Exercise 11, December 8, 2011

1. The convergence of the steepest descent adaptive filter is related to the *condition* number χ of the autocorrelation matrix \mathbf{R}_x . This number can be bounded in terms of the power spectrum $P_x(e^{j\omega})$ of the process as follows:

$$\chi = \frac{\lambda_{\max}}{\lambda_{\min}} \le \frac{\max_{\omega} P_x(e^{j\omega})}{\min_{\omega} P_x(e^{j\omega})}$$

(a) Use this inequality to bound the condition number of the autocorrelation matrix for the moving average process

$$x(n) = v(n) + \alpha v(n-1)$$

where v(n) is unit variance white noise.

(b) Repeat part (a) for the autoregressive process

$$x(n) = \alpha x(n-1) + v(n)$$

where $|\alpha| < 1$ and v(n) is unit variance white noise.

- 2. The LMS algorithm is obtained by estimating $E(e(n)\mathbf{x}^*(n))$ in the gradient method by a pointwise value $e(n)\mathbf{x}^*(n)$.
 - (a) Compute the update in the gradient method when we wish to minimize the absolute error E(|e(n)|) instead of the squared error $E(|e(n)|^2)$. Assume that the parameters w(k) and the process x(n) are real valued.
 - (b) Replace the expectation with a pointwise value. What is the resulting method?
- 3. The LMS adaptive filter minimizes the instantaneous squared error

$$\xi(n) = |e(n)|^2$$

Consider the modified functional

$$\xi'(n) = |e(n)|^2 + \beta \mathbf{w}_n^H \mathbf{w}_n$$

where $\beta > 0$.

- (a) Derive the LMS coefficient update equation for \mathbf{w}_n that minimizes $\xi'(n)$.
- (b) Determine the condition on the step size μ that will ensure that \mathbf{w}_n converges to the mean.
- (c) If μ is small enough so that \mathbf{w}_n converges in the mean, what does \mathbf{w}_n converge to?

4. The process x(n) is defined so that the observation x(n) is normally distributed with mean 0 and variance $0.5 \cdot (\operatorname{sgn}\{x(n-1)\} + 3)$, i.e.

$$x(n) \sim \begin{cases} N(0,1) & \text{if } x(n-1) \ge 0\\ N(0,2) & \text{otherwise} \end{cases}$$

(a) Calculate the unconditional and conditional (one step ahead) expectations and variances of the observation x(n).

Hint: the unconditional variance can calculated from the formula Var(y) = E[Var(y|z)] + Var(E[y|z]) with an appropriate choice of z.

- (b) Is the process x(n) a WSS process?
- 5. (Bonus point exercise)

Consider a process with autocorrelations

$$r_r(k) = a^{|k|}$$

where $|a| < 1, a \in \mathbb{R}$.

- (a) Determine the eigenvalues and eigenvectors of the autocorrelation matrix of size 2×2 .
- (b) For the autocorrelation matrix of size $p \times p$, find the asymptotic value of the largest eigenvalue λ_{max} as $p \to \infty$.

Hint: as p grows, $\lambda_{max} \to \max P_x(\exp(j\omega))$, i.e., it is sufficient to find the maximum of the power spectrum.

(c) Find, as a function of α , the largest step size μ for convergence in the mean of the LMS algorithm. What can you say about the convergence if |a| is very close to 1?