Name	Nishant Dinesh Satere
UID no.	202271009
Experiment No.	1

AIM: Experiment on finding the running time of algorithms **Program 1 PROBLEM** To find the running time of various algorithms **STATEMENT: PROGRAM:** C Experiment1.c X C: > Users > Admin > Desktop > SPIT > Sem4 > Praticals > DDA > C Experiment1.c > ♦ function3() #include<stdio.h> #include<math.h> void function1() for(int n = 0; $n \le 100$; n = n+10) printf("%d : %f\n", n , pow(1.5,n)); void function2() for(int n = 0; n <= 100; n=n+10) printf("%d : %d\n",n,n*n*n); void function3() for(int n = 0; $n \le 100$; n = n+10) printf("%u : %f\n",n, 2*(pow(2,n))); void function4() for(int n = 0; n <= 100; n=n+10)


```
C Experiment1.c X
C: > Users > Admin > Desktop > SPIT > Sem4 > Praticals > DDA > C Experiment1.c > ☆ function3()
               printf("%d : %f\n", n ,log2(n));
       void function5()
           for(int n = 0; n \le 100; n = n+10)
               printf("%d : %f\n",n,pow(2,(log2(n))));
      void function6()
           for(int n = 0; n \le 100; n = n+10)
               printf("%d : %d\n",n,n);
      void function7()
           for (int n = 0; n <= 100; n = n+10)
               printf("%d : %f\n",n,pow(2,n));
       void function8()
           for(int n = 0; n \le 100; n = n+10)
```

```
C Experiment1.c X
C: > Users > Admin > Desktop > SPIT > Sem4 > Praticals > DDA > C Experiment1.c > ☆ function7()
               printf("%d : %f\n",n,n*log2(n));
       void function9()
           for(int n =0; n <= 100; n = n+10)
               printf("%d : %f\n",n,pow(2,pow(2,n+1)));
       void function10()
           for(int n = 0; n \le 100; n = n+10)
               printf("%d : %f\n",n,log(log(n)));
       void function11()
           for(int n = 0; n <= 20; n = n+2)
               double fact = 1;
               for(int i = 1; i \leftarrow n; i++)
                    fact = fact*i;
               printf("%d : %f\n",n,fact);
       int main()
```

```
C Experiment1.c X
C: > Users > Admin > Desktop > SPIT > Sem4 > Praticals > DDA > C Experiment1.c > ☆ function7()
           printf("Press 1 : Function1 (3/2)*n\n");
           printf("Press 2 : Function2 n^3\n");
           printf("Press 3 : Function3 2^(2^n)\n");
           printf("Press 4 : Function4 log2(n)\n");
           printf("Press 5 : Function5 2^(log2(n))\n");
           printf("Press 6 : Function6 n\n");
           printf("Press 7 : Function7 2^n\n");
           printf("Press 8 : Function8 nlog2(n)\n");
           printf("Press 9 : Function9 2^{(2^n)+1}n");
           printf("Press 10 : Function10 lnln(n)\n");
           printf("Press 11 : Function11 n!\n");
           printf("Press 12 : Exit\n");
           int option;
           while (option != 12)
               printf("Enter your choice : ");
               scanf("%d" ,&option);
               switch (option)
               printf("Function1 (3/2)*n : \n");
               function1();
                   break;
               case 2:
               printf("Function2 n^3 : \n");
               function2();
                   break;
               printf("Function3 2^(2^n) : \n");
               function3();
                   break;
               case 4:
```

```
C Experiment1.c X
C: > Users > Admin > Desktop > SPIT > Sem4 > Praticals > DDA > € Experiment1.c > ♦ function 7()
               printf("Function4 log2(n) : \n");
               function4();
                   break;
               case 5:
               printf("Function5 2^(log2(n)) : \n");
               function5();
                   break;
               case 6:
               printf("Function6 n : \n");
               function6();
                   break;
               case 7:
               printf("Function7 2^n : \n");
               function7();
                   break;
               case 8:
               printf("Function8 nlog2(n) : \n");
               function8();
