ECON 6170 Section 5

TA: Patrick Ferguson

October 1, 2024

Midterm 1 Practice Questions

Exercise 1 (2023 Midterm 1 Q1). Prove either that the following statements are true or false.

- (i) The set $S = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y \ge 1/x^2\}$ is open.
- (ii) The set $S = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y \ge 1/x^2\}$ is closed.
- (iii) A closed subset of a compact set $S \subseteq \mathbb{R}^d$ is compact.
- (i) False.

Take $(x, y) \in S$ such that $y = 1/x^2$. Then $(x, y) \in S$. Consider the sequence in S^C , $(x, y - \frac{1}{n})$. Clearly this sequence converges to (x, y), so S^C is not closed. It follows that S is not open.

(ii) True.

Let (x_n, y_n) be a sequence in S converging to some (x, y). Note that it cannot be that x = 0, for then $y_n \to \infty$ and (x_n, y_n) doesn't converge, a contradiction. Therefore, x > 0. Given $y_n \ge 1/x_n^2 \to 1/x^2$, we must have $y \ge 1/x^2$. Thus, $(x, y) \in S$.

Note that proving S is closed also suffices to prove that it is not open, given that it is neither \emptyset nor \mathbb{R}^d .

(iii) True.

S is compact \implies S is bounded \implies every subset of S is bounded \implies every closed subset of S is compact.

Exercise 2 (2023 Midterm 1 Q2). Let $(x_n)_n$ be a sequence in \mathbb{R} . A point $s \in \mathbb{R}$ is a *limit point* of $(x_n)_n$ if there exists a subsequence of $(x_n)_n$ that converges to s. Let S be the set of limit points of $(x_n)_n$.

- (i) Prove that there is a subsequence $(x_{n_k})_k$ that converges to $\limsup_{n\to\infty} x_n$.
- (ii) Prove that $\limsup_{n\to\infty} x_n = \sup S$.

To save on time, you may assume the sequence $(x_n)_n$ is bounded. **Hint:** If you can't prove (i), assume it and use it to prove (ii).

- (i) We know that $(s_m)_{m=1}^{\infty} := (\sup\{x_n \mid n \ge m\})_{m=1}^{\infty}$ is a sequence converging to $s := \limsup x_n$. By definition of a supremum, because the sequence in the question is bounded, there exists $x_{n_1} \in [s_1 1, s_1]$. Similarly, there exists $x_{n_2} \in [s_{n_1+1} \frac{1}{2}, s_{n_1+1}]$ such that $n_2 > n_1$. Proceeding similarly, we obtain a subsequence of (x_n) , (x_{n_k}) such that $s_{n_{k-1}+1} \frac{1}{k} \le x_{n_k} \le s_{n_{k-1}+1}$ and both bounding sequences converge to s, so $x_{n_k} \to s$ also.
- (ii) By (i), we only need to prove that no subsequence (x_{n_k}) converges to a point greater than $s := \limsup x_n$. Suppose such a subsequence did exist. Suppose $x_{n_k} \to s + \varepsilon$. Then infinitely many terms of (x_n) lie above $s + \varepsilon/2$. It follows that infinitely many $\sup\{x_n \mid n \ge m\}$ lie above $s + \varepsilon/2$, so $(\sup\{x_n \mid n \ge m\})_{m=1}^{\infty}$ doesn't converge to s, a contradiction.

Exercise 3 (2023 Midterm 1 Q3). A *boundary point* of a set $S \subseteq \mathbb{R}^d$ is a point $x \in \mathbb{R}^d$ such that every open ball centred at x intersects both S and S^C . Define

$$bd(S) := \{x \in \mathbb{R}^d \mid x \text{ is a boundary point of } S\}.$$

- (i) Show that $bd(S) = bd(S^{C})$.
- (ii) Prove or disprove: If $x \in S$ is an isolated point, then x is a boundary point of S.
- (iii) Show that the set $S \subseteq \mathbb{R}^d$ is closed if and only if it contains all its boundary points.

Hint: Recall that a point $x \in S$ is *isolated* if there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \cap S = \{x\}$.

- (i) $x \in bd(S) \iff$ every open ball centered at x intersects both S and $S^C \iff x \in bd(S^C)$.
- (ii) True. Clearly every open ball centred at x contains an element of S, x itself. There is some ε such that $B_{\varepsilon}(x)$ contains no other elements of S. But $B_{\varepsilon}(x)$ is not a singleton, so it must contain elements of S^{C} .
- (iii) Suppose $\operatorname{bd} S \subseteq S$. Suppose S is not closed. Then there exists a sequence of elements of S that converges to $x \in S^{\mathsf{C}}$. Then every open ball centred at x contains elements of S, so x is a boundary point of S that lies in S^{C} , a contradiction.
 - Suppose S is closed. Then S^C is open, so $x \in S^C$ implies that some $B_{\varepsilon}(x) \subseteq S^C$, meaning that x is not a boundary point of S^C . But this means that x is not a boundary point of S either. Therefore, $bd(S) \subseteq S$.

