Multi-scale investigation of dislocation mediated carbon migration in iron

Tigany Zarrouk King's College London

Contents

Introduction					
Computational Method	1				
Results Hard and easy core relaxations	1 1				
Bibliography	2				
References	2				

Abstract

We investigate the validity of a dislocation-assisted carbon migration mechanism underpinning the formation of dark etching regions in bearing steels undergoing high-cycle fatigue through use of a multi-scale approach: from quantum mechanics, to stochastic simulations. We start from tight binding simulations of $1/3\langle111\rangle$ screw dislocations to obtain the 2-d Peierls potential and Fe-C binding energies. These become ingredients for a line-tension model of the $1/3\langle111\rangle$ screw dislocation to obtain the kink-pair formation energy as a function of stress and carbon concentration. Finally, 3-d kinetic Monte-Carlo simulations of dislocations in an environment of carbon are used to ascertain which temperature and stress regimes dislocation-assisted carbon migration is a valid mechanism.

Introduction

Computational Method

- Use tight-binding model of Paxton and Elsaetter (Paxton & Elsässer, 2013).
- Generate dislocations using anisotropic elasticity theory.
- Create clusters of dislocations in both easy and hard core configurations.
- Place carbon in octahedral sites around the core
- Calculate corrections (ZPE etc)

Results

Hard and easy core relaxations

Plot of dislocation energy as function of cluster size.

Table 1

Initial and final octahedral sites for the easy core (first row) and the hard core (second row). As shown by Ventelon cite: Ventelon2015, the first and second closest octahedral sites to the hard core have their minimum energy inside the hard core, but we do not find that the easy core reconstructs into a hard core, with these same sites.

2 TIGANY ZARROUK

Following the paper by Itakura (Itakura, Kaburaki, Yamaguchi, & Okita, 2013) we calculated the binding energy of carbon each of the screw dislocation cores.

The solution energy is given by

$$E_s = E_{d+C} - E_{d} - E_{C \text{ oct.}},$$

where $E_{\rm d+C}$ is the total energy of a relaxed cluster with a carbon interstitial and a dislocation, $E_{\rm d}$ is the total energy of a relaxed cluster with a dislocation and $E_{\rm C\,oct.}$ is the total energy of relaxed a cluster with a single carbon in an octahedral site.

The zero-point energy is calculated as in Itakura. A 3x3 Hessian matrix is constructed by taking the numerical derivative of the forces observed on the carbon atom after displacement by ± 0.015 Å in each of the X, Y and Z directions. The zero-point energy is given by

$$E_z = \frac{1}{2} \sum_{i=1}^{3} \frac{h}{2\pi} \sqrt{k_i/m_{\rm C}},$$

where k_i are the eigenvalues of the Hessian and m_C is the mass of carbon.

The ZPE corrected solution energy is given by

$$E_s^Z = E_s + E_z - E_{z\text{C oct.}},$$

where $E_{z\text{C oct.}} = 202.5 \text{meV}$ is the zero-point energy of carbon situated in an octahedral site in a perfect cluster of the same size.

Table of relaxed energies.

Distance dependence of binding energies.

Bibliography

References

Site Type	$E_{\mathrm{d}+\mathrm{C}}-E_{\mathrm{d}}$	E_s	$E_z - E_{z \text{ C oct.}} meV$	$E_z^b \ meV$ distance from core
E1	-0.89299636	-0.05828365	-17.8194	Itakura, M., Kaburaki, H., Yamaguchi, M., & Okita,
E2	-0.89300553	-0.05829282	-0.529601	130 236 (2013). The effect of hydrogen atoms on
E3	-0.84476459	-0.01005188	2.47361	-139.236 (2013). 2458.179 in bcc iron: a first-
E4	-0.85151735	-0.01680464	5.36252	-234.001 stew dislocation mobility in occ from a first- principles study. 1665 Materialia, 61(18), 6857-
E5	-0.89232261	-0.0576099	7.63124	-791.6867 Retrieved from https://doi.org/10.1016/
E6	-0.87856485	-0.04385214	6.60286	-791 6867. Retrieved from https://doi.org/10.1016/ -603.242 doi: 10.1016/j.actamat
E7	-0.86299687	-0.02828416	3.21964	-388.04513.07.064 4.703422
E8	-0.84773572	-0.01302301	0.35220	-177.539 4.409563
H1/H2	-0.93009177	-0.09537906	-6.39993	Paxt391.A. T., & Elsä9s606€72(2013, June). Analysis of a
H3/H4	-0.88549598	-0.05078327	7.3888	-698.23 bon dimer bound 0187 vacancy in iron using density
H5	-0.86857644	-0.03386373	6.5459	-467. Paractional theory 2870 79 tight binding model. Phys-
H6	-0.85757695	-0.02286424	4.6842	-315.76% Review B, 48746490 Retrieved from https://
H7	-0.8643446	-0.02963189	6.1659	-409.228.org/10.14698/3515/9srevb.87.224110 doi: 10
H8	-0.82596378	8.74893 (-3)	4.7335	114.30203/physrevb.3.74.8024250