

Formando líderes para la construcción de un nuevo país en paz

Ingeniería de Sistemas Estructuras Computacionales Discretas

Luis Armando Portilla Granados Facilitador

Función

Una Función es una relación a la cual se añade la condición de que a cada valor del **Dominio** le corresponde uno y sólo un valor del **Codominio**.

- En programación una función es un conjunto de líneas de código que realizan una tarea específica y puede retornar **un valor**.
- Todas las funciones son relaciones, pero no todas las relaciones son funciones

Función

Una función $f: A \rightarrow B$ es una relación de A en B (es decir, un subconjunto de $A \times B$) tal que cada $a \in A$ pertenece a un par ordenado único (a, b) en f.

Dos funciones $f: A \to B \ y \ g: A \to B$ se definen como *iguales*, lo que se escribe f = g, si f(a) = g(a) para toda $a \in A$;

Ejemplo:

Sea $X = \{1, 2, 3, 4\}$. Determine si cada relación sobre X es una función de X en X.

a)
$$f = \{(2, 3), (1, 4), (2, 1), (3, 2), (4, 4)\}$$

b)
$$g = \{(3, 1), (4, 2), (1, 1)\}$$

c)
$$h = \{(2, 1), (3, 4), (1, 4), (2, 1), (4, 4)\}$$

Ejercicio 1:

Considere las relaciones siguientes sobre el conjunto $A = \{1, 2, 3\}$:

- a) $f = \{(1, 3), (2, 3), (3, 1)\}, g = \{(1, 2), (3, 1)\}, h = \{(1, 3), (2, 1), (1, 2), (3, 1)\}, cuáles son o no funciones, explique la respuesta.$
- b) Escriba un método que reciba la relación y defina si es o no una función.

R1	0	1	2	3
0	0,0	0,1	0,2	0,3
1	1,0	1,1	1,2	1,3
2	2,0	2,1	2,2	2,3
3	3,0	3,1	3,2	3,3

R1	1	2	3	4
1				
2				
3				
4				

Como se recorre:

- 1. Izq-Der, Arriba-Abajo
- 2. Der-Izq, Abajo Arriba
- 3. Arriba-Abajo, Izq-Der
- 4. Etc...

Qué se recorre:

- 1. Toda la matriz
- 2. Triangular superior
- 3. Triangular inferior

Ejercicio 2:

Considere el conjunto $A = \{1, 2, 3, 4, 5\}$ y la función $f: A \rightarrow A$ definidos en la figura. Encuentre:

- a) La imagen de cada elemento de A ó f(a), $a \in A$
- b) La imagen (f) ó Im(f)

Ejercicio 3:

Dada la función $f(x) = x^2$, encuentre:

- a) El valor de la función para 5, -4 y 0.
- b) f(y+2)
- c) f(x+h)
- d) [[f(x+h)-f(x)]/h]

i Seguimos avanzando!

Composición de funciones (Encadenamiento de dos funciones)

Composición de funciones (Encadenamiento de dos funciones)

Considere las funciones $f: A \to B$ y $g: B \to C$; donde el codominio de f es el dominio de g. Entonces es posible definir una nueva función de A en C, la cual se denomina composición de f y g (ó f compuesta con g) y se denota $g \circ f$:

$$(g \circ f)(a) \equiv g(f(a))$$

$$(gof)(x) = g[f(x)]$$

Composición de funciones (Encadenamiento de dos funciones)

Considere las funciones $f: A \to B$ y $g: B \to C$; donde el codominio de f es el dominio de g. Entonces es posible definir una nueva función de A en C, la cual se denomina composición de f y g (ó f compuesta con g) y se denota $g \circ f$:

$$(g \circ f)(a) \equiv g(f(a))$$

Ejemplo:

Sea $A = \{a, b, c\}, B = \{x, y, z\}, C = \{r, s, t\}.$ Sean $f : A \rightarrow B \ y \ g : B \rightarrow C$ definidas por: $f = \{(a, y)(b, x), (c, y)\} \ y \ g = \{(x, s), (y, t), (z, r)\}.$

