Introduction to Machine Learning (67577)

Recitation 01 Linear Algebra

Second Semester, 2021

Contents

1	Linear Algebra		2
	1.1	Linear Transformations	2
	1.2	Norms, Inner Products and Projections	3
	1.3	Matrix Decompositions	7

1 Linear Algebra 2

1 Linear Algebra

1.1 Linear Transformations

Definition 1.1 — Linear Transformation. Let $V \in \mathbb{R}^d$ and $W \in \mathbb{R}^m$ be two vectors spaces. A function $T: V \to W$ is called a linear transformation of V into W, if $\forall u, v \in V$ and $c \in \mathbb{R}$.

- Additivity: T(u+v) = T(u) + T(v)
- Scalar multiplication: T(cu) = cT(u)

For V and W of a finite dimension, any linear transformation can be represented by a matrix A. Therefore, from now and on we will focus only on finite-dimensional spaces, and implicitly refer to the matrix representing the linear transformation.

Definition 1.2 — Affine Transformation. An *affine transformation* is a transformation of the form T(u) = Au + w, where $u \in V, w \in W$.

Notice, that by definition an affine transformation is not a linear transformation. Notice that for a linear transformation A it holds that $A \cdot 0_V = 0_W$, but in the case of an affine transformation where $0 \neq w \in W$ then $T(0_V) = A \cdot 0_V + w \neq 0_W$.

Let us define some vector spaces associated with each linear transformation

Definition 1.3 Let A be the matrix corresponding the linear transformation $T: V \to W$. We define the:

- Kernel- (or null-) space of A as $Ker(A) := \{x \in V | Ax = 0\}$. Also denotes as N(A).
- Image- (or column-) space of A as $Im(A) := \{w \in W | w = Ax, x \in V\}$. Also denotes as Col(A).
- Row space of A as $Im(A^{\top}) := \{x \in V | x = A^{\top}w, w \in W\}$. Equivelently it can be defined as the column space of A^{\top} and therefore denoted as $Col(A^{\top})$.
- Null space of A^{\top} as $Ker(A^{\top}) := \{x \in W | A^{\top}x = 0\}$. This space is also referred to as the left null space of A.

Note that by definition, Ker(A), $Row(A) \subseteq V$ and $Im(A) \subseteq W$. Using the above definitions let us gain some insights into what these vector spaces provide us with.

Definition 1.4 Let $A \in \mathbb{R}^{m \times d}$. The rank of A is the maximum number of linearly independent rows of A and denoted by rank(A).

It holds that the rank of A equals both the dimension of the columns space and of the row space of A. As such, we refer to A being of *full rank* if and only if rank(A) = min(m,d). Otherwise we say that A is rank deficient.

Definition 1.5 Let $A \in \mathbb{R}^{d \times d}$ be a square matrix. A is called invertible (or non-singular) if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $AB = I_d = BA$. We denote the inverse by A^{-1} .

Claim 1.1 Let A be a square matrix. The following are equivalent (TFAE):

- A is invertible (non-singular)
- A is full-rank
- *Det* $(A) \neq 0$
- $Im(A) = \mathbb{R}^m$ (i.e., the image is the whole space)
- $ker(A) = \vec{0}$
- Example 1.1 Consider the following scenario: Suppose we are given a set of d linearly independent linear equations, each of the form $y_i = \sum_{j=1}^d \mathbf{w}_j \cdot x_{ij}$, where the $x_{i,j}$'s and y_i are given while \mathbf{w}_j 's are unknown. We would like to find a solution for this system of equations. That is, a coefficients vector $\mathbf{w} \in \mathbb{R}^d$ that satisfies:

$$\forall i \in [d] \ y_i = \sum_{j=1}^d \mathbf{w}_j \cdot x_{ij} = \mathbf{w}^\top x_i$$

Let us rearrange the equations in matrix form. Given a linear equation we will denote all it's x's by the vector $x_i \in \mathbb{R}^d$ where i denotes the numbering of the current equation. Similarly we will arrange all the y's in a vector $y \in \mathbb{R}^d$. Thus, we can represent the problem written above as follows:

Find
$$\mathbf{w} \in \mathbb{R}^d$$
 such that $y = X\mathbf{w}$

As we assumed that all linear equations are independent, the rows of X are linearly independent. Therefore, it is of full rank and there exists an invertible matrix X^{-1} such that $XX^{-1} = I$. Equipped with this observation finding \mathbf{w} is simply:

$$y = X\mathbf{w} \Rightarrow X^{-1}y = X^{-1}X\mathbf{w} \Rightarrow \mathbf{w} = X^{-1}y$$

R

Let us think of each vector $x_i \in \mathbb{R}^d$ as some independent observation (or sample) we have of some phenomena. Each coordinate of x_i corresponds some measurement we have of this observation. Together with this sample we are given some response value $y_i \in \mathbb{R}$. By solving for \mathbf{w} we learn the relation between the x's and y's. Now suppose we are given a new sample $x \in \mathbb{R}^d$. As we already know the relation between the xs and the ys, we can predict what is the appropriate y value it achieves.

