Expectation-Maximization, GMM, and Nonparametric Methods

STAT261: Introduction to Machine Learning

Prof. Allie Fletcher

Outline

- K-means
- Mixture Distributions
- Expectation Maximization Algorithm
- Convergence of EM
- Conjugate Priors*--not covered in lecture, should know
- Optimization Review-iterative methods** (Optional at this time, but it is something you should understand and may be helpful. We may cover this in the next few lectures.)

K-means: Iterative clustering

- Simple iterative algorithm to:
 - μ_k = mean of each cluster (hence "K-means")
 - $C_n \in \{1, ... K\} = \text{cluster of sample } x_n$
- Step 0: Start with guess for centroids: μ_k
- Step 1: Assign x_n to closest mean cluster $C_n = \arg\min_k \|x_n \mu_k\|^2$
- Step 2: Update mean of each cluster: μ_k = average of x_n for x_n with $C_n = k$
- Return to step 1

Probabilistic Mixture Model for Clusters

- Random variable $z \in \{1, ..., K\}$
 - Discrete event with PMF: P(z = i)
 - Latent variable: often not directly observed
- Observed variable x, can be continuous
 - Probability depends on z, p(x|z=i)
 - One PDF, or component per state z = i
- Distribution of x: computed via total probability
 - PDF $p(x) = \sum p(x|z=i)P(z=i)$
 - CDF $F(x_0) = \sum P(x \le x_0 | z = i) P(z = i)$
- Example: Mixture of two Gaussians

Gaussian Mixture Models

- Each p(x|z=i) is a Gaussian
- Parametrized by:
 - $q_i = P(z = i)$ = Probability of each component
 - $\mu_i = E(x|z=i)$, $P_i = var(x|z=i)$ mean and variance in each component
- Can be vector valued

Visualizing GMMs

• 1d model with K = 3 components

• PDF for 2d GMM with K = 2 components

• Random points from a GMM with K = 3 components

Expectation and Variance

- Can compute expectation and variance by total probability
 - Expectation: $\mu = E(x) = \sum q_i \mu_i$
 - Variance:

$$var(x) = \sum_{i} q_{i} P_{i} + q_{i} (\mu_{i} - \mu)(\mu_{i} - \mu)^{T}$$

$$Variance within component components$$

Proof on board

Expectation & variance of mix. model O Expectation! Use total probability. $E(x) = \sum E(x|z=i) P(z=i)$ (total prob.) = 5 M; q; (2) Variance Var(X) = E(XXT) - MMT $E(XX_{\perp}) = \sum E(XX_{\perp}|S=1)b(S=1)$ = [{var(xxT | Z=i) + m: m; } q; = I q. P. + q. M.M. Hence, var(X) = [Iq:P; + q:p:p:] - ppT Now [q:(n-n:)(n-n:) = I q: mpi - Iq: mpi - Iq: mpi + Iq: mpi = MMT - 2 MMT + 2 q: MM; (Since Eq:=1 = Zqimimi - mmT Zqimi=m) (Var (X) = Iq; P; + q; (m-m;) (m-m;)]

Estimating the Latent Variable

- Given x, can we estimate z if we knew parameters:
- Use Bayes' rule:

$$P(z = i|x) = \frac{P(x|z = i)q_i}{\sum_k P(x|z = k)q_k}$$

- Example: Scalar Gaussian
 - Illustration on board

Scalar Gaussian (K=> clusters) -> Suppose p(x|z=i) = N(x) mi, 52)

(Same variance) - Assume M2 >M, > From Bayes vole: P(Z=1 | X) = P(x | Z=1) 9; P(x|5=1)d" + b(x|5=5)d5 = 6xb(-(x-W'), \5e_z) d' exp(4-(x-/2)2/262)q, + exp((-x-/2)2/26) When $x \rightarrow \infty$ sexp $\left(-\frac{3c_2}{(x-\mu_1)_2}\right) > 5 \exp\left(-\frac{(x-\mu_2)_2}{(x-\mu_2)_2}\right)$ => P(z=1/x) =>0 Wh. X ->-0 => P(z=1 | X) -> 1 P(2=2/x) P(z=1|x)0 => 2=2 more likely more likely

