ELEC 405 - Homework 2

Gul Sena Altintas - 64284

November 22, 2020

Contents

1	Nearest Neighbor partitioning and halfspaces	1
2	Rank and matrix products	2
3	Fundamental Subspaces and Determinant	2
4	Characteristic Polynomial of a Square Matrix	2
5	Schur's Theorem and Cayley-Hamilton Theorem	3
6	Theory in Action for Big Data!: Eigenvectors as community detectors	3
1.	Nearest Neighbor partitioning and halfspaces	
Та	$\{x \ x-a\ \leq \ x-b\ \}=\{x c^Tx\leq d\},\ c\in\mathcal{R}^n, d\in\mathcal{R}^n$ also the square of 1, as $\ .\ \geq 0$, then	(1)
Tł	$\ x-a\ ^2 \le \ x-b\ ^2$ $< x-a, x-a > \le < x-b, x-b >$ $\ x\ ^2 - 2a^Tx + \ a\ ^2 \le \ x\ ^2 - 2b^Tx + \ b\ ^2$ $2(b-a)^Tx \le \ b\ ^2 - \ a\ ^2$ when $c = 2(b-a)$ and $d = \ b\ ^2 - \ a\ ^2$.	(2)
	Let $a = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $b = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$	

Figure 1: Hyperplane

ELEC $405 \mid Hw2$ Gul Sena Altintas

2. Rank and matrix products

For the sake of this question let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$

- 1. If AB is full rank then A and B are full rank. Not necessarily. Let $A = \begin{bmatrix} 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. $AB = \begin{bmatrix} 1 & 1 \end{bmatrix}$. AB is full rank but B is not.
- 2. If A and B are full rank then AB is full rank. Not necessarily. Let $A = \begin{bmatrix} 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$. $AB = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$. A and B are full rank but AB is not.
- 3. If A and B have zero nullspace, then so does AB. Assume $\mathcal{N}(AB) \neq \{0\}$ and let $x \in \mathcal{R}^p$ such that ABx = 0 then A(Bx) = 0 so either $Bx \in \mathcal{R}^n$ is in null space of A but null space of A is trivial. So Bx = 0, then $x \in \mathcal{N}(B)$ but since null space of B is also trivial, x must be 0. Hence AB has zero nullspace.
- 4. If A and B are onto, then so is AB. We need to show that $\forall y \in \mathcal{R}^m \ \exists x \in \mathcal{R}^p$ such that ABx = y. Since A is onto, $\exists z \in \mathcal{R}^n$ such that Az = y. Similarly, since B is onto, $\exists x \in \mathcal{R}^p$ such that Bx = z. Hence A(Bx) = Az = y.

3. Fundamental Subspaces and Determinant

Let $A \in \mathbb{R}^{m \times n}$

- 1. If $\mathcal{R}(A) = R^m$, then AA^T is full rank. If $\mathcal{R}(A) = \mathcal{R}^m$ then A^T is full rank and its null space is trivial ($\{0\}$). Let $x \in \mathcal{R}^m$ such that $(AA^T)x = 0$, multiply each side with $x^T \Rightarrow x^TAA^Tx = (A^Tx)^T(A^Tx) = \langle A^Tx, A^Tx \rangle = \|A^Tx\|^2$, since A^T is full rank we know that x = 0 which proves that the null space of AA^T is trivial and the matrix is full rank.
- 2. If $\mathcal{N}(A) = \{0\}$ then A^TA is full rank. For A^TA to be full rank, we need to show that $\dim(\mathcal{R}(A^TA)) = n$. In other words, if we show that the null space of A^TA is trivial then we prove that it is full rank. Let $x \in \mathcal{R}^n$, such that $(A^TA)x = 0$ is we multiply both sides with x^T then we get $x^TA^TAx = (Ax)^T(Ax) = \langle Ax, Ax \rangle = ||Ax||^2$ and we know that ||y|| = 0 if and only if y = 0 since A is full rank therefore A^TA is also full rank.

4. Characteristic Polynomial of a Square Matrix

Let $A \in \mathbb{R}^{n \times n}$ and X(s) = det(sI - A) be the characteristic polynomial of A.

1. When we think about how we take the determinant, we can construct the result of the determinant as follows:

First take the first row and column into account so that A' is A without the first row and column. Then

$$det(sI - A) = (s - a_{11})detA' + C$$

where C is a constant. Iteratively, this will yield a similar result so that we can write det(sI - A) of the form:

$$det(sI - A) = \prod_{i=1}^{n} (s - a_{ii}) + C^*$$
(3)

Therefore, the coefficient of s^n is 1.

