

Recurrent Neural Networks

Richard Dirauf, M.Sc. Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) MLTS Exercise, 09.01.2025

MLTS Exercise – Organization

Holiday

Introduction (31.10.2024)

Dynamic Time Warping (12.12.2024)

Bayesian Linear Regression (07.11.2024)

No exercise planned (19.12.2024)

Bayesian Linear Regression (14.11.2024) RNN + LSTM (09.01.2025)

Kalman Filter (21.11.2024) RNN + LSTM (16.01.2025)

Kalman Filter (28.11.2024) Transformers (23.01.2025)

Dynamic Time Warping (05.12.2024) Transformers (30.01.2025)

Motivation

- How can we utilize neural networks to process sequential data?
- Passing complete sequences to a conventional network is computationally very expensive
 - long training
 - gradients converge very slowly
 - Temporal context gets lost
- **Solution**: Adapt the time related characteristic into the architecture of the net

WS 2024/25 | Richard Dirauf | MaD Lab | RNN&LSTM

Name Entity Recognition

Input: Harry Potter invented a new spell.

Dictionary:

	\
a	1
aaron	2
 harry	2,039
 potter	6,453
 spell	8,940
zoo	10,000

Name Entity Recognition

Input: Harry Potter invented a new <u>spell</u>.

Dictionary:

0 0 1 0 0

Recurrent Neural Networks (RNN)

RNN Forward Propagation

$$h_t = tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$

$$y_t = \sigma(W_{hy}h_t + b_y)$$

 σ : sigmoid / softmax

The RNN Cell Up Close

Hidden state: $h_t = tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$

 W_{hh} : Weights of previous hidden state

 W_{xh} : Weights of the input

 b_h : Bias for state update

The RNN Cell Up Close

WS 2024/25 | Richard Dirauf | MaD Lab | RNN&LSTM

Backpropagation Through Time (BPTT)

- The backward pass takes activations off the stack to compute the error derivatives at each time step
- Backpropagate through time all the way to the initial states to get the gradient of the cost function with respect to each initial state

(BPTT) Calculate The Cost

Total cost is the sum of losses at each time step

$$C(y, \hat{y}) = \sum_t C_t$$

$$C_t = \frac{1}{2}||y_t - \hat{y_t}||^2$$

Compute the gradient of the loss

$$\nabla C = [\nabla W_{xh}, \nabla W_{hh}, \nabla W_{hy}, \nabla b_h, \nabla b_y, \nabla h]$$

Backpropagation Through Time (BPTT)

$$h_{t} = tanh(W_{xh}x_{t} + W_{hh}h_{t-1} + b_{h})$$
 $tanh'(x) = 1 - tanh(x)^{2}$

$$\nabla W_{xh} = tanh'(W_{hx}x_{t} + W_{hh}h_{t-1} + b_{h}) \cdot x_{t}^{T}$$

$$\nabla W_{hh} = tanh'(W_{hx}x_{t} + W_{hh}h_{t-1} + b_{h}) \cdot h_{t-1}^{T}$$

$$\nabla b_{h} = \sum_{batch} tanh'(W_{hx}x_{t} + W_{hh}h_{t-1} + b_{h})$$

$$\nabla x_{t} = W_{hx}^{T} \cdot tanh'(W_{hx}x_{t} + W_{hh}h_{t-1} + b_{h})$$

$$\nabla h_{t-1} = W_{hh}^{T} \cdot tanh'(W_{hx}x_{t-1} + W_{hh}h_{t-1} + b_{h})$$

(BPTT) Update Weights and Biases

• Given the learning rate η update the weights and biases in the matrix W in the negative gradient direction

$$W = W - \eta \nabla C$$

- Problem: backpropagating through the whole sequence the parameter update is computational expensive
- **Solution**: truncated backpropagation through time (TBPTT)

Truncated Backpropagation Through Time

- Instead of passing through the complete sequence, forward pass through a subset
- Backpropagate through the subset

Adapted from https://tjmachinelearning.com/lectures/guest/rnnadv/rnnadv.html

Long Short-Term Memory

Network

The Problem With Long-Term Dependency

Backward pass is completely linear:

- If weights are large (> 1), the gradient grows exponentially
- If weights are small (< 1), the gradients shrink exponentially

If we train on long sequences (> 100 time steps) the gradient may easily explode or vanish

The cat, which already ate ..., was/were full.

The Problem With Long-Term Dependency

Backward pass is completely linear:

- If weights are large (> 1), the gradient grows exponentially
- If weights are small (< 1), the gradients shrink exponentially

If we train on long sequences (> 100 time steps) the gradient may easily explode or vanish

Solution: Change RNN architecture

e.g.: Long Short Term Memory Networks (LSTMs)

Cell state:

Only minor linear interactions

Easy flow of information, relatively unchanged

Adding or removing information to the cell state is regulated by gates

Forget gate:

Decide how much of the previous cell state will be forgotten Sigmoid layer squashes h_{t-1} and x_t between 0 and 1

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

Input gate:

Decide what information we are going to store in the cell state

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

 $g_t = tanh(W_c \cdot [h_{t-1}, x_t] + b_c)$

Combining values:

Update the old cell state c_{t-1} into c_t

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

Output gate:

Define output based on the cell state

Gated Recurrent Units

LSTMs are great in order to avoid vanishing gradients

BUT: Loads of weights and biases which need to be optimized → difficult and slow training

Gated Recurrent Units (GRU) reduce the number of parameters to simplify training

Basically, hidden state and cell state are combined into a single parameter

Forget and input gate are merged into an update gate

Concept was first presented by Cho et al. in 2014

Gated Recurrent Units

https://medium.com/@anishnama20/understanding-gated-recurrent-unit-gru-in-deep-learning-2e54923f3e2

WS 2024/25 | Richard Dirauf | MaD Lab | RNN&LSTM

