TEA010 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P01B, 18 ago 2023
Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Seja o esquema de diferenças finitas *upwind* explícito e condicionalmente estável para a equação da onda:

$$u_i^{n+1} = u_i^n - \text{Co}[u_i^n - u_{i-1}^n].$$

Considere que a matriz u foi alocada com u = zeros((2,nx+1),float), onde zeros foi importada de numpy, com nx=1000, e que você está calculando u[new] a partir de u[old], sendo que old refere-se ao passo de tempo n, e new ao passo de tempo n+1. Mostre como, utilizando a técnica de *slicing*, você pode calcular u[new,1:nx] *em apenas uma linha de código em Python (usando numpy)*; suponha que a variável Cou, com o número de Courant, já foi calculada e que ela garante a estabilidade do esquema.

SOLUÇÃO DA QUESTÃO:

u[new,1:nx] = u[old,1:nx] - Cou*(u[old,1:nx] - u[old,0:nx-1])

2 [25] Sem utilizar frações parciais, encontre a transformada de Laplace inversa

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\}.$$

SOLUÇÃO DA QUESTÃO:

Uso o teorema da convolução,

$$\mathcal{L}[f*g] = \overline{f}(s)\overline{g}(s) \Rightarrow \mathcal{L}^{-1}\left\{\overline{f}(s)\overline{g}(s)\right\} = \int_{\tau=0}^{t} f(\tau)g(t-\tau)\,\mathrm{d}\tau.$$

Mas

$$\overline{f}(s) = \frac{1}{s} \Rightarrow f(t) = 1, \ \overline{g}(s) = \frac{1}{s^2 + 4} \Rightarrow g(t) = \frac{\sin 2t}{2},$$

donde

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\} = \int_{\tau=0}^{t} \frac{\sin 2(t-\tau)}{2} d\tau = \frac{1-\cos 2t}{4} \blacksquare$$

 ${f 3}$ [25] Usando, obrigatoriamente, transformada de Laplace, resolva o problema de valor inicial

$$x'' + 4x' + 3x = e^{-3t}$$
, $x(0) = 0$, $x'(0) = 0$,

ou seja: encontre x(t).

SOLUÇÃO DA QUESTÃO:

Tomando a transformada de Laplace da equação diferencial e introduzindo as condições iniciais,

$$s^{2}\overline{x} + 4s\overline{x} + 3\overline{x} = \frac{1}{s+3},$$

$$\overline{x}(s^{2} + 4s + 3) = \frac{1}{s+3},$$

$$\overline{x}(s+3)(s+1) = \frac{1}{s+3},$$

$$\overline{x}(s) = \frac{1}{(s+3)^{2}(s+1)} = \frac{A}{(s+3)^{2}} + \frac{B}{(s+3)} + \frac{C}{s+1}$$

$$= \frac{1}{4(s+1)} - \frac{1}{4(s+3)} - \frac{1}{2(s+3)^{2}};$$

$$x(t) = \frac{1}{4}e^{-t} - \frac{1}{4}e^{-3t} - \frac{1}{2}te^{-3t} \blacksquare$$

4 [25] Utilizando obrigatoriamente decomposição em frações parciais, calcule a transformada de Laplace inversa de

$$\overline{f}(s) = \frac{1}{s^2 - a^2}.$$

SOLUÇÃO DA QUESTÃO:

$$\frac{1}{s^2 - a^2} = \frac{1}{(s - a)(s + a)}$$

$$\frac{1}{2a} \left[\frac{1}{s - a} - \frac{1}{s + a} \right];$$

$$\mathcal{L}^{-1} \left\{ \frac{1}{s^2 - a^2} \right\} = \frac{1}{2a} \left[e^{at} - e^{-at} \right]$$

$$= \frac{1}{a} \left[\frac{e^{at} - e^{-at}}{2} \right]$$

$$= \frac{1}{a} \operatorname{senh}(at) \blacksquare$$