# **Case Study – Exploratory Data Analysis**

| Submitted by: Saikat Ghosh        |  |
|-----------------------------------|--|
| Due Date: 24 <sup>th</sup> August |  |
| Date of Submission: 24th August   |  |
|                                   |  |

# **Supervisor's Remarks**

| <b>Late Submission:</b>             |
|-------------------------------------|
| Plagiarism:                         |
| <b>Completeness:</b>                |
| <b>Quality of Content:</b>          |
| <b>Results and Interpretations:</b> |
| Additional Remarks:                 |

## EXPLORATORY DATA ANALYSIS (EDA)

In statistics, exploratory data analysis (EDA) is an approach for analysing data sets to summarize their main characteristics, often with visual methods.

Exploratory data analysis was promoted by <u>John Tukey</u> to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments.

The particular graphical techniques employed in EDA are quite simple, consisting of various techniques of

- ✓ Plotting the raw data with the help of histograms, bar charts, probability plots to get the frequency distribution
- ✓ Plotting simple statistics such as mean plots, box plots, and main effects plots of the raw data to detect outliers and anomalies
- ✓ Testing the distribution of the data so that validity of the underlying assumptions can be checked

#### **Dataset:**

In order to perform EDA, We use "mtcars" dataset from R

#### **Description:**

The *Motor Trend* US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).data was extracted from the 1974

A data frame with 32 observations on 11 variables.

| mpg  | Miles/(US) gallon                        |
|------|------------------------------------------|
| cyl  | Number of cylinders                      |
| disp | Displacement (cu.in.)                    |
| hp   | Gross horsepower                         |
| drat | Rear axle ratio                          |
| wt   | Weight (lb/1000)                         |
| qsec | 1/4 mile time                            |
| VS   | V/S                                      |
| am   | Transmission (0 = automatic, 1 = manual) |
| gear | Number of forward gears                  |
| carb | Number of carburetors                    |

## Source:

Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37, 391-411.

## 1. EDA for Individual Variables

## a) For Continuous Variables

In the given data set we have the following continuous variables:

- 1. mpg Miles/(US) gallon
- 2. disp Displacement
- 3. hp Gross Horsepower
- 4. drat Rear axle ratio
- 5. wt Weight (lb/1000)
- 6.  $qsec \frac{1}{4}$  mile time

For the EDA of Continuous Variables, we will use the following measures/tools:

• Descriptive Statistics

Like Mean, Median, Mode etc. to get an insight about the data

- Coeffecient of Skewness > 0: +vely skewed or right skewed,
- Coeffecient of Skewness < 0: -vely skewed or left skewed, and
- Coeffecient of Skewness = 0: symmetric.

The ratio of kurtosis to its standard error can be used as a test of normality (that is, you can reject normality if the ratio is less than -2 or greater than +2).

• Histogram (Overlaid with normal probability curve)

To know about the distribution of data and compare its proximity with the normal distribution

- Q-Q Plot, KS Test and Shapiro Wilks Test
- To test whether the data is Normally distributed or not with hypotheses

H<sub>0</sub>: Sample comes from a normal population

H<sub>1</sub>: Sample does not comes from a normal population

• Box Plot

To know if there are any outliers in the data

• Stem and Leaf Plot

A stem-and-leaf plot is a device for presenting quantitative data in a graphical format, similar to a histogram, to assist in visualizing the shape of a distribution. The stem-and-leaf display is drawn with two columns (usually separated by a vertical line or '.'). The stems are listed to the left of the vertical line. It is important that no numbers are skipped, even if it means that some stems have no leaves. The leaves are listed in increasing order in a row to the right of each stem.

## 1. mpg – Miles/(US) gallon

|     |                                     |                | Statistic | Std. Error |
|-----|-------------------------------------|----------------|-----------|------------|
| mpg | Mean                                |                | 20.091    | 1.0654     |
|     | 95% Confidence<br>Interval for Mean | Lower<br>Bound | 17.918    |            |
|     |                                     | Upper<br>Bound | 22.264    |            |
|     | 5% Trimmed Mean                     |                | 19.893    |            |
|     | Median                              |                | 19.200    |            |
|     | Variance                            |                | 36.324    |            |
|     | Minimum                             |                | 6.0269    |            |
|     |                                     |                | 10.4      |            |
|     | Std. Deviation                      |                | 33.9      |            |
|     | Minimum                             |                | 23.5      |            |
|     | Interquartile Range                 |                | 7.5       |            |
|     | Skewness                            |                | .672      | .414       |
|     | Kurtosis                            |                | 022       | .809       |

- Skewness (.672) > 0, Distribution is positively skewed.
- The ratio of kurtosis to its standard error = -0.022/0.809 = -0.0272 > -2 i,e we accept normality.

Hence the distribution follows normal distribution.



From the box plot we can observe that mpg has no outliers.

mpg Stem-and-Leaf Plot

Frequency Stem & Leaf

5.00 1.00344

13.00 1 . 5555567788999

8.00 2.11111224

2.00 2 . 67 4.00 3 . 0023

Stem width: 10.0 Each leaf: 1 case(s) From it we can observe frequency and also we know about the shape of the Histogram.

We can also guess about the data that it follows normal distribution or not.



From the normal curve on the histogram we can conclude that it almost follow Normal Distribution.

