

Modul TA.PR+SY **Zugmittelgetriebe**

2. Teil: Zahnriemengetriebe

Antriebstechnik

Transporttechnik

Lineartechnik

Hochschule Luzern Technik & Architektu

Inhalt

- Geschichte, Entwicklung und Trends
- Aufbau, Geometrie und Werkstoffe
- Getriebearten und Konstruktion
- Berechnung von Zahnriemengetrieben
- Vorspannung, Genauigkeit, Wirkungsgrad und Geräuschverhalten

Weiterführende Literatur:

- [1] Roloff / Matek; Maschinenelemente: Normung, Berechnung, Gestaltung; 22. Auflage, Verlag Vieweg, Wiesbaden 2015
- [2] Nagel T.; Zahnriemengetriebe: Eigenschaften, Normung, Berechnung, Gestaltung, Hanser Verlag, München 2008
- [3] *Perneder P.;* Handbuch Zahnriementechnik, Grundlagen, Berechnung, Anwendung, Springer Verlag, Berlin, Heidelberg 2009

Geschichte des Zahnriemens

- Der erste Zahnriemen wurde 1944 entwickelt und von der damaligen Firma Uniroyal (heute Gates) zum Patent angemeldet. (Polychloroprene)
 - 1964 Polyurethan Riemen
 - 1970 Halbrundzahnprofil (High Torque Drive HTD)
 - 2000 Aramid Zugstränge
 - 2007 Carbon Zugstränge

Auszug aus US Patent 2'397'312

Erste Zahnriemenanwendung in einer Nähmaschine [2]

© HSLU PR+SY_H16: Zahnriemengetriebe

3

Hochschule Luzern Technik & Architektur

Entwicklung und Trends

- Beispiel aus der aktuellen Zahnriemen-Entwicklung
 - Einbettung von Carbon-Fasern in ein Trägermaterial Patentanmeldung THE GATES CORPORATION, EP 0 841 500

Bild: Gates

Gates Poly Chain GT Carbon Zahnriemen als Fahrradantrieb verbaut in CH Fahrrad Marke Simpel

© HSLU PR+SY_H16: Zahnriemengetriebe

Bilder: Gates und Simpel

Hochschule Luzern

5

Zahnformen und Werkstoffe

Zahnformen

- Werkstoffe
 - Zugstränge: Glasfasern, Stahl, Aramid, Carbon
 - Trägermaterial: Polychloropren, Polyurethan
 - Überzug: Polyamidgewebe

15

Zahnprofile

Profilbezeichnung	Teilungs- kurzzeichen	Teilung in mm	Riemenprofil (nicht maßstäblich)
Trapezprofil nach	T2,5	2.500	
DIN 7721	T5	5.000	
	T10	10.000	±:=-::
	T20	20.000	\ / \ /
Trapezprofil	T2	2.000))
ăhnlich DIN 7721	M	2,032	
Trapezprofil nach	MXL	2.032	
DIN / ISO 5296 sowie	XXL	3,175	
DIN / ISO 5294	XL	5,080	
DET. 100 PER.	L	9.525	
	Н	12,700)
	XH	22.225	
	XXH	31,750	
Hochleistungsprofil	AT3	3.000	
Trapezform	AT5	5,000	
Hapeziolii	AT10	10.000	5
	AT20	20.000	
Hochleistungsprofil	HTD 3M	3,000	
Kreisform	HTD 5M	5,000	
(8M und 14M genormt	HTD 8M	8.000	±
ISO 13050 als H-System)	HTD 14M	14.000	\
150 15050 als H-5ystelli)	HTD 20M	20,000	\circ
Hochleistungsprofil	S 2M	2.000	
Parabolform	S 3M	3,000	
(8M und 14M genormt	S 4,5M	4,500	5
ISO 13050 als S-System)	S 5M	5.000	\ / \ /
200 10000 0000 0,00000,	S 8M	8.000	\bigcirc
	S 14M	14.000	
Hochleistungsprofil	GT 3M	3.000	
Parabolform	GT 5M	5.000	
	GT 8M	8.000	5 0 0
	GT 14M	14.000	
Hochleistungsprofil	ATP10	10,000	
Trapezform mit	ATP15	15,000	
Einkerbung		1111111	5 - 0
Hochleistungsprofil	RPP 3	3,000	
Parabolform mit	RPP 5	5,000	
Einkerbung	RPP 8	8,000	
(RPP8M und RPP14M	RPP 14	14,000	
genormt nach ISO 13050	OMEGA 2M	2.000	\ _ / \ _ /
als R-System)	OMEGA 3M	3,000	\sim
,	OMEGA 5M	5,000	
	OMEGA 8M	8,000	
	OMEGA 14M	14.000	

Übersicht über genormte und weitere ausgewählte Profile für Zahnriemen.

Es gibt eine Vielzahl verschiedenster Profilgeometrien und Teilungen. Nur ein kleiner Teil davon ist genormt.

© HSLU PR+SY_H16: Zahnriemengetriebe

Quelle: ifte, Dresden

16

Hochschule Luzern Technik & Architektur

Temperaturgrenzen und Lebensdauer von Zahnriemen

Einfluss der Riemenkomponenten auf die Riemenlebensdauer, [2]

Bauraumvergleich verschiedener Zahnriemen

Gummi HTD®	Gummi GT3	Poly Chain® GT2	Poly Chain [®] GT Carbon TM
14	14 P22/P64	14	14
0-1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Approximation of the second	Company of the Compan	P32/P64
53.020.000.0	200	22724	142/285
1/0	85	37	20
	HTD®	HTD® GT3 14 14 P32/P64 P32/P64 142/285 142/285	HTD® GT3 GT2 14 14 14 P32/P64 P32/P64 P32/P64 142/285 142/285 142/285

Bauraumvergleich Gates

© HSLU PR+SY_H16: Zahnriemengetriebe

19

Hochschule Luzern

Herstellung der Zahnriemen

Polyurethan-Zahnriemen

Polyamidgewebe

Endlos-Zahnriemen

Verschweisste Meterware

Giessform mit aufgespultem Zugstrang auf dem Formkern

Hochschule Luzern Technik & Architektur

Zahnscheiben

Parameter am Zahnriemenrad

Ausführungsbeispiele von Zahnscheiben

Übliche Werkstoffe für Zahnscheiben sind Stähle, Aluminium höherer Festigkeit, Gusseisen, Sintermetalle und Kunststoffe.

Ausführung von Bordscheiben und Befestigungsarten gebördelt, mit Hinterschnitt gebördelt, geschraubt.

Beispiele von Zahnriemengetrieben

Typische Einsatzgebiete: Antriebstechnik, Lineartechnik, Transporttechnik

Zahnriemengetriebe in Textil- und Werkzeugmaschine

Bilder: [2]

© HSLU PR+SY_H16: Zahnriemengetriebe

23

Hochschule Luzern Technik & Architektur

Ursachen von Problemen bei Zahnriemenantrieben

Quelle: Gates

Ursachen von Antriebsproblemen

Fluchtungsfehler

Falsche Vorspannung

Quelle: Gates

© HSLU PR+SY_H16: Zahnriemengetriebe

26

Getriebearten und Konstruktionsweisen

Hochschule Luzern Technik & Architektur

Quelle: Mulco

Getriebearten und Konstruktionsweisen

Quelle: Mulco

© HSLU PR+SY_H16: Zahnriemengetriebe

28

Hochschule Luzern Technik & Architektur

Getriebearten und Konstruktionsweisen

Bauarten von Linearantrieben

Positionier- und Wiederholgenauigkeiten von Linearantrieben im Vergleich

Quelle [2]

