

LM3647

通用充电器——使用锂电池,镍氢电池,镍镉电池

1.0 一般描述

LM3647是一个充电控制器,可以适用在锂电池,镍氢电池,镍镉电池上。这个芯片可以用脉冲电流充电,或者恒流充电。这个芯片还可以在充电之前配置成放电。在整个充电过程中,LM3647能监控电压或者/和温度和时间来中止充电。中止充电条件:

 $*-\triangle V$

- *最大电压
- *选项: $\triangle T/\triangle t$ T: 温度
- *选项:最大温度
- *后备:最大充电时间

加入电压和温度都触发中止要求失败,那么最大时间(由外部硬件电路配置)会进行中断充电。

在镍镉/镍氢模式下,使用4种不同的充电阶段:

- *软启动充电
- *快速充电
- *顶部充电(topping charge)
- *维持充电(maintenace charge)

在锂电池模式下,也使用4种状态:

- *限制
- *第一阶段快速充电,常电流
- *第二阶段快速充电,常电压
- *维持充电

LM3647的充电电流是通过外部电阻来配置的,这个阻值控制了 PWM 信号的占空比,控制输出。对于低成本的应用中,LM3647可以配置成不需要外部的温度传感器,并且可使用一个外部电流源。

当使用外部电流源时,LM3647 可以控制开关电流源。LM3647 自动侦测电池的存在,并且当电池安装时开始充电过程。任何错误发生时(例如:短路,温度太高,温度太低,电池坏了,充电结束等等),LM3647 都将保持在错误状态,直到电池被移除或者温度在充电允许范围内。LM3647 的封装是 20PIN 的 SOIC 表面贴装封装。

关键特性:

- *自适应快速充电
- *高精度,准确的电压监控防止锂电池欠充或过充
- *提供快充, 预充和维持电流。不同的电流是通过外部电阻配置的。
- *通过 $\triangle T/\triangle t$,最大电压,最大温度, $-\triangle$ 电压和最大充电时间来中止快速充电
 - *不添加任何外部电路而动态监测电池的安装,卸载,短路和坏状态。

- *支持电池包充电:镍镉,镍氢是2~8个单元;锂电池是1~4个电源。
- *3个 LED 二极管和峰鸣器输出显示操作模式
- *可选择镍镉,镍氢充电模式,锂电池充电模式或者放电模式。
- *PWM 开关控制

应用:

- *电池充电系统:
 - ——便携式消费电子产品
 - ——视频/音频设备
 - ——通信设备
 - ——电源工具
 - ——个人便利产品

典型应用:

2. 管腿图:

2. 1 管腿描述

<u></u>	1 自成1田以	-		
管腿编号	名字	输入/输出	描述	
1	SEL3	I	输入,选择充电模式:高=脉冲,低=恒流	
2	SEL4	I	输入,选择维持电流推出,连接到 RC 电路	
3	RCIN		RC时间	
4	GND		地	
5	VCC		5V, 电源	
6	RESET	Ι	复位, 低有效	
7	LED1	0	LED 输出	
8	LED2	0	LED 输出	
9	LED3	0	LED 输出	
10	VREF	Ι	参考电压模拟输入	
11	CEXT		外部电容	
12	CEL	I	电池电压输入 (通过电阻分压)	
13	CS	Ι	电流传感器输入	
14	TEMP	I	NTC温度传感器输入	
15	DISCHG	0	当充电时为高,其他时间为低	
16	SYSOK	0	系统监测输出	
17	BUZZER	0	峰鸣器输出	
18	PWM	0	被滤波到 DC 电平的 PWM 输出(控制电流)	
19	SEL1	I	三态输入,用于选择充电类型	
20	SEL2	I	三态输入,用于选择镍镉,镍氢,锂电池	

3. 电气特性

最大值范围;

