Laboratorio 5

Héctor Díaz C.

1.

2.

A continuación como viaja el paquete ICMP al hacer ping

FLUJO DE PAQUETE

MODELO OSI

A medida que los paquetes avanzan, podrás identificar cómo se procesan en cada capa del modelo OSI: • Capa 1 (Física): Los datos se transmiten a través de los cables.

- Capa 2 (Enlace de Datos): El Switch utiliza las direcciones MAC para reenviar el paquete.
- Capa 3 (Red): El Router utiliza direcciones IP para dirigir los paquetes.
- **Capa 4 (Transporte):** El protocolo ICMP es manejado a nivel de transporte, enviando paquetes de control.
- Capas 5-7: Las capas superiores se encargan de la sesión y presentación de la información, aunque en el caso de ping, no se usa aplicación específica aparte del protocolo ICMP.
- 3. Completar la tabla de análisis: o Completa la siguiente tabla basándote en los resultados del análisis de los paquetes capturados:

No. de Paquet	Protocol o	Capa OSI	Fuente IP	Destino IP	Descripci ón
e					
1	ICMP	3	192.168.1	192.168.1.3	Ping de
		RED	.2		PC1 a
					PC2
2	ARP	2	192.168.1	DEST	Resolució
		(Enla	.2	ADDR:00D0.FFCC.	n de IP a
		ce de		B3B7	MAC
		Datos			
)			

Paso 6: Comparación entre OSI y TCP/IP

- 1. Identificación de capas en el modelo TCP/IP: o Al analizar los paquetes ICMP, observa cómo las capas del modelo TCP/IP también están presentes.
- o La capa de transporte en TCP/IP (en este caso, ICMP) corresponde a las capas 3 y 4 del modelo OSI.

Modelo OSI	Modelo	Análisis para ICMP
	TCP/IP	
7. Aplicación	4. Aplicación	ICMP no es un protocolo de aplicación (no
		transporta datos de usuario).

6.		No aplica.
Presentación		
5. Sesión		No aplica.
4. Transporte	3.	ICMP no usa TCP/UDP (opera
	Transporte	directamente sobre IP).
3. Red	2. Internet	✓ ICMP pertenece aquí (se encapsula en
		paquetes IP, sin puertos).
2. Enlace	1. Acceso a	✓ Ethernet/Frame (MAC) encapsula el
	Red	paquete IP que lleva ICMP.
1. Física		✓ Bits (transmisión eléctrica/óptica del
		frame).

2. Completar la tabla de comparación: o Completa la siguiente tabla con las capas equivalentes entre los modelos OSI y TCP/IP:

Modelo OSI	Función Principal	Modelo	Protocolos Comunes
		TCP/IP	
7. Aplicación	Interfaces de	4.	HTTP, HTTPS, FTP,
	usuario, servicios	Aplicación	SMTP, POP3, IMAP,
	de red		DNS, DHCP, SNMP,
			Telnet, SSH
6.	Traducción de	(Incluida en	TLS/SSL, JPEG,
Presentación	datos, cifrado,	Aplicación)	MPEG, ASCII,
	compresión		EBCDIC, GIF
5. Sesión	Control de	(Incluida en	RPC, NetBIOS, PPTP
	sesiones,	Aplicación)	
	establecimiento y		
	terminación		
4.	Comunicación	3.	TCP, UDP
Transporte	extremo a extremo,	Transporte	
	control de flujo y		
	errores		
3. Red	Enrutamiento de	2. Internet	IP, ICMP, IGMP,
	datos entre		ARP, RARP, Ipsec
	dispositivos y redes		
2. Enlace de	Control de acceso	1. Acceso a	Ethernet, Wi-Fi (IEEE
datos	al medio, detección	la red	802.11), PPP, Frame
	de errores		Relay, ATM, HDLC

1. Física	Transmisión de bits a través del medio físico	`	RJ-45, cables UTP/STP, fibra óptica, RS-232, DSL,
			módems, señales
			eléctricas/ópticas

Actividad Complementaria

Laboratorio Práctico: Entendiendo los Modelos OSI y TCP/IP

1. Investigación teórica:

o Realiza una breve investigación sobre las 7 capas del Modelo OSI y completa la siguiente tabla, describiendo la función principal de cada capa y ejemplos de dispositivos y protocolos utilizados en ellas.

