Criptomoeda Monero: ataques à privacidade das transações

João Otávio Massari Chervinski¹ e Diego Kreutz¹

¹Ciência da Computação (CC) e Laboratório de Estudos Avançados (LEA) Universidade Federal do Pampa (UNIPAMPA)

joaootaviors@gmail.com, kreutz@computer.org

Abstract. Cryptocurrencies rely on the use of pseudonyms to avoid disclosing user's personal information on transactions. Despite that, many attacks that allow the recognition of user's identities through transaction data analysis have been proposed. To protect user's identities, privacy-centric cryptocurrencies were created (e.g. Monero). In this work, we introduce and discuss state-of-theart attacks on the cryptocurrency Monero. We also introduce open challenges for further research.

Resumo. As criptomoedas utilizam pseudônimos como forma de evitar a revelação de informações pessoais dos usuários nas transações. Entretanto, já foram descobertos diferentes ataques, baseados na análise dos dados de transações, que permitem a identificação dos usuários. Para proteger a identidade dos usuários, foram criadas criptomoedas cujo foco é a privacidade (e.g. Monero). Este trabalho apresenta uma discussão do estado da arte e aponta caminhos de pesquisa futuros, dos ataques à criptomoeda Monero.

1. Introdução

O lançamento da Bitcoin [Nakamoto 2008], a primeira moeda digital descentralizada, promoveu uma revolução em sistemas de pagamento no mundo inteiro ao eliminar a necessidade da existência de uma autoridade central para o controle de transações financeiras. A tecnologia *blockchain*, sobre a qual a Bitcoin foi construída, foi um fator fundamental para a adoção das moedas digitais como forma de pagamento. Entretanto, vale a pena ressaltar que a tecnologia de *blockchain* tem ganhado força e está sendo investigada e utilizada numa gama muito grande de aplicações nas mais diversas áreas [IEEE 2017].

O blockchain permite que usuários entrem em consenso sobre a validade das transações efetuadas e funciona como uma estrutura de armazenamento de dados distribuída, registrando as informações de todos os pagamentos realizados. Para fornecer segurança e confiabilidade às transações são utilizados mecanismos criptográficos como as assinaturas digitais, por isso as moedas digitais são também chamadas de criptomoedas.

Os sistemas de criptomoedas utilizam chaves que servem como pseudônimos para a identificação dos usuários, mas somente isso não é o suficiente para garantir privacidade. O próprio autor da criptomoeda Bitcoin sugere algumas boas práticas de utilização do sistema com o intuito de preservar a identidade dos usuários. Na prática, a privacidade dos usuários da Bitcoin pode ser comprometida através de ataques baseados em interceptação do tráfego de rede, coleta de informações de usuários em páginas da *web* e análise dos dados presentes no *blockchain* [Biryukov et al. 2014, Conti et al. 2018]. Além disso, boa parte das criptomoedas está sujeita a outros tipos de ameaças, como ataques estatísticos

de perfil em *blockchains* baseados em Prova de Participação, do inglês *Proof-of-Stake* (PoS) [Gazi et al. 2018] e ataques de atraso de comunicação em *blockchains* que permitem bifurcação (e.g. Ethereum) [Natoli and Gramoli 2017].

A criptomoeda Monero foi projetada e lançada com o objetivo de fornecer níveis mais elevados de privacidade em relação às outras criptomoedas, como a Bitcoin. Monero é uma criptomoeda de código aberto, baseada na tecnologia *CryptoNote* [Van Saberhagen 2013]. Essa tecnologia foi criada para promover o desenvolvimento de criptomoedas focadas na privacidade dos usuários, incluindo mecanismos para dificultar a rastreabilidade das transações e a vinculação de diferentes pseudônimos a um mesmo usuário. Apesar disso, a Monero foi alvo de diferentes ataques, como análise de *mixins* e análise temporal [Kumar et al. 2017, Miller et al. 2017]. Isso mostra que as criptomoedas privadas ainda possuem um longo caminho a percorrer, necessitando de adaptações e melhorias para que sejam capazes de oferecer um sistema robusto e confiável.

