In [59]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import re
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

In [60]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\madrid_2003
a

Out[60]:

	date	BEN	со	EBE	MXY	NМНС	NO_2	NOx	ОХҮ	O_3	PM10	PXY
0	2003- 03-01 01:00:00	NaN	1.72	NaN	NaN	NaN	73.900002	316.299988	NaN	10.550000	55.209999	NaN
1	2003- 03-01 01:00:00	NaN	1.45	NaN	NaN	0.26	72.110001	250.000000	0.73	6.720000	52.389999	NaN
2	2003- 03-01 01:00:00	NaN	1.57	NaN	NaN	NaN	80.559998	224.199997	NaN	21.049999	63.240002	NaN
3	2003- 03-01 01:00:00	NaN	2.45	NaN	NaN	NaN	78.370003	450.399994	NaN	4.220000	67.839996	NaN
4	2003- 03-01 01:00:00	NaN	3.26	NaN	NaN	NaN	96.250000	479.100006	NaN	8.460000	95.779999	NaN
243979	2003- 10-01 00:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999	7.380000	1.20
243980	2003- 10-01 00:00:00	0.32	0.08	0.36	0.72	NaN	10.450000	14.760000	1.00	34.610001	7.400000	0.50
243981	2003- 10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	34.639999	50.810001	NaN	32.160000	16.830000	NaN
243982	2003- 10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	32.580002	41.020000	NaN	NaN	13.570000	NaN
243983	2003- 10-01 00:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000	12.350000	2.43

243984 rows × 16 columns

```
In [61]: a.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 243984 entries, 0 to 243983 Data columns (total 16 columns): Column Non-Null Count Dtype --------------0 date 243984 non-null object BEN 69745 non-null float64 1 2 CO 225340 non-null float64 3 EBE 61244 non-null float64 4 MXY 42045 non-null float64 5 NMHC 111951 non-null float64 6 NO 2 242625 non-null float64 7 NOx 242629 non-null float64 8 OXY 42072 non-null float64 9 0 3 234131 non-null float64 PM10 240896 non-null float64 10 11 PXY 42063 non-null float64 12 SO 2 242729 non-null float64 13 TCH 111991 non-null float64 14 TOL 69439 non-null float64 station 243984 non-null int64 15 dtypes: float64(14), int64(1), object(1) memory usage: 29.8+ MB

In [62]: b=a.fillna(value=66)
b

Out[62]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	
0	2003- 03-01 01:00:00	66.00	1.72	66.00	66.00	66.00	73.900002	316.299988	66.00	10.550000	55.209999	6(
1	2003- 03-01 01:00:00	66.00	1.45	66.00	66.00	0.26	72.110001	250.000000	0.73	6.720000	52.389999	6(
2	2003- 03-01 01:00:00	66.00	1.57	66.00	66.00	66.00	80.559998	224.199997	66.00	21.049999	63.240002	6(
3	2003- 03-01 01:00:00	66.00	2.45	66.00	66.00	66.00	78.370003	450.399994	66.00	4.220000	67.839996	6(
4	2003- 03-01 01:00:00	66.00	3.26	66.00	66.00	66.00	96.250000	479.100006	66.00	8.460000	95.779999	6(
243979	2003- 10-01 00:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999	7.380000	
243980	2003- 10-01 00:00:00	0.32	0.08	0.36	0.72	66.00	10.450000	14.760000	1.00	34.610001	7.400000	(
243981	2003- 10-01 00:00:00	66.00	66.00	66.00	66.00	0.07	34.639999	50.810001	66.00	32.160000	16.830000	6(
243982	2003- 10-01 00:00:00	66.00	66.00	66.00	66.00	0.07	32.580002	41.020000	66.00	66.000000	13.570000	6(
243983	2003- 10-01 00:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000	12.350000	:

243984 rows × 16 columns