Encuentre: a) la composición de funciones $g \circ f : A \rightarrow C$; y b) Im(f), Im(g), Im(g $\circ f$).

a) Use la definición de composición de funciones para calcular:

$$(g \circ f)(a) = g(f(a)) = g(y) = t$$

 $(g \circ f)(b) = g(f(b)) = g(x) = s$
 $(g \circ f)(c) = g(f(c)) = g(y) = t$
Es decir $g \circ f = \{(a, t), (b, s), (c, t)\}.$

b) Obtenemos los puntos imagen (o segundas coordenadas):

$$Im(f) = \{x, y\}, \underline{Im(g) = \{r, s, t\}}, Im(g \circ f) = \{s, t\}$$

Composición de funciones

Ejercicio 4.

Sea $V = \{1, 2, 3, 4\}$. Para las siguientes funciones $f: V \rightarrow V$ y $g: V \rightarrow V$; encuentre:

- a) $f \circ g$;
- b) $g \circ f$;
- c) $f \circ f$:

Para $f = \{(1, 3), (2, 1), (3, 4), (4, 3)\}$ y $g = \{(1, 2), (2, 3), (3, 1), (4, 1)\}$

Composición de funciones (Encadenamiento de dos funciones)

Ejercicio 5.

Sean las funciones $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$ definidas en la figura, encuentre la composición de funciones $h \circ g \circ f$.

Tipos de Funciones

Funciones Uno a Uno o Inyectivas

Se dice que una función $f: A \rightarrow B$ es uno a uno (que se escribe 1-1) si elementos diferentes en el dominio A tienen imágenes distintas.

Funciones Sobre o Sobreyectivas o Suprayectivas

Una función $f: A \rightarrow B$ se dice que es sobre, si cada elemento de B es la imagen de algún elemento de A.

Funciones Invertibles o Biyectivas

Una función $f: A \to B$ es *invertible* si su relación inversa f^{-1} es una función de B a A. En general, la relación inversa f^{-1} puede no ser una función, o, **Una función f: A \to B es invertible si y sólo si f es uno a uno y sobre.**

Tipos de Funciones

Ejemplo: Considere las funciones $f1: A \rightarrow B$, $f2: B \rightarrow C$, $f3: C \rightarrow D$ y $f4: D \rightarrow E$ definidas por el diagrama. Identifique las funciones 1-1, sobre e invertibles.

Tipos de Funciones

Ejemplo: Considere las funciones $f1: A \rightarrow B$, $f2: B \rightarrow C$, $f3: C \rightarrow D$ y $f4: D \rightarrow E$ definidas por el diagrama. Identifique las funciones 1-1, sobre e invertibles.

Uno a uno: f1, f2

Sobre: f2, f3

Invertibles: f2

Tipos de Funciones

Ejercicio 6.

• Sean las funciones $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$ definidas por la figura. Determine si cada función es: a) sobre, b) uno a uno, c) invertible.

Tipos de Funciones

Ejercicio 7.

Sean las funciones f, g, h de V = {1, 2, 3, 4} en V definidas por:

f(n) = 5 - n, g(n) = 3, $h = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$. Defina cuáles funciones son:

a) uno a uno; b) sobre; c) ambas; d) ni uno a uno ni sobre.

Funciones Matemáticas

Función Valor Entero (/)

Sea x cualquier número real. El valor entero de x, escrito INT(x), convierte a x en un entero al eliminar (truncar) la parte fraccionaria del número.

Ejemplos:

$$INT(3.14) = 3$$
, $INT(\sqrt{5}) = 2$, $INT(-8.5) = -8$, $INT(7) = 7$

Función Valor Absoluto (Math.abs(x)**)**

El *valor absoluto* del número real x, escrito ABS(x) o $\mid x \mid$, se define como el mayor de x o $\neg x$.

