Sistemi baza podataka

Alternativni pristupi u izgradnji sistema baza podataka

NoSQL, ugrađene i temporalne baze podataka

Sadržaj

- NoSQL baze podataka
- Ugrađene baze podataka
- Temporalne baze podataka

Termin NoSQL

- nastao 2009. godine
 - u opštem smislu, objedinjuje sve baze podataka i skladišta podataka koje ne slede primarne principe relacionih baza podataka
 - akronim nema jasno definisano značenje
 - No SQL ili Not Only SQL
 - dobar hashtag na Twitteru
- ne predstavlja jedan proizvod ili tehnologiju
 - već klasu proizvoda i kolekciju različitih, ponekad povezanih koncepata o načinima skladištenja i manipulacije podacima

Motivacija

- pojava Interneta prouzrokuje
 - eksploziju količine podataka koju je potrebno skladištiti
 - problem velikih količina podataka
 - » degradacija performansi RSUBP
 - » količina podataka ima trend stalnog rasta
 - » veličina pojedinačnih podataka takođe raste
 - potreba za visokim nivoom skalabilnosti
 - » zahteva se unapređenje skalabilnosti
 - potreba za visokim nivoom raspoloživosti
 - eksploziju broja istovremenih zahteva nad BP
 - milioni istovremenih zahteva
 - » odgovor mora biti u razumnom vremenskom roku

Motivacija

- pojam veliki podaci predstavlja kolekciju digitalnih informacija
 - · eng. big data
 - čiji obim prevazilazi sposobnost prosečne percepcije ljudi pa i kapacitete raznih softverskih alata
 - za prihvatanje, obradu i upravljanje podacima
 - nije tačno određena donja granica veličine, definisane pojmom veliki podaci
 - trenutno svaki skup podataka veći od nekoliko terabajta
- dužina transakcija postaje problem
 - nepredvidiva dužina transakcije
 - ACID osobine transakcija više ne odgovaraju zahtevima, vezanim za obradu velikih količina podataka

NoSQL baze podataka

ACID osobine

- skraćenica od eng. Atomicity, Consistency, Isolation,
 Durability
- skup osobina BP
 - garantuju pravilno izvršenje transakcija
- definisane od strane Jim Gray-a
 - krajem 1970-ih godina
 - prilikom definisanja pouzdanog transakcionog sistema

ACID osobine

atomičnost

- u slučaju uspešnog izvršenja transakcije
 - sve operacije obuhvaćene transakcijom će biti uspešno izvršene
 - baza podataka ostaje u konzistentnom stanju
- u slučaju neuspešnog izvršenja transakcije
 - efekti izvršenja operacija obuhvaćenih transakcijom neće biti sačuvani u bazi podataka
 - baza podataka takođe ostaje u konzistentnom stanju
 - » onome, koje je prethodilo datoj transakciji

ACID osobine

konzistentnost

 ukoliko su se podaci pre izvršenja transakcije nalazili u konzistentnom stanju, nalaziće se i po okončanju transakcije

izolacija

- operacije tekuće transakcije ne utiču na druge transakcije
 - koje se istovremeno izvršavaju

trajnost

- promene koje nastaju nakon završetka transakcije ostaju trajno sačuvane
 - čak i u slučaju pada čitavog sistema

CAP teorema

- sistem koji skladišti deljene podatke ne može obezbediti istovremeno zadovoljenje sledećih uslova
 - konzistentnost
 - eng. **C**onsistency
 - raspoloživost
 - eng. Availability
 - tolerancija razdvojenosti
 - eng. Partition tolerance
- primenljiva na sisteme zasnovane na distribuiranoj arhitekturi

CAP teorema

konzistentnost

svako čitanje iz baze podataka kao rezultat ima najnoviju verziju podataka

raspoloživost

- odziv sistema u garantovanim vremenskim okvirima
- baza podataka će uvek biti dostupna
 - nezavisno kada je postavljen upit
- postiže se
 - velikim brojem fizičkih servera
 - replikacijom podataka

CAP teorema

tolerancija razdvojenosti

- nijedan skup otkaza, osim potpunog otkazivanja, ne sme da proizvede neispravan odziv sistema baze podataka
 - sistem mora da prihvata delimične otkaze i nastavlja ispravan rad

razdvojenost

- stanje komunikacione mreže kod koje su delovi sistema podeljeni u dve ili više particija
 - » između kojih ne postoji komunikacija
- rešenje:
 - » replikacija
 - » odloženo (asinhrono) pisanje u trenutno nedostupne delove baze podataka

CAP teorema - dokaz

- CAP teorema dokaz
 - šta se događa ako poruka P ne stigne na odredište?
 - dolazi do razdvojenosti delova sistema
 - tri moguća događaja
 - transakcija A se poništava
 - sistem ne prihvata razdvojenost svojih delova
 - transakcija A se uspešno nastavlja
 - sistem nije konzistentan
 - transakcija A čeka na uspešno slanje poruke P
 - sistem nije raspoloživ
 - » nepoznato vreme odaziva
 - u svakom od događaja jedan od uslova nije ispunjen

- CAP teorema kompromisi
 - odbacivanje prihvatanja razdvojenosti
 - obezbeđuju se konzistentnost i raspoloživost
 - alternative
 - kompletan sistem na jednom računaru
 - » rad bez razdvojenosti
 - višestruko umrežavanje
 - » redudantne veze
 - veoma skupe
 - ređe se pravi ovakav kompromis

NoSQL baze podataka

CAP teorema – kompromisi

- odbacivanje raspoloživosti
 - obezbeđuju se konzistentnost i tolerancija razdvojenosti
 - u slučaju razdvojenosti ne garantuje se vreme odziva
 - problem se redukuje uspostavljanjem što niže sprege između čvorova
 - koristi se veoma retko
 - sistem koji nije raspoloživ nije ni upotrebljiv

