6.852: Distributed Algorithms Fall, 2015

Lecture 9

Today's plan

- Distributed commit
- Formal modeling of asynchronous systems:
 - I/O automata
 - Executions and traces
 - Operations: composition, hiding
 - Properties and proof methods:
 - Invariants
 - Simulation relations
- Reading: Section 7.3, Chapter 8
- Next:
 - Asynchronous network algorithms: Leader election, breadth-first search, shortest paths, spanning trees.
 - Reading: Chapters 14 and 15

Distributed Commit

Distributed Commit

- Motivation: Distributed database transaction processing
 - A database transaction performs work at several distributed sites.
 - Transaction manager (TM) at each site decides whether it would like to "commit" or "abort" the transaction.
 - Based on whether the transaction's work has been successfully completed at that site, and results made stable.
 - All TMs must agree on whether to commit or abort.

Assume:

- Process stopping failures only.
- n-node, complete, undirected graph.

Require:

- Agreement: No two processes decide differently (faulty or not, uniformity)
- Validity:
 - If any process starts with 0 (abort) then 0 is the only allowed decision.
 - If all start with 1 (commit) and there are no faulty processes then 1 is the only allowed decision.

Correctness Conditions for Commit

- Agreement: No two processes decide differently.
- Validity:
 - If any process starts with 0 then 0 is the only allowed decision.
 - If all start with 1 and there are no faulty processes then 1 is the only allowed decision.
- Note asymmetry: Guarantee abort (0) if anyone wants to abort; guarantee commit (1) if everyone wants to commit and no one fails (best case).
- Termination:
 - Weak termination: If there are no failures then all processes eventually decide.
 - Strong termination (non-blocking condition): (Even if there are failures), all nonfaulty processes eventually decide.

2-Phase Commit

- Traditional, blocking algorithm (guarantees weak termination only).
- Assumes distinguished process 1, acts as "coordinator" (leader).
- Round 1: All send initial values to process 1, who decides.
 - If it sees 0, or doesn't hear from someone, it decides 0; otherwise it decides 1.
- Round 2: Process 1 sends the decision to everyone else.
- Q: When can the processes decide?
- Anyone with initial value 0 can decide at the beginning.
- Process 1 decides after receiving round 1 messages.
- Everyone else decides after round 2 (if there are no failures).

Correctness of 2-Phase Commit

Agreement:

 Because decision is centralized (and consistent with any individual initial decisions).

Validity:

Because of how the coordinator decides.

Weak termination:

 If no one fails, then everyone terminates by the end of round 2.

Strong termination?

 No: If the coordinator fails before sending its round 2 messages, then others with initial value 1 will never terminate.

Add a termination protocol?

 We might try to add a termination protocol: other processes try to detect failure of coordinator and finish agreeing on their own.

- But this can't always work:
 - If initial values are 0,1,1,1, then by validity, everyone is required to decide 0.
 - If initial values are 1,1,1,1 and process 1 fails just after deciding, and before sending out its round 2 messages, then:
 - Process 1 decides 1.
 - By agreement, others must decide 1.
 - But the other processes can't distinguish these two situations.

Complexity of 2-phase commit

- Time:
 - 2 rounds
- Communication:
 - At most 2n messages

3-Phase Commit [Skeen]

- Yields strong termination.
- Trick: Introduce intermediate stage, before actually deciding.
- Process states are now classified into four categories:
 - dec0: Already decided 0.
 - dec1: Already decided 1.
 - ready: Ready to decide 1 but hasn't yet.
 - *uncertain*: Otherwise.
- Again, process 1 acts as "coordinator".
- Communication pattern:

3-Phase Commit

All processes are initially uncertain.

Round 1:

- All other processes send their initial values to p_1 .
- All with initial value 0 decide 0 (and enter dec0 state)
- If p_1 receives 1s from everyone and its own initial value is 1, p_1 becomes ready, but doesn't yet decide.
- If p_1 sees 0 or doesn't hear from someone, p_1 decides 0.

