л. а. литневский, ю. м. сосновский

КИНЕМАТИКА И ДИНАМИКА ЧАСТИЦ. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Омский государственный университет путей сообщения

Л. А. Литневский, Ю. М. Сосновский

КИНЕМАТИКА И ДИНАМИКА ЧАСТИЦ. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Утверждено методическим советом университета в качестве учебно-методического пособия к решению задач по физике

УДК 530.1(075.8) ББК 22.334я7 Л93

Кинематика и динамика частиц. Примеры решения задач: Учебнометодическое пособие / Л. А. Литневский, Ю. М. Сосновский; Омский гос. ун-т

путей сообщения. Омск, 2016. 33 с.

Приведены примеры решения типовых задач по всем темам раздела «Ки-

нематика и динамика материальных точек» общего курса физики, краткие об-

щие сведения по каждой теме этого раздела. В приложении даны основные

правила работы с векторными величинами.

Предназначено для проведения практических занятий и организации са-

мостоятельной работы студентов первого курса всех специальностей очной

формы обучения.

Библиогр.: 6 назв. Рис. 13. Прил. 1.

Рецензенты: доктор физ.-мат. наук, профессор Г. И. Косенко;

доктор техн. наук, профессор В. А. Нехаев.

С Омский гос. университет путей сообщения, 2016

ОГЛАВЛЕНИЕ

. 5
. 6
. 6
. 7
.9
11
13
15
19
19
21
22
24
26
28
30
31

ВВЕДЕНИЕ

Классическая механика, разработанная Исааком Ньютоном более трехсот лет назад для описания движения планет Солнечной системы, оказалась применимой и для многих других тел, движение которых удовлетворяет нескольким условиям.

Во-первых, тела должны двигаться со сравнительно небольшими скоростями (по сравнению со скоростью света в вакууме), в противном случае «работает» специальная теория относительности.

Во-вторых, частицы не должны быть локализованы в слишком малой области пространства (механика Ньютона неприменима к электронам в атомах). Если это условие не выполняется, то необходимо использовать методы квантовой физики.

В-третьих, размеры тел должны быть такими, чтобы ими можно было пренебречь по сравнению с масштабами движения (такие тела называются материальными точками или частицами).

Несмотря на «солидный возраст» *механика Ньютона* до сих пор является незаменимым инструментом при изучении движения окружающих нас предметов.

Как и любая наука, механика Ньютона оперирует набором понятий и терминов, без знания и понимания которых невозможно успешное освоение методов изучения явлений природы, которыми пользуются в этом разделе физики. Знание определений не является достаточным условием для понимания механики, еще необходимо *уметь* (знать как) применять определения и понятия, понимать, какими законами и формулами можно оперировать в конкретном случае. В связи с этим решение задач является необходимым условием успешного изучения и понимания закономерностей физики.

В данном учебно-методическом пособии авторы предлагают несколько примеров решения задач с краткими предварительными методическими указаниями. Рекомендуется, прочитав методические указания и условие задачи, вначале попытаться решить задачу самостоятельно, а затем посмотреть предлагаемое решение.

Авторы искренне надеются, что формирование навыков в решении физических задач будет способствовать становлению качественного инженерного образования.

1. КИНЕМАТИКА

Решение кинематических задач по механике опирается на знание нескольких формул кинематики и умение пользоваться векторной алгеброй и дифференциальным и интегральным исчислением. При рассмотрении приведенных ниже примеров решения задач необходимо обратить внимание на возможности, которые открываются при применении векторной алгебры.

Векторная алгебра, одним из создателей которой в ее современной форме был американский физик-теоретик Дж. У. Гиббс (1839 – 1903), является мощным универсальным *инструментом* решения задач по разделу «Кинематика».

1.1. Прямолинейное равномерное движение

Прямолинейным движением называется такое движение частиц, при котором их траектория представляет прямую линию. Прямолинейным и равномерным движением называется такое движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. При этом под постоянством скорости следует понимать одинаковыми не только модуль скорости, но и ее направление.

Задача 1. Два тела движутся вдоль оси ОХ. На рис. 1 показаны графики зависимости абсцисс этих тел от времени. Определите, с какой скоростью и в каком направлении движутся эти тела.

Так как изменение координаты тела происходит прямо пропорционально времени, то можно утверждать, что движение обоих тел равномерное и прямолинейное. У первого тела координата убывает, а у второго, наоборот, — возрастает. Первое тело движется против оси х, второе — по направлению оси абсцисс.

Из графика видно, что первое тело за 4 с переместилось из точки с координатой 6 в точку с координатой 3. Следовательно, скорость тела составила минус 0,75 м/с.

Второе тело переместилось из точки с координатой 0 в точку с координатой 3 также за 4 с. Следовательно, скорость второго тела составила + 0,75 м/с.

В точке с координатой 3 на оси ОХ произошла встреча этих двух тел.

Графики зависимости скорости тел от времени представлены на рис. 2.

1.2. Одномерное равноускоренное движение

Равноускоренным называется такое движение частиц (небольших тел, «материальных точек»), при котором они движутся с постоянным ускорением, т. е. $\vec{a} = \text{const.}$ Напомним, что вектор считается неизменным, если с течением времени не изменяются ни его длина (модуль, числовое значение), ни его направление в пространстве. При этом не обязательно, чтобы скорость тела возрастала. Так, при торможении автомобиля перед светофором с постоянным ускорением (можно было бы сказать «замедлением», но в физике такой термин не используется) его движение также считается равноускоренным.

Задача 2. Небольшой металлический шарик подброшен вертикально вверх с начальной скоростью 12 м/с с высоты 1,36 м над уровнем пола. Найти скорость, положение и перемещение шарика к моменту времени 1,4 с после начала движения. Сопротивлением воздуха пренебречь.

В задачах такого типа не рассматривается процесс разгона шарика до заданной начальной скорости. Все, что произошло с шариком до момента включения секундомера ($t_0 = 0$), заключено в заданной *начальной скорости* и *начальном положении* рассматриваемого тела.

