Nombre: Cordero Hernández Marco Ricardo Actividad Eliminar Epsilón transiciones fecha: 21/09/21

Para todo estado q $\in Q$ y σ que pertenece a Σ , se definen las siguientes funciones.

 ε -c (q) = {p | p | es accesible desde q sin consumir nada de entrada}

funcion d con un estado:

d (q, σ) = {p | hay una transición de q a p etiquetada con σ }

funcion d con una colección de estados.

$$d(\{q_0, q_1, q_2, ..., q_n\}, a) = \delta(q_0, a) \cup \delta(q_1, a) \cup \delta(q_2, a) \cup ... \cup \delta(q_n, a)$$

- ε-c (d(q, σ)) es el conjunto de todos los estados accesibles desde q primero mediante una transición con σ y después mediante cero o mas ε transiciones.
- d(ε-c(q), σ) es el conjunto de todos los estados accesibles desde q tomando primero cero o mas ϵ transiciones y después una transición con σ

Para generar mi nuevo AFN sin epsilon transiciones usamos la siguiente función:

$$\Delta'(q, a) = \varepsilon - c (d(\varepsilon - c(q), a))$$

1. Considera el siguiente AFN- ε y realiza las siguientes operaciones. (El único estado final es q2).

$$\epsilon$$
-c $(q_0) = \{q_0, q_1\}$ ϵ -c $(q_1) = \{q_1\}$ ϵ -c $(q_2) = \{q_2\}$ ϵ -c $(q_3) = \{q_1, q_3\}$ ϵ -c $(q_4) = \{q_4, q_5\}$ ϵ -c $(q_5) = \{q_5\}$ ϵ -c $(q_5) = \{q_5\}$ ϵ -c $(q_5) = \{q_5\}$ ϵ -c $(q_6) = \{q_6\}$ ϵ -c $(q_6) = \{q_6\}$ ϵ -c $(q_6) = \{q_6\}$

2. Completa la siguiente tabla

Δ'	a	b
q_0	$\varepsilon - c \left(d(\varepsilon - c(q_0), a) \right) = \{q_1, q_3, q_4, q_5\}$	$\varepsilon - c (d(\varepsilon - c(q_0), b)) = \{q2\}$
q_1	$\varepsilon - c \left(d(\varepsilon - c(q_1), a) \right) = \{q4, q5\}$	$\varepsilon - c (d(\varepsilon - c(q_1), b)) = \{q2\}$
q_2	$\varepsilon - c (d(\varepsilon - c(q_2), a)) = \emptyset$	$\varepsilon - c (d(\varepsilon - c(q_2), b)) = \emptyset$
q_3	$\varepsilon - c (d(\varepsilon - c(q_3), a)) = \{q4, q5\}$	$\varepsilon - c \left(d(\varepsilon - c(q_3), b) \right) = \{q2, q4, q5\}$
q_4	$\varepsilon - c (d(\varepsilon - c(q_4), a)) = \emptyset$	$\varepsilon - c (d(\varepsilon - c(q_4), b)) = \emptyset$
q_5	$\varepsilon - c (d(\varepsilon - c(q_5), a)) = \emptyset$	$\varepsilon - c (d(\varepsilon - c(q_5), b)) = \emptyset$

Utiliza la funcion Δ' para dibujar el nuevo autómata en JFLAP, este ya sin epsilón transiciones, inserta la captura de pantalla con tu nuevo AFN.

A partir de un AFN $M = (Q, \Sigma, s, F, \Delta)$ que tiene ε -transiciones, se puede construir un AFN sin ε -transiciones que acepte el mismo lenguaje. Se define $M' = (Q, \Sigma, s, F', \Delta')$ como

$$F' = F \cup \{q \mid \varepsilon - c(q) \cap F \neq \emptyset\}$$

y $\Delta'(q, \sigma) = \varepsilon - c (d(\varepsilon - c(q), \sigma))$, como antes. Obsérvese que el autómata transformado M' no contiene ε -transiciones.

Finalmente minimiza tu autómata en JFLAP.

