Module Code: CSMDS Assignment report Title: Analysing and Predicting Traffic Flow Using Regression and Time Series Model Student Number: 32824514 Actual hrs spent for the assignment: 40h Which Artificial Intelligence tools used (if applicable): ChatGPT

Table of Contents

- Preparation
 - Importing Packages
 - Hot Loading .py File
- Data Decoding and Pre-processing
 - Data Decoding and Pre-processing for weather data
 - Overview for weather data
 - Data Decoding, Data Cleaning and Data Transformation for weather data
 - Pre-processing for traffic data
 - Overview for traffic data
 - Data Cleaning and Data Transformation for traffic data
 - Resample traffic data
 - Resample weather data
- Exploratory Data Analysis
 - Trends of Traffic Flow
 - Decomposition of Traffic Flow
 - Decomposition of Traffic Flow by Hours
 - Decomposition of Traffic Flow by Days
- Feature Selection and Engineering
 - Correlation Analysis
 - Feature Selection
 - Separate training and testing datasets
- Model Implementation
 - Regression Model
 - LinearRegression Model
 - Lasso Regression Model
 - Time Series Model
 - Holt-Winters Exponential Smoothing Model
 - SARIMAX Model
- Model Evaluation and Comparison
 - Metrics for Evaluating the Models' Performance
 - Cross Validation
 - Cross Validation for Linear Regression Model
 - Cross Validation for Lasso Regression Model
 - Cross Validation for Holt-Winters Exponential Smoothing Model
 - Cross Validation for SARIMAX Model
 - Visualize Predicting Results of Models
- References

Preparation

Import libraries

To import the required libraries for whole project.

```
In [1]:
       # import the build-in required libraries
        import importlib # for hot-loaded .py file
        import os
        import warnings
        # import the third-part required libraries
        import matplotlib
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        import pmdarima
        import seaborn as sns
        import sklearn
        from sklearn.linear_model import Lasso, LassoCV
        from sklearn.model selection import KFold, cross val score # Import tools for cr
        from sklearn.preprocessing import MinMaxScaler # for normalization
        import statsmodels
        import statsmodels.api as sm
        from statsmodels.tsa.holtwinters import ExponentialSmoothing
        from statsmodels.tsa.seasonal import STL
        from statsmodels.tsa.statespace.sarimax import SARIMAX
        # To ignore the future behavior of pandas
        pd.set_option('future.no_silent_downcasting', True)
        # To ingore the convergenceWarning
        warnings.simplefilter('ignore', statsmodels.tools.sm_exceptions.ConvergenceWarni
        # check the versions of third-part libraries
        print(f'matplotlib: {matplotlib.__version__}, numpy: {np.__version__}, pandas: {
        print(f'seaborn: {sns.__version__}, sklearn: {sklearn.__version__}, statsmodels:
       matplotlib: 3.8.4, numpy: 1.26.4, pandas: 2.2.2, pmdarima: 2.0.4
       seaborn: 0.13.2, sklearn: 1.4.2, statsmodels: 0.14.2
```

Hot Loading .py File

Here is to import custom .py file. It can be hot-loaded, just re-run the following cell.

Documentation comments are provided for each public function. To check the comments please use the help() function.

```
import data_process # import custom methods for data pre-processing
import model_utils # import custom methods for model operations
import plot_utils # import custom methods for visualization
except ModuleNotFoundError as e:
    print(f'[ERROR] fail to import a custom module at path: {os.path.abspath("."
except Exception as e:
    print(f'[ERROR] fail to read module at path: {os.path.abspath(".")}, msg: {eelse:
    # Hot Loading python files
    importlib.reload(data_process)
    importlib.reload(model_utils)
    importlib.reload(plot_utils)
# Read the instruction for the custom Load data method
help(data_process)
```

Help on module data_process:

NAME

data_process - It is a custom Python module for data process.

FUNCTIONS

average_fill(data: pandas.core.frame.DataFrame)

Replace missing values by the average of the forward and backward values for a DataFrame.

Parameters:

- data: pd.DataFrame.

Returns:

- new_data: pandas DataFrame.

extract_values(data: pandas.core.frame.DataFrame, source_col: str, cols: [<cl
ass 'str'>], saved_cols: [<class 'str'>], validated_col: str = None, validated_co
de: str = '1', convert_cols_to_int: [<class 'str'>] = None)

Extract values from multi-values in a string within pd.DataFrame.

Parameters:

- data: pd.DataFrame.
- source_col: str, the name of the target column.
- cols: list(str), new column names.
- saved_cols: list(str), the remaining columns.
- validated_col: str, the name of the validated column.
- validated_code: str, the code for valid.
- convert_cols_to_int: list(str), a name list of columns, which are n eeded to be converted to int.

Returns:

- new_data: pandas DataFrame, new data .

load_data(path: str, columns: list, keyword: str = None, rename_columns: list
= None)

Load and concat data from a specified folder.

Parameters:

- path: str, a folder path for the data files.
- columns: list(str), column name list.
- keyword: str, a keyword within filenames for load specified files.
- rename columns: list(str), rename columns.

Returns:

- data: pandas DataFrame.

prepare_data_for_regression(data: pandas.core.frame.DataFrame)

Prepare data for regression by extracting week_of_year, day_of_week and h our attributes.

Parameters:

- data: pd.DataFrame.

Returns:

new_data: pandas DataFrame, new data with week_of_year, day_of_week and hour columns.

reduce_dimension(data: pandas.core.frame.DataFrame, n_components: int, column
names: [<class 'str'>] = None)

Reduce dimensions by PCA for a DataFrame.

