Алгоритъм на Willard

13.11.2020 г. (*x-fast, y-fast trees*)

Дадено: $U \in \mathbb{N}, S \subseteq \{0,1,...,U-1\}$

Вход: $x \in \mathbb{N}$

<u>Изход</u>: $predecessor_S(x) = \max\{y \in S \mid y \le x\}$

$$pred_S(x)$$

$$succ_S(x) = \min\{y \in S \mid y \ge x\}$$

<u>Цел</u>: Памет за индекс O(|S|) и време за заявка $O(\log \log U)$

Наивен подход:

 $\Theta(u)$ - индексиране

O(1) - заявка

Може да заделим масив с u на брой клетки и да заделим в него информацията която ни интересува.

Това е оптимално ако S е от порядъка на u.

По-интересния вариант е когато $|S| < U, |S| \in O(|u|)$. Ще използваме двоично наредено/балансирано дърво.

$$O(\lceil S \rceil \log \lceil S \rceil)$$
 - за индексиране, $O(\lceil S \rceil)$ - памет $O(\log \lceil S \rceil)$ - за заявка

Willard:

O(|S|) - памет

 $O(\log\log|u|)$ - време за заявка

Алгоритъма си заслужава да му бъде обърнато сериозно внимание ако $\log u << |S| << u.$

Основна идея на алгоритъма на Willard:

$$0 \le x < U, x \in \mathbb{N} \mapsto x_{(2)} = \overline{x_1 x_2 \dots x_u} \to x \le y \overset{0 \le x, y < U}{\Leftrightarrow} x_1 \dots x_U \leqslant y_1 \dots y_U$$

 $S\mapsto S$ - думите от $\{0,1\}^u$ за числата в S за $\tilde{S}-trie$.

Твърдение: Нека
$$x,y\in\mathbb{N}$$
 с $x_{(2)}=\overline{x_1x_2\dots x_u}$ и $y_{(2)}=\overline{y_1y_2\dots y_u}$. Тогава $x\leq y\Leftrightarrow x_1x_2\dots x_u \leqslant y_1y_2\dots y_u$.

Доказателство: 1. сл.
$$x_1x_2 \dots x_u = y_1y_2 \dots y_u \Rightarrow x = y$$
 и $x_1 \dots x_u = y_1 \dots y_u$

2. сл. $x_1x_2\dots x_u \neq y_1y_2\dots y_n$. Без ограничение на общността i е най-малкият индекс, за

който
$$x_i \neq y_i$$
 и $x_i < y_i \Rightarrow x_i = 0, \ y_i = 1.$ Тогава $x = \sum_{j=1}^u 2^{u-j} x_j$ и $y = \sum_{j=1}^u 2^{u-j} y_j$. От избора на

i: $x_j = y_j$ за j < i и следователно $x_1 \dots x_u < y_1 \dots y_u$. Цел: x < y.

Заместваме в двете представяния и получаваме следното:

Заместваме в двете представяния и получаваме следното:
$$x = \sum_{j=1}^{u} 2^{u-j} x_j = \sum_{j=1}^{i-1} 2^{u-j} x_j + 2^{u-i} \underbrace{x_i}_{=0} + \sum_{j=i+1}^{u} 2^{u-j} \underbrace{x_j}_{\leq 1} \leq \sum_{j=1}^{i-1} x_j 2^{u-j} + 0 + \sum_{j=i+1}^{u} 2^{u-j} = \sum_{j=1}^{i-1} x_j 2^{u-j} + 2^{u-i} - 1$$

$$y = \sum_{j=1}^{u} 2^{u-j} y_j = \sum_{j=1}^{i-1} 2^{u-j} y_j + 2^{u-i} \underbrace{y_i}_{=1} + \sum_{j=i+1}^{u} 2^{u-j} \underbrace{y_j}_{>0} \geq \sum_{j=1}^{i-1} y_j 2^{u-j} + 2^{u-i}$$

Сега, ако сравним двата израза за x и y става ясно, че израза за y е строго по-голям от този за x. Следователно x < y.

Фиксираме u да бъде броя цифри за записването на числото U в двоичен запис. Т.е. $2^{u-1} < U < 2^u$.