**Tests of Normality** 

|     | Kolmogo              | orov- |              |           |    |      |
|-----|----------------------|-------|--------------|-----------|----|------|
|     | Smirnov <sup>a</sup> |       | Shapiro-Wilk |           |    |      |
|     | Statistic            | df    | Sig.         | Statistic | df | Sig. |
| mpg | .126                 | 32    | .200*        | .948      | 32 | .123 |

- \*. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

H<sub>0</sub>: The distribution is normal

H<sub>1</sub>: The distribution is not normal

#### **Conclusion:**

From **Kolmogorov-Smirnov** Test with Sig. = 0.20 (>0.05), we may conclude that at 5% l.o.s.  $H_0$  is accepted i.e., "mpg" is normally distributed.

From **Shapiro-Wilk** Test with Sig. = 0.123 (>0.05), we may conclude that at 5% l.o.s.  $H_0$  is accepted i.e., "mpg" is normally distributed



Inference: From the QQ Plot, we can observe that "mpg" is almost normally distributed.

## 2.DISP (Displacement)

|      |                                     |                | Statistic | Std. Error |
|------|-------------------------------------|----------------|-----------|------------|
| disp | Mean                                | _              | 230.722   | 21.9095    |
|      | 95% Confidence<br>Interval for Mean | Lower<br>Bound | 186.037   |            |
|      |                                     | Upper<br>Bound | 275.407   |            |
|      | 5% Trimmed Mean                     | 226.340        |           |            |
|      | Median                              | 196.300        |           |            |
|      | Variance                            | 15360.800      |           |            |
|      | Std. Deviation                      | 123.9387       |           |            |
|      | Minimum                             | 71.1           |           |            |
|      | Maximum                             | 472.0          |           |            |
|      | Range                               | 400.9          |           |            |
|      | Interquartile Range                 | 221.5          |           |            |
|      | Skewness                            |                | .420      | .414       |
|      | Kurtosis                            |                | -1.068    | .809       |

Skewness (.420) > 0, Distribution is positively skewed. The ratio of kurtosis to its standard error = -1.068/.809 = -

1.3201 > -2 i,e we do not reject normality.

Hence the distribution follows normal distribution.





## 3.HP (Gross Horsepower)

**Descriptives** 

|    |                                     | Statistic | Std. Error |
|----|-------------------------------------|-----------|------------|
| hp | Mean                                | 146.69    | 12.120     |
|    | 95% Confidence Interval Lower Bound | 121.97    |            |
|    | for Mean Upper Bound                | 171.41    |            |
|    | 5% Trimmed Mean                     | 142.76    |            |
|    | Median                              | 123.00    |            |
|    | Variance                            | 4700.867  |            |
|    | Std. Deviation                      | 68.563    |            |
|    | Minimum                             | 52        |            |
|    | Maximum                             | 335       |            |

| Range               | 283  |      |
|---------------------|------|------|
| Interquartile Range | 85   |      |
| Skewness            | .799 | .414 |
| Kurtosis            | .275 | .809 |



From the Box Plot we can see that 31<sup>st</sup> observation is outlier. In order to remove the outliers from the data, we are replacing that observation (which is behaving like an outlier) with **mean of any two nearby points.** Missing value technique helps in replacement of such values.

After removing the outlier

|            |                                         | Statistic | Std. Error |
|------------|-----------------------------------------|-----------|------------|
| MEAN(hp,1) | Mean                                    | 140.656   | 10.4882    |
|            | 95% Confidence Interval for Lower Bound | 119.265   |            |
|            | Mean Upper Bound                        | 162.047   |            |
|            | 5% Trimmed Mean                         | 138.917   |            |
|            | Median                                  | 123.000   |            |
|            | Variance                                | 3520.104  |            |
|            | Std. Deviation                          | 59.3305   |            |
|            | Minimum                                 | 52.0      |            |
|            | Maximum                                 | 264.0     |            |
|            | Range                                   | 212.0     |            |
|            | Interquartile Range                     | 84.5      |            |
|            | Skewness                                | .460      | .414       |
|            | Kurtosis                                | 749       | .809       |

- We see that, **Coefficient of Skewness** i.e( .460) > 0
  therefore it is Positively(or right) Skewed
- We see that, Ratio of Kurtosis to its Standard Error is (-0.9258)
   -2 therefore the Normality is accepted



Now outlier is removed

## MEAN(hp,1) Stem-and-Leaf Plot

Frequency Stem & Leaf

9.00 0 . 566669999 9.00 1 . 001111224 8.00 1 . 55777888 5.00 2 . 01344 1.00 2 . 6

Stem width: 100.0 Each leaf: 1 case(s) From it we can observe frequency and also we know about the shape of the Histogram.

We can also guess about the data that it follows normal distribution or not.



**Inference**: From the normal curve on histogram it can be observed that "hp" is not normally distributed.

#### **Tests of Normality**

|            | Kolmogorov-Smirnov <sup>a</sup> |    |      | Shapiro-Wilk |    |      |  |
|------------|---------------------------------|----|------|--------------|----|------|--|
|            | Statistic                       | df | Sig. | Statistic    | df | Sig. |  |
| MEAN(hp,1) | .148                            | 32 | .072 | .944         | 32 | .096 |  |

a. Lilliefors Significance Correction

## Conclusion

- From **Kolmogorov-Smirnov** Test with Sig. = 0.024 (<0.05), we may conclude that at 5% l.o.s. H<sub>0</sub> is rejected i.e., "hp" is not normally distributed.
- From **Shapiro-Wilk** Test with Sig. = 0.049 (<0.05), we may conclude that at 5% l.o.s. H<sub>0</sub> is rejected i.e., "hp" is not normally distributed.



• Inference: From the QQ Plot, it can be observed that "hp" is not normally distributed.

