

MINISTRY OF PRIMARY AND SECONDARY EDUCATION

PURE MATHEMATICS SYLLABUS

FORMS 3 - 4

2015 - 2022

Curriculum Development and Technical Services
P.O. Box MP 133
Mount Pleasant
Harare

© All Rights Reserved 2015

ACKNOWLEDGEMENTS

The Ministry of Primary and Secondary Education wishes to acknowledge the following for their valued contribution in the development of this syllabus:

- Panellists for Form 3-4 Pure Mathematics
- Representatives of the following organizations:
 - Zimbabwe School Examinations Council (ZIMSEC)
 - Uunited Nations Children's Fund (UNICEF)
 - United Nations Cultural, Scientific and Cultural Organisation (UNESCO)

CONTENTS

ACKNOWLEDGEMENTS	i
CONTENTS	ii
1.0 PREAMBLE	1
2.0 PRESENTATION OF SYLLABUS	1
3.0 AIMS	1
4.0 SYLLABUS OBJECTIVES	2
5.0 METHODOLOGY	2
6.0 TOPICS	2
7.0 SCOPE AND SEQUENCE	3
8.0 COMPTETNCY MATRIX	7
8.2 FORM 4 COMPETENCY MATRIX	13
9 0 ASSESSMENT	20

1.0 PREAMBLE

1.1 Introduction

In developing the Form 3 - 4 Pure Mathematics syllabus attention was paid to the need to provide continuity of mathematical concepts from Form 1through to Form 4 and lay foundations for further studies, focusing on learners who have the ability and interest. It is assumed that learners who take this syllabus will take it concurrently with the Form 1 - 4 Mathematics syllabus. The syllabus is intended to produce a citizen who is a critical thinker and problem solver in life. The two year learning phase will provide learners with opportunities to apply Mathematical concepts in other subject areas and enhance Mathematical literacy and numeracy. It also desires to produce a learner with the ability to communicate effectively.

In learning Pure Mathematics, learners should be helped to acquire a variety of skills, knowledge and processes, and develop positive attitude towards the subject and in life. This will enable them to investigate and interpret numerical and spatial relationships as well as patterns that exist in the world. The syllabus also caters for learners with diverse needs to experience Pure Mathematics as relevant and worthwhile.

1.2 Rationale

Zimbabwe is undergoing a socio-economic transformation where Pure Mathematics is key to development, therefore it is imperative that learners acquire necessary mathematical knowledge and skills to enable as many learners as possible to proceed to Form 5-6 Mathematics and beyond. The knowledge of Pure Mathematics enables learners to develop mathematical skills such as dealing with the abstract, presenting mathematical arguments, interpreting mathematical information and solving problems essential in life and for sustainable development. The importance of Ppure Mmathematics can be underpinned in inclusivity, human dignity and enterprise as it plays a pivotal role in careers such as reserach, actuarial science, materology and engineering

1.3 Summary of Content (Knowledge, Skills and Attitudes)

The syllabus will cover the theoretical and practical aspects of Pure Mathematics. This two year learning area will cover: algebra, coordinate geometry and

calculus.

1.4 Assumption

The syllabus assumes that the learner has:

- 1.4.1 mastered concepts and skills involving number, algebra and geometry at Form 1 and 2 level
- 1.4.2 shown interest in pursuing Pure Mathematics
- 1.4.3 the ability to operate some ICT tools

1.5 Cross Cutting Themes

The following are some of the cross cutting themes in Pure Mathematics:-

- 1.5.1 Financial literacy
- 1.5.2 Disaster risk management
- 1.5.3 Collaboration
- 1.5.4 Environmentalissues
- 1.5.5 Enterprise skills
- 1.5.6 Sexuality, HIV & AIDS Education

2.0 PRESENTATION OF SYLLABUS

The Pure Mathematics syllabus is presented as singledocument covering Form 3 - 4.It contains the preamble, aims, syllabus objectives, syllabus topics, scope and sequence and competency matrix. The syllabus also suggests a list of resources that could be used during learning and teaching process.

