CIPO CANADIAN INTILLECTUAL PROPERTY OFFICE

(12) (19) (CA) Demande-Application

(21) AL 2,260,754

(86) 1997/07/15 1998/01/22

(72) HIRATA, Yurehi, JP

(72) NEZU, Junichi, JP

OPIC

OFFICE DELIA SBOPBIESE

DUTELLES EVELLE DA CANADA

TO CHUGAI RESEARCH INSTITUTE FOR MOLECULAR MEDICINE. INC.. JP

(51) Int CL* C12N 15/18, G01N 33/53, C07K 14/475, C07K 16/22

30) 1996/07/15 (8/185216) JP

(54) NOUVEAUX FACTEURS ANALOGUES AU VEGF

(54) NOVEL VEGF-LIKE FACTORS

(57) Nouveau gene humain presentant une homologie appreciable avec un gene du facteur de croissance C de l'endothélium vascuiaire (VEGF-C) qui a etc isole par la methode PCR au moven d'amorces basées sur la sequence marqueur de sequence exprimée (EST) dont on pense qu'elle est honiologue de la partie C-terminale de VEGF-C, qui fait partie de la famille des VEGF. L'invention se rapporte à des genes de la souris et du rat qui ont isolés sur la base du gene humain isolé ci-dessus; a une proteine codée par le gêne humain susmentionne qui a été isolée par transfert du géne dans l'Escherichia coli et son expression dans ce demier. On pense que ces genes et cette proteine isolees seront applicables, par exemple, a la therapie genique pour les colobomes induits par le gene de VEGF-D. la cicatrisation et la favorisation de la formation de vaisseaux collatéraux. De plus, on pense que les inhibiteurs de la protéine VEGF-D peuvent être utilises comme de nouveaux medicaments anticancereux etc

(57) A novel human gene having a significant homology with a VEGF-C gene which has been isolated by the PCR method with the use of primers designed on the basis of the sequence of EST assumed to be homologous with the C terminal part of VEGF-C which falls within the VEGF family; mouse and rat genes which have been isolated on the basis of the human gene isolated above; a protein encoded by the above-mentioned human gene which has been isolated by transfering the gene into Escherichia coli and expressing it therein. It is expected that the isolated protein and genes are applicable to, for example, gene therapy for VFGF-D gene coloboma, wound healing and the promotion of collateral vessel formation. Moreover, it is expected that VEGF-D protein inhibitors are usable as novel anticancer drugs, etc

Abstract

A novel human gene having a significant homology with a VEGF-C gene, a member of the VEGF family, has been isolated by the PCR method using primers designed based on the sequence of EST that is assumed to be homologous with the C-termial region of the VEGF-C gene. Mouse and rat genes have been isolated based on the human gene isolated as above. A protein encoded by the above human gene has been isolated by introducing the gene into Escherichia coli and expressing it. The isolated protein and genes can be applied to, for example, gene therapy for the VEGF-D deficiency, wound healing, and promotion of collateral vessel formation. Furthermore, VEGF-D protein inhibitors can be used as a novel anticancer drug, etc.

SPECIFICATION

NOVEL VEGF-LIKE FACTOR

Technical Field

The present invention relates to a protein factor involved in angiogenesis in humans and falls in the field of genetic engineering.

Background Art

The process of angiogenesis, in which endothelial cells existing in the inner wall of blood vessels of animals generate new blood vessels, is triggered by transduction of a specific signal. A variety of substances are reportedly involved in this signal transduction. The most notable substance among them is the vascular endothelial growth factor (VEGF). VEGF is a protein factor which was isolated and purified, and can increase the proliferation of endothelial cells and the permeability of blood vessels (Senger, D. R. et al., Science 219: 983-985 (1983); Ferrara, N. and Henzel, W. J., Biochem. Biophys. Res. Commun. 161: 851-858 (1989)). It has been reported that the human VEGF gene contains eight exons and produces four subtypes consisting of 121, 165, 189, or 206 amino acid residues, depending on the difference in splicing, which causes different secretion patterns (Houck, K. A. et al., Mol. Endocrinol. 5: 1806-1814 (1991)). It has also been reported that there is a VEGF-specific receptor, flt-1, and that the binding of VEGF to flt-1 is important for the signal transduction (Vries, C. D. et al., Science 255: 989-991 (1992)).

Placental growth factor (PIGF) and platelet-derived growth factor (PDGF) have thus far been isolated and are factors related to VEGF. These factors are found to promote proliferation activities of vascular endothelial cells (Maglione, D. et al., Proc. Natl. Acad. Sci. USA 88: 9267-9271 (1991); Betsholtz, C. et al., Nature 320: 695-699 (1986)). In addition, VEGF-B (Olofsson, B. et al., Proc. Natl. Acad. Sci. USA 93: 2576-2581 (1996)) and VEGF-C (Lee, J. et al., Proc. Natl. Acad. Sci. USA 93: 1988-1992 (1996); Joukov, V. et al., EMBO J. 15, 290-299 (1996)) have recently been isolated.

These factors appear to constitute a family, and this may contain additional unknown factors.

It has been suggested that VEGF is involved in not only vascular formation at the developmental stage but also in the pathological neovascularization associated with diabetes, rheumatoid arthritis, retinopathy, and the growth of solid tumors. Furthermore, in addition to its vascular endothelial cell growth-promoting effects listed above, VEGF's ability to increase vascular permeability was suggested to be involved in the edema formation resulting from various causes. Also, these VEGF family factors may act on not only the blood vessels but also the blood cells and the lymphatic vessels. They may thus play a role in the differentiation and proliferation of blood cells and the formation of lymphatic vessels. Consequently, the VEGF family factors are presently drawing extraordinary attention for developing useful, novel drugs.

Disclosure of the Invention

An objective of the present invention is to isolate a novel protein belonging to the VEGF family and a gene encoding the protein. We searched for genes having homology to VEGF-C, which is a recently cloned VEGF family gene, against Expressed Sequence Tags (EST) and Sequence Tagged Sites (STS) in the GenBank database. As a result, we found an EST that was assumed to have homology to the C-terminal portion of VEGF-C. We then designed primers based on the sequence, and amplified and isolated the corresponding cDNA using the 5' RACE method and the 3' RACE method. The nucleotide sequence of the isolated cDNA was determined, and the deduced amino acid sequence therefrom revealed that the amino acid sequence had significant homology to that of VEGF-C. Based on the homology, we have assumed that the isolated human clone is a fourth member of the VEGF family (hereinafter designated as VEGF-D). We have also succeeded in expressing the protein encoded by the isolated human VEGF-D gene in E. coli cells, and have also purified and isolated it. Furthermore, we have succeeded in isolating the mouse and rat VEGF-D genes using the isolated human VEGF-D gene.

In particular, the present invention relates to a novel protein

belonging to the VEGF family and a gene encoding the protein. More specifically it relates to

- (1) A protein shown by SEQ ID NO. 1 or having the amino acid sequence derived therefrom in which one or more amino acids are substituted, deleted, or added;
- (2) A protein encoded by a DNA that hybridizes with the DNA shown by SEQ ID NO. 2;
- (3) A DNA encoding the protein of (1);
- (4) A DNA hybridizing with the DNA shown by SEQ ID NO. 2;
- (5) A vector containing the DNA of (3) or (4);
- (6) A transformant carrying the vector of (5);
- (7) A method of producing the protein of (1) or (2), which comprises culturing the transformant of (6);
- (8) An antibody binding to the protein of (1) or (2);
- (9) A method of screening a compound binding to the protein of (1) or (2), which comprises a step of detecting the activity of the protein of (1) or (2) to bind to a test sample; and
- (10) A compound binding to the protein of (1) or (2), wherein said compound has been isolated by the method of (9).

The protein of the present invention (VEGF-D) has significant homology to VEGF-C and can be considered to be a fourth factor of the VEGF family. Since the major function of VEGF is vascular formation at the developmental stage and VEGF is considered to be involved in the pathological neovascularization associated with diabetes, rheumatoid arthritis, retinopathy, and the growth of solid tumors, the protein of the present invention is thought to have similar functions.

A person skilled in the art could prepare functionally equivalent proteins through modifying VEGF-D of the present invention by adding, deleting, or substituting one or more of the amino acids of VEGF-D shown by SEQ ID NO. 1 using known methods. Modifications of the protein can also occur naturally in addition to the artificial modifications described above. These modified proteins are also included in the present invention. Known methods for adding, deleting, or substituting amino acids include the overlap extension polymerase chain reaction (OE-PCR) method (Gene, 1989, 77 (1): 51).

The DNA encoding VEGF-D of the present invention, shown by SEQ ID NO. 2, is useful for isolating DNAs encoding the proteins having similar functions to VEGF-D in other organisms. For example, a person skilled in the art could routinely isolate homologs of human VEGF-D of the present invention from other organisms by allowing the DNA shown by SEQ ID NO. 2, or part thereof, as a probe, to hybridize with the DNA derived from other organisms. The DNA that hybridizes with the DNA shown by SEQ ID NO. 2 is also included in the present invention. The other organisms include mice, rats, and rabbits.

The DNA encoding a protein that is functionally equivalent to VEGF-D usually has high homology to the DNA shown by SEQ ID NO. 2. The high homology used herein means at least 70% or higher, more preferably 80% or higher, and still more preferably 90% or higher of sequence homology.

