(12)公開特許公報(4)

特開平6-152346 (11)特許出願公開番号

技術表示個所

(43)公開日 平成6年(1994)5月31日

드 斤内整理番号 7402-5 J 被別記号 2/12 H 0 3 K (51)IntCl.

審査請求 未請求 請求項の数3(全 7 頁)

(54) 【発明の名称】 両相間号発生回路

【目的】 正相信号と逆相信号が共に"H"レベルまた は"し"レベルになることを防止する。 (修正有) (57) [要約]

【情成】 インバータ51,52及びNAND回路の信 号伝達運延時間をTi,T≀及びT³とする。入力倡号 1, 62で逐次反転され、T! +T2 遅れた"H"の正 相信号S。11となる。逆相信号S。12は、NAND 12がT3遅れて"H"となった後、正相信号So 11 る。入力信号 Si 11が "L" になると、逆相信号 Si 回路61によってT! +T? +T3 遅れて"し"とな Si 11が"H" レベルのとき、それがインバータ 6 **が運延時間T! +T? -T3 遅れて"し"となる。**

50,60:第1,第2の倫理回路

本発明の第1の実施例の資相信号発生回路

【請求項1】 入力端子から入力される入力信号に基づ き相補的な正相信号及び逆相偕号を生成し、それらの両 相信号を第1及び第2の出力端子から出力する両相信号 (特許請求の範囲)

所定の信号伝達過延時間T1を有し、前記入力端子及び 第1の出力端子間に直列接続された1段または複数段の インバータからなる第1の論理回路と、

FETという)で惰成されている。

前記信号伝達運延時間T。と異なる信号伝達時間Tbを 有し、該第1の論理回路の最終段出力または中間段出力 に基づき開閉制御され、前記入力信号を入力して前記第 2の出力端子へ出力する第2の結項回路とを、 備えたことを特徴とする両相信号発生回路。

【精求項2】 前記第1の論理回路は、前記複数段のイ ンスーから循环つ、

前記第2の出力端子へ出力するNAND回路またはNO 前記第2の論理回路は、前記複数段のインバータの最終 段出力に基づき開閉制御され、前記入力信号を入力して R回路で構成したことを特徴とする請求項1記載の両相 信号聚生回路。

【精坎項3】 前記第1の論理回路は、前記複数段のイ ンスータに蓄摂つ、

2の出力端子へ出力するNAND回路またはNOR回路 に基づき関閉制御され、前記入力信号を入力して前記第 とで、構成したことを特徴とする請求項1記載の両相信 前記第2の論理回路は、前記複数段のインバータの中間 段出力を反転するインバータと、前記インバータの出力 号発生回路

[発明の詳細な説明]

[1000]

【産糞上の利用分野】本発明は、半導体集積回路等にお ロック信号等に用いられる正相信号及び逆相信号からな いて、フリップフロップ回路(以下、FFという)のク る両相偕号を発生する両相偕号発生回路に関するもので

[0002]

ロウェーブ セオリーアンド テクニクス (IEEE TRANS 女献:アイイイ トランスアクションズ オン マイク [12] (1988-12) IEEE (米) M TAHASI, H. IT 【従来の技術】従来、このような分野の技術としては、 ACTIONS ON MICROWAVE THEORY ANDTECHNIQVES) 3.6. 例えば次のような文献に記載されるものがあった。

シャリー アベイラブル 1/4 GaAs ダイナミ ック プリスケーラ A 9.5GHzCommercially Available 14図2は、前記文献に記載された従来の両相信号発生 回路の一構成例を示す構成図である。この両相信号発生 スケーラに用いられており、入力信号Si1を入力する 回路は、例えば9.5GHz程度のダイナミック型プリ 1/4 GaAs Dynamic Prscaler) " P. 1913-19 0.K. VEDA and R. YAWAMOTO "ア 9. 5GHz コマー

俊続されると共に、信号反転用のインバータ 4 を介して 子2と、逆相信母S。2を出力する類2の出力磕子3と を、有している。入力増子!には、第1の出力増子2が 入力増子1と、正相信号S。1を出力する類1の出力増 **覧2の出力端子3が接続されている。インバータ4は、** 例えばGaAsを用いた観界効果トランジスタ(以下、

