_

3 Y.	Solution	
	$= -\int_{-\frac{\pi}{4}}^{0} \frac{1 - \cos 2x}{2} dx + \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} dx$	
	$= -\frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_{-\frac{\pi}{4}}^{0} + \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{8} + \frac{1}{4}$	
b)	$x = \frac{1}{u} \implies \frac{dx}{du} = -\frac{1}{u^2}$	
	$\int \frac{1}{x\sqrt{x^2 - 2}} dx = \int \frac{u}{\sqrt{\frac{1}{u^2} - 2}} \left(-\frac{1}{u^2} \right) du$	
	$=\int \frac{-1}{\sqrt{1-2u^2}} du$	
	$= -\frac{1}{\sqrt{2}}\sin^{-1}\sqrt{2}u + c = c - \frac{1}{\sqrt{2}}\sin^{-1}(\frac{\sqrt{2}}{x})$	
<i>a c</i>	Alternately: $\frac{1}{\sqrt{2}}\cos^{-1}(\frac{\sqrt{2}}{x})+c$	
4. (i)	Direction vector of ℓ_1 is $\begin{pmatrix} 0 \\ -2 \\ 5 \end{pmatrix}$	
	Equation of ℓ_1 is $\underline{r} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ -2 \\ 5 \end{pmatrix}$, $\lambda \in \square$	
(ii)	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 13 \\ -3 \end{pmatrix} & \& \overrightarrow{ON} = \begin{pmatrix} 2 \\ -1 - 2\lambda \\ 3 + 5\lambda \end{pmatrix}$	
	Then $\overrightarrow{BN} = \overrightarrow{ON} - \overrightarrow{OB} = \begin{pmatrix} -2 \\ -14 - 2\lambda \\ 6 + 5\lambda \end{pmatrix}$	
	$\overrightarrow{BN} \bullet \begin{pmatrix} 0 \\ -2 \\ 5 \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} -2 \\ -14 - 2\lambda \\ 6 + 5\lambda \end{pmatrix} \bullet \begin{pmatrix} 0 \\ -2 \\ 5 \end{pmatrix}$	$\Rightarrow 28 + 4\lambda + 30 + 25\lambda = 0$ $\Rightarrow 29\lambda = -58$ $\Rightarrow \lambda = -2$
	$\overrightarrow{BN} = \begin{pmatrix} -2\\ -10\\ -4 \end{pmatrix}$	
	Equation of line BN: $r = \begin{pmatrix} 4 \\ 13 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$	

	Solution
5(i)	$y = \cos x - 1 $
	$\cos^{-1} y = x - 1 $
	$x = 1 \pm \cos^{-1} y$
	Since $1 - \pi \le x \le 1$, $x = 1 - \cos^{-1} y$
	$f^{-1}: x \mapsto 1 - \cos^{-1} x, \ x \in \square, \ -1 \le x \le 1$
(ii)	
(")	$R_g = [0, \infty)$ $\not\subset D_f = [1 - \pi, 1]$ $\Rightarrow fg \text{ does not exist.}$
	For fg to exist,
	$R_g = [0,1] \Rightarrow \text{maximal } D_g = [-1,0]$
6(i)	$\int_{0}^{1} \frac{x}{\sqrt{2-x}} dx = -\int_{0}^{1} \frac{2-x-2}{\sqrt{2-x}} dx$
	$= \int_{0}^{1} \left[-(2-x)^{2} + 2(2-x)^{2} \right] dx$
	$= \left[\frac{2}{3}(2-x)^{\frac{3}{2}} - 4(2-x)^{\frac{1}{2}}\right]_{0}^{1}$ $= \frac{2}{3}(4\sqrt{2} - 5)$
(ii)	$S = \frac{1}{n} \cdot \frac{\frac{1}{\sqrt{n}}}{\sqrt{2 - \frac{1}{n}}} + \frac{1}{n} \cdot \frac{\frac{2}{\sqrt{n}}}{\sqrt{2 - \frac{2}{n}}} + \dots + \frac{1}{n} \cdot \frac{\pi}{\sqrt{2 - \frac{\pi}{n}}}$
	$ = \frac{1}{n} \left[\frac{1}{\sqrt{\frac{n}{2n-1}}} + \frac{2}{\sqrt{\frac{n}{2n-2}}} + \dots + \frac{n}{\sqrt{\frac{n}{2n-1}}} \right] $ $ = \frac{1}{n} \left[\frac{1}{\sqrt{\frac{n}{2n-1}}} + \frac{2}{\sqrt{\frac{n}{2n-1}}} + \dots + \frac{n}{\sqrt{\frac{n}{2n-1}}} \right] $
	$= \frac{1}{n} \left[\frac{\sqrt{1}}{2n-1} + \frac{\sqrt{2}}{2n-2} + \dots + \frac{\sqrt{t}}{n} \right]$
	$\lim_{n \to \infty} S = \int_{0}^{1} \sqrt{\frac{x}{2-x}} dx = \frac{2}{3} (4^{2} - 5)$

