CoMap: Proactive Provision for Crowdsourcing Map in Automotive Edge Computing

Yongjie Xue, Yuru Zhang, Qiang Liu, *University of Nebraska-Lincoln* Dawei Chen, **Kyungtae (KT) Han**, *Toyota InfoTech Labs*

- High-definition (HD) map enables Autonomous Driving and Advanced Driver Assistance Systems (ADAS)
 - Accurate and high-precision presentation of the roads
 - Autonomous Driving and ADAS rely on HD maps for localization, e.g.,
 SLAM

HD map needs up-to-date information

- Transient information on the road, e.g., constructions and accidents
- Infrastructural sensors have limited coverage and angles

- CAVs connect vehicles wirelessly with Edge Computing
 - Allow information sharing and vehicle collaborations
 - Crowdsourcing data from rich sensors in CAVs for updating HD map

Enormous UL/DL radio transmission needs

- Raw sensor data can be up to 100Mbps per CAV
- High operating expenses (OPEX) for service providers

Fast-changing network dynamics

- High-velocity of vehicles, e.g., channel condition and traffic
- Complicated resource demands

SLAM >100Mbps Speed >30kph

- Focus on the average performance
 - Long-tail latency provides very limited information in HD map
- Centralized control plane
 - Delayed optimized variables worsen the latency performance
- Static resource allocation
 - Cannot fit asynchronous offloading in real world

- Objective
 - Optimize network and compute resource usage
- Insight 1: Adaptive vehicular offloading
 - The more pre-processes onboard, the fewer data to be transmitted
- Insight 2: Learning resource reservation/demand
 - Satisfy the latency requirement of vehicular offloading

System Consideration

- Multiple base stations and edge servers, and CAVs
- Flexible partition of computation tasks between $[0, 1](a_n)$

End-to-end latency

- Local processing delay: Computation over vehicle capacity
- Uplink delay: Data size over wireless data rate
- Edge processing delay: Computation over edge capacity
- Static delay: Overhead in protocol and others

$$L_n = f(a_n)/F_n + g(a_n)/(x_n \cdot E_n) + h(a_n)/y_n + D_n$$

The Resource Provision Problem

- Objective function: Optimize the monetary cost for all CAVs
- Optimization variables
 - Computation partition, radio bandwidth, edge computation capacity
- Constraint: Percentile latency requirements

$$\max_{\mathcal{A},\mathcal{X},\mathcal{Y}} \quad \sum_{t=0}^{T} \sum_{n=0}^{N} \left(x_n^t / B + \eta \right) y_n^t / G$$
 (2)

s.t.
$$Pr(\mathcal{L} \le H) \ge p,$$
 (3)

$$0 \le \sum_{n \in \mathcal{N}} x_n^t \le B, \forall t \tag{4}$$

$$0 \le \sum_{n \in \mathcal{N}} y_n^t \le G, \forall t \tag{5}$$

$$0 \le a_n \le 1, \forall n, t \tag{6}$$

- Needs to be fully decentralized
 - No information on other CAVs
- Probabilistic resource demands
 - Transmission data size and computation complexity are not fixed, but stochastic
- Temporal resource allocation
 - The resources allocation is changed over time

Reduce the problem

- First, optimize for the ego CAV
- We will handle the inter-CAV constraints, later

Central problem

$$\min_{\mathcal{A}_n, \mathcal{X}_n, \mathcal{Y}_n} \quad \sum_{t=0}^{T} (x_n^t / B + \eta \cdot y_n^t / G)$$

$$s.t. \quad Pr(L_n \le H) \ge p,$$

$$0 \le x_n^t \le B, \forall t$$

$$0 \le y_n^t \le G, \forall t$$
$$0 < a_n < 1, \forall n, t$$

Our Solution (2/4)

- Predict resource demand under the extra context
 - We find they are related to some environmental context, e.g., CAV id,
 CAV location, sensor rotation
 - We use Bayesian neural network for context-based prediction

Our Solution (3/4)

Solve the problem with the Lagrangian methods

- We convert the stochastic problem into a deterministic one
- First, an exhaustive search of the computation partition (discrete in practice)
- Second, use the Lagrangian primal-dual method to derive the optimal solution

Our Solution (4/4)

Infrastructural temporal balancing

- Each CAV makes its resource request, which may over-request
- We find that the task can always be completed as long as the total allocated resources are enough
- Use water-filling like algorithm to balance the temporal resource usage

Time slot	1	2	3	4	5	6
user 1	2	1	1	1	1	1
user 2	0	6	0	0	0	0
user 3	0	0	0	0	0	6

End-to-End Network Simulator

- Time-driven, with 5G UL/DL and queue-based edge computation
- Packet sizes and computing time are collected from real experiments/profiling

Other Parameters

- YOLOv5 object detection, ORB feature extraction, brutal-force feature matching
- V2X-Sim Dataset, including 50 CAVs over 100 frames
- Radio bandwidth 10MHz, latency requirement is 100ms with 90th percentile

Simulation Results – Overall Performance

- Our solution achieves the given percentile requirements, i.e., Prob(L<100ms)>90%
- Our solution obtains the lowest resource usage with assured requirements

Fig. 1: Latency performance of algorithms

Fig. 4: Performance of algorithms

Simulation Results – Temporal Resources

- Our solution achieves on-demand resource allocation in time domain.
- More in the radio, and relatively less in computation.

Fig. 2: Radio resource allocation

Fig. 3: Compute resource allocation

Results (3/3)

Simulation Results – Scalability

- Our solution maintains the percentile requirements at scale
- Large reduction on resource usage as compared to Equality

Fig. 6: Usage under different traffic

- We proposed a new provisioning method for new crowdsourcing HD maps in automotive edge computing
- ❖ To achieve deterministic latency performance, we design a new algorithm that **proactively** allocates temporal resource
- We developed an end-to-end network simulator with traces from experimental profiling
- The proposed algorithm shows the overall performance is better than baseline algorithms.

kt.han@toyota.com

