Bayesian Data Analysis

In this section we present our results and assess the model's validity. We assess the MCMC simulations and perform Posterior Predictive Checks to see that the posterior simulates the replications correctly. We follow the guidelines by [1, 2] for choosing prior, asses MCMC and performing posterior predictive checks.

Assesing the MCMC chains

We utilize the cmdstanr package in the R programming language and then fit the model using four parallel chains using 200 warmup iterations and an additional 2000 iterations for a total of 2200 iterations. We received no divergent iterations during the simulation, so the MCMC simulation cannot be considered invalid. The trace plots of the chains are found in Figures 1, 2, 3, 4, 5 and 6. The purpose of these train plots is to diagnose the MCMC simulation. The chains should be mixed without any patterns [3], which is the case here. Tables 1, 2, 3, 4, 5 and 6 contains diagnostics data of the posterior estimates. \hat{R} is the Gelman-Rubin Potential Scale Reduction and should preferably be $\hat{R} < 1.05$ [3] and in our case $\hat{R} \approx 1.00$ so we are satisfied. The ess_ bulk and ess_tail values estimate the number of efficient samples. As a rule of thumb, at least 200 efficient samples are required. In our case, we have over 416 efficient samples, so we are satisfied.

Table 1. Ranking of the algorithms

Variable	Rhat	ess_bulk	ess_tail
$a_{alg[1]}$	1.023	424.934	455.527
$a_alg[2]$	1.023	422.580	431.206
$a_alg[3]$	1.022	441.915	451.605
$a_alg[4]$	1.023	424.820	490.687
$a_alg[5]$	1.023	427.856	466.328
$a_alg[6]$	1.023	422.975	434.168
$a_alg[7]$	1.022	427.910	434.017
$a_alg[8]$	1.023	426.002	460.934
$a_alg[9]$	1.022	427.561	430.549
$a_alg[10]$	1.022	426.692	451.952
$a_alg[11]$	1.023	416.875	430.375
$a_alg[12]$	1.023	419.819	439.080
$a_alg[13]$	1.023	420.713	455.159
a_alg[14]	1.023	422.586	425.631

POSTERIOR PREDICTIVE CHECKS

Figures 7, 8, 9, 10, 11, and 12, shows the posterior distribution of the estimated parameters for each scenario, aggregated, 10%, 25%, 50%, 75% and 90%.

Figure 13, 14, 15, 16, 17 and 18 illustrates the distributions of replicated datasets drawn from the posterior distribution. It is clear from the figures that models can simulate data that is similar to the observed data. Figure 19, 20, 21, 22, 23 and 30 shows how well the posterior predictive distribution captures the mean. According to the Figures the model captures the mean well. Similarly, Figures 25, 26, 27, 28, 29, 30 shows how well the mean is captured by the posterior predictive distribution of each algorithm separately. The figures shows that the mean is well captured for all algorithms except for ("agg") peikonal, modularity mbo, ("75%") peikonal, plaplace, poisson mbo, ("90%") plaplace

FIGURE 1. Simulated MCMC chains for the strength parameters a_i

FIGURE 2. Simulated MCMC chains for the strength parameters a_i (10%)

FIGURE 3. Simulated MCMC chains for the strength parameters a_i (25%)

FIGURE 4. Simulated MCMC chains for the strength parameters a_i (50%)

Figure 5. Simulated MCMC chains for the strength parameters a_i (75%)

FIGURE 6. Simulated MCMC chains for the strength parameters a_i (90%)

Table 2. Diagnostics for 10% of available labels

Variable	Rhat	ess_bulk	ess_tail
$a_alg[1]$	1.006	930.781	1620.641
$a_alg[2]$	1.003	1420.982	2790.689
$a_alg[3]$	1.006	849.576	1400.238
$a_alg[4]$	1.005	1076.228	2028.801
$a_alg[5]$	1.006	837.920	1447.750
$a_{a}[6]$	1.006	862.660	1539.259
$a_alg[7]$	1.006	854.106	1469.088
$a_{a}[8]$	1.003	1247.605	2262.456
$a_alg[9]$	1.004	1249.388	2406.563
$a_{a}[10]$	1.006	870.370	1455.832
$a_{a}[11]$	1.005	946.641	1693.693
$a_{a}[12]$	1.006	878.207	1633.142
$a_alg[13]$	1.006	853.407	1470.405
a_alg[14]	1.006	860.742	1406.467