ELEC $405 \mid Hw2$ Gul Sena Altintas

- 2. Show that s^{n-1} coefficient of X(s) is given by -TrA. Note that in (3) C is a polynomial of degree at most n-1 because A' is a $(n-1)\times(n-1)$ matrix. Similarly, A' is the only matrix with $n-1\times n-1$ elements, so the coefficient of s^{n-1} comes from $\prod_{i=1}^{n}(s-a_{ii})$ which is $\sum_{i=1}^{n}-a_{ii}=TrA$.
- 3. Show that the constant coefficient of X(s) is given by det(-A). Like in any polynomial, we can take X(0) to find the constant coefficient and find det(0I - A) = det(-A).
- 4. Consider n=1, then $X(s)=det(sI-A)=s-\lambda_1$, and the relationship holds. Now assume that the relationship holds for some positive integer k such that $a_{k-1}=-\sum_{i=1}^k \lambda_i$ and $a_0=_{i=1}^n-\lambda_i$. Multiply X(s) with $(s-\lambda_{k+1})$ which will give us $sX(s)-\lambda_{k+1}X(s)$. By part (1) sX(s) is monic and of degree k+1. The coefficient of s^k is $\sum_{i=1}^k (-\lambda_i) \lambda_k$ and the constant coefficient is $\prod_{i=1}^{k+1} \lambda_i$, note that the constant coefficient of sX(s) is 0. Therefore, the relationship holds.
- 5. Schur's Theorem and Cayley-Hamilton Theorem
 - 1. By Schur's Theorem, we can construct T such that $T = U^*AU$ where U is described in the theorem. $p(t) = \prod_{i=1}^{n} (t \lambda_i)$ is the characteristic polynomial of T. Since λ_i are at the diagonals of T, note that λ_i 's don't need to be unique, $P(T) = \prod_{i=1}^{n} (T \lambda_i I) = 0$. Evaluate

$$U^*P(A)U = U^*(A - \lambda_1 I) \dots (A - \lambda_n)U$$

$$= U^*(A - \lambda_1 I)UU^* \dots UU^*(A - \lambda_n)U$$

$$= (U^*AI - \lambda_1 U^*U) \dots (U^*AI - U^*\lambda_n U^*U) \text{ note } U^*U = I$$

$$= (T - \lambda_1 I) \dots (T - \lambda_n I)$$

$$= P(T)$$
(4)

Reorganizing the equality in (4) yields

$$P(A) = UP(T)U^*(A) = 0$$

.

2. Evaluating $p_A(A) = A^n + a_{n-1}A^{n-1} + \dots + a_1A + a_0 = 0$. Then

$$A^{n} = -a_{n-1}A^{n-1} + \dots - a_{1}A - a_{0}$$
(5)

 $A^{n+1} = A(-a_{n-1}A^{n-1} + \dots - a_1A - a_0)$

$$= -a_{n-1}A^n + \dots + -a_1A^2 - a_0A \tag{6}$$

$$= (a_{n-1}^2 + a_{n-1}a_{n-2})A^{n-1} + \dots + (a_2a_{n-1} - a_1)A^2 + (a_1a_{n-1} - a_0)A + a_{n-1}a_0$$
 (7)

$$A^{n+2} = A(a_{n-1}^2 A^{n-1} + \dots + (a_2 a_{n-1} - a_1) A^2 + (a_1 a_{n-1} - a_0) A + a_{n-1} a_0)$$

$$= a_{n-1}^2 A^n + \dots + (a_2 a_{n-1} - a_1) A^3 + (a_1 a_{n-1} - a_0) A^2 + (a_{n-1} a_0 A)$$

$$= -a_{n-1}^3 A^{n-1} + \dots + (-a_2 a_{n-1}^2 + a_1 a_{n-1} - a_0) A^2 + (-a_{n-1}^2 a_1 + a_{n-1} a_0) A - a_{n-1}^2 a_0$$
(8)

- (7) follows from plugging (5) into (6). Formally in the expansion of A^k where $k \ge n$ the coefficient of A^{n-1} is $(-a_{n-1})^{k-n+1}$ and the coefficient of A^i is $\sum_{j=1}^{i+1} (-1)^{j-1} a_{n-1}^{j-1} a_{j-1}$
- 6. Theory in Action for Big Data!: Eigenvectors as community detectors
 - 1. $E(C) \in \mathbb{R}^{2N \times 2N}$ where E is of the form:

$$E(C)_{ij} = \begin{cases} p \text{ if both i,j} \in \mathcal{I}_A \text{ or } \mathcal{I}_B \\ q \text{ if i} \in \mathcal{I}_A \text{ and j} \in \mathcal{I}_B \text{ or vice versa} \\ 0, \text{ if } C_{ij} = 0 \end{cases}$$
 (9)

ELEC 405 | Hw2 Gul Sena Altintas

2. $2 \times$ rank C