No. 9 C_4 4 [tetragonal] (polar)

表 1 rank 0

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
1	A	A	_	_	$\mathbb{Q}_0^{(h,A)}$	$\mathtt{Qh}(\mathtt{O},\mathtt{A},,)$	C_0

表 2 rank 1

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
2	A	A	-	_	$\mathbb{Q}_1^{(h,A)}$	$\mathtt{Qh}(\mathtt{1},\mathtt{A},,)$	C_0
3	E	E	_	0	$\mathbb{Q}_{1,0}^{(h,E)}$	$\mathtt{Qh}(\mathtt{1},\mathtt{E},,\mathtt{0})$	C_1
4	E	E	_	1	$\mathbb{Q}_{1,1}^{(h,E)}$	$\mathtt{Qh}(\mathtt{1},\mathtt{E},,\mathtt{1})$	S_1

表 3 rank 2

I	No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
	5	A	A	_	_	$\mathbb{Q}_2^{(h,A)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{A},,)$	C_0
	6	B	В	1	_	$\mathbb{Q}_2^{(h,B,1)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{B},\mathtt{1},)$	C_2
	7	B	В	2	_	$\mathbb{Q}_2^{(h,B,2)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{B},\mathtt{2},)$	S_2
	8	E	E	_	0	$\mathbb{Q}_{2,0}^{(h,E)}$	$\mathtt{Qh}(2,\mathtt{E},,\mathtt{0})$	S_1
	9	E	E	_	1	$\mathbb{Q}_{2,1}^{(h,E)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{E},,\mathtt{1})$	$-C_1$

表 4 rank 3

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
10	A	A	_	_	$\mathbb{Q}_3^{(h,A)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{A},,)$	C_0
11	B	В	1	_	$\mathbb{Q}_3^{(h,B,1)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{B},\mathtt{1},)$	S_2
12	B	В	2	_	$\mathbb{Q}_3^{(h,B,2)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{B},\mathtt{2},)$	C_2
13	E	E	1	0	$\mathbb{Q}_{3,0}^{(h,E,1)}$	$\mathtt{Qh}(3,\mathtt{E},\mathtt{1},\mathtt{0})$	$-\frac{\sqrt{6}C_1}{4} + \frac{\sqrt{10}C_3}{4}$
14	E	E	1	1	$\mathbb{Q}_{3,1}^{(h,E,1)}$	$\mathtt{Qh}(3,\mathtt{E},\mathtt{1},\mathtt{1})$	$-\frac{\sqrt{6}S_1}{4} - \frac{\sqrt{10}S_3}{4}$
15	E	E	2	0	$\mathbb{Q}_{3,0}^{(h,E,2)}$	$\mathtt{Qh}(3,\mathtt{E},2,\mathtt{0})$	$-\frac{\sqrt{10}C_1}{4} - \frac{\sqrt{6}C_3}{4}$
16	E	E	2	1	$\mathbb{Q}_{3,1}^{(h,E,2)}$	$\mathtt{Qh}(3,\mathtt{E},2,1)$	$-\frac{\sqrt{10}S_1}{4} + \frac{\sqrt{6}S_3}{4}$

表 5 rank 4

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
17	A	A	1	_	$\mathbb{Q}_4^{(h,A,1)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{A},\mathtt{1},)$	$\frac{\sqrt{21}C_0}{6} + \frac{\sqrt{15}C_4}{6}$
18	A	A	2	-	$\mathbb{Q}_4^{(h,A,2)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{A},\mathtt{2},)$	$\frac{\sqrt{15}C_0}{6} - \frac{\sqrt{21}C_4}{6}$
19	A	A	3	_	$\mathbb{Q}_4^{(h,A,3)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{A},\mathtt{3},)$	S_4
20	B	В	1	_	$\mathbb{Q}_4^{(h,B,1)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{B},\mathtt{1},)$	$-C_2$
21	B	В	2	_	$\mathbb{Q}_4^{(h,B,2)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{B},\mathtt{2},)$	S_2
22	E	E	1	0	$\mathbb{Q}_{4,0}^{(h,E,1)}$	$\mathtt{Qh}(4,\mathtt{E},1,\mathtt{0})$	$\frac{\sqrt{2}\left(-\sqrt{7}S_1 - S_3\right)}{4}$
23	E	E	1	1	$\mathbb{Q}_{4,1}^{(h,E,1)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{E},\mathtt{1},\mathtt{1})$	$\frac{\sqrt{14}C_1}{4} - \frac{\sqrt{2}C_3}{4}$
24	E	E	2	0	$\mathbb{Q}_{4,0}^{(h,E,2)}$	$\mathtt{Qh}(4,\mathtt{E},2,0)$	$\frac{\sqrt{2}\left(-S_1+\sqrt{7}S_3\right)}{4}$
25	E	E	2	1	$\mathbb{Q}_{4,1}^{(h,E,2)}$	$\mathtt{Qh}(4,\mathtt{E},2,1)$	$\frac{\sqrt{2}C_1}{4} + \frac{\sqrt{14}C_3}{4}$

