CS2040 Data Structures and Algorithms Lecture Note #11 – Part 2

Graphs

Part 2: Traversal Algorithms

Review - Binary Tree Traversal

In a binary tree, there are three standard traversal:

- Preorder
- Inorder
- Postorder

(Note: "level order" is just BFS which we will see next)

We start binary tree traversal from root:

- pre(root)/in(root)/post(root)
 - \blacksquare pre = 0, 1, 2, 3, 4
 - \blacksquare in = 1, 0, 3, 2, 4
 - \bullet post = 1, 3, 4, 2, 0

What is the PostOrder Traversal of this Binary Tree?

- 1. 0 1 2 3 4
- 2. 0 1 3 2 4
- 3. 34120
- 3 1 4 2 0

Traversing a Graph (1)

Two ingredients are needed for a traversal:

- 1. The start
- 2. The movement

Defining the start ("source")

- In tree, we *normally* start from root
 - Note: Not all tree are rooted though!
 - In that case, we have to select one vertex as the "source", see below
- In general graph, we do not have the notion of root
 - Instead, we start from a distinguished vertex
 - We call this vertex as the "source" s

Traversing a Graph (2)

Defining the movement:

- In (binary) tree, we only have (at most) two choices:
 - Go to the left subtree or to the right subtree
- In general graph, we can have more choices:
 - If vertex u and vertex v are adjacent/connected with edge (u, v); and we are now in vertex u; then we can also go to vertex v by traversing that edge (u, v)
- In (binary) tree, there is no cycle
- In general graph, we may have (trivial/non trivial) cycles
 - We need a way to avoid revisiting $\mathbf{u} \rightarrow \mathbf{v} \rightarrow \mathbf{w} \rightarrow \mathbf{u} \rightarrow \mathbf{v}$... indefinitely

Traversing a Graph (2)

Solution: BFS and DFS

Idea: If a vertex **v** is reachable from **s**, then all neighbors

of **v** will also be reachable from **s** (recursive definition)

Breadth-First Search

Traversing a Graph

Breadth First Search (BFS) – Ideas

- Start from s
- BFS visits vertices of G in breadth-first manner (when viewed from source vertex s)
 - Q: How to maintain such order?
 - A: Use queue Q, initially, it contains only s
 - Q: How to differentiate visited vs unvisited vertices (to avoid cycle)?
 - a: 1D array/Vector visited of size V,
 visited[v] = 0 initially, and visited[v] = 1 when v is
 visited
 - Q: How to memorize the path?
 - A: 1D array/Vector p of size V,
 p[v] denotes the predecessor (or parent) of v
- Edges used by BFS in the traversal will form a BFS "spanning" tree of G (tree that includes all

Level-Order on Tree

```
if T is empty return
Q = new Queue
Q.enq(T)
while Q is not empty
  curr = Q.deq()
  print curr.element
  if T.left is not empty
     Q.enq(curr.left)
  if curr.right is not empty
      Q.enq(curr.right)
```


BFS(v)

```
Q = new Queue
Q.eng(v)
mark v as visited
while Q is not empty
 curr = Q.deq()
 print curr
 foreach w in adj(curr)
     if w is not visited
         Q.enq(w)
         mark w as visited
```


Building the BFS Tree

```
Q = new Queue
Q.enq (v)
mark v as visited
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr)
      if w is not visited
           Q.enq(w)
           w.parent = curr
           mark w as visited
```


Calculating Level

```
Q = new Queue
Q.eng (v)
mark v as visited
                                    B
v.level = 0
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr)
      if w is not visited
           Q.enq(w)
           w.level = curr.level + 1
            mark w as visited
```

Search all vertices

```
Search(G)
foreach vertex v
mark v as unvisited
foreach vertex v
if v is not visited

BFS(v)
```

Running time

```
Q = new Queue
Q.enq (v)
mark v as visited
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr)
      if w is not visited
        Q.enq(w)
        mark w as visited
```

Main Loop

$$O(\sum_{curr \in V} adj(curr)) = O(E)$$

Initialization

Total Running Time

$$O(V+E)$$

Depth-First Search

Traversing a Graph

Depth First Search (DFS)

