به نام انکه جان را فکرت اموخت

بخش نهم: عملیات در پایگاه داده رابطهای

مرتضى اميني

نیمسال اول ۱۴۰۲–۱۴۰۱

(محتویات اسلایدها برگرفته از یادداشتهای کلاسی استاد محمدتقی روحانی رانکوهی است.)

یاد آوری: مدل دادهای

بخش نهم: عملیات در پایگاه داده رابطهای

رابطه مبنا رابطه مجازی (دید) رابطه موقت جبر رابطهای - امکانات عملیاتی حساب رابطهای رابطه لحظهای (Snapshot) رابطه مشتق (رابطه روی رابطههای دیگر) رابطه که انواع دارد و مفاهیم مرتبط با آن دامنه تاپل کلید صفت

UNION - اجتماع اشتراک - INTERSECT ۔ عملگرهای متعارف ۔ $R_1 \ op \ R_2$ عملگرهای دو عملوندی - عملگرهای تفاضل - MINUS $op \in \{ \cup, \cap, , -, \times \}$ ضرب کارتزین - TIMES 🗕 عملگرها RESTRICT – گزینش یا تحدید عملگرهای خاص - پرتو یا تصویر - PROJECT پيوند يا الصاق - JOIN

عملكرهاي متعارف جبر رابطهاي

بخش نهم: عملیات در پایگاه داده رابطهای

- خاصیت بسته بودن: حاصل ارزیابی هر عبارت جبر رابطهای معتبر، باز هم یک رابطه است (که تاپل
 تکراری ندارد).
 - باشند: Type Compatible) باشند: \square برای **سه عملگر** \square \square باید عملوندها نوع–سازگار
- \Box پیش شرط: $H_{R_1} = H_{R_2}$
- \square $R_3 = R_1 \ op \ R_2 \longrightarrow H_{R_3} = H_{R_1} = H_{R_2} \qquad op \in \{\cup, \cap, -\}$
 - 🖵 بدنه نتیجه، حاصل انجام هر یک از اَعمال اجتماع، اشتراک و یا تفاضل دو مجموعه بدنه است.
 - □ در عملگر ضرب کارتزین (TIMES):
 - $H_{R_2} \cap H_{R_1} = \emptyset$ سرط: در عنوان دو رابطه نباید صفت همنام وجود داشته باشد. \square
- عنوان رابطه نتیجه برابر است با $H_{R_2} \cup H_{R_1}$ و بدنه نتیجه برابر ضرب کارتزین دو مجموعه بدنه است.
 - SQL در SQL چگونه شبیهسازی میشود؟

یک عبارت بولی (منطقی) تشکیل شده از شرطهای $(A_i theta literal)$ یا $(A_i theta A_i)$ ساده به صورت \leftarrow شرط یا شرایط گزینش که در آن theta یکی از عملگرهای =، \neq ، >، <، \geq و \leq است و literal یک مقدار ثابت است.

□ عملگر گزینش یا تحدید – RESTRICT

🖵 نماد ریاضی: σ

 R WHERE c یا $\sigma_\mathsf{c}(\mathsf{R})$ **RESTRICT** R WHERE c

- ☐ تک عملوندی: Monadic
- 🖵 **عملکرد** (در نمایش جدولی رابطه): زیرمجموعهای افقی میدهد. ـــــــ عملگر تایل(ها)یاب

عملگر گزینش (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

مشخصات کامل دانشجویان رشته فیزیک دوره کارشناسی را بدهید.

$$\sigma_{STJ='phys' \wedge STL='bs'}(STT)$$

SELECT STT.*

FROM STT

WHERE STJ='phys' AND STL='bs'

وقتی در شرط C (یا کلاز WHERE) بخشی از کلید را با شرط تساوی داده باشیم.