表 6 rank 5

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
26	A	A	1	-	$\mathbb{Q}_5^{(h,A,1)}$	Qh(5, A, 1,)	S_4
27	A	Α	2	-	$\mathbb{Q}_5^{(h,A,2)}$	$\mathtt{Qh}(5,\mathtt{A},2,)$	C_0
28	A	Α	3	=	$\mathbb{Q}_5^{(h,A,3)}$	$\mathtt{Qh}(5,\mathtt{A},3,)$	C_4
29	B	В	1	_	$\mathbb{Q}_5^{(h,B,1)}$	$\mathtt{Qh}(5,\mathtt{B},1,)$	$-S_2$
30	B	В	2	_	$\mathbb{Q}_5^{(h,B,2)}$	$\mathtt{Qh}(5,\mathtt{B},2,)$	C_2
31	E	E	1	0	$\mathbb{Q}_{5,0}^{(h,E,1)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{E},\mathtt{1},\mathtt{0})$	$\frac{\sqrt{15}C_1}{8} - \frac{\sqrt{70}C_3}{16} + \frac{3\sqrt{14}C_5}{16}$
32	E	E	1	1	$\mathbb{Q}_{5,1}^{(h,E,1)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{E},\mathtt{1},\mathtt{1})$	$\frac{\sqrt{15}S_1}{8} + \frac{\sqrt{70}S_3}{16} + \frac{3\sqrt{14}S_5}{16}$
33	E	E	2	0	$\mathbb{Q}_{5,0}^{(h,E,2)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{E},\mathtt{2},\mathtt{0})$	$\frac{\sqrt{2}\left(\sqrt{42}C_1 + 9C_3 + \sqrt{5}C_5\right)}{16}$
34	E	E	2	1	$\mathbb{Q}_{5,1}^{(h,E,2)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{E},\mathtt{2},\mathtt{1})$	$\frac{\sqrt{2}\left(\sqrt{42}S_1 - 9S_3 + \sqrt{5}S_5\right)}{16}$
35	E	E	3	0	$\mathbb{Q}_{5,0}^{(h,E,3)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{E},\mathtt{3},\mathtt{0})$	$\frac{\sqrt{7}C_1}{4} - \frac{\sqrt{6}C_3}{8} - \frac{\sqrt{30}C_5}{8}$
36	E	E	3	1	$\mathbb{Q}_{5,1}^{(h,E,3)}$	$\mathtt{Qh}(5,\mathtt{E},3,1)$	$\frac{\sqrt{7}S_1}{4} + \frac{\sqrt{6}S_3}{8} - \frac{\sqrt{30}S_5}{8}$

表 7 rank 6

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
37	A	A	1	_	$\mathbb{Q}_6^{(h,A,1)}$	Qh(6, A, 1,)	$\frac{\sqrt{2}C_0}{4} - \frac{\sqrt{14}C_4}{4}$
38	A	A	2	_	$\mathbb{Q}_6^{(h,A,2)}$	$\mathtt{Qh}(6,\mathtt{A},\mathtt{2},)$	$\frac{\sqrt{14}C_0}{4} + \frac{\sqrt{2}C_4}{4}$
39	A	A	3	_	$\mathbb{Q}_6^{(h,A,3)}$	$\mathtt{Qh}(6,\mathtt{A},\mathtt{3},)$	S_4
40	B	В	1	_	$\mathbb{Q}_6^{(h,B,1)}$	$\mathtt{Qh}(6,\mathtt{B},\mathtt{1},)$	$\frac{\sqrt{11}C_2}{4} - \frac{\sqrt{5}C_6}{4}$
41	B	В	2	_	$\mathbb{Q}_6^{(h,B,2)}$	$\mathtt{Qh}(6,\mathtt{B},\mathtt{2},)$	$\frac{\sqrt{5}C_2}{4} + \frac{\sqrt{11}C_6}{4}$
42	B	В	3	_	$\mathbb{Q}_6^{(h,B,3)}$	$\mathtt{Qh}(6,\mathtt{B},\mathtt{3},)$	S_6
43	B	В	4	_	$\mathbb{Q}_6^{(h,B,4)}$	$\mathtt{Qh}(6,\mathtt{B},4,)$	S_2
44	E	E	1	0	$\mathbb{Q}_{6,0}^{(h,E,1)}$	$\mathtt{Qh}(6,\mathtt{E},\mathtt{1},\mathtt{0})$	$\frac{\sqrt{3}S_1}{4} - \frac{\sqrt{30}S_3}{8} - \frac{\sqrt{22}S_5}{8}$
45	E	E	1	1	$\mathbb{Q}_{6,1}^{(h,E,1)}$	$\mathtt{Qh}(6,\mathtt{E},1,1)$	$-\frac{\sqrt{3}C_1}{4} - \frac{\sqrt{30}C_3}{8} + \frac{\sqrt{22}C_5}{8}$
46	E	E	2	0	$\mathbb{Q}_{6,0}^{(h,E,2)}$	$\mathtt{Qh}(6,\mathtt{E},2,\mathtt{0})$	$\frac{3\sqrt{22}S_1}{16} + \frac{\sqrt{55}S_3}{16} + \frac{\sqrt{3}S_5}{16}$
47	E	E	2	1	$\mathbb{Q}_{6,1}^{(h,E,2)}$	$\mathtt{Qh}(6,\mathtt{E},2,1)$	$-\frac{3\sqrt{22}C_1}{16} + \frac{\sqrt{55}C_3}{16} - \frac{\sqrt{3}C_5}{16}$
48	E	E	3	0	$\mathbb{Q}_{6,0}^{(h,E,3)}$	$\mathtt{Qh}(6,\mathtt{E},3,0)$	$\frac{\sqrt{10}S_1}{16} - \frac{9S_3}{16} + \frac{\sqrt{165}S_5}{16}$
49	E	E	3	1	$\mathbb{Q}_{6,1}^{(h,E,3)}$	$\mathtt{Qh}(6,\mathtt{E},3,1)$	$-\frac{\sqrt{10}C_1}{16} - \frac{9C_3}{16} - \frac{\sqrt{165}C_5}{16}$

