SI 270 Shanghai Tech

Lebesgue Integral

Measures

Lebesgue Integrals

Lebesgue Spaces

Boris Houska 1-1

Contents

Measures

Lebesgue Integrals

Lebesgue Spaces

Sigma Algebras

Let X be a non-empty set. A collection $\mathcal{S}(X)$ of subsets of X is called a σ -algebra on X if

- $\bullet \ S \in \mathcal{S}(X) \ \text{implies} \ S^{\mathrm{c}} = (X \setminus S) \in \mathcal{S}(X) \text{, and}$
- $S_i \in \mathcal{S}(X)$ for all $i \in I$, with I countable, implies $\bigcup_{i \in I} S_i \in \mathcal{S}(X)$.

In words: S(X) is closed under complements and countable unions.

Sigma Algebras

Basic Properties:

- 1. We have $X \in \mathcal{S}(X)$,
- 2. as well as $\varnothing \in \mathcal{S}(X)$, and
- 3. if I is countable, then $\bigcap_{i \in I} S_i \in \mathcal{S}(X)$.

Proof:

- $1. \ S \in \mathcal{S}(X) \quad \Longrightarrow \quad S^{\mathrm{c}} \in \mathcal{S}(X) \quad \Longrightarrow \quad X = S \cup S^{\mathrm{c}} \in \mathcal{S}(X),$
- 2. $X \in \mathcal{S}(X) \implies \varnothing = X^{c} \in \mathcal{S}(X)$, and
- 3. $\bigcap_{i \in I} S_i = \left(\bigcup_{i \in I} S_i^c\right)^c \in \mathcal{S}(X)$.

Sigma Algebras

Examples:

- 1. The collection $\{\emptyset, X\}$ is a σ -algebra on X.
- 2. The power set 2^X is also a σ -algebra on X.
- 3. For any collection $\mathcal{F}\subseteq 2^X$ one can find a σ -algebra $\overline{\mathcal{F}}$ such that $\mathcal{F}\subseteq \overline{\mathcal{F}}\subseteq 2^X$. The smallest σ -algebra $\overline{\mathcal{F}}$ with this property is called the σ -algebra that is generated by \mathcal{F} .
- 4. The σ -algebra that is generated by \mathcal{F} can alternatively be obtained as the intersection of all σ -algebras that contain \mathcal{F} . (Proof: exercise!)

Borel Sigma Algebras

Let (X,d) be a metric space, $\mathcal F$ the set of open subsets of X, and $\mathcal B(X)$ the σ -algebra that is generated by $\mathcal F.$

Definition:

• The collection $\mathcal{B}(X)$ is called the Borel σ -algebra of X.

Properties:

- 1. $\mathcal{B}(X)$ contains all open subsets of X,
- 2. $\mathcal{B}(X)$ contains all closed subsets of X, and
- 3. $\mathcal{B}(X)$ contains countable unions of all of these sets.

Measures

Let X be a non-empty set and $\mathcal{S}(X)$ a σ -algebra on X.

Definition:

A map $\mu:\mathcal{S}(X) \to [0,\infty]$ is called a measure on $\mathcal{S}(X)$ if

- 1. $\mu(\varnothing) = 0$, and
- 2. for any countable collection of disjoint sets $S_i \in \mathcal{S}(X)$, $i \in I$, we have

$$\mu\left(\bigcup_{i\in I} S_i\right) = \sum_{i\in I} \mu(S_i)$$

(note: the order of the summation is irrelevant, because $\mu(S_i) \geq 0$)

Measures

Language

- The triple $(X, \mathcal{S}(X), \mu)$ is called a measure space,
- ullet the elements of $\mathcal{S}(X)$ are called measurable sets, and
- a set $S \subseteq \mathbb{R}^n$ is called Borel measurable if $S \in \mathcal{B}(\mathbb{R}^n)$.

