La superficie de Henneberg

Seminario de Geometría Diferencial 2023

Oscar Godoy

Universidad del Valle de Guatemala

- I . La superficie
- 2. Propiedades interesantes
- 3. Parametrizaciones
- 4. Minimalidad
- 5. Referencias

La superficie

- La superficie fue descrita por el matemático alemán Ernst Lebrecht Henneberg en su disertación doctoral [Henneberg, 1875].
- Al igual que otras superficies mínimas, fue sintetizada como una solución del problema de Björling. El problema consiste en encontrar una superficie mínima que contenga una curva espacial dada con un vector normal dado.
- La curva escogida es que genera la superficie de Henneberg es la parábola semicúbica.

Oscar Godoy La superficie 3/1

Figura: La superficie de Henneberg.

Oscar Godoy La superficie 4/12

Propiedades interesantes

- La superficie de Henneberg fue la primera superficie mínima no orientable descubierta.
- La siguiente superficie mínima no orientable fue descrita en 1981, más de 100 años después [Meeks, 1981].
- Esta es una inmersión del plano real proyectivo con múltiples agujeros.
- La superficie es algebraica, i.e. puede representarse como
 f(x, y, z) = 0, donde f es un polinomio en x, y, z. Se requiere de un
 polinomio de grado 15 en este caso [Weisstein, 2023]. El polinomio,
 recuperado por WolframAlpha, se muestra a continuación.

Oscar Godoy Propiedades interesantes

 $-729x^{12} - 1215z^3x^{10} - 4374z^2x^{10} + 8748zx^{10} + 9720x^{10} - 432z^6x^8 - 3888z^5x^8 + 2187y^4x^8 + 7776z^4x^8 9963y^2z^3x^8 + 69120z^3x^8 - 79704y^2x^8 - 13122y^2z^2x^8 + 31104z^2x^8 - 26244y^2zx^8 - 62208zx^8 - 27648x^8 + 27648x$ $64z^9x^6 + 4320z^7x^6 - 864y^2z^6x^6 + 52032z^6x^6 - 15552y^2z^5x^6 + 89856z^5x^6 + 190512y^4x^6 + 62208y^2z^4x^6 + 190512y^4x^6 + 190512y^4 + 190512y^$ $179712z^4x^6 - 23814y^4z^3x^6 - 416256z^3x^6 + 55296y^2x^6 - 8748y^4z^2x^6 - 248832y^2z^2x^6 - 138240z^2x^6 +$ $17496y^4zx^6 + 248832y^2zx^6 - 32768x^6 - 768z^{10}x^4 + 192y^2z^9x^4 - 768z^9x^4 - 2187y^8x^4 - 5376z^8x^4 - 7776y^2z^7x^4 - 776y^2z^7x^4 - 776y^2z$ $162816z^7x^4 - 190512y^6x^4 + 10560y^2z^6x^4 - 595968z^6x^4 - 23328y^4z^5x^4 - 573696y^2z^5x^4 - 651264z^5x^4 - 651264z^5x^4$ $1147392y^2z^4x^4 - 86016z^4x^4 - 23814y^6z^3x^4 - 511488y^4z^3x^4 + 84480y^2z^3x^4 - 49152z^3x^4 + 98304y^2x^4 + 24480y^2x^2x^4 + 24480y^2x^3x^4 + 24480y^2x^3x^3x^4 + 24480y^2x^3x^3x^4 + 24480y^2x^3x^3x^4 + 24480y^2x^3x^3x^4 + 24480y^2x^3x^3x^4 + 24480y^2x^3x^3x^3 + 24480y^2x^3x^3 + 24480y^2x^3 + 24480y^2$ $8748y^6z^2x^4 - 248832y^2z^2x^4 - 196608z^2x^4 + 17496y^6zx^4 - 373248y^4zx^4 + 2304z^{11}x^2 + 4608z^{10}x^2 + 192y^4z^9x^2 + 192y^4z^2x^2 + 192y^2x^2 + 192y^2$ $4608y^2z^9x^2 - 27648z^9x^2 + 79704y^8x^2 - 55296z^8x^2 - 7776y^4z^7x^2 - 276480y^2z^7x^2 + 110592z^7x^2 - 55296y^6x^2 + 110592z^7x^2 - 10592z^7x^2 - 10502z^7x^2 - 1050$ $864y^6z^6x^2 - 10560y^4z^6x^2 + 221184z^6x^2 - 15552y^6z^5x^2 - 573696y^4z^5x^2 + 1105920y^2z^5x^2 - 147456z^5x^2 - 127456z^5x^2 - 147456z^5x^2 - 14746z^2x^2 - 14766z^2x^2 - 1476z^2x^2 -$ $98304y^4x^2 - 62208y^6z^4x^2 + 1147392y^4z^4x^2 - 294912z^4x^2 - 9963y^8z^3x^2 + 84480y^4z^3x^2 - 294912y^2z^3x^2 + 294912y^2z^2x^2 + 294912y^2z^2x^2 + 294912y^2z^2x^2 + 294912y^2z^2x^2 + 294912y^2z^2 + 294912y^2z^2 + 294912y^2z^2 + 294912y^2z^2 + 294912y^2z^2 + 294912y^2z^2 + 294912y^2 + 294y^2 + 294y^$ $13122y^8z^2x^2 + 248832y^6z^2x^2 + 248832y^4z^2x^2 - 26244y^8zx^2 + 248832y^6zx^2 + 729y^{12} + 2304y^2z^{11} - 9720y^{10} +$ $768y^4z^{10} - 4608y^2z^{10} + 64y^6z^9 - 768y^4z^9 - 27648y^2z^9 + 27648y^8 + 5376y^4z^8 + 55296y^2z^8 + 4320y^6z^7 162816y^4z^7 + 110592y^2z^7 + 32768y^6 + 432y^8z^6 - 52032y^6z^6 + 595968y^4z^6 - 221184y^2z^6 - 3888y^8z^5 +$ $89856y^6z^5 - 651264y^4z^5 - 147456y^2z^5 - 7776y^8z^4 + 179712y^6z^4 + 86016y^4z^4 + 294912y^2z^4 - 1215y^{10}z^3 + 1215y^{10}z^2 + 1215y^{10}z^3 + 1215y^{$ $69120y^8z^3 - 416256y^6z^3 - 49152y^4z^3 + 4374y^{10}z^2 - 31104y^8z^2 + 138240y^6z^2 + 196608y^4z^2 + 8748y^{10}z - 21104y^8z^2 + 12104y^8z^2 + 12104y^8z$ $62208y^8z=0$