NoSQL baze podataka

- CAP teorema kompromisi
 - odbacivanje konzistentnosti
 - obezbeđuju se raspoloživost i tolerancija razdvojenosti
 - ne garantuje čitanje poslednje verzije podataka u slučaju razdvojenosti
 - u suprotnosti sa ACID skupom osobina
 - definiše se BASE skup osobina
 - » eng. Basically Available, Soft state, Eventually consistent

BASE osobine

- suštinski raspoloživ
 - većina podataka je dostupna veći deo vremena
- nekonzistentno stanje
 - baza podataka ne mora biti konzistentna u svakom trenutku
- konvergentna konzistencija
 - dodatkom novog čvora u sistem sadržaj se može replicirati na njega
 - ne postoji garancija da će u svakom trenutku svi čvorovi sadržati identične kopije podataka
 - teži se vremenskoj tački u kojoj će svi čvorovi sadržati konzistentne podatke

NoSQL baze podataka

MapReduce algoritam

- omogućava upravljanje velikim količinama podataka
 - posredstvom distribuirane mreže čvorova
- deli veliki zadatak na manje delove
 - pogodne za paralelno procesiranje
- MapReduce okruženje
 - upravlja izvršenjem MR algoritma
 - obezbeđuje spregu sa korisnikom

MapReduce algoritam

map korak

- glavni čvor
 - preuzima ulazne podatke
 - deli ulazne podatke na manje delove
 - distribuira manje delove u radne čvorove

radni čvorovi

- procesiraju dodeljene zadatke
- vraćaju odgovor glavnom čvoru

reduce korak

- glavni čvor
 - preuzima rezultate radnih čvorova
 - kombinuje rezultate sa ciljem dobijanja traženog rezultata

NoSQL sistemi

- nastali usled potreba za
 - skladištenjem velike količine podataka
 - pristupom od strane velikog broja korisnika
- realizacija baza podataka se oslanja na distribuiranu arhitekturu
 - CAP teorema
 - sa BASE skupom osobina
 - » uvodi pojam konvergentne konzistentnosti kao kompromisno rešenje
 - MapReduce algoritam
 - efikasna obrada podataka

NoSQL baze podataka

NoSQL sistemi – osobine i prednosti

- u opštem slučaju, ne poseduju formalno specificiranu šemu baze podataka
 - rukovanje fleksibilnim strukturama podataka
 - nestrukturirani i polustrukturirani podaci
- ne oslanjaju se na relacioni model podataka
 - ne podržavaju operacije spajanja
- unapređene performanse u radu sa velikom količinom podataka
- horizontalna skalabilnost i elastičnost
 - povećanje kapaciteta i performansi u radnom režimu sistema
 - dodavanjem čvorova u distribuiranu mrežu

NoSQL baze podataka

NoSQL sistemi – osobine i prednosti

- arhitektura lokalizovanih resursa
 - eng. shared nothing architecture
 - svaki server se oslanja na lokalnu masovnu memoriju
- particionisanje baze podataka
 - ukupan broj zapisa je distribuiran u particije
 - dodeljene različitim serverima
 - particije se repliciraju
- asinhrona replikacija
 - podaci nisu replicirani onog momenta kada su zapisani

NoSQL sistemi – osobine i prednosti

- izbegavanje objektno-relacionog mapiranja
 - podaci se čuvaju u posebnim strukturama podataka
 - obično jednostavnim
 - bliskim objektno orijentisanim programskim jezicima
- često predstavlja sistem za upravljanje datotekama
- visoka tolerancija na otkaze
- daje prednost performansama
 - na štetu konzistentnosti
- pristup putem API-ja ili nekog drugog interfejsa
 - ne oslanja se na SQL
- dominantno otvorenog koda

NoSQL baze podataka

NoSQL sistemi – nedostaci

- nepostojanje standarda
- nepostojanje standardnog upitnog jezika
 - UnQL (eng. Unstructured Query Language)
 - predlog upitnog jezika
 - zasnovan na JSON-u
- dominantno otvorenog koda
 - nedostatak dokumentacije i korisničke podrške

NoSQL baze podataka

Podela NoSQL sistema

- skladišta podataka tipa ključ-vrednost
- kolonski orijentisano skladište podataka
- baze podataka orijentisane ka dokumentima
- baze podataka orijentisane ka grafovima

Skladišta podataka tipa ključ-vrednost

- eng. key value stores
- svaki zapis se sastoji od skupa parova ključ vrednost
 - proizvoljan broj parova
 - svojstva sa nedostajućim vrednostima se izostavljaju
 - ključ predstavlja naziv svojstva
 - jedinstveni identifikator koji ukazuje na vrednost
 - definiše se prilikom formiranja zapisa
 - vrednost sadrži podatak ili pokazivač na lokaciju koja sadrži podatak
 - u opštem slučaju vrednosti predstavljaju nizove karaktera
- zapisi se čuvaju u okviru tabela

NoSQL baze podataka

Skladišta podataka tipa ključ-vrednost

- zasnovane na principima struktura podataka u višim programskim jezicima
 - kolekcije
 - rečnici
 - rasute tabele
- mogu da služe kao mehanizmi za keširanje

Skladišta podataka tipa ključ-vrednost

Tabela: Kupac **ID**: 1 Ime: Petar Prezime: Petrovic Adresa: Bulevar Oslobođenja 12 Grad: Novi Sad Drzava: Srbija **ZIP**: 21000 Poslednja narudzba: 252 **ID**: 2 Ime: Marko Prezime: Markovic Adresa: Gavrila Principa 42 **Grad**: Banja Luka **ZIP**: 21000

Poslednja narudzba: 262

| ID: 252 | Iznos: 30000 Din | Stavka 1: 56432 | Stavka 2: 98726 | ID: 262 | Iznos: 42000 Din | Stavka 1: 86413 | Stavka 1: 86413

