2020 V and C without Unemployment

This is the example vignette for function: **snw_a4chk_wrk_bisec_vec** from the **PrjOptiSNW Package.** This function solves for the V(states, check) for individuals working. Dense solution. Bisection, most time for the test here taken to generate the income matrixes. But these can be generated out of the check loops.

Test SNW_A4CHK_WRK_BISEC_VEC Defaults Dense

Call the function with default parameters. Solve first for non-covid value and policy. Then depending on 2020 taxes, solve for 2020 policy and value.

```
mp_params = snw_mp_param('default_docdense');
% mp params = snw mp param('default dense');
mp_params('beta') = 0.95;
mp_controls = snw_mp_control('default_test');
mp_controls('bl_print_vfi') = false;
mp_controls('bl_timer') = true;
[V_ss,~,cons_ss,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
Completed SNW_VFI_MAIN_BISEC_VEC;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;time=497.9011
CONTAINER NAME: mp_outcomes ND Array (Matrix etc)
idx
                           ndim
                                                         colN
                                                                                    mean
                                                                                               std
                                                                                                        coefvari
                                    numel
                                               rowN
   V VFI
               1
                     1
                            6
                                   4.37e+07
                                                83
                                                       5.265e+05
                                                                    -1.2728e+08
                                                                                   -2.9126
                                                                                              20.655
                                                                                                        -7.0915
                     2
    ap_VFI
                2
                            6
                                   4.37e+07
                                                83
                                                       5.265e+05
                                                                     1.3962e+09
                                                                                     31.95
                                                                                              36.423
                                                                                                           1.14
    cons_VFI
                     3
                            6
                                   4.37e+07
                                                83
                                                       5.265e+05
                                                                     2.3374e+08
                                                                                    5.3487
                                                                                              8.4439
                                                                                                         1.5787
xxx TABLE:V_VFI xxxxxxxxxxxxxxxxxx
                                                                                                             c52656
                                             c4
                                                        c5
                                                                 c526496
                                                                            c526497
                                                                                       c526498
                                                                                                  c526499
            c1
                       c2
                                  с3
    r1
          -274.81
                     -274.42
                                -271.94
                                           -266.29
                                                      -257.26
                                                                  14.439
                                                                             14.533
                                                                                        14.626
                                                                                                   14.718
                                                                                                              14.80
    r2
          -265.29
                      -264.9
                                -262.43
                                           -256.84
                                                      -248.12
                                                                  14.494
                                                                             14.585
                                                                                        14.674
                                                                                                   14.763
                                                                                                               14.8
                     -255.38
                                -252.93
    r3
          -255.77
                                           -247.53
                                                      -239.24
                                                                   14.55
                                                                             14.636
                                                                                        14.723
                                                                                                   14.808
                                                                                                              14.89
    r4
          -246.16
                      -245.8
                                -243.52
                                           -238.46
                                                      -230.68
                                                                  14.606
                                                                             14.689
                                                                                        14.772
                                                                                                   14.853
                                                                                                              14.93
    r5
          -237.48
                     -237.14
                                -235.01
                                           -230.26
                                                      -222.92
                                                                  14.654
                                                                             14.734
                                                                                        14.813
                                                                                                   14.891
                                                      -9.0457
                                                                  2.4698
   r79
          -9.6662
                      -9.655
                                -9.5783
                                           -9.3823
                                                                             2.4801
                                                                                        2.4898
                                                                                                   2.4989
                                                                                                              2.507
                                                                                                   2.2755
    r80
          -8.7031
                     -8.6919
                                -8.6152
                                           -8.4192
                                                      -8.0826
                                                                   2.253
                                                                              2.261
                                                                                        2.2685
                                                                                                              2.282
                                                                                        1.9855
                                                                                                               1.99
    r81
          -7.5138
                      -7.5026
                                -7.4258
                                           -7.2298
                                                      -6.8933
                                                                  1.9749
                                                                             1.9803
                                                                                                   1.9904
          -5.9155
                                -5.8275
    r82
                     -5.9043
                                           -5.6315
                                                       -5.295
                                                                   1.582
                                                                             1.5851
                                                                                         1.588
                                                                                                   1.5907
                                                                                                              1.593
                                                                                                             0.9826
    r83
          -3.5892
                      -3.578
                                -3.5012
                                           -3.3052
                                                      -2.9687
                                                                 0.97904
                                                                            0.98004
                                                                                       0.98097
                                                                                                  0.98185
xxx TABLE:ap VFI xxxxxxxxxxxxxxxxxx
                                       c4
                                                    c5
                                                             c526496
                                                                        c526497
                                                                                   c526498
                                                                                              c526499
                                                                                                         c526500
                c2
                          c3
          0
                0
                      0.00051498
                                    0.0066578
                                                 0.021589
                                                             112.13
                                                                        117.66
                                                                                   123.39
                                                                                               129.3
                                                                                                         135.72
    r1
          0
                      0.00051498
                                    0.0057684
                                                 0.020245
                                                             112.16
                                                                                              129.34
    r2
                0
                                                                         117.7
                                                                                   123.42
                                                                                                         135.75
   r3
          0
                0
                      0.00020768
                                    0.0041456
                                                 0.018539
                                                             112.19
                                                                        117.72
                                                                                   123.45
                                                                                              129.36
                                                                                                         135.77
   r4
          0
                0
                      0.00010346
                                    0.0041199
                                                 0.018307
                                                             112.85
                                                                        118.38
                                                                                   124.11
                                                                                              130.02
                                                                                                         136.44
          0
                0
    r5
                      5.2907e-06
                                    0.0041199
                                                 0.018091
                                                             113.53
                                                                        119.06
                                                                                   124.78
                                                                                               130.7
                                                                                                         137.11
    r79
          0
                0
                                                                        85.373
                                                                                              93.265
                               0
                                            0
                                                        0
                                                             81.091
                                                                                   89.342
                                                                                                         97.358
    r80
          0
                0
                               0
                                            0
                                                        0
                                                             76.137
                                                                        79.759
                                                                                   83.442
                                                                                              86.995
                                                                                                         90.589
    r81
          0
                0
                               0
                                            0
                                                        0
                                                             67.958
                                                                        70.652
                                                                                   73.689
                                                                                              77.006
                                                                                                         81.091
```