Round 2:

- If p_1 has decided 0, it broadcasts "decide 0", else it broadcasts "ready".
- Anyone else who receives "decide 0" decides 0.
- Anyone else who receives "ready" becomes ready.
- Now p_1 decides 1 if it hasn't already decided.

Round 3:

- If p_1 has decided 1, it bcasts "decide 1".
- Anyone else who receives "decide 1" decides 1.

3-Phase Commit

- Key invariants (after 0, 1, 2, or 3 rounds):
 - If any process is in ready or dec1, then all processes have initial value 1.
 - If any process is in dec0 then:
 - No process is in *dec1*, and no non-failed process is *ready*.
 - If any process is in dec1 then:
 - No process is in dec0, and no non-failed process is uncertain.
- Proof: LTTR.
 - Key step: Third condition is preserved when p_1 decides 1 after round 2.
 - In this case, p_1 knows that:
 - Everyone's input is 1.
 - No one decided 0 at the end of round 1.
 - Every other process has either become ready or has failed (without deciding).
 - Implies the third condition.
- Note critical use of synchrony here:
 - p_1 infers that non-failed processes are ready just because round 2 is completed.
 - Without synchrony, this would require explicit acknowledgments.

Correctness conditions (so far)

- Agreement and validity follow, for these three rounds.
- Weak termination holds
- Strong termination:
 - Doesn't hold yet---must add a termination protocol.
 - Allow process 2 to act as coordinator, then 3,...
 - "Rotating coordinator" strategy

3-Phase Commit

Round 4:

- All processes send current status (dec0, uncertain, ready, dec1) to p_2 .
- If p_2 receives any dec0's and hasn't already decided, then p_2 decides 0.
- If p_2 receives any dec1's and hasn't already decided, then p_2 decides 1.
- If all received values, and its own value, are uncertain, then p_2 decides 0.
- Otherwise (all values are uncertain or ready and at least one is ready), p_2 becomes ready, but doesn't decide yet.

Round 5 (analogous to round 2):

- If p_2 has (ever) decided 0, broadcasts "decide 0", and similarly for 1.
- Else broadcasts "ready".
- Any undecided process who receives "decide()" decides accordingly.
- Any process who receives "ready" becomes ready.
- Now p_2 decides 1 if it hasn't already decided.

Round 6 (analogous to round 3):

- If p_2 has decided 1, broadcasts "decide 1".
- Anyone else who receives "decide 1" decides 1.
- Continue with subsequent rounds for p_3 , p_4 , ...

Correctness

- Key invariants still hold:
 - If any process is in ready or dec1, then all processes have initial value 1.
 - If any process is in dec0 then:
 - No process is in dec1, and no non-failed process is ready.
 - If any process is in dec1 then:
 - No process is in dec0, and no non-failed process is uncertain.
- Imply agreement, validity
- Strong termination:
 - Because eventually some coordinator will finish the job (unless everyone fails).

Complexity

- Time until everyone decides:
 - Normal case 3
 - Worst case 3n
- Messages until everyone decides:
 - Normal case O(n)
 - Technicality: When can processes stop sending messages?
 - Worst case $O(n^2)$

Practical issues for 3-phase commit

- Depends on strong assumptions, which may be hard to guarantee in practice:
 - Synchronous model:
 - Could emulate with approximately-synchronized clocks, timeouts.
 - Reliable message delivery:
 - Could emulate with acks and retransmissions.
 - But if retransmissions add too much delay, then we can't emulate the synchronous model accurately.
 - Leads to unbounded delays, asynchronous model.
 - Accurate diagnosis of process failures:
 - Get this "for free" in the synchronous model.
 - E.g., 3-phase commit algorithm lets process that doesn't hear from another process i at a round conclude that i must have failed.
 - Very hard to guarantee in practice: In Internet, or even a LAN, how to reliably distinguish failure of a process from lost communication?
- Other consensus algorithms can be used for commit, including some that don't depend on such strong timing and reliability assumptions.