3.0 AIMS

This syllabus is intended to provide a guideline for Form 3 - 4 learners which will enable them to:

- 3.1 acquire a firm foundation for further studies and future careers
- 3.2 use ICT tools for learning and solving mathematical problems
- 3.3 develop an ability to apply Pure Mathematics in life and other subjects, particularly Science and Technology
- 3.4 develop a further understanding of mathematical concepts and processes in a way that

- encourages confidence, enjoyment, interest and lifelong learning
- 3.5 appreciate Pure Mathematics as a basis for applying the learning area in a variety of life situations
- 3.6 develop the ability to solve problems, reason clearly and logically as well as communicate mathematical ideas successfully
- 3.7 acquire enterprise skills in an indigenised and globalised economy through research and project-based learning

4.0 SYLLABUS OBJECTIVES

By the end of the two year learning period, the learners should be able to:

- 4.1 use relevant mathematical symbols, terms and definitions in problem solving
- 4.2 use formulae and generalisations to solve a variety of problems in Pure Mathematics and other related learning areas
- 4.3 formulate problems into mathematical terms and apply appropriate techniques for solutions
- 4.4 use ICT tools for learning through problem solving
- 4.5 apply Pure Mathematics concepts and principles in life
- 4.6 demonstrate an appreciation of mathematical concepts and processes
- 4.7 demonstrate an ability to solve problems systematically, applying mathematical reasoning
- 4.8 communicate mathematical concepts and principles clearly
- 4.9 explore ways of solving routine and non-routine problems in Pure Mathematics using appropriate formulae, algorithms and strategies
- 4.10 model mathematical information from one form to another e.g. verbal/words to symbolic form
- 4.11 conduct research projects including those related to enterprise

contexts. The teaching and learning of Pure Mathematics must be learner centred and ICT driven. The following are suggested methods of the teaching and learning of Pure Mathematics

- · Guided discovery
- · Group work
- · Interactive e-learning
- · Games and puzzles
- Quiz
- Problem solving
- · Simulation and modelling
- Experimentation

5.1 Time Allocation

Six periods of 40 minutes each per week should be allocated for the adequate coverage of the syllabus

6.0 TOPICS

The following topics will be covered from Form 3 - 4

- 6.1 Indices and irrational numbers
- 6.2 Polynomials
- 6.3 Identities, equations and inequalities
- 6.4 Graphs and coordinate geometry
- 6.5 Vectors
- 6.6 Functions
- 6.7 Sequences
- 6.8 Binomial expansions
- 6.9 Trigonometry
- 6.10 Logarithmic and exponential functions
- 6.11 Differentiation
- 6.12 Integration
- 6.13 Numerical methods

5.0 METHODOLOGY

It is recommended that teachers use methods and techniques in which Pure Mathematics is seen as a process which arouses an interest and confidence in tackling problems both in familiar and unfamiliar

7.0 SCOPE AND SEQUENCE

TOPIC 1: INDICES AND IRRATIONAL NUMBERS

SUB TOPIC	FORM 3	FORM 4
Indices	Laws of indicesEquations involving indices	
Irrational numbers	• Surds	

TOPIC 2: POLYNOMIALS

SUB TOPIC	FORM 3	FORM 4
Polynomials	• Components of polynomials	• Multiplication
		• Division
	Subtraction	Factor Theorem
	Partial fractions	 Solving equations

TOPIC 3: IDENTITIES, EQUATIONS AND INEQUALITIES

SUB TOPIC	FOR	FORM 3	FORM 4
Identities and equations	•	Definition of identity	Completing the square
	•	Unknown coefficients	Simultaneous equations
	•	Equations	
Inequalities	•	Quadratic inequalities	
	•	Cubic inequalities	

TOPIC 4: GRAPHS AND COORDINATE GEOMETRY

SUB TOPIC	FORM 3	FORM 4
Graphs	Straight line graphs	• Graphs of $y = kx^n$
	 Gradient of a line segment 	
Coordinate geometry	Distance between two points	
	 Coordinates of the mid-point 	

TOPIC 5: VECTORS

SUB TOPIC	FORM 3	FORM 4
Vecors in three dimensions	Types of vectors	Unit vectors
	Vector operations	Scalar product
		 Vector properties of plane shapes
		 Areas of triangles and parallelogram

TOPIC 6: FUNCTIONS

SUB TOPIC	FORM 3	FORM 4
Functions	Definition of a function	One- one funcion
	Domain and range	 Inverse of a function
	Composite function	 Graphs of functions

TOPIC 7: SEQUENCES

SUB TOPIC	FORM 3	FORM 4
Sednences	Definition of a sequenceExamples of sequences	Arithmetic progressionGeometric progression

TOPIC 8: BINOMIAL EXPANSION

SUB TOPIC F	FORM 3	FORM 4
Binomial expansion		Pasdcal's Triangle
		• Exapnsion of (a+b) n where n is a positive integer

