CARBOXYLIC ACID OLIGOSACCHARIDE ESTER SULFATE

Publication number: JP4300888
Publication date: 1992-10-23

Inventor: SHOJI TADAO; KATSURAYA KANAME; IKUSHIMA

NAOYA; TAKAHASHI NAOKO; URYU TOSHIYUKI;

YAMAMOTO NAOKI; NAKAJIMA HIDEKI

Applicant: DAINIPPON INK & CHEMICALS

Classification:

- international: A61K31/70; A61K31/715; C07H13/06; C08B37/00;

A61K31/70; A61K31/715; C07H13/00; C08B37/00; (IPC1-7): A61K31/70; A61K31/715; C07H13/06;

C08B37/00

- european:

Application number: JP19910064620 19910328 Priority number(s): JP19910064620 19910328

Report a data error here

Abstract of JP4300888

PURPOSE:To obtain a new carboxylic acid oligosaccharide ester sulfate useful for a medical physiologically active compound having excellent antiviral activity, especially anti-AIDS virus activity. CONSTITUTION:A compound shown by the formula [at least one of R1 to R11 is chained acyl shown by the formula CmH2+1CO (m is 2-17) and at least one of R1 to R11 is sulfuric ester metallic base and the rest is H; n is 1-28] such as sodium oligobeta (1 3)glucosyl laurate sulfate. The compound is obtained by esterifying an oligosaccharide with a carboxylic acid and sulfating the prepared ester with piperidine sulfate by reacting a carboxylic acid chloride with a saccharide in the presence of a base such as pyridine.

Data supplied from the esp@cenet database - Worldwide

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-300888

(43)公開日 平成4年(1992)10月23日

(51) Int.Cl.⁵ 識別記号 庁内整理番号 F I 技術表示箇所 C 0 7 H 13/06 7822-4C C 0 8 B 37/00 C 7624-4C H 7624-4C J 7624-4C

A 6 1 K 31/70

審査請求 未請求 請求項の数6(全 6 頁) 最終頁に続く

(71)出願人 000002886 (21)出願番号 特願平3-64620 大日本インキ化学工業株式会社 東京都板橋区坂下3丁目35番58号 (22)出願日 平成3年(1991)3月28日 (72)発明者 東海林 忠生 千葉県佐倉市王子台6-36-13 (72)発明者 ▲かつら▼谷 要 千葉県佐倉市六崎1550-2-1-204 (72)発明者 生島 直也 千葉県佐倉市六崎1550-2-2-203 (72)発明者 髙橋 菜穂子 千葉県千葉市高浜4-3-2-203 (74)代理人 弁理士 高橋 勝利

最終頁に続く

(54)【発明の名称】 カルボン酸オリゴ糖エステル硫酸化物

(57)【要約】

*ゴ糖エステル硫酸化物。

【化1】

【構成】式(I)及び(III)で示されるカルボン酸オリ*

 R_{as} OR_{s} OR_{s} O

[化2]

$$R_{s} \xrightarrow{OR_{7}} OR_{s} OR_{s} OR_{s} OR_{s} OR_{s}$$

$$OR_{s} OR_{s} OR_$$

[式I及びIII中、R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁は、この内少なくとも1以上が式(II) で表わされる直鎖又は分岐のアシル基であり、かつ少なくとも1以上が硫酸エステルアルカリ金属

下、pは1以上29以下の自然数を表わす。]

C. H2.+1 CO

(11)

(式II中、mは2以上17以下の自然数を表わす。) 【効果】本発明の化合物は抗HIV活性が良好であり、 REST AVAILABLE COPY

*【化1】

1

【特許請求の範囲】

【請求項1】下記一般式(I)

[式I中、R1, R2, R8, R4, R6, R6, R7, R8, 般式(II)で表わされる直鎖又は分岐のアシル基であ り、かつ少なくとも1以上が硫酸エステルアルカリ金属 塩基であり、残りが水素原子である。nは1以上28以 下の自然数を表わす。]

で示されるカルボン酸オリゴ糖エステル硫酸化物。

C. H2 . + 1 CO

(II)

(式II中、mは2以上17以下の自然数を表わす。)

