EECS 445

Introduction to Machine Learning

Spectral Clustering

Prof. Kutty

Google x MHacks

Al Hackathon

- April 12-14
- Google Ann Arbor
- \$5k in prizes
- Applications due Fri, Mar 29

review: k-means clustering

k-means Clustering

algorithm: more formally

Datapoints

initialize means

$$\bar{x}^{(1)}, \dots, \bar{x}^{(n)}$$
 and fixed k

$$\bar{\mu}^{(1)}, \dots, \bar{\mu}^{(k)} \in \mathbb{R}^d$$

Iteratively

• for each point $\bar{x}^{(i)}$, reassign $\bar{x}^{(i)}$ to $c_i = \arg\min_j ||\bar{x}^{(i)} - \bar{\mu}^{(j)}||^2$

recompute
$$\bar{\mu}^{(j)} = \frac{\sum_{i} \llbracket c_i = j \rrbracket \bar{x}^{(i)}}{\sum_{i} \llbracket c_i = j \rrbracket}$$

K-Means Clustering (Initialization)

- Select k. Pick random means.
 - Example with k = 2.

K-Means Clustering (Iterations)

Compute centers for the new clusters assignments.

Re-assign Points to Clusters

Re-assign points to the nownearest center.

Re-estimate Cluster Centroids

K-Means Clustering (Convergence)

Re-assign Points to Clusters

The cluster centers have stopped changing.

Example: Image segmentation

using k-means clustering

		25 26	31	22	14	22	28	19	20	20 22	22	23	22	22	23	3:
		25 21		23	24	31	33	21	19	19 21	21	22	21	21	23	31
	24	27 34	28	24	33	41	32	35	35	34 32		29	26	23	313	31
	24	22 26		34	42	46	34	34	34	33 31	31	28	25	23	3.4	3
		22 20	29	34	42	46	34	34	34	33 31	31	20	23		21 ⁴ 21 ⁷	4
27	31	35	31	22	32	39	30	34	34	34	34	33	33	23	2,9	4
51	26	28	32	32	41	44	32	33	33	33	33	32	32	23	- 2	5
35	20	22	37	46	52	49	35	32	32	32	32	30	30	24	3.2 3.3	6:
33	18	26	49	59	57	48	35	32	31	31	29	29	29	25	3,3	7:
27	22	39	63	64	54	44	32	31	30	29	29	29	30	27	4.3	7:
23	30	53	70	61	50	40	29	31	31	29	29	29	29	28	45	
24	37	59	67	54	47	40	29	32	31	30	29	30	30	47	5,1	7:
26	41	61	62	49	47	43	29	33	32	30	29	29	30	49	5,5	7.
27	45	71	60	46	44	32	35	32	30	31	34	29	26	53	5.5	7.
26	44	69	58	44	43	31	33	33	30	30	33	28	26	57	613	6.
27	43	67	55	42	41	30	32	34	30	29	32	28	28	57	5.0	6:
29	43	65	53	41	42	30	32	34	30	29	31	27	28	56	5:7	6
31	44	65	53	41	43	31	33	33	29	29	31	27	28	53	4.1	7
33	44	64	51	40	43	32	34	32	29	29	30	27	28	49	45	6.
33	43	61	48	39	42	31	32	31	28	29	31	28	27	45	5,3	5
32	41	59	46	37	40	29	30	30	27	28	32	29	26	50	5:6	5
32	41	47	44	39	38	34	31	31	31	29	28	28	33	48	4	
33	42	37 46	44	39	37	34	31	28	330	29 26	29	31	37	40	41	

Pixels a, c are in the *same* cluster Pixels a, b are in *different* clusters

Datapoints would me pixels

k-means Clustering

Iteratively

reassign $\bar{x}^{(i)}$ to $c_i = \arg\min_j \left\| \bar{x}^{(i)} - \bar{\mu}^{(j)} \right\|^2$ recompute $\bar{\mu}^{(j)} = \frac{\sum_i \llbracket c_i = j \rrbracket \bar{x}^{(i)}}{\sum_i \llbracket c_i = j \rrbracket}$

recompute
$$\bar{\mu}^{(j)} = \frac{\sum_{i} \llbracket c_i = j \rrbracket \bar{x}^{(i)}}{\sum_{i} \llbracket c_i = j \rrbracket}$$

fix
$$\bar{\mu}$$
, choose \bar{c} to minimize
$$J(\bar{c}, M) = \sum_{i=1}^{n} \left\| \bar{x}^{(i)} - \bar{\mu}^{(c_i)} \right\|^2$$
fix \bar{c} , choose $\bar{\mu}$ to minimize
$$J(\bar{c}, M) = \sum_{i=1}^{n} \left\| \bar{x}^{(i)} - \bar{\mu}^{(c_i)} \right\|^2$$

$$J(\bar{c}, M) = \sum_{i=1}^{n} \|\bar{x}^{(i)} - \bar{\mu}^{(c_i)}\|^2$$

k-means is guaranteed to converge but... *not guaranteed to converge* to global minimum

Getting stuck in local minima

What we want

Getting stuck in local minima

What we get

k-means global optimum

What we want

k-means global optimum

What we get

https://forms.gle/ffiBvNbPjHF8ghi77

<u>C</u>

How do means determine cluster assignments?

