[2019–2020] группа: Геом-10 11 февраля 2020 г.

Серия 14. Где лежит ортоцентр?

Прямая Штейнера. Пусть точка P лежит на описанной окружности треугольника ABC. Тогда точки, симметричные P относительно прямых AB, BC и AC, лежат на одной прямой, проходящей через ортоцентр треугольника ABC.

- 1. Пусть D произвольная точка на стороне BC треугольника ABC. O_1 , O_2 , O_3 центры описанных окружностей треугольников ABD, ACD и ABC соответственно. Докажите, что (a) точки O_1 , O_2 , O_3 и A лежат на одной окружности, (b) ортоцентр треугольника $O_1O_2O_3$ лежит на прямой BC.
- **2.** На отрезке AB треугольника ABC выбрана точка X. Докажите, что ортоцентр треугольника, образованного биссектрисами углов BAC, BXC и ABC лежит на прямой AB.
- 3. Окружности ω_1 , ω_2 , ω_3 расположены так, что общие внутренние касательные к ω_1 и ω_2 , ω_2 и ω_3 и одна из внешних касательных к ω_1 и ω_3 пересекаются в одной точке. Докажите, что ортоцентр треугольника $O_1O_2O_3$ лежит на другой общей касательной ω_1 и ω_3 .
- **4.** Прямая ℓ пересекает прямые BC, CA, AB в точках D, E, F соответственно. O_1, O_2, O_3 центры описанных окружностей треугольников AEF, BFD, CDE соответственно. Докажите, что ортоцентр треугольника $O_1O_2O_3$ лежит на прямой ℓ .

Точка анти-Штейнера. Пусть прямая ℓ проходит через ортоцентр H треугольника ABC. Тогда прямые, симметричные ℓ относительно сторон треугольника, пересекаются на описанной окружности треугольника ABC.

- **5.** В треугольнике ABC провели диаметр AD. Через точку пересечения высот провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F. Докажите, что (a) периметр треугольника DEF в два раза больше стороны BC; (b) DEF «бильярдная траектория» в фигуре, образованной лучами CA, CB и дугой ADB.
- **6.** Дан треугольник ABC. Прямая ℓ касается вписанной в него окружности. Обозначим через ℓ_a, ℓ_b, ℓ_c прямые, симметричные ℓ относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику ABC.
- 7. **Теорема.** Прямая ℓ пересекает стороны острого угла ACB. Точки X_1 и X_2 симметричны произвольной точке X прямой ℓ относительно прямых CB и CA. Докажите, что все описанные окружности треугольников X_1X_2C проходят через одну точку.
- 8. (EGMO 2017.6) В остроугольном неравнобедренном треугольнике $ABC\ G$ точка пересечения медиан, O центр описанной окружности. Точки, симметричные G и O относительно сторон BC, CA, AB обозначим G_1 , G_2 , G_3 , и O_1 , O_2 , O_3 соответственно. Докажите, что описанные окружности треугольников G_1G_2C , G_1G_3B , G_2G_3A , O_1O_2C , O_1O_3B , O_2O_3A и ABC пересекаются в одной точке.
- 9. Точки X_1 , X_2 и X_3 симметричны произвольной точке X относительно прямых CB, CA и AB соответственно. H ортоцентр треугольника ABC. X не совпадает с H. Тогда описанные окружности треугольников X_1X_2C , X_1X_3B , X_2X_3A и ABC пересекаются в одной точке.
- 10. Дан треугольник ABC, O его центр описанной окружности. Описанная окружность треугольника BOC пересекает стороны AB и AC в точках A_1 и A_2 . Пусть ω_A окружность, описанная около треугольника AA_1A_2 . Аналогично определяются ω_B и ω_C . Докажите, что эти три окружности пересекаются на описанной окружности треугольника ABC.
- **11. Прямая Обера.** Даны четыре прямые в общем положении. Тогда ортоцентры четырех образованных ими треугольников лежат на одной прямой.
- 12. H точка пересечения высот AA' и BB' остроугольного треугольника ABC. Прямая, перпендикулярная AB, пересекает эти высоты в точках D и E, а сторону AB в точке P. Докажите, что ортоцентр треугольника DEH лежит на отрезке CP.
- 13. Стороны BC и AC треугольника ABC касаются соответствующих вневписанных окружностей в точках A_1 , B_1 . Пусть A_2 , B_2 ортоцентры треугольников CAA_1 и CBB_1 . Докажите, что прямая A_2B_2 перпендикулярна биссектрисе угла C.

 $^{^{1}}$ Докажите, что O — ортоцентр треугольника $AA_{1}A_{2}$.