# Università degli Studi di Firenze, Facoltà di Ingegneria Esame di Microelettronica 04 Luglio 2007 – Compito A

#### Domanda 1 : Gli ASIC

Con riferimento alla tipica suddivisione degli ASIC nelle quattro classi FULL CUSTOM, CELL BASED, GATE ARRAY e PD (Programmable Devices), si dia una descrizione delle loro caratteristiche costruttive, dei vantaggi e degli svantaggi sia in termini prestazionali che di costo di progettazione e produzione.

## Domanda 2 : Convertitore A/D a rampa

Lo schema circuitale in Figura 1 rappresenta un convertitore A/D a rampa realizzato a componenti discreti. Con riferimento a questo schema, calcolare la frequenza di campionamento.



Figura 1 – Schema circuitale del convertitore A/D a rampa

#### Domanda 3: Timing Model di CPLD ALTERA della famiglia MAX7000

Supponendo di voler implementare il seguente schema circuitale in una CPLD EPM7032AE-10, il cui timing model e tabella dei timing sono riportati a pagina seguente, si calcolino :

- Massima frequenza di clock utilizzabile
- Ritardo fra fronte di clock valido ed uscita valida corrispondente
- Tempi di setup ed hold per gli ingressi INPUT e FAST INPUT

### Condizioni:

- Tensione di alimentazione 3.3V
- Slow Slew Rate disattivato
- Ingresso di clock, e sua linea di distribuzione, dedicati
- Ingresso INPUT generico
- Ingresso FAST\_INPUT generico e configurato come input fast per il FLIP-FLOP (inst1)



Figura 2 - Schema circuitale da analizzare



Figura 3 - Timing Model della CPLD serie MAX7000

| Symbol | Parameter                      | Min | Max | Unit |
|--------|--------------------------------|-----|-----|------|
|        |                                |     |     |      |
| tIN    | Input pad and buffer delay     |     | 1.5 | ns   |
| tIO    | I/O input pad and buffer delay |     | 1.5 | ns   |
|        |                                |     |     |      |
| tFIN   | Fast input delay               |     | 3.4 | ns   |
| tSEXP  | Shared expander delay          |     | 4.0 | ns   |
| tPEXP  | Parallel expander delay        |     | 1.0 | ns   |
| tLAD   | Logic array delay              |     | 3.3 | ns   |
| tLAC   | Logic control array delay      |     | 1.2 | ns   |
| tIOE   | Internal output enable delay   |     | 0.0 | ns   |

| tOD1  | Output buffer and pad delay, slow slew rate = off VCCIO = 3.3V         |     | 1.8  | ns |
|-------|------------------------------------------------------------------------|-----|------|----|
| tOD2  | Output buffer and pad delay, slow slew rate = off VCCIO = 2.5V         |     | 2.3  | ns |
| tOD3  | Output buffer and pad delay, slow slew rate = on VCCIO = 2.5V or 3.3 V |     | 6.8  | ns |
| tZX1  | Output buffer enable delay, slow slew rate = off                       |     | 5.0  | ns |
|       | VCCIO = 3.3 V                                                          |     |      |    |
| tZX2  | Output buffer enable delay, slow slew rate = off VCCIO = 2.5V          |     | 5.5  | ns |
| tZX3  | Output buffer enable delay, slow slew rate = on                        |     | 10.0 | ns |
|       | VCCIO = 3.3 V                                                          |     |      |    |
| tXZ   | Output buffer disable delay                                            |     | 5.0  | ns |
| tSU   | Register setup time                                                    | 2.8 |      | ns |
| tΗ    | Register hold time                                                     | 1.3 |      | ns |
| tFSU  | Register setup time of fast input                                      | 1.5 |      | ns |
| tFH   | Register hold time of fast input                                       | 1.5 |      | ns |
| tRD   | Register delay                                                         |     | 1.5  | ns |
| tCOMB | Combinatorial delay                                                    |     | 1.3  | ns |
| tIC   | Array clock delay                                                      |     | 2.5  | ns |
| tEN   | Register enable time                                                   |     | 1.2  | ns |
| tGLOB | Global control delay                                                   |     | 1.9  | ns |
| tPRE  | Register preset time                                                   |     | 2.6  | ns |
| tCLR  | Register clear time                                                    |     | 2.6  | ns |
| tPIA  | PIA delay                                                              |     | 2.1  | ns |
| tLPA  | Low-power adder                                                        |     | 5.0  | ns |

Tabella 1 - Tabella dei timing EPM7032A-10

### Domanda 4 : Realizzazione di un progetto su PC tramite ambiente di sviluppo QUARTUS II

Implementare, in una CPLD, la macchina a stati che gestisce un montacarichi a tre piani (piano terra, primo e secondo piano) ed una logica combinatoria accessoria. Il montacarichi non è provvisto di porte con chiusura automatica ne sistemi di sicurezza o luci di segnalazione presenza di cabina al piano.

