July 2022

HEART DISEASE RISK PREDICTOR

A dive into understanding features driving the risk of heart disease by developing machine learning models

Group 9

The University of Texas at Austin

Meet the team!

Aishwarya Rajeev

Shreyansh Agrawal

Harshit Jain

Soumith Reddy

Krish Engineer

Tyler Cushing

Today we'll discuss...

- Problem Statement
- Dataset Description
- Exploratory Data Analysis
- Selected predictive model
- Comparison with other models
- Looking forward

What are we trying to solve for...

- ~50% of Americans are in risk of future heart diseases¹
- Approach: using variables to create an understanding of what factors lead to heart disease
- Impact: Make advancements in healthcare by being able to predict a patient's condition in relation to heart disease

Current State of Heart Disease¹

Dataset Description

- ~300k adults surveyed by the CDC
 - Largest health survey conducted in the world
- 18 variables
 - Respondent's health status
 - Demographic info
 - Age
- Cleaning of data:
 - Categorical-> Numerical
 - Simplified age categories
 - Class imbalance
- **Purpose:** detect patterns in respondents' health conditions that could lead to heart disease

Features and what they mean...

Variables

- **HeartDisease**: Have you ever had a coronary heart disease or heart attack? (Yes / No)
- **BMI**: Body Mass Index
- Smoking: Have you ever smoked? (Yes / No)
- AlcoholDrinking: Have you ever drank alcohol? (Yes / No)
- Stroke: (Ever told) (you had) a stroke? (Yes / No)
- PhysicalHealth: How many days during the past 30 days was your physical health not good? (0-30 days)
- MentalHealth: How many days during the past 30 days was mental health not good? (0-30 days)
- **DiffWalking**: Difficulty walking or climbing stairs (Yes / No)

- Sex : Male or Female Race : Ethnicity
- **Diabetic**: (Ever told) (you had) diabetes? (Yes / No)
- PhysicalActivity: Doing physical activity or exercise during the past 30 days other than their regular job (Yes / No)
- GenHealth : General health
- **SleepTime**: Hours of sleeping in 24-hour period
- Asthma: (Ever told) (you had) asthma? (Yes / No)
- **KidneyDisease**: (Ever told) (you had) kidney disease? (Yes / No)
- SkinCancer: (Ever told) (you had) skin cancer? (Yes / No)
- **AgeCategory**: 30-44, 45-59, 60 and up

Exploratory Data Analysis Summary

The classes are imbalanced in this dataset; less than 10% of the entire dataset have the dependent variable 'Heart Disease' labeled as "yes"

There is no missing data; all the rows and columns have a valid entry

The distributions of patients across features with and without heart diseases are similar

There is no significant correlation between the continuous variables

We have identified a few features such as Stroke, Smoking, Difficulty Walking, etc. have a greater impact on the possibility of having a Heart Disease, the similar trends are observed in our model output

Class Imbalance and it's problems

- <10% of sample contains the target class</p>
- This presents problems as we do not have enough data to explain the variance/ drivers for heart disease
- If we don't account for class imbalance, we get sub standard models* with poor predictive power

	precision	recall	f1-score	support
0	0.93	0.96	0.95	87635
1	0.42	0.28	0.34	8304
accuracy			0.90	95939
macro avg	0.68	0.62	0.64	95939
weighted avg	0.89	0.90	0.90	95939

Ability to predict people with heart disease is <30%. That is 70 people out of 100 who have heart disease would be misclassified !!!

What can we do to account for class imbalance?

Cost Sensitive Learning

Penalizes the cost function by class weight, i.e., misclassification of minority class costs more

PROS -

- Gives more importance to classifying minority class
- True positives are predicted with more accuracy
- Avoid processing time associated with sampling methods

CONS -

 Determining class weight can be tricky; governed by domain knowledge

Sampling Methods

Synthetically adjusting the class imbalance by increasing the minority class (oversampling) and reducing the majority class (under sampling)

PROS -

- Improves class imbalance
- Provides enough data to understand the variance in each class

CONS -

- Potential overfitting in case of oversampling
- Loss of important data in case of under sampling
- Increased processing time post oversampling

Cost Sensitive Logistic Regression workflow

Initial Model Results & Feature Importance

	precision	recall	f1-score	support
0	0.97	0.74	0.84	87635
1	0.22	0.78	0.34	8304
accuracy			0.74	95939
macro avg	0.60	0.76	0.59	95939
weighted avg	0.91	0.74	0.80	95939

- Cost sensitive model has significantly improved the accuracy and recall from <30% to >75%
- Features marked in red had coefficients close to 0, hence lower importance and were removed from the subsequent models to reduce variance

Tuning model to remove unnecessary features

	precision	recall	f1-score	support
0	0.97	0.74	0.84	87635
1	0.22	0.78	0.34	8304
accuracy			0.74	95939
macro avg	0.60	0.76	0.59	95939
weighted avg	0.91	0.74	0.80	95939

