

<5장> 데이터 처리가 쉬운 판다스

학습 목표

- 판다스 개념 및 특징을 익힌다.
- 판다스 객체 생성하는 방법을 익힌다.
- 데이터를 확인하는 다양한 방법을 익힌다.
- 데이터를 가공하고 그룹핑 하는 방법을 익힌다.
- 결측데이터를 처리하는 방법을 익힌다.
- 데이터를 병합하는 방법을 익힌다.

목차

- 01 판다스 개념 및 특징
- 02 판다스 객체 생성
- 03 판다스 데이터 확인
- 04 판다스 데이터 선택
- 05 판다스 결측데이터 처리
- 06 판다스 데이터 가공
- 07 판다스 데이터 그룹핑

01

판다스 개념 및 특징

1. 판다스 개념 및 특징

■ 판다스

■ 고수준의 자료구조와 빠르고 쉬운 데이터 분석 도구를 제공하는 파이썬의 라이브러리

판다스(Pandas) 특징

- 자동적/명시적으로 축의 이름에 따라 데이터를 정렬할 수 있는 데이터구조
- 잘못 정렬된 데이터에 의한 오류를 방지하고, 다양한 방식으로 색인된 데이터를 다룰 수 있는 기능
- 통합된 시계열 기능
- 시계열 데이터와 비시계열 데이터를 함께 다룰 수 있는 통합 자료구조
- 산술 연산과 한 축의 모든 값을 더하는 등 데이터 축약 연산은 축의 이름 같은 메타데이터로 전달될 수 있어야 함
- 누락된 데이터를 유연하게 처리할 수 있는 기능
- SQL 같은 일반 데이터베이스처럼 데이터를 합치고 관계 연산을 수행하는 기능

1. 판다스 개념 및 특징

■ 판다스

■ 패키지 설치 명령문

pip install pandas

■ 판다스 import 코드

import pandas as pd

02

판다스 객체 생성

■ Series와 DataFrame

■ Series : 다양한 자료형을 담을 수 있는 1차원의 배열

■ DataFrame: 행과 열을 갖는 2차원의 자료형

	Brand	
0	Samsung	
1	LG	+
2	Apple	
3	Apple	
	Series	

	Color
0	Black
1	Gold
2	Silver
3	Gray

Series

	Brand	Color
0	Samsung	Black
1	LG	Gold
2	Apple	Silver
3	Apple	Gray
	DataFram	18

■ Series 만들기

dtype: float64

```
실수형 Series 만들기

1 s=pd.Series([4, 3.5, 3.8, 3, 3.7])
2 s

(실행결과)

0 4.0
1 3.5
2 3.8
3 3.0
4 3.7
```

```
정수형 Series 만들기

import pandas as pd
score=pd.Series([95, 90, 85, 90, 95])
score
```

```
      ✓ 실행결과〉

      0
      95

      1
      90

      2
      85

      3
      90

      4
      95

      dtype: int64
```

```
인덱스 지정

1     s=pd.Series([90,80,95],index=['A','B','C'])
2     s

〈실행결과〉

A     90
B     80
C     95
```

dtype: int64

DataFrame 만들기

넘파이 배열과 딕셔너리 구조를 이용하여 데이터 프레임을 생성한다.

csv 활용

■ 데이터를 DataFrame으로 불러올 수 있다.

■ 판다스 객체의 데이터를 확인하는 다양한 방법

			COI	ums		
		date	temp	max_wind	mean_wind	
	0	2020-07-01	16.8	19.7	8.7	
	1	2020-07-02	20.1	3.9	2.4	hood(4)
	2	2020-07-03	19.2	4.8	3.1	head(4)
	3	2020-07-04	19.0	5.5	3.0	
	4	2020-07-05	19.8	6.2	3.9	
dex						
			•			
	28	2020-07-29	21.6	3.2	1.0	
	29	2020-07-30	22.9	9.7	2.4	tail(3)
	30	2020-07-31	25.7	4.8	2.5	

DataFrame 만들기

- CSV 파일의 컬럼명이 한글일 경우
 - encoding 속성을 다음과 같이 지정한다.
 - pd.read_csv('파일명', encoding='euc-kr')
 - pd.read_csv('파일명', encoding='cp949')

df.shape/df.info()

- 데이터의 (행, 열) 크기 확인
- 데이터에 대한 전반적인 정보

(행,	열) 크기 확인	
1	〈코드〉 df.shape	〈실행결과〉 (3653, 4)

데이	터의 전체적인 구조 출력	
	〈코드〉	〈실행결과〉
1	df.info()	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 3653 entrles, D to 3652 Data columns (total 4 columns): # column Non-Null Count Dtype</class></pre>
		0 date 3653 non-null object 1 temp 3653 non-null float64
		2 max_wind 3649 non-null float64
		3 mean_wind 3647 non-null float64 dtypes: float64(3), object(1) memory usage: 114.3+ KB