Examples

- ullet The function $\mu(S)=0$ defines a (rather useless) measure
- ${\color{black} \bullet}$ If $F:\mathbb{R} \to \mathbb{R}$ is a continuous non-increasing function, one can define

$$\forall S \in \mathcal{B}(\mathbb{R}), \quad \mu(S) \ = \ \inf_{a,b} \ \sum_{j=1}^{\infty} |F(b_j) - F(a_j)| \quad \text{s.t.} \quad \bigcup_{j=1}^{\infty} [a_j,b_j] \supseteq S$$

Measures

Theorem Let $(X, \mathcal{S}(X), \mu)$ be a measure space. Then:

- Monotonicity: $S, S' \in \mathcal{S}(X)$ with $S \subseteq S'$ implies $\mu(S) \leq \mu(S')$,
- Subadditivity: any countable collection $S_i \in \mathcal{S}(X)$, $i \in I$, satisfies

$$\mu\left(\bigcup_{i\in I} S_i\right) \le \sum_{i\in I} \mu(S_i)$$

• Continuity: if $S_1 \subseteq S_2 \subseteq S_3 \subseteq \ldots \in \mathcal{S}(X)$, then

$$\mu\left(\bigcup_{i\in\mathbb{N}}S_i\right) \;=\; \lim_{i\to\infty}\; \mu(S_i) \quad \text{and} \quad \mu\left(\bigcap_{i\in\mathbb{N}}S_i^{\mathrm{c}}\right) \;=\; \lim_{i\to\infty}\; \mu(S_i^{\mathrm{c}})$$

Null Sets

Let $(X, \mathcal{S}(X), \mu)$ be a measure space.

Definition

• If $S \in \mathcal{S}(X)$ satisfies $\mu(S) = 0$, then it is called a null set.

Language

ullet If a property is true for all $x \in X$ except on a null set, we say that this property holds almost everywhere.

Completions

- If $S, S' \in \mathcal{S}(X)$ satisfy $S' \subseteq S$ and $\mu(S) = 0$, then $\mu(S') = 0$.
- The union, $\overline{\mathcal{S}(X)}$, of $\mathcal{S}(X)$ with the set of subsets of all its null sets is called the null set completion of $\mathcal{S}(X)$; μ extends naturally to $\overline{\mathcal{S}(X)}$.

Lebesgue Measures

Let $\mathcal{L}(\mathbb{R})=\overline{\mathcal{B}(\mathbb{R})}$ be the null-set completion of the Borel set $\mathcal{B}(\mathbb{R})$ with respect to the measure

$$\forall S \in \mathcal{B}(\mathbb{R}), \quad \mu(S) \ = \ \inf_{a,b} \ \sum_{j=1}^{\infty} |b_j - a_j| \quad \text{s.t.} \quad \bigcup_{j=1}^{\infty} [a_j,b_j] \supseteq S$$

Recall that μ extends to $\mathcal{L}(\mathbb{R})$ by setting $\mu(S)=0$ for all S that are the subset of a null set, $S\subseteq S'$, $\mu(S')=0$.

Definition

- ullet The measure μ is called the Lebesgue measure on $\mathcal{L}(\mathbb{R})$.
- ullet The sets $S\in\mathcal{L}(\mathbb{R})$ are called Lebesgue measurable.

Lebesgue Measures

Examples

- The interval [a,b] is Lebesgue measurable, $\mu([a,b]) = |b-a|$.
- For a countable set $S=\{x_1,x_2,x_3,\ldots\}$, $x_i\in\mathbb{R}$, we have $\mu(S)=0$.
- In particular, $\mu(\mathbb{Q}) = 0$, where \mathbb{Q} denotes the rational numbers.
- We have $\mu(\mathbb{R}) = \infty$.
- We have $\mu(\mathbb{R} \setminus \mathbb{Q}) = \mu(\mathbb{R}) \mu(\mathbb{Q}) = \infty$.
- ullet There exist sets $S\subseteq\mathbb{R}$ that are not Lebesgue measurable. (Exercise!)

Lebesgue Measures

Multivariate Lebesgue Measure

- The above construction can be extended to \mathbb{R}^n .
- We introduce the notation $[a,b] = [a_1,b_1] \times [a_2,b_2] \times [a_n,b_n] \subseteq \mathbb{R}^n$.
- The intervals $[a,b] \in \mathbb{R}^n$ have the volume

$$|b-a| = \prod_{i=1}^{n} |b_i - a_i|.$$

ullet Next, we can extend our definition of μ by setting

$$\forall S \in \mathcal{B}(\mathbb{R}^n), \quad \mu(S) \ = \ \inf_{a,b} \ \sum_{j=1}^\infty |b^j - a^j| \quad \text{s.t.} \quad \bigcup_{j=1}^\infty [a^j,b^j] \supseteq S \ .$$

• The rest of the construction is analogous to the scalar case.

