Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Кафедра вычислительных систем

ОТЧЕТ

по практической работе 6

по дисциплине «Сети ЭВМ и телекоммуникации»

Выполнил:	
студент гр. ИС-142 «» июня 2023 г.	 /Григорьев Ю.В./
Проверил: «» июня 2023 г.	 /Перышкова Е.Н./
Эпенка « »	
Оценка «»	

ОГЛАВЛЕНИЕ

ПОСТАНОВКА ЗАДАЧИ	3
ВЫПОЛНЕНИЕ РАБОТЫ	5

ПОСТАНОВКА ЗАДАЧИ

Соберите конфигурацию сети, представленной на рисунке 1. Коммутаторы на рисунке – это виртуальные коммутаторы VirtualBox, работающие в режиме Host-only network.

Рисунок 1 – Конфигурация сети для практического занятия

- 1. Вам предоставлена подсеть 10.10.N.0/24, где N это Ваш порядковый номер в списке журнала преподавателя. Разделите полученный диапазон адресов на 2 равные подсети. Настройте все сетевые интерфейсы маршрутизаторов и виртуальных машин в соответствии с выбранной схемой адресации так, чтобы они использовали адреса из одной подсети. Какие интерфейсы пингуются?
- 2. На маршрутизаторе mikrotik-01 объедините интерфейсы в сетевой мост. Какие интерфейсы теперь пингуются?
- 3. Используя Wireshark покажите какой трафик доходит до host-машины в сети vboxnet-2.
- 4. В маршрутизаторе mikrotik-01 настройте VLAN с номером 2 для созданного сетевого моста. Измените конфигурацию интерфейса с vboxnet-2 так, чтобы он использовал VLAN порта с номером 2. Включите фильтрацию VLAN на сетевом мосту. Что изменилось в трафике на хост-машине в сети vboxnet-2?

- 5. На маршрутизаторе mikrotik-01 создайте виртуальный интерфейс VLAN для созданного моста и виртуальной сети с номером 2. Назначьте хост-машине, созданному виртуальному интерфейсу адреса из второй Вашей подсети. В виртуальных машинах astralinux создайте виртуальные интерфейсы для обработки тегированного трафика в VLAN с номером 2. Назначьте этим интерфейсам адреса из второй подсети. Продемонстрируйте тегированный трафик в сетях vboxnet-0 и vboxnet-1 и покажите, что этот трафик теряет тег в сети vboxnet-2.
- 6. На хост машине запустите Wireshark. На маршрутизаторе mikrotik-02 объедините интерфейсы в сетевой мост с включением протокола STP. Какие порты в каком статусе? Поясните почему такие статусы стали у портов? Покажите в захваченном потоке Wireshark покажите и объясните пакеты, относящиеся к протоколу STP.

ВЫПОЛНЕНИЕ РАБОТЫ

При выполнении работы было сделано следующее:

1. Собрана конфигурация в соответствии с заданием, выделенный диапазон разделён на 2 равные подсети: 10.10.3.0/25 и 10.10.3.128/25.

Демонстрация выданных ІР-адресов:

	[admin@mt-01] >	ip address	print			
H	Columns: ADDRES:	S, NETWORK,	INTERFACE	[admin@mt-02] >	ip address	print
	# ADDRESS	NETWORK	INTERFACE	Columns: ADDRESS	, NETWORK,	INTERFACE
	0 10.10.3.4/25			# ADDRESS		
	1 10.10.3.5/25	10.10.3.0	ether2	0 10.10.3.7/25	10.10.3.0	ether1
	2 10.10.3.6/25	10.10.3.0	ether3	1 10.10.3.8/25	10.10.3.0	ether2

```
etho: <BROADCAST,MULTICAST,UP,LOWER_2: etho: <BROADCAST,MULTICAST,UP,LOWER.
                                        1000
1000
                                           link/ether 08:00:27:72:06:7d brd f
 link/ether 08:00:27:f1:47:41 brd f
                                           inet 10.10.3.10/25 brd 10.10.3.12
 inet 10.10.3.9/25 brd 10.10.3.127 s
    valid_lft forever preferred_lft
                                              valid_lft forever preferred_lft
                                           inet6
                                                                       <mark>67d</mark>/64 sc
                               41/64 s
    valid_lft forever preferred_lft
                                              valid_lft forever preferred_lft
ner@astra1:~$
                                      owner@astra2:~$
```

Проверяем связанность между устройствами: пинг происходит только между хостом с роутерами и хостом с машинами astralinux.