 CK_{R} , $\subseteq \mathrm{CK}_{\mathrm{R}}$. باشد آنگاه $\mathrm{R}' = \sigma_{\mathrm{c}}(\mathrm{R})$ اگر

عملكر كزينش (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

عملگر گزینش جابجاییپذیر است، یعنی:

$$\sigma_{c1}(\sigma_{c2}(R)) = \sigma_{c2}(\sigma_{c1}(R)) = \sigma_{c1 \wedge c2}(R)$$

🗖 عبارتهای جبری معادل:

R WHERE $(C_1 \text{ AND } C_2) \equiv (R \text{ WHERE } C_1) \text{ INTERSECT } (R \text{ WHERE } C_2) \square$

R WHERE $(C_1 \text{ OR } C_2) \equiv (R \text{ WHERE } C_1) \text{ UNION } (R \text{ WHERE } C_2) \square$

R WHERE NOT $C \equiv R MINUS (R WHERE C)$

- □ عملگر پرتو PROJECT
 - 🗖 نماد رياضي: Π
- PROJECT R OVER (L) يا $\Pi_{\langle L \rangle}(R)$ يا $\Pi_{\langle L \rangle}(R)$ شكل كلى: $\Pi_{\langle L \rangle}(R)$ يا $\Pi_{\langle L \rangle}(R)$
 - \square تک عملوندی: Monodic
- 🖵 عملکرد (در نمایش جدولی رابطه): زیرمجموعه عمودی میدهد. 🚤 عملگر ستون(ها)یاب

عملگر پرتو (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

عملگر پرتو تکراریها را حذف می کند. \longrightarrow چون جواب رابطه است، پس یک مجموعه است و عضو \Box تکراری ندارد.

 $\Pi_{\langle STID,STJ \rangle}(STT)$

SELECT STID, STJ FROM STT

$$R := \Pi_{\langle STID \rangle}(STT) - \Pi_{\langle STID \rangle}(STCOT)$$

$$\Pi_{\langle STID,STL \rangle} (\sigma_{STJ='IT'}(STT))$$

عملگر پرتو (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

- اگر $\Pi_{(L)}(R)=\Pi_{(L)}(R)$ باشد آنگاه:
- CK_{R} , $= \mathsf{CK}_{\mathsf{R}}$ آنگاه $\mathsf{CK}_{\mathsf{R}} \subseteq \mathsf{L}$ اگر \square
 - \square اگر نه در بدترین حالت \square

$$.\mathsf{CK}_{\mathsf{R'}}=$$
 اگر $p\in\{\mathsf{U}\,,\cap\,,,-, imes\}$ و $\mathsf{R'}=\mathsf{R}_1\ op\ \mathsf{R}_2$ آنگاه $\mathsf{R'}=\mathsf{R}_1$

است. SELECT در SQL استاندارد، در حالت کلی ترکیبی از دو عملگر RESTRICT و PROJECT است.

عملكر پرتو كسترش يافته

بخش نهم: عملیات در پایگاه داده رابطهای

- عملگر پرتو گسترش یافته EXTENDED PROJECT
 - 🗖 نماد ریاضی: Π
 - $\Pi_{\langle F1,F2,...,Fn
 angle}(R)$ شكل كلى: \square

→ لیست صفات و یا توابع حسابی پرتو

🖵 این عملگر امکان میدهد تا در لیست صفات پرتو، از توابع حسابی استفاده شود و صفت (صفاتی) با

مقادیر حاصل از اجرای تابع (توابع) در رابطه جواب داشت.

رابطهای با صفات شماره دانشجو، شماره درس و نمره دانشجو در درس، تغییریافته با فرمول

:=1.2*GRADE بدهید.

 $\Pi_{\text{(STID, COID, (1.2*GRADE) RENAME AS G)}}(STCOT)$

- RENAME عملگر تغییر نام
 - 📮 نماد رياضي: ρ
 - $ho_{ extbf{R}}(extbf{E})$ شکل کلی: $f \Box$

- 🖵 این عملگر برای نامیدن رابطه حاصل از یک عبارت جبر رابطهای به کار میرود.
- ابرمی گرداند. $P_R(E)$ عملکرد: $\rho_R(E)$ رابطه حاصل از عبارت جبر رابطه $\rho_R(E)$ برمی گرداند.
- 🖵 از عملگر RENAME برای دگرنامی صفت هم میتوان استفاده کرد (مشابه آنچه در مثال اسلاید قبل

آمد). مثلاً با دستور B_j داده می شود. A_i به صفت A_i از A_i نام دیگر واده می شود.

