Homework 3

xix90@pitt.edu

problem1:

Problem2:

```
CREATE SCHEMA 'online_conference_review_system';
CREATE TABLE authors (
email VARCHAR(20) NOT NULL,
name VARCHAR(20) DEFAULT NULL,
phone_number VARCHAR(20) DEFAULT NULL,
website VARCHAR(20) DEFAULT NULL
PRIMARY KEY(email)
)

CREATE TABLE organizers(
email VARCHAR(20) NOT NULL,
name VARCHAR(20) DEFAULT NULL,
phone_number VARCHAR(20) DEFAULT NULL,
website VARCHAR(20) DEFAULT NULL
PRIMARY KEY(email)
)
```

CREATE TABLE Reviewers(email VARCHAR(20) NOT NULL,

```
name VARCHAR(20) DEFAULT NULL,
PRIMARY KEY(email)
)
CREATE TABLE conference(
id INT NOT NULL,
name VARCHAR(20),
organizers VARCHAR(50),
submission_page INT,
PRIMARY KEY(id),
Foreign key (id) references paper (conference_id),
Foreign key (organizers) references organizer (email)
)
CREATE TABLE Paper(
id INT NOT NULL,
title VARCHAR(50) DEFAULT NULL,
authors VARCHAR(50) DEFAULT NULL,
key_word VARCHAR(50) DEFAULT NULL,
submitted_time DATE,
conference_id VARCHAR(50) DEFAULT NULL,
reviewers VARCHAR(50) DEFAULT NULL,
download_link VARCHAR(50) DEALLOCATE NULL,
PRIMARY KEY(id),
Foreign key (authors) references authors (email),
Foreign key (reviewers) references Reviewers (email),
Foreign key (conference_id) references conference (id)
)
```

Problem3:

FD	Satisfied by R	Hold on R	Trivial
A → B	No	No	No
B→A	No	No	No
AC → D	Yes	Unknown	No
ABD → B	Yes	Yes	Yes
AC → B	No	No	No
AD → B	No	No	No
C→ABC	No	No	No
BC → D	Yes	Unknown	No
BD→D	Yes	Yes	Yes
BD→A	No	No	No

Problem4:

FD	YES/NO	Proof if yes
ABC→G	YES	$B \rightarrow DE, AC \rightarrow E, ABC \rightarrow DE, (1\&2) ABC \rightarrow D (Decomp of 3)$
ADC 7G	TLS	CD→GF(Decomp), ABC→CD(Decomp)
		ABC→G(Trans)
AC → F	NO	
BF→G	YES	BF→DEF, F→C, CD→GF,
		BF→CDEFG, BF→CDEF
		$BF \rightarrow G(Decomp)$
BCD → F	YES	BCD→DECD, BCD→DECDFG
		BCD→F
ABC→DEF	YES	ABCF→EBF, B→DE, ABCF →BEDF
		ABCF→DEF

Problem5:

Decomposition	Lossless(yes/no)	why
R1(ABF) and R2(CDE)	NO	$R1 \cap R2 = \emptyset$
R1(ABCEF) and R2(CDE)	NO	$R1 \cap R2 = CE$
		CE isn't a key in these two sets
R1(ABDE) and R2(ACDF)	NO	$R1 \cap R2 = AD$
		AD isn't a key I R1
R1(ACDF) and R2(BCDE)	YES	$R1 \cap R2 = CD$
		CD is a key in R1 and R2
		CD→CD, D→A, C→BF
		Thus CD→ACDF
		C→F
		so Lossless
R1(ABEF) and R2(BCDF)	NO	$R1 \cap R2 = BF$
		BF isn't a key in these two sets

Problem6:

Relation, FD	Answer(a, b or c)	Solution
R1(A, B, C, D)	С	A→ABC, C→D, AB→ABCD
$\{AB \rightarrow C, C \rightarrow D\}$		AB is a primary key, and C
		is not a key.
		R1 is neither 3NF nor
		BCNF.
R2(A, B, C, D)	a, b	AC→BD, AC→ABCD,
{AC→BD}		AC is the primary key.
		R2 is both in 3NF and
		BCNF.
R3(A, B, C, D)	b	AB→CD, D→A, AB→ABCD

{AB→CD, D→A}		AB is primary key. D isn't a	
		key.	
		A depends on D.	
		R3 is 3NF.	
R4(A, B, C, D, E)	С	AC→D, D→B	
$\{AC \rightarrow D, D \rightarrow B\}$		both not primary key.	
		R4 is neither 3NF nor	
		BCNF.	
R5(A, B, C, D, E)	С	A→CE, D→CE, D→CDE,	
{A→CE, D→CE}		A→CE	
		A and D both are not	
		primary key.	
		R5 is neither 3NF nor	
		BCNF.	

Problem7:

A:5 kBytes.

Running table T needs to take 1 block size in the disk, so it will take 5 kBytes.

Problem8:

A:300 Mbytes.

According to the equation: n*size_of_tuple = block_size.

Dbsm has to read the whole table, so there are 300 Mbytes for this query to be read.

Problem9:

A:61440 blocks, 300 Mbytes(314572800bytes).

Firstly, it will ready 300 Mbytes= 300×1024×1024bytes=314572800bytes from the disk.

$$n\ tuple = \frac{300 MBytes}{5 KBytes} = \frac{300 \times 1024 KBytes}{5 KBytes} = 61440\ blocks$$

So, it will be read 61440 blocks from the disk.

problem10:

the clustered index will be included in the table T, so there need 8 Kbytes equals to 2 blocks.

Best case, there will have 2 blocks + n tuples = 2 + 61440 = 61442 blocks

If all the num != 500, so there will be no data need to be read, then the blocks are 2.

problem11:

