I. Matrices

I.1. Définition

Une **matrice** à q lignes et p colonnes est un tableau déléments de \mathbb{K}_{-} à q lignes et p colonnes

$$A = (a_{ij})_{1 \le i \le q, 1 \le j \le p} = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{q1} & \dots & a_{qp} \end{pmatrix}$$

On note $\mathcal{M}_{(q,p)}(\mathbb{K})$ l'ensemble des matrices à q lignes et p colonnes.

Sur $\mathcal{M}_{(q,p)}(\mathbb{K})$, on définit une loi + interne et une loi , externe à domaine d'opérateurs \mathbb{K} par si $A = (a_{ij})_{1 \le i \le q, 1 \le j \le p}$, $B = (b_{ij})_{1 \le i \le q, 1 \le j \le p}$

$$A+B=(a_{ij}+b_{ij})_{1\leq i\leq q,1\leq j\leq p}$$

$$\lambda \in \mathbb{K}$$

$$\lambda.A = (\lambda a_{ij})_{1 \le i \le q, 1 \le j \le p}$$

 $(\mathcal{M}_{(q,p)}(\mathbb{K}),+..)$ est un \mathbb{K} -ev de dimension pq

La base canonique est $(E_{i,j})_{1 \le i \le q, 1 \le j \le p}$ où tous les termes sont nuls sauf celui situé à l'intersection de la $i^{\flat me}$ ligne et de la $j^{\flat me}$ colonne qui vaut 1

ie
$$E_{i,j} = (\delta_{i,k}\delta_{j,l})_{1 \le k \le q, 1 \le l \le p}$$

Une matrice colonne est une matrice de $\mathcal{M}_{(q,1)}(\mathbb{K})$, une matrice ligne est une matrice de $\mathcal{M}_{(1,p)}(\mathbb{K})$

I.2. Produit de matrices

$$\text{si } A = (a_{ij})_{1 \le i \le q, 1 \le j \le p}$$
 et $B = (b_{ij})_{1 \le i \le r, 1 \le j \le q}$

et
$$B = (b_{ij})_{1 \leq i \leq n}$$
 to see

$$C = BA = (c_{ij})_{1 \le i \le r, 1 \le j \le p}$$

on a
$$c_{ij} = \sum_{k=1}^{q} b_{ik} a_{kj}$$

Propriétés : associativité : sous réserve de la taille des matrices: A(BC) = (AB)C

distributivité : sous réserve de la taille des matrices A(B+C)=AB+AC et (A+M)B=AB+MB

$$AI_p = A$$
, $I_q A = A$ $A0_p = 0_{q,p}$, $0_q A = 0_{q,p}$

bilinéarité de $(B, A) \longmapsto BA$

$$\underline{\mathbf{th\acute{e}or\grave{e}me}} : E_{i,j} \in \mathcal{M}_{(r,q)}(\mathbb{K}) \quad E_{k,l} \in \mathcal{M}_{(q,p)}(\mathbb{K}) \qquad E_{i,j}E_{k,l} = \delta_{j,k}E_{i,l} \quad (E_{i,l} \in \mathcal{M}_{(r,p)}(\mathbb{K}))$$

I.3. Transposée

Si
$$A = (a_{ij})_{1 \le i \le q, 1 \le j \le p}$$
. on définit la **transposée** de A par $A^T = {}^t A = (a_{ij})_{1 \le j \le p, 1 \le i \le q}$

alors
$$\mathcal{M}_{(q,p)}(\mathbb{K}) \longrightarrow \mathcal{M}_{(p,q)}(\mathbb{K})$$

$$A \longmapsto A^T$$
 est un isomorphisme

$$\underline{\textbf{th\'eor\`eme}}:A\in\mathcal{M}_{(q,p)}(\mathbb{K}) \quad B\in\mathcal{M}_{(r,q)}(\mathbb{K}) \qquad (BA)^T=A^TB^T$$

$$(A^T)^T = A$$

I.4. Python

import numpy as np

import numpy.linalg as alg

A = np.array([[1,2.3],[4,5,6]])

