AULA 4: MODELOS LINEARES GERAIS I

Análise Quantitativa de Dados Ambientais

Thiago S. F. Silva - tsfsilva@rc.unesp.br

31 de Agosto de 2015

Programa de Pós Graduação em Geografia - IGCE/UNESP

OUTLINE

Modelos Lineares Gerais

Formulação do Modelo de Regressão

Os Parâmetros da Regressão

Estimando o Modelo

Estimando a Variância do Modelo

MODELOS LINEARES GERAIS

MODELOS LINEARES GERAIS

Classe de modelos do tipo $\mathbf{Y} = \mathbf{B}\mathbf{X} + \mathbf{U}$, onde \mathbf{Y} é um vetor de respostas, \mathbf{B} é a matriz desenho (*design matrix*), \mathbf{X} é uma matriz de variáveis explicativas, e \mathbf{U} é uma matriz contendo os erros.

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1k} \\ 1 & x_{21} & \dots & x_{2k} \\ 1 & x_{31} & \dots & x_{3k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{bmatrix} \times \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

CUIDADO!

A nomenclatura é bastante confusa:

- · General Linear Models (GLM)
- · Generalized Linear Models (GLM)
- Generalized Linear Mixed Models (GLMM)
- · Generalized Least Squares (GLS)

Sir Francis Galton, no século IX, observou que a relação entre alturas de pais e filhos parecia "reverter", ou "regredir"para a média do grupo. A partir dessa observação, Sir Galton desenvolveu uma primeira formulação matemática para a regressão.

Os modelos de regressão são formados a partir de combinações lineares de variáveis, através de parâmetros

 $Y = \beta_0 + \beta_1 X$ é uma combinação linear de um parâmetro linear β_0 e um parâmetro linear β_1 que multiplica X

 $Y=\beta_0+\beta_1X+\beta_2X^2$ também é uma combinação linear, de um parâmetro linear β_0 , um parâmetro linear β_1 que multiplica X, e um parâmetro linear β_2 que multiplica X^2

$$Y=eta_0+e^{eta_1X}$$
 não é uma combinação linear

A linearidade se refere aos parâmetros, e não às variáveis

 $Y = \beta_0 + e^{\beta_1 X}$ não é uma combinação linear

Mas alguns modelos não-lineares podem ser linearizados:

$$Ln(Y) = Ln(\beta_0) + \beta_1 X$$

$$Z = W + \beta_1 X$$

$$Z = Ln(Y)$$

$$W = Ln(\beta_0)$$

Apenas duas variáveis são usadas, uma dependente (Y) e uma independente (X)

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

 $\cdot \ X$ é a variável **independente**, também chamada de **preditor**

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- $\cdot \ X$ é a variável **independente**, também chamada de **preditor**
- Yé a variável dependente, também chamada de variável resposta

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- $\cdot X$ é a variável **independente**, também chamada de **preditor**
- Yé a variável dependente, também chamada de variável resposta
- \cdot β_0 e β_1 são os **parâmetros** ou **coeficientes** da regressão

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- $\cdot X$ é a variável **independente**, também chamada de **preditor**
- Yé a variável dependente, também chamada de variável resposta
- $\cdot \beta_0$ e β_1 são os **parâmetros** ou **coeficientes** da regressão
- $\cdot \ \varepsilon \ \acute{\rm e} \ o \ {\sf termo} \ {\sf de} \ {\sf erro}$

Os modelos de regressão expressam essencialmente:

 \cdot Uma tendência de Yem variar sistematicamente de acordo com o preditor X

Os modelos de regressão expressam essencialmente:

- \cdot Uma tendência de Yem variar sistematicamente de acordo com o preditor X
- Uma dispersão de pontos ao redor da reta que descreve uma relação estatística

Os modelos de regressão expressam essencialmente:

- · Uma tendência de Y em variar sistematicamente de acordo com o preditor X
- Uma dispersão de pontos ao redor da reta que descreve uma relação estatística

Essas características são expressas através das pressuposições:

· Existe uma distribuição de probabilidade de $\it Y$ para cada nível (valor) de $\it X$

Os modelos de regressão expressam essencialmente:

- \cdot Uma tendência de Yem variar sistematicamente de acordo com o preditor X
- Uma dispersão de pontos ao redor da reta que descreve uma relação estatística

Essas características são expressas através das pressuposições:

- · Existe uma distribuição de probabilidade de $\it Y$ para cada nível (valor) de $\it X$
- \cdot A média destas distribuições varia sistematicamente com X

REGRESSÃO E CAUSALIDADE

A existência de uma (cor)relação estatística entre duas variáveis não implica em uma relação real de causalidade ou dependência.

Mesmo quando há causalidade, cuidado com a direção da relação: X causa Y, ou Y causa X?

http://xkcd.com/552/

O modelo de regressão completo pode ser escrito como:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

"O i-ésimo valor de Y é função de um parâmetro constante β_0 , somado ao i-ésimo valor de X multiplicado por um parâmetro constante β_1 , somado a um i-ésimo valor específico de erro".

