

Before starting

https://github.com/ordavidov/ocl_lab

Agenda

- Introduction to mathematical optimization
- Introduction to Constraint Learning
- Chemotherapy case study
- Embedding Predictive Models
- Trust region constraints
- Hands-on tutorial

An optimization problem seeks to find the best (smallest or largest) value of a quantity given certain limits to the problem.

It can be expressed as a **minimization** (or maximization) of a quantity subject to a set of **constraints**.

An optimization problem seeks to find the best (smallest or largest) value of a quantity given certain limits to the problem.

It can be expressed as a **minimization** (or maximization) of a quantity subject to a set of **constraints**.

Some examples:

• <u>Travelling salesperson problem</u>: minimize distance s.t. each city visited exactly once

An optimization problem seeks to find the best (smallest or largest) value of a quantity given certain limits to the problem.

It can be expressed as a **minimization** (or maximization) of a quantity subject to a set of **constraints**.

Some examples:

- <u>Travelling salesperson problem</u>: minimize distance s.t. each city visited exactly once
- <u>Diet problem</u>: minimize cost s.t. nutrient requirements

An optimization problem seeks to find the best (smallest or largest) value of a quantity given certain limits to the problem.

It can be expressed as a **minimization** (or maximization) of a quantity subject to a set of **constraints**.

Some examples:

- <u>Travelling salesperson problem</u>: minimize distance s.t. each city visited exactly once
- <u>Diet problem</u>: minimize cost s.t. nutrient requirements
- <u>knapsack problem</u>: maximize the value of objects in the knapsack s.t. capacity constraints

The general form of an optimization model is:

$$\min_{x \in \mathbb{R}^n} f(x_1, ..., x_n) \rightarrow Objective function$$

subject to
$$g_i(x_1,...,x_n) \le 0$$
, $i = 1,...,m \rightarrow Constraints$

where $x_1, ..., x_n$ are the decision variables and the goal is to find a value for each of them such that the constraints are satisfied and the objective value is minimized.

The general form of an optimization model is:

$$\min_{x \in \mathbb{R}^n} f(x_1, ..., x_n) \rightarrow Objective function$$

subject to
$$g_i(x_1,...,x_n) \le 0$$
, $i = 1,...,m \rightarrow Constraints$

where $x_1, ..., x_n$ are the decision variables and the goal is to find a value for each of them such that the constraints are satisfied and the objective value is minimized.

Mixed-Integer Optimization (MIO)

Powerful tool that allows us to optimize a given objective subject to various constraints.

Many real-life optimization problems contain one or more constraints or objectives for which **there are no explicit formulae.**

Mixed-Integer Optimization (MIO)

Powerful tool that allows us to optimize a given objective subject to various constraints.

Many real-life optimization problems contain one or more constraints or objectives for which **there are no explicit formulae.**

Machine Learning (ML)

Data is available and machine learning models can be used to **learn the constraints.**

- Minimize the procurement costs.
- Nutrient requirements constraints
- The food basket must be palatable

- Minimize the procurement costs.
- Nutrient requirements constraints
- The food basket must be palatable

- Minimize the procurement costs.
- Nutrient requirements constraints

- Minimize the procurement costs.
- Nutrient requirements constraints

Applications of Constraint Learning

Table 1: Methods used for constraint learning

	Neural								
		Decision	Random	Other	Support Vector	Clustering	(M)ILP	Other	
	Networks	Trees	Forest	Ensemble	Machines				
Bergman et al. (2019)	x							x	
Biggs et al. (2018)		X	X						
Chen et al. (2020)	X								
Chi et al. (2007)					X				
Cozad et al. (2014)							x	X	
Cremer et al. (2018)		X		x					
De Angelis et al. (2003)	X								
Fahmi and Cremaschi (2012)	x							x	
Garg et al. (2018)					X				
Grimstad and Andersson (2019)	x								
Gutierrez-Martinez et al. (2010)	x								
Halilbašić et al. (2018)		X							
Jalali et al. (2019)					X				
Kudła and Pawlak (2018)		X							
Lombardi et al. (2017)	X	x							
Maragno et al. (2022)	x	X	X	x	X	x		X	
Mišić (2020)		X	X						
Paulus et al. (2021)	x								
Pawlak and Krawiec (2017a)							X		
Pawlak and Krawiec (2017b)								X	
Pawlak and Krawiec (2018)								x	
Pawlak (2019)								x	
Pawlak and Litwiniuk (2021)						X		X	
Pawlak and O'Neill (2021)							X	x	
Prat and Chatzivasileiadis (2020)		X							
Say et al. (2017)	x								
Schede et al. (2019)		x					X		
Schweidtmann and Mitsos (2019)	x								
Spyros (2020)	x	X							
Sroka and Pawlak (2018)						x		X	
Thams et al. (2017)		X							
Venzke et al. (2020b)	x						200		
Verwer et al. (2017)		Fajemisi	n A, Mai	ragno D, d	len Hertog D (2021) Opti	imization	with	
Xavier et al. (2021)									
Yang and Bequette (2021)	x	survey. URL https://arxiv.org/abs/2110.02121.							

