User Manual (Fiat Visio)

1. Introduction

1.1 Purpose

The user manual explains the use and operation of our code and allows for any parties to setup and execute our code successfully. The first draft of this document was written on May 1, 2017 and finalized on May 18, 2017. The authors of this document are: Daniel Kim and Jason Ligon. Daniel was responsible for sections 3, 4 and part of 5 whereas Jason was responsible for sections 1, 2, and also part of 5.

1.2 Definitions, Acronyms and Abbreviations

There will be some use of acronyms and abbreviations used throughout the document in order to provide brevity and more concise reading. The following acronyms and abbreviations are:

- CNN convolutional neural network
- NN artificial neural network
- R-CNN region-based convolutional neural network
- MOT Multiple Object Tracking database
 - MOT16 Multiple Object Tracking database from year 2016

2. Hardware Configuration

The only hardware requirements required to run our code are the same requirements to run MATLAB, as that is the environment that our code uses. The requirements from the MATLAB state:

- Processors: any Intel or AMD x86-64 processor
- Memory (RAM): 2GB, 4GB with Simulink
- Disk Space: 4-6GB

However, due to the implementation and usage of NN being computationally intensive, the following recommended requirements are:

- Processor: any 4 core Intel or AMD x86-64 processor
- Memory (RAM): 4GB
- Graphics: dedicated graphics card with at least 1GB GPU memory
- Disk Space: 7GB

3. System Parameters

Our code does not require for any parameters to be entered during runtime. However, the file and folder locations of the training images and test images are hardcoded into our code and scripts and must be set to proper values when running the code on machines that the code was not written on. Both ROICreate.m and RCNN.m require folder paths to be set properly for the code to execute. At the end of the execution of ROICreate.m, a table with the title "Traffic" will be created, and this table must be saved as a .m file to be used in the RCNN.m code.

4. Operation Procedure

The proper steps to correctly run our code are listed in the following steps:

- 1. Open MATLAB and move the source files into the MATLAB folder (the folder on your machine where MATLAB files are saved to by default).
- 2. Load, but do not run, the ROICreate.m file.
- 3. If needed, edit the folder path of the folder that the desired training images are stored in. By default, the folder path for the training images used on the development machine is listed.
- 4. Run the ROICreate.m file in MATLAB and select the ROI around the target object for detection.
- 5. After the ROI is drawn, the size can be adjusted and moved. When finish, double-click inside the ROI box to proceed to the next training image.
- 6. Repeat the previous step until each training image is shown and an ROI is selected and the window closes.
- 7. After ROICreate.m is finished running, proceed to the MATLAB window and save the "Traffic" table created from the code and as a .mat file in the MATLAB folder.
- 8. Load the RNN.m file and, similar to the ROICreate.m file, if needed, set the folder path of the training and test images that will be used to test the performance of the R-CNN.
- 9. Run the code and it will automatically download the CIFAR-10 database and create a NN that will be trained with the database.
- 10. The code will output the accuracy of the pre-trained network and proceed to train the R-CNN using the training images and labels set from the ROICreate.m code.
- 11. The code will then begin to display the test images one at a time with a ROI drawn around any traffic light that it detects within the image.
- 12. Click on each image to proceed to the next image, and the this will repeat until all of the test images are shown and the program will then end.

5. Demonstration

The following images shows our code in action and displays some of the various steps outlined the previous (4) Operation Procedure section:

This image shows the ROICreate.m file being executed and is the ROI selection step of the source file. The blue rectangular outline around the traffic light towards the center of the image is the traffic light object that we had chosen to draw a ROI around.

