빅데이터분석 실습

모델 평가와 성능 향상

데이터 사이언스 전공

담당교수: 곽철완

강의 내용

- ■교차 검증
- ■그리드 서치

개요

- 지도 학습 모델 만들기
 - 데이터 세트를 학습용 데이터 세트와 평가용 데이터 세트로 구분 train_test_split() 함수
 - 모델을 만들기 위해 학습용 데이터 세트에 fit 메서드 적용
 - 모델 평가를 위해 평가용 데이터 세트에 score 메서드 적용
 - 분류에서 score 메서드는 정확히 분류된 샘플의 비율을 계산 하는 역할 담당

■사례

- 데이터를 학습용과 평가용으로 나누어 새로운 데이터에 모델이 얼마나 일반화 되는지 평가
- 인위적인 데이터 세트(make_blobs 함수 이용)를 만들어
- 로지스틱 회귀분석 실행 > 평가용 데이터 세트를 이용해 모델 평가

```
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X, y = make_blobs(random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
logreg = LogisticRegression().fit(X_train, y_train)
```

평가용 데이터 세트 점수: 0.88

print("평가용 데이터 세트 점수: {:.2f}".format(logreg.score(X_test, y_test)))

1. 교차 검증

개요

- 교차검증은 학습용 및 평가용으로 나누는 것보다 더 안정적이고 뛰 어난 통계적 평가 방법
- 데이터를 여러 번 반복해서 나누고 여러 모델을 학습한다
- k-겹 교차 검증(k-fold cross-validation)(k=5 혹은 10)
 - 데이터를 폴드(fold)라 하는 비슷한 크기의 부분 집합 5개로 나눔
 - 다음에 일련의 모델 작성. 첫 번째 모델은 폴드 1을 평가용 세트로 사용하고 나머지를 학습용 모델로 사용하여 학습한다
 - 두번째 모델은 폴드 2를 평가용 모델로 사용하고 나머지 폴드를 학습용 모델로 사용하여 계속 반복
 - 5번의 분할마다 정확도를 측정하여 최종적인 값을 얻는다

 $mglearn.plots.plot_cross_validation()$

• 위의 그림과 같이 5회 반복하여 5개의 정확도 점수를 얻는다

■ scikit-learn의 교차 검증

- model_selection 모듈의 cross_val_score 함수에 구현되어 있다
- cross_val_score 함수의 매개변수는 평가하려는 모델, 훈련 데이터, 타깃 레이블이다
- iris 데이터 세트를 이용한 로지스틱 회귀 모델을 평가해보자

```
from sklearn.model_selection import cross_val_score from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression iris = load_iris() logreg = LogisticRegression()

scores = cross_val_score(logreg, iris.data, iris.target) print("교차 검증 점수:", scores)
```

교차 검증 점수: [0.96078431 0.92156863 0.95833333]

■ 폴드 수 변경 • cv=5 사용

```
scores = cross_val_score(logreg, iris.data, iris.target, cv=5)
print("교차 검증 점수:", scores)
교차 검증 점수: [1. 0.96666667 0.93333333 0.9 1. ]
```

• 보통 교차 검증의 정확도를 간단하게 나타내기 위해 평균을 사용

```
print("교차 검증 평균 점수: {:.2f}".format(scores.mean())) 교차 검증 평균 점수: 0.96
```

- 이 모델의 정확도가 약 96%으로 기대
 - 90% ~ 100%

• 교차 검증에 cross_validate 함수를 사용할 수도 있다

```
from sklearn.model_selection import cross_validate
res = cross_validate(logreg, iris.data, iris.target, cv=5, return_train_score=True)
display(res)

{'fit_time': array([0.00299883, 0.00100088, 0.00099921, 0.00099897, 0.00099945]),
'score_time': array([0.00100946, 0.00099874, 0. , 0. , 0. ]),
'test_score': array([1. , 0.96666667, 0.93333333, 0.9 , 1. ]),
'train_score': array([0.95 , 0.96666667, 0.96666667, 0.975 , 0.95833333])}
```

• 학습과 평가에 걸린 시간을 보여준다

• pandas 를 이용하여 결과값 출력하고 평균 계산

```
res_df = pd.DataFrame(res)
display(res_df)
print("평균 시간과 점수:\n", res_df.mean())
```

	fit_time	score_time	test_score	train_score
0	0.002999	0.001009	1.000000	0.950000
1	0.001001	0.000999	0.966667	0.966667
2	0.000999	0.000000	0.933333	0.966667
3	0.000999	0.000000	0.900000	0.975000
4	0.000999	0.000000	1.000000	0.958333

