AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

Claims 1-7. (canceled).

Claim 8. (previously presented): A solid electrolytic capacitor comprising a valve acting metal having pores, a dielectric film formed on a surface of the valve acting metal, and a solid electrolyte layer provided on the dielectric film, wherein at least a portion of the solid electrolyte layer is of a lamellar structure,

in which the solid electrolyte layer comprises a composition containing a π -electron conjugate polymer and/or other electrically conducting polymer, in which the electrically conducting polymer is a condensed heteropolycyclic polymer comprising as a repeating unit a structural unit represented by general formula (III) below

wherein the substituents R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ each Independently represents a monovalent group selected from the group consisting of a hydrogen atom, a linear or branched, saturated or unsaturated C1-10 alkyl, alkoxy or alkyl ester group, a halogen atom, a nitro

group, a cyano group, a primary, secondary or tertiary amino group, a trihalomethyl group, a phenyl group and a substituted phenyl group, the alkyl chains of R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ may combine to each other at any position to form at least one divalent chain for forming at least one 3-, 4-, 5-, 6- or 7-membered saturated or unsaturated hydrocarbon cyclic structure together with the carbon atoms to which the substituents are bonded,

the alkyl group, the alkoxy group or the alkyl ester group of R⁶, R⁷, R⁸, R⁹, R¹⁰ or R¹¹ or the cyclic hydrocarbon chain formed by the substituents may contain any number of any of carbonyl, ether, ester, amide, sulfide, sulfinyl, sulfonyl and imino bonds,

k represents a number of the condensed ring enclosed by the thiophene ring and the benzene ring having substituents R^6 to R^9 and represents an integer of from 0 to 3 excluding a form in which all of R^6 to R^9 represent a hydrogen atom from among derivatives in which k=0, and the condensed ring may optionally contain 1 to 2 nitrogen atoms or N-oxide, δ is in the range of 0 to 1, Z represents an anion, j is a valency of Z and is 1 or 2.

Claim 9. (previously presented): The solid electrolytic capacitor as claimed in daim 8, in which the condensed heteropolycyclic polymer represented by general formula (III) is a condensed heteropolycyclic polymer represented by general formula (IV) below where k=0

$$\begin{array}{c|c}
R^7 & R^8 \\
\hline
 & & \\
R^5 & & \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein R^{δ} , R^{7} , R^{8} , R^{9} , δ , Z and j are the same as in formula (III), and the condensed ring may optionally contain 1 to 2 nitrogen atoms or N-oxide.

Claim 10. (previously presented): A solid electrolytic capacitor comprising a valve acting metal having pores, a dielectric film formed on a surface of the valve acting metal, and a solid electrolyte layer provided on the dielectric film, wherein at least a portion of the solid electrolyte layer is of a lamellar structure.

In which the solid electrolyte layer comprises a composition containing a π -electron conjugate polymer and/or other electrically conducting polymer,

in which the electrically conducting polymer is a condensed heteropolycyclic polymer selected from 5,6-dloxymethyleneisothianaphthenylene polymer and 5,6dimethoxylsothlanaphthenylene polymer.

Claim 11. (previously presented): The solid electrolytic capacitor as claimed in claim 8, in which the condensed heteropolycyclic polymer represented by general formula (III) is a condensed heteropolycyclic polymer represented by general formula (V) below where k=1

$$\begin{array}{c}
R^7 R^8 \\
R^{10} \\
R^{11}
\end{array}$$

$$\begin{array}{c}
R^{11} \\
(V)
\end{array}$$

wherein R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , δ , Z and j are the same as in formula (III), and the condensed ring may optionally contain 1 to 2 nitrogen atoms or N-oxide.

Claims 12-28. (canceled).

Claim 29. (withdrawn - currently amended): A method for producing a the solid electrolytic capacitor comprising a valve acting metal having pores, a dielectric film formed on a surface of the valve acting metal, and a solid electrolyte layer provided on the dielectric film, wherein at least a portion of the solid electrolyte layer is of a lamellar structure as claimed in claim 8 or 10, the method comprising polymerizing a condensed heteropolycyclic compound represented by the following formula (VI):

$$\begin{array}{c|c}
R^{7} & R^{8} \\
\hline
 & R^{10} \\
\hline
 & R^{11} \\
\hline
 & R^{11}
\end{array}$$
(VI)