Paxos consensus algorithm [Lamport]

- A more robust consensus algorithm, can be used for commit.
- Tolerates process stopping and recovery, message losses and delays,...
- Runs in partially synchronous model.
- Similar to algorithm by [Dwork, Lynch, Stockmeyer].
- Algorithm idea:
 - Processes use an unreliable leader election subalgorithm to choose a coordinator, who tries to achieve consensus.
 - Coordinator decides based on active support from a majority of the processes.
 - Does not assume anything based on not receiving a message.
 - Subtleties arise when multiple coordinators are active---must ensure consistency.
- Practical difficulties with fault-tolerance in the synchronous model motivate studying the asynchronous model (later today).

A Lower Bound for Commit

- How many messages are needed to solve the commit problem?
- Theorem [Dwork, Skeen]: Any algorithm that solves the commit problem, even with weak termination, uses at least 2n-2 messages in the failure-free execution α in which all inputs are 1.

• Note: That's what 2-phase commit uses, so 2-phase commit is "optimal": p_1

• Proof considers the communication pattern for α :

Information flow in a communication pattern

- *i* affects *j* in a pattern if there is a path in the pattern from *i* at time 0 to *j* at some later time.
- In Pattern 1, all processes affect all processes.
- In Pattern 2, 4 does not affect 1.
- Lemma: In the failure-free, all-1-input run α , every i affects every j in the communication pattern of α .
- Corollary: The communication pattern of α has at least 2n-2 edges.

Proof of the Lemma

- Lemma: In the failure-free, all-1-input run α , every i affects every j in the communication pattern of α .
- Proof:
 - By contradiction. Suppose i does not affect j (for some particular i, j).
 - Then $i \neq j$.
 - Construct execution α' , which is the same as α except that:
 - i's input is 0, and
 - Every process that is affected by process i in α fails just after it first gets affected by process i in α .
- Example: Process 4 does not affect process 1.

Proof of the Lemma

- Lemma: In the failure-free, all-1-input run α , every i affects every j in the communication pattern of α .
- Proof, cont'd:
 - Construct execution α' :
 - *i*'s input is 0, and
 - Every process that is affected by process i in α fails just after it first gets affected by process i in α .
 - In α , all processes eventually decide 1.
 - $-\alpha'$ is indistinguishable from α to process j.
 - So process j decides 1 in α' , which contradicts the requirements.

Asynchronous Systems

Asynchronous systems

- No timing assumptions
 - No rounds
- Two kinds of asynchronous models:
 - Asynchronous networks
 - Processes communicating via channels
 - Asynchronous shared-memory systems
 - Processes communicating via shared objects

Asynchronous network: Processes and channels

Asynchronous shared-memory system: Processes and objects

These processes and objects are also "reactive" components.

In both cases, we have reactive components.

We need a general model for reactive components.

Specifying problems and systems

- Processes, channels, and objects are automata
 - Perform actions while changing state.
 - Reactive
 - Interact with environment via input and output actions.
 - Not just functions from input values to output values; they may have more kinds of interactions.

Execution:

- Sequence of states and actions
- Interleaving semantics
- External behavior (trace):
 - We observe external actions.
 - States and internal actions are hidden.
 - Problems are defined in terms of allowable traces.

Input/Output Automata

Input/Output Automata

- General mathematical modeling framework for reactive system components.
 - Little structure---must add special structure to specialize it for networks, shared-memory systems,...
- Designed for describing systems in a modular way:
 - Supports description of individual system components, and how they compose to yield a larger system.
 - Supports description of systems at different levels of abstraction, e.g.:
 - Detailed implementation vs. higher-level algorithm description.
 - Optimized algorithm vs. simpler, un-optimized version.
- Supports several standard proof techniques:
 - Invariants
 - Simulation relations (like running 2 algorithms side-by-side and relating their behavior step-by-step).
 - Compositional reasoning (prove properties of individual components; use compositional reasoning to infer properties for the overall system).

