

IDENTIFICATION OF THE PROBLEM

- Whenever a person visits any financial institution to get a loan, there is a lot of paper work involved, and it is a time-consuming process as well.
- After going through these rigorous processes, there is still ambiguity about whether the loan will be approved or not. In case the loan isn't approved, a lot of time and resources are wasted in the whole process.

DATASET AND VARIABLES

The dataset is named as 'LoanDefaulters' and contains past records of people who applied for loan with all their information and whether their loan was approved or not approved.

S. No.	Variable Name	Description
1	ID	Loan Borrower's ID
2	Gender	Gender
3	approv_in_adv	Approved in Advance (non pre or pre)
4	loan_type	Loan Type (Type 1 or Type 2 or Type 3)
5	loan_purpose	Purpose of Loan (p1 / p2 / p3 / p4)
6	Credit_Worthiness	Type of Credit worthiness (I1 or I2)
7	open_credit	Open Credit or not (opc / nopc)
8	business_or_commercial	Business loan or commercial loan
9	loan_amount	Loan Amount
10	rate_of_interest	Interest Rate
11	property_value	Property Value
12	Income	Borrower's Income
13	credit_type	Credit Type
14	Credit_Score	Credit Score
15	Age	Borrower's Age
16	LTV	Loan to Value Ratio
17	Region	Borrower's Region
18	Security_Type	Security Type
19	Status	Loan Status (0:Not approved; 1: Approved)

Discrete, Categorical, Continuous

OBJECTIVES

- With the help of this dataset, we aim to create a predictive model that can predict dependent variable; that is status of the loan, with the help of all other independent variables.
- Using our prediction model a person can know if he should apply for the loan based on his chances of approval. So, that he can save his resources and time if there are less chances of loan approval.

METHODOLOGY

DATASET CLEANING

- There were no duplicate rows in the entire dataset.
- We will only use imputation of missing values and not removal of them to avoid making the dataset smaller.

IDENTIFICATION OF VARIABLES

- 'Status' will be the dependent variable.
- Gender, approv_in_adv, loan_type, loan_purpose, Credit_Worthiness, open_credit, business_or_commercial, loan_amount, rate_of_interest, property_value, income, credit_type, Credit_Score, age, LTV and Region; can be used as **independent variables**.
- Out of there independent variable only 6 are **continuous** (loan_amount, rate_of_interest, property_value,income, Credit_Score and LTV) and **rest** are **categorical** variables.

IDENTIFIED ISSUES AND POSSIBLE TREATMENT

Out of these 6 continuous variables, 3 are normal (rate_of_interest, Credit_Score and LTV) while the remaining three (loan_amount, property_value and income) are not normal and must be treated for the same. Out of the 3 continuous normal variables two have moderate outliers: rate_of_interest (109 outliers) and LTV (111 outliers)

- Income includes outlier of loan_amount as well; and hence removing its outlier will treat loan_amount as well.
- As for outliers in rate_of_interest and LTV; they are only moderate, so we will make two categories of models;
 - 1. outliers are not treated
 - 2. outlier values are treated using imputation.

	square root transformation	Log transformation	Removal	Imputation
Loan Amount (32 outliers present)	17 (outliers still present) Normality achieved	17 (outliers still present) Normality achieved	0 (outliers present) Normality achieved	0 (outliers present) Normality achieved
Property value (121 outliers present)	Not possible	58 (outliers still present)	25 (outliers still present) Normality achieved	54 (outliers still present) Normality achieved
Income (152 outliers present)	Not possible	Not possible	47 (outliers still present) Normality achieved	72 (outliers still present) Normality achieved

POSSIBLE DATASETS WITH DIFFERENT TREATMENT

LTV ~

Rate of interest *

Dataset No.	Loan amount	Property value 👻	Income 👻	
1	-	-	-	-
2	-	log	removal of outliers	
3	sqrt	log	imputation	
4	-	removal of outliers	removal of outliers	
5	sqrt	removal of outliers	imputation	
6	-	imputation	removal of outliers	
7	sqrt	imputation	imputation	
8	log	log	imputation	

