Wess-Zumino-Witten Model as a Conformal Field Theory

Yilun Yang, UCAS

Report of Seminar on Geometry, Physics and Relevant Mathematics

2017.7

Abstract

Conformal field theory (CFT) refers to quantum field theory that is invariant under conformal transformations. Two-dimensional CFT is especially important, for there is an infinite-dimensional algebra of local conformal transformations. Wess-Zumino-Witten (WZW) model is just a a two-dimensional CFT with an affine Lie algebra as its symmetry algebra. In this report, we will give a brief introduction to CFT and discuss a little further on WZW models. The main reference book is *Conformal Field Theory* by Philippe Francesco, Pierre Mathieu and David Sénéchal^[1].

Contents

1 Backgrounds			2	
	1.1	Conformal Symmetry	2	
		1.1.1 Conformal Group in Three or Higher Dimensions	3	
		1.1.2 Conformal Group in Two Dimensions	5	
	1.2	Affine Lie Algebras	6	
2	2 WZW Models			
	2.1	Non-linear Sigma Models	8	
	2.2	Wess-Zumino-Witten Action	9	
	2.3	Affine Lie Algebra Structure	10	
Re	eferen	ace.	12	

1 Backgrounds

1.1 Conformal Symmetry

Definition 1.1. In d-dimensional space time, by $g_{\mu\nu}$ we denote the flat metric tensor of signature (p,q). A conformal transformation is an invertible mapping of coordinates $x \to x'$, which leaves the metric tensor invariant up to a scale,

$$g'_{\mu\nu}(x') = \Lambda(x)g_{\mu\nu}(x). \tag{1}$$

Locally, a conformal transformation is equivalent to a (pseudo) rotation and a dilation which preserve angles, and the set of such transformations apparently form a group. We call it *conformal group*. It indeed has Poincaré group as its subgroup, corresponding to $\Lambda(x) \equiv 1$ situation.

To derive the general form, we introduce an infinitesimal coordinate transformation: $x^{\mu} \to (x')^{\mu} = x^{\mu} + \epsilon^{\mu}$, and under which

$$g'_{\mu\nu}(x') = \frac{\partial x^{\alpha}}{\partial (x')^{\mu}} \frac{\partial x^{\beta}}{\partial (x')^{\nu}} g_{\alpha\beta}(x)$$

$$= (\delta^{\alpha}_{\mu} - \partial_{\mu} \epsilon^{\alpha}) (\delta^{\beta}_{\nu} - \partial_{\nu} \epsilon^{\beta}) g_{\alpha\beta}(x)$$

$$= g_{\mu\nu}(x) - (\partial_{\mu} \epsilon_{\nu} + \partial_{\nu} \epsilon_{\mu})(x).$$
(2)

Therefore it is required that

$$\partial_{\mu}\epsilon_{\nu} + \partial_{\nu}\epsilon_{\mu} = \gamma(x)g_{\mu\nu}.\tag{3}$$

We can take a trace by multiply $g^{\mu\nu}$ to each side and do contraction, which gives

$$\gamma = \frac{2}{d}\partial \cdot \epsilon \tag{4}$$

By applying an extra derivative ∂_{ρ} on Eq.(3) and doing permutations, we get

$$\partial_{\rho}\partial_{\mu}\epsilon_{\nu} + \partial_{\rho}\partial_{\nu}\epsilon_{\mu} = g_{\mu\nu}\partial_{\rho}\gamma(x)$$

$$\partial_{\mu}\partial_{\nu}\epsilon_{\rho} + \partial_{\nu}\partial_{\rho}\epsilon_{\mu} = g_{\mu\rho}\partial_{\nu}\gamma(x)$$

$$\partial_{\rho}\partial_{\mu}\epsilon_{\nu} + \partial_{\mu}\partial_{\nu}\epsilon_{\rho} = g_{\rho\nu}\partial_{\mu}\gamma(x).$$
(5)

Take a linear combination, we arrive at

$$2\partial_{\mu}\partial_{\nu}\epsilon_{\rho} = g_{\mu\rho}\partial_{\nu}\gamma(x) + g_{\rho\nu}\partial_{\mu}\gamma(x) - g_{\mu\nu}\partial_{\rho}\gamma(x). \tag{6}$$

Similarly take a trace, and the equation turns into

$$2\Box \epsilon_{\rho} = (2 - d)\partial_{\rho}\gamma. \tag{7}$$

Again apply another derivative ∂_{σ} and take a trace, and the final equations we get are

$$(g_{\mu\nu}\Box + (d-2)\partial_{\mu}\partial_{\nu})(\partial \cdot \epsilon) = 0$$

$$(d-1)\Box(\partial \cdot \epsilon) = 0$$
(8)

For d=1 situation, there is no constraint on ϵ , and hence any smooth transformation is conformal in 1-dimensional case.

