See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231571027

Calix[4]arene Salenes: A Bifunctional Receptor for NaH2PO4

ARTICLE *in* THE JOURNAL OF ORGANIC CHEMISTRY · JULY 1994

Impact Factor: 4.72 · DOI: 10.1021/jo00092a031

100
3 AUTHORS, INCLUDING:

CITATIONS

Willem Verboom
University of Twente
465 PUBLICATIONS 10,660 CITATIONS

SEE PROFILE

David N. Reinhoudt

READS

Calix[4]arene Salenes: A Bifunctional Receptor for NaH₂PO₄

Dmitry M. Rudkevich, Willem Verboom, and David N. Reinhoudt*

Laboratory of Organic Chemistry, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received February 14, 1994

Introduction

Calix[4]arenes are important building blocks in supramolecular chemistry.^{1,2} They can be selectively functionalized both at the phenolic OH groups (lower rim) and at the para positions of the phenol rings (upper rim).³ The calixarene platform provides unique possibilities to organize several binding sites in an array complementary to a potential guest. Selective calixarene-based receptors for cations⁴ and neutral molecules⁵ have been synthesized in the past decade. Very recently the first representatives of calixarene-containing anion receptors have been reported.⁶

Previously we reported that neutral metalloclefts and metallomacrocycles containing both an immobilized Lewis acidic UO_2 -center and amido C(O)NH units as additional binding sites are excellent receptors for anions with a high selectivity for dihydrogen phosphate $H_2PO_4^{-.7}$ In the present paper we report, in addition to the synthesis of a new representative of a UO_2 -containing anion receptor based on a calix[4]arene, the first example of a neutral calix[4]arene-based bifunctional receptor⁸ which contains

(1) Gutsche, C. D. Calixarenes, Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: London, 1989; Vol. 1.

(2) Vicens, J.; Böhmer, V. Calixarenes: A Versatile Class of Macrocyclic Compounds; Topics in Inclusion Science; Kluwer Academic Press: Dordrecht, 1991; Vol. 3.

(3) (a) van Loon, J.-D.; Verboom, W.; Reinhoudt, D. N. Org. Prep. Proc. Int. 1992, 24, 437. (b) van Dienst, E.; Iwema Bakker, W. I.; Engbersen, J. F. J.; Verboom, W.; Reinhoudt, D. N. Pure Appl. Chem. 1993, 65, 387.

(4) For recent examples on cation recognition by calixarene based receptors see: (a) Shinkai, S.; Fujimoto, K.; Otsuka, T.; Herman, H. L. J. Org. Chem. 1992, 57, 1516. (b) Arnaud-Neu, F.; Barrett, G.; Harris, S. J.; Owens, M.; McKervey, M. A.; Schwing-Weill, M.-J.; Schwinte, P. Inorg. Chem. 1993, 32, 2644. (c) Brzozka, Z.; Lammerink, B.; Reinhoudt, D. N.; Ghidini, E.; Ungaro, R. J. Chem. Soc., Perkin Trans. 2 1993, 1037. (d) Beer, P. D.; Martin, J. P.; Drew, M. G. B. Tetrahedron 1992, 48, 9917. (e) Cobben, P. L. H. M.; Egberink, R. J. M.; Bomer, J. G.; Bergveld, P.; Verboom, W.; Reinhoudt, D. N. J. Am. Chem. Soc. 1992, 114, 10573.

(5) For recent examples of recognition of neutral molecules by calixarene-based hosts see: (a) Gutsche, C. D.; See, K. A. J. Org. Chem. 1992, 57, 4527. (b) van Loon, J.-D.; Janssen, R. G.; Verboom, W.; Reinhoudt, D. N. Tetrahedron Lett. 1992, 33, 5125. (c) Murakami, H.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1993, 1533.

(6) (a) Beer, P. D.; Dickson, C. A. P.; Fletcher, N.; Goulden, A. J.; Grieve, A.; Hodacova, J.; Wear, T. J. Chem. Soc., Chem. Commun. 1993, 828. (b) Morzherin, Y.; Rudkevich, D. M.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1993, 58, 7602. (c) Beer, P. D.; Chen, Z.; Goulden, A. J.; Graydon, A.; Stokes, S. E.; Wear, T. J. Chem. Soc., Chem. Commun. 1993, 1834.