- df.head()/df.tail()
 - 앞 부분과 마지막 부분을 확인

df.index/df.columns

■ 인덱스(행 이름)와 열의 레이블(컬럼 이름) 출력

- df.describe()
 - 데이터의 컬럼별 요약 통계량

df.sort_values()

- 함수 형식
 - DataFrame.sort_values(by = ['정렬변수','정렬변수2',], ascending = False, inplace = True)
- by = []: by = 을 사용하지 않아도 된다.
- inplace = True : 정렬 결과가 동일 데이터프레임 이름으로 저장된다.
- ascending = True : 디폴트이므로 오름차순 정렬이면 사용하지 않아도 된다.

- df.value_counts()
 - 범주형 변수의 빈도분석 결과를 출력

```
빈도 분석 출력
        bank=pd.read_csv('bank.csv')
1
        bank['job'].value counts() # 내림차순
        bank['job'].value_counts(ascending=True) # 오름차순
3
〈실행결과〉
               1560
                       student
management
                                     153
blue-collar
                       housemaid
               1499
                                     208
                       unemployed
                                     223
technician
               1206
                       entrepreneur
admin.
               834
                                     239
                       self-employed
services
               661
                                     256
retired
               351
                       retired
                                      351
                       services
self-employed
               256
                                     661
entrepreneur
                       admin.
               239
                                     834
unemployed
               223
                      technician
                                     1206
                      blue-collar
housemaid
               208
                                     1499
student
                       management
               153
                                     1560
Name: job, dtype: int64 Name: job, dtype: int 64
```

df.unique()

■ 해당 열의 고유값 확인

■ 데이터 선택

■ Pandas DataFrame에서 데이터를 선택하는 다양한 방법 알아보기

[1:3]
[[-0]

df['temp'] or df.temp

■ 열 선택하기

- 열을 선택하면, 하나의 Series를 만든다.
- df['컬럼명'] = df.컬럼명

단일	컬럼 선택하기		
	⟨코드⟩	〈실행결과〉	
1	df['temp'] # df.temp	0 28.7	
2	<pre>#type(df['temp'])</pre>	1 25.2	
		2 22.1	
		3 25.3	
		4 27.2	
		3648 22.1	
		3649 21.9	
		3650 21.6	
		2651 22.9	
		3652 25.7	
		Name: temp, Length: 3653, dtype: float64	

■ 열 선택하기

- 열 이름을 사용하여 열을 선택하려는 경우
- 열 인덱스를 사용하여 추출하는 경우

■ 행 선택하기

■ 인덱스 숫자를 사용하면 행을 슬라이스

■ 레이블로 선택하기(df.loc)

특정 날짜에 해당하는 열 선택

```
1     df.index=df['date']
2     df.loc['2010-08-01',['temp','mean_wind']]
```

〈실행결과〉

```
temp 28.7
mean_wind 3.4
Name: 2010-08-01, dtype: object
```

■ 위치로 선택하기(df.iloc)

■ 정수를 입력하면 해당 행을 선택

■ 위치로 선택하기(df.iloc)

■ 정수를 입력하면 해당 행을 선택

■ 불인덱싱

■ 하나의 열의 값을 기준으로 데이터를 선택

	lf['temp']>=3 	0			
2 στι	df[w]				
	dute	Comp	max_winu	mean_wind	
date					
2013-08-08	2013-08-08 2013-08-09	31.3	7.8 9.9	4.6 6.4	
2013-08-08 2013-08-09	2013-08-08	31.3	7.8	4.6	
2013-08-08 2013-08-09 2013-08-10	2013-08-08 2013-08-09	31.3 30.6 30.6	7.8 9.9	4.6 6.4	

```
조건에 맞는 데이터 추출

1 # 최고로 더웠던 날의 모든 정보를 출력하세요.
2 w=df['temp']==df['temp'].max()
3 df[w]

(실행결과)

date temp max_wind mean_wind
date

2013-08-08 2013-08-08 31.3 7.8 4.6
```


05 판다스 결측데이터 처리

5. 판다스 결측데이터 처리

■ 결측데이터 확인하기

Y	의대풍속이 측 df['mean_wind			불력	
〈실행결과〉					
date	date	temp ma	ax_wind me	an_wind	
date 2012-02-11	dat e	temp ma	ax_wind me	an_wind NaN	
2012-02-11					
2012-02-11 2012-02-12	2012-02-11	-0.7	NaN	NaN	
2012-02-11 2012-02-12 2012-02-13	2012-02-11 2012-02-12	-0.7 0.4 4.0	NaN NaN	NaN NaN	

