CS2040 Notes

Koh Jia Xian

$March\ 5,\ 2021$

Contents

1	Def	initions	3
	1.1	Time and Space Complexity	3
		1.1.1 Big O	3
		1.1.2 Big Omega	:
	1.2	Pre and Post-conditions	9
	1.3	Invariants	3
	1.4	Stability and In-Place sorting	3
	1.5	Probability and Expected Value	3
	1.6	Trees	4
2	Bin	ary Search	F
_	2.1	Peak Finding	6
	2.2	Steep Peaks	6
	2.3	QuickSelect	7
	2.0	2.3.1 Paranoid Select	7
		2.9.1 Taranold goldov	•
3	Sor	ting	8
	3.1	Bubble Sort	8
	3.2	Selection Sort	8
	3.3	Insertion Sort	Ć
	3.4	MergeSort	Ć
	3.5		10
	3.6	·	10
		•	10
			11
		v e	11
4		o v	12
	4.1		12
	4.2	Invariants	12
5	Tre		13
	5.1		13
	5.2		13
	5.3		13
	5.4	Insertion/Deletion	14
	5.5	Balance	14
	5.6	AVL Trees	15
		5.6.1 Rotations	15
		5.6.2 Insertion	15
		5.6.3 Deletion	15
		5.6.4 Craphical Interpretation	16

6	Oth	ner (Augmented) Trees	18
	6.1	Tries	18
	6.2	Order Statistics	18
	6.3	Interval Trees	19
	6.4	Range Trees/Orthogonal Range Searching	20
7	Has	shing	21
	7.1	Hash Functions & Collisions	21
	7.2	Collision Handling: Chaining	22
		7.2.1 Simple Uniform Hashing Assumption	22
	7.3	Collision Handling: Open-Addressing	
		7.3.1 Properties of good Hash Functions	
		7.3.2 Resizing	
8	Oth	ner Data Structures	24
	8.1	B-trees	24
	8.2	ab-trees	24
	8.3	Skip Lists	
	8.4	Merkle Trees	

1 Definitions

1.1 Time and Space Complexity

Space Complexity = **Total** space ever allocated

1.1.1 Big O

$$T(n) = O(f(n))$$
 if:

- 1. There exists a constant c > 0
- 2. and a constant $n_0 > 0$

such that for all $n > n_0$,

$$T(n) \le cf(n)$$

ie) An upper bound above a certain size n; Always try to get the tightest bound

1.1.2 Big Omega

$$T(n) = \Omega(f(n))$$
 if:

- 1. There exists a constant c > 0
- 2. and a constant $n_0 > 0$

such that for all $n > n_0$,

$$T(n) \geq c f(n)$$

ie) A lower bound above a certain size n

1.2 Pre and Post-conditions

Precondition Fact that is true when the function begins **Postcondition** Fact that is true when the function ends

1.3 Invariants

Invariants Relationship between variables that is always true.

Loop Invariants Relationship between variables that is true at the beginning (or end) of each iteration of a loop.

1.4 Stability and In-Place sorting

When 2 of the same keys are sorted:

- If its value becomes out of order, **Unstable**
- Stability: Preserving order of repeated elements

General Rule-of-Thumb, if got swap here-swap there (ie NOT IN-PLACE), it is unstable

1.5 Probability and Expected Value

- $E[X] = e_1p_1 + e_2p_2 + \dots + e_kp_k$
- E(A + B) = E(A) + E(B)

1.6 Trees

Successor

Next largest value in the tree.

Height

Number of edges on longest path from root to leaf.

• h(v) = 0 if v is a leaf

• h(v) = max(h(v.left), h(v.right)) + 1

2 Binary Search

For a sorted array, take middle, compare to key: search LHS or RHS of mid.

```
int search(A, key, n)
  begin = 0
  end = n-1
  while begin < end do:
    mid = begin + (end-begin)/2;
    if key <= A[mid] then
        end = mid
    else begin = mid+1
  return (A[begin]==key) ? begin : -1</pre>
```

Functionality	 If element not in array, return index If element not in array, return -1
Precondition	Array is of size nArray is sorted
Postcondition	If element is in the array: $A[begin] = key$
Invariant (Correctness)	$A[begin] \le key \le A[end]$ • The key is in the range of the Array
Invariant (Speed)	$(end - begin) \le n/2^k$ in iteration k

Not just for searching Arrays:

- 1. Assuming a complicated function,
 - Assume function is always increasing: complicatedFunction(i) < complicatedFunction(i+1)
 - :: Find minimum value j such that complicatedFunction(j) > 100
- 2. Peak Finding (1 or 2 Dimensions)
- 3. QuickSelect

2.1 Peak Finding

```
Want to find an index i such that arr[i] \geq arr[i-1] & arr[i] \leq arr[i+1]
```

```
FindPeak(A, n)
    //Recurse on right
    if A[n/2+1] > A[n/2] then
        FindPeak(A[n/2+1..n], n/2)

    //Recurse on left
    else if A[n/2{1] > A[n/2] then
        FindPeak(A[1..n/2-1], n/2)

    else A[n/2] is a peak; return n/2
```

Functionality	On an unsorted array, find A peak: local minimum or maximum (not a specific key)	
Invariants (Correctness)	• There exists a peak in the range $[begin, end]$ Every peak in $[begin, end]$ is a peak in $[1, n]$.	
Running Time	$T(n) = T(n/2) + \theta(1)$ Recurse for $log 2(n)$ times $\therefore O(log n)$	

2.2 Steep Peaks

Want to find a peak such that its left and right side are strictly lower than it.

Functionality On an unsorted array, find A peak: local minimum or maximum (not a specific both sides are the same as mid, recurse both sides		
Running Time	$T(n) = 2T(n/2) + \theta(1)$ = 16T(n/16) + 8 + 4 + 2 + 1	
	$= nT(1) + n/2 + n/4 + + 1$ $= O(n) $ Sum of Geometric Progression	

2.3 QuickSelect

Find kth smallest element

Makes use of QuickSort's partition to ensure that the kth smallest element is before or after the randomly selected pivot

```
Select(A[1..n], n, k)
  if (n == 1) then return A[1];
  else Choose random pivot index pIndex.
    p = partition(A[1..n], n, pIndex)
    if (k == p) then return A[p];
    else if (k < p) then
        return Select(A[1..p{1], k)
    else if (k > p) then
        return Select(A[p+1], k { p)
```

Recurrence: T(n) = T(n/2) + O(n)

Time Complexity: O(n) (Sum of G.P.)

2.3.1 Paranoid Select

```
Repeatedly partition until at least n/10 in each half of partition E[T(n)] \leq E[T(9n/10)] + E[numofpartitions](n) \\ \leq E[T(9n/10)] + 2n \\ \leq O(n)
```

3 Sorting

3.1 Bubble Sort

Iteratively swap largest values to the top.

```
\label{eq:bubbleSort(A, n)} \begin{tabular}{ll} \begin{tabular}{
```

Loop Invariant	At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.
Invariant (Correctnness)	Sorted after n iterations
Running Time Best Case Average Case Worst Case	O(n) [Already Sorted] $O(n^2)$ $O(n^2)$ [n iterations]
Space Consumption	O(1)
Stability	Stable, only swap elements that are different

3.2 Selection Sort

Find minimum element and swap it directly with the front.

```
SelectionSort(A, n)
  for j <- 1 to n-1:
     find minimum element A[j] in A[j..n]
     swap(A[j], A[k])</pre>
```

Loop Invariant	At the end of iteration j: the smallest j items are correctly sorted in the first j positions of the array.
Running Time	$n + (n-1) + (n-2) + \dots + 1$
	$=\frac{n(n-1)}{2}$ (Sum of A.P.)
	$=O(n^2)$
• Best Case	$O(n^2)$ [If already Sorted, will swap anyway]
• Average Case	$O(n^2)$
• Worst Case	$O(n^2)$ [n swaps]
Space Consumption	O(1)
Stability	Unstable, swap changes order

3.3 Insertion Sort

Iteratively swaps the current element into its rightful place in the sorted left side of the array.

```
InsertionSort(A, n)
  for j <- 2 to n
    key <- A[j]
    i <- j-1
    while (i > 0) and (A[i] >key)
        A[i+1] <- A[i]
        i <- i-1
        A[i+1] <- key</pre>
```

Loop Invariant	At the end of iteration j: the first j items in the array are in sorted order.
Running Time	$1 + 2 + 3 + \dots + n$ $= \frac{n(n-1)}{2} \text{ (Sum of A.P.)}$ $= O(n^2)$
Best CaseAverage CaseWorst Case	O(n) [Already Sorted] $O(n^2)$ $O(n^2)$ [Inverse Sorted]
Space Consumption	O(1)
Stability	Stable, swap doesn't change order, as long as implemented properly $(A[i] > key)$

