Mixture Models and EM

- If labeled data (training set) is given:
 - We can extract one class data.
 - We assume the parametric form of the distribution for the class of data. Eg: Gaussian.
 - We can employ maximum likelihood parameter estimation.
- This is what we saw in maximum likelihood parametric density estimation.

Two classes: a and b

- Observations x₁ ... x_n
 - K=2 Gaussians with unknown μ, σ²
 - estimation trivial if we know the source of each observation

Two classes: a and b

- Observations x₁ ... x_n
 - K=2 Gaussians with unknown μ, σ²
 - estimation trivial if we know the source of each observation

$$\mu_b = \frac{x_1 + x_2 + \dots + x_{n_b}}{n_h}$$

$$\sigma_b^2 = \frac{(x_1 - \mu_1)^2 + \dots + (x_n - \mu_n)^2}{n_b}$$

0 0000 0

- If we know the probability distribution from which the data is drawn,
 - We can label the data ..
 - By employing the Bayes classifier

Distributions are available.

That is, P(a), P(b), $p(x_i|a)$ and $p(x_i|b)$ are given.

Let
$$p(x_i|a) = \frac{1}{\sqrt{2\pi\sigma_a^2}} exp\left(-\frac{(x_i-\mu_a)^2}{2\sigma_a^2}\right)$$
, then

the posterior $P(a|x_i)=\frac{p(x_i|a)P(a)}{p(x_i)}$, and the posterior $P(b|x_i)$ can be used in finding the class label for x_i

Distributions are available.

That is, P(a), P(b), $p(x_i|a)$ and $p(x_i|b)$ are given.

Let
$$p(x_i|a) = \frac{1}{\sqrt{2\pi\sigma_a^2}} exp\left(-\frac{(x_i-\mu_a)^2}{2\sigma_a^2}\right)$$
, then

the posterior $P(a|x_i) = \frac{p(x_i|a)P(a)}{p(x_i)}$, and the posterior $P(b|x_i)$ can be used in finding the class label for x_i

- Labels are needed to get distributions
- Distributions are needed to get labels.

- Labels are needed to get distributions
- Distributions are needed to get labels.
- Chicken and egg problem.

How the nature solved this chicken and egg problem?

- Neither chicken, nor egg was first!
- Both evolved over time.
- Initially very hazy distinction between them, but as time progressed it became two clear distinct things.
- So, we too employ this, but we call this solution the EM algorithm.
- Later, we learn that K-means clustering algorithm is a grandson of this algorithm.

Mixture models

- Recall types of clustering methods
 - hard clustering: clusters do not overlap
 - element either belongs to cluster or it does not
 - soft clustering: clusters may overlap
 - stength of association between clusters and instances
- Mixture models
 - probabilistically-grounded way of doing soft clustering
 - each source: a generative model (Gaussian or multinomial)
 - parameters (e.g. mean/covariance are unknown)
- Expectation Maximization (EM) algorithm
 - automatically discover all parameters for the K "sources"

EM with Gaussian assumptions becomes GMM.

Further, GMM, with more assumptions can become K-means ©

GAUSSIAN MIXTURE MODEL (GMM)

Expectation Maximization (EM)

- Chicken and egg problem
 - need (μ_a, σ_a^2) and (μ_b, σ_b^2) to guess source of points
 - need to know source to estimate (μ_a, σ_a^2) and (μ_b, σ_b^2)

Expectation Maximization (EM)

- Chicken and egg problem
 - need (μ_a, σ_a^2) and (μ_b, σ_b^2) to guess source of points
 - need to know source to estimate (μ_a, σ_a^2) and (μ_b, σ_b^2)

- EM algorithm
 - o Start with two randomly placed Gaussians (μ_a, σ_a^2) , (μ_b, σ_b^2) .
 - While (not converged) do
 - E-step: Find $P(a|x_i)$, $P(b|x_i)$ for each data element. This gives label for x_i . Fishy: This label is a random variable!
 - M-step: Adjust (μ_a, σ_a^2) and (μ_b, σ_b^2) to fit points assigned to them.

