Electrical Engineering, IT Delhi Computer communications networks (ELL785) Final-term Examination

Duration: 2 hour

Nov. 24, 2016 Instructor: Jun B. Seo

Name	Entry number

- This examination consists of four(4) problems with one bonus. Check that you have a complete copy of four(4) pages.
- · Maximum attainable mark is 100.
- · Justify your answers clearly.

1 (27)	2 (13)	3 (39)	4 (21)	sum

1. [27] A pair of customers, i.e., exactly two customers at a time, arrive based on Poisson process with rate λ . However, customers are served one by one and the service time of each customer is exponentially distributed random variable with mean $1/\mu$. The state transition diagram is shown below. Let π_j denote the steady state probability that the system has j customers.

- (a) [6] Find three global balance equations for states $j=0, 1, \text{ and } j \geq 2$.
- [10] Find the probability generating function for π_j .
- (c) [5] Find the probability that the system is empty, i.e., π_0 .
- (d) [6] Find the mean number of customers in the system.

Computer communications networks (ELL 785) Final-term Examination

Oct. 30, 2016

2

2. [13] Consider an opening queueing network consisting of three queues as shown below.

- (4) Find an expression of the average number of customers in the network.
- [5] If $\mu_1 = 0.7$, $\mu_2 = 0.9$, and $\mu_3 = 0.8$, draw a region for all possible pairs of λ_1 and λ_2 such that three queues are stable at the same time. Specify the region exactly.
 - [4] Find the maximum possible throughput, while all queues are stable?

- 3. [39] Suppose that a base station has two antennas such that it can decode maximally two packets transmitted at a time over the uplink. Time is divided into slots of equal size. At each slot, if there are n backlogged packets, each of them is transmitted with probability p. In addition, the probability that k packets join the backlog (without being transmitted immediately) follows a Poisson process with mean rate λ (packets/slot)
 - (a) [9] When there are n backlogged users at time t, find the expression for $P_{n,n+i}$ for $-n \le i < \infty$
 - (b) [9] Under what condition is the Markov chain positive recurrent? Express it in terms of p, λ , and n
 - (c) [4] What is the p of minimizing the drift?
 - (d) [4] Find the maximum of λ allowed (maximum throughput) such that the system is stable. In this question, use the solution in (c) while assuming $n \to \infty$.
 - (e) [4] Estimate the maximum throughput if the number of antennas is M.
 - (f) [9] Assume that the number of backlogged packets follows a Poisson distribution with mean n_t at time t. Find an update rule for n_{t+1} when the system observes two successful packets.

Computer communications networks (ELL 785) Final-term Examination

Oct. 30, 2016

4

- 4. [21] Persons arrive at a Xerox machine according to Poisson process with mean rate one per minutes. The number of copies to be made by each person is uniformly distributed between 1 and 10. Each copy requires 3 sec. Find the average system response time when:
 - [4] [4] Each person uses the machine on a first-come first-serve basis
 - (b) [5] Persons with no more than 2 copies to make have nonpreemptive priority: Response time type 1 and 2.
 - (5] Persons with no more than 2 copies to make have preemptive resume priority
 - (6) [7] Repeat (a) when each copy requires exponentially distributed random time with mean 3 sec.