AlMer v2.1 and Beyond

June 2025

Seongkwang Kim

Samsung SDS

PQC Competitions

NIST PQC Competition (2016.11 - 2025.3)

- 1st round (2017.11 2019.1)
 - 49 KEM submissions, 20 digital signature submissions
- 2nd round (2019.1 2020.7)
 - 17 KEM (including PKE) schemes, and 9 digital signature schemes
- 3rd round (2020.7 2022.7)
 - KEM: Classic McEliece, Kyber, NTRU, Saber, BIKE, FrodoKEM, HQC, NTRU Prime, SIKE
 - DS: Dilithium, Falcon, Rainbow, GeMSS, Picnic, SPHINCS+

NIST PQC Competition (2016.11 - 2025.3)

- 3rd round selection (2022.7)
 - KEM: Kyber (ML-KEM)
 - DS: Dilithium (ML-DSA), Falcon (FN-DSA), SPHINCS+ (SLH-DSA)
- 4th round (2022.7 2025.3)
 - KEM: Classic McEliece, HQC, BIKE, SIKE
 - 4th round selection (2025.3): HQC
- Documents
 - FIPS published: ML-KEM (FIPS 203), ML-DSA (FIPS 204), SLH-DSA (FIPS 205)
 - FIPS not yet published: FN-DSA (maybe soon), HQC (in 2 years)
 - Other works: transition (IR 8547), recommendations for KEM (SP 800-227), Short SLH-DSA

KpqC Competition (2021.11 - 2025.1)

- 1st round (2022.11 2023.12)
 - 7 KEM submissions, 9 DS submissions
- 2nd round (2023.12 2025.1)
 - KEM: NTRU+, PALOMA, REDOG, SMAUG-T
 - DS: AlMer, HAETAE, MQ-Sign, NCC-Sign
- Selected algorithms
 - KEM: NTRU+, SMAUG-T
 - DS: AlMer, HAETAE

NIST Call for Additional Signature Schemes (2022.9 - present)

- 1st round (2023.6 2024.10)
 - 6 code-based, 1 isogeny-based, 7 lattice-based, 7
 MPCitH-based, 10 MQ-based, 4 symmetric-based, 5 others
- 2nd round (2024.10 present)
 - 2 code-based, 1 isogeny-based, 1 lattice-based, 5
 MPCitH-based, 4 MQ-based, 1 symmetric-based

Preliminaries

Additive Secret Sharing

• Each party shares the input value additively; for input x, P_i has $x^{(i)}$ such that

$$\sum_{i=1}^{n} x^{(i)} = x$$

Addition is naturally compatible:

$$x + y = \sum_{i=1}^{n} x^{(i)} + \sum_{i=1}^{n} y^{(i)}.$$

Additive Secret Sharing

• Each party shares the input value additively; for input x, P_i has $x^{(i)}$ such that

$$\sum_{i=1}^{n} x^{(i)} = x$$

- Multiplication needs a multiplication triple.
 - 1. P_i has $(a^{(i)}, b^{(i)}, c^{(i)})$ such that ab = c
 - **2.** P_i broadcasts $A^{(i)} = x^{(i)} a^{(i)}$
 - 3. P_i broadcasts $B^{(i)} = y^{(i)} b^{(i)}$
 - 4. P_i computes

$$z^{(i)} = c^{(i)} + Ab^{(i)} + Ba^{(i)} + AB$$

= $c^{(i)} + (x - a)b^{(i)} + (y - b)a^{(i)} + (x - a)(y - b) = (xy)^{(i)}$

- Properties:
 - Maliciously-secure generic MPC in the preprocessing model
 - Additive secret sharing with IT-MAC

- Properties:
 - Maliciously-secure generic MPC in the preprocessing model
 - Additive secret sharing with IT-MAC
- Information-theoretic message authentication code (IT-MAC)
 - $\gamma(x) = \alpha \cdot x$
 - Each party shares $(\langle x \rangle, \langle \alpha \rangle, \langle \gamma(x) \rangle)$
 - Each party shares triple $(\langle a \rangle, \langle b \rangle, \langle c \rangle)$ and its MAC values

