WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵:

(11) International Publication Number:

WO 94/15619

A61K 31/70, C07H 21/02

A1 |

US

(43) International Publication Date:

21 July 1994 (21.07.94)

(21) International Application Number:

PCT/US94/00157

(22) International Filing Date:

5 January 1994 (05.01.94)

(81) Designated States: AU, CA, CN, JP, KR, NZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

Ļ

08/001,109

6 January 1993 (06.01.93)

Published

With international search report.

- (71) Applicants: THE JOHNS HOPKINS UNIVERSITY [US/US]; 300 Whitchead Hall, 3400 Charles Street, Baltimore, MD 21218 (US). GENTA INCORPORATED [US/US]; 3550 General Atomics Court, San Diego, CA 92121 (US).
- (72) Inventors: MILLER, Paul, Scott; 225 Hopkins Road, Baltimore, MD 21212 (US). TS'O, Paul, On-Pong; 9039 Furrow Avenue, Ellicott City, MD 21043 (US). SIMON, Lionel, Norton; 15834 Highland Court, Solana Beach, CA 92075 (US).
- (74) Agents: BIGGS, Suzanne, L. et al.; Lyon & Lyon, 34th floor, 611 West Sixth Street, Los Angeles, CA 90017 (US).

(54) Title: OLIGONUCLEOTIDES MODIFIED TO IMPROVE STABILITY AT ACID pH

(57) Abstract

Acid resistant oligonucleotides modified by alkylation at the 2'-O-position are suitable for oral administration. Orally acceptable formulations prepared with the disclosed modified oligonucleotides as active ingredients are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Ametria	GB	United Kingdom	MR	Mauritania
	_	-	MW	Malawi
		_	NE	Niger
			NL	Netherlands
			NO	Norway
			NZ	New Zealand
•				Poland
		•		Portugal
				Romania
		•		Russian Federation
				Sudan
	M.			Sweden
•				-
Switzerland		•		Slovenia
Côte d'Ivoire	KZ	Kazakhstan		Slovakia
Cameroon	LI	Liechtenstein	SN	Senegal
China	LK	Sri Lanka	TD	Ched
Czechoslovakia	LU	Luxembourg	TG	Togo
	LV	Letvia	TJ	Tajikistan
•	MC	Monaco	TT	Trinidad and Tobago
•		Republic of Moldova	UA	Ukraine
		•	US	United States of America
•		•	UZ.	Uzbekistan
			VN	Viet Nam
	Côte d'Ivoire Cameroon	Australia GE Barbados GN Belgium GR Burkina Paso HU Bulgaria IE Benin IT Brazil JP Belarus KE Canada KG Central African Republic KP Congo Switzerland KR Côte d'Ivoire KZ Cameroon LI China LK Czechoslovakia LU Czech Republic LV Germany MC Deumark MD Spain MG Finland ML France MN	Australia GE Georgia Barbados GN Guinea Belgium GR Greece Burkina Paso HU Hungary Bulgaria IE Ireland Benin IT Italy Brazil JP Japan Belarus KE Kenya Canada KG Kyrgystan Central African Republic KP Democratic People's Republic of Korea Switzerland KR Republic of Korea Cotte d'Ivoire KZ Kazakhstan Cameroon LI Llechtenstein China LK Sri Lanta Czechoslovakia LU Luxembourg Czech Republic Germany MC Monaco Demark MD Republic of Moldova Spain MG Madagascar Finland MI Mali France MN Mongolia	Australia GE Georgia MW Barbados GN Guinea NE Belgium GR Greece NL Burkina Paso HU Hungary NO Bulgaria IE Ireland NZ Benin IT Italy PL Brazil JP Japan PT Belarus KE Kenya RO Canada KG Kyrgystan RU Central African Republic KP Democratic People's Republic SD Congo of Korea SE Switzerland KR Republic of Korea SI Côte d'Ivoire KZ Kazakhstan SK Cameroon LI Liechtenstein SN China LK Sri Lanka TD Czech Republic LV Latvia TJ Germany MC Monaco TT Demark MD Republic of Moldova UA Spain MG Madagascar US Finland ML Mali UZ France MN Mongolia

٦

DESCRIPTION

Oligonucleotides Modified to improve Stability at Acid pH

Cross-Reference to Related Applications

This application is a continuation-in-part of U.S. Serial No. 07/558,338, filed July 27, 1990 which is a continuation-in-part of U.S. Serial No. 06/924,234, filed 5 October 28, 1986, the disclosures of which are incorporated herein by reference.

