МФТИ, ФПМИ

Алгоритмы и структуры данных, осень 2021 Домашнее задание №2. Сортировки, кучи

- 1. (1 балл) В массиве чисел a_1, \ldots, a_n за одну операцию можно поменять местами любые два соседних элемента. Можно ли отсортировать массив (то есть расположить все числа в порядке неубывания) таким образом, чтобы каждый элемент поучаствовал в чётном числе перестановок? Определите ответ за $O(n \log n)$.
- **2.** (1 балл) Дан массив чисел a_1, \ldots, a_n , причём $a_i \in \{0, 1, \ldots, k\}$ при всех i. Отсортируйте этот массив за $O(n + \sqrt{k})$.
- 3. (1 балл) В этой задаче использовать разрешается не более одной кучи. Разработайте структуру данных S, которая бы позволяла обрабатывать любой запрос из нижеперечисленных за $O(\log n)$, где n текущий размер структуры:
 - insert x: вставить целое число x в S;
 - getMin: сообщить минимальное число в S;
 - \bullet getMax: сообщить максимальное число в S;
 - ullet extractMin: удалить минимальное число из S.
- **4.** (2 балла) Дано два отсортированных массива: a_1, \ldots, a_n и b_1, \ldots, b_m . Определим A+B как множество всевозможных попарных сумм вида a_i+b_j с повторениями. Например, если $A=\{1,2,3\}$, а $B=\{2,3,4\}$, то $A+B=\{3,4,5,4,5,6,5,6,7\}$. По данному числу k вам надо найти k-ю порядковую статистику в A+B (заметьте, что A+B вам не дан). Требуемая асимптотика: $O(k\log k)$. Разрешается использовать не больше O(k) дополнительных ячеек памяти.
- **5.** (3 балла) В алгоритме поиска медианы за линейное время весь массив бьётся на блоки по 5 элементов. А что если разбивать на блоки по 2k+1 элементов (где k константа)? Найдите время работы алгоритма в таком случае. Объясните выбор k=2 в классическом алгоритме.
- **6.** (4 балла) Разработайте структуру данных S, которая бы позволяла хранить множество целых чисел, добавлять в него элементы и удалять |S|/2 наибольших элементов из множества. Асимптотика: O(1) амортизированно (то есть q последовательных запросов к изначально пустому S должны обрабатываться за O(q)).