Answer all Questions

Q. No	Questions	Marks	со	BL
1	Consider the following relations for an online airline reservation			
	system for domestic flights:			

Online reservation can be done by any resident having an Aadhaar number. A resident can book ticket for his / her travel or for others.

FLIGHT (FLIGHTNO, AIRLINE, ORIGIN, DESTINATION, DURATION)

The value set of attribute AIRLINE is {Indigo, Air India Express, Air India, and Jet Airways}

AVAILABILITY (FLIGHTNO, DOT, CLASS, TOT, PRICE_PER_ADULT, NOS)

DOT - Date of Travel; TOT - Scheduled Start Time; NOS - Number of Seats Available

The value set of attribute CLASS is {Business, Economic}

RESERVATION (TNO, AADHAAR_NO, TRAVELER_NAME, DOB, FLIGHTNO, DOT, CLASS)

TNO - Ticket Number

The primary key of each relation is underlined.

Perform a reverse engineering and model the entity relationship	10	CO1	L3	
diagram for the above set of relations.				

n.		_	Consider three entities STUDENT, BRANCH and	2.
1			DEPARTMENT. The attributes of STUDENT entity are ROLLNO	
			and NAME. The attributes of BRANCH entity are BCODE and	
			BNAME. The attributes of DEPARTMENT entity are DCODE and	
			DNAME. The STUDENT entity and the DEPARTMENT Entity are	
			associated with a N:1 relationship BELONGS TO. The STUDENT	
			entity and the BRANCH entity are associated with a N:1	
			relationship ADMITTED TO. The DEPARTMENT entity and the	
			BRANCH entity are associated with a 1: N relationship HAS.	
L	CO1	5	i. Model an entity relationship diagram and map the entity	
			relationship diagram to relations.	
L	CO1	5	 Check whether each relation is normalized, if yes justify. 	
~			If a relation is not normalized normalize the relation.	
L	CO1	5	iii. If a relation is not normalized state reasons from the	
1.0	COI	-	viewpoint of the entity relationship model.	
L	CO1	2	Consider the relation α (β , γ). The attributes β , γ of relation α are	3.
L	COI		atomic. What can you infer from the following?	
			$\beta \rightarrow \gamma$	
			Outline.	
L	CO1	3	Consider the relation $\mu(\alpha, \beta, \gamma, \delta)$. The attributes $\alpha, \beta, \gamma, \delta$ are	4.
L	COI	2	atomic. The following functional dependencies hold:	
			$\alpha, \beta \rightarrow \gamma$	
			$\alpha o \delta$	
			What is the candidate key of relation μ? Is relation μ in second	
			normal form? Outline.	
L	CO2	10	Present a distributed database design for a chain of "Maruti Suzuki	5.
L	CO2	10	Service Centers". State the functional requirements you are	
			considering.	
L	CO3	10	For the relation presented in Question No. 1 illustrate CRUD	6.
Auth			operations using MongoDB.	

STUDENT	following rela	FACUI	TV	0	OURSE					
ROLLNO	NAME	FID	FNA		CODE	CNA	ME	CREE	ITS	
20191011	HAMEN	94728	ANU		CA133		Database Systems			
20191012	VIPPIN	94729	ANI		CA134		C Programming		3	
20191013	ANSU	94730	VINI		CA135		System Software		3	
	1.21.00.0	123,000	1							
				ENROLLS						
				ROLLNO			FID	SESS		
				20191011	CA133 94		94728	8 JAN202		
				20191012	CA132	94729		JAN2020		
				20191013	CA13	3	94729	JAN2020		
				20191011	CA134	1	94729	JAN2020		
				20191012	CA134	1	94729	JAN2020		
				20191013	CA134	1	94730	JAN202	20	
1 1	Decompose STUDENT_CO FACULTY_CO petween FACULTY_CO resultant relation	OURSE (CO relations OURSE and	(ROL CODE, F S'	FID, SESS). F TUDENT_CO	OURȘE	n equij	and join and	COI	L3	

