

μ-blox ag Gloriastrasse 35 CH-8092 Zürich Switzerland http://www.u-blox.ch

# **Datum Transformations of GPS Positions**

# **Application Note**

5th July 1999

## 1 ECEF Coordinate System

The Cartesian coordinate frame of reference used in GPS is called Earth-Centered, Earth-Fixed (ECEF). ECEF uses three-dimensional XYZ coordinates (in meters) to describe the location of a GPS user or satellite. The term "Earth-Centered" comes from the fact that the origin of the axis (0,0,0) is located at the mass center of gravity (determined through years of tracking satellite trajectories). The term "Earth-Fixed" implies that the axes are fixed with respect to the earth (that is, they rotate with the earth). The Z-axis pierces the North Pole, and the XY-axis defines the equatorial plane. (Figure 1)



Figure 1: ECEF Coordinate Reference Frame

ECEF coordinates are expressed in a reference system that is related to mapping representations. Because the earth has a complex shape, a simple, yet accurate, method to approximate the earth's shape is required. The use of a reference ellipsoid allows for the conversion of the ECEF coordinates to the more commonly used geodetic-mapping coordinates of Latitude, Longitude, and Altitude (LLA). Geodetic coordinates can then be converted to a second map reference known as Mercator Projections, where smaller regions are projected onto a flat mapping surface (that is, Universal Transverse Mercator – UTM or the USGS Grid system).

A reference ellipsoid can be described by a series of parameters that define its shape and which include a semi-major axis (a), a semi-minor axis (b) and its first eccentricity (e) and its second eccentricity (e') as shown in Figure 2. Depending on the formulation used, ellipsoid flattening (f) may be required.



WGS84 Parameters

$$a = 6378137$$

$$b = a (1 - f)$$

$$= 6356752.31424518$$

$$f = \frac{1}{298.257223563}$$

$$e = \sqrt{\frac{a^2 - b^2}{a^2}}$$

$$e' = \sqrt{\frac{a^2 - b^2}{b^2}}$$

Figure 2: Ellipsoid Parameters

For global applications, the geodetic reference (datum) used for GPS is the World Geodetic System 1984 (WGS84). This ellipsoid has its origin coincident with the ECEF origin. The X-axis pierces the Greenwich meridian (where longitude = 0 degrees) and the XY plane make up the equatorial plane (latitude = 0 degrees). Altitude is described as the perpendicular distance above the ellipsoid surface (which not to be confused with the mean sea level datum).

# 2 Conversion between ECEF and Local Tangential Plane

#### 2.1 LLA to ECEF

The conversion between the two reference coordinate systems can be performed using closed formulas (although iteration methods also exist). The conversion from LLA to ECEF (in meters) is shown below.

$$\begin{array}{rcl} X & = & (N+h)\cos\varphi\cos\lambda \\ Y & = & (N+h)\cos\varphi\sin\lambda \\ \\ Z & = & (\frac{b^2}{a^2}N+h)\sin\varphi \end{array}$$
 where

2.2 ECEF to LLA 3



Figure 3: ECEF and Reference Ellipsoid

 $\varphi$  = latitude

 $\lambda$  = longitude

h = height above ellipsoid (meters)

N = Radius of Curvature (meters), defined as:

$$= \frac{a}{\sqrt{1 - e^2 \sin^2 \varphi}}$$

#### 2.2 ECEF to LLA

The conversion between XYZ and LLA is slightly more involved but can be achieved using one of the following methods:

By iteration for  $\varphi$  and h. There is quick convergence for  $h \ll N$  starting at  $h_0 = 0$ .

$$\lambda = \arctan \frac{Y}{X}$$
 Start with  $h_0 = 0$  
$$\varphi_0 = \arctan \frac{Z}{p (1 - e^2)}$$
 Iterate  $\varphi$  and  $h$  
$$N_i = \frac{a}{\sqrt{1 - e^2 \sin^2 \varphi_i}}$$
 
$$h_{i+1} = \frac{p}{\cos \varphi_i} - N_i$$
 
$$\varphi_{i+1} = \arctan \frac{Z}{p \left(1 - e^2 \frac{N_i}{N_i + h_{i+1}}\right)}$$

Or by closed formula set.