Skladišta podataka tipa ključ-vrednost

Ključ-vrednost	Riak	Tokyo Cabinet/Tyrant	Voldemort
Napisana u	Erlang	С	Java
Platforme	Linux	Linux	Bilo koja Java
Protokol	HTTP/REST	HTTP/memcached	HTTP/Thrift
Način čuvanja podataka	plug-in BP	RAM ili disk	RAM ili BerkeleyDB
Replikacija	asinhrona	asinhrona	asinhrona
Particionisanje	da	ne	da
Indeksi	da	ne	ne
MapReduce	da	ne	ne
Transakcije	ne	lokalne	ne

NoSQL baze podataka

Kolonski orijentisano skladište podataka

- eng. wide column stores
- ne zahteva kompletnu šemu baze podataka
 - samo unapred definisane familije kolona
 - skup kolona koji predstavlja logičku celinu
 - kolone unutar familije ne moraju biti unapred definisane
- visoke performanse prilikom vršenja upita
 - pogodne za OLAP sisteme
- sporiji upis podataka
 - nisu pogodne za OLTP sisteme

NoSQL baze podataka

Kolonski orijentisano skladište podataka

- trodimenzionalna struktura
 - identifikator reda
 - familija kolona i identifikator kolone
 - vremenska oznaka
 - revizija podataka
- red u skladištu je analogan dokumentu
 - grupisani u kolekcije
 - primarni ključ zapisa služi za pristup redu
- familije kolona igraju ulogu sekundarnog ključa

Kolonski orijentisano skladište podataka

Tabela: Kupac

ID: 1

CF/SC: Ime

C: Ime: Petar

C: Prezime: Petrovic

CF/SC: Adresa

C: Adresa: Bul. Osl. 12

C: Grad: Novi Sad C: Drzava: Srbija

C: ZIP: 21000

CF/SC: Narudzbe

C: Poslednja narudzba: 252

ID: 2

CF/SC: Ime

C: Ime: Marko

C: Prezime: Markovic

CF/SC: Adresa

C: Adresa: Gavrila Principa 42

C: Grad: Banja Luka

C: ZIP: 21000 CF/SC: Narudzbe

C: Poslednja narudzba: 262

Tabela: Narudzba

ID: 252

CF/SC: Cena

C: Iznos: 30000 Din

CF/SC: Stavke

C: Stavka 1: 56432

C: Stavka 2: 98726

ID: 262

CF/SC: Cena

C: Iznos: 42000 Din

CF/SC: Stavke

C: Stavka 1: 86413

Kolonski orijentisano skladište podataka

Ključ-vrednost	Cassandra	Hbase	SimpleDB
Napisana u	Java	Java	Erlang
Platforme	Linux, Windows	Cross - platform	EC2, POSIX
Protokol	TCP/Thrift	HTTP/REST ili TCP/Thrift	HTTP/REST
Način čuvanja podataka	disk	Hadoop File System	S3
Replikacija	asinhrona	asinhrona	asinhrona
Particionisanje	da	da	da
Indeksi	da	ne	da
MapReduce	da	da	ne
Transakcije	lokalne	lokalne	ne

NoSQL baze podataka

Baze podataka orijentisane ka dokumentima

- eng. document-oriented databases
- dokument
 - ekvivalentan redu u relacionim bazama podataka
 - u bazi podataka postoji niz samostalnih dokumenata
 - rezultat upita su podaci sadržani u jednom dokumentu
 - ne u povezanim tabelama
- ne postoji potreba za šemom baze podataka
 - dokumenti u opštem slučaju ne moraju da imaju istu strukturu
- dokumenti mogu da budu međusobno povezani putem URI-ja

Baze podataka orijentisane ka dokumentima

- osobine
 - objekti mogu biti snimljeni kao dokumenti
 - serijalizacija objekta u dokument
 - jednostavna realokacija dokumenata
 - dokumenti mogu biti složeni
 - dokumenti su nezavisni
 - zapisi o jednom entitetu se nalaze u jednom dokumentu
 - jednostavni formati dokumenata
 - JSON ili XML
 - nepostojanje fiksne šeme baze podataka
 - najčešće
 - ugrađeno praćenje verzije dokumenata

Baze podataka orijentisane ka dokumentima

Baze podataka orijentisane ka dokumentima

Ključ-vrednost	CouchDB	MongoDB	RavenDB	
Napisana u	Erlang	C++	C#	
Platforme	Linux	Linux, Mac, Windows	Windows	
Protokol	HTTP/REST	sopstveni TCP/IP	HTTP/REST	
Način čuvanja podataka	disk	disk	memorija i disk	
Replikacija	Peer-based	Master-Slave	plug-in	
Particionisanje	da	da	da	
Indeksi	da	da	da	
MapReduce	da	da	da	
Transakcije	ne	ne	da	

- eng. graph databases
- zasnovane na teoriji grafova
 - odnosi između kolekcija objekata
- grafovi se sastoje od
 - čvorova
 - koji predstavljaju entitete
 - grana
 - koje povezuju čvorove
 - svojstava
 - predstavljaju atribute
 - reprezentuju i čuvaju informacije

- nastale sa popularizacijom društvenih mreža
 - veliki broj korisnika koji poseduju veze sa drugim korisnicima, statusima, komentarima itd.
- pogodne za podatke kojima rukuje semantički web

Ključ-vrednost	Neo4J	InfoGrid	Bigdata	
Napisana u	Java	Java	Java	
Platforme	bilo koja Java	bilo koja Java	bilo koja Java	
Protokol	HTTP	HTTP	HTTP	
Način čuvanja podataka	disk	disk, memorija i nekoliko BP	disk	
Replikacija	ne	ne	da	
Particionisanje	ne	ne	da	
Indeksi	ne	ne	da	

