COMPLEX NUMBERS AND DE MOIVRE'S THEOREM

OBJECTIVE PROBLEMS

1. $\left(\frac{1+i}{1-i}\right)^2 + \left(\frac{1-i}{1+i}\right)^2$ is equal to

- (a) 2i
- (b) -2i
- (c) -2
- (d) 2

2. $\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right) =$

- (a) $\frac{1}{2} + \frac{9}{2}i$ (b) $\frac{1}{2} \frac{9}{2}i$
- (c) $\frac{1}{4} \frac{9}{4}i$ (d) $\frac{1}{4} + \frac{9}{4}i$

The imaginary part of $\frac{(1+i)^2}{(2-i)}$ is

(a) $\frac{1}{5}$

- (c) $\frac{4}{5}$
- (d) None of these

4. If $\left(\frac{1+i}{1-i}\right)^m = 1$, then the least integral value of m is

- (a) 2
- (b) 4
- (c) 8

(d) None of these

The value of $i^{1+3+5+...+(2n+1)}$ **is** 5.

- (a) i if n is even, -i if n is odd
- (b) 1 if n is even, -1 if n is odd
- (c) 1 if n is odd, -1 if n is even
- (d) i if n is even, -1 if n is odd

The real values of x and y for which the equation is (x + iy)(2 - 3i) = 4 + i is satisfied, are 6.

- (a) $x = \frac{5}{13}, y = \frac{8}{13}$ (b) $x = \frac{8}{13}, y = \frac{5}{13}$
- (c) $x = \frac{5}{13}$, $y = \frac{14}{13}$ (d) None of these

 $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ will be real, if $\theta =$ 7.

(a)
$$2n\pi$$

(b)
$$n\pi + \frac{\pi}{2}$$

(d) None of these

If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a} =$

(a)
$$\cot \theta$$

(b)
$$\cot \frac{\theta}{2}$$

(c)
$$i\cot\frac{\theta}{2}$$

(d)
$$i \tan \frac{\theta}{2}$$

The multiplication inverse of a number is the number itself, then its initial value is 9.

(a)
$$i$$

$$(b) - 1$$

$$(d)-i$$

10. If $z_1 = 1 - i$ and $z_2 = -2 + 4i$, then $Im\left(\frac{z_1 z_2}{z_1}\right) = 1 - i$

11. If $(x+iy)^{1/3} = a+ib$, then $\frac{x}{a} + \frac{y}{b}$ is equal to

(a)
$$4(a^2+b^2)$$

(b)
$$4(a^2-b^2)$$

(c)
$$4(b^2-a^2)$$

12. The values of x and y satisfying the equation $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$ are

(a)
$$x = -1, y = 3$$
 (b) $x = 3, y = -1$

(b)
$$x = 3, y = -1$$

(c)
$$x = 0, y = 1$$

(d)
$$x = 1, y = 0$$

13. $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ will be purely imaginary, if $\theta =$

(a)
$$2n\pi \pm \frac{\pi}{3}$$
 (b) $n\pi + \frac{\pi}{3}$

(b)
$$n\pi + \frac{\pi}{3}$$

(c)
$$n\pi \pm \frac{\pi}{3}$$

(d) None of these

14. If $(1-i)^n = 2^n$, then n = 1

$$(c) -1$$

15. The smallest positive integer *n* for which $(1+i)^{2n} = (1-i)^{2n}$ is

(a) 1

(b)2

(c)3

(d)4

16. The real part of $(1 - \cos \theta + 2i \sin \theta)^{-1}$ is

(a)
$$\frac{1}{3+5\cos\theta}$$

(b)
$$\frac{1}{5-3\cos\theta}$$
 (c) $\frac{1}{3-5\cos\theta}$ (d) $\frac{1}{5+3\cos\theta}$

(c)
$$\frac{1}{3-5\cos\theta}$$

(d)
$$\frac{1}{5+3\cos\theta}$$

17. If z = 1 + i, then the multiplicative inverse of z^2 is (where $i = \sqrt{-1}$)

- (a) 2i
- (b) 1 i
- (c) i/2
- (d) i/2

18. If $x+iy = \frac{3}{2+\cos\theta+i\sin\theta}$, then x^2+y^2 is equal to

- (a) 3x-4
- (b) 4x-3
- (c) 4x + 3
- (d) None of these

19. If z(1+a) = b + ic and $a^2 + b^2 + c^2 = 1$, then $\frac{1+iz}{1-iz} = \frac{1+iz}{1-iz}$

- (a) $\frac{a+ib}{1+c}$
- (c) $\frac{a+ic}{1+b}$
- (d) None of these

20. If $(x + iy)(p + iq) = (x^2 + y^2)i$, then

- (a) p = x, q = y (b) $p = x^2, q = y^2$
- (c) x = q, y = p (d) None of these

21. If $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$, then (x, y) is

- (a) (3, 1) (c) (0, 3)
- (b)(1,3)
- (d)(0,0)

22. If $\left(\frac{1-i}{1+i}\right)^{100} = a+ib$, then

- (a) a = 2, b = -1
- (b) a = 1, b = 0
- (c) a = 0, b = 1
- (d) a = -1, b = 2

23. If $a^2 + b^2 = 1$, then $\frac{1+b+ia}{1+b-ia} =$

(a) 1

- (b) 2
- (c) b+ia
- (d) a+ib

24. If z = 3-4i, then $z^4 - 3z^3 + 3z^2 + 99z - 95$ is equal to

(a) 5

(b) 6

(c) - 5

(d) - 4

25. The conjugate of $\frac{(2+i)^2}{3+i}$, in the form of a + ib, is

(a) $\frac{13}{2} + i \left(\frac{15}{2}\right)$ (b) $\frac{13}{10} + i \left(\frac{-15}{2}\right)$ (c) $\frac{13}{10} + i \left(\frac{-9}{10}\right)$ (d) $\frac{13}{10} + i \left(\frac{9}{10}\right)$

26. If z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $|z_1| = |z_2|$. If z_1 has positive real part and

 z_2 has negative imaginary part, then $\frac{(z_1+z_2)}{(z_1-z_2)}$ may be

(a) Purely imaginary

(b)Real and positive

(c) Real and negative

(d) None of these

27. The maximum value of |z| where z satisfies the condition $|z+\frac{2}{z}|=2$ is

(a) $\sqrt{3} - 1$

(b) $\sqrt{3} + 1$

(c) $\sqrt{3}$

(d) $\sqrt{2} + \sqrt{3}$

28. If z is a complex number, then $(\overline{z^{-1}})(\overline{z}) =$

(a) 1

(b) -1

(c) 0

(d) None of these

29. If z = 3 + 5i, then $z^3 + \overline{z} + 198 =$

(a) -3-5i

(c) 3 + 5i

30. The number of solutions of the equation $z^2 + \overline{z} = 0$ is

(a) 1

(b) 2

(c) 3

(d)4

31. If z_1, z_2 are any two complex numbers, then $|z_1 + \sqrt{z_1^2 - z_2^2}| + |z_1 - \sqrt{z_1^2 - z_2^2}|$ is equal to

(a) $|z_1|$

(b) $|z_2|$

(c) $|z_1 + z_2|$

(d) $|z_1+z_2|+|z_1-z_2|$

 z_1 and z_2 are two non-zero complex numbers such that $|z_1+z_2| \neq |z_1| + |z_2|$, then $arg(z_1) - arg(z_2)$ is equal to

(a) $-\pi$

(b) $-\frac{\pi}{2}$

(c) $\frac{\pi}{2}$

- (d)0
- 33. If $z = 1 \cos \alpha + i \sin \alpha$, then amp z =

(a) $\frac{\alpha}{2}$

- (c) $\frac{\pi}{2} + \frac{\alpha}{2}$ (d) $\frac{\pi}{2} \frac{\alpha}{2}$
- **34.** If $z = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$ then

(a) |z| = 1, $arg z = \frac{\pi}{4}$ (b) |z| = 1, $arg z = \frac{\pi}{6}$

- (c) $|z| = \frac{\sqrt{3}}{2}$, $arg z = \frac{5\pi}{24}$ (d) $|z| = \frac{\sqrt{3}}{2}$, $arg z = \tan^{-1} \frac{1}{\sqrt{2}}$
- **35.** If $|z_1| = |z_2|$ and $amp z_1 + amp z_2 = 0$, then

(a) $z_1 = z_2$

(b) $\bar{z}_1 = z_2$

(c) $z_1 + z_2 = 0$

- (d) $\overline{z}_1 = \overline{z}_2$
- **36.** If $arg(z) = \theta$, then $arg(\overline{z}) =$

(a) θ

(b) -θ

(c) $\pi - \theta$

- (d) $\theta \pi$
- 37. If \bar{z} be the conjugate of the complex number z, then which of the following relations is false

(a) $|z| = |\overline{z}|$

(b) $z.\overline{z} \neq \overline{z}|^2$

(c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ (d) $arg z = arg \overline{z}$

