Advanced probabilistic methods

Lecture 8: Factor analysis

Pekka Marttinen

Aalto University

March, 2023

Lecture 8 overview

- Factor analysis (FA)
- Probabilistic formulation of the FA model
- Intuition, usage
- Extensions
- Suggested reading: Ch. 21 of Barber

Two different views on classical multivariate analysis¹

Given an $N \times D$ data matrix, we may be interested in comparing

- rows of the data matrix (individuals)
 - starting point: similarities between individuals
 - techniques: clustering, multidimensional scaling, discriminant analysis
- columns of the data matrix (variables)
 - starting point: correlation/covariance matrix between variables
 - techniques: **factor analysis**, principal component analysis, canonical correlation analysis

Factor analysis - intuition

- Factor analysis attempts to explain correlation between a large set of visible variables (v) using a small number of hidden factors (h).
- It is not possible to observe the factors directly. The visible variables depend on the factors but are also subject to random error.
- A central tool in statistics, a simple example of representation learning, and a building block for more complex (deep) models.

Factor analysis, probabilistic description

 FA model generates a D-dimensional observation v from the H-dimensional vector h according to

$$\mathbf{v} = F\mathbf{h} + \mathbf{c} + \boldsymbol{\epsilon}$$
,

where

$$\epsilon \sim N(0, \Psi), \qquad \Psi = \mathsf{diag}(\psi_1, \dots, \psi_D).$$

• The $D \times H$ factor loading matrix F tells how the factors affect the observations: f_{ij} is the effect of factor h_j on variable v_i .

Factor analysis (example) (1/3)

- Data matrix contains results of 5 exams for 120 students (see factorandemo in Matlab)
 - Exams 1 and 2 are about mathematics, exams 3 and 4 about literature, and exam 5 is comprehensive.
- Goal of analysis: to investigate if the results could be understood using a smaller number of characteristics (or, factors) of students, e.g., 'quantitative' and 'qualitative' skills.

$$\mathsf{Data} = \left[\begin{array}{ccccc} 65 & 77 & 69 & 75 & 69 \\ 61 & 74 & 70 & 66 & 68 \\ \dots & \dots & \dots & \dots \end{array} \right]$$

ullet The n^{th} row of the data matrix is $v_n^T=(v_{n1},\ldots,v_{n5})$

Factor analysis (example) (2/3)

Underlying model in detail

$$\begin{bmatrix} v_{n1} \\ v_{n2} \\ v_{n3} \\ v_{n4} \\ v_{n5} \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \\ f_{31} & f_{32} \\ f_{41} & f_{42} \\ f_{51} & f_{52} \end{bmatrix} \times \begin{bmatrix} h_{n1} \\ h_{n2} \end{bmatrix} + \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} + \epsilon_n$$

$$arepsilon_n \sim extstyle extstyle N_5(0, \Psi), \; \Psi = \left[egin{array}{ccccc} \psi_1 & 0 & 0 & 0 & 0 \ 0 & \psi_2 & 0 & 0 & 0 \ 0 & 0 & \psi_3 & 0 & 0 \ 0 & 0 & 0 & \psi_4 & 0 \ 0 & 0 & 0 & 0 & \psi_5 \end{array}
ight]$$

Factor analysis (example) (3/3)

Results

$$\widehat{F} = \begin{bmatrix} 0.01 & 0.71 \\ 0.08 & 0.71 \\ 0.79 & 0.03 \\ 0.75 & 0.00 \\ 0.68 & 0.28 \end{bmatrix}$$

Equivalent model without latent factors

Given

$$p(\mathbf{v}|\mathbf{h}) = N_D(\mathbf{v}|F\mathbf{h} + \mathbf{c}, \Psi)$$

and assuming a prior on h:

$$p(\mathbf{h}) = N_H(\mathbf{h}|0,I),$$

integrating out h yields

$$p(\mathbf{v}) = \int p(\mathbf{v}|\mathbf{h})p(\mathbf{h})d\mathbf{h} = N(\mathbf{v}|\mathbf{c}, FF^T + \Psi)$$

 The result follows from the Linear transformation of a Gaussian (see Lecture 3).

