Regional differences in sex and origin, on work discrimination in Argentina 2019

Anexo: sintaxis de operaciones

Eduardo Bologna

07 octubre, 2020

Los datos

Lectura de la base, se toman todas las variables como factores para conservar los cinco dígitos en CNO

Componentes de los índices:

Seguridad en el empleo

seguridad_normalizada Opción para el índice_2: temporalidad + obra social: C1P2.6 1 Permanente, tiene trabajo durante todo el año o de manera continua 2 De temporada o estacional 3 Intermitente (no de temporada o estacionario)

```
table(ecetss$C1P2.6)
##
##
       1
             2
                   3
## 7112 739 1115
Cruzada con la combinación de estas dos:
C2P4.2 ¿Usted tiene obra social? "Asalariados (cat_ocup = 3)"
1 Sí
2 \text{ No}
99 Ns./Nc.
C2BP4.1
¿Usted tiene obra social? "Independientes (cat ocup = 1 o 2)"
1 Sí
2 \text{ No}
99 Ns./Nc.
```

```
addmargins(table(ecetss$C2P4.2))
##
                     99 Sum
           1
                 2
## 2548 4619 1798
                      1 8966
levels(ecetss$C2P4.2)<-c(NA, 1, 2, NA)</pre>
ecetss$C2P4.2<-factor(ecetss$C2P4.2)</pre>
levels(ecetss$C2BP4.1)<-c(NA, 1, 2, NA)</pre>
ecetss$C2BP4.1<-factor(ecetss$C2BP4.1)</pre>
addmargins(table(ecetss$C2BP4.1))
##
##
      1
           2 Sum
## 1072 1474 2546
ecetss$obra_social<-ifelse(ecetss$cat_ocup==3,</pre>
                             ecetss$C2P4.2, ecetss$C2BP4.1)
kable(addmargins(table(ecetss$obra_social, ecetss$C2P4.2)))
                 2
                    Sum
          1
 1
       4619
                 0
                    4619
 2
              1798
                    1798
       4619
              1798
                    6417
kable(addmargins(table(ecetss$obra_social, ecetss$C2BP4.1)))
```

	1	2	Sum
1	1072	0	1072
2	0	1474	1474
Sum	1072	1474	2546

kable(addmargins(table(ecetss\$C1P2.6, ecetss\$C2BP4.1)))

	1	2	Sum
1	831	811	1642
2	72	192	264
3	169	471	640
Sum	1072	1474	2546

La variable seguridad tiene seis categorías que van de desde 1= intermitente sin obra social, hasta 6=estable con obra social

```
table(ecetss$C1P2.6,ecetss$obra_social)
```

```
ecetss$seguridad<-ifelse(</pre>
  ecetss$C1P2.6==1 & ecetss$obra_social==1, 6, ifelse(
   ecetss$C1P2.6==1 & ecetss$obra_social==2, 5, ifelse(
      ecetss$C1P2.6==2 & ecetss$obra_social==1, 4,ifelse(
        ecetss$C1P2.6==2 & ecetss$obra_social==2, 3, ifelse(
          ecetss$C1P2.6==3 & ecetss$obra_social==1, 2, 1
          )
       )
     )
   ))
summary(ecetss$seguridad)
##
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                             Max.
                                                     NA's
##
     1.000
           5.000 6.000 4.973 6.000
                                            6.000
# verificación
table(ecetss$obra_social, ecetss$seguridad, ecetss$C1P2.6)
## , , = 1
##
##
##
         1
              2
                   3
              0
                 0 0
                             0 5178
##
         0
    1
##
     2
         0
                      0 1933
##
   , , = 2
##
##
##
                   3
                                  6
##
         1
##
     1
         0
              0
                   0 244
                             0
                                  0
     2
              0 494
##
         0
##
##
##
##
##
              2
                   3
                             5
                                  6
         1
##
            269
                   0
                        0
    2 845
                   0
##
              0
                             0
# de los permanentes, hay con seguridad 6 (tienen obra social) y 5 (no la tienen y así los demás)
Se estandariza:
ecetss$seguridad_normalizada<-
  100*(ecetss$seguridad-min(ecetss$seguridad, na.rm = TRUE))/(
   max(ecetss$seguridad, na.rm = TRUE)-min(ecetss$seguridad, na.rm = TRUE))
summary(ecetss$seguridad_normalizada)
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                             Max.
                                                     NA's
     0.00 80.00 100.00 79.46 100.00 100.00
##
```


Consistencia educación - calificación

Calificación ocupacional

Se extrae el quinto dígito de CNO, se eliminan los casos no válidos, se rotula e invierte su codificación. Luego se lo trata como numérico.

```
# Verificación
table(ecetss$calif.ocup, ecetss$calif.ocup_num)
```

```
##
##
                             2
                                  3
                                        4
                       1
##
     no calificada 1897
                             0
                                  0
                                        0
##
     operativa
                       0 4460
                                  0
                                        0
     técnica
                       0
                                        0
##
                             0 1581
     profesional
                       0
                             0
                                  0 1019
```

