Evolutionary Algorithms

Inteligencia Artificial en los Sistemas de Control Autónomo Máster en Ciencia y Tecnología desde el Espacio

Departamento de Automática

Objectives

• Describe the most relevant EAs

Bibliography

 $\bullet~$ Eiben, A.E. and Smith, J.E. Introduction to Evolutionary Computing. Springer 2003.

Table of Contents

I. Genetic Algorithms

- Introduction
- Representation
- Mutation
- Recombination
- Selection

2. Genetic Programming

- Introduction
- Representation
- Mutation
- = Recombination
- Initialization
- Bloat in Genetic Programming

3. Evolution Strategies

- Introduction
- Representation
- Mutation
- = Recombination
- Parent and survivor selection
- 4. Working with an Evolutionary Algorithm
 - Search phases
 - Fitness dynamics
 - When EAs are useful
 - Advanced EAs
- 5. Case studies
 - EAs examples
 - Case study I: Transonic wing shape optimization
 - Case study II: 9th GTOC

Introduction (I)

Introduced by Holland in the 70's

- John H. Holland "Adaptation in Natural and Artificial Systems", MIT Press
- GA is the most popular EA
- Usually EAs confused with GA

Canonical GA (which is not canonical)

- Fixed length strings
- Binary codification
- Holland's Theorem

Representation	Bit strings
Recombination	1-point
Mutation	Bit flip
Parent select	Fitness prop
Survivor select	Generational

Introduction (II)

GAs are a family of algorithms, with common features

- Representation in strings, named chromosomes
- Mutation and recombination
- Usually fixed length

GAs are like a toolbox with customizable components

- Representations, genetic operators, selections mechanism, ...
- These components are interdependent

Rule of thumb: Small genotype changes ⇒ Small phenotype changes

Introduction (III)

Representation: Binary

One of the oldest and widely used codifications

- Consequence of Holland's Theorem
- Strong historical influence

Often used to codify non-binary information (not recommended)

Genotype Pure binary codification Phenotype 1100 0001 1010 1101 0011 0111 Gray coding Custom codification

Hint: Use binary codification to represent binary information

Genetic Algorithms

Representation: Integer

Chomosome as a sequence of integers

- More natural codification for many problems
- Optimization of integer values
- Integer representation ($\{1, 2, 3, 4\} = \{\text{North, East, South, West}\}$)

Representation: Floating-point

Chomosome as a sequence of floating-point values

- Common in optimization problems
- Solutions with continous nature

Representation: Permutation

Some problems involve order

- Sequence of integers
- No repeated numbers
- Range of valid numbers
- Special genetic operators

Information can be contained in

- The locus (position) $[3, 1, 2, 4] \Rightarrow [C, A, B, D]$
- The allele (value)

$$[3, 1, 2, 4] \Rightarrow [B, C, A, D]$$

Integer codification to solve TSP

Mutation

Genetic Algorithms

Mutation: Genetic operator that uses one parent

- Introduces randomness into the genotype
- Depends on representation

Main objectives

- Avoid local minima (premature convergence)
- Enhances exploration

Often dependent on the mutation rate

- Significant influence in the algorithm behaviour
- Higher mutation rate, higher exploration

Mutation for binary representations

Flip bit with probability p_m

Optimal p_m depends on the problem and goals

- Need of high fitness population
- Need of high fitness individual
- Need of genetic diversity
- Modality of the problem
- Algorithm dynamics

Rule of thumb: $p_m = \frac{1}{l_{enoth}}$

Genetic Algorithms

Mutation for integer representations

Two main mutations applied to each gene

- Random resetting: Choose new random value with p_m
- Creep mutation: Add small (positive or genative) random value with p_m

Mutation for floating-point representations

Set new value with value drawn from a distribution

- Uniform mutation Choose new random value from [L, U] with p_m
- Non-uniform mutation Usually adding a value drawn from a zero-mean gaussian distribution

Mutation for permutation representations

Genes are no longer independent

 $\bullet\;$ No gene mutation, p_m affects the whole chromosome

Swap mutation	Insert mutation	
123456789	123456789	
Scramble mutation	Inversion mutation	
123456789	123456789	

Recombination

Recombination creates one individual from two or more parents

- Also known as crossover (specially for two parents)
- Basic feature in GA
- Parents selection mechanism needed

Usually applied to all new individuals

- Not used when elitism is applied
- Sometimes applied with $\mathfrak{p}_{\mathfrak{c}} \in [0,5,1]$

Objectives of recombination

- Combine parents' behavior ⇒ No new genetic material
- Constructive role
- Enhances explotation

Recombination: Binary and integer representations

Three crossover mechanisms for binary and integer encodings

One-point crossover 00000000001 1101000001 1 1 0 1 1 0 0 0 0

Two-points crossover 0000010000 0000000000000 1101000001 1 1 0 1 1 0 0 0 1

Recombination: Floating point representations (I)

Discrete recombination

- Analogous to binary recombination
- No new genetic material

Arithmetic recombination

- Combines the parents' genes
- Weighted sums of genes: $z_i = \alpha x_i + (1 \alpha) y_i$
- Usually, $\alpha = 0.5$ (average values)
- Different arithmetic recombinations

