Lecture Outline

Reminders to self:

ECE2060

- ☐ Turn on lecture recording to Cloud
- ☐ Turn on Zoom microphone

Last Lecture

- Finished Analysis of a Mealy machine by Transition Tables & State Graphs
- Timing charts from State Tables & Graphs
- General models for clocked sequential circuits
- Started design of clocked sequential circuits

Today's Lecture

- Continue analysis & design of clocked sequential circuits
 - Finish Mealy 101 sequence detector design started last lecture
 - Analysis example (of Mealy sequence detector just designed)
 - State Graph design guidelines
 - Start a larger (8 state) design example (Mustang turn signals)

Handouts and Announcements

Announcements

ECE2060

- Homework Problems: HW 13-2
 - Posted on Carmen yesterday morning
 - Due: 11:59pm Thursday 3/30
- Homework Reminder
 - HW 13-1 Due: 11:25am Wednesday 3/29
- Read for Monday: no new reading assignment previous assignment pages 463-472, 149-151
- Participation Quiz 11 available 11:15am today
 - Due 11:15am tomorrow
 - Available additional 24hr with late penalty

Handouts and Announcements

Announcements

ECE2060

- Mini-Exam 5 Reminder
 - Available 5pm Monday 3/27 through 5:00pm Tuesday 3/28
 - Due in Carmen PROMPTLY at 5:00pm on 3/28
 - Designed to be completed in ~36 min, but you may use more
 - When planning your schedule:
 - I recommend building in 10-15 min extra
 - To allow for downloading exam, signing and dating honor pledge, saving solution as pdf, and uploading to Carmen
 - I also recommend not procrastinating
- Exam review topics available on Carmen
- Sample Mini-Exams 6 and 7 from Au20 also available

ECE2060

Mealy Design Example: Sequence Detector

- Sequence Detector Description:
 - Circuit that
 - Examines a serial string of 0's and 1's applied to the *X* input
 - Generates an output Z = 1 only when a prescribed input sequence occurs
 - For this example, the prescribed input sequence is 101

Ran out of time last lecture just after converting word description into state graph →

ECE2060

Mealy Design Example: Sequence Detector

"remember" three states

The Transition Table can be created from the State Table

	A^+	B^+	Z	
AB	X = 0	X = 1	X = 0	X = 1
00	00	01	0	0
01	10	01	0	0
10	00	01	0	1

Remember, output is present as soon as *X* changes. Present before state change at active clock edge.

COLLEGE OF ENGINEERING

ECE2060

Mealy Design Example: Sequence Detector

D Flip-Flop Next-State
Maps and the Output
Map can be created from
the Transition Table

le	9	A^+B^+		Z	C.
Table		X = 0	X = 1	X = 0	X = 1
tion	00 01 10	00	01	0	0
ansi	01	10	01	0	0
Tra	10	00	01	0	1

COLLEGE OF ENGINEERING

ECE2060

Mealy Design Example: Sequence Detector

$$A^+ = X'B$$

$$B^+ = X$$

$$Z = XA$$

COLLEGE OF ENGINEERING

ECE2060

Mealy Design Example: Sequence Detector

Sequence detector for "101" designed as a 3-state machine last lecture

- But with two flip-flops circuit realizes 4 states
- Let's analyze and compare to design goals at each step

COLLEGE OF ENGINEERING

ECE2060

Mealy Analysis Example: Sequence Detector

COLLEGE OF ENGINEERING

ECE2060

Mealy Analysis Example: Sequence Detector

$A^+ = X'B$			
AB^{X}	0	1	
00	0	0	
01	1	0	
11	1	0	
10	0	0	

$B^+ = X$					
AB^{X}	0	1			
00	0	1			
01	0	1			
11	0	1			
10	0	1			

	Z =	XA
AB^{X}	0	1
00	0	0
01	0	0
11	0	1
10	0	1

	A^+B^+		Present Z	
AB	X = 0	X = 1	X = 0	X = 1
00	00	01	0	0
01	10	01	0	0
11	10	01	0	1
10	00	01	0	1

