# ALGORÍTMICA

# Universidad De Granada Práctica 2 Algoritmos Divide y Vencerás

Víctor José Rubia López B3 Fecha de entrega 05/04/2020

# Algorítmica Práctica 2

# Contenido

| CAPÍTULO 1: TRASPUESTA DE UNA MATRIZ     | 2  |
|------------------------------------------|----|
| CAPÍTULO 2: ELIMINAR ELEMENTOS REPETIDOS | 7  |
| CAPÍTULO 3: CASO DE EJECUCIÓN            | 13 |
| CAPÍTULO 4: CONCLUSIÓN                   | 14 |

# Capítulo 1: Traspuesta de una matriz

# 1.1. Versión sin Divide y Vencerás

#### 1.1.1. Eficiencia teórica

Para la realización de la traspuesta de una matriz he usado dos bucles *for* anidados, por lo que la eficiencia de este programa es  $O(n^2)$  (función cuadrática). Lo podemos comprobar cuando al tomar valores cada vez más grandes, el tiempo que tarda es mayor.

$$A = \begin{pmatrix} 1 & 8 & 10 \\ 2 & 100 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$
 FILA 2
$$A^{T} = \begin{pmatrix} 1 & 2 & -1 \\ 8 & 100 & 1 \\ 10 & -1 & 1 \end{pmatrix}$$

$$\frac{8}{8}$$

#### 1.1.2. Eficiencia empírica

Para calcularla, hemos simulado dos situaciones:

1) Potencias de 2: He calculado todas las potencias de dos hasta el  $2^{14}$ . Lo he ejecutado un total de 20 veces y calculado la media de tiempo de sus ejecuciones.

| TAMAÑO | TIEMPO uS               |
|--------|-------------------------|
| 2      | 0,00001                 |
| 4      | 0,0012                  |
| 8      | 0,02                    |
| 16     | 0,5                     |
| 32     | 1,2                     |
| 64     | 7,05                    |
| 128    | 32,9                    |
| 256    | 371,3                   |
| 512    | 2191,6                  |
| 1024   | 11451,7                 |
| 2048   | 51820,1                 |
| 4096   | 209090                  |
| 8192   | 863436                  |
| 16384  | $3{,}70\mathrm{E}{+}11$ |



2) **Añadiendo más datos**: Hemos añadido más números hasta un total de 25 números.

| TAMAÑO | Tiempo uS    |
|--------|--------------|
| 2      | 0,00012      |
| 4      | 0,00026      |
| 8      | 0,03671      |
| 12     | 0,07012      |
| 16     | 0,95         |
| 32     | 3,65         |
| 64     | 10,85        |
| 80     | 34,20        |
| 128    | 33,20        |
| 160    | 305,05       |
| 256    | 324,20       |
| 400    | 1875,40      |
| 512    | 1850,30      |
| 800    | 10460,10     |
| 1024   | 11031,60     |
| 1600   | 47782,40     |
| 2048   | 49322,20     |
| 3000   | 207972,00    |
| 4092   | 209417,00    |
| 6000   | 867654,00    |
| 8192   | 864645,00    |
| 10000  | 356557000000 |
| 16384  | 357732000000 |



Para realizar la medición de los tiempos, he optado por dos vías distintas. El algoritmo de transposición de una matriz solamente funciona con matrices cuadradas de tamaño 2<sup>n</sup>, ya que, al subdividir la matriz por la mitad nos tiene que quedar la matriz más pequeña 2 X 2. Por ello, antes de realizarlo, mi algoritmo rellena de 0s las filas y las columnas de la matriz dada hasta ser de un tamaño cuadrado potencia de 2. Por ello, he decidido hacer una pasada con valores únicamente de potencias de 2, y otra pasada con dichos valores añadiendo otros, ya que, por ejemplo, al final, una matriz de tamaño 135 se convertirá en una de tamaño 256, y quería ver si esto afectaba o no al tiempo que tarda el algoritmo en trasponerla.

#### 1.1.3. Eficiencia híbrida

Recogiendo los datos obtenidos en la eficiencia empírica y con la eficiencia teórica  $O(n^2)$  obtenemos el resultado del parámetro y la gráfica





Final set of parameters 0.0158198 -22.8006 = 5067.03

| +/- 0.0005024                  | (3.176%) |
|--------------------------------|----------|
| +/- 7.198                      | (31.57%) |
| <b>⊥/_ 1 2/6</b> △ <b>⊥</b> 0/ | (245 0%) |

#### 1.2. Versión Divide y Vencerás

#### 1.2.1. Eficiencia teórica

De la misma forma que el caso del programa sin divide y vencerás, la función tendrá un máximo de dos bucles for anidados, por tanto, la eficiencia sigue siendo  $O(n^2)$ .