Дефинираме множеството $\tilde{S} = \{a_1 a_2 \dots a_u \in \{0,1\}^u \,|\, \exists a \in S \ (a_{(2)} = \overline{a_1 \dots a_u})\}.$

<u>Дефиниция</u>: Нека \sum е азбука, а $\mathscr{D} \in \sum$ * е крайно множество. $Pref(\mathscr{D}) = \{v \in \sum$ * $|\exists w \in \sum$ * $(vw \in \mathscr{D})\}$

$$Pref(\mathcal{D}) = \{ v \in \sum^* | \exists w \in \sum^* (vw \in \mathcal{D}) \}$$

 $Trie(\mathcal{D})$ ще наречем крайния детерминиран автомат $\Big(\sum, Pref(\mathcal{D}), \varepsilon, \delta_{\mathcal{D}}, \mathcal{D}\Big)$, където

$$\delta_{\mathcal{D}}(v,\sigma) = v\sigma = \begin{cases} v\sigma, & if \ v\sigma \in Pref(\mathcal{D}) \\ \neg!, & otherwise \end{cases}$$

За S построяваме $Trie(\tilde{S})$.

Пример: Нека U = 63, u = 6 и $S = \{13, 22, 5, 31, 59, 19, 20, 50, 23\}$

$$\begin{split} \tilde{a}^{(1)} &= 13_{(2)} = \overline{001101} \\ \tilde{a}^{(2)} &= 22_{(2)} = \overline{010110} \\ \tilde{a}^{(3)} &= 5_{(2)} = \overline{000101} \\ \tilde{a}^{(4)} &= 31_{(2)} = \overline{011111} \\ \tilde{a}^{(5)} &= 59_{(2)} = \overline{111011} \\ \tilde{a}^{(6)} &= 19_{(2)} = \overline{010011} \\ \tilde{a}^{(7)} &= 20_{(2)} = \overline{010100} \\ \tilde{a}^{(8)} &= 50_{(2)} = \overline{110010} \\ \tilde{a}^{(9)} &= 23_{(2)} = \overline{010111} \end{split}$$

 $DFS(Trie(\tilde{S}))$:

- 1.) **0**
- 2.) 1 lex наредба на думите \Leftrightarrow тв. естествена наредба в \mathbb{N} .

Имаме S, u, U

- 1. Намираме $\tilde{S} \in \{0,1\}^u$
- 2. Строим $T = Trie(\tilde{S})$
- 3. Обхождаме T в дълбочина, като ребро със стойност 0 е с приоритет пред ребро със стойност 1 и организираме листата на T в двусвързан списък DLL според това обхождане.
- 4. За всеки връх от дървото, $\forall v \in T$, пресмятаме: lml(v) най-ляво листо в поддървото T_v ; rml(v) най-дясно листо в поддървото T_v ; (lml = left most leaf, rml = right most leaf) Ако $v = v_1 v_2 \dots v_i \in \{0,1\}$ * , съпоставяме $val(v) = \sum_{j=1}^i 2^{i-j} v_j$.
- 5. За всяко ниво \mathcal{L}_i на дървото T поддържаме (построяваме) перфектен хеш $\mathcal{H}_i = \{val(v), v \,|\, v \in Pref(\tilde{S}), |v| = i\}$. Ключовете са стойностите на върховете v, а това което хешираме са самите върхове v.

Това са основните структури от данни, които ще ни трябват. Сега да видим защо те ще ни трябват и как ще ни помогнат.

Нека сега имаме една конкретна заявка x=27. Това число в двоична бройна система би се записало по следния начин $\tilde{a}_x=27_{(2)}=\overline{011011}$. Искаме да намерим $prev_S(x), succ_S(x)$.

$$lml(\mathbf{v}) = rml(\mathbf{v}) = \tilde{a}^{(4)} = \mathbf{31}$$

$$\tilde{a}_x = 27_{(2)} = \overline{011011}$$

твърдението е, че $lml(\mathbf{v}) = \tilde{a}^{(4)} = 31$ е наследника на $\tilde{a}_x = 27$.

 ${f 31}={f succ_S(27)},$ а пък $Prev(\tilde{a}^{(4)})=Prev(31)=23=\tilde{a}^{(9)}$ е предшественика на \tilde{a}_x .