Parameters:

- data: pd.DataFrame.

```
- n_components: int, number of PCA components (dimensions).
            - columns_names: [str], the name of columns.
        Returns:
            - new_data: pandas DataFrame.
    set_full_time_index(data: pandas.core.frame.DataFrame, time_col: str, freq: s
tr)
        Set full time index for a DataFrame.
        Parameters:
            - data: pd.DataFrame.
            - time_col: string, the name of the time column.
            - freq: string, the frequency of the data, eg: 15min.
        Returns:
            - new_data: pandas DataFrame, new data with time index.
    trim_and_fill_dataframe(data: pandas.core.frame.DataFrame, value: object)
        Trim the beginning and ending rows with missing values
        and fill other missing values with a specified value.
        Parameters:
            - data: pd.DataFrame.
            - value: number or string, the default value.
        Returns:
            - new data: pandas DataFrame.
DATA
   Union = typing.Union
        Union type; Union[X, Y] means either X or Y.
        On Python 3.10 and higher, the | operator
        can also be used to denote unions;
        X | Y means the same thing to the type checker as Union[X, Y].
        To define a union, use e.g. Union[int, str]. Details:
        - The arguments must be types and there must be at least one.
        - None as an argument is a special case and is replaced by
          type(None).
        - Unions of unions are flattened, e.g.::
            assert Union[Union[int, str], float] == Union[int, str, float]
        - Unions of a single argument vanish, e.g.::
            assert Union[int] == int # The constructor actually returns int
        - Redundant arguments are skipped, e.g.::
            assert Union[int, str, int] == Union[int, str]
        - When comparing unions, the argument order is ignored, e.g.::
            assert Union[int, str] == Union[str, int]
        - You cannot subclass or instantiate a union.
        - You can use Optional[X] as a shorthand for Union[X, None].
FILE
```

c:\users\weiji\jupyter-workspace\coursework2\data_process.py

Data Decoding and Pre-processing

These are a dataset of Traffic Flow data by time in a certain route of Englandand a dataset of Weather Record provided by National Centers for Environmental Information US Air Force from 2021 to 2024. The main purposes of this work are analysing and predicting traffic flow using historical traffic and weather data.

Data Decoding and Pre-processing for weather data

Overview for Weather Data

The weather data contains the information of the station, key features of the weather and details of the weather features as the below table shown. As the data focused on the only one relative station, all information of the station could be ignored. Some key features of the weather directly related to traffic should be considered, such as wind, cloud, temperature, drew point and sea level. But other detailed information would be removed as they do not directly affect the traffic. Thus, only columns, **DATE, REPORT_TYPE, WND, CIG, VIS, TMP, DEW and SLP**, will be selected for subsequent analysis.

Column	Description	Datatype
STATION	The measurement station code	Nominal
DATE	The date and time of the weather	Ratio
SOURCE	The source code: 4	Nominal
LATITUDE	The latitude of the station	Ratio
LONGITUDE	The longitude of the station	Ratio
ELEVATION	The elevation of the station	Ratio
NAME	The station name	Nominal
REPORT_TYPE	Report type: FM-12: SYNOP Report of surface observation form a fixed land station, FM-15: METAR Aviation routine weather report, FM-16: SPECI Aviation selected special weather report	Nominal
CALL_SIGN	Call letter: 99999 = Missing	Nominal
QUALITY_CONTROL	Quality code: V020	Nominal
WND	Wind observation, eg: 330,1,N,0021,1	-
CIG	Sky condition observation, eg: 99999,9,9,9	-

Column	Description	Datatype
VIS	Visibility observation, eg: 000100,1,9,9	-
TMP	Air temperature observation, eg: -0010,1	-
DEW	Air temperature observation dew point, eg: -0013,1	-
SLP	Air pressure observation sea level pressure, eg: 10096,1	-
other columns	Details of the weather features	-

In [3]: # Load weather data with selected columns and rename columns
weather_path = 'data/weather/'
weather_columns = ['DATE', 'REPORT_TYPE', 'WND', 'CIG', 'VIS', 'TMP', 'DEW', 'SL
weather_rename_columns = ['date', 'report_type', 'wnd', 'cig', 'vis', 'tmp', 'de
weather = data_process.load_data(weather_path, columns=weather_columns, rename_c
weather

Out[3]:		date	report_type	wnd	cig	vis	tmp
	0	2021-01- 01T00:00:00	FM-12	330,1,N,0021,1	99999,9,9,9	000100,1,9,9	-0010,1
	1	2021-01- 01T00:50:00	FM-15	350,1,N,0015,1	99999,9,9,N	000250,1,9,9	-0010,1
	2	2021-01- 01T01:00:00	FM-12	350,1,N,0015,1	99999,9,9,9	000200,1,9,9	-0012,1
	3	2021-01- 01T01:50:00	FM-15	330,1,N,0026,1	99999,9,9,N	000200,1,9,9	-0010,1
	4	2021-01- 01T02:00:00	FM-12	330,1,N,0026,1	99999,9,9,9	000200,1,9,9	-0014,1
	•••						
	17493	2024-09- 08T20:00:00	FM-12	260,1,N,0026,1	22000,1,9,N	055000,1,9,9	+0154,1
	17494	2024-09- 08T20:20:00	FM-15	250,1,N,0036,1	02743,1,C,N	009999,1,9,9	+0150,1
	17495	2024-09- 08T20:50:00	FM-15	250,1,N,0031,1	99999,9,9,N	009999,1,9,9	+0150,1
	17496	2024-09- 08T21:00:00	FM-12	250,1,N,0031,1	22000,1,9,N	035000,1,9,9	+0150,1
	17497	2024-09- 08T21:20:00	FM-15	270,1,N,0031,1	06096,1,C,N	009999,1,9,9	+0150,1

86855 rows × 8 columns

```
<class 'pandas.core.frame.DataFrame'>
Index: 86855 entries, 0 to 17497
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- -----
                  _____
   date 86855 non-null object
 0
 1 report_type 86855 non-null object
2 wnd 86855 non-null object
3 cig 86855 non-null object
4 vis 86855 non-null object
5 tmp 86855 non-null object
6 dew 86855 non-null object
7 slp 86855 non-null object
dtypes: object(8)
memory usage: 6.0+ MB
```

In [5]:	weather	.describe()					
Out[5]:		date	report_type	wnd	cig	vis	tmp
	count	86855	86855	86855	86855	86855	86855
	unique	86824	3	919	665	138	431
	top	2023-07- 25T00:20:00	FM-15	220,1,N,0031,1	99999,9,9,N	009999,1,9,9	+0100,1
	freq	2	54189	628	15031	41003	4310
	4						

Data Decoding, Data Cleaning and Data Transformation for weather data

Remove irrelevant report data

For the weather dataset, in terms of report type, FM-12 stands for SYNOP report of surface observation form a fixed land station, FM-15 means METAR aviation routine weather report and FM-16 means SPECI aviation selected special weather report, which means FM-12 Data is more suitable for the traffic on the land.

```
In [6]: # Keep weather data of FM-12 report type
        weather = weather[weather.report_type == 'FM-12']
        # Drop report type column as it is no longer needed
        weather = weather.drop(columns='report type')
```

Decode weather features

For columns WND(wind), CIG(cloud), VIS(visibility), TMP(air temperature), DEW(dew point) and SLP(sea level pressure), values were constracted by multiply attributes. For instance, SLP contains sea level and quality code (eq: "10096,1") should be extracted the number of sea level for further analysis.

