Growth and Welfare Implications of Sector-Specific Innovations

İlhan Güner University of Virginia

November 6, 2016

U.S. Government Support to R&D

Total US government support to business R&D (tax relief and direct funding) was .26% of GDP (OECD, 2011)

Research Question

How much should governments subsidize business R&D?

Agenda

- Develop an endogenous growth model with firm dynamics implications.
- · Link firm dynamics with externalities.
- Identify magnitudes of externalities using observed US firm dynamics.
- Show sectors (consumption-goods, investment-goods) have different firm dynamics and hence externalities
- Characterize a sector dependent subsidy system that corrects these externalities
- Show short and long-run implications of these subsidies

Model

- Based on Klette and Kortum (2004)
- Time is continuous
- Two sectors: consumption goods producers, and investment goods producers
- Households own firms and capital.

Sectors

Consumption-goods:

$$C = \exp \int_0^1 \ln(q_i c_i) di$$

$$1 = P_c = \exp \int_0^1 \ln \frac{p_i}{q_i} di$$

Investment-sectors

$$X = \exp \int_0^1 \ln(q_j x_j) dj$$

$$P_x = \exp \int_0^1 \ln \frac{p_j}{q_i} dj$$

Households

$$\max \int_0^\infty \exp(-\rho t) \ln C(t) dt \qquad \text{s.t.}$$

$$\dot{K} = X - \delta K,$$

$$C + (1 - s_{in})P_x X + \dot{A} = RA + wL + rK - T$$

- A firm is defined by the set of goods it produces
- Hiring $\phi(b)$ researchers leads to b Poisson innovation arrival rate per good

• Innovated good is chosen randomly.

- Increase quality by $\lambda > 1$, innovative step.
- Innovative step is sector dependent.

• Red firm expanded, blue firm shrank.

Product Line Profit

- Bertrand competition ⇒
 (Price) = (Innovative Step) × (Marginal Cost) ⇒
 Same price across goods
- Symmetric equilibrium ⇒ Same demand
- Same profit across goods in a sector

Incumbents

 b_j : innovation intensity a firm chooses au_j : equilibrium innovation rate in the market s_j^i : rate of subsidy to incumbents

$$\underbrace{RV(n,E_j)}_{\text{Return on the firm}} = \max_{b_j \geq 0} \ \left\{ \underbrace{n\pi(E_j) - \underbrace{(1-s_j^i)n\phi_j(b_j)w}}_{\text{R\&D cost}} + \underbrace{nb_j[V(n+1,E_j) - V(n,E_j)]}_{\Delta V \text{ by successful innovation}} + \underbrace{n\tau_j[V(n-1,E_j) - V(n,E_j)]}_{\Delta V \text{ by innovation by others}} + \underbrace{\frac{\partial V(n,E_j)}{\partial E_j}\dot{E}_j}_{\Delta V \text{ by economic growth}} \right\},$$

where $\phi_j(b_j)=\chi_j b_j^{\gamma}$ is the research labor, i=c,x, $E_j=C,P_xX$.

Entrants

$$\underbrace{RV_E}_{\text{Return on entry}} = \max_{z_j \geq 0} \{ -\underbrace{(1-s_j^e)wz_jf_j(\tilde{z}_j)}_{\text{Cost of Entry}} + \underbrace{z_j[V(1,E_j)-V_E]}_{\Delta V \text{ by entry}} \},$$

where
$$f_j(\tilde{z}_j) = \psi_j \chi_j \tilde{z}_j^{\gamma-1}$$
.

Free entry
$$\Rightarrow V_E = 0$$

Parametrization

A length one unit of time corresponds to a year.

 α , δ , ρ , γ , s_c^i and s_x^i are calibrated to match

- .33 elasticity of output w.r.t. capital (α)
- .05 annual depreciation rate [KLEMS, US] (δ) ,
- .97 annual discount factor (ρ) ,
- .675 elasticity of R&D with respect to user cost [Bloom et al. (2002)] (γ) ,
- 20% R&D subsidy rate [Bloom et al. (2002)] (s_c^i, s_x^i) .

