	
														SEC	SEC	SEC	SEC					
120	121 1	22	123 124	125	126	127	7 128 129 130		131	132	133 134		135 136 137 138		138	139	139 140		142	143		
HIRS	DCS-	2	SEM	HIR	S/4	DC	S-2	HIF	RS/4	DCS-2 HIRS/		RS/4	DC	S-2	HIF	RS/4	SBU	JV/2	HIR	RS/4	DCS	
4																						2
144	145 1	46	147 148	149					154	155	156	157	158	159	160	161	162	163	164	165	166	167
DCS	HIRS	/4	DCS-2		CPU	J A TEL	EMETI	RY		DC	S-2	HIF	RS/4	DC	S-2	HIR	RS/4	DC	S-2	HIR	RS/4	DCS
2																						2
168	169	170	171 172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
DCS	HIRS	/4	DCS-2	HIR	S/4	DC	DCS-2 HIRS/4 DCS-2		S-2	HIF	RS/4	SBU	J V /2	HIF	RS/4	HIF	RS/4	DC	S-2	HIRS		
2																						4
192	193		195 196	197		199					204	205	206	207								
HIRS	DCS-	2	HIRS/4	DCS	S-2		CPU B TELEMETRY					MIU	See	See								
4													Note	Note								

Notes:

Number in upper line indicates minor frame word number

Frame sync is first 22 bits, the last two bits of word 2 are: 00

/// Word locations are spare and contain code 01010101

First six bits of word 6 are 000000. Last two bits are 8-second frame counter

Words 103 through 206 are identical to a TIP orbital mode minor frame words 0 through 103

Minor frame period= 0.1 sec

Output data rate =16.54 kbps

Figure 4.1.5.2-1. AIP Output Format for NOAA-N, N'

Table 4.1.5.2-1. AIP Minor Frame Format for NOAA-N, -N'.									
Function	No. of	Word	Bit No.	Notes					
	Word	Position	1 2 3 4 5 6 7 8 plus word code and						
	s		meaning						
22-bit Frame Sync	3	0-2	22-bit Frame Sync	1					
Spare	1	3	01010101						
Minor Frame	1	4	0000000 represents Minor Frame 0;	2					
Counter			0 1 0 0 1 1 1 1 represents Minor Frame 79;						
			MSB is first.						
	1	5	First six bits are 0 0 0 0 0 0. Last two bits						
			are major (8-sec) frame counter. The major						
8 Second Frame			frame counter is incremented every 80 minor						
Counter			frames. Bits 7 and 8 of minor frame 5 will						
Counter			count 8-second intervals, the count						
			overflowing to 0 synchronous with the TIP						
			32-second major frame pulse.						
	2	6	8-bit words formed by the MIU to record						
MIU/MHS Status		7	status of the MHS and the MIU and read by						
WITC/WITIS Status			the AMSU Information Processor at an						
			average rate of 20 words per second.						
	26	8	8-bit words are formed by the AMSU-A1						
AMSU-A1		thru	experiment and are read out by the AMSU						
		33	Information Processor (AIP) at an average						
	ļ		rate of 260 words per second.						
	14	34	8-bit words are formed by the AMSU-A2						
AMSU-A2		thru	experiment and are read out by the AIP at an						
	7.0	47	average rate of 140 words per second.						
	50	48	8-bit words are formed by the MHS						
		thru	experiment and are read out by the AIP						
MIIC		97	through the MHS Interface Unit at an						
MHS		00	average rate of 540 words per second.						
	4	98	NATIONALIC CO. A. XV. 1						
		thru	MIU/MHS Status Words						
	1	101	P'4 1. 0						
6-bit TIP Parity	1	102	Bit 1: 0						
(AMSU)			Bit 2: 1						
•		102	Bits 3-8: 6-bit TIP Parity (AMSU)	1					
20.1% TID	2-	103	Bits 1-8: 20-bit TIP sync	4					
20-bit TIP sync		104	Bits 1-8						
4.1.4. D.A.T.A	1	105	Bits 1-4	1					
4-bit DATA ADDR	1-	105	Bits 5-8: 4-bit Data Address	4					
	1-	106	Bit 1: 1-bit CV Status	4					
Status Bits	1-	100	Bits 2-3: 2-bit TIP Status	-					
		I	Ditto 2-3, 2-oit in status						

			Bits 4-6: 3-bit MF Count	
9-bit Dwell	1+	106	Bits 7-8: 9-bit Dwell Address	4
ADDR		107	Bits 1-7	
9-bit SUBCOM	1+	107	Bit 8: 9-bit SUBCOM Count	4
COUNT		108	Bits 1-8	
CV	2	109-110	Command Verification	4
DIG B SUBCOM	1	111	Digital B SUBCOM (3.2 sec)	4
ANALOG	1	112	Analog SUBCOM (32 sec)	4
SUBCOM				
ANALOG	1	113	Analog SUBCOM (16 sec)	4
SUBCOM				
ANALOG	1	114	Analog SUBCOM (1 sec)	4
SUBCOM				
DIG B	1	115	Digital B SUBCOM2 (3.2 sec)	4
SUBCOM2				
ANALOG	1	116	Analog SUBCOM2 (16 sec)	4
SUBCOM2				
DAU1	1	117	Decryption Authentication Unit 1	4
DAU2	1	118	Decryption Authentication Unit 2	4
HIRS/4	2	119-120	HIRS/4	4
DCS-2	2	121-122	DCS-2	4
SEM	2	123-124	SEM	4
HIRS/4	2	125-126	HIRS/4	4
DCS-2	2	127-128	DCS-2	4
HIRS/4	2	129-130	HIRS/4	4
DCS-2	2	131-132	DCS-2	4
HIRS/4	2	133-134	HIRS/4	4
DCS-2	2	135-136	DCS-2	4
HIRS/4	2	137-138	HIRS/4	4
SBUV/2	2	139-140	SBUV/2	4
HIRS/4	2	141-142	HIRS/4	4
DCS-2	2	143-144	DCS-2	4
HIRS/4	2	145-146	HIRS/4	4
DCS-2	2	147-148	DCS-2	4
CPU A Telemetry	2	149-154	CPU A Telemetry	4
DCS-2	2	155-156	DCS-2	4
HIRS/4	2	157-158	HIRS/4	4
DCS-2	2	159-160	DCS-2	4
HIRS/4	2	161-162	HIRS/4	4
DCS-2	2	163-164	DCS-2	4
HIRS/4	2	165-166	HIRS/4	4
DCS-2	2	167-168	DCS-2	4
HIRS/4	2	169-170	HIRS/4	4

DCS-2	2	171-172	DCS-2	4
HIRS/4	2	173-174	HIRS/4	4
DCS-2	2	175-176	DCS-2	4
HIRS/4	2	177-178	HIRS/4	4
DCS-2	2	179-180	DCS-2	4
HIRS/4	2	181-182	HIRS/4	4
SBUV	2	183-184	SBUV	4
HIRS/4	2	185-186	HIRS/4	4
HIRS/4	2	187-188	HIRS/4	4
DCS-2	2	189-190	DCS-2	4
HIRS/4	2	191-192	HIRS/4	4
DCS-2	2	193-194	DCS-2	4
HIRS/4	2	195-196	HIRS/4	4
DCS-2	2	197-198	DCS-2	4
CPU B	6	199-204	CPU B Telemetry	4
TELEMETRY				
MIU	1	205	Bits 1-8: MIU	4
2-bit CPU STAT	1-	206	Bits 1-2: 2-bit CPU Status	4
6-bit TIP Parity	1-	206	Bits 3-8: 6-bit TIP Parity (TIP)	4
(TIP)				
6-bit TIP Parity	1	207	Bit 1: 0	
(AIP)			Bit 2: 1	
			Bits 3-8: 6-bit TIP Parity (AIP)	
l				

NOTES:

- 1. Frame sync is first 22 bits, last two bits of word 2 are: 0 0.
- 2. Minor Frame Period = 0.1 sec
- 3. Output Data Rate = 16.64 kbps
- 4. Words 103 through 206 are identical to a TIP Orbital Mode Minor Frame's words 0 through 103.

4.2 APT SYSTEM

4.2.1 GENERAL

The Automatic Picture Transmission (APT) system provides a reduced resolution data stream from the AVHRR/3 instrument. Any two of the AVHRR channels can be chosen by ground command for processing and ultimate output to the APT transmitter. A visible channel is used to provide visible APT imagery during daylight, and one IR channel is used constantly (day and night). A second IR channel can be scheduled to replace the visible channel during the nighttime portion of the orbit. The analog APT signal is transmitted continuously and can be received in real time by relatively unsophisticated, inexpensive ground station equipment (a list of equipment manufacturers is available on the NOAASIS Internet site. See Internet resources in Appendix E) while the satellite is within radio range. The characteristics of the transmitted signal remain unchanged in the NOAA KLM and NOAA-N,-N' satellite series from those in the TIROS-N series

(NOAA-8 through NOAA-14), while there is a minor change in the data format to account for the modified channel 3 on the AVHRR instrument.

4.2.2 APT TRANSMISSION CHARACTERISTICS

The processed AVHRR instrument data AM modulates a 2400 Hz subcarrier. The maximum subcarrier modulation is defined as the amplitude of the gray scale wedge number 8 (see Figure 4.2.2-1), producing a modulation index of 87% \pm 5% (not exceeding 92%). The AM modulated subcarrier is subsequently used to FM modulate the VTX transmitter operating in the 137 - 138 MHz band. Table 4.2.2-1 summarizes the pertinent APT transmission characteristics.

