Problems

A. Finite-Dimensional Hilbert Spaces (Sec. 2.1)

A1. Direct-sum ↔ tensor-product isomorphism.

Let H be a finite-dimensional Hilbert space and $H^{\oplus m}$ its m-fold direct sum. Show that the linear map $U: H^{\oplus m} \to \mathbb{C}^m \otimes H$ defined by

$$U\left(\bigoplus_{j=0}^{m-1}|x_j\rangle\right) = \sum_{j=0}^{m-1}|j\rangle\otimes|x_j\rangle$$

is unitary. Compute U^{\dagger} explicitly and verify that orthogonal projectors onto the j-th summand are mapped to $|j\rangle\langle j|\otimes \mathbb{I}_H$.

A2. Block embeddings as isometries.

Using the same U, prove that for any operators $A_j \in \mathcal{L}(H)$ we have

$$U\left(\bigoplus_{j=0}^{m-1} A_j\right) U^{\dagger} = \sum_{j=0}^{m-1} |j\rangle\langle j| \otimes A_j.$$

Deduce that $\operatorname{rank}\left(\bigoplus_{j} A_{j}\right) = \sum_{j} \operatorname{rank}(A_{j})$ and that $\operatorname{supp}\left(\bigoplus_{j} A_{j}\right) = \bigoplus_{j} \operatorname{supp}(A_{j})$.

C. Trace and Cyclicity (Sec. 2.2.3)

C1. Cyclicity with rectangular factors.

Ref.: §2.2.3; Eqs. (2.2.25)-(2.2.26); PDF p. 14.

For $X \in \mathcal{L}(H_A, H_B)$, $Y \in \mathcal{L}(H_B, H_C)$, $Z \in \mathcal{L}(H_C, H_A)$, prove Tr[XYZ] = Tr[YZX] = Tr[ZXY]. Then show $\text{Tr}[(X \otimes Y)(Z \otimes W)] = \text{Tr}[XZ] \text{Tr}[YW]$.

D. Transpose, Adjoint, and Basis Changes (Sec. 2.2.4)

D1. Basis-dependence of transpose, basis-independence of adjoint.

Ref.: §2.2.4; Eqs. (2.2.27)-(2.2.30) and (2.2.28); PDF pp. 14-15.

Let $A \in \mathcal{L}(H_1, H_2)$ and let U, V be unitaries on H_1, H_2 . Define $A' = VAU^{\dagger}$. Show that $(A')^T = (U^T)^{-1}A^TV^T$ (transpose depends on the chosen bases) but $(A')^{\dagger} = UA^{\dagger}V^{\dagger}$ (adjoint is basis independent).

D2. Transpose superoperator in an operator basis.

Ref.: §2.2.4; Eq. (2.2.30) and Exercise 2.7; PDF p. 15.

Let $\{E_{ij}\}$ be the standard operator basis. Show that the linear map $T(\cdot) = (\cdot)^T$ has representation $T(X) = \sum_{ij} E_{ji} X E_{ji}$.

E. Hilbert-Schmidt, Vectorization, and the Transpose Trick (Sec. 2.2.5)

E1. Vectorization identities.

Prove $\operatorname{vec}(AXB^T) = (B \otimes A)\operatorname{vec}(X)$ and $\operatorname{Tr}[A^\dagger B] = \langle \operatorname{vec}(A), \operatorname{vec}(B) \rangle$. Show that $\|A\|_2 = \|\operatorname{vec}(A)\|_2$.

Just state results for E1.

E2. Maximally entangled vector calculus.

Ref.: §2.2.5; Eqs. (2.2.34)-(2.2.36) and (2.2.45); PDF pp. 16-18.

Let $|\Gamma\rangle = \sum_i |i\rangle \otimes |i\rangle$. Show the "transpose trick" $(\mathbb{I} \otimes A) |\Gamma\rangle = (A^T \otimes \mathbb{I}) |\Gamma\rangle$ and use it to derive $\text{Tr}[X] = \langle \Gamma | (X \otimes \mathbb{I}) | \Gamma \rangle$.

E3. State-operator isomorphisms.

Show that every $|\psi\rangle \in H_A \otimes H_B$ can be uniquely written as $|\psi\rangle = (\mathbb{I} \otimes A) |\Gamma\rangle$ for some A, and also as $|\psi\rangle = (B \otimes \mathbb{I}) |\Gamma\rangle$ for some B, with A = T(B).

F. SVD, Schmidt, and Polar Decompositions (Sec. 2.2.7)

F1. Best rank-r approximation (unitarily invariant).

Ref.: §2.2.7; Theorem 2.1 (SVD) and Eqs. (2.2.56)-(2.2.59); PDF pp. 22-23.

Let $A = U\Sigma V^{\dagger}$ be an SVD. Show that among all rank-r operators X, the maximizer of Re Tr[$X^{\dagger}A$] is $X = U\Sigma_r V^{\dagger}$, where Σ_r keeps the top r singular values and zeros out the rest.

F2. Schmidt spectra of marginals.

Ref.: §2.2.7; Theorem 2.2 (Schmidt) Eqs. (2.2.60)-(2.2.62) and vec Eqs. (2.2.34)-(2.2.36); PDF pp. 22-24 16-17.

If $|\psi\rangle = \sum_{i=1}^r \sqrt{\lambda_i} |a_i\rangle \otimes |b_i\rangle$ is a Schmidt decomposition, prove that the reduced operators $\rho_A = \text{Tr}_B |\psi\rangle\langle\psi|$ and $\rho_B = \text{Tr}_A |\psi\rangle\langle\psi|$ have the same nonzero spectra $\{\lambda_i\}_{i=1}^r$.