TBB: Pros and cons

- ✓ Very flexible in terms of parallelism, with multiple patterns
 - Data-parallel, pipelined, fork-join, arbitrary task graphs
- ✓ Makes it possible to exploit many cores with little effort
 - Quite easy to scale up to 64+ cores
 - Can get close to linear speed-up
- ✓ Integrates very well with existing codebases
- Runs on quite heavy-weight multi-core CPUs
 - All the power and area wastage of super-scalar processors
- Have to be careful to agglomerate parallel tasks
 - Very small tasks have a lot of overhead
 - Must agglomerate potentially parallel tasks into a single serial task

Reducing the Cost of Work

- What limits the execution rate in a "normal" CPU?
 - Communication: time taken to read/write data to memory
 - ALU Speed: speed with which calculations can be performed
 - Clock Rate: how often can instructions be issued
- Technology scaling: increase clock rate / increase area
 - Clock scaling is very limited; too much power consumption
 - But we have increasing amounts of area
 - What to do with it?
- Limitation has become instruction issue rate
 - How can we execute n operations in fewer than n cycles?

Using Area to Increase Instructions/Sec

- Assume current technology is able to support a basic CPU
 - Control logic: power consuming; almost pure overhead
 - ALU: uses power, but gets useful work done
 - Registers: uses some power, but not too bad
 - Cache: consumes a lot of area, but less power
- What do we do with twice the area?

Using Area to Increase Instructions/Sec

- Default answer: twice the area, let's create two CPUs!
 - Some advantages: two CPUs share larger L2 cache
- Efficiency is about the same
 - Either Operations/Cycle/Area or Operations/Joule

SIMD and VLIW

- Extend processor with more complex instructions
 - Each instruction issued can perform multiple operations
- Proportion of ALU (good) to CTRL (bad) is increased
 - Can we ensure ALUs will actually be occupied?

opcode srca srcb dst	•
----------------------	---

- Classic scalar CPU
 - One set of registers
 - Single ALU

- Classic scalar CPU
 - One set of registers
 - Single ALU
- Instruction controls data-flow
 - Opcode: what should ALU do?

- Classic scalar CPU
 - One set of registers
 - Single ALU
- Instruction controls data-flow
 - Opcode: what should ALU do?
 - Sources: where is data from?

- Classic scalar CPU
 - One set of registers
 - Single ALU
- Instruction controls data-flow
 - Opcode: what should ALU do?
 - Sources: where is data from?
 - Destination: where does data go?

- SIMD: Each data-path (lane) is isolated from the others
 - One set of registers for each SIMD lane
 - One ALU for calculation in each lane

- SIMD: Each data-path (lane) is isolated from the others
 - One set of registers for each SIMD lane
 - One ALU for calculation in each lane
- Same instruction is applied to all lanes

- SIMD: Each data-path (lane) is isolated from the others
 - One set of registers for each SIMD lane
 - One ALU for calculation in each lane
- Same instruction is applied to all lanes

- SIMD: Each data-path (lane) is isolated from the others
 - One set of registers for each SIMD lane
 - One ALU for calculation in each lane
- Same instruction is applied to all lanes

GPU: Fill the chip with ALUs!

- ALUs are the good part; let's have as many as possible
 - Need to have simple ALUs so they can be small
 - Sacrifice cache area, move to simple scratch-pad RAM

Recap: Iteration Spaces: Sequential

- Iteration space over a 2D set of points
- Loop control-flow forces execution order

```
for x in [0,4)
for y in [0,2)
f(x,y);
```


Iteration Spaces: Nested Parallel

Two parallel for loops – remove control-flow dependency

```
par_for x in [0,4)
  par_for y in [0,2)
  f(x,y);
```

(0,0)

(1,0)

(2,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1)

Iteration Spaces: Nested Parallel

- Two parallel for loops remove control-flow dependency
- Nesting order controls how TBB can split loops
 - If y is inner loop, will tend to agglomerate vertically

```
par_for x in [0,4)
  par_for y in [0,2)
    f(x,y);
```


Iteration Spaces: Nested Parallel

- Two parallel for loops remove control-flow dependency
- Nesting order controls how TBB can split loops
 - If x is inner loop, will tend to agglomerate horizontally

Iteration Spaces: Parallel 2D

Single parallel for loop describing entire iteration space

(0,0) (1,0)

(2,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1)

Iteration Spaces: Parallel 2D

- Single parallel for loop describing entire iteration space
- Scheduler is free to group tasks horizontally or vertically
 - Consider both loops at once, rather than one loop then another

```
par_for_2d (x,y) in [0,4)*[0,2)
  f(x,y);
```


Iteration Spaces: GPU Work-Items

Each point in iteration space corresponds to a GPU work-item

Iteration Spaces: GPU Work-Items

- Each point in iteration space corresponds to a GPU work-item
- No adaptive agglomeration needed for the GPU
 - Work-items and work-groups provide architectural agglomeration

```
cl::Kernel f;
cl::NDRange size(4,2);
cl::enqueueKernel(f, size);
(0,0) (1,0) (2,0) (3,0)
```

Iteration Spaces: GPU Work-Items

- Each point in iteration space corresponds to a GPU work-item
- No adaptive agglomeration needed for the GPU
- Co-ordinates are built into hardware registers: not parameters

Iteration Spaces: GPU Hierarchy

- Multiple work-items are organised into a local work-group
- Batches of work-items issued by GPU as warps
 - A warp is some sub-set of a local work-group

```
cl::Kernel f;
cl::NDRange gSize(4,2);
cl::NDRange lSize(2,2);
cl::enqueueKernel(f,gSize,lSize);
```

