Design of Wind Energy Systems

CIP Tutorial 06a Hints for the calculation of fatigue & extreme loads

Prof. Dr. M. Kühn

ForWind – Wind Energy Systems

Topics

- FAST overview
- Test case
- Load calculation
- Summary

No reproduction, publication or dissemination of this material is authorized, except with written consent of the author.

Oldenburg, June 2016

Prof. Dr. Martin Kühn

Load analysis – FAST

- Overview
- Test case
- Load calculation

NREL National Renewable Energy Laboratory

Innovation for Our Energy Future

Technical Report NREL/EL-500-38230

Overview - FAST

- Fatigue, Aerodynamics,Structures & Turbulence code
- Wind turbine specific code
- Represent flexible elements using modal representation
- Few degrees of freedom (DOF)
- Aerodynamics with AeroDyn
- Open source

```
Test file with data from WindPACT 1.5 MW turbine. LVT July 2014
 File to be used @ DoWES 2014
                              SIMULATION CONTROL -----
                                - Echo input data to "echo.out" (flag)
                ADAMSPrep
                               - ADAMS preprocessor mode {1: Run FAST, 2: use FAST, Analysis mode {1: Run a time-marching simulation
                Ana l Mode
                NumB1
                                - Number of blades (-)
 660.0
                                - Total run time (s)
                TMax
   0.005
                                - Integration time step (s)
                               TURBINE CONTROL ---
   0
                YCMode
                                - Yaw control mode {0: none, 1: user-defined from
9999.9
                TYCOn
                                - Time to enable active yaw control (s) [unused )
                                - Pitch control mode {0: none, 1: user-defined fr
   1
                PCMode
   5.0
                                - Time to enable active pitch control (s) [unused
                TPCOn
                                - Variable-speed control mode {0: none, 1: simple
   1
                VSContr1
                               - Rated generator speed for simple variable-speed
- Rated generator torque/constant generator torque
- Generator torque constant in Region 2 for simpl
- Rated generator slip percentage in Region 2 1/2
- Generator model {1: simple, 2: Thevenin, 3: use
1800.0
                VS_RtGnSp
8376.58
                VS_RtTq
   0.002585
               V5_Rgn2K
9999.9E-9
                VS_S1Pc
                                - Method to start the generator {T: timed using
True
                GenTiStp

    Method to stop the generator {T: timed using Ti

9999.9
                SpdGenon
                                - Generator speed to turn on the generator for a
                                - Time to turn on the generator for a startup (s) - Time to turn off the generator (s) [used only w
  0.0
                TimGenOn
9999.9
                TimGenOf
                                - HSS brake model {1: simple, 2: user-defined fro
                HSSBrMode
9999.9
9999.9
9999.9
9999.9
9999.9
9999.9
9999.9
                THSSBrDp
                                - Time to initiate deployment of the HSS brake (s
                TiDynBrk
                                - Time to initiate deployment of the dynamic gene
                TTpBrDp(1)
                                - Time to initiate deployment of tip brake 1 (s)
                TTpBrDp(2)
                                - Time to initiate deployment of tip brake 2
                               - Time to initiate deployment of tip brake 3 (s)
- Deployment-initiation speed for the tip brake
- Deployment-initiation speed for the tip brake
                TTpBrDp(3)
                TBDepISp(1)
                TBDepISp(2)
                TBDepISp(3) - Deployment-initiation speed for the tip brake
                                - Time to start override yaw maneuver and end sta
- Time at which override yaw maneuver reaches fir
                TYawMan5
                TYawManE
  0.0
                NacYawF - Final yaw angle for yaw maneuvers (degrees)
TPitManS(1) - Time to start override pitch maneuver for blade
9999. 9
9999. 9
                                - Time to start override pitch maneuver for blade
9999.9
9999.9
9999.9
9999.9
                                - Time to start override pitch maneuver for blade
                                - Time at which override pitch maneuver for blade
                               - Time at which override pitch maneuver for blade
                TPitManE(3) - Time at which override pitch maneuver for blade
  7.5
7.5
7.5
                BlPitch(1) - Blade 1 initial pitch (degrees)
BlPitch(2) - Blade 2 initial pitch (degrees)
                              - Blade 2 initial pitch (degrees)
                BlPitch(3) - Blade 3 initial pitch (degrees) [unused for 2
```

