

Leibniz
Universität
Hannover

3 H 238 U 210 Plo 210 Plo 210 Plo 210 Plo 137 Cs 99m Tc 32 IRS- Institut für Radioökologie und Strahlenschutz

Wiederholung

Einige Worte zur "starken Kernkraft"

Nach Meyer Kuckuck Kap. 5.6

"starke Kernkraft"

Bestandteile der Hadronen (Mesonenund Baryonen) sind elementare Fermionen, genannt Quarks, die durch Austausch masseloser Vektorbosonen, genannt Gluonen, wechselwirken

Im Gegensatz zur elektromagnetischen Wechselwirkung, bei der die Feldquanten (die γ -Quanten) elektrisch neutral sind, tragen die Gluonen der starken Wechselwirkung aber Farbladungen.

Haben Quarks eine reale Existenz als Teilchen? Das ist moglicherweise eine mehr erkenntniskritische als physikalische Frage.

"starke Kernkraft"

"starke Kernkraft"

Die eigentlichen starken Kräfte, die durch Gluon-Austausch verursacht werden, treten daher im Kern gar nicht auf.

Was wir als Kernkräfte beobachten, sind nur die Restwechselwirkungen, die sich als Mesonen-Austausch beschreiben lassen.

Den Hauptanteil an der Bindungsenergie des Kerns liefert der Mehr-Pion-Austausch. Er wirkt über eine Polarisation der Nukleonen im Pionfeld ähnlich wie der Mehr-Photon-Austausch über eine elektrische Polarisation die Van der Waalskrafte der molekularen Bindung bewirkt.

Für das Verständnis der Kerneigenschaften ist jedoch die Quantenchromodynamik nicht erforderlich.

Wiederholung

Kernreaktionen

Energieübertrag
Inverse Kinematik
Compoundkern und Detailed Balance
Vor-Gleichgewichtsreaktionen
Spallation

Kernreaktionen

Eingangskanal α und Ausgangskanal β

$$E_X = 0$$
 normale Kinematik: Target ruht

$$E_X = 0$$
 normale Kinematik: Target ruht

$$p \longrightarrow l$$

$$E_X = 0$$
 normale Kinematik: Target ruht
$$p \longrightarrow U$$

$$E_x = 0$$

inverse Kinematik: Target als Projektil

$$E_X = 0$$
 normale Kinematik: Target ruht $p \longrightarrow U$

$$E_x = 0$$

inverse Kinematik: Target als Projektil

Ausgang Eingang

Q-Wert:
$$Q = m_Y \cdot c^2 + m_y \cdot c^2 - (m_X \cdot c^2 + m_x \cdot c^2)$$

Q > 0: exotherm

Q < 0: endotherm, $E_{thr} = -Q$ Schwellenenergie im CMS

$$E_{ ext{thr,lab}} = E_{ ext{thr}} \cdot rac{m_X + m_X}{m_X}$$

Kernreaktionen

$$x + X \rightarrow (X+x)^* \rightarrow Y + y$$

Reaktion: $(\alpha,\beta) \Leftrightarrow X(x,y)Y$

Eingangskanal: $\alpha = X(x, x)$

Ausgangskanal: $y)Y = \beta$

Kinetische Energie (CMS): ε_{α} , ε_{β}

Massenüberschuß

¹⁴ N	2.863 MeV	¹⁷ O -	-0.81 MeV	
⁴ He	2.425 MeV	р	7.289 MeV	
	5.288 MeV		6.479 MeV	
	Q=(5.288-6.479)MeV=-1.191 MeV			
			(1amu=931.49	94 MeV)