Os objetivos principais deste trabalho são: (a) apresentar uma revisão do estado da arte das técnicas utilizadas para a realização de ataques à criptomoeda Monero, (b) reproduzir ataques existentes, (c) identificar novos possíveis ataques, abrindo caminho para pesquisas futuras e (d) discutir os itens anteriores com a comunidade. Os itens (a), (c) e (d) representam a principal contribuição deste paper. Devido a limitação de espaço, a replicação e avaliação dos ataques de análise de *mixins* e análise temporal está disponível online em [Chervinski 2018].

2. Criptomoedas

Para participar do processo de mineração, ou seja, participar do processo de criação de blocos válidos de transações num *blockchain*, um usuário deve tentar criar blocos válidos de transações através do esquema de Prova de Trabalho, do inglês *Proof-of-Work* (PoW), *Proof-of-Stake* (PoS) ou outro similar, conforme determinado pelo respectivo sistema. Para criar um bloco, o participante da rede coleta transações criadas por outros usuários e organiza-as em um bloco que contém informações sobre o seu tamanho, *timestamp*, versão do sistema, número de transações, dados das transações, raiz de uma Árvore de Merkle e um *digest* de uma função hash criptográfica (e.g. SHA-256) do cabeçalho do bloco de transações anterior na cadeia do *blockchain*.

Uma Árvore de Merkle é uma estrutura de dados usada para verificar a integridade dos dados e resumir um grande conjunto de informações de maneira eficiente. Essa estrutura é utilizada em criptomoedas para armazenar *hashes* dos blocos de transações. Para que um bloco seja considerado válido, ele deve atender à uma restrição do sistema. Na Bitcoin essa restrição define que os primeiros *n bits* do *digest* resultante da aplicação da função SHA-256 sobre o cabeçalho de um bloco devem ser iguais a zero. Para atingir a restrição, o participante preenche um campo do bloco chamado de *nonce* com valores arbitrários e calcula novamente o *digest* até que o resultado desejado seja atingido. O primeiro minerador a descobrir um *nonce* que satisfaz a restrição compartilha o seu bloco na rede e os outros participantes adicionam-o no final de suas cópias da estrutura do *blockchain*. A primeira transação do bloco recém-criado remunera o minerador com uma quantia em criptomoedas pelo trabalho realizado.

Os endereços de usuário são compostos por um par de chaves pública e privada, e são utilizados para receber e enviar moedas. Quando um usuário recebe um pagamento,

ele recebe uma saída de transação que consiste em uma chave contendo um valor em criptomoedas. O saldo de um usuário é composto pela soma dos valores das saídas de transação que ele possui. Para efetuar um pagamento, as saídas de transação devem ser utilizadas inteiras, pois não é possível fracionar seu valor. É possível utilizar várias saídas de transações para realizar um único pagamento. Caso sobrem moedas após a operação, o remetente pode enviar o valor restante de volta para um endereço de sua escolha.

3. Monero

Lançada em 2014, Monero é uma moeda focada na privacidade dos usuários. A moeda ganhou popularidade devido às suas características que fornecem um nível de privacidade mais elevado do que as chaves pseudoanônimas da Bitcoin e sistemas similares. Monero utiliza o protocolo *CryptoNote*, que oferece mecanismos essenciais para a garantia de privacidade, tais como estratégias que dificultam o rastreamento de transações através da análise dos dados presentes no *blockchain*. As duas principais características de privacidade oferecidas pela Monero são irrastreabilidade das transações e não-vinculação de endereços. A primeira garante que dada uma transação com várias entradas, não é possível descobrir qual entrada foi utilizada, impedindo que seu histórico seja traçado. Já a segunda garante que, dadas transações que utilizam endereços diferentes, não é possível descobrir se elas foram criadas por um mesmo usuário.

