H26 数学 A 0.1

1 (1)(arctan)'(y) = $\frac{1}{1+y^2}$ \$\mathcal{b}\$ (arctan y + arctan(1/y))' = $\frac{1}{1+y^2}$ + $\frac{1}{1+(1/y)^2}$ (-1/y²) = 0 \$\mathcal{b}\$ b arctan y + $\arctan(1/y)$ は定数関数である。よって $\arctan x \in F$

 $(2)f(x) + f(1/x) = c \in \mathbb{R}$ とする. 0 < a < 1 に対して

$$\int_{a}^{1} f(x)dx = \int_{1/a}^{1} -\frac{f(1/t)}{t^{2}}dt = \int_{1}^{1/a} \frac{f(t) - c}{t^{2}}dt = \int_{1}^{1/a} \frac{f(t)}{t^{2}}dt + c \left[\frac{1}{t}\right]_{1}^{1/a} = \int_{1}^{1/a} \frac{f(t)}{t^{2}}dt + c(a-1)$$

したがって $\lim_{a\to 0}\int_a^1 f(x)dx$ の存在と $\lim_{a\to 0}\int_1^{1/a}\frac{f(t)}{t^2}dt$ の存在は同値である。 (3)g が $G\in \mathbf{F}$ に 拡張可能だとする.このとき $\lim_{x\to 1-0}g'(x)=\lim_{x\to 1-0}G'(x)$ は G が C^1 級であるから存在

逆に $\lim_{x\to 1-0}g'(x)=\alpha\in\mathbb{R}$ とする. 1 に収束する (0,1) 上の任意の数列 $\{x_n\}_{n=1}^\infty$ をとる.

任意の $\varepsilon>0$ に対してある $\delta>0$ が存在して $1-\delta< x<1$ ならば $\alpha-\varepsilon< g'(x)<\alpha+\varepsilon$ である. $\varepsilon\delta$ に 対してある N が存在して n>N ならば $1-\varepsilon\delta < x_n < 1$ である. n,m>N について平均値の定理から $g(x_n) - g(x_m) = g'(\xi)(x_n - x_m)$ となる $\xi \in (1 - \varepsilon \delta, 1)$ が存在する. よって $|g(x_n) - g(x_m)| < (\alpha + \varepsilon)\delta\varepsilon \to 0$ と なるから $\{g(x_n)\}_{n=1}^\infty$ はコーシー列. すなわち収束列. 以上より $\lim_{x \to 1-0} g(x)$ は存在する. その収束先を β と

$$G(x) = egin{cases} g(x) & (x \in (0,1)) \ eta - G(1/x) & (x \in (1,\infty)) \ eta$$
 と定めると $G|_{(0,1)} = g$ であり, $G(x) + G(1/x) = eta$ である。 eta $(x=1)$ の点で微分可能であり、道関物は連続である。 $\lim_{x \to \infty} \frac{G(x) - G(1)}{x} = \lim_{x \to \infty} \frac{$

G(x) は x=1 以外の点で微分可能であり,導関数は連続である. $\lim_{x \to 1-0} \frac{G(x) - G(1)}{x-1} = \lim_{x \to 1-0} \frac{g'(x)}{1} = \alpha$ である. (ロピタルの定理) $\lim_{x \to 1+0} \frac{G(x) - G(1)}{x-1} = \lim_{x \to 1+0} \frac{\beta - G(1/x)}{x-1} = \lim_{x \to 1+0} \frac{-g'(1/x)(-x^{-2})}{1} = \alpha$ である. よって G は x=1で微分可能.

 $\lim_{x \to 1+0} G'(x) = \lim_{x \to 1+0} -g'(1/x)(-x^{-2}) = \alpha$ である.よって導関数が x=1 で連続であるから G は C^1 級.

[2] (1) 一次独立であることを示す. $c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x = 0$ とする. x = 0 とすると, $c_1 + c_3 = 0$ である. $x = \pi$ とすると, $-c_1 + c_3 = 0$ である. よって $c_1 = c_3 = 0$ である. $x = \frac{\pi}{2}$ とすると, $c_2=0$ である. よって $c_4=0$ より S は一次独立. よって V の基底

 $(2)\Phi(\cos x) = -\sin x$, $\Phi(\sin x) = \cos x$, $\Phi(\cos 2x) = -2\sin 2x$, $\Phi(\sin 2x) = 2\cos 2x$ より Φ の表現行列は

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{pmatrix}$$
 である. $\Psi(\cos x) = \sin x, \Psi(\sin x) = \cos x, \Psi(\cos 2x) = -\cos 2x, \Psi(\sin 2x) = -\sin 2x$ より

$$\Psi$$
の表現行列は $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ である.

 $(3)g(x) = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$ とす

$$\Phi(g(x)) - \Psi(g(x)) = \cos 2x \, \, \, \& \, \mathcal{O} \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \, \text{T5.}$$

すなわち
$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 である.したがって $c_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1/5 \\ 2/5 \end{pmatrix}$ が解である.よって

 $g(x) = c_2 \sin x + \frac{1}{5} \cos 2x + \frac{2}{5} \sin 2x$ である

③ (1)Q が連結でないとすると,Q の非空開集合 U,V で $U\cap V=\emptyset, U\cup V=Q$ となるものが存在する.このとき $\pi^{-1}(U),\pi^{-1}(V)$ は \mathbb{R}^2 の開集合であり, $\pi^{-1}(U)\cap\pi^{-1}(V)=\emptyset,\pi^{-1}(U)\cup\pi^{-1}(V)=\mathbb{R}^2$ となる.すなわち \mathbb{R}^2 が連結でないがこれは矛盾.よって Q は連結である.

