

面板於行動運算裝置應用之發展趨勢

葉貞秀 資深產業分析師 產業情報研究所(MIC) 財團法人資訊工業策進會 2012.10.17

行動運算裝置應用面板尺寸分布

Volume

Panel Size

簡報大綱

- ❖ 行動運算應用面板市場概況
- ❖ 行動運算面板規格發展
- ❖ 薄型化與觸控趨勢下之機會與挑戰
- ❖ 面板產業於行動運算裝置應用之競合分析
- ❖ 結論

行動運算應用面板市場概況

行動運算裝置應用面板影響業者獲利能力

資料來源: MIC, 2012年10月

❖ 隨著Tablet和Notebook面板營收比重增加,加上產品的單位面積價格高於其他應用產品,使得廠商將經營重心由TV面板轉移至行動運算裝置應用

Tablet面板出貨呈現高成長

資料來源: MIC, 2012年10月

產品競爭下,10吋面板出貨衰退

Tablet面板尺寸占比分析

Notebook面板尺寸占比預測

資料來源:MIC,2012年10月

- ❖ 10吋 的Notebook面板需求受到Tablet影響,使得出貨比重大幅衰退
- ❖ Notebook面板尺寸分佈上,預期11~14吋產品在Ultrabook帶動,及中國市場崛起下,出貨比重將小幅成長 MIC

行動運算面板規格發展

Tablet與Notebook面板規格有所不同

❖ Tablet訴求上網瀏覽及戶外閱讀,與Notebook面板的主要應用情境不同,因此在面板規板要求上有所差異

Tablet面板精細度大幅領先

資料來源: MIC, 2012年10月

❖ Tablet屬於手持式裝置,觀賞距離較近,故在精細度的規格要求高於Notebook面板

IPS廣視角技術導入筆記型電腦

液晶技術規格比較

省電		TN	VA	IPS
户外可 視性	透光率	7.1%	6.8%	5.9%
色彩表現	對比度	500:1	500:1	500:1
	視角	~45° ~60°(補償膜)	~85°	~85°
操作 流暢性	觸控影響性	高	高	低

2012年Tablet面板液晶 技術分佈

資料來源: MIC, 2012年10月

2010年 複合應用型筆電 (TN+補償膜)

- ❖ IPS技術面板為平板產品最適之廣 視角技術,而Notebook面板在低 價以及省電的要求下,僅少數搭 載廣視角面板
- ❖ 預期未來在廠商以顯示器規格為 產品差異化的訴求下,筆記型電 腦的中高階產品搭載廣視角面板 比重將明顯成長

2012年 高階筆電

資料來源: HP, Apple, 2012年10月

面板規格提升仍需考量耗能與價格

- ❖ 解析度、亮度及色彩飽合度提升,或是搭配廣視角技術,均增加面板的能耗,影響產品的可攜性
- ◆ 面板佔Tablet成本比重較高,加上終端品牌產品線區隔,將限制高 階Tablet面板的發展 MIC

薄型化與觸控趨勢下之機會與挑戰

處理器對於顯示面板規格影響性

Intel晶片平台 顯示面板相關規格比較

Tablet應用處理器 顯示面板相關規格比較

	Sandy Bridge "Ultrabook™ Enters Mainstream"	Ivy Bridge "Ultra-thin, Ultra-responsive, Ultra-secure"	Haswell "The Notebook Re-invented"
LCD 厚度	3.6mm	3.0mm	<2.8mm
支援	2560x1600	4k	3840x2160
解析度	@60Hz		@60Hz
介面	LVDS/	LVDS	eDP 1.3
	eDP 1.2	/eDP 1.2	(Ultrabook)

	Tegra 3	Omap 3	Exynos 5 Dual
支援 解析度	2560x1600	1920x1080	2560x1600
介面	LVDS	MIPI	eDP 1.3

資料來源:Intel、TI、nVidia、Samsung , MIC整理, 2012年10月

- ❖ Intel將面板薄型化及顯示器相關規格,作為晶片平台轉換的規格的 重點之一
- ❖ Tablet之主流應用處理器所支援的解析度,均高於目前的主流 Tablet面板解析度(1280x800),而搭配的面板介面,則視晶片廠商 與手機或IT客戶的合作關係而有所不同

14

eDP面板介面適用於高階薄型化產品

eDP介面傳輸

LVDS與eDP規格比較

規格		LVDS	eDP
傳輸速率		135MHz	1.62/2.7/5.4G bit/s
訊號線數	HD; 6 bits	8	2(1 Lane)
	HD+; 6bits	16	2(1 Lane)
	FHD; 8bits	20	4(2 Lane)
省電功能		無	eDP1.3支援 PSR

FHD 8-bit Notebook Panel Connector

20 signal wires

4 signal wires

- ❖ 在薄型化的要求下,由於 eDP的排線較窄,適合於薄 型化的Hinge設計
- ❖ 配合eDP介面轉換,面板端 需更換T-Con的規格,以及 面板製造測試治具的搭配

資料來源:VESA,Asus,MIC整理,2012年10月

15

Windows 8擴大佈局Tablet領域

Win 7與Win 8觸控認證要求比較

	Windows 7	Windows 8
Touch points	>=2	>=5
Touch target	12.5mm	9.0mm
Report rate	50Hz/input	100Hz for all inputs
Accuracy	2.5mm @95%	1.0mm 100%
Response latency	N.A	<25ms
Interface	X86 HID/USB	ARM and X86: HID/USB

