Machine Learning in High Dimension IA317 Nearest Neighbors

Thomas Bonald

2023 - 2024

Nearest neighbors

A set of methods for

- Classification
- Regression
- Clustering
- Anomaly detection

Advantages

- Simple
- Explainable

Issues

- Choice of distance
- Complexity

Classification

Use **majority vote** of k nearest neighbors in the training set

Regression

Use (weighted) average of k nearest neighbors in the training set

Clustering

Two steps:

- 1. Build the **graph** of nearest neighbors (k nearest neighbors or distance < d)
- 2. Cluster the graph (e.g., through Louvain)

Anomaly detection

Detection of isolated samples by the estimation of **local density**

Outline

- Review of distances
 What is meant by nearest neighbors?
- 2. **Search** algorithms

 How to find the nearest neighbors?

Review of distances

Distances in vector spaces

- → numerical feat.
 - Euclidean
 - Manhattan
 - Cosine similarity

Distances between probability distributions

- \rightarrow positive feat. + normalization, numerical feat. + softmax
 - Hellinger distance
 - Jensen-Shannon divergence

Distances between sets

- ightarrow binary / categorical features, numerical feat. + threshold
 - Hamming distance
 - Jaccard index

Norm distances

Let $x, y \in \mathbb{R}^d$

Euclidean distance

$$d(x,y) = ||x - y||$$

where $||\cdot||$ refers to the L2 norm.

Manhattan distance

$$d(x,y) = |x - y|$$

where $|\cdot|$ refers to the L1 norm.

Cosine similarity

Let $x, y \in \mathbb{R}^d \setminus \{0\}$

Cosine similarity

$$s(x,y) = \cos(x,y) = \frac{x \cdot y}{\|x\| \|y\|} \in [-1,1]$$

Equivalent to the **Euclidean distance** on the unit sphere:

$$\|\bar{x} - \bar{y}\|^2 = 2(1 - s(x, y)) \in [0, 2]$$

with \bar{x}, \bar{y} the projections of x, y on the unit sphere:

$$\bar{x} = \frac{x}{\|x\|}$$
 $\bar{y} = \frac{y}{\|y\|}$

Hellinger distance

Let p, q be discrete **probability distributions**.

Hellinger distance

$$d(p,q) = \frac{1}{\sqrt{2}} \|\sqrt{p} - \sqrt{q}\| \in [0,1]$$

Equivalent to the **cosine similarity** between \sqrt{p} and \sqrt{q} :

$$d(p,q) = \sqrt{1 - \cos(\sqrt{p}, \sqrt{q})},$$

known as the **Bhattacharyya coefficient** between p and q:

$$\cos(\sqrt{p}, \sqrt{q}) = \frac{\sqrt{p} \cdot \sqrt{q}}{||\sqrt{p}||||\sqrt{q}||} = \sum_{i=1}^{a} \sqrt{p_i q_i}.$$

Jensen-Shannon divergence

Let p, q be discrete **probability distributions**.

Jensen-Shannon divergence

$$d(p,q) = H\left(\frac{p+q}{2}\right) - \frac{H(p) + H(q)}{2} \in [0,1]$$

where H is the entropy (base 2).

We have:

$$d(p,q) = \frac{1}{2} \left(D(p||\frac{p+q}{2}) + D(q||\frac{p+q}{2}) \right)$$

where *D* denotes the **Kullback-Leibler divergence**:

$$D(p||q) = \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}} \geq 0$$

Hamming distance

Let $x, y \in \{0, 1\}^d$ Viewed as subsets A, B of $\{1, \dots, d\}$.

Hamming distance

$$d(A,B)=|A\Delta B|\in[0,d]$$

where $A\Delta B$ is the symmetric difference between A and B

Expressed as:

$$d(x,y) = |x - y|$$

Jaccard distance

Let $x, y \in \{0, 1\}^d$ Viewed as subsets A, B of $\{1, \dots, d\}$.

Jaccard distance

$$d(A,B) = \frac{|A\Delta B|}{|A\cup B|} \in [0,1]$$

Expressed as:

$$d(x,y) = \frac{|x-y|}{|x \vee y|} \in [0,1]$$

Example

Average distance between binary vectors $x, y \in \{0, 1\}^{100}$

- x = (1, ..., 1, 0, ..., 0)
- \triangleright y = x with i.i.d. bit flips

Metric

A distance d(x, y) is a **metric** if and only if:

Positivity & Identity

$$d(x,y) \ge 0$$
 and $d(x,y) = 0$ if and only if $x = y$

Symmetry

$$d(x,y)=d(y,x)$$

Triangle inequality

$$d(x,y) \leq d(x,z) + d(z,y)$$

Which distances are metrics?

Distance	Metric	Condition
Euclidean	✓	
Manhattan	✓	
Cosine	(✔)	$\left \frac{x}{ x }, x \neq 0 \right $
Hellinger	(√)	\sqrt{p}
Jensen-Shannon	(✓)	$\sqrt{d(p,q)}$
Hamming	✓	
Jaccard	✓	

Outline

- Review of distances
 What is meant by nearest neighbors?
- 2. **Search** algorithms

 How to find the nearest neighbors?

How to find the k nearest neighbors of a sample?

- ► Sequential search O(n)
- Tree search
 Construction
 Search $O(n \log n)$ $O(\log n)$ (in best cases)

Binary tree search

For 1-d data, e.g.,

 $\{8, 3, 1, 6, 10, 14, 4, 13, 7\}$

Tree search

1. KD tree

2. Ball tree

Bentley 1975

KD tree

Cut strategies

1. Max variance

+ median point

2. Max spread

+ middle point

Example

1. Max variance

2. Max spread

Pruning

$$\begin{array}{c} \text{Leaf size} = 1 \\ \text{(full tree)} \end{array}$$

Ball tree

Ball tree

Ball tree

Boxes or balls?

volume = 1

$$volume = \frac{\pi^p}{p!} \text{ for } d = 2p$$

Ball trees are more efficient than KD trees in high dimension

Complexity

Construction

 $ightharpoonup O(n \log n)$ for both KD trees and Ball trees

Search

- \triangleright $O(\log n)$ with Ball trees
- $O(\log n)$ (low dimension) up to O(n) (high dimension) for KD trees

Comments

- Need for a metric
- Importance of pruning

Summary

Nearest neighbors

- ► A good **baseline**Efficient in high dimension
 Explainable
- ► Applications
 Classification, regression, clustering, anomaly detection
- ▶ Distances for numerical, categorical or binary features → importance of pre-processing / scaling
- ► Search
 Sequential search or tree search