Recombination: Floating point representations (II)

Whole arithmetic recombination (All genes are included)

Simple arithmetic recombination

(Similar to one-point crossover)

Single arithmetic recombination (Similar to uniform crossover)

Recombination: Permutation representations

Specialized recombinations

- Partially Mapped Crossover
- Edge Crossover
- Order Crossover
- Cycle Crossover

Selection

Two purposes for selection

- Parent selection: Individuals to generate offspring
- Survivor selection: Individuals to remplace

Usually same methods applied to both

Selection: Fitness Proportional Selection

Selection probability proportional to fitness

- Premature convergence
- Lack of selective pressure for close fitness values
- Selective pressure not customizable
- Susceptibility to function transposition

Historically relevant

Selection: Ranking Selection

Selection probability proportional to rank

- Individuals are sorted by fitness
- Arbitrary rank to probability mapping
- Avoid problems with super individuals
- Selective pressure independent of fitness
- Selective pressure not customizable

Linear mapping

$$P_{lin_rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

Exponential mapping

$$P_{exp_r ank}(i) = rac{1 - e^{-i}}{c}$$

c = normalization factor

Selection: Tournament Selection

Algorithm of tournament size k

- I. Select randomly k chromosomes
- 2. Compute their fitness
- 3. Select the fittest one
- 4. Go to 1

Customizable selective pressure

• Depends on k and μ

De facto standard

- Good for parallel computation
- Efficient implementation

Usually k = 2 in GA, in GP k = 7

Selection: Survival selection

Two strategies

- Generational (all the population is remplaced)
- Steady-stade (partial remplacement)

Survival selection algorithms

- Fitness-Based Replacement (inverse of the previous ones)
- Age-Based Replacement
- Elitism

Introduction (I)

GP is a family of algorithms

- Evolve programs
- Self-programming computers
- GP, Linear GP, Cartesian GP, EDA, ...

GP introduced by Koza in the 90's

Koza, J.R. "Genetic Programming: On the Programming of Computers by Means of Natural Selection", MIT Press. 1992

Genetic Programming

GA and ES focused on optimization

• GP focused on Machine Learning

Introduction (II)

Example: Credit scoring problem within a bank. Develop a model describing good customers

Genetic Programming 00000000000000

Id	Children	Salary	Status	Credit
Id-т	2	45.000	Married	О
Id-2	0	30.000	Single	I
Id-3	I	40.000	Married	I
Id-4	2	60.000	Divorced	I
Id-X	2	50.000	Married	I

Possible model:

IF (children=2) AND (Salary>80.000) THEN good ELSE bad

Introduction (III)

General form

IF (Formula) THEN good ELSE bad

Genetic Programming

In EC terms Phenotype: Formula Fitness: Classification accuracy

(children=2) AND (Salary>80.000)

Representation (I)

GP representation differs in two aspects

- Nonlinear structure
- Variable size

New representation and genetic operators

• Same selection (done in phenotipic space)

Representation (II)

$$\left(2\pi\!+\!\left((\mathbf{x}\!+\!3)\!-\!\frac{\mathbf{y}}{5+1}\right)\right)$$

Logical formula trùe

$$\begin{array}{l} (x \wedge \mathsf{true}) \to \\ ((x \vee \gamma) \vee (z \leftrightarrow (x \vee \gamma))) \end{array}$$

Program

while

Representation (III)

Two types of nodes

• Function set Internal nodes. It has an ssociated number of attributes

Genetic Programming

• Terminal set Leaves of the tree

Danger: Inviable trees

- Grammar-aware GP variants
- Strongly Typed Genetic Programming (STGP), Grammatical Evolution (GE), ...

(Complex representation example)

Mutation (I)

Application of genetic operators in GP contrast to GA

Mutation (II)

Subtree mutation

- 1. Select a random node
- 2. Delete subtree
- 3. Add new random subtree

Parameters

 Probability of choosing a terminal node

Highly correlated with code bloat

Mutation (III)

Alternative mutation operators

- Size-fair subtree mutation.
- Node replacement mutation (point mutation)

- Hoist mutation
- Shrink mutation

Recombination (I)

Subtree crossover

- 1. Take a random node from both parents
- 2. Swap subtrees

Parameters

• Probability of choosing a terminal node

Recombination (II)

Alternative recombination operators

- Homologous crossover
- Uniform crossover
- Size-fair crossover
- Node replacement mutation (point mutation)

- Hoist mutation
- Shrink mutation

Genetic Programming

Initialization

Three initialization methods

• Full. Introduces non-terminals nodes until max depth

Genetic Programming

- Grow. Introduces terminal or non-terminal with equal probability
- Ramped half-n-half. Applies full or grow with equal probability

Genetic Programming

Bloat in Genetic Programming

Code bloat: Uncontrolled grow of tree sizes

• Intrinsic to variable-length representations

Genetic Programming

- Undesirable effects
- Perhaps, the worse problem in GP

Countermeasures

- Depth limitation in genetic operators
- Parsimony pressure
- Tree plunning
- Multiobjective techniques

Genetic Programming

Example of reporting

Cuadro 1: Main parameters used to obtain the approximations for secrets ID in the Genetic Tango attack against David-Prasad authentication protocol.

