Kempe recoloring version of Hadwiger's conjecture

Clément Legrand-Duchesne

LaBRI, Bordeaux

October 14, 2021

Joint work with Marthe Bonamy, Marc Heinrich and Jonathan Narboni

Clément Legrand 1 / 9

Kempe chain (1879)

Maximal bichromatic connected component in G

Kempe chain (1879)

Maximal bichromatic connected component in G

Kempe chain (1879)

Maximal bichromatic connected component in G

← □ →

Kempe chain (1879)

Maximal bichromatic connected component in ${\it G}$

Clément Legrand Some context 2 /

Natural questions in reconfiguration

Reconfiguration graph

- $V(R^k(G)) = k$ -colorings of G.
- α and β adjacent if $\alpha \xleftarrow[\text{Kempe}]{} \beta$

Reachability Are α and β Kempe-equivalent ?

Connectivity Is $R^k(G)$ connected ?

Diameter Estimate $diam(R^k(G))$?

Application

- Powerful tool (ex: Vizing theorem)
- Sampling coloring with a Markov chain

Clément Legrand Some context 3 /

Graph minor

Graph minor

H is a minor of G if H can be obtained be deleting vertices, edges and contracting edges of G

 K_k is a minor of G if and only if $V_1 \sqcup \cdots \sqcup V_k \subseteq V(G)$, with V_i connected and $G[V_1, \ldots V_k] = K_k$

Graph minor

Graph minor

H is a minor of G if H can be obtained be deleting vertices, edges and contracting edges of G

 K_k is a minor of G if and only if $V_1 \sqcup \cdots \sqcup V_k \subseteq V(G)$, with V_i connected and $G[V_1, \ldots, V_k] = K_k$

Wagner, Kuratowski 1930

A graph is planar iff K_5 -minor and $K_{3,3}$ -minor free

Hadwiger's conjecture

Appel, Haken 1976 If G is planar, then $\chi(G) \leq 4$

Robertson, Sanders, Seymour, Thomas 1997 Much simpler proof, but still computer assisted

Hadwiger's conjecture 1943

If G is K_t -minor free then $\chi(G) \leq t - 1$ Proved for 1 < t < 6, widely open for t > 6

Reconfiguration counterpoint

Meyniel 1978

All 5-colorings of a planar graph are Kempe-equivalent (tight)

Las Vergnas and Meyniel 1981

All 5-colorings of a K_5 -minor free graph are Kempe-equivalent

Reconfiguration counterpoint

Meyniel 1978

All 5-colorings of a planar graph are Kempe-equivalent (tight)

Las Vergnas and Meyniel 1981

All 5-colorings of a K_5 -minor free graph are Kempe-equivalent

Conjecture 1 [Las Vergnas and Meyniel 1981]

All the t-colorings of a K_t -minor free graph are Kempe-equivalent

Conjecture 2 [Las Vergnas and Meyniel 1981]

All the t-colorings of a K_t -minor free graph are Kempe-equivalent to a (t-1)-coloring

Frozen colorings

Frozen coloring

 α is frozen if $\forall i, j \leq k$, the graph induced by colors i and j is connected

Quasi-minor

 K_k is quasi-minor of G if there exists $V_1 \sqcup \cdots \sqcup V_k$ such that $\forall i \neq j, G[V_i \cup V_j]$ is connected and $G[V_1, \ldots V_k] = K_k$

Frozen k-coloring \Rightarrow quasi K_k -minor

Last conjecture

Conjecture 3 [Las Vergnas and Meyniel 1981]

No K_t -minor \Rightarrow No frozen t-coloring

Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then

- no frozen t-coloring
- only one *t*-coloring up to color permutation

Last conjecture

Conjecture 3 [Las Vergnas and Meyniel 1981]

No K_t -minor \Rightarrow No frozen t-coloring

Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then

- no frozen t-coloring
- only one *t*-coloring up to color permutation

Bonamy, Heinrich, L., Narboni '21+

• Strongly disproved for large t: for every $\varepsilon>0$ and large enough t, there exists a graph G with a quasi- K_t -minor but no $K_{\left(\frac{2}{3}+\varepsilon\right)t}$ -minor

Last conjecture

Conjecture 3 [Las Vergnas and Meyniel 1981]

No K_t -minor \Rightarrow No frozen t-coloring

Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then

- no frozen t-coloring
- only one t-coloring up to color permutation

Bonamy, Heinrich, L., Narboni '21+

- Strongly disproved for large t: for every $\varepsilon > 0$ and large enough t, there exists a graph G with a quasi- K_t -minor but no $K_{\left(\frac{2}{3}+\varepsilon\right)t}$ -minor
- All $\frac{t}{2}$ -colorings of a K_t -minor free graph are Kempe-equivalent