Column	Description	Datatype
WND	Wind observation (angle: 001-360 degree, quality code: 0-gross limits check, 1-pass all check, type code: N-Normal, speed rate: 0000-9999 meters per second, scaling factor: 10, speed quality code: 1-pass all check), eg: 330,1,N,0021,1	Ratio/Norminal/Norminal/Ratio/Norminal
CIG	Sky condition observation (the height above ground level of the lowest cloud: 0-22000 meters 99999=missing, ceiling quality code: 1-pass all check, 9-passed gross limits check if element is present ceiling determination code: 9-Missing, Ceiling and Visibility Okay code: N-No, Y-Yes, 9-Missing), eg: 99999,9,9,9	Ratio/Norminal/Norminal
VIS	Visibility observation (The horizontal distance: 0-160000 meter 999999=missing, distance quality code: 1-pass all check, variability code: N-Not variable, V-Variable, 9-Missing, quality variability code: 1-pass all checks, 9-pass gross limites check), eg: 000100,1,9,9	Ratio/Norminal/Norminal
TMP	Air temperature observation (The temperature of the air: -932 - 618 Degrees Celsius, scaling factor: 10, 9999-Missing quality code: 1 pass all check), eg: -0010,1	Ratio/Norminal
DEW	Air temperature observation dew point (dew point temperature: -982 - 368 degrees celsius, scaling factor: 10, 9999-missing, quality code: 1 pass all check), eg: -0013,1	Ratio/Norminal
SLP	Air pressure observation sea level pressure (sea level pressure: 8600 - 10900 hectopascals, scaling factor: 10, 99999=missing, quality code: 1 pass all check), eg: 10096,1	Ratio/Norminal

ut[7]:		date	wnd_speed	cig_height	vis_dist	tmp_val	dew_tmp	slp_val	
	0	2021-01- 01T00:00:00	21	60	100	-10	-13	10096	
	2	2021-01- 01T01:00:00	15	60	200	-12	-15	10098	
	4	2021-01- 01T02:00:00	26	60	200	-14	-17	10101	
	6	2021-01- 01T03:00:00	15	60	100	-15	-18	10106	
	8	2021-01- 01T04:00:00	21	60	100	-19	-21	10106	
	•••				•••	•••			
	17484	2024-09- 08T17:00:00	46	630	30000	181	138	10029	
	17487	2024-09- 08T18:00:00	26	2700	55000	164	125	10034	
	17490	2024-09- 08T19:00:00	26	2400	70001	158	128	10038	
	17493	2024-09- 08T20:00:00	26	22000	55000	154	134	10042	
	17496	2024-09- 08T21:00:00	31	22000	35000	150	136	10042	

31569 rows × 7 columns

Set weather dataframe index

Date values should be coverted to DATE format and be setted as index for further data matching.

There may be some new rows with missing weather values created due to reindexing the data. So, we should deal with the missing values.

It is reasonable to replaces missing values with the average value of the last and the next observed value, as the weather normally changes Continuously.

```
In [8]: # Convert date format
weather.date = pd.to_datetime(weather.date)
# Set date as index
weather = data_process.set_full_time_index(weather, time_col='date', freq='h')
# Replace missing values with the average of the forward and backward values
weather = data_process.average_fill(weather)
weather
```

ut[8]:		wnd_speed	cig_height	vis_dist	tmp_val	dew_tmp	slp_val
	2021-01-01 00:00:00	21.0	60.0	100.0	-10.0	-13.0	10096.0
	2021-01-01 01:00:00	15.0	60.0	200.0	-12.0	-15.0	10098.0
	2021-01-01 02:00:00	26.0	60.0	200.0	-14.0	-17.0	10101.0
	2021-01-01 03:00:00	15.0	60.0	100.0	-15.0	-18.0	10106.0
	2021-01-01 04:00:00	21.0	60.0	100.0	-19.0	-21.0	10106.0
		•••				***	
	2024-09-08 17:00:00	46.0	630.0	30000.0	181.0	138.0	10029.0
	2024-09-08 18:00:00	26.0	2700.0	55000.0	164.0	125.0	10034.0
	2024-09-08 19:00:00	26.0	2400.0	70001.0	158.0	128.0	10038.0
	2024-09-08 20:00:00	26.0	22000.0	55000.0	154.0	134.0	10042.0
	2024-09-08 21:00:00	31.0	22000.0	35000.0	150.0	136.0	10042.0

32326 rows × 6 columns

Pre-processing for traffic data

Overview of the Traffic Data

There are data from two sites in this dataset. The data contains 24 columns and each row of data recorded the statistics traffic flow within a period (15 minutes). As the goal of this project is predicting "the sum of the number of vehicles passing the two sites combined", we should just need to consider the total number of traffic flow, which is much more stable. Speed-relevant columns were ignored as they do not affect the total number of vehicles. Time Period Ending and Time Interval can be converted into each other through mathematical

formulas. But, Time Interval was selected as it is simple to be converted. Thus, only columns, **Report Date, Time Interval, and Total Volume**, will be selected for subsequent analysis.

Column	Description	Datatype
Site Name	The measurement site name	Nominal
Report Date	The date of the trip	Ratio
Time Period Ending	The end of a recording time period (15 mins)	Interval
Time Interval	The time interval in a day (0 ~ 95)	Interval
l1 - l2 cm	Total flow vehicles of length within I1 ~ I2 cm	Ratio
s1 - s2 mph	Total flow vehicles of speed within s1 ~ s2 miles per hour	Ratio
Avg mph	Average Speed	Ratio
Total Volume	Total flow vehicles	Ratio

```
In [9]: # Load traffic data
traffic_path = 'data/traffic/'
columns = ['Report Date', 'Time Interval', 'Total Volume']
rename_columns = ['date', 'interval', 'total']
traffic1 = data_process.load_data(traffic_path, columns=columns, keyword='19078'
traffic2 = data_process.load_data(traffic_path, columns=columns, keyword='19124'
traffic1
```