1.1.1 Conformal Group in Three or Higher Dimensions

When $d \geq 3$, Eq.(8) implies that the third derivatives of ϵ vanish, so ϵ is at most quadratic in coordinates. The general expression should be

$$\epsilon^{\mu} = a^{\mu} + b^{\mu}_{\nu} x_{\nu} + c^{\mu}_{\nu \rho} x^{\nu} x^{\rho}, \qquad c^{\mu}_{\nu \rho} = c^{\mu}_{\rho \nu}.$$
 (9)

Substituting the linear term into Eq.(3) yields

$$b_{\mu\nu} + b_{\nu\mu} = \frac{2}{d} g_{\mu\nu} b^{\rho}_{\rho},\tag{10}$$

which indicates that $b_{\mu\nu}$ is sum of an antisymmetric part and a metric part:

$$b_{\mu\nu} = \alpha g_{\mu\nu} + m_{\mu\nu}, \qquad m_{\mu\nu} = -m_{\nu\mu}.$$
 (11)

While substituting the quadratic term into Eq.(6) yields

$$c_{\rho\mu\nu} = g_{\rho\mu}c_{\nu} + g_{\rho\nu}c_{\mu} - g_{\mu\nu}c_{\rho}, \qquad c_{\mu} := c_{\sigma\mu}^{\sigma}. \tag{12}$$

To conclude,

Proposition 1.1. The allowed infinitesimal transformations and corresponding finite conformal transformations are

Туре	Infinitesimal Transformation ϵ^{μ}	Finite Transformation x'^{μ}
Translation	a^{μ}	$x^{\mu} + a^{\mu}$
Dilation	αx^{μ}	kx^{μ}
Lorentz Rotation	$m_ u^\mu x^ u$	$M^{\mu}_{\nu}x^{\nu} \left(M^{\mu}_{\nu} \in SO(p,q) \right)$
Special Conformal Transformation (SCT)	$2(c\cdot x)x^{\mu} - x^2c^{\mu}$	$\frac{x^{\mu} - b^{\mu}x^2}{1 - 2b \cdot x + b^2x^2}$

We are quite familiar with the first three transformations, whereas the last one is indeed the combination of an inversion, a translation and another inversion:

$$x^{\mu} \to \frac{x^{\mu}}{x^{2}} \to \frac{x^{\mu}}{x^{2}} - b^{\mu} \to \frac{\frac{x^{\mu}}{x^{2}} - b^{\mu}}{(\frac{x^{\mu}}{x^{2}} - b^{\mu})(\frac{x_{\mu}}{x^{2}} - b_{\mu})} = \frac{x^{\mu} - b^{\mu}x^{2}}{1 - 2b \cdot x + b^{2}x^{2}},\tag{13}$$

and the scale factor is given by

$$\Lambda(x) = (1 - 2b \cdot x + b^2 x^2)^2. \tag{14}$$

The generators of conformal group as a Lie group can be directly achieved from the infinitesimal transformations above:

Туре	Generator
Translation	$P_{\mu} = -i\partial_{\mu}$
Dilation	$D = -ix^{\mu}\partial_{\mu}$
Lorentz Rotation	$L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$
Special Conformal Transformation (SCT)	$K_{\mu} = -i(2x_{\mu}x^{\nu}\partial_{\nu} - x^{2}\partial_{\mu})$

If we rewrite the $\frac{1}{2}(d+1)(d+2)$ generators by

$$J_{\mu\nu} = L_{\mu\nu}$$

$$J_{0,\nu} = \frac{1}{2}(P_{\nu} + K_{\nu})$$

$$J_{-1,\nu} = \frac{1}{2}(P_{\nu} - K_{\nu})$$

$$J_{-1,0} = D$$

$$J_{ab} = -J_{ba}$$
(15)

where $a,b \in \{-1,0,1,\cdots,d\}$ and further define $\eta_{ab} = \text{diag}\{-1,1\} \oplus g_{\mu\nu}$, the commutation relations become

$$[J_{ab}, J_{cd}] = i(\eta_{ad}J_{bc} + \eta_{bc}J_{ad} - \eta_{ac}J_{bd} - \eta_{bd}J_{ac}), \tag{16}$$

which is identical to $\mathfrak{so}(p+1,q+1)$.

