This project is about ahmedabad plain crash bold text

Import the required libraries

Import Numerical Python for performing numerical operations on different data structures import numpy as np

Import Pandas for converting different file formate into pandas dataframe import pandas as pd

#Import seaborn and matplotlib for creating the interactive visualization

import seaborn as sns
import matplotlib.pyplot as plt

Load the data

Load the data from local
df_airplain_crash= pd.read_csv('airplain_crash.csv')

check the first five observation
df_airplain_crash.head()

		Timestamp	Flight_ID	Aircraft_Model	Electrical_System_Status	Emergency_Power_Activation	Voltage_Level	Current_Load	Engine_P
	0	12-06- 2025 08:43	AI114	Boeing 787-8 Dreamliner	Normal	0	244.90	579.26	
	1	12-06- 2025 08:19	Al111	Boeing 787-8 Dreamliner	Normal	0	246.28	514.29	
	2	12-06- 2025 06:50	Al191	Boeing 787-8 Dreamliner	Normal	0	229.27	653.33	
	3	12-06- 2025 06:40	Al189	Boeing 787-8 Dreamliner	Normal	0	206.65	769.53	
	4	12-06- 2025 06:24	Al145	Boeing 787-8 Dreamliner	Normal	0	164.65	443.42	

Next steps: Generate code with df_airplain_crash View recommended plots New interactive sheet

check the last five observations
df_airplain_crash.tail()

→ *		Timestamp	Flight_ID	Aircraft_Model	Electrical_System_Status	Emergency_Power_Activation	Voltage_Level	Current_Load	Engin
	9267	12-06- 2025 06:11	Al133	Boeing 787-8 Dreamliner	Normal	0	284.37	837.61	
	9268	12-06- 2025 08:14	AI150	Boeing 787-8 Dreamliner	Warning	0	195.80	564.29	
	9269	12-06- 2025 06:31	AI180	Boeing 787-8 Dreamliner	Normal	0	213.78	685.73	
	9270	12-06- 2025 07:50	Al146	Boeing 787-8 Dreamliner	Normal	0	224.33	730.17	
	9271	12-06- 2025 08:32	Al144	Boeing 787-8 Dreamliner	Normal	0	177.12	735.58	

Data Overview

interpratation

- · 'Timestamp': The exact date and time when the record or measurement was captured,
- 'Flight_ID': A unique identifier for each flight, such as the airline designator and flight number,
- 'Aircraft_Model' :The make and model of the aircraft,
- 'Electrical_System_Status': The health and operational state of the aircraft's electrical power system,
- 'Emergency_Power_Activation': A flag indicating if backup electrical systems,
- 'Voltage_Level': Measured voltage (in volts) available in the electrical system,
- · 'Current_Load': The electrical current (amperes) being drawn by aircraft systems,
- · 'Engine_Performance': Metrics such as thrust, fuel flow, RPM, EGT,,
- 'Altitude' : The aircraft's vertical position above a reference datum,
- 'Airspeed': Aircraft speed relative to the surrounding air,
- · 'Flight_Phase': Which segment of the flight the aircraft,
- · 'Maintenance_History': Recorded service and maintenance events,
- 'Last_Maintenance_Date': The calendar date of the most recent maintenance action performed on this specific aircraft or system.,
- 'Weather_Condition': Environmental description at the aircraft location/time,
- · 'Temperature': Ambient air temperature around the aircraft,
- 'Air_Traffic_Control_Delay' : Whether delays have been imposed by ATC,
- · 'Ground_Staff_Activity': Activities taking place on the ground,
- 'CCTV_Anomaly_Flag': A binary indicator from closed-circuit video monitoring,
- 'Pilot_Communication_Score': A metric (possibly derived from assessments like NOTECHS) evaluating the pilot's communication quality,
- 'System_Failure': A flag or description noting if a critical system malfunction occurred.

```
# Check the shape of the data df_airplain_crash.shape

(9272, 20)
```

Interpretation

• We have 10000 observations and 20 attributes

```
# check the basic info
df_airplain_crash.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9272 entries, 0 to 9271
Data columns (total 20 columns):
# Column
                               Non-Null Count Dtype
---
                               9272 non-null object
0
    Timestamp
 1
    Flight_ID
                               9272 non-null
                                              object
    Aircraft_Model
                               9272 non-null
                                              object
    Electrical_System_Status 9272 non-null
                                              object
    Emergency_Power_Activation 9272 non-null
                                              int64
    Voltage_Level
                               9272 non-null
                                              float64
                               9272 non-null
    Current Load
                                               float64
    Engine_Performance
                             9272 non-null
                                              float64
 8
    Altitude
                               9272 non-null
                                              float64
                               9272 non-null
    Airspeed
                                              float64
 10 Flight_Phase
                               9272 non-null
                                               object
    Maintenance_History
                               9272 non-null
 11
                                              int64
 12 Last_Maintenance_Date
                               9272 non-null
                                               object
 13 Weather Condition
                              9272 non-null
                                              object
 14 Temperature
                               9272 non-null
                                               float64
 15 Air_Traffic_Control_Delay 9272 non-null
                                               float64
 16 Ground_Staff_Activity
                              9272 non-null
                                               int64
                               9272 non-null
    CCTV_Anomaly_Flag
                                               int64
 18 Pilot_Communication_Score 9272 non-null
                                               float64
19 System_Failure
                               9272 non-null
                                              int64
dtypes: float64(8), int64(5), object(7)
memory usage: 1.4+ MB
```