The general problem of finding such vectors is called **Regression**. In the case where the relationship is linear it is called **Linear Regression**. We will discuss linear regression in ??.

1.2 Norms, Inner Products and Projections

More many applications in machine learning we are interested in measuring distances between vectors or sizes of vectors, and "using" a vector (or set of vectors) on another vector. For such, let us formulate these notions.

Definition 1.6 — Metric. A function on a set $X \subseteq \mathbb{F}^k$ $d: X \times X \to \mathbb{R}_+$ is called a metric function (or distance function) *if* f for any $v, u, w \in X$ it holds that:

- $d(v,u) = 0 \iff v = u$
- Symmetry: d(v, u) = d(u, v)
- Triangle inequality $d(v, u) \le d(v, w) + d(w, u)$.

These conditions also imply that a metric is non-negative. As such, we also call a metric function a positive-definite function. Some common metric functions are the absolute distance or the Euclidean distance.

Exercise 1.1 Let $v, u \in \mathbb{R}^k$. Show that the absolute distance, defined as the sum of absolute element-wise subtraction between the vectors $d(v, u) := \sum |v_i - u_i|$, is a metric function.

Proof. Firstly, notice that for some scalars $a,b \in \mathbb{R}$ it holds that |a-b| = 0 iff a = b. Therefore d, being a sum of non-negative elements equals zero if f all elements are zero. This takes place if f v = u. Next, symmetry of d is achieved through symmetry of the absolute value function. Lastly, let $v,u,w \in \mathbb{R}^k$ then

$$d(v,u) = \sum |v_i - u_i| = \sum |v_i - w_i + w_i - u_i| \le \sum |v_i - w_i| + \sum |w_i - u_i| = d(v,w) + d(w,u)$$

Next, let us define the notion of a size of a vector.

Definition 1.7 — Norm. A norm is a function $||\cdot||: \mathbb{R}^d \to \mathbb{R}_+$ that satisfies the following three conditions for all $a \in \mathbb{R}$ and all $u, v \in \mathbb{R}^d$:

- Positive definite: $||v|| \ge 0$ and ||v|| = 0 iff v is the zero vector.
- Positive homogeneity: $||av|| = |a| \cdot ||v||$.
- Triangle inequality: $||v + u|| \le ||v|| + ||u||$.

We can think of this size in the sense of vector's *distance* from the origin, under some distance function defined by the norm. A few commonly used norms are:

- Absolute norm (ℓ_1) : $||v||_1 := \sum |v_i|$.
- Euclidean norm (ℓ_2) : $||v||_2 := \sqrt{\sum x_i^2}$.
- Infinity norm: $||x||_{\infty} := max_i |v_i|$.
- The absolute and Euclidean norms are part of a wider family of norms called the L_p norms defined as $||v||_p := \left(\sum |v_i^p|\right)^{1/p}, \quad p \in \mathbb{N}.$

Definition 1.8 Let V be a vector space and $||\cdot||$ be a norm over this space. The unit ball of $||\cdot||$ is defined as the set of vectors such that: $B_{||\cdot||} = \{v \in V : ||v|| \le 1\}$.

Now that we have defined the notions of distances and sizes of vectors, we want to define what it means to "apply" some vector on another.

Definition 1.9 — Inner Product. An inner product space is a vector space V over \mathbb{R} together with a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}_+$ satisfying that $\forall v, u, w \in V, \alpha \in \mathbb{R}$:

- Symmetry: $\langle v, u \rangle = \langle u, v \rangle$
- Linearity: $\langle \alpha v + w, u \rangle = \alpha \langle v, u \rangle + \langle w, u \rangle$
- Non-negativity: $\langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0 \iff v = 0$

Notice the similarity between the definition of a norm and of an inner product. In fact, given an inner-product space, we are also given a norm on this space.

Claim 1.2 — Induced Norm. Let H be an inner product space. Then the function $||\cdot||: H \to \mathbb{R}_+$ is defined $\forall v \in H$ by $||v|| = \langle v, v \rangle^{\frac{1}{2}}$ is a norm on H.

Exercise 1.2 Let $v, u \in V$. Show that $\langle v, u \rangle = ||v|| ||u|| \cos \theta$, where θ is the angle between v, u.