表 8 $\operatorname{rank} 7$

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
50	A	A	1	_	$\mathbb{Q}_7^{(h,A,1)}$	$\mathtt{Qh}(7,\mathtt{A},\mathtt{1},)$	S_4
51	A	A	2	_	$\mathbb{Q}_7^{(h,A,2)}$	$\mathtt{Qh}(7,\mathtt{A},2,)$	C_0
52	A	A	3	_	$\mathbb{Q}_7^{(h,A,3)}$	$\mathtt{Qh}(7,\mathtt{A},3,)$	C_4
53	B	В	1	_	$\mathbb{Q}_7^{(h,B,1)}$	$\mathtt{Qh}(7,\mathtt{B},\mathtt{1},)$	$\frac{\sqrt{78}S_2}{12} + \frac{\sqrt{66}S_6}{12}$
54	B	В	2	_	$\mathbb{Q}_7^{(h,B,2)}$	$\mathtt{Qh}(7,\mathtt{B},2,)$	$\frac{\sqrt{66}S_2}{12} - \frac{\sqrt{78}S_6}{12}$
55	B	В	3	_	$\mathbb{Q}_7^{(h,B,3)}$	$\mathtt{Qh}(7,\mathtt{B},\mathtt{3},)$	C_6
56	B	В	4	_	$\mathbb{Q}_7^{(h,B,4)}$	$\mathtt{Qh}(7,\mathtt{B},4,)$	C_2
57	E	E	1	0	$\mathbb{Q}_{7,0}^{(h,E,1)}$	$\mathtt{Qh}(7,\mathtt{E},\mathtt{1},\mathtt{0})$	$-\frac{5\sqrt{7}C_1}{32} + \frac{3\sqrt{21}C_3}{32} - \frac{\sqrt{231}C_5}{32} + \frac{\sqrt{429}C_7}{32}$
58	E	E	1	1	$\mathbb{Q}_{7,1}^{(h,E,1)}$	$\mathtt{Qh}(7,\mathtt{E},1,1)$	$-\frac{5\sqrt{7}S_1}{32} - \frac{3\sqrt{21}S_3}{32} - \frac{\sqrt{231}S_5}{32} - \frac{\sqrt{429}S_7}{32}$
59	E	E	2	0	$\mathbb{Q}_{7,0}^{(h,E,2)}$	$\mathtt{Qh}(7,\mathtt{E},2,\mathtt{0})$	$-\frac{3\sqrt{33}C_1}{32} - \frac{\sqrt{11}C_3}{32} + \frac{25C_5}{32} + \frac{\sqrt{91}C_7}{32}$
60	E	E	2	1	$\mathbb{Q}_{7,1}^{(h,E,2)}$	$\mathtt{Qh}(7,\mathtt{E},2,1)$	$-\frac{3\sqrt{33}S_1}{32} + \frac{\sqrt{11}S_3}{32} + \frac{25S_5}{32} - \frac{\sqrt{91}S_7}{32}$
61	E	E	3	0	$\mathbb{Q}_{7,0}^{(h,E,3)}$	$\mathtt{Qh}(7,\mathtt{E},3,0)$	$-\frac{\sqrt{858}C_1}{64} - \frac{3\sqrt{286}C_3}{64} - \frac{5\sqrt{26}C_5}{64} - \frac{\sqrt{14}C_7}{64}$
62	E	E	3	1	$\mathbb{Q}_{7,1}^{(h,E,3)}$	$\mathtt{Qh}(7,\mathtt{E},3,1)$	$-\frac{\sqrt{858}S_1}{64} + \frac{3\sqrt{286}S_3}{64} - \frac{5\sqrt{26}S_5}{64} + \frac{\sqrt{14}S_7}{64}$
63	E	E	4	0	$\mathbb{Q}_{7,0}^{(h,E,4)}$	$\mathtt{Qh}(7,\mathtt{E},4,\mathtt{0})$	$\frac{\sqrt{2}\left(-15\sqrt{3}C_1+19C_3-\sqrt{11}C_5-\sqrt{1001}C_7\right)}{64}$
64	E	E	4	1	$\mathbb{Q}_{7,1}^{(h,E,4)}$	$\mathtt{Qh}(7,\mathtt{E},4,1)$	$-\frac{15\sqrt{6}S_1}{64} - \frac{19\sqrt{2}S_3}{64} - \frac{\sqrt{22}S_5}{64} + \frac{\sqrt{2002}S_7}{64}$