Background and Introduction to the Invention

The present invention is directed to methods of providing Oligomers which exhibit improved stability at acid pH, to methods of delivering such Oligomers to their sites of action and to their use in formulations for oral administration or other dosage forms where acid resistance is advantageous.

purine Depurination (loss οf the 15 nucleosidyl units through cleavage of the glycosidic bond between the base and sugar) of deoxyribonucleic acid (DNA) (Hevesi, L., under acidic conditions has been reported. et al., <u>J. Amer. Chem. Soc.</u>, <u>94</u>, 4715-4720 (197). oral delivery of therapeutic oligodeoxyribonucleotides may 20 require exposure of the drug to the acidic conditions of the stomach (about pH 1) for up to about 4 hours under normal conditions of drug delivery and under conditions of sustained released drug delivery (see, e.g., U.S. Patent No. 4,839,177), for up to about 12 hours. Due to its lack 25 of stability under acid conditions, it is unlikely that enough of an orally administered oligodeoxynucleotide would remain intact to be effective. Ribonucleic acid (RNA) has been reported to be significantly more stable to depurination under acidic conditions than its DNA counterpart reportedly because of the apparent stabilizing effect

of the 2' hydyoxyl on the glycosidic bond between sugar and the base (Hevesi, L., et al., supra).

Although RNA may be resistant to depurination under acid conditions, its sensitivity to ubiquitous nucleases present in biological materials limits its therapeutic usefulness. Furthermore, the use of oligoribonucleotides as a drug in its unmodified form is not feasible because of the inherent instability of the molecule to neutral to mildly basic conditions.

of the RNA against protection Unfortunately, 10 nucleases by replacing the phosphate linkages methylphosphonates is not possible because the 2'the the sugar rapidly cleaves of hydroxyl methylphosphonate backbone.

15 Summary of the Invention

The present invention is directed to methods of providing Oligomers which comprise nucleosidyl units having a preselected base sequence in an acid resistant According to one aspect of the present invention 20 Oligomers are provided wherein the nucleosidyl units have a sugar moiety which is a 2'-O-alkyl ribosyl group. is substantially neutral. Preferably the Oligomer methylphosphonate Oligomers having Preferred are internucleosidyl linkages more preferably from about 50 25 percent to about 100 percent of the internucleosidyl linkages are methylphosphonate linkages. Preferred 2'-Oalkyl ribosyl groups include 2'-0-methyl ribosyl groups.

According to an alternate aspect, the Oligomers provided in acid resistant form comprise methylphosphonate 30 internucleosidyl linkages, preferably from about 50 percent to about 100 percent methylphosphonate linkages.

According to an additional aspect, the present invention is directed to methods of preparing an Oligomer which comprises nucleosidyl units having a preselected base sequence which Oligomer is suitable for oral administration and exhibits resistance to acid

3

degradation. According to one aspect this method comprises synthesizing the Oligomer using nucleosidyl units having a sugar moiety which is a 2'-O-alkylribosyl group, more preferably a 2'-O-methyl ribosyl group.

5 Preferably the Oligomer is substantially neutral. More preferably the Oligomer is synthesized to have methylphosphonate internucleosidyl units.

Alternatively, the method comprises synthesizing the Oligomer using nucleosidyl units having methylphosphonate internucleosidyl linkages. Particularly preferred are Oligomers having from about 50 percent to about 100 percent methylphosphonate internucleosidyl units.

