Filter Summary Report: TIA,simple,Z1,ZL

Generated by MacAnalog-Symbolix

December 5, 2024

Contents

1 Examined H(z) for TIA simple Z1 ZL: $\frac{Z_1Z_Lg_m}{Z_1g_m+1}$

$$H(z) = \frac{Z_1 Z_L g_m}{Z_1 g_m + 1}$$

- 2 HP
- 3 BP

3.1 BP-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_1 R_L g_m s}{(R_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_1 R_L g_m}{R_1 g_m + 1}$
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{L_1 R_L g_m s}{(C_L R_L s + 1) (L_1 g_m s + 1)}$$

Q:
$$\frac{C_L L_1 R_L g_m \sqrt{\frac{1}{C_L L_1 R_L g_m}}}{C_L R_L + L_1 g_m}$$
 wo:
$$\sqrt{\frac{1}{C_L L_1 R_L g_m}}$$
 bandwidth:
$$\frac{C_L R_L + L_1 g_m}{C_L L_1 R_L g_m}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{L_1 R_L g_m}{C_L R_L + L_1 g_m}$$
 Qz: 0 Wz: None

3.3 BP-3
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_1 R_L g_m s}{C_1 L_1 s^2 + L_1 g_m s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth:} \ \frac{g_m}{C_1} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ R_L \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.4 BP-4
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_1 R_1 R_L g_m s}{C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1}$$

Q:
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{R_1g_m+1}{C_1R_1}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_1R_Lg_m}{R_1g_m+1}$
Qz: 0
Wz: None

4 LP

4.1 LP-1
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m}{(C_1 s + g_m) (C_L R_L s + 1)}$$

$$\begin{aligned} &\text{Q: } \frac{C_1C_LR_L\sqrt{\frac{g_m}{C_1C_LR_L}}}{C_1+C_LR_Lg_m}\\ &\text{wo: } \sqrt{\frac{g_m}{C_1C_LR_L}}\\ &\text{bandwidth: } \frac{C_1+C_LR_Lg_m}{C_1C_LR_L}\\ &\text{K-LP: } R_L\\ &\text{K-HP: } 0\\ &\text{K-BP: } 0\\ &\text{Qz: None}\\ &\text{Wz: None} \end{aligned}$$

4.2 LP-2
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_1 R_L g_m}{(C_L R_L s + 1) (C_1 R_1 s + R_1 g_m + 1)}$$

4.3 LP-3
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m}{C_L (C_1 L_1 s^2 + L_1 g_m s + 1)}$$

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo:
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth:
$$\frac{g_m}{C_1}$$
 K-LP:
$$\frac{L_1g_m}{C_L}$$
 K-HP: 0 K-BP: 0 Qz: None Wz: None

4.4 LP-4
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 R_1 g_m}{C_L \left(C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1\right)}$$

Q:
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{R_1g_m+1}{C_1R_1}$ K-LP: $\frac{L_1g_m}{C_L}$ K-HP: 0 K-BP: 0 Qz: None Wz: None

5 BS

5.1 BS-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_1 R_L g_m\left(C_L L_L s^2 + 1\right)}{\left(R_1 g_m + 1\right)\left(C_L L_L s^2 + C_L R_L s + 1\right)}$$

$$Q: \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
 wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{R_L}{L_L}$ K-LP: $\frac{R_1 R_L g_m}{R_1 g_m + 1}$ K-HP: $\frac{R_1 R_L g_m}{R_1 g_m + 1}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_L L_L}}$

5.2 BS-2
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L g_m \left(C_1 L_1 s^2 + 1 \right)}{C_1 L_1 g_m s^2 + C_1 s + g_m}$$

Q:
$$L_1g_m\sqrt{\frac{1}{C_1L_1}}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{1}{L_1g_m}$
K-LP: R_L
K-HP: R_L
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_1L_1}}$

5.3 BS-3
$$Z(s) = \left(\frac{R_1\left(L_1 s + \frac{1}{C_1 s}\right)}{L_1 s + R_1 + \frac{1}{C_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_1 R_L g_m \left(C_1 L_1 s^2 + 1 \right)}{C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + C_1 R_1 s + R_1 g_m + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_1\sqrt{\frac{1}{C_1L_1}}(R_1g_m+1)}{R_1} \\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth:} \ \frac{R_1}{L_1(R_1g_m+1)} \\ \text{K-LP:} \ \frac{R_1R_Lg_m}{R_1g_m+1} \\ \text{K-HP:} \ \frac{R_1R_Lg_m}{R_1g_m+1} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_1L_1}} \end{array}$$