1.191 MeV nicht ausreichend für eine Reaktion, weil ...

1) Rückstoß

$$m_{P,}v_{p,}E_{P}$$
 M_{T}

$$m_P + M_T V_R E_R$$

$$m_P V_P = (m_P + m_T) V_R$$

 $m_P E_P = (m_P + m_T) E_R$

$$E_R = \frac{m_P}{m_P + m_T} E_P$$

E_R= Translationsenergie des Ausgangssystems

$$E_P^{Min} = Q + E_R$$

2) Coulomb Barriere

$$E_{ ext{Coulomb,CMS}} \propto rac{Z_X \cdot Z_X}{A_X^{1/3} + A_X^{1/3}}$$

$$= 1,109 \, ext{MeV} \cdot rac{Z_X \cdot Z_X}{A_X^{1/3} + A_X^{1/3}}$$
 $E_{ ext{Coulomb,Lab}} = E_{ ext{Coulomb,CMS}} \cdot rac{m_X + m_X}{m_X}$

Coulomb Barriere

3) Zentrifugal Barriere

$$\sigma_{s,l} = (\pi \hat{\lambda}^2) \sum_{l=0}^{l \max} (2l+1)$$

$$= (\pi \hat{\lambda}^2) (l_{\max} + 1)^2 \qquad l_{\max} = R / \hat{\lambda}$$

$$\sigma = \pi (R + \lambda)^2$$

Zentrifugalbarriere
$$\frac{d^2u}{dr^2} + \frac{2m}{\hbar^2} \left| E - V(r) - \frac{l(l+1)\hbar^2}{2mr^2} \right| u = 0$$

$$E_Z > \frac{\hbar^2 l(l+1)}{2\tilde{m}R^2}$$
 $\tilde{m} =:$ reduzierte Masse

Erhaltungsgrößen

- Zahl der Nukleonen
- Ladung
- Energie
- Impuls
- Drehimpuls
- Parität
- Isospin (ungefähr)

$$\pi_X \cdot \pi_X \cdot (-1)^{\prime_{\alpha}} = \pi_Y \cdot \pi_Y \cdot (-1)^{\prime_{\beta}}$$
 CMS

Kernreaktionstypen I

Zwei Hauptklassen konkurrierender Kernreaktionen bei niedrigen Energien

Direkte Reaktionen

- Zeit ~10⁻²⁰ s
- Teilchenemission:
 - anisotrop
 - vorwärts gerichtet
 - diskrete Energien
- Eindeutige Kombination von Zerfallskanälen

Compoundkern-Reaktionen

- > E < 50 MeV
- ightharpoonup Zeit ~10⁻¹⁴ 10⁻¹⁶ s
- > Teilchenemission:
 - isotrop
 - Verdampfungsspektrum
- Unabhängige Teilprozesse
- Statistische Verteilung der Anregungsenergien
- Kollektive Reaktionen

Kernreaktionstypen II

- Direkte Reaktionen
- Compoundkernreaktionen
- Vorgleichgewichtsreaktionen
- Spallationsrreaktionen
- Fragmentationsreaktionen

- alle Energien
- *E* < 50 MeV
- 20 MeV < *E* < 200 MeV
- E > 200 MeV
- E > 500 MeV

- Reaktionen niedriger Energie
- Mittelenergiereaktionen
- Hochenergiereaktionen

- *E* < 50 MeV
- 200 MeV < *E* < einige GeV
- E > einige GeV

Compoundkernreaktionen

Bohr's Hypothese: Kernreaktionen laufen über Compoundkern ab.

Bildung und Zerfall des Compoundkerns sind unabhängige Prozesse.

$$\sigma_{\alpha,\beta} = \sigma_{\alpha,CN}(E) \cdot \frac{\Gamma_{\beta}}{\Gamma_{\text{total}}}$$

Der Zerfall eines hoch angeregten Compoundkerns ist unabhängig von seiner Bildung.

