

Modular Flows: Differential Molecular Generation

Yogesh Verma*, Samuel Kaski*,m, Markus Heinonen* and Vikas Garg*,^

36th Conference on Neural Information Processing Systems (NeurIPS 2022) New Orleans, USA

- * Aalto University
- ^ YaiYai Ltd
- ^m University of Manchester

Challenge of Molecular Generation

 Molecular generation is fundamental for drug discovery, material synthesis, etc.

Challenge of Molecular Generation

- Molecular generation is fundamental for drug discovery, material synthesis, etc.
- Challenge: Generate valid molecules

Challenge of Molecular Generation

- Molecular generation is fundamental for drug discovery, material synthesis, etc.
- Challenge: Generate valid molecules
- Can generative models achieve high intrinsic validity?

Current SOTA						
Method	Validity %	Uniqueness %	Novelty %	Reconstruction %		
MRNN (Popova et al., 2019)	65	99.89	100	n/a		
GVAE (Kusner et al., 2017)	7.2	9	100	53.7		
GCPN (You et al, 2018a)	20	99.97	100	n/a		
GraphNVP (Madhawa et al., 2019)	42.6	94.8	100	100		
GraphAF (Shi et al., 2020)	68	99.1	100	100		
GraphDF (Luo et al., 2021)	89	99.2	100	100		
MoFlow (Zang and Wang, 2020)	50.3	99.9	100	100		

Problem Formulation

Molecular Generation:

Given a molecular structure ⇒ assign atom labels

Representation

• Likelihood of atoms {v_i = { C,N,O,P....}} given edges *E* and atom scores {z_i}:

$$p(V|E, \{z\}) = \prod_{i=1}^{M} Cat(v_i|\sigma(\mathbf{z}_i)).$$

Representation

• Likelihood of atoms {v_i = { C,N,O,P....}} given edges *E* and atom scores {z_i}:

$$p(V|E, \{z\}) = \prod_{i=1}^{M} Cat(v_i|\sigma(z_i)).$$

Representation

• Likelihood of atoms {v_i = { C,N,O,P....}} given edges *E* and atom scores {z_i}:

$$p(V|E, \{z\}) = \prod_{i=1}^{M} Cat(v_i|\sigma(z_i)).$$

Normalizing Flows*

^{*} FFJORD: Free-form Continuous Dynamics for Scalable Reversrible Generative Models

- Model the node scores z_i as a CNF over time $t \in \mathbb{R}_+$, with $z_i(0) \sim \mathcal{N}(0, l)$.
- The dynamics are parameterized by a coupled ODE over neighbors \mathcal{N}_i :

Collecting all nodes, it can be represented as

$$\dot{\mathbf{z}}(t) = \underbrace{\begin{pmatrix} \dot{\mathbf{z}}_{1}(t) \\ \vdots \\ \dot{\mathbf{z}}_{M}(t) \end{pmatrix}}_{\text{Modular system of ODEs}} = \underbrace{\begin{pmatrix} f_{\theta}(t, \mathbf{z}_{1}(t), \mathbf{z}_{\mathcal{N}_{1}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{i}}) \\ \vdots \\ f_{\theta}(t, \mathbf{z}_{M}(t), \mathbf{z}_{\mathcal{N}_{M}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{i}}) \end{pmatrix}}_{\text{Modular system of ODEs}}$$

Collecting all nodes, it can be represented as

$$\dot{\mathbf{z}}(t) = \begin{pmatrix} \dot{\mathbf{z}}_{1}(t) \\ \vdots \\ \dot{\mathbf{z}}_{M}(t) \end{pmatrix} = \begin{pmatrix} f_{\theta}(t, \mathbf{z}_{1}(t), \mathbf{z}_{\mathcal{N}_{1}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{i}}) \\ \vdots \\ f_{\theta}(t, \mathbf{z}_{M}(t), \mathbf{z}_{\mathcal{N}_{M}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{i}}) \end{pmatrix}$$

$$\mathbf{z}(T) = \mathbf{z}(0) + \int_{0}^{T} \dot{\mathbf{z}}(t) dt \quad \longrightarrow \quad \text{Solving the dynamics}$$

· Collecting all nodes, it can be represented as

$$\dot{\mathbf{z}}(t) = \begin{pmatrix} \dot{\mathbf{z}}_{1}(t) \\ \vdots \\ \dot{\mathbf{z}}_{M}(t) \end{pmatrix} = \begin{pmatrix} f_{\theta}(t, \mathbf{z}_{1}(t), \mathbf{z}_{\mathcal{N}_{1}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{i}}) \\ \vdots \\ f_{\theta}(t, \mathbf{z}_{M}(t), \mathbf{z}_{\mathcal{N}_{M}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{i}}) \end{pmatrix}$$

$$\mathbf{z}(T) = \mathbf{z}(0) + \int_{0}^{T} \dot{\mathbf{z}}(t) dt \qquad \text{Change in density due to flow}$$

$$\frac{d \log p_{t}(\mathbf{z}_{i}(t))}{dt} = -\operatorname{tr}\left(\frac{\partial f_{\theta}(t, \mathbf{z}_{i}(t), \mathbf{z}_{\mathcal{N}_{i}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{i}})}{\partial \mathbf{z}_{i}}\right)$$

Equivariant local differential

To respect the natural equivariances of the molecule, we choose to use E(3)-Equivariant Graph Neural Networks as the choice for f_{θ} as it satisfies,