An example of the hybridization conditions for isolating the DNA having high homology will be given below. Prehybridization is performed in ExpressHyb Solution at 68° C for 30 minutes. The probe labeled with a radioisotope is denatured at 95° C to 100° C for 2 to 5 minutes and rapidly chilled on ice. The probe is added to a new ExpressHyb Solution. The blot is transferred to the solution containing the probe and allowed to hybridize under a temperature gradient of 68° C to 55° C for 2 hours. The blot is washed four times, for 10 minute each, with a 2 x SSC solution containing 0.05% SDS at room temperature. The blot is then washed with a 0.1 x SSC solution containing 0.1% SDS at 45° C for 3 minutes. The blot is subjected to autoradiography.

An example of the hybridization conditions for isolating the DNA having very high homology will be given below. Prehybridization is performed in ExpressHyb Solution at 68° C for 30 minutes. The probe labeled with a radioisotope is denatured at 95° C to 100° C for 2 to 5 minutes and rapidly chilled on ice. The probe is added into a new ExpressHyb Solution. The blot is transferred into the solution containing the probe, and allowed to hybridize at 68° C for 1 hour. The blot was washed four times, for 10 minute each, with a 2 x SSC solution containing 0.05% SDS at room temperature. The blot was then washed with a 0.1 x SSC solution containing 0.1% SDS at 50° C for 40

minutes, during which the solution was replaced once. The blot was then subjected to autoradiography.

Note that the hybridization condition can vary depending on the length of the probe (whether it is an oligomer or a probe with more than several hundred bases), the labeling method (whether the probe is radioisotopically labeled or non-radioisotopically labeled), and the type of the target gene to be cloned. A person skilled in the art would properly select the suitable hybridization conditions. In the present invention, it is especially desirable that the condition does not allow the probe to hybridize with the DNA encoding VEGF-C.

The DNA of the present invention is also used to produce VEGF-D of the present invention as a recombinant protein. Specifically, the recombinant protein can be produced in large quantity by incorporating the DNA encoding VEGF-D (for example, the DNA shown by SEQ ID NO. 2) into a suitable expression vector, introducing the resulting vector into a host, and culturing the transformant to allow the recombinant protein to be expressed.

The vector to be used for producing the recombinant protein is not particularly restricted. However, vectors such as pGEMEX-1 (Promega) or pEF-BOS (Nucleic Acids Res. 1990, 18(17): p.5322) are preferable. Suitable examples of the host into which the vector is introduced include E. coli cells, CHO cells, and COS cells.

The VEGF-D protein expressed by the transformant can be purified by suitably combining purification treatments such as solubilization with a homogenizer or a sonicator, extraction by various buffers, solubilization or precipitation by acid or alkali, extraction or precipitation with organic solvents, salting out by ammonium sulfate and other agents, dialysis, ultrafiltration using membrane filters, gel filtration, ion exchange chromatography, reversed-phase chromatography, counter-current distribution chromatography, high-performance liquid chromatography, isoelectric focusing, gel electrophoresis, or affinity chromatography in which antibodies or receptors are immobilized.

Once the recombinant protein is obtained, antibodies against it can be prepared using known methods. The known methods include

preparing polyclonal antibodies by immunizing rabbits, sheep, or other animals with the purified protein, and preparing monoclonal antibodies from the antibody-producing cells of immunized mice or These antibodies will make it possible to quantify VEGF. Although the antibodies thus obtained can be used as they are, it will be more effective to use the humanized antibodies to reduce the immunogenicity. The methods of humanizing the antibodies include the CDR graft method and the method of directly producing a human antibody. In the CDR Graft method, the antibody gene is cloned from the monoclonal antibody-producing cells and its antigenic determinant portion is transplanted into an existing human antibody. method of directly producing a human antibody, a mouse whose immune system has been replaced by the human immune system is immunized, similar to ordinary monoclonal antibodies. The VEGF-D protein or its antibody thus obtained can be administered into the body by subcutaneous injection or a similar method.

A person skilled in the art could screen compounds that bind to the protein of the present invention by known methods.

For example, such compounds can be obtained by making a cDNA library on a phage vector (such as λ gtll and ZAP) from the cells expected to express the protein that binds to the protein of the present invention (such as lung, small intestine, and heart cells of mammals), expressing the cDNAs on LB-agarose, fixing the expressed proteins onto a filter, preparing the purified protein of the present invention as a biotin-labeled or a fusion protein with the GST protein, and reacting this protein with the above filter. The desired compounds could then be detected by west western blotting using streptavidin or an anti-GST antibody (Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fischer, R., Drepps, A., Ullrich, A., and Schlessinger, J. (1991) Cloning of Pl3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases, Cell 65: 83-90). Another method comprises the following steps. First, express the protein of the present invention fused with the SRF binding domain or the GAL4 binding domain in yeast cells. Second, prepare a cDNA library which expresses cDNAs fused with the transcription activation domain of VP16 or GAL4

from the cells expected to express a protein that binds to the protein of the present invention. Third, introduce the cDNA into the above yeast cells. Fourth, isolate the library-derived cDNA from the positive clones. Finally, introduce the isolated cDNA into E. coli to allow it to be expressed. (When a protein that binds to the protein of the present invention is expressed in yeast cells, the reporter gene is activated and the positive clone can be detected.) method can be performed using the two-hybrid system (MATCHMAKER Two-Hybrid System, Mammalian MATCHMAKER Two-Hybrid Assay Kit, or MATCHMAKER One-Hybrid System (all by Clontech) orthe HybriZAP Two-Hybrid Vector System (Stratagene) (Dalton, S. and Treisman, R. (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element, Cell 68: 597-612). Alternatively, the binding proteins can be screened by preparing a cDNA library from the cells expected to express a substance, such as a receptor, which binds to the protein of the present invention (for example, vascular endothelial cells, bone marrow cells, or lymph duct cells), introducing it into such cells as COS, detecting the binding of the protein of the present invention by itself or labeled with a radioisotope or a fluorescence, and cloning proteins that bind to the protein of the present invention (Yamasaki, K., Taga, T., Hirata, Y., Yawata, H., Kawanishi, Y., Seed, B., Taniguchi, T., Hirano, T., and Kishimoto, T. (1988) Cloning and expression of human interleukin-6 (BSF-2/IFN beta2) receptor, Science 241: 825-828, Fukunaga, R., Ishizaka-Ikeda, E., Seto, Y., and Nagata, S. (1990) Expression cloning of a receptor for murine granulocyte colony-stimulating factor, Cell 61: 341-350). Still another method comprises applying the culture supernatant or the cellular extract of the cells expected to express a protein that binds to the protein of the present invention onto an affinity column to which the protein of the present invention has been immobilized, and purifying the proteins specifically bound to the column. In addition, a DNA encoding the protein that binds to the protein of the present invention can be obtained by determining the amino acid sequence of the binding protein, synthesizing oligonucleotides based on the sequence, and screening a cDNA library with the oligonucleotides as probes.

Furthermore, compounds that bind to the protein of the present invention can be screened by contacting compounds, a natural substance bank, or a random phage peptide display library with the immobilized protein of the present invention and detecting the molecules bound to the protein. These compounds can also be screened by high throughput screening utilizing combinatorial chemistry technology (Wrighton, N. C., Farrell, F. X., Chang, R., Kashyap, A. K., Barbone, F. P., Mulcahy, L. S., Johnson, D. L., Barrett, R. W., Jolliffe, L. K., and Dower, W. J., Small peptides as potent mimetics of the protein hormone erythropoietin, Science (United States) Jul 26 1996, 273: 458-464, Verdine, G.L., The combinatorial chemistry of nature, Nature (England) Nov 7 1996, 384: 11-13, Hogan, J.C. Jr. Directed combinatorial chemistry, Nature (England) Nov 7 1996, 384: 17-19).

VEGF-D of the present invention may be used for gene therapy by introducing the VEGF-D gene into the body of the patient with the VEGF-D deficiency, or expressing the gene in the body. An anti-sense DNA of the VEGF-D gene may also be used to inhibit the expression of the gene itself, thereby suppressing the pathological neovascularization.

Among the many available methods to introduce the VEGF-D gene or its antisense DNA into the body, the retrovirus method, the liposome method, the cationic liposome method, and the adenovirus method are preferable.

In order to express these genes in the body, the genes can be incorporated into a suitable vector and introduced into the body by the retrovirus method, the liposome method, the cationic liposome method, or the adenovirus method. Although the vectors to be used are not particularly limited, such vectors as pAdexlcw and pZIPneo are preferable.

The present invention may also be applied for diagnosing disorders caused by abnormalities of the VEGF-D gene, for example, by PCR to detect an abnormality of the nucleotide sequence of the VEGF-D gene.

Furthermore, according to the present invention, the VEGF-D protein or its agonists can be used to heal wounds, promote collateral vessel formation, and aid hematopoiesis by the

hematopoietic stem cells, by taking advantage of the angiogenic effect of the VEGF-D protein. The antibodies against the VEGF-D protein or its antagonists can be used as the therapeutic agents for pathological neovascularization, lymphatic dysplasia, dyshematopoiesis, or edemas arising from various causes. The anti-VEGF-D antibodies can be used for diagnosing diseases resulting from abnormal production of VEGF-D by quantifying VEGF-D.

