3.1 - Redução do Número de Conectivos

Através do método dedutivo, pode-se representar um conectivo a partir de outros.

Exemplos:

Representar as proposições abaixo utilizando apenas os conectivos — e v.

i)
$$\mathbf{p} \wedge \mathbf{q}$$
 (De Morgan)
ii) $\mathbf{p} \rightarrow \mathbf{q}$
iii) $\mathbf{p} \leftrightarrow \mathbf{q} \Leftrightarrow (\mathbf{p} \rightarrow \mathbf{q}) \wedge (\mathbf{q} \rightarrow \mathbf{p}) \Leftrightarrow$
 $(\neg \mathbf{p} \vee \mathbf{q}) \wedge (\neg \mathbf{q} \vee \mathbf{p}) \Leftrightarrow$
 $\neg \neg ((\neg \mathbf{p} \vee \mathbf{q}) \wedge (\neg \mathbf{q} \vee \mathbf{p})) \Leftrightarrow$
 $\neg (\neg (\neg \mathbf{p} \vee \mathbf{q}) \vee \neg (\neg \mathbf{q} \vee \mathbf{p}))$

Exercício 11. Demonstre quais conectivos podem ser expressos em termos de outros.

i)
$$\vee$$
, \rightarrow e \leftrightarrow através de \neg e $^{\wedge}$: (V)

ii)
$$^{\land}$$
, \vee e \rightarrow através de \neg e $^{\land}$ (V)

iii)
$$^{\land}$$
, \vee e \leftrightarrow através de \neg e \rightarrow (V)

iv)
$$\neg$$
, $^{\wedge}$, \vee , \rightarrow através de \uparrow ()

v)
$$\neg$$
, $^{\wedge}$, \vee , \rightarrow através de \downarrow ()