$$\lambda = \arctan \frac{Y}{X}$$

$$\varphi = \arctan \frac{Z + e'^2 b \sin^3 \theta}{p - e^2 a \cos^3 \theta}$$

$$h = \frac{p}{\cos \varphi} - N$$

Where auxiliary values are:

$$\begin{array}{rcl} p & = & \sqrt{X^2 + Y^2} \\ \theta & = & \arctan \frac{Za}{pb} \end{array}$$

### 2.3 GPS Heights

The height determined by GPS measurements relates to the perpendicular distance above the reference ellipsoid and should not be confused with the more well-known height datum Mean Sea Level (MSL). The datum that defines the MSL (also called the geoid) is a complex surface that requires dense and accurate gravity data to define its shape. The WGS84 ellipsoid approximates the geoid on a worldwide basis with deviations between the two datums never exceeding 100 meters. The transformation between the two surfaces is illustrated in Figure 4.



Figure 4: Ellipsoid and MSL Reference Datums

The conversion between the two reference datums is shown by:

$$h = H + N$$

where h = ellipsoidal height (Geodetic), H = orthometric height (MSL), N = geoid separation (undulation) and  $\varepsilon$  = deflection of the vertical.

Note – The ellipsoid/geoid separation ranges from a value of +100 meters to -100 meters.

Although the conversion between the different height datums is straightforward, the accuracy at which the undulation is known (N) varies greatly with gravity measurement data density. It is even more difficult to determine in mountainous regions where mass distribution can vary rapidly.

## 2.4 Converting ECEF Velocities to Local Tangent Plane Velocities

GPS also resolves the speed and direction of travel in the ECEF XYZ reference frame. To convert these values to a local tangent plane (LTP), the velocity vector must be rotated to reflect directions in terms more usable to the user. The LTP uses the orientation of North, East, and Down, which is consistent with the geodetic coordinates LLA. To transform the velocity vector, you use the following direction cosine matrix (North, East, Down) and solving for each component results in the following equations:

$$\begin{array}{lcl} V_{north} & = & -V_x \sin \varphi \cos \lambda - V_y \sin \varphi \sin \lambda + V_z cos \varphi \\ V_{east} & = & -V_x \sin \lambda + V_y \cos \lambda \\ V_{down} & = & -V_x \cos \varphi \cos \lambda - V_y \cos \varphi \sin \lambda - V_z \sin \varphi \end{array}$$

## 2.5 Speed and Heading Computations

The speed and heading data can be derived from the velocity information. Because we have already transformed the velocity vector into the local frame of east, north, and down, out speed and velocity are also in the local frame.

$$Speed = \sqrt{V_{north}^2 + V_{east}^2}$$

$$Heading = \arctan \frac{V_{east}}{V_{north}}$$

Note – The C programming function atan2 returns a value between  $\pi$  and  $-\pi$  (+180 and -180 degrees). If the value is negative then  $2\pi$  (360 degrees) must be added to the results to get a positive full circle value. The heading is generally denoted in degrees as a full-circle azimuth ranging from 0 – 360 degrees (i.e., north = 0 degrees, south = 180 degrees).

#### 3 Transformation to Other Reference Datums

Many reference ellipsoids are used throughout the world. The main reason for choosing a reference datum other than WGS84 is to minimize the local differences between the geoid and the ellipsoid separation or other mapping distortions. Table 1 lists several of the reference ellipsoids in use worldwide and their associated parameters.