 $23 = \operatorname{pred}_{S}(27)$

<u>Твърдение</u>: Нека $x \in \mathbb{N}$ със запис $x_{(2)} = \overline{x_1 x_2 \dots x_u}$ и нека $\mathbf{v} = x_1 x_2 \dots x_i$ е най-дългия префикс на x, за който $v \in T$. Тогава:

1) ако
$$i=u$$
, то $x\in S$; $prev_S(x)=succ_S(x)=x$

2) i < u, то $\delta(v, x_{i+1})$ не е дефинирана и нещо повече:

2.1) ако
$$x_{i+1} = 0$$
, то $lml(v) = succ_S(x)$

2.2) ако
$$x_{i+1} = 1$$
, то $rml(v) = prev_S(x)$

Доказателство:

Първото твърдение е ясно. Разглеждаме втората ситуация. 2)

Твърдението, че $\delta(v, x_{i+1})$ не е дефинирано следва тривиално от максималността на i. Без ограничение на общността разглеждаме случая, в който $x_{i+1} = 0$. Тогава:

Нека $\tilde{w} \in \tilde{S}$ ($w \in S$) е произволно. Тогава има два случая:

 $\underline{\text{I}}$ сл.: $\tilde{w}_1 \tilde{w}_2 \dots \tilde{w}_i = v \Rightarrow \tilde{w} \in T_v$. От дефиницията на най-ляво листо lml(v) следва, че лексикографски $\tilde{w} \geq lml(v)$. Тъй като v не е листо и $\delta(v, x_{i+1}) = \delta(v, 0)$ не е дефинирано,

то lml(v) на позиция i+1 има ${\bf 1}$ -ца и следователно $lml(v) \geq x_1 x_2 \dots x_u \Rightarrow w \geq val(lml(v)) > x.$

Всички листа, които са в поддървото на v ще бъдат по-големи или равни от заявката в този случай.

 ${ \ \, \coprod \ \, c...}: \tilde{w}_1 \ldots \tilde{w}_i \neq v$ и нека j е първата позиция, на която \tilde{w} и v се различават. Тогава е ясно, че $\tilde{w}_1 \ldots \tilde{w}_{j-1} = v_1 v_2 \ldots v_{j-1} = x_1 \ldots x_{j-1}$ и освен това $w_j \neq v_j = x_j$, но това означава, че $\tilde{w} \prec v \Leftrightarrow \tilde{w} \prec x$ и по същия начин $\tilde{w} \prec v \Leftrightarrow \tilde{w} \prec lm l(v) \Rightarrow lex$

 $w < x \Leftrightarrow w < val(lml(v)) \Rightarrow$ от I и II може да заключим, че стойността на това листо е точно наследника на елемента x от множеството $S: val(lml(v)) = succ_S(x)$.

Случаят когато $x_{i+1} = 1$ е дуален. Тогава просто ще получим предшественика на x, вместо наследника, намирайки най-дясното листо на лявото поддърво с ребро/връх 0.

С тези забележки вече сме готови да покажем алгоритъма на Willard в неговата първа част.

Идеята сега ще бъде да спестим това наивно траверсиране със заявки към перфектните хещове, които дефинирахме за нивата и съответно стойностите на върховете v в тях. Това би ни позволило да намерим най-дългия префикс на x, който се среща в нашето поддърво за време пропорционално на $\log \left(Height(T) \right) = \log \log U$.

Заявки:

Идеята е да правим двоично търсене използвайки хешовете.

Идея: Търсим най-дълъг префикс $x_1\dots x_i\in T$ с двоично търсене по нивата \mathscr{L}_j на T , използвайки хешовете \mathscr{H}_i .

Какво ни пречи правенето на такова търсене? Единственото което ни трябва е по даден номер i на префикс да може ефективно да сметнем коя е стойността на този префикс. Т.е.

Дадено ни е $i, x \hookrightarrow$ (трябва да стигнем до) $val(x_1 \dots x_i) = \sum_{j=1}^{\iota} 2^{i-j} x_j$, като това което имаме

е
$$x=\sum_{j=1}^u 2^{u-i}x_j$$
, но
$$x=\sum_{j=1}^u 2^{u-i}x_j=2^{u-i}\cdot val(x_1\dots x_i)+\sum_{j=i+1}^u 2^{u-j}x_j<2^{u-i}\big(val(x_1\dots x_i)+1\big).$$
 Т.е. за да

намерим стойността на съответния префикс е достатъчно да разделим:

$$val(x_1...x_i) = \left\lceil \frac{x}{2^{u-1}} \right\rceil.$$

Вече сме готови да реализираме двоичното търсене.

