Just as the connection between subvarieties of projective space and graded modules over the standard graded polynomial ring inspired substantial work in commutative algebra, recently there has be substantial work in developing homological tools to study multigraded modules over multigraded polynomial rings to better understand subvarieties of toric varieties. Much of my recent work fits into this trend. As a taste of some of this work I will focus on recent work studying the homological properties of multigraded Castelnuovo–Mumford regularity.

Castelnuovo–Mumford regularity is a measure of geometric complexity that has proven extremely useful in studying subvarieties of projective space. As introduced originally introduced by Mumford the regularity of a coherent sheaf \mathcal{F} on \mathbb{P}^n is given in terms of certain cohomological vanishing conditions. Roughly, one can think of the regularity of \mathcal{F} as being an effective bound for Serre vanishing. Mumford was interested such a measure as it plays a key role in constructing Hilbert schemes. However, the connection between coherent sheaves on projective space and graded modules over the standard \mathbb{Z} -graded polynomial ring $S = \mathbb{C}[x_0, \ldots, x_n]$ has meant that Castelnuovo–Mumford regularity has proven a fruitful area of active research in commutative algebra.

Maclagan and Smith introduced a generalization of Castelnuovo–Mumford regularity to coherent sheaves on other toric varieties. Following Mumford they define the *multigraded Castelnuovo–Mumford regularity* of a coherent sheaf \mathcal{F} on a toric variety X in terms of certain cohomological vanishing. For example, if $X = \mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \times \cdots \times \mathbb{P}^{n_r}$ then \mathcal{F} is **d**-regular if and only if

$$H^{i}(\mathbb{P}^{\mathbf{n}}, \mathcal{F}(\mathbf{e})) = 0$$
 for all $\mathbf{e} \in L_{i}(\mathbf{d}) = \bigcup_{\mathbf{v} \in \mathbb{N}, |\mathbf{v}| = i} (\mathbf{d} - \mathbf{v}) + \mathbb{N}^{r}$.

In order to give a taste of some of my recent work in these directions. Let me focus on the following theorem of Eisenbud and Goto, which states that the Castelnuovo–Mumford regularity of a module over the standard graded polynomial ring S can be characterized solely in terms of homological properties of minimal graded free resolutions.

Theorem A (Eisenbud-Goto). Let \mathcal{F} be a coherent sheaf on \mathbb{P}^n and $M = \bigoplus_{e \in \mathbb{Z}} H^0(\mathbb{P}^n, \mathcal{F}(e))$ the corresponding section ring. The following are equivalent: (1) M is d-regular; (2) $\operatorname{Tor}_p^S(M, \mathbb{C})_q = 0$ for all $p \geq 0$ and q > d + i; (3) $M_{>d}$ has a linear minimal graded free resolution.

My collaborators and I have worked to understand how such a result can be extended to characterize multigraded Castelnuovo–Mumford regularity in terms of minimal resolutions. To give a taste of our results let us again focus on the the case when X is a product of projective spaces. In particular, let $X = \mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \times \cdots \times \mathbb{P}^{n_r}$ and $S = \mathbb{C}[x_{i,j} \mid 1 \leq i \leq r, 0 \leq j \leq n_i]$ be the corresponding Cox ring with the \mathbb{Z}^r -grading given by $\deg x_{i,j} = \mathbf{e}_i \in \mathbb{Z}^r$, where \mathbf{e}_i is the i-th standard basis vector in \mathbb{Z}^r .

With my collaborators, I was able to find examples showing that generalizing Theorem A to mulitgraded regularity is quite subtle. For example, the multigraded Betti numbers of a module do not determine multigraded Castelnuovo–Mumford regularity, and there exists a finitely generated module M that is **d**-regular, but where the truncation $M_{\geq \mathbf{d}}$ does not have a linear free resolution. However, we show that multigraded regularity can be characterized by the truncation $M_{\geq \mathbf{d}}$ having a certain type of free resolution, which generalizes the notion of a linear resolutions.

