Lógica Computacional

Aula Teórica 13: Semântica da Lógica de Primeira Ordem

Ricardo Gonçalves

Departamento de Informática

27 de outubro de 2023

Satisfação de fórmulas

Satisfação de fórmulas dada estrutura de interpretação e atribuição:

$$\mathcal{M}, \rho \Vdash \varphi$$
 se e só se $\llbracket \varphi
rbracket^{
ho} = 1$

 $\llbracket arphi
rbracket_{\mathcal{M}}^{
ho}$ definida indutivamente no conjunto das fórmulas

Nota

Estrutura de interpretação e atribuição é tudo o que precisamos para interpretar fórmulas.

Dado \mathcal{M} e ρ , qualquer fórmula φ é verdadeira ou falsa:

$$\mathcal{M}, \rho \Vdash \varphi$$
 ou $\mathcal{M}, \rho \Vdash \neg \varphi$

Satisfação de fórmulas

Resultados úteis

- $\mathcal{M}, \rho \not\Vdash \bot$
- $\mathcal{M}, \rho \Vdash \neg \varphi$ se e só se $\mathcal{M}, \rho \not\Vdash \varphi$
- $\mathcal{M}, \rho \Vdash \varphi \land \psi$ se e só se $\mathcal{M}, \rho \Vdash \varphi$ e $\mathcal{M}, \rho \Vdash \psi$
- $\bullet \ \mathcal{M}, \rho \Vdash \varphi \lor \psi \text{ se e s\'o se } \mathcal{M}, \rho \Vdash \varphi \text{ ou } \mathcal{M}, \rho \Vdash \psi$
- $\bullet \ \mathcal{M}, \rho \Vdash \varphi \to \psi \text{ se e s\'o se } \mathcal{M}, \rho \not\Vdash \varphi \text{ ou } \mathcal{M}, \rho \Vdash \psi$
- $\mathcal{M}, \rho \Vdash \forall_x \varphi$ se e só se $\mathcal{M}, \rho[x := u] \Vdash \varphi$ para todo o $u \in U$
- $\mathcal{M}, \rho \Vdash \exists_x \varphi$ se e só se $\mathcal{M}, \rho[x := u] \Vdash \varphi$ para algum $u \in U$

Lema das variáveis livres

Para interpretar termos, só interessam variáveis que neles ocorram

Interpretação de termos

Sejam ρ e ρ' atribuições tal que $\rho(x)=\rho'(x)$ para todo $x\in {\rm Var}(t).$ Então

$$\llbracket t \rrbracket_{\mathcal{M}}^{\rho} = \llbracket t \rrbracket_{\mathcal{M}}^{\rho'}$$

Para interpretar fórmulas, só interessam as suas variáveis livres

Interpretação de fórmulas

Sejam ρ e ρ' atribuições tal que $\rho(x)=\rho'(x)$ para todo $x\in {\rm VL}(\varphi).$ Então

$$\llbracket\varphi\rrbracket^{\rho}_{\mathcal{M}} = \llbracket\varphi\rrbracket^{\rho'}_{\mathcal{M}}$$

o que é equivalente a dizer que:

$$\mathcal{M}, \rho \Vdash \varphi$$
 se e só se $\mathcal{M}, \rho' \Vdash \varphi$

Lema das variáveis livres

Se tivermos uma variável que não é livre na fórmula?

Se $x \not\in VL(\varphi)$ então:

$$\llbracket \varphi \rrbracket_{\mathcal{M}}^{\rho[x:=u]} = \llbracket \varphi \rrbracket_{\mathcal{M}}^{\rho}$$

o que é equivalente a dizer que:

$$\mathcal{M}, \rho[x := u] \Vdash \varphi \ \text{ se e só se } \ \mathcal{M}, \rho \Vdash \varphi$$

Variáveis vs Satisfação

Quando não há variáveis livres?