In a further aspect, the present invention is directed to a method of orally delivering an Oligomer to 15 a mammal for therapeutic purposes wherein said Oligomer comprises a nucleosidyl unit having a purine base which method comprises administration of an acid resistant Oligomer. According to one embodiment of this aspect the acid resistant Oligomer comprises nucleosidyl units having 20 a sugar moiety which comprises a 2'-O-alkyl ribosyl group, Preferably the preferably a 2'-0-methylribosyl group. Oligomer is substantially neutral. Preferred acid resistant Oligomers include Oligomers having methylphosphonate internucleosidyl linkages, more preferably from about 50 25 percent to about 100 percent of the internucleosidyl linkages are methylphosphonate linkages. According to an especially preferred aspect, the acid resistant Oligomer is administered in a controlled-rate release form.

Among other factors, the present invention is based on our surprising finding that Oligomers which are synthesized to incorporated nucleosidyl units having a sugar moiety which is a 2'-O-alkyl ribosyl group or which incorporate methylphosphonate internucleosidyl linkages exhibit advantageous resistance to acid catalyzed depurination and subsequent hydrolysis.

It is also believed that the Oligomers which comprise nucleosidyl units having a 2'-O-alkylribosyl group and

methylphosphonate internucleosidyl linkages appear to form more stable duplexes with an RNA target molecule than do the corresponding 2'-deoxy-ribonucleoside methylphosphonates.

According to a further aspect, the present invention is directed to pharmaceutical compositions which comprise an acid resistant Oligomer of the present invention in a controlled-rate release form. Alternatively, pharmaceutical compositions comprising an acid resistant Oligomer 10 are provided which compositions are acidic themselves or which may be exposed to acidic conditions during manufacture or storage.

Definitions

5

25

As used herein, the following terms have the the 15 following meanings unless expressly stated contrary.

The term "purine" or "purine base" includes not only the naturally occurring adenine and guanine bases, but also modifications of those bases such as bases substi-20 tuted at the 8-position, or guanine analogs modified at the 6-position or the analog of adenine, 2-amino purine, as well as analogs of purines having carbon replacing nitrogen at the 9-position such as the 9-deaza purine derivatives and other purine analogs.

The term "nucleoside" includes a nucleosidyl unit and is used interchangeably therewith, and refers to a subunit of a nucleic acid which comprises a 5-carbon sugar and a The term includes not only nitrogen-containing base. those nucleosidyl units having A, G, C, T and U as their 30 bases, but also analogs and modified forms of the naturally-occurring bases, including the pyrimidineanalogs such as pseudoisocytosine and pseudouracil and other modified bases (such as 8-substituted purines). RNA, the 5-carbon sugar is ribose; in DNA, it is a 2'-The term nucleoside also includes other 35 deoxyribose.

5

analogs of such subunits, including those which have modified sugars such as 2'-O-alkyl ribose.

The term "phosphonate" refers to the group O=P-R 5

10 wherein R is hydrogen or an alkyl or aryl group. Suitable alkyl or aryl groups include those which do not sterically hinder the phosphonate linkage or interact with each other. The phosphonate group may exist in either an "R" or an "S" configuration. Phosphonate groups may be used 15 as internucleosidyl phosphorus group linkages (or links) to connect nucleosidyl units.

The term "phosphodiester" or "diester" refers to

20 the group O=P-O

35

as be phosphodiester groups may 25 wherein internucleosidyl phosphorus group linkages (or links) to connect nucleosidyl units.

A "non-nucleoside monomeric unit" refers to a monomeric unit wherein the base, the sugar and/or the 30 phosphorus backbone has been replaced by other chemical moieties.

A "nucleoside/non-nucleoside polymer" refers to a polymer comprised of nucleoside and non-nucleoside monomeric units.

The term "oligonucleoside" or "Oligomer" refers to a chain of nucleosides which are linked by internucleoside linkages which is generally from about 4 to about 100 nucleosides in length, but which may be greater than about 100 nucleosides in length. They are usually synthesized 40 from nucleoside monomers, but may also be obtained by enzymatic means. Thus, the term "Oligomer" refers to a

