Data Visualization

Graphical Perception

Yun Jang jangy@sejong.edu

Disclaimer

- These slides can only be used as study material for the Data Visualization class at Sejong University
- The slides cannot be distributed or used for another purpose

Graphical Perception

The ability of viewers to interpret visual (graphical) encodings of information and thereby decode information in graphs.

Which best encodes quantities?

- Position
- Length
- Area
- Volume
- Value (Brightness)
- Color Hue
- Orientation (Angle)
- Shape

Mackinlay's ranking of encodings

QUANTITATIVE	ORDINAL	NOMINAL
Position	Position	Position
Length	Density (Val)	Color Hue
Angle	Color Sat	Texture
Slope	Color Hue	Connection
Area (Size)	Texture	Containment
Volume	Connection	Density (Val)
Density (Val)	Containment	Color Sat
Color Sat	Length	Shape
Color Hue	Angle	Length
Texture	Slope	Angle
Connection	Area (Size)	Slope
Containment	Volume	Area
Shape	Shape	Volume

Topics

- Signal Detection
- Magnitude Estimation
- Pre-Attentive Visual Processing
- Using Multiple Visual Encodings
- Gestalt Grouping
- Change Blindness

Detection

Which is brighter?

Which is brighter?

Which is brighter?

Which is brighter?

Just Noticeable Difference

- JND (Weber's Law) $\Delta S = k \frac{\Delta I}{I}$
- Ratios more important than magnitude
- · Most continuous variation in stimuli perceived in discrete steps

Information in color and value

- Value is perceived as ordered
 - Encode ordinal variables (O)

- Encode continuous variables (Q) [not as well]

- Hue is normally perceived as unordered
 - Encode nominal variables (N) using color

Steps in font size

Sizes standardized in 16th century

```
6 7 8 9 10 11 12 14 16 18 21 24 36 48 60 72
```

Estimating Magnitude

Compare length of bars

Steven's Power Law

$$S = I^p$$

Exponents of power law

Sensation	Exponent	
Loudness	0.6	
Brightness	0.33	
Smell	0.55 (Coffee) - 0.6 (Heptane)	
Taste	0.6 (Saccharine) -1.3 (Salt)	
Temperature	1.0 (Cold) - 1.6 (Warm)	
Vibration	0.6 (250 Hz) – 0.95 (60 Hz)	
Duration	1.1	
Pressure	1.1	
Heaviness	1.45	
Electic Shock	3.5	

Apparent magnitude scaling

[Cartography: Thematic Map Design, Figure 8.6, p. 170, Dent, 96] $S = 0.98A^{0.87} [from Flannery 71]$

Proportional symbol map

Newspaper Circulation

[Cartography: Thematic Map Design, Figure 8.8, p. 172, Dent, 96]

Graduated sphere map

FIGURE 7.4. An eye-catching map created using three-dimensional geometric symbols. (After Smith, 1928. First published in *The Geographical Review*, 18(3), plate 4. Reprinted with permission of the American Geographical Society.)

Cleveland & McGill

Figure 4. Graphs from position-length experiment.

Figure 3. Graphs from position-angle experiment.

[Cleveland and McGill 84]

Figure 16. Log absolute error means and 95% confidence intervals for judgment types in position—length experiment (top) and position—angle experiment (bottom).

Relative magnitude estimation

Pre-attentive vs. Attentive Visual Processing

How many 3's

How many 3's

Visual pop-out: Color

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Visual pop-out: Shape

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Feature Conjunctions

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Pre-Attentive features

[Information Visualization. Figure 5. 5 Ware 04]

More Pre-attentive Features

Line (blob) orientation Length Width Size Curvature Number **Terminators** Intersection Closure Colour (hue) Intensity

Flicker Direction of motion

Binocular lustre Stereoscopic depth 3-D depth cues Lighting direction

Julesz & Bergen [1983]; Wolfe et al. [1992] Triesman & Gormican [1988] Julesz [1985] Triesman & Gelade [1980] Triesman & Gormican [1988] Julesz [1985]; Trick & Pylyshyn [1994] Julesz & Bergen [1983] Julesz & Bergen [1983] Enns [1986]; Triesman & Souther [1985] Nagy & Sanchez [1990, 1992]; D'Zmura [1991]; Kawai et al. [1995]; Bauer et al. [1996] Beck et al. [1983]; Triesman & Gormican [1988] Julesz [1971] Nakayama & Silverman [1986]; Driver & McLeod [1992] Wolfe & Franzel [1988] Nakayama & Silverman [1986]