Interpretação de termo fechado

Seja t um termo fechado e ρ e ρ' quaisquer atribuições. Então

$$\llbracket t \rrbracket_{\mathcal{M}}^{\rho} = \llbracket t \rrbracket_{\mathcal{M}}^{\rho'}$$

Satisfação de fórmula fechada

Seja φ uma fórmula fechada e ρ e ρ' quaisquer atribuições. Então:

- $\mathcal{M}, \rho \Vdash \varphi$ se e só se $\mathcal{M}, \rho' \Vdash \varphi$.
- $\mathcal{M}, \rho \Vdash \varphi$ se e só se $\mathcal{M} \Vdash \varphi$.
- $\mathcal{M} \Vdash \varphi$ ou $\mathcal{M} \Vdash \neg \varphi$.

Variáveis mudas

A identidade das variáveis mudas não é importante:

- qualquer identificador serve
- podemos trocá-lo sem alterar o sentido da fórmula.

Seja $\varphi \in F_{\Sigma}^X$ e $y \notin \mathsf{VL}(\varphi)$, tal que y é livre para x em φ . Então:

- $\bullet \ \forall_x \varphi \ \equiv \ \forall_y \, [\varphi]^x_y$
- $\bullet \ \exists_x \varphi \ \equiv \ \exists_y \, [\varphi]_y^x$

Fecho de variáveis em fórmulas

Se a satisfação de uma fórmula não depende da atribuição considerada, as variáveis podem ser quantificadas universalmente

- $\bullet \ \mathcal{M} \Vdash \varphi \text{ se e s\'o se } \mathcal{M} \Vdash \forall_x \, \varphi$
- $\mathcal{M} \Vdash \varphi$ se e só se $\mathcal{M} \Vdash \mathsf{FchU}(\varphi)$, sendo $\mathsf{FchU}(\varphi)$ o fecho universal de φ

Variável por termo

Dada $\varphi \in F_{\Sigma}^{X}$ e sendo $t \in T_{\Sigma}^{X}$ livre para x em φ , tem-se que:

- $\bullet \ [\varphi]_t^x \models \exists_x \, \varphi$
- $\bullet \ \forall_x \varphi \models [\varphi]_t^x$

Quantificadores vs conectivos proposicionais

Alguns resultados

- $\bullet \ \{(\forall_x \, \varphi) \lor (\forall_x \, \psi)\} \models \forall x \, (\varphi \lor \psi)$
- $\{\exists_x (\varphi \wedge \psi)\} \models \exists x \varphi \wedge \exists_x \psi$
- $\{\forall_x (\varphi \to \psi)\} \models \forall_x \varphi \to \forall_x \psi$
- $\bullet \ \{\exists_y \, \forall_x \, \varphi\} \models \forall_x \, \exists_y \, \varphi$

Recíprocos não são verdadeiros

As fórmulas em cada item não são equivalentes.

Prova de consequência semântica

$$\{(\forall_x \varphi) \lor (\forall_x \psi)\} \models \forall_x (\varphi \lor \psi)$$

Consideremos uma estrutura de interpretação $\mathcal{M}=(U,I)$ e uma atribuição $\rho: X \to U$ tal que $\mathcal{M}, \rho \Vdash (\forall_x \varphi) \lor (\forall_x \psi)$, ou seja,

$$\mathcal{M}, \rho \Vdash \forall_x \varphi \text{ ou } \mathcal{M}, \rho \Vdash \forall_x \psi$$
 (1)

Queremos mostrar que $\mathcal{M}, \rho \Vdash \forall_x (\varphi \lor \psi)$.

Considerando um valor arbitrário $u \in U$, por (1) obtém-se

$$\mathcal{M}, \rho[x := u] \Vdash \varphi \text{ ou } \mathcal{M}, \rho[x := u] \Vdash \psi$$
 (2)

Então, de (2) conclui-se que $\mathcal{M}, \rho[x:=u] \Vdash \varphi \lor \psi$; logo tem-se também que $\mathcal{M}, \rho \Vdash \forall_x (\varphi \lor \psi)$, como se queria mostrar.

