SPECIFICATION OF COMBINATIONAL SYSTEMS - SUMMARY

- HIGH-LEVEL AND BINARY-LEVEL SPECIFICATIONS
- REPRESENTATION OF DATA ELEMENTS BY BINARY VARI-ABLES; STANDARD CODES FOR POSITIVE INTEGERS AND CHARACTERS
- REPRESENTATION BY SWITCHING FUNCTIONS AND SWITCH-ING EXPRESSIONS
- BASIC SWITCHING FUNCTIONS: NOT, AND, OR, XOR, XNOR

- BOOLEAN ALGEBRA (Appendix A)
- SWITCHING ALGEBRA
- TRANSFORMATION OF SWITCHING EXPRESSIONS USING SWITCHING ALGEBRA
- USE OF VARIOUS SPECIFICATION METHODS:
 - TABLES
 - COMPOSITION OF FUNCTIONS
 - ARITHMETIC, CONDITIONAL AND SWITCHING EXPRES-SIONS
- ullet USE OF THE $\mu_{
 m VHDL}$ DESCRIPTION LANGUAGE

$$z(t) = F(x(t))$$
 or $z = F(x)$

Figure 2.1: Combinational system.

$$\underline{z}_b = F_b(\underline{x}_b)$$

Figure 2.2: High-level and binary-level specification.

Example 2.1:

Input: $x \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Output: $z \in \{0, 1, 2\}$

Function: F is described by the following table

	0									
z = F(x)	0	1	2	0	1	2	0	1	2	0

or by the arithmetic expression

$$z = x \mod 3$$
,

Example 2.1 (cont.): BINARY ENCODING OF x AND z

x	0	1	2	3	4	5	6	7	8	9
$\underline{x}_b = C(x)$	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Input:
$$\underline{x}_b = (x_3, x_2, x_1, x_0), x_i \in \{0, 1\}$$

Output:
$$\underline{z}_b = (z_1, z_0), \ z_i \in \{0, 1\}$$

Function: F_b is described by the following table

\underline{x}_b	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001
$\underline{z}_b = F_b(\underline{x}_b)$	00	01	10	00	01	10	00	01	10	00

HIGH-LEVEL SPECIFICATION

- SET OF VALUES FOR THE INPUT, input set;
- SET OF VALUES FOR THE OUTPUT, output set; and
- SPECIFICATION OF THE input-output function.

$$\{UP, DOWN, LEFT, RIGHT, FIRE\}$$

$$\{x \mid (5 \le x \le 10^4) \text{ and } (x \mod 3 = 0)\}$$

Examples of vectors

Vector type		Example
Digit	$\underline{x} = (x_{n-1}, x_{n-2}, \dots, x_0)$	$\underline{x} = (7, 0, 6, 3)$
	$x_i \in \{0, 1, 2, \dots, 9\}$	
Character	$\underline{c} = (c_{n-1}, c_{n-2}, \dots, c_0)$	$\underline{c} = (B, O, O, K)$
	$c_i \in \{ A, B, \dots, Z \}$	
Set	$\underline{s} = (s_{n-1}, s_{n-2}, \dots, s_0)$	$\underline{s} = (\text{red}, \text{blue}, \text{blue})$
	$s_i \in \{\text{red}, \text{ blue}, \text{ white}\}$	
Bit	$\underline{y} = (y_{n-1}, y_{n-2}, \dots, y_0)$	$\underline{y} = (1, 1, 0, 1, 0, 0)$
	$y_i \in \{0, 1\}$	$\underline{y} = 110100$

1. TABLE

2. ARITHMETIC EXPRESSION

$$z = 3x + 2y - 2$$

3. CONDITIONAL EXPRESSION

$$z = \begin{cases} a+b & \text{if } c > d \\ a-b & \text{if } c = d \\ 0 & \text{if } c < d \end{cases}$$

INPUT-OUTPUT FUNCTION (cont.)

