#### Introduction to Time Series Data

Friday, April 4, 2025 11:32 AM

#### 1. Time Series Data

- Time Series data is a **sequence of observations collected at regular time intervals** (e.g., every minute, hour, day, week, etc.).
- Each data point is associated with a specific timestamp, and the order of data points matters.

#### **Examples:**

- Finance: Daily closing stock prices (e.g., AAPL stock on Jan 1, Jan 2...)
- IoT/Sensors: Hourly temperature readings from a weather sensor
- Web Analytics: Number of website users per minute/hour
- Energy Sector: Electricity consumption recorded every 15 minutes

#### 2. Time Index

- A **Time Index** is the **timestamp or datetime column** in the dataset that uniquely identifies the point in time for each record.
- This acts as the **primary axis** to perform time-based operations.

#### Importance:

- Without a proper time index, time-based calculations (like rolling averages or resampling) won't work.
- Helps in chronological ordering and detecting missing intervals.

## **Operations that require a Time Index:**

- Resampling: Aggregating data (e.g., converting daily data into monthly averages)
- Rolling Window Calculations: Applying functions over a moving window (e.g., 7-day rolling average)
- Time Difference (lag/lead): Comparing past/future values for a given time point

#### 3. Decomposition breaks a time series:

**Time series decomposition** is a statistical method used to break down a time series into **several distinct components** to better understand the underlying patterns in the data.

#### 1. Trend

The long-term progression of the series (e.g., an upward or downward slope over years).

#### 2. Seasonality

Regular, repeating patterns (e.g., temperature increases in summer and decreases in winter).

#### 3. Residual (or Noise)

The random variation or irregularities not explained by trend or seasonality.

#### 4. Observed

The actual original time series (which is the sum of the above parts in an additive model).

## A) Trend

#### long-term movement or direction in the data over time.

It shows whether the variable is **increasing**, **decreasing**, **or stable** in the long run.

#### **Characteristics:**

- Does **not** repeat periodically.
- Can be linear or non-linear.
- Often due to external factors like economic growth, product popularity, etc.

#### **Examples:**

- Increase in electric vehicle sales over the past 10 years.
- Gradual decline in birth rates over decades.

# **B) Seasonality**

repetitive and predictable patterns observed at fixed time intervals, such as daily, weekly, monthly, or annually.

#### **Examples:**

- More ice cream sales in summer and less in winter.
- Higher electricity usage every evening.

#### **Characteristics:**

- Fixed frequency (e.g., every 24 hours, every 7 days).
- Often related to human behavior, natural phenomena, or calendar effects.

#### **Important Note:**

Seasonality and trend can coexist in the same time series.

## C) Noise (Residuals)

random or irregular variations in the data that cannot be explained by trend or seasonality.

#### **Characteristics:**

- Unpredictable and doesn't follow a pattern.
- Could be due to measurement errors, random events, or unexpected behavior.

#### **Example:**

- A sudden spike in sales due to a viral ad campaign that wasn't planned.
- Sensor errors in IoT readings.

# D) Observed

The actual original time series (which is the sum of the above parts in an additive model).

# **Summary Table:**

| Component   | Description                           | Repeats? | <b>Examples</b>                      |
|-------------|---------------------------------------|----------|--------------------------------------|
| Time Series | Data indexed by time                  | -        | Daily temperature, hourly traffic    |
| Time Index  | Timestamp used to align data          | -        | Date, Datetime, Timestamp column     |
| Trend       | Long-term movement (up/down/stable)   | ×        | Rising EV sales                      |
| Seasonality | Recurring patterns at fixed intervals | <b>✓</b> | Summer sales, weekend website visits |
| Noise       | Irregularities that can't be modeled  | ×        | Sensor glitches, unplanned events    |

# ACF (Autocorrelation Function) – *How much the data is related to its past*

- ACF <u>checks how today's value is related to previous days</u> (like yesterday, 2 days ago, 3 days ago...).
- If there's a strong link, it means **past values influence the current value.**
- It helps find patterns or seasonal cycles in the data.
- It's used to choose the MA (Moving Average) part of an ARIMA model.