(7) (a) Rudkevich, D. M.; Stauthamer, W. P. R. V.; Verboom, W.; Engbersen, J. F. J.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1992, 114, 9671. (b) Rudkevich, D. M.; Verboom, W.; Brzozka, Z.; Palys, M. J.; Stauthamer, W. P. R. V.; van Hummel, G. J.; Franken, S. M.; Harkema, S.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Am. Chem. Soc., in press.

(8) Only a few examples of macrocyclic bifunctional receptors are known: (a) Schmidtchen, F. P. J. Org. Chem. 1986, 51, 5161. (b) Reetz, M. T.; Niemeyer, C. M.; Harms, K. Angew. Chem., Int. Ed. Engl. 1991, 30, 1472. (c) Rudkevich, D. M.; Brzozka, Z.; Palys, M.; Visser, H. C.; Verboom, W.; Reinhoudt, D. N. Angew. Chem., Int. Ed. Engl. 1994, 33, 467.

both anionic and cationic binding sites and is able to complex simultaneously anionic and cationic species.

Results and Discussion

The synthesis of receptors 8a,b is depicted in Scheme 1. Calix[4] arene diester 1 was prepared by alkylation of unsubstituted calix[4]arene⁹ with ethyl bromoacetate in the presence of 1 equiv of potassium carbonate as a base in refluxing acetonitrile in 88% yield. Nitration of 1 with 65% HNO₃ in a mixture of acetic acid and CH₂Cl₂ gave the dinitrocalix[4]arene 2 in 51% yield with the expected¹⁰ selectivity on the more reactive phenol unit of 1. Alkylation of 2 with ethyl bromoacetate and sodium carbonate as a base in refluxing acetonitrile afforded tetraester 3 in 70% yield. The ¹H NMR spectrum of 3 shows only two doublets (4.93 and 3.35 ppm, J = 13.9 Hz) for the methylene bridge protons which proves the "cone" conformation of the calix[4] arene skeleton. Subsequent reduction of 3 with SnCl₂·2H₂O in refluxing ethanol gave the corresponding diaminocalix[4] arene 4b in 55% yield.

Reaction of 1,3-diaminocalix[4]arenes 4a, 11b with chloroacetyl chloride in the presence of Et₃N in CH₂Cl₂ gave the corresponding 1,3-bis(chloroacetamido)calix[4]arenes 5a,b in 69 and 64% yields, respectively. Bisaldehydes 6a,b were obtained by alkylation of 2-(2-allyloxy)-3-hydroxybenzaldehyde¹² with 5a,b in the presence of potassium carbonate in 59 and 64% yields, respectively. Subsequent palladium-catalyzed deallylation 13 of calixarenes 6a,b afforded bisaldehydes 7a,b in quantitative yield which were used without purification for the cyclization step.

Reaction of bisaldehydes 7a,b with cis-1,2-diaminocyclohexane¹⁴ and UO₂(OAc)₂·2H₂O in refluxing ethanol under high dilution conditions gave the receptors 8a,b which were isolated in 9 and 15% yields, respectively, after column chromatography. The moderate yields of compounds 8a,b compared with known UO₂-containing metallomacrocycles^{12,15} may be explained by the lack of a suitable template in the cyclization step. The absorptions in the ¹H NMR spectra at 9.34 and 9.48 ppm and in the IR spectra at 1615 and 1617 cm⁻¹ for compounds 8a and 8b, respectively, proved imino bond formation. The presence of the UO₂ moiety is in agreement with the uranium—oxygen vibrations in the IR spectra at 895— 905 cm⁻¹. Because of the "cone" conformation of the calix-[4]arene unit in the ¹H NMR spectra there are only two doublets (4.30 and 3.12 ppm for 8a and 4.80 and 3.19 ppmfor 8b) for the methylene bridge protons.