Se Y_i puder ser predito exatamente por X_i , então $\varepsilon_i \sim N(0,0)$ $Y_i = 2 + 3X_i$

Se Y_i pode ser aproximado por X_i , então $\varepsilon_i \sim N(0,\sigma)$ $Y_i = 2 + 3X_i + \varepsilon \sim N(0,3)$

Se Y_i puder ser predito exatamente por X_i , então $\varepsilon_i \sim N(0,0)$ $Y_i = 2 + 3X_i$

Se Y_i pode ser aproximado por X_i , então $\varepsilon_i \sim N(0,\sigma)$ $Y_i = 2 + 3X_i + \varepsilon \sim N(0,6)$

Se Y_i puder ser predito exatamente por X_i , então $\varepsilon_i \sim N(0,0)$ $Y_i = 2 + 3X_i$

Se ε não possuir média zero, os erros não "regridem" para a linha de tendência central $Y_i = 2 + 3X_i + \varepsilon \sim N(6,6)$

Na prática, estamos modelando a **esperança** de Y para cada nível de X:

$$E[Y_i] = [\beta_0 + \beta_1 X_i + \varepsilon_i]$$

Na prática, estamos modelando a **esperança** de Y para cada nível de X:

$$E[Y_i] = [\beta_0 + \beta_1 X_i + \varepsilon_i]$$

$$E[Y_i] = \beta_0 + \beta_1 X_i + E[\varepsilon_i]$$

Na prática, estamos modelando a **esperança** de Y para cada nível de X:

$$E[Y_i] = [\beta_0 + \beta_1 X_i + \varepsilon_i]$$

$$E[Y_i] = \beta_0 + \beta_1 X_i + E[\varepsilon_i]$$

Mas nós sabemos que ${\it E}[\varepsilon_i]=0$, então:

Na prática, estamos modelando a **esperança** de Y para cada nível de X:

$$E[Y_i] = [\beta_0 + \beta_1 X_i + \varepsilon_i]$$

$$E[Y_i] = \beta_0 + \beta_1 X_i + E[\varepsilon_i]$$

Mas nós sabemos que $E[\varepsilon_i]=0$, então:

$$E[Y] = \beta_0 + \beta_1 X$$

Estas relações implicam nas seguintes propriedades:

1) Y_i é a soma de um termo constante (E[Y]) e um termo aleatório (ε) , então Y_i é uma variável aleatória

Estas relações implicam nas seguintes propriedades:

- 1) Y_i é a soma de um termo constante (E[Y]) e um termo aleatório (ε) , então Y_i é uma variável aleatória
- 2) A função de regressão para o modelo é ${\it E}[{\it Y}]=\beta_0+\beta_1{\it X}$

Estas relações implicam nas seguintes propriedades:

- 1) Y_i é a soma de um termo constante (E[Y]) e um termo aleatório (ε) , então Y_i é uma variável aleatória
- 2) A função de regressão para o modelo é ${\it E}[{\it Y}]=eta_0+eta_1{\it X}$
- 3) Y_i desvia do valor determinado pela função de regressão por um erro ε_i

$$Var[\beta_0 + \beta_1 X_i + \varepsilon_i] = Var[\varepsilon_i] = \sigma^2$$

$$Var[\beta_0 + \beta_1 X_i + \varepsilon_i] = Var[\varepsilon_i] = \sigma^2$$

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

$$Var[\beta_0 + \beta_1 X_i + \varepsilon_i] = Var[\varepsilon_i] = \sigma^2$$

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

$$Var[Y_i] = Var[\beta_0 + \beta_1 X_i + \varepsilon_i]$$

$$Var[\beta_0 + \beta_1 X_i + \varepsilon_i] = Var[\varepsilon_i] = \sigma^2$$

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

$$Var[Y_i] = Var[\beta_0 + \beta_1 X_i + \varepsilon_i]$$

$$Var[Y_i] = \sigma^2$$

5) Pressupõe-se que os erros ε_i são independentes (não-correlacionados). Se quaisquer ε_i e ε_j são independentes, então Y_i e Y_j também são independentes:

Em resumo: Um modelo de regressão linear simples pressupõe que a resposta Y_i vem de uma distribuição de probabilidade com média $E[Y_i]$ e variância σ^2 constante para todos os níveis de X, e que quaisquer Y_i e Y_j são independentes.

OS PARÂMETROS DA REGRESSÃO

Os parâmetros ou coeficientes da regressão $E[Y]=\beta_0+\beta_1 X$ possuem nomes e significados específicos:

Os parâmetros ou coeficientes da regressão $E[Y] = \beta_0 + \beta_1 X$ possuem nomes e significados específicos:

· O parâmetro β_0 é chamado de ?

Os parâmetros ou coeficientes da regressão $E[Y] = \beta_0 + \beta_1 X$ possuem nomes e significados específicos:

· O parâmetro β_0 é chamado de **intercepto**

Os parâmetros ou coeficientes da regressão $E[Y] = \beta_0 + \beta_1 X$ possuem nomes e significados específicos:

- · O parâmetro β_0 é chamado de **intercepto**
 - · β_0 representa ?

Os parâmetros ou coeficientes da regressão $E[Y] = \beta_0 + \beta_1 X$ possuem nomes e significados específicos:

- · O parâmetro β_0 é chamado de **intercepto**
 - \cdot β_0 representa ${\it E}[{\it Y_i}]$ quando ${\it X}=0$

Os parâmetros ou coeficientes da regressão $E[Y] = \beta_0 + \beta_1 X$ possuem nomes e significados específicos:

- · O parâmetro β_0 é chamado de **intercepto**
 - · β_0 representa $E[Y_i]$ quando X=0

· O parâmetro β_1 é chamado de ?

