PRÁCTICA MULTIOBJETIVO

Miguel Ángel Dorado Maldonado

a) Optimizar cada objetivo por separado teniendo en cuenta las restricciones que detalla el enunciado. Establecer la matriz de pagos para las soluciones óptimas anteriores.

Variables:

xa: número de aviones Airbus comprados xb: número de aviones Boeing comprados

Restricciones:

 $xa \ge 2$ $xa \cdot 225.000.000 + xb \cdot 180.000.000 < 1.350.000.000$ $2 \cdot xa + 3 \cdot xb \ge 10$

Maximizar benefício diário

Airbus

Precio billete business: 537.3 Coste por pasajero: 460

Precio billete turista: 275.4 Coste por pasajero: 200

Max #pasajeros business: 50 Max #pasajeros turista: 285

Boeing

Precio billete business: 537.3 Coste por pasajero: 336

Precio billete turista: 275.4 Coste por pasajero: 208

Max #pasajeros business: 30 Max #pasajeros turista: 240

Quedando estos beneficios por avión.

 $50 \cdot (537.3 - 460) + 285 \cdot (275.4 - 200) = 25354$ $30 \cdot (537.3 - 336) + 240 \cdot (275.4 - 208) = 22215$

Función a maximizar: xa · 25354 + xb · 22215

Minimizar consumo diário

Airbus

2.9 litros/pasajero

Boeing

2.3 litros/pasajero

Función a minimizar: $xa \cdot (335 \cdot 2.9) + xb \cdot (270 \cdot 2.3)$

Solución óptima encontrada (beneficio máximo):

Tabla 2			25354	22215	0	0	0
Base	Сь	P 0	P 1	P2	P3	P4	P 5
P 1	25354	2	1	0	0	-1	0
P 5	0	9	0	0	1 / 60000000	7 / 4	1
P ₂	22215	5	0	1	1 / 180000000	5 / 4	0
Z		161783	0	0	1481 / 12000000	9659 / 4	0

Harán falta 2 aviones de tipo Airbus y 5 aviones de tipo Boeing que darán unos beneficios de 161783€.

Solución óptima encontrada (coste mínimo):

Tabla 3			-1943 / 2	-621	0	0	0
Base	Сь	P 0	P 1	P2	P 3	P4	P5
P1	-1943 / 2	2	1	0	0	-1	0
P3	0	540000000	0	0	1	105000000	60000000
P2	-621	2	0	1	0	2/3	-1 / 3
Z		-3185	0	0	0	1115 / 2	207

Harán falta 2 aviones de tipo Airbus y 2 aviones de tipo Boeing que darán el coste mínimo de -3185€.

Se forma la matriz de pagos

	f1 (25354xa + 22215xb)	f2 (971.5xa + 621xb)		
sol1 xa=2; xb=5	161783	5048		
sol2 xa=2; xb=2	95138	3185		

b) Completar la siguiente tabla para resolver el problema multiobjetivo usando el método de las ponderaciones. Dado que las unidades de este problema corresponden a conceptos tan distintos, convendría normalizarlas. Por ello, en la función beneficio, los valores se considerarán dados en miles de euros, de forma que ambas funciones se muevan en unos unidades similares. Nuestro problema ponderado es:

El problema ponderado es:

Maximizar:
$$\lambda$$
 Beneficio - (1 - λ) Consumo
 λ · (xa · 25354 + xb · 22215) - (1 - λ) · (xa · 971.5 + xb · 621)

Ponderación	Solución	Beneficio	Consumo
λ = 0	-3185	95138	3185
λ = 0.1	11635,1	161783	5048
λ = 0.2	28318,2	161783	5048
λ = 0.3	45001,3	161783	5048
λ = 0.4	61684,4	161783	5048
λ = 0.5	78367,5	161783	5048
λ = 0.6	95050,6	161783	5048
λ = 0.7	111733,7	161783	5048
λ = 0.8	128416,8	161783	5048
λ = 0.9	145099,9	161783	5048
λ = 1	161783	161783	5048

Podemos observar un aumento del beneficio y del consumo al pasar de la ponderación 0 a 0.1. También podemos observar como a partir de 0.1 se estabilizan estos valores hasta 1.

Podemos asegurar que no habrá cambios notorios dentro del rango 0.1 - 1.

Si buscásemos el menor consumo posible, entonces, deberemos usar la mínima ponderación 0.

c) Resolver el problema del enunciado por el método de las restricciones considerando para ello que el consumo no debe superar los 38 litros por kilómetro recorrido. ¿La solución obtenida es eficiente?

Vamos a simplificar valores para ajustar un poco el rango de resultado. Para ello vamos a representar los costes de adquisiciones en #millones de euros

```
Maximizar F1 = 25354xa + 22215xb
Minimizar F2 = 971.5xa + 621xb
```

Restricciones:

$$xa \ge 2$$

 $xa \cdot 225 + xb \cdot 180 < 1.350$
 $2 \cdot xa + 3 \cdot xb \ge 10$

Para abordar el problema por el método de las restricciones, se agrega la F2 como última restricción, quedando de la siguiente manera el problema.

Maximizar F1 = 25354xa + 22215xb

Restricciones:

$$xa \ge 2$$

 $xa \cdot 225 + xb \cdot 180 < 1.350$
 $2 \cdot xa + 3 \cdot xb \ge 10$
 $971.5xa + 621xb <= 3800$

Se pasa el problema a forma estándar añadiendo las variables de exceso, holgura y artificiales necesarias.

Tabla 3			25354	22215	0	0	0	0
Base	Сь	\mathbf{P}_0	P 1	P2	P3	P4	P5	P6
P1	25354	2	1	0	-1	0	0	0
P4	0	361739130.43478	0	0	-56594202.898551	1	0	-28985507.246377
P ₂	22215	2.9903381642512	0	1	1.5644122383253	0	0	0.1610305958132
P 5	0	2.9710144927536	0	0	2.6932367149758	0	1	0.48309178743961
Z		117138.36231884	0	0	9399.4178743961	0	0	3577.2946859903

Como hay que cumplir que el consumo sea menor a 38 l/kilómetro la solución óptima será la compra de 2 aviones airbus y 2 aviones boeing.

La solución óptima es Z = 117138.36231884