- **38.** If $|z_1| \neq |z_2| = \dots \neq |z_n| = 1$, then the value of $|z_1 + z_2 + z_3 + \dots + |z_n| = 1$

(a) 1

(b) $|z_1| + |z_2| + \dots + |z_n|$

(c) $\left| \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right|$ (d) None of these

- 39. The conjugate of complex number $\frac{2-3i}{4-i}$, is
 - (a) $\frac{3i}{4}$
- (b) $\frac{11+10i}{17}$
- (c) $\frac{11-10i}{17}$ (d) $\frac{2+3i}{4i}$
- **40.** If z_1 and z_2 are two complex numbers satisfying the equation $\left|\frac{z_1+z_2}{z_1-z_2}\right|=1$, then $\frac{z_1}{z_2}$ is a number which is
 - (a) Positive real

(b) Negative real

(c) Zero or purely imaginary

- (d) None of these
- **41.** If z_1, z_2 are two complex numbers such that $\left| \frac{z_1 z_2}{z_1 + z_2} \right| = 1$ and $iz_1 = kz_2$, where $k \in \mathbb{R}$, then the angle between $z_1 - z_2$ and $z_1 + z_2$ is
 - (a) $\tan^{-1} \left(\frac{2k}{k^2 + 1} \right)$ (b) $\tan^{-1} \left(\frac{2k}{1 k^2} \right)$
- - $(c) 2 tan^{-1} k$
- (d) $2 \tan^{-1} k$
- **42.** If |z|=1 and $\omega = \frac{z-1}{z+1}$ (where $z \neq -1$), then Re(ω) is
 - (a) 0

- (b) $-\frac{1}{|z+1|^2}$
- (c) $\left| \frac{z}{z+1} \right| \cdot \frac{1}{|z+1|^2}$ (d) $\frac{\sqrt{2}}{|z+1|^2}$
- 43. If \bar{z} be the conjugate of the complex number z, then which of the following relations is false
 - (a) $|z| = |\overline{z}|$
- (b) $z.\overline{z} \neq \overline{z}|^2$
- (c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- (d) $arg z = arg \overline{z}$
- 44. Let z_1 be a complex number with $|z_1|=1$ and z_2 be any complex number, then $\left|\frac{z_1-z_2}{1-z_1\overline{z_2}}\right|=1$
 - (a) 0

- (b) 1
- (c) 1
- (d) 2

45. For any two complex numbers z_1, z_2 we have $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$ then

(a)
$$\operatorname{Re}\left(\frac{z_1}{z_2}\right) = 0$$

(a)
$$\operatorname{Re}\left(\frac{z_1}{z_2}\right) = 0$$
 (b) $\operatorname{Im}\left(\frac{z_1}{z_2}\right) = 0$

(c)
$$Re(z_1z_2) = 0$$

(d)
$$Im(z_1z_2) = 0$$

46. If $|z_1+z_2| \neq |z_1-z_2|$, then the difference in the amplitudes of $|z_1|$ and $|z_2|$ is

(a)
$$\frac{\pi}{4}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{2}$$

47. If z and ω are two non–zero complex numbers such that $|z\omega|=1$ and $arg(z)-arg(\omega)=\frac{\pi}{2}$, then

 $\overline{z}\omega$ is equal to

$$(b) - 1$$

$$(d)-i$$

48. $arg\left(\frac{3+i}{2-i} + \frac{3-i}{2+i}\right)$ is equal to

(a)
$$\frac{\pi}{2}$$

(a)
$$\frac{\pi}{2}$$
 (b) $-\frac{\pi}{2}$

(d)
$$\frac{\pi}{4}$$

49. If $z_1.z_2....z_n = z$, then $arg z_1 + arg z_2 + + arg z_n$ and arg z differ by a

(a) Multiple of
$$\pi$$

(b) Multiple of
$$\frac{\pi}{2}$$

(c) Greater than
$$\pi$$

(d)Less than
$$2\pi$$

50. Which of the following are correct for any two complex numbers z_1 and z_2

(a)
$$|z_1z_2| = |z_1||z_2|$$

(a)
$$|z_1z_2| = |z_1||z_2|$$
 (b) $arg(z_1z_2) = (argz_1)(argz_2)$

(c)
$$|z_1 + z_2| = |z_1| + |z_2|$$

(c)
$$|z_1 + z_2| = |z_1| + |z_2|$$
 (d) $|z_1 - z_2| \ge |z_1| - |z_2|$

51. If $z_1 = 1 + 2i$ and $z_2 = 3 + 5i$, and then $Re\left(\frac{\overline{z}_2 z_1}{z_2}\right)$ is equal to

(a)
$$\frac{-31}{17}$$

(b)
$$\frac{17}{22}$$

(c)
$$\frac{-17}{31}$$

(d)
$$\frac{22}{17}$$

52. If $(\sqrt{8} + i)^{50} = 3^{49}(a + ib)$ then $a^2 + b^2$ is

(d)
$$\sqrt{8}$$

- 53. If $|z_1| = |z_2|$ and $arg\left(\frac{z_1}{z_2}\right) = \pi$, then $z_1 + z_2$ is equal to
 - (a) 0

- (b) Purely imaginary
- (c) Purely real
- (d) None of these
- 54. The real part of $(1-i)^{-i}$ is

(a)
$$e^{-\pi/4} \cos \left(\frac{1}{2} \log 2\right)$$

(a)
$$e^{-\pi/4} \cos\left(\frac{1}{2}\log 2\right)$$
 (b) $-e^{-\pi/4} \sin\left(\frac{1}{2}\log 2\right)$

(c)
$$e^{\pi/4} \cos\left(\frac{1}{2}\log 2\right)$$
 (d) $e^{-\pi/4} \sin\left(\frac{1}{2}\log 2\right)$

(d)
$$e^{-\pi/4} \sin\left(\frac{1}{2}\log 2\right)$$

55. If $\sqrt{a+ib} = x + iy$, then possible value of $\sqrt{a-ib}$ is

(a)
$$x^2 + y^2$$

(b)
$$\sqrt{x^2 + y^2}$$

(c)
$$x + iy$$

(d)
$$x - iy$$

56. $i \log \left(\frac{x-i}{x+i} \right)$ is equal to

(a)
$$\pi + 2 \tan^{-1} x$$

(b)
$$\pi - 2 \tan^{-1} x$$

(c)
$$-\pi + 2 \tan^{-1} x$$

(c)
$$-\pi + 2 \tan^{-1} x$$
 (d) $-\pi - 2 \tan^{-1} x$

57.
$$\frac{1+7i}{(2-i)^2} =$$

(a)
$$\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$
 (b) $\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$

(b)
$$\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

(c)
$$\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
 (d) None of these

58. The value of $(-i)^{1/3}$ is

(a)
$$\frac{1+\sqrt{3}}{2}$$

(b)
$$\frac{1-\sqrt{3}a}{2}$$

(a)
$$\frac{1+\sqrt{3}i}{2}$$
 (b) $\frac{1-\sqrt{3}i}{2}$ (c) $\frac{-\sqrt{3}-i}{2}$ (d) $-\frac{\sqrt{3}-i}{2}$

(d)
$$-\frac{\sqrt{3}}{2}$$

59. If $x + iy = \sqrt{\frac{a + ib}{c + id}}$, then $(x^2 + y^2)^2 =$

(a)
$$\frac{a^2 + b^2}{c^2 + d^2}$$
 (b) $\frac{a + b}{c + d}$

(b)
$$\frac{a+b}{c+a}$$

(c)
$$\frac{c^2+d^2}{a^2+b^2}$$

(c)
$$\frac{c^2 + d^2}{a^2 + b^2}$$
 (d) $\left(\frac{a^2 + b^2}{c^2 + d^2}\right)^2$

- **60.** If $(1+i\sqrt{3})^9 = a+ib$, then *b* is equal to
 - (a) 1

(b) 256

(c)0

- (d) 9^3
- **61.** The number of non-zero integral solutions of the equation $|1-i|^x = 2^x$ is
 - (a) Infinite
- (b) 1

(c) 2

- (d) None of these
- **62.** The imaginary part of $\tan^{-1}\left(\frac{5i}{3}\right)$ is
 - (a) 0

- (b) ∞
- (c) log 2
- (d) log 4
- **63.** If $y = \cos \theta + i \sin \theta$, then the value of $y + \frac{1}{y}$ is
 - (a) $2\cos\theta$
- (b) $2\sin\theta$
- (c) $2\csc\theta$
- (d) $2 \tan \theta$
- 64. $\frac{1-i}{1+i}$ is equal to
 - (a) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$ (b) $\cos \frac{\pi}{2} i \sin \frac{\pi}{2}$
 - (c) $\sin \frac{\pi}{2} + i \cos \frac{\pi}{2}$ (d) None of these
- **65.** If $|z^2 1| = |z|^2 + 1$, then z lies on
 - (a) An ellipse
- (b) The imaginary axis
- (c) A circle
- (d) The real axis
- **66.** The equation $z\bar{z} + a\bar{z} + \bar{a}z + b = 0, b \in R$ represents a circle if
 - (a) $|a|^2 = b$
- (b) $|a|^2 > b$
- (c) $|a|^2 < b$
- (d) None of these
- 67. Let a be a complex number such that |a| < 1 and z_1, z_2, \dots be vertices of a polygon such that $z_k = 1 + a + a^2 + \dots + a^{k-1}$. Then the vertices of the polygon lie within a circle
 - (a) |z-a|=a
- (b) $\left|z \frac{1}{1 a}\right| \neq 1 a$
- (c) $\left|z \frac{1}{1-a}\right| = \frac{1}{|1-a|}$ (d) |z (1-a)| = |1-a|