Il motore del montacarichi è gestito da un sistema elettronico esterno al presente progetto che prevede due ingressi di controllo (**M\_UP** e **M\_DOWN**). Quando **M\_UP** = 1 e **M\_DOWN** = 0 il motore viene fatto girare nel senso di rotazione necessario al sollevamento del carico. Quando **M\_UP** = 0 e **M\_DOWN** = 1 il motore viene fatto girare nel senso di rotazione necessario alla discesa del carico.

Al fine di avvertire gli utenti che il montacarichi è in uso sono presenti tre luci (una per piano) che dovranno accendersi contemporaneamente quando il motore è in movimento.

In definitiva la macchina a stati dovrà gestire due differenti uscite **M\_UP**, **M\_DOWN**. Il sistema nel suo complesso dovrà fornire anche l'uscita **BUSY\_LAMP** (OR logico delle precedenti).

Al fine di gestire la chiamata del montacarichi da parte degli utenti, o in generale il suo movimento, sono presenti tre pulsanti sulla cabina (**PT**, **P1** e **P2**) ed uno per ogni piano (**CT**, **C1**, **C2**).

Il montacarichi dovrà portarsi al piano 2 quanto sono premuti **P2** oppure **C2**.

Il montacarichi dovrà portarsi al piano 1 quanto sono premuti P1 oppure C1.

Il montacarichi dovrà portarsi al piano terra quanto sono premuti **PT** oppure **CT**.

Al fine di far conoscere al sistema la posizione della cabina, ad ogni piano è presente un sensore (AT\_T, AT\_1, AT\_2). Quando la cabina è presente ad un piano il relativo sensore sarà attivo. Quando la cabina non è presente a nessun piano, nessun sensore sarà attivo. Quando la cabina è in movimento verso un piano, il motore dovrà essere fermato quando il relativo sensore verrà interessato.

In definitiva il sistema dovrà avere sei ingressi utente (P2, P1, PT, C2, C1 e CT) e tre ingressi funzionali per i sensori AT 2, AT 1, AT T.

La macchina a stati dovrà avere invece un totale di sei ingressi, tre per i sensori di posizione e tre (U2, U1 e UT) derivati dall'OR logico di P2 e C2, P1 e C1 ed infine PT e CT.

Come ogni macchina a stati anche questa dovrà avere un ingresso per il clock ed un ingresso per il reset generale.

Il diagramma degli stati è riportato nello schema presente nella seguente pagina. Gli stati **Ground**, **First** e **Second** indicano che la cabina è ferma rispettivamente al piano terra, primo piano e secondo piano. Gli stati **up\_1** e **up\_2** indicano che la cabina si sta muovendo in salita rispettivamente verso il primo piano ed il secondo piano. Gli stati **down \_t** e **down \_1** indicano che la cabina si sta muovendo in discesa rispettivamente verso il piano terreno ed il primo piano.

Negli stati **Ground**, **First** e **Second** le uscite devono essere entrambe 0. Negli stati **up\_1** e **up\_2** l'uscita **M\_UP** deve essere 1 mentre la **M\_DOWN** deve essere 0. Negli stati **down\_1** e **down\_t** l'uscita **M\_UP** deve essere 0 mentre **M\_DOWN** deve essere 1.

Nella tabella seguente sono riassunte le condizioni di transizione fra i vari stati.

In tutte le altre combinazioni degli ingressi lo stato futuro è uguale allo stato corrente.

| Stato Corrente | Stato Futuro | Condizione di transizione |  |  |
|----------------|--------------|---------------------------|--|--|
|                |              |                           |  |  |
| Ground         | Up_1         | UT = 0, U1 = 1, U2 = 0    |  |  |
| Ground         | Up_2         | UT = 0, U1 = 0, U2 = 1    |  |  |
| First          | Up_2         | UT = 0, U1 = 0, U2 = 1    |  |  |

| First  | Down_t | UT = 1, U1 = 0, U2 = 0 |
|--------|--------|------------------------|
| Second | Down_1 | UT = 0, U1 = 1, U2 = 0 |
| Second | Down_t | UT = 1, U1 = 0, U2 = 0 |
| Up_1   | First  | $AT_1 = 1$             |
| Up_2   | Second | $AT_2 = 1$             |
| Down_1 | First  | $AT_1 = 1$             |
| Down_t | Ground | $AT_T = 1$             |

Tabella 2 - Condizioni di transizione



Figura 4 - Diagramma degli stati del montacarichi

Realizzare il progetto in un linguaggio a scelta fra **AHDL** e **VHDL** direttamente come **TOP Level Design** senza utilizzare fogli di tipo grafico.

Lasciar scegliere automaticamente il dispositivo al FITTER di QUARTUS II fra i dispositivi della famiglia MAX7000AE.

Effettuare una simulazione che mostri il comportamento della macchina a stati passando dal piano terreno (stato di reset) fino al secondo piano e successivamente da questo al primo piano.

Realizzare il progetto su una cartella del desktop inserendo un commento nel file sorgente contenente Nome, Cognome e Numero di matricola dello studente.