

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015

INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I

PRZYKŁADOWY ZESTAW ZADAŃ (A1)

WYBRANE:	
(środowisko)	
(kompilator)	
(program użytkowy)	
Czas pracy:	

GRUDZIEŃ 2013

Zadanie 1. (0-5)

W każdym z punktów od a) do e) zaznacz znakiem "x" poprawną odpowiedź.

a) Dana jest tabela sprawdzian:

uczen	klasowka	egzamin
Abacki	45	0
Babacki	50	80
Cabacki	100	90
Dabacki	80	70

Dla tej tabeli utworzono następujące zapytanie w SQL:

SELECT uczen FROM sprawdzian WHERE (klasowka > egzamin AND egzamin > 75) OR klasowka < 50 ORDER BY uczen

Wynikiem tego zapytania jest:

	Prawda	Fałsz
Abacki, Babacki		
Babacki, Cabacki		
Abacki, Cabacki		
Abacki, Dabacki		

- b) Rozważmy poniższy algorytm, gdzie n jest liczbą całkowitą nieujemną:
 - (1) $wynik \leftarrow 0$;
 - (2) dopóki $n \neq 0$ wykonuj
 - (3) $wynik \leftarrow wynik + (n \mod 10)$
 - (4) $n \leftarrow n \text{ div } 10$

oraz:

<u>mod</u> to operator reszty z dzielenia, <u>div</u> to operator dzielenia całkowitego.

Dla podanego algorytmu zachodzi:

	Prawda	Fałsz
dla n=36789 wynik=30.		
dla <i>n</i> =11111111 <i>wynik</i> =8.		
wynik jest równy sumie cyfr w zapisie dziesiętnym liczby n.		
dla <i>n</i> =1234 zmienna <i>wynik</i> po kolejnych iteracjach pętli dopóki przyjmuje wartości 1, 3, 6, 10.		

c) Zgodnie z przepisami polskiego prawa autorskiego dozwolone jest:

	Prawda	Fałsz
publikowanie pod własnym nazwiskiem, na swojej stronie WWW,		
skopiowanych zasobów internetowych (zdjęć i artykułów).		
zamieszczanie na własnej stronie linków do innych stron WWW.		
zamieszczanie na własnej stronie cudzych programów na licencji		
freeware z podaniem ich autorstwa.		
zamieszczanie na stronie internetowej treści utworów wydanych		
wcześniej niż 70 lat temu.		

d) W grafice rastrowej

	Prawda	Fałsz
każdy piksel ma jednoznacznie określony kolor.		
obraz pamiętany jest w postaci obiektów geometrycznych.		
zaletą jest skalowalność obrazu.		
zapisywane są zdjęcia z aparatów cyfrowych.	·	

e) Dynamicznym przydzielaniem numerów IP w sieci zajmuje się serwer

	Prawda	Fałsz
DNS.		
DHCP.		
SMTP.		
FTP.		

Zadanie 2. (0–6) Całkowity pierwiastek kwadratowy

Niech n będzie dodatnią liczbą całkowitą. **Całkowitym pierwiastkiem kwadratowym** z liczby n nazywamy dodatnią liczbę całkowitą k taką, że $k*k \le n$ i (k+1)*(k+1) > n. Na przykład 3 jest całkowitym pierwiastkiem kwadratowym z liczb 9, 10, 11, 12, 13, 14 i 15. W tym zadaniu analizujemy algorytmy obliczania całkowitych pierwiastków z dodatnich liczb całkowitych, które mają być poprawne względem następującej specyfikacji:

Specyfikacja:

Dane: dodatnia liczba całkowita n

Wynik: dodatnia liczba całkowita k – całkowity pierwiastek kwadratowy z liczby n

Przykład: dla n = 39 wynikiem jest k = 6

- a) W poniższym algorytmie uzupełnij instrukcję w wierszu (3) tak, żeby otrzymany algorytm był poprawny względem podanej wcześniej specyfikacji.
 - $(1) k \leftarrow 1;$
 - (2) **dopóki** $(k+1)*(k+1) \le n$ **wykonuj**
 - $(3) \qquad k \leftarrow \dots;$