Educación

Se eliminan los valores perdidos, se trata como numérica

```
ecetss$nivel_ed[ecetss$nivel_ed==99]<-NA
ecetss$nivel_ed<-factor(ecetss$nivel_ed)

ecetss$nivel_ed_num<-as.numeric(as.character(ecetss$nivel_ed))

# verificación
table(ecetss$nivel_ed, ecetss$nivel_ed_num)</pre>
```

```
##
##
             0
                   1
                         2
                               3
                                     4
                                           5
                                                 6
                                                       7
                                                             8
                                                                   9
                                                                        10
##
      0
            36
                   0
                         0
                               0
                                     0
                                           0
                                                 0
                                                             0
                                                                   0
                                                                         0
##
             0
                404
                         0
                               0
                                     0
                                           0
                                                 0
                                                       0
                                                             0
                                                                   0
                                                                         0
      1
##
      10
             0
                   0
                         0
                               0
                                     0
                                           0
                                                                       194
      2
                   0 1155
                               0
                                     0
                                           0
                                                                   0
##
             0
                                                 0
                                                       0
                                                             0
                                                                         0
##
      3
             0
                   0
                         0 1571
                                     0
                                           0
                                                       0
                                                                         0
##
      4
             0
                   0
                         0
                               0 2353
                                           0
                                                       0
                                                             0
                                                                   0
                                                                         0
##
      5
             0
                         0
                               0
                                     0
                                        455
                                                       0
                                                             0
                                                                         0
                   0
                                     0
                                                                         0
##
      6
             0
                   0
                         0
                               0
                                           0 1049
                                                       0
                                                             0
                                                                   0
##
     7
             0
                         0
                               0
                                     0
                                           0
                                                 0
                                                    687
                                                                         0
                               0
                                                       0 1002
                                                                   0
                                                                         0
##
      8
             0
                   0
                         0
                                     0
                                           0
                                                 0
##
      9
                         0
                                           0
                                                       0
                                                             0
                                                                  48
                                                                         0
```

Inconsistencia

inconsistencia: más alto más inconsistencia

```
ecetss$inconsistencia<-ecetss$nivel_ed_num/ecetss$calif.ocup_num
summary(ecetss$inconsistencia)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.000 1.500 2.000 2.236 3.000 8.000 21
```

Se ajusta el signo: $consistencia_normalizado$

```
ecetss$consistencia_normalizado<-100*(ecetss$inconsistencia-max(ecetss$inconsistencia, na.rm = TRUE))/(
```

Ingresos - hora

Ingresos

Se lo trata como numérico y se retienen de la base solo los casos con ingreso mayor a cero y menor al percentil

Horas

Se eliminan dos casos con 24/24, 7/7 = 168 horas

```
ecetss$horas_ocup_ppal<-as.numeric(as.character(ecetss$hs_sem_ref))</pre>
table(ecetss$horas_ocup_ppal)
##
## -99
         0
                 2
                      3
                          4
                              5
                                  6
                                      7
                                               9
                                                  10
                                                          12
                                                               13
                                                                   14
                                                                            16
                                                                                    18
             1
                                           8
                                                       11
                                                                       15
                                                                                17
    36 104
            13
                37
                     45
                         62
                             44
                                 80
                                      28
                                          93
                                              55
                                                  76
                                                       26 138
                                                               21
                                                                   54 125
                                                                            73
##
   19
        20
            21
                22
                    23
                         24
                             25
                                 26
                                      27
                                          28
                                              29
                                                  30
                                                      31
                                                           32
                                                               33
                                                                   34
                                                                       35
                                                                            36
                                                                                37
                                                                                    38
    20 444
            39
                45
                    19 240 242
                                 20
                                      29
                                          83
                                              32 555
                                                       26 107
                                                               29
                                                                   62 319 161
##
                                                                                34
                                                                                    38
##
    39
        40
            41
                42
                    43 44
                             45
                                 46
                                      47
                                          48
                                              49
                                                  50
                                                       51
                                                           52
                                                               53
                                                                   54
                                                                       55
                                                                            56
                                                                                57
                                                                                    58
    35 958
            26 100
                     36 419 397
                                 75
                                      33 507
                                              55 158
                                                       35
                                                           68
                                                               30 101
                                                                       59 133
##
                                                                                    24
                62
                                                  70
                                                       71
                                                           72
                                                               73
                                                                       75
                                                                           76
                                                                                77
##
    59
        60
            61
                    63
                         64
                             65
                                 66
                                      67
                                          68
                                              69
                                                                   74
                                                                                    78
            7
                    24
                         29
                                 31
                                       3
                                          20
                                               9
                                                        6
                                                           75
                                                                3
                                                                    3
                                                                        4
##
    13 183
                10
                             19
                                                  44
                                                                           10
                                                                                13
                                                                                    16
##
    79
                82
                    83
                         84
                             85
                                 86
                                          88
                                              90
                                                  91
                                                       92
                                                           93
                                                                   96
                                                                       98 102 104 105
        80
            81
                                      87
                                                               94
##
        10
             2
                 5
                         79
                              2
                                  2
                                       1
                                           3
                                                   6
                                                        1
                                                            1
                                                                2
                                                                   10
                                                                        7
                                                                             1
     3
                      1
## 108 109
           112 114 116 118 120 128 132 135
                                             144
                                                 168
                  1
                      1
                          1
                              1
                                       1
summary(ecetss$horas_ocup_ppal)
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                Max.
##
     -99.0
              24.0
                       40.0
                               35.9
                                        46.0
                                               168.0
ecetss<-subset(ecetss, ecetss$horas_ocup_ppal>0 &
```