Fitting a Mixture Model

- Given data $x = (x_1, ..., x_N)$
- Find GMM parameters
 - Mean and variance in each component
 - Probability of each component
- Can be interpreted as "clustering"
- Parametric probabilistic model versus K-means

Maximum Likelihood Estimation

• Unknown parameters in GMM:

$$\theta = (q_1, ..., q_K, \mu_1, ..., \mu_K, P_1, ..., P_K)$$

- Data $x = (x_1, ..., x_N)$
- Likelihood of x_n :

$$p(x_n|\theta) = \sum_{k=1}^{K} p(x_n|z_n = k, \theta) P(z_n = k|\theta) = \sum_{k=1}^{K} q_k N(x_n|\mu_k, P_k)$$

• Negative log likelihood of all data $L(\theta) = -\ln p(x|\theta) = -\sum_{n=1}^{N} \ln \left[\sum_{i=1}^{K} q_i N(x_n|\mu_i, P_i) \right]$

• ML estimation:

$$\hat{\theta} = \arg\min_{\theta} L(\theta)$$

Outline

- Clustering Deterministic versus Probabilistic Models
 - K-means
 - Mixture Distributions
 - Expectation Maximization Algorithm
 - Convergence of EM
 - Conjugate Priors*--not covered in lecture but important
 - Optimization Review-iterative methods

Expectation Maximization Algorithm

- Optimization of $L(\theta)$ is hard
 - No simple way to directly optimize
 - Likelihood is non-convex
 - $L(\theta) = -\ln p(x|\theta) = -\sum_{n=1}^{N} \ln \left[\sum_{i=1}^{K} q_i N(x_n | \mu_i, P_i) \right]$
- Expectation maximization:
 - Simple iterative procedure:
 - Generates a sequence of estimates $\hat{\theta}^0$, $\hat{\theta}^1$, ...
 - Attempts to approach MLE

$$\hat{\theta}^k \to \arg\min_{\theta} L(\theta)$$

EM Steps

- E-step: Estimate the latent variables
 - Find the posterior of the latent variables given $\widehat{\theta}^k$ $P(z|x,\theta=\widehat{\theta}^k)$
 - Compute function, Q, auxiliary function

$$Q(\theta, \hat{\theta}^k) := E[\ln p(x, z|\theta)|\hat{\theta}^k]$$
$$= \sum_{z} \ln p(x, z|\theta) P(z|x, \theta = \hat{\theta}^k)$$

• M-step: Update parameters

$$\hat{\theta}^{k+1} = \arg\max_{\theta} Q(\theta, \hat{\theta}^k)$$

E-Step for a GMM: Finding the posterior

- Given parameters q_i , μ_i , P_i (estimated, where the i is the class)
- Find posterior of the latent variables (underlying sample classes) by Bayes rule
 - N samples, so we have N latent variables

$$\gamma_{ni} = P(z_{nj} = i | x) = \frac{P(x_n | z_j = i)q_i}{\sum_{l} P(x_n | z_j = l)q_l}$$

$$= \frac{N(x_n | \mu_i, P_i)q_i}{\sum_{l} N(x_i | \mu_l, P_l)q_l}$$

• A "soft" selection

E-Step for a GMM: "Expected" likelihood

Auxilliary function separates

$$Q(\theta, \hat{\theta}^k) = E_z[\ln p(x, z|\theta)|\hat{\theta}^k]$$

$$= \sum_{i=1}^K \sum_{n=1}^N \gamma_{ni} \ln P(x_n, z_n = i|\theta)$$

$$= \sum_{i=1}^K \sum_{n=1}^N \gamma_{ni} [\ln q_i + \ln N(x_n|\mu_i, P_i)]$$

M-Step for the GMM

- Maximize $Q(\theta, \hat{\theta}^k)$, $\sum_{i=1}^K \sum_{n=1}^N \gamma_{ni} [\ln q_i + \ln N(x_n | \mu_i, P_i)]$
- Update for q_i (proof on board)

$$q_i = \frac{N_i}{\sum_j N_j}$$
, $N_i = \sum_n \gamma_{ni}$

• Update for μ_i

$$\mu_i = \frac{1}{N_i} \sum_{n} \gamma_{ni} \, x_n$$

• Update for P_i

$$P_i = \frac{1}{N_i} \sum_{n} \gamma_{ni} (x_n - \mu_i) (x_n - \mu_i)^{\wedge} T$$

