Lab 09: Requirement Description

- ADC
 - Video: https://youtu.be/iw8jKujZ1Rc
 - HackMD: https://hackmd.io/@microprocessor2023/lab9ADC onverter
- Basic (70%)
 - Description:

Use four bulbs as a counter to record the degree of rotation of the variable resistor, when the variable resistor is rotated, the form of the light bulb is sequentially changed to indicate $0\sim15$ in binary. Please use 10-bit resolution and map $0\sim1023$ to $0\sim15$, the oscillator frequency needs to be >= 4 MHz.

- Example: https://www.youtube.com/watch?v=sveEmRz5RgY
- Advanced (30%)
 - **■** Description:

Use four bulbs to indicate 0~9. Please light up the bulb while rotating the variable resistor at a constant speed to show **your student ID**, **only the numerical part is needed**. If your student ID is P74101214, your bulbs will light up in sequence in binary: 7, 4, 1, 0, 1, 2, 1, 4.

- Example: https://youtu.be/VEG1 rP99-I
- Bonus (20%)
 - Description:

Use a variable resistor to implement a **dimming LED**. Please adjust the PWM duty cycle by rotating the variable resistor.

- **Example:** https://youtu.be/mMMqTt9nGHw
- Hint:
 - ◆ Please refer to the PWM implementation and setup in Lab 8.
 - You can configure the crystal oscillator frequency (125kHz, 4MHz, etc.), period, and duty cycle yourself, but please be mindful of the limitations regarding T_{AD} (>= 0.7 μs) and acquisition time (>= 2.4 μs).