3 0	Solution
	Alternative solution for (i) – by parts
	$\int_{0}^{1} \frac{x}{\sqrt{2-x}} dx = \left[\left[-2x\sqrt{2-x} - \int -2\sqrt{2-x} \ dx \right] \right]_{0}^{1}$
	$= \left[-2x\sqrt{2-x} + 2\left[-\frac{2}{3}(2-x)^{\frac{3}{2}} \right] \right]_0^1$
	$= \left[-2x\sqrt{2-x} - \left[\frac{4}{3}(2-x)^{\frac{3}{2}} \right] \right]_0^1$
	$=\frac{2}{3}(4\sqrt{2}-5)$
7a)	Area $A = \int_{1}^{2} \frac{\ln x}{x^{2}} dx - \frac{1}{2} \cdot 1 \cdot \frac{\ln 2}{4}$
	$= \left[(-\frac{1}{x}) \ln x + \int \frac{1}{x} \cdot \frac{1}{x} dx \right]_{1}^{2} - \frac{\ln 2}{8}$
	$= \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{2} - \frac{\ln 2}{8}$
	$= \frac{1}{2} - \frac{5}{8} \ln 2$
7b)	Points of intersection of curves are (-5, 9) and (0, 4). Volume
	$= \pi \int_{0}^{9} (-2 - \sqrt{y})^{2} dy - \pi \int_{0}^{4} (-2 + \sqrt{y})^{2} dy - \pi \int_{4}^{9} \left(\frac{16 - y^{2}}{13}\right)^{2} dy$
	=466.52653 - 8.3775593 - 107.66306
	$=350.4859107 \approx 350$
8i)	After <i>n</i> leaps of the cheetah, the deer would have leaped $\frac{5}{6}n \times 2 = \frac{5}{3}n$.
	Therefore the deer is at a distance $\left(21\frac{2}{5} + \frac{5}{3}n\right)$ from the cheetah's starting point.
ii)	Distance leaped by cheetah: $a = 4$, $d = -\frac{1}{10}$
	After <i>n</i> leaps, the distance leaped by the cheetah = $S_c = \frac{\pi}{2} \left[8 - \frac{1}{10} (n-1) \right]$
	To catch the deer, $S_c \ge 21\frac{2}{5} + \frac{5}{3}n$
	$\frac{n}{2} \left[8 - \frac{1}{10} (n-1) \right] \ge 21 \frac{2}{5} + \frac{5}{3} n$
	$4n - \frac{\pi}{20}(n-1) \ge \frac{107}{5} + \frac{5}{3}n$
	$240n - 3n^2 + 3n \ge 1284 + 100n$ $3n^2 - 143n + 1284 \le 0$
	$(3n-107)(n-12) \le 0 \Rightarrow 12 \le n \le 35\frac{2}{3}$
	Least number of leans -12

Least number of leaps =12

2 1	Solution
iii)	Let k be the initial distance between the deer and the cheetah.
	For the deer to survive the chase, for all n values, $S_c < k + \frac{5}{3}n$
	$\left \frac{n}{2} \left[8 - \frac{1}{10} \left(n - 1 \right) \right] \right < k + \frac{5}{3} n$
	$240n - 3n^2 + 3n < 60k + 100n$
	$3n^2 - 143n + 60k > 0$
	$\Rightarrow Discriminant < 0$ $\Rightarrow 143^2 - 720k < 0$
	$\Rightarrow k > 28.401 \text{ m}$ least distance = 28.5 m
9a)	$\begin{cases} \text{let } z = x + yi \\ (x + yi + i)^* = 2i((x + yi) + i \end{cases}$
	x - (y+1)i = -2y + i(2x+1)
	-y-1=2(-2y)+1
	$\therefore y = \frac{2}{3} \text{ and } x = -\frac{4}{3}$
9b.	i) $z^{5} - 1 = 0 \Rightarrow z = e^{\frac{i2k\pi}{5}}$ $\Rightarrow z = e^{\frac{i2\pi}{5}}, e^{-\frac{i2\pi}{5}}, e^{\frac{i4\pi}{5}}, e^{-\frac{i4\pi}{5}}, 1$ Accept e^{i0}
	ii) $(z+5)^5 - (z-5)^5 = 0$
	$\Rightarrow \left(\frac{5+z}{5-z}\right)^5 = 1$
	$\Rightarrow \frac{5+z}{5-z} = e^{\frac{i^{2k\pi}}{5}}, k = 0, \pm 1, \pm 2 \text{(from (i))}$
	$\Rightarrow (5+z) = (5-z)e^{i\left(\frac{2k\pi}{5}\right)}$
	$5\left(e^{i\left(\frac{2k\pi}{5}\right)}-1\right)$
	$\Rightarrow z = \frac{5\left(e^{i\left(\frac{2k\pi}{5}\right)} - 1\right)}{\left(e^{i\left(\frac{2k\pi}{5}\right)} + 1\right)}$
	$5e^{i\left(\frac{k\pi}{5}\right)}\left(e^{i\left(\frac{k\pi}{5}\right)}-e^{i\left(\frac{-k\pi}{5}\right)}\right)$
0 10	$=\frac{e^{i\left(\frac{k\pi}{5}\right)}\left(e^{i\left(\frac{k\pi}{5}\right)}+e^{i\left(\frac{-k\pi}{5}\right)}\right)}$