A[i,j] pour accéder à l'élement A_{ij}

Attention, les indices commencent à zéro ie $0 \le i, j \le n-1$

np.zeros((2,3)) renvoie la matrice à deux lignes et deux colonnes nulle

np.eye(3) renvoie I_3

np.diag([1,2.3]) renvoie la matrice diagonale avec 1,2,3 sur la diagonale

+ pour additionner les matrices, * pour la multiplication par un scalaire

 $\operatorname{np.dot}(A, B)$ pour multiplier la matrice A par la matrice B

np.transpose(A) renvoie A^T

II. Matrices carrées

On note $\mathcal{M}_n(\mathbb{K}) = \mathcal{M}_{(n,n)}(\mathbb{K})$

<u>théorème</u>: $\mathcal{M}_n(\mathbb{K})$ est une \mathbb{K} -algèbre de dimension n^2 non commutative, le \mathbb{K} espace vectoriel de dimension n^2 , \times est associative, distributive par rapport à + .non commutative ($n \ge 2$) et d'élément neutre I_n .

$$I_n = (\delta_{i,j})_{1 \le i,j \le n}$$

formule du binôme : si $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ avec A et B commutent alors

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$$

II.1. Matrices particulières

<u>définition</u>: $M = (m_{ij})_{1 \le i \le n, 1 \le j \le n} \in \mathcal{M}_n(\mathbb{K})$ est

diagonale si $\forall (i, j) \in \{1, ..., n\}^2$ $i \neq j \Longrightarrow m_{ij} = 0$

scalaire si $M = \lambda I_n \quad \lambda \in \mathbb{K}$

triangulaire inférieure si $\forall (i, j) \in \{1, ..., n\}^2 \mid i < j \Longrightarrow m_{ij} = 0$

triangulaire supérieure si $\forall (i,j) \in \{1,...,n\}^2 \quad i > j \Longrightarrow m_{ij} = 0$

<u>théorème</u>: L'ensemble des matrices diagonales $\mathcal{D}_n(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ de dimension n dont une base est $(E_{i,i})_{1 \leq i \leq n}$ et le produit de deux matrices diagonales est une matrice diagonale, ce produit est commutatif.

théorème : L'ensemble des matrices triangulaires supérieures $\mathcal{T}_n^s(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ de dimension $\frac{n(n+1)}{2}$ dont une base est $(E_{i,j})_{1 \leq i \leq j \leq n}$

et le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure , produit non commutatif en général.

théorème : L'ensemble des matrices triangulaires inférieures $\mathcal{T}_n^i(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ de dimension $\frac{n(n+1)}{2}$ dont une base est $(E_{i,j})_{1 \le j \le i \le n}$

et le produit de deux matrices triangulaires inférieures est une matrice triangulaire inférieure , produit non commutatif en général.

<u>définition</u>: $M \in \mathcal{M}_n(\mathbb{K})$ est symétrique si $M^T = M$ $M \in \mathcal{M}_n(\mathbb{K})$ est antisymétrique si $M^T = -M$

théorème : Les sous-ensembles des matrices symétriques $S_n(\mathbb{K})$ et antisymétriques $A_n(\mathbb{K})$ sont des sev supplémentaires de $\mathcal{M}_n(\mathbb{K})$ de dimensions respectives $\frac{n(n+1)}{2}$ et $\frac{n(n-1)}{2}$.

Une base de $\mathcal{S}_n(\mathbbm{K})$ est $((E_{i,i})_{1\leq i\leq n}$, $(E_{i,j}{+}\mathbbm{E}_{j,i})_{1\leq i< j\leq n})$

Une base de $\mathcal{A}_n(\mathbb{K})$ est $(E_{i,j}\text{-}E_{j,i})_{1 \leq i < j \leq n}$

II.2. Matrices inversibles

<u>définition</u>: $A \in \mathcal{M}_n(\mathbb{K})$ est inversible s'il existe $B \in \mathcal{M}_n(\mathbb{K})$ $AB = BA = I_n$ On note $\mathcal{GL}_n(\mathbb{K})$ l'ensemble des matrices carrées inversibles

<u>théorème</u>: $(\mathcal{GL}_n(\mathbb{K}).\times)$ est un groupe, groupe linéaire d'ordre n (non commutatif en général)

ie
$$\forall (A, B) \in \mathcal{GL}_n(\mathbb{K})$$
 $AB \in \mathcal{GL}_n(\mathbb{K})$ avec $(AB)^{-1} = B^{-1}A^{-1}$

et $A^{-1} \in \mathcal{GL}_n(\mathbb{K})$

 $\underline{\textbf{th\'eor\`eme}:} \text{ Si } A \in \mathcal{GL}_n(\mathbb{K}) \text{ alors } A^T \in \mathcal{GL}_n(\mathbb{K}) \quad \text{et } (A^{-1})^T = (A^T)^{-1}$

 $\underline{\mathbf{Cas\ particulier:}}\ \mathrm{Si}\ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$A \in \mathcal{GL}_2(\mathbb{K}) \iff ad - bc \neq 0$$
 Dans ce cas $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Calcul de A^{-1} par opérations élémentaires.

Si
$$A \in \mathcal{M}_n(\mathbb{K})$$
 de lignes (L_1, \dots, L_n) et de colonnes (C_1, \dots, C_n)

On appelle matrice de dilatation $D(\lambda) = I_n + (\lambda - 1)E_{ii}$

 $D_i(\lambda)A$ est obtenue à partir de A en remplacant L_i par λL_i

et $AD_i(\lambda)$ est obtenue à partir de A en remplacant C_i par λC_i

PC Lycee Pasteur 2023 2024

On appelle matrice de transposition $P_{ij} = I_n - E_{ii} - E_{jj} + E_{ij} + E_{ji}$

 $P_{ij}A$ est obtenue à partir de A en échangeant L_i et L_j

et AP_{ij} est obtenue à partir de A en échangeant C_i et C_j

On appelle matrice de transvection $T_{ij} = I_n + \lambda E_{ij}$

 $T_{ij}A$ est obtenue à partir de A en remplacant L_i par $L_i+\lambda L_j$ et AT_{ij} est obtenue à partir de A en remplacant C_i par $C_i+\lambda C_j$

Application au calcul de l'inverse :

Si $\operatorname{rg}(\Lambda)=n$, en effectuant des opérations élémentaires, on obtient $AM_1M_2\cdots M_q=I_n-\operatorname{donc} A^{-1}=M_1M_2\cdots M_q$

III. Systèmes linéaires

On considère le système linéaire à p équations et n incommes le système

$$S: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots & \vdots & \vdots \\ a_{p1}x_1 + \dots + a_{pn}x_n = b_p \end{cases}$$

Représentation matricielle associée : si
$$A = (a_{ij})_{1 \le i \le p, 1 \le j \le n} \in \mathcal{M}_{pn}(\mathbb{K})$$
 et $B = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} \in \mathcal{M}_{p1}(\mathbb{K})$

le système
$$\mathcal S$$
 se représente par $AX=B$ où $X=\begin{pmatrix} x_1\\ \cdots\\ x_n \end{pmatrix}$

Le système homogène associé est $\mathcal{H}: AX = 0$

L'ensemble des solutions de \mathcal{H} est un sous-espace vectoriel de \mathbb{K}^n

Le système est compatible (ie admet une solution) si B est combinaison linéaire des éléments de A. Dans ce cas si X_0 est une solution de S, toute solution de S est de la forme $X_0 + X_H$ où X_H est une solution de H

IV. Lien avec les applications linéaires

IV.1. Matrice d'un vecteur

 $E \mathbb{K}$ ev de dimension p et $\mathcal{B}=(e_1,...,e_p)$ une base de E

$$x \in E$$
 $x = \sum_{i=1}^{p} x_i e_i$, la matrice de x dans \mathcal{B} est la matrice colonne des coordonnées de $x \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} = \mathcal{M}_{\mathcal{B}}(x)$

et l'application
$$E \longrightarrow \mathcal{M}_{(p,1)}(\mathbb{K})$$
 est un isomporphisme d'ev $x \longmapsto \mathrm{M}_{\mathcal{B}}(x)$

La matrice du système de vecteurs $(x_1, ..., x_n)$ est la matrice de $\mathcal{M}_{(p,n)}(\mathbb{K})$ dont les colonnes représentent les coordonnées des x_j dans la base \mathcal{B}

IV.2. Matrice d'une application linéaire

 $E ext{ K}$ ev de dimension p et $\mathcal{B}=(e_1,...,e_p)$ une base de E $F ext{ K}$ ev de dimension q et $\mathcal{C}=(f_1,...,f_q)$ une base de F

$$u \in \mathcal{L}(E,F) \quad \forall j \in \{1, \dots p\} \quad \exists ! (a_{1j}, \dots a_{qj}) \in \mathbb{K}^q \qquad u(e_j) = \sum_{i=1}^q a_{ij} f_i$$

et l'application $\mathcal{L}(E,F) \longrightarrow \mathcal{M}_{(q,p)}(\mathbb{K})$ est un isomorphisme $u \longmapsto \mathrm{M} u_{\mathcal{B},\mathcal{C}}$

donc $\mathcal{L}(E,F)$ est un ev de dimension qp dont une base est $(u_{ij})_{1 \leq i \leq q, 1 \leq j \leq p}$ où les u_{ij} sont définis par $\forall k \in \{1,..p\}$ $u_{ij}(e_k) = \delta_{jk}f_i$

