

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 4

Название:	Синхронные	двухступ	енчатые т	<u>григгеры</u>
Дисциплина:	Схемотехник	a		

Студент	ИУ6-52Б		С.В. Астахов	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Преподаватель			Т.А. Ким	
		(Подпись, дата)	(И.О. Фамилия)	

<u>Цель работы:</u> изучение принципов построения и схем, статических и динамических режимов работы синхронных двухступенчатых триггеров.

- 1. Исследование синхронного D-триггера с двухступенчатым запоминанием информации с инвертором синхросигнала в статическом режиме. Для этого необходимо:
- собрать схему D-триггера, у которого 1-я ступень D-триггер со статическим управлением записью, 2-я ступень RS- или D-триггер со статическим управлением записью согласно варианту задания. В качестве RS- или D-триггеров использовать макросхемы;
- к выходам Q' и Q первой и второй ступеней триггера подключить световые индикаторы;
- задавая с помощью переключателей тестовые сигналы 0 и 1 на входах D и C (как в работе №1), снять таблицу переходов триггера. Начальное состояние триггера устанавливается с помощью переключателей сигналов 0 и 1 на асинхронных входах Sa и Ra триггера. По таблице переходов проанализировать правильность работы триггера.

Рисунок 1 - D-триггер с двухступенчатым запоминанием информации

Таблица 1 - таблица переходов триггера

D	С	Q_0	$notQ_0$	Q_1	$notQ_1$
1	0	0	1	0	1
1	1	1	0	0	1
1	0	1	0	1	0
0	0	1	0	1	0
0	1	0	1	1	0
0	0	0	1	0	1

Исходя из данных таблицы 1 можно заключить, что триггер работает корректно.

- 2. Исследование синхронного ЈК-триггера с двухступенчатым запоминанием информации с инвертором синхросигнала в статическом режиме. Для этого необходимо:
- собрать схему JK-триггера, включив на D-входе D-триггера (см. п.1 задания) логическую схему, формирующую функцию выхода JK-триггера согласно варианту

(табл.3);

- задавая с помощью переключателей тестовые сигналы 0 и 1 на входах J, K и C (как в работе №1), снять таблицу переходов триггера. Начальное состояние триггера устанавливается с помощью переключателей сигналов 0 и 1 на асинхронных входах Sa и Ra триггера. По таблице переходов проанализировать правильность работы JK-триггера.

Рисунок 2 - синхронный ЈК-триггер

Таблица 2 - таблица переходов ЈК-триггера

таолица 2	a 2 Taominga neperodob six ipini tepa					
J	K	С	Q_0	$notQ_0$	Q_1	notQ ₁
1	1	0	0	1	0	1
1	1	1	1	0	0	1
1	1	0	1	0	1	0
1	1	0	1	0	1	0
1	1	1	0	1	1	0
1	1	0	0	1	0	1
0	1	0	X	X	X	X
0	1	1	0	1	X	X
0	1	0	0	1	0	1
1	0	0	X	X	X	X
1	0	1	1	0	X	X
1	0	0	1	0	1	0
0	0	0	Q _{0t}	$notQ_{0t}$	Q_1	notQ _{1t}
0	0	1	Q_{0t}	$notQ_{0t}$	Q_1	notQ _{1t}
0	0	0	Q_{0t}	notQ _{0t}	Q_1	notQ _{1t}

Исходя из таблицы можно заключить, что JK-триггер работает как счетный при двух логических 1 на входах и аналогично RS-триггеру во всех остальных случаях, то есть JK-триггер работает нормально.

- 3. Исследование синхронного ЈК-триггера с двухступенчатым запоминанием информации с инвертором синхросигнала в динамическом режиме. Для этого необходимо:
- на входы J и K триггера подать сигналы с первого и второго разрядов двоичного

счетчика (ИС 4520 КМОП-логики) соответственно;

- выход генератора (частота 1 М Γ ц) соединить с входом счетчика и через инвертор с

входом С триггера;

- снять временную диаграмму сигналов генератора, входных и выходных сигналов

синхронного ЈК-триггера;

- проанализировать работу триггера по временной диаграмме и дать пояснения режимов работы ЈК-триггера.

Рисунок 3 - Исследование синхронного ЈК-триггера динамическом режиме

Рисунок 4 - временная диаграмма сигналов

Временная диаграмма подтверждает вывод из пункта 2: JK-триггер работает как счетный при двух логических 1 на входах и аналогично RS-триггеру во всех остальных случаях.

$$\begin{split} D &= \mathsf{not}((\mathsf{not}\text{-J}\ v\ Q)\ ^{\wedge}\ (K\ v\ \mathsf{not}\text{-Q})) \\ \pi\mathsf{p}\mathsf{u}\ J &= 1,\ K = 0 \colon D = \mathsf{not}((0\ v\ Q)\ ^{\wedge}\ (0\ v\ \mathsf{not}\text{-Q}) = \mathsf{not}(Q\ ^{\wedge}\ \mathsf{not}\text{-Q}) = \mathsf{not}\ 0 = 1 \\ \pi\mathsf{p}\mathsf{u}\ J &= 0,\ K = 1 \colon D = \mathsf{not}((1\ v\ Q)\ ^{\wedge}\ (1\ v\ \mathsf{not}\text{-Q})) = \mathsf{not}\ (1\ ^{\wedge}\ 1) = \mathsf{not}\ 1 = 0 \\ \pi\mathsf{p}\mathsf{u}\ J &= 1,\ K = 1 \colon D = \mathsf{not}((0\ v\ Q)\ ^{\wedge}\ (1\ v\ \mathsf{not}\text{-Q}) = \mathsf{not}(Q\ ^{\wedge}\ 1) = \mathsf{not}\text{-Q} \end{split}$$

4. Исследовать в динамическом режиме работу синхронного JK-триггера, включенного по схеме асинхронного T-триггера, подавая на вход С сигналы генератора, на вход T — сигналы второго разряда счетчика.

Рисунок 5 - Т-триггер на основе ЈК-триггера

Рисунок 6 - Т-триггер на основе ЈК-триггера

Рисунок 7 - временная диаграмма сигналов

Таким образом при подаче сигнала T=1 триггер работает в счетном режиме, аналогично работе при J=1, K=1 выше.

Вывод: в ходе данной лабораторной работы были изучены принципы построения и работы двухступенчатого D-триггера JK-триггера, Т-триггера на основе JK-триггера.