50.126

53.467

56.319

57.902

60.587

0

r82

0

0

0

vvv	TABLE . cons	V/FT	xxxxxxxxxxxxxxx
XXX	IADLE: COIIS	$\Lambda L T$	XXXXXXXXXXXXXXXXX

	c1	c2	c 3	c4	c 5	c526496	c526497	c526498	c526499
r1	0.036717	0.037251	0.040477	0.044486	0.049324	12.272	12.557	12.851	13.152
r2	0.036717	0.037251	0.040477	0.045375	0.050668	12.508	12.794	13.089	13.391
r3	0.036717	0.037251	0.040784	0.046998	0.052374	12.762	13.05	13.345	13.646
r4	0.038144	0.038678	0.042314	0.048449	0.054031	13.008	13.297	13.593	13.891
r5	0.039534	0.040068	0.043802	0.049839	0.055635	13.245	13.534	13.83	14.125
r79	0.2179	0.21844	0.22216	0.23228	0.25197	35.858	37.4	39.448	41.74
r80	0.2179	0.21844	0.22216	0.23228	0.25197	40.785	42.986	45.321	47.983
r81	0.2179	0.21844	0.22216	0.23228	0.25197	48.942	52.071	55.052	57.95
r82	0.2179	0.21844	0.22216	0.23228	0.25197	66.755	69.238	72.404	77.036
r83	0.2179	0.21844	0.22216	0.23228	0.25197	116.87	122.69	128.71	134.92

```
welf_checks = 2; % 2 checks is $200 dollar of welfare checks
xi=1; % xi=0 full income loss from covid shock, xi=1, no covid income losses
b=1; % when xi=1, b does not matter, no income losses
TR = 100/58056;
mp_params('TR') = TR;
mp_params('xi') = xi;
mp_params('b') = b;
% if = mp_params('a2_covidyr_manna_heaven'), V_emp_2020 same as V_ss if b=1
% or xi=1.
% if = mp_params('a2_covidyr_tax_fully_pay'), V_emp_2020 differ due to 2020
% tax differences
mp_params('a2_covidyr') = mp_params('a2_covidyr_manna_heaven');
% mp_params('a2_covidyr') = mp_params('a2_covidyr_tax_fully_pay');
[V_emp_2020,~,cons_emp_2020,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
```

Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; times

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	_									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-1.2728e+08	-2.9126	20.655	-7.0915
ap_VFI	2	2	6	4.37e+07	83	5.265e+05	1.3962e+09	31.95	36.423	1.14
cons_VFI	3	3	6	4.37e+07	83	5.265e+05	2.3374e+08	5.3487	8.4439	1.5787

xxx TABLE:V_VFI xxxxxxxxxxxxxxxxxx

AA IADEE										
	c1	c2	c 3	c4	с5	c526496	c526497	c526498	c526499	c52650
r1	-274.81	-274.42	-271.94	-266.29	-257.26	14.439	14.533	14.626	14.718	14.80
r2	-265.29	-264.9	-262.43	-256.84	-248.12	14.494	14.585	14.674	14.763	14.8
r3	-255.77	-255.38	-252.93	-247.53	-239.24	14.55	14.636	14.723	14.808	14.89
r4	-246.16	-245.8	-243.52	-238.46	-230.68	14.606	14.689	14.772	14.853	14.93
r5	-237.48	-237.14	-235.01	-230.26	-222.92	14.654	14.734	14.813	14.891	14.9
r79	-9.6662	-9.655	-9.5783	-9.3823	-9.0457	2.4698	2.4801	2.4898	2.4989	2.50
r80	-8.7031	-8.6919	-8.6152	-8.4192	-8.0826	2.253	2.261	2.2685	2.2755	2.282
r81	-7.5138	-7.5026	-7.4258	-7.2298	-6.8933	1.9749	1.9803	1.9855	1.9904	1.99
r82	-5.9155	-5.9043	-5.8275	-5.6315	-5.295	1.582	1.5851	1.588	1.5907	1.593
r83	-3.5892	-3.578	-3.5012	-3.3052	-2.9687	0.97904	0.98004	0.98097	0.98185	0.9826

xxx TABLE:ap_VFI xxxxxxxxxxxxxxxxxx

c1 c2 c3 c4 c5 c526496 c526497 c526498 c526499 c526500

r1	0 6					117.66	123.39	129.3	135.7
r2	0 (117.7	123.42	129.34	135.7
r3	0 6					117.72	123.45	129.36	135.7
r4	0 6					118.38	124.11	130.02	136.4
r5	0 6	5.2907e-06	6.004119	99 0.018091		119.06	124.78	130.7	137.1
r79	0 6		9	0 6		85.373	89.342	93.265	97.35
r80	0 6	9	9	0 6	76.137	79.759	83.442	86.995	90.58
r81	0 6		9	0 6	67.958	70.652	73.689	77.006	81.09
r82	0 6	9	9	0 6	50.126	53.467	56.319	57.902	60.58
r83	0 6	9	9	0 6	0	0	0	0	
x TABLE	:cons VF	[xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	xxxxx						
	_ c1	c2	с3	c4	c 5	c526496	c526497	c526498	c526499
r1	0.03671	 L7	0.040477	0.044486	0.049324	12.272	12.557	12.851	13.152
r2	0.03671	17 0.037251	0.040477	0.045375	0.050668	12.508	12.794	13.089	13.391
r3	0.03671	17 0.037251	0.040784	0.046998	0.052374	12.762	13.05	13.345	13.646
r4	0.03814	14 0.038678	0.042314	0.048449	0.054031	13.008	13.297	13.593	13.891
r5	0.03953	34 0.040068	0.043802	0.049839	0.055635	13.245	13.534	13.83	14.125
r79	0.217	79 0.21844	0.22216	0.23228	0.25197	35.858	37.4	39.448	41.74
r80	0.217	79 0.21844	0.22216	0.23228	0.25197	40.785	42.986	45.321	47.983
r81	0.217	79 0.21844	0.22216	0.23228	0.25197	48.942	52.071	55.052	57.95
r82	0.217	79 0.21844	0.22216	0.23228	0.25197	66.755	69.238	72.404	77.036
r83	0.217	9 0.21844	0.22216	0.23228	0.25197	116.87	122.69	128.71	134.92
W_20	20, C_W	_2020] = snw_	_a4chk_wrk_	_bisec_vec(welf_check	ks, V_emp	_2020, coi	ns_emp_202	20, mp_r
nlotod	I SNIN AACI	HK_WRK_BISEC_VEC	Comple chacks	2·TP_0 00173	DOE COM MD D	APAM-dofaul	+ docdonso.	SNIJ MD CONT	POL =dofai
				5-2, TK-0.00172	JUN_HE_F	ANAI-ue i aui	t_docuense,	SIW_HF_CONT	NOL-derac
		(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
ITAINER	-	o_container_map <xxxxxxxxxxxxxxxx< td=""><td></td><td>atrix etc)</td><td></td><td></td><td></td><td></td><td></td></xxxxxxxxxxxxxxxx<>		atrix etc)					
XXXXXX	. x x x x x x x x								