68.	Let the complex numbers z_1, z_2 and z_3 be the vertices of an equilateral triangle. Let z_0 be				
	the circum centre of the triangle, then $z_1^2 + z_2^2 + z_3^2 =$				
	(a) z_0^2	(b) $-z_0^2$			
	(c) $3z_0^2$	(d) $-3z_0^2$			
69.	The complex number	ers z_1, z_2, z_3 are	the vertices	of a triangle. Then the complex number	ers z
	which make the triangle into a parallelogram is				
	(a) $z_1 + z_2 - z_3$	(b) $z_1 - z_2 + z_3$			
	(c) $z_2 + z_3 - z_1$	(d) All the about	ve		
70.	Let z_1, z_2, z_3 be three vertices of an equilateral triangle circumscribing the circle $ z = \frac{1}{2}$. If $z_1 = \frac{1}{2} + \frac{\sqrt{3}i}{2}$ and z_1, z_2, z_3 are in anticlockwise sense then z_2 is				
	(a) $1 + \sqrt{3} i$	(b) $1 - \sqrt{3} i$		+ 0	
	(c) 1	(d) - 1			
71.	If z is a complex number in the Argand plane, then the equation $ z-2 + z+2 =8$ represent				
	(a) Parabola	(b) Ellipse			
	(c) Hyperbola	(d) Circle			
72.	If z_1, z_2, z_3, z_4 are the affixes of four points in the Argand plane and z is the affix of a p				
	such that $ z-z_1 = z-z_1 $	$ z_2 = z - z_3 \neq z - z $	z_4 , then z_1, z_2	z_2, z_3, z_4 are	
	(a) Concyclic				
	(b) Vertices of a parallelogram				
	(c) Vertices of a rhon	nbus			
	(d) In a straight line				
73.	If $z = x + iy$, then area of the triangle whose vertices are points z , iz and $z + iz$ is				
	(a) $2 z ^2$	(b) $\frac{1}{2} z ^2$	(c) $ z ^2$	(d) $\frac{3}{2} z ^2$	
74.	If $ z+1 = \sqrt{2} z-1 $, the	n the locus des	cribed by th	he point z in the Argand diagram is a	
	(a) Straight line	(b) Circle			
	(c) Parabola	(d) None of the	ese		

75.	If the area of the triangle formed by the points $z, z+iz$ and iz on the complex plane is 18,
	then the value of $ z $ is

(a) 6

- (b)9
- (c) $3\sqrt{2}$ (d) $2\sqrt{3}$

76. The region of Argand plane defined by $|z-1| + |z+1| \le 4$ is

- (a) Interior of an ellipse
- (b) Exterior of a circle
- (c) Interior and boundary of an ellipse
- (d) None of these

77. Let
$$z_1$$
 and z_2 be two complex numbers such that $\frac{z_1}{z_2} + \frac{z_2}{z_1} = 1$. Then

- (a) z_1, z_2 are collinear
- (b) z_1, z_2 and the origin form a right angled triangle
- (c) z_1, z_2 and the origin form an equilateral triangle
- (d) None of these

78. The locus represented by $|z-1| \neq z+i|$ is

- (a) A circle of radius 1
- (b) An ellipse with foci at (1,0) and (0,-1)
- (c) A straight line through the origin
- (d) A circle on the line joining (1,0),(0,1) as diameter

79. If
$$z = x + iy$$
 and $|z-2+i| = |z-3-i|$, then locus of z is

- (a) 2x + 4y 5 = 0
- (b) 2x 4y 5 = 0
- (c) x + 2y = 0
- (d) x 2y + 5 = 0

80.
$$\left(\frac{1 + \cos \varphi + i \sin \varphi}{1 + \cos \varphi - i \sin \varphi} \right)^n =$$

- (a) $\cos n\phi i\sin n\phi$
- (b) $\cos n\phi + i \sin n\phi$
- (c) $\sin n\phi + i\cos n\phi$
- (d) $\sin n\phi i\cos n\phi$

81. If *n* is a positive integer, then $(1+i)^n + (1-i)^n$ is equal to

(a)
$$(\sqrt{2})^{n-2} \cos\left(\frac{n\pi}{4}\right)$$
 (b) $(\sqrt{2})^{n-2} \sin\left(\frac{n\pi}{4}\right)$

(b)
$$(\sqrt{2})^{n-2} \sin\left(\frac{n\pi}{4}\right)$$

(c)
$$(\sqrt{2})^{n+2} \cos\left(\frac{n\pi}{4}\right)$$
 (d) $(\sqrt{2})^{n+2} \sin\left(\frac{n\pi}{4}\right)$

(d)
$$(\sqrt{2})^{n+2} \sin\left(\frac{n\pi}{4}\right)$$

82. $\left[\frac{1 + \cos(\pi/8) + i\sin(\pi/8)}{1 + \cos(\pi/8) - i\sin(\pi/8)} \right]^{8}$ is equal to

$$(a) - 1$$

83. If ω is a cube root of unity, then $(1+\omega)^3 - (1+\omega^2)^3 =$

(c)
$$\omega^2$$

84. If $(\cos \theta + i \sin \theta)(\cos 2\theta + i \sin 2\theta)$ $(\cos n\theta + i \sin n\theta) = 1$, then the value of θ is

(a)
$$4m\pi$$

(b)
$$\frac{2m\pi}{n(n+1)}$$

(c)
$$\frac{4m\pi}{n(n+1)}$$

(d)
$$\frac{m\pi}{n(n+1)}$$

85. $(-\sqrt{3} + i)^{53}$ where $i^2 = -1$ is equal to

(a)
$$2^{53}(\sqrt{3}+2i)$$

(b)
$$2^{52}(\sqrt{3}-i)$$

(c)
$$2^{53} \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i \right)$$
 (d) $2^{53} (\sqrt{3} - i)$

(d)
$$2^{53}(\sqrt{3}-i)$$

 $\frac{(\cos\alpha + i\sin\alpha)^4}{(\sin\beta + i\cos\beta)^5} =$ 86.

(a)
$$cos(4\alpha + 5\beta) + i sin(4\alpha + 5\beta)$$

(b)
$$\cos(4\alpha + 5\beta) - i\sin(4\alpha + 5\beta)$$

(c)
$$\sin(4\alpha + 5\beta) - i\cos(4\alpha + 5\beta)$$

(d) None of these

87.
$$\left(\frac{1 + \sin \theta + i \cos \theta}{1 + \sin \theta - i \cos \theta} \right)^n =$$

(a)
$$\cos\left(\frac{n\pi}{2} - n\theta\right) + i\sin\left(\frac{n\pi}{2} - n\theta\right)$$

(b)
$$\cos\left(\frac{n\pi}{2} + n\theta\right) + i\sin\left(\frac{n\pi}{2} + n\theta\right)$$

(c)
$$\sin\left(\frac{n\pi}{2} - n\theta\right) + i\cos\left(\frac{n\pi}{2} - n\theta\right)$$

(d)
$$\cos n \left(\frac{\pi}{2} + 2\theta \right) + i \sin n \left(\frac{\pi}{2} + 2\theta \right)$$

88. The product of all the roots of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{3/4}$ is

(a) -1

(b) 1

- (c) $\frac{3}{2}$
- (d) $-\frac{1}{2}$
- **89.** If $\frac{1}{x} + x = 2\cos\theta$, then $x^n + \frac{1}{x^n}$ is equal to

(a) $2\cos n\theta$

(b) $2\sin n\theta$

(c) $\cos n\theta$

- (d) $\sin n\theta$
- **90.** The value of $\left[\frac{1 \cos \frac{\pi}{10} + i \sin \frac{\pi}{10}}{1 \cos \frac{\pi}{10} i \sin \frac{\pi}{10}} \right]^{10} =$

(a) 0

(b) - 1

(c) 1

- (d)2
- **91.** If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$ then $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$ equals

(a) $2\cos(\alpha + \beta + \gamma)$

(b) $\cos 2(\alpha + \beta + \gamma)$

(c)0

- (d) 1
- **92.** If ω is a cube root of unity, then $(1+\omega-\omega^2)(1-\omega+\omega^2)$

(a) 1

(b) (

(c) 2

- (d)4
- 93. If ω is a cube root of unity, then the value of $(1 \omega + \omega^2)^5 + (1 + \omega \omega^2)^5 =$

(a) 16

(b) 32

(c)48

- (d) 32
- 94. If ω is a complex cube root of unity, then $(x-y)(x\omega-y)(x\omega^2-y)=$