6

chain of oligonucleosides which have internucleosidyl linkages linking the nucleoside monomers and, includes oligonucleotides, nonionic oligonucleoside alkylaryl-phosphonate analogs, alkyl-5 phosphonothicates, phosphorothicate or phosphorodithicate analogs of oligonucleotides, phosphoramidate analogs of oligonucleotides, neutral phosphate ester oligonucleoside phosphotriesters analogs, such as oligonucleoside analogs and modified oligonucleosides, and 10 also includes nucleoside/non-nucleoside polymers. term also includes nucleoside/nucleotide polymers wherein one or more of the phosphorus group linkages between monomeric units has been replaced by a non-phosphorous linkage such as a formacetal linkage, a thioformacetal 15 linkage, a sulfamate linkage, or a carbamate linkage. also includes nucleoside/non-nucleoside polymers wherein both the sugar and the phosphorous moiety have been replaced or modified such as morpholino base analogs, or polyamide base analogs. It also includes nucleoside/non-20 nucleoside polymers wherein the base, the sugar, and the phosphate backbone of the non-nucleoside are either replaced by a non-nucleoside moiety or wherein a nonnucleoside moiety is inserted into the nucleoside/nonnucleoside polymer. Optionally, said non-nucleoside 25 moiety may serve to link other small molecules which may interact with target sequences or alter uptake into target cells.

The term "alkyl- or aryl-phosphonate Oligomer" refers to Oligomers having at least one alkyl- or aryl30 phosphonate internucleosidyl linkage. Suitable alkyl- or aryl- phosphonate groups include alkyl- or aryl- groups which do not sterically hinder the phosphonate linkage or interact with each other. Preferred alkyl groups include lower alkyl groups having from about 1 to about 6 carbon atoms. Suitable aryl groups have at least one ring having a conjugated pi electron system and include carbocyclic aryl and heterocyclic aryl groups, which may be optionally

7

substituted and preferably having up to about 10 carbon atoms.

The term "methylphosphonate Oligomer" (or "MP-Oligomer") refers to Oligomers having at least one methylphosphonate internucleosidyl linkage.

The term "neutral Oligomer" refers to Oligomers which have nonionic internucleosidyl linkages between nucleoside monomers (i.e., linkages having no positive or negative ionic charge) and include, for example, Oligomers having 10 internucleosidyl linkages such as alkylphosphonate linkages, alkyl- or aryl-phosphonothioates, neutral phosphate ester linkages such as phosphotriester linkages, especially neutral ethyltriester linkages; and non-phosphorus-containing internucleosidyl linkages, such 15 as sulfamate, morpholino, formacetal, thioformacetal, and carbamate linkages. Optionally, a neutral Oligomer may comprise a conjugate between an oligonucleoside or nucleoside/non-nucleoside polymer and a second molecule which comprises a conjugation partner. Such conjugation 20 partners may comprise intercalators, alkylating agents, binding substances for cell surface receptors, lipophilic agents, nucleic acid modifying groups including photocross-linking agents such as psoralen and groups capable of cleaving a targeted portion of a nucleic acid, and the 25 like. Such conjugation partners may further enhance the uptake of the Oligomer, modify the interaction of the Oligomer with the target sequence, the pharmacokinetic distribution of the Oligomer. The essential requirement is that the oligonucleoside or 30 nucleoside/non-nucleoside polymer that the conjugate comprises be substantially neutral.

The term "substantially neutral" in referring to an Oligomer refers to those Oligomers in which at least about 80 percent of the internucleosidyl linkages between the nucleoside monomers are nonionic linkages.

The term "neutral alkyl- or aryl- phosphonate Oligomer" refers to neutral Oligomers having neutral

internucleosidyl linkages which comprise at least one alkyl- or aryl- phosphonate linkage.

The term "neutral methylphosphonate Oligomer" refers to neutral Oligomers having internucleosidyl linkages 5 which comprise at least one methylphosphonate linkage.

The term "acid resistant" refers to Oligomers which are resistant, in comparison to deoxyribooligo-nucleotides, to acid-catalyzed depurination by hydrolysis of the N-glycosyl bond.

10 The term "triplet" or "triad" refers a hydrogen bonded complex of the bases of three nucleosides between a base (if single stranded) or bases (if double stranded) of a target sequence, a base of a Second Strand and a Third Strand (if a single stranded target sequence) or a base of a Third Strand (if a double-stranded target).

