Laboratory on Net Force: Force Tables

Prof. Jordan C. Hanson September 18, 2024

Figure 1: The force table setup includes a wheel with angles, strings and pulleys, and a central ring.

1 Memory Bank

1. The weight of a system is the mass times the gravitational constant, g. Written as an equation:

$$\vec{w} = -mg\hat{j} \tag{1}$$

When a mass is suspended by a string or rope, the tension in the rope balances the weight.

2 Force Table Lab Setup

Obtain a set of weights, and a force-table, with ring and pulley system. Make the angle between two of the strings 60 degrees. Choose two different weights, m_1 and m_2 . Set m_1 on 0 degrees, and set m_2 on 60 degrees. We will determine the mass m_3 that keeps the ring stationary if hung at the correct angle.

3 Details of the Measurement

1. Treating the tension \vec{T}_1 (with m_1) and the tension \vec{T}_2 (with m_2) as vectors, break them into components:

$$\underline{T_{1,x}} = \underline{(N)} \quad \underline{T_{1,y}} = \underline{(N)} \quad \underline{T_{2,x}} = \underline{(N)} \quad \underline{T_{2,y}} = \underline{(N)}$$

2. Determine \vec{T}_3 such that $\vec{F}_{\rm Net} = 0$:

Vector	x-component (N)	y-component (N)
\vec{T}_1		
\vec{T}_2		
\vec{T}_3		
$ec{F}_{ m Net}$		

Table 1: Break the vectors into components here.

3. Knowing that $|\vec{T}_3| = m_3 g$, solve for m_3 by finding $|T_3|$. Knowing the components of \vec{T}_3 , solve for the angle it makes with the x-axis. Arrange \vec{T}_3 on the table. Is the ring stationary?