APPLICAZIONI INDUSTRIALI ELETTRICHE ED ELETTRONICA (MODULO 2)

kanopo

2022

Indice

1	Intr	roduzione all'elettronica
	1.1	Trasduttori
	1.2	Digitale vs analogico
	1.3	Analogico vs digitale
	1.4	ADC(Convertitore analogico digitale)
	1.5	DAC(convertitore digitale analogico)
2	C	niconduttori
2		
		Caratteristiche
	2.2	Drogaggio di un semiconduttore
	2.3	Correnti di "drift"
	2.4	Diffusione

Elenco delle figure

Elenco delle tabelle

1 Introduzione all'elettronica

1.1 Trasduttori

I trasduttori sono dispositivi che mettono in contatto la realtà e l'elettonica. ne esistono di due famiglie:

- sensori
- trasduttori

I sensori trasformano grandezze fisiche in elettriche, mentre i trasduttori utilizzano le grandezze elettriche per trasformarle in grandezze fisiche.

1.2 Digitale vs analogico

- grande potenza di calcolo ed eleaborazione del segnale
- maggior robustezza ai disturbi
- minor sensibilità alla temperatura

1.3 Analogico vs digitale

- in natura le grandezze fisiche sono descrivibili come segnali analogici
- sensori e attuatori
- per la conversione da analogico a digitale e viceversa, si usano circuiti DAC e ADC

1.4 ADC(Convertitore analogico digitale)

- viene fissata la tensione di fondo scala (V_{fs})
- la tensione d'ingresso analogica viene convertita nel valore più vicino numero a n-bit
- maggiore è il numero di bit usati per la conversione e maggiore è la precisione del ADC(si perdono meno informazioni nella conversione)(minor errore di quantizzazione).

1.5 DAC(convertitore digitale analogico)

la tensione in uscita è:

$$V_O = (\sum_{n=0}^{+\infty} b_n 2^{-n}) V_{fs}$$

$$V_O = (b_1 2^{-1} + b_2 2^{-2} + \dots + b_n 2^{-n}) V_{fs}$$

Scritto in due maniere (sero uguali)

2 Semiconduttori

2.1 Caratteristiche

- Resistività (ρ) intermedia tra isolanti e conduttori
- \bullet possibilità di variare ρ mediante il drogaggio
- due portatori di carica(elettroni e lacune)

2.2 Drogaggio di un semiconduttore

Sostanzialmente si mettono atomi di diverso tipo nel composto che va a formare il semiconduttore finale. Quando parliamo di silicio, distinguiamo silicio-p e silicio-n.

- droganti di tipo n: elementi del 5 gruppo(5 elettroni esterni o di valenza)
- droganti di tipo p: 3 elettroni di valenza

Nei composti drogati di tipo n, si forma un atomo libero di muoversi e nei composti di tipo p si ha una mancanza di un atomo (quidni una lacuna).

2.3 Correnti di "drift"

Per campi elettrici moderati esiste una relazione lineare tra intensità del campo e velocità media dei portatori di carica.

Ci sono materiali con un'alta mobilità delle cariche(μ).

La corrente di drifpt penso sia legata alla conducibilità del materiale.

2.4 Diffusione

Simile ai gas, i semiconduttori cercano di avere un equilibrio di cariche al propro interno.