Table 4.2.2-1. APT Transmission Characteristics.					
Line Rate	120 lines/min				
Data Channels	2 transmitted				
	6 available				
Data Resolution	4.0 km				
Carrier Modulation	2.4 KHz AM subcarrier on FM carrier				
Transmitter Frequency (MHz)	137.50 or 137.62				
Transmitter Power (EOL)	5 W (37dBm)				
Radiated Power (dBm, @ 63 degrees)	36.7				
Polarization	RCP				

Figure 4.2.2-1. APT Frame Format

4.2.3 APT Data Frame Format

The MIRP processes the AVHRR data and outputs the APT format (simultaneously with the HRPT, LAC and GAC formats). All the processing in the MIRP is done in the digital realm. The digitized AVHRR input consists of 10-bit words. The MIRP inserts calibration and telemetry data for each of the selected APT channels being transmitted, and AM modulates the 2400 Hz subcarrier, corresponding to the light and dark areas seen by the instrument, with the 8 Most Significant Bits (MSB) of the 10-bit data. The formatted data passes through the MIRP digital-to-analog converter, is filtered and modulated onto the 2400 Hz carrier.

On the NOAA KLM and NOAA-N,N' series, two of the six possible AVHRR spectral channels are multiplexed so that channel A APT data is obtained from one spectral channel of the first AVHRR scan line, and channel B from another spectral channel contained in the second AVHRR scan line. The third AVHRR scan line is omitted from the APT, and the process is repeated. It can be seen that the data processing algorithm is designed so that data from every third line from each of the two selected channels of the original high resolution AVHRR output are formatted for each of the two APT channels. The algorithm also maintains nearly equal geometric resolution of 4 km along the scan line. This is accomplished by using a separate resolution reduction in each of five regions or zones either side of the nadir. The details of this algorithm are shown Table 4.2.3-1 and Figure 4.2.3-1. The two AVHRR channels used are identified in the daily TBUS message, and are further classified by the daytime and nighttime portion of the orbit. Channel identification is also included as part of the telemetry frame.

Table 4.2.3-2 enumerates the APT format parameters. Figures 4.2.2-1, 4.2.3-2 and 4.2.3-3 illustrate the APT frame format, the video line format and signal synchronization details. Examining the frame format shown in Figure 4.2.2-1, it can be seen that both channel A and B have a series of 16 "wedges" used in calibrating the APT image. Each of the wedges is composed of 8 successive video lines. Only the wedges of one frame from an entire, received pass, are needed for calibration. Also note that wedges 1 through 14 are identical on the images from both channels A and B. Only wedges 15 (the back scan value when one of the IR radiometers "looks" at a blackbody radiator) and 16 (channel identification) vary between channel A and B.

The channel identification wedge has changed in the NOAA KLM and NOAA-N,-N' series now that there are six possible channels 1, 2, 3A, 3B, 4 and 5. The modulation index of wedge 16 will equal one of the first six grey scale wedges. Wedge 3 will correspond to channel 3A being in use, while wedge 6 will correspond to channel 3B being in use. All other channel numbers will be the same as the number of the corresponding grey scale wedge.

Table 4.2.3-1 APT Linearization Algorithm						
Zone 1	Average 4 contiguous	628 AVHRR data	157 processed APT			
0-16.98 degrees from	samples	samples per channel	words output to D/A			
nadir			converter			
Zone 2	Average 3 contiguous	330 AVHRR data	110 processed APT			
16.98-34.83 degrees	samples, skip 1,	samples per channel	words output to D/A			

either side of nadir	repeat		converter
Zone 3	Average 2 contiguous	166 AVHRR data	83 processed APT
34.83-43.83 degrees	samples	samples per channel	words to output D/A
either side of nadir	_		converter
Zone 4	Average 1.5 samples	93 AVHRR data	62 processed APT
43.83-48.84 degrees	(A+B/2 and B+C/2)	samples per channel	words output to D/A
either side of nadir			converter
Zone 5	Retain original	121 AVHRR data	121 processed APT
48.84-55.4 degrees	resolution	samples per channel	words output to D/A
either side of nadir			converter.

Figure 4.2.3-1. APT Linearization

Table 4.2.3-2. APT Parameters					
Frame					
Rate	1 frame/64 sec				
Length	128 lines				
Format	See Table 4.2.3-1				

Line Parameters					
Rate	2 lines/sec				
Number of words	2080				
Number of sensor channels	2				
Number of words/sensor channel	909				
Format	See Figure 4.2.3-1				
Line sync format	See Figures 4.2.3-2 and 4.2.3-3				
Word Parameters					
Rate	4160 words/sec				
D/A conversion accuracy	8 MSB's each 10 bit word				

Figure 4.2.3-2. APT Video Line Format

Figure 4.2.3-3. APT Synchronization Details

4.3 DIRECT SOUNDER BROADCAST (DSB)

4.3.1 GENERAL

The Direct Sounder Broadcast (DSB, also referred to as the beacon transmission) contains the low bit rate instrument (HIRS/3, HIRS/4 on NOAA-N, -N', SBUV/2, SEM, and DCS/2, but not AMSU) digital data, identical to that within the HRPT transmission. Data are therefore available in both the VHF and S-band links. Those users receiving the high resolution HRPT transmission would likely find it most desirable to extract the low rate data from this data stream. The VHF beacon transmission is available to users who do not intend to install the more complex equipment necessary to receive high data rate S-band service. The lower data rates permit the user to install less complex, less costly equipment to receive the data without degrading its quality.

4.3.2 DSB Transmission Characteristics

On board the satellite, output from the low data rate instruments is collected and formatted by the TIROS Information Processor (TIP). Parallel outputs are provided for the real-time VHF beacon transmission (DSB) and the MIRP (for the HRPT service). The instrument data is multiplexed with analog and digital housekeeping data. The TIP output directly modulates the beacon transmission. The data is transmitted as an 8.32 Kbps split phase signal (similar to the HRPT

transmission, above) over one of the beacon transmitters (BTX). Detailed transmission characteristics and TIP parameters are shown in Tables 4.3.2-1 and 4.3.2-2.

Table 4.3.2-1 DSB Transmission Characteristics				
Carrier Modulation Digital split phase, phase modulation				
Transmitter Frequency (Mhz)	137.35 or 137.77			
Transmitter Power (EOL)	1.0 watts (30dBm)			
Radiated Power (dBm)	.5 (over 90% of sphere)			
Polarization	RCP			

Table 4.3.2-2 TIP Parameters					
Major	Major Frame				
Rate Minor Frames/Major Frame	1 major frame/32 sec 320				
Minor	Frame				
Rate Number of words Format	10 minor frames/sec 11090 See Table 4.3.2-3				
Word Pa	rameters				
Rate Number of bits/word Order	1040 words/sec 8 Bit 1=MSB Bit 8=LSB				
Bit Parameters					
Rate Format Data "0" Data "1"	8320 Bits/sec Split phase -67/+67degrees +67/-67degrees				

4.3.3 TIP FRAME FORMAT

The TIP format is based on a major frame which contains 320 minor frames.

4.3.3.1 TIP Minor Frame Format for NOAA-KLM

About one-quarter of the 104 telemetry word locations in the TIP minor frame have been changed for NOAA KLM. This is due to the removal of the Stratospheric Sounding Unit (SSU) and Earth Radiation Budget Experiment (ERBE) from the new series of spacecraft. Word locations previously assigned to the SSU have been allocated to the HIRS/3 and Data Collection System (DCS). The ERBE word locations have been reassigned to DCS, as well. In addition, two words have been allocated to the Decryption Authentication Unit (DAU). Table 4.3.3.1-1 shows the TIP telemetry word location in the frame format. Table 4.3.3.1-2 contains telemetry word titles, locations within the frame, and word descriptions in tabular form

	Table 4.3.3.1-1. TIP Minor Frame Format for NOAA KLM.										
- S/C	20-BIT SYNCH ADDRESS, VERIFICATION DATA O1101 1110001 0000			STATUS, DWELL MODE ADDRESS, MINOR FRAME COUNTER			-	8 DIG-B SUBCO M-1	9 ANALO G SUB COM (32 SEC)	10 ANALO G SUB COM (16 SEC)	11 ANALO G SUB COM (1 SEC)
12 DIG-B SUB COM-2	13 ANALO G SUB COM (16 SEC)	14 DAU-1	15 DAU-2	16 HIRS/3	17 HIRS/3	18 DCS-2	19 DCS-2	20 SEM	21 SEM	22 HIRS/3	23 HIRS/3
24	25	26	27	28	29	30	31	32	33	34	35
DCS-2	DCS-2	HIRS/3	HIRS/3	DCS-2	DCS-2	HIRS/3	HIRS/3	DCS-2	DCS-2	HIRS/3	HIRS/3
36 SBUV/2	37 SBUV/2	38 HIRS/3	39 HIRS/3	40 DCS-2	41 DCS-2	42 HIRS/3	43 HIRS/3	44 DCS-2	45 DCS-2	46 CPU-A TELEME	47 ETRY
48	49	50	51	52	53	54	55	56	57	58	59
C	PU-A TEL	EMETRY		DCS-2	DCS-2	HIRS/3	HIRS/3	DCS-2	DCS-2	HIRS/3	HIRS/3
60	61	62	63	64	65	66	67	68	69	70	71
DCS-2	DCS-2	HIRS/3	HIRS/3	DCS-2	DCS-2	HIRS/3	HIRS/3	DCS-2	DCS-2	HIRS/3	HIRS/3
72	73	74	75	76	77	78	79	80	81	82	83
DCS-2	DCS-2	HIRS/3	HIRS/3	DCS-2	DCS-2	HIRS/3	HIRS/3	SBUV/2	SBUV/2	HIRS/3	HIRS/3
84	85	86	87	88	89	90	91	92	93	94	95
HIRS/3	HIRS/3	DCS-2	DCS-2	HIRS/3	HIRS/3	DCS-2	DCS-2	HIRS/3	HIRS/3	DCS-2	DCS-2
96 97 98 99 100 101 				102 SPARE 0101010 1	103 6- BITS EVEN PARITY	MAJOR	FRAME P	ERIOD - 0 PERIOD - 3 ATE - 8.3	32 SEC		

(NUMBER IN UPPER LEFT CORNER INDICATES MINOR FRAME WORD NUMBER)