interpretation

- We have 13 numerical columns and 7 categorical columns
- This data acquires 1.5+mb space.

```
# Check basic statistics
df_airplain_crash.describe().T
```


- · After observing this table, i conclude that there are 3 column that content the outliers, remaining not
- · the columns are:
 - Voltage_Level
 - o Current_Load
 - Air_Traffic_Control_Delay

```
import pandas as pd
# Assuming your data is in a pandas DataFrame called df
def cap_outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    # For Current_Load, only cap the lower bound (min)
    if column == 'Current_Load':
       df.loc[df[column] < lower_bound, column] = lower_bound</pre>
    else:
       # For others, cap both sides if needed
        df.loc[df[column] < lower_bound, column] = lower_bound</pre>
        df.loc[df[column] > upper_bound, column] = upper_bound
    return df
# Cap Voltage_Level max
df_airplain_crash = cap_outliers(df_airplain_crash, 'Voltage_Level')
# Cap Current_Load min
df_airplain_crash = cap_outliers(df_airplain_crash, 'Current_Load')
# Altitude and Temperature - no treatment needed, skip
# Cap Air_Traffic_Control_Delay max
df_airplain_crash = cap_outliers(df_airplain_crash, 'Air_Traffic_Control_Delay')
# Verify results
print(df_airplain_crash[['Voltage_Level', 'Current_Load', 'Air_Traffic_Control_Delay']].describe())
```

> ▼		Voltage_Level	Current_Load	Air_Traffic_Control_Delay
	count	9272.000000	9272.000000	9272.000000
	mean	229.353407	599.072892	4.549174
	std	29.484386	147.901064	3.890903
	min	149.035000	189.430000	0.000000
	25%	209.275000	496.727500	1.440000
	50%	229.570000	597.330000	3.440000
	75%	249.435000	701.592500	6.642500
	max	309.675000	1000.000000	14.446250

df_airplain_crash = df_airplain_crash.drop('Emergency_Power_Activation', axis=1)

Data Preprocessing

→ Data Cleaning

Interpretation

• After looking at the columns, I conclude that there is no need to rename the columns

```
# check the first five observation
df_airplain_crash.head()
```

	Timestamp	Flight_ID	Aircraft_Model	Electrical_System_Status	Voltage_Level	Current_Load	Engine_Performance	Altitude	Airspe
0	12-06- 2025 08:43	AI114	Boeing 787-8 Dreamliner	Normal	244.90	579.26	98.24	9569.09	242.
1	12-06- 2025 08:19	AI111	Boeing 787-8 Dreamliner	Normal	246.28	514.29	90.38	0.00	278.
2	12-06- 2025 06:50	AI191	Boeing 787-8 Dreamliner	Normal	229.27	653.33	97.09	7497.39	241.
3	12-06- 2025 06:40	Al189	Boeing 787-8 Dreamliner	Normal	206.65	769.53	96.87	3840.58	215.
4	12-06- 2025 06:24	AI145	Boeing 787-8 Dreamliner	Normal	164.65	443.42	95.86	5972.60	272.

Next steps: Generate code with df_airplain_crash View recommended plots New interactive sheet

Interpretaation

• There are a few impurities present, which we solved in basic Excel

Null value handling

```
# Check the count of null records
df_airplain_crash.isnull().sum()
```


	0
Timestamp	0
Flight_ID	0
Aircraft_Model	0
Electrical_System_Status	0
Voltage_Level	0
Current_Load	0
Engine_Performance	0
Altitude	0
Airspeed	0
Flight_Phase	0
Maintenance_History	0
Last_Maintenance_Date	0
Weather_Condition	0
Temperature	0
Air_Traffic_Control_Delay	0
Ground_Staff_Activity	0
CCTV_Anomaly_Flag	0
Pilot_Communication_Score	0
System_Failure	0

dtype: int64

Note: We have to find the percentage of null records because the loss we have for handling the null values depends on the percentage df_airplain_crash.isnull().sum()/len(df_airplain_crash) * 100

dtype: float64

len(df_airplain_crash)

→ 9272

[#] Find the percentage for null records

interpretation

• After observation, we conclude that there is no null records were present

✓ EDA

Univariate Analysis

```
# To perform the univariate analysis, let's segregate numerical and categorical data
df_num = df_airplain_crash.select_dtypes(include = 'number')
```