5. 판다스 결측데이터 처리

■ 결측데이터 삭제하기

■ 결측데이터를 다루는 가장 간단한 방법

표 5-1, 함수 설명: DataFrame, dropna(axis, how, thresh, subset, inplace)

매개변수	설명
axis	 축을 행 또는 열로 결정한다. 0 또는 'index'이면 누락된 값이 포함 된 행을 삭제한다. 1 또는 'columns'면 누락된 값이 포함 된 열을 삭제한다. 기본적으로 값은 0으로 설정되어 있다.
how	• any는 null 값이 있는 경우 행 또는 열을 삭제한다. • all은 모든 값이 누락된 경우 행 또는 열을 삭제한다. • 기본적으로 any로 설정한다.
inplace	• True로 설정하면 호출자 DataFrame을 변경하는 부울 값이다. • 기본적으로 값은 False로 설정되어 있다.

결측	데이터가 있는 행 삭제 후 확인	
1 2	(코드) df2=df.dropna() df2.isnull().sum()	〈실행결과〉 date 0 temp 0 max_wind 0 mean_wind 0 dtype: int64

5. 판다스 결측데이터 처리

■ 결측데이터 대체하기

결측데이터 대체 후 확인					
	⟨코드⟩	〈실행결과〉			
1	df.isnull().sum()	date 0 temp 0 max_wind 0 mean_wind 0 dtype: int64			

■ 데이터 가공

■ 엑셀(.xlsx)파일을 불러와서 데이터프레임을 생성한다.

■ 컬럼(변수) 삭제/생성하기

- 데이터 분석에 필요 없는 컬럼을 삭제하고 특정값으로
- 새로운 컬럼을 생성

■ 컬럼 이름 변경하기

- DataFrame.columns = ['새이름1', '새이름2', ...]
 - •전체 변수 이름을 재설정한다.
 - •변수명을 차례로 재설정한다.
- DataFrame.rename(columns = {'기존이름':'새이름'}, inplace = True)
 - 원하는 변수 이름만 수정한다.
 - 딕셔너리 구조로 정의한다.

```
      2
      dust.rename(columns={'측정소명':'name',
'측정일시':'date',
'주소':'addr'}, inplace=True)

      4
      dust.columns

      (실행결과)

      Index(['name', 'date', 'S02', 'C0', '03', 'N02', 'PM10', 'PM25', 'addr', 'city'], dtype='object'
```

- 데이터 형 변환
 - 숫자 형식은 문자 형식으로 변환

■ 데이터 형 변환

■ 데이터 병합하기

	국적코드	성별	입국객수	증가수
0	A01	남성	125000	8000
1	A01	여성	130000	10000
2	A05	남성	300	10
3	A05	여성	200	50
4	A06	남성	158912	24486
5	A06	여성	325000	63466

	국적코드	국적명
0	A01	필리핀
1	A01	일본
2	A05	미국
3	A05	중국
4	A06	호주
5	A06	베트남

	국적코드	성별	입국객수	증가수	국적명
0	A01	남성	125000	8000	필리핀
1	A01	여성	130000	10000	필리핀
2	A05	남성	300	10	호주
3	A05	여성	200	50	호주
4	A06	남성	158912	24486	베트남
5	A06	여성	325000	63466	베트남

■ 함수 형식

- pd.merge(df_left, df_right, how = 'inner', on = None)
- 아무런 옵션도 적용하지 않으면, on = None이므로 두 데이터의 공통 열 이름(id)을 기준으로
- Inner(교집합)를 조인
- Outer 옵션을 적용하여 id를 기준으로 합치는데, 어느 한쪽에라도 없는 데이터가 있는 경우
- NaN 값이 지정
- 왼쪽에 입력한 데이터프레임 기준(how = 'left')으로, 각각의 key 값에 해당하는 열을 지정
- 오른쪽에 입력한 데이터프레임 기준(how = 'right')으로, 각각의 key 값에 해당하는 열을 지정

■ 데이터 병합하기

```
병합할 원본 데이터 확인
1
2
      s1=pd.read_excel('nation.xlsx')
3
       s2=pd.read_excel('code.xlsx')
4
〈실행결과〉
                              국적코드 국적명
                                 A01 필리핀
  국적코드 성별 입국객수 증가수
                                      일본
                                 A02
                                      미국
              125000
                                 A03
1
      A01 여성
              130000 10000
                           3
                                      중국
                                 A04
      A05 남성
                 300
                       10
                                     호주
                                 A05
      A05 여성
                 200
                       50
                                 A06 베트남
      A06 남성
               158912 24486
                                 A07 스위스
      A06 여성
               325000
                     63466
                                 A99 기타
```


07 판다스 데이터 그룹핑

7. 판다스 데이터 그룹핑

■ 데이터 그룹핑

- 데이터를 특정한 값에 기반에 묶는 기능
- 통계량을 요약