 Offline Phase (Preprocessing): Generate multiplication triples and its MACs using HE

- Offline Phase (Preprocessing): Generate multiplication triples and its MACs using HE
- Sacrificing technique:
 - Want to check multiplication triple $(\langle a \rangle, \langle b \rangle, \langle c \rangle)$ is honestly generated
 - Use another triple $(\langle f \rangle, \langle g \rangle, \langle h \rangle)$

- Offline Phase (Preprocessing): Generate multiplication triples and its MACs using HE
- Sacrificing technique:
 - Want to check multiplication triple $(\langle a \rangle, \langle b \rangle, \langle c \rangle)$ is honestly generated
 - Use another triple $(\langle f \rangle, \langle g \rangle, \langle h \rangle)$
 - 1. Randomly sample t
 - 2. Open $C = t \cdot \langle a \rangle \langle f \rangle$ and $D = \langle b \rangle \langle g \rangle$
 - 3. Evaluate $t\cdot\langle c\rangle-\langle h\rangle-D\cdot\langle f\rangle-C\cdot\langle g\rangle-CD$ and check whether it is zero

- Offline Phase (Preprocessing): Generate multiplication triples and its MACs using HE
- Sacrificing technique:
 - Want to check multiplication triple $(\langle a \rangle, \langle b \rangle, \langle c \rangle)$ is honestly generated
 - Use another triple $(\langle f \rangle, \langle g \rangle, \langle h \rangle)$
 - 1. Randomly sample t
 - 2. Open $C = t \cdot \langle a \rangle \langle f \rangle$ and $D = \langle b \rangle \langle g \rangle$
 - 3. Evaluate $t\cdot\langle c\rangle-\langle h\rangle-D\cdot\langle f\rangle-C\cdot\langle g\rangle-CD$ and check whether it is zero
 - If $c = ab + \varepsilon$ and $h = fg + \varepsilon'$, then

$$tc - h - (b - g)f - (ta - f)g - (b - g)(ta - f) = t\varepsilon - \varepsilon'$$

- Online Phase (Linear):
 - $\langle \gamma(mx + ny + k) \rangle = m \cdot \langle \gamma(x) \rangle + n \cdot \langle \gamma(y) \rangle + k \cdot \langle \alpha \rangle$

- Online Phase (Linear):
 - $\langle \gamma(mx + ny + k) \rangle = m \cdot \langle \gamma(x) \rangle + n \cdot \langle \gamma(y) \rangle + k \cdot \langle \alpha \rangle$
- Online Phase (Multiplication):
 - 1. Open A = x a, B = y b.
 - 2. Compute local share and MAC share of xy:

$$\langle xy \rangle = \langle c \rangle + A \langle b \rangle + B \langle a \rangle + AB,$$

$$\langle \gamma(xy) \rangle = \langle \gamma(c) \rangle + A \langle \gamma(b) \rangle + B \langle \gamma(a) \rangle + AB \langle \alpha \rangle$$

- Online Phase (Linear):
 - $\langle \gamma(mx + ny + k) \rangle = m \cdot \langle \gamma(x) \rangle + n \cdot \langle \gamma(y) \rangle + k \cdot \langle \alpha \rangle$
- Online Phase (Multiplication):
 - 1. Open A = x a, B = y b.
 - 2. Compute local share and MAC share of xy:

$$\langle xy \rangle = \langle c \rangle + A \langle b \rangle + B \langle a \rangle + AB,$$

$$\langle \gamma(xy) \rangle = \langle \gamma(c) \rangle + A \langle \gamma(b) \rangle + B \langle \gamma(a) \rangle + AB \langle \alpha \rangle$$

• MAC Check: Commit $(\langle \alpha \rangle, \langle z \rangle, \langle \gamma(z) \rangle)$ and open it to check the sum of $\langle \gamma(z) \rangle - \alpha \langle z \rangle$ is zero.

