_								
Data								
Date		 	 					

BATCH-I

A CONSOLIDATED QUESTION PAPER-CUM-ANSWER BOOKLET

MAINS TEST SERIES-2021

(JUNE. to DEC.-2021)

IAS/IFoS

MATHEMATICS

Under the guidance of K. Venkanna

FULL SYLLABUS (PAPER-II)

TEST CODE: TEST-14: IAS(M)/07-NOV.-2021

Maximum Marks: 250

INSTRUCTIONS

- This question paper-cum-answer booklet has <u>54</u> pages and has
 - 34 PART/SUBPART questions. Please ensure that the copy of the question paper-cum-answer booklet you have received contains all the questions.
- 2. Write your Name, Roll Number, Name of the Test Centre and Medium in the appropriate space provided on the right side.
- 3. A consolidated Question Paper-cum-Answer Booklet, having space below each part/sub part of a question shall be provided to them for writing the answers. Candidates shall be required to attempt answer to the part/sub-part of a question strictly within the pre-defined space. Any attempt outside the pre-defined space shall not be evaluated."
- 4. Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- Candidates should attempt Question Nos. 1 and 5, which are compulsory, and any THREE of the remaining questions selecting at least ONE question from each Section.
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 7. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 8. All questions carry equal marks.
- All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- All rough work should be done in the space provided and scored out finally.
- 11. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

READ	INSTR	UCT	IONS	ON	THE
LEFT	SIDE	ΟF	THIS	P	AGE
CAREI	FULLY				

Name	
Roll No.	
Test Centre	
ioot contro	

Do not write your Roll Number or Name
anywhere else in this Question Paper-
cum-Answer Booklet.

Medium

I	have	read	all	the	instructions	and	shall
г	bide b	y the	m				

Signature of the Candidate

I have verified the information filled by the candidate above

Signature of the invigilator

IMPORTANT NOTE:

Time: 3 Hours

Whenever a question is being attempted, all its parts/ sub-parts must be attempted contiguously. This means that before moving on to the next question to be attempted, candidates must finish attempting all parts/ sub-parts of the previous question attempted. This is to be strictly followed. Pages left blank in the answer-book are to be clearly struck out in ink. Any answers that follow pages left blank may not be given credit.

DO NOT WRITE ON THIS SPACE

INDEX TABLE

QUESTION	No.	PAGE NO.	MAX. MARKS	MARKS OBTAINED
1	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
2	(a)			
	(b)			
	(c)			
	(d)			
3	(a)			
	(b)			
	(c)			
	(d)			
4	(a)			
	(b)			
	(c)			
	(d)			
5	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
6	(a)			
	(b)			
	(c)			
	(d)			
7	(a)			
	(b)			
	(c)			
	(d)			
8	(a)			
	(b)			
	(c)			
	(d)			
			Total Marks	

DO NOT WRITE ON THIS SPACE

SECTION - A

1. (a) Complete the partial Cayley group table given below.

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	2	1	7	8	6	5
4	4	3	1	2	8	7	5	6
5	5	6	8	7	1			
6	6	5	7	8		1		
7	7	8	5	6			1	
8	8	7	3 4 2 1 8 7 5 6	5				1

[10]

1.	(b)	Give an example of a Boolean ring with four elements. Give an example of an
	ζ-)	infinite Boolean ring. [10]
		[20]

1.	(c)	If f is defined on [0, 1] by $f(x) = x^2 \cos 1/x^2$ when $x \ne 0$ and $f(0) =$	0, show that
		f' exists on $[0, 1]$ but $f' \notin \Re [0, 1]$.	[10]

1.	(d)	Discuss	the	continuity	of the	following	complex-va	lued	function	at z :	= 0,
		(

$$f(z) = \begin{cases} \frac{1 - \exp(-|Z|^2)}{|Z|^2} & f(z) \neq 0\\ f(z) = 0 \end{cases}$$
[10]

_		
1.	(e)	The standard weight of a special purpose brick is 5 kg and it contains two basic
	()	
		ingredients B ₁ and B ₂ . B ₁ costs Rs. 5 per kg and B ₂ costs Rs. 8 per kg. Strength
1		considerations state that the brick contains not more than 4 kg of B ₁ and minimum
1		of 2 kg of B ₂ . since the demand for the product is likely to be related to the price
		of the brick, find out graphically minimum cost of the brick satisfying the above
		conditions. [10]
		conditions.
1		
1		
1		
1		