Table 4.3.3.1-2. TIP Minor Frame Format for NOAA KLM					
Function	No. of	Word	Bit No. 1 2 3 4 5 6 7 8 Plus Word Code & Meaning		
	Words	Position			
Frame Sync & SC ID		0	11101101 (MSB) is first)		
	3	1	11100010		
		2	0000AAAA (Last 4 bits are spacecraft ID)		
			Bit 1: CMD verification (cv) status; 1=cv update		
			word present in frame; 0=no cv update id frame		
			Bits 2&3: TIP status; 00=orbital mode;10=CPU		
Status	1-	3	Memory Dump Mode;01=Dwell Mode;11=Boost		
Status	1	3	Mode		
			Bits 4-6: Major Frame Count; 000 Major Frame 0;		
			111=Major Frame 7; MSB first; Counter incremented		
			every 320 minor frames		
			Bits 7&8: 9 bit dwell mode address of analog		
Dwell Mode	1+		channel that is being monitored continuously		
Address	1.1	3	00000000-Analog channel 0		
		4	111111111-Analog channel 511		
Minor Frame	1+	4	Bit 8, bits 1-8: 000000000=Minor Frame 0		
Counter	1 1	5	100111111-Minor frame 319		
Command	2	6	Bits 9 thru 24 of each valid received or stored		
Verification		7	command word are placed in the 16 bit slots of		
, 611116401011			telemetry words 6 and 7 on a one-for-one basis.		
		8,9	9 bits of binary Cay Count, MSB first		
		9	Bits 2-5: 0101, Spare Bits		
		9,10	27 bits of Binary millisec of Day Count, MSB first		
Time Code	5	11	Time code is inserted on word location 8-12 only in		
		12	minor frame 0 of every major frame. The data		
			inserted is referenced to the beginning of the first bit		
			or the minor frame sync word of minor frame 0		
			within ∀ millisecond.		
			A Subcommutation of Discrete Inputs collected to		
			form 8 bit words. 256 Discrete Inputs (32 words) can		
Digital "B"	1	8	be accommodated. It takes 32 frames to sample all		
Subcom-1	•	O	inputs once (sampling rate=once/3.2 sec). A Major		
			Frame contains 10 complete Digital "B"		
			subcommutated frames.		
			A subcommutation of up to 191 analog points		
Analog Subcom (32 sec)	com 1	9	sampled once every 32 seconds plus 64 analog points		
			sampled twice every 32 seconds (once every 16		
					seconds). Bit 1 of each word represents 2560 mV,
			while Bit 8 represents 20 mV.		

Analog Subcom (16 sec)	1	10	This subcommutation is controlled by a PROM located in the TIP and contains 160 word locations with 128 analog channels sampled once every 16 seconds.
Analog Subcom (1 sec)	1	11	This subcommutation is controlled by a PROM in the TIP and contains 10 analog channels sampled once every 1 second. Word 0 of this subcom is filled with data from an analog point selected by command. The selected analog point may be one of the 512 analog points available to the TIP. Bit on of each word represents 2560 mV while Bit 8 represents 20 mV.
Digital "B" Subcom-2	1	12	The subcommutation of discrete inputs collected to form 8 Bit words. 256 discrete inputs (32 words) can be accommodated. It takes 32 minor frames to sample all inputs once (sampling rate=once/3.2 sec). A Major Frame contains 10 complete Digital "B" subcommutated frames. 64 of these bit locations corresponding to TIP minor frames 24-31 form the XSU Digital "A" data. The XSU generates an 8 word subcom which is read out at the rate of one word per minor frame. The XSU subcom is synchronized with its word 1 in minor frame 24.
Analog Subcom-2 (16 sec)	1	13	This subcommutation is controlled by a PROM located in the TIP and contains 160 words locations with 128 analog channels sampled once every 16 seconds. The remaining 32 word locations contain data from the Solar Array Telemetry Commutator Unit (SATCU). The SATCU receives inputs from16 sources on the solar array, commutates them and presents this stream and presents it in the last 32 word locations. The 32 words represent two successive passes through the SATCU subcom.
DAU-1	1	14	8 Bit Housekeeping Telemetry words are formed by the DAU-1 and read out by the telemetry system at an average of 10 words per second.
DAU-2	1	15	8 Bit Housekeeping Telemetry words are formed by the DAU-2 and read out by the telemetry system at an average of 10 words per second.

HIRS/3	36	16,17, 22,23, 26,27, 30,31, 34,35, 38,39, 42,43, 54,55, 58,59, 62,63, 66,67, 70,71, 74,75, 78,79, 82,83, 84,85, 88,89, 92,93	8 Bit words are formed by the HIRS/3 experiment and are read out by the telemetry system at an average rate of 360 words per second.
SEM	2	20,21	8 Bit words are formed by the SEM sensor and ready out by the telemetry system at an average rate of 20 words per second.
DCS-2	32	18,19, 24,25, 28,29, 32,33, 40,41, 44,45, 52,53, 56,57, 60,61, 64,65, 68,69, 72,73, 76,77, 86,87, 90,91, 94,95	8 Bit words are formed by the DCS experiment and are read out by the telemetry system at an average rate of 320 words per second
SBUV/2	4	36,37, 80,81	8 Bit words are formed by the SBUV/2 experiment and read out by the telemetry system at an average rate of 40 words per second.
CPU A Telemetry	6	46,47, 48,49, 50,51	A second block of 16 Bit CPU words is ready out by the telemetry system every minor frame.

CPU B Telemetry	6	96,97, 98,99, 100,101	A second block of 16 Bit CPU words is ready out by the telemetry system every minor frame.
CPU Data Status	1-	103	Bits 1 And 2: 00=All CPU data received 01=All CPU A data received; CPU B data incomplete 10= All CPU B data received; CPU A data incomplete 11=CPU A and CPU B data incomplete
Parity	1-	103	Bit 3: Even parity check in words 2 through 18 Bit 4: Even parity check in words 19 thru 35 Bit 5: Even parity check in words 36 thru 52 Bit 6: Even parity check in words 53 thru 69 Bit 7: Even parity check in words 70 thru 86 Bit 8: Even parity check in words 87 thru bit 7 of word 103

4.3.3.2 <u>TIP Minor Frame Format for NOAA-N, -N'</u>

For NOAA-N, -N', Table 4.3.3.2-1 shows the TIP telemetry word location in the frame format. Table 4.3.3.2-2 shows the TIP telemetry word location in the frame format. Other than HIRS/4 data in place of HIRS/3 data, the only real difference between a NOAA KLM TIP minor frame and a NOAA-N, -N' TIP minor frame is byte 102, which contains MIU data.

	Table 4.3.3.2-1. TIP Minor Frame Format for NOAA-N, N'.										
0 1 2 3 4 5 STATUS, DWELL MODE ADDRESS, MINOR FRAME COUNTER See Note 2			6 CMD VERIFIC DATA	7 ATION	8 DIG-B SUBCO M-1	9 ANALO G SUB COM (32 SEC)	10 ANALO G SUB COM (16 SEC)	11 ANALO G SUB COM (1 SEC)			
12 DIG-B SUB COM-2	13 ANALO G SUB COM (16 SEC)	14 DAU-1	15 DAU-2	16 HIRS/3	17 HIRS/3	18 DCS-2	19 DCS-2	20 SEM	21 SEM	22 HIRS/4	23 HIRS/4
24 DCS-2	25 DCS-2	26 HIRS/4	27 HIRS/4	28 DCS-2	29 DCS-2	30 HIRS/4	31 HIRS/4	32 DCS-2	33 DCS-2	34 HIRS/4	35 HIRS/4
36 SBUV/2	37 SBUV/2	38 HIRS/4	39 HIRS/4	40 DCS-2	41 DCS-2	42 HIRS/4	43 HIRS/4	44 DCS-2	45 DCS-2	46 CPU-A TELEME	47 ETRY

48	49	50	51	52	53	54	55	56	57	58	59
C	PU-A TEL	EMETRY		DCS-2	DCS-2	HIRS/4	HIRS/4	DCS-2	DCS-2	HIRS/4	HIRS/4
60	61	62	63	64	65	66	67	68	69	70	71
DCS-2	DCS-2	HIRS/4	HIRS/4	DCS-2	DCS-2	HIRS/4	HIRS/4	DCS-2	DCS-2	HIRS/4	HIRS/4
72	73	74	75	76	77	78	79	80	81	82	83
DCS-2	DCS-2	HIRS/4	HIRS/4	DCS-2	DCS-2	HIRS/4	HIRS/4	SBUV/2	SBUV/2	HIRS/4	HIRS/4
84	85	86	87	88	89	90	91	92	93	94	95
HIRS/4	HIRS/4	DCS-2	DCS-2	HIRS/4	HIRS/4	DCS-2	DCS-2	HIRS/4	HIRS/4	DCS-2	DCS-2
96 101 					102 MIU	103 6- See Note 3	MAJOR	FRAME F	ERIOD - (PERIOD - 8.3	32 SEC	

Notes:

- 1. NUMBER IN UPPER LEFT CORNER INDICATES MINOR FRAME WORD NUMBER
- Minor Frames 3,4 and 5 consist of 1-bit command verification status in MSB of Word 3, follow frame counter, followed by 9-bit dwell address and 9-bit subcom counter to fill out minor frames
 Minor Frame 103 consists of 2-bit CPU status in MSB, followed by 6-bit TIP parity.

