

Conceitos básicos sobre computadores

Professora: Emanoeli Madalosso emanoelim@utfpr.edu.br

Componentes básicos de um computador

- Um sistema de computação é formado por alguns componentes principais:
 - Processador;
 - Memória;
 - Dispositivos de E/S (entrada/saída), também conhecidos como dispositivos de I/O (input/output);
 - Interconexões entre esses componentes (barramentos).

- A função mais básica de um computador é executar programas. Um programa é formado por:
 - Conjunto de instruções;
 - Dados necessários para realizar as instruções.
 - Ex.: uma instrução de soma: x = y + z
 - y e z são os dados que a instrução precisa para ser executada

 Durante a execução de um programa, as instruções e os dados ficam carregados na memória do computador e o processador precisa acessá-las:

- Para que o processador consiga acessar a memória, eles precisam se comunicar de alguma maneira.
 - Essa comunicação é feita por meio do barramento.
- Todos os componentes que formam o computador estão conectados ao barramento:
 - Processador;
 - Memória;
 - Dispositivos de E/S (mouse, teclado, etc);

- Os barramentos podem ser classificados em 3 tipos principais:
 - Barramento de dados;
 - Barramento de endereços;
 - Barramento de **controle**;
- O conjunto desses 3 barramentos forma o barramento de sistema.

- Barramento de dados: transmitem dados.
 - Um barramento é formado por linhas. Cada linha do barramento transmite 1 bit por vez, 0 ou 1.
 - Um processador de 32 bits, por exemplo, precisaria de um barramento de 32 linhas para transmitir o dado inteiro. Se o barramento tivesse apenas 16 linhas, o dado teria que ser transmitido em duas partes.

- Barramento de endereços: indicam a fonte e o destino dos dados.
 - Se o processador deseja ler um dado da memória, ele deve informar o endereço desse dado para conseguir acessá-lo;
 - Se o processador deseja escrever um dado na memória, ele deve informar o endereço onde o dado será gravado.

			,	
N/I	Δ	m	\cap	ria
1 V I	C		v	ıщ

Dado 1	Endereço 1	
Dado 2	Endereço 2	
Dado 3	Endereço 3	

• Barramento de controle: como os barramentos de dados e de endereços são compartilhados entre os dispositivos, deve haver um controle para que diferentes dispositivos não enviem dados ao mesmo tempo, pois isso pode fazer com que os dados se sobreponham. O barramento de controle "organiza" quem irá enviar os dados de cada vez.

- Responsáveis pelo armazenamento dos dados. Se dividem em dois grandes grupos:
 - Memórias internas (ou primárias);
 - Memórias externas (ou secundárias);

- Memória interna: comunica-se diretamente com o processador. Ex.: memória RAM. A memória interna pode ser classificada em:
 - Memória principal;
 - Memória cache;

- Memória principal: memória de rápido acesso que armazena o que está sendo utilizado pelo computador em um determinado momento:
 - o Instruções e dados de um programa em execução;
 - Uma foto aberta no visualizador de fotos;
 - Etc;

- A memória principal é do tipo DRAM (Dynamic Random Access Memory).
- Ela é um tipo de memória volátil. Isso significa que os dados ficam armazenados na memória enquanto estão sendo utilizados. Após o desligamento do computador, esses dados são eliminados da memória.

- Memória cache: funciona como uma "ponte" entre o processador e a memória principal. Nela ficam os dados mais utilizados da memória principal, fazendo com que o processador possa acessá-los de forma mais rápida.
 - Quando o processador precisa de um dado, é feita uma verificação para ver se o dado já está carregado na memória cache. Caso esteja, basta o processador usar o dado. Caso não esteja, o dado é buscado na memória principal e então carregado na memória cache, sendo entregue ao processador logo em seguida.

Conceito de memória cache:

- Atualmente costuma-se usar mais de um nível de memória cache:
 - Nomenclatura: L1, L2, L3...
 - L vem do inglês Level (nível);
 - Quanto maior a proximidade com o processador, menor o número;

- Diferente da memória principal, que é do tipo DRAM, a **memória cache** é do tipo **SRAM** (*Static Random Access Memory*). Qual a diferença?
 - DRAM: o tipo de circuito que utiliza requer recargas periódicas de energia para manter os dados atualizados. Esse processo de recargas é chamado de refresh.
 - SRAM: não é necessário fazer refresh.
 - Mesmo não precisando de refresh, ela ainda é um tipo de memória volátil, pois ao desligar o computador os dados são carregados nela são perdidos.

- Se a memória cache (SRAM) é mais rápida que a principal (DRAM), porque não usar somente SRAM?
 - SRAM utiliza circuito maior e mais caro.

Memória externa

- Memórias externas (ou secundárias) possuem grande capacidade de armazenamento:
 - O HD;
 - Pen drive;
 - O DVD;
- Não voláteis: as informações ficam armazenadas mesmo se o computador for desligado.
- Mais lentas que as memórias internas;

Memória externa

- Não se comunicam diretamente com processador;
 - As informações necessárias são carregadas para a memória principal e então usadas pelo processador.

Processador

- CPU (Central Processing Unit Unidade Central de Processamento);
- É o "cérebro" do computador;
- Executa operações lógicas e aritméticas;

• Estrutura básica:

- Registradores: tipo de memória que armazena instruções e dados usados pelo processador;
 - Estão no topo da hierarquia de memória: meio mais rápido (e caro) de armazenar informações;
 - As instruções são deslocadas da memória principal para os registradores e então são executadas pelo processador;

- UC Unidade de Controle: responsável por decodificar as instruções e encaminhá-las para seu destino. Ex.:
 - Enviar um sinal de controle que diga para a ULA executar uma soma;
 - Enviar um sinal de controle para o conteúdo de um registrador ser transferido para a ULA.

- ULA Unidade Lógica e Aritmética: é o núcleo, a essência do computador;
- Todos os os outros componentes do computador (memória, registradores, UC, E/S), servem principalmente para trazer dados para a serem processados pela ULA e receberem seus resultados;
- Executa operações lógicas e aritméticas sobre os dados;

Processador

Esquema da ULA:

- A e B: operandos. Exemplo 2 números a serem somados;
- **F**: instrução vinda da UC. Ex.: instrução de soma;
- R: resultado da operação;
- D: sinal informativo. Ex.: o resultado é negativo;

- Permitem a troca de dados entre o usuário e o computador.
 - **Entrada** tudo que nos permite enviar dados para computador:
 - Teclado;
 - Mouse;
 - Microfone;
 - Câmera;
 - Saída tudo que nos retorna informações:
 - Monitor;
 - Impressora;
 - Caixas de som;

- Módulos de E/S: conjunto de conectores que ligam os dispositivos de E/S ao barramento do sistema. Por que os dispositivos não são diretamente ligados ao barramento do sistema?
 - Existe uma grande variedade de dispositivos de E/S;
 - O processador teria que conhecer a lógica necessária para controlar cada um deles;
 - Os dispositivos de E/S enviam diferentes tipos de dados, o processador teria que ser capaz de lidar com cada um deles.

- Os módulos de E/S tem duas funções principais:
 - Criar uma interface entre processador/memória e dispositivos de E/S;
 - 2. Tratar os tipos de dados que chegam até o processador para que ele consiga trabalhar com eles;

Estrutura básica

Referências

 Stallings, W. Arquitetura e organização de computadores. 5 ed. São Paulo. 2003.