عملگر پیوند (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

چون نتیجه JOIN رابطه است و در headingاش صفت تکراری نباید وجود داشته باشد.

- □ نکته: اگر صفات پیوند همنام باشند، حداقل یکی را باید دگرنامی کرد (به دلیل وجود این راه حل، حساسیتی در وجود صفت مشترک نداریم).
- در حالت کلی شرط پیوند می تواند به صورت زیر باشد که در آن c_n ...، c_1 قالب بالا (قالب شرط ساده c_n در حالت کلی شرط پیوند می تواند به صورت زیر باشد که در آن c_n خالب بالا (قالب شرط ساده c_n در حالت کلی شرط پیوند) را دارند.

مشخصات کامل جفت تهیه کننده -قطعه از یک شهر را بدهید.

$R_1 := S \bowtie_{S.CITY=P.PCITY} (P RENAME CITY AS PCITY)$

S ((S#, SNAME, S	STATUS, CITY)	P (<u>P#</u> ,	, W,	CITY)
	S1	C1	P1	5	C1
	S2	C2	P2	6	C2
	S3	C3	P3	4	C1
	S4	C4	P4	7	C4
	S5	C5	P5	10	C5
	S6	C6			

R_1 (S#, ..., CITY, P#, ..., W, PCITY)

S 1	C1	P1	5	C1
S 1	C1	P3	4	C1
S1 S2	C2	P2	6	C2
S3	تاپل پیوندشدنی ندارد.			
S4	C4	P4	7	C4
S4 S5 S6	C5	P5	10	C5
S6	تایل پیوندشدنی ندارد.			

$$R_3 = R_1 \bowtie_C R_2$$
 عملکرد:

$$H_{R_3} = H_{R_1} \cup H_{R_2}$$

در بدنه R_3 تاپلهای پیوندشدنی از دو رابطه قرار دارند. lacktriangle

🖵 خصوصیات:

• $R_1 \bowtie_C R_2 = \sigma_C(R_1 \times R_2)$ در حالت عمومی، زیرمجموعهای افقی از $R_1 \bowtie_C R_2 = \sigma_C(R_1 \times R_2)$ ضرب کارتزین است که در آن تاپلهایی از حاصلضرب که حائز شرط پیوند هستند حضور دارند.

 \sim وقتی در شرط پیوند، تساوی بخشی از کلید هر دو رابطه را داده باشیم.

 $\mathsf{CK}_{\mathsf{R}'} \subseteq \mathsf{CK}_{R_1} \mathsf{U} \; \mathsf{CK}_{R_2}$ باشد، آنگاه $\mathsf{R}' = \mathsf{R}_1 \bowtie_\mathsf{C} \mathsf{R}_2$ اگر

در عمل: دستور INNER JOIN در SQL ، پیادهسازی این نوع از پیوند است.

گونههای خاص عملگر پیوند - پیوند طبیعی

بخش نهم: عملیات در پایگاه داده رابطهای

(Natural Join) پیوند طبیعی

🖵 گونهای از پیوند است که دو ویژگی دارد:

=:Theta -

۲- صفات پیوند یک بار در جواب می آیند. (صفت یا صفات پیوند باید همنام هم باشند.)

R_2 (S#,, CITY, Page 1977)	#,, W)
------------------------------	----------------

S1	C1	P1	5
S1 S1 S2 S4 S5	C1	P3	4
S2	C2	P2	6
S4	C4	P4	7
S5	C5	P5	10

گونههای خاص عملگر پیوند - پیوند طبیعی (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

در **پیوند طبیعی**، پیوند روی تساوی مقادیر تمام صفات مشترک انجام میشود.

 $R_1: (A, B, C)$

 R_2 : (A, F, C)

 $R' = R_1 \bowtie R_2$

R': (A, B, C, F)

 $R_1 \bowtie R_2 = R_1 \times R_2$ اگر ه $H_{R_1} \cap H_{R_2} = \emptyset$ اگر ا

 $R_1\bowtie R_2=R_1\cap R_2$ اگر $H_{R_1}=H_{R_2}$ ، آنگاه \square

در عمل: دستور NATURAL JOIN در SQL، پیادهسازی این نوع از پیوند است که پیوند را روی همه صفات مشترک انجام می دهد.