평균 시간과 점수:
fit_time 0.001399
score_time 0.000402
test_score 0.960000
train_score 0.963333
dtype: float64

■ 교차 검증의 장점과 단점

- 머신러닝 모델을 평가하기 위해 학습용 및 평가용 데이터세트로 구분하면서 사용하는 train_test_split()는 데이터를 무작위로 나눈다
 - 하지만 경우에 따라 평가 결과가 높게 혹은 낮게 나올 수 있다
- 교차 검증은 평가용 데이터 세트에 각각 샘플이 정확하게 한번씩 들 어간다
- 분할을 한번 했을 때 보다 데이터를 더 효과적으로 사용할 수 있다
 - train_test_split는 75 : 25 로 나누지만
 - 5-겹 교차 검증을 사용하면 반복해서 4/5의 데이터(80%)를 모델 학습에 사용한다
- 단점으로 연산 비용이 증가하고, 모델을 k 개 만들어 k 배 느리다

■ 계층별 k-겹 교차 검증과 기타

- iris 데이터 세트 예
 - 나열 순서대로 k 개의 폴드로 나누는 것이 항상 좋지 않다

2 2]

- iris 데이터 세트는 3개의 클래스 0, 1, 2로 구성되어 있는데, k 폴드(3개)로 나눈다면 폴드 1은 클래스 0 으로 학습용은 0, 평가용은 1, 2만 가진다
- 폴드 2는 학습용 클래스만 1, 나머지는 0, 2이다 그러면 교차 검증의 정확도는 0이 된다

 계층별 k-겹 교차 검증은 폴드 안의 클래스 비율이 전체 데이터세트 의 클래스 비율과 같도록 데이터를 나눈다(예를 들면 클래스 A 60%, 클래스 B 40%의 비율)

mglearn.plots.plot_stratified_cross_validation()

- 교차 검증 상세 옵션
 - scikit-learn에서는 cv 매개변수에 교차 검증 분할기 cross-validation splitter를 전달하여 더 세밀한 제어가 가능하다
 - 하지만, 다른 사람이 조사한 결과를 재현하기 위해 k-겹 교차 검증을 사용할 때는 다른 전략이 필요하다
 - 예, iris 데이터 세트
 - 분석을 위해 Kfold 분할기를 import 한다

```
from sklearn.model_selection import KFold
kfold = KFold(n_splits=5)
```

• kfold 객체를 cross_val_score의 cv 매개변수로 전달한다

• iris 데이터 세트에 3겹 교차 검증을 적용한다

```
kfold = KFold(n_splits=3)
print("교차 검증 점수:\n",
    cross_val_score(logreg, iris.data, iris.target, cv=kfold))
교차 검증 점수:
[0. 0. 0.]
```

- 결과는 0, 0, 0 이다
- 각 폴드는 iris 데이터 세트 중 하나에 대응하므로 아무것도 학습할 수 없다 → 계층별 대신 섞어주는 방법을 적용

• kfold의 shuffle 매개변수에 True를 지정하면 뒤죽박죽 섞인다

```
kfold = KFold(n_splits=3, shuffle=True, random_state=0)
print("교차 검증 점수:\n",
    cross_val_score(logreg, iris.data, iris.target, cv=kfold))
교차 검증 점수:
[0.9 0.96 0.96]
```

• 검증 점수가 바뀌었다

- 임의 분할 교차 검증
 - train_size 만큼의 포인트로 학습용 데이터 세트를 만들고 test_size 만큼의 포인트로 평가용 데이터 세트를 만들도록 분할한다
 - 그리고 n_splits 횟수만큼 반복한다

사례, 데이터 세트의 50%를 학습용 데이터 세트로, 50%를 평가용데이터 세트로 10회 반복 분할한다

• 임의 분할 교차 검증은 반복 횟수를 학습용 세트나 평가용 세트의 크기와 독립적으로 조절해야 할 때 유리하다

- 그룹별 교차 검증
 - (예) 얼굴 구분을 위한 시스템 구축
 - 모델을 구축을 위해 사진 100장 수집(동일 인물의 여러 사진 포함)
 - 계층별 교차 검증은 동일 인물이 학습용과 평가용에 모두 나타날 수 있다
 - 새 사진을 더 잘 구별할 수 있는지 평가하려면, 학습용과 평가용에 다른 사진이 포함되어야 한다(과적합 감소)