Epoch	Iteration	Time Elapsed (seconds)	Mini-batch Loss	I	Mini-batch Accuracy	1	Base Learning Rate
				<u>.</u>			
1	50	2.94	2.3023	Ĩ	14.84%	1	0.001000
1	100	4.21	2.3021	1	16.41%	1	0.001000
1	150	5.49	2.3011	1	10.94%	1	0.001000
1	200	6.77	2.2966	1	20.31%	1	0.001000
1	250	8.05	2.2882	T	16.41%	Ĩ	0.001000
1	300	9.33	2.1252	J.	26.56%	J.	0.001000
1	350	10.61	2.0211	1	21.88%	1	0.001000
2	400	11.89	1.8798	1	27.34%	1	0.001000
2	450	13.16	1.8414	Ī	21.09%	Ī	0.001000
2]	500	14.44	1.7822	1	29.69%	J.	0.001000
2	550	15.72	1.7133	1	42.97%	1	0.001000
2	600	16.99	1.7968	1	34.38%	1	0.001000
2 1	650	18.27	1.7024	Ī	35.94%	Ī	0.001000
2	700	19.54	1.5878	1	42.19%	1	0.001000
2	750	20.82	1.5763	1	40.63%	1	0.001000
3	800	22.10	1.4098	1	44.53%	1	0.001000
3	850	23.38	1.4706	T	42.19%	ī	0.001000
3	900				48.44%		
3	950	25.93	1.5837	1	41.41%	1	0.001000
3		27.21	1.2616	1	50.78%	1	0.001000
3					43.75%	ī	0.001000
3					48.44%		
3		3		100	51.56%		15
4 1	1200	32.33	1.3689	1	50.00%	1	0.001000
4 1	1250	33.62	1.2556	T	53.91%	î	0.001000
4					53.13%		-
4 1		3		100	53.13%		15
4 1				363	60.16%	33	(a) + a (a) (a) (b) (a) (b) (b) (b)
4 1	1450	38.74	1.1195	T	57.81%	î	0.001000
4 1					57.03%		
4 1		3		(5)	58.59%	18	15
5		5			58.59%	-38	
5					54.69%	13	
5				-	64.06%		
5		3			66.41%	18	19
5		5 <u></u>		33	69.53%	333	
5				(2)	63.28%	(3)	
5					64.84%		

Ī	18	6700	175.40	0.4198	85.16%	0.000010
1	18	6750	176.72	0.4154	84.38%	0.000010
1	18	6800	178.02	0.5649	84.38%	0.000010
1	18	6850	179.33	0.5418	81.25%	0.000010
I	18	6900	180.65	0.5262	85.16%	0.000010
L	18	6950 J	181.96	0.5410	78.91%	0.000010
1	18	7000	183.28	0.4930 [80.47%	0.000010
1	19	7050	184.59	0.5451	83.59%	0.000010
1	19	7100	185.89	0.4719	81.25%	0.000010
I.	19	7150	187.18	0.6232	78.91%	0.000010
1	19	7200	188.49	0.6470	78.91%	0.000010
1	19	7250	189.80	0.3901	86.72%	0.000010
1	19	7300	191.14	0.4625	85.16%	0.000010
1	19	7350	192.46	0.4099	85.94%	0.000010
1	19	7400	193.76	0.3936	86.72%	0.000010
1	20	7450	195.06	0.5344	81.25%	0.000010
1	20	7500	196.36	0.4561	85.94%	0.000010
1	20	7550	197.65	0.5820	82.03%	0.000010
1	20	7600	198.95	0.3895	85.94%	0.000010
1	20	7650	200.25	0.5070	82.03%	0.000010
Ĭ	20	7700	201.55	0.5389	84.38%	0.000010
L	20	7750	202.85	0.4247	87.50%	0.000010
1	20	7800	204.17	0.4414	85.94%	0.000010
I	21	7850	205.47	0.5596	78.91%	0.000010
Ī	21	7900	206.78	0.6002	78.13%	0.000010
I	21	7950	208.07	0.4109	84.38%	0.000010
1	21	8000	209.38	0.5347	81.25%	0.000010
1	21	8050	210.68	0.4359	84.38%	0.000010
î	21	8100	211.98	0.3330	86.72%	0.000010
i	21	8150 J	213.27	0.5254	79.69%	0.000010
1	22	8200	214.58	0.3645	85.16%	0.000010
1	22	8250	215.89	0.4614	82.81%	0.000010
Ī	22	8300	217.19	0.4698	78.91%	0.000010
Ī	22	8350 J	218.51	0.4386	87.50%	0.000010
i	22	8400	219.82	0.4995	79.69%	0.000010
i	22	8450	221.13	0.3810	87.50%	0.000010
î	22	8500 I	222.44	0.3777	88.28%	0.000010
i	22	8550 I	223.75	0.4736	85.16%	0.000010
i	23	8600	225.08	0.4678	82.03%	0.000010
î	23	8650	226.38	0.4131	84.38%	0.000010
î	23	8700 I	227.68	0.4059	85.94%	0.000010
i	23	8750 I	228.98	0.5558	84.38%	0.000010

