

## WHAT IS CLAIMED IS:

1. A process for preparing a benzamide compound of Formula (VII):



5 which comprises:

- (Y) reacting a benzoate compound of Formula (V):



with an amine of formula  $\text{R}^1\text{R}^2\text{NH}$  in a solvent Y to obtain a benzamide compound of Formula (VI):



10 ; and

- (Z) treating the benzamide compound of Formula (VI) with an amine deprotecting agent to obtain the benzamide compound of Formula (VII);

wherein:

15

$\text{R}^1$  and  $\text{R}^2$  are each independently:

- (1) -H,

- (2) -C<sub>1</sub>-6 alkyl, optionally substituted with from 1 to 5 substituents each of which is independently -OH, -O-C<sub>1</sub>-6 alkyl, -CN, -NO<sub>2</sub>, -N(R<sup>a</sup>)R<sup>b</sup>, -C(=O)N(R<sup>a</sup>)R<sup>b</sup>, -SO<sub>2</sub>N(R<sup>a</sup>)R<sup>b</sup>, -N(R<sup>a</sup>)C(=O)R<sup>b</sup>, -N(R<sup>a</sup>)CO<sub>2</sub>R<sup>c</sup>, -N(R<sup>a</sup>)SO<sub>2</sub>R<sup>c</sup>, -N(R<sup>a</sup>)SO<sub>2</sub>N(R<sup>a</sup>)R<sup>b</sup>, -OC(=O)N(R<sup>a</sup>)R<sup>b</sup>, or -N(R<sup>a</sup>)C(=O)N(R<sup>a</sup>)R<sup>b</sup>,
- 5 (3) -C<sub>3</sub>-6 cycloalkyl, optionally substituted with from 1 to 4 substituents each of which is independently -C<sub>1</sub>-4 alkyl or -O-C<sub>1</sub>-4 alkyl, or
- (4) aryl, optionally substituted with from 1 to 6 substituents each of which is independently halogen, -C<sub>1</sub>-4 alkyl, -O-C<sub>1</sub>-4 alkyl, -CN, -N(R<sup>a</sup>)R<sup>b</sup>, -C(=O)N(R<sup>a</sup>)R<sup>b</sup>, -SO<sub>2</sub>N(R<sup>a</sup>)R<sup>b</sup>, -N(R<sup>a</sup>)C(=O)R<sup>b</sup>, -N(R<sup>a</sup>)CO<sub>2</sub>R<sup>c</sup>, -N(R<sup>a</sup>)SO<sub>2</sub>R<sup>c</sup>, - $(\text{CH}_2)_{1-2}$ -O-C<sub>1</sub>-4 alkyl, -(CH<sub>2</sub>)<sub>1-2</sub>CN, -(CH<sub>2</sub>)<sub>1-2</sub>-N(R<sup>a</sup>)R<sup>b</sup>, - $(\text{CH}_2)_{1-2}$ -C(=O)N(R<sup>a</sup>)R<sup>b</sup>, -(CH<sub>2</sub>)<sub>1-2</sub>-SO<sub>2</sub>N(R<sup>a</sup>)R<sup>b</sup>, -(CH<sub>2</sub>)<sub>1-2</sub>-N(R<sup>a</sup>)C(=O)R<sup>b</sup>, - $(\text{CH}_2)_{1-2}$ -N(R<sup>a</sup>)CO<sub>2</sub>R<sup>c</sup>, -(CH<sub>2</sub>)<sub>1-2</sub>-N(R<sup>a</sup>)SO<sub>2</sub>R<sup>c</sup>, phenyl, or -(CH<sub>2</sub>)<sub>1-2</sub>-phenyl;
- 10

R<sup>3</sup> is -C<sub>1</sub>-6 alkyl, -C<sub>1</sub>-6 alkyl-aryl, or aryl;

15

P\* is an amino protective group;

each R<sup>a</sup> is independently -H, -C<sub>1</sub>-6 alkyl, or -C<sub>3</sub>-6 cycloalkyl;

20 each R<sup>b</sup> is independently -H, -C<sub>1</sub>-6 alkyl, or -C<sub>3</sub>-6 cycloalkyl; and

each R<sup>c</sup> is independently -C<sub>1</sub>-6 alkyl or -C<sub>3</sub>-6 cycloalkyl.

25 2. The process according to claim 1, wherein R<sup>1</sup> and R<sup>2</sup> are each independently -H, -C<sub>1</sub>-6 alkyl, -C<sub>3</sub>-6 cycloalkyl, or aryl.

30 3. The process according to claim 1, wherein P\* is

(1) -C(=O)-O-C<sub>1</sub>-6 alkyl,

(2) -C(=O)-O-CH<sub>2</sub>-aryl,

(3) -C(=O)-O-(CH<sub>2</sub>)<sub>0-1</sub>-CH=CH<sub>2</sub>,

(4)

$$\begin{array}{c} \text{O} \\ \parallel \\ \text{---P---OR}^s \\ | \\ \text{OR}^t \end{array}$$

, or



wherein  $\text{R}^{\text{s}}$  and  $\text{R}^{\text{t}}$  are each independently -C<sub>1-6</sub> alkyl, -CH<sub>2</sub>-aryl, or aryl; and

$\text{R}^{\text{u}}$  and  $\text{R}^{\text{v}}$  are each independently an aryl group.

