In [1]:

```
import sys
import numpy
import matplotlib
import pandas
import sklearn

print('Python: {}'.format(sys.version))
print('numpy: {}'.format(numpy.__version__))
print('matplotlib: {}'.format(matplotlib.__version__))
print('pandas: {}'.format(pandas.__version__))
print('sklearn: {}'.format(sklearn.__version__))
```

Python: 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)] numpy: 1.18.1 matplotlib: 3.1.3 pandas: 0.24.2 sklearn: 0.22.1

In [2]:

```
import numpy as np
from sklearn import preprocessing
from sklearn.model_selection import cross_validate
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn import model_selection
from sklearn.metrics import classification_report, accuracy_score
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
import pandas as pd
```

In [3]:

In [4]:

```
df.replace('?',-99999,inplace=True)
print(df.axes)
```

In [7]:

	n_pregnant	<pre>glucose_concentration</pre>	<pre>blood_pressuer (mm Hg)</pre>	\
0	6	148	72	
1	1	85	66	
2	8	183	64	
3	1	89	66	
4	0	137	40	
5	5	116	74	
6	3	78	50	
7	10	115	0	
8	2	197	70	
9	8	125	96	
10	4	110	92	
11	10	168	74	
12	10	139	80	
13	1	189	60	
14	5	166	72	
15	7	100	0	
16	0	118	84	
17	7	107	74	•
40	4	400	22	

```
n pregnant
                    glucose_concentration
                                            blood pressuer (mm Hg)
       768.000000
                                768.000000
                                                          768.000000
count
mean
         3.845052
                                120.894531
                                                           69.105469
         3.369578
                                 31.972618
                                                           19.355807
std
min
         0.000000
                                  0.000000
                                                            0.000000
25%
         1.000000
                                 99.000000
                                                           62.000000
50%
         3.000000
                                117.000000
                                                           72.000000
         6.000000
75%
                                140.250000
                                                           80.000000
        17.000000
                                199.000000
                                                          122.000000
max
       skin_thickness (mm)
                              serum_insulin (mu U/ml)
                                                                BMI
count
                 768.000000
                                           768.000000
                                                        768.000000
                  20.536458
                                             79.799479
mean
                                                          31.992578
std
                  15.952218
                                            115.244002
                                                           7.884160
min
                   0.000000
                                              0.000000
                                                           0.000000
25%
                   0.000000
                                              0.000000
                                                          27.300000
50%
                  23.000000
                                             30.500000
                                                          32.000000
75%
                  32.000000
                                            127.250000
                                                          36.600000
                  99.000000
                                            846.000000
                                                          67.100000
max
       pedigree function
                                              class
                                   age
              768.000000
                           768.000000
                                        768.000000
count
mean
                 0.471876
                             33.240885
                                          0.348958
                 0.331329
                             11.760232
                                          0.476951
std
                 0.078000
                             21.000000
                                          0.000000
min
25%
                 0.243750
                             24.000000
                                          0.000000
50%
                 0.372500
                             29.000000
                                          0.000000
75%
                 0.626250
                             41.000000
                                          1.000000
                 2.420000
                             81.000000
                                          1.000000
max
```

In [9]:

```
columns = ['glucose_concentration', 'blood_pressuer (mm Hg)', 'skin_thickness (mm)', 'serum
for col in columns:
    df[col].replace(0,np.NaN,inplace=True)
```

In [10]:

```
# Drop the rows with missing values
df.dropna(inplace=True)

# summarize the number of rows and columns in df
df.describe()
```

Out[10]:

	n_pregnant	glucose_concentration	blood_pressuer (mm Hg)	skin_thickness (mm)	serum_insulin (mu U/ml)	
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.0
mean	3.301020	122.627551	70.663265	29.145408	156.056122	33.0
std	3.211424	30.860781	12.496092	10.516424	118.841690	7.0
min	0.000000	56.000000	24.000000	7.000000	14.000000	18.2
25%	1.000000	99.000000	62.000000	21.000000	76.750000	28.4
50%	2.000000	119.000000	70.000000	29.000000	125.500000	33.2
75%	5.000000	143.000000	78.000000	37.000000	190.000000	37.1
max	17.000000	198.000000	110.000000	63.000000	846.000000	67.1
4						•

