CS145: INTRODUCTION TO DATA MINING

Sequence Data: Sequential Pattern Mining

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

November 24, 2020

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN; SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Sequence Data

Introduction

• GSP

PrefixSpan

Summary

Sequence Database

 A sequence database consists of sequences of ordered elements or events, recorded with or without a concrete notion of time.

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Example: Music

Music: midi files

Example: DNA Sequence

SYNTENIC ASSEMBLIES FOR CG15386

MD106	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
NEWC	ATGCTTAGTAATCCTTTAAATCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
W501	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD199	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
C1674	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
SIM4	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD106	CTACGGCCTAATGGTGCTAACAGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
NEWC	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
W501	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD199	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
C1674	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
SIM4	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD106	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
NEWC	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
W501	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD199	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
C1674	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
SIM4	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD106	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
NEWC	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
W501	CTGCAGGAGGCGTCCACCACCACTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
MD199	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
C1674	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
SIM4	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG

Sequence Databases & Sequential Patterns

- Transaction databases vs. sequence databases
- Frequent patterns vs. (frequent) sequential patterns
- Applications of sequential pattern mining
 - Customer shopping sequences:
 - First buy computer, then CD-ROM, and then digital camera, within 3 months.
 - Medical treatments, natural disasters (e.g., earthquakes), science & eng. processes, stocks and markets, etc.
 - Telephone calling patterns, Weblog click streams
 - Program execution sequence data sets
 - DNA sequences and gene structures

What Is Sequential Pattern Mining?

 Given a set of sequences, find the complete set of frequent subsequences

A <u>sequence</u>: < (ef) (ab) (df) c b >

A <u>sequence database</u>

SID	sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

Given <u>support threshold</u> min_sup =2, <(ab)c> is a <u>sequential</u> pattern

Sequence

- Event / element
 - An non-empty set of items, e.g., e=(ab)
- Sequence
 - An ordered list of events, e.g., $s = \langle e_1 e_2 \dots e_l \rangle$
- Length of a sequence
 - The number of instances of items in a sequence
 - The length of \leq (ef) (ab) (df) c b \geq is 8 (Not 5!)

Subsequence

Subsequence

• For two sequences $\alpha = \langle a_1 a_2 \dots a_n \rangle$ and $\beta = \langle b_1 b_2 \dots b_m \rangle$, α is called a subsequence of β if there exists integers $1 \leq j_1 < j_2 < \dots < j_n \leq m$, such that $a_1 \subseteq b_{j_1}, \dots, a_n \subseteq b_{j_n}$

Supersequence

• If α is a subsequence of β , β is a supersequence of α

e.g., $\langle a(bc)dc \rangle$ is a <u>subsequence</u> of $\langle a(abc)(ac)d(cf) \rangle$

Sequential Pattern

- Support of a sequence α
 - Number of sequences in the database that are supersequence of α
 - $Support_S(\alpha)$
- α is frequent if $Support_S(\alpha) \ge \min _support$
- A frequent sequence is called sequential pattern
 - l-pattern if the length of the sequence is l

Example

A <u>sequence database</u>

SID	sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

Given <u>support threshold</u> min_sup =2, <(ab)c> is a <u>sequential</u> <u>pattern</u>

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- A mining algorithm should
 - find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold
 - be highly efficient, scalable, involving only a small number of database scans
 - be able to incorporate various kinds of userspecific constraints

Sequential Pattern Mining Algorithms

- Concept introduction and an initial Apriori-like algorithm
 - Agrawal & Srikant. Mining sequential patterns, ICDE'95
- Apriori-based method: GSP (Generalized Sequential Patterns: Srikant & Agrawal @ EDBT'96)
- Pattern-growth methods: FreeSpan & PrefixSpan (Han et al.@KDD'00; Pei, et al.@ICDE'01)
- Vertical format-based mining: SPADE (Zaki@Machine Leanining'00)
- Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, Shim@VLDB'99; Pei, Han, Wang @ CIKM'02)
- Mining closed sequential patterns: CloSpan (Yan, Han & Afshar @SDM'03)

Sequence Data

Introduction

PrefixSpan

Summary

The Apriori Property of Sequential Patterns

- A basic property: Apriori (Agrawal & Sirkant'94)
 - If a sequence S is not frequent
 - Then none of the super-sequences of S is frequent
 - E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Given <u>support threshold</u> min_sup = 2

GSP—Generalized Sequential Pattern Mining

- GSP (Generalized Sequential Pattern) mining algorithm
 - proposed by Agrawal and Srikant, EDBT'96
- Outline of the method
 - Initially, every item in DB is a candidate of length-1
 - for each level (i.e., sequences of length-k) do
 - scan database to collect support count for each candidate sequence
 - generate candidate length-(k+1) sequences from length-k
 frequent sequences using Apriori
 - repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori

Finding Length-1 Sequential Patterns

- Examine GSP using an example
- Initial candidates: all singleton sequences

Scan database once, count support for candidates

 $min_sup = 2$

0 15	0
Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Cand	Sup
<a>>	3
	5
<c></c>	4
<d>></d>	3
<e></e>	3
<f></f>	2
>g>	1
>h≥	1

GSP: Generating Length-2 Candidates

51 length-2 Candidates

	<a>		<c></c>	<d>></d>	<e></e>	<f></f>
<a>>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<pc></pc>	<bd><</bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d>></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb>></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>>		<c></c>	<d>></d>	<e></e>	<f></f>
<a>>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(pc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cq)>	<(ce)>	<(cf)>
<d>></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

Without Apriori property, 8*8+8*7/2=92 candidates

Apriori prunes 44.57% candidates

How to Generate Candidates in General?

- From L_{k-1} to C_k
- Step 1: join
 - s_1 and s_2 can join, if dropping first item in s_1 is the same as dropping the last item in s_2
 - Examples:
 - < (12)3 > join < (2)34 > = < (12)34 >
 - < (12)3 > join < (2)(34) > = < (12)(34) >
- Step 2: pruning
 - Check whether all length k-1 subsequences of a candidate is contained in L_{k-1}

The GSP Mining Process

5th scan: 1 cand. 1 length-5 seq. pat.

4th scan: 8 cand. 7 length-4 seq. pat.

3rd scan: 46 cand. 20 length-3 seq. pat. 20 cand. not in DB at all

2nd scan: 51 cand. 19 length-2 seq.

pat. 10 cand. not in DB at all

1st scan: 8 cand. 6 length-1 seq.

pat.

min_sup =2

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Candidate Generate-and-test: Drawbacks

- A huge set of candidate sequences generated.
 - Especially 2-item candidate sequence.
- Multiple Scans of database needed.
 - The length of each candidate grows by one at each database scan.
- Inefficient for mining long sequential patterns.
 - A long pattern grow up from short patterns
 - The number of short patterns is exponential to the length of mined patterns.

*The SPADE Algorithm

- SPADE (<u>Sequential PAttern Discovery using Equivalent Class</u>) developed by Zaki 2001
- A vertical format sequential pattern mining method
- A sequence database is mapped to a large set of
 - Item: <SID, EID>
- Sequential pattern mining is performed by
 - growing the subsequences (patterns) one item at a time by Apriori candidate generation

*The SPADE Algorithm

SID	EID	Items
1	1	a
1	2 3	abc
1	3	ac
1 1 2 2 2 2 2 3	4 5	d
1	5	cf
$\boxed{2}$	$\frac{1}{2}$	ad
2	2	\mathbf{c}
2	3 4 1 2	bc
2	4	ae
3	1	ef
3	2	ab
3 3	3	df
3	4	\mathbf{c}
3	5	b
4	1	e
4	2	g
4	3	af
3 4 4 4 4 4	5 1 2 3 4 5	C
4	5	b
4	6	\mathbf{c}

č	a	1)	
SID	EID	SID	EID	
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

Join two tables

	ab			ba		• • •
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	
1	1	2	1	2	3	
$\overline{2}$	1	3	2	3	4	
3	2	5				
4	3	5				

	ä	aba		
SID	EID (a)	EID(b)	EID(a)	
1	1	2	3	10.
2	1	3	4	-

Bottlenecks of GSP and SPADE

- A huge set of candidates could be generated
 - 1,000 frequent length-1 sequences generate s huge number of length-2 candidates! $1000 \times 1000 + \frac{1000 \times 999}{2} = 1,499,500$
- Multiple scans of database in mining
- Breadth-first search
- Mining long sequential patterns
 - Needs an exponential number of short candidates
 - A length-100 sequential pattern needs 10³⁰ candidate sequences!

$$\sum_{i=1}^{100} \binom{100}{i} = 2^{100} - 1 \approx 10^{30}$$

Sequence Data

Introduction

• GSP

PrefixSpan

Summary

Prefix and Suffix

Assume a pre-specified order on items, e.g., alphabetical order

- <a>, <aa>, <a(ab)> and <a(abc)> are <u>prefixes</u> of sequence <a(abc)(ac)d(cf)>
 - Note <a(ac)> is not a prefix of <a(abc)(ac)d(cf)>
- Given sequence <a(abc)(ac)d(cf)>

