0368-3248-01-Algorithms in Data Mining

Fall 2013

Lecture 2: Probabilistic Inequalities

Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do not cite this note as a reliable source. If you find mistakes, please inform me.

Fact 0.1 (Markov's inequality). For any positive random variable X:

$$\Pr(X > t) \le \frac{E[X]}{t} \tag{1}$$

Fact 0.2 (Chebyshev's inequality). For any random variable X

$$\Pr[|X - E[X]| > t] \le \frac{\sigma^2(X)}{t^2} \tag{2}$$

Theorem 0.1 (Chernoff's bound). Let X_i be a set of independent random variables such that $\mathbb{E}[X_i] = 0$ and $|X_i| \leq 1$ almost surely. Also define $\sigma_i^2 = \mathbb{E}[X_i^2]$ and $\sigma^2 = \sum_i \sigma_i^2$. Then:

$$\Pr[\sum_{i} X_i \ge t] \le \max(e^{-t^2/4\sigma^2}, e^{-t/2})$$

Proof.

$$\Pr[\sum_{i} X_{i} \ge t] = \Pr[\lambda \sum_{i} X_{i} \ge \lambda t] \quad (\text{for } \lambda \ge 0)$$
(3)

=
$$\Pr[e^{\lambda \sum_i X_i} \ge e^{\lambda t}]$$
 (because e^x is monotone) (4)

$$\leq \mathbb{E}[e^{\lambda \sum_{i} X_{i}}]/e^{\lambda t} \text{ (by Markov)}$$
 (5)

$$= \Pi_i \mathbb{E}[e^{\lambda X_i}]/e^{\lambda t} \tag{6}$$

Now, for $x \in [0,1]$ we have that $e^x \le 1 + x + x^2$ so $\mathbb{E}[e^{\lambda X_i}] \le 1 + \mathbb{E}[\lambda X_i] + \lambda^2 \mathbb{E}[X_i^2] \le 1 + \lambda^2 \sigma_i^2$. Now, since $1 + x \le e^x$ we have that $1 + \lambda^2 \sigma_i^2 \le e^{\lambda^2 \sigma_i^2}$. Combining the above we have that $\mathbb{E}[e^{\lambda X_i}] \le e^{\lambda^2 \sigma_i^2}$

$$\Pi_{i}\mathbb{E}[e^{\lambda X_{i}}]/e^{\lambda t} \leq \Pi_{i}\mathbb{E}[e^{\lambda^{2}\sigma_{i}^{2}}]/e^{\lambda t}
= e^{\lambda^{2}\sigma^{2}-\lambda t}$$
(8)

$$= e^{\lambda^2 \sigma^2 - \lambda t} \tag{8}$$

Now, optimizing over $\lambda \in [0,1]$ we get that $\lambda = min(1,t/2\sigma^2)$ which completes the proof.

Other Useful forms 0.1

Chernoff's inequality: Let X_1, \ldots, X_n be independent $\{0,1\}$ valued random variables. Each X_i takes the value 1 with probability p_i and 0 else. Let $X = \sum_{i=1}^n X_i$ and let $\mu = E[X] = \sum_{i=1}^n p_i$. Then:

$$\Pr[X > (1+\varepsilon)\mu] \le e^{-\mu\varepsilon^2/4}$$

$$\Pr[X < (1-\varepsilon)\mu] \le e^{-\mu\varepsilon^2/2}$$

Or, using the union bound:

$$\Pr[|X - \mu| > \varepsilon \mu] \le 2e^{-\mu \varepsilon^2/4}$$