代数学(雪江明彦)

第1巻 群論入門 (第1版第9刷)

第4章

群の作用と Sylow の定理

演習問題

■4.6.10 $G=\langle x,y,z|x^2=y^3=z^5=xyz=1\rangle$ および $H=\langle z\rangle$ とする。 $H\backslash G$ における 1_G の剰余類を 1 と表し,Todd-Coxeter の方法を実行する.

	y		y		y		z		z		z		z		z		y		z		y		z	
1		2		3		1		1		1		1		1		1		2		4		5		1

5z = 1z = 1 なので 5 = 1. 4y = 5 = 1 = 3y なので 4 = 3. 1 行目を書き換えて 2 行目を計算する.

	y	y		y	z	z		z		z	z		y		z	y		z	
1	2	2	3	1		l	1		1	1		1		2	3		1		1
2		3	1	2	;	3	4		5	6		2		3	4		7		2

7z = 6z = 2 なので 7 = 6. 2 行目を書き換えて 3, 4 行目を計算する.

	y	y	y	z	z	z	z	z	y	z	y	z
1	2	3	1	1	1	1	1	1	2	3	1	1
2	3	1	2	3	4	5	6	2	3	4	6	2
3	1	2	3	4	5	6	2	3	1	1	2	3
4	7	8	4	5	6	2	3	4	7	9	10	4

10z = 3z = 4 なので 10 = 3. 9y = 10 = 3 = 2y なので 9 = 2. 7z = 9 = 2 = 6z なので 7 = 6. $8 \rightarrow 7$ とする. 4 行目を書き換えて 5 行目を計算する.

	y	y	y	z	z	z	z	z	$\mid y \mid$	z	y	z
1	2	3	1	1	1	1	1	1	2	3	1	1
2	3	1	2	3	4	5	6	2	3	4	6	2
3	1	2	3	4	5	6	2	3	1	1	2	3
4	6	7	4	5	6	2	3	4	6	2	3	4
5	8	9	5	6	2	3	4	5	8	10	11	5

11z = 4z = 5 なので 11 = 4. 10y = 11 = 4 = 7y なので 10 = 7. 5 行目を書き換えて 6 行目を計算する.

	y	y	y	z	z	z	z	z	y	z	y	z
1	2	3	1	1	1	1	1	1	2	3	1	1
2	3	1	2	3	4	5	6	2	3	4	6	2
3	1	2	3	4	5	6	2	3	1	1	2	3
4	6	7	4	5	6	2	3	4	6	2	3	4
5	8	9	5	6	2	3	4	5	8	7	4	5
6	7	4	6	2	3	4	5	6	7	10	11	6

11z = 5z = 6 なので 11 = 5. 10y = 11 = 5 = 9y なので 10 = 9. 6 行目を書き換えて 7 行目を計算する.

	y	y	y	z	z	z	z	z	y	z	y	z
1	2	3	1	1	1	1	1	1	2	3	1	1
2	3	1	2	3	4	5	6	2	3	4	6	2
3	1	2	3	4	5	6	2	3	1	1	2	3
4	6	7	4	5	6	2	3	4	6	2	3	4
5	8	9	5	6	2	3	4	5	8	7	4	5
6	7	4	6	2	3	4	5	6	7	9	5	6
7	4	6	7	9	10	11	12	7	4	5	8	7

12z = 8z = 7 なので 12 = 8. 7行目を書き換えて 8 行目を計算する.

	y	y	y	z	z	z	z	z	y	z	y	z
1	2	3	1	1	1	1	1	1	2	3	1	1
2	3	1	2	3	4	5	6	2	3	4	6	2
3	1	2	3	4	5	6	2	3	1	1	2	3
4	6	7	4	5	6	2	3	4	6	2	3	4
5	8	9	5	6	2	3	4	5	8	7	4	5
6	7	4	6	2	3	4	5	6	7	9	5	6
7	4	6	7	9	10	11	8	7	4	5	8	7
8	9	5	8	7	9	10	11	8	9	10	12	8

12z = 11z = 8 なので 12 = 11. 8 行目を書き換えて 9, 10, 11 行目を計算する.

