Lecture8: Metal-Oxide-Semiconductor

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Parallel plates

- A problem from "General Physics" course.
 - Consider a dielectric layer (whose thickness is d and area is A) sandwiched by two parallel metal plates. Its permittivity is ϵ .
 - A voltage difference, V, is applied.
 - The charges are +Q and -Q, respectively.
 - By applying the Gauss law,

$$Q = \epsilon |\mathbf{E}| A = \epsilon \frac{V}{d} A$$

Therefore, the capacitance per unit area becomes

$$C = \frac{\epsilon}{d}$$

Metal-Oxide-Semiconductor

- The key structure in the microelectronics
 - Question: Is the MOS a capacitor with $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$?

- Answer: No. Its thickness, t_{ox} \longrightarrow $\begin{array}{c} \text{Metal} \\ \text{Oxide} \\ \text{Semiconductor} \\ \text{(Usually p-type.} \\ \text{Many holes)} \\ & - \\ \end{array}$

What is the difference?

- Threshold behavior
 - Two ways to provide negative charges
 - Removal of holes
 - Mobile electrons
- Threshold voltage
 - It is written as V_{TH} .
 - Most important!

Homework#4

- Due: 09:00, April 1 (Mon)
- Solve following problems of the 2018 mid-term exam.
 - P10
 - P16
 - P17
- Solve following problems of the 2017 mid-term exam.
 - P21
 - P22
 - (The remaining problems in the 2017 mid-term exam are your own exercise. Not for HW.)