设 $A = \alpha \alpha^T + \beta \beta^T$, α , β 是 3 维列向量。证明 $r(A) \leq 2$ 。

由于 α , β 均是列向量, 故 $\alpha\alpha^T$, $\beta\beta^T$ 是 3 阶矩阵,

且有 $r(\alpha \alpha^T) \le r(a) \le 1$, $r(\beta \beta^T) \le r(\beta) \le 1$,

从而:

$$r(A) = r(\alpha \alpha^T + \beta \beta^T) \le r(\alpha \alpha^T) + (\beta \beta^T) \le 2$$

r(A) 与 r(A*) 的关系

设
$$A$$
 为 n 阶矩阵,证明 $r(A^*) = \begin{cases} n, r(A) = n \\ 1, r(A) = n - 1, & \text{其中 } n \geq 2, \\ 0, r(A) < n - 1 \end{cases}$

 $AA^* = A^*A = |A|E$

当 r(A) = n 时, $|A| \neq 0$,因为 $|A^*| = |A|^{n-1}$,所以 $|A^*| \neq 0$,从而 $r(A^*) = n$ 。

当 r(A) = n - 1 时,由于 A 至少有一个 n - 1 阶子式不为零,

所以存在一个 $M_{ij} \neq 0$, 进而 $A_{ij} \neq 0$,

于是 $A^* \neq 0$. 所以 $r(A^*) \geq 1$. 又因为 |A| = 0.

所以 $AA^* = |A|E = 0$,

根据矩阵秩的性质:

 $r(A) + r(A^*) \le n,$

而 r(A) = n - 1, 于是得 $r(A^*) \le 1$, 所以 $r(A^*) = 1$ 。

当 r(A) < n-1 时,由于 A 的所有 n-1 阶子式都为零,所以 $A^* = 0$,所以 $r(A^*) = 0$ 。

r(A) 与 $r(A^TA)$ 的关系

证明: $r(A) = r(A^T A)_{\circ}$

只需证明 Ax = 0 与 $A^TAx = 0$ 为同解方程组即可。

若 $Ax_0 = 0$,则 $A^T Ax_0 = 0$ 。

反之,若 $A^T A x_0 = 0$,则 $x_0^T A^T A x_0 = 0 \Rightarrow (A x_0)^T (A x_0) = 0 \Rightarrow A x_0 = 0$ 。

所以 Ax = 0 与 $A^TAx = 0$ 为同解方程组,从而 $r(A) = r(A^TA)$ 。