

SIMULATIONSINGENIEUR

Persönliche Angaben

Stephan-Jantzen-Ring, 18106 Rostock Germany 015758303163 akashkumaralfred@gmail.com

Links

Linked In

Fähigkeiten

ABAQUS

ANSYS Mechanical

ANSA

Hypermesh

Python

C, C++

Matlab

FEniCSx

Paraview

LaTeX

Git

MS Office

Hobbys

Drohnenfliegen, Joggen, Radfahren

Profil

Hochmotivierter Masterstudent im Bereich Computational Mechanics mit 1,5 Jahren Erfahrung in der nichtlinearen FEM, Materialpunktmodellierung und numerischen Simulationen. Versiert in C++, Python und MATLAB mit fundierter Expertise in der Entwicklung, Analyse und Optimierung von Finite-Elemente-Modellen. Leidenschaftlich engagiert in der FE-Modellierung, dem Design und der Optimierung in einem kollaborativen Umfeld – mit einer starken Bereitschaft, neue branchenspezifische Software schnell zu erlernen und anzuwenden.

Berufserfahrung

Berechnungsingenieur Praktikant, Liebherr GmbH, Rostock

APRIL 2025 - HEUTE

- Erstellung von 3D-CAD-Modellen in Creo für Kranbauteile
- FEM-Analysen (linear & nichtlinear) in ANSYS Mechanical zur Bewertung von Spannungen und Verformungen
- Durchführung von Lebensdaueranalysen gemäß FKM-Richtlinie
- Erstellung technischer Berichte zur Unterstützung der Konstruktion
- Enge Zusammenarbeit mit Entwicklung und Versuch

Erworbene Kenntnisse: Creo, ANSYS Mechanical, FEM-Analyse, FKM-Richtlinie, Berichtswesen, Teamarbeit, analytische Fähigkeiten

Wissenschaftlicher Mitarbeiter (HiWi), TU Bergakademie Freiberg, Freiberg

OKTOBER 2023 - NOVEMBER 2024

- Durchführung von Small-Punch-Tests zur Materialcharakterisierung
- Realitätsnahe FEM-Modellierung mit >85[®] % Übereinstimmung zu Experimenten
- Entwicklung eines Optimierungsverfahrens zur Ermittlung von Materialparametern
- Automatisierung der Datenauswertung zur Effizienzsteigerung
- Technische Dokumentation komplexer FEM-Subroutinen (Plastizität, Kriechen)

Verwendete Tools: ABAQUS, Python, MATLAB, LaTeX, Git

Ausbildung

Master of Science - Computational Materials Science, TU Bergakademie Freiberg, Freiberg

OKTOBER 2022

Relevante Inhalte: Kontinuumsmechanik, FEM, nichtlineare FEM, Bruchmechanik, Plastizität, High Performance Computing

Note: 2,02

Bachelors in Aeronautical Engineering, Anna University

Relevante Inhalte: Aerodynamik, Strukturmechanik, Antriebssysteme, Avionik, Flugtheorie, Flugsteuerungssysteme, Flugzeugwerkstoffe, Flugzeugwartung

Note: 8,24/10

Sprachen

Deutsch
Tamil

Projekte

Programmierung einer Extension zur Schweißnahtbewertung mittels Peak Stress Method (MasterArbeit), Liebherr Gmbh-Rostock

JUNI 2025 - HEUTE

- Erkennung von PSM-relevanten Kanten sowie übergroßen FE-Netzen (Mesh-Elementen)
- Erfassung und Auswertung von Peak-Spannungen zur Bestimmung der Ausnutzung
- Postprocessing zur Berechnung der Spannungskennwerte und Bewertung gemäß PSM
- Automatisierte Berichtserstellung mit Eingabeparametern, Ergebniskurven und Ausnutzungskennzahlen

Tools: ANSYS Workbench Extensions Programmierung, Python, Xml, ANSYS Mechanical.

Nichtlineare FEM-Analyse von Spannungsrisskorrosion

MAI 2024 - NOVEMBER 2024

- Kopplung von Mechanik, Phasenfeld und Diffusion zur Simulation von Risswachstum
- FEM-Auswertung der Dehnung an der Rissspitze mit FEniCSx
- Experimentelle Validierung (Zylinder- und Bleistiftelektrodentest)

Tools: Python, FEniCSx Module, Paraview, Gmsh.

Parallelisierte SIR-Simulation (MPI, OpenMP)

JANUAR 2025 - FEBRUAR 2025

01/2025 - 02/2025

- Entwicklung eines parallelisierten Simulationscodes für Infektionsmodelle
- Durchführung von Skalierungstests auf HPC-Clustern

Tools: MPI, C++, Python, OpenMP