# PACF (Partial Autocorrelation Function) – *How much one specific past day affects today*

- PACF checks how much one specific past value (say, 3 days ago) affects today, without the influence of the days in between (like 1 or 2 days ago).
- It helps find the **true influence** of a particular lag.
- It's used to choose the **AR (AutoRegressive)** part of an ARIMA model.

| <u>Feature</u>  | <u>ACF</u>                      | PACF                            |
|-----------------|---------------------------------|---------------------------------|
| Measures        | Total correlation               | Direct correlation only         |
| Includes        | Direct + indirect effects       | Only direct effect              |
| Use in ARIMA    | Helps choose <b>q</b> (MA part) | Helps choose <b>p</b> (AR part) |
| Example (Lag 3) | Includes effect of lag 1 & 2    | Removes effect of lag 1 & 2     |

# Moving Average & Standard Deviation in Time Series Analysis

Friday, April 4, 2025 1:48 PM

essential for smoothing noisy time series data and detecting trends.

# 1. Simple Moving Average (SMA)

<u>smooths time series data</u> by calculating the average <u>over a fixed window size</u>. It helps to <u>remove short-term fluctuations</u> and highlight long-term trends.

#### **Formula**

$$SMA_t = rac{(X_t + X_{t-1} + X_{t-2} + ... + X_{t-n+1})}{n}$$

where:

- ullet  $X_t$  is the value at time t
- n is the window size (number of time steps for averaging)

#### **Example**

If we use a 7-day SMA on stock prices, it will return the average price of the last **7 days**, updating each day.

# 2. Exponential Moving Average (EMA)

more weight to recent observations, making it more responsive to new data compared to SMA.

#### **Formula**

$$EMA_t = lpha imes X_t + (1-lpha) imes EMA_{t-1}$$

where:

- lpha is the smoothing factor (lpha=2/(n+1))
- ullet  $X_t$  is the current value
- ullet  $EMA_{t-1}$  is the previous EMA
- EMA reacts faster to changes than SMA, making it useful for financial markets.

# 3. Rolling Standard Deviation (Rolling Std)

- Measures the **spread** of the data over a window size.
- Helps detect volatility shifts in time series.
- High standard deviation → Data is more spread out (volatile).
- Low standard deviation → Data is more stable.

#### **Formula**

$$ext{Rolling Std}_t = \sqrt{rac{\sum (X_i - ar{X})^2}{n}}$$

#### where:

- ullet  $X_i$  are the values in the window
- ullet  $ar{X}$  is the mean of the window

# 4. Effects of Lag & Window Size

#### Window Size Effect

- Smaller Window (e.g., 5 days) → Reacts quickly but may be noisy.
- Larger Window (e.g., 30 days) → Smoother but slower to respond.

## **Lag Effect**

- SMA has more lag because it gives equal weight to all values.
- EMA has less lag because it emphasizes recent values.

# Outlier Detection using Z-Score and IQR

Friday, April 4, 2025 2:34 PM

- Outliers in time series data are unusual data points that deviate significantly from the normal pattern.
- Detecting these anomalies is crucial for applications like **sensor monitoring**, **fraud detection**, **and system performance analysis**.

#### 1. Z-Score Based Outlier Detection

The **Z-Score** measures how far a data point is from the mean in terms of standard deviations.

| Student's Score | Z-Score Calculation | Meaning          |
|-----------------|---------------------|------------------|
| 70 (Mean)       | (70-70)/10=0        | At the mean      |
| 80              | (80-70)/10=1        | 1 SD above mean  |
| 90              | (90-70)/10=2        | 2 SDs above mean |
| 60              | (60-70)/10=-1       | 1 SD below mean  |

# Formula $Z=\frac{X-\mu}{\sigma}$ where: $\bullet \ \ X= {\rm Data\ point}$ $\bullet \ \ \mu= {\rm Mean\ of\ the\ dataset}$ $\bullet \ \ \sigma= {\rm Standard\ deviation\ of\ the\ dataset}$

- A high absolute Z-score (>3 or <-3) indicates an outlier.
- The threshold can be adjusted based on data characteristics.

# 2. Interquartile Range (IQR) Based Outlier Detection

IQR is a robust statistical method that detects outliers based on quartiles (25th and 75th percentiles).

#### **Formula**

$$IQR = Q3 - Q1$$

 ${\rm Lower~Bound} = Q1 - 1.5 \times IQR$ 

 $\text{Upper Bound} = Q3 + 1.5 \times IQR$ 

#### where:

- Q1 = 25th percentile
- Q3 = 75th percentile
- Any value outside the lower and upper bounds is considered an outlier.

-----

#### Z-Score Method:

- Works well for normally distributed data.
- Sensitive to extreme values (can be affected by skewed data).
- Threshold can be adjusted (Z>3 by default).

#### **✓** IQR Method:

- Works well for **skewed** or **non-normal** data.
- More robust to extreme outliers.
- Best for financial or sensor monitoring applications.