Contents

Measures

• Lebesgue Integrals

Lebesgue Spaces

Simple Functions

The indicator function of a set $S \subseteq \mathbb{R}$ is denoted by

$$I_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise } . \end{cases}$$

Definition

• A function $\phi:\mathbb{R}\to\mathbb{R}$ is called simple, if there exist coefficients c_1,c_2,\ldots,c_n and sets $S_1,S_2,\ldots,S_n\subseteq\mathbb{R}$ such that

$$\phi = \sum_{i=1}^{n} c_i I_{S_i} .$$

Measurable Functions

Definition

ullet A function $f:\mathbb{R} \to \mathbb{R}$ is said to be Lebesgue measurable if

$$\forall S \in \mathcal{B}(\mathbb{R}), \qquad f^{-1}(S) \in \mathcal{L}(\mathbb{R}) .$$

Examples

- The indicator function I_S is Lebesgue measurable iff $S \in \mathcal{L}(\mathbb{R})$.
- If $S_i \in \mathcal{L}(\mathbb{R})$, $c_i \in \mathbb{R}$, then $\phi = \sum_{i=1}^n c_i I_{S_i}$ is Lebesgue measurable.
- All continuous functions are Lebesgue measurable.

Measurable Functions

Properties

- If f,g Lebesgue measurable, then f+g, f*g, f/g are measurable.
- If f Lebesgue measurable and g continuous, then $g \circ f$ is measurable.
- ullet If $f_1,f_2,f_3\dots$ is a sequence of Lebesgue measurable functions, then

$$\limsup_{k \to \infty} f_k \quad \text{and} \quad \liminf_{k \to \infty} f_k$$

are Lebesgue measurable.

- If f is measurable, then $f_+(x) = \max\{0, f(x)\}$ is measurable.
- If f is measurable, then $f_{-}(x) = \min\{0, f(x)\}$ is measurable.

Lebesgue Integral

Let $L_+(\mathbb{R})$ be the set of non-negative Lebesgue measurable functions.

Definition

• For a simple function $\phi = \sum_{i=1}^n c_i I_{S_i} \in L_+(\mathbb{R})$, we define

$$\int_{\mathbb{R}} \phi \, \mathrm{d}\mu = \sum_{i=1}^{n} c_i \mu(S_i)$$

• For measurable function $f \in L_+(\mathbb{R})$, we define

$$\int_{\mathbb{R}} \phi \, \mathrm{d}\mu \ = \ \sup_{\phi \in L^+(\mathbb{R})} \ \int_{\mathbb{R}} \phi \, \mathrm{d}x \qquad \text{s.t.} \qquad \left\{ \begin{array}{l} \phi \leq f \\ \phi \text{ is simple} \end{array} \right.$$

Lebesgue Integral

Definition

 \bullet For a general measurable function f, we define

$$\int_{\mathbb{R}} f \, \mathrm{d}\mu \ = \ \int_{\mathbb{R}} f_+ \, \mathrm{d}\mu - \int_{\mathbb{R}} (-f_-) \, \mathrm{d}\mu$$

whenever $\int_{\mathbb{R}} f_+ d\mu < \infty$ or $\int_{\mathbb{R}} (-f_-) d\mu < \infty$.

• If $\int_{\mathbb{R}} |f| \, \mathrm{d}\mu < \infty$, f is called Lebesgue integrable.

Lebesgue Integral

Let $L^1(\mathbb{R})$ denote the set of Lebesgue integrable functions.