TOPIC 9: TRIGONOMETRY

SIIB TOPIC	EOBM 3	EOBM 4
Plane Trigonometry	 Sine and cosine rules 	• Radians
	 Area of a trriangle 	• Length of an arc
		Area of a sector
		Area of a segment
Trigonometric functions	 Trigonometrical functions for angles of any size 	• Equations
	 Exact values of sine, cosine and tangent of special 	
	angles	

TOPIC 10: LOGARITHMIC AND EXPONENTIAL FUNCTIONS

SUB TOPIC	FORM 3	FORM 4
Logarithms	Laws of logarithmsLogarithms and indices	 Natural logarithms Equations of the form a *= b
Exponential functions		Exponential growth and decay

TOPIC 11: DIFFERENTIATION

SUB TOPIC	FORM 3	FORM 4
Differentiation	 Gradient of a curve at a point 	Application of differentiation to gradients,
	 Derived function of the form axⁿ 	tangents and normals, stationary points,
	 Derivative of a sum 	rates of change, velocity and acceleration

TOPIC 12: INTEGRATION

SUB TOPIC	FORM 3	FORM 4
Integration	Indefinite integration as the reverse process	• Area
	of differentiation	Volume
	 Integration of functions of the formaxn 	
	 Integration of a polynomial 	

TOPIC 13: NUMERICAL METHODS

SUB TOPIC	FORM 3	FORM 4
Numerical methods		Simple iterative procedures
		 Newton Reaphson method
		Trapezium Rule

8.0 COMPTETNCY MATRIX

8.1 FORM 3 COMPTETNCY MATRIX

TOPIC 1: INDICES AND IRRATIONAL NUMBERS

SUB TOPIC	OBJ	OBJECTIVES	CONTENT: {Skills,	S	SUGGESTED NOTES AND ACTIVITIES	SU	SUGGESTED
	Lear	Learners should be able to:	Knowledge, Attitudes}			R	RESOURCES
Indices	•	state the laws of indices	 Laws of indices 	•	Deriving the laws of indices	•	ICT tools
	•	use laws of indices to simplify	 Equations involving 	•	Simplifying algebraic expressions	•	Relevant texts
	ιυ	algebraic expressions	indices	•	Applying laws of indices to solve		
	•	solve equations involving indices			problems		
Irrational numbers	•	define irrational numbers	• Surds	•	Distinguishing between rational and	•	ICT tools
	•	reduce a surd to its simplest form			irrational numbers	•	Relevant texts
	•	carry out the four operations on		•	Deriving and finding ways of		
	<i>v</i>)	surds			simplifying surds		
	•	rationalise denominators		•	Expressing surds in simple form		
				•	Carrying out the four operations on		
					surds		
				•	Rationalising denominators		

TOPIC 2: POLYNOMIALS

SUB TOPIC	OBJECTIVES	CONTENT: {Skills,	SUGGESTED NOTES AND ACTIVITIES SUGGESTED	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Polynomials	define polynomials	Components of	Discussing polynomials	ICT tools
	 identify proper and improper 	polynomials	 Distinguishing between proper and 	 Relevant texts
	fractions	Addition	improper fractions	
	 carry out operations of addition and 	Subtraction	 Adding and subtracting polynomials 	
	subtraction of polynomials	 Partial fractions 	 Decomposing functions into fractions 	
	 express a function as a sum of 		with linear denominators	
	simpler fractions			

TOPIC 3: IDENTITIES, EQUATIONS AND INEQUALITIES

SUB TOPIC	OB	OBJECTIVES	CONTENT: (Skills,	S	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED	
	Le	Learners should be able to:	Knowledge, Attitudes)			RESOURCES	
Identities and	•	distinguish between an identity and	 Definition of identity 	•	Discussing the difference between an	 ICT tools 	
equations		an equation	 Unknown coefficients 		identity and an equation	 Relevant texts 	exts
	•	use identities to determine	 Equations 	•	Finding unknown coefficients using		
		unknown coefficients in			identities		
		polynomials		•	Using the Factor Theorem to solve		
	•	solve cubic equations using Factor			cubic equations		
		Theorem					
Inequalities	•	factorise quadratic expressions	 Quadratic inequalities 	•	Factorising quadratic expressions	 Relevant texts 	exts
	•	solve quadratic inequalities	 Cubic inequalities 	•	Finding solutions of quadratic	 ICT tools 	
	•	solve cubic inequalities with the			inequalities		
		use of Factor Theorem		•	Exploring ways of solving cubic		
					inequalities		
				•	Using the Factor Theorem to solve		
					cubic inequalities		