表 9 rank 8

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
65	A	A	1	_	$\mathbb{Q}_8^{(h,A,1)}$	Qh(8, A, 1,)	$\frac{\sqrt{33}C_0}{8} + \frac{\sqrt{21}C_4}{12} + \frac{\sqrt{195}C_8}{24}$
66	A	A	2	_	$\mathbb{Q}_8^{(h,A,2)}$	$\mathtt{Qh}(8,\mathtt{A},2,)$	$-\frac{\sqrt{286}C_0}{32} + \frac{\sqrt{182}C_4}{16} + \frac{\sqrt{10}C_8}{32}$
67	A	A	3	_	$\mathbb{Q}_8^{(h,A,3)}$	$\mathtt{Qh}(8,\mathtt{A},\mathtt{3},)$	$-\frac{\sqrt{210}C_0}{32} - \frac{\sqrt{330}C_4}{48} + \frac{\sqrt{6006}C_8}{96}$
68	A	A	4	_	$\mathbb{Q}_8^{(h,A,4)}$	$\mathtt{Qh}(8,\mathtt{A},\mathtt{4},)$	S_8
69	A	A	5	_	$\mathbb{Q}_8^{(h,A,5)}$	$\mathtt{Qh}(8,\mathtt{A},\mathtt{5},)$	S_4
70	B	В	1	_	$\mathbb{Q}_8^{(h,B,1)}$	$\mathtt{Qh}(8,\mathtt{B},\mathtt{1},)$	C_6
71	B	В	2	_	$\mathbb{Q}_8^{(h,B,2)}$	$\mathtt{Qh}(8,\mathtt{B},\mathtt{2},)$	C_2
72	B	В	3	_	$\mathbb{Q}_8^{(h,B,3)}$	$\mathtt{Qh}(8,\mathtt{B},\mathtt{3},)$	S_6
73	B	В	4	_	$\mathbb{Q}_8^{(h,B,4)}$	$\mathtt{Qh}(8,\mathtt{B},\mathtt{4},)$	S_2
74	E	E	1	0	$\mathbb{Q}_{8,0}^{(h,E,1)}$	$\mathtt{Qh}(8,\mathtt{E},\mathtt{1},\mathtt{0})$	$-\frac{\sqrt{715}S_1}{32} - \frac{\sqrt{273}S_3}{32} - \frac{\sqrt{35}S_5}{32} - \frac{S_7}{32}$
75	E	E	1	1	$\mathbb{Q}_{8,1}^{(h,E,1)}$	$\mathtt{Qh}(8,\mathtt{E},1,1)$	$\frac{\sqrt{715}C_1}{32} - \frac{\sqrt{273}C_3}{32} + \frac{\sqrt{35}C_5}{32} - \frac{C_7}{32}$
76	E	E	2	0	$\mathbb{Q}_{8,0}^{(h,E,2)}$	$\mathtt{Qh}(8,\mathtt{E},2,0)$	$-\frac{\sqrt{77}S_1}{32} + \frac{5\sqrt{15}S_3}{32} - \frac{3\sqrt{13}S_5}{32} - \frac{\sqrt{455}S_7}{32}$
77	E	E	2	1	$\mathbb{Q}_{8,1}^{(h,E,2)}$	$\mathtt{Qh}(8,\mathtt{E},2,1)$	$\frac{\sqrt{77}C_1}{32} + \frac{5\sqrt{15}C_3}{32} + \frac{3\sqrt{13}C_5}{32} - \frac{\sqrt{455}C_7}{32}$
78	E	E	3	0	$\mathbb{Q}_{8,0}^{(h,E,3)}$	$\mathtt{Qh}(8,\mathtt{E},3,0)$	$-\frac{\sqrt{858}S_1}{64} + \frac{\sqrt{910}S_3}{64} + \frac{7\sqrt{42}S_5}{64} + \frac{3\sqrt{30}S_7}{64}$
79	E	E	3	1	$\mathbb{Q}_{8,1}^{(h,E,3)}$	$\mathtt{Qh}(8,\mathtt{E},3,1)$	$\frac{\sqrt{858}C_1}{64} + \frac{\sqrt{910}C_3}{64} - \frac{7\sqrt{42}C_5}{64} + \frac{3\sqrt{30}C_7}{64}$
80	E	E	4	0	$\mathbb{Q}_{8,0}^{(h,E,4)}$	$\mathtt{Qh}(8,\mathtt{E},4,0)$	$-\frac{\sqrt{70}S_1}{64} + \frac{3\sqrt{66}S_3}{64} - \frac{\sqrt{1430}S_5}{64} + \frac{\sqrt{2002}S_7}{64}$
81	E	E	4	1	$\mathbb{Q}_{8,1}^{(h,E,4)}$	$\mathtt{Qh}(8,\mathtt{E},4,1)$	$\frac{\sqrt{70}C_1}{64} + \frac{3\sqrt{66}C_3}{64} + \frac{\sqrt{1430}C_5}{64} + \frac{\sqrt{2002}C_7}{64}$