Ingresos por hora semanal

ecetss\$horas ocup ppal<168)

```
ecetss$ing_hora<-ecetss$ingreso_op_num/(4*ecetss$horas_ocup_ppal)
summary(ecetss$ing_hora)
##
      Min. 1st Qu.
                       Median
                                  Mean
                                       3rd Qu.
                                                    Max.
##
      0.581
             59.028 100.000 127.393 163.880 3750.000
ecetss$ing hora bruto normalizado<-
  100*(
    ecetss$ing_hora-min(ecetss$ing_hora, na.rm = TRUE))/(
      max(ecetss$ing_hora, na.rm = TRUE)-min(
        ecetss$ing_hora, na.rm = TRUE))
ecetss$ing_hora_bruto_normalizado_log<-
  100*(
   log(ecetss$ing_hora)-log(min(
      ecetss$ing_hora, na.rm = TRUE)))/(log(max(
        ecetss$ing_hora, na.rm = TRUE))-log(min(
         ecetss$ing_hora, na.rm = TRUE)))
summary(ecetss$ing_hora_bruto_normalizado)
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                              Max.
##
     0.000
            1.559 2.652
                            3.382 4.355 100.000
```

Ajuste ingresos

Considerando que el ingreso tiene un valor relativo al lugar de residencia, se transforman los ingresos/hora de la ocupación principal en puntajes z, con las medias y desviaciones estándar de cada región.

1. Se construyen vectores que contienen medias y desviaciones estándar por región.

```
regiones<-c(10, 40:44)
ingresos_hora_medios_region<-vector(length = 6)

for (j in 1:6) {
   ingresos_hora_medios_region[[j]]<-
        mean(subset(ecetss, ecetss$region==regiones[j])$ing_hora)
}

desviaciones_ingresos_hora_region<-vector(length = 6)

for (j in 1:6) {
   desviaciones_ingresos_hora_region[[j]]<-
        sd(subset(ecetss, ecetss$region==regiones[j])$ing_hora)
}</pre>
```

2. Se estandarizan los ingresos hora en torno a la media y desviación propias de cada región.

```
ecetss$z_ingreso_hora<-
  ifelse(
    ecetss$region==10,
    (ecetss$ing hora-ingresos hora medios region[1])/
      desviaciones_ingresos_hora_region[1],
    ifelse(
      ecetss$region==40,
      (ecetss$ing hora-ingresos hora medios region[2])/
        desviaciones_ingresos_hora_region[2],
      ifelse(
        ecetss$region==41,
        (ecetss$ing_hora-ingresos_hora_medios_region[3])/
          desviaciones_ingresos_hora_region[3],
        ifelse(ecetss$region==42,
               (ecetss$ing_hora-ingresos_hora_medios_region[4])/
                 desviaciones_ingresos_hora_region[4],
          ifelse(
            ecetss$region==43,
            (ecetss$ing_hora-ingresos_hora_medios_region[5])/
              desviaciones_ingresos_hora_region[5],
            (ecetss$ing hora-ingresos hora medios region[6])/
              desviaciones_ingresos_hora_region[6])))))
```

3. Se normaliza

ingreso hora normalizado

```
ecetss$ingreso_hora_normalizado<-
100*(ecetss$z_ingreso_hora-min(
    ecetss$z_ingreso_hora, na.rm = TRUE))/
    (max(ecetss$z_ingreso_hora, na.rm = TRUE)-min(
    ecetss$z_ingreso_hora, na.rm = TRUE))

summary(ecetss$ingreso_hora_normalizado)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 2.542 3.756 4.561 5.552 100.000
```

Autonomía

Se usan variables de ECETSS que no están en EPH: aut_org, aut_metod, aut_ritmo, aut_pausas, aut_cantt Con categorías: La categorízación de cada una es: 1 Siempre 2 Muchas veces 3 Algunas veces 4 Solo alguna vez 5 Nunca 99 ns/nc

Se eliminan los 99, se la trata como numérica y se define el índice como suma simple

```
levels(ecetss$aut_org)<-c(1,2,3,4,5,NA)
levels(ecetss$aut_metod)<-c(1,2,3,4,5,NA)
levels(ecetss$aut_ritmo)<-c(1,2,3,4,5,NA)
levels(ecetss$aut_pausas)<-c(1,2,3,4,5,NA)
levels(ecetss$aut_cantt)<-c(1,2,3,4,5,NA)</pre>
```

```
ecetss$aut_org_num<-as.numeric(as.character(ecetss$aut_org))
ecetss$aut_metod_num<-as.numeric(as.character(ecetss$aut_metod))
ecetss$aut_ritmo_num<-as.numeric(as.character(ecetss$aut_ritmo))
ecetss$aut_pausas_num<-as.numeric(as.character(ecetss$aut_pausas))
ecetss$aut_cantt_num<-as.numeric(as.character(ecetss$aut_cantt))

ecetss$aut_org_num+ecetss$aut_metod_num+
ecetss$aut_org_num+ecetss$aut_metod_num+
ecetss$aut_pausas_num+
ecetss$aut_pausas_num+
ecetss$aut_cantt_num</pre>
summary(ecetss$autonomia)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 5.00 5.00 9.00 10.35 13.00 25.00 6
```

ggplot(ecetss)+geom_histogram(aes(autonomia))

Se normaliza con el orden invertido para que los números más altos correspondan a mayor autonomía:

```
ecetss$autonomia_normalizada<-
100*(
    ecetss$autonomia-max(ecetss$autonomia, na.rm = TRUE))/</pre>
```

```
(-max(ecetss$autonomia, na.rm = TRUE)+
    min(ecetss$autonomia, na.rm = TRUE))
# verificación
table(ecetss$autonomia_normalizada, ecetss$autonomia)
```

