Domanda 23

Risposta corretta

Punteggio ottenuto 1,00 su

1,00 F

Contrassegna domanda Una matrice di rango r ha esattamente:

- $\ \ \,$ b. r valori singolari ≥ 0 .
- $\quad \ \ \, \text{c.} \quad \text{r valori singolari} < 0.$

La risposta corretta è: r valori singolari ≥ 0 .

Fine revisione

Contrassegna

domanda

Il metodo di Jacobi per risolvere il sistema lineare Ax = b, con $A n \times n$:

- \bigcirc b. è convergente per ogni matrice A.

La risposta corretta è: è convergente se il raggio spettrale ho(J) < 1 dove J è la matrice di iterazione.

a. è convergente se il raggio spettrale $\rho(J) < 1$ dove J è la matrice di iterazione.

ullet c. è convergente per ogni matrice A solo se x_0 è il vettore nullo.

Domanda 22 Risposta corretta Punteggio

ottenuto 1.00 su

1,00

Contrassegna domanda

La risposta corretta è: Non negativi (> 0).

○ c. Positivi o negativi, mai nulli (≠0).

I valori singolari sono tutti:

 \odot a. Non negativi (> 0).

b. Strettamente positivi (> 0).

Domanda 19 Risposta corretta Punteggio ottenuto 1.00 su 1.00 Contrassegna

domanda

Sia $A \ n imes n$ non singolare, con PA = LR la fattorizzazione di Gauss con pivoting, allora la soluzione del sistema Ax = b si ottiene risolvendo:

- a. Nessuna delle precedenti.
- \bigcirc b. $\int Lx = P^{-1}b$

La risposta corretta è: Nessuna delle precedenti.

Domanda 20

Risposta corretta

Punteggio

ottenuto 1.00 su

1,00 Contrassegna domanda

 $\ \ \,$ a. Puo' non esistere anche se $A\ m imes n$ non singolare.

La fattorizzazione di Gauss A = LR:

- \bigcirc b. Esiste solo se $A\ m \times n$ è non singolare
- c. Nessuna delle precedenti.

Domanda 17 Risposta

corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Siano $\sigma_1 > \sigma_2 > \sigma_3 > \ldots > \sigma_n$ i valori singolari di A allora :

Il problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice m imes n e (m>n), si puo' risolvere utilizzando le

equazioni normali quando:

a. rg(A) = 0.

 \bigcirc b. rg(A)=m.

 \bigcirc c. rg(A) = n.

 \bigcirc c. $||A||_2 = \sigma_n$

La risposta corretta è: $||A||_2 = \sigma_1$

La risposta corretta è: rg(A) = n.

Domanda 18

- Risposta corretta
- Punteggio ottenuto 1,00 su

 $\| a. \| |A||_2 = \sigma_1$ \bigcirc b. $||A||_F = \sigma_1$

1.00

Contrassegna

domanda

1.00

Nel metodo del Gradiente la direzione di discesa di f in x_k è:

- \bigcirc a. $\nabla f(x_k)$

- Domanda 16 Risposta corretta
- Punteggio
- ottenuto 1.00 su 1.00
- Contrassegna domanda
- - $a. x^{(1)} = (-1,0)^T.$
 - $x^{(1)} = (1,0)^T$

- \bigcirc b. $\nabla f(-x_k)$ \odot c. $-\nabla f(x_k)$
- La risposta corretta è: $-\nabla f(x_k)$

 - Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=x_1e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(0,0)^T$ e
 - $\alpha=1$, allora:
 - $x^{(1)} = (0,0)^T$
- La risposta corretta è: $x^{(1)} = (-1,0)^T$.

corretta

1,00

Nel sistema Floating Point $\mathcal{F}(10,2,-2,2)$, se $x=\pi,w=e$, e z=fl(x)-fl(w), allora:

b.
$$fl(z) = 0.40 imes 10^{0} .$$

0 a. $fl(z) = 0.44 \times 10^0$.

$$\odot$$
 c. $fl(z)=0.43 imes 10^0.$

La risposta corretta è: $fl(z) = 0.40 \times 10^{0}$.

a. $fl(z) = 0.58 \times 10^{1}$.

 \circ b. $fl(z) = 0.585 \times 10^1$.

 \circ c. $fl(z) = 0.59 \times 10^{1}$.

La risposta corretta è: $fl(z) = 0.58 \times 10^1$.

