Lect#11: Enzyme Mechanisms-III: Techniques for Drug Discovery

- A. Drug Design
- B. Techniques of Drug Discovery
 - (1) Complexity of Drug Discovery
 - (2) SARS and QSARS
 - (3) Structure-based Drug Design
 - (4) Combinatorial Chemistry and High-Throughput Screening
- C. Introduction to Pharmacology
 - (1) Pharmocokinetics
 - (2) Toxicity and Adverse Reactions Eliminate Most Drug Candidates
 - (a) Phase I
 - (b) Phase II
 - (c) Phase III
 - (3) Drug Candidate Statistics
 - (4) Cytochrome P450 Metabolizes Drugs
 - (5) Many Drugs are Enzyme Inhibitors
 - (a) Sulfadrugs
 - (b) Viagara

Lecture #11: Enzyme Mechanisms-III: Techniques for Drug Discovery

A. Drug Design:

- Improvements in medical care are largely attributed to development of wide variety of drugs
 - antibiotics
 - anti-inflammatory agents
 - analgesics and anesthetics,
 - antidepressants
 - antipsychotics,
 - immunosuppressants,
 - cancer drugs,
 - cardiovascular and stroke drugs, etc.

B. Techniques of Drug Discovery:

- drugs act by modifying the function of a particular receptor in the body or an invading pathogen
 - receptor: enzyme, channel or signalling protein
 - Agonists: compounds that modify the receptor function
 - Antagonists: compounds that bind without modifying function, but block agonist binding
- biochemical and physiological effects of a drug and its mechanism of action are called pharmacodynamics

Agonists and Antagonists

1. Complexity of Drug Discovery

- drugs discovered by screening large numbers of synthetic compounds and natural products for the desired effect
- natural products are discovered by fractionation of the organism in which they occur and isolating the "active ingredient"
- *in vitro* screens are initially used such as the binding of a drug to a target enzyme implicated in the disease
- number of drug candidates is reduced to "effective" compounds
 - then animal testing
- lead compound: a drug candidate that exhibits a desired effect
 - binds to its target with a K_d < 1 μM

- high affinity is necessary to minimize nonspecific binding to other macromolecules
 - Reduces potential side effects

Measures of drug effectiveness

<u>IC</u>₅₀: the [inhibitor] at which an enzyme exhibits 50% of its maximal activity $(v_i/v_o = 0.5)$

ED₅₀: the <u>effective dose</u> of a drug to produce a therapeutic effect in 50% of a test sample

<u>TD₅₀</u>: the <u>mean toxic dose</u> of a drug to produce a particular toxic effect in one-half of the animals

LD₅₀: mean lethal dose of drug required to kill 50% of a test sample

Therapeutic index: is the TD_{50}/ED_{50} ratio

 Drugs that have high therapeutic indices are the best

2. SARs and QSAR (Drug Design)

- lead compound: starting point to design more efficacious compounds
- minor modifications to a drug candidate can result in major changes in its pharmacological properties
- <u>successful drugs</u> are the result of 5,000 -10,000 related compounds that were synthesized/tested
- systematic process
 - structure-activity relationships (SAR_s)
- SAR_s: synthesis and screening to determine which groups on a lead compound are important for drug function

QSAR and Drug Design

QSAR- quantitative structure-activity relationships

-there is a **simple mathematical** relationship between the biological activity of a drug and its physiochemical properties

hydrophobicity of a drug is important for its biological activity

improved biological activity

changing the substituents on the drug to alter its nonpolar character will affect its activity

-hydrophobicity is measured by P (partition coefficient) between two immiscible solvents

$$P = [drug]_{oct}/[drug]_{H20}$$

Concentration dissolved in partition solvent Concentration dissolved in water

The solvents are "immiscible" The system must be at equilibrium All the solute must be dissolved Temperature should be constant

