Задание 2

Семен Федотов, 2 группа

Март, 2017

Условие 1. Пусть $X_1 \dots X_n$ - выборка из распределения $Cauchy(\theta)$. Построить оценку параметра θ методом моментов.

Proof. Можно попробовать найти пробную функцию g так, чтобы интеграл $(Eg(X_1))$ сходился. Сделаем так, чтобы g индикатором $I((-\infty,-1]\cup[-1,+\infty))$, тогда интеграл будет сходиться и мы получим нужную нам оценку: $\hat{\theta} = \frac{1}{\tan(\frac{\pi\cdot(1-g(X))}{1})}$.

Давайте покажем, как это получить: Наша g - четная функция $\Rightarrow \int\limits_{-\infty}^{+\infty} g(x) \frac{\theta}{\pi(\theta^2 + x^2)} dx = 2 \cdot \int\limits_{0}^{+\infty} g(x) \frac{\theta}{\pi(\theta^2 + x^2)} dx = \frac{1}{\pi} \int\limits_{0}^{+\infty} \frac{1}{\pi(\theta^2 + x^2)} dx = \frac{2}{\pi} \int\limits_{0}^{+\infty} \frac{1}{\pi(\theta^2 + x^2)} dx = \frac{2$

$$\hat{\theta} = 1 \frac{1}{\tan(\frac{\pi(1-\tilde{X})}{2})}$$

Вот мы и получили искомую оценку! Вообще есть множество вариантов взять пробную функцию, например, $\sin \alpha x$ или $\cos \alpha x$. Впоследствии, получим интеграл Лапласа, который сходится. Ну и сможем найти нужную нам оценку

Условие 2. $\mathcal{N}(\theta,1)$. Есть ли римк для $H_0: \theta = 0$ против двусторонней альтернативы.

Proof. Ответ: нет. Пусть все же есть рнмк для проверки нашей гипотезы: $\{X \in B\}$ уровня значимости α . Нужно проверить, что среди всех критериев с таким же уровнем значимости, он является наиболее мощным. Вообще, что такое уровень значимости в нашей задаче - такое число $\alpha: P_{\theta=0}(X \in B) \leq \alpha$. То есть вероятность отвергнуть верную нулевую гипотезу не больше этого α . А далее, нужно проверить, является ли он наиболее мощным. То есть: $\forall P_x \in \mathcal{P}_1 \forall R: P_x(X \in B) \geq P_x(X \in R)$. Приведем докво для одномерного случая(выборка размера 1), оно легко продолжается на случай выборки размера п. Что такое $X \sim \mathcal{N}(0,1); P_{\theta=0}(X \in B) = \int\limits_{x \in B} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}} dx$ - мера множества В. Возьмем множество R

такой же меры, как и В. Чтобы прийти к противоречию, нам нужно доказать, что мощность $Q(R, P_x)$ больше мощности $Q(B, P_x)$, хотя бы на одном из распределений и альтернативной гипотезы. Возьмем R далеко в конце распределения(далеко в +), нужно подобрать теперь сдвиг(θ) после которого будет R находиться около матожидания(там мера его будет наибольшей.), а В переедет налево, в конец распределения. Конечно, мн-во B может иметь вообще любой характер(разреженное, содержащее луч). В конце концов мера сдвинутого R будет больше. Ну то же самое можно провернуть и в многомерном случае. Так как при справедливости нулевой гипотезы у нас центр распределения в нуле, то оно будет симметрично. Будем, например делать срез по одной из компонент и переходить в пространство меньшей размерности(Могу, если надо у доски рассказать, разобрать случаи)

Либо можно попробовать так. Применим 2 раза т. о монотонном отношении правдоподобия и построим два соответсвующих критерия(рнмк) для проверки $H_1:\theta\leq\theta_0,R_1:\theta>\theta_0$ и $H_2:\theta\geq\theta_0,R_2:\theta<\theta_0$. Пусть теперь существует рнмк для исходной задачи (H, vs R). $X\in B$. Тогда $P(X\in B)\geq P(S(X)>u_1)$, и такое же нер-во для второго критерия. $\theta_2<\theta_0<\theta_1$ А так как мы исп отношение правдоподобий, то наши критерии переписываются в виде $\frac{p(x|\theta_1)}{p(x|\theta_0)}>\lambda_1$ и $\frac{p(x|\theta_2)}{p(x|\theta_0)}>\lambda_2$ Вот, но теперь пусть на какойто выборке гипотеза отвергается. Но так как отношение правдоподобий монотонно по статистике S, то $\forall y:T(y)>T(x)\Rightarrow$ для у тоже отвергается гипотеза, так как знак сохранится(следует из первой части нового критерия), и аналогично для $\forall y:T(y)< T(x)\Rightarrow$ отвергается(из второй части). Что тогда? Если хотя бы на какой то выборке у нас гипотеза отвергается, то она отвергается при любой другой выборке. Ну а если нет такого, то она отвергается вообще для любой выборки. Противоречие!

Условие 3. Пусть $X_1 \dots X_n$ - выборка из распределения $\Gamma(\alpha, \theta)$ - оба параметра неизвестны. Предложить критерий для проверки гипотезы $H_0: \alpha = 1$ против $H_1: \alpha > 1$.

Proof. Воспользуемся методом построения асимптотического критерия. В качестве статистики возьмем $\frac{\sum X_i - nEX_1}{\sqrt{nDX_1}} \stackrel{\mathrm{d}}{\to} \mathcal{N}(0,1)$, где $EX_1 = \frac{\alpha}{\theta}, DX_1 = \frac{\alpha}{\theta^2}$ Это верно из ЦПТ(у нас набор норсв с конечной дисперсией). Подставим матожидание и дисперсию:

$$\frac{\theta \sum X_i - n\alpha_0}{\sqrt{n\alpha_0}} \stackrel{\mathrm{d}}{\to} \mathcal{N}(0,1)$$

Есть проблема, мы не знаем ни один параметр из распределения, но если мы подставим их состоятельные оценки, то сходимость сохранится(). Оценки найдем методом моментов, и если выйдет так, что m_1^-1, m_2^-1 окажутся непрерывными, то оценка будет состоятельной. В кач-ве пробных функций возьмем стандартные: x и x^2 .

$$\begin{cases} \frac{\alpha}{\theta} = \overline{X}, \\ \frac{\alpha + \alpha^2}{\theta^2} = \overline{X}^2 \end{cases}$$

(видно, что мы получили непрерывные функции, а значит, оценка будет состоятельной) Выразим оттуда неизвестный нам параметры и получим:

$$\begin{cases} \hat{\alpha} = \frac{\overline{X}^2}{\overline{X^2} - \overline{X}^2}, \\ \hat{\theta} = \frac{\overline{X}}{\overline{X^2} - \overline{X}^2} \end{cases}$$

. Подставим эти оценки в исходное выражение и возмьмем квантиль уровня 1 - α стандартного нормального распределения.