

# Empirical Rule: 68 – 95 – 99.7



**Empirical Rule** describes how data is distributed in a **normal distribution AKA Gaussian distribution** — *bell-shaped curve*.

This is the rule devised by nature which is almost universally true.





## Empirical Rule: 68 – 95 – 99.7



**About 68%** of data lies within **1 standard deviation** ( $\sigma$ ) of the mean ( $\mu$ ).  $\rightarrow$  Between  $\mu - \sigma$  and  $\mu + \sigma$ .

**About 95%** of data lies within **2 standard deviations** of the mean.

 $\rightarrow$  Between  $\mu$  –  $2\sigma$  and  $\mu$  +  $2\sigma$ .

**About 99.7%** of data lies within **3 standard deviations** of the mean.

 $\rightarrow$  Between  $\mu$  – 3 $\sigma$  and  $\mu$  + 3 $\sigma$ .







The curve is **symmetrical:** The left side is mirroring right.

What does this symmetry mean?

#### The implication:

68/2 = 34% of data lies in between  $\mu - \sigma$  and  $\mu$ 

68/2 = 34% of data lies in between  $\mu$  and  $\mu + \sigma$ 

(95-68)/2 = 13.5% of data lies in between  $\mu - 2\sigma$  and  $\mu - \sigma$ 

(95-68)/2 = 13.5% of data lies in between  $\mu + \sigma$  and  $\mu + 2\sigma$ 

#### And so on.....







EXAMPLE: Let's say exam scores of students from all schools are normally distributed with mean ( $\mu$ ) = 70 and standard deviation ( $\sigma$ ) = 10.

It essentially means that 68% of students scored between  $\mu$  –  $\sigma$  and  $\mu$  +  $\sigma$ 

-> 68% of students scored between 60 and 80

95% of students scored between  $\mu$  – 2 $\sigma$  and  $\mu$  + 2 $\sigma$  –> 95% of students scored between 50 and 90

99.7% of students scored between  $\mu$  –  $3\sigma$  and  $\mu$  +  $3\sigma$  -> 99.7% of students scored between 40 and 100







PROBLEM: Suppose the heights of adult men in a city are **normally distributed** with mean  $(\mu) = 175$  cm and standard deviation  $(\sigma) = 5$  cm.

- 1) Using empirical rule determine the range around mean that includes 68% of men height
- 2) Using empirical rule determine the range around mean that includes 95% of men height

#### Answer:

1)

68% of men's height is in between  $\mu$  –  $\sigma$  and  $\mu$  +  $\sigma$  68% of men's height is in between **170** and **180** cm

2) 95% of men's height is in between  $\mu$  –  $2\sigma$  and  $\mu$  +  $2\sigma$  95% of men's height is in between 165 and 185 cm







PROBLEM: Suppose the heights of adult men in a city are **normally distributed** with mean  $(\mu) = 175$  cm and standard deviation  $(\sigma) = 5$  cm.

- 1) Using empirical rule determine the percentage of people whose height is between 175 and 180 cm
- 2) Using empirical rule determine the percentage of people whose height is between 170 and 185 cm

#### Answer:

```
1)
```

175 cm to 180 cm:

By looking at graph , 68 / 2 = 34%

2)

170 cm to 185 cm:

By looking at graph , 68% + 13.5% = 81.5%