Sin embargo, para este caso, el algoritmo divide y vencerás necesitará de más cambios para poder llegar a la solución, por lo tanto, aunque tenga la misma eficiencia, el tiempo que tardará con los mismos valores será mayor.

#### 1.2.2. Eficiencia empírica

Tomo exactamente los mismos valores tanto para las potencias de 2, como para añadir números entre medias. El tiempo que tarda en ejecutar los números es casi el doble que en el caso sin Divide y Vencerás.

#### 1) Potencias de 2

| TAMAÑO | TIEMPO EN uS              |
|--------|---------------------------|
| 2      | 0,158                     |
| 4      | 0,95                      |
| 8      | 0,95                      |
| 16     | 2,65                      |
| 32     | 14,05                     |
| 64     | 53,4                      |
| 128    | 199,35                    |
| 256    | 861,35                    |
| 512    | 3782,8                    |
| 1024   | 16132,7                   |
| 2048   | 67816,4                   |
| 4096   | 288767                    |
| 8192   | $1,\!22\mathrm{E}\!+\!11$ |
| 16384  | 5,11E+11                  |



### 2) Números añadidos

| TAMAÑO | TIEMPO EN uS      |
|--------|-------------------|
| 2      | 0,0012            |
| 4      | 0,0264            |
| 8      | 0,0333            |
| 12     | 2,0000            |
| 16     | 2,0000            |
| 32     | 12,0333           |
| 64     | 46,9333           |
| 80     | 200,9670          |
| 128    | 215,3330          |
| 160    | 888,6330          |
| 256    | 865,1670          |
| 400    | 3776,2300         |
| 512    | 3772,0700         |
| 800    | 16368,1000        |
| 1024   | 16053,8000        |
| 1600   | 68606,7000        |
| 2048   | 68931,0000        |
| 3000   | 285146,0000       |
| 4092   | 280990,0000       |
| 6000   | 118524000000,0000 |
| 8192   | 119378000000,0000 |
| 10000  | 516284000000,0000 |
| 16384  | 514857000000,0000 |



#### 1.2.3. Eficiencia híbrida



# Final set of parameters

| a1 | = 0.0207494 |
|----|-------------|
| a2 | = -20.8997  |
| a3 | = 7037.15   |

#### Asymptotic Standard Error

| +/- 0.0001659 | (0.7994%) |
|---------------|-----------|
|               |           |
| +/- 2.376     | (11.37%)  |
| +/- 4114      | (58.46%)  |

# 1.3. Comparando versiones



Podemos observar la versión que Divide y Vencerás está la mayor departe los tamaños en tiempo por encima de la versión que no aplica esta técnica.

# Capítulo 2: Eliminar elementos repetidos

#### 2.1. Versión sin Divide y Vencerás

#### 2.1.1 Eficiencia teórica

Como la función está compuesta por dos bucles for, siendo el primero desde 0 hasta el tamaño del vector, y el segundo recorrería el vector desde la posición del bucle for anterior hasta el final del vector. El condicional if es O(1), por lo que la combinación de todos estos sería  $O(n^2)$ .

### 2.1.2 Eficiencia empírica

Para la eficiencia empírica, he tomado un número total de 22 valores y hasta un valor máximo de 100000000.

| TAMAÑO | TIEMPO EN uS |
|--------|--------------|
| 10     | 3            |
| 20     | 1            |
| 30     | 2            |
| 40     | 4            |
| 50     | 5            |
| 100    | 18           |
| 200    | 62           |
| 300    | 134          |
| 400    | 338          |
| 500    | 419          |
| 600    | 586          |
| 700    | 718          |
| 800    | 946          |
| 900    | 1487         |
| 1000   | 1667         |
| 2000   | 5872         |
| 5000   | 37011        |
| 10000  | 146159       |
| 15000  | 321699       |
| 25000  | 885378       |
| 50000  | 3569453      |
| 75000  | 7964171      |
| 100000 | 14068549     |

#### Algorítmica Práctica 2



#### 2.1.3 Eficiencia híbrida



# 

| a1 | = 0.000957138 |
|----|---------------|
| a2 | = 2.12414     |
| a3 | = -5445.65    |

### Asymptotic Standard Error

| +/- 5.816e-06 | (0.6077%) |
|---------------|-----------|
| +/- 0.5271    | (24.82%)  |
| +/- 4618      | (84.8%)   |

### 2.2. Versión Divide y Vencerás

#### 2.2.1 Eficiencia teórica

```
1 void eliminarRepDV(vector<int> &v) {
2
3     MergeSort(v, 0, v.size()-1);
4
5     for (int i = 0; i < v.size() - 1; ++i) {
6         if (v[i] == v[i+1]) {
7             v.erase(v.begin()+i+1);
8             i--;
9         }
10     }
11 }</pre>
```

De forma distinta a la versión sin divide y vencerás, al usar el algoritmo MergeSort, obtendremos una eficiencia distinta,  $O(n \log n)$ .

