

TITLE OF THE INVENTION**HETEROCYCLIC AMIDE COMPOUNDS AS CELL ADHESION INHIBITORS****CROSS REFERENCE TO RELATED APPLICATIONS**

5 This application is based on, and claims priority from provisional applications 60/048,017 filed 29 May 1997 and 60/066,525 filed 25 November 1997, where are hereby incorporated by reference in their entirety.

10 SUMMARY OF THE INVENTION

The compounds of the present invention are antagonists of the VLA-4 integrin ("very late antigen-4"; CD49d/CD29; or $\alpha 4\beta 1$) and/or the $\alpha 4\beta 7$ integrin (LPAM-1 and $\alpha 4\beta p$), thereby blocking the binding of VLA-4 to its various ligands, such as VCAM-1 and regions of fibronectin and/or $\alpha 4\beta 7$ to its various ligands, such as MadCAM-1, VCAM-1 and fibronectin. Thus, these antagonists are useful in inhibiting cell adhesion processes including cell activation, migration, proliferation and differentiation. These antagonists are useful in the treatment, prevention and suppression of diseases mediated by VLA-4 and/or $\alpha 4\beta 7$ binding and cell adhesion and activation, such as multiple sclerosis, asthma, allergic rhinitis, allergic conjunctivitis, inflammatory lung diseases, rheumatoid arthritis, septic arthritis, type I diabetes, organ transplantation, restenosis, autologous bone marrow transplantation, inflammatory sequelae of viral infections, myocarditis, inflammatory bowel disease including ulcerative colitis and Crohn's disease, certain types of toxic and immune-based nephritis, contact dermal hypersensitivity, psoriasis, tumor metastasis, and atherosclerosis.

BACKGROUND OF THE INVENTION

30 The present invention relates to heterocyclic amide derivatives which are useful for the inhibition and prevention of leukocyte adhesion and leukocyte adhesion-mediated pathologies. This

invention also relates to compositions containing such compounds and methods of treatment using such compounds.

- Many physiological processes require that cells come into close contact with other cells and/or extracellular matrix. Such adhesion events may be required for cell activation, migration, proliferation and differentiation. Cell-cell and cell-matrix interactions are mediated through several families of cell adhesion molecules (CAMs) including the selectins, integrins, cadherins and immunoglobulins. CAMs play an essential role in both normal and pathophysiological processes. Therefore, the targetting of specific and relevant CAMs in certain disease conditions without interfering with normal cellular functions is essential for an effective and safe therapeutic agent that inhibits cell-cell and cell-matrix interactions.
- The integrin superfamily is made up of structurally and functionally related glycoproteins consisting of α and β heterodimeric, transmembrane receptor molecules found in various combinations on nearly every mammalian cell type. (for reviews see: E. C. Butcher, Cell, 67, 1033 (1991); T. A. Springer, Cell, 76, 301 (1994); D. Cox et al., "The Pharmacology of the Integrins." Medicinal Research Rev. 14, 195 (1994) and V. W. Engleman et al., "Cell Adhesion Integrins as Pharmaceutical Targets." in Ann. Repts. in Medicinal Chemistry, Vol. 31, J. A. Bristol, Ed.; Acad. Press, NY, 1996, p. 191).
- VLA-4 ("very late antigen-4"; CD49d/CD29; or $\alpha_4\beta_1$) is an integrin expressed on all leukocytes, except platelets and mature neutrophils, including dendritic cells and macrophage-like cells and is a key mediator of the cell-cell and cell-matrix interactions of these cell types (see M. E. Hemler, "VLA Proteins in the Integrin Family: Structures, Functions, and Their Role on Leukocytes." Ann. Rev. Immunol. 8, 365 (1990)). The ligands for VLA-4 include vascular cell adhesion molecule-1 (VCAM-1) and the CS-1 domain of fibronectin (FN). VCAM-1 is a member of the Ig superfamily and is expressed *in vivo* on endothelial cells at sites of inflammation. (See R. Lobb et al. "Vascular Cell Adhesion Molecule 1." in Cellular and Molecular Mechanisms of

Inflammation, C. G. Cochrane and M. A. Gimbrone, Eds.; Acad. Press, San Diego, 1993, p. 151.) VCAM-1 is produced by vascular endothelial cells in response to pro-inflammatory cytokines (See A. J. H. Gearing and W. Newman, "Circulating adhesion molecules in disease.",

- 5 Immunol. Today, 14, 506 (1993). The CS-1 domain is a 25 amino acid sequence that arises by alternative splicing within a region of fibronectin. (For a review, see R. O. Hynes "Fibronectins.", Springer-Velag, NY, 1990.) A role for VLA-4/CS-1 interactions in inflammatory conditions has been proposed (see M. J. Elices, "The integrin $\alpha_4\beta_1$ (VLA-
10 4) as a therapeutic target" in Cell Adhesion and Human Disease, Ciba Found. Symp., John Wiley & Sons, NY, 1995, p. 79).

$\alpha_4\beta_7$ (also referred to as LPAM-1 and $\alpha_4\beta_p$) is an integrin expressed on leukocytes and is a key mediator of leukocyte trafficking and homing in the gastrointestinal tract (see C. M. Parker et al., Proc. Natl. Acad. Sci. USA, 89, 1924 (1992)). The ligands for $\alpha_4\beta_7$ include mucosal addressing cell adhesion molecule-1 (MadCAM-1) and, upon activation of $\alpha_4\beta_7$, VCAM-1 and fibronectin (Fn). MadCAM-1 is a member of the Ig superfamily and is expressed in vivo on endothelial cells of gut-associated mucosal tissues of the small and large intestine ("Peyer's Patches") and lactating mammary glands. (See M. J. Briskin et al., Nature, 363, 461 (1993); A. Hamann et al., J. Immunol., 152, 3282 (1994)). MadCAM-1 can be induced in vitro by proinflammatory stimuli (See E. E. Sikorski et al. J. Immunol., 151, 5239 (1993)). MadCAM-1 is selectively expressed at sites of lymphocyte extravasation and specifically binds to the integrin, $\alpha_4\beta_7$.

Neutralizing anti- α_4 antibodies or blocking peptides that inhibit the interaction between VLA-4 and/or $\alpha_4\beta_7$ and their ligands have proven efficacious both prophylactically and therapeutically in several animal models of disease, including i) experimental allergic encephalomyelitis, a model of neuronal demyelination resembling multiple sclerosis (for example, see T. Yednock et al., "Prevention of experimental autoimmune encephalomyelitis by antibodies against $\alpha_4\beta_1$ integrin." Nature, 356, 63 (1993) and E. Keszthelyi et al., "Evidence for a

prolonged role of α_4 integrin throughout active experimental allergic encephalomyelitis." Neurology, 47, 1053 (1996)); ii) bronchial hyperresponsiveness in sheep and guinea pigs as models for the various phases of asthma (for example, see W. M. Abraham et al., " α_4 -Integrins mediate antigen-induced late bronchial responses and prolonged airway hyperresponsiveness in sheep." J. Clin. Invest. 93, 776 (1993) and A. A. Y. Milne and P. P. Piper, "Role of VLA-4 integrin in leucocyte recruitment and bronchial hyperresponsiveness in the guinea-pig." Eur. J. Pharmacol., 282, 243 (1995)); iii) adjuvant-induced arthritis in rats as a model of inflammatory arthritis (see C. Barbadillo et al., "Anti-VLA-4 mAb prevents adjuvant arthritis in Lewis rats." Arthr. Rheuma. (Suppl.), 36 95 (1993) and D. Seiffge, "Protective effects of monoclonal antibody to VLA-4 on leukocyte adhesion and course of disease in adjuvant arthritis in rats." J. Rheumatol., 23, 12 (1996)); iv) adoptive autoimmune diabetes in the NOD mouse (see J. L. Baron et al., "The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between α_4 -integrins and vascular cell adhesion molecule-1.", J. Clin. Invest., 93, 1700 (1994), A. Jakubowski et al., "Vascular cell adhesion molecule-Ig fusion protein selectively targets activated α_4 -integrin receptors in vivo: Inhibition of autoimmune diabetes in an adoptive transfer model in nonobese diabetic mice." J. Immunol., 155, 938 (1995), and X. D. Yang et al., "Involvement of beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MadCAM-1) in the development of diabetes in nonobese diabetic mice", Diabetes, 46, 1542 (1997)); v) cardiac allograft survival in mice as a model of organ transplantation (see M. Isobe et al., "Effect of anti-VCAM-1 and anti-VLA-4 monoclonal antibodies on cardiac allograft survival and response to soluble antigens in mice.", Transplant. Proc., 26, 867 (1994) and S. Molossi et al., "Blockade of very late antigen-4 integrin binding to fibronectin with connecting segment-1 peptide reduces accelerated coronary arteropathy in rabbit cardiac allografts." J. Clin. Invest., 95, 2601 (1995)); vi) spontaneous chronic colitis in cotton-top tamarins which resembles human ulcerative colitis, a form of inflammatory bowel

disease (see D. K. Podolsky et al., "Attenuation of colitis in the Cotton-top tamarin by anti- α_4 integrin monoclonal antibody.", J. Clin. Invest., **92**, 372 (1993)); vii) contact hypersensitivity models as a model for skin allergic reactions (see T. A. Ferguson and T. S. Kupper, "Antigen-independent processes in antigen-specific immunity.", J. Immunol., **150**, 1172 (1993) and P. L. Chisholm et al., "Monoclonal antibodies to the integrin α -4 subunit inhibit the murine contact hypersensitivity response." Eur. J. Immunol., **23**, 682 (1993)); viii) acute neurotoxic nephritis (see M. S. Mulligan et al., "Requirements for leukocyte adhesion molecules in nephrotoxic nephritis.", J. Clin. Invest., **91**, 577 (1993)); ix) tumor metastasis (for examples, see M. Edward, "Integrins and other adhesion molecules involved in melanocytic tumor progression.", Curr. Opin. Oncol., **7**, 185 (1995)); x) experimental autoimmune thyroiditis (see R. W. McMurray et al., "The role of α_4 integrin and intercellular adhesion molecule-1 (ICAM-1) in murine experimental autoimmune thyroiditis." Autoimmunity, **23**, 9 (1996); and xi) ischemic tissue damage following arterial occlusion in rats (see F. Squadrato et al., "Leukocyte integrin very late antigen-4/vascular cell adhesion molecule-1 adhesion pathway in splanchnic artery occlusion shock." Eur. J. Pharmacol., **318**, 153 (1996); xii) inhibition of TH2 T-cell cytokine production including IL-4 and IL-5 by VLA-4 antibodies which would attenuate allergic responses (J. Clinical Investigation **100**, 3083 (1997). The primary mechanism of action of such antibodies appears to be the inhibition of lymphocyte and monocyte interactions with CAMs associated with components of the extracellular matrix, thereby limiting leukocyte migration to extravascular sites of injury or inflammation and/or limiting the priming and/or activation of leukocytes.

There is additional evidence supporting a possible role for VLA-4 interactions in other diseases, including rheumatoid arthritis; various melanomas, carcinomas, and sarcomas; inflammatory lung disorders; acute respiratory distress syndrome (ARDS); atherosclerotic plaque formation; restenosis; uveitis and circulatory shock (for examples, see A. A. Postigo et al., "The $\alpha_4\beta_1$ /VCAM-1 adhesion pathway

in physiology and disease.", Res. Immunol., **144**, 723 (1994) and J.-X. Gao and A. C. Issekutz, "Expression of VCAM-1 and VLA-4 dependent T-lymphocyte adhesion to dermal fibroblasts stimulated with proinflammatory cytokines." Immunol. **89**, 375 (1996)).

5 At present, there is a humanized monoclonal antibody (Antegren® Athena Neurosciences/Elan) against VLA-4 in clinical development for the treatment of "flares" associated with multiple sclerosis and a humanized monoclonal antibody (ACT-1®/LDP-02 LeukoSite) against $\alpha_4\beta_7$ in clinical development for the treatment of
10 inflammatory bowel disease. Several peptidyl antagonists of VLA-4 have been described (D. Y. Jackson et al., "Potent $\alpha_4\beta_1$ peptide antagonists as potential anti-inflammatory agents", J. Med. Chem., **40**, 3359 (1997); H. N. Shroff et al., "Small peptide inhibitors of $\alpha_4\beta_7$ mediated MadCAM-1 adhesion to lymphocytes", Bioorg. Med. Chem. Lett., **6**, 2495 (1996); US
15 5,510,332, WO97/03094, WO97/02289, WO96/40781, WO96/22966, WO96/20216, WO96/01644, WO96/06108, WO95/15973). There is one report of nonpeptidyl inhibitors of the ligands for α_4 -integrins (WO96/31206).
There still remains a need for low molecular weight, specific inhibitors of VLA-4- and $\alpha_4\beta_7$ -dependent cell adhesion that have improved
20 pharmacokinetic and pharmacodynamic properties such as oral bioavailability and significant duration of action. Such compounds would prove to be useful for the treatment, prevention or suppression of various pathologies mediated by VLA-4 and $\alpha_4\beta_7$ binding and cell adhesion and activation.

25

DETAILED DESCRIPTION OF THE INVENTION

One aspect of the present invention provides a method for the treatment of diseases, disorders, conditions or symptoms mediated by cell adhesion in a mammal which comprises administering to said 30 mammal an effective amount of a compound Formula I:

or a pharmaceutically acceptable salt thereof wherein:

- 5 R¹ is 1) C₁-10alkyl,
 2) C₂-10alkenyl,
 3) C₂-10alkynyl,
 4) Cy,
10 5) Cy-C₁-10alkyl,
 6) Cy-C₂-10alkenyl,
 7) Cy-C₂-10alkynyl,
wherein alkyl, alkenyl, and alkynyl are optionally substituted with one to
four substituents independently selected from R^a; and Cy is optionally
15 substituted with one to four substituents independently selected from R^b;
- 20 R² is 1) hydrogen,
 2) C₁-10alkyl,
 3) C₂-10alkenyl,
 4) C₂-10alkynyl,
 5) aryl,
 6) aryl-C₁-10alkyl,
 7) heteroaryl,
 8) heteroaryl-C₁-10alkyl,
25 wherein alkyl, alkenyl, and alkynyl are optionally substituted with one to
four substituents independently selected from R^a; and aryl and
heteroaryl optionally substituted with one to four substituents
independently selected from R^b;

- R³ is
- 1) hydrogen,
 - 2) C₁₋₁₀ alkyl,
 - 3) Cy, or
 - 4) Cy-C₁₋₁₀ alkyl,

5 wherein alkyl is optionally substituted with one to four substituents independently selected from R^a; and Cy is optionally substituted with one to four substituents independently selected from R^b;

- R⁴ is
- 1) hydrogen,
 - 2) C₁₋₁₀alkyl,
 - 3 C₂₋₁₀alkenyl,
 - 4) C₂₋₁₀alkynyl,
 - 5) Cy,
 - 6) Cy-C₁₋₁₀alkyl,
 - 7) Cy-C₂₋₁₀alkenyl,
 - 8) Cy-C₂₋₁₀alkynyl,

wherein alkyl, alkenyl and alkynyl are optionally substituted with one to four substituents selected from phenyl and R^x, and Cy is optionally substituted with one to four substituents independently selected from R^y;

20 or

R³, R⁴ and the atoms to which they are attached together form a mono- or bicyclic ring containing 0-2 additional heteroatoms selected from N, O and S;

- 25 R⁵ is
- 1) hydrogen,
 - 2) C₁₋₁₀alkyl,
 - 3) C₂₋₁₀alkenyl,
 - 4) C₂₋₁₀alkynyl,
 - 5) aryl,
 - 6) aryl-C₁₋₁₀alkyl,
 - 7) heteroaryl,
 - 8) heteroaryl-C₁₋₁₀alkyl,

wherein alkyl, alkenyl and alkynyl are optionally substituted with one to four substituents selected from Rx, and aryl and heteroaryl are optionally substituted with one to four substituents independently selected from Ry; or

5

R⁴, R⁵ and the carbon to which they are attached form a 3-7 membered mono- or bicyclic ring containing 0-2 heteroatoms selected from N, O and S;

10 R⁶, R⁷, and R⁸ are each independently selected from the group consisting of

- 1) a group selected from R^d, and
- 2) a group selected from Rx; or

15 two of R⁶, R⁷, and R⁸ and the atom to which both are attached, or two of R⁶, R⁷, and R⁸ and the two adjacent atoms to which they are attached, together form a 5-7 membered saturated or unsaturated monocyclic ring containing zero to three heteroatoms selected from N, O or S,

20 R^a is 1) Cy, or
 2) a group selected from Rx;
 wherein Cy is optionally substituted with one to four substituents independently selected from R^c;

25 R^b is 1) a group selected from R^a,
 2) C₁₋₁₀ alkyl,
 3) C₂₋₁₀ alkenyl,
 4) C₂₋₁₀ alkynyl,
 5) aryl C₁₋₁₀alkyl,
 6) heteroaryl C₁₋₁₀ alkyl,

30 wherein alkyl, alkenyl, alkynyl, aryl, heteroaryl are optionally substituted with a group independently selected from R^c;

R^c is 1) halogen,

- 2) NO₂,
- 3) C(O)OR^f,
- 4) C₁₋₄alkyl,
- 5) C₁₋₄alkoxy,
- 5 6) aryl,
- 7) aryl C₁₋₄alkyl,
- 8) aryloxy,
- 9) heteroaryl,
- 10) NR^fR^g,
- 10 11) NR^fC(O)R^g,
- 12) NR^fC(O)NR^fR^g, or
- 13) CN;

15 R^d and R^e are independently selected from hydrogen, C₁₋₁₀alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀alkynyl, Cy and Cy C₁₋₁₀alkyl, wherein alkyl, alkenyl, alkynyl and Cy is optionally substituted with one to four substituents independently selected from R^c; or
 20 R^d and R^e together with the atoms to which they are attached form a heterocyclic ring of 5 to 7 members containing 0-2 additional heteroatoms independently selected from oxygen, sulfur and nitrogen;

25 R^f and R^g are independently selected from hydrogen, C₁₋₁₀alkyl, Cy and Cy-C₁₋₁₀alkyl wherein Cy is optionally substituted with C₁₋₁₀alkyl; or R^f and R^g together with the carbon to which they are attached form a ring of 5 to 7 members containing 0-2 heteroatoms independently selected from oxygen, sulfur and nitrogen;

- R^h is
- 1) hydrogen,
 - 2) C₁₋₁₀alkyl,
 - 30 3) C₂₋₁₀alkenyl,
 - 4) C₂₋₁₀alkynyl,
 - 5) cyano,
 - 6) aryl,

- 7) aryl C₁₋₁₀alkyl,
- 8) heteroaryl,
- 9) heteroaryl C₁₋₁₀alkyl, or
- 10) -SO₂Rⁱ;

5 wherein alkyl, alkenyl, and alkynyl are optionally substituted with one to four substituents independently selected from R^a; and aryl and heteroaryl are each optionally substituted with one to four substituents independently selected from R^b;

- 10 Rⁱ
- 1) C₁₋₁₀alkyl,
 - 2) C₂₋₁₀alkenyl,
 - 3) C₂₋₁₀alkynyl, or
 - 4) aryl;

wherein alkyl, alkenyl, alkynyl and aryl are each optionally substituted with one to four substituents independently selected from R^c;

- 15 R^x is
- 1) -OR^d,
 - 2) -NO₂,
 - 3) halogen
- 20
- 4) -S(O)_mR^d,
 - 5) -SR^d,
 - 6) -S(O)₂OR^d,
 - 7) -S(O)_mNR^dR^e,
 - 8) -NR^dR^e,
- 25
- 9) -O(CR^fR^g)_nNR^dR^e,
 - 10) -C(O)R^d,
 - 11) -CO₂R^d,
 - 12) -CO₂(CR^fR^g)_nCONR^dR^e,
 - 13) -OC(O)R^d,
- 30
- 14) -CN,
 - 15) -C(O)NR^dR^e,
 - 16) -NR^dC(O)R^e,
 - 17) -OC(O)NR^dR^e,

- 18) $-\text{NR}^d\text{C(O)OR}^e$,
- 19) $-\text{NR}^d\text{C(O)NR}^d\text{R}^e$,
- 20) $-\text{CR}^d(\text{N-OR}^e)$,
- 21) $-\text{CF}_3$,
- 5 22) oxo,
- 23) $\text{NR}^d\text{C(O)NR}^d\text{SO}_2\text{R}^i$,
- 24) $\text{NR}^d\text{S(O)}_m\text{R}^e$,
- 25) $-\text{OS(O)}_2\text{OR}^d$, or
- 26) $-\text{OP(O)(OR}^d)_2$;

10

- RY is
- 1) a group selected from R^X ,
 - 2) C₁₋₁₀ alkyl,
 - 3) C₂₋₁₀ alkenyl,
 - 4) C₂₋₁₀ alkynyl,
 - 15 5) aryl C₁₋₁₀alkyl,
 - 6) heteroaryl C₁₋₁₀ alkyl,
 - 7) cycloalkyl,
 - 8) heterocyclyl;

wherein alkyl, alkenyl, alkynyl and aryl are each optionally substituted
20 with one to four substituents independently selected from R^X ;

Cy is cycloalkyl, heterocyclyl, aryl, or heteroaryl;

m is an integer from 1 to 2;

25

n is an integer from 1 to 10;

- X is
- 1) $-\text{C(O)OR}^d$,
 - 2) $-\text{P(O)(OR}^d)(\text{OR}^e)$
 - 30 3) $-\text{P(O)(R}^d)(\text{OR}^e)$
 - 4) $-\text{S(O)}_m\text{OR}^d$,
 - 5) $-\text{C(O)NR}^d\text{R}^h$, or
 - 6) -5-tetrazolyl;

- Y is 1) -C(O)-,
 2) -O-C(O)-,
 3) -N^{Re}-C(O)-,
 5 4) -S(O)₂-,
 5) -P(O)(OR⁴) or
 6) C(O)C(O);

Z and A are independently selected from -C- and -C-C-;

- 10 B is selected from the group consisting of

- 1) a bond,
 2) -C-
 3) -C-C-,
 15 3) -C=C-,
 4) a heteroatom selected from the group consisting of
 nitrogen, oxygen, and sulfur; and
 5) -S(O)_m-.

In one embodiment of the method compounds of Formula I
 20 are those wherein Y is S(O)₂ and R¹ is C₁₋₁₀alkyl, Cy or Cy-C₁₋₁₀ alkyl
 wherein alkyl is optionally substituted with one to two substituents
 independently selected from R^a, and Cy is optionally substituted with
 one to four substituents independently selected from R^b.

In another embodiment of the method compounds of
 25 Formula I are those of formula Ia, Ib or Ic.
 In another embodiment, the cell adhesion is mediated by
 VLA-4.

Another aspect of the present invention provides novel
 30 compounds of Formula Ia:

Ia

or a pharmaceutically acceptable salt thereof, wherein the variables are
 5 as defined under formula I with the proviso that R⁶/R⁷ is not oxo when
 attached to the carbon between N and B, and with the further proviso
 that when B and Z are each C, R², R³, R⁶, and R⁷ are each H, then R¹ is
 other than phenyl, 4-methylphenyl and 5-(NR^dR^e)naphthyl.

In one subset of Formula Ia are compounds wherein Z is C.
 10 In another subset of Formua Ia are compounds wherein B is C, C=C, C-C or S. Preferably B is C or C=C.
 In another subset of Formula Ia are compounds wherein X is C(O)OR^d.

In another subset of Formula Ia are compounds wherein
 15 R¹ is C₁₋₁₀alkyl, Cy or Cy-C₁₋₁₀alkyl wherein alkyl is optionally substituted with one to two substituents independently selected from R^a, and Cy is optionally substituted with one to four substituents independently selected from R^b. For the purpose of R¹ Cy is preferably aryl optionally substituted with one to four substituents selected from R^b.
 20 More preferred R¹ is phenyl with a substituent on the 3-position and optionally a second substituent; the more preferred substituents are selected from C₁₋₁₀alkoxy, halogen, cyano, and trifluoromethyl.

In another subset of Formula Ia are compounds wherein R² is H or C₁₋₆alkyl. Preferred R² is H or C₁₋₃alkyl, more preferably H or methyl.

In another subset of Formula Ia are compounds wherein R³ is H or C₁₋₆alkyl. Preferred R³ is H or C₁₋₃alkyl, more preferably H or methyl.

In another subset of Formula Ia are compounds wherein R₅ is H and R⁴ is C₁₋₁₀alkyl or Cy-C₁₋₁₀alkyl, wherein alkyl is optionally substituted with one to four substituents selected from phenyl and Rx, and Cy is optionally substituted with one to four substituents

- 5 independently selected from Ry; or R⁴, R₅ and the carbon to which they are attached together form a 3-7 membered mono- or bicyclic carbon only ring. For the purpose of R⁴, Cy is preferably aryl, more preferably phenyl. In a preferred embodiment, R⁴ is phenyl-C₁₋₃alkyl, wherein phenyl is optionally substituted with one or two groups selected from Ry.

10 In one embodiment of compounds of formula Ia are compounds of formula Ib:

Ib

- 15 wherein R² is H or C₁₋₆ alkyl, and R¹, R³, R⁴ and R⁵ are as defined previously under Formula I. In a preferred embodiment X is CO₂H; R¹ is aryl optionally substituted with one to four substituents selected from Rb; R² is H; R³ is H or C₁₋₃ alkyl; R⁴ is phenyl-C₁₋₃alkyl, wherein phenyl is optionally substituted with one or two groups selected from Ry; and R⁵ is H.

Another embodiment of compounds of Formula Ia are compounds of the formula Ic:

- 5 wherein R₂ is H or C₁₋₃ alkyl, R₆ is H, C₁₋₆ alkyl, aryl, OR^d, SR^d, NR^dR^e, or NR^dC(O)R^e, B is S, C=C, C or C-C, R³ is H or C₁₋₆alkyl, R^b and R^y are as defined under Formula I. Preferably B is C and R^b is halogen, C₁₋₁₀alkoxy, cyano, or trifluoromethyl.

- The present compounds are generally composed of three domains: 1) an acyl (including sulfonyl) moiety, 2) a cyclic amino acid 1, and 3) amino acid 2, and are named in a manner similar to that used to name oligopeptides. Representative names used herein and their corresponding structures are shown below (without the stereochemistry) to illustrate the nomenclature used in the application.
- 10 15 N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-leucine

- 20 N-(3,5-dichlorobenzenesulfonyl)-(L)-pipecolyl-(L)-homophenylalanine

5 N-(3-fluorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-tyrosine, O-tert-
butyl ether

10 N-[4-(N'-2-tolylureido)phenylacetyl]-L-prolyl-L-norleucine

15 "Alkyl", as well as other groups having the prefix "alk", such as alkoxy, alkanoyl, means carbon chains which may be linear or branched or combinations thereof. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec- and tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, and the like.

"Alkenyl" means carbon chains which contain at least one carbon-carbon double bond, and which may be linear or branched or

combinations thereof. Examples of alkenyl include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-but enyl, 2-methyl-2-but enyl, and the like.

"Alkynyl" means carbon chains which contain at least one carbon-carbon triple bond, and which may be linear or branched or combinations thereof. Examples of alkynyl include ethynyl, propargyl, 3-methyl-1-pentynyl, 2-heptynyl and the like.

"Cycloalkyl" means mono- or bicyclic saturated carbocyclic rings, each of which having from 3 to 10 carbon atoms. The term also includes monocyclic rings fused to an aryl group in which the point of attachment is on the non-aromatic portion. Examples of cycloalkyl include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, tetrahydronaphthyl, decahydronaphthyl, indanyl, and the like.

"Aryl" means mono- or bicyclic aromatic rings containing only carbon atoms. The term also includes aryl group fused to a monocyclic cycloalkyl or monocyclic heterocyclyl group in which the point of attachment is on the aromatic portion. Examples of aryl include phenyl, naphthyl, indanyl, indenyl, tetrahydronaphthyl, 2,3-dihydrobenzofuranyl, benzopyranyl, 1,4-benzodioxanyl, and the like.

"Heteroaryl" means a mono- or bicyclic aromatic ring containing at least one heteroatom selected from N, O and S, with each ring containing 5 to 6 atoms. Examples of heteroaryl include pyrrolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyridyl, oxazolyl, oxadiazolyl, thiadiazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, furanyl, triazinyl, thienyl, pyrimidyl, pyridazinyl, pyrazinyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, benzofuranyl, benzothiophenyl, furo(2,3-b)pyridyl, quinolyl, indolyl, isoquinolyl, and the like.

"Heterocyclyl" means mono- or bicyclic saturated rings containing at least one heteroatom selected from N, S and O, each of said ring having from 3 to 10 atoms in which the point of attachment may be carbon or nitrogen. The term also includes monocyclic heterocycle fused to an aryl or heteroaryl group in which the point of attachment is on the non-aromatic portion. Examples of "heterocyclyl" include pyrrolidinyl,

piperidinyl, piperazinyl, imidazolidinyl, 2,3-dihydrofuro(2,3-b)pyridyl, benzoxazinyl, tetrahydrohydroquinolinyl, tetrahydroisoquinolinyl, dihydroindolyl, and the like. The term also includes partially unsaturated monocyclic rings that are not aromatic, such as 2- or 4-pyridones attached through the nitrogen or N-substituted-(1H,3H)-pyrimidine-2,4-diones (N-substituted uracils).

"Halogen" includes fluorine, chlorine, bromine and iodine.

Optical Isomers - Diastereomers - Geometric Isomers - Tautomers

10 Compounds of Formula I contain one or more asymmetric centers and can thus occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and individual diastereomers. The present invention is meant to comprehend all such isomeric forms of the compounds of Formula I.

15 Some of the compounds described herein contain olefinic double bonds, and unless specified otherwise, are meant to include both E and Z geometric isomers.

Some of the compounds described herein may exist with different points of attachment of hydrogen, referred to as tautomers.

20 Such an example may be a ketone and its enol form known as keto-enol tautomers. The individual tautomers as well as mixture thereof are encompassed with compounds of Formula I.

Compounds of the Formula I may be separated into diastereoisomeric pairs of enantiomers by, for example, fractional crystallization from a suitable solvent, for example methanol or ethyl acetate or a mixture thereof. The pair of enantiomers thus obtained may be separated into individual stereoisomers by conventional means, for example by the use of an optically active acid as a resolving agent.

Alternatively, any enantiomer of a compound of the general
30 Formula I or Ia may be obtained by stereospecific synthesis using optically pure starting materials or reagents of known configuration.

Salts

The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts derived from inorganic bases include aluminum, ammonium, 5 calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary 10 amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N'-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, 15 glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.

When the compound of the present invention is basic, salts 20 may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, 25 pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid, and the like. Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.

It will be understood that, as used herein, references to the 30 compounds of Formula I are meant to also include the pharmaceutically acceptable salts.

Utilities

The ability of the compounds of Formula I to antagonize the actions of VLA-4 and/or $\alpha 4\beta 7$ integrin makes them useful for preventing or reversing the symptoms, disorders or diseases induced by the binding of VLA-4 and or $\alpha 4\beta 7$ to their various respective ligands. Thus, these 5 antagonists will inhibit cell adhesion processes including cell activation, migration, proliferation and differentiation. Accordingly, another aspect of the present invention provides a method for the treatment (including prevention, alleviation, amelioration or suppression) of diseases or disorders or symptoms mediated by VLA-4 and/or $\alpha 4\beta 7$

10 binding and cell adhesion and activation, which comprises administering to a mammal an effective amount of a compound of Formula I. Such diseases, disorders, conditions or symptoms are for example (1) multiple sclerosis, (2) asthma, (3) allergic rhinitis, (4) allergic conjunctivitis, (5) inflammatory lung diseases, (6) rheumatoid 15 arthritis, (7) septic arthritis, (8) type I diabetes, (9) organ transplantation rejection, (10) restenosis, (11) autologous bone marrow transplantation, (12) inflammatory sequelae of viral infections, (13) myocarditis, (14) inflammatory bowel disease including ulcerative colitis and Crohn's disease, (15) certain types of toxic and immune-based nephritis, (16) 20 contact dermal hypersensitivity, (17) psoriasis, (18) tumor metastasis, and (19) atherosclerosis.

Dose Ranges

The magnitude of prophylactic or therapeutic dose of a 25 compound of Formula I will, of course, vary with the nature of the severity of the condition to be treated and with the particular compound of Formula I and its route of administration. It will also vary according to the age, weight and response of the individual patient. In general, the daily dose range lie within the range of from about 0.001 mg to about 100 30 mg per kg body weight of a mammal, preferably 0.01 mg to about 50 mg per kg, and most preferably 0.1 to 10 mg per kg, in single or divided doses. On the other hand, it may be necessary to use dosages outside these limits in some cases.

For use where a composition for intravenous administration is employed, a suitable dosage range is from about 0.001 mg to about 25 mg (preferably from 0.01 mg to about 1 mg) of a compound of Formula I per kg of body weight per day and for cytoprotective use 5 from about 0.1 mg to about 100 mg (preferably from about 1 mg to about 100 mg and more preferably from about 1 mg to about 10 mg) of a compound of Formula I per kg of body weight per day.

In the case where an oral composition is employed, a suitable dosage range is, e.g. from about 0.01 mg to about 100 mg of a 10 compound of Formula I per kg of body weight per day, preferably from about 0.1 mg to about 10 mg per kg and for cytoprotective use from 0.1 mg to about 100 mg (preferably from about 1 mg to about 100 mg and more preferably from about 10 mg to about 100 mg) of a compound of Formula I per kg of body weight per day.

15 For the treatment of diseases of the eye, ophthalmic preparations for ocular administration comprising 0.001-1% by weight solutions or suspensions of the compounds of Formula I in an acceptable ophthalmic formulation may be used.

20 Pharmaceutical Compositions

Another aspect of the present invention provides pharmaceutical compositions which comprises a compound of Formula I and a pharmaceutically acceptable carrier. The term "composition", as in pharmaceutical composition, is intended to encompass a product 25 comprising the active ingredient(s), and the inert ingredient(s) (pharmaceutically acceptable excipients) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or 30 from other types of reactions or interactions of one or more of the ingredients. Accordingly, the pharmaceutical compositions of the present invention encompass any composition made by admixing a

compound of Formula I, additional active ingredient(s), and pharmaceutically acceptable excipients.

Any suitable route of administration may be employed for providing a mammal, especially a human with an effective dosage of a compound of the present invention. For example, oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed. Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like.

The pharmaceutical compositions of the present invention comprise a compound of Formula I as an active ingredient or a pharmaceutically acceptable salt thereof, and may also contain a pharmaceutically acceptable carrier and optionally other therapeutic ingredients. The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic bases or acids and organic bases or acids.

The compositions include compositions suitable for oral, rectal, topical, parenteral (including subcutaneous, intramuscular, and intravenous), ocular (ophthalmic), pulmonary (aerosol inhalation), or nasal administration, although the most suitable route in any given case will depend on the nature and severity of the conditions being treated and on the nature of the active ingredient. They may be conveniently presented in unit dosage form and prepared by any of the methods well-known in the art of pharmacy.

For administration by inhalation, the compounds of the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or nebulisers. The compounds may also be delivered as powders which may be formulated and the powder composition may be inhaled with the aid of an insufflation powder inhaler device. The preferred delivery systems for inhalation are metered dose inhalation (MDI) aerosol, which may be formulated as a suspension or solution of a compound of Formula I in suitable propellants, such as fluorocarbons or hydrocarbons and dry powder inhalation (DPI) aerosol, which may be formulated as a dry

powder of a compound of Formula I with or without additional excipients.

Suitable topical formulations of a compound of formula I include transdermal devices, aerosols, creams, ointments, lotions, 5 dusting powders, and the like.

In practical use, the compounds of Formula I can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms 10 depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous). In preparing the compositions for oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in 15 the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid 20 preparations such as, for example, powders, capsules and tablets, with the solid oral preparations being preferred over the liquid preparations. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form in which case solid 25 pharmaceutical carriers are obviously employed. If desired, tablets may be coated by standard aqueous or nonaqueous techniques.

In addition to the common dosage forms set out above, the compounds of Formula I may also be administered by controlled release means and/or delivery devices such as those described in U.S. Patent Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; 3,630,200 and 4,008,719.

Pharmaceutical compositions of the present invention 30 suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water

- emulsion or a water-in-oil liquid emulsion. Such compositions may be prepared by any of the methods of pharmacy but all methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more necessary ingredients. In general, the 5 compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation. For example, a tablet may be prepared by compression or molding, optionally with one or more accessory ingredients.
- 10 Compressed tablets may be prepared by compressing in a suitable machine, the active ingredient in a free-flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine, a mixture of the powdered compound 15 moistened with an inert liquid diluent. Desirably, each tablet contains from about 1 mg to about 500 mg of the active ingredient and each cachet or capsule contains from about 1 to about 500 mg of the active ingredient.