FAST main input file

Test case – FAST (1/4)

- 1. Unpack zip folder as C:\ FAST
- 2. Explore folder; it contains:
 - FAST.exe executable
 - Test_turbine.fst main input
 - Turbine_blade.dat & *_tower.dat, Pitch.ipt
 other input files
 - Test_turbine_AD.ipt Aerodynamics & wind file references
 - Folders with airfoils & wind files
 - Matlab script & folder with functions
- 3. In DOS prompt go to directory (see 1)
 - Run test: FAST Test_turbine.fst

FAST folder

FAST executing in DOS prompt

Test case – FAST (2/4)

- 4. Review results in folder:
 - Test_turbine.opt AeroDyn echo
 - Test_turbine.fsm FAST summary
 - Test turbine.out FAST output file
- 5. Review the results in Test_turbine.out:
 - Results are written in columns, where the first one is time, followed by wind speed and all other outputs, as requested in input file Test_turbine.fst

Note: Use FAST_Users_guide.pdf to know how to change inputs

FAST output files in folder

These predictions were generated by FAST (v7.01.00a-bjj, 16-Fe The aerodynamic calculations were made by AeroDyn (v13.00.01a-

Test file with data from WindPACT 1.5 MW turbine. LVT July 20

Time (5) 60.000 60.050 60.100 60.250 60.350 60.350 60.450 60.650 60.650 60.650 60.750	Windvyi (m/s) 1.571E- 1.586E- 1.584E- 1.544E- 1.513E- 1.543E- 1.567E- 1.567E- 1.641E- 1.627E- 1.662E- 1.662E- 1.612E-	+01 +01 +01 +01 +01 +01 +01 +01 +01 +01		(kN·m) -01 -01 -01 -01 -01 -01 -01 -01 -01 -01	1.98 1.90 1.92 -2.01 1.47 3.65 4.25 -1.82 2.15 -4.94 7.70 3.44 2.63	
60.85 60.90 61.00 61.05 61.15 61.25 61.30 61.30 61.40 61.45	1. 573E: 1. 548E: 1. 548E: 1. 545E: 1. 545E: 1. 581E: 1. 581E: 1. 540E: 1. 599E: 1. 625E: 1. 621E: 1. 597E:	+01 +01 +01 +01 +01 +01 +01 +01 +01 +01	3.007E 1.501E 5.610E 8.214E 7.147E 1.105E 2.144E 2.230E 2.234E 1.859E 1.966E 1.948E 2.033E	01 01 01 01 01 00 00 00 00 00 00 00 00 00 00 00 00 01	3.26 5.20 3.86 3.06 1.31 8.97 4.44 1.12 9.91 1.92 1.55	4E-01 1E-01 0E-01 5E-01 0E-01 6E+00 1E-01 4E-01 5E+00 6E-01 4E+00 3E+00 0E+00 9E+00

FAST main output file

Test case – FAST (3/4)

- 6. Analyse results (timeseries) using Matlab script in folder:
 - PlotFastTimeseries.m
- 7. Timeseries statistics (a) & damage equivalent loads (b) can be read directly from Matlab workspace

Damage_Eq_Loads <1x1 struct> Field A Value RootMFlp_Req Workspace 606.9395 7b Value RootMFlp_m 10 RootMedg Reg 790.7247 ■ Damage_Eq_Loads <1x1 struct> FAST_output_file_... 'C:\FAST\Test_ RootMedg m FAST_results <1x1 struct> TwrBsMyt_Req 2.0539e+03 TwrBsMyt_m TwrBsMxt Rea 1.1630e+03 TwrBsMxt_m

