Binary practice:

What number is this 4-bit binary number: 0111?

8	4	2	1	
0	(1	1] 7

What number is this 8-bit binary number: 00000111?

Convert 5 to a 4-bit binary number

8	4	2	1
0	1	0	1

Show the work for the <u>division by 2 method</u> to convert 11 to binary:

$$11 \times 2 = 5 \text{ r}$$
 $35 \times 2 = 2 \text{ r}$
 $2 \times 2 = 1 \text{ r}$
 $1 \times 2 = 0 \text{ r}$
 $1 \times 2 = 0 \text{ r}$

Use the multiplication method to turn 10110₂ into a decimal:

10110

What number is this 8-bit binary number: 01101010?

128	64	32	16	8	4	2	1	,
0	1	1	0	1	0	1	6	/

106

What number is this 8-bit binary number: 11000001?

128	64	32	16	8	4	2	1
1	/	0	0	0	0	0	1

Convert 97 to an 8-bit binary number

128	64	32	16	8	4	2	1
0	1	1	0	0	0	0	1

=11 ×2= 22

Show the work for the <u>division by 2 method</u> to convert 54 to binary:

$$547.2 = 27 \, \text{rO}_{1}$$

 $277.2 = 13 \, \text{rI}$
 $137.2 = 6 \, \text{rI}$
 $67.2 = 3 \, \text{rO}$
 $37.2 = 1 \, \text{rI}$
 $17.2 = 0 \, \text{rI}$

