

Master Econométrie et Statistiques, parcours Econométrie Appliquée Mémoire de Master 1

Financiarisation des matières premières : une approche par la volatilité

Moriceau Laurianne

Sous la direction de Mr Olivier Darné Juin 2020

Résumé

L'objectif de notre étude est d'identifier une quelconque relation entre le phénomène de financiarisation caractérisé par l'augmentation des échanges et la volatilité des rentabilités des produits de base. Deux approches ont été utilisées : la modélisation GARCH(1,1) ainsi que l'analyse de la volatilité conditionnelle dynamique (DCC-GARCH). Cela, afin de caractériser la volatilité des rendements de *futures* de douze des matières premières : Le WTI, le fioul, le gaz naturel, le cuivre, l'or, l'argent, le maïs, le soja, le riz, le café, le sucre et le blé, et d'établir un lien avec les marchés financiers de janvier 2001 à décembre 2019. Nous avons pu constater que les matières premières énergétiques avaient une persistance de la volatilité suite aux chocs plus importante que pour les autres marchés. En revanche, le caractère autorégressif est plus important sur les séries de rentabilités agricole, ce qui veut dire que la volatilité s'explique davantage par le niveau de volatilité antérieur. Pour finir, le modèle DCC-GARC(1,1) nous a permis de conclure à l'existence d'un phénomène de financiarisation pour les matières premières énergétiques du moins, puisque les corrélations avec le marché des actions représenté par le S&P500 y sont exacerbées depuis la crise de 2008.

Abstract

The cost of the commodities had increased until the 2008's crisis and the cost had stabilized at a relatively low level. The aim of our study will be to identify potential links between the financial determinants and their impact on the prices of the raw materials. Two approaches have been used, the GARCH (1,1) modulization, as well as the analysis of the active contingent volatility (DCC-GARCH). The objective was to characterize the volatility of twelve commodities: WTI, heating oil, natural gas, cooper, gold, silver, corn, soya, rice, coffee, sugar and wheat. We were able to see that the energy commodity had a persistence in volatility following shocks that was more important than in any other market. However, the autoregressive character is more important on the series about the agricultural profitability, which means that the volatility can be explain more by the level of previous volatility. Finally, the DCC-GARCH(1,1) model allowed us to conclude to the existence of a financialization of the energy commodity phenomena since the correlations with the stock market represented by the S&P500 are exacerbated since the 2008's crisis.

Remerciements

A Monsieur Darné qui m'a dirigé durant ce travail.

A Romain qui prend toujours la peine de me relire.

A ma mère et ma sœur pour leur soutien.

SOMMAIRE

I-	Introductionp	.5
II-	Le phénomène de financiarisation : Analyse théoriquep	.8
III-	Analyse économétriquep.	11
IV-	Conclusion et discussionp.2	6
V-	Bibliographiep.2	9
VI-	Annexesp.3	30

I- INTRODUCTION

« Le temps du monde fini commence » ¹ .

Cette citation de Paul Valéry montre à quel point les ressources et particulièrement les matières premières, ont toujours été au centre des préoccupations. D'autant plus actuellement, dans un contexte de raréfaction des ressources qui n'a de cesse de nous rappeler la finitude des réserves de notre planète tandis que la population mondiale augmente². Une matière première est un « *matériau d'origine naturelle faisant l'objet d'une* transformation et d'une utilisation économique » ³. De nos jours, les pays industrialisés dépendent de ces ressources qu'ils importent principalement des pays du sud. Tandis que les économies des pays en voie de développement (PED) dépendent des variations des prix de ces produits de base qu'ils destinent à l'exportation. En outre, une grande partie de la croissance des PED en est le résultat et de fait, leurs politiques macroéconomiques doivent s'adapter aux cours des produits primaires dont ils dépendent. C'est pourquoi la compréhension et l'étude de ces marchés sont essentiels afin de se prémunir des risques de chocs en renforçant les cadres de régulation de marché de sorte à limiter l'impact socio-économique qu'ils engendreraient. Depuis les années 2000, en réaction à la bulle internet, les économistes Américains Gary Gorton et Geert Rouxenhorst publient « Facts and fantasies about commodity futures »⁴ qui met en exergue la rentabilité des contrats à terme⁵ sur les matières premières. Cette étude a entraîné une prise de conscience collective sur la pertinence de ces contrats en matière de diversification de portefeuille⁶. Depuis, nous parlons d'un phénomène de financiarisation puisque les banques d'investissement et les fonds de pensions ont pris part à la spéculation des produits dérivés sur les matières premières ou produits de base, entraînant ainsi une

¹ Valéry P., « Regards sur le monde actuel », Librairie stock,1931, p.11

² Jacquard A., « *Voix de la résistante, Finitude de notre domaine* », Le monde diplomatique, Mai 2008, p.28 3 « *Dictionnaire de l'économie* », Larousse, https://www.larousse.fr/archives/economie/page/160 (consulté le 4 février 2020)

⁴ Gorton G., Geert Rouwenhorst K., «Facts and Fantasies about Commodity Futures», The Rodney L. White Center for Financial Research, University of Pennyslavania, 2004

⁵ Un contrat à terme aussi appelé « futures », est un contrat portant sur un sous-jacent que l'on s'engage à vendre ou acheter à une date et un prix convenu.

⁶ Crépu J., Boris J-P., « Traders - Le marché secret des matières premières », Arte, 2013

augmentation massive des échanges de contrats sur ces dernières⁷. Un produit dérivé se définit comme étant un « actif dont la valeur dépend d'autres variables plus fondamentales comme les prix d'autres actifs négociés sur les marchés, les taux d'intérêts, les taux de change ou entre les températures, la hauteur de neige dans une station de sport d'hiver, etc »8. L'impact de l'augmentation de ces transactions financières sur le prix des produits de base a fait l'objet de nombreuses études suggérant une influence positive sur la volatilité, mais cette relation n'a jamais pu être clairement identifiée car les résultats sont peu conclusifs et se contredisent⁹. En revanche, le poids de ces acteurs et leur grande influence sont incontestables et nous savons que les prix ont augmenté considérablement du début des années 2000 jusqu'à la crise de 2007-2008. De tout temps, les acheteurs et vendeurs de matières premières ont cherché à se prémunir du risque de marché qui résulte de la fluctuation des prix due à l'instabilité des productions dues aux conditions climatiques notamment. L'apparition des marchés dérivés a permis de remplir cette fonction avec la notion de couverture que permet les produits dérivés, qui consiste à transférer une partie du risque à d'autres acteurs. On parle de produits dérivés, car la valeur de ces contrats « futures » sont basés sur la valeur sous-jacente de l'actif physique (ici produit agricole, énergétique ou métaux), appelé aussi les fondamentaux. Ces contrats futures se font sur des produits standardisés qui sont échangés sur des marchés organisés et régulés dont les prix sont le résultat d'appels de marge quotidiens 10. Le contractant s'engage à respecter son engagement d'achat ou de vente à une date déterminée lors de la spécification du contrat. Ainsi, le dénouement de celui-ci s'effectue par livraison du sousjacent ou par une prise de position inverse. On observe alors la présence de spéculateurs sur ces marchés à terme qui achètent et vendent des contrats afin de tirer des bénéfices de la différence entre le prix d'achat et de vente, ainsi que de « hedgers » qui disposent ou envisagent de détenir un stock de matières premières et qui cherchent à se prémunir

_

⁷ Lecocq P-E., Courleux F., «Vers la définition d'un nouveau cadre de régulation des marchés dérivés de matières agricoles», Centre d'études et de prospective, N°3 septembre 2011, téléchargeable sur : https://www.researchgate.net/publication/319242392 Vers la definition d'un nouveau cadre de regulation des marches derives de matières premières agricoles (consulté le 17 février 2020)

⁸ Hull J., « *Options, futures et autres actifs dérivés* », Pearson, 10^e Edition, p.1.

⁹ Lecocq P-E., Courleux F., «Vers la définition d'un nouveau cadre de régulation des marchés dérivés de matières agricoles», Centre d'études et de prospective, N°3 septembre 2011, téléchargeable sur : https://www.researchgate.net/publication/319242392 Vers la definition d'un nouveau cadre de regulation des marches derives de matières premières agricoles (consulté le 17 février 2020)

¹⁰ Gueye Fam P., « Marchés des matières premières agricoles et dynamique des cours : un réexamen par la financiarisation », Économies et finances. Université de Toulon, 2016, téléchargeable sur : https://tel.archivesouvertes.fr/tel-01522798/document (consulté le 4 février 2020)

d'une variation de prix. Dans cette étude, nous ne chercherons pas à expliquer la formation des prix par la variation de ces fondamentaux : les principaux déterminants de l'offre et de la demande, qui comprennent les conditions météorologiques, les politiques commerciales, les stocks, etc ¹¹. Nous chercherons principalement à savoir si le caractère volatil des matières premières peut-être expliqué par la financiarisation de ces derniers et donc de l'augmentation des interactions entre les marchés financiers et les marchés de produits dérivés. Ainsi, nous chercherons à savoir si les connexions entre ces marchés ont croît avec le temps parallèlement à l'augmentation observée des échanges sur les marchés dérivés. La volatilité pouvant être définie comme « l'ampleur des fluctuations ou l'amplitude de la variation sur une période donnée pour un marché ou une valeur¹²».

Pour ce faire, nous commencerons par une étude des faits stylisés et nous nous concentrerons particulièrement sur ce phénomène de financiarisation. Nous évoquerons également les différentes recherches et modélisations déjà existantes sur le sujet. Afin d'étudier ces liens entre les marchés, nous chercherons tout d'abord à modéliser la volatilité des rentabilités de douze matières premières de janvier 2001 à décembre 2019 par un modèle classique de variance conditionnelle (GARCH). Puis, nous nous étudierons les corrélations dynamiques entre ces matières premières et les marchés financiers qui seront représentés par l'indice S&P500. Ainsi, nos résultats ont permis de montrer que les matières premières énergétiques présentent une plus grande persistance de volatilité des rentabilités due aux chocs que les autres marchés. En outre, en cas de crise, les volatilités des rentabilités engendrées mettraient plus de temps à disparaître. De plus, nous verrons avec les corrélations conditionnelles entre nos matières premières et l'indice S&P500 représentant les marchés financiers que celles-ci tendent à augmenter pour les matières premières énergétiques. En outre, on observe également des corrélations exacerbées entre les rentabilités des produits de base et les marchés financiers au moment de la crise de 2008.

