

SDR FM transceiver design

—Voice signal transmission based on USRP platform

Theoretical basis and LabVIEW module

- Principles of FM modulation and demodulation
- Arc-tangent method
- Phase unwrapping module
- Waveform resampling module

Principles of FM modulation and demodulation

$$f_{FM}(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau]$$

$$s_{FM}(t) = A_{c} \cos \left[2\pi k_{f} \int m(\tau) d\tau \right] \cos (2\pi f_{c} t) - A_{c} \sin \left[2\pi k_{f} \int m(\tau) d\tau \right] \sin (2\pi f_{c} t)$$

 $\cos(\beta \sin \omega_m t) \approx 1$, $\sin(\beta \sin \omega_m t) \approx \beta \sin \omega_m t$

$$f_{NBFM}(t) \approx A_c [\cos \omega_c t - \beta \sin \omega_m t \sin \omega_c t]$$

Arc tangent method, phase unwrapping module

Waveform resampling module

match the sample rate of others because only one sample rate is allowed in a system

USRP Basic principle (Universal Software Radio Peripheral)

Program block diagram

TX:

Program block diagram

RX:

Theoretical analysis:

Integrator module

Differential process: $\frac{dx(t)}{dt} \xrightarrow{discretization} \frac{x[n]-x[n-1]}{1}$

Extension section: Low cost implementation FIR filter

$$y(k) = \sum_{n=0}^{N-1} a(n)x(k-n) \quad k = 0, 1, ...$$

For N-Point
Moving Average Filter:
$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(n-k)$$

Theoretical analysis:

$$m(t) = \frac{d\left[\arctan\left(\frac{Q(t)}{I(t)}\right)\right]}{dt} = \frac{I(t)\frac{dQ(t)}{dt} - Q(t)\frac{dI(t)}{dt}}{I^2(t) + Q^2(t)}$$

$$m(n) = \frac{I(n)[Q(n)-Q(n-1)]-Q(n)[I(n)-I(n-1)]}{I^2(n)+Q^2(n)}$$

$$=\frac{I(n-1)Q(n)-I(n)Q(n-1)}{I^{2}(n)+Q^{2}(n)}$$

Two FIR filter

Theoretical analysis

frequency domain

Theoretical analysis

$$s(nT_S) = cos[2\pi f_C t + 2\pi \int k_f m(nT_S) dt]$$

$$s_I(nT_S) = A_C cos(2\pi \int k_f m(nT_S) dt)$$

$$s_Q(nT_S) = A_C sin(2\pi \int k_f m(nT_S) dt)$$

$$s_I(nT_S) = s_I(nT_S) + js_Q(nT_S)$$

TX:

TX:

RX:

RX:

Thanks for your listening