Flexible Learning Reading Group @TU Berlin 6th Session: 6th of November 2019

SOLVING RUBIK'S CUBE WITH A ROBOT HAND

A PREPRINT

OpenAI

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, Lei Zhang

October 17, 2019

Picture credits - Akkaya et al. (2019: ArXiv)

General Sim2Real Setup

Train in Simulation

Transfer to the Real World

A. Automatic Domain Randomization (ADR)

B. Distributed PPO + GAE LSTM-policy

C. ResNet-50-based State estimation

D. 0-Shot Sim2Real Transfer Results

Automatic Domain Randomization

Hypothesis: Transfer via Meta-Learning results from training on diverse set of environments

Limited network capacity enforces learn-to-learn!

Natural Adaptive Curriculum!

On-Policy RL: Policy Gradient Methods

$$\pi^* = \arg\max_{\pi} V^{\pi}(s_0) = \arg\max_{\pi} \left[\mathbb{E}_{\pi} \left[\sum_{t} \gamma^{t-1} r_t | s_0 \right] \right]$$

Vanilla Policy Gradients (Sutton et al., 2000):

$$\nabla_{\theta} V^{\pi_{\theta}}(s_0) = \mathbb{E}_{\pi} [\langle (s, a) \nabla_{\theta} \ln \pi_{\theta}(a|s) \rangle \langle (s, a) \nabla_{\theta} \ln \pi_{\theta}(a|s) \rangle \langle$$

Generalized Advantage Estimation (GAE):

$$\hat{V}_{t}^{(k)} = \sum_{i=t}^{t+k-1} \gamma^{i-t} r_{i} + \gamma^{k} V(s_{t+k}) \qquad \hat{A}_{t}^{GAE}$$

$$\hat{V}_{t}^{GAE} = (1 - \lambda) \sum_{i=t}^{t+k-1} \lambda^{k-1} \hat{V}^{(k)}, \quad 0 < \lambda < 1$$

Training the Control Policy: PPO + GAE

Proximal Policy Optimization (Schulman et al., 2017):

$$\max \mathbb{E}\left[\min\left(\frac{\pi(a_t|s_t)}{\pi_{old}(a_t|s_t)}\hat{A}_t^{GAE}, clip\left(\frac{\pi(a_t|s_t)}{\pi_{old}(a_t|s_t)}, 1 - \epsilon, 1 + \epsilon\right)\hat{A}_t^{GAE}\right)\right]$$

The State Estimation Vision System

Vision Module & Sim2Sim Results

Experiment	Errors (Sim)			Errors (Real)			
Experiment	Orientation	Position	Top Face	Orientation	Position	Top face	
Full Model	6.52°	2.63 mm	11.95°	7.81°	6.47 mm	15.92°	
No Domain Randomization	3.95°	2.97 mm	8.56°	128.83°	69.40 mm	85.33°	
No Focal Loss	15.94°	$5.02~\mathrm{mm}$	10.17°	19.10°	$9.416~\mathrm{mm}$	17.54°	
Non-discrete Angles	9.02°	$3.78~\mathrm{mm}$	42.46°	10.40°	$7.97~\mathrm{mm}$	35.27°	

→ ADR + Adaptive Weighting of different tasks is crucial

Curriculum outperforms fixed levels of randomness

Sim2Real Results

Policy	Sensing		ADR Entropy	Successes	Success Rate		
	Pose	Face Angles	ADK Entropy	Mean	Median	Half	Full
Manual DR	Vision	Giiker	-0.569^* npd	1.8 ± 0.4	2.0	0 %	0 %
ADR	Vision	Giiker	$-0.084~\mathrm{npd}$	3.8 ± 1.0	3.0	0 %	0 %
ADR (XL)	Vision	Giiker	0.467 npd	17.8 ± 4.2	12.5	30 %	10 %
ADR (XXL)	Vision	Giiker	$0.479~\mathrm{npd}$	26.8 ± 4.9	22.0	60 %	20 %
ADR (XXL)	Vision	Vision	0.479 npd	12.8 ± 3.4	10.5	20 %	0 %

LSTM + ADR = Meta-Learning?

Training

· · · · Outer - SGD - "Slow"

Inner - Hidden - "Fast"

(b) Re-sampling environment dynamics.

(c) Breaking a random joint.

Cool things that I learned!

- 1. ORRB remote rendering backend on top of Unity
- 2. 'Bi-directional' ADR: Entropy ↓if performance < thresh
- 3. Redis: Centralized storage of parameters + data
- 4. Adversarial Random Networks Exploration
- 5. Concat + Add Embedding Flexible Inputs
- 6. Policy Distillation to transfer progress
- 7. Face Angle "Classification" Cross-Entropy Loss
- 8. Multi-Task Vision with Focal Loss Weighting
- 9. LARS optimizer Large Batchsize 1024

Since @OpenAl still has not changed misleading blog post about "solving the Rubik's cube", I attach detailed analysis, comparing what they say and impute they actually did. IMHO most would not be nonexperts.

Please zoom in to read & judge for yourself

Reality

- Neural networks didn't do the solving; a 17-year old symbolic Al algorithm did
- The solving (which face should turn where) algorithm was innate, not learned.
- Reinforcement learning played no role in the choice of which faces to turn (ie what most people call solving).
- What was learned was object manipulation, not cube solving
- Only ONE object was manipulated, and there was no test of generalizability to other objects
- That object was heavily instrumented (eg with bluetooth sensors). The hand was instrumented with LEDs, as well.
- Success rate was only 20%; hand frequently dropped cube