Cvičení 1: Základní pojmy a pasívní prvky

Úvod

Harmonogram semestru, požadavky na zápočet Průběh cvičení a bezpečnost práce Práce na počítačích v učebně s141j

C1.1 Elektronický obvod a jeho prvky

Lineární aktivní a pasívní prvky Teorémy, zákony...

C1.2 Rezistor

C1.3 Kondenzátor

C1.4 Cívka

Práce na počítačích v učebně s141j

Přihlašování: Po příchodu do místnosti ZAPNĚTE PC

a počkejte na automatické přihlášení...

Soubory pro výuku: moodle.fel.cvut.cz

Na začátku cvičení:

1. Vyčistit složku C:\Users\Student\ELPA\ELPAxx

2. Stáhnout z "MOODLE" soubory pro dané cvičení

3. Rozbalit soubory do C:\Users\Student\ELPA\ELPAxx

typická struktura: C:\Users\Student\ELPA\ELPAxx

složka se soubory pro dané cvičení

návod (pdf)

protokol (xlsx)

úlohy pro simulaci

Na konci cvičení:

- 1. Nahrát protokol (Excel) do "MOODLE"
- 2. Vyčistit složku C:\Users\Student\ELPA\ELPAxx

Zdroj a spotřebič

Zdrojová a spotřebičová orientace napětí a proudu.

Kirchhoffovy zákony

1. Kirchhoffův zákon

Součet proudů v kterémkoliv uzlu elektrického obvodu se rovná nule.

2. Kirchhoffův zákon

Součet svorkových napětí prvků elektrického obvodu v libovolné uzavřené smyčce se rovná nule.

Sériové a paralelní řazení součástek

Sériově zapojenými součástkami protékají shodné proudy.

Paralelně zapojené součástky mají shodné napětí.

Příklad CP1.1: $U_{cc}=5V$, $U_{D1}=1,7V \text{ (red)}$, $U_{D2}=2,2V \text{ (green)}$, $U_{D3}=3,0V \text{ (blue)}$ U_{CC} U_{D1} U_{D2} U_{D2} U_{D3}

- a) Určete hodnoty úbytků napětí na odporech R₁,R₂,R₃
- b) Určete hodnoty odporu R_1 , R_2 , R_3 pro I_1 =12mA, I_2 =8mA, I_3 =5mA
- c) Jaký bude celkový odběr proudu I_{CC} ze zdroje napětí U_{CC}

Příklad CP1.1:

Řešení:

a) Určete hodnoty úbytků napětí na odporech R₁,R₂,R₃

$$U_{R_1} = U_{CC} - U_{D_1} = 5 - 1.7 = 3.3 [V]$$

 $U_{R_2} = U_{CC} - U_{D_2} = 5 - 2.2 = 2.8 [V]$
 $U_{R_3} = U_{CC} - U_{D_3} = 5 - 3.0 = 2.0 [V]$

$$-U_{CC} + U_{R_1} + U_{D_1} = 0$$

b) Určete hodnoty odporu R_1, R_2, R_3 pro $I_1=12mA$, $I_2=8mA$, $I_3=5mA$

$$R_1 = \frac{U_{R_1}}{I_1} = \frac{3.3}{12.10^{-3}} = 257 \ [\Omega], \quad R_2 = \frac{U_{R_2}}{I_2} = \frac{2.8}{8.10^{-3}} = 350 \ [\Omega], \quad R_3 = \frac{U_{R_3}}{I_3} = \frac{2.0}{5.10^{-3}} = 400 \ [\Omega]$$

c) Jaký bude celkový odběr proudu I_{CC} ze zdroje napětí U_{CC}

$$I_{CC} - I_1 - I_2 - I_3 = 0$$

$$I_{CC} = I_1 + I_2 + I_3 = 12.10^{-3} + 8.10^{-3} + 5.10^{-3} = 25.10^{-3}[A]$$

Zdroje napětí a proudů

Theveninův teorém

Libovolně složitý lineární aktivní dvojpól je možné z hlediska libovolných dvou svorek nahradit jedním ideálním zdrojem napětí a sériově zapojeným odporem.

