CSC358H5: Principles of Computer Networking — Winter 2025

Worksheet 6: Internet Protocol (IP) Address, Prefix, and Forwarding

- **0.a** (True/False) The IP protocol guarantees reliable data delivery.
- **0.b** What happens when a router receives an IP packet with a destination IP address that is NOT in any of the IP prefixes in its routing table?
- **0.c** In the context of routers, compare the two concepts "Routing" and "Forwarding". Explain the key differences the context/layer(s) they are defined at, protocol(s) they are related to, when/where they are used, etc.

• Routing:

- The context/layer(s) it is defined at:
- The protocol(s) it is related to:
- When/where it is used/implemented:
- Is it implemented locally or distributedly?
- In at most 2-3 sentences, explain its purpose:

• Forwarding:

- The context/layer(s) it is defined at:
- The protocol(s) it is related to:
- When/where it is used/implemented:
- Is it implemented locally or distributedly?
- In at most 2-3 sentences, explain its purpose:

0.d	(IP Prefix) The following is	the list of IP pr	efix of Networks	s 1, 2, and 3.		
	Network 1: 131.21.0.0/16		Network 2: 131.22.0.0/16		Network 3: 133.22.12.0/24	
	Consider the following hosts	with IP address	es:			
	Host A: 131.21.12.19 H	ost B: 133.21.1	2.19 Host (C: 133.22.11.19	Host D: 131.21.21.21	
	To which network do the diff above networks?	erent hosts belo	ong? Are there a	any hosts that o	lo not belong to any of the	
	• Host A: ☐ Network 1	\square Network 2	☐ Network 3	\square None		
	 Host B: □ Network 1 	\square Network 2	☐ Network 3	\square None		
	 Host C: □ Network 1 	\square Network 2	\square Network 3	\square None		
	• Host D : □ Network 1	\square Network 2	\square Network 3	\square None		
0.e	(Routing Table and Maxi					

• Packet with destination 128.96.39.10:

192.4.153.90?

- Packet with destination 128.96.40.12:
- Packet with destination 128.96.40.151:
- Packet with destination 192.4.153.17:
- Packet with destination 192.4.153.90:

Table 1: Routing Table

SubnetNumber	SubnetMask	NextHop
128.96.39.0	255.255.255.128	Interface 0
128.96.39.128	255.255.255.128	Interface 1
128.96.40.0	255.255.255.128	R2
192.4.153.0	255.255.255.192	R3
0.0.0.0	0.0.0.0	R4

- **0.f** (IP Header) In lecture, we reviewed the list of tasks that packet headers are needed for:
 - A. Read packet correctly
 - B. Get the packet to the destination
 - C. Get responses to the packet back to source
 - D. Carry data
 - E. Tell host what to do with the packet once arrived
 - F. Specify any special network handling of the packet
 - G. Dealing with Header Corruption
 - H. Dealing with Loops
 - I. Dealing with Packets that are too large
 - J. Dealing with Payload Corruption

Consider the IPv4 headers shown in Figure 1. Each of these fields is devoted to a task. In Table 2, map between tasks listed above and the header fields. For your reference, we filled out the mapping for the first row in the table.

4-bit Version	4-bit Header Length	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)				
16-bit Identification			3-bit Flags	13-bit Fragment Offset			
8-bit Time to	Live (TTL)	8-bit Protocol	16-bit Header Checksum				
32-bit Source IP Address							
32-bit Destination IP Address							
Options (if any)							
Payload							

Figure 1: IPv4 headers.

- Q1 (IP Fragmentation Loss Probability) Suppose an IP packet is fragmented into 10 fragments. Suppose that each fragments has (independent) loss probability of 1%.
 - **1.a** Find the probability of losing the whole packet. The whole packet is lost even if a single fragment is lost.

Table 2: Map between tasks listed above and the header fields.

Field(s)	Task
Payload	D
TTL	
Version number, Header length, and Total length	
Destination IP address	
Identification, Flags, Fragment Offset	
Type-of-Service, Options	
Source IP address	
Protocol	
Checksum	

- 1.b Find the probability of net loss of the whole packet if the packet is transmitted twice,
 - 1.b.i Assuming all fragments received must have been part of the same transmission?
 - 1.b. ii Assuming any given fragment may have been part of either transmission?
- **Q2** (IP Fragmentation MTU) Suppose the following IP datagrams all pass through another router onto a link with a Maximum Transmission Unit (MTU) of 370 bytes.

Figure 2: Three IPv4 packets and their header fields value.

- 2.a Considering the typical IP header size of 20 Bytes, show the IP fragments produced.
- **2.b** If we had found the path MTU to be 370 and fragmented the data with respect to that, how many datagrams (i.e., IP packets) would be produced by the sender?