Planche 1.

Exercice 1. Soit $f: \mathbb{R}^n \to \mathbb{R}$ différentiable en 0 et telle que pour tout $x \in \mathbb{R}^n$ et t > 0 on ait

$$f(tx) = tf(x)$$

Montrer que f est linéaire.

Exercice 2. Calculer la différentielle de $f: M_n(\mathbb{R}) \to \mathbb{R}^n$ définie par

$$f(M) = (\mathsf{tr}(M), \dots, \mathsf{tr}(M^n))$$

Planche 2.

Exercice 1. Soit $f: \mathbb{R}^n \to \mathbb{R}$ différentiable partout. On suppose f constante sur S(0,1). Montrer qu'il existe a telle que ||a|| < 1 et $df_a = 0$.

Exercice 2. Soit $p \in \mathbb{N}$. Trouver pour quels p, la fonction suivante est prolongeable par continuité en 0, différentiable ou C^1 sur \mathbb{R}^2 :

$$(x+y)^p \sin\left(\frac{1}{\sqrt{x+y}}\right)$$

Planche 3.

Exercice 1. Soit $f: E \to E$ C^1 où E est un espace euclidien. Soit $K \ge 0$. Montrer que les propriétés suivantes sont équivalentes

- 1. $\forall x, y \in E, \langle f(x) f(y), x y \rangle \ge K||x y||^2$
- 2. $\forall x, h \in E, \langle df_x(h), h \rangle \geq K||h||^2$

Exercice 2. Trouver les extremums locaux et globaux de $x^4 + y^4 - 4xy$ sur \mathbb{R}^2 .