# 4.DRAT (Rear Axle Ratio)

|      |                                         | Statistic | Std. Error |
|------|-----------------------------------------|-----------|------------|
| drat | Mean                                    | 3.5966    | .09452     |
|      | 95% Confidence Interval for Lower Bound | 3.4038    |            |
|      | Mean Upper Bound                        | 3.7893    |            |
|      | 5% Trimmed Mean                         | 3.5794    |            |
|      | Median                                  | 3.6950    |            |
|      | Variance                                | .286      |            |
|      | Std. Deviation                          | .53468    |            |
|      | Minimum                                 | 2.76      |            |
|      | Maximum                                 | 4.93      |            |
|      | Range                                   | 2.17      |            |
|      | Interquartile Range                     | .84       |            |
|      | Skewness                                | .293      | .414       |
|      | Kurtosis                                | 450       | .809       |

- We see that, **Coefficient of Skewness** i.e( .293) > 0 therefore it is Positively(or right) Skewed
- We see that, **Ratio of Kurtosis** to its Standard Error is (-0.5562) < -2 therefore the Normality is rejected



Frequency Stem & Leaf

3.00 2.779

10.00 3 . 0000001122 12.00 3 . 566777899999

6.00 4 · 001224 1.00 4 · 9

Stem width: 1.00 Each leaf: 1 case(s)



**Inference**: From the normal curve on histogram it can be observed that "drat" is not normally distributed.



## **Tests of Normality**

|          | Kolmo  | gorov-          |      |              |    |      |
|----------|--------|-----------------|------|--------------|----|------|
|          | Smirno | )V <sup>a</sup> |      | Shapiro-Wilk |    |      |
|          | Statis |                 |      | Statist      |    |      |
|          | tic    | df              | Sig. | ic           | df | Sig. |
| dra<br>t | .160   | 32              | .037 | .946         | 32 | .110 |

a. Lilliefors Significance Correction

## Conclusion

- From **Kolmogorov-Smirnov** Test with Sig. = 0.037 (<0.05), we may conclude that at 5% l.o.s. H<sub>0</sub> is rejected i.e., "drat" is not normally distributed.
- From **Shapiro-Wilk** Test with Sig. = 0.110 (>0.05), we may conclude that at 5% l.o.s.  $H_0$  is accepted i.e., "drat" is normally distributed.



Inference: From the QQ Plot, it can be observed that "drat" is almost normally distributed.

# 5.WT: Weight (lb/1000)

**Descriptives** 

|    |                                         | Statistic | Std. Error |
|----|-----------------------------------------|-----------|------------|
| wt | Mean                                    | 3.21725   | .172968    |
|    | 95% Confidence Interval for Lower Bound | 2.86448   |            |
|    | Mean Upper Bound                        | 3.57002   |            |
|    | 5% Trimmed Mean                         | 3.18885   |            |
|    | Median                                  | 3.32500   |            |
|    | Variance                                | .957      |            |
|    | Std. Deviation                          | .978457   |            |
|    | Minimum                                 | 1.513     |            |
|    | Maximum                                 | 5.424     |            |
|    | Range                                   | 3.911     |            |
|    | Interquartile Range                     | 1.186     |            |
|    | Skewness                                | .466      | .414       |
|    | Kurtosis                                | .417      | .809       |



From Box Plot WE can observe that "drat" has two outliers,that is 16<sup>th</sup> or 17<sup>th</sup> observations.

After removing outliers

|            |                                        | Statistic | Std. Error |
|------------|----------------------------------------|-----------|------------|
| MEAN(wt,2) | Mean                                   | 3.08142   | .140891    |
|            | 95% Confidence Interval forLower Bound | 2.79407   |            |
|            | Mean Upper Bound                       | 3.36877   |            |
|            | 5% Trimmed Mean                        | 3.07054   |            |
|            | Median                                 | 3.21125   |            |
|            | Variance                               | .635      |            |
|            | Std. Deviation                         | .796998   |            |
|            | Minimum                                | 1.513     |            |
|            | Maximum                                | 5.250     |            |

- We see that, Coefficient of Skewness i.e( .028) > 0 therefore it is (or right) Skewed
- We see that, Ratio of Kurtosis to its Standard Error is (0.8603)
   -2 therefore the Normality is accepted

| Range               | 3.737  |      |
|---------------------|--------|------|
| Interquartile Range | 1.054  |      |
| Skewness            | .028   | .414 |
| Kurtosis            | .679 . | .809 |



Here after removing the outliers, we plotted "Box Plot" again and we found outliers. We did not remove it because removing this, we will lose information.

MEAN(wt,2) Stem-and-Leaf Plot

Frequency Stem & Leaf

4.00 1 . 5689 4.00 2 . 1234

4.00 2 . 1234 4.00 2 . 6778

11.00 3 . 11122244444

7.00 3.5557788

1.00 4.0

1.00 Extremes (>=5.3)

Stem width: 1.000 Each leaf: 1 case(s) From it we can observe frequency and also we know about the shape of the Histogram.

We can also guess about the data that it follows normal distribution or



**Inference**: From the normal curve on histogram it can be observed that "wt" is normally distributed.

## **Tests of Normality**

|            | Kolmogorov-          |    |      |           |      |      |
|------------|----------------------|----|------|-----------|------|------|
|            | Smirnov <sup>a</sup> |    |      | Shapiro-  | Wilk | -    |
|            | Statistic            | df | Sig. | Statistic | df   | Sig. |
| MEAN(wt,2) | .159                 | 32 | .038 | .953      | 32   | .172 |

a. Lilliefors Significance Correction

## Conclusion

- From **Kolmogorov-Smirnov** Test with Sig. = 0.142 (>0.05), we may conclude that at 5% l.o.s. H<sub>0</sub> is accepted i.e., "wt" is normally distributed.
- From **Shapiro-Wilk** Test with Sig. = 0.093 (>0.05), we may conclude that at 5% l.o.s. H<sub>0</sub> is accepted i.e., "wt" is normally distributed.