投税されたインバータ33及びFET34を介して投税 【0004】図4は、従来のマスタスレーブ型FFの回 る出力端子12とを有し、これらの間には、同一構成の マスタFF20とマスタFF30が縦続されている。マ スタFF20は、入力増子11と接続点N1との間に接 続された転送用FET21を有し、その接続点N1が信 **导反転用のインバータ22を介して接続点N2に接続さ** れている。接続点N2は、直列接続された信号反転用イ ンパータ23及び転送用FET24を介して、接税点N 1 に接続されている。スレーブドド30は、接続点N2 と接続点N3との間に接続された転送用FET31を有 し、その接続点N3が信号反転用のインバータ32を介 して接続点N4に接続されている。接続点N4は、直列 イミングチャートであり、この図を参照しつつ、図2の の正相信号 S。1として出力格子2から出力される。さ れる。また、入力信号Si 1が"H"レベルの場合、そ 増子2から出力されると共に、インバータ4で反転され ト"L"フスジの浜枯値叫S。2が出力船上300円1 単相の入力信号Si)を入力することにより、正相信号 【0003】図3は、図2に示す両相信号発生回路のタ 1 が "し" フスルの場合、それがそのまま "し" レスル "H" アベルの斑描信与 So 2が出力幾子3から出力さ れがそのまま"H"レベルの正相信号S。1として出力 Nを入力する入力端子!1と、出力信号OUTを出力す 動作を説明する。入力端子1に入力される入力信号Si S。 1及び逆相信号S。2からなる両相信号が得られ 路因である。このマスタスレーブ型FFは、入力信号! される。以上のように、図2の両相信号発生回路では、 る。このような両相信号の通用回路例を殴4に示す。 らに、入力信号S・1は、インパータ4で反転され、 点N3に接続されている。FET21及び34は、

を説明する。正相信号S。1が"H"レベルで逆相信号 S。 2 が"L"レベルの場合、入力信号・Nが入力端子 11から入力されると、抜入力信号 INがオン状態のド ET21を介して接続点N1を通り、インバータ22で 【0005】次に、図4のマスタスレーブ型FFの動作 反転された後、接続点N2へ送られる。正相信号S。1

"L" フスプの街苗信号 S。 2 によったメン状態

になるトランジスタである。

り、"L"フベルの正柏信号 2。1 によってオフ状態に なるトランジスタである。同様に、FET24及び31 は、"H" フベルの逆相信号 S。 2 によってオン状態と

"H" レベルの正格信号 S。 1 によってオン状態とな

特闘平06-152346

4

が"L" フヘルで沿在信号 S。 2 が"H" フヘルになる と、接続点N2上の入力信号INは、インバータ23で た、接続点N2上の入力信号INは、インバータで反転 され、接続点N2を通り、オン状態のFET31を介し て接続点N3へ送られる。接続点N3上の入力信号 IN は、インバータ32で反転された後、接続点N4へ送ら **る。正相信号 S。 1 が"H" レベルで、逆相信号 S。 2** が"し"レベルになると、接続点N4上の入力信号IN **32,33及びFET34の帰還ループにより、入力信** 反転され、オン状態のFET24を介して、接続点N1 へ帰遇する。このインパータ22,23及びFET24 は、インバータ33で反転され、オン状態のFET34 を介して接続点N3へ帰遇する。このようなインバータ れ、出力個号OUTとして出力端子12から出力され の帰還ループにより、入力信号INが保持される。ま 号INが保持される。

[0000]

[0010]

【発明が解決しようとする課題】しかしながら、従来の 図2のような両相偕号発生回路では、次のような課題が 号伝達遅延時間Tがあるため、逆相倡号 S。 2 が正相信 った。例えば、9. 5GH×程度のダイナミック型プリ あった。従来の両相信号発生回路は、インバータ4の信 "ぉ" フベルまたは"し" フベルになるとこり回題があ 号S。1に比べ該信号伝達選延時間Tだけ遅れ、共に

