SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

1. The standard reduction electrode (E2) for some half cells are given in the table below.

Half cell	E2(v)
$Fe^{3+}(aq)$, $Fe^{2+}(aq)$	+0.77
S _(s) , H ₂ S _(g)	+0.14

a) Wri	te the:	
i.	Cell notation.	(01 mark)
ii.	- ,	he cathode (@01 mark)
	Cathode:	
b) Wri	te the overall equation for the cell notation	
•	te whether the reaction is feasible or not a son for your answer.	nd give a (0½ mark)
••••••		

$-\frac{dN}{dt} = \Lambda N$	
(i) State what each symbol represent.	(01½ mai
(ii) Using the above expression derive the	expression for
the relation between half-life and the	decay constan
	(02 mar
Nickel (63Ni) decays to copper (63Cu).	
Nickel (63Ni) decays to copper (63Cu). i. Name the particle emitted and write	the equation
• • • • • • • • • • • • • • • • • • • •	the equation

	Equation:	(0½ mark)
ii.	Calculate the time taken for	$\frac{15}{16}$ of Nickel to decayed
	or changed to copper. [The	half-life for Nickel is
	120 years]	(02 marks)
		······
. (a) State	conditions for the reaction be	etween aluminium oxide
	lphuric acid.	
Condition (•	(0½ mark)
Equation (s):	(01½ marks)

sodium car	bonate solutio		mixed with aqueous would be observed and ikes place.
Observation:			(02 marks
Equation (s):			(01½ marks
•••••••••••••••••••••••••••••••••••••••		•••••••	
•	experimental + 2B	results were ob	otained for the
reaction, A	•	→ Pr	
reaction, A	+ 2B =	→ Pr	roducts
reaction, A	+ 2B Initial conce	→ Pr	oducts Initial rate
reaction, A	+ 2B Initial conce (mol/l)	Prontations	oducts Initial rate
reaction, A Experiments	+ 2B Initial conce (mol/l) A	ntrations B	Initial rate (mol/l/s)

_	(i) Deduce the order of reactions with respect to: A:	(0 ¹ / ₂	mark)
•••••		• -	•
	B:	(0 ¹ / ₂	mark)
	Write the expression for the rate equation.		mark)
	The rate of reaction under certain conditions for temperature and pressure is X. Express the rate in X when the following changes are made.		
	i. The concentration B is halved while the concentration remains unchanged.		of A mark)
		••••••	••••••
	ii. The rate constant is doubled by increasing tempo keeping the concentration of A and B unchanged.	_	

iii.	If 90% of B is removed by precipitation wi	ithout affecting
	concentration of A.	(0½ mark)
c)	Calculate the value of the rate constant aunits.	na state its 5.1 (02 marks
		••••••
. Comp	lete the following reactions equations and v	vrite the IUPAC
name	s of the main product in each case.	(@01½ marks
	CH ₃ Br	
	CH ₃ CH ₂ O ⁻ K ⁺ /CH ₃ CH ₂ OH	

	Na	ime of p	roduct:				
	(b)). ()	СНО	Concentra Z	ted HCl n/Hg		
	Na	ime of p	roduct:				
	(c)	. (CH ₃) ₃ C	сон	Anhydrous Z	nCl ₂ /Conc.I	HCl -	
	Na	ıme of p	roduct:				
6.	Wı	rite hal	f equat	ion (s) to s	show the a	ction of hy	drogen peroxide
			oxidizin	g agent.			(01 mark)
		••••••	educing	agent.			(01 mark)
	b)	reactio	what's on that to the Acidit	observed a take place following m	nd in each when hyd nixtures:	case write	equation of kide solution is (@01½ marks) lution.
			••••••				
		•••••	••••••				

Equation:

(ii) 	Iron (II) sulphate solution in dilute sulphuric acid Observation:
	Equation:
) E×plo	nin what is meant by the term first electron affinity (01 n
•••••••••••	

(c) The first electron affinities of some elements of period (III) are given in the table below.

elements	Al	Si	Р	S
1 st electron affinities	-44	⁻ 134	-71.7	-200
(KJ/mol)				

i. State the trend in variation of electron affinities.