Insertion Sort can be fast(er than MergeSort!) if List is mostly sorted

3.4 MergeSort

Divide-and-Conquer, sort two halves, merge two sorted halves

```
Running Time
Running Time of Merge
                          Given A and B of sizes n/2, O(n) to move each element back into list
                          T(n) = O(1) \text{ (if } n = 1)
                          =2T(n/2)+cn \text{ (if } n>1)
                          \therefore Height of recursion tree h = logn, every level cn operations
                          T(n) = cnlogn, O(n) = nlogn
• Best Case
                          O(nlogn)
• Average Case
                          O(nlogn)
• Worst Case
                          O(nlogn)
Space Consumption
                          O(n) [Using 1 temporary array, Switch the order of A and B at every recursive call.]
Stability
                          Stable
```

MergeSort can be slower for Smaller number of items to sort

3.5 QuickSort

Separate larger and smaller than a chosen **pivot** (Partitioning), recursively sort both sub-arrays.

```
QuickSort(A[1..n], n)
    if (n==1) then return;
    else
        Choose pivot index pIndex
        p = partition(A[1..n], n, pIndex)
        x = QuickSort(A[1..p-1], p-1)
        y = QuickSort(A[p+1..n], n-p)
//Returns the index of the pivot
partition(A[1..n], n, pIndex)
                                    // Assume no duplicates, n>1
   pivot = A[pIndex];
                                    // pIndex is the index of pivot
    swap(A[1], A[pIndex]);
                                    // store pivot in A[1]
    low = 2;
                                    // start after pivot in A[1]
   high = n+1;
                                    // Define: A[n+1] = Infinity
    while (low < high)
        while (A[low] < pivot) and (low < high) do low++;
        while (A[high] > pivot) and (low < high) do high{ { ;</pre>
        if (low < high) then swap(A[low], A[high]);
    swap(A[1], A[low{1]);
    return low{1;
```

Invariants	• For every $i \ge high : A[i] > pivot$
	• For every $1 < j < low : A[j] < pivot$
Running Time	
Running Time of Partition	O(n)
• Best Case	O(nlogn)
• Average Case	O(nlogn)
• Worst Case	$O(n^2)$ [eg All elements duplicates]
Space Consumption	O(1)
	Extra Memory allows QuickSort to be stable
Stability	Unstable

3.6 QuickSort Optimisations

3.6.1 Base Case?

- Unoptimized: Recurse to single-element arrays
- Switch to Insertion Sort for small arrays (Relies on fact that InsertionSort is fast for small arrays)
- Halt Recursion early, leaving small arrays unsorted. Then perform InsertionSort on entire array

3.6.2 3-Way Partitioning

Deal with duplicates in arrays

Option 1 2-pass Partitioning

- 1. Regular Partition
- 2. Pack Duplicates (of pivot) together

Option 2 1-pass Partitioning

- Standard Solution
- Mantain Four Regions of Array (See Fig 1)

Figure 1: 1-pass Partitioning

If bmA[current] < pivot low++

Swap A[current], A[low]

 $\operatorname{current} + +$

If bmA[current] == pivot current++

 $\textbf{If} \ bmA[current] > pivot \qquad \text{Swap} \ A[current], \ A[high]$

high-

3.6.3 Choice of Pivot

In the worst case(s),

 $\begin{array}{ll} \textbf{First Element} & A[1] \\ \textbf{Last Element} & A[n] \\ \textbf{Middle Element} & A[n/2] \\ \end{array}$

Median of first, last and middle Median of the above 3

are equally bad, if **n** executions of partition, sorting 1 element each:

$$T(n) = T(n-1) + T(1) + n$$
(From Quielrort of n.1 elem

(From Quicksort of n-1 elements + QuickSort on 1 element + Cost of partition on n elements) $\therefore O(n^2)$ time.

