0. Introduction

What is Computer vision?

- computer vision is the use of seen as a major input that control actions.
- computer vision is the science of using image processing to make it useful, extract data or learn something from image.

What is Image Processing?

• Image processing means to perform objective operations on the images, to extract data form it.

Sample Computer vision Systems:

- Smart bombs / Smart missiles
- · Security systems (face recognition, finger prints)
- Material analysis
- Machine Control
- Medical (X-ray, Sonar, Radiation and analysis)
- Auto-Drive
- Robotics
- Motion Detection

Image processing-based system / computer vision system structure and stages

The Basic Elements of computer vision system

- Acquisition
- Enhancement
- Restoration
- Segmentation
- Description
- Feature extraction
- Detection
- Recognition
- · Encoding/Decoding

Acquisition

is the process of converting a scene to a digital image through Sampling and Quantization

Sampling

• is Dividing the image into samples N in x and M in y as result we will have MxN picture elements which is called pixels

Quantization

- is the process of converting analog image to digital image grouping a set of grays/colors into gray value or a specific color as result will have matrix at dimension M×N.
- Number of possible colors/grays are 2^q
- #note Image resolution is MxNxq

False contouring / Coarse sampling

• Insufficient number of intensity levels in smooth areas of digital image

Samples and Quantization

Fine sampling	Coarse sampling
Good image	poor image
Precise description	false contouring
High memory requirements	low memory requirements
need a lot of processing power	low processing power
Transmit require high bandwidth	low bandwidth sufficient

Image resolution

- · refers to the number of pixels in an image
- identified by the width and height of the image and number of colors in an image #note R = MxNxq

Digital image

is an Image matrix which is finite matrix of integer values or 3 image matrices of color images

Image Matrix

if max gray level	130> Dark Image	255> no meaning	
if min gray level	170> bright	0> no meaning	
(max & min)	(100, 150) low contrast	(0, 255) no meaning	
Average	50 Dark	200 Bright	127 no meaning
stander deviation	big> high contrast	low> low contrast	

Histogram:

count the number of occurrences per gray/color/color component value within the image matrix/matrices.

Importance applications of histogram

- · Analysis of image, image brightness
- using histogram to equalize an image

#Example Calculate the Following for the following Matrix: Find histogram

$$\begin{pmatrix} 5 & 5 & 4 & 5 \\ 10 & 20 & 5 & 4 \\ 10 & 20 & 5 & 10 \\ 20 & 4 & 5 & 100 \end{pmatrix}$$

#Answer

Grey Value	Count	
4	3	
5	6	
10	3	
20	3	
100	1	
Total count	16	

Neighboring

Relation between pixels in some way.

Types of Neighboring:

· four neighboring

$$N_4(f(x,y)) = \{f(x-1,y), f(x+1,y), f(x,y-1), f(x,y+1)\}$$

diagonal neighboring

$$N_D(f(x,y)) = \{f(x-1,y-1), f(x-1,y+1), f(x+1,y-1), f(x+1,y+1)\}$$

• Eight neighboring

$$N_8(f(x,y))=\{N_D\cup N_4\}$$

N ₈	<i>N</i> ₈	<i>N</i> ₈
<i>N</i> ₈	\times	<i>N</i> ₈
<i>N</i> ₈	<i>N</i> ₈	<i>N</i> ₈

Connectivity:

Pixels are considered connected if and only if

- They're neighbors
- $f(x_1,y_1), f(x_2,y_2) \in \xi \rightarrow \text{Where } \xi \text{ is the gray levels connectivity set } \xi = \{\dots,\dots,\dots\}$

#Example : find connected pixels for f(1,1) using N_4 and connectivity set $\xi=\{3,4,5,6,7,8,9,10\}$. Redo using N_D,N_8

2	4	7
6	5	100
13	120	9

In case of, N_4 5 is connected with f(1,0)=4 and f(0,1)=6In case of, N_D 5 is connected with f(2,0)=7 and f(2,2)=9In case of, N_4 5 is connected with f(1,0)=4, f(0,1)=6, f(2,0)=7 and f(2,2)=9

Image Path

The Image path is a sequence of connected pixels starts at the first pixel $f(x_1, y_1)$ and ends at $f(x_n, y_n)$ #Example Find the Image Path Between f(1, 1) and f(3, 5)

• Giving the connectivity set $\xi = \{3, 4, 5, 6, 7, 8, 9, 10\}$

6	3	8	7	5	4	2
2	2	5	6	9	8	7
4	5	2	3	0	1	2
3	2	1	7	1	2	1
1	1	1	8	0	5	5
8	8	8	6	7	9	8
7	7	7	8	6	7	5

Connected Regions

A set of pixels of an image such that

- Between any two pixels inside there exist at lest on image path
- There exits no image path between any other pixel outside and an inside one
- #note An object within an image is a connected region Region: is the group of connected pixels.

Labeling is a mean to find out the regions that exists within an image matrix \boldsymbol{r}

#Example get the labels for the pixels satisfying the rule of $\xi = \{0 - - > 20\}$ and neighbor N_8

100	100	100	110	120
110	90	5	7	100
5	100	6	110	120
7	100	100	120	10
110	5	70	110	8
111	110	7	10	120

finally, the found labels are L1, L2

$$L1 = \{f(2,1), f(3,1), f(2,2)\}$$

$$L2 = \{f(0,2), f(0,3), f(1,4), f(2,5), f(3,5), f(4,3), f(f(4,4))\}\$$

Distance Metrics

- 1. Euclidian: $\Delta(f(x_1,y_1),f(x_2,y_2))=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$
- 2. City Blocks: $\Delta(f(x_1,y_1),f(x_2,y_2)) = |x_1-x_2| + |y_1-y_2|$
- 3. Chess Board: $\Delta(f(x_1,y_1),f(x_2,y_2)) = \max(|x_1-x_2|,|y_1-y_2|)$