Weekly Homework #1

Dan McArdle CIS 275 – Discrete Math

Oct 14, 2013

Problem 5

Claim: Let A, B, C be sets. Then, $(A \setminus B) \setminus C \subseteq (A \setminus C) \setminus (B \setminus C)$.

Proof: (direct) It is sufficient to show the following two subclaims.

- 1. $(A \backslash B) \backslash C \subseteq (A \backslash C) \backslash (B \backslash C)$
- 2. $(A \backslash B) \backslash C \supseteq (A \backslash C) \backslash (B \backslash C)$

Subclaim 1: $(A \backslash B) \backslash C \subseteq (A \backslash C) \backslash (B \backslash C)$

Let x be an arbitrary element in $(A \setminus B) \setminus C$.

It follows that $x \in A \backslash B$ and $x \notin C$.

Since $x \in A \backslash B$, it follows that $x \in A$ and $x \notin B$.

Since we know $x \in A$ and $x \notin C$, it follows that $x \in A \setminus C$.

Since we know that $x \notin B$, it follows that $x \notin B \setminus C$.

Because $x \in A \backslash C$ and $x \notin B \backslash C$, we have shown $x \in (A \backslash C) \backslash (B \backslash C)$.

Therefore, since x was an arbitrary element in $(A \setminus B) \setminus C$, we have shown that $(A \setminus B) \setminus C \subseteq (A \setminus C) \setminus (B \setminus C)$. Subclaim 1 is true.

Subclaim 2: $(A \setminus B) \setminus C \supseteq (A \setminus C) \setminus (B \setminus C)$ [This is where we would prove that subclaim 2 is true. I leave it as an exercise for the reader!]

Because subclaims 1 and 2 are true, our original claim is true.