2 Asymptotic Cones and Functions 2.1 Definition of Asymptotic Cones

Ryota Iwamoto

March 27, 2023

We use the book; Asymptotic Cones and Functions in Optimization and Variational Inequalities (author: A.AUSLENDER and M.TEBOULLE), pp.25-31.

The set of natural numbers is denoted by \mathbb{N} , so that $k \in \mathbb{N}$ means $k = 1, 2, \ldots$ A sequence $\{x_k\}_{k \in \mathbb{N}}$ or simply $\{x_k\}$ in \mathbb{R}^n is said to converge to x if $||x_k - x|| \to 0$ as $k \to \infty$, and this will be indicated by the notation $x_k \to x$ or $x = \lim_{k \to \infty} x_k$. We say that x is a cluster point of $\{x_k\}$ if some subsequence converge to x. Recall that every bounded sequence in \mathbb{R}^n converges to x if and only if it is bounded and has x as its unique cluster point.

Let $\{x_k\}$ be a sequence in \mathbb{R}^n . We are interested in knowing how to handle convergence properties, we are led to consider direction $d_k := x_k \|x_k\|^{-1}$ with $x_k \neq 0$, $k \in \mathbb{N}$. From classical analysis, the Bolzano-Weierstrass theorem implies that we can extract a convergent subsequence $d = \lim_{k \in K} d_k$, $K \subset \mathbb{N}$, with $d \neq 0$. Now suppose that the sequence $\{x_k\} \subset \mathbb{R}^n$ is such that $\|x_k\| \to +\infty$. Then

$$\exists t_{k} \coloneqq \left\| x_{k} \right\|, k \in K \subset \mathbb{N}, \text{ such that } \lim_{k \in K} t_{k} = +\infty \text{ and } \lim_{k \in K} \frac{x_{k}}{t_{k}} = d.$$

This leads us to introduce the following concepts.

Definition 2.1.1

A sequence $\{x_k\} \subset \mathbb{R}$ is said to converge to a direction $d \in \mathbb{R}^n$ if

$$\exists \{t_k\}, \text{ with } t_k \to +\infty \text{ such that } \lim_{k \to \infty} \frac{x_k}{t_k} = d.$$

Let C be a nonempty set in \mathbb{R}^n . Then the asymptotic cone of the set C, denoted by C_{∞} , is the set of vectors $d \in \mathbb{R}^n$ that are limits in direction of the sequences $\{x_k\} \subset C$, namely

$$C_{\infty} = \{ d \in \mathbb{R}^n \mid \exists t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d \}.$$

From the definition we immediately deduce the following elementary facts.

Proposition 2.1.1 –

Let $C \subset \mathbb{R}^n$ be nonempty. Then:

- (i) C_{∞} is a closed cone. (ii) $(\operatorname{cl} C)_{\infty} = C_{\infty}$.
- (iii) If C is a cone, then $C_{\infty} = \operatorname{cl} C$.

Proof. We will prove each part separately.

(i) C_{∞} is a closed cone.

We need to show two propositions: (i-a) C_{∞} is a cone and (i-b) C_{∞} is a closed set.

(i-a) We show that C_{∞} is a cone, that is, $\forall \alpha \geq 0, d \in C_{\infty}, \alpha d \in C_{\infty}$.

Since 0 is a element of C_{∞} , it is clear in the case of $\alpha = 0$.

(: Since C is nonempty, we can take a element x_0 from C. In addition we take a sequence $\{t_k\}_{k=1}^{\infty}$ with $t_k \to +\infty$ as $k \to \infty$. Of course this sequence exists, for example $t_k := k$. By using $t_k := k$ and $x_k := x_0$, we can obtain 0 as the limit. Hence 0 is a element of C_{∞} .)

Also we consider the other case $\alpha > 0$. To prove that C_{∞} is a cone, we take a any direction d from C_{∞} . Since d is a element of C_{∞} ,

$$\exists t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d.$$

Then we define a sequence $\{t_k'\}_{k=1}^{\infty} := \frac{t_k}{\alpha}$, exactly whose limit becomes $+\infty$ as $k \to \infty$. Accordingly there exist $t'_k \to +\infty$ and $x_k \in C$ with

$$\lim_{k \to \infty} \frac{x_k}{t'_k} = \lim_{k \to \infty} \alpha \cdot \frac{x_k}{t_k} = \alpha d.$$

This means $d \in C_{\infty}$.

By these results, we can get

$$\forall \alpha \geq 0, d \in C_{\infty}, \alpha d \in C_{\infty}$$

- . Therefore C_{∞} is a cone.
- (i-b) We show that C_{∞} is a closed set. In order to prove closeness, we consider convergency of a sequence of C_{∞} . First we take a sequence $\{d_k\}_{k=1}^{\infty} \subset C_{\infty}$ with $d_k \to d$ as $k \to \infty$ for some d. Then we don't forget that $d \in C_{\infty}$ is our goal. For each $k \in \mathbb{N}$,

$$\exists \{x_k^{(n)}\}_{n=1}^{\infty} \subset C \text{ and } \{t_k^{(n)}\}_{n=1}^{\infty} \text{ with } t_k^{(n)} \to \infty \text{ as } n \to \infty.$$

The below figure represents $\boldsymbol{x}_k^{(n)}$ and $\boldsymbol{t}_k^{(n)}.$

Figure:

$k \setminus n$	1	2		m		limit		
1	$x_1^{(1)}, t_1^{(1)}$	$x_1^{(2)}, t_1^{(2)}$		$x_1^{(m)}, t_1^{(m)}$		d_1		
2	$x_2^{(1)}, t_2^{(1)}$	$x_2^{(2)}, t_2^{(2)}$		$x_2^{(m)}, t_2^{(m)}$		d_2		
:	:	:	٠	:	:			
m	$x_m^{(1)}, t_m^{(1)}$	$x_m^{(2)}, t_m^{(2)}$		$x_m^{(m)}, t_m^{(m)}$		d_m		
:	i i							

Then we define

$$x_m \coloneqq x_m^{(m)} \text{ and } t_m \coloneqq t_m^{(m)}.$$

By the definition of convergence of a sequence,

$$\forall \epsilon > 0, \exists \bar{m} \in \mathbb{N} \ s.t. \ \forall m \geq \bar{m}, ||d_m - d|| < \frac{\epsilon}{2}, \text{ and}$$

$$\forall \epsilon > 0, \exists \hat{m} \in \mathbb{N} \ s.t. \ \forall m \geq \hat{m}, ||\frac{x_m}{t_m} - d_m|| < \frac{\epsilon}{2}.$$

Also, we let $\tilde{m} := \max \{\bar{m}, \hat{m}\} \in \mathbb{N}$. By using triangle inequality,

$$\forall \epsilon > 0, \exists \tilde{m} \in \mathbb{N} \ s.t. \ \forall m \ge \bar{m}, ||\frac{x_m}{t_m} - d|| < \epsilon.$$

$$(:: ||\frac{x_m}{t_m} - d|| \le ||\frac{x_m}{t_m} - d_m|| + ||d_m - d|| < \epsilon..)$$

Therefore c_{∞} is a closed set.

Then (i)'s proof is completed.

(ii)
$$(\operatorname{cl} C)_{\infty} = C_{\infty}$$
.

We need to show two relations: (ii-a) $(\operatorname{cl} C)_{\infty} \supset C_{\infty}$ (ii-b) $(\operatorname{cl} C)_{\infty} \subset C_{\infty}$.

(ii-a) We show that C_{∞} is included in $(\operatorname{cl} C)_{\infty}$. However it is clear from the definition of asymptotic cone.

(ii-b) We show that $(\operatorname{cl} C)_{\infty} \subset C_{\infty}$. In order to prove that a element of $(\operatorname{cl} C)_{\infty}$ satisfies the asymptotic cone's relation, we consider convergency of a sequences of $(\operatorname{cl} C)_{\infty}$ and $\operatorname{cl} C$. First we take any $d \in (\operatorname{cl} C)_{\infty}$ which satisfies

$$\exists t_k \to +\infty, \exists x_k \in \operatorname{cl} C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d.$$

For each $k \in \mathbb{N}$,

$$\exists \{y_k^{(n)}\}_{n=1}^{\infty} \subset C \text{ with } y_k^{(n)} \to x_k \text{ as } n \to \infty.$$

The below figure represents $y_k^{(n)}$.

Figure:

$k \setminus n$	1	2		m		limit		
1	$y_1^{(1)}$	$y_1^{(2)}$		$y_1^{(m)}$		x_1		
2	$y_2^{(1)}$	$y_2^{(2)}$		$y_2^{(m)}$		x_2		
:	:	:	٠٠.	:	:	:		
m	$y_m^{(1)}$	$y_m^{(2)}$		$y_m^{(m)}$		x_m		
:	:							

Then we define

$$y_m \coloneqq y_m^{(m)}.$$

By the definition of convergence of a sequence,

$$\forall \epsilon > 0, \exists \bar{m} \in \mathbb{N} \ s.t. \ \forall m \geq \bar{m}, ||d_m - d|| < \frac{\epsilon}{2},$$

$$\forall \epsilon > 0, \exists \hat{m} \in \mathbb{N} \ s.t. \ \forall m \geq \hat{m}, ||y_m^m - x_m|| < \frac{\sqrt{\epsilon}}{2}, \text{and}$$

$$\forall \epsilon > 0, \exists \tilde{m} \in \mathbb{N} \ s.t. \ \forall m \geq \tilde{m}, |\frac{1}{t_m}| < \sqrt{\epsilon}.$$

Also, we let $m_0 := \max \{\bar{m}, \hat{m}, \tilde{m}\} \in \mathbb{N}$. By using triangle inequality,

$$\forall \epsilon > 0, \exists m_0 \in \mathbb{N} \ s.t. \ \forall m \ge \bar{m}, ||\frac{y_m}{t_m} - d|| < \epsilon.$$

$$(: || \frac{y_m}{t_m} - d|| \le \frac{1}{|t_m|} \cdot || y_m - d_m || + || \frac{y_m}{t_m} - d|| < \epsilon.)$$

Therefore (cl C) _{∞} $\subset C_{\infty}$.

Then (ii)'s proof is also completed.

(iii) If C is a cone, then $C_{\infty} = \operatorname{cl} C$.

The importance of the asymptotic cone is revealed by the following key property, which is a immediate consequence of its definition.

Proposition 2.1.2 -

A set $C \subset \mathbb{R}^n$ is bounded if and only if $C_{\infty} = \{0\}$.

Proof.

Associated with the asymptotic cone C_{∞} is the following related concept, which will help us in simplifying the definition of C_{∞} in the particular case where $C \in \mathbb{R}^n$ is assumed convex.

- <u>Definition 2.1.3</u> —

Let $C \in \mathbb{R}^n$ be nonempty and define

$$C^1_{\infty} = \{d \in \mathbb{R}^n \mid \forall t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d\}.$$

We say that C is asymptotically regular if $C_{\infty} = C_{\infty}^{1}$

Proposition 2.1.3

Let C be a nonempty convex set in \mathbb{R}^n . Then C is asymptotically regular.

Proof.