电源 VCC 7V

其他管腿电压......-0.3V~VCC+0.3V

 VCC 管腿上的全部电流
 100mA

 GND 上的全部电流
 110mA

DC电气特性: -40°C ≤ TA ≤ +85°C unless otherwise specified

Parameter	Conditions	Min	Тур	Max	Units
Operating Voltage		4.5		5.5	V
Supply Current			2.5		mΑ
LED-pin Sink Current		7.5		15	mΑ
Temperature Input Levels					
Ni-Cd / Ni-MH Upper limit	(Voltage at TEMP-pin)		3.15		V
Li-Ion Upper limit	(Voltage at TEMP-pin)		3.0		V
Lower Limit	(Voltage at TEMP-pin)		0.5		V
Start limit	(Voltage at TEMP-pin)		2.2		V
Li-Ion (for both 4.1 and 4.2V Cells)					
Maintenance Charge Minimum Voltage	(CEL pin)		2.6		V
Maintenance Charge Restart Voltage	(CEL pin)		2.153		V
Good Battery Threshold	(CEL pin)		1.2		V
Maintenance Current	(Voltage at CS-pin)		2.3		V
Maintenance Current Lower Threshold	(Voltage at CS-pin)		2.42		V
Minimum Current Fast Charge Termination	(Voltage at CS-pin)		2.3		V
Qualification Current	(Voltage at CS-pin)		2.3		V
Maximum Charging Current	(Voltage at CS-pin)		1.5		V
Ni-Cd/Ni-MH					
Maximum Battery Voltage	(CEL pin)		3.017		V
Maximum Battery Current	(Voltage at CS-pin)		1.5		V
Battery Presence Limit	(CEL pin)		1.0		V
Discharged Battery Limit	(CEL pin)		1.7		V
Good Battery Threshold	(CEL pin)		1.2		V
Soft Start Current	(Voltage at CS-pin)		2.3		V
Topping Charge Current	(Voltage at CS-pin)		2.3		V
Maintenance Charge Current	(Voltage at CS-pin)	2.425	2.45		V
V _{REF}				2.5	V

AC 电气特性:

Parameter	Conditions	Min	Тур	Max	Units
RCIN frequency	$R = 3.3k\Omega$, $C = 68pF$		2.5		MHz
Fast-PWM frequency			250		Hz
Slow-PWM frequency			0.1		Hz

4. 功能描述

4.1 一般

LM3647 能够用下面三种充电类型:镍镉,镍氢和锂电池。对于镍镉,镍氢电池,充电的过程是类似的,但是充电曲线有些轻微的不同,这是由于化学原因的不同造成的。镍镉,镍氢充电规则划分成以下4个阶段:

软启动: LM3647 监测到电池被连接,监测温度是在限制之内。以一个 0.2C 的电流起始充电,在时间结束后,进入下一个阶段。当电池电压最大时(CEL 脚>3/017V)或者电池电压一直没达到缺陷电池电压(CEL 脚<1.2V),那么因为错误将中断充电。

快速充电:恒电流给电池充电,同时LM3647监控电压和温度(可选)。当充电曲线上有一个电压跌落时(镍镉电池大约50mV/cell,镍氢电池大约17mV/cell),进入下一个阶段。当温度超过限制时,充电也会因为错误而中止。

顶部充电(topping charge):一个 0.2C 的电流按照用户定义的时间给电池充电(SEL4 端的 RC 电路)。

维持充电:这个时用户可选的,并且是快速充电的一个固定百分比。 充电前放电是可选的。

镍镉充电曲线:

镍氢充电曲线:

锂电池充电过程也分为 4 个阶段:

*验证: LM3647 监测到电池被连接,验证温度是在限制之内(可选,但是为了安全原因极力推荐选择)。以一个 0.2C 的电流起始充电,在时间结束后(大约 1 分钟),进入下一个阶段。在 1 分钟内如果电池电压一直没达到锂电池的确认电压(CEL 脚<1.2V),那么因为错误将中断充电。

恒电流快速充电: 电池上升直到最大电池电压(CEL 脚 2.675V 或者 2.74V, 这由 SEL3 来选择)。

恒电压快速充电:保持恒压知道电流下降到门限值以下(CS为 2.3V)。

维持充电:由用户选择,并且是快速充电的固定百分比。

4. 2 细致的管腿描述

SEL1:选择 LM3647 运行在不同的充电模式下。有三个状态:连接到 VCC,GND,不连接(高阻态)。当充电模式配置成镍镉,镍氢充电时,这镉管腿决定了是否在充电之前放电,或者是否会有维持充电。当配置成锂电池充电时,这个脚决定了在维持充电期间是什么样的充电行为。

SEL2:选择充电电池类型。有三个状态:连接到 VCC(镍氢),GND(镍镉),或者悬空(锂电池)。

SEL3: 用于选择充电的硬件模式。有 2 个状态: 连接到 VCC 或者 GND。当配置成镍镉,镍氢电池时,这个脚决定 PWM 信号是否时 快速的并且有电流反馈,或者是慢速的并且有外部电流控制。当配置 成锂电池模式时,这一个脚改变最大电压的校准点,2.675V(4.1V CELL)或者 2.74V(4.2V CELL).

