Kramers-Kronig Overview

In this section we will describe the Kramers-Krönig relation. Points to take away

(1) For any causal response function e.g. $\sigma(\omega)$ and $\varkappa(\omega)$, $\varepsilon(\omega)$ etc. The real and imaginary parts are related by a specific integral relation

The real part of E(w) determines

the phase and group velocities of the wave

The imag part of E(w) determines the damping of the wave.

(2) The Kramers Kroning relations show that
the (correct) qualitative features of the Lorenz
model for $\chi_{e}(\omega)$ are very generic dictated
by causality.

Causality Analyticity + Kramers - Kronig Relations
Recall that o(+) is a causal function:
0 00
$j(t) = \int dt' \mathcal{O}(t-t') \mathcal{E}(t') \subset \text{Depends on past}$ $-\infty \qquad \qquad \text{Values of } \mathcal{E}$
Values of E
i.e. $\sigma(t) = 0$ for $t < 0$ (or $\sigma(t - t')$ vanishes
when t'>t)
Similary x(t-t') is also causal:
$j(t) = \int_{-\infty}^{\infty} x(t-t') \partial_{t'} E(t') dt'$
Ti.e. $x(t) = 0$ for $t < 0$
The Fourier transform of a causal function
is
(i) $\chi(\omega) = \int_{-\infty}^{\infty} dt e^{i\omega t} \chi(t)$
$(1) \chi(\omega) = \int dt e \chi(t)$
C
The finished the state of the s
The fourier integral guarantees that $\sigma(w)$ is an analytic function of w for w in the
Upper Half Plane (UHP), Im w>0. To
See this.

note that the exponential becomes
increasingly convergent for w in UHP and
t>O (causality) greater than zero
.
eint = eilRew + i Imw) + = eilRew) + e-(Imw) +
Thus the fourier integral provides an analytic
continuation of x for w complex.
For such causal functions, which are always
analytic in UHP, have a relation
between the real and imaginary parts
between the real and imaginary parts Principal value (see below)
1
$Re \chi(\omega) = - (d\omega' P) Im \chi(\omega)$
$Re \chi(\omega) = -\int d\omega' P \operatorname{Im} \chi(\omega)$
Im x(w) = (dw' P Rex(w)
J TT W-W'
From Eq. (1) on previous page
Kramers
Rex(-w) = Rex(w) Kronig
relations
$Im \times (-\omega) = -Im \times (\omega)$ (Proof Below)

So these can be written: Re $\chi(\omega) = -2$ P ω' . Im $\chi(\omega')$ $\overline{Im} \chi(\omega) = +2\omega \int_{0}^{\infty} P \operatorname{Re}\chi(\omega')$ Here P denotes the "principal value function" Much like a 8-fcn it should be thought of as the limit of a sequence of functions. $\frac{P}{\omega - \omega_0} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{(\omega - \omega_0)}{(\omega - \omega_0)^2 + \varepsilon^2} = \lim_{\varepsilon$ except right near Graph of P(w-wo) Here we have shown one of many ways to represent the principal value.

Vielding Rex(wo) + i Imx(wo) $= \frac{1}{2} \operatorname{Re}_{\chi(\omega_0)} + i \operatorname{Im}_{\chi(\omega_0)}$ $\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} - i \operatorname{Re} \chi(\omega) + \operatorname{Im} \chi(\omega)$ dω P Rex(w_o) π w-w_o the same as quoted with the