#### ✓ Choosing the Best Method

- If data is normally distributed, use **Z-score**.
- If data is skewed, use IQR.
- For real-world datasets, compare both methods.

# Time Series Specific Outliers

Friday, April 4, 2025 3:44 PM

Unlike standard outlier detection, time series data has unique characteristics. Outliers in time series can be:

# 1. Types of Time Series Outliers

# 1 Point Outliers

- A sudden spike or dip that is inconsistent with past data.
- single data point significantly deviates.
- Example: A temperature sensor recording **50°C** when the usual range is 20-30°C.

#### 2 Contextual Outliers

- A value that is only an outlier in a certain context
- A value that may be normal overall but is unusual for a specific time period.
- Example: A sharp drop in retail sales on a holiday, whereas it would be normal on a non-holiday.

#### 3 Collective Outliers

- A sequence of values that together deviate from the pattern.
- A group of values that deviate from the expected pattern.
- Example: Several days of unusually high temperatures during winter.

# 2. Methods for Detecting Time Series Outliers

# Rolling Window Detection

- Uses a moving average or rolling standard deviation to detect outliers.
- Concept: If a value differs significantly from the rolling mean, it may be an outlier.

• Best For: Detecting sudden spikes/dips (Point Outliers).

# 

```
Rolling Standard Deviation

The rolling standard deviation measures how much values deviate from the rolling mean within a given window.

Rolling Std at time t = \sqrt{\frac{1}{N} \sum_{i=t-N+1}^{t} (X_i - \bar{X})^2}

Where:

• X_i = Value at time i

• \bar{X} = Rolling Mean at time t
```



# 2 Seasonal Z-Score Detection

- Compares a value to similar points in previous seasons.
- **Concept:** If a value deviates significantly from past values for the same time (e.g., last year's sales in the same month), it's an outlier.
- Best For: Detecting contextual outliers in seasonal data.

# Isolation Forest for Anomaly Detection

Friday, April 4, 2025 5:05 PM

- Isolation Forest is an unsupervised machine learning algorithm used for anomaly detection.
- It works by isolating data points that are different from the rest of the dataset.
- It is particularly effective for **time-series outlier detection** because it is **fast and doesn't require labeled data.**
- It works by randomly partitioning the dataset and isolating anomalies based on how quickly they
  are separated from the majority of data points.

#### How Isolation Forest Works

#### **Random Partitioning:**

- The dataset is randomly split into subsets using decision trees.
- Each split isolates a data point based on feature values.

#### **Isolation Depth:**

- Outliers (Anomalies) get isolated faster (in fewer splits).
- Normal points take **longer** to be isolated.

#### **Anomaly Score:**

- A score is assigned to each point based on how easily it was isolated.
- High anomaly scores = Outliers
- Low anomaly scores = Normal values

#### Scoring:

- Data points that are isolated in **fewer splits** are considered anomalies (-1).
- Normal data points require more splits (+1).

# Neighborhood Comparison Methods for Anomaly Detection

Friday, April 4, 2025 5:51 PM

- Neighborhood-based methods detect anomalies by comparing each data point to its neighbors.
- If a point is far from its neighbors or in a low-density region, it is considered an anomaly.

These methods are useful for **time series outlier detection**, especially when data exhibits clusters or varying densities.

| Method                            | Concept                                                           | Best For                        |
|-----------------------------------|-------------------------------------------------------------------|---------------------------------|
| k-NN (k-Nearest Neighbors)        | Compares distance to k-nearest points                             | General<br>anomaly<br>detection |
| LOF (Local Outlier Factor)        | Detects density-based local outliers                              | Sparse and dense regions        |
| DBSCAN (Density-Based Clustering) | Finds clusters and marks points in low-density areas as anomalies | Clustering + anomaly detection  |

# 1 k-NN (k-Nearest Neighbors) for Anomaly Detection

- Compute the distance to the k-nearest neighbors.
- If the distance is significantly larger than average, label it an **outlier**.

# **LOF** (Local Outlier Factor) for Density-Based Anomaly Detection

Local Outlier Factor (LOF) <u>compares a point's density to its neighbors</u>. If the <u>density drops significantly</u>, the <u>point is an outlier</u>.

Compute the **density** of each point and its k-nearest neighbors. If the density is **much lower than its neighbors**, the point is an **anomaly**.



# **♦** Steps

Identifies **dense clusters** based on eps (distance threshold). Points **outside clusters** are flagged as **outliers**.

- **DBSCAN automatically finds clusters** and isolates anomalies.
- ♦ Works well when anomalies are in low-density areas.