Course 4

Generated subspace, linear maps

Prof. dr. Septimiu Crivei

Chapter 2. Vector Spaces

Basic properties

- 2 Subspaces
- Generated subspace
- 4 Linear maps

Application: image crossfade

Following [Klein], we describe a way to achieve an image crossfade effect.

Intersection of subspaces

For a vector space V over K, we denote by S(V) the set of all subspaces of V. Sometimes, this set is denoted by $S_K(V)$ if we like to emphasize the field K.

$\mathsf{Theorem}$

Let V be a vector space over K and let $(S_i)_{i \in I}$ be a family of subspaces of V. Then $\bigcap_{i \in I} S_i \in S(V)$.

Proof. For each $i \in I$, we have $S_i \in S(V)$, hence $0 \in S_i$. Then $0 \in \bigcap_{i \in I} S_i \neq \emptyset$. Now let $k_1, k_2 \in K$ and $x, y \in \bigcap_{i \in I} S_i$. Then $x, y \in S_i$, $\forall i \in I$. But $S_i \in S(V)$, $\forall i \in I$. It follows that $k_1x + k_2y \in S_i$, $\forall i \in I$, hence $k_1x + k_2y \in \bigcap_{i \in I} S_i$. Therefore, $\bigcap_{i \in I} S_i \in S(V)$.

Union of subspaces

In general, the union of two subspaces of a vector space is not a subspace. For instance, the sets

$$S = \{(x,0) \mid x \in \mathbb{R}\},\$$

$$T = \{(0, y) \mid y \in \mathbb{R}\}$$

are subspaces of the canonical real vector space \mathbb{R}^2 , but $S \cup T$ is not a subspace of \mathbb{R}^2 . Indeed, for instance, we have $(1,0),(0,1) \in S \cup T$, but $(1,0) + (0,1) = (1,1) \notin S \cup T$.

Generated subspace

EX: Take the real vector space R3. Define a set S={v1, v2} from R3. <S> = {av1+bv2, a,b from R3} Now we are interested in how to "complete" a given subset of a vector space to a subspace in a minimal way.

Definition

Let V be a vector space and let $X \subseteq V$. Then we denote

$$\langle X \rangle = \bigcap \{ S \le V \mid X \subseteq S \}$$

and we call it the subspace generated by X or the subspace spanned by X. Here X is called the generating set of $\langle X \rangle$. If $X = \{v_1, \ldots, v_n\}$, we denote $\langle v_1, \ldots, v_n \rangle = \langle \{v_1, \ldots, v_n\} \rangle$.

- (1) $\langle X \rangle$ is the "smallest" (with respect to inclusion) subspace of V containing X.
- (2) $\langle \emptyset \rangle = \{0\}.$
- (3) If $S \leq V$, then $\langle S \rangle = S$.

System of generators

Definition

A vector space V over K is called *finitely generated* if $\exists v_1, \ldots, v_n \in V \ (n \in \mathbb{N})$ such that

$$V = \langle v_1, \ldots, v_n \rangle.$$

Then the set $\{v_1, \ldots, v_n\}$ is called a system of generators for V.

Definition

Let V be a vector space over K and $v_1, \ldots, v_n \in V$ $(n \in \mathbb{N})$. A finite sum of the form

$$k_1v_1+\cdots+k_nv_n$$
,

where $k_i \in K$ (i = 1, ..., n), is called a (finite) *linear combination* of the vectors $v_1, ..., v_n$.

◆□ → ◆□ → ◆ = → ◆ = → へ ○ ○

Characterization of the generated subspace

Theorem

Let V be a vector space over K and let $\emptyset \neq X \subseteq V$. Then

$$\langle X \rangle = \{k_1 v_1 + \dots + k_n v_n \mid k_i \in K, \ v_i \in X, i = 1, \dots, n, \ n \in \mathbb{N}^*\},$$

that is, the set of all finite linear combinations of vectors of X.

Proof. We prove the result in 3 steps, by showing that

$$L = \{k_1v_1 + \dots + k_nv_n \mid k_i \in K, \ v_i \in X, i = 1, \dots, n, \ n \in \mathbb{N}^*\}$$

is the smallest subspace of V containing X.

