	Question 1 Import Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt (a) Apply to the Evenene Date
	(a) Analyze the Exasens Data Set from https://archive.ics.uci.edu/ml/datasets/Exasens. Analysis: 1. The dataset contains of extra columns at the end. 2. The dataset contains multiple rows for column names. So we need to consider these facts while loading dataframe.
In [2] In [3] Out[3]	df_exasens.columns = ['Diagnosis', 'ID', 'Imaginary_Part_Min', 'Imagniary_Part_Avg', 'Real_Part_Min', 'Real_P df_exasens.
	0 COPD 301-4 -320.61 -300.563531 -495.26 -464.171991 1 77 2 1 COPD 302-3 -325.39 -314.750360 -473.73 -469.263140 0 72 2 2 COPD 303-3 -323.00 -317.436056 -476.12 -471.897667 1 73 3 3 COPD 304-4 -327.78 -317.399670 -473.73 -468.856388 1 76 2 4 COPD 305-4 -325.39 -316.155785 -478.52 -472.869783 0 65 2
In [4]	396 Infected I178 NaN NaN NaN NaN 0 29 1 397 Infected I179 NaN NaN NaN NaN 1 51 1 398 Infected I180 NaN NaN NaN NaN 0 40 1 399 rows × 9 columns (c) Ignore the following columns: Diagnosis and ID
In [5]	ur_exasens
	4 -325.39 -316.155785 -478.52 -472.869783 0 65 2 394 NaN NaN NaN NaN 0 49 2 395 NaN NaN NaN NaN 0 37 1 396 NaN NaN NaN NaN NaN 0 29 1 397 NaN NaN NaN NaN NaN 1 51 1 398 NaN NaN NaN NaN NaN 0 40 1
In [6]	<pre> <class 'pandas.core.frame.dataframe'=""> RangeIndex: 399 entries, 0 to 398 Data columns (total 7 columns): # Column Non-Null Count Dtype</class></pre>
	3 Real_Part_Avg 100 non-null float64 4 Gender 399 non-null int64 5 Age 399 non-null int64 6 Smoking 399 non-null int64 dtypes: float64(4), int64(3) memory usage: 21.9 KB (d) Replace the missing values in each column with the average between the median and the mean column value. Example: if a column contains the values 1,2,NaN,1,1 then compute the mean (1.25) and the median (1) and substitute NaN with the average between 1.25 and 1 (1.125). By doing so the column will be 1,2,1.125,1,1.
In [7] In [8] Out[8]	<pre>for col in df_exasens.columns: indices_notna = df_exasens[col].notna() df_notna = df_exasens.loc[indices_notna, col] new_val = (df_notna.median() + df_notna.mean()) / 2 df_exasens[col].replace(np.nan, new_val, inplace=True) df_exasens</pre>
	0 -320.6100 -300.563531 -495.2600 -464.171991 1 77 2 1 -325.3900 -314.750360 -473.7300 -469.263140 0 72 2 2 -323.0000 -317.436056 -476.1200 -471.897667 1 73 3 3 -327.7800 -317.399670 -473.7300 -468.856388 1 76 2 4 -325.3900 -316.155785 -478.5200 -472.869783 0 65 2 394 -318.9709 -309.553427 -473.3661 -462.918834 0 49 2 395 -318.9709 -309.553427 -473.3661 -462.918834 0 37 1
In [9]	<pre><class 'pandas.core.frame.dataframe'=""></class></pre>
	RangeIndex: 399 entries, 0 to 398 Data columns (total 7 columns): # Column Non-Null Count Dtype
In [10]	<pre>(e) Display a scatter plot for each distinct pair of columns (e.g. for 'Immaginary_Part_Min' and 'Real_Part_Max', for 'Real_Part_Min' and 'Age', etc). Distinguish by color between instances that originally had at least one missing value and those that did not have any missing value. idf_exasens['had_missing'] = had_missing df_exasens['had_missing'] = df_exasens['had_missing'].astype(int) cols = df_exasens.columns[:-1] print(cols) total_plots = sum([i for i in range(1, len(cols))]) print(total_plots) fig, axes = plt.subplots(figsize=(45, 15), nrows=int(np.ceil(total_plots // 7)), ncols=7)</pre>
