Modelos de Computação CC1004

2016/2017

1° Teste – 22/03/2017

duração: 2h30

Resolução de algumas questões

1. O diagrama seguinte foi obtido de um automáto finito, de alfabeto $\Sigma = \{a, b\}$, após algumas iterações do método de eliminação de estados. Desenhe o diagrama que se obtém no **passo seguinte** se se eliminar s_5 .

Não simplifique as expressões que obtiver e ilustre como efetuou a eliminação de S_5 .

Resposta omitida: Aplicar o algoritmo dado nas aulas. Para explicar, apresentar um esquema com os dois arcos que entram em s_5 , o lacete, e os três arcos que saem. A seguir, indicar os 2×3 arcos que são criados/afetados e as respetivas expressões regulares (abreviadas) e, finalmente, desenhar o novo diagrama.

2. Seja $A = (S, \Sigma, \delta, s_0, F)$ o AFND- ε representado abaixo, com $\Sigma = \{a, b\}$.

- a) Indique o valor de $\delta(s_0, \varepsilon)$, $\delta(s_5, a)$, $Fecho_{\varepsilon}(s_3)$ e $Fecho_{\varepsilon}(s_1)$.
- **b)** Dê exemplo de $x, y \in \Sigma^*$ tais que $x \in \mathcal{L}(A)$ e $y \notin \mathcal{L}(A)$. Explique.
- c) Desenhe o diagrama de transição do AFD que resulta de A por aplicação do método de conversão. Indique apenas estados acessíveis do *estado inicial do AFD* e use *conjuntos* para designar os estados.
- **d)** Que significado têm tais conjuntos no método de conversão? Quantos estados tem o AFD se se indicar os estados não acessíveis do seu estado inicial? Por que razão esses estados não são relevantes?

2a)

$$\delta(s_0, \varepsilon) = \{s_2\} \qquad \delta(s_5, \mathbf{a}) = \{s_5, s_0\} \qquad Fecho_{\varepsilon}(s_3) = \{s_3\} \qquad Fecho_{\varepsilon}(s_1) = \{s_1, s_4, s_3\}$$

2b)

x= a porque o percurso (s_0,s_2,s_4,s_3,s_5) com consumo de $\varepsilon\varepsilon\varepsilon$ a mostra que a $\in \mathcal{L}(A)$.

y = b porque s_5 é o único estado final e qualquer percurso do estado s_0 até ao estado s_5 requer o consumo de algum a, pois terá de incluir o arco (s_3, s_5) .

2c)

Resposta omitida: Aplicar o algoritmo dado nas aulas. O AFD que se obtém tem três estados, sendo $\{s_0, s_2, s_4, s_3\}$ o estado inicial. Bastaria desenhar o diagrama. Não é pedida a justificação.

2d)

Cada estado do AFD indica o conjunto de estados em que o AFND- ε pode estar nas mesmas condições. Por exemplo, se a palavra consumida fosse ε , o AFND- ε poderia estar em qualquer um dos estados s_0 , s_2 , s_4 ou s_3 .

De acordo com o método de conversão, se se indicasse também os estados não acessíveis do estado inicial do AFD, o autómato que se obteria teria 2⁶ estados (ou seja, 64 estados).

Por definição, a linguagem reconhecida por um AFD é o conjunto das palavras que o podem levar do estado inicial a algum estado final. Os estados não acessíveis do estado inicial $\{s_0, s_2, s_4, s_3\}$ não são relevantes porque, não existindo nenhum percurso do estado inicial até esses estados, estes não podem contribuir para a aceitação nem para a rejeição de palavras. Por isso, se forem removidos, obtemos um AFD equivalente mas com menos estados (neste caso, 3 estados em vez de 64).

- **3.** Seja r_1 a expressão regular $(((bb) + b)^*)$ e r_2 a expressão regular $(\varepsilon + (aa))$ sobre $\Sigma = \{a, b\}$.
- a) Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson às expressões r_1 e r_2 , de acordo com a construção dada nas aulas.

- **b)** Descreva informalmente as linguagens $\mathcal{L}(r_1)$, $\mathcal{L}(r_2)$, $\mathcal{L}((r_1r_2))$ e $\mathcal{L}((r_1+r_2))$.
 - $\mathcal{L}(r_1)$ é constituída pelas palavras que não têm a's.
 - $\mathcal{L}(r_2)$ é constituída pelas palavras ε e aa.
 - $\mathcal{L}((r_1r_2))$ é constituída pelas palavras que não têm a's ou que terminam em aa e só têm esses dois a's.
 - $\mathcal{L}(\,(r_1+r_2)\,)$ é constituída pela palavra \mathtt{aa} e pelas palavras que não têm \mathtt{a} 's.
- c) Diga, justificando, se $\mathcal{L}(((r_1r_2)^*)) = \{aa, b\}^*$. Na justificação, use diretamente a definição de linguagem descrita por uma expressão regular e a definição das operações sobre linguagens.

