Requirements for the Matrix Decompositions

LDU decomposition

1. $A \in \mathbb{C}^{n \times n}$, A(1:k,1:k) is nonsingular for all k=1,...,n.

$LDL^{\boldsymbol{H}}$ decomposition

- 1. $A \in \mathbb{C}^{n \times n}$, A(1:k,1:k) is nonsingular
- 2. A is Hermitian.

Cholesky decomposition

1. A is HPD.

Schur decomposition

1. $A \in \mathbb{C}^{n \times n}$. There are no requirements (except that A must be square).

Singular value decomposition

1. $A \in \mathbb{C}^{n \times m}$.

Polar decomposition

1. $A \in \mathbb{C}^{n \times n}$.

QR decomposition

1. $A \in \mathbb{C}^{n \times m}$ with $n \geq m$.

Arnoldi decomposition

1. $A \in \mathbb{C}^{n \times n}$.

Chapter 0: Basic Definitions and Matrix Classes

Theorems

- 1. \forall Hermitian $A \in \mathbb{C}^{n \times n}, \forall x \in \mathbb{C}^n : x^H A x \in \mathbb{R}$
- 2. The ordering \geq defines a Loewner partial ordering on the set of Hermitian matrices $C \in \mathbb{C}^{n \times n}$.
 - a) $A \ge A$ (reflexivity)
 - b) $A \ge B \land B \ge A \implies A = B$ (anti symmetrie)

c) $A \ge B, B \ge C \implies A \ge C$ (transitivity)

What is missing so that it is a total ordering? Can you give an example why the missing property does not hold?

- 3. Some useful properties of HPSD/ PSD matrices.
 - a) If A is HPSD, then $\lambda \geq 0$. If A is SPD, then $\lambda > 0$. $\det A \geq 0$ or $\det A > 0$ respectively.
 - b) If A is HPSD, then X^HAX is HPSD. If A is SPD and $X \in \mathbb{C}^{n \times k}$ has full column rank (rank(X) = k), then X^HAX is SPD.
 - c) If A is HPSD or SPD, then A(1:k,1:k) is HPSD or SPD for $\forall k=1,...,n$.
- 4. Inverse of complex matrices (applies not only for HPSD or PSD matrices).
 - a) If A is nonsingular then the inverse is unique.
 - b) If AB = I or BA = I then A is nonsingular and $B = A^{-1}$. We only need to check one equation.

Proofs

1. Idea: Show $x^H A x = \overline{x^H A x} \implies x^H A x \in \mathbb{R}$.

Proof.
$$x^H A x = x^H A^H x = (x^H A x)^H = \overline{(x^H A x)^T} = \overline{x^T A^T \overline{x}} = \overline{x^H A x}.$$

2. Statement (a) is easy to show.

For statement (b) consider the matrix D = A - B and calculate $e_j D e_j$ and $e_j (-D) e_j$. You will see that $d_{jj} \ge 0$ and $d_{jj} \le 0$. Hence, $d_{jj} = 0$. Then, consider $(e_i + e_j)(\pm D)(e_i + e_j)$ which will proove that $\Re(d_{ij}) = 0$. To show that $\Im(d_{ij}) = 0$ consider $(e_i + e_j)D(e_i - e_j)$.

For a counterexample of the totality of \geq consider the matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

3. To show: $\lambda \geq 0$. Consider an eigenvektor $x \neq 0$. It holds: $x^H A x \geq 0 \iff \lambda x^H x \geq 0 \implies \lambda \geq 0$ since $x^H x > 0$ $(x \neq 0)$.

Next, $X^H A X$ is SPD. Substitute z = Xy. Then $z \neq 0$ because rank(X) = k. Thus, $y^H X^H A X y = z^H A z > 0$ for $z \neq 0$.

Chose $X = [e_1, ..., e_k].$

4. Let AB = BA = I = AC = CA. Then B = BI = BAC = IC = C.

Idea: Use the rank of AB and A (show that A is nonsingular). If $AB = I_n$ then $rank(AB) = n \le rank(A) \implies A$ is nonsingular. Then $A^{-1} = A^{-1}I = A^{-1}AB = B$.

