

# 54F/74F240•54F/74F241•54F/74F244 Octal Buffers/Line Drivers with TRI-STATE® Outputs

## **General Description**

The 'F240, 'F241 and 'F244 are octal buffers and line drivers designed to be employed as memory and address drivers, clock drivers and bus-oriented transmitters/receivers which provide improved PC and board density.

#### **Features**

- TRI-STATE outputs drive bus lines or buffer memory address registers
- Outputs sink 64 mA (48 mA mil)
- 12 mA source current
- Input clamp diodes limit high-speed termination effects
- Guaranteed 4000V minimum ESD protection

| Commercial         | Military          | Package<br>Number | Package Description                               |
|--------------------|-------------------|-------------------|---------------------------------------------------|
| 74F240PC           |                   | N20A              | 20-Lead (0.300" Wide) Molded Dual-In-Line         |
|                    | 54F240DM (Note 2) | J20A              | 20-Lead Ceramic Dual-In-Line                      |
| 74F240SC (Note 1)  |                   | M20B              | 20-Lead (0.300" Wide) Molded Small Outline, JEDEC |
| 74F240SJ (Note 1)  |                   | M20D              | 20-Lead (0.300" Wide) Molded Small Outline, EIAJ  |
|                    | 54F240FM (Note 2) | W20A              | 20-Lead Cerpack                                   |
|                    | 54F240LM (Note 2) | E20A              | 20-Lead Ceramic Leadless Chip Carrier, Type C     |
| 74F241PC           |                   | N20A              | 20-Lead (0.300" Wide) Molded Dual-In-Line         |
|                    | 54F241DM (Note 2) | J20A              | 20-Lead Ceramic Dual-In-Line                      |
| 74F241SC (Note 1)  |                   | M20B              | 20-Lead (0.300" Wide) Molded Small Outline, JEDEC |
| 74F241SJ (Note 1)  |                   | M20D              | 20-Lead (0.300" Wide) Molded Small Outline, EIAJ  |
|                    | 54F241FM (Note 2) | W20A              | 20-Lead Cerpack                                   |
|                    | 54F241LM (Note 2) | E20A              | 20-Lead Ceramic Leadless Chip Carrier, Type C     |
| 74F244PC           |                   | N20A              | 20-Lead (0.300" Wide) Molded Dual-In-Line         |
|                    | 54F244DM (Note 2) | J20A              | 20-Lead Ceramic Dual-In-Line                      |
| 74F244SC (Note 1)  |                   | M20B              | 20-Lead (0.300" Wide) Molded Small Outline, JEDEC |
| 74F244SJ (Note 1)  |                   | M20D              | 20-Lead (0.300" Wide) Molded Small Outline, EIAJ  |
| 74F244MSA (Note 1) |                   | MSA20             | 20-Lead Molded Shrink Small Outline, EIAJ Type II |
|                    | 54F244FM (Note 2) | W20A              | 20-Lead Cerpack                                   |
|                    | 54F244LM (Note 2) | E20A              | 20-Lead Ceramic Leadless Chip Carrier, Type C     |

Note 1: Devices also available in 13" reel. Use Suffix = SCX, SJX and MSAX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

TRI-STATE® is a registered trademark of National Semiconductor Corporation

# **Connection Diagrams** Pin Assignment for LCC 'F240 $\begin{bmatrix} 1_3 & \bar{0}_6 & 1_2 & \bar{0}_5 & 1_1 \\ 8 & 7 & 6 & 5 & 4 \end{bmatrix}$ 3 Ō<sub>4</sub> 2 l<sub>0</sub> 1 ŌĒ<sub>1</sub> 20 V<sub>CC</sub> 19 ŌĒ<sub>2</sub> Ō<sub>7</sub> 9 GND 10 I<sub>7</sub> 11 O<sub>3</sub> 12 I<sub>6</sub> 13 0<sub>7</sub> 9 GND 10 1<sub>7</sub> 11 0<sub>3</sub> 12 14 15 16 17 18 $\bar{\mathrm{O}}_{2}$ I<sub>5</sub> $\bar{\mathrm{O}}_{1}$ I<sub>4</sub> $\bar{\mathrm{O}}_{0}$ TL/F/9501-2 19 VCC OE2 18 00 17 I<sub>4</sub> 16 ō, 13 12

