What is claimed is:

	1	1.	A method of speculative execution, comprising:
	2		determining whether a mode is run-ahead execution or normal execution;
Sub A	3		and
	4		upon a cache hit for a first cache line during run-ahead execution, setting a
8	5		protection bit associated with the first cache line.
	1	2.	The method as in claim 1, further comprising:
	2		upon a cache miss for a second cache line during run-ahead execution,
	3		evicting an unprotected cache line.
programme and the second			
	1	3.	The method as in claim 2, further comprising:
**.	2		upon a cache miss for the second cache line during run-ahead execution,
	3		replacing the evicted cache line with the second cache line and
	4		setting a protection bit associated with the second cache line.
Q			
	1	4.	The method as in claim 1, further comprising:
	2		upon starting normal execution, clearing all protection bits.
	1	5.	The method as in claim 1, further comprising:
	2		upon starting run-ahead execution, clearing all protection bits.
	1	6.	A method of replacing cache lines during run-ahead execution, comprising:
	2		finding a potential victim in a cache;
	3		determining whether a protection bit is set for the potential victim; and
	4		evicting the potential victim only if the protection bit is clear.
	1	7.	The method as in claim 6, further comprising:

2

allocating a cache line into the cache to replace the potential victim; and

and

8

1		clearing protection bits during execution of the normal threads as cache line
2		allocated for the software prefetching thread are referenced by the
3		normal threads.
1	13.	The method as in claim 12, further comprising:
$Shp \stackrel{4}{\cancel{4}}$		clearing all protection bits when the software prefetching thread finishes executing.
1	14.	The method as in claim 12, further comprising:
2		spawning the software prefetching thread for a predetermined section of
3		code in the program.
1	15.	The method as in claim 14, further comprising:
2		providing code for a software prefetching thread from an optimizing
3		compiler.
1	16.	A processor, comprising:
2		a cache having a plurality of cache lines;
3		a plurality of registers to store data for instructions to be executed by the
4		processor;
5		circuitry to load data from the cache to the plurality of registers;
6		circuitry to prefetch data during speculative execution and to allocate cache
7		lines to store the data; and
8		a plurality of identifiers associated with each cache line, each identifier to
9		indicate whether to protect an associated cache line from premature
10		eviction.
1	17.	The processor as in claim 16, wherein
2		at least one of the plurality of identifiers to indicate whether the associated
3		cache Ine is still in use.

	1	18.	The processor as in claim 16, wherein
	2		at least one of the plurality of identifiers to indicate whether the associated
	3		cache line was allocated during speculative execution and has yet to
	4		be touched during normal execution.
	۸.۱		
du	1 1	19.	The processor as in claim 15, the cache further comprising:
ju	2		a cache data memory; and
	3		a cache directory to determine hits or misses and to store address tags of
	4		corresponding cache lines currently held in the cache data memory,
	5		the cache directory to store the identifiers.
est-			
i Ž	1	20.	The processor as in claim 15, the cache further comprising:
	2		a cache controller to implement/a cache strategy for moving data into and
	3		out of the cache data memory and the cache directory, the cache
Q N	4		controller to store the identifiers.
	1	21.	A multiprocessor computer system, comprising:
TU Tu	2		a plurality of processors, each one of the processors having prefetcher logic
	3		and being capable of speculative execution;
	4		at least one main memory;
	5		at least one communication device coupling the plurality of processors to the
	6		at least one main memory;
	7		a plurality of caches having a plurality of cache lines, each one of the
	8		plurality of caches associated with one of the plurality of processors;
	9		and /
	10		a protection bit associated with each of the cache lines in each of the
	11		plyrality of caches, each protection bit to protect a cache line from
	12		premature eviction during speculative execution.
			•

19

	1	22.	The multiprocessor computer system as in claim 21/ further comprising:
	2		control logic associated with the plurality of caches to manage the protection
	3		bits.
	1	23.	The multiprocessor computer system as in claim 22, further comprising:
. N	2		at least one cache controller associated with the plurality of caches;
Sub Al	3		wherein the control logic resides in the at least one cache controller.
2000			
	1	24.	The multiprocessor computer system as in claim 21, further comprising:
	2		a plurality of tag arrays associated with each cache;
	3		wherein the protection bits reside in each tag array associated with each
	1		cache.
			. /
	1	25.	A computer system, comprising:
	2		a main memory;
w Tu	3		a processor;
	4		a bus to connect the main memory and the processor;
	5		a cache associated with the processor, the cache having a plurality of cache
	6		lines; and
	7		a protection bit associated with each of the cache lines in each of the
	8		plurality of caches, each protection bit to protect a cache line from
	9		premature eviction during speculative execution.
	1	26.	The computer system as in claim 25, wherein
	2		the cache is a lever one (L1) cache.
	1	27.	The computer system as in claim 26, wherein
	2		the level one (1/1) cache is on the same chip die as the processor.

28.

1

The computer system as in claim 25, wherein

the cache is a level two (L2) cache.

Sub Al 1
Orala AN 1