ImageNet Classification with Deep Convolutional Neural Networks

Seoyoon Choi

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky

University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever

University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton

University of Toronto
hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

- Simple object recognition with small dataset (MNIST, CIFAR)
 - → already effective
- Real-world classification
 - need larger, more complex labeled images → LabelMe, ImageNet
 - need a model with a large learning capacity → CNN

However, it's still too expensive to apply in large scale to high-resolution images...

- GPUs paired with 2D convolution
 - used highly-optimized GPU for 2D convolution
 - powerful enough to facilitate the training of large CNNs
- Takes five six days to train on two GTX 580 3GB GPUs
 - results can be improved by faster GPUs and bigger datasets someday
 - → EfficientNet

Dataset

ImageNet

- 22,000 categories, 15 million images
- ILSVRC-2010 & ILSVRC-2012 competitions (for AlexNet)
 - subset of ImageNet
 - 1000 images in each of 1000 categories

Dataset

Data Preprocessing

- ImageNet consists of variable-resolution images
- we need a fixed input dimensionality

500

- 1) down-sampled to 256 x 256 (Resize)
- 2) cropped out the central 256 x 256 patch from the resized image (**Crop**)

Activation Function

- Saturating Nonlinearity (tanh, sigmoid)
 - slower training time
 - gradient vanishing
- Non-saturating Nonlinearity (ReLU)
 - converges faster than tanh/sigmoid
 - computationally efficient
 - doesn't saturate (in + region)

tanh(x)

ReLU $\max(0, x)$

Multiple GPUs

- Single GTX 580 GPU has only 3GB of memory
 - limits the maximum size of the networks to train
- Spread the net across two GPUs
 - able to read from and write to one another's memory directly
 - GPUs communicate only in certain layers

Local Response Normalization

말 그대로 지역적(local)인 응답(response)을 정규화(normalization)한다!

- Lateral inhibition (biological motivation)
 - highly active neurons tend to inhibit their neighbors
 - this creates contrast and sharpens sensory perceptions
- Goal of LRN
 - create competition across feature maps
 - → enhance the most "salient" features
 - improve the model's generalization capabilities

Local Response Normalization

feature map의 특정 위치 (x, y)에서, 채널 방향으로 이웃한 값들을 이용해 현재 채널의 값 을 정규화

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

 $a_{x,y}^i$: source output of kernel i applied at position(=pixel) x, y

 $b_{x,y}^i$: regularized output for kernel i at position(=pixel) x, y

N: total # of kernels

n: size of the normalization neighborhood

 α , β , k, n: hyperparameters

•
$$k = 2$$

$$\bullet$$
 n = 5

$$\alpha = 0.0001$$

•
$$\beta = 0.75$$

Local Response Normalization

- reduced Top-1 error by 1.3% and Top-5 error by 1.1%
- Why don't we use LRN today?
 - not effective to deeper models like VGGNet
 - Batch Normalization(2015) proved to be more effective
- LRN vs Batch Normalization
 - LRN: normalizes across channels
 - BN: normalizes across the batch for each individual feature
 - → faster and more stable training

Overlapping Pooling

- s: stride
- z: size of the feature map

Non-overlapping pooling (s = z)

Overlapping pooling helps prevent overfitting more effectively than non-overlapping pooling.

Overlapping pooling (s < z)

Overlapping Pooling vs Non-overlapping Pooling

- keeps more spatial information
- provides smoother feature representation
- adds a regularization effect → helps reduce overfitting

Overlapping pooling (s < z)

Overlapping Pooling vs Non-overlapping Pooling

- more simple and computationally efficient
- larger information loss per step
- mainly for downsampling, less effective in preventing overfitting

Non-overlapping pooling (s = z)

Overlapping Pooling

- s: stride (= 2)
- z: size of the feature map (= 3x3)
- reduces top-1 & top-5 error rates by 0.4%, 0.3%

Architecture

Architecture

- 5 Convolutional layer
- 3 Fully connected layer

Architecture

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

```
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x2 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
```


19

Reducing Overfitting

- 1) Data Augmentation
 - Image translations and horizontal reflections

Random crop

RGB alterations (PCA)

256

Reducing Overfitting

- 1) Data Augmentation
 - Image translations and horizontal reflections
 - RGB alterations (PCA)

$$[I_{xy}^R, I_{xy}^G, I_{xy}^B]^T + [\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3][\alpha_1 \lambda_1, \alpha_2 \lambda_2, \alpha_3 \lambda_3]^T$$

- x, y = each pixel from image
- p_i : eigenvector of the 3x3 covariance matrix of RGB pixel values
- λ_i : eigenvalue of the 3x3 covariance matrix of RGB pixel values
- α_i : random variable

Reducing Overfitting

2) Dropout

- reduces complex connections of neurons
- forced to learn stronger features
- works well with many random neuron groups

Before dropout

After dropout

Reducing Overfitting 2) Dropout

• dropout rate = 0.5

- Details of learning
 - batch size 128
 - SGD Momentum 0.9
 - learning rate 1e-2, reduced by 10
 - L2 weight decay 5e-4
 - → reduces the model's training error
 - weight initialization
 - → zero-mean Gaussian distribution & standard deviation 0.01
 - bias initialization
 - → 2, 4, 5 conv layer & fc layer with constant 1
 - → remaining layers with constant 0

Results

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	_
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

Results

Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details.

Results

Thank You