Modale Prädikatenlogik

Eine sehr kurze Einführung

Conrad Friedrich

Universität zu Köln

January 14, 2017

Prädikatenlogik

Prädikatenlogik

"Baby Logic" Version

- 1. Alle Menschen sind sterblich
- 2. Sokrates ist ein Mann

- 1. Alle Menschen sind sterblich
- 2. Sokrates ist ein Mann
- 3. Also: Sokrates ist sterblich

- Alle Menschen sind sterblich
- 2. Sokrates ist ein Mann
- 3. Also: Sokrates ist sterblich

- 1. P
- 2. *Q*
- 3. Also: *R*

 Alle Menschen sind sterblich 1. *P*

2. Sokrates ist ein Mann

2. *Q*

3. Also: Sokrates ist sterblich

3. Also: R

► Mehr Struktur, als wir mit der Aussagenlogik abbilden können

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

1. $\forall x (Mx \rightarrow Sx)$.

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. $\forall x (Mx \rightarrow Sx)$.
- 2. *Ms*.

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. $\forall x (Mx \rightarrow Sx)$.
- 2. *Ms*.
- 3. Also: Ss.

Formalisierung III

► Es gibt genau einen Gott.

Formalisierung III

- ► Es gibt genau einen Gott.
- ▶ gdw. Es gibt ein Ding, das Gott ist, und alle anderen Dinge sind, falls sie Gott sind, identisch mit diesem Ding.

Formalisierung III

- ► Es gibt genau einen Gott.
- gdw. Es gibt ein Ding, das Gott ist, und alle anderen Dinge sind, falls sie Gott sind, identisch mit diesem Ding.
- ▶ gdw. $\exists x (Gx \land \forall y (Gx \rightarrow x = y)).$

- ► Variablen
 - ▶ $\forall x(Mx \rightarrow Sx)$

- ► Variablen
 - ▶ $\forall x(Mx \rightarrow Sx)$
- ► Konstanten
 - ▶ Pc

- ► Variablen
 - ▶ $\forall x(Mx \rightarrow Sx)$
- ► Konstanten
 - ▶ Pc
- ► Prädikatensymbole (n-stellig)
 - ▶ $\forall x (\mathbf{M}x \rightarrow \mathbf{S}x)$, $\mathbf{G}xy$

- ▶ Variablen
 - ▶ $\forall x(Mx \rightarrow Sx)$
- ▶ Konstanten
 - ▶ Pc
- ► Prädikatensymbole (n-stellig)
 - ▶ $\forall x (Mx \rightarrow Sx)$, Gxy
- ► Konnektive wie in der Aussagenlogik
 - $\quad \blacktriangleright \quad \neg, \rightarrow, \land, \lor, \leftrightarrow$

- ► Variablen
 - ▶ $\forall x(Mx \rightarrow Sx)$
- ► Konstanten
 - ▶ Pc
- Prädikatensymbole (n-stellig)
 - ▶ $\forall x (Mx \rightarrow Sx)$, Gxy
- ► Konnektive wie in der Aussagenlogik

$$\quad \blacktriangleright \quad \neg, \rightarrow, \land, \lor, \leftrightarrow$$

- ▶ Quantoren
 - ▶ ∀,∃

1. Wenn $t_1, ..., t_n$ Variablen oder Konstanten sind und P ein n-stelliges Prädikat ist, dann ist $Pt_1, ..., t_n$ eine (atomare, wohlgeformte) Formel.

- 1. Wenn $t_1, ..., t_n$ Variablen oder Konstanten sind und P ein n-stelliges Prädikat ist, dann ist $Pt_1, ..., t_n$ eine (atomare, wohlgeformte) Formel.
 - ► Fx, Rab

- 1. Wenn $t_1, ..., t_n$ Variablen oder Konstanten sind und P ein n-stelliges Prädikat ist, dann ist $Pt_1, ..., t_n$ eine (atomare, wohlgeformte) Formel.
 - ► Fx, Rab
- 2. Wenn A und B Formeln sind, dann sind auch $\neg A$, $A \rightarrow B$, $A \land B$, $A \lor B$, $A \leftrightarrow B$ Formeln.

- 1. Wenn $t_1, ..., t_n$ Variablen oder Konstanten sind und P ein n-stelliges Prädikat ist, dann ist $Pt_1, ..., t_n$ eine (atomare, wohlgeformte) Formel.
 - ► Fx, Rab
- 2. Wenn A und B Formeln sind, dann sind auch $\neg A$, $A \rightarrow B$, $A \land B$, $A \lor B$, $A \lor B$ Formeln.
- 3. Wenn A eine Formel ist und x eine Variable, dann sind $\forall xA$ und $\exists xA$ Formeln.

