

## Programmieren, Algorithmen und Datenstrukturen I

# Praktikum 2: Einfache Datentypen, Verzweigungen und Schleifen

Wintersemester 2019/2020 Prof. Dr. Stefan Rapp

# Allgemeine Hinweise zum Praktikum:

- Bereiten Sie die Aufgaben unbedingt zu Hause oder in einem freien Labor vor. Das beinhaltet:
  - Entwurf der Lösung
  - Codieren der Lösung in einem Qt-Creator-Projekt
- Die Zeit während des Praktikums dient dazu, die Lösung testieren zu lassen sowie eventuelle Korrekturen vorzunehmen.
- Das Praktikum dient auch zur Vorbereitung der praktischen Klausur am Ende des Semesters. Versuchen Sie also in Ihrem eigenen Interesse, die Aufgaben selbständig nur mit Verwendung Ihrer Unterlagen bzw. Ihres bevorzugten C++-Buches und ohne Codefragmente aus dem Netz zu lösen.
- Die Lösung wird nur dann testiert, wenn
  - sie erklärt werden kann bzw. Fragen zur Lösung beantwortet werden können.
  - das Programm ablauffähig und die Lösung nachvollziehbar ist.
  - die Hinweise oder Einschränkungen aus der Aufgabenstellung befolgt wurden.
- Zur Erinnerung hier noch einmal die Regeln des Praktikums, die schon in der Vorlesung besprochen wurden:
  - Sie arbeiten in 2er Gruppen.
  - Ein Testat gibt es nur zum jeweiligen Termin.
  - Abschreiben und Kopieren ist verboten.
  - Es gibt keine Noten. Die Bewertung ist lediglich erfolgreich / nicht erfolgreich.
  - Das Praktikum ist Zulassungsvoraussetzung für die Klausur. Hierfür müssen alle sechs Praktikumsübungen testiert sein.

#### Lernziele:

- Sie lernen, Auswahlanweisungen und Schleifen in Programmen zu verwenden.
- Sie beherrschen die einfachen Datentypen aus C++.

### Aufgabe 1

Lesen Sie zwei positive ganze Zahlen ein, berechnen Sie die Summe aller Zahlen, die zwischen der kleineren und der größeren Zahl liegen (einschließlich der beiden eingegebenen Zahlen), und geben Sie diese Summe aus.

Überlegen Sie sich dazu zunächst eine sinnvolle Programmstrukturierung. Fertigen Sie die naheliegende Programmversion mit einer while-Schleife an.

Zusatz: Überlegen Sie, wie die Aufgabe auch ohne Schleife lösbar ist, und programmieren Sie diese Lösung als Variante.

## Aufgabe 2

Lesen Sie eine ganzzahlige positive Zahl von der Tastatur ein, berechnen Sie die Primzahlzerlegung dieser Zahl und geben Sie sie am Bildschirm aus.

Beispiele:

Geben Sie eine ganzzahlige positive Zahl ein: 216

Primzahlzerlegung: 2\*2\*2\*3\*3\*3

Geben Sie eine ganzzahlige positive Zahl ein: 637

Primzahlzerlegung: 7\*7\*13

#### Aufgabe 3

Fordern Sie den Benutzer des Programmes auf Kleinbuchstaben einzugeben. Kontrollieren Sie, dass auch wirklich ein Kleinbuchstabe eingegeben wurde. Wandeln Sie anschließend den Kleinbuchstaben in einen Großbuchstaben um und geben ihn aus. Das Programm soll abbrechen, wenn eine 0 eingegeben wird.

Tipp: Benutzen Sie die ASCII Tabelle im Anhang und nutzen Sie die Wandlung von char-Datentypen in ganzzahlige Typen aus.

#### Aufgabe 4

Legen Sie für einen Kredit die Kreditsumme (10.000 €) und den Zinssatz (7%) über Konstanten im Programm fest. Erfragen Sie vom Benutzer die Annuität (d.h. die jährliche Rate, die der Benutzer zahlen will). Geben Sie für jedes Jahr die Zinsen, die Tilgung und die Restschuld aus, bis der Kredit abgezahlt ist. Achten Sie darauf, dass das Programm auf jeden Fall terminiert und nicht in einer Endlosschleife landet. Achten Sie auch darauf, dass Sie bei einer Restschuld von 0 enden und nicht zu viel zurückzahlen.

Die Ausgabe sollte wie im folgenden Beispiel aussehen:

# Tilgungsplan

```
Geben Sie bitte die gewuenschte Annuitaet ein: 1500
```

```
Jahr: 1, Zinsen: 700 €, Tilgung: 800 €, Restschuld: 9200 €
Jahr: 2, Zinsen: 644 €, Tilgung: 856 €, Restschuld: 8344 €
Jahr: 3, Zinsen: 584.08 €, Tilgung: 915.92 €, Restschuld: 7428.08 €
```