1.1.2 Conformal Group in Two Dimensions

Consider the two dimensional case. By definition, any conformal coordinate transformation $(z^0, z^1) \to (w^0, w^1)$ should satisfy

$$g^{\mu\nu} \to (\frac{\partial w^{\mu}}{\partial z^{\alpha}})(\frac{\partial w^{\nu}}{\partial z^{\beta}})g^{\alpha\beta} \propto g^{\mu\nu},$$
 (17)

which indicates

$$\left(\frac{\partial w^0}{\partial z^0}\right)^2 + \left(\frac{\partial w^0}{\partial z^1}\right)^2 = \left(\frac{\partial w^1}{\partial z^0}\right)^2 + \left(\frac{\partial w^1}{\partial z^1}\right)^2 \tag{18}$$

$$\frac{\partial w^0}{\partial z^0} \frac{\partial w^1}{\partial z^0} + \frac{\partial w^0}{\partial z^1} \frac{\partial w^1}{\partial z^1} = 0. \tag{19}$$

These two equations are equivalent to either

$$\frac{\partial w^0}{\partial z^0} = \frac{\partial w^1}{\partial z^1} \quad \text{and} \quad \frac{\partial w^1}{\partial z^0} = -\frac{\partial w^0}{\partial z^1}$$
 (20)

or

$$\frac{\partial w^0}{\partial z^0} = -\frac{\partial w^1}{\partial z^1} \quad \text{and} \quad \frac{\partial w^1}{\partial z^0} = \frac{\partial w^0}{\partial z^1}.$$
 (21)

Eq.(20) are indeed the Cauchy-Riemann equations. Therefore it is natural to define $z=z^0+iz^1$ and $w=w^0+iw^1$. Under this notation, a possible conformal transformation is

$$z \to w(z)$$
 and $\bar{z} \to \bar{w}(\bar{z}),$ (22)

where w is either holomorphic or anti-holomorphic. Still, we require the transformation to be globally invertible. It is known in complex analysis that the only possible ones are linear fractional transformations

$$w = \frac{az+b}{cz+d}, \qquad ad-bc = 1.$$
(23)

If we choose $g^0_{\mu\nu}(z^0,z^1)=\begin{pmatrix}1&0\\0&1\end{pmatrix}$, with $z^0=\frac{1}{2}(z+\bar{z})$ and $z^1=\frac{1}{2i}(z-\bar{z})$, the new metric tensor in terms of z and \bar{z} are

$$g_{\mu\nu} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \qquad g^{\mu\nu} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}.$$
 (24)

As any infinitesimal holomorphic transformation can be expressed as

$$z' = z + \epsilon(z), \qquad \epsilon(z) = \sum_{-\infty}^{\infty} c_n z^{n+1},$$
 (25)

the generators can be introduced by

$$l_n = -z^{n+1}\partial_z, \qquad \bar{l}_n = -\bar{z}^{n+1}\partial_{\bar{z}}, \tag{26}$$

which obey the following commutation relations:

$$[l_n, l_m] = (n - m)l_{n+m}$$

$$[\bar{l}_n, \bar{l}_m] = (n - m)\bar{l}_{n+m}$$

$$[l_n, \bar{l}_m] = 0.$$
(27)

It is called Witt algebra.

There is another way to define a complex coordinate, which may seem more natural from Minkowski space. Consider a compact one-dimensional space with coordinate x from 0 to L, the space-time is cylinder like. With the map:

$$z = e^{\frac{2\pi(t+ix)}{L}},\tag{28}$$

The remote past is situated at the origin while remote future is at infinity. With a same t, the new points will share a same radius, and therefore it is also called *radial quantization*.

1.2 Affine Lie Algebras

Definition 1.2. If \mathfrak{g} is a finite dimensional simple Lie algebra, the corresponding *affine Lie algebra* $\hat{\mathfrak{g}}$ is constructed as

$$\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C} \left[t, t^{-1} \right] \oplus \mathbb{C}k, \tag{29}$$

where $\mathbb{C}\left[t,t^{-1}\right]$ is the complex vector space of Laurent polynomials in the indeterminate t and $\mathbb{C}k$ is a one-dimensional centre. The Lie bracket is

$$[x \otimes t^n + \alpha k, y \otimes t^m + \beta k] = [x, y] \otimes t^{n+m} + n\delta_{n+m,0} \mathcal{K}(x, y)k$$
(30)

where K(a, b) is the Killing form.