Seien a, b, c Konstanten und P, Q Prädikatensymbole. Was wird intuitiv mit diesen Formeln ausgedrückt?

► Pa, Qab

- ► Pa, Qab
- ▶ ¬Pa

- ► Pa, Qab
- ▶ ¬Pa
- ► Qaa

- ► Pa, Qab
- ▶ ¬Pa
- ► Qaa
- ► Qab ↔ Qba

- ► Pa, Qab
- ▶ ¬Pa
- ► Qaa
- ightharpoonup $Qab \leftrightarrow Qba$
- ▶ $(Qab \land Qbc) \rightarrow Qac$

Seien x, y, z Variablen, a, b, c Konstanten und P, Q Prädikatensymbole. Was wird intuitiv mit diesen Formeln ausgedrückt?

► Px, Qxy

- ► Px, Qxy
- → ∃xPx

- ► Px, Qxy
- ► ∃xPx
- ▶ $\forall x (Px \rightarrow Qax)$

- ► Px, Qxy
- → ∃xPx
- ▶ $\forall x(Px \rightarrow Qax)$
- *∃yQxy*

- ► Px, Qxy
- → ∃xPx
- ▶ $\forall x(Px \rightarrow Qax)$
- *∃yQxy*
- ▶ $\forall x \exists y Qxy$

- ► Px, Qxy
- ▶ ∃xPx
- ▶ $\forall x(Px \rightarrow Qax)$
- *∃yQxy*
- ▶ $\forall x \exists y Qxy$
- ▶ Variablen, die in einer Formel im Skopus eines Quantors stehen, sind *gebunden*, sonst *frei*.

Grammatik III: Beispiele

Seien x, y, z Variablen, a, b, c Konstanten und P, Q Prädikatensymbole. Was wird intuitiv mit diesen Formeln ausgedrückt?

- ► Px, Qxy
- ▶ ∃xPx
- ▶ $\forall x(Px \rightarrow Qax)$
- *∃yQxy*
- ▶ $\forall x \exists y Qxy$
- ► Variablen, die in einer Formel im Skopus eines Quantors stehen, sind *gebunden*, sonst *frei*.
- ► Formeln, in denen keine freien Variablen vorkommen, heißen *Sätze*.

► Wann würden wir *Qab* intuitiv als wahr bezeichnen?

- ► Wann würden wir *Qab* intuitiv als wahr bezeichnen?
- ► Wenn die Dinge, für die *a*, *b* stehen, tatsächlich die Eigenschaft haben, die mit *Q* bezeichnet wird.

- ▶ Wann würden wir *Qab* intuitiv als wahr bezeichnen?
- ► Wenn die Dinge, für die *a*, *b* stehen, tatsächlich die Eigenschaft haben, die mit *Q* bezeichnet wird.
- ► *Px*?

- ▶ Wann würden wir *Qab* intuitiv als wahr bezeichnen?
- ► Wenn die Dinge, für die *a*, *b* stehen, tatsächlich die Eigenschaft haben, die mit *Q* bezeichnet wird.
- ► *Px*?
- ▶ Die Variable *x* hat die Eigenschaft *P*?

- ► Wann würden wir *Qab* intuitiv als wahr bezeichnen?
- ► Wenn die Dinge, für die *a*, *b* stehen, tatsächlich die Eigenschaft haben, die mit *Q* bezeichnet wird.
- ► *Px*?
- ▶ Die Variable x hat die Eigenschaft *P*?
- ► Nonsense. Wir können nur *Sätzen* Wahrheitswerte zuordnen (zumindest ohne Weiteres.)

▶ Wann würden wir intuitiv $\exists xPx$ als wahr bezeichnen?

- ▶ Wann würden wir intuitiv $\exists xPx$ als wahr bezeichnen?
- ► Wenn *irgendein* Ding *P* erfüllt.

- ▶ Wann würden wir intuitiv $\exists xPx$ als wahr bezeichnen?
- ▶ Wenn *irgendein* Ding *P* erfüllt.
- ▶ ∀xFx?

- ▶ Wann würden wir intuitiv $\exists xPx$ als wahr bezeichnen?
- ▶ Wenn *irgendein* Ding *P* erfüllt.
- ▶ ∀xFx?
- ▶ Wenn *alle* Dinge *F* erfüllen.

Eine Interpretation I besteht aus einem Tupel $\langle D, v \rangle$.

