AMERICAN NATIONAL STANDARD Z136.1 - 2000

Table 5a Maximum Permissible Exposure (MPE) for Small-Source Ocular Exposure to a Laser Beam [†]

Wavelength	Exposure Duration, t (s)	MPE		Notes	
(µm)		(J·cm ⁻²)	(W · cm ⁻²)		
Ultraviolet					
0.180 to 0.302	10 ⁻⁹ to 3 × 10 ⁴	3 × 10 ^{.3}		1	
0.303	10° to 3 × 10 ⁴	4 × 10 ⁻³		1	
0.304	10^{-9} to 3×10^{4}	6 × 10 ⁻³			
0.305	10°° to 3 × 10°	10 × 10 ₋₃		or 0.56 <i>0.25</i>	
0.306	10 ⁻⁹ to 3 × 10 ⁴	16 × 10 ⁻³		whichever is lower.	
0.307	10 ⁻⁹ to 3 × 10 ⁴	25 × 10 ⁻³		Windleva is lower.	
0.308	10 ⁻⁹ to 3 × 10 ⁴	40 × 10 ⁻³		<u> </u>	
0.309	10° to 3 × 10 ⁴			l l	
0.310	10 to 3 × 10 ⁴	63 × 10 ⁻³		See Tables 8 and 9	
	10 to 3 × 10	0.1		for limiting apertures)	
0.311	10 ⁻⁹ to 3 × 10 ⁴	0.16		ior miuning apertures)	
0.312	$10^{9} \text{ to } 3 \times 10^{4}$	0.25		1	
0.313	10^{-9} to 3×10^{4}	0.40		1	
0.314	10^{-9} to 3×10^{4}	0.63			
0.315 to 0.400	10 ⁻⁹ to 10	0.56 t ^{a.25}		1	
0.315 to 0.400	10 to 3 × 10 ⁴	1.0		•	
Visible and Near Infi	rared			1	
0.400 to 0.700	10 ⁻¹³ to 10 ⁻¹¹	1.5 × 10 ⁻⁸		\	
0.400 to 0.700	10 ⁻¹¹ to 10 ⁻⁹	2.7 t ^{a.75}		1	
0.400 to 0.700	10 ⁻⁹ to 18 × 10 ⁻⁶	5.0×10^{-7}		į.	
0.400 to 0.700	18 × 10 ⁻⁶ to 10	$1.8 t^{0.75} \times 10^{-3}$		(See Tables 8 and 9	
D.400 to 0.450	10 to 100	1 × 10 ⁻²		for limiting apertures)	
0.450 to 0.500	10 to T ₁		1 × 10 ⁻³	For multiple pulses	
0.450 to 0.500	T ₁ to 100	$C_B \times 10^{-2}$	1 10	apply correction factor	
0.400 to 0.500	100 to 3 × 10 ⁴	.08 (0	C- × 10-4	C_{p} given in Table 6.	
0.500 to 0.700	$10 \text{ to } 3 \times 10^4$		$C_B \times 10^{-4}$ 1×10^{-3}		
0.700 to 1.050	10 ⁻¹³ to 10 ⁻¹¹	$1.5 C_4 \times 10^4$			
0.700 to 1.050	10 ⁻¹¹ to 10 ⁻⁹	2.7 C. tan		1	
0.700 to 1.050	10° to 18 × 10 ⁻⁶	$5.0 C_4 \times 10^{-7}$		•	
0.700 to 1.050	18 × 10 ⁻⁶ to 10	5.0 $C_A \times 10^{.7}$ 1.8 $C_A t^{0.75} \times 10^{.3}$			
).700 to 1.050	$10 \text{ to } 3 \times 10^4$		$C_A \times 10^{-3}$	1	
.050 to 1.400	10 ⁻¹³ to 10 ⁻¹¹	1.5 Cax 10 ⁻⁷		1	
.050 to 1.400	10 ⁻¹¹ to 10 ⁻⁹	$1.5 C_C \times 10^{-7}$ 27.0 $C_C t^{2.75}$			
.050 to 1.400	10° to 50 × 10°	$5.0 C_{\rm C} \times 10^{-6}$		1	
.050 to 1.400	50 × 10 ⁻⁶ to 10	$5.0 C_C \times 10^6$ $9.0 C_C t^{a.73} \times 10^3$		1	
.050 to 1.400	$10 \text{ to } 3 \times 10^4$	•	$5.0 C_C \times 10^{-3}$	1	
ar Infrared					
.400 to 1.500	10 ⁻⁹ to 10 ⁻³	0.1		1	
.400 to 1.500	10 ⁻³ to 10	0.56 t ^{a.25}		}	
.400 to 1.500	$10 \text{ to } 3 \times 10^4$		0.1	For multiple pulses	
.500 to 1.800	10 ⁻⁹ to 10	1.0	***	apply correction factor	
.500 to 1.800	$10 \text{ to } 3 \times 10^4$	===	0.1	C _n given in Table 6	
.800 to 2.600	10 ⁻⁹ to 10 ⁻³	0.1	V.1		
.800 to 2.600	10 ⁻³ to 10	0.56 t ^{a.25}		(See Tables 8 and 9 for	
800 to 2.600	10 to 3 × 10 ⁴	V.JU L	0.1	limiting apertures)	
600 to 10 ³	10 ⁻⁹ to 10 ⁻⁷	1 × 10 ⁻²	0.1	1	
.600 to 10 ³	10 ⁻⁷ to 10	0.56 t ^{a.25}		1	
.600 to 10 ³	10 to 3 × 10 ⁴	0.30 t	0.1	1	