_

¹¹ Gueye Fam P., « Marchés des matières premières agricoles et dynamique des cours : un réexamen par la financiarisation », Économies et finances. Université de Toulon, 2016, téléchargeable sur : https://tel.archivesouvertes.fr/tel-01522798/document (consulté le 4 février 2020)

¹² Hisseine Saad M., « *Estimation de la volatilité des données financières à haute fréquence : une approche par le modèle Score-GARCH »*, Economies et finances, Université Montpellier, 2017, téléchargeable sur : https://tel.archives-ouvertes.fr/tel-01730504/document (consulté le 10 mai 2020).

II- LE PHENOMENE DE FINANCIARISATION : ANALYSE THEORIQUE

A. FAITS STYLISES

Lorsque l'on observe l'évolution des cours des matières premières depuis les années 2000, on observe une hausse significative des prix de 2002 à 2008 marquant le début de la crise financière mondiale. Selon certains économistes, cette envolée des prix pourrait être due à un changement structurel de l'offre et la demande, notamment dû au développement économique de pays émergents (Bichetti et al., 2013). Cependant, parallèlement on observe une augmentation des acteurs sur les marchés dérivés, entraînant ainsi une hausse massive des échanges de contrats avec d'un côté les spéculateurs à la recherche de profit et les hedgers qui cherchent à se prémunir des variations des prix. Selon la théorie économique et d'efficience des marchés, la présence de spéculateurs favorise la découverte des prix car elle permet davantage de liquidité sur le marché et ainsi de mieux satisfaire les besoins de couverture. Seulement, les spéculateurs qui ne cherchent pas à détenir l'actif sous-jacent peuvent dénouer leur position au moindre signal qui n'irait pas dans leur sens, amplifiant ainsi les variations de prix. En effet, lorsque le marché est efficient, l'ensemble des informations disponibles sur les fondamentaux sont censées être directement incorporées dans le prix, expliquant alors les fluctuations des cours. Ainsi, les spéculateurs dont l'objectif n'est pas la détention des sous-jacents peuvent envoyer des signaux allant à l'encontre de l'évolution des fondamentaux (Bichetti et al., 2013). En outre, un agent détenant une position longue sur un actif financier appréhendera une baisse du prix de celui-ci tandis qu'une position courte serait défavorable en cas d'augmentation du prix de l'actif qu'il prévoit d'acheter¹³. De plus, spéculateurs et hedgers en cherchant des actifs anti-corrélés afin de diversifier leurs portefeuilles peuvent créer des corrélations fictives entre les marchés. Partant de ces observations, de nombreux économistes ont cherché à identifier les connexions que ces nouveaux acteurs entraînaient entre les marchés de produits de base et les marchés financiers afin de comprendre si celles-ci pouvaient expliquer en partie la hausse observée des volatilités des matières premières. La figure ci-dessous représente

¹³ Jégourel Y., « Les produits financiers dérivés », La découverte, collection repère, économie, p.12.

l'évolution du marché des matières premières avec le S&P GSCI et l'évolution du marché des actions avec le S&P500.

FIGURE 1: EVOLUTION DES INDICES GSCI ET S&P500

Nous pouvons voir que les deux indices évoluent dans le même sens jusqu'en 2009, date à partir de laquelle l'indice S&P500 croît inexorablement. Les deux indices n'évoluant plus dans le même sens, et les possibilités de diversifications du risque de portefeuille qui résident en les matières premières ont dès lors fortement augmenté entraînant ainsi une corrélation croissante entre les deux marchés. Cet attrait pour les produits de base, s'observe alors dans l'augmentation des contrats sur les marchés à terme des matières premières. En effet, le volume de futures négociés sur le WTI s'élevait à 1 374 615 en janvier 2001, puis à plus de 2M en 2005, en aout 2019¹⁴. Ces chiffres rendent compte de la croissance exponentielle de ces marchés et de facto de l'intérêts qu'ils représentent pour les investisseurs. De plus, l'étude de Creti et al. (2013) a démontré que les liens entre les marchés s'étaient accentués avec la crise, renforçant les co-mouvements des volatilités et des rendements. Ainsi, même si les corrélations entre les marchés financiers et des matières premières ont été très largement observés, le débat sur l'influence joué par cette financiarisation reste vif (Charlot et al., 2016).

¹⁴ Eikon Reuters database

B. Presentation des données

Notre étude se concentre donc sur l'observation des volatilités des rentabilités sur les produits de base. Les données mensuelles sont issues des rentabilités de douze matières premières résumés dans le tableau ci-dessous. Les données viennent de la base de Thomson Reuters sur une période de Janvier 2001 à décembre 2019 et les prix *futures* sont libellés en dollars.

TABLEAU 1: LES DONNEES ET LEUR PROVENANCE

Ticker	Matière première	Bourse	Période	Source
CLc1	WTI	NYMEX	01-2001/12-2019	Thomson Reuters
Hoc1	Heating oil	NYMEX	01-2001/12-2019	Thomson Reuters
NGc1	Natural gas	NYMEX	01-2001/12-2019	Thomson Reuters
CMCUc1	Copper composite	LME	01-2001/12-2019	Thomson Reuters
GCc1	Gold	COMEX	01-2001/12-2019	Thomson Reuters
Sic1	Silver	COMEX	01-2001/12-2019	Thomson Reuters
Cc1	Corn	СВОТ	01-2001/12-2019	Thomson Reuters
Sc1	Soybean	СВОТ	01-2001/12-2019	Thomson Reuters
RRc1	Rice	СВОТ	01-2001/12-2019	Thomson Reuters
LRCc1	Coffee	ICE	01-2001/12-2019	Thomson Reuters
LSUc1	Sugar	ICE	01-2001/12-2019	Thomson Reuters
KWc1	Wheat	ICE	01-2001/12-2019	Thomson Reuters

FIGURE 2: EVOLUTION DES PRIX DE 10 DES MATIERES PREMIERES

Source: Gretl

III- ANALYSE ECONOMETRIQUE

1. Analyse preliminaire des series

A. STATISTIQUES BASIQUES

Pour étudier l'évolution de la volatilité de nos matières premières, nous nous sommes concentrés sur les futures de douze matières premières : le WTI, le fioul (heating oil), le gas naturel (natural gas), le cuivre (copper), l'or (gold) et l'argent (silver), le maïs (corn), le soja (soybean), le riz (rice), le café (coffee), le sucre (sugar) et le blé (wheat). Les séries portent sur des données mensuelles en dollars nominal allant de janvier 2001 à décembre 2019.

FIGURE 3: ÉVOLUTION DES PRIX FUTURES DES MATIERES PREMIERES

Nous pouvons voir que depuis les années 2000, les matières premières énergétiques, de

métal ou agricoles, ont connu une forte hausse des prix depuis les années 2000. On

observe une hausse des prix du crude oil WTI depuis 2000 jusqu'à atteindre son pic en juin 2008. S'en est suivi une véritable chute des cours jusqu'en janvier 2009. Ces dates correspondent sans équivoque à celles de la crise financière qui a sévit sur les marchés. On retrouve cette chute des prix dans presque toutes les autres matières premières énergétiques ainsi que dans le cuivre, témoignant ainsi de contraction de l'activité. L'or et l'argent semblent faire figure d'exception puisqu'ils ne présentent pas de telles variations de prix sur cette période. En effet, ces métaux précieux ont été épargnés du fait de leur considération comme valeur refuge. Le café et le sucre semblent eux aussi ne pas avoir subi les chocs de cette crise. En revanche, on observe à partir de 2011 une baisse des cours, ainsi que pour le blé.

Ainsi, pour étudier les variations de prix et donc volatilités de ces cours nous nous pencherons sur les rendements logarithmiques de ces 12 matières premières obtenues comme ci-suit : $rt = \ln(pt) - \ln(pt-1)15$. Les graphiques des rentabilités de chacune se trouve en annexe 1. Nous pouvons voir sur ces graphiques que les variations des rentabilités semblent stationnaires en moyenne mais non stationnaires en variance. On observe de fortes variations de rentabilités en groupement, ce qui suppose des clusters de volatilité et donc potentiellement de l'hétéroscédasticité.

TABLEAU 2 : STATISTIQUES BASIQUES DES RENTABILITES

	WTI	Heating oil	Natural gas	Copper	Gold	Silver	Corn	Soybean	Rice	Coffee	Sugar	Wheat
Nobs	228	228	228	228	228	228	228	228	228	228	228	228
NAs	1	1	1	1	1	1	1	1	1	1	1	1
Minimum	-39.484	-46.054	-47.062	-44.863	-19.851	-32.791	-30.838	-39.849	-34.988	-25.619	-37.466	-27.637
Maximum	26.016	30.989	48.621	29.314	12.986	24.908	20.041	17.875	24.901	36.193	27.047	32.776
1. Quartile	-5.173	-4.033	-7.792	-4.073	-2.08	-4.776	-4.081	-3.471	-4.244	-5.577	-5.937	-5.16
3.Quartile	6.702	6.016	7.108	5.096	3.658	6.02	5.254	5.21	5.161	4.931	5.852	5.344
Mean	0.333	0.417	-0.422	0.525	0.768	0.579	0.272	0.317	0.364	0.313	0.132	0.187
Median	1.501	0.94	0	0.466	0.738	0.443	-0.066	0.794	0.432	-0.659	-0.393	-0.209
Sum	75.635	94.761	-95.825	119.176	174.415	131.403	61.803	71.893	82.608	71.025	29.917	42.337
SE Mean	0.606	0.625	0.947	0.514	0.322	0.581	0.569	0.532	0.552	0.581	0.63	0.583
LCL Mean	-0.861	-0.814	-2.288	-0.488	0.133	-0.566	-0.848	-0.732	-0.724	-0.831	-1.11	-0.962
UCL Mean	1.527	1.649	1.444	1.538	1.403	1.724	1.393	1.365	1.452	1.457	1.373	1.335
Variance	83.363	88.694	203.624	60.015	23.567	76.677	73.431	64.254	69.202	76.516	90.082	77.078
Stdev	9.13	9.418	14.27	7.747	4.855	8.757	8.569	8.016	8.319	8.747	9.491	8.779
Skewness	-0.605	-0.764	-0.004	-0.731	-0.315	-0.312	-0.301	-0.985	-0.393	0.545	-0.011	0.14
Kurtosis	1.257	3.34	1.334	5.468	1.021	1.033	0.708	2.802	1.615	1.189	0.815	0.729

Source: R avec 'fBasics'

¹⁵ Les rentabilités ont été multipliées par 100 pour traiter des valeurs suffisamment grandes.

