federico ardila

homework two . due thursday feb 18

Note. You are encouraged to work together on the homework, but please state who you worked with **in each problem**. Write your solutions independently and in your own words. (I recommend putting away the notes from your discussions with others, and reproducing the solutions by yourself.)

- 1. (Some matrix representations of the symmetric group S_3 .)
 - (a) Let X be the left-regular representation of S_3 . Compute the matrices X(123), X(132), X(213), X(231), X(312), X(321) in the standard basis $\{123, 132, 213, 231, 312, 321\}$.
 - (b) Consider the left coset representation of S_3 with respect to the subgroup $H = \{e, (23)\}$ of S_3 . Compute the matrices of this representation in the standard basis. (See Example 1.3.5 in the book.)
 - (c) Consider the left coset representation of S_3 with respect to the subgroup $K = \{e, (123), (132)\}$ of S_3 . Compute the matrices of this representation in the standard basis.
- 2. (The one-dimensional complex representations of the cyclic groups.)
 - (a) Describe all the one-dimensional complex representations of the cyclic group C_n . Which ones are inequivalent?
 - (b) Describe all the one-dimensional complex representations of a finite abelian group G. (Recall that every finite abelian group is of the form $G = C_{n_1} \times \cdots \times C_{n_k}$ for some prime powers n_1, \ldots, n_k .) Deduce that the number of inequivalent degree 1 complex representations of G is equal to |G|.
- 3. (Counting the one-dimensional complex representations of finite groups.) Let G be a finite group and G' = [G, G] be its *commutator subgroup*, which is defined to be the subgroup generated by the elements $[g, h] = g^{-1}h^{-1}gh$ for all $g, h \in G$.
 - (a) Prove that G' is a normal subgroup of G.
 - (b) Prove that G/G' is commutative.
 - (c) Prove that for any field \mathbb{K} , the degree 1 representations of G over \mathbb{K} are in bijection with the degree 1 representations of G/G' over \mathbb{K} .
 - (d) Deduce that the number of degree 1 complex representations of any finite group G is equal to |G:G'|.
- 4. (Things get more complicated in characteristic p.) Let G be a group with $|G| = p^n$ for a prime number p and a positive integer n, and let \mathbb{K} be a field of characteristic p. Prove that the every irreducible representation of G over \mathbb{K} is trivial. (If you would like a hint, see Dummit-Foote, Exercise 18.1.22.)