(a)
$$x^2 + y^2$$

(b)
$$x^2 - y^2$$

(c)
$$x^3 - y^3$$

(d)
$$x^3 + y^3$$

95. The value of $\frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2}+\frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2}$ will be

(a) 1

(b) - 1

(c) 2

(d) - 2

96. If $z_1, z_2, z_3, ..., n_n$ are n^{th} , roots of unity, then for k = 1, 2, ..., n

- (a) $|z_k| = k |z_{k+1}|$
 - (b) $|z_{k+1}| = k |z_k|$
- (c) $|z_{k+1}| = |z_k| + |z_{k+1}|$ (d) $|z_k| \neq |z_{k+1}|$

97. $\frac{(-1+i\sqrt{3})^{15}}{(1-i)^{20}} + \frac{(-1-i\sqrt{3})^{15}}{(1+i)^{20}}$ is equal to

- (a) 64
- (b) 32
- (c) 16
- (d) $\frac{1}{16}$

98. $\left(\frac{-1+i\sqrt{3}}{2}\right)^{20} + \left(\frac{-1-i\sqrt{3}}{2}\right)^{20} =$

- (a) $20\sqrt{3}i$
- (b) 1
- (c) $\frac{1}{2^{19}}$
- (d) -1

99. If $z + z^{-1} = 1$, then $z^{100} + z^{-100}$ is equal to

- (a) i
- (b)-I
- (c) 1
- (d) 1

100. If $\frac{1+\sqrt{3}i}{2}$ is a root of equation $x^4-x^3+x-1=0$ then its real roots are

- (a) 1, 1
- (b) 1, -1
- (c) 1, -1
- (d) 1, 2

101. If ω is a complex cube root of unity, then

$$225 + (3\omega + 8\omega^2)^2 + (3\omega^2 + 8\omega)^2 =$$

- (a) 72
- (b) 192
- (c) 200
- (d) 248

102. $\sinh ix$ is

- (a) $i\sin(ix)$
- (b) $i \sin x$
- (c) $-i \sin x$
- (d) $\sin(ix)$

103. If $1, \omega, \omega^2$ are the cube roots of unity, then

$$\Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix} =$$

(a) 0

(b) 1

(c) ω

(d) ω^2

COMPLEX NUMBERS AND DE MOIVRE'S THEOREM

HINTS AND SOLUTIONS

1. (c)
$$\left(\frac{1+i}{1-i}\right)^2 + \left(\frac{1-i}{1+i}\right)^2 = \frac{2i}{-2i} + \left(\frac{-2i}{2i}\right) = -2$$

2. (d)
$$\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right)$$

$$= \left[\frac{1+2i}{1^2+2^2} + \frac{3-3i}{1^2+1^2} \right] \left[\frac{6-16+12i+8i}{2^2+4^2} \right]$$

3. (c) We have
$$\frac{(1+i)^2}{2-i} = \frac{(2i)(2+i)}{(2-i)(2+i)} = -\frac{2}{5} + i\frac{4}{5}$$
.

4. (b)
$$\frac{1+i}{1-i} = \frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{(1+i)^2}{2} = \frac{2i}{2} = i$$

$$\therefore \left(\frac{1+i}{1-i}\right)^m = i^m = 1$$

5. (c) Let
$$z = i^{[1+3+5+...+(2n+1)]}$$

Clearly series is A.P. with common difference = 2

$$T_n = 2n - 1$$
 and $T_{n+1} = 2n + 1$

6. (c)
$$x + iy = \frac{4+i}{2-3i} = \frac{(4+i)(2+3i)}{13} = \frac{5}{13} + \frac{14}{13}i$$

7. (c)
$$\frac{(3+2i\sin\theta)(1+2i\sin\theta)}{(1-2i\sin\theta)(1+2i\sin\theta)} = \left(\frac{3-4\sin^2\theta}{1+4\sin^2\theta}\right) + i\left(\frac{8\sin\theta}{1+4\sin^2\theta}\right)$$

Now, since it is real, therefore Im(z) = 0

$$\Rightarrow \frac{8 \sin \theta}{1 + 4 \sin^2 \theta} = 0 \Rightarrow \sin \theta = 0, :: \theta = n\pi$$

8. (c)
$$a = \cos \theta + i \sin \theta$$
.

$$\therefore \frac{1+a}{1-a} = \frac{(1+\cos\theta)+i\sin\theta}{(1-\cos\theta)-i\sin\theta}$$

Rationalization of denominator, we get $\frac{1+a}{1-a} = \frac{(1+\cos\theta)+i\sin\theta}{(1-\cos\theta)-i\sin\theta} \times \frac{(1-\cos\theta)+i\sin\theta}{(1-\cos\theta)+i\sin\theta}$

10 (d) If
$$z_1 = 1 - i$$
 and $z_2 = -2 + 4i$

Then
$$\frac{z_1 z_2}{z_1} = \frac{(1-i)(-2+4i)}{1-i} = -2+4i \Longrightarrow \text{Im}\left(\frac{z_1 z_2}{z_1}\right) = 4$$
.

11. (b)
$$(x+iy)^{1/3} = a+ib \implies (x+iy) = (a+ib)^3$$

$$=a^3 + 3a^2.ib + 3a.(ib)^2 + (ib)^3$$

$$=a^3-3ab^2+i(3a^2b-b^3)$$

Equating real and imaginary parts, we get

$$\frac{x}{a} = a^2 - 3b^2$$
 and $\frac{y}{b} = 3a^2 - b^2$

$$\therefore \frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2)$$

12. (b)
$$\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$$

$$\implies$$
 $(4 + 2i)x + (9 - 7i)y - 3i - 3 = 10i$

Equating real and imaginary parts, we get 2x-7y=13 and 4x+9y=3. Hence x=3 and y=-1.

13. (c)
$$\frac{3+2i\sin\theta}{1-2i\sin\theta}$$
 will be purely imaginary, if the real part vanishes, i.e., $\frac{3-4\sin^2\theta}{1+4\sin^2\theta} = 0$

$$\Rightarrow$$
 3 - 4 sin² θ = 0

14. (b) If
$$(1-i)^n = 2^n$$
(i)

We know that if two complex numbers are equal, their moduli must also be equal, therefore from (i), we have

$$|(1-i)^n| = |2^n| \Rightarrow |1-i|^n = |2|^n, \quad (:2^n > 0)$$

$$\Longrightarrow \left\lceil \sqrt{1^2 + (-1)^2} \right\rceil^n = 2^n \Longrightarrow (\sqrt{2})^n = 2^n$$

$$\Rightarrow 2^{n/2} = 2^n \Rightarrow \frac{n}{2} = n \Rightarrow n = 0$$

15. (b) We have
$$(1+i)^{2n} = (1-i)^{2n}$$

$$\Rightarrow \left(\frac{1+i}{1-i}\right)^{2n} = 1 \Rightarrow (i)^{2n} = 1 \Rightarrow (i)^{2n} = (-1)^2$$

$$\Rightarrow (i)^{2n} = (i^2)^2 \Rightarrow (i)^{2n} = (i)^4 \Rightarrow 2n = 4 \Rightarrow n = 2.$$

16. (d)
$$\{(1-\cos\theta)+i.2\sin\theta\}^{-1} = \left\{2\sin^2\frac{\theta}{2}+i.4\sin\frac{\theta}{2}\cos\frac{\theta}{2}\right\}^{-1}$$

$$= \left(2\sin\frac{\theta}{2}\right)^{-1} \left\{\sin\frac{\theta}{2} + i \cdot 2\cos\frac{\theta}{2}\right\}^{-1}$$

$$= \left(2\sin\frac{\theta}{2}\right)^{-1} \frac{1}{\sin\frac{\theta}{2} + i.2\cos\frac{\theta}{2}} \times \frac{\sin\frac{\theta}{2} - i.2\cos\frac{\theta}{2}}{\sin\frac{\theta}{2} - i.2\cos\frac{\theta}{2}}$$

17. (c) Given z = 1 + i and $i = \sqrt{-1}$. Squaring both sides, we get $z^2 = (1 + i)^2 = 1 + 2i + i^2 = 1 + 2i - 1$ or $z^2 = 2i$.

Since it is multiplicative identity, therefore multiplicative inverse of $z^2 = \frac{1}{2i} \times \frac{i}{i} = \frac{i}{2i^2} = -\frac{i}{2}$.