$$U_0 = \frac{R_2}{R_1 + R_2} \cdot U_1 \quad [V] \qquad R_i = \frac{R_1 \cdot R_2}{R_1 + R_2} \quad [\Omega]$$

Odpor materiálu:

$$R = \rho \cdot \frac{l}{S} \quad [\Omega]$$

 ρ je měrný elektrický odpor (Ω m),

l je délka vodiče (m),

S plocha průřezu (m²)

Parametry rezistorů:

Řada jmenovitých hodnot

- Resistory se vyrábějí s tolerancí odporu (20%, 10% .. 0.1%...)
- Pokrytí celého rozsahu dekády (hodnota + toleranční pole)
 vede k volbě geometrické řady jmenovitých hodnot

Řady jmenovitých hodnot

Řada E24 ±5 %											
1,0	1,1	1,2	1,3	1,5	1,6	1,8	2,0	2,2	2,4	2,7	3,0
3,3	3,6	3,9	4,3	4,7	5,1	5,6	6,2	6,8	7,5	8,2	9,1
Řada E12 ±10 %											
1,0	1,2	1,5	1,8	2,2	2,7	3,3	3,9	4,7	5,6	6,8	8,2
Řada E6 ±20 %											
1,0		1,5		2,2		3,3		4,7		6,8	

Parametry rezistorů:

Jmenovitá zatížitelnost
$$P = U \times I = R \times I^2 = \frac{U^2}{R}$$
 [W]

Výkon se mění převážně na teplo

=> maximální povolený ztrátový výkon závisí na okolní teplotě

Ambient Temperature in °C

Parametry rezistorů:

Teplotní součinitel odporu

$$TK_R = \frac{\Delta R}{R \cdot \Delta \upsilon} \qquad [K^{-1}] ,$$

kde

 ΔR je absolutní změna odporu (Ω),

R hodnota odporu při počáteční teplotě (Ω) ,

 Δv změna teploty rezistoru (K)

Další parametry rezistorů:

- napěťový součinitel odporu udávající závislost odporu na přiloženém napětí,
- závislost odporu na okolní vlhkosti a době používání,
- velikost nežádoucího šumu generovaného rezistorem v důsledku nenulové okolní teploty,
- velikost parazitní indukčnosti atd...

Značení rezistorů:

Sériové a paralelní řazení rezistorů:

$$U = U_1 + U_2$$

$$U = I \cdot R_1 + I \cdot R_2$$

$$U = I \cdot (R_1 + R_2) = I \cdot R$$

$$R = R_1 + R_2$$

$$I = I_{1} + I_{2}$$

$$I = \frac{U}{R_{1}} + \frac{U}{R_{2}}$$

$$I = U \cdot \left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) = U \cdot \frac{1}{R}$$

$$\frac{1}{R} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \Rightarrow R = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}$$

Odporový dělič napětí:

a) Nezatížený odporový dělič napětí

Přenos:

$$P = \frac{U_2}{U_1} = \frac{R_2}{R_1 + R_2} = \frac{1}{1 + \frac{R_1}{R_2}}$$

Přenos:

$$P = \frac{U_2}{U_1} = \frac{R_2 \| R_Z}{R_1 + R_2 \| R_Z} = \frac{1}{1 + \frac{R_1}{R_2} + \frac{R_1}{R_Z}}$$

Příklad CP1.2:

Nezatížený odporový dělič napětí:

Navrhněte hodnoty odporů děliče, zatíženého proudem I_b =50 μ A. U_{CC} =15V, U_2 =3V.