Brief Description of the Drawings

Figure 1 shows the relationship among the VEGF-D gene, the EST sequences, and the primers used for cloning.

Figure 2 compares the amino acid sequences of EST (H24828) and $\ensuremath{\text{VEGF-C.}}$

Figure 3 compares the amino acid sequences deduced from the VEGF-D gene and from the known genes of the VEGF family proteins.

Figure 4a shows the hydrophobicity plot of VEGF-D. Figure 4b shows the prediction of the cleavage site of the VEGF-D signal peptide.

Best Mode for Implementing the Invention

The following examples illustrate the present invention in detail, but are not to be construed to limit the scope of the invention.

Example 1. Homology search by TFASTA method

The sequence CGPNKELDENTCQCVC (SEQ ID NO. 3) was designed based on the consensus sequence found in the BR3P (Balbiani ring 3 protein) repeat at the C-terminus of VEGF-C. The entire ESTs and STS sequences in the Genbank database (as of 29 February 1996) were then searched by the TFASTA method (Person and Lipman, Proc. Natl. Acad. Sci. USA 85: 2444-2448 (1988)). The searching conditions used are shown below (Table 1).

Table 1

Sequences	392,210
Symbols	135,585,305
Word Size	2
Gap creation penalty	12.0
Gap extension penalty	4.0

As a result, an EST (Accession No. H24828) that is considered to code the consensus sequence was found. The sequence is one of the ESTs registered by The WashU-Merck EST Project, and nine out of 16 amino acid residues were identical. Further searching for UniGene by NCBI based on this sequence revealed that five registered sequences (T64149, H24780, H24633, H24828, and T64277 (as of 1 March 1996)), including the above EST, were considered to be derived from the same gene. T64277 and T64149, as well as H24828 and H24780, are the combination of the 5' sequence and the 3' sequence of the same clones, and the length of the insert in both of these clones was 0.9 kb (Fig. 1).

Translating the H24828 sequence into a protein sequence in a frame where homology is found suggested that this sequence codes 104 C-terminal amino acid residues. Comparing this amino acid sequence with the C-terminus of VEGF-C, 28 out of 104 amino acids (27%) were identical. Moreover, the amino acids that are important for maintaining the protein structure, such as cysteine and proline, were well conserved (Fig. 2). Conserved sequences are shown in a black box.

Example 2. cDNA cloning from a library

Primers for 5' RACE and 3' RACE (5' RACE primer: 5'-AGGGATGGGGAACTTGGAACGCTGAAT-3' (SEQ ID NO. 4), 3' RACE primer: 5'-GATCTAATCCAGCACCCCAAAAACTGC-3'(SEQ ID NO. 5)) were designed (Fig. 1). A double-stranded cDNA was synthesized from human lung-derived polyA' RNA using reverse transcriptase. PCR was then performed using Marathon-Ready cDNA, Lung (Chlontech), having an adapter cDNA ligated

to both ends as a template cDNA, and using the above primer and adapter primer (AP-1 primer) as primers. The above adapter cDNA contains the regions to which the adapter primers AP-1 and AP-2 hybridize. The PCR was performed in a manner such that the system was exposed to treatment at 94°C for 1 min; five cycles of treatment at 94°C for 30 sec and at 72°C for 4 min; five cycles of treatment at 94°C for 30sec and at 70°C for 4 min; then 25 cycles of treatment at 94°C for 20 sec and at 68°C for 4 min. (TaKaRa Ex Tag (Takara Shuzo) and the attached buffer were used as Taq polymerase instead of Advantage KlenTaq Polymerase Mix.) As a result, 1.5kb fragments were amplified at the 5' region and 0.9kb fragments at the 3' region. These fragments were cloned with the pCR-Direct Cloning System (Clontech), CR-TRAP Cloning System (GenHunter), and PT7Blue-T vector (Novagen). When the 5'-RACE fragment was cloned into the pCR-Direct vector, the fragment was amplified again using CTGGTTCGGCCCAGAACTTGGAACGCTGAATCA-3'(SEQ 7) and 5'-CTCGCTCGCCCACTAATACGACTCACTATAGG-3'(SEQ ID NO. 8) as primers.

Example 3. Nucleotide sequence analysis

ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit with Amplitaq DNA Polymerase FS and 377 A DNA Sequencer (ABI) were used for DNA sequencing. The primers used are the primers in the vectors (5'-AATTAACCCTCACTAAAGGG-3' (SEQ ID NO. 9), 5'-CCAGGGTTTTCCCAGTCACGAC-3' (SEQ ID NO. 10)), AP-2 primer (5'-ACTCACTATAGGGCTCGAGCGGC-3' (SEQ ID NO. 11)), and 10 primers in the sequence shown below (Table 2).

Table 2

-	
SQ1 (SEQ ID NO. 12)	5'-AAGTCTGGAGACCTGCT-3'
SQ2 (SEQ ID NO. 13)	5'-CAGCAGGTCTCCAGACT-3'
SQ3 (SEQ ID NO. 14)	5'-CGCACCCAAGGAATGGA-3'
SQ4 (SEQ ID NO. 15)	5'-TGACACCTGGCCATTCCA-3'
SQ5 (SEQ ID NO. 16)	5'-CATCAGATGGTAGTTCAT-3'
SQ6 (SEQ ID NO. 17)	5'-ATGCTGAGCGAGAGTCCATA-3'
SQ7 (SEQ ID NO. 18)	5'-CACTAGGTTTGCGGCAACTT-3'
SQ8 (SEQ ID NO. 19)	5'-GCTGTTGGCAAGCACTTACA-3'
SQ9 (SEQ ID NO. 20)	5'-GATCCATCCAGATCCCTGAA-3'
SQ10 (SEQ ID NO. 21)	5'-CAGATCAGGGCTGCTTCTA-3'

Determining the nucleotide sequence of the 1.5kb fragment at the 5'-side and the 0.9kb fragment at the 3'-side revealed that the sequence of the overlapping region was identical, confirming that 5'- and 3'-side cDNAs of the desired gene were obtained. Determining the entire nucleotide sequence of the cDNA revealed that this novel gene has the full length of 2 kb and can code a protein consisting of 354 amino acid residues (SEQ ID NO. 1 and SEQ ID NO. 2). Figure 1 shows the relation between this gene and the EST sequences registered in the Genbank database. Comparing the amino acid sequence with other VEGF family proteins revealed that the amino acids that are well conserved between family proteins are also conserved in this novel gene, and therefore this gene is obviously a new member of the VEGF family (Fig. 3). In Fig. 3, HSVEGF indicates human VEGF; HSVEGF-D, HSVEGF-C, and HSVEGF-B indicate human VEGF homologues (human VEGF-D, human VEGF-C, and human VEGF-B, respectively); HSPDGF-A indicates human PDGF-A; HSPDGF-B indicates human PDGF-B; and HSP1GF2 indicates human P1GF2. The conserved sequences are shown in a black box. Since ${\tt VEGF-D}$ is highly homologous to ${\tt VEGF-C}$ that was cloned as the Flt4 ligand, it was presumed to be a ligand to a Flt-4-like receptor.

Deducing the signal peptide cleavage site (Fig. 4b) by hydrophobicity plot (Fig. 4a) and the method of von Heijne (von Heijne, G, Nucleic Acids Res. 14, 4683-4690(1986)), N-terminal 21 amino acid

residues may be cleaved as signal peptides, and they may also undergo additional processing like VEGF-C.

Example 4. Northern blot analysis

A 1kb fragment, which had been cut out by digestion with EcoRI from the 5'-fragment subcloned into pCR-Direct vector, was labeled with $[\alpha^{-17}P]dCTP$ and used as a probe. Labeling was performed by random priming using Ready-to Go DNA labeling beads (Pharmacia). Hybridization was performed in ExpressHyb Hybridization Solution (Clontech) by the usual method using Multiple Tissue Northern (MTN) Blot-Human, Human II, Human Fetal, and Human Cell lines (Clontech). Significant expression was observed in lung, heart, and intestine. Weak expression was observed in skeletal muscle, ovary, colon, and pancreas. The apparent molecular weight of the mRNA was 2.2 kb, and the cloned fragment seemed to be almost the full length of the gene.

Example 5. VEGF-D protein expression in E. coli

Two primers, 5'-TCCAGATCTTTTGCGGCAACTTTCTATGACAT-3' (SEQ ID NO. 22) and 5'-CAGGTCGACTCAAACAGGCACTAATTCAGGTAC-3' (SEQ ID NO. 23), were synthesized to amplify the region corresponding to the 89th to 181st amino acid residues of human VEGF cDNA. The thus-obtained DNA fragment was digested with restriction enzymes BglII and SalI, and ligated using ligation kit II (Takara Shuzo Co., Ltd) to plasmid pQE42 (QIAGEN), which had been digested with restriction enzymes BamHI and The resulting plasmid was introduced into E. SG19003[pREP4] (QIAGEN), and a plasmid, which was obtained as designed without any mutation, was selected (pQE42-BS3). Plasmid pQE42-BS3 was introduced into E. coli BL21 (Invitorogen) and cultured in 10 ml of L Broth containing 100 mg/l bicucilline (ampicillin sodium for injection, Meiji Seika Kaisha, Ltd.). 200 ml of fresh L Broth was then inoculated with the culture. After incubation at 37°C for 1.5 hours, IPTG was added to 3 mM, and the culture was further incubated at 37°C for 5 hours. After cells were harvested, a protein was purified with a Ni-NTA column following the protocol of QIAexpress TypeII kit.