	<pre>axes = axes.flatten() print(axes.shape) plot_index = 0 for i in range(len(cols)): for j in range(i + 1, len(cols)): df_exasens.plot.scatter(x=cols[i], y=cols[j], c='had_missing', colormap='viridis', ax=axes[plot_index plot_index += 1] Index(['Imaginary_Part_Min', 'Imagniary_Part_Avg', 'Real_Part_Min',</pre>
	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	Question 2 Import Libraries
In [11] In [12]	<pre>import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns plt.style.use('fivethirtyeight') from sklearn.datasets import load_iris X, y = load_iris(return_X_y=True)</pre>
In [13]	print('X:', X.shape) print('y:', y.shape) X: (150, 4) y: (150,) (a) Collect all instances belonging to the same class in distinct data matrices. np.unique(y)
Out[13] In [14]	<pre>X_0 = X[y == 0] print('X_0:', X_0.shape) X_1 = X[y == 0] print('X_1:', X_1.shape) X_2 = X[y == 0] print('X_2:', X_2.shape) X_0: (50, 4) X_1: (50, 4) X_2: (50, 4)</pre>
In [15] Out[15]	<pre>covariance_matrix = np.cov(X_z.T) plt.figure(figsize=(10,10)) sns.heatmap(covariance_matrix, square=True, annot=True) plt.title('Correlation Matrix') Text(0.5, 1.0, 'Correlation Matrix')</pre>
1	Correlation Matrix 0.8 0.8 0.6
	-0.12 1 -0.43 -0.37 0.4 0.2 0.00
In [16]	# Step-1: Perform Normalization
	<pre>X_z = (X - X.mean(axis=0)) / X.std(axis=0) # Step-2: Calculate Covariance Matrix X_shifted = X_z - X_z.mean(axis=0) covariance_matrix = X_shifted.T.dot(X_shifted) / len(X_shifted) # print('[covariance_matrix]\n', covariance_matrix) # Step-3: Calculate Eigen Vectors and Eigen Values eigen_values, eigen_vectors = np.linalg.eig(covariance_matrix) indices = np.argsort(eigen_values)[::-1] # print('[indices]\n', indices) eigen_values, eigen_vectors = eigen_values[indices], eigen_vectors[indices] # print('[eigen_values]\n', eigen_values) # print('[eigen_vectors]\n', eigen_vectors)</pre>
In [17]	<pre># Step-4: Transform data matrix X by top 2 eigen_vectors X_2D = X @ eigen_vectors.T[:, :2] # print('[X, X_2D]', X.shape, X_2D.shape) return X_2D X_2D = CustomPCA_2D(X) (c) Display a scatter plot in 2D</pre>
In [18] Out[18]	of the Iris dataset using your pca function and distinguishing instances belonging to different classes by color. df_plot = pd.DataFrame({'pca1': X_2D[:, 0], 'pca2': X_2D[:, 1], 'label': y}) df_plot.plot.scatter(x='pca1', y='pca2', c='label', s=50, colormap='viridis', figsize=(12, 10)) -2.5 -2.5 1.75
	-3.0 -3.5 1.50 1.00 \(\frac{\text{Q}}{\text{Q}} \)
	0.75 -4.5 -5.0 0.75
In [19]	(d) Write your own code to perform a low rank reconstruction of a data matrix. The function should take in input the data matrix and an integer to specify the desired rank. def low rank reconstruction (X, rank):
In [20]	<pre>U, S, V = np.linalg.svd(X) # print('[U, S, V]', U.shape, S.shape, V.shape) # print('[U]\n', U) # print('[S]\n', S) # print('[V]\n', V) X_reconstruction = U[:, :rank] * S[:rank] @ V[:rank,:] return X_reconstruction</pre> Xr_0 = low_rank_reconstruction(X_0, 3) Xr_1 = low_rank_reconstruction(X_1, 3) Xr_2 = low_rank_reconstruction(X_2, 3) print('[Xr_0]', X_0.shape, Xr_0.shape)
In [21]	print('[Xr_1]', X_1.shape, Xr_1.shape) print('[Xr_2]', X_2.shape, Xr_2.shape) [Xr_0] (50, 4) (50, 4) [Xr_1] (50, 4) (50, 4) [Xr_2] (50, 4) (50, 4) [Xr_2] (50, 4) (50, 4) (e) For each instance compute the reconstruction error as the length of the difference vector between an original instance and the reconstructed instance. When performing the low rank approximation consider the individual class specific data matrices.
