Lecture 2: Graphs (Adv.)

Joachim Gudmundsson

3.5 Connectivity in Directed Graphs

Directed Graphs

Directed graph. G = (V, E)

- Edge (u, v) goes from node u to node v.

Example. Web graph - hyperlink points from one web page to another.

- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS and DFS extend naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

```
def BFS(G,s):
layers = []
current_layer = [s]
next_layer = []
"mark every vertex except s as not seen"
while "current_layer not empty" :
  layers.append(current_layer)
  for u in current_layer:
      for v in "neighborhood of u":
         if "haven't seen v yet":
            next_layer.append(v)
            "mark v as seen"
  current_layer = next_layer
  next_layer = []
return layers
```

Strong Connectivity

Definition: Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Definition: A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma: Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

- Proof: (⇒) Follows from definition.
 - (C) Path from u to v: concatenate u-s path with s-v path. Path from v to u: concatenate v-s path with s-u path.

Strong Connectivity: Algorithm

Theorem: Can determine if G is strongly connected in O(m + n) time.

Proof:

- Pick any node s.
- Run BFS from s in G. reverse orientation of every edge in G
- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.

strongly connected

not strongly connected

Strong Connectivity

- Consider a graph G and let S1 and S2 be two strongly connected components in G of maximal size. Are S1 and S2 disjoint?
- Can we compute all the strongly connected components of a graph G efficiently?

Strong Connectivity

Algorithm by Kosaraju 1978 (unpublished)

STRONGLY-CONNECTED-COMPONENTS (G)

- 1. **Call** DFS(G) to compute finishing times f[u] for all u.
- 2. Compute Grev
- 3. **Call** DFS(G^{rev}), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- 4. **Output** the vertices in each tree of the depth-first forest formed in the second DFS as a separate strongly connected component.

Running time: O(n+m)

Correctness?

3.6 DAGs and Topological Ordering

Directed Acyclic Graphs (DAGs)

Definition: A DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (v_i, v_j) means v_i must precede v_j .

Definition: A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every directed edge (v_i, v_j) we have i < j.

Precedence Constraints

Precedence constraints. Edge (v_i, v_j) means task v_i must occur before v_j .

Applications.

- Course prerequisite graph: course v_i must be taken before v_i.
- Compilation: module v_i must be compiled before v_j .
- Pipeline of computing jobs: output of job v_i needed to determine input of job v_i .

Lemma: If G has a topological order then G is a DAG.

Proof: (by contradiction)

- Suppose that G has a topological order v₁, ..., v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i in C; thus (v_i, v_i) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (v_j, v_i) is an edge and $v_1, ..., v_n$ is a topological order, we must have j < i, a contradiction.

the supposed topological order: $v_1, ..., v_n$

Lemma: If G has a topological order then G is a DAG.

Question: Does every DAG have a topological ordering?

Question: If so, how do we compute one?

Lemma: If G is a DAG then G has a node with no incoming edges.

Proof: (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v.
 Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.

Topological order:

Topological order: v₁

Topological order: v_1, v_2

Topological order: v_1, v_2, v_3

Topological order: v₁, v₂, v₃, v₄

Topological order: v_1 , v_2 , v_3 , v_4 , v_5

Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6

Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 .

Lemma: If G is a DAG then G has a topological ordering.

Proof: (by induction on n)

- Base case: true if n = 1.
- Given DAG on n > 1 nodes, find a node v with no incoming edges.
- $-G \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of G { v } in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G: Find a node v with no incoming edges and order it first Delete v from GRecursively compute a topological ordering of $G-\{v\}$ and append this order after v

Topological Sorting Algorithm: Running Time

Theorem: Algorithm finds a topological order in O(m + n) time.

Proof:

- Maintain the following information:
 - count[w] = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement count[w] for all edges from v to w, and add w to S if c count[w] hits 0
 - this is O(1) per edge

Summary: Graphs

- Connectivity in directed graphs
- DAGs
- Topological sort