Iteration Spaces: GPU Hierarchy

- Multiple work-items are organised into a local work-group
- Each local work-group executes in one processor on GPU
- Many processors on a GPU: need multiple local groups

```
cl::Kernel f;
cl::NDRange gSize(4,2);
cl::NDRange lSize(2,2);
cl::enqueueKernel(f,gSize,lSize);
(0,0) (1,0) (2,0) (3,0)
```

Iteration Spaces: GPU Hierarchy

- Multiple blocks of threads are organised into grids of blocks
- Use grid and block index to get global index of thread

```
cl::Kernel f;
cl::NDRange gSize(4,2);
cl::NDRange ISize(2,2);
cl::enqueueKernel(f,gSize,lSize);
```

The Memory Hierarchy

- Three types of read-write storage available within the GPU
 - Private (registers): Only accessible to one thread (work-item)
 - Local (scratchpad): Accessible to threads in a local work-group
 - Global (off-chip DRAM): Accessible to any thread on the GPU
- Two types of read-only storage available
 - Constant memory: Caches constants, e.g. Pi, lookup tables
 - Texture memory: Supports interpolated table lookups
 - Both are cached views of global memory

Storage: Speed versus size

- Registers: very fast to access, fairly abundant on GPUs
 - SIMD registers : dedicated path between registers and ALUs
- Local memory: fast to access, not very large though
 - Fast path between registers and shared memory
 - Can move data between threads within the same block
- Global memory: big, shared by everyone
 - Very high latency hundreds of clock cycles
 - Relatively high bandwidth if accesses are ordered carefully
 - If many threads access global memory some will stall
- Use shared memory as a scratchpad memory
 - Manually stage data from global into shared memory
 - Same effect as a cache, but less transparent and more efficient

GPU has register file with fixed number of lanes per register

- GPU has register file with fixed number of lanes per register
- At run-time sets of registers are dedicated to a warp

Instruction arguments are mapped to registers at run-time

- Instruction arguments are mapped to registers at run-time
- If each thread uses fewer registers, larger blocks are possible

- Block size does not have to be a multiple of warp size
- Can have a warp with one active thread not very efficient

Shared memory banks

- ALUs are connected to one register lane
- Shared memory has one bank per lane via a crossbar

```
__global__ void MyKernel()
{
  i=i+1;
  v=myMem[i];
}
```


Shared memory banks

- ALUs are connected to one register lane
- Shared memory has one bank per lane via a crossbar

Shared memory banks

- ALUs are connected to one register lane
- Shared memory has multiple banks connected via crossbar
- Crossbar: fast comms. between threads in the same local group

```
global___ void MyKernel()
{
  i=i+1;
  v=myMem[i];
}
```


- Individual processor within GPU
- Schedules instructions which are applied to warps of threads
- Contains all warps executing within a given block

- GPU chip contains multiple processors working in parallel
- All threads from a single block are in one processor
- Blocks from a single grid can executed on many processors

- Threads within processor can communicate via shared memory
- Cannot read and write shared memory from other processors

- Processors within GPU share a chip-wide global interconnect
- Used for things like managing blocks, instruction fetch, etc.

- Processors within GPU share a chip-wide global interconnect
- Used for things like managing blocks, instruction fetch, etc.
- Also connects GPU processors to off-chip global memory

- Global DRAM contains multiple parallel memory banks
- To maximise bandwidth all threads should access different banks

- Global DRAM contains multiple parallel memory banks
- To maximise bandwidth all threads should access different banks
- Allows all threads within GPU to communicate

- Global RAM has high bandwidth, but there are lots of processors
- If memory traffic is too high, then some processors must wait
- Need lots of warps ready to run: hide latency of global memory

- Global interconnect also connects GPU to the outside world
- Typically a high-bandwidth PCIe connection to a host PC
- GPU is quite simple: no OS, no networking, no disk

- Host PC can read and write to global memory
- Send input: enqueueWrite
- Get input: enqueueRead

- Host PC must launch grids of threads: the CPU can't do it
- Launching a single block with 1 thread is very inefficient
 - Will be much slower than a CPU

- Each block should contains enough threads to occupy processor
- Threads should be a multiple of warp-size: use all SIMD lanes
- Need multiple warps available: hide ALU and memory latency

- We want to try and use multiple processors at once
- Each block must executed on one processor: need many blocks
- Launch grids of blocks, which will be scheduled on all processors

General Lessons: Iteration Spaces

- Computation is organised into a hierarchy of iteration spaces
 - Work-item: granularity of control-flow = one SIMD lane
 - Warp/Wavefront: granularity of scheduling = one Program Counter
 - Local Workgroup: collection of work-items within one processor
 - Global Workgroup: collection of work-tiems with shared code
- Need to have an appropriate sizes for each level
 - Work-item: Startup cost vs amount of work done
 - If your kernel doesn't contain a loop, how much work can it do?
 - Local group: balance registers/thread against threads/block
 - Want lots of warps ready to run; hide ALU and memory latency
 - Global group: Want enough grids to utilise all processors
 - Balance no. of threads vs startup cost of thread

General Lessons: Communication

- Registers: Local to just one thread
 - Each thread has a unique copy of variables in the kernel
- Local Memory: Shared within just one block
 - Can be used to communicate between threads
 - Threads within warp should try to read/write non-conflicting banks
- Global Memory: Shared amongst all work-items in a GPU
 - Threads can communicate with any thread in any grid
 - Allocated and freed by host using cl::Buffer
 - State is maintained between grid executions
- Host Memory: Local to CPU "normal" RAM
 - GPU and CPU have different address spaces
 - Use enqueueRead/Write to move data between them