Examenul de bacalaureat național 2019 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(1 - \frac{1}{3} + \frac{1}{4}\right) : \left(1 - \frac{1}{12}\right) = \frac{12 - 4 + 3}{12} : \frac{11}{12} =$	3p
	$=\frac{11}{12} \cdot \frac{12}{11} = 1$	2p
2.	f(-2) + f(2) = 8 + 8 =	2p
	$=16=4\cdot 4=4f(0)$	3 p
3.	$x^2 - 27 = (x - 3)^2 \Rightarrow 6x - 36 = 0$	3p
	x = 6, care convine	2p
4.	Mulțimea M are 10 elemente, deci sunt 10 cazuri posibile	2p
	În mulțimea M sunt 5 numere pare, deci sunt 5 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{10} = \frac{1}{2}$	1p
5.	$8 = \frac{4 + x_C}{2} \Rightarrow x_C = 12$	3p
	$3 = \frac{3 + y_C}{2} \Rightarrow y_C = 3$ $\cos 30^\circ = \frac{\sqrt{3}}{2}, \sin 60^\circ = \frac{\sqrt{3}}{2}$	2 p
6.	$\cos 30^{\circ} = \frac{\sqrt{3}}{2}, \sin 60^{\circ} = \frac{\sqrt{3}}{2}$	2p
	$\cos^2 30^\circ + \sin^2 60^\circ - 2\cos 30^\circ \cdot \sin 60^\circ = \left(\cos 30^\circ - \sin 60^\circ\right)^2 = \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}\right)^2 = 0$	3 p

SUBIECTUL al II-lea (30 de puncte)

	(* * ** * F	
1.a)	$\det M = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 2 \cdot 2 - 1 \cdot 1 =$	3p
	=4-1=3	2p
b)	$A(a) \cdot A(a) = \begin{pmatrix} a^2 + 3 & a + 2 \\ 3a + 6 & 7 \end{pmatrix}$	2p
	$4A(a) - I_2 = \begin{pmatrix} 4a - 1 & 4 \\ 12 & 7 \end{pmatrix}$, deci $\begin{pmatrix} a^2 + 3 & a + 2 \\ 3a + 6 & 7 \end{pmatrix} = \begin{pmatrix} 4a - 1 & 4 \\ 12 & 7 \end{pmatrix}$, de unde obţinem $a = 2$	3р
c)	$aA(a) + M = $ $\begin{pmatrix} a^2 + 2 & a+1 \\ 3a+1 & 2a+2 \end{pmatrix} \Rightarrow \det(aA(a) + M) = (a+1)(2a^2 - 3a + 3)$	3р
	Cum $2a^2 - 3a + 3 \neq 0$, pentru orice număr real a , obținem $a = -1$	2p

2.a)	$f(2) = 2^3 - 4 \cdot 2^2 + m \cdot 2 + 2 =$	3p
	=8-16+2m+2=2m-6, pentru orice număr real m	2 p
b)	$x_1 + x_2 + x_3 = 4$, $x_1 x_2 x_3 = -2$	2p
	Pentru orice număr real m , $E = x_1 x_2 x_3 (x_1 + x_2 + x_3) = -8$, care este număr întreg	3 p
c)	$f = X^3 - 4X^2 + 3X + 2 = (X - 2)(X^2 - 2X - 1)$	2p
	$x_1 = 1 - \sqrt{2}$, $x_2 = 2$, $x_3 = 1 + \sqrt{2}$	3 p

SUBIECTUL al III-lea

(30 de puncte)

	(30 de puncte)		
1.a)	$f'(x) = 7 \cdot 3x^2 - 5 \cdot 2x + 1 =$	2 p	
	$=21x^2-10x+1=(3x-1)(7x-1), x \in \mathbb{R}$	3 p	
b)	$\lim_{x \to +\infty} \frac{x f'(x)}{f(x)} = \lim_{x \to +\infty} \frac{x(3x-1)(7x-1)}{7x^3 - 5x^2 + x + 1} = \lim_{x \to +\infty} \frac{x^3 \left(3 - \frac{1}{x}\right) \left(7 - \frac{1}{x}\right)}{x^3 \left(7 - \frac{5}{x} + \frac{1}{x^2} + \frac{1}{x^3}\right)} =$	2p	
	$= \lim_{x \to +\infty} \frac{\left(3 - \frac{1}{x}\right)\left(7 - \frac{1}{x}\right)}{7 - \frac{5}{x} + \frac{1}{x^2} + \frac{1}{x^3}} = 3$	3p	
c)	$f'(x) \ge 0$, pentru orice $x \in \left(-\infty, \frac{1}{7}\right] \Rightarrow f$ este crescătoare pe $\left(-\infty, \frac{1}{7}\right]$ și $f'(x) \le 0$, pentru orice $x \in \left[\frac{1}{7}, \frac{1}{3}\right] \Rightarrow f$ este descrescătoare pe $\left[\frac{1}{7}, \frac{1}{3}\right]$	2 p	
	Cum $f(x) \le f\left(\frac{1}{7}\right)$, pentru orice $x \in \left(-\infty, \frac{1}{3}\right]$ și $f\left(\frac{1}{7}\right) = \frac{52}{49}$, obținem $f(x) \le \frac{52}{49}$, pentru orice $x \in \left(-\infty, \frac{1}{3}\right]$	3 p	
2.a)	$\int_{1}^{2} f(x)dx = \int_{1}^{2} (x-2)dx = \left(\frac{x^{2}}{2} - 2x\right) \Big _{1}^{2} =$	3p	
	$=(2-4)-\left(\frac{1}{2}-2\right)=-\frac{1}{2}$	2p	
b)	Cum $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} (x^2 + 8x - 2) = -2$, $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} (x - 2) = -2$ și $f(0) = -2$, obținem $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = f(0)$, deci funcția f este continuă în $x = 0$	3p	
	Cum funcția f este continuă pe $(-\infty,0)$ și pe $(0,+\infty)$, obținem că f este continuă pe $\mathbb R$, deci funcția f admite primitive pe $\mathbb R$	2p	
c)	$\mathcal{A} = \int_{-1}^{0} f(x) dx = \int_{-1}^{0} x^2 + 8x - 2 dx = \int_{-1}^{0} (-x^2 - 8x + 2) dx =$	2p	
	$= \left(-\frac{x^3}{3} - \frac{8x^2}{2} + 2x \right) \Big _{-1}^{0} = \frac{17}{3}$	3р	