Etap 1 Zestaw 3

MATEMATYKA

Zadanie 1. Dla jakich wartości parametru a równanie $2^{\frac{3}{x^2+x+1}}=a$ ma przynajmniej jedno rozwiązanie?

Zadanie 2. Trzy liczby tworzą ciąg geometryczny. Jeżeli drugi wyraz zwiększymy o 8, to liczby te utworzą ciąg arytmetyczny, ale jeżeli w tak otrzymanym ciągu arytmetycznym trzeci wyraz zwiększymy o 64, to ponownie otrzymamy ciąg geometryczny. Znaleźć liczby tworzące wyjściowy ciąg geometryczny.

Zadanie 3. Punkt $P=\left(\frac{3}{2},-\frac{1}{2}\right)$ jest środkiem podstawy AB trójkąta ABS. Obliczyć pole tego trójkąta wiedząc, że wierzchołki A, B leżą na okręgu o równaniu $x^2+y^2+2x-4y-12=0$, a wierzchołek S jest środkiem tego okręgu.

Zadanie 4. W graniastosłupie prawidłowym trójkątnym ABCA'B'C' poprowadzono płaszczyznę przechodzącą przez krawędź AB dolnej podstawy oraz środek ciężkości górnej podstawy. Płaszczyzna ta nachylona jest do płaszczyzny podstawy pod kątem $\alpha=60^\circ$, a pole otrzymanego przekroju jest równe $10\sqrt{3}$. Obliczyć objętość graniastosłupa ABCA'B'C'.

Zadanie 5. Sporządzić wykres funkcji $f(x) = \left| 2^x - 2 \right| - 2$, a następnie na jego podstawie podać liczbę rozwiązań równania f(x) = m, w zależności od parametru $m \in R$.

INFORMATYKA

Zadanie 1. Studenci dyscypliny Inżynieria mechaniczna na zajęciach laboratoryjnych z Podstaw programowania mieli za zadanie rozwiązać następujący problem: "Dany jest walec o promieniu r0. Opracować algorytm, który umożliwi wyznaczenie wartość promienia rx narzędzia (frez). Frez ma wykonać cylindryczne wyżłobienie o osi stycznej do powierzchni walca przy założeniu, że pole obszaru P1 ma być równe polu obszaru P2 (patrz rys. 1.)." Opracuj program w pseudokodzie lub w dowolnym języku programowania, który rozwiąże ten problem.

Rys. 1. Schemat do analizy szukania promienia rx freza (widok 2D z góry)

Zadanie 2. Na listingu przedstawiono pewien program w języku C++. Analizując go, odpowiedz na następujące pytania:

- Jak nazywa się algorytm zastosowany w listingu?
- Jaka jest złożoność obliczeniowa (czasowa i pamięciowa) tego algorytmu?

Napisz wersję algorytmu realizującą tę samą funkcjonalność bez zmiennej tymczasowej z. Nie wprowadzaj żadnych nowych zmiennych.

```
#include <stdio.h>
#include <string.h>
int main(int argc, char *argv[])
{
       int g[] = { 148, 324, 295, 598, 477, 71, 9289, 991, 072 };
       for (int b = 0; b < sizeof(g) / 4; b++) {
              for (int x = 0; x < sizeof(g) / 4; x++) {
                     if (g[b] > g[x]) {
                            z = g[b];
                            g[b] = g[x];
g[x] = z;
                     }
              }
       }
       system("pause");
       return 0;
}
```

Zadanie 3. Napisz program kompresujący dowolny ciąg znaków ASCII, analogicznie jak w poniższym przykładzie. Wykorzystaj kompresję bezstratną, która jest stosowana do kompresji obrazów w dokumentach tekstowych, np. faksach. Algorytm takiej kompresji polega na zastępowaniu odpowiednią informacją ciągu takich samych znaków.

 ${\it Ciąg\ znak\'ow\ przed\ kompresją:\ AAAAAAcccDDDTTTTWWWssssGGGTTTTTTTg}$

Ciąg znaków po kompresji: 6A3c3D4T3W4s3G7Tg

Zadanie 4. Opracować w dowolnym języku programowania lub w pseudokodzie algorytm generujący tablicę danych jak na rysunku 3.