The following are examples of representative pharmaceutical dosage forms for the compounds of Formula I:

20

	<u>Injectable Suspension (I.M.)</u>	<u>mg/mL</u>
	Compound of Formula I	10
	Methylcellulose	5.0
	Tween 80	0.5
25	Benzyl alcohol	9.0
	Benzalkonium chloride	1.0
	Water for injection to a total volume of 1 mL	

	<u>Tablet</u>	<u>mg/tablet</u>
30	Compound of Formula I	25
	Microcrystalline Cellulose	415
	Povidone	14.0
	Pregelatinized Starch	43.5

Magnesium Stearate	<u>2.5</u>
	500

	<u>Capsule</u>	<u>mg/capsule</u>
5	Compound of Formula I	25
	Lactose Powder	573.5
	Magnesium Stearate	<u>1.5</u>
		600
10	<u>Aerosol</u>	<u>Per canister</u>
	Compound of Formula I	24 mg
	Lecithin, NF Liquid Concentrate	1.2 mg
	Trichlorofluoromethane, NF	4.025 g
	Dichlorodifluoromethane, NF	12.15 g

- 15 Combination Therapy
 Compounds of Formula I may be used in combination with other drugs that are used in the treatment/prevention/suppression or amelioration of the diseases or conditions for which compounds of
- 20 Formula I are useful. Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with a compound of Formula I. When a compound of Formula I is used contemporaneously with one or more other drugs, a pharmaceutical composition containing such other drugs in addition to
- 25 the compound of Formula I is preferred. Accordingly, the pharmaceutical compositions of the present invention include those that also contain one or more other active ingredients, in addition to a compound of Formula I. Examples of other active ingredients that may be combined with a compound of Formula I, either administered
- 30 separately or in the same pharmaceutical compositions, include, but are not limited to:
 (a) other VLA-4 antagonists such as those described in US 5,510,332, WO97/03094, WO97/02289, WO96/40781, WO96/22966, WO96/20216,

WO96/01644, WO96/06108, WO95/15973 and WO96/31206; (b) steroids such as beclomethasone, methylprednisolone, betamethasone, prednisone, dexamethasone, and hydrocortisone; (c) immunosuppressants such as cyclosporin, tacrolimus, rapamycin and other FK-506 type
5 immuno-suppressants; (d) antihistamines (H1-histamine antagonists) such as bromopheniramine, chlorpheniramine, dexchlorpheniramine, triprolidine, clemastine, diphenhydramine, diphenylpyraline, tripelennamine, hydroxyzine, methdilazine, promethazine, trimeprazine, azatadine, cyproheptadine, antazoline, pheniramine
10 pyrilamine, astemizole, terfenadine, loratadine, cetirizine, fexofenadine, descarboethoxyloratadine, and the like; (e) non-steroidal anti-asthmatics such as β_2 -agonists (terbutaline, metaproterenol, fenoterol, isoetharine, albuterol, bitolterol, salmeterol and pирbutерол), theophylline, cromolyn sodium, atropine, ipratropium bromide,
15 leukotriene antagonists (zafirlukast, montelukast, pranlukast, iralukast, pobilukast, SKB-106,203), leukotriene biosynthesis inhibitors (zileuton, BAY-1005); (f) non-steroidal antiinflammatory agents (NSAIDs) such as propionic acid derivatives (alminoprofen, benoxaprofen, bucloxic acid, carprofen, fenbufen, fenoprofen, fluprofen,
20 flurbiprofen, ibuprofen, indoprofen, ketoprofen, mioprofen, naproxen, oxaprozin, pirprofen, pranoprofen, suprofen, tiaprofenic acid, and tioxaprofen), acetic acid derivatives (indomethacin, acemetacin, alclofenac, clidanac, diclofenac, fenclofenac, fenclozic acid, fentiazac, furofenac, ibufenac, isoxepac, oxpainac, sulindac, tiopinac, tolmetin,
25 zidometacin, and zomepirac), fenamic acid derivatives (flufenamic acid, meclofenamic acid, mefenamic acid, niflumic acid and tolfenamic acid), biphenylcarboxylic acid derivatives (diflunisal and flufenisal), oxicams (isoxicam, piroxicam, sudoxicam and tenoxicam), salicylates (acetyl salicylic acid, sulfasalazine) and the pyrazolones (apazone,
30 bezpiperylon, feprazole, mofebutazone, oxyphenbutazone, phenylbutazone); (g) cyclooxygenase-2 (COX-2) inhibitors such as celecoxib; (h) inhibitors of phosphodiesterase type IV (PDE-IV); (i) antagonists of the chemokine receptors, especially CCR-1, CCR-2, and

CCR-3; (j) cholesterol lowering agents such as HMG-CoA reductase inhibitors (lovastatin, simvastatin and pravastatin, fluvastatin, atorvastatin, and other statins), sequestrants (cholestyramine and colestipol), nicotinic acid, fenofibric acid derivatives (gemfibrozil, 5 clofibrate, fenofibrate and benzafibrate), and probucol; (k) anti-diabetic agents such as insulin, sulfonylureas, biguanides (metformin), α -glucosidase inhibitors (acarbose) and glitazones (troglitazone, pioglitazone, englitazone, MCC-555, BRL49653 and the like); (l) preparations of interferon beta (interferon beta-1a, interferon beta-1b); 10 (m) anticholinergic agents such as muscarinic antagonists (ipratropium bromide); (n) other compounds such as 5-aminosalicylic acid and prodrugs thereof, antimetabolites such as azathioprine and 6-mercaptopurine, and cytotoxic cancer chemotherapeutic agents.

The weight ratio of the compound of the Formula I to the 15 second active ingredient may be varied and will depend upon the effective dose of each ingredient. Generally, an effective dose of each will be used. Thus, for example, when a compound of the Formula I is combined with an NSAID the weight ratio of the compound of the Formula I to the NSAID will generally range from about 1000:1 to about 20 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the Formula I and other active ingredients will generally also be within the aforementioned range, but in each case, an effective dose of each active ingredient should be used.

Compounds of the present invention may be prepared by 25 procedures illustrated in the accompanying schemes. In the first method (Scheme 1), a resin-based synthetic strategy is outlined where the resin employed is represented by the ball (●). An N-Fmoc-protected amino acid derivative **A** (Fmoc = fluorenylmethoxycarbonyl) is loaded on to the appropriate hydroxyl-containing resin using 30 dicyclohexylcarbodiimide (DCC) and 1-hydroxybenzotriazole (HOBr) in dimethylformamide (DMF) to give **B**. The Fmoc protecting group is removed with piperidine in DMF to yield free amine **C**. The next Fmoc-protected amino acid derivative **D** is coupled to **C** employing

standard peptide (in this instance, 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), HOEt, and N,N-diisopropylethylamine (DIEA) in DMF) to yield dipeptide E. The Fmoc group is removed with piperidine in DMF to yield the free
5 amine F. An acid chloride or isocyanate derivative is reacted with F in the presence of DIEA to yield G. The final product is removed from the resin with strong acid (in this instance, trifluoroacetic acid (TFA) in the presence of thioanisole and dithiane) to yield compounds of the present invention H.

10

Scheme 1

In the second method (Scheme 2), standard solution phase synthetic methodology is outlined. An N-Boc-protected amino acid derivative A (Boc = tert-butyloxycarbonyl) is treated with tert-butyl 2,2,2-trichloroacetimidate in the presence of boron trifluoride etherate to yield tert-butyl ester followed by treatment with strong acid (HCl in ethyl acetate or sulfuric acid in t-butyl acetate) to yield the free amine B which is subsequently coupled to Cbz-protected amino acid derivative C (Cbz = carbobenzyloxy) in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), HOEt, and N-methylmorpholine (NMM) in methylene chloride (Methylene chloride) to yield dipeptide D. Catalytic hydrogenation of D in the presence of a palladium-on-carbon (Pd/C) catalyst yields E. Reaction of E with an acylchloride or isocyanate in the presence of DIEA and 4-dimethylaminopyridine (DMAP) yields F which is subsequently reacted with strong acid (TFA) to yield the desired product G.

Scheme 2

GENERAL PROCEDURE FOR THE SOLID-PHASE SYNTHESIS OF
COMPOUNDS OF FORMULA 1.

Step A. Loading of N-Fmoc-amino acid derivatives onto resins.

5 N-Fmoc-amino acids were loaded on either Wang®
 (Calbiochem-Novabiochem Corp.) or Chloro (2-chlorotriptyl) resin.
Wang® resin, typically 0.3 mmol, was washed with
dimethylformamide three times. A solution of N-Fmoc-amino acid
10 (0.3 mmol) in dimethylformamide (3 mL) was transferred to the pre-
swollen Wang® resin. Dicyclohexylcarbodiimide (0.3 mmol) and 1-N-
hydroxybenztriazole (0.3 mmol) was added and the mixture gently
15 swirled for 2 hours. Following filtration, the resin was sequentially
washed with dimethylformamide (3 times) and dichloromethane (3
times). The amino acid substitution value obtained after vacuum
drying typically ranged between 0.07 to 0.1 mmol.

15 Alternatively, Chloro (2-chorotriptyl) resin, typically 0.2
mmol, was pre-swollen in dimethylformamide. A solution of N-
Fmoc-amino acid (0.2 mmol) in dimethylformamide (3 ml) was added
20 to the resin, followed by the addition of N,N-diisopropylethylamine(0.4
mmol). The resin was gently stirred for 2 hours, filtered and washed
sequentially with dimethylformamide (3 times) and dichloromethane
(3 times). The resin was finally washed with 10% methanol in
dichloromethane and vacuum dried. The amino acid substitution
value obtained after vacuum drying typically ranged between 0.05 to
25 0.1 mmol.

Step B. Deprotection of the N-Fmoc group.

The N-Fmoc protecting group was removed from the
resin from Step A by treatment with 20% piperidine in
30 dimethylformamide for 30 minutes. Following filtration, the resin
was washed sequentially with dimethylformamide (3 times),
dichloromethane (1 time) and dimethylformamide (2 times) and used
in the subsequent reaction.

Step C. Coupling of the next N-Fmoc-amino acid derivative

A solution of the next desired N-Fmoc-amino acid derivative (0.4 mmol) in dimethylformamide (2 mL) was mixed with 5 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (0.4 mmol), 1-hydroxybenzotriazole (0.4 mmol) and diisopropylethylamine (0.6 mmol). This solution was transferred to resin from Step B and typically allowed to react for 2 hours. Couplings were monitored by ninhydrin reaction. The coupling 10 mixture was filtered and the resin washed with dimethylformamide (3 times) and used in the subsequent reaction.

Step D. Deprotection of the N-Fmoc group.

The N-Fmoc protecting group was removed from the 15 resin from Step C by the procedure described in Step B and used in the subsequent reaction.

Step E. Acylation (or sulfonylation) of the terminal amino group.

The desired N-terminal capping reagent (sulfonyl) 20 chloride or acyl chloride, or isocyanate) (0.4 mol) was dissolved in dimethylformamide (2 ml), mixed with N,N-diisopropylethylamine(0.8 mmol) and added to the resin from Step D. After approximately two hours, the resin was sequentially washed 25 with dimethylformamide (3 times) and dichloromethane (3 times).

Step F. Cleavage of the desired products from the resins.

The final desired products were cleaved from the resins from Step E by gently stirring with a solution of trifluoroacetic acid:thioanisole:ethanedithiol (95:2.5:2.5); 3 hours for Wang® resin 30 and 30 minutes for the Chloro (2-chlorotrityl) resin. Following filtration, the solvents were removed by evaporation and the residue dissolved in acetonitrile (3 mL). Insoluble material was removed by filtration. The final products were purified by reverse phase

chromatography with a linear gradient of buffer A (0.1% trifluoroacetic acid in water) and buffer B (0.1% trifluoroacetic acid in acetonitrile) and isolated by lyophilization. Molecular ions were obtained by electrospray ionization mass spectrometry or matrix-assisted laser desorption ionization time-of-flight mass spectrometry to confirm the structure of each peptide.

The following compounds were prepared by the general procedures described above using the appropriate amino acid derivatives and acyl or sulfonyl chloride or alkyl or aryl isocyanate. These examples are provided to illustrate the present invention and are not to be construed as limiting its scope in any manner.

	Ex.	Compound Name	MS *
786238	(1)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-leucine	491
786236	(2)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-arginine	534
786240	(3)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-glutamic acid	507
803907	(4)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-glycine	435
803908	(5)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-(1-naphthyl)alanine	575
803909	(6)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)- α -t-butylglycine	491

803931	(7)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-3-(2-thienyl)alanine	531
803932	(8)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-cyclohexylalanine	531
803934	(9)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-3-(2-naphthyl)alanine	575
803949	(10)	N-(3,3-diphenylpropanoyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	498
803950	(11)	N-(2,4-dinitrobenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	521
803951	(12)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-3,3-diphenylalanine	601
803952	(13)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid	537
803953	(14)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-proline	475
803955	(15)	N-dansyl-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	511
803960	(16)	N-(2-naphthalenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	481
803961	(17)	N-(4-methoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	461
803968	(18)	N-(4-phenylbenzoyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	471
803969	(19)	N-(3,4-dimethylbenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-cysteine	481

803978	(20)	N-(4-t-butylbenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	487
803979	(21)	N-(2,5-dichlorobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	498
803980	(22)	N-(2-mesitylenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	473
803981	(23)	N-(p-toluenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	444
803982	(24)	N-(4-chlorobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	465
803983	(25)	N-(N'-acetylsulfanilyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	488
803984	(26)	N-(4-fluorobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	449
803985	(27)	N-(1-naphthalenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	481
803986	(28)	N-(benzylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	445
803987	(29)	N-(4-nitrobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	476
803995	(30)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-phenylalanine	525
803996	(31)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-glutamine	506
803997	(32)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-(4-nitrophenyl)alanine	570

803998	(33)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-asparagine	492
803999	(34)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-methionine	509
808008	(35)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-homophenylalanine	539
808009	(36)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(D)-norleucine	491
808010	(37)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-(4-fluorophenyl)alanine	543
808011	(38)	N-(3-toluenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	445
808012	(39)	N-(4-trifluoromethylbenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	499
808013	(40)	N-(4-n-propylbenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	473
808014	(41)	N-(4-isopropylbenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	473
808016	(42)	N-(2,6-dichlorobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	499
808017	(43)	N-(4-ethylbenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	459
808018	(44)	N-(2,4-difluorobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	467

808019	(45)	N-(2-cyanobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	456
808023	(46)	N-(4-tert-amylbenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	501
808024	(47)	N-(4-chloro-3-nitrobenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	510
808025	(48)	N-(3-cyanobenzoyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	420
808026	(49)	N-(3,5-dichlorobenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	499
808027	(50)	N-(3,4-dichlorobenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	499
808028	(51)	N-(2-trifluoromethylbenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	499
808029	(52)	N-(2,3-dichlorobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	499
808030	(53)	N-(2,4-dichlorobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	499
808031	(54)	N-(2,5-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	491
808045	(55)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-serine	465
808046	(56)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-isoleucine	491

808054	(57)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-tryptophan	564
808059	(58)	N-(2,1,3-benzothiadiazole-4-sulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-tryptophan	489
808067	(59)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-3-(3-pyridyl)alanine	526
808088	(60)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-3-(2-naphthyl)alanine, ethyl ester	603
808099	(61)	N-acetyl-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	333
808100	(62)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(R)-carbonyl-(D)-norleucine	491
808105	(63)	N-propionyl-(L)-prolyl-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	348
808200	(64)	N-(4-cyanobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	456
808201	(65)	N-(benzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	431
808202	(66)	N-(3-nitrobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	476
808203	(67)	N-(3-trifluoromethylbenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	499
808204	(68)	N-(2-thienylsulfonyl)-1,2,3,4-tetrahydro isoquinoline-3(S)-carbonyl-(L)-norleucine	437
808205	(69)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-N-methylleucine	505

808206	(70)	N-(3,4-dimethoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-citrulline	535
808207	(71)	N-(4-iodobenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3(S)-carbonyl-(L)-norleucine	557
808119	(72)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-(3-iodo)tyrosine	613
808120	(73)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(3-pyridyl)alanine	472
808121	(74)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-phenylalanine	471
808122	(75)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-glutamic acid	453
808123	(76)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-arginine	480
808124	(77)	N-(N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl)-1-amino-cyclopentane-1-carboxylic acid	549
808125	(78)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(3,4-dichlorophenyl)alanine	541
808131	(79)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine, ethyl ester	549
808135	(80)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(4-bromophenyl)alanine	550
808136	(81)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(4-nitrophenyl)alanine	516
808137	(82)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(4-thiazolyl)alanine	478
808140	(83)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(2-chlorophenyl)alanine	507
808141	(84)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(4-chlorophenyl)alanine	507
808142	(85)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(4-cyanophenyl)alanine	496

808107	(86)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-tyrosine, O-sulfate	586
808108	(87)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3,5-diiodotyrosine	739
808110	(88)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-tyrosine	488
808111	(89)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-aspartic acid	438
808117	(90)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-tryptophan	510
808118	(91)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-methionine	454
803915	(92)	N-(3,4-dimethoxybenzenesulfonyl)-(L)-prolyl-(L)-norleucine	429
808103	(93)	N-(3,5-di(trifluoromethyl)benzenesulfonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine	589
808211	(94)	N-(3,4-dimethoxybenzenesulfonyl)-(L)-thiaprolyl-(L)-3-(2-naphthyl)alanine	531
808047	(95)	N-(3,4-dimethoxybenzenesulfonyl)-(L)-thiaprolyl-(L)-norleucine	447
808077	(96)	N-[4-(N'-2-toluylureido)phenylacetyl]-(L)-thiaprolyl-(L)-3-(2-naphthyl)alanine	597
808071	(97)	N-(3,5-dichlorobenzenesulfonyl)-(L)-thiaprolyl-(L)-3-(2-naphthyl)alanine	539
803917	(98)	N-(3,4-dimethoxybenzenesulfonyl)-(L)-pipecolyl-(L)-norleucine	443
808089	(99)	N-(3,4-dimethoxybenzenesulfonyl)-(L)-pipecolyl-(L)-norleucine, ethyl ester	471
808126	(100)	N-(3,5-dichlorobenzenesulfonyl)-(L)-pipecolyl-(L)-homophenylalanine	499
808129	(101)	N-(3,5-dichlorobenzenesulfonyl)-(L)-pipecolyl-(L)-(3-iodo)tyrosine	626

808072	(102)	N-(3,5-dichlorobenzenesulfonyl)-(L)-pipecolyl-(L)-3-(2-naphthyl)alanine	535
808076	(103)	N-[4-(N'-2-toloylureido)phenylacetyl]-(L)-pipecolinyl-(L)-3-(2-naphthyl)alanine	593
808083	(104)	N-[3,5-di(trifluoromethyl)benzenesulfonyl)]-(L)-pipecolyl-(L)-3-(2-naphthyl)alanine	603
807087	(105)	N-(3,4-dimethoxybenzenesulfonyl)-(L)-pipecolyl-(L)-3-(2-naphthyl)alanine, ethyl ester	555
803921	(106)	N-(3,4-dimethoxybenzenesulfonyl)-(L)-octahydroisoquinoline-3-carbonyl-(L)-norleucine	483
808068	(107)	N-(3,4-dimethoxybenzenesulfonyl)-azetidine-2-carbonyl-(L)-norleucine	415
808104	(108)	N-(3,5-dichlorobenzenesulfonyl)-(L)-4(S)-hydroxyprolyl-(L)-3-(2-naphthyl)alanine	537
803916	(109)	N-(3,4-dimethoxybenzenesulfonyl)-(L)-4(S)-hydroxyprolyl-(L)-norleucine	445
803920	(110)	N-(3,4-dimethoxybenzenesulfonyl)-(L)-3,4-dehydroprolyl-(L)-norleucine	427
809738	(111)	N-(3-bis(N,N-benzenesulfonyl)aminobenzenesulfonyl)-(L)-prolyl-(L)-norleucine	
814440	(112)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(4-pyridyl)alanine	472.2
814441	(113)	N-(3,5-dichlorobenzenesulfonyl)-(L)-4(R)-aminoprolyl-(L)-3-(2-naphthyl)alanine	536.1
814443	(114)	N-(3,5-dichlorobenzenesulfonyl)-(L)-3,4-dehydroprolyl-(L)-4-fluorophenylalanine	487.2
814444	(115)	N-(3-chlorobenzenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	455.1
814447	(116)	N-(3,5-dichlorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-4-fluorophenylalanine	505.2
814452	(117)	N-(3,5-dichlorobenzenesulfonyl)-(L)-thiaprolyl-(L)-tyrosine	505.0

814453	(118)	N-(3,5-dichlorobenzenesulfonyl)-(L)-thiaprolyl-(L)-3-iodotyrosine	631.0
814456	(119)	N-(3-fluorobenzenesulfonyl)-(L)-thiaprolyl-(L)-3-(2-naphthyl)alanine	489.3
814457	(120)	N-(3-fluorobenzenesulfonyl)-(L)-pipecolyl-(L)-3-(2-naphthyl)alanine	485.4
814459	(121)	N-(3-fluorobenzenesulfonyl)-(L)-thiaprolyl-(L)-4-fluorophenylalanine	457.2
814460	(122)	N-(3-fluorobenzenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	439.2
814463	(123)	N-(3-chlorobenzenesulfonyl)-(L)-3,4-dehydroprolyl-(L)-4-fluorophenylalanine	453.3
814464	(124)	N-(3-fluorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-4-fluorophenylalanine	455.0
814465	(125)	N-(3-chlorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-4-fluorophenylalanine	471.0
814468	(126)	N-(3,5-dichlorobenzenesulfonyl)-(L)-pipecolyl-(L)-4-fluorophenylalanine	503.1
814469	(127)	N-(3-fluorobenzenesulfonyl)-(L)-3,4-dehydroprolyl-(L)-tyrosine	435.3
814470	(128)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-prolyl-(L)-tyrosine	493.2
814471	(129)	N-(3-fluorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-tyrosine	453.2
814472	(130)	N-(3-chlorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-tyrosine	469.2
814475	(131)	N-(3-fluorobenzenesulfonyl)-(L)-pipecolyl-(L)-4-fluorophenylalanine	453.3
814476	(132)	N-(3-fluorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-tyrosine, O-tert-butyl ether	509.1
814477	(133)	N-(3-chlorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-tyrosine, O-tert-butyl ether	525.3