Out[9]:		date	interval	total
	0	27/01/2021 00:00:00	0	NaN
	1	27/01/2021 00:00:00	1	NaN
	2	27/01/2021 00:00:00	2	NaN
	3	27/01/2021 00:00:00	3	NaN
	4	27/01/2021 00:00:00	4	NaN
	•••		•••	
:	20343	31/07/2024 00:00:00	91	NaN
	20344	31/07/2024 00:00:00	92	NaN
	20345	31/07/2024 00:00:00	93	NaN
	20346	31/07/2024 00:00:00	94	NaN
	20347	31/07/2024 00:00:00	95	NaN

122588 rows × 3 columns

```
In [10]: traffic1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
       Index: 122588 entries, 0 to 20347
       Data columns (total 3 columns):
           Column Non-Null Count Dtype
                    _____
           date
                     122588 non-null object
        1 interval 122588 non-null int64
        2 total 113833 non-null float64
       dtypes: float64(1), int64(1), object(1)
       memory usage: 3.7+ MB
In [11]: traffic1.describe()
Out[11]:
                     interval
                                      total
         count 122588.000000 113833.000000
                   47.501370
                                528.408783
         mean
           std
                   27.710835
                                374.333014
          min
                    0.000000
                                  0.000000
          25%
                   24.000000
                                133.000000
          50%
                   48.000000
                                544.000000
```

Data Cleaning and Data Transformation for traffic data

854.000000

1537.000000

Set traffic dataframe index

72.000000

95.000000

75%

max

As shown above, the format of date column is string and it should be coverted to DATE format and be setted as index for further operation.

```
In [12]: # Convert date and interval to DATA format for site 1
    traffic1.date = pd.to_datetime(traffic1.date, format='%d/%m/%Y %H:%M:%S') + pd.t
    traffic1 = data_process.set_full_time_index(traffic1, time_col='date', freq='15m
    # Drop date and interval columns as they are no longer used for site 1
    drop_columns = ['interval']
    traffic1.drop(columns=drop_columns, inplace=True)
    # Convert date and interval to DATA format for site 2
    traffic2.date = pd.to_datetime(traffic2.date, format='%d/%m/%Y %H:%M:%S') + pd.t
    traffic2 = data_process.set_full_time_index(traffic2, time_col='date', freq='15m
    # Drop date and interval columns as they are no longer used for site 2
    traffic2.drop(columns=drop_columns, inplace=True)
```

Remove empty rows for traffic data and add the two sites data

As shown above, there are some empty values in total columns of the dataframes. Here we use a custom method to remove empty rows at both ends and set the other empty values by 0. Additionally, we add the flows of two sites.

```
In [13]: # Remove empty rows
    traffic1 = data_process.trim_and_fill_dataframe(traffic1, 0)
    traffic2 = data_process.trim_and_fill_dataframe(traffic2, 0)
    # Replace missing values with the average of the forward and backward values
    traffic = data_process.average_fill(traffic1)
    traffic2 = data_process.average_fill(traffic2)
    # Add the total number of traffic
    traffic.total = traffic.total + traffic2.total
    traffic
```

Out[13]: total 2021-02-02 00:00:00 17.0 2021-02-02 00:15:00 5.0 2021-02-02 00:30:00 6.0 2021-02-02 00:45:00 3.0 2021-02-02 01:00:00 5.0 **2024-05-31 23:00:00** 425.0 **2024-05-31 23:15:00** 251.0 **2024-05-31 23:30:00** 224.0 **2024-05-31 23:45:00** 186.0 **2024-06-01 00:00:00** 165.0

116641 rows × 1 columns

As shown above, the last row of data is the first 15 minutes period in a day, which means the data for this day is incomplete. Thus, this row of data should be removed.

```
In [14]: # Remove Last row
    traffic = traffic[: len(traffic) - 1]
    len(traffic)
Out[14]: 116640
```

Resample weather data

The weather sampling time (from 2021-01-01 00:00:00 to 2024-09-08 21:00:00) is much longer than the traffic sampling time (from 2021-02-02 00:00:00 to 2024-05-31 23:00:00).

Thus, it is better to select weather data to match the date range of traffic data.

Additionally, as shown above, the sampling frequencies of these two data are different. The traffic data was collected by every 15 minutes and the weather data

was collected by each hour. Here we resample the all dataset by 3 hours, as less data can improve training and prediction efficiency and still meet the requirements.

[15]:		wnd_speed	cig_height	vis_dist	tmp_val	dew_tmp	slp_val
	2021-02-02 00:00:00	417.0	990.0	56600.0	541.0	504.0	79590.0
	2021-02-02 08:00:00	536.0	70650.0	100000.0	876.0	707.0	79588.0
	2021-02-02 16:00:00	777.0	6240.0	82000.0	811.0	627.0	79494.0
	2021-02-03 00:00:00	401.0	35890.0	135000.0	646.0	478.0	79502.0
	2021-02-03 08:00:00	235.0	10080.0	109000.0	644.0	522.0	79546.0
	•••			•••		•••	
	2024-05-30 08:00:00	480.0	6510.0	431002.0	1131.0	768.0	80849.0
	2024-05-30 16:00:00	325.0	12570.0	273000.0	1088.0	837.0	81155.0
	2024-05-31 00:00:00	345.0	77100.0	395001.0	883.0	693.0	81408.0
	2024-05-31 08:00:00	586.0	4620.0	480001.0	1057.0	696.0	81569.0
	2024-05-31 16:00:00	446.0	4890.0	225000.0	1064.0	698.0	81799.0

3645 rows × 6 columns

Resample traffic data

Here we resample traffic dataset by 3 hours.

```
In [16]: # Resample traffic data
    traffic = traffic.resample(sample_hour_str).sum()
    traffic
```

	totai
2021-02-02 00:00:00	10412.0
2021-02-02 08:00:00	30029.0
2021-02-02 16:00:00	14943.0
2021-02-03 00:00:00	10139.0
2021-02-03 08:00:00	30384.0
•••	***
2024-05-30 08:00:00	60451.0
2024-05-30 16:00:00	40132.0
2024-05-31 00:00:00	16159.0
2024-05-31 08:00:00	64208.0
2024-05-31 16:00:00	40990.0

Out[16]:

3645 rows × 1 columns

Exploratory Data Analysis

Descriptive Statistics

Here are descriptive statistics for weather and traffic datasets.