Targets

Model	Variable	Data
Entrant	z_c and z_x	Job creation rate
innovation rates	$ z_c $ and z_x	by entering establishments
Incumbent	b_c and b_x	Job creation rate
innovation rates	$\mid v_c \mid$ and $v_x \mid$	by expanding establishments
Consumption	Q =:	Average annual
growth rate	g_C	consumption growth rate
Growth rate of	a-	Average annual growth rate of
investment good price	g_{P_x}	relative investment good prices

Calibration

	Parameter	Value
Quality ladder step size, investment	λ_x	1.23
Quality ladder step size, consumption	λ_c	1.04
R&D cost function parameter, investment	χ_x	10.93
R&D cost function parameter, consumption	χ_c	5.73
Entry cost function parameter, investment	ψ_x	6.75
Entry cost function parameter, consumption	ψ_c	4.30

Calibration

	Variable	Data	Model
Entrant innovation rate, consumption	z_c	.06	.06
Entrant innovation rate, investment	z_x	.04	.04
Incumbent innovation rate, consumption	b_c	.10	.10
Incumbent innovation rate, investment	b_x	.09	.09
Consumption growth rate	g_C	.02	.02
Investment good price growth rate	g_{P_x}	02	02

Identification

• Innovative steps, λ_c and λ_x , are identified by

$$\begin{array}{lcl} g_C & = & \tau_c \ln \lambda_c + \frac{\alpha}{1-\alpha} \tau_x \ln \lambda_x, \text{ and} \\ g_{P_x} & = & \tau_c \ln \lambda_c - \tau_x \ln \lambda_x, \end{array}$$

where τ_c, τ_x are innovation rates in consumption-goods and investment-goods sectors.

 $au_c \ln \lambda_c$: growth rate of average quality of consumption goods. $au_x \ln \lambda_x$: growth rate of average quality of investment goods.

Identification

Entry/Expansion Rates

• Relative costs of entry, ψ_c and ψ_x , are identified by entry, incumbent innovation ratio.

Industry Classification

Social Planner

Maximizes discounted sum of household utility, by choosing production, factor demands, and innovation rates of incumbents and entrants in each sector subject to technology constraints (including innovation functions) and resource constrains.

Competitive equilibrium is not socially optimal because of firms

 cannot appropriate all the consumer surplus they created (appropriability, –),

- cannot appropriate all the consumer surplus they created (appropriability, –),
- generate spillovers to successive innovators (inter-temporal spillover, –), related to entry rate

- cannot appropriate all the consumer surplus they created (appropriability, –),
- generate spillovers to successive innovators (inter-temporal spillover, –), related to entry rate
- do not take into account the profit loss they impose on the previous innovator (business stealing, +), related to growth rate of relative price of investment goods

- cannot appropriate all the consumer surplus they created (appropriability, –),
- generate spillovers to successive innovators (inter-temporal spillover, –), related to entry rate
- do not take into account the profit loss they impose on the previous innovator (business stealing, +), related to growth rate of relative price of investment goods
- monopoly distortion of prices (+),

- cannot appropriate all the consumer surplus they created (appropriability, –),
- generate spillovers to successive innovators (inter-temporal spillover, –), related to entry rate
- do not take into account the profit loss they impose on the previous innovator (business stealing, +), related to growth rate of relative price of investment goods
- monopoly distortion of prices (+),
- monopoly pricing distortion in the capital Euler equation (Under accumulation of capital), related to innovative step of investment sector

- cannot appropriate all the consumer surplus they created (appropriability, –),
- generate spillovers to successive innovators (inter-temporal spillover, –), related to entry rate
- do not take into account the profit loss they impose on the previous innovator (business stealing, +), related to growth rate of relative price of investment goods
- monopoly distortion of prices (+),
- monopoly pricing distortion in the capital Euler equation (Under accumulation of capital), related to innovative step of investment sector
- externality in entry (Higher than optimal entry).

Social Planner

15% welfare gain in consumption equivalent terms.

Decentralization

Social planner can be closely approximated by constant subsidies:

- incumbent R&D subsidy to consumption sector = 82%
- incumbent R&D subsidy to investment sector = 78%
- entry subsidy to consumption sector = 55%
- entry subsidy to investment sector = 45%
- capital investment subsidy (or output subsidy) = 19%

15% welfare gain, slightly less than social planner.

Details

Subsidy Cost

Counterfactuals

Counterfactuals

Conclusion

- Roughly 80 percent subsidy to R&D
- High entry implies high inter-temporal spillover
- Subsidy increases inter-temporal spillover
- Not easily implementable: high tax cost, reduction in consumption in the short and medium run.

Thank You!