| Name                      | а           | b           | 1/f        |
|---------------------------|-------------|-------------|------------|
| Airy                      | 6377563.396 | 6356256.909 | 299.324965 |
| Airy (Modified)           | 6377340.189 | 6356034.448 | 299.324965 |
| Australian National       | 6378160.000 | 6356774.719 | 298.250000 |
| Bessel 1841               | 6377397.155 | 6356078.963 | 299.152813 |
| Bessel 1841 (Namibia)     | 6377483.865 | 6356165.383 | 299.152813 |
| Clarke 1866               | 6378206.400 | 6356583.800 | 294.978698 |
| Clarke 1880               | 6378249.145 | 6356514.870 | 293.465000 |
| Everest (Sabah & Sarawak) | 6377298.556 | 6356097.550 | 300.801700 |
| Everest 1830              | 6377276.345 | 6356075.413 | 300.801700 |
| Everest 1948              | 6377304.063 | 6356103.039 | 300.801700 |
| Everest 1956              | 6377301.243 | 6356100.228 | 300.801700 |
| Everest 1969              | 6377295.664 | 6356094.668 | 300.801700 |
| Fischer 1960              | 6378166.000 | 6356784.284 | 298.300000 |
| Fischer 1960 (Modified)   | 6378155.000 | 6356773.320 | 298.300000 |
| Fischer 1968              | 6378150.000 | 6356768.337 | 298.300000 |
| GRS 1980                  | 6378137.000 | 6356752.314 | 298.257222 |
| Helmert 1906              | 6378200.000 | 6356818.170 | 298.300000 |
| Hough                     | 6378270.000 | 6356794.343 | 297.000000 |
| International             | 6378388.000 | 6356911.946 | 297.000000 |
| Krassovsky                | 6378245.000 | 6356863.019 | 298.300000 |
| SGS 85                    | 6378136.000 | 6356751.302 | 298.257000 |
| South American 1969       | 6378160.000 | 6356774.719 | 298.250000 |
| WGS 60                    | 6378165.000 | 6356783.287 | 298.300000 |
| WGS 66                    | 6378145.000 | 6356759.769 | 298.250000 |
| WGS 72                    | 6378135.000 | 6356750.520 | 298.260000 |
| WGS 84                    | 6378137.000 | 6356752.314 | 298.257224 |

Reference: DoD, WGS84, DMA TR 8350.2-B,1 Sept. 1991

Table 1: Commonly Used Ellipsoids

#### 3.1 Datum Translations

Many other datums worldwide use the ellipsoid parameters shown in Table E-1 but do not have the same origin (that is, the centre of the ellipsoid does not coincide with the defined ECEF XYZ origin at the mass center of the earth). This creates a translation of the XYZ which must be performed prior to computing the geodetic positions and velocities. Table E-2 contains a list of datums, their associated ellipsoid, and the XYZ translation between the ECEF origin and the center of the ellipsoid.

To convert the ECEF coordinates to a geodetic datum, the translation vector must be applied prior to converting the LLA of the selected datum. The formulation for this conversion is shown in the following formulas.

To translate between two datums  $A \Rightarrow B$  in ECEF:

$$X_{datum_B} = X_{datum_A} - D_{X,AB}$$

$$Y_{datum_B} = Y_{datum_A} - D_{Y,AB}$$

$$Z_{datum_B} = Z_{datum_A} - D_{Z,AB}$$

Note - The Dx, Dy, and Dz values shown in Table 2 are defined as from any datum to ECEF.

Example: Translate from WGS84 (datum A) to Tokyo-Korea (datum B)

- Identify the Tokyo-Korea datum in Table 2
   Reference ellipsoid is Bessel 1841 (a = 6377397.155, b = 6356078.963)
   XYZ Translation (Dx = 146, Dy = 507, Dz = 685)
- 2. Give an ECEF coordinate X = 2686727, Y = -4304285, Z = 3851643

$$X_{Tokyo-Korea} = -2686727 - (-146) = -2686581$$
  
 $Y_{Tokyo-Korea} = -4304285 - (507) = -4304792$   
 $Z_{Tokyo-Korea} = 3851643 - (685) = 3850958$ 