© HSLU PR+SY_H16: Zahnriemengetriebe

Zahnriemen in der Transporttechnik

In der Transporttechnik werden überwiegend Polyurethan-Zahnriemen eingesetzt:

- leicht in Meterware herstellbar
- einfache Verbindung zu Endlosriemen
- beliebige Nockenformen können aufgeschweisst werden

Bilder: Mulco

© HSLU PR+SY_H16: Zahnriemengetriebe

30

Hochschule Luzern Technik & Architektu

Spann- und Führungseinrichtungen

- Durchmesser der Spannrolle ≥ kleinste Zahnscheibe.
- Breite der Spannrolle ≥ der eingesetzten Zahnscheiben.
- Spannrolle im Lostrum anordnen.
- Beim Einsatz als Innenspannrollen können bei Zähnezahlen > 40, zylindrische Rollen eingesetzt werden.
- Beim Einsatz aussen mit Gegenbiegung, immer zylindrische Rollen einsetzen.

Spannrolle aussenliegend

Spann- und Dämpfungselement Roll-Ring

32

Selbstführende Zahnriemen

 Spurzahnriemen TK, ATK

 Versetzte Verzahnung SFAT

 Bogenverzahnung BAT

Bilder: Mulco

© HSLU PR+SY_H16: Zahnriemengetriebe

33

Hochschule Luzern Technik & Architektu

Grössenverhältnisse zur Grobauslegung von Zahnriemenantrieben

	Wellenzapfen d	Zahnteilung t Riemenbreite b Zahnscheiber durchmesser		
Verhältnis	1	0.5 x d	12 x d	2.5 5 x d
Beispiel	20	T 10	25 mm	80 mm

Beispiel einer ausgewogenen Zahnscheibenkonstruktion

Bei den zunehmend leistungsfähigeren Riemenbauarten werden die Werte für t, b und d_0 in Bezug zum Wellendurchmesser tendenziell kleiner, d.h. der erforderliche Bauraum für den Riementrieb wird kleiner.

Ovalradtechnik

Quelle: [2]

Funktionsprinzip der Ovalradtechnologie

Durch exzentrische Riemenräder oder durch ovale Formen können ungleichmässig übersetzende Getriebe gebaut werden.

Die durch den Ovalradantrieb erzeugten Riemenkräfte können gezielt zur Verminderung von Kraftspitzen in Antrieben eingesetzt werden.

Mit der erstmals im Jahr 2004 von Audi eingesetzten Technologie können die Kräfte im Nockenwellenantrieb bis zu 35% reduziert werden. Quelle: ifte

© HSLU PR+SY_H16: Zahnriemengetriebe

35

Hochschule Luzern Technik & Architektur

Berechnung von Zahnriemengetrieben

- Allgemeingültige Berechnung für Zahnriemenantriebe:
 - Parameteraufbereitung
 - · Auswahl des Zahnriemens
 - Grobauslegung
 - Nachrechnung

Bei der Berechnung von Zahnriemen ist grundsätzlich nach den für die entsprechende Bauart geltenden Herstellerangaben vorzugehen.

In der VDI-Richtlinie 2758 werden die Berechnungsverfahren für Riemengetriebe dargelegt.

Die Auswahlempfehlungen für verschiedene Riementypen basieren auf dieser Richtlinie.

Auslegung von Zahnriemengetrieben

Vorgehensschritte

- 1. Parameteraufbereitung und bestimmen der Berechnungsleistung P_B (Betriebsbedingungen, Übersetzungen, Drehzahlen, Geometrische Randbedingungen, Spannsystem etc.)
- 2. Auswahl der Zahnriementeilung
- 3. Auswahl Zahnscheibenkombination, Zahnriemenlänge, Achsabstand
- 4. Bestimmung der Zahnriemenbreite (Zahntragfähigkeit)
- 5. Kontrolle der Seilzugfestigkeit (Polyurethanriemen)
- 6. Kontrolle der Biegewilligkeit (Stahlzugstränge)
- 7. Berechnung der Riemenvorspannung
- 8. Bei Linearantrieben Berechnung auf Steifigkeit