                   break;
               case 9:
               printf("Function9 2^((2^n)+1) : \n");
               function9();
                   break;
               case 10:
               printf("Function10 lnln(n) : \n");
               function10();
                   break;
               case 11:
               printf("Function11 n! : \n");
               function11();
                  break;
```

```
OUTPUT:
                      DEBUG CONSOLE
  PROBLEMS
             OUTPUT
                                     TERMINAL
  PS C:\Users\Admin\Desktop\SPIT\sem4\Praticals\DDA> gcc Experiment1.c
  PS C:\Users\Admin\Desktop\SPIT\sem4\Praticals\DDA> ./a.exe
  Press 1: Function1 (3/2)*n
  Press 2: Function2 n^3
  Press 3: Function3 2^(2^n)
  Press 4: Function4 log2(n)
  Press 5 : Function5 2^(log2(n))
  Press 6 : Function6 n
  Press 7: Function7 2<sup>n</sup>
  Press 8: Function8 nlog2(n)
  Press 9: Function 2^{(2^n)+1}
  Press 10 : Function10 lnln(n)
  Press 11 : Function11 n!
  Press 12: Exit
  Enter your choice : 1
  Function1 (3/2)*n:
  0:1.000000
  10:57.665039
  20: 3325.256730
  30: 191751.059233
  40: 11057332.320940
  50: 637621500.214050
  60: 36768468716.933022
  70: 2120255184830.252000
  80: 122264598055704.640000
  90: 7050392822843069.000000
  100: 406561177535215230.000000
  Enter your choice : 2
  Function2 n^3:
  0:0
  10: 1000
  20: 8000
  30: 27000
  40:64000
  50: 125000
  60: 216000
  70:343000
  80:512000
  90: 729000
  100 : 1000000
  Enter your choice :
```

```
PROBLEMS OUTPUT DEBUG CONSOLE
                               TERMINAL
Enter your choice : 3
Function3 2^(2^n):
0:2.000000
10: 2048.000000
20: 2097152.000000
30 : 2147483648.000000
40 : 2199023255552.000000
50 : 2251799813685248.000000
60: 2305843009213694000.000000
70: 2361183241434822600000.000000
80: 2417851639229258300000000.0000000
90: 247588007857076050000000000000.000000
Enter your choice : 4
Function4 log2(n):
0 : -1.#INF00
10:3.321928
20: 4.321928
30: 4.906891
40:5.321928
50: 5.643856
60: 5.906891
70: 6.129283
80: 6.321928
90: 6.491853
100: 6.643856
Enter your choice : 5
Function5 2^(log2(n)):
0:0.000000
10:10.000000
20: 20.000000
30:30.000000
40:40.000000
50:50.000000
60:60.000000
70:70.000000
80:80.000000
90:90.000000
100 : 100.000000
Enter your choice : 6
```

```
PROBLEMS
          OUTPUT
                  DEBUG CONSOLE
                                 TERMINAL
Enter your choice : 6
Function6 n:
0:0
10:10
20:20
30:30
40:40
50:50
60:60
70:70
80:80
90:90
100:100
Enter your choice: 7
Function7 2<sup>n</sup>:
0:1.000000
10: 1024.000000
20: 1048576.000000
30: 1073741824.000000
40: 1099511627776.000000
50: 1125899906842624.000000
60: 1152921504606847000.000000
70: 1180591620717411300000.000000
80 : 1208925819614629200000000.0000000
90: 123794003928538030000000000000.000000
100 : 12676506002282294000000000000000000000
Enter your choice: 8
Function8 nlog2(n):
0: -1.#IND00
10:33.219281
20:86.438562
30: 147.206718
40: 212.877124
50: 282.192809
60: 354.413436
70: 429.049811
80:505.754248
90: 584.266779
100:664.385619
Enter your choice: 9
```

```
TERMINAL
70: 429.049811
80:505.754248
90:584.266779
100:664.385619
Enter your choice : 9
Function9 2^((2^n)+1):
0:4.000000
10 : 1.#INF00
20 : 1.#INF00
30 : 1.#INF00
40 : 1.#INF00
50 : 1.#INF00
60: 1.#INF00
70 : 1.#INF00
80 : 1.#INF00
90 : 1.#INF00
100 : 1.#INF00
Enter your choice: 10
Function10 lnln(n):
0: -1.#IND00
10: 0.834032
20: 1.097189
30: 1.224128
40: 1.305323
50: 1.364055
60: 1.409607
70:1.446565
80: 1.477511
90: 1.504035
100: 1.527180
Enter your choice : 11
Function11 n!:
0:1.000000
2: 2.000000
4: 24.000000
6:720.0000000
8:40320.000000
10: 3628800.000000
12: 479001600.000000
14: 87178291200.000000
16: 20922789888000.000000
18: 6402373705728000.000000
20: 2432902008176640000.000000
Enter your choice : 12
PS C:\Users\Admin\Desktop\SPIT\sem4\Praticals\DDA>
```