Properties

 \bullet If $f,g\in L^1(\mathbb{R})$ and $a,b\in\mathbb{R},$ then $af+bg\in L^1(\mathbb{R})$ and

$$\int_{\mathbb{R}} (af + bg) \,\mathrm{d}\mu \ = \ a \int_{\mathbb{R}} f \,\mathrm{d}\mu + b \int_{\mathbb{R}} g \,\mathrm{d}\mu \ .$$

ullet if $f,g\in L^1(\mathbb{R})$ and $f\leq g$, then

$$\int_{\mathbb{R}} f \, \mathrm{d}\mu \, \leq \, \int_{\mathbb{R}} g \, \mathrm{d}\mu \, .$$

• if $f,g\in L^1(\mathbb{R})$ and f(x)=g(x) for almost every $x\in\mathbb{R}$, then

$$\int_{\mathbb{R}} f \, \mathrm{d}\mu \ = \ \int_{\mathbb{R}} g \, \mathrm{d}\mu \ .$$

Comments on Notation

- As mentioned, Lebesgue measures can also be defined on \mathbb{R}^n .
- The set of the corresponding Lebesgue integrable functions $f:\mathbb{R}^n \to \mathbb{R}$ will be denoted by $L^1(\mathbb{R}^n)$.
- For any exponent p>0, the notation $L^p(\mathbb{R}^n)$ is used to denote the set of function $f:\mathbb{R}^n\to\mathbb{R}$ with $|f|^p\in L^1(\mathbb{R}^n)$.
- For a Lebesgue measurable subset $\Omega \subseteq \mathbb{R}^n$, we say that $f \in L^p(\Omega)$ if $fI_{\Omega} \in L^p(\mathbb{R}^n)$, where I_{Ω} denotes the indicator function of Ω . Also:

$$\int_{\Omega} f \, \mathrm{d}\mu \ \stackrel{\mathrm{def}}{=} \ \int_{\mathbb{R}^n} f I_{\Omega} \, \mathrm{d}\mu \ .$$

 \bullet If it is clear from the context that " $\mathrm{d}x$ " denotes a Lebesgue measure, we simply write

$$\int_{\Omega} f \, \mathrm{d}x$$
 instead of $\int_{\Omega} f \, \mathrm{d}\mu$.

Theorem

• Let $f_1, f_2, \ldots \in L^1(\Omega)$ be a monotonically increasing sequence of non-negative functions with

$$\sup_{k \in \mathbb{N}} \int_{\Omega} f_k(x) \, \mathrm{d}x < \infty .$$

Then there exists $f \in L^1(\Omega)$ such that $f_k \to f$ almost everywhere and

$$\lim_{k \to \infty} \int_{\Omega} f_k(x) dx = \int_{\Omega} \lim_{k \to \infty} f_k(x) dx = \int_{\Omega} f(x) dx.$$

Proof. (Step 1)

ullet As the sequence f_k is monotonically increasing, the limit

$$f(x) = \lim_{k \to \infty} f_k(x) = \sup_{k \to \infty} f_k(x)$$

is well defined and a measurable function. Additionally, due to the monotonicity of the Lebesgue integral, we have

$$\gamma \stackrel{\text{def}}{=} \lim_{k \to \infty} \int_{\Omega} f_k(x) \, \mathrm{d}x < \infty.$$

Proof. (Step 2)

• Since we assume $f\geq 0$: for any measurable set $S_i\subseteq \Omega$, we can set $c_i\stackrel{\mathrm{def}}{=}\inf_{x\in S_i}f(x)$ and show that

$$c_i \mu(S_i) \le \lim_{k \to \infty} \int_{S_i} f_k(x) dx = \gamma(S_i).$$

Technical details: the case $c_i=0$ is trivial. So, we may assume $0<\tilde{c}_i< c_i$. The sets

$$\Sigma_k^{\tilde{c}_i} \stackrel{\text{def}}{=} \{ x \in S_i \mid f_k(x) > \tilde{c}_i \}$$

are measurable (since $f_k \in L^1(\Omega)$), monotonically increasing, and

$$\tilde{c}_i \mu(\Sigma_k^{\tilde{c}_i}) \le \int_{S_i} f_k \, \mathrm{d}x \le \sup_{k \in \mathbb{N}} \int_{S_i} f_k \, \mathrm{d}x = \gamma(S_i) .$$

Since $\bigcup_{k\in\mathbb{N}} \Sigma_k^{\tilde{c}_i} = S_i$, the claim follows for $\tilde{c}_i \to c_i$.

