Математический анализ Лекция 7

Никитин А.А.

МГУ им. М.В. Ломоносова, факультет ВМК Кафедра общей математики

Онлайн-курс по математике в Data Science 22 декабря, 2020г.

задача о вычислении площади криволинейной трапеции

Пусть на отрезке [a,b] задана непрерывная функция $y=f(x)\geqslant 0$. Фигура, ограниченная сверху графиком функции y=f(x), снизу – осью Ox, сбоку — прямыми x=a и x=b, называется **криволинейной трапецией**. Требуется найти её площадь.

Разобъём отрезок [a,b] на n частей, и выберем на каждой из них некоторую точку ξ_k . Тогда площадь криволинейной трапеции, S будет приблизительно равна:

$$S \approx \sum_{k=1}^{n} f(\xi_k) \Delta x_k.$$

Бернхард Риман (17.09.1826 - 20.07.1866) Georg Friedrich Bernhard Riemann

Определение.

Разбиением отрезка [a,b] называется множество точек

$$\tau = \{x_k\}_{k=0}^n : a = x_0 < x_1 < \ldots < x_n = b.$$

 $\Delta x_k = x_k - x_{k-1}$ – длина k-го отрезка разбиения; $d_{\tau} := \max_k \Delta x_k$ – диаметр (мелкость) разбиения τ .

Определение.

Размеченным разбиением отрезка [a,b] называется пара (au,ξ) , где $\xi=(\xi_1,\xi_2,\ldots,\xi_n)$ – множество произвольно зафиксированных точек $\xi_k\in[x_{k-1},x_k].$

Определение.

Пусть $f:[a,b]\mapsto \mathbb{R}$. Сумма

$$\sigma = \sigma_{\tau}(f, \xi) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

называется **интегральной суммой Римана функции** f, отвечающей разбиению (τ, ξ) отрезка [a, b].

Определение.

Пусть $f:[a,b]\mapsto \mathbb{R}$. Число I называют пределом интегральных сумм при диаметре разбиения стремящемся к нулю, и пишут: $I=\lim_{d_{ au}\to 0}\sigma_{ au}(f,\xi)$, если:

$$\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0 \; : \; \forall \tau, \; d_\tau < \delta(\varepsilon) \text{ in } \forall \xi \Longrightarrow |\sigma_\tau(f,\xi) - I| < \varepsilon.$$

To есть, если $\forall \varepsilon>0$ $\exists \delta(\varepsilon)$, что для любого размеченного разбиения (au,ξ) , диаметр которого меньше, чем δ , вне зависимости от выбора точек ξ , интегральная сумма $\sigma_{ au}(f,\xi)$ отличается от I меньше, чем на ε .

Определение.

В этом случае функция f называется интегрируемой по Риману на [a,b], а число I называется определённым интегралом (Римана) от функции f по отрезку [a,b].

Обозначение: $\int\limits_a^b f(x)dx$; $\Re[a,b]$ – множество интегрируемых на [a,b] функций.

Поставим ряд вопросов:

- Какие функции интегрируемы по Риману?
- Какими свойствами обладает интеграл?
- Как вычислить интеграл?

Теорема (единственность определённого интеграла)

Если существует предел интегральных сумм $\sigma_{ au}(f,\xi)$ при $d_{ au} o 0$, то этот предел единственен.

Теорема (необходимое условие интегрируемости)

Если функция f интегрируема по Риману на отрезке [a,b], то она ограничена на нём.

Условие теоремы не достаточно. Рассмотрим функцию Дирихле на отрезке [0,1]:

$$D(x) = \begin{cases} 1, & x \in [0,1] \cap \mathbb{Q}, \\ 0, & x \in [0,1] \setminus \mathbb{Q}; \end{cases}$$

Для этой функции и произвольного разбиения au, т.к. в каждом отрезке найдутся и рациональные и иррациональные точки, выполнено: $\sigma_{ au}(D,\xi)\equiv 1$, если все отмеченные точки рациональные, и $\sigma_{ au}(D,\xi)\equiv 0$, если все отмеченные точки иррациональные. Откуда $\sharp\lim_{d_{ au}\to 0}\sigma_{ au}(D,\xi)$, и функция D не интегрируема.

Классы интегрируемых функций

Теорема

Если функция $f:[a,b]\mapsto \mathbb{R}$ непрерывна на отрезке [a,b], то она интегрируема на нём.