© HSLU PR+SY_H16: Zahnriemengetriebe

37

Hochschule Luzern Technik & Architektur

Auslegung von Zahnriemengetrieben

- Berechnungsleistung $P_B = P_N * K_A$
- Auswahl des Riemenprofils und der Riementeilung (gemäss Auswahldiagramme der Riemenhersteller)

Polyurethanriemen: TB 16-18

Polychloropreneriemen: Beispiel Gates

Auslegung von Zahnriemengetrieben

- Auswahl Zahnscheibenkombination, Zahnriemenlänge, Achsabstand
 - Zähnezahlen Zahnscheiben

$$i = \frac{n_1}{n_2} = \frac{z_2}{z_1} = \frac{d_2}{d_1}$$

• Zähnezahl Zahnriemen

$$X = \frac{2 * e}{t} + \frac{z_1 + z_2}{2} + \left(\frac{z_2 - z_1}{2 * \pi}\right)^2 * \frac{t}{e}$$

Achsabstand

$$e \approx \frac{1}{4} \left(L - \frac{t}{2} (z_1 + z_2) \right) + \frac{1}{4} \sqrt{\left(L - \frac{t}{2} (z_1 + z_2) \right)^2 - 2 \left(\frac{t}{\pi} (z_2 - z_1) \right)^2}$$

- Grobauslegung
 - Unter Verwendung der Kennwerte des Riementriebes und der riemenspezifischen Angaben wird die übertragbare Leistung ermittelt.

© HSLU PR+SY_H16: Zahnriemengetriebe

39

Hochschule Luzern Technik & Architektur

Auslegung von Zahnriemengetrieben

- Grobauslegung: Riemenbreite, übertragbare Leistung
 - Polychloropreneriemen

$$P_{Riemen} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{Riemen} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{Riemen} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{Riemen} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{Riemen} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{Riemen} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{Riemen} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{Riemen} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{spez} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{spez} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{spez} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{spez} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{spez} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{spez} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{spez} = P_{spez} * b_f * z_f * l_f \geq P_B \\ P_{spez} = P_{spez} * b_f * l_f * l_$$

Polyurethanriemen

$$b \geq \frac{P_B}{z_k * z_e * P_{spez}} \qquad \begin{array}{l} P_B \\ T_B \\ P_{spez} \\ T_{spez} \end{array} \qquad \begin{array}{l} \text{Berechnungsleistung} \\ \text{Berechnungsdrehmoment} \\ \text{Spezifische Riemenleistung W/mm, gemäss Hersteller} \\ \text{Spezifische Drehmoment Nm/mm} \\ Z_k \\ Z_e \\ \end{array} \qquad \begin{array}{l} Z_k * Z_e * T_{spez} \\ Z_e \\ \end{array} \qquad \begin{array}{l} \text{Expezifische Riemenleistung W/mm, gemäss Hersteller} \\ \text{Spezifische Drehmoment Nm/mm} \\ \text{Spezifische Riemenleistung W/mm} \\ \text{Spezifische Drehmoment Nm/mm} \\ \text{Spezifische Riemenleistung Nm/mm} \\ \text{Sp$$

Ist die übertragbare Leistung zu klein, oder die erforderliche Breite zu gross, so ist ein leistungsstärkeres Profil zu wählen.