Characterization of the generated subspace

- (i) Let $v \in X$. Then $v = 1 \cdot v \in L$, hence $L \neq \emptyset$. Now let $k, k' \in K$ and $v, v' \in L$. Then $v = \sum_{i=1}^n k_i v_i$ and $v' = \sum_{j=1}^m k_j' v_j'$ for some $k_1, \ldots, k_n, k_1', \ldots, k_m' \in K$ and $v_1, \ldots, v_n, v_1', \ldots, v_m' \in X$. Then $kv + k'v' \in L$, because it is a finite linear combination of vectors of X. Hence we have $L \leq V$.
- (ii) If $v \in X$, then $v = 1 \cdot v \in L$. Hence $X \subseteq L$.
- (iii) Let $S \leq V$ be such that $X \subseteq S$. Let $k_1, \ldots, k_n \in K$ and $v_1, \ldots, v_n \in X$. Since $X \subseteq S$ and $S \leq V$, $k_1v_1 + \cdots + k_nv_n \in S$. Hence $L \subseteq S$.

Thus, we have $\langle X \rangle = L$ by the initial remark.

Corollary

Let V be a vector space over K and let $x_1, \ldots, x_n \in V$. Then

$$\langle x_1,\ldots,x_n\rangle=\{k_1x_1+\cdots+k_nx_n\mid k_i\in K\,,\,x_i\in X\,,i=1,\ldots,n\}\,.$$

Examples I

(a) Consider the canonical real vector space \mathbb{R}^3 . Then

$$\langle (1,0,0), (0,1,0), (0,0,1) \rangle$$

$$= \{k_1(1,0,0) + k_2(0,1,0) + k_3(0,0,1) \mid k_1, k_2, k_3 \in \mathbb{R}\}$$

$$= \{(k_1,0,0) + (0,k_2,0) + (0,0,k_3) \mid k_1, k_2, k_3 \in \mathbb{R}\}$$

$$= \{(k_1,k_2,k_3) \mid k_1, k_2, k_3 \in \mathbb{R}\} = \mathbb{R}^3.$$

Hence \mathbb{R}^3 is generated by the three vectors (1,0,0), (0,1,0) and (0,0,1), and thus it is finitely generated.

(b) Consider the canonical vector space \mathbb{Z}_2^3 over \mathbb{Z}_2 . Similarly as above, we have:

$$\langle (\widehat{1},\widehat{0},\widehat{0}),(\widehat{0},\widehat{1},\widehat{0})\rangle = \{(k_1,k_2,\widehat{0}) \mid k_1,k_2 \in \mathbb{Z}_2\} \neq \mathbb{Z}_2^3.$$

Examples II

Hence \mathbb{Z}_2^3 is not generated by the two vectors $(\widehat{1},\widehat{0},\widehat{0})$ and $(\widehat{0},\widehat{1},\widehat{0})$. But it is generated by $(\widehat{1},\widehat{0},\widehat{0})$, $(\widehat{0},\widehat{1},\widehat{0})$ and $(\widehat{0},\widehat{0},\widehat{1})$, hence it is finitely generated.

(c) Consider the subspace

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$

of the canonical real vector space \mathbb{R}^3 . Let us write it as a generated subspace. Expressing x=y+z, we have:

$$S = \{(y+z,y,z) \mid y,z \in \mathbb{R}\} = \{(y,y,0) + (z,0,z) \mid y,z \in \mathbb{R}\}$$

= \{y(1,1,0) + z(1,0,1) \cdot y,z \in \mathbb{R}\} = \langle ((1,1,0),(1,0,1)\rangle.

Alternatively, one may express y or z by using the other two components and get other writings of S as a generated subspace, namely $S = \langle (1,1,0), (0,-1,1) \rangle = \langle (1,0,1), (0,1,-1) \rangle$. We see that S is finitely generated.

Sum of subspaces I

In what follows we shall be interested in "decomposing" a vector space into subspaces.

Definition

Let V be a vector space over K and let $S, T \leq V$. We define the <u>sum</u> of the subspaces S and T as the set

$$S + T = \{s + t \mid s \in S, t \in T\}.$$

Theorem

Let V be a vector space over K and $S, T \leq V$. Then $S + T = \langle S \cup T \rangle$, hence $S + T \leq V$.

Proof. We prove the equality by double inclusion.