	y	y	y	z	z	z	z	z	y	z	y	z
1	2	3	1	1	1	1	1	1	2	3	1	1
2	3	1	2	3	4	5	6	2	3	4	6	2
3	1	2	3	4	5	6	2	3	1	1	2	3
4	6	7	4	5	6	2	3	4	6	2	3	4
5	8	9	5	6	2	3	4	5	8	7	4	5
6	7	4	6	2	3	4	5	6	7	9	5	6
7	4	6	7	9	10	11	8	7	4	5	8	7
8	9	5	8	7	9	10	11	8	9	10	11	8
9	5	8	9	10	11	8	7	9	5	6	7	9
10	11	12	10	11	8	7	9	10	11	8	9	10
11	12	10	11	8	7	9	10	11	12	13	14	11

14z=10z=11 なので 14=10. 13y=14=10=12y なので 13=12. 11 行目を書き換えて 12 行目を計算する.

	y	y	y		z	z	z	z	y	z	y	z
1	2	3	1	1	1	1	1	1	2	3	1	1
2	3	1	2	3	4	5	6	2	3	4	6	2
3	1	2	3	4	5	6	2	3	1	1	2	3
4	6	7	4	5	6	2	3	4	6	2	3	4
5	8	9	5	6	2	3	4	5	8	7	4	5
6	7	4	6	2	3	4	5	6	7	9	5	6
7	4	6	7	9	10	11	8	7	4	5	8	7
8	9	5	8	7	9	10	11	8	9	10	11	8
9	5	8	9	10	11	8	7	9	5	6	7	9
10	11	12	10	11	8	7	9	10	11	8	9	10
11	12	10	11	8	7	9	10	11	12	12	10	11
12	10	11	12	12	12	12	12	12	10	11	12	12

以上から, $H \setminus G$ の代表は 12 個.

第Ⅱ巻

環と体と Galois 理論 (第1版第9刷)

第2章

環上の加群

2.6 $\operatorname{GL}_n(\mathbb{Z}/m\mathbb{Z})$

■定理 2.6.19

$$NF = G$$

証明 まず、 $SL_n(K)$ の元による F の共役が U を含むことを示す。 $\sigma(1)=i,\,\sigma(2)=j$ となる $\sigma\in\mathfrak{S}(n)$ を適当に定め $(M)_{\alpha\beta}=\delta_{\alpha\sigma(\beta)}\in\mathrm{SL}_n(K)$ とする。 $R_{n,12}(c)\in F$ であるので、

$$(MR_{n,12}(c))_{\alpha\gamma} = (M)_{\alpha\beta}(R_{n,12}(c))_{\beta\gamma} = \delta_{\alpha\sigma(\beta)}(\delta_{\beta\gamma} + c\delta_{\beta1}\delta_{\gamma2}) = \delta_{\sigma^{-1}(\alpha)\beta}(\delta_{\beta\gamma} + c\delta_{\beta1}\delta_{\gamma2})$$
$$= \delta_{\sigma^{-1}(\alpha)\gamma} + c\delta_{\sigma^{-1}(\alpha)1}\delta_{\gamma2} = \delta_{\alpha\sigma(\gamma)} + c\delta_{\alpha i}\delta_{\gamma2}.$$

さらに

$$(R_{n,ij}(c)M)_{\alpha\gamma} = (R_{n,ij}(c))_{\alpha\beta}(M)_{\beta\gamma} = (\delta_{\alpha\beta} + c\delta_{\alpha i}\delta_{\beta j})\delta_{\beta\sigma(\gamma)} = \delta_{\alpha\sigma(\gamma)} + c\delta_{\alpha i}\delta_{j\sigma(\gamma)}$$
$$= \delta_{\alpha\sigma(\gamma)} + c\delta_{\alpha i}\delta_{\gamma 2}$$

なので $MR_{n,12}(c)=R_{n,ij}(c)M$ すなわち $MR_{n,12}(c)M^{-1}=R_{n,ij}(c)$ となる. $NF\triangleleft NP=G$ なので $U\le NF$. 命題 2.6.12 から G=NF となる.

