Introdução ao Laboratório de Espectroscopia

Belarmino Matsinhe

August 4, 2023

Conteúdo da aula

- Objectivos e funcionamento
- Estrutura das aulas
- Uso de equipamentos
- Estrutura do Relatório
- Erros de medição e sua propagação
- Metodologia de apresentação dos resultados

- Obter, tratar e análisar os resultados laboratoriais.
- Consolidar as Metodologias de apresentação de resultados.

Link de acesso aos guias de experiências laboratório

Acesse aqui

https://github.com/Macmatsinhe/ESPECTROSCOPIA

Funcionamento

Número de actividades laboratoriais

A disciplina é composto por (5) Experiências Laboratoriais:

Matéria abrangida

- Interação da Radiação com a matéria
- Espectroscopia do Microondas;
- Espectrocopia de emissão atómica;
- Espectroscopia de RF.

Funcionamento

Actividades laboratoriais presenciais

- Interação da radiação ionizante com a matéria;
- Estrutura Fina e o Espectro de um Sistema de um Electrão usando Rede de Difração;
- Sepectroscopia Beta;
- Ressonância do Spin do Electão;
- Análise elementar por XRF;

Estrutura das aulas

Actividades laboratoriais na sala de Aula

- Cada Aula tem duração de 2 horas;
- 2 Cada grupo deve ter $\frac{N_G}{4}$ elementos.

Directrizes de Redação do Relatório

FLEMENTOS PRÉ-TEXTO

A Capa do relatório deve conter a seguinte informação:

- Nome da universidade e da faculdade:
- Nome do curso:
- Nome da disciplina;
- Título do trabalho;
- Nome completo dos autores do relatório;
- Ano, a turma e, se for o caso, o grupo de trabalho a que pertencem.

Resumo;

Directrizes de Redação do Relatório

O CONTEÚDO DO RELATÓRIO

- Indice:
- Introdução;
- (Metodologia) Material, métodos e procedimentos experimentais;
- Resultados e Discussão;
- Conclusão :
- Referências;
- Anexos.

Erros de medição e sua propagação

Em alguns casos uma variável do experimento é medida muitas vezes, tornando a aferição de um processo mais precisa. Deve-se então expressar o valor médio e a incerteza como o desvio da média.

<u>Ex:</u> Medição da DC nos terminais de um circuito simples

n	I (mA)		
1	1,93		
2	1,89		
3	2,01		
4	1,95		
5	2,02		

$$I_{\text{méd}} = \frac{\left(I_1 + I_2 + I_3 + I_4 + I_5 \right)}{5}$$

$$I_{méd}$$
 = 1,96 mA

Incerteza = desvio padrão da média:

$$\Delta u = \left[\frac{1}{n(n-1)}\sum_{i=1}^{n}(u_i-\bar{u}_i)^2\right]^{1/2} \quad \text{Declare então:} \quad \text{I} = (1.96\pm0.02) \text{ mA}$$

 $\Delta I = 0.0245 \text{ mA}$

$$I = (1.96 \pm 0.02) \text{ m/s}$$

Erros de medição e sua propagação

Em muitos casos não é possível aferir diretamente o valorda incerteza de uma medida cujo resultado é obtido a partir de um grupo de variáveis (e valores).

$$\Delta Y = \sqrt{\left(\frac{\partial Y}{\partial a}\right)^2 \Delta a^2 + \left(\frac{\partial Y}{\partial b}\right)^2 \Delta b^2 + \left(\frac{\partial Y}{\partial c}\right)^2 \Delta c^2}$$

Erros de medição e sua propagação

Número de Medições	Níveis de confiança (P _k)				
	0.90	0 ,95	0.99	0.999	
2	6.314	12.71	63.66	636.6	
3	2.920	4.303	9.925	31.60	
4	2.353	3.182	5.841	12.94	
5	2.132	2.776	4.604	8.610	
6	2.015	2.571	4.032	6.859	
7	1.943	2.447	3.707	5.405	
8	1.895	2.365	3.499	5.041	
9	1.860	2.306	3.355	4.781	
10	1.833	2.262	3.250	4.587	
11	1.812	2.228	3.169	4.437	
12	1.796	2.201	3.106	4.318	
13	1.782	2.179	3.055	4.221	
14	1.771	2.160	3.012	4.140	
15	1.761	2.145	2.977	4.073	
16	1.753	2.131	2.947	4.015	
17	1.746	2.120	2.921	3.965	
18	1.740	2.110	2.898	3.922	
19	1.734	2.101	2.878	3.883	
20	1.729	2.093	2.861	3.850	
21	1.725	2.086	2.845	3.819	

Metodologia de apresentação dos resultados

Tabela 4.2. Resultado dos valores no laboratório de Física.

Parâmetro	Valor médio	Valor	Valor	σ_R	σ _{R%}
		máximo	mínimo		
U(mV)	15.24±0.42	35.7±0.42	10.6±0.42	0.027	2.7
I(mA)	3.22±0.042	4±0.042	3±0.42	0.014	0.14
T (°C)	23.94±0.048	24.9±0.048	23.1±0.42	0.002	0.2

Metodologia de apresentação dos resultados

FIM da Aula

Secção de Física Médica