Example 6. Expression of DHFR-VEGF-D fusion protein in E. coli

The region corresponding to the 89th to 181st amino acid residues of human VEGF cDNA was amplified with the same primers used in Example 5. The thus-obtained DNA fragment was digested with restriction enzymes BglI and SalI. The fragment was then ligated using ligation kit II (Takara Shuzo Co., Ltd.) to the plasmid pQE40 (QIAGEN), which had been digested with restriction enzymes BamHI and The resulting plasmid was introduced into SG19003[pREP4] (QIAGEN), and a plasmid, which was obtained as designed without any mutation, was selected (pQE40-BS3). Plasmid pQE40-BS3 was introduced into E. coli BL21 (Invitrogen) and cultured in 10 ml of L Broth containing 100 mg/l bicucilline (ampicillin sodium for injection, Meiji Seika Kaisha, Ltd.). 200 ml of fresh L Broth was then inoculated with the culture. After incubation at 37° C for 1.5 hours, IPTG was added to 3mM, and the culture was further incubated at 37°C for 5 hours. After cells were harvested, a DHFR-VEGF-D fusion protein was purified with a Ni-NTA column following the protocol of a QIAexpress TypeII kit.

Example 7. Cloning mouse VEGF-D cDNA

Two Hybond-N+ (Amersham) filters (20 cm x 22 cm) on which 1.5 x 105 pfu of Mouse lung 5'-stretch cDNA library was transferred were prepared. Gradient hybridization from 68°C to 55°C was performed for 2 hours in ExpressHyb Hybridization Solution (Clontech) using as a probe an approximately 50 ng Pvu II fragment of human VEGF-D, which had been labeled with lpha $^{32}P-dCTP$ (Amersham) using Ready-To-Go DNA Labeling Beads(-dCTP) (Pharmacia). The filters were washed four times in 2 x SSC, 0.05% SDS at room temperature for 10 min, then washed in 0.1 x SSC, 0.1% SDS at 45° C for 3 min. The washed filters were exposed overnight at -80 °C using HyperFilm MP (Amersham) and intensifying paper. Positive clones were subjected to the second screening in the same manner as above to isolate a single clone. Isolated lambda DNAs were purified from the plate lysate using a QIAGEN Lambda MAX I Kit (Qiagen). Insert DNAs were cut out with EcoRI and subcloned into pUC118 EcoRI/BAP (Takara Shuzo Co., Ltd.). nucleotide sequence was then determined with ABI377 sequencer (Perkin

Elmer). The cDNA coding the full length of mouse VRGF-D was reconstructed with two of the obtained clones that overlapped each other. SEQ ID NO. 24 shows the nucleotide sequence of mouse VEGF-D cDNA and the deduced amino acid sequence therefrom.

Example 8. Cloning rat VEGF-D cDNA

Two Hybond-N+ (Amersham) filters (20 cm x 22 cm), on which 1.5 x 10⁵ pfu of Rat lung 5'-stretch cDNA library had been transferred, were prepared. Gradient hybridization from 68°C to 55°C was performed for 2 hours in ExpressH.Fyb Hybridization Solution (Clontech) using as a probe an approximately $1 \, \mu$ g fragment containing 1-782 bp of the mouse VEGF-D cDNA which had been labeled with α^{32} P-dCTP (Amersham) using Ready-To-Go DNA Labeling Beads(-dCTP) (Pharmacia). The filters were washed four times in 2 x SSC, 0.05% SDS at room temperature for 10 min, then washed in 0.1 x SSC, 0.1% SDS at 45°C for 3 min. The washed filters were exposed overnight at -80°C using HyperFilm MP (Amersham) and intensifying paper. Positive clones were subjected to the second screening in the same manner as above to isolate a single clone. The isolated positive clone was excised into pBluescript using E. coli SOLAR (Stratagene) and helper phage ExAssist (Stratagene), then the sequence was determined with ABI377 sequencer (Perkin Elmer). The sequence seemed to be the rat VEGF-D cDNA but did not contain the termination codon.

To obtain the C-terminal cDNA which had not been obtained, PCR was performed using Marathon-Ready rat kidney cDNA (Clontech) as a template and 5' primerGCTGCGAGTGTCTGTAAA (SEQ ID NO. 26) and 3' primer GGGTAGTGGGCAACAGTGACAGCAA (SEQ ID NO. 27) with 40 cycles of 94°C for 15 sec, 55°C for 30 sec, and 72 °C for 2 min. After the thus-obtained fragment was subcloned into pGEM-T vector (promega), the nucleotide sequence was determined with ABI377 sequencer (Perkin Elmer). The resulting clone contained the C-terminus of rat VEGF-D. Based on the results of sequencing the clone obtained by plaque hybridization and the clone obtained by PCR, the full length of the rat VEGF-D sequence was determined. SEQ ID NO. 25 shows the determined nucleotide sequence and the deduced amino acid sequence therefrom.

Industrial Applicability

In the present invention, a novel protein (VEGF-D) having significant homology to VEGF-C and its gene have been isolated. VEGF-D appears to be involved in the pathological neovascularization associated with diabetes, rheumatoid arthritis, the growth of solid tumors, differentiation and proliferation of blood cells, formation of lymphatic vessels, and formation of edema resulting from various causes as well as the normal neovascularization at the developmental stage. The gene of the present invention can be used to diagnos disorders caused by abnormalities of the VEGF-D gene and gene therapy for the VEGF-D deficiency. The VEGF-D protein, which is obtained by expressing the gene of the present invention, can be used for healing promoting collateral vessel formation, hematopoietic stem cell proliferation. The antibodies or inhibitors against the VEGF-D protein can be used for treating angiodysplasia and lymphangiodysplasia associated with inflammation, edemas arising from various causes, dyshematopoiesis, and, as a novel anticancer agent, for treating pathological neovascularization. The VEGF-D protein and its antibodies can be useful for diagnosing diseases resulting from abnormal production of VEGF-D.

Sequence Listing

- (1) Name or appellation of Applicant: Chugai Research Institute for Molecular Medicine, Inc.
- (2) Title of the Invention: Novel VEGF-like Factor
- (3) Reference Number: C1-802PCT
- (4) Application Number:
- (5) Filing date:
- (6) Country where the priority application was filed and the application number of the application: Japan, No. Hei 8-185216
- (7) Priority date: July 15, 1996
- (8) Number of sequences: 27

SEQ ID NO: 1

SEQUENCE LENGTH: 354

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: protein

ORIGINAL SOURCE:

ORGANISM: Homo sapiens

TISSUE TYPE: lung

SEQUENCE DESCRIPTION:

Met Tyr Arg Glu Trp Val Val Val Asn Val Phe Met Met Leu Tyr Val 1 5 10 15

Gln Leu Val Gln Gly Ser Ser Asn Glu His Gly Pro Val Lys Arg Ser
20 25 30

Ser Gln Ser Thr Leu Glu Arg Ser Glu Gln Gln Ile Arg Ala Ala Ser

Ser Leu Glu Glu Leu Leu Arg Ile Thr His Ser Glu Asp Trp Lys Leu 50 55 60

Trp Arg Cys Arg Leu Arg Leu Lys Ser Phe Thr Ser Met Asp Ser Arg

Ser Ala Ser His Arg Ser Thr Arg Phe Ala Ala Thr Phe Tyr Asp Ile 85 90 95

Glu Thr Leu Lys Val Ile Asp Glu Glu Trp Gln Arg Thr Gln Cys Ser

Pro	o Ar	g Gl	u Th	r Cy	s Val	Gli	ı Va	l Al	a Se	r Gl	u Lei	u Gl	у Lу	s Se	r Thr
		11					120					12			
Ası	n Th	r Ph	e Ph	e Ly:	s Pro	Pro	Су	s Va	l As	n Val	l Phe	e Ar	g Cy	s Gl	y Gly
	13					13					14				
Cys	су:	s As	n Gl	u Glı	ı Ser	Leu	Ile	e Cys	s Met	t Ası	Thi	Se:	r Th	r Se	r Tyr
145					150					155					160
Ile	Sei	Ly	s Gl	n Lei	l Phe	Glu	Ile	e Ser	Va]	l Pro	Leu	Thi	Se	r Va	l Pro
				165					170					17	
Glu	Let	ı Val	l Pro	o Val	Lys	Val	Ala	Asn	His	Thr	Gly	Cys	Ly	з Су:	s Leu
			18					185					19		
Pro	Thr	Ala	Pro	Arg	His	Pro	Tyr	Ser	Ile	Ile	Arg	Arç	Sei	: Ile	e Gln
		19!	5				200					205	5		
Ile	Pro	Glu	Glu	a Asp	Arg	Cys	Ser	His	Ser	Lys	Lys	Leu	Cys	Pro	Ile
	210					215					220				
	Met	Leu	Trp	Asp	Ser	Asn	Lys	Cys	Lys	Cys	Val	Leu	Gln	Glu	Glu
225					230					235					240
Asn	Pro	Leu	Ala	Gly	Thr	Glu	Asp	His	Ser	His	Leu	Gln	Glu	Pro	Ala
				245					250					255	
Leu	Cys	Gly		His	Met	Met	Phe	Asp	Glu	Asp	Arg	Cys	Glu	Cys	Val
_	_		260					265					270		
Cys	Lys			Cys	Pro	Lys	Asp	Leu	Ile	Gln	His	Pro	Lys	Asn	Cys
		275					280					285			
ser		Phe	Glu	Cys	Lys		Ser	Leu	Glu	Thr	Сув	Cys	Gln	Lys	His
T	290	5 1		_		295					300				
305	Leu	Pne	HIS		Asp	Thr	Cys	Ser	Cys		Asp	Arg	Cys	Pro	Phe
	mh =	7 ~ ~	D		310	_				315					320
1112	1111	Arg	PIO		Ala	Ser	Gly	Lys		Ala	Cys	Ala	Lys	His	Cys
Ara '	Dhe	Dro	T	325	.	_			330					335	
119	rne	FIO		GIU	Lys 1	arg .	Ala		Gln	Gly	Pro			Arg	Lys
Asn 1	Pro		340					345					350		