TOPIC 4: GRAPHS AND COORDINATE GEOMETRY

ACTIVITIES SUGGESTED RESOURCES	ven • Geo-board • ICT tools ation of a • Environment nts or the arallel and g straight e where involving	tance
SUGGESTED NOTES AND ACTIVITIES	 Sketching straight lines given sufficient information Exploring how to find equation of a straight line given two points or the gradient and a point Distinguishing between parallel and perpendicular lines Solving problems involving straight line graphs Identifying examples in life where linear relationships occur Carrying out experiments involving linear relationships 	 Exploring ways to find distance between two points Calculating coordinates of the midpoint of a straight line Conducting field work to solve problems involving distance between
CONTENT: {Skills, Knowledge, Attitudes}	Straight line graphs Gradient of a line segment	 Distance between two points Coordinates of the midpoint
OBJECTIVES Learners should be able to:	 sketch straight lines find the gradient of a line segment find the equation of a straight line identify parallel and perpendicular lines solve problems involving straight line graphs 	 calculate the distance between two points given in coordinate form solve practical problems involving distance between two points find the coordinates of the mid-point of a straight line
SUB TOPIC	Graphs	Coordinate geometry

TOPIC 5: VECTORS

SUB TOPIC	OBJECTIVES	CONTENT: {Skills,	SUGGESTED NOTES AND ACTIVITIES SUGGESTED	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Vectors in three	$\binom{x}{y}$	Types of vectors	 Using standard notation of vectors 	ICT tools
dimensions		 Vector operations 	0 1	Mathematical
	xi+yj+zk,→, a		(z), All y Z	models
	determine position and free vectors		 Distinguishing between positionand 	Environment
	• identify parallel vectors and co-linear		free vectors	Geo-board
	points		 Interpreting operations in geometrical 	Relevant texts
	• calculate the modulus of a vector		terms	
	add and subtract vectors		 Computing the magnitude of vectors 	
	multiply a vector by a scalar		in three dimensions	
			 Adding and subtracting vectors 	
			 Finding a product of a vector by a 	
			scalar	
			 Solving problems involving vector 	
			operations	

TOPIC 6: FUNCTIONS

SUB TOPIC	OBJECTIVES Learners should be able to:	CONTENT: {Skills, Knowledge, Attitudes}	SUGGESTED NOTES AND ACTIVITIES SUGGESTED RESOURCES	SUGGESTED RESOURCES	
Functions	 define a function define domain and range of a function use functional notation 	Definition of a function Domain and range Composite function	Definition of a function Domain and range Composite function Definition of a functions Discussing the domain and the range Using functional notations Simplifying composite functions	ICT toolsRelevant texts	

TOPIC 7: SEQUENCES

SUB TOPIC	OBJECTIVES	CONTENT: {Skills,	SUGGESTED NOTES AND ACTIVITIES SUGGESTED	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Sednences	define a sequence	Definition of a	Discussing sequences	 ICT tools
	 list the elements of a sequence 	sednence	 Outlining elements of sequences 	 Relevant texts
		 Examples of 		
		sednences		

TOPIC 8: BINOMIAL EXPANSION

SUB TOPIC	OBJECTIVES	CONTENT: {Skills,	SUGGESTED NOTES AND ACTIVITIES SUGGESTED	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Binomial expansion		To be covered in form 4		

TOPIC 9: TRIGONOMETRY

SUB TOPIC	OBJECTIVES	CONTENT: {Skills, S	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Plane Trigonometry	 use sine and cosine rules to solve 	Sine and cosine rules	Deriving formulae for the sine and	ICT tools
	problems	 Area of a triangle 	cosine rules	 Relevant texts
	• use the formula $A = \frac{1}{2} ab \sin C$ to	•	Solving problems using the sine and	
	find the area of a triangle		cosine rules	
		•	Deriving the formula for finding area	
			of a triangle	
		•	Solving problems involving area of a	
			triangle	
Trigonometrical	 find the trigonometrical ratios of 	Trigonometrical	Computing the trigonometrical ratios	ICT tools
functions	angles of any size	functions for angles of	of angles of any size	 Relevant texts
	 use the exact values of the 	• any size	Calculating the exact values of the	
	trigonometrical ratios of special	 Exact values of sine, 	sine, cosine and tangent of 0°, 30°,	
	angles in a variety of situations	cosine and tangent of	45°,60°, 90° in a variety of situations	
		special angles		