Vamos justificar que é verdade que $\mathcal{L}(((r_1r_2)^*)) = \{aa, b\}^*$.

 $\mathcal{L}(b) = \{b\}$, por definição de linguagem descrita por uma expressão regular elementar.

 $\mathcal{L}((bb)) = \mathcal{L}(b)\mathcal{L}(b) = \{b\}\{b\} = \{bb\}$, por definição de linguagem descrita por uma expressão regular da forma (rs) e definição de concatenação de linguagens.

 $\mathcal{L}(((bb) + b)) = \mathcal{L}((bb)) \cup \mathcal{L}(b) = \{bb\} \cup \{b\} = \{b, bb\}$, por definição de linguagem gerada por uma expressão regular da forma (r + s) e definição de união de linguagens.

O fecho de Kleene de $\{b, bb\}$ é igual a $\{b\}^*$ porque, por definição de fecho de Kleene, $b^n \in \{b, bb\}^*$, para todo $n \in \mathbb{N}$, uma vez que $b \in \{b, bb\}$. Logo, $\{b\}^* \subseteq \{b, bb\}^*$. E, também $\{b, bb\}^* \subseteq \{b\}^*$, pois qualquer sequência de $\{b, bb\}^*$ é ε ou uma sequência de b's. Logo, $\{b, bb\}^* = \{b\}^*$.

Sendo $r_1 = (((bb) + b)^*)$, a linguagem que r_1 descreve é o fecho de Kleene de $\mathcal{L}(((bb) + b))$. Logo, $\mathcal{L}(r_1) = \{b\}^*$.

$$\mathcal{L}(r_2) = \mathcal{L}(\varepsilon) \cup \mathcal{L}(\text{ (aa) }) = \{\varepsilon\} \cup \mathcal{L}(\text{a})\mathcal{L}(\text{a}) = \{\varepsilon\} \cup \{\text{a}\}\{\text{a}\} = \{\varepsilon\} \cup \{\text{aa}\} = \{\varepsilon, \text{aa}\}.$$

 $\mathcal{L}(\ (r_1r_2)\)=\mathcal{L}(r_1)\mathcal{L}(r_2)=\{\mathtt{b}\}^{\star}\{\varepsilon,\mathtt{aa}\}.$

 $\mathcal{L}(((r_1r_2)^*)) = (\{b\}^*\{\varepsilon, aa\})^*$. Vamos ver que $(\{b\}^*\{\varepsilon, aa\})^* = \{aa, b\}^*$.

Tem-se $aa \in \{b\}^* \{\varepsilon, aa\}$, pois $\varepsilon \in \{b\}^*$ e $aa \in \{\varepsilon, aa\}$. Tem-se $b \in \{b\}^* \{\varepsilon, aa\}$, pois $b \in \{b\}^*$ e $\varepsilon \in \{\varepsilon, aa\}$.

Como $\{aa,b\}\subseteq \{b\}^*\{\varepsilon,aa\}$, tem-se $\{aa,b\}^*\subseteq (\{b\}^*\{\varepsilon,aa\})^*$. Resta mostrar que $\{aa,b\}^*\supseteq (\{b\}^*\{\varepsilon,aa\})^*$, para podermos concluir que $\{aa,b\}^*=(\{b\}^*\{\varepsilon,aa\})^*$.

Ora $\{b\}^*\{\varepsilon, aa\} = \{b^n \mid n \in \mathbb{N}\}\{\varepsilon, aa\} = \{b^n \mid n \in \mathbb{N}\} \cup \{b^n aa \mid n \in \mathbb{N}\}$. Tem-se $b^n aa \in \{aa, b\}^*$ e $b^n \in \{aa, b\}^*$, para todo $n \in \mathbb{N}$. Logo, qualquer palavra de $(\{b\}^*\{\varepsilon, aa\})^*$ tem número par de a's e qualquer bloco máximo de a's na palavra (máximo, no sentido de não ter a's adjacentes) tem um número par de a's. Portanto, $\{aa, b\}^* \supseteq (\{b\}^*\{\varepsilon, aa\})^*$.

