

VISION: Predict Microstructure-Sensitive Cyclic ω4κ Curves!

<u>σ4structure Sensitivity of Plasticity</u> <u>in MONOTONIC Loading</u>

Slip Initiation : Source Strengths

Dislocation-Precipitate Interactions

Multislip Work-Hardening within Grain

Grain-Grain Interaction

Bridge with
FATIGUE MODELS
(McDowell, ..)

Cyclic Slip, Slip Localization

Key : Include as many Microstructural & Chemistry Variables as Possible

maintaining the data needed, and comple including suggestions for reducing this b	n of information is estimated to average 1 h ting and reviewing the collection of inform urden, to Washington Headquarters Servic aware that notwithstanding any other proviontrol number.	nation. Send comments regarding this burdes, Directorate for Information Operations	den estimate or any other s and Reports, 1215 Jeffer	aspect of this colle rson Davis Highwa	ction of information, y, Suite 1204, Arlington	
1. REPORT DATE 2003		2. REPORT TYPE N/A		3. DATES CO	OVERED	
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER	
VISION : Predict Microstructure-Sensitive Cyclic					5b. GRANT NUMBER	
απου2ου, απου4ου, απου2ου, απουσου, απουσομές του νέδ :					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER		
					5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Materials and Manufacturing Directorate Air Force Research Laboratory				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES The original documen	t contains color images.					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17.				18.	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT UU	NUMBER OF PAGES 33	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

OUTLINE

Microstructure Effects Within Grains (v2v')

Using DD SIMULATIONS (S.Rao, T.A.Parthasarathy, D.M.Dimiduk, P.M.Hazzledine)

- PROGRESS: Established a Working Model / Methodology
- CURRENT FOCUS: Connectivity ("Handshakes")

Using FEM (Y-S Choi, T.A.Parthasarathy, D.M.Dimiduk)

Unit Cell Model: Identified Key Issues - Refinements

Grain-Grain Interaction

Polycrystal Model: Using DD results

Grain-Defect Interaction

Discrete Dislocation (DD) Simulations

Random Distribution of Cubes in a box

(111) Sections

Spatial Distribution
Varies with Plane of Sectioning

DD: Established 2D Methodology (Low T athermal)

Model	Findings: Parametric Studies	<u>Issues</u>
Precipitate Hardening	Differs from Analytical Model (Reppich) Size & V _f Dep. Reasonable (Expt.) Real Microstructure Simulated	Other Models ? Scatter, ~10% Thresholding
	APB Energy: Primary Factor Friction Stress in v Significant Coherency, Curvature: Negligible	Measure/Calc. Measure?
Multi-Slip WH	3D with cross-slip (Comp. Limited)	Parallel Proc. (CHSSI, AFOSR)

Need "Handshakes" to Meet AIM Goals

DD: Current Focus - Connectivity ("Handshakes")

DD: Current Focus - Connectivity ("Handshakes")

DD Parametric Studies

Fits to Parametric Studies => Pollock-type Model

Pollock-type Model: (derived from DD results)

$$\omega_{Y} \mid (14 f_{v'})''(M (CRSS) 2 k_{v2v'} d_{v2v'}^{40.5}) \Leftrightarrow f_{v'} / \vartheta_{0v'} 2 k_{v'} d_{v'}^{40.5})$$

IN 100 - Spreadsheet

Data from Pollock on IN100 (PWA 1100 - ver.3)

3/21/03 - Santa Fe

AFRL

Rene 88 - 1200 F Data (from Pollock's slides)

3/21/03 - Santa Fe

DD: Current Focus - Connectivity ("Handshakes")

SEM Image -> CRSS

DD: Current Focus - Connectivity ("Handshakes")

Atomistic Simulations -> Refinements of DD

Atomistics Simulation Validation Results

- EAM Potential with APB=140, CSF=120, SF(Ni)=60
- FLAT INTERFACE :

Atomistics

- Stress for first partial to enter: (CSF-SF) / b
- Stress for second partial to enter: (APB) / b
- No diffuse core effect
- <u>DD</u> Max Stress = Stress for 1st DisIn entry = (APB)/b
- => APB Energy Sufficient, if APB (CSF-SF)

DD: Current Focus - Connectivity ("Handshakes")

DD -> FEM Handoffs

DD -> FEM Handoffs

γ Forest Obstacle Model (Franciosi, 1985)

3/21/03 - Santa Fe

AFRL

OUTLINE

Microstructure Effects Within Grains (v2v')

Using DD SIMULATIONS (S.Rao, T.A.Parthasarathy, D.M.Dimiduk, P.M.Hazzledine)

- PROGRESS: Established a Working Model / Methodology
- CURRENT FOCUS: Connectivity ("Handshakes")

Using FEM (Y-S Choi, T.A.Parthasarathy, D.M.Dimiduk)

Unit Cell Model : Identified Key Issues - Refinements

Grain-Grain Interaction

Polycrystal Model: Using DD results

Grain-Defect Interaction

FEM: Unit Cell Model (Single Grain)

