第 4 次 作业 自硕2 | 崔 晏 菲 2021 210 97 6

/解:

yerm

 $-y \in a_k^T x - b_k \leq y$

 $\mathbb{P}\left\{y>, \left|a_{k}^{T}x-b_{k}\right| \right\}$ 当我们还驯最优时 $y_{k}=\left|a_{k}^{T}x-b_{k}\right| \mathbb{P}\left\{p^{*}(x)=\left|Ax-b\right|\right\}$ $\left(Ax-b\right)_{\infty} \leq \left(\mathbb{P}\left\{p^{*}\right\}\right)_{\infty} \leq \left(\mathbb{P}\left\{$

min |X|, min $|^{T}y$ s.t. $[Ax-b|_{\infty} \leq |X|]$ s.t. $-Y \leq x \leq y$ (b) min |x1, 15Ax-651

(c) min |Ax-b|, $+|X|_{\infty} \iff \min_{x,y,t} |Ty+t|_{S,t}$, $-y \in Ax-b \in y$

-t(< x < t1

2.解:

(1) Max X^Ty $X^Ty = \sum_{i=1}^n X_i y_i$

max xty = \frac{1}{2} \chi_{ij}

(4-)		9/2/
------	--	------

	C
(2) 根据线性规划的对偶问题可得	
(2) 根据线性规划的对偶问题可得 第(1) 问的对偶问题为 min rt + 1 ^T U t, u s.t. 1 U > 0 t1+U > X	
$min \ Yt + I^{T}U$	
t, u	
5. C. J tl +11.2. X	
	,