- 1. Represente graficamente o traço das seguintes curvas parametrizadas:
 - (a) $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ dada por $\gamma(t) = (-1 + t, 2t)$,
 - (b) $\gamma \colon [0,1] \to \mathbb{R}^2$ dada por $\gamma(t) = (-1+t, 2t)$
 - (c) $\gamma : [0, 2\pi] \to \mathbb{R}^2$ dada por $\gamma(t) = (2\cos t, 2\sin t)$,
 - (d) $\gamma: [0, +\infty[\to \mathbb{R}^2 \text{ dada por } \gamma(t) = (t, t^2)]$
 - (e) $\gamma \colon [0,2] \to \mathbb{R}^2$ dada por $\gamma(t) = (t^2, t)$
 - (f) $\gamma \colon [0, 2\pi] \to \mathbb{R}^3$ dada por $\gamma(t) = (\cos t, \sin t, 2)$,
 - (g) $\gamma \colon \mathbb{R} \to \mathbb{R}^3$ dada por $\gamma(t) = (\cos t, -1, \sin t)$,
 - (h) $\gamma \colon \mathbb{R} \to \mathbb{R}^3$ dada por $\gamma(t) = (\cos t, \sin t, t)$.
- 2. Considere a curva parametrizada $\gamma \colon [0, 2\pi] \to \mathbb{R}^2$ dada por $\gamma(t) = (\cos t, \sin t)$. Determine o vetor tangente $\gamma'(t)$ e verifique que $\langle \gamma(t), \gamma'(t) \rangle = 0$.
- 3. Calcule o vetor tangente num instante t qualquer da curva $\gamma(t) = (-1 + t, 2t, 1)$.
- 4. O comprimento $L(\gamma)$ de uma curva parametrizada $\gamma\colon [a,b]\to \mathbb{R}^n$ de classe C^1 é definido por

$$L(\gamma) = \int_{a}^{b} ||\gamma'(t)|| dt.$$

- (a) Seja $\theta \in]0, 2\pi]$. Calcule o comprimento da curva $\gamma(t) = (\cos t, \sin t), t \in [0, \theta]$.
- (b) Usando a substituição $t = \operatorname{sh} x$, calcule o comprimento da curva $\gamma(t) = (t, \frac{t^2}{2})$, $t \in [0, 1]$.
- 5. Determine e represente graficamente o domínio da função f dada por:

a)
$$f(x,y) = \frac{y}{x-2}$$
 b) $f(x,y) = \sin(\frac{x}{y})$
c) $f(x,y) = \frac{x-y}{\sqrt{1-x^2-y^2}}$ d) $f(x,y) = \sqrt{y-x^2} + \sqrt{2x-y}$
e) $f(x,y) = \ln(x^2-2x+y^2)$ f) $f(x,y) = \ln(2x^2+y^2-1)$

6. Encontre a função f(x,y) dada implicitamente pelas equações seguintes e determine o seu domínio.

a)
$$2x + y - 2z = 0$$
 b) $x + y - 1 + z^2 = 0$, $z \ge 0$ c) $z^2 + 4 = x^2 + y^2$, $z \le 0$