TOPIC 10: LOGARITHMIC AND EXPONENTIAL FUNCTIONS

SUB TOPIC	OBJECTIVES	ONTENT: {Skills,	SUGGESTED NOTES AND ACTIVITIES SUGGESTED	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Logarithms	state the laws of logarithms	Laws of logarithms	 Exploring the laws of logarithms 	ICT tools
	 use the laws of logarithms in solving 	 Logarithms and indices 	 Applying laws of logarithms in solving 	 Relevant texts
	problems		problems	
	 identify the relationships between 		 Expressing logarithms in index form 	

TOPIC 11: DIFFERENTIATION

SUB TOPIC	OBJECTIVES Learners should be able to:	CONTENT: {Skills, Knowledge, Attitudes}	SU	SUGGESTED NOTES AND ACTIVITIES	SUG	SUGGESTED RESOURCES	
Differentiation	find the gradient of a curve at a point listing the tangent	 Gradient of a curve at a point 	•	Calculating the gradient of a curve at a given point using tangents	•	ICT tools	
	differentiate linear and quadratic	 Derived function of the 	•	Discussing situations in life where	•	Environment	
	expressions from first principles	form ax ⁿ		gradients of curves are important			
	 find the derivative of functions of the 	 Derivative of a sum 	•	Differentiating linear and quadratic			
	form axn where n is a rational number			expressions from first principles			
	 differentiate a polynomial 		•	Differentiating functions of the form			
				axn using the formula			

TOPIC 12: INTEGRATION

SUB TOPIC	O	OBJECTIVES	CONTENT: {Skills,	SU	SUGGESTED NOTES AND	SU	SUGGESTED
	Le	Learners should be able to:	Knowledge, Attitudes}	AC	ACTIVITIES	A E	RESOURCES
Integration	•	recognise indefinite integration as the	 Indefinite integration as the 	•	Discussing indefinite integration as	•	 ICT tools
		reverse process of differentiation	reverse process of		the reverse process of	•	Relevant texts
	•	integrate functions of the form axn	differentiation		differentiation	•	Environment
		where n is rational	 Integration of functions of 	•	Performing integration of functions		
	•	integrate polynomials	the form ax ⁿ		of the form axn where n is rational		
			 Integration of a polynomial 	•	Computing indefinite integrals of		
					polynomials		

TOPIC 13: NUMERICAL METHODS

SUB TOPIC	OBJECTIVES	CONTENT: {Skills, Knowledge, SUGGESTED NOTES AND	SUGGESTED NOTES AND	SUGGESTED
	Learners should be able to:	Attitudes}	ACTIVITIES	RESOURCES
Iterative methods		To be covered in form 4		

8.2 FORM 4COMPETENCY MATRIX

TOPIC 1: INDICES AND IRRATIONAL NUMBERS

SUB TOPIC	OBJECTIVES	CONTENT: {Skills,	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Indices		Covered in form 3		
Irrational numbers				

TOPIC 2: POLYNOMIALS

SUB TOPIC	OBJECTIVES	CONTENT: {Skills,	SUGGESTED NOTES AND ACTIVITIES SUGGESTED	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Polynomials	multiply polynomials	Multiplication	Determining the product of	ICT tools
	 divide one polynomial by another 	Division	polynomials	 Relevant texts
	 use the Factor Theorem to factorise 	 Factor Theorem 	 Usinglong division to find the quotient 	
	polynomials	 Solving equations 	and remainder	
	 solve cubic equations using the 		 Deriving the Factor theorem 	
	Factor Theorem		 Using the Factor Theorem to 	
	 use Factor Theorem to evaluate 		factorise polynomials	
	unknown coefficients		 Solving cubic equations using the 	
			Factor Theorem	
			 Evaluating unknown coefficients 	
			using the Factor Theorem	

TOPIC 3: IDENTITIES, EQUATIONS AND INEQUALITIES

SUB TOPIC	OBJECTIVES		SUGGESTED NOTES AND ACTIVITIES	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Identities and	 express ax² + bx + c in the form 	Completing the square	 Exploring ways of expressing ax² + 	ICT tools
equations	$d(x+e)^2+f$	 Simultaneous equations 	bx + c in the form $d(x+e)^2+f$	 Relevant texts
	 derive the quadratic formula 		 Completing the square to derive the 	
	 solve quadratic equations by 		quadratic formula	
	completing the square		 Solving quadratic equations by 	
	 solve simultaneous equations by 		completing the square	
	substitution		 Solving simultaneous equations (one 	
			linear and one implicit) by	
			substitution	

