Finite Automaton

A Finite Automaton is formally a tuple $A = \langle \Sigma, F, Q, \delta \rangle$ where Σ, F, Q are finite nonempty sets with $F \subset Q$. The set of states Q contains a special initial state ι . The transition function δ has type

$$\delta: Q \times \Sigma \longrightarrow Q$$

The interpretation of $\delta(q, s) = q'$ is that if A is in state q and receives input symbol s, then q' is the new state.

We assume the sets Q and Σ are disjoint. A configuration of A is a string xqy with $x,y \in \Sigma^*$, and $q \in Q$. Configuration xqy is interpreted as: A is in state q, the input already consumed is x, the remaining input is y, and the next input symbol is the left-most symbol of y. If C and C' are configurations, then $C \to C'$ if C = xqsy, $\delta(q,s) = q'$, and C' = xsq'y. A configuration xqy is accepting if $q \in F$ (elements of F are called accept states). A configuration xqy is halting if y is empty.

The computation of A on input $w \in \Sigma^*$ beginning from state q is the unique sequence C_0, C_1, \ldots of configurations such that $C_0 = qw$, $C_i \to C_{i+1}$ for each i, and the sequence ends in a halting configuration. The number of steps in a computation is one less than the number of configurations. Automaton A therefore induces a function

$$\delta^*: Q \times \Sigma^* \longrightarrow Q$$

defined by $\delta^*(q, w) = q'$ where q' is the state in the halting configuration of the computation of A on input w beginning from state q. We say that A accepts w iff $\delta^*(\iota, w) \in F$. The language $\mathcal{L}(A)$ accepted by A is the set of all strings in Σ^* which A accepts.

A nondeterministic finite automaton is in some sense a generalization of a finite automaton; it has a transition function δ of type

$$\delta:Q\times\Sigma\longrightarrow 2^Q$$

The interpretation of $\delta(q,s) = S$ is that if A is in state q and receives input symbol s, then any element $q' \in S$ may be the new state. Accordingly, if C and C' are configurations, then $C \to C'$ if C = xqsy, $q' \in \delta(q,s)$, and C' = xsq'y. Moreover, a computation of A on input $w \in \Sigma^*$ beginning from state q is any sequence C_0, C_1, \ldots of configurations such that $C_0 = qw$, $C_i \to C_{i+1}$ for each i, and the sequence ends in a halting configuration. Nondeterministic automaton A therefore induces a function

$$\delta^*: Q \times \Sigma^* \longrightarrow 2^Q$$

where $\delta^*(q, w)$ is the set of all q' such that q' is the state in the halting configuration of any computation of A on input w beginning from state q. We say that A accepts w iff $\delta^*(\iota, w)$ contains some element of F. The language $\mathcal{L}(A)$ accepted by A is the set of all strings in Σ^* which A accepts.

A nondeterministic automaton A with λ -transitions is in some sense a generalization of a nondeterministic finite automaton; it has a transition function δ of type

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \longrightarrow 2^Q$$

where $\lambda \notin Q \cup \Sigma$. The interpretation of $\delta(q, s) = S$ is that:

- If A is in state q and receives input symbol $s \in \Sigma$, then any element $q' \in S$ may be the new state. Accordingly, if C and C' are configurations, then $C \to C'$ if C = xqsy, $q' \in \delta(q, s)$, and C' = xsq'y.
- If A is in state q and $s = \lambda$, then any element $q' \in S$ may be the new state; this corresponds to a state transition which does not consume input. Accordingly, if C and C' are configurations, then $C \to C'$ if C = xqy, $q' \in \delta(q, \lambda)$, and C' = xq'y.

Moreover, a computation of A on input $w \in \Sigma^*$ beginning from state q is any sequence C_0, C_1, \ldots of configurations such that $C_0 = qw$, $C_i \to C_{i+1}$ for each i, and the sequence ends in a halting configuration. Nondeterministic automaton A with λ -transitions therefore induces a function

$$\delta^*: Q \times \Sigma^* \longrightarrow 2^Q$$

where $\delta^*(q, w)$ is the set of all q' such that q' is the state in the halting configuration of any computation of A on input w beginning from state q. We say that A accepts w iff $\delta^*(\iota, w)$ contains some element of F. The language $\mathcal{L}(A)$ accepted by A is the set of all strings in Σ^* which A accepts.

