| $\tau_{1}^{#2} + \alpha$                            | $\tau_{1}^{#1} + ^{\alpha}$ | $\sigma_{1}^{\#2} + \alpha$                        | $\sigma_{1}^{#1}\dagger^{lpha}$             | $\tau_{1+}^{*1} + \alpha \beta$                | $\sigma_{1^+}^{*2} + \alpha \beta$        | $\sigma_{1^+}^{*1} + ^{lphaeta}$ |                                |
|-----------------------------------------------------|-----------------------------|----------------------------------------------------|---------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------|--------------------------------|
| 0                                                   | 0                           | 0                                                  | 0                                           | $\frac{i\sqrt{2}k}{t_1+k^2t_1}$                | $-\frac{\sqrt{2}}{t_1+k^2t_1}$            |                                  | $\sigma_{1^{+}lphaeta}^{\#1}$  |
| 0                                                   | 0                           | 0                                                  | 0                                           | $\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$       | $\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$     | $-\frac{\sqrt{2}}{t_1+k^2t_1}$   | $\sigma_{1}^{\#2}{}_{lphaeta}$ |
| 0                                                   | 0                           | 0                                                  | 0                                           | $\frac{-2 k^4 r_5 + k^2 t_1}{(1+k^2)^2 t_1^2}$ | $-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$ | $-\frac{i\sqrt{2}k}{t_1+k^2t_1}$ | $t_{1}^{\#1}{}_{lphaeta}$      |
| $\frac{i}{kr_5+2k^3r_5}$                            | 0                           | $-\frac{1}{\sqrt{2}(k^2r_5+2k^4r_5)}$              | $\frac{1}{k^2 r_5}$                         | 0                                              | 0                                         | 0                                | $\sigma_{1^-\alpha}^{\#1}$     |
| $-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$ | 0                           | $\frac{6k^2r_5+t_1}{2(k+2k^3)^2r_5t_1}$            | $-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$ | 0                                              | 0                                         | 0                                | $\sigma^{\#^2}_{1^-lpha}$      |
| 0                                                   | 0                           | 0                                                  | 0                                           | 0                                              | 0                                         | 0                                | $\iota_{1^{-}\alpha}^{\#1}$    |
| $\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$              | 0                           | $\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$ | $-\frac{i}{kr_5+2k^3r_5}$                   | 0                                              | 0                                         | 0                                | $	au_{1^-lpha}^{#2}$           |

| $f_{1}^{#2} +^{\alpha}$     | $f_{1}^{#1} + ^{\alpha}$ | $\omega_{1^{-}}^{#2} +^{\alpha}$ | $\omega_{1^{-}}^{*1}\dagger^{lpha}$ | $f_{1+}^{#1} \dagger^{\alpha\beta}$ | $\omega_{1}^{\#2} + ^{\alpha\beta}$ | $\omega_{1^+}^{*1} \dagger^{lphaeta}$ |                                   |
|-----------------------------|--------------------------|----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|-----------------------------------|
| 0                           | 0                        | 0                                | 0                                   | $\frac{ikt_1}{\sqrt{2}}$            | $-\frac{t_1}{\sqrt{2}}$             | $k^2 r_5 - \frac{t_1}{2}$             | $\omega_{1}^{\#1}{}_{lphaeta}$    |
| 0                           | 0                        | 0                                | 0                                   | 0                                   | 0                                   | $-\frac{t_1}{\sqrt{2}}$               | $\omega_{1^{+}\alpha\beta}^{\#2}$ |
| 0                           | 0                        | 0                                | 0                                   | 0                                   | 0                                   | $-\frac{i kt_1}{\sqrt{2}}$            | $f_{1+\alpha\beta}^{\#1}$         |
| $-\frac{1}{3}ikt_1$         | 0                        | $\frac{t_1}{3\sqrt{2}}$          | $k^2 r_5 + \frac{t_1}{6}$           | 0                                   | 0                                   | 0                                     | $\omega_{1^-  lpha}^{\# 1}$       |
| $-\frac{1}{3}i\sqrt{2}kt_1$ | 0                        | # <u>1</u><br>3                  | $\frac{t_1}{3\sqrt{2}}$             | 0                                   | 0                                   | 0                                     | $\omega_{1^-  lpha}^{\# 2}$       |
| 0                           | 0                        | 0                                | 0                                   | 0                                   | 0                                   | 0                                     | $f_{1^{-}\alpha}^{\#1}$           |
| $\frac{2k^2t_1}{3}$         | 0                        | $\frac{1}{3}\bar{l}\sqrt{2}kt_1$ | <u> </u>                            | 0                                   | 0                                   | 0                                     | $f_{1^-\alpha}^{\#2}$             |