In [17]:	weather	r.describe()					
Out[17]:		wnd_speed	cig_height	vis_dist	tmp_val	dew_tmp	
	count	3645.000000	3645.000000	3645.000000	3645.000000	3645.000000	364
	mean	361.217833	53069.049383	186156.486557	886.092181	583.107270	8123
	std	183.417059	57210.646241	92066.519208	456.562945	397.217188	9(
	min	35.000000	240.000000	900.000000	-480.000000	-859.000000	7726
	25%	227.000000	7020.000000	124000.000000	584.000000	318.000000	8069
	50%	328.000000	27640.000000	176700.000000	872.000000	617.000000	8131
	75%	463.500000	90160.000000	233000.000000	1210.000000	876.000000	8186
	max	1369.000000	176000.000000	565001.000000	2645.000000	1533.000000	8353
	4						•
In [18]:	weather	r.info()					

```
<class 'pandas.core.frame.DataFrame'>
       DatetimeIndex: 3645 entries, 2021-02-02 00:00:00 to 2024-05-31 16:00:00
       Freq: 8h
       Data columns (total 6 columns):
        # Column Non-Null Count Dtype
       --- -----
                     -----
        0 wnd_speed 3645 non-null float64
        1 cig_height 3645 non-null float64
        2 vis_dist 3645 non-null float64
          tmp_val 3645 non-null float64
        4 dew_tmp
                     3645 non-null float64
        5 slp_val 3645 non-null float64
       dtypes: float64(6)
       memory usage: 199.3 KB
In [19]: traffic.describe()
Out[19]:
                      total
         count 3645.000000
         mean 32306.895473
           std 17253.478103
                   0.000000
          min
          25% 17014.000000
          50% 32921.000000
          75% 48577.000000
          max 69614.000000
In [20]: traffic.info()
       <class 'pandas.core.frame.DataFrame'>
       DatetimeIndex: 3645 entries, 2021-02-02 00:00:00 to 2024-05-31 16:00:00
       Freq: 8h
       Data columns (total 1 columns):
        # Column Non-Null Count Dtype
       --- ----- ------
          total 3645 non-null float64
       dtypes: float64(1)
       memory usage: 57.0 KB
```

Trends of Traffic Flow

To get an immediate sense of traffic flow, here we provide an overview of the trends of traffic flow by hours and days.

As the figure shown above, there was a obvious pattern in the daily traffic flow, more during the day and less at night. If we look carefully, we can find that there was another clear pattern in the weekly traffic flow, 5 days with heavy traffic and 2 days with light traffic. Of course there was abnormal data between 18th May and 25th May.

Decomposition of Traffic Flow

In real life, there are many factors that affect changes in traffic flow.

To better understand and discover the patterns of change, we use Seasonal and Trend decomposition using Loess (STL) to break down the traffic data into 3 parts, **Trend, Reasonal and Residual**.

This is especially helpful for us to interpret data by s distinguish between a general upward trend and periodic increases due to seasonality. Furthermore yses, decomposition help us to select suitable models for prediction.

Decomposition of Traffic Flow by Hours

Here we decomposit the traffic flow by hours within 10 weeks to see how trend, reasonal and residual affect the flow.

```
In [22]: # init STL model and decomposit traffic flow by hours
    stl = STL(traffic.total[-sample_per_day*7*10:].resample(sample_hour_str).sum(),
    fig = stl.plot()
    fig.set_size_inches((12, 5)) # Set figsize
```


As the figures shown above, the trend changed slowly at first, but then dropped rapidly in 15th May until it reached the bottem on 22nd, followed by a rapid rise.

Season has relatively regular changes everyday between -25000 to 25000.

The residual value varies between -20000 and 10000.

Decomposition of Traffic Flow by Days

Here we decomposit the traffic flow by days within 1 year to see how trend, reasonal and residual affect the flow.

```
In [23]: # init STL model and decomposit traffic flow by days

stl = STL(traffic.total[-sample_per_day*7*52:].resample('D').sum(), seasonal=13)

fig = stl.plot()

fig.set_size_inches((12, 5)) # Set figsize

total

100000

125000

100000

750000

100000

2023-07 2023-08 2023-09 2023-10 2023-11 2023-12 2024-01 2024-02 2024-03 2024-04 2024-05
```

As the figures shown above, the trend was relatively stable most of the time, except a sharp decline and rise every quarter. Season has relatively regular changeevery week from June 2023 to January 2024, and then the scope ochange increases00. The residual va va mo vastlyrbetween about -20000 to about 2nd 1, except severallier outs ofues ues vallessn -50ers0000.

Variation of Weather Attributes and Traffic Flow

Here we decomposit the traffic flow by days within 1 year to see how trend, reasonal and residual affect the flow.

```
In [24]: importlib.reload(plot_utils)

plot_utils.plot_target_exog_variables(
    x=weather[-sample_per_day*7*3:],
    y=traffic[-sample_per_day*7*3:],
    title='Variation of Weather Attributes and Traffic Flow')
```


As the graph shown above, normally daily traffic has relatively stable cyclical changes. From May 17th to 25th, the traffic volume decreased dramatically. The temperature during this period was also cold all day, including during the day.

Feature Selection and Engineering

Correlation Analysis

For a predicting problem, it is worth to assess the collinearity of the dataset [1].

```
In [25]: # Define figure size
plt.figure(figsize=(10, 5))
sns.heatmap(weather.corr(numeric_only=True), annot=True)
# Add a title
plt.title("Correlation Analysis of Attributes", fontsize=16);
```


Feature Selection

As the table shown above, the correlation between Temperature and Dew Temperature (>=0.8) are considered a strong correlation, which will affect the performance of predicting models. So, Dew Temperature should be droped.

```
In [26]: # Reduce correlational attributes to 1 dimension
    corr_columns = ['tmp_val', 'dew_tmp']
    tmp_df = data_process.reduce_dimension(weather, 1, ['tmp_pca'])
    tmp_df.set_index(weather.index, inplace=True)
    # Rearrage attributes
    weather = pd.concat([weather, tmp_df], axis=1)
    weather = weather.drop(columns=corr_columns)
```