Os parâmetros ou coeficientes da regressão $E[Y] = \beta_0 + \beta_1 X$ possuem nomes e significados específicos:

- · O parâmetro β_0 é chamado de **intercepto**
 - · β_0 representa $E[Y_i]$ quando X=0

· O parâmetro β_1 é chamado de **inclinação (slope)** da reta

Os parâmetros ou coeficientes da regressão $E[Y] = \beta_0 + \beta_1 X$ possuem nomes e significados específicos:

- · O parâmetro β_0 é chamado de **intercepto**
 - · β_0 representa $E[Y_i]$ quando X=0
- · O parâmetro β_1 é chamado de **inclinação (slope)** da reta
 - · β_1 representa?

Os parâmetros ou coeficientes da regressão $E[Y] = \beta_0 + \beta_1 X$ possuem nomes e significados específicos:

- · O parâmetro β_0 é chamado de **intercepto**
 - · β_0 representa $E[Y_i]$ quando X=0
- · O parâmetro β_1 é chamado de **inclinação** (slope) da reta
 - · β_1 representa o aumento em $E[Y_i]$ para um aumento unitário em X

$$E[Y] = 12 + 3X$$

$$E[Y] = 12 + 3X, \beta_0 = ?$$

$$E[Y] = 12 + 3X$$
, $\beta_0 = 12$

$$E[Y] = 12 + 3X$$
, $\beta_1 = ?$

$$E[Y] = 12 + 3X$$
, $\beta_1 = 3$
 $X = 5$, $Y = 27$; $X = 6$, $Y = 30$; $30 - 27 = 3$

Assim como outras estatísticas, assume-se que o modelo $E[Y] = \beta_0 + \beta_1 X + \varepsilon$ corresponde a uma população.

Assim como outras estatísticas, assume-se que o modelo $E[Y]=\beta_0+\beta_1X+\varepsilon$ corresponde a uma população.

Ao tomarmos uma amostra de valores de X e Y, queremos estimar o modelo $\hat{Y}=b_0+b_1X+e$

Assim como outras estatísticas, assume-se que o modelo $E[Y]=\beta_0+\beta_1X+\varepsilon$ corresponde a uma população.

Ao tomarmos uma amostra de valores de X e Y, queremos estimar o modelo $\hat{Y}=b_0+b_1X+e$

Idealmente, gostaríamos de usar um método onde \hat{Y} , b_0 , b_1 e e sejam bons estimadores (não-tendenciosos) de Y, β_0 , β_1 e ε .

Para isso, podemos usar o método dos **Mínimos Quadrados Comuns (Ordinary Least Squares, OLS)**. Este método considera as diferenças entre cada valor Y_i e seu valor esperado $E[Y_i]$:

$$Y_i - E[Y_i] = Y_i - (\beta_0 + \beta_1 X_i)$$

Para isso, podemos usar o método dos **Mínimos Quadrados Comuns (Ordinary Least Squares, OLS)**. Este método considera as diferenças entre cada valor Y_i e seu valor esperado $E[Y_i]$:

$$Y_i - E[Y_i] = Y_i - (\beta_0 + \beta_1 X_i)$$

Como no caso das variâncias, estamos interessados no quadrado destas diferenças, para que elas não se cancelem:

Para isso, podemos usar o método dos **Mínimos Quadrados Comuns (Ordinary Least Squares, OLS)**. Este método considera as diferenças entre cada valor Y_i e seu valor esperado $E[Y_i]$:

$$Y_i - E[Y_i] = Y_i - (\beta_0 + \beta_1 X_i)$$

Como no caso das variâncias, estamos interessados no quadrado destas diferenças, para que elas não se cancelem:

$$Q = \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2$$

De acordo com a formulação do método OLS, os melhores estimadores de β_0 e β_1 são os valores b_0 e b_1 que minimizam o critério Q para as amostras obtidas.

De acordo com a formulação do método OLS, os melhores estimadores de β_0 e β_1 são os valores b_0 e b_1 que minimizam o critério Q para as amostras obtidas.

De acordo com a formulação do método OLS, os melhores estimadores de β_0 e β_1 são os valores b_0 e b_1 que minimizam o critério Q para as amostras obtidas.

Os estimadores b_0 e b_1 que satisfazem o critério de mínimos quadrados podem ser determinados de duas maneiras:

Os estimadores b_0 e b_1 que satisfazem o critério de mínimos quadrados podem ser determinados de duas maneiras:

- Numericamente, através de procedimentos de busca computacional.
- · Analiticamente. Este método só funciona para Modelos Lineares Gerais.

Os estimadores b_0 e b_1 que satisfazem o critério de mínimos quadrados podem ser determinados de duas maneiras:

- Numericamente, através de procedimentos de busca computacional.
- · Analiticamente. Este método só funciona para Modelos Lineares Gerais.

Para a regressão simples, o método analítico nos dá:

$$b_0 = \bar{Y} - b_1 \bar{X}$$
 $b_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$

Ver Kutner et al. (2005) Applied Linear Statistical Models. 5th ed. McGraw Hill. para a dedução analítica. I know you want to.