Proof. (Step 3)

• If the sets $S_i \subseteq \Omega$ from the previous step are a disjoint partition of Ω ,

$$\sum_{i} c_{i} \mu(S_{i}) \leq \sum_{i} \lim_{k \to \infty} \int_{S_{i}} f_{k}(x) dx = \lim_{k \to \infty} \int_{\Omega} f_{k}(x) dx \leq \gamma.$$

Since the partition is arbitrary we can take the supremum (see the definition of the Lebesgue integral!) and it follows

$$\gamma = \lim_{k \to \infty} \int_{\Omega} f_k \, \mathrm{d}x \le \int_{\Omega} f \, \mathrm{d}x \le \gamma.$$

This concludes the proof.

Consequences of Beppo Levi's Theorem

- Beppo Levi's theorem can be used to analyze sums of non-negative Lebesgue integrable g_k by setting $f_k = \sum_{i=1}^k g_k$.
- ullet Also, if $g_k \in L^1(\Omega)$ is an arbitrary monotone sequence with

$$\sup_{k \in \mathbb{N}} \left| \int_{\Omega} g_k(x) \, \mathrm{d}x \right| < \infty$$

the limit $g = \lim_{k \to \infty} g_k \in L^1(\Omega)$ is integrable and

$$\lim_{k \to \infty} \int_{\Omega} g_k(x) \, \mathrm{d}x \ = \ \int_{\Omega} \lim_{k \to \infty} g_k(x) \, \mathrm{d}x \ = \ \int_{\Omega} g(x) \, \mathrm{d}x \ .$$

Proof: set $f_k = \pm (g_k - g_1)$ a.e. and apply Beppo-Levi.

Lebesgue Dominated Convergence Theorem

Theorem

• Let $f_1, f_2, \ldots \in L^1(\Omega)$ be a sequence of functions that converges to f almost everywhere. If there exists $g \in L^1(\Omega)$ with a.e. $|f_k| \leq g$ for all $k \in \mathbb{N}$, then $f \in L^1(\Omega)$ and

$$\lim_{k \to \infty} \int_{\Omega} f_k(x) \, \mathrm{d}x \ = \ \int_{\Omega} \lim_{k \to \infty} f_k(x) \, \mathrm{d}x \ = \ \int_{\Omega} f(x) \, \mathrm{d}x \ .$$

Proof.

• The functions $h_k(x) \stackrel{\mathrm{def}}{=} \sup_{i \geq k} \{|f_i(x) - f(x)|\}$ (a.e.) are Lebesgue integrable (since $|h_k(x)| \leq 2g(x)$) and are monotonically decreasing to 0. The above variant of Beppo Levi's theorem can be applied to the sequence h_k , which then yields the desired statement.

Contents

Measures

Lebesgue Integrals

Lebesgue Spaces

Banach Spaces

Definition

• A map $\|\cdot\|:X\to[0,\infty)$ on a real vector space X is a norm, if

$$||x|| = 0 \iff x = 0,$$

 $||\alpha x|| = |\alpha| ||x||$
 $||x + y|| \le ||x|| + ||y||$

for all $x, y \in X$ and all $\alpha \in \mathbb{R}$.

 A normed real vector space X is called (real) Banach space if it is complete. That is, every Cauchy sequence in X has a limit in X.

Banach Spaces

Continuous Function Space

• Let $\Omega \subseteq \mathbb{R}^n$ be a set. We use the notation

$$C^0(\Omega) \stackrel{\mathrm{def}}{=} \{ f: \Omega \to \mathbb{R} \mid f \text{ continuous on } \Omega \}.$$

• If Ω is bounded, then $C^0(\mathrm{cl}(\Omega))$ is a Banach space with respect to its associated supremum norm

$$||f||_{C^0} \stackrel{\text{def}}{=} \sup_{x \in \operatorname{cl}(\Omega)} |f(x)|.$$

Proof: Exercise!