Applications of Constraint Learning

Table 1: Methods used for constraint learning

	Neural Networks	Decision Trees	Random Forest	Other Ensemble	Support Vector Machines	Clustering	(M)ILP	Other
Bergman et al. (2019)	х							х
Biggs et al. (2018)		X	X					
Chen et al. (2020)	X							
Chi et al. (2007)					X			
Cozad et al. (2014)							x	x
Cremer et al. (2018)		X		x				
De Angelis et al. (2003)	X							
Fahmi and Cremaschi (2012)	x							x
Garg et al. (2018)					X			
Grimstad and Andersson (2019)	x							
Gutierrez-Martinez et al. (2010)	x							
Halilbašić et al. (2018)		X						
Jalali et al. (2019)					X			
Kudła and Pawlak (2018)		X						
Lombardi et al. (2017)	x	x						
Maragno et al. (2022)	x	X	X	x	X	x		x
Mišić (2020)		X	X					
Paulus et al. (2021)	x							
Pawlak and Krawiec (2017a)							X	
Pawlak and Krawiec (2017b)								X
Pawlak and Krawiec (2018)								x
Pawlak (2019)								x
Pawlak and Litwiniuk (2021)						x		x
Pawlak and O'Neill (2021)							X	x
Prat and Chatzivasileiadis (2020)		x						
Say et al. (2017)	x							
Schede et al. (2019)		x					X	
Schweidtmann and Mitsos (2019)	x							
Spyros (2020)	X	X						
Sroka and Pawlak (2018)						x		x
Thams et al. (2017)		X						
Venzke et al. (2020b)	x		10 mm mm					12 Pay 20 May 2
Verwer et al. (2017)		Fajemisi	n A, Mai	ragno D, o	den Hertog D ((2021) Opti	imization	n with
Xavier et al. (2021)								
V/								

Say, B., Wu, G., Zhou, Y.Q., Sanner, S., 2017. Nonlinear hybrid planning with deep net learned transition models and mixed-integer linear programming, in: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence IJCAI-17, pp. 750–756.

Optimal planning using mixed integer linear optimization and a fitted deep network transition model

Fajemisin A, Maragno D, den Hertog D (2021) Optimization with constraint learning: A framework and survey. URL https://arxiv.org/abs/2110.02121.

Yang and Bequette (2021)

Applications of Constraint Learning

Table 1: Methods used for constraint learning

	Neural Networks	Decision Trees	Random Forest	Other Ensemble	Support Vector Machines	Clustering	(M)ILP	Other	
Bergman et al. (2019)	x							х	Say, B., Wu, G., Zhou, Y.Q., Sanner, S.
Biggs et al. (2018)		X	X						with deep net learned transition models
Chen et al. (2020)	x								ming, in: Proceedings of the Twenty-S
Chi et al. (2007)					X				on Artificial Intelligence IJCAI-17, pp
Cozad et al. (2014)							x	X	on Artificial Intelligence IJCAI-17, pp
Cremer et al. (2018)		X		x					
De Angelis et al. (2003)	X								Ontimal planning using mixed
Fahmi and Cremaschi (2012)	x							X	Optimal planning using mixe
Garg et al. (2018)					X				and a fitted deep network tra
Grimstad and Andersson (2019)	X								and a nitted deep network tra
Gutierrez-Martinez et al. (2010)	x								
Halilbašić et al. (2018)		X							
Jalali et al. (2019)					X				
Kudła and Pawlak (2018)		X							Global Optimization via Op
Lombardi et al. (2017)	X	X							Global Optimization via Op
Maragno et al. (2022)	x	X	X	x	X	x			
Mišić (2020)		X	X						Dimitris Bertsin
Paulus et al. (2021)	x								Sloan School of Management, Massachusetts Institute of Techno
Pawlak and Krawiec (2017a)							X		Berk Öztürk
Pawlak and Krawiec (2017b)								1	Department of Aeronautics and Astronautics, Massachusetts Institute of
Pawlak and Krawiec (2018)									
Pawlak (2019)								X	
Pawlak and Litwiniuk (2021)						X		X	Approximate non-convex fur
Pawlak and O'Neill (2021)							X	X	Approximate non-convex rui
Prat and Chatzivasileiadis (2020)		X							
Say et al. (2017)	X								
Schede et al. (2019)		X					X		
Schweidtmann and Mitsos (2019)	x								
Spyros (2020)	x	X							
Sroka and Pawlak (2018)						x		X	
Thams et al. (2017)	4	X							4
Venzke et al. (2020b)	x	.				(2021) 0			
Verwer et al. (2017)		Fajemisi	n A, Mai	ragno D, c	ien Hertog D (2021) Opti	imization	n with	constraint learning: A framework and
Xavier et al. (2021)									
Yang and Bequette (2021)	x	sur	vey. URL	https://	arxiv.org/ab	s/2110.02	121.		
			J	1	G, and		ess and believed.		