```
In [63]: b.columns
```

In [64]: c=b.head(10) c

Out[64]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY
0	2003- 03-01 01:00:00	66.00	1.72	66.00	66.00	66.00	73.900002	316.299988	66.00	10.550000	55.209999	66.00
1	2003- 03-01 01:00:00	66.00	1.45	66.00	66.00	0.26	72.110001	250.000000	0.73	6.720000	52.389999	66.00
2	2003- 03-01 01:00:00	66.00	1.57	66.00	66.00	66.00	80.559998	224.199997	66.00	21.049999	63.240002	66.00
3	2003- 03-01 01:00:00	66.00	2.45	66.00	66.00	66.00	78.370003	450.399994	66.00	4.220000	67.839996	66.00
4	2003- 03-01 01:00:00	66.00	3.26	66.00	66.00	66.00	96.250000	479.100006	66.00	8.460000	95.779999	66.00
5	2003- 03-01 01:00:00	8.41	1.94	9.83	21.49	0.45	90.300003	384.899994	9.48	9.950000	95.150002	7.94
6	2003- 03-01 01:00:00	66.00	1.38	66.00	66.00	0.29	89.580002	230.000000	66.00	7.200000	54.000000	66.00
7	2003- 03-01 01:00:00	66.00	1.58	66.00	66.00	0.30	93.639999	334.600006	66.00	4.190000	26.620001	66.00
8	2003- 03-01 01:00:00	66.00	66.00	66.00	66.00	66.00	66.000000	66.000000	66.00	66.000000	66.000000	66.00
9	2003- 03-01 01:00:00	66.00	1.92	66.00	66.00	66.00	71.839996	181.399994	66.00	5.330000	39.360001	66.00
4.1												b

Out[65]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	SO_2
0	66.00	1.72	66.00	66.00	66.00	73.900002	316.299988	66.00	10.550000	55.209999	66.00	24.299999
1	66.00	1.45	66.00	66.00	0.26	72.110001	250.000000	0.73	6.720000	52.389999	66.00	14.230000
2	66.00	1.57	66.00	66.00	66.00	80.559998	224.199997	66.00	21.049999	63.240002	66.00	17.879999
3	66.00	2.45	66.00	66.00	66.00	78.370003	450.399994	66.00	4.220000	67.839996	66.00	24.900000
4	66.00	3.26	66.00	66.00	66.00	96.250000	479.100006	66.00	8.460000	95.779999	66.00	18.750000
5	8.41	1.94	9.83	21.49	0.45	90.300003	384.899994	9.48	9.950000	95.150002	7.94	29.270000
6	66.00	1.38	66.00	66.00	0.29	89.580002	230.000000	66.00	7.200000	54.000000	66.00	23.709999
7	66.00	1.58	66.00	66.00	0.30	93.639999	334.600006	66.00	4.190000	26.620001	66.00	17.740000
8	66.00	66.00	66.00	66.00	66.00	66.000000	66.000000	66.00	66.000000	66.000000	66.00	66.000000
9	66.00	1.92	66.00	66.00	66.00	71.839996	181.399994	66.00	5.330000	39.360001	66.00	21.639999

In [66]: sns.pairplot(d)

Out[66]: <seaborn.axisgrid.PairGrid at 0x1b634b6ae50>


```
In [67]: sns.distplot(a['NOx'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[67]: <AxesSubplot:xlabel='NOx', ylabel='Density'>

In [68]: sns.heatmap(d.corr())

Out[68]: <AxesSubplot:>


```
In [69]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
y=d['TCH']
```

```
In [70]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Out[71]: LinearRegression()

```
ass 2 - Jupyter Notebook
In [72]: print(lr.intercept_)
          1.095958549205534
In [73]: coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
          coeff
Out[73]:
                  Co-efficient
                    0.000440
            BEN
             CO
                   -0.026509
            EBE
                    0.000429
            MXY
                    0.000340
           NMHC
                    0.981414
           NO_2
                    0.000441
            NOx
                    0.000142
            OXY
                    0.000432
In [74]: | prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[74]: <matplotlib.collections.PathCollection at 0x1b6454da400>
           60
           50
           40
           30
           20
           10
                     10
                           20
                                  30
                                               50
                                                      60
In [75]: print(lr.score(x_test,y_test))
          0.9989117112530806
In [76]: | from sklearn.linear_model import Ridge,Lasso
In [77]: rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
```

Out[77]: Ridge(alpha=10)

Out[78]: 0.9997914937369043

In [78]: rr.score(x_test,y_test)

```
In [79]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[79]: Lasso(alpha=10)

In [80]: la.score(x_test,y_test)

