ALGO QCM

- 1. Un graphe ne peut pas être?
 - (a) Orienté
 - (b) Non orienté
 - (c) Désorienté
- 2. Un graphe partiel G' de G=<S,A> est défini par?
 - (fat) <S,A'> avec A' ⊆ A
 - (b) $\langle S', A \rangle$ avec $S' \subseteq S$
 - (c) $\langle A', S' \rangle$ avec $A' \subseteq A$ et $S' \subseteq S$
- 3. Dans un graphe non orienté, s'il existe une arête x-y pour tout couple de sommet $\{x,y\}$ le graphe est?
 - (a) complet
- AD
- (b) partiel
- (c) parfait
- (d) connexe
- 4. Dans un graphe non orienté connexe $G=\langle S,A\rangle$, Le sous-graphe connexe maximal $G'=\langle S',A\rangle$ est une composante connexe du graphe G?
 - (a) vrai
 - (b) faux
- 5. Calculer la fermeture transitive d'un graphe sert à?
 - (a) Déterminer si un graphe est fortement connexe
 - (b) Déterminer les composantes connexes d'un graphe
 - (c) Déterminer si un graphe est complet
- 6. Si Suff[i] retourne le numéro d'ordre suffixe de rencontre d'un sommet, dans la forêt couvrante associée au parcours en profondeur d'un graphe orienté G, les arcs x→y tels que Suff[x] est inférieur à Suff[y] dans la forêt sont appelés?
 - (a) Arcs couvrants
 - (b) Arcs en arrière
 - (c) Arcs croisés
 - (d) Arcs en Avant
- 7. Dans l'arborescence couvrante associée au parcours en profondeur d'un graphe non orienté connexe, la racine R est un point d'articulation si?
 - (a) R possède 1 fils
 - (b) R possède au moins 2 fils
 - (c) R possède au moins 3 fils
 - (d) R possède log N fils avec N la taille de l'arbre

- 8. Quel algorithme de plus court chemin admet des coûts quelconques?
 - (a) Bellman
 - (6) Dijkstra.
 - (c) Aucun des deux *
 - (d) Les deux
- 9. Un Arbre de recouvrement d'un graphe permet d'obtenir les plus courts chemins entre tous les couples de sommets de ce graphe?
 - (a) Faux
 - (b) Vrai
- 10. Dans la détermination d'un ARPM, l'algorithme de PRIM maintient la connexité à chaque étape?
 - (a) Faux
- (Vrai
 - (c) ça dépend

QCM N°14

lundi 18 avril 2011

Question 11

Supposons que (f_n) converge simplement vers f sur I, que tous les f_n sont continues sur I et que f est discontinue sur I. Alors

a. (f_n) converge uniformément vers f sur I

 \overline{h} \overline{h} ne converge pas uniformément vers f sur I

c. on ne peut rien dire sur la convergence uniforme de (f_n) vers f sur I

Question 12

Soit (f_n) la suite de fonctions définie pour tout $x \in [0,1]$ par $f_n(x) = \frac{ne^x}{e^x + n}$. Alors

= 1+2

a. (f_n) converge simplement vers la fonction nulle sur [0,1]

G $\widehat{\mathfrak{b}}_{f_n}$) converge simplement vers la fonction $f: x \mapsto 1$ sur [0,1]

e. (f_n) converge simplement vers la fonction $f: x \mapsto e^x$ sur [0,1]

d. rien de ce qui précède

Question 13

Soit (f_n) une suite de fonctions quelconque convergeant simplement vers une fonction f sur \mathbb{R} tel que pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$,

 $|f_n(x) - f(x)| \le \frac{x}{n+1}$

Alors

a. (f_n) converge uniformément vers f sur $\mathbb R$

b. (f_n) ne converge pas uniformément vers f sur $\mathbb R$

on ne peut rien dire sur la convergence uniforme de (f_n) vers f sur $\mathbb R$

Question 14

Supposons que $\{f_n\}$ converge simplement vers f sur I. Supposons de plus qu'il existe une suite numérique (x_n) à valeurs dans I telle que $(f_n(x_n) - f(x_n))$ se tend pas vers 0 lorsque $n \to +\infty$. Alors

a. (f_n) converge uniformément vers f sur I

b. (f_n) ne converge pas uniformément vers f sur I

c. en ne peut rien dire sur la convergence uniforme de (f_a) vers f sur I

Question 15

Soit (f_n) la suite de fonctions définie pour tout $x \in [0,1]$ par $f_n(x) = \frac{ne^x}{e^x + n^2}$ Alors $\frac{1}{\sqrt{n^2}} + \frac{10^n}{\sqrt{n^2}} + \frac{10^n}{\sqrt{n^2}}$ (a.) converge simplement vers la fonction nulle sur [0,1]

b. (f_n) converge simplement vers la fonction $f: x \mapsto 1$ sur [0,1]

c. (f_n) converge simplement vers la fonction $f: x \mapsto e^x \text{ sur } [0,1]$

d. rien de ce qui précède

Question 16

Soit (f_n) ne convergeant pas uniformément vers la fonction nulle sur I. Alors

c. rien de ce qui précède

a. Σ In the converge pas uniformément sur I CVN => CVU AB b. Es ne converge pas normalement sur s Zh CVU => {1 CVS0