- 인물사진분류시스템
 - 100명의 사진 수집→한 사람을 찍은 여러 장이 사진이 각기 다른 표 정을 담고 있다
 - 시스템 구축 목적 → 새로운 인물 사진을 구분할 수 있는 분류기를 만드는 것이다
 - 분류기 성능을 측정하기 위해 계층별 교차 검증을 사용할 수 있지만, 같은 사람의 사진이 학습용 세트와 평가용 세트에 모두 나타날 수 있다
 - 새 얼굴에 대한 일반화 성능을 더 정확하게 평가하기 위해서 학 습용 세트와 평가용 세트에 서로 다른 사람의 사진이 포함되어야 한다
 - 그룹별 교차 검증이 이 문제를 해결한다

• 그룹별 교차 검증에는 GroupKFold 함수를 사용한다

• GroupKFold는 그룹별로 학습용 혹은 평가용 데이터세트에 나뉘어 져 있다

2. 그리드 서치

- 기본 개념
 - 매개 변수 튜닝을 통한 모델의 일반화 성능 개선
 - 그리드 서치는 매개 변수들을 대상으로 가능한 모든 조합을 시도하 여 적합한 매개 변수를 제시
- ■사례
 - RBF(Radial Basis Function) 커널 SVM의 경우를 보면, gamma와 규제 매개 변수 C 가 있는데 이 두 매개 변수의 조합을 그리드 서치를 통해 얻을 수 있다

■ 간단한 그리드 서치

```
# 간단한 그리드 서치 구현
from sklearn.svm import SVC
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=0)
print("훈련 세트의 크기: {} 테스트 세트의 크기: {}".format(X_train.shape[0], X_test.shape[0]))
best_score = 0
```

```
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
  for C in [0.001, 0.01, 0.1, 1, 10, 100]:
    # 매개변수의 각 조합에 대해 SVC를 훈련시킵니다
    svm = SVC(gamma=gamma, C=C)
    svm.fit(X train, y train)
    # 테스트 세트로 SVC를 평가합니다
    score = svm.score(X test, y test)
    # 점수가 더 높으면 매개변수와 함께 기록합니다
    if score > best_score:
      best score = score
      best_parameters = {'C': C, 'gamma': gamma}
print("최고 점수: {:.2f}".format(best_score))
print("최적 파라미터:", best_parameters)
```

```
훈련 세트의 크기: 112 - 테스트 세트의 크기: 38
최고 점수: 0.97
```

최적 파라미터: {'C': 100, 'gamma': 0.001}

■ 매개변수 과대적합과 검증 세트

- 앞의 모델 정확도가 97%로 보고된다
- 하지만, 새로운 데이터에 적합하지 않을 수 있다 → 매개변수 조정을 위해 평가용 데이터 세트를 이미 사용했기 때문에, 평가를 위해 모델을 만들 때 사용하지 않은 데이터가 필요
- 학습용 세트 → 모델 개발
- 검증용 세트 -> 모델의 매개변수 선택
- 평가용 세트 → 매개변수 성능 평가

- 검증 세트를 이용해 최적의 매개변수를 선택
- 그 매개변수에서 학습용 세트와 검증 세트 데이터 모두를 이용해 모델을 다시 만든다 ← 데이터를 많이 수집하기 위해

```
from sklearn.svm import SVC
# 데이터를 훈련+검증 세트 그리고 테스트 세트로 분할
X_trainval, X_test, y_trainval, y_test = train_test_split(
    iris.data, iris.target, random_state=0)
# 훈련+검증 세트를 훈련 세트와 검증 세트로 분할
X_train, X_valid, y_train, y_valid = train_test_split(
    X_trainval, y_trainval, random_state=1)
print("훈련 세트의 크기: {} 검증 세트의 크기: {} 테스트 세트의 크기:"
    "{}\n".format(X_train.shape[0], X_valid.shape[0], X_test.shape[0]))
```

```
best score = 0
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
 for C in [0.001, 0.01, 0.1, 1, 10, 100]:
   # 매개변수의 각 조합에 대해 SVC를 훈련시킵니다
    svm = SVC(gamma=gamma, C=C)
    svm.fit(X train, y train)
   # 검증 세트로 SVC를 평가합니다
   score = svm.score(X valid, y_valid)
   # 점수가 더 높으면 매개변수와 함께 기록합니다
    if score > best score:
     best score = score
     best parameters = {'C': C, 'gamma': gamma}
# 훈련 세트와 검증 세트를 합쳐 모델을 다시 만든 후
# 테스트 세트를 사용해 평가합니다
svm = SVC(**best parameters)
svm.fit(X trainval, y trainval)
test_score = svm.score(X_test, y_test)
print("검증 세트에서 최고 점수: {:.2f}".format(best_score))
print("최적 파라미터: ", best parameters)
print("최적 파라미터에서 테스트 세트 점수: {:.2f}".format(test_score))
훈련 세트의 크기: 84 _ 검증 세트의 크기: 28 _ 테스트 세트의 크기: 38
검증 세트에서 최고 점수: 0.96
최적 파라미터: {'C': 10, 'gamma': 0.001}
최적 파라미터에서 테스트 세트 점수: 0.92
```