【請求項2】オリゴ糖の水酸基のうちカルボン酸エステ※

※ルとなった部分がオリゴ糖1分子当たり1個以上であ R_{9} , R_{10} , R_{11} は、この内少なくとも1以上が下記一 10 り、かつオリゴ糖水酸基の9.0%以下であることを特徴 とする請求項1記載のカルボン酸オリゴ糖エステル硫酸

> 【請求項3】硫酸化度が0.1~3であることを特徴と する請求項1又は2記載のカルボン酸オリゴ糖エステル 硫酸化物。

【請求項4】下記一般式(III)

【化2】

$$R_{s} \xrightarrow{OR_{7}} OR_{s} \xrightarrow{OR_{4}} OR_{s}$$

$$OR_{s} \xrightarrow{OR_{2}} OR_{s}$$

$$OR_{s} \xrightarrow{OR_{2}} OR_{s}$$

$$OR_{s} \xrightarrow{OR_{2}} OR_{s}$$

[式III中、R1, R2, R3, R4, R5, R6, R7, R8 は、この内少なくとも1以上が上記一般式(II)で表わ される直鎖又は分岐のアシル基であり、かつ少なくとも 1以上が硫酸エステルアルカリ金属塩基であり、残りが 水素原子である。pは1以上29以下の自然数を表わ す。]

で示されるカルボン酸オリゴ糖エステル硫酸化物。

【請求項5】オリゴ糖の水酸基のうちカルボン酸エステ ルとなった部分がオリゴ糖1分子当たり1個以上であ り、かつオリゴ糖水酸基の90%以下であることを特徴 とする請求項4記載のカルボン酸オリゴ糖エステル硫酸 化物。

【請求項6】硫酸化度が0.1~3であることを特徴と する請求項4又は5記載のカルボン酸オリゴ糖エステル 硫酸化物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は生理活性上重要な硫酸化 オリゴ糖類のカルボン酸エステルに関し、とりわけ抗ウ ィルス活性、とりわけ、抗エイズウィルス活性を有する カルボン酸エステルに関する。

[0002]

【従来の技術】オリゴ糖誘導体の抗エイズウィルス活性 化合物としてはこれまでに、殆どなにも知られていなか った。

は、分子量数万以上の多糖類硫酸化物(例えば、特公表 平1-503068号公報)、単糖系のセレプロシド類 (例えば、特開平1-211528号公報)、シクロデ キストリン類(例えば、特開平2-304025号公 報) 等が開示されているが、オリゴ糖に関する出願はな 30 かった。

【0004】そこで本発明者は既に抗エイズウィルス活 性を示すものとしてオリゴ糖硫酸化物やアルキルエーテ ル化オリゴ糖硫酸化物(特願平1-282784号、同 2-335713号) を開示した。

【0005】糖類のアルキルエステルに関する知見は庶 糖エステル類に見られるように界面活性剤としては存在 していた。また、最近ポリサッカライド類のアルキルエ ステル化について開示されたが、使用している糖類はデ キストラン類とキシラン類である(特開平3-4340 1号公報)。

[0006]

40

【発明が解決しようとする課題】本発明はオリゴ糖類誘 導体を利用した医薬品、生理活性化合物として合成的に も容易で、且つ期待される活性を示す化合物を提供する ことを目的とする。

[0007]

【課題を解決するための手段】本発明者らは上記課題を 解決するため、オリゴ糖類のアルキルエステル化の有効 利用を種々研究の結果、糖類の水酸基のエステル化はエ * [0009]

C. H2 R+1 CO

[0011]

【化4】

下記一般式(III)

【化3】

テル化物を合成し、引き続き硫酸化する方法を考察する ことにより、本発明を完成するに至った。

【0008】即ち本発明は下記一般式(1)

R₁₁ OR_{10} OR_{10} OR_{10} OR_{2} OR_{2} OR_{2} OR_{2} OR_{2} OR_{2} OR_{2} OR_{2}

10※り、

【0010】 [式I中、 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} は、この内少なくとも 1以上が下記一般式(II)で表わされる直鎖又は分岐のアシル基であり、かつ少なくとも1以上が硫酸エステルアルカリ金属塩であり、残りが水素原子である。nは1以上28以下の自然数を表わす。]