Table 3. Diagnostics for 25% of available labels

Variable	Rhat	ess_bulk	ess_tail
a_alg[1]	1.006	875.652	1328.454
$a_alg[2]$	1.003	1184.027	2415.331
$a_alg[3]$	1.006	869.503	1297.981
$a_alg[4]$	1.004	1000.064	1875.254
$a_alg[5]$	1.005	880.397	1360.262
$a_alg[6]$	1.006	845.098	1295.582
$a_alg[7]$	1.006	863.251	1171.705
$a_alg[8]$	1.003	1091.075	2146.680
$a_alg[9]$	1.004	1102.401	2122.005
$a_alg[10]$	1.007	860.174	1260.263
$a_alg[11]$	1.006	874.051	1320.953
$a_alg[12]$	1.006	839.967	1217.099
$a_alg[13]$	1.007	844.654	1170.443
a_alg[14]	1.006	856.543	1352.789

Table 4. Diagnostics for 50% of available labels

Variable	Rhat	ess_bulk	ess_tail
$a_alg[1]$	1.006	923.599	1536.612
$a_alg[2]$	1.002	1541.398	3235.483
$a_alg[3]$	1.006	953.080	1648.550
$a_alg[4]$	1.003	1229.076	2334.682
$a_alg[5]$	1.007	917.699	1611.186
$a_alg[6]$	1.006	949.147	1707.167
$a_alg[7]$	1.006	922.449	1679.524
$a_alg[8]$	1.003	1373.961	2533.233
$a_alg[9]$	1.003	1349.500	2575.455
$a_alg[10]$	1.006	935.044	1529.858
$a_alg[11]$	1.005	988.905	1715.657
$a_alg[12]$	1.006	937.424	1673.032
$a_alg[13]$	1.006	946.234	1541.462
a_alg[14]	1.006	938.252	1564.519

Table 5. Diagnostic for 75% of available labels

Variable	Rhat	ess_bulk	ess_tail
a_alg[1]	1.001	1605.863	3034.650
$a_alg[2]$	1.002	844.253	1205.099
$a_alg[3]$	1.002	911.582	1497.275
$a_alg[4]$	1.002	893.164	1342.419
$a_alg[5]$	1.003	885.522	1560.613
$a_alg[6]$	1.002	840.815	1442.053
$a_alg[7]$	1.003	846.997	1401.868
$a_alg[8]$	1.002	942.949	1438.113
$a_alg[9]$	1.001	955.214	1473.940
$a_alg[10]$	1.002	821.244	1319.835
$a_alg[11]$	1.002	825.454	1179.804
$a_alg[12]$	1.003	804.589	1148.154
$a_alg[13]$	1.002	833.639	1182.323
a_alg[14]	1.002	863.293	1155.661

Table 6. Diagnostics for 90% of available labels

Variable	Rhat	ess_bulk	ess_tail
$a_alg[1]$	1.004	636.840	1216.352
$a_alg[2]$	1.004	601.977	1152.796
$a_alg[3]$	1.004	586.138	1145.326
$a_alg[4]$	1.003	710.298	1281.454
$a_alg[5]$	1.004	581.250	1178.959
$a_alg[6]$	1.004	590.042	1131.033
$a_alg[7]$	1.004	598.670	1068.376
$a_alg[8]$	1.004	648.385	1322.970
$a_alg[9]$	1.003	643.530	1032.394
$a_{a}[10]$	1.004	586.434	1089.956
$a_alg[11]$	1.004	616.109	1260.695
$a_alg[12]$	1.004	583.490	1206.982
$a_alg[13]$	1.004	590.859	1230.768
a_alg[14]	1.004	604.542	1218.919

FIGURE 7. The estimated posterior distributions of the strength parameters a_i . The dark-blue line is the mean value of a_i and the light-blue shaded area is the HPD Interval.

