| СОГЛАСОВАНО              | УТВЕРЖДАЮ                                            |  |  |
|--------------------------|------------------------------------------------------|--|--|
| Сторона ЗАКАЗЧИКА        | Сторона ИСПОЛНИТЕЛЯ                                  |  |  |
|                          | <u>Профессор кафедры</u><br><u>ИАНИ ННГУ, д.т.н.</u> |  |  |
| Д. В. Попов<br>«»2022 г. |                                                      |  |  |

# ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ РЕШЕНИЯ ЗАДАЧИ РЕДУКЦИИ ПРОСТРАНСТВА МНОГОМЕРНЫХ ФУНКЦИЙ

# Руководство программиста

Этап 2. Разработка программной документации

# ОКР «РАЗРАБОТКА НЕЙРОННОЙ СЕТИ СПЕЦИАЛЬНОГО ВИДА (АВТОЭНКОДЕРА) ДЛЯ РЕШЕНИЯ ЗАДАЧИ РЕДУКЦИИ ПРОСТРАНСТВА МНОГОМЕРНЫХ ФУНКЦИЙ»

(Шифр ПО «Епс»)

| Ответственный исполнитель |  |              |  |
|---------------------------|--|--------------|--|
|                           |  | В.А. Куликов |  |
| <b>«</b>                  |  | 2022 г.      |  |

# **АННОТАЦИЯ**

Руководство программиста представляет собой информацию по содержанию, правилам работы и настройки программы «Епс». Программа выполняет запуски разного типа автоэнкодеров над различными функциями, подсчитывает ошибку и выводит результаты работы в выходные файлы.

# Содержание

| 1. | Общие сведения о программе | . 4 |
|----|----------------------------|-----|
|    | Характеристики программы.  |     |
|    | Обращение к программе      |     |
|    | Входные и выходные данные. |     |

# 1. Общие сведения о программе.

#### 1.1. Назначение программы.

ПО «Епс» предназначен для решения задачи редукции пространства многомерных функций.

#### 1.2. Функции программы.

ПО «Enc» выполняет следующие операции:

- Считывание параметров выполнения программы из консоли.
- Считывание параметров и весов для автоэнкодера, при условии наличия файлов, содержащих эту информацию.
- Генерация случайных данных для параметров функции одним из трех методов.
- Обучение автоэнкодеров.
- Оптимизация параметров автоэнкодера методом полного перебора (не используется из-за долгого времени работы).
- Оптимизация параметров автоэнкодера алгоритмом эффективной глобальной оптимизации.
- Запуск автоэнкодеров на параметрах, полученных из входных файлов.
- Запись в файлы параметров и весов, полученных при обучении автоэнкодера.
- Сохранение диаграмм отклонений для каждого из параметров.

#### 1.3.Системные требования.

Для функционирования ПО «Enc» ПЭВМ должны удовлетворять следующим требованиям: процессор Ryzen 5 или Intel i5, видеокарта GTX 1050Ti, оперативная память не менее 8 ГБ DDR4, HDD не менее 124 GB, клавиатура, мышь, интернет-доступ.

ПО «Enc» должно быть работоспособно при установленном python3, numpy, smt, tensorflow, sobol\_seq, keras.

# 2. Характеристики программы.

ПО «Enc» является консольным приложением. Все возможные параметры для передачи в командную строку описаны в разделе «Обращение к программе». Основные характеристики ПО «Enc»:

- 1. Программа состоит из следующих модулей:
- DataGenerator Данный класс генерирует случайные данные для параметров функции тремя различными способами: полностью случайно в пределах области определения, методом sobol, методом латинского гиперкуба LSH.
- Normalizer модуль, реализующий класс нормировки/денормировки данных.
- Function модуль реализует класс функции, а также содержит стандартные функции func\_1, func\_2, func\_3, func\_4.
- AutoEncoder\_class модуль содержит класс автоэнкодера и позволяет создать автоэнкодеры всех типов, а также содержит все необходимые функции для работы автоэнкодера.
- Optimizer модуль содержит класс оптимизации параметров автоэнкодера, который по результатам запусков автоэнкодеров, определяет лучшие параметры для выбранной функции.
- Error\_class модуль реализует класс подсчета ошибки на основе средней абсолютной ошибки.
- Calculate\_error модуль, предназначенный для запуска из консоли и вывода ошибок.
- Training\_model модуль, предназначенный для запуска из консоли и обучения автоэнкодеров.
  - 2. Сохранение параметров автоэнкодеров осуществляется в файлы .txt (Saved Models/Params). Сохранение весов автоэнкодеров осуществляется в файлы .h5 (Saved Models/Weights). Сохранение графиков ошибок для автоэнкодеров с различными параметрами осуществляется в файлы .png (Saved Models/Graphs).
  - 3. Валидация результатов обучения оценивается с помощью ПМ Calculate\_error.
  - 4. Основные функции программы:
- Обучение автоэнкодера для выбранной функции.

