EE5143 Problem Set 2: Total Variation Distance and Relative Entropy

Instructor: Dr. Andrew Thangaraj Jan - May 2024

Total Variation Distance

- 1. Consider two distributions on $\{1,2,3\}$: X or Y. The distribution $X = \{1,2,3\}$, and $Y = \{1,2,4\}$. The total variation distance is given to be $d_{TV} = 1/6$ with $A = \{2,3\}$ being the subset achieving this maximal value. Find a joint distribution P_{XY} with $d_{TV} = P(X \neq Y)$.
- 2. Determine the total variation distance between the distributions P = X and Q = X + c, where $X \sim Bern(p), p \in (0,1)$ for the following cases:
 - (a) $c \notin \{-1, 0, 1\}$
 - (b) c = 0
 - (c) $c \in \{-1, 1\}$
- 3. Determine an upper bound on the total variation distance between the two distributions $P \sim \mathcal{N}(\mu_1, \sigma^2)$ and $Q \sim \mathcal{N}(\mu_2, \sigma^2)$.

Relative Entropy

1. Let the random variable X have five possible outcomes $\{\alpha, \beta, \gamma, \delta, \epsilon\}$. Consider two distributions on this random variable and two functions $L_1(X)$ and $L_2(X)$ for this random variable::

X	p(x)	q(x)	$L_1(x)$	$L_2(x)$
α	1/2	1/2	1	1
β	1/4	1/8	2	3
$\parallel \gamma$	1/8	1/8	3	3
δ	1/16	1/8	4	3
ϵ	1/16	1/8	4	3

- (a) Calculate H(p), H(q), D(p||q), and D(q||p).
- (b) Find the average of $L_1(X)$ when $X \sim p$ is and similarly for $L_2(X)$ when $X \sim q$. Are they equal to H(p) and H(q), respectively?
- (c) What is the average $L_2(X)$ when $X \sim p$? How much higher is this average when compared to H(p)? Verify that the difference is given by D(p||q).
- 2. Calculate the KL-divergence between the following distributions:
 - (a) $P \sim \mathcal{N}(\mu_1, \sigma^2)$ and $Q \sim \mathcal{N}(\mu_2, \sigma^2)$ (Is KL-divergence symmetric?)
 - (b) $P \sim Poisson(\lambda_1)$ and $Q \sim Poisson(\lambda_2)$
 - (c) $P \sim Geometric(\lambda_1)$ and $Q \sim Geometric(\lambda_2)$
- 3. Given $x^n = (x_1, \ldots, x_n) \in \mathbb{R}^n$, let $x_{(1)} \leq \ldots \leq x_{(n)}$ denote the ordered entries. Let P, Q be distributions on \mathbb{R} and $P_{X^n} = P^n, Q_{X^n} = Q^n$. Prove or disprove that (where D(p||q) denotes the KL-divergence)

$$D(\text{Binomial}(n, p) || \text{Binomial}(n, q)) = nD(p||q)$$

4. Data processing inequality. Consider an information processing system with the input being a random variable X and the output being Y. The system is represented as a conditional probability model $W_{Y|X}$. The two distributions from which the input can be generated are P_X , Q_X and the respective output distributions are P_Y , Q_X .

For the setup above, prove the following inequality:

$$D_{KL}(P_Y, Q_Y) \le D_{KL}(P_X, Q_X)$$

Also, derive a sufficient condition on $W_{Y|X}$ for the equality to hold.

Note: This inequality serves as a central inequality in proving Pinkser's inequality for any two general distributions on the same alphabet: https://mathoverflow.net/a/379218