Um contra-exemplo: $\{\forall_x (\varphi \lor \psi)\} \not\models \forall_x \varphi \lor \forall_x \psi$

Seja $\varphi=P(x)$ e $\psi=Q(x)$. Considere-se a estrutura de interpretação $\mathcal{M}=(\mathbb{N}_0,I)$ tal que $\underline{P}_I:\ \mathbb{N}_0 \to \{0,1\}$ tal que $\underline{P}_I(n)=1$ sse n é par $\underline{Q}_I:\ \mathbb{N}_0 \to \{0,1\}$ tal que $\underline{Q}_I(n)=1$ sse n é impar Seja ρ uma qualquer atribuição.

• primeiro mostramos que $\mathcal{M}, \rho \Vdash \forall_x \left(P(x) \lor Q(x) \right)$

$$\begin{split} & \llbracket \forall_x \left(P(x) \vee Q(x) \right) \rrbracket_{\mathcal{M}}^{\rho} = 1 \text{ sse } \llbracket P(x) \vee Q(x) \rrbracket_{\mathcal{M}}^{\rho[x:=n]} = 1, \text{ para } \\ & \text{qualquer } n \in \mathbb{N}_0. \text{ Seja então } n \text{ arbitrário: } \\ & \llbracket P(x) \vee Q(x) \rrbracket_{\mathcal{M}}^{\rho[x:=n]} = \llbracket P(x) \rrbracket_{\mathcal{M}}^{\rho[x:=n]} \oplus \llbracket Q(x) \rrbracket_{\mathcal{M}}^{\rho[x:=n]} = \\ & \underline{P}_I(\llbracket x \rrbracket_{\mathcal{M}}^{\rho[x:=n]}) \oplus \underline{Q}_I(\llbracket x \rrbracket_{\mathcal{M}}^{\rho[x:=n]}) = \underline{P}_I(n) \oplus \underline{Q}_I(n). \text{ Mas como para qualquer } n, \text{ se tem } \underline{P}_I(n) = 1 \text{ $(n \text{ \'e par) ou } \underline{Q}_I(n) = 1$ ($n \text{ \'e impar), temos que } \underline{P}_I(n) \oplus \underline{Q}_I(n) = 1. \\ & \text{Logo, temos que \mathcal{M}, $\rho \Vdash \forall_x \left(P(x) \vee Q(x) \right). \end{split}$$

Um contra-exemplo: $\{\forall_x (\varphi \lor \psi)\} \not\models \forall_x \varphi \lor \forall_x \psi$

Seja $\varphi=P(x)$ e $\psi=Q(x)$. Considere-se a estrutura de interpretação $\mathcal{M}=(\mathbb{N}_0,I)$ tal que $\underline{P}_I:\ \mathbb{N}_0 \to \{0,1\}$ tal que $\underline{P}_I(n)=1$ sse n é par $\underline{Q}_I:\ \mathbb{N}_0 \to \{0,1\}$ tal que $\underline{Q}_I(n)=1$ sse n é ímpar Seja ρ uma qualquer atribuição.

• Vamos agora mostrar que $\mathcal{M}, \rho \not\models \forall_x P(x) \vee \forall_x Q(x)$.

Note-se que
$$[\![P(x)]\!]_{\mathcal{M}}^{\rho[x:=1]} = \underline{P}_I([\![x]\!]_{\mathcal{M}}^{\rho[x:=1]}) = \underline{P}_I(1) = 0$$
. Logo $[\![\forall_x\,P(x)]\!]_{\mathcal{M}}^{\rho} = 0$ e portanto $\mathcal{M},\rho \not \vdash \forall_x\,P(x)$. Também temos $[\![Q(x)]\!]_{\mathcal{M}}^{\rho[x:=2]} = \underline{Q}_I([\![x]\!]_{\mathcal{M}}^{\rho[x:=2]}) = \underline{Q}_I(2) = 0$. Logo $[\![\forall_x\,Q(x)]\!]_{\mathcal{M}}^{\rho} = 0$ e portanto $\mathcal{M},\rho \not \vdash \forall_x\,Q(x)$. Fica então provado que $\mathcal{M},\rho \not \vdash \forall_x\,P(x) \vee \forall_x\,Q(x)$.