3. Convert to LLA using Bessel 1841 ellipsoid parameters.

#### 3.2 Common Datum Shift Parameters

| Datum                                      | Reference Ellipsoid | $D_x$ | $D_y$ | $D_z$ |
|--------------------------------------------|---------------------|-------|-------|-------|
| Adindan - Burkina Faso                     | Clarke 1880         | -118  | -14   | 218   |
| Adindan - Ethiopia                         | Clarke 1880         | -165  | -11   | 206   |
| Adindan - Ethiopia, Sudan                  | Clarke 1880         | -166  | -15   | 204   |
| Adindan - Mali                             | Clarke 1880         | -123  | -20   | 220   |
| Adindan - Regional Mean                    | Clarke 1880         | -166  | -15   | 204   |
| Adindan - Senegal                          | Clarke 1880         | -128  | -18   | 224   |
| Adindan - Sudan                            | Clarke 1880         | -161  | -14   | 205   |
| Adindan - Cameroon                         | Clarke 1880         | -134  | -2    | 210   |
| Afgooye - Somalia                          | Krassovsky          | -43   | -163  | 45    |
| Ain el Abd 1970 - Bahrain                  | International       | -150  | -251  | -2    |
| Ain el Abd 1970 - Saudi Arabia             | International       | -143  | -236  | 7     |
| American Samoa 1962 - Samoa Islands        | Clarke 1866         | -115  | 118   | 426   |
| Anna 1 Astro 1965 - Cocos Islands          | Australian National | -491  | -22   | 435   |
| Antigua Island Astro 1965 - Leward Islands | Clarke 1880         | -270  | 13    | 62    |
| Arc 1950 - Botswana                        | Clarke 1880         | -138  | -105  | -289  |
| Arc 1950 - Burundi                         | Clarke 1880         | -153  | -5    | -292  |
| Arc 1950 - Lesotho                         | Clarke 1880         | -125  | -108  | -295  |
| Arc 1950 - Malawi                          | Clarke 1880         | -161  | -73   | -317  |
| Arc 1950 - Regional Mean                   | Clarke 1880         | -143  | -90   | -294  |
| Arc 1950 - Swaziland                       | Clarke 1880         | -134  | -105  | -295  |
| Arc 1950 - Zaire                           | Clarke 1880         | -169  | -19   | -278  |
| Arc 1950 - Zambia                          | Clarke 1880         | -147  | -74   | -283  |
| Arc 1950 - Zimbabwe                        | Clarke 1880         | -142  | -96   | -293  |
| Arc 1960 - Kenya                           | Clarke 1880         | -157  | -2    | -299  |

| Datum                                     | Reference Ellipsoid | $D_x$ | $D_y$ | $D_z$ |
|-------------------------------------------|---------------------|-------|-------|-------|
| Arc 1960 - Kenya, Tanzania                | Clarke 1880         | -160  | -6    | -302  |
| Arc 1960 - Tanzania                       | Clarke 1880         | -175  | -23   | -303  |
| Ascension Island 1958                     | International       | -191  | 103   | 51    |
| Astro Beacon E 1945 - Iwo Jima            | International       | 145   | 75    | -272  |
| Astro DOS 71/4 St Helena Island           | International       | -320  | 550   | -494  |
| Astro Tern Island (FRIG) 1961             | International       | 114   | -116  | -333  |
| Astronomical Station 1952 - Marcus Island | International       | 124   | -234  | -25   |
| Australian Geodetic 1966                  | Australian National | -133  | -48   | 148   |
| Australian Geodetic 1984                  | Australian National | -134  | -48   | 149   |