A nondeterministic automaton $A = \langle \Sigma, F, Q, \delta \rangle$ with λ -transitions is equivalent to some (deterministic) automaton A' in the sense that given A one can construct $A' = \langle \Sigma, F', Q', \delta' \rangle$ such that $\mathcal{L}(A') = \mathcal{L}(A)$. The following algorithm — which is described in terms of the graphical representation for automaton – implements the construction.

- 1. The initial state of A' is $\delta^*(\iota, \varepsilon)$, where ε is the empty string.
- 2. Repeat until no edges are missing:
 - (a) Let v be a vertex (state) of A' that has no outgoing edge for some $s \in \Sigma$.
 - (b) Let v' be a vertex (state) of A' defined by

$$v' = \bigcup_{a \in v} \delta^*(a, s)$$

- (c) If not already present, add an s-labeled edge from v to v' (i.e., $\delta'(v, a) = v'$).
- 3. The accept states of A' are those that contain some element of F.

$$\iota \to d \to e$$

Initial state: $\{\iota, d, e\}$

$$\iota 0 \to 0\iota \to 0d \to 0e$$

 $\iota 0 \to d0 \to 0b$

$$\iota 0 \to d0 \to 0c$$

$$\iota 0 \to d0 \to e0 \to 0e$$

$$\{\iota, d, e\}0 \longrightarrow \{\iota, b, c, d, e\}$$
$$\therefore \{\iota, b, c, d, e\}0 \longrightarrow \{\iota, b, c, d, e\}$$

$$\iota 1 \to 1c$$

 $\iota 1 \to d1 \to 1\iota \to 1d \to 1e$
 $\iota 1 \to d1 \to e1 \to 1c$

$$\{\iota, d, e\}1 \longrightarrow \{\iota, c, d, e\}$$
$$\therefore \{\iota, c, d, e\}0 \longrightarrow \{\iota, b, c, d, e\}$$

$$b1 \to 1\iota \to 1d \to 1e$$
$$c1 \to 1\iota \to 1d \to 1e$$

$$\{\iota, b, c, d, e\}1 \longrightarrow \{\iota, c, d, e\}$$
$$\therefore \{\iota, c, d, e\}1 \longrightarrow \{\iota, c, d, e\}$$

Final state: $\{\iota, b, c, d, e\}$

An alphabet Σ is a finite set. A language R over Σ is a subset $R \subset \Sigma^*$. The empty string λ has zero length and is the identity for concatenation (the concatenation rs of string r with s is their juxtaposition).

The product RS of languages R and S is

$$RS = \{rs \mid r \in R, s \in S\}$$

Note that if either R or S is empty, then $RS = \emptyset$. Language product is associative, but not commutative.

Given integer $n \geq 0$, the power R^n of language R is a language, defined recursively by

$$R^0 = \{\lambda\}$$

$$R^{i+1} = RR^i$$

The kleene closure R^* of a language R is the language

$$R^* = \bigcup_{n \ge 0} R^n$$

The union of languages R and S is denoted by R + S.

A regular expression is defined inductively as follows:

- \emptyset is a regular expression denoting the language \emptyset .
- $x \in \Sigma \cup \{\lambda\}$ is a regular expression, denoting the language $\{x\}$.
- Let x and y be regular expressions denoting the languages $\mathcal{L}(x)$ and $\mathcal{L}(y)$ respectively.
 - (xy) is a regular expression denoting the language $\mathcal{L}(x)\mathcal{L}(y)$.
 - (x+y) is a regular expression denoting the language $\mathcal{L}(x) + \mathcal{L}(y)$.
 - (x^*) is a regular expression denoting the language $\mathcal{L}(x)^*$.

Given a language R over an alphabet Σ , define $\delta: R \longrightarrow \{\lambda, \emptyset\}$ by

$$\delta(R) = \begin{cases} \lambda & \text{if } \lambda \in R \\ \emptyset & \text{otherwise} \end{cases}$$

Note that

$$\begin{array}{rcl} \delta(x) &=& \emptyset & \text{for all } x \in \Sigma \\ \delta(\emptyset) &=& \emptyset \\ \delta(\lambda) &=& \lambda \\ \delta(R^*) &=& \lambda & \text{for every language } R \\ \delta(RS) &=& \delta(R) \, \delta(S) \\ \delta(R+S) &=& \delta(R) + \delta(S) & \text{for all languages } R, S \end{array}$$

Given language R and sequence $s \in \Sigma^*$, the derivative of R with respect to s is

$$\mathcal{D}_s R = \{t \mid st \in R\}$$

Note that $s \in \Sigma^*$ is contained in a regular expression R if and only if $\lambda \in \mathcal{D}_s R$.