Это происходит из-за проблем с таблицами маршрутизации: из-за того, что все интерфейсы находятся в одной подсети, пакеты ходят по одним и тем же маршрутам, не добираясь до получателей.

```
[admin0mt-01] > ping 10.10.3.7
                                                 SIZE TTL TIME
  SEQ HOST
                                                                      STATUS
    0 10.10.3.7
                                                                      timeout
    1 10.10.3.7
                                                                      timeout
    sent=2 received=0 packet-loss=100%
[admin@mt-01] > ping 10.10.3.8
  SEQ HOST
                                                 SIZE TTL TIME
                                                                      STATUS
                                                                      timeout
    0 10.10.3.8
    1 10.10.3.8
                                                                      timeout
    sent=2 received=0 packet-loss=100%
[admin@mt-01] \Rightarrow ping 10.10.3.1
                                                 SIZE TTL TIME
                                                                      STATUS
  SEQ HOST
    0 10.10.3.1
                                                   56 128 276us
    1 10.10.3.1
                                                   56 128 258us
    sent=2 received=2 packet-loss=0% min-rtt=258us avg-rtt=267us
   max-rtt=276us
```

```
root@astra1:~# ping 10.10.3.1
PING 10.10.3.1 (10.10.3.1) 56(84) bytes of data.
64 bytes from 10.10.3.1: icmp_seq=1 ttl=128 time=0.355 ms
64 bytes from 10.10.3.1: icmp_seq=2 ttl=128 time=0.139 ms
^C
--- 10.10.3.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1028ms
rtt min/avg/max/mdev = 0.139/0.247/0.355/0.108 ms
```

```
[admin0mt-01] > ping 10.10.3.10
  SEQ HOST
                                                SIZE TTL TIME
                                                                     STATUS
   0 10.10.3.10
                                                                     timeout
    1 10.10.3.10
                                                                     timeout
    sent=2 received=0 packet-loss=100%
[admin@mt-01] > ping 10.10.3.9
  SEQ HOST
                                                SIZE TTL TIME
                                                                     STATUS
   0 10.10.3.9
                                                                     timeout
    1 10.10.3.9
                                                                     timeout
    sent=2 received=0 packet-loss=100%
```