Kontrolle der Seilzugfestigkeit

 Seilzugfestigkeit in Abhängigkeit der Riementeilung und der Riemenbreite Beispiel Synchroflex T2.5 (MULCO)

zulässige Zugkraft des Riemens Fzul [N]

Riemenbreite b [mm]	4	6	10	16	25	32
SYNCHROFLEX T2,5	39	65	117	195	312	403
SYNCHROFLEX T2,5-DL	39	65	117	195	312	403
SYNCHROFLEX T2,5-FA	39	65	117	195	312	403

DL: doppelt verzahnt

FA: verstärkter Riemenrücken Weitere Werte siehe TB 16-9c

© HSLU PR+SY_H16: Zahnriemengetriebe

44

Hochschule Luzern Technik & Architektur

Kontrolle der Biegewilligkeit

 Beachtung der Mindestzähnezahl und des Mindestdurchmessers Beispiel Synchroflex T2.5 (MULCO)

(XX) mit Gegenbiegung

Riementyp	Zähnezahl zmin (X)	Spannrolle dmin [mm] (X)	Zähnezahl zmin (XX)	Spannrolle dmin [mm] (X X)
SYNCHROFLEX T2,5	10	15	18	15
SYNCHROFLEX T2,5-DL	10	15	18	15
SYNCHROFLEX T2,5-FA	10	15	18	15

Berechnung von Zahnriemengetrieben

- Nachrechnung
 - Die Nachrechnung kann mit der in [2] dargestellten Methode oder mit einer Berechnungssoftware erfolgen. Die Berechnungsprogramme werden von den Riemenherstellern kostenfrei angeboten.
 - Gängige Riemenhersteller sind: Gates, Mulco, Continental
- Linear- und Transporttechnik
 - In der Linear- und Transporttechnik erfolgt die Dimensionierung über die Leistungsfähigkeit des Riemens unter Beachtung der zulässigen Werte für die Zugstrangbelastung und der Verzahnung.

$$b_{erf} = \frac{F_t}{F_{tspez} * z_e}$$

 b_{erf} F_t F_{tspez} Z_e

erforderliche Riemenbreite Umfangskraft spezifische Umfangskraft je Zahn und mm-Riemenbreite eingreifende Zähnezahl ≤ 12

© HSLU PR+SY_H16: Zahnriemengetriebe

50

Hochschule Luzern Technik & Architektur

Vorspannung von Zahnriementrieben

- Eingriffsverhalten von Zahnriemen
 - Durch die Variation der Riemendehnung über dem Umschlingungsbogen ergibt sich eine Änderung der Teilung gegenüber der Zahnteilung.
 - Teilungsausgleich durch Zahnverformung und Riemendehnung

- Entspricht die Riementeilung ohne Kraftübertragung der Teilung der Riemenscheibe, so hat ein Riemen im Betrieb im Einlauf der getriebenen Scheibe eine zu geringe Teilung und im Auslauf eine zu grosse Teilung.
- Hochlaufen eines Riemens bei Stossbelastung (Einlauf Leertrum)

Polygoneffekt

- Ähnlich wie bei Kettengetrieben tritt auch bei Zahnriemengetrieben ein Polygoneffekt auf.
- Der Effekt wird durch das Stützen der Riemen im Zahnlückengrund stark reduziert.

Vorspannung von Zahnriementrieben

- Eine optimale Funktion des Riemengetriebes wird durch das richtige Vorspannen des Riemens gewährleistet.
- Die Vorspannkraft kann mittels Messung der Eigenfrequenz des vorgespannten Riemens ermittelt werden.

$$F_{V} = 4*m*l_{T}^{2}*f_{e}^{2}$$
 $\stackrel{\textit{m: Masse}}{l_{\vec{r}:}}$ freie Trumlänge $f_{e:}$ Eigenfrequenz

• Durch das Messen der Eindrücktiefe mit einer definierten Prüfkraft kann die Vorspannkraft ebenfalls ermittelt werden.

der Trumeigenfrequenz Stossbelastung

Ruhig laufende Antriebe

• Vorspannkräfte: $F_V = 0.5 \dots 1 * F_t$ (Antriebstechnik) $F_V \ge F_t$ (Lineartechnik)

