IPZ

© 2012: Skokan, Jeník, DZOLO

<u>IPZ</u>
Principy řízení periferních operací
Komunikace procesoru s řadiči
Nesdílená sběrnice
Sdílená sběrnice
<u>SCSI</u>
<u>Přerušení</u>
Systémová sběrnice
Principy konstrukce a činnosti systémové sběrnice
Sběrnice USB
<u>Vlastnosti</u>
Typy USB zařízení
<u>Topologie připojení</u>
<u>Připojení zařízení</u>
<u>Komunikace</u>
<u>Protokol</u>
<u>USB 3.0</u>
Sběrnice FireWire
Architektura
<u>Transakční vrstva</u>
<u>Spojovací vrstva</u>
<u>Fyzická vrstva</u>
<u>Diskové paměti</u>
Principy
Mechanické provedení pevného disku
<u>hlavní díly</u>
<u>geometrie</u>
Prekompenze zápisu
Redukovaný záznamový proud(RWC)
Rychlost HDD z hlediska přístupu k informacím
Organizace sektorů na stopě
faktor prokládání
posunutí číslování sektorů mezi hlavami

Radic disku
Obvody zápisu dat na disk
Obvody čtení dat z disku
Metoda FM a MFM
Metoda RLL(Run Lenght Limited)
Metoda NRZ
Metoda NRZI
Další techniky zvyšující kapacitu disků
Stopa
Rozhraní
Rozhraní ST 506/412
Rozhraní ESDI
Rozhraní IDE
registrový model IDE
LBA(Logical Block Addressing)
Paralelní rozhraní
<u>Sériová rozhraní</u>
SATA
kódování 8b/10b
Grafické adaptéry a monitory
Principy zobrazení
Neprokládané řádkování
Prokládané řádkování
Grafické adaptéry
Sběrnice AGP
Rozhraní DVI
<u>Komunikační protokol $I2C$</u>
<u>EDID</u>
Technika TMDS
*
CRT
<u>Černobílé zobrazení</u>
Barevné zobrazení
Tvorba barev
VGA
SVGA
Monitor LCD (Liquid Crystal Monitor)
Sběrnice PCI, PCI-Express
Sběrnice PCI
Sběrnice PCI-Express
ODDITION TO LAPICOS

Principy řízení periferních operací

Na periferní operaci se podílejí

- počítač, syst. sběrnice, adaptér, V/V sběrnice, PZ

Zahájení periferní operace

- start bit(součást stavového registru) nastaven na "1"

Přenos DMA(přímý přístup do paměti)

- data se přenášejí z řadiče PZ do operační paměti přes sběrnici (bez procesoru)
- data se nepřenášejí přes řadič DMA
- řadič DMA řídí přenos
- využíván pro přenos mezi diskovou a operační pamětí

Komunikace procesoru s řadiči

isolované vstupy/výstupy

- instrukce IN/OUT, dva disjunktní adresové prostory (paměťový, adresový prostor pro vstupy a výstupy)

vstupy/výstupy mapované do paměť. prostoru operační paměti

- daleko více instrukcí, nedisjunktní adr. prostor

Důvod přechodu na vyšší typ syst. sběrnice: rychlost sběrnice, šířka sběrnice

Nesdílená sběrnice

- každý typ informace na samostatném vodiči

Sdílená sběrnice

- všechny typy informace po společné sadě vodičů

Řízení PO

autonomní provádění

 PO se na PZ realizuje bez pozornosti procesoru průběh PO je řízen řadičem

Zjišťování stavu PO

nejprve "stavová slabika", v ní je bit "vznikla chyba", pokud chyba -> podrobnější info ve "slabice závad"

Vyrovnávací paměť

- vyrovnává rozdíl v rychlosti zařízení komunikujicích mezi sebou

SCSI

- universální sběrnice systémové úrovně
- schopnost autonomní činnosti na vysoké úrovni
- sběrnice pro připojení různých typů PZ (3 komponenty: řadič SCSI, řadič PZ, vlastní PZ)
- komunikace mezi pc a PZ jednotným způsobem signálové sledy(dotazodpověď)
- typické pro připojení pevných disků, skenerů, CD-ROM
- výhodou možnost připojení většího počtu pevných disků (Multi-point)
- pro výměnu dat mezi externími nebo interními počítačovými zařízeními a počítačovou sběrnicí

adresace

- adresa je tvořena sedmi "0" a jednou "1" ("1" udává prioritu přidělenou konkrétnímu zařízení)
- omezený počet adres
- distribuované přidělování sběrnice(bez arbitra, meší priorita ruší žádost)

RS 232

- sériové rozhraní (ale pomalé)
- napěťové úrovně +- 12 V
- může pracovat jen se signály pro přenos dat

Přerušení

- vznik kvůli nutnosti informovat procesor o ukončení autonomně probíhající PO přerušení spouštěná hranou
- každý řadič PZ má na konektoru vyhrazenu jednu pozici pro generování žádosti o přerušeni
- každému přerušení je přidělen vlastní a jednoznačný vektor přerušení, ten jednoznačně identifukuje obslužnou rutinu => pro každé zařízení existuje jedna

obslužná rutina

- => obsluž. rutina nemusí zjišťovat, které zařízení žádalo o přerušení
- počet připojitelných zařízení je omezený

přerušení spouštěná úrovní

- více žádostí sdruženo do jednoho signálu
- takto sdružené žádosti o přerušení mají společný vektor přerušení => obslužná rutina přerušení musí nejprve zjistit, které ze zařízení žádalo o přerušení, např. z informace o stavu

Řadič přerušení

- vložen mezi procesor a řadič PZ
- sdružuje žádosti o přerušení, řeší priority, komunikuje s procesorem
- zasílá do procesoru informaci, které přerušení bude voláno(vektor přerušení)

typy

- vnitřní generované periferiemi obsaženými na čipu procesoru
- vnější od zařízení přístupného přes syst. sběrnici
- programové způsobeno při volání do tabulky přerušovacích vektorů
- nemaskovatelné vysokou prioritou

Techniky řízení vstupy/výstupu dat

- programové řízení vstupu /výstupu dat(pooling)
- vstup/výstup využívající přerušení
- vstup/výstup přes DMA

Systémová sběrnice

- prostředek na propojení dvou nebo více zařízení
- signály vysílané jedním zařízením jsou přístupné všem připojeným na sběrnici
- zasílat signály na sběrnici může pouze jedno zařízení

PC s více V/V sběrnicemi

- snaha o připojení více typů sběrnic(různí výrobci)
- rychlost sběrnice je sdílena mnoha zařízeními -> problém pokud vložíme nové PZ vyžadující vysokou rychlost přenosu -> řešení: použití dedikované sběrnice(obsluhuje pouze 1 PZ)

