Wiyninger, Caleb CSCI 2114: Tashfeen's Data Structures September 8, 2025

Homework 2

Let's remind ourselves of the asymptotic order notation. Let f(x) and g(x) be functions of a positive x.

$$f(x) = O(q(x))$$

when there is positive constant *c* such that,

$$f(x) \le cq(x)$$

for all $x \ge n$. Function f is then stated as big oh of g. Similarly, f is big omega of g, i. e.,

$$f(x) = \Omega(q(x))$$

when there exist positive constants c, n such that for all $x \ge n$ we have,

$$f(x) \ge cq(x)$$

Lastly, if f is both big-O and big- Ω of g,

$$\Omega(q(x)) = f(x) = O(q(x))$$

Then such a tight bound is stated as f is big- Θ of g,

$$f(x) = \Theta(g(x))$$

Question 1. Consider the following Java subroutine,

```
public static void conditionalWork(int n) {
    for (int i = 0; i < n; i++)
        if (Math.random() < 0.5)
        taskA()
    else
        taskB()
}</pre>
```

- 1) If on a certain machine the function taskA() takes 2 seconds on each call in the loop and the function taskB() takes 4 seconds then for n = 10, what is the total number of *expected* seconds taken by the subroutine public static void conditionalWork(int n)?
- 2) The subroutine conditionalWork(int n) is ran on a much faster machine reducing the time taken by taskA() on each call down to $\frac{1}{25}$ th of a second and taskB() now takes $\frac{1}{5}$ th of a second. For n=10, what is the new total number of seconds *expected* by the subroutine conditionalWork(int n)?
- 3) Assume that for any arbitrary n, taskA() takes $\log(n)$ steps while taskB() takes $2n^2$ steps. Let T(n) be the total number of steps *expected* by conditionalWork(int n), what is T(n)?
- 4) What is the best expected asymptotic runtime complexity written as $T(n) = \Omega(q(n))$?
- 5) What is the *worst expected asymptotic* runtime complexity written as T(n) = O(q(n))?
- 6) If taskB() took $4 \log(n)$ steps, what is the *tight expected asymptotic* runtime complexity written as $T(n) = \Theta(g(n))$?

```
1 - 30s

2 - 1.2s

3 - T(n) = n/2(log(n)) + n/2(2n^2) = nlogn/2 + n^3

4 - T(n) = \Omega(g(n)) = nlogn/2

5 - T(n) = O(g(n)) = n^3

6 - T(n) = \Theta(g(n)) = nlogn
```

¹Sometimes also referred to as the Bachmann-Landau notation.

Question 2. In the code snippet bellow, we see two ways of getting the tenth place digit of a Java int n. Give the runtime complexity of each method using the big oh notation. Justify your answer.

```
System.out.println(n % 10);
System.out.println(String.valueOf(n).charAt(String.valueOf(n).length() - 1));
/*
String.valueOf(n) // loops through and converts
.charAt( // accesses char at index
String.valueOf(n) // loops through and converts
.length() -1
)
//
O(1) - always 1 step
O(n) - loop for n
```

Question 3. Consider the following functions,

$$a(x) = 2(x^3 + 1)(x^2 - 1) + 2$$

$$b(x) = 2x^2$$

$$\alpha(x) = x^2$$

$$\beta(x) = \pi x^2$$

- 1) Observe that b(x) = O(a(x)) because $b(x) \le a(x)$ past a certain x = n. What is the value of n in this case?
- 2) Observe that $\beta(x) = O(\alpha(x))$ because there exists a c such that $\beta(x) \le c\alpha(x)$ for all x > 0. What is the value of c in this case?

```
// a(x) = 2x^5 - 2x^3 + 2x^2
1 - 1
2 - \pi
```

Question 4. Given in listing

refsort is a Java subroutine that sorts an array of non-negative Java integers in ascending order.

```
public static void sortIntegers (int[] toSort) {
        int i = 0, j = 0, k = 0, max = Integer.MIN_VALUE;
2
        for (i = 0; i < toSort.length; i ++) // O(n)
3
            max = toSort[i] > max ? toSort [i] : max;
        int[] counts = new int[max + 1];
        for (i = 0; i < toSort.length; i ++) // O(n)
6
            counts[toSort[i]]++;
7
        for (i = 0; i < counts.length; i++) // O(n) because the inner loop runs (int)
8
       counts[i] so its considered a constant
            for (j = 0; j < counts[i]; j++)</pre>
9
                toSort[k++] = i;
10
   }
11
12
   /*
13
      arr = 9, 6, 7, 3, 5, 2, 1
14
      counts.length = arr.length+1
15
16
      i 0
      j 0
17
     k 0
18
      max = -inf
19
20
     // 1st step
21
22
     for i in arr
```

```
if i > max
24
         max = i
     // set max to largest number in arr, (9)
25
26
27
28
     // 3rd step
     for i in arr
29
30
        counts[arr[i]+1]
      // stores how many of each number is in arr,
31
     // if there are two nines, then counts[9] = 2
32
33
     // 4th step
34
     for i in counts // for each el in counts[]
35
        for j in i // for number i
36
          k + 1 // increment k
37
          arr[k] = i // arr at k = 1
38
     // for every number in counts,
39
     // add the index as many times as the element to arr, k is the index
40
41
     // if there are two ones and one 3,
42
      then arr[0] = 1, arr[1] = 1, and arr[2] = 3
44
```

Assume that the length of the input parameter int[] toSort is n + 1, the max(toSort) $\leq n$ and that toSort has unique elements. Let T(n) be the worst and the average case complexity of the algorithm's runtime and S(toSort) be the worst case complexity of the memory-space.

```
    What is T(n)?
        3n

    What are O(T(n)), O(S(toSort))?
        O(n)
        O(n)
```

3) Look up and state the big-O of the average case complexity of Java's built-in Arrays.sort(int[]). Is this better than O(T(n)) from the previous step of this question?

```
Arrays.sort(int[]) = O(nlogn)
O(n) is less complex then O(nlogn)
```

Question 5. Given bellow is the Java implementation of the sieve of Eratosthenes. This particular implementation marks all the composite numbers as true since Java allocates false to all the elements of a newly created boolean arrays.

```
public static void eratosthenes(boolean[] toSieve) {
        toSieve[0] = true;
2
        toSieve[1] = true;
3
        for (int i = 2; i < Math.sqrt(toSieve.length); i++) // O(sqrt(n))</pre>
4
            if (!toSieve[i])
5
                 for (int j = i*i; j < toSieve.length; j += i)</pre>
7
                     toSieve[j] = true;
   }
9
   /*
10
    for i in n // O(sqrt(n))
11
        for i*i in n // O(n)
12
   */
```

Give an upper-bound on the runtime complexity of this particular implementation of the sieve of Eratosthenes. The better upper-bound you give, the more credit you get. Justify your answer.

 $O(n\sqrt{n})$ since the outer loop cannot run more than the $\sqrt{n} * n$

Submission Instructions

Submit a PDF file with your answers.

Oklahoma City University, Petree College of Arts & Sciences, Computer Science