Table 1: CIFAR-10 posterior sampling results for CNF prior. We report expected classifier log probability, FID scores, and lower bound $\log Z$ for the class posteriors, averaged over all 10 classes.

Model	Sampler	$\mathbb{E}[\log p(\mathbf{y} \mid \mathbf{x})](\uparrow)$	FID (\downarrow)	$\log Z(\mathbf{y})(\uparrow)$
I-CFM	Prior	-5.88	84.79	-24.04
	DPS	-2.22	84.96	-
	RTB	-4.08	103.81	-169.47
	Latent HMC	-2.80	46.69	-
	Adj. Matching	-3.09	19.45	-17.23
	Outsourced Diff	-3.35	34.28	-20.36

Table 2: SD 1.5 fine-tuning results, averaged across three prompts used in [Venkatraman et al.]². DPOK, DDPO and RTB results taken from the same paper.

Sampler	$\mathbb{E}[\log r(\mathbf{x}, \mathbf{y})](\uparrow)$	CLIP diversity (\uparrow)
Prior	-0.17	0.18
DDPO	1.37	0.09
DPOK	1.23	0.13
RTB	1.4	0.11
Outsourced Diff	f. 1.26	0.14

Table 3: SD3 prior and posterior results with $\log Z$ for each prompt

Prompt	Prior			Outsourced Diff.		
	Reward	Diversity	$\log Z$	Reward	Diversity	$\log Z$
A cat and a dog.		0.14	3.55	1.23	0.09	27.25
A cat riding a llama.	0.79	0.18	1.01	1.53	0.14	10.83
A quiet village is disrupted by a meteor strike.	0.65	0.24	1.29	0.94	0.21	23.2
A human with a horse face and a human with a wolf face.	1.22	0.2	19.32	1.36	0.18	26.1
AVG	0.79	0.19	6.29	1.27	0.16	21.85

²'A green rabbit.', 'A cat and a dog.', and 'Four roses.'

Algorithm 1 Training loop for Outsourced Diffusion Sampler

Compute $\mathcal{L}_{TB}(\tau; \mathbf{y}, \phi)$ for batch using TB loss eq(4).

Update p_F^{ϕ} , $Z^{\phi}(\mathbf{y})$ using $\nabla_{\phi} \mathcal{L}_{TB}(\tau; \mathbf{y}, \phi)$.

12: 13:

14:

15:

16: end for

```
1: Initialize: deterministic prior function f (e.g. CNF integrators, GAN gen-
     erator), randomly initialized noise posterior model p_F^{\phi}, randomly initialized
     Z^{\phi}(\mathbf{y}) (scalar for fixed \mathbf{y}), VP-SDE backward policy p_B, log reward function
     \log r(\mathbf{x}, \mathbf{y}), on-policy update fraction p.
 2: for each step n = 1, 2, ..., N do
        Sample a batch of trajectories: \{\tau^{(i)}\}_{i=1}^{B} \sim p_F^{\phi}(\tau \mid \mathbf{y})
 3:
        for i=1,\ldots,B do
 4:
           Compute log density: \log R^{(i)} \leftarrow \log \mathcal{N}(\mathbf{z}^{(i)}; \mathbf{0}, \mathbf{I}) + r(f(\mathbf{z}^{(i)}), \mathbf{y})
 5:
           Store experience (\tau^{(i)}, \log R^{(i)}) in replay buffer \mathcal{D}
 6:
        end for
 7:
        Draw u \sim \text{Uniform}(0, 1)
 8:
 9:
        if u \leq p then
           Keep on-policy batch \{(\tau^{(i)}, \log R^{(i)})\}_{i=1}^B
10:
11:
           Sample off-policy batch \{(\tau^{(i)}, \log R^{(i)})\}_{i=1}^{B} \sim \mathcal{D}
```