Небольшие тяжелые тела вблизи поверхности Земли движутся с *посто- янным ускорением*, равным ускорению свободного падения, если сопротивлением воздуха можно пренебречь. Для *равноускоренного движения* справедливы формулы кинематики:

$$\vec{s} = \vec{v}_0 t + \vec{g} t^2 / 2;$$
 (1.1)

$$\vec{v} = \vec{v}_0 + \vec{g}t. \tag{1.2}$$

Векторным формулам (1.1) и (1.2) при движении тела вдоль одной прямой (такое движение является одномерным) соответствуют аналогичные выражения, записанные для проекций векторов (обычно после приобретения навыков работы с векторами эти формулы подразумевают, но не записывают):

$$s_x = v_{0x}t + g_x t^2 / 2; (1.3)$$

$$v_{x} = v_{0x} + g_{x}t. {1.4}$$

Возьмем проекции векторов на координатную ось. Под словами «взять проекцию» понимаем: «выразить проекцию через модуль вектора и косинус угла между вектором и осью» в соответствии с определением проекции произвольного вектора \vec{a} :

$$a_{x} = a\cos\alpha. \tag{1.5}$$

Поскольку направления векторов \vec{s} и \vec{v} неизвестны, взять проекции этих векторов невозможно. Итак (рис. 3), получим:

$$s_{x} = v_{0}t - gt^{2}/2; (1.6)$$

$$s_x = 12 \cdot 1, 4 - 9, 81 \cdot 1, 4^2 / 2 = 7, 186 \approx 7, 2 \text{ (M)};$$

$$v_x = v_0 - gt; (1.7)$$

$$v_x = 12 - 9.81 \cdot 1.4 = -1.734 \approx -1.7$$
 (ì/c).

Зная, что проекция перемещения на координатную ось равна разности координат начального и конечного положений тела, найдем положение (координату) шарика в заданный момент времени:

$$x = x_0 + s_x; (1.8)$$

$$x = 1,36 + 7,186 = 8,546 \approx 8,5$$
 (M).

Проанализируем полученные результаты. Проекция перемещения оказалась положительной, значит, вектор перемещения направлен в ту же сторону, что и ось координат, и шарик в заданный момент времени оказался выше начального положения. Проекция скорости шарика оказалась отрицательной, следовательно, в этот момент времени он уже летел вниз, несколькими долями секунды раньше достигнув наибольшей высоты.

Обратите внимание на *правила округления результатов* В условии задачи значения величин заданы с двумя и тремя значащими цифрами (положение запятой не имеет значения), значит, округлять *результаты* расчетов надо также до двух значащих цифр. Однако в промежуточных расчетах (например, число 7,186, полученное при вычислении по формуле (1.6), было использовано при расчетах по формуле (1.8)) необходимо оставить на несколько (одну, две) значащих цифр больше.

Ответ: скорость шарика равна 1,7 м/с и направлена вертикально вниз; координата равна 8,5 м; перемещение направлено вверх и равно 7,2 м.

1.3. Равноускоренное движение на плоскости

Условие равноускоренного движения ($\vec{a} = \text{const}$) не требует, чтобы движение происходило вдоль прямой линии. Если при движении тела *в пространстве* его ускорение (вектор) остается неизменным, то такое движение будет равноускоренным, следовательно, для его описания справедливы все формулы кинематики, полученные для равноускоренного движения. В качестве примера равноускоренного, но не прямолинейного движения рассмотрим движение тела, брошенного под углом к горизонту.

Задача 3. С края вертикального утеса, возвышающегося над поверхностью моря на 55 м, под углом 60° к горизонту брошен небольшой камень со скоростью 15 м/с. Пренебрегая сопротивлением воздуха, найти, на каком расстоянии от основания утеса камень упадет в воду и какую скорость при этом он будет иметь.

Дано:
h = 55 M
$\alpha = 60^{\circ}$
$v_0 = 15 \text{ m/c}$
$s_x, \nu-?$

Решение.

Если пренебречь сопротивлением воздуха, то движение тел вблизи поверхности Земли происходит с постоянным ускорением $(\vec{a} = \vec{g})$, направленным вертикально вниз. Воспользуемся формулами кинематики равноускоренного движения:

$$\begin{cases} \vec{s} = \vec{v}_0 t + \vec{g} t^2 / 2; \\ \vec{v} = \vec{v}_0 + \vec{g} t. \end{cases}$$
 (1.9)

В отличие от предыдущего примера проекции векторов возьмем на две координатные оси, поскольку движение камня происходит не по прямой, а в плоскости. Выберем начало координат в точке бросания камня, ось *Ох* направим горизонтально от утеса в сторону моря, а ось *Оу* – вертикально *вниз*. (Из рис. 4 видно, что

Рис. 4

при таком выборе системы координат проекции всех векторов, входящих в формулы (1.9), кроме υ_{0y} , будут положительны.) Возьмем проекции и получим:

$$Ox: \begin{cases} s_x = v_0 \cos \alpha \ t; \\ Oy: \end{cases} \begin{cases} s_y = -v_0 \sin \alpha \ t + g t^2/2; \end{cases}$$
 (1.10)

$$Ox: \begin{cases} v_x = v_0 \cos \alpha; \\ v_y = -v_0 \sin \alpha + gt. \end{cases}$$
 (1.11)

Из рис. 4 видно, что проекция вектора перемещения на ось Oy равна высоте утеса h, а на ось Ox — расстоянию от основания утеса до точки падения камня в воду, которое требуется найти. Определим это расстояние, решая совместно систему уравнений (1.10) Из второго уравнения системы (1.10), решая квадратное уравнение и выбирая положительный корень, выразим время:

$$t = \frac{v_0 \sin \alpha + \sqrt{v_0^2 \sin^2 \alpha + 2gh}}{g}.$$
 (1.12)

Подставляя выражение (1.12) в первое уравнение системы (1.10), получим:

$$s_x = v_0 \cos \alpha \frac{v_0 \sin \alpha + \sqrt{v_0^2 \sin^2 \alpha + 2gh}}{g}; \qquad (1.13)$$

$$s_x = 15\cos 60^{\circ} \frac{15\sin 60^{\circ} + \sqrt{15^2\sin^2 60^{\circ} + 2\cdot 9,81\cdot 55}}{9,81} = 36,94... \approx 37 \text{ (M)}.$$

Теперь найдем скорость, с которой камень упал в воду. Проекции скорости определяются системой (1.12), а модуль рассчитывается по формуле:

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{v_0^2 \cos^2 \alpha + (-v_0 \sin \alpha + gt)^2}.$$
 (1.14)

Подставим в формулу (1.14) время из выражения (1.12) и, раскрывая скобки и проведя алгебраические преобразования, получим:

$$v = \sqrt{v_0^2 + 2gh} \; ; \tag{1.15}$$

$$v = \sqrt{15^2 + 2 \cdot 9,81 \cdot 55} = 36,11... \approx 36 \text{ (M/c)}.$$

Этот же результат можно получить иначе. Используя правила векторной алгебры, из выражений (1.9) получим:

$$v^2 - v_0^2 = 2\vec{a}\,\vec{s}.\tag{1.16}$$

Расписывая скалярное произведение в правой части равенства (1.16), получим формулу:

$$2\vec{a}\vec{s} = 2as\cos\beta = 2gh,\tag{1.17}$$

поскольку произведение $s\cos\beta$ есть проекция перемещения на вертикальную ось. Такой же результат можно получить, расписав скалярное произведение еще одним известным способом и подставив проекции векторов \vec{a} и \vec{s} на координатные оси (см. начало решения задачи):

$$2\vec{a} \cdot \vec{s} = 2(a_x s_x + a_y s_y) = 2gh. \tag{1.18}$$

Ответ: камень упадет в воду на расстоянии 37 м от утеса со скоростью 36 м/с.