Feature Engineer

Normalize weather data

Although the prediction models can be adjusted appropriately according to the parameters, the large range differences between different parameters will still affect the performance of the models. Because of this, normalization should be used to process the data.

```
In [27]: # define min max scaler for normalization
    scaler = MinMaxScaler()
    norm_weather = scaler.fit_transform(weather).round(3)
    norm_weather = pd.DataFrame(norm_weather, columns = weather.columns)
    weather = norm_weather.set_index(weather.index)
    weather
```

	wnd_speed	cig_height	vis_dist	slp_val	tmp_pca
2021-02-02 00:00:00	0.286	0.004	0.099	0.371	0.411
2021-02-02 08:00:00	0.376	0.401	0.176	0.370	0.301
2021-02-02 16:00:00	0.556	0.034	0.144	0.355	0.281
2021-02-03 00:00:00	0.274	0.203	0.238	0.357	0.395
2021-02-03 08:00:00	0.150	0.056	0.192	0.364	0.410
•••			•••		
2024-05-30 08:00:00	0.334	0.036	0.762	0.572	0.248
2024-05-30 16:00:00	0.217	0.070	0.482	0.620	0.293
2024-05-31 00:00:00	0.232	0.437	0.699	0.661	0.362
2024-05-31 08:00:00	0.413	0.025	0.849	0.686	0.279
2024-05-31 16:00:00	0.308	0.026	0.397	0.723	0.334

3645 rows × 5 columns

Out[27]:

Separate training and testing datasets

Here we separate the datasets to training and testing datasets for further training and testing. We use the last 4 weeks data for testing and the rest for training.

```
In [28]: # Separate training and testing datasets (The Last two weeks are used for predic
    test_weeks = 2
    train_size = len(traffic) - sample_per_day * 7 * test_weeks
    traffic_train, traffic_test = traffic[:train_size], traffic[train_size:]
    weather_train, weather_test = weather[:train_size], weather[train_size:]
    print(f'training size: ({len(weather_train)}, {len(traffic_train)}), test size:
    training size: (3603, 3603), test size: (42, 42)
```

Model Implement

Regression Model

Because regression models do not accept a time series. It is useful to convert weather data to proper format for regression models.

```
In [29]: # Convert weather data to the data format used by regression models
    rg_weather = weather.copy()
    rg_weather = data_process.prepare_data_for_regression(rg_weather)
```

rg_weather_train, rg_weather_test = rg_weather[:train_size], rg_weather[train_si
rg_weather

29]:	wnd_speed	cig_height	vis_dist	slp_val	tmp_pca	week_of_year	day_of_
2021- 02-02 00:00:00	0.286	0.004	0.099	0.371	0.411	4	
2021- 02-02 08:00:00	0.376	0.401	0.176	0.370	0.301	4	
2021- 02-02 16:00:00	0.556	0.034	0.144	0.355	0.281	4	
2021- 02-03 00:00:00	0.274	0.203	0.238	0.357	0.395	4	
2021- 02-03 08:00:00	0.150	0.056	0.192	0.364	0.410	4	
•••							
2024- 05-30 08:00:00	0.334	0.036	0.762	0.572	0.248	21	
2024- 05-30 16:00:00	0.217	0.070	0.482	0.620	0.293	21	
2024- 05-31 00:00:00	0.232	0.437	0.699	0.661	0.362	21	
2024- 05-31 08:00:00	0.413	0.025	0.849	0.686	0.279	21	
2024- 05-31 16:00:00	0.308	0.026	0.397	0.723	0.334	21	
3645 rows	s × 8 columns	5					

Linear Regression Model

Linear Regression is a simple but efficient statistical model for extracting the mapping relationship between a dependent variable (y) and one or more independent variables (xs).

It assumes that the relationship is linear. In other words, a change of y is caused by a proportional change of xs.

Linear Regression with no Time-dependent Variables

```
In [30]: # Fit the model
Xm = sm.add_constant(weather_train)
est_model = sm.OLS(traffic_train, weather_train).fit()
est_model.summary()
```

Out[30]:

OLS Rec	iression	Results
---------	----------	---------

Dep. Variable:	total	R-squared (uncentered):	0.802
Model:	OLS	Adj. R-squared (uncentered):	0.801
Method:	Least Squares	F-statistic:	2911.
Date:	Mon, 27 Jan 2025	Prob (F-statistic):	0.00
Time:	11:34:06	Log-Likelihood:	-40063.
No. Observations:	3603	AIC:	8.014e+04
Df Residuals:	3598	BIC:	8.017e+04
Df Model:	5		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
wnd_speed	3.439e+04	1760.424	19.536	0.000	3.09e+04	3.78e+04
cig_height	4578.2007	877.798	5.216	0.000	2857.169	6299.232
vis_dist	2.742e+04	1691.001	16.217	0.000	2.41e+04	3.07e+04
slp_val	3.412e+04	1406.322	24.263	0.000	3.14e+04	3.69e+04
tmp_pca	-2.174e+04	1692.463	-12.843	0.000	-2.51e+04	-1.84e+04

Omnibus:	95.562	Durbin-Watson:	2.098
Prob(Omnibus):	0.000	Jarque-Bera (JB):	50.193
Skew:	0.081	Prob(JB):	1.26e-11
Kurtosis:	2.445	Cond. No.	7.20

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Predict the results

```
In [31]: # Use linear regression model for prediction
    forecast_linear_no_time = est_model.predict(weather_test).astype(int)
    forecast_linear_no_time = pd.DataFrame(forecast_linear_no_time)
    forecast_linear_no_time.set_index(weather_test.index, inplace=True)
```

