Cryptography and Network Security I

HW2 Theory Part 2

- 1. Users A and B use the Diffie-Hellman key exchange technique with a common prime q = 71 and a primitive root $\alpha = 7$.
 - a) If user A has a private key $X_A = 5$, what is A's public key Y_A ?

 $7^5 \mod 71 = 51$

b) If user B has a private key X_B = 12, what is B's public key Y_B?

 $7^{12} \mod 71 = 4$

c) What is the shared secret key?

 $4^5 \mod 71 = 51^{12} \mod 71 = 30$

d) In the Diffie-Hellman protocol, each participant selects a secret number x and sends the other participant ($\alpha^x \mod q$) for some public number α . What would happen if the participants sent each other ($x^\alpha \mod q$) instead?

If the participants sent each other \mathbf{x}^{α} mod q they would not end up with the same shared secret same. In normal DH, the shared secret is $(a^{x_a})^{x_b} = (a^{x_b})^{x_a}$, where each operation results in the same value. But with this modified DH the shared secret would be $(x_a^a)^{x_b} = (x_b^a)^{x_a}$. Normal DH turns out to be equivalent since applying multiple exponents is a commutative operation. Modified DH, on the other hand, changes the number to which the exponent is being applied, which is not a commutative operation.

- 2. A network resource X is prepared to sign a message by appending the appropriate 64- bit hash code and encrypting that hash code with X's private key as described in class (also in the textbook, Page 330.
 - a) Describe the Birthday Attack where an attacker receives a valid signature for his fraudulent message?
 - As explained in the book, the birthday attack can be summarized as follows. First, the attacker generates $2^{m/2}$ variations of an original, valid message, with each of the variations having essentially the same meaning but a different hash. Next, the attacker does the same with their own malicious message, storing the hash of $2^{m/2}$ variations of their message. After that, the attacker compares the hashes of the original message variations with the hashes of his own message variations until he finds a match. Once a match is found, the attacker sends the matching original message variation out for verification. Once the attacker receives a signature, he sends out the malicious message variation with the matching hash code, attaching that signature to the malicious message instead.
 - b) How much memory space does attacker need for an M-bit message? $2^{64/2} = 4,294,967,296$ variations * 64 bits / message = 274,877,906,944 bits of memory
 - c) Assuming that attacker's computer can process 2²⁰ hash/second, how long does it take at average to find pair of messages that have the same hash?
 - 4294967296 hashes * 2 versions (original, malicious) / 2²⁰ hash/second = 8192 seconds
 - d) Answer (b) and (c) when 128-bit hash is used instead.

 $2^{128/2}$ variations * 128 bits / message = $2.36*10^{21}$ bits ($2.36*10^{8}$ terabytes) of memory 2^{64} hashes * 2 versions / 2^{20} hash/sec = 35,184,372,088,832 seconds (1,115,689 years)

3. Use Trapdoor Oneway Function with following secrets as described in lecture notes to encrypt plaintext $P = '0101\ 0111'$. Decrypt the resulting ciphertext to obtain the plaintext P back. Show each step to get full credit.

Encryption:

Add up $a*s_i \mod p \ \forall \ s_i \text{ in s where } s_i == 1$

(1019 * 9 mod 1999) + (1019 * 45 mod 1999) + (1019 * 215 mod 1999) + (1019 * 450 mod 1999) + (1019 * 946 mod 1999) = 5481 mod 1999 = **1483**

Decryption:

$$c_0 = a^{-1} * 1483 \mod 1999 = 1665$$

i	Si	Ci	C _i - S _i
8	946	1665	719
7	450	719	269
6	215	269	54
5	103	54	NA
4	45	54	9
3	21	9	NA
2	9	9	0
1	5	0	NA

Result = [0,1,0,1,0,1,1,1] ✓