##															
##		5	6	7	8	9	10	11	12	13	14	15	16	17	18
##	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	35	0	0	0	0	0	0	0	0	0	0	0	0	0	118
##	40	0	0	0	0	0	0	0	0	0	0	0	0	228	0
##	45	0	0	0	0	0	0	0	0	0	0	0	149	0	0
##	50	0	0	0	0	0	0	0	0	0	0	297	0	0	0
##	55	0	0	0	0	0	0	0	0	0	278	0	0	0	0
##	60	0	0	0	0	0	0	0	0	380	0	0	0	0	0
##	65	0	0	0	0	0	0	0	291	0	0	0	0	0	0
##	70	0	0	0	0	0	0	489	0	0	0	0	0	0	0
##	75	0	0	0	0	0	448	0	0	0	0	0	0	0	0
##	80	0	0	0	0	659	0	0	0	0	0	0	0	0	0
##	85	0	0	0	324	0	0	0	0	0	0	0	0	0	0
##	90	0	0	548	0	0	0	0	0	0	0	0	0	0	0
## ##	95 100	0 2164	389 0	0	0	0	0	0	0	0	0	0	0	0	0
##	100	2104	U	U	U	U	U	U	U	U	U	U	U	U	U
##		19	20	21	22	23	24	25							
##	0	0	0	0	0	0	0	270							
##	5	0	0	0	0	0	35	0							
##	10	0	0	0	0	85	0	0							
##	15	0	0	0	63	0	0	0							
##	20	0	0	116	0	0	0	0							
##	25	0	89	0	0	0	0	0							
##	30	132	0	0	0	0	0	0							
##	35	0	0	0	0	0	0	0							
##	40	0	0	0	0	0	0	0							
##	45	0	0	0	0	0	0	0							
##	50	0	0	0	0	0	0	0							
##	55	0	0	0	0	0	0	0							
##	60	0	0	0	0	0	0	0							
##	65	0	0	0	0	0	0	0							
##	70	0	0	0	0	0	0	0							
##	75	0	0	0	0	0	0	0							
##	80	0	0	0	0	0	0	0							
##	85	0	0	0	0	0	0	0							
##	90 95	0	0	0	0	0	0	0							
##		0	0	0	0	0	0	0							
##	100	U	0	0	U	0	0	0							

Primer índice de calidad (comparable con datos EPH)

Segundo índice de calidad (agrega autonomía)

Análisis de los componentes de los índices

Coeficientes de Spearman y significación

```
para_correlaciones<-ecetss[,c(381,388,375,394,396,397)]
v<-rcorr(as.matrix(para_correlaciones), type = "spearman")
v_r<-as.data.frame(v[1])
names(v_r)<-c("r.consistencia", "r.ingr_hora", "r.seguridad", "r.autonomia", "r.IC", "r.IC_2")
kable(v_r)</pre>
```

	r.consistencia	r.ingr_hora	r.seguridad	r.autonomia	r.IC	r.IC_2
consistencia_normalizado	1.0000000	-0.0909495	-0.1081307	-0.0870264	0.4059908	0.2770842
ingreso_hora_normalizado	-0.0909495	1.0000000	0.3911605	0.0188683	0.3940396	0.2699768
seguridad	-0.1081307	0.3911605	1.0000000	0.0849394	0.7985265	0.5734446
autonomia	-0.0870264	0.0188683	0.0849394	1.0000000	0.0168068	-0.6124136
IC	0.4059908	0.3940396	0.7985265	0.0168068	1.0000000	0.7063789
IC_2	0.2770842	0.2699768	0.5734446	-0.6124136	0.7063789	1.0000000

```
v_sig<-as.data.frame(v[3])
names(v_sig)<-c("p.consistencia", "p.ingr_hora", "p.seguridad", "p.autonomia", "p.IC", "p.IC_2")
kable(v_sig)</pre>
```

	p.consistencia	p.ingr_hora	p.seguridad	p.autonomia	p.IC	p.IC_2
consistencia_normalizado	NA	0.0000000	0	0.0000000	0.0000000	0
ingreso_hora_normalizado	0	NA	0	0.1014557	0.0000000	0
seguridad	0	0.0000000	NA	0.0000000	0.0000000	0
autonomia	0	0.1014557	0	NA	0.1446022	0
IC	0	0.0000000	0	0.1446022	NA	0
IC_2	0	0.0000000	0	0.0000000	0.0000000	NA

Se retiene IC

Porque correlaciona mejor con las componentes, la correlación entre ellos es alta y permitirá comparar con EPH

Descripción del índice

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.432 47.865 56.044 51.926 60.031 87.703

skewness(ecetss$IC)
## [1] -1.285026
```

```
kurtosis(ecetss$IC)
## [1] 3.86755
skewness(ecetss$IC^3.19)
## [1] -0.3648484
(summary(ecetss$IC^3.19))^(1/3.19)
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                             Max.
     4.432 47.865 56.044 54.382 60.031 87.703
(abs(skewness(ecetss$IC^3.19)))^(1/3.19)
## [1] 0.7290061
(abs(kurtosis(ecetss$IC^3.19)))^(1/3.19)
## [1] 1.383171
lillie.test(x = ecetss$IC)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: ecetss$IC
## D = 0.16598, p-value < 2.2e-16
```

Variables explicativas

```
ecetss$sexo<-ecetss$C3P16.1
levels(ecetss$sexo)<-c("varones", "mujeres")
ecetss$origen<-ecetss$C3P16.6
levels(ecetss$origen)<-c("natives", "extranjeres", NA)
ecetss$edad<-as.numeric(as.character(ecetss$C0P10.3))</pre>
```

Comparaciones de las distribuciones por sexos y orígenes

