

Art of Problem Solving 2011 Sharygin Geometry Olympiad

Sharygin Geometry Olympiad 2011

1	Does a convex heptagon exist which can be divided into 2011 equal triangles?
2	Let ABC be a triangle with sides $AB = 4$ and $AC = 6$. Point H is the projection of vertex B to the bisector of angle A . Find MH , where M is the midpoint of BC .
3	Let ABC be a triangle with $\angle A = 60^{\circ}$. The midperpendicular of segment AB meets line AC at point C_1 . The midperpendicular of segment AC meets line AB at point B_1 . Prove that line B_1C_1 touches the incircle of triangle ABC .
4	Segments AA' , BB' , and CC' are the bisectrices of triangle ABC . It is known that these lines are also the bisectrices of triangle $A'B'C'$. Is it true that triangle ABC is regular?
5	Given triangle ABC . The midperpendicular of side AB meets one of the remaining sides at point C' . Points A' and B' are defined similarly. Find all triangles ABC such that triangle $A'B'C'$ is regular.
6	Two unit circles ω_1 and ω_2 intersect at points A and B . M is an arbitrary point of ω_1 , N is an arbitrary point of ω_2 . Two unit circles ω_3 and ω_4 pass through both points M and N . Let C be the second common point of ω_1 and ω_3 , and D be the second common point of ω_2 and ω_4 . Prove that $ACBD$ is a parallelogram.

www.artofproblemsolving.com/community/c3683

Contributors: hshiems