Banach Spaces

Continuously Differentiable Functions

• Let $\Omega\subseteq\mathbb{R}^n$ be open. For a multi-index $\alpha\in\mathbb{N}^n$, we write $|\alpha|=\sum_{i=1}^n\alpha_i$ and introduce the shorthand

$$D^{\alpha} f \stackrel{\text{def}}{=} \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}} .$$

Next, set $\overline{\Omega} \stackrel{\mathrm{def}}{=} \mathrm{cl}(\Omega)$ and define

$$C^k(\overline{\Omega}) \ \stackrel{\mathrm{def}}{=} \ \left\{ \begin{array}{l} f : \overline{\Omega} \to \mathbb{R} \ \middle| \ \text{for all } \alpha \in \mathbb{N}^n \text{ with } |\alpha| \leq k : \\ D^\alpha f \in C^0(\Omega) \ \text{ and } D^\alpha f \text{ has a} \\ \text{ continuous extension to } \overline{\Omega} \end{array} \right\}.$$

• $C^k(\overline{\Omega})$ is a Banach space with norm $\|f\|_{C^k} \stackrel{\mathrm{def}}{=} \sum_{\|\alpha\| \le k} \|D^{\alpha} f\|_{C^0}$.

Lebesgue Norms

• The L^p -norm on $L^p(\Omega)$ is given by

$$||f||_{L^p} \stackrel{\text{def}}{=} \left(\int_{\Omega} |f|^p \, \mathrm{d}x \right)^{\frac{1}{p}}$$

- Notice that $\|f\|_{L^p}$ merely implies f=0 almost everywhere. However, if we write $f\sim g$ if f and g coincide almost everywhere, then $\|\cdot\|_{L^p}$ is positive definite on $L^p(\Omega)/\sim$.
- In practice: we simply write $L^p(\Omega)$ instead of $L^p(\Omega)/\sim$.
- Absolute homogeniety, $\|\alpha f\|_{L^p} = |\alpha| \|f\|_{L^p}$ follows trivially from the above definition.
- The triangle inequality will be established below.

Hölder's Inequality

Theorem

 $\bullet \mbox{ For } 1 \leq p,q < \infty \mbox{ with } \frac{1}{p} + \frac{1}{q} = 1 \mbox{ and } f \in L^p(\Omega) \mbox{, } g \in L^q(\Omega) \mbox{, we have}$

$$||fg||_{L^1} \le ||f||_{L^p} ||g||_{L^q}$$
.

Proof.

• As \log is a concave function, $\log(x)'' = -x^{-2} < 0$, we have

$$\log\left(\frac{a}{p} + \frac{b}{q}\right) \geq \frac{1}{p}\log\left(a\right) + \frac{1}{q}\log\left(b\right) = \log\left(a^{\frac{1}{p}}b^{\frac{1}{q}}\right)$$

for any $a,b \geq 0$. Thus, also $a^{\frac{1}{p}}b^{\frac{1}{q}} \leq \frac{a}{p} + \frac{b}{q}$.

Hölder's Inequality

Proof (continued)

- We may assume $f,g \ge 0$ and $0 < \|f\|_{L^p}, \|g\|_{L^q} < \infty$. (otherwise the statement is trivial)
- Substitute $a=\frac{f(x)^p}{\|f\|_{L^p}^p}$ and $b=\frac{g(x)^p}{\|g\|_{L^q}^p}$ in the above inequality and integrate on both sides:

$$\int_{\Omega} \frac{f(x)g(x)}{\|f\|_{L^{p}} \|g\|_{L^{q}}} \, \mathrm{d}x \le \frac{1}{p} + \frac{1}{q} = 1.$$

It follows that

$$||fg||_{L^1} \le ||f||_{L^p} ||g||_{L^q}$$
.

Minkowski's Inequality

Theorem

• For $1 \leq p < \infty$ and $f, g \in L^p(\Omega)$, we have

$$||f+g||_{L^p} \le ||f||_{L^p} + ||g||_{L^q}.$$

Proof.

ullet For p=1, this follows simply from

$$||f + g||_{L^{1}} = \int_{\Omega} ||f + g||_{1} dx$$

$$\leq \int_{\Omega} (||f||_{1} + ||g||_{1}) dx \leq ||f||_{L^{1}} + ||g||_{L^{1}}.$$

Minkowski's Inequality

Proof (continued).

