Course Code	Course	Teaching Scheme (Contact Hours) Credits Assigned						
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC403	Operating System	03			03			03

Course	Course				Examina	ation Scheme					
Code	Name		Theo	ry Marks							
	Internal assessment End		End	Term Work	Pract. /Oral	Total					
		Test1	Test 2	Avg.	Sem. Exam	Term work	Flact./Olai	Total			
ITC403	Operating System	20	20	20	80			100			

Course Objectives:

Sr. No.	Course Objectives						
The cours	se aims:						
1	To understand the major components of Operating System &its functions.						
2	To introduce the concept of a process and its management like transition, scheduling, etc.						
3	To understand basic concepts related to Inter-process Communication (IPC) like mutual						
	exclusion, deadlock, etc. and role of an Operating System in IPC.						
4	To understand the concepts and implementation of memory management policies and virtual						
	memory.						
5	To understand functions of Operating System for storage management and device management.						
6	To study the need and fundamentalsof special-purpose operating system with the advent of new						
	emerging technologies.						

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Understand the basic concepts related to Operating System.	L1, L2
2	Describe the process management policies and illustrate scheduling of processes by CPU.	L1
3	Explain and apply synchronization primitives and evaluate deadlock conditions as handled by Operating System.	L2
4	Describe and analyze the memory allocation and management functions of Operating System.	L1
5	Analyze and evaluate the services provided by Operating System for storage management.	L4, L5
6	Compare the functions of various special-purpose Operating Systems.	L2

Prerequisite: Programming Language C

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Programming Language C; Basic of Hardware i.e. ALU, RAM, ROM, HDD, etc.; Computer-System Organization.	02	-
I	Fundamentals of Operating System	Introduction to Operating Systems; Operating System Structure and Operations; Functions of Operating Systems; Operating System Services and Interface; System Calls and its Types; System Programs; Operating System Structure; System Boot. Self-learning Topics: Study of any three different OS. System calls with examples for	03	CO1
II	Process Management	different OS. Basic Concepts of Process; Operation on Process; Process State Model and Transition; Process Control Block; Context Switching; Introduction to Threads; Types of Threads, Thread Models; Basic Concepts of Scheduling; Types of Schedulers; Scheduling Criteria; Scheduling Algorithms.	06	CO2
		Self-learning Topics: Performance comparison of Scheduling Algorithms, Selection of Scheduling Algorithms for different situations, Real-time Scheduling		
III	ProcessCoordinati on	Basic Concepts of Inter-process Communication and Synchronization; Race Condition; Critical Region and Problem; Peterson's Solution; Synchronization Hardware and Semaphores; Classic Problems of Synchronization; Message Passing; Introduction to Deadlocks; System Model, Deadlock Characterization; Deadlock Detection and Recovery; Deadlock Prevention; Deadlock Avoidance.	09	CO3
		Self-learning Topics: Study a real time case study for Deadlock detection and recovery.		
IV	Memory Management	Basic Concepts of Memory Management; Swapping; Contiguous Memory Allocation; Paging; Structure of Page Table; Segmentation; Basic Concepts of Virtual Memory; Demand Paging, Copy-on Write; Page Replacement Algorithms; Thrashing.	09	CO4
		Self-learning Topics: Memory Management for any one Operating System, Implementation of Page Replacement Algorithms.		

V	Storage Management	Basic Concepts of File System; File Access Methods; Directory Structure; File-System Implementation; Allocation Methods; Free Space Management; Overview of Mass-Storage Structure; Disk Structure; Disk Scheduling; RAID Structure; Introduction to I/O Systems. Self-learning Topics: File System for Linux and Windows, Features of I/O facility for	06	CO5
		different OS.		
VI	Special-purpose Operating Systems	Open-source and Proprietary Operating System; Fundamentals of Distributed Operating System; Network Operating System; Embedded Operating Systems; Cloud and IoT Operating Systems; Real-Time Operating System; Mobile Operating System; Multimedia Operating System; Comparison between Functions of various Special-purpose Operating Systems.	04	CO6
		Self-learning Topics: Case Study on any one Special-purpose Operating Systems.		

Text Books:

- 1. A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts, 10th ed., Wiley, 2018.
- 2. W. Stallings, Operating Systems: Internal and Design Principles, 9th ed., Pearson, 2018.
- 3. A. Tanenbaum, Modern Operating Systems, Pearson, 4th ed., 2015.

Reference Books:

- 1. N. Chauhan, Principles of Operating Systems, 1st ed., Oxford University Press, 2014.
- 2. A. Tanenbaum and A. Woodhull, Operating System Design and Implementation, 3rd ed., Pearson.
- 3. R. Arpaci-Dusseau and A. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, CreateSpace Independent Publishing Platform, 1st ed., 2018.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://swayam.gov.in
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

C	ourse Code	Course	Teaching Scheme Credits Assi (Contact Hours)				Assigned	ned		
		Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
							/Oral			
	ITC404	Automata Theory	03			03			03	

Course	Course				Examina	ation Scheme					
Code	Name		Theo	ry Marks							
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total			
		Test1	Test 2	Avg.	Sem. Exam	Term work					
ITC404	Automata Theory	20	20	20	80			100			

Course Objectives:

Sr. No.	Course Objectives						
The cours	The course aims:						
1	To learn fundamentals of Regular and Context Free Grammars and Languages.						
2	To understand the relation between Regular Language and Finite Automata and machines.						
3	To learn how to design Automata's as Acceptors, Verifiers and Translators.						
4	To understand the relation between Regular Languages, Contexts free Languages, PDA and						
	TM.						
5	To learn how to design PDA as acceptor and TM as Calculators.						
6	To learn applications of Automata Theory.						

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as
		per Bloom's
On succ	cessful completion, of course, learner/student will be able to:	Taxonomy
1	Explain, analyze and design Regular languages, Expression and Grammars.	L2, L4, L6
2	Design different types of Finite Automata and Machines as Acceptor,	L6
	Verifier and Translator.	
3	Analyze and design Context Free languages and Grammars.	L4, L6
4	Design different types of Push down Automata as Simple Parser.	L6
5	Design different types of Turing Machines as Acceptor, Verifier, Translator	L6
	and Basic computing machine.	
6	Develop understanding of applications of various Automata.	L6

 $\textbf{Prerequisite:} \ Basic \ Mathematical \ Fundamentals: \ Sets, \ Logic, \ Relations, \ Functions.$

DETAILED SYLLABUS:

Sr.	Module	Detailed Content	Hours	CO
No.				Mapping