Rysy tradiční pc architektury

- rychlá komunikace mezi procesorem a vyrovnávací pamětí
- ostatní zařízení na pomalejší syst. sběrnici

Rysy architektury vyšších typů pc

- důraz na hierarchii syst. sběrnic
- každý segment různě rychlý(různé frekvence)

Mosty

- vyskytují se čipové sadě vyvinuté pro potřeby pc se sběrnicí PCI northbridge
- transformace sběrnice procesoru na sběrnici PCI **southbridge**
- transformace sběrnice PCI na rozhraní PZ

PC vybavený V/V procesorem

- procesor nemá přístup k registrům řadiče
- PZ komunikuje s procesorem jednotným způsobem přes V/V procesor
- komunikace pomocí signálových sledů

Sběrnice UNIBUS

 všechny prvky na stejné úrovní - všechny umějí řídit sběrnici a komunikovat spolu

Komunikace PZ u pc 3. generace

- kanálová koncepce
- kanál zařízení schopné realizovat příkazy z procesoru
- komunikace pomocí signálových sledů

multiplexový kanál

- pro pomalá PZ(tiskárny)

selekční kanál

- pro rychlá PZ(disky)

Principy přidělování sběrnice

- před datovou fází musí proběhnou zjištění ze kterého zařízení budou data přenášena(i pokud o přenos žádá pouze jedno zařízení)

centralizované

- podle důležitosti požadavku, na výzvu, postupná
- existuje *arbitr* přijímá požadavky od adeptů a podle priority rozhoduje komu přidělit sběrnici(možnost realizace např. pomocí DMA)

distribuované

- arbitr neexistuje

- rozhodnutí o přidělení provedou zařízení mezi sebou
- pouze u SCSI

Principy konstrukce a činnosti systémové sběrnice

Adresová část systémové sběrnice

- jak adresovat dvě zařízení zdroj a příjemce
- řešení: 1. jeden z prvků je univerzální registr procesoru adresován implicitně
 2. jeden z prvků je adresován obsahem adresové sběrnice, druhý prvek jiným mechanismem

Fyzická realizace systémové sběrnice

 rozvody na systémové desce -> výhoda: konektor je mechanické zařízení a omezuje maximální kmitočty

Synchronní sběrnice

- operace realizovány od jedné z hran synchronizačního pulsu
- v okamžiku výskytu hrany se vyhodnotí, zda může být požadovaná operace provedena
- stav na sběrnici vyhodnocují všechna zařízení

Asynchronní sběrnice

- součástí dějů na sběrnici nejsou synchronizační signály

asynchronní komunikace

- v žádném rozhraní se nevyskytuje synchronizace jako samostatný signál
- komunikace dotaz odpověď: pro sériové spoje je realizována na úrovni paketů a pro paralelní spoje na úrovni signálů

Typy datových přenosů

sdílená sběrnice(multiplexed)

- sada signálu postupně využívaná pro různý typ informace
- nesdílená sběrnice(dedicated)
- sada signálů je vyhrazena(dedikována) pro přenos pouze jistého typu informace

Sběrnice USB

Zavedeno z důvodu potřeby připojovat mnoho PZ do PC se snadnou

konfigurací.

Vlastnosti

- sériová sběrnice
- snadné připojení různých zařízení (auto-konfigurace zaběhu PC a OS)
- napájení sběrnicí
- až 127 zařízení (=> kapacita sběrnice je sdílená)
- nenáročný komunikační protokol
- synchronní (např. mikrofon) i asynchronní (např. myš, klávesnice) přenos
- různé rychlostní režimy pro různá zařízení (LS low speed, FS full speed, HS hight speed)
- rychlost až 480Mb/s
- souběžná práce u autonomních PZ
- USB Host pro přístup OS k jednotlivým připojeným zařízením (více hostů => více sběrnic)

Typy USB zařízení

- všechna zařízení musí být schopna komunikace po sběrnici dle USB normy
- zařízení obsahují identifikační údaje:
 - povinné: ID výrobce, třída do které patří, možnosti úspory energie, info o zařízení, konfigurace, počet koncových bodů
 - volitelné: bližší specifikace pro konkrétní třídu zařízení
 - informace o výrobci: jakákoliv data od výrobce
- **device** rozšiřuje služby sběrnice (např. rozbočovač HS, vytváří plnohodnotné rozšiřující porty),
- function poskytuje služby (např. myš, tiskárna, klávesnice)

Topologie připojení

- hostitelský PC obsahuje USB řadič
- Root Hub Kořenový rozbočovač, komunikuje systémovou sběrnici
- strom o 7 úrovních (přehled o něm má jen PC), na poslední úroveň lze umístit pouze funkční Z
- koncové funkční zařízení spojeno s Root Hubem množinou rour
- komunikace mezi zařízeními není možná
- komunikaci mezi rozbočovači je co možná nejrychlejší

Připojení zařízení

 při připojení a nakonfigurování zařízení se zařízení a PC nevypínájí (Plug-and-Play)

- adresa před připojením zařízení je 0
 - 1. Root Hub rozpozná připojení nového zařízení (periodické dotazování na stavy rozbočovačů)
 - 2. OS vynuluje zařízení, rozpozná jeho typ a nutnou šířku pásma pro zařízení
 - 3. OS nakonfiguruje zařízení a přidělí mu jednoznačnou adresu (7-bit, hodnota: 1-127)
 - 4. Vložení konfigurace do konfiguračních registrů připojeného zařízení
 - 5. Vytvoření rour pro přenos dat (Default Control Pipe konfigurace a stav zařízení)

Komunikace

- pomocí **paketů** (řídící a datové)
- typy toků řídící, nárazové (tiskárna), přerušované (myš), izochronní (mikrofon)
- různá velikost paketů
- detekce chyb a zotavení
- polling veškerá komunikace probíhá až po výzvě z PC
 - výjimka u HS přenosu, který využívá prodlevy v komunikaci FS/L
- odpojení PC vymaže zařízení ze svých tabulek
- adresace vnitřních V/V registrů zařízení pomocí 4-bit adresy (adresa obsahuje koncové body)
 - => 16 vstupních a 16 výstupních koncových bodů
- roura umožňuje oboustrannou komunikaci mezi dvěma koncovými body (ENDP)
- po ustanovení připojení se již nezasílají adresy (jsou stanovené)

Protokol

- identifikátor paketu PID (4-bity => 16 typů paketů), odesílá se i znegovaná hodnota pro ověření
- přijímací strana přijímá data a průběžně počítá CRC a porovnává ji s předanou hodnotou, pokud vše sedí zasílá řídící paket ACK
- řidící pakety adresování zařízení, potvrzení příjmu dat, indikace chyby
 - obsahují: PID 8b, ADDR 7b, ENDP 4b, CRC16 5b
- datové pakety nesou V/V data, PID určuje číslo paketu ke kontrole pořadí paketu
 - obsahují: PID 8b, DATA 0-8192b, CRC16 5b
- posloupnost výstupní operace:
 - 1. PC zašle řídící paket OUT
 - 2. PC zašle datový paket