Compounds 8a,b both contain the combination of a UO₂—Lewis acidic center and C(O)NH groups which is known to act as an anionic binding site.⁷ In addition,

⁽⁹⁾ Gutsche, C. D.; Lin, L.-G. *Tetrahedron* 1986, 42, 1633. (10) van Loon, J.-D.; Arduini, A.; Coppi, L.; Verboom, W.; Pochini, A.; Ungaro, R.; Harkema, S.; Reinhoudt, D. N. *J. Org. Chem.* 1990, 55, 5639.

⁽¹¹⁾ Timmerman, P. Thesis, University of Twente, 1994. (12) van Staveren, C. J.; van Eerden, J.; van Veggel, F. C. J. M.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1988, 110, 4994.

⁽¹³⁾ Yamada, T.; Goto, K.; Mitsuda, Y.; Tsuji, J. Tetrahedron Lett. 1987, 28, 4557.

⁽¹⁴⁾ We have chosen the cis isomer because in the chair conformer of the cyclohexyl moiety one nitrogen atom is located in the equatorial and another in the axial position. According to a CPK model, the nitrogens in these positions give after cyclication the desired cavity for immobilization of the uranyl cation.

⁽¹⁵⁾ van Doorn, A. R.; Schaafstra, R.; Bos, M.; Harkema, S.; van Eerden, J.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1991, 56, 6083.

 $OR_1 OR_1 OR_2$ 1: $R_1 = CH_2C(O)OEt$, $R_2 = R_3 = H$ 2: $R_1 = CH_2C(O)OEt$, $R_2 = H$, $R_3 = NO_2$

3: $R_1 = R_2 = CH_2C(O)OEt$, $R_3 = NO_2$

Chart 1

calixarene 8b contains also four preorganized ester fragments which are known to complex alkali metal cations with a high selectivity for Na⁺. A study of the binding ability of receptors 8a,b shows that they both selectively bind dihydrogen phosphate H₂PO₄^{-.17} From ¹H NMR dilution experiments with Bu₄N⁺H₂PO₄⁻ in DMSO- d_6 association constants $K_{\rm ass}$ of $3.5 \times 10^2 \, {
m M}^{-1}$ and $3.9 \times 10^2 \, \mathrm{M}^{-1}$ were calculated for 8a and 8b, respectively. The contribution of the C(O)NH-H₂PO₄ hydrogen bond interaction to the overall anion complexation can be clearly seen even in polar DMSO- d_6 from a significant downfield shift of the C(O)NH protons of ca. 0.4 ppm upon complexation. Only slight shifts were observed upon dilution experiments with tetrabutylammonium salts of Cl-, HSO₄⁻, and ClO₄⁻ anions which indicates their weak binding $(K_{ass} \leq 10 \text{ M}^{-1})$.

In the negative FAB mass spectra of the 1:1 complexes of $\bf 8a$ and $\bf 8b$ with $\bf Bu_4N^+H_2PO_4^-$, prepared by mixing of host and guest in MeCN, intense peaks corresponding to $[\bf 8a+H_2PO_4^-]^-$ and $[\bf 8b+H_2PO_4^-]^-$, respectively, were observed. Moreover, in the positive FAB mass spectrum of the 1:1 complex of $\bf 8b$ and $\bf NaH_2PO_4$, prepared by mixing of host and guest in MeCN- $\bf H_2O$, 10:1, an intense peak corresponding to $[\bf 8b+Na^+]^+$ was observed, while the corresponding negative FAB mass spectrum of the same sample yielded an intense peak for $[\bf 8b+H_2PO_4^-]^-$, which proves the complexation of both cation and anion in one bifunctional receptor molecule.

Currently we are applying calix[4]arene-based bifunctional receptors for selective separation of alkali metal phosphates by transport through supported liquid membranes.¹⁸

Experimental Section

Melting points are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ with Me₄Si as internal standard unless stated otherwise. Fast atom bombardment (FAB) mass spectra were obtained with *m*-nitrobenzyl alcohol as a matrix. All solvents were purified by standard procedures. Petroleum ether refers to the fraction with bp 60–80 °C. All other chemicals were analytically pure and were used without further purification. Unsubstituted calix[4]arene⁹ and compound 4a¹¹ were prepared according to literature procedures. All reactions were carried out under an argon atmosphere.