TL/F/9501-1





Pin Assignment for DIP, SOIC, SSOP and Flatpak





## **Logic Symbols**







# Unit Loading/Fan Out

|                                                 |                                             | 54F/74F          |                                                                                   |  |  |  |
|-------------------------------------------------|---------------------------------------------|------------------|-----------------------------------------------------------------------------------|--|--|--|
| Pin Names                                       | Description                                 | U.L.<br>HIGH/LOW | Input I <sub>IH</sub> /I <sub>IL</sub><br>Output I <sub>OH</sub> /I <sub>OL</sub> |  |  |  |
| $\overline{OE}_1, \overline{OE}_2$              | TRI-STATE Output Enable Input (Active LOW)  | 1.0/1.667        | 20 μA/-1 mA                                                                       |  |  |  |
| OE <sub>2</sub>                                 | TRI-STATE Output Enable Input (Active HIGH) | 1.0/1.667        | 20 μA/ – 1 mA                                                                     |  |  |  |
| I <sub>0</sub> -I <sub>7</sub>                  | Inputs ('F240)                              | 1.0/1.667*       | 20 μA/-1 mA                                                                       |  |  |  |
| I <sub>0</sub> -I <sub>7</sub>                  | Inputs ('F241, 'F244)                       | 1.0/2.667*       | 20 μA/ – 1.6 mA                                                                   |  |  |  |
| $\overline{O}_0 - \overline{O}_7$ , $O_0 - O_7$ | Outputs                                     | 600/106.6 (80)   | -12 mA/64 mA (48 mA)                                                              |  |  |  |

<sup>\*</sup>Worst-case 'F240 enabled; 'F241, 'F244 disabled

## **Truth Tables**

#### 'F240

| ŌE <sub>1</sub> | D <sub>1n</sub> | O <sub>1n</sub> | OE <sub>2</sub> | D <sub>2n</sub> | O <sub>2n</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Н               | х               | Z               | Н               | Х               | Z               |
| L               | Н               | L               | L               | Н               | L               |
| L               | L               | Н               | L               | L               | Н               |

#### 'F241

| ŌE <sub>1</sub> | D <sub>1n</sub> | O <sub>1n</sub> | OE <sub>2</sub> | D <sub>2n</sub> | O <sub>2n</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Н               | Х               | Z               | L               | Х               | Z               |
| L               | Н               | Н               | Н               | Н               | Н               |
| L               | L               | L               | Н               | L               | L               |

#### 'F244

| OE <sub>1</sub> | D <sub>1n</sub> | O <sub>1n</sub> $\overline{\text{OE}}_2$ |   | D <sub>2n</sub> | O <sub>2n</sub> |
|-----------------|-----------------|------------------------------------------|---|-----------------|-----------------|
| Н               | Х               | Z                                        | Н | Х               | Z               |
| L               | Н               | Н                                        | L | Н               | Н               |
| l L             | l L             | L                                        | L | L               | L               |

- H = HIGH Voltage Level
  L = LOW Voltage Level
  X = Immaterial
  Z = High Impedance

#### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

-65°C to +150°C Storage Temperature Ambient Temperature under Bias -55°C to +125°C Junction Temperature under Bias  $-55^{\circ}$ C to  $+175^{\circ}$ C  $-55^{\circ}\text{C}$  to  $+150^{\circ}\text{C}$ Plastic

 $V_{CC}$  Pin Potential to

Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30~mA to +5.0~mA

Voltage Applied to Output

in HIGH State (with V<sub>CC</sub> = 0V)

 $-0.5\mbox{V}$  to  $\mbox{V}_{\mbox{CC}}$ Standard Output TRI-STATE Output -0.5V to +5.5V

Current Applied to Output in LOW State (Max) twice the rated  $I_{OL}$  (mA) ESD Last Passing Voltage (Min)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under

these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

## **Recommended Operating Conditions**

Free Air Ambient Temperature

Military  $-55^{\circ}$ C to  $+125^{\circ}$ C Commercial  $0^{\circ}$ C to  $+70^{\circ}$ C