```
t.test(IC~sexo, data = ecetss)
```

```
##
## Welch Two Sample t-test
##
## data: IC by sexo
## t = 3.3619, df = 7171.1, p-value = 0.0007782
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3803372 1.4442525
## sample estimates:
## mean in group varones mean in group mujeres
                52.32217
                                      51.40988
t.test(IC~origen, data = ecetss)
##
## Welch Two Sample t-test
##
## data: IC by origen
## t = 4.6826, df = 445.24, p-value = 3.768e-06
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.787928 4.374239
## sample estimates:
##
       mean in group natives mean in group extranjeres
##
                    52.09251
                                              49.01143
ggplot(ecetss)+geom_histogram(aes(IC, y=..density.., fill=origen), bins = 20)+
  xlab("Índice de calidad laboral")+theme_tufte()+facet_grid(sexo~origen)+
  scale_fill_brewer(palette="Dark2")+ theme(legend.position = "none")
```


Comparaciones de las medias por sexos y orígenes

ylab("Medias del Índice de Calidad Laboral")+

theme_tufte()

Índice según edad

```
cor.test(ecetss$IC,ecetss$edad)
##
##
    Pearson's product-moment correlation
##
## data: ecetss$IC and ecetss$edad
## t = 15.269, df = 7534, p-value < 2.2e-16
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
  0.1512674 0.1950691
## sample estimates:
##
         cor
## 0.1732539
ggplot(ecetss)+geom_point(aes(edad, IC),col="green", alpha=0.3)+
  geom_abline(col="red")+ylab("Índice de Calidad Laboral")+
theme_tufte()
```


Modelo lineal

Directo con IC

```
modelo.1<-lm(IC~origen+sexo+region_cod+edad, data = ecetss)</pre>
summary(modelo.1)
##
## Call:
## lm(formula = IC ~ origen + sexo + region_cod + edad, data = ecetss)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -46.928 -3.782
                     3.939
                              7.945
                                     37.991
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        46.51291
                                     0.51432
                                             90.436 < 2e-16 ***
## origenextranjeres
                        -3.92329
                                     0.60437
                                              -6.492 9.04e-11 ***
## sexomujeres
                        -1.00665
                                     0.26714
                                              -3.768 0.000166 ***
## region_codNOA
                        -2.25710
                                     0.42760
                                              -5.279 1.34e-07 ***
## region_codNEA
                        -0.10338
                                     0.43340
                                              -0.239 0.811469
## region_codCuyo
                                     0.43749
                                             -1.412 0.158049
                        -0.61765
```

Transformación Box-Cox

```
para.ajuste<-boxcox(modelo.1, lambda = seq(-4,4))</pre>
```



```
para.ajuste$x[which(para.ajuste$y==max(para.ajuste$y))]
## [1] 3.191919
ecetss$ICbc<-ecetss$IC^3.1919</pre>
```

ecetss\$ICnuevo<-100*(ecetss\$ICbc-min(ecetss\$ICbc))/(max(ecetss\$ICbc)-min(ecetss\$ICbc))</pre>

• Modelo corregido Box-Cox

```
modelo.2<-lm(ICnuevo~origen+sexo+region_cod+edad, data = ecetss)</pre>
summary(modelo.2)
##
## Call:
## lm(formula = ICnuevo ~ origen + sexo + region_cod + edad, data = ecetss)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
                   2.139
## -26.790 -6.803
                            8.080 80.758
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       16.063023
                                   0.469425 34.218 < 2e-16 ***
## origenextranjeres
                       -3.639546
                                   0.551615 -6.598 4.45e-11 ***
## sexomujeres
                                   0.243818 -6.147 8.32e-10 ***
                       -1.498655
## region_codNOA
                       -2.201861
                                   0.390272 -5.642 1.74e-08 ***
## region_codNEA
                       -0.234287
                                   0.395567 -0.592 0.553680
## region_codCuyo
                       -0.390479
                                  0.399300 -0.978 0.328150
## region_codPampeana -0.553144
                                   0.413926 -1.336 0.181480
## region_codPatagónica 1.383628
                                   0.402114
                                            3.441 0.000583 ***
                                   0.009237 18.166 < 2e-16 ***
## edad
                        0.167791
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 10.49 on 7527 degrees of freedom
## Multiple R-squared: 0.05789,
                                   Adjusted R-squared: 0.05689
## F-statistic: 57.81 on 8 and 7527 DF, p-value: < 2.2e-16
```

Con PCA

Call:

##

```
# se retienen solo las tres componentes de IC
solo_componentes_indice<-ecetss[, c(376,381,389)]
# se ejecuta pca
pca<-prcomp(solo_componentes_indice)
# se agregan a la base estas tres columnas
ecetss<-data.frame(cbind(ecetss,pca$x))
# para facilitar la comparación se cambia el signo
# a PC1 y se llama QI
ecetss$QI<- -ecetss$PC1</pre>
```

• Modelo corregido con PCA (conservando la primera componente, con signo cambiado)

lm(formula = QI ~ origen + sexo + region_cod + edad, data = ecetss)

```
modelo.3<-lm(QI~origen+sexo+region_cod+edad, data = ecetss)
summary(modelo.3)
##</pre>
```