で示されるカルボン酸オリゴ糖エステル硫酸化物であ※

 $R_{3} \xrightarrow{OR_{7}} O \xrightarrow{OR_{3}} O \xrightarrow{OR_{4}} O \xrightarrow{OR_{3}} O \xrightarrow{OR_{1}} O \xrightarrow{OR_{2}} O \xrightarrow{OR_{2}} O \xrightarrow{OR_{3}} O \xrightarrow{OR_{4}} O \xrightarrow{OR_{5}} O \xrightarrow{OR_{5}}$

【0012】 [式III中、 R_1 , R_2 , R_3 , R_4 , R_5 , R_5 , R_7 , R_8 は、この内少なくとも1以上が上記一般式 (II) で表わされる直鎖又は分岐のアシル基であり、かつ少なくとも1以上が硫酸エステルアルカリ金属塩であり、残りが水素原子である。pは1以上29以下の自然数を表わす。]

で示されるカルボン酸オリゴ糖エステル硫酸化物である。

【0013】本発明はオリゴ糖として乳糖より誘導されるガラクトース系オリゴ糖、 β ($1\rightarrow 3$) グルコオリゴ糖より誘導されるオリゴ糖を用い、オリゴ糖の水酸基を硫酸エステル化したことを特徴とする。

【0014】本発明に用いる糖類としては各種の糖類を用いることができる。即ち化学合成又は発酵合成した、若しくはこれらの両方の手段を用いて得られた糖類、さらには天然の糖類を用いることができる。また糖質は直質状、分岐状のいずれであってもよい。例えばマルトオリゴ糖、ラミナランオリゴ糖、シゾフィランオリゴ糖、ブルラン系オリゴ糖、乳酸系オリゴ糖、キシラン系オリゴ糖等各種のオリゴ糖を挙げることができる。

【0015】糖鎖の長さに関しては、アルキルエステルの分子長との関係、体内での消化、吸収、代謝、排泄等の観点から糖鎖数3~30が適切である。乳糖系オリゴ糖に関しては発酵合成法により糖鎖3~5個程度のものは容易に合成することができるし、さらにこの糖類に化学合成法を用いて糖鎖を容易に延長することもできる。化学的に糖鎖を連結していく場合には、どのように糖類

いくのが有利であり、結合様式も β $(1 \rightarrow 3)$ 、 β $(1 \rightarrow 4)$ 、 β $(1 \rightarrow 6)$ 、 β $(1 \rightarrow 2)$ 等の各種結合様式が可能であるが、 β $(1 \rightarrow 4)$ 、 β $(1 \rightarrow 6)$ の結合様式で延長させるのが比較的容易である。

(II)

(式II中、mは2以上17以下の自然数を表わす。)

【0016】 $\beta(1\rightarrow 3)$ グルコオリゴ糖については、カードラン、ラミナラン等の多糖類の酸分解法によるオリゴ糖化を実施することによって、糖鎖数30以下の糖は容易に合成することができる。また酵素分解法によっても同様にオリゴマー化することができる。

【0017】乳糖より誘導されるオリゴ糖については、 先に述べた特願昭63-230856号に記載の方法、 クリプトコッカス属に属する微生物を用いた発酵合成法 により合成することができ、さらに例えば4, 6-ジー O-(β -ガラクトシル)グルコース、 β -D-ガラクトシル ($1\rightarrow 4$) ラクトース、 β -D-ガラクトシル ($1\rightarrow 6$) ラクトース、 β -D-ガラクトシル 4) ガラクトシルー β ($1\rightarrow 4$) ラクトース、 β -D-ガラクトシルー β ($1\rightarrow 4$) ガラクトシルー β ($1\rightarrow 4$) ガラクトースなどの糖類を挙げることができる。

【 $0\ 0\ 1\ 8$ 】また末端に乳糖骨格を持たない糖としては、 β -D-ラクトシル($1\rightarrow 4$)ガラクトース、 β -D-ガラクトシル($1\rightarrow 4$)ラクトシルー β ($1\rightarrow 4$)ガラクトース等を挙げることができる。その他ここに掲げた乳糖系、ガラクトース系以外のオリゴ糖も利用することができる。さらにこれらの糖類に化学合成法又は発酵合成法を用いて糖鎖を延長した糖類を用いることがで