Question 17

Soit \ for convergeant normalement sur I. Alors

MG a. Σ fα converge absolument sur I

b. \(\sum_f_n\) converge uniformément sur I

c. rieu de ce qui précède

Question 18

Soit $\sum f_n$ convergeant simplement sur I. Alors $\sum f_n$ converge uniformément sur I si et seulement si

a. (f_n) converge uniformément vers la fonction nulle sur I $2 \int_{\Gamma} CUU \implies (f_n) CUU \implies f_n CUU \implies f_n$

c. rien de ce qui précède

Question 19

Soit $\sum f_n$ convergeant uniformément sur I. Alors

a. $\sum f_n$ converge absolument sur I

b. $\sum f_n$ converge normalement sur I

(c.) rien de ce qui précède

CUN => CUO => CUS

Question 20

Soit (f_n) convergeant simplement vers f sur I telle que (f_n) ne converge pas uniformément vers f sur I.

a. il peut exister $J\subset I$ tel que (f_n) converge uniformément vers f sur J.

b. il peut exister une fonction g distincte de f telle que (f_n) converge uniformément vers g sur I

c. rien de ce qui précède

Q.C.M de Physique

- 21) L'expérience de Davisson et Germer montre que la diffusion des électrons est maximale lorsque l'angle de diffusion est ;
 - Deux fois plus important que l'angle d'incidence 0

Egale à l'angle d'incidence θ.

- e) Deux fois moins important que l'angle d'incidence θ
- 22) La diffraction des électrons à travers une fente à permis de :
 - a) Montrer l'aspect corpusculaire des électrons

Vérifier la loi de Bragg

- Montrer le comportement ondulatoire des électrons
- 23) La longueur d'onde de De Broglie $\lambda_0 = \frac{h}{mV}$ s'exprime en fonction de l'énergie cinétique E comme :

a)
$$\lambda_0 = \frac{h}{2mE}$$

c)
$$\lambda_n = \frac{mh}{\sqrt{2.E}}$$

24) A l'aide de la longueur d'onde de De Broglie le 4 ième postulat de Bohr

L = mrV = nh, se réécrit comme :

a)
$$2\pi s = n\lambda_0$$
 (condition de résonance)
b) $= n\lambda_0$ (condition de résonance)

(b) =
$$n\lambda_0$$
 (condition de résonance)

c)
$$r = \frac{n}{\lambda_0}$$
 (condition de résonance)

- 25) Le microscope électronique est plus performant, car la longueur de De Broglie associée aux électrons est :
 - Va inférieure à celle de la lumière
 - b) du même ordre de grandeur que celle de la lumière
 - c) supérieure à celle de la lumière

- 26) Le principe d'incertitude d'Heisenberg résulte:
 - a) de l'aspect corpusculaire
 - b) du comportement ondulatoire des particules
 - c) La grande vitesse des particules
- 27) En mécanique quantique, l'état dynamique d'une particule est définit par :
 - a) la probabilité de présence dans une région donnée
 - b) la longueur d'onde λ_D associée à la particule
 - c) la fonction d'onde ψ
 - 28) Parmi les postulats de la mécanique quantique, la condition de normalisation s'exprime par :

a)
$$\iiint_{espace} |\psi|^2 |.d\tau| = 0$$

b)
$$\iiint_{espace} |\psi|^2 |.d\tau| = 1$$

c)
$$\int_0^{r_0} |\psi|^2 d\tau = 1$$

- 29) L'équation de Schrödinger permet le calcul de :
 - a) l'énergie potentielle E_p et la fonction d'onde Ψ
 - b) l'énergie totale E et la fonction d'onde Ψ
 - c) la fonction d'onde Y uniquement
 - 30) Pour une particule libre dans un puits de potentiel de largeur a, la fonction d'onde Ψ(x) vérifie:

a)
$$\Psi(x=a) > 0$$

b)
$$\Psi(x=a) < 0$$

c)
$$\Psi(x=a) = 0$$

QCM Electronique

Soit le montage ci-contre :

Q1. Quel est le mode de fonctionnement de l'AOP?