1.4. Движение по окружности с постоянной по модулю скоростью

Движение тела по окружности с постоянной по модулю скоростью не является равноускоренным движением, несмотря на то, что модуль ускорения

$$a_n = \frac{v^2}{R} \tag{1.19}$$

остается неизменным, так как вектор ускорения постоянно поворачивается. Ускорение, с которым при этом движется тело, называется центростремительным, или нормальным, так как оно направлено к центру окружности и перпендикулярно вектору скорости. **Задача 4.** Модель самолета движется с постоянной скоростью по окружности радиусом 6,3 м и пролетает третью часть окружности за 1,2 с. Найти изменение ускорения модели за это время.

При движении тела по окружности его ускорение можно разложить на две составляющие ускорения – тангенциальное и нормальное:

$$\vec{a} = \vec{a}_{\tau} + \vec{a}_{n} \,. \tag{1.20}$$

Если модуль скорости остается неизменным, то тангенциальное ускорение равно нулю. Следовательно, в этой задаче ускорение, с которым движется тело, является нормальным:

$$a = a_n = v^2 / R. \tag{1.21}$$

Скорость движения модели самолета найдем, учитывая, что при движении тела с постоянной по модулю скоростью путь (не перемещение), пройденный телом, можно вычислить по формуле:

$$l = vt. (1.22)$$

Подставляя в формулу (1.22) значение пути, равное третьей части длины окружности, получим:

$$v = \frac{2\pi R}{3t}.\tag{1.23}$$

Тогда нормальное ускорение

$$a_n = \frac{4\pi^2 R}{9t^2}. (1.24)$$

Модуль нормального ускорения, безусловно, не изменяется при движении тела, однако вектор нормального ускорения поворачивается и, следовательно, не остается постоянным. Тогда изменение ускорения равно модулю разности векторов ускорений, взятых в два разных момента времени:

$$|\Delta \vec{a}| = |\vec{a}_2 - \vec{a}_1| = |\vec{a}_2 + (-\vec{a}_1)|.$$
 (1.25)

Из формулы (1.25) следует, что для определения разности векторов надо ко второму вектору прибавить вектор, противоположный первому. Из рис. 5 видно, что длина такого вектора может быть найдена по теореме косинусов:

$$|\Delta \vec{a}| = \sqrt{a_1^2 + a_2^2 - 2a_1 a_2 \cos 120^\circ} = a_n \sqrt{3} = \frac{4\pi^2 R}{9t^2} \sqrt{3};$$

$$|\Delta \vec{a}| = \frac{4 \cdot 3,1416^2 \cdot 6,3}{9 \cdot 1,2^2} \sqrt{3} \approx 33 \, \left(\text{m/c}^2 \right).$$
(1.26)

Направление вектора $\Delta \vec{a}$ показано на рис. 5.

Ответ: модуль изменения ускорения равен 33 M/c^2 .

1.5. Относительность движения

Задача 5. Два корабля движутся относительно острова со скоростью 4,8 и 6,4 м/с под углом 30 и 60° к востоку от меридиана соответственно. С какой скоростью второй корабль движется относительно первого?

Для решения задачи воспользуемся формулой

$$\vec{v}_2 = \vec{v}_{21} + \vec{v}_1, \tag{1.27}$$

которая выражает принцип относительности движения и позволяет переходить от одной системы отсчета к другой. Тогда модуль относительной скорости

$$|\vec{v}_{21}| = |\vec{v}_2 - \vec{v}_1| = |\vec{v}_2 + (-\vec{v}_1)| = \sqrt{v_2^2 + v_1^2 - 2v_2v_1\cos(\alpha_2 - \alpha_1)};$$

$$|\vec{v}_{21}| = \sqrt{6,4^2 + 4,8^2 - 2\cdot6,4\cdot4,8\cos(60^\circ - 30^\circ)} \approx 3,3 \text{ (M/c)}.$$
(1.28)

Этот путь поиска численного ответа в задаче основан на рис. 6.

Эту же задачу можно решить другим способом. Из формулы (1.27) выразим неизвестную относительную скорость:

$$\vec{v}_{21} = \vec{v}_2 - \vec{v}_1, \tag{1.29}$$

возьмем проекции известных векторов и получим:

$$v_{21x} = v_{2x} - v_{1x} = v_2 \sin \alpha_2 - v_1 \sin \alpha_1; \tag{1.30}$$

$$v_{21x} = 6.4 \sin 60^{\circ} - 4.8 \sin 30^{\circ} \approx 3.143 \, (\text{M/c});$$

$$v_{21y} = v_{2y} - v_{1y} = v_2 \cos \alpha_2 - v_1 \cos \alpha_1; \tag{1.31}$$

$$v_{21y} = 6.4\cos 60^{\circ} - 4.8\cos 30^{\circ} \approx -0.957 \text{ (M/c)}.$$

Модуль относительной скорости, очевидно, равен квадратному корню из суммы квадратов проекций, и результат вычислений, безусловно, совпадет с результатом, полученным по формуле (1.28), в чем можно убедиться самостоятельно.

Преимущества второго способа заключаются в том, что, во-первых, его можно применять для любого количества складываемых (или вычитаемых) векторов (теорема косинусов позволяет работать только с парой векторов), а во-вторых, можно явно указать направление результирующего вектора, вычислив, например, угол между результирующим вектором и осью Ox:

$$tg \alpha = \frac{v_{21y}}{v_{21x}};$$
(1.32)

$$tg\alpha = \frac{-0.957}{3.143} \approx -0.304; \quad \alpha = -17^{\circ}.$$

Отрицательное значение угла α означает, что угол нужно отложить вниз от оси Ox (по ходу часовой стрелки).