814478	(134)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-3,4-dehydroproyl-(L)-tyrosine	491.1
814479	(135)	N-(3,5-dichlorobenzenesulfonyl)-(L)-3(S)-methyl-prolyl-(L)-4-fluorophenylalanine	503.1
814480	(136)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-3,4-dehydroproyl-(L)-tyrosine	485.1
814481	(137)	N-(3-fluorobenzenesulfonyl)-(L)-3,4-dehydroproyl-(L)-tyrosine, O-tert-butyl ether	491.1
814482	(138)	N-(3-chlorobenzenesulfonyl)-(L)-3,4-dehydroproyl-(L)-tyrosine, O-tert-butyl ether	507.3
814483	(139)	N-(3-chlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-fluorophenylalanine	469.1
814484	(140)	N-(3-chlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-tyrosine	467.3
814485	(141)	N-(3-chlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-tyrosine, O-tert-butyl ether	523.2
814489	(142)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-tyrosine	501.0
814490	(143)	N-(3-fluorobenzenesulfonyl)-(L)-prolyl-(L)-3-iodotyrosine	563.1
814491	(144)	N-(3-chlorobenzenesulfonyl)-(L)-prolyl-(L)-3-iodotyrosine	579.0
814492	(145)	N-(3-fluorobenzenesulfonyl)-(L)-prolyl-(L)-3-phenylalanine	421.1
814493	(146)	N-(3-chlorobenzenesulfonyl)-(L)-prolyl-(L)-phenylalanine	437.3
814494	(147)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-phenylalanine	471.2
814495	(148)	N-(3-fluorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-phenylalanine	437.3
814496	(149)	N-(3-chlorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-phenylalanine	453.2

814497	(150)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-3,4-dehydroprolyl-(L)-3-(4-pyridyl)alanine	476.1
814498	(151)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-thiaprolyl-(L)-3-(4-pyridyl)alanine	495.9
814499	(152)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-3,4-dehydroprolyl-(L)-4-fluorophenylalanine	492.9
814500	(153)	N-(3,5-dichlorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-phenylalanine	487.1
814501	(154)	N-(3-trifluoromethylbenzenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	489.3
814502	(155)	N-(3-trifluoromethylbenzenesulfonyl)-(L)-thiaprolyl-(L)-4-fluorophenylalanine	507.0
814504	(156)	N-(3-fluorobenzenesulfonyl)-(L)-3,4-dehydroprolyl-(L)-4-fluorophenylalanine	437.1
814505	(157)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-tyrosine, O-phosphoric acid	567.0
814508	(158)	N-(3-chlorobenzenesulfonyl)-(L)-4(R)-aminoprolyl-(L)-tyrosine	468.3
814509	(159)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-thiaprolyl-(L)-tyrosine	510.9
814510	(160)	N-(N ₁ -methyl-4-imidazolesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	425.3
814511	(161)	N-(3,5-dichlorobenzenesulfonyl)-(D)-prolyl-(D)-4-fluorophenylalanine	489.1
814512	(162)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-4(R)-aminoprolyl-(L)-3-(4-pyridyl)alanine	492.9
814513	(163)	N-(5-(5-trifluoromethyl-2-pyridylsulfonyl)-2-thiophenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	636.1
814515	(164)	N-(5-(N-(4-chlorobenzoyl)aminomethyl))-2-thiophenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	575.1

814517	(165)	N-(5-(3-(1-methyl-5-trifluoromethyl-pyrazoyl))-2-thiophenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	594.0
814519	(166)	N-(3-fluorobenzenesulfonyl)-2(S)-methylprolyl-(L)-O-tert-butyl-tyrosine	507.3
814532	(167)	N-(3-fluorobenzenesulfonyl)-(L)-4(R)-aminoprolyl-(L)-4-fluorophenylalanine	454.2
814533	(168)	N-(3,5-dichlorobenzenesulfonyl)-(L)-4(R)-aminoprolyl-(L)-4-fluorophenylalanine	504.3
814534	(169)	N-(3-chlorobenzenesulfonyl)-(L)-4(R)-aminoprolyl-(L)-4-fluorophenylalanine	470.1
814535	(170)	N-(3,5-dichlorobenzenesulfonyl)-(L)-4(S)-aminoprolyl-(L)-4-fluorophenylalanine	504.0
814536	(171)	N-(3-chlorobenzenesulfonyl)-(L)-thiaprolyl-(L)-4-fluorophenylalanine	473.3
814538	(172)	N-(4-bromo-5-chloro-2-thiophenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	540.9
814539	(173)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	513.0
814540	(174)	N-(3,5-dichlorobenzenesulfonyl)-(L)-thiaprolyl-(L)-3,5-diiodotyrosine	756.7
814542	(175)	N-(5-benzoylaminomethyl-2-thiophenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	560.1
814543	(176)	N-(3-chlorobenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	509.3
814552	(177)	N-(5-benzenesulfonyl-2-thiophenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	567.0
814553	(178)	N-(3-bromo-5-chloro-2-thiophenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	540.9
814558	(179)	N-(3-chlorobenzenesulfonyl)-(L)-3,4-dehydroprolyl-(L)-tyrosine	451.2
814560	(180)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-homophenylalanine	485.3

814561	(181)	N-(4-benzenesulfonyl-2-thiophenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	621.1
814562	(182)	N-(5-benzoylaminomethyl-2-thiophenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	614.2
814564	(183)	N-(trans-2-phenyl-ethylene-sulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	501.3
814568	(184)	N-(5-benzenesulfonyl-2-thiophenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	621.1
814569	(185)	N-(3-fluorobenzenesulfonyl)-(L)-thiaprolyl-(L)-O-tert-butyl-tyrosine	511.2
814570	(186)	N-(benzylsulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	489.3
814572	(187)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-cysteine, amide	426.2
814576	(188)	N-(1-methyl-4-imidazolylsulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	479.1
814578	(189)	N-(4-(N-(4-dimethylaminophenyl)diazo)-benzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	622.0
814579	(190)	N-(5-(4-trifluoromethylbenzenesulfonyl)-2-thiophenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	690.2
814580	(191)	N-(3-bromobenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	553.2
814581	(192)	N-(4-methylsulfonyl-benzenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	499.2
814586	(193)	N-(4-methoxybenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	505.2
814589	(194)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-prolyl-(L)-3-fluorophenylalanine	495.0
814591	(195)	N-(5-chloro-2-thiophenesulfonyl)-(L)-prolyl-(L)-4-fluorophenylalanine	461.1

814592	(196)	N-(3-chlorobenzenesulfonyl)-(L)-thiaprolyl-(L)-tyrosine	471.0
814594	(197)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methylprolyl-(L)-O-tert-butyl-tyrosine	558.6
814596	(198)	N-(1(R)-(+)-10-camphorsulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	549.3
814597	(199)	N-(1(S)-(+)-10-camphorsulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	549.3
814598	(200)	N-(3,4-methylenedioxy-phenylacetyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	497.2
814605	(201)	N-(3-chlorobenzenesulfonyl)-(L)-4(R)-hydroxyprolyl-(L)-tyrosine-O-sulfate	551.0
814606	(202)	N-(3-chlorobenzenesulfonyl)-(L)-thiaprolyl-(L)-tyrosine-O-sulfate	553.7
814612	(203)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-cysteine	427.2
814613	(204)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-N-methyl-isoleucine	451.2
814614	(205)	N-(3,5-dichlorobenzenesulfonyl)-(L)-4(R)-aminoprolyl-(L)-O-tert-butyl-tyrosine	558.3
814618	(206)	N-(3-chlorobenzenesulfonyl)-(L)-4(R)-aminoprolyl-(L)-O-tert-butyl-tyrosine	524.4
814619	(207)	N-(3-cyanobenzenesulfonyl)-(L)-prolyl-(L)-tyrosine	444.3
814624	(208)	N-benzenesulfonyl-(L)-prolyl-(L)-O-tert-butyl-tyrosine	475.5
814628	(209)	N-(4-methylsulfonylbenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	553.2
814742	(210)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-4(R)-aminoprolyl-(L)-O-tert-butyl-tyrosine	564.3
814743	(211)	N-(4,5-dichloro-2-thiophenesulfonyl)-(L)-4(R)-aminoprolyl-(L)-4-fluorophenylalanine	510.1

817274	(212)	N-(9-fluorenylmethyloxycarbonyl)-(L)-prolyl-(L)-phenylalanine	485
817277	(213)	N-(benzenesulfonyl)-(L)-prolyl-(L)-phenylalanine	403
817278	(214)	N-(n-octyl-1-sulfonyl)-(L)-prolyl-(L)-phenylalanine	418
821732	(215)	N-(3-fluorobenzenesulfonyl)-(L)-5(R)-phenyl-prolyl-(L)-4-fluorophenylalanine	515
823333	(216)	N-(3,5-dichlorobenzenesulfonyl)-(L)-3(R)-phenyl-prolyl-(L)-4-iodophenylalanine	582
823447	(217)	N-(3,5-dichlorobenzenesulfonyl)-1,2,3,4-tetrahydro isoquinoline-1-carbonyl-(L)-4-fluorophenylalanine	568
823449	(218)	N-(3,5-dichlorobenzenesulfonyl)-1,3-dihydro isoindolyl-1-carbonyl-(L)-4-fluorophenylalanine	554
814747	(219)	N-(4-(fluorescien-4-carbonylamino)benzene sulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	879.2
814752	(220)	N-(3-ethoxycarbonyl-benzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	547.2
814758	(221)	N-(4-iodobenzenesulfonyl)-(L)-prolyl-(L)-4-benzoyl-phenylalanine	633.0
814766	(222)	N-(3-(4-benzophenonyl-carbonylamino)-benzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	698.2
814767	(223)	N-(3-(6-(biotinylamino)-n-hexanoyl)-aminobenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine	829.4
823450	(224)	N-(3,5-dichlorobenzenesulfonyl)-[3.1.0]-3-azabicyclohexane-2-carbonyl-(L)-4-fluorophenylalanine	518

* m/e: $(M + 1 (H^+))^+$ or $(M + 18 (NH_4^+))^+$

EXAMPLE 225 (L-808,813)

N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine.

Step A: (L)-3-(2-Naphthyl)alanine, tert-butyl ester, hydrochloride.

To a solution of N-Boc-2-naphthylalanine (1.0 g, 3.17 mmol) in a mixture of methylene chloride (7 mL) and cyclohexane (14 mL) were added t-butyl trichloroacetimidate (0.60 mL, 3.35 mmol) and boron trifluoride-etherate (60 μ L, 0.473 mmol). The reaction mixture was stirred for 5 hours at room temperature under a nitrogen atmosphere and then treated a second time with the same amounts of t-butyl trichloroacetimidate and boron trifluoride-etherate as above. After stirring overnight, the mixture was filtered and the filtrate evaporated. The product was obtained pure by silica gel chromatography eluting with 10% diethyl ether in hexane; yield 843 mg. The product was treated with 1M HCl in ethyl acetate (11.5 mL) for 18 hours at room temperature. The mixture was evaporated and coevaporated several times with diethyl ether to afford the title compound; yield 670 mg.

400 MHz 1 H NMR (CD₃OD): δ 1.38 (s, 9H); 3.29-3.46 (m, 2H); 4.28 (t, 1H); 7.40-7.90 (m, 7H).

Step B: N-(Benzoyloxycarbonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine, tert-butyl ester.

To a solution of N-(benzyloxycarbonyl)-(L)-proline (536 mg, 2.15 mmol) in methylene chloride (25 mL) were added 1-hydroxybenzotriazole (434 mg, 3.21 mmol), N-methylmorpholine (0.353 mL, 3.21 mmol), and (L)-2-naphthylalanine tert-butyl ester hydrochloride (660 mg, 2.14 mmol). After cooling in an ice-bath for 5 minutes, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (493 mg, 2.57 mmol) was added. After 15 minutes, the cooling bath was removed and the mixture stirred overnight under a nitrogen atmosphere. The mixture was diluted with methylene chloride, washed with water, 2N HCl, saturated NaHCO₃ solution, saturated brine solution, dried (anhydrous magnesium sulfate), and evaporated. Silica gel chromatography

eluting with 30% ethyl acetate in hexane afforded pure title compound; yield 877 mg (81%).

Step C: (L)-Prolyl-(L)-3-(2-naphthyl)alanine, tert-butyl ester.

- 5 A solution of N-(benzyloxycarbonyl)-(L)-prolyl-(L)-2-
naphthylalanine tert-butyl ester (870 mg, 1.73 mmol) in methanol (30 mL) was hydrogenated under an atmosphere of hydrogen gas in the presence of 10% palladium-on-charcoal (75 mg) until complete disappearance of starting material (several hours) as indicated by
- 10 TLC (30% ethyl acetate in hexane). The catalyst was removed by filtration through Celite, the filter washed with methanol, and the combined filtrate and washings evaporated to afford an oil that crystallized upon standing; yield 604 mg (95%).
 ^1H NMR (CD_3OD): δ 1.40 (s, 9H); 2.00 (m, 1H); 2.79 (m, 2H); 3.16 (dd, 1H); 3.58 (dd, 1H); 4.67 (dd, 1H); 7.32-7.81 (m, 7H).
- 15

Step D: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine, tert-butyl ester.

- 20 To a solution of (L)-prolyl-(L)-2-naphthylalanine tert-butyl ester (400 mg, 1.09 mmol) in methylene chloride (10 mL) were added N,N -diisopropylethylamine (470 μL , 2.70 mmol), 4-dimethylaminopyridine (13 mg, 0.106 mmol), and 3,5-dichlorobenzenesulfonyl chloride (320 mg, 1.30 mmol). The reaction mixture was stirred for 2 hours at room temperature, diluted with methylene chloride, washed with water, 2N HCl , saturated NaHCO_3 solution, saturated brine solution, dried (Anhydrous magnesium sulfate), and evaporated. Pure title compound was obtained by silica gel chromatography eluting with 20% ethyl acetate in hexane; yield 501 mg (80%).
- 25
- 30 ^1H NMR (CD_3OD): δ 1.40 (s, 9H); 1.53-1.89 (m, 4H); 3.20-3.45 (m, 4H); 4.20 (dd, 1H); 4.69 (dd, 1H); 7.40-7.80 (m, 10H).

Step E: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine.

(224) A cooled solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-2-naphthylalanine tert-butyl ester (497 mg, 0.861 mmol) in methylene chloride (25 mL) was treated with trifluoroacetic acid (3.5 mL, 0.045 mol). The cooling bath was removed, and the mixture was stirred until TLC (25% ethyl acetate in hexane) indicated complete disappearance of starting material. The reaction mixture was then evaporated, coevaporated with methylene chloride (3X), toluene (2X), and finally methanol. The product was dried under high vacuum; yield 445 mg (99%).

MS: m/e 521 (M); 537 (M + NH₃)
400 MHz ¹H NMR (CD₃OD): δ 1.51-1.87 (m, 4H); 3.19-3.46 (m, 4H); 4.20 (dd, 1H); 4.80 (dd, 1H); 7.39-7.82 (m, 10H).

The following compounds were prepared by the procedures described in Example 225 using the appropriate amino acid derivatives and acyl or sulfonyl chloride or alkyl or aryl isocyanate:

Ex.	Compound Name	MS *
805402	(226) N-[4-(N'-2-toluylureido)phenylacetyl-(L)-prolyl-(L)-norleucine	495
805403	(227) N-(3,4-dimethoxybenzoyl)-(L)-prolyl-(L)-norleucine	393
805688	(228) N-(3,4-dimethoxybenzenesulfonyl)-(L)-pipecolyl-(L)-tryptophan	516
805884	(229) N-(4-nitrobenzenesulfonyl)-(L)-prolyl-(L)-norleucine	414
808428	(230) N-[3,5-di(trifluoromethyl)benzenesulfonyl]-(L)-prolyl-(L)-norleucine	505

808429	(231)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-norleucine	437
808430	(232)	N-(3-trifluoromethylbenzenesulfonyl)-(L)-prolyl-(L)-norleucine	437
808438	(233)	N-[4-(benzoylamino)benzenesulfonyl])-(L)-prolyl-(L)-norleucine	488
808529	(234)	N-(4-methoxy-3,5-dinitrobenzenesulfonyl)-(L)-prolyl-(L)-norleucine	488
808811	(235)	N-(3-chlorobenzenesulfonyl))-(L)-prolyl-(L)-norleucine	402
808812	(236)	N-(3-trifluoromethylbenzenesulfonyl))-(L)-prolyl-(L)-3-(2-naphthyl)alanine	521
809185	(237)	N-(3-nitrobenzenesulfonyl))-(L)-prolyl-(L)-norleucine	414
809187	(238)	N-(3-cyanobenzenesulfonyl))-(L)-prolyl-(L)-norleucine	394
809188	(239)	N-(3,5-dichlorobenzenesulfonyl))-(L)-prolyl-(L)-tryptophan	510
809189	(240)	N-(3-methylbenzenesulfonyl))-(L)-prolyl-(L)-norleucine	383
809804	(241)	N-(3,5-dichlorobenzenesulfonyl))-(L)-3(S)-methyl-prolyl-(L)-3-(2-naphthyl)alanine	535
809591	(242)	N-(3-chlorobenzenesulfonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine	488
809592	(243)	N-(3-fluorobenzenesulfonyl))-(L)-prolyl-(L)-3-(2-naphthyl)alanine	471
809603	(244)	N-phenylacetyl-(L)-prolyl-(L)-3-(2-naphthyl)alanine	431
809632	(245)	N-(3-phenylpropionyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine	445
817059	(246)	N-(phenylaminocarbonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine	432

808199	(247)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2-methylproyl-(L)-3-(2-naphthyl)alanine	535
817380	(248)	N-(benzenesulfonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine	453
817554	(249)	N-(4-N'-phenylureidobenzenesulfonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine	587
817705	(250)	N-(3-fluorobenzenesulfonyl)-(L)-5,5-dimethylproyl-(L)-3-(2-naphthyl)alanine	499
817898	(251)	N-(4-N'-(2-toluyl)ureidobenzenesulfonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine	601
821124	(252)	N-(3-fluorobenzenesulfonyl)-(L)-prolyl-(L)-4-iodophenylalanine	547
821246	(253)	N-(4-N'-benzylureidobenzenesulfonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine	601
821335	(254)	N-(phenyloxalyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine	445
821535	(255)	N-(benzylaminocarbonyl)-(L)-prolyl-(L)-3-(2-naphthyl)alanine	445
821948	(256)	N-(3-fluorobenzenesulfonyl)-(L)-2(S)-methylproyl-(L)-4-fluorophenylalanine	470
821949	(257)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methylproyl-(L)-4-fluorophenylalanine	520
823169	(258)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-phenylalaninamide-N-methylsulfonamide	565
823176	(259)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methylproyl-(L)-4-iodophenylalanine	628
821531	(260)	N-(3-fluorobenzenesulfonyl)-(L)-prolyl-(L)-phenylalanine	261**
823977	(261)	N-(3,5-dichlorobenzenesulfonyl)-(L)-5-methylproyl-(L)-4-fluorophenylalanine	520
823979	(262)	N-(3,5-dichlorobenzenesulfonyl)-3-phenylazetidinylcarbonyl-(L)-4-fluorophenylalanine	568

825300	(263)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-allylprolyl-(L)-4-fluorophenylalanine	529
840220	(264)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-phenylalanine	
835364	(265)	N-(3-trifluoromethylbenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-nitro-phenylalanine	530
333119	(266)	N-(3,5-dichlorobenzenesulfonyl)-(L)-3(R)-methyl-prolyl-(L)-4-fluorophenylalanine	502.3
842544	(267)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-cyanophenylalanine	509
842724	(268)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(aminocarbonyl)-phenylalanine	545
334879	(269)	N-(3,5-dichlorobenzenesulfonyl)-(L)-3(R)-methyl-prolyl-(L)-4-(N-t-butoxycarbonylaminomethyl)-phenylalanine	631.4
334880	(270)	N-(3,5-dichlorobenzenesulfonyl)-(L)-3(R)-methyl-prolyl-(L)-4-(aminomethyl)-phenylalanine	514.3

* m/e: (M + 1 (H⁺))⁺ or (M + 18 (NH₄⁺))⁺

** (M - 159: N/SO₂Ar cleavage)

EXAMPLE 271 (L-837094)

5

N-(3-Trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-acetaminophenylalanine.