Domanda 14

Risposta corretta

Punteggio

1.00

Contrassegna domanda

ottenuto 1,00 su

Nel sistema Floating Point $\mathcal{F}(10,2,-2,2)$, se $x=\pi,w=e$, e z=fl(x)+fl(w), allora:

Se A è una matrice quadrata $n \times n$, allora: \bigcirc a. $||A||_2 = \sqrt{\max_{\lambda \in A} \lambda}$

$$\qquad \text{b.} \quad ||A||_2 = \sqrt{\max_{\lambda \in A^T A} \lambda}$$

$$\qquad \text{c.} \quad \text{Nessuna delle precedenti.}$$

Se A è una matrice $n \times n$ allora:

La risposta corretta è:
$$||A||_2 = \sqrt{\max_{\lambda \in A^T A} \lambda}$$

 \bigcirc a. $||A||_F = \rho(A^T A)$.

 $egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} eta. & ||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}. \end{array}$

La risposta corretta è: $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}.$

o. Nessuna delle precedenti.

Risposta corretta Punteggio

domanda

Risposta errata Punteggio ottenuto 0,00 su 1,00 F Contrassegna domanda	Data la matrice U :
	Allora: a. Nessuna delle precedenti. b. U è ortogonale. c. U è definita positiva.
	La risposta corretta è: Nessuna delle precedenti.
Domanda 11 Risposta corretta Punteggio ottenuto 1,00 su	Se A è una matrice quadrata $n \times n$, allora:

Domanda 10

$$U = egin{bmatrix} 3 & -1/3 & 0 \ 2 & 1/2 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Allora:

Sia $f:\mathbb{R}^n o\mathbb{R}$ derivabile, se $abla f(x^*)=0$ allora x^* :

b. è un punto di minimo locale.

a. è un punto di minimo globale.

c. è un punto stazionario.

La risposta corretta è: è un punto stazionario.

Domanda 8 Risposta corretta Punteggio ottenuto 1,00 su 1,00 Contrassegna

domanda

Sia $f:\mathbb{R}^n o \mathbb{R}$ derivabile:

- igcup a. $abla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto di massimo.

 \circ c. $\nabla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto di minimo.

- b. $\nabla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto stazionario.

La risposta corretta è: $\nabla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto stazionario.

Sia $\Pi(x)$ il polinomio che interpola i punti $(x_i,f(x_i))$, con $i=0,\ldots,n$. Vale:

Dati n+1 punti $\{x_i,y_i\}$, $i=0,\ldots,n$, il polinomio di interpolazione nella forma di Lagrange ha coefficienti:

 \bigcirc a. Uguali ai quadrati y_i . ottenuto 1,00 su 1,00 \bigcirc b. Uguali ai quadrati x_i . Contrassegna c. Nessuna delle precedenti. domanda

Domanda 5

Risposta errata

La risposta corretta è: Nessuna delle precedenti.

L'errore algoritmico è dovuto:

- a. Alla realizzazione di un procedimento infinito come procedimento finito.
- b. Nessuna delle precedenti.
- o c. Al propagarsi degli errori di arrotondamento delle singole operazioni.

La risposta corretta è: Al propagarsi degli errori di arrotondamento delle singole operazioni.

Domanda **4**Risposta corretta
Punteggio ottenuto 1,00

domanda

Punteggio
ottenuto 1,00 su
1,00

b. I

Se il vettore $v=(10^6,1)^T$ è approssimato dal vettore $\tilde{v}=(999996,1)^T$, allora in $||\cdot||_{\infty}$ l'errore relativo tra v e \tilde{v} è:

- \odot a. $4 \cdot 10^{-6}$.
- O b. Nessuna delle precedenti.
- O c. 4.

La risposta corretta è: $4 \cdot 10^{-6}$.

Se A è una matrice quadrata $n \times n$, allora il numero di condizionamento è definito:

- a. Sono entrambe esatte.
- \bigcirc b. $K(A) = ||A^T||||A||$. c. $K(A) = ||A^{-1}||||A||.$

La risposta corretta è: $K(A) = ||A^{-1}||||A||$.

Punteggio 1,00

ottenuto 1,00 su Contrassegna domanda

 $\ \ \,$ a. $\ \ \, K(A)$ è molto grande.

 \bigcirc b. $||A||_2$ è molto grande.

 \bigcirc c. $||A^{-1}||$ è molto grande.

La risposta corretta è: K(A) è molto grande.

Se A è una matrice quadrata $n \times n$ mal condizionata, allora:

Il valore di arrotondamento a cinque cifre del numero irrazionale x=1.32766486 e' fl(x)=0.13277.

Scegli un'alternativa:

- a. Vero
 - @ l-
- b. Falso

Il valore di arrotondamento a cinque cifre del numero irrazionale x=1.32766486 e' fl(x) = 0.13277.

V(PAG 5)

Scegli un'alternativa:

- a. Vero
- b. Falso