Домашнее задание по алгебре №7.

Михайлов Никита Маратович, ПМИ-167.

Задание 1.

Выразите симметрический многочлен

$$f(x_1, x_2, x_3, x_4) = (x_1 + x_2)(x_1 + x_3)(x_1 + x_4)(x_2 + x_3)(x_2 + x_4)(x_3 + x_4)$$

через элементарные симметрические многочлены.

Решение. Применим метод неопределенных коэффициентов. Заметим, что старший член равен $x_1^3x_2^2x_3^1x_4^0$. Переберем все возможные неубывающие наборы неотрицательных целых чисел, дающих в сумме 6, причем первое число не больше 3:

$$(3,3,0,0)$$
 $(3,2,1,0)$ $(3,1,1,1)$ $(2,2,1,1)$ $(2,2,2,0)$

Пусть набору x_1, x_2, x_3, x_4 соответствует многочлен из произведения элементарных симметрических многочленов $\sigma_1^{x_1-x_2}\sigma_2^{x_2-x_3}\sigma_3^{x_3-x_4}\sigma_4^{x_4}$. Тогда f представим в виде линейной комбинации многочленов, соответствующие найденным наборам. Составим представление из неопределенных коэффициентов(мы знаем, где будет старший член лежать, поэтому перед ним коэффициент равен 1):

$$A\sigma_1^{3-3}\sigma_2^{3-0}\sigma_3^{0-0}\sigma_4^0 + \sigma_1^{3-2}\sigma_2^{2-1}\sigma_3^{1-0}\sigma_4^0 + B\sigma_1^{3-1}\sigma_2^{1-1}\sigma_3^{1-1}\sigma_4^1 + C\sigma_1^{2-2}\sigma_2^{2-1}\sigma_3^{1-1}\sigma_4^1 + D\sigma_1^{2-2}\sigma_2^{2-2}\sigma_3^{2-0}\sigma_4^0$$

$$= A\sigma_2^3 + \sigma_1\sigma_2\sigma_3 + B\sigma_1^2\sigma_4 + C\sigma_2\sigma_4 + D\sigma_3^2 = f(x_1, x_2, x_3, x_4)$$

Составим систему линейных уравнений, задавая конкретные значения для x_i :

x_1	x_2	x_3	x_4			σ_3	σ_4	\int
1	1	0	0	2	1	0	0	0
1	1	1	0	3	3	1	0	8
1	1	1	1	4	6	4	1	64
1	1	-1	-1	0	-2	0	1	0

На основе таблицы составим следующую систему:

$$\begin{cases} A = 0 \\ 27A + 9 + D = 8 \\ 2(108A + 8B + 3C + 8D + 48) = 64 \\ -8A - 2C = 0 \end{cases} \Rightarrow \begin{cases} A = 0 \\ B = -1 \\ C = 0 \\ D = -1 \end{cases}$$

Таким образом искомое представление:

$$f(x_1, x_2, x_3, x_4) = \sigma_1 \sigma_2 \sigma_3 - \sigma_1^2 \sigma_4 - \sigma_3^2$$

Задание 2.

 $\Pi y cm b \ x_1, x_2, x_3$ — все комплексные корни многочлена $3x^3 + 2x^2 - 1$. Найдите значение этого выражения

$$\frac{x_1x_2}{x_3} + \frac{x_1x_3}{x_2} + \frac{x_2x_3}{x_1}$$

Решение. По теореме Виета:

Если x_1, x_2, x_3 — корни кубического уравнения $p(x) = ax^3 + bx^2 + cx + d = 0$, то

$$\begin{cases} x_1 + x_2 + x_3 = -\frac{b}{a} = -\frac{2}{3} \\ x_1 x_2 + x_1 x_3 + x_2 x_3 = \frac{c}{a} = 0 \\ x_1 x_2 x_3 = -\frac{d}{a} = \frac{1}{3} \end{cases}$$

Теперь представим нашу дробь через найденные выражения:

$$\frac{x_1x_2}{x_3} + \frac{x_1x_3}{x_2} + \frac{x_2x_3}{x_1} = \frac{x_1^2x_2^2 + x_1^2x_3^2 + x_2^2x_3^2}{x_1x_2x_3} = \frac{(x_1x_2 + x_1x_3 + x_2x_3)^2 - 2x_1x_2x_3(x_1 + x_2 + x_3)}{x_1x_2x_3} = \frac{0 + \frac{2}{3} \cdot \frac{2}{3}}{\frac{1}{3}} = \frac{4}{3}$$

$$\boxed{3 адание 3.}$$

Найдите многочлен 4-й степени, корнями которого является число 1 и кубы всех комплексных корней многочлена x^3+x-1

Решение. По теореме Виета:

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 x_2 + x_1 x_3 + x_2 x_3 = 1 \\ x_1 x_2 x_3 = 1 \end{cases}$$

Выразим через найденные выражения многочлены:

1.
$$x_1^3 + x_2^3 + x_3^3 = (x_1 + x_2)^3 - 3x_1x_2(x_1 + x_2) + x_3^3 = (x_1 + x_2 + x_3)g(x_1, x_2, x_3) - 3x_1x_2(x_1 + x_2) = -3\frac{1}{x_3}(-x_3) = 3$$

2.
$$x_1^3 x_2^3 + x_1^3 x_3^3 + x_2^3 x_3^3 = \sigma_2^3 - 3\sigma_1 \sigma_2 \sigma_3 + 3\sigma_3^2 = 4$$

3.
$$x_1^3 x_2^3 x_3^3 = (x_1 x_2 x_3)^3 = 1$$

Тогда многочлен 4-й степени с корнями из условия выглядит следующим образом:

$$(x-1)(x^3-3x^2+4x-1)=x^4-4x^3+7x^2-5x+1$$

 Задание 4.

Докажите, что не существует бесконечной последовательности одночленов от переменных $x_1,...,x_n$, в которой каждый последующий член строго меньше предыдущего в лексикографическом порядке.

Решение. Применим метод математической индукции. База: n=1. Чтобы последовательность была строго убывающей, надо уменьшить степень нашей единственной переменной. Любое сколь угодно большое натуральное число можно превратить в 1 за конечное число шагов. Предположим верно для n-1, покажем, что тогда верно и для n.

Рассмотрим последовательность. Возьмем самый старший член и посмотрим на степень x_1 . Пусть его степень равна k. Тогда в последовательности остались одночлены со степенью x_1 равной k(коих конечно в сило того, что можно вынести x_1^k за скобки и воспользоваться предположением индукции) или менее. Следовательно, степень x_1 уменьшится. На этом шаге мы отбросили конечное число одночленов. Покажем, что шагов будет конечно. Так как степень уменьшается, то мы дойдем до того момента, когда останутся только одночлены со степенью x_1 равной нулю за конечное число шагов. Но тогда остается n-1 переменная, где по предположению индукции конечное число членов.