Da FA a RE - Esercizi delle slide

Gabriel Rovesti

1 Esercizio 1: Costruiamo l'espressione regolare equivalente al seguente NFA

Soluzione

Analizzerò l'automa considerando solo q_3 come stato finale, come indicato nell'esercizio.

Passo 1: Preparazione dell'NFA Identifico gli elementi dell'automa:

- Stati: $Q = \{q_0, q_1, q_2, q_3\}$
- Alfabeto: $\Sigma = \{0, 1\}$
- Stato iniziale: q_0
- Stati finali: $F = \{q_3\}$
- Transizioni:

$$- \delta(q_0, 0) = \{q_0\}$$

$$- \delta(q_0, 1) = \{q_0, q_1\}$$

$$- \delta(q_1, 0) = \{q_2\}$$

$$- \delta(q_1, 1) = \{q_2\}$$

$$- \delta(q_2, 0) = \{q_3\}$$

$$- \delta(q_2, 1) = \{q_3\}$$

Passo 2: Analisi del comportamento dell'automa Osservando il diagramma, notiamo che:

- Da q_0 possiamo restare in q_0 leggendo qualsiasi simbolo (0 o 1)
- $\bullet\,$ Da q_0 possiamo passare a q_1 leggendo 1
- Da q_1 passiamo a q_2 leggendo qualsiasi simbolo (0 o 1)
- $\bullet\,$ Da q_2 passiamo a q_3 (stato finale) leggendo qualsiasi simbolo (0 o 1)

Passo 3: Costruzione dell'espressione regolare Per raggiungere lo stato finale q_3 partendo da q_0 , dobbiamo:

- 1. Rimanere in q_0 per un numero arbitrario di passi (leggendo 0 o 1): $(0|1)^*$
- 2. Passare da q_0 a q_1 leggendo 1: 1
- 3. Passare da q_1 a q_2 leggendo 0 o 1: (0|1)
- 4. Passare da q_2 a q_3 leggendo 0 o 1: (0|1)

Concatenando queste parti otteniamo:

$$r_1 = (0|1)^* \cdot 1 \cdot (0|1) \cdot (0|1)$$
$$= (0|1)^* \cdot 1 \cdot (0|1)^2$$

Risultato finale L'espressione regolare equivalente all'NFA è:

$$r_1 = (0|1)^* \cdot 1 \cdot (0|1)^2$$

Verifica Questa espressione regolare descrive precisamente il linguaggio accettato dall'automa: sequenze che, dopo un numero arbitrario di 0 o 1, contengono un 1 seguito da esattamente due simboli qualsiasi.

2 Esercizio 2: Costruiamo l'espressione regolare equivalente al seguente NFA

Soluzione

Analizzerò l'automa considerando q_2 come unico stato finale.

Passo 1: Analisi dell'automa Osservando il diagramma, notiamo che:

- In q_0 possiamo rimanere leggendo 1, oppure passare a q_1 leggendo 0
- $\bullet\,$ Da q_1 possiamo tornare a q_0 leggendo 1, oppure andare a q_2 leggendo 1
- $\bullet\,$ In q_2 possiamo rimanere leggendo 0, oppure tornare a q_1 leggendo 1

Passo 2: Analisi dei percorsi per raggiungere lo stato finale I possibili percorsi per raggiungere q_2 partendo da q_0 sono:

- 1. $q_0 \xrightarrow{1^*} q_0 \xrightarrow{0} q_1 \xrightarrow{1} q_2$: Rimanere in q_0 leggendo un numero arbitrario di 1, poi passare a q_1 con 0, e infine a q_2 con 1
- 2. $q_0 \xrightarrow{1^*} q_0 \xrightarrow{0} q_1 \xrightarrow{1} q_0 \xrightarrow{1^*} q_0 \xrightarrow{0} q_1 \xrightarrow{1} q_2$: Cicli multipli tra q_0 e q_1 prima di raggiungere q_2

Passo 3: Costruzione dell'espressione regolare Possiamo costruire l'espressione regolare come:

$$\begin{split} r_2 &= 1^* \cdot 0 \cdot 1 \cdot 0^* \\ &+ 1^* \cdot 0 \cdot 1 \cdot 1^* \cdot 0 \cdot 1 \cdot 0^* \\ &+ 1^* \cdot 0 \cdot 1 \cdot 1^* \cdot 0 \cdot 1 \cdot 1^* \cdot 0 \cdot 1 \cdot 0^* \\ &+ \dots \end{split}$$