Ta	Table 4.3.3.2-2. TIP Minor Frame format for NOAA-N, -N'					
Function	No. of	Word	Bit No. 1 2 3 4 5 6 7 8 Plus Word Code & Meaning			
	Words	Position				
Eromo Cyma fr		0	11101101 (MSB) is first)			
Frame Sync & SC ID	3	1	11100010			
SC ID		2	0000AAAA (Last 4 bits are spacecraft ID)			
			Bit 1: CMD verification (cv) status; 1=cv update			
			word present in frame; 0=no cv update id frame			
			Bits 2&3: TIP status; 00=orbital mode;10=CPU			
Status	1-	3	Memory Dump Mode;01=Dwell Mode;11=Boost			
Status	1-	3	Mode			
			Bits 4-6: Major Frame Count; 000 Major Frame 0;			
			111=Major Frame 7; MSB first; Counter incremented			
			every 320 minor frames			
			Bits 7&8: 9 bit dwell mode address of analog			
Dwell Mode	1+		channel that is being monitored continuously			
Address	1+	3	000000000-Analog channel 0			
		4	111111111-Analog channel 511			
Minor Frame	1+	4	Bit 8, bits 1-8: 000000000=Minor Frame 0			
Counter	1+	5	100111111-Minor frame 319			
Command		6	Bits 9 thru 24 of each valid received or stored			
Verification	2		command word are placed in the 16 bit slots of			
Verification		7	telemetry words 6 and 7 on a one-for-one basis.			
		8,9	9 bits of binary Cay Count, MSB first			
Time Code	5	9	Bits 2-5: 0101, Spare Bits			
		9,10	27 bits of Binary millisec of Day Count, MSB first			

		11	Time code is inserted on word location 8-12 only in
		12	minor frame 0 of every major frame. The data inserted is referenced to the beginning of the first bit
			or the minor frame sync word of minor frame 0
			within \forall millisecond.
Digital "B" Subcom-1	1	8	A Subcommutation of Discrete Inputs collected to form 8 bit words. 256 Discrete Inputs (32 words) can be accommodated. It takes 32 frames to sample all inputs once (sampling rate=once/3.2 sec). A Major Frame contains 10 complete Digital "B" subcommutated frames.
Analog Subcom (32 sec)	1	9	A subcommutation of up to 191 analog points sampled once every 32 seconds plus 64 analog points sampled twice every 32 seconds (once every 16 seconds). Bit 1 of each word represents 2560 mV, while Bit 8 represents 20 mV.
Analog Subcom (16 sec)	1	10	This subcommutation is controlled by a PROM located in the TIP and contains 160 word locations with 128 analog channels sampled once every 16 seconds.
Analog Subcom (1 sec)	1	11	This subcommutation is controlled by a PROM in the TIP and contains 10 analog channels sampled once every 1 second. Word 0 of this subcom is filled with data from an analog point selected by command. The selected analog point may be one of the 512 analog points available to the TIP. Bit on of each word represents 2560 mV while Bit 8 represents 20 mV.
Digital "B" Subcom-2	1	12	The subcommutation of discrete inputs collected to form 8 Bit words. 256 discrete inputs (32 words) can be accommodated. It takes 32 minor frames to sample all inputs once (sampling rate=once/3.2 sec). A Major Frame contains 10 complete Digital "B" subcommutated frames. 64 of these bit locations corresponding to TIP minor frames 24-31 form the XSU Digital "A" data. The XSU generates an 8 word subcom which is read out at the rate of one word per minor frame. The XSU subcom is synchronized with its word 1 in minor frame 24.

Analog Subcom-2 (16 sec)	1	13	This subcommutation is controlled by a PROM located in the TIP and contains 160 words locations with 128 analog channels sampled once every 16 seconds. The remaining 32 word locations contain data from the Solar Array Telemetry Commutator Unit (SATCU). The SATCU receives inputs from16 sources on the solar array, commutates them and presents this stream and presents it in the last 32 word locations. The 32 words represent two successive passes through the SATCU subcom.
DAU-1	1	14	8 Bit Housekeeping Telemetry words are formed by the DAU-1 and read out by the telemetry system at an average of 10 words per second.
DAU-2	1	15	8 Bit Housekeeping Telemetry words are formed by the DAU-2 and read out by the telemetry system at an average of 10 words per second.
HIRS/4	36	16,17, 22,23, 26,27, 30,31, 34,35, 38,39, 42,43, 54,55, 58,59, 62,63, 66,67, 70,71, 74,75, 78,79, 82,83, 84,85, 88,89, 92,93	8 Bit words are formed by the HIRS/3 experiment and are read out by the telemetry system at an average rate of 360 words per second.
SEM	2	20,21	8 Bit words are formed by the SEM sensor and ready out by the telemetry system at an average rate of 20 words per second.

DCS-2	32	18,19, 24,25, 28,29, 32,33, 40,41, 44,45, 52,53, 56,57, 60,61, 64,65, 68,69, 72,73, 76,77, 86,87, 90,91, 94,95	8 Bit words are formed by the DCS experiment and are read out by the telemetry system at an average rate of 320 words per second
SBUV/2	4	36,37, 80,81	8 Bit words are formed by the SBUV/2 experiment and read out by the telemetry system at an average rate of 40 words per second.
CPU A Telemetry	6	46,47, 48,49, 50,51	A second block of 16 Bit CPU words is ready out by the telemetry system every minor frame.
CPU B Telemetry	6	96,97, 98,99, 100,101	A second block of 16 Bit CPU words is ready out by the telemetry system every minor frame.
CPU Data Status	1-	103	Bits 1 And 2: 00=All CPU data received 01=All CPU A data received; CPU B data incomplete 10= All CPU B data received; CPU A data incomplete 11=CPU A and CPU B data incomplete
Parity	1-	103	Bit 3: Even parity check in words 2 through 18 Bit 4: Even parity check in words 19 thru 35 Bit 5: Even parity check in words 36 thru 52 Bit 6: Even parity check in words 53 thru 69 Bit 7: Even parity check in words 70 thru 86 Bit 8: Even parity check in words 87 thru bit 7 of word 103

4.3.4 Digital "A" Telemetry

4.3.4.1 HIRS

4.3.4.1.1 HIRS/3

The data from the HIRS/3 are provided to the TIP system from a storage register. The TIP clock pulse (C_1) and Data Select pulses determine the time at which data are called out. The TIP formatter calls out groups of 8-bit words in a sequence that multiplexes HIRS/3 data with that of other instruments. Because of the large quantity of HIRS/3 data to be transmitted and the use of 13-bit decoding of radiometric data, it was not possible to format the HIRS/3 data into neat 8-bit segments. The HIRS/3 data are therefore provided as a continuous stream with 13-bit word lengths. During any minor frame, there are 288 bits of data; each bit is identified as to its purpose.

A full set of HIRS/3 operational data, including command status monitors, housekeeping information and radiance data of the 20 channels, is contained in the Digital "A" output. The HIRS/3 data repeats every 6.4 seconds as described below. The 6.4 second period contains 64 elements.

1) <u>Element Definition</u>

Digital A output is divided into "elements" of 288 bits. An element is phased to fit into a TIP minor frame as described above.

2) Element Formats

Sixty-four elements make up each scan. The formats for the elements repeat every 6.4 seconds and correspond to the particular parts of the scan. Element numbers 0-55 are Earth scan data. Scan element 0 describes the data at the time of viewing the first Earth scan position. Scan element 55 designates the last Earth scan position. Scan elements 56-63 occur during retrace during normal Earth scanning. The same element number designations continue when the scan is commanded to a calibration target. Normally the mirror motion to the warm calibration target takes place during the normal retrace interval. In the case of slew to the space look position, the motion occurs during scan elements 0 to 7.

Data reduction must take this into account as required. The elements are divided as follows:

(a) <u>Bits 1-26</u>

Two 13 bit words have the same function in all 64 elements. The function assembled in these words are as follows:

Word 1	<u>Function</u>	Range (Decimal)
1 - 8	Scan Encoder Position	0 to 199
9 - 13	Electronic Cal Level Indicator	0 to 331
Word 2	<u>Function</u>	Range (Decimal)
1 - 6	Channel 1 Period Monitor	0 to 63
7 - 12	Element Number	0 to 63
13	Filter Sync Designator	n/a

(b) <u>Bits 27-286</u>

This group of bits is divided into 20 13-bit words (20 Ch x 13 Bits). For elements 0-55, these are the Radiant Signal Output. The word functions are dependent on element number. Except for the two status words in element 63, all words are quantity where bit 1 is the sign bit and bits 2 through 13 are amplitude (0 to 4095). Bit 2 is the most significant bit (MSB) and bit 13 is the least significant bit (LSB) of the quantity. The sign bit is:

```
logic "1" + (positive) logic "0" - (negative)
```

The HIRS/3 instrument serial number is preset for each instrument in element 63, bits 42-44. The protoflight has the designation 001; the flight models will be designated 002 on up.

(c) <u>Bits 287 & 288</u>

In the same manner as for bits 1 through 26, these two bits have the same function in all 64 elements. In order to aid determination of times when data should not be used, we have included a Valid Data Bit into the data stream. This bit is a "1" when all conditions are normal and data may be considered good. It will be a "0" when the scan system is in a slew mode or when the filter wheel is not synchronized to the timing system.

Bit 287 Valid Data Bit

logic "1"	Valid Data
logic "0"	Ignore Radiometric Data

Minor Word Parity Check is a bit inserted to make the total word odd. This permits automatic checking for data losses in the transmission of the data from the HIRS/3.

Bit 288 Odd bit parity

3) <u>Function Descriptions</u>

<u>Scan Encoder Position</u> - Encoder position is the sensed position of the scan mirror in 1.8 degree increments. The scan positions are described later, but it may be noted that encoder position "1" occurs at the first Earth scan position, hence will be the encoder position noted during element "0".

Electronic Cal Level Indicator - Electronic calibration level advances from 0 to 31, defining the step level measured in each radiometric channel during elements 56 and 57. Since both a positive and negative calibration is made at the end of each scan line, the level applies to both. The step level starts at 0 on the first scan after a calibration start pulse and continues repetitively after that and even when calibration is disabled.

<u>Channel 1 Period Monitor</u> - Measures the variation in time interval of a segment of the filter wheel on each rotation. The reading measures 1.248 MHZ clock intervals of that segment; hence, it defines velocity variations to a granularity of 0.8 microseconds. This is a diagnostic output and is not used in system data processing or evaluation.

<u>Element Number</u> - The number of this data group. It advances from 0 to 63 with element 0 related to the first Earth scan position. The element number repeats regardless of scan position or mode.