Теорема

Если функция $f:[a,b]\mapsto \mathbb{R}$ монотонна на [a,b], то она интегрируема на нём.

Утверждение.

Если значение интегрируемой функции изменить на конечном множестве точек, то интегрируемость при этом не нарушится и интеграл не изменится.

Классы интегрируемых функций

Определение

Говорят, что множество $\mathbf{E} \subset \mathbb{R}$ имеет лебегову меру нуль, если $\forall \varepsilon > 0$ множество \mathbf{E} можно заключить в не более, чем счётное объединение интервалов, суммарная длина которых меньше ε .

Критерий Лебега интегрируемости функции по Риману

Пусть $f:[a,b] \to \mathbb{R}$. Тогда данная функция интегрируема тогда и только тогда, когда она ограничена и множество её точек разрыва имеет лебегову меру нуль.

интегрируемость сужения

Пусть f — интегрируема на [a,b] и $[a^*,b^*]\subset [a,b]$. Тогда f интегрируема и на $[a^*,b^*]$.

линейность интеграла

Если f и g — интегрируемы на $[a,b],\ \lambda,\mu\in\mathbb{R},$ то функция $\lambda\,f\pm\mu\,g$ также интегрируема на [a,b], причём

$$\int_{a}^{b} (\lambda f(x) \pm \mu g(x)) dx = \lambda \int_{a}^{b} f(x) dx \pm \mu \int_{a}^{b} g(x) dx.$$

аддитивность интеграла относительно отрезков интегрирования

Пусть a < c < b, $f:[a,b] \mapsto \mathbb{R}$, f интегрируема по отрезкам [a,c] и [c,b].

Тогда f — интегрируема на [a,b], причём $\int\limits_a^b f(x)\,dx = \int\limits_a^c f(x)\,dx + \int\limits_c^b f(x)\,dx$.

Положив по определению $\int\limits_a^a f(x)\,dx=0$, $\int\limits_b^a f(x)\,dx=-\int\limits_a^b f(x)\,dx$ убеждаемся, что равенство

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

справедливо при любом расположении точек a, b, c для функции f, интегрируемой на отрезке, содержащем эти точки.

Если функция f интегрируема на отрезке, содержащем точки $a_0,\ a_1,\ \dots$, a_n , то

$$\int_{a_0}^{a_1} f(x) dx + \int_{a_1}^{a_2} f(x) dx + \ldots + \int_{a_{n-1}}^{a_n} f(x) dx + \int_{a_n}^{a_0} f(x) dx = 0.$$

ИНТЕГРИРУЕМОСТЬ ПРОИЗВЕДЕНИЯ

Если f и g — интегрируемы на [a,b], то и их произведение $f\cdot g$ также интегрируемо на [a,b].

<u>МОНОТ</u>ОННОСТЬ ИНТЕГРАЛА

Если a < b, а функции f и g — интегрируемы на [a,b] и $f(x) \leqslant g(x)$,

$$\forall x \in [a, b] \text{ To } \int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} g(x) dx.$$

Другими словами, неравенства можно интегрировать.

Следствие.

Если $\forall x \in [a,b]$ выполнено: $f(x) \geqslant 0$, то и $\int\limits_a^b f(x) \, dx \geqslant 0$.

интегрируемость модуля

Если f — интегрируема на [a,b], то и |f| интегрируем на [a,b]. Причём справедлива оценка: $\left|\int\limits_a^b f(x)\,dx\right|\leqslant \int\limits_a^b |f(x)|\,dx.^a$ (*)

^аНеравенство (*) верно при a < b. Если от этого требования отказаться, надо записать: $\left|\int\limits_{a}^{b}f(x)\,dx\right|\leqslant\left|\int\limits_{a}^{b}|f(x)|\,dx\right|$

Интегрируемость |f| на [a,b], вообще говоря, не влечёт интегрируемость самой функции f на этом отрезке.

Например,

$$\widetilde{D}(x) = egin{cases} 1, & x \in \mathbb{R} \cap \mathbb{Q}, \ -1, & x \in \mathbb{R} \setminus \mathbb{Q}; \end{cases}$$

Для этой функции получаем:

$$\int\limits_{a}^{b} |\widetilde{D}(x)| \, dx = \int\limits_{a}^{b} 1 \, dx = b - a, \, \operatorname{Ho} \, \nexists \int\limits_{a}^{b} \widetilde{D}(x) \, dx.$$

Связь между определённым и неопределённым интегралами

Пусть функция f интегрируема на [a,b]. Тогда на этом отрезке определена функция $F(x) = \int\limits_a^x f(t) \, dt, \ a < x \leqslant b$, называемая **интегралом с** переменным верхним пределом. Аналогично может быть введена функция $G(x) = \int\limits_a^b f(t) \, dt, \ a \leqslant x < b$, называемая **интегралом с** переменным нижним пределом.

