ECEN454 Ref Sheet

		_	0
Metric Prefixes			
peta	Р	10^{15}	1 000 000 000 000 000
tera	Τ	10^{12}	1 000 000 000 000
giga	G	10^{9}	1 000 000 000
mega	Μ	10^{6}	1 000 000
kilo	k	10^{3}	1 000
hecto	h	10^{2}	100
deca	da	10^{1}	10
one		10^{0}	1
deci	d	10^{-1}	0.1
centi	c	10^{-2}	0.01
milli	m	10^{-3}	0.001
micro	μ	10^{-6}	0.000 001
nano	n	10^{-9}	0.000 000 001
pico	р	10^{-12}	0.000 000 000 001

$\overline{\text{De}}$ Morgan's Laws

 10^{-15}

- $\bullet \ \overline{AB} = \overline{A} + \overline{B}$
- $\bullet \ \overline{A+B} = (\overline{A})(\overline{B})$

Silicon

femto

- Si
- P-type:
- * doped with material to remove electrons (add electron holes), usually Boron (B), Aluminum (Al), or Gallium (Ga)

0.000 000 000 000 001

- N-type:
- * doped with material to add electrons, usually Antimony (Sb), Arsenic (As), or Phosphorous (P)
- Silicon dioxide: SiO₂
- Polysilicon is just silicon without the crystal structure

Transistors

- pMOS:
- * has the bubble
- * on when input is 0, off when input is 1
- nMOS
- * no bubble
- * on when input is on, off when input is off
- CMOS: when you combine a nMOS and pMOS network together to make a gate, where one is the compliment of the other
- V_t : Threshold voltage. Nominal voltage below which the transistor is off
 - * below as in closer to 0, not less
 - * $V_t > 0$ for nMOS, $V_t < 0$ for pMOS
- * this is compared to the gate to source voltage, V_{as}
- regions: (for nMOS)
- * accumulation: gaté is negatively charged, attracts positive voids in p-substrate, which block flow in the channel
- * depletion: small positive charge on gate repels positive voids from channel, forming a depletion below
- * inversion: higher positive charge (> V_t) is applied to gate, attracting electrons to the channel and allowing

D Flip Flop vs Latch

- latch is level triggered
- flip flop is edge triggered

Fabrication

- n-well: use diffusion or ion implantation
- positive lithography: expose to UV where you want to remove material
- negative lithography: expose to UV where you want to keep material

© Josh Wright February 7, 2017 Stick Diagram vs Boolean Function

- TODO
- there is more than one way of making a stick diagram for an expression
- * stuff in series could be in different order, for instance
- if you do it manually, you need to check it with tools:
- * LVS: Layout Vs Schematic
- * DRC: Design Re-Check
- * These aren't really needed for designs automatically generated from verilog code, because of course that's correct

Lithography

- the process of printing onto a chip at nanometer scale
- generally uses UV light, wavelength around 150nm
- * must use fancy tricks to make 10nm features with 150nm light
- * would be nice to use even lower wavelength X-rays, but those are hard to focus
- negative lithography: use the lithography mask to cover what you want to keep.
- positive lithography: mask what you want to remove
- a lens is used to focus the light
- * ideally, want a point source for the light, but that is not practical
- * Optical Proximity Effect: what happens when your focus from the lens is not just right
- * results in rounded corners, inaccurate critical dimensions, and shorter wire ends
- * can use Optical Proximity Correction to fix: basically over-emphasize all the features, and/or add extra lines at outset

MOS transitive I-V Characteristics and **Parasitics**

- I-V: current-voltage relationship
- Transistors are not really ideal switches, they have 3 zones of operation: cutoff, linear, saturation

 V_{qs} : voltage gate to source

 V_{qd} : voltage gate to drain

 V_{ds} : voltage source to drain (across the channel) V_t : critical voltage at which transistor is saturated channel: space between the source and drain, where the electrons flow