- if C is [drug] to achieve a specified level of biological function then activity may be expressed as 1/C
 - plot of log(1/C) vs log P for a small range of log P values gives a linear relationship

$$\log(1/C) = k_1 \log P + k_2$$

- where k₁ and k₂ are constants whose optimum values in QSAR can be determined by computerized curve fitting
- compounds with a larger range of log P values
 - plot of log1/C vs log P will have maximum value and will be described by a quadratic equation

$$\log(1/C) = k_1(\log P)^2 + k_2\log P + k_3$$

-typically QSAR depends on the chemical properties of a variety of substituents

-pK values, van der Waals radii, Hbonding energy, and conformation

3. Structure-based drug design

- also called rational drug design
 - uses the <u>structure</u> of a receptor in complex with a drug candidate to guide compound development
- based on X-ray crystallography and NMR structure determination

- -may be supplemented with molecular modelling tools
- energy minimization
- quantum mechanical calculations
- docking simulations
- iterative process: structure of receptor with improved compounds

4. Combinatorial Chemistry and High-Throughput Screening

• **combinatorial chemistry:** rapidly and inexpensively synthesize large numbers of compounds in a "**make-many-compounds-and-see-what-they-do approach**"

 combinatorial synthesis approach: 100 different groups may be added to a single position on a drug scaffold

Virtual screening

Structure-based virtual screening

Structure-based

- more effective at detecting novel chemical scaffolds
- need high-resolution structure of target

Ligand-based

- use SARs data from previous active molecules
- can increase structural diversity of compounds with similar activity
 - QSAR and pharmacophore modelling
- <u>Disadvantage:</u> discover molecules that are more limited in scaffold diversity

Methods 71, 135-145 (2015)

C. Introduction to Pharmacology

- <u>in vitro development</u> of an effective drug candidate is **the first step** in the development process
- useful drug must be delivered in sufficient concn to the target receptor in the human body without unacceptable side effects

1. Pharmacokinetics

- how a drug interacts with various cell barriers
- most convenient form of drug delivery is oral
- drugs must pass a series of barriers
- chemically stable in the acidic pH of stomach and not be degraded by digestive enzymes
- absorbed into the bloodstream and pass several membranes
- can't bind too tightly to other body substances
- must survive modification by liver enzymes
- avoid rapid excretion by the kidneys
- must pass from capillaries to the target tissue
- must pass blood-brain barrier (if brain is target)
 - -must pass through the plasma membrane (intracellular target)

- Bioavailability: does the drug reach site of action?
 - depends on the dose given and its pharmacokinetics

Lipinski's Rule of 5

Combination of descriptors to estimate intestinal absorption. Insufficient uptake of compounds, if

Molecular weight > 500 slow diffusion

logP > 5.0 too lipophilic

> 5 H-bond donors (OH and NH) too many H-bonds with the

>10 H-bond acceptors (N and O atoms) head groups of the membrane

Lipinski, C.A. Adv. Drug Deliv. Rev. (2016) 101: 34-41

2. Toxicity and Adverse Reactions Eliminate Most Drug Candidates

- drug candidate must be safe and efficacious in humans
- initial test in animals but ultimately the drug must be tested in clinical trials
- in US, clinical trials are monitored by the FDA and have 4 phases

Clinical Trial Phases

	Phase I	Phase II	Phase III	Phase IV
Primary Goal	• Establish the overall safety	 Establish the activity of a drug for a specific group of patients with a specific disease 	Confirm the safety and effectiveness of a drug for a specific group of patients with a specific disease	 Monitor ongoing safety in large populations and uncontrolled use of drug
Secondary Goals	Establish the maximum tolerated dose Determine serious side-effects Determine the metabolism and pharmacologic actions of drugs	Determine the common short- term side effects and risks.	• Evaluate the overall risk-benefit ratio	Identify additional, unusual side-effects Identify additional potential uses of the drug

https://www.cbc.ca/natureofthings/episodes/brain-magic-the-power-of-the-placebo

3. Drug Candidate Statistics

- 5 drug candidates in 5000 that enter preclinical trials reach clinical trials
- 1 of the 5 is approved for clinical use
- 40% of candidates pass Phase I trials
- 50% of those passing Phase I trials pass Phase II trials
- most drugs that enter Phase III pass this trial
- preclinical portion of drug discovery process averages 3 years
- successful clinical trials usually require 7 10 years
 - average cost is \$2.6 billion USD
- drug may be withdrawn some months or years later if causes unanticipated lifethreatening side effects in as few as 1 in 10,000 individuals
 - (eg., Vioxx withdrawn by Merck, 2004)

