Implementação do algoritmo de Itai-Rodeh

Alex Davis Neuwiem da Silva (21202103) Luan Diniz Moraes (21204000) Lucas Castro Truppel Machado (22100632)

Introdução I

- A eleição de líderes é o problema de eleger um único líder em uma rede, no sentido de que o processo líder sabe que foi eleito e os demais processos sabem que não foram eleitos.
- Os algoritmos de eleição de líder exigem que todos os processos tenham o mesmo algoritmo local e que cada cálculo termine com um processo eleito como líder.

Introdução II

- O algoritmo de Itai-Rodeh é um algoritmo probabilístico de eleição de líderes para anéis unidirecionais anônimos, baseado no algoritmo de Chang-Roberts.
- Cada processo seleciona uma identidade aleatória de um domínio finito e os processos com a maior identidade iniciam um novo turno eleitoral se detectarem um conflito de nomes.
- Supõe-se que o tamanho do anel é conhecido por todos os processos.
- Cada processo consegue reconhecer sua própria mensagem por meio de um contador de saltos que faz parte da mensagem.

Suposições iniciais I

- Consideramos um anel assíncrono, anônimo e unidirecional composto por $n \ge 2$ processos, sendo eles denominados de p_0 até p_{n-1} .
- Os processos comunicam-se de forma assíncrona, enviando e recebendo mensagens através de canais que são considerados confiáveis e possuem capacidade n.
- Os canais são unidirecionais: uma mensagem enviada pelo processo p_i é adicionada à fila de mensagens do processo $p_{(i+1) \mod n}$.

Suposições iniciais II

- Supõe-se que receber uma mensagem, processá-la e possivelmente enviar uma mensagem subsequente leva tempo zero (ou seja, é instantâneo).
- As filas de mensagens são guiadas por um escalonador justo, o que significa que em cada sequência infinita de execução, cada mensagem enviada eventualmente chega ao seu destino.
- Os processos são anônimos, portanto não possuem identidades únicas.

Atributos do Processo

- **n** é o número total de processos.
- **k** é o número total de **id**s disponíveis.
- *id* é um valor gerado aleatoriamente (os *id*s podem repetir).
- *state* varia entre {*ACTIVE*, *PASSIVE*, *LEADER*}.
- round representa o número do round de eleição atual.
- Cada processo possui sua fila de mensagens.
- Todo processo envia uma mensagem para o próximo do ciclo.

Atributos da Mensagem

- *id* e *round* são obtidos do processo que originou a mensagem.
- **hop** é um contador inicializado em 1 e é incrementado toda vez que um processo repassa a mensagem.
- **bit** é um booleano inicializado como **true** e que recebe o valor **false** quando a mensagem visita um processo com o mesmo **id** que seu emissor.

Implementação do algoritmo

- Os processos se comportam com base em seu parâmetro state e nos parâmetros da mensagem recebida.
- A execução só termina quando todo processo estiver no estado *PASSIVE* ou ter sido eleito como líder e quando não restarem mais mensagens em sua fila de mensagens.

The Itai-Rodeh algorithm.

- Initially, all processes are active, and each process p_i randomly selects its identity $id_i \in \{1, ..., k\}$ and sends the message $(id_i, 1, 1, true)$.
- Upon receipt of a message (id, round, hop, bit), a passive process p_i $(state_i = passive)$ passes on the message, increasing the counter hop by one; an active process p_i $(state_i = active)$ behaves according to one of the following steps:
 - if hop = n and bit = true, then p_i becomes the leader $(state'_i = leader)$;
 - if hop = n and bit = false, then p_i selects a new random identity $id'_i \in \{1, ..., k\}$, moves to the next round $(round'_i = round_i + 1)$, and sends the message $(id'_i, round'_i, 1, true)$;
 - if $(round, id) = (round_i, id_i)$ and hop < n, then p_i passes on the message (id, round, hop + 1, false);
 - if $(round, id) > (round_i, id_i)$ (where (round, id) and $(round_i, id_i)$ are compared lexicographically), then p_i becomes passive $(state'_i = passive)$ and passes on the message (id, round, hop + 1, bit);
 - if $(round, id) < (round_i, id_i)$, then p_i purges the message.

Referências

- https://satoss.uni.lu/members/jun/papers/JUCS06.pdf
- https://www.cse.msu.edu/~borzoo/teaching/15/CAS769/lectures/week4.pdf
- https://www.lix.polytechnique.fr/comete/seminar/180105.pdf