IBMC

Transcripción, traducción y enzimas

https://www.youtube.com/watch?v=uEwyWgSvLc0

Pregunta 20 (2.5 puntos - 30')

La mezcla de los colores primarios de la luz (azul, rojo y verde) nos permite obtener todos los demás colores. Así, al combinar R+A obtenemos fucsia, con A+V tendremos turquesa y con R+V, formamos amarillo. Con intensidades variables de cada color primario, cubrimos toda la gama restante del arco iris. Por ejemplo, en el par R+V pero con rojo intenso y verde tenue, obtendremos un tono anaranjado. Si en cambio, encendemos el verde más que el rojo, tendremos una tonalidad verde-lima.

Con todo esto en mente, repitamos el experimento de Messelson y Stahl que demostró la replicación semiconservativa del ADN, pero de una manera más moderna y... glamorosa. En lugar de usar isótopos, usaremos nucleótidos marcados (coloreados) fluorescentemente: podemos alimentar a las bacterias del experimento exclusivamente con nucleótidos de un color, y luego cambiar a una alimentación exclusivamente basada en nucleótidos de otro color. Como no habrá pasos de centrifugación en gradiente, tendremos que ver al microscopio de fluorescencia los colores de las bacterias inmediatamente luego de cada división para permitir la separación de las moléculas "hijas" de ADN luego de la replicación. El resultado del experimento se observa a continuación:

20a) ¿Cuál de los tres modelos de replicación **DESCARTA** el resultado observado? Justificar. **(0,5 punto)**

20b) ¿Cómo podríamos discernir entre los dos modelos restantes? En otras palabras, ¿Qué resultados esperaría observar en las siguientes divisiones celulares si uno u otro de los dos modelos restantes fuera el correcto? (1 punto)

DOGMA CENTRAL DE LA <u>BIOLOGÍA</u>

Muestra el flujo de información genética:

- El ADN se replica durante la replicación
- El ADN se transcribe a ARNm durante la transcripción
- El ARNm se traduce en proteínas durante la traducción

Transcripción (ARN polimerasa)

La ARN polimerasa se acopla en una zona particular del gen, el promotor

Se sintetiza un ARNm de ese gen en particular de 5' a 3'

La ARN polimerasa se desacopla en una zona particular del gen, el terminador

Transcripción (Promotores)

Los terminadores funcionan de la misma manera solo que desacoplan la ARN polimerasa

Regiones del ADN que la ARN polimerasa reconoce y se acopla, se encuentran en la región -35pb y -10pb (medidas de distancia en el gen 0)

Transcripción en bacterias

1 µm

ARNm con colas cortas cerca del promotor y con colas largas cerca del terminador

ARNm (mensajero) policistrónico y monocistrónico

En procariotas un ARNm codifica para varias proteínas

Capping

• GTP metilado

• Unión 5'-5'

Poliadenilación

Tapa el extremo 3' del mensajero y lo protege para que no sea degradado

Exportación del mensajero eucariota

El ARNm debe salir del núcleo para continuar su camino al citoplasma donde será traducido en proteína

Splicing alternativo

Los intrones son cortados para dar lugar al ARNm maduro que será traducido

Los intrones tienen función reguladora de la expresión Modificaciones co-transcripcionales

ADN a proteína

(A) EUKARYOTES

Traducción

ARNm
Ribosoma (ARNr + proteínas)
ARNt
ARNt
Proteína

ARNr (ribosomal)

ARNt

ARN encargado de leer el ARNm de a 3pb y traducir esa información en un aminoácido

Código genético

ARNm

Proteína

Formación de la cadena polipeptídica

Ribosoma

El ribosoma es la unidad que ensambla la proteína

Marco abierto de lectura

El marco de lectura es desde el codón iniciador hasta el codón stop

Marco abierto de lectura

El marco es abierto porque depende desde donde se empiece a leer, se puede correr el marco de lectura THE DOG AND THE CAT AND THE RAT Primer base eliminada HED OGA NDT HEC ATA NDT HER AT Inserción de primer base XTH EDO GAN DTH ECA TAN DTH ERA T

Mensajero policistrónico

ADN a proteína en eucariotas

Nivel de expresión

No todos los genes se expresan de igual manera, depende de la importancia en la célula y la necesidad de la misma

https://www. youtube.com /watch?v=KP snmH666cl

Síntesis de proteínas - Procesos de transcripción y traducción

Metabolismo: enzimas

$$E + S \rightarrow ES \rightarrow E + P$$

"SPONTANEOUS" REACTION

as time elapses

ORGANIZED EFFORT REQUIRING ENERGY INPUT

Reacciones catabólicas

No espontáneo = Endergónico _

Reacciones anabólicas

Energía

ATP

La energía obtenida o usada se da en forma de ATP

the energetically unfavorable reaction X→Y is driven by the energetically favorable reaction C→D, because the net free-energy change for the pair of coupled reactions is less than zero

METABOLISMO = CATABOLISMO + ANABOLISMO

Metabolismo

Serie de reacciones catalizadas por enzimas, donde los productos de una reacción se convierten en los reactivos de la siguiente

Enzimas

Proteínas que aumentan la velocidad (catalizan) con la que ocurren las reacciones del metabolismo

Modelo llave-cerradura

Modelo antiguo

El sustrato modifica ligeramente la conformación de la enzima logrando un mejor ajuste

Modelo de ajuste inducido

Modelo más realista

Función de las enzimas

Función de las enzimas

Las enzimas aceleran las reacciones químicas a tiempos compatibles con la vida

Actividad enzimática

Distintas enzimas tienen su actividad optima en distintas condiciones

Esto también ocurre con los cambios de pH

Mecanismo de reacción

Catálisis

Energía de activación

¿Qué hacen las enzimas?

Coenzimas y Cofactores

Moléculas no proteicas o incluso átomos ionizados

Función reguladora de las enzimas, al unirse a la enzima le dan actividad catalítica

Cofactor polimerasa

Mg²⁺

Moduladores positivos

Moduladores negativos

Fosforilación

Inhibidores

Ocupa el sitio activo

Deforma el sitio activo

Integración de señales

Todas las modulaciones que vimos se integran en una enzima para regular su actividad

