Examen HAE301E

Partie F. Martinez

Aucun document autorisé/ Calculatrice non autorisée

Tous les résultats doivent être encadrés. L'homogénéité des résultats doit être vérifiée.

La caractéristique idéalisée de la diode est donnée par la figure 1.

Figure 1

- 1. En utilisant le modèle proposé, quelles(s) relation(s) vérifient I_D et V_D :
 - a. Si la diode est bloquée ?
 - b. Si la diode est passante?

Le circuit présenté sur la figure 2 utilise la diode précédente.

Figure 2

- 2. On suppose la diode passante. Calculer I_{R1} , V_D et I_{R2} et établir la condition sur E pour la diode soit passante.
- 3. On suppose la diode bloquée. Calculer I_{R1} , V_D et I_{R2} et établir la condition sur E pour la diode soit bloquée.
- 4. Tracer l'allure de l'évolution de la tension V_D en fonction de E.

La caractéristique d'un transistor NPN est donnée par la figure 3.

Figure 3

- 5. Rappeler les relations simplifiées mettant en jeu I_C , I_B , V_{BE} et V_{CE} communement utilisées quand :
 - a. le transistor fonction en zone linéaire.
 - b. Le transistor fonctionne en zone saturé
 - c. Le transistor est bloqué
- 6. Calculer R_1 pour que le transistor fonctionne en zone linéaire avec $I_C=5$ mA pour le circuit présenté sur la figure 4. ($R_E=1$ k Ω , $\beta=100$, $V_{CC}=15$ V)

Figure 4