4. Cytochrome P₄₅₀ Metabolizes Drugs

- -why is it that a drug that is **well tolerated** by most patients can pose a **danger** to others?
- -differences in reactions to drugs arise from genetic differences, different disease states, other drugs that they are taking, age, sex, and environmental factors
- **-cytochrome P450** role is to detoxify xenobiotics and assist in metabolic clearance of drugs
- -humans express ca. 100 isoenzymes that catalyze the general reaction:

$$RH + O_2 + 2H^+ + 2e^- \leftrightarrow ROH + H_2O$$

-many cytochrome P₄₅₀ in humans are **polymorphic** with several common alleles

-gives rise to tremendous variation in drug metabolism among individuals

V&V:F15-31

- acetaminophen is a widely used analgesic and antipyretic
- safe in therapeutic doses (1.2 g/day; but at 10 g/day) = toxic
- acetaminophen (95%) is enzymatically glucuronidated or sulfated to form conjugates which are readily excreted
- 5% is converted by cytochrome P450 (CYP2E1) to **acetimidoquinone** which is conjugated with glutathione
- larger doses of acetaminophen saturates excretion pathways and the cytochrome P450-mediated pathway becomes significant
- if hepatic glutathione is rapidly **depleted then** acetimidoquinone conjugates with the protein sulfhydryl groups = **fatal hepatotoxicity**

(N-acetyl-p-aminophenol)

Acetaminophen-glutathione conjugate

5. Many Drugs are Enzyme Inhibitors

- -modern drug therapy is based on concepts of enzyme inhibition
- -toxicity is **unavoidable** because, with the exception of cell wall synthesis in bacteria, most drugs that kill tumors, viruses, and bacteria also **kill normal eukaryotic cells** within the host
- relatively short generation time of the microbial organisms and tumor cells can be exploited
 - -these cells will be **more sensitive** to metabolic inhibitors than the host eukaryotic cells

dihydropteroate diphosphate + p-aminobenzoic acid (PABA)

dihydropteroate synthetase synthetase dihydropteroic acid

dihydrofolic acid

dihydrofolate reductase tetrahydrofolic acid

a. Sulfa Drugs

 -sulfanilamide is an antibacterial agent because it competes (competitive inhibitor) with p-aminobenzoic acid (PABA), essential for bacterial growth

5,6,7,8-tetrahydrofolate

2′

- -bacteria can't absorb folic acid but must synthesize it
- -bacterial dihydropteroate synthase is tricked into making an intermediate containing sulfanilimide that can't be converted to folate
- -bacteria is starved of the required folate and can't grow or divide
- -since humans obtain folate from dietary sources, the sulfanilimide is not harmful at doses that kill the bacteria

b. Viagra®-an unexpected outcome in a drug-design program (Pfizer)

- -sometimes the outcome of a drug design program is unanticipated
 - -e.g., penicillin discovery by Fleming
 - -relaxation of smooth muscle cells of blood vessels is controlled by intracellular ↓ [Ca²+] as triggered by ↑ [cGMP]
- -cGMP is hydrolyzed by phosphodiesterases (PDE) to form 5'-GMP and let muscles contract again
- -Pfizer designed **PDE inhibitor** against PDE5 isotype, a dominant form in human vascular tissue

Cyclic GMF 5' GMP

Copyright © 2013 Pearson Canada Inc.

-no significant benefits for **angina or hypertension** but some men in clinical trials reported **penile erection**

PDE substrate

PDE inhibitor

-apparently, Viagra® causes an increase in [cGMP] in penile vascular tissue allowing vascular muscle relaxation, improved blood flow and erection. A drug was born!