View recommended plots

Check the numerical data

df num.head()

→		Voltage_Level	Current_Load	Engine_Performance	Altitude	Airspeed	Maintenance_History	Temperature	Air_Traffic_Control_Delay
	0	244.90	579.26	98.24	9569.09	242.98	10	13.0	2.03
	1	246.28	514.29	90.38	0.00	278.51	0	16.2	2.55
	2	229.27	653.33	97.09	7497.39	241.20	8	38.3	8.26
	3	206.65	769.53	96.87	3840.58	215.24	1	23.1	1.87
	4	164.65	443.42	95.86	5972.60	272.38	8	38.1	9.31

New interactive sheet

Separate the categorical variables from the main dataframe

Generate code with df_num)

df_cat = df_airplain_crash.select_dtypes(include = 'object')

Check the categorical data

df_cat.head()

₹		Timestamp	Flight_ID	Aircraft_Model	Electrical_System_Status	Flight_Phase	Last_Maintenance_Date	Weather_Condition	
	0	12-06-2025 08:43	AI114	Boeing 787-8 Dreamliner	Normal	Takeoff	16-04-2025	Clear	ıl.
	1	12-06-2025 08:19	Al111	Boeing 787-8 Dreamliner	Normal	Takeoff	20-05-2025	Clear	
:	2	12-06-2025 06:50	AI191	Boeing 787-8 Dreamliner	Normal	Climb	17-04-2025	Clear	
		12-06-2025		Boeina 787-8					
Next	Next steps: Generate code with df_cat View recommended plots New interactive sheet								

Univeriate Analysis on Numerical Data

```
# Check the columns
df_num.columns
```

∨ Voltage_Level

Find the minimum

df_num.Voltage_Level.min()

p.float64(149.03500000000000)

Find the maximum

df_num.Voltage_Level.max()

→ np.float64(309.675)

```
# Find the average
df_num.Voltage_Level.mean()
np.float64(229.35340703192406)
# Check the visualization
df_num.Voltage_Level.plot(kind = 'kde',) # slightly normaly distributed kde = 'kernal density Estimation'
plt.title('Emergency_Power_Activation')
plt.grid()
₹
```


- Minimum value is 149.035000000000003
- Maximum value is 309.675
- Average value is 229.35340703192406
- · After looking at the distribution, I conclude that the graph shows Central tendency

```
# Check the columns
df_num.columns
Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
              'Airspeed', 'Maintenance_History', 'Temperature',
              'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
            dtype='object')
   Current_Load
# Find the minimum
df_num.Current_Load.min()
p.float64(189.43000000000012)
```

```
p.float64(599.0728915012942)
```

Find the maximum df_num.Current_Load.max()

Find the average df_num.Current_Load.mean()

→ np.float64(1000.0)

```
# Check the visualization
df_num.Current_Load.plot(kind='kde') # Kernel Density Estimate
plt.title('Current_Load')
plt.grid()
plt.show()
```


plt.grid() plt.show()

- Minimum value is 189.43000000000012
- Maximum value is 1000.0
- Average value is 599.0728915012942.

```
• After looking at the distribution, I conclude that the graph shows Central tendency
# Check the columns
df num.columns
Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
              Airspeed', 'Maintenance_History', 'Temperature',
             'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
            dtype='object')
   Engine_Performance
# minimum value
df_num.Engine_Performance.min()
→ np.float64(81.71)
# maximum value is
df_num.Engine_Performance.max() # Maximum value
→ np.float64(100.0)
# average value
df_num.Engine_Performance.mean()
    np.float64(94.69988891285593)
# data visualitation
df_num.Engine_Performance.plot(kind='kde') # Density plot
plt.title('Engine_Performance')
```


- Minimum value is 81.71
- Maximum value is 100.0
- Average value is 94.69988891285593

```
• After looking at the distribution, I conclude that the graph shows Central tendency
# Check the columns
df num.columns
Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Airspeed', 'Maintenance_History', 'Temperature',
              'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
             dtype='object')
    Altitude
# minimum value
df num.Altitude.min()
np.float64(4973.770273943055)
# maimum value
df_num.Altitude.max()
→ np.float64(10000.0)
# average value
df_num.Altitude.mean()
→ np.float64(4973.770273943055)
# data visualitation
df_num.Altitude.plot(kind='kde')
plt.title('Altitude')
plt.grid()
plt.show()
```


plt.show()

- Minimum value is 4973.77027394305
- Maximum value is 10000.0
- Average value is 4973.770273943055
- After looking at the distribution, I conclude that the graph shows Central tendency

```
# Check the columns
df num.columns
Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Airspeed', 'Maintenance_History', 'Temperature',
               'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
             dtype='object')
    Airspeed
# minimum value
df num.Airspeed.min()
→ np.float64(164.4)
# maximum value
df_num.Airspeed.max()
→ np.float64(300.0)
# average value
df_num.Airspeed.mean()
→ np.float64(249.87278257118206)
# data visualitation
df_num.Airspeed.plot(kind='kde')
plt.title('Airspeed')
plt.grid()
```