In the workup procedures the (combined) organic layers were washed with water $(2\times)$ and dried with MgSO₄, whereupon the solvent was removed under reduced pressure. The presence of

⁽¹⁶⁾ Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.; Harris, S. J.; Kaitner, B.; Lough, A. J.; McKervey, M. A.; Marques, E.; Ruhl, B. L.; Schwing-Weill, M. J.; Seward, E. J. Am. Chem. Soc. 1989, 111, 8681.

⁽¹⁷⁾ Only weak binding was obtained for the divalent HPO_4^{2-} anion.

^{(18) (}a) Nijenhuis, W. F.; Buitenhuis, E. G.; de Jong, F.; Sudhölter, E. J. R.; Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113, 7963. (b) Nijenhuis, W. F.; van Doorn, A. R.; Reichwein, A. M.; de Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113, 3607.

solvent in the analytical samples was confirmed by ¹H NMR spectroscopy.

25,27-Bis[(ethoxycarbonyl)methoxy]-26,28-dihydroxy-calix[4]arene (1). A mixture of calix[4]arene 9 (4.02 g, 9.5 mmol), K₂CO₃ (1.44 g, 10.4 mmol), and bromoethyl acetate (2.1 mL, 19 mmol) in acetonitrile (150 mL) was refluxed for 18 h. After filtration the solvent was removed, and the residue was dissolved in CH₂Cl₂ (100 mL) and washed with water (2 × 100 mL). After evaporation of CH₂Cl₂ the crude product was recrystallized from MeOH to give pure 2 as a colorless solid: yield 88%; mp 166–168 °C (methanol); ¹H NMR δ 7.61 (s, 2 H), 7.13, 7.01 (d, 8 H, J = 8.0 Hz), 6.82, 6.78 (t, 4 H, J = 8.0 Hz), 4.81 (s, 4 H), 4.57, 3.41 (d, 8 H, J = 13.6 Hz), 4.43 (q, 4 H, J = 7.2 Hz), 1.32 (t, 6 H, J = 7.2 Hz); ¹³C NMR δ 168.9, 153.0, 152.4 (s), 133.2, 129.2, 128.5, 128.2 (d), 125.6, 119.1 (s), 72.5, 61.4, 31.5 (t), 14.2 (q); MS-FAB m/z 597.7 [(M + H)+, calcd 597.7]. Anal. Calcd for C₃₆H₃₆O₈: C, 72.47; H, 6.08. Found: C, 72.35; H, 6.00.

25,27-Bis[(ethoxycarbonyl)methoxy]-26,28-dihydroxy-5,-17-dinitrocalix[4]arene (2). To a solution of diester 1 (3.93 g, 6.6 mmol) and acetic acid (13.6 mL, 235 mmol) in CH₂Cl₂ (100 mL) was added 65% HNO₃ (23.3 mL, 335 mmol) at 0 °C. The reaction mixture was stirred at this temperature for 15 min, whereupon water (100 mL) was added. The organic layer was separated, washed with water ($3 \times 100 \text{ mL}$), and evaporated to give product 2 as a yellow solid after recrystallization from toluene: yield 51%; mp 242-244 °C (toluene); ¹H NMR δ 8.97 (s, 2 H), 8.02 (s, 4 H), 7.00 (d, 4 H, J = 7.8 Hz), 6.87 (t, 2 H, J = 7.8Hz), 4.71 (s, 4 H), 4.50, 3.53 (d, 8 H, J = 13.4 Hz), 4.44 (q, 4 H, J = 7.0 Hz), 1.31 (t, 6 H, J = 7.0 Hz); ¹⁸C NMR δ 168.7, 159.2, 152.2, 139.9, 131.8 (s), 129.9, 129.0 (d), 128.2 (s), 125.3 (d), 72.4, 61.8, 31.3 (t), 14.2 (q); MS-FAB m/z 687.6 [(M + H)⁺, calcd 687.7]. Anal. Calcd for $C_{36}H_{34}N_2O_{12}$: C, 62.97; H, 4.99; N, 4.08. Found: C, 62.80; H, 5.24; N, 3.84.

