Theorie 3

Gruppe 35 Matias Heredia Novillo, Anastasia Paschalidou, Niclas Gregor

Aufgab 3.1

a)

- Ausdruck = -a*b / (z or c ≠ d ? e+f : g-h)
- Stack:

```
LOAD a
NEG
LOAD b
MUL
LOAD z
LOAD C
LOAD d
CPM_NE
0R
LOAD e
LOAD f
ADD
LOAD g
LOAD h
SUB
SEL
DIV
```

Theorie 3

b)

c)

```
r1 = 1d c
r2 = 1d d
r1 = cpm_ne r1, r2
r2 = 1d z
r1 = or r1, r2
r2 = 1d e
r3 = 1
r2 = add r2, r3
r3 = 1d g
r4 = 1d h
r3 = sub r3, r4
r1 = sel r1, r2, r3
r2 = 1d a
r2 = neg r2
r3 = 1d b
r2 = mul r2, r3
r1 = div r2, r1
```

Aufgab 3.2

a)

	Vor Aufruf (19)					
	0[LB] / 0[SB]	0[SB]	Dynamic Link			
	1[LB] / 1[SB]	1[CB]	Return Address			
	2[LB] / 2[SB]	3	Speicherort von Ausdruck x			
	3[LB] / 3[SB]	7	Speicherort von Ausdruck y			
	4[LB] / 4[SB]	29	Speicherort von Ausdruck z			

b)

Stackelement	Stack Inhalt	Bedeutung
-13[LB] / 0[SB]	0[SB]	Dynamic Link
-12[LB] / 1[SB]	1[CB]	Return Adresse von main
-11[LB] / 2[SB]	0	Speicherort von Variable x [0][0]
-10[LB] / 3[SB]	0	Speicherort von Variable x [0][1]
-9[LB] / 4[SB]	0	Speicherort von Variable x [1][0]
-8[LB] / 5[SB]	0	Speicherort von Variable x [1][1]
-7[LB] / 6[SB]	5	Argument von Funktion foo
-6[LB] / 7[SB]	0[SB]	Dynamic Link
-5[LB] / 8[SB]	16[CB]	Return Adresse von foo
-4[LB] / 9[SB]	5	Argument für Funktion bar m[0][0]
-3[LB] / 10[SB]	0	Argument für Funktion bar m[0][1]
-2[LB] / 11[SB]	0	Argument für Funktion bar m[1][0]
-1[LB] / 12[SB]	5	Argument für Funktion bar m[1][1]
0[LB] / 13[SB]	4[SB]	Dynamic Link
1[LB] / 14[SB]	12[CB]	Return Adresse von bar
2[LB] / 15[SB]	0	Rückgabewert von Funktion bar m[0][0]
3[LB] / 16[SB]	5	Rückgabewert von Funktion bar m[0][1]
4[LB] / 17[SB	5	Rückgabewert von Funktion bar m[1][0]

Stackelement	Stack Inhalt	Bedeutung
5[LB] / 18[SB]	0	Rückgabewert von Funktion bar m[1][1]

Aufgabe 3.3

a)

- Die Adresse des Zuweisungsziels für die Zuweisung a[69] = 54 ist 71[LB].
- Die Adresse des Zuweisungsziels für die Zuweisung b[5][8] = 27.5 ist 5 * 11 + 9 + 130 = 194[LB]

b)

Stackpositionen

```
\circ v = 2-17
```

• **a** = 18

 \circ r = 19 - 29

• **b** = 30

```
r@m[0][0] = 1 => 19[LB]
r@m[0][1] = 2 => 20[LB]
r@m[0][2] = 3 => 21[LB]
r@m[1][0] = 4 => 22[LB]
r@m[1][1] = 5 => 23[LB]
r@m[1][2] = 6 => 24[LB]
r@m[2][0] = 7 => 25[LB]
r@m[2][1] = 8 => 26[LB]
r@m[2][2] = 9 => 27[LB]
r@m[2][2] = 9 => 27[LB]
r@b = true => 28[LB]
r@i = 54 => 29[LB]
a = 80 => 18[LB]
r@b = false => 28[LB]
```

Theorie 3 4

Aufgab 3.4

- missing (1): var int z;
- missing (2): val bool m = true;
- missing (3): e = mac(5, 13, 27);
- missing (4): RETURN (1) 3
- missing (5): Itl
- missing (6): CALL 12[CB]
- missing (7): JUMP 41[CB]

Theorie 3 5