E Kev de dimension p de base \mathcal{B} , F Kev de dimension q de base \mathcal{C} , G Kev de dimension r de base \mathcal{D} $u \in \mathcal{L}(E,F)$ et $A=Mu_{\mathcal{B},\mathcal{C}}$ $v \in \mathcal{L}(F,G)$ et $B=Mv_{\mathcal{C},\mathcal{D}}$ alors $BA=M(vou)_{\mathcal{B},\mathcal{D}}$

si
$$A = (a_{ij})_{1 \le i \le q, 1 \le j \le p}$$
 et $B = (b_{ij})_{1 \le i \le r, 1 \le j \le q}$
$$C = BA = (c_{ij})_{1 \le i \le r, 1 \le j \le p}$$

théorème :
$$u(x) = y$$
 se représente par $Y = AX = \begin{pmatrix} \sum_{j=1}^p a_{1j} x_j \\ \vdots \\ \sum_{j=1}^p a_{qj} x_j \end{pmatrix}$

V. Changement de bases

E Kev de dimension p et $\mathcal{B}=(e_1,...,e_p)$ une base de E (ancienne base de E) et $\mathcal{B}'=(e'_1,...,e'_p)$ une base de E (nouvelle base de E)

<u>définition</u>: La matrice de passage de \mathcal{B} à \mathcal{B}' , notée $P_{\mathcal{B},\mathcal{B}'}$ est la matrice constituée des coordonnées des vecteurs de \mathcal{B}' dans \mathcal{B} , c'est $Mid_{\mathcal{B}',\mathcal{B}}$

 $P_{\mathcal{B},\mathcal{B}'}$ est inversible d'inverse $P_{\mathcal{B}',\mathcal{B}}$

Si $x \in E$ alors $M_{\mathcal{B}}(x) = P_{\mathcal{B},\mathcal{B}'} M_{\mathcal{B}'}(x)$ (on X = PX')

F Kev de dimension q et \mathcal{C} une base de F (ancienne base) et \mathcal{C}' une base de F (nouvelle base) $u \in \mathcal{L}(E,F)$ $A=Mu_{\mathcal{B},\mathcal{C}}$ $A'=Mu_{\mathcal{B}',\mathcal{C}'}$ alors

PC Lycee Pasteur 2023 2024

$$Y = AX \iff P_{\mathcal{C},\mathcal{C}'}Y' = AP_{\mathcal{B},\mathcal{B}'}X'$$
$$\iff Y' = P_{\mathcal{C},\mathcal{C}'}^{-1}AP_{\mathcal{B},\mathcal{B}'}X'$$

ie
$$A'=P_{\mathcal{C},\mathcal{C}'}^{-1}$$
 A $P_{\mathcal{B},\mathcal{B}'}$

(que l'on retient par $A'=Q^{-1}AP$, Q et P faisant référence aux dimensions de E et F)

Dans le cas d'un endomorphisme u de $E, A' = P^{-1}AP$ où $P = P_{\mathcal{B},\mathcal{B}'}$

VI. Rang

 $A \in \mathcal{M}_{(q,p)}(\mathbb{K})$, le rang de A est le rang des vecteurs colonnes de A, noté rg(A)

Lien avec application linéaire: $A \in \mathcal{M}_{(q,p)}(\mathbb{K})$, alors $\exists u \in \mathcal{L}(\mathbb{K}^q, \mathbb{K}^p) \ A = Mu_{\mathcal{B},\mathcal{C}}$ On a Ker(A) = Ker(u), Im(A) = Im(u), rg(A) = rg(u), dim(Ker(A)) + rg(A) = p

théorème :
$$A \in \mathcal{M}_n(\mathbb{K})$$
 , A est inversible $\iff rg(A) = n$
 $\iff Ker(A) = \{0\}$
 $\iff Im(A) = \mathbb{K}^n$

théorème: On a équivalence entre, si $A \in \mathcal{M}_n$

- (i) A inversible à droite $(\exists B \in \mathcal{M}_n(\mathbb{K}) | AB = I_n)$
- (ii) A inversible à gauche $(\exists C \in \mathcal{M}_n(\mathbb{K}) \ CA = I_n)$