2. Объединим все интерфейсы на mt-01 в сетевой мост: создаём bridge1 во вкладке Bridge, добавляем к нему интерфейсы во вкладке Ports. Теперь роутер по сути объединил в себе все подключения и с него проходят пакеты ping до любого устройства. Между соседними устройствами также налажен контакт: пинг проходит от каждого до каждого устройства.


```
[admin@mt-01] \rightarrow ping 10.10.3.1
                                                                       STATUS
  SEQ HOST
                                                  SIZE TTL TIME
    0 10.10.3.1
                                                    56 128 557us
    1 10.10.3.1
                                                    56 128 258us
    sent=2 received=2 packet-loss=0% min-rtt=258us avg-rtt=407us
   max-rtt=557us
[admin@mt-01] \rightarrow ping 10.10.3.2
                                                  SIZE TTL TIME
                                                                       STATUS
  SEQ HOST
    0 10.10.3.2
                                                    56 128 508us
    1 10.10.3.2
                                                    56 128 267us
    sent=2 received=2 packet-loss=0% min-rtt=267us avg-rtt=387us
   max-rtt=508us
[admin@mt-01] > ping 10.10.3.3
 SEQ HOST
                                                  SIZE TTL TIME
                                                                       STATUS
                                                    56 128 443us
    0 10.10.3.3
    1 10.10.3.3
                                                    56 128 259us
    sent=2 received=2 packet-loss=0% min-rtt=259us avg-rtt=351us
   max-rtt=443us
```

```
[admin@mt-01] > ping 10.10.3.7
  SEQ HOST
                                                                      STATUS
                                                 SIZE TTL TIME
                                                      64 712us
    0 10.10.3.7
                                                   56
    1 10.10.3.7
                                                       64 300us
   sent=2 received=2 packet-loss=0% min-rtt=300us avg-rtt=506us max-rtt=712us
[admin@mt-01] > ping 10.10.3.8
  SEQ HOST
                                                 SIZE TTL TIME
                                                                      STATUS
    0 10.10.3.8
                                                   56
                                                      64 314us
    1 10.10.3.8
                                                   56
                                                      64 308us
    sent=2 received=2 packet-loss=0% min-rtt=308us avg-rtt=311us
   max-rtt=314us
[admin@mt-01] > ping 10.10.3.9
  SEQ HOST
                                                                      STATUS
                                                 SIZE TTL TIME
    0 10.10.3.9
                                                   56 64 499us
    1 10.10.3.9
                                                   56 64 363us
    sent=2 received=2 packet-loss=0% min-rtt=363us avg-rtt=431us
   max-rtt=499us
```

```
owner@astra1:~$ ping 10.10.3.4
PING 10.10.3.4 (10.10.3.4) 56(84) bytes of data.
64 bytes from 10.10.3.4: icmp_seq=1 ttl=64 time=0.476 ms
--- 10.10.3.4 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.476/0.476/0.476/0.000 ms
owner@astra1:~$ ping 10.10.3.6
PING 10.10.3.6 (10.10.3.6) 56(84) bytes of data.
64 bytes from 10.10.3.6: icmp_seq=1 ttl=64 time=0.480 ms
С.
--- 10.10.3.6 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
tt min/avg/max/mdev = 0.480/0.480/0.480/0.000 ms
owner@astra1:~$ ping 10.10.3.8
PING 10.10.3.8 (10.10.3.8) 56(84) bytes of data.
64 bytes from 10.10.3.8: icmp_seq=1 ttl=64 time=0.964 ms
64 bytes from 10.10.3.8: icmp_seq=2 ttl=64 time=0.401 ms
--- 10.10.3.8 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.401/0.682/0.964/0.282 ms
owner@astra1:~$
```

3. Посмотрим в Wireshark, какие пакеты доходят до хост-машины в сети vboxnet2: это будет весь широковещательный трафик из подсетей, подключенных к сетевому мосту bridge1 на mt-01 (адресованный даже не нашей хост-машине), что не является безопасным решением: если злоумышленник получит доступ к адаптеру подсети, то сможет видеть broadcast-пакеты из других подсетей.

84 111.124460	PcsCompu_be:f2:d5	Broadcast	ARP	42 Who has 10.10.3.10? Tell 10.10.3.4
85 112.109231	PcsCompu_94:b2:6b	Spanning-tree-(for	STP	53 RST. Root = 32768/0/08:00:27:be:f2:
86 112.178936	PcsCompu_be:f2:d5	Broadcast	ARP	42 Who has 10.10.3.10? Tell 10.10.3.4
87 113.219058	PcsCompu_be:f2:d5	Broadcast	ARP	42 Who has 10.10.3.10? Tell 10.10.3.4
88 114.111496	PcsCompu_94:b2:6b	Spanning-tree-(for	STP	53 RST. Root = 32768/0/08:00:27:be:f2:
89 116.028487	PcsCompu_be:f2:d5	Broadcast	ARP	42 Who has 10.10.3.8? Tell 10.10.3.4
90 116.113605	PcsCompu_94:b2:6b	Spanning-tree-(for	STP	53 RST. Root = 32768/0/08:00:27:be:f2:
91 117.059252	PcsCompu_be:f2:d5	Broadcast	ARP	42 Who has 10.10.3.8? Tell 10.10.3.4
92 118.098904	PcsCompu_be:f2:d5	Broadcast	ARP	42 Who has 10.10.3.8? Tell 10.10.3.4

4. Для возвращения безопасности в нашу сеть настроим VLAN: в настройках bridge1 включаем опцию "VLAN Filtering" для фильтрации пакетов в виртуальных локальных сетях и на интерфейсе ether3 в меню Ports ставим значение PVID = 2. Проверяем в подменю "VLANs", создалась ли новая виртуальная локальная сеть: да, создалась.