Nous procédons donc aux statistiques descriptives de nos séries. En premier lieu, nous regardons les distributions de celles-ci. L'or et l'argent sont les deux produits de base avec les rentabilités moyennes les plus élevées, suivies du cuivre, du fioul puis du WTI. En revanche, nous constatons que le gaz naturel est le seul actif ayant une rentabilité moyenne négative. De plus, celui-ci présente une variance conséquente de ses cours, à hauteur de 203,62. Ainsi, nous pouvons dire que le future de l'or surperforme par rapport aux autres actifs. Nous avons d'ailleurs pu observer sur le graphique représentant son cours, une tendance positive forte et des phases de consolidations avec de très légères baisses. Cependant, même si sa rentabilité reste relativement stable, la rentabilité maximale de l'actif s'élève à 12.986 dollars tandis que le gaz naturel qui est très volatile au vu de la valeur de la variance, peut monter jusqu'à 48.621 dollars. Nous pouvons également regarder les valeurs Skewness et Kurtosis de celles-ci, qui nous donne une indication sur la symétrie ou non des séries étudiées autour de la moyenne. Lorsque la série suit une loi normale la valeur Skewness est égale à 0 et la valeur Kurtosis est égale à 3. Nous pouvons voir que toutes les séries exceptées le café et le blé ont des coefficients Skewness inférieures à 0, ce qui suppose des distributions étalées à gauche ie. davantage de mouvements à la baisse. Concernant l'aplatissement de la série, nous pouvons voir que la statistique *Kurtosis* est inférieure à 3 pour toutes les séries exceptées pour le fioul et le cuivre. En revanche, celle-ci est supérieure à 0 pour toutes les séries ce qui suppose une distribution leptokurtique de nos rentabilités. En outre, la distribution est plus aplatie et les queues sont plus épaisses que celles d'une loi normale. Cependant, nous ne pouvons affirmer l'absence de normalité de nos séries puisque ces statistiques peuvent-êtres influencées par la présence de valeurs extrêmes que nous avons déjà supposés antérieurement lors de l'observation des cours. Le test de Jarque-Bera nous permettra de trancher.

B. OBSERVATIONS ATYPIQUES

TABLEAU 3: OBSERVATIONS ATYPIQUES

Observations atypiques	WTI	Heating oil	Natural gas	Copper	Gold	Silver	Corn	Soybean	Rice	Coffee	Sugar	Wheat
Février 2003		x	x									
(26)												
Juin 2004								X	x			
Juin 2008			x									
Septembre 2008 (93)	х	X		X	х							
Décembre 2008									х			
Janvier 2009	X											
Février 2009				Х								
Aout 2009			x									
Février 2010											х	
Juin 2010												x
Aout 2011				х		х						
Juin 2013							х					
(150)												
Janvier 2015		x										
Novembre			x									
2018 (215)												

Source: R, package 'tsoutliers'

Nous pouvons voir dans le tableau ci-dessus les outliers detectés par la fonction 'tso' du package' tsouliers'. Comme nous l'avons déjà évoqué précedemment, ces observations de par leurs valeurs extrêmes peuvent influencer les résultats des tests et modélisations. Par exemple, on observe dans le tableau X une valeur atypique à la date de septembre 2008 pour quatre de nos séries qui représente l'effet de la faillite de la banque américaine Lehman Brothers et notamment la chute brutale des cours. Pour corriger ces outliers nous avons utilisé la fonction 'Return.clean' du package 'Performance Analytics'. Les statistiques basiques des séries corrigées sont résumés dans le tableau en annexe 2.

2. CONDITIONS DU MODELE GARCH

A. LES TESTS

Afin de pouvoir modéliser avec rigueur la volatilité de nos rentabilités, il convient tout d'abord de vérifier la stationnarité de ces derniers. Les tests qui suivent ont été réalisés sur les séries corrigées.

TABLEAU 4: TEST DE RACINE UNITAIRE (ADF)

	ADF		KPSS	
	Stat	Prob	Stat	Prob
WTI	71.72	< 2.2e-16	0.10732	0.1
Heating oil	106.3	< 2.2e-16	0.11816	0.1
Natural gas	126.6	< 2.2e-16	0.043827	0.1
Copper	91.17	< 2.2e-16	0.1608	0.1
Gold	137.2	< 2.2e-16	0.39626	0.07877
Silver	128.9	< 2.2e-16	0.20809	0.1
Corn	128.5	< 2.2e-16	0.088392	0.1
Soybean	129.8	< 2.2e-16	0.11474	0.1
Rice	163.9	< 2.2e-16	0.087021	0.1
Coffee	153.1	< 2.2e-16	0.10382	0.1
Sugar	89.9	< 2.2e-16	0.074783	0.1
Wheat	131.1	< 2.2e-16	0.10548	0.1

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Source: R, packages 'tseries' et 'urca', lag=12

Une série est dite stationnaire, lorsque l'espérance mathématique et la variance semblent stables dans le temps, tel que : $E(yt) = \mu \ \forall t \in T, V(yt) = \sigma \ \text{et} \ Cov(yt, yt2) = \gamma t$

Si ces conditions sont réunies la racine unitaire n'existe pas et les résidus suivent un bruit blanc, ce qui veut dire que les fluctuations de la série sont de nature stochastique. Ainsi, l'espérance est nulle et indépendante du temps, ainsi que la fonction d'autocovariance qui est indépendante et dont les termes sont également nuls. En outre, « les bruits blancs sont des processus stationnaires particuliers sans « mémoire ». On dit alors que le bruit blanc est *i.i.d*: formé de variables mutuellement indépendantes et identiquement distribuées. Le test de Dickey-Fuller permet de détecter l'existence de cette racine unitaire. Nous utiliserons également le test KPSS pour s'assurer des résultats. Le tableau X représente les résultats de chaque série à ces deux tests. Ainsi, nous pouvons voir que la p-value associée à chaque série est inférieure à 0.05, l'hypothèse H0 est rejetée au seuil de 5%, nous pouvons conclure que les séries sont stationnaires. Par rigueur, nous regardons les statistiques du test KPSS où cette fois H0 suppose la stationnarité de la série. L'hypothèse de stationnarité est donc acceptée également par le test KPSS au seuil de 5%.

TABLEAU 5: TEST DE JARQUE-BERRA, ARCH TEST ET LJUNG BOX

	Jarque-Berra	ı	ARCH test		Ljung-Box	(rentabilités)	LB (rentabili	tés au carré)
	Stat	Prob	Stat	Prob	Stat	Prob	Stat	Prob
WTI	29.88	3.248e-07	24.499	0.01738**	20.174	0.02765**	25.339	0.004738***
Heating oil	131.46	< 2.2e-16	24.99	0.005***	6.0966	0.8071	17.336	0.06724*
Natural	17.816	0.0001353	18.574	0.09935*	13.593	0.1924	19.678	0.073*
gas								
Copper	311.05	< 2.2e-16	10.812	0.087*	21.144	0.02011**	21.134	0.048**
Gold	14.372	0.0007569	16.525	0.005 ***	10.451	0.4018	23.043	0.01059**
Silver	14.518	0.0007037	29.644	0.003159***	9.213	0.512	48.278	5.521e-07***
Corn	8.652	0.01322	19.165	0.08463*	13.131	0.2164	25.433	0.0129**
Soybean	114.23	< 2.2e-16	28.105	0.00534***	37.885	3.974e-05***	29.474	0.001044***
Rice	31.86	1.207e-07	29.559	0.003253***	31.943	0.0004094***	24.391	0.006628***
Coffee	25.602	2.758e-06	3.5264	0.9905	20.424	0.059*	3.3112	0.9731
Sugar	6.8138	0.03314	46.647	5.366e-06***	18.826	0.04253**	58.698	6.387e-09***
Wheat	6.2508	0.04392	17.004	0.1494	8.1723	0.612	18.272	0.1077

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Source: R, packages 'tsoutliers', 'stats' et 'finTSl'

Une fois la stationnarité de nos séries vérifiée, nous pouvons regarder la statistique de Jarque-Berra qui se trouve dans le tableau ci-dessus. Nous pouvons voir que la p-value est inférieure à 0.05 pour toutes les séries, ce qui nous permet de rejeter l'hypothèse de normalité des distributions des rentabilités. Ce dont nous nous attendions au vu des statistiques Skewness et Kurtosis vues précédemment. Ensuite, nous pouvons calculer l'espérance et les matrices de variances et covariances afin d'obtenir la fonction d'autocorrélation. Celle-ci nous indique le mécanisme autour duquel la série évolue, elle représente les couples d'autocorrélation des résidus décalés par k, le temps séparant les observations tel que : $\gamma(k) = Cov(yt, yt - k)$ et $\gamma(0) = V(yt)$. Ainsi, nous obtenons la fonction d'autocorrélation : $\rho k = \gamma k/\gamma 0$. Les tests de Ljung Box et Box Pierce permettent de tester l'hypothèse H0 d'absence d'autocorrélation des résidus des rentabilités. Ainsi, nous obtenons que les séries Natural gas, Heating oil, Copper, Gold, Silver, Corn, et Wheat ne présentent pas d'autocorrélation puisque H0 l'hypothèse d'absence d'autocorrélation est rejetée au seuil de 10%. En annexe 4 nous retrouvons les corrélogrammes des rentabilités. Ainsi, les résidus de la série WTI sont autocorrélés au seuil de 5%, tout comme le cuivre, le sucre puis le soja et le riz au seuil de 1%. En outre, nous regardons à présent l'autocorrélation des résidus au carré de nos séries. Nous pouvons voir que les rentabilités au carré des résidus de toutes les séries sont autocorrélées exceptées pour les séries du café et du blé.

Nous devons à présent vérifier l'existence de clusters de volatilité de nos rentabilités avec le test LM ARCH d'homoscedasticité basé sur le multiplicateur de Lagrange. Lorsque

^{*}Les statistiques ont été réalisés avec un retard de 12.

l'hypothèse H0 est accepté, les résidus de la série sont homoscedastiques *ie.* la variance ne dépend pas du temps. Ainsi, après avoir vérifié la normalité, l'autocorrélation des résidus avec Ljung Box et l'homoscedasticité conditionnelle nous pouvons conclure qu'il y a un effet ARCH sur les séries de rendements de toutes les séries exceptées le café et le blé. En effet, l'hypothèse H0 du LM test qui consiste en l'absence d'effet ARCH est rejeté pour toutes les séries *WTI*, *heating oil*, *natural gas*, *copper*, *gold*, *silver*, *corn*, *soybean*, *rice et sugar* avec un retard de 12. Nous appliquerons donc le modèle GARCH sur ces séries afin de modéliser les volatilités dynamiques dans le temps.