Inference: From the QQ Plot, it can be observed that "wt" is almost normally distributed.

# 6.QSEC (1/4 Mile Time)

**Descriptives** 

|      |                             |             | Statistic | Std. Error |
|------|-----------------------------|-------------|-----------|------------|
| qsec | Mean                        |             | 17.8488   | .31589     |
|      | 95% Confidence Interval for | Lower Bound | 17.2045   |            |
|      | Mean                        | Upper Bound | 18.4930   |            |
|      | 5% Trimmed Mean             |             | 17.8079   |            |
|      | Median                      |             | 17.7100   |            |
|      | Variance                    |             | 3.193     |            |
|      | Std. Deviation              |             | 1.78694   |            |
|      | Minimum                     |             | 14.50     |            |
|      | Maximum                     |             | 22.90     |            |
|      | Range                       |             | 8.40      |            |
|      | Interquartile Range         |             | 2.02      |            |
|      | Skewness                    |             | .406      | .414       |
|      | Kurtosis                    |             | .865      | .809       |



9<sup>th</sup> observation is outlier

## **After Removing Outliers**

|              |                                         | Statistic | Std. Error |
|--------------|-----------------------------------------|-----------|------------|
| MEAN(qsec,2) | Mean                                    | 17.7038   | .27122     |
|              | 95% Confidence Interval for Lower Bound | 17.1506   |            |
|              | Mean Upper Bound                        | 18.2569   |            |
|              | 5% Trimmed Mean                         | 17.7442   |            |
|              | Median                                  | 17.7100   |            |
|              | Variance                                | 2.354     |            |
|              | Std. Deviation                          | 1.53423   |            |
|              | Minimum                                 | 14.50     |            |
|              | Maximum                                 | 20.22     |            |
|              | Range                                   | 5.72      |            |
|              | Interquartile Range                     | 1.95      |            |
|              | Skewness                                | 282       | .414       |
|              | Kurtosis                                | 411       | .809       |

We see that, **Coefficient of Skewness** i.e (-.282) < 0 therefore it is Negatively(or left) Skewed

We see that, **Ratio of Kurtosis** to its Standard Error is (-0.5080) > -2 therefore the Normality is accepted



Now outlier is removed.

MEAN(qsec,2) Stem-and-Leaf Plot

Frequency Stem & Leaf

2.00 14.56

3.00 15 · 458 4.00 16 · 4789

9.00 17 . 000344689

8.00 18 . 02356699

3.00 19.449

3.00 20.002

Stem width: 1.00 Each leaf: 1 case(s) From it we can observe frequency and also we know about the shape of the Histogram.

We can also guess about the data that it follows normal distribution or not.



**Inference**: From the histogram it can be observed that "qsec" is almost normally distributed.

## **Tests of Normality**

|              | Kolmogorov-          |    |       |           |      |      |
|--------------|----------------------|----|-------|-----------|------|------|
|              | Smirnov <sup>a</sup> |    |       | Shapiro-  | Wilk |      |
|              | Statistic            | df | Sig.  | Statistic | df   | Sig. |
| MEAN(qsec,2) | .075                 | 32 | .200* | .970      | 32   | .509 |

- \*. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction



## Conclusion

- From **Kolmogorov-Smirnov** Test with Sig. = 0.2 (>0.05), we may conclude that at 5% l.o.s. H<sub>0</sub> is accepted i.e., "qsec" is normally distributed.
- From **Shapiro-Wilk** Test with Sig. = 0.594 (>0.05), we may conclude that at 5% l.o.s. H<sub>0</sub> is accepted i.e., "qsec" is normally distributed.

Inference: From the QQ Plot, it can be observed that "qsec" is almost normally distributed.

## b) For Discrete / Categorical Variables

In the given data set we have the following discrete variables:

- 1. cyl Number of cylinders
- 2. vs V/S
- 3. am Transmission (0=automatic, 1=manual)
- 4. gear Number of forward gears
- 5. carb Number of carburetors

For the EDA of Discrete Variables, we will use the following measures/tools:

Frequency Table

To get the frequency of each data point

• Descriptive Statistics

Like Mean, Median, Mode etc. to get an insight about the data

- Coeffecient of Skewness > 0: +vely skewed or right skewed,
- Coeffecient of Skewness < 0: -vely skewed or left skewed, and
- Coeffecient of Skewness = 0: symmetric.
  - Bar plot

To represent the frequency distribution of data

• Stem and Leaf Plot

A stem-and-leaf plot is a device for presenting quantitative data in a graphical format, similar to a histogram, to assist in visualizing the shape of a distribution. The stem-and-leaf display is drawn with two columns (usually separated by a vertical line or '.'). The stems are listed to the left of the vertical line. It is important that no numbers are skipped, even if it means that some stems have no leaves. The leaves are listed in increasing order in a row to the right of each stem.

