The Vector Space Model

Documents as vectors

- we have |V|-dimensional vector space
 - V는 사전(vocab)에 들어있는 단어 수
- Terms are axes of the space
- Documents are points or vectors in this space
- **very high-dimensional**: tens of millions of dimensions when you apply this to a web search engine
- These are very **sparse vectors** most entries are **zero**

Queries as vectors

- Key idea 1 : Do the same for queries : represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity \approx inverse of distance
- Recall: We do this because we want to get away from the you're either in or out Boolean
 Model
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
- Euclidean distance?
 - \circ Euclidean distance is bad idea... \leftarrow because Euclidean distance is large for vectors of different lengths
 - ㅇ Example : q는 d_2 와 가장 유사함에도 불구하고 Euclidean distance로 측정할 때 가장 거리가 크다.

 \rightarrow start looking at the **angle** in the vector space

Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'
- "Semantically" d and d' have the same content : 즉, d에 비해 d'의 크기가 2배 클 뿐 (벡터의 길이가 2배 길어짐) 의미상의 내용은 일치히다.
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- . Key idea: rank documents according to angle with query

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in decreasing order of the angle between query and document
 - Rank documents in increasing order of cosine(query, document)
- Cosine is a monotonically decreasing function for the interval $[0^\circ,180^\circ] \to 1$ 에서 -1의 값을 갖는다. angle의 차이가 0일때는 1의 값을, angle의 차이가 180일때는 -1의 값을 가진다

Length Normalization

ullet A vector can be normalized by dividing each of its components by its length - for this we use the L_2 norm :

$$||ec{x}||_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L_2 norm makes it a unit (length) vector (on surface of unit hypersphere)
 - o unit vector: a vector of length 1

Cosine (query, document) ightarrow Length Normalization

Dot product
$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- $ullet q_i$ is the tf-idf weight of term i in the query
- d_i is the tf-idf weight of term i in the document
- $\cos{(ec{q},ec{d})}$ is the cosine similarity of $ec{q}$ and $ec{d}$ or the cosine of the angle between $ec{q}$ and $ec{d}$

Cosine for length-normalized vectors

• For length-normalized vectors, cosine similarity is simply the dot product (or scalar product) :

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine Similarity illustrated

ullet cosine similarity를 이용한 q와 가장 유사한 document는 d_2

Cosine Similarity amongst 3 documents

• How similar are the novels

SaS: Sense and SensibilityPaP: Prede and PrejudiceWH: Wuthering Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

 $cos(SaS,PaP) \approx$

 $0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0$ ≈ 0.94

 $cos(SaS,WH) \approx 0.79$ $cos(PaP,WH) \approx 0.69$

Why do we have cos(SaS,PaP) > cos(SaS,WH)?