| Ayabelle Lighthouse - Djibouti            | Clarke 1880         | -79   | -129  | 145   |
| Bellevue (IGN)                            | International       | -127  | -769  | 472   |
| Bermuda 1957 Bermuda                      | Clarke 1866         | -73   | 213   | 296   |
| Bissau - Guinea-Bissu                     | International       | -173  | 253   | 27    |
| Bogota Observatory - Colombia             | International       | 307   | 304   | -318  |
| Bukit Rimpah Indonesia                    | Bessel 1841         | -384  | 664   | -48   |
| Camp Area Astro - Antarctica              | International       | -104  | -129  | 239   |
| Campo Inchauspe - Argentina               | International       | -148  | 136   | 90    |
| Canton Astro 1966 - Phoenix Islands       | International       | 298   | 304   | -375  |
| Cap - South Africa                        | Clarke 1880         | -136  | 108   | -292  |
| Cape Canaveral - Bahamas, Florida         | Clarke 1866         | -2    | 151   | 181   |
| Carthage Tunisia                          | Clarke 1880         | -263  | 6     | 431   |
| Chatham Island Astro 1971 - New Zealand   | International       | 175   | -38   | 113   |
| Chua Astro Paraguay                       | International       | -134  | 229   | -29   |
| Corrego Alegre Brazil                     | International       | -206  | 172   | -6    |
| Dabola Guinea                             | Clarke 1880         | -83   | 37    | 124   |
| Deception Island - Deception Island       | Clarke 1880         | 260   | 12    | -147  |
| Djakarta (Batavia)                        | Bessel 1841         | -377  | 681   | -50   |
| DOS 1968 - New Georgia Islands            | International       | 230   | -199  | -752  |
| Easter Island 1967 - Easter Island        | International       | 211   | 147   | 111   |
| Estonia Coordinate System 1937            | Bessel 1841         | 374   | 150   | 588   |
| European 1950 - Cyprus                    | International       | -104  | -101  | -140  |
| European 1950 - Eastern Regional Mean     | International       | -87   | -96   | -120  |
| European 1950 - Egypt                     | International       | -130  | -117  | -151  |
| European 1950 - Finland, Norway           | International       | -87   | -95   | -120  |
| European 1950 - Greece                    | International       | -84   | -95   | -130  |
| European 1950 - Iran                      | International       | -117  | -132  | -164  |
| European 1950 - Italy (Sardinia)          | International       | -97   | -103  | -120  |
| European 1950 - Italy (Sicily)            | International       | -97   | -88   | -135  |
| European 1950 - Malta                     | International       | -107  | -88   | -149  |
| European 1950 - Northern Regional Mean    | International       | -86   | -96   | -120  |
| European 1950 - Portugal, Spain           | International       | -84   | -107  | -120  |
| European 1950 - Southern Regional Mean    | International       | -103  | -106  | -141  |
| European 1950 - Tunisia                   | International       | -112  | -77   | -145  |
| European 1950 - Western Regional Mean     | International       | -87   | -98   | -121  |
| European 1979 - Central Regional Mean     | International       | -86   | -98   | -119  |
| Fort Thomas 1955 - Nevis, St Kitts        | Clarke 1880         | -7    | 215   | 225   |
| Gan 1970 - Republic of Maldives           | International       | -133  | -321  | 50    |
| Geodetic Datum 1949 - New Zealand         |                     |       |       |       |