Prefix	<u>Suffix</u>
<a>>	<(abc)(ac)d(cf)>
<aa></aa>	<(_bc)(ac)d(cf)>
<a(ab)></a(ab)>	<(_c)(ac)d(cf)>

• (_bc) means: the last element in the prefix together with (bc) form one element

Prefix-based Projection

- Given a sequence, α , let α' be subsequence of α
 - α' is called a projection of α w.r.t. prefix β , if and only if
 - α' has prefix β , and
 - α' is the maximum subsequence of α with prefix β
 - Example:
 - <ad(cf)> is a projectionof <a(abc)(ac)d(cf)> w.r.t. prefix <ad>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Projected (Suffix) Database

- Let α be a sequential pattern, α -projected database is the collection of suffixes of projections of sequences in the database w.r.t. prefix α
 - Examples
 - <a>-projected database
 - <(abc)(ac)d(cf)>
 - < <(d)c(bc)(ae)>
 - <(_b)(df)cb>
 - <(_f)cbc>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

- <ab>-projected database
 - <(_c)(ac)d(cf)> (<a(bc)(ac)d(cf)> is the projection of <a(abc)(ac)d(cf)> w.r.t. prefix <ab>)
 - <(_c)(ae)> (<a(bc)(ae)> is the projection of <(ad)c(bc)(ae)> w.r.t. prefix <ab>)
 - <c> (<abc> is the projection of <eg(af)cbc> w.r.t prefix <ab>)

Mining Sequential Patterns by Prefix Projections

Step 1: find length-1 sequential patterns

- Step 2: divide search space. The complete set of seq. pat. can be partitioned into 6 subsets:
 - The ones having prefix <a>;
 - The ones having prefix ;
 - •
 - The ones having prefix <f>
- Step 3: mine each subset recursively via corresponding projected databases

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Finding Seq. Patterns with Prefix <a>

- Only need to consider projections w.r.t. <a>
 - <a>-projected (suffix) database:
 - <(abc)(ac)d(cf)>
 - <(_d)c(bc)(ae)>
 - <(_b)(df)cb>
 - <(_f)cbc>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

- Find all the length-2 seq. pat. Having prefix <a>: <aa>, <ab>, <(ab)>, <ac>,<ad>, <af>
 - Further partition into 6 subsets
 - Having prefix <aa>;
 - ...
 - Having prefix <af>

Why are those 6 subsets?

 By scanning the <a>-projected database once, its locally frequent items are identified as

```
• a: 2, b: 4, \_b: 2, c: 4, d: 2, \text{ and } f: 2.
```

- Thus all the length-2 sequential patterns prefixed with <a> are found, and they are:
 - $\langle aa \rangle : 2, \langle ab \rangle : 4, \langle (ab) \rangle : 2, \langle ac \rangle : 4, \langle ad \rangle : 2,$ and $\langle af \rangle : 2.$

Completeness of PrefixSpan

SDB

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Length-1 sequential patterns <a>, , <c>, <d>, <e>, <f>

Examples

- <aa>-projected database
 - <(_bc)(ac)d(cf)>
 - <(_e)>
- <ab>-projected database
 - <(_c)(ac)d(cf)>
 - <(_c)(ae)>
 - <c>
- <(ab)>-projected database
 - <(_c)(ac)d(cf)>
 - <(df)cb>

<a>-projected database:

- <(abc)(ac)d(cf)>
- <(_d)c(bc)(ae)>
- <(_b)(df)cb>
- <(_f)cbc>

Efficiency of PrefixSpan

- No candidate sequence needs to be generated
- Projected databases keep shrinking
- Major cost of PrefixSpan: Constructing projected databases
 - Can be improved by pseudo-projections

*Speed-up by Pseudo-projection

- Major cost of PrefixSpan: projection
 - Postfixes of sequences often appear repeatedly in recursive projected databases
- When (projected) database can be held in main memory, use pointers to form projections s=<a(abc)(ac)d(cf)>
 Pointer to the sequence s|<a>(, 2) <(abc)(ac)d(cf)>
 Offset of the postfix |<a>(abc)(ac)d(cf)>

*Pseudo-Projection vs. Physical Projection

- Pseudo-projection avoids physically copying postfixes
 - Efficient in running time and space when database can be held in main memory
- However, it is not efficient when database cannot fit in main memory
 - Disk-based random accessing is very costly
- Suggested Approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data set fits in memory

Performance on Data Set C10T8S8I8

Performance on Data Set Gazelle

*Effect of Pseudo-Projection

Sequence Data

Introduction

• GSP

PrefixSpan

•Summary

Summary

- Sequential Pattern Mining
 - GSP, PrefixSpan