2.12 単項イデアル整域上の有限生成加群

■定理 2.12.1 構成された同型について、 $M=\langle x_1,\ldots,x_m \rangle$ である。全射準同型

$$\phi \colon R^m \ni \boldsymbol{e}_i \mapsto x_i \in M$$

の核の生成元を $\{y_1,\ldots,y_n\}$ とする: $\ker \phi = \langle y_1,\ldots,y_n\rangle \subset R^m$. さらに

$$f: R^n \ni e'_i \mapsto y_i \in R^m$$

とする. 準同型定理から

$$\operatorname{Coker}(f) = R^m / \operatorname{Im} f = R^m / \ker \phi \simeq \operatorname{Im} \phi = M.$$

よって、 $x_i\in M$ は $[e_i]\in R^m/\operatorname{Im} f$ に対応する。 さらに $Im(f)=\{\,(e_1r_1,\ldots,e_tr_t,0,\ldots,0)\,\}$ となるので、 $M\ni x_i\mapsto (\ldots,0,1,0,\ldots)\in R/(e_1)\oplus\cdots\oplus R/(e_t)\oplus R^{m-t}$

に対応する.

2.13 完全系列と局所化

■例 2.13.12

(1) u=x+iy, v=x-iy とすれば $\mathbb{C}[x,y]/(x^2+y^2)\simeq \mathbb{C}[u,v]/(uv)$ が分かる.

第3章

体論の基本

3.3 分離拡大

■命題 3.3.5

(3) の n は一意に定まる

証明 主張を満たす n が一意に定まらないと仮定する。 $f(x)=g(x^{p^m})=h(x^{p^n})$ を満たす n>m>0 及び既約分離多項式 g(x), h(x) が存在する。 $g(x)=h(x^{p^{n-m}})$ となるので g'(x)=0. 命題 3.3.5 の主張より g(x) は重根を持ち,分離性に矛盾する.

第4章

Galois 理論

4.6 Galois 拡大の推進定理

■定理 4.6.1

$$\sigma(M)\subset \bar{K}\cap L$$

証明 $\sigma \in \operatorname{Gal}(L/N)$ なので $\sigma(M) \subset L$. $x \in M$ とする. $\sigma(x)$ は $x \in M \subset L$ の N 上の共役である. すなわち $\sigma(x)$ は $x \in L$ の N 上最小多項式の根. 命題 3.1.24 から $\sigma(x)$ は $x \in L$ の K 上最小多項式の根なので $\sigma(x) \in \bar{K}$.

4.11 正規底

■定理 4.11.2 定理 3.6.3 より $f(x_1, ..., x_n) \neq 0$ となる $x \in L$ が存在すれば, $f(x_1, ..., x_n) \neq 0$ となる $x \in K$ が存在する.

系 4.10.3 から $\sum_k \sigma_i(a_k) x_k = \delta_{1i}$ となる $x_k \in L$ が存在する. $\sigma_1 = 1$ としているので

$$\sum_{k=1}^{n} \sigma_i^{-1} \circ \sigma_i(a_k) x_k = \sum_{k=1}^{n} a_k x_k = \sum_{k=1}^{n} \sigma_1(a_k) x_k = \delta_{1i} = 1.$$

 $\mathrm{Gal}(L/K)$ において $\sigma_i^{-1}\circ\sigma_j=\sigma_{p(i,j)}$ と定める. $i\neq j$ なら $\sigma_{p(i,j)}=\sigma_i^{-1}\circ\sigma_j\neq 1=\sigma_1$ なので $p(i,j)\neq 1$. よって

$$\sum_{k=1}^{n} \sigma_i^{-1} \circ \sigma_j(a_k) x_k = \sum_{k=1}^{n} \sigma_{p(i,j)}(a_k) x_k = \delta_{i1(i,j)} = 0 \quad (i \neq j).$$

以上から

$$\sum_{k=1}^{n} \sigma_i^{-1} \circ \sigma_j(a_k) x_k = \delta_{ij}.$$

■定理 4.11.4

$$x^{n} - 1 = LCM(p_1(x)^{a_1}, \dots, p_m(x)^{a_m}) =: L(x)$$

証明 L は K[x] 加群として有限生成であるが,その生成元を $\{\alpha_1, \ldots, \alpha_m\}$ とする.単項イデアル整域上の有限生成加群の構造定理 2.12.1 (と証明における同型の構成) から同型

$$\Phi \colon L \ni \sum_{i=1}^{m} f_i(\sigma)\alpha_i \mapsto (f_i(x) + (p_i(x)^{a_i}))_i \in \bigoplus_{i=1}^{m} K[x]/(p_i(x)^{a_i})$$

を得る. $g(x) \in I$ なら $0 = g(\sigma)\alpha_i \mapsto 0$ なので $g(x) \in (p_i(x)^{a_i})$ である. これが任意の i に対して成立するので $L(x) \mid g(x)$. 特に $L(x) \mid x^n - 1$ である.