Sum of subspaces II

First, let $v = s + t \in S + T$, for some $s \in S$ and $t \in T$. Then

$$v = 1 \cdot s + 1 \cdot t$$

is a linear combination of the vectors $s, t \in S \cup T$, hence $v \in \langle S \cup T \rangle$. Thus, $S + T \subset \langle S \cup T \rangle$. Now let $v \in \langle S \cup T \rangle$. Then

$$v = \sum_{i=1}^{n} k_i v_i = \sum_{i \in I} k_i v_i + \sum_{j \in J} k_j v_j$$

where $I = \{i \in \{1, ..., n\} \mid v_i \in S\}$ and $J = \{j \in \{1, \dots, n\} \mid v_i \in T \setminus S\}$. But the first sum is a linear combination of vectors of S, hence it belongs to S, while the second sum is a linear combination of vectors of T. hence it belongs to T. Thus, $v \in S + T$ and so $\langle S \cup T \rangle \subset S + T$.

Direct sum of subspaces I

Definition

Let V be a vector space over K and let $S, T \leq V$. If $S \cap T = \{0\}$, then S + T is denoted by $S \oplus T$ and is called the <u>direct sum</u> of the subspaces S and T.

Theorem

Let V be a vector space over K and let $S, T \leq V$. Then

$$V = S \oplus T \iff \forall v \in V, \exists ! s \in S, t \in T : v = s + t.$$

Proof. \Longrightarrow Assume that $V = S \oplus T$. Let $v \in V$. Then $\exists s \in S$, $t \in T$ such that v = s + t. Now suppose that $\exists s' \in S$, $t' \in T$ such that v = s' + t'. Then s + t = s' + t', whence

$$s - s' = t' - t \in S \cap T = \{0\}.$$

Direct sum of subspaces II

Hence s = s' and t = t', that show the uniqueness.

Assume that $\forall v \in V$, $\exists ! s \in S$, $t \in T$ such that v = s + t. Then $V \subseteq S + T$. Clearly, we have $S + T \subseteq V$ and consequently V = S + T. Now suppose that $0 \neq v \in S \cap T$. Then

$$v = v + 0 = 0 + v \in S + T$$
.

But this is a contradiction, since we have the uniqueness of writing of v as a sum of an element of S and an element of T. Therefore, $S \cap T = \{0\}$ and thus, $V = S \oplus T$.

Example

Consider the canonical real vector space \mathbb{R}^2 . Then $\mathbb{R}^2 = S \oplus T$, where $S = \{(x,0) \mid x \in \mathbb{R}\}$ and $T = \{(0,y) \mid y \in \mathbb{R}\}$.

Linear maps

EX: Let V and V be vector spaces over K and let $f: V \ V$ be defined by $f(v) = 0, v \ V$. Then f is a K-linear map

Definition

Let V and V' be vector spaces over the same field K. A function $f:V\to V'$ is called:

(1) (K-)linear map (or (vector space) homomorphism or linear transformation) if

$$f(v_1 + v_2) = f(v_1) + f(v_2), \quad \forall v_1, v_2 \in V,$$

$$f(kv) = kf(v), \quad \forall k \in K, \forall v \in V.$$

- (2) *isomorphism* if it is a bijective K-linear map.
- (3) endomorphism if it is a K-linear map and V = V'.
- (4) automorphism if it is a bijective K-linear map and V = V'.

Properties of linear maps

If $f: V \to V'$ is a K-linear map, then the first condition from its definition tells us that f is a group homomorphism between the groups (V,+) and (V',+). Then we have f(0)=0' and $f(-v)=-f(v), \ \forall v \in V$.

We denote by $V \simeq V'$ the fact that two vector spaces V and V' are isomorphic. We also denote

$$\operatorname{Hom}_{\mathcal{K}}(V,V') = \{f : V \to V' \mid f \text{ is } K\text{-linear}\},$$

$$\operatorname{End}_{\mathcal{K}}(V) = \{f : V \to V \mid f \text{ is } K\text{-linear}\},$$

$$\operatorname{Aut}_{\mathcal{K}}(V) = \{f : V \to V \mid f \text{ is bijective } K\text{-linear}\}.$$

Characterization of linear maps

$\mathsf{Theorem}$

Let V and V' be vector spaces over K and $f: V \to V'$. Then f is a K-linear map $\iff f(k_1v_1 + k_2v_2) = k_1f(v_1) + k_2f(v_2), \forall k_1, k_2 \in K, \forall v_1, v_2 \in V$.

Proof. \Longrightarrow Let $k_1, k_2 \in K$ and $v_1, v_2 \in V$. Then

$$f(k_1v_1+k_2v_2)=f(k_1v_1)+f(k_2v_2)=k_1f(v_1)+k_2f(v_2).$$

Choose $k_1 = k_2 = 1$ and then $k_2 = 0$ to get the two conditions of a K-linear map.

