Table 1: Summary of goodness of fit statistics for gamma distribution data sets, with $\lambda=1$. Arithmetic mean and standard deviation (sd) of a sample of 100 p-values and 100 p^* -values, and correlation (cor) between them. $mean=\frac{1}{100}\sum_{i=1}^{100}p_i$ $sd=\sqrt{\frac{1}{99}\sum_{i=1}^{100}(p_i-\overline{p})^2}$

$sd = \sqrt{\frac{1}{99}} \sum_{i=1}^{100} (p_i - \bar{p})^2$									
n	k	p_D -value	p_D^* -value	cor	p_{X^2} -value	$p_{X^2}^*$ -value	cor		
		mean (sd)	mean (sd)		mean (sd)	mean (sd)			
15	3	$0.410\ (0.295)$	$0.523\ (0.299)$	0.987	0.669 (0.242)	$0.536\ (0.294)$	0.985		
30	3	$0.331\ (0.269)$	$0.494 \ (0.284)$	0.973	$0.632\ (0.271)$	$0.501\ (0.288)$	0.984		
100	3	$0.246\ (0.219)$	$0.528\ (0.293)$	0.939	$0.622\ (0.335)$	$0.538 \ (0.303)$	0.989		
200	3	$0.139\ (0.152)$	$0.514\ (0.271)$	0.887	$0.588 \ (0.307)$	$0.521\ (0.275)$	0.991		
15	5	0.434 (0.308)	$0.536\ (0.305)$	0.990	0.709 (0.205)	0.580 (0.269)	0.987		
30	5	$0.372\ (0.284)$	$0.532\ (0.297)$	0.974	$0.665 \ (0.279)$	$0.509 \ (0.295)$	0.972		
100	5	$0.241\ (0.250)$	$0.515 \ (0.285)$	0.901	0.607 (0.319)	$0.495 \ (0.293)$	0.985		
200	5	$0.155 \ (0.179)$	$0.528 \; (0.281)$	0.844	$0.593\ (0.336)$	$0.514\ (0.309)$	0.986		
30	10	0.325 (0.266)	0.481 (0.284)	0.974	0.683 (0.229)	0.459 (0.288)	0.959		
100	10	$0.243\ (0.246)$	0.515 (0.299)	0.914	$0.706\ (0.279)$	$0.526\ (0.291)$	0.956		
200	10	$0.196\ (0.217)$	$0.576\ (0.282)$	0.868	$0.671\ (0.303)$	$0.534\ (0.293)$	0.974		
100	15	0.188 (0.215)	$0.452\ (0.287)$	0.912	0.718 (0.230)	$0.459\ (0.269)$	0.949		
200	15	0.156 (0.209)	$0.503\ (0.295)$	0.844	0.714 (0.279)	$0.523\ (0.284)$	0.954		
100	25	0.212 (0.216)	0.488 (0.288)	0.923	0.787 (0.202)	0.460 (0.302)	0.907		
200	25	0.131 (0.171)	0.490 (0.286)	0.841	$0.756\ (0.225)$	0.460 (0.291)	0.908		
200	50	0.103 (0.146)	0.441 (0.281)	0.836	0.890 (0.136)	0.454 (0.283)	0.827		

Table 2: Summary of goodness of fit statistics for gamma distribution data sets, with $\lambda = 1$. $mean = \frac{1}{100} \sum_{i=1}^{100} p_i \quad sd = \sqrt{\frac{1}{100^2} \sum_{i=1}^{100} p_i (1-p_i)}$