X	Y	$(X - \bar{X})(Y - \bar{Y})$	$(X - \bar{X})^2$
9.09	12.10	14.97	24.14
4.82	7.28	-1.14	0.42
2.53	7.25	2.98	2.71
7.28	12.76	11.51	9.66
1.66	8.92	0.35	6.35
2.64	8.30	1.16	2.35
6.11	11.22	4.17	3.74
3.88	12.96	-1.16	0.09
4.79	9.71	0.41	0.38
3.66	10.34	-0.66	0.26
3.47	9.44	-0.27	0.49
0.70	1.97	24.65	12.12
9.12	15.51	31.94	24.49
2.76	5.56	4.93	1.99
0.12	2.52	26.52	16.46
\bar{X}	\bar{Y}	$\sum (X - \bar{X})(Y - \bar{Y})$	$\sum (X - \bar{X})^2$
4.18	9.06	120.35	105.66

$$b_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

X	Y	$(X - \bar{X})(Y - \bar{Y})$	$(X - \bar{X})^2$
9.09	12.10	14.97	24.14
4.82	7.28	-1.14	0.42
2.53	7.25	2.98	2.71
7.28	12.76	11.51	9.66
1.66	8.92	0.35	6.35
2.64	8.30	1.16	2.35
6.11	11.22	4.17	3.74
3.88	12.96	-1.16	0.09
4.79	9.71	0.41	0.38
3.66	10.34	-0.66	0.26
3.47	9.44	-0.27	0.49
0.70	1.97	24.65	12.12
9.12	15.51	31.94	24.49
2.76	5.56	4.93	1.99
0.12	2.52	26.52	16.46
\bar{X}	\bar{Y}	$\sum (X - \bar{X})(Y - \bar{Y})$	$\sum (X - \bar{X})^2$
4.18	9.06	120.35	105.66

$$b_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

$$b_1 = \frac{120.35}{105.66}$$

X	Y	$(X - \bar{X})(Y - \bar{Y})$	$(X - \bar{X})^2$
9.09	12.10	14.97	24.14
4.82	7.28	-1.14	0.42
2.53	7.25	2.98	2.71
7.28	12.76	11.51	9.66
1.66	8.92	0.35	6.35
2.64	8.30	1.16	2.35
6.11	11.22	4.17	3.74
3.88	12.96	-1.16	0.09
4.79	9.71	0.41	0.38
3.66	10.34	-0.66	0.26
3.47	9.44	-0.27	0.49
0.70	1.97	24.65	12.12
9.12	15.51	31.94	24.49
2.76	5.56	4.93	1.99
0.12	2.52	26.52	16.46
\bar{X}	\bar{Y}	$\sum (X - \bar{X})(Y - \bar{Y})$	$\sum (X - \bar{X})^2$
4.18	9.06	120.35	105.66

$$b_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

$$b_1 = \frac{120.35}{105.66}$$

$$b_1=1.14$$

X	Y	$(X - \bar{X})(Y - \bar{Y})$	$(X - \bar{X})^2$
9.09	12.10	14.97	24.14
4.82	7.28	-1.14	0.42
2.53	7.25	2.98	2.71
7.28	12.76	11.51	9.66
1.66	8.92	0.35	6.35
2.64	8.30	1.16	2.35
6.11	11.22	4.17	3.74
3.88	12.96	-1.16	0.09
4.79	9.71	0.41	0.38
3.66	10.34	-0.66	0.26
3.47	9.44	-0.27	0.49
0.70	1.97	24.65	12.12
9.12	15.51	31.94	24.49
2.76	5.56	4.93	1.99
0.12	2.52	26.52	16.46
\bar{X}	\bar{Y}	$\sum (X - \bar{X})(Y - \bar{Y})$	$\sum (X - \bar{X})^2$
4.18	9.06	120.35	105.66

$$b_0 = \bar{Y} - b_1 \bar{X}$$

X	Y	$(X - \bar{X})(Y - \bar{Y})$	$(X - \bar{X})^2$
9.09	12.10	14.97	24.14
4.82	7.28	-1.14	0.42
2.53	7.25	2.98	2.71
7.28	12.76	11.51	9.66
1.66	8.92	0.35	6.35
2.64	8.30	1.16	2.35
6.11	11.22	4.17	3.74
3.88	12.96	-1.16	0.09
4.79	9.71	0.41	0.38
3.66	10.34	-0.66	0.26
3.47	9.44	-0.27	0.49
0.70	1.97	24.65	12.12
9.12	15.51	31.94	24.49
2.76	5.56	4.93	1.99
0.12	2.52	26.52	16.46
\bar{X}	\bar{Y}	$\sum (X - \bar{X})(Y - \bar{Y})$	$\sum (X - \bar{X})^2$
4.18	9.06	120.35	105.66

$$b_0 = \bar{Y} - b_1 \bar{X}$$

$$b_0 = 9.06 - 1.14 \times 4.18$$

X	Y	$(X - \bar{X})(Y - \bar{Y})$	$(X - \bar{X})^2$
9.09	12.10	14.97	24.14
4.82	7.28	-1.14	0.42
2.53	7.25	2.98	2.71
7.28	12.76	11.51	9.66
1.66	8.92	0.35	6.35
2.64	8.30	1.16	2.35
6.11	11.22	4.17	3.74
3.88	12.96	-1.16	0.09
4.79	9.71	0.41	0.38
3.66	10.34	-0.66	0.26
3.47	9.44	-0.27	0.49
0.70	1.97	24.65	12.12
9.12	15.51	31.94	24.49
2.76	5.56	4.93	1.99
0.12	2.52	26.52	16.46
\bar{X}	\bar{Y}	$\sum (X - \bar{X})(Y - \bar{Y})$	$\sum (X - \bar{X})^2$
4.18	9.06	120.35	105.66

