# CS 341: Algorithms Module 7: Graph Algorithms

Armin Jamshidpey, Eugene Zima

Based on lecture notes by many previous CS 341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2019

## Graph Algorithms

### **Graphs and their representation:**

- A graph G = (V, E) consists of a set of vertices  $V = \{v_i \mid i = 1, 2, \dots, n\}$  and a set of edges  $E = \{e_j \mid j = 1, 2, \dots, m\}$  that connect the vertices.
  - ► An edge *e* may be represented by the pair (*u*, *v*) where *u* and *v* are the vertices being connected by *e*.
    - Depending on the problem, the pair may be ordered or unordered.
- Many problems can be represented as graphs:
  - Traveling Salesman Problems
  - Airline flights
  - Friends who know each other
  - Moves in a game (each node= the state of the board or game).

## Directed and Undirected Graphs

- An undirected graph, G = (V, E) is a pair:
  - ightharpoonup V = set of distinct vertices.
  - ightharpoonup E = set of edges; each member is a set of 2 vertices
    - ★ For example:

$$V = \{t, u, v, w, x, y, z\}$$
$$E = \{\{u, v\}, \{u, w\}, \{v, w\}, \{v, y\}, \{x, z\}\}$$

- A directed graph, G = (V, E):
  - Is the same as an undirected graph except E is a set of ordered pair:
    - ★ For example:

$$E = \{(a,b), (a,c), (c,b), (b,e), (e,b)\}$$
 (1)

### More Definitions

#### Weighted graphs:

- ▶ A weighted graph has value assigned to each of its edges.
- ▶ More formally, there is a weight function  $w : E \rightarrow R$ .
  - $\star$  R = real numbers.
  - Depending on the syntax being used, we may see this as w(e) with e ∈ E or w(u, v) with u and v representing the vertices for the edge.

#### Degree:

- ► The degree of vertex v, denoted by deg(v), is the number of edges that meet at v.
- ▶ Let *v* be a vertex in a directed graph *G*, The number of vertices of *G* adjacent **from** *v* is called the outdegree of *v*. the number of vertices of *G* adjacent **to** *v* is called the indegree of *v*.

## Representations of Graphs

- Adjacency matrix:
  - ▶ M[i,j] = 1 if i and j are neighbours, 0 otherwise.
  - Assign each vertex an integer index (in this example, t = 7, u = 2, etc.)
  - Assumes that any other info for a vertex and/or edge is in another data structure.
  - ▶ The matrix is symmetric for an undirected graph.
  - ▶ For a directed graph we will likely have an asymmetric matrix.

|   | u | v | w | x | у | z | t |
|---|---|---|---|---|---|---|---|
| u |   | 1 | 1 |   |   |   |   |
| V | 1 |   | 1 |   | 1 |   |   |
| W | 1 | 1 |   |   |   |   |   |
| × |   |   |   |   |   | 1 |   |
| у |   | 1 |   |   |   |   |   |
| Z |   |   |   | 1 |   |   |   |
| t |   |   |   |   |   |   |   |

## Representations of Graphs

- Adjacency matrix notes:
  - ▶ Blank row: no neighbours i.e. isolated vertex.
  - ightharpoonup M[i,i] = self-loop.
  - Undirected graphs are symmetrical
- Space
  - $|V|^2$  bits
  - $(|V|^2 + |V|)/2$  (if undirected, but harder to actually implement).
  - Additional information, such as cost of an edge, could be stored in the matrix. Another option is to store a pointer to this information.
- Cost of operations
  - Are vertices i and j adjacent? O(1)
  - ▶ Add or delete edge: *O*(1)
  - Add vertex: increases size of matrix.
  - ▶ Find neighbours of v: O(|V|).

## Representations of Graphs

- Adjacency list notes:
- Space:
  - ▶ O(|V| + |E|)
  - ▶ Usually much smaller than  $O(|V|^2)$  for a sparse graph.
- Cost of operations:
  - ▶ Add an edge O(1)
  - ▶ Delete an edge: Search lists for each endpoint O(|V|).
  - Add vertex: Depends on the implementation.
  - Find neighbours O(number of neighbours) (better than Adj. Matrix)
  - ► Are *i*, *j* adjacent? Search the list (worse than Adj. Matrix)

### More Notation

- Path:
  - ▶ Given the graph G(V, E), a path from vertex u to vertex v is a sequence of vertices  $(v_0, v_1, \cdots, v_k)$  such that  $v = v_0$ ,  $u = v_k$ , and  $(v_{i-1}, v_i)$  is in E for all  $i = 1, 2, \cdots, k$ .
- Simple path:
  - ▶ A path is simple if all the vertices in the path are distinct.
- Cycle:
  - ▶ A path  $(v_0, v_1, \dots, v_k)$  forms a cycle if  $v_0 = v_k$ , and the path contains at least one edge.
  - A graph with no cycles is acyclic.
- Connected graphs:
  - ► An undirected graph is connected if every pair of vertices is connected by a path.