		▲ Bridge	VLAN IDs	Current Tagged	Current Untagged
-	D	bridge1	2		ether3
-	D	bridge1	1		bridge1, ether2, ether1

Смотрим пакеты в Wireshark: теперь ping и broadcast-пакеты не доходят до интерфейса ether3, так как он принадлежит VLAN 2, а все остальные интерфейсы - подсети VLAN 1. Для проверки наличия ARP-пакетов были проведены ping c astra1 до mt-01 ether1 и ether2. ARP-пакеты в подсети vboxnet2 на хосте отсутствуют, из-за чего также перестали проходить ping-пакеты от astra1 до хоста.


```
owner@astra1:~$ ping 10.10.3.2
PING 10.10.3.2 (10.10.3.2) 56(84) bytes of data.
^C
--- 10.10.3.2 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1008ms
```

5. Создадим виртуальный интерфейс на mt-01 во вкладке Interfaces: типом интерфейса назначим VLAN, в поле VLAN ID впишем 2, далее добавим его в Bridge->Ports к bridge1. Хосту на адаптере vboxnet2 заменим адрес на подходящий для второй подсети: 10.10.3.129, а новому виртуальному интерфейсу присвоим адрес 10.10.3.130 в меню IP -> Addresses.

В виртуальных машинах astalinux создадим виртуальные интерфейсы для обработки тегированного трафика в VLAN-2 и назначим этим интерфейсам адреса из второй подсети (10.10.3.131 и 10.10.3.132 соответственно). Чтобы добавить интерфейс eth0.2 с привязкой к VLAN-2, пропишем "ip link add link eth0 name eth0.2 type vlan id 2". Назначим ему IP адрес в файле /etc/network/interfaces.d/eth0:

astra1

```
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfif
n 1000
    link/ether 08:00:27:f1:47:41 brd ff:ff:ff:ff:ff
    inet 10.10.3.9/25 brd 10.10.3.127 scope global eth0
       valid_lft forever preferred_lft forever
    inet6
                      ff:fef1:4741/64 scope link
       valid_lft forever preferred_lft forever
3: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdi
 1000
    link/ether 08:00:27:f1:47:41 brd ff:ff:ff:ff:ff
    inet 10.10.3.131/25 brd 10.10.3.255 scope global eth0.2
       valid_lft forever preferred_lft forever
                            1:4741/64 scope link
    inet6 🖠
      valid_lft forever preferred_lft forever
```

astra2

```
2: etho: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_r
n 1000
    link/ether 08:00:27:72:06:7d brd ff:ff:ff:ff:ff:ff
    inet 10.10.3.10/25 brd 10.10.3.127 scope global etho
        valid_lft forever preferred_lft forever
    inet6 fe80::a00:27ff:fe72:67d/64 scope link
        valid_lft forever preferred_lft forever
3: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
1000
    link/ether 08:00:27:72:06:7d brd ff:ff:ff:ff:ff:
    inet 10.10.3.132/25 brd 10.10.3.255 scope global eth0.2
        valid_lft forever preferred_lft forever
    inet6 fe80::a00:27ff:fe72:67d/64 scope link
```

Для того, чтобы перевести порты (интерфейсы) mt-01, в режим trunk (т.е. передающий пакеты с тегом VLAN) (в сетях vboxnet0 и vboxnet1 имеются устройства и с VLAN-1, и с VLAN-2, изза чего нужно их разделять в рамках подсети), в меню VLANs добавляем новое правило для VLAN-1: ставим метку tagged на ether1 и ether2 (интерфейсах, соединённых с vboxnet0 и vboxnet1 соответственно).