B. ETUDE DES CORRELATIONS LINEAIRES

TABLEAU 6: MATRICE DE CORRELATIONS DE SPEARMAN SUR LA PERIODE TOTAL

	S&P500	WTI	Heating oil	Natural	Copper	Gold	Silver	Corn	Soybean	Rice	Coffee	Sugar	Wheat
CODEOO			UII	gas									
S&P500	1	0.314***	0.250***	0.087	0.476***	0.033	0.172***	0.19***	0.255***	0.178***	0.183***	0.042	0.152**
WTI	0.314***	1	0.816***	0.292***	0.455***	0.214***	0.288***	0.151**	0.145**	-0.009	0.158**	0.156**	0.108
Heating													
oil	0.250***	0.816***	1	0.381***	0.387***	0.197***	0.24***	0.126**	0.142**	-0.037	0.105	0.133**	0.102
Natural	0.200	0.010	•	0.501	0.507	0.177	0.21	0.120	0.112	0.057	0.100	0.155	0.102
gas	0.087	0.292***	0.381***	1	0.104	0.098	0.079	0.107	0.061	0.047	0.056	0.095	0.08
Copper	0.476***	0.455***	0.387***	0.104	1	0.307***	0.4***	0.217***	0.221***	0.168**	0.238***	0.211***	0.216***
Gold	0.033	0.214***	0.197***	0.098	0.307***	1	0.776***	0.206***	0.133**	0.061	0.296***	0.144**	0.228***
Silver	0.172***	0.288**	0.24***	0.079	0.4***	0.776***	1	0.258***	0.173***	0.046	0.335***	0.137**	0.205***
Corn	0.19***	0.151**	0.126*	0.107	0.217***	0.206***	0.258***	1	0.645***	0.384***	0.309***	0.078	0.568***
Soybean	0.255***	0.145	0.142**	0.061	0.221***	0.133**	0.173***	0.645***	1	0.364***	0.27***	0.098	0.446***
Rice	0.178***	-0.009**	-0.037	0.047	0.168**	0.061	0.175	0.384***	0.364***	1	0.143**	0.037	0.33***
Coffee										_			
C	0.183***	0.158**	0.105	0.056	0.238***	0.296***	0.335	0.309***	0.27***	0.143**	1	0.284***	0.357***
Sugar	0.042	0.156**	0.133**	0.095	0.211***	0.144**	0.137**	0.078	0.098	0.037	0.284***	1	0.129**
Wheat	0.152**	0.108	0.102	0.08	0.216***	0.228***	0.205***	0.568***	0.446***	0.33***	0.357***	0.129*	1

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Source: R, package 'Hmisc'

La matrice de corrélations linéaires ci-dessus nous indique les produits de bases dont les rentabilités sont corrélées, ainsi que l'indice S&P500. Nous pouvons voir que les coefficients significatifs vont de 0.129 entre le sucre et le blé, à 0.816 entre le fioul et le WTI. Par exemple, la rentabilité du blé et du maïs seraient liés de manière linéaire de manière significative. L'objectif de notre étude étant de constater les évolutions de

connexions entre les marchés, nous pouvons regarder le tableau 7 ci-dessous qui représente les corrélations avant la crise de 2008, date à laquelle les liens auraient été exacerbés entre les marchés. Plus le coefficient est proche de 1 plus les rentabilités évoluent dans le même sens. Nous pouvons donc voir dans le tableau 6 que l'or et l'argent on des rentabilités qui évoluent de manière coordonnée (0.776), tout comme le mais et le soja ou encore le WTI et le fioul. En revanche, on remarque qu'il existe bien moins de corrélations significatives entre les actifs avant 2008. Ces connexions pourraient donc s'être renforcées avec le temps. Ces corrélations sont d'autant plus importante qu'avec le phénomène de financiarisation, les futures de produits de bases étaient utilisés à des fin de diversification d'un portefeuille d'actifs puisque les marchés de produits de bases n'étaient pas corrélés avec les marchés financiers. En effet, deux actifs qui varient en sens inverse diminuent le risque de portefeuille à mesure que le coefficient est proche de -1. Pourtant, on remarque dans le tableau de nombreuses corrélations avec l'indice S&P500 ce qui montre que la diversification est de moins en moins possible. L'objectif est donc d'analyser ces corrélations entre les marchés que l'on supposera dynamiques afin de voir si les connexions entre les marchés ont évolué avec le temps.

TABLEAU 7: CORRELATIONS DES RENTABILITES AVANT SEPTEMBRE 2008

	S&P500	WTI	Heating oil	Natural gas	Copper	Gold	Silver	Corn	Soybean	Rice	Coffee	Sugar	Wheat
S&P500	1	0.154	0.077	0.046	0.462	0.124	0.173	0.2	0.239	0.222	0.281	-0.007	0.101
WTI	0.154	1	0.843***	0.451**	0.442	0.391	0.327	0.158*	0.055**	-0.036***	0.141	0.235	0.2
Heating oil	0.077	0.843***	1	0.561***	0.334	0.31	0.258	0.044*	0.017**	-0.076***	0.091	0.162	0.161
Natural gas	0.046	0.451**	0.561***	1	0.152	0.219	0.154	0.118	0.073	-0.006**	-0.004**	0.13	0.09
Copper	0.460	0.442	0.334	0.152	1	0.453	0.456	0.234	0.154	0.216	0.274	0.227	0.303
Gold	0.462 0.124	0.391	0.31	0.219	0.453	1	0.722***	0.238	0.156	0.115	0.235	0.283	0.302
Silver	0.173	0.327	0.258	0.154	0.456	0.722***	1	0.264	0.17	0.05	0.33	0.279	0.256
Corn	0.2	0.158*	0.044*	0.118	0.234	0.238	0.264	1	0.634***	0.371*	0.263	0.035	0.403
Soybean	0.239	0.055**	0.017***	0.073	0.154	0.156	0.17	0.634***	1	0.425**	0.251	0.023	0.376
Rice	0.222	0.036***	- 0.076***	-0.006**	0.216	0.115	0.05	0.371	0.425**	1	0.23	0.047	0.318
Coffee	0.281	0.141	0.091	-0.004**	0.274	0.235	0.33	0.263	0.251	0.23	1	0.293	0.356
Sugar Wheat	-0.007 0.101	0.235 0.2	0.162 0.161	0.13 0.09	0.227 0.303	0.283 0.302	0.279 0.256	0.035 0.403	0.023 0.376	0.047 0.318	0.293 0.356	1 0.226	0.226 1

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Source: R, package 'Hmisc'

3. Les modeles de type GARCH

A. GARCH

Les séries financières que nous souhaitons modéliser ont montré précedemment qu'elles ne pouvaient être modélisé par un une structure linéaire classique puisque ces séries ne suivent pas une distribution normale mais plutôt une distribution leptokurtique et présentent de l'hétéroscédasticité conditionnelle due à la volatilité, ainsi que de l'autocorrélation. La modélisation ARIMA classique ne permet pas de prendre en considération ces caractéristiques. C'est ainsi que Engle (1982) a proposé la modélisation ARCH prenant en compte la volatilité 16 en relâchant l'hypothèse de variance du terme d'erreur constante dans le temps 17 . L'objectif d'un modèle ARCH(q) consiste alors à modéliser la variance des erreurs de façon autorégressive conditionnellement à son information passée 18 . Un modèle ARCH(1) comportera alors un seul retard sur l'innovation au carré tel que 19 : $\sigma^2_{\ t} = \alpha_0 + \alpha_1 \varepsilon^2_{\ t-1}$. Ainsi, le modèle GARCH qui est une généralisation du modèle ARCH ajoute à ce dernier le fait que la variance conditionnelle suit un processus ARMA(p,q) 20 . On obtient ainsi un modèle GARCH tel que 21 :

$$\sigma^{2}_{i,t} = a_{0} + \sum_{j=1}^{p} a_{j} \varepsilon^{2}_{i,t-j} + \sum_{j=1}^{q} \beta_{j} \sigma^{2}_{i,t-j}$$

Ainsi, pour que le processus soit stationnaire, les paramètres ω , α et β doivent être positifs pour garantir la positivité de la variance conditionnelle²². De plus $\sum_{i=1}^p a_i + \sum_{j=1}^q \beta_j < 1.$

¹⁶ Kuma J., « *Modélisation hétéroscedastique : les modèles arch-garch* », Centre de recherches économiques et quantitatives, 2018, téléchargeable sur : https://hal.archives-ouvertes.fr/cel-01770037/document (consulté le 28 mai 2020).

¹⁷ Racicot F., Théoret R., « *Traité d'économétrie financière* » , Presse de l'université du Québec, 2001. 18 Kuma J., « *Modélisation hétéroscedastique : les modèles arch-garch* », Centre de recherches économiques et quantitatives, 2018, téléchargeable sur : https://hal.archives-ouvertes.fr/cel-01770037/document (consulté le 28 mai 2020).

¹⁹ Ibidem

²⁰ Ibidem

²¹ Ibidem

²² Charles A., Darné O., *«The accuracy of asymmetric GARCH model estimation»*, International Economics 157,2019.

Un modèle GARCH(1,1) sera donc représenté par les deux équations suivantes²³:

$$\varepsilon_t = \sigma_t z_t$$
 où z_t est un bruit blanc
$$\sigma_t^2 = \omega + a\varepsilon_{i,t-1}^2 + \beta_i \sigma_{i,t-1}^2$$

Le modèle GARCH permet donc de savoir si nous sommes dans une période de volatilité. On s'attend à ce que si la variance en t est grande alors elle aura un impact sur la variance du terme d'erreur à la période suivante. La modélisation de la volatilité dépend donc de la capacité du modèle à capter les impacts du terme d'erreur sur les rendements à la période précédente24.

B. DCC-GARCH

Même si le modèle GARCH permet de modéliser les variances conditionnelles de nos séries, il ne permet pas d'identifier les liens entre elles. Le modèle DCC-GARCH (Engle et Sheppard, 2001), est un modèle multivarié. Ainsi, nous pourrons rendre compte de l'évolution des corrélations dynamiques entre les rentabilités de nos séries de matières premières, par rapport à l'indice S&P 500.