Input/Output Automaton

- State transition system
 - Transitions labeled by actions
- Actions classified as input, output, internal
 - Input, output are external.
 - Output, internal are locally controlled.

Input/Output Automaton, formally

- sig = (in, out, int)
 - input, output, internal actions (disjoint)
 - in \cup out \cup int
 - $ext = in \cup out$
 - $-local = out \cup int$
- states: Not necessarily finite
- $start \subseteq states$
- $trans \subseteq states \times acts \times states$
 - Input-enabled: Any input "enabled" in any state.
- tasks, partition of locally controlled actions
 - Used to specify liveness.

Remarks

- A step of an automaton is an element of *trans*.
- Action π is enabled in a state s if trans contains a step (s, π, s') for some s'.
- I/O automata must be input-enabled.
 - Every input action is enabled in every state.
 - Captures the idea that an automaton cannot control its inputs.
 - If we want restrictions, model the environment as another automaton and express restrictions in terms of the environment.
 - Could allow a component to detect bad inputs and halt, or exhibit unconstrained behavior for bad inputs.
- Tasks correspond to "threads of control".
 - Used to define fairness (give turns to all tasks).
 - Needed to guarantee liveness properties (e.g., the system keeps making progress, or eventually terminates).

Example: Channel automaton

- Reliable unidirectional FIFO channel between two processes.
 - Fix message alphabet M.
- signature
 - input actions: $send(m), m \in M$
 - output actions: $receive(m), m \in M$
 - No internal actions
- states
 - queue: FIFO queue of M, initially empty

Channel automaton

trans

- send(m)
 - effect: add m to (end of) queue
- -receive(m)
 - precondition: *m* is at head of *queue*
 - effect: remove head of *queue*

tasks

- All receive actions in one task.

Channel automaton

trans

- $-send(m)_{i,j}$
 - effect: add m to (end of) queue
- $receive(m)_{i,j}$
 - precondition: *m* is at head of *queue*
 - effect: remove head of queue

tasks

All receive actions in one task.

A process

- E.g., in a consensus protocol.
- See book, p. 205, for code details.

- Inputs arrive from the outside.
- Process sends/receives values, collects vector of values, one for each process.
- When vector is filled, outputs a decision obtained as a function of the vector.
- Can get new inputs, change values, send and output repeatedly.
- Tasks for:
 - Sending to each individual neighbor.
 - Outputting decisions.

Executions

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.
- Formally, an execution is a finite or infinite sequence:
 - $s_0 \pi_1 s_1 \pi_2 s_2 \pi_3 s_3 \pi_4 s_4 \pi_5 s_5 \dots$ (if finite, ends in state)
 - s₀ is a start state
 - $(s_i, \pi_{i+1}, s_{i+1})$ is a step (i.e., in trans)

 λ , send(a), a, send(b), ab, receive(a), b, receive(b), λ

Execution fragments

- An I/O automaton executes as follows:
 - Start at some start state.

execution fragment

- Repeatedly take step from current state to new state.
- Formally, an execution is a sequence:
 - $\ \mathbf{S_0} \ \boldsymbol{\pi_1} \ \mathbf{S_1} \ \boldsymbol{\pi_2} \ \mathbf{S_2} \ \boldsymbol{\pi_3} \ \mathbf{S_3} \ \boldsymbol{\pi_4} \ \mathbf{S_4} \ \boldsymbol{\pi_5} \ \mathbf{S_5} \ \dots$
 - s₀ is a start state
 - $(s_i, \pi_{i+1}, s_{i+1})$ is a step.

Invariants and reachable states

- A state is reachable if it appears in some execution.
 - Equivalently, at the end of some finite execution.
- An invariant is a predicate that is true for every reachable state.
 - Most important tool for proving properties of concurrent/distributed algorithms.
 - Typically proved by induction on length of execution.