Dans ce cas A inversible et $A^{-1} = B = C$

théorème invariance du rang par composition avec une matrice inversible :

$$\overline{A \in \mathcal{M}_{(q,p)}(\mathbb{K})}$$
, $B \in \mathcal{GL}_q(\mathbb{K})$, $C \in \mathcal{GL}_p(\mathbb{K})$ $rg(BA) = rg(A)$ et $rg(AC) = rg(A)$

$$\underline{\textbf{th\'eor\`eme}:} \ rg(A) = r \Longleftrightarrow \exists \ Q \in \mathcal{GL}_q(\mathbb{K}) \ \exists \ P \in \mathcal{GL}_p(\mathbb{K}) \ \text{telles que } A = Q \begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{q-r,r} & 0q-r,p-r \end{pmatrix} P$$

 $\underline{\mathbf{Corollaire}: rg(A) = rg(A^T) \quad \text{ (et donc } rg(A) \leq \inf(p,q))}$

VII. Trace d'une matrice carrée

VII.1. Définition et propriétés

définition:
$$A \in \mathcal{M}_n(\mathbb{K})$$
, la trace de A est le scalaire $tr(A) = \sum_{i=1}^n a_{i,i}$

théorème: tr est une forme linéaire et $\forall (A, B) \in \mathcal{M}_n(\mathbb{K})^2 - tr(AB) = tr(BA)$

Remarque:
$$\forall A \in \mathcal{M}_n(\mathbb{K}) \quad \forall P \in \mathcal{GL}_n(\mathbb{K}) \quad tr(P^{-1}AP) = tr(A)$$

On dit aussi que la trace est invariante par similitude.

théorème et définition : E Kespace vectoriel de dimension $n, f \in \mathcal{L}(E)$, \mathcal{B} base de E, alors $tr(Mf|_{\mathcal{B}})$ est indépendante de \mathcal{B} et s'appelle trace de l'endomorphisme f, notée tr(f)

théorème : Si p projecteur d'un Kespace vectoriel de dimension finie, alors tr(p) = rg(p)

VII.2. Matrices semblables

<u>définition</u>: $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, A est semblable à B si $\exists P \in \mathcal{GL}_n(\mathbb{K})$ $B = P^{-1}AP$

Remarque: A et B semblables alors rg(A) = rg(B) et tr(A) = tr(B). La réciproque est fausse.

Propriété : La relation "être semblable" est une relation d'équivalence sur $\mathcal{M}_n(\mathbb{K})$

VIII. Matrices blocs

$$A \in \mathcal{M}_{(q,p)}(\mathbb{K})$$
 $q = q_1 + ... + q_s$ $p = p_1 + ... + p_r$

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,r} \\ \dots & \dots & 0 \\ A_{s,1} & \dots & A_{s,r} \end{pmatrix} \qquad A_{i,j} \in \mathcal{M}_{q_i,p_j}(\mathbb{K}) \quad \text{est une matrice blocs}$$

$$A = \begin{pmatrix} A_{1,1} & 0 & . & 0 \\ . & . & . & . \\ . & . & . & . \\ 0 & . & 0 & A_{s,s} \end{pmatrix} \qquad A_{i,i} \in \mathcal{M}_{q_i}(\mathbb{K}) \quad \text{est une matrice diagonale par blocs}$$

$$A = \begin{pmatrix} A_{1,1} & . & . & A_{1,r} \\ 0 & . & . & . \\ . & . & . & . \\ 0 & . & 0 & A_{s,r} \end{pmatrix} \qquad A_{i,j} \in \mathcal{M}_{q_i,p_j}(\mathbb{K}) \quad \text{est une matrice triangulaire supérieure par blocs}$$

$$A = \begin{pmatrix} A_{1,1} & 0 & . & 0 \\ . & . & . & . \\ . & . & . & . \\ A_{s,1} & . & . & A_{s,r} \end{pmatrix} \qquad A_{i,j} \in \mathcal{M}_{q_i,p_j}(\mathbb{K}) \quad \text{est une matrice triangulaire inférieure par blocs}$$

Sous réserve de taille des blocs, les opérations sur les matrices restent valables sur les matrices blocs