Probability and Statistics Exercise 1 - Event

Solution 1

From Axiom 3 we know that

$$P(E) = P(E \cap F) + P(E \cap \bar{F})$$

$$P(F) = P(F \cap E) + P(F \cap \bar{E})$$

$$P(E \cup F) = P(E \cap F) + P(E \cap \bar{F}) + P(F \cap \bar{E})$$

Therefore, we have

$$P(E \cup F) = P(E \cap F) + P(E) - P(E \cap F) + P(F) - P(E \cap F)$$

= $P(E) + P(F) - P(E \cap F)$

Solution 2

E and F will be independent if they satisfy the following property

$$P(E \cap F) = P(E)P(F)$$

Since E and F are mutually exclusive, it must be that

$$P(E \cap F) = P(\emptyset) = 0$$

Therefore, either P(E) = 0 or P(F) = 0.

Solution 3

- a) $P(\text{odd number}) = \frac{1}{2}$
- b) $P(\text{odd number less than 4}) = \frac{1}{3}$

Solution 4

- a) $P(\text{two sixes}) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$.
- b) $P(\text{total of } 3) = \frac{2}{36} = \frac{1}{18}$

Solution 5

 $P(\text{problem solved}) = 1 - P(\text{A failed} \cap \text{B failed}) = 1 - P(\text{A failed})P(\text{B failed}) = 1 - (1 - \frac{2}{5})(1 - \frac{1}{3}) = \frac{3}{5}$

Solution 6

$$P(AX.XB < \frac{3}{16}) = P(x(1-x) < \frac{3}{16}) = \frac{1}{2}$$

Solution 7

- a) $P(\text{odd outcome}) = \frac{18}{37}$
- b) i. $P(\text{first is red}) = \frac{x}{x+y}$

ii.
$$P(\text{second is red}) = \frac{x(x+y-1)}{(x+y)(x+y-1)} = \frac{x}{x+y}$$

iii.
$$P(\text{first two are red}) = \frac{x}{x+y} \cdot \frac{x}{x+y-1} = \frac{x^2}{(x+y)(x+y-1)}$$

iv. $P(\text{last but one is red}) = \frac{x}{x+y}$

Solution 8

- a) $P(\text{coin head} \cap \text{odd number}) = \frac{1}{2} \cdot \frac{3}{6} = \frac{1}{4}$
- b) Since there are 30% females in the class, there are 70% males in the class. The final ratio of the class that passed exam is $P({\rm passed}) = 0.9 \cdot 0.7 + 0.8 \cdot 0.3 = 0.87$, which is 87%.

Solution 9

- a) The events of rain on two consecutive days are NOT independent since $P(\text{first day rain})P(\text{second day rain}) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16} \neq \frac{1}{10}$.
- b) Let $E={
 m chance\ of\ rain\ today\ and\ }F={
 m chance\ of\ rain\ tomorrow}$, then

$$P(F|E) = rac{P(E \cap F)}{P(E)} = rac{rac{1}{10}}{rac{1}{4}} = rac{2}{5}$$

c) Let E = chance of rain today and F = chance of rain tomorrow, then

$$P(E|F) = rac{P(E \cap F)}{P(F)} = rac{rac{1}{10}}{rac{1}{4}} = rac{2}{5}$$

Solution 10

- a) $P(\text{leave it in the fourth shop}) = (1 \frac{1}{4})^3 \cdot \frac{1}{4} = \frac{27}{256}$
- b) Let $E=\mathrm{he}\ \mathrm{left}\ \mathrm{his}\ \mathrm{umbrella}\ \mathrm{and}\ F=\mathrm{he}\ \mathrm{left}\ \mathrm{it}\ \mathrm{in}\ \mathrm{the}\ \mathrm{fourth}\ \mathrm{shop}$, then

$$P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{\frac{27}{256}}{\frac{1}{4} + \frac{3}{4} \cdot \frac{1}{4} + \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} + \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4}} = \frac{\frac{27}{256}}{\frac{175}{256}} = \frac{27}{175}$$

c) Let E = he left his umbrella after the first shop and F = he left it in the fourth shop, then

$$P(E) = \frac{175}{256} - \frac{1}{4} = \frac{111}{256}$$

$$P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{\frac{27}{256}}{\frac{111}{256}} = \frac{9}{37}$$