6 GE

6.1 GE-1
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L g_m \left(C_1 L_1 s^2 + C_1 R_1 s + 1 \right)}{C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m}$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{L_{1}g_{m}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{1}L_{1}}} \\ &\text{bandwidth: } \frac{R_{1}g_{m}+1}{L_{1}g_{m}} \\ &\text{K-LP: } R_{L} \\ &\text{K-HP: } R_{L} \\ &\text{K-BP: } \frac{R_{1}R_{L}g_{m}}{R_{1}g_{m}+1} \\ &\text{Qz: } \frac{L_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{1}L_{1}}} \end{aligned}$$

6.2 GE-2
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L g_m \left(C_1 L_1 R_1 s^2 + L_1 s + R_1 \right)}{C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1}$$

$$\begin{aligned} &\text{Q: } \frac{C_1 \sqrt{\frac{1}{C_1 L_1}} (R_1 g_m + 1)}{g_m} \\ &\text{wo: } \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth: } \frac{g_m}{C_1 (R_1 g_m + 1)} \\ &\text{K-LP: } \frac{R_1 R_L g_m}{R_1 g_m + 1} \\ &\text{K-HP: } \frac{R_1 R_L g_m}{R_1 g_m + 1} \\ &\text{K-BP: } R_L \end{aligned}$$

Qz:
$$C_1 R_1 \sqrt{\frac{1}{C_1 L_1}}$$

Wz: $\sqrt{\frac{1}{C_1 L_1}}$

7 AP

INVALID-NUMER

8.1 INVALID-NUMER-1 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L g_m (C_1 R_1 s + 1)}{(C_L R_L s + 1) (C_1 R_1 g_m s + C_1 s + g_m)}$$

Parameters:

$$\begin{aligned} &\text{Q:} \ \frac{C_1 C_L R_L \sqrt{\frac{g_m}{C_1 C_L R_L (R_1 g_m + 1)}} (R_1 g_m + 1)}{C_1 R_1 g_m + C_1 + C_L R_L g_m} \\ &\text{wo:} \ \sqrt{\frac{g_m}{C_1 C_L R_L (R_1 g_m + 1)}} \\ &\text{bandwidth:} \ \frac{C_1 R_1 g_m + C_1 + C_L R_L g_m}{C_1 C_L R_L (R_1 g_m + 1)} \\ &\text{K-LP:} \ R_L \end{aligned}$$

K-HP: 0

K-BP: $\frac{C_1R_1R_Lg_m}{C_1R_1g_m+C_1+C_LR_Lg_m}$ Qz: 0

Wz: None

8.2 INVALID-NUMER-2 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{L_1 g_m (C_L R_L s + 1)}{C_L (C_1 L_1 s^2 + L_1 g_m s + 1)}$$

$$\begin{array}{l} \mathbf{Q} \colon \frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}\\ \mathbf{wo} \colon \sqrt{\frac{1}{C_1L_1}}\\ \mathbf{bandwidth} \colon \frac{g_m}{C_1}\\ \mathbf{K}\text{-LP} \colon \frac{L_1g_m}{C_L}\\ \mathbf{K}\text{-HP} \colon \mathbf{0}\\ \mathbf{K}\text{-BP} \colon R_L\\ \mathbf{Qz} \colon \mathbf{0}\\ \mathbf{Wz} \colon \mathbf{None} \end{array}$$

8.3 INVALID-NUMER-3
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 R_1 g_m \left(C_L R_L s + 1\right)}{C_L \left(C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1\right)}$$

Q:
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{R_1g_m+1}{C_1R_1}$
K-LP: $\frac{L_1g_m}{C_L}$
K-HP: 0
K-BP: $\frac{R_1R_Lg_m}{R_1g_m+1}$
Qz: 0
Wz: None

9 INVALID-WZ

9.1 INVALID-WZ-1
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m \left(C_L L_L s^2 + 1 \right)}{C_L \left(C_1 L_1 s^2 + L_1 g_m s + 1 \right)}$$

$$\begin{aligned} &\text{Q: } \frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}\\ &\text{wo: } \sqrt{\frac{1}{C_1L_1}}\\ &\text{bandwidth: } \frac{g_m}{C_1}\\ &\text{K-LP: } \frac{L_1g_m}{C_L}\\ &\text{K-HP: } \frac{L_Lg_m}{C_1}\\ &\text{K-BP: } 0\\ &\text{Qz: None}\\ &\text{Wz: } \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