:

| Dez | Hex  | Okt | ASCII |
|-----|------|-----|-------|-----|------|-----|-------|-----|------|-----|-------|-----|------|-----|-------|
| 0   | 0x00 | 000 | NUL   | 32  | 0x20 | 040 | SP    | 64  | 0x40 | 100 | @     | 96  | 0x60 | 140 |       |
| 1   | 0x01 | 001 | SOH   | 33  | 0x21 | 041 | i     | 65  | 0x41 | 101 | Α     | 97  | 0x61 | 141 | а     |
| 2   | 0x02 | 002 | STX   | 34  | 0x22 | 042 | in .  | 66  | 0x42 | 102 | В     | 98  | 0x62 | 142 | b     |
| 3   | 0x03 | 003 | ETX   | 35  | 0x23 | 043 | #     | 67  | 0x43 | 103 | С     | 99  | 0x63 | 143 | С     |
| 4   | 0x04 | 004 | EOT   | 36  | 0x24 | 044 | S     | 68  | 0x44 | 104 | D     | 100 | 0x64 | 144 | d     |
| 5   | 0x05 | 005 | ENQ   | 37  | 0x25 | 045 | %     | 69  | 0x45 | 105 | E     | 101 | 0x65 | 145 | e     |
| 6   | 0x06 | 006 | ACK   | 38  | 0x26 | 046 | &     | 70  | 0x46 | 106 | F     | 102 | 0x66 | 146 | f     |
| 7   | 0x07 | 007 | BEL   | 39  | 0x27 | 047 |       | 71  | 0x47 | 107 | G     | 103 | 0x67 | 147 | g     |
| 8   | 0x08 | 010 | BS    | 40  | 0x28 | 050 | (     | 72  | 0x48 | 110 | Н     | 104 | 0x68 | 150 | h     |
| 9   | 0x09 | 011 | нт    | 41  | 0x29 | 051 | )     | 73  | 0x49 | 111 | I     | 105 | 0x69 | 151 | i     |
| 10  | 0x0A | 012 | LF    | 42  | 0x2A | 052 | *     | 74  | 0x4A | 112 | J     | 106 | 0x6A | 152 | j     |
| 11  | 0x0B | 013 | VT    | 43  | 0x2B | 053 | +     | 75  | 0x4B | 113 | к     | 107 | 0x6B | 153 | k     |
| 12  | 0x0C | 014 | FF    | 44  | 0x2C | 054 | ,     | 76  | 0x4C | 114 | L     | 108 | 0x6C | 154 | 1     |
| 13  | 0x0D | 015 | CR    | 45  | 0x2D | 055 | -     | 77  | 0x4D | 115 | M     | 109 | 0x6D | 155 | m     |
| 14  | 0x0E | 016 | SO    | 46  | 0x2E | 056 |       | 78  | 0x4E | 116 | N     | 110 | 0x6E | 156 | n     |
| 15  | 0x0F | 017 | SI    | 47  | 0x2F | 057 | 1     | 79  | 0x4F | 117 | 0     | 111 | 0x6F | 157 | 0     |
| 16  | 0x10 | 020 | DLE   | 48  | 0x30 | 060 | 0     | 80  | 0x50 | 120 | Р     | 112 | 0x70 | 160 | р     |
| 17  | 0x11 | 021 | DC1   | 49  | 0x31 | 061 | 1     | 81  | 0x51 | 121 | Q     | 113 | 0x71 | 161 | q     |
| 18  | 0x12 | 022 | DC2   | 50  | 0x32 | 062 | 2     | 82  | 0x52 | 122 | R     | 114 | 0x72 | 162 | г     |
| 19  | 0x13 | 023 | DC3   | 51  | 0x33 | 063 | 3     | 83  | 0x53 | 123 | S     | 115 | 0x73 | 163 | s     |
| 20  | 0x14 | 024 | DC4   | 52  | 0x34 | 064 | 4     | 84  | 0x54 | 124 | Т     | 116 | 0x74 | 164 | t     |
| 21  | 0x15 | 025 | NAK   | 53  | 0x35 | 065 | 5     | 85  | 0x55 | 125 | U     | 117 | 0x75 | 165 | u     |
| 22  | 0x16 | 026 | SYN   | 54  | 0x36 | 066 | 6     | 86  | 0x56 | 126 | ٧     | 118 | 0x76 | 166 | v     |
| 23  | 0x17 | 027 | ETB   | 55  | 0x37 | 067 | 7     | 87  | 0x57 | 127 | W     | 119 | 0x77 | 167 | w     |
| 24  | 0x18 | 030 | CAN   | 56  | 0x38 | 070 | 8     | 88  | 0x58 | 130 | X     | 120 | 0x78 | 170 | x     |
| 25  | 0x19 | 031 | EM    | 57  | 0x39 | 071 | 9     | 89  | 0x59 | 131 | Y     | 121 | 0x79 | 171 | у     |
| 26  | 0x1A | 032 | SUB   | 58  | 0x3A | 072 | :     | 90  | 0x5A | 132 | z     | 122 | 0x7A | 172 | z     |
| 27  | 0x1B | 033 | ESC   | 59  | 0x3B | 073 | ;     | 91  | 0x5B | 133 | [     | 123 | 0x7B | 173 | {     |
| 28  | 0x1C | 034 | FS    | 60  | 0x3C | 074 | <     | 92  | 0x5C | 134 | ١     | 124 | 0x7C | 174 | 1     |
| 29  | 0x1D | 035 | GS    | 61  | 0x3D | 075 | =     | 93  | 0x5D | 135 | 1     | 125 | 0x7D | 175 | }     |
| 30  | 0x1E | 036 | RS    | 62  | 0x3E | 076 | >     | 94  | 0x5E | 136 | ٨     | 126 | 0x7E | 176 | ~     |
| 31  | 0x1F | 037 |       | 63  | 0x3F | 077 | ?     | 95  | 0x5F | 137 |       | 127 | 0x7F | 177 | DEL   |

Abbildung 1: ASCII-Tabelle