

CSCI 4380/6380 DATA MINING

Fei Dou

Assistant Professor School of Computing University of Georgia

November 02, 2023

Recap: Data Mining Process

Density based Clustering

Density Based Clustering

• Clusters are regions of high density that are separated from one another by regions on low density.

Density Based Clustering

Basic idea

- A cluster is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape

Method

- DBSCAN: Density-based spatial clustering of applications with noise

Density Based Clustering

- Density Definition
 - ϵ -Neighborhood, samples within a radius of ϵ from a sample.

$$N_{\varepsilon}(\mathbf{p}) : \{d(\mathbf{p}, \mathbf{q}) \le \varepsilon\}$$

• High density: ε -Neighborhood of a sample contains at least MinPts of samples.

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (ε or Eps)
 - A point is a core point if it has at least a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - Counts the point itself
 - A border point is not a core point, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point

DBSCAN: Core, Border, and Outlier

 $\varepsilon = 1$ unit, MinPts = 5

A point is a core point if it has more than a specified number of points (MinPts) within Eps—These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

DBCAN: Density-reachability

- **Directly density-reachable**: A sample **q** is directly density-reachable from sample **p** if **p** is a core sample and **q** is in **p**'s ε-neighborhood
 - q is directly density-reachable from p
 - p is not directly density-reachable from q
 - Density-reachability is asymmetric

DBCAN: Density-reachability

- Density-Reachable (directly and indirectly):
 - A point **p** is directly density-reachable from **p**₂
 - \mathbf{p}_2 is directly density-reachable from \mathbf{p}_1
 - \mathbf{p}_1 is directly density-reachable from \mathbf{q}
 - \mathbf{p} ←- \mathbf{p}_1 ←- \mathbf{p}_2 ←- \mathbf{q} form a chain

DBSCAN Algorithm

- Form clusters using core points, and assign border points to one of its neighboring clusters
 - 1: Label all points as core, border, or noise points.
 - 2: Eliminate noise points.
 - 3: Put an edge between all core points within a distance *Eps* of each other.
 - 4: Make each group of connected core points into a separate cluster.
 - 5: Assign each border point to one of the clusters of its associated core points

DBCAN: Determining ε and MinPts

- Idea is that for samples in a cluster, their k-th nearest neighbors are at roughly the same distance
- Noise samples have the k-th nearest neighbor at farther distance
- So, plot sorted distance of every sample to its k-th nearest neighbor

When DBSCAN Works Well

Original Points

Clusters (dark blue points indicate noise)

- Can handle clusters of different shapes and sizes
- Resistant to noise

When DBSCAN Does NOT Work Well

Original Points

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

Density based Clustering

Pros

- Resistant to Noise
- Can handle clusters of different shapes and sizes

Cons

- Cannot handle varying densities
- Sensitive to parameters—hard to determine the correct set of parameters