⇒ Faktorisierung des Wirkungsquerschnitts

$$\sigma_{lpha,eta} \propto \sigma_{lpha;cn} \cdot G_{eta} \quad G_{eta} = \Gamma_{eta} \, / \, \sum_{eta'} \Gamma_{eta'}$$

Γ Ist Maß der Zerfallswahrscheinlichkeit

Zerfallsbreite

Energiebilanz von Kernreaktionen

Anregungs Funktion (schematisch)

Zustandsdichte des Compoundkerns

Gesamtreaktion

$$\sigma_{lpha,eta} \propto \sigma_{\scriptscriptstyle CN} \cdot P_{\!\scriptscriptstyleeta}$$

Zustandsdichte@ E* = 7 MeV

Statistisches Modell

$$CN(E_{CN}) \rightarrow Y(E_{Y}) + y$$
 mit $E_{kin} = E_{B,y}$

Prinzip der "Detailed Balance"

$$I(E_{yY})dE_{yY} = \frac{\tilde{m}_{y,B}}{\pi^2 h^3} \sigma_{yY} E_{yY} \frac{D_{Y}(E_{Y})}{D_{CN}(E_{CN})}$$

E: Energie

D: Zustandsdichte

 σ_{vY} : Wirkungsquerschnitt für Rückreaktion

 $(Y+y \rightarrow CN \text{ mit } E_{yy})$

$$\tilde{m} = \frac{m_x m_\chi}{m_x + m_\chi}$$
: reduzierte Masse, wegen $\frac{1}{\tilde{m}} = \frac{1}{m_\chi} + \frac{1}{m_\chi}$

Faktorisierung für große Zustandsdichten

$$\sigma_{lpha,eta} \propto \sigma_{
m CN} \cdot P_{eta}$$

$$P_{\beta} = \int_{0}^{E_{CN} - \varepsilon_{Y}} I(E_{yY}) dE_{yY}$$

 $\varepsilon_v = \text{Bindungsenergie von y im CN}$

Fermi Verteilung: Zustandsdichte

Temperatur Abhängigkeit

$$\langle n_E \rangle = \frac{1}{e^{(E-\mu)/k_B T} + 1}$$

$$= \begin{cases} 1 & E < \mu \\ 0 & E > \mu \end{cases} \text{ for } T = 0$$

Fermigas

$$S = \log \frac{D_{Y}(E_{Y})}{D_{CN}(E_{CN})}$$

 $D \propto (2I+1)$ hängt von A ab ein Level hat mehrere Zustände!

 $U \propto T$ klassisch $II \propto T^2$ für Kerne

$$\langle n_E \rangle = \frac{1}{e^{(E-\mu)/kT} + 1} = \begin{cases} 1 & E < \mu \\ 0 & E > \mu \end{cases}$$
 für $T = 0$

Abdampfung von Teilchen und Temperatur des Kerns

$$rac{\mathrm{d}n}{\mathrm{d}E}\propto E\cdot \mathrm{e}^{-E/kT}$$

Im statistischen Modell des Compoundkerns wird die Teilchenemission als Abdampfung beschrieben

⇒ Maxwell-Boltzmann Spectrum

$$S = k \cdot \log \frac{\rho(E)}{\rho(0)}$$

$$S(T) = \int_{0}^{T} \frac{dE}{T}$$

Die Entropie eines Kernes als Fermi gas und die Temperatur eines Kerns

Die Temperatur eines Compoundkerns ist 1 – 2 MeV.

Einfluss der Temperatur auf die Emission

Spaltneutronenspektrum von U-235

Das Goshal Experiment

$$\sigma_{\alpha,\beta} = \sigma_{\mathsf{CN},\alpha}(E) \cdot \frac{\Gamma_{\beta}}{\Gamma_{\mathsf{t}}}$$

$$63$$
Cu + p
$$64Zn^*$$

$$\sigma(^{4}\text{He,pn}) : \sigma(^{4}\text{He,nn}) : \sigma(^{4}\text{He,n})$$

$$= \sigma(p,pn) : \sigma(p,nn) : \sigma(p,n)$$

$$= \Gamma_{pn} : \Gamma_{nn} : \Gamma_{n}$$

62
Cu + p + n

$$63Zn + n$$

$$^{62}Zn + n + n$$

Das Goshal Experiment

Goshal, PR 80 (1950) 939

Wie kann man das messen?

