FE630 - Final Project

Author: Sid Bhatia

Date: May 14th, 2024

Pledge: I pledge my honor that I have abided by the Stevens Honor System.

Professor: Papa Momar Ndiaye

1. Overview

11 Goal

The goal of this project to build and compare *two factor-based long short allocation models* with constraints on their *betas*. The first strategy considers a **target Beta** in the interval [-0.5, 0.5], while the second has a target Beta in the interval [-2, +2].

The first strategy operates similar to a **Value-at-Risk Utility** corresponding to **Robust Optimization**; the second strategy incorporates an **Information Ratio** term to limit the deviations from a benchmark, provided those deviations yield a 'high return.'

Once the optimization models are built, we want to *compare* the outcomes of the two models while simultaneously evaluating their sensitivity to the *length* of the estimators for the **covariance matrix** in tandem with the **expected returns** under various market regimes/scenarios.

1.2 Reallocation

The portfolios will be *reallocated* or, in other words, 'reoptimized' weekly from the beginning of **March 2007** to the end of **March 2024**. Our *investment universe* encompasses a set of exchange-traded funds (**ETFs**) which is large enough to represent the '**Global World Economy**' (as according to some).

We will utilize the Fama–French Three-Factor Model which incorporates the following factors:

- Momentum
- Value
- Size.

Regarding data accessability, these factors have historical values available for *free* from *Ken French's* personal website in tandem with Yahoo Finance.

1.3 Performance Evaluation

Naturally, the performance as well as the risk profiles of the aforementioned strategies may be (relatively) sensitive to the *target Beta* and the (current) market environment.

For example, a 'low Beta' (essentially) means that a strategy is created with the objective or aim to be 'decorrelated' (no linear relationship between entites) with the 'Global Market,' which, in our case, is represented by the S&P 500 (i.e., no systematic relationship).

A 'high Beta' is simply the antithesis, or opposite, of what we just discussed. In layman's terms, we have a (higher) appetite for 'risk' (in this case, let's keep it simple and define our premise as σ or **standard deviation**) and desire to ride or 'scale up' the *market risk* (systematic risk).

Moreover, it's imperative that one acknowledges that such a (described) strategy is more probable to be (quite) sensitive to the *estimators* used for the **Risk Model** and the **Alpha Model** (e.g., the length of the *look-back period* utilized); therefore, it is necessary to understand and, most importantly, *comprehend* the impact of said estimators on the **Portfolio's** characteristics:

- (Realized) Return : μ_h
- (Historical) Volatility) : σ_h
- Skewness : $(\mathbb{E}[(\frac{x-\mu}{\sigma})^3]) = \frac{\mu_3}{\sigma_3} = \frac{\kappa_3}{\kappa_o^{3/2}}$
- VaR / Expected Shortfall
- ullet Sharpe Ratio : $S_a = rac{\mathbb{E}[R_a R_b]}{\sigma_a} = rac{\mathbb{E}[R_a R_b]}{\sqrt{\mathbb{V}(R_a R_b)}}$

1.4 Simplification

To make it easier, we assume that once the **Factor Model** (FM) has been constructed, we will use trend following estimators for the **Expected Returns**. Since the quality of the estimators depend on the **look-back period**, we define three cases:

- Long-Term Estimator (LTE) : $LT \Rightarrow LB \in \{180 \text{ Days}\}.$
- Mid-Term Estimator (MTE) : $MT \Rightarrow LB \in \{90 \text{ Days}\}.$
- Short-Term Estimator (STE) : $ST \Rightarrow LB \in \{40 \text{ Days}, 60 \text{ Days}\}.$

Specifically, we define a **Term-Structure** for the Covariance Σ and Expected Return μ .

1.5 Synthesis

To (briefly) summarize, the behavior of a (potential) 'optimal' portfolio built from a melting pot of estimators for **Covariance** and **Expected Return** may vary according to the cadence

5/14/24, 5:45 PM fe630-fp-html-v14

of the 'Market' (environment/regime) or an aforementioned strategy.

For example, the (mathematical) notation S_{40}^{90} is just fancy jargon to visually illustrate that we are using **40 days** for the covariance estimation and **90 days** for the expected returns estimations—it's not that deep.

Overall, the goal of this fun, entertaining project is to conceptualize, visualize, understand, analyze, and compare the behavior of our ideas; we want to *see* if we can (actually) make some \$\$\$, especially during momentous, historical (time) periods such as the **Subprime**Mortgage Crisis of 2008, the horrendous commencement of Coronavirus SARS-CoV-2

Disease of 2019, et cetera.

2. (Investment) Strategy

Alrighty, let's get to the fun, juicy portion; shall we?

2.1 (Mathematical) Strategic Formulation

Let's make things interesting—spicy, one may say.