| Datum                                             | Reference Ellipsoid | $D_x$       | $D_y$      | $D_z$ |
|---------------------------------------------------|---------------------|-------------|------------|-------|
| Graciosa Base SW 1948 - Azores                    | International       | -104        | 167        | -38   |
| Guam 1963 - Guam                                  | Clarke 1866         | -100        | -248       | 259   |
| Gunung Segara - Indonesia                         | Bessel 1841         | -403        | 684        | 41    |
| GUX 1 Astro - Guadalcanal Island                  | International       | 252         | -209       | -751  |
| Herat North - Afganistan                          | International       | -333        | -222       | 114   |
| Hermannskogel Datum - Croatia, Serbia             | Bessel 1841         | 653         | -212       | 449   |
| Hjorsey 1955 - Iceland                            | International       | -73         | 46         | -86   |
| Hong Kong 1963 - Hong Kong                        | International       | -156        | -271       | -189  |
| Hu-Tsu-Shan - Taiwan                              | International       | -637        | -549       | -203  |
| Indian - Bangladesh                               | Everest 1830        | 282         | 726        | 254   |
| Indian - India, Nepal                             | Everest 1956        | 295         | 736        | 257   |
| Indian - Pakistan                                 | Everest (Pakistan)  | 283         | 682        | 231   |
| Indian 1954 - Thailand, Vietnam                   | Everest 1830        | 218         | 816        | 297   |
| Indian 1960 -                                     | Everest 1830        | 198         | 881        | 317   |
| Indian 1960 - Vietnam (Con Son Islands)           | Everest 1830        | 182         | 915        | 344   |
| Indian 1975 - Thailand                            | Everest 1830        | 209         | 818        | 290   |
| Indonesian 1974 - Indonesia                       | Indonesian 1974     | -24         | -15        | 5     |
| Ireland 1965 - Ireland                            | Modified Airy       | 506         | -122       | 611   |
| ISTS 061 Astro 1968 - South Georgia Islands       | International       | -794        | 119        | -298  |
| ISTS 073 Astro 1969 - Diego Garcia                | International       | 208         | -435       | -229  |
| Johnston Island 1961 -Johnston Island             | International       | 189         | -79        | -202  |
| Kandawala - Sri Lanka                             | Everest 1830        | -97         | 787        | 86    |
| Kerguelen Island 1949                             | International       | 145         | -187       | 103   |
| Kertau 1948 - West Malaysia & Singapore           | Everest 1948        | -11         | 851        | 5     |
| Korean Geodetic System - South Korea              | GRS 1980            | 0           | 0          | 0     |
| Kusaie Astro 1951 - Caroline Islands              | International       | 647         | 1777       | -1124 |
| L. C. 5 Astro 1961 - Cayman Brac Islands          | Clarke 1866         | 42          | 124        | 147   |
| Legion - Ghana                                    | Clarke 1880         | -130        | 29         | 364   |
| Liberia 1964 - Liberia                            | Clarke 1880         | -90         | 40         | 88    |
| Luzon - Philippines                               | Clarke 1866         | -133        | -77        | -51   |
| Luzon - Philippines (Mindanao)                    | Clarke 1866         | -133        | -79        | -72   |
| Mahe 1971 - Mahe Island                           | Clarke 1880         | 41          | -220       | -134  |
| Massawa - Ethiopia (Eritrea)                      | Bessel 1841         | 639         | 405        | 60    |
| Merchich - Morocco                                | Clarke 1880         | 31          | 146        | 47    |
| Midway Astro 1961 - Midway Islands                | International       | 912         | -58        | 122   |
| 7 Minna - Cameroon                                | Clarke 1880         | -81         | -84        | 115   |
| Minna - Nigeria                                   | Clarke 1880         | -92         | -93        | 122   |
| Montserrat Island Astro 1958                      | Clarke 1880         | 174         | 359        | 365   |
| M'Poraloko - Gabon                                | Clarke 1880         | -74         | -130       | 42    |
| Nahrwan - Oman (Masirah Island)                   | Clarke 1880         | -247        | -148       | 369   |
| Nahrwan - Saudi Arabia                            | Clarke 1880         | -243        | -192       | 477   |
| Nahrwan - United Arab Emirates                    | Clarke 1880         | -249        | -156       | 381   |
| Naparima BWI - Trinidad & Tobago                  | International       | -10         | 375<br>135 | 165   |
| North American 1927 - Alaska                      | Clarke 1866         | -5<br>2     | 135        | 172   |
| North American 1927 - Alaska (Aleutian Islands E) | Clarke 1866         | -2<br>2     | 152        | 149   |
| North American 1927 - Alaska (Aleutian Islands W) | Clarke 1866         | 2           | 204        | 105   |
| North American 1927 - Bahamas                     | Clarke 1866         | -4<br>1     | 154        | 178   |
| North American 1927 - Bahamas (San Salvador)      | Clarke 1866         | 1<br>ntinuo | 140        | 165   |