- Radiochemie
- Physikalische Methoden
- Kombination aus beidem

Radiochemie

Beispiel: ⁶³Cu +p und ⁶⁰Ni+α

	T _{1/2}	Zerfall	Eγ/keV	Kanal
Zn-64	stab			0 n
Zn-63	38 min	β+	670; 962	1n
Zn-62	9.1 h	β+	41,5 97	2n
Cu-62	stab			p0n
Cu-62	10 min	β+	511 (Vernichtung)	p1n
Cu-61	3.3 h	β+	283; 656	p2n
Cu-60	234 min	β+	1332; 1792	p3n

$$\sigma_i = \frac{A_i}{INd(1 - e^{-\lambda_i t})}$$

© Eindeutig Z, A, Hohe Empfindlichkeit

⊗ Keine stabilen Produkte, -> von Theorie

Physikalische Methode

Physikalische Methode

- ©Z, A, E, T können gemessen werden

- \odot Typisch $\Delta Z/Z=1/60$

 $\Delta A/A=1/50$ -> keine eindeutige Identifikation

Kombination

Intensität

Isomere

und

196g**A**u

Neutronen-Induzierte Reaktionen

Energie Balance bei Neutronen Reaktionen

S_n Separationsenergie eines Neutrones in A+1Z

 ε kinetische Energie im CMS

Neutronen-Induzierte Reaktionen

- \triangleright (n, γ)-Reaktionen exotherm
- \triangleright einige (n,p)- und (n, α)-Reactions exotherm
- Die meisten (n,Partikel)-Reactionen endotherm

Alle Reaktionen < 10 MeV sind Compoundkern Reaktionen

$$\sigma(E) = \sigma_{CN}(E) \cdot \frac{\Gamma_{\gamma}}{\Gamma}$$

Energieabhängige Klassifizierung von Kernreaktionen

Direkte Reaktionen

Fusion (ganz kurz)

Thermonukleare Fusion

Der Gamow Peak in thermonuklearen Reaktionen

Fusions Reaktionen

Fusion

Plasmen

Experimentalphysik IV Clemens Walther Page 90

Fusion in der Sonne

$$^{2}D+^{2}D \rightarrow ^{3}He+n+3,27 \text{ MeV}$$
 $^{2}D+^{2}D \rightarrow ^{3}T+p+4,04 \text{ MeV}$
 $^{2}D+^{3}T \rightarrow ^{4}He + n + 17,58 \text{ MeV}$
 $^{3}51\text{MeV} 14,07\text{MeV}$

Experimentalphysik IV Clemens Walther Page 91

Bethe-Weizsäcker-Zyklus

Wirkungsquerschnitte für einige Fusionsreaktionen leichter Elemente

Experimentalphysik IV Clemens Walther Page 94

Fusionsrate:

$$\left\langle R_{1,2} \right
angle \propto \left\langle \sigma v \right
angle T^{-2}$$

Fusionsleistungsdichte:

$$\langle p_f \rangle = \langle R_{1,2} \rangle E_{fus}$$

 $E_{fus} = 17,6 \text{MeV}$

$$n_1 = n_2 = 5.10^{13} \text{ cm}^{-3} \rightarrow \langle p_f \rangle = 1.8 \text{W/cm}^3$$

(Sonne: 3,510⁻⁶ W/cm³)

Clemens Walther Page 95 Experimentalphysik IV

Lawson Kriterium

Energiebilanz

$$egin{align} &(E_{fus}+E_{th})\eta_e=E_{el}=E_{th}\,/\,\eta_{th} \ &(p_f au_b+E_{th})=E_{th}\,/\,\eta_{th}\eta_e &p_f=n_1n_2\,ig\langle\sigma vig
angle E_{fus} \ &\end{pmatrix} \end{split}$$

$$E_{th} = \frac{3}{2}(n_i n_e) k_B T$$

$$n\tau_b = \frac{1}{\eta_e \eta_{th}} \frac{(6+3(z_1+z_2))kT}{E_{fus} \langle \sigma v \rangle}$$

