Системы и технологии интеллектуальной обработки данных

Лектор: Сухорукова Ирина Геннадьевна

ст. преподаватель кафедры программной инженерии

Контакты: ауд.408 к.1

Лекции – иногда тестирование, иногда контроль посещаемости

Лабораторные занятия — Python, Jupyter Notebook, (PyCharm)

Экзамен – автомат / доп баллы – посещение лекций, доклады, итоги тестов

Интеллектуальный анализ данных

В узком смысле это попытка адекватного русского перевода термина **Data Mining**, который ввёл в обиход Григорий Пятецкий-Шапиро в 1992 году.

Английское словосочетание «data mining» не имеет устоявшегося перевода на русский язык, в русском языке как правило используется термин интеллектуальный анализ данных. Более полным и точным является словосочетание «обнаружение знаний в базах данных» (knowledge discovery in databases, KDD).

В настоящее время **data mining** является частью большего понятия — **Big data**, которое помимо обработки данных включает в себя их сбор и хранение.

Data mining — это автоматизированный поиск данных, основанный на анализе огромных массивов информации.

- В широком смысле это современная концепция анализа данных, предполагающая, что:
- ✓ данные могут быть неточными, неполными (содержать пропуски), противоречивыми, разнородными, косвенными, и при этом иметь гигантские объёмы; поэтому понимание данных в конкретных приложениях требует значительных интеллектуальных усилий;
- ✓ сами алгоритмы анализа данных могут обладать «элементами интеллекта», в частности, способностью обучаться по прецедентам, то есть делать общие выводы на основе частных наблюдений; разработка таких алгоритмов также требует значительных интеллектуальных усилий;
- ✓ процессы переработки сырых данных в информацию, а информации в знания уже не могут быть выполнены по старинке вручную, и требуют нетривиальной автоматизации.

Data Mining — это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных, доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности.

Знания должны быть новые, ранее неизвестные. Затраченные усилия на открытие знаний, которые уже известны пользователю, не окупаются. Поэтому ценность представляют именно новые, ранее неизвестные знания.

Знания должны быть нетривиальны. Результаты анализа должны отражать неочевидные, неожиданные закономерности в данных, составляющие так называемые скрытые знания. Результаты, которые могли бы быть получены более простыми способами (например, визуальным просмотром), не оправдывают привлечение мощных методов Data Mining.

Знания должны быть практически полезны. Найденные знания должны быть применимы, в том числе и на новых данных, с достаточно высокой степенью достоверности. Полезность заключается в том, чтобы эти знания могли принести определенную выгоду при их применении.

Знания должны быть доступны для понимания человеку. Найденные закономерности должны быть логически объяснимы, в противном случае существует вероятность, что они являются случайными. Кроме того, обнаруженные знания должны быть представлены в понятном для человека виде.

Области практического применения Data Mining

Сейчас технология Data Mining используется практически во всех сферах деятельности человека, где накоплены ретроспективные данные.

<u>БАНКОВСКОЕ ДЕЛО</u>: анализ кредитоспособности клиента, привлечение новых клиентов, мошенничество с карточками, сегментация.

<u>ТЕЛЕКОММУНИКАЦИИ</u>: удержание клиента, выявления определенных групп клиентов, и разработка наборов услуг, наиболее привлекательных именно для них.

<u>МАРКЕТИНГ</u>: В сфере маркетинга Data Mining находит очень широкое применение. Основные вопросы маркетинга "Что продается?", "Как продается?", "Кто является потребителем?"

<u>ИНТЕРНЕТ-ТЕХНОЛОГИИ</u>: формирование рекомендательных систем, планирование маркетинговой политики в соответствии с обнаруженными интересами и потребностями клиентов.

<u>ТОРГОВЛЯ</u>: анализ рыночных корзин с целью регулирования предложениями, выделение групп потребителей со схожими стереотипами поведения, т.е. сегментирование рынка.

МЕДИЦИНА ...

ФАРМАЦЕВТИКА...

МОЛЕКУЛЯРНАЯ ГЕНЕТИКА и ГЕННАЯ ИНЖЕНЕРИЯ...

....

Data Mining носит мультидисциплинарный характер, поскольку включает в себя элементы численных методов, математической статистики и теории вероятностей, теории информации и математической логики, искусственного интеллекта и машинного обучения.

Data mining основывается на 3-х понятиях:

- ✓ **Математическая статистика** является основой большинства технологий, используемых для data mining, например, кластерный анализ, регрессионный анализ, дискриминирующий анализ и пр.;
- ✓ **Искусственный интеллект** воспроизведение нейронной сети мышления человека в цифровом виде;
- ✓ **Машинное обучение** совокупность статистики и искусственного интеллекта, способствующая пониманию компьютерами данных, которые они обрабатывают для выбора наиболее подходящего метода или методов анализа.

