2024 年暑期信息学奥赛考核

实战模拟(一)

时长: 4.5 小时

题目名称	卖房	这破路也能?	异或炸弹	LIS and Inversion
题目类型	传统型	传统型	传统型	传统型
输入文件名	T1.in	T2.in	T3.in	T4.in
输出文件名	T1.out	T2.out	T3.out	T4.out
每个测试点时限	1.0 秒	1.0 秒	2.0 秒	2.0 秒
内存限制	512 MiB	512 MiB	512 MiB	512 MiB
测试点数目	20	20	20	20
测试点是否等分	是	是	是	是

提交源程序文件名

对于 C++ 语言	T1.cpp	T2.cpp	ТЗ.срр	T4.cpp
• • • • • • • • • • • • • • • • • • • •	**	1 **	**	**

编译选项

对于 C++ 语言 -02 -std=c++14 -static	
----------------------------------	--

注意事项:

- 1. 本场测试只允许使用 C++ 语言。
- 2. 文件名 (程序名和输入输出文件名) 必须严格按照题目要求。
- 3. C++ 中函数 main() 的返回值类型必须是 int, 程序正常结束时的返回值必须是 0。
- 4. 在机房测试的同学首先新建一个测试文件夹,文件夹名称为**学校和姓名**,并将所有的程序文件放到该文件夹内。
- 5. 若无特殊说明,题目中一行内有多个输入或输出时,默认使用空格间隔,结果的比较方式为全文比较(即过滤行末空格及文末回车)。
 - 6. 测试结束时将文件夹提交到教师机上。

卖房

【题目描述】

你是一个房地产的销售,你负责的区域可以视为一个数轴,数轴上有 N 个房子,编号从 0 到 N-1 。

现在有 M 个买家愿意购买房子,每个他们愿意以 G_i 的金额收购 $[S_i, E_i]$ 范围内的所有房子。你作为一名厉害的销售,你需要有策略地选择并销售房屋使自己的收入最大化。

需要注意的是:同一所房屋不能卖给不同的买家,并且允许保留一些房屋不进行出售。

【输入格式】

从文件 T1.in 读入数据。

输入的第一行包含两个整数 N 和 M, 分别代表房子个数和买家个数;

接下来 M 行,每行包含三个整数, S_i, E_i, G_i ,代表该买家愿意以 G_i 的金额收购 $[S_i, E_i]$ 范围内的所有房子。

【输出格式】

输出到文件 T1.out 中。

输出一行,代表你能获得的最大收入。

【样例 1 输入】

5 3

0 0 1

0 2 2

1 3 2

【样例 1 输出】

3

【样例解释】

共有5所房屋,给这些房屋编号从0到4,共有3个买家。

将位于 [0,0] 范围内的房屋以 1 金币的价格出售给第 1 位买家,并将位于 [1,3] 范围内的房屋以 2 金币的价格出售给第 3 位买家。

因此最多只能获得3枚金币。

【样例 2 输入】

5 3

0 0 1

0 2 10

1 3 2

【样例 2 输出】

10

【数据范围】

- 对于 20% 的数据:
 - $1 \le N, M \le 100$;
- 对于 60% 的数据:
 - $1 \leqslant N, M \leqslant 10^5$;
- 对于 100% 的数据:
 - $1 \leqslant N, M \leqslant 10^9$;
- $1 \leqslant G_i \leqslant 10^3$;
- $\bullet \ 0 \leqslant S_i \leqslant E_i \leqslant N-1;$
- 所有输入值都是整数。

这破路也能?

【题目描述】

现代社会,路是必不可少的。

共有 N 个城镇,M 条道路,任意两个城镇都有路相连,而且往往不止一条。

但有些路年久失修, 走着很不爽。

按理说条条大路通罗马,大不了绕行其他路呗——可你却发现: 从 A 城到 B 城不管怎么走,总有一些逃不掉的必经之路。

现在请你计算一下, A 到 B 的所有路径中, 有几条路是逃不掉的?

【输入格式】

从文件 T2.in 读入数据。

输入的第一行包含两个整数 N 和 M, 分别表示城镇数和道路数;

接下来 M 行,每行两个整数 x 和 y,表示 x 城和 y 城之间有一条长为 1 的双向路;

第 M+2 行包含一个整数 Q,代表询问次数;

