TUGAS 4 PRAKTIKUM STRUKTUR DATA

Jobsheet 4

Disusun Oleh:

Fitri Waldi : 22343021

Dosen Pengampu:

Randi Proska Sandra, S.Pd., M.Sc

PROGRAM STUDI S1 INFORMATIKA (NK)

JURUSAN TEKNIK ELEKTRONIKA

FAKULTAS TEKNIK

UNIVERSITAS NEGERI PADANG

2023

Nomor	Baris	Petikan Source Code	Penjelasan
Program	Program		
1	7-12	struct Node { int data; struct Node *next; struct Node *prev; };	Deklarasi struktur baru dengan nama node (simpul). Next dan prev adalah variable pointer yang akan digunakan untuk mengarahkan ke simpul sebelum atau setelah sebuah simpul baru dibuat
	17 21	void push(struct Node** head_ref, int new_data) { // 1. alokasi memori untuk node baru struct Node* new_node = (struct Node*)malloc(sizeof(struct Node)); // 2. isi data pada node baru new_node->data = new_data; // 3. hubungkan node baru dengan head dan previous dengan NULL new_node->next = (*head_ref); new_node->prev = NULL; // 4. jika head bukan NULL, ubah previous dari head menjadi node baru if ((*head_ref) != NULL) (*head_ref)->prev = new_node; // 5. pindahkan head untuk menunjuk ke node baru (*head_ref) = new_node; } // 1. alokasi memori untuk	Fungsi push digunakan untuk menambahkan simpul baru pada awal linked list
	17-21	// 1. alokasi memori untuk	Mengalokasikan

		1 1	• . 1
		node baru struct Node* new_node = (struct Node*)malloc(sizeof(struct Node)); // 2. isi data pada node baru new_node->data = new_data;	memori untuk simpul baru dengan menggunakan fungsi 'malloc' dan ukurannya disesuaikan dengan ukuran 'struct Node'. Mengisi data pada simpul baru dengan nilai 'new_data'.
	23-25	// 3. hubungkan node baru dengan head dan previous dengan NULL new_node->next = (*head_ref); new_node->prev = NULL;	Menghubungkan simpul baru dengan simpul head yang sudah ada.' Next' dari simpul baru akan menunjuk ke simpul head dan 'prev' diisi dengan 'NULL' karena simpul baru akan diletakkan di awal linked list.
	27-29	// 4. jika head bukan NULL, ubah previous dari head menjadi node baru if ((*head_ref) != NULL) (*head_ref)->prev = new_node;	Jika simpul head tidak 'NULL', artinya linked list sudah memiliki simpul lain selain simpul head, maka previous dari simpul head akan diubah agar menunjuk ke simpul baru.
2	7-11 7-11	struct Node { int data; struct Node* next; // Pointer to next node struct Node* prev; // Pointer to previous node }; struct Node { int data;	'struct Node' adalah struktur yang digunakan untuk merepresentasikan simpul atau node dalam linked list. Setiap simpul memiliki dua

	struct Node* next; //	anggota, yaitu
	Pointer to next node	'data' yang
	struct Node* prev; //	merupakan nilai
	Pointer to previous node	yang disimpan
	};	dalam simpul, dan
		'next' dan 'prev'
		yang merupakan
		pointer yang
		menunjukkan ke
		simpul berikutnya
		dan sebelumnya
		dalam linked list.
25-26	// 5. move the head to point to	Pindahkan pointer
	the new node	'head_ref' untuk
	(*head_ref) = new_node;	menunjuk ke
		simpul baru
		karena simpul
		baru sudah
		menjadi simpul
		pertama di linked
		list.
29-49	void insertAfter(Node*	Fungsi untuk
	<pre>prev_node, int new_data) {</pre>	menyisipkan
	// 1. check if the given	sebuah simpul
	prev_node is NULL	(node) baru
	•	setelah simpul
	if (prev_node == NULL) {	tertentu dalam
	printf("the given	sebuah linked list.
	previous node cannot be	
	NULL");	
	return;	
	}	
	// 2. allocate new node	
	Node* new_node =	
	(Node*)malloc(sizeof(Node));	
	// 3. put in the data	
	new_node->data = new_data;	
	// 4. Make next of new node as next of prev_node	
	<pre>new_node->next = prev_node->next;</pre>	
	// 5. Make the next of	
	prev_node as new_node	
	1	