Capa	Nombre de	Función Principal	Protocolos /
	la Capa		Dispositivos
7	Aplicación	Provee servicios de red	Protocolos: HTTP,
		directamente al usuario o	HTTPS, FTP, SMTP,
		aplicación.	POP3, IMAP, DNS,
			DHCP Dispositivos: PC, servidor web
6	Presentación	Traduce, cifra o	Protocolos: TLS/SSL,
		comprime los datos para	JPEG, GIF, MPEG,
		la capa de aplicación.	ASCII, EBCDIC
			Dispositivos: PC,
			servidor de medios
5	Sesión	Establece, mantiene y	Protocolos: NetBIOS,
		termina sesiones entre	RPC, PPTP Dispositivos:
		aplicaciones.	Gateway, servidor de
			aplicaciones
4	Transporte	Controla el flujo de	Protocolos: TCP, UDP
		datos, asegura entrega y	Dispositivos: Gateway,
		maneja errores extremos	firewall, balanceadores
		a extremo.	de carga
3	Red	Determina la ruta de los	Protocolos: IP, ICMP,
		datos, direccionamiento	IGMP, IPsec, ARP
		lógico y enrutamiento.	Dispositivos: Router

2	Enlace de	Proporciona transmisión	Protocolos: Ethernet, Wi-
	Datos	libre de errores entre	Fi (IEEE 802.11), PPP,
		nodos conectados	Frame Relay
		directamente.	Dispositivos: Switch,
			bridge
1	Física	Transmite bits a través	Protocolos: RS-232,
		del medio físico (señales	DSL, IEEE 802.3
		eléctricas, ópticas o de	Dispositivos: Cable UTP,
		radio).	módem, hub, tarjetas
			NIC

2. Asociación de capas con dispositivos:

o Con base en la infraestructura de la red a la que están conectadas las computadoras

(incluyendo routers, switches y computadoras), asocia cada dispositivo con la capa del

Modelo OSI que mejor se corresponda con su función principal.

Dispositivo	Capa del	Justificación / Función Principal
	Modelo OSI	
Computadora	Capa 7 –	Ejecuta aplicaciones de red e interactúa
	Aplicación	directamente con el usuario.
Servidor	Capa 7 –	Proporciona servicios de red (web,
	Aplicación	correo, DNS, etc.).
Router	Capa 3 – Red	Enruta paquetes entre redes diferentes
		usando direcciones IP.
Switch	Capa 2 –	Envía tramas entre dispositivos dentro
(gestionado)	Enlace de	de la misma red local usando
	Datos	direcciones MAC.
Switch (capa 3)	Capa 3 – Red	Realiza funciones de encaminamiento
		además de las de un switch tradicional.
Hub	Capa 1 –	Repite señales eléctricas sin procesar
	Física	información, transmite bits.

Tarjeta de red	Capas 1 y 2 –	Se encarga de la conexión física y
(NIC)	Física / Enlace	direccionamiento MAC para la
		comunicación local.
Firewall	Capa 3/4 –	Filtra tráfico basado en IP (capa 3) y
	Red /	puertos/protocolos como TCP/UDP
	Transporte	(capa 4).
Punto de acceso	Capa 2 –	Gestiona la comunicación inalámbrica
(Wi-Fi)	Enlace de	dentro de una red local.
	Datos	
Módem	Capa 1 –	Modula y demodula señales para
	Física	permitir la transmisión de datos sobre
		medios como líneas telefónicas o
		coaxiales.

1. Simulación y captura de tráfic□:

- o Abre Wireshark en tu computadora y selecciona la interfaz de red activa.
- o Inicia una captura de paquetes mientras realizas las siguientes tareas en otra terminal
- o consola: * Ejecuta el comando ping hacia un servidor o una dirección IP (ejemplo: ping

google.com o ping 8.8.8.8). A Ejecuta el comando tracert (Windows) o traceroute (Linux/Mac) para la misma dirección IP o dominio.

2. Análisis del tráfic□ capturad□:

o Detén la captura de Wireshark y analiza los paquetes capturados. Identifica los paquetes ICMP correspondientes a los comandos ping y tracert. Localiza los paquetes de la capa de transporte (TCP o UDP) y determina qué

puerto y protocolo están usando. * Describe qué capas del modelo OSI están presentes en los paquetes

capturados y qué información puedes ver de cada una de ellas.

o Completa la siguiente tabla con el análisis de algunos de los paquetes capturados.