$$b_0 = \bar{Y} - b_1 \bar{X}$$

$$b_0 = 9.06 - 1.14 \times 4.18$$

$$b_0 = 9.06 - 4.77$$

X	Y	$(X - \bar{X})(Y - \bar{Y})$	$(X - \bar{X})^2$
9.09	12.10	14.97	24.14
4.82	7.28	-1.14	0.42
2.53	7.25	2.98	2.71
7.28	12.76	11.51	9.66
1.66	8.92	0.35	6.35
2.64	8.30	1.16	2.35
6.11	11.22	4.17	3.74
3.88	12.96	-1.16	0.09
4.79	9.71	0.41	0.38
3.66	10.34	-0.66	0.26
3.47	9.44	-0.27	0.49
0.70	1.97	24.65	12.12
9.12	15.51	31.94	24.49
2.76	5.56	4.93	1.99
0.12	2.52	26.52	16.46
\bar{X}	\bar{Y}	$\sum (X - \bar{X})(Y - \bar{Y})$	$\sum (X - \bar{X})^2$
4.18	9.06	120.35	105.66

$$b_0 = \bar{Y} - b_1 \bar{X}$$

$$b_0 = 9.06 - 1.14 \times 4.18$$

$$b_0 = 9.06 - 4.77$$

$$b_0 = 4.3$$

$\hat{Y} = 4.3 + 1.14X$

$$\hat{Y} = 4.3 + 1.14X$$

OS RESÍDUOS

Olhando a nossa equação estimada, será que está faltando alguma coisa?

$$\hat{Y}_i = b_0 + b_1 X_i$$

OS RESÍDUOS

Olhando a nossa equação estimada, será que está faltando alguma coisa?

$$\hat{Y}_i = b_0 + b_1 X_i$$

Onde está o termo de erro estimado, e?

$$\hat{Y}_i = b_0 + b_1 X_i + e$$

OS RESÍDUOS

Os erros estimados e_i são chamados de **resíduos** da regressão:

1. A soma dos resíduos é zero : $\sum e_i = 0$

- 1. A soma dos resíduos é zero : $\sum e_i = 0$
- 2. A soma dos quadrados dos resíduos, $\sum e_i^2$ é um mínimo

- 1. A soma dos resíduos é zero : $\sum e_i = 0$
- 2. A soma dos quadrados dos resíduos, $\sum e_i^2$ é um mínimo
- 3. A soma dos valores observados Y_i é igual a soma dos valores ajustados \hat{Y}_i

- 1. A soma dos resíduos é zero : $\sum e_i = 0$
- 2. A soma dos quadrados dos resíduos, $\sum e_i^2$ é um mínimo
- 3. A soma dos valores observados Y_i é igual a soma dos valores ajustados \hat{Y}_i
- 4. A soma dos resíduos ponderada pelos valores de X_i é zero: $\sum X_i e_i = 0$

- 1. A soma dos resíduos é zero : $\sum e_i = 0$
- 2. A soma dos quadrados dos resíduos, $\sum e_i^2$ é um mínimo
- 3. A soma dos valores observados Y_i é igual a soma dos valores ajustados \hat{Y}_i
- 4. A soma dos resíduos ponderada pelos valores de X_i é zero: $\sum X_i e_i = 0$
- 5. Devido a 1) e 4), a soma dos resíduos ponderada pelos valores de \hat{Y}_i também é zero: $\sum \hat{Y}_i e_i = 0$

- 1. A soma dos resíduos é zero : $\sum e_i = 0$
- 2. A soma dos quadrados dos resíduos, $\sum e_i^2$ é um mínimo
- 3. A soma dos valores observados Y_i é igual a soma dos valores ajustados \hat{Y}_i
- 4. A soma dos resíduos ponderada pelos valores de X_i é zero: $\sum X_i e_i = 0$
- 5. Devido a 1) e 4), a soma dos resíduos ponderada pelos valores de \hat{Y}_i também é zero: $\sum \hat{Y}_i e_i = 0$
- 6. A reta de regressão sempre passa pelo ponto (\bar{X}, \bar{Y})

ESTIMANDO A VARIÂNCIA DE UMA POPULAÇÃO

A variância de ε também precisa ser estimada, a fim de caracterizar a distribuição de probabilidade de Y para cada nível de X, e permitir inferências sobre o modelo.

ESTIMANDO A VARIÂNCIA DE UMA POPULAÇÃO

A variância de ε também precisa ser estimada, a fim de caracterizar a distribuição de probabilidade de Y para cada nível de X, e permitir inferências sobre o modelo.

Relembrando: A variância de uma população $Y(\sigma^2)$ pode ser estimada pela variância de uma amostra (s^2) , através da **soma dos quadrados** dos desvios de Yi a partir de \bar{Y} :

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

ESTIMANDO A VARIÂNCIA DE UMA POPULAÇÃO

A variância de ε também precisa ser estimada, a fim de caracterizar a distribuição de probabilidade de Y para cada nível de X, e permitir inferências sobre o modelo.