TOPIC 4: GRAPHS AND COORDINATE GEOMETRY

SUB TOPIC	OBJECTIVES	CONTENT: {Skills,	SUGGESTED NOTES AND ACTIVITIES SUGGESTED	SUGGESTED	
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES	
Graphs	• sketch graphs of the form $y = kx^n$	• Graphs of $y = kx^n$	Sketching the standard curves where	ICT tools	
	 explain the geometrical effect of the 		n and k are rational	 Relevant texts 	
	value of k on the shape of the graph		 Discussing the geometrical effect of 	 Geo-board 	
	of $y = kx^n$		the value of k on the shape of the		
			graph for a given value of n		

TOPIC 5: VECTORS

SUB TOPIC	OBJECTIVES	CONTENT: {Skills,	SUGGESTED NOTES AND ACTIVITIES SUGGESTED	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Vectors in three	 calculate unit vectors 	Unit vectors	 Computing unit vectors 	 ICT tools
dimensions	 define the scalar product 	Scalar product	 Discussing the scalar product 	 Mathematical
	 use the scalar product to determine 	 Vector properties of 	 Determining the angle between 	models
	the angle between vectors	plane shapes	vectors	 Environment
	 identify vector properties of 	 Areas of triangles and 	 Exploring vector properties of 	
	quadrilaterals	parallelograms	quadrilaterals	
	 solve problems involving 		 Solving problems involving 	
	perpendicular vectors		perpendicular vectors	
	 calculate areas of triangles and 		 Computing areas of triangles and 	
	parallelograms		parallelograms	

TOPIC 6: FUNCTIONS

SUB TOPIC	OBJECTIVES Learners should be able to:	CONTENT: {Skills, Knowledge, Attitudes}	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
Functions	 define a one-one function 	One-one function	 Discussing one-one functions 	ICT tools
	 restrict the domain to get a one-one 	 Inverse of a function 	 Sketching graphs of functions for a 	 Relevant texts
	function	 Graphs of functions 	given domain	Geo-board
	 sketch the graph of a function for a given 		 Discussing the inverse of a function 	
	domain		 Determining the range of functions 	
	 define the inverse of a function 		 Determining the inverse of a given 	
	 find the inverse of a given function 		function excluding inverses of	
	 illustrate graphically the relationship 		quadratic functions	
	between a function and its inverse		 Illustrating graphically the 	
			relationship between a function and	
			its inverse	

TOPIC 7: SEQUENCES

SUB TOPIC	OBJECTIVES	CONTENT: {Skills	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}		RESOURCES
Sednences	derive the formulas for the general	Arithmetic progression	 Exploring ways of finding the formula 	 ICT tools
	terms of the AP and GP	 Geometric progression 	for the general term of an AP and a	 Relevant texts
	 use the formula for the nth term of an 		GP	
	AP and GP		 Solving problems using the formula 	
	 derive the formula for the sum of the 		for the nth term of an AP and a GP	
	first n terms of an AP and GP and		 Exploring ways of finding the 	
	use it to solve problems		formulae of the sum of the first n	
	distinguish between APs and GPs		terms of an AP and a GP and solving	
			problems	
			 Differentiating APs from GPs 	
			 Discussing applications of APs and 	
			GPs in life	

TOPIC 8: BINOMIAL EXPANSION

SUB TOPIC	OBJECTIVES	CONTENT: {Skills,	SUGGESTED NOTES AND	SUGGESTED
	Learners should be able to:	Knowledge, Attitudes}	ACTIVITIES	RESOURCES
	Learners should be able to:	Knowledge, Attitudes}	ACTIVITIES	RESOURCES
Binomial expansion	construct a Pascal's Triangle	Pascal's Triangle	Constructing Pascal's Triangle	 Relevant texts
	 expand (a + b)ⁿ using Pascal's 	• Expansion of $(a+b)^n$	 Making use of the Pascal's Triangle 	ICT tools
	Triangle	where n is a positive	to expand $(a+b)^n$ where n is a	
	 solve problems involving 	integer	positive integer	
	expansion of $(a+b)^n$		 Solving problems involving 	
			expansion of $(a+b)^n$	