i i	36	13800	360.58	0.3976	85.16%	0.000000
i	36	13850	361.91	0.5309	82.03%	0.000000
i	36 I	13900 i	363.23	0.4212	85.94%	0.000000 1
i	36 1	13950 I	364.53	0.3278	87.50% I	0.000000
i	36	14000	365.83	0.5067	80.47%	0.000000
i	37	14050	367.13	0.3564	87.50%	0.000000
1	37	14100	368.43	0.4501	82.03%	0.000000
1	37	14150	369.74	0.4600	78.13%	0.000000
1	37	14200	371.07	0.4346	87.50%	0.000000
1	37	14250	372.39	0.4974	79.69%	0.000000
1	37	14300	373.68	0.3735	87.50%	0.000000
1	37	14350	374.99	0.3688	87.50%	0.000000
1	37	14400	376.29	0.4642	85.16%	0.000000
J	38	14450	377.61	0.4670	82.81%	0.000000
1	38	14500	378.92	0.4023	86.72%	0.000000
1	38	14550	380.23	0.4060	85.16%	0.000000
1	38	14600	381.57	0.5467	85.16%	0.000000
J	38	14650	382.89	0.5263	81.25%	0.000000
1	38	14700	384.20	0.5150	84.38%	0.000000
1	38	14750	385.50	0.5267	80.47%	0.000000
1	38	14800	386.81	0.4823	80.47%	0.000000
J	39	14850	388.10	0.5323	85.16%	0.000000
1	39	14900	389.40	0.4564	80.47%	0.000000
1	39	14950	390.70	0.6140	79.69%	0.000000
1	39	15000	392.00	0.6294	78.91%	0.000000
J	39	15050	393.29	0.3781	88.28%	0.000000
1	39	15100	394.59	0.4526	84.38%	0.000000
1	39	15150	395.88	0.4022	87.50%	0.000000
1	39	15200	397.18	0.3914	86.72%	0.000000
J	40	15250	398.47	0.5185	81.25%	0.000000
1	40	15300 J	399.79	0.4523	87.50%	0.000000
1	40	15350	401.11	0.5650	80.47%	0.000000
1	40	15400	402.42	0.3862	87.50%	0.000000
J	40	15 4 50	403.71	0.4959	80.47%	0.000000
1	40	15500	405.04	0.5291	84.38%	0.000000
1	40	15550	406.37	0.4136	86.72%	0.000000
1	40	15600	407.67	0.4302	85.16%	0.000000

accuracy =

0.7601

The past 3 images show the training process of the CIFAR-10 dataset with our CNN that will serve to act as our pre-trained network. Here we can see that the accuracy of the performance of the CIFAR trained network is 76.01%.

Step 2 of 3: Training a neural network to classify objects in training data...

Epoch		1	Iteration	1	Time Elapsed (seconds)	1	Mini-batch Loss	1	Mini-batch Accuracy	1	Base Learning Rate
	25	1	50	1	19.70	1	0.0053	1	100.00%		0.001000
	50	1	100	1	38.82	1	0.0003	1	100.00%	1	0.001000
(0	75	L	150	1	58.05	Ī	0.0109	Ĺ	98.98%	Ī	0.001000
10	00	1	200	1	76.97	1	0.0006	1	100.00%	1	0.001000

Network training complete.

Step 3 of 3: Training bounding box regression models for each object class...100.00%...done.

R-CNN training complete.

The image above shows the training portion on our R-CNN with our traffic light training dataset which uses the pre-trained network previously seen.

This image shows one of the test images that was processed by our R-CNN along with the ROI drawn around the network's detection of a traffic light object.

This image shows another successful traffic light detection and also demonstrates our model's invariance to scale when compared to the previous test image.

This image shows yet another traffic light detection and also demonstrates our model's invariance to lighting compared to the two previous test image examples.