Short review

Basic construction of neural networks

Basic construction of neural networks

Role of parameters w and b

$$x \in \mathbb{R}$$

$$o = \frac{1}{1 + \exp(-wx - b)}$$

Role of parameters w and b

Do it yourself : plot ReLU graph for various $w \mid b$

Function picture of network

Epoch Learning rate Activation Regularization Regularization rate Problem type 000,238

Output

Outpu

Local minimum problem

$$o_i = \sigma(w_1 x_1 + w_2 x_2)$$
 with $w_2 = 1$
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$C(w_1) = \frac{1}{n} \sum_{i} (y_i - o_i)^2$$

$$o_i = \sigma(w_1 x_1 + w_2 x_2)$$
 with $w_2 = 1$
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$C(w_1) = \frac{1}{n} \sum_{i} (y_i - o_i)^2$$

$$o_i = \sigma(w_1 x_1 + w_2 x_2)$$
 with $w_2 = 1$
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$C(w_1) = \frac{1}{n} \sum_{i} (y_i - o_i)^2$$

$$o_i = \sigma(w_1x_1 + w_2x_2) \text{ with } w_2 = 1$$

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$C(w_1) = \frac{1}{n} \sum_{i} (y_i - o_i)^2$$

lots of errors!

show playground XOR example

Good solution example

Local minimum examples

Strategies for overcoming local minimum problem

- 1.Stochastic gradient descend
- 2. Adam method, momentum

Minibatch gradient descend

cost surfaces are different for different data sets

Always remember to shuffle the data

Stochastic gradient descend

use batch size = 1 for stochastic gradient descend

Signs of trouble always look at cost versus iterations plots

Cost not decreasing looks like a local minimum

Cost decrease over slowly looks like at very flat region of cost surface

Signs of trouble always look at cost versus iterations plots

iterations

Cost actually increasing

Please check for a **bug** in your code!!