گونههای خاص عملگر پیوند - نیمپیوند

بخش نهم: عملیات در پایگاه داده رابطهای

- (Semijoin) نيم پيوند
- 🖵 در شکل عمومی با هر Theta نوشته میشود.
- $R_3 \coloneqq R_1 \ltimes_{\mathbb{C}} R_2 = \Pi_{\langle H_{R_1} \rangle}(R_1 \bowtie_{\mathbb{C}} R_2)$ مدل ریاضی: \square
 - □ عملکرد:
 - $H_{R_3} = H_{R_1}$
 - در بدنه R_3 : تاپلهای پیوند شدنی از رابطه چپ

گونههای خاص عملگر پیوند - نیمپیوند (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

 $R_3 := S \ltimes_{S.CITY=P.PCITY} (P RENAME CITY AS PCITY)$

R_3 (S#,, CITY)	R_3	(S#,	,	CITY)
-------------------	-------	------	---	-------

S1	C1
S2	C2
S4	C4
S5	C5

کاربرد این عملگر چیست؟

گونههای خاص عملگر پیوند - برونپیوند

بخش نهم: عملیات در پایگاه داده رابطهای

(Outer Join) برون پیوند

- □ Theta هر چيزې مي تواند باشد.
 - 🖵 سه گونه دارد:

 \bowtie_{C} Left O. J. -1

№_C Right O. J. -۲

™_C Full O. J. -۳

 $: R_4 \coloneqq R_1 \boxtimes_{\mathbb{C}} R_2$ عملکرد \square

 $H_{R_4} = H_{R_1} \cup H_{R_2} \quad \blacksquare$

در بدنه R_4 : تاپلهای پیوند شدنی از دو رابطه و lacktriangle

تاپلهایهای پیوندناشدنی از رابطه چپ گسترشیافته با هیچمقدار (Null Value)

در عمل: دستور SQL در عمل: دستور LEFT/RIGHT/FULL OUTER JOIN در عمل دستور \Box

گونههای خاص عملگر پیوند - برونپیوند (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

- 4	(511,,	CIII,	±,	••••	•••
	S1	C1	P1		5
	S1	C1	P3		4
	S2	C2	P2		6
	S4	C4	P4		7
	S5	C5	P5_		10
	S3	С3	?		?
	S6	C6	?		?

 R_4 (S#, ..., CITY, P#, ..., W)

.Outer Join مشكل ي

۲- مصرف حافظه زیاد

این عملگرها در عمل چه کاربردی دارند؟

- (Semi Minus) نيم تفريق
- R_1 **SEMIMINUS** $R_2 = R_1$ **MINUS** $(R_1$ **SEMIJOIN** $R_2)$
 - عملكرد 🖵
 - $H_{R_5} = H_{R_1}$
 - در بدنه R_5 : تاپلهای پیوند نشدنی از رابطه چپ

🔲 عملگر تقسیم (Divide)

 $R_3(X) := R_1(X,Y) \div R_2(Y) \longrightarrow H_{R_2} \subseteq H_{R_1}$

🗖 عملكرد:

🖵 شرط عمل:

$$H_{R_3} = X = H_{R_1} - H_{R_2} - Y$$

 R_{2} از R_{3} باشند. R_{3} در بدنه R_{3} : بخش X از تاپلهایی از R_{1} که حاوی تمام مقادیر X از X

عملگر تقسیم (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

 $R_1 (S\#, P\#) \div R_2(P\#) = R_2(S\#)$

لیست تولیدکنندگانی که همه انواع قطعات را تولید کردهاند.