```
## Residuals:
      Min
##
               1Q Median
                              30
                                     Max
## -91.415 -2.488 14.756 20.666 36.275
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        -6.04160 1.43630 -4.206 2.63e-05 ***
## origenextranjeres
                                   1.68778 -6.199 5.98e-10 ***
                       -10.46275
                                            5.469 4.68e-08 ***
## sexomujeres
                        4.07978
                                   0.74601
## region_codNOA
                                   1.19411 -6.272 3.76e-10 ***
                        -7.48946
## region_codNEA
                        -2.95845
                                   1.21032 -2.444 0.01453 *
## region_codCuyo
                        -3.07602
                                   1.22174
                                           -2.518 0.01183 *
## region_codPampeana
                        -3.97418
                                   1.26649 -3.138 0.00171 **
## region_codPatagónica
                        3.00349
                                            2.441 0.01466 *
                                   1.23035
## edad
                         0.17304
                                   0.02826
                                            6.123 9.65e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 32.09 on 7527 degrees of freedom
                                  Adjusted R-squared: 0.02061
## Multiple R-squared: 0.02165,
## F-statistic: 20.82 on 8 and 7527 DF, p-value: < 2.2e-16
```

Resumen de la comparación de los modelos

	modelo 1	modelo 2	modelo 3
(Intercept)	46.513	16.063	-6.042
origenextranjeres	-3.923	-3.640	-10.463
sexomujeres	-1.007	-1.499	4.080
region_codNOA	-2.257	-2.202	-7.489
region_codNEA	-0.103	-0.234	-2.958
region_codCuyo	-0.618	-0.390	-3.076
region_codPampeana	-0.760	-0.553	-3.974
region_codPatagónica	1.357	1.384	3.003
edad	0.158	0.168	0.173

modelo 1	modelo 2	modelo 3
0.044	0.058	0.022

Comparación por sexos

```
wilcox.test(ecetss$ICnuevo ~ ecetss$sexo)
##
## Wilcoxon rank sum test with continuity correction
##
## data: ecetss$ICnuevo by ecetss$sexo
## W = 7704466, p-value = 8.085e-15
\#\# alternative hypothesis: true location shift is not equal to 0
u<-t.test(ecetss$ICnuevo ~ ecetss$sexo)
100*(u[[5]][1]-u[[5]][2])/u[[5]][2]
## mean in group varones
                 6.67578
##
## Welch Two Sample t-test
##
## data: ecetss$ICnuevo by ecetss$sexo
## t = 5.6595, df = 7339.6, p-value = 1.576e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.9144243 1.8835796
## sample estimates:
## mean in group varones mean in group mujeres
                22.35538
                                       20.95638
mediana_varones<-median(subset(ecetss ,ecetss$sexo=="varones")$ICnuevo)</pre>
mediana_mujeres<-median(subset(ecetss ,ecetss$sexo=="mujeres")$ICnuevo)</pre>
gap_sexos<-(mediana_varones-mediana_mujeres)/mediana_varones</pre>
gap_sexos
## [1] 0.0977624
ggplot(ecetss)+geom_boxplot(aes(y=ICnuevo, x=sexo, fill=sexo))+theme_tufte()+ylab("Índice de calidad oc
    theme(legend.position = "none")
```


Comparación por orígenes

```
wilcox.test(ecetss$ICnuevo ~ ecetss$origen)
##
##
   Wilcoxon rank sum test with continuity correction
## data: ecetss$ICnuevo by ecetss$origen
## W = 1670567, p-value = 4.093e-07
\mbox{\tt \#\#} alternative hypothesis: true location shift is not equal to 0
v<-t.test(ecetss$ICnuevo ~ ecetss$origen)</pre>
100*(v[[5]][1]-v[[5]][2])/v[[5]][2]
## mean in group natives
##
                14.77339
##
##
   Welch Two Sample t-test
##
```

```
## data: ecetss$ICnuevo by ecetss$origen
## t = 4.9092, df = 450.12, p-value = 1.281e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
  1.690450 3.947399
## sample estimates:
       mean in group natives mean in group extranjeres
                    21.90002
##
mediana_natives<-median(subset(ecetss ,ecetss$origen=="natives")$ICnuevo)</pre>
mediana_extranjeres<-median(subset(ecetss ,ecetss$origen=="extranjeres")$ICnuevo)
gap_origenes<-(mediana_natives-mediana_extranjeres)/mediana_natives</pre>
gap_origenes
## [1] 0.1892387
mediana_natives
## [1] 24.09182
mediana_extranjeres
## [1] 19.53272
ggplot(ecetss)+geom_boxplot(aes(y=ICnuevo, x=origen, fill=origen))+ylab("Índice de calidad ocupacional"
    theme(legend.position = "none")
   100 -
    75 -
```


Comparación por regiones

```
kruskal.test(ecetss$ICnuevo ~ ecetss$region_cod)
##
   Kruskal-Wallis rank sum test
##
##
## data: ecetss$ICnuevo by ecetss$region_cod
## Kruskal-Wallis chi-squared = 64.576, df = 5, p-value = 1.372e-12
w<-aggregate(ecetss$ICnuevo, list(ecetss$region_cod), FUN=median)</pre>
mean(w[[2]])
## [1] 24.09007
sd(w[[2]])
## [1] 1.657913
cv_regiones<-round(100*sd(w[[2]])/mean(w[[2]]),2)</pre>
cv_regiones
## [1] 6.88
ggplot(ecetss)+geom_boxplot(aes(y=ICnuevo, x=reorder(region_cod, -ICnuevo, FUN=median), fill=region_cod
  theme_tufte()+
    theme(legend.position = "none")
```

100 -

Segregación regional

GBA