Ответ: скорость относительного движения кораблей равна 3,3 м/с и направлена под углом 17° к оси Ox на юго-восток.

1.6. Прямая и обратная задачи кинематики

Прямая задача кинематики заключается в определении характеристик движения (скорости, ускорения и т. д.) по известной *зависимости радиусавектора от времени*. В общем случае задача решается на основе дифференциального исчисления и векторного анализа.

Обратная задача кинематики заключается в определении зависимости радиуса-вектора от времени по известным характеристикам движения — скорости, ускорению.

Решение задачи 6 можно рассматривать как пример прямой задачи кинематики, в которой необходимо найти зависимость скорости и ускорения по заданному закону изменения радиуса-вектора.

Задача 6. Частица движется так, что зависимость ее координат от времени описывается выражениями: $x(t) = A\sin \omega t$ и $y(t) = A\cos \omega t$, где A = 5,3 см, $\omega = 8,2$ рад/с. Найти зависимость скорости и ускорения частицы от времени, ее тангенциальное и нормальное ускорение через 3,5 с после начала движения, а также радиус кривизны траектории в этот же момент времени и уравнение траектории.

Дано:
$$x(t) = A \sin \omega t$$
 $y(t) = A \cos \omega t$ $A = 5,3 \text{ cm}$ $\omega = 8,2 \text{ рад/c}$ $t = 3,5 \text{ c}$ $\vec{v}(t), \vec{a}(t), \vec{a}_{\tau}, \vec{a}_{n}, R,$ $y(x) = 2$

Решение.

Знание зависимости координат движущегося тела от времени (эти функции часто называют законом движения) эквивалентно знанию радиусавектора:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} = A \sin \omega t \,\vec{i} + A \cos \omega t \,\vec{j}. \quad (1.33)$$

По определению скоростью тела является производная от радиуса-вектора по времени, тогда с учетом правил дифференцирования и таблицы производных получим:

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = A\omega\cos\omega t \,\vec{i} - A\omega\sin\omega t \,\vec{j}. \tag{1.34}$$

Очевидно, что в формуле (1.34) сомножители перед ортами декартовых осей координат (с учетом знака) есть проекции вектора скорости на координатные оси.

По определению ускорением тела является производная от вектора скорости по времени, тогда с учетом правил дифференцирования и таблицы производных получим:

$$\vec{a}(t) = \frac{d\vec{v}}{dt} = -A\omega^2 \sin \omega t \,\vec{i} - A\omega^2 \cos \omega t \,\vec{j}. \tag{1.35}$$

По определению тангенциальным ускорением является производная от модуля скорости, а модуль скорости (как модуль любого вектора) есть квадратный корень из суммы квадратов проекций вектора на координатные оси:

$$v = \sqrt{\left(A\omega\cos\omega t\right)^2 + \left(A\omega\sin\omega t\right)^2} = A\omega. \tag{1.36}$$

Оказалось, что модуль скорости не зависит от времени, и его производная по времени, очевидно, равна нулю в любой момент времени:

$$a_{\tau} = \frac{dv}{dt} = 0. \tag{1.37}$$

Поскольку для полного, нормального и тангенциального ускорения справедлива формула

$$\vec{a} = \vec{a}_n + \vec{a}_\tau \,, \tag{1.38}$$

то в данной задаче полное ускорение частицы совпадает с ее нормальным ускорением и их в данный момент времени можно вычислить по формуле (1.35):

$$\vec{a}_n = \vec{a} = -0.053 \cdot 8.2^2 \sin(8.2 \cdot 3.5) \vec{i} - 0.053 \cdot 8.2^2 \cos(8.2 \cdot 3.5) \vec{j} =$$

$$= 1.471...\vec{i} + 3.245...\vec{j} \approx 1.5\vec{i} + 3.2\vec{j},$$
(1.38a)

а модуль нормального и полного ускорения -

$$a_n = a = \sqrt{(-A\omega^2 \sin \omega t)^2 + (-A\omega^2 \cos \omega t)^2} = A\omega^2;$$

$$a_n = a = 0,053 \cdot 8, 2^2 = 3,564... \approx 3,6 \text{ (M/c}^2).$$
(1.39)

Такой же ответ для модуля нормального ускорения в данный момент времени можно было бы получить, если извлечь квадратный корень из суммы квадратов значений проекций вектора ускорения, вычисленных по формуле

(1.35), но в данной задаче интересно было увидеть в формуле (1.39), что модуль ускорения не зависит от времени.

Радиус кривизны траектории движения частицы найдем из формулы, известной из школьного курса физики:

$$a_n = v^2 / R. \tag{1.40}$$

Поскольку в данной задаче ни модуль ускорения, ни модуль скорости не зависят от времени, то и радиус кривизны траектории также будет постоянной величиной:

$$R = v^2/a_n = (A\omega)^2/(A\omega^2) = A;$$
 (1.41)
 $R = 0.053 \text{ (M)}.$

Найдем уравнение траектории, по которой движется частица. По определению законы движения

$$\begin{cases} x(t) = A \sin \omega t; \\ y(t) = A \cos \omega t \end{cases}$$
 (1.42)

представляют собой уравнения траектории, заданной в *параметрической форме*. Чтобы получить уравнение траектории в явном виде, нужно в выражениях системы (1.42) избавиться от времени как от параметра. Часто для этого достаточно выразить время из одного выражения и подставить его во второе, но в этой

задаче удобнее возвести оба выражения системы (1.42) в квадрат и сложить левые и правые части получившихся формул. С учетом основного тригонометрического тождества и выражения (1.41) получим:

$$x^{2} + y^{2} = (A \sin \omega t)^{2} + (A \cos \omega t)^{2} = A^{2} = R^{2}$$
. (1.43)

Конечно, далее можно выразить зависимость y от x в явном виде, однако в данной задаче в этом нет необходимости, так как из математики хорошо известно, что формула

$$x^2 + y^2 = R^2 ag{1.44}$$

есть уравнение окружности радиуса R (рис. 7 иллюстрирует полученный результат).

Ответ: частица движется по окружности радиусом 5,3 см с постоянной по модулю скоростью и нормальным ускорением 3,6 м/ c^2 .

Задача 7. Частица движется со скоростью, которая зависит от времени по закону $\vec{v}(t) = At^2 \vec{i} + Bt \vec{j}$, где A = 1,2 м/с³, B = 7,1 м/с². Найти в момент времени t = 2,4 с модули ускорения и радиуса-вектора, а также перемещение частицы за промежуток времени от $t_1 = 1,5$ с до $t_2 = 3,5$ с. В начальный момент времени частица находилась в начале системы координат.