- 3. Rozbočovač ověří CRC a odpoví PC pomocí řídícího paketu ACK
- 4. Rozbočovač přepošle řídící paket všem zařízením
- 5. Zařízení se stejnou adresou řídící paket přijme a přepošle do rozbočovače ACK
- 6. Další komunikace probíhá přes vytvořené roury
- posloupnost vstupní operace:
 - 1. PC pošle do rozbočovače ř. paket IN
 - 2. Zařízení odešle data a za nimi ACK pokud má data, jinak NACK
- v plánovaných intervalech jsou zasílány pakety (Token packet) s informacemi o aktuální akci
- před paketem IN/OUT se může zasílat paket pro prokládání spojení LS/FS s HS
- **isonchronní přenosy** rozdělení na rámce, nutná pravidelná synchronizace (1ms)
 - paket SOF (Start of Frame)
 - tolerance náhodných chyb (nepoužívá se ACK)
 - výskyt např. u přenosu zvuku
- **kabel** 4 vodiče: VBUS +5V příkon, GND zem, D+ data, D- znegovaná data
- -omezení odbíraného proudu (napájení pouze sběrnicí/napájení sběrnicí a vlastním zdrojem)
 - opačné strany kabelu jsou různé

- USB OTG přímé propojení dvou USB zařízení
 - protokol SRP obě komunikující zařízení mohou řídit druhé zařízení
 - protokol HNP obě zařízení si mohou vyměnit roli master/slave
- ADP protokol na USB sběrnici
 - jedno zařízení napájí a druhé je napájeno
 - detekuje připojení zařízení při absenci napětí na sběrnici
 - periodické měření kapacity na USB portu
 - po zjištění nového zařízení je teprve poskytnuto napájení

USB 3.0

- větší počet vodičů v kabelu => větší počet současně aktivních rour => vyšší rychlost
- dva typy rour (stream datový tok, message zprávy)
- zpětně kompatibilní
- zmenšené energetické nároky (přepínání zařízení do stavu snížené spotřeby)

Sběrnice FireWire

- sériová alternativa k SCSI (Multi-point)
- vysoká rychlost (až 3200Mb/s), jednoduchý kabel a konektory
- obvody pro komunikaci na sběrnici jsou součástí každého zařízení
- přes jeden konektor připojeno více zařízení (až 63)
- 1022 sekcí pro propojení mostů => možnost vytváření PC s vysokým počtem
 PZ

Architektura

- konfigurace daisy-chain
- připojení technických prostředků přes shodný komunikační protokol a sdílenou sběrnici
 - "zapojení za sebou"
 - nutnost opakovačů po připojení (vloženy do konektorů zařízení)
 - přenosy mezi dvěma zařízeními

Transakční vrstva

- definuje protokol komunikace typu dotaz-odpověď
- sestavuje posloupnost paketů pro jednotlivé požadavky (činnost (např. IN/OUT), data, CRC)

Spojovací vrstva

- definice formát paketu (např. číslo paketu)
- typy přenosu:
 - Asynchronní data se přenáší když jsou k dispozici, vše se odehrává pomocí paketů
 - 1. sekvence přidělení sběrnice
 - jako paket se odešlou data proměnné délky obsahující identifikaci zdroje a příjemce, typ paketu, parametry paketu a CRC (pro informace i data)

- 3. příprava na potvrzení příjemce rozpoznává, že se paket týká jeho
- 4. příchozí strana potvrdí přenos (ACK/NACK)
- 5. pokud není přijat ACK je přenos několikrát opakován

• **Isochronní** - v pravidelných intervalech se přnáší data, příjem není potvrzován

Fyzická vrstva

- definuje přenosová média a jejich elektrické charakteristiky
- reflektuje principy přidělování sběrnice:
 - Fair arbitration žádání o sběrnici v daných intervalech
 - sběrnice je přidělována zařízením, které ji ještě nemělo k dispoizici => není obsazena zařízením s vysokou prioritou
 - Urgent arbitration zařízení s vyšší prioritou, mohou žádat o sběrnici násobně
 - obvykle u zařízení s plnou vyrovnávací pamětí
- získání synchronizace z přenášeného signálu

Diskové paměti

Principy

Mechanické provedení pevného disku

hlavní díly

- záznamové vrstvy
- čtecí/zápisové hlavy
- vystavovací mechanismus rameno, pohon

geometrie

- válce, hlavy, záznamové vrstvy, stopy, sektory(velikost = 512B)

Prekompenze zápisu

- dříve využívané(neaktuální), na všech stopách stejný počet sektorů(17) -> na vnitřních stopách se zapisovalo vyšším kmitočtem synchronizačních pulsů

Redukovaný záznamový proud(RWC)

- vyšší podélná hustota záznamu -> deformace čteného signálu
- dnes tento problém řešen pomocí Zonned Bit Recording:
- více sektorů na vnějších stopách a méně na vnitřních stopách
- plocha disku rozdělena na zóny, v zóně stejný počet sektorů

Rychlost HDD z hlediska přístupu k informacím vybavovací doba

- doba potřebná pro nalezení dat
- vybavovací doba = režie provedení příkazu(doba od okamžiku obdržení příkazu do začátku provádění) + doba vystavení + doba uklidnění(uklidnění hlav na stopě po vystavení) + zpoždění vlivem rychlosti otáček

doba vystavení

- pohyb vystavovacího mechanismu
- ovlivněna rychlostí otáčení disku a vzdáleností mezi stopami
- průměrná doba: doba pro překonání 1/3 disku
- vybavovací doba, doba vystavení a čekací doba(rotační zpoždění) ovlivňují rychlost disku

Organizace sektorů na stopě

- uplatňují se následující techniky

faktor prokládání

- sektory jsou řazeny za sebou, vyrovnávací paměť se zaplní přečtením sektoru 1, obsah se musí přenést do paměti pc, nestihne se to před zahájením čtení sektoru 2 -> čeká se celou otáčku
- řešení: provede se jiné číslování sektorů(sektor 2 není bezprostředně za sektorem
- používalo se to dříve, dnes je faktor prokládání 1:1 (bezprostředně za sebou)

posunutí číslování sektorů mezi hlavami

- při přechodu z jedné plochy(hlavy) na další je nutné mít časovou rezervu

posunutí číslování sektorů mezi cylindry

 po skončení čtení cylindru musíme přenastavit na další cylindr, sektory jsou mezi sebou posunuty -> dostatek času