*** [2*]	<pre># calculate difference vectors Xd_0 = X_0 - Xr_0 Xd_1 = X_1 - Xr_1 Xd_2 = X_2 - Xr_2 # calculate reconstruction error (vector length) Xr_error_0 = (Xd_0 * Xd_0).sum(axis=1) Xr_error_1 = (Xd_1 * Xd_1).sum(axis=1) Xr_error_2 = (Xd_2 * Xd_2).sum(axis=1) print('Xr_error_0:', Xr_error_0.shape) print('Xr_error_1:', Xr_error_1.shape) print('Xr_error_2:', Xr_error_2.shape) Xr_error_0: (50,) Xr_error_1: (50,)</pre>
In [22]	<pre>(f) Display a scatter plot in 2D of the Iris dataset using your pca function and encoding the magnitude of the reconstruction error when rank=3 using the gray scale colormap. Xr_error = np.hstack((Xr_error_0, Xr_error_1, Xr_error_2)) print('Xr_error:', Xr_error.shape, y.shape) Xr_error: (150,) (150,)</pre>
In [23] Out[23]	<pre># plot with reconstruction error as coloring df_plot = pd.DataFrame({'pcal': X_2D[:, 0], 'pca2': X_2D[:, 1], 'error': Xr_error}) df_plot.plot.scatter(x='pcal', y='pca2', c='error', s=200, colormap='gray', ax=axis_pca) # plot with label as coloring df_plot = pd.DataFrame({'pcal': X_2D[:, 0], 'pca2': X_2D[:, 1], 'label': y}) df_plot.plot.scatter(x='pcal', y='pca2', c='label', s=50, colormap='viridis', ax=axis_pca, colorbar=False)</pre>
	-3.0 -3.5 -3.5
	-4.5 -4.5 -0.02
	-5.0 -1.5 -1.0 -0.5 pcal
In [24]	Import Libraries
In [25]	<pre>will lie on the vertices of a regular polygon (if k=3 the polygon is a triangle, if k=6 it is an hexagon, etc). Write your own code to determine the position of the vertices of a regular polygon given a radius value in input. Hint: you can use your knowledge on linear transformations (e.g. rotations). def get_vertices(k, r): vertices = [] step_t = 2 * np.pi / k for t in np.arange(0, 2 * np.pi, step_t): x_coord = r * np.cos(t) y_coord = r * np.sin(t) vertices.append([x_coord, y_coord]) return vertices</pre>
	<pre># plt.figure(figsize=(6, 6)) # ax = plt.subplot(1, 1, 1) # ax.scatter(*get_vertices(3, 1)) # ax.scatter(*get_vertices(4, 1)) # ax.scatter(*get_vertices(5, 1)) # ax.scatter(*get_vertices(6, 1))</pre> (b) The covariance matrices will be constructed by specifying 2 parameters: a ratio between the two main directions of variability (if the ratio is, say, 2:1, then the parameter is 2); and a rotation in degrees (i.e. 90 for a right angle) to determine the main direction of variability.