Ejemplos:

$$|-15| = 15$$
, $|7| = 7$, $|-3.33| = 3.33$, $|4.44| = 4.44$, $|-0.075| = 0.075$

Funciones Matemáticas

Función Residuo (%)

Sean *k* cualquier entero y *M* un entero positivo. Entonces *k* (mód *M*) (que se lee: *k* módulo *M*) denota el residuo entero cuando *M* divide a *k*.

Ejemplos:

Para obtener el residuo r se divide k entre M. Así,

$$25 \pmod{7} = 4$$
, $25 \pmod{5} = 0$, $35 \pmod{11} = 2$, $3 \pmod{8} = 3$

Ejercicio 8.

Encuentre: a) 45 (mód 7); b) 66 (mód 5); c) 35 (mód 11)

Funciones Matemáticas

Función Exponencial (Funciones Math.pow (x,n); Math.sqrt (x); Math.cbrt (x))

Se define para a, la base y m, el exponente, donde m es un entero positivo,

$$a^m = a \cdot a \cdot a \cdot a (m \text{ veces})$$
, que cumple que $a^0 = 1$, $a^1 = a$, $a^{-m} = 1/a^m$

Los exponentes se extienden para incluir todos los números racionales al definir, para cualquier número racional m/n, $a^{m/n} = {}^{n}Va^{m} = ({}^{n}Va)^{m}$

Ejemplos:

$$2^4 = , 2^{-4} = , 125^{2/3} =$$

Ejercicio 9.

Miscelánea de operaciones con aplicaciones de potencias y radicales en NetBeans.

Funciones Matemáticas

Función Exponencial (Funciones Math.pow (x,n); Math.sqrt (x); Math.cbrt (x))

Se define para a, la base y m, el exponente, donde m es un entero positivo,

$$a^{m} = a \cdot a \cdot a \cdot a (m \text{ veces}), que cumple que $a^{0} = 1, a^{1} = a, a^{-m} = 1/a^{m}$$$

Los exponentes se extienden para incluir todos los números racionales al definir, para cualquier número racional m/n, $a^{m/n} = {}^{n}Va^{m} = ({}^{n}Va)^{m}$

Ejemplos:

$$2^4 = 16$$
, $2^{-4} = 1/2^4 = 1/16$, $125^{2/3} = 5^2 = 25$

Ejercicio 9.

Miscelánea de operaciones con aplicaciones de potencias y radicales en NetBeans.

Funciones Matemáticas

Función Logarítmica Math.log10(numero);

Sea b un número positivo. El logaritmo de cualquier número positivo x con base b se escribe, $\log_b x - y$ representa el exponente al que debe elevarse b para obtener x.

Es decir, $y = \log_b x$ y $b^y = x$, son declaraciones equivalentes

Ejemplos:

 $\log_2 8 = 3$ puesto que $2^3 = 8$; $\log_{10} 100 = 2$ puesto que $10^2 = 100$

 $\log_2 64 = 6$ puesto que $2^6 = 64$; $\log_{10} 0.001 = -3$ puesto que $10^{-3} = 0.001$

Ejercicio 10.

- Evalúe: *a*) log₂ 8; *b*) log₂ 64; *c*) log₁₀ 100; *d*) log₁₀ 0.001.
- Evalúe: α) log₂ 16; b) log₃ 27; c) log₁₀ 0.01.

Funciones Matemáticas

Sucesiones

Una sucesión es una función del conjunto $\mathbf{N} = \{1, 2, 3, \ldots\}$ de enteros positivos en un conjunto A. Para indicar la imagen del entero n se usa la notación a_n . Así, una sucesión suele denotarse por $a1, a2, a3, \ldots$ o $\{a_n: n \in \mathbf{N}\}$ o simplemente $\{a_n\}$

Algunas veces el dominio de una sucesión es el conjunto $\{0, 1, 2, ...\}$ de enteros no negativos, en lugar de **N**. En este caso n empieza en 0 y no en 1.

