

Hands-on L10: Spark Structured Streaming + Machine Learning with MLlib

In this hands-on, you will use **GitHub Codespaces** and **continue working on a real-time analytics pipeline for a ride-sharing platform using Apache Spark Structured Streaming.** You will process streaming data, implement machine learning algorithms, and predict various features. The workflow consists of:

- A Python script that simulates real-time ride-sharing data.
- Apache Spark (Structured Streaming) to read, clean, and analyze the incoming data.
- Spark MLlib to train Machine learning models and predict features.

Previously, we worked on Tasks 1, 2, and 3. Now, your assignment is divided into two tasks:

- Task 4: Real-Time Fare Prediction Using MLlib Regression.
- Task 5: Time-Based Fare Trend Prediction.

GitHub Link: https://github.com/ITCS6190-Fall2025/Handson-L10-Spark-Streaming-MachineLearning-MLlib/tree/main

!!! Submission Guidelines !!!

Submit:

- .py or .ipynb script.
- Generated output Screenshots in the Readme file.
- Your final README with explanations, approach, and results screenshots.
- Push your work to a new GitHub repository.

Note: We are expecting a correct format for the GitHub repository, which includes:

- Proper structure (replace sample input/output data) and formatting for the readme.
- All code files and output files should be included in the repo; failing to do so will result in loss of points.

Dataset: You will work with a data generator Python script that continuously streams data.

Perform the following tasks:

Task 4: Basic Streaming Ingestion and Parsing

- 1. **Offline Model Training**: A LinearRegression model is trained using a static CSV file (training-dataset.csv). The model learns the relationship between distance_km (the feature) and fare_amount (the label). The trained model is then saved to disk.
- 2. **Real-Time Inference**: The script ingests live ride data from the socket. For each incoming ride, it uses the pre-trained model to predict the fare based on the trip's distance. It then calculates the deviation between the actual fare and the predicted fare to identify potential anomalies.

Instructions:

- Load the training data from training-dataset.csv.
- Use VectorAssembler to prepare the feature column (distance_km).
- Create and fit a LinearRegression model to the training data.
- Save the trained model to a local path (e.g., models/fare_model).
- In the streaming logic, load the saved model.
- Apply the model to the streaming DataFrame to generate a prediction column.
- Compute a deviation column by calculating the absolute difference between fare_amount and prediction.
- Print the results, including the deviation, to the console using outputMode("append").

Sample output Screenshot:

Batch: 6					
+ trip_id	driver_id	distance_km	fare_amount	 predicted_fare	deviation
230964b2-c0b4-4ad0-81f3-6ba3698a83dd	11	19.85	101.6	 93.27004410476815	8.329955895231848

Task 5: Time-Based Fare Trend Prediction

- Offline Model Training: The training data from training-dataset.csv is first aggregated into 5-minute windows, calculating the avg_fare for each. Instead of using a raw timestamp, we perform feature engineering, creating cyclical features like hour_of_day and minute_of_hour from the window's start time. A Linear Regression model is trained on these features and saved.
- Real-Time Inference: The live stream is aggregated using the same 5-minute windowing logic. The same hour_of_day and minute_of_hour features are created for each window. The pre-trained model is then used to predict the avg_fare for that time window.

Instructions:

- Load the training data from training-dataset.csv.
- Pre-process the training data by grouping it into 5-minute windows and calculating the avg_fare.
- Create hour_of_day and minute_of_hour features from the window.start time.
- Train a Linear Regression model on these features and save it (e.g., to models/fare_trend_model_v2).
- For the streaming data, apply the same 5-minute windowed aggregation and feature engineering steps.
- Load the saved model and apply it to the aggregated streaming DataFrame.
- Print the window_start, window_end, actual avg_fare, and predicted_next_avg_fare to the console.

Sample output Screenshot:

Batch: 38			
+ window_start	window_end	 t avg_fare	predicted_next_avg_fare
2025-10-17 16:03 +	3:00 2025-10-17 16:0	08:00 72.8311055276	53817 92.39431034482759