18. (b) If
$$x + iy = \frac{3}{2 + \cos \theta + i \sin \theta}$$

$$= \frac{3(2+\cos\theta - i\sin\theta)}{(2+\cos\theta)^2 + \sin^2\theta} = \frac{6+3\cos\theta - 3i\sin\theta}{4+\cos^2\theta + 4\cos\theta + \sin^2\theta}$$

$$= \left[\frac{6+3\cos\theta}{5+4\cos\theta} \right] + i \left[\frac{-3\sin\theta}{5+4\cos\theta} \right]$$

19. (a)
$$\frac{1+iz}{1-iz} = \frac{1+i(b+ic)/(1+a)}{1-i(b+ic)/(1+a)} = \frac{1+a-c+ib}{1+a+c-ib}$$

$$=\frac{(1+a-c+ib)(1+a+c+ib)}{(1+a+c)^2+b^2}$$

20. (c)
$$(x+iy)(p+iq) = (x^2 + y^2)i$$

$$\implies$$
 $(xp - yq) + i(xq + yp) = (x^2 + y^2)i$

$$\implies xp - yq = 0, xq + yp = x^2 + y^2$$

$$\Rightarrow \frac{x}{q} = \frac{y}{p}$$
 and $xq + yp = x^2 + y^2$

21. (d)
$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy = 0$$

22. (b) Given,
$$\left(\frac{1-i}{1+i}\right)^{100} = a+ib$$
; $\left[\left(\frac{1-i}{1+i}\right) \times \left(\frac{1-i}{1-i}\right)\right] = a+ib$

$$\Rightarrow a + ib = \left[\frac{(1-i)^2}{2} \right]^{100} = \left[\frac{-2i}{2} \right]^{100} = (-i)^{100}$$

$$\Rightarrow a + ib = \left[(i)^4 \right]^{25} = 1 + 0i,$$

23. (c) Given that $a^2 + b^2 = 1$, therefore

$$\frac{1+b+ia}{1+b-ia} = \frac{(1+b+ia)(1+b+ia)}{(1+b-ia)(1+b+ia)}$$

$$=\frac{(1+b)^2-a^2+2ia(1+b)}{1+b^2+2b+a^2}=\frac{(1-a^2)+2b+b^2+2ia(1+b)}{2(1+b)}$$

$$= \frac{2b^2 + 2b + 2ia(1+b)}{2(1+b)} = b + ia$$

24. (a) Given that $z = 3 - 4i \Rightarrow z^2 = -7 - 24i$,

$$z^4 = -117 - 44i$$
 and $z^4 = -527 + 336i$

$$\therefore z^4 - 3z^3 + 3z^2 + 99z - 95 = 5$$

25. (c)
$$z = \frac{(2+i)^2}{3+i} = \frac{3+4i}{3+i} \times \frac{3-i}{3-i} = \frac{13}{10} + i\frac{9}{10}$$

Conjugate =
$$\frac{13}{10} - i \frac{9}{10}$$
.

26. (a) Assume any two complex numbers satisfying both conditions i.e., $z_1 \neq z_2$ and $|z_1| = |z_2|$

Let
$$z_1 = 2 + i$$
, $z_2 = 1 - 2i$, $\therefore \frac{z_1 + z_2}{z_1 - z_2} = \frac{3 - i}{1 + 3i} = -i$

Hence the result.

27. (b)
$$\left|z + \frac{2}{z}\right| = 2 \Rightarrow |z| - \frac{2}{|z|} \le 2 \Rightarrow |z|^2 - 2|z| - 2 \le 0$$

$$|z| \le \frac{2 \pm \sqrt{4+8}}{2} \le 1 \pm \sqrt{3}$$
.

Hence max. value of |z| is $1+\sqrt{3}$

28. (a) Let
$$z = x + iy$$
, $z = x - iy$ and $z^{-1} = \frac{1}{x + iy}$

$$\Rightarrow (\overline{z^{-1}}) = \frac{x + iy}{x^2 + y^2}; \quad \therefore (\overline{z^{-1}})\overline{z} = \frac{x + iy}{x^2 + y^2}(x - iy) = 1$$

29. (c)
$$z = 3 + 5i$$
, $\overline{z} = 3 - 5i$

$$\Rightarrow z^3 = (3+5i)^3 = 3^3 + (5i)^3 + 3 \cdot 3 \cdot 5i(3+5i)$$

$$=-198+10i$$

Hence,
$$z^3 + \overline{z} + 198 = 10i - 198 + 3 - 5i + 198 = 3 + 5i$$
.

30. (d) Let
$$z = x + iy$$
, then

31. (d) Check by putting
$$z_1 = 1 + 0i$$
 and $z_2 = 0 + i$

32. (d)
$$|z_1 + z_2| = |z_1| + |z_2| \Rightarrow z_1, z_2$$
 lies on same straight line.

$$\therefore arg \, z_1 = arg \, z_2 \Rightarrow arg \, z_1 - arg \, z_2 = 0$$

33. (d)
$$amp(z) = \tan^{-1} \frac{\sin \alpha}{1 - \cos \alpha} = \tan^{-1} \left(\cot \frac{\alpha}{2}\right) = \tan^{-1} \left\{\tan \left(\frac{\pi}{2} - \frac{\alpha}{2}\right)\right\} = \frac{\pi}{2} - \frac{\alpha}{2}$$
.

34. (b)
$$z = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{i}{2}$$

$$\therefore |z| = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1$$

and
$$arg(z) = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{1/2}{\sqrt{3}/2}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

$$\Rightarrow arg(z) = \tan^{-1} \left(\tan \frac{\pi}{6} \right) = \frac{\pi}{6}$$
.

35. (b) Let
$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$$

Then
$$|z_1| = |z_2| \Rightarrow |z_2| = r_1$$

and
$$arg(z_1) + arg(z_2) = 0 \Longrightarrow arg(z_2) = -arg(z_1) = -\theta_1$$

$$z_2 = r_1[\cos(-\theta_1) - i\sin(-\theta_1)] = r_1(\cos\theta_1 - i\sin\theta_1)$$

$$=\overline{z}_1$$
 $\overline{z}_1=z_2$.

37. (d) Let
$$z = x + iy, \overline{z} = x - iy$$

Since
$$arg(z) = \theta = \tan^{-1} \frac{y}{x}$$

$$arg(z) = \theta = \tan^{-1}\left(\frac{-y}{x}\right)$$

Thus $arg(z) \neq arg(z)$.

38. (c) We have
$$|z_k| = 1, k = 1, 2, ..., n$$

$$\implies |z_k|^2 = 1 \Rightarrow z_k \overline{z_k} = 1 \Rightarrow \overline{z_k} = \frac{1}{z_k}$$

Therefore
$$|z_1 + z_2 + + z_n| = \overline{z_1 + z_2 + + z_n}$$

$$(:: |z| = |\overline{z}|)$$

$$= \overline{z_1} + \overline{z_2} + \dots + \overline{z_n} = \left| \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right|$$

39. (b)
$$\frac{2-3i}{4-i} = \frac{(2-3i)(4+i)}{(4+i)(4-i)} = \frac{8+3-12i+2i}{16+1} = \frac{11-10i}{17}$$

$$\Rightarrow$$
Conjugate = $\frac{11+10i}{17}$.

40. (c) Given
$$\left| \frac{z_1 + z_2}{z_1 - z_2} \right| = 1 \Longrightarrow \frac{z_1 + z_2}{z_1 - z_2} = \cos \theta + i \sin \theta$$
 (say)

$$\Rightarrow \frac{z_1}{z_2} = \frac{1 + \cos \theta + i \sin \theta}{-1 + \cos \theta + i \sin \theta} = -i \cot \frac{\theta}{2}$$

Which is zero, if $\theta = n\pi(n \in I)$, and is otherwise purely imaginary.

41. (c)
$$\left| \frac{z_1 - z_2}{z_1 + z_2} \right| = 1 \Longrightarrow \frac{z_1 - z_2}{z_1 + z_2} = \cos \alpha + i \sin \alpha$$

$$\Rightarrow \frac{2z_1}{-2z_2} = \frac{\cos \alpha + i \sin \alpha + 1}{\cos \alpha - 1 + i \sin \alpha}$$
 (Applying componendo and dividendo)

42. (a)
$$|z| = 1 \Rightarrow |x + iy| = 1 \Rightarrow x^2 + y^2 = 1$$

$$\omega = \frac{z-1}{z+1} = \frac{(x-1)+iy}{(x+1)+iy} \times \frac{(x+1)-iy}{(x+1)-iy}$$

$$= \frac{(x^2 + y^2 - 1)}{(x + 1)^2 + y^2} + \frac{2iy}{(x + 1)^2 + y^2} = \frac{2iy}{(x + 1)^2 + y^2}$$

43. (b)

44. (b) We have $|z_1| = 1$ and z_2 be any complex number.

$$\Rightarrow \left| \frac{z_1 - z_2}{1 - z_1 \overline{z}_2} \right| = \frac{|z_1 - z_2|}{\left| 1 - \frac{\overline{z}_2}{\overline{z}_1} \right|}; \qquad \qquad \because z_1 \overline{z}_1 = |z_1|^2$$

$$= \frac{|z_1 - z_2|}{|\overline{z_1} - \overline{z_2}|} |\overline{z_1}|; \text{ Given that } :: |\overline{z_1}| = 1$$

$$= \frac{|z_1 - z_2|}{|z_1 - z_2|} = \frac{|z_1 - z_2|}{|z_1 - z_2|} = 1.$$

45. (a) We have $|z_1 + z_2|^2 \neq |z_1|^2 + |z_2|^2$

$$\Rightarrow |z_1|^2 + |z_2|^2 + 2|z_1||z_2|\cos(\theta_1 - \theta_2) = |z_1|^2 + |z_2|^2$$