```
mediana_varones_GBA<-median(subset(ecetss ,ecetss$sexo=="varones" & ecetss$region_cod=="Gran Buenos Aires")$ICnuevo)
mediana_mujeres_GBA<-median(subset(ecetss ,ecetss$sexo=="mujeres"& ecetss$region_cod=="Gran Buenos Aires")$ICnuevo)
gap_sexos_GBA<-(mediana_varones_GBA-mediana_mujeres_GBA)/mediana_varones_GBA
gap_sexos_GBA
```

[1] 0.1151266

[1] 0.2115467

```
wilcox.test(subset(ecetss,
                   ecetss$region_cod=="Gran Buenos Aires")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="Gran Buenos Aires")$sexo)
##
## Wilcoxon rank sum test with continuity correction
## data: subset(ecetss, ecetss$region_cod == "Gran Buenos Aires")$ICnuevo by subset(ecetss, ecetss$reg
## W = 528948, p-value = 1.911e-08
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(subset(ecetss,
                   ecetss$region_cod=="Gran Buenos Aires")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="Gran Buenos Aires")$origen)
##
  Wilcoxon rank sum test with continuity correction
##
## data: subset(ecetss, ecetss$region_cod == "Gran Buenos Aires")$ICnuevo by subset(ecetss, ecetss$reg
## W = 277912, p-value = 8.154e-08
## alternative hypothesis: true location shift is not equal to 0
NOA
mediana_varones_NOA<-median(subset(ecetss ,ecetss$sexo=="varones" &</pre>
                                     ecetss$region_cod=="NOA")$ICnuevo)
mediana_mujeres_NOA<-median(subset(ecetss ,ecetss$sexo=="mujeres"&
                                     ecetss$region_cod=="NOA")$ICnuevo)
gap_sexos_NOA<-(mediana_varones_NOA-mediana_mujeres_NOA)/mediana_varones_NOA
gap_sexos_NOA
## [1] 0.1260163
mediana_natives_NOA<-median(subset(ecetss ,ecetss$origen=="natives"&</pre>
                                     ecetss$region_cod=="NOA")$ICnuevo)
mediana_extranjeres_NOA<-median(subset(ecetss ,ecetss$origen=="extranjeres"&
                                     ecetss$region_cod=="NOA")$ICnuevo)
gap_origenes_NOA<-(mediana_natives_NOA-mediana_extranjeres_NOA)/mediana_natives_NOA
gap_origenes_NOA
## [1] 0.3456294
wilcox.test(subset(ecetss,
                   ecetss$region cod=="NOA")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="NOA")$sexo)
##
```

Wilcoxon rank sum test with continuity correction

```
##
## data: subset(ecetss, ecetss$region_cod == "NOA")$ICnuevo by subset(ecetss, ecetss$region_cod == "NO.
## W = 199257, p-value = 0.01208
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(subset(ecetss,
                   ecetss$region_cod=="NOA")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="NOA")$origen)
##
##
   Wilcoxon rank sum test with continuity correction
## data: subset(ecetss, ecetss$region_cod == "NOA")$ICnuevo by subset(ecetss, ecetss$region_cod == "NO.
## W = 11023, p-value = 0.1489
\#\# alternative hypothesis: true location shift is not equal to 0
NEA
mediana_varones_NEA<-median(subset(ecetss ,ecetss$sexo=="varones" &</pre>
                                     ecetss$region cod=="NEA")$ICnuevo)
mediana_mujeres_NEA<-median(subset(ecetss ,ecetss$sexo=="mujeres"&
                                     ecetss$region cod=="NEA")$ICnuevo)
gap_sexos_NEA<-(mediana_varones_NEA-mediana_mujeres_NEA)/mediana_varones_NEA
gap_sexos_NEA
## [1] 0.02547672
mediana_natives_NEA<-median(subset(ecetss ,ecetss$origen=="natives"&</pre>
                                     ecetss$region_cod=="NEA")$ICnuevo)
mediana_extranjeres_NEA<-median(subset(ecetss ,ecetss$origen=="extranjeres"&</pre>
                                     ecetss$region cod=="NEA")$ICnuevo)
gap_origenes_NEA<-(mediana_natives_NEA-mediana_extranjeres_NEA)/mediana_natives_NEA
gap_origenes_NEA
## [1] 0.05609502
wilcox.test(subset(ecetss,
                   ecetss$region_cod=="NEA")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="NEA")$sexo)
##
## Wilcoxon rank sum test with continuity correction
## data: subset(ecetss, ecetss$region_cod == "NEA")$ICnuevo by subset(ecetss, ecetss$region_cod == "NE
## W = 172419, p-value = 0.3259
## alternative hypothesis: true location shift is not equal to 0
```