POSSIBLE DATASETS WITH DIFFERENT TREATMENT

	23	-	log	removal of outliers	imputation	imputation
	24	sqrt	log	imputation	imputation	imputation
	25	-	removal of outliers	removal of outliers	imputation	imputation
V	26	sqrt	removal of outliers	imputation	imputation	imputation
	27	-	imputation	removal of outliers	imputation	imputation
	28	sqrt	imputation	imputation	imputation	imputation
	29	log	log	imputation	imputation	imputation
	30	log	removal of outliers	imputation	imputation	imputation
	31	log	imputation	imputation	imputation	imputation
	32	imputation	log	removal of outliers	imputation	imputation
	33	imputation	log	imputation	imputation	imputation
	34	imputation	removal of outliers	removal of outliers	imputation	imputation
	35	imputation	removal of outliers	imputation	imputation	imputation
	36	imputation	imputation	removal of outliers	imputation	imputation
	37	imputation	imputation	imputation	imputation	imputation
	38	removal	log	removal of outliers	imputation	imputation
	20	romoval	log	imputation	imputation	imputation

PREDICTIVE MODELS

POSSIBLE METHODS

Status is dependent variables and is categorical (binomial); so following methods can be used logistic regression, naïve bayes, decision tree (Gini Index), decision tree (Information Gain) and random forest

POSSIBLE MODELS

Logis	tic Regression	Naïve Bayes		Decision Tree		Random Forest	Total
All variables	Significant variables	Loan amount	Property value	Gini Index	Information Gain		
42 models	42 models	42 models	42 models	43 models	43 models	43 models	297 models

So, we have analyzed all the created models and shortlisted the ones with maximum accuracy and sensitivity(the cost of a false positive is low and we want to capture as many positive approvals as possible) from all the methods

LOGISTIC REGRESSION

Accuracy	Sensitivity	Specificity
87.33	51.49	99.49

> confusionMatrix(pL4_glm, testing4\$Status,positive = "1"):
Confusion Matrix and Statistics

Reference

Prediction 0 1 0 393 65 1 2 69

Accuracy: 0.8733

95% CI: (0.842, 0.9005)

No Information Rate : 0.7467 P-Value [Acc > NIR] : 4.860e-13

Kappa : 0.6036

Mcnemar's Test P-Value : 3.605e-14

Sensitivity: 0.5149 Specificity: 0.9949 Pos Pred Value: 0.9718 Neg Pred Value: 0.8581

Prevalence: 0.2533

Detection Rate : 0.1304 Detection Prevalence : 0.1342

Balanced Accuracy : 0.7549

	Dataset 👻	Loan amount 💌	Property value 💌	Income 💌	LTV ~	Rate of interest =
	20	removal	removal of outliers	imputation		
[19	removal	removal of outliers	removal of outliers		

LA Accuracy 🚚	LA Sensitivity =	LA Specificity 🕝
87.86	52.9	99.52
86.93	54.14	97.97

> confusionMatrix(pL19_NBLA, testing19\$Status,positive = "1")
Confusion Matrix and Statistics

Reference Prediction 0 1

0 387 61 1 8 72

Accuracy: 0.8693

95% CI: (0.8375, 0.8969)

No Information Rate : 0.7481 P-Value [Acc > NIR] : 4.946e-12

Kappa : 0.6005

Mcnemar's Test P-Value : 3.848e-10

Sensitivity: 0.5414

Specificity: 0.9797 Pos Pred Value: 0.9000

Neg Pred Value : 0.8638

Prevalence : 0.2519

Detection Rate: 0.1364 Detection Prevalence: 0.1515

Balanced Accuracy : 0.7606

	Dataset 💌	Loan amount 💌	Property value 💌	Income 💌	LTV ~	Rate of interest =
	20	removal	removal of outliers	imputation		
[19	removal	removal of outliers	removal of outliers		