By Jahobr - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=61356414

Use with caution and understanding!

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Clustering Algorithms

spectral clustering

Spectral Clustering

- doesn't assume globular-shaped clusters
- Reformulates data clustering problem as graph partitioning problem
- Broadly
 - first, convert data into a weighted graph
 - next, partition graph so that each component has a weaker acrosspartition connection and stronger within-partition connection; ensure similar sized partitions

How?

Definition: Cost of a cut

- Complement of $A: \overline{A} = V \setminus A$ where V is the vertex set
- Cost of a cut between A and \overline{A}

$$cut(A,\bar{A}) = \sum_{i \in A, j \in \bar{A}} w_{ij}$$

if
$$A = \{v_1, v_2, v_3\}$$

then $\bar{A} = \{v_4, v_5\}$

$$cut(A, \overline{A}) = 0.0015$$

Spectral Clustering: try 1

Goal: Given a graph representing the data, find a minimum cost cut?

Issue: May not give a reasonable solution

 $\min_{A_1,\ldots,A_k} Cut(A_1,\ldots,A_k)$

https://forms.gle/ffiBvNbPjHF8ghi77

Spectral Clustering

Goal: Given a graph representing the data, find a minimum cost RatioCut → k clustering

$$RatioCut(A_1, \dots, A_k) = \frac{1}{2} \sum_{i=1}^k \frac{cut(A_i, \bar{A_i})}{|A_i|} \text{ called "ratio cut" ensures clusters are reasonably large groups}$$

 $\min_{A_1,\dots,A_k} RatioCut(A_1,\dots,A_k)$

$$|A_1| = |A_2| = 4$$

$$RatioCut(A_1, \dots, A_k) = \frac{1}{2} \sum_{i=1}^k \frac{cut(A_i, \bar{A_i})}{|A_i|}$$

RatioCuf
$$(A_1, A_2)$$
 = $\frac{1}{2} \left[\frac{\text{cut}(A_1, \overline{A_1})}{|A_1|} + \frac{\text{cut}(A_2, \overline{A_2})}{|A_2|} \right]$
= $\frac{1}{2} \left[\frac{0.4}{4} + \frac{0.4}{4} \right] = 0.1$

$$RatioCut(A_1, \dots, A_k) = \frac{1}{2} \sum_{i=1}^k \frac{cut(A_i, \bar{A_i})}{|A_i|}$$

Ratio Cut
$$(A_1, A_2) = \frac{1}{2} \left[\frac{\text{cut}(A_1, \overline{A_1})}{|A_1|} + \frac{\text{cut}(A_2, \overline{A_2})}{|A_2|} \right]$$

spectral clustering: Big idea

Spectral Clustering for k partitions

Input: valid similarity metric, number of clusters k

- 1. Build adjacency matrix W
- 2. Compute graph Laplacian L = D W
- 3. Compute (eigenvector, eigenvalue) pairs of L
- 4. Build matrix with the first k eigenvectors (corresponding to the k smallest eigenvalues) as columns interpret rows as new data points Low dimensional embedding ($\in \mathbb{R}^k$) of the original dataset ($\in \mathbb{R}^d$)
- 5. Apply k-means to new data representation

Output: clusters assignments

Data → Weighted Graph

Gaussian kernel similarity metric

$$w_{ij} = exp\left\{-\frac{\|\bar{x}^{(i)} - \bar{x}^{(j)}\|^2}{2\sigma^2}\right\}$$

Data \rightarrow Graph: Adjacency matrix, W

Given
$$S_n = \left\{\bar{x}^{(i)}\right\}_{i=1}^n$$

compute similarity between each pair of datapoints e.g., Gaussian

kernel similarity metric
$$w_{ij} = exp\left\{-\frac{\left\|\bar{x}^{(i)} - \bar{x}^{(j)}\right\|^2}{2\sigma^2}\right\}$$

How might you get a weight of 0? e.g., any value <0.0001 is interpreted as 0

example:

	1	0.6	0.6	0	0
	0.6	1	0.37 0		0
W =	0.6	0.37	1	0.0015	0
	0	0	0.0015	1	0.6
	0	0	0	0.6	1

$$W = \{w_{ij}\} \text{ for } i = 1, ..., n; j = 1, ..., n$$

W is symmetric and each $w_{ij} \geq 0$

Spectral Clustering for k partitions

Input: valid similarity metric, number of clusters k

- 1. Build adjacency matrix W
- 2. Compute graph Laplacian L = D W
- 3. Compute (eigenvector, eigenvalue) pairs of L
- 4. Build matrix with the first k eigenvectors (corresponding to the k smallest eigenvalues) as columns interpret rows as new data points Low dimensional embedding ($\in \mathbb{R}^k$) of the original dataset ($\in \mathbb{R}^d$)
- 5. Apply k-means to new data representation

Output: clusters assignments

Adjacency Matrix W, Degree Matrix D and Graph Laplacian L

Adjacency Matrix W

$$W = \{w_{ij}\} \text{ for } i = 1, ..., n; j = 1, ..., n$$
 where $w_{ij} = \sin(\bar{x}^{(i)}, \bar{x}^{(j)})$

Degree matrix D with

$$d_{ii} = \sum_{j=1}^{n} w_{ij}$$
 and $d_{ij} = 0$ for $i \neq j$

$$D = \begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{nn} \end{bmatrix}$$

1	0.6	0.6	0	0	
0.6	1	0.37	0	0	Γ
0.6	0.37	1	0.0015	0	d_{33}
0	0	0.0015	1	0.6	
0	0	0	0.6	1	

- The graph Laplacian is the matrix L = D W
- We are interested in the eigenvectors and eigenvalues of L

Recall: Eigenvalues and eigenvectors

• A scalar λ is called an eigenvalue of a matrix A if there is a non-trivial solution v of

$$Av = \lambda v$$

• We say that v is the eigenvector corresponding to the eigenvalue λ

Note: an eigenvector cannot be $\overline{0}$, but an eigenvalue can be 0.

• Example:

$$A = \begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix} \qquad \lambda = 2 \qquad \qquad v = \begin{bmatrix} -10 \\ 3 \\ 1 \end{bmatrix}$$

$$Av = \begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} -10 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -20 \\ 6 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} -10 \\ 3 \\ 1 \end{bmatrix} = \lambda v$$

Spectral Clustering

Goal: Given a graph representing the data, find a minimum cost RatioCut → k clustering

$$RatioCut(A_1, \dots, A_k) = \frac{1}{2} \sum_{i=1}^k \frac{cut(A_i, \bar{A_i})}{|A_i|} \text{ called "ratio cut" ensures clusters are reasonably large groups}$$

Idea: Use the **eigenvectors** and **eigenvalues** of the graph Laplacian matrix L = D - W

Spectral Clustering for k partitions

Input: valid similarity metric, number of clusters k

- 1. Build adjacency matrix W
- 2. Compute graph Laplacian L = D W
- 3. Compute (eigenvector, eigenvalue) pairs of L
- 4. Build matrix with the first k eigenvectors (corresponding to the k smallest eigenvalues) as columns interpret rows as new data points Low dimensional embedding ($\in \mathbb{R}^k$) of the original dataset ($\in \mathbb{R}^d$)
- 5. Apply k-means to new data representation

Output: clusters assignments

Input: similarity metric, number of clusters k

- 1. Build adjacency matrix W
- 2. Compute graph Laplacian L = D W

$$D = \begin{bmatrix} 1.5 & 0 \\ 1.5 & 0 \\ 0 & 1.25 \\ 1.25 \end{bmatrix}$$

n: #datapoint

(eigenvector, eigenvalue) pairs

$$\begin{bmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \\ 0 \\ 0 \end{bmatrix}, 0$$

$$\begin{bmatrix} 0 \\ 0 \\ 1.00 \\ 0 \\ 0 \end{bmatrix}$$
,0

$$\begin{bmatrix} 0\\0\\0\\-\frac{\sqrt{2}}{2}\\-\frac{\sqrt{2}}{2} \end{bmatrix}$$
,0

$$\begin{bmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \\ 0 \\ 0 \end{bmatrix}, 0 \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, 0 \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \end{bmatrix}, 0 \qquad \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \\ 0 \end{bmatrix}, 1$$

Input: similarity metric, number of clusters k

- 1. Build adjacency matrix W
- 2. Compute graph Laplacian L = D W
- 3. Compute eigenvectors of L
- 4. Build matrix with the first k eigenvectors (corresponding to the *k* smallest eigenvalues) as columns interpret rows as new data points
- 5. Apply k-means to new data representation

Output: clusters assignments

Eigenvalues

non decreasing order of eigenvalues

Eigenvalues

$$k = 3$$

k dimensional embedding

Run k-means clustering on this embedding Return clusters