SEQUENCE LENGTH: 2004

SEQUENCE TYPE: nucleic acid

STRANDEDNESSS: double

TOP	OLOG	Y: 1	inea	r												
MOL	ECUL	E TY	PE:	CDNA	to	mRNA										
ORI	GINA	L SC	URCE	:												
	(ORGA	NISM	: Ho	no s	apie	ns									
	•	TISS	UE T	YPE:	lun	9										
FEA	TURE	:														
	I	NAME	/KEY	: CD	3											
	1	LOCA	TION	: 40	31	464										
	:	IDEN	TIFI	CATIO	M NC	ETHO): E									
SEQ	UENC	E DE	SCRI	PTIO	N:											
CCA	GCTT	тст	GTAR	CTGT	AA G	CATT	GGTG	G CC	ACAC	CACC	TCC	TTAC	AAA	GCAA	CTAGAA	60
CCT	GCGG	CAT	ACAT	TGGA	GA G	ATTT'	TTTT	TA A	TTTC	TGGA	CAY	GAAG	AAT	ATTT	AGAGTG	120
CTT	TCYA.	TTA	TCAG	GTAG	AA G	ACAT	GTCC	A CC	TTCT	GATT	TTA	TTTG	GAG	AACA	TTTTGA	180
TTT	TTTT	CAT	CTCT	CTCT	cc c	CACC	CCTA	A GA	TTGT	GCAA	AAA	AAGC	GTA	CCTT	GCCTAA	240
TTG.	TAAA.	TAA	TTCA	T TG G.	T TA	TTGA'	rcag.	A AC	TGAT	CATT	TGG	TTTT	CTG	TGTG	AAGTTT	300
TGA	GGTT'	TCA	AACT'	TTCC	TT C	TGGA	GAAT	G CC	TTTT	GAAA	CAA	TTTT	CTC	TAGC	TGCCTG	360
ATG	rcaa	CTG	CTTA	GTAA	TC A	GTGG.	ATAT	r GA	AATA'	ГТСА	AA .	ATG	TAC	AGA	GAG	414
												Met	Tyr	Arg	Glu	
												1				
			GTG													462
-	Val	Val	Val	Asn		Phe	Met	Met	Leu	_	Val	Gln	Leu	Val		
5					10					15					20	
			AAT													510
Gly	Ser	Ser	Asn		His	Gly	Pro	Val	_	Arg	Ser	Ser	Gln		Thr	
				25					30					35		
			TCT													558
Leu	Glu	Arg	Ser	Glu	Gln	Gln	Ile	_	Ala	Ala	Ser	Ser		Glu	Glu	
			40					4.5					50			
			ATT													606
Leu	Leu	-	Ile	Thr	His	Ser		Asp	Trp	Lys	Leu	-	Arg	Суѕ	Arg	
		5 5					60					65			_	_
			AAA													654
Leu	-	Leu	Lys	Ser	Phe	Thr	Ser	Met	Asp	Ser	Arg	Ser	Ala	Ser	His	
	70															

702

CGG TCC ACT AGG TTT GCG GCA ACT TTC TAT GAC ATT GAA ACA CTA AAA

Arg Ser Thr Arg Phe Ala Ala Thr Phe Tyr Asp Ile Glu Thr Leu Lys

85					90					95					100	
GTI	ATA	GAT.	GAA	GAA	TGG	CAA	AGA	ACT	CAG	TGC	AGC	CCT	AGA	GAA	ACG	750
Val	lle	Asp	Glu	Glu	Trp	Gln	Arg	Thr	Gln	Cys	Ser	Pro	Arg	Glu	Thr	
				10	5				110	1				115		
TGC	GTG	GAG	GTG	GCC	AGT	GAG	CTG	GGG	AAG	AGT	ACC	AAC	ACA	TTC	TTC	798
Cys	Val	Glu	Val	Ala	Ser	Glu	Leu	Gly	Lys	Ser	Thr	Asn	Thr	Phe	Phe	
			120					125					130)		
AAG	ccc	CCT	TGT	GTG	AAC	GTG	TTC	CGA	TGT	GGT	GGC	TGT	TGC	TAA	GAA	846
Lys	Pro	Pro	Cys	Val	Asn	Val	Phe	Arg	Cys	Gly	Gly	Cys	Cys	Asn	Glu	
		135					140					145				
						AAC										894
Glu			Ile	Суѕ	Met	Asn	Thr	Ser	Thr	Ser	_	Ile	Ser	Lys	Gln	
25.0	150					155					160					
		_				CCT										942
165		GIU	11e	Ser	Val 170	Pro	Leu	Thr	ser		Pro	Glu	Leu	Val		
		ር ጥጥ	GCC	ላ ል ጥ		ACA	CCT	тст	AAC	175	mm.c	CCA	מרמ	CCC	180	990
						Thr										990
	~1~			185		1111	CII	cyz	190	- 7 5	Dou			195	110	
CGC	CAT	CCA	TAC		ATT	ATC	AGA	AGA		ATC	CAG	ATC	ССТ		GAA	1038
Arg	His	Pro	Tyr	Ser	Ile	Ile	Arg	Arg	Ser	Ile	Gln	Ile	Pro	Glu	Glu	
			200					205					210			
GAT	CGC	TGT	TCC	CAT	TCC	AAG	AAA	CTC	TGT	CCT	ATT	GAC	ATG	CTA	TGG	1086
Asp	Arg	Cys	Ser	His	Ser	Lys	Lys	Leu	Суѕ	Pro	Ile	Asp	Met	Leu	Trp	
		215					220					225				
GAT	AGC	AAC	AAA	TGT	AAA	TGT	GTT	TTG	CAG	GAG	GAA	TAA	CCA	CTT	GCT	1134
Asp	Ser	Asn	Lys	Cys	Lys	Cys	Val	Leu	Gln	Glu	Glu	Asn	Pro	Leu	Ala	
	230					235					240					
GGA	ACA	GAA	GAC	CAC	TCT	CAT	CTC	CAG	GAA	CCA	GCT	CTC	TGT	GGG	CCA	1182
Gly	Thr	Glu	Asp	His	Ser	His	Leu	Gln	Glu	Pro	Ala	Leu	Cys	Gly	Pro	
245					250					255					260	
CAC	ATG	ATG	TTT	GAC	GAA	GAT	CGT	TGC	GAG	TGT	GTC	TGT	AAA	ACA	CCA	1230
His	Met	Met			Glu	Asp	Arg	Суѕ	Glu	Cys	Val	Cys	Lys	Thr	Pro	
				265					270					275		
						CAG										1278
Cys	Pro	Lys	Asp	Leù	Ile	Gln	His	Pro	Lys	Asn	Cys	Ser	Cys	Phe	Glu	

			280					285					290	0		
TGC	AAA	GAA	AGT	CTG	GAG	ACC	TGC	TGC	CAG	AAG	CAC	AAG	CTA	TTT	CAC	1326
Cys	Lys	Glu	Ser	Leu	Glu	Thr	Cys	Cys	Gln	Lys	His	Lys	Leu	Phe	His	
		295					300					305				
CCA	GAC	ACC	TGC	AGC	TGT	GAG	GAC	AGA	TGC	CCC	TTT	CAT	ACC	AGA	CCA	1374
Pro	Asp	Thr	Cys	Ser	Cys	Glu	Asp	Arg	Cys	Pro	Phe	His	Thr	Arg	Pro	
	310					315					320					
TGT	GCA	AGT	GGC	AAA	ACA	GCA	TGT	GCA	AAG	CAT	TGC	CGC	TTT	CCA	AAG	1422
Cys	Ala	Ser	Gly	Lys	Thr	Ala	Суѕ	Ala	Lys	His	Cys	Arg	Phe	Pro	Lys	
325					330					335					340	
GAG	AAA	AGG	GCT	GCC	CAG	GGG	ccc	CAC	AGC	CGA	AAG	TAA	CCT			1464
Glu	Lys	Arg	Ala	Ala	Gln	Gly	Pro	His	Ser	Arg	Lys	Asn	Pro			
				345					350							
TGAT	TCAG	CG T	TCCA	AGTI	c cc	CATO	CCTG	TCA	TTTT	AAT	CAGO	ATGC	TG (CTTTG	CCAAG	152 4
TTGC	TGTC	AC I	GTTT	тттп	c cc	AGGI	GTTA	AAA	AAAA	TAA.	CCAT	ATTT'	CA	CAGCA	CCACA	1584
GTGA	ATCC	AG A	CCAA	CCTI	C CA	TTCA	CACC	AGC	TAAG	GAG	TCCC	TGGT	TC A	ATTGA	TGGAT	1644
GTCT	TCTA	GC T	GCAG	ATGC	C TC	TGCG	CACC	AAG	GAAT	GGA	GAGG	AGGG	GA C	CCAT	GTAAT	1704
CCTT	TTGT	TT A	GTTT.	TGTI	TT T	GTTT	TTTG	GTG	AATG	AGA	AAGG	TGTG	CT C	GTCA	TGGAA	1764
TGGC.	AGGT	GT C	ATAT	GACT	G AT	TACT	CAGA	GCA	GATG.	AGG	AAAA	.CTGT	AG 1	стст	GAGTC	1824
CTTT	GCTA	AT C	GCAA	CTCT	T GT	GAAT	TATT	CTG	ATTC	TTT	TTTA	TGCA	GA A	ATTTG	ATTCG	1884
TATG	ATCA	GT A	CTGA	CTTT	C TG	ATTA	CTGT	CCA	GCTT	ATA	GTCT	TCCA	GT I	TAAT	GAACT	1944
ACCA'	TCTG	AT G	TTTC	ATAT	AT T	AGTG	TATT	AAT	AGAA	TAA	AAAC	ACCA	TT A	TTCA	AGTCT	2004

SEQUENCE LENGTH: 16

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: peptide

ORIGINAL SOURCE:

ORGANISM: Homo sapiens

TISSUE TYPE: lung

SEQUENCE DESCRIPTION:

Cys Gly Pro Asn Lys Glu Leu Asp Glu Asn Thr Cys Gln Cys Val Cys

1 5 10 15

SEQ ID NO: 4	
SEQUENCE LENGTH: 27	
SEQUENCE TYPE: nucleic acid	
STRANDEDNESS: single	
TOPOLOGY: linear	
MOLECULE TYPE: other nucleic acid, synthetic DNA	
SEQUENCE DESCRIPTION:	
AGGGATGGGG AACTTGGAAC GCTGAAT	27
SEQ ID NO: 5	
SEQUENCE LENGTH: 27	
SEQUENCE TYPE: nucleic acid	
STRANDEDNESS: single	
TOPOLOGY: linear	
MOLECULE TYPE: other nucleic acid, synthetic DNA	
SEQUENCE DESCRIPTION:	
GATCTAATCC AGCACCCCAA AAACTGC	27
SEQ ID NO: 6	
SEQUENCE LENGTH: 27	
SEQUENCE TYPE: nucleic acid	
STRANDEDNESS: single	
TOPOLOGY: linear	
MOLECULE TYPE: other nucleic acid, synthetic DNA	
SEQUENCE DESCRIPTION:	
CCATCCTAAT ACGACTCACT ATAGGGC	27
SEQ ID NO: 7	
SEQUENCE LENGTH: 33	
SEQUENCE TYPE: nucleic acid	
STRANDEDNESS: single	
TOPOLOGY: linear	
MOLECULE TYPE: other nucleic acid, synthetic DNA	
SEQUENCE DESCRIPTION:	
CTGGTTCGGC CCAGAACTTG GAACGCTGAA TCA	33

..

SEQ ID NO: 8 SEQUENCE LENGTH: 32 SEQUENCE TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear MOLECULE TYPE: other nucleic acid, synthetic DNA SEQUENCE DESCRIPTION: CTCGCTCGCC CACTAATACG ACTCACTATA GG 32 SEQ ID NO: 9 SEQUENCE LENGTH: 20 SEQUENCE TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear MOLECULE TYPE: other nucleic acid, synthetic DNA SEQUENCE DESCRIPTION: 20 AATTAACCCT CACTAAAGGG SEQ ID NO: 10 SEQUENCE LENGTH: 22 SEQUENCE TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear MOLECULE TYPE: other nucleic acid, synthetic DNA SEQUENCE DESCRIPTION: 22 CCAGGGTTTT CCCAGTCACG AC SEQ ID NO: 11 SEQUENCE LENGTH: 23

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

ACTCACTATA GGGCTCGAGC GGC 23

SEQUENCE LENGTH: 17

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

AAGTCTGGAG ACCTGCT

17

SEQ ID NO: 13

SEQUENCE LENGTH: 17

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

CAGCAGGTCT CCAGACT

SEQ ID NO: 14

SEQUENCE LENGTH: 17

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

CGCACCCAAG GAATGGA 17

SEQ ID NO: 15

SEQUENCE LENGTH: 18

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

TGACACCTGG CCATTCCA 18

SEQUENCE LENGTH: 18

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

CATCAGATGG TAGTTCAT 18

SEQ ID NO: 17

SEQUENCE LENGTH: 20

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

ATGCTGAGCG AGAGTCCATA 20

SEQ ID NO: 18

SEQUENCE LENGTH: 20

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

CACTAGGTTT GCGGCAACTT 20

SEQ ID NO: 19

SEQUENCE LENGTH: 20

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

GCTGTTGGCA AGCACTTACA 20

SEQUENCE LENGTH: 20

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

GATCCATCCA GATCCCTGAA 20

SEQ ID NO: 21

SEQUENCE LENGTH: 19

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

CAGATCAGGG CTGCTTCTA 19

SEQ ID NO: 22

SEQUENCE LENGTH: 32

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

TCCAGATCTT TTGCGGCAAC TTTCTATGAC AT 32

SEQ ID NO: 23

SEQUENCE LENGTH: 33

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

CAGGTCGACT CAAACAGGCA CTAATTCAGG TAC 33

SEÇ	UENC	E LE	ENGTH	i: 15	81											
SEÇ	UENC	E TY	PE:	nucl	eic	acid	i.									
STF	RANDE	DNES	ss: d	loubl	. е											
TOP	OLOG	Y: 1	inea	ır												
MOL	ECUL	E TY	PE:	c DNA	to	mRNA										
ORI	GINA	L SC	URCE	:												
		ORGA	NISM	: mo	use											
		TISS	UE T	YPE:	lun	9										
FEA	TURE	:														
		NAME	/KEY	: CD	s											
	:	LOCA	TION	: 96	11	69										
		IDEN	TIFI	CATI	ON M	ЕТНО	D: E									
SEQ	UENC	E DE	SCRI	PTIO	N:											
TTC	CGGG	CTT	TGCT	GGAG	AA T	GCCT	TTTG	C AA	CACT	TTTC	AGI	AGCT	GCC	TGGA	AACAAC	60
TGC	TTAG	TCA	TCGG	TAGA	CA T	TTAA	ATAA	т тс	AAA	ATG	TAT	GGA	GAA	TGG	GGA	113
										Met	Tyr	Gly	Glu	Trp	Gly	
										1				5		
									GTG							161
Met	Gly	Asn		Leu	Met	Met	Phe	His	Val	Tyr	Leu	Val	Gln	Gly	Phe	
			10					15					20			
									TTT							209
Arg	Ser		His	Gly	Pro	Val		Asp	Phe	Ser	Phe	Glu	Arg	Ser	Ser	
		25					30					35				
									CAG							257
Arg		Met	Leu	Glu	Arg		Glu	Gln	Gln	Ile		Ala	Ala	Ser	Ser	
mm a	40					45					50					
									TCT							305
	GIU	GIU	Leu	Leu		He	Ala	Hıs	Ser		Asp	Trp	Lys	Leu	_	
55					60					65					70	
									GCC							353
Arg	Cys	Arg	Leu		Leu	Lys	Ser	Leu	Ala	Ser	Met	Asp	Ser		Ser	
20.				75					80					85		
									GCA							401
HT9	ser	HlS		ser	Thr	Arg	Phe		Ala	Thr	Phe	Tyr		Thr	Glu	
			90					95					100			