O protocolo *CryptoNote* fornece um sistema de chaves de uso único. Cada usuário possui dois pares de chaves pública e privada, um para visualização e outro para utilização de fundos. Diferentemente dos pseudônimos fixos utilizados em outras criptomoedas, quando um remetente deseja enviar Monero, ele utiliza as chaves públicas do recipiente para derivar uma chave única que será usada para o envio do pagamento. O recipiente usa a sua chave privada de visualização de fundos para identificar quais chaves presentes no *blockchain* são destinadas a si, e sua chave privada de utilização de fundos para utilizar o valor contido nas chaves recebidas. Outra característica de privacidade do protocolo *CryptoNote* são as *Ring Signatures*, que fornecem um meio de adicionar chaves a uma transação utilizando criptografia para ofuscar a chave real do pagamento. As chaves adicionais são escolhidas do conjunto de saídas de transações presentes no *blockchain* e são chamadas de *mixins*. O receptor consegue resgatar o pagamento normalmente, porém, um observador externo não é capaz de diferenciar uma chave da outra e, portanto, não é capaz de rastrear a origem da transação.

4. Ataques à criptomoeda Monero

A criptomoeda Monero tem sido alvo de estudos que investigam falhas de segurança e de privacidade, cujo objetivo é rastrear transações e identificar usuários. Alguns ataques são capazes de rastrear a chave usada pelo emissor do pagamento, ao permitirem a identificação de chaves usadas como *mixins*. Esses ataques revelam a existência de falhas na premissa de irrastreabilidade de transações. Apesar dos esforços empregados, nenhum dos ataques propostos até agora conseguiu explorar a premissa de não-vinculação de endereços aos usuários. A seguir são apresentados os ataques à criptomoeda Monero.

4.1. Análise de mixins

A análise de *mixins* explora uma falha de implementação presente nas primeiras versões do sistema Monero, que permitia efetuar pagamentos sem a necessidade de adicionar *mixins* às entradas das transações, o que permite rastrear as entradas reais de

transações [Kumar et al. 2017, Miller et al. 2017]. Transações sem *mixins* (sem chaves extras para ofuscar a verdadeira entrada) geram um efeito em cadeia que enfraquece a privacidade de futuras transações que utilizem as chaves destas transações como chaves extras para ofuscar a verdadeira entrada. Quando o sistema escolhe uma chave utilizada em uma transação sem *mixins*, para ser adicionada em um conjunto de entradas de uma outra transação, esta chave pode ser efetivamente eliminada do conjunto de entrada por já ter sido utilizada anteriormente. Se todas as *mixins* escolhidas pelo sistema já tiverem sido utilizadas, a entrada real da transação torna-se visível. A partir da versão 0.9.0 da Monero, o número mínimo de *mixins* em uma transação foi elevado para duas, fazendo com que novas transações não contribuam para a execução do ataque.

4.2. Análise temporal

A análise temporal é uma heurística capaz de identificar corretamente as verdadeiras chaves de entrada de uma transação com uma probabilidade de 92% [Kumar et al. 2017, Miller et al. 2017]. Esta heurística explora uma falha na distribuição matemática utilizada na escolha de *mixins*, que favorecia a escolha de chaves antigas para serem adicionadas às transações. Este ataque assume que a chave verdadeira da transação é a chave mais recente, ou seja, seu bloco de origem é o mais recente dentre os blocos de todas as chaves de entrada. Esta estratégia permite a identificação da entrada real da transação, como demonstrado em detalhes em [Chervinski 2018]. Na versão 0.10.1 do sistema da criptomoeda, o método de escolha de *mixins* foi alterado para garantir que pelo menos 25% das chaves escolhidas façam parte do conjunto de chaves geradas nos últimos cinco dias. Isto ajuda a evitar que a chave verdadeira de uma entrada seja a chave mais recente.

