Parcours Datascientist: projet 5

Segmentation d'une clientèle

Basée sur un relevé de factures

Francois BANGUI

Parcours Datascientist: projet 5

Annexes

Annexe 1 : fichiers du projet

Annexe 2 : organisation et processus de l'étude

Annexe 3: Variables issues du score RFM

Annexe 4 : variables issues du traitement NLP

Annexe 5 : variables issues de la date de facturation

Annexe 6: API WEB

Formulation du problème : mission

Base de données clients

Regrouper les clients en fonction de leur comportement d'achat. 1 groupe = 1 segment de marché.

Prédire l'appartenance d'un client à un segment de marché lors de son premier achat ou de ses achats successifs.

Processus global du projet

Préparation des données

Exploration des données

Sampling

Analyse exploratoire : Activité = F(temps)

RFM: Traitement & durée de vie

Analyse exploratoire: Description

Analyse exploratoire: items

Traitement NLP: cumul des poids

Variables NLP: réduction de dimension

Traitement NLP: 1766 dimensions

Hypothèse:

linéarité du phénomène

Nb dimensions:

250 ⇒ 80 % variance expliquée

Time: Nouvelles dimensions (2010,2011)

Time : réduction de dimension

Nb de dimensions réduites: 30

Parcours Datascientist: projet 5

Clustering

- Kmeans
- GMM

Data model:

• Complexity: 2 124

Dimensions: 339

Kmeans: description

GMM: description

Kmeans : clustering vs intra-cluster inertias

Kmeans : clustering vs Silhouette

	Count
cluster	
Θ	377
1	1
2	11
3	1641
4	2
5	92

GMM clustering

Nb optimal de clusters Type de covariance :

• Sphérique : 3 clusters

• Diagonale : 3 clusters

	Count
cluster	
0	1312
1	1
2	224
3	1
4	585
5	1

GMM: silhouette vs covariance type

Nb optimal de clusters :

• Diagonale : 3 clusters

• Sphérique : 3 clusters

Full: 3 clusters

Clustering: choix de l'algo & hyp. Param.

Parcours Datascientist: projet 5

Analyse des segments de marché

Market segments: Incomes

aluator	Count	%
cluster 0	1312	62
2	224	11
4	585	27

Segments 2 and 4:

Feb → Jun : increases buy Jul → Aug : decrease buy Sep → Dec : high buy activity

Segment 0 : Q3 increases buy

Markets segments: RFM distribution

Markets segments: behaviours (1)

Cluster 0:

- Few invoices
- Few items per invoice

Cluster 2:

- Lot of invoices
- Lot of items per invoice

Cluster 4:

- Few invoices
- Few items per invoice

Markets segments: behaviours (2)

Parcours Datascientist: projet 5

Prediction d'appartenance

- Random Forest
- •SVC

Random Forests: précision

Nombre de répétitions : 10 Variation d'estimateurs: 1 à 20

18 Estimateurs

Répétitions: 10

Global accuracy = 0.84

Segment: 0 / : 0.87 Segment: 2 / : 0.93 Segment: 4 / : 0.72

·----

Random Forests: matrice de confusion

	Segment 0	Segment 2	Segment 4
Recall	87 %	96 %	70 %
Précision	91 %	79 %	67 %
Spécificité	84 %	97 %	88 %
F-mesure	89 %	86 %	69 %

Estimateur: SVC

Noyaux:

- Linéaire
- RBF
- Poly
- Sigmoid

SVC: One vs Rest

kernel= linear

Accuracy / segment : {0: 0.88, 2: 0.73, 4:0.70}

Global accuracy: 0.82

kernel= rbf

Accuracy / segment : {0: 0.83, 2: 0.73, 4 : 0.61}

Global accuracy: 0.77

► kernel= poly

Accuracy / segment : {0: 0.70, 2: 0.66, 4 : 0.54}

Global accuracy: 0.68

kernel= sigmoid

Accuracy / segment : {0: 0.79, 2: 0.27, 4:0.61}

Global accuracy: 0.66

SVC: matrice de confusion

	Segment 0	Segment 2	Segment 4
Recall	90 %	68 %	75 %
Précision	92 %	39 %	67 %
Spécificité	86 %	93 %	86 %
F-mesure	91 %	50 %	71 %

