

Calcul d'un couplage maximal dans un graphe biparti Vincent Picard

Un exemple de graphe biparti

■ On veut calculer un couplage maximal pour le graphe :

Graphe résiduel

- Étant donné un graphe biparti $G = (U \cup V, A)$ et un couplage M, le calcul des **chemins augmentants** se fait facilement à l'aide du graphe résiduel :
 - ▶ C'est un graphe orienté construit à partir des sommets de *G*
 - \blacktriangleright On ajoute un sommet source s et un sommet cible t
 - ▶ Si $(u, v) \notin M$ alors (u, v) est un **arc** du graphe résiduel.
 - ► Si $(u, v) \in M$ alors (v, u) est un **arc** du graphe résiduel.
 - ▶ *s* pointe sur tous les sommets de *U* non appariés
 - ightharpoonup t est pointé par tous les sommets de V non appariés
 - un chemin augmentant correspond donc à un chemin de s à t

Graphe résiduel : exemple

■ Au départ $M = \emptyset$ et le graphe résiduel est :

Graphe résiduel : un chemin augmentant

■ Un chemin augmentant correspond à un chemin de s à t:

Graphe résiduel : mise à jour du graphe résiduel

■ On calcule le nouveau couplage obtenu $M \leftarrow M\Delta C$.

 $M = \{(u_1, v_1)\}$

■ Le couplage peut encore être amélioré :

 $M = \{(u_1, v_1)\}$

■ On met à jour le couplage $M \leftarrow M\Delta C$:

 $M = \{(u_1, v_1), (u_2, v_2)\}$

■ Le couplage peut encore être amélioré :

 $M = \{(u_1, v_1), (u_2, v_2)\}$

■ On met à jour le couplage $M \leftarrow M\Delta C$:

 $M = \{(u_1, v_3), (u_2, v_2), (u_3, v_1)\}$

■ Le couplage peut encore être amélioré :

 $M = \{(u_1, v_3), (u_2, v_2), (u_3, v_1)\}$

■ On met à jour le couplage $M \leftarrow M\Delta C$:

S

 $M = \{(u_1, v_3), (u_2, v_4), (u_3, v_1), (u_4, v_2)\}\$

Graphe résiduel : fin

■ Il n'y a plus de chemin augmentant : le couplage obtenu est maximal!

 $M = \{(u_1, v_3), (u_2, v_4), (u_3, v_1), (u_4, v_2)\}\$

S

Conclusions

- Un couplage s'obtient en partant du couplage vide et en cherchant des chemins augmentants dans le graphe.
- Dans un graphe biparti, le calcul des chemins augmentants peut s'obtenir à l'aide du graphe résiduel
- Chaque chemin augmentant augmente la taille du couplage de 1.
- Complexité pire cas :
 - ▶ Parcours de graphe : O(|U| + |V| + |A|) (linéaire)
 - Nombre d'itérations : |U| dans le pire cas...
 - ► Complexité : $O(|U| \times (|U| + |V| + |A|))$
 - Si n = |U| + |V| on obtient une complexité cubique $O(n^3)$ dans le pire cas.