Below we use the notation

$$J_n^a = J^a \otimes t^n, \tag{31}$$

where J^a 's are the generators of $\mathfrak g$. The Killing form occurs from the consideration that $\left[J_0^a,J_n^b\right]=\left[J^a,J^b\right]\otimes t^n$, which means the generators transform into the adjoint representation of $\mathfrak g$. Hence the central extensions must be invariant tensors of the adjoint representation. While up to normalization, there is only one choice, the Killing form. We may assume J^a 's are orthonormal with respect to the Killing form to rewrite the commutation relation as

$$[J_n^a, J_n^b] = \sum_c i f_c^{ab} J_{m+n}^c + n \delta_{n+m,0} \delta_{ab} k.$$
 (32)

2 WZW Models

2.1 Non-linear Sigma Models

WZW model is a two dimensional conformal field theory whose conserved currents generating an affine Lie algebra. In search of theories with such properties, the non-linear sigma model is first considered. Its action is

$$S_0 = \frac{1}{4a^2} \int d^2x \operatorname{Tr}'(\partial^{\mu} g^{-1} \partial_{\mu} g), \tag{33}$$

where a^2 is a positive constant and g(x) is a G-value matrix boson field, where group manifold G is associated with the Lie algebra $\mathfrak g$. Here a unitary representation is taken so that S_0 is real and positive determined. Besides, Tr' stands for a representation independent normalization, namely $\operatorname{Tr}' = \frac{1}{\chi_{\text{repr}}} \operatorname{Tr}$, where χ_{repr} is the Dynkin index of a representation.

With Euler-Lagrange equation, one can easily figure out the equation of motion to this model:

$$\partial^{\mu}(g^{-1}\partial_{\mu}g) = 0, (34)$$

which implies the conservation of currents

$$J_{\mu} = g^{-1} \partial_{\mu} g. \tag{35}$$

Thus if we write $\tilde{J}_z=g^{-1}\partial_z g$ and $\tilde{J}_{\bar{z}}=g^{-1}\partial_{\bar{z}} g$, then

$$\partial^z J_z + \partial^{\bar{z}} J_{\bar{z}} = 0, (36)$$

or

$$\partial_{\bar{z}}J_z + \partial_z J_{\bar{z}} = 0. \tag{37}$$

Witten assumed the holomorphic factorization property of a conformal field theory ^[2], which forces a separate conservation of holomorphic and anti-holomorphic part of the current. However, this does not always hold for non-linear sigma model, because $\partial_z J_{\bar{z}} = 0$ and $\partial_{\bar{z}} J_z$ implies $\partial_z \partial_{\bar{z}} g = \partial_z g g^{-1} \partial_{\bar{z}} g$ and $\partial_{\bar{z}} \partial_z g = \partial_{\bar{z}} g g^{-1} \partial_z g$. Nevertheless, for non-Abelian group G, the r.h.s. of the two equations may not equal to each other.

2.2 Wess-Zumino-Witten Action

A more complicated action must be considered in order to enhance the symmetry and recover the conserved currents. The result turns to be adding a Wess-Zumino term to the action,

$$\Gamma = \frac{-i}{24\pi} \int_{B} d^{3}y \epsilon_{\alpha\beta\gamma} \text{Tr}'(\tilde{g}^{-1}\partial^{\alpha}\tilde{g}\tilde{g}^{-1}\partial^{\beta}\tilde{g}\tilde{g}^{-1}\partial^{\gamma}\tilde{g}). \tag{38}$$

It is defined on a three-dimensional manifold B, whose boundary is the compactification of the original two-dimensional space, and \tilde{g} refers to the extension of g to B. However, a compact two-dimensional space delimits two distinct three-manifolds. Therefore there are two choices of B with opposite orientation, and their difference will be integrated over the whole compact three-dimensional space. By path integral,

$$\Delta\Gamma = \frac{-i}{24\pi} \int d^3y \epsilon_{\alpha\beta\gamma} \text{Tr}'(\tilde{g}^{-1}\partial^{\alpha}\tilde{g}\tilde{g}^{-1}\partial^{\beta}\tilde{g}\tilde{g}^{-1}\partial^{\gamma}\tilde{g}) = n2\pi i, \tag{39}$$

where n is an integer. It shows that any coupling constant multiplying this term must be quantized.