REST AVAILABLE COPY

[0019] アルキル化度(糖中の水酸基のカルボン酸エステル化された割合)は生理活性上の要求によって変化するが、最低オリゴ糖1分子当たり1個から最大オリゴ糖の水酸基の90%程度迄使用できる。これは硫酸エステル基の存在が生理活性上不可欠であるので、硫酸エステル基の存在すべき水酸基を確保するためである。

【0020】しかしカルボン酸エステルと硫酸エステルの割合を考慮するとエステル含有率は最大50%程度が都合良い。硫酸化度は生理活性上少なくとも0.1は必要であり、カルボン酸エステルとの割合から3以下が好ましく、0.5~3の範囲が都合良い。

【0021】エステル化するためのカルボン酸、若しくはその反応性等価物としては、炭素原子数3個以上のアルキル基を有していることが生体親和性の点から好ましい。カルボン酸は脂肪族飽和もしくは不飽和の直鎖もしくは分岐のものが用いられる。更に分子中にエーテル結合を有するカルボン酸、分子中にヘテロ環を有するカルボン酸等各種カルボン酸が用いられる。

【0022】次に本発明に係る化合物の製造方法について説明する。即ち本発明の化合物は2段階の製造工程と 20 それに伴う精製工程により製造することができる。

【0023】第1段階はオリゴ糖とカルボン酸とのエステル化である。このエステル化反応は一般的なエステル化反応をそのまま利用できる。例えば、カルボン酸クロリドと糖をピリジンなどの塩基性物質存在下反応させる方法、カルボン酸と糖をジシクロヘキシルカルボジイミド(DCC)又はN,N'ーカルボニルイミダゾール(CDI)存在下のエステル化反応などである。又条件を上手に選択すればカルボン酸と糖の酸触媒存在下の脱水縮合反応も可能であるが、糖鎖の分解を伴う危険があり極めて注意を要する。エステル基の導入量は糖の水酸基とカルボン酸の量比から仕込量比を決め、生成物中のエステルの含有率は核磁気共鳴スペクトルから決定でき、また、酸化定量法によってもエステル導入量は容易に算出できる。製造中に発生する不純物は殆ど無く、副生成物に関しても通常の精製処理法で容易に除去できる。

【0024】第2段階としては、この様にして得られたエステル体をピリジン硫酸(三酸化硫黄ピリジン錯体)による硫酸化、ピペリジン硫酸、更には有機塩基性物質 40存在下クロロスルホン酸等を上配エステル体に反応させ硫酸化することによって硫酸エステルとする。この時も使用する硫酸化剤の量と糖中の水酸基のパランスから硫酸化度を考慮した硫酸化剤の使用が可能である。本製造方法では、硫酸化度は任意に設定できるが、生理活性的には0.1~3となるように硫酸化剤の量を決める。これは、糖鎖1個に付いて最大3個の水酸基が存在する(通常の6炭糖のオリゴマーにおいて、末端糖を除く)ので硫酸化度は最大3(厳密には3より少し大きい)と

水で未反応の反応試薬を分解し、引き続き水酸化パリウム水溶液を用い溶液の水素イオン濃度を7~8に調整する。ここで生じた沈澱は遠心分離法によって分離し、その上澄み液は減圧下に濃縮した後再び適量のイオン交換水に溶解させるか、もしくはそのままナトリウムタイプのイオン交換樹脂カラムを通し硫酸根の対イオンを力りウムに置き換える。その他のカチオンに交換するとも同様に特定のカチオンに交換されたイオン交換樹脂を用い同様に操作することによって目的の化合物を沈澱させることができる。更に、精製する際には同様の沈澱法を繰り返して精製する。その他、水酸化パリウムを使用せず、炭酸ソーダ、重炭酸ソーダなどのアルカリ水溶液を直接用い硫酸塩を中和した後、市販のイオン交換膜によって無機塩と有機塩を分離することもできる。

【0025】別な製造方法としては、オリゴ糖の方を先に硫酸化し、安定な塩の構造としたもの、もしくは天然の硫酸化糖類を用い、非プロトン系溶剤中において、塩基性物質存在下糖中に残っている水酸基をカルボン酸クロリドと反応させエステルとすることにより製造することができる。この際も未反応カルボン酸、カルボン酸クロリドなどはヘキサン、エーテル、クロロホルム等の溶剤で洗浄し除去できる。