表 10 rank 9

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
82	A	A	1	-	$\mathbb{Q}_9^{(h,A,1)}$	$\mathtt{Qh}(9,\mathtt{A},\mathtt{1},)$	$\frac{\sqrt{102}S_4}{12} - \frac{\sqrt{42}S_8}{12}$
83	A	Α	2		$\mathbb{Q}_9^{(h,A,2)}$	$\mathtt{Qh}(9,\mathtt{A},2,)$	$rac{\sqrt{42}S_4}{12} + rac{\sqrt{102}S_8}{12}$
84	A	Α	3	_	$\mathbb{Q}_9^{(h,A,3)}$	$\mathtt{Qh}(9,\mathtt{A},\mathtt{3},)$	C_0
85	A	Α	4	=	$\mathbb{Q}_9^{(h,A,4)}$	$\mathtt{Qh}(9,\mathtt{A},\mathtt{4},)$	C_8
86	A	Α	5	_	$\mathbb{Q}_9^{(h,A,5)}$	$\mathtt{Qh}(9,\mathtt{A},\mathtt{5},)$	C_4
87	B	В	1	_	$\mathbb{Q}_9^{(h,B,1)}$	$\mathtt{Qh}(9,\mathtt{B},\mathtt{1},)$	$\frac{\sqrt{3}S_2}{4} - \frac{\sqrt{13}S_6}{4}$
88	B	В	2	_	$\mathbb{Q}_9^{(h,B,2)}$	$\mathtt{Qh}(9,\mathtt{B},2,)$	$-rac{\sqrt{13}S_2}{4} - rac{\sqrt{3}S_6}{4}$
89	B	В	3	-	$\mathbb{Q}_9^{(h,B,3)}$	$\mathtt{Qh}(9,\mathtt{B},\mathtt{3},)$	C_6
90	B	В	4	_	$\mathbb{Q}_9^{(h,B,4)}$	$\mathtt{Qh}(9,\mathtt{B},4,)$	C_2
91	E	E	1	0	$\mathbb{Q}_{9,0}^{(h,E,1)}$	$\mathtt{Qh}(9,\mathtt{E},1,0)$	$\frac{21\sqrt{5}C_1}{128} - \frac{\sqrt{2310}C_3}{128} + \frac{3\sqrt{286}C_5}{128} - \frac{3\sqrt{1430}C_7}{256} + \frac{\sqrt{24310}C_9}{256}$
92	E	E	1	1	$\mathbb{Q}_{9,1}^{(h,E,1)}$	$\mathtt{Qh}(9,\mathtt{E},1,1)$	$\frac{21\sqrt{5}S_1}{128} + \frac{\sqrt{2310}S_3}{128} + \frac{3\sqrt{286}S_5}{128} + \frac{3\sqrt{1430}S_7}{256} + \frac{\sqrt{24310}S_9}{256}$
93	E	E	2	0	$\mathbb{Q}_{9,0}^{(h,E,2)}$	$\mathtt{Qh}(9,\mathtt{E},2,0)$	$\frac{\sqrt{2}\left(\sqrt{4862}C_1 + 2\sqrt{4641}C_3 + 10\sqrt{85}C_5 + 7\sqrt{17}C_7 + 3C_9\right)}{256}$
94	E	E	2	1	$\mathbb{Q}_{9,1}^{(h,E,2)}$	$\mathtt{Qh}(9,\mathtt{E},2,1)$	$\frac{\sqrt{2} \left(\sqrt{4862} S_{1} - 2\sqrt{4641} S_{3} + 10\sqrt{85} S_{5} - 7\sqrt{17} S_{7} + 3S_{9}\right)}{256}$
95	E	E	3	0	$\mathbb{Q}_{9,0}^{(h,E,3)}$	$\mathtt{Qh}(9,\mathtt{E},3,0)$	$\frac{\sqrt{1001}C_1}{64} - \frac{\sqrt{78}C_3}{64} - \frac{3\sqrt{70}C_5}{64} + \frac{23\sqrt{14}C_7}{128} + \frac{3\sqrt{238}C_9}{128}$
96	E	E	3	1	$\mathbb{Q}_{9,1}^{(h,E,3)}$	$\mathtt{Qh}(9,\mathtt{E},3,1)$	$\frac{\sqrt{1001}S_1}{64} + \frac{\sqrt{78}S_3}{64} - \frac{3\sqrt{70}S_5}{64} - \frac{23\sqrt{14}S_7}{128} + \frac{3\sqrt{238}S_9}{128}$
97	E	E	4	0	$\mathbb{Q}_{9,0}^{(h,E,4)}$	$\mathtt{Qh}(9,\mathtt{E},4,0)$	$\frac{\sqrt{858}C_1}{64} + \frac{\sqrt{91}C_3}{32} - \frac{5\sqrt{15}C_5}{32} - \frac{21\sqrt{3}C_7}{64} - \frac{\sqrt{51}C_9}{64}$
98	E	E	4	1	$\mathbb{Q}_{9,1}^{(h,E,4)}$	$\mathtt{Qh}(9,\mathtt{E},4,\mathtt{1})$	$\frac{\sqrt{858}S_1}{64} - \frac{\sqrt{91}S_3}{32} - \frac{5\sqrt{15}S_5}{32} + \frac{21\sqrt{3}S_7}{64} - \frac{\sqrt{51}S_9}{64}$
99	E	E	5	0	$\mathbb{Q}_{9,0}^{(h,E,5)}$	$\mathtt{Qh}(9,\mathtt{E},5,0)$	$\frac{7\sqrt{22}C_1}{64} - \frac{3\sqrt{21}C_3}{32} + \frac{\sqrt{65}C_5}{32} + \frac{\sqrt{13}C_7}{64} - \frac{3\sqrt{221}C_9}{64}$
100	E	E	5	1	$\mathbb{Q}_{9,1}^{(h,E,5)}$	$\mathtt{Qh}(9,\mathtt{E},5,1)$	$\frac{7\sqrt{22}S_1}{64} + \frac{3\sqrt{21}S_3}{32} + \frac{\sqrt{65}S_5}{32} - \frac{\sqrt{13}S_7}{64} - \frac{3\sqrt{221}S_9}{64}$

