Plane Isometries

Liu Zhang Upaasna Parankusam

Outline

Prereauisite

Isometry Group

The Three Reflection

Classification

Generalization

Plane Isometries

YSC3237 Modern Algebra Exploration 1

Liu Zhang Upaasna Parankusam

Yale-NUS College

September 30, 2020

Plane Isometries

Liu Zhang Upaasna Parankusam

Outline

Prerequisite

Isometr Group

The Three Reflection Theorem

Classification

Generalization

1 Prerequisites

- 2 Isometry Group
- 3 The Three Reflection Theorem
- 4 Classification of Plane Isometries
- 5 Generalization: crystallographic groups

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisites

Isometr Group

The Three Reflection

Classificatio

Generalization

Definition (1)

The *Euclidean space* is a finite-dimensional vector space over R, with an inner product $\langle v1, v2 \rangle$. Euclidean n-space \mathbb{R}^n is the space of all n-tuples of real numbers (x_1, x_2, \ldots, x_n) . \mathbb{R}^2 is called the *Euclidean plane*.

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisites

Isometry Group

The Thre Reflection Theorem

Classification

Generalization

Definition (1)

The *Euclidean space* is a finite-dimensional vector space over R, with an inner product $\langle v1, v2 \rangle$. Euclidean n-space \mathbb{R}^n is the space of all n-tuples of real numbers (x_1, x_2, \ldots, x_n) . \mathbb{R}^2 is called the *Euclidean plane*.

Definition (2)

The *Euclidean distance* is a function $d: \mathbb{R}^2 \mapsto \mathbb{R}^2$ defined as

$$d((x_1,y_1),(x_2,y_2)) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$$

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisites

Isometr Group

The Threa Reflection Theorem

Classification

Generalization

Definition (3)

An isometry of \mathbb{R}^2 is the transformation f on the plane that preserves the distances, that is, it is a map $f: \mathbb{R}^2 \mapsto \mathbb{R}^2$ satisfying that for any pair of points $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$,

$$d(f(x_1,y_1),f(x_2,y_2))=d((x_1,y_1),(x_2,y_2).$$

Definition (4)

A line in the Euclidean plane is a set

$$L_{(a_0,b_0),(a_1,b_1)} := \{(x,y) \in \mathbb{R}^2 | d((x,y),(a_0,b_0)) = d((x,y),(a_1,b_1)) \}$$

for some $(a_0, b_0), (a_1, b_1) \in \mathbb{R}^2$ with $(a_0, b_0) \neq (a_1, b_1)$ with d defined as the Euclidean distance.

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisites

Isometr Group

The Threa Reflection Theorem

Classification

Generalization

Definition (3)

An isometry of \mathbb{R}^2 is the transformation f on the plane that preserves the distances, that is, it is a map $f: \mathbb{R}^2 \mapsto \mathbb{R}^2$ satisfying that for any pair of points $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$,

$$d(f(x_1,y_1),f(x_2,y_2))=d((x_1,y_1),(x_2,y_2).$$

Definition (4)

A line in the Euclidean plane is a set

$$L_{(a_0,b_0),(a_1,b_1)} := \{(x,y) \in \mathbb{R}^2 | d((x,y),(a_0,b_0)) = d((x,y),(a_1,b_1)) \}$$

for some $(a_0, b_0), (a_1, b_1) \in \mathbb{R}^2$ with $(a_0, b_0) \neq (a_1, b_1)$ with d defined as the Euclidean distance.

Plane Isometries

Liu Zhang Upaasna Parankusam

Outline

Prerequisites

Isometr Group

The Three Reflection Theorem

Classification

Generalization

Definition (5)

Planar isometries are:

- Reflections
- Rotations
- Translations
- Glide Reflections

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisite

Isometry Group

The Three Reflection Theorem

Classificatio

Generalization

Theorem (6)

The set of plane isometries is a group under composition.

Proof.

Closure under composition.

S, T preserves distance $\implies S \circ T$ preserves distance.

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisite

Isometry Group

The Three Reflection Theorem

Classification

Generalization

Theorem (6)

The set of plane isometries is a group under composition.

Proof.

- Closure under composition.
 - S, T preserves distance $\implies S \circ T$ preserves distance.
- There exists identity element, which is the identity map.

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisite

Isometry Group

The Three Reflection Theorem

Classification

Generalization

Theorem (6)

The set of plane isometries is a group under composition.

Proof.

- Closure under composition.
 S, T preserves distance ⇒ S ∘ T preserves distance.
- There exists identity element, which is the identity map.
- Since every transformation is a bijective function, there exists an inverse.

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisite

Isometry Group

The Three Reflection Theorem

Classification

Generalization

Theorem (6)

The set of plane isometries is a group under composition.

Proof.