- Evaluated Unit Cell Approach using A-B Formalism
 - Yield Point -> determined by geometrical constraint (different mechanism than DD)
 - W-H beyond Yield -> strain-gradient term dominant

Refinement : Relaxation of Elastic v' (using DD results)

FE Simulation of (v+v') : Unit Cell Approach

$$|v^{\zeta}| |v_{o} \operatorname{sgn}(v^{\zeta})| \left| \frac{v^{\zeta}}{\hat{g}^{\zeta}} \right|^{1/m} \quad \text{with} \quad |\hat{g}| \frac{\xi^{2} \sigma^{2} b}{2(\hat{g} + \hat{g}_{o})} k_{o} \frac{\zeta^{\zeta}}{\zeta} |v^{\zeta}| \quad \begin{array}{c} \operatorname{Only} \zeta^{\zeta} (GND) \\ \operatorname{contribution} \text{ to slip} \\ \operatorname{resistance}. \end{array}$$

Effect of Strain-Gradient Parameter: k_o

Effect of \hat{g}_o

Length Scale Effects: V Size, V_f

- \triangleright Constant $\sqrt{3}$ ppt. $V_f = 68\%$
- > Change vℜize (v-channel width)

- \triangleright Constant $\sqrt{\Re}$ ize = 0.52 σm
- \triangleright Change $\sqrt{\mathcal{W}}_f$ (v-channel width)

 $\hat{g}_{o} \mid 60MPa, m \mid 0.03, v_{o} \mid 0.001, k_{o} \mid 5\Delta 10^{45}$ 3/21/03 - Santa Fe

Effect of VV30 Geometry

- ► Elastic √92 Elasto-viscoplastic ν
- $\hat{g}_o \mid 60MPa, m \mid 0.03, v_o \mid 0.001, k_o \mid 0 \text{ for Viscoplasticity}$

Effect of $\sqrt{3D}$ Geometry

- Elastic v92 Elasto-viscoplastic v
- $\hat{g}_{o} \mid 60MPa, m \mid 0.03, v_{o} \mid 0.001,$

- The onset of softening accompanied by the massive shears localized along the edges and the corners in the \sqrt{N} interfaces
 - ♥ Break down of geometric (kinematic) constraints
 - 3€1/Need to compare with experimental observations at this particular T-range

FEM: Unit Cell Model (Single Grain)

- Evaluated Unit Cell Approach using A-B Formalism
 - Yield Point -> determined by geometrical constraint
 captures V_f Effect
 - W-H beyond Yield -> strain-gradient term dominant
 captures size effect during work-hardening
- Refinement : Allow Plasticity in v' (using DD results)
 - DD captures APB cutting,
 - FEM captures Geometrical Constraint effect and Work Hardening

OUTLINE

Microstructure Effects Within Grains (v2v')

Using DD SIMULATIONS (S.Rao, T.A.Parthasarathy, D.M.Dimiduk, P.M.Hazzledine)

- PROGRESS: Established a Working Model / Methodology
- CURRENT FOCUS: Connectivity ("Handshakes")

Using FEM (Y-S Choi, T.A.Parthasarathy, D.M.Dimiduk)

Unit Cell Model: Identified Key Issues - Refinements

Grain-Grain Interaction

Polycrystal Model: Using DD results

Grain-Defect Interaction

FEM: Polycrystal Model

- FY 2003 Goal : Combine DD with FEM to Build 1st gen. (v2v') Polycrystal model
 - Wigner-Seitz Cell (Beaudoin) (144 grains, 12 el/gr)
 - Use DD results for g_o and A_{ii}
 - A-B model for Strain-gradient Terms
- Beyond FY2003
 - Build/Borrow v' const. Law to Model IN100 type alloy
 - Real Image 3D Polycrystal Models
 - Adaptive Meshing of Realistic Microstructures

Building Bridges: Inputs for Pollock-type Model

Needs Development Within Atomistics

$$\omega_{y}/C_{i}, T, \kappa, \kappa, \dots 0 | f_{v} \underbrace{ \frac{dC_{o}}{dC_{i}} \sqrt{C_{i}}}_{\text{TM}} + Mf_{t} \underbrace{ \frac{B_{APB}}{b}}_{\text{TM}}$$

Obtain by Dislocation Kinetics Simulation

Obtain by FEM Simulation of Grain Distribution Effects

+
$$\int 14 f_p \mathcal{O}_{y}^{\nu} \frac{1}{\sqrt{d_{\nu}}} + f_p \left(\omega / T \mathcal{O}_{Ni_3Al} 2 \frac{\mathbb{R} dc}{\mathbb{R} dC_i} C_i \right) + \int_p k_y^{\nu \Re} \frac{1}{\sqrt{d_{\nu \Re}}}$$

Building Bridges

<u>TO</u>

Inputs for Pollock-type Model
 3-6 mo.

Fatigue Models (McDowell,..)
 1-2 yrs

<u>FROM</u>

v' Constitutive Laws (Parks, Cuitino/Ortiz, ...)
 3-6 mo.

• 3D Voronoi Meshing (Parks, Gosh, ..) 3-6 mo.