HOMEWORK 4 – MATH 4341 DUE DATE: MONDAY 09/25/2023

Problem 1. (a) Suppose \mathcal{T}_1 and \mathcal{T}_2 are two different topologies on a set X. When is the identity map $id: X \to X$ given by id(x) = x a continuous map from (X, \mathcal{T}_1) to (X, \mathcal{T}_2) ?

(b) Show that the subspace topology \mathcal{T}_Y is the smallest topology on $Y \subset X$ for which the inclusion $\iota: Y \to X$ is a continuous map.

Problem 2. (a) Let $Y \subset X$ be an open subset of a topological space X. Show that a set $U \subset Y$ is open in the subspace topology on Y if and only if U is open in X.

(b) Let $Y \subset X$ be a closed subset of a topological space X. Show that a set $U \subset Y$ is closed in the subspace topology on Y if and only if U is closed in X.

Problem 3. Let (X_1, d_1) and (X_2, d_2) be metric spaces. Define a function on $X_1 \times X_2$ by $d((x_1, x_2), (y_1, y_2)) = \max(d_1(x_1, y_1), d_2(x_2, y_2))$.

- (a) Show that d is a metric on $X_1 \times X_2$.
- (b) Show that the metric topology on $X_1 \times X_2$ induced by d is the product topology, where X_1 and X_2 have the metric topologies from d_1 and d_2 respectively.