O. MCMC 2D Ising.

$$H = -J\sum_{ij}^{S_i,S_j} \qquad (S=\pm 1) \Rightarrow Z = \sum_{iS_j} e^{\beta H} = \sum_{iS_j} \prod_{ij} e^{\beta J_i,S_j} \xrightarrow{2J=1} \sum_{iS_j} \prod_{ij} e^{\beta J_i,S_j}$$

Metropolis Algorithm:

$$\begin{cases} \pi(a) p(a \Rightarrow b) = \pi(b) p(b \Rightarrow a) \\ p(a \Rightarrow b) = \min \left[1, \frac{\pi(b)}{\pi(a)}\right] \end{cases}$$

\*观测量

def: 
$$m = \frac{1}{N} \sum_{i=1}^{N} s_i$$

从中有

$$\langle \chi \rangle = N\beta (\langle m^2 \rangle - \langle m \rangle^2)$$

def: m= 从至si e= 小H 模拟、计等结果分末: 分别在L=8,16,32 进行了MC









可以看到在月二八叶附近,物理呈那也现了安变,且流区域与上南美、从命出的解决度过去。 当上→四时,则会也现场为学校起不的部件、利用如下线,可以粗略得到临界指数了;

| L   | $\chi$             |
|-----|--------------------|
| 200 | $349.40 \pm 0.081$ |
| 100 | $103.89\pm0.041$   |
| 50  | $30.306 \pm 0.040$ |

 $6.03 \pm 0.013$ 

 $1.78 \pm 0.014$ 

20

10

$$def: t = \frac{\beta_c - \beta}{\beta_c}$$

def: 
$$t = \frac{\beta_c - \beta}{\beta_c}$$
  $\chi_{\gamma} \hat{t}^{\gamma} (\beta \rightarrow \beta_c)$ 

假选额坡度 ξ(t, L)~L则有 t~L<sup>-1/ν</sup> (2元ν=)

以前 
$$\chi_{-}$$
 女用  $\frac{\chi_{\nu}}{\chi_{\nu}} = a^{\gamma}$  得到:  $\gamma = 1.76 \pm 0.023$  与  $\gamma = 1.75$  相場会

② Onsager 经出了正方格子2DI以解,单格点自由能为;

$$-\beta f = \ln(2\cosh(2\beta J)) + \frac{1}{\pi} \int_{0}^{\pi/2} d\omega \ln\left[\frac{1}{2}(1+\sqrt{1-\kappa^{2} \sin^{2}(\omega)})\right] \qquad \sharp \Phi \quad K = \frac{2\sinh(2\beta J)}{[\cosh(2\beta J)]^{2}}$$

每个格点小站为:

$$u(o,T) = \frac{d}{d\beta} \left[\beta f(o,T)\right] = -2J \tanh \left(2\beta J\right) + \frac{K}{\pi} \frac{dK}{d\beta} \int_{0}^{\pi/2} dw \frac{Sin^{2}w}{\Delta(H\Delta)} \left(\Delta = \sqrt{1-K^{2}sin^{2}w}\right) - \frac{J}{K^{2}} + \frac{1}{K} \int_{0}^{\pi/2} \frac{dw}{\Delta}$$

可以例。ULO.T)=-Joth 邓[[]+异媒K(K)]其+ K,(K)= 50 11-Kising 为第一类主摘图的。 双于16点 C(0.7)年。

可见也容在了人人对数地发散。