9.2 INVALID-WZ-2
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L \left(C_1 L_1 s^2 + L_1 g_m s + 1 \right)}$$

$$\begin{aligned} &\text{Q:} \ \frac{C_1 \sqrt{\frac{1}{C_1 L_1}}}{g_m} \\ &\text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth:} \ \frac{g_m}{C_1} \\ &\text{K-LP:} \ \frac{L_1 g_m}{C_1} \\ &\text{K-HP:} \ \frac{L_L g_m}{C_1} \\ &\text{K-BP:} \ R_L \\ &\text{Qz:} \ \frac{L_L \sqrt{\frac{1}{C_1 L_1}}}{R_L} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

9.3 INVALID-WZ-3
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 R_1 g_m \left(C_L L_L s^2 + 1 \right)}{C_L \left(C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1 \right)}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{1}R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \\ \text{bandwidth:} \ \frac{R_{1}g_{m}+1}{C_{1}R_{1}} \\ \text{K-LP:} \ \frac{L_{1}g_{m}}{C_{L}} \\ \text{K-HP:} \ \frac{L_{L}g_{m}}{C_{1}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \end{array}$$

9.4 INVALID-WZ-4
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 R_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L \left(C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1 \right)}$$

Parameters:

Wz: $\sqrt{\frac{1}{C_L L_L}}$

$$\begin{aligned} &\text{Q: } \frac{C_1 R_1 \sqrt{\frac{1}{C_1 L_1}}}{R_1 g_m + 1} \\ &\text{wo: } \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth: } \frac{R_1 g_m + 1}{C_1 R_1} \\ &\text{K-LP: } \frac{L_1 g_m}{C_L} \\ &\text{K-HP: } \frac{L_L g_m}{C_1} \\ &\text{K-BP: } \frac{R_1 R_L g_m}{R_1 g_m + 1} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_1 L_1}}}{R_L} \end{aligned}$$

Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{R_1 R_L g_m}{R_1 g_m + 1}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_1 g_m}{C_L s \left(R_1 g_m + 1 \right)}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_1 R_L g_m}{\left(R_1 g_m + 1\right) \left(C_L R_L s + 1\right)}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_1 g_m (C_L R_L s + 1)}{C_L s (R_1 g_m + 1)}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_1 g_m \left(C_L L_L s^2 + 1 \right)}{C_L s \left(R_1 g_m + 1 \right)}$$

10.6 INVALID-ORDER-6
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_1 g_m s}{(R_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.7 INVALID-ORDER-7
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(R_1 g_m + 1 \right)}$$

10.8 INVALID-ORDER-8
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(R_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.9 INVALID-ORDER-9 $Z(s) = (L_1 s, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{L_1 R_L g_m s}{L_1 g_m s + 1}$$

10.10 INVALID-ORDER-10
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m}{C_L \left(L_1 g_m s + 1 \right)}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m (C_L R_L s + 1)}{C_L (L_1 g_m s + 1)}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m \left(C_L L_L s^2 + 1\right)}{C_L \left(L_1 g_m s + 1\right)}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_1 L_L g_m s^2}{\left(C_L L_L s^2 + 1\right) \left(L_1 g_m s + 1\right)}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_L \left(L_1 g_m s + 1\right)}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_1 L_L R_L g_m s^2}{(L_1 g_m s + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_1 g_m s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{\left(C_L L_L s^2 + 1\right) \left(L_1 g_m s + 1\right)}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_1 R_L g_m s \left(C_L L_L s^2 + 1\right)}{\left(L_1 g_m s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L g_m}{C_1 s + g_m}$$

10.19 INVALID-ORDER-19
$$Z(s)=\left(\frac{1}{C_1s},\ \infty,\ \infty,\ \infty,\ \infty,\ \frac{1}{C_Ls}\right)$$

$$H(s)=\frac{g_m}{C_Ls\left(C_1s+g_m\right)}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_L R_L s + 1\right)}{C_L s \left(C_1 s + g_m\right)}$$