Řadič disku

- komunikuje se základní deskou a s diskem
- kódování řadiče FM, MFM, RLL

Vývoj PC XT

- karta zasunutá do zákl. desky, řadič součástí karty

PC AT

- přesun funkcí řadiče do disku, CPU komunikuje s řadičem přes I/O kartu přenášející signály sběrnice do řadiče

Obvody zápisu dat na disk

coder

- slučuje data a synchronizaci do jednoho signálu

serializér

-převádí paralelní vícebitovou informaci na sériový tok

Obvody čtení dat z disku

encoder

- ze čteného signálu separuje pulsy reprezentující data a synchronizaci

deserializér

-převádí sériový tok na paralelní vícebitovou informaci

Metoda FM a MFM

- vstupem jsou data a dvojí synchronizační pulsy cls(synchronizace) a cld(data)
- FM má v každém bitovém intervalu alespoň jednu změnu magnetizace(záznam s vlastní synchronizací)
- MFM nemá v každém intervalu alesoň jednu změnu magnetizace(není to záznam s vlastní synchronizací)
- MFM je složitější jak FM, ale účinnější
- snaha při daných fyzikálních vlastnostech záznamové vrstvy dosáhnout vyšší hustoty záznamu
- ani jedna z metoda se nepoužívá

nejhorší vzorek dat

- takový, který má za následek nejvyšší kmitočet na výstupu kódovacího obvodu
- metoda FM-samé "1", metoda MFM samé "1", nebo "0"

Metoda RLL(Run Lenght Limited)

- převod binárních vzorů na RLL obrazy(větší počet "0" a "1", ale menší počet změn magnetizace)
- způsob zvyšování hustoty záznamu(způsoby které dokáží zaznamenat data s menším průměrným počtem změn magnetizace)

- pro každý vzor existuje RLL obraz začínající žádnou až čtyřmi "0" a končící dvěma, či třemi "0"

Metoda NRZ

- změna při přechodech 1-0, 0-1
- signál nemá synchronizaci

Metoda NRZI

- změna při každé "1"
- signál nemá synchronizaci
- používá metodu vkládání pro šest 1 za sebou se vloží jedna 0

Další techniky zvyšující kapacitu disků

Klasické techniky

- zvyšování frekvence záznamu

Nové techniky

PRML - postaveno na číslicovém zpracování signálu, včetně algoritmů na určení pravděpodobné posloupnosti dat EPRML - vylepšení PRML - dokonalejší algoritmy

Stopa

- má 30 sektorů pevné délky 600 slabik
- každý sektor má 512 slabik vlastních dat, zbytek jsou řídící informace pro řadič disku
- pole ID jednoznačně identifikuje sektor

Rozhraní

Rozhraní ST 506/412

- obdobné jako u diskety(disk je bez vlastní inteligence)

výstupní signály

- disk je jimi řízen
- adresace diskové jednotky a hlavy

vstupní signály

- hlášení o stavu jednotky

Rozhraní ESDI

- na rozdíl od ST506/412 jsou data přenášena z řadiče do disku i opačně odděleně, ale sériově
- metoda záznamu RLL 2,7

Rozhraní IDE

- řadič disku integrován do stejné jednotky jako disková mechanika
- rozhraní mezi pc a diskem
- postaveno na komunikaci s registry pomocí kabelů pomocí instrukcí IN/OUT
- kódovací a dekódovací obvod je součástí řadiče
- každá disková jednotka svůj vlastní řadič -> rychlejší řízení disku

registrový model IDE

- informace uložené v registrech řadiče IDE: řídící informace
- command register ukládá se do něj kód příkazu
- device/head register registr v němž je adresa jednotky a hlavy
- sector number register číslo sektoru, kde začíná datová operace
- sector count register počet sektorů na nichž bude dat. operace prováděna data

stav

- status register informace o aktuálním stavu jednotky
- eroor register doplňující informace o chybě

LBA(Logical Block Addressing)

- součásti řadiče: registry hlavy, válce a sektoru
- tzv. třírozměrná adresace, jednoznačná adresace
- řešení problému přístupu ke větším kapacitám

Paralelní rozhraní

- další zvyšování rychlosti už není možné
- větší rychlost -> větší problém s přeslechy, větší tuhost kabelu
- při zvyšování kmitočtu může vzniknout zpoždění na datových vodičích clock skew

řešení clock skew

- zrušení přenosu synchronizace jako samotného signálu -> odvozena z dat, nebo vnitřní synchronizace

Sériová rozhraní

- dedikovaný spoj řadič řídí pouze jedno PZ
- jediný spoj -> nejsou přeslechy mezi signály
- diferenciální signál na přijímací straně se vyhodnocuje rozdíl mezi oběma

vodiči

- jednoduchý kabel snadná manipulace
- perspektivní, dají se dále zdokonalovat

SATA

- přenášená data je nutné na přijímací straně synchronizivat
- synchronizace není přenášena samostatným signálem

synchronizace přijímaných dat

- buď synchronizace není součástní ozhraní, nebo je -> následující možnosti:
 - synchronizace se odvodí z dat vlastnost kdy je možno synchronizaci se říká: embedded clock
 - samostatný spoj pro synchronizaci z hlediska rušení a přeslechů nevhodné

run lenght

- parametr udávající počet bitů, po něž se signál nemění
- snaha dosáhnout požadované hodnoty RLL a nulové ss složky přenášeného signálu pomocí kódování 8b/10b

kódování 8b/10b

- 256 původně 8(256 kombinací) bitových znaků je zakódováno do 10 bitů(1024 kombinací)
- jedním z cílů je dodržení parametru RL na přijatelné hodnotě -> z 10 bitových symbolů vybíráme pouze ty kombinace, které tuto vlastnost mají(z 1024 hodnot se vybere 256, které nemají vysoký parametr RL)
- nulová ss složka: sleduje se průběžná disparita na vodiči, přes nějž se signál přenáší
- průběžná disparita: počet "1" a počet "0" přenášený přes kabel je shodný (využití pro detekci chyb na přijímací straně)
- obsahuje oproti paralelní ATA(IDE) další registry:

SStatus Register

- reflektuje aktuální stav zařízení připojených na rozhraní
- pole DET: je v něm detekována přítomnost zařízení
- pole SPD: rochlost na níž se komunikuje
- pole IPM: aktuální stav úsporného režimu

SError Register

- informace o chybách specifických pro SATA a sériovou komunikaci

pole ERR

- dvě sady bitů:
 - problémy po nichž se rozhraní zotavilo: slouží jako varování
 - problémy po nichž se rozhraní nezotavilo: nutné odstranění pomocí obslužných prostředků