```
wilcox.test(subset(ecetss,
                   ecetss$region_cod=="NEA")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="NEA")$origen)
##
## Wilcoxon rank sum test with continuity correction
## data: subset(ecetss, ecetss$region_cod == "NEA")$ICnuevo by subset(ecetss, ecetss$region_cod == "NE
## W = 7958, p-value = 0.9198
## alternative hypothesis: true location shift is not equal to 0
Patagónica
mediana_varones_Patagónica<-median(subset(ecetss ,ecetss$sexo=="varones" &
                                     ecetss$region_cod=="Patagónica")$ICnuevo)
mediana_mujeres_Patagónica<-median(subset(ecetss ,ecetss$sexo=="mujeres"&
                                     ecetss$region_cod=="Patagónica")$ICnuevo)
gap_sexos_Patagónica<-(mediana_varones_Patagónica-mediana_mujeres_Patagónica)/mediana_varones_Patagónic
gap_sexos_Patagónica
## [1] 0.09444781
mediana_natives_Patagónica <- median (subset (ecetss , ecetss $ origen == "natives" &
                                     ecetss$region_cod=="Patagónica")$ICnuevo)
mediana_extranjeres_Patagónica<-median(subset(ecetss ,ecetss$origen=="extranjeres"&
                                     ecetss$region_cod=="Patagónica")$ICnuevo)
gap_origenes_Patagónica < - (mediana_natives_Patagónica-mediana_extranjeres_Patagónica) / mediana_natives_Pa
gap_origenes_Patagónica
## [1] 0.253281
wilcox.test(subset(ecetss,
                   ecetss$region_cod=="Patagónica")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="Patagónica")$sexo)
##
## Wilcoxon rank sum test with continuity correction
## data: subset(ecetss, ecetss$region_cod == "Patagónica")$ICnuevo by subset(ecetss, ecetss$region_cod
## W = 155473, p-value = 0.00512
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(subset(ecetss,
                   ecetss$region_cod=="Patagónica")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="Patagónica")$origen)
## Wilcoxon rank sum test with continuity correction
## data: subset(ecetss, ecetss$region_cod == "Patagónica")$ICnuevo by subset(ecetss, ecetss$region_cod
## W = 41421, p-value = 0.04663
## alternative hypothesis: true location shift is not equal to 0
```

Pampeana

```
ecetss$region_cod=="Pampeana")$ICnuevo)
mediana_mujeres_Pampeana<-median(subset(ecetss ,ecetss$sexo=="mujeres"&
                                     ecetss$region_cod=="Pampeana")$ICnuevo)
gap_sexos_Pampeana<-(mediana_varones_Pampeana-mediana_mujeres_Pampeana)/mediana_varones_Pampeana
gap_sexos_Pampeana
## [1] 0.1392513
mediana_natives_Pampeana<-median(subset(ecetss ,ecetss$origen=="natives"&
                                     ecetss$region_cod=="Pampeana")$ICnuevo)
mediana_extranjeres_Pampeana<-median(subset(ecetss ,ecetss$origen=="extranjeres"&
                                     ecetss$region cod=="Pampeana")$ICnuevo)
gap_origenes_Pampeana<-(mediana_natives_Pampeana-mediana_extranjeres_Pampeana)/mediana_natives_Pampeana
gap_origenes_Pampeana
## [1] 0.2753218
wilcox.test(subset(ecetss,
                   ecetss$region_cod=="Pampeana")$ICnuevo ~ subset(
                     ecetss, ecetss$region cod=="Pampeana")$sexo)
##
## Wilcoxon rank sum test with continuity correction
## data: subset(ecetss, ecetss$region_cod == "Pampeana")$ICnuevo by subset(ecetss, ecetss$region_cod =
## W = 143392, p-value = 6.996e-05
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(subset(ecetss,
                   ecetss$region cod=="Pampeana")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="Pampeana")$origen)
##
## Wilcoxon rank sum test with continuity correction
## data: subset(ecetss, ecetss$region_cod == "Pampeana")$ICnuevo by subset(ecetss, ecetss$region_cod =
## W = 6336, p-value = 0.1457
## alternative hypothesis: true location shift is not equal to 0
Cuyo
mediana_varones_Cuyo<-median(subset(ecetss ,ecetss$sexo=="varones" &</pre>
                                     ecetss$region_cod=="Cuyo")$ICnuevo)
mediana_mujeres_Cuyo<-median(subset(ecetss ,ecetss$sexo=="mujeres"&
                                     ecetss$region_cod=="Cuyo")$ICnuevo)
gap_sexos_Cuyo<-(mediana_varones_Cuyo-mediana_mujeres_Cuyo)/mediana_varones_Cuyo
gap_sexos_Cuyo
```

mediana_varones_Pampeana<-median(subset(ecetss ,ecetss\$sexo=="varones" &

```
## [1] 0.08918259
```

```
mediana_natives_Cuyo<-median(subset(ecetss ,ecetss\strigen=="natives"&
                                     ecetss$region_cod=="Cuyo")$ICnuevo)
mediana_extranjeres_Cuyo<-median(subset(ecetss ,ecetss$origen=="extranjeres"&
                                     ecetss$region_cod=="Cuyo")$ICnuevo)
gap_origenes_Cuyo<-(mediana_natives_Cuyo-mediana_extranjeres_Cuyo)/mediana_natives_Cuyo
gap_origenes_Cuyo
## [1] -0.03630798
wilcox.test(subset(ecetss,
                   ecetss$region_cod=="Cuyo")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="Cuyo")$sexo)
##
## Wilcoxon rank sum test with continuity correction
## data: subset(ecetss, ecetss$region_cod == "Cuyo")$ICnuevo by subset(ecetss, ecetss$region_cod == "C
## W = 173375, p-value = 0.00179
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(subset(ecetss,
                   ecetss$region_cod=="Cuyo")$ICnuevo ~ subset(
                     ecetss, ecetss$region_cod=="Cuyo")$origen)
##
## Wilcoxon rank sum test with continuity correction
## data: subset(ecetss, ecetss$region_cod == "Cuyo")$ICnuevo by subset(ecetss, ecetss$region_cod == "C
## W = 9631.5, p-value = 0.5836
## alternative hypothesis: true location shift is not equal to 0
```