• Запуск автоэнкодера на готовых параметрах и весах, а также вывод опибок.

# 3. Обращение к программе.

Высокоуровневый дизайн представленный на рисунке 1 имеет два сценария запуска:



Рисунок 1 – Высокоуровневый дизайн.

# Сценарий 1. Обучение автоэнкодера.

Для запуска программы необходимо:

- открыть командную строку ОС;
- перейти в директорию с исполняемым файлом программы командой:

>cd C:\Users\{ИМЯ\_ПОЛЬЗОВАТЕЛЯ}\encoderProject\Code\Scripts

• прописать команду:

> python3.9 training\_models.py [-h] [-f {func\_1, func\_2, func\_3, func\_4, all}] [-a {dense, deep, vae, all}] [-i [ITER], --iter [ITER]]

Сначала вызывается скрипт training\_models.py, затем прописываются возможные аргументы:

«-h» – на консоль выводится все возможные аргументы

«-f» – выбор функции нейронной сети

- func 1
- func 2
- func 3
- func 4
- all

«-а» – выбор автоэнкодера для нейронной сети, где

- dense сжимающий автоэнкодер
- deep глубокий автоэнкодер
- vae вариационный автоэнкодер
- all использование всех автоэнкодеров для обучения

«-i» — Количество эпох подбора гиперпараметров автоэнкодера (по умолчанию 25)

# Описание работы программных модулей:

- 1. Пользователь вводит:
  - > python3.9 training\_models.py [-h] [-f {func\_1, func\_2, func\_3, func\_4, all}] [-a {dense, deep, vae, all}] [-i [ITER], --iter [ITER]]
- 2. В модуле training\_model создается экземпляр тестируемой функции.
- 3. В модуле training\_model создается экземпляр класса-оптимизатора.
- 4. В модуле optimize\_class происходит генерация параметров и нормировка данных.
- 5. В модуле класса-оптимизатора создается экземпляр класса автоэнкодера с выбранными параметрами.
- 6. Класс-оптимизатор начинает подбор параметров.
- 7. Класс-опримизатор производит обучение автоэнкодеров с выбранными параметрами и подает на выход наилучшую по отклонению комбинацию параметров автоэнкодера.
- 8. Класс-оптимизатор сохраняет веса и параметры автоэнкодеров в файлы.

# Сценарий 2. Подсчет ошибки и вывод графиков.

1. Пользователь вводит:

- > python3.9 calculate\_error.py [-h] [-f {func\_1, func\_2, func\_3, func\_4, all}] [-a {dense, deep, vae, all}]
- 2. В модуле calculate\_error создается экземпляр тестируемой функции.
- 3. В модуле calculate\_error создается экземпляр класса автоэнкодера с выбранными параметрами и загруженными весами.
- 4. В модуле calculate\_error создается экземпляр класса подсчета ошибки.
- 5. С помощью модуля error\_class производится подсчет средних общих ошибок и ошибок по параметрам.
- 6. В модуле error\_class сохраняется график отклонений по параметрам.

# 4. Входные и выходные данные.

Согласно сценариям обращения к программе, существуют два сценария, которые порождают входные/выходные данные.

#### Сценарий 1.

#### Входные параметры:

- Выбранный тип функции
- Выбранный тип автоэнкодера
- Количество эпох.

#### Выходные параметры:

Файлы с весами обученного автоэнкодера представлены на рисунке 2.

• Веса обученного автоэнкодера.

| Имя                     | Дата изменения   | Тип             | Размер |
|-------------------------|------------------|-----------------|--------|
| func_1_ego_dense_8_4.h5 | 16.01.2022 19:06 | Файл "Н5"       | 15 KG  |
| func_1_ego_dense_8_5.h5 | 16.01.2022 19:06 | Файл "Н5"       | 15 KB  |
| func_1_ego_dense_8_6.h5 | 16.01.2022 19:05 | Файл "Н5"       | 15 KB  |
| func_1_ego_dense_8_7.h5 | 14.01.2022 18:55 | Файл "Н5"       | 15 KB  |
| readme.txt              | 14.01.2022 14:58 | Текстовый докум | 1 KE   |

Рисунок 2. - Файлы с весами обученного автоэнкодера.

• Оптимальные гиперпараметры автоэнкодера по итогам процесса оптимизации параметров показаны на рисунке 3.



Рисунок 3 – Оптимальные гиперпараметры автоэнкодера

# Сценарий 2.

#### Входные параметры:

- Веса обученного автоэнкодера.
- Оптимальные параметры автоэнкодера по итогам процесса оптимизации параметров.
- Выбранный тип функции.
- Выбранный тип автоэнкодера.

#### Выходные параметры:

• Графики отклонений по параметрам показаны на рисунке 4.



Рисунок 4 – Графики отклонений по параметрам