Dependence Notation

name	symbol	alt.	summ.	example
true dependence	S1 δ^t S2	δ , δ^f	W→R	S1: x=10;
				S2: y=x+2;
anti-dependence	S1 δ ^a S2	δ^{-1}	R→W	S1: y=x+2;
				S2: x=10;
output dependence	S1 δ° S2		W→W	S1: x=10;
				S2: x=20;

notation:

R: Read

 \rightarrow : then

W: Write

Iteration Vector

- iteration vector $\vec{i} := (i1, i2, ..., in)$ indicates progression through loops
 - e.g. $\vec{i} := (2, 5, 4)$ means there are 3 nested loops:
 - ▶ the first (outermost) loop is in its 2nd iteration
 - ▶ the second (middle) loop is in its 5th iteration
 - ► the third (innermost) loop is in its 4th iteration

Dependence Vectors I

```
• distance vector: d(\vec{i}, \vec{j}) = \vec{i} - \vec{i}
  • e.g. S(\vec{i} = (i1 - 2, i2 - 5, i3 - 4)) \delta_1^t S(\vec{j} = (i1, i2, i3)) in
     the code below has d(\vec{i}, \vec{j}) = (2, 5, 4)
for (i1 = 2; i1 < N1; i1++) {
   for (i2 = 5; i2 < N2; i2++) {
      for (i3 = 4; i3 < N3; i3++) {
S: A[i1][i2][i3] = f(A[i1-2][i2-5][i3-4]);
```

Dependence Vectors II

$$\text{ direction vector: } D(\vec{i}, \vec{j})_k = \begin{cases} \text{``} < \text{"}, & d(\vec{i}, \vec{j})_k > 0 \\ \text{``} = \text{"}, & d(\vec{i}, \vec{j})_k = 0 \\ \text{``} > \text{"}, & d(\vec{i}, \vec{j})_k < 0 \end{cases}$$

• e.g.
$$d(\vec{i}, \vec{j}) = (2, 0, -4) \implies D(\vec{i}, \vec{j}) = ("<", "=", ">")$$

- lacktriangle the leftmost " < " or " > " in $D(ec{i},ec{j})$
 - ightharpoonup equivalently, the index of the leftmost nonzero in $d(\vec{i},\vec{j})$
 - corresponds to outermost loop involved in dependency
 - e.g. $d(\vec{i}, \vec{j}) = (0, 0, 4, 0)$ has level 3
 - e.g. $D(\vec{i}, \vec{j}) = (" = ", " = ", ...)$ has level ∞
 - denote with $\delta_{
 m level}^{
 m ...}$