## 1. CYL (Number of Cylinders)

cyl

|       |       | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|-------|-----------|---------|---------------|-----------------------|
| Valid | 4     | 11        | 34.4    | 34.4          | 34.4                  |
|       | 6     | 7         | 21.9    | 21.9          | 56.3                  |
|       | 8     | 14        | 43.8    | 43.8          | 100.0                 |
|       | Total | 32        | 100.0   | 100.0         |                       |

|     |                             |       | Statistic | Std. Error |
|-----|-----------------------------|-------|-----------|------------|
| cyl | Mean                        |       | 6.19      | .316       |
|     | 95% Confidence Interval for | Lower | 5.54      |            |
|     | Mean                        | Bound | 5.54      |            |
|     |                             | Upper | 6.02      |            |
|     |                             | Bound | 6.83      |            |
|     | 5% Trimmed Mean             |       | 6.21      |            |
|     | Median                      | 6.00  |           |            |
|     | Variance                    |       | 3.190     |            |
|     | Std. Deviation              | 1.786 |           |            |
|     | Minimum                     |       | 4         |            |
|     | Maximum                     |       | 8         |            |
|     | Range                       |       | 4         |            |
|     | Interquartile Range         |       | 4         |            |
|     | Skewness                    |       | 192       | .414       |
|     | Kurtosis                    |       | -1.763    | .809       |

From the table we can observe various types of central tendency of the data.

#### **Box Plot:**



cyl Stem-and-Leaf Plot

Frequency Stem & Leaf

11.00 4.00000000000

.00 4.

.00 4.

.00 5.

7.00 6.0000000

.00 6.

.00 7.

.00 7.

14.00 8. 00000000000000

Stem width: 1

Each leaf: 1 case(s)



# 2.VS (V/S)

VS

|       |       |           | ъ.      | WILL          | Cumulative |
|-------|-------|-----------|---------|---------------|------------|
|       |       | Frequency | Percent | Valid Percent | Percent    |
| Valid | 0     | 18        | 56.3    | 56.3          | 56.3       |
|       | 1     | 14        | 43.8    | 43.8          | 100.0      |
|       | Total | 32        | 100.0   | 100.0         |            |

|    |                                  |                | Statistic | Std. Error |
|----|----------------------------------|----------------|-----------|------------|
| vs | Mean                             |                | .44       | .089       |
|    | 95% Confidence Interval for Mean | Lower<br>Bound | .26       |            |
|    |                                  | Upper<br>Bound | .62       |            |
|    | 5% Trimmed Mean                  |                | .43       |            |
|    | Median                           |                | .00       |            |
|    | Variance                         |                | .254      |            |
|    | Std. Deviation                   |                | .504      |            |
|    | Minimum                          |                | 0         |            |
|    | Maximum                          |                | 1         |            |
|    | Range                            |                | 1         |            |
|    | Interquartile Range              |                | 1         |            |
|    | Skewness                         |                | .265      | .414       |
|    | Kurtosis                         |                | -2.063    | .809       |



# 3.AM (Transmission (0=automatic, 1=manual)

## am

|       |       | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|-------|-----------|---------|---------------|-----------------------|
| Valid | 0     | 19        | 59.4    | 59.4          | 59.4                  |
|       | 1     | 13        | 40.6    | 40.6          | 100.0                 |
|       | Total | 32        | 100.0   | 100.0         |                       |

|    |                             |                     | Statistic | Std. Error |
|----|-----------------------------|---------------------|-----------|------------|
| am | Mean                        |                     | .41       | .088       |
|    | 95% Confidence Interval for | Lower               | 22        |            |
|    | Mean                        | Bound               | .23       |            |
|    |                             | Upper               | 50        |            |
|    |                             | Bound               | .59       |            |
|    | 5% Trimmed Mean             | .40                 |           |            |
|    | Median                      | .00                 |           |            |
|    | Variance                    | Variance            |           |            |
|    | Std. Deviation              | Std. Deviation      |           |            |
|    | Minimum                     | Minimum             |           |            |
|    | Maximum                     |                     | 1         |            |
|    | Range                       | Range               |           |            |
|    | Interquartile Range         | Interquartile Range |           |            |
|    | Skewness                    |                     | .401      | .414       |

Kurtosis -1.967 .809

am Stem-and-Leaf Plot

Frequency Stem & Leaf

.00 0.

.00 0.

.00 0.

.00 0. 13.00 1. 0000000000000

Stem width: 1

Each leaf: 1 case(s)



# 4.GEAR (Number of forward gears

## gear

|       |       | Г         | D .     | WILD          | Cumulative |
|-------|-------|-----------|---------|---------------|------------|
|       |       | Frequency | Percent | Valid Percent | Percent    |
| Valid | 3     | 15        | 46.9    | 46.9          | 46.9       |
|       | 4     | 12        | 37.5    | 37.5          | 84.4       |
|       | 5     | 5         | 15.6    | 15.6          | 100.0      |
|       | Total | 32        | 100.0   | 100.0         |            |

|      |                             |                     | Statistic | Std. Error |
|------|-----------------------------|---------------------|-----------|------------|
| gear | Mean                        |                     | 3.69      | .130       |
|      | 95% Confidence Interval for | Lower               | 2.42      |            |
|      | Mean                        | Bound               | 3.42      |            |
|      |                             | Upper<br>Bound      | 3.95      |            |
|      | 5% Trimmed Mean             |                     | 3.65      |            |
|      | Median                      | 4.00                |           |            |
|      | Variance                    |                     | .544      |            |
|      | Std. Deviation              |                     | .738      |            |
|      | Minimum                     |                     | 3         |            |
|      | Maximum                     |                     | 5         |            |
|      | Range                       |                     | 2         |            |
|      | Interquartile Range         | Interquartile Range |           |            |
|      | Skewness                    |                     | .582      | .414       |
|      | Kurtosis                    |                     | 895       | .809       |

gear Stem-and-Leaf Plot

Frequency Stem & Leaf

15.00 3.0000000000000000

.00 3.