Examples I

- (a) Let V and V' be vector spaces over K and let $f: V \to V'$ be defined by f(v) = 0', $\forall v \in V$. Then f is a K-linear map, called the *trivial linear map*.
- (b) Let V be a vector space over K. Then the identity map $1_V:V\to V$ is an automorphism of V.
- (c) Let V be a vector space and $S \leq V$. Define $i: S \to V$ by i(v) = v, $\forall v \in S$. Then i is a K-linear map, called the *inclusion linear map*.
- (d) Let V be a vector space over K and $a \in K$. Define $t_a : V \to V$ by $t_a(v) = av$, $\forall v \in V$. Then t_a is an endomorphism of V.

Examples II

(e) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = x + y. Then f is an \mathbb{R} -linear map, because we have

$$f(k_1(x_1, y_1) + k_2(x_2, y_2)) = f(k_1x_1 + k_2x_2, k_1y_1 + k_2y_2)$$

$$= (k_1x_1 + k_2x_2) + (k_1y_1 + k_2y_2)$$

$$= k_1(x_1 + y_1) + k_2(x_2 + y_2)$$

$$= k_1f(x_1, y_1) + k_2f(x_2, y_2)$$

for every $k_1, k_2 \in K$ and for every $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$. On the other hand, $f : \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = xy is not an \mathbb{R} -linear map, because, for instance, we have

$$f((1,0)+(0,1))=f(1,1)=1\neq 0=f(1,0)+f(0,1).$$

(f) Let $\theta \in \mathbb{R}$ and let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta),$$

Linear maps Course 4

20

Examples III

which is the counterclockwise rotation of angle θ about the origin in the plane. Then f is an \mathbb{R} -linear map. In particular, for $\theta = \frac{\pi}{2}$, we have f(x,y) = (-y,x).

(g) For an interval $I = [a, b] \subseteq \mathbb{R}$ we considered the real vector space

$$\mathbb{R}^I = \{ f \mid f : I \to \mathbb{R} \}$$

and its subspaces

$$C(I,\mathbb{R}) = \{ f \in \mathbb{R}^I \mid f \text{ continuous on } I \},$$

 $D(I,\mathbb{R}) = \{ f \in \mathbb{R}^I \mid f \text{ derivable on } I \}.$

Then

$$F:D(I,\mathbb{R}) \to \mathbb{R}^I, \quad F(f) = f',$$
 $G:C(I,\mathbb{R}) \to \mathbb{R}, \quad G(f) = \int_a^b f(t)dt,$

are \mathbb{R} -linear maps.

Properties of linear maps

Theorem

- (i) Let $f: V \to V'$ be an isomorphism of vector spaces over K. Then $f^{-1}: V' \to V$ is again an isomorphism of vector spaces over K.
- (ii) Let $f:V\to V'$ and $g:V'\to V''$ be K-linear maps. Then $g\circ f:V\to V''$ is a K-linear map.

Proof. Homework.

Kernel and image of a linear map

Definition

Let $f: V \to V'$ be a K-linear map. Then the set

$$\operatorname{Ker} f = \{ v \in V \mid f(v) = 0' \}$$

is called the $\frac{kernel}{f}$ (or the $null\ space$) of the K-linear map f and the set

$$\operatorname{Im} f = \{ f(v) \mid v \in V \}$$

is called the total range space (or the total range space) of the total K-linear map total range space.

Kernel and image are subspaces

Theorem

Let $f: V \to V'$ be a K-linear map. Then $\operatorname{Ker} f \leq V$ and $\operatorname{Im} f \leq V'$.

Proof. We have f(0) = 0', hence $0 \in \operatorname{Ker} f \neq \emptyset$. Let $k_1, k_2 \in K$ and $v_1, v_2 \in \operatorname{Ker} f$. We prove that $k_1v_1 + k_2v_2 \in \operatorname{Ker} f$. We have:

$$f(k_1v_1+k_2v_2)=k_1f(v_1)+k_2f(v_2)=k_1\cdot 0'+k_2\cdot 0'=0',$$

and thus $k_1v_1 + k_2v_2 \in \operatorname{Ker} f$. Hence $\operatorname{Ker} f \leq V$.