Prova de consequência semântica

$$\{\exists_y \, \forall_x \, \varphi\} \models \forall_x \, \exists_y \, \varphi$$

Seja $\mathcal{M}=(U,I)$ uma estrutura de interpretação e $\rho:X\to U$ uma atribuição tal que $\mathcal{M},\rho\Vdash \exists_y\, \forall_x\, \varphi$, ou seja, para um dado $v\in U$,

$$\mathcal{M}, \rho[y := v] \Vdash \forall_x \varphi \tag{3}$$

Considerando um valor arbitrário $u \in U$, por (3) obtém-se

$$\mathcal{M}, \rho[y := v][x := u] \Vdash \varphi \tag{4}$$

De (4) conclui-se que $\mathcal{M}, \rho[x:=u] \Vdash \exists_y \varphi$. Como isto é verdade para qualquer $u \in U$, temos que $\mathcal{M}, \rho \Vdash \forall_x \exists y \varphi$, como se queria mostrar.

Outro contra-exemplo

$$\{\forall_x \,\exists_y \,\varphi\} \not\models \exists_y \,\forall_x \,\varphi$$

Seja $\varphi = M(x, y)$.

Considere-se a estrutura de interpretação $\mathcal{M}=(\mathbb{N}_0,I)$ com $\underline{M}_I:\mathbb{N}_0^2\to\{0,1\}$ tal que $\underline{M}_I(n,m)=1$ se n é menor do que m.

Só intuição (detalhes ficam como exercício):

Para todo o número existe um outro número maior do que ele, logo $\mathcal{M} \Vdash \forall_x \exists_y M(x,y)$. No entanto, não existe um número que é maior do que todos os outros, logo $\mathcal{M} \not\models \exists_y \forall_x M(x,y)$.

Leis de De Morgan para quantificadores

$$\neg \forall_x \, \varphi \equiv \exists_x \, \neg \varphi$$

Vamos provar que para qualquer $\mathcal{M}=(U,I)$ e $\rho\in ATR_{\mathcal{M}}^X$ se tem

$$\mathcal{M}, \rho \Vdash \neg \forall x \varphi$$
 se e só se $\mathcal{M}, \rho \Vdash \exists x \neg \varphi$

Prova-se o sentido "só se" (o recíproco tem prova semelhante):

Por hipótese, $\mathcal{M}, \rho \Vdash \neg \forall_x \varphi$, ou seja, $\mathcal{M}, \rho \not\models \forall_x \varphi$. Então, para algum $u \in U$, temos $\mathcal{M}, \rho[x := u] \not\models \varphi$, e logo $\mathcal{M}, \rho[x := u] \Vdash \neg \varphi$, o que leva a concluir que $\mathcal{M}, \rho \Vdash \exists_x \neg \varphi$, como se queria mostrar.

Leis de De Morgan para quantificadores

$$\neg \exists_x \, \varphi \equiv \forall_x \, \neg \varphi$$

Vamos provar que para qualquer $\mathcal{M}=(U,I)$ e $\rho\in ATR_{\mathcal{M}}^X$ se tem

$$\mathcal{M}, \rho \Vdash \neg \exists x \varphi \text{ se e só se } \mathcal{M}, \rho \Vdash \forall x \neg \varphi$$

Prova-se o sentido "só se" (o recíproco tem prova semelhante).

Por hipótese, $\mathcal{M}, \rho \Vdash \neg \exists_x \varphi$, ou seja, $\mathcal{M}, \rho \not\Vdash \exists_x \varphi$. Então, para todo $u \in U$, se tem que $\mathcal{M}, \rho[x := u] \not\Vdash \varphi$, *i.e.*, todo $u \in U$, temos $\mathcal{M}, \rho[x := u] \Vdash \neg \varphi$, o que leva a concluir que $\mathcal{M}, \rho \Vdash \forall x \neg \varphi$, como se queria mostrar.

