13. 가설검정 2

◈ 담당교수: 한국방송통신대 통계·데이터과학과 이긍희

연습문제

(** $1 \sim 2$) X_1 , \cdots , X_n 가 다음의 지수분포를 따르는 확률표본

$$f(x|\theta) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta \\ 0, & x < \theta \end{cases}$$

다음 가설에 대해 가능도비 검정을 실시하려고 한다.

$$H_0$$
 : $\theta \leq \theta_0$ vs H_1 : $\theta > \theta_0$

1. 대립가설하의 θ 의 최대가능도추정량은? <해설>

가능도함수 :
$$L(\theta|X) = \prod_{i=1}^n f(x_i|\theta) = \begin{cases} e^{-\sum x_i + n\theta}, \theta \leq x_{(1)} \\ 0, \theta > x_{(1)} \end{cases}$$
가능도함수는 θ 의 증가함수이므로 최대가능도추정량은 $\hat{\theta} = X_{(1)}$ 이다.

2. 가능도비 검정을 구하시오.

<해설>

$$\begin{split} &\lambda(X) = \frac{sup_{\theta \in \, \Omega_1} L(\theta|X)}{sup_{\theta \in \, \Omega_0} L(\theta|X)} \\ &X_{(1)} \leq \theta_0 \quad \lambda(X) = 1 \\ &X_{(1)} > \theta_0 \quad \lambda(X) = e^{-\sum x_i + nx_{(1)}} / e^{-\sum x_i + n\theta_0} = e^{n(x_{(1)} - \theta)} \end{split}$$

가능도비 검정은 다음과 같다. $\lambda(X) > C \ \text{old 귀무가설 기각}$ $\Leftrightarrow X_{(1)} \geq \theta_0 - \frac{\log C}{n} \ \text{old 귀무가설 기각}$

3. 2×2 분할표에서 독립성 검정을 할 때 검정통계량의 분포는? *<해설>*

 $r \times c$ 분할표에서 독립성 검정통계량

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(N_{ij} - \widehat{E}_{ij})^{2}}{\widehat{E}_{ij}} \sim \chi^{2}((r-1)(c-1))$$

$$\widehat{E}_{ij} = n \cdot \hat{p}_{i+} \cdot \hat{p}_{+j} = \frac{N_{i+} \cdot N_{+j}}{N}$$

따라서 검정량의 분포는 $\chi^2(1)$ 이다.

정리하기

- ❖ 가능도비 검정은 최대가능도추정량을 이용한 검정법이다.
- 가설 : H_0 : $heta {\in} \Omega_0$ VS $H_1 {\in} \Omega_1$
- 최대가능도비 : $\lambda(X) = \frac{sup_{\theta \in \Omega_1}L(\theta|X)}{sup_{\theta \in \Omega_0}L(\theta|X)} = \frac{L(\widehat{\theta_1})}{L(\widehat{\theta_0})}$
- 검정법 δ : $\lambda(X) > C \Rightarrow H_0$ 기각
- ❖ 유의성 검정은 유의확률로 주어진 관측값이 이 귀무가설에 얼마나 부합하는지 알아보는 검정이다.
- ❖ 적합도 검정은 다음과 같다.
 - 가설 : H_0 : $p_i=p_{i0}$ vs H_1 : not H_0 여기서 p_i : i 범주 확률, $i=1,2,\cdots,m$
 - 검정통계량 : $\chi^2 = \sum_{i=1}^m \frac{(N_i np_{i0})^2}{np_{i0}}$ $\sim \chi^2(m-1)$

여기서 N_i : i 범주 빈도수, 기대도수 $np_{i0} \geq 5$ 인 경우 사용가능

- 검정법 : $\chi^2 > \chi^2_{lpha}(m-1)$ 이면 H_0 기각
- ❖ 독립성 검정은 다음과 같다.
 - 가설 : $H_0: p_{ij} = p_{i+} \cdot p_{+|j|} vs \ H_1:$ not H_0

여기서
$$p_{i+} = \sum_{j=1}^{c} p_{ij}$$
 $p_{+j} = \sum_{j=1}^{r} p_{ij}$

- 검정통계량

$$\begin{split} \chi^2 &= \sum_{i=1}^r \sum_{j=1}^c \frac{(N_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}} \ \sim \ \chi^2((r-1)(c-1)) \\ \widehat{E}_{ij} &= n \cdot \hat{p}_{i+} \cdot \hat{p}_{+\,j} = \frac{N_{i+} \cdot N_{+\,j}}{N} \\ N_{ij} &: (i,\,j) \ \text{범주 벤도수} \end{split}$$

<통계적 추론> 13. 가설검정 2

$$N_{i+}=\sum_{j=1}^cN_{ij},\quad N_{+\;j}=\sum_{i=1}^rN_{ij},\quad N=\sum_{i=1}^r\sum_{j=1}^cN_{ij}$$
 - 검정법 : $\chi^2>\chi^2_lpha((r-1)(c-1))$ 이면 H_0 기각