SControl Register

- poskytuje pc možnost řídit způsob provádění řídících instrukcí rozhraní SATA

Grafické adaptéry a monitory

- rozlišení počet zobrazovaných bodů na celou obrazovku (formát počet řádků x počet sloupců)
- parametry:
- **šířka pásma (ŠP)** kmitočet, jímž jsou zobrazovány pixely (zvětšuje se s rozlišením)
 - snímková(vertikální) synchronizace kmitočet zobrazování snímků, má vliv na kvalitu (blikání)
 - řádková(horizontální) synchronizace signál spouští zobrazení na řádku (lze vypočítat jako součin počtu snímků za sec. a počtu generovaných horizont. signálů)
- komponenty (ovlivňují dosažitelnou ŠP):
 - systémová sběrnice
- grafický adaptér obsahuje videopaměť (vybavovací doba), řadič, grafický procesor
 - režimy:
 - textový zobrazuje znaky z tabulky kódů, parametry počet řádků a slupců
 - grafický základní zobrazitelná jednotka pixel, parametry rozlišení
 - kabel jednosměrný
 - monitor nemá v sobě inteligenci (nelze hlásit stav)
 - typy:
 - **kompozitní** koaxiální kabel, přenášený signál obsahuje jednotlivé barevné složky a časování
 - digitální RGB pro každou barevnou složku jeden vodič (vodič určuje pouze zda-li je vysvíceno => monitor s n vodiči zobrazuje 2ⁿ)
 - analogové RGB pro každou barevnou složku jeden vodič, ale

s analogovým signálem (=> není omezen poče) zobrazovaných barev, omezení způsobem uložení a kódováním ve video paměti

• LCD - rozhraní DVI, snaha o co největší počet barev

Principy zobrazení

Neprokládané řádkování

- postupně je paprsek zobrazován na jednotlivých řádcích
- na poslední řádku se odrazí na začátek
- nutnost při vysoké kvalitě (ŠP) zvětšovat kmitočet (jinak bliká)

Prokládané řádkování

- obraz se zobrazuje ve dvou průchodech (liché a sudé řádky)
- paprsek se do sousedního místa dostane 2x
 - => poloviční ŠP a řádkový kmitočet (oproti neprokládanému)

Grafické adaptéry

- vybaveny **grafickým procesorem** definuje obsah obrazovky pomocí mu zasílaných příkazů
 - nutný pro zmenšení přenosu přes sys. sběrnici
 - umožňuje současný zápis do video paměti a její čtení řadičem CRTC (zapisuje se pouze na aktuálně nečtené adresy)
- poskytuje synchronizační sygnály pro monitor
- parametry:
 - video paměť (VRAM):
 - umístění: systémová deska(součást operační paměti), grafický

adaptér

- uložení zobrazované informace
- má dva porty (dvouportová RAM)
- kapacita se odvíjí od rozlišení
- vyšší kapacity paměti (problém s adresací) možnost rozdělení do banků
- režimy:
 - **grafický** paměťová náročnost, barva reflektována v paměti

binárně

- textový - znak reprezentován kódem (1B) a atributem (1B)

uloženým ve VRAM

- způsob řízení
- **řadič** řídí přístup k VRAM, zohledňuje režim, programovatelný procesorem,

předává výstupní data monitoru a řídí jeho činnost

- možnost vložení nové znakové sady (textový režim)
 - ROM v grafickém adaptéru (nutná výměna HW pro změnu sady)
 - 2. RAM, možnost vložit skrze BIOS (EGA adaptér)
- systémová sběrnice ISA => PCI/PCI Express => AGP (dedikovaná sběrnice)
- komponenty:
 - **PROM definiční tabulka znaků** (kód znaku ukazuje do této tabulky)
 - obsahuje bitové obrazy znaků pro textový režim (bodové vzory)
 - bodový vzor 8x14 bodů
- **DA** ovlivnění zobrazení znaku v textovém režimu jeho parametry (např. barva)
 - **GS** generátor signálů pro monitor

VRAM – video RAM, GZ – generátor znaků, DA – dekodér atributů,

PR – posuvný registr, GS – generátor signálů pro monitor

Sběrnice AGP

- rozšíření PCI, rychlejší (až 2.1 GB/s)

- dedikovaná
- řeší problém s adresací vysoko kapacitních videopamětí
- DIME (Direct Memory Execute) může využívat i operační paměť
 - zřetězené adresování adresy jsou generovány a zasílány zřetězeně
 data jsou čtena postupně
 - postraní adresování (sideband SBA) adresace dalších paměťových míst v operační paměti, stejným kmitočtem jsou data přenášena z operační paměti do VRAM

Rozhraní DVI

- sériové rozhraní
- pro každou barevnou složku obsahuje jeden diferenciální vodič (vodič je zdvojen a invertován)
- kódování 8B/10b devátý bit(pokud byly minimalizovány přechody -> nastaven na "1"), desátý bit(pokud se provedal)

terminologie

- každý spoj sestává z kanálů
- kanál informace o barevné složce R, G, B
- PLL(fázový závěs) generování synchronizace má schopnost zesynchronizovat se s kmitočtem přiváděným zvenčí

DDC(display data channel)

 kanál pro přenesení specifikace monitoru do grafického adaptéru(tato informace uložena v PROM, nebo EEPROM)

Komunikační protokol I^2C

- možnost propojení více prvků typu bus master

EDID

- formát dat
- obsahuje: jméno výrobce, typ monitoru, typ luminescenční vrsty, údaje o časování, ...
- kombinace EDID a I^2C je označován jako **DDC2**

Technika TMDS

- pro monitory DVI
- minimální počet přechodů "0" a "1"

- diferenciální signál vyšší odolnost proti rušení
- každé barvě přidělen jeden dvoudrátový spoj
- transformace 8 bitového kódu na 10 bitový tak, aby platilo: minimalizace přechodů 1->0, 0->1 a nulová ss složka

Proudová smyčka

- dva vodiče vysílají dvě napětí, ta se vyhodnocují na přijímací straně
- mezi tyto vodiče je vložen odpor
- rozdílná napětí na obou vodičích teče proud-> úbytek napětí na odporu, ten je vyhodnocen
- odolnost proti indukcím zvenčí, energicky nenáročná metoda

Zvyšování rozlišení

 pro rozlišení větší jak 1600x1200 mohou vznikat problémy - řešitelné přechodem na další kanál

řešení

 další kanál, nebo zavedení techniky označované jako reduced blanking(zmenšení nezobrazované/zatemněné oblasti)

CRT

- elektronové dělo (pomocí katody a anody jsou generovány paprsky)
- paprsky jsou změněny dle řádkové a snímkové synchronizace pro zobrazení chtěného obrazu

Černobílé zobrazení

- odstín barvy dle intenzity energie
 - černá/bíla hodnota barvy odpovídá napětí ("0"/"1")
 - úrovně šedi více hodnot, barva závisí na počtu reprezentačních bitů