Ваши доклады

Структура доклада

- 1. Датасет отличный от примера из прошлого курса (Kaggle, . . .)
- 2. Подготовка данных (preprocessing)
- 3. Применение метода ML (train)
- 4. Оценка метода с помощью метрик качества
- 5. Выводы

- ✓ Народное голосование
- ✓ Поощрения

Описательная статистика в анализе данных

Стати́стика — отрасль знаний, **наука**, в которой излагаются **общие вопросы сбора, измерения, анализа** массовых статистических (количественных или качественных) данных и их **сравнение**; **изучение количественной стороны** массовых явлений в числовой форме.

Слово «статистика» происходит от латинского **status** — состояние и положение дел.

В науку термин «статистика» ввёл немецкий учёный Готфрид Ахенвалль в 1746 году, предложив заменить название курса «Государствоведение», преподававшегося в университетах Германии, на «Статистику», положив тем самым начало развитию статистики как науки и учебной дисциплины.

Несмотря на это, статистический учёт вёлся намного раньше: проводились переписи населения в Древнем Китае, осуществлялось сравнение военного потенциала государств, вёлся учёт имущества граждан в Древнем Риме и тому подобное.

Разница между статистикой и наукой о данных

Блог компании Издательский дом «Питер», Data Mining *, Алгоритмы *, Big Data *, R *

Мнение: Статистикам весь тренд, связанный с наукой о данных, кажется слегка высокомерным. . . эта сфера деятельности весьма пересекается с той работой, которой статистики занимаются уже не одно десятилетие.

"Думаю, data-scientist – распиаренный синоним для «специалист по статистике»" – заявил *Heйm Сильвер** в 2013 году на лекции в Joint Statistical Meeting.

Брэд Шлумич специалист по data science в <u>Twitch</u>: "Статистика – важнейшая составляющая науки о данных. У нас в Twitch команда data science обладает тремя компетенциями: статистика, программирование и понимание продукта. Мы никогда не взяли бы на работу человека, слабо ориентирующегося в статистике."

"Некоторые считают, что наука о данных — это всего лишь прикладная статистика, но мы — определенно не просто статистики. . . Гораздо эффективнее работать, если все одинаково понимают смысл продукта, решают, какие параметры важнее, понимают с точки зрения программиста, как реализовать трекинг, и с точки зрения статистика — как делать анализ. Не понимая, как люди будут пользоваться продуктом, и каковы цели компании, можно исказить весь анализ данных. Задача data scientist'а — держать в голове сразу всю эту информацию и знать, к каким данным обратиться, чтобы ответить на любой нечетко определенный вопрос.

* Нейт Сильвер (Nate Silver) - тот самый человек, который верно спрогнозировал итоги голосования на президентских выборах 2008 года в 49 из 50 штатов США. В 2012 году у него получилось уже 50 из 50.

Базовые знания статистики крайне полезны в повседневной жизни.

Например, в 2005 году британские СМИ писали о том, что средний уровень дохода населения снизился на 0,2 % по сравнению с предыдущим годом. Некоторые политики даже использовали этот факт, критикуя действующее правительство.

Однако, важно понимать, что среднее арифметическое — хороший показатель, когда наш признак имеет симметричное распределение (богатых столько же, сколько бедных). Реальное же распределение доходов имеет скорее следующий вид:

Распределение имеет явно выраженную асимметрию: очень состоятельных людей заметно меньше, чем представителей среднего класса. Это приводит к тому, что в данном случае банкротство одного из миллионеров может значительно повлиять на этот показатель.

Гораздо информативнее использовать значение медианы для описания таких данных. И, как ни удивительно, медиана дохода в 2005 году в Великобритании, в отличие от среднего значения, продолжила свой рост.

Основы статистики: просто о сложных формулах / Хабр (habr.com)

Крылатая фраза: Существует три вида лжи: ложь, наглая ложь и статистика

Таблица 2.4. Процент выпадений каждой цифры

Цифра	Количество выпадений	Процент выпадений
0	485	10,0% = 485/4 839
1	468	9,7% = 486/4 839
2	513	10,6% = 513/4 839
3	491	10,1% = 491/4 839
4	484	10,0% = 484/4 839
5	480	9,9% = 480/4 839
6	487	10,0% = 487/4 839
7	482	10,0% = 482/4 839
8	475	9,8% = 475/4 839
9	474	9,8% = 474/4 839

Рис. 2.2. Столбиковая диаграмма, показывающая процентное отношение количества выпадений каждой цифры

Генеральная совокупность включает 🔀 - 1/3 и 🙎 - 2/3

Генеральная совокупность

Суммарная численность объектов наблюдения, обладающих определенным набором признаков, ограниченная в пространстве и времени.