Traces

- Traces allow us to focus on components' external behavior.
- Useful for defining correctness.
- A trace of an execution is the subsequence of external actions in the execution.
 - No states, no internal actions.
 - Denoted $trace(\alpha)$, where α is an execution.
 - Models "observable behavior".

```
\lambda, send(a), a, send(b), ab, receive(a), b, receive(b), \lambda
```

send(a), send(b), receive(a), receive(b)

Operations on I/O Automata

Operations on I/O automata

- To describe how systems are built out of components, the model has operations for composition, hiding, renaming.
- Composition:
 - "Put multiple automata together."
 - Output actions of one may be input actions of others.
 - All components having an action perform steps involving that action together ("synchronize on actions").
- Composing finitely many (or countably many) automata A_i , $i \in I$:
- Need compatibility conditions:
 - Internal actions aren't shared:
 - $int(A_i) \cap acts(A_i) = \emptyset$
 - Only one automaton controls each output:
 - $out(A_i) \cap out(A_i) = \emptyset$
 - But output of one automaton can be an input of one or more others.
 - No action is shared by infinitely many A_i s.

Composition of compatible automata

- For two automata A and B (see book for general case).
- $out(A \times B) = out(A) \cup out(B)$
- $int(A \times B) = int(A) \cup int(B)$
- $in(A \times B) = in(A) \cup in(B) (out(A) \cup out(B))$
- $states(A \times B) = states(A) \times states(B)$
- $start(A \times B) = start(A) \times start(B)$
- $trans(A \times b)$: includes (s, π, s') iff
 - $(s_A, \pi, s'_A) \in trans(A)$ if $\pi \in acts(A)$; $s_A = s'_A$ otherwise.
 - $(s_B, \pi, s'_B) \in trans(B)$ if $\pi \in acts(B)$; $s_B = s'_B$ otherwise.
- $tasks(A \times B) = tasks(A) \cup tasks(B)$
- Notation: $\Pi_{i \in I} A_i$, for composition of A_i , $i \in I$.

Composition of channels and consensus processes

Projection

 Execution of composition "looks good" to each component.

Pasting

 If execution "looks good" to each component, it is good overall.

Substitutivity

Can replace a component with one that implements it.

Theorem 1: Projection

- If α ∈ $execs(ΠA_i)$ then $\alpha | A_i ∈ execs(A_i)$ for every i.
- If β ∈ $traces(\Pi A_i)$ then $\beta | A_i \in traces(A_i)$ for every i.

Theorem 2: Pasting

Suppose β is a sequence of external actions of ΠA_i .

- If $\alpha_i \in execs(A_i)$ and $\beta | A_i = trace(\alpha_i)$ for every i, then there is an execution α of ΠA_i such that $\beta = trace(\alpha)$ and $\alpha_i = \alpha | A_i$ for every i.
- If $\beta | A_i \in traces(A_i)$ for every *i* then $\beta \in traces(ΠA_i)$.

Theorem 3: Substitutivity

- Suppose A_i and A'_i have the same external signature, and $traces(A_i) \subseteq traces(A'_i)$ for every i.
 - A kind of "implementation" relationship.
- Then $traces(\Pi A_i) \subseteq traces(\Pi A_i')$ (assuming compatibility).

Proof:

Follows from trace pasting and projection, Theorems
 1 and 2.

Other operations on I/O automata

Hiding

- Reclassify some output actions as internal.
- Hides internal communication among components of a system.

Renaming

- Change names of some actions.
- Action names are important for specifying component interactions.
- E.g., define a "generic" automaton, then rename actions to define many instances to use in a system.
 - As we did with channel automata.

