Assignment 2 Report

1. Overview

In assignment 2, a parallelized version of Game of World (GOL) is implemented using Julia's distribution, and the performance of the parallel program is analyzed.

2. Experiment Setup

- All the experiments are performed on the DAS-5 cluster.
- The parallel GOL program's performance is evaluated on two kinds of tasks: medium task(40000x40000) and large task(60000x60000), with a step of 10
- For each kind of task, the parallel GOL program's performance is tested with a different number of processes(ranks): 2,4,8,16
- For the scenario using X processors, the parallel GOL program's performance is tested with a different **number of nodes (1,2,4).**
- Each task will be repeated 4 times.
- For each individual test, the efficiency will be calculated and discussed.

3. Experiment Result

3.1 Baseline

The sequential version of the GOL program provided by this course is run as the baseline.

Task Size	Time consumption(s) (minimum of 4 repeated run)			
Medium	18.039			
Large	55.564			

3.2 Performance of parallel GOP program

3.2.1 Performance for medium tasks

Time Consumption(seconds) of Parallel GOP program on Medium Task

2	4	8	16	32
processors	processors	processors	processors	processors

1 node	24.393	29.494	24.073	12.552	6.857
2 nodes	24.790	34.334	21.539	11.528	7.574
4 nodes	N/A	32.316	22.733	12.582	7.187

Efficiency of Parallel GOP program on Medium Task

	2 processors	4 processors	8 processors	16 processors	32 processors
1 node	0.376	0.178	0.110	0.100	0.084
2 nodes	0.363	0.180	0.113	0.101	0.085
4 nodes	N/A	0.148	0.111	0.098	0.084

Efficiency for medium task

3.2.2 Performance for large tasks

	2 processors	4 processors	8 processors	16 processors	32 processors
1 node	58.860	62.815	50.273	25.219	24.284
2 nodes	57.420	76.584	53.159	25.319	14.143
4 nodes	N/A	72.648	48.867	24.632	14.647

Average Time Consumption(seconds) of Parallel GOP program on Large Task

Efficiency of Parallel GOP program on Large Task

	2 processors	4 processors	8 processors	16 processors	32 processors
1 node	0.504	0.242	0.164	0.152	0.127
2 nodes	0.496	0.223	0.162	0.149	0.128
4 nodes	N/A	0.239	0.155	0.157	0.129

3.2.3 Discussion

- It seems that the number of nodes does not have an outstanding influence on it, which is a result different from the C-MPI assignment. It is probably because that efficiency is too low compared with the C-MPI version, thus the difference between inter-node or in-node is not significant.
- When the number of processes increases, the efficiency drops dramatically to 10%.