Step A: N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-aminophenylalanine, methyl ester.

To a solution of N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-nitrophenylalanine, methyl ester (0.45 g, 0.85 mmol; prepared according to the methodology described in Example 225) in methanol (40 mL) was added 10% palladium on carbon catalyst (50 mg) and the resulting black suspension was stirred under 1 atm of hydrogen for 45 min. The reaction mixture was filtered (Whatman

syringless filter device) and rotoevaporated under high vacuum to an off-white solid (0.42 g, 99% yield) which was used in the following step without further purification.

5 ¹H-NMR (400 MHz, CDCl₃): δ 8.12 (s, 1H), 8.05 (d, 1H, J = 7.8 Hz),
 7.81 (d, 1H, J = 7.7 Hz), 7.64 (t, 1H, J = ~7.9 Hz), 7.03 (d, 1H, J = 7.6 Hz),
 6.97 (d, 2H, J = 8.4 Hz), 6.73 (d, 2H, J = 8.4), 4.76 (m, 1H), 3.75 (s, 3H), 3.48
 (m, 1H), 3.28 (m, 1H), 3.14 (dd, 1H, J = 14.2, 5.4 Hz), 2.98 (dd, 1H, J = 14.2,
 6.9 Hz), 2.29 (m, 1H), 1.78 (m, 1H), 1.62 (m, 2H), 1.57 (s, 3H).

10 Step B: N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-
(L)-4-acetaminophenylalanine, methyl ester

15 To a solution of N-(3-trifluoromethylphenylsulfonyl)-(L)-
 2(S)-methyl-prolyl-(L)-4-aminophenylalanine, methyl ester (42 mg, 0.082
 mmol) in dry dichloromethane (0.5 mL) at 0 °C, was added successively
 2,6-lutidine (0.03 mL, 0.25 mmol; 3.0 equiv), acetyl chloride (0.01 mL,
 0.125 mmol; 1.5 equiv), and 4-dimethylaminopyridine (10 mg, 0.082
 mmol; 1.0 equiv). The yellow reaction mixture was stirred overnight.
 After this time, 1.0 N hydrochloric acid was added followed by extraction
 with ethyl acetate (3x). The combined organic layer was successively
 20 washed with saturated sodium bicarbonate solution and saturated salt
 solution and dried over anhydrous magnesium sulfate. The mixture
 was filtered and concentrated to furnish an orange-yellow oil (46 mg,
 100% crude yield) which was purified by preparative thin layer
 chromatography (80% ethyl acetate, 20% hexanes). Yield: 39 mg (85%).

25 ¹H-NMR (400 MHz, CDCl₃): δ 8.11 (s, 1H), 8.04 (d, 1H, J = 8.0 Hz),
 7.82 (d, 1H, J = 7.7 Hz), 7.64 (t, 1H, J = ~7.9 Hz), 7.41 (d, 1H, J = 8.4 Hz),
 7.25 (s, 1H), 7.09 (d, 2H, J = 8.4 Hz), 7.07 (d, 1H, J = ~8.0 Hz), 4.80 (m, 1H),
 3.75 (s, 3H), 3.49 (m, 1H), 3.24 (m, 2H), 3.04 (dd, 1H, J = ~14.0, ~7.0 Hz),
 2.29 (m, 1H), 2.13 (s, 3H), 1.75 (m, 1H), 1.61 (m, 2H), 1.57 (s, 3H).

30

Step C: N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-
(L)-4-acetaminophenylalanine

To a solution of N-(3-trifluoromethyl)-2(S)-methyl-prolyl-4-acetamino-(S)-phenylalanine, methyl ester (33 mg, 0.059 mmol) in ethanol (1.0 mL) was added 0.2 N sodium hydroxide solution (0.60 mL, 0.12 mmol; 2.0 equiv). The reaction mixture was stirred overnight (15 h) and then acidified with 1.0 N hydrochloric acid and extracted with ethyl acetate (3x). The combined organic layer was washed with saturated salt solution, dried over anhydrous magnesium sulfate, and rotoevaporated to yield an off-white solid (31 mg, 97% yield).

MS: m/e 542 ($M+H^+$); 559 ($M+NH_4^+$).
¹H-NMR (400 MHz, CD₃OD): δ 8.08 (m, 2H), 7.95 (d, 1H, J = 7.7 Hz), 7.76 (t, 1H, J = ~7.9 Hz), 7.48 (m, 3H), 7.18 (d, 2H, J = 8.4), 4.69 (m, 1H), 3.43 (m, 1H), 3.32 (m, 2H), 3.05 (dd, 1H, J = ~14.0, ~7.0 Hz), 2.12 (m, 1H), 2.08 (s, 3H), 1.71 (m, 3H), 1.56 (s, 3H).

The following compounds were prepared by the procedures described in Example 271 using the acyl or sulfonyl chloride or alkyl or aryl isocyanate:

	Ex.	Compound Name	MS *
835360	(272)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(N'-(2-tolyl)ureido)phenylalanine.	633
835361	(273)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(N'-(4'-fluorophenylsulfonyl)ureido)phenylalanine.	718
835362	(274)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(ethoxycarbonyl)aminophenylalanine.	572
835363	(275)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(4'-(N'-(2-tolyl)ureido)phenylacetyl)aminophenylalanine.	766

835669	(276)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(4'-fluorophenylsulfonyl)aminophenylalanine.	658
835670	(277)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(phenylacetyl)aminophenylalanine.	618
835671	(278)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(4'-fluorobenzoyl)aminophenylalanine.	622
835672	(279)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(isobutyloxycarbonyl)aminophenylalanine.	600
837092	(280)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-methylsulfonylaminophenylalanine.	578
837093	(281)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(N'-(4-fluorophenyl)ureido)phenylalanine.	637
334782	(282)	N-(3-trifluoromethylbenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(N-(1,1-dioxo-1,2-isothiazolidinyl)-phenylalanine	621
334784	(283)	N-(3-trifluoromethylphenylsulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(N'-(4-(2-oxo-1-pyrrolidinyl)-phenylalanine.	585

* m/e: (M + 1 (H⁺))⁺ or (M + 18 (NH₄⁺))⁺

EXAMPLE 284 (L-823845)

- 5 N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(4'-fluorobenzoyl)phenylalanine

Step A: 4-Iodo-(L)-Phenylalanine, tert-butyl ester hydrochloride.

To a suspension of N-Boc-4-iodo-(L)-phenylalanine (1.0 g, 2.56 mmol) in methylene chloride (7 mL) and cyclohexane (14 mL) were added t-butyl trichloroacetimidate (0.48 mL, 2.68 mmol) and boron trifluoride-etherate (48 μ L). The reaction mixture was stirred for 5 hours 5 at room temperature under a nitrogen atmosphere and then treated a second time with the same amounts of t-butyl trichloroacetimidate and boron trifluoride-etherate as above. After stirring overnight, a third addition was made, and the mixture was stirred a further 3 hours. The mixture was then filtered and the filtrate evaporated. The product was 10 obtained pure by silica gel chromatography eluting with 10% diethyl ether in hexane; yield 650 mg. The product was treated with 1M HCl in ethyl acetate (7.3 mL) for 18 hours at room temperature. The mixture was evaporated and coevaporated several times with diethyl ether to afford the title compound; yield 522 mg.

15 400 MHz 1 H NMR (CD_3OD): δ 1.42 (s, 9H); 3.13 (d, 2H); 4.18 (t, 1H); 7.09 (d, 2H); 7.75 (d, 2H).

Step B: N-(3,5-Dichlorobenzenesulfonyl)-(L)-proline

To a mixture of (L)-proline methyl ester hydrochloride (838 mg, 5.06 mmol) in methylene chloride (25 mL) at 0°C were added N,N-diisopropylethylamine (2.64 mL, 15.2 mmol) and a solution of 3,5-dichlorobenzenesulfonyl chloride (1.49 g, 6.07 mmol) in methylene chloride (5 mL). The cooling bath was removed, and the mixture was stirred overnight at room temperature. It was then diluted with 20 methylene chloride, washed with 1N hydrochloric acid, saturated $NaHCO_3$, saturated brine solution, dried over anhydrous sodium sulfate, and evaporated. The methyl ester was obtained pure by silica gel chromatography eluting with 10% acetone in hexane; yield 1.49 g. It was then taken up in ethanol (50 mL) and treated with 0.2 N sodium 25 hydroxide (26.6 mL) for 1.5 hours at room temperature. The mixture was acidified with glacial acetic acid, concentrated, the residue taken up in methylene chloride, washed with water, saturated brine solution, dried (Na_2SO_4), and evaporated to give the title compound; yield 1.4 g.

400 MHz ^1H NMR (CD₃OD): δ 1.80-2.15 (m, 4H); 3.35-4.45 (m, 2H); 4.30 (dd, 1H); 7.76 (m, 1H); 7.83 (m, 2H).

5 Step C: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-iodophenylalanine, tert-butyl ester.

To a solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-proline (386 mg, 1.19 mmol) in methylene chloride (23 mL) were added 1-hydroxybenzotriazole (241 mg, 1.79 mmol), N-methylmorpholine (0.33 mL, 2.98 mmol), and 4-ido-(L)-phenylalanine tert-butyl ester hydrochloride (458 mg, 1.19 mmol). After cooling in an ice-bath for 5 minutes, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (274 mg, 1.43 mmol) was added. After 15 minutes, the cooling bath was removed, and the mixture was stirred overnight under a nitrogen atmosphere. The mixture was diluted with methylene chloride, washed with water, 1N HCl, saturated NaHCO₃ solution, saturated brine solution, dried (Anhydrous magnesium sulfate), and evaporated. Silica gel chromatography eluting with 20% ethyl acetate in hexane afforded pure title compound; yield 651 mg (84%).

10 MS: m/e 653 (M + 1)

15 20 400 MHz ^1H NMR (CD₃OD): δ 1.45 (s, 9H); 1.65-1.85 (m, 4H); 3.0 (dd, 1H); 3.13 (dd, 1H); 3.45 (m, 1H); 4.20 (m, 1H); 4.55 (dd, 1H); 7.05 (d, 2H); 7.64 (d, 2H); 7.80 (s, 3H).

25 Step D: N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(4'-fluorobenzoyl)phenylalanine, tert-butyl ester.

A solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-4-iodo-(L)- phenylalanine tert-butyl ester(100 mg, 0.15 mmol), 4-fluorobenzeneboronic acid (23 mg, 0.16 mmol), potassium carbonate(62 mg, 0.45 mmol), bis(triphenylphosphine)-palladium(II) chloride (4 mg, 0.0057 mmol) in anisole(4 ml) was flushed with nitrogen, then flushed with CO, and a balloon of CO was attached. The solution was then stirred at 80°C for 5 hours on a timer overnight. The following day the solution was diluted with methylene chloride, washed once with water,

once with brine, dried over Anhydrous magnesium sulfate, and solvent removed in vacuo. The desired product was obtained by silica gel chromatography eluting with methylene chloride, followed by 10% ethyl acetate in methylene chloride; yield 70 mg (72%)

- 5 MS: m/e 666.2 ($M+H+NH_3$)
 400 MHz 1H NMR (CD_3OD): δ 1.46(s,9H); 1.65-1.95(m,4H); 3.05-3.15
 (dd,1H); 3.47(m,1H); 4.2(dd,1H); 4.65(m,1H); 7.20(t,2H); 7.45(d,2H);
 7.70(d,2H); 7.76-7.85(m,5H)
- 10 Step E: N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(4'-fluorobenzoyl)phenylalanine
 A solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(4-fluorobenzoyl)phenylalanine, tert-butyl ester (23 mg, 0.035 mmol) in methylene chloride(1.2 mL) was cooled in ice bath. Trifluoroacetic acid (0.167 mL, 2.17 mmol) was then added, and ice bath was removed and reaction mixture was allowed to stir overnight at room temperature. The reaction mixture was then evaporated, coevaporated with methylene chloride(2X), toluene(2X), and methanol(2X). The product was obtained pure by eluting with 20% ethyl acetate in methylene chloride, followed by 8% methanol in methylene chloride; yield 19 mg(91%)
- 15 MS: m/e 609.8($M+H+NH_3$)
 400 Mhz 1H NMR (CD_3OD): δ 1.6-1.95(m,4H): 3.1-3.45(m,4H): 4.17 (dd,1H):
 4.55(m,1H): 7.2(t,2H): 7.4(d,2H): 7.66(d,2H): 7.78-7.85(m,5H)
- 20 25 The following compounds were prepared by the procedures described in Example 284 using the appropriate arylboronic acid derivative in Step D:

Ex.		Compound Name	MS *
823847	(285)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-methoxybenzoyl)phenylalanine	604.8

835631 (286) N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl- 624
prolyl-(L)-4-(4'-fluorobenzoyl)phenylalanine
* m/e: (M + 1 (H⁺))⁺ or (M + 18 (NH₄⁺))⁺

EXAMPLE 287

5 N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(4-fluorobenzyl)phenylalanine 825244

Step A: N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(4-fluoro- α -hydroxybenzyl)phenylalanine, tert-butyl ester.

10 A solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(4'-fluorobenzoyl)phenylalanine (38 mg) in methanol (5 mL) was cooled to 0° C. Sodium borohydride (3 mg) was added. After stirring for 20 min, the solvent was removed by rotoevaporation and the residue dissolved in dichloromethane (30 mL). The solution was successively washed with water and saturated salt solution and dried over anhydrous magnesium sulfate. The mixture was filtered and the solvent was removed by rotoevaporation. The title compound (38 mg) was recovered and used with no further purification in the subsequent reaction.

20 Step B: N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(4-fluorobenzyl)phenylalanine

25 A solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(4-fluorophenyl-hydroxymethyl)phenylalanine, tert-butyl ester (38 mg) and triethylsilane (21 μ L) in anhydrous dichloromethane was flushed with dry nitrogen for five minutes. The solution was then cooled in an ice bath and boron trifluoride etherate (16 uL) was added. After stirring for 3 hours, methanol (1 mL) was added and the solvent was removed by rotoevaporation. The residue was dissolved in ethyl acetate and the solution successively washed with saturated sodium bicarbonate solution and saturated salt solution and then dried over anhydrous magnesium sulfate. After the mixture was filtered, the solvent was

removed by rotovaporation. The residue was purified by flash column chromatography on silica gel eluted with 97.75% dichloromethane, 2% methanol and 0.25% acetic acid to yield the title compound (14 mg).

M/S: m/e = 597.2 (M + NH₄).

- 5 ¹H NMR (400 MHz, CD₃OD): δ 1.5-1.7 (m, 2H), 1.75-1.82 (m, 2H), 2.95-3.05 (m, 1H), 3.2-3.4 (m, 3H), 3.88 (s, 2H), 4.1-4.2 (m, 1 H), 4.6-4.7 (m, 1H), 6.90 (t, J= 9, 2H), 7.1-7.22 (m, 6H), 7.72 (s, 2H), 7.76 (s, 1H).

The following compounds were prepared by the
10 procedures described in Example 287:

	Ex.	Compound Name	MS *
825453	(288)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-methoxybenzyl)phenylalanine	608.3

* m/e: (M + 1 (H⁺))⁺ or (M + 18 (NH₄⁺))⁺

15

EXAMPLE 289

N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-nitrophenoxy)-phenylalanine

- 20 Step A: N-Boc-4-(2-nitrophenoxy)-(L)-phenylalanine, methyl ester
 To a solution of N-Boc-(L)-tyrosine, methyl ester (500 mg) and potassium carbonate (467 mg) in dimethylformamide (5 mL) was added dropwise 1-fluoro-2-nitrobenzene (189 uL). The yellow solution was stirred for 3 days at room temperature. The mixture was diluted with ether which was subsequently washed with 1N hydrochloric acid, water, saturated salt solution and dried over anhydrous magnesium sulfate. After filtration, the solvent was removed by rotovaporation to yield the title compound (700 mg) which was used in the subsequent reaction without further purification.

¹H NMR (400 MHz, CD₃OD): δ 1.38 (s, 9H), 3.85-3.15 (m, 2 H), 4.3-4.4(m, 1H), 6.95-7.1 (m, 3H), 7.24-7.3(m, 3H), 7.55-7.61 (t, 1H), 7.97-7.97(m, 1H).

- Step B: 4-(2-nitrophenoxy)-(L)-phenylalanine, methyl ester hydrochloride
- 5 N-Boc-4-(2-nitrophenoxy)-(L)-phenylalanine, methyl ester (600 mg) was stirred in a solution of 1N hydrochloric acid in ethyl acetate (10 mL) for 18 hours at room temperature. A precipitate formed, the solvent was removed by rotoevaporation, and co-evaporated with Et₂O (2x). The 10 solid was than suspended with ethyl acetate, filtered, washed with diethyl ether, and allowed to air dry. The title compound was recovered (490 mg) and used in the subsequent reaction without further purification.
- 15 Step C: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-nitrophenoxy)phenylalanine, methyl ester.
- 20 A solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-proline (429 mg), 4-(2-nitrophenoxy)-(L)-phenylalanine, methyl ester hydrochloride (445 mg), 1-hydroxybenztriazole (255 mg), N-methylmorpholine (0.35 mL) in dichloromethane (32 mL) was cooled to 0 °C. 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC; 289 mg) was then added. The reaction was allowed to warm to room temperature and stirred for 17 hr. The reaction was diluted with dichloromethane (100 mL) and successively washed with water, 1N 25 hydrochloric acid, saturated sodium bicarbonate solution, and saturated salt solution. The organic layer was dried over anhydrous magnesium sulfate. The solution was filtered and the solvent removed by rotoevaporation. The residue was purified by flash column chromatography on silica gel eluted with 20% ethyl acetate in hexane to afford the title compound (714 mg) which was used in the subsequent 30 reaction.

Step D: N-(3,5-Dichlorobzenzesulfonyl)-(L)-prolyl-(L)-4-(2-nitrophenoxy)-phenylalanine

N-(3,5-Dichlorobzenzesulfonyl)-(L)-prolyl-(L)-
4-(2-nitrophenoxy)-phenylalanine, methyl ester (110 mg) was dissolved
5 in ethanol (6 mL) and a solution of potassium hydroxide (15 mg) in water
(2 mL) was added. After stirring for 20 minutes, the reaction was
acidified with acetic acid and the solvent removed by rotovaporation.
The residue was dissolved in ethyl acetate (40 mL), and the solution
successively washed with saturated sodium bicarbonate solution and
10 saturated salt solution. The solution was dried over anhydrous
magnesium sulfate, then filtered and the solvent removed by
rotovaporation to afford the title compound (40 mg).

M/S: m/e 625($M+NH_4^+$).
¹H NMR (400 MHz, CD₃OD): δ 1.63-1.72(m, 1H), 1.75-2.92(m, 3H), 3.01-
15 3.08(dd, 1H), 3.25-3.35(m, 2H), 3.4-3.5 (m, 1H), 4.19 (dd, J= 6,1, 1H), 4.68-
4.74 (m, 1H), 6.97-7.05 (m, 3H), 7.2-7.35 (m, 3H), 7.45-7.5 (m, 1H), 7.77 (s,
3H), 7.91 (dd, J= 7,2, 1H).