4. LOGICAL EXPRESSION

$$z = (SWITCH1 = CLOSED)$$
 and $(SWITCH2 = OPEN)$
or $(SWITCH3 = CLOSED)$

5. COMPOSITION OF SIMPLER FUNCTIONS

max(v,w,x,y) = GREATER(v,GREATER(w,GREATER(x,y))) + GREATER(v,GREATER(x,y)) + GREATER(v,GREATE

$$GREATER(a,b) = \begin{cases} a & \text{if } a > b \\ b & \text{otherwise} \end{cases}$$

Example 2.2

Inputs:
$$\underline{x} = (x_3, x_2, x_1, x_0),$$
 $x_i \in \{A, B, ..., Z, a, b, ..., z\}$
 $y \in \{A, B, ..., Z, a, b, ..., z\}$
 $k \in \{0, 1, 2, 3\}$
Outputs: $\underline{z} = (z_3, z_2, z_1, z_0),$
 $z_i \in \{A, B, ..., Z, a, b, ..., z\}$
Function: $z_j = \begin{cases} x_j & \text{if } j \neq k \\ y & \text{if } j = k \end{cases}$

Input: $\underline{x} = (\text{C,A,S,E})$, y = R , k = 1

Output: z = (C,A,R,E)

 $\{Al, Bert, Dave, Jerry, Len\}$

	Fixed-	length	Variable-length
	Code 1	Code 2	Code 3
Al	000	0110	01
Bert	010	0101	001
Dave	100	0011	0001
Jerry	110	1001	00001
Len	111	1111	000001

ALPHANUMERIC CODES

	Co	odes
Character	ASCII	EBCDIC
A	100 0001	1100 0001
В	100 0010	1100 0010
С	100 0011	1100 0011
:	:	÷
Y	101 1001	1110 1000
Z	101 1010	1110 1001
0	011 0000	1111 0000
1	011 0001	1111 0001
2	011 0010	1111 0010
:	:	:
8	011 1000	1111 1000
9	011 1001	1111 1001
blank	010 0000	0100 0000
	010 1110	0100 1011
(010 1000	0100 1101
+	010 1011	0100 1110
:	:	:

 Level 1: INTEGER \iff DIGIT-VECTOR

Level 2: DIGIT \iff BIT-VECTOR

Level 1: Integer (Digit-vector)		5			6			3			0	
Level 2: Bit-vector	1	0	1	1	1	0	0	1	1	0	0	0

REPRESENTATION BY DIGIT-VECTOR

$$\underline{x} = (x_{n-1}, x_{n-2}, \dots, x_1, x_0)$$

$$x = \sum_{i=0}^{n-1} x_i r^i$$

DIGIT x_i in $\{0, 1, \dots, r-1\}$, r – THE RADIX

$$\underline{x} = (1, 0, 0, 1, 0, 1)$$

 \iff

$$1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (37)_{10}$$

SET OF REPRESENTABLE VALUES

$$0 \le x \le r^n - 1$$

EXAMPLE OF BINARY CODES FOR DIGITS $(r = 2^k)$

	Binary	Quaternary	Octal	Hexadecimal
Digit Value (Symbol)	k = 1	k=2	k = 3	k=4
	d_0	d_1d_0	$d_2d_1d_0$	$d_3d_2d_1d_0$
0	0	00	000	0000
1	1	01	001	0001
2		10	010	0010
3		11	011	0011
4			100	0100
5			101	0101
6			110	0110
7			111	0111
8				1000
9				1001
10 (A)				1010
11 (B)				1011
12 (C)				1100
13 (D)				1101
14 (E)				1110
15 (F)				1111

Digit	Gray code
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

GRAY CODE BIT-VECTOR REPRESENTATION OF A DIGIT-VECTOR

CODES FOR DECIMAL DIGITS

Digit	BCD			
Value	8421	2421	Excess-3	2-Out-of-5
0	0000	0000	0011	00011
1	0001	0001	0100	11000
2	0010	0010	0101	10100
3	0011	0011	0110	01100
4	0100	0100	0111	10010
5	0101	1011	1000	01010
6	0110	1100	1001	00110
7	0111	1101	1010	10001
8	1000	1110	1011	01001
9	1001	1111	1100	00101

