

Image Processing & Vision

Lecture 12: Convolutional Neural Networks

Hak Gu Kim

hakgukim@cau.ac.kr

Immersive Reality & Intelligent Systems Lab (IRIS LAB)

Graduate School of Advanced Imaging Science, Multimedia & Film (GSAIM)

Chung-Ang University (CAU)

Recap: Neural Networks

- Input: $\mathbf{x} \in \mathbb{R}^{D \times 1}$ where D = 3072
- Output: $f(\mathbf{x}) \in \mathbb{R}^{C \times 1}$ where C = 10
- Linear Classifier: $f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$
- 2-layer Neural Network: $f(\mathbf{x}) = \mathbf{W}_2 \max(0, \mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2$

All elements of **x** affect all elements of **h**

All elements of **h** affect all elements of **s**

Fully-connected neural network (MLP)

Topics

- Convolutional Neural Networks (CNNs)
- Convolution Layers
- Pooling Layers
- Normalization

Evolution of CNNs

Topics

- Convolutional Neural Networks (CNNs)
- Convolution Layers
- Pooling Layers
- Normalization

Evolution of CNNs

Limitations of Linear Classifiers and MLP

Problem:

— The classifiers we learned such as linear classifiers and neural networks (i.e., multi-layer perceptron) do not respect the spatial structure of images

Solution:

Design new computational nodes on images for spatial operation

Components of Neural Networks (MLP)

Fully-Connected Layers (FC layers)

Activation Function

Components of Convolutional Neural Networks (CNNs)

Fully-Connected Layers (FC layers)

Convolution Layers

Pooling Layers

Activation Function

Normalization

CNNs

 Convolutional neural networks (CNNs) have been tremendously successful in practical computer vision applications such as object detection, classification, segmentation, etc.

Architecture of **Neural Networks (MLP)**

Neural Networks (MLP):

- —An input (a single vector) is transformed it through a series of hidden layers
- —Each hidden layer is made up of a set of neurons, where each neuron is fully connected to all neurons in the previous layer, and where neurons in a single layer function completely independently and do not share any connections
- —The last fully-connected layer is called the output layer and in classification settings it represents the class scores

Architecture of CNNs

- CNNs are a specific type of neural networks that are generally composed of the convolution layer, pooling layer, and fully connected layer
 - Sharing parameters across multiple image locations
 - Translation equivariant operation (in convolution layer)

Architecture of **CNNs**

- Three main types of layers to build CNNs (ConvNet):
- Convolutional layer
- Pooling layer
- Fully-Connected layer

Example of ConvNet architecture

What do convolution filters learn? 32 28 ReLU Conv $\mathbf{W}_1: 6 \times 3 \times 5 \times 5$ **b**₁: 6 32 28 1st hidden layer: Input: N x 6 x 28 x 28 N x 3 x 32 x 32

Convolution filter at 1st layer learns the local image templates (e.g., oriented edges, opposite colors, etc.)

64 filters (3x11x11) in AlexNet

- Receptive Fields (Kernel/filter size)
- For convolution with kernel size K, each element in the output depends on a $K \times K$ receptive field in the input

Components of Convolutional Neural Networks (CNNs)

Fully-Connected Layers (FC layers)

Convolution Layers

Pooling Layers

Activation Function

Normalization

- Receptive Fields (Kernel/filter size)
- Problem: For large images, we need may layers for each output to see the whole size of image
- Solution: Down-sampling in side the network

Various Convolutions (for down-sampling):

Basic convolution

Strided convolution

Dilated convolution

Convolution Layer Functions in PyTorch

CONV2D

```
CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) [SOURCE]
```

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

where \star is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

Examples:

```
>>> # With square kernels and equal stride
>>> m = nn.Conv2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> # non-square kernels and unequal stride and with padding and dilation
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
```

Architecture of CNNs: Pooling Layer

- Pooling layer is to progressively reduce the spatial size of the representation to reduce the amount of parameters and computation in the network
- It operates independently on every depth slice of the input and resizes it spatially, using the MAX operation