\overline{n}	\overline{k}	p_D -value	p_D^* -value	cor	p_{X^2} -val	lue	$p_{X^2}^*$ -value	cor
		mean (sd) rej	mean (sd) rej		mean (sd)	rej	mean (sd) rej	
15	3	0.410 (0.039) 11	0.523 (0.040) 7	0.987	0.669 (0.040)	0	0.536 (0.040) 3	0.985
30	3	$0.331 \ (0.039) \ 15$	$0.494 \ (0.041) \ \ 6$	0.973	$0.632\ (0.040)$	0	$0.501 \ (0.041) \ 1$	0.984
100	3	$0.246 \; (0.037) \; \; 27$	$0.528 \ (0.041) \ \ 4$	0.939	$0.622\ (0.035)$	10	$0.538 \ (0.040) \ \ 8$	0.989
200	3	$0.139\ (0.031)\ 39$	$0.514 \ (0.042) \ \ 2$	0.887	$0.588 \; (0.039)$	3	$0.521 \ (0.042) \ \ 2$	0.991
15	5	0.434 (0.039) 11	$0.536 \ (0.040) \ \ 4$	0.990	$0.709 \ (0.041)$	0	$0.580 \ (0.041) \ \ 2$	0.987
30	5	$0.372 \ (0.039) \ 15$	$0.532 \ (0.040) \ \ 5$	0.974	$0.665 \ (0.038)$	3	$0.509 \ (0.040) \ \ 8$	0.972
100	5	$0.241 \ (0.035) \ 26$	$0.515 \ (0.041) \ \ 5$	0.901	$0.607 \ (0.037)$	5	$0.495 \ (0.041) \ \ 5$	0.985
200	5	$0.155 \ (0.032) \ 34$	$0.528 \ (0.041) \ \ 7$	0.844	$0.593\ (0.036)$	7	$0.514 \ (0.039) \ \ 7$	0.986
30	10	$0.325 \ (0.039) \ 17$	0.481 (0.041) 3	0.974	$0.683\ (0.041)$	0	$0.459 \ (0.041) \ \ 9$	0.959
100	10	$0.243 \ (0.035) \ 28$	0.515 (0.040) 6	0.914	$0.706 \ (0.036)$	3	$0.526 \ (0.041) \ \ 6$	0.956
200	10	$0.196 \ (0.033) \ 36$	$0.576 \ (0.041) \ 1$	0.868	$0.671\ (0.036)$	2	$0.534 \ (0.040) \ \ 3$	0.974
100	15	0.188 (0.033) 34	$0.452 \ (0.041) \ \ 7$	0.912	$0.718\ (0.039)$	0	0.459 (0.042) 2	0.949
200	15	$0.156 \ (0.030) \ 43$	$0.503 \ (0.040) \ \ 5$	0.844	$0.714\ (0.036)$	3	$0.523 \ (0.041) \ \ 5$	0.954
100	25	0.212 (0.035) 29	0.488 (0.041) 8	0.923	$0.787 \; (0.036)$	0	0.460 (0.040) 6	0.907
200	25	$0.131\ (0.029)\ 46$	0.490 (0.041) 6	0.841	$0.756 \ (0.037)$	1	$0.460 \ (0.041) \ \ 3$	0.908
200	50	0.103 (0.027) 51	0.441 (0.041) 7	0.836	0.890 (0.028)	0	$0.454 \ (0.041) \ \ 5$	0.827

Table 3: Summary of goodness of fit statistics for negative binomial distribution data sets, with $\lambda=5$. Arithmetic mean and standard deviation (sd) of a sample of 100 p-values and 100 p*-values, and correlation (cor) between them.

$mean = \frac{1}{100} \sum_{i=1}^{100} p_i sd = \sqrt{\frac{1}{99} \sum_{i=1}^{100} (p_i - \overline{p})^2}$								
\overline{n}	k	p_D -value	p_D^* -value	cor	p_{X^2} -value	$p_{X^2}^*$ -value	cor	
		mean (sd)	mean (sd)		mean (sd)	mean (sd)		
15	3	$0.405 \; (0.282)$	$0.527\ (0.298)$	0.976	0.557 (0.275)	$0.532\ (0.304)$	0.994	
30	3	$0.336\ (0.235)$	$0.510 \ (0.268)$	0.967	$0.531\ (0.279)$	$0.502\ (0.284)$	0.998	
100	3	$0.237\ (0.220)$	$0.496\ (0.298)$	0.924	$0.518\ (0.301)$	$0.498 \; (0.293)$	0.999	
200	3	$0.164\ (0.180)$	$0.510\ (0.289)$	0.881	$0.552 \ (0.292)$	$0.536\ (0.283)$	0.999	
15	5	$0.401\ (0.275)$	$0.525 \ (0.292)$	0.968	$0.553 \ (0.256)$	$0.533\ (0.285)$	0.990	
30	5	$0.339\ (0.228)$	$0.511\ (0.286)$	0.973	$0.548 \; (0.269)$	$0.511\ (0.287)$	0.996	
100	5	$0.203\ (0.192)$	0.459 (0.278)	0.941	$0.503\ (0.280)$	$0.474 \ (0.275)$	0.999	
200	5	$0.176\ (0.191)$	$0.515\ (0.306)$	0.862	$0.521\ (0.328)$	$0.503\ (0.317)$	0.999	
30	10	$0.367\ (0.260)$	0.511 (0.289)	0.971	$0.573 \ (0.267)$	$0.521\ (0.292)$	0.989	
100	10	$0.275 \ (0.238)$	$0.506 \; (0.295)$	0.949	$0.542\ (0.294)$	$0.498 \; (0.296)$	0.997	
200	10	0.204 (0.199)	$0.536\ (0.262)$	0.883	$0.581\ (0.268)$	$0.545 \ (0.265)$	0.998	
100	15	0.333(0.275)	0.543 (0.300)	0.963	0.612 (0.283)	0.557 (0.295)	0.996	
200	15	$0.238 \ (0.238)$	$0.510\ (0.295)$	0.926	$0.552\ (0.307)$	$0.510 \ (0.305)$	0.997	
100	25	0.290 (0.266)	0.498 (0.292)	0.947	$0.586\ (0.281)$	$0.501\ (0.302)$	0.989	
200	25	0.165 (0.180)	$0.431\ (0.282)$	0.927	$0.511\ (0.287)$	$0.442\ (0.283)$	0.996	
200	50	0.164 (0.203)	0.457 (0.279)	0.885	$0.597 \ (0.265)$	0.475 (0.284)	0.982	