Questo pattern può essere espresso più concisamente come:

$$r_2 = 1^* \cdot 0 \cdot 1 \cdot (1^* \cdot 0 \cdot 1)^* \cdot 0^*$$

= 1* \cdot 0 \cdot 1 \cdot (0|1)^* \cdot 0 \cdot 0^*

Semplificando ulteriormente:

$$r_2 = 1^* \cdot 0 \cdot (0|1)^* \cdot 0 \cdot 0^*$$

Risultato finale L'espressione regolare equivalente all'NFA è:

$$r_2 = 1^* \cdot 0 \cdot (0|1)^* \cdot 0 \cdot 0^*$$

Verifica Questa espressione descrive il linguaggio accettato dall'automa: sequenze che iniziano con un numero arbitrario di 1, seguite da 0, poi da una sequenza arbitraria di 0 e 1, e infine da almeno un 0.

3 Esercizio 3: Costruiamo l'espressione regolare equivalente al seguente NFA

Soluzione

Analizzerò l'automa considerando q_3 come unico stato finale.

Passo 1: Analisi dell'automa Osservando il diagramma, notiamo che:

- $\bullet\,$ In q_0 possiamo rimanere leggendo 1, oppure passare a q_1 o q_2 leggendo 0
- $\bullet\,$ Da q_1 possiamo passare a q_3 leggendo 1
- $\bullet\,$ Da q_2 possiamo passare a q_1 leggendo 0, oppure a q_3 leggendo 1
- $\bullet\,$ In q_3 possiamo rimanere leggendo 0, oppure tornare a q_1 leggendo 1

Passo 2: Analisi dei percorsi per raggiungere lo stato finale I percorsi principali per raggiungere q_3 sono:

- 1. $q_0 \xrightarrow{1^*} q_0 \xrightarrow{0} q_1 \xrightarrow{1} q_3$: Rimanere in q_0 leggendo 1, poi passare a q_1 con 0, e infine a q_3 con 1
- 2. $q_0 \xrightarrow{1^*} q_0 \xrightarrow{0} q_2 \xrightarrow{1} q_3$: Rimanere in q_0 leggendo 1, poi passare a q_2 con 0, e infine a q_3 con 1
- 3. $q_0 \xrightarrow{1^*} q_0 \xrightarrow{0} q_2 \xrightarrow{0} q_1 \xrightarrow{1} q_3$: Percorso attraverso q_2 e q_1

Inoltre, una volta in q_3 , possiamo:

- Rimanere in q_3 leggendo 0: $(0)^*$
- Tornare a q_1 leggendo 1 e poi nuovamente a q_3 : (1(0|1)*1)*

Passo 3: Costruzione dell'espressione regolare Combinando questi percorsi:

$$r_3 = 1^* \cdot 0 \cdot 1 \cdot (0)^* \cdot (1 \cdot 1^* \cdot 0 \cdot 1 \cdot (0)^*)^* + 1^* \cdot 0 \cdot 0 \cdot 1 \cdot (0)^* \cdot (1 \cdot 1^* \cdot 0 \cdot 1 \cdot (0)^*)^* + 1^* \cdot 0 \cdot 0 \cdot 0 \cdot 1 \cdot (0)^* \cdot (1 \cdot 1^* \cdot 0 \cdot 1 \cdot (0)^*)^*$$

Semplificando:

$$r_3 = 1^* \cdot 0 \cdot [(1) + (01) + (001)] \cdot (0)^* \cdot (1 \cdot 1^* \cdot 0 \cdot 1 \cdot (0)^*)^*$$

= $1^* \cdot [(01) + (0 \cdot 0 \cdot 1) + (0 \cdot 0 \cdot 0 \cdot 1)] \cdot (0)^* \cdot (1(1)^*01(0)^*)^*$

Raggruppando ulteriormente:

$$r_3 = 1^* \cdot [(01) + (001) + (0001)] \cdot (0)^* \cdot (1(1)^*01(0)^*)^*$$

Osservando la struttura:

$$r_3 = 1^* \cdot [(0(1(0|1))^*0) + (00(0|1)0)] \cdot (0)^* \cdot (1(1)^*01(0)^*)^*$$

Semplificando ulteriormente:

$$r_3 = 1^* \cdot [(0(1(0|1))^*0) + (0((0|1)0)^*(0|1)0)] \cdot 0^*$$

Risultato finale L'espressione regolare equivalente all'NFA è:

$$r_3 = 1^* \cdot \left[(0(1(0|1))^*0) + (0((0|1)0)^*(0|1)0) \right] \cdot 0^*$$

O in forma più compatta:

$$r_3 = 1^* \cdot [(0(1(0|1))^*0 + 0((0|1)0)^*(0|1)0)] \cdot 0^*$$