#Example 1:

- ☐ For Peterson's problem below conditions will applied.
- a. Each statement will take 1ms to complete.
- b. For process 0: i=0, j=1; and for process 1: i=1, j=0.
- c. Context switching will occur after 3ms.
- d. In critical section area carried only 1 statement.
- e. In remainder section area carried only 1 statement.
- f. Initial information common to both processes:
- g. turn=0;
- h. flag [0] =FALSE;
- i. flag [1] =FALSE;

Solution: Information common to both processes:

```
flag [0] = false;
flag [1] = false;
```

turn=0;

Process 0	Process 1
i=0, j=1	i=1,j=0
1.flag [0] = true; 2.turn = 1; 3.while (flag [1] == true && turn == 1); //check the condition is false because flag [1] = false // since condition is false, no waiting in while loop. // Enter the critical section and process 0 happens to lose the processor.	
	1.flag [1] = true; 2.turn = 0; 3.while (flag [0] == true && turn == 0); // check the condition which is true, it keeps busy waiting until it loses the processor.
 // process 0 resume until it finishes in the critical section. 4. Execute line #1 of C.S; // leave C.S 5. flag [0] = false; // start executing the remainder section of the process 6. Execute line #1 of R.S; // process 0 happens to lose the processor. 	·

	4.while (flag [0] == true && turn == 0); // check the condition is false because flag [0] = false. // no busier waiting and enter the critical section. 5. Execute line #1 of C.S; 6. flag [1] = false;
7.flag [0] = true; 8.turn = 1; 9.while (flag [1] == true && turn == 1); //check the condition is false because flag [1] = false // since condition is false, no waiting in while loop. // Enter the critical section and process 0 happens to lose the processor.	
	7. Execute line #1 of R.S; 8. flag [1] = true; 9.turn = 0;