Α

n

n

а

р

0

0

r

n

i

m

а

(

2

2

5

2

2

9

```
1
0
1
```

Lab3. Computing Document Similarity using VSM

EXCERCISE-1:Print TFIDF values

```
from sklearn.feature extraction.text import TfidfVectorizer
 In [13]:
import pandas as pd
 In [14]:
docs=["good movie","not a god movie","did not like","i like it","good one"]
tfidf=TfidfVectorizer(min_df=2,max_df=0.5,ngram_range=(1,2)
) features=tfidf.fit_transform(docs)
print(features)
 In [32]:
   (0, 1)
                 0.7071067811865476
   (0, 3)
                 0.7071067811865476
   (1, 0)
                 0.7071067811865476
                 0.7071067811865476
   (1, 2)
                 0.7071067811865476
   (2, 1)
   (2, 3)
                 0.7071067811865476
                 0.7071067811865476
   (3, 0)
                 0.7071067811865476
   (3, 2)
 In [33]:
df=pd.DataFrame(
   features.todense(),
   columns=tfidf.get_f
eature_names())
print(df)
                 house the cat the house0 0.000000 0.707107 0.000000
                                                                             0.707107
 1 0.707107 0.000000 0.707107
                                  0.000000
 2 0.000000 0.707107 0.000000
                                  0.707107
 3 0.707107 0.000000 0.707107
                                  0.000000
 4 0.000000 0.000000 0.000000
                                  0.000000
```

EXCERCISE-2:

1. Change the values of min_df and ngram_range and observe various outputs

```
tfidf=TfidfVectorizer(min_df=1,max_df=.5,ngram_range=(2,4))
features=tfidf.fit_transform(docs)
print(features)
```

```
(0, 46) 0.23636461617263152
```

(0 22)	0. 20206704024007045
(0, 22)	0.29296784934087045
(0, 19)	0.29296784934087045
(0, 52)	0.29296784934087045
(0, 25)	0.29296784934087045
(0, 47)	0.29296784934087045
(0, 23)	0.29296784934087045
(0, 20)	0.29296784934087045
(0, 53)	0.29296784934087045
(0, 48)	0.29296784934087045
(0, 24)	0.29296784934087045
(0, 21)	0.29296784934087045
(1, 38)	0.2916794154657719
(1, 8)	0.36152911730069653
(1, 36)	0.36152911730069653
(1, 41)	0.36152911730069653
(1, 9)	0.36152911730069653
(1, 37)	0.36152911730069653
(1, 42)	0.36152911730069653
(1, 10)	0.36152911730069653
(2, 46)	0.21836428188496418
(2, 26)	0.27065689895808104
(2, 33)	0.27065689895808104
(2, 2)	0.27065689895808104
(2, 17)	0.27065689895808104
: :	
(2, 28)	0.27065689895808104
(2, 35)	0.27065689895808104
(2, 4)	0.27065689895808104
(3, 38)	0.24721169864215167
(3, 5)	0.3064125284733739
(3, 14)	0.3064125284733739
(3, 0)	0.3064125284733739
(3, 39)	0.3064125284733739
(3, 6)	0.3064125284733739
(3, 15)	0.3064125284733739
(3, 1)	0.3064125284733739
(3, 40)	0.3064125284733739
(3, 7)	0.3064125284733739
(3, 16)	0.3064125284733739
(4, 43)	0.3015113445777636
(4, 11)	0.3015113445777636
(4, 30)	0.3015113445777636
(4, 29)	0.3015113445777636
(4, 44)	0.3015113445777636
(4, 12)	0.3015113445777636
(4, 31)	0.3015113445777636
(4, 51)	0.3015113445777636
(4, 45)	0.3015113445777636
(4, 13)	0.3015113445777636
	0.3015113445777636
(4, 32)	

#pretty printing

```
df=pd.DataFrame(features.todense(),columns=tfidf.get_featur
e_names()) print(df)
```

In [34]:

```
cat house the cat the house 0.000000 0.707107 0.000000 0.707107

1 0.707107 0.000000 0.707107 0.000000

2 0.000000 0.707107 0.000000 0.707107

3 0.707107 0.000000 0.707107 0.000000

4 0.000000 0.000000 0.000000 0.000000
```

EXCERCISE-3: Compute Cosine Similarity between 2 Documents

```
from sklearn.metrics.pairwise
import linear_kernel
doc1=features[0:1]
doc2=features[1:2]
score=linear_kernel(doc
1,doc2) print(score)
```

```
In [21]:
 [[0.5]]
scores=linear_kernel(do
c1, features)
print(scores)
 [[1.
              0.5
                          0.
                                     0.
                                                0.70710678]]
query="I like this good movie"
qfeature=tfidf.transform([query])
scores2=linear_kernel(d
oc1, features)
print(scores2)
 In [24]:
 [[1.
                                                0.70710678]]
              0.5
                          0.
                                     0.
```

EXCERCISE-4: Find Top-N similar documents

Question-1. Consider the following documents and compute TFIDF values

```
docs=["the house had a tiny
    little mouse", "the cat
    saw the mouse",
    "the mouse ran away
    from the house", "the
    cat finally ate the
    mouse",
    "the end of the mouse story"]
In [25]:
```

Question-2. Compute Cosine similarity between 3rd document ("the mouse ran away from the house") with all other documents. Which is the most similar document?

```
tfidf = TfidfVectorizer(min_df=2, max_df=0.5,
ngram_range=(1, 2))features =
tfidf.fit_transform(docs)
print(features)
 In [35]:
   (0, 1)
                 0.7071067811865476
   (0, 3)
                  0.7071067811865476
                 0.7071067811865476
   (1, 0)
    (1, 2)
                 0.7071067811865476
   (2, 1)
                  0.7071067811865476
                 0.7071067811865476
   (2, 3)
    (3, 0)
                 0.7071067811865476
   (3, 2)
                  0.7071067811865476
 In [36]:
doc1=features[0:3]
sr=linear_kernel(
doc1, features)
print(sr)
 [[1. 0. 1. 0. 0.]
```

[0. 1. 0. 1. 0.] [1. 0. 1. 0. 0.]]

Question-3.Find Top-2similar documents for the 3rd document based on Cosine similarity values.

```
scores2 =
linear_kernel(doc1,
features)print(scores2)
In [37]:
[[1. 0. 1. 0. 0.]
[0. 1. 0. 1. 0.]
[1. 0. 1. 0. 0.]]
```