If R is regular and $s \in \Sigma$, then $\mathcal{D}_s R$ may be computed recursively by

$$\mathcal{D}_{s}(R^{*}) = (\mathcal{D}_{s}R)R^{*}$$

$$\mathcal{D}_{s}(RS) = (\mathcal{D}_{s}R)S + \delta(R)\mathcal{D}_{s}S$$

$$\mathcal{D}_{s}(R+S) = \mathcal{D}_{s}(R) + \mathcal{D}_{s}S$$

$$\mathcal{D}_{s}s = \lambda$$

$$\mathcal{D}_{s}a = \emptyset \text{ for } a = \lambda, \ a = \emptyset, \text{ or } a \in \Sigma \setminus \{s\}$$

If R is regular and $s = s_1 \dots s_{n+1} \in \Sigma^*$, then

$$\mathcal{D}_s R = \mathcal{D}_{s_{n+1}}(\mathcal{D}_{s_1...s_n}R)$$

 $\mathcal{D}_{\lambda} R = R$

The language $\mathcal{L}(A)$ of a finite automaton A is regular (i.e., it is denoted by some regular expression). To obtain a regular expression R_{ι} denoting $\mathcal{L}(A)$,

- 1. Associate an equation R_q with each state q of A; if there is a transition from q to p on input a, then R_q contains the term aR_p . Moreover, λ is a term of R_q if and only if R_q is an accepting state.
- 2. Solve for R_{ι} , using the fact that S^*T is the solution to X = SX + T if $\delta(S) = \emptyset$.

$$R_{\iota} = 1R_{c} + 0R_{b}$$

$$R_{b} = \lambda + 1R_{c} + 0R_{b}$$

$$R_{c} = 1R_{c} + 0R_{b} \implies R_{c} = 1^{*}0R_{b}$$

$$\therefore R_{b} = \lambda + 11^{*}0R_{b} + 0R_{b} \implies R_{b} = (11^{*}0 + 0)^{*}\lambda = (1^{*}0)^{*}$$

$$\therefore R_{\iota} = 11^{*}0(1^{*}0)^{*} + 0(1^{*}0)^{*} = (11^{*}0 + 0)(1^{*}0)^{*} = (1^{*}0)(1^{*}0)^{*}$$

Conversely, to obtain an automaton A from a regular expression r,

Associate a state with each derivative $\mathcal{D}_s r$; if $\mathcal{D}_a(\mathcal{D}_s r) = \mathcal{D}_t r$ then state $\mathcal{D}_s r$ transitions to state $\mathcal{D}_t r$ on input a. A state $\mathcal{D}_s r$ is accepting if it contains λ .

Example

$$\begin{array}{rcl} r & = & 1*0(1*0)^* \\ \mathcal{D}_{\lambda} r & = & r \\ \mathcal{D}_{0} r & = & (\mathcal{D}_{0} \, 1^* 0)(1^* 0)^* + \delta(1^* 0) \mathcal{D}_{0}(1^* 0)^* \\ & = & ((\mathcal{D}_{0} \, 1^*) 0 + \delta(1^*) \mathcal{D}_{0} \, 0)(1^* 0)^* \\ & = & ((\mathcal{D}_{0} \, 1) 1^* 0 + \lambda)(1^* 0)^* \\ & = & (1^* 0)^* & // \text{contains } \lambda \\ \mathcal{D}_{1} r & = & (\mathcal{D}_{1} \, 1^* 0)(1^* 0)^* + \delta(1^* 0) \mathcal{D}_{1} \, (1^* 0)^* \\ & = & ((\mathcal{D}_{1} \, 1) 1^* 0)(1^* 0)^* \\ & = & ((\mathcal{D}_{1} \, 1) 1^* 0)(1^* 0)^* \\ & = & r \\ \mathcal{D}_{00} r & = & \mathcal{D}_{0} \, (\mathcal{D}_{0} \, r) \\ & = & (\mathcal{D}_{0} \, 1^* 0)(1^* 0)^* \\ & = & \mathcal{D}_{01} r & = & \mathcal{D}_{1} \, (\mathcal{D}_{0} \, r) \\ & = & (\mathcal{D}_{1} \, 1^* 0)(1^* 0)^* \\ & = & r \end{array}$$