Podaj, ile razy warunek w wierszu (2) powyższego algorytmu jest sprawdzany odpowiednio dla n = 32 i n = 1024.

n	liczba sprawdzeń warunku w wierszu 2
32	
1024	

Miejsce na obliczenia:

- b) W poniższym algorytmie uzupełnij instrukcję w wierszu (5) tak, żeby otrzymany algorytm był poprawny względem podanej wcześniej specyfikacji.
 - $(1) k \leftarrow 1; m \leftarrow n;$
 - (2) **dopóki** $(k+1)*(k+1) \le n$ **wykonuj**
 - (3) $s \leftarrow (k+m) \operatorname{div} 2$;
 - (4) **jeśli** $s*s \le n$ **to**
 - $(5) k \leftarrow \dots$
 - (6) w przeciwnym przypadku
 - $(7) m \leftarrow s$

Uwaga: użyty operator div oznacza dzielenie całkowite, tzn. s jest największą liczbą całkowitą nie większą od (k+m)/2.

c) Podaj, ile razy warunek w wierszu (2) z algorytmu z punktu b) jest sprawdzany odpowiednio dla n = 32 i n = 1024.

n	liczba sprawdzeń warunku w wierszu 2
32	
1024	

Zadanie 3. (0–9) Progi i schody

W ciągu liczb naturalnych, parę sąsiednich liczb nazywamy **progiem**, jeśli następna liczba jest mniejsza od poprzedniej.

W ciągu liczb naturalnych, **schodami do dołu** nazywamy każdy jego podciąg kolejnych elementów, złożony z przynajmniej dwóch liczb, w którym każda liczba poza pierwszą nie jest większa od poprzedniej, a samego podciągu nie można rozszerzyć w żadną stronę do innych schodów do dołu. **Długością schodów do dołu** nazywamy liczbę zawartych w nim elementów.

Przykład:

Ciag: 3, 7, 7, 6, 5, 4, 4, 4, 5 zawiera schody do dołu 7, 7, 6, 5, 4, 4, 4 o długości 7. Te schody zawierają 3 progi: pierwszy to 7 i 6, drugi to 6 i 5, trzeci to 5 i 4.

a) Dla następującego ciągu liczb: 2, 2, 2, 3, 1, 1, 3, 3, 1, 10, 11, 7, 7, 6, 7, 7, 8, 9, 9, 7 wypisz kolejno wszystkie występujące w nim schody do dołu i obok każdych schodów podaj jego długość i liczbę zawartych w nim progów.

b) Rozważmy następującą specyfikację:

Dane: dodatnia liczba całkowita n oraz tablica a[1..n] zawierająca n-elementowy ciąg liczb całkowitych a[1], ..., a[n]

Wynik: liczba całkowita *liczba_progów* – liczba wszystkich progów w ciągu zapisanym w tablicy *a*

W wybranej przez siebie notacji (schemat blokowy, lista kroków, wybrany przez Ciebie język programowania) opracuj algorytm zgodny z powyższą specyfikacją.

c) Rozważmy następującą specyfikację:

Dane: dodatnia liczba całkowita n oraz tablica a[1..n] zawierająca n-elementowy ciąg liczb całkowitych a[1], ..., a[n]

Wynik: liczba całkowita *najw_liczba_progów* – największa liczbę progów w schodach do dołu z ciągu zapisanego w tablicy *a*

W wybranej przez siebie notacji (schemat blokowy, lista kroków, wybrany przez Ciebie język programowania) opracuj algorytm zgodny z powyższą specyfikacją.

d) Podaj, ile dokładnie porównań między elementami ciągu danych wykona w pesymistycznym przypadku Twój algorytm z punktu c). Odpowiedź uzasadnij.

BRUDNOPIS (nie podlega ocenie)