(informace o barvě)

- analogové napětí vzniká z převodem binárních dat v grafickém adaptéru

Barevné zobrazení

- složka barvy uložena na 6/8/.. bitech (grafický adaptér provádí její převod na analog)
- je třeba třech svazků elektronů pro jeden bod => tři elektronová děla
- reprezentace barvy je analogová
- využívá adiktivní míchání barev (nedokonalosti lidského oka)

Tvorba barev

- převod binární informace o barvě na analogovou pomocí Č/A převodníku

VGA

- 256 paletových registrů (šířka 18b => 1 barva = 6b)
- 256 barev k dispozici pro aplikaci z 262144 možných

SVGA

- 1 barva 8b
- možnost zobrazení závyslá na paměťových možnostech grafického adaptéru
- až 16 mil. barev

Monitor LCD (Liquid Crystal Monitor)

Dva typy:

- s pasivní maticí nižší cena, nižší kvalita barev
- s aktivní maticí vyšší cena, vyšší kvalita barev (vyšší rozlišení)
- u obou typů je tekutý krystal umístěn mezi dvěma vrstvami skla

Komponenty LCD

- zdroj světla
- tekutý (kapalný) krystal
- barevný filtr

Tekutý krystal

- při přiložení napětí nastává polarizace a propouštění světla (závisí na velikosti napětí)

 podle napětí, které se přes TFT dostane na elektrodu, se změní natočení kapalného krystalu a tím objem (intenzita) světla, která přes kapalný krystal projde

Princip činnosti

- zdroj světla vyrábí světlo, jeho průchod směrem k vrstvě, kde vzniká definitivní barva, je ovlivněn dalšími vrstvami
- průchod světla je řízen tekutým krystalem
- zadní sklo (blíže zdroji světla) na povrchu jsou transistory TFT, každý z nich řídí přivedení napětí na jednu ITO (Indium-Tin Oxide) elektrodu
- přední sklo na povrchu jsou barevné filtry RGB ty vytvoří každou barvu v takové intenzitě, jak jednotlivé barevné složky projdou tekutým krystalem
- informace o složkách barvy jsou přenášeny sériově

Princip činnosti 2

- výběr řádku se provede přivedením 20V na řídící elektrodu TFT
- na řídící elektrodě 5V řádek není vybrán
- přes signální vodiče se přivádějí napětí, jejich velikost přenesena přes rozhraní DVI (tím se přivede napětí na elektrodu vybraného řádku => natočení kapalného krystalu)
- na skle je tolik transistorů TFT, kolik je bodů (pixelů) * 3 (každý pixel se skládá ze 3 subpixelů)
- každý subpixel má jeden transistor TFT, elektrodu ITO a kondenzátor

Vytváření obrazu

2 způsoby:

- budit segmenty
- budit matici

Zobrazení pomocí segmentů - elektrody mají charakter segmentů, nikoliv bodů Zobrazení pomocí matice - vše je zobrazováno pomocí bodů vytvářejících matici

Přímé x multiplexované buzení segmentů

Přímé:

- značný počet přívodů
- nepoužitelné pro obrazovky

Multiplexované

- vybudí se nejprve horizontální vodič, pak jsou teprve buzeny postupně jednotlivé sloupce
- nižší počet přívodů

Pasivní matice

- první vrstva skla vodorovné elektrodové čáry
- druhá vrstva skla kolmé elektrodové čáry
- trojbody obrazu se vytvářejí na průsečících elektrod
- polarizace tekutého krystalu je řízena napětím na elektrodách
- omezené možnosti zvyšování rozlišení
- jsou pomalé

Aktivní matice

- vkládání napětí pro každý bod na obrazovce je řízeno třemi tranzistory => cena výrazně vyšší
- tyto monitory označeny termínem TFT (Thin Film Transistor)

Sběrnice PCI, PCI-Express

Sběrnice PCI je systémová sběrnice.

Realizace systémové sběrnice v PC:

- je rozvedena po systémové desce a je přivedena do konektoru systémové sběrnice, přes nějž komunikuje s dalšími komponentami (řadiči PZ) PCI klienty
- PCI klienti jsou buď zabudováni do systémové desky nebo jsou to přídavné desky v konektoru sběrnice PCI

Rychlost sběrnice závisí na 2 aspektech:

- šířka sběrnice [B]
- synchronizace sběrnice (počet přenosů za jednotku času)
- dnes snaha o realizaci přenosů tak, aby se v paralelních sběrnicích realizovalo více přenosů v průběhu jednoho cyklu

Kompatibilita zdola:

 nutnost zachovat možnost používat v počítačích s vyšším typem sběrnice i starší typy řadičů/adaptérů

Sběrnice PCI

Základní vlastnosti PCI:

- je to 32 nebo 64 bitová paralelní sdílená (= multiplexovaná) S
- PCI je **synchronn**í sběrnice, synchronizační signál se využívá k příjmu dat/ vyhodnocování stavu sběrnice
- přes adresovou část PCI (64 bitů) se přenášejí při 64 bitových přenosech data (32 bitů)
 - => ušetří se signály (vodiče), ale jsou zapotřebí další sběrnicové cykly

Koncepce PCI:

- odděluje subsystémy procesoru a hlavní paměti
- primární sběrnice PCI je blíže procesoru, jsou na ni připojeny rychlejší zařízení
- sekundární S PCI dále procesoru, pomalejší zařízení

Architektura počítačů se sběrnicí PCI:

- první architektury byly založeny na pojmech severní most jižní most
- dnešní architektury obdoba těchto architektur, jen jiné pojmy a čipové sady
 Northbridge (severní most) přes něj jsou připojena zařízení s vysokými
 požadavky na rychlost

Southbridge (jižní most) - připojení méně výkonných zařízení (standardních) Bus Master – zařízení má schopnost realizovat přenosy přes sběrnici (řídit sběrnici) bez nutnosti použít prvek typu "řadič přímého přístupu do paměti"

Most

- rozhraní mezi dvěma sběrnicovými systémy, které je pro uživatele transparentní
- most je schopen sestavovat přenosy v souvislém režimu (burst)
 - => samostatné čtecí/zápisové cykly sestaví do souvislých režimů

Principy komunikace:

- komunikace mezi zařízeními ve sběrnici probíhá přes paměť a registry
- rozsah adres je konkrétnímu zařízení přidělen a je uveden v konfiguračním souboru
- každé zařízení obsahuje sadu konfiguračních registrů ty jsou adresovatelné
 každé zařízení má tři adresové prostory: paměťový, V/V registrů a

konfigurační

registry

- konfiguraci může provádět pouze počítač (ne bus master)
- příkazy sběrnice PCI pro konkrétní zařízení jsou určeny: **směrem a typem transakce a adresovým prostorem**, kterého se týkají