- Minimum value is 4973.77027394305
- Maximum value is 300.0

```
• Average value is 249.87278257118206
   • After looking at the distribution, I conclude that the graph shows Central tendency
# Check the columns
df num.columns
Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Airspeed', 'Maintenance_History', 'Temperature',
              'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
             dtype='object')
    Maintenance_History
# minimum value
df num.Maintenance History.min()
    np.int64(0)
# maxmum value
df_num.Maintenance_History.max()
→ np.int64(10)
# average value
df_num.Maintenance_History.mean()
    np.float64(4.990724762726488)
# Plot frequency of categorical values
df_num.Maintenance_History.value_counts().plot(kind='bar')
plt.title('Maintenance_History - Count')
plt.grid()
plt.show()
```


- Minimum value is 0
- Maximum value is 10.0
- Average value is 4.990724762726488

Check the columns

df_num.columns

▼ Temperature

- Minimum Insider Sentiment_Score_Social is -10
- Maximum Insider Sentiment_Score_Social is 40
- Average Insider Sentiment_Score_Social is 14.79624676445211
- After looking at the distribution, I conclude that the distribution is normal

```
# Check the columns
df num.columns
Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Airspeed', 'Maintenance_History', 'Temperature',
              'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
             dtype='object')
    Air_Traffic_Control_Delay
df_num.Air_Traffic_Control_Delay.min()
→ np.float64(0.0)
df_num.Air_Traffic_Control_Delay.max()
p.float64(14.446250000000001)
df_num.Air_Traffic_Control_Delay.mean()
pr.float64(4.549174126402071)
df_num.Air_Traffic_Control_Delay.value_counts().plot(kind='kde')
plt.title('Air_Traffic_Control_Delay - Count')
plt.grid()
plt.show()
```


- Minimum Insider Sentiment_Score_Social is 0
- Maximum Insider Sentiment_Score_Social is 14.4466
- Average Insider Sentiment_Score_Social is 4.549174126402071
- After looking at the distribution, I conclude that the graph shows Central tendency

```
# Check the columns
df num.columns
Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Airspeed', 'Maintenance_History', 'Temperature',
              'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
             dtype='object')
    Ground_Staff_Activity
df_num.Ground_Staff_Activity.min()
→ np.int64(0)
df_num.Ground_Staff_Activity.max()
→ np.int64(20)
df_num.Ground_Staff_Activity.mean()
np.float64(9.885785159620362)
df_num.Ground_Staff_Activity.value_counts().plot(kind='kde')
plt.title('Ground_Staff_Activity - Count')
plt.grid()
plt.show()
```


- Minimum Insider Sentiment_Score_Social is 0
- Maximum Insider Sentiment_Score_Social is 20
- Average Insider Sentiment_Score_Social is 9.885785159620362

```
• After looking at the distribution, I conclude that the graph shows Central tendency
# Check the columns
df num.columns
Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Airspeed', 'Maintenance_History', 'Temperature',
              'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
             dtype='object')
    'CCTV_Anomaly_Flag
df_num.CCTV_Anomaly_Flag.min()
→ np.int64(0)
df_num.CCTV_Anomaly_Flag.max()
→ np.int64(0)
df_num.CCTV_Anomaly_Flag.mean()
→ np.float64(0.0)
df_num.CCTV_Anomaly_Flag.mean()
df_num.CCTV_Anomaly_Flag.value_counts().plot(kind='bar')
plt.title('CCTV_Anomaly_Flag - Count')
plt.grid()
plt.show()
```


Check the columns

df_num.columns

→ Pilot_Communication_Score

```
df_num.Pilot_Communication_Score.min()
```

→ np.float64(0.01)

df_num.Pilot_Communication_Score.max()

→ np.float64(0.82)

df_num.Pilot_Communication_Score.mean()

→ np.float64(0.29043895599654873)

df_num.Pilot_Communication_Score.plot(kind='kde')
plt.title('Pilot_Communication_Score')
plt.grid()
plt.show()

Check the columns

df_num.columns

✓ System_Failure

df_num.System_Failure.min()

→ np.int64(0)

df_num.System_Failure.max()

→ np.int64(1)

df_num.System_Failure.mean()

p.float64(0.09652717860224332)

```
df_num.System_Failure.value_counts().plot(kind='bar')
plt.title('System_Failure - Count')
plt.grid()
plt.show()
```

→

Univeriated analysis an categorical variaables

```
# Check the columns
```

df cat.columns

```
Index(['Timestamp', 'Flight_ID', 'Aircraft_Model', 'Electrical_System_Status', 'Flight_Phase', 'Last_Maintenance_Date', 'Weather_Condition'],
```