- remember that the gate is insulated from the area under it by a thin layer of Silicon Dioxide (SiO₂)
- by convention, the source is the terminal at lower voltage
- cutoff:
 - * when $V_{qs} < 0$
 - * electrons on the gate attract positive voids in the silicon below, and inhibit current flow. Therefore, the transistor is closed.
- $*I_{ds} = 0$
- linear:
- * $V_{gs} > V_t, V_{gd} = V_{gs}, V_{ds} = 0$ or $V_{gs} > V_t, V_{gs} > V_{gd} > V_t, 0 < V_{ds} < V_{gs} V_t$
- * I_{ds} linearly proportional to V_{ds}
- * channel of electrons forms, allowing current to flow
- saturated:

 - * $V_{gs} > V_t, V_{gd} < V_t, V_{ds} > V_{gs} V_t$ * channel pinches off due to electrons attracting to
 - * I_{ds} is independent of V_{ds}

capacitor effect

- gate and channel can have a parallel plate capacitor effect, with the thin layer of SiO₂ acting as the insulator
- $C = \frac{Q}{V} = \epsilon_{SiO_2} wl/t_{SiO_2}, V = V + gc V_t =$ $(v_{as} - Vds/2) - V_t$

- * l, w: length, width of section of gate above channel
- * ϵ_{SiO_2} : permittivity of SiO₂ layer
- * t_{SiO_2} : thickness of SiO₂ layer
- general capacitance per unit area: $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$
- * ϵ_{ox} : permittivity of oxidation layer
- * t_{ox} : thickness of oxidation layer
- carrier velocity: velocity of the electrons?
 - * proportional to the electric field running horizontally between source and drain
- $*v = \mu E, E = V_{ds}/L, t = L/v = L/(\mu E) = L/(\mu \frac{V_{ds}}{L})$ μ : mobility. electrons move about twice as fast as positive voids
 - \bar{L} : length of channel
- actual velocity of electrons is the speed of light, but they don't travel in a straight line, they travel atom-to-atom
- * this slowdown is called the **scattering** effect

Shockley model of transistor

- $\bullet \ V_{dsat} = V_{gs} V_t$
- 1st order model: $\beta = \mu C_{SiO_2} \frac{w}{l}$

$$V_{gs} < V_t$$
 $I_{ds} = 0$ cutoff $V_{ds} < V_{dsat}$ $I_{ds} = \beta (V_{gs} - V_t - \frac{V_{ds}}{2})V_{ds}$ linear $V_{ds} > V_{dsat}$ $I_{ds} = \frac{\beta}{2}(V_{gs} - V_t)^2$ saturation Must be able to derive this model on event.

• Must be able to derive this model on exam!

Non-Ideal I-V Effects

- velocity saturation (due to scattering)
- * also called short channel effect
- * this is hard to make into a mathematical formula
- sub-threshold leakage, junction leakage, gate tunneling

• Body Effect

- * affected by V_{sb} : voltage of the p-substrate (which should be ground)
- * $V_t = V_{t0} + \lambda(\sqrt{|-2\phi_F + V_{sb}|} \sqrt{|-2\phi_F|})$ V_{t0} : threshold without body bias
- ϕ_F : Fermi potential
- · negative for nMOS, positive for pMOS
- λ : body effect coefficient
- · positive for nMOS, negative for pMOS (reversed)
- * generally fixed/caused by biasing
- * Forward Body Bias (FBB):
- $V_{sb} < 0, V_t < V_{s0}$
- gates switch faster, but leak more current
- * Reverse Body Bias (RBB):
- $V_{sb} > 0, V_t > V_{s0}$
- gates switch slower, but consume less power (because less leakage)

• Temperature

* higher temperature means higher electron mobility, more leakage, and threshold decreases

• Diffusion Capacitance

- * capacitance on the source/drain: C_{sb} , C_{db}
- source/drain are diffusion nodes
- C is comparable to C_g (gate) for connected nodes, $\frac{1}{2}C_q$ for unconnected
- (depends on process)
- * this is the capacitance we care most about (because we must fill it every time the gate switches?)
- * if two capacitors share a source/drain, that reduces diffusion capacitance (reducing this is a good thing)
- * also, you can remove unconnected diffusion spots