表 11 rank 10

No. irrep. (tag) mul. comp. harmonics (tag) definition 101 A A 1 - $\mathbb{Q}_{10}^{(h,A,1)}$ $\mathbb{Q}h(10,A,1,)$ $\frac{\sqrt{390C_0}}{48} - \frac{\sqrt{22}C_4}{88} - \frac{\sqrt{11}}{48}$ 102 A A 2 - $\mathbb{Q}_{10}^{(h,A,2)}$ $\mathbb{Q}h(10,A,2,)$ $\frac{11\sqrt{420189}C_0}{8988} + \frac{\sqrt{827645}C_4}{1498} - \frac{1}{1498}$ 103 A A A 3 - $\mathbb{Q}_{10}^{(h,A,3)}$ $\mathbb{Q}h(10,A,3,)$ $\frac{3\sqrt{3213210}C_0}{11984} - \frac{83\sqrt{1498}C_4}{5992} + \frac{1}{11984}$ 104 A A 4 - $\mathbb{Q}_{10}^{(h,A,4)}$ $\mathbb{Q}h(10,A,4,)$ S_8	48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48
$103 \qquad A \qquad \qquad \text{A} \qquad \qquad 3 \qquad \qquad - \qquad \qquad \mathbb{Q}_{10}^{(h,A,3)} \qquad \qquad \mathbb{Q}\text{h}(10,A,3,) \qquad \qquad \frac{3\sqrt{3213210}C_0}{11984} - \frac{83\sqrt{1498}C_4}{5992} + \frac{1}{100}C_0 + \frac{1}{100}$	$\sqrt{146055}C_{8}$
(1.4.)	8988
104 A A 4 - $\mathbb{Q}_{10}^{(h,A,4)}$ $\mathbb{Q}h(10,A,4,)$ S_8	$\frac{31\sqrt{76398}C_8}{11984}$
210	
105 A A 5 $ \mathbb{Q}_{10}^{(h,A,5)}$ $\mathrm{Qh}(\mathrm{10},\mathrm{A},\mathrm{5},)$ S_4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\sqrt{57}C_6}{48}$
107 B B 2 $ \mathbb{Q}_{10}^{(h,B,2)}$ $\mathbb{Q}\mathrm{h}(10,B,2,)$ $\frac{\sqrt{370006}C_{10}}{749} + \frac{\sqrt{190993}}{749}$	$5C_2$
$108 \qquad B \qquad \qquad B \qquad \qquad 3 \qquad \qquad - \qquad \mathbb{Q}_{10}^{(h,B,3)} \qquad \qquad \mathbb{Q}\mathtt{h}(\texttt{10},\texttt{B},\texttt{3},) \qquad \qquad \frac{\sqrt{1209635}C_{10}}{11984} - \frac{19\sqrt{58422}C_2}{35952} + \frac{1}{11984}C_2 + $	$\frac{\sqrt{2247}C_6}{48}$
109 B B 4 $ \mathbb{Q}_{10}^{(h,B,4)}$ $\operatorname{Qh}(10,B,4,)$ S_{10}	
110 B B 5 $ \mathbb{Q}_{10}^{(h,B,5)}$ $\operatorname{Qh}(10,B,5,)$ S_6	
111 B B 6 $ \mathbb{Q}_{10}^{(h,B,6)}$ $\operatorname{Qh}(\mathtt{10},\mathtt{B},6,)$ S_2	
112 E E 1 0 $\mathbb{Q}_{10,0}^{(h,E,1)}$ \mathbb{Q} h(10, E, 1, 0) $\frac{\sqrt{221}S_1}{32} - \frac{\sqrt{102}S_3}{32} - \frac{\sqrt{510}S_5}{32} - \frac{11}{32}$	$\frac{\sqrt{6}S_7}{64} - \frac{\sqrt{38}S_9}{64}$
$113 \qquad E \qquad \qquad \texttt{E} \qquad \qquad 1 \qquad \qquad \mathbb{Q}_{10,1}^{(h,E,1)} \qquad Qh(\texttt{10},\texttt{E},\texttt{1},\texttt{1}) \qquad -\frac{\sqrt{221}C_1}{32} - \frac{\sqrt{102}C_3}{32} + \frac{\sqrt{510}C_5}{32} - \frac{1}{32} + \frac{\sqrt{100}C_5}{32} + \frac{\sqrt{100}C_5}{32} - \frac{1}{32} + \frac{\sqrt{100}C_5}{32} + \frac{\sqrt{100}C_5}{32} - \frac{1}{32} + \frac{\sqrt{100}C_5}{32} + \frac{1}{32} + \frac{\sqrt{100}C_5}{32} + \frac{1}{32} $	$\frac{1\sqrt{6}C_7}{64} + \frac{\sqrt{38}C_9}{64}$