LA Accuracy 🚚	LA Sensitivity =	LA Specificity 💌
87.86	52.9	99.52
86.93	54.14	97.97

> confusionMatrix(pL20_NBLA, testing20\$Status,positive = "1")
Confusion Matrix and Statistics

Reference

Prediction 0 1 0 412 65 1 2 73

Accuracy: 0.8786

95% CI: (0.8484, 0.9047)

No Information Rate : 0.75

P-Value [Acc > NIR] : 4.256e-14

Kappa : 0.6182

Mcnemar's Test P-Value: 3.605e-14

Sensitivity: 0.5290 Specificity: 0.9952 Pos Pred Value: 0.9733 Neg Pred Value: 0.8637

Prevalence : 0.2500

Detection Rate: 0.1322 Detection Prevalence: 0.1359 Balanced Accuracy: 0.7621

PV Accuracy -1	PV Sensitivity *	PV Specificity *
87.86	52.9	99.52
87.12	54.14	98.23

> confusionMatrix(pL19_NBPV, testing19\$Status,positive = "1")
Confusion Matrix and Statistics

Reference Prediction 0 1 0 388 61 1 7 72

Accuracy: 0.8712

95% CI : (0.8396, 0.8986)

No Information Rate : 0.7481 P-Value [Acc > NIR] : 2.175e-12

Kappa : 0.6051

Mcnemar's Test P-Value : 1.300e-10

Sensitivity: 0.5414 Specificity: 0.9823

Pos Pred Value : 0.9114

Neg Pred Value : 0.8641 Prevalence : 0.2519

Detection Rate : 0.1364

Detection Prevalence : 0.1496

Balanced Accuracy: 0.7618

PV Accuracy -1	PV Sensitivity *	PV Specificity *
87.86	52.9	99.52
87.12	54.14	98.23

Reference

Prediction 0 1 0 412 65 1 2 73

Accuracy: 0.8786

95% CI: (0.8484, 0.9047)

No Information Rate: 0.75

P-Value [Acc > NIR] : 4.256e-14

Kappa : 0.6182

Mcnemar's Test P-Value: 3.605e-14

Sensitivity : 0.5290

Specificity: 0.9952

Pos Pred Value : 0.9733 Neg Pred Value : 0.8637

Prevalence: 0.2500

Detection Rate : 0.1322

Detection Prevalence : 0.1359

Balanced Accuracy : 0.7621

DECISION TREE

Gini Index:

Dataset 👻	Loan amount	Property value 👻	Income	LTV 👻	Rate of interest ~
5	sqrt	removal of outliers	imputation		
9	log	removal of outliers	imputation		
14	imputation	removal of outliers	imputation		

Accuracy -1	Sensitivity *	Specificity *
91.88	100	89.13
91.88	100	89.13
91.88	100	89.13

Confusion Matrix and Statistics

Reference

Prediction 0 1

> confusionMatrix(pL5_gini, testing5\$Status,positive = "1")

rediction 0 1 0 369 0 1 45 140

Accuracy: 0.9188

95% CI: (0.8928, 0.9401)

No Information Rate : 0.7473 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8056

Mcnemar's Test P-Value : 5.412e-11

Sensitivity: 1.0000 Specificity: 0.8913 Pos Pred Value: 0.7568 Neg Pred Value: 1.0000 Prevalence: 0.2527

Detection Rate : 0.2527 Detection Prevalence : 0.3339

Balanced Accuracy: 0.9457

O

DECISION TREE

Information Gain:

Dataset 👻	Loan amount 🔻	Property value 🔻	Income 💌	LTV 🔻	Rate of interest
5	sqrt	removal of outliers	imputation		
9	log	removal of outliers	imputation		
14	imputation	removal of outliers	imputation		