Далее пробуем пинговать устройства в рамках всей нашей сети: от astra2 (10.10.3.10) к astra1 (10.10.3.131). Оба интерфейса хоста и маршрутизатора находятся в виртуальной сети VLAN-1, и смотря в пакеты, мы видим тег, соответствующий этой VLAN.

No.	Time	Source	Destination	Protocol	Length	Info
	1 0.000000	PcsCompu_be:f2:d5	Spanning-tree-(for	STP	53	RST. Root = 32768/0/08:00:27:be:f2:d5 Co
	2 0.147566	PcsCompu_72:06:7d	Broadcast	ARP	64	Who has 10.10.3.131? Tell 10.10.3.10
	3 1.162160	PcsCompu_72:06:7d	Broadcast	ARP	64	Who has 10.10.3.131? Tell 10.10.3.10
	4 2.002526	PcsCompu_be:f2:d5	Spanning-tree-(for	STP	53	RST. Root = 32768/0/08:00:27:be:f2:d5 Co
	5 2.186108	PcsCompu_72:06:7d	Broadcast	ARP	64	Who has 10.10.3.131? Tell 10.10.3.10
	C 4 005000		- ' ' '	CTD		DCT D 1 303C0/0/00 00 03 1 C0 IC C
> Fra	ame 3: 64 bytes o	on wire (512 bits), 64	bytes captured (512	bits) on	interf	face \Device\NPF_{28F6859A-4216-40A2-9A0D-2
> Etl	hernet II, Src: P	PcsCompu_72:06:7d (08:	00:27:72:06:7d), Dst:	Broadca	st (ff:	ff:ff:ff:ff)
V 80	2.1Q Virtual LAN,	, PRI: 0, DEI: 0, ID:	1			
	000	= Priority: Best	Effort (default) (0)			
	0	= DEI: Ineligible				
	0000 0000 0	0001 = ID: 1				
	Type: ARP (0x080	96)				
	Padding: 0000000	000000000000000000000000000000000000000				
	Trailer: 0000000	90				
✓ Add	dress Resolution	Protocol (request)				
	Hardware type: E	thernet (1)				
	Protocol type: I	Pv4 (0x0800)				

Смотрим в сеть vboxnet2: ARP-запросы, приходившие от astra2, не обладают тегом, как и требуется по заданию. Это происходит из-за того, что в подсети VLAN-2 наши интерфейсы обладают меткой untagged.

6 3.739331	PcsCompu_72:06:7d	Broadcast	ARP	42 Who h	as 10.10.3.1	131? Tell 1	10.10.3.10	
7 4.242218	PcsCompu_42:96:2d	Spanning-tree-(f	or STP	53 RST.	Root = 32768	3/0/08:00:2	27:be:f2:d5	Cos
8 4.766886	PcsCompu_72:06:7d	Broadcast	ARP	42 Who h	as 10.10.3.1	131? Tell 1	10.10.3.10	
9 5.791105	PcsCompu 72:06:7d	Broadcast	ARP	42 Who h	as 10.10.3.1	131? Tell 1	10.10.3.10	
L								
\	' =							
Frame 9: 42 bytes	on wire (336 bits), 42	2 bytes captured (336 bits) on	interface \	Device\NPF_{	70CFA861-C	C0E-433C-BD	AC-1
•	······································				_,	70CFA861-C	COE-433C-BD	AC-1
Ethernet II, Src:	on wire (336 bits), 42				_,	70CFA861-C	COE-433C-BD	AC-1
Ethernet II, Src:	on wire (336 bits), 42 PcsCompu_72:06:7d (08: n Protocol (request)				_,	70CFA861-C	COE-433C-BD	AC-1

Дополнительная демонстрация тегированного + нетегированного трафика: пинг с хоста до astra1.