Дано: $\vec{v}(t) = At^2 \vec{i} + Bt \vec{j}$ $A = 1,2 \text{ M/c}^3$ $B = 7,1 \text{ M/c}^2$ t = 2,4 c $t_1 = 1,5 \text{ c}, t_2 = 3,5 \text{ c}$ $|\vec{r}(t)| - ?, |\vec{a}(t)| - ?$

Решение.

 $\vec{v}(t) = At^2 \vec{i} + Bt \vec{j}$ Исходя из определения кинематических характеристик скорости и ускорения и с учетом правил дифференцирования и интегрирования получим:

$$\vec{r}(t) = \int \vec{v}(t)dt;$$

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt}.$$
(1.45)

После подстановки выражения для скорости частицы в выражения (1.45) получим:

$$\begin{cases} \vec{r}(t) = \int (At^2 \vec{i} + Bt \vec{j})dt = A\frac{t^3}{3} \vec{i} + B\frac{t^2}{2} \vec{j} + \vec{r}_0, \\ \vec{a}(t) = \frac{d(At^2 \vec{i} + Bt \vec{j})}{dt} = 2At \vec{i} + B\vec{j}. \end{cases}$$
(1.46)

Если в начальный момент времени частица находилась в начале системы координат, то это означает, что начальный радиус-вектор $\vec{r}_0 = 0$.

Чтобы найти модули радиус-вектора и ускорения, необходимо произвести вычисления в выражениях (1.46):

$$\begin{cases}
|\vec{r}(t)| = \sqrt{\left(A\frac{t^3}{3}\right)^2 + \left(B\frac{t^2}{2}\right)^2}; \\
|\vec{a}(t)| = \sqrt{(2At)^2 + (B)^2}.
\end{cases} (1.47)$$

После подстановки численных значений в уравнения (1.47) из условия задачи получим:

$$\begin{cases}
|\vec{r}(2,4)| = \sqrt{\left(1, 2 \cdot \frac{2, 4^3}{3}\right)^2 + \left(7, 1 \cdot \frac{2, 4^2}{2}\right)^2} = 21, 2 \text{ (M)}; \\
|\vec{a}(2,4)| = \sqrt{\left(2 \cdot 1, 2 \cdot 2, 4\right)^2 + \left(7, 1\right)^2} = 9, 1 \text{ (M/c}^2).
\end{cases} (1.48)$$

Для нахождения перемещения частицы (вектор, соединяющий начальное и конечное положения частицы) воспользуемся выражением:

$$\Delta \vec{r}(t) = \vec{r}(t_2) - \vec{r}(t_1). \tag{1.49}$$

С учетом того, что выражение для радиуса-вектора уже получено в формуле (1.46), имеем:

$$\Delta \vec{r}(t) = \frac{A}{3} (t_2^3 - t_1^3) \vec{i} + \frac{B}{2} (t_2^2 - t_1^2) \vec{j}. \tag{1.50}$$

После подстановки численных значений в выражение (1.50) из условия задачи получим:

$$\Delta \vec{r}(t) = \frac{1,2}{3} (3,5^3 - 1,5^3) \vec{i} + \frac{7,1}{2} (3,5^2 - 1,5^2) \vec{j} = 15,8 \vec{i} + 35,5 \vec{j} \text{ (M)}. \quad (1.51)$$

Omeem:
$$|\vec{r}(2,4)| = 21,2 \text{ (M)}; \quad |\vec{a}(2,4)| = 9,1 \text{ (M/c}^2); \quad \Delta \vec{r}(t) = 15,8 \vec{i} + 35,5 \vec{j} \text{ (M)}.$$

2. ДИНАМИКА

Знание сил, действующих на тело, позволяет *на основании второго закона Ньютона записать уравнение овижения*, связывающее действующие на тело силы и ускорение, с которым это тело будет двигаться. Если к этому уравнению добавить формулы кинематики, то получится система уравнений, решение которой позволяет найти значения неизвестных физических величин.

2.1. Вес тела

Вес — сила, с которой тело действует на опору или подвес вследствие притяжения его к земле. Ответная сила, с которой опора или подвес действуют на тело, определяется по III закону Ньютона. При решении задач следует учесть, что во II законе Ньютона рассматриваются силы, приложенные κ *телу*, в отличие от веса.

Задача 8. Мальчик массой 50 кг находится в лифте. Чему будет равен вес мальчика, если а) лифт покоится относительно земли; б) лифт движется вверх с ускорением 2 м/ c^2 ; в) лифт движется вниз с ускорением 2 м/ c^2 ?

В инерциальной системе отсчета, связанной с землей, на мальчика действуют две силы: сила тяжести $m\vec{g}$ и сила реакции со стороны дна лифта \vec{N} . Тогда на основании II закона Ньютона запишем уравнение движения мальчика:

$$m\vec{a} = \vec{N} + m\vec{g}. \tag{2.1}$$

На основании III закона Ньютона сила, с которой мальчик действует на дно лифта (его вес \vec{P}), равна по модулю и противоположна по направлению силе реакции опоры \vec{N} :

$$\vec{P} = -\vec{N}$$
 или $P = N$. (2.2)

В первом случае, когда лифт покоится и ускорение равно нулю, сила реакции опоры равна по модулю силе тяжести и вес мальчика

$$P_1 = N_1 = mg;$$

 $P_1 = 50 \cdot 10 = 500 H.$ (2.3)

Для определения веса во втором и третьем случаях необходимо записать уравнение (2.1) в проекциях на направление ускорения \vec{a}_2 и \vec{a}_3 :

$$\begin{cases}
 ma_2 = N_2 - mg; \\
 ma_3 = -N_3 + mg.
\end{cases}$$
(2.4)

Выражая из уравнений (2.4) силу N_2 и N_3 , находим соответствующий вес мальчика P_2 и P_3 :

$$P_2 = N_2 = m \cdot (g + a_2);$$
 (2.5a)

$$P_2 = 50 \cdot (10 + 2) = 600 H;$$

$$P_3 = N_3 = m \cdot (g - a_3);$$
 (2.56)
 $P_3 = 50 \cdot (10 - 2) = 400 H.$

Omeem: a) $P_1 = 500 \text{ H}$; б) $P_2 = 600 \text{ H}$; в) $P_3 = 400 \text{ H}$.

2.2. Прямолинейное движение в вертикальном направлении

При разборе решения задачи 9 необходимо обратить внимание на то, какие силы, как правило, действуют на тело при таких условиях движения.