5

4. The process according to claim 1, wherein the reaction in Step Y is conducted at a temperature in a range of from about 50 to about 200 °C.

5. The process according to claim 1, wherein the amine of formula  $\text{R}^1\text{R}^2\text{NH}$  10 is employed in Step Y in an amount in a range of from about 1 to about 200 equivalents per equivalent of benzoate compound V.

6. The process according to claim 1, wherein the solvent Y is selected from the group consisting of aromatic hydrocarbons, halogenated aliphatic hydrocarbons, alcohols, 15 ethers, and nitriles.

7. The process according to claim 1, wherein P\* is an amino protective group capable of being cleaved by an acid and the amine deprotecting agent in Step Z comprises an acid Z that is employed in an amount in a range of from about 0.1 to about 100 equivalents per 20 equivalent of benzamide compound VI; and the treatment in Step Z is conducted at a temperature in a range of from about -50 to about 150°C.

8. The process according to claim 1, which further comprises:  
 (X) treating a benzoate compound of Formula (IV):



25

with an amine protecting agent containing the group P\* in a solvent X to obtain the benzoate

compound of Formula (V).

9. The process according to claim 8, which further comprises:  
 (W) hydrogenating a benzonitrile of Formula (III):



in a solvent W and in the presence of a transition metal catalyst to obtain the benzoate compound of Formula (IV).

10. The process according to claim 9, which further comprises:  
 (V) reacting a halobenzoate compound of Formula (II):



15 in an aprotic solvent V with a cyanide compound selected from the group consisting of CuCN and Zn(CN)2 to obtain the benzonitrile of Formula (III); with the proviso that when the cyanide compound is Zn(CN)2, the reaction is conducted in the presence of a Pd compound and an activating ligand; wherein X is chloro, bromo, or iodo.

11. The process according to claim 10, which further comprises:  
 (U) esterifying a benzoic acid of Formula (I):



- 20 with an alcohol of formula R^3-OH optionally in the presence of an acid U to obtain the halobenzoate compound of Formula (II).

12. The process according to claim 1, wherein P\* is BOC, ALLOC, or CBZ; and wherein the process further comprises:

(XA) hydrogenating a benzonitrile of Formula (III):



in a solvent XA, in the presence of (i) (BOC)<sub>2</sub>O, (ALLOC)<sub>2</sub>O, or (CBZ)<sub>2</sub>O and (ii) Raney nickel, and optionally in the presence of a base to obtain a benzoate compound of Formula (V):



10 13. A process for preparing Compound 7:



which comprises:

(yy) reacting a benzoate compound of Formula (Va):



with methylamine in a solvent yy to obtain Compound 6:



(zz) treating the Compound 6 with an acid zz to obtain the Compound 7; wherein R<sup>3a</sup> is -C<sub>1-6</sub> alkyl.

5

14. The process according to claim 13, wherein the benzoate compound of Formula (Va) is Compound 5:



- 10 15. The process according to claim 13, wherein:  
the reaction in Step yy is conducted at a temperature in the range of from about 75  
to 150°C;  
methylamine is employed in Step yy in an amount in a range of from about 1.5 to  
about 5 equivalents per equivalent of Compound Va;  
15 the solvent yy is selected from the group consisting of alcohols, ethers, and  
aromatic hydrocarbons  
the acid zz is HCl;  
the acid zz is employed in Step zz in an amount in a range of from about 3 to  
about 15 equivalents per equivalent of Compound 6; and  
20 the treatment in Step zz is conducted in a solvent zz which is an C<sub>1-6</sub> alkyl ester  
of a C<sub>1-6</sub> alkylcarboxylic acid.

16. The process according to claim 13, which further comprises (xx)

treating a benzoate compound of Formula (IVa):



- 5 with an amine protecting agent containing the BOC group in a solvent xx to obtain the benzoate compound of Formula (Va).

17. The process according to claim 16, which further comprises (ww)  
hydrogenating a benzonitrile of Formula (IIIa):



10

in a solvent ww and in the presence of a transition metal catalyst to obtain the benzoate compound of Formula (IVa).

18. The process according to claim 17, which further comprises:  
15 (vv) reacting a halobenzoate compound of Formula (IIa):



- in an aprotic solvent vv with a cyanide compound selected from the group consisting of CuCN and Zn(CN)2 to obtain the benzonitrile of Formula (IIIa); with the proviso that when the cyanide compound is Zn(CN)2, the reaction is conducted in the presence of a Pd compound and an  
20 activating ligand; wherein X is chloro, bromo, or iodo.

19. The process according to claim 13, which further comprises:

(xxa) hydrogenating a benzonitrile of Formula (IIIa):



5 in a solvent xxa, in the presence of (BOC)<sub>2</sub>O and Raney nickel, and optionally in the presence of a base to obtain a benzoate compound of Formula (Va):



20. A compound selected from the group consisting of:

10

a compound of Formula (Va):



a compound of Formula (IVa):



a salt of a compound of Formula (IVa), and

a compound of Formula (IIIa):



5 wherein R<sup>3a</sup> is -C<sub>1-6</sub> alkyl.