Kholle 21 filière MPSI/MP2I Planche 1

- 1. Théorème des sommes de Riemann. Énoncé et preuve dans le cas d'une fonction continue.
- 2. Montrer que pour tout réel x,

$$\lim_{n \to +\infty} \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} = \cos(x)$$

- 3. Pour tout entier n, on note $I_n = \int_0^1 \frac{dx}{1+x^n}$.
 - (a) Établir que la suite $(I_n)_{n\in\mathbb{N}}$ est convergente de limite 1.
 - (b) Démontrer le développement suivant : $I_n = 1 \frac{\ln(2)}{n} + o\left(\frac{1}{n}\right)$.

Kholle 21 filière MPSI/MP2I Planche 2

- 1. Théorème fondamental du calcul intégral. Énoncé et preuve.
- 2. On pose pour tout entier *n* non nul,

$$u_n = \frac{1}{n} \sum_{k=0}^{n-1} \sqrt[n]{2^k}$$

Déterminer la limite de la suite $(u_n)_{n \in \mathbb{N}^*}$.

3. Soit $f: \mathbb{R}^{+*} \to \mathbb{R}$, $x \mapsto \int_1^x \frac{\mathrm{e}^t}{t} dt$. Faire l'étude des variations et limites de f.

Kholle 21 filière MPSI/MP2I Planche 3

- 1. Formule de Taylor avec reste intégral. Énoncé et preuve.
- 2. Déterminer une primitive de $x \mapsto x^4/(1+x^{10})$.
- 3. Soit $f:[0,1]\to\mathbb{R},[0,1]\to\mathbb{R}$ une fonction continue strictement croissante telle que f(0)=0 et f(1)=1.
 - (a) Soit $t \in [0,1[$. Montrer que $\lim_{n \to +\infty} (f(t))^n = 0$.
 - (b) Montrer que $\lim_{n\to+\infty}\int_0^1 (f(t))^n dt = 0$.

Indication : sortir les ε .

Kholle 21 filière MPSI/MP2I Bonus

- 1. Soit x un réel. On note $P(x) = \int_0^{2\pi} \ln(x^2 2x\cos(t) + 1)dt$. Déterminer pour quels valeurs de x cette expression a un sens. L'exprimer à l'aide de $X^n 1$ et d'une somme de Riemann.
- 2. Démontrer que $\int_1^x \frac{\sin(t)}{t} dt$ possède une limite finie quand x tend vers $+\infty$, mais que $\int_1^x \frac{|\sin(t)|}{t} dt$ tend vers $+\infty$ quand x tend vers $+\infty$.