Теорема (об интеграле с переменным верхним пределом)

Пусть функция f интегрируема на [a,b], $F(x) = \int\limits_a^{\infty} f(t) \, dt$. Тогда справедливы следующие утверждения:

- **1** функция F непрерывна на [a, b];
- $oldsymbol{2}$ если, кроме того, f непрерывна в точке $x_0 \in [a,b]$, то F дифференцируема в точке x_0 , и $F'(x_0) = f(x_0)^a$.

 $^{{}^}a$ Если $x_0=a$ или $x_0=b$, то под производной $F'(x_0)$ понимается односторонняя производная.

ФОРМУЛА НЬЮТОНА-ЛЕЙБНИЦА

ФОРМУЛА НЬЮТОНА-ЛЕЙБНИЦА

Теорема (формула Ньютона-Лейбница)

Пусть $f \in C[a,b]$ и Φ — её произвольная первообразная на этом отрезке. Тогда

$$\int_{a}^{b} f(x)dx = \Phi(b) - \Phi(a).$$

Доказательство.

Функция $F(x)=\int\limits_{-\infty}^{\infty}f(t)dt$ является первообразной функции f на [a,b].

Поэтому, $F(x) = \Phi(x) + C$, $a \leqslant x \leqslant b$, т.е.

$$\int_{a}^{c} f(t)dt = \Phi(x) + C.$$

Отсюда, при x=a получаем: $0=\Phi(a)+C\Rightarrow C=-\Phi(a)$. При x=b:

$$\int_{a}^{b} f(t)dt = \Phi(b) + C = \Phi(b) - \Phi(a).$$

ФОРМУЛА НЬЮТОНА-ЛЕЙВНИЦА

Попробуем применить формулу Ньютона-Лейбница к интегралу $\int\limits_{-1}^{2} rac{dx}{x^2}$:

$$\int_{-1}^{2} \frac{dx}{x^2} = -\frac{1}{x} \Big|_{-1}^{2} = -1/2 - 1 = -3/2.$$

Очевидно, что данный результат неверный, т.к. получено отрицательное число при интегрировании строго положительной функции $f(x)=rac{1}{x^2}$. Почему? В этом примере были нарушены два условия теоремы формула Ньютона-Лейбница:

- **1** $f \notin \mathfrak{R}[-1,2]$, т.к. она не ограничена на этом отрезке;
- igoplus 2 Равенство $\left(-rac{1}{x}
 ight)' = rac{1}{x^2}$ не имеет смысла в точке x=0.

Теорема (интегрирование по частям)

Пусть функции u, v — дифференцируемы на [a,b], а $u',v'\in\mathfrak{R}[a,b]$. Тогда справедливо равенство:

$$\int_{a}^{b} u(x) v'(x) dx = u(x) v(x) \Big|_{a}^{b} - \int_{a}^{b} u'(x) v(x) dx.$$

Доказательство.

Заметим, что из условий теоремы, и соответствующих утверждений из предыдущих пунктов, следует, что функции u'v и uv' – интегрируемы на [a,b]. Следовательно и производная $(u\,v)'=u'v+uv'$ – интегрируема на [a,b]. По формуле Ньютона-Лейбница:

$$\int_{a}^{b} u(x) v'(x) dx + \int_{a}^{b} u'(x) v(x) dx = \int_{a}^{b} (u(x) v(x))' dx = u(x) v(x) \Big|_{a}^{b}.$$

Остаётся перенести второе слагаемое из левой части в правую.

