Zavod za elektroniku, mikroelektroniku računalne i inteligentne sustave

Arhitektura računala 2

Međuispit, problemski dio (60% bodova)

- 1. (12 bodova) Razmatramo izvedbu memorijskih modula i njihovo priključivanje u računalni sustav.
 - (a) Prikažite izvedbu memorijskog modula kapaciteta 8 8-bitnih riječi pomoću binarnih ćelija s 3 stanja (BC3S).
 - (b) Prikažite shemu spajanja triju takvih modula u računalni sustav sa 16-bitnom adresnom i 8-bitnom podatkovnom sabirnicom, uz pretpostavku da se oni javljaju u kontinuiranom adresnom prostoru s početnom adresom \$7F80.
- 2. (12 bodova) Na linijama A[15:0], D[7:0], R i W vanjske sabirnice pojednostavnjenog modela procesora očitan je sljedeći niz logičkih vrijednosti.

```
($1000,$7c,1,0)
($1001,$20,1,0)
($1002,$00,1,0)
($2000,$7c,1,0)
($2000,$7b,0,1)
($1003,$23,1,0)
($1004,$10,1,0)
($1005,$00,1,0)
(Z,Z,0,0)
($1000,$7c,1,0)
```

Prikažite početni sadržaj radne memorije koji bi mogao pobuditi ovakav slijed događaja na vanjskoj sabirnici. Prikažite odgovarajući program u asemblerskoj sintaksi korištenjem mnemonika poput ADD, SUB, INC, JUMP, BNE...

Bonus: Opišite ukratko moguće buduće razvoje događaja na vanjskoj sabirnici.

- 3. (12 bodova) Pretpostavite da je model 8-istrukcijskog procesora (slika na poleđini ispita) modificiran na način da mu je pridodan 24-bitni povezni registar L, s dva pridružena upravljačka signala: c₁₈ (EL propuštanje sadržaja registra L na internu sabirnicu) i c₁₉ (LL upis podatka sa interne sabirnice u registrar L). Tako modificiranom procesoru potrebno je pridodati dvije nove instrukcije:
 - BRL X (Branch and Link) koja poziva potprogram na adresi X spremajući pri tome povratnu adresu u povezni registar L
 - RET (Return) koja ostvaruje povratak iz potprograma

Napišite logičke jednadžbe upravljačkih signala koji ostvaruju faze "izvrši" navedenih instrukcija.

- 4. (12 bodova) Procesor MC68000 izvodi program u korisničkom načinu rada. Tijekom instrukcije na adresi \$400700 (koja zauzima 4 bajta) događa se prekid. Prekidni potprogram, koji počinje na adresi \$607800, nema memorijskih lokalnih varijabli (a, naravno, ni parametara). Prekidni potprogram poziva drugi potprogram instrukcijom CALL \$400900, koja se nalazi na adresi \$607884 i zauzima 6 bajtova. Drugi potprogram prima jedan parametar tipa int (veličine 4B) i koristi jednu memorijsku lokalnu varijablu, također tipa int. I za prijenos parametara i spremanje memorijskih lokalnih varijabli koristi se stog. Oba potprograma završavaju odgovarajućim naredbama povratka.
 - (a) Grafički prikažite opisani scenarij.

- (b) Prikažite stanja stogova u karakterističnim točkama (nakon poziva i nakon povratka iz svakog od potprograma). Vrijednosti koje nisu poznate označite odgovarajućim brojem X-eva, gdje X predstavlja jednu heksadekadsku znamenku.
- 5. (12 bodova) Napisati mikroprogram za instrukciju MULAB koja množi registre A i B te rezultat sprema u registar B. Neka je operacijski kod instrukcije MULAB \$23, te neka je adresa mikroprograma za fazu pribavi \$00.

Uputa: Množenje izvedite uzastopnim pribrajanjem operanda A; ne zaboravite koristiti privremeni registrar PR; neka brojač petlje početno kreće od negativne vrijednosti operanda B neka se uvećava prema nuli.

Slika uz zadatak 3: organizacija osaminstrukcijskog procesora

Slika uz zadatak 5: organizacija mikroprogramiranog procesora

31	29	26	24	22	19	17	15	13		7	0
CA	СВ	COP	CSH	CMB	CAB	CBB	CST	C	CNA	$_{\mathrm{CEM}}$	

CA	CB	COP	CSH
$00 \dots L \leftarrow PR$	000 R ← 0	00 suma uz C=0	00 MB ← S
$01 \dots L \leftarrow [0, F(CEM)]$	001 R ← B	01 suma uz C=1	$01 \dots MB \leftarrow shr S$
$10 \dots L \leftarrow [F(CEM), 0]$	010 R ← B*	10 ne koristi se	$10 \dots MB \leftarrow shl S$
11 L ← A	$011 \dots R \leftarrow PC$	11 ne koristi se	$11 \dots MB \leftarrow IN$
	$100 \dots R \leftarrow SR$		
CMB	CAB	CBB	CST
000 nema prijenosa	$00 \dots H(1) \leftarrow 0$	$00 \dots H(0) \leftarrow 0$	00 SR se ne mijenja
$001 \dots A \leftarrow MB$	$01 \dots H(1) \leftarrow 1$	$01 \dots H(0) \leftarrow 1$	$01 \dots SR(0) \leftarrow ZT$
$010 \dots B \leftarrow MB$	$10 \dots H(1) \leftarrow SR(0)$	$10 \dots H(0) \leftarrow SR(1)$	$10 \dots SR(1) \leftarrow MB(15)$
$011 \dots PC \leftarrow MB$	$11 \dots H(1) \leftarrow MB(0)$	$11 \dots H(0) \leftarrow MB(15)$	$11 \dots SR(0) \leftarrow ZT$
$100 \dots SR \leftarrow MB$			$SR(1) \leftarrow MB(15)$
$101 \dots \text{OUT} \leftarrow \text{MB}$			
110 PR ← MB			

Slika uz zadatak 5: format mikroinstrukcijske riječi