Řešení:

Zvolíme $I_1 >> I_b$, např.: $I_1 = 1$ mA (= nezatížený dělič)

$$R_1 + R_2 = \frac{U_{CC}}{I_1} = \frac{15}{1 \cdot 10^{-3}} = 15 \text{ (k}\Omega),$$

$$R_2 = \frac{U_2}{I_1} = \frac{3}{1 \cdot 10^{-3}} = \frac{3 \text{ (k}\Omega),}{1}$$

$$R_1 = 15 \cdot 10^3 - R_2 = 12 \text{ (k}\Omega)$$

Příklad CP1.3:

Zvolte vhodný resistor R_1 (5%)do obvodu pro buzení výkonové modré LED. Teplotu okolí resistoru uvažujte 100 °C.

$$U_{CC} = 5 \text{ V}, U_{D1} = 3,6 \text{ V}, I_{CCmax} = 600 \text{mA}$$

Řešení:

Výpočet hodnoty odporu

$$R_1 = \frac{U_{CC} - U_{D1}}{I_{CC}} = \frac{5 - 3.6}{0.6} = 2.3 \ \Omega$$

Vzhledem k tomu, že zadaná hodnota proudu je maximální, budeme volit nejbližší vyšší hodnotu z řady hodnot E24, tedy 2,4Ω.

Příklad CP1.3:

(pokračování)

$$U_{CC}$$
=5 V, U_{D1} =3,6 V, I_{CCmax} =600mA

Řešení:

(pokračování)

$$P = \frac{(U_{CC} - U_{D1})^2}{R_1} = \frac{(5 - 3.6)^2}{2.4} = 0.82 W$$

Vzhledem k vysoké zadané okolní teplotě je přípustné zatížit resistor pouze na 60% povoleného ztrátového výkonu, musíme tedy použít součástku, jejíž max. ztrátový výkon bude min. 1,4W.

Součástka schopná akumulovat elektrický náboj Q

$$I = \frac{dQ}{dt}$$
 $Q = C \cdot U$ \Rightarrow $I = C \cdot \frac{dU}{dt}$

Energie elektrostatického pole:

$$W = \frac{1}{2} \cdot \mathbf{Q} \cdot \mathbf{U} = \frac{1}{2} \cdot \mathbf{C} \cdot \mathbf{U}^2$$

Kapacita deskového kondenzátoru:

$$C = \varepsilon_0 \varepsilon_r \frac{S}{d} ,$$

kde

 ε_0 je permitivita vakua (8,8.10⁻¹² F.m⁻¹),

 $arepsilon_r$ je relativní permitivita (materiálová konstanta),

S je plocha desek a

d je jejich vzdálenost.

Parametry kondenzátorů:

- Jmenovitá hodnota kapacity
- Jmenovité napětí
- Přesnost kapacity
- Ztrátový činitel
- Teplotní součinitel kapacity
- Izolační odpor
- Rezonanční kmitočet
- Napěťová závislost kapacity...

Konstrukční typy kondenzátorů

Svitkové s dielektrikem z umělých hmot

Velké rozměry, přesné, dobré vf vlastnosti...

Keramické kondenzátory

Malé rozměry, přesné/nepřesné, nelineární, uspokojivé vf vlastnosti...

Elektrolytické kondenzátory

 Největší kapacity, nutná polarizace, špatné vf vlastnosti...

Monolitické v integrovaných obvodech

Omezená velikost (kapacita)

Sériové a paralelní řazení kondenzátorů

$$U = U_1 + U_2$$

$$U = \frac{Q}{C_1} + \frac{Q}{C_2}$$

$$U = Q \cdot \left(\frac{1}{C_1} + \frac{1}{C_2}\right) = Q \cdot \frac{1}{C}$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \Rightarrow C = \frac{C_1 \cdot C_2}{C_1 + C_2}$$

$$Q = Q_1 + Q_2$$
$$Q = U \cdot C_1 + U \cdot C_2$$

$$Q = U \cdot (C_1 + C_2) = U \cdot C$$

$$C = C_1 + C_2$$

Reaktance kondenzátoru ve střídavém obvodu (harmonický ustálený stav – např. sinus)

$$Q = C \cdot U$$

$$I = \frac{dQ}{dt} \implies I = C \cdot \frac{dU}{dt}$$

$$U = U_0 \cdot \sin \omega t \implies I = C \cdot \frac{dU}{dt} = C \cdot \omega \cdot U_0 \cdot \cos \omega t$$

V ideálním případě předbíhá proud napětí o 90° = fázový posuv

$$X_C = \frac{U}{I} = \frac{1}{\omega \cdot C} = \frac{1}{2\pi f \cdot C}$$

Kondenzátor ≈ frekvenčně závislý "odpor" S rostoucí frekvencí f hyperbolicky klesá jeho reaktance X_C Využití jako frekvenčně závislý dělič napětí

Příklad CP1.4:

Navrhněte hodnoty kapacity C tak, aby se obvod pro kmitočet f = 1 kHz

choval jako frekvenčně nezávislý a přenos $U_2/U_1 \rightarrow 1$.