2	(0)	Suppose that by D. \ S is a ring hamamamhism and that the image of 1 is not
2.	(a)	Suppose that $\phi: R \to S$ is a ring homomorphism and that the image of ϕ is not
		$\{0\}$. If R has a unity and S is an integral domain, show that ϕ carries the unity of
		R to the unity of S. Give an example to show that the preceding statement need
		not be true if S is not an integral domain. [20]
1		

2.	(b)	Define a sequence	S _n	of real	numbers	by	$S_n = \sum_{i=1}^n$	$\frac{\left(\log(n+i)-\log n\right)^2}{n+i}$	Does	$\underset{n\to\infty}{\text{lim}S_n}$
----	-----	-------------------	----------------	---------	---------	----	----------------------	---	------	--

exist? If so, compute the value of this limit and justify your answer. [14]

2.	(c)	If the function $f(z)$ is analytic and one valued in $ z-a < R$, prove that for $0 < r < R$
		$f'(a) = \frac{1}{\pi r} \int_0^{2\pi} P(\theta) e^{-i\theta} d\theta \text{ where } P(\theta) \text{ real part of } (a+r e^{i\theta}). $ [16]
		~

3.	(a)	Let G be a group and H a subgroup. For any element g of G, define $gH = \{gh \mid h \in H\}$.
	` ,	If G is Abelian and g has order 2, show that the set $K = H \cup gH$ is a subgroup of
		G. Is your proof valid if we drop the assumption that G is Abelian and Let K =
		$Z(G) \cup gZ(G)$? [18]

3.	(b)	(i)	Examine the convergence of the integral	$\int_{1}^{2} \frac{1}{(1)^{2}}$	$\frac{dx}{(x+x)\sqrt{2-x}}$
----	-----	-----	---	----------------------------------	------------------------------

(ii) Prove that
$$\prod_{n=1}^{\infty} \left(1 - \frac{1}{n^{2/3}}\right) e^{n^{\frac{1}{2/3}}}$$
 is absolutely convergent. [15]

(c)	Use simplex method to solve the following
	Maximize $z = 5x_1 + 2x_2$
	subject to
	$6x_1 + x_2 \ge 6$
	$4x_1 + 3x_2 \ge 12$
	(c)

$$x_1 + 2x_2 \ge 4$$

$$\boldsymbol{x}_{_{1}}$$
 , $\boldsymbol{x}_{_{2}}\geq \boldsymbol{0}$

[17]

4.	(a)	Give and example of a unique factorization domain with a subdomain that does
''	(4)	not have unique factorization. [15]
		[10]

4.	(b)	Let $f(x)$, $(x \in (-\pi, \pi))$ be defined by $f(x) = \sin x $. Is continuous on $(-\pi, \pi)$? If it is
		continuous, then is it differentiable on $(-\pi, \pi)$? [10]

4. (c) (i) Use Canchy's theorem/Cauchy integral formule evaluate $\int_{c}^{c} \frac{z-1}{(z+1)^2(z-2)} dz$ where

C: |z-i| = 2.

(ii) Evaluate the line integral $\int\limits_{c}\!\!f(z)dz.$ Where $f(z)\!=\!z^{2},$ c is the boundary of the

triangle with vertices A (0, 0), B (1, 0), C (1, 2) in that order. [12]

4. (d) An automobile dealer wishes to put four repairmen to four different jobs. The repairmen have somewhat different kinds of skills and they exhibit differentlevels of efficiency from one job to another. The dealer has estimated the number of manhours that would be required for each job-man combination. This is given in the matrix form in adjacent table :

Find the optimum assignment that will result in minimum manhours needed.

Job	A	В	C	D
Man				
1	5	3	2	8
2	7	9	2	6
3	6	4	5	7
4	5	7	7	8

[13]

SEC1	rt <i>c</i>	TA	_	D
SEC	H.) IV		О

5.	(a)	Find the integral su	ırface of the linear PI	DE $xp + yq = z$ which contains the circle defined by
		$x^2 + y^2 + z^2 = 4$,	x + y + z = 2.	[10]

5. (b) By using the Newton Raphson Method, show that the equation $f(x) = \cos\left(\frac{\pi(x+1)}{8}\right) + 0.148x - 0.9062 = 0$ has one root in the interval (-1,0) and one in (0,1). Calculate the negative root correct to 4 decimals. **[10]**

5.	(c)	Give a Boolean expression for the following statements:
		(i) Y is a 1 only if A is a 1 and B is a 1 or if A is a 0 and B is a 0.
		(ii) Y is a 1 only if A, B and C are all 1s or if only one of the variables is a 0.[10]

5.	(d)	Find the M.I. of a right solid cone of mass M, height h and radius of whose base	7
	()	is a, about its axis. [10]	
		,	
			1
			1
			1
			1
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١
			١