7a

FAST_results × FAST_results <1x1 struct>										
() header	<1x13 cell>									
H Time	<12001x1 double>	60	660	360	173.2267					
₩indVxi	<12001x1 double>	9.0490	21.8600	14.9613	1.9743					
₩indVyi	<12001x1 double>	-5.1720	4.4750	-0.0479	1.3500					
₩indVzi	<12001x1 double>	-3.5220	2.8440	-0.0060	0.8048					
RootMFIp2	<12001x1 double>	31.5700	1482	802.9375	215.2980					
RootMedg2	<12001x1 double>	-497.3000	572.4000	26.5339	316.1732					
RotThrust	<12001x1 double>	97.3200	212.2000	151.6548	18.5404					
RotSpeed	<12001x1 double>	19.4800	21.4500	20.4751	0.3443					
── TwrBsMyt	<12001x1 double>	4814	15330	9.9923e+03	1.6872e+03					
── TwrBsMxt	<12001x1 double>	-1110	2728	801.4473	543.3289					
→ GenPwr	<12001x1 double>	1294	1572	1.4818e+03	49.8799					
☐ GenTq	<12001x1 double>	7.5900	8.3770	8.2679	0.1528					
⊞ BldPitch2	<12001x1 double>	7.4160	20.5700	14.1270	2.7531					

Test case – FAST (4/4)

- Timeseries are placed in folder "Plot_TimeDomain + date & time"
- 9. Description of outputs in Turbine_test.fst
- 10. Power spectral density created with Matlab script PlotFastTimeseries.m

8

9

Load calculation – FAST (1/x)

- Comment 2-lines header for traceability: "color", user & date
- 2. Select algorithms for calculation
- 3. Update "Turbine Data" section (if some are unknown, keep default)

```
WT_Perf Input File
 "Test" Wind turbine - file example for DOWES CIP Tutorial 03
 created by LVT 20th May 2014
          Input Configuration -----
        Algorithm Configuration -----
                     TípLoss:
                                               Use the Prandtl tip-loss model?
                                               Use the Prandtl hub-loss model?
                     HubLoss:
  True
                     Swirl:
                                               Include Swirl effects?
  True
  True
                     SkewWake:
                                               Apply skewed-wake correction?
                     IndType:
                                               Use BEM induction algorithm?
                                               Use the drag term in the axial in
                     AIDrag:
                                               Use the drag term in the tangent
  False
                     TIDrag:
                     TISingularity:
                                               Use the singularity avoidance me
  False
  False
                     DAWT:
                                               Run Diffuser Augmented Water Turk
                     Cavitation:
                                               Run cavitation check? if cavitat
       Turbine Data
                                               Number of blades.
35.95
                    RotorRad:
                                               Rotor radius [length].
                    HubRad:
                                               Hub radius [length or div by rad
-3.0
                                               Precone angle, positive downwind Shaft tilt [deg].
                    PreCone:
5.0
                    Tilt:
0.0
                                               Yaw error [deg].
                    Yaw:
70.0
                                               Hub height [length or div by rad
                    NumSeg:
                                               Number of blade segments (entire
   RElm
         Twist
                  Chord Affile PrntElem
3.421875
               29.36987577
                               5.070530343
                                                       FALSE
7.765625
               14.20925825
                               4.459489198
                                                       FALSE
12.109375
               6.823436492
                               3.384116952
                                                       FALSE
```

2.650669029

2.160752278

1.815959346

1.563239845

1.370923606

16.453125

20.796875

25.140625

29.484375

33.828125

2.753876508

0.230641975

-2.69646261

-1.473157945

-3.615679163

FALSE

FALSE

FALSE

FALSE

FALSE

Load calculation – FAST (2/x)

- Comment 2-lines header for traceability: "color", user & date
- 2. Select algorithms for calculation
- 3. Update "Turbine Data" section (if some are unknown, keep default)
- 4. Enter blade geometry (from CIP-01 file "*_start_parameters.xlsx")
 - Relm center of section
 - AFfile aerodynamic profile
 - PrntElem keep as false