- a- Mode saturé.
- Mode linéaire
- c- Tout dépend du signe de v1 et de v2.
- d- On ne peut pas déterminer le mode de fonctionnement de l'AOP.

Q2. La tension de sortie v_s vaut :

$$b - v_2 - v_1$$

$$d - (v_1 + v_2)$$

Q3. Ce montage est un montage :

a- Soustracteur b- Sommateur

- c- Suiveur
- d- Aucune de ces réponses

Soit le montage ci-contre :

Q4. Quel est le mode de fonctionnement de PAOP?

a- Mode saturé.

- c- Tout dépend du signe de ve.
- d- On ne peut pas déterminer le mode de fonctionnement de l'AOP.

Q5. Si v_e est un signal sinusoïdal, alors, le signal de sortie est :

- a- Une sinusoïde de même fréquence que v_e .
- b- Un signal carré de même période que v_e .
- c- Un signal continu
- d- Un signal triangulaire de même période que v_e .

- Q6. Ce montage est un montage :
 - a- Inverseur
 - b- Comparateur à 1 seuil
 - Soit le montage suivant :
 - Q7. Quel est le mode de fonctionnement de l'AOP?
 - a- Mode saturé.
 - b- Mode linéaire
 - (c-) Tout dépend du signe de ve. ?
 - d- On ne peut pas déterminer le mode de fonctionnement de l'AOP.

d- Comparateur à 2 seuils

- Q8. Ce montage est un montage:
 - a- Inverseur
 - b- Comparateur à 1 seuil

c- Suiveur

c- Suiveur

- d- Comparateur à 2 seuils
- Le sigle anglo-saxon désignant un convertisseur analogique numérique est :
 - (DAC
 - b- ANC

- c- NAC
 - d- ADC
- Q10. Un signal analogique est un signal:
 - a- Continu à valeurs réelles
 - b- Continu à valeurs entières

- c- Discret à valeurs réelles
- d- Discret et quantifié

Quelles valeurs prendront les flags N, Z, C et V après l'addition suivante : Q11. SFFFF+SFFFF (opération sur 2 octet)

a- N=0	(b-) N=1	c- N=0	d- N=0
Z=0	$\bigcup_{Z=0}$	Z=1	Z=1
C=0	C=1	C=1	C=1
V=0	V=0	V=0	V=1
×		*	×

Quelle opération arithmétique réalise le décalage logique suivant :

Q13. Quelle instruction ne modifie pas le registre A_0 ?

a-
$$MOVE.B - (A_0), D_0$$

$$(b-MOVE.B - 1(A_0), D_0$$

Q14. Quel élément ne fait pas partie d'un microprocesseur?

- a-)Obi-Wan Kenobi
- b- Le séquenceur.
- c- Les registres généraux.
- d- L'ALU.

Q15. Choisir l'affirmation correcte:

- Une exception est un évènement fortuit ou non qui provoque l'abandon du Itraitement en cours.
 - b- Une exception est un évènement d'origine interne uniquement.
 - c- Une exception est un évènement d'origine externe uniquement.
 - d- Une anomalie d'exécution n'est pas une exception.

Q16. Choisir l'affirmation correcte :

- a-) Il existe des exceptions programmées
- b- Une exception s'exécute en mode utilisateur.
- c- A l'issue du traitement d'une exception, on ne peut pas reprendre l'exécution de programme en cours au moment où elle s'est produite.
- d- Une demande issue d'un périphérique n'est pas une exception.

Q17. Une interruption est:

- a- Une exception programmée
- b- Une exception d'origine interne uniquement.
- c- Une exception d'origine externe.
- d- Une anomalie d'exécution n'est pas une exception.
- Q18. Le 68000 permet l'association directe de 199 traitements distincts aux demandes d'interruption, selon :
 - a- 2 modes qui dépendent du périphérique d'où émane la demande
 - b- 1 seul mode
 - c- 199 modes différents (1 mode par demande)
 - d- Aucune de ces réponses.
- Q19. Quelle est la différence entre un sous-programme et une exception de type TRAP?
 - a- Il n'y a pas de différence.
 - b- Le sous-programme s'exécute en mode superviseur.
 - (G) L'exception de type TRAP s'exécute en mode superviseur.
 - d- Aucune de ces réponses.

QUO, Quelle instruction peut-on utiliser pour revenir d'un TRAP?

a- RENURN

b- RTE

c- BSR

d- RTS

Q20. L' Erreur Bus est :

- a- Une exception d'origine interne.
- b- Une interruption.

- c- Une exception d'origine externe.
- d- Aucune de ces réponses.