Hodnoty odporů:

a)
$$R = 1k\Omega$$
,

b)
$$R = 1M\Omega$$
.

Podmínka přenosu $U_2/U_1 \rightarrow 1$ bude splněn za předpokladu, že $X_C << R$ tedy například a) $X_C = 10\Omega$,

b)
$$X_C = 10k\Omega$$
.

a)
$$C = \frac{1}{2\pi f \cdot X_C} = \frac{1}{2 \cdot 3,14 \cdot 1000 \cdot 10} = 16 \text{ } \mu\text{F}$$

Zvolíme například 22 µF.

b)
$$C = \frac{1}{2\pi f \cdot X_C} = \frac{1}{2 \cdot 3,14 \cdot 1000 \cdot 10000} = 16 \text{ nF}$$

Zvolíme napříkad 22 nF.

Uvedené výpočty využijeme při návrhu vazebních kondenzátorů zesilovačů s bipolárními tranzistory a tranzistory MOSFET a JFET.

Příklad CP1.5:

Navrhněte výstupní kondenzátor C_4 stabilizátoru napětí typu "7805". Kondenzátor musí být schopen dodat proud 0,1A po dobu 2us při změně napětí max. 10mV. Kondenzátor bude trvale připojen na stejnosměrných 5V.

Řešení:

$$I = C \cdot \frac{dU}{dt} \implies C = \frac{I}{\frac{dU}{dt}} = \frac{0.1}{\frac{0.010}{2.10^{-6}}} = 20 \ \mu F$$

Příklad CP1.5:

(pokračování)

$$I = C \cdot \frac{dU}{dt} \implies C = \frac{I}{\frac{dU}{dt}} = \frac{0.1}{\frac{0.010}{2.10^{-6}}} = 20 \ \mu F$$

Řešení:

(pokračování)

Volba součástky: Keramický kondenzátor SMD 1206 řady GRM

Závislost kapacity na přiloženém napětí:

O 55% menší kapacita!!!

Zvolíme 47uF/10V GRM31CR61A476ME15L (efektivní kapacita **21uF**)

Součástka, která vytváří magnetické pole elektrického proudu

$$U = L \cdot \frac{dI}{dt}$$

Energie magnetického pole:

$$W = \frac{1}{2} \cdot \mathbf{L} \cdot \mathbf{I}^2$$

Parametry cívek, aplikace

Parametry:

- Jmenovitá hodnota indukčnosti
- Jmenovitý proud
- Saturační proud
- Stejnosměrný odpor
- Činitel jakosti
- Elektrická pevnost
- Rozsah pracovních teplot
- Rezonanční kmitočet...

Aplikace:

- Tlumivka EMC fitr
- Výkonová tlumivka spínané zdroje
- Transformátor
- Elektromotor, reproduktor...

Příklad CP1.6:

+PWR=24V

L=100uH

10 .. 15V

MOSFET

DRIVER

3,3 .. 5V

MCU

Jak dlouho může být sepnutý tranzistor v obvodu s výkonovou cívkou tak, aby nedošlo k překročení proudu 2A? Parazitní odpor cívky a tranzistoru zanedbejte, jako počáteční podmínku uvažujte nulový proud cívkou.

Řešení:

Sepnutím tranzistoru se přiloží napětí na cívku. Směrnice proudu je závislá na přiloženém napětí a velikosti indukčnosti.

Tranzistor může být sepnutý maximálně 8us.

Příklad CP1.7:

Vypočtěte velikost indukovaného napětí U_L při vypnutí tranzistoru v obvodu, kterým protékal proud 2A.

Parazitní odpor cívky a tranzistoru zanedbejte, vypínací dobu tranzistoru uvažujte dt=0,5us.

Řešení:

