RFM Customer Segmentation

by Louis Bailey

Summary

This project uses transaction data to understand customer behavior and classify customers into segments. These segments will help in creating a roadmap for the marketing strategy.

```
In [1]: import pandas as pd
import numpy as np

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams['figure.figsize'] = [12, 6]
```

Data

```
In [2]: df = pd.read_excel(r'C:\Users\baile\Downloads\Online Retail.xlsx')
In [3]: df.head(3)
```

Out[3]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
	0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
	1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
In [4]:	df	. shape							

Out[4]: (541909, 8)

Clean & Prepare

```
In [5]: df.dropna(inplace=True)
    df.drop_duplicates(inplace=True)

In [6]: df = df[df.Quantity>0]
    df = df[df.UnitPrice>0]

In [7]: df['Total'] = df.Quantity*df.UnitPrice
    df['Date'] = df.InvoiceDate.dt.date

latest_purchase = df.groupby('CustomerID')['Date'].max()
    df['LatestPurchaseDate'] = df['CustomerID'].map(latest_purchase)
```

Basic Info on Customers

```
In [8]: print(f'Number of Unique Customers: {len(df.CustomerID.unique())}')
```

Number of Unique Customers: 4338

```
In [9]:
#
customers_by_country = df.groupby("Country")["CustomerID"].nunique()
customers_by_country = customers_by_country.reset_index()
customers_by_country.columns = ["Country", "UniqueCustomers"]
customers_by_country = customers_by_country[customers_by_country.UniqueCustomers>10].sort_values(by='UniqueCustomers ascending=False)
customers_by_country
```

Out[9]:

Country	UniqueCustomers
United Kingdom	3920
Germany	94
France	87
Spain	30
Belgium	25
Switzerland	21
Portugal	19
Italy	14
Finland	12
Austria	11
	United Kingdom Germany France Spain Belgium Switzerland Portugal Italy Finland

• The vast majority of customers are in the UK

EDA

product sales over time

```
In [10]: grouped = df.groupby('Date')['Total'].sum().reset_index()
    total_by_date = grouped.sort_values(by='Date', ascending=True)

In [11]: grouped['RollingMean'] = grouped['Total'].rolling(window=10, center=False).mean()
    sns.lineplot(data=grouped, x='Date', y='Total', label="Sales Trend")
    sns.lineplot(data=grouped, x='Date', y='RollingMean', color='yellow',label="10-Day Rolling Mean")
    plt.title('Total Sales by Date with Rolling Mean Trend Line')
    plt.legend();
```

Total Sales by Date with Rolling Mean Trend Line

• There are three significant spikes in the sales trend, with a particularly prominent one occurring at the end.

best selling products by total revenue

In [13]: top_revenue

Out[13]:

	Description	TotalQuantity	UniquePurchasers	TotalRevenue
2319	PAPER CRAFT , LITTLE BIRDIE	80995	1	168469.60
2767	REGENCY CAKESTAND 3 TIER	12374	881	142264.75
3698	WHITE HANGING HEART T-LIGHT HOLDER	36706	856	100392.10
1762	JUMBO BAG RED RETROSPOT	46078	635	85040.54
1992	MEDIUM CERAMIC TOP STORAGE JAR	77916	138	81416.73

best selling products by total quantity

```
In [14]:
    product_stats = df.groupby('Description').agg(
        TotalQuantity=('Quantity', 'sum'),
        UniquePurchasers=('CustomerID', 'nunique'),
        TotalRevenue=('Total', 'sum')
    ).reset_index()

top_quantity = product_stats.sort_values(by='TotalQuantity', ascending=False).head(5)
```

In [15]: top_quantity

Out[15]:		Description	TotalQuantity	UniquePurchasers	TotalRevenue
	2319	PAPER CRAFT , LITTLE BIRDIE	80995	1	168469.60
	1992	MEDIUM CERAMIC TOP STORAGE JAR	77916	138	81416.73
	3786	WORLD WAR 2 GLIDERS ASSTD DESIGNS	54319	307	13558.41
	1762	JUMBO BAG RED RETROSPOT	46078	635	85040.54
	3698	WHITE HANGING HEART T-LIGHT HOLDER	36706	856	100392.10

• The huge spike in the sales trend plot was from a single customer buying lots of 'PAPER CRAFT , LITTLE BIRDIE'.

· · · · · · · · · · · · · · · · · · ·						Description	Stockcode	InvoiceNo	
BIRDIE	69.6 2011- 12-09	United 168469.6 Kingdom	16446.0	2.08	80995	CRAFT,	23843	581483	540421
▼									4

notable customer

In [17]: df[df.CustomerID==16446.0]

:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	Total	Date	LatestPu
	194354	553573	22980	PANTRY SCRUBBING BRUSH	1	2011-05-18 09:52:00	1.65	16446.0	United Kingdom	1.65	2011- 05-18	
	194355	553573	22982	PANTRY PASTRY BRUSH	1	2011-05-18 09:52:00	1.25	16446.0	United Kingdom	1.25	2011- 05-18	
	540421	581483	23843	PAPER CRAFT, LITTLE BIRDIE	80995	2011-12-09 09:15:00	2.08	16446.0	United Kingdom	168469.60	2011- 12-09	
	4											>

Out[17]:

- The customer who made the large purchase has only made three purchases this year. The other two were in May and were much smaller.
- Despite making only three purchases, the customer has spent a lot and made their purchases recently. They currently seem to be a high-value customer.
- Grouping all of the customers by value could provide useful insights. RFM segmentation will be used to achieve this.

RFM Segmentation

 RFM segmentation is a marketing technique used to segment customers based on their purchasing behavior. It stands for Recency, Frequency, and Monetary. By scoring customers on these three metrics we can identify and prioritize customer segments.

```
In [18]: #calculating recency
         df_recency = df.groupby(by='CustomerID', as_index=False)['Date'].max()
         df_recency.columns = ['CustomerID', 'LastPurchaseDate']
         recent date = df recency['LastPurchaseDate'].max()
         df recency['Recency'] = df recency['LastPurchaseDate'].apply(lambda x: (recent date - x).days)
         #calculating frequency
         frequency df = df.drop duplicates().groupby(
             by=['CustomerID'], as index=False)['Date'].count()
         frequency df.columns = ['CustomerID', 'Frequency']
         #calculating monetary value
         monetary_df = df.groupby(by='CustomerID', as_index=False)['Total'].sum()
         monetary_df.columns = ['CustomerID', 'Monetary']
         #merging all 3 columns into one dataframe
         rf df = df recency.merge(frequency df, on='CustomerID')
         rfm df = rf df.merge(monetary df, on='CustomerID').drop(columns='LastPurchaseDate')
         #ranking based on r,f and m
         rfm_df['R_rank'] = rfm_df['Recency'].rank(ascending=False)
         rfm_df['F_rank'] = rfm_df['Frequency'].rank(ascending=True)
         rfm df['M rank'] = rfm df['Monetary'].rank(ascending=True)
         # normalizing the rank of the customers
         rfm_df['R_rank_norm'] = (rfm_df['R_rank']/rfm_df['R_rank'].max())*100
         rfm_df['F_rank_norm'] = (rfm_df['F_rank']/rfm_df['F_rank'].max())*100
         rfm_df['M_rank_norm'] = (rfm_df['F_rank']/rfm_df['M_rank'].max())*100
         rfm_df.drop(columns=['Recency','Frequency','Monetary','R_rank','F_rank','M_rank'], inplace=True)
```

```
In [19]: rfm_df.head()
```

Out[19]:		CustomerID	R_rank_norm	F_rank_norm	M_rank_norm
	0	12346.0	3.760704	0.829876	0.829876
	1	12347.0	96.169868	88.231904	88.231904
	2	12348.0	38.093034	42.346704	42.346704
	3	12349.0	74.276788	67.093130	67.093130
	4	12350.0	5.264985	24.953896	24.953896

```
In [20]: rfm_df.shape
```

Out[20]: (4338, 4)

• The normalized rank scores are from 0-100.