Architecture of CNNs: Pooling Layer

MAX Pooling

2	3	5	4			
5	6	7	8	MAX pooling with 2x2 kernel size and stride 2	6	8
3	2	1	0		3	4
1	2	3	4			

Architecture of CNNs: Pooling Layer

Average Pooling

2	3	5	4			
5	6	7	8	Average pooling with 2x2 kernel size and stride 2	4	6
3	2	1	0		2	2
1	2	3	4			

Architecture of CNNs: Fully-Connected Layer

 Neurons in a fully connected layer have full connections to all activations in the previous layer, as seen in regular Neural Networks

- LeNet-5
- Spartial Size decreases
 - By pooling and strided convolution
- Number of channels increases
 - Total volume is preserved

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool (K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool (K=2, S=2)	50 x 7 x 7	
Flatten	2,450	
FC layer (2,450→500)	500	2,450 x 500
ReLU	500	
FC layer (500→10)	10	500 x 10

- LeNet-5
- Spartial Size decreases
 - By pooling and strided convolution
- Number of channels increases
 - Total volume is preserved

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool (K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool (K=2, S=2)	50 x 7 x 7	
Flatten	2,450	
FC layer (2,450→500)	500	2,450 x 500
ReLU	500	
FC layer (500→10)	10	500 x 10

- LeNet-5
- Spartial Size decreases
 - By pooling and strided convolution
- Number of channels increases
 - Total volume is preserved

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool (K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool (K=2, S=2)	50 x 7 x 7	
Flatten	2,450	
FC layer (2,450→500)	500	2,450 x 500
ReLU	500	
FC layer (500→10)	10	500 x 10

- LeNet-5
- Spartial Size decreases
 - By pooling and strided convolution
- Number of channels increases
 - Total volume is preserved

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool (K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool (K=2, S=2)	50 x 7 x 7	
Flatten	2,450	
FC layer (2,450→500)	500	2,450 x 500
ReLU	500	
FC layer (500→10)	10	500 x 10

- LeNet-5
- Spartial Size decreases
 - By pooling and strided convolution
- Number of channels increases
 - Total volume is preserved

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool (K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool (K=2, S=2)	50 x 7 x 7	
Flatten	2,450	
FC layer (2,450→500)	500	2,450 x 500
ReLU	500	
FC layer (500→10)	10	500 x 10

- LeNet-5
- Spartial Size decreases
 - By pooling and strided convolution
- Number of channels increases
 - Total volume is preserved

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool (K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool (K=2, S=2)	50 x 7 x 7	
Flatten	2,450	
FC layer (2,450→500)	500	2,450 x 500
ReLU	500	
FC layer (500→10)	10	500 x 10

Example: Architecture of CNNs

- LeNet-5
- Spartial Size decreases
 - By pooling and strided convolution
- Number of channels increases
 - Total volume is preserved

Layer	Output Size	Weight Size	
Input	1 x 28 x 28		
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5	
ReLU	20 x 28 x 28		
MaxPool (K=2, S=2)	20 x 14 x 14		
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5	
ReLU	50 x 14 x 14		
MaxPool (K=2, S=2)	50 x 7 x 7		
Flatten	2,450		
FC layer (2,450→500)	500	2,450 x 500	
ReLU	500		
FC layer (500→10)	10	500 x 10	

Example: Architecture of CNNs

- LeNet-5
- Spartial Size decreases
 - By pooling and strided convolution
- Number of channels increases
 - Total volume is preserved

Layer	Output Size	Weight Size	
Input	1 x 28 x 28		
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28		
ReLU	20 x 28 x 28		
MaxPool (K=2, S=2)	20 x 14 x 14		
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5	
ReLU	50 x 14 x 14		
MaxPool (K=2, S=2)	50 x 7 x 7		
Flatten	2,450		
FC layer (2,450→500)	500	2,450 x 500	
ReLU	500		
FC layer (500→10)	10	500 x 10	

Components of Convolutional Neural Networks (CNNs)

Fully-Connected Layers (FC layers)

Convolution Layers

Pooling Layers

Activation Function

Normalization

Components of Convolutional Neural Networks (CNNs)

Fully-Connected Layers (FC layers)

