Université Badji Mokhtar Annaba

Faculté des sciences de l'ingénieur

Durée :1H 30 mn

24 IVIai 2018

Département d'informatique (2ième Année LMD)

Documents et téléphone portables non autorisés

EMD Théorie des graphes

Exercice1 (7 pts) Dans un établissement scolaire, le responsable de la salle informatique souhaite optimiser l'utilisation des ordinateurs disponibles. Un groupe de 7 élèves (A, B, C, D, E, F et G) vient travailler de façon régulière dans cette salle à des heures différentes, et ce, pendant une heure. Le tableau ci-dessous indique les heures de présence de chacun des élèves en salle informatique. On se propose de déterminer le nombre minimum d'ordinateurs que le responsable doit mettre à disposition des élèves pour la journée puis la façon d'attribuer les ordinateurs à ces 7 élèves.

	A	В	C	D	E	F	G
9h30	X			X	X		
10h30	X	X	Х				
11h30	X		X	х		Х	
12h30	Х		X			X	Х
13h30	Х					х	X
14h30	X				X		

Soit G le graphe indiquant la présence simultanée des élèves aux différentes plages horaires.

- 1/ Représenter G et déterminer la matrice d'adjacence de G.
- 2/ Calculer le degré de chaque sommet de G.
- 3/ Déterminer un encadrement du nombre chromatique de G. Justifier.
- 4/ En appliquant l'algorithme de Welsh et Powell, déterminer le nombre chromatique de G. En déduire le nombre minimum d'ordinateurs que le responsable doit mettre à disposition des élèves et proposer une répartition des ordinateurs aux élèves.

Exercice 2 (7 pts) Soit le réseau de transport suivant :

Les valeurs portées sur les arcs représentent les capacités de transport.

- 1/ En appliquant l'algorithme de Ford Fulkerson trouver le flot maximum, en utilisant à chaque étape une chaine améliorante.
- 2/ Tracer une coupe minimum et vérifier le théorème vu en cours.
- 3/ Le réseau subi des changements indiqués plus bas. En utilisant la coupe minimum Essayer de trouver, dans chaque cas, le flot maximum sans recommencer l'algorithme.
- Cas 1. La capacité de l'arc ac diminue à 8.
- Cas 2. La capacité de l'arc cd augmente à 10.
- Cas 3. La capacité de l'arc ac augmente à 12, celle de l'arc ad à 16 et l'arc de disparaît.

Exercice 3 (6 pts) La construction d'un entrepôt est divisée en dix taches reliées entre elles par des contraintes d'antériorité et dont les caractéristiques sont données dans le tableau suivant :

Taches	Nature	Précédences	Durée (jours)	
Tacries			6	
Α	Acceptation des plans par le propriétaire			
В	Préparation du terrain		2 3 4	
С	Commande des matériaux	A		
D	Creusage des fondations	С		
E	Commande des portes et des fenêtres	A		
F	Livraison des matériaux	C,E	7	
G	Coulage des fondations	A,B	3	
Н	Pose des murs, de la charpente et du toit	G		
1	Mise en place des portes et fenêtres	D,F	4	

- 1/ Construire le graphe PERT de ce projet.
- 2/ Calculer les marges libres et totales des taches de ce projet.
- 3/ Déterminer le chemin critique et déterminer la durée finale de réalisation.