10.21 INVALID-ORDER-21
$$Z(s)=\left(\frac{1}{C_1s},\ \infty,\ \infty,\ \infty,\ \infty,\ L_Ls+\frac{1}{C_Ls}\right)$$

$$H(s)=\frac{g_m\left(C_LL_Ls^2+1\right)}{C_Ls\left(C_1s+g_m\right)}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L g_m s}{(C_1 s + g_m) (C_L L_L s^2 + 1)}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_L s \left(C_1 s + g_m\right)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L g_m s}{(C_1 s + g_m) (C_L L_L R_L s^2 + L_L s + R_L)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{g_m \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{\left(C_1 s + g_m\right) \left(C_L L_L s^2 + 1\right)}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L g_m\left(C_L L_L s^2 + 1\right)}{\left(C_1 s + g_m\right)\left(C_L L_L s^2 + C_L R_L s + 1\right)}$$

10.27 INVALID-ORDER-27
$$Z(s)=\left(\frac{R_1}{C_1R_1s+1},\ \infty,\ \infty,\ \infty,\ \infty,\ R_L\right)$$

$$H(s)=\frac{R_1R_Lg_m}{C_1R_1s+R_1g_m+1}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m}{C_L s (C_1 R_1 s + R_1 g_m + 1)}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m (C_L R_L s + 1)}{C_L s (C_1 R_1 s + R_1 g_m + 1)}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m \left(C_L L_L s^2 + 1 \right)}{C_L s \left(C_1 R_1 s + R_1 g_m + 1 \right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_1 g_m s}{(C_L L_L s^2 + 1) (C_1 R_1 s + R_1 q_m + 1)}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(C_1 R_1 s + R_1 g_m + 1 \right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_1 R_L g_m s}{(C_1 R_1 s + R_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(C_L L_L s^2 + 1 \right) \left(C_1 R_1 s + R_1 g_m + 1 \right)}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_1 R_L g_m \left(C_L L_L s^2 + 1 \right)}{\left(C_1 R_1 s + R_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L g_m (C_1 R_1 s + 1)}{C_1 R_1 g_m s + C_1 s + g_m}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 R_1 s + 1)}{C_L s (C_1 R_1 g_m s + C_1 s + g_m)}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 R_1 s + 1) (C_L R_L s + 1)}{C_L s (C_1 R_1 g_m s + C_1 s + g_m)}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 R_1 s + 1) (C_L L_L s^2 + 1)}{C_L s (C_1 R_1 g_m s + C_1 s + g_m)}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L g_m s \left(C_1 R_1 s + 1\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_1 R_1 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_L s \left(C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L g_m s \left(C_1 R_1 s + 1\right)}{\left(C_1 R_1 g_m s + C_1 s + g_m\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{g_m \left(C_1 R_1 s + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L g_m \left(C_1 R_1 s + 1\right) \left(C_L L_L s^2 + 1\right)}{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 L_1 s^2 + 1)}{C_L s (C_1 L_1 g_m s^2 + C_1 s + g_m)}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left(C_1 L_1 s^2 + 1 \right)}{\left(C_L R_L s + 1 \right) \left(C_1 L_1 g_m s^2 + C_1 s + g_m \right)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_1 L_1 s^2 + 1 \right) \left(C_L R_L s + 1 \right)}{C_L s \left(C_1 L_1 g_m s^2 + C_1 s + g_m \right)}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 L_1 s^2 + 1) (C_L L_L s^2 + 1)}{C_L s (C_1 L_1 g_m s^2 + C_1 s + g_m)}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L g_m s \left(C_1 L_1 s^2 + 1\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 g_m s^2 + C_1 s + g_m\right)}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_1 L_1 s^2 + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(C_1 L_1 g_m s^2 + C_1 s + g_m \right)}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L g_m s \left(C_1 L_1 s^2 + 1\right)}{\left(C_1 L_1 g_m s^2 + C_1 s + g_m\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{g_m \left(C_1 L_1 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 g_m s^2 + C_1 s + g_m\right)}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L g_m \left(C_1 L_1 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_1 L_1 g_m s^2 + C_1 s + g_m\right)}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_1 R_L g_m s}{(C_L R_L s + 1) (C_1 L_1 s^2 + L_1 g_m s + 1)}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_1 L_L g_m s^2}{(C_L L_L s^2 + 1) (C_1 L_1 s^2 + L_1 g_m s + 1)}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_1 L_L R_L g_m s^2}{(C_1 L_1 s^2 + L_1 g_m s + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_1 g_m s \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(C_L L_L s^2 + 1 \right) \left(C_1 L_1 s^2 + L_1 g_m s + 1 \right)}$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_1 R_L g_m s \left(C_L L_L s^2 + 1\right)}{\left(C_1 L_1 s^2 + L_1 g_m s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right)}{C_L s \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right)}{\left(C_L R_L s + 1\right) \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_L R_L s + 1\right) \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right)}{C_L s \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_L L_L s^2 + 1\right) \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right)}{C_L s \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L g_m s \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_L s \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L g_m s \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right)}{\left(C_L L_L R_L s^2 + L_L s + R_L\right) \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{g_m \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L g_m \left(C_L L_L s^2 + 1\right) \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right)}{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_1 R_1 R_L g_m s}{(C_L R_L s + 1) (C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1)}$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_1 L_L R_1 g_m s^2}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1\right)}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_1 L_L R_1 R_L g_m s^2}{(C_L L_L R_L s^2 + L_L s + R_L) (C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1)}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_1 R_1 g_m s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1\right)}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_1 R_1 R_L g_m s \left(C_L L_L s^2 + 1\right)}{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1\right)}$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right)}{C_L s \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right)}{\left(C_L R_L s + 1\right) \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_L R_L s + 1\right) \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right)}{C_L s \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_L L_L s^2 + 1\right) \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right)}{C_L s \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L g_m s \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