Linear Regression with Time-dependent Variables

```
In [32]: # Fit the model
         Xm = sm.add_constant(rg_weather_train)
         est_model = sm.OLS(traffic_train, rg_weather_train).fit()
         est_model.summary()
                                     OLS Regression Results
Out[32]:
              Dep. Variable:
                                                   R-squared (uncentered):
                                                                                0.840
                                        total
                                         OLS Adj. R-squared (uncentered):
                    Model:
                                                                                0.839
                   Method:
                                Least Squares
                                                                F-statistic:
                                                                                2357.
                      Date: Mon, 27 Jan 2025
                                                         Prob (F-statistic):
                                                                                 0.00
                                                           Log-Likelihood:
                                                                              -39679.
                     Time:
                                     11:34:06
          No. Observations:
                                                                      AIC: 7.937e+04
                                        3603
              Df Residuals:
                                                                      BIC: 7.942e+04
                                        3595
                 Df Model:
                                           8
           Covariance Type:
                                   nonrobust
                              coef
                                      std err
                                                    t P>|t|
                                                                 [0.025
                                                                            0.975]
            wnd speed
                         2.567e+04 1635.534
                                               15.698 0.000
                                                              2.25e+04
                                                                         2.89e+04
             cig height
                         2923.7609
                                     796.788
                                                3.669 0.000
                                                               1361.559
                                                                          4485.963
               vis dist
                         1.621e+04 1587.413
                                               10.209 0.000
                                                              1.31e+04
                                                                         1.93e+04
                slp val
                         2.412e+04 1402.307
                                               17.201 0.000
                                                              2.14e+04
                                                                         2.69e+04
              tmp pca
                        -1.616e+04 1556.086 -10.386 0.000
                                                              -1.92e+04 -1.31e+04
          week of year
                          119.0882
                                       15.651
                                                7.609 0.000
                                                                 88.403
                                                                           149.774
          day of week
                          -311.3728
                                     121.232
                                               -2.568 0.010
                                                               -549.063
                                                                           -73.682
                         1083.7398
                                      38.542
                                               28.119 0.000
                                                               1008.174
                  hour
                                                                          1159.306
                Omnibus: 128.276
                                    Durbin-Watson:
                                                        2.220
          Prob(Omnibus):
                             0.000 Jarque-Bera (JB):
                                                      107.815
                   Skew:
                             0.353
                                           Prob(JB): 3.87e-24
                Kurtosis:
                             2.530
                                          Cond. No.
                                                         237.
```

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Predict the results

```
In [33]: # Use linear regression model for prediction
    forecast_linear = est_model.predict(rg_weather_test).astype(int)
    forecast_linear = pd.DataFrame(forecast_linear)
    forecast_linear.set_index(rg_weather_test.index, inplace=True)
```

Visualize the results

This figure shows that the linear regression model can fit the mean relatively well and fit the seasonal fluctuations relatively smoothly. Additionally, it is not sensitive to outliers.

Lasso Regression Model

Lasso Regression adds a L1 penalty to the linear regression model. This means the penalty term is the sum of the absolute values of the coefficients.

It performs feature selection by shrinking some coefficients to zero, and is Useful for models with many irrelevant features or when you want to simplify the model. However, it may struggle when features are highly correlated.

Estimate Alpha

With lasso regression we might want to learn the best value for the hyperparameter alpha.

```
In [35]: # Choose KFold
         kcv = KFold(n_splits=10, shuffle=True)
         # Perform cross-validated Lasso
         lasso_cv = LassoCV(cv=kcv)
         lasso_cv.fit(rg_weather_train, traffic_train)
         # Best alpha
         best_alpha = lasso_cv.alpha_
         best_alpha
        C:\Users\weiji\AppData\Roaming\Python\Python311\site-packages\sklearn\linear_mode
        l\_coordinate_descent.py:1623: DataConversionWarning: A column-vector y was passe
        d when a 1d array was expected. Please change the shape of y to (n_samples, ), fo
        r example using ravel().
        y = column_or_1d(y, warn=True)
Out[35]: 51.77524729392174
In [36]: # Configure the model
         lasso = Lasso(alpha=best_alpha)
         # Fit the model with the training data
         lasso.fit(rg_weather_train, traffic_train)
         lasso.coef_
Out[36]: array([ 7567.1602191 , 1833.30241564, 11706.36763475, 4339.63996164,
                -20924.24414727, 23.84081187, -563.98215569, 1061.84332322])
         Predict and visualize the results
In [37]: # Use linear regression model for prediction
         forecast_lasso = lasso.predict(rg_weather_test).astype(int)
         forecast_lasso = pd.DataFrame(forecast_lasso)
         forecast_lasso.set_index(rg_weather_test.index, inplace=True)
```

```
In [37]: # Use linear regression model for prediction
forecast_lasso = lasso.predict(rg_weather_test).astype(int)
forecast_lasso = pd.DataFrame(forecast_lasso)
forecast_lasso.set_index(rg_weather_test.index, inplace=True)

# Visualize the results
plot_utils.visualize_results(
    traffic[-sample_per_day*7*test_weeks*2:],
    forecast_lasso,
    labels='Lasso Regression',
    title='Lasso Regression Result')
```


This figure shows that the lasso regression model can fit the mean relatively well too and fit the seasonal fluctuations relatively smoothly. Additionally, it is also not sensitive to outliers.

Time Series Model

Holt-Winters Exponential Smoothing Model

AKA Triple Exponential Smoothing, also known as Holt-Winters Exponential Smoothing, is a popular time series forecasting method that accounts for three components: level, trend, and seasonality. It is an extension of simple and double exponential smoothing, designed to handle time series data with seasonality effectively.

Holt-Winters Exponential Smoothing does not inherently support incorporating external factors (or exogenous variables). It models a time series solely based on its internal components: level, trend, and seasonality.

Predict and visualize the results

```
In [39]: # Use holtwinters model for prediction
forecast_holtwinters = holtwinters_model.forecast(len(traffic_test)).astype(int)
```


This figure shows that the holt-winters model can fit the mean relatively well and fit the seasonal fluctuations relatively accurately. However, it is sensitive to outliers.

SARIMAX Model

Seasonal AutoRegressive Integrated Moving Average with Exogenous Regressors (SARIMAX) is a model to forecast future values of a time series [2]. SARIMAX is an extension of the SARIMA model that includes exogenous (external) variables, allowing it to account for additional information that may influence the time series.

Automatically Search the Best Parameters for SARIMAX by function Auto arima

Auto_arima is a function from the pmdarima library that automates the process of building and selecting an SARIMA model for time series forecasting. It performs parameter tuning for the SARIMA model by trying different combinations of p, d, and q, or P, D, Q, and m, and selecting the best-performing model based on specified criteria (e.g., AIC or BIC).

```
In [40]: # Training data size for searching the best parameters
    size_for_search = sample_per_day*7*test_weeks*5
    # Use auto_arima to search the best parameters for SARIMAX
    model_auto_arima = pmdarima.auto_arima(
        traffic_train[-size_for_search:],
        start_p=0, max_p=2, start_q=0, max_q=2, d=1, # Limit the search scope of (p,
        exogenous=weather_train[-size_for_search:], # Exogenous variables
        start_P=0, max_P=1, start_Q=0, max_Q=1, D=1, # Limit the search scope of (P,
        seasonal=True, m=sample_per_day*7, # Assuming seasonality, the change cycle
        stepwise=False, # Not use step-by-step search optimization
```

```
n_jobs=-1, # Use all cores for parallel computing
    trace=True, # Output process information
    error_action='ignore',
    suppress_warnings=True
)
# Get auto_arima recommanded order (p, d, q)
best_order = model_auto_arima.order
# Get auto_arima recommanded seasonal_order
best_seasonal_order = model_auto_arima.seasonal_order
model_auto_arima.summary()
```

