<u> 4 סטטיסטיקה – מטלה</u>

אלעזר פיין

א.

 $H0: Dist(Tel - Aviv) \sim Dist(Haifa)$.1

H1: Otherwise

: Eij = Nj*P(Xi) נמלא טבלת שכיחויות לפי 2

n = 60	Haifa Expected	Haifa Observed	Tel – Aviv Expected	Tel – Aviv Observed	Observed Sum	$\chi^2 = \sum \frac{(x_i - m_i)^2}{m_i}$
מרוצים	$24 \cdot \frac{35}{60}$ $= 14$	18	$36 \cdot \frac{35}{60}$ $= 21$	17	35	$\frac{(18-14)^2}{14} + \frac{(17-21)^2}{21}$ $= \frac{40}{21}$
לא מרוצים	10	6	15	19	25	$\frac{(6-10)^2}{10} + \frac{(19-15)^2}{15}$ $= \frac{8}{3}$
sum	24	24	36	36	60	$\frac{40}{21} + \frac{8}{3} = \frac{32}{7} \approx 4.57$

לרמת מובהקות של 5% הערך הקריטי הוא 3.84, קיבלנו 4.57 > 3.84 ולכן דוחים את השערת האפס ומסיקים כי יש הבדל ברמת שביעות הרצון בין תל – אביב לבין חיפה (לא מתפלגים בצורה דומה).

. Pvalue $< \alpha = 0.05$.3

Observed Probabilities Table: .4

	חיפה	תל אביב
מרוצים	18/24 = 0.75	17/36 = 0.47
לא מרוצים	6/24 = 0.25	19/36 = 0.53

$$OR = \frac{0.25 \cdot 0.47}{0.75 \cdot 0.53} = 0.29 < 1$$

מכיוון שהיחס קטן משמעותית מאחד מסיקים כי בחיפה משמעותית יותר מרוצים.

$$H_0$$
: $\mu_A = \mu_B = \mu_C = \mu_D$.1 H_1 : otherwise

.2

Source	df	SS	MS	F
Between Groups	K - 1 = 4 – 1 = 3	54.18	$\frac{54.18}{4-1} = 18.06$	$\frac{18.06}{2.344} = 7.705$
Error	n – k = 60 – 4 = 56	2.344 · 56 = 131.264	2.344	-

3. ממוצע השונויות של כל הקבוצות מהממוצע הכולל של המרחק בין הקבוצות. כאשר המונים ביחס לממוצע השונויות בתוך הקבוצות - יחס גבוה מערך קריטי ${\sf Fc}$ נותן דחייה להשערת בוחנים ביחס לממוצע השונויות בתוך הקבוצות בעזרתו לקבוצות חריגות בשונותם.

F > Fc ⇔ 7.705 > 2.769 => Reject H0

מסיקים שאין שוויון תוחלות בין הקבוצות – כלומר יש תלות בין גיל לכמות פעילות גופנית.

4. נוסיף לטבלה את הדרוש לבחון HOLMES:

i	Groups	Pv	$\frac{\text{Holmes CV}}{\alpha}$ $\frac{m+1-i}{m+1}$	Reject H0
1	D-A	0.000125	0.05/6+1-1 = 0.00833	true
2	C-A	0.005909	0.05/6+1-2 = 0.01	true
3	B-A	0.021698	0.05/6+1-3 = 0.0125	false
4	D-B	0.080907	0.05/6+1-4 = 0.0167	false
5	D-C	0.300442	0.05/6+1-5 = 0.025	false
6	C-B	0.441925	0.05/6+1-6 = 0.05	false

קיימים 2 זוגות של קבוצות שיש ביניהם שוני משמעותי בתוחלת מספר שעות פעילות הגופנית:

2 זוגות אלו הם אלו ש"הרסו" לנו את השוויון תוחלות שחיפשנו במבחן ANOVA. בכל שאר הזוגות אין הבדל משמעותי בתוחלות.

- 1. המשתנים מתפלגים נורמלית.
- (אין קשר לינארי בין המשתנים) H_0 : ho=0 .2 (ש קשר לינארי בין המשתנים) H_1 : $ho\neq0$ df = n 2 = 30 2 = 28

$$r_1 = z_{x1} \cdot z_{v1}$$
 .3

$$r_1 = \frac{66.13 - 68}{3.837} \cdot \frac{2.56 - 3}{0.596} = 0.359$$

 $r=rac{1}{n-1}\sum_{i=1}^{n}r_{i}$: (n-1)עושים אותו עבור כל השורות, מחברים ומחלקים ב

$$t = r \cdot \frac{\sqrt{n-2}}{\sqrt{1-r^2}} = 0.879 \cdot \frac{\sqrt{28}}{\sqrt{1-0.879^2}} = 9.75$$
 .4

5. 9.75 < 2.048 מכאן ניתן לדחות את השערת האפס ולהסיק כי המקדם מתאם לא אפס ויש קשר לינארי בין גובה תינוק למשקלו.

т.

$$H_0: \mu = 4.5$$
 .1 $H_1: \mu \neq 4.5$

2. יש להניח כי המשתנה מתפלג נורמלית.

$$CI = \bar{X} \pm t_{1-\frac{a}{2}} \cdot \frac{s}{\sqrt{n}} = 3.8 \pm 2.0518 \cdot \frac{0.82}{\sqrt{28}}$$
 .3

ci low = 3.48 ci upper = 4.11

4.5 לא ברווח סמך. למרות שמטרת רווח הסמך היא לא לקבל או לדחות השערות כעת יודעים מה תהיה תוצאת בדיקת ההשערות הדו צדדית: דוחים את HO ברמת בטחון 95%.

$$t = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} = \frac{3.8 - 4.5}{\frac{0.82}{\sqrt{28}}} = -4.52 \rightarrow |t| > 2.0518$$
 .4

מכאן דוחים את השערת האפס ברמת מובהקות 0.05 – תוחלת האוכלוסייה אינה 4.5.