SWITCHING FUNCTIONS

Figure 2.7: a) BINARY COMBINATIONAL SYSTEM; b) A SWITCHING FUNCTION FOR n=3

TABULAR REPRESENTATION OF SWITCHING FUNCTIONS 22

<i>n</i> -tup	le notation	Simplified notation				
$x_2x_1x_0$	$ x_0 f(x_2, x_1, x_0)$		f(j)			
0 0 0	0	0	0			
0 0 1	0	1	0			
0 1 0	1	2	1			
0 1 1	1	3	1			
100	0	4	0			
101	0	5	0			
1 1 0	1	6	1			
1 1 1	1	7	1			

2D TABULAR REPRESENTATION

	$x_2x_1x_0$									
x_4x_3	000	001	010	011	100	101	110	111		
00	0	0	1	1	0	1	1	1		
01	0	1	1	1	1	0	1	1		
10	1	1	0	1	1	0	1	1		
11	0	1	0	1	1	0	1	0		
					f					

More compact

IMPORTANT SWITCHING FUNCTIONS

Table 2.4: SWITCHING FUNCTIONS OF ONE VARIABLE

	f_0	f_1	f_2	f_3
	0-CONSTANT	IDENTITY	COMPLEMENT	1-CONSTANT
x	(always 0)	(equal to x)	(NOT)	(always 1)
0	0	0	1	1
1	0	1	0	1

Table 2.5: SWITCHING FUNCTIONS OF TWO VARIABLES

		x_1	x_0		
Function	00	01	10	11	
f_0	0	0	0	0	
f_1	0	0	0	1	AND
f_2	0	0	1	0	
f_3	0	0	1	1	
f_4	0	1	0	0	
f_5	0	1	0	1	
f_6	0	1	1	0	EXCLUSIVE-OR (XOR)
f_7	0	1	1	1	OR
f_8	1	0	0	0	NOR
f_9	1	0	0	1	EQUIVALENCE (EQU)
f_{10}	1	0	1	0	
f_{11}	1	0	1	1	
f_{12}	1	1	0	0	
f_{13}	1	1	0	1	
f_{14}	1	1	1	0	NAND
f_{15}	1	1	1	1	

INCOMPLETE SWITCHING FUNCTIONS

x	y	z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	_
1	0	0	1
1	0	1	0
1	1	0	_
1	1	1	1

Can be represented with any of the following

COMPOSITION OF SWITCHING FUNCTIONS

$$AND(x_3, x_2, x_1, x_0) = AND(AND(x_3, x_2), AND(x_1, x_0))$$

$$XOR(x_1, x_0) = OR(AND(NOT(x_0), x_1), AND(x_0, NOT(x_1)))$$

$$MAJ(x_3, x_2, x_1, x_0) = OR(AND(x_3, x_2, x_1), AND(x_3, x_2, x_0), AND(x_3, x_1, x_0), AND(x_2, x_1, x_0))$$

- 1. Symbols 0 and 1 are SEs.
- 2. A symbol representing a binary variable is a SE.
- 3. If A and B are SEs, then
 - \bullet (A)' is a SE. This is referred to as "A complement." Sometimes we use \overline{A} to denote complementation.
 - (A) + (B) is a SE. This is referred as "A OR B"; it is also called "A plus B" or "sum" due to the similarity with the corresponding arithmetic symbol.
 - $(A) \cdot (B)$ is a SE. This is referred to as "A AND B"; it is also called "A times B" or "product" due to the similarity with the corresponding arithmetic symbol.

PRECEDENCE RULES: 'PRECEDES · WHICH PRECEDES +

WELL-FORMED SWITCHING EXPRESSIONS ARE:

$$x_0 x_1 + x_2 x_3' 1 + 0(x + y)$$

$$(x_1 + 'x_2 +)x_3$$
 AND

"THIS IS A SWITCHING EXPRESSION"

ARE NOT WELL-FORMED SWITCHING EXPRESSIONS.

