Санкт-Петербургский Национальный Исследовательский Университет ИТМО Факультет Программной Инженерии и Компьютерной Техники

Вариант № 14202 Лабораторная работа №3 по дисциплине 'Основы профессиональной деятельности'

Выполнил студент группы Р3114: Гиниятуллин А. Р.

Преподаватель: Перминов И. В.

	3DB:	03ED	3E9:	EEF4
Текст задания:	3DC:	0200] 3EA:	83DD
По выданному преподавателем варианту восстановить	3DD:	4000	i 3EB:	CEF9
текст заданного варианта программы, определить			•	
предназначение и составить описание программы,	3DE:	E000	3EC:	0100
определить область представления и область допустимых	3DF:	+ 0200	3ED:	0780
значений исходных данных и результата, выполнить	3E0:	EEFD	3EE:	0B00
трассировку программы.	3E1:	AF03	3EF:	02F4
	3E2:	EEFA	1	
	3E3:	4EF7	1	
	3E4:	EEF7	1	
	3E5:	ABF6	1	
	3E6:	F303	1	

3E7:

3E8:

AEF6

0700

Адрес	Код команды	Мнемоника	Комментарии
3DB	03ED		X (Адрес первого элемента массива)
3DC	0200		Y = 3 + X = 3F0
3DD	4000		Z = 3 (Количество итераций цикла)
3DE	E000		Ans = 0
3DF	0200	CLA	Очистить аккумулятор: $0_{16} \Rightarrow AC$
3E0	EEFD	ST IP-3	Загрузить содержимое аккумулятора в ячейку 3DE
3E1	AF03	LD (03)	$AC(0_{16}) \Rightarrow 3DE$ Загрузить в аккумулятор биты младшего байта слова
3E2	EEFA	ST IP-6	$3_{16} \Rightarrow AC$ Загрузить содержимое аккумулятора в ячейку 3DD
3E3	4EF7	ADD IP-9	$AC(3_{16}) \Rightarrow 3DD$ Прибавить к значению аккумулятора содержимое ячейки 3DB (3ED) ₁₆₊ $AC(3_{16}) \Rightarrow AC$

			2
3E4	EEF7	ST IP-9	Загрузить содержимое аккумулятора в ячейку 3DC
			$AC(3ED + 3)_{16} \Rightarrow 3DC$
3E5	ABF6	LD –(IP-A)	Загрузить в аккумулятор содержимое ячейки по адресу содержимого ячейки 3DC 3DC -1 ⇒ 3DC МЕМ(3DC) ⇒ AC
3E6	F303	BPL (IP+3)	Если $N == 0 \Rightarrow$ перейти к ячейке (3EA) ₁₆
3E7	AEF6	LD IP-A ₁₆	Загрузить в аккумулятор содержимое ячейки 3DE (3DE) ₁₆ ⇒ AC
3E8	0700	INC	Инкремент (прибавить к аккумулятору один) $AC + 1 \Rightarrow AC$
3E9	EEF4	ST IP-C	Загрузить содержимое аккумулятора в ячейку 3DE AC⇒ 3DE
3EA	83DD	LOOP 3DD	$AC \Rightarrow SDE$ Уменьшает значение ячейки 3DD на единицу. Если значение <= 0 ⇒ $IP + 1 \Rightarrow IP$
3EB	CEF9	JUMP (IP-7)	3E5 ⇒ IP
3EC	0100	HLT	Останов
3ED	0780		Элемент массива
3EE	0B00		Элемент массива
3EF	02F4		Элемент массива

Описание программы и реализуемая функция:

Программа проходит каждый элемент массива с конца и считает количество отрицательных элементов, используя команду ветвления BPL.

$$\exists \ |A|=n, A-$$
 ма cc ив из n элементов $f(i)=egin{cases} 1, & a_i < 0 \ 0, & a_i \geq 0 \end{cases}$ $ANS=\sum_{\pmb{i}=1}^{\pmb{n}} f(\pmb{i})$

Расположение в памяти БЭВМ программы, исходных данных и результатов:

Исходные данные: 3DB – 3EF

3DB, 3DC, 3DD – параметры для работы с массивом

- 3DB адрес первого элемента массива
- 3DC адрес обрабатываемого элемента
- 3DD количество итераций цикла

3ED. 3EE. 3EF- элементы массива

3DE – результат

Адреса первой и последней выполняемой инструкции программы:

3DF – адрес первой инструкции

ЗЕС – адрес последней инструкции

Область допустимых значений:

Элементы массива – знаковые 16-разрядные числа $\in [-2^{15}; 2^{15} - 1]$

Адреса первого и текущего элементов массива $\in [31; 2^{11} - 1]$

Количество элементов массива $\in [0; 2^{16} - 1]$

Результат $\in [0; 2^{11} - 32]$

Таблица трассировки.

	Выполняемая команда Содержимое регистров процессора после выполнения команды					ия	Ячейка, содержимое которой изменилось после выполнения команды				
Адрес	Код команды	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
3DF	0200	3E0	0200	3DF	0200	000	03DF	0000	0100		
3E0	EEFD	3E1	EEFD	3DE	0000	000	FFFD	0000	0100	3DE	0000
3E1	AF03	3E2	AF03	3E1	0003	000	0003	0003	0000		
3E2	EEFA	3E3	EEFA	3DD	0003	000	FFFA	0003	0000	3DD	0003
3E3	4EF7	3E4	4EF7	3DB	03ED	000	FFF7	03F0	0000		
3E4	EEF7	3E5	EEF7	3DC	03F0	000	FFF7	03F0	0000	3DC	03F0
3E5	ABF6	3E6	ABF6	3EF	02F4	000	FFF6	02F4	0000	3DC	03EF
3E6	F303	3EA	F303	3E6	F303	000	0003	02F4	0000		

3EA	83DD	3EB	83DD	3DD	0002	000	0001	02F4	0000	3DD	0002
3EB	CEF9	3E5	CEF9	3EB	03E5	000	FFF9	02F4	0000		
3E5	ABF6	3E6	ABF6	3EE	0B00	000	FFF6	0B00	0000	3DC	03EE
3E6	F303	3EA	F303	3E6	F303	000	0003	0B00	0000		
3EA	83DD	3EB	83DD	3DD	0001	000	0000	0B00	0000	3DD	0001
3EB	CEF9	3E5	CEF9	3EB	03E5	000	FFF9	0B00	0000		
3E5	ABF6	3E6	ABF6	3ED	0780	000	FFF6	0780	0000	3DC	03ED
3E6	F303	3EA	F303	3E6	F303	000	0003	0780	0000		
3EA	83DD	3EC	83DD	3DD	0000	000	FFFF	0780	0000	3DD	0000
3EC	0100	3ED	0100	3EC	0100	000	03EC	0780	0000		

Вывод: Я познакомился с принципами работы ЭВМ, научился работать с адресными командами и ветвлением.