Seat	
No.	

[5558]-105

				F.E.	EXAM	INAT	TON,	2019)				(
			BASI	C ELI	ECTRI	CAL	ENGI	NEE	RIN	G			3C
(2015 PATTERN)													
Time	: 1	Гwо	Hours					M	axin	num	Ma	rks	: 50
<i>N.B.</i>	: —	(i)	Answer Q. 7 <i>o</i>			2, 6] . 3 or	· Q.	4, (Q. 5	or	Q. 6	and
	((ii)	Neat d	iagram	s mus	st be	drawn	wh	erev	er ne	ecess	ary.	
	(i	iii)	Figures	to th	e righ	\mathbf{t} ind	icate	full	mark	KS.			
	(iv)	Use of	Non-p	rogran	nmabl	e scier	ntific	calo	culato	or is	allo	wed.
	1	(v)	Assume	suita	ble da	ta, if	neces	sary.					
Q.1	a)		ne resistan tance of th							-		n	[06]
	b)	curre	the inducent of 10 A ormly reven	in the	coil is sv		-						[06]
			1	<i></i>		OR							
Q. 2	a)		in the e			coeffic	cient of	cou	pling	betw	een/	two	[06]
C	b)	degre	e temperatee Celsius 0 °C and [i	at 20 °C									[06]
Q.3 a)		Obtain the emf equation of 1-phase transformer.								[06]			
7	b)		in the exp	ression f	or RMS	value	of altern	ating	currer	nt in te	erms c	of its	[07]

Q.4	a)	A 80 kVA, 1000/250 V, 1-ph 50 Hz transformer has iron loss of 800 W and full load copper loss 1200 W. Find [i] efficiency at full load and power factor = 08 lag. [ii] efficiency at half load and power factor = 1 lag.	[06]		
	b)	The alternating current expression is given by $i = 14.14 \sin(100 \pi t)$ Amp. Determine: [i] maximum value of current [ii] RMS value of current [iii] average value of current [iv] form factor [v] peak factor [vi] power consumed when it flows through resistance of 10Ω .	[07]		
Q.5 a)		Obtain the expression for power, when voltage $v = V_m$ sin ωt is applied across R-L series circuit. Draw the circuit diagram and phasor diagram.			
	b)	State the relation between [i] phase voltage and line voltage [ii] phase current and line current incase of balanced delta connected 3-ph load. Using above relations, obtain the expressions for 3 -ph active power and	[06]		
		3-ph reactive power.			
		OR			
Q.6	a)	What is series resonance?. Obtain the expression for resonant frequency.	[06]		
	b)	The series circuit having resistance 5 Ω and capacitance 150 μF is connected to 1-phase, 200 V, 50 Hz AC supply. Calculate -	[06]		
		[i] capacitive reactance Xc [ii] impedance [iii] current drawn by the circuit [iv] power factor [v] Active power and [vi] reactive power.			
Q. 7	a)	Derive the equations to convert Delta connected resistive circuit into equivalent star circuit.	[06]		
	b)	Find equivalent resistance between AB for the circuit shown in fig. 7.b	[07]		

Fig. 7 (b)

Q.8 a) For the circuit shown in fig. 8.a find the current flowing through PQ [06] using Kirchhoff's laws.

b) Write down the steps to find current through load resistance R_L using [07] Thevenin theorem for the circuit shown in fig. 8.b.

Fig. 8 (b)