は逆に、共に"+"レベルになることが問題になる回路 スケーラ等に用いられる両相信号発生回路では、信号伝 遠遅延時間Tを短くすることは可能であるが、その遅延 時間Tを躱にすることはできない。 そのため、このよう な正相信号S。1及び逆相信号S。2で動作する図4の マスタスレーブ型FFでは、正相信号S。 1 と逆相信号 S。 2 が短い時間でも共に"L"レベルになると、接続 "し" レベルになるということが問題になるが、それと もある。従って、従来の両相信号発生回路では、その用 点N1及びN2の電位が不安定になって認動作の原因と 【0007】図4のマスタスレーブ型FFでは、共に

途上の制限を受けることになる。本発明は、前配従来技 衛が持っていた謀題として、正相信号と逆相信号の立ち 上り及び立ち下りが重複する点について解決した両相信 **号発生回路を提供するものである。**

回路と、前記信号伝達運延時間T。と異なる信号伝達運 【課題を解決するための手段】第1の発明は、前記課題 **基づき相補的な正相信导及び逆相信号を生成し、それら** の両相信号を第1及び第2の出力端子から出力する両相 即ち、第1の発明では、所定の信号伝達運延時間T。を 有し、前記入力端子及び第1の出力端子間に直列接続さ れた1段または複数段のインバータからなる第1の論理 を解決するために、入力端子から入力される入力信号に **倡号発生回路において、次のような手段を設けている。** [0008]

延時間Tbを有し、該第1の鶴理回路の最終段出力また は中間段出力に基づき開閉制御され、前記入力信号を入 カして前記第2の出力端子へ出力する第2の論理回路と

ND回路またはNOR回路で構成している。 第3の発明 第1の発明の第1の論理回路を、前記インバータで 構成し、第2の論理回路を、前記インバータの中間段出 づき開閉制御され、前記入力信号を入力して前記第2の 【0009】第2の発明は、第1の発明の第1の論理回 路を、前記インバータで構成し、第2の論理回路を、前 記インバータの最終段出力に基づき開閉制御され、前記 入力信号を入力して前記第2の出力端子へ出力するNA カを反転するインバータと、前記インバータの出力に基 出力端子へ出力するNAND回路またはNOR回路と で、構成している。

力信号が第1の論理回路に入力されると、この入力信号 が1段または複数段のインバータによって逐次反転され 【作用】第1の発明によれば、以上のように両相信号発 生回路を構成したので、入力個号が第1の論理回路に入 **カされると、眩入力倡号が 1 段または複数段のインバー** タによって逐次反転された後、倡导伝達遅延時間T゚だ け遅れて、例えば正相信号が第1の出力端子から出力さ れる。第2の論理回路は、前記インバータの最終段また は中間段出力に基づき開閉制御され、前記入力信号を入 カレて信号伝達遅延時間To だけ遅れて、例えば逆相信 号を第2の出力端子から出力する。 第2の発明では、入 た後、信号伝達運延時間T。だけ遅れて、例えば正相信 号が前記第1の出力端子から出力される。NAND回路 またはNOR回路で構成された第2の論理回路は、前記 れ、前記入力倡号を入力して倡号伝達選延時間T゚だけ 複数段のインバータの最終段出力によって開閉制御さ

たはNOR回路が開閉される。このNAND回路または る。第3の発明では、入力信号が第1の論理回路に入力 遅れて、例えば正相信号が第1の出力端子から出力され る。前記複数段のインバータの中間段出力は、第2の論 **理回路内のインバータで反転された後、NAND回路**ま だけ遅れて、例えば逆相信号が第2の出力端子から出力 されると、核入力信号が1段または複数段のインバータ によって選次反転された後、倡号伝達遅延時間Taだけ NOR回路を通った入力信号は、信号伝達運延時間Tb 遅れて、例えば逆相信号を第2の出力端子から出力す される。従って、前記課題を解決できるのである。 [0011]