M step minimizations for anm $Q(\theta, \hat{\theta}^k) = \sum_{i=1}^{K} \sum_{n=1}^{N} \gamma_{ni} \left[l_n q_i + l_n N(x_n | y_i; P_i) \right]$ OMin- over q; Let $L(q) = Q(\theta, \hat{\theta}^k) + \lambda(\xi q, -1)$ $\frac{\partial b}{\partial q_i} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$ qi = - I I Dni Since Iq:=1 => - 1 E [& Vn: =1 $q_i = \left(\sum_{n} \sum_{n} y_{n}\right)^{-1} \left(\sum_{n} y_{n}\right)$

(3) Minimization over P:

Veed to take derive wrt. matrix P; Consider perturbation P; + & D;

Two line olg facts:

(a) $v^{\mathsf{T}}(P_i + \Delta_i)^{\mathsf{T}} v \cong v^{\mathsf{T}} P_i^{\mathsf{T}} v - v^{\mathsf{T}} P_i^{\mathsf{T}} \Delta_i P_i^{\mathsf{T}} v$ $+ O(\Delta_i^{\mathsf{T}})^{\mathsf{T}}$

(b) La det $(P_i + \Delta_i) \cong \mathcal{B}$ $Tr(P_i \Delta_i)$

=- [- ln de+(P;) + - (x,-M;) P; (x-M;)

BOND BOND

 $\frac{\partial Q(\theta, \hat{\theta}^*)}{\partial P_i} \cdot \Delta_i = change in direction <math>\Delta_i$

 $= -\sum_{n} \delta_{n,2} \operatorname{Tr}(P_{i}^{-1} \Delta_{i}) + (x_{n} - M_{i})^{T} P_{i}^{-1} \Delta_{i} P_{i}^{-1}$ $(x_{n} - M_{i})$

= 1 T X Tr [(P-1-p(x,-m;)*(

 $= -\frac{1}{2} \sum_{n} \sum_{i=1}^{n} \left[P_{i} - P_{i}(x_{n} - M_{i})(x_{n} - M_{i}) P_{i} \right] \Delta_{i}$ =-17, [S. D.] where S: = [8, [P, -P; (xn-p;)(xn-p;)] P] Now, we need $\frac{\partial Q}{\partial P}$. $\Delta_i = 0$ for all Δ_i This occurs when si=0 Hence $\sum_{i=1}^{n} S_{i} = \sum_{i=1}^{n} S_{i} \cdot P(x_{n} - M_{i}) \cdot (x_{n} - M_{i}) \cdot P_{i}^{-1}$ => [7 ... P = [8 n; (xn-M;)(xn-M;)] $\hat{P}_{i} = \left(\sum_{n} \delta_{ni}\right)^{-1} \left(\sum_{n} \delta_{ni} \left(x_{n} - \mu_{i}\right) \left(x_{n} - \mu_{i}\right)^{T}\right)$

Relation to K means

- EM can be seen as a "soft" version
 - In K-Means: $\gamma_{ni} = 1$ or 0
- Variance
 - In K-means: $P_i = I$
 - In EM, this is estimated
 - K-means, finds clustering assuming they all I matrix
- EM provides "scaling" of various dimensions
 - Rotated, ellipses
 - Scales difference or variances in data to shape covariance matrix
 - K-mean, you should normalize data

EM Illustrated

- Simple example with K=2 clusters
- Dimension = 2
- Convergence from a bad initial condition

Outline

- Clustering Deterministic versus Probabilistic Models
 - K-means
- Mixture Distributions
- Expectation Maximization Algorithm
- Convergence of EM
- Conjugate Priors*--not covered in lecture but important
- Optimization Review-iterative methods

Majorization Minimization

- Suppose we wish to minimize $f(\theta)$
- MM algorithm: find a majorizing function $F(\theta, \theta^k)$:
 - $f(\theta^k) = F(\theta^k, \theta^k)$
 - $f(\theta) \le F(\theta, \theta^k)$ for all θ
- Take $\theta^{k+1} = \arg\min_{\theta} F(\theta, \theta^k)$ (minimize majorization)
- Theorem: $f(\theta^{k+1}) \le f(\theta^k)$
- Proof:

$$f(\theta^{k+1}) \le F(\theta^{k+1}, \theta^k) \le F(\theta^{k+1}, \theta^k) \le f(\theta^k)$$

