20

Pr. Morad Lakhssassi

DS d'Analyse 1 - Durée 2h

CPI1 - Groupe 1

(Documents et calculatrice non autorisés)

Exercice 1:

- 1. Donner la définition de la continuité d'une fonction f en un point $x_0 \in \mathbb{R}$ (avec les ε).
 - \vee 2. Montrer, en utilisant la définition de la continuité, que si f est continue en x_0 , alors $\forall a \in \mathbb{R}, a.f$ est continue en x_0 .
- 3. Montrer que la fonction $x \to \sqrt{e^x}$ est continue sur son domaine de définition que vous déterminerez. (Utiliser les théorèmes du cours et non la définition de la continuité.)

Exercice 2:

Montrer que si f est paire, alors gof est paire quelle que soit la fonction g.

Exercice 3:

- 1. Montrer que : $\forall x, y \in \mathbb{R}$, $\sin(x) \sin(y) = 2 \cdot \sin\left(\frac{x-y}{2}\right) \cdot \cos\left(\frac{x+y}{2}\right)$
 - 2. On rappelle que $\forall x \in \mathbb{R}$, on a $|\sin(x)| \le |x|$. Montrer que la fonction $x \to \sin(x)$ est 1-lipschitzienne.

Exercice 4:

Calculer les limites suivantes, lorsque celles-ci existent :

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

$$\lim_{x \to +\infty} \frac{x \cdot \cos(e^x)}{x^2 + 1}$$

$$\lim_{x \to 0^+} x^x$$

$$\lim_{x \to 0^+} e^{x - \sin(x)}$$

Exercice 5:

Etudier la parité de la fonction f définie par : $f(x) = \ln\left(\sqrt{x^2 + 1} + x\right)$