MATH70060 - Complex Manifolds - Exercise Sheet 9

Release date: 12 Mar 2025 Submission date: —

Due to lecture scheduling, you *cannot* choose to hand in solutions to this exercise. This exercise sheet does not count towards your module grade.

9.1. Let $X = \mathbb{C}^n$ and

$$\omega = \frac{i}{2} \sum_{j=1}^{n} \mathrm{d}z_j \wedge \mathrm{d}\overline{z_j}$$

be its standard Kähler form. Writing $z_i = x_i + iy_i$, prove that

$$\Delta f = -\sum_{j=1}^{n} \left(\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2} \right) f.$$

9.2. Let $X = \mathbb{C}^n/\Lambda$ be a complex torus. Compute $H^{p,q}(X)$ for all $p, q \ge 0$.

9.3. On a Kähler manifold, it holds that the map

$$\mathcal{H}^{p,q}(X) \to H^{p,q}(X)$$

 $\alpha \mapsto [\alpha]$

is a vector space isomorphism for all $p, q \ge 0$. Here $\mathcal{H}^{p,q}(X)$ denote harmonic forms of type (p,q) and $H^{p,q}(X)$ is Definition 4.38. (This will be proved in the lecture, probably on 14 March.)

Use this to prove that on a Kähler manifold, every holomorphic *p*-form $\alpha \in H^0(X, \Omega^p_X)$ is closed.

9.4. (Iwasawa manifold) Let $G \subset GL(3,\mathbb{C})$ be defined as

$$G := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{C} \right\}.$$

Define $\Gamma \subset G$ to be the subgroup of matrices such that $x, y, z \in \mathbb{Z}[i]$.

Show that *X* is a compact complex manifold.

Show that dz - x dy is a holomorphic (1, 0) that is not closed.

Use Exercise 9.3 to deduce that X is not Kähler.