→ Timestamp

Check the count of each category present in the column

68

df_cat.Timestamp.value_counts()

_		count
	Timestamp	
	12-06-2025 08:24	70
	12-06-2025 07:08	69

12-06-2025 06:13

12-06-2025 08:05 67 12-06-2025 08:41 66 12-06-2025 06:11 38 12-06-2025 08:34 38 12-06-2025 07:14 38

12-06-2025 06:44 36

12-06-2025 07:18 181 rows × 1 columns

dtype: int64

Create a Visualization

```
df_cat.Timestamp.value_counts().head(20).plot(kind = 'bar')
plt.title('Timestamp')
plt.grid()
```


Check the columns

df_cat.columns

✓ Flight_ID

Check the count of each category present in the column
df_cat.Flight_ID.value_counts()

```
₹
                 count
      Flight_ID
        AI187
                   116
        AI146
                    111
        AI112
                   110
        AI103
                   107
        AI185
                   106
        AI190
                    81
        AI161
                    80
        AI121
                    78
        AI165
                    77
        AI183
                    75
```

100 rows × 1 columns

```
# Create a visualization (top 20 IDs for clarity)
df_cat.Flight_ID.value_counts().head(20).plot(kind='bar')
plt.title('Flight_ID (Top 20)')
plt.grid()
plt.show()
```


Check the columns

df_cat.columns

✓ 'Aircraft_Model

Check the count of each category present in the column
df_cat.Aircraft_Model.value_counts()

Aircraft_Model

Boeing 787-8 Dreamliner 9272

dtype: int64

Create a visualization
df_cat.Aircraft_Model.value_counts().plot(kind='bar')
plt.title('Aircraft_Model')
plt.grid()
plt.show()

→

Check the columns

df cat.columns

▼ Electrical_System_Status

Check the count of each category present in the column
df_cat.Electrical_System_Status.value_counts()

Normal	8153
Warning	991
Failure	128

```
# Create a visualization
df_cat.Electrical_System_Status.value_counts().plot(kind='bar')
plt.title('Electrical_System_Status')
plt.grid()
plt.show()
```

→

Check the columns

df_cat.columns

```
dtype='object')
```

Flight_Phase

 $\ensuremath{\text{\#}}$ Check the count of each category present in the column df_cat.Flight_Phase.value_counts()

```
<del>_</del>
                        count
      Flight_Phase
           Climb
                         5666
                         3606
```

Takeoff

```
# Create a visualization
df_cat.Flight_Phase.value_counts().plot(kind='bar')
plt.title('Flight_Phase')
plt.grid()
plt.show()
```


Check the columns

df_cat.columns

✓ Weather_Condition

Check the count of each category present in the column
df_cat.Weather_Condition.value_counts()

Rain 1847 **Fog** 908

```
# Create a visualization
df_cat.Weather_Condition.value_counts().plot(kind='bar')
plt.title('Weather_Condition')
plt.grid()
plt.show()
```


Bivariate Analysis

 $\mbox{\tt\#}$ To find the best pairs, we have to conclude the correlation matrix $\mbox{\tt df_num.corr()}$

_		Voltage_Level	Current_Load	Engine_Performance	Altitude	Airspeed	Maintenance_History	Temperature	Ai
	Voltage_Level	1.000000	-0.007081	-0.010190	0.003049	0.000674	0.000264	0.002769	
	Current_Load	-0.007081	1.000000	-0.012897	-0.009052	-0.008944	0.005412	-0.005843	
	Engine_Performance	-0.010190	-0.012897	1.000000	0.025060	-0.004624	-0.012317	0.014078	
	Altitude	0.003049	-0.009052	0.025060	1.000000	0.006055	-0.011756	-0.012935	
	Airspeed	0.000674	-0.008944	-0.004624	0.006055	1.000000	0.014505	-0.001767	
	Maintenance_History	0.000264	0.005412	-0.012317	-0.011756	0.014505	1.000000	-0.022750	
	Temperature	0.002769	-0.005843	0.014078	-0.012935	-0.001767	-0.022750	1.000000	
	Air_Traffic_Control_Delay	0.006470	0.024029	-0.007142	-0.009638	-0.002596	0.008049	0.002976	
	Ground_Staff_Activity	0.012410	0.012806	-0.000006	-0.010356	0.005658	-0.005073	-0.005135	
	CCTV_Anomaly_Flag	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	Pilot_Communication_Score	-0.011411	-0.012745	0.003049	0.011485	-0.004982	-0.004294	-0.000256	
	System_Failure	0.091142	-0.028598	0.007008	0.000628	0.015875	-0.031328	0.013157	

Visualize the correlation matrix

sns.heatmap(df_num.corr())