Brief Description of the Drawings

20

Figure 1 depicts a plot of the percent intact adenine versus time for Oligomers which comprise RNA, DNA, a methylphosphonate Oligomer having a 2'-O-methyl ribosylant and a methylphosphonate Oligomer.

Figure 2 depicts a plot of the log of the percent intact adenine versus time for the same Oligomers as plotted in Figure 1.

Figure 3 depicts a plot of the percent depurination versus time at 37°C for Oligomers which comprise RNA, DNA, a methylphosphonate Oligomer having a 2'-O-methylribosyl units and a metholphosphonate Oligomer.

Figure 4 depicts a plot of the log of the percent depurination versus time at 37°C for the same Oligomers as plotted in Figure 3.

Figure 5 depicts a plot of percent intact backbone versus time for a methylphosphonate Oligomer having 2'-O-methyl ribosyl units at 37°C and pH 1.

Figure 6 depicts a melting curve for hybridization of Oligomers which comprise an oligodeoxyribonucleotide ($\underline{1}$), a methylphosphonate Oligomer having 2'-O-methylribosyl

9

and a methylphosphonate Oligomer having (<u>2</u>) units deoxyribosyl units (3) with a DNA target.

Figure 7 depicts a melting curve for hybridization of the same Oligomers as Figure 6 with an RNA target.

Figure 8 depicts examples of dimers which comprise (a) an oligo-2'-O-methyl-ribonucleoside methylphosphonate, (b) an oligodeoxyribonucleoside methylphosphonate, and (c) an oligodeoxyribonucleoside.

Detailed Description of the Invention

10 Preferred Oligomers

The Oligomers of the present invention comprise nucleosidyl units having a sugar moiety which is an group. independently selected 2'-0--alkyl ribosyl Suitable are alkyl groups of 1 to 5 carbon atoms. 15 Especially preferred nucleosides have a 2'-O-methyl ribosyl group.

Oligomer Strands having the selected internucleoside linkages may be conveniently prepared according to synthetic techniques known to those skilled in the art.

20 For example, commercial machines, reagents and protocols are available for the synthesis of Oligomers having phosphodiester and certain other phosphorus-containing Gait, M.J., <u>also</u> internucleoside linkages. See Oligonucleotide Synthesis: A Practical Approach (IRL Jack S., Oligodeoxynucleotides

1984); Cohen, Antisense Inhibitors of Gene Expression, (CRC Press, Boca Raton, FL, 1989); and Oligonucleotides and Analogues: A Practical Approach, (F. Eckstein, ed., 1991). Preparation of Oligomers having certain non-phosphorus-containing 30 internucleoside linkages is described in United States 5,142,047, the disclosure of which Patent No. incorporated herein by reference.

Preferred are Oligomers that are substantially neutral.

According to an especially preferred aspect, these 35 internucleosidyl methylphosphonate have Oligomers

10

linkages. More preferably all the internucleosidyl linkages are methylphosphonate linkages. Oligomers having a mixture of methylphosphonate internucleosidyl linkage and other nucleosidyl linkages may be preferable for certain therapeutic indications and are intended to be within the scope of the present invention.

Preferably the Oligomer comprise from about 4 to about 40 nucleosides, more preferably, from about 6 to 30 nucleosides. Especially preferred are Oligomer of about 10 8 to about 20 nucleosides.

Utility and Administration

The Oligomers provided herein may form a high affinity complex with a target sequence such as a nucleic acid or a protein with a high degree of selectivity. For example, derivatized Oligomers may be used to bind with and then irreversibly modify a target site in a nucleic acid by cross-linking (psoralens) or cleaving one or both strands (EDTA). By careful selection of a target site for cleavage, one of the strands may be used as a molecular scissors to specifically cleave a selected nucleic acid sequence.

The Oligomers provided herein may be derivatized to incorporate a nucleic acid reacting or modifying group which can be caused to react with a nucleic acid segment or a target sequence thereof to irreversibly modify, degrade or destroy the nucleic acid and thus irreversibly inhibit its functions.