Zündkurve DT Plasma

τ: Plasma -Zusammenhalt

$$E_{fus} = 17,6 MeV$$

 $\eta_e = 0,3$
 $\eta_{th} = 0,7$

$$n \tau_h \ge 2.10^{14} \text{ cm}^{-3} \text{ s}$$

(at T=15keV)

Zwei Mögklichkeiten

Magnetischer Einschluss (n = 10^{14} cm⁻³ $\rightarrow \tau \sim 1$ s) Plasmavolumen (m³)

Trägheitsfusion Einschluss ($\tau \sim 10^{-11} \text{ s} \rightarrow \text{n} = 10^{25} \text{ cm}^{-3}$) Plasmavolumen (m³)

Magnetischer Einschluss

Magnetfeld nicht homogen sondern Abfall zum Rand:

$$B_{\Phi}(R) \cdot R = const.$$

Teilchen außen langsamer als innen

Drift nach unten oder oben, aus Magnetfeld

Helixförmiges Magnetfeld

2 MÖGLICHKEITEN

Tokamak: (dynamisch)

The state of the s

Stellarator (statisch)

Prinzip Stellarator

Tokamak

Strom im Plasma durch zeitlich veränderliches Magnetfeld

Einschluss

Experimentalphysik IV Clemens Walther Page 104

Parameter des Tokamak Fusions Reaktors

		JET	ITER
Torus radius, central point (m)		3.0	6.0
Vacuum chamber: wie	dth (m)	1.2	2.05
hei	ight (m)	3.0	6.0
Total reactor height (m)		11.3	27.6
Total reactor radius (m)		17.5	31.0
Plasma current (MA)		4-7	22
Toroidal field (T)		3.5	4.9
Power in (MW)		36	
Operation:			
ion temperatu	re T (keV)	25	10-2
• 1	(K)	2×10^{8}	~10
ion density, n ($\times 10^{19}$ m ⁻³)		4	25
pulse length/confinement time τ (s)		1.2 (25)	400
fusion product $nT\tau$ (×10 ²⁰ keV s m ⁻³)		8-9	50
DT reactions/s		6×10^{17}	1021
T-consumption	n (kg/d) [†]		0.43
DD reactions/		1×10^{17}	
Power out (thermal MW)		2‡	1000

[†] At continuous operation. ‡ For about 2 s in DD reaction.

CONTACT US

SUBSCRIBE

INTRANET III Français

https://www.iter.org/factsfigures

Prinzip Stellarator

Wendelstein 7X

Plasmaheizung

Ohmsche
Heizung bis
15 Mio K
Dann Mikrowelle
Oder Neutralstrahl

http://www.ipp.mpg.de/ippcms/de/pr/forschung/w7x/index

DEMO

http://fusionforenergy.europa.eu/understandingfusion/demo.aspx

Brennstoffkreislauf

Trägheitseinschluss

Figure 1. The layout of NIF's major components through which a pulse of laser light travels from injection to final focus on the target.

Large rapid-growth KDP crystals for NIF. Approximately 35% of the NIF KDP crystal plates can be yielded from these boules.

A laser glass LRU being moved by a transport vehicle in the OAB

Clemens Walther Experimentalphysik IV Page 116

Interior of Laser Bay 2 looking from the transport spatial filters towards the main amplifier cavity

Interior of Laser Bay 2 looking at Cluster 3 main amplifier cooling system and down the length of the laser bay towards the transport spatial filter

LLNL

Myon-Induzierte Fusion

 D_2 : R = 74 pm

 $\mu DT: R = 500 \text{ fm}$