12.00 4 . 000000000000

.00 4.

5.00 5.00000

Stem width: 1

Each leaf: 1 case(s)



# **5.CARB (Number of carburettors)**

## carb

|       |       |           |         |               | Cumulative |
|-------|-------|-----------|---------|---------------|------------|
|       |       | Frequency | Percent | Valid Percent | Percent    |
| Valid | 1     | 7         | 21.9    | 21.9          | 21.9       |
|       | 2     | 10        | 31.3    | 31.3          | 53.1       |
|       | 3     | 3         | 9.4     | 9.4           | 62.5       |
|       | 4     | 10        | 31.3    | 31.3          | 93.8       |
|       | 6     | 1         | 3.1     | 3.1           | 96.9       |
|       | 8     | 1         | 3.1     | 3.1           | 100.0      |
|       | Total | 32        | 100.0   | 100.0         |            |

| -            |       |     |     |
|--------------|-------|-----|-----|
| - 1)         | escri | ntı | VAC |
| $\mathbf{L}$ | COLLI | թս  | 100 |

|      |                                  |                | Statistic | Std. Error |
|------|----------------------------------|----------------|-----------|------------|
| carb | Mean                             | _              | 2.81      | .286       |
|      | 95% Confidence Interval for Mean | Lower<br>Bound | 2.23      |            |
|      |                                  | Upper<br>Bound | 3.39      |            |
|      | 5% Trimmed Mean                  |                | 2.67      |            |
|      | Median                           |                | 2.00      |            |
|      | Variance                         |                | 2.609     |            |
|      | Std. Deviation                   |                | 1.615     |            |
|      | Minimum                          |                | 1         |            |

| Maximum             | 8     |      |
|---------------------|-------|------|
| Range               | 7     |      |
| Interquartile Range | 2     |      |
| Skewness            | 1.157 | .414 |
| Kurtosis            | 2.020 | .809 |



We can see 31st observation is outlier.





## PAIR-WISE SCATTER PLOT

## For Continuous Variables

|      | mpg             | disp                   | hp                                            | drat                                                                                        | wt            | qsec                                                                    |
|------|-----------------|------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------|
| dsec | 60000<br>600000 |                        | <b>6</b> 000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                       | 8             |                                                                         |
| wt   |                 |                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0          | <b>&amp;</b>                                                                                |               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| drat | 0 %<br>888      | 00 <b>6</b> 0          | °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°        |                                                                                             | , 48 <b>%</b> | 0000<br>00000<br>00000                                                  |
| q    | <b>A</b>        | 6<br>960<br>960<br>960 |                                               | 886°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°                                                      | 8 <b>8</b> 8  | 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                 |
| disp |                 |                        | 96°<br>96°<br>96°<br>96°                      | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                       | 989.00<br>1   | ු දුම්<br>ලක්දී<br>ලක්දී                                                |
| mpg  |                 |                        | 800 M                                         | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>% | <b>260</b>    |                                                                         |

| _ |                         |                                |             |             |             | 1           |             |
|---|-------------------------|--------------------------------|-------------|-------------|-------------|-------------|-------------|
|   | mpg                     |                                | High        | High        | Positive    | High        | Low         |
|   |                         |                                | negative    | negative    | Correlation | negative    | positive    |
|   |                         |                                | correlation | correlation |             | correlation | Correlation |
|   | disp                    | High                           |             | High        | Negative    | High        | Low         |
|   | _                       | negative                       |             | positive    | correlation | positive    | Negative    |
|   |                         | correlation                    |             | correlation |             | correlation | Correlation |
|   | hp                      | Negative                       | High        |             | Low         | High        | Negative    |
|   | _                       | Correlation                    | Positive    |             | negative    | Positive    | Correlation |
|   |                         | t Positive Correlation Negtive |             | Correlation |             | Correlation |             |
|   | drat                    |                                |             | Low         |             | Negative    | No          |
|   |                         | Correlation                    | Correlation | Negative    |             | Correlation | Correlation |
|   |                         |                                |             | Correlation |             |             |             |
|   | wt                      | High                           | High        | Positive    | Negative    |             | No          |
|   |                         | Negative                       | Positive    | Correlation | Correlation |             | Correlation |
|   | Correlation Correlation |                                |             |             |             |             |             |
|   | qsec                    | Low                            | Low         | Negative    | No          | Low         |             |
|   | _                       | Positive                       | Negative    | Correlation | Correlation | Negative    |             |
|   |                         | Correlation                    | Correlation |             |             | Correlation |             |
|   |                         | mpg                            | disp        | hp          | drat        | wt          | qsec        |

## For Discrete Variables



For Discrete Variables, these are showing the frequencies and showing linear association between them.

