Transformer is All You Need: Multimodal Multitask Learning with a Unified Transformer

🖹 날짜	@2021/03/15
# 연도	2021
≔ 학회	arXiv

0. Reference

- Paper Link
- Authors: Ronghang Hu (FAIR), Amanpreet Singh (FAIR)

1. Introduction

Problem Statement

- Transformers have shown great success in a wide range of domains, including natural language, images, video and audio
- However, despite the success to **specific domains**, there has not been much prior effort to connect different tasks across domains with transformers

" Is it possible to build a single, unified model that simultaneously handles tasks in a variety of domains?"

Previous Work

• Previous work tries to tackle some of the question but only in limited scope:

- Work only tasks from a single domain or specific multi-modals
 Vit and DETR focus on vision-only tasks
 BERT and RoBERTa handle language tasks
 VisualBERT and VILBERT work only on specific multi-modal domain of vision and language
 Require task-specific fine-tuning for each task, not leveraging any shared parameters across tasks
 Usually, end up with Nx parameters for N tasks
 Perform multi-task upon related or similar tasks only from a single domain
 MT-DNN and T5 work only on tasks in natural language
 - MT-DNN (Multi-Task Deep Neural Network)

▼ Diagram

T6 (Text-to-Text Transfer Transformer)

☐ VILBERT-MT works only on related vision-and-language tasks

Main Contribution

- Propose UniT, a unified transformer encoder-decoder architecture capable of learning <u>multiple tasks and domains</u> in a single model
- Jointly learn the most **prominent tasks** in visual and textual domains
 - ▼ List of tasks

- 1. Object Dection (COCO / Visual Genome)
- 2. Visual Question Answering (VQAv2)
- 3. Visual Entailment (SNLI-VE)
- 4. Question-answering NLI, QNLI (GLUE)
- 5. Multi-Genre Natural Language Inference, MNLI (GLUE)
- 6. Quora Question Pairs, QQP (GLUE)
- 7. Stanford Sentimen t Treebank, SST-2 (GLUE)
- Show that multi-modal tasks such as VQA and Visual Entailment benefit from multi-task training

2. Model Architecture

Overview

Encoder

- Two input modalities
 - 1. Image
 - First apply a CNN backbone to extract visual feature map
 - ☐ Then encoded by a Transformer encoder into a list of hidden states
 - ▼ Mathematical Expression

Our image encoding process is inspired by and similar to DETR [5]. First, a convolutional neural network backbone B is applied on the input image to extract a visual feature map \mathbf{x}^v of size $H_v \times W_v \times d_v^b$ as

$$\mathbf{x}^v = B(I). \tag{1}$$

 B follows structure of ResNet-50 with dilation applied to its last C5 black, and is pre-trained on object detection in DETR We apply a visual transformer encoder E_v with N_v layers and hidden size d_v^e on top of the feature map \mathbf{x}^v to further encode it to visual hidden states \mathbf{h}^v of size $L \times d_v^e$ (where $L = H_v \times W_v$ is the length of the encoded visual hidden states). In addition, given that different tasks (such as object detection and VQA) might require extracting different types of information, we also add a task embedding vector w_v^{task} into the transformer encoder to allow it to extract task-specific information in its output as follows.

$$\mathbf{h}^{v} = \{h_{1}^{v}, h_{2}^{v}, \cdots, h_{L}^{v}\} = E_{v}(P_{b \to e}(\mathbf{x}^{v}), w_{v}^{task})$$
 (2)

 $P_{b \to e}$ is a linear projection from visual feature dimension d_v^b to encoder hidden size d_v^e . The structure of the visual transformer encoder E_v follows DETR [5], where positional encoding is added to the feature map. The task token w^{task} is a learned parameter of dimension d_v^e , which is concatenated to the beginning of the flattened visual feature list $P_{b\to e}(\mathbf{x}^v)$ and stripped from the output hidden states \mathbf{h}^v .

