Vorhersage vom Yahoo Aktienkurs mit LSTM-Modell

Long Short-Term Memory Networks

Johann Estrada Pox, Tim Luhmann

Gliederung

- 1. Ziel der Analyse
- 2. Datenverarbeitung
- 3. LSTM als Lösung
- 4. Aktivierungsfunktionen
- 5. LSTM-Architektur

- 6. LSTM Cell State
- 7. LSTM Hidden State
- 8. Durchlauf in einem LSTM-Netzwerk
- Training des LSTM Modells
- 10. Ergebnis

Ziel der Analyse

- Ziel: Vorhersage des Yahoo
 Aktienkurses auf der Basis von
 historischen Werten, um mittels
 Optionen auf Aktienkurse zu setzen
- Methoden: Feature Engineering, LSTM Modell
- Datenquelle: Yahoo Finance

	Date	Close	High	Low	Open
0	2015-11-23	2086.590088	2095.610107	2081.389893	2089.409912
1	2015-11-24	2089.139893	2094.120117	2070.290039	2084.419922
2	2015-11-25	2088.870117	2093.000000	2086.300049	2089.300049
3	2015-11-26	2088.870117	2093.000000	2086.300049	2089.300049
4	2015-11-27	2090.110107	2093.290039	2084.129883	2088.820068

Datenverarbeitung 1

- Erstellen von zeitbezogenen Merkmalen (month, day_of_month, etc.)
- Fourier-Transformation zur
 Modellierung saisonaler Muster
 (Jährlich mit 3 Fourier Termen)
- Generierung deterministischer
 Zeitfeatures (Trendkomponente:
 Linearer Trend)

- Kombination aus:
 - Trends (lineare Komponenten),
 - Saisonalität (Fourier-Terme),
 - zeitbezogenen Mustern (z. B. Wochentage, Quartale).
- Diese Features liefern zusätzliche Kontextinformationen, um die zeitlichen Abhängigkeiten in den Daten präziser zu erfassen und das Modell zu verbessern.

Datenverarbeitung 2

- Verarbeitung: Normalisierung der Daten (Min-Max-Skalierung -1/0), um die Effizienz des Modells zu erhöhen.
- Aufteilung in Train & Test Split (85%/15%)

- LSTM mit einem look back window von 20 Tagen
- ► LSTM erwartet die Eingaben in der Form: Samples, Zeitschritte, Features (reshape mit numpy)

LSTM als Lösung

- Getrennte Speicherpfade für Langzeit- und Kurzzeitspeicher
- LSTM-Architektur verhindert vanishing and exploding gradients
- Dropout zur Reduzierung des overfittings
- Optimization algorithm: Adam (Adaptive Moment Estimation)
- Loss Function: Mean Squared Error (MSE)

Aktivierungsfunktionen

https://cdn-images-

1.medium.com/v2/resize:fit:1600/1*JHWL_71qml0kP_Imyx4zBg.png

https://www.simplilearn.com/ice9/free_resources_article_thumb/graph-for-leaky-relu-activation-function.jpg

$$tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Mathematical formula of the Tanh function

https://databeauty.com/figures/2018-01-16-From-Perceptron-to-Deep-Learning/tanh.png

LSTM-Architektur

https://miro.medium.com/v2/resize:fit:4168/1*eElAtVm41hnA7Sb9O3z1xg.png

LSTM Cell State (Langzeitgedächtnis)

- Ct ist der Cell state (Langzeitgedächtnis)
- Dieser kann nur durch Multiplikation und Addition verändert werden.
- Im Gegensatz zu den anderen Lanes hat der Cell State keine Gewichte oder einen Bias.
- Ermöglicht den Durchlauf des Langzeitgedächtnisses durch eine Reihe von Zellzuständen, ohne dass der Gradient explodiert und verschwindet.

LSTM Hidden State (Kurzzeitgedächtnis)

- Ht ist der hidden state und repräsentiert das Kurzzeitgedächtnis.
- Direkt mit Gewichten und Aktivierungsfunktionen verbunden, welche diesen verändern können

Durchlauf in einem LSTM-Netzwerk

Training des LSTM Modells

- ► LSTM-Modelltraining über 100 Epochen
- Verwendung von Early Stopping und Learning Rate Scheduling zur Vermeidung von Overfitting
- Laufende Validierung auf Testdaten während des Trainings
- Batch-Size = 1 für eine besonders feine Anpassung des Modells

Ergebnis

- Modell evaluierte die Testdaten mit den folgenden Ergebnissen:
- RMSE für Test-Set: 0.05
- RMSE für Trainings-Set: 0.02
- Die Ergebnisse zeigen eine hohe Vorhersagegenauigkeit und ermöglichen verlässliche Aktienkursprognosen. Dies unterstützt gezielte Handelsstrategien und minimiert Investitionsrisiken.

Quellen

- https://arxiv.org/pdf/1402.1128
- https://arxiv.org/pdf/1808.03314
- https://www.youtube.com/watch?v=YCzL96nL7j0&t=944s
- https://www.youtube.com/watch?v=AsNTP8Kwu80
- https://finance.yahoo.com/company/yahoo/?h=eyJlljoieWFob28iLCJuljoiWW Fob28ifQ%3D%3D