- ❖ Microsoft為了提升觸控的使用者感受,自Windows 7開始,即提出 Windows logo的認證,以作為系統廠商選擇零組件的依據
- ❖ Windows 8於觸控零組件的測試要求規格提升,採Tablet為規格之指標,以確保觸控功能的流暢性

一Tablet與Notebook觸控技術將呈現差異化

Tablet及Notebook搭載之觸控技術特性比較

	G G	ogs	G1F	GFF
Cover Glass Glass Film Sensor Sensor on Glass	LCD	LCD	LCD	LCD
整體厚度(mm)	1.05~1.2	0.55~0.875	0.825~0.975	1.1~1.25
重量	X		0	\triangle
透光率	0	0	Δ	X
10.1"模組價格(\$)	30~35	20~27	22~26	26~36
終端客戶	Apple	Google Nexus	Samsung	Samsung · LG
	* <u>*</u>			

- ❖ Tablet應用中,GG結構在Apple的導入下成為主流,其次為Samsung 採用的GFF結構
- ❖ OGS具有成本及重量上的優勢,預期在較大尺寸的Notebook應用中, 觸控技術將以OGS為主要技術

OGS觸控面板貼合程序簡化

玻璃式投射電容觸控面板貼合型態

	Touch Module	Touch Display	•
Tablet(GG)	全貼合	口字貼合	
Notebook(OGS)	-	全貼/口字貼合	
貼合廠商	觸控面板廠	觸控面板廠/ 系統組裝廠	

❖ OGS觸控面板貼合程序 較少,而筆記型電腦 Touch Display貼合在成 本考量下,預估未來口 字貼合為較具優勢

面板產業於行動運算裝置應用之 競合分析

韓系廠商領導行動運算應用面板領域

廣視角Tablet面板廠商國別市占分析

Notebook面板廠商國別市占分析

資料來源: MIC, 2012年10月

◆ 台灣廠商過往以液晶監視器及液晶電視為產品重心,使得在 Notebook及Tablet面板市占不高。預期未來在台灣廠商開始大量 供應IPS Tablet面板後,市占將有所提升

廠商積極佈局IPS廣視角技術

◆ 由VA技術轉移至IPS廣視角技術,由於IPS製程複雜,除了需取得專利授權外,亦克服良率的瓶頸,才具有成本競爭力

行動運算裝置應用面板帶動產線變革

- ❖ 在面板需求成長下,促使廠商加速Tablet及Notebook產能移轉至G6 以上的大世代產線
- ❖ Oxide/IGZO基板技術可減少高精細度面板的能耗,但在畫質規格大幅提升下,其技術差異性較為明顯

薄型化筆電改變製造模式

OGS開起新的競爭領域

資料來源: MIC, 2012年10月

❖ TFT廠商與專業觸控廠商,提供整合式解決方案,及觸控面板二次 強化上,各有其競爭優勢,未來觸控產業在OGS領域仍充滿變數

台灣具專業水平分工之優勢

m

結論

- ◆ 受Tablet產品及晶片平台的影響,Notebook面板將向 Tablet規格靠攏,但成本考量下,短期內以高階 Notebook面板規格「Tablet化」較為明顯
- ❖ 面板廠持續朝大世代線佈局Tablet與Notebook產能, 高精細度基板技術方面,廠商策略則其視客戶需求 而有所差異
- ❖ OGS將為Notebook觸控面板之主流規格,二次強化 能力及整合式面板產品,將為專業觸控廠商及面板 廠商之競爭關鍵
- ❖台灣廠商在薄型化及觸控面板上具領先地位,加上水平分工的供應鏈優勢,可望為台灣面板產業帶來新契機

俞

縮寫全文對照

- AAS: Azimuthal Anchoring Switch
- ❖ AFFS: Advanced Fringe Field Switching
- AHVA: Advanced Hyper-Viewing Angle
- **❖** BAST: Brilliant Advanced Super TFT
- eDP: embedded DisplayPort
- HD: High Definition
- FHD: Full High Definition
- GPU: Graphics Processing Unit
- IPS: In Plane Switch
- ITO: Indium Tin Oxide
- LCD: Liquid Crystal Display
- LCM: Liquid Crystal display Module
- LOCA: Liquid optical clearance adhesive
- LVDS: Low-Voltage Differential Signaling

- MIPI: Mobile Industry Processor Interface
- **MNT:** Monitor
- OCA: Optical Clearance Adhesive
- ODM: Original Design Manufacturer
- **❖** OGS: One Glass Solution
- ❖ PLS: Plane to Line Switching
- Ppi: Pixel per inch
- **❖** T-con: Timing Controller
- **❖** TFT: Thin Film Transistor
- **❖** TN: Twisted Nematic
- ❖ VA: Vertical Alignment

感謝聆聽 敬請指教

智慧財產權暨引用聲明

- ◆本活動所提供之講義內容或其他文件資料,均受著作權法之保護,非經資策會或其他相關權利人之事前書面同意,任何人不得以任何形式為重製、轉載、傳輸或其他任何商業用途之行為
- ◆本講義內容所引用之各公司名稱、商標與產品示意照 片之所有權皆屬各公司所有
- ◆本講義全部或部分內容為資策會產業情報研究所整理 及分析所得,由於產業變動快速,資策會並不保證本 活動所使用之研究方法及研究成果於未來或其他狀況 下仍具備正確性與完整性,請台端於引用時,務必注 意發布日期、立論之假設及當時情境