Пресмятаме стойностите 2^{u-i} предварително т.е. \to степените на двойката.

```
procedure query(T, \mathcal{H}, DLL, x, u) {
          if x \in \mathcal{H}_u then
                      return (x, x) (x \text{ succ}_S(x))
          if x > U then
                      return (val(rml(\varepsilon)), \infty)
          // x < U u x_{(2)} = \overline{x_1 \dots x_u}
          l \leftarrow 0, r \leftarrow u // x_1 \dots x_r \notin \mathcal{L}_r, x_1 \dots x_l \in \mathcal{L}_l \leftarrow invariant
          while (l - r > 1) do
                     m \leftarrow \left\lceil \frac{l+r}{2} \right\rceil
                     y \leftarrow \left\lceil \frac{x}{2^{u-m}} \right\rceil
                     if y \in \mathcal{H}_m then
                                l \leftarrow m
                      else
                                r \leftarrow m
          v: \left( \left| \frac{x}{2^{n-l}} \right|, v \right) \in \mathcal{H}_l
          if \delta(v,1) is defined then // т.е. x_{l+1}=0 и \delta(v,0) не е дефинирано
                      s \leftarrow lml(v)
                     p \leftarrow Pred(DLL, s)
          else
                     p \leftarrow rml(v)
                      s \leftarrow Succ(DLL, p)
          return (p, s)
}
```

Целия този цикъл в алгоритъма завършва за време $O(\log u) = O(\log \log U)$.

Остана само проблема с паметта. Броя на върховете в дървото което имаме не може да го ограничим с броя на листата (не може да го ограничим с константа по броя на листата). Проблема е, че често може да имаме дълги верижки без разклонения, т.е. да имаме малко разклонения.

Памет $O(|S|\log U)$. Трябва да смачкаме фактора от \log без да разваляме времето за заявка.

Отново ще използваме идеята на блоковете, но този път блоковете ще са от листа.

Намаляване на паметта.

- 1. Сортираме S във възходящ ред $\Big($ тъй като ако построим директно Trie-а, ще изгубим веднага памет $n\log(u)\Big)$: $a^{(1)} < a^{(2)} < \ldots < a^{(n)}$ за това ни трябва време $O\Big(n\log(n)\Big)$ (може и за време $O\Big(n\log(u)\Big)$, но това не е целта) и памет O(n).
- 2. Избираме блоковете с големина $\log(u)$.

$$n = n'u + r, r < u$$

Пресмятаме множеството $S' = \{a^{(ku+1)} | 0 \le k \le n'\}$, което ще бъде от минималните елементи на всеки един блок с дължина u.

- 3. За всяко k поддържаме масив $B[k] = \{a^{(ku+1)}, \dots, a^{(k+1)u}\}$
- 4. Намираме индекса за $S'\left(\tilde{S}',\,T'=Trie(\tilde{S}'),\,\mathcal{H}'_i,DLL_i\right)$ (Паметта, която е необходима е $|S'|u\leq n'$. $u+u\in O(n)$)

Заявка за $x \in \mathbb{N}$.

- 1. Намираме (k, k+1) : $pred_{S'}(x) = a^{(ku+1)} \le x < a^{((k+1)u+1)}$
- 2. С двоично търсене в масива B[k] намираме най-големия индекс $i \leq u$, за който $a^{(ku+i)} \leq x$. $O\left(\log(u)\right) = O\left(\log\log(u)\right)$
- 3. Ако $i < u : a^{(ku+i)} \le x < a^{(ku+i+1)}$, т.е. отговора се намира изцяло в масива B[k] и имаме двата последователни елемента, между които е заключен x и те са съответно неговия предшественик и наследник. Ако имаме равенство, то предшественика и наследника съвпадат. Ако $i = u : a^{((k+1)u)} \le x < a^{((k+1)u+1)}$ това е случаят, в който предшественика и наследника на се намират на границата на един от масивите B[k].