Supply Voltage

Military +4.5V to +5.5VCommercial +4.5V to +5.5V

#### **DC Electrical Characteristics**

| Symbol           | Parame                               | ator.                                                                                                                              |                                 | 54F/74F | •            | Units    | V               | Conditions                                                                                                                                                        |  |  |
|------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|--------------|----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Syllibol         | Parame                               | eter                                                                                                                               | Min                             | Тур     | Max          | Ullits   | V <sub>CC</sub> | Conditions                                                                                                                                                        |  |  |
| V <sub>IH</sub>  | Input HIGH Voltage                   |                                                                                                                                    | 2.0                             |         |              | ٧        |                 | Recognized as a HIGH Signal                                                                                                                                       |  |  |
| $V_{IL}$         | Input LOW Voltage                    |                                                                                                                                    |                                 |         | 0.8          | ٧        |                 | Recognized as a LOW Signal                                                                                                                                        |  |  |
| $V_{CD}$         | Input Clamp Diode V                  | /oltage                                                                                                                            |                                 |         | -1.2         | ٧        | Min             | $I_{\text{IN}} = -18 \text{ mA}$                                                                                                                                  |  |  |
| V <sub>OH</sub>  | Output HIGH<br>Voltage               | 54F 10% V <sub>CC</sub><br>54F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub><br>74F 5% V <sub>CC</sub> | 2.4<br>2.0<br>2.4<br>2.0<br>2.7 |         |              | <b>V</b> | Min             | $\begin{split} I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -12 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -15 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \end{split}$ |  |  |
| $V_{OL}$         | Output LOW<br>Voltage                | 54F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub>                                                                                 |                                 |         | 0.55<br>0.55 | ٧        | Min             | $I_{OL} = 48 \text{ mA}$<br>$I_{OL} = 64 \text{ mA}$                                                                                                              |  |  |
| I <sub>IH</sub>  | Input HIGH<br>Current                | 54F<br>74F                                                                                                                         |                                 |         | 20.0<br>5.0  | μΑ       | Max             | $V_{\text{IN}} = 2.7V$                                                                                                                                            |  |  |
| I <sub>BVI</sub> | Input HIGH Current<br>Breakdown Test | 54F<br>74F                                                                                                                         |                                 |         | 100<br>7.0   | μΑ       | Max             | $V_{IN} = 7.0V$                                                                                                                                                   |  |  |
| I <sub>CEX</sub> | Output HIGH<br>Leakage Current       | 54F<br>74F                                                                                                                         |                                 |         | 250<br>50    | μΑ       | Max             | $V_{OUT} = V_{CC}$                                                                                                                                                |  |  |
| $V_{\text{ID}}$  | Input Leakage<br>Test                | 74F                                                                                                                                | 4.75                            |         |              | ٧        | 0.0             | $I_{\text{ID}} = 1.9  \mu\text{A}$<br>All Other Pins Grounded                                                                                                     |  |  |
| I <sub>OD</sub>  | Output Leakage<br>Circuit Current    | 74F                                                                                                                                |                                 |         | 3.75         | μΑ       | 0.0             | V <sub>IOD</sub> = 150 mV<br>All Other Pins Grounded                                                                                                              |  |  |
| I <sub>IL</sub>  | Input LOW Current                    |                                                                                                                                    |                                 |         | -1.0<br>-1.6 | mA       | Max             | $V_{IN} = 0.5V (\overline{OE}_1, \overline{OE}_2, OE_2, D_n (F240))$<br>$V_{IN} = 0.5V (D_n (F241, F244))$                                                        |  |  |
| l <sub>OZH</sub> | Output Leakage Cur                   | rent                                                                                                                               |                                 |         | 50           | μΑ       | Max             | $V_{OUT} = 2.7V$                                                                                                                                                  |  |  |
| l <sub>OZL</sub> | Output Leakage Cur                   | rent                                                                                                                               |                                 |         | -50          | μΑ       | Max             | $V_{OUT} = 0.5V$                                                                                                                                                  |  |  |
| los              | Output Short-Circuit                 | Current                                                                                                                            | -100                            |         | -225         | mA       | Max             | $V_{OUT} = 0V$                                                                                                                                                    |  |  |
| I <sub>ZZ</sub>  | Bus Drainage Test                    |                                                                                                                                    |                                 |         | 500          | μΑ       | 0.0V            | V <sub>OUT</sub> = 5.25V                                                                                                                                          |  |  |