S., 2017. Nonlinear hybrid planning els and mixed-integer linear program-Sixth International Joint Conference p. 750-756.

ed integer linear optimization ransition model

ptimal Decision Trees

nology, Cambridge, MA, USA, dbertsim@mit.edu

of Technology, Cambridge, MA, USA, bozturk@mit.edu

inction with Decision trees

 \boldsymbol{x} Decision variables

w Contextual variables

 \boldsymbol{x} Decision variables

w Contextual variables

$$oldsymbol{y} = \hat{oldsymbol{h}}_{\mathcal{D}}(oldsymbol{x}, oldsymbol{w})$$

$$D = \{(\overline{\boldsymbol{x}}_i, \overline{\boldsymbol{w}}_i, \overline{\boldsymbol{y}}_i)\}_{i=1}^N \longrightarrow$$

$$\min_{oldsymbol{x} \in \mathbb{R}^n, oldsymbol{y} \in \mathbb{R}^k} f(oldsymbol{x}, oldsymbol{w}, oldsymbol{y})$$

 \boldsymbol{x} Decision variables

w Contextual variables

s.t.
$$g(x, w, y) \le 0$$

$$oldsymbol{y} = \hat{oldsymbol{h}}_{\mathcal{D}}(oldsymbol{x}, oldsymbol{w})$$

$$D = \{(\overline{\boldsymbol{x}}_i, \overline{\boldsymbol{w}}_i, \overline{\boldsymbol{y}}_i)\}_{i=1}^N \longrightarrow$$

$$\min_{oldsymbol{x} \in \mathbb{R}^n, oldsymbol{y} \in \mathbb{R}^k} \, f(oldsymbol{x}, oldsymbol{w}, oldsymbol{y})$$

 \boldsymbol{x} Decision variables

w Contextual variables

s.t.
$$g(x, w, y) \le 0$$

$$oldsymbol{y} = \hat{oldsymbol{h}}_{\mathcal{D}}(oldsymbol{x}, oldsymbol{w})$$

$$\min_{oldsymbol{x} \in \mathbb{R}^n, oldsymbol{y} \in \mathbb{R}^k} \, f(oldsymbol{x}, oldsymbol{w}, oldsymbol{y})$$

 \boldsymbol{x} Decision variables

w Contextual variables

s.t.
$$g(x, w, y) \le 0$$

$$oldsymbol{y} = \hat{oldsymbol{h}}_{\mathcal{D}}(oldsymbol{x}, oldsymbol{w})$$

$$D = \{(\overline{\boldsymbol{x}}_i, \overline{\boldsymbol{w}}_i, \overline{\boldsymbol{y}}_i)\}_{i=1}^N \longrightarrow$$

In this case study, we extend the work of <u>Bertsimas et al. (2016)</u>* in the design of chemotherapy regimens for advanced gastric cancer. Given a new study cohort and study characteristics, we would like to optimize a chemotherapy regimen to <u>maximize</u> the cohort's survival subject to constraint on different types of toxicity.

```
\mathbf{x}_b^d = \mathbb{I}(\text{drug } d \text{ is administered}),

\mathbf{x}_a^d = \text{average daily dose of drug } d,

\mathbf{x}_i^d = \text{maximum instantaneous dose of drug } d.
```

(*) Bertsimas D, O'Hair A, Relyea S, Silberholz J (2016) An analytics approach to designing combination chemotherapy regimens for cancer. Management Science 62(5):1511–1531, ISSN 15265501

In this case study, we extend the work of <u>Bertsimas et al. (2016)</u>* in the design of chemotherapy regimens for advanced gastric cancer. Given a new study cohort and study characteristics, we would like to optimize a chemotherapy regimen to <u>maximize</u> the cohort's survival subject to constraint on different types of toxicity.