1. (3/2)^n

n	(3/2)^n						(2/2	100					
0	1						(3/2)	.)^`[]					
10	57.665039	4.5E+17											
20	3325.25673	4E+17											
30	191751.0592	3.5E+17											
40	11057332.32												
50	637621500.2	3E+17											1
60	36768468717	2.5E+17											_
70	2.12026E+12	2E+17											<u> </u>
80	1.22265E+14	1.5E+17											
90	7.05039E+15	1E+17											
100	4.06561E+17												
		5E+16											
		0	_										
			0	10	20	30	40	50	60	70	80	90	100

2. n^3

3. 2^(2^n)

n	2^(2^n)						2^(2	^n)		
0	2						2 (2	11)		
10	2048	Chart Are	ea							
20	2097152									
30	2147483648	2.5E+30 —								
40	2.19902E+12									
50	2.2518E+15	2E+30 —								
60	2.30584E+18	1.5E+30								
70	2.36118E+21	1.51+50								
80	2.41785E+24	1E+30 —								
90	2.47588E+27									
100	2.5353E+30	5E+29								
		0 —	_							
		(0	10	20	30	40	50	60	70

4. Log2(n)

80

90

100

5. 2^(log2(n))

n	2^(log2(n)						20/1	042/r	. 1				
0	0						2^(1	og2(r	1)				
10	10	120											
20	20												
30	30	100											
40	40	0.0											
50	50	80											
60	60	60											
70	70	00											
80	80	40											
90	90												
100	100	20											
		0											
			0	10	20	30	40	50	60	70	80	90	100

6. n

n	n							n					
0	0							"					
10	10	120											
20	20												
30	30	100											
40	40												
50	50	80											
60	60	60											
70	70	00											
80	80	40											
90	90												
100	100	20											
		0 -											
			0	10	20	30	40	50	60	70	80	90	100

7. 2^n

n	2^n						2.4						
0	1						2^	'n					
10	1024	1.4E+30											
20	1048576												,
30	1073741824	1.2E+30											
40	1.09951E+12	1E+30											
50	1.1259E+15												
60	1.15292E+18	8E+29											
70	1.18059E+21	6E+29											
80	1.20893E+24												
90	1.23794E+27	4E+29										/	
100	1.26765E+30	2E+29											
		22.23											
		0	_										
			0	10	20	30	40	50	60	70	80	90	100

8. nlog2(n)

n	nlog2(n)							/\				
0	nan						nlog2	(n)				
10	33.219281	700										
20	86.438562	600										
30	147.206718											
40	212.877124	500										
50	282.192809	400										
70	354.413436	300										
80	429.049811											
90	505.754248	200										
100	584.266779	100										
		0										
			1	2	3	4	5	6	7	8	9	10

10. lnln(n)

n	InIn						Lo	ln/n)					
0	-1.#IND00						III	ln(n)					
10	0.834032	1.8											
20	1.097189	1.6											
30	1.224128	1.4											
40	1.305323												
50	1.364055	1.2											
60	1.409607	1											
70	1.446565	0.8											
80	1.477511	0.6											
90	1.504035			/									
100	1.52718	0.4											
		0.2	_/										
		0	_/_										
			0	10	20	30	40	50	60	70	80	90	100

11. n!

n	n!												
0	1						n	:					
2	2	3E+18											
4	24												
6	720	2.5E+18											,
8	40320												- /
10	3628800	2E+18											
12	479001600	1.5E+18											
14	87178291200	1,31,10											/
16	2.09228E+13	1E+18											
18	6.40237E+15											/	
20	2.4329E+18	5E+17											
		0	_										
			0	2	4	6	8	10	12	14	16	18	20