→ <Axes: >

- After looking at the data and correlation matrix, I conclude that there is no correlation
- · This is good for machine learning, because it avoids the problem of multicollinearity
- NOTE: Multicolinearity means when independent variables are correlated with each other and we don;t want multicolinearity while
 performing machine learning on any data
- → Bivariate analysis on one categorical and one numerical variable

```
# Check the categorical variables we have
df_cat.columns
Index(['Timestamp', 'Flight_ID', 'Aircraft_Model', 'Electrical_System_Status',
            'Flight_Phase', 'Last_Maintenance_Date', 'Weather_Condition'],
           dtype='object')
\# Check the numerical variable present in the data
df_num.columns
Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
            'Airspeed', 'Maintenance_History', 'Temperature'
            'Air_Traffic_Control_Delay', 'Ground_Staff_Activity'
            'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
           dtype='object')
   'Timestamp','voltage_level'
# create a visualization
sns.barplot(x = df_airplain_crash.Timestamp,
          y = df_airplain_crash.Voltage_Level,
          data = df_airplain_crash)
plt.title('Timestamp vs Voltage_Level')
plt.grid()
plt.show()
```


_

- The data is balanced, which means all Timestamp are contributing equal in Voltage_Level amaount
- 'Timestamp','Current_load'

'Timestamp', Engine_Performance'

→

'Timestamp','Altitude'

```
# create a visualization
```


Multivariate Analysis

```
'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
dtype='object')
```

'aircraft_model','Flight_ID','Voltage_level'

₹	Aircraft_Model	Boeing 787-8	Dreamliner	
---	----------------	--------------	------------	--

bocing 707 o bi camiline	
	ıl
246.28	
244.90	
164.65	
206.65	
229.27	
	244.90 164.65 206.65

Aircraft_Model Boeing 787-8 Dreamliner

Flight_ID	
Al111	246.28
Al114	244.90
Al145	164.65
Al189	206.65
Al191	229.27

Aircraft_Model Boeing 787-8 Dreamliner

Flight_ID		ılı
Al111	246.28	
Al114	244.90	
Al145	164.65	
Al189	206.65	
Al191	229.27	

'aircraft_model','Flight_ID','current_load'

Aircraft Model Boeing 787-8 Dreamliner

_	Aircraft_Model	Boeing 787-8 Dreamliner
	Flight_ID	
	Al111	514.29
	Al114	579.26
	Al145	443.42
	Al189	769.53
	AI191	653.33

'aircraft_model','Flight_ID','altitude'

'aircraft_model','Flight_ID','airspeed'

₹*	Aircraft_Model	Boeing 787-8 Dreamliner	\blacksquare
	Flight_ID		ıl.
	Al111	278.51	
	AI114	242.98	
	Al145	272.38	
	Al189	215.24	
	Al191	241.20	

→	Aircraft_Model	Boeing 787-8 Dreamliner	
	Flight_ID		ılı
	Al111	278.51	
	Al114	242.98	
	Al145	272.38	
	Al189	215.24	
	AI191	241.20	