25,26,27,28-Tetrakis[(ethoxycarbonyl)methoxy]-5,17-dinitrocalix[4]arene (3). A mixture of calix[4]arene 2 (3.5 g, 5.1 mmol), Na₂CO₃ (5.6 g, 53 mmol), and bromoethyl acetate (5.7 mL, 51 mmol) in acetonitrile (150 mL) was refluxed for 48 h. After filtration the solvent was removed, and the residue was dissolved in CH₂Cl₂ (100 mL) and vigorously stirred with water for 15 h in order to remove sodium salts. After evaporation of CH₂Cl₂ the crude product was recrystallized from MeOH to give pure 3 as a colorless solid: yield 70%; mp 180 °C (EtOH); ¹H NMR δ 7.57 (s, 4 H), 6.7–6.5 (m, 6 H), 4.93, 3.35 (d, 8 H, J = 13.9Hz), 4.86, 4.63 (s, 8 H), 4.20 (q, 8 H, J = 7.0 Hz), 1.29 (t, 12 H, J = 7.0 Hz); ¹³C NMR δ 169.7, 169.4, 161.3, 161.3, 155.5, 143.0 (s), 136.3, 133.2 (d), 129.2 (s), 123.9 (d), 71.5, 71.3, 70.0, 60.8, 31.4 (t), 14.2, 14.1 (q); MS-FAB m/z 859.3 [(M + H)+, calcd 859.3]. Anal. Calcd for $C_{44}H_{46}N_2O_{16}CH_3OH$: C, 60.67; H, 5.66; N, 3.14. Found: C, 60.80; H, 5.34; N, 3.14.

5,17-Diamino-25,26,27,28-tetrakis[(ethoxycarbonyl)methoxy]calix[4]arene (4b). A solution of 1,3-dinitro tetraester 3 (3.4 g, 4 mmol) and $SnCl_2 \cdot 2H_2O$ (8.9 g, 40 mmol) in ethanol (100 mL) was refluxed for 6 h. After the reaction mixture was poured onto ice it was adjusted to pH 8. After extraction with CH_2Cl_2 (2 × 100 mL), the organic layer was stirred with water for 5 h. Evaporation of the solvent gave 4b as an orange oil: yield 55%; ¹H NMR δ 6.70-6.50 (m, 6 H), 5.99 (s, 4 H), 5.83, 3.12 (d, 8 H, J = 13.9 Hz), 4.72, 4.63 (s, 8 H), 4.20 (q, 8 H, J = 7.0 Hz), 3.21 (br s, 4 H), 1.30 (t, 12 H, J = 7.0 Hz); ¹³C NMR δ 170.4, 170.3, 156.0, 149.2, 141.3, 135.2, 134.7 (s), 128.5, 122.7, 115.8 (d), 71.5, 71.2, 60.5, 60.4, 31.5 (t), 14.2 (q); MS-FAB m/z 799.3 [(M + H)+, calcd 799.3]. Anal. Calcd for $C_{44}H_{50}N_2O_{12}\cdot0.25CH_2Cl_2$: C, 64.79; H, 6.16; N, 3.41. Found: C, 64.42; H, 5.93; N, 3.34.

General Procedure for the Preparation of 5a,b. Chloroacetyl chloride (1.6 mL, 20 mmol) was added dropwise to a solution of 1,3-diamino compound 4a,b (10 mmol) and Et_8N (2.8 mL, 20 mmol) in CH_2Cl_2 (75 mL) at rt. After the reaction mixture was stirred for 1 h, the organic layer was washed with 0.5 N HCl (2 × 50 mL) and water (2 × 50 mL) and evaporated. Column chromatography [neutral Al_2O_3 (activity I), ethyl acetate] gave pure 5a,b.