See Table 6 and Figures 8 and 9 for correction factors C₀, C₀ and time T₁. For exposure durations greater than 10 seconds and extended sources in the retinal hazard region (0.400 to 1.4 μm), see Table 5b.

Ex. 1. For repeated (pulsed) exposures, see Section 8.2.3.

2. The wavelength region λ₁ to λ₂ means λ₄ ≤ λ < λ₀, e.g., 0.180 to 0.302 μm means 0.180 ≤ λ < 0.302 μm.

3. Dual Limit Application: In the Dual Limit Wavelength Region (0.400 to 0.600 μm), the listed MPE is the lower value of the photochemical and thermal MPEs as determined by T₁.

AMERICAN NATIONAL STANDARD Z136.1 - 2000

Table 5b Maximum Permissible Exposure (MPE) for Extended-Source Ocular Exposure to a Laser Beam for Long Exposure Durations

Wavelength	Exposure Duration, t (s)	MPE		Notes	
(μm)		(J·cm²) except as noted	(W·cm ⁻²) except as noted	1	
Visible					
0.400 to 0.700	10 ⁻¹³ to 10 ⁻¹¹	$1.5 C_E \times 10^{-4}$		(See Tables 8 and 9	
0.400 to 0.700	10 ⁻¹¹ to 10 ⁻⁹	2.7 C _E t ^{0.75}		for limiting apertures)	
0.400 to 0.700	10 ⁻⁹ to 18 × 10 ⁻⁶	$5.0 C_E \times 10^{-7}$			
0.400 to 0.700	18 × 10 ⁻⁶ to 0.7	$1.8 C_E t^{0.75} \times 10^{-3}$		•	
Photochemical	Dual Limits for 400 - 600 nm vis	sible laser exposure for t >	0.7 s		
Fuotochemical	For $\alpha \le 11$ mrad, the MPE is exp				
0.400 to 0.600	0.7 to 100	$C_8 \times 10^{-2}$			
0.400 to 0.600	$100 \text{ to } 3 \times 10^4$		$C_R \times 10^{-4}$	(See Tables 8 and 9 limiting apertures)	
	For $\alpha > 11$ mrad, the MPE is expressed as radiance and integrated radiance*				
0.400 to 0.600	$0.7 \text{ to } 1 \times 10^4$	100 C _R J-cm ⁻² -sr ⁻¹			
0.400 to 0.600	$1 \times 10^4 \text{ to } 3 \times 10^4$	100 Og June 11	C _a × 10 ⁻² W-cm ⁻² -sr ⁻¹	(See Table 8 for	
	and	·	Og ·· IO W OLL SI	limiting cone angle	
Thermal					
0.400 to 0.700	0.7 to T ₂	$1.8 C_R t^{0.75} \times 10^{-3}$		1	
0.400 to 0.700	T_2 to 3×10^4	1.0 0 10	$1.8 C_E T_2^{-0.25} \times 10^{-3}$		
Near Infrared	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
0.700 to 1.050	10 ⁻¹³ to 10 ⁻¹¹	$1.5 C_4 C_7 \times 10^8$		(See Tables 8 and 9	