Задача 9. Подъемный механизм, поднимая ведро бетона массой 24 кг, действует на трос с силой 250 Н. Сколько времени будет длиться подъем этого груза на четвертый этаж (11 м)? Массой троса пренебречь.

Решение этой задачи основано на применении законов кинематики и динамики.

На тело, подвешенное на тросе, действуют две силы: сила натяжения, направленная вдоль троса, т. е. вертикально вверх (в данной задаче), и сила тяжести, направленная вертикально вниз (всегда). На основании ІІ закона Нью-тона запишем уравнение движения груза:

$$m\vec{a} = \vec{T} + m\vec{g}. \tag{2.6}$$

В данной задаче все векторы направлены вдоль одной прямой (рис. 9), поэтому можно ограничиться одной осью координат, направив ее, например, вертикально вверх. Возьмем проекции векторов выражения (2.6) на эту ось и получим:

$$ma = T - mg, (2.7)$$

отсюда определим ускорение, с которым будет подниматься груз:

$$a = T/m - g. (2.8)$$

Поскольку ускорение оказалось постоянным, не зависящим от времени, то движение груза будет равноускоренным. Выберем формулу кинематики равноускоренного движения, содержащую перемещение, ускорение и время:

$$\vec{s} = \vec{v}_0 t + \frac{\vec{a}t^2}{2}. (2.9)$$

Возьмем проекции на выбранную ось и, учитывая, что начальная скорость тела равна нулю, получим:

$$s = \frac{at^2}{2}. ag{2.10}$$

Подставляя в выражение (2.10) ускорение (2.8) и выражая время, окончательно имеем:

$$t = \sqrt{\frac{2s}{T/m - g}}; (2.11)$$

$$t = \sqrt{\frac{2 \cdot 11}{250/24 - 9.81}} = 6.02... \approx 6.0 \text{ (c)}.$$

Ответ: время подъема груза – 6,0 с.

2.3. Прямолинейное движение в горизонтальном направлении

Несмотря на другие условия движения, принципиально решение задачи 10 ничем не отличается от решения задачи 9. Отличие состоит лишь в том, что в задаче 9 действующие на тело силы не лежат вдоль одной прямой, поэтому проекции необходимо взять на две оси.

Задача 10. Лошадь везет сани массой 230 кг, действуя на них с силой 250 Н. Какое расстояние пройдут сани, пока достигнут скорости 5,5 м/с, двигаясь из состояния покоя? Коэффициент трения скольжения саней о снег равен 0,1, а оглобли расположены под углом 20° к горизонту.

На сани действуют четыре силы: сила тяги (натяжения), направленная под углом 20° к горизонту; сила тяжести, направленная вертикально вниз (всегда); сила реакции опоры, направленная перпендикулярно опоре от нее, т. е. вертикально вверх (в данной задаче), и сила трения скольжения, направленная против движения. Поскольку сани будут двигаться поступательно, все приложенные силы можно параллельно перенести в одну точку — в *центр масс* движущегося тела (саней). Через эту же точку проведем и оси координат (рис. 10).

На основании II закона Ньютона запишем уравнение движения:

$$m\vec{a} = \vec{T} + m\vec{g} + \vec{N} + \vec{F}_{\text{TD}}.$$
 (2.12)

Направим ось Ox горизонтально вдоль направления движения (см. рис. 10), а ось Oy — вертикально вверх. Возьмем проекции векторов, входящих в уравнение (2.12), на координатные оси, добавим выражение для силы трения скольжения и получим систему уравнений:

$$\begin{cases} ma = T\cos\alpha - F_{\text{Tp}}; \\ 0 = T\sin\alpha - mg + N; \\ F_{\text{Tp}} = \mu N. \end{cases}$$
 (2.13)

Решим систему уравнений (2.13). (Схема решения системы уравнений, подобных системе (2.13), обычно одинакова: из второго уравнения выражают силу реакции опоры и подставляют ее в третье уравнение, а затем выражение для силы трения подставляют в первое уравнение.) В результате получим:

$$ma = T\cos\alpha - \mu(mg - T\sin\alpha). \tag{2.14}$$

Перегруппируем слагаемые в формуле (2.14) и разделим ее правую и левую части на массу:

$$a = \frac{T}{m} (\cos \alpha + \mu \sin \alpha) - \mu g. \tag{2.15}$$

Поскольку ускорение (2.15) не зависит от времени, выберем формулу кинематики равноускоренного движения, содержащую скорость, ускорение и перемещение:

$$v^2 - v_0^2 = 2\vec{a}\vec{s}. \tag{2.16}$$

Учитывая, что начальная скорость равна нулю, а скалярное произведение одинаково направленных векторов равно произведению их модулей, подставим ускорение и выразим модуль перемещения:

$$s = \frac{v^2}{2\left[\frac{T}{m}(\cos\alpha + \mu\sin\alpha) - \mu g\right]};$$

$$s = \frac{5.5^2}{2\left[\frac{250}{230}(\cos 20^\circ + 0.1\sin 20^\circ) - 0.1\cdot 9.81\right]} \approx 195(\text{M}).$$

Полученное значение и есть ответ задачи, поскольку при прямолинейном движении пройденный путь и модуль перемещения совпадают.

Ответ: сани пройдут 195 м.

2.4. Движение по наклонной плоскости

Описание движения небольших тел по наклонной плоскости принципиально не отличается от описания движения тел по вертикали и по горизонтали, поэтому при решении задач на этот вид движения, как и в задачах 9, 10, также необходимо записать уравнение движения и взять проекции векторов на координатные оси. Разбирая решение задачи 11, необходимо обратить внимание на схожесть подхода к описанию различных видов движения и на нюансы, которые отличают решение этого типа задач от решения задач, рассмотренных выше.

Задача 11. Лыжник соскальзывает с длинной ровной заснеженной горки, угол наклона к горизонту которой составляет 30°, а длина равна 140 м. Сколько времени будет длиться спуск, если коэффициент трения скольжения лыж о рыхлый снег равен 0,21?