EM: 1-d example

Source parameters are randomly fixed to begin with.

$$egin{align} p(x_i|a) &= rac{1}{\sqrt{2\pi\sigma_a^2}}exp\left(-rac{(x_i-\mu_a)^2}{2\sigma_a^2}
ight) \ a_i &= P(a|x_i) = rac{p(x_i|a)P(a)}{p(x_i)} \ \ b_i &= 1-a_i \ \end{cases}$$

 (a_i, b_i) is the label for x_i

EM: 1-d example

 (a_i, b_i) is the label for x_i

Prior P(a) can be estimated from $\frac{a_1+a_2+\cdots+a_n}{n}$

So,
$$P(b) = \frac{b_1 + b_2 + \cdots + b_n}{n}$$

$$\mu_{a} = \frac{a_{1}x_{1} + a_{2}x_{2} + \dots + a_{n}x_{n_{b}}}{a_{1} + a_{2} + \dots + a_{n}}$$

$$\sigma_{a}^{2} = \frac{a_{1}(x_{1} - \mu_{1})^{2} + \dots + a_{n}(x_{n} - \mu_{n})^{2}}{a_{1} + a_{2} + \dots + a_{n}}$$

$$\mu_b = \frac{b_1 x_1 + b_2 x_2 + \dots + b_n x_{n_b}}{b_1 + b_2 + \dots + b_n}$$

$$\sigma_b^2 = \frac{b_1 (x_1 - \mu_1)^2 + \dots + b_n (x_n - \mu_n)^2}{b_1 + b_2 + \dots + b_n}$$

Now we are with a new estimation of the source. A better estimate. Repeat till convergence.

EM: 1-d example

after convergence, the output:

Extension to d > 1, c > 2

- Assume c component mixture (c classes).
- Start with randomly chosen means (randomly choose k distinct data elements).
- Similarly randomly chosen covariance matrix for each class. Usually we begin with identity matrix.

E-step: Find label for each x_i . Let this be the random variable given by $(P_{1i}, P_{2i}, ..., P_{ci})$. This is done for each $x_i, 1 \le i \le n$.

E-step: Find label for each x_i . Let this be the random variable given by $(P_{1i}, P_{2i}, ..., P_{ci})$. This is done for each $x_i, 1 \le i \le n$.

M-step: Let $\mu^{(1)}$ be the mean of class 1. Then, $\mu^{(1)} = \frac{\sum_{i=1}^n P_{1i} x_i}{\sum_{i=1}^n P_{1i}}$. Similarly mean vector for other classes, $\mu^{(2)}, \dots, \mu^{(c)}$ can be found.

E-step: Find label for each x_i . Let this be the random variable given by $(P_{1i}, P_{2i}, ..., P_{ci})$. This is done for each $x_i, 1 \le i \le n$.

M-step: Let $\mu^{(1)}$ be the mean of class 1. Then, $\mu^{(1)} = \frac{\sum_{i=1}^n P_{1i} x_i}{\sum_{i=1}^n P_{1i}}$. Similarly mean vector for other classes, $\mu^{(2)}, \dots, \mu^{(c)}$ can be found.

Covariance Matrix for class 1, $\Sigma^{(1)} = \frac{\sum_{i=1}^n P_{1i}(x_i - \mu^{(1)}) \left(x_i - \mu^{(1)}\right)^t}{\sum_{i=1}^n P_{1i}}$. Similarly covariance matrix for other classes, $\Sigma^{(2)}$, ..., $\Sigma^{(c)}$ can be found.

- We stop EM algorithm here.
- In exams, I can ask some numeric problem for 1D two class case. {Do not worry about multidimensional problem (as of now)}.

 Theoretically, the iterative process can get stuck in a local maximum.

K-means is an approximation of GMM

- Initially pick k distinct random seed points (in GMM: the set of initial mean vectors)
- We assume that

$$\Sigma^{(1)} = \Sigma^{(2)} = \cdots = \Sigma^{(c)} = I$$

- The Bayes classifier becomes "the minimum distance classifier".
- Let the label be deterministic (not a random variable). Choose the nearest's mean's label (this is what the minimum distance classifier will do).
- GMM becomes k-means clustering algorithm.

