LAB 5 Multi-Layer Perceptron

	~ 2/				~ 6	ຍຸ	.'.
1.	ใหลดชุดขอมูล	Iris	จาก	sklearn.dataset	โดยไ	งหคั′	าสัง

from sklearn.datasets import load_iris
data = load_iris()

2. แสดงรายการ features และรายการลาเบล (label) ตามลำดับ

รายการ features	
รายการลาเบล	0 =, 1 =, 2 =

3. จงเข้ารหัสลาเบลในชุดข้อมูลนี้โดยใช้ OnehotEncoder()

Label	Binary code
setosa	
versicolor	
virginica	

- 4. แบ่งชุดข้อมูลนี้ออกเป็น 75% สำหรับฝึกโมเดล (train) และ 25% สำหรับทดสอบ (test)
- 5. ใช้ชุดข้อมูลฝึกในข้อ 3 เพื่อฝึกโมเดล MLP โดยกำหนดไฮเปอร์พารามิเตอร์ ดังต[่]อไปนี้

ชั้น hidden layer	(50,)
Learning rate	0.005
Solver	'sgd'
Activation function	'logistic'
Maximum iteration	1,000

- 6. Plot กราฟแสดงค่า loss ในแต่ละรอบ
- 7. แสดงคาความแม่นยำของโมเดลบนชุดข้อมูลทดสอบ
- 8. ใช้ชุดข้อมูลฝึกในข้อ 3 เพื่อค้นหาโมเดลพารามิเตอร์ที่เหมาะสม จากรายการต่อไปนี้ โดยใช้ GridSearchCV กำหนดให้ cv = 5

ชั้น hidden layer	(5,), (20,), (5, 5), (5, 20), (5, 20, 5)
Activation function	'logistic', 'relu'
solver	'sgd', 'adam'
Learning rate	0.0001, 0.001, 0.005

อ ๔ สห ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ ๆ	
ผลลัพธทีโดจาก cv โดแก	

LAB 5 Multi-Layer Perceptron

- 11. จำนวนพารามิเตอร์ระหว่างชั้นช่อนและชั้นเอาท์พุต เท่ากับ

12. โหลดชุดข้อมูล bike rental จาก google classroom

instant	date	season	temp	humi	windspeed	casual	registered
1	1/1/2011	1	34.417	8.058	1.604	331	654
2	2/1/2011	1	36.348	6.961	2.485	131	670
3	3/1/2011	1	19.636	4.373	2.483	120	1229
4	4/1/2011	1	20.000	5.904	1.603	108	1454
5	5/1/2011	1	22.696	4.370	1.869	82	1518
6	6/1/2011	1	20.435	5.183	0.896	88	1518
7	7/1/2011	1	19.652	4.987	1.687	148	1362
8	8/1/2011	1	16.500	5.358	2.668	68	891
9	9/1/2011	1	13.833	4.342	3.620	54	768
10	10/1/2011	1	15.083	4.829	2.233	41	1280
11	11/1/2011	1	16.909	6.864	1.221	43	1220
ູ 12	12/1/2011	1	17.273	5.995	3.046	25	1137

13. สร้าง features เพิ่มเติม สอดคล้องกับข้อมูล date ดังนี้

Feature name	Value (meaning)		
weekday	0 ('Sunday') - 6 ('Saturday')		
working_day	0 ('weekend'), 1 ('working day')		
month	0 ('January') - 11 ('December')		
lag_feature_1	casual(t-1) + registed(t-1)		
lag_feature_2	casual(t-2) + registed(t-3)		
lag_feature_3	casual(t-3) + registed(t-3)		

- 14. สร้างคอลัมน์เอาท์พุต cnt = casual(t+1) + registed(t+1) ซึ่งเป็นจำนวนจักรยานรวมที่ถูกเช่าในวันถัดไป
- 15. แบ่งข้อมูลจากข้อ 15 เป็นชุดข้อมูลฝึก (train dataset) 18 เดือนแรก และชุดข้อมูลทดสอบ 6 เดือนสุดท้าย

LAB 5 Multi-Layer Perceptron

16. สร้างโมเดล MLP Regressor เพื่อคาดการณ์จำนวนจักรยานรวม t+1 โดยเลือกจากรายการไฮเปอร์ พารามิเตอร์จากรายการด้านล่าง และฝึกด้วยชุดข้อมูล train จำนวนรอบสูงสุด 2,000 รอบ กำหนดให้ cv = 5

ชั้น hidden layer	(50,), (10, 10), (10, 50), (10, 50, 5)
Activation function	'logistic', 'identity', 'relu'
solver	'sgd', 'adam'
Learning rate	0.0001, 0.001, 0.005
n_iter_no_change	10, 50

	வ			~
17.	พลอต	loss	curve	ของการฝึกโมเดล

- 18. คำนวณ R² บนชุดข้อมูลทดสอบเทียบกับคำตอบ (ground truth)