Движение лыжника по наклонной плоскости происходит под действием трех сил: силы тяжести, направленной вертикально вниз; силы реакции опоры, направленной перпендикулярно к опоре; силы

Рис. 11

трения скольжения, направленной против движения тела. Пренебрегая размерами лыжника по сравнению с длиной горки, на основании II закона Ньютона запишем уравнение движения лыжника:

$$m\vec{a} = m\vec{g} + \vec{N} + \vec{F}_{\text{TD}}. \tag{2.18}$$

Выберем ось Ox вниз вдоль наклонной плоскости (рис. 11), а ось Oy – перпендикулярно наклонной плоскости вверх. Возьмем проекции векторов уравнения (2.18) на выбранные координатные оси (см. приложение) с учетом того, что ускорение направлено вдоль наклонной плоскости вниз, и добавим к ним выражение, определяющее силу трения скольжения. Получим систему уравнений:

$$Ox: \begin{cases} ma = mg \sin \alpha - F_{\text{Tp}}; \\ 0 = -mg \cos \alpha + N; \\ F_{\text{Tp}} = \mu N. \end{cases}$$
 (2.19)

Решим систему уравнений (2.19) относительно ускорения. Для этого из второго уравнения системы (2.19) выразим силу реакции опоры и подставим полученную формулу в третье уравнение, а выражение для силы трения – в первое. После сокращения массы имеем формулу:

$$a = g\left(\sin\alpha - \mu\cos\alpha\right). \tag{2.20}$$

Ускорение не зависит от времени, значит, можно воспользоваться формулой кинематики равноускоренного движения, содержащей перемещение, ускорение и время:

$$\vec{s} = \vec{v}_0 t + \frac{\vec{a}t^2}{2} \,. \tag{2.21}$$

С учетом того, что начальная скорость лыжника равна нулю, а модуль перемещения равен длине горки, выразим из формулы (2.21) время и, подставляя в полученную формулу ускорение (2.20), получим:

$$t = \sqrt{\frac{2l}{g(\sin \alpha - \mu \cos \alpha)}};$$

$$t = \sqrt{\frac{2 \cdot 140}{9.81(\sin 30^{\circ} - 0.21\cos 30^{\circ})}} = 9.47... \approx 9.5(c).$$
(2.22)

Ответ: время спуска с горы – 9,5 с.

2.5. Движение связанных тел

При записи уравнений движения связанных тел необходимо иметь в виду, что II закон Ньютона формулируется для *тела* (одного) массой *тель* следовательно, при описании движения связанных тел уравнение движения должно быть записано для каждого тела в отдельности, а действие тел друг на друга определяется силой реакции опоры, натяжения нити и т. д.

Задача 12. На столе находится небольшой деревянный брусок массой 290 г, к которому привязана нить, перекинутая через невесомый блок, закрепленный на краю стола. Ко второму концу нити привязан груз массой 150 г. С каким ускорением будут двигаться эти тела, если коэффициент трения дерева о стол равен 0,32?

Дано: СИ Решение.
$$m_1 = 290 \, \Gamma$$
 = 0,29 кГ $m_2 = 150 \, \Gamma$ = 0,15 кГ $\mu = 0,32$ $a - ?$

На брусок (рис. 12), расположенный на столе, очевидно (см. задачу 9), действуют четыре силы: сила тяжести; сила реакции опоры; сила натяжения нити и сила трения. На груз, подвешенный на нити,

перекинутой через блок, очевидно (см. задачу 8), действуют две силы: сила тяжести и сила натяжения нити. *На основании II закона Ньютона запишем уравнение движения* для каждого из этих тел, полагая, что их размерами в данной задаче можно пренебречь:

$$\begin{cases}
 m_1 \vec{a}_1 = m_1 \vec{g} + \vec{N} + \vec{T}_1 + \vec{F}_{\text{rp}}; \\
 m_2 \vec{a}_2 = m_2 \vec{g} + \vec{T}_2.
\end{cases}$$
(2.23)

Координатные оси можно выбрать отдельно для каждого тела, поскольку после взятия проекций в формулах останутся только модули векторов (их длины), которые одинаковы во всех системах координат. Возьмем проекции векторов на координатные оси, добавим формулу для силы трения и получим:

$$\begin{cases}
 m_{1}a = T - F_{Tp}; & (Ox_{1}) \\
 0 = -m_{1}g + N; & (Oy_{1}) \\
 F_{Tp} = \mu N; \\
 m_{2}a = m_{2}g - T. & (Ox_{2})
\end{cases}$$
(2.24)

Поскольку движущиеся тела связаны, то за одинаковый промежуток времени они будут проходить одинаковое расстояние. Отсюда следует, что модули ускорений, с которыми движутся эти тела, одинаковы. Силы натяжения нити, приложенные к бруску и к грузу, возникают вследствие взаимодействия этих тел и по модулю равны друг другу (более подробное объяснение равенства модулей этих сил будет приведено при изучении вращательного движения тел).

Решение системы уравнений (2.24) выполним в следующем порядке: из второго уравнения выразим силу реакции опоры и подставим в третье уравнение, а получившееся при этом выражение для силы трения подставим в первое:

$$\begin{cases}
 m_1 a = T - \mu m_1 g; \\
 m_2 a = m_2 g - T.
\end{cases}$$
(2.25)

Сложим левые и правые части уравнений системы (2.25), при этом в правой части полученного выражения взаимно уничтожится неизвестная сила натяжения нити, а затем выразим ускорение:

$$a = g \, \frac{m_2 - \mu m_1}{m_1 + m_2} \,; \tag{2.26}$$

$$a = 9.81 \frac{0.15 - 0.32 \cdot 0.29}{0.29 + 0.15} = 1.275... \approx 1.3 \text{ (M/c}^2).$$

В заключение заметим, что при $m_2g \leq F_{\rm тp}$ движение системы невозможно. Кроме того, при решении задачи не учитывалось уравнение, описывающее вращательное движение блока, поскольку блок невесом (по условию задачи). Именно поэтому модули сил натяжения слева и справа от блока одинаковы.

Ответ: тела будут двигаться с ускорением 1,3 м/ c^2 .

2.6. Движение под действием переменных сил

Если силы, действующие на тело, при его движении изменяются с течением времени, то ускорение, с которым движется тело, не будет оставаться постоянным. Это обстоятельство делает невозможным использование формул кинематики равноускоренного движения и требует применения дифференциального и интегрального исчисления при решении задач такого типа.

Задача 13. Водный мотоцикл массой 160 кг (без водителя) движется по спокойной воде. После падения водителя на крутом вираже и автоматической остановки двигателя скорость мотоцикла при его дальнейшем движении по прямой за 4,5 с уменьшилась в 10 раз. Считая силу сопротивления движению пропорциональной скорости ($\vec{F}_c = -\mu \vec{v}$), найти коэффициент сопротивления μ .

