Sathwik beesetty ASSIGNMENT 2

```
note: inferences are given as print statements
In [1]:
         import matplotlib.pyplot as plt
          import seaborn as sns
In [2]:
        sns.get dataset names()
Out[2]:
          ['anagrams',
           'anscombe',
           'attention',
           'brain networks',
           'car crashes',
           'diamonds',
           'dots',
           'dowjones',
           'exercise',
           'flights', 'fmri',
           'geyser',
           'glue',
           'healthexp',
           'iris',
           'mpg',
           'penguins',
           'planets',
           'seaice',
           'taxis',
           'tips',
           'titanic']
In [3]:
         df = sns.load dataset('car crashes')
In [4]:
Out[4]:
              total speeding alcohol not_distracted no_previous ins_premium ins_losses abbrev
           0
              18.8
                      7.332
                              5.640
                                           18.048
                                                      15.040
                                                                  784.55
                                                                            145.08
                                                                                      ΑL
              18.1
                      7.421
                                           16.290
                                                      17.014
                                                                            133.93
                              4.525
                                                                 1053.48
                                                                                      ΑK
              18.6
                      6.510
                              5.208
                                           15.624
                                                      17.856
                                                                  899.47
                                                                            110.35
                                                                                      ΑZ
              22.4
                      4.032
                                                      21.280
                                                                  827.34
                                                                            142.39
                              5.824
                                          21.056
                                                                                      AR
```

10.920

10.680

878.41

12.0

4.200

3.360

CA

165.63

5 13.6 5.032

3.808

10.744

12.920

835.50

139.91

CO

6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	HI
12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD
21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	МО
26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
29	11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	OK
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI

40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

In [5]: df.head()

Out[5]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA

In [6]: df.tail()

Out[6]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

```
In [7]: df.info()
        <class 'pandas.core.frame.DataFrame'>RangeIndex:
        51 entries, 0 to 50
        Data columns (total 8 columns):
             Column
                             Non-Null Count
                                             Dtype
         0
            total
                             51 non-null
                                             float64
                             51 non-null
                                             float64
         1
           speeding
         2
           alcohol
                            51 non-null
                                            float64
           not_distracted 51 non-null
                                             float64
                                             float64
           no previous
                             51 non-null
            ins premium
                             51 non-null
                                            float64
             ins losses
                             51 non-null
                                            float64
         7
             abbrev
                             51 non-null
                                             object
        dtypes: float64(7), object(1)
        memory usage: 3.3+ KB
```

```
In [8]: df.shape
```

Out[8]: (51, 8)

```
In [32]: sns.scatterplot(x="total" , y ="alcohol", data = df)
    print("as alcohol increases total also increases")
```

as alcohol increases total also increases

In [34]: sns.scatterplot(x="speeding" , y ="total", data = df)
 print("increase in speed increases total but not as alcohol")

increase in speed increases total but not as alcohol

In [36]: sns.lineplot(x="total" , y ="alcohol",data = df,ci= None)
print("here we can see fulcutations but still its they are related"

here we can see fulcutations but still its they are related

/var/folders/ks/ljk00dm1703810nybztmtjgw0000gn/T/ipykernel_3174/97
9379772.py:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.lineplot(x="total" , y ="alcohol",data = df,ci= None)

In [12]: sns.distplot(df["speeding"])
 print("data distribution of a speeding against the density distribu

data distribution of a speeding against the density distribution.

/var/folders/ks/ljk00dm1703810nybztmtjgw0000gn/T/ipykernel_3174/24
8918521.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level fun ction with

similar flexibility) or `histplot` (an axes-level function for his tograms).