Related Literature

- Endogenous firm dynamics [Klette and Kortum (2004), Aghion and Howitt (1992), Grossman Helpman (1991), Lentz and Mortensen (2008, 2015), Akcigit and Kerr (2015), Acemoglu et al. (2013), Atkeson and Burstein (2015), Garcia-Marcea et al. (2015)]: add capital stock and investment specific innovation
- Investment specific technological change [Krusell (1998), Sakellaris and Wilson (2004)]:
 add firm dynamics, link the model to data directly

Contribution to Growth

$$\begin{split} g_C &= \tau_c \ln \lambda_c + \frac{\alpha}{1-\alpha} \tau_x \ln \lambda_x \\ g_C &= \left(z_c + b_c\right) \ln \lambda_c + \frac{\alpha}{1-\alpha} (z_x + b_x) \ln \lambda_x \\ g_C &= \underbrace{z_c \ln \lambda_c}_{\text{Consumption}} + \underbrace{b_c \ln \lambda_c}_{\text{Consumption}} + \underbrace{\frac{\alpha}{1-\alpha} z_x \ln \lambda_x}_{\text{Investment}} + \underbrace{\frac{\alpha}{1-\alpha} b_x \ln \lambda_x}_{\text{Investment}} \end{split}$$

	Consumption	Investment	Total
Entrant	13%	20%	33%
Incumbent	21%	46%	67%
Total	34%	66%	

Under Investment in Innovation

	Market Economy	Social Planner
g_C	0.020	0.033
$ au_c$	0.160	0.252
τ_x	0.130	0.219

- Under investment in innovation
- Social planner growth rate is higher than market economy rate

Subsidy System

• Capital investment subsidy, $s_{in} = 1 - 1/\lambda_x$:

$$\frac{1}{\lambda_x} \alpha K_x^{\alpha - 1} L_x^{1 - \alpha} Q_x = (1 - s_{in}) \left(\frac{1}{1 - \alpha} \tau_x \ln \lambda_x + \delta + \rho \right)$$

 $\bullet \ \ {\rm Entry \ subsidy/tax}, \ s^e_j = 1 - \gamma (1 - s^i_j), \quad j = c, x :$

$$(1 - s_j^e)\psi z^{\gamma - 1} = (1 - s_j^i)\gamma b^{\gamma - 1}$$

R&D Subsidies

R&D Subsidies

Technology Indices

$$C = \exp\left(\int_0^1 \ln k_c^{\alpha} l_c^{1-\alpha} q_i d_i\right)$$

$$C = k_c^{\alpha} l_c^{1-\alpha} \exp\left(\int_0^1 \ln q_i d_i\right)$$

$$C = k_c^{\alpha} l_c^{1-\alpha} Q_c,$$

where Q_c is the average quality in consumption sector.

Technology Indices

$$C = \exp\left(\int_0^1 \ln k_c^{\alpha} l_c^{1-\alpha} q_i d_i\right)$$

$$C = k_c^{\alpha} l_c^{1-\alpha} \exp\left(\int_0^1 \ln q_i d_i\right)$$

$$C = k_c^{\alpha} l_c^{1-\alpha} Q_c,$$

where Q_c is the average quality in consumption sector.

Similarly, $X=k_x^\alpha l_x^{1-\alpha}Q_x$, where Q_x is the average quality in investment sector.

Growth Rate

Poisson innovation arrival rate + Law of large numbers \Rightarrow

$$\frac{\dot{Q}_c}{Q_c} = \tau_c \ln \lambda_c$$

$$\frac{\dot{Q}_x}{Q_x} = \tau_x \ln \lambda_x$$

Technological progress is the source of macroeconomic growth.

Industry Classification

Consumption-type:

- Retail trade, except of motor vehicles and motorcycles; repair of household goods
- · Hotels and restaurants
- Finance, insurance, real estate and business services
- Community social and personal services
- Investment-type:
 - Mining and quarrying
 - Manufacturing
 - Electricity, gas and water supply
 - Construction
 - Wholesale trade and commission trade, except of motor vehicles and motorcycles
 - Transport and storage and communication

- Maximizes sum of discounted utility
- by choosing entrant and incumbent innovation rates over time $\{z_{c,t},z_{x,t},b_{c,t},b_{x,t}\}$
- consumption, investment, capital and labor allocation over time $\{C_t, X_t, K_{c.t}, K_{x.t}, L_{c.t}, L_{x.t}\}$
- subject to resource constraints and technological constraints: $\dot{Q}_{i}/Q_{i}= au_{i}\ln\lambda_{i},\ j=c,x$
- Notation: $F(K_j, L_j, Q_j) = K_j^{\alpha} L_j^{1-\alpha} Q_j, j = c, x$