If can choose Median: Good Performance O(nlogn)

If could split array (1:10): (9:10): Good Performance O(nlogn)

 \therefore A pivot is **good** if divides array into 2 pieces, each of which is size **at least** n/10

Choose pivot at random: PARANOID QUICKSORT

Repeat partition until p > (1/10)n and p < (9/10)n,

Expected number of times to choose a good pivot: $10/8 \approx 2$

T(n) = T(n-1) + T(1) + 2n (Expected no. of iterations to repeat is 2)

Hence, worst-case expected time = O(nlogn)

4 Sorting Summary

Name	Best Case	Average Case	Worst Case	Extra Memory	Stable
Bubble Sort	O(n)	$O(n^2)$	$O(n^2)$	O(1)	Yes
SelectionSort	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(1)	No
Insertion Sort	O(n)	$O(n^2)$	$O(n^2)$	O(1)	Yes
Merge Sort	O(nlogn)	O(nlogn)	O(nlogn)	O(n)	Yes
Quick Sort	O(nlogn)	O(nlogn)	$O(n^2)$	O(1)	No

4.1 Remarks

• BubbleSort vs InsertionSort: InsertionSort faster for almost-sorted arrays

- Paranoid Quicksort Worstcase: O(nlogn)

• Any others?

4.2 Invariants

Name	Invariant	
Bubble Sort	At the end of iteration j, the biggest j items are correctly sorted	
	in the final j positions of the array.	
SelectionSort	At the end of iteration j: the smallest j items are correctly sorted	
	in the first j positions of the array.	
Insertion Sort	At the end of iteration j: the first j items in the array	
	are in sorted order.	
Merge Sort	idk lmfao probably something about at the end of iteration j of merge	
	every 2^j group of items are in sorted order, where $2^j < n$ (???)	
	just pulling something out of my ass:)	
Quick Sort	• For every $i \ge high: A[i] > pivot$	
	• For every $1 < j < low : A[j] < pivot$	

5 Trees

Data Structure: Implementing a Dictionary, for eg

5.1 Binary (Search) Trees

- Binary Tree is either: 1) Empty, 2) A node pointing to 2 binary trees.
- Binary Tree is height balanced if every node in the tree is height-balanced.
- A height-balanced tree with n nodes has height h < 2log(n), $\therefore O(logn)$.

Time Complexity of search(key) in BST: Height of tree

- O(logn) if balanced
- Else, worst-case O(n)

5.2 Tree Traversal

```
In-Order: Visit left sub-tree, then SELF, then right sub-tree
Pre-Order: Visit SELF, then left sub-tree, then right sub-tree
Post-Order: Visit left sub-tree, then right sub-tree, then SELF
Level-Order Visit EVERY node at that height, then go lower level
O(n) Time Complexity (∵ Visit each node once)
```

5.3 Successor Finding

• O(height) Time Complexity

5.4 Insertion/Deletion

Insertion trivial:

If less than node, node.left == null, insert at left else recurse left.

If more than node, node.right == null, insert at right, else recurse right.

3 Cases for delete(v):	
No Children	Remove v
1 Child	Remove v, connect child(v) to parent(v)
2 Children	1. x = successor(v)
	2. delete(x) (which may cause more calls of delete)
	3. remove(v)
	4. connect x to $left(v)$, $right(v)$, $parent(v)$

- NOTE: Successor of deleted node has at most 1 child! (A right node)
- ullet O(height) Time Complexity (BOTH insertion and deletion)

5.5 Balance

A BST is balanced if $h = O(\log n)$

How to get a Balanced Tree:

1. Define good property of tree [AUGMENT]

2. Show that if property holds, tree is balanced. [DEFINE BALANCE CONDITION]

3. Every insertion/deletion, make sure good property still holds: [INVARIANT]

-If not, fix it [MAINTAIN BALANCE]

5.6 AVL Trees

- Every node, store height h = max(left.height, right.height) + 1
- On insert & delete, update height
- ullet node v is height-balanced if $|v.left.height-v.right.height| \leq 1$ ullet Maintains balance using Tree-Rotations

5.6.1 Rotations

- A is LEFT-heavy if left.height ¿ right.height
- A is RIGHT-heavy if right.height; left.height.

Assuming node v is Left-Heavy	
• v.left is balanced:	right-rotate(v)
• v.left is left-heavy:	right-rotate(v)
• v.left is right-heavy:	1. left-rotate(v.left)
	2. $right-rotate(v)$
If v is Right-Heavy:	Symmetric 3 cases

Size of tree doesn't matter, O(1) time.

5.6.2 Insertion

- 1. Insert tree in BST
- 2. Walk up tree:
- At every step, check for balance:
- If out-of-balance, use rotations to rebalance

Only need 2 Rotations (Since in all cases, only need to reduce height of sub-tree by 1)

5.6.3 Deletion

0a. If v has no child, just delete

0b. If v has 1 child, connect child to parent

- 1. If v has 2 children, swap it with its successor.
- 2. Delete node v from binary tree (and reconnect children)
- Since successor has at most 1 (right) child, will only have to reconnect 1 node
- 3. For every ancestor of the deleted node:
- Check if it is height-balanced
- If not, perform a rotation
- Continue to the root

(Deletion may take up to O(logn) rotations)

5.6.4 Graphical Interpretation

Figure 2: v.left balanced: right-rotate(v)

Figure 3: v.left left-heavy: right-rotate(v) $\,$

Figure 4: v.left right-heavy: First left-rotate(v.left)

Figure 5: v.left right-heavy: then right-rotate(v)

6 Other (Augmented) Trees

6.1 Tries

Store each letter of a String as a node, using a special flag to represent the end of a word. Cost to search a string of length L: O(L)

Trie tends to be faster compared to normal BST with strings

- Does not depend on size of total text
- Does not depend on number of strings (Esp if string not in trie)

Trie uses more space (in terms of more nodes)

6.2 Order Statistics

- To know the order of the node (ie rank of the key in the data structure)
- Store size of sub-tree in every node
- select(k): finds node with rank k
- rank(v): Computes rank at node v
- During insertion, maintain weight during rotation

```
select(k)
    rank = left.weight + 1;
    if (k == rank) then
        return v;
    else if (k < rank) then
        return left.select(k);
    else if (k > rank) then
        return right.select(k{rank);
rank(node)
    rank = node.left.weight + 1;
    while (node != null) do
        if node is left child then
            do nothing
        else if node is right child then
            rank += node.parent.left.weight + 1;
        node = node.parent;
    return rank;
```


Figure 6: Update weights during insertion

6.3 Interval Trees

Find an interval containing a value

- Each node is an interval, sorted by left endpoint
- $\bullet~$ Each node contains the maximum~endpoint~in~subtree
- Running time of search simply O(log n)

```
//Find interval containing x
interval-search(x)
    c = root;
    while (c != null and x is not in c.interval) do
        if (c.left == null) then
            c = c.right;
        else if (x > c.left.max) then
            c = c.right;
        else c = c.left;
    return c.interval;
```

Search find an overlapping interval, if it exists.

- If search goes right: No overlap in left-subtree
- ∴ key is in right subtree or it is not in tree
- If search goes left and no overlap, then key < every interval in right sub-tree.
- : Either finds key in left subtree or it is not in the tree

6.4 Range Trees/Orthogonal Range Searching

Find everyone between a certain range

- Stores all points in the **leaves** (Internal nodes store copies)
- Internal node v stores max(v.left)
- First find the 'split node': Is node between specified range?
- ... Do both Left and Right traversal at split node to get all nodes within range

```
FindSplit(low, high)
    v = root;
    done = false;
    while !done {
        if (high <= v.key) then v=v.left;</pre>
        else if (low > v.key) then v=v.right;
        else (done = true);
    }
    return v;
RightTraversal(v, low, high)
    if (v.key <= high) {</pre>
                                          //Still within range
        all-leaf-traversal(v.left);
        RightTraversal(v.right, low, high);
    } else {
                                         //Left max larger than range, just go left
        RightTraversal(v.left, low, high);
LeftTraversal(v, low, high)
    if (low \le v.key) {
                                          //Still within range
        all-leaf-traversal(v.right);
        LeftTraversal(v.left, low, high);
    } else {
                                          //Left max smaller than range, just go right
        LeftTraversal(v.right, low, high);
    }
```

- Finding split node: O(log n)
- Traversals recurse at most O(log n) times,

outputting all (all-leaf-traversal()) is O(k), where k is number of items found.

- : Query time complexity = O(log n + k)
- Preprocessing (buildtree) time complexity: O(nlogn)

(Split into left and right, take highest value of left and put as key

If numofelements==1, then set as leaf)

- Space Complexity: O(n)
- If just want to know the count: keep count of num of nodes in each sub-tree, and retreive that instead of all-leaf-traversal.

Related: kd-trees (k-dimension)

7 Hashing

Standard symbol table supports:

- void insert(key, value)
- value search(key)
- void delete(key)
- bool contains(key)
- int size()

Costs of Search and Insert/Delete, and other functions required: See specifications

- AVL Tree: O(logn) each
- Symbol Table: O(1) each, but extra functionality, eg Sorting $(O(nlogn) \text{ vs } O(n^2)$
- Symbol Table also no prede/successor queries Since Symbol Tables are not comparison-based

7.1 Hash Functions & Collisions

Direct Access Tables take too much space (Number of possible keys very large)

Map keys to buckets using Hash Functions

Assume m buckets, n entries, and h is the hash function,

- 2 distinct keys **collide** if: $h(k_1) = h(k_2)$
- Collisions unavoidable by Pigeonhole Principle (Table Size < Universe Size)

7.2 Collision Handling: Chaining

Put both items in same bucket, using linked List of items.

Total Space:	O(m+n)
Insertion:	Find hash value, add to head of linked list $\therefore O(1 + cost(h))$
Search:	Find hash value, search through linked list Worst case all values go to same bucket (emphasizing importance of good hash function) $\therefore O(n + cost(h))$

7.2.1 Simple Uniform Hashing Assumption

Assume "random" mapping:

- Every key is equally likely to map to every bucket
- Keys mapped independently
- : As long as enough buckets, won't get too many keys in one bucket

If X(i,j) = 1 if item i is put in bucket j, and 0 otherwise,

- P(X(i,j) == 1) = 1/m
- E(X(i,j)) = 1/m
- Thus, expected number of items per bucket $= E(\Sigma_i X(i,b)) \\ = \Sigma_i E(X(i,b)) \\ = \Sigma_i 1/m \\ = n/m$
- : load(hashtable) = average number of items per bucket = 1 + n/m

Therefore, for a Hashtable with chaining under SUHA assumption:

Search time: • Expected • Worst-case	1 + n/m (Hash function + linked list traversal) $O(1)$ (Assuming $m = \Omega(n)$ buckets, eg $m = 2n$) O(n)
Worst-Case Insertion:	O(1) if allow duplicates, preventing duplicate requires searching
Expected max linked-list length/cost	$O(logn)$ or $\Theta(logn/loglogn)$

7.3 Collision Handling: Open-Addressing

- All data directly stored in the table, one item per slot.
- On collision, probe sequence of buckets until empty one found
- When m == n, table is full, cannot insert any more items; cannot search efficiently
- Redefined Hash Function: h(key, i), where i = number of collisions
- Linear Probing: Keep checking the next bucket, $h(k, 1) + (i \mod m)$

```
hash-insert(key, data)
int i = 1;
while (i \le m):
                                         // Try every bucket
    int bucket = h(key, i);
    if (T[bucket] == null):
                                        // Found an empty bucket
        T[bucket] = {key, data};
                                        // Insert key/data
                                        // Return
        return success;
throw new TableFullException();
                                        // bucket full
hash-search(key)
    int i = 1;
    while (i <= m):
        int bucket = h(key, i);
        if (T[bucket] == null) return key-not-found;
                                                             // Empty bucket!
        if (T[bucket].key == key) return T[bucket].data;
                                                             // Full bucket
        i++:
    return key-not-found;
                                                             // Exhausted entire table.
```

delete(key): Find key to delete, set bucket to DELETED (A tombstone value)

- Cannot set as NULL, since search may then fail to find a key after that bucket.
- When insert(key) comes to DELETED, overwrite deleted cell.

7.3.1 Properties of good Hash Functions

- 1. h(key, i) enumerates all possible buckets
- \forall bucket $j, \exists i : h(key, i) = j$
- The hash function is permutation of 1...m
- If not, may return table-full when still have space left

2. Uniform Hashing Assumption

- Every key is equally likely to be mapped to every **permutation of buckets**, independent of every other key.
- Linear Probing does NOT fulfill this criteria: Clustering can reach $\Theta(logn)$, ruins constant time performance In practice though, linear probing is desirable due to caching
- Achieved through double hashing
- Using 2 hash functions g(k), f(k), $h(k,i) = [f(k) + ig(k)] \mod m$ for some large m Specifically, if g(k) is relatively prime to m, then h(k, i) hits all buckets

7.3.2 Resizing

8 Other Data Structures

- 8.1 B-trees
- 8.2 ab-trees
- 8.3 Skip Lists
- 8.4 Merkle Trees