114 E E $Q_{10,0}^{(h,E,2)} = Q_{10,0}^{(h,E,2)} \qquad Q_{10,0}^{(h,E,2)} = \frac{\sqrt{2}\left(\sqrt{78}S_1 - 22S_3 + 10\sqrt{5}S_5 - \sqrt{17}S_5\right)}{64}$	
115 E E 2 1 $\mathbb{Q}_{10,1}^{(h,E,2)}$ $\mathbb{Q}h(10,E,2,1)$ $-\frac{\sqrt{2}\left(\sqrt{78}C_1+22C_3+10\sqrt{5}C_5+\sqrt{17}C_5$	$(C_7 - \sqrt{969}C_9)$
$116 \qquad E \qquad \qquad \text{E} \qquad \qquad 3 \qquad \qquad 0 \qquad \qquad \mathbb{Q}_{10,0}^{(h,E,3)} \qquad \text{Qh(10,E,3,0)} \qquad \qquad \frac{\sqrt{41990}S_1}{256} + \frac{\sqrt{4845}S_3}{128} + \frac{\sqrt{969}S_5}{128} + \sqrt{$	$\frac{\sqrt{285}S_7}{256} + \frac{\sqrt{5}S_9}{256}$
$117 \qquad E \qquad \qquad \text{E} \qquad \qquad 3 \qquad \qquad 1 \qquad \qquad \mathbb{Q}_{10,1}^{(h,E,3)} \qquad \text{Qh(10,E,3,1)} \qquad -\frac{\sqrt{41990}C_1}{256} + \frac{\sqrt{4845}C_3}{128} - \frac{\sqrt{969}C_5}{128} + \frac{\sqrt{4845}C_5}{128} + \frac{\sqrt{4845}C_5}{1$	$-\frac{\sqrt{285}C_7}{256} - \frac{\sqrt{5}C_9}{256}$
118 E E 4 0 $\mathbb{Q}_{10,0}^{(h,E,4)}$ \mathbb{Q} h(10, E, 4, 0) $\frac{9\sqrt{78}S_1}{256} - \frac{69S_3}{128} - \frac{\sqrt{5}S_5}{128} + \frac{43\sqrt{17}}{256}$	$\frac{1}{S_7} + \frac{3\sqrt{969}S_9}{256}$
119 E E 4 1 $\mathbb{Q}_{10,1}^{(h,E,4)}$ \mathbb{Q} h(10, E, 4, 1) $-\frac{9\sqrt{78}C_1}{256} - \frac{69C_3}{128} + \frac{\sqrt{5}C_5}{128} + \frac{43\sqrt{10}C_5}{256} + \frac{43\sqrt{10}C_5}{256} + \frac{43\sqrt{10}C_5}{256} + \frac{69C_3}{128} + \frac{\sqrt{5}C_5}{128} + \frac{43\sqrt{10}C_5}{256} + \frac{69C_3}{128} + \frac{\sqrt{5}C_5}{128} + \frac{43\sqrt{10}C_5}{256} + \frac{69C_3}{128} + \frac{\sqrt{5}C_5}{128} + \frac{43\sqrt{10}C_5}{256} + \frac{69C_3}{128} + 69$	$\frac{7C_7}{6} - \frac{3\sqrt{969}C_9}{256}$
$120 \qquad E \qquad \qquad \text{E} \qquad \qquad 5 \qquad \qquad 0 \qquad \qquad \mathbb{Q}_{10,0}^{(h,E,5)} \qquad \text{Qh} (\texttt{10},\texttt{E},\texttt{5},\texttt{0}) \qquad \frac{7\sqrt{3}S_1}{128} - \frac{7\sqrt{26}S_3}{128} + \frac{5\sqrt{130}S_5}{128} - \frac{7\sqrt{4}S_5}{128} + \frac{5\sqrt{130}S_5}{128} + 5\sqrt{13$	$\frac{42S_7}{56} + \frac{\sqrt{25194}S_9}{256}$
$121 \qquad E \qquad \qquad \text{E} \qquad \qquad 5 \qquad \qquad 1 \qquad \qquad \mathbb{Q}_{10,1}^{(h,E,5)} \qquad \text{Qh}(\texttt{10},\texttt{E},\texttt{5},\texttt{1}) \qquad -\frac{7\sqrt{3}C_1}{128} - \frac{7\sqrt{26}C_3}{128} - \frac{5\sqrt{130}C_5}{128} - \frac{7\sqrt{26}C_3}{128} - \frac{7\sqrt{26}$	$\frac{\overline{442}C_7}{256} - \frac{\sqrt{25194}C_9}{256}$

