Chapter 13: Comparing Three or More Means

Mz

M3

Section 13.1: Comparing Three or More Means: One-Way Analysis of Variance (ANOVA)

One-way analysis of variance (ANOVA) is a method of testing the equality of Def three or more population means by analyzing sample variances.

MOne-way ANOVA is used with data categorized with one factor, or treatment, so there Mis one characteristic used to separate the sample data into the different categories.

What are the hypotheses going to look like?

 H_0 : All of the $\mu's$ are equal H_A : At least one of the μ 's is different

Then find sample means for each population $(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k)$

- If all of the \bar{x}_k 's are CLOSE together, then ______FAIL TO PETECT $\bar{\gamma}_1 \approx \bar{\gamma}_2 \approx \bar{\gamma}_3$
- If all of the \bar{x}_k 's are FAR APART, then _______

Steps for Hypothesis Test for ANOVA

Check Requirements:

- Each population must have a normal distribution.
- Each population must have the same variance, σ^2 .
- Samples are independent, simple random samples

Step 1: Hypotheses

$$\int H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

 $\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_k \\ H_A: \text{ At least one of the means is different from the others} \end{cases}$

ALWAYS RIGHT -TAILED TEST!

What to find:

Source	df	Sum of Squares	Mean Square		
Factor	k – 1	$n\sum_{j=1}^k (\overline{x}_j - \overline{x})^2$	$MS(factor) = \frac{SS(factor)}{k-1}$		
Error	k(n-1)	$\sum_{j=1}^{k} \sum_{i=1}^{n} (x_{ij} - \overline{x}_{j})^{2}$	$MS(error) = \frac{SS(error)}{k(n-1)}$		

Step 3: Test Statistic

$$F_0 = \frac{MS(factor)}{MS(error)} = \frac{variance\ between\ samples}{variance\ within\ samples}$$

Step 4: Use P-Value Method

 $Fcdf(F_0, UB, k-1, k(n-1))$

 $\left\{ \begin{array}{ll} \textit{Reject H_0} & \square & \text{if P-value} \leq \alpha \\ \textit{Fail to Reject H_0} & \square & \text{if P-value} > \alpha \end{array} \right.$

Step 2: Level of Significance

Step 5: Write a CONCLUSION either rejecting or failing to reject H_0

GRAPHING CALCULATOR (TI-83 OR 84)

Instructions:

(a) Input each sample into a separate list

(b) STAT \Rightarrow TESTS \Rightarrow H: ANOVA(

(c) Enter Lists separated by commas ⇒ENTER

Ex 1: Three groups of randomly selected students were given a different dosage of statistioprazole, a new drug that supposedly increases a student's ability to perform statistics. Each group was given a statistics pretest, then two groups were given a certain level of statistioprazole for two weeks while another group took a placebo. Then all groups took a post test (out of 10). The data is assumed to be from populations that are normally distributed with equal variances. Test the claim that the mean test scores are the same for each treatment with $\alpha = 0.05$.

Placebo Group

Check requirements

6 9 8 8 6 10 5 6 9 9 3 8 $n_2 =$ $n_3 =$ $\bar{x}_2 =$ $\bar{x}_3 =$

10 mg Group

20 mg Group

Null and Alternative Hypothesis

$s_{1}^{2} =$	$s^{2}_{2} =$		$s_{3}^{2} =$		
Variance between sar	nples	Variance within samples			
$ns_{\bar{x}}^2 =$		$s_p^2 =$			

Test Statistic

$$F = \frac{ns_{\bar{x}}^2}{s_p^2}$$

P-value

Decision about Null Hypothesis

Conclusion

CH: ANONA 3

Ex 2: A consumer agency randomly selected auto drivers who had similar driving records, cars, and insurance policies. The provided table gives the monthly insurance premiums (in dollars) by these drivers insured with one of four insurance companies.

٠,	vers insured with one of four insurance companies.									
	State Farm	75	83	102	90	84	77	91	78	~ = 85
	Geico	81	92	78	72	94	85	93	77	72 = 84
	Farmers	70	82	75	67	91	74	72	83	$\frac{1}{x_3} = 76.8$
	AAA	78	86	84	68	88	77	65	70	- X ₆ = 77
			1-17	_	N					- Y

At the 0.05 significance level, test the claim that the mean monthly insurance premiums are equal, assuming that the populations are normally distributed with equal variances.

Check requirements

o normal dist voir new SRS

Null and Alternative Hypothesis

SHO: MI=MZ=M3=M4 HA: At leastone of the means of insurent prepriouss is different than vert.

Test Statistic

4 14

P-value

Decision about Null Hypothesis

205
$$\alpha = 0.05$$
 $\rho > \alpha \longrightarrow \frac{\rho \, lish}{\rho \, lish}$ Null will fly

Conclusion

"There is not enough statistical evidence to support the claim that at least one of the mean monthly issurene premiums is different than the others."

REMARKS:

- 1) ProTip: Draw **box-plots** of the data! This helps you understand the "between sample variability" vs "within sample variability"
- 2) Which test do we use?
 - When we have only two groups and we are testing for means, we use the *T-Test*.
 - When we have three or more groups and we are testing for means, we use ANOVA.
- 3) The frustrating thing about ANOVA is it says "at least one is different" but we don't know which!
- 4) For example, if we are testing: H_0 : $\mu_1 = \mu_2 = \mu_3$ and we conclude that there is enough statistical evidence that H_A is true, then how do we know which is different? If we wanted to know, we'd have to do three T-Tests between two means:

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_A: \mu_1 \neq \mu_2 \end{cases} \qquad \begin{cases} H_0: \mu_1 = \mu_3 \\ H_A: \mu_1 \neq \mu_3 \end{cases} \qquad \begin{cases} H_0: \mu_2 = \mu_3 \\ H_A: \mu_2 \neq \mu_3 \end{cases}$$