5.	(e)	Show that the velocity potential $\phi = (a/2) \times (x^2 + y^2 - 2z^2)$ satisfies the Laplace
	(0)	equation. Also determine the streamlines. [10]

6.	(a)	(i) Form a partial differential equation by eliminating arbitrary function f, g of the following
••	(4)	
		z = f(x - z) + g(x + y).
		(ii) Solve by Charpit's method the partial diff. equation. $p^2x(x-1) + 2pqxy + q^2y(y-1)$
		$-2pxz - 2qyz + z^2 = 0.$
		[6+12=18]
		[0+12-10]

6. (b) (i) Solve the equations $x_1 + x_2 + x_3 = 6$

$$3x_1 + (3 + \varepsilon)x_2 + 4x_3 = 20$$

 $2x_1 + x_2 + 3x_3 = 13$

Using the Gauss elimination method, where ε is small such that $1 \pm \varepsilon^2 \approx 1$.

- (ii) Convert:
 - (a) 46655 given to be in the decimal system into one in base6.
 - (b) $(11110.01)_2$ into a number in the decimal system.

[16]

6.	(c)	Write Hamilton's equations for a particle of mass m moving in a plane under a
	. ,	force which is some function of distance from the origin. [16]

7.	(a)	(i)	Solve	$(D^3 + D^2D' - DD'^2 - D'^3)z = 0$	e ^y cos 2x.
----	-----	-----	-------	-------------------------------------	------------------------

(ii) Reduce to canonical form $\frac{\partial^2 z}{\partial x^2} + x^2 \left(\frac{\partial^2 z}{\partial y^2}\right) = 0$. [8+10=18]

7.	(b)	(i) Using fourth order Runge-Kutta method find the solution	of
		x(dy + dx) = y(dx - dy), $y(0) = 1$ at $x = 0.1$ and 0.2, by taking $h = 0.1$.	
			17]

7.	(c)	Prove that the velocity potentials $\phi_1 = x^2 - y^2$ and $\phi_2 = r^{1/2} \cos(\theta/2)$ are solutions of the Laplace equation and the velocity potential $\phi_3 = (x^2 - y^2) + r^{1/2} \cos(\theta/2)$ satisfies
		the Laplace equation and the velocity potential ϕ_3 = $(x^2 - y^2) + r^{1/2} \cos(\theta/2)$ satisfies
		$\nabla^2 \phi_3 = 0.$ [15]

8.	(a)	Find the steady state temperature distribution in a thin rectangular plate bounded
		by the lines $x = 0$, $x = a$, $y = 0$, $y = b$. The edges $x = 0$, $x = a$, $y = 0$ are kept at
		temperature zero while the edge $y = b$ is kept at 100° C. [18]

8.	(b)	Provide a computer algorithm to solve an ordinary differential equation $\frac{dy}{dx} = f(x,y)$
		in the interval [a, b] for n number of discrete points, where the initial value is $y(a) = \alpha$, using Euler's method. [15]

8.	(c)	If $u = (ax - by)/(x^2 + y^2)$, $v = (ay + bx)/(x^2 + y^2)$, $w = 0$, investigate the nature of
		motion of the liquid. [17]

No.1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS IN IFoS (FROM 2008 TO 2019)

OUR RANKERS AMONG TOP 10 IN IFoS

DISHI KIIMAA AIR-01 IFoS-2019

PRATAP SINGH AIR-01 IFoS-2015

PRATEEK JAIN AIR-03 IFoS-2016

STONARTHA GUPTA AIR-03 IFoS-2014

VARIIN CUNTURALLI AIR-04 IFoS-2014

AIR-04 IFoS-2010

O IMPRIM IGLAMA AIR-05 IFoS-2019

DESHAL DAN AIR-05 IFoS-2017

PARTH JAISWAL AIR-05 IFoS-2014

HIMANSHU GUPTA AIR-05 IFoS-2011

ASHISH REDOY MY AIR-06 IFoS-2015

ANUPAH SHUKLA AIR-07 IFoS-2012

ARMCHAL SPINASTAW AIR-09 IFoS-2018

HARSHVARDHAM AIR-10 IFoS-2017

AIR-30

AIR-93

AIR-22

AIR-21

AIR-67

101 AIR-13

AIR-72 AIR-11 AIR-36 ONLY IMS PROVIDES SCIENTIFIC & INNOVATIVE TEACHING METHODOLOGIES FULLY REVISED STUDY MATERIALS AND FULLY REVISED TEST SERIES.

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9 © Ph.:011-45629987, 9999197625 💋 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152

No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS (FROM 2008 TO 2019)

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152