## **Correlation Analysis**

## a) For Continuous Variables

For the EDA of all Continuous Variables taken together, we will use:

• Pearson's Correlation and its significance

| _ | - 1 carson's correlation and its significance |                             |
|---|-----------------------------------------------|-----------------------------|
|   |                                               | THE HYPOTHESIS OF INTEREST: |
|   | Correlations                                  |                             |

|      |                     | mpg         | disp        | hp          | drat   | wt     | qsec  |
|------|---------------------|-------------|-------------|-------------|--------|--------|-------|
| mpg  | Pearson Correlation | 1           | -<br>.848** | -<br>.817** | .681** | 883**  | .441* |
|      | Sig. (2-tailed)     |             | .000        | .000        | .000   | .000   | .013  |
|      | N                   | 32          | 32          | 31          | 32     | 30     | 31    |
| disp | Pearson Correlation | -<br>.848** | 1           | .859**      | 710**  | .858** | 430*  |
|      | Sig. (2-tailed)     | .000        |             | .000        | .000   | .000   | .016  |
|      | N                   | 32          | 32          | 31          | 32     | 30     | 31    |
| hp   | Pearson Correlation | -<br>.817** | .859**      | 1           | 508**  | .679** | 704** |
|      | Sig. (2-tailed)     | .000        | .000        |             | .004   | .000   | .000  |
|      | N                   | 31          | 31          | 31          | 31     | 29     | 30    |
| drat | Pearson Correlation | .681**      | -<br>.710** | -<br>.508** | 1      | 728**  | .040  |
|      | Sig. (2-tailed)     | .000        | .000        | .004        |        | .000   | .830  |
|      | N                   | 32          | 32          | 31          | 32     | 30     | 31    |
| wt   | Pearson Correlation | -<br>.883** | .858**      | .679**      | 728**  | 1      | 234   |
|      | Sig. (2-tailed)     | .000        | .000        | .000        | .000   |        | .222  |
|      | N                   | 30          | 30          | 29          | 30     | 30     | 29    |
| qsec | Pearson Correlation | .441*       | .430*       | -<br>.704** | .040   | 234    | 1     |
|      | Sig. (2-tailed)     | .013        | .016        | .000        | .830   | .222   |       |
|      | N                   | 31          | 31          | 30          | 31     | 29     | 31    |

H<sub>0</sub>: Correlation is insignificant V/S H<sub>1</sub>: Correlation is significant

If Sig. (2-tailed) > 0.05 then there is significant correlation between two variables else correlation is insignificant.

#### **INFERENCE:**

- From the above table we infer that correlation between <u>DRAT & QSEC</u> and <u>WT & QSEC</u> is insignificant at 5% los
- Correlation between the rest of the variables is significant at 5% los.

## b) For Discrete / Categorical Variables

For the EDA of all Discrete Variables taken together, we will use:

• Spearman's Rank Correlation and its significance

| Correlation    | S   |                            |       |       |       |       |        |
|----------------|-----|----------------------------|-------|-------|-------|-------|--------|
|                |     |                            | cyl   | vs    | am    | gear  | carb   |
| Spearman's rho | cyl | Correlation<br>Coefficient | 1.000 | 814** | 522** | 564** | .580** |
|                |     | Sig. (2-tailed)            |       | .000  | .002  | .001  | .001   |
|                |     | N                          | 32    | 32    | 32    | 32    | 32     |
|                | VS  | Correlation<br>Coefficient | 814** | 1.000 | .168  | .283  | 634**  |
|                |     | Sig. (2-tailed)            | .000  |       | .357  | .117  | .000   |
|                |     | N                          | 32    | 32    | 32    | 32    | 32     |

## THE HYPOTHESIS OF INTEREST:

 $H_0: Correlation \ is \ insignificant \qquad V/S \\ H_1: Correlation \ is \ significant$ 

If Sig. (2-tailed) > 0.05 then there is significant correlation between two variables else correlation is insignificant.

#### **INFERENCE:**

- From the above table we infer that correlation between VS & AM, VS & GEAR, AM & CARB and GEAR & CARB is insignificant at 5% los.
- Correlation between the rest of the variables is significant at 5% los.

<sup>\*\*.</sup> Correlation is significant at the 0.01 level (2-tailed).

<sup>\*.</sup> Correlation is significant at the 0.05 level (2-tailed).

| am   | Correlation<br>Coefficient | 522**  | .168  | 1.000  | .808** | 064   |
|------|----------------------------|--------|-------|--------|--------|-------|
|      | Sig. (2-tailed)            | .002   | .357  |        | .000   | .726  |
|      | N                          | 32     | 32    | 32     | 32     | 32    |
| gear | Correlation<br>Coefficient | 564**  | .283  | .808** | 1.000  | .115  |
|      | Sig. (2-tailed)            | .001   | .117  | .000   |        | .531  |
|      | N                          | 32     | 32    | 32     | 32     | 32    |
| carb | Correlation<br>Coefficient | .580** | 634** | 064    | .115   | 1.000 |
|      | Sig. (2-tailed)            | .001   | .000  | .726   | .531   |       |
|      | N                          | 32     | 32    | 32     | 32     | 32    |

<sup>\*\*.</sup> Correlation is significant at the 0.01 level (2-tailed).

In the above table we analyze the data before outlier is removed. Now we analyze the data after outlier is removed.