1	(5#,	Ι#) -	$-\mathbf{K}_{2}(\Gamma +)$	N ₃ (S#)
	S1	P1	P1	S1
	S1	P2	P2	
	S1	P3	P3	
	S2	P1		
	S2	P2		
	S3	P1		

 $R_1(S\#, P\#) \div R_4(P\#) = R_5(S\#)$

1	(5#,	1#) -	K ₄ (1 #) =	N5(5#)
	S1	P1	P1	S 1
	S1	P2	P2	S2
	S1	P3		
	S2	P1		
	S2	P2		
	S3	P1		

عملگر تقسیم (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

- □ ضرب و تقسیم جبر رابطهای لزوماً عکس هم نیستند.STNAME
- □ تمرین: لیست نام دانشجویانی که همه دروس عملی دانشکده کامپیوتر را با موفقیت گذراندهاند.

 $R := \Pi_{\langle STNAME \rangle}(STT \bowtie (\sigma_{Grade \geq 10}(\Pi_{\langle STID,COID \rangle}(STCOT)) \div \Pi_{\langle COID \rangle}(\sigma_{Type = 'p' \land Dept = 'CE'}(COT))))$

- تمرین: عملگر تقسیم را در SQL شبیهسازی کنید.
- 🗖 تمرین: Q3 و Q4 (صفحه 3-A از یادداشتهای تکمیلی سری II) را بدون استفاده از عملگر DIVIDE بنویسید.

عملكر كسترش

بخش نهم: عملیات در پایگاه داده رابطهای

🗖 عملگر گسترش – EXTEND

🖵 صفت یا صفاتی را به عنوان (heading) یک رابطه اضافه می کند. حاصل، رابطه دیگری است.

EXTEND STUD ADD STADDRESS

STUD (STID, ..., STD, STADDRESS)

□ در SQL با ALTER TABLE پیادهسازی شده ولی ALTER ستون(هایی) را به همان جدول اضافه میکند.

🖵 با این عملگر می توانیم یک ستون محاسبه شدنی به رابطه اضافه نماییم.

🗖 عملگر تلخيص – SUMMARIZE

- تایلهای رابطه را گروهبندی می کند به نحوی که مقدار صفت (صفات) گروهبندی در هر گروه یکسان \Box باشد؛ معمولاً با یک یا چند تابع جمعی استفاده میشود.
 - 🖵 این عملگردر SQL با GROUP BY پیادهسازی شده است.

SUMMARIZE STCOT BY (STID) ADD AVG(GRADE) AS AVER

- 🖵 برای این پرسشها، اول عنوان (Heading) رابطه جواب را تعیین می کنیم.
- به جای AVG می توانیم از توابع جمع و یا گروهی دیگر مانند MIN (حداقل)، MAX (حداکثر)، SUM (جمع) و یا COUNT (شمارشگر تایلها) استفاده کنیم.

عملیات ذخیرهسازی با جبر رابطهای

بخش نهم: عملیات در پایگاه داده رابطهای

🔲 از لحاظ تئوریک می توان عملیات ذخیره سازی را هم با عملگرهای جبر رابطه ای انجام داد.

عملگر	عمل
U	درج
_	حذف
اول _ بعد ∪	بههنگامسازی

- 🗖 مقایسه دو رابطه
- $(H_{R_2}=H_{R_1})$ دو رابطه R_1 و R_2 مقایسه شدنی (قابل قیاس) هستند، هر گاه نوع-سازگار باشند R_2
- در مقایسه رابطه R_1 با بدنه R_1 با بدنه R_2 مقایسه میشود از نظر هم مجموعگی، زیرمجموعگی و زبرمجموعگی و زبرمجموعگی

$$\Pi_{\langle STID \rangle}(STT) * \Pi_{\langle STID \rangle}(SCR)$$

$$* \in \{\subset, \supset, \subseteq, \supseteq, =, \neq\}$$

- پاسخ عمل مقایسه: یا T یا F. به طور مثال در رابطه فوق: \Box
- اگر \subset باشد، پاسخ T است اگر حداقل یک دانشجو باشد که درسی انتخاب نکرده باشد. \Box
- اگر \supset باشد، پاسخ T است اگر حداقل در یک عمل ذخیرهسازی در این DB قاعده جامعیت C2 رعایت نشده باشد (حذف از دانشجو و یا درج در انتخاب درس).

