Assignment

EE23010: Probability and Random Processes Indian Institute of Technology, Hyderabad

Aman Kumar EE22BTECH11006

Question: Let *X* be a random variable with probability density function

$$f(x; \lambda) = \begin{cases} \frac{1}{\lambda} e^{-\frac{x}{\lambda}} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$
 (1)

where $\lambda > 0$ is an unknown parameter. Let $Y_1, Y_2, ..., Y_n$ be a random sample of size n from a population having the same distribution as X^2 . If

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 (2)

then which of the following statements is true?

- 1) $\sqrt{\frac{\bar{y}}{2}}$ is a method of moments estimator of λ
- 2) $\sqrt{\bar{Y}}$ is a method of moments estimator of λ
- 3) $\frac{1}{2}\sqrt{\bar{Y}}$ is a method of moments estimator of λ
- 4) $2\sqrt{\bar{Y}}$ is a method of moments estimator of λ

(GATE ST 2023)

Solution:

1) Using PDF in (1) we need to find an estimator for the unknown parameter λ in terms of sample mean \bar{Y} we know $Y_i = X_i^2$ then,

$$E(Y_i) = E(X_i^2) \tag{3}$$

$$= \int_0^\infty x^2 \frac{1}{\lambda} e^{-\frac{x}{\lambda}} \tag{4}$$

$$=2\lambda^2\tag{5}$$

Method of moment is defined by (2) which gives,

$$\bar{Y} = E(Y_i) \tag{6}$$

$$=2\lambda^2\tag{7}$$

where

$$\lambda = \sqrt{\frac{\bar{Y}}{2}} \tag{8}$$

- .. Option (1) is correct.
- 2) The simulation steps to estimate λ using method of moment estimator in python.
 - a) Generate a random value of λ within the specified range using **np.random.uniform(1,10)**
 - b) Use the generated λ to create a random sample of X values following the given PDF using **np.random.exponential**()
 - c) Then, generate Y as $Y = X^2$
 - d) calculate the mean (\bar{Y}) as **np.mean**(Y)
 - e) Hence, the estimated value of λ is **np.sqrt**($\frac{\tilde{Y}}{2}$)

Graph of simulated CDF vs Theoretical CDF

Fig. 2. Figure1