Relembrando: A variância de uma população $Y(\sigma^2)$ pode ser estimada pela variância de uma amostra (s^2) , através da **soma dos quadrados** dos desvios de Yi a partir de \bar{Y} :

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Para obter s^2 , nós dividimos a soma dos quadrados pelos graus de liberdade associados com essa soma:

$$s^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}{n-1}$$

Uma das pressuposições do modelo de regressão linear é que s^2 é constante. A única diferença para a variância comum é que, no modelo, a distribuição de Y_i varia de acordo com o nível de X, então os desvios são calculados em relação a \hat{Y} , e não \bar{Y} :

¹Essa nomenclatura varia, vejam exatamente quem é quem ao ler um livro/artigo

Uma das pressuposições do modelo de regressão linear é que s^2 é constante. A única diferença para a variância comum é que, no modelo, a distribuição de Y_i varia de acordo com o nível de X, então os desvios são calculados em relação a \hat{Y} , e não \bar{Y} :

$$Y_i - \hat{Y} = e_i$$

¹Essa nomenclatura varia, vejam exatamente quem é quem ao ler um livro/artigo

Uma das pressuposições do modelo de regressão linear é que s^2 é constante. A única diferença para a variância comum é que, no modelo, a distribuição de Y_i varia de acordo com o nível de X, então os desvios são calculados em relação a \hat{Y} , e não \bar{Y} :

$$Y_i - \hat{Y} = e_i$$

E a soma do quadrado destes valores é chamada de Soma dos Quadrados dos Erros/Resíduos (SQ_{res}^{-1}) :

$$SQ_{res} = \sum_{i=1}^{n} (Y_i - \hat{Y})^2 = \sum_{i=1}^{n} e_i^2$$

¹Essa nomenclatura varia, vejam exatamente quem é quem ao ler um livro/artigo

A SQ_{res} tem n-2 graus de liberdade, por que dois graus são perdidos estimando-se β_0 e β_1 . Assim, temos que s^2 é:

$$s^{2} = MQ_{res} = \frac{SQ_{res}}{n-2} = \frac{\sum (Y_{i} - \hat{Y})^{2}}{n-2} = \frac{\sum e_{i}^{2}}{n-2}$$

A divisão por n-2 é apenas uma normalização para proporção. Mas não é necessária para entender a quantidade de variação.

```
vpred <- predict(m)</pre>
set.seed(1979)
x <- runif(15,1,10)
                                                  plot(x,y,xlim=c(0,10),ylim=c(0,40))
y < -2 + 3*x + rnorm(15,0,3)
                                                  abline(m)
m \leftarrow lm(v \sim x)
                                                  segments(x0=x, x1=x, y0=ypred, y1=y,
summary(m)
                                                            col='red',lwd=2)
                                                      40
##
## Call:
## lm(formula = v \sim x)
                                                      8
##
## Residuals:
                                                      20
      Min 1Q Median 3Q
##
                                   Max
## -3.742 -2.281 0.078 1.308 5.090
##
                                                      9
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
                                                      0
## (Intercept) 4.7349 1.5059 3.144 0.00776 **
## x
            2.7854
                      0.2828 9.848 2.15e-07 ***
                                                                 2
                                                                                         10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
                                                                          х
##
## Residual standard error: 2.617 on 13 degrees of freedom
## Multiple R-squared: 0.8818, ^ IAdjusted R-squared: 0.8727
## F-statistic: 96.98 on 1 and 13 DF. p-value: 2.149e-07
```

```
vpred <- predict(m)</pre>
set.seed(1979)
x <- runif(15,1,10)
                                                   plot(x,y,xlim=c(0,10),ylim=c(0,40))
y \leftarrow 2 + 3*x + rnorm(15,0,10)
                                                   abline(m)
m \leftarrow lm(v \sim x)
                                                   segments(x0=x, x1=x, y0=ypred, y1=y,
summary(m)
                                                            col='red',lwd=2)
                                                       40
##
## Call:
## lm(formula = v \sim x)
                                                       8
##
## Residuals:
                                                      20
            10 Median
##
       Min
                                  30
                                          Max
## -12.4732 -7.6035 0.2601 4.3598 16.9658
##
                                                       2
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.1165 5.0196 2.215 0.0453 *
## x
             2.2847
                      0.9428 2.423 0.0307 *
                                                                 2
                                                                                          10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
                                                                           х
##
## Residual standard error: 8.722 on 13 degrees of freedom
## Multiple R-squared: 0.3112, ^^IAdjusted R-squared: 0.2582
## F-statistic: 5.872 on 1 and 13 DF. p-value: 0.03072
```

Agora, já sabemos como estimar todos os componentes do modelo: \hat{Y} , b_0 , b_1 , e s^2 . O que mais precisamos?

Agora, já sabemos como estimar todos os componentes do modelo: \hat{Y} , b_0 , b_1 , e s^2 . O que mais precisamos?

· De um método para avaliar a qualidade da estimação

Agora, já sabemos como estimar todos os componentes do modelo: \hat{Y} , b_0 , b_1 , e s^2 . O que mais precisamos?

· De um método para avaliar a qualidade da estimação

· De um método para avaliar o ajuste do modelo

· Como vimos antes, SQ_{res} nos dá a variancia dos resíduos.