8	Solution
	$= \frac{5.2i\sin\left(\frac{k\pi}{5}\right)}{2\cos\left(\frac{k\pi}{5}\right)} = 5i\tan\frac{k\pi}{5} \text{ (proved)}$
10i)	$y = \frac{x^2 + px - q}{x + 3} = x + p - 3 + \frac{9 - q - 3p}{x + 3}$ \Rightarrow Asymptotes: $y = x + p - 3$, $x = -3$
ii)	$\frac{dy}{dx} = 1 - \frac{9 - q - 3p}{(x+3)^2}$ For $\frac{dy}{dx} = 0$, $(x+3)^2 = 9 - q - 3p$ $x = -3 \pm \sqrt{9 - q - 3p}$ For 2 turning points, $9 - q - 3p > 0$ $\Rightarrow q < 9 - 3p \text{ (shown)}$
	iii) $y = \frac{2}{x^2}$ $y = x + p - 3$ $y = \frac{3 - p}{x}$
	When $p = 2$, $q = 1$, $y = \frac{x^2 + 2x - 1}{x + 3}$ $x^4 + 2x^3 - x^2 - 2x - 6 = 0$ $x^2 (x^2 + 2x - 1) = 2(x + 3)$ $\frac{x^2 + 2x - 1}{x + 3} = \frac{2}{x^2} - \dots (1)$
	2 intersection points between $C \& y = \frac{2}{r^2} \Rightarrow 2 \text{ real roots (shown)}$
11a)	(i) $u_{r+2} = u_{r+1} + u_r$ $\frac{u_{r+2}}{u_{r+1}} = 1 + \frac{u_r}{u_{r+1}}$ $v_{r+1} = 1 + \frac{1}{v_r}$
	(ii) As $r \to \infty$, $v_r \to k$ and $v_{r+1} \to k$ $\therefore k = 1 + \frac{1}{l}$

3 93	Solution
	$k^2 = k + 1$
	$k^2 - k - 1 = 0$
	$k = \frac{1 \pm \sqrt{5}}{2}$
	Since $u_r > 0$ for all $r \ge 1$
	$\Rightarrow v_r = \frac{u_{r+1}}{u_r} > 0 \text{ for all } r \ge 1$ $\Rightarrow k = \frac{1 + \sqrt{5}}{2} \text{ (ans)}$
	$\Rightarrow k = \frac{1+\sqrt{5}}{2}$ (ans)
11b)	(i) $u_1 = 1$
	$u_2 = 1$
	$u_3 = u_1 + u_2 = 2$
	$u_4 = u_1 + u_2 + u_3 = 4$
	$u_5 = u_1 + u_2 + u_3 + u_4 = 8$
	$u_6 = u_1 + u_2 + u_3 + u_4 + u_5 = 16$
	(ii) $u_n = 2^{n-2}, n \ge 2$
	(iii) Let $n=2$, LHS = $u_2=1$
	RHS = $2^0 = 1$
	Therefore the result is true for $n = 2$.
	Assume that the result is true for $n = k$, $k \ge 2$
	i.e. $u_k = \sum_{i=1}^{k-1} u_i = 2^{k-2}, k \ge 2$
	$\frac{k}{k-1}$
	For $n = k + 1$, $u_{k+1} = \sum_{i=1}^{k} u_i = \sum_{i=1}^{k-1} u_i + u_k$
	$=2^{k-2}+2^{k-2}=2.2^{k-2}$
	$=2^{k-1}=2^{(k+1)-2}$
	Therefore the result is true for $n = k + 1$.
	Hence by induction, the result is true for all $n \in \mathbb{Z}$, $n \ge 2$.
12a)	a) $\frac{dy}{dy} + \left[1 + (x - y)^2 \right] \cos^2 x - \sin^2 x$ (1)
	a) $\frac{dy}{dx} + [1 + (x - y)^2] \cos^2 x = \sin^2 x$ (1)
	Using $v = x - y$,
	$\frac{dv}{dx} = 1 - \frac{dy}{dx} \implies \frac{dy}{dx} = 1 - \frac{dv}{dx} - \dots $ (2)
	Substitute (2) into (1):
1	

