Amplitude Modulation Simulation Software

June 3, 2025

Contents

1	System Overview	2
2	Functioning Logic	2
3	~ 	2
	3.1 Time-Domain Simulation	
	3.2 Frequency-Domain Modeling	 3
4		3
	4.1 Fast Fourier Transform (FFT)	 3
	4.2 Modulation Algorithms	 3
	4.3 Demodulation Algorithms	
	4.4 Noise Addition	
5	Physics Models	4
	5.1 Signal Representation	 4
	5.2 Frequency Spectrum	
	5.3 Total Harmonic Distortion (THD)	 4
	5.4 Signal-to-Noise Ratio (SNR)	 4

1 System Overview

The AM simulation software is a software written in Java with user interface (UI) built using Swing.

- **AMSignal**: Represents the AM signal with attributes for time, message, carrier, modulated, demodulated signals, and frequency spectra.
- **ControlPanel**: Provides a GUI for configuring signal parameters (e.g., frequency, amplitude, modulation index) and initiating actions like signal updates or data exports.
- **ModulationAndDemodulation**: Implements core signal processing for modulation, demodulation, noise addition, and spectrum computation.
- SignalPlotPanel: Visualizes time and frequency domain plots with zoom and pan capabilities.
- TimeDomainSimulationWindow: Supports real-time time-domain signal animation.
- SpectrumAnalysisFFT: Performs Fast Fourier Transform (FFT)-based spectrum analysis.
- **TotalHarmonicDistortion**: Analyzes Total Harmonic Distortion (THD) with harmonic visualization.
- SignalToNoiseRatio: Computes and displays Signal-to-Noise Ratio (SNR).
- DataExporter: Exports signal data to CSV files for external analysis.

The main application (Main.java) integrates these components into a tabbed interface, with each tab dedicated to a specific AM variant.

2 Functioning Logic

The software operates through a user-driven workflow:

- 1. **Parameter Configuration**: Users input signal parameters (e.g., carrier frequency f_c , message frequency f_m , modulation index m) via the ControlPanel.
- 2. Signal Generation: The AMSignal class generates the message and carrier signals based on user inputs. For a sinusoidal message signal $m(t) = A_m \cos(2\pi f_m t)$ and carrier $c(t) = A_c \cos(2\pi f_c t)$, the modulated signal is computed according to the AM variant.
- 3. **Modulation**: The ModulationAndDemodulation class applies the appropriate modulation technique (e.g., DSB-AM: $s(t) = A_c[1 + m \cdot m(t)]\cos(2\pi f_c t)$).
- 4. **Demodulation**: Demodulation is performed (e.g., envelope detection for DSB-AM) to recover the message signal.
- 5. **Visualization**: The SignalPlotPanel displays time-domain signals and frequency spectra, while SpectrumAnalysisFFT provides dynamic FFT analysis.
- 6. **Analysis**: THD and SNR are computed and visualized using dedicated modules.
- 7. **Export**: Users can export signal data to CSV files via DataExporter.

3 Simulation and Modeling

The simulation is based on discrete-time signal processing, with signals sampled at a rate f_s (default: 100 kHz) to ensure Nyquist compliance $(f_s \ge 2 \cdot \max(f_c, f_m))$. The AMSignal class models signals as arrays of doubles, representing sampled values over a time interval T.

3.1 Time-Domain Simulation

The TimeDomainSimulationWindow animates signal propagation in real time, updating the display at a fixed frame rate (e.g., 60 FPS). The simulation loop:

- Generates signal samples for the current time window.
- Updates the modulated and demodulated signals.
- Renders the signals on a canvas using SignalPlotPanel.

3.2 Frequency-Domain Modeling

Frequency-domain analysis is performed using FFT, implemented in SpectrumAnalysisFFT. The FFT transforms the time-domain signal x[n] into its frequency components X[k]:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$

where N is the number of samples. The resulting spectrum is visualized with amplitude (dB) versus frequency (Hz).

4 Utilization of Algorithms

The software employs several algorithms for signal processing and analysis:

4.1 Fast Fourier Transform (FFT)

The FFT algorithm (Cooley-Tukey) is used for efficient spectrum computation. The SpectrumAnalysisFFT class:

- Samples the signal over a window of N points.
- Applies a Hamming window to reduce spectral leakage.
- Computes the FFT to obtain the frequency spectrum.
- Updates the spectrum display dynamically.

4.2 Modulation Algorithms

The ModulationAndDemodulation class implements modulation for each AM variant:

- **DSB-AM**: $s(t) = A_c[1 + m \cdot m(t)] \cos(2\pi f_c t)$.
- **DSB-SC**: $s(t) = A_c \cdot m(t) \cos(2\pi f_c t)$.
- SSB: Filters one sideband using a Hilbert transform-based approach.
- VSB: Retains a vestige of one sideband using a bandpass filter.
- QAM: Combines two modulated signals in quadrature: $s(t) = I(t)\cos(2\pi f_c t) + Q(t)\sin(2\pi f_c t)$.

4.3 Demodulation Algorithms

Demodulation techniques include:

- Envelope Detection (DSB-AM): Applies a rectifier and low-pass filter to extract m(t).
- **Coherent Detection** (DSB-SC, SSB): Multiplies the received signal by a synchronized carrier and filters the result.

• QAM Demodulation: Uses two coherent detectors for in-phase (I) and quadrature (Q) components.

4.4 Noise Addition

Gaussian noise is added to simulate real-world conditions, with variance controlled by the SNR parameter. The noise is generated using a random number generator and added to the modulated signal.

5 Physics Models

The software is grounded in the physics of electromagnetic wave modulation:

5.1 Signal Representation

Signals are modeled as continuous-time functions sampled discretely. The message signal m(t) is typically a low-frequency sinusoid, while the carrier c(t) is a high-frequency sinusoid. The modulated signal s(t) combines these according to the AM variant.

5.2 Frequency Spectrum

The frequency spectrum of an AM signal is derived from its Fourier transform. For DSB-AM, the spectrum includes:

$$S(f) = \frac{A_c}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right] + \frac{mA_c}{2} \left[M(f - f_c) + M(f + f_c) \right]$$

where M(f) is the message spectrum, and $\delta(f)$ represents the carrier impulses.

5.3 Total Harmonic Distortion (THD)

THD is computed as the ratio of the power of harmonic components to the fundamental frequency:

$$\text{THD} = \sqrt{\frac{\sum_{n=2}^{\infty} P_n}{P_1}}$$

where P_n is the power of the n-th harmonic, extracted via FFT.

5.4 Signal-to-Noise Ratio (SNR)

SNR is calculated as:

SNR (dB) =
$$10 \log_{10} \left(\frac{P_{\text{signal}}}{P_{\text{noise}}} \right)$$

where P_{signal} and P_{noise} are the signal and noise powers, respectively, computed from the FFT spectrum.