Out[80]: 0.9999207923608555

In [81]: a1=b.head(7000)
a1

Out[81]:

	date	BEN	со	EBE	MXY	ИМНС	NO_2	NOx	ОХҮ	O_3	PM10	ı
0	2003- 03-01 01:00:00	66.00	1.72	66.00	66.00	66.00	73.900002	316.299988	66.00	10.550000	55.209999	61
1	2003- 03-01 01:00:00	66.00	1.45	66.00	66.00	0.26	72.110001	250.000000	0.73	6.720000	52.389999	61
2	2003- 03-01 01:00:00	66.00	1.57	66.00	66.00	66.00	80.559998	224.199997	66.00	21.049999	63.240002	61
3	2003- 03-01 01:00:00	66.00	2.45	66.00	66.00	66.00	78.370003	450.399994	66.00	4.220000	67.839996	61
4	2003- 03-01 01:00:00	66.00	3.26	66.00	66.00	66.00	96.250000	479.100006	66.00	8.460000	95.779999	61
6995	2003- 03-11 10:00:00	1.53	0.88	1.50	2.96	0.17	51.119999	154.800003	1.42	8.690000	47.549999	
6996	2003- 03-11 10:00:00	3.68	0.81	3.72	8.24	66.00	143.300003	408.799988	0.59	5.860000	130.100006	;
6997	2003- 03-11 10:00:00	66.00	66.00	66.00	66.00	0.22	108.199997	305.000000	66.00	12.920000	115.800003	61
6998	2003- 03-11 10:00:00	66.00	66.00	66.00	66.00	0.13	95.540001	292.500000	66.00	66.000000	71.199997	61
6999	2003- 03-11 10:00:00	4.21	1.75	2.81	8.05	0.26	96.910004	289.000000	2.45	9.690000	84.500000	;

7000 rows × 16 columns

```
In [104]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [105]: h=StandardScaler().fit transform(f)
In [106]: logr=LogisticRegression(max iter=10000)
          logr.fit(h,g)
Out[106]: LogisticRegression(max_iter=10000)
In [107]: from sklearn.model selection import train test split
          h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [108]: i = [[10,20,30,40,50,60,15,26,37,47,58,58,29,78]]
In [109]: | prediction=logr.predict(i)
          print(prediction)
          [28079009]
In [110]: logr.classes_
Out[110]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                 28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                 28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
                 28079024, 28079025, 28079026, 28079027, 28079035, 28079036,
                 28079038, 28079039, 28079040, 28079099], dtype=int64)
In [111]: logr.predict proba(i)[0][0]
Out[111]: 4.2122408912106517e-07
In [112]: logr.predict_proba(i)[0][1]
Out[112]: 0.04630224657883687
In [113]: logr.score(h test,g test)
Out[113]: 0.62333333333333333
In [114]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x train,y train)
Out[114]: ElasticNet()
In [115]: print(en.coef_)
          [ 2.33058774e-05  0.00000000e+00  7.77688419e-04  0.00000000e+00
            9.80396589e-01 -0.00000000e+00 0.0000000e+00 3.03708875e-05]
In [116]: print(en.intercept_)
          1.2126198373680808
```

```
In [117]: prediction=en.predict(x test)
          print(en.score(x test,y test))
          0.9999991829399287
In [118]: from sklearn.ensemble import RandomForestClassifier
          rfc=RandomForestClassifier()
          rfc.fit(h_train,g_train)
Out[118]: RandomForestClassifier()
In [119]: parameters={'max_depth':[1,2,3,4,5],
           'min_samples_leaf':[5,10,15,20,25],
           'n_estimators':[10,20,30,40,50]
In [120]: | from sklearn.model_selection import GridSearchCV
          grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
          grid_search.fit(h_train,g_train)
Out[120]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min_samples_leaf': [5, 10, 15, 20, 25],
                                    'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [121]: |grid_search.best_score_
Out[121]: 0.5663265306122449
In [122]: rfc_best=grid_search.best_estimator_
In [123]: from sklearn.tree import plot_tree
          plt.figure(figsize=(80,50))
          plot_tree(rfc_best.estimators_[2],filled=True)
```

Conclusion: from this data set i observed that the ELASTICNET has the highest accuracy of 0.999999182939928

Two		
111		
400		