ECS 122A: Algorithm Design and Analysis Week 1 Discussion

Ji Wang

Spring 2020

Outline

- Mathematical Induction
- ► Insertion Sort and Time Analysis
- ► Merge Sort and Recurrence Relation
- Asymptotic Notation

Mathematical Induction: Approach

When applicable: Prove that a property P(n) holds for every natural number n.

How it works:

- 1. Show that a property P(n) holds for the basis case, usually when n = 0 or 1.
- 2. Assume that P(n) is true for n = k where k is greater than the basis case.
- 3. Prove that P(n) is true for n = k + 1. In this step we will use the assumption above.
- 4. Then, by the principle of induction, we can conclude that P(n) is true for every natural number that is greater than or equal to the basis case.

Problem Statement: Prove the following statement P(n) is true

$$1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Build a skeleton:

- ► Basis Step:
- ► Inductive Hypothesis:
- ► Inductive Step:
- ► Thus, by the principle of induction, we can conclude that the statement above is true for every natural number *n*.

$$1^3 + 2^3 + \dots + n^3 = (\frac{n(n+1)}{2})^2$$

Pasis Step: Verify P(n) is true when n = 1. $1^3 = (\frac{1 \cdot (1+1)}{2})^2$.

$$1^3 + 2^3 + \dots + n^3 = (\frac{n(n+1)}{2})^2$$

- ▶ Basis Step: Verify P(n) is true when n = 1. $1^3 = (\frac{1 \cdot (1+1)}{2})^2$.
- Inductive Hypothesis: Assume P(n) is true when n=k. Then, we have $1^3+2^3+\cdots+k^3=(\frac{k(k+1)}{2})^2$.

$$1^3 + 2^3 + \dots + n^3 = (\frac{n(n+1)}{2})^2$$

▶ Inductive Step: We need to show P(n) is true when n = k + 1.

$$1^{3} + 2^{3} + \dots + (k+1)^{3} = 1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3}$$

$$= (\frac{k(k+1)}{2})^{2} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + \frac{4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2}(k^{2} + 4(k+1))}{4}$$

$$= \frac{(k+1)^{2}(k+2)^{2}}{4}$$

$$= (\frac{(k+1)((k+1)+1)}{2})^{2}$$

Insertion Sort: Example

Problem Statement: Given a list of numbers, sort them in non-decreasing order.

Algorithm: Partition the list into sorted part and unsorted part. Insert the head of unsorted one into the sorted one. Repeat until no unsorted part remaining.

Example: 8 3 2 7 4 1 6

8 3	2	7	4	1	6
8 3	2	7	4	1	6
3 8	2	7	4	1	6
3 8	2	7	4	1	6
2 3	8	7	4	1	6

2 3 8	3 7	4 1 6
2 3 7	8	4 1 6
2 3 7		
2 3 4	7 8] 1 6
2 3 4	7 8	1 6

1234786	1	2	3	4	7	8	6
1234678	1	2	3	4	7	8	6
120.010	1	2	3	4	6	7	8

Insertion Sort: Pseudocode and Time Analysis

```
INSERTION-SORT(A)

1 for j=2 to A. length

2 key=A[j]

3 // Insert key into the sorted list A[1\cdots j-1].

4 i=j-1

5 while i>0 and A[i]>key

6 A[i+1]=A[i]

7 i=i-1

8 A[i+1]=key
```

See Section 2.1 on textbook for pseudocode convention.

- Worst case scenario: reversed order, e.g. 5 4 3 2 1.
- ▶ Running time in this case: $\sum_{j=2}^{n} \sum_{i=1}^{j-1} = O(n^2)$
- Best case scenario: already sorted
- ▶ Running time in this case: $\sum_{i=2}^{n} = O(n)$

Merge Sort: Divide-and-Conquer Approach

- 1. **Divide** the problem into a number of subproblems that are smaller instances of the **same** problem.
- 2. Conquer by solving the subproblems recursively.
- Combine the solutions to the subproblems to produce the solution to the original problem.

Merge Sort: How to combine

$$L_1$$
 L_2 L_3 L_4 ∞

$$R_1$$
 R_2 R_3 R_4 ∞

Comparison part of Merge function:

```
1 i = 1

2 j = 1

3 for k = 1 to A.length

4 if L[i] \le R[j]

5 A[k] = L[i]

6 i = i + 1

7 else

8 A[k] = R[j]

9 j = j + 1
```

For full version, refer to the textbook.

Merge Sort: Recurrence Relation

$$T(n)=2T(\frac{n}{2})+n$$

- ▶ Where does n come from? # of comparisons in Merge function.
- ▶ Why *n*? As long as a comparison is done, we assign a value to an element in the merged array.

Asymptotic Notation

By applying Limit Lemma Theorem, we can determine the growth relation between functions.

Frequently used functions	Order of Growth	Example
constant	O(1)	f(n)=10
logarithm	$O(\log n)$	$f(n) = 4\log(n+2)$
linear	O(n)	f(n)=2n+1
linearithmic	$O(n \log n)$	$f(n) = 3n\log 4n + 1$
quadratic	$O(n^2)$	$f(n)=2n^2+3n+1$
cubic	$O(n^3)$	$f(n)=n^3+1$
exponential	$O(a^n), a \geq 2$	$f(n)=3^n$

More details on Auxiliary Notes.