C_W_minus_C_ss	2	2	6	4.37e+07	83	5.265e+05	25255	0.00057793	0.00077744
V_W	3	3	6	4.37e+07	83	5.265e+05	-1.2673e+08	-2.9001	20.606
V_W_minus_V_ss	4	4	6	4.37e+07	83	5.265e+05	5.4734e+05	0.012525	0.068763
mn MPC	5	5	6	4.37e+07	83	5.265e+05	7.331e+06	0.16776	0.22568

83

5.265e+05

2.3376e+08

5.3493

8.444

4.37e+07

Dense Param Results Define Frames

C W

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:100;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
```

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN_V_GAIN_CHECK(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
ar_permute = [1,4,5,6,3,2];
% Value Function
st_title = ['MEAN(MN V W GAIN CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str(r
tb az v = ff summ nd array(st title, mn V W gain check, true, ["mean"], 4, 1, cl mp datasetdeso
group
           savings
                      mean_eta_1
                                 mean_eta_2
                                             mean_eta_3
                                                         mean_eta_4
                                                                    mean_eta_5
                                                                                mean_eta_6
                                                                                            mean_
    1
                         0.9392
                                    0.83995
                                                0.75143
                                                           0.67247
                                                                       0.60211
                                                                                   0.53949
                                                                                              0.
          0.00051498
    2
                        0.92853
                                    0.83105
                                                0.74401
                                                           0.66627
                                                                       0.59692
                                                                                   0.53514
                                                                                              0.
    3
           0.0041199
                        0.77235
                                    0.70233
                                               0.63637
                                                            0.5753
                                                                       0.51956
                                                                                   0.46916
                                                                                               (
                                               0.49958
    4
            0.013905
                        0.58905
                                    0.54392
                                                           0.45714
                                                                       0.41741
                                                                                   0.38076
                                                                                              0.
    5
            0.032959
                        0.42485
                                    0.3981
                                               0.37046
                                                           0.34301
                                                                       0.31661
                                                                                   0.29176
                                                                                              0
            0.064373
    6
                        0.30454
                                    0.28847
                                               0.27108
                                                           0.25326
                                                                       0.23574
                                                                                   0.21897
                                                                                              0.
% Consumption
st_title = ['MEAN(MN_MPC_W_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_W_gain_share_check, true, ["mean"], 4, 1, cl_mp_date
```