Visualizing the RFM Scores

scatter plot

```
In [21]: sns.scatterplot(data=rfm_df,x='F_rank_norm',y='R_rank_norm', palette="YlGnBu",hue='M_rank_norm')
   plt.title('R by F and M')
   plt.legend(title="M_rank_norm",loc='best', bbox_to_anchor=(1, 1));
```


- Those having higher frequency and recency are generally associated with higher monetary values. This pattern suggests that distinct customer segments exist within the dataset.
- Initially I thought k-means clustering would be the best way to go here, but actually it seems like segmenting with quantiles will allow for easy interpretation and analysis of customer behavior within discrete categories. Using quantiles to create Low, Medium, and High categories for Recency, Frequency, and Monetary should simplify the segmentation process and provid actionable insights.

segmenting using quantiles

```
In [22]: rfm_df['R_category'] = pd.qcut(rfm_df['R_rank_norm'], q=3, labels=['Low', 'Medium', 'High'])
    rfm_df['F_category'] = pd.qcut(rfm_df['F_rank_norm'], q=3, labels=['Low', 'Medium', 'High'])
    rfm_df['M_category'] = pd.qcut(rfm_df['M_rank_norm'], q=3, labels=['Low', 'Medium', 'High'])
In [23]: rfm_df.sample(5)
```

CustomerID R_rank_norm F_rank_norm M_rank_norm R_category F_category M_category Out[23]: 3565 17223.0 5.264985 55.048409 55.048409 Medium Medium Low 2084 15192.0 28.373062 56.558322 56.558322 Medium Medium Low 2439 15664.0 50.520713 24.953896 24.953896 Medium Low Low 16768.0 51.562138 58.379438 58.379438 Medium Medium Medium 3243 1474 14354.0 90.222171 12.597971 12.597971 High Low Low

heatmap

```
In [24]: heatmap_data = rfm_df.pivot_table(
    index='R_category',
    columns='F_category',
    values='M_rank_norm',
    aggfunc='mean',
    observed=False
)

heatmap_data = heatmap_data[::-1]

sns.heatmap(heatmap_data, annot=True, fmt=".1f", cmap="YlGnBu", cbar_kws={'label': 'Average Monetary Value'})
plt.title("Customer Segments Heatmap: Recency vs Frequency")
plt.xlabel("Frequency Category")
plt.ylabel("Recency Category")
plt.show()
```


Creating the Groups

```
In [25]: rfm_df = rfm_df[['CustomerID','R_category','F_category', 'M_category']]
    rfm_df.sample(5)
```

Out[25]:		CustomerID	R_category	F_category	M_category
	2528	15786.0	Medium	High	High
	2918	16327.0	High	High	High
	877	13517.0	Medium	High	High
	2387	15597.0	Medium	Low	Low
	319	12736.0	Low	Low	Low

mappings

```
In [26]:

def classify_customer(row):
    r = row['R_category']
    f = row['F_category']
    m = row['M_category']

if m == 'High' and not (r == 'Low' and f == 'Low'):
    return 'High Value'
    elif f == 'High' and m != 'High':
        return 'Loyal'
    elif r == 'Low' and f == 'Low':
        return 'At Risk or Churned'
    else:
        return 'Growth Opportunities'

rfm_df['Customer_Group'] = rfm_df.apply(classify_customer, axis=1)

In [27]: rfm_df_groups = rfm_df[['CustomerID','Customer_Group']]
    rfm_df_groups.head()
```

Out[27]:		CustomerID	Customer_Group
	0	12346.0	At Risk or Churned
	1	12347.0	High Value
	2	12348.0	Growth Opportunities
	3	12349.0	High Value
	4	12350.0	At Risk or Churned

The logic for the mappings are:

- High value: high M (and R and F are not both low)
- Loyal: high F (but not high M)
- At risk or churned: R and F are both low
- Growth opportunities: (everyone else)

Conclusion

Summary of Overall Strategy:

High Value: Focus on keeping these top customers happy by offering rewards and recommending higher-quality or complementary products they might like.

Loyal: Encourage these frequent shoppers to keep coming back and try to get them to spend more by showing them new or related products.

Growth Opportunities: Help these customers shop more often by sending personalized suggestions and offering deals that motivate them to stay engaged.

At Risk or Churned: Try to bring these inactive customers back with special offers or discounts, and figure out why they stopped buying to prevent it in the future.

rfm_df_groups.to_csv('customer_categories.csv')