HOMEWORK: create an example of a nondeterministic automaton having three or four states, and:

- Obtain an equivalent deterministic automaton using the algorithm on page 2 (an example is on page 3).
- Obtain a corresponding regular expression using the algorithm illustrated on pages 4 and 5.
- Beginning from the regular expression (obtained in the previous step), obtain an equivalent deterministic automaton using the algorithm illustrated on page 6.

HOMEWORK: prove (any 5 of) the following simplification rules:

$$\alpha = \lambda \alpha = \alpha \lambda \qquad (1)$$

$$(\alpha \beta) \gamma = \alpha (\beta \gamma) \qquad (2)$$

$$\alpha + \alpha = \alpha \qquad (3)$$

$$\alpha + \beta = \beta + \alpha \qquad (4)$$

$$(\alpha + \beta)(\gamma + \delta) = \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta \qquad (5)$$

$$\alpha \subset \alpha' \land \beta \subset \beta' \implies \alpha \beta \subset \alpha' \beta' \qquad (6)$$

$$\alpha \subset \beta \implies \alpha^* \subset \beta^* \qquad (7)$$

$$\alpha \beta \subset \beta \land \lambda \in \beta \implies \alpha^* \subset \beta \qquad (8)$$

$$\alpha^* = (\alpha^*)^* \qquad (9)$$

$$= \alpha^* \alpha^* \qquad (10)$$

$$= \lambda + \alpha^+ \qquad (11)$$

$$\alpha^+ = \alpha \alpha^* \qquad (12)$$

$$= \alpha^* \alpha \qquad (13)$$

$$(\alpha + \beta)^* = (\alpha^* \beta^*)^* \qquad (14)$$

$$= (\beta^* \alpha^*)^* \qquad (15)$$

$$= (\beta^* \alpha)^* \alpha^* \qquad (16)$$

$$= (\alpha^* \beta)^* \alpha^* \qquad (17)$$

$$(\alpha + \beta)^* \alpha = (\alpha^* \beta)^* \alpha^+ \qquad (18)$$

$$= (\beta^* \alpha)^+ \qquad (18)$$

Hint:

To establish (8), induct on $n \geq 0$ to show $\alpha^n \subset \beta$.

To establish (17), show $(\alpha + \beta)^* \subset (\alpha^* \beta)^* \alpha^* \subset (\alpha + \beta)^*$ (consider using (8) for the first containment).

Note that (18) and (19) follow from (17) and (16) respectively.

Example:

$$1(0^*1)^*0^+ + 0^+ + 0^+1(0^*1)^*0^+$$

$$1(1^*0)^+ + 0^+ + 0^+1(1^*0)^+ \qquad \text{via } (\alpha^*\beta)^*\alpha^+ \to (\beta^*\alpha)^+$$

$$0^+ + (\lambda + 0^+)1(1^*0)^+ \qquad \text{via } (4), (5)$$

$$0^+ + 0^*1(1^*0)^+ \qquad \text{via } (\lambda + \alpha^+ \to \alpha^*$$

$$0^+ + (0^*1)(0^*1)^*0^+ \qquad \text{via } (2), \ (\beta^*\alpha)^+ \to (\alpha^*\beta)^*\alpha^+$$

$$0^+ + (0^*1)^+0^+ \qquad \text{via } (12)$$

$$(\lambda + (0^*1)^+)0^+ \qquad \text{via } (5)$$

$$(0^*1)^*0^+ \qquad \text{via } (\alpha^*\beta)^*\alpha^+ \to (\beta^*\alpha)^+$$