ACA	CTA	AAA	GTT	ATA	GAT	GAA	GAA	TGG	CAG	AGG	ACC	CAA	TGC	AGC	CCT	449
Thr	Leu	Lys	Val	Ile	Asp	Glu	Glu	Trp	Gln	Arg	Thr	Gln	Cys	Ser	Pro	
		105					110					115				
AGA	GAG	ACA	TGC	GTA	GAA	GTC	GCC	AGT	GAG	СТG	GGG	AAG	ACA	ACC	AAC	497
Arg	Glu	Thr	Cys	Val	Glu	Val	Ala	Ser	Glu	Leu	Gly	Lys	Thr	Thr	Asn	
	120					125					130					
ACA	TTC	TTC	AAG	ccc	ссс	TGT	GTA	TAA	GTC	TTC	CGG	TGT	GGA	GGC	TGC	545
Thr	Phe	Phe	Lys	Pro	Pro	Cys	Val	Asn	Val	Phe	Arg	Cys	Gly	Gly	Cys	
135					140					145					150	
TGC	AAC	GAA	GAG	GGT	GTG	ATG	TGT	ATG	AAC	ACA	AGC	ACC	TCC	TAC	ATC	593
Cys	Asn	Glu	Glu	Gly	Val	Met	Cys	Met	Asn	Thr	Ser	Thr	Ser	Tyr	Ile	
				155					160					165		
TCC	AAA	CAG	CTC	TTT	GAG	ATA	TCA	GTG	CCT	CTG	ACA	TCA	GTG	ccc	GAG	641
Ser	Lys	Gln	Leu	Phe	Glu	Ile	Ser	Val	Pro	Leu	Thr	Ser	Val	Pro	Glu	
			170					175					180			
TTA	GTG	CCT	GTT	AAA	TTA	GCC	AAC	CAT	ACG	GGT	TGT	AAG	TGC	TTG	ccc	689
Leu	Val	Pro	Val	Lys	Ile	Ala	Asn	His	Thr	Gly	Суѕ	Lys	Cys	Leu	Pro	
		185					190					195				
			CGC													737
Thr	Gly	Pro	Arg	His	Pro	Tyr	Ser	Ile	Ile	Arg	Arg	Ser	Ile	Gln	Thr	
	200					205					210					
CCA	GAA	GAA	GAT	GAA	TGT	CCT	CAT	TCC	AAG	AAA	CTC	TGT	CCT	TTA	GAC	785
Pro	Glu	Glu	Asp	Glu	Cys	Pro	His	Ser	Lys	Lys	Leu	Cys	Pro	Ile	Asp	
215					220					225					230	
ATG	CTG	TGG	GAT	AAC	ACC	AAA	TGT	AAA	TGT	GTT	TTG	CAA	GAC	GAG	ACT	833
Met	Leu	Trp	Asp	Asn	Thr	Lys	Cys	Lys	Cys	Val	Leu	Gln	Asp	Glu	Thr	
				235					240					245		
CCA	CTG	CCT	GGG	ACA	GAA	GAC	CAC	TCT	TAC	CTC	CAG	GAA	ccc	ACT	CTC	881
Pro	Leu	Pro	Gly	Thr	Glu	Asp	His		Tyr	Leu	Gln	Glu		Thr	Leu	
			250					255					260			
			CAC													929
Cys	Gly		His	Met	Thr	Phe	-	Glu	Asp	Arg	Cys		Cys	Val	Cys	
		265					270					275				
			TGT													977
Lys		Pro	Cys	Pro		_	Leu	Ile	Gln	His		Glu	Asn	Cys	Ser	
	280					285					290					

TGC	TTT	GAG	TGC	AAA	GAA	AGT	CTG	GAG	AGC	TGC	TGC	CAA	AAG	CAC	AAG	1025
Cys	Phe	Glu	Cys	Lys	Glu	Ser	Leu	Glu	Ser	Cys	Cys	Gln	Lys	His	Lys	
295					300					305					310	
ATT	TTT	CAC	CCA	GAC	ACC	TGC	AGC	TGT	GAG	GAC	AGA	TGT	CCT	TTT	CAC	1073
Ile	Phe	His	Pro	Asp	Thr	Cys	Ser	Cys	Glu	Asp	Arg	Cys	Pro	Phe	His	
				315					320					325		
ACC	AGA	ACA	TGT	GCA	AGT	AGA	AAG	CCA	GCC	TGT	GGA	AAG	CAC	TGG	CGC	1121
Thr	Arg	Thr	Cys	Ala	Ser	Arg	Lys	Pro	Ala	Cys	Gly	Lys	His	Trp	Arg	
			330					335					340			
TTT	CCA	AAG	GAG	ACA	AGG	GCC	CAG	GGA	CTC	TAC	AGC	CAG	GAG	AAC	CCT	1169
Phe	Pro	Lys	Glu	Thr	Arg	Ala	Gln	Gly	Leu	Tyr	Ser	Gln	Glu	Asn	Pro	
		345					350					355				
TGAT	TCA	ACT 1	rccti	TCA	G TO	cccc	CATO	TCI	GTC	TTT	LAAT	ACAGO	CTC A	ACTG	CTTTGT	1229
CAAC	TTGC	TG 1	rcaci	CTTO	c co	CACTA	CCCC	TGC	cccc	ccc	cccc	cccc	GCC 1	CCAC	GTGTT	1289
AGAA	AAGI	TG A	OTTTA	ACCI	ra Gi	rgTC#	TGGI	LAA T	AGCC#	ACAT	TTC	CATGO	CAA	rggco	GCTAG	1349
GTGA	TTCC	cc z	AGTTC	CACTO	SA CA	TAA	ACTI	GTA	GCTT	CAA	ATG	CTTI	GC (GCCAT	CANCA	1409
CTCF	AAA	AGG A	AAGGG	GTCT	G AA	GAAC	ccci	TGT	TTGA	AATA	ATA	AAA/	CAG	STGC	TGAAA	1469
CAAA	LATAI	TA (GTGC	CACI	C G	ATTGO	GTCC	CTC	CGGGG	CTGG	CCAA	ATTO	CCA A	AGGGG	CAATGC	1529
TCCI	GAAI	TT 1	ATTGI	GCCC	CC TI	CCTI	AATO	CGG	TAAT	TCC	TTTT	GTTI	GA T	T		1581

SEQUENCE LENGTH: 1491

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: cDNA to mRNA

ORIGINAL SOURCE:

ORGANISM: rat

TISSUE TYPE: lung

FEATURE:

NAME/KEY: CDS

LOCATION: 270..1247

IDENTIFICATION METHOD: E

SEQUENCE DESCRIPTION:

GCCACCTCTT GATTATTTGT GCAGCGGGAA ACTTTGAAAT AGTTTTCATC TCTTTCTCCC 60
ATACTAAGAT TGTGTGTGGC CGTGGGGGAG TCCTTGACTA ACTCAAGTCA TTTCATTGGA 120

TTT	TGA	TAC	AAC	rGATC	AT C	STGAT	TTTA	T T	TCCF	TGTA	AA A	GTTT	rggg	GCT	CAAACI	r 180
TTC	CTT	CTGG	AGA	ATGCC	TT T	TGC	ACAC	ттт	TCAC	TAGO	TGC	CTG	AAA	CAA	TGCTT#	A 240
GCC	CATC	GTG	GAC	ATTTG	AA A	TATI	CAAA	ATO	TAT	GGA	GAC	TGO	G GC	C GC	A GTG	293
								Me	t Ty	r Gly	y Gl	u Tr	p Al	a Al	a Val	
								1				5				
LAA	' ATI	CTC	OTA :	ATG	TCC	TAT	GTG	TAC	CTG	GTG	CAG	GGG	TTC	AG1	TTA	341
Asn	Ile	Leu	Met	Met	Ser	Tyr	Val	туг	Leu	Val	Glr	Gly	Phe	e Ser	Ile	
	10					15					20					
															TCT	389
	His	Arg	Ala	Val	Lys	Asp	Val	Ser	Leu	Glu	Arg	Ser	Ser	Arg	Ser	
25					30					35					40	
															GAA	437
Val	Leu	Glu	Arg		Glu	Gln	Gln	Ile		Ala	Ala	Ser	Thr		Glu	
ara	m m α	am a		45					50					5 5		
															TGC	485
GIU	Бец	Leu	60	vai	АТа	HIS	ser	65	Asp	тгр	Lys	Leu		Arg	Cys	
CGG	ፐ ፐG	AAG		A A A	ልርጥ	ርጥጥ	GCC		GTG	GAC	ጥርር	ccc	70 TCA	ACA	ጥሮር	522
														Thr		533
,		75		-1-			80				001	85	001	1111	561	
CAT	CGC	TCC	ACC	AGA	ттт	GCG	GCA	ACT	TTC	TAT	GAT		GAA	ACA	CTA	581
														Thr		
	90					95					100					
AAA	GTT	ATA	GAT	GAA	GAA	TGG	CAG	AGG	ACC	CAA	TGC	AGC	CCT	AGA	GAG	629
Lys	Val	lle	Asp	Glu	Glu	Trp	Gln	Arg	Thr	Gln	Cys	Ser	Pro	Arg	Glu	
105					110					115					120	
ACA	TGC	GTA	GAA	GTC	GCC	AGT	GAG	CTG	GGG	AAG	ACA	ACC	AAC	ACA	TTT	677
Thr	Cys	Val	Glu	Val	Ala	Ser	Glu	Leu	Gly	Lys	Thr	Thr	Asn	Thr	Phe	
				125					130					135		
TTC	AAG	ccc	CCT	TGT	GTA	TAA	GTC	TTC	CGG	TGT	GGA	GGA	TGC	TGC	TAA	725
Phe	Lys	Pro	Pro	Суѕ	Val	Asn	Val	Phe	Arg	Cys	Gly	Gly	Cys	Cys	Asn	
			140					145					150			
														TCC		773
Glu	Glu		Val	Met	Cys	Met		Thr	Ser	Thr	Ser	Tyr	Ile	Ser	Lys	
		155					160					165				
CAG	CTC	TTT	GAG	ATA	TCA	GTG	CCT	CTG	ACA	TCA	GTG	CCC	GAG	ጥጥል	GTG	821