En outre, on tire d'une modélisation GARCH, la matrice des écarts-types des variances H_t , tel que $25: H_t = D_t R_t D_t$, où R_t est la matrice des corrélations conditionnelles des résidus standardisés comme suit: $R_t = Q_t^{-1} Q_t Q_t^{-1}$ où Q_t est la matrice des variances et covariances conditionnelles des t.

On obtient alors un modèle DCC-GARCH:

$$Q_t = \Omega + a\varepsilon_{t-1}\varepsilon'_{t-1} + \beta Q_{t-1}$$

Nous obtenons alors les corrélations conditionnelles dynamiques :

$$\rho_{ijt} = \frac{q_{ijt}}{\sqrt{q_{iit}}q_{jjt}}$$

²³ Fares C., « Estimation et prévision de la volatilité de l'indice S&P500, Université du québec à Montéral. 24 Hisseine Saad M., « Estimation de la volatilité des données financières à haute fréquence : une approche par le modèle Score-GARCH », Economies et finances, Université Montpellier, 2017, téléchargeable sur : https://tel.archives-ouvertes.fr/tel-01730504/document (consulté le 10 mai 2020). 25 Ibidem

C. RESULTATS DES ESTIMATIONS

TABLEAU 8: RESULTATS DES MODELES GARCH(1,1)

	S&P500	WTI	Heating oil	Natural gas	Copper	Gold	Silver
mu	0.69***	0.76	0.89.	-0.74	0.57	0.74^{*}	0.34
	(0.21)	(0.54)	(0.52)	(0.82)	(0.46)	(0.29)	(0.47)
omega	0.83.	13.23.	15.77*	102.76***	17.45	2.84	4.85
	(0.48)	(6.97)	(7.24)	(25.84)	(17.21)	(2.64)	(3.13)
alpha1	0.22***	0.18^{*}	0.23**	0.44**	0.16.	0.14^{*}	0.19^{**}
	(0.07)	(80.0)	(80.0)	(0.16)	(0.09)	(0.07)	(0.06)
beta1	0.74***	0.66***	0.58***	0.12	0.49	0.74***	0.75***
	(0.06)	(0.11)	(0.12)	(0.11)	(0.40)	(0.15)	(0.07)
$\alpha + \beta$	0.96	0.84	0.81	0.56	0.65	0.88	0.94
Num. obs.	227	227	227	227	227	227	227
AIC	5.52	7.20	7.16	8.10	6.75	5.94	7.07
Log Likelihood	622.31	813.09	808.57	915.28	761.65	670.35	798.06

q

	Corn	Soybean	Rice	Coffee	Sugar	Wheat
mu	0.21	0.16	0.37	0.28	0.02	0.21
	(0.52)	(0.46)	(0.47)	(0.56)	(0.56)	(0.55)
omega	1.70	8.48.	3.17	66.11	6.60	3.26
	(1.46)	(4.44)	(2.24)	(57.14)	(4.56)	(3.02)
alpha1	0.05^{*}	0.15^{*}	0.17^{*}	0.11	0.15^{*}	0.06
	(0.02)	(0.07)	(0.09)	(80.0)	(0.07)	(0.03)
beta1	0.93***	0.71***	0.79***	0.00	0.77***	0.90***
	(0.03)	(0.11)	(0.09)	(0.77)	(0.09)	(0.05)
$\alpha + \beta$	0.98	0.86	0.96	0.11	0.98	0.96
Num. obs.	227	227	227	227	227	227
AIC	7.11	6.88	6.97	7.17	7.27	7.18
Log Likelihood	802.56	777.34	787.24	809.23	820.82	810.58

^{***}p < 0.001, **p < 0.01, *p < 0.05

Source: R, pagkage 'rugarch'

En premier lieu nous avons estimé un modèle GARCH(1,1) pour nos séries de rentabilités. Le tableau ci-dessous donne les résultats des estimations. Premièrement, nous pouvons voir que le paramètre α qui représente l'existence d'un effet ARCH et donc la persistance de court terme d'un choc sur les rendements, est significatif au seuil de 10% pur toutes les rentabilités exceptées pour le café et blé. Les résultats sont cohérents avec les résultats du test LM ARCH fait précédemment. De plus, nous pouvons voir que β est significatif au seuil de 0.1% pour toutes les séries exceptées le gas naturel, le cuivre, le café et le blé. La valeur de β sur les rentabilités du maïs est supérieure à 0.90 ce qui témoigne d'une grande persistance de la volatilité conditionnelle. Les

matières premières énergétiques présentent un coefficient β inférieur à 0.66, ce qui laisse supposer que les chocs passés contribuent moins à la persistance de long terme de la volatilité conditionnelle que sur les autres marchés de matières premières. Ainsi, nous pouvons conclure pour toutes les séries exceptée le café et le blé, la volatilité dépend des variations passées et donc que les chocs de volatilité ont tout de même tendance à être persistants sur ces marchés. Cette persistance est notamment très importante sur les rentabilités de l'indice S&P500 et des produits énergétiques pour les quelles les coefficients associés à α sont élevés. Cela veut dire que les chocs de volatilité d'aujourd'hui auront plus d'impact sur ces marchés que sur les autres. Nous pouvons également regarder la valeur de la somme de nos coefficients qui nous donne également une indication sur le niveau de persistance de ces chocs. Lorsque cette somme est proche de 1, la série présente un fort degré de persistance dans les variances des rendements financiers²⁶. Les rentabilités de l'indice S&P500, du sucre, du maïs et de l'argent ont une somme des coefficients proche de 1 ce qui veut dire que des chocs sur ces marchés ont tendance à être très persistants. Nous pouvons également regarder à l'aide du critère AIC, les séries les mieux modélisés par GARCH(1,1). De ce fait, nous pouvons dire que l'indice S&P500 et l'or sont les séries qui minimisent ce critère et donc les séries de rentabilités dont la volatilité conditionnelle est le mieux représenté par le modèle.

.

²⁶ Hisseine Saad M., « Estimation de la volatilité des données financières à haute fréquence : une approche par le modèle Score-GARCH », Economies et finances, Université Montpellier, 2017, téléchargeable sur : https://tel.archives-ouvertes.fr/tel-01730504/document (consulté le 10 mai 2020).

4. Correlations conditionnelles dynamiques (CCD GARCH)

Nous allons à présent nous servir des résidus obtenus grâce à nos estimation GARCH(1,1) pour modéliser les corrélations dynamiques conditionnelles entre les rentabilités des différentes matières premières et l'indice S&P 500. Afin de nous assurer que la nature des corrélations entre nos matières premières et le S&P500 est dynamique nous allons appliquer le test d'Engle et Sheppard sur nos variables.

TABLEAU 9: TEST DCC

	Statistique	p-value
WTI	29.472	0.006
Natural gaz	5.4680	0.485
Heating oil	20.872	0.075
Copper	51.127	1.907663e-06
Gold	50.755	2.211099e-06
Silver	20.525	0.083
Corn	10.962	0.614
Soybean	12.367	0.498
Rice	20.152	0.091
Coffee	13.709	0.395
Sugar	6.513	0.925
Wheat	8.669	0.797

Le tableau 9 ci-dessus, nous indique que le modélisation DCC n'est pas adaptée pour le gaz naturel, le maïs, le sola, le café, le sucre et le blé. En outre, l'hypothèse nulle de constance des corrélations conditionnelles sont acceptées pour ces variables. Les corrélations avec les marchés financiers ne sont pas dynamiques. En revanche nous pouvons appliquer cette spécification pour le fioul, le cuivre, l'or et l'argent ainsi que le riz.

TABLEAU 10: ESTIMATION DES PARAMETRES DCC-GARCH(1,1) AVEC L'INDICE S&P500

	a_o	a_1	$oldsymbol{eta}_1$	$a_1 + \beta_1$	ω	dcc_a	dcc_b	Log likehood
WTI	0.007	0.142**	0.703***		0.001*	0.088***	0.892***	-370.2854
	(0.006)	(0.077)	(0.096)		(0.001)	(0.027)	(0.033)	
Heating	0.882*	0.228*	0.584***		0.001	0.090***	0.892***	-371.0922
oil	0.078	0.084	0.116		0.001	0.034	0.034	
Natural	-0.003***	0.021	0.963***		0.000	0.000	0.922***	-490.1921
gas	(0.000)	(0.027)	(0.051)		(0.000)	(0.000)	(0.094)	
_								-316.1869
Copper	0.004	0.037	0.949***		0.000	0.078*	0.862***	
	0.005	0.035	0.085		0.000	0.045	0.098	
Gold	0.004	0.129**	0.949***		0.000	0.078*	0.862***	-244.842
	0.005	0.06	0.085		0.000	0.045	0.098	
Silver	0.762***	0.129**	0.748***		2.823	0.000***	0.929***	-244.842
	0.242	0.066	0.173		3.015	0.000	0.183	
Corn	0.002	0.051**	0.926***		0.000	0.078	0.029	-369.983
	0.005	0.023	0.029		0.000	0.084	0.689	
Soybean	0.002	0.164*	0.673***		0.001	0.041	0.076	-374.6754
•	0.004	0.099	0.205		0.001	0.061	0.309	
Rice	0.004	0.180	0.781***		0.000	0.058***	0.000	-343.073
	0.004	0.112	0.097		0.000	0.065	1.018	
Coffee	0.002	0.000	0.999		0.000	0.000	0.978***	-355.4719
	0.005	0.000	0.000		0.000	0.000	0.469	
Sugar	0.001	0.149**	0.774***		0.000	0.018	0.809***	-379.2257
Ü	0.006	0.062	0.073		0.000	0.031	0.139	
Wheat	0.002	0.056	0.898***		0.000	0.118	0.255	-394.7082
	0.005	0.037	0.069		0.000	0.088	0.465	

Le tableau ci-dessus nous donne les paramètres des modèles DCC-GARCH de nos douze matières premières par rapport à l'indice S&P500. Nous pouvons voir que le coefficient a_0 est significatif uniquement pour le fioul au seuil de 10%, le gaz naturel et l'argent au seuil de 1%. Le coefficient ω est significative au seuil de 10% uniquement pour le WTI. Nous retrouvons les coefficients a_1 et β_1 qui nous donnent une indication sur la persistance des chocs à court et long termes. Le coefficient a_1 est significatif pour le fioul et le soja au seuil de 10%, ainsi que pour le WTI, l'or, l'argent, le maïs et le sucre au seuil de 5%. Le paramètre β_1 représentant la persistance de long terme des chocs de volatilité est significatif au seuil de 1% pour tous les actifs à l'exception du café. Ce coefficient est élevé pour le maïs, l'or, le cuivre et le gas naturel. Nous pouvons donc dire que les volatilités de nos séries à l'exception du café, peuvent s'expliquer davantage par les

volatilités passées que par les chocs existants sur ces marchés 27 . Les paramètres $\boldsymbol{dcc_a}$ et $\boldsymbol{dcc_b}$ sont tous deux significatifs pour les séries WTI, heating oil, copper, gold et silver ce qui est en accord avec le test d'Engle et Sheppard vu précédemment et nous confirme que les corrélations conditionnelles sont bien dynamiques. Les autres corrélations ne peuvent donc être interprétées.