These Oligomers may be used to inactivate or inhibit or alter expression of a particular gene or target sequence of the same in a living cell, allowing selective inactivation or inhibition or alteration of expression. The target sequence may be DNA or RNA, such as a pre-mRNA or an mRNA. mRNA target sequences include an initiation codon region, a polyadenylation region, an mRNA cap site or a splice junction. These Oligomers could also be used to permanently inactivate, turn off or destroy genes which

produced defective or undesired products or if activated caused undesirable effects.

Since the Oligomers provided herein may form duplexes or triple helix complexes or other forms of stable 5 association with transcribed regions of nucleic acids, these complexes are useful in "antisense" or triple strand therapy. "Antisense" therapy as used herein is a generic term which includes the use of specific binding Oligomers to inactivate undesirable DNA or RNA sequences in vitro or <u>in vivo</u>.

10

Many diseases and other conditions are characterized by the presence of undesired DNA or RNA, which may be in certain instances single stranded and in other instances in double stranded. These diseases and conditions can be 15 treated using the principles of antisense therapy as is Antisense therapy generally understood in the art. includes targeting a specific DNA or RNA target sequence through complementarity or through any other specific binding means, in the case of the present invention by 20 formation of duplexes or triple helix complexes.

The Oligomers for use in the instant invention may be administered singly, or combinations of Oligomers may be administered for adjacent or distant targets or for combined effects of antisense mechanisms with the 25 foregoing general mechanisms.

In therapeutic applications, the Oligomers can be formulated for a variety of modes of administration, including oral, topical or localized administration. may be beneficial to have pharmaceutical formulations 30 containing acid resistant Oligomers that may come in contact with acid conditions during their manufacture or when such formulations may themselves be made acidic, to some extent, in order to more compatible with the conditions prevailing at the site of application, e.g., 35 the acid mantle of the skin. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, latest edition.

The Oligomer active ingredient is generally combined with a carrier such as a diluent or excipient which may include fillers, extenders, binding, wetting agents, disintegrants, surface-active agents, erodable polymers or lubricants, depending on the nature of the mode of administration and dosage forms. Typical dosage forms include tablets, powders, liquid preparations including suspensions, emulsions and solutions, granules, and capsules.

The Oligomers of the present invention are parti-10 cularly suited for oral administration which may require exposure of the drug to acidic conditions in the stomach for up to about 4 hours under conventional drug delivery conditions and for up to about 12 hours when delivered in For treatment of certain 15 a sustained release from. conditions it may be advantageous to formulate these Oligomers in a sustained release form. U.S. Patent No. 4,839,177 to Colombo et al., the disclosure of which is incorporated herein by reference, describes certain 20 preferred controlled-rate release systems. For oral administration, the Oligomers are formulated into conventional as well as delayed release oral administration forms such as capsules, tablets, and liquids.

These Oligomers may be particularly suited for formulation in preparations for topical administration, since the skin has an acid mantle, formulations including these acid resistant Oligomers may prove advantageous. This also can be advantageous in light of the finding that these Oligomers will cross skin and mucous membranes as described in U.S. Patent Application Serial No. 07/707,879 which is incorporated by reference. Also it may be desirable to provide formulations which include acidic media.

For topical administration, the Oligomers for use in the invention are formulated into ointments, salves, eye drops, gels, or creams, as is generally known in the art.

or transdermal means, or the compounds can be administered orally. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, bile salts and fusidic acid derivatives for transmucusal administration. In addition, detergents may be used to facilitate permeation. Transmucosal administration may be through use of nasal sprays, for example, as well as formulations suitable for administration by inhalation, or suppositories.

To assist in understanding the present invention, the following examples are included which describe the results of a series of experiments. The following examples relating to this invention should not, of course, be construed in specifically limiting the invention and such variations of the invention, now known or later developed, which would within the purview of one skilled in the art are considered to fall within the scope of the present invention as hereinafter claimed.