Given automaton $A = \langle \Sigma, F, Q, \delta \rangle$ having n states, let $s = s_1 \dots s_n \in \Sigma^*$ and consider

$$f: \{p_0, \dots, p_n\} \longrightarrow Q$$

 $x \longmapsto \delta^*(\iota, x)$

where p_i is the length i prefix of s. Since the domain of f (the set of all prefixes of s) has greater cardinality than the range of f (the set of states of A), f cannot be injective; let i < j be minimal such that

$$\delta^*(\iota, p_i) = \delta^*(\iota, p_i)$$

Therefore, if $x = p_i$, $y = s_{i+1} \dots s_j$, $z = s_{j+1} \dots s_n$ (where $z = \lambda$ if j = n), then

$$s = xyz$$

$$|y| > 0$$

$$|xy| \le n$$

$$\delta^*(\iota, x) = \delta^*(\delta^*(\iota, x), y)$$

It follows that for any $i \in \mathbb{Z}^{\geq 0}$,

$$\delta^*(\iota, xz) = \delta^*(\delta^*(\iota, x), z) = \delta^*(\delta^*(\delta^*(\iota, x), y^i), z) = \delta^*(\iota, xy^i z)$$

The above is the Pumping lemma for finite automaton.

If R is an infinite regular language, then

$$\sum_{s \in R} [|s| \le t] \ = \ \Omega(t)$$

Proof: Let A be an automaton with n states such that $\mathcal{L}(A) = R$. Let $s \in R$ have length greater than n. Appealing to the pumping lemma, s = xyz for some x, y, z where |y| > 0 and for all $i \in \mathbb{Z}^{\geq 0}$,

$$xy^iz \in R$$

It follows that for all $i \in \mathbb{Z}^+$,

$$i+1 \le \sum_{s \in R} [|s| \le |x| + |z| + i|y|]$$

Let t > |s|, and determine i by $|x| + |z| + i|y| \le t < |x| + |z| + (i+1)|y|$. Then

$$\begin{split} \sum_{s \in R} \left[|s| \leq t \right] & \geq \quad i+1 \\ & \geq \quad \frac{t - |x| - |z|}{|y|} \\ & \geq \quad t \, \frac{1 - (|s| - |y|)/|s|}{|y|} \end{split}$$

Let $\pi(x)$ denote the number of primes less than or equal to x. The *prime number theorem* is the result that

$$1 = \lim_{x \to \infty} \frac{\pi(x)}{x/\ln x}$$

Let $R = \{1^p \,:\, p \text{ is a prime number }\}.$ Note that if R were regular, then

$$\pi(t) \ = \ \sum_{s \in R} \left[|s| \le t \right] \ = \ \Omega(t)$$

which leads to the contradiction

$$1 = \lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} \ge \lim_{x \to \infty} \frac{\Omega(x)}{x/\ln x} = \infty$$

Finite Automaton with I/O

A Finite Automaton with input/output is formally a tuple $A = \langle \mathcal{Q}, \Sigma, \mathcal{O}, \delta, \omega \rangle$ where \mathcal{Q}, Σ , \mathcal{O} are finite nonempty sets; \mathcal{Q} is the set of states, Σ is the input alphabet, and \mathcal{O} is the output alphabet (we assume Q and Σ are disjoint). The transition function δ has type

$$\delta: Q \times \Sigma \longrightarrow Q$$

The interpretation of $\delta(q, s) = q'$ is that if A is in state q and receives input symbol s, then q' is the new state. The *output function* ω has type

$$\omega: Q \times \Sigma \longrightarrow \mathcal{O}$$

The interpretation of $\omega(q, s)$ is that if A is in state q and receives input symbol s, then $\omega(q, s)$ is output as the automaton transitions from state q to $\delta(q, s)$.

A Finite Automaton with input/output is often represented by a *state table*. For example, the following table

	δ	ω
	0 1	0 1
q_1	$q_6 q_3$	0 0
q_2	$q_3 q_1$	0 0
q_3	$q_2 q_4$	0 0
q_4	q_7 q_4	0.0
q_5	$q_6 q_7$	0 0
q_6	$q_5 q_2$	10
q_7	$q_4 q_1$	0 0

indicates

$$Q = \{q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$$

$$\Sigma = \{0, 1\}$$

$$\mathcal{O} = \{0, 1\}$$

Moreover,

- $\delta(q_i, 0)$ is in the row labeled by q_i and column labeled (in the δ section) by 0.
- $\delta(q_i, 1)$ is in the row labeled by q_i and column labeled (in the δ section) by 1.
- $\omega(q_i,0)$ is in the row labeled by q_i and column labeled (in the ω section) by 0.
- $\omega(q_i, 1)$ is in the row labeled by q_i and column labeled (in the ω section) by 1.

