Algorithms Design. Georgia Institute of Technology. Rudrata path.

Graph problems in the class NP-complete.

- Independent set (IS), search version.
- Clique, search version.
- Vertex Cover, search version.
- Today: Rudrata path.

Rudrata path

Definition

Given an graph G = (V, E) a Rudrata(s, t)-path is a path starting at s and ending at t with the property that every vertex in the graph is visited exactly once. If we take s = t (thus, allowing this vertex to be visited twice) this is called a Rudrata cycle.

What is the difference with Hamiltonian path and cycles?

None!

- Rudrata (9th century) poet and literary theorist.
- Sir. William Rowan Hamilton (19th century) Irish mathematician.
- Thomas Kirkman (19th century), al-Adli ar-Rumi (9th century),
 Abraham de Moivre, Leonard Euler (18th century)

Rudrata path to Rudrata cycle

Given an input of the Rudrata (s, t)—path add a new vertex v with two new edges (vs) and (tv):

Figure: This graph has a Rudrata cycle iff the given one has a Rudrata (s, t)—path.

We will outline: $Vertex-cover \rightarrow Rudrata$ cycle in a directed graph.

Given an input of Vertex-cover, $\{G=(V,E), k\in\mathbb{N}\}$, we build a directed graph H in three steps:

(1) For each edge $e = (uv) \in E$ build a *gadget*:

Figure: Each edge in G leads to four vertices and six edges in H.

(2) For each vertex $u \in V$ with d neighbors build a *chain* connecting the corresponding gadgets: add edges $(u, v_i, \text{out}) \to (u, v_{i+1}, \text{in})$ for $i = 1, 2, \ldots, d-1$.

Figure: Gadgets associated to one vertex are connected by the chain.

(3) Add k new vertices, x_1, x_2, \ldots, x_k with edges $x_i \to (u, v_1, in)$ and $(u, v_d, out) \to x_i$, for $i = 1, 2, \ldots, k$.

Figure: All chains are interconnected through the vertices x_i .

Figure: The reduction from Vertex-Cover to Rudrata.

Given a vertex cover: $C = \{c_1, c_2, \dots, c_k\}$ of G build a Rudrata cycle moving from x_i to the chain of the vertex c_i . When entering vertex (u, v, in) traverse the corresponding gadget as follows:

- If $v \in C$, move to (u, v, out).
- If $v \notin C$, move $(u, v, in) \rightarrow (v, u, in) \rightarrow (v, u, out) \rightarrow (u, v, out)$.

Figure: The cycle for our example.

Given Rudrata cycle of the graph H, it can be shown that such cycle traverses exactly k chains, and the corresponding vertices form a vertex cover of G.

Figure: The cycle for our example.