- **4.** Seja L a linguagem das palavras de $\{a,b\}^*$ que terminam em bbb e não têm outras ocorrências da subpalavra bbb que não essa. Note que bbbb não pertence a L.
- a) Indique uma expressão regular (abreviada) que descreva a linguagem L.

 $(a + ba + bba)^*bbb$

b) Apresente o diagrama de transição de um AFD que reconheça L e **não seja mínimo**. Descreva informalmente o conjunto das palavras que levam tal AFD do estado inicial a cada um dos estados.

Seja L_{s_i} o conjunto das palavras que levam o autómato de s_0 a s_i .

- L_{s_0} é constituído por arepsilon e pelas palavras que não têm bbb como subpalavra e terminam em a.
- L_{s_1} é formado pelas palavras que não têm bbb como subpalavra e terminam em b mas não em bb.
- ullet L_{s_2} é formado pelas palavras que não têm bbb como subpalavra e terminam em bb.
- L_{s_3} é L, ou seja, é constituído pelas palavras que terminam em bbb e não têm outras ocorrências da subpalavra bbb que não essa;
- L_{s_4} é formado pelas palavras que têm bbb como subpalavra e têm apenas um símbolo após a ocorrência de bbb.
- L_{s_5} é formado pelas palavras que têm bbb como subpalavra e têm dois ou mais símbolos à direita da primeira ocorrência de bbb.

O estado s_5 foi introduzido para que o AFD não fosse mínimo.

c) Por aplicação do corolário do teorema de Myhill-Nerode determine o **AFD mínimo** que reconhece L. Justifique todos os passos intermédios.

Segundo o corolário, o estado inicial é $[\varepsilon]$. Esse estado não é final, porque $\varepsilon \notin L$.

 $\delta([\varepsilon],\mathtt{a})\stackrel{\mathrm{def}}{=}[\mathtt{a}]=[\varepsilon]$, porque $\mathtt{a}z\in L$ se e só se $z\in L$, o que corresponde à condição para $\varepsilon z\in L$.

 $\delta([\varepsilon], b) \stackrel{\text{def}}{=} [b] \neq [\varepsilon]$, porque para z = bb tem-se $bz \in L$ e $\varepsilon z \notin L$. O novo estado [b] não é final porque $b \notin L$.

 $\delta([\mathtt{b}],\mathtt{a}) \stackrel{\mathrm{def}}{=} [\mathtt{ba}] = [\varepsilon] \text{, porque } \mathtt{ba} z \in L \text{ se e s\'o se } z \in L.$

 $\delta([b], b) \stackrel{\text{def}}{=} [bb]$ é uma nova classe (estado do AFD mínimo), porque para z = b, tem-se $bbz \in L$ mas $bz \notin L$ e $\varepsilon z \notin L$. O estado [bb] não é final porque $bb \notin L$.

 $\delta([\mathtt{bb}],\mathtt{a}) \stackrel{\mathrm{def}}{=} [\mathtt{bba}] = [\varepsilon],$ porque $\mathtt{bba}z \in L$ se e só se $z \in L$.

 $\delta([bb], b) \stackrel{\text{def}}{=} [bbb]$, é um novo estado porque $bbb \in L$ mas $bb \notin L$, $b \notin L$, $e \in L$ (portanto, bastaria tomar $z = \varepsilon$ para concluir que bbb não seria equivalente a nenhuma dessas palavras segundo R_L). O estado [bbb] é final.

 $\delta([bbb], a) \stackrel{\text{def}}{=} [bbba]$, é um novo estado porque bbba $z \notin L$, qualquer que seja $z \in \Sigma^*$ (pois bbbaz teria de terminar em bbb e ficaria com mais do que uma ocorrência de bbb). Tal condição não se verifica para as palavras bbb, bb, b e ε .

