Information-based Learning using Decision Trees

Specification

The basic idea is to write a program that, given a collection of training data for a classification problem, generates a Decision Tree via the ID3 algorithm.

Background

Decision trees are hierarchical data structures functioning as classifier systems. They are constructed based on a set of training data for which the value of the target function is known (i.e. they are a form of Supervised Learning). ID3 is a greedy algorithm that generates shortest-path decision trees.

Resources

- Your text contains a psuedocode presentation of the ID3 algorithm (Figure 9.3).
- A tutorial describing the operation of the ID3 algorithm has been posted on the course github repo.
- The course github repo also includes a link to the UCI Machine Learning Repository, a good source of databases culled from many different domains.

Implementation

Implement the basic ID3 algorithm to create a decision tree classifier.

ID3(S)

if all examples in *S* are of the same class return a leaf with that class label else if there are no more attributes to test return a leaf with the most common class label else

choose the attribute a that maximizes the Information Gain of S let attribute a be the decision for the current node add a branch from the current node for each possible value v of attribute a for each branch

"sort" examples down the branches based on their value v of attribute a recursively call ID3(S_v) on the set of examples in each branch

To implement the algorithm, you will need:

• A measure of purity (e.g. Entropy):

$$Entropy(S) \equiv -\sum_{i=1}^{k} p_i \log_2 p_i$$

where S is the collection of examples, k is the number of categories, and p_i is the ratio of the cardinality of category i to the cardinality of S, as in $p_i = N_i/N$

• The formula for Information Gain:

Gain(S, a) = Entropy(S) -
$$\sum_{v=\text{values}(a)} \frac{|S_v|}{|S|}$$
 Entropy(S_v)

where values(a) is the set of all possible values for attribute a, and S_v is the subset of set S for which attribute a has value v.

Data Sets

Sample datasets have been posted on the course Web page. Datafile format is:

NumTargets targetNames

NumAttributes

attributeNamenumValuesattributeValues// each attribute takes multiple valuesattributeName"real"// continuous-valued attribute

NumExamples

attributeValues targetValue // one example per line

You may assume there will be discrete (nominal) attribute values for all training data. A continuous-valued dataset is posted (Iris.data) for additional analysis. The datasets contain a "header" containing metadata – you may modify them in any way you choose.

Requirements

Submit a written report (PDF) and be prepared to present your solution to the class.

- ☐ Include complete documentation of your code (this can be in the pdf for ipython notebooks or uploaded to the repo separately).
- □ Describe your approach, choice of metric, any interesting problems encountered or experiments performed, special packages used, etc.
- □ Demonstrate the effectiveness of your classifier on a test set. Include a discussion/analysis of your results.

Further Investigation

- □ Extensions
 - o Find/create/use a different problem domain and dataset
 - Add "Classification mode" to your program (i.e. input an unseen example and use the decision tree to output a prediction/classification)
 - o Extract the *rule-base* (IF-THEN) from your decision tree.
- □ Alternate implementations
 - o Experiment with alternate splitting functions
 - o Experiment with weighted training data
- □ Structural Enhancements
 - o Implement pruning
- □ Usability
 - o Incorporate numeric (continuous-valued) training data
- □ Visualization
 - o Create a visualization of your growing/final tree
- □ Ensemble Learning
 - Employ bagging (bootstrap aggregating) to implement Random Forests and investigate their performance (you could compare your implemented algorithm to preset packages that perform these).