Gate AE - 2009

AI24BTECH11032 Shreyansh Sonkar

- 49) The linear system of equation Ax=b where $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ has
 - a) no solution

c) a unique solution $x = \begin{cases} 1 \\ 1 \end{cases}$

1

b) infinitely many solution

- d) a unique solution $x = \left\{ \begin{array}{c} 0.5 \\ 0.5 \end{array} \right\}$
- 50) The correct iterative scheme for finding the square root of a positive real number R using the Newton Raphson method is

a)
$$x_{n+1} = \sqrt{R}$$

c)
$$x_{n+1} = \frac{1}{2} \left(\sqrt{x_n} + \sqrt{(x_{n-1})} \right)$$

d) $x_{n+1} = \frac{1}{2} \left(\sqrt{R} + x_n \right)$

a)
$$x_{n+1} = \sqrt{R}$$

b) $x_{n+1} = \frac{1}{2} \left(x_n + \frac{R}{x_n} \right)$

d)
$$x_{n+1} = \frac{1}{2} \left(\sqrt{R} + x_n \right)$$

Common Data Question

Common Data for Question 51 and 52:

The roots of the characteristics equation for the longitudinal dynamics of a certain aircraft are : $\lambda_1 = -0.02 + 0.2i$; $\lambda_2 = -0.02 - 0.2i$; $\lambda_3 = -2.5 + 2.6i$; $\lambda_4 = -2.5 - 2.6i$, where $i = \sqrt{-1}$.

- 51) The pair of eigenvalues the represent the phugoid mode is
 - a) λ_1 and λ_3
- b) λ_2 and λ_4
- c) λ_3 and λ_4 d) λ_1 and λ_2
- 52) The short period damped frequency is
- a) $2.6 \frac{\text{rad}}{\text{s}}$ b) $0.2 \frac{\text{rad}}{\text{s}}$ c) $2.5 \frac{\text{rad}}{\text{s}}$
- d) $0.02 \frac{\text{rad}}{6}$

Common Data for Question 53 and 54:

Consider the vector $\overrightarrow{A} = (y^3 + z^3)\hat{i} + (x^3 + z^3)\hat{j} + (x^3 + y^3)\hat{k}$ defined over the unit sphere $x^2 + y^2 + z^2 = 1$.

53) The surface integral (taken over the unit sphere) of the component of \overrightarrow{A} normal to the surface is

a) π

b) 1

c) 0

- d) 4π
- 54) The magnitude of the component of \overrightarrow{A} normal to the spherical surface at the point $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ is
 - a) $\frac{1}{2}$

b) $\frac{2}{3}$

c) $\frac{3}{2}$

d) $\frac{4}{3}$

Common Data for Question 55 and 56:

The partial differential equation for the torsional vibration of a shaft of length L, torsional rigidity GJ, and mass polar moment of inertia per unit length I, is $I \frac{\partial^2 \theta}{\partial t^2} =$ $GJ_{\frac{\partial^2 \theta}{\partial x^2}}$, where θ is the twist.

55) If the shaft is fixed at both ends the boundary conditions are:

a)
$$\frac{\partial \theta}{\partial x}\Big|_{x=0} = 0$$
 and $\frac{\partial \theta}{\partial x}\Big|_{x=L} = 0$
b) $\theta(0) = 0$ and $\theta(L) = 0$

c)
$$\frac{\partial \theta}{\partial x}\Big|_{x=0} = 0$$
 and $\theta(L) = 0$

b)
$$\theta(0) = 0$$
 and $\theta(L) = 0$

- d) $\theta(0) = 0$ and $\frac{\partial \theta}{\partial x}\Big|_{x=1} = 0$
- 56) If the n^{th} mode shape of torsional vibration of the above shaft is $sin\left(\frac{n\pi x}{L}\right)$ then the n^{th} natural frequency of vibration ,i.e., ω_n , is given by

a)
$$\omega_n = \frac{n\pi}{L} \sqrt{\frac{GJ}{I}}$$

c)
$$\omega_n = \frac{n\pi}{2L} \sqrt{\frac{GJ}{I}}$$

b)
$$\omega_n = \frac{(2n+1)\pi}{2L} \sqrt{\frac{GJ}{I}}$$

d)
$$\omega_n = \frac{(2n+1)\pi}{L} \sqrt{\frac{GJ}{I}}$$

Linked Answer Question

Statement for Linked Answer Question 57 and 58:

Air enters the combustor of a gas-turbine engine at a total temperature T_0 of 500K. The air stream is split into two parts: primary and secondary streams. The primary stream reacts with fuel supplied at a fuel-air ratio of 0.05. The resulting combustion products are then mixed with the secondary air stream to obtain gas with total temperature of 1550 K at the turbine inlet. The fuel has a heating value of $42 \frac{MJ}{K\sigma}$. The specific heats of air and combustion products are taken $c_p = 1kj/kg/k$.

57) If the sensible enthalpy of fuel is neglected, the temperature of combustion products from the reaction of primary air stream with fuel is approximately

- a) 2100K

- b) 3200K c) 2600k d) 1800K
- 58) The approximate ratio of mass flow rates of the primary air stream to the secondary air streams required to achieve the turbine inlet total temperature of 1550K is
 - a) 2:1
- b) 1:2
- c) 1:1.5
- d) 1:1

Statement for Linked Answer Question 59 and 60:

A piston compresses 1 kg of air inside a cylinder as shown.

- 59) The rate at which the piston does work on the air is 3000W. At the same time, heat is being lost through the walls of the cylinder at a rate of 847.5W.

 - a) $21,525\frac{J}{kg}$ b) $-21,525\frac{J}{kg}$ c) $30,000\frac{J}{kg}$ d) $-8,475\frac{j}{kg}$
- 60) Given that the specific heats of air at constant pressure and volume are c_p = $1004.5 \frac{J}{kg-K}$ and $c_v = 717.7 \frac{J}{kg-K}$ respectively, the corresponding changing in the temperature of the air is
 - a) 21.4K
- b) -21.4K c) 30K
- d) -30K