FIGURE 5: EVOLUTION DES CORRELATIONS CONDITIONNELLES

²⁷ Ouriemi I., « Vers des approches dynamiques des marchés énergétiques : effet de la financiarisation », Conservatoire national des arts et métiers – CNAM, 2018, disponible sur : https://tel.archives-ouvertes.fr/tel-02111655/document (consulté le 15 mai).

Source: R, package 'Hmisc'

La figure 5 ci-dessus représente l'évolution des corrélations conditionnelles des séries entre le marché S&P500 et les différents marchés de matières premières. Nous pouvons voir que ces corrélations semblent constantes pour les rentabilités du soja, du maïs et du riz, on observe bien une absence de corrélations dynamiques. Les rentabilités semblent d'ailleurs moins volatiles depuis ces cinq dernières années. En revanche, les graphiques montrent que les corrélations du WTI et du fioul avec le S&P500 semblent avoir changé significativement. En outre, avant la crise de 2008 on observe des corrélations négatives allant jusqu'à -0.4. Après la crise on observe de fortes corrélations positives pouvant aller jusqu'à 0.6. En effet, on constate un changement dans la structure des corrélations à partir de 2008 jusqu'à aujourd'hui, avec des corrélations toujours supérieures à 0. L'impact de la crise sur les rentabilités des futures de ces deux matières premières énergétiques est indéniable.

De plus, sur la période 2008-2009 on constate des pics de corrélations sur toutes les rentabilités de matières premières agricoles. On observe également un creux suggérant une décorrélation des actifs avec les marchés financiers avec les rentabilités des métaux sur cette période. Ces observations coïncident avec l'analyse faite sur les résultats des valeurs de β_1 de notre modèle DCC-GARCH. Nous pouvons alors supposer un phénomène

de contagion entre les marchés puis qu'un choc sur l'un va entraîner une persistance des volatilités de rentabilités. Cependant, les graphiques des volatilités conditionnelles, notamment ceux des métaux, montrent bien que cette volatilité n'est pas nouvelle et que la période de crise n'a fait qu'exacerber ces corrélations. Nous pouvons donc conclure que les volatilités semblent être accentuées par les chocs sur les autres marchés pouvant ainsi entraîner de potentiels co-mouvements, notamment avec le WTI et le *heating oil* qui atteignent des coefficients de corrélations allant jusqu'à 0.7. Nous pouvons voir que ces marchés se remettent différemment de ces chocs, puisqu'en effet les matières premières agricoles semblent retrouver rapidement les niveaux de corrélation d'avant la crise tandis que les marchés énergétiques et de métaux semblent avoir une structure de corrélations différente. On suppose donc que ces marchés ont des connexions plus étroites avec les marchés financiers. D'ailleurs, nous remarquons que seul l'or semble maintenir une corrélation négative avec les marchés financier. Une des interprétations possibles réside dans le fait que tout comme les obligations d'état, l'or peut être perçue comme valeur refuge, ce qui explique qu'il soit décorrélé des marchés financiers.

IV- CONCLUSION ET DISCUSSION

Notre analyse portait sur le phénomène de financiarisation des matières premières et notamment de son effet sur la volatilité des prix. Pour pouvoir faire des différences entre les différentes catégories de produits de base nous avons pris douze matières premières dont des matières énergétiques, agricoles et des métaux. Pour analyser la volatilité de leurs rendements nous avons réalisé une étude économétrique portant sur le modèle GARCH(1,1) dont les résultats sur la volatilité conditionnelle ont permis de réaliser un DCC-GARCH afin de cerner les corrélations existantes entre ces marchés des produits de base et les marchés financiers représentés par l'indice S&P500. Les séries de nos rentabilités présentaient une distribution anormale avec des queues plus épaisses. Dans la majorité des cas, nous dénotions également de l'hétéroscédasticité conditionnelle ainsi que de l'autocorrélation. Seuls les rendements des séries de café et de

blé semblaient ne pas présenter d'effet ARCH et les modélisations qui ont suivi concluaient une variance non conditionnelle du terme d'erreur.

Cette modélisation GARCH(1,1) a permis de conclure plusieurs faits stylisés. Premièrement, nous avons remarqué qu'un choc de volatilité aura plus d'effet sur la volatilité des rendements des matières premières énergétiques que sur les autres. Cet effet est exacerbé pour le gaz naturel. Ensuite, l'analyse des termes autorégressifs nous a permis de conclure que les séries de rendements agricoles présentaient une plus grande persistance de la volatilité dans leurs distributions. Ainsi, pour ces séries, les variances passées ont davantage d'importance dans la contribution à la variance conditionnelle. En outre, si la variance est faible à l'instant t, elle le sera probablement également en t+1 puisque la volatilité s'explique par la volatilité passée des rendements²⁸. Ce phénomène s'observe particulièrement sur les marchés du maïs, du soja, du riz et du sucre.

Ensuite, afin d'identifier un lien potentiel entre l'évolution de la volatilité des matières premières et l'évolution observée sur les marchés financiers, nous avons eu recours à un modèle multivarié DCC-GARCH pour identifier l'existence d'un phénomène de financiarisation. Ainsi, deux conclusions peuvent-être tirées de notre analyse. La première est que les chocs produits par les crises entraînent une exacerbation des corrélations entre les marchés des produits de base et les marchés financiers. Cela montre bien qu'en cas de crise, la diversification du portefeuille ne protège plus du risque systématique puisque des corrélations artificielles se créent entre les actifs. Ensuite, nous avons démontré que même si ces corrélations n'étaient pas nouvelles, elles ont été exacerbées sur certains marchés tel que le WTI et le heating oil depuis la crise de 2008. En effet, avant la crise on observe des corrélations négatives entre les rentabilités du WTI et du fioul. Depuis lors, les corrélations sont positives ce qui supposent que les marchés évoluent à présent dans le même sens. Ainsi, même si le lien de causalité n'a pas été clairement établi ici, la hausse des corrélations coïncide avec l'augmentation d'un transfert de volatilité des rendements qui serait causé par le phénomène de financiarisation. En outre, cette hausse des corrélations conditionnelles entraîne une hausse des volatilités des rentabilités. Les rentabilités des actifs des produits de base dépendraient donc aussi des autres marchés financiers.

_

²⁸ Hisseine Saad M., « *Estimation de la volatilité des données financières à haute fréquence : une approche par le modèle Score-GARCH »*, Economies et finances, Université Montpellier, 2017, téléchargeable sur : https://tel.archives-ouvertes.fr/tel-01730504/document (consulté le 10 mai 2020).

TABLE DES MATIERES

I- Int	troduction	5
II-	Le phénomène de financiarisation : analyse théorique	8
A.	Faits stylisés	8
B.	Présentation des données	10
III-	Analyse économétrique	11
1.	Analyse préliminaire des séries	11
A.	Statistiques basiques	11
В.	Observations atypiques	14
2.	Conditions du modèle GARCH	14
A.	Les tests	14
В.	Etude des corrélations linéaires	17
3. 1	Les modèles de type GARCH	19
A.	garch	19
В.	DCC-GARCH	20
C.	Résultats des estimations	21
4. (Corrélations conditionnelles dynamiques (CCD GARCH)	23
IV-	Conclusion et Discussion	27
V -	Bibliographie	31
ANNEX	(FS	32

TABLE DES TABLEAUX ET FIGURES

1. Figures	
Figure 1: Evolution des indices GSCI et S&P500	9
Figure 2: évolution des prix de 10 des matières premières	
Figure 3: Évolution des prix futures des matières premières	
Figure 4: Variance conditionnelle des rentabilités de l'indice S&P500 et de l'or	
Figure 5: Evolution des corrélations conditionnelles	
2. Tableaux	
Tableau 1: Les données et leur provenance	10
Tableau 2 : Statistiques basiques des rentabilités	12
Tableau 3: observations atypiques	14
Tableau 4: Test de racine unitaire (ADF)	15
Tableau 5: TEST DE JARQUE-BERRA, ARCH TEST ET LJUNG BOX	16
Tableau 6: Matrice de corrélations de Spearman sur la période total	17
Tableau 7: corrélations des rentabilités avant Septembre 2008	
Tableau 8: résultats des modèles GARCH(1,1)	
Tableau 9 : TEST DCC	
Tableau 10. Estimation des paramètres DCC CADCU(1.1) avec l'indice SCDE00	24