Oscar Godoy Propiedades interesantes 6/12

Parametrizaciones

La superficie puede expresarse de forma explícita con coordenadas cartesianas

$$x(u, v) = 2 \sinh(u) \cos(v) - \frac{2}{3} \sinh(3u) \cos(3v),$$

$$y(u, v) = 2 \sinh(u) \sin(v) + \frac{2}{3} \sinh(3u) \sin(3v),$$

$$z(u, v) = 2 \cosh(2u) \cos(2v).$$

Alternativamente, puede usarse la parametrización de Weierstrass con las funciones

$$\phi(z) = 2 - 2z^{-4}$$
 y $\psi(z) = z$

Oscar Godoy Parametrizaciones 7/1:

La parametrización de Weierstrass anterior en realidad lleva a una superficie ligeramente distinta a la que usa ecuaciones explicitas, aunque son difeomorfas entre sí. Tras integrar, la segunda parametrización es

$$x(u, v) = 2\frac{2(r^2 - 1)\cos\phi}{r} - \frac{2(r^6 - 1)\cos3\phi}{3r^3},$$

$$y(u, v) = -\frac{6r^2(r^2 - 1)\sin\phi + 2(r^6 - 1)\sin3\phi}{3r^3}$$

$$z(u, v) = \frac{2(r^4 + 1)\cos2\phi}{r^2}.$$

Oscar Godoy Parametrizaciones 8/12

Figura: Dos superficies de Henneberg.

Oscar Godoy Parametrizaciones 9/12

Minimalidad

Mostramos que la superficie es mínima probando directamente que H=0. Para ello, primero calculamos los coeficientes de la primera y segunda forma fundamental de la primera parametrización dada.

$$E = 8 \cosh^{2}(u)(\cosh 4u - \cos 4v)$$

$$F = 0$$

$$G = 8 \cosh^{2}(u)(\cosh 4u - \cos 4v)$$

$$e = 4 \sinh(2u)\cos(2v)$$

$$f = -4 \cosh(2u)\sin(2v)$$

$$q = -4 \sinh(2u)\cos(2v)$$

Oscar Godoy Minimalidad 10/12

Entonces:

$$H = \frac{1}{2} \left(\frac{eG - 2fF + gE}{EG - F^2} \right) = \frac{1}{2} \left(\frac{e(E) - 2f(O) + (e)E}{EG - F^2} \right) = O.$$

Oscar Godoy Minimalidad 11/12

Referencias

Henneberg, L. (1875).

Über salche minimalfläche, welche eine vorgeschriebene ebene curve sur geodätishen line haben.

Eidgenössisches Polythechikum.

Meeks, W. (1981).

The classification of complete minimal surfaces in \mathbf{R}^3 with total curvature greater than -8π .

Duke Mathematical Journal.

Weisstein, E. (2023).

Henneberg's Minimal Surface.

Wolfram MathWorld.

Oscar Godoy Referencias 12/1: