Q13.

first, we have a weighted directed graph, and also a destination node to

Initialization: dit J=0. $dly = \infty$, for $V \in V \setminus St \}$, $\pi[V] = \phi$ for $V \in V$.

 $S = \phi$

while S +V,

ne chose utVIS with minimal value dIu], add it to S,

for each vertex v with (v,u) & E,
if d[v] > w (v,u) + d[u],
set d[v] = w (v,u) + d[u], z[v] = u,
return solly, z[v] }

At the first beginning of each while loop, we have $d(v) = d^*(v)$ for all $v \in S$.

It will show that for all $u \in V$, we have $d(u) = d^*(u)$, when u is added to S.

For upper-bound property, it will nover change of transls.
Initialization: S=\$\phi\$, so the invariant is true.

Maintenance:

To the purpose of contradiction, let u be the first mode added to the set S, such that d(u) 7 d*(u).

we must have $u \neq t$, since t is the first node added to S, and dlt) = $d^*(t)$ = D. we have that $S \neq \phi$ before u is added. There must be a path from u to t, otherwise $d(u) = d^*(u) = \infty$, so, there's a shortest path p from u to t.

prior to adding u tos, p connects a node in V-Sto a node in S. Let x denote the last node in p, such that x & V-S and let y denote x's successor, y & s. we can decompass pinto u -> x -> y -> t.

We claim that $d(x) = d^*(x)$, when n is added to S. We also see $d(y) = d^*(y)$, since yes and u is the first node for which projerty does not hold.

since $x \to y \to t$ is the shertest path from χ to t, when y was relaxed, we had $d(x) = w(x, y) + d^*(y) = d'(x)$. We now get the contradiction, since x appears after

u on the shortest path P, and since all weights are non-negative, we must have $d^*(x) \in d^*(u)$.

so, $d(x) = d^*(x)$ $\leq d^*(u)$ $\leq d(u)$

Because x and u were in V-S, we have $d(u) \leq d(x)$, so, $d(x) = d^*(x) = d^*(u) = d(u)$, which contradicts our definition of u.

Termination:

Toragraph with non-negative weights, Dijkstras algorithm terminates with $d(v) = d^*(v)$ for all $v \in V$.