МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПТ1

Выполнил: Абазин Д. В.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 1 в соответствии с вариантом 1.

Рисунок 1 — 1 вариант задания (сигнал)

Таблица 1 — 1 вариант задания

f_{MIN} ÷ f_{MAX} , к Γ ц	Вид линейного кода	Вид сигнала
0,3÷3,0	NRZ	Рис. 1

3 Выполнение работы.

3.1 В соответствии с 1 вариантом задания были определены:

- $U_{MAX} = 2 \ B$ и U_{MIN} : -2 B;
- $U_{O\Gamma P} = U_{MAX} = 2 B$;
- $f_{MIN} = 0.3 \ к\Gamma$ ц и $f_{MAX} = 3 \ к\Gamma$ ц;
- $\Delta_{\rm ugon} = 0.25 {\rm B};$

Было расчитано минимальное число уровней квантования N_{MIN} по формуле $(U_{\text{MAX}}-U_{\text{MIN}})/\Delta_{\text{идоп}}.$ $N_{\text{MIN}}=4$ / 0.25=16

Было определено число уровней N_{KB} из условия $N_{\text{KB}} > N_{\text{MIN}}.$ $N_{\text{KB}} = 32.$

Было определено количество разрядов n в коде. $n = log_2 32 = 5$ бит.

Было расчитан шаг квантования по формуле $\delta = U_{O\Gamma P}/2^n = 2/2^5 = 0,063~B.$

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой Fв, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени $T_{\rm A} \!\! \leq \! 1/2F_{\rm B}$) должна удовлетворять условию $F_{\rm A} \!\! \geq \! 2F_{\rm B}$). $F_{\rm A} = F_{\rm MAX} * 2 = 6$ к Γ ц

3.2 При частоте дескритизации 6 кГц длина одного отсчета будет равна 1c / 6 кГц = 0,167мс \rightarrow количесвто отсчетов за 1мс будет равно 1мс / 0,167мс ≈ 6 отсчетов, для 6мс количество отсчетов равняется 36. Было определено Uвх(t), Uкв(t), $\Delta_{KB}(t)$ и N. Результат представлен в таблице 2.

Таблица 2 — Результаты измерений

Отсчет сигнала	UBX(t), B	UKB(t),B	ΔKB(t)	N	Двоичный код
1	0,00	0,00	0,00	0	00000
2	0,50	0,50	0,00	8	01000
3	0,97	1,00	-0,03	16	10000
4	1,37	1,38	0,00	22	10110
5	1,64	1,69	-0,04	27	11011
6	1,83	1,88	-0,05	30	11110
7	1,85	1,88	-0,02	30	11110
8	1,77	1,81	-0,05	29	11101
9	1,57	1,63	-0,06	26	11010
10	1,26	1,31	-0,05	21	10101
11	0,92	0,94	-0,01	15	01111
12	0,57	0,63	-0,06	10	01010
13	0,23	0,25	-0,02	4	00100
14	0,05	0,06	-0,02	1	00001
15	0,25	0,31	-0,06	5	00101
16	0,36	0,38	-0,02	6	00110
17	0,27	0,31	-0,04	5	00101
18	0,13	0,19	-0,05	3	00011
19	0,04	0,06	-0,02	1	00001
20	0,21	0,25	-0,04	4	00100
21	0,34	0,38	-0,04	6	00110
22	0,41	0,44	-0,03	7	00111
23	0,38	0,44	-0,06	7	00111
24	0,27	0,31	-0,04	5	00101

25	0,08	0,13	-0,04	2	00010
26	0,21	0,25	-0,04	4	00100
27	0,53	0,56	-0,03	9	01001
28	0,90	0,94	-0,04	15	01111
29	1,25	1,25	0,00	20	10100
30	1,54	1,56	-0,02	25	11001
31	1,75	1,81	-0,06	29	11101
32	1,83	1,88	-0,05	30	11110
33	1,76	1,81	-0,05	29	11101
34	1,56	1,56	-0,01	25	11001
35	1,25	1,31	-0,06	21	10101
36	0,86	0,88	-0,02	14	01110

 $3.3~~{
m B}$ соответствии с вариантом задания кодовая последовательность была записана с помощью NRZ. Результат приведен на рисунке 2-6.

Рисунок 2 — Коды с 1 по 8

Рисунок 3 — Коды с 9 по 16

Рисунок 4 — Коды с 17 по 24

Рисунок 6 — Коды с 33 по 36

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.