V- BIBLIOGRAPHIE

- Bicchetti D., Maystre N., « Financiarisation des marchés de matières premières et conséquences », Économie rurale, OpenEdition Jounarls, 2013
- Crépu J, Boris J-P., « Traders Le marché secret des matières premières », Arte, 2013
- Charles A., Darné O., «The accuracy of asymmetric GARCH model estimation», International Economics 157,2019.
- Fares.C « Estimation et prévision de la volatilité de l'indice S&P500, Université du Québec à Montéral,
- Gueye Fam P., « Marchés des matières premières agricoles et dynamique des cours : un réexamen par la financiarisation », Économies et finances. Université de Toulon, 2016.
- Gorton G., Geert Rouwenhorst K., «Facts and Fantasies about Commodity Futures», The Rodney L. White Center for Financial Research, University of Pennyslavania, 2004
- Hisseine Saad M., « Estimation de la volatilité des données financières à haute fréquence : une approche par le modèle Score-GARCH », Economies et finances, Université Montpellier, 2017, téléchargeable sur : https://tel.archives-ouvertes.fr/tel-01730504/document (consulté le 10 mai 2020).
- Hull J., « Options, futures et autres actifs dérivés », Pearson, 10e Edition.
- Jacquard A., « Voix de la résistante, Finitude de notre domaine », Le monde diplomatique, Mai 2008, p.28
- Jégourel Y., « Les produits financiers dérivés », La découverte, collection repère, économie.
- Lecocq P-E., Courleux F., «Vers la définition d'un nouveau cadre de régulation des marchés dérivés de matières agricoles», Centre d'études et de prospective, N°3 septembre 2011, téléchargeable sur : https://www.researchgate.net/publication/319242392_Vers_la_definition_d'un_nouveau_cadre_de_re gulation_des_marches_derives_de_matieres_premieres_agricoles (consulté le 17 février 2020)
- Ouriemi I., « Vers des approches dynamiques des marchés énergétiques : effet de la financiarisation », Conservatoire national des arts et métiers – CNAM, 2018, disponible sur : https://tel.archivesouvertes.fr/tel-02111655/document (consulté le 15 mai).
- Saadi H., « Le phénomène des mouvements joints des prix internationaux des matières premières »,
 Revue Tiers Monde Vol 42, No. 168, Octobre-Décembre 2001
- Valéry P., « Regards sur le monde actuel », Librairie stock,1931, p.11

ANNEXES

1. Rentabilités des matières premières

2. Statistiques basiques des séries corrigées

	WTI	Heating oil	Natural gas	Copper	Gold	Silver	Corn	Soybean	Rice	Coffee	Sugar	Wheat
Nobs												
NAs	228	228	228	228	228	228	228	228	228	228	228	228
Minimum	1	1	1	1	1	1	1	1	1	1	1	1
Maximum	-28.79	-46.054	-46.081	-22.509	-14.823	-27.189	-27.209	-24.51	-25.99	-25.619	-30.584	-27.637
1. Quartile	26.016	30.989	45.633	23.458	12.986	24.908	20.041	17.875	24.901	28.156	27.047	28.271
3.Quartile	-5.173	-4.033	-7.792	-4.073	-2.08	-4.776	-4.081	-3.471	-4.244	-5.577	-5.937	-5.16
Mean	6.702	6.016	7.108	5.096	3.658	6.02	5.254	5.21	5.161	4.931	5.852	5.344
Median	0.38	0.417	-0.431	0.625	0.79	0.604	0.288	0.384	0.406	0.277	0.162	0.167
Sum	1.501	0.94	0	0.466	0.738	0.443	-0.066	0.794	0.432	-0.659	-0.393	-0.209
	86.329	94.761	-97.832	141.984	179.443	137.006	65.432	87.263	92.231	62.988	36.799	37.832
SE Mean												
LCL Mean	0.594	0.625	0.943	0.471	0.317	0.575	0.565	0.513	0.542	0.572	0.623	0.578
UCL Mean	-0.79	-0.814	-2.29	-0.303	0.167	-0.53	-0.825	-0.627	-0.661	-0.849	-1.065	-0.973
Variance	1.551	1.649	1.428	1.554	1.414	1.737	1.402	1.396	1.474	1.404	1.389	1.306
Stdev	80.099	88.694	201.966	50.446	22.761	75.161	72.49	59.831	66.597	74.248	88.001	75.868
Skewness	8.95	9.418	14.211	7.103	4.771	8.67	8.514	7.735	8.161	8.617	9.381	8.71
Kurtosis	-0.422 0.388	-0.764 3.34	-0.024 1.225	0.022 0.635	-0.144 0.279	-0.223 0.696	-0.245 0.499	-0.651 0.977	-0.211 0.869	0.413 0.611	0.108 0.365	0.067 0.463

3. Boxplot des rentabilités

4. Corrélogramme des rentabilités

Colonne1	S&P GSCI	S&P 500	WTI	Heating oil	Natural gas	Copper	Gold	Silver	Corn	Soybeans	Rice	Coffee	Sugar	Wheat
janv-01	226,974	1366,01	28,66	0,786	5,707	0,849	265,60	4,791	2,0900	4,5950	5,7500	0,64	0,10	3,1825
févr-01	221,987	1239,94	27,39	0,733	5,236	0,810	266,80	4,472	2,1450	4,5350	5,9700	0,64	0,09	3,1125
mars-01	212,738	1160,33	26,29	0,757	5,025	0,759	257,90	4,278	2,0325	4,2850	5,4000	0,60	0,08	3,0125
avr-01	224,231	1249,46	28,46	0,743	4,695	0,767	264,00	4,320	1,9925	4,3425	5,5200	0,62	0,10	3,3100
mai-01	217,624	1255,82	28,37	0,780	3,914	0,752	265,30	4,396	1,9275	4,5100	5,7450	0,57	0,09	3,2350
juin-01	202,664	1224,42	26,25	0,709	3,096	0,705	270,60	4,292	1,8875	4,8250	5,1000	0,56	0,10	2,9300
juil-01	201,72	1211,23	26,35	0,697	3,296	0,678	266,20	4,210	2,1875	5,1275	4,9300	0,52	0,08	3,0675
août-01	203,003	1133,58	27,20	0,766	2,380	0,679	274,40	4,162	2,1900	4,7950	3,9800	0,51	0,08	2,9900
sept-01	181,718	1040,94	23,43	0,664	2,244	0,646	292,40	4,647	2,0975	4,5125	4,0500	0,48	0,07	2,9250
oct-01	175,381	1059,78	21,18	0,598	3,291	0,622	279,50	4,214	2,0075	4,2850	3,6000	0,44	0,07	3,0150
nov-01	169,575	1139,45	19,44	0,532	2,701	0,722	273,90	4,128	2,0850	4,4450	4,0150	0,43	0,08	2,8625
déc-01	169,157	1148,08	19,84	0,551	2,570	0,653	278,70	4,579	1,9975	4,2100	3,6900	0,46	0,07	2,8400
janv-02	166,026	1130,2	19,48	0,523	2,138	0,731	282,10	4,216	2,0600	4,3025	3,7250	0,45	0,06	2,8550
févr-02	176,531	1106,73	21,74	0,563	2,357	0,714	296,70	4,497	2,0050	4,3575	3,5300	0,45	0,06	2,7675
mars-02	201,228	1147,39	26,31	0,669	3,283	0,761	302,60	4,641	2,0250	4,7625	3,7200	0,57	0,06	2,9000
avr-02	204,233	1076,92	27,29	0,689	3,795	0,733	308,90	4,532	1,9350	4,6225	3,5050	0,51	0,06	2,7400
mai-02	194,288	1067,14	25,31	0,630	3,217	0,762	326,50	5,026	2,1400	5,0875	4,2850	0,52	0,06	2,9300
juin-02	202,777	989,81	26,86	0,680	3,245	0,768	313,50	4,833	2,2550	5,3650	4,0800	0,47	0,06	3,2250
juil-02	203,405	911,62	27,02	0,676	2,954	0,678	303,20	4,595	2,4725	5,6750	4,6450	0,47	0,06	3,6850
août-02	215,23	916,07	28,98	0,748	3,296	0,687	312,40	4,437	2,5950	5,5900	3,9500	0,52	0,06	4,2300
sept-02	227,526	815,28	30,45	0,802	4,138	0,660	323,90	4,530	2,5150	5,4575	4,0350	0,55	0,07	4,7525
oct-02	217,423	885,76	27,22	0,744	4,156	0,714	318,00	4,499	2,4750	5,6525	3,7400	0,66	0,08	4,6350
nov-02	217,509	936,31	26,89	0,757	4,200	0,750	316,80	4,414	2,4025	5,7875	4,0800	0,67	0,08	4,3275
déc-02	235,154	879,82	31,20	0,866	4,789	0,697	347,60	4,801	2,3575	5,6950	3,8500	0,60	0,07	3,5975
janv-03	253,451	855,7	33,51	0,959	5,605	0,792	368,30	4,853	2,3825	5,6400	4,4300	0,65	0,09	3,5625
févr-03	278,572	841,15	36,60	1,256	8,101	0,775	350,20	4,585	2,3175	5,7700	4,5300	0,57	0,09	3,4100
mars-03	232,279	848,18	31,04	0,792	5,060	0,713	335,90	4,461	2,3650	5,7450	5,1200	0,59	0,08	3,2075
avr-03	215,638	916,92	25,80	0,761	5,385	0,725	339,10	4,638	2,3275	6,2350	6,2400	0,68	0,07	3,2150
mai-03	235,242	963,59	29,56	0,754	6,251	0,780	364,50	4,526	2,4425	6,2450	5,8700	0,58	0,07	3,2725
juin-03	233,203	974,5	30,19	0,781	5,411	0,748	346,00	4,557	2,2850	6,2125	5,8000	0,59	0,06	3,0025
juil-03	233,156	990,31	30,54	0,793	4,718	0,818	354,00	5,116	2,0600	5,3250	7,4400	0,63	0,07	3,4225
août-03	242,459	1008,01	31,57	0,819	4,731	0,803	375,70	5,109	2,3325	5,9500	7,4500	0,61	0,06	3,6525
sept-03	232,634	995,97	29,20	0,778	4,830	0,813	385,40	5,137	2,2025	6,7725	7,3100	0,63	0,06	3,5675
oct-03	238,49	1050,71	29,11	0,786	4,893	0,937	384,50	5,059	2,4725	7,9425	7,5450	0,59	0,06	3,6675
nov-03	245,803	1058,2	30,41	0,835	4,925	0,907	396,80	5,355	2,4500	7,5625	8,4100	0,58	0,06	4,0500
déc-03	260,543	1111,92	32,52	0,913	6,180	1,043	415,70	5,953	2,4600	7,8900	8,5400	0,65	0,06	3,8475
janv-04 févr-04	260,088 278,656	1131,13	33,05	0,931	5,397	1,143	402,20	6,246	2,7625	8,1950	8,0600	0,76	0,06	3,9650
			36,16	0,961	5,416	1,343	396,40	6,696	2,9625	9,4250	8,9600	0,75	0,06	3,8425
mars-04 avr-04	289,512	1126,21 1107,3	35,76	0,886	5,933	1,359	427,30	7,936	3,2000	9,9500	9,4500	0,74	0,06	4,1250
mai-04	301,413	1107,3	37,38	0,954	5,862	1,210	387,00	6,078	3,1650	10,3400	11,3000	0,67	0,07	3,9400
juin-04		1140,84	39,88	0,999	6,442	1,278	394,00	6,105	3,0400	8,1400	10,1700	0,86	0,07	3,8300
juin-04 juil-04	307,478		37,05	1,006	6,155	1,205	392,60	5,776	2,5750	8,9300	10,0600	0,73	0,07	3,5850
août-04		1101,72	43,80	1,157	6,112	1,308	391,00	6,550	2,1725	5,9950	7,0900	0,66	0,08	3,3375
			42,12	1,111	5,074	1,281	410,40	6,771	2,2775	6,2725	7,9300	0,69	0,08	3,2975
sept-04	33/,/33	1114,58	49,64	1,392	6,795	1,400	418,70	6,916	2,0550	5,2700	7,0400	0,82	0,09	3,3675