4.3. Falsificação através da exploração da Árvore de Merkle

Este ataque é capaz de particionar a rede da criptomoeda Monero em duas sub-redes distintas, fazendo com que uma rede não aceite a legitimidade da outra e potencialmente dobrando a quantia de moedas dos usuários [Macheta et al. 2014]. O ataque explora uma falha de implementação do protocolo *CryptoNote* (versões anteriores a 04/09/2014). O código que realiza o cálculo da raiz da árvore, usado para computar o *hash* de um bloco de transações, contém uma falha na função de arredondamento de potências de dois. Essa falha pode ser explorada quando um bloco possui exatamente 513 transações, permitindo que as duas últimas transações sejam substituídas sem que o *hash* do bloco seja alterado. Com isso, pode-se criar dois blocos distintos com o mesmo *hash*, criando duas versões da rede, cada uma com uma versão diferente do bloco.

4.4. Ataque à clientes leves

Na prática, pode-se identificar a chave de saída real de transações através da operação de um nó remoto do sistema Monero [Lee and Miller 2018]. Em resumo, os clientes leves permitem que um usuário utilize Monero sem a necessidade de obter uma cópia dos dados do *blockchain* ao conectarem-se com serviços remotos que fornecem essas informações. Quando um usuário inicia o processo de criação de uma transação, seu software de carteira requisita a um nó remoto informações sobre saídas de transações presentes no *blockchain*. A carteira seleciona algumas chaves para serem utilizadas como *mixins* e requisita suas informações completas para o nó remoto juntamente com as informações da chave real. Se o nó remoto retornar uma resposta inválida para a requisição de saídas de transações,

o cliente irá abortar a transação. Caso o cliente tente efetuar a transação novamente, uma nova requisição de chaves é enviada ao nó remoto, mas, desta vez existe uma grande probabilidade de que a chave verdadeira seja a única requisição repetida em relação à tentativa de transação anterior. Ao identificar a requisição de chave repetida, o nó remoto é capaz de rastrear a saída de transação utilizada para efetuar o pagamento.

4.5. Reprodução do efeito de zero mixins

Os aplicativos de carteira de criptomoedas selecionam as chaves que serão utilizadas como *mixins* no momento de criação de uma transação. Se o sistema escolher chaves conhecidas por um atacante, isto é, ele sabe que não foram utilizadas, ele pode removêlas do conjunto de entradas e enfraquecer a privacidade da transação em questão. Se todas as chaves escolhidas como mixins forem conhecidas por um atacante, ele é capaz de rastrear a saída de transação sendo utilizada no pagamento. O ataque é iniciado com uma fase de preparação, onde um atacante cria o máximo de transações possíveis tendo si mesmo como destinatário. Na próxima etapa, o atacante cria uma lista com as saídas de transação que ele agora possui. Com suas saídas de transações presentes no blockchain, há uma boa probabilidade de que suas chaves sejam escolhidas para ajudar a ofuscar os dados de novas transações. Ao analisar as entradas o atacante pode remover as suas saídas de transações do conjunto de chaves das transações, diminuindo o nível de privacidade ou chegando ao ponto de rastrear as transações por completo, dependendo da quantidade de chaves que ele possui. Quanto mais transações ele efetuar na fase de preparação, maiores são as chances de uma futura transação escolher suas chaves como mixins [Wijaya et al. 2018].

4.6. Personificação de software de carteira

Considere um atacante que tenha controle sobre um serviço de carteira de criptomoedas que gerencia chaves de usuários da Monero. O atacante efetua várias transações enviando moedas para si mesmo em outro endereço e armazena a lista de saídas de transações geradas. Quando um cliente for utilizar o serviço de carteira para criar uma transação, o atacante irá incluir as suas saídas de transação que ainda não foram gastas como *mixins*. Desta forma, o atacante sabe qual é a chave real sendo utilizada na transação. Apesar de viável, este ataque é complexo, pois necessita da configuração de um serviço online que ofereça funcionalidades de uma carteira de criptomoedas [Wijaya et al. 2018].

5. Desafios de pesquisa

A tecnologia utilizada pelas criptomoedas é bastante recente. Mais recentes ainda são os sistemas cujo objetivo principal é oferecer privacidade. Como pode-se observar na Seção 4, existem apenas alguns estudos e ataques recentes à moedas digitais como a Monero. Durante o desenvolvimento deste trabalho, foram identificados aspectos que podem ser explorados de maneira a consolidar sistemas que tem por objetivo manter a privacidade dos usuários. A seguir são apresentados alguns caminhos de pesquisa relacionadas à segurança e privacidade em criptomoedas baseadas em protocolos como o *CryptoNote*.