<u>Filter Sync Designator</u> - Filter Sync is a "1" when the filter wheel is in synchronism with the timing system. This is diagnostic data not normally used in data collection or processing.

	Table 4.3.4.1.1-1 Digital "A" Status Telemetry					
Element Number	Bit Number	Function	Remarks			
	27-39	Radiometric Channel No.1 (669 cm ⁻¹)	0 counts radiance from scene equal radiance from filter wheel (FW). Plus (+) values are warmer than FW.			
	40-52	Radiometric Channel No.17 (2360 cm ⁻¹)	0 counts offset from FW			
0-55			radiance. Plus and minus are warmer and cooler than offset.			
	53-65	Radiometric Channel No. 2 (680 cm ⁻¹)	No offset.			
	66-78	Radiometric Channel No. 3 (690 cm ⁻¹)	No offset.			
	79-91	Radiometric Channel No.13 (2190 cm ⁻¹)	Offset.			
	92-104	Radiometric Channel No.4 (703 cm ⁻¹)	No offset.			
	105-117	Radiometric Channel No.18 (2515 cm ⁻¹)	Offset.			
	118-130	Radiometric Channel No.11 (1365 cm ⁻¹)	No offset.			

	1 4 9 4 4 4 7	D 1 C 137 10 (0.550 1)	0.00
	131-145	Radiometric Channel No.19 (2660 cm ⁻¹)	Offset.
	146-156	Radiometric Channel No. 7 (749 cm ⁻¹)	No offset.
	157-169	Radiometric Channel No. 8 (900 cm ⁻¹)	No offset.
	170-182	Radiometric Channel No.20 (14,500 cm ⁻¹)	Black is minus. White is plus.
	183-195	Radiometric Channel No.10(1225 cm ⁻¹)	No offset.
	196-208	Radiometric Channel No.14 (2210 cm ⁻¹)	Offset.
	209-221	Radiometric Channel No.6 (733 cm ⁻¹)	No offset.
	222-234	Radiometric Channel No.5 (716 cm ⁻¹)	No offset.
	235-247	Radiometric Channel No.15 (2240 cm ⁻¹)	Offset.
	248-260	Radiometric Channel No.12(1488cm ⁻¹)	No offset.
	261-273	Radiometric Channel No.16 (2270 cm ⁻¹)	Offset.
	274-286	Radiometric Channel No.9 (1030 cm ⁻¹)	Offset
	27.200	Tradionical Chamber 1 (8) (1000 cm)	Calibration level advances one
			of the 32 equal level steps on
			successive scans. The offset and
		Positive Electronics Calibration.	gain of each channel will
56	27-286	Applied to 20 radiometric channels.	influence the amplitude of the
		rippined to 20 radiometric chamicist	signal. The calibration level
			applied to the electronics
			channels is indicated
		Negative Electronics Calibration	n/a
57	27-286	Applied to 20 radiometric channels	
	2= 01	Internal Warm Target Temperature Sensor	Value repeated 5 times. Range
	27-91	#1	273 to 333 K.
	02.17.5	T	Value repeated 5 times. Range
50	92-156	Temperature Sensor #2	273 to 333 K.
58	157 001	T	Value repeated 5 times. Range
	157-221	Temperature Sensor #3	273 to 333 K.
	222 206	T	Value repeated 5 times. Range
	222-286	Temperature Sensor #4	273 to 333 K.
	27.01	Internal Cold Target Temperature Sensor	n/a
	27-91	#1	
	02.156	Internal Cold Target Temperature Sensor	n/a
50	92-156	#2	
59	157 001	Internal Cold Target Temperature Sensor	n/a
	157-221	#3	
	222 226	Internal Cold Target Temperature Sensor	n/a
	222-286	#4	
	27.00	Filter Wheel Housing Temperature Sensor	Value repeated 5 times. Range
	27-90	#1	273 to 333 K.
	02.156	Tommonotumo Conson #1	Value repeated 5 times. Range
60	92-156	Temperature Sensor #1	273 to 333 K.
	157 001	Tommonotumo Conson #1	Value repeated 5 times. Range
	157-221	Temperature Sensor #1	273 to 333 K.
	222-286	Temperature Sensor #1	Value repeated 5 times. Range
	•	•	

			273 to 333 K.
	27-90	Patch Temperature Expanded Scale	Value repeated 5 times. Range 90 to 150 K.
61	92-156	First Stage Radiator Temperature Sensor	Value repeated 5 times. Range 150 to 320 K.
01	157-221	Filter Wheel Housing Current	Value repeated 5 times. Range 0 to 500 mA,
	222-286	Electronic Calibration Digital to Analog	Value repeated 5 times. Range volts 0 to 4 V.
	27-39	Scan Mirror Temperature	Range 260 to 320 K.
	40-52	Primary Telescope Temperature	Range 260 to 320 K.
	53-65	Secondary Telescope Temperature	Range 260 to 320 K.
	66-78	HIRS/3 Baseplate Temperature	Range 260 to 320 K.
	79-91	HIRS/3 Electronics Temperature	Range 260 to 320 K.
	92-104	Patch Temperature-Full Range	Range 90 to 320 K.
	105-117	Scan Motor Temperature	Range 260 to 320 K.
	118-130	Filter Wheel Motor Temperature	Range 260 to 320 K.
	131-143	Cooler Housing Temperature	Range 260 to 320 K.
	144-156	Patch Control Power	Range 0 to 80 mW
62	157-169	Scan Motor Current	Range 0.65 to 1.0 mA
	170-182	Filter Motor Current	Range 100 to 300 mA
	183-195	+15 Vdc	Range 15 ± 0.2 V
	196-208	-15 Vdc	Range -15 ± 0.2 V
	209-221	+7.5 Vdc	Range 7.5 ± 0.05 V
	222-234	-7.5 Vdc	Range -7.5 ± 0.02 V
	235-247	+10 Vdc	Range $10 \pm 0.2 \text{ V}$
	248-260	+5 Vdc	Range 5 $\pm 0.2 \text{ V}$
	261-273	Analog Ground	Range ± 1 count
	274-286	Analog Ground	Range ± 1 count
	27-39	Line Counter (gives the number of lines from the last auto calibration sequence)	0 to 8191 (There is no sign bit used in the line counter). Reset to 0 count is only when counter overflows.
63	40-52	First Status Word	First 5 bits are instrument serial number (no sign bit). The remaining bits indicate status as shown in Table 4.3.4.1.1-2.
	53-65	Second Status Word	First 5 bits are zero filled. The remaining bits indicate status as shown in Table 4.3.1.1-2.
	66-78	Data Verification Binary Code	Binary code is: (1,1,1,1,1,0,0,1,0,0,0,1,1) Equivalent to Base 10 value +3,875

79-91	Base 10 value +1,443
92-104	Base 10 value -1,522
105-117	Base 10 value -1,882
118-130	Base 10 value -1,631
131-143	Base 10 value -1,141
144-156	Base 10 value 1,125
157-169	Base 10 value 3,655
170-182	Base 10 value -2,886
183-195	Base 10 value -3,044
196-208	Base 10 value -3,764
209-221	Base 10 value -3,262
222-234	Base 10 value -2,283
235-247	Base 10 value -2,251
248-260	Base 10 value 3,214
261-273	Base 10 value 1,676
274-286	Base 10 value 1,992

4) <u>Digital "A" Status Telemetry</u>

The last element of each scan, element 63, contains two status words. Bits 45-52 and 58-65 of element 63 are command status bits. Logic state definition is shown in Table 4.3.4.1-2.

Table 4.3.4.	1.1-2. Digital "A" Status Telemetry (Elemen	nt 63, Status Words).
Bit Number	Function	Remarks
	First Status Word	
45	Instrument ON/OFF	ON = 1
466	Scan Motor ON/OFF	ON = 0
47	Filter Wheel ON/OFF	ON = 0
48	Electronics ON/OFF	ON = 1
49	Cooler Heat ON/OFF	ON = 0
50	Internal Warm Target Position	True = 0
51	Internal Cold Target Position	True = 0
52	Space Position	True = 0
	Second Status Word	
58	Nadir Position	True = 0
59	Calibration Enable/Disable	Enabled $= 0$
60	Cooler Door Release Enable/Disable	Enabled $= 0$
61	Cooler Door Open	YES = 1
62	Cooler Door Closed	YES = 1
63	Filter Housing Heat ON/OFF	ON = 0
64	Patch Temperature Control ON/OFF	ON = 0
65	Filter Motor Power High	Normal = 1

4.3.4.1.2 HIRS/4

Digital "A" data from the instrument is described in Table 4.3.4.1.2-1. The TIP clock pulse (C₁) and Data enable pulses determine the time at which the data is called out. The TIP formatter calls out groups of 8-bit words in a sequence that multiplexes HIRS/4 data with that of other instruments on the NOAA-N, -N' spacecraft. Along with this requirement, the large quantity of instrument data to be transmitted and the use of 13-bit encoding of radiometric data, it was not possible to format the data into 8-bit segments. The HIRS/4 data is therefore provided as a continuous stream composed of 13-bit word lengths but clocked out in 8-bit words by the TIP. During any Minor Frame there are 288 bits of HIRS data which are extracted at an equivalent 8,320 bps rate.

The data format remains the same during the 56 earth scan element time periods. During retrace, which is an interval of eight earth scan element time periods, the data format is changed to provide for measurement of the internal electronic calibration and to sample all of the Housekeeping telemetry data.

Scan Element 0 contains the data which describes the scene at the time of viewing the first scan position. The scan positions are described later, but it should be noted that encoder position "1" occurs at the first earth scan position and hence will encoder position noted during element "0". Scan element 55 designates the last scan position. Scan Elements 56-63 occur during the scan mirror retrace during normal earth scanning. These same element number designations apply also when the scan is commanded to a calibration target during the Auto Calibration (Autocal) sequence. Normally the mirror slewing motion between calibration targets takes place during the normal retrace interval except for the case of slew to the space look position where the motion occurs during scan elements 0 to 7. Therefore, space look during Autocal is only for 48 elements (8 through 55).

