

LOFO Importance

Rafah El-Khatib

Ahmet Erdem, Stephane Collot, Eva Van Weel

Example: Kaggle's Microsoft Malware Prediction

- Predict if a machine will soon be hit with malware
- Seasonal feature: OS version
 - Split out of time
 - Training data: OS version was very predictive
 - Test data: What about new OS versions?
- Tree model importances:
 - Consider tree structure in training phase
 - Give high importance to OS version

advanced

Feature Importance measures out there

- Gini: mean decrease in impurity
- Gain: average training loss reduction
- Split: #splits involving a feature
- Shapley values/Saabas score
- Permutation: permute values in test set and compare performance

Do not generalise well to test sets

Overestimate importance to granular features

Modeldependent

Overestimates importance to correlated features

LOFO (Leave One Feature Out) Importance

- We want our models to generalise well to unseen test sets
- LOFO algorithm:
 - Get baseline performance with all features
 - o Remove features one by one, retrain the model, evaluate CV performance

- For any sklearn-friendly model (with LightGBM as the default)
- For any performance metric
- Any validation scheme
- Can even get negative LOFO importances when a feature is harmful

Kaggle's Microsoft Malware Prediction, Revisited

https://www.kaggle.com/divrikwicky/lofo-importance

Install LOFO and try it out!

pip install git+https://github.com/aerdem4/lofo-importance

Caveats:

- Slow although we parallelise!
- So far still misleading when it comes to correlated features (as most other importance types)

Future Work:

Flag correlated features, leave-n-features-out