27. Line: $x = x_1 + t(x_2 - x_1)$, $y = y_1 + t(y_2 - y_1)$

28. Circle: $x = h + r \cos \theta$, $y = k + r \sin \theta$

29. Ellipse: $x = h + a \cos \theta$, $y = k + b \sin \theta$

30. Hyperbola: $x = h + a \sec \theta$, $y = k + b \tan \theta$

In Exercises 31–38, use the results of Exercises 27–30 to find a set of parametric equations for the line or conic.

31. Line: Passes through (0, 0) and (6, -3)

32. Line: Passes through (2, 3) and (6, -3)

33. Circle: Center: (3, 2); Radius: 4

34. Circle: Center: (-3, 2); Radius: 5

35. Ellipse: Vertices: $(\pm 4, 0)$; Co-vertices: $(0,\pm 5)$

36. Ellipse: Vertices: (4, 7), (4, -3);

Co-vertices: (8,2), (0,2)

In Exercises 39-46, find a set of parametric equations for the given rectangular equation using (a) t = x and (b) t = 2 - x.

39.
$$y = 3x - 2$$

40.
$$x = 3y - 2$$

41.
$$y = x^2$$

42.
$$y = x^3$$

43.
$$y = x^2 + 1$$

44.
$$y = 2 - x$$

45.
$$y = \frac{1}{x}$$

46.
$$y = \frac{1}{2x}$$

47. The graph of the parametric equations $x = 2 \sec t$ and $y = 3 \tan t$ is given in the figure. Would the graph change for the equations $x = 2 \sec(-t)$ $y = 3 \tan(-t)$? If so, how would it change?

Figure for 47

Figure for 48

48. A moving object is modeled by the parametric equations $x = 4 \cos t$ and $y = 3 \sin t$, where t is time (see figure). How would the orbit change for the following?

(a)
$$x = 4\cos 2t$$
, $y = 3\sin 2t$

(b)
$$x = 5 \cos t$$
, $y = 3 \sin t$

In Exercises 49-52, match the parametric equations with the correct graph and describe the domain and range. [The graphs are labeled (a) through (d).]

(a)

(b)

(c)

49. Lissajous curve:
$$x = 2 \cos \theta$$

$$y = \sin 2\theta$$

50. Evolute of ellipse:
$$x = 4 \cos^3 \theta$$

$$y = 6\sin^3\theta$$

51. Involute of circle:
$$x = \frac{1}{2}(\cos \theta + \theta \sin \theta)$$

$$y = \frac{1}{2}(\sin \theta - \theta \cos \theta)$$

52. Serpentine curve:
$$x = \frac{1}{2} \cot \theta$$

$$y = 4 \sin \theta \cos \theta$$

In Exercises 53-60, use a graphing utility to obtain a graph of the curve represented by the parametric equations.

53. Cycloid:
$$x = 4(\theta - \sin \theta)$$

$$y = 4(1 - \cos \theta)$$

54. Cycloid:
$$x = \theta + \sin \theta$$

$$y = 1 - \cos \theta$$

55. Prolate cycloid:
$$x = \theta - \frac{3}{2} \sin \theta$$

$$y = 1 - \frac{3}{2}\cos\theta$$

56. Prolate cycloid:
$$x = 2\theta - 4\sin\theta$$

$$y = 2 - 4 \cos \theta$$

57. Hypocycloid:
$$x = 3 \cos^3 \theta$$

$$y = 3 \sin^3 \theta$$

58. Curtate cycloid:
$$x = 8\theta - 4 \sin \theta$$

$$y = 8 - 4 \cos \theta$$

59. Witch of Agnesi:
$$x = 2 \cot \theta$$

$$y = 2 \sin^2 \theta$$