表 12 rank 11

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
122	A	A	1	_	$\mathbb{Q}_{11}^{(h,A,1)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{A},\mathtt{1},)$	S_8
123	A	Α	2	_	$\mathbb{Q}_{11}^{(h,A,2)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{A},\mathtt{2},)$	S_4
124	A	Α	3	_	$\mathbb{Q}_{11}^{(h,A,3)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{A},\mathtt{3},)$	C_0
125	A	A	4	_	$\mathbb{Q}_{11}^{(h,A,4)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{A},\mathtt{4},)$	C_8
126	A	Α	5	_	$\mathbb{Q}_{11}^{(h,A,5)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{A},\mathtt{5},)$	C_4
127	B	В	1	_	$\mathbb{Q}_{11}^{(h,B,1)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{B},\mathtt{1},)$	$\frac{\sqrt{798}S_{10}}{48} + \frac{\sqrt{255}S_2}{24} + \frac{3\sqrt{6}S_6}{16}$
128	B	В	2	_	$\mathbb{Q}_{11}^{(h,B,2)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{B},\mathtt{2},)$	$-\frac{\sqrt{210}S_{10}}{96} + \frac{\sqrt{969}S_2}{48} - \frac{\sqrt{570}S_6}{32}$
129	B	В	3	-	$\mathbb{Q}_{11}^{(h,B,3)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{B},\mathtt{3},)$	$-\frac{\sqrt{646}S_{10}}{32} + \frac{\sqrt{35}S_2}{16} + \frac{\sqrt{238}S_6}{32}$
130	B	В	4	_	$\mathbb{Q}_{11}^{(h,B,4)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{B},\mathtt{4},)$	C_{10}
131	B	В	5	_	$\mathbb{Q}_{11}^{(h,B,5)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{B},\mathtt{5},)$	C_6
132	B	В	6	_	$\mathbb{Q}_{11}^{(h,B,6)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{B},6,)$	C_2
133	E	E	1	0	$\mathbb{Q}_{11,0}^{(h,E,1)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},\mathtt{1},\mathtt{0})$	$-\frac{21\sqrt{66}C_1}{512}+\frac{\sqrt{88179}C_{11}}{512}+\frac{\sqrt{30030}C_3}{512}-\frac{15\sqrt{143}C_5}{512}+\frac{\sqrt{36465}C_7}{512}-\frac{\sqrt{46189}C_9}{512}$
134	E	E	1	1	$\mathbb{Q}_{11,1}^{(h,E,1)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},\mathtt{1},\mathtt{1})$	$-\frac{21\sqrt{66}S_1}{512}-\frac{\sqrt{88179}S_{11}}{512}-\frac{\sqrt{30030}S_3}{512}-\frac{15\sqrt{143}S_5}{512}-\frac{\sqrt{36465}S_7}{512}-\frac{\sqrt{46189}S_9}{512}$
135	E	E	2	0	$\mathbb{Q}_{11,0}^{(h,E,2)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},\mathtt{2},\mathtt{0})$	$-\frac{\sqrt{41990}C_1}{512} + \frac{\sqrt{385}C_{11}}{512} - \frac{3\sqrt{4522}C_3}{512} + \frac{3\sqrt{4845}C_5}{512} + \frac{77\sqrt{19}C_7}{512} + \frac{39\sqrt{15}C_9}{512}$
136	E	E	2	1	$\mathbb{Q}_{11,1}^{(h,E,2)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},\mathtt{2},\mathtt{1})$	$-\frac{\sqrt{41990}S_1}{512} - \frac{\sqrt{385}S_{11}}{512} + \frac{3\sqrt{4522}S_3}{512} + \frac{3\sqrt{4845}S_5}{512} - \frac{77\sqrt{19}S_7}{512} + \frac{39\sqrt{15}S_9}{512}$
137	E	E	3	0	$\mathbb{Q}_{11,0}^{(h,E,3)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},\mathtt{3},\mathtt{0})$	$-\frac{5\sqrt{546}C_1}{256}+\frac{\sqrt{10659}C_{11}}{256}+\frac{11\sqrt{30}C_3}{256}+\frac{13\sqrt{7}C_5}{256}-\frac{3\sqrt{1785}C_7}{256}+\frac{3\sqrt{2261}C_9}{256}$
138	E	E	3	1	$\mathbb{Q}_{11,1}^{(h,E,3)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},\mathtt{3},\mathtt{1})$	$-\frac{5\sqrt{546}S_1}{256} - \frac{\sqrt{10659}S_{11}}{256} - \frac{11\sqrt{30}S_3}{256} + \frac{13\sqrt{7}S_5}{256} + \frac{3\sqrt{1785}S_7}{256} + \frac{3\sqrt{2261}S_9}{256}$
139	E	E	4	0	$\mathbb{Q}_{11,0}^{(h,E,4)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},\mathtt{4},\mathtt{0})$	$-\frac{\sqrt{29393}C_1}{512}-\frac{\sqrt{22}C_{11}}{1024}-\frac{9\sqrt{1615}C_3}{512}-\frac{5\sqrt{13566}C_5}{1024}-\frac{7\sqrt{1330}C_7}{1024}-\frac{9\sqrt{42}C_9}{1024}$
140	E	E	4	1	$\mathbb{Q}_{11,1}^{(h,E,4)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},\mathtt{4},\mathtt{1})$	$-\frac{\sqrt{29393}S_1}{512} + \frac{\sqrt{22}S_{11}}{1024} + \frac{9\sqrt{1615}S_3}{512} - \frac{5\sqrt{13566}S_5}{1024} + \frac{7\sqrt{1330}S_7}{1024} - \frac{9\sqrt{42}S_9}{1024}$
141	E	E	5	0	$\mathbb{Q}_{11,0}^{(h,E,5)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},\mathtt{5},\mathtt{0})$	$-\frac{15\sqrt{221}C_1}{512} - \frac{3\sqrt{2926}C_{11}}{1024} - \frac{\sqrt{595}C_3}{512} + \frac{53\sqrt{102}C_5}{1024} - \frac{105\sqrt{10}C_7}{1024} - \frac{61\sqrt{114}C_9}{1024}$
142	E	E	5	1	$\mathbb{Q}_{11,1}^{(h,E,5)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},\mathtt{5},\mathtt{1})$	$-\frac{15\sqrt{221}S_1}{512} + \frac{3\sqrt{2926}S_{11}}{1024} + \frac{\sqrt{595}S_3}{512} + \frac{53\sqrt{102}S_5}{1024} + \frac{105\sqrt{10}S_7}{1024} - \frac{61\sqrt{114}S_9}{1024}$
143	E	E	6	0	$\mathbb{Q}_{11,0}^{(h,E,6)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},6,0)$	$-\frac{21\sqrt{130}C_1}{512} - \frac{\sqrt{124355}C_{11}}{512} + \frac{57\sqrt{14}C_3}{512} - \frac{41\sqrt{15}C_5}{512} + \frac{17\sqrt{17}C_7}{512} + \frac{\sqrt{4845}C_9}{512}$
144	E	E	6	1	$\mathbb{Q}_{11,1}^{(h,E,6)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{E},6,\mathtt{1})$	$-\frac{21\sqrt{130}S_1}{512} + \frac{\sqrt{124355}S_{11}}{512} - \frac{57\sqrt{14}S_3}{512} - \frac{41\sqrt{15}S_5}{512} - \frac{17\sqrt{17}S_7}{512} + \frac{\sqrt{4845}S_9}{512}$