## **Pulsars**

Anne Lohfink

17.11.2008

## Outline

- 1 History
- Basics
  Neutron Stars
  Pulsars
- 3 Radio Pulsars Observations Emission Models
- 4 Outlook
- 5 The End



## The discovery of pulsars



Fig. 1: J. Bell-Burnell at IAU 2006 Assembly

- 1967: discovery by S. Jocelyn Bell-Burnell and Antony Hewish
- results published in Nature, 217, February 24, 1968
- Nobel Prize for Physics in 1974
   awarded to A. Hewish and M. Ryle
   for "their pioneering research in
   radio astrophysics: Ryle for his
   observations and inventions, in
   particular of the aperture synthesis
   technique, and Hewish for his
   decisive role in the discovery of
   pulsars"

#### The Nature article

# Observation of a Rapidly Pulsating Radio Source

bу

A. HEWISH

S. J. BELL

J. D. H. PILKINGTON

P. F. SCOTT

R. A. COLLINS

Mullard Radio Astronomy Observatory, Cavendish Laboratory, University of Cambridge

Ix July 1967, a large radio telescope operating at a frequency of 81.5 MHz was brought into use at the Mullard Radio Astronomy Observatory. This instrument was designed to investigate the angular structure of compact radio sources by observing the scintillation caused by the irregular structure of the interplanetary medium! The initial survey includes the whole sky in the declination range  $-08^\circ<8<44^\circ$  and this area is scanned once a week. A large fraction of the sky is thus under regular surveillance. Soon after the instrument was brought into operation it was noticed that signals which appeared at first to be weak sporadic interference were repeatedly

Unusual signals from pulsating radio sources have been recorded at the Mullard Radio Astronomy Observatory. The radiation seems to come from local objects within the galaxy, and may be associated with oscillations of white dwarf or neutron stars.

of three others having remarkably similar proporties which suggests that this type of source may be relatively common at a low flux density. A tentative explanation of these unusual sources in terms of the stable oscillations of white dwarf or neutron stars is proposed.

#### Position and Flux Density

The serial consists of a rectangular array containing 2,048 full-wave dipoles arranged in sixteen rows of 128 elements. Each row is 470 m long in an E.-W. direction and the N.-S. extent of the array is 45 m. Phase-seanning is employed to direct the reception pattern in declination



## Repetition I - Properties

formation via SNe Type II

• mass: 1.44  $M_{\odot} < M \lesssim$  3  $M_{\odot}$ 

• density:  $10^{14} \,\mathrm{g\,cm^{-3}}$ 

size: 10 – 15 km

• very strong B-fields from  $10^8 \,\mathrm{G}$  up to  $10^{12} \,\mathrm{G}$ 

conservation of angular momentum leads to fast rotation

## Repetition II - Build-up



Fig. 2: Neutron Star Structure

- outer crust: solid crust of heavy nuclei
   relativistic degenerate electrons
- inner crust: nuclei + relativistic degenerate electrons + superfluid neutrons
- core: superfluid neutrons + a few superfluid, superconducting protons + relativistic degenerate electrons (perhaps solid core consisting of sub-nuclear particles)

## What's it that makes a pulsar out of a NS?

•0000



Fig. 3: Lighthouse Model

#### 2 types:

- accretion powered pulsars:
  - energy supply via accretion
  - millisecond pulsars
  - spin behavior not always the same
- rotation powered pulsars (radio pulsars):
  - rotational energy is used
  - slow down
  - magnetars

#### Advanced Basics I

• total available energy for a rotation-powered pulsar = loss of rotational energy

$$\dot{E} = I \,\omega \,\dot{\omega} = 4\pi^2 \,I(\dot{P}/P^3) \tag{1}$$

with  $I \approx 10^{45} \, \mathrm{g \, cm^2}$ 

00000

di-polar magnetic fields:

$$B = 3.2 \times 10^{19} (P \dot{P})^{0.5} G \tag{2}$$

(on the equator)

## Advanced Basics II



Fig. 4:  $P - \dot{P}$ -diagram for non-binary pulsars with radio emission

#### Advanced Basics III

Although generally slowing down pulsars sometimes spin up!  $\Rightarrow$  can be used to probe the interior of neutron stars

0000



Fig. 5: a small glitch of the Crab pulsar

#### Vela Pulsar



Fig. 6: Vela Pulsar in X-rays (Chandra)

- distance: 0.5 kpc
- $P = 0.0893 \,\mathrm{s}$
- $\dot{P} = 1.25 \cdot 10^{-13}$
- $B = 3 \cdot 10^{12} \,\mathrm{G}$
- $\dot{E} = 7 \cdot 10^{36} \, \mathrm{erg \, s^{-1}}$
- age: 11000 yrs

 $\Longrightarrow$  middle-aged pulsar



Fig. 7: Crab Pulsar in X-rays (Chandra)