2. Text

☐ BERT is used to encode input words into a sequence of hidden states

Mathematical Expression

size $S \times d_t^e$, where d_t^e is the BERT hidden size. Similar to the image encoder, in the text encoder, we also add a learned task embedding vector w_t^{task} as part of the BERT input by prefixing it at the beginning of the embedded token sequence, and later stripping it from the output text hidden states as follows.

$$\mathbf{h}^{t} = \{h_{1}^{t}, h_{2}^{t}, \cdots, h_{S}^{t}\} = \text{BERT}(\{w_{1}, \cdots, w_{S}\}, w_{t}^{task})$$
(3)

However, we find that it works nearly equally well in practice to keep only the hidden vector corresponding to [CLS] in \mathbf{h}^t as input to the decoder, which saves computation.

Decoder

- Depending on the task, single encoded modality or the both modalities (concatenated) are provided to the decoder
- Explore either having separate (i.e. task-specific) or shared decoders among all tasks
- The representation from the decoder is passed to a task-specific head (twolaver classifier)
- ▼ Mathematical Expression
 - Unlike encoders, decoder is built upon the same domain-agnostic transformer decoder across all tasks
 - For vision-only tasks, $h^{enc}=h^v$
 - For language-only tasks, $h^{enc} = h^v$
 - ullet For joint vision-and-language tasks, $h^{enc}=concat(h^v,h^t)$

The transformer decoder D takes the encoded input sequence henc and a task-specific query embedding sequence \mathbf{q}^{task} of length q. It outputs a sequence of decoded hidden states $\mathbf{h}^{dec,l}$ for each of the l-th transformer decoder layer, which has the same length q as the query embedding \mathbf{q}^{task} .

$$\left\{\mathbf{h}^{dec,l}\right\} = D(\mathbf{h}^{enc}, \mathbf{q}^{task}) \tag{4}$$

- During experiment, use either
 - 1. A single shared decoder ${\cal D}^{all}$ for all tasks OR
 - 2. Separate decoder D_i^{task} for each specific task i

Task-specific Head

Apply a task-specific head for each task t for final prediction

- **▼** Object Detection
 - Add a class head to produce a classification output

- Add a box head to produce a bounding box output
- For Visual Genome, also add an attribute classification head

processed into object bounding boxes. Following DETR, we apply these heads to all layers l in the decoder hidden states $\mathbf{h}^{dec,l}$ during training as

$$\mathbf{c}^{l} = \operatorname{class_head}(\mathbf{h}^{dec,l})$$
(5)
$$\mathbf{b}^{l} = \operatorname{box_head}(\mathbf{h}^{dec,l})$$
(6)
$$\mathbf{a}^{l} = \operatorname{attr_head}(\mathbf{h}^{dec,l}, \mathbf{c}^{l})$$
(7)

$$\mathbf{b}^{l} = \text{box_head}(\mathbf{h}^{dec,l}) \tag{6}$$

$$\mathbf{a}^l = \operatorname{attr_head}(\mathbf{h}^{dec,l}, \mathbf{c}^l)$$
 (7)

where c^l , b^l , and a^l are class, box and attribute output sequences, all having the same length q as the query embedding \mathbf{q}^{task} for detection.

• At test time, only take the prediction from the top decoder layer, h^{dec,N_d}

▼ All Other Tasks

- Visual QA, Visual Entailment and Natural Language Understanding
- All can be cast as a *classification task* among c_t classes for each task t
- For each classifier, use a two-layer perceptron with GeLU activation

$$\mathbf{p} = \mathbf{W}_1 \cdot \text{GeLU}(\mathbf{W}_2 \cdot \mathbf{h}_1^{dec,top} + \mathbf{b}_2) + \mathbf{b}_1 \quad (8)$$

$$loss = CrossEntropyLoss(\mathbf{p}, \mathbf{t}) \tag{9}$$

3. Experiment & Result

Sampling

 During training, manually specify a sampling probability for each task based on the dataset size and empirical evidence

Reshaping

- Apply scale and crop augmentation on image inputs during training for object detection
- However, no scale and crop for vision-and-language tasks

Preliminary Experiment

• First experiment with *objection detection* as a *vision-only* task and *VQA* as a vision-and-language task

#	Experiment setup	COCO det. mAP	VG det. mAP	VQAv2 accuracy
1	single-task	40.4 / -	4.02	66.25 / -
2 3 4	separate shared shared (COCO init.)	40.7 / - 38.5 / - 40.9 / 41.2	4.22 4.16 4.56	68.36 / - 61.51 / - 67.72 / 68.43

