院、系领导	A 半
审批并签名	A 仓

广州大学 2015-2016 学年第一学期考试卷

课程:高等数学 I 1 (80 学时) 考 试 形 式:闭卷考试

学院: 专业班级: 学号: 姓

题次	_		[11]	四	五	六	总 分	评卷人
分 数	30	32	12	10	10	6	100	
得 分								

一、填空题(每空3分,本大题满分30分)

2. 曲线
$$y = (1 + \frac{1}{x})^{x-1}$$
 有水平渐近线______和铅直渐近线______.

2. 曲线
$$y = (1 + \frac{1}{x})^{x-1}$$
 有水平渐近线______和铅直渐近线_____.

3. 设函数 $y(x)$ 由参数方程
$$\begin{cases} x = t^3 + 3t + 1 \\ y = t^3 - 3t + 1 \end{cases}$$
 确定,则 $\frac{dy}{dx} = ______;$ 曲线 $y = y(x)$ 的拐点为______.

4. 设
$$x + \cos 2x$$
为 $f(x)$ 的原函数,则 $\int_0^{\pi} f(x) dx = _____, f^{(2015)}(0) = _____.$

- 二、解答下列各题(每小题8分,本大题满分32分)
- 1. 设 $f(x) = g(x)(\sqrt{x} 1)$, 其中 g(x) 在点 x = 1 处连续且 g(1) = 2, 求 f'(1).

2. 求函数 $y = \sqrt{8 + x^3}$ 的导数和微分,并利用微分计算 $\sqrt{8 + (2.001)^3}$ 的近似值.

3. 求曲线 $x^4 + x^2y - y^3 = 1$ 在点(1, 1) 处的切线方程.

4. 求函数 $f(x) = x^4 - 4x^3$ 的单调区间和极值.

三、计算下列积分(每小题6分,本大题满分12分)

1.
$$\int \frac{1}{\sqrt{(1-x^2)^3}} dx$$
.

2.
$$\int_{-\infty}^{0} x e^{x} dx$$
.

四、(本题满分10分)

求拋物线 $y = 3 - x^2$ 与直线 y = 2x 及 y 轴在第一象限所围成的平面图形的面积 A 及该平面图形绕 y 轴旋转所成的旋转体的体积 V .

五、(本题满分10分)

设
$$f(x) = \frac{x^2 - (\sin x)^2}{x^4}$$
.

- (1) 计算 $\lim_{x\to 0} f(x)$;
- (2) 证明: 当 $x \to \infty$ 时,f(x)是关于 $\frac{1}{x}$ 的2阶无穷小.

六、(本题满分6分)

已知函数 f(x) 在[0, 1]上连续,在(0, 1)内可导,且 f(0) = 0, f(1) = 1. 证明:

- (1) 存在 $x_0 \in (0, 1)$, 使得 $f(x_0) = 1 x_0$;
- (2) 存在两个不同的点 $x_1, x_2 \in (0, 1)$, 使得 $f'(x_1)f'(x_2) = 1$.