| Datum                                                                                    | Reference Ellipsoid | $D_x$      | $D_y$ | $D_z$ |
|------------------------------------------------------------------------------------------|---------------------|------------|-------|-------|
| North American 1927 - Canada (Yukon)                                                     | Clarke 1866         | -7         | 139   | 181   |
| North American 1927 - Canal Zone                                                         | Clarke 1866         | 0          | 125   | 201   |
| North American 1927 - Central America                                                    | Clarke 1866         | 0          | 125   | 194   |
| North American 1927 - Central Canada                                                     | Clarke 1866         | -9         | 157   | 184   |
| North American 1927 - Cuba                                                               | Clarke 1866         | -9         | 152   | 178   |
| North American 1927 - East Canada                                                        | Clarke 1866         | -22        | 160   | 190   |
| North American 1927 - East of Mississippi                                                | Clarke 1866         | -9         | 161   | 179   |
| North American 1927 - Greenland                                                          | Clarke 1866         | 11         | 114   | 195   |
| North American 1927 - Gulf of Mexico                                                     | Clarke 1866         | -3         | 142   | 183   |
| North American 1927 - Mean for Canada                                                    | Clarke 1866         | -10        | 158   | 187   |
| North American 1927 - Mean for Conus                                                     | Clarke 1866         | -8         | 160   | 176   |
| North American 1927 - Mexico                                                             | Clarke 1866         | -12        | 130   | 190   |
| North American 1927 - Northwest Canada                                                   | Clarke 1866         | 4          | 159   | 188   |
| North American 1927 - West Canada                                                        | Clarke 1866         | -7         | 162   | 188   |
| North American 1927 - West of Mississippi                                                | Clarke 1866         | -8         | 159   | 175   |
| North American 1983 - Alaska, Canada, Conus                                              | GRS 1980            | 0          | 0     | 0     |
| North American 1983 - Aleutian Islands                                                   | GRS 1980            | -2         | 0     | 4     |
| North American 1983 - Central America, Mexico                                            | GRS 1980            | 0          | 0     | 0     |
| North American 1983 - Hawaii                                                             | GRS 1980            | 1          | 1     | -1    |
| North Sahara - Algeria                                                                   | Clarke 1880         | -186       | -93   | 310   |
| Observatorio Metereo 1939 - Azores                                                       | International       | -425       | -169  | 81    |
| Old Egyptian 1907 - Egypt                                                                | Helmert 1906        | -130       | 110   | -13   |
| Old Hawaiian - Hawaii                                                                    | Clarke 1866         | 89         | -279  | -183  |
| Old Hawaiian - Kauai                                                                     | Clarke 1866         | 45         | -290  | -172  |
| Old Hawaiian - Maui                                                                      | Clarke 1866         | 65         | -290  | -190  |
| Old Hawaiian - Oahu                                                                      | Clarke 1866         | 58         | -283  | -182  |
| Old Hawaiian - Regional Mean                                                             | Clarke 1866         | 61         | -285  | -181  |
| Oman - Oman                                                                              | Clarke 1880         | -346       | -1    | 224   |
| Ord. Survey G. Britain 1936 - England                                                    | Airy                | 371        | -112  | 434   |
| Ord. Survey G. Britain 1936 - Isle of Man                                                | Airy                | 371        | -111  | 434   |
| Ord. Survey G. Britain 1936 - Regional Mean                                              | Airy                | 375        | -111  | 431   |
| Ord. Survey G. Britain 1936 - Scotland, Shetland                                         | Airy                | 384        | -111  | 425   |
| Ord. Survey G. Britain 1936 - Wales                                                      | Airy                | 370        | -108  | 434   |
| Pico de las Nieves - Canary Islands                                                      | International       | -307       | -92   | 127   |
| Pitcairn Astro 1967 - Pitcairn Island                                                    | International       | 185        | 165   | 42    |
| Point 58 - Mean for Burkina Faso & Niger                                                 | Clarke 1880         | -106       | -129  | 165   |
| Pointe Noire 1948 - Congo                                                                | Clarke 1880         | -148       | 51    | -291  |
| Porto Santo 1936 - Maderia Islands                                                       | International       | -499       | -249  | 314   |
| Provisional S. American 1956 - Bolivia                                                   | International       | -270       | 188   | -388  |
| Provisional S. American 1956 - Chile (Northern)                                          | International       | -270       | 183   | -390  |
| Provisional S. American 1956 - Chile (Northern)                                          | International       | -305       | 243   | -442  |
| Provisional S. American 1956 - Colombia                                                  | International       | -282       | 169   | -371  |
| Provisional S. American 1956 - Ecuador                                                   | International       | -278       | 171   | -367  |
| Provisional S. American 1956 - Guyana                                                    | International       | -298       | 159   | -369  |
| Provisional S. American 1956 - Peru                                                      | International       | -279       | 175   | -379  |
| Provisional S. American 1956 - Regional Mean                                             | International       | -288       | 175   | -376  |
| Provisional S. American 1956 - Regional Mean<br>Provisional S. American 1956 - Venezuela | International       | -295       | 173   | -371  |
| Provisional S. Chilean 1963 - Chile                                                      | International       | -293<br>16 | 196   | 93    |
| i Tovisional 3. Cililean 1903 - Cilile                                                   |                     | tinuad     |       |       |