© HSLU PR+SY_H16: Zahnriemengetriebe

54

Hochschule Luzern

Steifigkeit von Zahnriementrieben

- Genauigkeit der Bewegungsübertragung
 - · Geometrisch bedingte Ursachen, wie z. B. Fertigungsund Montageabweichungen oder Lost Motion-Effekt

- Belastungsabhängige Ursachen, wie Zugstrangdehnung und Zahndeformation
- Dehnung △ I eines Riemenstücks L,

$$\Delta l = \frac{F}{c} = \frac{F * L_t}{c_{spez}}$$

$$egin{array}{c} arDelta \ F \ L_t \ c \end{array}$$

Trumdehnung Trumkraft Trumlänge

Riemensteifigkeit N/mm

spezifische Riemensteifigkeit je m Riemenlänge in N

Steifigkeit von Zahnriementrieben

- Trumsteifigkeit c in Abhängigkeit der Lastposition
 - Serieschaltung von Federn

 Parallelschaltung von Federn (verspannte Federn)

© HSLU PR+SY_H16: Zahnriemengetriebe

Beispiel Linearschlitten

Gesamtsteifigkeit Linearantrieb

$$c = c_1 + \frac{c_2 * c_3}{c_2 + c_3}$$
 oder $c = c_{spez} * \frac{L_1 + L_2}{L_1 * L_2}$

Positionsfehler

$$\Delta x = \frac{F}{c}$$

56

Hochschule Luzern Technik & Architektu

Wirkungsgrad von Zahnriementrieben

• Richtig eingesetzte Riemenantriebe erreichen hohe Wirkungsgrade

Experimentell ermittelte Wirkungsgrade verschiedener Riemengetriebe, [2]

Geräuschverhalten von Zahnriementrieben

- Hauptursachen für die Laufgeräusche in Zahnriemengetrieben sind:
 - Aufschlagen der Riemen auf die Zahnscheiben
 - Luftverdrängung aus den Zahnlücken
- Wichtige Einflussgrössen sind:
 - Riemengeschwindigkeit
 - Riemenbreite
 - Zahnscheibenzähnezahlen

Schallpegel in Funktion der Breite

Geräuschverhalten von Zahnriemengetrieben, Quelle: Funk

© HSLU PR+SY_H16: Zahnriemengetriebe

58

Hochschule Luzern Technik & Architektur

Verschleissverhalten und Lebensdauer

- Maximale Belastbarkeit
 - Durch die Dehnungen im Zahnriemen weichen die Teilungen des Riemens und der Scheibe so stark voneinander ab, dass ein Ausgleich durch Verformung der elastischen Riemenzähne nicht mehr möglich ist.
 - Die Zugfestigkeit wird durch die eingesetzten Materialien bestimmt.
 Hierbei wird die Biegewechselfestigkeit beim Einsatz von kleinen
 Scheibendurchmessern negativ beeinflusst.
- Verschleiss
 - Zusammenspiel von Zahnriemen und Zahnscheibe (Stahl / Alu eloxiert)
 - Oberflächenrauheit der Scheiben Ra <= 12.5 μm (N 10)
 - Ist das Gewebe, welches den Zahn überzieht verschlissen, setzt eine schnelle Zerstörung des Riemens ein.

Schwingungen in Zahnriementrieben

- Das dynamische Verhalten der Riementriebe wird sowohl durch das Drehschwingungs- als auch das Biegeschwingungsverhalten (Transversalschwingungen) der freien Trumlänge bestimmt.
- Einflüsse auf das dynamische Verhalten
 - Riementyp (Steifigkeit)
 - Wellenabstand
 - Scheibendurchmesser
 - Übersetzung
 - Drehzahl
 - Drehmoment
 - Vorspannung
 - Temperatur
 - Erregerfrequenz

Ersatzsystem für das Drehschwingungsverhalten:

 $f_{\rm e}$: erste Eigenfrequenz [s⁻¹] c: Gesamttrumsteifigkeit [N/m]

60