Now note that $0'=f(0)\in \operatorname{Im} f\neq\emptyset$. Let $k_1,k_2\in K$ and $v_1',v_2'\in \operatorname{Im} f$. We prove that $k_1v_1'+k_2v_2'\in \operatorname{Im} f$. We have $v_1'=f(v_1)$ and $v_2'=f(v_2)$ for some $v_1,v_2\in V$. Then:

$$k_1v_1' + k_2v_2' = k_1f(v_1) + k_2f(v_2) = f(k_1v_1 + k_2v_2) \in \operatorname{Im} f.$$

Hence $\operatorname{Im} f < V'$.

When is the kernel minimal?

Theorem

Let $f: V \rightarrow V'$ be a K-linear map. Then

$$\operatorname{Ker} f = \{0\} \iff f \text{ is injective}.$$

Proof. \Longrightarrow Assume that $\operatorname{Ker} f = \{0\}$. Let $v_1, v_2 \in V$ be such that $f(v_1) = f(v_2)$. Then $f(v_1 - v_2) = f(v_1) - f(v_2) = 0'$, hence $v_1 - v_2 \in \operatorname{Ker} f = \{0\}$, and thus $v_1 = v_2$. Therefore, f is injective.

Assume that f is injective. Clearly, we have $\{0\} \subseteq \operatorname{Ker} f$. Now let $v \in \operatorname{Ker} f$. Then f(v) = 0' = f(0). By the injectivity of f, we deduce that v = 0. Thus $\operatorname{Ker} f \subseteq \{0\}$, and consequently, $\operatorname{Ker} f = \{0\}$.

Linear maps and generated subspaces

Theorem

Let $f: V \to V'$ be a K-linear map and let $X \subseteq V$. Then

$$f(\langle X \rangle) = \langle f(X) \rangle$$
.

Proof. If $X = \emptyset$, then we have:

$$f(\langle \emptyset \rangle) = f(\{0\}) = \{f(0)\} = \{0'\} = \langle \emptyset \rangle = \langle f(\emptyset) \rangle.$$

If $X \neq \emptyset$, use

$$\langle X \rangle = \{k_1v_1 + \dots + k_nv_n \mid k_i \in K \,, \ v_i \in X \,, i = 1,\dots,n \,, \ n \in \mathbb{N}^*\}.$$

Since f is a K-linear map, it follows that:

$$f(\langle X \rangle) = \{ f(k_1 v_1 + \dots + k_n v_n) \mid k_i \in K, v_i \in X, i = 1, \dots, n, n \in \mathbb{N}^* \}$$

= $\{ k_1 f(v_1) + \dots + k_n f(v_n) \mid k_i \in K, v_i \in X, i = 1, \dots, n, n \in \mathbb{N}^* \}$
= $\langle f(X) \rangle$,

which proves the result.

The vector space of linear maps

$\mathsf{\Gamma}\mathsf{heorem}$

Let V and V' be vector spaces over K. Consider on $\operatorname{Hom}_{\mathsf{K}}(V,V')$ the operations: $\forall f, g \in \text{Hom}_K(V, V')$ and $\forall k \in K$, $f + g, k \cdot f \in \operatorname{Hom}_K(V, V')$, where

$$(f+g)(v) = f(v) + g(v),$$

$$(kf)(v) = kf(v)$$

 $\forall v \in V$. Then $\operatorname{Hom}_K(V, V')$ is a vector space over K.

Corollary

Let V be a vector space over K. Then $\operatorname{End}_{\kappa}(V)$ is a vector space over K.

Extra: Image crossfade I

A black-and-white image of (say)

$$n = 1024 \times 768$$

pixels can be viewed as a vector in the real canonical vector space \mathbb{R}^n , where each component of the vector is the intensity of the corresponding pixel.

Let us consider two vectors representing images:

Now consider the following intermediate images:

Extra: Image crossfade II

The vectors corresponding to the above images are the following linear combinations of the vectors v_1 and v_2 :

$$v_1, \quad \frac{8}{9}v_1 + \frac{1}{9}v_2, \quad \frac{7}{9}v_1 + \frac{2}{9}v_2, \quad \frac{6}{9}v_1 + \frac{3}{9}v_2, \quad \frac{5}{9}v_1 + \frac{4}{9}v_2, \\ \frac{4}{9}v_1 + \frac{5}{9}v_2, \quad \frac{3}{9}v_1 + \frac{6}{9}v_2, \quad \frac{2}{9}v_1 + \frac{7}{9}v_2, \quad \frac{1}{9}v_1 + \frac{8}{9}v_2, \quad v_2.$$

One may use these images as frames in a video in order to get a crossfade effect.

Linear maps Course 4

29