Make data ready for machine learning

Saperaate the dependent and independent variaables

 ${\tt df_airplain_crash.columns}$

```
Index(['Timestamp', 'Flight_ID', 'Aircraft_Model', 'Electrical_System_Status', 'Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Airspeed', 'Flight_Phase', 'Maintenance_History',
```

```
mini project.ipynb - Colab
             'Last_Maintenance_Date', 'Weather_Condition', 'Temperature',
             'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
             'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
            dtype='object')
# Here in the data we are going to predict Stock_Price_Impact
target = df airplain crash.System Failure
# Check for columns
df airplain crash.columns
Index(['Timestamp', 'Flight_ID', 'Aircraft_Model', 'Electrical_System_Status',
             'Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Airspeed', 'Flight_Phase', 'Maintenance_History',
             'Last_Maintenance_Date', 'Weather_Condition', 'Temperature',
             'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',

'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
            dtype='object')
# Drop the dependent variable from main dataframe
ind = df airplain crash.drop('System Failure', axis = 1)
# Check whether that column is deleted or not
ind, columns
→ Index(['Timestamp', 'Flight ID', 'Aircraft Model', 'Electrical System Status',
              Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
             'Airspeed', 'Flight_Phase', 'Maintenance_History',
'Last_Maintenance_Date', 'Weather_Condition', 'Temperature',
'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
             'CCTV_Anomaly_Flag', 'Pilot_Communication_Score'],
            dtype='object')
# sales date is a date time column, and we never keep a date time column in the machine learning process
ind = ind.drop('Last_Maintenance_Date', axis = 1)
# Check whether that column is deleted or not
ind.columns
Index(['Timestamp', 'Flight_ID', 'Aircraft_Model', 'Electrical_System_Status',
             'Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Airspeed', 'Flight_Phase', 'Maintenance_History', 'Weather_Condition',
             'Temperature', 'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
             'CCTV_Anomaly_Flag', 'Pilot_Communication_Score'],
            dtype='object')
   Perform encoding on categorical variable
# Separate the categorical columns from the independent variables
df_cat_ind = ind.select_dtypes(include = 'object')
df_cat_ind.head()
\overline{2}
               Timestamp Flight_ID
                                              Aircraft_Model Electrical_System_Status Flight_Phase Weather_Condition
                                                                                                                                  0 12-06-2025 08:43
                                Al114 Boeing 787-8 Dreamliner
                                                                                    Normal
                                                                                                   Takeoff
                                                                                                                          Clear
                                                                                                                                   ıı.
      1 12-06-2025 08:19
                                AI111 Boeing 787-8 Dreamliner
                                                                                    Normal
                                                                                                   Takeoff
                                                                                                                          Clear
      2 12-06-2025 06:50
                                Al191 Boeing 787-8 Dreamliner
                                                                                    Normal
                                                                                                     Climb
                                                                                                                          Clear
      3 12-06-2025 06:40
                                Al189 Boeing 787-8 Dreamliner
                                                                                    Normal
                                                                                                   Takeoff
                                                                                                                           Fog
      4 12-06-2025 06:24
                                Al145 Boeing 787-8 Dreamliner
                                                                                    Normal
                                                                                                     Climb
                                                                                                                           Rain
              Generate code with df cat ind

    View recommended plots

                                                                               New interactive sheet
# Perform encoding
encoded = pd.get_dummies(df_cat_ind)
encoded.columns
```

```
'Timestamp_12-06-2025 06:06', 'Timestamp_12-06-2025 06:07',
'Timestamp_12-06-2025 06:08', 'Timestamp_12-06-2025 06:09',
...
'Flight_ID_AI199', 'Aircraft_Model_Boeing 787-8 Dreamliner',
'Electrical_System_Status_Failure', 'Electrical_System_Status_Normal',
'Electrical_System_Status_Warning', 'Flight_Phase_Climb',
'Flight_Phase_Takeoff', 'Weather_Condition_Clear',
'Weather_Condition_Fog', 'Weather_Condition_Rain'],
dtype='object', length=290)
```

Check the data encoding data frame

encoded.head().T

Perform scaling on numerical data

```
# Make a new dataframe for the independent numerical variable
df_num_ind = ind.select_dtypes(include = 'number')
# Import the standard scaler for scaling
from sklearn.preprocessing import StandardScaler
# Initiate the StandardScaler
ss = StandardScaler()
# Transform the data (Numerical Data)
scalled = ss.fit_transform(df_num_ind)
# Check the normalized data
scalled
→ array([[ 0.52731067, -0.13396766, 0.83922802, ..., -0.47705278,
                         , -0.12600547],
             [ \ 0.57411762, \ -0.57327149, \ -1.0240842 \ , \ \ldots, \ \ 0.84543729,
            0. , -0.31095445],
[-0.00282901, 0.3668671 , 0.566606 , ..., -0.31174152,
                        , 0.30554215],
              0.
             [-0.52822015, \quad 0.58594428, \quad 0.16122892, \ \ldots, \quad 0.84543729,
                         , -0.86580138],
             [-0.17038435, 0.88643161, -0.12324623, ..., -1.13829781,
                            2.03173261],
             [-1.77165715, 0.92301209, -1.20425179, ..., -1.30360907,
                        , -0.9891007 ]])
              0.
# Create a dataframe for scaled numerical data
df_scalled = pd.DataFrame(scalled, columns = df_num_ind.columns)
```

New interactive sheet

Check the scaled DataFrame

df_scalled.head()

→		Voltage_Level	Current_Load	Engine_Performance	Altitude	Airspeed	Maintenance_History	Temperature	Air_Traffic_Control_Delay
	0	0.527311	-0.133968	0.839228	1.695153	-0.242738	1.587369	-0.125176	-0.647487
	1	0.574118	-0.573271	-1.024084	-1.834758	1.008495	-1.58149	0.097824	-0.513835
	2	-0.002829	0.366867	0.566606	0.930930	-0.305423	0.95359	1.637922	0.953770
	3	-0.770056	1.152570	0.514452	-0.418019	-1.219636	-1.26460	0.578669	-0.688611
	4	-2.194616	-1.052469	0.275019	0.368455	0.792619	0.95359	1.623985	1.223645
	4 4								•

Next steps: (Generate code with df_scalled) (View recommended plots)

Concatenate the encoded and scaled dataframe

df_main = pd.concat([encoded, df_scalled], axis = 1)

Check whether the concatenation is successful or not

df_main.isnull().sum()

_		0
	Timestamp_12-06-2025 06:00	0
	Timestamp_12-06-2025 06:01	0
	Timestamp_12-06-2025 06:02	0
	Timestamp_12-06-2025 06:03	0
	Timestamp_12-06-2025 06:04	0
	Temperature	0
	Air_Traffic_Control_Delay	0
	Ground_Staff_Activity	0
	CCTV_Anomaly_Flag	0
	Pilot_Communication_Score	0
	301 rows × 1 columns	
	dtype: int64	