- distance: 2.0 kpc
- $P = 0.0334 \,\mathrm{s}$
- $\dot{P} = 4.21 \cdot 10^{-13}$
- $B = 4 \cdot 10^{12} \, \mathrm{G}$
- $\dot{E} = 4 \cdot 10^{38} \, \mathrm{erg \, s^{-1}}$
- age: 1260 yrs
- ⇒ young pulsar

### Pulse Profiles



Fig. 8: pulse profiles of the Crab pulsar

⇒ no phase shift



Fig. 9: pulse profiles of the Vela pulsar  $\Rightarrow {\sf phase \ shift}$ 



# Pulsar Spectra I



Fig. 10: spectrum of the Crab pulsar spectrum is made up from different parts: total = nebula + pulsed (+ thermal)



## Pulsar Spectra II



Fig. 11: spectrum of the Vela pulsar

## **Emission models**

#### Requirements

- must explain phase relation
- must explain pulse profiles
- produce light at all wavelengths
- must explain polarization
- ...

 $\Longrightarrow$  several models that differ in the geometry of the emitting regions



## Goldreich-Julian I



Fig. 3: Lighthouse Model



## Goldreich-Julian II



Fig. 12: neutron star magnetosphere

## Polar Cap Model



Fig. 13: emission models

- explains high-energy spectrum quite well
- cannot explain double-peaked pulses

## Outer Gap Model



Fig. 13: emission models

- can explain double-peaked pulses but causes problems with some other parts of the pulse profile
- some problems with very high energy radiation

## Two-pole caustic model



Fig. 13: emission models

- purely geometric idea: particles radiate along the last open field lines
- fundamentally new: outward emission below the null surface
   ⇒ emission from both poles can be observed
- physical explanation by the slot gap

## Comparison between models and measurements



Fig. 14: predicted profiles for different models

⇒ all models have strengths and weaknesses



#### Pulsars with Fermi



Fig. 15: Fermi's first light

- emitting regions will be mapped
- better spectra + shape of cutoffs
- better pulse profiles
  - ...

⇒ It will be much easier to determine the correct emission model!

References I

# 000

Dyks, J., Harding, A. K., & Rudak, B. 2004, ApJ, 606, 1125
Harding, A. K., Strickman, M. S., Gwinn, C., Dodson, R., Moffet, D., & McCulloch, P. 2002, ApJ, 576, 376
Harding, A. K., 2007, astro-ph/0706.1542v1
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F. & Collins, R. A., 1968, Nature, 217, 709
Kaspi, V. M., Roberts, M. S. E. &, Harding, A. K., 2004, astro-ph/0402136v2
Kuiper, L., Hermsen, W., Cusumano, G., Diehl, R., Schönfelder, V., Strong, A., Bennett, K. & McConnell, M.L., 2001, astro-ph/010920v1
Lyne, A. C., Graham-Smith, F., 1998, Pulsar Astronomy (2nd ed.), Cambridge: Cambridge Univ. Press
Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M., 2005, astro-ph/0412641

Michel, F. C., 1991, Theory of Neutron Star Magnetospheres, Chicago: The Univ. of Chicago Press

#### References II

#### Figures

Figure 1: www.iau.org/public press/images/archive/iau0603f

Figure 2: Kouveliotou, C., Duncan, R. C. & Thompson, C., 02/2003, Magnetars, Scientific American

Figure 3: http://arecibo.tc.cornell.edu/PALFA/images/pulsarmodel.jpg

Figure 4: Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M., 2005, astro-ph/0412641

Figure 5: Wong, T., Backer, D. C. & Lyne, A. G., 2000, astro-ph/0010010v1

Figure 6: http://chandra.harvard.edu/photo/2000/vela/ Figure 7: http://chandra.harvard.edu/photo/2008/crab/

Figure 8: Kuiper, L., Hermsen, W., Cusumano, G., Diehl, R., Schönfelder, V., Strong, A., Bennett, K. &

McConnell, M L., 2001, astro-ph/0109200v1

Figure 9: Harding, A. K., Strickman, M. S., Gwinn, C., Dodson, R., Moffet, D., & McCulloch, P. 2002, ApJ, 576, 376

Figure 10: Kuiper, L., Hermsen, W., Cusumano, G., Diehl, R., Schönfelder, V., Strong, A., Bennett, K. &

McConnell, M L., 2001, astro-ph/0109200v1

Figure 11: Harding, A. K., Strickman, M. S., Gwinn, C., Dodson, R., Moffet, D., & McCulloch, P. 2002, ApJ, 576, 376

Figure 12: Kramer, M., Lorimer, D. & Lorimer, D. R., 2004, Handbook of Pulsar Astronomy, Cambridge: Cambridge Univ. Press

Figure 13: Kaspi, V. M., Roberts, M. S. E. &, Harding, A. K., 2004, astro-ph/0402136v2

Figure 14: Kaspi, V. M., Roberts, M. S. E. &, Harding, A. K., 2004, astro-ph/0402136v2

Figure 15: http://science.nasa.gov/headlines/y2008/26augfirstlight.htm

#### Audio

www.vega.org.uk



Thank you for your attention! Questions???