MPC-in-the-Head

- MPCitH paradigm is to build a ZKP system by simulating an MPC protocol computing a one-way function
- Characteristics of the MPCitH-based digital signature is:
 - Security relying only on the one-wayness of the one-way function (no trapdoor)
 - ✓ Trade-off between time & size
 - ✓ Small public key and secret key
 - X Relatively large signature size and sign/verify time

MPCitH-based Signature

Recent MPCitH

Recent MPCitH-based Signature

Phase	Variable	Real				Correction		
	Variable	Value	Party 1	Party 2	Party 3	Party 4	Party 5	Correction
	x	3	5	6	1	3	9	1
	y	6	10	0	6	7	5	0
	z	7	9	4	1	2	7	6
Phase 1	a	2	0	2	6	2	3	-
	b	5	8	4	3	0	1	-
	c	10	4	6	3	7	7	5
	com	-	$h(sd_1)$	$h(sd_2)$	$h(sd_3)$	$h(sd_4)$	$h(sd_5)$	-

Phase 1

- N parties generate the shares of the another multiplication triples (a,b,c) which satisfies ab=c
- Each party commits to their own seeds and sends the corrections

Phase	Variable	Real		Correction				
	Variable	Value	Party 1	Party 2	Party 3	Party 4	Party 5	Correction
	x	3	5 + 1	6	1	3	9	1
	y	6	10 + 0	0	6	7	5	0
	z	7	9 + 6	4	1	2	7	6
Phase 1	a	2	0	2	6	2	3	-
	b	5	8	4	3	0	1	-
	c	10	4 + 5	6	3	7	7	5
	com	-	$h(sd_1)$	$h(sd_2)$	$h(sd_3)$	$h(sd_4)$	$h(sd_5)$	-

Phase 1

- N parties generate the shares of the another multiplication triples (a,b,c) which satisfies ab=c
- Each party commits to their own seeds and sends the corrections

Phase	Variable	Real		Correction						
		Value	Party 1	Party 2	Party 3	Party 4	Party 5	Correction		
	x	3	5 + 1	6	1	3	9	1		
	y	6	10 + 0	0	6	7	5	0		
Phase 1	z	7	9 + 6	4	1	2	7	6		
	\overline{a}	2	0	2	6	2	3	-		
	b	5	8	4	3	()	1	-		
	c	10	4 + 5	6	3	7	7	5		
	com	-	$h(sd_1)$	$h(sd_2)$	$h(sd_3)$	$h(sd_4)$	$h(sd_5)$	-		
Phase 2		Random challenge $\varepsilon=5$ from the verifier								

Phase 2

• Verifier sends random challenge ε to parties

Phase	Variable	Real		Correction				
Filase	Variable	Value	Party 1	Party 2	Party 3	Party 4	Party 5	Correction
	x	3	5 + 1	6	1	3	9	1
	y	6	10 + 0	0	6	7	5	0
	z	7	9 + 6	4	1	2	7	6
Phase 1	a	2	0	2	6	2	3	-
	b	5	8	4	3	()	1	-
	c	10	4 + 5	6	3	7	7	5
	com	-	$h(sd_1)$	$h(sd_2)$	$h(sd_3)$	$h(sd_4)$	$h(sd_5)$	-
Phase 2			Random	challenge	$\varepsilon = 5$ from	m the ve	rifier	
	α	6	4	10	0	6	4	-
Phase 3	β	0	7	4	9	7	6	-
	v	0	4	5	9	3	1	-

Phase 3

• The parties locally set $\alpha^{(i)}=\varepsilon\cdot x^{(i)}+a^{(i)},$ $\beta^{(i)}=y^{(i)}+b^{(i)}$ and broadcast them

Phase	Variable	Real			Share			Correction		
Tilasc	Variable	Value	Party 1	Party 2	Party 3	Party 4	Party 5	Correction		
	x	3	5 + 1	6	1	3	9	1		
	y	6	10 + 0	0	6	7	5	0		
	z	7	9 + 6	4	1	2	7	6		
Phase 1	a	2	0	2	6	2	3	-		
	b	5	8	4	3	()	1	-		
	c	10	4 + 5	6	3	7	7	5		
	com	-	$h(sd_1)$	$h(sd_2)$	$h(sd_3)$	$h(sd_4)$	$h(sd_5)$	-		
Phase 2		Random challenge $\varepsilon=5$ from the verifier								
	α	6	4	10	0	6	4	-		
Phase 3	β	0	7	4	9	7	6	-		
	v	0	4	5	9	3	1	-		