| _                      | $\omega_{0}^{\#1}$ | $f_{0}^{#1}$ | $f_{0}^{#2}$ | $\omega_0^{\#1}$ |
|------------------------|--------------------|--------------|--------------|------------------|
| $\omega_{0^+}^{\#1}$ † | 0                  | 0            | 0            | 0                |
| $f_{0}^{#1}\dagger$    | 0                  | 0            | 0            | 0                |
| $f_{0}^{#2}$ †         | 0                  | 0            | 0            | 0                |
| $\omega_{0}^{\#1}$ †   | 0                  | 0            | 0            | -t <sub>1</sub>  |
|                        |                    |              |              |                  |

| Total #: | $\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$ | $\tau_{1+}^{\#1\alpha\beta} + ik \sigma_{1+}^{\#2\alpha\beta} == 0$ | $\tau_{1}^{\#1\alpha} == 0$ | $\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$ | $\tau_{0+}^{\#2} == 0$ | $\tau_{0+}^{\#1} == 0$ | $\sigma_{0+}^{\#1} == 0$ | SO(3) irreps | Source constraints |
|----------|---------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|----------------------------------------------------------|------------------------|------------------------|--------------------------|--------------|--------------------|
| 17       | 5                                                                   | 3                                                                   | 3                           | 3                                                        | Н                      | Н                      | Ъ                        | #            |                    |

|                                           | $\sigma_{2^{+}\alpha\beta}^{\#1}$   | $	au_2^{\#1}{}_{lphaeta}$            | $\sigma_{2^{-}\alpha\beta\chi}^{\#1}$ |
|-------------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|
| $\sigma_{2}^{\#1} \dagger^{\alpha\beta}$  | $\frac{2}{(1+2k^2)^2t_1}$           | $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | 0                                     |
| $\tau_{2}^{\#1} \dagger^{\alpha\beta}$    | $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | $\frac{4k^2}{(1+2k^2)^2t_1}$         | 0                                     |
| $\sigma_2^{#1} \dagger^{\alpha\beta\chi}$ | 0                                   | 0                                    | $\frac{2}{t_1}$                       |

| $\omega_{2}^{#1} \dagger^{\alpha\beta\chi}$ | $f_{2}^{#1} \dagger^{\alpha\beta}$ | $\omega_{2}^{*1} \dagger^{\alpha \beta}$ |                                                                      |
|---------------------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| 0                                           | $\frac{i k t_1}{\sqrt{2}}$         | <u>t1</u><br>2                           | $\omega_{2}^{\#1}{}_{lphaeta}$ .                                     |
| 0                                           | $k^2 t_1$                          | $-\frac{ikt_{1}}{\sqrt{2}}$              | $f_{2}^{\#1}_{\alpha\beta}$                                          |
| <u>t1</u><br>2                              | 0                                  | 0                                        | $f_{2}^{\#1}{}_{\alpha\beta}$ $\omega_{2}^{\#1}{}_{\alpha\beta\chi}$ |

|                              | $\sigma_{0}^{\#1}$ | $	au_{0}^{\#1}$ | $	au_{0}^{\#2}$ | $\sigma_0^{\#1}$ |
|------------------------------|--------------------|-----------------|-----------------|------------------|
| $\sigma_{0^+}^{\#1}\dagger$  | 0                  | 0               | 0               | 0                |
| $\tau_{0^{+}}^{\#1} \dagger$ | 0                  | 0               | 0               | 0                |
| $\tau_{0^{+}}^{\#2} \dagger$ | 0                  | 0               | 0               | 0                |
| $\sigma_{0}^{#1}$ †          | 0                  | 0               | 0               | $-\frac{1}{t_1}$ |
|                              |                    |                 |                 |                  |



Unitarity conditions

 $\overline{r_5 < 0 \&\& t_1 < 0 || t_1 > 0}$ 

(No massive particles)