Fairness

Fairness

- Task T (a set of actions) corresponds to a "thread of control".
- Used to define "fair" executions: a task that is continuously enabled eventually takes a step.
- Tasks are used to state and prove liveness properties, e.g., that something eventually happens, like an algorithm terminating.
- Formally, an execution (or fragment) α of A is fair to task T if one of the following holds:
 - $-\alpha$ is finite and T is not enabled in the final state of α .
 - α is infinite and contains infinitely many events in T.
 - $-\alpha$ is infinite and contains infinitely many states in which T is not enabled.
- Execution of A is fair if it is fair to all tasks of A.
- Trace of A is fair if it is the trace of a fair execution of A.

Example

Channel

- Only one task (all receive actions).
- A finite execution of Channel is fair iff queue is empty at the end.
- Q: Is every infinite execution of Channel fair?
- Consensus process
 - Separate tasks for sending to each other process, and for output.
 - Means it "keeps trying" to do these forever.

Fairness and composition

- Fairness "behaves nicely" with respect to composition---results analogous to non-fair results:
- Theorem 4: Projection
 - If $\alpha \in fairexecs(\Pi A_i)$ then $\alpha | A_i \in fairexecs(A_i)$ for every i.
 - If $\beta \in fairtraces(\Pi A_i)$ then $\beta | A_i \in fairtraces(A_i)$ for every i.
- Theorem 5: Pasting
 - Suppose β is a sequence of external actions of ΠA_i .
 - If $\alpha_i \in fairexecs(A_i)$ and $\beta | A_i = trace(\alpha_i)$ for every i, then there is a fair execution α of ΠA_i such that $\beta = trace(\alpha)$ and $\alpha_i = \alpha | A_i$ for every i.
 - If β | A_i ∈ $fairtraces(A_i)$ for every i then β ∈ $fairtraces(Π<math>A_i$).

Fairness and composition

- Theorem 6: Substitutivity
 - Suppose A_i and A'_i have the same external signature, and $fairtraces(A_i) \subseteq fairtraces(A'_i)$ for every i.
 - Another kind of "implementation" relationship.
 - Then $fairtraces(\Pi A_i) \subseteq fairtraces(\Pi A_i')$.

Composition of channels and consensus processes

Properties and Proof Methods

- Compositional reasoning
- Invariants
- Trace properties
- Simulation relations

Compositional reasoning

- Use Theorems 1-6 to infer properties of a system from properties of its components.
- And vice versa.

Invariants

- A state is reachable if it appears in some execution (or, at the end of some finite execution).
- An invariant is a predicate that is true for every reachable state.
- Most important tool for proving properties of concurrent and distributed algorithms.
- Proving invariants:
 - Typically, by induction on length of execution.
 - Often prove batches of inter-dependent invariants together.
 - Step granularity is finer than round granularity, so proofs are more complicated and detailed than those for synchronous algorithms.

Example: Incrementing

- Two processes, P_1 and P_2 , communicating via channels C_{12} and C_{21} : $send(v)_{12}$, $receive(v)_{12}$, $send(v)_{21}$, $receive(v)_{21}$.
- Each process has a local variable val.
- Initially P_1 , val = 1, P_2 , val = 2.
- Transitions:
 - send(v), where v = val, at any time.
 - When receive(v): val := v + 1.
- Invariant 1: P_1 . val is odd and P_2 . val is even
- Proof: By induction.
 - Base: Yes
 - Inductive step:
 - Cases based on various kinds of send/receive actions.
 - Strengthen invariant?
 - Add that any value in C_{12} is odd, and any value in C_{21} is even.

Example: Incrementing

- Initially P_1 , val = 1, P_2 , val = 2.
- Transitions:
 - send(v), where v = val, at any time.
 - When receive(v): val := v + 1.
- Invariant 1: P_1 . val is odd and P_2 . val is even
- Invariant 2: $|P_2 val P_1 val| \le 1$
- Proof: By induction.
 - Base: Yes
 - Inductive step:
 - Cases based on various send/receive actions.
 - Strengthen invariant?
 - LTTR.