• Switching algebra:

two elements 0 and 1

operations +, \cdot , and '

$$E(x_2, x_1, x_0) = x_2 + x_2' x_1 + x_1 x_0'$$

The value of E for assignment (1,0,1) is

$$E(1,0,1) = 1 + 1' \cdot 0 + 0 \cdot 1' = 1 + 0 + 0 = 1$$

$$E(x_2, x_1, x_0) = x_2 + x_2' x_1 + x_1 x_0'$$
 represents f :

$x_2x_1x_0$	f
000	0
001	0
010	1
011	1
100	1
101	1
110	1
111	1

	2 variables	n variables
AND	x_1x_0	$x_{n-1}x_{n-2}\dots x_0$
OR	$x_1 + x_0$	$x_{n-1} + x_{n-2} + \dots + x_0$
XOR	$x_1 x_0' + x_1' x_0 = x_1 \oplus x_0$	
EQUIV	$x_1'x_0' + x_1x_0$	
	$(x_1x_0)' = x_1' + x_0'$	$ (x_{n-1}x_{n-2}\dots x_0)' = x'_{n-1} + x'_{n-2} + \dots + x'_0 $
NOR	$(x_1 + x_0)' = x_1' x_0'$	$(x_{n-1} + x_{n-2} + \dots + x_0)' = x'_{n-1} x'_{n-2} \dots x'_0$

Gate type	Symbol	Switching expression	
NOT	$ \begin{array}{c c} x & \hline \text{or} & z \\ x & \hline \end{array} $	z = x'	
AND	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix}$ z	$z = x_1 x_0$	
OR	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix}$	$z = x_1 + x_0$	
NAND	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix}$ z	$z = (x_1 x_0)'$	
NOR	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix}$ z	$z = (x_1 + x_0)'$	
XOR	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix} $ z	$z = x_1 x_0' + x_1' x_0$ $= x_1 \oplus x_0$	
XNOR	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix}$ z	$z = x_1' x_0' + x_1 x_0$	

 $Figure\ 2.8:\ \textbf{Gate\ symbols}$

Figure 2.9: n-input AND and OR GATE SYMBOLS

W and Z SWITCHING EXPRESSIONS ARE EQUIVALENT

$$W = x_1 x_0 + x_1'$$

 $Z = x_1' + x_0$

CORRESPONDING SWITCHING FUNCTIONS ARE

x_1x_0	W	Z
00	1	1
01	1	1
10	0	0
11	1	1

Figure 2.10: CORRESPONDENCE AMONG SFs AND SEs

ALGEBRAIC METHOD OF OBTAINING EQUIVALENT EXPRESSIONS

MAIN IDENTITIES OF BOOLEAN ALGEBRA

1.	a + b	= b + a	ab	=ba	Commutativity
2.	a + (bc)	= (a + b)(a + c)	a(b + c)	=(ab) + (ac)	Distributivity
3.	a + (b + c)	=(a + b) + c	a(bc)	=(ab)c	Associativity
		= a + b + c		= abc	
4.	a + a	= a	aa	= a	Idempotency
5.	a + a'	=1	aa'	=0	Complement
6.	1 + <i>a</i>	=1	0a	=0	
7.	0 + a	= a	1a	= a	Identity
8.	(a')'	= a			Involution
9.	a + ab	= a	a(a + b)	= a	Absorption
10.	a + a'b	= a + b	a(a' + b)	=ab	Simplification
11.	(a + b)'	=a'b'	(ab)'	=a' + b'	DeMorgan's Law

SHOW THAT E_1 AND E_2 ARE EQUIVALENT:

$$E_1(x_2, x_1, x_0) = x_2x_1 + x_2x_1' + x_2x_0$$

 $E_2(x_2, x_1, x_0) = x_2$

$$x_2x_1 + x_2x_1' + x_2x_0 = x_2(x_1 + x_1') + x_2x_0$$
 using $ab + ac = a(b + c)$
 $= x_2 \cdot 1 + x_2x_0$ using $a + a' = 1$
 $= x_2(1 + x_0)$ using $ab + ac = a(b + c)$
 $= x_2 \cdot 1$ using $1 + a = 1$
 $= x_2$ using $a \cdot 1 = a$