- Accuracy and recall have not decreased from the previous model suggesting the features we removed did not have any predictive power
- Additionally, all the features now have coefficients away from zero and have predictive power

5

ROC AUC

ROC Curve & Cross Validation

83.4% 82.6% 84.1% 82.8% 90% 82.0% 70.1% 80% 70.2% 69.3% 69.2% 70% 60% 50% 40% 30% 20.1% 20.0% 19.7% 19.5% 19.8% 20% 10% 0%

3

Cross Validation | Performance Metrics

 To balance TPR and FPR, we have selected 0.45 as the classification threshold

2

 Cross validation shows very consistent results across validation sets making our model generalized and reliable

Final Model Performance

	precision	recall	f1-score	support
0	0.98	0.69	0.81	58484
1	0.20	0.82	0.32	5475
accuracy			0.70	63959
macro avg	0.59	0.76	0.57	63959
weighted avg	0.91	0.70	0.77	63959

- Out 100 of people with heart disease, our model will classify 82 of them correctly i.e., 82% recall
- Final model performance is consistent with the crossvalidation results

Decision Tree Classification

Classification	n report:			
	precision	recall	f1-score	support
0	0.97	0.70	0.81	87649
1	0.20	0.80	0.32	8290
accuracy			0.71	95939
macro avg	0.59	0.75	0.57	95939
weighted avg	0.91	0.71	0.77	95939

AUROC: 0.821

Test train split = 30%; no of trees =7

- Model was tested for various parameters (hyper parameter tuning) like depth of the tree=7 and the model gave best results
- The feature importance graph was plotted and "Age above 60" seem to be highly important
- Area Under Curve is 0.821 which means that the model can classify observations into classes well

AdaBoost Classification

AUROC: 0.837 Accuracy = 0.8096410192266457 Precision Score = 0.20538475532108422 Recall Score = 0.8157514450867052 Specificity = 0.700941404689907

•	precision	recall	f1-score	support
0	0.98	0.70	0.82	87635
1	0.21	0.82	0.33	8304
accuracy			0.71	95939
macro avg	0.59	0.76	0.57	95939
weighted avg	0.91	0.71	0.77	95939

- Model was tested for various parameters (hyper parameter tuning) like depth of the tree, n_estimators and learning rate.
 The parameters on which the model was giving the best results was shortlisted.
- The feature importance graph was plotted shown below and was giving the expected results.

Test train split = 30%; max_depth=3, n_estimators = 50, learning_rate=0.2.

XGBoost Classification

AUROC: 0.821 Accuracy = 0.8100071921074439 Precision Score = 0.2264117542927952

Recall Score = 0.7008219178082192 Specificity = 0.7758361261199644

	precision	recall	f1-score	support
0	0.97	0.78	0.86	58484
1	0.23	0.70	0.34	5475
accuracy			0.77	63959
macro avg	0.60	0.74	0.60	63959
weighted avg	0.90	0.77	0.82	63959

- Sample weights were taken to mitigate any effects of imbalance in datasets as number of zeroes were far greater than 1s in the 'HeartDisease Yes' column of dataset.
- The feature importance graph was plotted shown below and was giving the expected results.
- The results of the XGBoost and AdaBoost classification were quite similar in nature.

Test train split = 30%; n_estimators = 100, max_depth= 20,alpha=10,learning_rate=0.1.

Random Forest Classification

	precision	recall	f1-score	support
0	0.97	0.69	0.81	58367
1	0.20	0.80	0.32	5592
avg / total	0.91	0.70	0.77	63959

- Initially, Recall increases with increase in # of features and then the curve flattens post n=10
- Recall increases as depth of trees (k) increase until k ~12 and then decrease steeply with a further increase in k indicating possible overfitting for k>12

Comparison across different models

Performance metrics across models are comparable, however, logistic regression has a better AUC and Recall score which is why we have selected it for prediction.

Looking Forward...

- Including more granular features such as blood pressure, cholesterol levels, genetic factors etc. to improve the model accuracy
- Translate continuous variables such as BMI, Sleep time etc. into categorical variables to check their significance
- Exploring more advanced ML algorithms to improve the model
- An interactive app for predicting the chance of heart disease using the models

HEART'S DATA

Input your data here

v,	serum cholestoral	40	fasting blood sugar	40	electrocardiographic	40	max heart rate
ø	induced angina	*	ST depression	*	slope	v	vessels
v	thal	A	NALYZE				

Thank You!

References

- https://www.cdc.gov/brfss/annual_data/annual_2020.html
- https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
- https://towardsdatascience.com/how-to-effectively-predict-imbalanced-classes-in-python-e8cd3b5720c4
- https://www.datacamp.com/tutorial/random-forests-classifier-python
- https://medium.com/chinmaygaikwad/build-and-visualize-a-simple-decision-tree-using-sklearn-and-graphviz-84bda6b6b894

Appendix

