Fisica Appunti universitari

Luca Casadei

21 febbraio 2024

Indice

1	Cin	Cinematica															2							
	1.1	Moto:																					2	
		1.1.1	Velocità																					2
2	Din	amica																						3

Capitolo 1

Cinematica

Questo capitolo parla del moto dei corpi.

Punto: Se consideriamo un punto, ci interessano le sue coordinate X, Y, Znello spazia, ciascuna coordinata è una funzione nel tempo: X(t), Y(t), Z(t)per ogni istante t il punto si troverà in una certa posizione. Questo è rappresentabile anche attraverso un vettore, che ha anch'esso 3 dimensioni.

Misura: Le coordinate rappresentano una distanza da un'origine nello spa-Nel sistema di riferimento viene rappresentata una curva in forma parametrica.

1.1 Moto rettilineo

Nel moto rettilineo ho una retta che ha un verso (orientata) e il punto si muove su questa retta, determiniamo con X(t) la posizione del punto sulla retta, definito da una sola coordinata spaziale. Questa funzione è detta legge oraria.

1.1.1 Velocità

Se il corpo si sta spostando per come lo osservo, prendendo due istanti diversi t_1, t_2 il corpo è in posizioni diverse X_1, X_2 , possiamo definire la velocità media come: $V_m = \frac{\Delta_x}{\Delta_t} = \frac{X_2 - X_1}{t_2 - t_1}$. Questa si basa su dei Δ macroscopici, se t_2 si avvicina a t_1 , il Δ diventa

sempre minore e il limite rappresenta effettivamente la derivata.

Capitolo 2

Dinamica

Perché un corpo si muove in un determinato modo?