کامل بودگی جبر رابطهای

بخش نهم: عملیات در پایگاه داده رابطهای

- □ جبر رابطهای **زبانی** است از نظر رابطهای کامل (Relational Completeness) یعنی هر رابطه معتبر متصور از مجموعه رابطههای ممکن را می توان به کمک یک عبارت جبر رابطهای بیان کرد.
 - 🗖 جبر رابطهای ضابطه تشخیص کامل بودن زبانهای رابطهای است.
- □ اگر هر رابطهای را که با جبر رابطهای میتوان نشان داد، با زبانی مدعی کامل بودن رابطهای بتوان نشان داد، آن زبان از نظر رابطهای کامل است.

🗖 کاربردهای جبر رابطهای:

- 🖵 عملیات بازیابی
- 🖵 عملیات ذخیرهسازی
- SQL تعریف انواع رابطههای مشتق (رابطه مجازی، لحظهای و ...) مثال: تعریف دید (View) در
 - \coprod

مباحث تکمیلی در جبر رابطهای

بخش نهم: عملیات در پایگاه داده رابطهای

- 🖵 برای نوشتن یک پرسش (Query)، اصولا به ترتیب زیر باید مشخص کنیم که:
 - ۱- از چه رابطههایی استفاده کنیم.
 - ۲- از چه عملگرهایی استفاده کنیم (حتی الامکان با کمترین تعداد عملگر)
 - ۳- چه ترتیبی از عملگرها را استفاده کنیم.

A-1 مثالهایی از کاربرد جبر رابطهای را در عملیات در RDB (در یادداشتهای تکمیلی سری II) (صفحه \square و \square \square) مطالعه نمایید.

- □ **حساب رابطهای** شاخهای است از منطق ریاضی، منطق مسندات.
- □ حساب رابطهای و جبر رابطهای معادلند. یعنی هر رابطهای را که بتوان با یک عبارت جبر رابطهای نوشت، میتوان با عبارتی از حساب رابطهای هم نوشت و برعکس.
 - حساب رابطهای حالت توصیفی دارد ولی جبر رابطهای حالت دستوری دارد. \Box

♦ Prospective

Descriptive

دستورات عملیاتی به سیستم میدهیم.

به کمک عبارات منطقی، شرایط ناظر

به رابطه را برای سیستم توصیف می کنیم.

🗖 حساب رابطهای هم ضابطه تشخیص زبانهای رابطهای کامل است.

حساب رابطهای - متغیرتاپلی

بخش نهم: عملیات در پایگاه داده رابطهای

🗖 متغير تاپلي (Tuple Variable) يا متغير طيفي (Range Variable):

🗖 متغیری است که مقادیر آن تاپلهای یک رابطه است (هر لحظه یک تاپل).

RANGVAR SX RANGES OVER S;

RANGVAR PX **RANGES OVER** P;

RANGVAR SPX RANGES OVER SP;

حساب رابطهای - سورها

بخش نهم: عملیات در پایگاه داده رابطهای

Quantifiers) سورها

- سور وجودی (EXISTS X (F) حداقل یک مقدار برای متغیر X وجود دارد به نحوی که به ازای آن، فرمول F به درست ارزیابی شود.
- سور همگانی (عمومی) FOR ALL X (F)؛ به ازای تمام مقادیر متغیر X، فرمول F به درست ارزیابی می شود.

حاصل ارزیابی: FALSE حاصل ارزیابی

حساب رابطهای - سورها (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

- **یادآوری:** بین این دو سور روابط زیر وجود دارد.
- FOR ALL X(F) = NOT EXISTS X(NOT F)
- EXISTS X(F) = NOT(FORALL(X(NOT(F)))
- FORALL $X(F) \Rightarrow EXISTS X(F)$
- NOT EXISTS $X(F) \Rightarrow NOT FORALL X(F)$

بر اساس روابط فوق می توان روابط پیچیده دیگری را نیز استنباط کرد مانند روابط هم ارزی زیر: \Box

FORALL X (FAND G) = NOT EXISTS X (NOT(F) OR NOT(G))

FORALL X (F OR G) = NOT EXISTS X (NOT(F) AND NOT(G))

EXISTS X (F OR G) = NOT FORALL X (NOT(F) AND NOT(G))

EXISTS X (F AND G) = NOT FORALL X (NOT(F) OR NOT(G))

