Applied Statistics with R

2021-07-23

Contents

1	Intr	roduction	11
	1.1	About This Book	11
	1.2	Conventions	12
	1.3	Acknowledgements	12
	1.4	License	14
2	Intr	roduction to R	15
	2.1	Getting Started	15
	2.2	Basic Calculations	16
	2.3	Getting Help	17
	2.4	Installing Packages	18
3	Dat	a and Programming	21
	3.1	Data Types	21
	3.2	Data Structures	21
		3.2.1 Vectors	22
		3.2.2 Vectorization	26
		3.2.3 Logical Operators	27
		3.2.4 More Vectorization	29
		3.2.5 Matrices	31
		3.2.6 Lists	41
		3.2.7 Data Frames	43

		3.3.1	Control Flow	51
		3.3.2	Functions	52
4	Sum	nmariz	ing Data	57
	4.1	Summa	ary Statistics	57
	4.2	Plottir	ng	58
		4.2.1	Histograms	58
		4.2.2	Barplots	60
		4.2.3	Boxplots	62
		4.2.4	Scatterplots	64
5	Pro	babilit	y and Statistics in R	67
	5.1	Probab	bility in R	67
		5.1.1	Distributions	67
	5.2	Hypot	hesis Tests in R	69
		5.2.1	One Sample t-Test: Review	69
		5.2.2	One Sample t-Test: Example	70
		5.2.3	Two Sample t-Test: Review	73
		5.2.4	Two Sample t-Test: Example	73
	5.3	Simula	ation	76
		5.3.1	Paired Differences	77
		5.3.2	Distribution of a Sample Mean	80
6	R Re	esource	es	85
	6.1	Beginn	ner Tutorials and References	85
	6.2	Interm	nediate References	85
	6.3	Advan	ced References	86
	6.4	Quick	Comparisons to Other Languages	86
	6.5	RStud	io and RMarkdown Videos	86
	6.6	RMark	kdown Template	87

CONTENTS 5

7	Sim	le Linear Regression 8	9
	7.1	Modeling	39
		7.1.1 Simple Linear Regression Model 9	94
	7.2	Least Squares Approach	97
		7.2.1 Making Predictions	99
		7.2.2 Residuals)2
		7.2.3 Variance Estimation)3
	7.3	Decomposition of Variation)4
		7.3.1 Coefficient of Determination)6
	7.4	Γhe lm Function)8
	7.5	Maximum Likelihood Estimation (MLE) Approach 11	.5
	7.6	Simulating SLR	.8
	7.7	History	21
	7.8	R Markdown	22
8	Infe	ence for Simple Linear Regression 12	3
	8.1	Gauss–Markov Theorem	26
	8.2	Sampling Distributions	27
		3.2.1 Simulating Sampling Distributions	28
	8.3	Standard Errors	34
	8.4	Confidence Intervals for Slope and Intercept	37
	8.5	Hypothesis Tests	38
	8.6	cars Example	39
		3.6.1 Tests in R	39
		3.6.2 Significance of Regression, t-Test	12
		3.6.3 Confidence Intervals in R	13
	8.7	Confidence Interval for Mean Response	15
	8.8	Prediction Interval for New Observations	16
	8.9	Confidence and Prediction Bands	<u>1</u> 7
	8.10	Significance of Regression, F-Test	19
	8.11	R Markdown	51

6 CONTENTS

9	Mul	tiple I	Linear Regression	153
	9.1	Matrix	x Approach to Regression	157
	9.2	Sampli	ing Distribution	161
		9.2.1	Single Parameter Tests	163
		9.2.2	Confidence Intervals	165
		9.2.3	Confidence Intervals for Mean Response	165
		9.2.4	Prediction Intervals	169
	9.3	Signific	cance of Regression	170
	9.4	Nested	l Models	174
	9.5	Simula	tion	177
	9.6	R Marl	kdown	184
10	Мос	lel Bui	ilding	185
10			r, Form, and Fit	
	10.1		Fit	
			Form	
			Family	
			·	
	10.9		Assumed Model, Fitted Model	
	10.2	_	nation versus Prediction	
			Explanation	
	10.9		Prediction	
			ary	
	10.4	R Mari	kdown	194
11	Cate	egorica	al Predictors and Interactions	195
	11.1	Dumm	ny Variables	196
	11.2	Interac	ctions	203
	11.3	Factor	Variables	212
		11.3.1	Factors with More Than Two Levels	215
	11.4	Param	eterization	221
	11.5	Buildin	ng Larger Models	225
	11.6	R Marl	kdown	229