Parameter	ID
Population	500
Generations	10
Terminal Set	A, B, D, E, F, P_{ID1} , P_{ID2}
Function set	And, or, xor
Fitness	Hamming distance to secret
Fitness tags	5
Fitness sessions	100
Min. depth	I
Max. depth	3
Selection	Lexicographic tournament
Tournament size	4
Crossover	0.9
Reproduction	O.I
Elitism size	I
Terminals	0.1
Non terminals	0.9
Initialization	Rampled H-H

Introduction (I)

Introduced by Rechenberg and Schwefel in the 60's

- Motivated by wing shape optimization
- Real-function optimization

ES properties

- Emphasis on mutation
- Mutation is gaussian noise
- Self-adaptation

Representation	Real-valued vectors
Recombination	Discrete
Mutation	Gaussian perturbation
Parent selection	Uniform
Survivor selection	(μ,λ) or $(\mu+\lambda)$
Speciality	Self-adaptation

Introduction (II)

Example of basic ES

- Representation: Vector of real values
- Recombination: Not used
- Mutation: Gaussian noise with step-size σ

Adaptative σ (1/5 rule)

- Theoretical foundations
- Based on the ratio of success mutations (ps)
- After k iterations a new σ is computed

$$\sigma = \begin{cases} \sigma/c & \text{if } p_s > 1/5, \\ \sigma \cdot c & \text{if } p_s < 1/5, \\ \sigma & \text{if } p_s = 1/5 \end{cases}$$

where $0.817 \le c \le 1$ is a parameter

Representation

Nowdays ES is usually self-adapted

- Step size (σ) is included in the genotype
- Evolution includes variables and parameters

One or more σ values

- One σ : $\langle \underbrace{x_1, x_2, ..., x_n}_{\bar{x}}, \sigma \rangle$
- $\bullet \ \, \text{Several:} \, \sigma: \big\langle \underbrace{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{\mathbf{n}}}_{\bar{\mathbf{x}}}, \underbrace{\sigma_1, \sigma_2, ..., \sigma_{\mathbf{n}_{\sigma}}}_{\bar{\sigma}} \big\rangle$

Mutation

Genetic operators to modify σ

• Mutation with one step size:

$$\begin{aligned} x_i' = & x_i + N_i(0, \sigma') \\ \sigma' = & \sigma \cdot e^{\cdot N(0, \tau)}, \tau \propto 1/\sqrt{n} \end{aligned}$$

au is analogous to learning rate in ANN

Mutation with n step sizes:

$$\mathbf{x}_{i}' = \mathbf{x}_{i} + \mathbf{N}_{i}(0, \sigma_{i})$$

$$\sigma' = \sigma \cdot e^{\cdot \mathbf{N}(0, \tau') + \mathbf{N}_{i}(0, \tau)}$$

with
$$au' \propto 1/\sqrt{2\mathfrak{n}}$$
 and $au \propto 1/\sqrt{2\sqrt{\mathfrak{n}}}$

Recombination

Secondary operator in ES

- Discrete recombination. Like uniform crossover in GA
- Intermediate recombination. Like arithmetic crossover in GA

ES tends to use global recombination

• More than two parents

Parent and survivor selection

The whole population is seen as parent

- Select individual with uniform probability
- No selective pressure in parent selection

After creating the offspring, the λ fittests individuals are selected

Deterministic procedure

Two selection mechanisms depending on who can be selected

- (μ, λ) selection. Only the offpring.
- $(\mu + \lambda)$ selection. Parents and offpring

 (μ, λ) selection is more popular

Initial phase: Random distribution, high genetic diversity Advanced phase: Begins to converge Convergence: Around one or few points, low genetic

Premature convergence if population not located in global maxima

(Animation)

diversity

Search phases

Working with an Evolutionary Algorithm

Fitness dynamics

Few long runs or many short runs?

Working with an Evolutionary Algorithm

When EAs are useful

Working with an Evolutionary Algorithm

Advanced FAs

- Multiobjective Evolutionary Algorithms (MOEAs)
- Optimization with constrains
- Coevolution
- Dinamic optimization
- Islands models
- Memetic algorithms
- Hyperheuristics

Case study I: Transonic wing shape optimization

Problem: Design a wing shape for transonic flight

Maximize lift

Holst T.L., Pulliam T.H. (2003) Transonic Wing Shape Optimization Using a Genetic Algorithm. In: IUTAM Symposium Transsonicum IV. Fluid Mechanics and its Applications, vol 73. Springer.

Case study II: 9th Global Trajectory Optimization Competition

GTOC: Global Trajectory Optimization Competition

- Proposed by ESA Advanced Concepts Team
- Difficult trajectory optimization problems
- (More info)

GTOC 9: The Kesser Run

- 123 orbiting debris
- Remove debris
- Design multiple missions

(Video) (Solution) (Acta Futura special issue)