The following compound was prepared by the procedures
20 described in Example 289:

	Example	Compound Name	MS*
828047	(290)	N-(3,5-dichlorobzenzesulfonyl)-(L)-prolyl-(L)-4-(4-nitrophenoxy)-phenylalanine	625
832484	(291)	N-(3,5-dichlorobzenzesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(2-nitrophenoxy)-phenylalanine	639

* m/e: ($M + 1 (H^+)$)⁺ or ($M + 18 (NH_4^+)$)⁺

25

EXAMPLE 292 825954

N-(3,5-Dichlorobzenzesulfonyl)-(L)-prolyl-(L)-4-(2-aminophenoxy)-phenylalanine

Step A: N-(3,5-Dichlorobzenzesulfonyl)-(L)-prolyl-(L)-4-(2-aminophenoxy)-phenylalanine, methyl ester 829598

To a solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-nitro-phenoxy)-phenylalanine, methyl ester (120 mg) in ethanol (4.5 mL) was added iron filings (42 mg) and acetic acid (0.5 mL).
5 Reaction was refluxed for 3 h then cooled to room temperature. The mixture was filtered through a pad of celite and the solvent was removed by rotoevaporation. The resultant tar was dissolved in ethyl acetate and
10 successively washed with saturated sodium bicarbonate solution and saturated salt solution. The organic layer was dried over anhydrous magnesium sulfate, filtered and the solvent removed by rotoevaporation. The residue was purified by flash column chromatography on silica gel eluted with 40% ethyl acetate in hexane to afford N-(3,5-
15 dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-aminophenoxy)-phenylalanine, methyl ester (75 mg) which was used in the subsequent reaction.

Step B: N-(3,5-Dichlorobzenzesulfonyl)-(L)-prolyl-(L)-4-(2-aminophenoxy)-phenylalanine

20 N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-aminophenoxy)-phenylalanine, methyl ester was hydrolyzed by the procedure in Example 289, step D to afford N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-aminophenoxy)-phenylalanine.
25 M/S: m/e 578(M+1).

30 ¹H NMR (400 MHz, CD₃OD): δ 1.62-1.9 (m, 4H), 3.0-3.07 (dd, 1H), 3.2-3.3(m, 2H), 3.4-3.5 (m, 1H), 4.19 (t, 1H), 4.62-4.7 (m, 1H), 6.6-6.65 (m, 1H), 6.73-6.77 (dd, 1H), 6.85-6.95 (m, 4H), 7.2 (d, J=2, 2H), 7.78 (s, 3H), 8.1-8.15 (d, 1H).

EXAMPLE 293 L-825956

N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-acetylaminophenoxy)-phenylalanine

Step A: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-acetylaminophenoxy)-phenylalanine, methyl ester

5 To a solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-amino-phenoxy)-phenylalanine, methyl ester (55 mg) in pyridine (0.31 mL) and dichloromethane (4 mL) was dropwise added acetic anhydride (0.16 mL). After stirring for 1 hr, the reaction was diluted 10 with dichloromethane (50 mL) and successivley washed with water and saturated salt solution. The solution was dried over anhydrous magnesium sulfate, filtered and the solvent removed by rotovaporation. The residue was purified by flash column chromatography on silica gel eluted with 5% ethyl acetate in dichloromethane to afford N-(3,5- 15 dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-acetylaminophenoxy)-phenylalanine, methyl ester (41 mg) which was used in the subsequent reaction.

Step B: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-acetylaminophenoxy)-phenylalanine

20 N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-acetylaminophenoxy)-phenylalanine, methyl ester was hydrolyzed by the procedure in Example 289, step D to afford N-(3,5- 25 dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(2-acetylaminophenoxy)-phenylalanine.

M/S: m/e 637(M+NH₄)⁺.

¹H NMR (400 MHz, CD₃OD): d 1.6-1.95 (m, 4H), 2.06 (s, 3H), 3.0-3.08 (dd, 1H), 3.2-3.3 (m, 2H), 3.4-3.48 (m, 1H), 4.15-4.2 (m, 1H), 5.55-5.61 (m, 1H), 6.8-6.85 (d, 1H), 6.91 (d, J= 9, 2H), 6.98-7.08 (m, 2H), 7.26 (d, J=9, 2H), 7.78 (s, 3H), 8.85-8.90 (dd, 1H).

The following compounds were prepared by the procedures described in Example 293:

	Ex.	Compound Name	MS*
828159	(294)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-4-(4-acetylaminophenoxy)-phenylalanine	637
832487	(295)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methylprolyl-(L)-4-(2-acetylaminophenoxy)-phenylalanine	636

* m/e: $(M + 1 (H^+))^+$ or $(M + 18 (NH_4^+))^+$

5

EXAMPLE 296 837606N-(3,5-Dichlorobenzenesulfonyl)-2-(S)-methyl-(L)-prolyl-4-(2-cyanophenoxy)-phenylalanine

10 Step A: N-Boc-4-(2-cyanophenoxy)-phenylalanine, methyl ester
A solution of 500 mg of N-Boc-4-(L)-tyrosine, methyl ester, 205 mg 2-fluorobenzonitrile, 245 mg KF 40 wt% on alumina, 45 mg 18-crown-6, and 7 mL of acetonitrile was run at reflux for seven days. The reaction was then diluted with methylene chloride, and washed with water and saturated salt solution. The organic layers were then dried over anhydrous magnesium sulfate and the solvent was removed in vacuo. The product was purified via silica gel chromatography eluted with 80% hexane:20% acetone to yield 253 mg of the product.

15 ¹H NMR (400 Mhz, CD₃OD): δ 1.38(s, 9H), 2.9(dd, 1H), 3.13(dd, 1H), 3.70(s, 3H), 3.38(m, 1H), 6.88(d, 1H), 7.03 (d, J=9, 2H), 7.2(t, 1H), 7.29(d, J=9, 2H), 7.55(t, 1H), 7.72,(d, 1H).

20 Step B: 4-(2-cyanophenoxy)-phenylalanine, methyl ester,hydrochloride
25 The reaction was performed by an analogous procedure as described in Example 289, step B to yield the title compound.

Step C: N-Boc-2-(S)-methyl-(L)-prolyl-4-(2-cyanophenoxy)-phenylalanine, methyl ester

To a solution of 131 mg of N-Boc-2-(S)-methyl-(L)-proline, 190 mg 4-(2-cyanophenoxy)-phenylalanine, methyl ester hydrochloride, 297 mg PyBOP, and 4 mL of methylene chloride at 0°C was added 300 uL of diisopropylethylamine via syringe. The reactants were allowed to warm to room temperature and said reaction was run over the weekend. The reaction was then diluted with methylene chloride, washed with water, 1N hydrochloric acid, saturated sodium bicarbonate solution, and 10 saturated salt solution. The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The product was purified via silica gel chromatography, eluted with 80% hexane:20% acetone to yield 263 mg of the title compound.

15 Step D: N-Boc-2-(S)-methyl-(L)-prolyl-4-(2-cyanophenoxy)-phenylalanine, methyl ester hydrochloride

The reaction was performed by an analogous procedure as described in Example 289, step B to yield the title compound.

20 Step E: N-(3,5-Dichlorobenzenesulfonyl)-2-(S)-methyl-(L)-prolyl-4-(2-cyanophenoxy)-phenylalanine, methyl ester

To a solution of 95 mg of N-Boc-2-(S)-methyl-(L)-prolyl-4-(2-cyanophenoxy)-phenylalanine, hydrochloride, 61 mg 3,5-dichlorobenzenesulfonyl chloride, and 2.5 mL of tetrahydrofuran at 0°C was added 110 uL of diisopropylethylamine via syringe. The reaction was allowed to warm to room temperature and run at said temperature overnight. The reaction was diluted with methylene chloride, washed with water, 1N hydrochloric acid, saturated sodium bicarbonate solution, and saturated salt solution.. The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The product was purified via silica gel chromatography, eluted with 80% hexane:20% acetone to yield 62 mg of of N-(3,5-dichlorobenzenesulfonyl)-2-(S)-methyl-(L)-prolyl-4-(2-cyanophenoxy)-phenylalanine, methyl ester.

Step F: N-(3,5-Dichlorobenzenesulfonyl)-2-(S)-methyl-(L)-prolyl- 4-(2-cyanophenoxy)-phenylalanine

To a solution of 62 mg of N-(3,5-dichlorobenzenesulfonyl)-2-(S)-methyl-(L)-prolyl-4-(2-cyanophenoxy)-phenylalanine, methyl ester in 5 mL of ethanol was added a solution of 11 mg potassium hydroxide in 2 mL of water. After 1.5 hours the solvent was removed in vacuo. The resultant solid was then dissolve in methylene chloride and washed with 0.5 M hydrochloric acid and saturated salt solution. The organic layers were dried over anhydrous magnesium sulfate and concentrated in vacuo. The formed diastereomers were separated via HPLC using a YMC ODS-AQ column, eluting with 80% MeOH: 20% WATER + 0.1% TFA. The faster eluting product was shown to be the desired product.

M/S: m/e 619 (M+1+NH₃).

¹H NMR (400 Mhz, CD₃OD): δ 1.60(s, 3H), 1.7-1.9(m, 3H), 2.12-2.21(m, 1H), 3.08-3.16(dd, 1H), 3.3-3.5(m), 4.65-4.75(m, 1H), 6.91(d, J=8 1H), 7.04(d, 2H), 7.15 (t, 1H), 7.36 (d, J=9, 2H), 7.4-7.5 (t, 1H), 7.6-7.8(m, 4H).

The following compound was prepared by the procedures described in Example 296:

	Ex.	Compound Name	MS*
333363	(297)	N-(3,5-Dichlorobenzenesulfonyl)-2-(S)-methyl-(L)-prolyl-4-(4-cyanophenoxy)-phenylalanine	619

25

EXAMPLE 298

N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine.
808185

Step A: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine, methyl ester.

To a solution of 3,5-dichlorobenzenesulfonyl-(L)-proline (from Example 284, Step B) (1.70 gm, 5.23 mmole) in dry dichloromethane (15 mL) was added 1-hydroxybenzotriazole hydrate (782.3 mg, 5.78 mmole) followed by N-methylmorpholine (1.45mL, 13.1 mmole), (L)-O-tert-butyl-tyrosine, methyl ester hydrochloride (1.58 gm, 6.31 mmole), and 1-ethyl-3-(3-dimethylamino-propyl) carbodiimde (1.41 gm, 7.36 mmole). Additional dichloromethane (5 mL) was added and the solution stirred under nitrogen at 25°C overnight. Water was added and the layers separated. The aqueous layer was extracted with ethyl acetate (3 x 15 mL). The combined organic layers were successively washed with water (2 x 20 mL) and saturated salt solution and dried over anhydrous magnesium sulfate. After filtration, the solvent was removed by rotovaporation. The residue was purified by flash column chromatography on silica gel eluted with 5-35% ethyl acetate in hexanes to yield N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine, methyl ester as a pale white foam (2.85 gm, 98% yield).

MS: m/e 557.4 (M+1)⁺.
400 MHz ¹H NMR (CD₃OD): δ 1.28 (s, 9H), 1.49-1.66 (m, 3H), 2.03-2.07 (m, 1H), 2.99 (dd, J = 14.0, 7.5 Hz, 1H), 3.06-3.12 (m, 1H), 3.19 (dd, J = 14.1, 5.5 Hz, 1H), 3.34-3.39 (m, 1H), 3.74 (s, 3H), 4.04-4.07 (m, 1H), 4.76-4.81 (m, 1H), 6.88 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.4 Hz, 3H), 7.58 (t, J = 1.8 Hz, 1H), 7.69 (d, J = 1.8 Hz, 2H).

Step B: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine.

Under a dry nitrogen atmosphere, to a solution of 1.20gm (2.15 mmole) of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine, methyl ester (1.20 gm, 2.15 mmole) in dry ethanol (25.8mL) was added dropwise an aqueous 0.2N sodium hydroxide solution (12.9mL, 2.58 mmole). The reaction was stirred for 1.5 hr at

room temperature. A 1.0M aqueous solution of acetic acid (~2 mL) was added until pH 4-5 was obtained. The solvent was removed by rotoevaporation and the residue dissolved in dichloromethane and water. The layers were separated and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The organic layers were combined, and successively washed with water, saturated salt solution, and dried over anhydrous sodium sulfate. After filtration, the solvent was removed by rotoevaporation. The residue dissolved in a minimum of dichloromethane and purified on a 4000 μ m silica gel plate on a Chromatotron, eluted with 1-10% methanol in dichloromethane to yield N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-tert-butyl-tyrosine as a pale yellow foam (1.15 gm, 99% yield).

MS: m/e 543.3 (M+1)⁺.
400 MHz NMR (CD₃OD) δ 1.28 (s, 9H), 1.60-1.69 (m, 1H), 1.70-1.79 (m, 1H), 1.82-1.89 (m, 2H), 3.02-3.06 (m, 1H), 3.21-3.30 (m, 4H), 3.41-3.49 (m, 1H), 4.19 (br t, J = 6.60 Hz, 1H), 4.62 (br s, 1H), 6.90 (d, J = 8.3 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 7.78 (s, 3H).

EXAMPLE 299

20 N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-methyl-tyrosine.
 828483

Step A: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-tert-
25 butyl-tyrosine, tert-butyl ester
 By the procedure of Example 284, step C, N-(3,5-dichlorobenzenesulfonyl)-(L)-proline was coupled with (L)-O-tert-butyl-tyrosine, tert-butyl ester hydrochloride. The product was purified by flash column chromatography on silica gel eluted with 5-35% ethyl acetate in hexane and isolated as a white foam (85% yield).
MS: m/e 599.0 (M+1)⁺.

400 MHz ^1H NMR (CDCl_3) δ 1.28 (s, 9H), 1.42 (s, 9H), 1.56-1.63 (m, 4H),
 2.05-2.08 (m, 1H), 2.99 (dd, $J = 14.0, 6.7$ Hz, 1H), 3.09-3.17 (m, 2H), 3.35-
 3.38 (m, 1H), 4.06-4.08 (m, 1H), 4.67 (br dd, $J = 14.0, 6.3$ Hz, 1H), 6.87
 (br d, $J = 8.5$ Hz, 2H), 7.03 (br d, $J = 8.4$ Hz, 3H), 7.06 (br d, $J = 7.6$ Hz,
 1H), 7.57 (t, $J = 1.8$ Hz, 1H), 7.70 (d, $J = 1.8$ Hz, 2H).

5

Step B: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-tyrosine, tert-butyl ester

To a solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-
 10 prolyl-(L)-O-tert-butyl-tyrosine, tert-butyl ester (1.20 gm, 2.00 mmole)
 in dry dichloromethane (6 mL) at 0° C under a dry nitrogen
 atmosphere was dropwise added a 50% v/v solution of trifluoroacetic
 acid in dichloromethane (3.08 mL, 20 mmol) over a 10 min period.
 After stirring for 2 hr, the reaction mixture was quenched at 0° C
 15 with an aqueous 5% sodium bicarbonate solution to pH = 7-8. The
 layers were separated and the organic layer dried over anhydrous
 magnesium sulfate. After filtration, the solvent was removed by
 rotoevaporation and the residue purified by flash column
 chromatography on silica gel eluted with 1-10% methanol in
 20 dichloromethane to yield N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-
 (L)-tyrosine, tert-butyl ester as a white foam (1.71 gm, 78% yield).
 MS: m/s 543.4 ($M+1$)⁺.
 400 MHz ^1H NMR (CDCl_3) δ 1.45 (s, 9H), 1.55-1.63 (m, 3H), 2.07 (m,
 1H), 2.94 (dd, $J = 14.1, 6.90$ Hz, 1H), 3.09-3.16 (m, 2H), 3.37-3.39 (m,
 25 1H), 4.06-4.09 (m, 1H), 4.65-4.70 (m, 1H), 6.71 (d, $J = 8.5$ Hz, 2H), 7.01
 (d, $J = 8.5$ Hz, 2H), 7.06 (d, $J = 7.7$ Hz, 1H), 7.58 (t, $J = 1.8$ Hz, 1H), 7.70
 (d, $J = 1.8$ Hz, 2H).

Step C: N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-methyl-tyrosine, tert-butyl ester

30

To a solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-
 prolyl-(L)-tyrosine, tert-butyl ester (100 mg, 0.184 mmole) dissolved in
 dry dimethylformamide (1.0 mL) was added anhydrous potassium

carbonate (76.3 mg, 0.552 mmol) and iodomethane (52.3 mg, 0.736 mmole). The reaction mixture was stirred vigorously at 25° C overnight under a dry nitrogen atmosphere. Ethyl acetate (30 mL) was added and the solution acidified with aqueous 5% citric acid to pH = 5. The layers were separated and the aqueous layer was extracted with ethyl acetate (3 x 20 mL). Organic layers were combined and washed successively with water and saturated salt solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was removed by rotovaporation and the residue dissolved in a minimum of dichloromethane. This solution was loaded onto a 1000 micron silica gel Chromatotron plate and purified by gradient elution with 10-50% ethyl acetate in hexane to afford N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-methyl-tyrosine, tert-butyl ester as an off-white powder (76 mg, 74% yield).

MS: m/e 557.5 (M+1)⁺.
400 MHz ¹H-NMR (CDCl₃) δ 1.44 (s, 9H), 1.56-1.69 (m, 3H), 2.08-2.11 (m, 1H), 2.95 (dd, J = 14.0, 6.68 Hz, 1H), 3.09-3.16 (m, 2H), 3.35-3.40 (m, 1H), 3.75 (s, 3H), 4.07-4.09 (m, 1H), 4.66 (dd, J = 13.8, 6.4 Hz, 1H), 6.78 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 8.6 Hz, 3H), 7.57 (t, J = 1.8 Hz, 1H), 7.70 (d, J = 1.8 Hz, 2H).

Step D: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-methyl-tyrosine.

To a solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-methyl-tyrosine, tert-butyl ester (50 mg, 0.090 mmole) dissolved in dry dichloromethane (0.3 mL) and anisole (5 μL) at 0°C under a dry nitrogen atmosphere was dropwise added a 50% v/v solution of trifluoroacetic acid in dichloromethane (276uL, 1.8 mmole). After the addition was completed, the ice bath was removed, and the reaction mixture allowed to stir vigorously for 2.5 hr. The reaction mixture was treated with dichloromethane (20 mL) and 5% aqueous sodium bicarbonate to pH = 5. After separation of phases, the aqueous layer was extracted with dichloromethane (2 x 10 mL).

The organic layers were combined and successively washed with water and saturated salt solution. The solution was dried over anhydrous magnesium sulfate and filtered. The solvent was removed by rotovaporation and the residue dissolved in a minimum of dichloromethane. This solution was loaded onto a 1000 micron silica gel plate on a Chromatotron eluted with 1-10% methanol in dichloromethane to afford N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-methyl-tyrosine as a light brown powder (28.5 mg, 63% yield).

MS: m/e 501.2 ($M+1$)⁺.

10 400 MHz ¹H-NMR (CD₃OD) δ 1.56-1.65 (m, 2H), 1.74-1.85 (m, 1H), 1.86-1.88 (m, 1H), 3.01 (dd, J = 13.9, 6.4 Hz, 1H), 3.16-3.24 (m, 2H), 3.37-3.43 (m, 1H), 3.72 (s, 3H), 4.12 (dd, J = 8.5, 3.4 Hz, 1H), 4.45 (br t, J = 5.7 Hz, 1H), 6.79 (d, J = 8.6 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 7.80 (br m, 3H).

