Les énergies fossiles VS les énergies renouvelables

Les énergies fossiles \(\overline{\

Type de combus- tible fossile	Énergie libérée par combustion (kJ·m ⁻³)	Émissions de gaz a effet de serre (g de CO ₂ ·m ⁻³)
Pétrole brut (lourd)	40,9 × 10 ⁶	3 090
Gaz naturel	37,3 × 10 ³	1 880
Charbon (anthra- cite)	27,7 × 10 ⁶	2 722

CARACTÉRISTIQUES DES ÉNERGIES FOSSILES

La formation du pétrole

Vie océanique

Il y a quatre cents millions d'années. le plancton et les algues morts se sont déposés au fond des océans.

Sédimentation

Cette matière organique s'est combinée à la boue et aux bactéries, et s'est enfoncée.

Mort des êtres vivants

Il y a plusieurs dizaines de millions d'années, les êtres vivants morts tombent au fond de l'océan et sont ensevelis par les sédiments.

Enfouissement

En l'absence d'02, la matière organique enfouie se transforme très lentement en pétrole sous l'effet de la chaleur et de la pression.

CARACTÉRISTIQUES DES ÉNERGIES FOSSILES

Le pétrole remonte en surface

Le pétrole formé remonte jusqu'à une roche réservoir recouverte d'une couche imperméable.

Exploitation

En haut de la couche de pétrole, une poche de gaz naturel (du méthane) se forme souvent.

On estime que les réserves mondiales de pétrole sont à 1700 milliards de barils, soit environ 50 années de consommation restantes, au rythme actuel.

Lycée VAUBAN / ALEXANDRE GRALL

DES ALTERNATIVES
SONT POSSIBLES!

LE BOIS ÉNERGIE

Type de combustible à base de bois	Bûches de bois sec (chêne)	Granulés
Énergie libérée par combus- tion (kJ·m ⁻³)	12,6 × 10 ⁶	21 × 10 ⁶
Émissions de gaz à effet de serre (g de CO ₂ ·m ⁻³)	705	803

Une quantité d'énergie libérée comparable au pétrole et au charbon mais pour une émission de gaz à effet de serre moindre!

En 2016, le bois représentait 41% de l'énergie renouvelable en France!

🗗 LA MÉTHANISATION

Dans un méthaniseur, en l'absence d'oxygène et sous l'effet de la chaleur (38 °C), des bactéries transforment en quelques dizaines de jours la matière organique en biogaz, principalement du méthane, et en un résidu appelé le digestat.

LA MÉTHANISATION (BioGNV)

LA MÉTHANISATION (BIOméthane)

LE GAZ VERT: UNE ÉNERGIE DÉCARBONÉE

ÉMISSIONS DE GAZ À EFFET DE SERRE (GES) DU BIOMÉTHANE EN ANALYSE DE CYCLE DE VIE.

COMPARATIF

Émission de gaz à effet de serre (g de Co2•m-3)

LE + RENTABLE SUR ENERGIE LIBEREE / EMISSION CO2

Énergie libérée en fonction de l'émission de CO2

Type d'énergie

RENEWABLE ENERGY / Romain MELLAZA

MERCI POUR VOTRE ATTENTION!

Lycée VAUBAN / Alexandre GRALL