Correlação de usuários com chaves do sistema. Apesar da existência de ataques que permitam rastrear as entradas reais de transações do protocolo *CryptoNote*, até agora nenhum foi capaz de relacionar dados de identificação dos usuários, como nomes, *nicknames* e endereços IP com os endereços usados em transações. Alguns dos possíveis

vetores de ataque são a interceptação de tráfego de rede contendo dados de transações e *web scraping* para coleta de informações de usuários em páginas da *web*.

Investigação de chaves privadas de visualização. Usuários de moedas baseadas no protocolo *CryptoNote* utilizam um par de chaves pública e privada de visualização para visualizar as saídas de transações recebidas e usá-las em pagamentos. Serviços que necessitam de transparência divulgam suas chaves privadas de visualização para que usuários inspecionem suas transações e verifiquem que não ocorreram fraudes. Entretanto, o conhecimento das chaves privadas de um serviço fornece acesso ao seu histórico de transações e pode permitir a correlação desses dados com usuários ou seus hábitos.

Investigação de ataques pós-*RingCTs*. O sistema Monero lançou o protocolo *RingCT*, que oculta o valor de transações, aumentando a privacidade dos usuários do sistema. A partir da introdução do protocolo, o número mínimo de *mixins* do sistema também foi elevado, impedindo a realização de ataques previamente conhecidos. Os ataques existentes possuem pouco impacto sobre as transações que utilizam o protocolo *RingCT* e até agora não há registros de ataques contra esse novo mecanismo de segurança.

Referências

- Biryukov, A., Khovratovich, D., and Pustogarov, I. (2014). Deanonymisation of clients in bitcoin p2p network. In *ACM SIGSAC CCS*, pages 15–29. ACM.
- Chervinski, J. O. M. (2018). Deanonimização de dados de transações da criptomoeda monero. http://arxiv.kreutz.xyz/tcc2018_jomc_Monero_v1.pdf.
- Conti, M., Kumar, S., Lal, C., and Ruj, S. (2018). A survey on security and privacy issues of bitcoin. *IEEE Communications Surveys & Tutorials*.
- Gazi, P., Kiayias, A., and Russell, A. (2018). Stake-bleeding attacks on proof-of-stake blockchains. Technical report, Cryptology ePrint Archive, Report 2018/248.
- IEEE (2017). Special Report on Blockchain World. *IEEE Spectrum*, 10. https://spectrum.ieee.org/static/special-report-blockchain-world.
- Kumar, A., Fischer, C., Tople, S., and Saxena, P. (2017). A traceability analysis of monero's blockchain. In *ESORICS*, pages 153–173. Springer.
- Lee, K. and Miller, A. (2018). Authenticated data structures for privacy-preserving monero light clients. In *IEEE EuroS&PW*, pages 20–28. IEEE.
- Macheta, J., Noether, S., Noether, S., and Smooth, J. (2014). Counterfeiting via merkle tree exploits within virtual currencies employing the cryptonote protocol. https://lab.getmonero.org/pubs/MRL-0002.pdf.
- Miller, A., Möser, M., Lee, K., and Narayanan, A. (2017). An empirical analysis of traceability in the monero blockchain. *arXiv preprint arXiv:1704.04299*.
- Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf.
- Natoli, C. and Gramoli, V. (2017). The balance attack or why forkable blockchains are ill-suited for consortium. In *47th Annual IEEE/IFIP DSN*, pages 579–590.
- Van Saberhagen, N. (2013). Cryptonote v 2. 0.
- Wijaya, D. A., Liu, J., Steinfeld, R., and Liu, D. (2018). Monero ring attack: Recreating zero mixin transaction effect. In *17th IEEE TrustCom/BigDataSE*, pages 1196–1201.