Then the whole action can be written as

$$S = S_0 + n\Gamma \tag{40}$$

if we choose a normalized Γ by integrating $\Delta\Gamma$ on the three-sphere S^3 . Take a variation of g to the latter term:

$$\delta\Gamma = \frac{i}{8\pi} \int_{B} \mathrm{d}^{3}y \epsilon_{\mu\nu\gamma} \partial^{\gamma} (\mathrm{Tr}'(g^{-1}\delta g \partial^{\mu}(g^{-1}\partial^{\nu}g))) = \frac{i}{8\pi} \int \mathrm{d}^{2}x \epsilon_{\mu\nu} \mathrm{Tr}'(g^{-1}\delta g \partial^{\mu}(g^{-1}\partial^{\nu}g)), \tag{41}$$

and the whole equation of motion turns into

$$\partial^{\mu}(g^{-1}\partial_{\mu}g) + \frac{a^{2}in}{4\pi}\epsilon_{\mu\nu}\partial^{\mu}(g^{-1}\partial^{\nu}g) = 0.$$
 (42)

In terms of the complex variables z, \bar{z} , we have $\epsilon_{z\bar{z}} = i/2$ and $\partial^z = 2\partial_{\bar{z}}$. The equation becomes

$$(1 + \frac{a^2 n}{4\pi})\partial_z(g^{-1}\partial_{\bar{z}}g) + (1 - \frac{a^2 n}{4\pi})\partial_{\bar{z}}(g^{-1}\partial_z g) = 0.$$
(43)

It is what we desire, because when $a^2 = \pm \frac{4\pi}{n}$, the holomorphic currents (when n > 0, or respectively the anti-holomorphic ones when n < 0) are separately conserved. Thus the final action is

$$S^{WZW} = \frac{n}{16\pi} \int d^2x \operatorname{Tr}'(\partial^{\mu} g^{-1} \partial_{\mu} g) + n\Gamma. \tag{44}$$

2.3 Affine Lie Algebra Structure

The conserving equation of current: $\partial_z(g^{-1}\partial_{\bar{z}}g)=0$ implies that the action should be invariant under the local $G(z)\times G(\bar{z})$ transformation of arbitrary G-valued matrices $\Omega(z)$ and $\bar{\Omega}(\bar{z})$:

$$g(z,\bar{z}) \to \Omega(z)g(z,\bar{z})\bar{\Omega}^{-1}(\bar{z}).$$
 (45)

In fact, under infinitesimal transformations

$$\Omega(z) = 1 + \omega(z) \qquad \bar{\Omega}(\bar{z}) = 1 + \bar{\omega}(\bar{z}), \tag{46}$$

variation of g turns to be

$$g \to g + \delta_{\omega} g + \delta_{\bar{\omega}} g = g + \omega g - g\bar{\omega}. \tag{47}$$

Therefore the variation of action is

$$\delta S = \frac{n}{2\pi} \int d^2x \operatorname{Tr}'(g^{-1}\delta g \left[\partial_z (g^{-1}\partial_{\bar{z}}g)\right])$$

$$= \frac{n}{2\pi} \int d^2x \operatorname{Tr}'(g^{-1}(\omega g - g\bar{\omega}) \left[\partial_z (g^{-1}\partial_{\bar{z}}g)\right])$$

$$= \frac{n}{2\pi} \int d^2x \operatorname{Tr}'(\omega \partial_{\bar{z}}(\partial_z g g^{-1}) - \bar{\omega} \partial_z (g^{-1}\partial_{\bar{z}}g))$$

$$= 0.$$
(48)

The last equal sign holds from simple integration by parts.