Quantificadores como abreviatura

$$\exists_x \, \varphi \equiv \neg \forall_x \, \neg \varphi$$

Como $\neg\exists_x\,\varphi\equiv\forall_x\,\neg\varphi$, pelo Lema da Substitutividade temos que $\neg\neg\exists_x\,\varphi\equiv\neg\forall_x\,\neg\varphi$.Como $\neg\neg\varphi\equiv\varphi$, para qualquer φ , temos, pela transitividade de \equiv , que $\exists_x\,\varphi\equiv\neg\forall_x\,\neg\varphi$.

$$\forall_x \, \varphi = \neg \exists_x \, \neg \varphi$$

A prova é semelhante. Exercício...

Leis de distribuição

$$\forall_x \, \varphi \wedge \forall_x \, \psi \equiv \forall x \, (\varphi \wedge \psi)$$

Vamos mostrar que para qualquer $\mathcal{M}=(U,I)$ e $\rho\in ATR_{\mathcal{M}}^X$ se tem

$$\mathcal{M}, \rho \Vdash \forall_x \varphi \land \forall_x \psi$$
 se e só se $\mathcal{M}, \rho \Vdash \forall x (\varphi \land \psi)$

Prova-se o sentido "se" (o recíproco tem prova semelhante).

Por hipótese, $\mathcal{M}, \rho \Vdash \forall_x (\varphi \land \psi)$, ou seja, qualquer $u \in U$ tem-se que $\mathcal{M}, \rho[x := u] \Vdash \varphi \land \psi$. Então, para todo o $u \in U$ tem-se que $\mathcal{M}, \rho[x := u] \Vdash \varphi$ e $\mathcal{M}, \rho[x := u] \Vdash \psi$. Logo $\mathcal{M}, \rho \Vdash \forall_x \varphi$ e $\mathcal{M}, \rho \Vdash \forall_x \psi$, e portanto $\mathcal{M}, \rho \Vdash \forall_x \varphi \land \forall x \psi$, como queríamos.

Leis de distribuição

$$\exists_x \, \varphi \vee \exists_x \, \psi \equiv \exists x \, (\varphi \vee \psi)$$

Mostra-se que para qualquer $\mathcal{M}=(U,I)$ e $\rho\in ATR_{\mathcal{M}}^X$ se tem que

$$\mathcal{M}, \rho \Vdash \exists_x \varphi \lor \exists_x \psi \text{ se e só se } \mathcal{M}, \rho \Vdash \exists x (\varphi \lor \psi)$$

Prova-se o sentido "se" (o recíproco tem prova semelhante).

Por hipótese, $\mathcal{M}, \rho \Vdash \exists_x \, (\varphi \lor \psi)$, ou seja, para algum valor $u \in U$, tem-se que $\mathcal{M}, \rho[x := u] \Vdash \varphi \lor \psi$. Para esse u tem-se, por definição, que $\mathcal{M}, \rho[x := u] \Vdash \varphi$ ou $\mathcal{M}, \rho[x := u] \Vdash \psi$; logo, ou se tem $\mathcal{M}, \rho \Vdash \exists_x \, \varphi$ ou se tem $\mathcal{M}, \rho \Vdash \exists_x \, \psi$, o que leva a concluir que $\mathcal{M}, \rho \Vdash \exists_x \, \varphi \lor \exists_x \, \psi$, como se queria mostrar.

Leis de âmbito de quantificadores

Ordem dos quantificadores

- $\bullet \ \forall_x \, \forall_y \, \varphi \equiv \forall_y \, \forall_x \, \varphi$
- $\bullet \ \exists_x \,\exists_y \,\varphi \equiv \exists_y \,\exists_x \,\varphi$

Quando $x \notin VL(\psi)$

- $\forall_x (\varphi \wedge \psi) \equiv \forall_x \varphi \wedge \psi$
- $\bullet \ \forall_x (\varphi \lor \psi) \equiv \forall_x \varphi \lor \psi$
- $\exists_x (\varphi \wedge \psi) \equiv \exists_x \varphi \wedge \psi$
- $\exists_x (\varphi \lor \psi) \equiv \exists_x \varphi \lor \psi$
- $\forall_x (\psi \to \varphi) \equiv \psi \to \forall_x \varphi$
- $\exists_x (\psi \to \varphi) \equiv \psi \to \exists_x \varphi$
- $\forall_x (\varphi \to \psi) \equiv \exists_x \varphi \to \psi$
- $\exists_x (\varphi \to \psi) \equiv \forall_x \varphi \to \psi$

