CSC 358 - Principles of Computer Networks

Handout # 5: The Internet Protocol, Routing and Forwarding

Joe Lim

Department of Mathematical and Computational
Sciences
joe.lim@utoronto.ca

Announcements

- Don't forget the programming assignment.
 - Due: Friday, Feb 16, 2018 at 11:59pm.
 - Take advantage of tutorials.
 - Don't leave it to the last minute.
 - Create your group in MarkUs.
 - Remember, use the autotester script
- Late Penalty
 - 2.5% per 6 hrs

CSC 358 – Principles of Computer Networks

UTM - Spring 2018

Packet Routing and Forwarding

ARP, Addressing, A Day in the Life: Scenario

- Forwarding IP datagrams
 - Class-based vs. CIDR
- Routing Techniques
 - Naïve: Flooding
 - Distance vector: Distributed Bellman Ford Algorithm
 - Link state: Dijkstra's Shortest Path First-based Algorithm

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

ARP Protocol: Same LAN

- A wants to send datagram to B
 - B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - destination MAC address = FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)
- A caches (saves) IP-to-MAC address pair in its
 ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

6

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

Packet Routing and Forwarding

• ARP, Addressing, A Day in the Life: Scenario

- Class-based vs. CIDR
- Routing Techniques
 - Naïve: Flooding
 - Distance vector: Distributed Bellman Ford Algorithm
 - Link state: Dijkstra's Shortest Path First-based Algorithm

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

19

Hop-by-Hop Packet Forwarding

- Each router has a forwarding table
 - Maps destination addresses...
 - ... to outgoing interfaces
- Upon receiving a packet
 - Inspect the destination IP address in the header
 - Index into the table
 - Determine the outgoing interface
 - Forward the packet out that interface
- Then, the next router in the path repeats
 - And the packet travels along the path to the destination

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

Forwarding in an IP Router

- Lookup packet DA in forwarding table.
 - If known, forward to correct port.
 - If unknown, drop packet.
- Decrement TTL, update header Checksum.
- Forward packet to outgoing interface.
- Transmit packet onto link.

Question: How is the address looked up in a real router?

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

23

Separate Table Entries Per Address • If a router had a forwarding entry per IP address • Match destination address of incoming packet • ... to the forwarding-table entry • ... to determine the outgoing interface 1.2.3.4 2.4.6.8 2.4.6.9 5.6.7.8 1.2.3.5 5.6.7.9 host host host host host host LAN 2 LAN 1 1.2.3.4 1.2.3.5 CSC 358 - Principles of Grwarding Table UTM - Spring 2018

Separate Entry Class-based Address

- If the router had an entry per class-based prefix
 - Mixture of Class A, B, and C addresses
 - Depends on the first couple of bits of the destination
- Identify the mask automatically from the address
 - First bit of 0: class A address (/8)
 - First two bits of 10: class B address (/16)
 - First three bits of 110: class C address (/24)
- Then, look in the forwarding table for the match
 - E.g., 1.2.3.4 maps to 1.2.3.0/24
 - Then, look up the entry for 1.2.3.0/24
 - ... to identify the outgoing interface

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

• There's no such thing as a free lunch • CIDR allows efficient use of the limited address space • But, CIDR makes packet forwarding much harder • Forwarding table may have many matches • E.g., table entries for 201.10.0.0/21 and 201.10.6.0/23 • The IP address 201.10.6.17 would match both! Provider 1 Provider 2 Provider 2

Longest Prefix Match Forwarding

- Forwarding tables in IP routers
 - Maps each IP prefix to next-hop link(s)
- Destination-based forwarding
 - Packet has a destination address
 - Router identifies longest-matching prefix
 - Cute algorithmic problem: very fast lookups

CSC 358 – Principles of Computer Networks

UTM - Spring 2018

Simplest Algorithm is Too Slow

- Scan the forwarding table one entry at a time
 - See if the destination matches the entry
 - If so, check the size of the mask for the prefix
 - Keep track of the entry with longest-matching prefix
- Overhead is linear in size of the forwarding table
 - Today, that means 400,000-500,000 entries!
 - And, the router may have just a few nanoseconds
 - ... before the next packet is arriving
- Need greater efficiency to keep up with line rate
 - Better algorithms
 - Hardware implementations

CSC 358 – Principles of Computer Networks

UTM - Spring 2018

Lookup Performance Required

Line	Line Rate	Pktsize=40B	Pktsize=240B
T1	1.5Mbps	4.68 Kpps	0.78 Kpps
OC3	155Mbps	480 Kpps	80 Kpps
OC12	622Mbps	1.94 Mpps	323 Kpps
OC48	2.5Gbps	7.81 Mpps	1.3 Mpps
OC192	10 Gbps	31.25 Mpps	5.21 Mpps

CSC 358 – Principles of Computer Networks UTM - Spring 2018

Fast Lookups

- The are algorithms that are faster than linear scan
 - Proportional to number of bits in the address
- We can use special hardware
 - Content Addressable Memories (CAMs)
 - Allows look-ups on a key rather than flat address
- Huge innovations in the mid-to-late 1990s
 - After CIDR was introduced (in 1994)
 - ... and longest-prefix match was a major bottleneck

CSC 358 – Principles of Computer Networks

31

UTM - Spring 2018

Where do Forwarding Tables Come From?