Proof. Recall the Law of Cosines: in a triangle with lengths a, b, c, then

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

By applying the cosine law to the triangle defined by v and u and v - u we see that:

$$||v - u||^2 = ||v||^2 + ||u||^2 - 2||v|| \cdot ||u|| \cdot \cos \theta$$

On the other hand we also know that:

$$||v - u||^2 = \langle v - u, v - u \rangle = \langle v, v \rangle - 2 \langle v, u \rangle + \langle u, u \rangle = ||v||^2 + ||u||^2 - 2 \langle v, u \rangle$$

Hence, we conclude that:

$$||v|| \cdot ||u|| \cdot \cos \theta = \langle v, u \rangle$$

From the above, we have an expression for the angle between two vectors, using the inner-product. We can therefore define what it means to project one vector onto the other. Using the identity of $\cos \theta$:

$$p = ||v||\cos\theta \cdot \frac{u}{||u||} = ||v|| \frac{\langle v, u \rangle}{||v|| \cdot ||u||} \cdot \frac{u}{||u||} = \frac{\langle v, u \rangle}{||u||^2} \cdot u$$

Definition 1.10 — Vector Projection. A projection of a vector v onto a vector u, is a vector p of length $||v||\cos\theta$ in the direction of u.

Notice, that for the special case where $\theta = 90^{\circ}$ we get $\langle v, u \rangle = 0$. In this case we say that the vectors v, u are "orthogonal", and use the notation: $v \perp u$. If v, u are also unit vectors we say that the vectors v, u are "orthonormal" to each other.

Definition 1.11 An orthogonal matrix is a square matrix whose columns are unit vectors orthogonal to one another (i.e. they are orthonormal vectors) and whose rows are unit vectors orthogonal to one another.

Lemma 1.3 Let $A \in \mathbb{R}^{d \times d}$ orthogonal matrix, then

$$AA^{\top} = I = A^{\top}A$$

Putting together the definitions of a vector projection and orthogonal matrices we can define the notion of orthogonal projecting a vector onto some linear subspace.

Definition 1.12 Let V be a k-dimensional subspace of \mathbb{R}^d , and let v_1, \ldots, v_k be an orthonormal basis of V. Define $P = \sum_{i=1}^k v_i v_i^{\top}$. The matrix P is an *orthogonal projection matrix* onto the subspace V.

The following lemma summarizes some useful properties of orthogonal projection matrices.

Lemma 1.4 Let v_1, \ldots, v_k be a set of orthonormal vectors, and let $P = \sum_{i=1}^k v_i \otimes v_i^{\top} = \sum_{i=1}^k v_i v_i^{\top}$. P has the following properties:

- P is symmetric
- $P^2 = P$

- The eigenvalues of P are either 0 or 1. v_1, \ldots, v_k are the eigenvectors of P which correspond to the eigenvalue 1.
- (I-P)P=0
- $\forall x \in \mathbb{R}^d$ and $\forall u \in V, ||x u|| \ge ||x Px||$
- $x \in V \Rightarrow Px = x$

Notice that the definition of the projection matrix includes a sum of outer products

1.3 Matrix Decompositions

Matrix factorizations/decompositions are a strong tool with many theoretical as well as practical usages. It often appears in many different machine learning approaches, some of which we will encounter.

Definition 1.13 Let A be a square matrix. A is diagonalizable if there exists an invertible matrix P such that $P^{-1}AP$ is diagonal.

Next, we would like to see if we could represent *A* as the multiplication of orthogonal matrices, and a diagonal one.

Definition 1.14 — Eigenvector and Eigenvalue. Let A a square matrix. We say that a vector $0 \neq v \in V$ is an eigenvector of A corresponding to an eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.

Claim 1.5 Let *A* be a square symmetric matrix. Then there exists an orthonormal basis $u_1, ..., u_n \in \mathbb{R}^d$ of eigenvectors of *A*.

Theorem 1.6 — EVD. Let $A \in \mathbb{R}^{d \times d}$ be a real symmetric matrix. Then there exist an orthonormal matrix $U \in \mathbb{R}^{d \times d}$ and a diagonal matrix D such that, $D_{i,i}$, i = 1..n are the eigenvalues of A and $A = UDU^{\top}$.

This decomposition of A is called Eigenvalues Decomposition (EVD). It is widely used and has some strong properties. For example, notice that it is very easy to compute high powers of A: $A^k = UDU^\top \cdot UDU^\top \cdot UDU^\top = UD^kU^\top$. It is also very easy to compute the inverse of A, if it exists: $A^{-1} = UD^{-1}U^\top$.

A drawback of the EVD is the restriction to square symmetric matrices. Though this is a rich family of matrices we would like to derive some useful decomposition for non-symmetric and even non-square matrices.

