

Data Science through Predictive Modeling

• Using data provided by LendingClub.com I developed a model that will allow investors, of this peer-to-peer lending group, to make more informed decisions.

• Data analytics, financial data interpretation and a drive to come to a profitable conclusion.

- LendingClub.com Peer to peer lending company operating in all 50 states.
 - Investors peers lending money to either portfolios provided by LendingClub.com or by choosing individual applicants to invest.

- LendingClub.com
 - Investors can view credit report and 2 letter scores assigned by LendingClub.com
 - Grade values A, B, C, D, F, G

Data and Assumptions

- LendingClub.com loans totaling 421097 with 115 features.
 - Using Amazon Web Services during machine learning
- Features broken into subsects:
 - Applicant metrics
 - Credit reporting data
 - LendingClub.com loan data
- Assumptions:
 - LendingClub.com actual loan data deleting from project

Data and Assumptions

- Assumptions (cont.):
 - Missing values for credit reporting data filled with 0's
 - Variables or features are not dependent

Data Cleaning

- Data set: LendingClub.com customers, and the current status of their loan.
 - Target Loan Status
 - Current loans current
 - Fully-paid loans fully paid
 - Grace period those less than 15 days late on current payment
 - Late (16-30 days)
 - Late (31-120 days)
 - Default loans defaulted still in negotiations with applicant

Data Cleaning

- Target Column:
 - Setting Target to Good and Bad where
 - Good: Fully paid, Current and Grace (0)
 - Bad: Charged Off, Late, Default
 - Roughly 80% of all loans current, and 4% default, charge off or significantly late
 - Fillna(0) entired data set

- Dropping and Why:
 - -application_type, dti_joint, annual_inc_joint
 - Joint status dropped
 - -next_pymnt, last_cr_pulled, int_rate, member_id etc.
 - Info for current loan not useful for this project
- Home_ownership changed 'Any' to 'Mortgage

Data Cleaning

- Features
 - Revol_bal, revol_util
 - Removed % and returned as decimals
 - Label Encode
 - sub-grade, grade, emp_length, verification_status
 - Dummy variables
 - purpose
 - home_ownership

• What does my data look like?

• What is the reason for the loans, and how do if any effect loan status?

• Is it a better investment to chose an applicant who is a home owner vs. renter

• What role, if any, does an applicant's annual income have to play in loan status

- Since my 'Bad' target is a low frequency what can I do to make my models more accurate
 - 'balance' everything must be in balance
 - shuffle/split
 - stratify / cross-validate

Reason for loans

- Purpose column
 - 15 categories containing other
 - Whoa rate of default higher:
 - Renewal energy
 - Home/mortgages
 - Moving
 - small business
 - Wedding/education inconclusive
 - 4 wedding either current or fully paid
 - Education only 1 fully paid not much

loan_status	Charged Off	Current	Default	Fully Paid	In Grace Period	Late (16-30 days)	Late (31-120 days)
purpose							
car	2.7%	78.2%	0.1%	15.8%	1.0%	0.6%	1.6%
credit_card	2.1%	84.3%	0.1%	10.8%	0.7%	0.5%	1.5%
debt_consolidation	3.4%	78.8%	0.1%	13.8%	1.0%	0.6%	2.2%
educational	nan%	nan%	nan%	100.0%	nan%	nan%	nan%
home_improvement	2.8%	78.5%	0.1%	15.2%	1.0%	0.6%	1.8%
house	5.6%	68.8%	0.3%	21.1%	0.8%	0.7%	2.6%
major_purchase	3.8%	78.1%	0.1%	14.4%	0.9%	0.6%	2.1%
medical	4.7%	76.7%	0.2%	14.4%	1.2%	0.5%	2.2%
moving	6.0%	72.9%	0.2%	16.6%	1.3%	0.8%	2.3%
other	3.9%	77.1%	0.2%	15.0%	1.1%	0.6%	2.3%
renewable_energy	4.9%	70.5%	nan%	18.3%	0.4%	0.9%	4.9%
small_business	6.4%	74.3%	0.2%	13.3%	1.2%	0.9%	3.6%
vacation	4.2%	75.4%	0.1%	16.8%	0.8%	0.4%	2.3%
wedding	nan%	75.0%	nan%	25.0%	nan%	nan%	nan%