силы тяжести, направленной вертикально вниз; силы Архимеда, направленной вверх, и силы сопротивления, направленной против скорости. *На основании II закона Ньютона запишем уравнение движения*:

$$m\vec{a} = m\vec{g} + \vec{F}_{A} + \vec{F}_{c}. \tag{2.27}$$

Выберем ось Ox вдоль направления движения. Тогда для этой оси уравнение (2.27) можно переписать с учетом того, что проекции силы тяжести и силы Архимеда на горизонтальную ось равны нулю, а проекция силы сопротивления $F_{cx} = -\mu v_x$:

$$ma_{x} = -\mu v_{x}. \tag{2.28}$$

Из уравнения (2.28) видно, что ускорение, с которым движется водный мотоцикл, не остается постоянным с течением времени, а изменяется вместе с изменением скорости. По определению для ускорения при одномерном движении и произвольном характере зависимости ускорения от времени можно записать:

$$a_x = \frac{dv_x}{dt}. (2.29)$$

Подставляя формулу (2.29) в уравнение (2.28), получим дифференциальное уравнение с разделяющимися переменными, в котором неизвестной является функция скорости от времени:

$$m\frac{dv_x}{dt} = -\mu v_x. (2.30)$$

Разделим переменные и проинтегрируем обе части уравнения (2.30), полагая, что секундомер был включен в момент выключения двигателя:

$$\int_{v_0}^{v_x} \frac{dv_x}{v_x} = -\int_0^t \frac{\mu}{m} dt.$$
 (2.31)

С учетом формулы Ньютона – Лейбница и правил потенцирования получим:

$$\ln \frac{v_x}{v_0} = -\frac{\mu}{m}t.$$
(2.32)

Если необходимо получить зависимость скорости от времени, то следует взять экспоненту от обеих частей выражения (2.32) и применить к левой части основное логарифмическое тождество. В данной задаче искомую величину выразим непосредственно из формулы (2.32):

$$\mu = \frac{m}{t} \ln \frac{v_0}{v_x}; \tag{2.33}$$

$$\mu = \frac{160}{4.5} \ln 10 = 81,87... \approx 82 \, (\kappa \Gamma/c).$$

Ответ: коэффициент сопротивления движению $\mu \approx 82$ (кг/с).

Библиографический список

- 1. Трофимова Т. И. Курс физики / Т. И. Трофимова. М., 2006. 560 с.
- 2. Детлаф А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. М., 2003. 607 с.
- 3. Савельев И. В. Курс общей физики / И. В. Савельев. СПб, 2007. Т. 1. 352 с.
 - 4. Иродов И. Е. Задачи по общей физике / И. Е. Иродов. М., 2002. 448 с.
 - 5. Чертов А. Г. Задачник по физике / А. Г. Чертов. М., 2001. 640 с.
- 6. Физика: Большой энциклопедический словарь / Под ред. А. М. П р охорова. М., 2003. 944 с.

ПРОЕКЦИЯ ВЕКТОРА НА ОСЬ

При работе с векторами удобно придерживаться следующих обозначений:

 \vec{a} – вектор (в учебниках обозначается жирной буквой без стрелочки);

 $a, \, |\vec{a}|$ – модуль вектора (длина вектора, числовое значение вектора);

 a_{x} – проекция вектора \vec{a} на ось Ox (компонент вектора);

 \vec{a}_x – составляющая вектора \vec{a} по оси Ox.

Рис. П.1.1

Проекцией вектора \vec{a} на ось Ox называется алгебраическая величина, определяемая выражением

$$a_{r} = a \cos \alpha$$
,

где a — модуль вектора; α — угол между вектором и осью (рис. Π .1.1).

Составляющая \vec{a}_x вектора \vec{a} направлена вдоль оси Ox в ту же сторону, что и вектор \vec{a} , а проекции вектора \vec{a} и его составляющей \vec{a}_x на эту ось одинаковы (см. рис. $\Pi.1.1$).

 Π ример. Пусть в некоторый момент времени угол между вектором скорости тела и осью Ox равен 30° (рис. $\Pi.1.2$), а длина вектора скорости равна 2.8 м/с. Найти проекции вектора скорости на координатные оси Ox и Oy.

Рис. П.1.2

$$\frac{v = 2.8 \text{ m/c}, \alpha_1 = 30^{\circ}}{v_x, v_y - ?}$$

Решение.

$$v_x = v \cos \alpha_1$$
;

$$v_x = 2.8 \cos 30^\circ = 2.4 \text{ (M/c)};$$

$$v_{v} = v \cos \alpha_{2}$$
;

$$v_y = 2.8 \cos(90^\circ + 30^\circ) = -1.4 \text{ (M/c)}.$$

Обратите внимание: проекции вектора на разные оси могут быть разными, а модуль вектора не зависит от выбора осей.

Пять частных случаев вычисления проекции

1. Вектор направлен вдоль оси.

2. Вектор перпендикулярен оси.

3. Вектор направлен против оси.

4. Острый угол между вектором и осью.

5. Тупой угол между вектором и осью.

$$\alpha = 0^{\circ}, \cos 0^{\circ} = 1,$$

$$a_{x} = a$$

Проекция вектора равна модулю.

$$\alpha = 90^{\circ}$$
, $\cos 90^{\circ} = 0$, $a_x = 0$

Проекция вектора равна нулю.

$$\alpha = 180^{\circ}, \cos 180^{\circ} = -1,$$
 $a_x = -a$

Проекция вектора равна «минус модуль».

$$0^{\circ} < \alpha < 90^{\circ}, \cos \alpha > 0,$$
 $a_x = a \cos \alpha,$
 $a_y = a \sin \beta$

Проекция вектора положительна.

$$90^{\circ} < \alpha < 180^{\circ}, \cos \alpha < 0,$$
 $a_x = a \cos \alpha,$
 $a_x = -a \sin \beta,$
 $a_x = -a \cos \gamma$

Проекция вектора отрицательна.

Обратите внимание: если составляющая вектора направлена в ту же сторону, что и ось, то проекция такого вектора положительна; если составляющая направлена против оси, то проекция вектора отрицательна.

Учебное издание

ЛИТНЕВСКИЙ Леонид Аркадьевич, СОСНОВСКИЙ Юрий Михайлович

КИНЕМАТИКА И ДИНАМИКА ЧАСТИЦ. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Учебно-методическое пособие

Редактор Н. А. Майорова

Подписано в печать 13.12.2016. Формат $60 \times 84^{1/16}$. Офсетная печать. Бумага офсетная. Усл. печ. л. 2,0. Уч.-изд. л. 2,3. Тираж 800 экз. Заказ

**

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

*

644046, г. Омск, пр. Маркса, 35