Predicting College Basketball Success

Luigi Manieri

Alma Mater Studiorum Bologna

May 6, 2025

Outline

- Project Overview
- 2 Data
- 3 Data exploration
- Data Visualization
- Data Preprocessing
- 6 Model Training
- Models Results
- Results Conclusions

Project Overview

- Objective: Predict whether the road team wins a game.
- **Dataset:** Sports match data from Kaggle competition.
 - https://www.kaggle.com/competitions/wfusummer2018
- Target variable: Win (1 = Road Team Wins, 0 = Loss).

Dataset Overview

- Dataset details:
 - 1893 rows, 11 features, and 1 target column (Win)
 - Numerical features: win, day, year, roadTeamPoints
 - Categorical features: month, weekday, time, roadTeam, locale, homeTeam, conference, OT

Figure: Dataset info

Data Exploration

Figure: Head of the dataset

We can already see that:

- most of the features are object and need to be processed before training models
- some feature don't seem very informative (i.e. locale, month, day, weekday)
- there are some missing values (time and OT columns)

Data Visualization

Class Balance:

Data Visualization

• Correlation matrix (for numerical features):

Data Visualization

Feature vs Target

Data Preprocessing

- Deal with missing values and duplicates
 - ullet in Time column o dropped
 - \bullet in OT column \to substitute with placeholder value NOT (No OverTime)
 - duplicates → dropped
- Drop unnecessary columns:
 - Locale, Day, Weekday, Month
 - $\bullet~$ I tried to encode them instead of drop \rightarrow no performance gain

Data Preprocessing

- One hot encoding
 - for HomeTeam and RoadTeam features
- Label encoding
 - for OT and Conference
- MinMaxScaling:
 - Year
- RoadTeamPoints was not scaled in order to give it more importance
 - it's the most informative feature

Data Preprocessing: Processed dataset

Figure: Final structure of the dataset

Data preparation and models

- Define features X and target variable y (Win)
- Applying SMOTE for class balancing
- Dataset division: 80% training set, 20% test set.
- Measures in output: Accuracy, Recall, F1-score, ROC AUC score
- Models considered:
 - Random Forest
 - AdaBoost
 - SVM
 - XGBoost
 - MLP

Model training

- Train the models with default hyperparameters
- Optimize them with GridSearch in order to find the best parameter configuration
 - Does not always result in better performance

Figure: Results before and after GridSearch

Confusion Matrix: Random Forest

Figure: Confusion matrix for GS-optimized Random Forest

Confusion Matrix: AdaBoost

Figure: Confusion matrix for GS-optimized AdaBoost

Confusion Matrix: XGBoost

Figure: Confusion matrix for GS-optimized XGBoost

Confusion Matrix: SVM

Figure: Confusion matrix for GS-optimized SVM

Confusion Matrix: MLP

Figure: Confusion matrix for GS-optimized MLP

Results Conclusions

- Model performance was similar across different classifiers.
- Grid search and hyperparameter tuning led to only marginal improvements.
- The most significant performance gain came from addressing class imbalance using SMOTE.
- This highlights that data quality and balance are more critical than model complexity.
- With low-quality or poorly structured data, model performance quickly reaches a ceiling - better data is the only way to raise that limit.

Results Conclusions

	Model	Accuracy	Recall	F1 Score	ROC AUC
0	Random Forest	0.743363	0.603865	0.632911	0.713944
1	AdaBoost	0.745133	0.623188	0.641791	0.719415
2	SVM	0.725664	0.570048	0.603581	0.692845
3	XGBoost	0.736283	0.599034	0.624685	0.707338
4	MLP	0.688496	0.550725	0.564356	0.659441

	Model	Accuracy	Recall	F1 Score	ROC AUC
0	Best Random Forest	0.748673	0.594203	0.634021	0.716096
1	Best AdaBoost	0.753982	0.584541	0.635171	0.718248
2	Best XGBoost	0.759292	0.584541	0.640212	0.722438
3	Best SVM	0.753982	0.589372	0.637076	0.719267
4	Best MLP	0.686726	0.545894	0.560794	0.657025

(a) No SMOTE

	Model	Ac	curacy	Re	ecall	F1 Score	ROC AUC
0	Random Forest	0.8	802105	0.803	3279	0.806584	0.802072
1	AdaBoost	0.8	312632	0.815	5574	0.817248	0.812549
2	SVM	0.7	89474	0.778	3689	0.791667	0.789777
3	XGBoost	0.7	83158	0.766	5393	0.784067	0.783630
4	MLP	0.8	316842	0.770	0492	0.812095	0.818146
	Mod	iel	Accura	су	Recall	F1 Score	ROC AUC
0	Best Random For	est	0.7873	58 0.	778689	0.790021	0.787613
1	Best AdaBoo	ost	0.7978	95 0.	827869	0.808000	0.797051
2	Best S\	/M	0.7894	74 0.	778689	0.791667	0.789777
3	Best XGBoo	ost	0.8021	05 0.	795082	0.804979	0.802303
4	Best M	LΡ	0.8168	42 0.	782787	0.814499	0.817800

(b) With SMOTE