Uporedne karakteristke i performanse NoSQL sistema i RSUBP-a

	performanse	skalabilnost	fleksibilnost	kompleksnost	big data
key-value	visoke	visoka	visoka	nema	da
wide columns	visoke	visoka	srednja	mala	da
document	visoke	promenljiva	visoka	mala	da/ne
graph	promenljive	promenljiva	visoka	visoka	da/ne
RSUBP	promenljive	promenljiva	visoka	srednja	ne

Sadržaj

- NoSQL baze podataka
- Ugrađene baze podataka
- Temporalne baze podataka

Motivacija

- razvoj mobilnih i specijalizovanih uređaja
 - ograničene mogućnosti hardvera
 - specifične softverske platforme
 - zahtev za organizacijom podataka
 - količina podataka ima trend stalnog rasta
- tradicionalni sistemi baza podataka
 - nisu pogodni za upotrebu na ovim uređajima
 - nedovoljno jak hardver
 - nisu podržani od strane softverske platforme

Ugrađene baze podataka

- eng. embedded database
- softverska biblioteka
 - povezana sa klijentskom aplikacijom
 - koriste isti adresni prostor
 - aplikacija postaje jedinstvena programska celina
- rad sa malim brojem korisnika

- minimizacija memorijskih zahteva
 - sistemi imaju skromne memorijske resurse
 - dva aspekta
 - memorijski otisak
 - » eng. memory footprint
 - » memorija koju baza zauzima bez podataka
 - prekoračenje podacima
 - » eng. data overhead
 - » nesvrsishodna potrošnja resursa ili vremena potrebnog za pribavljanje traženog podatka

- redukovanje alokacije resursa
 - ugrađena BP mora odgovoriti na ograničenja postavljena od strane tehnologije ugrađenog sistema u kojem egzistira
 - obezbediti integritet i kontinuiran rad
 - prilagoditi resurse trenutnim ograničenjima
 - » predefinisani limiti
 - » trenutno dostupni resursi
 - ručno konfigurisanje upravljanja resursima je neprihvatljivo

- brzina izvršavanja i predvidivost performansi
 - varijacije u frekvenciji pristupa i dostupnosti resura
 - ugrađena BP mora biti u mogućnosti da se prilagodi svakoj situaciji
 - sprvode se temeljni test slučajevi
 - ugrađuju se mehanizmi za brz oporavak
 - brzina izvršavanja je od ključnog značaja
 - veliki broj ugrađenih sistema obrađuje podatke u realnom vremenu
 - u cilju postizanja što boljih performansi, ugrađena BP tipično mora koristiti sve raspoložive resurse namenskog hardvera

- visoka pouzdanost i raspoloživost
 - ne postoji administrator kao kod tradicionalnih SBP
 - ugrađena BP sama inicira pojedine operacije
 - » indeksiranje, pravljenje rezervne kopije, podešavanje parametara sistema
 - » iniciranje operacija može biti delegirano aplikaciji
 - potrebna je brza reakcija na greške
 - procedura oporavka podataka mora biti vrlo brzo pokrenuta

- Osnovne karakteristike i zahtevi
 - interoperabilnost, prenosivost i podrška različitih operativnih sistema
 - ugrađeni sistemi poseduju namenske operativne sisteme
 - ugrađena BP mora da podržava takav operativni sistem
 - interoperabilnost sa drugim sistemima BP
 - prenosivost na druge hardverske platforme

- upotreba fleš memorije
 - primarni medijum za skladištenje podataka u mobilnim uređajima i uređajima specijalizovane namene
 - trajna memorija, razumnog kapaciteta po prihvatljivoj ceni
 - nema mehaničkih delova
 - » koji prouzrokuju kašnjenja
 - manja potrošnja energije od hard diskova

- Kriterijumi izbora odgovarajućeg sistema ugrađene BP
 - izbor platforme
 - podržani operativni sistem
 - izvorni kôd baze podataka
 - zauzeće resursa
 - ocena performansi
 - konkurentnost i skalabilnost
 - zahtevani servisi

Tipovi ugrađenih baza podataka

- BP integrisane sa aplikacijom na klasičnim računarskim platformama
- BP integrisane u mobilne uređaje i uređaje specijalizovane namene

Ugrađene baze podataka

- BP integrisane sa aplikacijom na klasičnim računarskim platformama
 - tradicionalni sistemi
 - K/S arhitekture
 - aplikacija preko servera komunicira sa BP
 - BP integrisane sa aplikacijom
 - BP je ugrađena u aplikaciju
 - kao softverska komponenta
 - visoke performanse
 - smanjena kompleksnost komunikacije
 - mali broj korisnika BP

- BP integrisane sa aplikacijom na klasičnim računarskim platformama
 - implementacija BP integrisane sa aplikacijom
 - referenciranjem softverske biblioteke
 - koja sadrži implementaciju baze podataka
 - jednostavna ponovna iskoristivost implementacije BP
 - proširenje izvornog koda aplikacije
 - kodom koji implementira BP
 - eliminiše potrebu za postojanjem eksterne softverske biblioteke
 - » pojednostavljena distribucija i instalacija

Tradicionalna arhitektura sistema BP

 Arhitektura sistema BP integrisane sa aplikacijom

Ugrađene baze podataka

- BP integrisane u mobilne uređaje i uređaje specijalizovane namene
 - uređaji striktnih hardverskih ograničenja
 - aplikacije namenjenje za rešavanje specifičnih problema
 - potreba za ugrađenim bazama podataka
 - prednosti
 - redukovanje troškova razvoja
 - poboljšanje kvaliteta dizajna ugrađenih sistema
 - lakše održavanje i povećana pouzdanost

- BP integrisane u mobilne uređaje i uređaje specijalizovane namene
 - koriste se u
 - mobilnom računarstvu
 - inteligentnim uređajima i ugrađenim sistemima
 - smart karticama