Convolution Layers Pooling Layers

224x224x64

pool

112x112x64

pool

downsampling

112

112

Activation Function

Normalization

- Normalize the outputs of a layer so they have zero mean and unit variance
- It helps reduce internal covariate shift and improves optimization

 Batch normalization is a differentiable function, so we can use it as an operator in our networks and backpropagation through it

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

Batch Norm

S. loffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

Mini-Batch Samples N

- Input: $\mathbf{x} \in \mathbb{R}^{N \times D}$
- Mean (per each channel)

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

Standard deviation (per each channel)

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$

Normalized input

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

- Input: $\mathbf{x} \in \mathbb{R}^{N \times D}$
- Mean (per each channel)

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

Standard deviation (per each channel)

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$

Normalized input

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

- What if zero-mean and unit variance is too hard of a constraint?
- Learnable scale($\gamma \in \mathbb{R}^D$) & shift $(\beta \in \mathbb{R}^D)$ parameters are used:

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

- Input: $\mathbf{x} \in \mathbb{R}^{N \times D}$
- Mean (per each channel)

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

— Standard deviation (per each channel)

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$

Normalized input

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

 We cannot estimate the mean, standard deviation, and normalized input of each minibatch at test time

Architecture of CNNs: Batch Normalization at Test Time

- Input: $\mathbf{x} \in \mathbb{R}^{N \times D}$
- Mean (per each channel)

$$\mu_j = \text{(Running) average of values seen} \\ \text{during training}$$

- Standard deviation (per each channel)
 - $\sigma_j^2 = \text{(Running)}$ average of values seen during training
- Normalized input

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

- We cannot estimate the mean, standard deviation, and normalized input of each minibatch at test time
- During test, batch normalization becomes a linear operation, which can be fused with the previous Conv or FC layers

5. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

Advantages of Batch Normalization:

- Makes deep networks much easier to train
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time

S. loffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

Summary: Components of CNNs

Fully-Connected Layers (FC layers)

Convolution Layers

Pooling Layers

Activation Function

Normalization

Topics

- Convolutional Neural Networks (CNNs)
- Convolution Layers
- Pooling Layers
- Normalization

Evolution of CNNs

Evolution of CNNs: AlexNet (2012)

- The 1st winner to use CNN in ILSVRC 2012
 - Astounding improvement: 25.78% (1st place in 2011) \rightarrow 15.3% (Best in 2012)
 - The 2nd place record in 2012: 26.17%
- AlexNet
 - 8-layer CNN: 5 conv layers + 3 fc layers

Evolution of CNNs: ZFNet (2014)

Image Processing & Vision

- The 1st place in ILSVRC 2013
 - Small improvement: 15.3% (1st place in 2012) → 11.7% (Best in 2013)
- ZFNet is a simple variant of AlexNet
 - Smaller kernel: $11 \times 11 \rightarrow 7 \times 7$
 - Smaller stride: $4 \rightarrow 2$
 - Doubled the number of kernels

Evolution of CNNs: VGG-19 (2014)

- The 2nd place in ILSVRC 2014
 - Big improvement: 11.7% (1st place in 2013) \rightarrow 7.33% (2nd place in 2014)
- VGG-19
 - Only 3 x 3 kernels for convolutions
 - Stacking multiple 3 x 3 kernels is better than others
 - The same receptive field: $3 \times (3 \times 3) = 7 \times 7$
 - Small number of parameters: $27C^2 < 49C^2$
 - More non-linearity

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

Evolution of CNNs: GoogLeNet (2014)

- The 1st place in ILSVRC 2014
 - Big improvement: 11.7% (1st place in 2013) \rightarrow 6.67% (Best in 2014)
 - With 12x fewer parameters than AlexNet
- **Inception Module** in GoogLeNet
 - Multiple convolution operations with different receptive fields
 - Capturing sparse patterns in a stack of features

Lecture 12 - Convolutional Neural Networks

Hak Gu Kim

Evolution of CNNs: GoogLeNet (2014)

Inception Module: Naïve vs Dimension Reduction

Inception module (naïve version)

- (+) Encoding different receptive fields
- (+) Capturing sparse patterns
- (–) Computational blow up

