Tarea 1,

Rodrigo co: 182671 Plauchi Rodrigue2

Demostrar:

$$1. \{2\}A = A \{2\} = A$$

$$A \subseteq A \{\lambda\}$$

$$\chi \in A, \chi = \chi \lambda \subseteq A \{\lambda\}$$

$$\chi \in A, \chi = \chi \lambda \subseteq A \{\lambda\}$$

$$\chi \in A \{\lambda\}$$

ahora:

$$A \{ \lambda \} \subseteq A$$

$$\chi \in A \{ \lambda \}, \chi = \chi, \chi Z, \chi Z, \chi \in A, \chi Z \in \{ \lambda \}$$

226 { 2} = 2

 $\forall x \in A \{\lambda\}$

Finalmente: $A = \{\lambda\} A$ Plinelo: A = {23}A $x \in A$, $x = \lambda \times \gamma \lambda \in \{\lambda\}$ $\therefore 2x \in \{\lambda\}A$ X=2x E EliA X XEA ahola: 828 A ⊆ A Sea $x \in \{\lambda\}A$, $x = x_1 x_2$ $x_1 \in \{\lambda\}$ $y x_2 \in A$ entonces, $x_i \in \{\lambda\} = 7x_i = \lambda$ $\Rightarrow \chi = \chi_1 \chi_2$ y 12 G A $= \lambda \chi_2 = \chi_2$ 1 X X E FRIM : {13A = A {13} = A

2. ØA = AØ = Ø Sca REDA, X=X, X2

 $\chi, \in \emptyset$, $\chi_2 \in A \nabla$ Ya que si X, ea no puede tener clementos

· ØA = Ø ahora povelotrolado:

 $x \in AO$, $x = x, x_2$

ADED

Finalmente 1 AO = OA = A E; 3.

Sea & on altabeto y A & & *.

Demostiar: 1. A* = {23UA*A

= {2}U A+ = A° UA+

RIEA, X2 ED T No Die de tener elementos

2. $Q^* = \{\lambda\}$ Pollademostración del Ej1,2

Podemos concluir que $Q^* = Q$ $Q^2 = Q$:

 $Q^{i} = \emptyset$ $i \in \mathbb{N}$ Ahora: $Q^{*} = \bigcup \emptyset^{i} = \partial^{0} \cup (\bigcup \emptyset^{i})$ $i \geq 0$ $i \geq 1$

 $= (\lambda) \cup (\bigcup_{i \ge 1} 0) = \{\lambda\} \cup \emptyset$

Finalmente Ot = 823

= \$27