- Training with separate decoder outperforms shared decoder and single-task setting
- However shared decoder underperforms single-task model for COCO and VQA by a noticeable margin
 - This may be due to relatively short training iterations for shared decoder model
- Therefore, initialize the model from a model trained on COCO detection alone (COCO init)
 - In this case, joint model with *shared* decoders outperforms all *single-task* models

Main Result

#	decoder	COCO det.	VG det.	VQAv2	SNLI-VE	QNLI	MNLI-mm	QQP	SST-2
1	UniT - single-task training	40.4	4.02	66.25 / -	70.52 / -	91.62 / -	84.23 / -	91.18/ -	91.63 / -
2	UniT – separate	32.2	2.54	67.38 / -	74.31 / -	87.68 / -	81.76 / -	90.44 / -	89.40 / -
3	UniT – shared	33.8	2.69	67.36 / -	74.14 / -	87.99 / -	81.40 / -	90.62 / -	89.40 / -
4	UniT – separate (COCO init.)	38.9	3.22	67.58 / -	74.20 / -	87.99 / -	81.33 / -	90.61 / -	89.17 / -
5	UniT – shared (COCO init.)	39.0	3.29	66.97 / 67.03	73.16 / 73.16	87.95 / 88.0	80.91 / 79.8	90.64 / 88.4	89.29 / 91.5
6	DETR [5]	43.3	4.02	-	-	-	-	-	_
7	VisualBERT [30]	_	_	67.36 / 67.37	75.69 / 75.09	-	-	-	-
8	BERT [13] (bert-base-uncased)	-	-	-	-	91.25 / 90.4	83.90 / 83.4	90.54 / 88.9	92.43 / 93.7

Table 3: Performance of our UniT model on 7 tasks across 8 datasets, ranging from vision-only tasks (object detection on COCO and VG), vision-and-language reasoning (visual question answering on VQAv2 and visual entailment on SNLI-VE), and language-only tasks from the GLUE benchmark (QNLI, MNLI, QQP, and SST-2). For the line 5, 7 and 8, we also show results on VQAv2 test-dev, SNLI-VE test, and from GLUE evaluation server.

- Models trained on each *task* separately outperform all other variants except multimodal tasks VQAv2 and SNLI-VE
 - This is UNSURPRISING as
 - 1. Unimodal tasks have low cross-modality overlap
 - 2. Each task is trained for full 500k iterations while less for UniT
 - 3. Vision-and-language tasks (VQAv2 & SNLI-VE) consistently benefit from multi-task training together with vision-only and language-only tasks
- Despite a gap when comparing line 5 to lines 6,7,8; UniT achieves strong performance on each task with a single generic model

Ablations

#	Model configuration	COCO det. mAP	SNLI-VE accuracy	MNLI-mm accuracy
1	UniT (default, d_t^d =768, N_d =6)	38.79	69.27	81.41
2	decoder layer number, N_d =8	40.13	68.17	80.58
3	decoder layer number, N_d =12	39.02	68.82	81.15
4	decoder hidden size, d_t^d =256	36.32	69.68	81.09
5	using all hidden states from BERT instead of just [CLS]	38.24	69.76	81.31
6	losses on all decoder layers for SNLI-VE and MNLI-mm	39.46	69.06	81.67
7	no task embedding tokens	38.61	70.22	81.45
8	batch size = 32	35.03	68.57	79.62

Table 4: Ablation analyses of our UniT model with different model configurations on COCO det., SNLI-VE, and MNLI.

- Decoder layers and hidden size
 - Drop in **object detection** with a smaller decoder hidden size (line4)
 - Rise in **object detection** but drop in **SNLI-VE** and **MNLI** with a *deeper* decoder layer number (line2)
- Using all BERT outputs as input to the decoder has a relatively minor impact (line5)
- Losses on all decoder layers (line6)
 - Benefit for object detection but not for SNLI-VE and MNLI
 - Likely because these tasks require outputting a single label
- No task embedding tokens has minor impact (line7)
- Smaller batch size hurts (line8)

4. Conclusion

- Show that the **Transformer framework** can be applied over a variety of
- This leads to jointly handle multiple tasks within a single unified model

" Our model makes a step towards building general-purpose intelligence agents capable of handling a wide range of applications in different domains, including visual perception, language understanding, and reasoning over multiple modalities "