# For Combined Variables (Discrete and Continuous simultaneously)

## **Scatter Plot:**



# **Correlation Table:**

Correlations

|                                        |            |                                  |        | •                 | Correlati        |                   |                   | •                 | _      |                   |        |                  |                   |
|----------------------------------------|------------|----------------------------------|--------|-------------------|------------------|-------------------|-------------------|-------------------|--------|-------------------|--------|------------------|-------------------|
|                                        |            |                                  |        |                   |                  |                   |                   | MEAN(             |        |                   |        |                  | MEAN              |
|                                        |            |                                  |        |                   | MEAN(            |                   | MEAN(             | qsec,2            |        |                   |        |                  | (carb,1           |
|                                        |            | -                                | mpg    | disp              | hp,1)            | drat              | wt,2)             | )                 | cyl    | VS                | am     | gear             | )                 |
| Spearm                                 | mpg        | Correlation Coefficient          | 1.000  | 909**             | 881**            | .651**            | 806**             | .462**            | 911**  | .707**            | .562** | .543**           | 650**             |
| an's rho                               |            | Sig. (2-tailed)                  |        | .000              | .000             | .000              | .000              | .008              | .000   | .000              | .001   | .001             | .000              |
|                                        |            | N                                | 32     | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |
|                                        | disp       | Correlation Coefficient          | 909**  | 1.000             | .865**           | 684**             | .808**            | 463 <sup>**</sup> | .928** | 724**             | 624**  | 594**            | .540**            |
|                                        |            | Sig. (2-tailed)                  | .000   |                   | .000             | .000              | .000              | .008              | .000   | .000              | .000   | .000             | .001              |
| drat  MEAN(wt  MEAN(qs 2)  cyl  vs  am |            | N                                | 32     | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |
|                                        | MEAN(hp,1) | Correlation Coefficient          | 881**  | .865**            | 1.000            | 539**             | .698**            | 619 <sup>**</sup> | .898** | 752 <sup>**</sup> | 445*   | 437 <sup>*</sup> | .690**            |
|                                        |            | Sig. (2-tailed)                  | .000   | .000              |                  | .001              | .000              | .000              | .000   | .000              | .011   | .012             | .000              |
|                                        |            | N                                | 32     | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |
|                                        | drat       | Correlation Coefficient          | .651** | 684**             | 539**            | 1.000             | 729**             | .079              | 679**  | .447*             | .687** | .745**           | 120               |
|                                        |            | Sig. (2-tailed)                  | .000   | .000              | .001             |                   | .000              | .667              | .000   | .010              | .000   | .000             | .514              |
|                                        |            | N                                | 32     | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |
|                                        | MEAN(wt,2) | Correlation Coefficient          | 806**  | .808**            | .698**           | 729**             | 1.000             | 245               | .825** | 532**             | 724**  | 637**            | .403 <sup>*</sup> |
|                                        |            | Sig. (2-tailed)                  | .000   | .000              | .000             | .000              |                   | .176              | .000   | .002              | .000   | .000             | .022              |
|                                        |            | N                                | 32     | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |
|                                        | MEAN(qsec, | Correlation Coefficient          | .462** | 463 <sup>**</sup> | 619**            | .079              | 245               | 1.000             | 558**  | .792**            | 162    | 164              | 655**             |
|                                        | 2)         | Sig. (2-tailed)                  | .008   | .008              | .000             | .667              | .176              |                   | .001   | .000              | .376   | .369             | .000              |
|                                        |            | N                                | 32     | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |
|                                        | cyl        | Correlation Coefficient          | 911**  | .928**            | .898**           | 679**             | .825**            | 558**             | 1.000  | 814**             | 522**  | 564**            | .570**            |
|                                        |            | Sig. (2-tailed)                  | .000   | .000              | .000             | .000              | .000              | .001              |        | .000              | .002   | .001             | .001              |
|                                        |            | N                                | 32     | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |
|                                        | VS         | Correlation Coefficient          | .707** | 724**             | 752**            | .447 <sup>*</sup> | 532**             | .792**            | 814**  | 1.000             | .168   | .283             | 630**             |
|                                        |            | Sig. (2-tailed)                  | .000   | .000              | .000             | .010              | .002              | .000              | .000   |                   | .357   | .117             | .000              |
|                                        |            | N                                | 32     | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |
|                                        | am         | Correlation Coefficient          | .562** | 624**             | 445 <sup>*</sup> | .687**            | 724**             | 162               | 522**  | .168              | 1.000  | .808**           | 090               |
|                                        |            | Sig. (2-tailed)                  | .001   | .000              | .011             | .000              | .000              | .376              | .002   | .357              |        | .000             | .625              |
|                                        | N          |                                  | 32     | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |
|                                        | gear       | Correlation Coefficient          | .543** | 594**             | 437 <sup>*</sup> | .745**            | 637**             | 164               | 564**  | .283              | .808** | 1.000            | .085              |
|                                        |            | Sig. (2-tailed)                  | .001   | .000              | .012             | .000              | .000              | .369              | .001   | .117              | .000   |                  | .642              |
|                                        |            | N                                |        | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |
|                                        | MEAN(carb, | AN(carb, Correlation Coefficient |        | .540**            | .690**           | 120               | .403 <sup>*</sup> | 655**             | .570** | 630**             | 090    | .085             | 1.000             |
|                                        | 1)         | Sig. (2-tailed)                  | .000   | .001              | .000             | .514              | .022              | .000              | .001   | .000              | .625   | .642             |                   |
|                                        |            | N                                | 32     | 32                | 32               | 32                | 32                | 32                | 32     | 32                | 32     | 32               | 32                |

<sup>\*\*.</sup> Correlation is significant at the 0.01 level (2-tailed).

<sup>\*.</sup> Correlation is significant at the 0.05 level (2-tailed).

 $H_0$ : Correlation is insignificant V/S  $H_1$ : Correlation is significant

If Sig. (2-tailed) > 0.05 then there is significant correlation between two variables else correlation is insignificant.

From the above table we observe that H<sub>0</sub> is accepted i.e Correlation is insignificant in the following cases

Drat & Qsec, Drat & Carb, Wt & Qsec, Qsec & Am, Qsec & Gear, Vs & Am, Vs & Gear, Am & Carb, Gear & Carb.

## **Note:**

Further We can analyze Multi-Colliniarity, Autocorrelation, Homoscedasticity or Heteroscedasticity and fit linear regression model.