Leis de âmbito de quantificadores

Se $x \notin VL(\psi)$ então:

$$\forall_x \left(\varphi \wedge \psi \right) \equiv \forall_x \, \varphi \wedge \psi$$

Vamos mostrar que para qualquer $\mathcal{M}=(U,I)$ e $\rho\in ATR_{\mathcal{M}}^{X}$ se tem

$$\mathcal{M}, \rho \Vdash \forall_x (\varphi \land \psi)$$
 se e só se $\mathcal{M}, \rho \Vdash \forall_x \varphi \land \psi$

Prova-se o sentido "só se" (o recíproco tem prova semelhante).

Por hipótese, $\mathcal{M}, \rho \Vdash \forall_x \, (\varphi \land \psi)$, ou seja, qualquer $u \in U$ tem-se que $\mathcal{M}, \rho[x := u] \Vdash \varphi \land \psi$. Então, para todo o $u \in U$ tem-se que $\mathcal{M}, \rho[x := u] \Vdash \varphi$ e $\mathcal{M}, \rho[x := u] \Vdash \psi$. Como $x \notin \mathsf{VL}(\psi)$, temos que $\mathcal{M}, \rho \Vdash \forall_x \, \varphi$ e $\mathcal{M}, \rho \Vdash \psi$, e portanto $\mathcal{M}, \rho \Vdash \forall_x \, \varphi \land \psi$, como queríamos.

Provas de equivalência usando o Lema da Substutividade

$$\begin{array}{l} \forall_x \left(\psi \to \varphi \right) \equiv \psi \to \forall x \, \varphi, \, \text{se} \, x \not\in \mathsf{VL} \, \psi \\ \\ \forall_x \left(\psi \to \varphi \right) \quad \equiv \quad \forall_x \left(\neg \psi \lor \varphi \right) \quad \left(\text{pois} \, \psi \to \varphi \equiv \neg \psi \lor \varphi \right) \\ \\ \equiv \quad \forall_x \left(\varphi \lor \neg \psi \right) \quad \left(\text{pois} \, \varphi \lor \psi \equiv \psi \lor \varphi \right) \\ \\ \equiv \quad \forall_x \, \varphi \lor \neg \psi \quad \left(\text{pois} \, \forall_x \left(\varphi \lor \psi \right) \equiv \forall_x \, \varphi \lor \psi \right) \\ \\ \equiv \quad \neg \psi \lor \forall_x \, \varphi \quad \left(\text{pois} \, \varphi \lor \psi \equiv \psi \lor \varphi \right) \\ \\ \equiv \quad \psi \to \forall_x \, \varphi \quad \left(\text{pois} \, \neg \psi \lor \varphi \equiv \psi \to \varphi \right) \end{array}$$

$$\forall_{x} (\varphi \to \psi) \equiv \exists_{x} \varphi \to \psi, \text{ se } x \notin \mathsf{VL} \psi$$

$$\forall_{x} (\varphi \to \psi) \equiv \forall_{x} (\neg \varphi \lor \psi) \quad (\text{pois } \psi \to \varphi \equiv \neg \psi \lor \varphi)$$

$$\equiv \forall_{x} \neg \varphi \lor \psi \quad (\text{pois } \forall_{x} (\varphi \lor \psi) \equiv \forall_{x} \varphi \lor \psi)$$

$$\equiv \neg \exists_{x} \varphi \lor \psi \quad (\text{pois } \forall_{x} \neg \varphi \equiv \neg \exists_{x} \varphi)$$

$$\equiv \exists_{x} \varphi \to \psi \quad (\text{pois } \neg \varphi \lor \psi \equiv \varphi \to \psi)$$