N_MPC_W_GAIN_C savings	HECK(A,Z)), we mean_eta_1	elf_checks=2, mean_eta_2	TR=0.0017225 mean_eta_3	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	mean_eta_6	mean_
0	0.99819	0.99542	0.99298	0.99165	0.99158	0.9919	0.99
0.00051498	0.99786	0.99458	0.99169	0.99012	0.99004	0.99041	0.99
0.0041199	0.88447	0.87855	0.87718	0.87666	0.87656	0.87691	0.87
0.013905	0.8027	0.80028	0.79717	0.7959	0.79596	0.79674	0.79
0.032959	0.72023	0.71543	0.71313	0.71256	0.71322	0.71476	0.71
0.064373	0.64495	0.64422	0.64465	0.64572	0.64725	0.64909	0.65
	savings 0 0.00051498 0.0041199 0.013905 0.032959	savings mean_eta_1 0 0.99819 0.00051498 0.99786 0.0041199 0.88447 0.013905 0.8027 0.032959 0.72023	savings mean_eta_1 mean_eta_2 0 0.99819 0.99542 0.00051498 0.99786 0.99458 0.0041199 0.88447 0.87855 0.013905 0.8027 0.80028 0.032959 0.72023 0.71543	savings mean_eta_1 mean_eta_2 mean_eta_3 0 0.99819 0.99542 0.99298 0.00051498 0.99786 0.99458 0.99169 0.0041199 0.88447 0.87855 0.87718 0.013905 0.8027 0.80028 0.79717 0.032959 0.72023 0.71543 0.71313	savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 0 0.99819 0.99542 0.99298 0.99165 0.00051498 0.99786 0.99458 0.99169 0.99012 0.0041199 0.88447 0.87855 0.87718 0.87666 0.013905 0.8027 0.80028 0.79717 0.7959 0.032959 0.72023 0.71543 0.71313 0.71256	savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 mean_eta_5 0 0.99819 0.99542 0.99298 0.99165 0.99158 0.00051498 0.99786 0.99458 0.99169 0.99012 0.99004 0.0041199 0.88447 0.87855 0.87718 0.87666 0.87656 0.013905 0.8027 0.80028 0.79717 0.7959 0.79596 0.032959 0.72023 0.71543 0.71313 0.71256 0.71322	savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 mean_eta_5 mean_eta_6 0 0.99819 0.99542 0.99298 0.99165 0.99158 0.9919 0.00051498 0.99786 0.99458 0.99169 0.99012 0.99004 0.99041 0.0041199 0.88447 0.87855 0.87718 0.87666 0.87656 0.87691 0.013905 0.8027 0.80028 0.79717 0.7959 0.79596 0.79674 0.032959 0.72023 0.71543 0.71313 0.71256 0.71322 0.71476