LITERALS x, y, z', x'PRODUCT TERMS $x_0, x_2x_1, x_3x_1x'_0$ SUM OF PRODUCTS (SP) $x'_2 + x_3x'_1 + x'_3x'_1x_0$

Figure 2.11: SUM OF PRODUCTS AND AND-OR GATE NETWORK: a) PRODUCT TERM. b) SUM OF PRODUCTS.

$$x_i \longleftrightarrow 1; \qquad x_i' \longleftrightarrow 0$$

MINTERM m_j (product of all n variables), j INTEGER

EXAMPLE: MINTERM $x_3x_2'x_1'x_0$ DENOTED m_9 BECAUSE 1001 = 9

$$m_j(\underline{a}) = \begin{cases} 1 & \text{if } a = j \\ 0 & \text{otherwise} \end{cases}$$

$$a = \sum_{i=0}^{n-1} a_i 2^i$$

EXAMPLE: $m_{11} = x_3 x_2' x_1 x_0$ - HAS VALUE 1 ONLY FOR $\underline{a} = (1, 0, 1, 1)$

MINTERM FUNCTIONS

$x_2x_1x_0$	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
	$x_2'x_1'x_0'$	$x_2'x_1'x_0$	$x_2'x_1x_0'$	$x_2'x_1x_0$	$x_2x_1'x_0'$	$x_2x_1'x_0$	$x_2x_1x_0'$	$x_2x_1x_0$
000	1	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	1	0	0
110	0	0	0	0	0	0	1	0
111	0	0	0	0	0	0	0	1

Figure 2.12: GATE NETWORK CORRESPONDING TO $E(x_2, x_1, x_0) = \sum m(1, 2, 6)$.

j	$x_2 x_1 x_0$	f
0	000	0
1	001	0
2	010	1
3	011	1
4	100	0
5	101	1
6	110	0
7	111	0

$$E = \sum m(2,3,5) = x_2'x_1x_0' + x_2'x_1x_0 + x_2x_1'x_0$$

1. CONVERT TO EQUIVALENT SUM OF PRODUCTS

$$E(x_2, x_1, x_0) = (x_2x_1)'x_0$$

$$= (x_2' + x_1')x_0$$

$$= x_2'x_0 + x_1'x_0$$

2. CONVERT PRODUCT TERMS TO MINTERMS

$$E(x_2, x_1, x_0) = x_2' x_0 + x_1' x_0$$

$$= x_2' x_0 (x_1 + x_1') + x_1' x_0 (x_2 + x_2')$$

$$= x_2' x_1 x_0 + x_2' x_1' x_0 + x_2 x_1' x_0 + x_2' x_1' x_0$$

3. ELIMINATE REPEATED MINTERMS

$$E(x_2, x_1, x_0) = x_2' x_1' x_0 + x_2' x_1 x_0 + x_2 x_1' x_0$$

$$E(x_{2}, x_{1}, x_{0}) = x_{2}x'_{1} + x_{2}x'_{0} + x_{1}x'_{0}$$

$$= x_{2}x'_{1}(x_{0} + x'_{0}) + x_{2}x'_{0}(x_{1} + x'_{1}) + x_{1}x'_{0}(x_{2} + x'_{2})$$

$$= x_{2}x'_{1}x_{0} + x_{2}x'_{1}x'_{0} + x_{2}x'_{0}x_{1} + x_{2}x'_{0}x'_{1} + x_{1}x'_{0}x_{2} + x_{1}x'_{0}x'_{2}$$

$$= x'_{2}x_{1}x'_{0} + x_{2}x'_{1}x'_{0} + x_{2}x'_{1}x_{0} + x_{2}x_{1}x'_{0}$$

$$= x_{2}x_{1}x'_{0} + x_{2}x'_{1}x'_{0} + x_{2}x'_{1}x_{0} + x_{2}x_{1}x'_{0}$$

$$= x_{2}x_{1}x'_{0} + x_{2}x'_{1}x'_{0} + x_{2}x'_{1}x_{0} + x_{2}x_{1}x'_{0}$$

SUM TERMS
$$x_0, x_2 + x_1, x_3 + x_1 + x'_0$$

PRODUCT OF SUMS $(x'_2 + x_3 + x'_1)(x'_3 + x_1)x_0$

Figure 2.13: PRODUCT OF SUMS AND OR-AND GATE NETWORK. a) SUM TERM. b) PRODUCT OF SUMS.