TOPIC 9: TRIGONOMETRY

												_						
SUGGESTED RESOURCES	ICT toolsRelevant texts	 Environment 	 Geo-board 	 Geometrical 	instruments							 ICT tools 	 Relevant texts 	 Environment 				
			0		٦		٦		of			-1×				O	"	
SUGGESTED NOTES AND ACTIVITIES	 Discussing radians and degrees and their relationship 	 Using the correct radian notation 	 Converting degrees to radians and 	radians to degrees	 Deriving and using the formulae for 	length of an arc	 Deriving and using the formulae for 	the area of a sector and segment	 Solving problems involving length of 	arcs, areas of sectors and	segments	 Discussing the notation sin-1x, tan-1x 	and cos ⁻¹ x	 Finding all the solutions, within a 	specified interval of the equations	$\sin(kx)=c$, $\cos(kx)=c$ and $\tan(kx)=c$	 Applying trigonometrical equations 	in solving life problems
0, 4	•	•	_		_		_		_			•		_			_	
CONTENT: {Skills, Knowledge, Attitudes}	Radians Length of an arc	 Area of a sector 	 Area of a segment 									 Equations 						
OBJECTIVES Learners should be able to:	define a radianuse the correct radian notation	 convert degrees to radians and 	radians to degrees	 find the length of an arc 	 find area of a sector and a segment 	 solve problems involving length of 	arcs, areas of sectors and segments					 use the notation sin-1x, tan-1x and 	cos ⁻¹ x to solve problems	 Solve trigonometrical equations 				
	etry																	
SUB TOPIC	Plane Trigonometry											Trigonometrical	functions					

TOPIC 10: LOGARITHMIC AND EXPONENTIAL FUNCTIONS

SUB TOPIC	C O	OBJECTIVES Learners should be able to:	CONTENT: {Skills, Knowledge, Attitudes}	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
Logarithms	• •	define the natural logarithm sketch the graph of the form y=ln(ax+b)	 Natural logarithms Equations of the form a x = b 	 Discussing the natural logarithms in relation to logarithms in general Sketching the graphs of the form 	ICT toolsRelevant textsGeo-board
	•	use logarithms to solve equations of the form a×= b		y=In(ax+b) • Solving equations of the form a ^x = b using logarithms	
Exponential functions	•	explain the concept of exponential growth and decay	 Exponential growth and decay 	 Discussing the concept of exponential growth and decay 	ICT toolsRelevant texts
	•	sketch the graph of the exponential function	<u> </u>	 Sketching the graph of the exponential function and compare 	Geo-board
	•	solve equations involving exponential growth and decay		with the logarithmic functionFormulating equations involving	
	•	formulate equations involving		exponential growth and decay	
		exponential growth and decay		Solving equations involving	

TOPIC 11: DIFFERENTIATION

SUB TOPIC	OBJECTIVES	CONTENT: {Skills, Knowledge,	SUC	SUGGESTED NOTES AND	SUGGESTED
	Learners should be able to:	Attitudes}	AC.	ACTIVITIES	RESOURCES
Differentiation	 find the equation of a tangent and a 	Application of differentiation	•	Determining equations of	 ICT tools
	normal to quadratic and cubic curves	to gradients, tangents and		tangents and normals to	 Relevant texts
	 determine stationary points and their 	normals, stationary points,		quadratic and cubic curves	 Environment
	nature	rates of change, velocity and	•	Discussing the nature of, and	
	 find the rate of change of one 	acceleration		solving problems involving,	
	variable with respect to another			stationary points	
	 solve problems involving rates of 		•	Calculating the rate of change of	
	change			one variable with respect to	
				another	
			•	Solving problems involving rates	
				of change in life	

TOPIC 12: INTEGRATION

SUB TOPIC	OBJECTIVES	CONTENT: {Skills, Knowledge, SUGGESTED NOTES AND	SUGGESTED NOTES AND	SUGGESTED
	Learners should be able to:	Attitudes}	ACTIVITIES	RESOURCES
Integration	compute area bounded by	Area	 Exploring ways of finding area 	ICT tools
	acurveand a lineparallel to the	Volume	bounded by a curve and a line	 Relevant texts
	coordinate axes		parallel to the coordinate axes	 Environment
	 calculatethe volume of revolution 		 Exploring ways of finding the 	
	about one of the axes		volume of revolution about one	
			of the axes	
			 Solving problems involving use 	
			of integration in determining	
			areas and volumes	