	A^+B^+		Z	
AB	X = 0	X = 1	X = 0	X = 1
00	00	01	0	0
01	10	01	0	0
10	00	01	0	1
11	XX	XX	X	X 10

COLLEGE OF ENGINEERING

ECE2060

Mealy Analysis Example: Sequence Detector

	A^+	B^+	Present Z	
AB	X = 0	X = 1	X = 0	X = 1
00	00	01	0	0
01	10	01	0	0
11	10	01	0	1
10	00	01	0	1

	A^+B^+		Present Z	
AB	X = 0	X = 1	X = 0	X = 1
S_0	S_0	S_1	0	0
S_1	S_2	S_1	0	0
S_3	S_2	S_1	0	1
S_2	S_0	S_1	0	1

			Pres	ent
Present	Next	State	Out	out
State	X = 0	X = 1	X = 0	X = 1
S ₀	So	S ₁	0	0
S ₁	S ₂	S_1	0	0
S_2	S_0	S_1	0	1

COLLEGE OF ENGINEERING

ECE2060

Mealy Analysis Example: Sequence Detector

	A^+B^+		Present Z	
AB	X = 0	X = 1	X = 0	X = 1
S_0	S_0	S_1	0	0
S_1	S_2	S_1	0	0
S_3	S_2	S_1	0	1
S_2	S_0	S_1	0	1

Present	Next	State	Out	
State	Mark San Park	X = 1		<i>X</i> = 1
S ₀	So	S ₁	0	0
S ₁	S ₂	S_1	0	0
S_2	So	S ₁	0	1

12

State Graph Guidelines

Note that these are guidelines (helpful steps, not "The Law")

- 1. Start by identifying sample input and output sequences. Doing this also helps you understand the problem statement.
- 2. Determine an initial state and any condition that causes a reset to that state (if there are any)
- 3. If the output is mostly zero, identify the few states that cause non-zero output and start with those (partial state graph)
- 4. Another way to start is to determine sequences or groups of sequences that must be remembered by the circuit, and set up states for them
- 5. Can transition arrows go to existing states? Add a new state only when you really have to.
- 6. Once graph is complete, make sure each input combination leaves each state only once
- 7. Test graph using input-output combinations found in step (1)

State Graph Guidelines 101sequence detector

ECE2060

Note that these are guidelines (helpful steps, not "The Law")

1. Start by identifying sample input and output sequences. Doing this also helps you understand the problem statement.

State Graph Guidelines 101sequence detector

ECE2060

Note that these are guidelines (helpful steps, not "The Law")

- 1. Start by identifying sample input and output sequences. Doing this also helps you understand the problem statement.
- 2. Determine an initial state and any condition that causes a reset to that state (if there are any)

From the problem statement "Circuit will not reset when a 1 output occurs"

- 3. If the output is mostly zero, identify the few states that cause non-zero output and start with those (partial state graph)
- 4. Another way to start is to determine sequences or groups of sequences that must be remembered by the circuit, and set up states for them

The sequence detector outputs 1 in only a single situation, but...

Also must remember sequence of serial inputs received in 101 pattern

State Graph Guidelines 101 sequence detector

ECE2060

Note that these are guidelines (helpful steps, not "The Law")

- Can transition arrows go to existing states? Add a new state only when you really have to.
- Partway through development of state graph
 - If in S_1 and 1 received, still have only first "1" bit in "101" pattern. Stay in S_1
 - If in S_2 and 0 received, "00" isn't desired pattern, nor first "1". Return to S_0

State Graph Guidelines 101 sequence detector

ECE2060

Note that these are guidelines (helpful steps, not "The Law")

- 6. Once graph is complete, make sure each input combination leaves each state only once.
- 7. Test graph using input-output combinations found in step (1)

Mustang Sequential Turn Signals

ECE2060

- Left and right sequential signals
- Hazard lights

When turning left: $L_0 \rightarrow L_0 L_1 \rightarrow L_0 L_1 L_2 \rightarrow \text{all off}$