10.78 INVALID-ORDER-78
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right)}{C_L s \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

10.79 INVALID-ORDER-79
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L g_m s \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right)}{\left(C_L L_L R_L s^2 + L_L s + R_L\right) \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

10.80 INVALID-ORDER-80
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{g_m \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

10.81 INVALID-ORDER-81
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L g_m \left(C_L L_L s^2 + 1\right) \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right)}{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

10.82 INVALID-ORDER-82
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_1g_m\left(C_1L_1s^2 + 1\right)}{C_Ls\left(C_1L_1R_1g_ms^2 + C_1L_1s^2 + C_1R_1s + R_1g_m + 1\right)}$$

10.83 INVALID-ORDER-83
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_1R_Lg_m\left(C_1L_1s^2 + 1\right)}{\left(C_LR_Ls + 1\right)\left(C_1L_1R_1g_ms^2 + C_1L_1s^2 + C_1R_1s + R_1g_m + 1\right)}$$

10.84 INVALID-ORDER-84
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_1g_m\left(C_1L_1s^2 + 1\right)\left(C_LR_Ls + 1\right)}{C_Ls\left(C_1L_1R_1g_ms^2 + C_1L_1s^2 + C_1R_1s + R_1g_m + 1\right)}$$

10.85 INVALID-ORDER-85
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_1g_m\left(C_1L_1s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_Ls\left(C_1L_1R_1g_ms^2 + C_1L_1s^2 + C_1R_1s + R_1g_m + 1\right)}$$

10.86 INVALID-ORDER-86
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_LR_1g_ms\left(C_1L_1s^2 + 1\right)}{\left(C_LL_Ls^2 + 1\right)\left(C_1L_1R_1g_ms^2 + C_1L_1s^2 + C_1R_1s + R_1g_m + 1\right)}$$

10.87 INVALID-ORDER-87
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_1g_m\left(C_1L_1s^2 + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_Ls\left(C_1L_1R_1g_ms^2 + C_1L_1s^2 + C_1R_1s + R_1g_m + 1\right)}$$

10.88 INVALID-ORDER-88
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_1R_Lg_ms\left(C_1L_1s^2 + 1\right)}{\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)\left(C_1L_1R_1g_ms^2 + C_1L_1s^2 + C_1R_1s + R_1g_m + 1\right)}$$

10.89 INVALID-ORDER-89
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_1g_m\left(C_1L_1s^2 + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{\left(C_LL_Ls^2 + 1\right)\left(C_1L_1R_1g_ms^2 + C_1L_1s^2 + C_1R_1s + R_1g_m + 1\right)}$$

10.90 INVALID-ORDER-90
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_1R_Lg_m\left(C_1L_1s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{\left(C_LL_Ls^2 + C_LR_Ls + 1\right)\left(C_1L_1R_1g_ms^2 + C_1L_1s^2 + C_1R_1s + R_1g_m + 1\right)}$$