	T	T	I
		<pre>prev_node->next = new_node;</pre>	
		// 6. Make prev_node as previous of new_node	
		<pre>new_node->prev = prev_node;</pre>	
		// 7. Change previous of new_node's next node	
		<pre>if (new_node->next != NULL) {</pre>	
		new_node->next->prev = new_node;	
		}	
		}	
	51-64	<pre>void printList(Node* node) { struct Node* last; printf("\nTraversal in</pre>	Fungsi 'printList' digunakan untuk
		forward direction \n");	menampilkan data
		while (node != NULL) {	yang tersimpan
		printf(" %d ", node-	dalam linked list
		>data);	secara berurutan,
		last = node;	baik dari depan
		node = node->next;	maupun belakang.
		}	
		printf("\nTraversal in	
		reverse direction \n");	
		while (last != NULL) {	
		printf(" %d ", last-	
		>data);	
		last = last->prev;	
		}	
	2= /2	}	
3	27-48	void append(Node	Fungsi 'append'
		**head_ref, int new_data) {	yang digunakan
		// 1. Allocate node	untuk
		Node *new_node = (Node	menambahkan node baru di akhir
		*)malloc(sizeof(Node)); // 2. Put in the data	linked list.
		new node->data =	mineu iist.
		new_data;	
		// 3. This new node is going	
		to be the last node, so make	
		next of it as NULL	
		new_node->next = NULL;	
		// 4. If the Linked List is	
		empty, then make the new	

		node as head if (*head_ref == NULL) { new_node->prev = NULL; *head_ref = new_node; return; } // 5. Else traverse till the last node Node *last = *head_ref; while (last->next != NULL)	
		<pre>last = last->next; // 6. Change the next of last node last->next = new_node; // 7. Make last node as previous of new node new_node->prev = last; }</pre>	
	27	void append(Node **head_ref, int new_data)	Mendeklarasikan variabel pointer ke pointer 'head_ref' yang berfungsi sebagai head node dari linked list.
	28-32	<pre>// 1. Allocate node Node *new_node = (Node *)malloc(sizeof(Node)); // 2. Put in the data new_node->data = new_data;</pre>	Mengalokasikan memori untuk node baru dan mengisi data pada node tersebut.
	32-37	// 3. This new node is going to be the last node, so make next of it as NULL new_node->next = NULL; // 4. If the Linked List is empty, then make the new node as head if (*head_ref == NULL) { new_node->prev = NULL; *head_ref = new_node;	Mengatur pointer 'next' pada node baru sebagai NULL karena node baru akan diletakkan di akhir linked list.
	45	last->next = new_node;	Pointer 'next' pada node terakhir diubah menjadi node baru.

4	13-23	<pre>void push(struct Node** head_ref, int new_data) { struct Node* new_node = (struct Node*)malloc(sizeof(struct Node)); new_node->data =</pre>	Fungsi ini tidak dapat dijalankan jika tidak ada declarasi #include <stdlib.h></stdlib.h>
		<pre>new_data; new_node->next = (*head_ref); new_node->prev = NULL; if ((*head_ref) != NULL) { (*head_ref)->prev = new_node; }</pre>	
		(*head_ref) = new_node;	
	68-80	int main() { /* Start with the empty list */ struct Node* head = NULL; push(&head, 7); push(&head, 1); push(&head, 4); insertBefore(&head, head- >next, 8); printf("Created DLL is: "); printList(head); getchar(); return 0; }	Driver program yang digunakan untuk menguji fungsi-fungsi yang telah didefinisikan sebelumnya.
	72-74	push(&head, 7); push(&head, 1); push(&head, 4);	Fungsi 'push' tiga kali untuk memasukkan data dengan nilai 7, 1, dan 4 ke dalam linked list.
	75	insertBefore(&head, head- >next, 8);	Fungsi 'insertBefore' untuk menyisipkan node baru dengan nilai 8 sebelum node kedua dalam linked list.

78	getchar();	Fungsi
		'getchar()' untuk
		menunggu
		pengguna
		menekan tombol
		enter sebelum
		program selesai
		dieksekusi.