- 최고 점수: 96%
 - 학습용 데이터 세트가 줄었기 때문에 감소했 다
- 평가용 데이터 세트 점수: 92%
 - 새로운 데이터 92%만 정확하게 분류한다
- 정확도가 감소한 이유는 동일한 데이터를 사용했 기 때문

```
best_score = 0
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
 for C in [0.001, 0.01, 0.1, 1, 10, 100]:
   # 매개변수의 각 조합에 대해 SVC를 훈련시킵니다
   svm = SVC(gamma=gamma, C=C)
   svm.fit(X train, y train)
   # 검증 세트로 SVC를 평가합니다
   score = svm.score(X_valid, y_valid)
   # 점수가 더 높으면 매개변수와 함께 기록합니다
   if score > best_score:
     best_score = score
     best parameters = {'C': C, 'gamma': gamma}
# 훈련 세트와 검증 세트를 합쳐 모델을 다시 만든 후
# 테스트 세트를 사용해 평가합니다
svm = SVC(**best_parameters)
svm.fit(X_trainval, y_trainval)
test score = svm.score(X test, y test)
print("검증 세트에서 최고 점수: {:.2f}".format(best_score))
print("최적 파라미터: ", best parameters)
print("최적 파라미터에서 테스트 세트 점수: {:.2f}".format(test_score))
훈련 세트의 크기: 84 _ 검증 세트의 크기: 28 _ 테스트 세트의 크기: 38
검증 세트에서 최고 점수: 0.96
최적 파라미터: {'C': 10, 'gamma': 0.001}
최적 파라미터에서 테스트 세트 점수: 0.92
```

■ 교차 검증을 사용한 그리드 서치

- 앞의 결과는 매개변수 C가 100에서 10으로 바뀌었다
- 일반화 성능을 잘 평가하기 위해 교차 검증을 사용할 수 있다

```
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
    for C in [0.001, 0.01, 0.1, 1, 10, 100]:
    # 매개변수의 각 조합에 대해 SVC를 훈련시킵니다
    svm = SVC(gamma=gamma, C=C)
# 교차 검증을 적용합니다
    scores = cross_val_score(svm, X_trainval, y_trainval, cv=5)
# 교차 검증 정확도의 평균을 계산합니다
    score = np.mean(scores)
# 점수가 더 높으면 매개변수와 함께 기록합니다
    if score > best_score:
        best_score = score
        best_parameters = {'C': C, 'gamma': gamma}
```

```
# 훈련 세트와 검증 세트를 합쳐 모델을 다시 만듭니다
svm = SVC(**best_parameters)
svm.fit(X_trainval, y_trainval)

SVC(C=100, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma=0.01, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
```

• 앞의 코드에서 최적의 매개 변수 선택 방법

mglearn.plots.plot_cross_val_selection() ķ 🔕 Validation accuracy cv accuracy mean accuracy best parameter setting ∇ 0.2 C: 0.01, gamma: 10 C: 0.001, gamma: 0.001 C: 0.1, gamma: 0.001 C: 0.1, gamma: 0.01 C: 0.001, gamma: C: 0.1, gamma: C: 0.1, gamma: C: 0.1, gamma: C: 0.001, gamma: Parameter settings