接下来 Q 行,每行两个整数 A 和 B,表示一次询问。

【输出格式】

输出到文件 T2.out 中。

对于每次询问,输出一个正整数,表示 A 城到 B 城必须经过几条路。

每个输出占一行。

【样例 1 输入】

5 5		
1 2		
1 3		
2 4		
3 4		
4 5		
2		
1 4		
2 5		

【样例 1 输出】

0 1

【数据范围】

- 对于 20% 的数据:
 - $0 \le N \le 100$;
 - $0 \le M \le 200$;
 - $0 \leqslant Q \leqslant 50$;
- 对于 70% 的数据:
 - $0 \le N \le 10^4$;
 - $0 \le M \le 2 \times 10^4$;
 - $0 \le Q \le 10^4$;
- 对于 100% 的数据:
 - $0 \le N \le 10^5$;
 - $0 \le M \le 2 \times 10^5$;
 - $0 \leqslant Q \leqslant 10^5$;
- $1 \leqslant x, y, A, B \leqslant N$;
- 对于任意的道路,两端两端的城市编号之差不超过 104
- 任意两个城镇都有道路相连,同一条道路不会出现两次;
- 道路的起终点不会相同,查询的两个城市不会相同;
- 所有输入值都是整数。

异或炸弹

【题目描述】

给定一个 $N \times N$ 的矩阵,初始全是 0,现在你手上有 m 个炸弹,对于每一个炸弹,都有自己的 **爆炸中心** (x,y) 和 **爆炸半径** r。

当矩阵内某个位置与爆炸中心的曼哈顿距离小于等于r时,该位置就会收到爆炸的影响,爆炸的影响就是给这个位置上的数异或1。

给你这 m 个炸弹的爆炸位置和爆炸半径, 你需要回答这个矩阵中 1 的个数。

曼哈顿距离: 两个点 (x_1, y_1) 和 (x_2, y_2) 的曼哈顿距离为 $d = |x_1 - x_2| + |y_1 - y_2|$ 。

【输入格式】

从文件 T3.in 读入数据。

输入的第一行包含两个整数 N 和 M, 分别表示矩阵大小和炸弹数量;

接下来 M 行,每行包含三个整数 x_i,y_i 和 r_i ,表示第 i 个炸弹的爆炸中心的坐标是 (x_i,y_i) ,爆炸半径是 r_i 。

【输出格式】

输出到文件 T3.out 中。

输出被轰炸后的矩阵中1的个数。

【样例 1 输入】

5 1

3 3 1

【样例 1 输出】

5

【样例 1 解释】

0 0 0 0 0

0 0 1 0 0

0 1 1 1 0

0 0 1 0 0

0 0 0 0 0

爆炸结果如上所示, 共有5个1。

【数据范围】

• 对于 20% 的数据:

- $1 \le N \le 100$;
- $1 \leqslant M \leqslant 100$;
- 对于 70% 的数据:
 - $1 \le N \le 2000$;
 - $1 \leqslant M \leqslant 6000$;
- 对于 100% 的数据:
 - $1 \le N \le 3000$;
 - $1 \le M \le 5 \times 10^5$;
- $\bullet \ 1\leqslant x_i,y_i\leqslant N\,;$
- $0 \leqslant r_i \leqslant 6000$;
- 所有输入值都是整数。

LIS and Inversion

【题目描述】

给你一个长度为 N 的序列 A,满足 $0 \le A_i < i$ 。

定义一个排列 P 的得分为它的最长上升子序列长度,同时定义其代价为满足以下条件的正整数 i 的数量:

• 只存在小于 A_i 个位置的 j < i,使得 $P_i > P_i$ 。

对每个 $k = 1, 2, \dots, n$,求所有得分不小于 k 的排列的最小代价。

【输入格式】

从文件 T4.in 读入数据。

输入的第一行包含一个整数 N;

输入的第二行包含 N 个整数 A_1, A_2, \dots, A_N ;

【输出格式】

输出到文件 T4.out 中。

接 $k=1,2,\cdots,N$ 的顺序输出结果。

【样例 1 输入】

4

0 1 2 1

【样例 1 输出】

0 0 1 3

【样例1解释】

对于各个 k 值, 解 P 如下所示::

- k = 1: 当 P = (4, 2, 1, 3) 时,P 的得分为 2,成本为 0。
- k = 2: 当 P = (4,3,1,2) 时,P 的得分为 2,成本为 0。
- k = 3: 当 P = (4, 1, 2, 3) 时,P 的得分为 3,成本为 1。
- k = 4: 当 P = (1, 2, 3, 4) 时,P 的得分为 4,成本为 3。

【样例 2 输入】

3

0 0 0

【样例 2 输出】

0 0 0

【样例 3 输入】

5

 $0\ 1\ 2\ 3\ 4$

【样例 3 输出】

0 1 2 3 4

【样例 4 输入】

11

0 0 2 3 4 5 3 7 8 2 10

【样例 4 输出】

0 0 0 1 2 3 4 5 7 8 9

【数据范围】

- 对于 20% 的数据:
 - $1 \le N \le 100$;
- 对于 50% 的数据:
 - $1 \le N \le 1000$;
- 对于 100% 的数据:
 - $1 \leqslant N \leqslant 2.5 \times 10^5$;
- $0 \leqslant A_i < i$;
- 所有输入值都是整数。