Gln	Leu	Phe	Glu	Ile	Ser	Val	Pro	Leu	Thr	Ser	Val	Pro	Glu	Leu	Val	
	170					175					180)				
CCT	GTT	AAA	TTA	GCC	AAC	CAT	ACG	GGT	TGT	AAG	TGT	TTG	ccc	ACG	GGC	869
Pro	Val	Lys	Ile	Ala	Asn	His	Thr	Gly	Cys	Lys	Cys	Leu	Pro	Thr	Gly	
185					190)				195					200	
CCC	CGG	CAT	CCT	TAT	TCA	ATT	ATC	AGA	AGA	TCC	TTA	CAG	ATC	CCA	GAA	917
Pro	Arg	His	Pro	Tyr	Ser	Ile	Ile	Arg	Arg	Ser	Ile	Gln	Ile	Pro	Glu	
				205					210					2 1 5	5	
GAA	GAT	CAA	TGT	CCT	CAT	TCC	AAG	AAA	CTC	TGT	CCT	GTT	GAC	ATG	CTG	965
Glu	Asp	Gln	Cys	Pro	His	Ser	Lys	Lys	Leu	Cys	Pro	Val	Asp	Met	Leu	
			220					225					230)		
TGG	GAT	AAC	ACC	AAA	TGT	AAA	TGT	GTT	TTA	CAA	GAT	GAG	AAT	CCA	CTG	1013
Trp	Asp	Asn	Thr	Lys	Cys	Lys	Cys	Val	Leu	Gln	Asp	Glu	Asn	Pro	Leu	
		235					240					245				
CCT	GGG	ACA	GAA	GAC	CAC	TCT	TAC	CTC	CAG	GAA	CCC	GCT	CTC	TGT	GGA	1061
Pro	Gly	Thr	Glu	Asp	His	Ser	Tyr	Leu	Gln	Glu	Pro	Ala	Leu	Сув	Gly	
	250			-		255					260					
CCA	CAC	ATG	ATG	TTT	GAT	GAA	GAT	CGC	TGC	GAG	TGT	GTC	TGT	AAA	GCA	1109
	His	Met	Met	Phe	Asp	Glu	Asp	Arg	Cys	Glu	Cys	Val	Cys	Lys	Ala	
265					270					275					280	
											AAC					1157
Pro	Cys	Pro	Gly	Asp	Leu	Ile	Gln	His	Pro	Glu	Asn	Cys	Ser	Cys	Phe	
				285					290					295		
GAA																1205
Glu	Cys			Ser	Leu	Glu	Ser		Cys	Gln	Lys	His	Lys	Met	Phe	
			300					305					310			
CAC (1247
His 1	Pro		Thr	Cys	Arg	Ser		Val	Phe	Ser	Leu	Ser	Pro			
		315					320					325				
															СТТТТ	1307
															TACAT	1367
															GATTA	1427
	JCCG'	TA T	TGCC.	ATGC	C TG	CCGT	CATG	CTA	TCAT	GAG	CGGA	AAAG	T AA	CACT	GGCAT	1487
AATT																1491

SEQUENCE LENGTH: 20

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

GCTGCGAGTG TGTCTGTAAA

20

SEQ ID NO: 27

SEQUENCE LENGTH: 25

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid, synthetic DNA

SEQUENCE DESCRIPTION:

GGGTAGTGGG CAACAGTGAC AGCAA

25

Claims

- 1. A protein shown by SEQ ID NO: 1 or having the amino acid sequence derived therefrom in which one or more amino acids are substituted, deleted, or added.
- 2. A protein encoded by a DNA hybridizing with the DNA shown by SEQ ID NO: 2.
 - 3. A DNA encoding the protein of Claim 1.
 - 4. A DNA hybridizing with the DNA shown by SEQ ID NO: 2.
 - 5. A vector containing the DNA of Claim 3 or 4.
 - 6. A transformant carrying the vector of Claim 5.
- 7. A method of producing the protein of Claim 1 or 2, which comprises culturing the transformant of Claim 6.
 - 8. An antibody binding to the protein of Claim 1 or 2.
- 9. A method of screening a compound binding to the protein of Claim 1 or 2, which comprises a step of detecting the activity of the protein of Claim 1 or 2 to bind to a test sample.
- 10. A compound binding to the protein of Claim 1 or 2, wherein the compound have been isolated by the method of Claim 9.

Fig. 1

2/4

Fig. 2

HSVEGFCC* H24828	MHLLGFFSVA CSLLAAALLP GPREAPAAAA AFESGLDLSD AEPDAGEATA	5 0 5 0
HSVEGFCC H24828	YASKDLEEQL RSVSSVDELM TVLYPEYWKM YKCQLRKGGW QHNREQANLN	1 0 0 1 0 0
HSVEGFCC H24828	SRTEETIKFA AAHYNTEILK SIDNEWRKTQ CMPREVCIDV GKEFGVATNT	150 150
HSVEGFCC H24828	FFKPPCVSVY RCGGCCNSEG LQCMNTSTSY LSKTLFEITV PLSQGPKPVT	2 0 0 2 0 0
HSVEGFCC H24828	ISFANHTSCR CMSKLDVYRQ VHSIIRRSLP ATLPQCQAAN KTCPTNYMWN	250 250
HSVEGFCC H2 4 828	NHICRCLAGE DFMFSSDAGD DSTDGFHDIC GPNKELDEET CQCVCRAGLR	300 300
HSVEGFCC H2 4 828	PAS <mark>CGPH</mark> KEL TRNSTO <mark>CVCK</mark> NKLFPSQCGA NREFDENTTQ CVCKRTTPRN PAL GGPH MMF TEDRTECVCK TPCPKDLIQH PKNCSCFECK ESLETCCQKH	350 350
HSVEGFCC H24828	QPLNPGKCAC ECTESPOKCL LKGKKFHHQT CSCYR <mark>RPC</mark> TN RQK <mark>AC</mark> -EPGF KLFHPDTCSC EDR CPFHT <mark>RPC</mark> AS GKT <u>AC</u> AKHCR	4 0 0 4 0 0
HSVEGFCC H24828	SYSEEVCRCV ESYWEREOMS	450 450
*HSVEGFCC:	human VEGF-C	

Fig. 3

HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	YREWVVVNV FMMLYVOLVQ GSSNEHGPVKRSSQ CHLUGFESVA CSULAAALLP GPREAPAAAA AFESGLDLSD AEPDAGEATA RTUACULLU GCGYLAHVUA EEAEIPREVI ERLARSQ NNCWAUFLS LCCYURLVSA EGDPIPEELY EMLSDHS LPVMRLFPCF LQULAGLALP AVPPQWALS AGNGS	50 50 50 50 50 50
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	STLERSECQI RAASSLEELL RITHSEDWAL WRORLRLKSF TSMDSRSASH YASKOLEFOL RSVSGVDELM TVLYPEYWAM YKCOLRKGGW QHNREQANLN IHSIRDLORI LEIDSVGSED S-I	100 100 100 100 100 100
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	RSTRFA ATFYDIETLE VIDEEWORTO CSPRETCIEV ASELGKSINT SRTEELIKFA AAHYNTEILE SIDNEWRKTO CMPREVCIDV GKEFGVAINT HGVHAUKHVP EKRPLPIRRE RSIEEAVPAV CKIRTVIYEI PRSOVDPUSA SHSGGELESL ARGRRSLGSL THAEPAMIAE CKTRIEVFEI SRRLIDRUNA	150 150 150 150 150 150
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	FFKPPCVN VFRCGGCCNE BSLICMNIST SYISKELFER -SVPLTSVPE FFKPPCVS VYRCGGCCNS EGLOCMNIST SYLSKTLFER -TVPLSQGPK NFLIWPPCVE VKRCTGCCNI SSVKCQPSRV HHRSVKVAKV EYVRKKPKLK NFLIWPPCVE VQRCSGCCNN RNVQCRPTQV QLRPVCVRK EIVRKKPIFK MMSPSCVS LLRCTGCCGD BNLHCVPVET ANVTMLLKKRSGDRPS IGKPSCVP LMRCGGCCND EGLECVPTEE SNITMCILKIRYPHQGQH QLVPSCVT VQRCGGCCPD DGLECVPTGQ HQVRMCILMIRYPSSQ-	200 200 200 200 200 200 200 200
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	LVPVKVANET GEKELPTA PRHPYSIIRE SIQIPEEDEC SHSKKLCPID PUTISFANET SEREMSKLDV YRQVHSIIRE S-LPATLPQC QAANKTCPIN EVQVRLEEDL ECACATTSLN PDYREEDTER P-RESKKEK GKRLKPI. KATVTLEDL ACKDET-VAA ARPVTRSPGG S-QEQRAK	250 250 250 250 250 250 250
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	ML DSNKCKC VLOTE-NOLA GTEDUSHLQE	300 300 300 300 300 300 300
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	PALCOP IMMEDEDROE OVCOTPCPKD LIQHPKNCSC FECKESL-ED AGLRPASCOP IKEDDRNSOO OVCONKUEFPS OCGANREFDE NTOOCVCKRUVRVRRPPKOK IRKEKHTHOK TALMETOGA. N-TDSRCKAR QLEDNERTOR ODKPRR. RRSFLRCOOR GLEDNPDTOR ORKLRR.	350 350 350 350 350 350 350
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	CCQKHKLFHP DTCSCE	400 400 400 400 400 400 400
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	AKHCRFPKEK RAAQGPHSRK NOEPGFSYSEE VCRCVPSYWK REQMS	450 450 450 450 450 450 450

Fig. 4

a) Hydrophobicity

b) Prediction of the human VEGF-D signal peptide

