International Symposium on Bilingualism - 12/06/2025

Bilingual morphological processing in L2 reading before explicit attention: A gaze-contingent boundary paradigm study
Anna Marie Liebelt, Davide Crepaldi, & Irina Elgort

Introduction

Maximally efficient reading

- ogoal: identify lexical items as quickly as possible
- foveal reading conscious locus of reading
- oparafoveal reading unconscious pre-processing of information
- studies have found that orthography¹ is processed parafoveally
 - the evidence is much less clear for semantics² and morphology⁴

There were large yellow plates on the table.

An illustration of normal reading behaviour: while the fovea (represented by the eye icon) moves over a sentence, the parafovea is able to start pre-processing the next few characters (represented by the white oval). The length of this "moving window" is influenced by the reader's proficiency.

How useful are orthography, semantics, and morphology in second language preprocessing?

Methods

The gaze-contingent boundary paradigm⁵ is a naturalistic masked priming paradigm

- 1. participants read sentences
- 2. before their fovea arrives at a target word, a preview word is presented in its place

There were large giallo plates on the table. **PREVIEW**

3. once the fovea passes the pre-target word, the preview switches to the target

There were large yellow plates on the table. **TARGET**

shorter target fixations = parafoveal information more helpful

PREVIEW TYPES

Identical = identical to the target

Orthography = nonword orthographically similar to target Baseline = random letter string

Cognate = cross-language cognate of target

in this experiment, **Italian** cognates in **English** sentences for L1 Italian, L2 English participants

Morphology type

Morphology type

simple

complex

simple

(S 280 (S)

260

240

280

(sw) ₂₆₀

complex

By changing the type of information in common between preview and target, researchers can infer how helpful each preview type is.

gaze metrics collected FoM - first-of-many duration

Baseline complex btjwqdyl

MEASURES FFD - first fixation duration GPD - go-past duration MEASURES GD - gaze duration SR - skip rate

by comparing gaze data across conditions, we can determine the effect of each information type

n already tested = 32

total n = 50

Results

Figures 5-8: **Means for each cost** and benefit type, with asterisks for significant linear modelling of the effects.

Figures 1-4: Means and error bars for each metric, in each preview condition, for morphologically simple (in blue) and complex (in green) targets.

600

400

Identical

FFD

FOM

Baseline

Cognate Orthography

Condition

EARLY PROCESSING

Cognate Orthography

Condition

LATE PROCESSING

Discussion

Complex morphology has a large effect on late processing

Semantics offer a small early benefit

Orthography is the main driving factor, contributing a large effect across all stages of processing

Morphology has a medium effect on late processing