Using the terminology of Aghion and Howitt (1992):

Market Economy

$$\phi'(b)w = \frac{1(\pi - \phi(b)w)}{\rho + \tau - b}, \quad \phi'(b)F_L(K, L, Q) = \frac{\ln(\lambda)F(K, L, Q)}{\rho}$$

Market Economy

$$\phi'(b)w = \frac{1(\pi - \phi(b)w)}{\rho + \tau - b}, \quad \phi'(b)F_L(K, L, Q) = \frac{\ln(\lambda)F(K, L, Q)}{\rho}$$

- Appropriability
- Business stealing
- Intertemporal spillover
- Monopoly distortion

Market Economy

$$\phi'(b)w = \frac{\mathbf{1}(\pi - \phi(b)w)}{\rho + \tau - b}, \quad \phi'(b)F_L(K, L, Q) = \frac{\ln(\lambda)F(K, L, Q)}{\rho}$$

- Appropriability
- Business stealing
- Intertemporal spillover
- Monopoly distortion

Market Economy

$$\phi'(b)w = \frac{1(\pi - \phi(b)w)}{\frac{\rho + \tau - b}{\rho}}, \quad \phi'(b)F_L(K, L, Q) = \frac{\ln(\lambda)F(K, L, Q)}{\frac{\rho}{\rho}}$$

- Appropriability
- Business stealing
- Intertemporal spillover
- Monopoly distortion

Market Economy

$$\phi'(b)\mathbf{w} = \frac{1(\pi - \phi(b)\mathbf{w})}{\rho + \tau - b}, \quad \phi'(b)\mathbf{F}_{L}(K, L, Q) = \frac{\ln(\lambda)F(K, L, Q)}{\rho}$$

- Appropriability
- Business stealing
- Intertemporal spillover
- Monopoly distortion

Optimality (Ctn'd)

Social Planner:

$$\alpha K_x^{\alpha - 1} L_x^{1 - \alpha} Q_x = \frac{1}{1 - \alpha} \tau_x \ln \lambda_x + \delta + \rho$$

Market Economy:

$$\frac{1}{\lambda_x} \alpha K_x^{\alpha - 1} L_x^{1 - \alpha} Q_x = \frac{1}{1 - \alpha} \tau_x \ln \lambda_x + \delta + \rho$$

Optimality (Ctn'd)

Social Planner:

$$\gamma \psi z^{\gamma - 1} = \gamma b^{\gamma - 1}$$

Market Economy:

$$\psi z^{\gamma - 1} = \gamma b^{\gamma - 1}$$

Back

Consumption Equivalent Welfare Change

Sum of the discounted utility flows at the balanced growth path:

$$W(C_0, g_C) \equiv \frac{1}{\rho} \left(\ln C_0 + \frac{g_C}{\rho} \right)$$

Consumption path after a permanent change in subsidy system:

$$\{C_t^s\}$$

Consumption equivalent welfare change, ξ :

$$W(\xi C_0, g_C) = \int_0^\infty \exp(-\rho t) \ln(C_t^s) dt.$$

$$\begin{split} &\frac{\ln \lambda_c}{\rho} = \frac{c'(\tau_c)(1-\alpha)}{L_c} \\ &\frac{\ln \lambda_x}{\rho} = \frac{c'(\tau_x)(1-\alpha)}{L_x} \\ &-\delta + \alpha K_x^{\alpha-1} L_x^{1-\alpha} Q_x = \rho + \frac{1}{1-\alpha} \tau_x \ln \lambda_x \\ &\frac{1-\alpha}{\alpha} \frac{K_x}{L_x} = \frac{1-\alpha}{\alpha} \frac{K_c}{L_c} \\ &1 = L_c + L_x + c(\tau_c) + c(\tau_x) \\ &\frac{K_x^{\alpha} L_x^{1-\alpha} Q_x}{K_c + K_x} - \delta = \frac{1}{1-\alpha} \tau_x \ln \lambda_x \end{split}$$