FIGURE 8. The estimated posterior distribution of the strength parameters a_i for 10% of labeled data. The dark-blue line is the mean value of a_i and the light-blue shaded area is the HPD Interval.

FIGURE 9. The estimated posterior distribution of the strength parameters a_i for 25% of labeled data. The dark-blue line is the mean value of a_i and the light-blue shaded area is the HPD Interval.

FIGURE 10. The estimated posterior distribution of the strength parameters a_i for 50% of labeled data. The dark-blue line is the mean value of a_i and the light-blue shaded area is the HPD Interval.

FIGURE 11. The estimated posterior distribution of the strength parameters a_i for 75% of labeled data. The dark-blue line is the mean value of a_i and the light-blue shaded area is the HPD Interval.

FIGURE 12. The estimated posterior distribution of the strength parameters a_i for 90% of labeled data. The dark-blue line is the mean value of a_i and the light-blue shaded area is the HPD Interval.

FIGURE 13. Kernel density estimate of the observed dataset y with density estimates for the simulated datasets y_{rep} .

FIGURE 14. Kernel density estimate of the observed dataset y with density estimates for the simulated datasets y_{rep} when having access to 10% of labels

FIGURE 15. Kernel density estimate of the observed dataset y with density estimates for the simulated datasets y_{rep} when having access to 25% of labels

FIGURE 16. Kernel density estimate of the observed dataset y with density estimates for the simulated datasets y_{rep} when having access to 25% of labels

FIGURE 17. Kernel density estimate of the observed dataset y with density estimates for the simulated datasets y_{rep} when having access to 75% of labels

FIGURE 18. Kernel density estimate of the observed dataset y with density estimates for the simulated datasets y_{rep} when having access to 90% of labels

FIGURE 19. Histograms the mean (y_{rep}) computed from the posterior predictive distribution. The dark-blue line is computed from the observed data.

FIGURE 20. Histograms the mean (y_{rep}) computed from the posterior predictive distribution. The dark-blue line is computed from the observed data. (10% of available labels)

FIGURE 21. Histograms the mean (y_{rep}) computed from the posterior predictive distribution. The dark-blue line is computed from the observed data. (25% of available labels)

FIGURE 22. Histograms the mean (y_{rep}) computed from the posterior predictive distribution. The dark-blue line is computed from the observed data. (50% of available labels)

FIGURE 23. Histograms the mean (y_{rep}) computed from the posterior predictive distribution. The dark-blue line is computed from the observed data. 75% of available labels)

FIGURE 24. Histograms the mean (y_{rep}) computed from the posterior predictive distribution. The dark-blue line is computed from the observed data. (90% of available labels)

FIGURE 25. Checking posterior predictive (aggregated) test statistics within the region, in this case, the mean. The vertical lines are observed means.

FIGURE 26. Checking posterior predictive (10%) test statistics within the region, in this case, the mean. The vertical lines are observed means.

FIGURE 27. Checking posterior predictive (25%) test statistics within the region, in this case, the mean. The vertical lines are observed means.

FIGURE 28. Checking posterior predictive (50%) test statistics within the region, in this case, the mean. The vertical lines are observed means.

FIGURE 29. Checking posterior predictive test (75%) statistics within the region, in this case, the mean. The vertical lines are observed means.

FIGURE 30. Checking posterior predictive test (90%)statistics within the region, in this case, the mean. The vertical lines are observed means.

References

- [1] Jonah Gabry, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. Visualization in bayesian workflow. Journal of the Royal Statistical Society Series A: Statistics in Society, 182(2):389–402, 2019.
- [2] David Issa Mattos, Jan Bosch, and Helena Holmström Olsson. Statistical models for the analysis of optimization algorithms with benchmark functions. *IEEE Transactions on Evolutionary Computation*, 25(6):1163–1177, 2021.
- [3] Richard McElreath. Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press, 2020.