حساب رابطهای - فرمول خوشساخت

بخش نهم: عملیات در پایگاه داده رابطهای

کر کوش ساخت (WFF) به صورت زیر تعریف می شود: ایر تعریف می شود:

- اگر R یک رابطه و T یک تاپل یا متغیر تاپلی تعریف شده روی R باشد، آنگاه R(T) یک فرمول اتمی است. [(T)] یعنی، T یک عنصر (تاپلی) از R است. R(T)
- اگر T_i یک متغیر تاپلی روی رابطه R و R یک صفت از R باشد و T_i یک متغیر تاپلی بر روی S و S یک اگر T_i صفت از S باشد، آنگاه $T_i.A$ theta $T_j.B$ یک فرمول اتمی است (theta یک از عملگرهای متعارف مقایسهای است).
- یک مقدار ثابت است، فرمول اتمی هستند. C_i theta C_2 و C_1 theta C_2 و C_1 theta C_2 و C_1 theta C_2 انیز که در آن C_1 در آن C_1 در آن C_1 در آن C_2 در آن C_2 در آن C_1 در آن C_2 د
 - اگر F_1 و F_2 فرمول باشند، آنگاه F_1 AND F_2)، F_1 OR F_2)، اگر F_2 فرمول باشند، انگاه G_1
 - اگر F یک فرمول و T یک متغیر تاپلی باشد، آنگاه $EXISTS\ T(F)$ و $FORALL\ T(F)$ نیز فرمول هستند.

حساب رابطهای - عبارت حساب رابطهای

بخش نهم: عملیات در پایگاه داده رابطهای

اگر X (Y و ...) متغیرتاپلی روی رابطه $R(A_1,A_2,...,A_n)$ و ...) باشد در اینصورت شکل کلی

عبارت حساب رابطهای بدین صورت است (target-items) [WHERE F]

که در آن target-items فهرستی از صفات متغیر تاپلی X (و Y و ...) به صورت $X.A_1,\ X.A_2,\ ...,\ X.A_n$ فهرستی از صفات متغیر تاپلی X (و Y و ...) و Y و ...) و Y یک فرمول خوشساخت است.

در واقع عبارت حساب رابطهای توصیف کننده مجموعه تاپلهایی است که شرایط ${f F}$ را ارضا مینمایند.

شماره تمام دانشجویان در رابطه STX.STID

- شماره دانشجویان گروه آموزشی D11 °STX.STID **WHERE** STX.STDEID='D11' D11
- □ (STX.STID, STX.STL) **WHERE EXISTS** STCOX (STX.STID=STCOX.STID **AND** STCOX.COID='COM11')

شماره دانشجویی و مقطع تحصیلی آنهایی که درس COM11 را انتخاب کردهاند.

حساب رابطهای - عبارت حساب رابطهای (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

ماره همه تهیه کنندگان

□ SX.S#

□ SX.SNAME WHERE SX.CITY='C2' AND SX.STATUS> 15

نام تهیه کنندگانی که حداقل یک قطعه آبیرنگ تهیه کردهاند.

نام جفت تهیه کنندگانی که در یک شهر بوده و حداقل یک قطعه مشترک تولید کردهاند.

SX.SNAME, SY.SNAME WHERE SX.CITY=SY.CITY AND NOT (SX.S#=SY.S#)

AND EXISTS SPX (EXISTS SPY SPX.S#=SX.S# AND

SPY.S#=SY.S# AND SPX.P#=SPY.P#)

حساب رابطهای - عبارت حساب رابطهای (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

عنوان درسهای را بدهید که که تمام دانشجویان رشته کامپیوتر در ترم دوم ۹۸–۹۹ در آنها قبول

شدهاند.

□ COX.TITLE WHERE FORALL STX (NOT STX.STJ='CE' OR

EXISTS STCOX (STCOX.STID=STX.STID AND STCOX.COID=COX.COID AND

STCOX.YR='98-99' AND STCOX.TR='2' AND STCOX.GRADE>=10))

مثالهای بیشتر در کتابهای مرجع و یادداشتهای تکمیلی سری II.

amini@sharif.edu