Differentials

$$\begin{split} \dot{C} &= C \left(R - \rho - \tau_N \log \lambda_N - \frac{\alpha}{1 - \alpha} \tau_D \log \lambda_D \right) \\ \dot{K} &= D - K \left(\delta + \frac{1}{1 - \alpha} \tau_D \log \lambda_D \right) \\ \dot{A} &= w + rK + RA - P_D D - C - T - A \left(\tau_N \log \lambda_N + \frac{\alpha}{1 - \alpha} \tau_D \log \lambda_D \right) \\ \dot{V}_N &= \left(R - \tau_N \log \lambda_N - \frac{\alpha}{1 - \alpha} \tau_D \log \lambda_D + z_N \right) V_N \\ &- w L_N \left(\frac{\lambda_N - 1}{1 - \alpha} \right) + w (1 - s_N^i) \chi_N b_N^{1/1 - \gamma} \\ \dot{V}_D &= \left(R - \tau_N \log \lambda_N - \frac{\alpha}{1 - \alpha} \tau_D \log \lambda_D + z_D \right) V_D \\ &- w L_D \left(\frac{\lambda_D - 1}{1 - \alpha} \right) + w (1 - s_N^i) \chi_D b_D^{1/1 - \gamma} \end{split}$$

Controls

$$C = \frac{wL_N}{1-\alpha}$$

$$D = \frac{wL_D}{1-\alpha}$$

$$1 = \frac{\lambda_N r^{\alpha} w^{1-\alpha}}{\alpha}$$

$$\frac{r}{1-s_x} = \left(R + \delta - (z_N + b_N) \log \lambda_N + \frac{1-\alpha}{1-\alpha} (z_D + b_D) \log \lambda_D\right) \frac{\lambda_D}{\lambda_N}$$

$$rK = w\frac{\alpha}{1-\alpha} (L_N + L_D)$$

$$L_N + L_D + \gamma_D b_D^{1/1-\gamma} + \gamma_N b_N^{1/1-\gamma} + \gamma_D \psi_D z_D^{1/1-\gamma} + \gamma_N \psi_N z_N^{1/1-\gamma} = 1$$

Controls

$$(1 - s_N^e)\psi_N z_N^{\gamma/1 - \gamma} = (1 - s_N^i) \frac{1}{1 - \gamma} b_N^{\gamma/1 - \gamma}$$

$$(1 - s_D^e)\psi_D z_D^{\gamma/1 - \gamma} = (1 - s_D^i) \frac{1}{1 - \gamma} b_D^{\gamma/1 - \gamma}$$

$$V_N = w(1 - s_N^e)\psi_N \chi_N z_N^{\gamma/1 - \gamma}$$

$$V_D = w(1 - s_D^e)\psi_D \chi_D z_D^{\gamma/1 - \gamma}$$

$$T = w \left(s_N^i \frac{1}{1 - \gamma} \chi_N b_N^{\gamma/1 - \gamma} + s_D^i \frac{1}{1 - \gamma} \chi_D b_D^{\gamma/1 - \gamma} \right)$$

$$+ w \left(s_N^e \psi_N \chi_N Z_N^{\gamma/1 - \gamma} + s_D^e \psi_D \chi_D Z_D^{\gamma/1 - \gamma} \right)$$

Social Planner

$$\min_{z,b} \psi \chi z^{1/1-\gamma} + \chi b^{1/1-\gamma}$$

subject to

$$z + b = \tau$$

Resulting cost function is

$$\tilde{c}(\tau) = \frac{\psi \chi \tau^{1/1-\gamma}}{\left(1 + \psi^{1-\gamma/\gamma}\right)^{\gamma/1-\gamma}}$$

$$c(\tau_c, \tau_x) = \frac{\psi_c \chi_c \tau_c^{1/1-\gamma}}{\left(1 + \psi_c^{1-\gamma/\gamma}\right)^{\gamma/1-\gamma}} + \frac{\psi_x \chi_x \tau_x^{1/1-\gamma}}{\left(1 + \psi_x^{1-\gamma/\gamma}\right)^{\gamma/1-\gamma}}$$

Social Planner (Ctn'd)

$$\max \int_0^\infty e^{-\rho t} K_{c,t}^\alpha L_{c,t}^{1-\alpha} Q_{c,t} dt$$

subject to

$$\begin{split} \dot{K}_t &= K_{x,t}^{\alpha} L_{x,t}^{1-\alpha} Q_{x,t} - \delta K \\ L_{c,t} &+ L_{x,t} + c(\tau_{c,t}, \tau_{x,t}) \leq 1 \\ \frac{\dot{Q}_{c,t}}{Q_{c,t}} &= \tau_{c,t} \log \lambda_c \\ \frac{\dot{Q}_{x,t}}{Q_{x,t}} &= \tau_{x,t} \log \lambda_x \end{split}$$

R&D Subsidies (Incumbents Only)