Phase 3

• The parties locally set

$$v^{(i)} = \begin{cases} \varepsilon \cdot z^{(i)} - c^{(i)} + \alpha \cdot b^{(i)} + \beta \cdot a^{(i)} - \alpha \cdot \beta & \text{if } i = 1 \\ \varepsilon \cdot z^{(i)} - c^{(i)} + \alpha \cdot b^{(i)} + \beta \cdot a^{(i)} & \text{otherwise} \end{cases}$$

Phase	Variable	Real		Correction				
	variable	Value	Party 1	Party 2	Party 3	Party 4	Party 5	Correction
	x	3	5 + 1	6	1	3	9	1
	y	6	10 + 0	0	6	7	5	0
	z	7	9 + 6	4	1	2	7	6
Phase 1	\overline{a}	2	0	2	6	2	3	-
	b	5	8	4	3	()	1	-
	c	10	4 + 5	6	3	7	7	5
	com	-	$h(sd_1)$	$h(sd_2)$	$h(sd_3)$	$h(sd_4)$	$h(sd_5)$	-
Phase 2			Random	challenge	$\varepsilon = 5 \text{ fro}$	m the ve	rifier	
Phase 3	α	6	4	10	0	6	4	-
	β	0	7	4	9	7	6	-
	v	0	4	5	9	3	1	-

Phase 3

- Each party opens $v^{(i)}$ to compute v
- If ab = c and xy = z, then v = 0

Phase	Variable	Real		Correction				
Filase	Variable	Value	Party 1	Party 2	Party 3	Party 4	Party 5	Correction
	x	3	5 + 1	6	1	3	9	1
	y	6	10 + 0	0	6	7	5	0
	z	7	9 + 6	4	1	2	7	6
Phase 1	a	2	0	2	6	2	3	-
	b	5	8	4	3	()	1	-
	c	10	4 + 5	6	3	7	7	5
	com	-	$h(sd_1)$	$h(sd_2)$	$h(sd_3)$	$h(sd_4)$	$h(sd_5)$	-
Phase 2			Random	challenge	$\varepsilon = 5 \ \mathrm{fro}$	m the ve	rifier	
	α	6	4	10	0	6	4	-
Phase 3	β	0	7	4	9	7	6	-
	v	0	4	5	9	3	1	-
Phase 4			Random	challenge	$\bar{i}=4$ fro	m the ve	rifier	

Phase 4

• Verifier sends a hidden party index \bar{i} to parties

Toy Example

Phase	Variable	Real	Share					Correction	
		Value	Party 1	Party 2	Party 3	Party 4	Party 5	Correction	
Phase 1	x	3	5 + 1	6	1	3	9	1	
	y	6	10 + 0	0	6	7	5	0	
	z	7	9 + 6	4	1	2	7	6	
	a	2	0	2	6	2	3	-	
	b	5	8	4	3	0	1	-	
	c	10	4 + 5	6	3	7	7	5	
	com	-	$h(sd_1)$	$h(sd_2)$	$h(sd_3)$	$h(sd_4)$	$h(sd_5)$	-	
Phase 2	Random challenge $\varepsilon=5$ from the verifier								
Phase 3	α	6	4	10	0	6	4	-	
	β	0	7	4	9	7	6	-	
	v	0	4	5	9	3	1	-	
Phase 4		Random challenge $\bar{i}=4$ from the verifier							
Phase 5	Open a	Open all parties except $\bar{\it i}$ -th party and check consistency							

Phase 5

- Each party $i \in [N] \setminus \{\overline{i}\}$ sends $x^{(i)}, y^{(i)}, z^{(i)}, a^{(i)}, b^{(i)}$, and $c^{(i)}$ to verifier
- Verifier checks the consistency of the received shares

