Mathematical Introduction to Data Science

Sep. 18, 2017

Homework 2. Random Matrix Theory and Phase Transitions in PCA

Instructor: Yuan Yao Due: open date

The problem below marked by * is optional with bonus credits.

1. Phase transition in PCA "spike" model: Consider a finite sample of n i.i.d vectors x_1, x_2, \ldots, x_n drawn from the p-dimensional Gaussian distribution $\mathcal{N}(0, \sigma^2 I_{p \times p} + \lambda_0 u u^T)$, where λ_0/σ^2 is the signal-to-noise ratio (SNR) and $u \in \mathbb{R}^p$. In class we showed that the largest eigenvalue λ of the sample covariance matrix S_n

$$S_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$$

pops outside the support of the Marcenko-Pastur distribution if

$$\frac{\lambda_0}{\sigma^2} > \sqrt{\gamma},$$

or equivalently, if

$$SNR > \sqrt{\frac{p}{n}}.$$

(Notice that $\sqrt{\gamma} < (1+\sqrt{\gamma})^2$, that is, λ_0 can be "buried" well inside the support Marcenko-Pastur distribution and still the largest eigenvalue pops outside its support). All the following questions refer to the limit $n \to \infty$ and to almost surely values:

- (a) Find λ given SNR $> \sqrt{\gamma}$.
- (b) Use your previous answer to explain how the SNR can be estimated from the eigenvalues of the sample covariance matrix.
- (c) Find the squared correlation between the eigenvector v of the sample covariance matrix (corresponding to the largest eigenvalue λ) and the "true" signal component u, as a function of the SNR, p and n. That is, find $|\langle u, v \rangle|^2$.
- (d) Confirm your result using MATLAB or R simulations (e.g. set u = e; and choose $\sigma = 1$ and λ_0 in different levels. Compute the largest eigenvalue and its associated eigenvector, with a comparison to the true ones.)
- 2. Exploring S&P500 Stock Prices: Take the Standard & Poor's 500 data: http://math.stanford.edu/~yuany/course/data/snp452-data.mat, which contains the data matrix $X \in \mathcal{R}^{n \times p}$ of n=1258 consecutive observation days and p=452 daily closing stock prices, and the cell variable "stock" collects the names, codes, and the affiliated industrial sectors of the 452 stocks. Use Matlab or R for the following exploration.

- (a) Take the logarithmic prices $Y = \log X$;
- (b) For each observation time $t \in \{1, \dots, 1257\}$, calculate logarithmic price jumps

$$\Delta Y_{i,t} = Y_{i,t} - Y_{i,t-1}, \quad i \in \{1, \dots, 452\};$$

(c) Construct the realized covariance matrix $\hat{\Sigma} \in \mathcal{R}^{452 \times 452}$ by,

$$\hat{\Sigma}_{i,j} = \frac{1}{1257} \sum_{\tau=1}^{1257} \Delta Y_{i,\tau} \Delta Y_{j,\tau};$$

- (d) Compute the eigenvalues (and eigenvectors) of $\hat{\Sigma}$ and store them in a descending order by $\{\hat{\lambda}_k, k=1,\ldots,p\}$.
- (e) Horn's Parallel Analysis: the following procedure describes a so-called Parallel Analysis of PCA using random permutations on data. Given the matrix $[\Delta Y_{i,t}]$, apply random permutations $\pi_i: \{1, \ldots, t\} \to \{1, \ldots, t\}$ on each of its rows: $\Delta \tilde{Y}_{i,\pi_i(j)}$ such that

$$[\Delta \tilde{Y}_{\pi(i),t}] = \begin{bmatrix} \Delta Y_{1,1} & \Delta Y_{1,2} & \Delta Y_{1,3} & \dots & \Delta Y_{1,t} \\ \Delta Y_{2,\pi_2(1)} & \Delta Y_{2,\pi_2(2)} & \Delta Y_{2,\pi_2(3)} & \dots & \Delta Y_{2,\pi_2(t)} \\ \Delta Y_{3,\pi_3(1)} & \Delta Y_{3,\pi_3(2)} & \Delta Y_{3,\pi_3(3)} & \dots & \Delta Y_{3,\pi_3(t)} \\ \dots & \dots & \dots & \dots & \dots \\ \Delta Y_{n,\pi_n(1)} & \Delta Y_{n,\pi_n(2)} & \Delta Y_{n,\pi_n(3)} & \dots & \Delta Y_{n,\pi_n(t)} \end{bmatrix}.$$

Define $\tilde{\Sigma} = \frac{1}{t}\Delta \tilde{Y}\cdot\Delta \tilde{Y}^T$ as the null covariance matrix. Repeat this for R times and compute the eigenvalues of $\tilde{\Sigma}_r$ for each $1\leq r\leq R$. Evaluate the p-value for each estimated eigenvalue $\hat{\lambda}_k$ by $(N_k+1)/(R+1)$ where N_k is the counts that $\hat{\lambda}_k$ is less than the k-th largest eigenvalue of $\tilde{\Sigma}_r$ over $1\leq r\leq R$. Eigenvalues with small p-values indicate that they are less likely arising from the spectrum of a randomly permuted matrix and thus considered to be signal. Draw your own conclusion with your observations and analysis on this data. A reference is: Buja and Eyuboglu, "Remarks on Parallel Analysis", Multivariate Behavioral Research, 27(4): 509-540, 1992.

3. *Finite rank perturbations of random symmetric matrices: Wigner's semi-circle law (proved by Eugene Wigner in 1951) concerns the limiting distribution of the eigenvalues of random symmetric matrices. It states, for example, that the limiting eigenvalue distribution of $n \times n$ symmetric matrices whose entries w_{ij} on and above the diagonal $(i \leq j)$ are i.i.d Gaussians $\mathcal{N}(0, \frac{1}{4n})$ (and the entries below the diagonal are determined by symmetrization, i.e., $w_{ji} = w_{ij}$) is the semi-circle:

$$p(t) = \frac{2}{\pi} \sqrt{1 - t^2}, \quad -1 \le t \le 1,$$

where the distribution is supported in the interval [-1,1].

- (a) Confirm Wigner's semi-circle law using MATLAB or R simulations (take, e.g., n = 400).
- (b) Find the largest eigenvalue of a rank-1 perturbation of a Wigner matrix. That is, find the largest eigenvalue of the matrix

$$W + \lambda_0 u u^T$$
,

where W is an $n \times n$ random symmetric matrix as above, and u is some deterministic unit-norm vector. Determine the value of λ_0 for which a phase transition occurs. What is the correlation between the top eigenvector of $W + \lambda_0 u u^T$ and the vector u as a function of λ_0 ? Use techniques similar to the ones we used in class for analyzing finite rank perturbations of sample covariance matrices.

[Some Hints about homework] For Wigner Matrix $W = [w_{ij}]_{n \times n}, w_{ij} = w_{ji}, w_{ij} \sim N(0, \frac{\sigma}{\sqrt{n}}),$ the answer is

eigenvalue is $\lambda = R + \frac{1}{R}$ eigenvector satisfies $(u^T \hat{v})^2 = 1 - \frac{1}{R^2}$