2

CLAIMS

What is claimed is:

1	1.	A method of recording, with a channel change function, and playing back,
2		sessions from multiple digitally encoded, interframe compressed streams of
3		audiovideo data, comprising the steps of:
4	٠	(a) formatting each digitally encoded, interframe compressed stream of
5		audiovideo data for recording;
6		(b) recording each formatted stream on a recording medium as one or more
7 .		sessions while permitting changes between different formatted streams,
8		wherein the end of each session defines a channel change between
9		different formatted streams;
10		(c) recording on the recording medium one or more splice point indicators
11		providing information sufficient to determine the end of each session;
12		(d) reading each session from the recording medium;
13		(e) applying each session to a synchronizable decoding device;
14		(f) detecting one or more splice point indicators;
15		(g) determining the end of a session based on the information provided by the
16		detected splice point indicators; and
17		(h) re-synchronizing the decoding device to a reference clock value corre-
18		sponding to a next session in response to detection of each session end.
1	2.	The method of claim 1, wherein each splice point indicator delineates the end of
2		a session.
1	3.	The method of claim 1, wherein the splice point indicators are continuity time-

stamp fields periodically recorded on the recording medium.

(c)

sense command.

5

6

4. The method of claim 3, wherein the reference clock value is derived from at least 1 one continuity time-stamp field. 2 5. The method of claim 3, wherein the period of the continuity time-stamp fields 1 permits re-synchronization with essentially no perceptible interruption in decoding 2 3 of the streams. 6. The method of claim 5, wherein the period of the continuity time-stamp fields is 1 2 at least equal to the track rate of a helical scan recording device. 7. The method of claim 1, wherein the reference clock value is embedded in such 1 next session. 2 8. The method of claim 1, wherein the digitally encoded, interframe compressed 1 2 streams of audiovideo data are MPEG-encoded. 9. The method of claim 1, wherein the step of re-synchronizing comprises the steps 1 of: 2 (a) issuing a check condition indicating detection of the end of a session; 3 (b) receiving a request sense command; and

determining a reference clock value in response to receipt of the request

A system for recording, with a channel change function, and playing back,

10.

13.

one continuity time-stamp field.

1

2

1

sessions from multiple digitally encoded, interframe compressed streams of 2 audiovideo data, comprising: 3 (a) a formatting system for formatting each digitally encoded, interframe compressed stream of audiovideo data for recording; 5 (b) a recording device for recording each formatted stream on a recording 6 medium as one or more sessions while permitting changes between 7 different formatted streams, wherein the end of each session defines a 8 channel change between different formatted streams, and for recording on 9 the recording medium one or more splice point indicators providing 10 information sufficient to determine the end of each session; 11 a media reading device for reading each session from the recording (c) 12 medium and applying each session to a synchronizable decoding device; 13 (d) a detector for detecting one or more splice point indicators and determin-14 ing the end of a session based on the information provided by the detected 15 splice point indicators; and 16 (e) a control system for re-synchronizing the decoding device to a reference 17 clock value corresponding to a next session in response to detection of 18 each session end. 19 11. The system of claim 10, wherein each splice point indicator delineates the end of 1 2 a session. 12. The system of claim 10, wherein the splice point indicators are continuity time-1 stamp fields periodically recorded on the recording medium. 2

The system of claim 12, wherein the reference clock value is derived from at least

- 1 14. The system of claim 12, wherein the period of the continuity time-stamp fields
 2 permits re-synchronization with essentially no perceptible interruption in decoding
 3 of the streams.
- 1 15. The system of claim 14, wherein the period of the continuity time-stamp fields is at least equal to the track rate of a helical scan recording device.
- 1 16. The system of claim 10, wherein the reference clock value is embedded in such next session.
- 1 17. The system of claim 10, wherein the digitally encoded, interframe compressed streams of audiovideo data are MPEG-encoded.