Detailed MPCitH

Detailed MPCitH

$$\begin{split} & \mathsf{PRG}(\mathsf{seed}^{(1)}) = \\ & (w_1^{(1)}, \dots, w_C^{(1)}, a_1^{(1)}, \dots, a_C^{(1)}, b_1^{(1)}, \dots, b_C^{(1)}, c^{(1)}) \\ & \vdots \\ & \mathsf{PRG}(\mathsf{seed}^{(N)}) = \\ & (w_1^{(N)}, \dots, w_C^{(N)}, a_1^{(N)}, \dots, a_C^{(N)}, b_1^{(N)}, \dots, b_C^{(N)}, c^{(N)}) \end{split}$$

2. Multiplication triple generation

3. Proof w/ FS
$$\begin{aligned} &\operatorname{Proving} x \cdot y = z \\ &\alpha^{(i)} = \epsilon \cdot x^{(i)} + a^{(i)} \\ &\beta^{(i)} = y^{(i)} + b^{(i)} \\ &\operatorname{Broadcast} \alpha \text{ and } \beta \\ &\operatorname{Check} \sum_i (\epsilon z^{(i)} - c^{(i)} + \alpha b^{(i)} + \beta a^{(i)} - \alpha \beta) = 0 \\ &\text{where } ab = c \end{aligned}$$

Choose i using FS!

4. Party Opening

Detailed MPCitH

$$\begin{array}{c} \mathsf{com}^{(1)} \; \mathsf{com}^{(2)} \; \mathsf{com}^{(3)} \; \mathsf{com}^{(4)} \; \mathsf{com}^{(5)} \; \mathsf{com}^{(6)} \; \mathsf{com}^{(7)} \; \mathsf{com}^{(8)} \\ \\ \mathsf{3. Proof w/ FS} \\ \mathsf{Proving} \; x_j \cdot y_j = z_j \\ \alpha_j^{(i)} = \epsilon_j \cdot x_j^{(i)} + a_j^{(i)} \\ \beta_j^{(i)} = y_j^{(i)} + b_j^{(i)} \\ \mathsf{Broadcast} \; \alpha_j \; \mathsf{and} \; \beta_j \\ \mathsf{Check} \; \sum_i (\sum_j (\epsilon_j z_j^{(i)} + \alpha_j b_j^{(i)} + \beta a_j^{(i)} - \alpha_j \beta_j) - c^{(i)}) = 0 \\ \mathsf{where} \; \sum_j a_j b_j = c \end{array}$$

2. Multiplication triple generation

$$\begin{aligned} & \mathsf{PRG}(\mathsf{seed}^{(1)}) = \\ & (w_1^{(1)}, \dots, w_C^{(1)}, a_1^{(1)}, \dots, a_C^{(1)}, b_1^{(1)}, \dots, b_C^{(1)}, c^{(1)}) \\ & \vdots \\ & \mathsf{PRG}(\mathsf{seed}^{(N)}) = \\ & (w_1^{(N)}, \dots, w_C^{(N)}, a_1^{(N)}, \dots, a_C^{(N)}, b_1^{(N)}, \dots, b_C^{(N)}, c^{(N)}) \end{aligned}$$

4. Party Opening

Choose *i* using FS!

AlMer

AlMer v1.0

AlMer v2.0

Advantage & Limitation

- Advantages
 - 1. Short key size
 - 2. Security only relies on symmetric primitives
 - 3. Most efficient among schemes relying only on symmetric primitives
- Limitations
 - 1. Modest performance
 - 2. Relatively new primitive
 - * But multiple cryptanalysts have admitted that AIM2 is secure against state-of-the-art cryptanalytic techniques.

Security

- Security of AIMer is reduced to preimage resistance of AIM2
- Conventional symmetric key cryptanalysis cannot be applied to AIM2
 - Single input-output assumption
- We prevent algebraic attacks with the utmost effort
 - Sufficient security margin despite of radical assumption
 - We brute-forced all the derivable quadratic system of AIM2
 - All the attacks done for symmetric primitives with large S-boxes are considered

Performance

AlMer enjoys balanced performance (all-rounder).