- · Como vimos antes, SQ_{res} nos dá a variancia dos resíduos.
- \cdot A variância contida em SQ_{res} é a quantidade de variação que é aleatória, e não pôde ser capturada pelo modelo

- · Como vimos antes, SQ_{res} nos dá a variancia dos resíduos.
- · A variância contida em SQ_{res} é a quantidade de variação que é aleatória, e não pôde ser capturada pelo modelo
- · Essa variação é uma parte da variância total de $Y(Soma dos Quadrados Totais, <math>SQ_{tot})$

- · Como vimos antes, SQ_{res} nos dá a variancia dos resíduos.
- · A variância contida em SQ_{res} é a quantidade de variação que é aleatória, e não pôde ser capturada pelo modelo
- · Essa variação é uma parte da variância total de $Y(Soma dos Quadrados Totais, <math>SQ_{tot})$
- · Podemos então definir a "variância explicada pelo modelo", como sendo a diferença entre a variância total de $Y(SQ_{tot})$, e a variância dos resíduos (SQ_{res}) :

$$SQ_{reg} = SQ_{tot} - SQ_{res}$$

Essa partição pode ser melhor entendida ao se considerarem duas situações extremas:

Essa partição pode ser melhor entendida ao se considerarem duas situações extremas:

 \cdot Se todos os valores de Y caíssem exatamente em cima da reta, $SQ_{res}=0$, e $SQ_{reg}=SQ_{tot}$

Essa partição pode ser melhor entendida ao se considerarem duas situações extremas:

- \cdot Se todos os valores de Y caíssem exatamente em cima da reta, $SQ_{res}=0$, e $SQ_{reg}=SQ_{tot}$
- · Se não há relação entre X e Y, $\beta_1=0$, e $Y=\beta_0+\varepsilon$. Nesse caso, $Y\sim N(\beta_0,\sigma)$, e $SQ_{tot}=SQ_{res}$

Essa partição pode ser melhor entendida ao se considerarem duas situações extremas:

- \cdot Se todos os valores de Y caíssem exatamente em cima da reta, $SQ_{res}=0$, e $SQ_{reg}=SQ_{tot}$
- · Se não há relação entre X e Y, $\beta_1=0$, e $Y=\beta_0+\varepsilon$. Nesse caso, $Y\sim N(\beta_0,\sigma)$, e $SQ_{tot}=SQ_{res}$

```
set.seed(1979)
x <- runif(15,1,10)
y < -2 + 3*x
m \leftarrow lm(y \sim x)
anova(m)["Sum Sq"]
##
         Sum Sq
## x 770.26
## Residuals 0.00
var(y)*(15-1)
## [1] 770.2641
 8
 8
 20
 9
```

```
set.seed(1979)
x <- runif(15,1,10)
y < -2 + rnorm(15,0,3)
m \leftarrow lm(y \sim x)
anova(m)["Sum Sq"]
##
         Sum Sq
## x 3.941
## Residuals 89,006
var(y)*(15-1)
## [1] 92.94772
 8
 8
 20
 9
```

COEFICIENTE DE DETERMINAÇÃO

A partir desta formulação, chegamos ao Coeficiente de Determinação (R^2):

$$R^2 = \frac{SQ_{reg}}{SQ_{tot}} = \frac{SQ_{reg}}{SQ_{reg} + SQ_{res}}$$

COEFICIENTE DE DETERMINAÇÃO

A partir desta formulação, chegamos ao Coeficiente de Determinação (R^2):

$$R^2 = \frac{SQ_{reg}}{SQ_{tot}} = \frac{SQ_{reg}}{SQ_{reg} + SQ_{res}}$$

Como podemos interpretar o valor de \mathbb{R}^2 ?

COEFICIENTE DE DETERMINAÇÃO

A partir desta formulação, chegamos ao Coeficiente de Determinação (R^2):

$$R^2 = \frac{SQ_{reg}}{SQ_{tot}} = \frac{SQ_{reg}}{SQ_{reg} + SQ_{res}}$$

Como podemos interpretar o valor de \mathbb{R}^2 ? \mathbb{R}^2 nos dá a proporção da variância total de Y explicada pelo modelo de regressão

* r^2 se refere a um modelo simples, e ${\cal R}^2$ a um modelo multivariado.

- · Um modelo de **regressão linear** estima uma relação estatística entre X e Y, através de coeficientes lineares β
- Esta relação é caracterizada por uma co-variação entre os níveis de X e E[Y]
- · A existência de co-variação não implica em causalidade
- A variância de Y não capturada pelo modelo constitui o **erro** da regressão (ε)
- A **variância de** Y_i a cada nível de X é dada pela variância de ε
- · A **variância total** de Y é dada pela variância de ε + a relação $\beta_0 + \beta_1 X$

- · Um modelo de **regressão linear** estima uma relação estatística entre X e Y, através de coeficientes lineares β
- · Esta relação é caracterizada por uma **co-variação** entre os níveis de X e E[Y]
- · A existência de co-variação não implica em causalidade
- A variância de Y não capturada pelo modelo constitui o **erro** da regressão (ε)
- A **variância de** Y_i a cada nível de X é dada pela variância de arepsilon
- A variância total de Y é dada pela variância de ε + a relação $\beta_0 + \beta_1 X$

