Лабораторная работа №2.1.3 Определение C_p/C_v по скорости звука в газе.

Каграманян Артемий, группа Б01-208

17 мая 2023 г.

1 Аннотация

Цель работы: 1) Измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу. 2) Определение показателя адиабаты с помощью уравнения состояния идеального газа.

Оборудование: Звуковой генератор, осцилограф, изолированная труба, термостат.

2 Теоритическая справка

Как нам известно, скорость звука определяется такой формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}} \tag{1}$$

Немного преобразуем формулу:

$$\gamma = \frac{\mu}{RT}c^2\tag{2}$$

Звуковыя волна многократно отражается от стенок трубы. Если мы зададим длину волны так, что выполняется выражение (3), то амплитуда колебаний резко увеличится, и наступит резонанс:

$$L = \frac{\lambda}{2}n\tag{3}$$

В этом случае конец волны совпадет с началом, и эта волна совпадет по фазе с предыдущей. Совпадающие по фазе волны усиливают друг друга. Поэтому наступает резонанс. Так же мы можем найти скорость звука как $c=f\lambda$.

3 Методика эксперимента

В данной работе резонансы производятся следующим образом: для фиксированной длины L трубы подбираются 8 частот звуковых волн, для которых выполняется слеующее:

$$L = \frac{\lambda_1}{2} n_1 = \dots = \frac{\lambda_i}{2} n_i = \dots = \frac{\lambda_8}{2} n_8 \tag{4}$$

Подставив $\lambda = \frac{c}{f}$, получим:

$$f = \frac{c}{2L}n\tag{5}$$

Этот процесс производим для каждой рассматриваемой температуры. Затем строим графики, на которых отобразим по оси x значение n_i , а по оси y значение $f_{i+1} - f_1$. Таким образом, мы, построив аппроксиммирующие прямые, получим величину c/2L, и отсюда найдем скорость звука при данной температуре.

4 Экспериментальная установка

Рис. 2. Установка для изучения зависимости скорости звука от температуры

5 Обработка данных

Итого, у меня получились следующие значения для резонансов:

T, K	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8
296,10	210,3	440,2	710,4	935,3	1190,3	1405,3	1710,1	1853,9
323	231,1	484,7	732,7	975,3	1225,1	1454,8	1720,6	1917,6
338	244,1	496,8	745,7	992,7	1228,1	1471,3	1733,6	1987,2
353	258,3	515,6	755,8	1017,0	1255,6	1508,4	1759,3	2018,2

Итого, получился график $(k=\frac{c}{2L})$:

Итого, получается, что:

$c, \frac{M}{c}$	273,3	275,8	278,7	280,0
Δ c, $\frac{M}{c}$	0,8	0,9	0,5	0,5
γ	1,27	1,29	1,32	1,33

6 Вывод

Мы получили γ близкое к табличным (табличное - 1.3). Погрешность получилась из-за неточного снятия данных с осцилографа.