	(0½ mark)
ii.Explain ypur answer in c (i) above.	(02 marks)

8. The enthalpies of some reactions are given below:

its	s elements.	(03 marks)
		•••••••••••
		•••••••
		••••••
		••••••
		••••••
b)(i)	From your answer in (a) above state whether p	henol is a
	From your answer in (a) above state whether pable compound or not.	henol is a
st 	·	(0½ mark)
st (ii Ethy	able compound or not.	(0½ mark)

(ii) The	e expression for the ionization constant, K_b . $(0\frac{1}{2}$ marks)
••••••	
b)If the	ionization constant of ethylamine is 1.78×10^{-4}
mol/dn	n^3 at 25°C.Calculate the pH of a 0.01M solution of
ethyla	mine. [Kw = $1.0 \times 10^{-14} \text{ mol}^2/\text{dm}^3$ at 25° C] (03 marks)
••••••	
••••••	
••••••	
••••••	
••••••	
•••••	
••••••	
	SECTION B-54 MARKS
	ATTEMPT ANY SIX QUESTIONS IN THIS SECTION.
. Nitroge	n reacts with hydrogen in a mole ratio of 1:3 to form
ammoni	a gas.
a) Writ	te:
(i)	Equation for the reaction that takes place.
	(01½ marks)

(ii)	The exp	pression 1	for the	equilibriu	m consta	nt,Kc.	
							(0½ mai	rk)
Ь)					o obtain me by Hab	er proces	•	
		• • • • • • • • • • • • • • • • • • • •	•••••		••••	•••••		
			••••				•••••	•••••
	••••						•••••	•••••
	••••••	•••••••		•		•	•	•••••
	•••••••	•••••••	••••••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••••	••••••	•••••
								••••
c)	•	_			the equili			
	•				ne reactio		_	
	7						(04 mar	ks)
	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••		•••••
				•••••		••••••		•••••
								•••••
								•••••
	••••••	••••••••••••	••••••••	•	•	•	••••••	•••••
	••••••	••••••••	• • • • • • • • • • • • • • • • • • • •		••••••••	••••••••••	••••••	•••••

d)	State what woul reaction in a (i)	• •	•	•	
	to the equilibriu	m mixture	. Give a re	ason for yo	our answer. (01½ marks
l (a)					
ι. (α)	Explain what me	ant by in	e term par	TITION COEII	(02 marks
				• • • • • • • • • • • • • • • • • • • •	••••••
					•••••
(b)	The table shows layers when shows	aken with			
(b)	layers when sh	aken with 50°C.			

(i)Plot a graph of concentration of iodine in carbon tetrachloride against concentration of iodine in water.

(03 marks)

water.	(02 mar
rate two applications of partition coefficie	nt. (02 mai

12. Compare the reactivity of hydrides of group (VII) elements with concentrated sulphuric acid.

any.	take place if: (04 marks)
(ii) Give a reason for the difference in reactivi	•
(ii)Give a reason for the difference in reactivi	ty shown by (01 mark)
	(01 mark)
the hydrides in a (i) above.	(01 mark)
the hydrides in a (i) above.	(01 mark)
the hydrides in a (i) above.	(01 mark)

b) The bond lengths of the hydrides of group (VII) elements are given in the table below.

Hydrides	HF	HCI	HBr	IH
Bond length (A°)	0.86	1.28	1.42	1.60

hydrides.	(01 ma
(ii) Explain your answer in b (i) above.	(03 mar
/rite equations to show how the following col	nversions can be
ffected. Ethanol to benzene.	(04 marl
ffected. Ethanol to benzene.	(04 mari
ffected. Ethanol to benzene.	(04 marl
ffected.)Ethanol to benzene.	(04 mar
ffected.)Ethanol to benzene.	(04 mar
ffected.)Ethanol to benzene.	(04 mar
ffected.)Ethanol to benzene.	(04 mar

1,2-dibromoethane to ethanol.	(03 ma
1-bromopropane from propan-2-ol	(02 ma
1-bromopropane from propan-2-ol.	(02 ma
1-bromopropane from propan-2-ol. (i) Write the general outer most electronic roup (IV) elements.	

