PPI 2022 - Projektarbeit

Auswahl des Projekts

• Projekt A: Heatmap

Aufbau des Programms

1. Eingabe

- Speicher allocieren (Anhand der ersten beiden Zeilen des Dokuments)
- Eingabe überprüfen auf Sinnhaftigkeit
- Überführen der restlichen Daten in ein datenpunkt_array
 (data_points[i * WIDTH_DATA + HEIGHT_DATA])
 - Speichern im Heap
 - z-Werte werden gespeichert, x und y durch Position im Array dargestellt (ohne Schrittweite)
 - Größter und Kleinster z-Wert wird beim Einlesen getrackt
- argv[] Zielgröße in WIDTH_MAP und HEIGHT_MAP überführen
- Belegung des Speichers für die z_map[]
 - mit [WIDTH_MAP], [HEIGHT_MAP]

2. Verarbeitung

- o Funktion: color_cluster(z_min, z_max, *
 color_starting_values[])
 - matematische Ermittlung der Unterteilung der 10 Farben
 - Funktion erhält einen Zeiger auf ein Array, in das von der Funktion die Startwerte für die 10 Farben geschrieben werden

- Funktion: interpolation(* z_map[])
 - überführt datenpunkte[] in interpolierte z_map[]
 - Falls die Anzahl der Datenpunkte mit der gewünschten Pixelgröße der Ausgabe übereinstimmt, erden die Z-Werte nur in das neue Array kopiert
 - Falls die Anzahl der Datenpunkte geringer ist, als die gewünschte größe der Ausgabe in Pixeln, werden neue Z-Werte ermittelt, die gemeinsam mit den Messdaten in das neue Array (z_map[]) kopiert werden
- Funktion: colore_value(* z_map[], * color_starting_values[])
 - Diese Funktion ermittelt anhand der color_starting_values[]
 die Farben der Einzelnen Pixel in z_map[]
 - Die ermittelten Werte werden für die bmp_create -Funktion passend verpackt

3. Ausgabe

Aufruf der bmp_create -Funktion

Aufteilung

Paul	Nico
Eingabe	color-cluster Funktion
color-value	interpolationFunktion