► *D* ist der (nicht-leere) Gegenstandsbereich, über die quantifiziert wird.

Eine Interpretation *I* besteht aus einem Tupel $\langle D, \nu \rangle$.

- ► *D* ist der (nicht-leere) Gegenstandsbereich, über die quantifiziert wird.
- ▶ *v* ist eine Funktion, so dass

Eine Interpretation I besteht aus einem Tupel $\langle D, v \rangle$.

- ► *D* ist der (nicht-leere) Gegenstandsbereich, über die quantifiziert wird.
- ▶ v ist eine Funktion, so dass
 - ▶ Wenn c eine Konstante ist, dann ist $v(c) \in D$.

Eine Interpretation I besteht aus einem Tupel $\langle D, v \rangle$.

- ► *D* ist der (nicht-leere) Gegenstandsbereich, über die quantifiziert wird.
- ▶ v ist eine Funktion, so dass
 - ▶ Wenn c eine Konstante ist, dann ist $v(c) \in D$.
 - ▶ Wenn P ein n-stelliges Prädikatensymbol ist, dann ist $v(P) \subseteq D^n$.

Eine Interpretation *I* besteht aus einem Tupel $\langle D, v \rangle$.

- ► *D* ist der (nicht-leere) Gegenstandsbereich, über die quantifiziert wird.
- ▶ v ist eine Funktion, so dass
 - ▶ Wenn c eine Konstante ist, dann ist $v(c) \in D$.
 - ▶ Wenn P ein n-stelliges Prädikatensymbol ist, dann ist $v(P) \subseteq D^n$.
- ► (Tafel)

 $ightharpoonup v(Pc_1,...c_n)=1$ gdw. $\langle v(c_1),...,v(c_n)\rangle\in v(P)$, sonst 0.

- ▶ $v(Pc_1,...c_n) = 1$ gdw. $\langle v(c_1),...,v(c_n) \rangle \in v(P)$, sonst 0.
 - ► Fa ist wahr gdw.
 v(a) (das Objekt von a) in v(F) (der Extension von F)
 enthalten ist

- $v(Pc_1,...c_n) = 1$ gdw. $\langle v(c_1),...,v(c_n) \rangle \in v(P)$, sonst 0.
 - Fa ist wahr gdw. v(a) (das Objekt von a) in v(F) (der Extension von F) enthalten ist
- $v(\neg A)$, $v(A \land B)$ usw. genau wie in der Aussagenlogik.

- $v(Pc_1,...c_n) = 1$ gdw. $\langle v(c_1),...,v(c_n) \rangle \in v(P)$, sonst 0.
 - Fa ist wahr gdw. v(a) (das Objekt von a) in v(F) (der Extension von F) enthalten ist
- ▶ $v(\neg A)$, $v(A \land B)$ usw. genau wie in der Aussagenlogik.
- ▶ $v(\forall xA) = 1$ gdw. **jedes** Objekt des Gegenstandsbereiches A erfüllt, sonst 0.

- $v(Pc_1,...c_n) = 1$ gdw. $\langle v(c_1),...,v(c_n) \rangle \in v(P)$, sonst 0.
 - Fa ist wahr gdw. v(a) (das Objekt von a) in v(F) (der Extension von F) enthalten ist
- ▶ $v(\neg A)$, $v(A \land B)$ usw. genau wie in der Aussagenlogik.
- ▶ $v(\forall xA) = 1$ gdw. **jedes** Objekt des Gegenstandsbereiches A erfüllt, sonst 0.
- ▶ $v(\exists xA) = 1$ gdw. **mindestens** ein Objekt des Gegenstandsbereiches A erfüllt, sonst 0.

- $ightharpoonup v(Pc_1,...c_n)=1$ gdw. $\langle v(c_1),...,v(c_n)\rangle \in v(P)$, sonst 0.
 - Fa ist wahr gdw. v(a) (das Objekt von a) in v(F) (der Extension von F) enthalten ist
- ▶ $v(\neg A)$, $v(A \land B)$ usw. genau wie in der Aussagenlogik.
- $v(\forall xA) = 1$ gdw. **jedes** Objekt des Gegenstandsbereiches A erfüllt, sonst 0.
- ▶ $v(\exists xA) = 1$ gdw. **mindestens** ein Objekt des Gegenstandsbereiches A erfüllt, sonst 0.