Note: correct RotorRad, for precone & tilt (follow error message)

```
WT_Perf Input File -----
  "Test" Wind turbine - file example for DOWES CIP Tutorial 03
 created by LVT 20th May 2014
          Input Configuration --
         Algorithm Configuration
                       TípLoss:
                                                  Use the Prandtl tip-loss model?
                                                  Use the Prandtl hub-loss model?
                       HubLoss:
                                                  Include Swirl effects?
                       Swirl:
  True
  True
                       SkewWake:
                                                  Apply skewed-wake correction?
                       IndType:
                                                  Use BEM induction algorithm?
                                                  Use the drag term in the axial in
                       AIDrag:
                                                  Use the drag term in the tangent
  False
                       TIDrag:
                       TISingularity:
                                                  Use the singularity avoidance me
                                                  Run Diffuser Augmented Water Turk
                       DAWT:
                       Cavitation:
                                                  Run cavitation check? if cavitat
35.95
                      RotorRad:
                                                  Rotor radius [length].
 1.2
                      HubRad:
                                                  Hub radius [length or div by rad
                                                  Precone angle, positive downwind Shaft tilt [deg].
-3.0
                      PreCone:
                      Tilt:
                                                  Yaw error [deg].
Hub height [length or div by rad
Number of blade segments (entire
3.421875
                 29.36987577
                                                          FALSE
7.765625
                14.20925825
                                                          FALSE
12.109375
                6.823436492
                                 3.384116952
                                                          FALSE
16.453125
                                                          FALSE
                 2.753876508
                                 2.650669029
20.796875
                                                          FALSE
                0.230641975
```


1.563239845

25.140625

29.484375

-1.473157945

-2.69646261

FALSE

FALSE

Load calculation – FAST (3/x)

- Update the aerodynamic data
 - NumAF 2 airfoils
 - Path to airfoils
- Define outputs requested to investigate turbine performance
- 7. Define ranges for variation of:
 - Pit(St/End/Del) pitch values
 - Omg() rotor speed
 - Spd() speed (in example given as tip speed ratio)

Note: Study results in spreadsheets

```
Aerodvnamic Data
1.225
                                                                 Air density [mass/\
1.4639e-5
                                           KinVisc:
                                                                 Kinematic air visco
0.0
                                           ShearExp:
                                                                 Wind shear exponent
True
                                           UseCm:
                                                                 Are Cm data include
False
                                           UseCpmin:
                                                                 Are Cp, min data inc
                                           NumAF:
                                                                 Number of airfoil f
 "C:\WT_Perf\Airfoils\NACA_63_218.dat"
```

"C:\WT_Perf\Airfoils\NACA_63_215.dat"

```
Output Configuration
False
                                                 Write parametric power to a
                     UnfPower:
                                                 Make output tab-delimited (
True
                     Tabbel:
                     ConvFlag:
                                                 For non-converging cases, (
                                                 Beep if errors occur.
True
                     Beep:
                                                 Output dimensional paramete
True
                     KFact:
False
                                                 Write out blade element dat
                     WriteBED:
                                                 Input speeds as TSRs?
True
                     InputTSR:
                                                 Output conditions for the m
True
                     OutMaxCp:
                                                 Wind-speed units (mps, fps,
'mps'
                     SpdUnits:
      Combined-Case Analysis
                     NumCases:
                                                 Number of cases to run. Er
WS or TSR RotSpd
                     Pitch
                                                 Remove following block of 1
      Parametric Analysis (Ignored if NumCases > 0 ) ------
                     ParRow:
                                                 Row parameter
                                                 Column parameter (1-rpm, 2-
                     Parcol:
                     ParTab:
                                                 Table parameter (1-rpm, 2-
False
                     OutPwr:
                                                 Request output of rotor pow
                                                 Request output of Cp?
True
                     OutCp:
True
                     OutTrq:
                                                 Request output of shaft tor
False
                     OutFlp:
                                                 Request output of flap bend
                                                 Request output of rotor thr
                     OutThr:
-5, 5, 1
                     PitSt, PitEnd, PitDel:
                                                 First, last, delta blade pi
22, 24, 0.25
                                                 First, last, delta rotor sp
                     OmgSt, OmgEnd, OmgDel:
                     SpdSt, SpdEnd, SpdDel:
                                                 First, last, delta speeds.
1, 10, 0.1
```

Summary / Conclusion

- We completed our first calculation with FAST
- We reviewed how to modify input files to evaluate the turbine