15 The following compounds were prepared by the procedures described in Example 299 using the appropriate alkylating or acylating agent in Step C:

	Ex.	Compound Name	MS *
828276	(300)	N-(3,5-dichlorobenzenesulfonyl)-(L)-proyl-(L)-O-benzyl-tyrosine	577.4
828384	(301)	N-(3,5-dichlorobenzenesulfonyl)-(L)-proyl-(L)-O-n-butyl-tyrosine	543.5
828484	(302)	N-(3,5-dichlorobenzenesulfonyl)-(L)-proyl-(L)-O-cyanomethyl-tyrosine	526.4
828485	(303)	N-(3,5-dichlorobenzenesulfonyl)-(L)-proyl-(L)-O-(2-methoxyethyl)-tyrosine	547.4
829012	(304)	N-(3,5-dichlorobenzenesulfonyl)-(L)-proyl-(L)-O-(2-ethoxyethyl)-tyrosine	559.4
829531	(305)	N-(benzenesulfonyl)-(L)-proyl-(L)-O-(2-methoxyethyl)-tyrosine	477.0

829597	(306)	N-(benzenesulfonyl)-(L)-prolyl-(L)-O-(2-ethoxyethyl)-tyrosine	491.2
829695	(307)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-(1-pyrrolidinylcarbonyl)-tyrosine	584.3
829696	(308)	N-(benzenesulfonyl)-(L)-prolyl-(L)-O-(1-pyrrolidinylcarbonyl)-tyrosine	516.3
829839	(309)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-(tert-butyl acetate)-tyrosine	618
832095	(310)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-(4-morpholinyl-carbonyl)-tyrosine	599.1
832096	(311)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-(1-(2-propanonyl)-tyrosine	543.3
832525	(312)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-O-(1-pyrrolidinylcarbonyl)-tyrosine	598
832526	(313)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-O-(tert-butyl acetate)-tyrosine	632.1
832444	(314)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-O-(2-ethoxyethyl)-tyrosine	559.3
832958	(315)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-(acetic acid)-tyrosine, methyl ester	559.4
832959	(316)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-(acetic acid)-tyrosine	545.2
832960	(317)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-O-(1-(2-propanonyl)-tyrosine	557.3
835066	(318)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-O-(1-pyrrolidinylcarbonyl)-tyrosine, methyl ester	612.4
835164	(319)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-O-(4-morpholinyl-carbonyl)-tyrosine	614.2
835165	(320)	N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-(2-pyrrolylcarbonyl)-tyrosine	580.3

835535	(321)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-proyl-(L)-O-(N-phenyl-N-methylaminocarbonyl)-tyrosine	634.4
332338	(322)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-proyl-(L)-O-(N,N-diethyl-aminocarbonyl)-tyrosine	600.3
332340	(323)	N-(3-chlorobenzenesulfonyl)-(L)-2(S)-methyl-proyl-(L)-O-(4-morpholinyl-carbonyl)-tyrosine	580.3
332341	(324)	N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-proyl-(L)-O-(N,N-diisopropyl-aminocarbonyl)-tyrosine	628.6
332552	(325)	N-(3,5-dichlorobenzenesulfonyl)-(L)-proyl-(L)-O-(benzoyl)-tyrosine	591.3
332553	(326)	N-(3,5-dichlorobenzenesulfonyl)-(L)-proyl-(L)-O-(cyclopentanoyl)-tyrosine	583.3

* m/e: $(M + 1 (H^+))^+$ or $(M + 18 (NH_4^+))^+$

EXAMPLE 327 L-835534

5 N-(3,5-Dichlorobenzenesulfonyl)-(L)-proyl-(L)-O-(5-tetrazolyl)methyl-tyrosine

- Step A: N-(3,5-dichlorobenzenesulfonyl)-(L)-proyl-(L)-O-cyanomethyl-tyrosine, tert-butyl ester
- 10 To a solution of N-(3,5-dichlorobenzenesulfonyl)-(L)-proyl-(L)-tyrosine, tert-butyl ester (200 mg, 0.368 mmole, obtained from Example 299, Step A) dissolved in 2.0 mL of dry dimethylformamide was added bromoacetonitrile (353.1 mg, 2.94 mmole) and anhydrous potassium carbonate (152.6 mg, 1.10 mmole).
- 15 The reaction mixture was stirred vigorously under a dry nitrogen atmosphere at 40°C overnight. The reaction mixture was then diluted with ethyl acetate and acidified with 5% aqueous citric acid to pH = 5. After separation of the organic layers, the aqueous layer was

washed with fresh ethyl acetate (3X). The combined organic layers were successively washed with water, saturated salt solution, and then dried over anhydrous magnesium sulfate. The residue obtained after filtration and removal of solvents was purified on a 1000 micron

5 Chromatotron plate by gradient elution using 10-8-5-4-2-1:1 Hexane:EtoAc. This afforded 150.4 mg (70% yield) of the title compound as an off-white powder.

MS.: (ESI) m/e 582.4 (M+1)⁺.

¹H-NMR 400 MHz (CDCl₃) δ 1.44 (s, 9H), 1.56-1.69 (m, 3H), 2.08-2.11 (m, 1H), 3.00 (dd, J = 14.0, 6.68 Hz, 1H), 3.05-3.13 (m, 1H), 3.21 (dd, J = 14.0, 6.69 Hz, 1H), 3.35-3.51 (m, 1H), 4.09 (dd, J = 8.5, 3.4 Hz, 1H), 4.68 (dd, J = 13.8, 6.4 Hz, 1H), 4.73 (s, 2H), 6.89 (d, J = 8.7 Hz, 2H), 7.09 (d, J = 8.6 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H), 7.58 (distorted m, 1H), 7.70-7.73 (distorted m, 2H).

15 Step B: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-(5-tetrazolyl)methyl-tyrosine, tert-butyl ester

A mixture of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-cyanomethyl-tyrosine, tert-butyl ester (82.0 mg, 0.141 mmol)

20 and f trimethyltin azide (101.4 mg, 0.493 mmol) in 6 mL of dry toluene was stirred at reflux for 1 day. The reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was treated with 6 mL of dry methanol and 3 g of silica gel and stirred vigorously overnight at room temperature. This slurry was

25 concentrated to give a powder. This was vacuum-dried and then added as a slurry in methylene chloride to a 4.0 x 7.0 cm cartridge of Flash-40 silica gel and eluted with 10% methanol in methylene chloride. The fractions containing the desired product were combined and concentrated to yield 33.0 mg (38.2% yield) of the titled compound

30 as a white powder.

Mass spectrum (ESI) m/e 630.1 (M+18)⁺.

¹H-NMR 400 MHz (CD₃OD) δ 1.41 (s, 9H), 1.61-1.92 (m, 3H), 2.08-2.11 (m, 1H), 2.97-3.01 (distorted m, 1H), 3.09 (dd, J = 14.0, 6.2 Hz, 1H),

3.24-3.28 (m, 1H), 3.39-3.46 (m, 1H), 4.17-4.21 (m, 1H), 4.52 (dd, J = 14.0, 5.9 Hz, 1H), 5.37 (s, 2H), 6.99 (d, J = 8.7 Hz, 2H), 7.18 (d, J = 8.7 Hz, 2H), 7.78-7.80 (distorted m, 3H), 8.15 (d, J = 8.1 Hz, 1H).

5 Step C: N-(3,5-Dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-(5-tetrazolyl)methyl-tyrosine L-835,534

A mixture of N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl-(L)-O-(5-tetrazolyl)methyl-tyrosine, tert-butyl ester (30 mg, 0.0489 mmol) was dissolved in 2 mL of dry methylene chloride and was 10 cooled in an ice bath. A solution of 1/1 v/v of trifluoroacetic acid (55.7 mg, 0.489 mmol) and methylene was added, which was stirred vigorously for three hr ice temperature . A stream of dry nitrogen was applied to remove the solvents and the residue was loaded onto a reverse phase prep-plate (RP-18wF₂₅₄s 0.2 mm 20 x 20 cm, EM 15 Science) using a minimal amount of methylene chloride and eluted with 40:60 water/acetonitrile. The product band was collected and extracted with 10% methanol/methylene chloride, concentrated to provide 5.0 mg (18% yield) of the titled compound as a white foam material.

20 Mass spectrum (ESI) m/e 569.3 (M+1)⁺.
¹H-NMR 500 MHz (CD₃OD) δ 1.61-1.87 (m, 3H), 2.05 (distorted m, 1H), 3.02 (dd, J = 14.0, 8.1 Hz, 1H), 3.18 (dd, J = 14.1, 5.2 Hz, 1H), 3.23-3.28 (m, 1H), 3.39-3.43 (m, 1H), 4.22 (t, J = 6.0 Hz, 1H), 4.64 (dd, J = 8.0, 5.3 Hz, 1H), 5.41 (s, 2H), 6.99 (distorted d, J = 2.1 Hz, 2H), 7.22 (distorted d, 25 J = 1.8 Hz, 2H), 7.76-7.78 (m, 3H).

EXAMPLE 328 L-333295

30 N-(3,5-Dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-N^e-benzyl-histidine

Step A: N-t-Butyloxycarbonyl-(L)-2(S)-methyl-proline

2(S)-Methyl-proline (4.98 g, 38.55 mmol) was dissolved in dioxane (40 mL) and water (40 mL) to give a suspension. Triethyl amine (11.4 gm, 46.27 mmol) was added, followed by the addition of 2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile (BOC-ON, ,5.85 gm, 57.83 mmol). The reaction mixture was stirred at room temperature overnight to give a yellow solution. The reaction was quenched with water (150 mL) and diethyl ether (225 mL). The organic layers were separated and the ether layer extracted with water (80 mL). The combined aqueous layers were cooled to 0°C and treated with 2N hydrochloric acid to pH = 2, and then extracted with ethyl acetate (3 x 150 mL). The combined organic layers were dried with over anhydrous sodium sulfate, filtered and concentrated to yield 7.24 g (82% yield) of the titled compound as a white solid (mp = 119-125°C).

Mass spectrum (ESI) m/e 230.1 (M+1)⁺.
¹H-NMR 400 MHz (CD₃OD) δ 1.41 (s, 9H), 1.49 (s, 3H), 1.85-1.99 (m, 3H), 2.13-2.25 (m, 1H), 3.43-3.54 (m, 2H).

Step B: N-t-Butyloxycarbonyl-(L)-2(S)-methyl-prolyl-(L)-N^c-benzyl-histidine, methyl ester.

A mixture of N-t-butyloxycarbonyl-(L)-2(S)-methyl-proline (300 mg, 1.31 mmol) and of (L)-N^c-benzyl-histidine, methyl ester dihydrochloride (339.28 mg, 1.31 mmol) in dry dimethylformamide (5 mL) and methylene chloride (2.5 mL) was stirred at room temperature. Diisopropylethyl amine (684.6 μL, 3.93 mmol) was added followed by the addition of benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphosphate hexafluorophosphate (PyBOP, 681.6 mg, 1.31 mmol) and the mixture was stirred overnight. This reaction mixture was treated with 2N hydrochloric acid, water, and ethyl acetate. The layers were separated and the aqueous layer was extracted with ethyl acetate (3X). The combined organic layers were washed with saturated sodium bicarbonate, water, saturated salt solution and dried over

anhydrous magnesium sulfate. After filtration and removal of solvent by rotoevaporation, the residue was purified by flash chromatography on silica gel and eluted with 10-9-8-7-6-5-4-3-2-1:1 Hexane:ethyl acetate and finally with 1-2% methanol/methylene chloride. The fractions containing the desired material were combined and concentrated to yield 357.8 mg (58% yield) of the titled compound as a sticky white foam.

5 Mass spectrum (ESI) m/e 471.5 (M+1)⁺.
10 ¹H-NMR 400 MHz (CD₃OD) δ 1.34 (s, 9H), 1.43 (distorted s, 3H), 1.62-2.05 (m, 4H), 2.98-3.11 (m, 2H), 3.38-3.42 (m, 1H), 3.47-3.55 (m, 1H), 3.66 (s, 3H), 4.66-4.70 (m, 1H), 5.16 (distorted s, 2H), 6.95 (s, 1H), 7.26-7.38 (m, 5H), 7.86 (s, 1H), 8.09 (s, 1H).

Step C: (L)-2(S)-Methyl-prolyl-(L)-N^e-benzyl-histidine, methyl ester, dihydrochloride.
15 A mixture of N-t-butyloxycarbonyl-(L)-2(S)-methyl-prolyl-(L)-N-benzyl-histidine, methyl ester (272.5 mg, 0.649 mmol) and hydrochloric acid_(g)/ethyl acetate (14.0 mL, 58.4 mmol) in dry ethyl acetate (2 mL) was stirred at room temperature for one hour.
20 Methylene chloride was added and solvents were removed by rotoevaporation. The residue was dried under high vacuum overnight and gave 235.1 mg (97.6% yield) of the titled compound.
Mass spectrum (CI) m/e 371.3 (M+1)⁺.
25 ¹H-NMR 400 MHz (CD₃OD) δ 1.43 (s, 3H), 1.87-1.93 (m, 1H), 2.01-2.13 (m, 2H), 2.32-2.37 (m, 1H), 3.14-3.21 (m, 1H), 3.29-3.38 (m, 4H), 3.71 (s, 3H), 4.77 (dd, J = 10.1, 5.3 Hz, 1H), 5.39 (s, 2H), 7.40-7.43 (m, 5H), 9.05 (distorted s, 1H).

Step D: N-(3,5-Dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-N^e-benzyl-histidine, methyl ester.
30 (L)-2(S)-methyl-prolyl-(L)-N-benzyl-histidine, methyl ester, dihydrochloride (191.3 mg, 0.516 mmol) was dissolved in dry tetrahydrofuran (5 mL) and dry dimethylformamide (2.5 mL).

Diisopropylethyl amine (269.8 μ L, 1.55 mmol) and 4, 4'-dimethylaminopyridine were added to this solution. After cooling to 5°C for 5 minutes, a solution of 3,5-dichlorobenzenesulfonyl chloride (190.2 mg, 0.774 mmol) in dry tetrahydrofuran (2.5 mL) was added to 5 the reaction mixture which was allowed to reach room temperature overnight. This reaction mixture was treated with water and ethyl acetate. The aqueous layer was extracted with ethyl acetate (3X). The organic layers were combined and successively washed with water and saturated salt solution and dried with anhydrous magnesium 10 sulfate. After filtration, the solvents were removed by rotovaporation. The residue was purified on a 4.0 x 7.0 cm cartridge of Flash-40 silica gel and eluted 1-2-3-4-5% methanol/methylene chloride to yield 116.6 mg (39% yield) of the titled compound.

Mass spectrum (CI) m/e 579.1 ($M+1$)⁺.

15 1 H-NMR 400 MHz ($CDCl_3$) δ 1.67 (s, 3H), 1.72-1.86 (m, 2H), 1.91-1.98 (m, 1H), 2.30-2.35 (m, 1H), 3.12 (dd, J = 15.0, 4.76 Hz, 1H), 3.18 (dd, J = 14.6, 6.02 Hz, 1H), 3.33-3.39 (m, 1H), 3.66 (s, 3H), 4.77 (dd, J = 6.11, 1.27 Hz, 1H), 5.04 (s, 2H), 6.76 (s, 1H), 7.12-7.15 (m, 2H), 7.29-7.35 (m, 3H), 7.72 (distorted d, J = 1.99 Hz, 2H), 7.99 (distorted s, 2H).

20 Step E: N-(3,5-Dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-N^e-benzyl-histidine.

A mixture of N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-N-benzyl-histidine, methyl ester (115.5 mg, 0.199 25 mmol) in 0.2N sodium hydroxide in ethanol (1.2 mL) was stirred at room temperature for 4 hours. The reaction mixture was treated with ethyl acetate and 5% citric acid to pH = 3-4. The aqueous layer was extracted with ethyl acetate (3X). The combined organic layers were washed with saturated salt solution and dried over anhydrous magnesium sulfate. The solution was filtered and the solvents were removed by rotovaporation. The residue was purified on a 30 4.0 x 7.0 cm cartridge of Flash-40 silica gel eluted with 15%

methanol/methylene chloride to yield 51.2 mg (45.5% yield) of the titled compound as a light brown foam.

Mass spectrum (ESI) m/e 565.4 (M+1)⁺.

- 10 ¹H-NMR 400 MHz (CDCl₃) δ 1.28 (s, 3H), 1.75-1.84 (m, 3H), 2.10-2.14
5 (m, 1H), 3.06-3.12 (m, 1H), 3.24-3.29 (m, 2H), 3.31-3.42 (m, 2H), 4.46-
4.49 (m, 1H), 5.23 (s, 2H), 7.18 (s, 1H), 7.30-7.37 (m, 5H), 7.74-7.79 (m,
3H), 8.34 (broad s, 1H).

EXAMPLE 329 L-835629

- 10 N-Benzene­sulfonyl-(L)-prolyl-2-amino-2-norbornanecarboxylic acid

Step A: 2-Amino-2-norbornanecarboxylic acid, methyl ester hydrochloride.

- 15 To 25 mL of methanol at 0 °C was added thionyl chloride (2.4 mL, 32 mmol). After stirring at 0 °C for 5 min, 2-amino-2-norbornanecarboxylic acid (1.0 g, 6.4 mmol) was added in one portion, and the mixture was heated at reflux for 16 h. The mixture was concentrated to give the product (1.2 g, 92%) as a white solid.

- 20 Step B: N-Benzene­sulfonyl-(L)-prolyl-2-amino-2-norbornanecarboxylic acid, methyl ester
To a solution of 2-amino-2-norbornanecarboxylate, methyl ester hydrochloride (400 mg, 2.0 mmol), N-benzenesulfonyl-(L)-proline (510 mg, 2.0 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (306 mg, 2.0 mmol), 1-hydroxbenzotriazole (202 mg, 2.0 mmol) in 4 mL of tetrahydrofuran at 0 °C was added N-methyl morpholine (0.22 mL, 2.0 mmol). After 15 min at 0 °C, the reaction mixture was stirred at room temperature for 16 h, and was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel eluted with 10:1 methylene chloride/ethyl acetate to give the title compound (478 mg, 59%) as a mixture of diastereomers.

MS: calculated for C₂₀H₂₆N₂O₅S 406; found m/e 417 (M+H⁺), 423 (M+NH₄⁺).

Step C: N-Benzenesulfonyl-(L)-prolyl-2-amino-2-norbornanecarboxylic acid

A solution of N-phenylsulfonyl-(L)-prolyl-2-amino-2-norbornanecarboxylic acid, methyl ester (210 mg, 0.2 mmol) in 3 mL of 1:1 aqueous sodium hydroxide (1 M) and methanol was stirred at room temperature for 2 weeks. The reaction was quenched with concentrated hydrochloric acid (0.2 mL), and the resulting mixture was partitioned between saturated salt solution and ethyl acetate. The product was extracted with ethyl acetate and was purified by flash chromatography on silica gel eluted with 100:5:1 methylene chloride/methanol/acetic acid to give the product as a mixture of diastereomers.

MS: calculated for C₁₉H₂₄N₂O₅S, 392; found m/e 393 (M+H⁺), 410 (M+NH₄⁺)

EXAMPLE 330 L-832264

N-Benzenesulfonyl-(L)-prolyl-3(R)-methyl-phenylalanine

Step A: N-Benzenesulfonyl-(L)-prolyl-3(R)-methyl-phenylalanine, methyl ester.

The title compound was prepared by the procedure described in Example 289 Steps A - C starting from (L)-3(R)-methyl-phenylalanine (prepared by the procedure of Hruby and coworkers: Tetrahedron, 1992, 48, 4733).

Step B: N-Benzenesulfonyl-(L)-prolyl-3(R)-methyl-phenylalanine,

A solution of N-phenylsulfonyl-(L)-prolyl-(L)-3(R)-methyl-phenylalanine, methyl ester (23 mg, 0.053 mmol) in 1.0 mL of

1:1 tetrahydrofuran/water at 0 °C was added lithium hydroxide hydrate (12 mg, 0.033 mmol) and hydrogen peroxide (30%, 33 mL, 0.033 mmol). The reaction was allowed to warm up to 18 °C over 2 hr. The reaction was quenched with dilute sodium thiosulfate and 1 M hydrochloric acid, and the resulting mixture was partitioned between saturated salt solution and ethyl acetate. The product was extracted with ethyl acetate and purified by flash column chromatography on silica gel eluted with 50:50:1 ethyl acetate/hexane/acetic acid to 20:1 ethyl acetate/acetic acid to give the product (17 mg, 77%).