When turning right: $R_0 \to R_1 R_0 \to R_2 R_1 R_0 \to \text{all off}$

Hazards on: $L_2L_1L_0R_2R_1R_0 \rightarrow \text{all off}$

Highest priority: Leave any state → Hazard State Directly

Mustang Sequential Turn Signals

ECE2060

Mustang Sequential Turn Signals

ECE2060

Present					Present Output		S
State	LR = 00	LR = 01	LR = 11	LR = 10	$L_2L_1L_0$	$R_2R_1R_0$	~
S_0	S_0	S_5	S_1	S_2	000	000	
\mathcal{S}_1	S_0	S_0	S_0	S_0	111	111	,
S_2	S_0	S_0	S_1	S_3	001	000	
S_3	S_0	S_0	S_1	S_4	011	000	
\mathcal{S}_4	S_0	S_0	S_1	S_0	111	000	
S_5	S_0	S_6	S_1	S_0	000	001	
S_6	S_0	S_7	S_1	S_0	000	011	
S_7	S_0	S_0	S_1	S_0	000	111	

State Table

What Next?
Transition
Table

Mustang Sequential Turn Signals

ECE2060

	LR = 00	LR = 01	LR = 11	LR = 10	Present	Outputs	
ABC	$A^+B^+C^+$	$A^+B^+C^+$	$A^+B^+C^+$	$A^+B^+C^+$	$L_2L_1L_0$	$R_2R_1R_0$	
$S_0 000$	000	101	001	010	000	000	
$S_1 001$	000	000	000	000	111	111	
$S_2 = 010$	000	000	001	011	001	000	
S ₃ 011	000	000	001	100	011	000	
S ₄ 100	000	000	001	000	111	000	
$S_5 101$	000	110	001	000	000	001	
S ₆ 110	000	111	001	000	000	011	
S ₇ 111	000	000	001	000	000	111	

Transition
Table
What Next?
Next State
Maps for each
flip-flop

Do you see a new challenge?

Five variables: A, B, C, L, R

We will come back to that later. Do outputs first.

Present	Next State					
State	LR = 00	LR = 01	LR = 11	LR = 10		
S_0	S_0	S ₅	S_1	S_2		
S_1	S_0	S_0	S_0	S_0		
S_2	S_0	S_0	S_1	S_3		
S_3	S_0	S_0	S_1	S_4		
S_4	S_0	S_0	S_1	S_0		
S_5	S_0	<i>S</i> ₆	S_1	S_0		
S_6	S_0	S ₇	S_1	S_0	21	
S_7	S_0	S_0	S_1	S_0		

ECE2060

General Models for Sequential Circuits

COLLEGE OF ENGINEERING

ECE2060

Design Example:

Mustang Sequential Turn Signals

	Present Outputs			
ABC	$L_2L_1L_0$	$R_2R_1R_0$		
$S_0 000$	000	000		
$S_1 001$	111	111		
S ₂ 010	001	000		
S ₃ 011	011	000		
S ₄ 100	111	000		
S ₅ 101	000	001		
S ₆ 110	000	011		
S ₇ 111	000	111		

Outputs: Decoder and ROM

 $L_2L_1L_0$ $R_2R_1R_0$

What about design of combinational logic for flip-flop inputs with five variables?

- Pick one variable as "outlier"
- Make two 4-variable K-maps, one for each of the "outlier's" values

Mustang Sequential Turn Signals

ECE2060

Sketch overall system

ECE2060

Mustang Sequential Turn Signals

Picking A as the outlier; Demonstrating for A^+ , D Flip-flops

\searrow LR	A = 0			
BC	00	01	11	10
00		1		
01				
11				1
10				

_LR	A = 1				
BC	00	01	11	10	
00					
01		1			
11					
10		1			

$$A^{+} = B'C'L'RA' + BCLR'A' + B'CL'RA + BC'L'RA$$

K-maps: Try to group neighboring 1s

4-variable: Each cell can have 4 neighbors 3-variable: Each cell can have 3 neighbors

5-variable: Each cell can have 5 neighbors – think layers, top & bottom

This case: none of the 1s overlay - no further reduction

Mustang Sequential Turn Signals

ECE2060

The design for B^+ and C^+ , D Flip-flops will be completed next lecture

Before wrapping up for the day:

- Remember to complete Participation Quiz 11
- Available from 11:15am today through 11:15am 3/26
- Due at 11:15am tomorrow (late penalty starts then)