Q1: Reverse Engineering and ER Diagram for Airline Reservation System

Entities and Attributes

- 1. **RESIDENT** (Aadhaar_No (PK), Name, DOB, Gender, Mobile_No)
- 2. **FLIGHT** (FlightNo (PK), Airline, Origin, Destination, Duration)
- 3. AVAILABILITY (FlightNo (FK), DOT, Class, TOT, Price_Per_Adult, NOS, PK: (FlightNo, DOT, Class))
- 4. **RESERVATION** (TNO (PK), Aadhaar_No (FK), Traveler_Name, DOB, FlightNo (FK), DOT, Class)

Relationships

- A Resident can make multiple Reservations. (1:N)
- A Flight has multiple availabilities for different dates and classes. (1:N)
- A Reservation is for a specific Flight, Date, and Class. (N:1)

ER Diagram

Draw an ER diagram with entities connected by the relationships as described above.

Q2: Entity Relationship for STUDENT, BRANCH, DEPARTMENT

(i) ER Model Mapping

- **STUDENT** (RollNo (PK), Name)
- **BRANCH** (BCode (PK), BName)
- **DEPARTMENT** (DCode (PK), DName)
- RELATIONSHIPS:
 - o **BELONGS_TO** (Student → Department) (N:1)
 - o **ADMITTED_TO** (Student → Branch) (N:1)
 - HAS (Department → Branch) (1:N)

(ii) Normalization

• If any redundancy exists, convert it into normalized relations.

(iii) Justification

• If the relations are in **1NF** (Atomicity), **2NF** (No Partial Dependency), **3NF** (No Transitive Dependency), then they are normalized.

Q3: Functional Dependency and Normalization

(i) Given Relation $\alpha(\beta, \gamma)$

- $\beta \rightarrow \gamma$ means β functionally determines γ .
- If β is a candidate key, the relation is already in **BCNF**.

(ii) Given Relation $\mu(\alpha, \beta, \gamma, \delta)$

- Functional Dependencies:
 - \circ $\alpha, \beta \rightarrow \gamma$
 - α → δ
- Candidate Key: (α, β)
- Check 2NF:
 - o If partial dependency exists (like $\alpha \rightarrow \delta$), it is not in **2NF**.
- Normalization to 2NF:
 - O Decompose into μ 1(α, δ) and μ 2(α, β, γ).

Q4: Distributed Database Design for Maruti Suzuki Service Centers

Functional Requirements

- 1. **Branch-wise service centers** with local data storage.
- 2. Centralized database for inventory and service tracking.
- 3. Distributed transaction management for customer bookings.
- 4. Replication and consistency management for multiple branches.

Q5: CRUD Operations in MongoDB

For the given database schema (from Q1):

```
1. Create:
```

```
db.RESERVATION.insertOne({
    TNO: "T12345",
    Aadhaar No: "123456789012",
    Traveler_Name: "John Doe",
    DOB: "1995-05-20",
    FlightNo: "AI101",
    DOT: "2025-04-01",
    Class: "Economy"
});
  2. Read:
db.RESERVATION.find({ FlightNo: "AI101" });
  3. Update:
db.RESERVATION.updateOne(
    { TNO: "T12345" },
    { $set: { Class: "Business" } }
);
  4. Delete:
```

db.RESERVATION.deleteOne({ TNO: "T12345" });

Q7: Decomposing ENROLLS into Two Relations and EquiJoin

Decomposition

1. STUDENT_COURSE (ROLLNO, CCODE)

```
(20191011, CA133)
(20191012, CA133)
(20191013, CA133)
(20191011, CA134)
(20191012, CA134)
(20191013, CA134)
```

2. FACULTY_COURSE (CCODE, FID, SESS)

```
(CA133, 94728, JAN2020)
(CA133, 94729, JAN2020)
(CA134, 94729, JAN2020)
(CA134, 94729, JAN2020)
(CA134, 94730, JAN2020)
```

Performing EquiJoin on CCODE

• The result will restore the original ENROLLS table.