

Geometria delle masse BARICENTRO, MOMENTI D'INERZIA, TENSORI D'INERZIA

Baricentro

Definizione

Definizione (relazione vettoriale)
$$OG = \frac{\sum_{i=1}^{n} m_i OP_i}{\sum_{i=1}^{n} m_i} = \frac{\sum_{i=1}^{n} m_i OP_i}{m_{tot}}$$

Determinazione sperimentale del baricentro dell'uomo

Noti l (distanza sensori), $\mathrm{Wt_p}$ peso della pedana e forze misurate $\mathrm{RF_1}$ e $\mathrm{RF_2}$.

Equilibrio verticale (o precedente pesatura) dà il peso $\mathrm{Wt}_{\mathrm{b}}.$ Equilibrio a momento rispetto ad a permette di calcolare d.

Oss: basta anche una sola bilancia, se prima si fa pesatura

Per baricentro/masse dei singoli segmenti? Dati di letteratura (Dempster, Clauser, De Leva etc.) Antropometria!

Dempster's Body Segment Parameter Data for 2-D Studies¹

Segment name	Endpoints (proximal to distal)	Seg. mass /total mass (P)	Centre of mass /segment length		Radius of gyration /segment length		
			$(R_{proximal})$	(R_{distal})	(K_{cg})	$(K_{preximal})$	(K_{distal})
Hand	wrist axis to knuckle II third finger	0.0060	0.506	0.494	0.297	0.587	0.577
Forearm	elbow axis to ulnar styloid	0.0160	0.430	0.570	0.303	0.526	0.647
Upper arm	glenohumeral joint to elbow axis	0.0280	0.436	0.564	0.322	0.542	0.645
Forearm & hand	elbow axis to ulnar styloid	0.0220	0.682	0.318	0.468	0.827	0.565
Upper extremity	glenohumeral joint to elbow axis	0.0500	0.530	0.470	0.368	0.645	0.596

Segment name	Endpoints (proximal to distal)	Seg. mass /total mass (P)	Centre of mass /segment length		Radius of gyration /segment length		
and the second			$(R_{proximal})$	(R_{distal})	(K_{cg})	$(K_{proximal})$	(K_{distai})
Hand	wrist axis to knuckle II third finger	0.0060	0.506	0.494	0.297	0.587	0.57
Forearm	elbow axis to ulnar styloid	0.0160	0.430	0.570	0.303	0.526	0.64
Upper arm	glenohumeral joint to elbow axis	0.0280	0.436	0.564	0.322	0.542	0.643
Forearm & hand	elbow axis to ulnar styloid	0.0220	0.682	0.318	0.468	0.827	0.565
Upper extremity	glenohumeral joint to elbow axis	0.0500	0.530	0.470	0.368	0.645	0.596
Foot	lateral malleolus to head metatarsal II	0.0145	0.500	0.500	0.475	0.690	0.690
Leg	femoral condyles to medial malleolus	0.0465	0.433	0.567	0.302	0.528	0.643
Thigh	greater trochanter to femoral condyles	0.1000	0.433	0.567	0.323	0.540	0.653
Leg & foot	femoral condyles to medial malleolus	0.0610	0.606	0.394	0.416	0.735	0.572
Lower extremity	greater trochanter to medial malleolus	0.1610	0.447	0.553	0.326	0.560	0.650
Head	C7-T1 to ear canal	0.0810	1.000	0.000	0.495	1.116	0.495

Momento di inerzia

Definizione

Mom. Inerzia di un sistema di masse rispetto ad una retta n

$$I_r = \sum_{i=1}^n m_i d_i^2$$

Raggio giratore (k):

Distanza dove si può pensare concentrata la massa del corpo, in modo da avere lo stesso momento di inerzia

$$I_r = k^2 m_{tot}$$

Teorema di Huygens-Steiner

$$I_r = I_G + m_{tot} d^2$$

Tensore d'inerzia

$$A = I_{xx}, B = I_{yy}, C = I_{zz}$$

$$D = I_{yz}, E = I_{xz}, F = I_{xy}$$

Mom. centrifughi
$$I_{xy} = \sum_{i=1}^{n} m_i x_i y_i$$

 $\begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}$ Esistono direzioni principali D=E=F=0