(b)Explain why carbon show differences from group elements.	(01½ marks)
(c)State three differences between the chemi and the rest of group (IV) members.	stry of carbon (03 marks)
(d)Explain why carbon tetrachloride does not usin water whereas silicon (IV) chloride does.	• •

	between silicon (IV)
(e)Write the equation for the reaction l chloride and water.	(01 mark)
(e)Write the equation for the reaction l chloride and water.	
(e)Write the equation for the reaction l chloride and water.	(01 mark)
(e)Write the equation for the reaction leads of the chloride and water.	(01 mark)
(e)Write the equation for the reaction I chloride and water.	(01 mark)
(e)Write the equation for the reaction I chloride and water.	(01 mark)

- 15. A compound Y contains 64.9% by mass carbon, 13.5% by mass hydrogen and the rest is oxygen.
 - a)(i) Calculate the empirical formula of compound Y. $(03\frac{1}{2} \text{ marks})$

/::\\	1/ham 1 0/a af a	ompound Y is vapouriz	ed at 200°C and
760	mmHg pressure,	it occupied a volume the molecular formul	of
760 969	mmHg pressure, 1.8cm³.Determine	it occupied a volume	of
760 969	mmHg pressure, 1.8cm³.Determine	it occupied a volume the molecular formu	of la of compound
760 969	mmHg pressure, 1.8cm³.Determine	it occupied a volume the molecular formu	of la of compound
760 969	mmHg pressure, 1.8cm³.Determine	it occupied a volume the molecular formu	of la of compound

•••••		
b) <i>C</i> ompou	nd Y forms two layers after 8 mii	nutes with anhydro
	oride in the presence of concentr	•
acid. Id	dentify compound Y.	(01 ma
a) \4/ni+a_a	on aquation for the reaction between	on compound V and
	an equation for the reaction betwo centrated phosphoric acid.	een compound y and O1 ma
•	the following equations and outling tion. [a (03½ marks), b (02½	
each reac	•	
each reac	tion. [a (03 $\frac{1}{2}$ marks), b (02 $\frac{1}{2}$	marks), c (03 marl
each reac	etion. [a (03 $\frac{1}{2}$ marks), b (02 $\frac{1}{2}$ marks). Heat	marks), c (03 marl
each reac	etion. [a (03 $\frac{1}{2}$ marks), b (02 $\frac{1}{2}$ marks). Heat	marks), c (03 marl
each reac	etion. [a (03 $\frac{1}{2}$ marks), b (02 $\frac{1}{2}$ marks). Heat	marks), c (03 marl

(b). (CH ₃) ₃ CBr KOH/CH ₃ CH ₂ OH Heat	
	•••
	•••
	•••
	•••
	•••
(c). $+ \text{Conc.HNO}_{3(aq)}$ $+ \frac{\text{Conc.H}_2\text{SO}_{4(1)}}{60^{\circ}\text{C}}$	
	•••
	•••
	•••

	10.111 03	smoric pr	ressure.		((01 ma
	•••••••	••••••••••	••••••	••••••	••••••	•••••
	•••••••	••••••••••••	••••••	••••••		•••••
	••••••	•••••••	••••••	••••••	•••••••••••••••••••••••••••••••••••••••	•••••
				•••••		
(b) Explain why					• •	
osmotic pressur method.	re is pro	eferred	than boi	iling poir		ion (01 ma
momou.					'	(0- 1110
	• • • • • • • • • • • • • • • • • • • •	••••••••	••••••	•••••		•••••
	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •		
		•••••••••••	••••••	•••••••		•••••
• •	•					
(c) The Osmoti	ne at 2	5°C are	given in	the tab	ole below	·
* *	ne at 2					

(i)Plot a graph of osmotic pressure against concentration. (03 marks)

(Nm⁻²)

					olecular mas 14J/K/mol]	
••••••		•••••		••••••	•••••••••••••••••••••••••••••••••••••••	••••••
•••••		••••••				
••••••		•••••			••••••	
••••••						
••••••	••••••	•••••••	••••••	•••••••		
••••••		•••••				
•••••	••••••	•••••••	•••••	••••••	•••••••••••••••••••••••••••••••••••••••	

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1																1.0 H	4.0 He 2
6.9 Li 3	9.0 Be	1										10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
	24.3 Mg 12							· 6				27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21		50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	58.9 Co 27	58.7 Ni 28		65.7 Zn 30		72.6 Ge 32			79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40		1	1	101 Ru 44		106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
Cs 55	137 Ba 56		178 Hf 72	1	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89				2 13 2 13 19 135	4	9 -55 In				5 D C 70 D					2 13
		1 1 1 1 1 1 1 1 1 1	139 La 57	140 Ce 58	141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63	157 Gd 64	159 Tb 65	162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69		175 Lu 71
		F7 8	227 Ac 89		231 Pa 91			244 Pu 94			247 Bk 97		Es	Fm	256 Md 101	No	Lw

♥ ===END===

WELCOME TO SENIOR SIX, YEAR 2022 This is the last page of the printed paper, Page 27