Лабораторная работа №8

Математические основы защиты информации и информационной безопасности

Леонтьева Ксения Андреевна | НПМмд-02-23

Содержание

Список литературы		14
4	Выводы	13
3	Выполнение лабораторной работы	6
2	Теоретическое введение	5
1	Цель работы	4

Список иллюстраций

3.1	Алгоритм 1 (сложение неотрицательных целых чисел)	7
3.2	Алгоритм 2 (вычитание неотрицательных целых чисел)	8
3.3	Алгоритм 3 (умножение неотрицательных целых чисел столбиком)	ç
3.4	Алгоритм 4 (быстрый столбик)	10
3.5	Алгоритм 5 (деление многоразрядных целых чисел)	11
3.6	Алгоритм 5 (деление многоразрядных целых чисел)	12

1 Цель работы

Реализовать на языке программирования алгоритмы для выполнения арифметических операций с большими целыми числами.

2 Теоретическое введение

Считаем, что число записано в b-ичной системе счисления, b - натуральное число, $b \geq 2$. Натуральное n-разрядное число будем записывать в виде

$$u = u_1 u_2 ... u_n$$

. При работе с большими целыми числами знак такого числа удобно хранить в отдельной переменной. Например, при умножении двух чисел, знак произведения вычисляется отдельно. Квадратные скобки обозначают, что берется целая часть числа.

Более подробно см. в [1].

3 Выполнение лабораторной работы

Алгоритм 1 (сложение неотрицательных целых чисел).

Вход. Два неотрицательных числа $u=u_1u_2...u_n$ и $v=v_1v_2...v_n$; разрядность чисел n; основание системы счисления b.

 $\emph{Выход}.$ Сумма $w=w_0w_1...w_n$, где w_0 - цифра переноса - всегда равная 0 или 1.

- 1. Присвоить j=n, k=0 (j идет по разрядам, k следит за переносом).
- 2. Присвоить $w_j=(u_j+v_j+k)(mod\ b)$, где w_j наименьший неотрицательный вычет в данном классе вычетов; $k=[\frac{u_j+v_j+k}{b}]$.
- 3. Присвоить j=j-1. Если j>0, то возвращаемся на шаг 2; если j=0, то присвоить $w_0=k$ и результат w.

Код программы (рис. 3.1).

```
def remove_zeros(w):
    z = 0
    while w[z] == 0:
    z = z + 1
    return(w[z:])
```

```
#Алгоритм 1
def a1(uu,vv,b):
    u = [int(i) for i in str(uu)]
    v = [int(i) for i in str(vv)]
    l = len(u)
    W = []
    n = len(u) - 1
    j = n
    k = 0
    while j != -1:
        w.append((u[j] + v[j] + k) \% b)
        k = (u[j] + v[j] + k) // b
        j = j - 1
    if k != 0:
        w.append(k)
    w.reverse()
    return print(''.join(str(i) for i in remove_zeros(w)))
a1(23, 11, 10)
34
```

Рис. 3.1: Алгоритм 1 (сложение неотрицательных целых чисел)

Алгоритм 2 (вычитание неотрицательных целых чисел).

Вход. Два неотрицательных числа $u=u_1u_2...u_n$ и $v=v_1v_2...v_n$, u>v; разрядность чисел n; основание системы счисления b.

Выход. Сумма $w = w_1 w_2 ... w_n = u - v$.

- 1. Присвоить j=n, k=0 (k заем из старшего разряда).
- 2. Присвоить $w_j=(u_j-v_j+k)(mod\ b)$, где w_j наименьший неотрицательный вычет в данном классе вычетов; $k=[\frac{u_j-v_j+k}{b}]$.
- 3. Присвоить j=j-1. Если j>0, то возвращаемся на шаг 2; если j=0, то результат w.

Код программы (рис. 3.2).

```
#Алгоритм 2
def a2(uu,vv,b):
   u = [int(i) for i in str(uu)]
   v = [int(i) for i in str(vv)]
    l = len(u)
   W = []
    n = len(u) - 1
    j = n
    k = 0
   while j != -1:
        w.append((u[j] - v[j] + k) % b)
        k = (u[j] - v[j] + k) // b
        j = j - 1
    w.reverse()
    return print(''.join(str(i) for i in remove_zeros(w)))
a2(2035, 2000, 10)
35
```

Рис. 3.2: Алгоритм 2 (вычитание неотрицательных целых чисел)

Алгоритм 3 (умножение неотрицательных целых чисел столбиком).

Вход. Числа $u=u_1u_2...u_n$ и $v=v_1v_2...v_m$; основание системы счисления b. *Выход*. Произведение $w=uv=w_1w_2...w_{m+n}$.

