Math powers - activate!

Learning activation function

General approximation theorem

One hidden layer with non-polynomial activation functions can approximate any function given sufficient width

Activation is required for neural network to not collapse to simple matrix multiplication:

$$h = W_1x + b_1$$

$$y = W_2h + b_2$$

$$y = W_2(W_1x + b_1) + b_2 = W_2W_1x + W_2b_1 + b_2$$

General approximation via neural network

$$Y = \sigma(W_2\sigma(W_1x + b_1) + b_2)$$

$$Y = \frac{1}{1 + exp(-W_2 \frac{1}{1 + exp(-W_1 x - b_1)} - b_2)}$$

But how can such non-linearities approximate relatively simple functions?

Experiment one: approximations given width

$$f(\vec{x}) = x_0^3 + x_1^2 - x_2 + 3x_3 - 2x_4$$
 Using sigmoid activation

Number of hidden units	Epochs before termination	Validation MSE
5	40	0.027176
25	282	0.019558
100	640	0.019294
1000	2	1.632126
5	1000 (no stopping)	0.023175
1000	1000 (no stopping)	0.031281

Experiment one: approximations given width

$$f(\vec{x}) = x_0^3 + x_1^2 - x_2 + 3x_3 - 2x_4$$

Number of hidden units	Epochs before termination	Validation MSE
4	15	0.018579
5	7	0.024485
25	11	0.030832
100	41	0.018022
4	1000 (no stopping)	5.562163e-05

So can we teach computer to figure things out?


```
>>> model.lavers
[<keras.engine.topology.InputLayer at 0x7f5f79ebd320>,
<keras.layers.core.Dense at 0x7f5f79ebd3c8>,
 <keras.layers.core.Lambda at 0x7f5f79ebd5c0>,
 <keras.layers.core.Lambda at 0x7f5f79ebd4a8>,
 <keras.layers.core.Lambda at 0x7f5f79ebd470>,
 <keras.layers.merge.Concatenate at 0x7f5f79ebd518>,
 <keras.layers.core.Dense at 0x7f5f79ebd4e0>1
>>> model.layers[1].get weights()
[array([[ 0.6324068 , 0.21015163, -0.797554 , 0.2908216 ],
        [-0.39017132, -0.17748564, -0.8185287, -0.30828226],
        [-0.08740603, -0.65033466, -0.01853351, 0.02315693],
        [-0.08319189, -0.6517701, -0.02518974, 0.02785753],
        [0.01850492, 0.01924918, 0.0201706, -1.0621451]],
       dtype=float32),
array([-1.2548941 , -0.25056088, -0.08851553, -0.90485483], dtype=float32)]
>>> model.layers[-1].get weights()
[array([[-0.9552365], [ 0.10199025],
        [-0.1944016], [-0.25859004],
        [-0.98726046], [-0.5750056],
        [ 0.3844548 ], [-1.1067214 ],
        [0.36572674], [-0.16890422],
        [-0.15650085], [ 0.33446547]], dtype=float32), array([1.085738],
dtvpe=float32)1
```


Activation learning layer - description

Experimental evaluation - MNIST

Evaluation on the most overused dataset in the world.

Softmax

Dense

Activation of choice

Dense

Activation of choice

Conv2D with strides

Input

	ReLU	Adaptive
Accuracy	0.98036	0.97345
Final loss	0.00302	0.00412
Epochs	7.0	4.4

Maxout

$$f(\vec{x}) = \max_{i \in I} a_i \odot \vec{x} + b_i$$

	ReLU	Maxout (1 spl)
Accuracy	0.98036	0.9743
Final loss	0.00302	0.00387
Epochs	7.0	6.0

Adaptive piecewise linear units

$$f(\vec{x}) = ReLU(\vec{x}) + \sum_{i \in S} ReLU(\vec{a_i} \odot \vec{x} + \vec{b_i})$$

	ReLU	APL (1 sample)
Accuracy	0.98036	0.9798
Final loss	0.00302	0.00305
Epochs	7.0	6

>

Swish activation

Figure 3: The top novel activation functions found by the searches. Separated into two diagrams for visual clarity. Best viewed in color.

Conclusions

- -> It enables better representation
- -> but in majority of the cases is impractical
- -> could make use if we want to test some transforms of the input variables