Enns [1990] Enns [1990]

Pre-attentive conjunctions

- Spatial conjunctions are often pre-attentive
 - Motion and 3D disparity
 - Motion and color
 - Motion and shape
 - 3D disparity and color
 - 3D disparity and shape
- Most conjunctions are not pre-attentive

Feature-integration theory

Treisman's feature integration model [Healey 04]

Multiple Attributes

One-dimensional: Lightness

One-dimensional: Shape

Correlated dims: Shape or lightness

Orthogonal dims: Shape & lightness

Speeded Classification

- Redundancy Gain
 - Facilitation in reading one dimension when the other provides redundant information
- Filtering Interference
 - Difficulty in ignoring one dimension while attending to the other

Speeded Classification

Size and Value

W. S. Dobson, Visual information processing and cartographic communication: The role of redundant stimulus dimensions, 1983 (reprinted in MacEachren, 1995)

Orientation and Size (Single Mark)

FIGURE 3.36. A map of temperature and precipitation using symbol size and orientation to represent data values on the two variables.

How well can you see temperature or precipitation? Is there a correlation between the two?

[MacEachren 95]

Shape and Size (Single Mark)

FIGURE 3.40. The bivariate temperature—precipitation map of Figure 3.36, this time using point symbols that vary in shape and size to represent the two quantities.

Easier to see one shape across multiple sizes than one size of across multiple shapes?

[MacEachren 95]

Length and Length (Single Mark)

FIGURE 3.38. An example of the use of an ellipse as a map symbol in which the horizontal and vertical axes represent different (but presumably related) variables.

Angle and Angle (Composed Marks)

FIGURE 3.39. Bivariate map of NO₃ and SO₄ trends. The original Carr et al. version of this map used a wheel with eight spokes, rather than a simple dot, as the center of each glyph. When large enough, this added feature facilitates judgment of specific values. After Carr et al. (1992, Fig. 7a, p. 234). Adapted by permission of the American Congress on Surveying and Mapping.

Summary of Integral-Separable

[Figure 5.25, Color Plate 10, Ware 2000]

Gestalt Grouping

Principles

- Figure/Ground
- Proximity
- Similarity
- Symmetry
- Connectedness
- Continuity
- Closure
- Common Fate
- Transparency

Figure/Ground

Ambiguous

Principle of surroundedness

Principle of relative size

Figure/Ground

Ambiguous Unambiguous (?)

Proximity

Similarity

Rows dominate due to similarity [from Ware 04]

Symmetry

Bilateral symmetry gives strong sense of figure [from Ware 04]

Connectedness

Connectedness overrules proximity, size, color shape [from Ware 04]

Continuity

We prefer smooth not abrupt changes [from Ware 04]

Continuity: Vector fields

Closure

We see a circle behind a rectangle, not a broken circle [from Ware 04]

Illusory contours [from Durand 02]

Common Fate

Dots moving together are grouped

Transparency

Requires continuity and proper color correspondence [from Ware 04]

Layering

Layering: Gridlines

Signal and background compete above, as an electrocardiogram traceline becomes caught up in a thick grid. Below, the screened-down grid stays behind traces from each of 12 monitoring leads:4

Layering: Gridlines

Stravinsky score [from Tufte 90]

Layering: color and line width

Change Blindness

Change detection

Change detection

Change detection

Change Blindness

[Example from Palmer 99, originally due to Rock]

Demonstrations

http://www.psych.ubc.ca/~rensink/flicker/download/ http://www.youtube.com/watch?v=Ahg6qcgoay4

Summary

- Choosing effective visual encodings requires knowledge of visual perception
- Visual features/attributes
 - Individual attributes often pre-attentive
 - Multiple attributes may be separable, often integral
- Gestalt principles provide high-level guidelines
- · We don't always see everything that is there

Questions?

- Ask now or e-mail later
- Acknowledgements
 - Previous instructors at Purdue
 - ► David Ebert, ECE
 - ► Niklas Elmqvist, ECE
 - Previous instructor at Arizona state university
 - ▶ Ross Maciejewski
 - Previous instructor at University of Washington
 - ▶ Jeffrey Heer
 - DVL experts at Sejong University
 - ► HanByul Yeon, Sangbong Yoo, Seokyeon
 - Google Image Search
 - ► Copyright respective owners