5,17-Bis(2-chloroacetamido)-25,26,27,28-tetrapropoxy-calix[4]arene (5a): yield 69%; mp 155–157 °C (ethyl acetate/petroleum ether); ¹H NMR δ 7.94 (br s, 2 H), 6.69 (s, 4 H), 6.6–6.4 (m, 6 H), 4.43, 3.12 (d, 8 H, J = 13.9 Hz), 4.10 (s, 4 H), 3.9–3.7 (m, 8 H), 2.0–1.6 (m, 8 H), 1.05 (t, 12 H, J = 7.2 Hz); ¹³C NMR δ 170.0, 153.6, 137.7, 134.2, 130.8, 129.2 (s), 128.7, 122.2, 121.3 (d), 61.6, 42.4, 34.0, 31.6 (t), 14.9 (q); MS-FAB m/z 774.3 (M⁺,

calcd 774.3). Anal. Calcd for C₄₄H₅₂Cl₂N₂O₆: C, 68.12; H, 6.76; N, 3.61. Found: C, 68.00; H, 6.57; N, 3.59.

5,17-Bis(2-chloroacetamido)-25,26,27,28-tetrakis[(eth-oxycarbonyl)methoxy]calix[4]arene (5b): yield 64%; mp 190-192 °C (ethyl acetate/petroleum ether); ¹H NMR δ 8.10 (br s, 2 H), 6.85 (s, 4 H), 6.7-6.6 (m, 6 H), 4.89, 3.23 (d, 8 H, J = 13.5 Hz), 4.71, 4.69 (s, 8 H), 4.21 (q, 8 H, J = 7.0 Hz), 4.09 (s, 4 H), 1.25 (t, 12 H, J = 7.0 Hz); ¹³C NMR δ 170.0, 163.7, 155.6, 153.5, 135.5, 134.0, 131.2, 129.2 (s), 128.8, 123.2, 121.3 (d), 71.4, 71.3, 60.6, 42.4, 31.5 (t), 14.2 (q); MS-FAB m/z 950.3 (M+, calcd 950.3). Anal. Calcd for C₄₈H₅₂Cl₂N₂O₁₄: C, 60.61; H, 5.47; N, 2.94. Found: C, 60.65; H, 5.65; N, 2.67.

General Procedure for the Preparation of 6a,b. A mixture of 5a,b (1 mmol), 2-(2-allyloxy)-3-hydroxybenzaldehyde¹² (0.36 g, 2 mmol), K_2CO_3 (0.28 g, 2 mmol), and potassium iodide (0.17 g, 1 mmol) in acetonitrile (150 mL) was refluxed for 12 h. After filtration the solvent was removed and the crude product was purified by column chromatography [neutral Al_2O_3 (activity I), ethyl acetate].

5,17-Bis[[3-formyl-2-(2-propenyloxy)phenoxy]acetamido]-25,26,27,28-tetrapropoxycalix[4]arene (6a): yield 59%; mp 100-101 °C (CH₂Cl₂/petroleum ether); ¹H NMR δ 10.34 (s, 2 H), 8.14 (br s, 2 H), 7.39 (d, 2 H, J = 7.5 Hz), 7.2-7.0 (m, 4 H), 6.94 (s, 4 H), 6.6-6.4 (m, 6 H), 6.1-6.0 (m, 2 H), 5.5-5.0 (m, 4 H), 4.6-4.5 (m, 4 H), 4.53 (s, 4 H), 4.50, 3.16 (d, 8 H, J = 13.7 Hz), 3.85 (q, 8 H, J = 7.0 Hz), 2.0-1.8 (m, 8 H), 1.00, 0.95 (t, 12 H, J = 7.0 Hz); ¹³C NMR δ 189.3 (d), 164.9, 156.3, 154.1, 151.1, 150.5, 135.8, 134.6 (s), 132.7 (d), 130.6, 130.3 (s), 128.2, 125.0, 122.3, 121.5, 120.9, 120.1 (d), 119.0, 76.8, 76.1, 68.8, 31.1, 23.2, 23.1 (t), 10.3, 10.2 (q); MS-FAB m/z 1059.2 (M⁺, calcd 1059.3). Anal. Calcd for C₆₄H₇₀N₂O₁₂: C, 72.57; H, 6.66; N, 2.64. Found: C, 72.36; H, 6.55; N, 2.56.