Gradient Descent as a MM

- Find $\alpha \geq f''(\theta)$
- Define

$$F(\theta, \theta^{k}) = f(\theta^{k}) + \nabla f(\theta^{k})(\theta - \theta^{k}) + \frac{\alpha}{2} \|\theta - \theta^{k}\|^{2}$$

- By Taylor's theorem, this is a majorizing function
- Gradient descent:

$$\theta^{k+1} = \arg\min_{\theta} F(\theta, \theta^k) = \theta^k - \frac{1}{\alpha} \nabla f(\theta^k)$$

Convergence

- $p(z|x,\theta) = p(x,z|\theta)/p(x|\theta)$
- $J(\theta) = \ln p(x|\theta) = \ln p(x,z|\theta) \ln p(z|x,\theta)$
- $J(\theta) = E[\ln p(x, z|\theta) | \theta^k] E[\ln p(z|x, \theta) | \theta^k]$ = $Q(\theta, \theta^k) + H(\theta, \theta^k)$
- EM algorithm: $J(\theta^{k+1}) \ge J(\theta^k)$
 - Proof on board
 - Doesn't diverge
- Algorithm may get stuck in local maxima

Outline

- Clustering Deterministic versus Probabilistic Models
 - K-means
- Mixture Distributions
- Expectation Maximization Algorithm
- Convergence of EM
- Conjugate Priors*--not covered in lecture but important
 - Optimization Review-iterative methods

Conjugate Priors

- Definition: Let A, B be any two families of densities. Then, A is the conjugate prior family to B if: $p(\theta) \in A, p(x|\theta) \in B \Rightarrow p(\theta|x) \in A$
 - Posterior and prior remain in the same family
- Example:
 - θ = probability of a coin toss,
 - x = number of heads out of n trials
 - $p(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$
 - Want to estimate θ from x
 - ML estimate: $\hat{\theta} = x/n$

Conjugate Prior Example Contd

- But, what if we have prior information on θ ?
- Assume prior from the Beta distribution:

$$p(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

- α , β are called hyperparameters
- Then, posterior is also a Beta random variable:

$$p(\theta|x) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1} \theta^x (1-\theta)^{n-x}$$
$$= \theta^{\alpha'-1} (1-\theta)^{\beta'-1}$$

- $\alpha' = \alpha + x$
- $\beta' = \beta + n x$

Moment Matching

- The hyperparameters can be selected via moment matching
- For Beta example:

•
$$E(\theta) = \frac{\alpha}{\alpha + \beta}$$
, $var(\theta) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

- Select α and β to match $E(\theta)$ and $var(\theta)$.
- Compute $\alpha' = \alpha + x$, $\beta' = \beta + n x$
- Find $E(\theta|x)$ and $var(\theta|x)$ from α' and β' .

Convergence/Iterative Methods: Overview

- Definition: A set X is convex if for any $x, y \in X$, $tx + (1 t)y \in X$ for all $t \in [0,1]$
- Any line between two points remains in the set.
- Examples:
 - Square, circle, ellipse
 - $\{x \mid Ax \leq b\}$ for any matrix A and vector b
 - Not a start
- Will draw pictures on board

Outline

- Clustering Deterministic versus Probabilistic Models
 - K-means
- Mixture Distributions
- Expectation Maximization Algorithm
- Convergence of EM
- Conjugate Priors*--not covered in lecture, should know
- Optimization Review-iterative methods** (Optional at this time, but it is something you should understand and may be helpful. We may cover this in the next few lectures.)

