14-1 Stabilizer Formalism (§10.5)

- If [A, B] = AB BA = 0, there exists a common eigenstate $|\psi\rangle$ of A and B. $A|\psi\rangle = a|\psi\rangle$, $B|\psi\rangle = b|\psi\rangle$
- $g_1 = X \otimes X$, $g_2 = Z \otimes Z$: eigenvalues = ± 1 $g_1^2 = g_2^2 = I \otimes I$ $g_1, g_2 = 0$

You can define $|\alpha_1, \alpha_2\rangle$, $\alpha_1, \alpha_2 = \pm 1$,

$$g_1|\alpha_1,\alpha_2\rangle = \alpha_1|\alpha_1,\alpha_2\rangle, \quad g_2|\alpha_1,\alpha_2\rangle = \alpha_2|\alpha_1,\alpha_2\rangle.$$

$$|+1,+1\rangle, |+1,-1\rangle, |-1,+1\rangle, |-1,-1\rangle$$
 are Bell states!

$$(X \otimes X)(|00\rangle + |11\rangle) = |00\rangle + |11\rangle$$

$$(Z \otimes Z)(|00\rangle + |11\rangle) = |00\rangle + |11\rangle$$

$$|+1,+1\rangle = |00\rangle + |11\rangle$$

$$(X \otimes X)(|01\rangle - |10\rangle) = |10\rangle - |01\rangle = -(|01\rangle - |10\rangle)$$

$$(Z\otimes Z)(|01\rangle-|10\rangle)=-|01\rangle+|10\rangle=-(|01\rangle-|10\rangle)$$

$$|-1,-1\rangle = |01\rangle - |10\rangle$$

- \bigcirc $S = \langle X \otimes X, Z \otimes Z \rangle$ is called a stabilizer.
 - $X \otimes X$ and $Z \otimes Z$ are called the generators of S.

$$|\psi\rangle = |00\rangle + |11\rangle$$
 satisfies $g|\psi\rangle = |\psi\rangle$ for $\forall g \in S$.

We say $|\psi\rangle$ is stabilized by S.

- \odot $S = \langle Z \otimes Z \rangle$ is a stabilizer.
 - $Z \otimes Z$ stabilizes $|00\rangle$, $|11\rangle$.
 - S stabilizes 2-dimensional vector space $V_S = \{\alpha|00\rangle + \beta|11\rangle |\alpha,\beta \in \mathbb{C}\}$, not a single vector.
- \odot $S = \langle Z_1 Z_2, Z_2 Z_3 \rangle$
 - $|\psi_L\rangle = \alpha|000\rangle + \beta|111\rangle$ is stabilized by S.
 - S is generated by 2 generators.

There are 3 qubits.

 \Rightarrow S stabilizes 2^{3-2} -dimensional space.

$$S = \langle Z_1 Z_2, Z_2 Z_3 \rangle$$
, $g_1 = Z_1 Z_2$, $g_2 = Z_2 Z_3$

3 qubits: $2^3 = 8$ dimensional space

$$\rightarrow$$
 $(g_1 = +1) \oplus (g_1 = -1)$ 4+4

$$\rightarrow (g_1 = +1, g_2 = +1) \oplus (g_1 = +1, g_2 = -1) \oplus (g_1 = -1, g_2 = +1) \oplus (g_1 = -1, g_2 = -1)$$
 $2+2+2+2$

If *S* has (n-k) generators made of *n*-qubit Pauli operators, *S* stabilizes 2^k -dimensional Hilbert space. (related to [n,k] codes!)