25,26,27,28-Tetrakis[(ethoxycarbonyl)methoxy]-5,17-bis-[3-formyl-2-[(2-propenyloxy)phenoxy]acetamido]calix[4]-arene (6b): yield 64%; mp 69-71 °C (CH₂Cl₂/petroleum ether); ¹H NMR δ 10.33 (s, 2 H), 8.29 (br s, 2 H), 7.43 (d, 2 H, J = 7.5 Hz), 7.2-7.0 (m, 4 H), 6.99 (s, 4 H), 6.7-6.5 (m, 6 H), 6.1-6.0 (m, 2 H), 5.5-5.1 (m, 4 H), 4.91, 3.25 (d, 8 H, J = 13.4 Hz), 4.76, 4.74 (s, 8 H), 4.65-4.60 (m, 4 H), 4.54 (s, 4 H), 4.22 (q, 8 H, J = 7.0 Hz), 1.29 (t, 12 H, J = 7.0 Hz); ¹³C NMR δ 189.3 (d), 170.1, 170.0, 165.0, 155.6, 153.3, 151.1, 150.8, 135.5, 134.0 (s), 132.7 (d), 131.2, 130.6 (s), 128.6, 125.1, 123.2, 121.6, 121.2, 120.2 (d), 118.9, 76.2, 71.4, 68.8, 60.6, 31.6 (t), 14.2 (q); MS-FAB m/z 1235.4 (M+, calcd 1235.3). Anal. Calcd for C₆₈H₇₀N₂O₂₀: C, 66.12; H, 5.71; N, 2.27. Found: C, 65.97; H, 5.82; N, 2.34.

General Procedure for the Deallylation¹³ of Aldehydes 6a,b. Formation of Aldehydes 7a,b. A mixture of 6a,b (3 mmol), $Pd(OAc)_2$ (20 mg, 0.1 mmol), Ph_3 (125 mg, 0.5 mmol), Et_3N (3.7 g, 37 mmol), and HCOOH (1.65 g, 37 mmol) in 80% aqueous EtOH (60 mL) was refluxed for 1 h. The solvent was evaporated, and the total water volume was adjusted at 100 mL. The product was extracted with CH_2Cl_2 (3 × 100 mL) and washed with water (2 × 100 mL). The solvent was removed to give 7a,b as yellow oils which were used without purification due to slow decomposition.

5,17-Bis[(3-formyl-2-hydroxyphenoxy)acetamido]-25,26,-27,28-tetrapropoxycalix[4]arene (7a): yield 79%; ¹H NMR δ 9.91 (s, 2 H), 8.90 (br s, 2 H), 7.1-6.5 (m, 16 H), 4.41 (s, 4 H), 4.37, 3.17 (d, 8 H, J = 13.4 Hz), 3.8-3.6 (m, 8 H), 2.1-1.9 (m, 8 H), 1.0-0.9 (m, 12 H); MS-FAB m/z 978.3 [(M + H)+, calcd for $C_{58}H_{60}N_2O_{12}$ 978.1].

25,26,27,28-Tetrakis[(ethoxycarbonyl)methoxy]-5,17-bis-[(3-formyl-2-hydroxyphenoxy)acetamido]calix[4]arene (7b): yield 84%; 1 H NMR δ 9.93 (s, 2 H), 8.62 (br s, 2 H), 7.27 (d, 2 H, J = 7.5 Hz), 7.20, 7.17 (d, 4 H, J = 7.5 Hz), 6.9-6.8 (m, 6 H), 6.53 (s, 4 H), 4.96, 3.30 (d, 8 H, J = 13.4 Hz), 4.81, 4.74, 4.42 (s, 12 H), 4.25-4.20 (m, 8 H), 1.34 (t, 12 H, J = 7.0 Hz); MS-FAB m/z 1154.4 [(M - H)⁻, calcd for $C_{62}H_{62}N_2O_{20}$ 1154.1].