Definition 0.1. A complex F_{\bullet} of \mathbb{Z}^r -graded free S-modules is **d**-quasilinear if and only if F_0 is generated in degree **d** and each twist of F_i is contained in $L_{i-1}(\mathbf{d-1})$.

Theorem B. Let M be a finitely generated \mathbb{Z}^r -graded S-module with $H_B^0(M) = 0$:

M is \mathbf{d} -regular $\iff M_{\geq \mathbf{d}}$ has a \mathbf{d} -quasilinear resolution.

Relevance of Visit. Being a postdoctoral fellow at MSRI would be extremely beneficially towards my career goals as it would provide me with a stimulating mathematical environment, and the opportunity to engage and work with a number of leading researchers in commutative algebra. My research interest align very well with the topics of the program, and multiple projects I am working on directly touch upon many of the topics included in the program description For example, one project I am working on concerns better understanding multigraded Castelnuovo–Mumford regularity, and in a separate project I am exploring ways Green's conjecture can be generalized to canonical stacky curves. Being a postdoc at MSRI would likely prove valuable toward progressing both of these projects, as well as a fantastic opportunity to being new collaborations with other participants. Further, given the the ways my research interest align with the program I feel I would be able to find numerous ways to contribute to the program, for example, I would love to help organize a seminar and social actives for myself and the other postdocs.

I am specifically applying for a postdoctoral position, since my current position would make it extremely difficult for me to participate in the semester otherwise (i.e., as a research member or occasional visitor). Overall, being a postdoctoral fellow for this semester program in commutative algebra presents an amazing opportunity to connect and build relationships within the research area that has long felt like my research community and home. And such connections would significantly advance my goals of being a math professor at a research university.

Building Mathematical Community. I have worked hard to promote diversity, inclusivity, and justice in the mathematical community by mentoring students, supporting women and LGBTQ+people in mathematics, and organizing conferences and outreach programs.

I have put significant effort into mentoring and working with students, especially those from underrepresented groups. During 2021 I organized a virtual summer research program for 6 undergraduates. In 2022 I advised an undergraduate student on a research project in commutative algebra. This student is now applying to graduate schools in math. I began research projects with multiple graduate students, in which I played a substantial mentoring role. In 2022, I led a reading course with a first-year graduate woman in commutative algebra.

Since 2020 I have organized an annual conference promoting the work of transgender and non-binary mathematicians, which regularly has over 50 participants. Highlighting the importance of such conferences one participant said, "I've been really considering leaving mathematics. [Trans Math Day 2020] reminded me why I'm here and why I want to stay. ... If a conference like this had been around for me five years ago, my life would have been a lot better." For the last two years I have been a board member for Spectra: The Association for LGBTQ+ Mathematicians, and currently I am the inaugural president. As a board member I led the creation and adoption of bylaws, the creation of an invited lecture at the Joint Mathematics Meetings, and a fundraising campaign that has raised over \$20,000 to support LGBTQ+ students and mathematicians.

In response to the COVID-19 pandemic, I worked to find ways for these online activities to reach those often at the periphery. During 2020, I helped with Ravi Vakil's Algebraic Geometry in the Time of Covid project; an online open-access course in algebraic geometry binging together $\sim 2,000$ participants. In 2021, I organized a virtual undergraduate reading course in commutative algebra.

I have organized over 15 conferences, special sessions, and workshops including: M2@UW (45 participants), CAZoom (70 participants), $Western\ Algebraic\ Geometry\ Symposium$ (100 participants), and $\operatorname{Spec}(\overline{\mathbb{Q}})$ (50 participants). When organizing these conferences I have given paid special attention to promoting women and other underrepresented groups in mathematics. For example, $Graduate\ Workshop\ in\ Commutative\ Algebra\ for\ Women\ &\ Mathematicians\ of\ Other\ Minority\ Genders\ and\ GEMS\ in\ Combinatorics\ focused\ on\ forming\ communities\ of\ women\ and\ non-binary\ researchers\ in\ commutative\ algebra\ and\ combinatorics\ respectively. Further, <math>\operatorname{Spec}(\overline{\mathbb{Q}})$ highlighted the research of LGBTQ+ mathematicians in algebra, geometry, and number theory.