- 1. Выполнить присвоения: $w_{m+1}=0, w_{m+2}=0,...,w_{m+n}=0, j=m$ (ј перемещается по номерам разрядов числа v от младших к старшим).
- 2. Если $v_j = 0$, то присвоить $w_j = 0$ и перейти на шаг 6.
- 3. Присвоить $i=u_i\cdot v_j+w_{i+j}+k$, $w_{i+j}=t \pmod{b}$, $k=\frac{t}{b}$, где $w_{i+j}-$ наименьший неотрицательный вычет в данном классе вычетов.
- 4. Присвоить i=i-1. Если i>0, то возвращаемся на шаг 4, иначе присвоить $w_j=k$.
- 5. Присвоить j=j-1. Если j>0, то вернуться на шаг 2. Если j=0, то результат w.

Код программы (рис. 3.3).

```
#Алгоритм 3
def a3(uu,vv,b):
    u = [int(i) for i in str(uu)]
    v = [int(i) for i in str(vv)]
    n = len(u) - 1
    m = len(v) - 1
    j = m
    w = [0] * (len(u) + len(v))
    while j >= 0:
        if v[j] == 0:
            w[j] == 0
            j = j - 1
        else:
            i = n
            k = 0
            while i >= 0:
                t = u[i] * v[j] + w[i + j + 1] + k
                w[i + j + 1] = t \% b
                k = t // b
                i = i - 1
            w[j] = k
            j = j - 1
        z = 0
        while w[z] == 0:
            z = z + 1
    return print(''.join(str(i) for i in remove_zeros(w)))
a3(5497, 296, 10)
```

Рис. 3.3: Алгоритм 3 (умножение неотрицательных целых чисел столбиком)

Алгоритм 4 (быстрый столбик).

Вход. Числа $u=u_1u_2...u_n$ и $v=v_1v_2...v_m$; основание системы счисления b. *Выход.* Произведение $w=uv=w_1w_2...w_{m+n}$.

1. Присвоить t = 0.

1627112

- 2. Для s от 0 до m+n-1 с шагом 1 выполнить шаги 3 и 4.
- 3. Для i от 0 до s с шагом 1 выполнить присвоение $t = t + u_{n-i} \cdot v_{m-s+i}$.

4. Присвоить $w_{m+n-s} = t \pmod{b}, t = \frac{t}{b}$, где w_{m+n-s} - наименьший неотрицательный вычет по модулю b. Результат w.

Код программы (рис. 3.4).

1627112

Рис. 3.4: Алгоритм 4 (быстрый столбик)

Алгоритм 5 (деление многоразрядных целых чисел).

Вход. Числа $u=u_n...u_1u_0$ и $v=v_t...v_1v_0$, $n\geq t\geq 1$, $v_t\neq 0$, разрядность чисел соответственно n и t.

Выход. Частное $q = q_{n-t}...q_0$, остаток $r = r_t...r_0$.

- 1. Для j от 0 до n-t присвоить $q_j=0$.
- 2. Пока $u \geq vb^{n-t}$, выполнять $q_{n-t} = q_{n-t} + 1$, $u = u vb^{n-t}$.
- 3. Для i=n,n-1,...,t+1 выполнять пункты 3.1 3.4:
 - 3.1. если $u_i \geq v_t$, то присвоить $q_{i-t-1} = b-1$, иначе присвоить $q_{i-t-1} = \frac{u_i b + u_{i-1}}{v_t}$.

```
3.2. пока q_{i-t-1}(v_tb+v_{t-1})>u_ib^2+u_{i-1}b+u_{i-2} выполнять q_{i-t-1}=q_{i-t-1}-1.
```

3.3. присвоить $u = u - q_{i-t-1}b^{i-t-1}v$

3.4. если u < 0, то присвоить $u = u + vb^{i-t-1}$, $q_{i-t-1} = q_{i-t-1} - 1$.

4. r = u. Результат q и r.

Код программы (рис. 3.5 - 3.6).

```
#Алгоритм 5
def a5(uu,vv,b):
   u = uu
   V = VV
    n = len([int(i) for i in str(uu)]) - 1
   t = len([int(i) for i in str(vv)]) - 1
   q = [0] * (n - t + 1)
   r = [0] * (t + 1)
   while u >= v * b ** (n - t):
        q[n-t] = q[n-t] + 1
        u = u - v * b ** (n - t)
    n = len([int(i) for i in str(u)]) - 1
   t = len([int(i) for i in str(v)]) - 1
    for i in range(n, t, -1):
        u_ = [int(i) for i in str(u)]
        u_.reverse()
        v_ = [int(i) for i in str(v)]
        v_.reverse()
        if u_[i] >= v_[t]:
            q[i-t-1] = b - 1
        else:
            q[i-t-1] = (u_[i] * b + u_[i-1]) // v_[t]
```

Рис. 3.5: Алгоритм 5 (деление многоразрядных целых чисел)

Частное = 4926 Остаток = 435

Рис. 3.6: Алгоритм 5 (деление многоразрядных целых чисел)

4 Выводы

В ходе выполнения данной лабораторной работы были реализованы алгоритмы для выполнения арифметических операций с большими целыми числами.

Список литературы

1. Целочисленная арифметика многократной точности [Электронный ресурс]. URL: https://studfile.net/preview/2439346/page:35/.