(untagged)

> 802.10 Virtual LAN, PRI: 0, DEI: 0, ID: 1 > Address Resolution Protocol (request)

(untagged)						
3392 955.714296	0a:00:27:00:00:04	Broadcast	ARP	42 Who ha	s 10.10.3.9?	Tell 10.10.3.1
3393 955.714502	0a:00:27:00:00:0c	Broadcast	ARP	64 Who ha	s 10.10.3.9?	Tell 10.10.3.3
> Frame 3392: 42 bytes	s on wire (336 bits),	42 bytes capt	ured (336 bits) on	interface	\Device\NPF	_{28F6859A-4216-4
> Ethernet II, Src: 0	a:00:27:00:00:04 (0a:	00:27:00:00:04), Dst: Broadcast	(ff:ff:ff:	ff:ff:ff)	
> Address Resolution R	Protocol (request)					
3392 955.714296	0a:00:27:00:00:04	Broadcast	ARP	42 Who ha	s 10.10.3.9?	Tell 10.10.3.1
3393 955.714502	0a:00:27:00:00:0c	Broadcast	ARP	64 Who ha	s 10.10.3.9?	Tell 10.10.3.3
> Frame 3393: 64 byte	s on wire (512 bits),	64 bytes capt	ured (512 bits) on	interface	\Device\NPF	{28F6859A-4216-4
•	a:00:27:00:00:0c (0a:					

6. На маршрутизаторе mt-02 объединим интерфейсы в сетевой мост с включением протокола STP. Для этого при создании сетевого моста отметим пункт "Protocol Mode" как RSTP (модифицированная версия STP, имеет меньшее время ожидания для построения дерева).

Проверим STP-статусы сетевых мостов на маршрутизаторах: зайдём в подменю Bridge и проверим параметры bridge1 на mt-02: видим, что сетевой мост маршрутизатор стал "корневым" мостом сети. На mt-01 видим, что он не считает себя "корневым", но имеет интерфейс "root-port".

NOTE (!):

- *Root port* (корневой порт) это порт, который имеет *минимальную стоимость* до любого порта корневого коммутатора (root bridge);
- *Designated port* (назначенный порт) это порт, который имеет кратчайшее расстояние от *назначенного коммутатора* до корневого коммутатора.

Root Bridge	
Root Bridge ID	8000.08:00:27:37:30:03
Regional Root Bridge ID	0.00:00:00:00:00
Root Path Cost	10
Root Port	ether1
Port Count	4
Designated Port Count	2
MST Config Digest	

Проверим порты маршрутизаторов:

Видим, что оба порта mt-02 имеют статус designated, т.е. являются портами с наименьшей стоимостью пути до корневого моста и они будут использовать для доступа к нему.

Также у каждого порта есть состояния: у ether1 и ether2 видим отмеченными состояния Learning и Forwarding, т.е. они изучают MAC-адреса получаемых пакетов и пересылают пакеты дальше.

ether1 mt-02

ether2 mt-02

Port Number	2
Role	designated port
Edge Port	
Edge Port Discovery	
Point To Point Port	
External FDB	
Sending RSTP	
Learning	
Forwarding	

На mt-01 ситуация следующая: интерфейс ether1 является корневым портом, ether2 - alternate port (альтернативный корневой порт — действует как резервный для корневого (root port). Когда корневой порт заблокирован или утерян, альтернативный становится корневым), ether3 & vlan-2 - designated port.

ether2		ether3		ether1	
Port Number	1	Port Number	3	Port Number	2
Role	alternate port	Role	designated port	Role	root port
Edge Port		Edge Port	V	Edge Port	
Edge Port Discovery		Edge Port Discovery	V	Edge Port Discovery	V
Point To Point Port		Point To Point Port	✓	Point To Point Port	V
External FDB		External FDB		External FDB	
Sending RSTP		Sending RSTP	✓	Sending RSTP	V
Learning		Learning	V	Learning	V
Forwarding		Forwarding	✓	Forwarding	

Так как ether2 является альтернативным корнем, он не участвует в пересылании трафика в отличие от ether1 и ether3.

Смотрим пакеты в Wireshark: те, что относятся к протоколу STP, отправляются в сеть раз в 15 секунд (delay). В каждом таком пакете от портов можно увидеть, кто является корневым коммутатором в сети и роли, флаги самих же этих портов (learning/forwarding/...).