Una sucesión finita sobre un conjunto A es una función de $\{1, 2, \ldots, m\}$ en A, y se denota con a_1, a_2, \ldots, a_m . Algunas veces este tipo de sucesión finita se denomina lista o m-adas.

Ejemplos: Observe que la primera sucesión empieza en n = 1 y que la segunda lo hace en n = 0.

- 1, 1/2, 1/3, 1/4, . . . que puede definirse mediante $a_n = 1/n$;
- 1, 1/2, 1/4, 1/8, . . . que puede definirse mediante $b_n = 2^{-n}$

Ejercicio 9:

• Defina formalmente la sucesión 1, -1, 1, -1, . . . , desde n = 0 y n = 1.

Funciones Matemáticas

Sucesiones

Una *sucesión* es una función del conjunto $\mathbf{N} = \{1, 2, 3, ...\}$ de enteros positivos en un conjunto A. Para indicar la imagen del entero n se usa la notación a_n . Así, una sucesión suele denotarse por a1, a2, a3, ... o $\{a_n: n \in \mathbf{N}\}$ o simplemente $\{a_n\}$

Algunas veces el dominio de una sucesión es el conjunto $\{0, 1, 2, ...\}$ de enteros no negativos, en lugar de **N**. En este caso n empieza en 0 y no en 1.

Una sucesión finita sobre un conjunto A es una función de $\{1, 2, \ldots, m\}$ en A, y se denota con a_1, a_2, \ldots, a_m . Algunas veces este tipo de sucesión finita se denomina lista o m-adas.

Ejemplos: Observe que la primera sucesión empieza en n = 1 y que la segunda lo hace en n = 0.

- 1, 1/2, 1/3, 1/4, . . . que puede definirse mediante $a_n = 1/n$;
- 1, 1/2, 1/4, 1/8, . . . que puede definirse mediante $b_n = 2^{-n}$

Ejercicio 9:

• Defina formalmente la sucesión 1, -1, 1, -1, . . . , desde n = 1 y n = 0.

Para n desde 1 : $a_n = (-1)^{n+1}$, y Para n desde 0: $b_n = (-1)^n$

Funciones Matemáticas

Sumatoria

Aquí se presenta el símbolo de sumatoria (la letra griega sigma). Considere una sucesión a1, a2, a3, Entonces se define lo siguiente:

$$\sum_{j=1}^{n} a_j = a_1 + a_2 + \cdots + a_n$$
 y
$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \cdots + a_n$$

La letra *j* en las expresiones anteriores se denomina *índice mudo* o *variable ficticia*. Otras letras que suelen usarse como variables ficticias son *i*, *k*, *s* y *t*.

Ejemplos:

5

$$\sum_{j=2}^{5} j^2 = 2^2 + 3^2 + 4^2 + 5^2 = 4 + 9 + 16 + 25 = 54$$
 y $\sum_{k=1}^{5} k = 1 + 2 + 3 + 4 = 10$
 $j=2$

Ejercicio 10.

Funciones Recursivas

Se dice que una función está definida en forma recursiva si la definición de la función se refiere a sí misma.

Función Factorial

- a) Si n = 0, entonces n! = 1.
- b) Si n > 0, entonces $n! = n \cdot (n 1)!$

Ejercicio 11.

- Sea la función f(n) en A={2,3,5,6}, simplifique y genere los pares ordenados de f para:
 - a) n!/(n-1)!
 - b) (n+2)!/n!.
- Encuentre: a) 3! + 4!; b) 3! (3! + 2!); c) 6!/5!; d) 30!/28!

Funciones Recursivas

Sucesión de Fibonacci

La sucesión de Fibonacci (que se denota con F_0 , F_1 , F_2 , . . .) es:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . Es decir, $F_0 = 0$ y $F_1 = 1$ y cada término sucesivo es la suma de los dos términos precedentes.

- a) Si n = 0, o n = 1, entonces $F_n = n$.
- b) Si n > 0, entonces $F_{n-2} + F_{n-1}$.

Formando líderes para la construcción de un nuevo país en paz