Иногда формулу интегрирования по частям записывают в виде:

$$\int_{a}^{b} u \, dv = u \, v \Big|_{a}^{b} - \int_{a}^{b} v \, du,$$

трактуя u'(x)dx и v'(x)dx как дифференциалы.

$$\int_{1}^{2} \ln x \, dx = \begin{cases} u = \ln x, & dv = dx \\ du = \frac{dx}{x}, & v = x \end{cases} = x \ln x \Big|_{1}^{2} - \int_{1}^{2} \frac{x}{x} \, dx = 2 \ln 2 - 1.$$

Теорема (замена переменной в определённом интеграле)

Пусть $f\in \mathcal{C}[a,b];\ \varphi:[lpha,eta]\mapsto [a,b],\ \varphi$ – дифференцируема на $[lpha,eta],\ \varphi'\in\Re[lpha,eta].$ Тогда

$$\int_{\alpha}^{\beta} (f \circ \varphi)(t)^{a} \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$$
 (3 Π)

$$^{a}(f\circ\varphi)(t)=f(\varphi(t))$$

Доказательство.

Поскольку, по теореме о непрерывности композиции функций,

$$f \circ \varphi \in C[\alpha, \beta] \subset \Re[\alpha, \beta], \ \varphi' \in \Re[\alpha, \beta],$$

то $(f \circ \varphi) \varphi' \in \mathfrak{R}[\alpha, \beta]$, кроме того $f \in \mathfrak{R}[\varphi(\alpha), \varphi(\beta)]$.

Доказательство.

 $f\in \mathcal{C}$ следовательно существует первообразная F такая, что F'=f на [a,b].

$$(F \circ \varphi)' = {}^{\mathsf{a}} = (F' \circ \varphi) \cdot \varphi' = (f \circ \varphi) \cdot \varphi'$$
 на $[\alpha, \beta]$.

Поэтому, $F\circ \varphi$ – первообразная для $(f\circ \varphi)\cdot \varphi'$. Применяя к ним формулу Ньютона-Лейбница, получим:

$$\int_{\alpha}^{\beta} (f \circ \varphi)(t) \cdot \varphi'(t) dt = (F \circ \varphi)(t) \Big|_{t=\alpha}^{t=\beta} = F(x) \Big|_{x=\varphi(\alpha)}^{x=\varphi(\beta)} = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$$

$$^{a}(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t)) \cdot \varphi'(t)$$

Замена переменной в интеграле может применяться, как слева направо, так и справа налево.

Замечание.

Пусть в интеграле $\int\limits_a^b f(x)\,dx$ производится замена $x=\varphi(t)$. В этом случае, dx трактуется как дифференциал: $dx=\varphi'(t)dt$. Требуется поменять пределы интегрирования $a\mapsto \alpha,\ b\mapsto \beta,$ где $\varphi(\alpha)=a,\ \varphi(\beta)=b.$ Получаем:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} (f \circ \varphi)(t) \cdot \varphi'(t) dt$$

Замечание.

В условиях теоремы некоторые значения $\varphi(t)$ могут не принадлежать отрезку $[\varphi(\alpha), \varphi(\beta)]$, но важно, чтобы все они принадлежали отрезку [a,b], на котором определена функция f. Кроме того, нижний предел интегрирования не обязательно меньше верхнего. Например, если $\varphi\downarrow$, $\alpha<\beta$, то $\varphi(\alpha)>\varphi(\beta)$.

Π РИМЕР 1.

$$\int_{0}^{\sqrt{3}} x^{3} \sqrt{1+x^{2}} \, dx = \begin{cases} 1+x^{2} = t, \\ 2xdx = dt, \\ x = 0 \mapsto 1 = t, \\ x = \sqrt{3} \mapsto 4 = t \end{cases} = \frac{1}{2} \int_{1}^{4} (t-1)\sqrt{t} \, dt = 0$$

$$= = \frac{1}{2} \int_{1}^{4} \left(t^{3/2} - t^{1/2} \right) dt = \frac{1}{2} \left(\frac{2}{5} t^{5/2} - \frac{2}{3} t^{3/2} \right) \Big|_{1}^{4} = \frac{58}{15}.$$

Пример 2.

$$\int_{0}^{\frac{1}{4}} \frac{\arcsin\sqrt{x}}{\sqrt{x(1-x)}} \, dx = \begin{cases} \sqrt{x} = t, \\ dx = 2tdt, \\ x = 0 \mapsto 0 = t, \\ x = 1 \mapsto \frac{1}{2} = t \end{cases} = 2 \int_{0}^{\frac{1}{2}} \frac{\arcsin t}{t\sqrt{1-t^{2}}} \cdot t \, dt =$$

$$= 2 \int_{0}^{1/2} \arcsin t \, d(\arcsin t) = \frac{\pi^{2}}{36}.$$