quiz1. Co	ode=1 Digipen	ı login:	

1. **Problem** (8 pts):

One of the three most useful bit manipulating operations is setting a specific bit to 1. write code that sets n'th bit of integer i to 1, points are awarded for correctness and compactness:

2. **Problem** (2 * 3 pts):

Let x be a char (8 bits) and another char $mask = 7 = 00000111_2 = 2^2 + 2^1 + 2^0$. That is mask has only 3 bits set to 1 – at positions 0,1,2. Find English sentence A...N (all referring to x) which is equivalent to the given C-statement.

Note: the meaning of "is true" – when the statement is used in an if-statement, the *then* part will be executed, which is equivalent to arithmetical "not equal to zero".

A) At least one of the bits 0,1,2 is 0 B) Bits 3,4,5,6,7 are all 0's C) Bits 3,4,5,6,7 are all 1's D) At least one of the bits 3,4,5,6,7 is 0 E) At least one of the bits 3,4,5,6,7 is 1 F) Always false G) Bits 0,1,2 are all 1's H) Bits 0,1,2 are all 0's	2-1 (~(x & mask)) is true 2-2	
G) Bits 0,1,2 are all 1's		
 H) Bits 0,1,2 are all 0's I) x equals to 7 J) Always true 	(~x & mask) is true	
K) At least one of the bits 0,1,2 is 1 L) x equals to 0		

3. **Problem** (4 * 2 pts):

Convert C declaration into English

- A) an array of 5 pointers to pointers to int
- B) a pointer to a pointer to a function that returns an int
- C) a function that takes an int and returns a pointer to a pointer to an int
- D) a pointer to an array of 5 pointers to int
- E) an array of 5 pointers to functions taking an int and returning an int
- F) a pointer to a function that takes an int and returns an int
- G) a pointer to an array of 5 pointers to functions that take nothing and return an int
- H) legal, but not on the list
- I) a pointer to an array of 5 pointers to functions taking an int and returning an int
- J) a pointer to a function that takes an int and returns a pointer to an int
- K) an array of 5 pointers to functions taking an int and returning a pointer to int
- L) a pointer to a function taking int and returning an array of 5 ints
- M) a pointer to a pointer to an array of 5 int
- N) a pointer to a function taking int and returning a pointer to an array of 5 ints
- O) illegal declaration

4. **Problem** (2 * 3 pts):

Choose corresponding C-style declaration for each of the English statements below

- A) int *(foo(int))[5]
- B) int foo(int)*[5]
- C) int foo(int)[5]
- D) int *(*foo(int))[5]
- E) int *(foo[5])(int**[5])
- F) int (*foo[5])[5](int*(*))
- G) int (*foo[5])((*)[5]int*)
- H) int int*(*foo[5])((*)[5])
- I) illegal declaration
- J) legal, but not on the list
- K) int ([5]*foo(int))
- L) int (*foo(int))[5]
- M) (*foo(int))[5]int
- N) int [5](*foo(int))
- O) int (*foo[5])(int*(*)[5])
- P) int (*foo[5])(int*(*))[5]
 - 4-1._____ foo is a function taking taking int and returning a pointer to an array of 5 ints
- 4-2.____ foo is an array of 5 pointers to functions taking (a pointer to a array of 5 pointers to int) and returning an int

5. **Problem** (6 * 1 pts):

For each of the following expressions determine whether it's legal.

For legal expression write down its value.

Assume non-cumulative execution, i.e. all modifications from previous lines ARE LOST.

```
int c[]={5,7,10,3,1};
int *pc=c;
// assume pc = 1000; integer is 4 bytes
```

A) illegal	
B) 3	
C) 4	
D) 5	
E) 10	5-1*pc;
F) 1002	5-2*pc++;
G) 1003	5-3*++pc;
H) 1004	5-4(*++pc)++;
I) 1000	5-5pc+c[3];
J) 1001	5-6*pc+c[3];
K) 7	
L) 6	
M) 1012	
N) 8	

6. **Problem** (7 * 1 pts):

Which of the following assignments are legal? Assume Foo is a well-defined struct. Unless declaration is provided in a question, assume

```
Foo f;
const Foo cf;
Foo* p_f;
const Foo* p_cf;
Foo* const cp_f;
```

	6-1Foo* p_f = &f 6-2Foo* p_f = &cf
A) illegal	6-3Foo * const cp_f = &f
B) legal	$6-4$ Foo * const cp_f = &cf
D) legar	$6-5.$ cp_f = &f
	6-6Foo* p_f = cp_f;
	$6-7.$ cp_f = p_f;

7. **Problem** (6 pts):

Implement a pop_front function that deletes a node at the front of a singly-linked list. Function return type should be void