Rescale the conserved currents as

$$J(z) \equiv -nJ_z(z) = -n\partial_z g g^{-1}$$

$$\bar{J}(\bar{z}) \equiv nJ_{\bar{z}}(\bar{z}) = ng^{-1}\partial_{\bar{z}}g.$$
(49)

Under this convention,

$$\delta S = -\frac{1}{2\pi} \int d^2x (\partial_{\bar{z}} (\operatorname{Tr}' \left[\omega(z) J(z) \right]) + \partial_z (\operatorname{Tr}' \left[\bar{\omega}(\bar{z}) \bar{J}(\bar{z}) \right])). \tag{50}$$

While d^2x can be replaced with $-\frac{i}{2}dzd\bar{z}$, so

$$\delta S = \frac{i}{4\pi} \oint dz \operatorname{Tr}' \left[\omega(z) J(z) \right] - \frac{i}{4\pi} \oint d\bar{z} \operatorname{Tr}' \left[\bar{\omega}(\bar{z}) \bar{J}(\bar{z}) \right]. \tag{51}$$

Moreover, the currents in fact lie in the Lie algebra of G, and so do ω . Hence we can write

$$J = \sum_{a} J^{a} t^{a} \qquad \omega = \sum_{a} \omega^{a} t^{a}, \tag{52}$$

 t^a are generators of G. With the normalization for Tr', this yields

$$\delta S = \frac{i}{2\pi} \oint dz \sum_{a} \omega^{a} J^{a} - \frac{i}{2\pi} \oint d\bar{z} \sum_{a} \bar{\omega}^{a} \bar{J}^{a}. \tag{53}$$

Finally, consider

$$\delta\langle X\rangle = \int \langle \delta s X\rangle,\tag{54}$$

where X stands for a number of identical fields with different coordinates and we take an average by path integral. It is called correlation function. δs represents for the density of δS . The Ward identity is achieved:

$$\delta \langle X \rangle = \frac{i}{2\pi} \oint dz \sum_{a} \omega^{a} \langle J^{a} X \rangle - \frac{i}{2\pi} \oint d\bar{z} \sum_{a} \bar{\omega}^{a} \langle \bar{J}^{a} X \rangle. \tag{55}$$

One the other hand, the variation of conserved current J is

$$\delta_{\omega} J = -n \left[\partial_{z} (\omega g) g^{-1} - \partial_{z} g g^{-1} (\omega g) g^{-1} \right]$$

$$= -n \partial_{z} \omega - \omega n \partial_{z} g g^{-1} + n \partial_{z} g g^{-1} \omega$$

$$= [\omega, J] - n \partial_{z} \omega,$$
(56)

which can be rewritten as

$$\delta_{\omega} J^{a} = \sum_{b,c} i f_{abc} \omega^{b} J^{c} - n \partial_{z} \omega^{a}. \tag{57}$$

Substitute it back to Eq.(55), we have

$$\delta_{\omega}\langle J^{a}(w)\rangle = -\frac{1}{2\pi i} \oint dz \sum_{b} \omega^{b}(z) \langle J^{b}(z) J^{a}(w)\rangle$$

$$= \sum_{b,c} i f_{abc} \omega^{b}(w) \langle J^{c}(w)\rangle - n \partial_{z} \omega^{a}(w).$$
(58)

We may assume J^c is non-singular at w=z, then this equation will lead to the *operator product expansion* (OPE):

$$J^{a}(z)J^{b}(w) \sim \frac{n\delta_{ab}}{(z-w)^{2}} + \sum_{c} i f_{abc} \frac{J^{c}(w)}{z-w}.$$
 (59)

Further introducing the modes J_k^a from Laurent expansion

$$J_k^a(z) = \sum_{k \in \mathbb{Z}} z^{-k-1} J_k^a,$$
 (60)

the commutation relations will be

$$\begin{aligned}
\left[J_{k}^{a}, J_{l}^{b}\right] &= \frac{1}{(2\pi i)^{2}} \oint_{0} dw w^{l+1} \oint_{w} dz z^{k+1} \left(\frac{n\delta_{ab}}{(z-w)^{2}} + \sum_{c} i f_{abc} \frac{J^{c}(w)}{z-w}\right) \\
&= \sum_{c} i f_{abc} J_{k+l}^{c} + nk\delta_{ab}\delta_{k+l,0}.
\end{aligned} \tag{61}$$

We call it a *current algebra*, which proves to be an affine Lie algebra with n as its centre. For \bar{J}^a , we have another copy of affine Lie algebra. As $\delta_{\bar{\omega}}J=0$, the two algebras are independent.

References

- [1] Pierre Mathieu Philippe Francesco and David Sénéchal. Conformal field theory. Springer-Verlag New York, 1997.
- [2] Edward Witten. On holomorphic factorization of wzw and coset models. Communications in Mathematical Physics, 144(1):189–212, 1992.