Day 10.08

P80 4: 用确界原理证明致密性定理

证明:

设数列 $\{x_n\}$ 为有界数列. 定义数集 $A=\{x|\{x_n\}$ 中大于x的点有无穷多个 $\}$. $\ \colon \{x_n\}$ 有界, $\ \colon A$ 有上界且非空. 由确界原理可得, $\exists a$,使得a=supA. 故 $\forall \epsilon>0$, $a-\epsilon$ 不是A的上界,则 $\{x_n\}$ 中大于 $a-\epsilon$ 的项有无穷多个. 故 $(a-\epsilon,a+\epsilon)$ 中有 $\{x_n\}$ 中无穷多项,即 $\forall \epsilon>0$, $\exists n>N$,使得 $x_n\in (a-\epsilon,a+\epsilon)$. 取 $\epsilon=1$, $\exists n_1$,使得 $x_{n_1}\in (a-1,a+1)$,即 $|x_{n_1}-a|<1$. 取 $\epsilon=\frac{1}{2}$, $\exists n_2>n_1$,使得 $|x_{n_2}-a|<\frac{1}{2}$ 取 $\epsilon=\frac{1}{k}$, $\exists n_k>n_{k-1}$,使得 $|x_{n_k}-a|<\frac{1}{k}$. 由此得到 x_n 的子列 x_{n_k} ,当 x_n 0,当 x_n 1,一次,因为 x_n 2。 证书

P57 2. (2)

证明

P57 2. (3)

E明:
$$\left| \frac{1}{x} - \frac{1}{a} \right| = \left| \frac{x - a}{xa} \right|$$

$$\therefore x \to a, \therefore 不妨设 |x| \in \left(\left| \frac{a}{2} \right|, |2a| \right)$$

$$\therefore \left| \frac{1}{x} - \frac{1}{a} \right| < \left| \frac{2(x - a)}{a^2} \right|$$

$$\therefore \forall \epsilon > 0, \exists \delta = \frac{a^2 \epsilon}{2}, \forall x \in D \cap \mathring{U}(a, \delta) : \left| \frac{1}{x} - \frac{1}{a} \right| < \left| \frac{2(x - a)}{a^2} \right| < \epsilon$$
证毕

P57 2. (4)

证明:

证毕

$$\lim_{x o x_0^+}f(x)=rac{\pi}{2} \ \lim_{x o x_0^-}f(x)=-rac{\pi}{2}$$

Day 10.11

Ex 1.

Ex 2.

证明:

$$orall 0 < \epsilon < b-a, :: f(x)$$
在[a,b] 严格递増, :: $f(b-\epsilon) < f(b), f(b) - f(b-\epsilon) > 0$
:: $\lim_{n \to \infty} f(x_n) = f(b), :: orall \delta > 0, \exists N, orall n > N, |f(x_n) - f(b)| < \delta$
对上述 $\epsilon,$ 取 $\delta = f(b) - f(b-\epsilon),$ 则 $\exists N_1, \forall n > N_1, |f(x_n) - f(b)| = f(b) - f(x_n) < \delta = f(b) - f(b-\epsilon)$
则 $f(b-\epsilon) < f(x_n), :: f(x)$ 在[a,b] 严格递增,:: $b-\epsilon < x_n$ 即 $|x_n-b| < \epsilon$
综上, $\forall 0 < \epsilon < b-a, \exists N_1, \forall n > N_1, |x_n-b| < \epsilon,$ 则 $\lim_{n \to \infty} x_n = b$

证毕