dplyr: summarizing and grouping

Bio724D: Fall 2023

2023-09-16

Data set: Yeast colony morphology

Reference

Granek, J. A., D. Murray, Ö. Kayıkçı, and P. M. Magwene. 2013. The genetic architecture of biofilm formation in a clinical isolate of *Saccharomyces cerevisiae*. Genetics 193(2):587-600.https://doi.org/10.1534/genetics.112.142067

Data availability on Dryad

Dryad link: https://doi.org/10.5061/dryad.mn71g

Brief description

- 70 offspring from a genetic cross used to carry out QTL mapping
- Genotype information at two major QTLs [grouping variable]
- Organismal and molecular phenotypes such as colony complexity score, gene expression, concentration of cyclic AMP [discrete and continuous traits]

Figure 1: Yeast colonies

Data set: Yeast colony morphology seg_strain_table.csv

 See README_for_seg_strain_table.csv on Dryad for explanation of columns

Load the data

_	Strain +	Segregant	Pool ÷	Cyr1.geno	Flo11.geno	CM.a	CM.b	CM.c	cAMP ÷	Cyr1.expr	Flo11.expr	Adhes.a +	Adhes.b •	Adhes.c
1	PMY1278	s44	С	С	s	4.3	3.9	3.9	221.34	1816	226922	0.4055	0.4576	0.4564
2	PMY1330	s67	С	С	С	3.6	3.6	3.5	276.70	NA	NA	0.4989	0.9868	1.0785
3	PMY1331	s68	С	С	С	3.2	3.2	3.5	122.06	NA	NA	0.5176	1.2117	1.0973
4	PMY1254	s20	S	s	s	1.0	1.0	1.0	164.80	1418	22337	0.0576	0.3082	0.2970
5	PMY1289	s55	С	S	С	3.1	3.0	3.6	195.59	2159	184194	0.3301	0.4025	0.4269
6	PMY1255	s21	S	S	s	1.0	1.0	1.0	252.33	1555	156586	0.1703	0.1821	0.1847
7	PMY1294	s60	С	С	С	3.3	3.6	3.7	247.58	1864	136993	0.7280	1.5931	1.482
8	PMY1288	s54	С	С	С	3.6	3.7	3.5	197.00	1140	136704	0.4053	0.6482	0.6894
9	PMY1260	s26	S	S	s	1.0	1.0	1.0	194.97	1444	2113	0.0887	0.1066	0.105
10	PMY1264	s30	S	S	S	1.0	1.0	1.0	176.29	1265	82581	0.1414	0.2100	0.195

Figure 2: A sample of rows from seg_strain_table.csv

Summarizing using **dplyr::summarize**

- When used on an un-grouped data frame (see below) dplyr::summarize
 applies a function to one or more columns in a data frame, returning a new
 data frame with a single row
- Data are "collapsed" across rows

```
ccm |>
summarize(mean_cAMP = mean(cAMP, na.rm=TRUE))
```

mean_cAMP

216.2056

summarize can calculate multiple summaries simultaneously

mean_cAMP	mean_log2_Cyr1
216.2056	0.4665786

Group assignment: Summarizing

Tukey's Five Number Summary

John Tukey, an important 20th-century statistician and mathematician who is often consider one of the founders of Data Science, recommended that exploratory analyses of data always start with calculation of "five number" summary of key variables:

- 1. Minimum
- 2. First quartile (25th percentile)
- 3. Median (50th percentile)
- 4. Third quartile (75th percentile)
- 5. Maximum

Assignment

- Use the dplyr::summary to produce a 5-number summary of the CM.a variable from the yeast colony morphology data set
- Hint: The function quantile may be useful here, among others.

Grouping using dplyr::group_by

The function group_by "decorates" a data frame with grouping information that you specify

group_by by itself doesn't do any further calculations

```
grouped_ccm <-
  ccm |>
  group_by(Pool)
```

Grouping and Summarizing

Once a data frame is grouped, summarize then applies it's functions in a group-wise manner

Pool	nobs	mean_cAMP	sd_cAMP
С	35	232.4509	48.33254
S	35	200.8886	43.02055

Grouping: Multiple grouping variables can be used simultaneously

Cyr1.geno	nobs	mean_cAMP	sd_cAMP
С	22	233.7377	49.01749
Н	2	231.7150	25.20836
S	11	229.4689	54.24839
S	35	200.8886	43.02055
	С	C 22 H 2 S 11	H 2 231.7150 S 11 229.4689

Group Assignment: Grouping and summarizing

 Calculate a five-number summary of the CM. a variable, grouped by Cyr1.geno and Pool

Grouping within rows using **dplyr::rowwise**

Sometimes you need to apply a grouping of variables row-wise, such as when you have replicate measures of the same variable and you want to average those replicates. rowwise applies grouping on a per-row basis.

```
ccm |>
  rowwise() |>
  mutate(AvgAdhes = mean(c(Adhes.a, Adhes.b, Adhes.c), na.rm=TRUE)) |>
  ungroup() |> # remove grouping info so slice_sample does what we want
  slice_sample(n=5) |>
  select(Strain, Segregant, AvgAdhes)
```

Strain	Segregant	AvgAdhes
PMY1324	s61	0.1986333
PMY1236	s2	0.1092333
PMY1263	s29	0.2513000
PMY1283	s49	0.5421000
PMY1252	s18	0.1803333

Group Assignment: Using rowwise

Assignment

- What does the call to slice_sample() do in the code above?
- Repeat the calculation on the previous slide but leave out the call to rowwise() and compare the output. What happens?
- Use rowwise and mutate to create a new column AvgCM representing the average CM of each strain in the mapping population.
- Calculate five number summaries of AvgCM for the data grouped by Cyr1.geno and Pool