Where $\theta_1 = arg(z_1), \theta_2 = arg(z_2)$

$$\Rightarrow \cos(\theta_1 - \theta_2) = 0 \Rightarrow \theta_1 - \theta_2 = \frac{\pi}{2}$$

$$\Rightarrow arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2} \Rightarrow \text{Re}\left(\frac{z_1}{z_2}\right) = \frac{|z_1|}{|z_2|} \cos\left(\frac{\pi}{2}\right) = 0$$

46. (c) Squaring the given relations implies that

$$x_1 x_2 + y_1 y_2 = 0$$

Now amp
$$z_1 - amp z_2 = \tan^{-1} \frac{y_1}{x_1} - \tan^{-1} \frac{y_2}{x_2}$$

$$= \tan^{-1} \frac{\frac{y_1}{x_1} - \frac{y_2}{x_2}}{1 + \frac{y_1 y_2}{x_1 x_2}} = \tan^{-1} \frac{y_1 x_2 - y_2 x_1}{x_1 x_2 + y_1 y_2} = \tan^{-1} \infty = \frac{\pi}{2}.$$

47. (d)
$$|z| |\omega| = 1$$
(i)

and
$$arg\left(\frac{z}{\omega}\right) = \frac{\pi}{2} \Rightarrow \frac{z}{\omega} = i \Rightarrow \left|\frac{z}{\omega}\right| = 1$$
(ii)

From equation (i) and (ii)

$$|z| = |\omega| = 1$$
 and $\frac{z}{\omega} + \frac{\overline{z}}{\overline{\omega}} = 0$; $z\overline{\omega} + \overline{z}\omega = 0$

$$\overline{z}\omega = -z\overline{\omega} = \frac{-z}{\omega}\overline{\omega}\omega$$
; $\overline{z}\omega = -i|\omega|^2 = -i$.

48. (c)
$$arg\left(\frac{3+i}{2-i} + \frac{3-i}{2+i}\right) = arg\left(\frac{6+5i+i^2+6-5i+i^2}{5}\right)$$

= $arg\left(\frac{10}{5}\right) = 0$.

- **49.** (a) We know that the principal value of θ lies between $-\pi$ and π .
- **50.** (a) Concept

51. (d) Given
$$z_1 = 1 + 2i$$
, $z_2 = 3 + 5i$ and $\overline{z}_2 = 3 - 5i$

$$\frac{\overline{z}_2 z_1}{z_2} = \frac{(3 - 5i)(1 + 2i)}{(3 + 5i)} = \frac{13 + i}{3 + 5i}$$

$$=\frac{13+i}{3+5i}\times\frac{3-5i}{3-5i}=\frac{44-62i}{34}$$

Then
$$\operatorname{Re}\left(\frac{\overline{z}_2 z_1}{z_2}\right) = \frac{44}{34} = \frac{22}{17}$$
.

52. (c)
$$(\sqrt{8} + i)^{50} = 3^{49}(a + ib)$$

Taking modulus and squaring on both sides, we get

$$(8+1)^{50} = 3^{98} (a^2 + b^2)$$

$$9^{50} = 3^{98} (a^2 + b^2)$$

$$3^{100} = 3^{98} (a^2 + b^2)$$
$$\Rightarrow (a^2 + b^2) = 9.$$

$$\Rightarrow (a^2 + b^2) = 9$$

53. (a) We have
$$arg\left(\frac{z_1}{z_2}\right) = \pi$$

$$\Rightarrow arg(z_1) - arg(z_2) = \pi \Rightarrow arg(z_1) = arg(z_2) + \pi$$

Let
$$arg(z_2) = \theta$$
, then $arg(z_1) = \pi + \theta$

$$\therefore z_1 \neq z_1 \mid [\cos(\pi + \theta) + i\sin(\pi + \theta)]$$

$$\neq z_1 \mid (-\cos\theta - i\sin\theta)$$

and
$$z_2 \neq z_2 | (\cos \theta + i \sin \theta) \neq z_1 | (\cos \theta + i \sin \theta)$$

$$(: \mid z_1 \mid \neq z_2 \mid)$$

Hence $z_1 + z_2 = 0$.

54. (a) Let $z = (1 - i)^{-i}$. Taking log on both sides,

$$\Rightarrow \log z = -i \log(1 - i) = -i \log \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$$

$$= -i \log \left(\sqrt{2} e^{-i\pi/4} \right) = -i \left[\frac{1}{2} \log 2 + \log e^{-i\pi/4} \right]$$

$$=-i\left[\frac{1}{2}\log 2 - \frac{i\pi}{4}\right] = -\frac{i}{2}\log 2 - \frac{\pi}{4}$$

 $\Rightarrow z = e^{-\pi/4} e^{-i/2\log 2}$. Taking real part only

55. (d) $\sqrt{a+ib} = x + yi \Rightarrow \left(\sqrt{a+ib}\right)^2 = (x+yi)^2$

$$\Rightarrow a = x^2 - y^2, b = 2xy$$
 and hence

$$\sqrt{a-ib} = \sqrt{x^2 - y^2 - 2xyi} = \sqrt{(x-yi)^2} = x - iy$$

56. (b) Let $z = i \log \left(\frac{x - i}{x + i} \right) \Rightarrow \frac{z}{i} = \log \left(\frac{x - i}{x + i} \right)$

$$\Rightarrow \frac{z}{i} = \log \left[\frac{x - i}{x + i} \times \frac{x - i}{x - i} \right] = \log \left[\frac{x^2 - 1 - 2ix}{x^2 + 1} \right]$$

$$\Rightarrow \frac{z}{i} = \log \left[\frac{x^2 - 1}{x^2 + 1} - i \frac{2x}{x^2 + 1} \right] \dots (i)$$

$$\because \log(a+ib) = \log(re^{i\theta}) = \log r + i\theta$$

$$= \log \sqrt{a^2 + b^2} + i \tan^{-1} (b/a)$$

Hence,
$$\frac{z}{i} = \log \sqrt{\left(\frac{x^2 - 1}{x^2 + 1}\right)^2 + \left(\frac{-2x}{x^2 + 1}\right)^2} + i \tan^{-1} \left(\frac{-2x}{x^2 - 1}\right)$$

[by
$$eq^n$$
. (i)]

$$\frac{z}{i} = \log \frac{\sqrt{x^4 + 1 - 2x^2 + 4x^2}}{(x^2 + 1)^2} + i \tan^{-1} \left(\frac{2x}{1 - x^2}\right)$$

$$= \log 1 + i(2 \tan^{-1} x) = 0 + i(2 \tan^{-1} x)$$

$$\therefore z = i^2 2 \tan^{-1} x = -2 \tan^{-1} x = \pi - 2 \tan^{-1} x.$$

57. (a)
$$\frac{1+7i}{(2-i)^2} = \frac{(1+7i)}{(3-4i)} \frac{(3+4i)}{(3+4i)} = \frac{-25+25i}{25} = -1+i$$

Let
$$z = x + iy = -1 + i$$

$$\therefore r \cos \theta = -1 \text{ and } r \sin \theta = 1 \text{ } \therefore \theta = \frac{3\pi}{4} \text{ and } r = \sqrt{2}$$

Thus
$$\frac{1+7i}{(2-i)^2} = \sqrt{2} \left[\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right]$$

58. (c) Since
$$\frac{-\sqrt{3}-i}{2} = -\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

$$\Longrightarrow \left(\frac{-\sqrt{3}-i}{2}\right)^3 = -\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^3 = -i$$

and
$$\frac{\sqrt{3}-i}{2} = \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}$$

and
$$\left(\frac{\sqrt{3}-i}{2}\right)^3 = \cos\frac{\pi}{2} - i\sin\frac{\pi}{2} = -i$$
.

Hence the result.

59. (a)
$$x + iy = \sqrt{\frac{a + ib}{c + id}} \Longrightarrow x - iy = \sqrt{\frac{a - ib}{c - id}}$$

Also
$$x^2 + y^2 = (x + iy)(x - iy) = \sqrt{\frac{a^2 + b^2}{c^2 + d^2}}$$

$$\implies (x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$$

60. (c)
$$1+i\sqrt{3}=2\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)=2\left[\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right]=2e^{i\pi/3}$$

$$\therefore (1+i\sqrt{3})^9 = (2e^{i\pi/3})^9 = 2^9.e^{i(3\pi)}$$

$$= 2^9(\cos 3\pi + i\sin 3\pi) = -2^9$$

:.
$$a+ib=(1+i\sqrt{3})^9=-2^9$$
; :. $b=0$.

