

Problem statement for the Test Round, March 27th, 2015

Pizza Regina

CC-BY-SA, Valerio Capello

Introduction Task

Pizza

Ultimate slice

Goal

Input data

Example

Submissions

File format

Example

Validation

Scoring

Introduction

The Chef has prepared a huge Pizza Regina for tonight, with tomatoes, mozzarella, ham and mushrooms. As we all know, in order to be not only tasty and appealing, but also *inspiring*, a slice of Pizza Regina has to meet strict constraints on the proportions of individual ingredients.

Task

Given the constraints on the desired amount of individual ingredients in a slice and the layout of the pizza, cut slices out of the pizza. Aim to cut out as much pizza as possible to minimize waste.

Pizza

The pizza is represented as a rectangular, 2-dimensional grid of R rows and C columns. The cells within the grid are referenced using a pair of 0-based coordinates [r, c], denoting respectively the row and the column of the cell.

Each cell of the pizza contains either:

- ham, represented in the input file as H; or
- any combination of mushroom, mozzarella and tomatoes; represented in the input file as T

Ultimate slice

Slice of pizza is a rectangular, contiguous subset if its cells delimited by two rows and two columns. Ultimate slice is a slice that contains at least **H** cells of ham and at most **S** cells in total - surprising as it is, there is such a thing as too much pizza in one slice.

Goal

The task is to cut non-overlapping ultimate slices out of the pizza, cutting out as many cells as possible.

Input data

The input data is provided in a plain text file containing exclusively ASCII characters with lines terminated with a single '\n' character at the end of each line (UNIX-style line endings).

The file consists of:

- one line containing the following natural numbers separated by single spaces:
 - R $(1 \le R \le 1000)$ denotes the number of rows,
 - C ($1 \le C \le 1000$) denotes the number of columns,
 - \circ **H** $(1 \le H \le 1000)$ denotes the minimum number of ham cells in an ultimate slice
 - \circ **S** $(1 \le S \le 1000)$ denotes the maximum total number of cells of an ultimate slice
- **R** lines describing the layout of individual, subsequent rows of the pizza. Each of these lines contains **C** characters describing the content of the individual, subsequent cells of the row. The i-th character will be either 'H' (for ham) or 'T' (for other ingredient), as described above.

Example

An example input file could look as follows.

3 5 1 6	3 rows, 5 columns, 1 ham per slice minimum, max 6 cells
TTTTT	per slice.
ТНННТ	
TTTTT	

Example input file.

Submissions

File format

A submission file has to be a plain text file containing exclusively ASCII characters with lines terminated with either a single '\n' character at the end of each line (UNIX-style line endings) or '\r\n' characters at the end of each line (Windows-style line endings).

The file has to consist of:

• one line containing a single natural number *U*, representing the total number of ultimate slices to be cut out.

- *U* lines describing the subsequent slices. Each of these lines has to contain the following natural numbers separated by single spaces:
 - o r_1 , c_1 , r_2 , c_2 ($0 \le r_1$, $r_2 < R$, $0 \le c_1$, $c_2 < C$) denote a slice of pizza delimited by the rows r_1 and r_2 and the columns c_1 and c_2 , including the cells of the delimiting rows and columns. Delimiting rows (r_1 and r_2) can be given in any order. Delimiting columns (c_1 and c_2) can be given in any order too.

Example

The following example submission file corresponds to the example input file presented above.

3	3 slices.
	First slice between rows (0,2) and columns (0,1).
0 2 2 2	Second slice between rows (0,2) and columns (2,2).
0 3 2 4	Third slice between rows (0,2) and columns (3,4).

Example submission file.

Slices described in the example submission file marked in green, orange and purple.

Validation

For the solution to be accepted, it has to meet the following criteria:

- the format of the file has to match the description above,
- each cell of the pizza has to be included in at most one slice,
- each slice has to contain at least **H** cells of ham,
- total area of each slice has to be lower or equal to S

Scoring

The solution will get a score equal to the total number of cells in all slices cut out of the pizza.