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_W\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' n
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_W\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_W\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' num2support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_W\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = [...
    "k0M0", "K1M0", "K2M0", "K3M0", "K4M0", ...
    "k0M1", "K1M1", "K2M1", "K3M1", "K4M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {...
    'o', 'd', 's', 'x', '*', ...
    'o', 'd', 's', 'x', '*'};
mp_support_graph('cl_colors') = {...
    'red', 'red', 'red', 'red'...
    'blue', 'blue', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n jgrid,n agrid,n etagrid,n educgrid,n marriedgrid,n kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
st title = ['MEAN(MN V W GAIN CHECK(KM,J)), welf checks=' num2str(welf checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_v_W_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesd
group
           kids
                  marry
                                      mean_age_19
                                                   mean_age_20
                         mean_age_18
                                                                 mean_age_21
                                                                             mean_age_22
                                                                                           mean_age_23
                                                                                            0.020378
     1
            1
                    0
                           0.028437
                                        0.027376
                                                     0.026063
                                                                  0.023822
                                                                               0.021951
     2
            2
                    0
                           0.039126
                                        0.037707
                                                     0.035888
                                                                  0.032737
                                                                               0.030099
                                                                                            0.027872
     3
            3
                    0
                           0.045715
                                        0.044315
                                                     0.042405
                                                                  0.038713
                                                                               0.035625
                                                                                             0.03302
     4
                   0
                           0.051932
                                        0.050444
                                                     0.048349
                                                                  0.044158
                                                                               0.040655
                                                                                              0.0377
     5
            5
                   0
                           0.056982
                                        0.055495
                                                      0.05332
                                                                  0.048744
                                                                               0.044921
                                                                                              0.0417
     6
            1
                   1
                          0.0083841
                                       0.0079786
                                                    0.0075864
                                                                 0.0068605
                                                                              0.0062537
                                                                                           0.0057409
     7
            2
                   1
                           0.011252
                                        0.010707
                                                      0.01018
                                                                 0.0092031
                                                                              0.0083806
                                                                                           0.0076871
     8
            3
                   1
                           0.013553
                                        0.012927
                                                     0.012312
                                                                  0.011135
                                                                               0.010146
                                                                                           0.0093125
     9
            4
                   1
                            0.01625
                                        0.015528
                                                     0.014802
                                                                  0.013403
                                                                               0.012224
                                                                                            0.011225
    10
            5
                    1
                           0.019767
                                        0.018969
                                                     0.018138
                                                                  0.016443
                                                                               0.015025
                                                                                             0.01382
% Consumption Function
st_title = ['MEAN(MN_MPC_W_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_W_gain_share_check, true, ["mean"], 3, 1, cl_mp_date
```

kids mean_age_19 mean_age_23 group marry mean_age_18 mean_age_20 mean_age_21 mean_age_22 1 1 0 0.067662 0.074715 0.091649 0.089315 0.087212 0.085182 2 2 0 0.075189 0.083207 0.10171 0.099915 0.09786 0.095891 3 3 0 0.086592 0.095968 0.11575 0.11253 0.11003 0.10802 4 4 0 0.091661 0.10083 0.1215 0.11846 0.11536 0.11327 5 5 0 0.098586 0.10681 0.12763 0.12422 0.12139 0.11766 6 1 1 0.10283 0.10674 0.11265 0.11032 0.10943 0.1115

7	2	1	0.10353	0.10779	0.11436	0.11367	0.11228	0.11099
8	3	1	0.10878	0.1138	0.12316	0.11987	0.11874	0.1184
9	4	1	0.11021	0.11558	0.12335	0.12226	0.12245	0.12007
10	5	1	0.11668	0.12332	0.13258	0.13022	0.12682	0.12511

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_W\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_W\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_W\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_W\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,6,1,4,5];
% Value Function
st title = ['MEAN(MN V W GAIN CHECK(EM,J)), welf checks=' num2str(welf checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_v_w_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesd
group
                       mean_age_18
                                   mean_age_19
                                               mean_age_20
                                                            mean_age_21
                                                                        mean_age_22
                                                                                    mean_age_23
    1
           0
                 0
                        0.045686
                                    0.044613
                                                0.043199
                                                            0.040738
                                                                         0.038551
                                                                                      0.036603
                                    0.041522
    2
           1
                 0
                        0.043191
                                                0.039211
                                                            0.034531
                                                                         0.030749
                                                                                      0.027666
    3
                        0.014696
           0
                 1
                                    0.014078
                                                0.013468
                                                            0.012489
                                                                         0.011628
                                                                                      0.010873
    4
           1
                 1
                        0.012986
                                    0.012366
                                                0.011738
                                                            0.010329
                                                                         0.0091832
                                                                                     0.0082411
% Consumption
st_title = ['MEAN(MN_MPC_W_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_W_gain_share_check, true, ["mean"], 3, 1, cl_mp_date
```

XXX	MEAN(M	<pre>I_MPC_M</pre>	_GAIN_CHE	$CK(EM,J))$, $welf_{_}$	_checks=2,TR=0	.0017225 xxxxx	XXXXXXXXXXXXXXXX	XXXXXX	
	group	edu	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
	1	0	0	0.075426	0.080467	0.092498	0.091865	0.091752	0.091309
	2	1	0	0.09245	0.10414	0.1308	0.12591	0.12099	0.1167
	3	0	1	0.099901	0.10366	0.1083	0.10854	0.10844	0.1078
	4	1	1	0.11691	0.12322	0.13414	0.13047	0.1278	0.1258

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_W\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_W\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_W\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_W\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