	Program 2
PROBLEM STATEMENT:	Implement two sorting algorithms namely Insertion and Selection sort methods. Compare these algorithms based on time and space complexity.
ALGORITHM/ THEORY:	Insertion Sort procedure insertionSort(A : array of items) int holePosition int valueToInsert for i = 1 to length(A) inclusive do: /* select value to be inserted */ valueToInsert = A[i] holePosition = i /*locate hole position for the element to be inserted */ while holePosition > 0 and A[holePosition-1] > valueToInsert do: A[holePosition] = A[holePosition-1] holePosition = holePosition -1 end while /* insert the number at hole position */ A[holePosition] = valueToInsert end for end procedure
	Selection Sort procedure selection sort list: array of items n: size of list for i = 1 to n - 1 /* set current element as minimum*/ min = i /* check the element to be minimum */ for j = i+1 to n if list[j] < list[min] then min = j; end if end for /* swap the minimum element with the current element*/ if indexMin! = i then

```
swap list[min] and list[i]
end if
end for
end procedure
```

PROGRAM:

```
C Experiment1b.c > 分 main()
      #include<stdio.h>
      #include<math.h>
      #include<stdlib.h>
      #include<time.h>
      void swap(int*x, int *y){
          int temp = *x;
          *x = *y;
          *y = temp;
11
      void printArray(int *arr, int n){
12
          for(int i = 0; i < n; i++){
              printf("%d\n", arr[i]);
      //Selection Sort
      void selectionSortt(int *arr, int start, int size){
          for(int i = start; i < size; i++){</pre>
              int minIdx = i;
              for (int j = i; j < size; j++){
                   if(arr[j] < arr[minIdx])</pre>
                       minIdx = j;
                   swap(&arr[i], &arr[minIdx]);
      //Isertion Sort
      void insertionSortt(int *arr, int start, int size){
          for(int i = start+1; i < size; i++){</pre>
              int temp = arr[i];
              int j = i - 1;
```

```
C Experiment1b.c > 分 main()
              while(j \ge 0 \&\& temp <= arr[j]){
                  arr[j+1] = arr[j];
                  j = j - 1;
              arr[j+1] = temp;
42
      int main(){
          printf("\n");
          char *randNumders = "randNumber.txt";
          char *selectionSort = "selction.txt";
          char *insertionSort = "insertion.txt";
          FILE *randnumfptr = fopen(randNumders, "w");
          FILE *sortednumfptr;
          int n = 1000000;
          int a[n];
          int num, startTime, endTime, rangeTill;
58
          printf("Generating random array");
          for(int i = 0; i < n; i++){
              num = rand();
              fprintf(randnumfptr, "%d\n", num);
          fclose(randnumfptr);
          //Insertion sort
          randnumfptr = fopen(randNumders, "r");
          printf("\nReading random array");
          for(int i = 0; i < n; i++){
              fscanf(randnumfptr, "%d" , &a[i]);
          fclose(randnumfptr);
```

```
C Experiment1b.c > 分 main()
          fclose(randnumfptr);
          printf("\nDone\n");
          rangeTill = 100;
          printf("Insertionsort\n");
          sortednumfptr = fopen(insertionSort, "w");
          printf("Sorted numbers stored in (%s)",insertionSort);
          while(rangeTill <= n){</pre>
              startTime = clock();
              insertionSortt(a, 0,rangeTill);
              endTime = clock();
              fprintf(sortednumfptr, "%d\n",endTime-startTime);
              rangeTill += 100;
          fclose(sortednumfptr);
          printf("\nInsertion sort done");
          randnumfptr = fopen(randNumders, "r");
          printf("\nReading random array");
          for(int i = 0; i < n; i++){
              fscanf(randnumfptr, "%d", &a[i]);
          fclose(randnumfptr);
          printf("\nDone\n");
          rangeTill = 100;
          printf("Selectionsort\n");
104
          sortednumfptr = fopen(selectionSort, "w");
          printf("Sorted numbers stored in (%s)", selectionSort);
          while(rangeTill <= n){
              startTime = clock();
              selectionSortt(a , 0 , rangeTill);
110
```

GRAPH:

CONCLUSION:

In this experiment, we implemented, calculated & analyzed the runtime of various functions by plotting their outputs in range 0-100 with increment of 10.

Also, we calculated & analyzed the time consumed by insertion & selection sorting algorithms