Rotation invariance

• The likelihood is unchanged if we rotate F using FR, with $RR^T = I$:

$$FR(FR)^T + \Psi = FRR^TF^T + \Psi = FF^T + \Psi.$$

- R is often selected to produce interpretable factors. Varimax rotation makes each column of F to have only a small number of large values.
- Note: rotation invariance does not matter if the goal is to fit the model in order to use it for prediction. For interpreting the factors, it does.

Probabilistic principal component analysis

Probabilistic PCA has almost same the model as FA

$$\mathbf{v} = F\mathbf{h} + \mathbf{c} + \boldsymbol{\epsilon},$$
 $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \Psi), \qquad \Psi = \sigma^2 I.$

In FA

$$\Psi = \mathsf{diag}(\psi_1, \ldots, \psi_D).$$

Example PPCA and FA, digit modeling

- Samples drawn from FA and PPCA models trained for digit 7.
- ullet FA has different noise parameters for each pixel o reduced noise in boundary regions.

FA vs. GMM

• How are FA and GMM similar? How are they different?

Bayesian PCA (Bishop, Fig. 12.13)

GMM (Bishop, Fig. 9.6)

FA, geometric intuition (1/2)

- FA assumes that the data lies close to a low-dimensional linear manifold
- For example, if H = 1 and D = 2:

Figure: 12.1 in Murphy

FA, geometric intuition (2/2)

• If H=2 and D=3, the data points form a 'pancake'

Figure: 21.2 in Barber

- Left: latent 2D points \mathbf{h}_n sampled from $N(\mathbf{h}|\mathbf{0},\mathbf{I})$ and mapped to the 3D plane by $\mathbf{v}_n^0 = F\mathbf{h}_n + \mathbf{c}$.
- Right: data points \mathbf{v}_n are obtained by adding noise $\mathbf{v}_n = \mathbf{v}_n^0 + \epsilon_n$, where $\epsilon_n \sim N(\mathbf{0}, \Psi)$

Fitting the FA model

- EM algorithm
- Mean-field VB straightforward with conjugate priors (left as an exercise)
- Stochastic variational inference (next week)
- MCMC
- etc.

Determining the number of factors

- Same techniques as for determining the number of clusters in GMMs
 - Bayesian model selection
 - Cross-validation
 - ...
- Automated relevance determination (ARD)
 - shrink unneeded aspects of the model, such that they have no impact
 - empty clusters in GMM (corresponding to mixture weights driven to zero)
 - factors that don't have any effect (apply a shrinkate prior on the columns of the factor loading matrix)
- Nonparameteric methods
 - Assume infinite number of dimensions with diminishing importance
 - Avoids the selection of any fixed dimension (in principle)
 - Dirichlet process prior for clustering, Beta process prior for factor analysis

Remark

- FA-model is based on the Gaussian distribution, but often used with other data types as well.
- Pragmatic justification that FA often works well with other data types.
- Performance may not be good with highly non-Gaussian variables, for example binary 0-1 variables with a very small number of individuals with value 1.

Extension: a mixture of factor analysers*

Figure: 12.3 in Murphy

Left: K = 1, right, K = 10:

Figure: 12.4 in Murphy

Other latent variable models*

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Other latent variable models: Diffusion*

Ho et al. (2020). https://arxiv.org/abs/2006.11239

- Incrementally add noise using a known $q(x_t|x_{t-1})$.
- Learn to remove noise by approximating $p_{\theta}(x_{t-1}|x_t)$ with variational inference.

Dall-E 2: Machine learning professor in front of a class,

Important points

- Factor analysis model explains correlations between variables using latent variables (the factors) that affect several observed variables simultaneously.
- FA model can be represented both with and without latent variables.
- Factor loading matrix can be rotated without changing the likelihood
 this must be kept in mind when interpreting the factors, but does not matter for prediction.
- FA model can be extended in many ways, and latent variable models are an important tool in modern ML.