61. (d) Since
$$1-i=\sqrt{2}\left\{\cos\frac{\pi}{4}-i\sin\frac{\pi}{4}\right\}, |1-i|=\sqrt{2}$$

$$\therefore |1-i|^x = 2^x \Longrightarrow (\sqrt{2})^x = 2^x \Longrightarrow 2^{x/2} = 2^x$$

$$\Rightarrow \frac{x}{2} = x \Rightarrow x = 0$$

62.(c)
$$\tan^{-1}\left(\frac{5i}{3}\right) = i \tan^{-1}\left(\frac{5}{3}\right) = \frac{i}{2} \log \left(\frac{\frac{5}{3}+1}{\frac{5}{3}-1}\right)$$

$$\operatorname{Im}\left(\tan^{-1}\left(\frac{5i}{3}\right)\right) = \frac{1}{2}\log 4 = \frac{1}{2}.2\log 2 = \log 2$$
.

63. (a)
$$y = \cos \theta + i \sin \theta = e^{i\theta}$$
, then $\frac{1}{y} = e^{-i\theta} = \cos \theta - i \sin \theta$

$$\therefore y + \frac{1}{y} = 2\cos\theta.$$

64. (b)
$$\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} = \frac{1+(i)^2-2i}{1+1} = -i$$

which can be written as $\cos \frac{\pi}{2} - i \sin \frac{\pi}{2}$

65. (b) We have
$$|z^2 - 1| = |z|^2 + 1$$

$$\Rightarrow |(x+iy)^2-1| = |x+iy|^2 +1$$

$$\implies |(x^2 - y^2 - 1) + 2xyi| = (\sqrt{x^2 + y^2})^2 + 1$$

66. (b) By adding
$$a\bar{a}$$
 on both the sides of $z\bar{z} + a\bar{z} + \bar{a}z = -b$

we get,
$$(z + a)(z + a) = aa - b$$

$$\Rightarrow |z+a|^2 = |a|^2 - b, \{\because \overline{zz} \neq z|^2\}$$

This equation will represent a circle with centre z = -a, if $|a|^2 - b > 0$, i.e. $|a|^2 > b$ since $|a|^2 = b$ represents point circle only.

67. (c) We have
$$z_k = 1 + a + a^2 + \dots + a^{k-1} = \frac{1 - a^k}{1 - a}$$

$$\implies z_k - \frac{1}{1-a} = \frac{-a^k}{1-a}$$

$$\Rightarrow \left| z_k - \frac{1}{1-a} \right| = \frac{\left| a^k \right|}{\left| 1-a \right|} = \frac{\left| a \right|^k}{\left| 1-a \right|} < \frac{1}{\left| 1-a \right|}$$

$$\Rightarrow z_k$$
 lies within $\left|z - \frac{1}{1-a}\right| = \frac{1}{|1-a|}$.

- **68.** (c) Let r be the circum radius of the equilateral triangle and ω the cube root of unity.
- **69.** (d)standard problem

70. (d)
$$z_2 = z_1 e^{2i\pi/3} = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

$$= \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) \left(\frac{-1}{2} + \frac{\sqrt{3}}{2}i\right) = -\frac{3}{4} - \frac{1}{4} = -1.$$

71. (b)
$$|z-2| + |z+2| = 8$$

$$\Rightarrow \sqrt{(x-2)^2 + y^2} + \sqrt{(x+2)^2 + y^2} = 8$$

$$\Rightarrow x^2 + y^2 + 4 - 4x = 64 + x^2 + y^2 + 4 + 4x - 16\sqrt{(x+2)^2 + y^2}$$

$$\implies$$
 -8x - 64 = -16 $\sqrt{(x+2)^2 + y^2}$

$$\Rightarrow$$
 $(x+8) = 2\sqrt{(x+2)^2 + y^2}$

$$\Rightarrow x^2 + 64 + 16x = 4[x^2 + y^2 + 4 + 4x]$$

$$\implies 3x^2 + 4y^2 - 48 = 0 \implies \frac{x^2}{16} + \frac{y^2}{12} = 1$$
,

Which is an ellipse.

72. (a) We have
$$|z-z_1| = |z-z_2| = |z-z_3| = |z-z_4|$$

Therefore the point having affix z is equidistant from the four points having affixes z_1, z_2, z_3, z_4 . Thus z is the affix of either the centre of a circle or the point of intersection of diagonals of a square or rectangle. Therefore z_1, z_2, z_3, z_4 are either concyclic or vertices of a square. Hence z_1, z_2, z_3, z_4 are concyclic.

73. (b) Let
$$z = x + iy$$
: $z + iz = (x - y) + i(x + y)$ and $iz = -y + ix$

If A denotes the area of the triangle formed by z, z + iz and iz, then $A = \frac{1}{2} \begin{vmatrix} x & y & 1 \\ x - y & x + y & 1 \\ -y & x & 1 \end{vmatrix}$

Applying transformation $R_2 \rightarrow R_2 - R_1 - R_3$, we get

$$A = \frac{1}{2} \begin{vmatrix} x & y & 1 \\ 0 & 0 & -1 \\ -y & x & 0 \end{vmatrix} = \frac{1}{2} (x^2 + y^2) = \frac{1}{2} |z|^2$$

74. (b)
$$|z+1| = \sqrt{2}|z-1|$$

Putting
$$z = x + iy \Longrightarrow |x + iy + 1| = \sqrt{2} |x + iy - 1|$$

$$\Rightarrow$$
 $|(x+1)+iy| = \sqrt{2}|(x-1)+iy|$

$$\Rightarrow$$
 $(x+1)^2 + y^2 = 2[(x-1)^2 + y^2]$

$$\Rightarrow x^2 + y^2 - 6x + 1 = 0.$$

Which is the equation of a circle.

75. (a) Area of the triangle
$$\frac{1}{2}|z|^2 = 18 \Rightarrow |z| = 6$$
.

76. (c) We have
$$|z-1| + |z+1| \le 4$$

$$\implies |z-1|^2 + |z+1|^2 + 2|z-1||z+1| \le 16$$

$$\Rightarrow (z-1)(z-1) + (z+1)(z+1) + 2|(z-1)(z+1)| \le 16$$

$$\Rightarrow$$
 2| z|² +2 + 2| z² -1| \leq 16 \Rightarrow | z|² +| z² -1| \leq 7

77. (c) We have
$$\frac{z_1}{z_2} + \frac{z_2}{z_1} = 1 \Rightarrow z_1^2 + z_2^2 = z_1 z_2$$

$$\Rightarrow z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_1 z_3 + z_2 z_3$$
, where $z_3 = 0$

 $\Rightarrow z_1, z_2$ and the origin $(:: z_3 = 0)$ form an equilateral triangle.

78. (c)
$$|z-1| = |z+i| \implies |x-1+iy|^2 = |x+i(y+1)|^2$$

$$\implies$$
 $(x-1)^2 + y^2 = x^2 + (y+1)^2$

 \Rightarrow x + y = 0 *i.e.*, a straight line through the origin.

79. (a)
$$|z-2+i| = |z-3-i|$$

$$\Rightarrow |(x-2)+i(y+1)| = |(x-3)+i(y-1)|$$

$$\Rightarrow \sqrt{(x-2)^2 + (y+1)^2} = \sqrt{(x-3)^2 + (y-1)^2}$$

$$\Rightarrow x^2 + 4 - 4x + y^2 + 1 + 2y = x^2 + 9 - 6x + y^2 + 1 - 2y$$

$$\Rightarrow 2x + 4y - 5 = 0$$
.

80. (b) L.H.S. =
$$\left[\frac{2\cos^2(\phi/2) + 2i\sin(\phi/2)\cos(\phi/2)}{2\cos^2(\phi/2) - 2i\sin(\phi/2)\cos(\phi/2)} \right]^n$$

$$= \left[\frac{\cos(\phi/2) + i\sin(\phi/2)}{\cos(\phi/2) - i\sin(\phi/2)}\right]^n = \left[\frac{e^{i(\phi/2)}}{e^{-i(\phi/2)}}\right]^n = (e^{i\phi})^n$$

 $=\cos n\phi + i\sin n\phi$.