- Closure under composition.
 S, T preserves distance ⇒ S ∘ T preserves distance.
- There exists identity element, which is the identity map.
- Since every transformation is a bijective function, there exists an inverse.
- The binary operation function composition is always associative.

D_3 is a group of isometries

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisit

Isometry Group

The Three Reflection

Classification

Generalization

	e	r	r^2	s	rs	r^2s
e	e	r	r^2	s	rs	r^2s
r	r	r^2	e	rs	r^2s	s
r^2	r^2	e	r	r^2s	s	rs
s	s	r^2s	rs	e	r^2	r
rs	rs	s	r^2s	r	e	r^2
r^2s	r ² s	r r ² e r ² s s rs	s	r^2	r	e

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Droroguicito

Isometry Group

The Three Reflection

Classification

Generalization

Theorem (7)

Any Euclidean isometry can be written as the composition of at most three reflections.

Lemma

Any point P is uniquely determined by its distances to three non-collinear points A, B, C.

Consequently, any isometry is completely determined by the images of any three non-collinear points.

Proof.

Suppose Q has the same distances to A, B, C. Then A, B, C must lie on the line equidistant from P and Q, contradicting the fact they are not collinear.

Plane Isometries

Liu Zhang Upaasna Parankusam

Outline

Dropoguicita

Isometry

The Three Reflection Theorem

Classification

Generalization

Proof.

Plane Isometries

Liu Zhang Upaasna Parankusam

Outline

Prerequisite

Isometry Group

The Three Reflection Theorem

Classification

Generalization

Proof.

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

^orereauisite

Isometry Group

The Three Reflection Theorem

Classification

Generalization

Proof.

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisite

Isometry Group

The Three Reflection Theorem

Classification

Generalization

Proof.

Classification of Plane Isometries

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisite

Isometry Group

The Three Reflection Theorem

Classification

Generaliz

Theorem (8)

Theorem 8: Every isometry of the plane, other than the identity, is either a translation, a rotation, a reflection, or a glide-reflection.

For any isometry T(x) = Ax + b of \mathbb{R}^2 , the only cases are:

- **1** $A = Rot_0 = I : T$ is a translation.
- **2** $A = \text{Rot}_{\theta} \in (0, 2\pi)$: T is a clockwise rotation by θ degrees about the point $(I A)^{-1}b$.
- **3** $A = \text{Ref}_{\theta}$, b perpendicular to the axis of reflection l: T is a reflection in the axis l + b/2.
- 4 $A = Ref_{\theta}$, b parallel to the axis of reflection I: T is a glide reflection.
- **5** $A = \operatorname{Ref}_{\theta}, b$ neither parallel nor perpendicular to axis of reflection I: T is a glide-reflection.

A concrete example: the square lattice!

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

rerequisite

Isometry Group

The Three Reflection

Classification

Generalization

The symmetry group of the square lattice has generators $\text{Rot}_{\frac{\pi}{2}}, \text{Ref}_0, T_(1,0), T(0,1).$

Plane Isometries

Liu Zhang Upaasna Parankusan

Outlin

Prerequisite

Isometry Group

The Three Reflection Theorem

Classification

Generalization

Definition (9)

The set of all symmetries of a crystal pattern is called the crystallographic group of the crystal pattern.

- Their order is always infinite because there are infinitely many translations.
- A crystallographic group is a subgroup of the isometry group of Euclidean space \mathbb{R}^n .

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisite

Isometry Group

The Three Reflection Theorem

Classification

Generalization

Some examples of crystallographic groups in \mathbb{R}^2 :

- frieze groups patterns that are repetitive in one direction
- wallpaper groups: patterns that are repetitive in two directions

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisit

Isometry Group

The Three Reflection Theorem

Classification

Generalization

Some examples of crystallographic groups in \mathbb{R}^2 :

- frieze groups patterns that are repetitive in one direction
- wallpaper groups: patterns that are repetitive in two directions

What happens in \mathbb{R}^n ?

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisite

Isometry Group

The Three Reflection

Classification

Generalization

Some examples of crystallographic groups in \mathbb{R}^2 :

- frieze groups patterns that are repetitive in one direction
- wallpaper groups: patterns that are repetitive in two directions

What happens in \mathbb{R}^n ?

Everything we have said can be generalized to the Euclidean space of n dimensions \mathbb{R}^n !

Plane Isometries

Liu Zhang Upaasna Parankusan

Outline

Prerequisite

Isometry Group

The Three Reflection

Classification

Generalization

Some examples of crystallographic groups in \mathbb{R}^2 :

- frieze groups patterns that are repetitive in one direction
- wallpaper groups: patterns that are repetitive in two directions

What happens in \mathbb{R}^n ?

Everything we have said can be generalized to the Euclidean space of n dimensions \mathbb{R}^n !

Food for thought: what about non-Euclidean space?