Transcriptomic and epigenomic biomarkers associated with smoking habits in patients with lung or laryngeal cancer

Final project presentation

Group 5Mia Anscheit
Matanat Mammadli
Friederike Wohlfarth

Changes in project topic

Scientific question

Transcriptomic and epigenomic biomarkers _____ associated with cancer subtypes

Transcriptomic and epigenomic biomarkers associated with smoking habits

Cancer types

Kidney and laryngeal cancer

Lung and laryngeal cancer

Squamous cell carcinoma

- squamous cells form surface of skin as well as interior surface of most organs
- main reason for squamous cell carcinoma in respiratory organs: smoking

Data

Differential gene expression analysis

Download count data from GDC Data Portal (TCGAbiolinks) Generate count matrix Download meta data and adjust it (TCGAutils: helpful for converting IDs) **DESeq2** for differential gene expression analysis Visualization

Type of analyses

Differential gene expression between:

- healthy and cancer cells in lung/larynx tissue separately
- lung and larynx cancer
- different smoking habits (cigarettes/day or packages/year) per cancer type

Exploratory data analysis - datasets

TCGA-LUSC - lung

- matrix of 516 samples, 60.660 transcripts
- correcting for outliers (none) and normalization as well as filtering -> 48 normal tissue samples, 468 tumor samples in count matrix
- DEA using togabiolinks found 9619 DEGs

TCGA-HNSC - larynx

- matrix of 125 samples, 60.660 transcripts
- 12 normal tissue samples, 113 tumor samples
- DEA found 6995 DEGs

Exploratory data analysis – datasets

Exploratory data analysis - lung dataset

Exploratory data analysis – larynx dataset

Exploratory data analysis - lung dataset

- Top 5:
 - KRT5
 - KRT6A
 - KRT17
 - IGHG1
 - IGRC
- Keratins are used as tumor markers in lung cancer
- KRT5 is overexpressed in lung cancer cells
- immunoglobulines specific for squamous lung cancer

Exploratory data analysis – larnynx dataset

Top 5:

- KRT17
- IGHG1
- KRT14
- KRT16
- COL1A1

Data was too large, we downloaded 1160 idat files (red and green) for larynx cancer

what we did: we divided data into **green** and **red** channel idat pairs, and from 580 pairs we randomly selected and kept 290 (half of it).

We did same steps for **lung cancer** data, we kept 191 pairs at the end (from initial 764 red and green idat files).

Quality control (qcReport(methylation_data)) results (larynx)

Control: BISULFITE CONVERSION I

Data normalization steps (preprocessQuantile()):

- Mapping to Genome
- Fixing Outliers
- Quantile Normalizing

```
methylation_data_normalized
class: GenomicRatioSet
dim: 485512 290
metadata(0):
assays(2): M CN
rownames(485512): cg13869341 cg14008030 ... cg08265308
cq14273923
rowData names(0):
colnames(290): 01d6d8c3-7c94-4f96-aa7b-a2955d84ff36_noid
 01dd514a-fef7-4b86-ab98-ca690970cd95_noid ...
 ff8494b7-2651-44d9-b162-0bbc16e87598 noid
ff93e589-ca51-43f3-b988-b2bfacf6b4b9 noid
colData names(3): xMed yMed predictedSex
Annotation
 array: IlluminaHumanMethylation450k
 annotation: ilmn12.hg19
Preprocessing
Method: Raw (no normalization or bg correction)
 minfi version: 1 46 0
```

Manifest version: 0.4.0

betas <- getBeta(methylation_data_normalized)

for lung cancer

99c03e8f-05	11-45fd-97e8-a9108c6d95ae_noid					
cg13869341	0.85418382					
cg14008030	0.63133197					
cg12045430	0.21507860					
cg20826792	0.50569133					
cg00381604	0.21111381					
99e0dd91-2bd6-4889-a4ea-0c50e974cd7a_noid						
cg13869341	0.86718232					
cg14008030	0.74298201					
cg12045430	0.23023874					
cg20826792	0.41454710					
cg00381604	0.21548686					
9c05da65-6e66-47f7-83b1-c83db4a7fe94_noid						
cg13869341	0.875499954					
cg14008030	0.674002816					
cg12045430	0.215711182					
cg20826792	0.409132893					
cg00381604	0.119837133					

Statistical analysis results (with limma, fit, lmFit, eBayes etc.)

results

	logFC	2 AveExpr	t P.Val	ue adj.P.Val	В	
cg09869	144 (0.9689744	0.9685472	1322.4769	0	0 1253.037
cg03522	2766 (0.9713235	0.9715661	1311.5113	0	0 1250.647
cg06096	5175 (0.9750521	0.9751767	1304.7310	0	0 1249.160
cg06884	1679 (0.9729082	0.9733130	1295.3970	0	0 1247.099
cg16385	941 (0.9725823	0.9731205	1204.5779	0	0 1226.214
cg22342	2925 (0.9730781	0.9736369	1198.6808	0	0 1224.803
cg20306	425 (0.9670741	0.9668850	1190.3632	0	0 1222.800
cg06671	654 (0.9727307	0.9720465	1185.6003	0	0 1221.647
cg02008	3951 (0.9666592	0.9671985	1174.1436	0	0 1218.854

Visualization results

for larynx cancer

Next steps

- detailed DEA with Deseq2 package with MA and volcano plots
- perform clustering with TCGAanalyze_Clustering and annotate cluster
- perform survival analysis for cluster
- plot heatmaps with annotated cluster information, DEA for pairs of clusters?
- clusters in accordance with tissue site or other annotation?
- Principal Component Analysis plot for differentially expressed genes
- TCGAvisualize_starburst: Integration of gene expression and DNA methylation data