GridSearchCV

• 먼저 딕셔너리 형태로 검색 대상 매개 변수를 지정해야 한다

• 다음으로, 모델(여기서는 SVC), 검색 대상 매개 변수 그리드 (param_grid), 원하는 교차 검증(5-겹 계층별 교차 검증)으로 GridSearchCV 객체 생성

```
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
grid_search = GridSearchCV(SVC(), param_grid, cv=5, return_train_score=True)
```

• 과대적합을 피하기 위해 학습용 및 평가용 데이터 세트로 구분한다

```
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=0)
```

- grid_search 객체는 fit, predict, score 메서드를 제공한다
 - fit 메서드는 param_grid에 설정된 매개 변수 조합에 대한 교차 검증을 수행한다

```
grid_search.fit(X_train, y_train)
```

- GridSearchCV 객체의 fit 메서드 역할
 - 최적의 매개 변수를 찾는다
 - 교차 검증 성능이 좋은 매개 변수로 전체 학습용 데이터 세트에 대해 새로운 모델을 자동으로 만든다
 - → fit 메서드는 29쪽의 코드의 결과와 동일하다
 - 선택한 매개 변수: best_params_
 - 최상의 교차 검증 정확도: best_score_

```
print("최적 매개변수:", grid_search.best_params_)
print("최고 교차 검증 점수: {:.2f}".format(grid_search.best_score_))
최적 매개변수: {'C': 10, 'gamma': 0.1}
최고 교차 검증 점수: 0.97
```

- 교차 검증 결과 분석
 - 교차 검증 결과를 시각화 하여 검색 대상 매개 변수가 모델의 일반 화에 영향을 미치는지 파악한다
 - 적은 수의 그리드로 시작하는 것이 좋다

```
import pandas as pd
pd.set_option('display.max_columns', None)
# DataFrame으로 변환합니다
results = pd.DataFrame(grid_search.cv_results_)
# 처음 다섯 개 행을 출력합니다
display(np.transpose(results.head()))
```

	0	1	2	3	4
mean_fit_time	0.000400066	0.00059967	0.000599575	0.000599432	0.000399828
std_fit_time	0.000489979	0.000489629	0.000489551	0.000489434	0.000489687
mean_score_time	0.000599766	0.000399828	0.00019989	0.000399971	0.000599527
std_score_time	0.000489707	0.000489687	0.00039978	0.000489862	0.000489512
param_C	0.001	0.001	0.001	0.001	0.001
param_gamma	0.001	0.01	0.1	1	10
params	{'C': 0.001, 'gamma': 0.001}	{'C': 0.001, 'gamma': 0.01}	{'C': 0.001, 'gamma': 0.1}	{'C': 0.001, 'gamma': 1}	{'C': 0.001, 'gamma': 10}
split0_test_score	0.375	0.375	0.375	0.375	0.375
split1_test_score	0.347826	0.347826	0.347826	0.347826	0.347826
split2_test_score	0.363636	0.363636	0.363636	0.363636	0.363636
split3_test_score	0.363636	0.363636	0.363636	0.363636	0.363636
split4_test_score	0.380952	0.380952	0.380952	0.380952	0.380952
mean_test_score	0.366071	0.366071	0.366071	0.366071	0.366071
std_test_score	0.0113708	0.0113708	0.0113708	0.0113708	0.0113708
rank_test_score	22	22	22	22	22
split0_train_score	0.363636	0.363636	0.363636	0.363636	0.363636
split1_train_score	0.370787	0.370787	0.370787	0.370787	0.370787
split2_train_score	0.366667	0.366667	0.366667	0.366667	0.366667
split3_train_score	0.366667	0.366667	0.366667	0.366667	0.366667
split4_train_score	0.362637	0.362637	0.362637	0.362637	0.362637
mean_train_score	0.366079	0.366079	0.366079	0.366079	0.366079
std_train_score	0.00285176	0.00285176	0.00285176	0.00285176	0.00285176

• 검색 대상 매개 변수 그리드가 2차원이므로 히트맵으로 시각화한다

scores = np.array(results.mean_test_score).reshape(6, 6)

교차 검증 평균 점수 히트맵 그래프

mglearn.tools.heatmap(scores, xlabel='gamma', xticklabels=param_grid['gamma'],

ylabel='C', yticklabels=param_grid['C'], cmap="viridis")

• 정확도가 높으면 밝은 색, 낮으면 어두운 색

• 검색 범위를 잘못 선택한 결과

0.9

- 0.8

- 0.6

- 0.4

요약

- ■교차 검증
- ■그리드 서치