•

```
Konstanten: a, b, c. Prädikatensymbole: P, Q. Sei I gegeben durch: D = \{\partial_a, \partial_b, \partial_c\}, v(a) = \partial_a usw., v(P) = \{\partial_a, \partial_b\}, v(Q) = \{\langle \partial_a, \partial_a \rangle \langle \partial_c, \partial_b \rangle\}. Welche der folgenden Formeln gilt in I?
```

```
Konstanten: a, b, c. Prädikatensymbole: P, Q. Sei I gegeben durch: D = \{\partial_a, \partial_b, \partial_c\}, v(a) = \partial_a usw., v(P) = \{\partial_a, \partial_b\}, v(Q) = \{\langle \partial_a, \partial_a \rangle \langle \partial_c, \partial_b \rangle\}. Welche der folgenden Formeln gilt in I?
```

► Pa ∨ Qac.

```
Konstanten: a, b, c. Prädikatensymbole: P, Q. Sei I gegeben durch: D = \{\partial_a, \partial_b, \partial_c\}, v(a) = \partial_a usw., v(P) = \{\partial_a, \partial_b\}, v(Q) = \{\langle \partial_a, \partial_a \rangle \langle \partial_c, \partial_b \rangle\}. Welche der folgenden Formeln gilt in I?
```

- ► Pa ∨ Qac.
- ▶ $\exists x(Qxx \land Px)$.

```
Konstanten: a, b, c. Prädikatensymbole: P, Q. Sei I gegeben durch: D = \{\partial_a, \partial_b, \partial_c\}, v(a) = \partial_a usw., v(P) = \{\partial_a, \partial_b\}, v(Q) = \{\langle \partial_a, \partial_a \rangle \langle \partial_c, \partial_b \rangle\}. Welche der folgenden Formeln gilt in I?
```

- ► Pa ∨ Qac.
- ▶ $\exists x(Qxx \land Px)$.
- ▶ $\forall x(Px \rightarrow \exists yQxy)$.

```
Konstanten: a, b, c. Prädikatensymbole: P, Q. Sei I gegeben durch: D = \{\partial_a, \partial_b, \partial_c\}, v(a) = \partial_a usw., v(P) = \{\partial_a, \partial_b\}, v(Q) = \{\langle \partial_a, \partial_a \rangle \langle \partial_c, \partial_b \rangle\}. Welche der folgenden Formeln gilt in I?
```

- ► Pa ∨ Qac.
- ▶ $\exists x(Qxx \land Px)$.
- ▶ $\forall x(Px \rightarrow \exists yQxy)$.
- ▶ $\forall x (Px \lor Qxy)$.

$$\frac{\forall xA}{A_x(a)}$$

a ist eine Konstante, die schon vorkam.

$$\frac{\forall xA}{A_x(a)}$$

$$\frac{\exists xA}{A_{x}(c)}$$

a ist eine Konstante, die schon vorkam. c ist eine neue Konstante.

$$\frac{\forall x A}{A_x(a)}$$

$$\frac{\exists x A}{A_x(c)}$$

$$\neg \exists x A$$
 $\forall x \neg A$

a ist eine Konstante, die schon vorkam. c ist eine neue Konstante.

$$\frac{\forall xA}{A_x(a)}$$

$$\frac{\exists xA}{A_x(c)}$$

$$\neg \exists x A$$
 $\forall x \neg A$

$$\exists x \neg A$$

a ist eine Konstante, die schon vorkam. c ist eine neue Konstante.

$$\frac{\forall x A}{A_x(a)}$$

$$\frac{\exists xA}{A_{x}(c)}$$

$$\frac{\neg \exists x A}{\forall x \neg A}$$

$$\exists x \neg A$$

a ist eine Konstante, die schon vorkam. *c* ist eine neue Konstante.

▶
$$Pc \vdash \exists xPx$$
?

$$\frac{\forall x A}{A_x(a)}$$

$$\frac{\exists xA}{A_x(c)}$$

$$\neg \exists x A$$
 $\forall x \neg A$

$$\exists x \neg A$$

a ist eine Konstante, die schon vorkam. c ist eine neue Konstante.

▶
$$Pc \vdash \exists xPx$$
?

$$\blacktriangleright \ \forall x \neg Px \vdash \neg \exists x Px?$$

$$\frac{\forall xA}{A_x(a)}$$

 $\frac{\exists xA}{A_x(c)}$

$$\neg \exists x A$$
 $\forall x \neg A$

$$\neg \forall x A$$
 $\exists x \neg A$

a ist eine Konstante, die schon vorkam. c ist eine neue Konstante.

▶
$$Pc \vdash \exists xPx$$
?

▶
$$\forall x \neg Px \vdash \neg \exists x Px$$
?

▶
$$\exists x \neg Px \vdash \neg \forall x Px$$
?