Dual Address Cycle

- umožňuje pomocí 32 bitové sběrnice komunikovat se zařízeními, které pracují se 64 bitovým adresováním
- adresa se posílá přes 32 bitovou směrnici ve dvou cyklech

Special Cycle

 zajišuje tzv. "rozhlášení": vysílá zprávy, které může číst každé zařízení sběrnice

Konfigurační prostor

- 256 slabik organizovaných jako 64 x 32 bitů (sběrnice PCI) nebo až 1024 registrů (sběrnice PCI-X)
- každé zařízení obsahuje KP, s kterým se manipuluje jinými instrukcemi než jsou instrukce pro práci s klasickými registry
- udává podmínky, za nichž se budou PO provádět a stav provádění PO
- využití: po hardwarovém vynulování nebo zapnutí jsou zařízení na sběrnici PCI dostupná pouze k operacím zápisu a čtení konfigurace Sestává se z:
- hlavička (64 slabik) identifikační údaje (ID výrobce, ID zařízení,...)
- záhlaví **registry zařízení** specifikují způsob reagování na cykly sběrnice (příkazy).

Registry zařízení:

Registr Command

- specifikuje chování zařízení je možné jeho obsah číst i zapisovat
- pokud samé "0" je možné číst pouze konfigurační cykly (na jiné zařízení nereaguje)

Registr Status

- součástí např. bit Interrupt Status - nastaven na "1", pokud zařízení generovalo žádost o přerušení a čeká na obsluhu

- indikuje ukončení operace

Základní protokol sběrnice PCI

- PCI je S typu **multimaster** přenosy mohou být inicializovány nejen procesorem, ale také PCI klienty
- PCI klienti jsou **schopni řídit přenosy přes sběrnici PCI** musí se chovat jako řadič sběrnice (busmaster) a generovat signály, kterými je sběrnice řízena

Princip komunikace přes PCI

- komponenty, které se na přenosu podílí, jsou ve vztahu: MASTER (řídí přenos) / SLAVE (podřízené zařízení)
- MASTER = iniciátor, SLAVE = cíl
- přenosy jsou realizovány jako Burst přenosy (blokové přenosy) skládají se z přenosu adresy a následně násobného přenosu dat => omezení režie

Základní signály:

- při přenosech hrají klíčovou roli 3 signály:

FRAME#:

- generován MASTERem (iniciátorem)
- indikuje začátek a konec transakce

IRDY#:

- generován MASTERem
- indikuje, že iniciátor je připraven přenášet data

TRDY#:

- generován SLAVEm (cílem)
- iniciátor je připraven přenášet data

IRDY a TRDY se využívají k technice **čekajících stavů** - pokud není některý z nich připraven, není aktuální hranou synchronizačního signálu realizován přenos

Systémové signály

- mezi fce systém. signálů patří synchronizace a nulování

Synchronizace

- v počítači zdroj synchr. pulsů, ty využity k synchronizaci datových přenosů
- pro jejich rozvod se používá systémová sběrnice

Nulování

- pro uvedení klienta sběrnice (řadič PZ) do výchozího stavu (po vzniku chyby)
- CLK vstupní signál všech komponent PCI

RST - asynchronní vstup. signál, převede konfigurač. registry členů sběrnice PCI do výchozího stavu

Signály pro přenos dat - signály "adresa a data"

- přenos dat do adresovaných prvků registrů a pamětí Dva způsoby:
- pro data i adresu jsou samostatné signály
- pro data i adresu je jedna sada signálů, ty jsou sdíleny

Druhý způsob:

- musíme rozlišit, jestli je v daném okamžiku na sběrnici adresa nebo data
- buď rozlišíme identifikačním signálem rozlišující typ informace nebo časově
- možnost přenosu přes sběrnici v obou směrech

AD[31:00]

- obousměrná sběrnice pro multiplexní přenosy (sdílená sběrnice)
- přepíná mezi datovými a adresovými přenosy
- dvoufázový přenos nejprve se přenášejí v jedné až dvou subfázích adresy, poté jedna nebo . více subfází přenosu dat (burst)
- přenos dat probíhá pokud jsou IRDY nebo TRDY aktivní

C/BE[3:0]

- vymezení platnosti částí přenášené informace

PAR (parita)

- možnost detekovat chyba přenášených adres a dat

Skupina signálů "Řízení rozhraní"

- pro určení, jestli jsou zařízení připraveny komunikovat
- pro vymezení začátku a konce transakce
- patří sem: FRAME, IRDY, TRDY, dále:

STOP:

- pro řešení kritických situací cíl není schopen provést příkaz (porucha, tento příkaz nepodporuje)
- iniciátor ukončuje komunikaci deaktivováním signálu FRAME
- nastavení stavové slabiky/ slabiky závad

Skupina signálů "Řízení přidělování sběrnice"

- signály, jimiž PCI klienti žádají o přidělení S + jsou o přidělení S informováni
- musí být v S k dispozici, pokud PCI klienti budou soupeřit o přidělení sběrnice
- v S musí být komponenta, která o přidělení sběrnice rozhoduje

REQ:

- PCI klient indikuje, že potřebuje sběrnici
- o přidělení sběrnice rozhoduje severní most (northbridge) označován jako supermaster, na základě rozhodnutí vrací signál GNT (PCI byla klientovi přidělena)

Skupina signálů "Chybová hlášení"

- klienti hlásí o svém stavu

PERR#

- chyba parity při přenosu

SERR#

- souhrnná informace o problémech na straně PCI klienta

Skupina signálů "Žádosti o přerušení"

- rozlišit, jestli se jedná o přerušení hranou nebo úrovní

Skupina signálů "Rozšíření sběrnice"

- určení, v jaké šířce S se budou data přenášet
- důvod pro rozšíření vyšší rychlost sběrnice

Metoda Boundary Scan (test rozhraní)

- vybavení prvků zabudovaných do desky tak, aby bylo možné testovat spoje mezi prvky
- nutnost řídit test centrálním prvkem umístěným na základní desce
- všechny paměťové prvky jsou v režimu "test" propojeny do posuvného registru
- systémová sběrnice musí poskytovat podporu pro aplikaci testu spojů -PCI je první takto vybavenou sběrnicí

Základní rámec komunikace přes sběrnici PCI:

- operace na sběrnici PCI mají 2 fáze: adresové a datové
- adresová fáze iniciátor vystaví na sběrnici adresu prvku, do kterého chce zapisovat data (např. adresa registru)
- jeden z cílů rozpozná, že na sběrnici je vystavena adresa některého z jeho

vnitřních prvků a odpoví signálem DEVSEL

- pokud jsou oba účastníci schopni komunikovat, indikují to signály IRDY, TRDY. Přenosy jsou synchronizovány pulsy clk.
- během datové fáze se realizují násobné přenosy dat => snížení režie