Ugrađene baze podataka

- Berkley DB
 - najpopularnija NoSQL ugrađena BP
 - softverska biblioteka
 - visoke performanse sa podacima tipa ključ-vrednost
 - napisana u C-u
 - poseduje API-je za većinu modernih programskih jezika
 - podržana većina modernih OS-a
 - visoka konkurentnost i skalabilnost
 - hiljade simultanih upravljačkih niti
 - veličina BP do 256 terabajta
 - memorijski otisak 700 KB 1.6 MB

- Hamster DB
 - mala NoSQL ugrađena BP tipa ključ-vrednost
 - napisana u C/C++-u
 - poseduje API-je za Javu, Python, .Net i Erlang
 - podržana većina modernih OS-a
 - » Google Android i Apple iOS
 - visoka konkurentnost i skalabilnost
 - memorijski otisak 600 KB

Ugrađene baze podataka

- Raptor DB
 - vrlo mala NoSQL ugrađena BP
 - u formi perzistentnog rečnika podataka
 - realizovana kao softverska biblioteka
 - dizajnirana za podatke u JSON formatu
 - prihvata i sve ostale vrste podataka
 - dizajnirana samo da dodaje podatke
 - poseduje istorijske/duplicirane podatke
 - visoka konkurentnost i skalabilnost
 - memorijski otisak 40 KB

Ugrađene baze podataka

- SQLite
 - softverska biblioteka
 - zasnovana na relacionom modelu podataka
 - podržava transakcioni režim i očuvanje ACID svojstava
 - nema potrebu za podešavanjem ili administriranjem
 - smeštena u jedinstvenu datoteku
 - moguć prenos na bilo koju platformu
 - napisana u C-u
 - poseduje API-je za C i C++
 - podržana većina modernih OS-a
 - visoka skalabilnost
 - veličina BP do reda veličine terabajta
 - veliki objekti reda veličine gigabajta
 - memorijski otisak 200 KB 350 KB

Ugrađene baze podataka

- PicoDBMS
 - baza podataka za smart kartice
 - podržava moćan podskup SQL standarda
 - vrši autentifikaciju korisnika
 - dozvoljava pristup isključivo dozvoljenom sadržaju
 - koristi EEPROM
 - kao primarnu memoriju

Sadržaj

- NoSQL baze podataka
- Ugrađene baze podataka
- Temporalne baze podataka

Temporalne baze podataka

Temporalne baze podataka

- sve baze podataka koje poseduju vreme kao aspekt u organizovanju podataka
- uvode temporalne koncepte
 - na nivou baze podataka
 - aplikacije koriste ove temporalne koncepte

Temporalne baze podataka

Reprezentacija vremena

 vreme je uređeni niz trenutaka u granularnosti definisanoj od strane aplikacije

kronon

- minimalna granularnost za neku aplikaciju
- svi događaji u okviru kronona se posmatraju kao istovremeni događaji
 - u realnom sistemu to ne mora da bude slučaj

Temporalne baze podataka

Kalendar

- organizuje vreme u različite vremenske jedinice
 - lakše za rukovanje
 - npr. minut, sat, dan, mesec, itd.
- omogućava merenje vremena od neke početne tačke
 - razlikuje se u zavisnosti od kulture, npr:
 - Gregorijanski kalendar
 - Kineski kalendar
 - Islamski kalendar

Temporalne baze podataka

Vremenski tipovi u SQL-u

- DATE
 - godina, mesec i dan
 - YYYY-MM-DD
- TIME
 - sat, minut i sekund
 - HH:MM:SS
- TIMESTAMP
 - kombinacija TIME i DATE
 - YYYY-MM-DD HH:MM:SSS

Temporalne baze podataka

Vremenski tipovi u SQL-u

- INTERVAL
 - relativni vremenski period
 - 10 dana
 - 250 minuta
- PERIOD
 - fiksirani vremenski period
 - fiksirana početno vreme
 - 10 dana od 1. januara 2013. do 10. januara 2013. godine

Temporalne baze podataka

- Vrste događaja u temporalnim BP
 - jedinični događaji (činjenice)
 - obuhvataju jedinstveni vremenski trenutak
 - u definisanoj granularnosti
 - događaji (činjenice) koji traju
 - obuhvataju određen vremenski period
 - definisan početnom i krajnjom tačkom u vremenu
 - » obuhvata i sve trenutke između
 - » u definisanoj granularnosti

Temporalne baze podataka

Interpretacija vremena u BP

- kako interpretiramo vreme povezano sa podacima u BP
 - podaci predstavljaju događaje ili činjenice

validno vreme

- vreme kada se događaj zbio
- vreme kada je činjenica bila tačna
- u realnom svetu

transakciono vreme

- vreme kada je podatak upisan u bazu podataka
- vreme kada je informacija validna u sistemu

- validno vreme i transakciono vreme nazivaju se vremenskim dimenzijama
- moguće i ostale interpretacije vremena
 - korisnički definisano vreme
 - korisnik
 - daje semantiku interpretaciji
 - programira aplikaciju da je podrži

- pristupi implementiranju temporalnih baza podataka
 - verzionisanje torki
 - kod relacionih sistema
 - dodaje se vreme svakoj torki
 - prilikom promene torke kopiraju se i atributi koji nisu promenjeni
 - verzionisanje atributa
 - kod sistema koji podržavaju složene objekte
 - » objektno-orijentisane BP
 - » objektno-relacione BP

Temporalne baze podataka

- podela baza podataka u odnosu na vremenske dimenzije
 - baze podataka sa validnim vremenom
 - sadrže samo validno vreme
 - baze podataka sa transakcionim vremenom
 - sadrže samo transakciono vreme
 - bitemporalne baze podataka
 - sadrže i validno i transakciono vreme

- Relaciona baza podataka primer
 - šeme relacije Radnik i Departman
 - torke predstavljaju trenutno stanje entiteta u realnom svetu

j

Temporalne baze podataka

- Relaciona baza podataka primer
 - Radnik

Departman

Temporalne baze podataka

- zahtev za praćenjem istorije promena nad nekim entitetom
- uvode se početno i krajnje vreme validnosti entiteta u realnom svetu
 - obeležja s nazivima: Vpv i Vkv
- trenutno stanje entiteta u temporalnim BP sa validnim vremenom
 - temporalna konstanta NOW se dodeljuje obeležju Vkv
 - označava trenutno vreme
 - » uzimajući u obzir napredovanje vremena