Implementando este algoritmo, conseguiré una mejora sustancial de la eficiencia, a través de la ordenación del vector usando el algoritmo MergeSort, basado en la técnica de Divide y Vencerás.



Realizando el cálculo la recursividad de comprobamos que, efectivamente la eficiencia es  $O(n \log n)$ , distinta a la eficiencia en la versión sin Divide v Vencerás. Además, en este caso, dividimos el vector en dos y llamamos a la función recursivamente. De esta manera, obtenemos un algoritmo bastante más eficiente. Aquí tenemos un ejemplo de cómo la técnica Divide v Vencerás adecuada para este tipo de problemas.

# 2.2.2 Eficiencia empírica

De la misma forma que en la versión sin Divide y Vencerás, hemos tomado 22 valores.

| TAMAÑO | TIEMPO EN uS |
|--------|--------------|
| 10     | 24           |
| 20     | 55           |
| 30     | 155          |
| 40     | 219          |
| 50     | 299          |
| 100    | 555          |
| 200    | 1033         |
| 300    | 1660         |
| 400    | 1438         |
| 500    | 1819         |
| 600    | 2621         |
| 700    | 3342         |
| 800    | 3489         |
| 900    | 3431         |
| 1000   | 3732         |
| 2000   | 9634         |
| 5000   | 15724        |
| 10000  | 29148        |
| 15000  | 45010        |
| 25000  | 82026        |
| 50000  | 149619       |
| 75000  | 292492       |
| 100000 | 410560       |



#### 2.2.3 Eficiencia híbrida



#### 2.3. Comparando versiones



Este es un ejemplo de cómo usando la técnica divide y vencerás nos ayuda en la ejecución de este tipo de problema. Observamos que a partir de 50 componentes, usar la versión Divide y Vencerás es mucho mas eficiente que la que no lo implementa, sin embargo, para tamaños inferiores a 50, comprobamos que es mucho mejor usar la técnica simple.

# Capítulo 3: Caso de ejecución

#### 3.1. Vector

Para generar los tiempos y las medidas hemos usado el formato de la primera práctica. Por tanto la forma de ejecución será la siguiente:

#### \$ ./archivo\_ejecutable salidatxt semilla valor1 valor2 ... valor n

```
victorjoserubialopez@Mac-mini-de-Victor Individual % g++ -std=c++11 eliminar_repetidossimple.cpp -o eliminar_repetidossimple
victorjoserubialopez@Mac-mini-de-Victor Individual % ./eliminar_repetidossimple datos_simple.txt 1 15 1500 15000

Tiempo de ejec- (us): 3139 para tam. caso 1500
Tiempo de ejec- (us): 324705 para tam. caso 15000

victorjoserubialopez@Mac-mini-de-Victor Individual % g++ -std=c++11 eliminar_repetidosDyV.cpp -o eliminar_repetidosDyV

[victorjoserubialopez@Mac-mini-de-Victor Individual % ./eliminar_repetidosDyV datos_DyV.txt 1 15 1500 15000

Tiempo de ejec- (us): 12 para tam. caso 1500
Tiempo de ejec- (us): 284 para tam. caso 1500
Tiempo de ejec- (us): 5308 para tam. caso 15000
```

En este ejemplo hemos puesto que solo haga 2 repeticiones de cada valor, pero para el desarrollo de los datos y gráficas, al igual que de las eficiencias hemos puesto 20 repeticiones.

# Capítulo 4: Conclusión

En el problema de la matriz traspuesta, los dos algoritmos tienen la misma eficiencia teórica. Empíricamente, usando la técnica Divide y Vencerás tarda más debido a que "pierde" más tiempo al tener que subdividir la matriz. Este es uno de los casos en los que se observa que el uso de esta técnica es contraproducente.

En el problema individual (grupal) que me han asignado, eliminar los elementos repetidos de un vector, he comprobado cómo Divide y Vencerás acelera la ejecución del algoritmo. La función por tanto tiene un orden de eficiencia menor al simple  $O(n^2) > O(n \log n)$  y por ello es mejor usar esta técnica.