Parcours Datascientist: projet 5

Validation

Validation: data-set prediction

Validation : Segment 2 vs RFM = 111

Validation: Market segment path

Conclusions

- Problème linéaire
- Traitement NLP : nécessite d'importantes ressources
- Améliorations / évolutions:
 - Re-calcul de la matrice de seuils RFM
 - Intégration en environnement BIG DATA
 - Traitement d'une facture > 100 transactions
 - Traitement NLP sur nb. descriptions > 4000
 - Traitement simultané de factures

Parcours Datascientist: projet 5

Annexes

Annexe 1 : fichiers du projet

Annexe 2 : organisation et processus de l'étude

Annexe 3: Variables issues du score RFM

Annexe 4 : variables issues du traitement NLP

Annexe 5 : variables issues de la date de facturation

Annexe 6: API WEB

Annexe 1 : fichiers du projet

· Fichiers source python :

- p3_util_plot.py : utilitaires d'affichage issus du projet P3
- p3_util.ppy : utilitaires du projet P3
- p5 util plot.py : utilitaires d'affichage issus du projet P5 (projet courant)
- p5 util.py : utilitaires issus du projet P5 (projet courant)
- P5_ModelBuilder.py : générateur de modèle de prédiction
- P5_SegmentCassifier.py : implémentation du modèle de prédiction

Notebooks de l'alnalyse exploratoire :

- P5_2.ipynb : nettoyage / exploration
- P5_2_RFM.ipynb : analyse des features dérivées du score RFM
- P5 2 timeFeature.ipynb : analyse des features dérivées de la date de facturation
- P5_2_NLP.ipynb : analyse des features dérivées de la description traitées en NLP

· Notebook des approches de modélisation :

- P5_2_AllFeature.ipynb : algorithmes de M.L. non supervisés et supervisés.

Notebook de test / validation

P5_SegmentClassifier.ipynb

· Rapport sous forme de présentation pdf:

Openclassrooms_ParcoursDatascientist_P5.pdf

Points d'entrée de l'API :

- Pour récupérer une liste de vols :
 - https://https://francois-bangui-oc-p4.herokuapp.com/predictor/?'*'
- Pour récupérer l'évaluation du retard d'un vol à partir de son identifiant :
 - https://https://francois-bangui-oc-p4.herokuapp.com/predictor/?flight_id=<ID>
- Pour récupérer un el
- http://localhost:5000/?customerID=12822

Annexe 2 : artefacts et processus d'étude

Annexe 3 : Étude RFM

RFM: Kmeans Clustering

Nb optimal de clusters : 5

Clustering RFM: Kmeans effectifs par cluster

- Clusters: > 300
- · Exclusion mutuelle

Clusters distincts:

111, 411, 422, 433, 444

	Cluster_0	Cluster_1	Cluster_2	Cluster_3	Cluster_4	All_segments
RFM						
111	402	0	0	0	0	402
112	0	0	0	0	78	78
113	0	0	0	0	16	16
114	0	0	0	0	1	1
121	0	0	0	0	75	75
122	0	0	0	0	115	115
123	0	0	0	0	38	38
124	0	0	0	0	13	13
131	0	0	0	0	16	16
132	0	0	0	0	40	40
133	0	0	0	0	61	61
134	0	0	0	0	19	19
141	0	0	0	0	4	4
142	0	0	0	0	12	12
143	0	0	0	0	19	19
144	0	0	0	0	55	55
411	0	305	0	0	0	305
412	0	0	0	0	144	144
413	0	0	0	0	34	34
421	0	0	0	0	115	115
422	0	0	0	365	0	365
423	0	0	0	0	161	161
424	0	0	0	0	80	80
431	0	0	0	0	33	33
432	0	0	0	0	161	161
433	0	0	0	433	0	433
434	0	0	Θ	0	186	186
441	0	0	0	0	30	30
442	0	0	Θ	0	65	65
443	0	0	Θ	0	218	218
444	0	0	626	0	0	626