Examples

Example 1

Synthesis of 2' O-Methyladenosine Synthesis Reagents

- 25 A. <u>Preparation of 5'-O-Dimethoxytrityl-2'-O-methyl-3'-O-(N,N-diisopropylamino-O-β-cyanoethylphosphine)-N-benzoyladenosine</u>
 - 5'-O-Dimethoxytrityl-2'-O-methyl-N-benzoyladenosine (0.75 g; 1.09 mmoles) (Barry Associates, Inc.) was co-
- evaporated 3 times with anhydrous 1/1 acetonitrile/
 diisopropylethylamine. The nucleoside was then dissolved in 30 ml anhydrous acetonitrile. Diisopropylethylamine (0.570 ml; 3.27 mmoles; 3 eq.) (Aldrich) was
 added at room temperature followed by chloro-N,N-
- diisopropylamino- β -cyanoethoxyphosphine (0.386 ml; 1.64 mmoles; 1.5 eq.) (ABN). After one hour the reaction was

complete as determined by TLC on silica gel plates using 50/45/5 ethylacetate/hexane/triethylamine as the eluent. The solvent was evaporated, the residue dissolved in dichloromethane, washed with saturated aqueous sodium bicarbonate, and the organic layer dried with anhydrous magnesium sulfate. The crude mixture was purified on a silica gel column that was previously treated with triethylamine to neutralize the acidity of the silica. The product was eluted with 50/49/1 ethylacetate/hexane/ triethylamine. The pure fractions were pooled and dried yielding 440 mg (0.45 mmoles; 41.4%) of product.

B. Preparation of 5'-O-Dimethoxytrityl-2'-O-methyl-3'-O-(N,N-diisopropylamino-methylphosphine)-N-benzoyladenosine

5'-O-Dimethoxytrityl-2'-O-methyl-N-benzoyladenosine 15 (1.0 g; 1.45 mmoles) (Barry Associates, Inc.) was coevaporated 3 times with anhydrous 1/1 acetonitrile/ diisopropylethylamine. The nucleoside was dissolved in 20 ml anhydrous acetonitrile. Diisopropylethylamine 20 (1.11 ml; 6.4 mmoles; 4.4 eq.) (Aldrich) was added at room temperature followed by chloro-N,N-diisopropylamino-methylphosphine (0.582 ml; 3.2 mmoles; 2.2 eq.) (JBL Scientific). After one hour the reaction was complete as determined by TLC on silica gel plates using 25 50/45/5 ethylacetate/hexane/triethylamine as the eluent. The solvent was evaporated, the residue dissolved in dichloromethane, washed with saturated aqueous sodium bicarbonate, and the organic layer dried with anhydrous magnesium sulfate. The crude mixture was purified on a 30 silica gel column that was previously treated with triethylamine to neutralize the acidity of the silica. The product was eluted with 50/49/1 ethylacetate/hexane/ triethylamine. The pure fractions were pooled and dried yielding 340 mg (0.41 mmoles; 28%) of product.

Example 2

Preparation of a Deoxyadenosine Tetramer Having
Phosphodiester Internucleosidyl Linkages (Compound 1)

The tetramen was synthesized and deprotected using standard phosphoramidite procedures (see, e.g., Gait, M.J., Oligonucleotide Synthesis A Practical Approach, 1984 (IRL Press) on a Milligen 8750 DNA synthesizer. The compound was purified using reverse-phase HPLC on a Whatman RAC II analytical column and a gradient of acetonitrile ("ACN") in 0.1 M triethylammonium acetate (0-30% ACN over 40 minutes at a flow of 1 ml/minute).

Example 3

Preparation of a Deoxyadenosine Methylphosphonate

Tetramer (Compound 2) and a 2'-O-Methyl Adenosine

Methylphosphonate Tetramer (Compound 4)

Compound 2 was synthesized using 5'-(dimethoxy-trityl) adenosine-3'-[(N,N-diisopropylamino)methyl]-phosphonoamite monomer. Solid-phase synthesis was performed on methacrylate polymer supports with a

20 Biosearch Model 8750 DNA synthesizer according to the manufacturer's recommendations except for the following modifications: the monomer was dissolved in acetonitrile at a concentrations of 100 mM. DEBLOCK reagent = 2.5% dichloroacetic acid in dichloromethane. OXIDIZER

25 reagent = 25 g/L iodine in 0.25% water, 25% 2,6-lutidine, 72.5% tetrahydrofuran. CAP A = 10% acetic anhydride in acetonitrile. CAP B = 0.625% N,N-dimethylaminopyridine in pyridine. The coupling time was extended to 4 minutes.