Solution 11

- a) $P(ext{component is satisfactory}) = 0.4 \cdot 0.8 + 0.4 \cdot 0.9 + 0.2 = 0.88$
- b) $P(\text{exactly one out of two is satisfactory}) = 0.4 \cdot 0.8 \cdot 0.2 \cdot 2 + 0.4 \cdot 0.9 \cdot 0.1 \cdot 2 = 0.2$
- c) Let $E={\rm pack}$ with one out of two components tested as satisfactory and $F={\rm selected}$ pack contained medium quality components, then

$$P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{0.4 \cdot 0.9 \cdot 0.1 \cdot 2}{0.2} = 0.36$$

d) Let $E={
m pack}$ with both components tested as satisfactory and $F={
m pack}$ contained high quality components, then

$$P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{0.2}{0.78} = \frac{10}{39}$$

Solution 12

From the Bayes Theorem we know that

$$P(A|B) = rac{P(A)P(B|A)}{P(B)} \Rightarrow rac{P(A|B)}{P(B|A)} = rac{P(A)}{P(B)}$$

Since $P(A) \geq P(B) > 0$, we know that $\frac{P(A)}{P(B)} \geq 1$ and hence $\frac{P(A|B)}{P(B|A)} \geq 1$, which means that $P(A|B) \geq P(B|A)$.

Solution 13

Since A, B, and C are independent, it is the case that

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cap C) = P(A)P(C)$$

$$P(B \cap C) = P(B)P(C)$$

Then we have

$$P(A \cap (B \cup C)) = P((A \cap B) \cup (A \cap C))$$
 set operation
$$= P(A \cap B) + P(A \cap C) - P((A \cap B) \cap (A \cap C))$$
 From Q1
$$= P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)$$

$$= P(A)P(B) + P(A)P(C) - P(A)P(B)P(C)$$

$$= P(A)(P(B) + P(C) - P(B)P(C))$$

$$= P(A)(P(B) + P(C) - P(B \cap C))$$

$$= P(A)P(B \cup C)$$
 From the reverse of Q1

Therefore, we have proved that A and $B \cup C$ are independent.

Solution 14

a)
$$P(A) = P(\{a\}) + P(\{b\}) = 0.2 + 0.3 = 0.5$$

b)
$$P(B) = P(\{b\}) + P(\{c\}) + P(\{d\}) = 0.3 + 0.4 + 0.1 = 0.8$$

c)
$$P(\bar{A}) = 1 - P(A) = 0.5$$

$$d) P(A \cup B) = P(S) = 1$$

e)
$$P(A \cap B) = P(\{b\}) = 0.3$$

Solution 15

Let E = random part to be defective and F = random part came from factory 1, then

$$P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{\frac{1}{30}}{\frac{1}{12}} = \frac{2}{5}$$

Solution 16

We first want to show the following properties

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cap C) = P(A)P(C)$$

$$P(B \cap C) = P(B)P(C)$$

We know that $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{2}$ and that $P(A\cap B)=\frac{1}{4}$, thus proved the first property.

We know that $P(A)=\frac{1}{2}$ and $P(C)=\frac{1}{2}$ and that $P(A\cap C)=\frac{1}{4}$, thus proved the second property.

The rest follows from the facts.

We then show that $P(A \cap B \cap C) \neq P(A)P(B)P(C)$.

We know that $P(A\cap B\cap C)=0$ since when both die are odd, the sum must be even. We also know that $P(A)P(B)P(C)=\frac{1}{8}\neq 0$.

Solution 17

a)
$$P(\text{random phone being defective}) = 0.5 \cdot 0.02 + 0.3 \cdot 0.05 + 0.2 \cdot 0.01 = 0.027$$

b)
$$P(\text{defective from the second plant}) = \frac{0.3 \cdot 0.05}{0.027} = \frac{5}{9}$$

Solution 18

$$P(\text{win}) = \frac{8}{36} + \frac{24}{36} \cdot (P(\text{point before 7}))$$