- Routers have forwarding tables
 - Map prefix to outgoing link(s)
- Entries can be statically configured
 - E.g., "map 12.34.158.0/24 to Serial0/0.1"
- But, this doesn't adapt
 - To failures
 - To new equipment
 - To the need to balance load
 - •
- That is where other technologies come in...
 - Routing protocols, DHCP, and ARP

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

33

Packet Routing and Forwarding

- ARP, Addressing, A Day in the Life: Scenario
- Forwarding IP datagrams
 - Class-based vs. CIDR
- Routing Techniques
 - Naïve: Flooding
 - Distance vector: Distributed Bellman Ford Algorithm
 - Link state: Dijkstra's Shortest Path First-based Algorithm

Routing is a very complex subject, and has many aspects. Here, we will concentrate on the basics.

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

Forwarding vs. Routing

- Forwarding: data plane
 - Directing a data packet to an outgoing link
 - Individual router using a forwarding table
- Routing: control plane
 - Computing paths the packets will follow
 - Routers talking amongst themselves
 - Individual router creating a forwarding table

CSC 358 – Principles of Computer Networks

UTM - Spring 2018

37

Why Does Routing Matter?

- End-to-end performance
 - Quality of the path affects user performance
 - Propagation delay, throughput, and packet loss
- Use of network resources
 - Balance of the traffic over the routers and links
 - Avoiding congestion by directing traffic to lightlyloaded links
- Transient disruptions during changes
 - Failures, maintenance, and load balancing
 - Limiting packet loss and delay during changes

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

Technique 2: Distance Vector: Distributed Bellman-Ford Algorithm

- Define distances at each node x
 - $d_x(y) = \cos t \text{ of least-cost path from } x \text{ to } y$
- Update distances based on neighbors
 - $d_x(y) = min \{c(x,v) + d_v(y)\}$ over all neighbors v

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

45

Distance Vector Algorithm

46

- c(x,v) = cost for direct link from x to v
 - Node x maintains costs of direct links c(x,v)
- D_x(y) = estimate of least cost from x to y
 - Node x maintains distance vector $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbf{N}]$
- Node x maintains its neighbors' distance vectors
 - For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$
- Each node v periodically sends D_v to its neighbors
 - And neighbors update their own distance vectors
 - $D_x(y) \leftarrow min_v\{c(x,v) + D_v(y)\}$ for each node $y \in N$
- Over time, the distance vector D_x converges

CSC 358 – Principles of Computer Networks

UTM - Spring 2018

Bellman-Ford Algorithm

- Questions:
 - How long can the algorithm take to run?
 - How do we know that the algorithm always converges?
 - What happens when link costs change, or when routers/links fail?
- Topology changes make life hard for the Bellman-Ford algorithm...

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

Counting to Infinity Problem – Solutions

- Set infinity = "some small integer" (e.g. 16). Stop when count = 16.
- Split Horizon: Because R₂ received lowest cost path from R₃, it does not advertise cost to R₃
- Split-horizon with poison reverse: R₂ advertises infinity to R₃
- There are many problems with (and fixes for) the Bellman-Ford algorithm.

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

53

Technique 3: Link State

Dijkstra's Shortest Path First Algorithm

- Routers send out update messages whenever the state of an incident link changes.
 - Called "Link State Updates"
- Based on all link state updates received each router calculates lowest cost path to all others, starting from itself.
 - Use Dijkstra's single-source shortest path algorithm
 - Assume all updates are consistent
- At each step of the algorithm, router adds the next shortest (i.e. lowest-cost) path to the tree.
- Finds spanning tree rooted at the router.

CSC 358 - Principles of Computer Networks

UTM - Spring 2018

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives *forwarding table* for that node
- iterative: after k iterations, know least cost path to k dest.'s

CSC 358 - Principles of Computer Networks

notation:

- C(X,y): link cost from node x to y; = ∞ if not direct neighbors
- D(V): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

UTM - Spring 2018

55

Dijsktra's Algorithm

```
1 Initialization:
2  S = {u}
3  for all nodes v
4  if v adjacent to u {
5    D(v) = c(u,v)
6  else D(v) = ∞
7
8  Loop
9  find w not in S with the smallest D(w)
10  add w to S
11  update D(v) for all v adjacent to w and not in S:
12  D(v) = min{D(v), D(w) + c(w,v)}
13  until all nodes in S
CSC 358 - Principles of Computer Networks UTM - Spring 2018 56
```


Reliable Flooding of LSP

- The Link State Packet:
 - The ID of the router that created the LSP
 - List of directly connected neighbors, and cost
 - Sequence number
 - TTL
- Reliable Flooding
 - Resend LSP over all links other than incident link, if the sequence number is newer. Otherwise drop it.
- Link State Detection:
 - Link layer failure
 - Loss of "hello" packets

CSC 358 – Principles of Computer Networks

UTM - Spring 2018

