積體電路設計 Final Project 設計 第13組

B06505027張哲浩 B06505048黃日新

(i)設計過程截圖

RTL Simulation

START!!! Simulation Start
S U M M A R Y
Congratulations! All data have been generated successfully! The result is PASS!!
Simulation complete via \$finish(1) at time 15213696 NS + 0 ./testfixture.v:167 #(`CYCLE/2); \$finish; ncsim> exit
[b6505048@cad29 Project_2]\$

Timing Report

add_199/U438/Y (INVX16)	0.20	6.39 f
add_199/U288/Y (A0I21X4)	0.15	6.54 r
add_199/U757/Y (XOR2X4)	0.15	6.69 f
add_199/SUM[17] (RNN_DW01_add_3)	0.00	6.69 f
U7659/Y (A0I2BB1X4)	0.13	6.82 r
U18907/Y (A0I211X2)	0.11	6.94 f
U18908/Y (OAI31X2)	0.29	7.23 r
U5487/Y (INVX4)	0.12	7.35 f
U11517/Y (CLKBUFX3)	0.29	7.63 f
U4794/Y (BUFX16)	0.19	7.83 f
U12573/Y (A022XL)	0.34	8.16 f
h_reg[11][17]/D (DFFRX1)	0.00	8.16 f
data arrival time		8.16
clock clk (rise edge)	8.00	8.00
clock network delay (ideal)	0.50	8.50
clock uncertainty	-0.10	8.40
h_reg[11][17]/CK (DFFRX1)	0.00	8.40 r
library setup time	-0.24	8.16
data required time		8.16
data required time		8.16
data arrival time		-8.16
slack (MET)		0.00

Area Report

Point	Incr	Path
clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	0.50	0.50
count_reg[2]/CK (DFFRX4)	0.00 #	0.50 r
count reg[2]/QN (DFFRX4)	0.25	0.75 f
U6513/Y (INVX8)	0.10	0.85 r
U6935/Y (INVX8)	0.08	0.93 f
U7001/Y (NAND2X8)	0.10	1.03 r
U4576/Y (NOR2X8)	0.08	1.11 f
U6618/Y (BUFX20)	0.12	1.23 f
U5052/Y (CLKINVX20)	0.06	1.29 r
U5054/Y (CLKINVX20)	0.18	1.47 f
U6743/Y (A022X4)	0.30	1.77 f
U6803/Y (OR4X8)	0.26	2.03 f
U8207/Y (AOI2BB1X4)	0.21	2.25 f
U16689/Y (NOR4BX4)	0.25	2.50 r
U5161/Y (NAND3X4)	0.18	2.68 f
mult_199/b[1] (RNN_DW_mult_tc_1)	0.00	2.68 f
mult_199/U1737/Y (BUFX20)	0.19	2.86 f
mult_199/U1956/Y (XOR2X4)	0.20	3.06 f
mult_199/U2119/Y (OAI22X4)	0.21	3.27 r
mult_199/U2091/S (ADDFHX4)	0.37	3.65 f
mult_199/U1886/Y (XOR3X4)	0.42	4.06 f
mult_199/U2137/S (ADDFHX4)	0.31	4.38 r
mult_199/U1809/Y (OR2X8)	0.16	4.54 r
mult_199/U1135/Y (NAND2X6)	0.07	4.61 f
mult_199/U363/Y (OAI21X4)	0.20	4.81 r
mult_199/U1222/Y (INVX4)	0.13	4.94 f
mult_199/U1419/Y (0A21X4)	0.22	5.16 f
mult_199/U1418/Y (BUFX8)	0.11	5.27 f
mult_199/U1470/Y (XOR2X4)	0.14	5.41 f
mult_199/product[15] (RNN_DW_mult_tc_1)	0.00	5.41 f
add_199/A[15] (RNN_DW01_add_3)	0.00	5.41 f
add_199/U540/Y (NAND2X2)	0.17	5.58 r
add_199/U733/Y (0AI21X2)	0.14	5.71 f
add_199/U301/Y (A0I21X4)	0.14	5.85 r
add_199/U299/Y (0AI21X4)	0.10	5.96 f
add_199/U297/Y (A0I21X4)	0.24	6.20 r
add_199/U438/Y (INVX16)	0.20	6.39 f
add_199/U288/Y(AOI21X4)	0.15	6.54 r
add_199/U757/Y (XOR2X4)	0.15 0.00	6.69 f 6.69 f
add_199/SUM[17] (RNN_DW01_add_3)	0.00	0.09 T

Number	of	ports:	676
Number	of	nets:	21796
Number	of	cells:	20676
Number	of	combinational cells:	16712
Number	of	sequential cells:	3956
Number	of	macros/black boxes:	0
Number	of	buf/inv:	2823
Number	of	references:	205

Combinational area: 203514.861845
Buf/Inv area: 25483.066143
Noncombinational area: 131035.881943
Macro/Black Box area: 0.000000
Net Interconnect area: 3085942.342010

Total cell area: 334550.743788 Total area: 3420493.085799

Gate Level Simulation

```
START!!! Simulation Start .....

S U M M A R Y -----

Congratulations! All data have been generated successfully! The result is PASS!!

Simulation complete via $finish(1) at time 15213697436 PS + 0

./testfixture.v:167 #(`CYCLE/2); $finish;
ncsim> exit
[b6505048@cad29 Project_2]$
```