CONTENTS	7
----------	---

12	Ana	lysis of Variance 23	31
	12.1	Experiments	31
	12.2	Two-Sample t-Test	32
	12.3	One-Way ANOVA	35
		12.3.1 Factor Variables	42
		12.3.2 Some Simulation	43
		12.3.3 Power	44
	12.4	Post Hoc Testing	46
	12.5	Two-Way ANOVA	49
	12.6	R Markdown	59
13			61
	13.1	Model Assumptions	61
	13.2	Checking Assumptions	63
		13.2.1 Fitted versus Residuals Plot	64
		13.2.2 Breusch-Pagan Test	70
		13.2.3 Histograms	72
		13.2.4 Q-Q Plots	73
		13.2.5 Shapiro-Wilk Test	80
	13.3	Unusual Observations	82
		13.3.1 Leverage	84
		13.3.2 Outliers	90
		13.3.3 Influence	92
	13.4	Data Analysis Examples	94
		13.4.1 Good Diagnostics	94
		13.4.2 Suspect Diagnostics	98
	13.5	R Markdown	01

8 CONTENTS

14	Trai	nsform	ations	303
	14.1	Respor	nse Transformation	303
		14.1.1	Variance Stabilizing Transformations	306
		14.1.2	Box-Cox Transformations	311
	14.2	Predict	tor Transformation	319
		14.2.1	Polynomials	322
		14.2.2	A Quadratic Model	345
		14.2.3	Overfitting and Extrapolation	350
		14.2.4	Comparing Polynomial Models	351
		14.2.5	poly() Function and Orthogonal Polynomials	354
		14.2.6	Inhibit Function	356
		14.2.7	Data Example	357
	14.3	R Mark	kdown	363
15	Coll	inearit	y	365
	15.1	Exact	Collinearity	365
	15.2	Colline	earity	368
		15.2.1	Variance Inflation Factor	371
	15.3	Simula	tion	377
	15.4	R Mark	kdown	382
16	Vari	able S	election and Model Building	383
	16.1	Quality	y Criterion	383
		16.1.1	Akaike Information Criterion	384
		16.1.2	Bayesian Information Criterion	385
		16.1.3	Adjusted R-Squared	386
		16.1.4	Cross-Validated RMSE	386
	16.2	Selection	on Procedures	390
		16.2.1	Backward Search	391
		16.2.2	Forward Search	397
		16.2.3	Stepwise Search	400
		16.2.4	Exhaustive Search	403

9

	16.3	Higher Order Terms
	16.4	Explanation versus Prediction
		16.4.1 Explanation
		16.4.2 Prediction
	16.5	R Markdown
17	Logi	stic Regression 417
	17.1	Generalized Linear Models
	17.2	Binary Response
		17.2.1 Fitting Logistic Regression
		17.2.2 Fitting Issues
		17.2.3 Simulation Examples
	17.3	Working with Logistic Regression
		17.3.1 Testing with GLMs
		17.3.2 Wald Test
		17.3.3 Likelihood-Ratio Test
		17.3.4 SAheart Example
		17.3.5 Confidence Intervals
		17.3.6 Confidence Intervals for Mean Response 436
		17.3.7 Formula Syntax
		17.3.8 Deviance
	17.4	Classification
		17.4.1 spam Example
		17.4.2 Evaluating Classifiers
	17.5	R Markdown
18	Bey	ond 453
	18.1	What's Next
	18.2	RStudio
	18.3	Tidy Data
	18.4	Visualization
	18.5	Web Applications

10	CONTENTS
-0	0011121112

10.111 (11.01101 10 10.000 (1.			100
18.11Further R Resour	rces	 	 456
18.10High Performance	e Computing	 	 456
$18.9~{\rm Bayesianism}$		 	 456
18.8 Time Series $$		 	 455
18.7.1 Deep Lea	rning	 	 455
18.7 Machine Learnin	g	 	 455
18.6 Experimental De	esign	 	 454