任意の $\alpha \in L$ に対して $L(\sigma)\alpha = 0$ となることを示す。 $\alpha = \sum f_i(\sigma)\alpha_i$ となる $f_i(x) \in K[x]$ が存在する。 最小公倍元の定義から

$$\Phi(L(\sigma)\alpha) = (L(x)f_i(x) + (p_i(x)^{a_i}))_i = 0.$$

 Φ は単射なので $L\alpha=0$. すなわち $L(x)\in I$. 従って $x^n-1\mid L(x)$.

以上から
$$x^n - 1 = L(x)$$
.

4.12 トレース・ノルム

■命題 4.12.6

 α が非分離的で $L = K(\alpha)$ の場合. $p^m = [L:K]_i$

証明 命題 3.3.5 から分離既約多項式 $g(x) \in K[x]$ によって $\alpha \in L$ の K 上最小多項式は $g(x^{p^m})$ となる。 g(x) は $\alpha^{p^m} \in L$ を根に持つ。 もし $h(\alpha^{p^m}) = 0$ かつ $\deg h < \deg g$ となる $h(x) \in K[x]$ が存在すれば, $h(x^{p^m})$ も α を根に持ち,g の最小性に矛盾する。よって g(x) は $\alpha^{p^m} \in L$ の K 上最小多項式である。従って, $K(\alpha^{p^m})$ は K の分離拡大であり, $[K(\alpha^{p^m}):K] = \deg g(x) = n$. さらに $[L:K] = \deg g(x^{p^m}) = np^m$. $L/K(\alpha^{p^m})$ が純非分離拡大であることは容易に分かる。

L における K の分離閉包を L_s とする。体の拡大列 $K \subset K(\alpha^{p^m}) \subset L_s \subset L = K(\alpha)$ を得る。命題 3.3.27 から L_s/K は分離拡大, L/L_s は純非分離拡大である。

 $L_s \subset L$ なので $L_s/K(\alpha^{p^n})$ も純非分離拡大. 命題 3.3.2 から $L_s/K(\alpha^{p^m})$ は分離拡大でもある. 命題 3.3.14 と併せれば $L_s = K(\alpha^{p^m})$ と分かる.

以上から
$$[L:K]_i = [L:K(\alpha^{p^m})] = p^m$$
.

■命題 4.12.13

有限体の乗法群は巡回群

証明 # $K^{\times} = n$ とする。位数 $d \mid n$ の元 $\alpha \in K^{\times}$ が存在すれば, $\{1, \alpha, \ldots, \alpha^{d-1}\}$ は全て相異なり, $x^d = 1$ を満たす。 $x^d = 1$ は高々 d 個の解しか持たないので, $x^d = 1$ を満たす $x \in K$ は α^i という形をしている。 α^i の位数が d となるのは i が d と互いに素な場合なので, $\phi(d)$ 個存在する。位数が d の元の集合を G_d とすれば,# G_d は 0 か $\phi(d)$ である。

$$n = \#K^{\times} = \sum d \mid n \# G_d \le \sum d \mid n\phi(d) = n$$

となるので、全ての $d \mid n$ に対して $\#G_d = \phi(d)$ である.特に位数 n の元が存在するので K^{\times} は巡回群. \Box

■例 4.12.14 定理 4.9.7 において $R = \{ 2^l 3^m (K^{\times})^p \}$ とすれば $\mathrm{Gal}(K(\sqrt[p]{2},\sqrt[p]{3})/K) \simeq R/(K^{\times})^p$ である. 全射準同型

$$\phi \colon \mathbb{Z} \times \mathbb{Z} \ni (l, m) \mapsto 2^l 3^m (K^{\times})^p \in R/(K^{\times})^p$$

を考える。 $(l,m) \in \ker \phi$ とする。 $2^{l}3^{m} = x^{p}$ となる $x \in K^{\times}$ が存在する。 ノルムを考えれば

$$2^{l(p-1)}3^{m(p-1)} = \mathcal{N}_{K/\mathbb{Q}}(x)^p \in \mathbb{Q}^p$$

であるので $p \mid l, m$ である. よって $\ker \phi = p\mathbb{Z} \times p\mathbb{Z}$ である. よって準同型定理から

$$\operatorname{Gal}(K(\sqrt[p]{2}, \sqrt[p]{3})/K) \simeq R/(K^{\times})^p \simeq (\mathbb{Z} \times \mathbb{Z})/(p\mathbb{Z} \times p\mathbb{Z}) \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}.$$