81. (c)
$$(1+i)^n + (1-i)^n$$

$$= (2)^{n/2} \left\{ \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} + \cos \frac{n\pi}{4} - i \sin \frac{n\pi}{4} \right\}$$

$$=2^{\frac{n}{2}} \cdot 2\cos\frac{n\pi}{4} = 2^{\frac{n}{2}+1}\cos\frac{n\pi}{4} = (\sqrt{2})^{n+2}\cos\frac{n\pi}{4}.$$

82. (a)
$$\left[\frac{1 + \cos(\pi/8) + i\sin(\pi/8)}{1 + \cos(\pi/8) - i\sin(\pi/8)} \right]^8$$

$$= \left[\frac{2\cos^2(\pi/16) + 2i\sin(\pi/16)\cos(\pi/16)}{2\cos^2(\pi/16) - 2i\sin(\pi/16)\cos(\pi/16)} \right]^8$$

$$= \frac{[\cos(\pi/16) + i\sin(\pi/16)]^8}{[\cos(\pi/16) - i\sin(\pi/16)]^8}$$

$$= \left[\cos\frac{\pi}{16} + i\sin\frac{\pi}{16}\right]^8 \left[\cos\frac{\pi}{16} + i\sin\frac{\pi}{16}\right]^8$$

$$= [\cos(\pi/16) + i\sin(\pi/16)]^{16}$$

$$=\cos 16\left(\frac{\pi}{16}\right)+i\sin 16\left(\frac{\pi}{16}\right)=\cos \pi=-1.$$

83. (a)
$$(1+\omega)^3 - (1+\omega^2)^3 = (-\omega^2)^3 - (-\omega)^3$$

= $-\omega^6 + \omega^3 = -\omega^3 \omega^3 + \omega^3 = -1 + 1 = 0$

84. (c) We have
$$(\cos \theta + i \sin \theta)(\cos 2\theta + i \sin 2\theta)$$

$$\dots (\cos n\theta + i\sin n\theta) = 1$$

$$\Rightarrow \cos(\theta + 2\theta + 3\theta + ... + n\theta) + i\sin(\theta + 2\theta + ... + n\theta) = 1$$

$$\Longrightarrow \cos\left(\frac{n(n+1)}{2}\theta\right) + i\sin\left(\frac{n(n+1)}{2}\theta\right) = 1$$

$$\cos\left(\frac{n(n+1)}{2}\theta\right) = 1 \text{ and } \sin\left(\frac{n(n+1)}{2}\theta\right) = 0$$

85. (c)
$$(-\sqrt{3}+i)^{53} = 2^{53} \left(\frac{-\sqrt{3}}{2} + \frac{i}{2}\right)^{53}$$

$$= 2^{53} (\cos 150^{\circ} + i \sin 150^{\circ})^{53}$$

$$=2^{53} \left[\cos(150^{\circ} \times 53) + i \sin(150^{\circ} \times 53)\right]$$

$$=2^{53} \left[\cos(22\pi + 30^{\circ}) + i\sin(22\pi + 30^{\circ})\right]$$

$$=2^{53}\left[\cos 30^{\circ}+i\sin 30^{\circ}\right]=2^{53}\left[\frac{\sqrt{3}}{2}+i\frac{1}{2}\right].$$

86. (c)
$$\frac{(\cos \alpha + i \sin \alpha)^4}{(\sin \beta + i \cos \beta)^5} = \frac{\cos 4\alpha + i \sin 4\alpha}{i^5 (\cos \beta - i \sin \beta)^5}$$

$$= -i(\cos 4\alpha + i\sin 4\alpha)(\cos \beta - i\sin \beta)^{-5}$$

$$= -i[\cos 4\alpha + i\sin 4\alpha] [\cos 5\beta + i\sin 5\beta]$$

$$= -i[\cos(4\alpha + 5\beta) + i\sin(4\alpha + 5\beta)]$$

87. (a)
$$\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n = \left(\frac{1+\cos\alpha+i\sin\alpha}{1+\cos\alpha-i\sin\alpha}\right)^n$$

$$= \left(\frac{2\cos^2\frac{\alpha}{2} + 2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{2\cos^2\frac{\alpha}{2} - 2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}\right)^n = \left(\frac{\cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2} - i\sin\frac{\alpha}{2}}\right)^n$$

88. (b) Given that
$$\left[\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right]^{3/4} = \left[\cos\pi + i\sin\pi\right]^{1/4}$$
.

Since the expression has only 4 different roots, therefore on putting n = 0, 1, 2, 3 in $\cos\left[\frac{2n\pi + \pi}{4}\right] + i\sin\left[\frac{2n\pi + \pi}{4}\right]$ and multiplying them,

We get =
$$\left[\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right] \left[\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right] \left[\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right] \left[\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right]$$

89. (a)
$$x + \frac{1}{x} = 2\cos\theta$$

$$\Rightarrow x^2 - 2x \cos \theta + 1 = 0 \Rightarrow x = \cos \theta \pm i \sin \theta$$

$$\Rightarrow x^n = \cos n\theta \pm i \sin n\theta \Rightarrow \frac{1}{x} = \frac{1}{\cos \theta \pm i \sin \theta}$$

$$\Rightarrow \frac{1}{x} = \cos \theta \mp i \sin \theta \Rightarrow \frac{1}{x^n} = \cos n \theta \mp i \sin n \theta$$

90. (b) Let
$$\cos \frac{\pi}{10} - i \sin \frac{\pi}{10} = z$$
 and $\cos \frac{\pi}{10} + i \sin \frac{\pi}{10} = \frac{1}{z}$

Therefore,
$$\left(\frac{1-z}{1-\frac{1}{z}}\right)^{10} = \left\{\frac{-(z-1)z}{(z-1)}\right\}^{10} = (-z)^{10}$$

- **91.** (c) standard problem
- 92. (d) If ω is a complex cube root of unity then $\omega^3 = 1$ and $1 + \omega + \omega^2 = 0$, therefore $(1 + \omega \omega^2)(1 \omega + \omega^2)$

$$=(-2\omega^2)(-2\omega)=4$$

93. (b)
$$(1 - \omega + \omega^2)^5 + (1 + \omega - \omega^2)^5$$

$$= (-2\omega)^5 + (-2\omega^2)^5 = -32\omega^3\omega^2 - 32(\omega^3)^3\omega$$

$$= -32(\omega^2 + \omega) = -32(-1) = 32$$

94. (c)
$$(x-y)(x\omega-y)(x\omega^2-y)$$

$$= (x^2\omega - xy - xy\omega + y^2)(x\omega^2 - y)$$

$$= x^{3} - x^{2}y(1 + \omega + \omega^{2}) + xy^{2}(1 + \omega + \omega^{2}) - y^{3}$$

$$= x^3 - y^3$$

95. (b) Multiplying the numerator and denominator by ω and ω^2 respectively I and II expressions

$$=\frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2}+\frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2}=\frac{\omega(a+b\omega+c\omega^2)}{(b\omega+c\omega^2+a)}+\frac{\omega^2(a+b\omega+c\omega^2)}{(c\omega^2+a+a\omega)}=\omega+\omega^2=-1$$

96. (d) The n^{th} roots of unity are given by

$$z_k = e^{\frac{i2\pi(k-1)}{n}}, \quad (k = 1, 2, ..., n)$$

$$\therefore |z_k| = \left| e^{\frac{i2\pi(k-1)}{n}} \right| = 1 \text{ for all } k = 1, 2, \dots, n$$

$$\Rightarrow \mid z_k \mid = \mid z_{k+1} \mid \text{ for all } k = 1,2,...,n$$

97. (a)
$$2^{15} \left[\frac{\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^{15}}{(1-i)^{20}} + \frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2} \right)^{15}}{(1+i)^{20}} \right]$$

$$= 2^{15} \left[\frac{\omega^{15}}{(1-i)^{20}} + \frac{\omega^{30}}{(1+i)^{20}} \right] = 2^{15} \left[\frac{1}{(1-i)^{20}} + \frac{1}{(1+i)^{20}} \right]$$

98. (d) As
$$\frac{-1+i\sqrt{3}}{2} = \omega$$
 and $\frac{-1-i\sqrt{3}}{2} = \omega^2$

$$(\omega)^{20} + (\omega^2)^{20} = \omega^{18} \cdot \omega^2 + \omega^{39} \cdot \omega = \omega^2 + \omega = -1$$

99. (d)
$$z + z^{-1} = 1 \Rightarrow z^2 - z + 1 = 0 \Rightarrow z = -\omega$$
 or $-\omega^2$

For
$$z = -\omega$$
, $z^{100} + z^{-100} = (-\omega)^{100} + (-\omega)^{-100}$

$$= \omega + \frac{1}{\omega} = \omega + \omega^2 = -1$$

For
$$z = -\omega^2$$
, $z^{100} + z^{-100} = (-\omega^2)^{100} + (-\omega^2)^{-100}$

$$=\omega^{200} + \frac{1}{\omega^{200}} = \omega^2 + \frac{1}{\omega^2} = \omega^2 + \omega = -1.$$

100. (c)
$$x^4 - x^3 + x - 1 = 0 \Rightarrow x^3(x - 1) + 1(x - 1) = 0$$

$$x-1=0$$
 Or $x^3+1=0 \implies x=1,-1,\frac{1+\sqrt{3}i}{2},\frac{1-\sqrt{3}i}{2}$

so its real roots are 1 and -1.

101. (d)
$$225 + (3\omega + 8\omega^2)^2 + (3\omega^2 + 8\omega)^2$$

= $225 + (5\omega^2 - 3)^2 + (5\omega - 3)^2$

$$= 225 + 18 - 5(\omega + \omega^2)$$

$$= 225 + 18 - 5(-1) = 225 + 18 + 5 = 248$$
.

102. (b)
$$\sinh ix = i \sin x$$
.

103. (a)
$$\Delta = (\omega^{3n} - 1) + \omega^n (\omega^{2n} - \omega^{2n}) + \omega^{2n} (\omega^n - \omega^{4n})$$

$$\Delta = (1-1) + 0 + \omega^{2n} \left[\omega^n - (\omega^3)^n \omega^n \right]$$

$$\Delta = 0 + 0 + 0 = 0.$$