0.700 to 1.050	10 ⁻¹¹ to 10 ⁻⁹	$1.5 C_A C_E \times 10^{-8}$ $2.7 C_A C_E t^{0.75}$		for limiting apertures)	
0.700 to 1.050	10^{-9} to 18×10^{-6}	$5.0 C_A C_E \times 10^{-7}$		ror mrame aportarou,	
0.700 to 1.050	18×10^{-6} to T ₂	$1.8 C_A C_E t^{0.75} \times 10^{-3}$			
0.700 to 1.050	T_2 to 3×10^4	1.	$1.8 C_A C_E T_2^{-0.25} \times 10^{-3}$		
1.050 to 1.400	10 ⁻¹³ to 10 ⁻¹¹	$1.5 C_C C_E \times 10^{-7}$ 27.0 $C_C C_E t^{0.75}$	•		
1.050 to 1.400	10 ⁻¹¹ to 10 ⁻⁹ 10 ⁻⁹ to 50 × 10 ⁻⁶	$27.0 C_C \bar{C}_E t^{0.75}$			
1.050 to 1.400	10° to 50 × 10°	$5.0 C_C C_E \times 10^6$ $9.0 C_C C_E t^{0.73} \times 10^3$			
1.050 to 1.400 1.050 to 1.400	50×10^{-6} to T_2 T_2 to 3×10^{-6}	9.0 C _C C _E T × 10°	$0 C_C C_E T_2^{-0.25} \times 10^{-3}$	•	
2.000 00 1.700	17 10 0 10	9.	OCCUE IZ ~ IU		

[†]See Table 6 and Figures 8, 9 and 11 for correction factors C_A, C_B, C_C, C_E, C_P, and time T₂.

Notes:

For sources subtending an angle greater than 11 mrad, the limit may also be expressed as an integrated radiance L_p = 100 C_p J·cm²-sr¹ for 0.7 s ≤ t < 10⁶ s and $L_e = C_B \times 10^{-2} \, \text{W} \cdot \text{cm}^{-2} \cdot \text{sr}^{-1}$ for $t \ge 10^4 \, \text{s}$ as measured through a limiting cone angle γ . These correspond to values of $J \cdot \text{cm}^{-2}$ for $10^- \text{s} \le t < 100^- \text{s}$ and $W \cdot \text{cm}^{-2} \cdot \text{sr}^{-1}$ for $t \ge 10^4 \, \text{s}$ as measured through a limiting cone angle γ . cm⁻² for $t \ge 100$ s as measured through a limiting cone angle γ .

 $[\]gamma = 11$ mrad for 0.7 s \leq t \leq 100 s,

 $[\]gamma = 1.1 \times t^{0.5}$ mead for $100 \text{ s} \le t < 10^4 \text{ s}$

 $[\]gamma = 110 \text{ mrad for } 10^4 \text{ s} \le t < 3 \times 10^4 \text{ s}$ See Figure 3 for y and Appendix B7.2 for examples.

For repeated (pulsed) exposures, see Section 8.2.3. The wavelength region λ_1 to λ_2 means $\lambda_1 \le \lambda < \lambda_3$, e.g., 1.180 to 1.302 μm means 1.180 $\le \lambda < 1.302$ μm . Dual Limit Application: In the Dual Limit wavelength region (0.400 to 0.600 μm), the exposure limit is the lower value of the determined photochemical and thermal exposure limit.