IN order to determine when radiometric data should not be used, a Valid Data bit is included in the data stream. This bit is a "1" when all conditions are normal and the radiometric data may be considered good. It will be a "0" when the scan system is in a slew mode.

The electronic calibration level advances on level per scan line from 0 to 31, defining the step level measured in each radiometric channel during elements 56 and 57. Since both a positive and negative calibration is made during a scan line, the same level value applies for both.

The Channel 1 Period Monitor measures the time interval of the travel from the Channel 1 to the Channel 2 segments of the filter wheel on each rotation. The reading measures 1,248 MHz clock intervals during that segment, hence defines filter rotation time with a resolution of 0.8 microseconds. This is not used in normal system data processing or evaluation but is a powerful diagnostic tool to aid in assessing the filter wheel subsystem health.

With every filter wheel revolution, a block of data is generated. This block, called an element is 288 bits long. A scan line consists of 56 scene views and eight retrace elements. Thus, there are 64 (56 + 8) filter wheel revolutions per line and 64 elements per scan line. Each element is numbered 0 to 63 and this 6-bit binary number is included in each element at bit location 20-25.

Filter Sync Designator is a "1" when the filter wheel is in synchronized with the data control timing system. This is diagnostic data not normally used in data collection or processing. If the Filter Sync Designator is "0" the radiometric data is not valid.

Radiant Signal Output is the 13-bit binary level measurement of the signals coming from the various detectors. The first bit is a sign bit ("1" positive, "0" is negative). The remaining twelve data bits are straight binary code in order from the most significant to least significant bit.

Mirror Word Parity Check is the lat bit of each Minor Frame or data element and is inserted to make the total number of "ones" in that data element odd. This permits checking for loss of data integrity between transmission from the instrument and the reconstruction on the ground. Elements 58-61 contain the outputs of the temperature and the ECAL DAC, sampled five times during each element. This approach provides a more accurate measurement of the more critical sensor temperatures.

In element 62, the data multiplexer connects other voltage and temperature sensors outputs into the A/D converter for one sample each, thereby allowing monitoring of all the major test points in the system.

Element 63 contains the command status, the instrument serial number, the total line number since the last radiometric calibration (in 13-bit natural binary), and a fixes word pattern and fill bits.

The Instrument Serial Number is unique for each instrument. The HIRS/4 instruments will be designated as 015, 016, 017 and 018.

Command Status is a tabulation of the state of the command relays.

Table 4.3.4.2-1 shows the HIRS/4 Digital "A" output. The only content difference between HIRS/3 data and HIRS/4 data is in element 59.

	Tabl	e 4.3.4.1.2-1 HIRS/4 Digital "A" Data Output For	mat.	
Element #	Bit #	Description	Range Counts	Notes
	1-8	Encoder Position	0 to 200	
	9-13	Electronic Cal Level	0 to 31	
0-55	14-19	Channel 1 Period Monitor	0 to 63	
(Earth	20-25	Element Number	0 to 63	
Scan	26	Filter Sync Designator	0 or 1	
Elements)	27-286	Radiant Signal Output (20 Channels x 13 bits)	0 to ± 4095	
	287			
56.62	1-26	Same as Above		
56-63	287,288	Same as Above		
56	27-286	Positive Electronic Calibration. 13 bits for each channel(Cal. Level advances on of 32 equal levels on succeeding scans)		
57	27-286	Negative Electronic Calibration. 13 bits for each channel (Cal. Level advances one of 32 equal levels on succeeding scans)		
	27-91	Internal Warm Target #1, 13 bits x 5 Times		
50	92-156	Internal Warm Target #2, 13 bits x 5 Times		
58	157-221	Internal Warm Target #3, 13 bits x 5 Times		
	222-286	Internal Warm Target #4, 13 bits x 5 Times		
	27-91	Internal Cold Target # 1, 13 bits x 5 Times		
50	92-156	Ground		
59	157-221	Internal Warm Target #5, 13 bits x 5 Times		
	222-286	Tertiary Telescope Temp, 13 bits x 5 Times		
	27-91	Filter Housing Temp #1, 13 bits x 5 Times		
60	92-156	Filter Housing Temp #2, 13 bits x 5 Times		
00	157-221	Filter Housing Temp #3, 13 bits x 5 Times		
	222-286	Filter Housing Temp #4, 13 bits x 5 Times		
	27-91	Patch Temp Expanded, 13 bits x 5 Times		
	92-156	First Stage Temp, 13 bits x 5 Times		
61	157-221	Filter Housing Control Power/Temp, 13 bits x 5 Times		
	222-286	Electronic Calibration DAC, 13 bits x 5 times		
	27-39	Scan Mirror Temperature		
	40-52	Primary Telescope Temperature		
	53-65	Secondary Telescope Temperature		
62	66-78	Baseplate Temperature		
62	79-91	Electronics Temperature		
	92-104	Patch Temperature – Full Range		
	105-117	Scan Motor Temperature		
	118-130	Filter Motor Temperature		

	131-143	Radiant Cooler Housing Temperature		
	144-156	Patch Control Power		
	157-169	Scan Motor Current		
	170-182	Filter Motor Current		
	183-195	+15 V dc		
	196-208	-15 V dc		
	209-221	+7.5 V dc		
	222-234	-7.5 V dc		
	235-247	+10 V dc		
	248-260	+5 V dc		
	261-273	Analog Ground		
	274-286	Analog Ground		
	27-39	Line Count		
	40	Fill Zero		
	41-44	Instrument Serial Number		
	45-52	Command Status		1
	53-57	Fill Zeroes		
	58-65	Command Status		1
	66-78	Binary code (1,1,1,1,110,0,1,0,0,0,1,1,) +3875		2
		(base 10)		
	79-91	+1443		2
	92-104	-1522		2
	105-117	-1882		2
63	118-130	-1631		2
05	131-143	-1141		2
	144-156	+1125		2
	157-169	+3655		2
	170-182	-2886		2
	183-195	-3044		2
	196-208	-3764		2
	209-221	-3262		2
	222-234	-2283		2
	235-247	-2251		2
	248-260	+3214		2
	261-273	+1676		2
	274-286	+1992		2
	1	Command Status bits	1027	
	45	Instrument ON/OFF	ON=1	1
	46	Scan Motor ON/OFF	ON=0	1
	47	Filter Wheel ON/OFF	ON=0	1
63	48	Electronics ON/OFF	ON=1	1
	49	Cooler Heat ON/OFF	ON=0	1
	50	Internal Warm Target Position	True=0	1
	51	Internal Cold Target Position	True=0	1

52	Space Position	True =0	1
58	Nadir Position	True=0	1
59	Calibration Enable/Disable	Enable=0	1
60	Cover Release Enable/Disable	Enable=0	1
61	Cooler Cover Open	Yes=1	1
62	Cooler Cover Closed	Yes=1	1
63	Filter Housing Hear ON/OFF	ON=0	1
64	Patch Temp Control ON/OFF	ON-0	1
65	Filter Motor Power HIGH	Normal=1	1

- 1. Command Status Bits
- 2. Fixed word pattern used to establish data stream synchronization with TIP.

4.3.4.2 SEM-2

SEM-2 data accumulation and transfer are synchronized to the spacecraft's 32 second Major Frame. The Major Frame consists of 320 0.1 second Minor Frames, and SEM-2 is assigned two Digital A data words (20 and 21) per Minor Frame.

The Digital A telemetry format is shown in Table 4.3.4.2-1 which identifies the data assignments for each of the two SEM data words in the 320 Minor Frames constituting one Major Frame.

MEPED Digital A data consists of six directional proton measurements and three directional electron measurements for each of two directions of incidence (0 and 90 degrees) and four omnidirectional proton measurements. All but the two highest energy omni-directional proton measurements are read out every two seconds. The two highest energy omnidirectional proton measurements are read out every four seconds. The MEPED Digital A data and readout rates are summarized in Table 4.3.4.2-2.

TED Digital A data consists of a 0.05 to 1 keV partial energy flux measurement, a 1 to 20 keV partial energy flux measurement, maximum differential energy fluxes, four-point differential energy spectra and background measurements for electrons and protons, each at two angles of incidence (0 and 30 degrees). The TED Digital A output data and readout rates are summarized in Table 4.3.4.2-3. Note that the four differential energy flux maximum channel identifiers (OEM, OPM, 3EM and 3PM) are each four bits long (each identifies 1 of 16 channels) and are combined into two 8 bit words (OEM/OPM and 3EM/3PM). Note also that two (0 and 30 degrees) proton four-point differential energy spectra are read out only three times every 32 seconds, while the two (0 and 30 degrees) electron four-point differential energy spectra are read out four times every 32 seconds (every 8 seconds). Sensor background data and synchronization words are read out in place of the fourth proton four-point differential energy spectral data.