Trace properties

- A trace property is essentially a set of allowable external behavior sequences.
- Formally, a trace property P is a pair consisting of:
 - sig(P): External signature (no internal actions).
 - traces(P): Set of sequences of actions in sig(P).
- Automaton A satisfies trace property P if (two different, alternative notions, depending on whether we want to consider fairness):
 - $extsig(A) = sig(P) \text{ and } traces(A) \subseteq traces(P)$
 - -extsig(A) = sig(P) and $fairtraces(A) \subseteq traces(P)$

Safety and liveness

- Safety property: "Bad" thing doesn't happen:
 - Nonempty (null trace is always safe).
 - Prefix-closed: Every prefix of a safe trace is safe.
 - Limit-closed: Limit of sequence of safe traces is safe.
- Liveness property: "Good" thing happens eventually:
 - Every finite sequence over acts(P) can be extended to a sequence in traces(P).
 - "It's never too late."
- Define safety/liveness for executions similarly.

Automata as specifications

- Every I/O automaton specifies a trace property (extsig(A), traces(A)).
- So we can use an automaton as a problem specification.
- Automaton A "implements" automaton B if
 - -extsig(A) = extsig(B)
 - $traces(A) \subseteq traces(B)$

Hierarchical proofs

- Important strategy for proving correctness of complex asynchronous distributed algorithms.
- Define a series of automata, each implementing the previous one ("successive refinement").
- Highest-level automaton model captures the "real" problem specification.
- Next level is a high-level algorithm description.
- Successive levels represent more and more detailed versions of the algorithm.
- Lowest level is the full algorithm description.

Abstract spec

High-level algorithm description

Detailed Algorithm description

Hierarchical proofs

- For example:
 - High levels centralized, lower levels distributed.
 - High levels inefficient but simple, lower levels optimized and more complex.
 - High levels with large granularity steps, lower levels with finer granularity steps.
- In all these cases, lower levels are harder to understand and reason about.
- So instead of reasoning about them directly, relate them to higher-level descriptions.
- Method similar to what we saw for synchronous algorithms.

Abstract spec

High-level algorithm description

Detailed Algorithm description

Hierarchical proofs

- Recall, for synchronous algorithms:
 - Optimized algorithm runs side-by-side with unoptimized version, and "invariant" proved to relate the states of the two algorithms.
 - Prove using induction.
- For asynchronous systems, it's harder:
 - Asynchronous model has more nondeterminism (in choice of new state, in order of steps).
 - So, it's harder to determine which executions to compare.
- One-way implementation relationship is enough:
 - For each execution of the lower-level algorithm, there is a corresponding execution of the higher-level algorithm.
 - "Everything the algorithm does is allowed by the spec."
 - Don't need the other direction: it doesn't matter if the algorithm does everything that is allowed.

Abstract spec

High-level algorithm description

Detailed Algorithm description

- Most common method of proving that one automaton implements another.
- Assume A and B have the same extsig, and R is a binary relation from states(A) to states(B).
- Then R is a simulation relation from A to B provided:
 - $-s_A$ ∈ start(A) implies that there exists s_B ∈ start(B) such that $s_A R s_B$.
 - If s_A , s_B are reachable states of A and B respectively, s_A R s_B and (s_A, π, s_A') is a step of A, then there is an execution fragment β of B, starting with s_B and ending with s_B' such that s_A' R s_B' and $trace(\beta) = trace(\pi)$.

- R is a simulation relation from A to B provided:
 - $s_A \in start(A)$ implies that there exists $s_B \in start(B)$ such that $s_A R s_B$.
 - If s_A , s_B are reachable states of A and B, s_A R s_B and (s_A, π, s'_A) is a step, then there is an execution fragment β starting with s_B and ending with s'_B such that s'_A R s'_B and $trace(\beta) = trace(\pi)$.

