1

Assignment1

PARIMISETTY HARINADHA (CS19RESCH11004)

3)

Abstract—This document explains the concept of collinear and whether the triangle formed by given 3 points is right angled triangle or not.

	Download	all	python	codes	from
https://github.com/cs19resch11004/5600/hari					
Г	Oownload	all	Latex-tikz	codes	from
https://github.com/cs19resch11004/5600/hari					

I. PROBLEM

Without using the Pythagoras theorem, show that $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ are the vertices of a right angled triangle?

II. SOLUTION

The direction vectors of $\vec{A} - \vec{B}$, $\vec{A} - \vec{C}$ and $\vec{B} - \vec{C}$ are

$$\vec{A} - \vec{B} = \begin{pmatrix} -1\\1 \end{pmatrix} \tag{1}$$

$$\vec{A} - \vec{C} = \begin{pmatrix} -5\\ -5 \end{pmatrix} \tag{2}$$

$$\vec{B} - \vec{C} = \begin{pmatrix} -4\\ -6 \end{pmatrix} \tag{3}$$

1)
$$(\vec{A} - \vec{B})^{T} (\vec{B} - \vec{C}) = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \begin{pmatrix} -4 \\ -6 \end{pmatrix} = -2$$
 (4)

$$(\vec{A} - \vec{B})^T (\vec{B} - \vec{C}) = -2 \neq 0$$
 (5)

Sides $\vec{A} - \vec{B}$ and $\vec{B} - \vec{C}$ of triangle are not perpendicular.

2)
$$(\vec{A} - \vec{C})^T (\vec{B} - \vec{C}) = \begin{pmatrix} -5 \\ -5 \end{pmatrix} \begin{pmatrix} -4 \\ -6 \end{pmatrix} = 50$$
 (6)

$$(\vec{A} - \vec{C})^T (\vec{B} - \vec{C}) = 50 \neq 0$$
 (7)

Sides $\vec{A} - \vec{C}$ and $\vec{B} - \vec{C}$ of triangle are not perpendicular.

$$(\vec{A} - \vec{B})^T (\vec{A} - \vec{C}) = \begin{pmatrix} -1\\1 \end{pmatrix} \begin{pmatrix} -5\\-5 \end{pmatrix} = 0$$
(8)

$$(\vec{A} - \vec{B})^T (\vec{A} - \vec{C}) = 0$$
 (9)

Sides $\vec{A} - \vec{B}$ and $\vec{A} - \vec{C}$ of triangle are perpendicular to each other and the right angle at vertex $\binom{4}{4}$, and the following figure represents the triangle formed by given points \vec{A} , \vec{B} and \vec{C} .

