EXPLORATORY DATA ANALYSIS

DSC1105

Formative Assessment 1

BILLONES, Cristel Kaye P. 2021016541

file_path <- "C:/Users/Cipher/Desktop/EDA_CRISTEL_FA2/cytof_one_experiment.csv"

Read the CSV file df <- read.csv(file_path)

View the dataframe View(df)

Data				
0 df	50000 obs. of 35 variables			
Values				
file_path "C:/Users/Cipher/Desktop/EDA_CRISTEL_FA2/cytof_o				

√ Ø Ø · ······												
•	NKp30 [‡]	KIR3DL1 [‡]	NKp44	KIR2DL1 [‡]	GranzymeB [‡]	CXCR6 [‡]	CD161 [‡]	KIR2DS4	NKp46	NKG2D [‡]	NKG2C [‡]	X2B4
1	0.18759549	3.615693239	-0.560569378	-0.29366542	2.47789290	-0.14470053	-0.315287222	1.944970461	4.0818316	2.620078401	-0.35738171	-0.271
2	1.03485177	1.700182015	-0.288961140	-0.47982795	3.26101610	-0.03392447	-0.411212891	3.802517135	3.7339299	-0.483278788	-0.46759842	-0.559
3	2.99963976	6.141141857	1.903260569	0.48231016	4.27756173	1.94654156	-0.502234681	-0.320101715	4.5594631	-0.506908969	2.61937825	-0.455
4	4.29985945	-0.221158600	0.242570683	-0.48312672	3.35180809	0.92622195	3.877237037	-0.169694865	4.4831486	1.927229018	-0.31101456	1.635
5	-0.43864477	-0.503589202	-0.152632039	0.75061281	3.19414532	-0.05893640	1.090737874	-0.050330253	0.8379358	-0.458167375	0.92169475	1.241
6	2.08830498	-0.399264593	3.455067648	-0.52008557	4.34510247	-0.36434277	-0.570589119	-0.450335915	4.0550848	3.428356456	0.62728370	-0.415
7	-0.61325960	-0.116638004	-0.451210998	3.54585152	1.54305965	-0.41351724	0.725491115	-0.067359586	2.6651401	-0.083767345	-0.40203583	0.470
8	-0.34138934	-0.253412447	-0.459217322	2.89927136	-0.54519329	-0.61175860	-0.127954802	2.791525907	0.7255918	2.095569158	-0.06029957	2.749
9	2.31165616	-0.364033566	-0.572780674	3.83522214	2.92090697	2.45722962	2.247926349	-0.376103921	4.3333043	-0.016765446	-0.22356633	-0.390
0	3.48445371	-0.028223629	-0.182148182	4.19825757	4.73955776	0.69468032	5.083731143	4.189183791	4.5397170	2.163185593	-0.59332380	1.728
1	4.45990965	1.863340430	-0.277722452	-0.54860750	1.57021226	-0.61953852	-0.172082885	4.773904098	3.2967321	0.053960367	-0.50775778	-0.448
_	0.00070750	0.405333040	0.620720704	0.00220500	0.40754050	0.33334005	0.405403653	0.245767204	0.53.4706.4	2 000205057	0.40357030	0000

dim(reshaped_df)


```
library(dplyr)
summary stats <- reshaped df %>%
 group_by(protein_identity) %>%
 summarise(
  median protein level = median(amount),
  median_abs_dev = mad(amount)
 )
print(summary_stats)
> print(summary_stats)
# A tibble: 35 \times 3
   protein_identity median_protein_level median_abs_dev
                                       <db1>
                                                        \langle db 1 \rangle
    <chr>
 1 CD107a
                                     -0.122
                                                        0.609
 2 CD16
                                      5.12
                                                        0.874
 3 CD161
                                      0.726
                                                        1.69
 4 CD2
                                      3.95
                                                        1.68
 5 CD4
                                     -0.204
                                                        0.395
                                      5.71
                                                        0.998
 6 CD56
 7 CD57
                                      3.07
                                                       1.99
 8 CD69
                                      4.59
                                                       1.02
 9 CD8
                                      2.40
                                                       2.29
                                                       0.727
10 CXCR6
                                     -0.058<u>1</u>
# i 25 more rows
# i Use `print(n = ...)` to see more rows
```

```
library(ggplot2)
```

```
ggplot(summary_stats, aes(x = median_abs_dev, y = median_protein_level)) +
geom_point() +
labs(x = "MAD (Median Absolute Deviation)",
    y = "Median Protein Level",
    title = "Spread-Location (s-l) Plot")
```


#4

library(tidyr) library(dplyr) file_path <- "C:/Users/Cipher/Desktop/EDA_CRISTEL_FA2/gymData.csv"

gymData <- read.csv(file_path)</pre>

View(gymData)

^	country	vault_2012 [‡]	floor_2012 [‡]	vault_2016 [‡]	floor_2016
1	United States	48.132	45.366	46.866	45.999
2	Russia	46.366	41.599	45.733	42.032
3	China	44.266	40.833	44.332	42.066

gymData_reshaped <- gymData %>%

```
pivot_longer(cols = -country,
       names_to = c("Event", "Year"),
       names_pattern = "(.*)_(\d{4})",
        values_to = "Score") %>%
# Separate the Year column to only keep the year
mutate(Year = as.integer(Year)) # convert year to integer
```

View(gymData_reshaped)

⟨□□⟩ ⟨□□ ∀ Filter								
^	country	Event [‡]	Year [‡]	Score [‡]				
1	United States	vault	2012	48.132				
2	United States	floor	2012	45.366				
3	United States	vault	2016	46.866				
4	United States	floor	2016	45.999				
5	Russia	vault	2012	46.366				
6	Russia	floor	2012	41.599				
7	Russia	vault	2016	45.733				
8	Russia	floor	2016	42.032				
9	China	vault	2012	44.266				
10	China	floor	2012	40.833				
11	China	vault	2016	44.332				
12	China	floor	2016	42.066				