- Translation Equivariance
- Permutation Equivariance
- Rotation (and Reflection)
 Equivariance
- Size Invariance

Training Objective

• Data consists of molecular graphs

Training Objective

• The minimization of $\text{KL}[p_{\text{data}} || p_{\theta}]$ is equivalent maximizing the cross entropy $\mathsf{E}_{p_{\text{data}}}[\log p_{\theta}]$

 $\min \mathrm{KL}[p_{\mathrm{data}}||p_{ heta}] \propto \max \mathrm{E}_{p_{\mathrm{data}}}[\log p_{ heta}]$

Training Objective

 We map the set of graphs {G_n} into a set of scores {z_n} via a noisy one-hot encoding and thus maximize an objective over N training graphs,

Molecular Experiments

- Data: (i) QM9:134k small organic molecules, (ii) ZINC250K: 250k drug-like molecules.
- Metrics:
 - Validity: Fraction of molecules that satisfy chemical valency rule
 - Uniqueness:Fraction of non-duplicate generations
 - Novelty: Fraction of novel molecules
 - Reconstruction: Fraction of molecules that can be reconstructed from their encoding
 - FCD: measures diversity and chemical and biological property alignment
 - SNN: quantifies closeness of generated molecules to true molecule manifold
 - Frag: measures distance between the fragment frequencies generated and reference
 - IntDiv: diversity by computing pairwise similarity of the generated molecules

Molecular Experiments

Method	Validity %	Uniqueness %	Novelty %	Reconstruction 9
GVAE	60.2	9.3	80.9	96.0
GraphNVP*	83.1	99.2	58.2	100
GRF*	84.5	66	58.6	100
GraphAF*	67	94.2	88.8	100
GraphDF*	82.7	97.6	98.1	100
MoFlow*	89.0	98.5	96.4	100
ModFlow (2D-EGNN)	96.2 \pm 1.7	99.5	100	100
ModFlow (3D-EGNN)	98.3 ± 0.7	99.1	100	100
ModFlow (JT-2D-EGNN)	97.9 ± 1.2	99.2	100	100
ModFlow (JT-3D-EGNN)	99.1 \pm 0.8	99.3	100	100

High Validity

QM9

65	00.80		
	99.89	100	n/a
7.2	9	100	53.7
20	99.97	100	n/a
42.6	94.8	100	100
73.4	53.7	100	100
68	99.1	100	100
89	99.2	100	100
50.3	99.9	100	100
94.8 \pm 1.0	99.4	100	100
95.4 ± 1.2	99.7	100	100
97.4 \pm 1.4	99.1	100	100
98.1 \pm 0.9	99.3	100	100
	$\begin{array}{c} 20 \\ 42.6 \\ 73.4 \\ 68 \\ 89 \\ 50.3 \\ \hline $	20 99.97 42.6 94.8 73.4 53.7 68 99.1 89 99.2 50.3 99.9 94.8 ± 1.0 99.4 95.4 ± 1.2 99.7 97.4 ± 1.4 99.1	20 99.97 100 42.6 94.8 100 73.4 53.7 100 68 99.1 100 89 99.2 100 50.3 99.9 100 94.8 ± 1.0 99.4 100 95.4 ± 1.2 99.7 100 97.4 ± 1.4 99.1 100

High Validity

ZINC250K

Near to 100% Validity

Molecular Experiments

Method	FCD (↓)	Frag (†)	SNN (†)	IntDiv (†)
GVAE	0.513	0.821	0.582	0.822
GraphEBM	0.551	0.831	0.547	0.831
GraphAF	0.732	0.863	0.565	0.823
GraphDF	0.683	0.892	0.562	0.839
MoFlow	0.496	0.840	0.502	0.852
ModFlow (2D-EGNN)	0.432	0.928	0.608	0.875
ModFlow (3D-EGNN)	0.478	0.934	0.613	0.885
ModFlow (JT-2D-EGNN)	0.421	0.921	0.595	0.867
ModFlow (JT-3D-EGNN)	0.401	0.939	0.624	0.889

Method	FCD (\(\psi \)	Frag (†)	SNN (†)	IntDiv (†)
JTVAE	0.512	0.890	0.5477	0.855
GVAE	0.571	0.871	0.532	0.852
GraphEBM	0.613	0.843	0.487	0.821
GraphAF	0.524	0.803	0.465	0.855
GraphDF	0.658	0.869	0.515	0.829
MoFlow	0.597	0.851	0.452	0.832
ModFlow (2D-EGNN)	0.495	0.891	0.570	0.863
ModFlow (3D-EGNN)	0.512	0.905	0.584	0.869
ModFlow (JT-2D-EGNN)	0.501	0.915	0.563	0.857
ModFlow (JT-3D-EGNN)	0.523	0.929	0.594	0.879

QM9

ZINC250K

Improvement across all metrics

 We propose physics-inspired co-evolving continuous-time flows, inspired by graph PDEs. We also extend this framework to work with Junction Trees.

- We propose physics-inspired co-evolving continuous-time flows, inspired by graph PDEs. We also extend this framework to work with Junction Trees.
- Accurate modeling of graph densities and high-quality molecular generation with improvement across all metrics.

- We propose physics-inspired co-evolving continuous-time flows, inspired by graph PDEs. We also extend this framework to work with Junction Trees.
- Accurate modeling of graph densities and high-quality molecular generation with improvement across all metrics.
- Website: https://yogeshverma1998.github.io/ModFlow/
- Visit the poster for in-person discussion!

Thank you for listening!