$$x_i \longleftrightarrow 0; \qquad x_i' \longleftrightarrow 1$$

MAXTERM M_j , (sum of all n variables), j INTEGER

EXAMPLE: MAXTERM $x_3 + x_2' + x_1 + x_0'$ DENOTED M_5 BECAUSE 0101 = 5

$$M_j(\underline{a}) = \begin{cases} 0 & \text{if } a = j \\ 1 & \text{otherwise} \end{cases}$$

EXAMPLE: $M_5 = x_3 + x_2' + x_1 + x_0'$

- HAS VALUE 0 ONLY FOR ASSIGNMENT 0101

Figure 2.14: GATE NETWORK CORRESPONDING TO $E(x_2,x_1,x_0)=\prod M(0,5,6).$

j	$x_2x_1x_0$	f
0	000	0
1	001	1
2	010	1
3	011	0
4	100	0
5	101	0
6	110	1
7	111	0

$$E(x_2, x_1, x_0) = \pi M(0, 3, 4, 5, 7)$$

$$= (x_2 + x_1 + x_0)(x_2 + x_1' + x_0')(x_2' + x_1 + x_0)$$

$$(x_2' + x_1 + x_0')(x_2' + x_1' + x_0')$$

CONVERSION AMONG CANONICAL FORMS

SUM OF MINTERMS \longleftrightarrow one-set PRODUCT OF MAXTERMS \longleftrightarrow zero-set \Rightarrow CONVERSION STRAIGHTFORWARD

$$\sum m(\{j \mid f(j) = 1\}) = \prod M(\{j \mid f(j) = 0\})$$

EXAMPLE:

m-NOTATION:

$$f(x, y, z) = \sum m(0, 4, 7)$$

M-NOTATION:

$$f(x, y, z) = \prod M(1, 2, 3, 5, 6)$$

INPUTS: $x, y \in \{0, 1, 2, 3\}$ OUTPUT: $z \in \{\mathsf{G,E,S}\}$

FUNCTION: $z = \begin{cases} G & \text{if } x > y \\ E & \text{if } x = y \\ S & \text{if } x < y \end{cases}$

		y			
		0	1	2	3
	0	Ε	S	S	S
	1	G	S E	S S	S S S
x	2	G	G	E G	
	3	G	G	G	Ε
	z				

CODING:

$$x = 2x_1 + x_0$$
 and $y = 2y_1 + y_0$

z	$z_2 z_1 z_0$
G	100
Ε	010
S	001

BINARY SPECIFICATION:

$$z_2 = egin{cases} 1 & ext{if} & x_1 > y_1 & ext{or} & (x_1 = y_1 & ext{and} & x_0 > y_0) \\ 0 & ext{otherwise} \end{cases}$$
 $z_1 = egin{cases} 1 & ext{if} & x_1 = y_1 & ext{and} & x_0 = y_0 \\ 0 & ext{otherwise} \end{cases}$
 $z_0 = egin{cases} 1 & ext{if} & x_1 < y_1 & ext{or} & (x_1 = y_1 & ext{and} & x_0 < y_0) \\ 0 & ext{otherwise} \end{cases}$

	$y_1 y_0$				
x_1x_0	00	01	10	11	
00		001			
01		010			
10	100	100	010	001	
11	100	100	100	010	

SWITCHING EXPRESSIONS:

$$z_2(x_1, x_0, y_1, y_0) = \sum m(4, 8, 9, 12, 13, 14)$$

$$z_1(x_1, x_0, y_1, y_0) = \sum m(0, 5, 10, 15)$$

$$z_0(x_1, x_0, y_1, y_0) = \sum m(1, 2, 3, 6, 7, 11)$$