4.16 4 次多項式の Galois 群

- **■命題** 4.16.3 (1) 証明に出てくる ϕ は命題 4.4.8 で考えた制限写像 ϕ : $\mathrm{Gal}(L/K) \to \mathrm{Gal}(M/K)$.
- (3) $\operatorname{Gal}(L/K) = \langle (1234) \rangle$ の場合. (1234) により $\tau_1 \leftrightarrow \tau_3$ および $\tau_2 \mapsto \tau_2$ であるので、Galois 理論の基本定理から $\tau_2 \in K$ および $\tau_1, \tau_3 \in L \setminus K$ である。よって $g(y) = (y \tau_1)(y \tau_2)(y \tau_3)$ は $K \perp O$ 一次式 $y \tau_2 \geq K \perp$ 比既約な二次式 $(y \tau_1)(y \tau_3)$ の積である。
 - h(z) の根 β_1 , β_2 は (4.5.2) と同様に構成される:

$$\beta_1 = {\tau_1}^2 \tau_2 + {\tau_2}^2 \tau_3 + {\tau_3}^2 \tau_1, \quad \beta_1 = {\tau_1} {\tau_2}^2 + {\tau_2} {\tau_3}^2 + {\tau_3} {\tau_1}^2.$$

 $(1234) \in \operatorname{Gal}(L/K)$ により $\tau_1 \leftrightarrow \tau_3$ および $\tau_2 \mapsto \tau_2$ であるので、 $\beta_1 \leftrightarrow \beta_2$. よって $\beta_1, \beta_2 \in L \setminus K$ である. 従って $h(z) = (z - \beta_1)(z - \beta_2)$ は K 上既約な二次式である.

■定理 4.16.18

 $\operatorname{ch} K = 2$ なら

$$\{x^2 + x \mid x \in K(\tau_1), x^2 + x \in K\} = \{\alpha d_2 d_1^{-2} + \beta^2 + \beta \mid \alpha \in \mathbb{F}_2, \beta \in K\}.$$

証明 τ_1 は $g(y) = y^2 + d_1 y + d_2 = y^2 - d_1 y - d_2 \in K[y]$ の根である. $d_1 \neq 0$ なので $\tau_1 d_1^{-1}$ は $y^2 - y - d_2 d_1^{-2}$ の根となる.

 $x^2 + x \in K$ となる $x \in K(\tau_1 d_1^{-1}) = K(\tau_1)$ が存在すれば、補題 4.15.2 から

$$x = \beta + \alpha \tau_1$$
, $x^2 + x = \beta^2 + \beta + \alpha d_2 d_1^{-2}$

となる $\alpha \in \mathbb{F}_2$ と $\beta \in K$ が存在する. よって

$$\{x^2 + x \mid x \in K(\tau_1), x^2 + x \in K\} \subset \{\alpha d_2 d_1^{-2} + \beta^2 + \beta \mid \alpha \in \mathbb{F}_2, \beta \in K\}.$$

 $\alpha \in \mathbb{F}_2, \beta \in K$ とする. $\tau_1 d_1^{-1}$ は $y^2 - y - d_2 d_1^{-2}$ の根なので,

$$K \ni \alpha d_2 d_1^{-2} + \beta^2 + \beta = \alpha \left[(\tau_1 d_1^{-1})^2 + \tau_1 d_1^{-1} \right] + \beta^2 + \beta$$
$$= \alpha (\tau_1 d_1^{-1})^2 + \alpha \tau_1 d_1^{-1} + \beta^2 + \beta$$
$$= \alpha^2 (\tau_1 d_1^{-1})^2 + \alpha \tau_1 d_1^{-1} + \beta^2 + \beta$$

$$= (\alpha \tau_1 d_1^{-1} + \beta)^2 + (\alpha \tau_1 d_1^{-1} + \beta).$$

$$\alpha \tau_1 d_1^{-1} + \beta \in K(\tau_1)$$
 なので

$$\{x^2 + x \mid x \in K(\tau_1), x^2 + x \in K\} \supset \{\alpha d_2 d_1^{-2} + \beta^2 + \beta \mid \alpha \in \mathbb{F}_2, \beta \in K\}.$$