# de Paquete Protocolo Capa OSI Fuente Destino Puerto Descripcio	# de Paquete	Protocolo	Capa OSI	Fuente	Destino	Puerto	Descripción
--	--------------	-----------	----------	--------	---------	--------	-------------

Parte 3: Comparación entre OSI y TCP/IP

1. Investigación teórica:

o Investiga el modelo **TCP/IP** y compáralo con el modelo OSI. Completa la siguiente tabla

mostrando las capas equivalentes en ambos modelos y algunos ejemplos de protocolos o servicios en cada una.

Modelo OSI	Función Principal	Modelo TCP/IP	Protocolos Comunes
7. Aplicación	Interfaces de	4.	HTTP, HTTPS, FTP,
	usuario, servicios	Aplicación	SMTP, POP3, IMAP,
	de red		DNS, DHCP, SNMP,
			Telnet, SSH
6.	Traducción de	(Incluida en	TLS/SSL, JPEG,
Presentación	datos, cifrado,	Aplicación)	MPEG, ASCII,
	compresión		EBCDIC, GIF
5. Sesión	Control de	(Incluida en	RPC, NetBIOS, PPTP
	sesiones,	Aplicación)	
	establecimiento y		
	terminación		
4.	Comunicación	3.	TCP, UDP
Transporte	extremo a extremo,	Transporte	

	control de flujo y		
	errores		
3. Red	Enrutamiento de	2. Internet	IP, ICMP, IGMP,
	datos entre		ARP, RARP, Ipsec
	dispositivos y redes		
2. Enlace de	Control de acceso	1. Acceso a	Ethernet, Wi-Fi (IEEE
datos	al medio, detección	la red	802.11), PPP, Frame
	de errores		Relay, ATM, HDLC
1. Física	Transmisión de bits	(Incluida en	RJ-45, cables
	a través del medio	Acceso a	UTP/STP, fibra óptica,
	físico	red)	RS-232, DSL,
			módems, señales
			eléctricas/ópticas

Análisis práctico:

o Analiza los paquetes capturados en la **Parte 2** e indica cómo las capas del modelo

TCP/IP se corresponden con las capas del modelo OSI.

• ¿Qué capa del modelo OSI se encarga de la entrega confiable de datos

Capa 4 – Transporte

Esta capa garantiza la entrega confiable de datos entre dispositivos extremos de la red.

Utiliza protocolos como TCP (Transmission Control Protocol), que asegura que los datos lleguen completos, en orden y sin errores mediante el uso de confirmaciones (ACK) y retransmisiones si es necesario.

o ¿Qué dispositivos de red operan en la capa 2 del modelo OSI□ Capa 2 − Enlace de Datos Dispositivos que operan en esta capa:

Switches (no gestionados o de capa 2): Redirigen tramas de datos basadas en direcciones MAC.

Bridges (puentes): Conectan segmentos de red y filtran tráfico por direcciones MAC.

Tarjetas de red (NIC): Funcionan parcialmente en capa 2 para el direccionamiento de tramas.

o ¿Cómo puedes identificar la capa de transporte (capa 4) al analizar un paquete capturado en Wireshark?

En **Wireshark**, puedes identificar la capa de transporte observando:

- El **protocolo** usado: busca **TCP** o **UDP** en la columna "Protocol".
- El **número de puerto**: cada segmento tendrá un puerto de origen y destino (por ejemplo, puerto 80 para HTTP, 443 para HTTPS, 53 para DNS).
- Los campos del encabezado de capa 4, como:
 - o Número de puerto de origen/destino.
 - o Número de secuencia y confirmación (en TCP).
 - o Indicadores de control (SYN, ACK, FIN en TCP).

o ¿Cuáles son las diferencias clave entre los modelos OSI y TCP/IP

Aspecto	Modelo OSI	Modelo TCP/IP
Número de capas	7 capas	4 capas
Estructura	Conceptual y detallada	Práctico y orientado a
		implementación
Separación de	Cada capa tiene funciones	Algunas capas combinan
funciones	específicas bien definidas	varias funciones
Uso real	Modelo de referencia	Arquitectura usada en
		Internet
Desarrollo	Por ISO (Organización	Por el Departamento de
	Internacional de	Defensa de EE.UU.
	Normalización)	
Capa de sesión y	Existen de forma	Están integradas en la
presentación	independiente	capa de aplicación