| Datum                                             | Reference Ellipsoid      | $D_x$   | $D_y$ | $D_z$ |
|---------------------------------------------------|--------------------------|---------|-------|-------|
| Puerto Rico - Virgin Islands                      | Clarke 1866              | 11      | 72    | -101  |
| Pulkovo 1942 - Russia                             | Krassovsky 1940          | 28      | -130  | -95   |
| Qatar National - Qatar                            | International            | -128    | -283  | 22    |
| Qornog - Greenland (South)                        | International            | 164     | 138   | -189  |
| Reunion - Mascarene Islands                       | International            | 94      | -948  | -1262 |
| Rome 1940 - Italy (Sardinia)                      | International            | -225    | -65   | 9     |
| S-42 (Pulkovo 1942) - Albania                     | Krassovsky 1940          | 24      | -130  | -92   |
| S-42 (Pulkovo 1942) - Czechoslovakia              | Krassovsky 1940          | 26      | -121  | -78   |
| S-42 (Pulkovo 1942) - Hungary                     | Krassovsky 1940          | 28      | -121  | -77   |
| S-42 (Pulkovo 1942) - Kazakhstan                  | Krassovsky 1940          | 15      | -130  | -84   |
| S-42 (Pulkovo 1942) - Latvia                      | Krassovsky 1940          | 24      | -124  | -82   |
| S-42 (Pulkovo 1942) - Poland                      | Krassovsky 1940          | 23      | -124  | -82   |
| S-42 (Pulkovo 1942) - Romania                     | Krassovsky 1940          | 28      | -121  | -77   |
| Santo (DOS) 1965 - Espirito Santo Island          | International            | 170     | 42    | 84    |
| Sao Braz - Azores                                 | International            | -203    | 141   | 53    |
| Sapper Hill 1943 - East Falkland Island           | International            | -355    | 21    | 72    |
| Schwarzeck - Namibia                              | Bessel 1841 (Namibia)    | 616     | 97    | -251  |
| Selvagem Grande - Salvage Islands                 | International            | -289    | -124  | 60    |
| SGS 85 - Soviet Geodetic system 1985              | S85                      | 3       | 9     | -9    |
| Sierra Leone 1960 - Sierra Leone                  | Clarke 1880              | -88     | 4     | 101   |
| S-JTSK - Czechoslovakia (prior to Jan 1993)       | Bessel 1841              | 589     | 76    | 480   |
| South American 1969 - Argentina                   | South American 1969      | -62     | -1    | -37   |
| South American 1969 - Bolivia                     | South American 1969      | -61     | 2     | -48   |
| South American 1969 - Brazil                      | South American 1969      | -60     | -2    | -41   |
| South American 1969 - Chile                       | South American 1969      | -75     | -1    | -44   |
| South American 1969 - Colombia                    | South American 1969      | -44     | 6     | -36   |
| South American 1969 - Ecuador                     | South American 1969      | -48     | 3     | -44   |
| South American 1969 - Ecuador (Baltra, Galapagos) | South American 1969      | -47     | 27    | -42   |
| South American 1969 - Guyana                      | South American 1969      | -53     | 3     | -47   |
| South American 1969 - Paraguay                    | South American 1969      | -61     | 2     | -33   |
| South American 1969 - Peru                        | South American 1969      | -58     | 0     | -44   |
| South American 1969 - Regional Mean               | South American 1969      | -57     | 1     | -41   |
| South American 1969 - Trinidad & Tobago           | South American 1969      | -45     | 12    | -33   |
| South American 1969 - Venezuela                   | South American 1969      | -45     | 8     | -33   |
| South Asia - Singapore                            | Modified Fischer 1960    | 7       | -10   | -26   |
| Tananarive Observatory 1925 - Madagascar          | International            | -189    | -242  | -91   |
| Timbalai 1948 - Brunei, East Malaysia             | Everest (Sabah, Sarawak) | -679    | 669   | -48   |
| Tokyo - Japan                                     | Bessel 1841              | -148    | 507   | 685   |
| Tokyo - Korea                                     | Bessel 1841              | -146    | 507   | 687   |
| Tokyo Okinawa                                     | Bessel 1841              | -158    | 507   | 676   |
| Tokyo - Regional Mean                             | Bessel 1841              | -148    | 507   | 685   |
| Tokyo - South Korea                               | Bessel 1841              | -147    | 506   | 687   |
| Tristan Astro 1968 - Tristan da Cunha             | International            | -632    | 438   | -609  |
| Viti Levu Fiji                                    | Clarke 1880              | 51      | 391   | -36   |
| Voirol 1960 Algeria                               | Clarke 1880              | -123    | -206  | 219   |
| Wake Island Astro 1952 - Wake Atoll               | International            | 276     | -57   | 149   |
| Wake-Eniwetok 1960 - Marshall Islands             | Hough                    | 102     | 52    | -38   |
| WGS 1972 Global Definition                        | WGS 72                   | 0       | 0     | 0     |
| <u> </u>                                          |                          | ntinued |       |       |

| Datum                      | Reference Ellipsoid | $D_x$ | $D_y$ | $D_z$ |
|----------------------------|---------------------|-------|-------|-------|
| WGS 1984 Global Definition | WGS 84              | 0     | 0     | 0     |
| Yacare Uruguay             | International       | -155  | 171   | 37    |
| Zanderij Suriname          | International       | -265  | 120   | -358  |

Table 2: Translation Components for Selected Reference Datums