Studio funzioni

domenica 6 febbraio 2022 17:14

- 1) $f: N \to Z, f(x) = x^2 3$
 - o f non è inferiormente limitata -> -3 è il nostro limite
 - o fè iniettiva -> E' come dire x-3
 - -1 è un minorante -> è -3
 - Im(f)=N -> Abbiamo i negativi

2)
$$f: N \to N, f(x) = x^2 + 1, g: N \to Q, g(x) = \frac{x+1}{2}, (g \circ f)(x)$$

 $(g \circ f)(x) = g(x) + \frac{f(x) + 1}{2} = \frac{x^2 + 1 + 1}{2} = \frac{x^2 + 2}{2} = \frac{x^2}{2} + 1$
3) La funzione $f: A \to B, f(x) = x^4 - 1$

E' biunivoca se:

Siccome è x^4, non vogliamo che sia una parabola quindi tagliamo la X da 0 E poi i suoi valori sono rispettivamente da 0 a infinito, quindi $N \to N \to [0, +\infty) \to [0, +\infty)$

4) $f: A \rightarrow B$ E' una funzione se:

E' chiamata funzione una relazione dove ogni elemento di A È connesso 1 e 1 solo elemento di B

E quindi,

Per ogni valore di B abbiamo 1 unico valore di A

 $VbeB \quad EaeA: f(a) = b$

5) AcR è superiormente limitata, allora

Esiste un valore k tale che qualsiasi valore di A è inferiore di k

6)
$$f(x) = \ln x, g(x) = x^2, h(x) = 1 - x$$

 $(hogof)(x)$

 $h\left(f(x)\right)$

$$1 - f(x)$$

$$1 - f(x)^{2}$$

$$1 - \ln^{2} x$$

$$1 - f(x)^2$$

$$1 - \ln^2 x$$