Выборка (Выборочная совокупность)

Часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение о всей генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на всю генеральную совокупность, выборка должна обладать свойством репрезентативности.

Репрезентативность выборки

Свойство выборки корректно отражать генеральную совокупность.

Примеры:

- ✓ Выборка, целиком состоящая из горожан, владеющих автомобилем, не репрезентирует все население города.
- ✓ Выборка только из женщин не репрезентирует все население.

Набор данных и их атрибутов

По горизонтали таблицы располагаются *атрибуты* объекта или его признаки. По вертикали таблицы - объекты.

Объект описывается как набор атрибутов.

Объект также известен как *запись*, случай, пример, строка таблицы и т.д.

Атрибут - свойство, характеризующее *объект*.

Например: цвет глаз, возраст.

Атрибут также называют переменной, полем таблицы, характеристикой.

Переменная (variable) - свойство или характеристика, общая для всех изучаемых *объектов*, проявление которой может изменяться от *объекта* к *объекту*.

Значение (value) переменной является проявлением признака.

		Атрибуты			
		Код клиента	Возраст	Семейное положение	Доход
		1	18	Single	125
		2	22	Married	100
Объект		3	30	Single	70
		4	32	Married	120
	сты	5	24	Divorced	95
		6	25	Married	60
		7	32	Divorced	220
		8	19	Single	85

	Атрибуты			
	Код клиента	Возраст	Семейное положение	Доход
	1	18	Single	125
Объекты	2	22	Married	100
	3	30	Single	70
	4	32	Married	120
	5	24	Divorced	95
	6	25	Married	60
	7	32	Divorced	220
	8	19	Single	85

Количественные переменные:

- <u>Дискретные</u> данные являются значениями признака, общее число которых конечно либо бесконечно, но может быть подсчитано при помощи натуральных чисел от одного до бесконечности.
 - Пример дискретных данных: 10, 15, 25 мин, количество детей . . .
- <u>Непрерывные</u> данные данные, значения которых могут принимать какое угодно значение в некотором интервале. Измерение непрерывных данных предполагает большую точность. *Пример непрерывных данных: температура, высота, вес, длина и т.д.*

Качественные (номинативные) переменные

Такие переменные используются для разделения наших испытуемых или наблюдений на группы. Например, мы можем сказать, что все участники эксперимента женского пола будут обозначены цифрой 1, а все участники мужского пола - цифрой 2 соответственно.

Таким образом, в случае номинативных переменных за цифрами не стоит никакого математического смысла. В данном случае цифры используются как маркеры различных смысловых групп, в отличие от количественных переменных.

Ранговые переменные

Представьте, что у нас есть информация о марафонском забеге: кто прибежал в каком порядке. Мы можем сказать, что испытуемый с рангом 1 быстрее, выше, сильнее испытуемого с рангом 5. Но вот насколько или во сколько он опережает этого испытуемого мы сказать не можем. Единственной возможной математической операцией является сравнение - кто быстрее, а кто медленнее.

= kaggle

+ Create

Home

◆ Competitions

□ Datasets

<> Code

Discussions

☆ Courses

More

Your Work

▼ RECENTLY VIEWED

Data Science Job S...

Best Universities in t...

View Active Events

Q Search

Data Science Job Salaries

Data Code (173) Discussion (10) Metadata

844

New Notebook

Описательная статистика — это описание наборов данных.

Описательная статистика использует два основных подхода:

- ✓ **Количественный подход**, который описывает общие численные характеристики данных.
- ✓ **Визуальный подход**, который иллюстрирует данные с помощью диаграмм, графиков, гистограмм и прочих графических образов.

Метрики описательной статистики:

- ✓ Метрики центрального положения, которые говорят вам о центрах концентрации данных, таких как среднее, медиана и мода.
- ✓ Метрики оценки вариативности данных, которые говорят о разбросе значений, такие как дисперсия и стандартное отклонение.

Метрики центрального положения

Среднее (mean)

Сумма всех значений, деленная на количество значений или среднее арифметическое.

Медиана (median)

Середина в отсортированных данных.

Мода (mode)

3 4 3 8 4 5 3 мода=3

Значение, которое встречается наиболее часто.

Мода часто употребляется для текстовых данных. Например: цвета автомобилей — белый, чёрный, синий металлик, белый, синий металлик, белый. Какая мода?

Выброс (outlier)

Значение данных, которое сильно отличается от большинства данных.

Метрики оценки вариативности

Размах (range) Разница между самым большим и самым малым значениями в наборе данных.

Отклонения (deviations) Разница между наблюдаемыми значениями и оценкой центрального положения. Еще называют: *ошибки, остатки*.