Table 4: Summary of goodness of fit statistics for negative binomial distribution data sets, with $\lambda = 5$.

$mean = \frac{1}{100} \sum_{i=1}^{100} p_i$ $sd = \sqrt{\frac{1}{100^2} \sum_{i=1}^{100} p_i (1 - p_i)}$										
\overline{n}	k	p_D -value	p_D^* -value	cor	p_{X^2} -val	lue	$p_{X^2}^*$ -value	cor		
		mean (sd) rej	mean (sd) rej		mean (sd)	rej	mean (sd) rej			
15	3	$0.405 \ (0.040) \ \ 6$	0.527 (0.040) 2	0.976	$0.557 \ (0.041)$	0	$0.532 \ (0.040) \ \ 4$	0.994		
30	3	$0.336 \ (0.041) \ \ 7$	$0.510 \ (0.042) \ \ 2$	0.967	$0.531\ (0.041)$	3	$0.502 \ (0.041) \ \ 6$	0.998		
100	3	$0.237 \ (0.036) \ 23$	$0.496 \ (0.040) \ \ 7$	0.924	$0.518\ (0.040)$	9	$0.498 \; (0.041) \; \; 7$	0.999		
200	3	$0.164 \ (0.032) \ 33$	$0.510 \ (0.041) \ \ 4$	0.881	$0.552 \ (0.040)$	5	$0.536 \ (0.041) \ \ 4$	0.999		
15	5	0.401 (0.041) 5	$0.525 \ (0.041) \ \ 4$	0.968	$0.553 \ (0.043)$	1	$0.533 \ (0.041) \ \ 4$	0.990		
30	5	$0.339\ (0.042)\ 3$	$0.511 \ (0.041) \ \ 3$	0.973	$0.548 \; (0.042)$	3	$0.511 \ (0.041) \ \ 4$	0.996		
100	5	$0.203\ (0.035)\ 19$	$0.459 \ (0.041) \ \ 4$	0.941	$0.503 \ (0.042)$	4	$0.474 \ (0.042) \ 4$	0.999		
200	5	$0.176 \ (0.033) \ 34$	$0.515 \ (0.040) \ \ 9$	0.862	$0.521\ (0.038)$	9	$0.503 \ (0.039) \ \ 7$	0.999		
30	10	$0.367 \ (0.041) \ \ 6$	0.511 (0.041) 3	0.971	$0.573\ (0.042)$	4	$0.521 \ (0.041) \ \ 7$	0.989		
100	10	$0.275 \ (0.038) \ 23$	$0.506 \ (0.040) \ \ 4$	0.949	$0.542 \ (0.040)$	5	$0.498 \; (0.040) \; \; 5$	0.997		
200	10	$0.204\ (0.035)\ 25$	$0.536 \ (0.042) \ \ 2$	0.883	$0.581\ (0.041)$	3	$0.545 \ (0.042) \ \ 3$	0.998		
100	15	0.333 (0.038) 10	0.543 (0.040) 3	0.963	$0.612\ (0.040)$	1	0.557 (0.040) 3	0.996		
200	15	$0.238 \ (0.035) \ 25$	$0.510 \ (0.040) \ \ 6$	0.926	$0.552\ (0.039)$	6	$0.510 \ (0.040) \ \ 6$	0.997		
100	25	0.290 (0.037) 15	0.498 (0.041) 6	0.947	$0.586\ (0.041)$	2	0.501 (0.040) 6	0.989		
200	25	$0.165 \ (0.032) \ 37$	0.431 (0.041) 8	0.927	$0.511\ (0.041)$	2	$0.442 \ (0.041) \ \ 2$	0.996		
200	50	0.164 (0.031) 36	$0.457 \ (0.041) \ \ 5$	0.885	0.597 (0.041)	2	0.475 (0.041) 8	0.982		