- primarni ključ šeme relacije sa validnim vremenom
 - vreme početka validnosti (Vpv)
 - ostala obeležja koja jedinstveno identifikuju entitet
- ukoliko su netemporalna obeležja u primarnom ključu podložna promenama
 - umesto njih se uvodi jedno obeležje koje predstavlja surogatni ključ
 - njemu se pridružuje Vpv

- BP sa validnim vremenom primer
 - Radnik_VV

Departman_VV

Temporalne baze podataka

- brisanje torki
 - torci koja se briše se upisuje vrednost Vkv obeležja
 - torka se zatvara
 - logičko brisanje
- dodavanje torki
 - · upisivanjem nove torke u relaciju
 - Vkv dobija vrednost NOW

- ažuriranje torki
 - "staroj" torci se upisuje vrednost Vkv obeležja
 - zatvorena (istorijska) torka
 - upisuje se nova torka sa izmenjenim vrednostima
 - Vpv označava vreme izmene entiteta u ralnom svetu
 - Vkv sadrži promenljivu NOW

Temporalne baze podataka

- tipovi ažuriranja
 - proaktivno ažuriranje
 - ažuriranje se obavlja pre promene u realnom sistemu
 - početno vreme se postavlja na datum u budućnosti
 - retroaktivno ažuriranje
 - ažuriranje se obavlja nakon promene u realnom sistemu
 - početno vreme se postavlja na datum u prošlosti
 - simultano ažuriranje
 - ažuriranje se obavlja **paralelno** sa promenom u realnom sistemu
 - početno vreme se postavlja na trenutni datum
- ne postoji informacija o promeni stanja baze podataka

lme	JMBG	Plt	DepID	RukJMBG	Vpv	Vkv
Petar	0901251	25000	5	9851244	2002-06-15	2003-05-31
Petar	0901251	30000	5	9851244	2003-06-01	NOW
Marko	3654211	25000	4	9851244	1999-08-20	2001-01-31
Marko	3654211	30000	5	9851244	2001-02-01	2010-03-31
Marko	3654211	40000	5	9851244	2010-04-01	NOW
Dejan	9851244	28000	4	3241545	2001-05-01	2002-08-10
Ivan	3241545	38000	5	NULL	2014-08-01	NOW

Naziv	DepID	RukJMBG	RukJMBG Vpv	
E1	4	9851244	2001-09-20	NOW
E2	5	9851244	2001-09-20	2002-03-31
E2	5	3241545	2002-04-01	NOW

BP sa transakcionim vremenom

- zahtev za praćenjem promene stanja sistema BP
- svakoj torci se pridružuje vremenski otisak
 - za početak transakcije (Vpt)
 - za kraj transakcije (Vkt)
 - uobičajeni tip podataka je TIMESTAMP

rollback baze podataka

- moguća primena operacija logičkog poništavanja (logički rollback, tj. flashback)
 - u cilju vraćanja stanja određenog dela baze podataka u stanje željenog vremenskog trenutka

BP sa transakcionim vremenom

- trenutno stanje entiteta u temporalnim BP sa transakcionim vremenom
 - temporalna konstanta UNTIL CHANGED (UC) se dodeluje obeležju Vkt
 - označava trenutno transakciono vreme
 - dok torku ne promeni neka druga transakcija
- primarni ključ šeme relacije sa validnim vremenom
 - vreme početka transakcije (Vpt)
 - ostala obeležja koja jedinstveno identifikuju entitet

- BP sa validnim vremenom primer
 - Radnik_TV

Departman_TV

Naziv	<u>DepID</u>	RukJMBG	<u>Vpt</u>	Vkt
-------	--------------	---------	------------	-----

Temporalne baze podataka

Bitemporalne baze podataka

- zahtev za praćenjem promene stanja sistema BP kao i promene podataka u realnom svetu
 - svaka šema relacije sadrži obe vremenske dimenzije
- primarni ključ bitemporalne šeme relacije
 - vreme početka transakcije (Vpt)
 - vreme početka validnosti (Vpv)
 - ostala obeležja koja jedinstveno identifikuju entitet
- trenutno stanje entiteta u bitemporalnim BP
 - Vkv ima vrednost NOW
 - Vkt ima vrednost UC

- BP sa validnim vremenom primer
 - Radnik_BT

Departman_BT

Naziv	<u>DepID</u>	RukJMBG	<u>Vpv</u>	Vkv	<u>Vpt</u>	Vkt
-------	--------------	---------	------------	-----	------------	-----

Temporalne baze podataka

Bitemporalne baze podataka

- modifikacija torki
 - nijedno obeležje se fizički ne menja osim Vkv i Vkt
 - za svaku izmenu se dodaje nova torke
 - nova verzija entiteta
- postupak modifikacije
 - elementi modifikacije
 - trenutna verzija torke v koja se modifikuje
 - v[Vkv] = NOW
 - v[Vkt] = UC
 - transakcija T koja modifikuje torku
 - » TS(T) vremenski otisak transakcije T
 - VT trenutak u vremenu kada je entitet promenio stanje u relanom sistemu
 - » VT- trenutak neposredno pre VT