→ Split the data in train and testing

import the library for training and testing

from sklearn.model_selection import train_test_split

Separate the data

X_train, X_test, y_train, y_test = train_test_split(df_main, target, test_size = 0.3)

Check the data we have in training set

X_train.head()

₹

}		. –	· -	Timestamp_12- 06-2025 06:02	. –	. –	. –	. –		Timest 06-202
	2804	False	False	False	False	False	False	False	False	
	6868	False	False	False	False	False	False	False	False	
	801	False	False	False	False	False	False	False	False	
	1375	False	False	False	False	False	False	True	False	
	3396	False	False	False	False	False	False	False	False	
	5 rows	× 301 columns								

y_train.head()

→		System_Failure
	2804	1
	6868	0
	801	1
	1375	0
	3396	0

dtype: int64

check the testing set

X_test.head()

₹		Timestamp_12- 06-2025 06:00	· · · · · · · · · · · · · · · · · · ·	• -	. –	. –		Timestamp_12- 06-2025 06:06	Timestamp_12- 06-2025 06:07	Timest 06-202
	6753	False	False	False	False	False	False	False	False	
	1602	False	False	False	False	False	False	False	False	
	605	False	False	False	False	False	False	False	False	
	8883	False	False	False	False	False	False	False	False	
	1774	False	False	False	False	False	False	False	False	

5 rows × 301 columns

y_test.head()

_		System_Failure
	6753	0
	1602	0
	605	0
	8883	0
	1774	0

dtype: int64

Select the base model

✓ Linear Regression

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split

# Create a linear regression model
model = LinearRegression()

# Fit the model to the training data
model.fit(X_train, y_train)

# Predict on the testing data
predictions = model.predict(X_test)

# Calculate mean squared error
mse = mean_squared_error(y_test, predictions)
print("Mean Squared Error:", mse)
```

→ Ridge Model

→ Mean Squared Error: 0.09166569728921695

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error

# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split

# Create a Ridge regression model
ridge_model = Ridge(alpha=1.0) # alpha is the regularization strength

# Fit the model to the training data
ridge_model.fit(X_train, y_train)

# Predict on the testing data
predictions = ridge_model.predict(X_test)

# Calculate mean squared error
mse = mean_squared_error(y_test, predictions)
print("Mean Squared Error: ", mse)

The Mean Squared Error: 0.09143002804622594
```

Lasso Model

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_squared_error

# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split

# Create a Lasso regression model
lasso_model = Lasso(alpha=1.0)  # alpha is the regularization strength

# Fit the model to the training data
lasso_model.fit(X_train, y_train)

# Predict on the testing data
predictions = lasso_model.predict(X_test)

# Calculate mean squared error
mse = mean_squared_error(y_test, predictions)
print("Mean Squared Error: ", mse)

Mean Squared Error: 0.08734354134729566
```

→ Decision Tree Regressor

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error

# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split

# Create a Decision Tree regression model
tree_model = DecisionTreeRegressor()

# Fit the model to the training data
tree_model.fit(X_train, y_train)

# Predict on the testing data
predictions = tree_model.predict(X_test)

# Calculate mean squared error
mse = mean_squared_error(y_test, predictions)
print("Mean Squared Error: ", mse)

→ Mean Squared Error: 0.16606757728253055
```

Random Forest Regressor

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error

# Assuming X_train, X_test, y_train, y_test are already defined from train_test_spli
# Create a Random Forest regression model
```

```
forest_model = RandomForestRegressor(n_estimators=100, random_state=42)
# Fit the model to the training data
forest_model.fit(X_train, y_train)
# Predict on the testing data
predictions = forest_model.predict(X_test)
# Calculate mean squared error
mse = mean_squared_error(y_test, predictions)
→ Mean Squared Error: 0.09091362329259525

    Gaussian Process Regressor

from sklearn.gaussian process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
```

```
# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split
# Create a Gaussian Process regression model with an RBF kernel
kernel = 1.0 * RBF(length_scale=1.0)
{\tt gp\_model = Gaussian Process Regressor(kernel=kernel, n\_restarts\_optimizer=10, random\_state=42)}
# Fit the model to the training data
gp_model.fit(X_train, y_train)
# Predict on the testing data
predictions, std_dev = gp_model.predict(X_test, return_std=True)
```

Calculate mean squared error mse = mean_squared_error(y_test, predictions) print("Mean Squared Error:", mse)

Polynomial Regression

```
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
{\tt from \ sklearn.metrics \ import \ mean\_squared\_error}
# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split
# Generate polynomial features
degree = 3 # degree of the polynomial
poly = PolynomialFeatures(degree=degree)
X_{train_poly} = poly.fit_{transform(X_{train})}
```