4000V

| DC Electrical Characteristics | (Continued) |
|-------------------------------|-------------|
|-------------------------------|-------------|

| Symbol           | Parameter                              |     | 54F/74F |     |       | v <sub>cc</sub> | Conditions              |  |
|------------------|----------------------------------------|-----|---------|-----|-------|-----------------|-------------------------|--|
|                  | Tarameter                              | Min | Тур     | Max | Units | •66             | Conditions              |  |
| Icch             | Power Supply Current ('F240)           |     | 19      | 29  | mA    | Max             | V <sub>O</sub> = HIGH   |  |
| ICCL             | Power Supply Current ('F240)           |     | 50      | 75  | mA    | Max             | $V_O = LOW$             |  |
| I <sub>CCZ</sub> | Power Supply Current ('F240)           |     | 42      | 63  | mA    | Max             | V <sub>O</sub> = HIGH Z |  |
| Іссн             | Power Supply Current<br>('F241, 'F244) |     | 40      | 60  | mA    | Max             | V <sub>O</sub> = HIGH   |  |
| ICCL             | Power Supply Current<br>('F241, 'F244) |     | 60      | 90  | mA    | Max             | $V_O = LOW$             |  |
| lccz             | Power Supply Current<br>('F241, 'F244) |     | 60      | 90  | mA    | Max             | V <sub>O</sub> = HIGH Z |  |

#### **AC Electrical Characteristics**

|                                      |                                                 |                                                         | 74F        |            | 5                                                                | 4F          | 7-                                                               | 4F          |       |
|--------------------------------------|-------------------------------------------------|---------------------------------------------------------|------------|------------|------------------------------------------------------------------|-------------|------------------------------------------------------------------|-------------|-------|
| Symbol                               | Parameter                                       | $T_{A}=+25^{\circ}C$ $V_{CC}=+5.0V$ $C_{L}=50\text{pF}$ |            |            | T <sub>A</sub> , V <sub>CC</sub> = Mil<br>C <sub>L</sub> = 50 pF |             | T <sub>A</sub> , V <sub>CC</sub> = Com<br>C <sub>L</sub> = 50 pF |             | Units |
|                                      |                                                 | Min                                                     | Тур        | Max        | Min                                                              | Max         | Min                                                              | Max         |       |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>Data to Output ('F240)     | 3.0<br>2.0                                              | 5.1<br>3.5 | 7.0<br>4.7 | 3.0<br>2.0                                                       | 9.0<br>6.0  | 3.0<br>2.0                                                       | 8.0<br>5.7  | ns    |
| t <sub>PZH</sub>                     | Output Enable Time ('F240)                      | 2.0<br>4.0                                              | 3.5<br>6.9 | 4.7<br>9.0 | 2.0<br>4.0                                                       | 6.5<br>10.5 | 2.0<br>4.0                                                       | 5.7<br>10.0 | - ns  |
| t <sub>PHZ</sub>                     | Output Disable Time ('F240)                     | 2.0<br>2.0                                              | 4.0<br>6.0 | 5.3<br>8.0 | 2.0<br>2.0                                                       | 6.5<br>12.5 | 2.0<br>2.0                                                       | 6.3<br>9.5  | 113   |
| t <sub>PLH</sub>                     | Propagation Delay Data to Output ('F241, 'F244) | 2.5<br>2.5                                              | 4.0<br>4.0 | 5.2<br>5.2 | 2.0<br>2.0                                                       | 6.5<br>7.0  | 2.5<br>2.5                                                       | 6.2<br>6.5  | ns    |
| t <sub>PZH</sub>                     | Output Enable Time<br>('F241, 'F244)            | 2.0<br>2.0                                              | 4.3<br>5.4 | 5.7<br>7.0 | 2.0<br>2.0                                                       | 7.0<br>8.5  | 2.0<br>2.0                                                       | 6.7<br>8.0  | ns    |
| t <sub>PHZ</sub>                     | Output Disable Time<br>('F241, 'F244)           | 2.0<br>2.0                                              | 4.5<br>4.5 | 6.0<br>6.0 | 2.0<br>2.0                                                       | 7.0<br>7.5  | 2.0<br>2.0                                                       | 7.0<br>7.0  | 113   |

## **Ordering Information**

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

<u>74F</u> 240/241/244\* - Special Variations Temperature Range Family -74F = Commercia QB = Military grade device with 54F = Military environmental and burn-in processing
X = devices shipped in 13" reel Device Type Package Code -Temperature Range P = Plastic DIP C = Commercial (0°C to +70°C) M = Military (-55°C to +125°C) D = Ceramic DIPF = Flatpak NOTE: L = Leadless Chip Carrier (LCC) S = Small Outline SOIC JEDEC Not required for MSA package code \*MSA = Shrink Small Outline Package (EIAJ SSOP) ('244 only)
SJ = Small Outline SOIC EIAJ









## Physical Dimensions inches (millimeters) (Continued)



## LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melibourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.