Are local-mins Rare? *

Thomas Jefferson

Abstract

Analyze nonconvex optimization from topology.

1 Test Section

This is a percent %. Should stay here after running the cleaning file.

We add a figure for testing.

If the code is correct, then the following figure should not appear in the cleaned tex file (if the code is wrong in the sense that it only removes % but not the commands after it, then the non-included figure would appear in the cleaned tex file).

We can also check inputting other Latex Files. This is a file in a sub-folder "figures", and we are supposed to see one figure, but not two figures.

^{*}This is an informal note.

2 Model

This part is a test that the standard math formulas will not be affected after running the cleaning file.

Definition (LSC property): $\forall \bar{\alpha} \in G, \bar{x} \in L_f(\bar{\alpha}) \triangleq \{x : f(x) \leq \bar{\alpha}\}, \text{ and } \forall \text{ sequence } \{\alpha_i\} \to \bar{\alpha}, \text{ we have}$

$$\exists x^i \in L_f(\alpha_i), \text{s.t. } \{x^i\} \to \bar{x}.$$

Definition (GC property): For any two points $f(\tilde{x}) < f(\bar{x})$, there exists a sequence $\{x^i\} \in C$ converging to \bar{x} such that

$$f(x^i) \le \frac{1}{i}f(\tilde{x}) + (1 - \frac{1}{i})f(\bar{x}).$$
 (1)