TOPIC 13: NUMERICAL METHODS

SUB TOPIC	OBJECTIVES	CONTENT: {Skills, Knowledge,	SUGGESTED NOTES AND	SUGGESTED	
	Learners should be able to:	Attitudes}	ACTIVITIES	RESOURCES	
Numerical methods	locate the position of roots by sign	Simple iterative procedures	Determining the existence of	ICT tools	
	change	Newton-Raphson method	roots within an interval	 Relevant texts 	_
	 solve equations by the bisection 	Trapezium Rule	 Using the bisection method to 	 Environment 	_
	method		solve equations to a specific		_
	 use simple iterative procedures 		degree of accuracy		_
	and the Newton-Raphson method		 Solving equations using simple 		_
	to solve equations		iterative procedures and the		_
	 estimate areas under curves using 		Newton-Raphson method		_
	the Trapezium Rule		 Determining estimates of area 		
			under curves and related areas in		_
			life by the Trapezium Rule		_

9.0 ASSESSMENT

(a) ASSESSMENT OBJECTIVES

The assessment will test candidate's ability to:-

- · use Mathematical symbols, terms and definitions correctly in problem solving
- · sketch graphs accurately
- use appropriate formulae, algorithms and strategies, to solve routine and non-routine problems in Pure Mathematics
- · demonstrate the appropriate and accurate use of ICT tools in problem solving
- · translate Mathematical information from one form to another accurately
- · demonstrate an appreciation of Mathematical concepts and processes
- demonstrate an ability to solve problems systematically
- apply Mathematical reasoning and communicate mathematical ideas clearly
- · model information from other forms to Mathematical form and vice versa
- · conduct research projects including those related to enterprise

(b) SCHEME OF ASSESSMENT

The Form 3 - 4Pure Mathematics assessment will be based on 30% Continuous Assessment and 70% Summative

Assessment.

The syllabus' scheme of assessment caters for all learners and does not condone direct or indirect discrimination. Arrangements, accommodations and modifications must be visible in both continuous and summative assessments to enable candidates with special needs to access assessments and receive accurate performance measurement of their abilities. Access arrangements must neither give these candidates an undue advantage over others nor compromise the standards being assessed.

Candidates who are unable to access the assessments of any component or part of component due to disability (transitory or permanent) may be eligible to receive an award based on the assessment they would have taken

Continuous Assessment

Continuous assessment will consists of topic tasks, written tests and end of term examinations:

i) Topic Tasks

These are activities that teachers use in their day to day teaching. These may include projects, assignments and team work activities.

ii) Written Tests

These are tests set by the teacher to assess the concepts covered during a given period of up to a month. The tests should consist of short structured questions as well as long structured questions.

iii) End of term examinations

These are comprehensive tests of the whole term's or year's work. These can be set at school/district/provincial level.

Summary of Continuous Assessment Tasks

From term one to five, candidates are expected to have done at least the following recorded tasks per term:

- 1 Topic task
- 1 Written test
- · 1 End of term test

Detailed Continuous Assessment Tasks Table

Term	Number of Topic Tasks	Number of Written Tests	Number of End Of Term Tests	Total
1	1	1	1	
2	1	1	1	
3	1	1	1	
4	1	1	1	
5	1	1	1	
Weighting	25%	25%	50%	100%
Actual Weight	7.5%	7.5%	15%	30%

Comment: Term 6 is for the National Examination

c) Specification Grid

Specification grid for continuous assessment

Component Skills	Topic Tasks	Written Tests	End of Term
Skill 1	30%	30%	30%
Knowledge			
Comprehension			
Skill 2	50%	50%	50%
Application			
Analysis			
Skill 3	20%	20%	20%
Synthesis			
Evaluation			
Total	100%	100%	100%
Actual weighting	7.5%	7.5%	15%

Summative Assessment

The examination will consist of 2 papers: paper 1 and paper 2, each to be written in 2½ hours

	P1	P2	Total
Weighting	50%	50%	100%
Actual weighting	35%	35%	70%
Type of paper	Approximately 15 Short Answer Questions, where candidates anwer all questions	16 Questions where candidates answer any 10, each question carrying 10 marks	
Marks	100		100

Specification Grid for Summative Assessment

	P1	P2	Total
Skill 1	50%	30%	80%
Knowledge &			
Comprehension			
Skill 2	40%	50%	90%
Application &			
Analysis			
Skill 3	10%	20%	30%
Synthesis &			
Evaluation			
Total	100%	100%	200%
Weighting	50%	50%	100%

d) Assessment Model

Pure Mathematics Syll	labus Forms 3 - 4		

Pure Mathematics Syllabus Forms 3 - 4	