BBM402-Lecture 4: Regular expressions equivalence with NFAs, DFAs, closure properties of regular languages

Lecturer: Lale Özkahya

Resources for the presentation: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-045j-automata-computability-and-complexity-spring-2011/Syllabus/

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- Old Proof:
 - Start with DFAs M_1 and M_2 for the same alphabet Σ .
 - Get another DFA, M_3 , with $L(M_3) = L(M_1) \cup L(M_2)$.
 - Idea: Run M₁ and M₂ "in parallel" on the same input. If either reaches an accepting state, accept.

Closure under union

Example:

M₁: Substring 01

Closure under union, general rule

- Assume:
 - $-M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$
 - $-M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$
- Define $M_3 = (Q_3, \Sigma, \delta_3, q_{03}, F_3)$, where
 - $-Q_3 = Q_1 \times Q_2$
 - Cartesian product, $\{(q_1,q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$
 - $-\delta_3((q_1,q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
 - $-q_{03} = (q_{01}, q_{02})$
 - $-F_3 = \{ (q_1,q_2) \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- New Proof:
 - Start with NFAs M₁ and M₂.
 - Get another NFA, M_3 , with $L(M_3) = L(M_1) \cup L(M_2)$.

Use final states from M₁ and M₂.

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- New Proof: Simpler!

- Intersection:
 - NFAs don't seem to help.
- Concatenation, star:
 - Now try NFA-based constructions.

Closure under concatenation

- $L_1 \circ L_2 = \{ x y \mid x \in L_1 \text{ and } y \in L_2 \}$
- Theorem: FA-recognizable languages are closed under concatenation.
- Proof:
 - Start with NFAs M₁ and M₂.
 - Get another NFA, M_3 , with $L(M_3) = L(M_1) \cdot L(M_2)$.

Closure under concatenation

• Example:

- $-\Sigma = \{ 0, 1 \}, L_1 = \Sigma^*, L_2 = \{0\} \{0\}^*.$
- L₁ L₂ = strings that end with a block of at least one 0

$$-M_1: \xrightarrow{0,1} \bigcirc$$

 $-M_2$:

- Now combine:

NFAs

Closure under star

- $L^* = \{ x \mid x = y_1 y_2 \dots y_k \text{ for some } k \ge 0, \text{ every } y \text{ in } L \}$ = $L^0 \cup L^1 \cup L^2 \cup \dots$
- Theorem: FA-recognizable languages are closed under star.
- Proof:
 - Start with FA M₁.
 - Get an NFA, M_2 , with $L(M_2) = L(M_1)^*$.

Closure under star

• Example:

- $-\Sigma = \{ 0, 1 \}, L_1 = \{ 01, 10 \}$
- $-(L_1)^*$ = even-length strings where each pair consists of a 0 and a 1.
- $-M_1$:

- Construct M₂:

Languages denoted by regular expressions

- The languages denoted by regular expressions are exactly the regular (FA-recognizable) languages.
- Theorem 1: If R is a regular expression, then L(R) is a regular language (recognized by a FA).
- Proof: Easy.
- Theorem 2: If L is a regular language, then there
 is a regular expression R with L = L(R).
- Proof: Harder, more technical.

- Theorem 1: If R is a regular expression, then L(R) is a regular language (recognized by a FA).
- Proof:
 - For each R, define an NFA M with L(M) = L(R).
 - Proceed by induction on the structure of R:
 - Show for the three base cases.
 - Show how to construct NFAs for more complex expressions from NFAs for their subexpressions.
 - Case 1: R = a
 - L(R) = { a }
 - Case 2: $R = \varepsilon$
 - L(R) = { ε }

Accepts only a.

nte only

- Theorem 1: If R is a regular expression, then L(R) is a regular language (recognized by a FA).
- Proof:

- Theorem 1: If R is a regular expression, then L(R) is a regular language (recognized by a FA).
- Proof:
 - Case 5: $R = R_1 \circ R_2$
 - M₁ recognizes L(R₁),
 - M₂ recognizes L(R₂).
 - Same construction we used to show regular languages are closed under concatenation.

- Theorem 1: If R is a regular expression, then L(R) is a regular language (recognized by a FA).
- Proof:
 - Case 6: $R = (R_1)^*$
 - M₁ recognizes L(R₁),
 - Same construction we used to show regular languages are closed under star.

Example for Theorem 1

- L = ab \cup a*
- Construct machines recursively:
- a: → b: → b

- ab ∪ a*:

- Theorem 2: If L is a regular language, then there
 is a regular expression R with L = L(R).
- Proof:
 - For each NFA M, define a regular expression R with L(R) = L(M).
 - Show with an example:

 Convert to a special form with only one final state, no incoming arrows to start state, no outgoing arrows from final state.

- Now remove states one at a time (any order), replacing labels of edges with more complicated regular expressions.
- First remove z:

 New label b a* describes all strings that can move the machine from state y to state q_f, visiting (just) z any number of times.

• Then remove x: $a \cup bb^* a$ $b \cdot a^*$ $b \cdot a^*$

- New label b*a describes all strings that can move the machine from q₀ to y, visiting (just) x any number of times.
- New label a ∪ bb* a describes all strings that can move the machine from y to y, visiting (just) x any number of times.

Finally, remove y:

- New label describes all strings that can move the machine from q₀ to q_f, visiting (just) y any number of times.
- This final label is the needed regular expression.

- Define a generalized NFA (gNFA).
 - Same as NFA, but:
 - Only one accept state, ≠ start state.
 - Start state has no incoming arrows, accept state no outgoing arrows.
 - · Arrows are labeled with regular expressions.
 - How it computes: Follow an arrow labeled with a regular expression R while consuming a block of input that is a word in the language L(R).
- Convert the original NFA M to a gNFA.
- Successively transform the gNFA to equivalent gNFAs (recognize same language), each time removing one state.
- When we have 2 states and one arrow, the regular expression R on the arrow is the final answer:

- To remove a state x, consider every pair of other states, y and z, including y = z.
- New label for edge (y, z) is the union of two expressions:
 - What was there before, and
 - One for paths through (just) x.