Lez.12

Tensore principale di inerzia

Tra gli infiniti sistemi di riferimento con origine in O ne esiste sempre uno principale d'inerzia rispetto al quale il tensore d'inerzia diviene diagonale, i cui elementi sono i momenti principali d'inerzia

Equazioni cardinali della dinamica

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO PRIMA E SECONDA CARDINALE TEOREMA DI MOTO DEL BARICENTRO

Grandezze importanti

Quantità di moto

$$Q = m v_G$$

 \mathcal{V}_{C} Velocità del baricentro del corpo o del sistema

Momento della quantità di moto

$$K_A = AP \wedge m \ v_A$$

 $\mathbf{K}_{A} = AP \wedge m \ \mathbf{v}_{P}$ Per un corpo con massa concentrata in P concentrata in P

$$m{K}_A = \sum_{i=1}^n A P_i \wedge m_i \; m{v}_i$$
 Per un sistema di masse concentrate

Leggi di Newton

- 1. Una particella materiale* permane nel suo stato di quiete o di moto rettilineo uniforme se su di esso non agiscono forze esterne.
- 2. Una forza applicata sulla particella ne causa una accelerazione proporzionale alla forza stessa e nella stessa direzione, ed inversamente proporzionale alla sua massa.

$$F = ma$$

3. Principio di azione e reazione

Se una particella esercita una forza su un'altra, la seconda particella esercita una forza di reazione uguale in direzione e modulo ed opposta in verso.

Come particella materiale si intende una massa concentrata, ma le leggi valgono anche per un corpo rigido e un sistema nel suo insieme (riferendosi al baricentro)

Equilibrio dinamico di un sistema di corpi

Equazioni cardinali della dinamica per l'intero sistema

1)
$$R^{(ext)} = \sum_{i=1}^{n} m_i \ a_i = m \ a_G$$
 $R^{(ext)}$ risultante delle forze esterne al sistema

2)
$$\boldsymbol{M}_{A}^{(ext)} = \sum_{i=1}^{n} AP_{i} \wedge m_{i}\boldsymbol{a}_{i} = \dot{\boldsymbol{K}}_{A} + \boldsymbol{v}_{A} \wedge \boldsymbol{Q}$$

oppure, prendendo come polo il baricentro $oldsymbol{M}_G^{(ext)} = \dot{oldsymbol{K}}_G$

Per il teorema del trasporto del momento vale anche

$$\boldsymbol{M}_{A}^{(ext)} = AG \wedge \boldsymbol{R}^{(ext)} + \boldsymbol{M}_{G}^{(ext)} = AG \wedge m\boldsymbol{a}_{G} + \dot{\boldsymbol{K}}_{G}$$

Le azioni delle forze esterne possono essere attive e reattive

Sistema libero nello spazio

$$m a_G = 0 \rightarrow a_G = 0 \rightarrow v_G = cost$$

Il baricentro si muove su una linea retta con velocità costante

se si considera la gravità

$$m a_G = m g \rightarrow a_G = g \rightarrow v_G = a_G t + v_0$$

Il baricentro descrive una parabola, analogia con moto del proiettile

d. 14

Equazioni cardinali per il corpo rigido

Analoghe a quelle dei sistemi

Equilibrio di forze attive, reattive e d'inerzia

1)
$$\sum_{i=1}^{n} F_i = R^{(ext)} = R^{(a)} + R^{(r)} = m \ a_G$$

termini a sinistra come in statica

2)
$$M_A^{(ext)} = M_A^{(a)} + M_A^{(r)} = \dot{K}_A + v_A \wedge Q$$

$$M_G^{(ext)} = \dot{K}_G$$

$$M_A^{(ext)} = AG \wedge R^{(ext)} + M_G^{(ext)} = AG \wedge ma_G + \dot{K}_G$$

Momento della quantità di moto per un corpo rigido

A ∈ corpo rigido

$$\boldsymbol{K}_{A} = \sum_{i=1}^{n} AP_{i} \wedge m_{i} \ \boldsymbol{v}_{i} = \sum_{i=1}^{n} AP_{i} \wedge m_{i} \ (\boldsymbol{v}_{A} + \boldsymbol{\omega} \wedge AP_{i})$$