 $\mathbf{x}_{b}^{d} = \mathbb{I}(\text{drug } d \text{ is administered}),$

 \mathbf{x}_a^d = average daily dose of drug d,

 \mathbf{x}_{i}^{d} = maximum instantaneous dose of drug d.

$$\min_{\mathbf{x},\mathbf{y}} y_{OS}
\text{s.t.} y_i \leq \tau_i, & i \in \mathcal{Y}_C, \\
y_i = \hat{h}_i(\mathbf{x}(\mathbf{w}), & i \in \mathcal{Y}_C, \\
y_{OS} = \hat{h}_{OS}(\mathbf{x}, \mathbf{w}), & \\
\sum_{d} \mathbf{x}_b^d \leq 3, & \\
\mathbf{x}_b \in \{0, 1\}^d, \\
\mathbf{x} \in \mathcal{X}(\mathbf{w}).$$

Cohort contextual variables

- Gender
- Age
- primary site breakdown
- ecog score
- ...

^(*) Bertsimas D, O'Hair A, Relyea S, Silberholz J (2016) An analytics approach to designing combination chemotherapy regimens for cancer. Management Science 62(5):1511–1531, ISSN 15265501

In this case study, we extend the work of <u>Bertsimas et al. (2016)</u>* in the design of chemotherapy regimens for advanced gastric cancer. Given a new study cohort and study characteristics, we would like to optimize a chemotherapy regimen to <u>maximize</u> the cohort's survival subject to constraint on different types of toxicity.

 $\mathbf{x}_{b}^{d} = \mathbb{I}(\text{drug } d \text{ is administered}),$

 \mathbf{x}_a^d = average daily dose of drug d,

 x_i^d = maximum instantaneous dose of drug d.

Overall Survival

Cohort contextual variables

- Gender
- Age
- primary site breakdown
- ecog score
- ...

^(*) Bertsimas D, O'Hair A, Relyea S, Silberholz J (2016) An analytics approach to designing combination chemotherapy regimens for cancer. Management Science 62(5):1511–1531, ISSN 15265501

In this case study, we extend the work of <u>Bertsimas et al. (2016)</u>* in the design of chemotherapy regimens for advanced gastric cancer. Given a new study cohort and study characteristics, we would like to optimize a chemotherapy regimen to <u>maximize</u> the cohort's survival subject to constraint on different types of toxicity.

 $\mathbf{x}_{b}^{d} = \mathbb{I}(\text{drug } d \text{ is administered}),$

 \mathbf{x}_a^d = average daily dose of drug d,

 \mathbf{x}_{i}^{d} = maximum instantaneous dose of drug d.

Toxicities

- Grade 3/4 constitutional
- Infection
- Neurological
- Grade 4 blood
- ٠...

Cohort contextual variables

- Gender
- Age
- primary site breakdown
- ecog score
- • •

^(*) Bertsimas D, O'Hair A, Relyea S, Silberholz J (2016) An analytics approach to designing combination chemotherapy regimens for cancer. Management Science 62(5):1511–1531, ISSN 15265501

Embedding Decision Trees

Embedding Decision Trees

Embedding Decision Trees

Embedding Neural

Networks

ReLU activation function

$$y_1^2 = \max \left\{ 0, \beta_{01}^2 + \beta_1^{2^T} y^1 \right\}$$

Embedding Neural

Networks

ReLU activation function

$$y_1^2 = \max \left\{ 0, \beta_{01}^2 + \beta_1^{2^T} y^1 \right\}$$

 $y = \max\{0, x\}$ can also be written as:

$$\begin{cases} y \geq x, \\ y \leq x - M_L(1-z), \\ y \leq M_U z, \\ y \geq 0, \\ z \in \{0, 1\}, \end{cases}$$

where $M_L < 0$ is a lower bound on all possible values of x, and $M_U > 0$ is an upper bound.

$$CH(\mathbf{x}) = \left\{ \mathbf{x} | \mathbf{x} = \sum_{i}^{N} \lambda_{i} \overline{\mathbf{x}}_{i}, \sum_{i}^{N} \lambda_{i} = 1, \lambda_{i} \geq 0, i = 1, \dots, N \right\}$$

$$CH(\mathbf{x}) = \left\{ \mathbf{x} | \mathbf{x} = \sum_{i}^{N} \lambda_{i} \overline{\mathbf{x}}_{i}, \sum_{i}^{N} \lambda_{i} = 1, \lambda_{i} \geq 0, i = 1, \dots, N \right\}$$

OptiCL

A Python Package for <a>Optimization with Constraint Learning

https://github.com/hwiberg/OptiCL

OptiCL

A Python Package for <a>Optimization with Constraint Learning

https://github.com/hwiberg/OptiCL

Hands-on tutorial on the

Thank you!

Q&A