Bitemporalne baze podataka

- postupak modifikacije
 - koraci modifikacije
 - 1. dodati novu torku v₂ u relaciju

```
» v<sub>2</sub> je kopija torke v
```

$$v_2[Vkv] = VT$$

$$v_2[Vpt] = TS(T)$$

$$v_2[Vkt] = UC$$

2. dodati novu torku v_3 u relaciju

```
» v<sub>3</sub> je kopija torke v
```

$$v_3[Vpv] = VT$$

$$v_3[Vkv] = NOW$$

» modifikuju se vrednosti polja koja se menjaju

$$v_3[Vpt] = TS(T)$$

$$v_3[Vkt] = UC$$

Bitemporalne baze podataka

- postupak modifikacije
 - koraci modifikacije

3.
$$v_2[Vkt] = TS(T)$$

torka v₃ predstavlja trenutnu verziju entiteta u bazi podataka

- brisanje torki
 - logičko brisanje torke v
 - dodaje se nova torka v₂
 - kopija torke v
 - $v_2[Vpt] = TS(T)$
 - $-v_2[Vkv] = VT$
 - v[Vkt] = TS(T)
- dodavanje torki
 - dodaje se nova torka v_n
 - $v_n[Vpt] = TS(T)$
 - $v_n[Vkt] = UC$
 - $-v_n[Vpv] = VT$
 - $v_n[Vkv] = NOW$

Ime	JMBG	Plt	DepID	RukJMBG	Vpv	Vkv	Vpt	Vkt
Petar	0901251	25000	5	9851244	2002-06-15	NOW	2002-06-08, 13:05:58	2003-06-04, 08:56:12
Petar	0901251	30000	5	9851244	2002-06-15	2003-05-31	2003-06-04, 08:56:12	UC
Petar	0901251	30000	5	9851244	2003-06-01	NOW	2003-06-04, 08:56:12	UC
Dejan	9851244	28000	4	3241545	2001-05-01	NOW	2001-04-27, 16:22:05	2002-08-12, 10:11:07
Dejan	9851244	28000	4	3241545	2001-05-01	2002-08-10	2002-08-12, 10:11:07	UC
Ivan	3241545	38000	5	NULL	2003-08-01	NOW	2003-07-28, 09:25:37	UC

lme	JMBG	Plt	DepID	RukJMBG	Vpv	Vkv	Vpt	Vkt
Marko	3654211	25000	4	9851244	1999-08-20	NOW	1999-08-20, 11:18:23	2001-01-07, 14:33:02
Marko	3654211	30000	5	9851244	1999-08-20	2001-01-31	2001-01-07, 14:33:02	UC
Marko	3654211	40000	5	9851244	2001-02-01	NOW	2001-01-07, 14:33:02	2002-03-28, 09:23:57
Marko	3654211	25000	4	9851244	2001-02-01	2002-03-31	2002-03-28, 09:23:57	UC
Marko	3654211	30000	5	9851244	2002-04-01	NOW	2002-03-28, 09:23:57	UC

Naziv	DepID	RukJMBG	Vpv	Vkv	Vpt	Vkt
E1	4	9851244	2001-09-20	NOW	2001-09-20, 13:14:55	UC
E2	5	9851244	2001-09-20	NOW	2001-09-15, 14:52:12	2002-03-28, 09:23:57
E2	5	3241545	2001-09-20	2002-03-31	2002-03-28, 09:23:57	UC
E2	5	3241545	2002-04-01	NOW	2002-03-28, 09:23:57	UC

Bitemporalne baze podataka

- načini implementacije bitemporalnih relacija
 - jedna relacija
 - sve torke pripadaju jednoj relaciji
 - dve relacije
 - trenutno aktuelne torke pripadaju jednoj relaciji
 - istorijske torke u drugoj

Temporalne baze podataka

- verzionisanje atributa
 - jedan složeni objekat se koristi kako objedinio sve vremenske promene
 - atribut zavisan od vremena
 - svaki atribut koji se menja u toku vremena
 - vrednosti su mu verzionisane dodavanjem temporalnih atributa
 validno vreme, transakciono vreme ili bitemporalni
 - atribut nezavisan od vremena
 - svaki atribut koji se ne menja u toku vremena
 - ne sadrže temporalne atribute

Temporalne baze podataka

- verzionisanje atributa
 - atributi se menjaju nezavisno jedni od drugih
 - nema potrebe za kopiranjem celog objekta
 - » već samo atributa koji se menjaju
 - poseban atribut za definisanje validnosti celog objekta
 - atribut koji opisuje životni vek
 - » označava periode validnosti objekta kao celine
 - » kako u realnom svetu tako i u sistemu baze podataka
 - » logičko brisanje objekta se obavlja zatvaranjem životnog veka
 - » postavljanje vremena u Vkv i Vtv atribut
 - ograničenje
 - » svaki vremenski period važenja atributa mora biti podskup životnog veka objekta


```
class TEMPORAL_PLATA
    attribute
                Date
                                 Vpv;
                                Vkv;
    attribute
                Date
    attribute
                float
                                 Plata;
};
class TEMPORAL_DEPARTMAN
   attribute
                Date
                                         Vpt;
   attribute
                Date
                                         Vkv;
   attribute
                DEPARTMAN_VT
                                         Dep;
```



```
class TEMPORAL RUKOVODILAC
   attribute
               Date
                               Vpv;
   attribute
               Date
                               Vkv;
   attribute
               EMPLOYEE_VT Rukovodilac;
};
class TEMPORAL_ZIVOTNI_VEK
   attribute
                               Vpv;
               Date
   attribute
                               Vkv;
               Date
```



```
class RADNIK VT
(extent RADNICI)
   attribute
                list< TEMPORAL_ZIVOTNI_VEK > Zivotni_vek;
   attribute
                string
                                                 Ime;
   attribute
                string
                                                 JMBG;
   attribute
                list<TEMPORAL SALARY>
                                                 Plt_istorija;
   attribute
                list<TEMPORAL DEPT>
                                                 Dep_istorija;
   attribute
                list <TEMPORAL_SUPERVISOR> Ruk_istorija;
};
```