Employment length

loan_status	Charged Off	Current	Default	Fully Paid	In Grace Period	Late (16-30 days)	Late (31-120 days)
emp_length							
1 year	3.6%	79.2%	0.1%	13.2%	1.0%	0.7%	2.2%
10+ years	2.7%	80.3%	0.1%	13.6%	0.9%	0.5%	1.8%
2 years	3.3%	79.3%	0.1%	13.6%	1.0%	0.6%	2.1%
3 years	3.2%	79.7%	0.2%	13.2%	1.0%	0.5%	2.2%
4 years	3.4%	79.7%	0.1%	13.2%	1.0%	0.7%	1.9%
5 years	3.3%	79.8%	0.1%	13.1%	1.0%	0.7%	2.1%
6 years	3.4%	79.5%	0.2%	13.4%	0.9%	0.6%	2.1%
7 years	3.2%	79.3%	0.1%	13.7%	1.0%	0.7%	1.9%
8 years	3.0%	79.7%	0.2%	13.4%	0.9%	0.6%	2.2%
9 years	3.1%	79.7%	0.1%	13.4%	1.0%	0.7%	1.9%
< 1 year	3.6%	79.1%	0.1%	13.2%	1.1%	0.7%	2.2%
n/a	4.0%	81.2%	0.2%	10.9%	0.8%	0.5%	2.4%

Home Ownership

- Annual Income
 - Didn't find much
- Grade
 - grades D, E, F, G above norm for default and late payments
 - sub-grades From C4 below the rates of default,
 and late payments rise

Grade and Subgrade Scores

loan_status	Charged Off	Current	Default	Fully Paid	In Grace Period	Late (16-30 days)	Late (31-120 days)
grade							
0	495	63032	28	9051	216	133	381
1	1766	98283	86	14898	767	439	1367
2	3729	95764	157	16259	1249	801	2608
3	3425	46797	133	8826	891	588	1994
4	2516	24954	88	4942	583	372	1493
5	1059	6256	34	1529	221	138	580
6	335	1181	13	400	47	44	147

• PCA

- Why I began with Principal Component Analysis
- Was it informative
- Can I ascertain feature significance

K – MEANS

– Look at those boy's cluster!

- LOGISTIC REGRESSION LASSO PENALTY
 - Feature importance?
 - cut the following features 'last_fico_range_low, collection_12_mths_ex_med, debt_consolidation, num_actv_bc_tl
 - False positives and how I feel about them for my models.
 - Lasso Least Absolute Shrinkage which involves penalizing the absolute size of the regression coefficients

Train/Test Metrics:						
Accuracy:	0.9084					
Precision:	0.3771					
Recall: 0.8						
False Positive Rate:	0.0872					
Area Under ROC Curve:	0.9407					
Area Under P-R Curve:	0.7413					

	Predicted Good	Predicted Bad
Good	72319	6910
Bad	806	4184

		precision	recall	f1-score	support
	0 1	0.91 0.84	0.99 0.38	0.95 0.52	73125 11094
avg /	' total	0.90	0.91	0.89	84219

- Grade and PCA models
 - Very low scores
 - The PCA produces a very high false positive rate
 - It appears the when combining the 'grade' and 'sub-grade' models to predict is not a good idea.

- Decision Tree
 - cross_val score of 0.945
 - Uncorrelated features? Yes and No

- BaggingTree/RandomForestClassifier
 - WTF!!!
 - using RandomForestClassifier adds boost and by adding 'randomness' to construction!

- What features were cut and why?
 - 'gini' less than 0.02

- Gridsearch Logistic Regression
 - Best parameters
 - cross_val score of 0.909

Train/Test Met	rics:	
Accuracy:		0.9081
Precision:		0.3766
Recall:		0.8401
False Positive	Rate:	0.0876
Area Under ROC	Curve:	0.9408
Area Under P-R	Curve:	0.7409

	Predicted Good	Predicted Bad
Good	72291	6938
Bad	798	4192

	precision	recall	f1-score	support
0	0.91	0.99	0.95	73089
1	0.84	0.38	0.52	11130
avg / total	0.90	0.91	0.89	84219

Model!

	Accuracy	Area Under P-R Curve	Area Under Roc Curve	False Positve Rate	Precision	Recall	Cross-Val Score
Decision Tree Model	0.944917	0.549072	0.753088	0.029295	0.535149	0.535471	.945
Bagging Tree Modeld	0.951685	0.700043	0.917650	0.000114	0.990415	0.186373	.956
Lasso Model	0.908382	0.741254	0.940700	0.087216	0.377141	0.838477	.909
PCA Model	0.476377	0.072388	0.549929	0.531404	0.067242	0.597792	.479
LendingClub.com Model	0.653392	0.125441	0.705493	0.345846	0.104572	0.641283	.653
GridsearchLog	0.908144	0.740940	0.940827	0.087569	0.376640	0.840080	.909

- My best model
- Recall
- What does it mean to be True and predicted true
- Precision
- Predictive power
- False Positives
- How often does my model give us incorrect positive results? Good or bad?