- Ideas
- Start from s
- DFS visits vertices of G in depth-first manner (when viewed from source vertex s)
 - Q: How to maintain such order?
 - □ A: Stack **S**, but we will simply use recursion (an implicit stack)
 - Q: How to differentiate visited vs unvisited vertices (to avoid cycle)?
 - A: 1D array/Vector visited of size V,
 visited[v] = 0 initially, and visited[v] = 1 when v is visited
 - Q: How to memorize the path?
 - A: 1D array/Vector **p** of size V,**p[v]** denotes the **p**redecessor (or **p**arent) of **v**
- Edges used by DFS in the traversal will form a DFS "spanning" tree of G (tree that includes all vertices of G) stored in p

DFS(v)

```
S = new Stack
S.push (v)
Print and mark v as visited
while S is not empty
  curr = S.top()
  if every vertex in adj(curr)
    is visited
      S.pop()
  else
```


let w be an unvisited vertex in adj(curr)
S.push(w)
print and mark w as visited

Recursive version: DFS(v)

print v
marked v as visited
foreach w in adj(v)
 if w is not visited
 DFS(w)

Search all vertices

```
Search(G)
foreach vertex v
mark v as unvisited
foreach vertex v
if v is not visited
DFS(v)
```

Running time

□ DFS: Θ(V + E)

Two more times!

What can we do with BFS/DFS? (1)

Several tasks, let's see some of them:

- Reachability test
 - Test whether vertex v is reachable from vertex u?
 - Start BFS/DFS from s = u
 - If visited[v] = 1 after BFS/DFS terminates, then v is reachable from u; otherwise, v is not reachable from u

```
BFS(u) // DFSrec(u)
if visited[v] == 1
  Output "Yes"
else
  Output "No"
```


What can we do with BFS/DFS? (2)

- Find Shortest Path between 2 vertices in an unweighted graph/graph where edges have same weight
 - When the graph is unweighted*/edges have same weight, shortest path between any 2 vertices u,v is finding the least number of edges traversed from u to v
 - The O(V+E) Breadth First Search (BFS) traversal algorithm precisely measures this
 - Run BFS from u as source
 - Construct shortest path from u to v from p after BFS finishes
 - Cost of shortest path from u to v is (number of edges in the path)×(edge weight for weighted edges)

^{*} Can treat the edge weight as 1

What can we do with BFS/DFS? (3)

- Identifying component(s)
 - Component is sub graph containing 1 or more vertices in which any 2 vertices are connected to each other by at least one path, and is connected to no additional vertices
 - With BFS/DFS, we can identify components by labeling/counting them in graph G
 - Solution:

```
cc \( \int 0
for all v in V
  visited[v] \( \int 0
for all v in V // O(V)?
  if visited[v] == 0
     cc \( \int cc + 1
     DFSrec(v) // O(V+E)?
     // BFS from v
     // is also OK
```


Topological Sort

Module selection

Definition

Directed Acyclic Graph (DAG): A directed graph with no cycle.

Definition

- □ in-degree of a vertex
 - number of incoming edges
- out-degree of a vertex
 - number of outgoing edges

Topological sort

Goal: Order the vertices, such that if there is a path from u to v, u appears before v in the output.

Topological sort

- ACBEFD
- ACBEDF
- ACDBEF

Pseudocode for Toposort

```
q = new Queue()
put all vertices with in-degree 0 into q
while q is not empty
 v = q.deq()
  print v
  remove v from G
 enqueue neighbours of v with in-degree 0
```

Example

Output: D

Output: DB

Output: DBC

Output: DBCE

Output: DBCEA

Output: DBCEAF

Output: DBCEAFG

Output: DBCEAFGH

Pseudocode for Toposort

```
q = new Queue()
put all vertices with in-degree 0 into q
while q is not empty
 v = q.deq()
 print v
 remove v from G
 enqueue neighbours of v with in-degree 0
```

Which DS to use?
What is the pre-process?
What is the complexity?