ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA KHOA HỌC - KỸ THUẬT MÁY TÍNH

KIẾN TRÚC MÁY TÍNH

ĐÈ: 03

Bài tập cá nhân

Mục lục

1	Đề Bài	2
	1.1 Đề 3:	2
2	Bài làm	2
	2.1~a) Dùng bộ nhớ cache Direct-mapped có 32 block, mỗi block chứa 1 word	2
	2.2 b)	3
	(2.3 c)	3

1 Đề Bài

1.1 Đề 3:

Câu 1: Cho biết khi lấy ngẫu nhiên một điểm trong hình vuông có cạnh là 1, xác suất để điểm đó nằm trong hình tròn nội tiếp hình vuông là $\pi/4$ (diện tích hình tròn chia diện tích hình vuông). Áp dụng vào hệ tọa độ Đề Cát trong khoảng (0 < x < 1 và 0 < y < 1), viết chương trình MARS MIPS dùng chức năng set seed (syscall 40) theo time (syscall 30) và các chức năng phát số ngẫu nhiên để phát ra tọa độ số thực (x,y) (0 < x < 1, 0 < y < 1) của 50000 điểm dùng để xác định số PI theo gợi ý trên (dùng hình tròn nội tiếp bán kính 0.5 hoặc $\frac{1}{4}$ hình tròn bán kính 1 đều được). Lưu kết quả chạy chương trình lên tập tin PI.TXT gồm các thông tin như sau:

So diem nam trong hinh tron: ddddd/50000

So PI tinh duoc: f.ffffff

Câu 2: Cho danh sách địa chỉ 32-bit truy xuất theo địa chỉ word như sau:

- 5, 172, 43, 37, 253, 88, 173, 5, 183, 44, 186, 252
- a) Nếu dùng bộ nhớ cache Direct-mapped có 32 block, mỗi block chứa 1 word. Hãy xác định địa chỉ theo bit, từ đó suy ra các vùng tag, index lưu trữ vào cache. Cho biết trạng thái Hit/Miss của chuỗi truy xuất trên.
- b) Làm lại câu a) với bộ nhớ cache Direct-mapped có 16 block, mỗi block chứa 2 word.
- c) Hãy xác định tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache trong cả 2 trường hợp. Biết rằng 1 phần tử cache sẽ chứa 1 bit V, các bit tag và dữ liệu.

2 Bài làm

2.1 a) Dùng bộ nhớ cache Direct-mapped có 32 block, mỗi block chứa 1 word.

• Xác định vùng tag, index:

Cache có 32 block. Suy ra index = 5 bit.

Mõi block chứa 1 word = 4 byte. Suy ra byte
offset = 2 bit.

Đường địa chỉ 32 bit. Suy ra tag = 32 - 5 - 2 = 25 bit.

• Trang thái Hit/Miss của chuỗi truy xuất:

Do truy xuất theo địa chỉ word nên 2 bits offset ở cuối được xem như ẩn đi, không cần xét trong phần này. Ta sử dụng đường địa chỉ 32 bit. Nhưng giá trị của tất cả địa chỉ trong dãy địa chỉ trên nhỏ hơn 256 (Theo hệ 10), nên chỉ có 8 bit tiếp theo của 2 bit offset có giá trị khác 0. Do đó, ta chỉ quan tâm đến 8 bit đó.

Địa chỉ khối	Địa chỉ khối nhị phân(32 bit)	new
5	000000000000000000000000000000000000000	
174	000000000000000000000001010 1110 00	
45	000000000000000000000000000000000000000	
6	000000000000000000000000000000000000000	
253	00000000000000000000001111 1101 00	
88	00000000000000000000000101 1000 00	
173	000000000000000000000001010 1101 00	
14	000000000000000000000000000000000000000	
89	00000000000000000000000101 1001 00	
44	000000000000000000000000000000000000000	
186	000000000000000000000001011 1010 00	
252	00000000000000000000001111 1100 00	

Trường Đại Học Bách Khoa Tp.Hồ Chí Minh Khoa Khoa Học và Kỹ Thuật Máy Tính

Địa chỉ khối	Tag (26 bit)	Hit/Miss	Chỉ số khối ở bộ nhớ đệm(4bit)	Offset(2 bit)
5	000000000000000000000000000000000000000	Miss	0101	00
174	000000000000000000000000000000000000000	Miss	1110	00
45	000000000000000000000000000000000000000	Miss	1101	00
6	000000000000000000000000000000000000000	Miss	0110	00
253	000000000000000000000001111	Miss	1101	00
88	000000000000000000000000000000000000000	Miss	1000	00
173	0000000000000000000000001010	Miss	1101	00
14	000000000000000000000000000000000000000	Miss	1110	00
89	000000000000000000000000000000000000000	Miss	1001	00
44	000000000000000000000000000000000000000	Miss	1100	00
186	00000000000000000000000000001011	Miss	1010	00
252	000000000000000000000001111	Miss	1100	00

2.2 b)

Địa chỉ khối	Địa chỉ khối nhị phân(32 bit)
5	000000000000000000000000000000000000000
174	000000000000000000000001010 111 000
45	000000000000000000000000000000000000000
6	000000000000000000000000000000000000000
253	00000000000000000000001111 110 100
88	00000000000000000000000101 100 000
173	000000000000000000000001010 110 100
14	000000000000000000000000000000000000000
89	000000000000000000000000101 100 100
44	000000000000000000000000000000000000000
186	00000000000000000000001011 101 000
252	00000000000000000000001111 110 000

Địa chỉ khối	Tag (26 bit)	Hit/Miss	Index(3 bit)	Offset(3 bit)
5	000000000000000000000000000000000000000	Miss	010	100
174	000000000000000000000001010	Miss	111	000
45	000000000000000000000000000000000000000	Miss	110	100
6	000000000000000000000000000000000000000	Miss	011	000
253	000000000000000000000001111	Miss	110	100
88	000000000000000000000000000000000000000	Miss	100	000
173	000000000000000000000001010	Miss	110	100
14	000000000000000000000000000000000000000	Miss	111	000
89	000000000000000000000000000000000000000	Hit	100	100
44	000000000000000000000000000000000000000	Miss	110	000
186	0000000000000000000000001011	Miss	101	000
252	000000000000000000000001111	Miss	110	000

2.3 c)

Tổng số bit bộ nhớ cần dùng = (1 + tag + data) * số block

- TH1: Số bit = (1 + 26 + 32) * 16 = 944 (bit)
- TH2: Số bit = (1 + 26 + 2*32) * 8 = 728 (bit)