Inception module with dimension reductions

- (+) Reductions before the expensive convolutions
- (+) Useful for changing #.channels
- (+) More non-linearities

Internal Covariate Shift

- The change in the distribution of network activations due to the change in network parameters during training
- → It requires lower learning rates and careful initialization
- → It makes it notoriously hard to train models with saturating nonlinearities

Saturated regime in activation

- Batch normalization (BN) dramatically accelerates the training of deep networks by reducing internal covariate shift
- Normalization via Mini-Batch Statistics
 - Normalization: Normalize each dimension for a layer
 - Transformation: Scale and shift the normalized value

- Batch normalization (BN) dramatically accelerates the training of deep networks by reducing internal covariate shift
 - Much higher learning rates
 - Less careful about initialization

- Batch normalization (BN) dramatically accelerates the training of deep networks by reducing internal covariate shift
 - Allows much higher learning rates → Faster training
 - **Stabilizes** gradient vanishing → Saturating non-linearities
 - Has regularization effects → No need dropout layers

Model	Resolution	Crops	Models	Top-1 error	Top-5 error
GoogLeNet ensemble	224	144	7	-	6.67%
Deep Image low-res	256	-	1	-	7.96%
Deep Image high-res	512	-	1	24.88	7.42%
Deep Image ensemble	up to 512	-	-	-	5.98%
MSRA multicrop	up to 480	-	-	-	5.71%
MSRA ensemble	up to 480	-	-	-	4.94%*
BN-Inception single crop	224	1	1	25.2%	7.82%
BN-Inception multicrop	224	144	1	21.99%	5.82%
BN-Inception ensemble	224	144	6	20.1%	4.82%*

- The 1st place in ILSVRC 2015
 - Astounding improvement: 6.67% (1st place in 2015) \rightarrow 3.57% (Best in 2015)
 - ResNet is the first architecture succeeded to train > 100-layer
- Degradation in Training Deeper Networks
 - Adding more layers leads to higher training error
 - Such degradation is not caused by overfitting
 - Deeper networks are much harder to optimize even if we use BNs

Non-linear layers may struggle to represent an identity func

- Due to internal non-linearities such as ReLU
- This may cause the optimization difficulty on deeper networks

Shallow network: plain-18

K. He et al., Deep Residual Learning for Image Recognition, CVPR 2016

Deeper network: plain-34

Solution: Explicitly let the stacked layers fit a residual mapping

K. He et al., Deep Residual Learning for Image Recognition, CVPR 2016

Deeper network: ResNet-34

Revolution of Depth

- Identity connection resolved a major difficulty on optimizing large networks
 - Residual learning makes it possible to train >100-layer without optimization difficulty
- ResNet shows good generalization ability as well

K. He et al., Deep Residual Learning for Image Recognition, CVPR 2016
K. He, Deep Residual Networks: Deep Learning Gets Way Deeper, ICML 2016 Tutorial

Evolution of CNNs: Performance Comparisons

Top1 vs. network

Single-crop top-1 validation accuracies for top scoring single-model architectures

Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations required for a single forward pass

A. Canziani et al., An Analysis of Deep Neural Network Models for Practical Applications, arXiv 2016

Evolution of CNNs: Various ResNet Architectures

- Network Design Paradigm: Optimization → Generalization
- How well does an architecture generalize as its scale grows?
- Various Architectures based on ResNet
 - Deep networks with stochastic depth
 - Wide ResNet
 - ResNet in ResNet
 - ResNeXt
 - Inception-v4
 - DenseNet
 - Dual Path Network
 - *Etc.*

- G. Huang et al., Deep Networks with Stochastic Depth, ECCV 2016
- S. Zagoruyko and N. Komodakis, Wide Residual Networks, BMVC 2017
- S. Targ et al., ResNet in ResNet: Generalizing Residual Architectures, ICLRW 2016
- S. Xie et al., Aggregated Residual Transformations for Deep Neural Networks, CVPR 2017
- C. Szegedy et al., Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, AAAI 2017
- G. Huang et al., Densely Connected Convolutional Networks, CVPR2017
- Y. Chen et al., Dual Path Networks, NeurIPS 2017