1

EE23BTECH11047 - Deepakreddy P

17 If a, b, c, d are in G.P, prove that $(a^n + b^n), (b^n + c^n), (c^n + d^n)$ are in G.P

Solution:

TABLE I Input Parameters

Symbol	Remarks
<i>x</i> (0)	а
<i>x</i> (1)	b
x(2)	с
<i>x</i> (3)	d
r	ratio of G.P a,b,c
r'	ratio of G.P $a^n + b^n, b^n + c^n, \dots$
X(Z)	Z transform of G.P a,b,c
Y(Z)	Z transform of G.P $a^n + b^n, b^n + c^n,$

$$r = \frac{b}{a} = \frac{c}{b} = \frac{d}{c} \tag{1}$$

From eq(1)

$$\frac{b^{n} + c^{n}}{a^{n} + b^{n}} = \frac{(ar)^{n} + (ar^{2})^{n}}{(a)^{n} + (ar)^{n}}$$
$$\frac{c^{n} + d^{n}}{b^{n} + c^{n}} = \frac{(ar^{2})^{n} + (ar^{3})^{n}}{(ar)^{n} + (ar^{2})^{n}}$$
$$\frac{b^{n} + c^{n}}{a^{n} + b^{n}} = \frac{c^{n} + d^{n}}{b^{n} + c^{n}}$$

Hence proved they are in in G.P

$$x(n) = a\left(\frac{b}{a}\right)^n u(n) \tag{5}$$

$$X(z) = \frac{a}{1 - \frac{b}{a}z^{-1}}, \quad |z| > \left|\frac{b}{a}\right| \tag{6}$$

$$r' = \frac{b^n + c^n}{a^n + b^n} = \frac{c^n + d^n}{b^n + c^n} \tag{7}$$

From eq(7)

$$y(n) = a^n + b^n \left(\frac{b^n + c^n}{a^n + b^n}\right)^n u(n)$$
 (8)

$$Y(z) = \frac{a^n + b^n}{1 - \frac{b^n + c^n}{a^n + b^n} z^{-1}}, \quad |z| > \left| \frac{b^n + c^n}{a^n + b^n} \right|$$
(9)