Consider two strats [(clipping) of 'strategies,' as embodied in *Morphology*)]:

$$\left(\text{Strategy I} \right) \quad \begin{cases} \max_{\omega \in \mathbb{R}^n} \ \rho^T \omega - \lambda \sqrt{\omega^T \Sigma \omega} \\ \\ -0.5 \le \sum_{i=1}^n \beta_i^m \omega_i \le 0.5 \\ \\ \sum_{i=1}^n \omega_i = 1, \quad -2 \le \omega_i \le 2, \end{cases}$$
 (1)

and

$$egin{aligned} & \left\{ egin{aligned} & \max_{\omega \in \mathbb{R}^n} \ rac{
ho^T \omega}{ ext{TEV}(\omega)} - \lambda \sqrt{\omega^T \Sigma \omega} \ & -2 \leq \sum_{i=1}^n eta_i^m \omega_i \leq 2 \ & \sum_{i=1}^n \omega_i = 1, \quad -2 \leq \omega_i \leq 2, \end{aligned} \end{aligned} \end{aligned} \end{aligned}$$

where we define the hieroglyphics used above:

- Σ is the covariance matrix between the securities returns (as computed from the FF3FM);
- $eta_i^m = rac{\mathrm{Cov}(r_i, r_M)}{\sigma^2(r_M)}$ is the Beta) (not to be confused with the colloquial slang usage) of some security) S_i as defined by the CAPM Model such that $eta_P^m = \sum_{i=1}^n eta_i^m \omega_i$ is the **Portfolio Beta**;

• $\text{TEV}(\omega) = \sigma(r_P(\omega) - r_{\text{SPY}})$ is the '**Tracking Error Volatility**', which (if you're *really nerdy*) you can derive it as such:

$$\sigma(r_P(\omega) - r_{ ext{SPY}}) = \sqrt{\omega^\intercal \Sigma \omega - 2\omega^\intercal ext{Cov}(r, r_{ ext{SPY}}) + \sigma_{ ext{SPY}}^2}$$
 (3)

Oh yeah, I should probably define what 'FF3FM' means; that would (probably) be helpful.

2.2 Fama-French Three-Factor Model

So, to echo the previous sentiment, we should (almost surely) explain what is this *funky* model we kept referencing:

$$r_i = r_f + \beta_i^3 (r_M - r_f) + b_i^s r_{\text{SMB}} + b_i^v r_{\text{HML}} + \alpha_i + \epsilon_i \tag{4}$$

Sorry for writing (or, to be *really technical*, typesetting) more hieroglyphics. We gotta keep going for a bit—stay with me!

If we assume our white noise/error terms, on 'average', have a (numerical) value of 0 (i.e., $\mathbb{E}[\epsilon_i]=0$), we can derive a new goofy equation:

$$\rho_i = r_f + \beta_i^3 (\rho_M - r_f) + b_i^s \rho_{\text{SMB}} + b_i^v \rho_{\text{HML}} + \alpha_i$$
 (5)

In the new cursive script defined above, the 3 coefficients β_i^3 , b_i^s , and b_i^v are estimated by making a linear regression, or, in 'plain English', drawing a line of best fit of the time series $y_i = \rho_i - r_f$ against the other cool time series $\rho_M - r_f$ (Momentum Factor), $r_{\rm SMB}$ (Size Factor), and $\rho_{\rm HML}$ (Value Factor).

I feel like I'm forgetting something ...

Oh yeah! There's an extra (nerdy) thingy we gotta verify: (generally), $\beta_i^m \neq \beta_i^3$ and needs to be estimated by a separate regression or directly computed.

2.3 'Plain' English Formulation

Whew. Let's a take breather, shall we?

I get it; that was a mouthful, to say the least.

But, let's try and digest that in a slower, easier fashion.

Overall, we are exploring two *different investment strategies*, each with its own set of rules and objectives; let's dive right into them.

2.3.1 Strategy | Breakdown

- 1. **Objective**: Maximize returns while considering risk.
- 2. Constraints:

5/14/24, 5:45 PM fe630-fp-html-v14

- The portfolio's beta (a measure of its *volatility* relative to the market; i.e., how *silly* and *spread out* it is relative to the 'market') must be between -0.5 and 0.5.
- The sum of the weights assigned to each asset in the portfolio must equal 1 (i.e., we gotta put our money to work! As such, let's buy a bunch of stuff that can make us money but, also, let's (try) not to violate the Laws of Probability Theory).
- Each individual weight can range from -2 to 2 (i.e., we can be like *certain individuals* from WallStreetBets and put all our eggs in one basket or, like a more prudent investor, do anything *but that*).

2.3.2 Strategy II Breakdown

1. **Objective**: Maximize returns relative to the portfolio's **tracking error volatility** (**TEV**), which measures how much the portfolio's returns deviate from a benchmark (e.g., the S&P 500 or 'big boy stock market').

2. Constraints:

- The portfolio's beta (a measure of its *volatility* relative to the market; i.e., how *wild* and *crazy* it gets compared to the 'market') must be between -2 and 2.
- The sum of the weights assigned to each asset in the portfolio must equal 1 (i.e., we need to make sure all our money is actively working! So, let's diversify our investments while still following the Laws of Probability Theory).
- Each individual weight can range from -2 to 2 (i.e., we can either go *all in* on one asset like *those wild investors* on WallStreetBets, or spread our investments more wisely).