0	9	0	9	0	9	0	9	0	9
1	8	1	8	1	8	1	8	1	8
2	7	2	7	2	7	2	7	2	7
3	6	3	6	3	6	3	6	3	6
4	5	4	5	4	5	4	5	4	5
5	4	5	4	5	4	5	4	5	4
6	3	6	3	6	3	6	3	6	3
7	2	7	2	7	2	7	2	7	2
8	1	8	1	8	1	8	1	8	1
9	0	9	0	9	0	9	0	9	0

Rys. 3

Zadanie 5. Dana jest 32-bitowa liczba V zapisana w systemie szesnastkowym.

Numer cyfry	8	7	6	5	4	3	2	1
Wartość cyfry	?	?	?	?	?	?	?	?

Wartości cyfr liczby V zapisanej w systemie szesnastkowym podano poniżej. Liczby te zapisano przy użyciu różnych systemów liczbowych.

- Wartość cyfry numer $1 = (24)_5$
- Wartość cyfry numer $2 = (B)_{13}$
- Wartość cyfry numer $3 = (15)_{10}$
- Wartość cyfry numer $4 = (100)_3$
- Wartość cyfry numer $5 = (7)_9$
- Wartość cyfry numer $6 = (14)_8$
- Wartość cyfry numer 7 = (13)₇
- Wartość cyfry numer $8 = (13)_4$

Przyjmując, że cyfra numer 1 jest cyfrą najmłodszą (najmniej znaczącą), wykonaj poniższe polecenia.

- 1. Dla każdej wartości cyfry dokonaj konwersji do szesnastkowego systemu liczbowego.
- 2. Podaj wartość 32-bitowej liczby V w zapisie szesnastkowym.
- 3. Przyjmując że liczba V jest 32-bitową liczbą ze znakiem, czy jest to liczba dodatnia, czy ujemna? Odpowiedź uzasadnij.
- 4. Wykonaj następujące operacje bitowe i podaj wyniki w systemie szesnastkowym:

- a. $K = V OR (82145827)_{16}$
- b. $E = V XOR (88B80B8B)_{16}$
- c. $R = V \text{ AND } (7368B5579)_{12}$

FIZYKA

Zadanie 1. Pewien dietetyk zaleca swoim klientom picie lodowatej wody jako sposób na wydatkowanie dodatkowej energii a tym samym spalanie niepotrzebnego tłuszczu. Oblicz ile wody należałoby wypić aby spalić 0,5 kg tłuszczu? Złóżmy tu ogrzewanie od 0 do 37°C. Ciepło uzyskane z 1 kg tłuszczu można szacować na 7000 kcal.

Zadanie 2. Na jednakowych nitkach zawieszono jedno pod drugim trzy ciała o masie *m*. Następnie, gdy układ był już w spoczynku, przecięto najwyższą nić. Jakie były przyspieszenia ciał w chwili tuż po przecięciu nici? Rozważ dwie możliwości; gdy nici są zupełnie nierozciągliwe oraz gdy są one gumkami o pewnej stałej sprężystości *k*.

Zadanie 3. "Pocisk" o masie m_1 poruszający się z prędkością v_1 zderza się całkowicie niesprężyście z wózkiem o masie m_2 . Jaka część energii kinetycznej zostanie przy takim zderzeniu utracona? Jaka powinna być masa wózka aby energia kinetyczna po zderzeniu była n razy mniejsza niż energia przed zderzeniem?

Zadanie 4. W walcu drogowym koła zamocowane są dźwigniowych wspornikach, podobnie jak na poniższym niedokończonym rysunku. Odgadnij jaki powinien być układ dźwigni i jakiej one powinny być długości w stosunku do siebie (poziome ich elementy) by każde z kół naciskało na podłoże z jednakową siłą.

Zadanie 5. Która ze szklanek jest bardziej stabilna, pusta czy z cukrem? Przypuśćmy, że znaleźliśmy taką ilość cukru, że szklanka jest najstabilniejsza (największy kąt przy granicy równowagi), gdzie znajduje się wówczas środek ciężkości?