$$\boldsymbol{K}_{A} = m A G \wedge \boldsymbol{v}_{A} + \widetilde{\boldsymbol{K}}_{A}$$
 Dove $\widetilde{\boldsymbol{K}}_{A} = \boldsymbol{I}_{A} \boldsymbol{\omega}$

 $\operatorname{ed} \textbf{\textit{I}}_{A}$ tensore d'inerzia rispetto ad una terna con origine in A

$$\left[\widetilde{\boldsymbol{K}}_{A}\right]_{L} = \left[I_{A}\right]_{L} \left[\boldsymbol{\omega}\right]_{L}$$

$$\left[\widetilde{\boldsymbol{K}}_{A}\right]_{G} = R\left[I_{A}\right]_{L} R^{T} \left[\boldsymbol{\omega}\right]_{G}$$

Derivata del momento della quantità di moto

$$\boldsymbol{K}_{A} = m A G \wedge \boldsymbol{v}_{A} + \widetilde{\boldsymbol{K}}_{A}$$

$$\dot{K}_{A} = Q \wedge v_{A} + mAG \wedge a_{A} + \dot{\tilde{K}}_{A}$$

da cui la seconda cardinale diviene

$$\boldsymbol{M}_{A}^{(ext)} = mAG \wedge \boldsymbol{a}_{A} + \dot{\widetilde{\boldsymbol{K}}}_{A}$$

Attenzione alla derivata di $m{\widetilde{K}}_A$

$$\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{\boldsymbol{K}}_{A} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\widetilde{\boldsymbol{K}}_{A}\right]_{G}$$

Se si usano componenti in terna fissa

$$\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{K}_A = \frac{\mathrm{d}}{\mathrm{d}t} \left[\widetilde{K}_A\right]_L + \left[\mathbf{\omega} \wedge \widetilde{K}_G\right]_L \quad \text{o in terna mobile}$$

Diagramma di corpo libero per la dinamica

$$\mathbf{R}^{(a)} + \mathbf{R}^{(r)} = m\mathbf{a}_G$$

 $\mathbf{M}_G^{(a)} + \mathbf{M}_G^{(r)} = \dot{\mathbf{K}}_G^{(i)}$

Esempio 1

Corpo mobile di moto traslatorio (MOTO PIANO)

$$\begin{aligned} \boldsymbol{R}^{(a)} + \boldsymbol{R}^{(r)} &= \boldsymbol{A}_n + \boldsymbol{A}_t + \boldsymbol{B} = m\boldsymbol{a}_G \\ \boldsymbol{M}_G^{(a)} + \boldsymbol{M}_G^{(r)} &= G\boldsymbol{A} \wedge (\boldsymbol{A}_n + \boldsymbol{A}_t) + G\boldsymbol{B} \wedge \boldsymbol{B} = \boldsymbol{0} \\ \boldsymbol{M}_A^{(a)} + \boldsymbol{M}_A^{(r)} &= A\boldsymbol{B} \wedge \boldsymbol{B} = m \ A\boldsymbol{G} \wedge \boldsymbol{a}_A \end{aligned}$$

Esempio 2

Corpo mobile di moto rotatorio (MOTO PIANO)

$$\mathbf{R}^{(a)} + \mathbf{R}^{(r)} = \mathbf{O}_n + \mathbf{O}_t + \mathbf{P} = m\mathbf{a}_G$$
$$\mathbf{M}_O^{(a)} + \mathbf{M}_O^{(r)} = OG \wedge \mathbf{P} = \dot{\mathbf{K}}_O = \overline{I} \alpha \mathbf{k}$$

k versore dell'asse di rotazione (entrante)