Convex Set Visualized

Convex

• Not convex

Convex Functions

- A real-valued function f(x) is convex if:
 - Its domain is a convex set, and
 - For all x, y and $t \in [0,1]$: $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$

Convex Function Examples

- Linear function of a scalar f(x) = ax + b
- Linear function of a vector $f(x) = a^T x + b$
- Quadratic $f(x) = \frac{1}{2}ax^2 + bx + c$ is convex iff $a \ge 0$
- If f''(x) exists everywhere, f(x) is convex iff $f''(x) \ge 0$.
 - When x is a vector $f''(x) \ge 0$ means the Hessian must be positive semidefinite
- $f(x) = e^x$
- If f(x) is convex, so is f(Ax + b)

Properties

- If f(x) is convex, it is continuous
- If f(x) has a derivative, then

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

Unconstrained optimization

- Problem: Given f(x) find the minimum: $x^* = \arg\min_{x} f(x)$
 - f(x) is called the objective function
 - $x = (x_1, \dots, x_p)$ is a vector of decision variables or parameters
- Called unconstrained since there are no constraints on x
- Will discuss constrained optimization briefly later

Numerical Optimization

- We saw that we can find minima by setting $\nabla f(x) = 0$
 - ullet p equations and p unknowns.
 - May not have closed-form solution
- Numerical methods: Finds a sequence of estimates x^k $x^k \to x^*$
 - Or converges to some other "good" minima
 - Run on a computer program, like MATLAB

Local vs. Global Minima

• Definitions:

- x^* is a global minima if $f(x) \ge f(x^*)$ for all x
- x^* is a local minima if $f(x) \ge f(x^*)$ for all x in some open neighborhood of x^*
- Most numerical methods only guarantee convergence to local minima

Local Minima and Convex Function

- Theorem: If f(x) is convex and x^* is a local minima, then it is a global minima
- Also, if f(x) is strictly convex, then the global minima is unique
- Implication: If f(x) is convex, a numerical method that converges to a local minima, will converge to a global minima.
- Many methods can find local minima
- For convex objectives, these methods will find global minima

Gradient Descent

- Most simple method for unconstrained optimization
- Recall gradient:

$$\nabla f(x) = \left(\partial f(x)/\partial x_1, \dots, \partial f(x)/\partial x_p\right)^T$$

- Column vector
- Gradient descent algorithm:
 - Start with initial x^0
 - $x^{k+1} = x^k \alpha_k \nabla f(x^k)$
 - Repeat until some stopping criteria
- α_k is called the step size

Gradient Descent Illustrated

•
$$p = 1$$

•
$$p = 2$$

Gradient Descent Analysis

• Using gradient update rule $f(x^{k+1})$

$$= f(x^{k}) + \nabla f(x^{k}) \cdot (x^{k+1} - x^{k}) + O||x^{k+1} - x^{k}||^{2}$$

= $f(x^{k}) - \alpha \nabla f(x^{k}) \cdot (x^{k+1} - x^{k}) + O(\alpha^{2})$

- Consequence: If step size α is small, then $f(x^k)$ decreases
- Theorem: If f''(x) is bounded above, f(x) is bounded below, and α is chosen sufficiently small, then gradient descent converges to local minima

Step Size Selection

- Theorem shows we can always converge to a local minima
 - Global minima if f(x) is convex
- But, step size selection is problematic
 - Need to know f''(x) to find maximum step size
 - (Smaller than 1/f''(x) for all x)
 - Practical choice tends to be conservative
- Very slow step size, many steps to convergence

Adaptive Step Size Selection

• Practical algorithms change step size adaptively $x^{k+1} = x^k - \alpha_k \nabla f(x^k)$

- Tradeoff: Selecting large α_k :
 - Larger steps, faster convergence
 - But, may overshoot

Armijo Rule

- Recall that we know if $x^{k+1} = x^k \alpha \nabla f(x^k)$ $f(x^{k+1}) = f(x^k) - \alpha \|\nabla f(x^k)\|^2 + O(\alpha^2)$
- Armijo Rule:
 - Select some $c \in (0,1)$. Usually c = 1/2
 - Select α such that

$$f(x^{k+1}) \le f(x^k) - c\alpha \left\| \nabla f(x^k) \right\|^2$$

- ullet Decreases by at least at fraction c predicted by linear approx.
- Step size α selected by a line search to find largest α satisfying above conditions

Armijo Rule Illustrated

- Armijo rule: $f(x^{k+1})$ $\leq f(x^k) - c\alpha \|\nabla f(x^k)\|^2$
- Guarantees function decrements in each iteration
- No overshoot

Feasible region for x^{k+1}