Temporalne baze podataka

TSQL jezik

- obuhvata proširenja SQL-a
 - za rad nad bazama podataka sa temporalnim proširenjima
- tradicionalni uslovi selekcije
 - obuhvataju samo trenutna stanja entiteta
- temporalni uslovi selekcije
 - obuvataju sva stanja entiteta
 - trenutna i istorijska stanja
 - uključuje se i vremensko obeležje
 - čist vremenski uslov
 - obuhvata samo vremenska obeležja

TSQL jezik

- temporalni uslovi selekcije
 - selektuje torke koje su validne
 - u trenutku u vremenu T
 - u vremenskom periodu [T₁, T₂]
 - » skup trenutaka u vremenu između T₁ i T₂
 - » uključujući T₁ i T₂
 - Alenova algebra
 - » obuhvata skup operacija nad vremenskim podacima

TSQL jezik – operacije

```
 [T.\mathsf{Vpv}, \ T.\mathsf{Vkv}] \ \textbf{INCLUDES} \ [T_1, \ T_2] \qquad \qquad T_1 \geq T.\mathsf{Vpv} \ \mathsf{AND} \ T_2 \leq T.\mathsf{Vkv}   [T.\mathsf{Vpv}, \ T.\mathsf{Vkv}] \ \textbf{INCLUDED\_IN} \ [T_1, \ T_2] \qquad \qquad T_1 \leq T.\mathsf{Vpv} \ \mathsf{AND} \ T_2 \geq T.\mathsf{Vkv}   [T.\mathsf{Vpv}, \ T.\mathsf{Vkv}] \ \textbf{OVERLAPS} \ [T_1, \ T_2] \qquad \qquad T_1 \leq T.\mathsf{Vkv} \ \mathsf{AND} \ T_2 \geq T.\mathsf{Vpv}   [T.\mathsf{Vpv}, \ T.\mathsf{Vkv}] \ \textbf{BEFORE} \ [T_1, \ T_2] \qquad \qquad T_1 \geq T.\mathsf{Vkv}   [T.\mathsf{Vpv}, \ T.\mathsf{Vkv}] \ \textbf{AFTER} \ [T_1, \ T_2] \qquad \qquad T_2 \leq T.\mathsf{Vpv}   [T.\mathsf{Vpv}, \ T.\mathsf{Vkv}] \ \textbf{MEETS\_BEFORE} \ [T_1, \ T_2] \qquad \qquad T_1 = T.\mathsf{Vkv} + 1   [T.\mathsf{Vpv}, \ T.\mathsf{Vkv}] \ \textbf{MEETS\_AFTER} \ [T_1, \ T_2] \qquad \qquad T_2 + 1 = T.\mathsf{Vpv}
```


TSQL jezik – operacije

- rezultat operacija nad vremenskim intervalima može biti
 - vremenski trenutak
 - vremenski period
 - temporalni element
 - boolean vrednost

TSQL jezik – operacije

- temporalni element
 - skup disjunktnih vremenskih perioda
 - za svaka dva perioda [T₁, T₂] i [T₃, T₄] važi
 - $-[T_1, T_2] \cap [T_3, T_4] = \emptyset$
 - T₃ nije naredni trenutak u vremenu nakon T₂
 » u datoj granularnosti
 - T₁ nije naredni trenutak u vremenu nakon T₄
 » u datoj granularnosti

- TSQL jezik primer
 - čist vremenski uslov

 Prikazati sve verzije entiteta radnik koje su bile validne u bilo kom trenutku u 2011 godini.

```
SELECT *
FROM Radnik T
WHERE [T.Vpv, T.Vkv] OVERLAPS [2011-01-01, 2011-12-31]
```


- TSQL jezik primer
 - uslov sa atributima i vremenom

 Prikazati sve verzije entiteta radnik koje su bile validne u bilo kom trenutku u 2011 godini. Radnici moraju da pripadaju departmanu 5.

```
SELECT *

FROM Radnik T

WHERE [T.Vpv, T.Vkv] OVERLAPS [2011-01-01, 2011-12-31]

and T.Dep = 5
```

Temporalne baze podataka

TSQL jezik

- omogućava kreiranje temporalnih relacija
- opcione AS klauzule CREATE TABLE naredbe
 - AS VALID STATE <GRANULARITY>
 - relacija sa validnim vremenom, vreme izraženo kroz periode
 - AS VALID EVENT <GRANULARITY>
 - relacija sa validnim vremenom, vreme izraženo kroz trenutke u vremenu
 - AS TRANSACTION
 - relacija sa transakcionim vremenom, vreme izraženo kroz periode
 - AS VALID STATE <GRANULARITY> AND TRANSACTION
 - bitemporalna relacija, vreme izraženo kroz periode
 - AS VALID EVENT <GRANULARITY> AND TRANSACTION
 - bitemporalna relacija, vreme izraženo kroz trenutke u vremenu

Podaci o vremenskim serijama

- eng. Time Series Data
- vremenska serija
 - predefinisana sekvenca trenutaka u vremenu
 - specijalan slučaj validnih vremenskih podataka
 - trenuci predefinisani u nekom kalendaru
- koriste se u finansijskim aplikacijama

Podaci o vremenskim serijama

- SUBP-ovi
 - moraju da omoguće upravljanje serijama podataka
 - operacije nad vremenskim podacima
 - definisanje kalendara
 - kreiranje kalendara na osnovu koga će se definisati vremenska serija

Reference

- Tiwari S, "Professional NoSQL", John Wiley & Sons, Inc., SAD, 2011
- Todorić B, "Primena specijalizovanih baza podataka u oblasti upravljanja dokumentima", Master rad, FTN, 2012.
- Elmasri R, Navathe S B, "Fundamentals of Database Systems", Šesto izdranje, Addison-Wesley, SAD, 2011
 - poglavlje 26

Pitanja i komentari

Sadržaj

- NoSQL baze podataka
- Ugrađene baze podataka
- Temporalne baze podataka

Alternativni pristupi u izgradnji sistema baza podataka

NoSQL, ugrađene i temporalne baze podataka