Matric ola				
Compito A				
osizione: 100 minuti				
vietato scambiare informazioni con altri; mero di matricola; <u>consegnare solo i fogli con le</u>				
contiene un ciclo semplice che passa per tutti i in problema NP-completo. IANCOMPLETION. $K < V $. $E \subseteq E' \subseteq V \times V$) tale che $ E' - E \le K$ e il grafo				
ppartiene alla classe NP.				
1.2 Se K≥ V il problema HamiltonianCompletion è risolvibile in tempo polinomiale? Motiva la risposta.				
1.4 Mostra un'istanza negativa con almeno 5 vertici di HAMILTONIANCOMPLETION.				

Cognome	Nome	Matric ola
T (200/)		on4n+2
Esercizio 2 (20%)	Descrivi in dettaglio una MT mo	ononastro che riconosca il linguaggio 0 ⁿ 1 ⁿ⁺² c
n>0.		
T (200/)		
		teorema: dato un linguaggio context free L
	are L_R è possibile costruire un a	automa a pila non deterministico che ricono
$L_{C} \cap L_{R}$.		
Mostra che il proble	ma di stabilire se un linguaggio	context free con alfabeto {0,1} contiene alme
una stringa del lingu	aggio 1 è decidibile (mostra un	algoritmo che risolva il problema).

Cognome	Nome	.Matric ola
Esercizio 4 (20%) Considera una ℓ il numero di passi di una derivat	a Grammatica context free G ed un zione di x dall'assioma di G.	a stringa $x \in L(G)$ con $ x =n$. Sia
4.1 Supponi che G sia in forma i risposta.	normale di Chomsky. Sai esprimer	e ℓ in funzione di n? Motiva la
4.2 Supponi che G sia in forma risposta.	normale di Greibach. Sai esprimer	e ℓ in funzione di n? Motiva la

Cognome	Nome	Matric ola
Esercizio 5 (20%) Dimo delle Corrispondenze di F	stra che il problema seguente è Post (PCP).	indecidibile, riducendo ad esso il Problema
Problema: INTERSEZIONE		
	tiche context free G_1 e G_2 .	
Predicato: E' vero che	$L(G_1) \cap L(G_2) = \emptyset$?	