In [11]:

```
df.hist(figsize = (10, 10))
plt.show()
```


In [12]:

```
scatter_matrix(df,figsize=(18,18))
plt.show()
```


In [27]:

In [28]:

```
# Normalize the data using sklearn StandardScaler
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler().fit(X)
print(scaler)
```

StandardScaler(copy=True, with_mean=True, with_std=True)

In [29]:

```
# Transform and display the training data
X_standardized = scaler.transform(X)
data = pd.DataFrame(X_standardized)
data.describe()
```

Out[29]:

	0	1	2	3	4	ł
count	3.920000e+02	3.920000e+02	3.920000e+02	3.920000e+02	3.920000e+02	3.920000e+0
mean	-4.021726e-17	3.129583e-17	-4.641624e-16	1.042250e-16	6.485742e-17	1.543550e-1
std	1.001278e+00	1.001278e+00	1.001278e+00	1.001278e+00	1.001278e+00	1.001278e+0
min	-1.029213e+00	-2.161731e+00	-3.739001e+00	-2.108484e+00	-1.196867e+00	-2.120941e+0
25%	-7.174265e-01	-7.665958e-01	-6.941640e-01	-7.755315e-01	-6.681786e-01	-6.676780e-0
50%	-4.056403e-01	-1.176959e-01	-5.314565e-02	-1.384444e-02	-2.574448e-01	1.621036e-0
75%	5.297185e-01	6.609841e-01	5.878727e-01	7.478426e-01	2.859877e-01	5.718696e-0
max	4.271153e+00	2.445459e+00	3.151946e+00	3.223325e+00	5.812990e+00	4.846172e+0
4						•

In [364]:

```
#X=np.array(df.drop(['class'],1))
#y=np.array(df['class'])
X_train, X_test, y_train, y_test = model_selection.train_test_split(X_standardized, y, test
models=[]
models.append(('KNN',KNeighborsClassifier(n_neighbors=6)))
models.append(('SVM',SVC(kernel='linear')))
#models.append(('SVM',SVC(kernel='rbf')))
#models.append(('SVM',SVC(kernel='poly')))
#models.append(('SVM',SVC(kernel='sigmoid')))
results = []
names = []
for name, model in models:
    kfold=model_selection.KFold(n_splits=10, random_state = 0, shuffle=True)
    cv_results=model_selection.cross_val_score(model,X_train,y_train,cv=kfold,scoring='accu
    results.append(cv_results)
    names.append(name)
    print("{}:accuracy->{}(std->{})".format(name, cv_results.mean(), cv_results.std()))
for name, model in models:
    model.fit(X_train, y_train)
    predictions = model.predict(X test)
    print(name)
    print(accuracy_score(y_test, predictions))
    print(classification_report(y_test, predictions))
KNN:accuracy->0.7065524193548388(std->0.06776930670629303)
SVM:accuracy->0.7482862903225806(std->0.08906984481918345)
KNN
0.8734177215189873
              precision
                            recall f1-score
                                               support
           0
                   0.87
                              0.98
                                        0.92
                                                     61
           1
                   0.90
                              0.50
                                        0.64
                                                     18
                                                     79
                                        0.87
    accuracy
                              0.74
                   0.88
                                        0.78
                                                     79
   macro avg
weighted avg
                   0.88
                              0.87
                                        0.86
                                                     79
SVM
0.9240506329113924
              precision
                            recall
                                   f1-score
                                               support
           0
                   0.95
                              0.95
                                        0.95
                                                     61
           1
                   0.83
                              0.83
                                        0.83
                                                     18
                                                     79
                                        0.92
    accuracy
                              0.89
                                        0.89
                                                     79
   macro avg
                   0.89
                   0.92
                              0.92
                                        0.92
                                                     79
weighted avg
```