Lez.17 d. 21

"leggi di Newton" per il momento

- 1. Un sistema conserva il momento della quantità di moto (rispetto a G) se su esso non agiscono coppie esterne. (per un corpo, esso continua a ruotare con velocità angolare costante rispetto ad un asse)
- 2. Una coppia applicata ad un corpo ne causa una variazione del momento della quantità di moto proporzionale alla coppia stessa e nella stessa direzione

$$M_G^{(ext)} = \dot{K}_G$$

3. Principio di azione e reazione Se un corpo esercita una coppia su un secondo corpo, il secondo corpo esercita una coppia di reazione uguale in direzione e modulo ed opposta in verso.

Lez.12

Corpo rigido libero nello spazio

$$m \ a_G = 0 \rightarrow a_G = 0 \rightarrow v_G = cost$$

Il baricentro si muove su una linea retta con velocità costante

$$\dot{\pmb{K}}_G = 0$$
 $\pmb{K}_G = \widetilde{\pmb{K}}_G$ Scritto in rif. principale

$$\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{\boldsymbol{K}}_{G} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\widetilde{\boldsymbol{K}}_{G} \right]_{L} + \left[\boldsymbol{\omega} \wedge \widetilde{\boldsymbol{K}}_{G} \right]_{L} = \boldsymbol{0}$$

$$I_{xx}\dot{\omega}_x - (I_{yy} - I_{zz})\omega_y \omega_z = 0$$

$$I_{yy}\dot{\omega}_{y}-(I_{zz}-I_{xx})\omega_{x}\omega_{z}=0$$

$$I_{zz}\dot{\omega}_z - (I_{xx} - I_{yy})\omega_x \omega_y = 0$$

Un corpo rigido libero possiede un moto di rotazione non costante attorno ad assi qualsiasi.

Lez.12 d. 23

Dinamica diretta - inversa (Forward/Inverse dynamics)

Equazioni cardinali della dinamica portano a due problemi diversi:

1) assegnate le forze trovare la legge di moto del sistema (dinamica diretta)

2) assegnata la legge di moto del sistema, trovare le forze (dinamica inversa)

d. 24

Equazioni di Lagrange

DINAMICA DEI SISTEMI ROBOTICI

Equazioni di Lagrange

Il PLV in dinamica si traduce nelle eq. di Lagrange

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_h} \right) - \frac{\partial L}{\partial q_h} = f_h$$

h-esima coord. lagrangiana

h-esima forza non conserv.

$$L = T - U$$
 $T = T - U$ $T =$

 $T=\sum_{i=1}^n T_i, \quad U=\sum_{i=1}^n U_i \qquad egin{matrix} T & ext{energia cinetica} \ U & ext{energia potenziale del} \ ext{sistema sono la somma delle} \end{cases}$ energie di ciascuno dei corpi

$$T_{i} = \frac{1}{2} m_{i} \begin{bmatrix} \mathbf{v}_{G_{i}} \end{bmatrix}_{G}^{T} \begin{bmatrix} \mathbf{v}_{G_{i}} \end{bmatrix}_{G} + \frac{1}{2} \begin{bmatrix} \mathbf{\omega}_{i} \end{bmatrix}_{G}^{T} \begin{pmatrix} R_{i} \begin{bmatrix} I_{i} \end{bmatrix}_{L} R_{i}^{T} \end{pmatrix} \begin{bmatrix} \mathbf{\omega}_{i} \end{bmatrix}_{G}$$

$$\mathbf{v}_{G_{i}} \quad \mathbf{\omega}_{i} \quad \text{si costruiscono in modo analogo allo jacobiano}$$

$$\mathbf{v}_{G_{i}} = \mathbf{j}_{p_{1}}^{(i)} \dot{q}_{1} + \dots + \mathbf{j}_{p_{i}}^{(i)} \dot{q}_{i} = \mathbf{J}_{p}^{(i)} \dot{q}$$