Clustering RFM: distributions

Clustering RFM : GMM models

Clustering RFM: GMM silhouette

Clustering RFM: Mapping cluster/RFM (1)


```
Cluster : 0 RFM = ['444']
Cluster : 1 RFM = ['443']
Cluster : 2 RFM = ['433']
Cluster : 3 RFM = ['111']
Cluster : 4 RFM = ['422']
Cluster : 5 RFM = ['441' '421' '411'
'442' '132' '122' '144' '431' '133'
'432' '121' '423'
'131' '434' '112' '142' '143' '412'
'123' '134' '424' '124' '413' '141'
'113' '114' '414']
```

5 clusters distincts

Clustering RFM: Mapping cluster/RFM (2)


```
Cluster : 0 \text{ RFM} =
                     ['444']
Cluster : 1 RFM =
                     ['443']
Cluster : 2 RFM =
                     Γ'422'
Cluster : 3 RFM =
Cluster : 4 RFM =
                       '432'
Cluster : 5 RFM =
Cluster : 6 RFM =
Cluster: 7 RFM
Cluster: 8 \text{ RFM} = \lceil '411' \rceil
Cluster: 9 \text{ RFM} = ['122']
Cluster : 10 RFM =
Cluster : 11 RFM =
                      Γ'442'
Cluster : 12 RFM =
Cluster : 13 RFM =
Cluster : 14 RFM =
Cluster : 15 RFM = ['112'
Cluster : 16 RFM =
Cluster : 17 RFM =
                      Γ'132'
Cluster : 18 RFM =
                       ['123'
Cluster : 19 \text{ RFM} =
Cluster : 20 RFM =
Cluster : 21 RFM =
Cluster: 22 \text{ RFM} = \lceil 424 \rceil
Cluster : 23 RFM =
Cluster : 24 RFM =
Cluster : 25 RFM =
Cluster : 26 RFM =
Cluster: 27 \text{ RFM} = \lceil '142 \rceil'
Cluster : 28 RFM =
Cluster: 29 \text{ RFM} = \lceil '141' \rceil
Cluster : 30 RFM =
                      ['114']
Cluster: 31 \text{ RFM} = \lceil 414 \rceil
```

Covariance sphérique 32 clusters : RFM séparés

Annexe 3 : Étude NLP

NLP: Kmeans clusters

Inerties interne

Inerties interne : taux décroissance

Coefficient de silhouette

Nb optimal de clusters : 3

NLP: GMM clusters et type de covariance

Nb optimal de clusters : 3

Co-variance des axes : sphérique

NLP: GMM clusters et silhouette

NLP: Cluster 1

Annexe 4 : Étude time

Time: Kmeans clustering

Nb optimal de clusters : 3

Time: GMM clustering vs AIC and BIC

Nb optimal de clusters : 6

Time: GMM clustering vs Silhouette

Nb optimal de clusters : 4 Type covariance : Full

Time: GMM clustering vs Silhouette

Nb optimal de clusters : 4 Type covariance : Full

Annexe 6: API WEB

- Informations du data-set :
 - http://localhost:5000/?*

```
{ " results": [ { "customer count": "3921, "invoice count": "16661, "invl count": "349216} ] }
```

- Informations client
 - http://localhost:5000/?customerID=12822

- Achat en ligne et prédiction d'un client inexistant
 - http://localhost:5000/?order&customerID=0&stockCode=22812&quantity=3&orderDate=NONE { "_results":[{ "customerID": "18288, "marketID": "0}] }
- Achat en ligne et prédiction d'un client existant (dataset validation)
 - http://localhost:5000/?order&customerID=0&stockCode=22812&quantity=1&orderDate=NONE