Chapter 1: Matrix Decompositions

Theorems

- 1. **LDU decomposition:** The following assertions are equivalent. Let $A \in \mathbb{C}^{n \times n}$.
 - a) A = LDU where L and U are unit lower/ upper triangular matrices and D is a nonsingular diagonal matrix. The decomposition is unique.
 - b) A(1:k,1:k) is nonsingular for all k=1,...,n (including n).

Give an example where the LDU decomposition does not hold but the LU decomposition.

- 2. **LDL**^H decomposition: Given Hermitian $A \in \mathbb{C}^{n \times n}$ with A(1:k,1:k) is nonsingular for all k = 1, ..., n. We can find real, nonsingular, unique, diagonal $D \in \mathbb{R}^{n \times n}$ and unique unit lower triangular L such that $A = LDL^H$.
- 3. Cholesky decomposition: Given a HPD matrix $A \in \mathbb{C}^{n \times n}$ we can write it as $A = LL^H$ where L is a lower, unique, triangular matrix. L has positive entries on its diagonal.
- 4. Schur decomposition: Let $A \in \mathbb{C}^{n \times n}$. Then $A = URU^H$ where U is unitary and R is upper triangular matrix.
- 5. Singular Value decomposition: Let $A \in \mathbb{C}^{n \times m}$ with rank(A) = r. Then $A = U\Sigma_+V^H$ with $U \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{m \times m}$ unitary and $\Sigma_+ = diag(\sigma_1, ..., \sigma_r), \sigma_1 \geq ... \geq \sigma_r > 0, \Sigma = \begin{pmatrix} \Sigma_+ & 0 \\ 0 & 0 \end{pmatrix}$. Alternatively, $A = \sum_{i=1}^r \sigma_i u_i v_i^H$.

Proofs

1. \implies : Given A = LDU show that A(1:k,1:k) is nonsingular. Consider

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} D_{11} & 0 \\ 0 & D_{22} \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{pmatrix} = LDU$$

with $A_{11} = A(1:k, 1:k)$. Since L_{11} and U_{11} are lower/ upper triangular matrices we obtain $\det(A_{11}) = \det(D_{11}) \neq 0$ because D and thus D_{11} is nonsingular.

 \Leftarrow : Show that there exists such a decomposition for $A \in \mathbb{C}^{n \times n}$ whose leading principal submatrix are all nonsingular. **Idea:** Proof by induction over n.

(Beginning:) For $A = (a_{11}) = 1 * a_{11} * 1$ and $a_{11} \neq 0$ because A is nonsingular.

(Assumption:) Assume for every $A \in \mathbb{C}^{(n-1)\times (n-1)}$ with nonsingular A(1:k,1:k), k = 1, ..., n-1 there exists a decomposition L, D, U.

(Step:) Consider a matrix $A \in \mathbb{C}^{n \times n}$ with nonsingular leading principle submatrix:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} I_{n-1} & 0 \\ A_{21}A_{11}^{-1} & 1 \end{pmatrix} \begin{pmatrix} A_{11} & 0 \\ 0 & s \end{pmatrix} \begin{pmatrix} I_{n-1} & A_{11}^{-1}A_{12} \\ 0 & 1 \end{pmatrix}$$

and nonsingular $A_{11} = A(n-1, n-1)$, $s = A_{22} - A_{21}A_{11}^{-1}A_{12}$. Thus, $s \neq 0$. Since A_{11} is nonsingular, we can use the induction hypothesis to show that $A_{11} = L_{n-1}D_{n-1}U_{n-1}$. So

$$A = \begin{pmatrix} I_{n-1} & 0 \\ A_{21}A_{11}^{-1} & 1 \end{pmatrix} \begin{pmatrix} L_{n-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} D_{n-1} & 0 \\ 0 & s \end{pmatrix} \begin{pmatrix} U_{n-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} I_{n-1} & A_{11}^{-1}A_{12} \\ 0 & 1 \end{pmatrix}.$$

Show the unicity of $A = L_1D_1U_1 = L_2D_2U_2 \implies L_2^{-1}L_1D_1 = D_2U_2U_1^{-1}$. This is a diagonal matrix. The diagonal entries of $L_2^{-1}, L_1, U_2, U_1^{-1}$ are ones.