For example, $\delta(q_5, 1) = q_7$, and $\omega(q_6, 0) = 1$.

The following *minimization process* takes a finite state machine as input, and produces an equivalent machine — one having the same I/O behavior — which has a minimal number of states.

1. k = 1: determine k-equivalent states q, q' defined by

$$q \sim_k q' \iff \forall x \in \Sigma^k . \omega^*(q, x) = \omega^*(q', x)$$

where ω^* denotes the extension of ω from Σ to Σ^* ,

$$\omega^*(q, \lambda) = \lambda$$

$$\omega^*(q, s_1 \dots s_{n+1}) = \omega^*(q, s_1 \dots s_n) \omega(\delta^*(q, s_1 \dots s_n), s_{n+1})$$

$$\delta^*(q, \lambda) = q$$

$$\delta^*(q, s_1 \dots s_{n+1}) = \delta(\delta^*(q, s_1 \dots s_n), s_{n+1})$$

Let P_k be the partition of Q corresponding to the equivalence classes of \sim_k .

2. determine k+1-equivalent states;

$$q \sim_{k+1} q' \iff q \sim_k q' \land \forall s \in \Sigma . \delta(q,s) \sim_k \delta(q',s)$$

Let P_{k+1} be the partition of Q corresponding to the equivalence classes of \sim_{k+1} .

3. If $P_{k+1} \neq P_k$, then increment k and goto step 2.

At termination $(P_{k+1} = P_k)$ the desired result is obtained by restricting the automaton to a set of equivalence class representatives.

$$P_{1} = \{\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{7}\}, \{q_{6}\}\}$$

$$P_{2} = \{\{q_{1}, q_{5}\}, \{q_{2}, q_{3}, q_{4}, q_{7}\}, \{q_{6}\}\}\}$$

$$P_{3} = \{\{q_{1}, q_{5}\}, \{q_{2}, q_{7}\}, \{q_{3}, q_{4}\}, \{q_{6}\}\}\}$$

$$P_{4} = \{\{q_{1}\}, \{q_{5}\}, \{q_{2}, q_{7}\}, \{q_{3}, q_{4}\}, \{q_{6}\}\}\}$$

$$P_{5} = \{\{q_{1}\}, \{q_{5}\}, \{q_{2}, q_{7}\}, \{q_{3}, q_{4}\}, \{q_{6}\}\}\}$$

	ν	ω
	0 1	0.1
q_1	$q_6 q_3$	0.0
$ q_2 $	$q_3 q_1$	0.0
q_3	$q_2 q_3$	0.0
q_5	$q_6 q_2$	0.0
q_6	$q_5 q_2$	1 0

bake b broil clear \mathbf{c} d down hour h light 1 minute \mathbf{m} on \mathbf{n} off o start \mathbf{S} temp \mathbf{t} up

> on='[abcdhlmostu]*n'
> broil='[cdhlmnstu]*b[bcdhlmntu]*s'
> bake='[cdhlmnstu]*a[acdhlmntu]*s'
> ~/c/fa "\$on(\$broil|\$bake)" '' 2>/dev/null
'nbs' : [a-dhlmos-u]*n[cdhl-ns-u]*(b[b-dhl-ntu]*s|a[acdhl-ntu]*s) >< : ''
(null)</pre>

(add self-loops to 0x10060adb0 and transition — on input c — to 0x10060adf0)

- > temp='([abchlmnst]*(d|u))*'
- > ~/c/fa \$temp '' 2>/dev/null
- 'd' : [du]*[a-chl-nst]([du][du]*[a-chl-nst])*[du][du]*|[du]* > ([a-chl-nst][a-chl-nst]*[du]|[du])([a-chl-nst][a-chl-nst]*[du]|[du])*

Increment, binary representation (bits in reverse order, 0^k represents 2^k).

1/0

Add, binary representation (bits in reverse order, 0 padded).

HOMEWORK: Let "addition check" refer to the task of checking whether x+y=z, where x,y,z are positive integers in unary representation. Give a finite automaton which solves the "addition check" problem (provide complete details). Show that if the input alphabet is $\Sigma = \{0,1\}$ and the representation is of the form x0y0z0 — here 0 is used to terminate inputs x,y,z (respectively), then the "addition check" problem can not be solved by a finite automaton.