wherein the substituents R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ each independently represents a monovalent group selected from the group consisting of a hydrogen atom, a linear or branched, saturated or unsaturated C1-10 alkyl, alkoxy or alkyl ester group, a halogen, a nitro group, a cyano group, a primary, secondary or tertiary amino group, a trihalomethyl group, a phenyl group and a substituted phenyl group, the alkyl chains of R6, R7, R8, R9, R10 and R11 may combine to each other at any position to form at least one divalent chain for forming at least one 3-, 4-, 5-, 6- or 7-membered saturated or unsaturated hydrocarbon cyclic structure together with the carbon atoms to which the substituents are bonded,

the alkyl group, the alkoxy group or the alkylester group of R⁶, R⁷, R⁸, R⁹, R¹⁰ or R¹¹ or the cyclic hydrocarbon chain formed by the substituents may contain any of carbonyl, ether, ester, amide, sulfide, sulfinyl, sulfonyl and imino bonds,

k represents a number of the condensed ring enclosed by the thiophene ring and the benzene ring having substituents R⁶ to R⁹ and represents an integer of from 0 to 3, and the condensed ring may optionally contain nitrogen or N-oxide alone or together with another anion having a dopant ability, on the dielectric film formed on a porous valve acting metal surface by the action of an oxidizing agent to form a solid electrolyte layer on the dielectric film.

Claim 30. (withdrawn): The method for producing a solid electrolytic capacitor, as claimed in claim 29, in which as the condensed heteropolycyclic compound, there is used at least one member selected from dihydroisothlanaphthene, dihydronaphtho[2,3c]thiophene and dihydrothieno[3,4-b]quinoxaline derivatives.

Claim 31. (withdrawn): The method for producing a solid electrolytic capacitor, as claimed in claim 29, in which at least one member selected from 1,3-dihydroisothianaphthene, 5,6-dioxymethylene-1,3-dihydrolsothlanaphthene, 5,6-dimethoxy-1,3-dihydrolsothlanaphthene, 1,3-dihydronaphtho[2,3-c]thiophene and 1,3-dihydrothleno[3,4-b]quinoxaline.

Claim 32. (withdrawn - currently amended): A method for producing a-the solid electrolytic capacitor comprising a valve acting metal having pores, a dielectric film formed on a surface of the valve acting metal, and a solid electrolyte layer provided on the dielectric film,

wherein at least a portion of the solid electrolyte layer is of a lamellar structure as claimed in claim 8 or 10, the method comprising polymerizing a condensed heteropolycyclic compound represented by the following formula (VII):

wherein the substituents R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ each independently represents a monovalent group selected from the group consisting of a hydrogen atom, a linear or branched, saturated or unsaturated C1-10 alkyl, alkoxy or alkyl ester group, a halogen, a nitro group, a cyano group, a primary, secondary or tertiary amino group, a trihalomethyl group, a phenyl group and a substituted phenyl group, the alkyl chains of R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ may combine to each other at any position to form at least one divalent chain for forming at least one 3-, 4-, 5-, 6- or 7-membered saturated or unsaturated hydrocarbon cyclic structure together with the carbon atoms to which the substituents are bonded,

the alkyl group, the alkoxy group or the alkylester group of R⁶, R⁷, R⁸, R⁹, R¹⁰ or R¹¹ or the cyclic hydrocarbon chain formed by the substituents may contain any of carbonyl, ether, ester, amide, sulfide, sulfinyl, sulfonyl and imino bonds,

and k represents a number of a condensed ring enclosed by the thiophene ring and the benzene ring having substituents R^6 to R^9 and represents an integer of from 0 to 3, and the condensed ring may optionally contain nitrogen or N-oxide alone or together with another anion

having a dopant ability, on the dielectric film formed on a porous valve acting metal surface by the action of an oxidizing agent to form a solid electrolyte layer on the dielectric film.

Claim 33. (withdrawn): The method for producing a solid electrolyte as claimed in claim 32, in which as the condensed heteropolycyclic compound, there is used at least one member selected from dihydroisothianaphthene-2-oxide, dihydronaphtho[2,3c]thlophene-2-oxide and dihydrothieno[3,4-b]quinoxaline-2-oxide derivatives.

Claim 34. (withdrawn): The method for producing a solid electrolytic capacitor, as claimed in claim 32 in which at least one member selected from 1,3-dihydroisothianaphthene-2-oxide, 5,6-dioxymethylene-1,3-dihydroisothianaphthene-2-oxide, 5,6-dimethoxy-1,3-dihydroisothianaphthene-2-oxide, 1,3-dihydronaphtho[2,3-c]thiophene-2-oxide and 1,3-dihydrothieno[3,4-b]quinoxaline-2-oxide.

Claims 35-75, (canceled).