Floorplan

Full placement

Power_ring_stripe

Special_route

Nanoroute

Post APR Sim

```
START!!! Simulation Start .....

S U M M A R Y ......

Congratulations! All data have been generated successfully! The result is PASS!!

Simulation complete via $finish(1) at time 15213697232 PS + 0
./testfixture.v:167 #(`CYCLE/2); $finish;
ncsim> exit
[b6505048@cad29 Project_2]$
```

Total Area of Core

```
Floorplan/Placement Information

Total area of Standard cells: 307402.535 um^2

Total area of Standard cells(Subtracting Physic Total area of Macros: 0.000 um^2

Total area of Blockages: 0.000 um^2

Total area of Pad cells: 0.000 um^2

Total area of Core: 371934.288 um^2

Total area of Chip: 476188.973 um^2

Effective Utilization: 8.2650e-01

Number of Cell Rows: 165
```

(ii)設計概念與過程

分成testbranch跟RNN兩端進行,將W & B & h分別選擇放在RNN裡面暫存或者需要用時再從testbranch 裡 call 進來。

想法是如果WBh都暫存在RNN裡面的話Area會很大,但是可以節省資料傳進來的時間,直接在RNN裡面執行運算。另一個極端做法是都不暫存,需要就call進來。但不知道這個方程式的矩陣運算「Area先決」與「Time先決」哪種效率比較高。折衷版本就是指暫存一些其他需要時call in。

經過排列組合RNN版本有以下嘗試:

1. WIBOHI

W [64x64] [64x32] 都暫存在RNN裡面,b [64x1] [64x1] 需要call in h(t)先暫存,等算完 t = k的所有步驟,再輸出進testbranch記憶體5儲存 Comment: 想法上把最肥大的W放在RNN裡面減少每次傳入資料所浪費的時間,缺點是A值應該會增加不少。h等全部算好再回傳MEM5,前題是傳回效率差,要是跟在RN N裡面覆寫暫存h的速度一樣的話,那大可以不需要在RNN裡增加 [40x1] 的資料空間。

2. WIBIHI(B不太有必要存)

W [64x64] [64x32] b [64x1] [64x1] 都暫存在RNN裡面,直接與傳入的xt 值做運算

h(t)先暫存,等算完 t = k的所有步驟,再輸出進testbranch記憶體5儲存 Comment: 內部運算效率最大化,但同時 Area 使用也是最大值。

3. WOBOHI

W [64x64] [64x32] b [64x1] [64x1] 需要時call in

h(t)先暫存,等算完 t = k的所有步驟,再輸出進testbranch記憶體5儲存

Comment: 只是減少傳出時間,這組不一定效果顯著。

4. WIBOHO (H還是需要在RNN裡面)

最肥大的 W [64x64] [64x32] 都暫存在RNN裡面,b [64x1] [64x1] 需要c all in,h每次覆寫MEM5裡面的值

Comment: 暫且預估是最佳折衷版本,Area只消耗W以大大減低每次傳入時間, b h不需要消耗Area暫存,每次傳入傳出即可,速度也不會太慢。

5. WIBIHO

W [64x64] [64x32] b [64x1] [64x1] 都暫存在RNN裡面,增加運算速度 h每次覆寫MEM5裡面的值

Comment: 預想有點沒必要,既然W b都在裡面了就應該最大化RNN裡 的運算速度,h的暫存值一直來回寫入MEM5應該會浪費不少時間。

6. WOBOHO

RNN裡面只提供運算,output都存在testbranch的MEM5裡,應該不會一次算完,所以每次運算會覆寫MEM5裡面的值。

Comment: Area使用最小化,傳輸時間可能將大大增加。

後來發現行不通,H還是要有才比較好傳值

最後採用WOBOHI的形式,雖然總時間相對較長,但cycle time可以降得比較低。設計過程中發現增加暫存器會讓面積快速增加,加一個64 bit 就會增加約莫1.5倍的AT值,所以最後採用犧牲速度換取減少面積的方式。設計優化階段盡可能減少不必要的運算方式,避免使用太多乘法器和加法器,因為對面積增加比較沒有量化的概念,所以在設計過程中try and error觀察AT值變化。中間有一個很有趣的發現,我們

將一些簡單的加法做在Sequential裡面的時候AT值幾乎砍半,不過後來發現不太行是因為會timing violation,在Gate level就掛了,只好作罷。

其實我們過程中有嘗試WIBOHI的形式,速度快上非常多,RTL level WOBOHI 需要一分鐘跑好,而WIBOHI的形式透過矩陣運算只需要460us就能跑好。這個形式的優勢在於把需要傳值最久的W存在RNN.v裡面,每次計算只需推64次,且同時傳入加上B的修正項,所以速度會快非常多,最大的缺點就是面積使用龐大,需要64x64和64 x32的矩陣儲存W的資料。這個作法後來失敗還有一個原因,就是不知為何W*h(t-1)的輸出結果會有錯,在W和h(t-1)都是正確的情況下,如果還有時間會希望解決這個疑問點。