CAMERA CALIBRATION WITH OPENCV

1. Project Background and Description

Test camera calibration on different type of images.

2. Data

I used the data included in the OpenCV samples, also the images that I generated by my-self with print of checkerboard and laptop's webcam.

3. Camera Calibration

To calibrate the camera, we need to estabilish correspondences a set of correspondences between 3D world points and 2D image points.

To save the camera calibration results for later use, we need to find nine parameters

Distortion coefficients: $(k_1, k_2, p_1, p_2, k_3)$

Where:

 f_x , f_y : focal length expressed in pixels

c_x, c_y: coordinates of the so called principal point that should be in the center of the image.

k₁, k₂, k₃: Radial distortion

p₁, p₂: Tangential distortion

4. Evaluating the Accuracy of Single Camera Calibration

Camera calibration is the process of estimating parameters of the camera using images of a special calibration pattern. The parameters include camera intrinsics, distortion coefficients, and camera extrinsics. Once you calibrate a camera, there are several ways to evaluate the accuracy of the estimated parameters:

- Plot the relative locations of the camera and the calibration pattern
 - o All the edges should straight.
- Calculate the re-projection errors
 - Re-projection error gives a good estimation of just how exact is the found parameters. This should be as close to zero as possible.

0

5. Conclution

What I have done

- 1. It is importance to set the number of inner corners in the checkerboard
- 2. Refine the camera matrix based on a free scaling parameter using cv2.getOptimalNewCameraMatrix(), so the parameter alpha should be set by value 1 if we don't want to lose any pixel at image corners. But better to check in both case 0 and 1 to choose the best number.
- 3. Save parameters to txt file then can use later.

What didn't work:

1. Step extract object points and image points for camera calibration not worked well in the yellow light. The white light makes better results.

What should do next:

- It need to check with video from stores with camera in the wide range scale to see how it works.