- Theorem: If there is a simulation relation from A to B then $traces(A) \subseteq traces(B)$.
- All traces of A, not just finite traces.
- Proof: Fix a trace of A, arising from a (possibly infinite) execution of A.
- Create a corresponding execution of B, using an iterative construction.

$$s_{0,A} \xrightarrow{\pi_1} s_{1,A} \xrightarrow{\pi_2} s_{2,A} \xrightarrow{\pi_3} s_{3,A} \xrightarrow{\pi_4} s_{4,A} \xrightarrow{\pi_5} s_{5,A}$$

• Theorem: If there is a simulation relation from A to B then $traces(A) \subseteq traces(B)$.

• Theorem: If there is a simulation relation from A to B then $traces(A) \subseteq traces(B)$.

• Theorem: If there is a simulation relation from A to B then $traces(A) \subseteq traces(B)$.

Example: Channels

Show two channels implement one.

- Rename some actions.
- Let $D = hide_{\{pass(m)\}} A \times B$.
- Show that $traces(D) \subseteq traces(C)$.

Recall: Channel automaton

- Reliable unidirectional FIFO channel.
- sig
 - Input actions: $send(m), m \in M$
 - output actions: $receive(m), m \in M$
 - No internal actions
- states
 - queue: FIFO queue of M, initially empty

Channel automaton

- trans
 - send(m)
 - effect: add *m* to *queue*
 - -receive(m)
 - precondition: m = head(queue)
 - effect: remove head of *queue*
- tasks
 - All receive actions in one task

Composing two channel automata

- Output of *B* is input of *A*
 - Rename receive(m) of B and send(m) of A to pass(m).
- Claim $D = hide_{\{pass(m)\}} A \times B$ implements C.
- Define relation R:
 - For $s \in states(D)$ and $u \in states(C)$, define s R u iff u. queue is the concatenation of s. A. queue and s. B. queue.
- Proof that *R* is a simulation relation:
 - Start condition: All queues are empty, so start states correspond.
 - Step condition: Define "step correspondence":

Composing two channel automata

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

Step correspondence:

- For each step $(s, \pi, s') \in trans(D)$ and u such that s R u, define execution fragment β of C:
 - Starts with u, ends with u' such that s' R u'.
 - trace(β) = trace(π)
- Here, actions in β depend only on π , and uniquely determine the states.
 - Same action if external, empty sequence if internal.

Composing two channel automata

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

- Step correspondence:
 - $-\pi = send(m)$ in D corresponds to send(m) in C
 - $-\pi = receive(m)$ in D corresponds to receive(m) in C
 - $-\pi = pass(m)$ in D corresponds to λ in C
- Verify that this works:
 - Same external actions (yes).
 - Actions of C are enabled.
 - Final states related by relation R.
- Routine case analysis:

Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

- Case 1: $\pi = send(m)$
 - No enabling issues (input).
 - Must check that s' R u'.
 - Since s R u, u. queue is the concatenation of s. A. queue and s. B. queue.
 - Adding the same m to the end of u. queue and s. B. queue maintains the correspondence.
- Case 2: $\pi = receive(m)$
 - Enabling: Check that receive(m), for the same m, is also enabled in u.
 - We know that *m* is first on *s*. *A*. *queue*.
 - Since s R u, m is also first on u. queue.
 - So receive(m) is enabled in u.
 - -s'Ru': Since m is removed from both s.A.queue and u.queue.

Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

- Case 3: $\pi = pass(m)$
 - No enabling issues (since no high-level steps are involved).
 - Must check s' R u:
 - Since *s R u, u. queue* is the concatenation of *s. A. queue* and *s. B. queue*.
 - The concatenation of the queues is unchanged as a result of this step, so also u. queue is the concatenation of s'. A. queue and s'. B. queue.

Next lecture

- A bit more on safety and liveness properties.
- Then, basic asynchronous network algorithms:
 - Leader election
 - Breadth-first search
 - Shortest paths
 - Spanning trees.
- Reading:
 - Chapters 14 and 15