Пример стандартного STP-пакета приведён на скриншоте ниже.

```
8738 2286.589920 PcsCompu_37:30:03
                                                                                                              Spanning-tree-(for-... STP
                                                                                                                                                                                                   53 RST. Root = 32768/0/08:00:27:37:30:03
    8759 2290.611349 PcsCompu_37:30:03
                                                                                                             Spanning-tree-(for-... STP
                                                                                                                                                                                                    53 RST. Root = 32768/0/08:00:27:37:30:03
                                                     PcsCompu_37:30:03
                                                                                                              Spanning-tree-(for-... STP
                                                                                                                                                                                                    53 RST. Root = 32768/0/08:00:27:37:30:03
    8768 2292.620165
    8777 2294.631675 PcsCompu 37:30:03
                                                                                                                                                                                                   53 RST. Root = 32768/0/08:00:27:37:30:03
                                                                                                              Spanning-tree-(for-... STP
Frame 8751: 53 bytes on wire (424 bits), 53 bytes captured (424 bits) on interface \Device\NPF_{28F6859A-4216-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-40A2-41B-4
 IEEE 802.3 Ethernet
Logical-Link Control
Spanning Tree Protocol
        Protocol Identifier: Spanning Tree Protocol (0x0000)
       Protocol Version Identifier: Rapid Spanning Tree (2)
       BPDU Type: Rapid/Multiple Spanning Tree (0x02)
  > BPDU flags: 0x3c, Forwarding, Learning, Port Role: Designated
 ▼ Root Identifier: 32768 / 0 / 08:00:27:37:30:03
               Root Bridge Priority: 32768
               Root Bridge System ID Extension: 0
               Root Bridge System ID: PcsCompu_37:30:03 (08:00:27:37:30:03)
        Root Path Cost: 0
  > Bridge Identifier: 32768 / 0 / 08:00:27:37:30:03
       Port identifier: 0x8001
       Message Age: 0
       Max Age: 20
       Hello Time: 2
       Forward Delay: 15
       Version 1 Length: 0
```

Попробуем выключить-включить маршрутизатор mt-02: через STP в сеть отправляются пакеты Topology Change, т.е. информирование об изменениях в существующем дереве. Выбирается новый Root Bridge и Root Port, некоторые порты меняют свои роли. По включению роутера снова происходит Topology Change и всё возвращается в исходное состояние.

```
206 82.909394 PcsCompu_be:f2:d5 Spanning-tree-(for-... STP
                                                        53 RST. TC + Root = 32768/0/08:00:27:37:30:0
 53 RST. TC + Root = 32768/0/08:00:27:37:30:0
 PcsCompu_37:30:03
PcsCompu_37:30:03
 238 88.914448
                               Spanning-tree-(for-... STP
                                                        53 RST. Root = 32768/0/08:00:27:37:30:03 Co
  244 90.916955
                               Spanning-tree-(for-... STP
                                                         53 RST. Root = 32768/0/08:00:27:37:30:03 Co
Frame 226: 53 bytes on wire (424 bits), 53 bytes captured (424 bits) on interface \Device\NPF_{28F6859A-4216-40A2-9A0I
IEEE 802.3 Ethernet
Logical-Link Control
Spanning Tree Protocol
  Protocol Identifier: Spanning Tree Protocol (0x0000)
  Protocol Version Identifier: Rapid Spanning Tree (2)
  BPDU Type: Rapid/Multiple Spanning Tree (0x02)
> BPDU flags: 0x3d, Forwarding, Learning, Port Role: Designated, Topology Change
Root Identifier: 32768 / 0 / 08:00:27:37:30:03
    Root Bridge Priority: 32768
    Root Bridge System ID Extension: 0
    Root Bridge System ID: PcsCompu_37:30:03 (08:00:27:37:30:03)
  Root Path Cost: 0
> Bridge Identifier: 32768 / 0 / 08:00:27:37:30:03
```

Все задания практической работы выполнены успешно.