last time: inner products

today: how they interact with

bases

lin maps/ops

fix an n x n real matrix M and let

$$\beta(u, v) = u^t M v$$
 for all u, v in R^n

when is this bilinear form:

- positive?
- definite?
- symmetric?

[useful trick:]
$$\beta(e_j, e_i) = M_{j, i}$$

 $\beta(e_i, e_j) = M_{i, j}$

so if β is symmetric, then M is symmetric

[is the converse true?]

in general, u = sum_j b_j e_j

v = sum_i c_i e_i

 $\beta(u, v) = sum_{j, i} b_j c_i \beta(e_j, e_i)$

if M is symmetric

then $\beta(e_j, e_i) = \beta(e_i, e_j)$ for all i, j

so $\beta(u, v) = sum_{i, j} c_i b_j \beta(e_i, e_j) = \beta(v, u)$

altogether, β is symmetric <u>iff</u> M is symmetric

for positive-definiteness: need $\beta(v, v) > 0$ for $v \neq 0$ only have $\beta(v, v) = \text{sum}_{j, i} c_j c_i \beta(e_j, e_i)$ so previous trick doesn't work here

(Axler §6B) let V be a vec. sp. over F = R, resp. F = C let < ,> be bilin., resp. skew-lin.

Thm if V has fin. dim. and <, > is an inner product, then we can find a basis (u_i)_i for V s.t.

 $\langle u_j, u_i \rangle = 1$ if j = i0 if $j \neq i$

<u>Df</u> a list of vec's satisfying these conditions is said to be orthonormal (wrt < , >)

<u>Ex</u> the std basis of F^n is orthonormal wrt $\langle u, v \rangle = u \cdot v$, resp. $\langle u, v \rangle = u \cdot v^*$

restate thm for R^n:

suppose <u, v> = u^t M v and (u_i)_i is

orthonormal wrt < , >

let (e_i)_i be the standard basis

let P : R^n to R^n be def by Pe_i = u_i

<u_j, u_i> = <Pe_j, Pe_i> = e_j^t P^tMP e_i

also <u_j, u_i> = e_j • e_i = e_j^t e_i

so $(P^tMP)_{j, i} = I_{j, i}$ for all j, i

Thm for R^n

if < , > defines an inner product, then P^tMP = I
 for some invertible P

let $\langle u, v \rangle = u^t Mv$

[modify for C^n?] need skew-linear < , >

Thm for C^n let <u, v> = u^t Mv*

if < , > defines an inner product, then P^tMP* = I for some invertible P

<u>Pf of General Thm</u> < , > inner product on V

pick an arbitrary ordered basis (v_1, ..., v_n) want to build a new, orthonormal basis (u_i)_i enough to build an orthogonal basis (f_i)_i:

 $\langle f_j, f_i \rangle \neq 0$ if j = i $\langle f_j, f_i \rangle = 0$ if $j \neq i$

[why?] can then set $u_i = f_i/||f_i||$ for all i

<u_i, u_i> = <f_i, f_i>/||f_i||^2 = 1 <u_j, u_i> = <f_j, f_i>/(||f_j|| ||f_i||) = 0 if j \neq i

Gram-Schmidt Process

define f i's recursively:

$$f_1 = v_1$$

$$f_k = v_k - sum_{j < k} proj_{f_j}(v_k)$$

= $v_k - sum_{j < k} (/) f_j$

check: if i < k, then <f_k, f_i>

$$= < V_k, f_i >$$

$$- sum_{j < k} (/)$$

$$= < v_k, f_i > - < v_k, f_i >$$

$$- sum_{j \neq i} (/)$$

$$= 0 - 0 - 0$$
 by inductive hypothesis \Box

Rem	process shows more:	<u>Ex</u>		$q > = int_{-1}^{}$	1 () 1 ()	
			is an inner product on R[x]			
-	in any V, any finite orthonormal list	[compare to PS8, #4]			#4]	
	can be extended to a longer (finite) list	<1, 1> =	2,	<1, x>=0,	$<1, x^2> = 2/3$	
				< x, x > = 2/3	$< x, x^2 > = 0$	
-	if V is findim'l, then have a direct sum				$<$ x^2, x^2> = 2/5	
	$V = U + U^{\perp}$ for any linear U sub V,					
	where $U^{\perp} = \{v \text{ in } V \mid \langle v, U \rangle = 0\} \text{ [why?]}$	let V = {p in R[x] p = 0 or deg(p) \leq 2}			$leg(p) \le 2$	
			$(v_1, v_2, v_3) = (1, x, x^2)$			
U [⊥] is called the <u>orthogonal complement</u> to U in V		$f_1 = v_1 = 1$				
		f_2	= V_	_2 - <v_2, f_1:<="" td=""><td>>/<f_1, f_1=""> f_1 = x</f_1,></td></v_2,>	>/ <f_1, f_1=""> f_1 = x</f_1,>	
<u>Rem</u>	if u_1,, u_m in V is an orthonormal list	$f_3 = v_3 - \langle v_3, f_1 \rangle / \langle f_1, f_1 \rangle f_1$				
	then it is linearly indep, so m ≤ dim(V)		- <v_3, f_2="">/<f_2, f_2=""> f_2</f_2,></v_3,>			
			$= x^2 - [(2/3)/2] 1 = x^2 - 1/3$			
[why?]	if a_1u_1 + + a_mu_m = 0					
	then applying <u_i, -=""> gives a_i = 0</u_i,>	$(u_1, u_2, u_3) = (1/\sqrt{2}, x\sqrt{3/2}, (x^2 - 1/3)\sqrt{5/2})$				

Rem let K : R to R be nice-enough that $< p, q > = int_{-\infty}^{\infty} p(t)q(t)K(t) dt$ defines an inner product on R[t]

we say p, q are orthogonal wrt K iff they are orthogonal wrt < , >

certain K give useful families of <u>orthogonal polys</u> (often not orthonormal in literature)

Legendre polys P_n are orthogonal wrt $\delta_{[-1, 1]}$ but scaled so that P_n(1) = 1 for all n

$$(P_1, P_2, P_3) = (1, x, (3x^2 - 1)/2)$$

[see Wikipedia article "orthogonal polys"]

(Axler §7A) [Riesz representation, in Axler:]

Lem if V is finite-dim'l, < , > is bi/skew-linear and right-nondegenerate [i.e., <-, v> is zero only if v = 0] then v mapsto $\theta_v = <-$, v> is an iso V to V

<u>Pf</u> right-nondegen. means the map is inj. but $dim(V) = dim(V^{v})$

Cor given inner product spaces
 (V, < , >) and (W, { , }),
 a linear map T : V to W,

there is a map T^* : W to V s.t. $\{Tv, w\} = \langle v, T^*w \rangle$ for all v in V and w in W

Т

W to W^{v} to V^{v} to V

[draw square]

explicitly:

Pf T*w in V is the unique vector s.t.
$$\theta_{T^*w} = T^v(\theta_w)$$

now:,
$$\{Tv, w\} = \theta_{w}(Tv) = T^{v}(\theta_{w})(v)$$

 $< v, T^{*}w > = \theta_{T^{*}w}(v)$

<u>Df</u> a linear map T : V to W is called an isometry from < , > to { , } iff either:

2)
$$T*T = Id V$$

Pf that 1) iff 2)

iff <v', T*Tv> = <v', v> for all v, v' iff <-, T*Tv> = <-, v> for all v iff T*Tv = v for all v [by Riesz] iff 2)

Df suppose W = V and { , } = < , >
 if F = R: T is called an orthogonal op
 if F = C: T is called a unitary op