注意:假如充电电路要同时支持锂电池和镍镉,镍氢电池,SEL3必须连接到 VCC。

SEL4: 连接到 RC 电路,决定充电时间。RC 电路也连接到输出 LED1。

RCIN: 一个高速时序管腿,以恰当的频率连接到RC电路以驱动充电。

GND: 地。

VCC: 电源。这一个管腿应该有有一个 100nF 电容连接到 GND。

RESET: 复位。

LED1: 输出低有效,用于显示充电状态,也用于调节充电时间值。

LED2: 输出低有效,用于显示充电或者放电。也输出数字信号,说明 LM3647 在模式选择脚和充电时间读什么。

LED3:输出低有效,用于显示充电起始,停止,和出错。

VREF: 参考电压模拟输入。当测量其他模拟输入时,LM3647用这个脚作为参考管腿。

CEXT: LM3647 使用的时序脚,必须连接一个低损失电容。

CEL: 模拟输入。通过电阻分隔电路测量电池电压。

CS: 模拟输入,连接到一个差分运方,监测一个对小电流敏感的电阻上的电压。

TEMP: 模拟输入,连接到温度敏感器件 NTC 电阻(假如使用)。加入温度传感器不使用,输入必须偏置大约 1.5~2V。

DISCHG: 数字输出,控制 POWER-FET,它用于充电前对电池放电。加入这个功能不用,这个脚不需要连接。

SYSOK: 是集电极开路输出,这是在内部不合法的操作条件的小概率事件发生时,复位 LM3647。这个脚连接到 RESET 以增加在糟糕的操作环境中的操作可靠性。

BUZZER: 数字输出,控制一个小FET并且开关峰鸣器。这个峰鸣器必须有自己的振荡电路。

PWM: 数字输出,控制充电电压或者开关外部电流源(依赖模式选择)。

4.3 配置

4. 3. 1 最大电池电压

对应电池单元的数目的相应最大电池电压。下面的电阻电路图中,电池电压分压出一个合适的电压给 LM3647。对于镍镉/镍氢电池,这个电路的误差不是很重要的,只要定义最大电池电压(这被用于备份中止方法)。对于锂电池,这个电路必须更精确,电阻必须是低误差的。(1%甚至更好)

镍镉/镍氢:

每一个电池单元正常电压是 1.2V, 但是临界电压每个单元说明的是 1.85V, 相当于最大电压。把几个最大值单元累加, 最大电池电压就可以达到。

$$MaximumBatteryVoltage \times \frac{R7}{(R6 + R7)} = CEL = 3.017V$$

电阻电路选择快速查找表:

No. of Colle	Ni-Cd/Ni-MH				
No. of Cells	Normal Max		R6	R7	
2	2.4V	3.7∨			
3	3.6V	5.55∨			
4	4.8V	7.4V	16k	11k	
5	6V	9.25∨	62k	30k	
6	7.2V	11.1V	15k	5.6k	
7	8.4V	12.95V			
8	9.6V	14.8V	39k	10k	
9	10.8V	16.65V			
10	12V	18.5∨	22k	3.9k	

例子:标准9V镍镉块电池是6个小镍镉单元组成的,因此有一个正常的7.2V电压。按上面表格查找电阻值。

锂电池:

对于锂电池的电压间隔电路选择必须更关注电池的最大使用率。锂电池有一个正常电压, 3.6V或 3.7V, 并且每个单元最大电压是 4.1V或

4.2V。靠累加电池单元最大电压值,可能确定电池包最大电压值。当最大电池电压确定后,电压间隔电路用下面公式来确定:

$$MaximumBatteryVoltage \times \frac{R7}{(R6+R7)} = CEL = 2.675V$$

(假如 SEL3 被设置到 VCC,则为 2.740V)

LM3647 支持两个不同的用户选择电池输入电压。有 2.675V(SEL3 连接到 GND)和 2.740V(SEL3 连接到 VCC)。这个管腿能配置充电电路去控制 3.6V 和 3.7V 锂电池单元,而不需要改变电阻值。SEL3 也能用于发现电阻电路中是否有问题。