$$\mathbf{\omega}_{i} = \mathbf{j}_{o_{1}}^{(i)} \dot{q}_{1} + \dots + \mathbf{j}_{o_{i}}^{(i)} \dot{q}_{i} = \mathbf{J}_{o}^{(i)} \dot{q}$$

$$\mathbf{J}_{p}^{(i)} = \begin{bmatrix} \mathbf{j}_{p_{1}}^{(i)} & \dots & \mathbf{j}_{p_{i}}^{(i)} & 0 & \dots & 0 \end{bmatrix}$$

$$\mathbf{J}_{o}^{(i)} = \begin{bmatrix} \mathbf{j}_{o_{1}}^{(i)} & \dots & \mathbf{j}_{o_{i}}^{(i)} & 0 & \dots & 0 \end{bmatrix}$$

$$T_{i} = \frac{1}{2} m_{i} \dot{\mathbf{q}}^{T} \mathbf{J}_{p}^{(i)}^{T} \mathbf{J}_{p}^{(i)} \dot{\mathbf{q}} + \frac{1}{2} \dot{\mathbf{q}}^{T} \mathbf{J}_{o}^{(i)}^{T} \begin{pmatrix} R_{i} \begin{bmatrix} I_{i} \end{bmatrix}_{L} R_{i}^{T} \end{pmatrix} \mathbf{J}_{o}^{(i)} \dot{\mathbf{q}}$$

$$T = \sum_{i=1}^{n} T_{i} = \frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{B}(\boldsymbol{q}) \dot{\boldsymbol{q}}$$

$$\boldsymbol{B}(\boldsymbol{q}) = \sum_{i=1}^{n} m_{i} \boldsymbol{J}_{P}^{(i)^{T}} \boldsymbol{J}_{P}^{(i)} + \boldsymbol{J}_{O}^{(i)^{T}} \left(R_{i} \begin{bmatrix} I_{i} \end{bmatrix}_{L} R_{i}^{T} \right) \boldsymbol{J}_{O}^{(i)}$$

$$U_{i} = -m_{i} \boldsymbol{g}_{0}^{T} \boldsymbol{p}_{G_{i}}$$

$$U = \sum_{i=1}^{n} U_{i} = -\sum_{i=1}^{n} m_{i} \boldsymbol{g}_{0}^{T} \boldsymbol{p}_{G_{i}}$$
Azioni su End Eff.

Coppie giunti
$$\boldsymbol{B}(\boldsymbol{q}) \ddot{\boldsymbol{q}} + \boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}} + \boldsymbol{F}_{v} \dot{\boldsymbol{q}} + \boldsymbol{F}_{s} sgn(\dot{\boldsymbol{q}}) + \boldsymbol{g}(\boldsymbol{q}) = \boldsymbol{\tau} - \boldsymbol{J}^{T}(\boldsymbol{q}) \boldsymbol{h}$$
accelerazioni Attrito viscoso gravità

Coriolis e Attrito statico
forza centrif.

Dinamica- Robotica

PLV_
$$\tau$$
 coppie ai giunti_

$$dW_{\tau} = \boldsymbol{\tau}^{T} d\boldsymbol{q}$$

$$dW_{\gamma} = \boldsymbol{f}^{T} d\boldsymbol{p} + \boldsymbol{\mu}^{T} d\boldsymbol{\omega} dt = \boldsymbol{\gamma}^{T} \boldsymbol{J}(\boldsymbol{q}) d\boldsymbol{q}$$

$$\boldsymbol{\tau} = \boldsymbol{J}^{T} \boldsymbol{\gamma}$$

$$\tau^{T} \tau = 1$$

$$\boldsymbol{\gamma}^T (\boldsymbol{J} \ \boldsymbol{J}^T) \boldsymbol{\gamma} = \boldsymbol{I}$$

Lez.12