Counter example: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

- 2. Let A = LDU. Since $A = LDU = (LDU)^H = U^H D^H L^H = A^H$ it follows that $L = U^H$ and $D = D^H$ (LU decomposition is unique and D is nonsingular). Thus, D is real and $A = LDL^H$.
- 3. Write $A = LDL^H$ since A is Hermitian and A(1:k,1:k) is nonsingular. Then, $D = L^H AL \in \mathbb{R}^{n \times n}$. A is HPD and L has full rank (it is a lower unit triangular). Thus, D is also HPD and has positive diagonal entries. Set $\tilde{L} = L \cdot D^{\frac{1}{2}} = L \cdot \mathrm{diag}(d_1^{\frac{1}{2}}, ..., d_n^{\frac{1}{2}})$.
- 4. Proof by induction. For n=1 chose U=1 and $R=a_{11}$. $n-1 \leadsto n$: Chose any eigenvalue of A with its unit eigenvector x. Find any matrix $Y \in \mathbb{C}^{n \times (n-1)}$ such that X=[x,Y] is unitary. This means that

$$\begin{pmatrix} x^H \\ Y^H \end{pmatrix} (x, Y) = E_n$$

It holds that $x^H Y = (0, ..., 0) \in \mathbb{C}^{1 \times (n-1)}$ und $Y^H x = (0, ..., 0)^T \in \mathbb{C}^{n-1}$. Consider

$$X^{H}AX = \begin{pmatrix} \lambda & x^{H}AY \\ 0 & Y^{H}AY \end{pmatrix}.$$

By induction hypothesis, $Z^H(Y^HAY)Z = \tilde{R}$ where R is upper triangular. Then, U = [x, YZ]. To show: U is unitary and $U^HAU = \begin{pmatrix} x^HAx & x^HAYZ \\ Z^HY^HAx & Z^HY^HAYZ \end{pmatrix} = \begin{pmatrix} \lambda & x^HAYZ \\ 0 & \tilde{R} \end{pmatrix}$ which is relatively easy.

5. Consider A^HA . It is HPSD, for $x^HA^HAx = ||Ax||_2^2 \ge 0$. Thus, it is unitarily diagonalizable: $V^HA^HAV = diag(\sigma_1^2,...,\sigma_r^2,0,...,0)$ with $\underline{r = rank(A) = rank(A^HA)}$. Partition $V = [V_1,V_2]$ and $V_1 \in \mathbb{C}^{m \times r}$. Then, $V_2^HA^HAV_2 = 0 \implies AV_2 = 0$. Define $U_1 = AV\Sigma_+^{-1}$ where $\Sigma_+ = diag(\sigma_1,...,\sigma_r)$. We see that it U_1 is unitary which means $U_1^HU_1 = \Sigma_+^{-H}V^HA^HAV\Sigma_+^{-1} = \Sigma^{-H}\Sigma_+^2\Sigma^{-1} = I_r$. So, we find $U = [U_1,U_2]$ such that U is unitary. Finally,

$$U^{H}AV = \begin{pmatrix} U_{1}^{H}AV_{1} & U_{1}^{H}AV_{2} \\ U_{2}^{H}AV_{1} & U_{2}^{H}AV_{2} \end{pmatrix} = \begin{pmatrix} \Sigma_{+} & 0 \\ U_{2}^{H}U_{1}\Sigma_{+} & 0 \end{pmatrix} = \begin{pmatrix} \Sigma_{+} & 0 \\ 0 & 0 \end{pmatrix}.$$

General questions

1. Why is $rank(A) = rank(A^H A)$ for any matrix $A \in \mathbb{C}^{n \times m}$?