]	Γable 4	3.4.2-1.	SEM D	igital "A	A" Telei	netry D	ata Ass	ignment	ts				
Minor Frame	0	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	House Keeping
# Data in Word 20	CKSM	TED SWP VAN	TED E CEM HV	TED P CEM HV	MEP OMN I BV	AN SUB 1	AN SUB 2	AN SUB 3	AN SUB 4	TED IPC V	MEP IFC V	BL 1	BL 2	BL SUB	0E BK H	3EB KH	
Data in Word 21	0P1	SUB5															
.1 sec	1 0P2 0P3	21	41	61	81	101	121	141	161	181	201	221	241	261	281	301	MEPED 0 degree Temper
	2 0P4 0P5	2	42	62	82	102	122	142	162	182	202	222	242	262	282	302	ature
	3 0P6 0E1	23	43	63	83	103	123	143	163	183	203	223	243	263	283	303	
	4 0E2 0E3	24	44	64	84	104	124	144	164	184	204	224	244	264	284	304	
	5 9P1 9P2	25	45	65	85	105	125	145	165	185	205	225	245	265	285	305	MEPED 90 degree
	6 9P3 9P4	26	46	66	86	106	126	146	166	186	206	226	246	266	286	306	Temper ature
	7 9P5 9P6	27	47	67	87	107	127	147	167	187	207	227	247	267	287	307	
	8 9E1 9E2	28	48	68	88	108	128	148	168	188	208	228	248	268	288	308	
	9 9E3 P6	29	49	69	89	109	129	149	169	189	209	229	249	269	289	309	MEPED OMNI
.1 sec	10 P7 98	30	50	70	90	110	130	150	170	190	210	230	250	270	290	310	
	11 ODE1 ODE2	31 3DE1 3DE2	51 0DP1 3DP2	71 3DP1 3DP2	91 0DE1 0DE2	111 3DE1 3DE2	131 0DP1 0DP2	151 3DP1 3DP2	171 0DE1 0DE2	191 3DE1 3DE2	211 0DP1 0DP2	231 3DP1 3DP2	251 0DE1 0DE2	271 3DE1 3DE2	291 OEBKL 2EBKL	311 Sync F3 3PBKL	TED Differen ces

12 ODE3 ODE4	32 3DE3 3DE4	52 0DP3 0DP4	72 0DP3 0DP4	92 0DE3 0DE4	112 3DE3 3DE4	132 0DP3 0DP4	152 3DP3 3DP4	172 0DE3 0DE4	192 0DE3 0DE4	212 0DP3 0DP4	232 3DP3 3DP4	252 0DE3 0DE4	272 3DE3 3DE4	292 0PBKL 0PBLH	312 Sync 50 3pbkh	
13 OEFL 3EFL	33	53	73	93	113	133	153	173	193	213	233	253	273	293	313	TED Low Differ
14 0PFL 3PFL	34	54	74	94	114	134	154	174	194	214	234	254	274	294	314	ences
15 0EFH 3EFH	35	55	75	95	115	135	155	175	195	215	235	255	275	295	315	TED High Differ
16 03FH EPFH	36	56	76	96	116	136	156	176	196	216	236	256	276	296	316	ences
17 0EM/0 PM/ 0DEM	37	57	77	97	117	137	157	177	197	217	237	257	277	297	317	TED PERK FLUX
18 0DPM 3EM/ 3PM	38	58	78	98	118	138	158	178	198	218	238	258	278	298	318	
19 3DEM 3DPM	39	59	79	99	119	139	159	179	199	219	239	259	279	299	319	
	2 sec	4 sec	-	8 sec			-	16 sec				24 sec	-			32 sec

Note: Dash indicates data is the same as in previous column

	Table 4	1.3.4.2-2. MEPED Digital ".	A" Data.	
Particle Type	Sensor	Detected Energy Range	Readout Time(s)	Mnemonics
		30-80 keV	2	0P1,9P1
		80-250 keV	2	0P2,9P2
Proton	Telescope	250-800 keV	2	0P3,9P3
Proton	0/90 Degrees	800-2500 keV	2	0P4,9P4
		2500-7000 keV	2	0P5,9P5
		> 7000 keV	2	0P6,9P6
	Talagaana 0/00	≥30 keV	2	0E1, 9E1
Electron	Telescope 0/90 Degrees	≥100 keV	2	0E2,9E2
	Degrees	≥300 keV	2	0E3, 9E3
		≥ 16 MeV	2	P6
Ducton	Omni-	≥ 35 MeV	2	P7
Proton	directional	≥ 70 MeV	2	P8
		≥ 140 MeV	2	P9

Tabl	e 4.3.4.2-3. T	ED Digital "A" Data.	
Definition (See Note 1)	Readout	Mnemonics	Notes
	Time(s)		
0.05-1 keV Partial Energy Flux	2	0EFL,0PFL,3EFL,3PFL	
2-10 keV Partial Energy Flux	2	0EFH,0PFH,3EFH,3PFH	
Maximum Differential Energy	2	0DEM,0EPM,3DEM,3DPM	
Flux			
Energy of Maximum	2	0EM,0PM,3EM,3PM	2
Differential Energy Flux			
Four Point Energy/Flux	8	0DE1,0DE2,0DE3,0DE4,	
Spectrum		3DE1,3DE2,3DE3,3DE4,	3,4
		0PD1.0PD2,0PD3,0PD4,	3,4
		3PD1,3PD2,3PD4,3PD4	
Background	32	0EBKH,0EBKL,0PBKH,0PBKL	

- 1. Four sets of measurements are made: electrons at 0 degrees, protons at 0 degrees, electrons at 90 degrees and protons at 90 degrees.
- 2. Four bits each, combined into two data words (0EM/0PM and 3EM/3PM).
- 3. Differential energy channels 4, 8, 11 and 14 (based on 1-16).
- 4. The four-point proton spectra are read three times every 32 seconds.

4.3.4.3 SBUV/2

Digital "A" data is clocked into the spacecraft TIP whenever the "A₁" Data Enable Pulse is presented to the instrument. Digital "A" data include both instrument data and any housekeeping telemetry required for reduction of observation data. The data format differs with the various SBUV/2 operating modes as described below.

4.3.4.3.1 Discrete Mode

The instrument views the earth's atmosphere or the sun if the diffuser is so deployed. In this mode, radiometric data is taken at twelve discrete wavelengths. The data format for this mode is shown in Table 4.3.4.3.1-1. Further details of the data format are provided in Tables 4.3.4.3.1-2, 4.3.4.3.1-3, 4.3.4.3.1-4, 4.3.4.3.1-5 and 4.3.4.3.1-6.

4.3.4.3.2 <u>Sweep Mode</u>

The instrument grating sweeps from approximately 400 nm to 160 nm, and data is taken in 0.15 nm increments. If SBUV/2 is viewing the earth, the scene spectral radiance is being measured. If the diffuser is deployed, the instrument is measuring the solar irradiance.

4.3.4.3.3 Wavelength Calibration Mode

The instrument views an on-board Hg lamp source at 12 discrete grating positions bracketing a particular source line. The data format for this mode is the same as that for the Discrete Mode, as shown in Table 4.3.4.3.1-1.

	Table 4.3	te Modes (See	Note 1).					
Line	TIP Minor	Func	etion	Sampl	e Time	Integration Interval		
(See Note 3)	Frames (See Note 2)	Word 1 (See Note 4)	Word 2 (See Note 4)	Word 1(See Note 7)	Word 2	Word 1	Word 2	
LO	0, 10, 20,, 310	Status Word 1	Range 1 Data	End of L0, Channel N-1	End of L9, Channel N-1	n/a	1 ¹ / ₄ sec and ¹ / ₄ sec (See Note 8)	
L1	1, 11, 21,, 311	Status Word 2	Range 2 Data	Channel N-1	End of L9, Channel N-1	n/a	1 ¹ / ₄ sec and ¹ / ₄ sec (See Note 8)	

L2	2, 12, 21,, 312	Analog Sub Mux	Range 3 Data	End 0f L0/L1, Channel N	End of L9, Channel N-1	0.1 sec	1 ½ sec and ¼ sec (See Note 8)
L3	3, 13, 23,, 313	Memory Verify	0000	End of L1, Channel N	n/a	n/a	n/a
L4	4, 14, 24,, 314	Status Word 3	0000	Start of L0, Channel N	n/a	n/a	n/a
L5	5, 15, 25,, 315	Status Word 4	0000	Start of L0, Channel N	n/a	n/a	n/a
L6	6, 16, 26,, 316	Grating Position	0000	½ into L7 Alternates End of L9,Chan N-1	n/a	n/a	n/a
L7	7, 17, 27,, 317	CCR Data	0000	End of L9, Channel N-1	n/a	1 ½ sec (See Note 8) and ¼ sec	n/a
L8	8, 18, 28,, 318	RDCL/GP E (See Note 6)	0000	End of L6/L7, Channel N	n/a	0.1 sec	n/a
L9	9, 19, 29,, 319	Frame Code Sync	0000	Start of L0, Channel N	n/a	n/a	n/a

- 1) Include discrete, calibration and position modes.
- 2) Format is the same for all major frames.
- 3) The basic SBUV/2 data frame is a 20-block repeating a one second intervals.
- 4) Word 1 corresponds to the 16 bits in TIP words 36 and 37, MSB sent first. Word 2 corresponds to the 16 bits in TIP words 80 and 81, MSB sent first.
- 5) Analog sub-mux is 16 channels deep.
- 6) Radiometric DC level/grating position error.
- 7) Channel N is the present 1 second time interval. Channel N-1 is the previous 1 second time interval.
- 8) In every two second interval, signal integration occurs between ¾ and 2 sec; signal is sampled and readout at the end of 1 sec and two sec.