Exercise 4 (2023 Midterm 2 Q2).

- (i) Suppose $f : \mathbb{R} \to \mathbb{R}$ is concave and $g : \mathbb{R} \to \mathbb{R}$ is a strictly increasing function. Prove that $g \circ f$ is quasiconcave.
- (ii) Define $h: \mathbb{R}_+ \to \mathbb{R}$ by

$$h(x) := \begin{cases} 0 & \text{if } x \in [0, 1] \\ (x - 1)^2 & \text{if } x > 1 \end{cases}$$

Show that *h* is quasiconcave.

(iii) Show that *h*, defined above, is not a strictly increasing function of a concave function.

Hint: Prove by contradiction and use the fact that every local maximum of a concave function is a global maximum.

(i) Because *f* is concave and thus quasiconcave,

$$f(\alpha x + (1 - \alpha)y) \ge \min\{f(x), f(y)\}\$$

Because *g* is increasing,

$$(g \circ f)(\alpha x + (1 - \alpha)y) = g(f(\alpha x + (1 - \alpha)y))$$

$$\geq g(\min\{f(x), f(y)\}) = \min\{(g \circ f)(x), (g \circ f)(y)\}$$

- (ii) *h* is nondecreasing and thus quasiconcave.
- (iii) BWOC, suppose h is a strictly increasing function of a concave function. Write $h = g \circ f$. Then the local maxima and global maxima of h are the same as those of f. h has a local maximum at x = 1/2, so f must have a local maximum at x = 1/2. But f is concave, so f has a global maximum at x = 1/2. It follows that h also has a f global maximum at f and f has no global maximum (f has no global maximum)

Exercise 5 (2023 Final Q6). Fix some $Y \subseteq \mathbb{R}^d$ that is nonempty and has a nonempty interior. We say that a (production) vector $y \in Y$ is *efficient* if there is no $y' \in Y$ such that $y' \ge y$ and $y' \ne y$. A production vector $y \in Y$ is *profit-maximising for some* $p \in \mathbb{R}^d_{++}$ if

$$p \cdot y \ge p \cdot y'$$

for all $y' \in Y$.

- (i) Prove or disprove: (a) If $y \in Y$ is efficient, then y is a boundary point of Y; (b) if $y \in Y$ is a boundary point of Y, then y is efficient.
- (ii) Prove that: if $y \in Y$ is profit-maximising for some $p \in \mathbb{R}^d_{++}$, then y is efficient.
- (iii) State a separating hyperplane theorem.
- (iv) Suppose that Y is convex. Prove that every efficient production vector $y \in Y$ is a profit-maximising production vector for some $p \in \mathbb{R}^d_+$ (i.e., $p \neq 0$ and $p \geq 0$). **Hint:** Apply the separating hyperplane theorem to the set Y and $P_y := \{y' \in Y \mid y' \gg y\}$, where $(y_i')_{i=1}^d = y' \gg y = (y_i)_{i=1}^d$ means that $y_i' > y_i$ for all $i = 1, \ldots, d$. Try drawing the case of d = 2.
- (i) (a) True. If $y \in Y$ is efficient but not a boundary point of Y, then $y + \varepsilon \mathbf{1} \in Y$ for some sufficiently small positive ε . This contradicts efficiency of y.
 - (b) False. Let $Y = [0,1]^2$. Then (0,0) is a boundary point of Y, but it is not efficient.
- (ii) Suppose y is profit-maximising for p but is not efficient. Then there exists $y' \in Y$ such that $y' \ge y$ and $y' \ne y$. Because p is strictly positive, this means $p \cdot y' > p \cdot y$, a contradiction.
- (iii) Suppose X and Y are two nonempty, disjoint and convex subsets of \mathbb{R}^d . Then, X and Y are separated by a hyperplane.
- (iv) We're given that Y is nonempty and convex. P_y contains y+1 so it is nonempty. If $y'\gg y$ and $y''\gg y$, then $\alpha y'+(1-\alpha)y''\gg y$, so P_y is convex. Because y is efficient, Y and P_y must be disjoint. It follows by the Separating Hyperplane Theorem that Y and P_y are separated by a hyperplane. That is, there exists $p\neq 0$ such that

$$p \cdot y' \ge p \cdot y'' \tag{1}$$

for every $y' \in P_y$ and every $y'' \in Y$. In particular,

$$p\cdot\left(y+\frac{1}{n}\mathbf{1}\right)\geq p\cdot y''$$

for every $y'' \in Y$ and every $n \in \mathbb{N}$. Taking $n \to \infty$,

$$p \cdot y \ge p \cdot y''$$

for every $y'' \in Y$. All that remains is to show that $p \ge 0$. Suppose $p_j < 0$ for some j. Let $y'_j > y_j$ and $y'_i = y_i$ for all $i \ne j$. Then $y' \in P_y$ and $y \in Y$, but $p \cdot y' , contradicting (1).$