第1の実施例

図1は、本発明の第1の実施例を示す両相信号発生回路 11を入力する入力端子41と、正相信号So11及 び逆相信号 S。12をそれぞれ出力する第1,第2の出 の構成図である。この両相信号発生回路は、入力信号S

に入力端子41と第2の出力端子43との間にも、逆相 0が接続されている。第1の論理回路50は、入力側が 入力端子41に接続されたインバータ51を有し、その 52を介して第1の出力端子42に接続されている。頭 遅延時間を、それぞれて1, T2及びT3とし、入力信 力端子42,43とを、有している。入力端子41と第 ミング調整を行う第1の槍理回路50が接続され、さら 信号S。11のタイミング調整を行う第2の指理回路6 インパータ510出力倒に被禁点N11が、インパータ 2の論理回路60は、2入力のNAND回路61で構成 され、その一方の入力倒が入力端子41に、他方の入力 **側が第1の出力端子42に、出力側が第2の出力端子4** 2 (=T1) に等しく、T1+T2 >T3 (=Tb) と 1の出力増子42との間には、入力信号S: 11のタイ インパータ51,52及びNAND回路61の信号伝達 3 に、それぞれ接続されている。また、本実施例では、 **号Si 11と正相信号S。12の位相差がTi +T**

ングチャートであり、この図5を参照しつつ、図1の動 力個号S。11がインバータ51,52によって逐次反 転された後、正相信号So 11が出力端子42から出力 される。正相信号S。11がNAND回路61に入力さ れると、核NAND回路61では、入力信号Si 11と 【0012】図5は、図1の両相信号発生回路のタイミ 入力倡号Si 11を入力端子41から入力すると、該入 の否定論理積を求め、逆相信号S。12を出力端子43 作を説明する。なお、入力信号Si11と正相信号S。 11及び逆相信号S。12の論理的閾値をTHとする。 く出力する。

いう条件に設定されている。

本実施例では、正相信号S。11と逆相信号S。12が **償号Si 11と正相償号S。11とを入力としたNAN** なってから遅延時間T! +T? +T3 遅れて"L" レベ **ルとなる。入力信号S:11が"乚" レベルになった場** 同時に"し"レベルになることがない。そのため、この 【0013】 ここで、入力信号S: 11が"H" レベル 1.1が"H"レベルとなる。逆相信号S。1.2は、入力 D回路61により、入力信号S;11が"H"レベルと レベルとなった後、正相信号S。11が遅延時間T!+ て、例えば図4のようなマスタスレーブ型FFを動作さ せれば、駭マスタスレーブ型FFの麒動作を的確に防ぐ ことができる。従って、本実施例の両相信号発生回路の 合、逆相信号S。12が運延時間T3だけ遅れて"H" T2 - T3 遅れて"L"レベルとなる。以上のように、 となった場合、遅延時間Ti +T2遅れて正相信号S。 ような正相信号S。11及び逆相信号S。12を用い 通用可能な回路範囲を拡大できる。

図6は、本実施例の第2の実施例を示す両相信号発生回 【0014】第2の実施例

路の構成図であり、第1の実施例を示す図1中の要素と 共通の要素には共通の符号が付されている。この両相信

異なる第2の論理回路60Aで構成されている。他の構 成は、図1の構成図と同一である。第2の論理回路60 Aは、2入力のNAND回路61及びインバータ62で 構成されている。2入力のNAND回路61は、一万の 入力側が入力端子41に接続され、他方の入力側が接続 点N11に接続されている。接続点N11と2入力のN AND回路61の一方の入力側との間には、インバータ 号発生回路では、図1の第2の論理回路60が、構成の 1, 52, 63及びNAND回路62の信号伝達運延時 聞をそれぞれて1 , T2 , T3 及びT4 とし、それぞれ の信号伝達選延時間の相互関係をT2 <T3 + T4 (T 3 + T4 = Tb) とT2 = T3 という条件に設定されて 6.2が接続されている。本実施例では、インバータ5