 $\delta(\texttt{[bbb]},\texttt{b}) \stackrel{\text{def}}{=} \texttt{[bbbb]} = \texttt{[bbba]}, \text{ porque tamb\'em bbbb} z \not\in L, \text{ para todo } z \in \Sigma^{\star}.$

 $\delta([\mathtt{bbba}],\mathtt{a}) \stackrel{\mathrm{def}}{=} [\mathtt{bbbaa}] = [\mathtt{bbba}], \text{porque tamb\'em bbbaa} z \not\in L, \text{para todo } z \in \Sigma^\star.$

 $\delta(\texttt{[bbba]},\texttt{b}) \stackrel{\text{def}}{=} \texttt{[bbbab]} = \texttt{[bbba]}, \text{ porque tamb\'em bbbab} z \not\in L, \text{ para todo } z \in \Sigma^\star.$

- **5.** Seja $A = (S, \Sigma, \delta, s_0, F)$ um AFD. O que representa a tabela que construimos no algoritmo de Moore para A? Que significado têm os pares (s_i, s_j) que colocamos em algumas entradas? Como e quando são usados? Como se obtém o AFD mínimo equivalente a A, no fim? Que relação existe entre a caraterização do AFD mínimo que aceita $\mathcal{L}(A)$, dada pelo corolário do teorema de Myhill-Nerode, e a noção de estados equivalentes/não equivalentes explorada no algoritmo de Moore?
 - (10%) A tabela corresponde à (parte triangular inferior da) matriz da relação de equivalência \equiv definida no conjunto de estados do AFD que são acessíveis do estado inicial. Se no fim substituissemos X por 0 e \equiv por 1, teriamos essa parte da matriz da relação \equiv .
 - (15%) Os pares (s_i, s_j) que colocamos em algumas entradas representam pares que ficaram pendentes e aguardam uma possível decisão de **não** equivalência para essas entradas.
 - (25%) O par (s_i,s_j) fica pendente se na análise de (s_i,s_j) existirem pares $(\delta(s_i,a),\delta(s_j,a))$ que ainda não têm decisão (ainda não foram analisados ou estão pendentes) e para todos os restantes $a \in \Sigma$, se existirem, tem-se $\delta(s_i,a) \equiv \delta(s_j,a)$. Nesse caso, para cada $a \in \Sigma$ tal que $(\delta(s_i,a),\delta(s_j,a))$ ainda não tem decisão, coloca-se (s_i,s_j) na entrada correspondente ao par $(\delta(s_i,a),\delta(s_j,a))$. Se alguma dessas entradas for posteriomente marcada com X (ou seja, como um par de estados não equivalentes), então essa informação é propagada a todos os pares que constam da sua entrada (que serão marcados também com X) e estes, por sua vez, propagam sucessivamente aos que constarem das suas entradas.
 - (15%) Considerando que os estados não acessíveis do estado inicial ja foram (trivialmente) removidos, cada classe de equivalência de \equiv determina um estado do AFD mínimo. A nova função de transição δ' é dada por $\delta'([s],a)=[\delta(s,a)]$, sendo s um qualquer estado da classe [s] e δ a função de transição do AFD de partida.
 - (35%, pergunta de valorização) Para mostrar que duas palavras x e y são equivalentes segundo a relação de equivalência R_L definida no corolário do Teorema de Myhill-Nerode, onde $L = \mathcal{L}(A)$, iriamos procurar $z \in \Sigma^*$ tal que $xz \in L \land yz \notin L$ ou $xz \notin L \land yz \in L$, ou mostrar que não podia existir. No algoritmo de Moore, sendo s_i e s_j os estados a que as palavras x e y levam o AFD A, a marcação de s_i e s_j como não equivalentes quando um é estado final e o outro não é, corresponde a tomar $z = \varepsilon$. Para os casos em que s_i e s_j são ambos finais ou ambos não finais, a análise que a seguir se faz corresponde a tentar encontrar z que distinga x de y segundo R_L , mas estamos a construir a palavra z da direita para a esquerda. Se marcarmos (s_i, s_j) com X porque encontrámos $a \in \Sigma$ tal que $\delta(s_i, a) \not\equiv \delta(s_j, a)$, então z = az' serve para provar que $(x, y) \notin R_L$, sendo z' a palavra que demonstrou que $\delta(s_i, a) \not\equiv \delta(s_j, a)$. Se concluirmos que $s_i \equiv s_j$, então as palavras x e y pertencem à mesma classe de R_L , pois não existe z que as distinga. Nesse caso, [x] = [y] e como $\mathcal{C}_x \subseteq [x]$ e $\mathcal{C}_y \subseteq [y] = [x]$, então $\mathcal{C}_x \cup \mathcal{C}_y \subseteq [x]$, o que valida a junção dos dois estados s_i e s_j num só. Aqui \mathcal{C}_x denota a classe de equivalência de x segundo o AFD x0 (para a relação x2 definida por x3 y ses x3 num só. Aqui x4 denota a classe segundo x5 por povado nas aulas que x5 que a todo x6 que que seja o AFD x6.

(FIM)