Best model: ARIMA(0,1,1)(1,1,0)[21] Total fit time: 10.402 seconds

Out[40]:

SARIMAX Results

Dep. Variable:	У	No. Observations:	210
Model:	SARIMAX(0, 1, 1)x(1, 1, [], 21)	Log Likelihood	-1822.142
Date:	Mon, 27 Jan 2025	AIC	3650.284
Time:	11:34:17	BIC	3659.993
Sample:	03-09-2024	HQIC	3654.218
	- 05-17-2024		
Covariance Type	ong		

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ma.L1	-0.3846	0.037	-10.519	0.000	-0.456	-0.313
ar.S.L21	-0.1913	0.024	-8.002	0.000	-0.238	-0.144
sigma2	1.507e+07	1.18e-10	1.27e+17	0.000	1.51e+07	1.51e+07

Ljung-Box (L1) (Q): 4.63 **Jarque-Bera (JB):** 41.95

Prob(Q):	0.03	Prob(JB):	0.00
Heteroskedasticity (H):	0.39	Skew:	-0.46
Prob(H) (two-sided):	0.00	Kurtosis:	5.12

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complexstep).
- [2] Covariance matrix is singular or near-singular, with condition number 3.77e+32. Standard errors may be unstable.

Use SARIMAX to model and predict

```
order=best_order,
  exog=weather_train[-size_for_training:],
  seasonal_order=best_seasonal_order,
  trend='t').fit()
# Print model result
model_sarima.summary()
```

Out[41]:

SARIMAX Results

Dep. Variable:	total	No. Observations:	210
Model:	SARIMAX(0, 1, 1)x(1, 1, [], 21)	Log Likelihood	-1818.884
Date:	Mon, 27 Jan 2025	AIC	3655.768
Time:	11:34:23	BIC	3684.896
Sample:	03-09-2024	HQIC	3667.570
	- 05-17-2024		

Covariance Type:

\cap	na	
U	υu	

	coef	std err	z	P> z	[0.025	0.975]
drift	-0.1376	1.695	-0.081	0.935	-3.461	3.185
wnd_speed	466.8736	3312.159	0.141	0.888	-6024.838	6958.586
cig_height	-1014.1799	1108.593	-0.915	0.360	-3186.983	1158.623
vis_dist	1490.7301	1406.105	1.060	0.289	-1265.185	4246.645
slp_val	-170.6796	4367.211	-0.039	0.969	-8730.256	8388.896
tmp_pca	8558.3925	5783.749	1.480	0.139	-2777.547	1.99e+04
ma.L1	-0.4098	0.043	-9.427	0.000	-0.495	-0.325
ar.S.L21	-0.1969	0.026	-7.525	0.000	-0.248	-0.146
sigma2	1.478e+07	4.196	3.52e+06	0.000	1.48e+07	1.48e+07

Ljung-Box (L1) (Q):	4.06	Jarque-Bera (JB):	38.75
Prob(Q):	0.04	Prob(JB):	0.00
Heteroskedasticity (H):	0.38	Skew:	-0.45
Prob(H) (two-sided):	0.00	Kurtosis:	5.03

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complexstep).
- [2] Covariance matrix is singular or near-singular, with condition number 1.71e+22. Standard errors may be unstable.

Predict and visualize the results

In [42]: # Use SARIMAX model for prediction
 forecast_sarimax = model_sarima.forecast(steps=len(traffic_test), exog=weather_t
 # Visualize the results
 plot_utils.visualize_results(traffic[-sample_per_day*7*test_weeks*2:], forecast_

This figure shows that the SARIMAX model can fit the mean relatively well and fit the seasonal fluctuations relatively accurately. However, it is sensitive to outliers too.

Model Evaluation and Comparison

Cross Validation

Cross validation aims to address this by shuffling and then splitting the data many times and combining scores or performance over all of the splits.

There are some methods to measure the performance of regression models.

Coefficient of Determination (R2) measures the proportion of variance in the dependent variable that is explained by the independent variables. It indicates how well the model fits the data.

Root Mean Squared Error (RMSE) is the square root of the average of the squared differences between the predicted and actual values. It provides a metric with the same units as the target variable and is sensitive to outliers.

Mean Absolute Error (MAE) is the average of the absolute differences between the predicted and actual values. It treats all errors equally by taking the absolute value of the differences and is less sensitive to outliers compared to RMSE because it doesn't square the residualata.

Cross Validation for Linear Regression Model

0 Lasso Regression 0.293375 14470.206621 12093.973979

Cross Validation for Lasso Regression Model

 model
 r2_score
 rmse
 mae

 0
 Lasso Regression
 0.292645
 14488.383315
 12156.005469

Out[44]:

Cross Validation for Holt-Winters Exponential Smoothing Model

```
In [45]: matrix_holt = model_utils.cross_validate_holt(
    y=traffic,
    seasonal_periods=sample_per_day*7,
)
matrix_holt
```

 Out[45]:
 model
 r2_score
 rmse
 mae

 0
 Holt Winters
 0.830929
 6835.735381
 4559.663846

Cross Validation for SARIMAX Model

Out[46]: model r2_score rmse mae

O SARIMAX 0.080401 13742.542622 11044.26877

Compare Performance of Models

The table above shows that, for the cross validation, **Holt Winters** performance better than others with the highest R2 Score, lowest Root Mean Squared Error and Mean Absolute Error. The r2 score of SARIMAX is close to 0, means that this model performs simular to a simple baseline model.

Visualize Predicting Results of Models

Cross validation aims to address this by shuffling and then splitting the data many times and combining scores or performance over all of the splits.

- 1. Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2012). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
- 2. Cools, M., Moons, E., & Wets, G. (2009). Investigating the Variability in Daily Traffic Counts through use of ARIMAX and SARIMAX Models.
 Transportation Research Record: Journal of the Transportation Research Board, 2136(1), 57–66. https://doi.org/10.3141/2136-07