 $(2)(1,0)\in\mathbb{R}^2$ の同値類は $A=\{(x,0)\mid x\neq 0\}$ である。また (0,0) の同値類は $B=\{(0,0)\}$ である。B を含む Q の開集合 U を任意にとる。 $(0,0)\in\pi^{-1}(Q)$ で $\pi^{-1}(Q)$ は開集合であるから,ある $\varepsilon>0$ が存在して $B((0,0),\varepsilon)\subset\pi^{-1}(Q)$ である。 $B((0,0),\varepsilon)\cap A\neq\emptyset$ である。よって B を含む任意の開集合は A を含むから,ハウスドルフ空間でない。

 $(3)A_n = \{(x,y) \in \mathbb{R} \mid -n < xy < n\}$ とする. A_n は \mathbb{R}^2 の開集合であり、 $\pi^{-1}\pi(A_n) = A_n$ である. $\{\pi(A_n) \mid n=1,2,\ldots\}$ は Q の有限部分被覆を持たない開被覆である. よってコンパクトでない.

 $\boxed{4}$ $(1)z \in D$ について,z に収束する D 上の数列 $\{z_n\}_{n=1}^{\infty}$ を任意にとる.

$$2\pi i \lim_{n \to \infty} \frac{f(z_n) - f(z)}{z_n - z} = \lim_{n \to \infty} \int_C \left(\frac{1}{\zeta(\zeta - 2) - z_n} - \frac{1}{\zeta(\zeta - 2) - z} \right) \frac{1}{z_n - z} d\zeta$$
$$= \lim_{n \to \infty} \int_C \frac{1}{(\zeta(\zeta - 2) - z_n)(\zeta(\zeta - 2) - z)} d\zeta$$

ここで $\zeta \in C, z_n, z \in D$ より $\zeta(\zeta-2)-z_n > M, \zeta(\zeta-2)-z > M$ となる M>0 が存在する. よって $\frac{1}{(\zeta(\zeta-2)-z_n)(\zeta(\zeta-2)-z)} < \frac{1}{M^2}$ であるから $\int_C \frac{1}{(\zeta(\zeta-2)-z_n)(\zeta(\zeta-2)-z)} d\zeta < 2\pi M^2$ である. よってルベーグの収束定理から

$$2\pi i \lim_{n \to \infty} \frac{f(z_n) - f(z)}{z_n - z} = \int_C \lim_{n \to \infty} \frac{1}{(\zeta(\zeta - 2) - z_n)(\zeta(\zeta - 2) - z)} d\zeta = \int_C \frac{1}{(\zeta(\zeta - 2) - z)^2} d\zeta$$

よって f(z) は D 上で正則.

 $(2)\frac{1}{\zeta^{n+1}(\zeta-2)^{n+1}} = \sum_{k=-n-1}^{\infty} c_k \zeta^k$ とする. $\frac{1}{(\zeta-2)^{n+1}} = \sum_{k=-n-1}^{\infty} c_k \zeta^{k+n+1}$ より $(\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = n!c_{-1}$ である.

 $((\zeta-2)^{-n-1})^{(n)} = (-n-1)(-n-2)\dots(-n-n)(\zeta-2)^{-2n-1} = \frac{(-1)^n(2n)!}{n!(\zeta-2)^{2n+1}} \ \, \sharp \, \, \mathfrak{H} \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \sharp \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \sharp \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \sharp \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \sharp \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \sharp \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, (\frac{1}{(\zeta-2$

 $\frac{1}{\zeta^{n+1}(\zeta-2)^{n+1}}$ は C 内で $\zeta=0$ を特異点にもつ. よって留数定理から $\frac{1}{2\pi i}\int_C \frac{1}{\zeta^{n+1}(\zeta-2)^{n+1}}d\zeta=\mathrm{Res}\Big\{\frac{1}{\zeta^{n+1}(\zeta-2)^{n+1}},0\Big\}=c_{-1}=\frac{(-1)^{n+1}(2n)!}{(n!)^22^{2n+1}}$

 $(3)\zeta(\zeta-2)-z=(\zeta-(1+\sqrt{1+z}))(z-(1-\sqrt{1+z}))$ である。|z|<1 より $-\pi/2<\arg(1+z)<\pi/2$ である。よって $-\pi/2<\arg(\sqrt{1+z})<\pi/2$ より $\mathrm{Re}(1+\sqrt{1+z})>1$ である。すなわち $|1+\sqrt{1+z}|>1$ である。

 $\zeta=1-\sqrt{1+z}$ は $\zeta^2-2\zeta-z=0$ より $|\zeta||\zeta-2|=|z|<1$ である.よって $|\zeta|<1/|\zeta-2|=1/|1-\sqrt{1+z}-2|=1/|1+\sqrt{1+z}|<1$ である.よって $\frac{1}{\zeta(\zeta-2)-z}$ は D 内で特異点 $\zeta=1-\sqrt{1+z}$ を持つ.一位の極であるから 留数は $\lim_{\zeta\to 1-\sqrt{1+z}}(\zeta-(1-\sqrt{1+z}))\frac{1}{\zeta(\zeta-2)-z}=\frac{1}{-2\sqrt{1+z}}$ である.よって $f(z)=\frac{1}{2\pi i}\int_C\frac{1}{\zeta(\zeta-2)-z}d\zeta=\frac{-1}{2\sqrt{1+z}}$ である.