The dimethoxytriyl group was removed from the oligonucleotide at the end of the synthesis.

The oligonucleotide was then cleaved from the support and deprotected. The support bound oligonucleotide was removed from the synthesis cartridge and placed in a glass 1 dram vial with a screw top. The support was treated for 30 minutes at room temperature with 1 ml

of a solution of acetonitrile/ethanol/NH4OH (9/9/1). Then, 1 ml of ethylenediamine was added to the reaction vessel and the reaction allowed 6 hours to go to completion. The supernatant containing the oligonucleotide 5 was then removed from the support and the support rinsed twice with 2 ml of 1/1 acetonitrile/water, when combined with the supernatant. The combined solution was diluted to 30 ml total volume with water and neutralized with approximately 4 ml of 6 N HCL. The neutralized solution 10 was desalted using a Waters C-18 Sep-Pak cartridge which was pre-equilibrated with 10 ml acetonitrile, 10 ml of 50% acetonitrile/100 mM triethylammonium bicarbonate, and 10 ml of 25 mM triethylammonium bicarbonate, sequentially. After the reaction solution was passed 15 through the column it was washed with 30 ml of water. The product was then eluted with 5 ml of 1/1acetonitrile/water.

The oligonucleotide was purified by HPLC on a reverse phase column (Whatman RAC II) using a gradient of acetonitrile in 50 mM triethylammonium acetate.

Compound 4 was synthesized, deprotected, and purified as described for Compound 2 using the 2'-O-methyl adenosine monomer of Example 1(B) with the exception that the coupling time was extended to 3 minutes to allow adequate coupling of the more sterically hindered 2'-O-methyl monomer reagent. Compound 4 was synthesized on support bound deoxyadenosine.

Example 4

30 <u>Preparation of a Adenosine Oligoribonucleotide Tetramer</u> (Compound 3)

The oligoribonucleotide tetramer (Compound 3) was synthesized using 5'-O-dimethoxytrityl-2'-O-tert-butyl-dimethylsilyl-3'-O-N,N-diisopropyl- β -cyanoethylphosphoramidite adenosine (Millipore). The synthesis was done on a 1 μ mole scale with a Milligen 8750 automated

DNA synthesizer using standard Milligen phosphoramidite procedures with the exception that the coupling times were extended to 12 minutes to allow adequate time for the more sterically hindered 2'-O-tert-butyldimethyl-5 silyl RNA monomer to react. The syntheses were begun on control-pore glass bound 2'-O-tert-butyldimethylsilyl adenosine (Pennisula Laboratories). All other oligonucleotide synthesis reagents were as described in Milligen's standard protocols. After synthesis, the 10 oligoribonucleotides were handled under sterile, RNasesfree conditions. Water was sterilized by overnight treatment with 0.5% diethylpyrocarbonate followed by autoclaving. All glassware was baked for at least 4 hours at 300° C. The oligonucleotides were deprotected 15 and cleaved from support by first treating the support bound oligomer with 3/1 ammonium hydroxide/ethanol for 15 hours at 55° C. The supernatant, which contained the oligonucleotide, was then decanted and evaporated to dryness. The resultant residue was then treated with 20 0.6 mL of 1 M tetrabutylammonium fluoride in tetrahydrofuran (which contained 5% or less water) (Aldrich) for 24 hours at room temperature. reaction was quenched by the addition of 0.6 mL of aqueous 2 M triethylammonium acetate, pH 7. Desalting 25 of the reaction mixture was accomplished by passing the solution through a 10DG column (Bio-Rad) using sterile The desalted oligonucleotide was then dried. The compound was purified on HPLC as described for Compound 1 (see Example 2).

30 Example 5

Preparation of a 2'-O-methyl Adenosine Oligotide

Tetramer Having Phosphodiester Internucleosidyl Linkages

This oligonucleotide was synthesized, deprotected, and purified as described for compound 1 with the exception that the coupling time was extended to 4 minutes to allow adequate coupling of the more