の実施例とほぼ同様となる。以上のように、本実施例で を入力端子41から入力すると、飯入力信号S,11が 図1と同様にインパータ51,52によって選次反転さ れた後、正相信号 So 11が出力端子42から出力され る。また、接級点N11から出力された反応信号がイン カされると、該NAND回路61では、入力信号S,1 1 との否定論理積を求め、逆相信号S。 1 2 を出力端子 "し" レベルとなるにとがない。 狩って、斑」の戦指型 と同様に両相信号発生回路の適用可能な回路範囲を拡大 できる。また、インバータ52のファンアウト数が減少 [0015]次に、動作を説明する。入力信号5;11 パータ62で再び反転された後、NAND回路61に入 4.3から出力する。このような動作と設定された条件に より"ぉ"フヘル及び"し"フヘルの出力状態は、無っ は、正相信号S。11と逆相信号S。12が同時に

することにより、正相信号 S。11の駆動能力の低下を 坊上できる.

(0016) 第3の実施例

OR回路71は、一方の入力側が入力端子41に接続さ びて3 とし、入力信号S1 11と正相信号S9 12の位 **相豊がT! +T! に等しく、T! +T! >T! という条** 図7は、本実施例の第3の実施例を示す両相信号発生回 共通の要素には共通の符号が付されている。この両相信 母発生回路では、図1の第2の鵠理回路60が、構成が 異なる第2の論理回路10で構成されている。他の構成 2入力のNOR回路71で構成されている。2入力のN れ、他方の入力側が出力端子42に接続された構成とな ったいる。 本戦協密では、インバータ51, 52とNO R回路71の信号伝達遅延時間をそれぞれて, T2及 路の構成図であり、第1の実施例を示す図1中の製器と は図1の構成図と同一である。 第2の論理回路70は、 件に設定されている。

【0017】図9は、図7の両相信号発生回路のタイミ ングチャートであり、この図9を参照しつり、図1の動 作を説明する。入力個号Si11を入力増子41から入 カすると、眩入力信号S,11が図1と同様にインバー 待關平06-152346

9

(0018)次に、入力信号s: 11が"L"レベルとなった場合、正相信号s。 11が遅延時間T: +T? 遅れて"L"レベルとなり、逆相信号s。 12が遅延時間T: +T? 理れて"L"レベルとなる。以上のように、本実施例では、正相信号s。 11と逆相信号s。 12が同時に"H"レベルになることがない。そのため、第1の実施例及び第2の実施例の他にも、通用可能な回路範囲を拡大する。また、NOR回路で第2の論理回路50を構成することにより、図1の第2の論理回路60のNAND回路に比べ、回路の構成素子数を低減できる。

[0019] 第4の実施例

通の要素には共通の符号が付されている。この両相信号 図8は、本発明の第4の実施例を示す両相個号発生回路 の構成図であり、第2の実施例を示す図6中の要案と共 発生回路では、図6の第2の論理回路60Aが構成の異 なる第2の論理回路10Aで構成されている。他の構成 は、2入力のNOR回路71及びインバータ72で構成 されている。2入力のNOR回路72の一方の入力倒が に接続されている。接続点N11と2入力のN0R回路 72の一方の入力倒との間には、インバータ12が接続 7 2 及びN O R 回路 7 1 の信号伝達遅延時間をそれぞれ T1, T2, T3 及びT4 とし、それぞれの信号伝達遅 **延時間の相互関係をT? <T] +T4 とT? =T] とい** 入力端子41に接続され、他方の入力側が接続点N11 されている。また、本実施例はインバータ51,52, は、図6の構成と同一である。第2の論理回路70A う条件に設定されている。

(10020]次に、動作を説明する。入力信号S:111 を入力端子41から入力すると、該入力信号S:111が 図6と同様にインバータ51,52によって逐次反応された後、正相信号So11が出力端子42から出力される。また、様様点N11から出力された反配信号が、インバータ72で再び反応された後、NOR回路71に入力されると、該NOR回路71では、入力信号S:11との不定論理和を求め、逆相信号So12を出力端子43へ出力する。このような動作と、設定された場子43へ出力する。このような動作と、設定された場子43へ出力する。このような動作と、設定された場子43の出力、ビルバルの出力状態は、第3の実施例とほぼ同様となる。従って、本実施例は、正相信号So11と逆相信号So12が同時に「L"レベルと

