Serielle Schnittstelle RS-232, UART

• RS-232

(RS steht für Radio Sector, wird aber oft als Recommended Standard gelesen)

- UART (Universal Asynchronous Receiver Transmitter)
- dient dem Datenaustausch zwischen Computern und Peripheriegeräten
- entstand ursprünglich in den 1960igern

Übertragungsgeschwindigkeit

- Symbole pro Sekunde Einheit Baud
- Übertragungsart Duplex

Bitrate	Bitdauer
50 bit/s	20,0 ms
110 bit/s	9,09 ms
150 bit/s	6,67 ms
300 bit/s	3,33 ms
1.200 bit/s	833 μs
2.400 bit/s	417 μs
4.800 bit/s	208 μs
9.600 bit/s	104 μs
19.200 bit/s	52,1 μs
38.400 bit/s	26,0 μs
57.600 bit/s	17,4 μs
115.200 bit/s	8,68 μs
230.400 bit/s	4,34 μs
460.800 bit/s	2,17 μs
500.000 bit/s	2,00 μs

Übertragungsverfahren

AT	PC			Drucker	Modem	AT	PC	Wichtigkeit				
DB9 Stecker	DB25 Stecker			DB25 Buchse	DB25 Buchse	DB9 Stecker	DB25 Stecker	1	2	3	4	
5	7	GND		7	7	5	7					
3	2	TxD	>	3	2	2	3	erforderlich (Daten)				
2	3	RxD	<	2	3	3	2					
4	20	DTR	>	5, 6	20	6	6	(Llandalada 4)				
6	6	DSR	<	20	6	4	20					
7	4	RTS	>		4	8	5	(Handshake 2)				
8	5	CTS	<	20	5	7	4)		
9	22	RI	<		22			Modemstatus (Handshake 3)				
1	8	DCD	<		8							

RS232-Konnektor Pinzuweisung

Nullmodemkabel

Bezeichnung Stecker 1	DCD, DSR	RxD	TxD	DTR	GND	RTS	CTS
Pin Stecker 1 1	L und 6	2	3	4	5	7	8
Pin Stecker 2 4	1	3	2	1 und 6	5	8	7
Bezeichnung Stecker 2	OTR	TxD	RxD	DCD, DSR	GND	CTS	RTS

D9 NULL MODEM CABLE WIRING DIAGRAM

Serieller Loopback Adapter

9-pin – Sub-D

Pins, Namen

2-3, RXD-TXD

7-8, RTS-CTS

1-4-6, DCD-DTR-DSR

Aufgabenstellung

- 1. Löte die Verbindungen an einem 9-pin Sub-D Stecker zu einen Seriellen Loopback Adapter mit Anschlusslaschen für das Oszi.
- 2. Sende seriell Daten mit dem Programm Putty an die Serielle Schnittstelle. Zeichne diese mit dem Oszi auf entschlüssle die Baudrate Parität Stopbit und das gesendete Zeichen.
- 3. Rufe das Programm \\s1-wald\export\info\lboeh\Comport\Comport(Rechnernummer1-8) und entschlüssle das gesendete Zeichen analog zum Punkt 2
- 4. Löte einen Nullmodem Adapter. Wiederhole den Punkt 2 in Zusammenarbeit mit deinem Platznachbar und dem Nullmodem Adapter. (Einer sendet der Andere empfängt die Daten.)
- 5. Schreibe ein C++ Programm welches über die Com1 laufen deinen Namen sendet (9600,8N1)