## BFS and DFS

- Breadth-first, depth-first search
- Each starts at an arbitrary node, explores the whole connected component
- Assume whole graph is connected
- General view: vertices start out coloured white (not visited)
- A visited vertex is coloured gray (visited, but may have white neighbours)
- When all neighbours of a vertex are visited, it is coloured black.

## General view of searching

- Gray nodes form a "frontier"
- Can choose any neighbour of a gray node to be next visited
- In general, want to perform computation
  - Preprocess when colouring gray
  - Postprocess when colouring black
  - Analogous to tree traversal uses

#### Breadth-first search

- Use queue (first-in, first-out) to store gray nodes
- Start by taking any vertex, colouring it gray, add it to queue
- Repeat: find white node adjacent to head of queue, colour it gray and add it to queue
- When you can't find any such node, remove the head of the queue and colour it black

## Pseudocode for BFS

```
colour_all_vertices_white()
while there is a white vertex s do
   BFS_tree(s)
BFS_tree(s: vertex)
  colour s gray (visited)
  enqueue(Q,s)
  while Q not empty do
     u <- dequeue(Q)
     for each v adjacent to u
        if v white then
           colour v gray
           enqueue(Q,v)
           \(u,v) is a tree edge
        else
           \(u,v) is non-tree edge
     colour u black
```

# Analysis of BFS

- Assume adjacency list representation
- Each vertex enqueued once (colour changes from white to gray) and dequeued once (colour changes from gray to black)
- Body of inner while loop takes  $\Theta(1)$  time
- Inner while loop implemented by scanning adjacency list of head of queue
- Therefore each edge looked at exactly twice
- Running time is  $\Theta(|V| + |E|)$  or  $\Theta(n + m)$

### BFS trees

- BFS finds a spanning tree of the graph (edges representing first visits)
- Nontree edges are called cross edges
- A cross edge cannot connect a node to its ancestor in the tree
- A cross edge cannot connect a node to its descendant in the tree
- These are useful in proving properties of BFS searches

# Single-source shortest path

- Can use BFS to compute distances  $\delta(s, v)$  from source s to all other vertices v
- Compute quantity d[v] in following way
  - ▶  $d[s] \leftarrow 0$
  - ▶ When adding v to queue because u is at head and there is an edge (u, v), set  $d[v] \leftarrow d[u] + 1$

# Pseudocode for shortest path

```
colour_all_vertices_white()
while there is a white vertex s do
   BFS_tree(s)
BFS_tree(s: vertex)
  colour s gray (visited)
  enqueue(Q,s); d[s] < --0
  while Q not empty do
     u <- dequeue(Q)
     for each v adjacent to u
        if v white then
           colour v gray
           enqueue(Q,v); d[v] \leftarrow d[u]+1
           \(u,v) is a tree edge
        else
           \(u,v) is non-tree edge
     colour u black
```

# Why does this work?

#### Lemma 1

For any edge (u, v), we have  $\delta(s, v) \leq \delta(s, u) + 1$ 



#### Lemma 2

For all v,  $d[v] \ge \delta(s, v)$ .

Proof: By induction on number of enqueues

At beginning,  $d[s] = 0 = \delta(s, s)$  Suppose u is being visited and adjacent white v discovered.

$$\delta(s,v) \leq \delta(s,u) + 1 \leq d[u] + 1 = d[v].$$

# Why does this work?

Lemma 2 proves  $d[v] \ge \delta(s, v)$ .

#### Lemma 3

At any point, the d-values of vertices in the gueue are either i or i+1 for some i, and all the i values are in front of all the i+1values.



# Why does this work?

Proof: By induction on number of queue operations

True at beginning (only one item in queue)

True after  $u \leftarrow dequeue(Q)$ 

True after enqueue(Q, v), because d[v] = d[u] + 1.



## Corollary 4

d values are assigned in increasing order.

### Correctness continued

#### Theorem 5

$$d[v] = \delta(s, v)$$

Let v be closest vertex to s with wrong d;

$$d[v] > \delta(s, v)$$

Let u be vertex just before v on shortest s - v path

$$\delta(s, v) = \delta(s, u) + 1$$
,  $d[u] = \delta(s, u)$ , so  $d[v] > d[u] + 1$ .

What colour is v when u is dequeued?

- White? Then it should have been visited from u
- Black? Then u should have been visited from v
- Gray? Then it was visited from some w, d[v] = d[w] + 1, and  $d[w] \le d[u]$ , which implies  $d[v] \le d[u] + 1$  contradicting above inequality.

Thus no such v exists.

## BFS application

- Connected components via BFS ...
- Presence of cycles ...
- Bi-partite graphs ...
- ...