0.1 Pytagoras' setning

Ved hjelp av arealformlelen for et kvadrat og en trekant skal vi nå komme fram til én av de mest kjente ligningene i matematikk. På figuren under har vi tegnet to kvadrater som er like store, men som er delt inn i forskjellige former.

Vi observerer nå dette:

- Arealet av et rødt kvadrat er a^2 , arealet av et lilla kvadrat er b^2 og arealet av det blå kvadratet er c^2 .
- Arealet av en grønn trekant er halvparten av arealet til et oransje rektangel.
- Om vi tar bort de to oransje rektanglene og de fire grønne trekantene, sitter vi igjen med like mye areal i venstre figur som i høyre figur.

a

b

b

a

• Dette må bety at:

$$a^2 + b^2 = c^2$$

Denne ligningen kalles *Pytagoras'* setning, og oftest bruker vi den når vi skal finne lengder i rettvinklete trekanter. Dette er fordi vi alltid kan lage figurer som de over, så lenge trekanten vår er rettvinklet:

Pytagoras' (ca. 580-500 f.kr.) var en gresk matematiker. Han var trolig langt ifra den første som oppdaget denne sammenhengen, og det finnes over 100 forskjellige bevis for den!

0.1 Pytagoras' setning

Arealet av den lengste siden i en rettvinklet trekant er alltid lik summen av arealene til de to korteste sidene:

$$a^2 + b^2 = c^2$$

Eksempel 1

Finn lengden av siden c i trekanten under:

Svar:

Vi vet at:

$$c^2 = a^2 + b^2$$

hvor a og b er lengden til de korteste sidene i trekanten. Derfor få vi at:

$$c^2 = 4^2 + 3^2$$
$$= 16 + 9$$
$$= 25$$

Fordi $\sqrt{25} = 5$, må lengden til c være 5.

Eksempel 2

Finn lengden av siden x i trekanten under:

Svar:

Vi vet at:

$$c^2 = a^2 + x^2$$

hvor c er lengden til den lengste siden og a lengden til den andre kortsiden. Derfor få vi at:

$$17^{2} = 13^{2} + x^{2}$$
$$289 - 225 = x^{2}$$
$$64 = x^{2}$$

Fordi $\sqrt{64} = 8$, må lengden til x være 8 cm.