In [26]	def get cov matrix(ratio, rotation):
Out[27]	<pre>theta = np.radians(rotation) c, s = np.cos(theta), np.sin(theta) R = np.array([[c, -s], [s, c]]) S = np.diag([ratio, 1]) L = S**2 cov_matrix = R @ L @ R.T return cov_matrix</pre>
	<pre>theta = np.radians(rotation) c, s = np.cos(theta), np.sin(theta) R = np.array([[c, -s], [s, c]]) S = np.diag([ratio, 1]) L = S**2 cov_matrix = R @ L @ R.T return cov_matrix</pre>
In [28]	theta = "np.radians(rotation)
In [28]	theta = "pp.radians(rotation) c, s = np.cos(theta), np.sin(theta) R = np.array([(c, -s], (s, c])) S = np.diag([ratio, 1]) L = \$**2 cov_matrix = R e L e R.T return cov_matrix get_cov_matrix(, 45) (c) Using the results from the previous points, write your own function data_matrix, targets = make_data(k, num_instances, radius, ratio) to generate a data matrix with num_instances rows and 2 columns and a targets vector of length num_instances containing a class indicator for each instance (i.e. an integer between 0 and k-1). The function takes in input the number of classes k, the total number of instances (i.e. an integer between 0 and k-1). The function takes in input the number of classes (i.e. the total number of stances num_instances, the parameter radius to express the distance from the origin for the means of the multi variate normal data generators, and finally the ratio between the two main directions of variability to determine the covariance matrices for the multi variate normal data generators. Important: For each one of the k multi variate normal data generator, sample the rotation parameter uniformly at random between 0 and 360. def make data(k, num_instances, radius, ratio):
	theta = np. radiates (rotation)
In [29] In [31]	these = mp.redatinans(rosetion) C, 0 = pp.costichted, pp.sin(fibral) R = pp.catroy([16, -a], [n, n]) S = pp.costichted, pp.sin(fibral) R = pp.catroy([16, -a], [n, n]) S = pp.costichted, pp.sin(fibral) get_now_matrix = R = E = R.T return cov_matrix get_now_matrix(2, 45) [atray([2.5, 1.5],
In [30]	c = on secol (bears) in position the previous g = np. diago (least), np. (s. f. s.); 1 = s = sq. diago (least), np. (s. f. s.); 2 = s = sq. diago (least), np. (s. f. s.); 3 = sq. diago (least), np. (s. f. s.); 4 = s = sq. diago (least), np. (s. f. s.); 5 = statum color_motive points, wife your comfunction data_matrix, tangets = make_diata(k, num_instances containing a class indicator for each instance of the num_instances rows and 2 columns and a targets vector of length num_instances containing a class indicator for each instance of the numinator of the numin
In [29] In [31]	the is a more case to a common the previous of
In [29] In [31]	control with the function params = fit_LDA(data_matrix,targets) (c) Write the function params = fit_LDA(data_matrix,targets) (d) Write the function params = fit_LDA(data_matrix,targets)
In [30]	comparison of the control of the con
In [29] In [31] Out[31]	to the form of the function parameters and the previous a
In [29] In [31] Out[31]	## Section of the control of the con
In [29] In [31] Out[31]	compliance in the second control of the control of
In [29] In [31] Out[31]	cell with the function params = fit_DA(data_matrix_targets) (c) Write the function params = fit_DA(data_matrix_targets) (d) Display a scatter plot in 2D 2D decreased and a display of the scatter params and a display of the scatter plot in 2D 2D decreased and a
In [30] In [31] Out [31]	## Common
In [30] In [31] Out [31]	Section 1.
In [30] In [31] Out [31] In [33] In [33]	Secretary and the results from the previous The secretary is a 15 to 15
In [30] In [31] Out [31] In [33]	### Committee of the country of the
In [30] In [31] In [32] In [33]	Column C
In [30] In [31] Out [31] In [33] In [33] In [34] In [37]	Column C
In [30] In [31] Out [31] In [33] In [34] In [37] In [37]	## Committee of the com