- \bullet For p>1, we set $q=rac{p}{p-1}$ such that $rac{1}{p}+rac{1}{q}=1$.
- If we set $h = |f + g|^{p-1}$ it follows that $h^q = |f + g|^p$ and then

$$\|h\|_{L^q} = \|f+g\|_{L^p}^{\frac{p}{q}} \quad \text{and} \quad |f+g|^p = |f+g|h \leq |fh| + |gh| \;.$$

Thus, Hölder's inequality yields

$$||f + g||_{L^{p}}^{p} = \int_{\Omega} |f + g|^{p} dx \leq ||fh||_{L^{1}} + ||gh||_{L^{1}}$$

$$\leq (||f||_{L^{p}} + ||g||_{L^{p}})||h||_{L^{q}}$$

$$\leq (||f||_{L^{p}} + ||g||_{L^{p}})||f + g||_{L^{p}}^{\frac{p}{q}}.$$

Due to $p - \frac{p}{q} = 1$, the Minkowski inequality follows.

Fischer-Riesz Theorem

Theorem

• The pair $(L^p(\Omega), \|\cdot\|_{L^p})$ is a Banach space.

Proof.

- ullet $L^p(\Omega)$ is a normed space, but we need to show that it's complete.
- Thus, let $f_1, f_2, \ldots \in L^p(\Omega)$ be a Cauchy sequence and $\epsilon_1, \epsilon_2, \ldots \geq 0$ a sequence that satisfies $\sum_{k=1}^\infty \epsilon_k < \infty$. Now, we can find an monotonically increasing index sequence i_k such that

$$\forall i, j \geq i_k, \qquad ||f_i - f_k||_{L^p} \leq \epsilon_k.$$

Set $u_1 = f_{i_1}$ and $u_k = f_{i_k} - f_{i_{k-1}}$. Clearly,

$$\sigma \stackrel{\text{def}}{=} \sum_{k=1}^{\infty} \|u_k\|_{L^p} \le \|f_{i_1}\|_{L^p} + \sum_{k=2}^{\infty} \|f_{i_k} - f_{i_{k-1}}\|_{L^p} < \infty$$

Fischer-Riesz Theorem

Proof (continued).

• Next, set $v_k \stackrel{\mathrm{def}}{=} \sum_{i=1}^k |u_k| \in L^p(\Omega)$. Clearly,

$$||v_k||_{L^p} \leq \sum_{i=1}^k ||u_k||_{L^p} \Longrightarrow \int_{\Omega} |v_k|^p dx \leq \sigma^p.$$

Beppo Levi's theorem implies that $v\stackrel{\mathrm{def}}{=}\lim_{k\to\infty}v_k\in L^p(\Omega)$ and

$$\int_{\Omega} |v|^p dx \leq \sigma^p \qquad \Longrightarrow \qquad \|v_k\|_{L^p} \leq \sigma.$$

Note that this the above implies that the series

$$f(x) = \sum_{k=1}^{\infty} u_k(x)$$

converges almost everywhere and $|f| \leq v$ implies $f \in L^p(\Omega)$.

Fischer-Riesz Theorem

Proof (continued).

• Since $u_1 + u_2 + \ldots + u_k = f_{i_k}$ (telescope sum), it follows that

$$|f - f_{i_k}| \le |f| + |f_{i_k}| \le 2v$$
 \Longrightarrow $|f - f_{i_k}|^p \le 2^p v^p \in L^1(\Omega)$.

Thus, the Lebesgue dominated convergence theorem yields convergence of the subsequence

$$\lim_{k \to \infty} \int_{\Omega} |f - f_{i_k}|^p \, \mathrm{d}x = 0.$$

• The whole sequence also converges to f, since for $i \geq i_k$

$$||f_i - f||_{L^p} \le ||f_i - f_{i_k}||_{L^p} + ||f_{i_k} - f||_{L^p} \le \epsilon_k + ||f_{i_k} - f||_{L^p} \to 0$$
.

Thus, $f = \lim_{i \to \infty} f_i$ in $L^p(\Omega)$, which concludes the proof.