Definition 1.15 Let $(V, ||\cdot||)$ be a normed space. We say that $v \in V$ is a unit vector iff ||v|| = 1.

Definition 1.16 Let $A \in \mathbb{R}^{m \times d}$ and let $v \in \mathbb{R}^d$, $u \in \mathbb{R}^m$ be unit vectors. We say that v, u are right-and left singular vectors of A, respectively, corresponding to a singular value $\sigma \in \mathbb{R}_+$ if $Av = \sigma u$.

Theorem 1.7 — Singular Value Decoposition (SVD). Let $A \in \mathbb{R}^{m \times d}$ be a real matrix. A can be written as a singular value decomposition of the form $A = U\Sigma V^{\top}$, where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{d \times d}$ are orthonormal matrices, and $\Sigma \in \mathbb{R}^{m \times d}$ is a diagonal matrix with non-negative values. These are called the singular values of A.

Claim 1.8 Let $A = U\Sigma V^{\top}$ be an SVD of a matrix A. It holds that the columns of U and the rows of V^{\top} are the left- and right singular vectors of A, corresponding to the singular values present on the diagonal of Σ .

Suppose that rank(A) = r. This means that the number of non-zero singular values is r, and notice that $r \le \min\{d, m\}$. When $m \le d$ then A and Σ are both wide matrices (they have more columns than rows):

$$A = U\Sigma V^{\top} = \begin{bmatrix} & & & & & & & & \\ & & & & & & & \\ & u_1 & \cdots & u_r & \cdots & u_m \\ & & & & & & \end{bmatrix} \begin{bmatrix} & \sigma_1 & \cdots & 0 & & & \\ & \vdots & \ddots & \vdots & & 0 & \\ & 0 & \cdots & \sigma_r & & & \\ & & & & & 0 & \cdots & 0 \\ & & & & \vdots & \ddots & \vdots & \\ & & & & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} & - & v_1^{\top} & - & \\ & \vdots & & \\ & - & v_r^{\top} & - & \\ & \vdots & & \\ & - & v_d^{\top} & - & \end{bmatrix}$$

Since $\sigma_{r+1}, \ldots, \sigma_m$ are all zero, and any off diagonal element of Σ is zero, the left- and right singular values with indices greater than r are multiplied by zeros and do not take part in the final construction of the matrix A. Their purpose is in expanding the set of left- and right singular vectors to form a basis for \mathbb{R}^m and \mathbb{R}^d respectively. This means that the important information carried by the SVD about the matrix A is actually contained in a smaller $r \times r$ matrix, sometimes called the **compact SVD of** A, which we can write as:

$$A = \tilde{U}\tilde{\Sigma}\tilde{V}^{\top} = \overbrace{\begin{bmatrix} & & & & \\ & & & \\ & u_1 & \cdots & u_r \\ & & & & \end{bmatrix}}^{m \times r} \begin{bmatrix} & \sigma_1 & \cdots & 0 \\ & \vdots & \ddots & \vdots \\ & 0 & \cdots & \sigma_r \end{bmatrix} \overbrace{\begin{bmatrix} & - & v_1^{\top} & - \\ & \vdots & \\ & - & v_r^{\top} & - \end{bmatrix}}^{d \times r}$$

To avoid cluttered notations we will drop the $\widetilde{\cdot}$ notation and refer to U, Σ, V in the compact form.

The two decompositions seen above and connected to one another. The following lemma the SVD of A to the EVD of AA^{\top} and $A^{\top}A$. In particular, it shows that the SVD of A can be calculated in polynomial time in m and d.

Lemma 1.9 Let
$$A = U\Sigma V^{\top}$$
 be an SVD of $A \in \mathbb{R}^{m \times d}$. Then $AA^{\top} = U\Sigma \Sigma^{\top}U^{\top}$ is an EVD of AA^{\top} , and $A^{\top}A = V\Sigma^{\top}\Sigma V^{\top}$ is an EVD of $A^{\top}A$.

This means that the eigenvalues of AA^{\top} and $A^{\top}A$ equal to the square of the singular values of A. In addition, as the orthogonal matrices of the EVD contain the eigenvectors of the matrix, the eigenvectors of AA^{\top} are the left singular values of A while the eigenvectors of $A^{\top}A$ are the right singular values of A.

Note however, that the inverse claim is not correct. Take, for example, $A = U_1 \Sigma V^{\top}$ with $U_1 \equiv -U$. Both relations, $AA^{\top} = U\Sigma \Sigma^{\top}U^{\top}$ and $A^{\top}A = V\Sigma^{\top}\Sigma V^{\top}$ are still EVD's but $A \neq U\Sigma V^{\top}$.