Size (B)			Time (cycle)			
sk	pk	sig	KeyGen	Sign	Verify	
2,528	1,312	2,420				
1,281	897	666				
64	32	17.1 <mark>K</mark>				
1,408	992	1,474				
2,400	1,760	2,912				
161K	328 <mark>K</mark>	134				
48	32	¯ 5 ,888 ¯				
	2,528 1,281 64 1,408 2,400 161K	sk pk 2,528 1,312 1,281 897 64 32 1,408 992 2,400 1,760 161K 328K	sk pk sig 2,528 1,312 2,420 1,281 897 666 64 32 17.1K 1,408 992 1,474 2,400 1,760 2,912 161K 328K 134	sk pk sig KeyGen 2,528 1,312 2,420 1,281 897 666 64 32 17.1K 1,408 992 1,474 2,400 1,760 2,912 161K 328K 134	sk pk sig KeyGen Sign 2,528 1,312 2,420 1,281 897 666 64 32 17.1K 1,408 992 1,474 2,400 1,760 2,912 161K 328K 134	

SUPERCOP result (Zen 4), Category 1 or 2, median speed

Performance

AlMer enjoys balanced performance (all-rounder).

Scheme	Size (B)			Time (cycle)			
Scheme	sk	pk	sig	KeyGen	Sign	Verify	
Dilithium	2,528	1,312	2,420	62K	149K	70K	
Falcon	1,281	897	666	15.6M*	331K*	63K*	
SPHINCS+-f	64	32	17.1 <mark>K</mark>	1.23M*	5.65 M *	6.26M*	
HAETAE	1,408	992	1,474	437K	1.13M	100K	
NCC-Sign-tri	2,400	1,760	2,912	197K	295K	196K	
MQ-Sign-LR	161K	328 <mark>K</mark>	134	5.60 M *	67K*	35K*	
AlMer-f	48	32	5,888	40K	889K	898K	

^{*} Not intend to be constant-time SUPERCOP result (Zen 4), Category 1 or 2, median speed

Implementations

- Github repository at (https://github.com/ samsungsds-research-papers/AIMer)
- Reference (C standalone)
- Optimized (AVX2)
- ARM64 + SHA3 (only in Apple M series)
- Constrained memory (≤ 110 KB)
- ARM Cortex-M4 (in pgm4 library)

Relaxed Vector Commitment for

Shorter Signatures

(Eurocrypt 2025)

Vector Commitment

Vector Commitment

Vector Commitment

Vector Semi-Commitment

- 1. Halved commitment size
- 2. GGM tree \rightarrow correlated GGM tree

- 1. Halved commitment size
- 2. GGM tree \rightarrow correlated GGM tree

- 1. Halved commitment size
- 2. GGM tree \rightarrow correlated GGM tree
- 3. Random oracle model \rightarrow ideal cipher model

- 1. Halved commitment size
- 2. GGM tree → correlated GGM tree
- 3. Random oracle model \rightarrow ideal cipher model

Performance

Scheme	pk	sig	Sign	Verify
	(B)	(B)	(Kc)	(Kc)
Dilithium2	1,312	2,420	162	57
SPHINCS ⁺ -128f*	32	17,088	38,216	2,158
SPHINCS+-128s*	32	7,856	748,053	799
SDitH-Hypercube-gf256	132	8,496	20,820	10,935
FAEST-128f	32	6,336	2,387	2,344
FAEST-128s	32	5,006	20,926	20,936
AIMer-v2.0-128f	32	5,888	788	752
AIMer-v2.0-128s	32	4,160	5,926	5,812
rAlMer-128f	32	4,848	421	395
rAlMer-128s	32	3,632	2,826	2,730

^{*: -}SHAKE256-simple

Conclusion

- MPC-in-the-Head is a paradigm to construct ZKP from MPC, which does not require a trapdoor
- AIM2 is a one-way function designed for efficiency in MPCitH paradigm and security against algebraic attacks
- AlMer is a digital signature scheme proving one-way function AIM within the MPCitH paradigm
- Research on MPCitH-based (including TCitH, VOLEitH) signature is not yet finished

Thank you!

Check out our website!

Attribution

- Illustrations at the very beginning was created using fontawesome latex package (https: //github.com/xdanaux/fontawesome-latex).
- SUPERCOP result can be found in https://bench.cr. yp.to/results-sign/amd64-hertz.html.