电阻电路选择快速查找表:

No. of Cells	Li-lon (3.6V cell)				
No. of Cells	Normal	Max	R6	R7	
1	3.6∨	3.675∨	16k	30k	
2	7.2V	7.35∨	62k	30k	
3	10.8V	11.025∨	27k	7.5k	
4	14.4V	14.7V	22k	3.9k	

No. of Cells	Li-lon (3.7V cell)				
NO. OI CEIIS	Normal	Max	R6	R7	
1	3.7∨	3.74V	16k	30k	
2	7.4V	7.48V	62k	30k	
3	11.1V	11.22V	27k	7.5k	
4	14.8V	14.96V	22k	3.9k	

4. 3. 2 充电时间

LM3647 使用充电结束时间来做备份的中止方式。这镉充电时间也控制充电一些阶段的长度(例如:顶部充电阶段)。这个充电时间能在 3.2C 到 0.4C 之间选择的。下面的表格是 RC 值和对应的时间。

R Value	C Value	Appropriate Charge Rates
100 kΩ	internal	3.2C
100 kΩ	10 nF	2.4C
100 kΩ	15 nF	1.4C
100 kΩ	22 nF	1.2C
100 kΩ	33 nF	0.9C
100 kΩ	47 nF	0.7C
100 kΩ	68 nF	0.5C
100 kΩ	100 nF	0.4C

4. 3. 3 充电电流

靠设置电流敏感电阻和差分放大器的增益来选择充电电流。电流敏感电阻(R5)应该有一定尺度,以至于上面的电压跌落

不会太小。因为这个信号是非常容易被噪声和运方偏置影响 的。阻值也不能太大,尤其是高电流应用中。因为这会产生大 量的热。合适的值是电阻上消耗大约 50mV, 这是在流过其的 电流是最大电流。

电流敏感信号通过运方被放大,转化并集中在 2.5V 的参考上,同时送到 LM3647 的 CS 管脚。放大段必须通过设置 R1(R3)和 R2(R4)之间的适当比例来设计。上图 就事按照最大电流大约 1.1A 来设计的。这事用下面的公式来推导的。

$$MaxCurrent = \frac{(R2)/(R1)}{R5}$$

$$R1 = R3 \qquad R2 = R4$$

$$R2 = 5.1k\Omega \qquad R1 = 100k\Omega \qquad R5 = 0.047\Omega$$

$$\bigcup$$

$$MaxCurrent \approx 1.09Ampere$$

设计复位电路

4. 3. 4

复位电路就是要设计着去保持 RESET 脚直到电源供电稳定。RC 电 路(R21和C4)应该满足下面公式:

$$(R21 \times C4) > 5xPowerSupplyRiseTime$$

当电源掉电发生时,C4通过D2放电。R20用于保护SYSOK管腿, 它得值并不是要求严格得(典型值是 2K)。在 RESET 和 SYSOK 管 腿间是可以选择是否连接的,但为了 LM3647 的安全,强烈推荐连 接。

4. 3. 5 RCIN 电路的设计

为了限时充电,以至于充电、调整以正确的频率进行,RC 电路是必须的。R、C 的值也是重要的,因为 RC 值的改变就带来了或高或低的操作频率,这频率影响了充电的质量。这个电容应该是陶瓷电容,最好是 NPO 类型,这样对于温度的改变会有较小的频偏。

4. 3. 6 DISCHARGE 电路设计

放电电路控制了在放电期间的放电速度(加入使用这个功能)。放电输出打开晶体管 Q2,电路从电池出来通过放电电阻 R8。通过 R8 的电流依靠电池电压和 R8 的值来决定。这个值由对于电池包的最大放电率确定。大约的值能用下面的公式计算:

$R8 \approx \frac{MaximumBatteryVoltage}{MaximumDischargeRate}$

电阻 R7 维持晶体管 Q2 关断直到 LM3647 上电并且在此电路控制下。

4. 3. 7 BUZZER 输出电路

峰鸣器电路当峰鸣器应该发声时打开晶体管 Q3。加入峰鸣器上的电流消耗小于 0.3mA,那么峰鸣器可以直接连接到 BUZZER 脚。请注意,BUZZER 脚确实不会产生一个 PWM 信号的,因此所选的峰鸣器必须有自己的驱动电路。加入使用一个电磁峰鸣器,那么晶体管需要一个反向偏置二极管去保护它,以免有害的电压过冲。

4. 3. 8 PWM 滤波电路

PWM 脚能输出一个快速 PWM 信号,或者一个低速的 ON/OFF 输出信号(为了控制外部的恒流源,只用于镍镉,镍氢模式)。 快速 PWM 模式:

从 LM3647 到一个 DC 电平,一个 RC 电路(R6、C9)和低通滤波出的 PWM 信号(R5、C1||C2)反馈到运方。电阻 R22 时为了预防在 LM3647 控制 RC 电路之前 DC 输出。

低速 PWM 模式:

PWM 信号以 0.1Hz 的速度打开关闭外部电流源(这个例子只是很多可能设计解决方案中的一个)。PWM 脚(低速 PWM)打开、关闭晶体管 Q1。当晶体管关断时,电流源打开,晶体管打开时,电流源关闭(V_OUT 大约在 0.7V)。R1 的值依赖充电电流的大小:

$$I_{out} = \frac{1.25 - V_d}{R1}$$
 $V_d = Voltage Drop Across D1$

对于不同充电周期的 PWM 信号的占空比在下表列出来了:

Charge Phase:	PWM Duty Cycle:
Soft Start	10%
Fast Charge	100%
Topping Charge	10%
Maintenance Charge	5%

4. 3. 9 用户接口

用户接口由 3 个 LED 和一个峰鸣器组成。LED 有 4 个不同状态: ON, OFF, 慢闪烁(大约 1Hz), 快闪烁(大约 10Hz)。峰鸣器有 3 个不同状态: OFF、短叫(大约 100ms)、长叫(大约 1S)。

用户接口时用一个很便利的方法设计的。峰鸣器和 LED 的使用都是 跟据设计要求可选的。使用 LM3647 可以使用一个,或者 2 个甚至所有 LED。

一个单一的充电状态显示 LED 能用一个 2 输入的与非门 (LED1,LED3 输入)来实现。在这个实现电路中需要注意,在 LED1、LED3 有一个上拉电阻。

镍镉/镍氢用户接口规划:

Charge phase	LED1 status	LED2 status	LED3 status	Buzzer status
No battery	Off	Off	Off	Off
New battery / Temp-test	Fast flash	Off	Off	Short beep
Softstart charge	Slow flash	Off	Off	Off
Charging	On	Slow flash	Off	Off
Topping charge	On	Fast flash	Off	Off
Maintenance	On	Off	On	Long beep
Discharge	Off	Slow flash	Off	Off
Temperature error	2 Fast flashes	Off	On	Short beep
Error	Fast flash	Off	Fast flash	Short beep

锂电池用户接口规划:

Charge phase	LED1 status	LED2 status	LED3 status	Buzzer status
No battery	Off	Off	Off	Off
New battery / Temp-test	Fast flash	Off	Off	Short beep
Qualification charge	Slow flash	Off	Off	Off
Charging CC	On	Slow flash	Off	Off
Charging CV	On	Fast flash	Off	Off
Maintenance	On	Off	On	Long beep
Temperature error	2 Fast flashes	Off	On	Short beep
Error	Fast flash	Off	Fast flash	Short beep

4.4 典型电路配置

4.4.1 镍镉/镍氢和锂电池同时同的普通电路

4. 4. 2 只用镍镉/镍氢的电路

4. 4. 3 锂电池充电电路

4. 4. 4 锂电池应用例子

4.4.5 镍镉/镍氢充电应用例子

4. 5 对于 NTC 推荐设计

TEMP 输入电压在充电起始阶段必须在 2.2V 到 0.5V。在充电时,对于锂电池,电压必须在 3.0V (最大温度) 到 0.5V (最小温度) 之间。对于镍镉/镍氢电池,电压必须在 3.15V (最大温度) 到 0.5V (最小温度) 之间。否则,

芯片将认为有温度出错并且中断充电。这些电压对应电池包温度的上限和下限。

当 NTC 没使用时, TEMP 脚必须便宜电压在 2.2V 到 0.5V 之间。

典型配置曲线(NTC特性: 3K@25℃, β=3988):

封装(除非特别说明,单位是英寸(毫米)):