【0026】この様な各種の方法で本発明の化合物を製造することができるが、カルボン酸エステルは、糖中のどの水酸基にエステル結合しているか、何個の水酸基がエステル化されたかに付いてはエステル化の反応性、仕込モル比等によって変わりうるので、一般にはカルボン酸エステル化後においてエステル導入率を核磁気共鳴法等を用いて決定することができる。勿論鹸化滴定法によっても導入率は調べることはできる。しかし、これらの方法は平均値を算出するものであるから、糖のどの水酸基がエステル化されたかについては、鹸化法、核磁気共鳴法ともに、これを知ることは極めて困難である。同様なことは硫酸化においてもどの水酸基が硫酸化されたかは特定しにくく、一般的には元素分析からの平均の硫酸化度をもって示される。

【0027】次に、この様にして得られる本発明化合物 の生理活性の評価として、抗HIV活性試験を行ったの で、これに付いて説明する。

(抗HIV活性試験法) この様な硫酸オリゴ糖類カルボン酸エステル化合物をMTT (テトラゾリウム) 法により、感染標的細胞としてMT-4細胞を用い、ウィルスとしては、HTLV-IIIB (感染価:8.7×10⁴TCID50/ml) を用い試験を実施した。試験方法の概略は次の通りである。

【0028】96穴マイクロタイタープレートに、種々の適度の試験物質と共にHIV感染MT-4細胞(2.5×10⁴/well、MOI:0.01)を感染直後

験物質と共に培養を行う。炭酸ガスインキュベーターで 37℃5日間培養した後、MTT法で、生存細胞数を測 定する。抗ウィルス活性は、HIV感染による細胞障害 を50%防御する濃度(EC50)細胞毒性は試験物質に よる50%細胞障害濃度(CCso)でそれぞれ表現して いる。また、選択指標(Selectivity In dex) (SI) はCCso/ECsoとして計算した (P auwels et al, J. Vi-rol Met hods, 20 (1988) 309-321参照)。選 択指数の値の大きいほど高活性、低毒性であり望ましい 10 ルカンエステル化物の合成 ものである。

[0029]

【実施例】以下に実施例を示し本発明を更に詳しく説明 するがこれをもって本発明を何等制限するものではな

【0030】 (参考例1) n-ドデカン酸 β (1→ 3) グルカンエステル化物の合成

平均分子量2600のβ (1→3) グルカン200 mgを 50mlのピリジンに溶解し、ここに0℃にてn-ドデカ ノイルクロリド148mを10m1のクロロホルムに溶解 20 製)を用い無機塩を除去した。得られた水溶液は凍結乾 した溶液を20分で滴下後、0℃にて更に20分攪拌*

比旋光度 [α] ₁=-1. 3° (c=1. 0 H₂O、25℃)

赤外線吸収スペクトル (cm-1) 3447, 2925, 1 741, 1445, 1240, 1140 硫酸化度 2.4

【0031】 (実施例2) 硫酸化 n-ドデカン酸 B (1→3) グルカンエステル化物の合成(2)

比旋光度 [α] 1=-2.8° (c=1.0 H₂O, 25℃)

赤外線吸収スペクトル (cm-1) 3464, 2923, 1 740, 1445, 1243, 1140 硫酸化度 2.3

【0032】(参考例2) n-ドデカン酸 D-ガラク ト β (1→4) 乳糖エステル化物の合成 D-ガラクトβ (1→4) 乳糖3. 3gをピリジン10 0mlに溶解させ窒素気流下0~5℃に保ち、2.8gの★

比旋光度 [α] ₁=+28.9° (c=0.55、メタノール、29℃)

赤外線吸収スペクトル (cm-1) 3400, 2950, 1 735, 1130, 1060

核磁気共鳴スペクトルによるラウロイル基含有率:糖1 分子当たり1.0

【0033】 (実施例3) 硫酸化 n-ドデカン酸 D -ガラクトβ(1→4)乳糖エステル化物の合成参考例 2で合成したn-ドデカン酸 D-ガラクト β (1→ **4) 乳糖エステル化物の1.03gをピリジン50mlに** 溶解させ、アルゴン気流下80℃に加熱し、7. 2gの☆