Accuracy 🛂	Sensitivity -	Specificity ~
92.78	88.57	94.2
92.78	88.57	94.2
92.78	88.57	94.2

> confusionMatrix(pL5_info, testing5\$Status,positive = "1")
Confusion Matrix and Statistics

Reference Prediction 0 1 0 390 16 1 24 124

Accuracy: 0.9278

95% CI : (0.903, 0.9479)

No Information Rate : 0.7473 P-Value [Acc > NIR] : <2e-16

Kappa: 0.8124

Mcnemar's Test P-Value: 0.2684

Sensitivity: 0.8857 Specificity: 0.9420

Pos Pred Value : 0.8378 Neg Pred Value : 0.9606

Prevalence : 0.2527

Detection Rate : 0.2238 Detection Prevalence : 0.2671

Balanced Accuracy: 0.9139

RANDOM FOREST

Dataset J	Loan amount	Property value 💌	Income 💌	LTV 💌	Rate of interest =
6		imputation	removal of outliers		
19	removal	removal of outliers	removal of outliers		

Accuracy -1	Sensitivity ~	Specificity ~
92.87	87.59	94.63
90.91	88.72	91.65

confusionMatrix(pL6_rf, testing6\$Status,positive = "1")
Confusion Matrix and Statistics

Reference Prediction 0 1 0 388 17 1 22 120

Accuracy: 0.9287

95% CI : (0.9038, 0.9488)

No Information Rate : 0.7495 P-Value [Acc > NIR] : <2e-16

Kappa : 0.8124

Mcnemar's Test P-Value: 0.5218

Sensitivity: 0.8759 Specificity: 0.9463 Pos Pred Value: 0.8451 Neg Pred Value: 0.9580 Prevalence: 0.2505

Detection Rate: 0.2194 Detection Prevalence: 0.2596 Balanced Accuracy: 0.9111

RANDOM FOREST

Dataset J	Loan amount	Property value 💌	Income 💌	LTV 💌	Rate of interest
6		imputation	removal of outliers		
19	removal	removal of outliers	removal of outliers		

Accuracy 🛂	Sensitivity ~	Specificity ~
92.87	87.59	94.63
90.91	88.72	91.65

confusionMatrix(p19_rf, testing19\$Status,positive = "1")
Confusion Matrix and Statistics

Reference Prediction 0 1 0 362 15 1 33 118

Accuracy: 0.9091

95% CÍ: (0.8813, 0.9322)

No Information Rate : 0.7481 P-Value [Acc > NIR] : < 2e-16

Kappa: 0.7692

Mcnemar's Test P-Value : 0.01414

Sensitivity: 0.8872 Specificity: 0.9165 Pos Pred Value: 0.7815 Neg Pred Value: 0.9602 Prevalence: 0.2519 Detection Rate: 0.2235 Detection Prevalence: 0.2860 Balanced Accuracy: 0.9018

CONCLUSION © Q Q

- In terms of accuracy, the best model is obtained from dataset '6' using random forest method with highest accuracy of 92.87%.
- In terms of sensitivity that is our objective, the best model is obtained from dataset '5', '9' and '14' using decision tree method with gini index split, having an accuracy of 91.88% and a sensitivity of 100%.
- But as the best model is from random forest, we will use its output to evaluate the importance of independent variables on our dependent variable.

> varImp(modelL6_rf)

rf variable importance

only 20 most important variables shown (out of 30)

	0verall
rate_of_interest	100.000
credit_typeEQUI	75.541
LTV	21.176
income	18.308
property_value	16.343
Credit_Score	12.781
loan_amount	11.384
age35-44	2.198
loan_purposep3	1.819
credit_typeCRIF	1.675
GenderMale	1.618
approv_in_advpre	1.595
loan_purposep4	1.583
credit_typeEXP	1.575
age45-54	1.554
GenderSex Not Available	1.524
GenderJoint	1.522
Regionsouth	1.300
RegionNorth	1.259
age55-64	1 219