Дисперсия (variance) Сумма квадратических отклонений от среднего, деленная на n – 1, где n — число значений данных. Еще называют : среднеквадратическое отклонение, среднеквадратическая ошибка.

Стандартное отклонение (standard deviation) Квадратный корень из дисперсии.

Процентиль — например, **75**-й процентиль — это число, ниже которого находится **75**% всех наблюдений.

Нормальное распределение

box plot
Ящик с усами
Диаграмма
размаха

IQR - размах

Q1 – 25 перцентиль (1й квартиль)

Q3 – 75 перцентиль (3й квартиль)

Сумма лайков по категориям

Пример

```
In [1]: import pandas as pd
In [2]: titanic = pd.read_csv("data/titanic.csv")
```

Как рассчитать сводную статистику?

Агрегированная статистика

Какой средний возраст пассажиров Титаника?

```
In [6]: titanic["Age"].mean()

Out[6]: 29.69911764705882

Каков средний возраст и стоимость билета пассажиров «Титаника»?

In [7]: titanic[["Age", "Fare"]].median()

Out[7]: Age 28.0000
Fare 14.4542
dtype: float64
```

Функция pandas.DataFrame.describe рассчитывает параметры описательной статистики

```
In [8]:
          titanic[["Age", "Fare"]].describe()
Out[8]:
                     Age
                                Fare
         count 714.000000 891.000000
         mean 29.699118
                         32.204208
                14.526497
                           49.693429
                 0.420000
                            0.000000
           min
                20.125000
                            7.910400
          25%
                28.000000
                           14.454200
          50%
          75%
                 38.000000
                           31.000000
          max 80.000000 512.329200
```

Вместо предопределенной статистики можно определить конкретные комбинации агрегированной статистики для заданных столбцов с помощью **DataFrame.agg()метода**:

Out[10]:		Age	Fare
	min	0.42	0.000000
	max	80.00	512.329200
	median	28.00	14.454200

Процентиль — мера, в которой процентное значение общих значений равно этой мере или меньше ее.

```
In [3]:
         titanic["Age"].describe(percentiles=[0.05, 0.25, 0.75, 0.95])
                  714.000000
        count
Out[3]:
                  29.699118
         mean
                  14.526497
        std
        min
                   0.420000
        5%
                   4.000000
        25%
                   20.125000
        50%
                   28.000000
        75%
                   38.000000
        95%
                   56.000000
                   80.000000
        max
        Name: Age, dtype: float64
In [4]:
         import seaborn as sns
         sns.histplot(data=titanic["Age"],bins=10)
        <AxesSubplot:xlabel='Age', ylabel='Count'>
Out[4]:
          175
           150
           125
         Count
100
            75
            50
            25
                          20
                                30
                                                60
                     10
                                     40
                                           50
                                                      70
                0
```

Группировки

Каков средний возраст пассажиров Титаника мужчинами и женщинами?

Если не указывать столбцы, то mean-метод применяется к каждому столбцу, содержащему числовые данные:

Группировки

Какова средняя цена билета для каждой комбинации пола и класса салона?

Расчет количества записей по категориям

Meтод value_counts() подсчитывает количество записей для каждой категории в колонке.

Какое количество пассажиров в салоне каждого класса?

Гистограмма

```
In [35]: s = pd.Series([1,3,5,11,10,3,6,5,6,6,7,8, 4,6,15,18,6,4,11,10])
```

Seaborn — это библиотека для создания статистических графиков на Python. Она основывается на matplotlib и тесно взаимодействует со структурами данных pandas.

```
import seaborn as sns
sns.histplot(data=s,bins=10)
```

Out[47]: <AxesSubplot:ylabel='Count'>

In [36]: s.describe() count 20.000000 Out[36]: 7.250000 mean std 4.191156 min 1.000000 4.750000 25% 50% 6.000000 75% 18,000000 dtype: float64 In [34]: s.median() Out[34]: In [48] sns.boxplot(x=s) <AxesSubplot:> Out[48]: 2.5 10.0 12.5 15.0 5.0 17.5

График box-plot

Центром ящика является медиана наших данных или второй квартиль, верхняя граница = 3-й квартиль, а нижняя граница = 1-й квартиль.

Почему некоторые точки на графике отображены отдельно?

Если мы посчитаем разность между 3-м и 1-м квартилем - это межквартильный размах (мера изменчивости).

Чем выше межквартильный размах, тем больше вариативность нашего признака.

Отложим мысленно 1,5 межквартильного размаха вверх и вниз от 1-го и 3-го квартилей. Те значения признака, которые последними принадлежат этому промежутку и будут границами усов.

Точки, которые превосходят полтора межквартильного размаха - наносятся на график отдельно.