CS 129.18

Logistic Regression

Logistic Regression

$$g(t) = \frac{1}{1 + e^{-t}}$$

Sigmoid Function

$$g(t) = \frac{1}{1 + e^{-t}}$$

The sigmoid function is perfect because it will output a value between 0 and 1

The function is asymptotic to 0 and 1, perfect for computational tasks

```
def sigmoid(z):
    return 1/(1 + np.exp(-z))
```

Try it out for yourselves. It scales large numbers asymptotic to 1, and small ones to 0.

Logistic Regression Function

$$h_{\Theta}(\mathbf{x}) = g(\mathbf{\Theta}^{\mathrm{T}}\mathbf{x})$$
 $g(\mathbf{t}) = \frac{1}{1 + e^{-t}}$

Pretty much the same as linear regression, but with the sigmoid function

 Θ is the coefficient vector term for **logistic regression**

 $oldsymbol{eta}$ is the coefficient vector term for linear regression

Because computer science and stat people disagree on notation

$$\Theta = \begin{bmatrix} \Theta \\ \Theta \\ \downarrow \\ \Theta \end{bmatrix}$$

(a) is the coefficient vector

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \downarrow \\ \mathbf{x}_n \end{bmatrix}$$

X is a vector of features you want to predict with

In Linear Regression, the green lines are your LOSS.

Gradient Descent

```
Repeat {
\theta_{j} := \theta_{j} - \frac{\alpha}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}
}
```

You get to classify binary datasets

Thank you