5 MS: calculated for C₂₁H₂₄N₂O₅S, 416; found m/e 417 (M+H⁺), 434 (M+NH₄⁺)

10 ¹H-NMR (500 MHz, CD₃OD) δ 8.2-7.2 (10H, m), 4.65 (1H, d), 4.23 (1H, dd), 3.48-3.36 (2H, m), 3.23 (1H, m), 2.0-1.2 (4H, m), 1.38 (3H, d)

15 **EXAMPLE 331 L-837250, L-837251**

N-Phenylsulfonyl-(L)-prolyl-(L)-2,3-methano-phenylalanine and N-Phenylsulfonyl-(L)-prolyl-(D)-2,3-methano-phenylalanine.

20 Step A: N-Phenylsulfonyl-(L)-prolyl-(L)-2,3-methano-phenylalanine, methyl ester and N-Phenylsulfonyl-(L)-prolyl-(D)-2,3-methano-phenylalanine, methyl ester.

The title compounds were prepared by the procedure described in Example 289, Steps A-C starting from E-2,3-methanophenylalanine, methyl ester hydrochloride (prepared by the procedure of Stammers and coworkers: J. Org. Chem., 1982, 47, 3270). Under the described conditions, reaction of diazomethane with Z-2-phenyl-4-benzylidene-5-oxazolinone (Aldrich) gave a 4:1 mixture of Z-1,5-diphenyl-6-oxa-4-azaspiro(2,4)hept-4-ene-7-one and E-1,5-diphenyl-6-oxa-4-azaspiro(2,4)hept-4-ene-7-one, and the minor diastereomer was carried on to E-2,3-methanophenylalanine methyl ester hydrogen chloride salt as described. Subsequent peptide coupling (51 mg scale) afforded a 1:1 mixture of diastereomers, which

were partially separated on silica gel eluting with 4:4:1 methylene chloride/hexane/ethyl acetate.

Top isomer: $^1\text{H-NMR}$ (500 Mhz, CD₃OD) δ 8.0-7.1 (10 H, m), 4.18 (1H, dd), 3.60 (1H, ddd), 3.30 (3 H, S), 3.4-3.2 (1H, m), 2.96 (1 H, dd), 2.18

5 (1H, dd), 2.1-1.8 (3H, m), 1.7-1.6 (1H, m), 1.58 (1H, dd)

Bottom isomer: $^1\text{H-NMR}$ (500 Mhz, CD₃OD) δ 8.0-7.2 (10 H, m), 4.24 (1H, dd), 3.66 (1 H, ddd), 3.30 (3 H, S), 3.26 (1H, ddd), 2.88 (1 H, dd), 2.22

(1H, dd), 2.1-1.8 (3H, m), 1.66-1.60 (1H, m), 1.53 (1H, dd)

10 Step B: N-Phenylsulfonyl-(L)-prolyl-(L)-2,3-methano-phenylalanine and N-phenylsulfonyl-(L)-prolyl-(D)-2,3-methano-phenylalanine.

To a solution of the top isomer of N-phenylsulfonyl-(L)-prolyl-2,3-methanophenylalanine, methyl ester (15 mg, 0.035 mmol) 15 in 0.6 mL of 1:1 tetrahydrofuran/water was added lithium hydroxide hydrate (15 mg, 0.35 mmol), and the mixture was stirred at room temperature for 15 hr. The reaction was quenched with concentrated hydrochloric acid (0.2 mL), and the resulting mixture was partitioned between brine and ethyl acetate. The product was

20 extracted with ethyl acetate and was purified by flash chromatography on silica gel eluted with 100:5:1 methylene chloride/methanol/acetic acid to give the product in quantitative yield.

MS: calculated for C₂₁H₂₂N₂O₅S, 414; found m/e 415.3 (M+H⁺), 432.3 (M+NH₄⁺)

25 $^1\text{H-NMR}$ (500 Mhz, CD₃OD) δ 8.0-7.0 (10 H, m), 4.10 (1H, dd), 3.60 (1H, ddd), 3.27 (1H, ddd), 2.84 (1 H, dd), 2.18 (1H, dd), 2.1-1.8 (3H, m), 1.66-1.56 (1H, m), 1.57 (1H, dd).

The bottom isomer was hydrolyzed in the same fashion

30 as described for the top isomer:

MS: calculated for C₂₁H₂₂N₂O₅S, 414; found m/e 415.2 (M+H⁺), 432.2 (M+ NH₄⁺)

¹H-NMR (500 Mhz, CD₃OD) δ 8.0-7.1 (10H, m), 4.06 (1H, dd), 3.66 (1H, ddd), 3.27 (1H, ddd), 2.86 (1H, dd), 2.19 (1H, dd), 2.1-1.8 (3H, m), 1.68-1.58 (1H, m), 1.52 (1H, dd).

5

EXAMPLE 332

N-(3,5-Dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-(5-((1H,3H)-1,3-dimethylpyrimidine-2,4-dione))-phenylalanine

- 10 Step A: N-(3-Fluorobenzenesulfonyl)-(L)-prolyl-(L)-4-trimethylstannylphenylalanine, tert-butyl ester.
A solution of N-(3-fluorobenzenesulfonyl)-(L)-prolyl-(L)-4-iodophenylalanine, tert-butyl ester (1.0 gm, 1.53 mmol), hexamethylditin (411 μL, 2.14 mmol), triphenylphosphine (8 mg, 0.03 mmol), lithium chloride (71 mg, 1.68 mmol), and tetrakis(triphenylphosphine)palladium(0) (88 mg, 0.077 mmol) in 1,4-dioxane (10 mL) was heated to 95°C under a dry nitrogen atmosphere for 1.5 hr. The solution was cooled and diluted with ethyl acetate (100 mL) and successively washed with 1N sodium hydroxide solution (2X) and saturated salt solution (1X). After drying over anhydrous magnesium sulfate, the solution was filtered and the solvent removed by rotovaporation. The residue was purified by silica gel column chromatography eluted with 10% acetone in hexanes to yield N-(3-fluorobenzenesulfonyl)-(L)-prolyl-(L)-4-(trimethylstannyl)phenylalanine, tert-butyl ester (577 mg, 54% yield).
25 MS: m/e 658 (M + 18; NH₄⁺).

30 N-(3,5-Dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-trimethylstannylphenylalanine, tert-butyl ester was prepared from N-(3,5-dichlorobenzenesulfonyl)-(L)-2(S)-methyl-prolyl-(L)-4-iodophenylalanine, tert-butyl ester by an analogous procedure.

Step B: N-(3,5-Dichlorobzenzenesulfonyl)-(L)-2(S)-methyl-proyl-(L)-4-(5-((1H,3H)-1,3-dimethylpyrimidine-2,4-dione))-phenylalanine, tert butyl ester

A solution of N-(3,5-dichlorobzenzenesulfonyl)-(L)-2(S)-methyl-proyl-(L)-4-trimethylstannylphenylalanine, tert-butyl ester (70 mg, 0.1 mmol), (1H,3H)-1,3-dimethyl-5-iodo-pyrimidine-2,4-dione (40 mg, 0.15 mmol) and tetrakis-triphenylphosphine palladium (4 mg, 0.003 mmol) in dry dimethylformamide (1 mL) was heated in an oil bath at 100° C for 1 hr under a dry nitrogen atmosphere. After cooling, the solvent was removed by rotovaporation under high vacuum. The residue was purified by flash column chromatography on silica gel eluted with 15% acetone in hexanes to give the title compound as a light yellow solid (27 mg, 40% yield).
MS: (m/e) 696 (M + 18 (NH₄⁺)).

15

Step C: N-(3,5-Dichlorobzenzenesulfonyl)-(L)-2(S)-methyl-proyl-(L)-4-(5-((1H,3H)-1,3-dimethylpyrimidine-2,4-dione))phenylalanine

The tert-butyl ester of N-(3,5-dichlorobzenzenesulfonyl)-(L)-2(S)-methyl-proyl-(L)-4-(5-((1H,3H)-1,3-dimethylpyrimidine-2,4-dione))-phenylalanine, tert butyl ester (24 mg, 0.035 mmol) was stirred in a solution of trifluoroacetic acid (170 µL, 2.2 mmol) in methylene chloride (1.0 mL) according to the procedure described in Example 225, Step E to yield the title compound.
MS: (m/e) 640 (M + 18 (NH₄⁺)).

25

EXAMPLE 333

Inhibition of VLA-4 Dependent Adhesion to BSA-CS-1 Conjugate

30 Step A. Preparation of CS-1 Coated Plates.

Untreated 96 well polystyrene flat bottom plates were coated with bovine serum albumin (BSA; 20 µg/ml) for 2 hours at room temperature and washed twice with phosphate buffered saline (PBS).

The albumin coating was next derivatized with 10 µg/ml 3-(2-pyridyldithio) propionic acid N-hydroxysuccinimide ester (SPDP), a heterobifunctional crosslinker, for 30 minutes at room temperature and washed twice with PBS. The CS-1 peptide (Cys-Leu-His-Gly-Pro-Glu-Ile-
5 Leu-Asp-Val-Pro-Ser-Thr), which was synthesized by conventional solid phase chemistry and purified by reverse phase HPLC, was next added to the derivatized BSA at a concentration of 2.5 µg/ml and allowed to react for 2 hours at room temperature. The plates were washed twice with PBS and stored at 4°C.

10

Step B. Preparation of Fluorescently Labeled Jurkat Cells.

Jurkat cells, clone E6-1, obtained from the American Type Culture Collection (Rockville, MD; cat # ATCC TIB-152) were grown and maintained in RPMI-1640 culture medium containing 10% fetal calf serum (FCS), 50 units/ml penicillin, 50 µg/ml streptomycin and 2 mM glutamine. Fluorescence activated cell sorter analysis with specific monoclonal antibodies confirmed that the cells expressed both the $\alpha 4$ and $\beta 1$ chains of VLA-4. The cells were centrifuged at 400xg for five minutes and washed twice with PBS. The cells were incubated at a concentration of 2×10^6 cells/ml in PBS containing a 1 µM concentration of a fluorogenic esterase substrate (2', 7'-bis-(2-carboxyethyl)-5-(and -6)-carboxyfluorescein, acetoxyethyl ester; BCECF-AM; Molecular Probes Inc., Eugene, Oregon; catalog #B-1150) for 30-60 minutes at 37°C in a 5% CO₂/air incubator. The fluorescently labeled Jurkat cells were washed
15 two times in PBS and resuspended in RPMI containing 0.25% BSA at a final concentration of 2.0×10^6 cells/ml.
20
25

Step C. Assay Procedure.

Compounds of this invention were prepared in DMSO at 100x the desired final assay concentration. Final concentrations were selected from a range between 0.001 nM-100 µM. Three µL of diluted compound, or vehicle alone, were premixed with 300 µL of cell suspension in 96-well polystyrene plates with round bottom wells. 100 µL
30

aliquots of the cell /compound mixture were then transferred in duplicate to CS-1 coated wells. The cells were next incubated for 30 minutes at room temperature. The non-adherent cells were removed by two gentle washings with PBS. The remaining adherent cells were
5 quantitated by reading the plates on a Cytofluor II fluorescence plate reader (Perseptive Biosystems Inc., Framingham, MA; excitation and emission filter settings were 485 nm and 530 nm, respectively). Control wells containing vehicle alone were used to determine the level of cell adhesion corresponding to 0% inhibition. Control wells coated with BSA and crosslinker (no CS-1 peptide) were used to determine the level of cell
10 adhesion corresponding to 100% inhibition. Cell adhesion to wells coated with BSA and crosslinker was usually less than 5% of that observed to CS-1 coated wells in the presence of vehicle. Percent inhibition was then calculated for each test well and the IC₅₀ was determined from a ten point titration using a validated four parameter fit algorithm.
15

EXAMPLE 334

Antagonism of VLA-4 Dependent Binding to VCAM-Ig Fusion Protein.

20 Step A. Preparation of VCAM-Ig.
The signal peptide as well as domains 1 and 2 of human VCAM (GenBank Accession no. M30257) were amplified by PCR using the human VCAM cDNA (R & D Systems) as template and the following primer sequences: 3'-PCR primer: 5'-AATTATAATTGATCAACTTAC
25 CTGTCAATTCTTTACAGCCTGCC-3';
5'-PCR primer:
5'-ATAGGAATTCCAGCTGCCACCATGCCTGGGAAGATGGTCG-3'.
The 5'-PCR primer contained EcoRI and PvuII restriction sites followed by a Kozak consensus sequence (CCACC) proximal to the initiator methionine ATG. The 3'-PCR primer contained a BclI site and a splice donor sequence. PCR was performed for 30 cycles using the following parameters: 1 min. at 94°C, 2 min. at 55°C, and 2 min. at
30

72°C. The amplified region encoded the following sequence of human VCAM-1:

MPGKMWVILGASNILWIMFAASQAFKIEPPESRYLAQIGDSVSLTC
STTGCESPFFSWRTQIDSPNGKVTNEGTTSTLMNPVSFGNEHSYLC
5 TATCESRKLEKGIVQEYISFPKDPEIHLGPLEAGKPVTKCSVADY
PFDRLEIDLKGDHLMKSQEFLADRKSLETKSLEVTFTPVIEDIGKV
LVCRAKLHIDEMDSVPTVRQAVKEL. The resulting PCR product of
10 650 bp was digested with EcoRI and BclI and ligated to expression vector
pIg-Tail (R & D Systems, Minneapolis, MN) digested with EcoRI and
BamHI. The pIg-Tail vector contains the genomic fragment which
encodes the hinge region, CH2 and CH3 of human IgG1 (GenBank
Accession no. Z17370). The DNA sequence of the resulting VCAM
fragment was verified using Sequenase (US Biochemical, Cleveland,
OH). The fragment encoding the entire VCAM-Ig fusion was
15 subsequently excised from pIg-Tail with EcoRI and NotI and ligated to
pCI-neo (Promega, Madison, WI) digested with EcoRI and NotI. The
resulting vector, designated pCI-neo/VCAM-Ig was transfected into
CHO-K1 (ATCC CCL 61) cells using calcium-phosphate DNA
precipitation (Specialty Media, Lavalette, NJ). Stable VCAM-Ig
20 producing clones were selected according to standard protocols using
0.2-0.8 mg/ml active G418 (Gibco, Grand Island, NY), expanded, and cell
supernatants were screened for their ability to mediate Jurkat adhesion
to wells previously coated with 1.5 µg/ml (total protein) goat anti-human
IgG (Sigma, St. Louis, MO). A positive CHO-K1/VCAM-Ig clone was
25 subsequently adapted to CHO-SFM serum-free media (Gibco) and
maintained under selection for stable expression of VCAM-Ig. VCAM-
Ig was purified from crude culture supernatants by affinity
chromatography on Protein A/G Sepharose (Pierce, Rockford, IL)
according to the manufacturer's instructions and desalting into 50 mM
30 sodium phosphate buffer, pH 7.6, by ultrafiltration on a YM-30
membrane (Amicon, Beverly, MA).

Step B. Preparation of ¹²⁵I-VCAM-Ig.

VCAM-Ig was labeled to a specific radioactivity greater than 1000 Ci/mmole with ¹²⁵I-Bolton Hunter reagent (New England Nuclear, Boston, MA; cat # NEX120-0142) according to the manufacturer's instructions. The labeled protein was separated from unincorporated isotope by means of a calibrated HPLC gel filtration column (G2000SW; 7.5 x 600 mm; Tosoh, Japan) using uv and radiometric detection.

5 Step C. VCAM-Ig Binding Assay.

Compounds of this invention were prepared in DMSO at 10 100x the desired final assay concentration. Final concentrations were selected from a range between 0.001 nM-100 μM. Jurkat cells were centrifuged at 400xg for five minutes and resuspended in binding buffer (25 mM HEPES, 150 mM NaCl, 3 mM KCl, 2 mM glucose, 0.1% bovine serum albumin, pH 7.4). The cells were centrifuged again and 15 resuspended in binding buffer supplemented with MnCl₂ at a final concentration of 1 mM. Compounds were assayed in Millipore MHVB multiscreen plates (cat# MHVBN4550, Millipore Corp., MA) by making the following additions to duplicate wells: (i) 200 μL of binding buffer containing 1 mM MnCl₂; (ii) 20 μL of ¹²⁵I-VCAM-Ig in binding buffer 20 containing 1 mM MnCl₂ (final assay concentration ~ 100 pM); (iii) 2.5 μL of compound solution or DMSO; (iv) and 0.5 x 10⁶ cells in a volume of 30 μL. The plates were incubated at room temperature for 30 minutes, filtered on a vacuum box, and washed on the same apparatus by the addition of 100 μL of binding buffer containing 1 mM MnCl₂. After 25 insertion of the multiscreen plates into adapter plates (Packard, Meriden, CT, cat# 6005178), 100 μL of Microscint-20 (Packard cat# 6013621) was added to each well. The plates were then sealed, placed on a shaker for 30 seconds, and counted on a Topcount microplate scintillation counter (Packard). Control wells containing DMSO alone 30 were used to determine the level of VCAM-Ig binding corresponding to 0% inhibition. Control wells in which cells were omitted were used to determine the level of binding corresponding to 100% inhibition. Binding

of ^{125}I -VCAM-Ig in the absence of cells was usually less than 5% of that observed using cells in the presence of vehicle. Percent inhibition was then calculated for each test well and the IC_{50} was determined from a ten point titration using a validated four parameter fit algorithm.

5

EXAMPLE 335

Antagonism of $\alpha_4\beta_7$ Dependent Binding to VCAM-Ig Fusion Protein.

- 10 Step A. $\alpha_4\beta_7$ Cell line.
RPMI-8866 cells (a human B cell line $\alpha_4^+\beta_1^-\beta_7^+$; a gift from Prof. John Wilkins, University of Manitoba, Canada) were grown in RPMI/10% fetal calf serum/ 100 U penicillin/100 μg streptomycin/2 mM L-glutamine at 37°C, 5 % carbon dioxide. The cells were pelleted at 1000 rpm for 5 minutes and then washed twice and resuspended in binding buffer (25 mM Hepes, 150 mM NaCl, 0.1 % BSA, 3 mM KCl, 2 mM Glucose, pH 7.4).
- 15 Step B. VCAM-Ig Binding Assay.
Compounds of this invention were prepared in DMSO at 100x the desired final assay concentration. Final concentrations were selected from a range between 0.001 nM-100 μM . Compounds were assayed in Millipore MHVB multiscreen plates (Cat# MHVBN4550) by making the following sequential additions to duplicate wells: (i) 100 $\mu\text{l}/\text{well}$ of binding buffer containing 1.5 mM MnCl₂; (ii) 10 $\mu\text{l}/\text{well}$ ^{125}I -VCAM-Ig in binding buffer (final assay concentration < 500 pM); (iii) 1.5 $\mu\text{l}/\text{well}$ test compound or DMSO alone; (iv) 38 $\mu\text{l}/\text{well}$ RPMI-8866 cell suspension (1.25×10^6 cells/well). The plates were incubated at room temperature for 45 minutes on a plate shaker at 200 rpm, filtered on a vacuum box, and washed on the same apparatus by the addition of 100 μL of binding buffer containing 1 mM MnCl₂. After insertion of the multiscreen plates into adapter plates (Packard, Meriden, CT, cat# 6005178), 100 μL of Microscint-20 (Packard cat# 6013621) was added to
- 20
25
30

each well. The plates were then sealed, placed on a shaker for 30 seconds, and counted on a Topcount microplate scintillation counter (Packard). Control wells containing DMSO alone were used to determine the level of VCAM-Ig binding corresponding to 0% inhibition.

- 5 Wells in which cells were omitted were used to determine the level of binding corresponding to 100% inhibition. Percent inhibition was then calculated for each test well and the IC₅₀ was determined from a ten point titration using a validated four parameter fit algorithm.

卷之三