Substitute (2) into (1):

$$1 - \frac{dv}{dx} + [1 + v^2] \cos^2 x = \sin^2 x$$

$$\frac{dv}{dx} = [1 + v^2] [\cos^2 x] + 1 - \sin^2 x$$

$$\frac{dx}{dv}$$

$$\frac{dx}{dv} = \cos^2 x [2 + v^2]$$

	Solution
	$\int \frac{1}{2+v^2} dv = \frac{1}{2} \int (1+\cos 2x) dx$
	$\frac{1}{\sqrt{2}} \tan^{-1} \frac{v}{\sqrt{2}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) + C$
	$\frac{1}{\sqrt{2}} \tan^{-1} \frac{x - y}{\sqrt{2}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) + C$
	$y = x - \sqrt{2} \tan \left(\frac{\sqrt{2}}{2} \left(x + \frac{1}{2} \sin 2x \right) + \sqrt{2}C \right)$
12b)	$\frac{dx}{dt} = R - kx$, k is a positive constant
	At $x = 1.5 R$, $\frac{dx}{dt} = 0$ $\Rightarrow R - \frac{3}{2}Rk = 0 \Rightarrow k = \frac{2}{3}$
	Thus, $\frac{dx}{dt} = R - \frac{2}{3}x$ (shown)
	$i) \int \frac{1}{R - \frac{2}{3}x} dx = \int 1 dt$
	$-\frac{1}{2}\ln\left R-\frac{2}{3}x\right =t+c$
	$\ln \left R - \frac{2}{3}x \right = -\frac{2}{3}t - \frac{2}{3}c$
	$R - \frac{2}{3}x = A e^{-\frac{2}{3}t}$
	$x = \frac{3}{2} \left(R - A e^{-\frac{2}{3}t} \right)$
	At $t = 0$, $x = 0$, $0 = (R - A)$ ie $A = R$
	$\Rightarrow x = \frac{3R}{2} \left(1 - e^{\frac{-2t}{3}} \right)$
	ii) As $t \to \infty$, $e^{-\frac{2}{3}t} \to 0$
	$x \rightarrow \frac{3}{2}R \Rightarrow \alpha = \frac{3}{2}R$
<u> </u>	ie regardless of time, the amount of drug in the patient's body will never exceed $\frac{3}{2}R$.
13a)	$L = \sqrt{y^2 + (18 - x)^2}$
	$= \sqrt{x^4 + (18 - x)^2}$
	$L^2 = x^4 + (18 - x)^2$
	$2L\frac{dL}{dx} = 4x^3 + 2(18 - x)(-1)$

Solution

At min pt,
$$\frac{dL}{dx} = 0$$

 $\therefore 4x^3 = 36 - 2x$

$$2x^3 + x - 18 = 0$$

From GC, x = 2 is the only solution.

Therefore the point is (2, 4)

$$x = 2^+, \frac{dL}{dx} > 0$$

$$x = 2^-, \frac{dL}{dx} < 0$$
 :. Min point.

13b) i)

$$\frac{2}{4} = \frac{x}{6+x} \Rightarrow x = 6$$

$$\frac{2}{r} = \frac{6}{6+h} \Rightarrow r = 2 + \frac{h}{3}$$

$$V = \frac{1}{3}\pi r^2 (h+6) - \frac{1}{3}\pi (2^2)6$$

$$= \frac{1}{3}\pi \left(2 + \frac{h}{3}\right)^2 (h+6) - 8\pi$$

$$=\frac{1}{3}\pi\left(\frac{1}{3}\right)^{2}(h+6)^{3}-8\pi$$

$$=\frac{\pi}{27}(h+6)^3-8\pi$$

ii)
$$\frac{dV}{dh} = \frac{\pi}{9}(h+6)^2$$

$$\frac{dh}{dt} = \frac{dh}{dv} \times \frac{dv}{dt}$$

$$=\frac{9}{\pi(h+6)^2}(20) = \frac{180}{\pi(h+6)^2}$$

when h = 3cm,

$$\frac{dh}{dt} = \frac{180}{\pi(81)} = \frac{20}{9\pi} \ cm/s$$