Sběrnice PCI-Express

V souvislosti s rozvojem systémových sběrnic se hovoří o **generacích systémových sběrnic**:

1. generace:

- např. sběrnice ISA paralelní 16 bitová, asynchronní sběrnice
- jednoduchá komunikace přenosy dat z prvků na straně procesoru do jiných prvků
- zabudovány mechanismy na generování žádosti o přerušení a přímý přístup do paměti
- omezený počet prvků, které mohou (jsou schopny) řídit sběrnici

2. generace:

- sběrnice EISA, MCA, později PCI a PCI-X
- paralelní synchronní sběrnice (PCI a PCI-X), přenosové rychlosti řádově jednotky GB/s
- hierarchická struktura vytvořená pomocí mostů (bridge)

3. generace:

- sběrnice PCI Express
- sériová komunikace typu point-to-point (spoje se neovlivňují)
- možnost použití více spojů zvýšení rychlosti přenosu a šířky pásma
- do systémové sběrnice byla vložena sériová komunikace
- zvýšení rychlosti přenosu dat **snižováním napájecího napětí** snižování logických hodnot
- přenášených přes sběrnici (zkracování doby přepnutí mezi stavy aktivních prvků)

Sběrnice PCI-X

- v roce 1999
- další zvyšování rychlosti snižováním napájecího napětí

- byla realizována strategie n-násobných přenosů vůči základní frekvenci 133 MHz (př. PCI-X266 => dvojnásobná přenosová frekvence za jednu periodu základního kmitočtu se přenos zrealizuje dvakrát, PCI-X533 => čtyřnásobná)
- vysoké kmitočty přenosu nutnost nízkonapěťového rozhraní (1,5V)
- využití technik na opravu chyb ECC (Error Correcting Codes samoopravné kódy)
- není zapotřebí arbitr pro rozhodnutí o přidělení sběrnice pro přenos dat spoj point-to-point
- každý spoj je dedikovaný zařízení na spoji PCI Express může kdykoliv do sériového spoje

poslat data, stejně tak musí být připraveno ze vstupního spoje data přijmout

Sběrnice PCI Express (PCI E)

Požadavky na PCI E:

- scalability rozšiřitelnost základního spoje z hlediska počtu spojů s cílem dosáhnout vyššího výkonu (přidáním dalšího spoje se zvýší šířka pásma)
- efektivnější využívání spoje
- vyšší rychlost do PCI E se zařadí další spoj, architektura se výrazně nemění

Charakteristika

- PCI E je vysokorychlostní, sériový, nízkonapěťový diferenciální spoj pro komunikaci mezi dvěma zařízeními
- spoj je realizován jako dvojitý jednosměrný spoj (dva jednosměrné spoje)
- spojení **Full duplex** je možné přenášet data v obou směrech max. možnou frekvencí současně
- nízkonapěťový pracuje se s napětím 0,8 -1,2V (technika LVDS Low Voltage Differential Signalling)
- sběrnice PCI E může být "nastavena" pro řadu aplikací má nastavitelnou různou rychlost přenosu
- pracuje se s kódováním 8b/10b
- řešen Data Scrambling
- Link spoj mezi dvěma zařízeními na PCI Express
- Lane dvě dvojice vodičů, přes něž se přenáší diferenciální signál vysílání a příjem

Koncepce

- sběrnice PCI E je **sítí point-to-point spojů** je koncipována jako několik point-to-point sériových spojů (links) => ne jako sdílený paralelní spoj
- tyto spoje směrovány v rozbočovači (tam jsou ustaveny)
- možnost násobných existencí point-to-point spojů přenosů do více zařízení - tato koncepce dovoluje, aby v konkrétním okamžiku spolu komunikovalo více dvojic zařízení
- počet spojů (lanes) je "dohodnut" při zapínání nebo až v průběhu činnosti
- nemusí se vůbec používat mechanismy přidělování sběrnice, nemusíme řešit problémy
- s čekáním na uvolnění sběrnice

Transakce na sběrnici PCI Express

- tzv. "split-transaction" protokol (rozdělený protokol)
- transakce složena ze 2 částí: požadavek (request) a provedení (completion)
 Mechanismus:
- iniciátor transakce (requester) vyšle paket "žádost"
- cíl (completer) paket přijme, provede požadované činnosti, pak odpoví paketem (tzv. completion packet)
- 2 zařízení spojená spojem nemusí být nutně ve vztahu requester completer

Typy transakcí

Paměťové transakce

- operace (zápis/čtení) prvky adresované v adresovém prostoru paměti
 V/V transakce
- operace (zápis/čtení) prvky adresované ve V/V adresovém prostoru Konfigurační transakce
- operace (zápis/čtení) prvky adresované v konfiguračním adresovém prostoru
- každá funkce jednotlivých zařízení má svůj konfigurační prostor, který je 4x větší než u sběrnice PCI

Transakce typu "zpráva"

 využívá se při žádosti o přerušení, chybovém hlášení (nahrazuje signály PERR, SERR)

Transaction Layer (transakční vrstva)

konvertuje požadavky na nějakou činnost do paketů => na úrovni Transaction
 Layer se vytvoří paket (TLP - Transaction Layer Packet) a doplní se hlavičkou

- Header (hlavička) - typ transakce (I/O, paměť, konf. prostor, zpráva)

Data Link Layer (spojovací vrstva)

- paket je doplněn o **sequence number** (pořadové číslo paketu), pro následnou kontrolu pořadí paketů na straně příjemce
- spojovací vrstva má v sobě integrovány kontrolní funkce
- další fce: doplnění **LCRC** (Link CRC) na vysílací straně, kontrola LCRC na straně příjemce

Physical Layer (fyzická vrstva)

- = obvody pro realizaci protokolu
- konverze 8b na 10 b
- konverze paralelních dat na sériová
- doplnění "frame" rámec, vymezení začátku a konce paketu.

Na přijímací straně je postup opačný ve všech vrstvách. Na přijímací straně se kontroluje to, co bylo na vysílací straně na patřičné úrovni do paketu vloženo

Data Scrambling

- Scramble zakódovat
- má za cíl odstranění jevu označovaného jako elektromagnetická interference (EMI) - vznikne jako výsledek opakovaných přenosů stejných vzorů dat přes spoj
- přenášená data jsou přenášená přes LZPR (Lineární Zpětnovazební Posuvný Registr – Linear Feedback Shift Register - LFSR)
- LZPR realizuje polynom G(x) = X16 + X5 + X4 + X3 + 1, tzn. vysílaná data jsou dělena tímto polynomem
- přijatá data jsou na přijímací straně zpracována "opačným směrem"
- Scrambling (vysílací strana) descrambling (přijímací strana).