EOSC 350 : Environmental, Geotechnical and Exploration Geophysics I

FINAL WRAP UP: WHAT DID WE LEARN

Problems in Geoscience

Resource Exploration

- Minerals
- Hydrocarbons
- Ground water

Natural Disasters

- Earthquakes
- Landslides

Geotechnical Engineering

- Tunnels
- Slope stability
- In-mine safety

Environmental

- Salt-water intrusion
- Water contamination
- UXO

http://www.centennialofflight.gov

Framework for Applied Geophysics: 7 steps

- Setup: What is the question to be answered?
- Physical Properties: What contrast(s)?
- Survey: Type and design
- Data: What is the signal being measured?
- Processing: Turn raw data into something we can interpret
- Interpretation: Best explanation based on geophysical data
- Synthesis: Evaluate and compare my interpretation

Setup

Mt. Isa (mineral exploration)

Q: Where is sulphide mineralization within Native Bee Siltstone unit?

Pollution

Q: Is the barrier I put around my landfill preventing leachate from entering the water table?

Mt. Isa (mineral exploration)

Q: Where is sulphide mineralization within Native Bee Siltstone unit?

Pollution

Q: Is the barrier I put around my landfill preventing leachate from entering the water table?

Bookpurnong (salt-water intrusion)

Q: At what locations is saline water from irrigation entering the river system and causing ecological damage?

Mt. Isa (mineral exploration)

Q: Where is sulphide mineralization within Native Bee Siltstone unit?

Pollution

Q: Is the barrier I put around my landfill preventing leachate from entering the water table?

Bookpurnong (salt-water intrusion)

Q: At what locations is saline water from irrigation entering the river system and causing ecological damage?

Road construction in karst terrain

Q: Where is karstified rock so I can avoid when building a road?

What do you know about the problem?

- What is the target? And what is the host?
- What is the scale of your problem? 10s, 100s or 1000s of meters?
- Any geological mapping, cross-sections or drilling?
- Any previous geophysical studies?
- Any physical rock property measurements?

Physical Properties

Physical Properties Types

Density:

$$ho = rac{m}{V}$$

Magnetic Susceptibility and Permeability:

$$\vec{M} = \kappa \vec{H}$$

$$\mu = \mu_0 (1 + \kappa)$$

• Seismic Velocity:

$$v_p = \sqrt{rac{K+4/3\mu}{
ho}}$$

$$v_s = \sqrt{rac{\mu}{
ho}}$$

Physical Properties Types

Dielectric Permittivity:

$$arepsilon_r = rac{arepsilon}{arepsilon_0} \qquad \qquad V = rac{c}{\sqrt{arepsilon_r}}$$

Electrical Conductivity/Resistivity:

$$ec{J} = \sigma ec{E}$$
 $ho = rac{1}{\sigma}$

· Chargeability:

$$\eta = \frac{V_s}{V_m}$$

$$M = rac{1}{V_P} \int V_S(t) \, \mathrm{d}t$$

Physical Properties and Surveying

- Is there a significant contrast between target and host?
- More than one?
- Are two physical properties needed to differentiate?

Road construction in karst terrain

Voids are less dense, more resistive, large reflectors of seismic and radiowaves.

Mt. Isa (mineral exploration) Only target was both conductive and chargeable! DH TD122-ED1 600m Native Bee Surprise Creek Siltstone Formation Eastern Creek Breakaway Volcanics Eastern Creek Moondarra Siltstone and Mt Novit Horizon Volcanics - Quartzite

Survey

Physical Properties and Surveying

- Density → Gravity Survey
- Magnetic Susceptibility → Magnetic Survey

Seismic Velocity → Seismic Refraction, Reflection, MASW

Physical Properties and Surveying

Dielectric Permittivity → GPR

Electrical Conductivity/Resistivity → EM, DCR

Chargeability → DCIP

Receiver

- Airborne, ground-based, borehole?
 - Rugged terrain?
 - Acquisition over large areas?
 - Scale of the problem
 - Resolution required
 - Looking for a particular target?

- Airborne, ground-based, borehole?
 - Rugged terrain?
 - Acquisition over large areas?
 - Scale of the problem
 - Resolution required
 - Looking for a particular target?

Survey/instrument orientation

- Good coupling
- Easy data to interpret

GPR: petroleum tanks

DCIP: NS geology

Seis. refraction: dipping layer

- Line and station spacing
 - Time and cost vs. benefits
 - Spacing needed to quantify target anomaly

Line and station spacing

- Time and cost vs. benefits
- Spacing needed to quantify target anomaly

Frequencies

- Skin depth, horizontal/layer resolution
- Depth of penetration vs. resolution

Sensitivity

- Is my survey sensitive to target?
- How can I verify this?
 - → synthetic modeling

Mt. Isa example – would I see target if it was there?

Data

Field Measurements and Data

- What is raw signal being measured?
- What quantity is used to represent data?
- What are the units?

Magnetic Anomaly Data

- Measure: $|B| = |B_0 + B_A|$

- Data are: $\Delta \mathbf{B} = \overrightarrow{\mathbf{B}}_{\mathbf{A}} \cdot \widehat{\mathbf{B}}_{\mathbf{0}}$

Units: nT

Frequency-Domain EM example

- Measure: Total field in direction perpendicular to loop

- Data are: Frequently Hs/Hp

- Units: ppm or %

Plotting

How can we represent our field measurements?

- Seismogram/radargram
- Time decay or frequency response
- Contour maps or surface plots
- Pseudosections

Seismic and GPR Data

- Measure: seismic or GPR traces
- **Plot:** seismogram or radargram

DCIP Data:

- **Measure:** voltage and integrated chargeability
- **Plot:** pseudosection

Processing

Concept

Turning raw data into something more easy to interpret:

- Erroneous data that should be removed?
- Filtering algorithms to remove various unwanted signals
- Represent data as a quantity more easy to interpret (i.e. apparent conductivity instead of raw voltage)
- Geophysical inversion

Magnetic Anomaly Data

Remove Primary Field (base stn)

Magnetic Anomaly Data

Remove Primary Field (base stn)

Regional Removal

Magnetic Anomaly Data

Seismic Reflection Data

Collect Common Midpoint Gathers

Seismic Reflection Data

Collect Common Midpoint Gathers

NMO Correction

Seismic Reflection Data

shot -

Geophysical Inversion

GOAL: Recover a physical property model that:

- 1) Explains the data
- 2) Is geologically approximate

Geophysical Inversion

Requirements:

- 1) A physical model (respect physics)
- 2) Field observations (must fit data)
- 3) A starting model (initial guess)
- 4) Reference model (impose structures)
- 5) Constraints (other solution requirements)

Geologically representative physical property model

Magnetics Example

DCIP Example

EM Example

Interpretation

Interpretation

- Try to answer your geoscientific question
- Make conclusions:
 - Directly from processed data → (e.g. half-width formula)
 - By fitting the anomaly with simple model →

From inversion results →

Using any other information

Interpretation Examples

Estimate Peat Resources with GPR

- Base of peat bogs produce strong reflector
- Infer location of gravel bank and lake deposits
- Arrival time to depth conversion gives me peat thickness profile

Interpretation Examples

Estimate Peat Resources with GPR

- Base of peat bogs produce strong reflector
- Infer location of gravel bank and lake deposits
- Arrival time to depth conversion gives me peat thickness profile

Mineral Exploration with DCIP

- Sulphides are conductive and chargeable
- Other units are not
- G most likely sulphide mineralization

Interpretation Examples

Estimate Peat Resources with GPR

- Base of peat bogs produce strong reflector
- Infer location of gravel bank and lake deposits
- Arrival time to depth conversion gives me peat thickness profile

Mineral Exploration with DCIP

- Sulphides are conductive and chargeable
- Other units are not
- G most likely sulphide mineralization

Mineral Exploration with Airborne Magnetics

- Outcropping units associated with mineralization (associated magnetic high circled)
- Inversion indicates outcropping units connected
- Possible new deposits

Synthesis

Concept

Evaluating your interpretation and comparing with others:

- Did I answer my geoscientific questions?
- How confident am I in my result?
- How does this compare to interpretations by others?
- Can I validate my result?
- Further work needed?

Synthesis Examples

Estimate Peat Resources with GPR

- Soil sampling confirmed the peat thickness profile inferred from data
- Confident in results
 - → can estimate peat resources

Synthesis Examples

Estimate Peat Resources with GPR

- Soil sampling confirmed the peat thickness profile inferred from data
- Confident in results
 - → can estimate peat resources

Mineral Exploration with DCIP

- 3D DCIP inversion can be used to delineate conductive and chargeable units
- Drilling required to confirm if ore-bearing

Synthesis Examples

Estimate Peat Resources with GPR

- Soil sampling confirmed the peat thickness profile inferred from data
- Confident in results
 - → can estimate peat resources

Mineral Exploration with DCIP

- 3D DCIP inversion can be used to delineate conductive and chargeable units
- Drilling required to confirm if ore-bearing

Mineral Exploration with Airborne Magnetics

- Drilling confirmed that the outcropping units are connected at depth (inversion result correct)
- More work so see if viable for development

Final Thoughts

- 1) Geophysics has many applications
- 2) If applied correctly, geophysics is a **cheap** and **efficient** way to get information about the subsurface
- Geophysics is a tool that can help answer geoscientific questions but it is not a magic bullet
- 4) I hope you consider using geophysics in the future

Plan for Next Week

Monday:

- Teaching evaluation
- Comment on final exam
- What do you want to review?

Wednesday:

Review lecture

Friday:

- Review lecture
- Last day to hand stuff in!!!