Table 4	.3.4.3.1-2	2. SBUV	V/2 I	Data	For	mat	Disc	rete	Mo	de D	etai	led I	Desci	ripti	on			
N 45	For									it Nu								
Name of Function	Loca Word	Line				1	2.3	456		MSB 9 10			3 14	15 1	6			
Frame Sync Code nd Sub-multiplexer Channel Number	1	9	2 ³	2 ²	21			1		1		1	1	0	0	0	0	0
Frame Sync Sub-m	 nultiplex	er Can	nel N	Num	bers	(Fu	ll Sc	ale (Coui	nts 2	55 =	5.1	V, al	l an	alog	cha	nnel	S
Analog Sub-Mux (see Table 4.3.4.3.1-7 for commutation scheme)	1	2	27	2 ⁶		Chan 2 ⁴			2 ¹	2 ⁰	27	2^6			nel I		21	20
Radiometric DC Level/Grating Position Error (See Note 3)	1	8											DCL					
			Ma	xim	um (Coun				ee N Cur), Fu	ıll Sc	cale (Cour	its =	65,5	36
										Disc	10111				Sw	eep		
Monochromator Range Data	2	0 Range 1 (see Note 2)					10)0 pa						5 na				
-		1		nge 2 te 2)		e			1	0 na					125	na		
		2	Rai	nge 3	3 (se	e			-	1 :a					12.:	5 :a		
Cloud Cover Radiometer Data	1	7	CC						2.	4 na					30	na		
Memory Verification Repeats every 128				posi mor		data	in							S^1S^2	F			
sec					Se	gme	nt			S	1	,	S^0	Pı	ogra	m	F	ì
Reads memory as indicated by memory						0				0	1		0]	Fixed	i	1	
bits shown to right Memory location	1	3				1				0)		0		Flex		0)
readout in order starting with Word 0			2 1 0															
segment 0 of fixed memory at TIP major frame pulse			3 1 1															
Grating Position				2^0 S				ı						•				
Number greater than	1	6	Seg	gmei		eing l	Read	1			1					S_0		
0 = CW of Index					0					()					0		

		1	0		1	
Index = all zeroes		2	1		0	
1 bit CW = 0		3	1		1	
1 bit CCW = all ones		3	1		1	
		_	osition number. Code is		omplem	ent.
			Digital Lock L=1 (locked	l).		
		Range Selected	Bit A Bit B		Bit B	
Range Identification	Status Word	R_1	0	1		
	1 and 2	R_2	1	0		
		R_3	1	v1		
	Frame Count Bit No.					
		None	0	3	4	5
	Ctotus Won	(First)	1	0	0	0
Sweep Mode Major	Status Word	7	2	0	0	1
Frame Counter	1 Bits 3,4 & 5	3	3	0	1	0
		4	4	0	1	1
		5	5	1 0		1
		6(Last)	6	1	1	0

- 1) Overflow flags (status 3 bits 1, 2, 3 and 4).
- 2) Current referred to the PMT anode.
- 3) Grating Motor Current, Grating Position Error and Grating Coarse Error are expected to always read 0 to 10 counts (telemetry points are grounded) and data should be disregarded.

Table 4.3.4.3.1-3. SBUV/2 Data Discrete Mode Temperature Monitor Description.

Temperature Monitors:

- 1. Differential Monitors $T_D = T_A T_R$; $N_A = N_R + 0.1075 N_D 13.7$ (See Note 1)
- 2. Single Point Monitors:

		Output volts/Counts (N)				
Temperature	Thermistor	Shroud	Differential	0 to 80	-15 to	-5 to 35
(Degrees C)	(Ohms)	-30 to 80	A to B	degrees	45 degrees	degrees
			Reference			
-30	135.2 K	4.74/237				
-20	78.91 K	4.57/228			5.15	
-15	61.02 K	4.45/222	3.58/179		5.01/250	
-10	47.54 K	4.32/216	3.41/170	5.513	284.242	5.17
-5	37.31 K	4.16/208	3.22/161			4.95/247
0	29.49 K	3.99/199	3.01/150	4.98/249	4.42/221	4.70/235
5	23.46 K	3.79/189	2.79/140			
10	18.79 K	3.57/178	2.57/128	4.35/217	3.92/196	4.13/206
15	15.13 K	3.34/167	2.33/117			
20	12.26 K	3.10/155	2.11/105	3.67/183	3.36/166	3.52/176
25	10.00 K	2.86/143	1.89/94	3.33/167	3.08/154	
30	8.194 K	2.61/130	1.68/84	3.00/150	2.79/139	2.90/145
35	6.752 K	2.37/118	1.48/74			2.60/130
40	5.592 K	2.14/107	1.30/65	3.29/119	2.25/112	2.32/116
45	4.655 K	1.91/95	1.14/57		2.01/100	
50	3.893 K	1.71/85		1.86/93	1.78/89	1.82/91
60	2.76 K	1.35/67		1.44/72	1.39/69	1.41/70
70	1.99 K	1.05/52		1.1/55	1.08/54	1.09/54
80	1.458 K	0.81/41		0.85/42	0.831/41	

Note:

1. N_A = Thermistor "A" temperature in counts, N_D = Differential Temperature in counts and N_R = Reference Temperature in counts.

Table 4.3.4.3.1-4. SBUV/2 Data Format Discrete Mode Voltage and Current Monitors					
Description.					
Voltage Monitors					
Function	Conversion Factor				
HVPS Volts	6 V/N (See Note 1)				
E Cal Ref	0.04 V/N, 6.4 V/160 Counts Nominal, ∀ 0.6 V limits				
15 V Sensors	0.1 V/N, 15V/150 Counts Nominal, ∀3.0 V limit				
-15 V Sensors	$V = 0.6083 N_5 - 0.5059 N_{15}$ (See Note 2)				
24 V Motor	0.198 V/N, 24 V/121 Counts Nominal, ∀ 5 V limits				
5 V LED 0.0333 V/N, 5V/150 Counts Nominal, ∀ 1 V limits					

10 V Logic	0.0667 V/N, 10 V/150 Counts Nominal, ± 1 V limits		
28 V (See Note 1)	9.912 V/N, 28 V/2.82 V Nominal, ± 4 V limits		
25 V	0.198 V/N, 25 V/126 Counts Nominal, ± 2.5 V limits		
15 V Servo	0.1 V/N, 15 V/150 Counts Nominal, \pm 1.5 V limits		
-15 V Servo	$V = 0.6083 \text{ N}_505059 \text{ N}_{15} \text{ (See Note 2)}$		
Thermistor Bias (10V)	0.0667 V/N, 10 V/150 Counts Nominal, ± 1 V limits		
	Current Monitors		
Chop Motor	0.002 A/N		
Diffuser Motor	0.004 A/N		
Cal Lamp Current	5.22 :A/N		
Lamp Motor	0.004 A/N		
Cal Lamp Heater	0.1 A/Current .017 A nominal		
	Miscellaneous		
Chopper Phase Error	0.0985 V/N		
Notes:			

- Analog Telemetry
 N = counts, N₅ counts from 5V LED, N₁₅ counts from 15 V LED

Table 4.3.4.3.1-5. SBUV/2 Description of Command Sequence State Monitors.							
Command (CMD) Sequence State							
		2^2	2^1	2^0			
	1-0	0	0	0			
	1-1	0	0	1			
Discrete Sun Command Sequence	1-2	0	1	0	Discrete Sun Enable ON		
Discrete Sun Command Sequence		All	other		Discrete Sun Enable ON		
		state	es not				
		vali	d				
	2-0	0	0	0			
	2-1	0	0	1			
Sweep Sun Command Sequence Step	2-2	0	1	0			
No.	2-3	0	1	1	Sweep Sun Enable ON		
140.		All other					
		states not valid					
				,			
	3-0	0	0	0			
	3-1	0	0	1			
	3-2	0	1	0			
W/L (See Note 1) Calibration	3-3	0	1	1	W/L Calibration ON		
Command Sequence Step No.	3-4	1	0	0	W/L Canoration Of		
	3-5	1	0	1			
	3-6	1	1	0			
	3-7	1	1	1			

	All other states not valid	
Note:		
1. $W/L = wavelength$		

Table 4.3.4.3.1-6. Data Description of the Electronic Calibration Step Decoding using						
	Timing Monitors and the Retrace Monitor.					
		Timing Monito	ors			
E Cal Step No.	16 sec	8 sec	4 sec	Retrace		
A	1	0	0			
В	1	0	1			
С	1	1	0			
D	1	1	1	ON		
Е	0	0	0	ON		
A	0	0	1			
A	0	1	0			
A	0	1	1			
E Cal OFF OFF						

Timing monitors are sampled at Channel N-1 (I sec prior to readout).

Table 4.3.4.3.1-7. SBUV/2 Data Format Discrete Mode Analog Sub-Multiplexer Data							
Assignment							
Bits 1 through 8 Channel 8		Bits 9 through 16 Channel B					
Channel #	Function	Channel #	Function				
1A	Chop Motor Current	1B	Spare				
2A	Differential Motor Current	2B	Diffuser Plate Temperature (See Note 1)				
3A	HVPS volts	3B	SM Baseplate Temperature (See Note 2)				
4A	Thermistor Bias (10 V Reference)	4B	25 V Power Volts				
5A	Calibration Lamp Temperature (See Note 1)	5B	15 V Servo Volts				
6A	Electronic Calibration Reverence Volts	6B	-15 V Servo Volts				
7A	15 V Sensors Volt	7B	CCR Diode Temperature (See Note 3)				
8A	-15 V Sensors Volts	8B	SM Differential Temperature Y-Axis (See Note 4)				
9A	24 V Motor Volts	9B	SM Differential Temperature Z-Axis (See Note 4)				

10A	5 V LED Volts	10B	Differential Reference Temperature Z-Axis
11A	10 V Logic Volts	11B	Differential Reference Temperature Y-Axis
12A	Calibration Lamp Current	12B	PMT Cathode Temperature (See Note 3)
13A	Spare	13B	Spare
14A	Signal Return	14B	Chopper Phase Error
15A	Signal Return	15B	Spare
16A	Lamp Motor Current	16B	Spare

- 1. 0 to 80 degrees C
- 2. -15 to 45 degrees C
- 3. -5 to 35 degrees C
- 4. \forall 5 degrees C

4.4 DATA COLLECTION AND LOCATION SYSTEM

4.4.1 GENERAL

The Data Collection System (DCS) on the NOAA KLM spacecraft is provided by CNES of France. This system provides a means to collect data and/or locate fixed and mobile buoy and balloon platforms. A complete description of the system is contained in Section 3.6.

If the data platforms and receive site are simultaneously in the view of the satellite, the Data Collection System provides the immediate rebroadcast of data from the platform, received by the satellite via an UHF uplink. These data are included as 32 8-bit words in the TIP minor frame. As such, it is available in both the low data rate DSB and high data rate HRPT services. Since the data rate on the new DCS/2 instrument has been increased from 1200 to 2560 bps, the number of TIP words allocated to DCS has been increased to 32 from the previous spacecraft series. However, interpretation of the telemetry remains unchanged. The DCS data in the direct broadcast services will only permit platform location computations with the proper computer software. More details can be obtained from Service ARGOS, as noted in Appendix E.