なることがない。これにより、第3の実施例と同様に第 1の実施例及び第2の実施例の他にも、通用可能な回路 範囲を拡大できる。また、インバータ52のファンプウ ト数が減少することによって、第2の実施例と同様に正 相信号 Sollの駆動能力の低下を协止できると共に、 NOR回路で第2の論理回路30名を構成することにより、図1の第2の論理回路30のNAND回路に比へ回

路の構成素子数を低減できる。 【0021】なお、本発明は上記異施例に開定されず、 値々の変形が可能である。その変形例としては、例えば 次のようなものがある。 (a) インバータ51,52は、例えば2入力のNA ND回路またはNOR回路に変えてもよい。この場合、 NAND回路またはNOR回路の一方の入力側は、

NAND回路またはNOR回路の一方の入力倒は、 "H" アスルまたは"L" アスルド固定する。 (b) 図6のインバータ5.2 を格略してNOF2数

(b) 図6のインバータ52を省略してNAND回路 61をAND回路に変えたり、あるいは図8のインバー タ52を省略し、NOR回路71をOR回路に変えることにより、回路看成数を少なくすることができる。(c) 第1の路埋回路50と第2の結理回路60.6

(c) 第1の結理回路50と第2の結理回路60,604,70及び704は、前記(a),(b)以外のケート回路等で構成してもよい。

[0022]

【発明の効果】以上詳細に説明したように、第1の発明によれば、第1, 第2の論理回路の信号伝達選延時間を、T.とT.とT.をれぞれ異なる時間に設定したので、次のような効果がある。

(1) 第1,第2の結理回路の信号伍遵遵延時間 I. 及びTb により、第1,第2の出力増子からの出力が、 倒えば同時に "L" レベル信号または "H" レベル信号 の立ち上り及び立ち下りが重視することを防止できる。

(ii) 従来技術では、正相信号と逆相信号の間に時間的なズレがあったが、本発明では第2の構理回路の期間制御により、時間的なズレを防止し、同一タイミングで出力することができる。

(iii) 第2の論理回路の入力倒を第1の論理回路の中間段出力とすることにより、第2の出力端子の組動能力の低下を防止することができる。

205

ŝ

【0023】第2の発明によれば、第2の論理回路をNAND回路またはNOR回路で構成したので、比較的簡単な回路によって第1の発明の(1)及び(ii)の効果を得ることができる。第3の発明によれば、第2の論理回路の人ンイータの中間段出力としたので、第2の表明の効果が得られ、さらにファンプウト数を少なくすることができ、第1の発明の(ii)の効果を得ることができる。

図面の簡単な説明】

(ロロン) 本発明の第1の実施例を示す両相信号発生回路

【図2】従来の両相信号発生回路の構成図である。

18号伝建速延時間 第1の論理回路 朝2の福理回路 数回ONYN NOR回路 インバータ 入力塔子 出力幅子 入力信号 出力信号 被叛点 60, 60A, 70, 70A 51, 52, 62, 72 T, T1, T2, T3 So 11, So 12 4 - - S -Z 50 - 9 【図6】本発明の第2の実施例を示す両相信号発生回路 【図7】本発明の第3の実施例を示す両相信号発生回路 【図8】本発明の第4の実施例を示す両相倡号発生回路 【図4】 アウタースレーブ型FFの回路図である。 [図3] 図2のタイミングチャートである。 【図5】図1のタイミングチャートである。 【図9】図7のタイミングチャートである。 の構成図である。 の情成図である。 の構成図である。 [符号の説明]

50,60: #1. #20000mm | Sild | Sild | Solid | So

(図2)

[図]

本発明の第1の実施例の両相信号発生回路

[84]

従来の再相倡号発生回路

<u>:</u>

図2のタイミングチャート

図1のタイミングチャート

本発明の第4の実施例の両相信号発生回路