比旋光度 [α] n=+1.54 (c=0.4, H₂O, 28℃)

赤外線吸収スペクトル(cgm¹)3500,2950,2 860, 1730, 1250, 1130 硫酸化度 2.4

験を上記の方法で実施した。

*し、引き続き室温で3時間攪拌した。反応後、反応液を **滅圧下で濃縮しピリジンを留去した。ここにトルエンを** 加え再度減圧下で濃縮した。残渣をクロロホルムで十分 に洗浄し、目的物の420歳を得た。赤外線吸収スペク トルの測定 (cm⁻¹) 2925, 2854, 1741, 1 375, 1162, 1078

核磁気共鳴スペクトル法によるドデカノイル基合有率: 糖1分子当たり1.3

(実施例1) 硫酸化 n-ドデカン酸 β (1 \rightarrow 3) グ

参考例1で合成したエステル90mgを10mlのジメチル スルオキシドに溶解させこれを窒素気流下で85℃に加 熱した。ここに379mgのピペリジン硫酸を加え、1. 5時間反応させた。反応混合物は40℃まで冷却し水2 mlを加え、更に20分間攪拌した。これを水100mlで 希釈し、飽和重曹水で水素イオン濃度約8とした後、減 圧下に濃縮し、アセトンを加えた。生じた沈澱は遠心分 離し、この時の沈澱物を集め、イオン交換水10回に溶 解させ、マイクロアシライザー(旭化成工業株式会社 燥し153gの目的物を得た。

※実施例1と同様に90頭のエステルを用い10回のピリ ジンを用い、731嘘の三酸化硫黄ビリジン錯体を使用 する以外は実施例1と同様に反応後処理して167㎞の 目的物を得た。

★塩化ラウロイルを20mlの塩化メチレンに溶解した溶液 30 を加え、その後5~10℃にて攪拌しながら約48時間 保った。反応液は減圧下で濃縮した後、エーテル20ml を加え、攪拌した後エーテル層を除去し残渣を塩化メチ レンに溶解し、稀塩酸洗浄、水洗を行って4. 41gの 化合物を得た。

☆三酸化硫黄ピリジン錯体を加え1.5時間攪拌した。次 いでここに水5回を加え0.5時間攪拌後飽和重曹水で 水素イオン濃度を約8とした。引き続き稀塩酸を加え水 40 素イオン濃度を約7とした後、減圧下で濃縮し、8.0 1gの白色固形物を得た。このうち250mgを25mlの イオン交換水に溶解させ、マイクロアシライザーにより 不要の塩類を除去した。不要の塩類を除去した溶液は減 圧下濃縮し215mgの目的物固体を得た。

【0034】試験に用いたサンプルは次の通りである。

化合物 1: 硫酸化オリゴ β ($1 \rightarrow 3$) グルコシルラウリ

BEST AVAILABLE COPY

9

化合物 2:硫酸化オリゴ β (1→3) グルコシルラウリ

こ・「「「「「」」」(「一3)クルコンルブリリ

リ *結果を表1に示す。

レートナトリウム塩 (実施例2の化合物)

[0035]

化合物3:硫酸化ガラクトβ(1→4)ラクトシルラウ

【表1】

リレートナトリウム塩 (実施例3の化合物)

*

化合物	C C 50	EC 50	SI
1	5 7 8	4. 21	137
2	>1000	1.88	> 5 3 2
3	. 645	43.9	1 5

【0036】この結果いずれのサンブルにおいても良好な抗HIV活性を示している。

[0037]

【発明の効果】本発明にかかわる化合物は合成上も極め 20

て容易である新規のオリゴ糖カルボン酸エステルの硫酸 化物であり、抗HIV活性も良好な化合物で、医薬用新 規生理活性化合物となり得るものである。

10

フロントページの続き

(51) Int. Cl. 5

識別記号

ADY

庁内整理番号 8314-4C FΙ

技術表示箇所

A 6 1 K 31/715 (72)発明者 瓜生 敏之

東京都足立区青井3-5-26-519

(72)発明者 山本 直樹

東京都渋谷区恵比寿南 3-11-17-501

(72)発明者 中島 秀喜

東京都武蔵村山市学園4-3、むさしの住

宅16 -405