General Procedure for the Synthesis of UO₂-Salenes 8a,b. Solutions of bisaldehydes 7a,b (1.3 mmol) and cis-1,2-cyclohexanediamine (0.14 g, 1.3 mmol) in EtOH (50 mL) were added separately to a refluxing solution of UO₂(OAc)₂·2H₂O (0.56 g, 1.3 mmol) in EtOH (500 mL) for 2 h, whereupon refluxing was continued for 1 h. After the solution was cooled, the solvent was evaporated. The residue was dissolved in CH₂Cl₂ (150 mL) and stirred with water for 15 h. After evaporation of CH₂Cl₂ the crude mixture was purified by column chromatography (SiO₂, CH₂Cl₂/ethyl acetate, 5:1) to give 8a,b as orange solids.

5,17-[[[2,2'-[1,2-Cyclohexanediylbis[nitrilomethyl(2-hydroxy-3,1-phenylene)oxy]]bis(acetamido)](2-)]dioxouranium]-25,26,27,28-tetrapropoxycalix[4]arene (8a): yield 9%; mp 283-285 °C (acetonitrile); ¹H NMR (DMSO- d_6 /CDCl₃, 8:1) δ 9.45 (br s, 2 H), 9.34 (s, 2 H), 7.31, 7.26 (d, 4 H, J = 8.0 Hz), 7.1-6.8 (m, 10 H), 6.45 (t, 2 H, J = 8.0 Hz), 4.81 (q, 4 H, J = 7.0 Hz), 4.55-4.50 (m, 2 H), 4.30, 3.12 (d, J = 13.5 Hz), 4.00, 3.61 (t, 8 H, J = 7.0 Hz), 2.3-2.0 (m, 8 H), 1.00, 0.97 (t, 12 H, J = 7.0 Hz); MS-FAB m/z 1325.7 (M⁺, calcd 1325.3). Anal. Calcd for $C_{64}H_{70}N_4O_{12}U$ ·CH₃CN: C, 58.02; H, 5.39; N, 5.13. Found: C, 58.32; H, 5.56; N, 5.15.

5,17-[[[2,2'-[1,2-Cyclohexanediylbis[nitrilomethyl(2-hydroxy-3,1-phenylene)oxy]]bis(acetamido)](2-)]dioxouranium]-25,26,27,28-tetrakis[(ethoxycarbonyl)methoxy]calix-[4]arene (8b): yield 15%; mp 235-238 °C (EtOH); ¹H NMR (DMSO- d_6) δ 9.70 (br s, 2 H), 9.48 (s, 2 H), 7.43, 7.36 (d, 4 H, J)

= 8.0 Hz), 7.2-6.9 (m, 10 H), 6.65 (t, 2 H, J = 8.0 Hz), 5.24 (s, 4 H), 4.80, 3.19 (d, 8 H, J = 13.6 Hz), 4.69, 4.46 (s, 8 H), 4.7-4.6 (m, 2 H), 4.25, 4.10 (q, 8 H, J = 7.0 Hz), 2.4-2.3 (m, 2 H), 1.9-1.6 (m, 6 H), 1.30, 1.21 (t, 12 H, J = 7.0 Hz); MS-FAB m/z 1501.1 (M⁺, calcd 1501.3). Anal. Calcd for C₆₈H₇₀N₄O₂₀U: C, 54.40; H, 4.70; N, 3.73. Found: C, 54.39; H, 4.86; N, 3.55.

Determination of Association Constants. The measurements were performed by ^{1}H NMR titration experiments in DMSO- d_{6} at 298 K using a constant host concentration of 4 mM and a varying guest concentration of 0.3–30 mM. As a probe the chemical shift of the C(O)NH signal was used. The K_{ass} values were calculated by nonlinear regression as described in ref 19. The estimated error is <5%.

.

⁽¹⁹⁾ de Boer, J. A. A.; Reinhoudt, D. N.; Harkema, S.; van Hummel, G. J.; de Jong, F. J. Am. Chem. Soc. 1982, 104, 4073.