For a guide to updating your code to use the new functions, please see

https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df["speeding"])

In [13]:

sns.relplot(x="speeding" , y ="alcohol", data =df, hue = "abbrev")
print("using hue we differentiated different categories with colors

using hue we differentiated different categories with colors

RI
SC
SD
TN
TX
UT
VA
WA
WA
WV

WY

In [14]: df["abbrev"].value_counts()
 print("here we get count of all categories. has everything repeated

here we get count of all categories. has everything repeated only once we got count 1 for all

In [15]: sns.barplot(data = df,x = "speeding",y = "alcohol",ci = None)
 print("bargraph: speeding vs alcohol")

bargraph: speeding vs alcohol

/var/folders/ks/ljk00dm1703810nybztmtjgw0000gn/T/ipykernel_3174/82
7836433.py:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.barplot(data = df,x = "speeding",y = "alcohol",ci = None)


```
In [28]:
    sns.countplot(df["total"])
```

Out[28]: <Axes: ylabel='count'>


```
In [17]: sns.countplot(data= df,x = "alcohol")
```

Out[17]: <Axes: xlabel='alcohol', ylabel='count'>


```
In [18]: sns.jointplot(x="speeding" , y ="alcohol", data =df)
```

Out[18]: <seaborn.axisgrid.JointGrid at 0x13e488d10>


```
In [19]: sns.boxplot(x="total" , y ="alcohol", data =df)
```

Out[19]: <Axes: xlabel='total', ylabel='alcohol'>


```
In [20]: corr= df.corr()
corr
```

/var/folders/ks/ljk00dm1703810nybztmtjgw0000gn/T/ipykernel_3174/98 420504.py:1: FutureWarning: The default value of numeric_only in D ataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

corr= df.corr()

Out[20]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium i
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000
ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116

In [21]: sns.heatmap(corr,annot= True)
 print("from this heatmap we could infer that ins_premium and ins_los
 print("alcohol is effecting out total")

from this heatmap we could infer that ins_premium and ins_losses a re not affecting or leasteffecting our other columns alcohol is effecting out total


```
In [22]: x=df["alcohol"]
y = df["speeding"]
plt.bar(x,y)
```

Out[22]: <BarContainer object of 51 artists>

In [23]: plt.barh(x,y)

Out[23]: <BarContainer object of 51 artists>


```
In [24]: plt.barh(x,y,color = 'green')
```

Out[24]: <BarContainer object of 51 artists>

In [25]: plt.bar(x,y,width = 0.2)

Out[25]: <BarContainer object of 51 artists>


```
In [26]: plt.hist(x)
```



```
In [30]: x1 = (df["alcohol"])
         fig = plt.figure()
         axes1 = fig.add axes([0.1, 0.1, 0.8, 0.8])
         axes1.pie(x1, y, autopct="%0.2f%%", colors=["red", "green"])
Out[30]:
         ([<matplotlib.patches.Wedge at 0x167815c50>,
           <matplotlib.patches.Wedge at 0x16a496d10>,
           <matplotlib.patches.Wedge at 0x16a4dc2d0>,
           <matplotlib.patches.Wedge at 0x16a497f50>,
           <matplotlib.patches.Wedge at 0x16a4df690>,
           <matplotlib.patches.Wedge at 0x16a509090>,
           <matplotlib.patches.Wedge at 0x16a50a610>,
           <matplotlib.patches.Wedge at 0x16a50bcd0>,
           <matplotlib.patches.Wedge at 0x16a511490>,
           <matplotlib.patches.Wedge at 0x16a508e90>,
           <matplotlib.patches.Wedge at 0x16a524050>,
           <matplotlib.patches.Wedge at 0x16a525610>,
           <matplotlib.patches.Wedge at 0x16a526bd0>,
           <matplotlib.patches.Wedge at 0x16a534390>,
           <matplotlib.patches.Wedge at 0x16a535890>,
           <matplotlib.patches.Wedge at 0x16a537010>,
           <matplotlib.patches.Wedge at 0x16a540690>,
           <matplotlib.patches.Wedge at 0x16a541dd0>,
           <matplotlib.patches.Wedge at 0x16a543510>,
 In [ ]:
```