- · Um modelo de **regressão linear** estima uma relação estatística entre X e Y, através de coeficientes lineares β
- · Esta relação é caracterizada por uma **co-variação** entre os níveis de X e E[Y]
- · A existência de co-variação não implica em causalidade
- A variância de Y não capturada pelo modelo constitui o **erro** da regressão (ε)
- A **variância de** Y_i a cada nível de X é dada pela variância de arepsilon
- · A **variância total** de Y é dada pela variância de ε + a relação $\beta_0 + \beta_1 X$

- · Um modelo de **regressão linear** estima uma relação estatística entre X e Y, através de coeficientes lineares β
- · Esta relação é caracterizada por uma **co-variação** entre os níveis de X e E[Y]
- · A existência de co-variação não implica em causalidade
- · A variância de Y não capturada pelo modelo constitui o **erro** da regressão (ε)
- \cdot A **variância de** Y_i a cada nível de X é dada pela variância de arepsilon
- A **variância total** de Y é dada pela variância de ε + a relação $\beta_0 + \beta_1 X$

- · Um modelo de **regressão linear** estima uma relação estatística entre X e Y, através de coeficientes lineares β
- · Esta relação é caracterizada por uma **co-variação** entre os níveis de X e E[Y]
- · A existência de co-variação não implica em causalidade
- · A variância de Y não capturada pelo modelo constitui o **erro** da regressão (ε)
- A **variância de** Y_i a cada nível de X é dada pela variância de ε
- A **variância total** de Y é dada pela variância de ε + a relação $\beta_0 + \beta_1 X$

- · Um modelo de **regressão linear** estima uma relação estatística entre X e Y, através de coeficientes lineares β
- · Esta relação é caracterizada por uma **co-variação** entre os níveis de X e E[Y]
- · A existência de co-variação não implica em causalidade
- · A variância de Y não capturada pelo modelo constitui o **erro** da regressão (ε)
- A **variância de** Y_i a cada nível de X é dada pela variância de ε
- · A **variância total** de Y é dada pela variância de ε + a relação $\beta_0 + \beta_1 X$

- · Os coeficientes β_0 e β_1 determinam o **intercepto** e a **inclinação da reta**
- A reta de regressão ($\hat{Y} = b_0 + b_1 X + e$) é estimada pelo método de **mínimos quadrados**, que busca minizar Soma dos Quadrados dos Erros (SQ_{res})
- A partir da diferença entre SQ_{res} e a Soma dos Quadrados Totais ($SQ_{tot} = Var[Y]$), podemos estimar a Soma dos Quadrados da Regressão (SQ_{reg})
- A relação $\frac{SQ_{reg}}{SQ_{tot}}$ é chamada de R^2 , e nos diz a proporção da variância total de Y explicada pelo modelo

- · Os coeficientes β_0 e β_1 determinam o **intercepto** e a **inclinação da reta**
- · A reta de regressão ($\hat{Y} = b_0 + b_1 X + e$) é estimada pelo método de **mínimos quadrados**, que busca minizar Soma dos Quadrados dos Erros (SQ_{res})
- A partir da diferença entre SQ_{res} e a Soma dos Quadrados Totais ($SQ_{tot} = Var[Y]$), podemos estimar a Soma dos Quadrados da Regressão (SQ_{reg})
- A relação $\frac{SQ_{reg}}{SQ_{tot}}$ é chamada de R^2 , e nos diz a proporção da variância total de Y explicada pelo modelo

- · Os coeficientes β_0 e β_1 determinam o **intercepto** e a **inclinação da reta**
- · A reta de regressão ($\hat{Y} = b_0 + b_1 X + e$) é estimada pelo método de **mínimos quadrados**, que busca minizar Soma dos Quadrados dos Erros (SQ_{res})
- · A partir da diferença entre SQ_{res} e a Soma dos Quadrados Totais ($SQ_{tot} = Var[Y]$), podemos estimar a Soma dos Quadrados da Regressão (SQ_{reg})
- \cdot A relação $rac{SQ_{reg}}{SQ_{tot}}$ é chamada de R^2 , e nos diz a proporção da variância total de $\,Y\,$ explicada pelo modelo

- · Os coeficientes β_0 e β_1 determinam o **intercepto** e a **inclinação da reta**
- · A reta de regressão ($\hat{Y} = b_0 + b_1 X + e$) é estimada pelo método de **mínimos quadrados**, que busca minizar Soma dos Quadrados dos Erros (SQ_{res})
- · A partir da diferença entre SQ_{res} e a Soma dos Quadrados Totais ($SQ_{tot} = Var[Y]$), podemos estimar a Soma dos Quadrados da Regressão (SQ_{reg})
- A relação $\frac{SQ_{reg}}{SQ_{tot}}$ é chamada de R^2 , e nos diz a proporção da variância total de Y explicada pelo modelo

Interpretando o output do modelo de regressão no R ...até agora.

```
##
## Call:
## lm(formula = v \sim x)
##
## Residuals:
      Min 10 Median 30 Max
##
## -7.7244 -3.9253 0.2196 3.5752 7.5188
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.3632 2.0016 0.181
                                           0.858
## x
               3.3127 0.2058 16.099 3.93e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.81 on 18 degrees of freedom
## Multiple R-squared: 0.9351, ^^IAdjusted R-squared: 0.9315
## F-statistic: 259.2 on 1 and 18 DF, p-value: 3.925e-12
```