

Cell Phone Encryption

Stephen "ToxicSauce" Walker-Weinshenker

Cell Phone Encryption "Anyone remember the Clipper Chip?"

Stephen "ToxicSauce" Walker-Weinshenker

Department of Computer Science Colorado State University

Department of Electrical and Computer Engineering Colorado State University

November 29, 2016

Cell Phone Encryption

Cell Phone Encryption
"Anyone remember the Clipper Chip?"

Stephen "ToxicSauce" Walker-Weinshenke

Stephen "ToxicSauce" Walker-Weinshenke Department of Computer Science Colorado Stran University Department of Electrical and Computer Engineering Colorado Stran University November 29, 2016

Security News

Security News

**MSP placement as the displacement of the displacement

Cell Phone Encryption

Security News

http://www.thewergs.com/2016/11/27/13758412/ har/ders-san-francisco-light-rail-system-ransomwar Smoopers Charter http://www.independent.co.uk/woices/ smoopers-charter-theresa-may-online-privacy-invess

A brief history of cellphones

Cell Phone Encryption

Stephen "ToxicSauce" Walker-Weinshenker

- Analog
 - ▶ 0G
 - ▶ 1G
 - bag phones
 - car phonesbricks
- Digital
 - ► CDMA
 - ► GSM
 - ▶ LTE
 - ▶ 4G?

Cell Phone Encryption

- Analog
- College
- A brief history of cellphones

- Analog
- College
-

Analog

Cell Phone Encryption

Stephen "ToxicSauce" Walker-Weinshenker

- ▶ 0G FM VHF half (later full) duplex (1946–2012)
 - large powerful towers that covered a long range
- ▶ 1G
 - smaller 'Cells'
 - digital signaling analog voice
 - cellphone hackers phone cloning and call interception
 - 800MHz blocking on scanners in US only

Cell Phone Encryption

—Analog

- 1. 0G only had 3 frequency pairs at first, everything was operator driven, mobile telephone service Bell/Motorola
- 2. this was later replaced by IMTS (1964) with the convience of direct dial
- 3. offered by both wireline common carriers and radio common carriers
- 4. IMTS had 25W at mobile station and 100–250W at base, unlike cellphones w/ 600 mW
- 5. IMTS: limited number of customers, airtime expensive
- 6. 1G Advanced Mobile Phone System started 1983 US no longer requiried by 2/2008
- 7. cloning involved recording the ESN/MDN and then adding it to another phone
- 8. 47cfr15.121

Bag Phone Full

Cell Phone Encryption

Stephen "ToxicSauce" Walker-Weinshenker

Cell Phone Encryption

2016-11-29

☐Bag Phone Full

Bag Phone Full

Cell Phone Encryption

Stephen "ToxicSauce" Walker-Weinshenker

- ► Code Division Multiple Access
- Propriatary tech first developed by qualcom, later standardized
- Used primarily in US and South Korea, later migrated to Europe and Asia
- 2G was cdmaOne, 3G is CDMA2000 / EVDO (data) / 1x (voice)
- ▶ 2G not encrypted?, 3G is

Cell Phone Encryption

.

 Proprietary tech first developed by qualcom, later standardized
 Used primarily in US and South Korea, later migrated to

Europe and Ásia

2 G was cdmaOne, 3G is CDMA2000 / EVDO (data) / 1x

2G not encrypted?, 3G is

CDMA

1. does not limit number of active radios

GSM

Cell Phone Encryption

Stephen "ToxicSauce" Walker-Weinshenker

- ► Time Division Multiple Access (2G) and CDMA (3G)
 - 'open' standard
- Primarily deployed in Europe and Asia, but now deployed across world
- had support for encryption
- ▶ 2.5G is EDGE
- ▶ 3G is UMTS

1. TDMA limits number of active radios per cell

CDMA encryption

Cell Phone Encryption

Stephen "ToxicSauce" Walker-Weinshenker

- ► CAVE (Cellular Authentication and Voice Encryption)
- ► CDMA2000 and related 3G tech uses 64 bit primary key along w/ 128 bit shared secret

- 1. primary key only used to generate shared secret which is used for signing and auth
- 2. shared secret is actually 2 64 bit keys, one for auth signatures and one for session key gen

Encryption Stephen

"ToxicSauce"

Walker-

Weinshenker

GSM encryption

Cell Phone Encryption

-GSM encryption

uses A5/1 A5/2 and A5/3 stream ciphers for voice
 GPRS uses GEA/1, GEA/2 (vulnerable) and GEA/(secure?)
 most countries do not encrypt GPRS data for snoo

porpises

AS/1 has 54 bit key, originally going to be 128 but
Germans

AS/2 is same as AS/1 but without irregular clocking, uses

► A5/2 is same as A5/1 but without for export

GSM encryption

A5/3 aka KASUMI used in 3G GSM
 All three of these are broken.

uses A5/1 A5/2 and A5/3 stream ciphers for voice

- ► GPRS uses GEA/1, GEA/2 (vulnerable) and GEA/3 (secure?)
- most countries do not encrypt GPRS data for snooping porpises
- ► A5/1 has 54 bit key, originally going to be 128 but Germans
- ► A5/2 is same as A5/1 but without irregular clocking, used for export
- ► A5/3 aka KASUMI used in 3G GSM
- ► All three of these are broken.

1. irregular clocking: essentially randomly chooses shift registers

GSM encryption

Cell Phone Encryption

tables

A5/2 is vulnerable to known-ciphertext attacks

both of these can be decrypted in realtime by a 1999 era desktop PC

A5/1 is vulnerable to known-plaintext attacks with rainbow

desktop PC

WARNING!
Currently, decrypting GSM traffic using these methods are illegal

GSM encryption

—GSM encryption

Stephen "ToxicSauce" Walker-Weinshenker

Encryption

- ► A5/1 is vulnerable to known-plaintext attacks with rainbow tables
- ► A5/2 is vulnerable to known-ciphertext attacks
- ▶ both of these can be decrypted in realtime by a 1999 era desktop PC

:WARNING

Currently, decrypting GSM traffic using these methods are illegal

Clipper Chip

Cell Phone Encryption

Stephen "ToxicSauce" Walker-Weinshenker

Clipper Chip

Clipper Chip

Cell Phone Encryption

References

[allowframebreaks] https:

//en.wikipedia.org/wiki/Mobile_Telephone_Service