oct-04	355,249	1130,2	51,76	1,446	8,725	1,348	428,50	7,292	2,0250	5,2750	6,7800	0,74	0,09	3,4700
nov-04	342,502	1173,82	49,13	1,393	7,620	1,443	451,30	7,723	1,9250	5,3475	7,49	0,94	0,09	3,4100
déc-04	310,467	1211,92	43,45	1,230	6,149	1,487	437,50	6,807	2,0475	5,4775	7,1800	1,04	0,09	3,3800
janv-05	331,483	1181,27	48,20	1,331	6,321	1,463	421,80	6,737	1,9700	5,1475	6,6700	1,05	0,09	3,2575
févr-05	355,853	1203,6	51,75	1,491	6,730	1,500	436,50	7,359	2,1450	6,1550	6,5800	1,19	0,08	3,6800
mars-05	383,622	1180,59	55,40	1,658	7,653	1,509	428,70	7,191	2,1300	6,2750	7,0700	1,26	0,09	3,3800
avr-05	353,685	1156,85	49,72	1,436	6,585	1,498	435,00	6,902	2,0475	6,1925	7,4200	1,25	0,09	3,4100
mai-05	354,888	1191,5	51,97	1,452	6,379	1,505	416,30	7,444	2,2200	6,8025	7,3450	1,18	0,09	3,3725
juin-05	379,788	1191,33	56,50	1,619	6,981	1,554	435,90	7,028	2,1225	6,5175	6,4000	1,05	0,09	3,2800
juil-05	401,999	1234,18	60,57	1,636	7,885	1,688	429,90	7,238	2,3650	6,7175	6,7300	1,03	0,10	3,3925
août-05	465,151	1220,33	68,94	2,053	11,472	1,695	433,80	6,781	2,0150	5,8675	6,7400	0,98	0,10	3,4300
sept-05	469,56	1228,81	66,24	2,067	13,921	1,802	469,00	7,458	2,0550	5,7325	7,2600	0,93	0,11	3,8025
oct-05	422,876	1207,01	59,76	1,770	12,205	1,896	465,10	7,550	1,9625	5,6475	7,1200	0,97	0,11	3,7125
nov-05	415,909	1249,48	57,32	1,616	12,587	2,075	494,60	8,280	1,8750	5,5800	7,5350	0,93	0,12	3,6900
déc-05	431,721	1248,29	61,04	1,728	11,225	2,162	517,10	8,820	2,1575	6,0200	7,9350	1,07	0,15	3,8700
janv-06	453,918	1280,09	67,92	1,802	9,316	2,236	570,80	9,850	2,1875	5,9425	8,4950	1,18	0,18	3,9750
févr-06	415,863	1280,66	61,41	1,712	6,714	2,186	561,60	9,720	2,2800	5,8025	8,2200	1,12	0,17	4,3900
mars-06	442,519	1294,83	66,63	1,862	7,210	2,488	581,80	11,480	2,3600	5,7150	8,5600	1,07	0,18	4,1850
avr-06	474,786	1310,61	71,88	2,013	6,555	3,336	651,80	13,510	2,3825	5,8725	8,2200	1,07	0,17	4,2975
mai-06	474,555	1270,09	71,29	1,961	6,384	3,717	642,50	12,398	2,5125	5,7950	9,1200	0,99	0,15	4,8775
juin-06	484,675	1270,2	73,93	1,964	6,104	3,463	613,50	10,910	2,3550	5,9475	9,2000	1,00	0,16	4,9975
juil-06	498,248	1276,66	74,40	1,968	8,211	3,610	634,20	11,325	2,3900	5,7950	9,2100	0,99	0,15	4,9275
août-06	465,868	1303,82	70,26	1,954	6,048	3,469	625,90	12,900	2,3200	5,4225	8,4900	1,04	0,12	4,7575
sept-06	428,053	1335,85	62,91	1,685	5,620	3,459	598,60	11,450	2,6250	5,4750	9,6650	1,08	0,11	4,9600
oct-06	429,224	1377,94	58,73	1,587	7,534	3,336	604,10	12,212	3,2075	6,3025	9,4900	1,08	0,12	5,1600
nov-06	463,655	1400,63	63,13	1,813	8,844	3,172	646,90	13,925	3,7700	6,8550	9,9800	1,20	0,12	5,3400
déc-06	433,647	1418,3	61,05	1,598	6,299	2,854	635,20	12,818	3,9025	6,8350	10,1300	1,26	0,12	5,0975
janv-07	427,218	1438,24	58,14	1,655	7,667	2,584	652,00	13,514	4,0400	7,1950	10,1050	1,18	0,11	4,8875
févr-07	448,491	1406,82	61,79	1,780	7,300	2,733	669,40	14,100	4,2525	7,7325	10,2200	1,18	0,11	5,1600
mars-07	468,115	1420,86	65,87	1,879	7,730	3,144	663,00	13,390	3,7450	7,6125	10,0800	1,09	0,10	4,5650
avr-07	474,464	1482,37	65,71	1,914	7,863	3,542	680,50	13,445	3,5800	7,2850	9,9500	1,03	0,09	4,8475
mai-07	470,648	1530,62	64,01	1,883	7,935	3,394	661,00	13,409	3,9025	8,0625	10,2100	1,12	0,09	5,0400
juin-07	· ·	1503,35	70,68	2,032	6,773	3,454	648,10	12,353	3,2950	8,5000	10,3900	1,11	0,09	5,9650
juil-07	515,941	1455,28	78,21	2,100	6,191	3,654	666,90	12,950	3,2575	8,3400	10,4250	1,14	0,10	6,2900
août-07	495,305	1473,99	74,04	2,042	5,468	3,411	673,00	12,063	3,2400	8,6800	10,8500	1,13	0,09	7,2100
sept-07	546,133	1526,75	81,66	2,238	6,870	3,631	742,80	13,794	3,7300	9,9125	11,7300	1,29	0,10	9,2925
oct-07	599,31	1549,38	94,53	2,508	8,330	3,468	792,00	14,377	3,7550	10,1000	11,8500	1,21	0,10	8,3200
nov-07	577,987	1481,14	88,71	2,530	7,302	3,157	782,20	13,963	3,8450	10,8000	12,8700	1,26	0,10	9,0700
déc-07	610,169	1468,36	95,98	2,644	7,483	3,031	834,90	14,797	4,5550	11,9900	13,5500	1,36	0,11	9,1350
janv-08		1378,55	91,75	2,535	8,074	3,290	922,70	16,948	5,0125	12,7450	14,8200	1,38	0,12	9,6725
févr-08		1330,63	101,84	2,840	9,366	3,852	972,10	19,808	5,4600	15,2200	18,0000	1,65	0,14	11,7000
mars-08	668,913	1322,7	101,58	3,049	10,101	3,864	916,20	17,275	5,6725	11,9725	19,6900	1,27	0,12	9,6500
avr-08		1385,59	113,46	3,177	10,843	3,934	862,80	16,502	6,0025	13,0175	21,4800	1,35	0,11	8,6400
mai-08	786,583	1400,38	127,35	3,660	11,703	3,628	887,30	16,827	5,9925	13,6350	19,1000	1,34	0,10	8,0200
juin-08	862,7	1280	140,00	3,903	13,353	3,896	926,20	17,420	7,2475	16,0500	20,2100	1,51	0,12	8,8300
juil-08	760,199	1267,38	124,08	3,439	9,119	3,717	913,90	17,750	5,8750	13,9575	16,5800	1,39	0,14	8,1475

août-08	708,156	1282,83	115,46	3,182	7,943	3,430	829,30	13,607	5,6825	13,3200	18,9000	1,42	0,13	8,1875
sept-08	622,237	1166,36	100,64	2,864	7,438	2,888	874,20	12,231	4,8750	10,4500	18,8950	1,30	0,12	7,1200
oct-08	449,461	968,75	67,81	2,006	6,783	1,844	716,80	9,730	4,0150	9,2525	15,0450	1,13	0,12	5,7300
nov-08	390,646	896,24	54,43	1,674	6,510	1,624	816,20	10,185	3,4950	8,8300	13,2100	1,14	0,12	5,6300
déc-08	349,038	903,25	44,60	1,4057	5,622	1,395	883,60	11,270	4,0700	9,7225	15,3400	1,12	0,12	6,3000
janv-09	336,205	825,88	41,68	1,4538	4,417	1,462	927,3	12,560	3,7900	9,8000	11,77	1,19	0,13	6,0100
févr-09	336,24	735,09	44,76	1,2659	4,198	1,526	941,5	13,085	3,5075	8,7450	12,37	1,09	0,13	5,5200
mars-09	358,526	797,87	49,66	1,3438	3,776	1,839	922,6	12,975	4,0475	9,5200	12,41	1,16	0,13	5,7325
avr-09	365,848	872,81	51,12	1,3147	3,373	2,053	890,7	12,305	3,9625	10,7000	12,90	1,15	0,14	5,7625
mai-09	443,053	919,14	66,31	1,6419	3,835	2,198	978,8	15,600	4,3625	11,8400	12,35	1,37	0,16	6,8700
juin-09	450,217	919,32	69,89	1,7180	3,835	2,258	927,1	13,574	3,4775	12,2625	12,23	1,17	0,17	5,6975
juil-09	457,407	987,48	69,45	1,7938	3,653	2,617	953,7	13,933	3,3950	11,3400	13,77	1,28	0,19	5,5925
août-09	453,787	1020,62	69,96	1,7792	2,977	2,808	951,7	14,898	3,2625	11,0000	13,86	1,21	0,24	5,0500
sept-09	462,748	1057,08	70,61	1,7960	4,841	2,809	1 008,0	16,636	3,4400	9,2700	13,32	1,28	0,24	4,7650
oct-09	496,808	1036,2	77,00	1,9811	5,045	2,948	1 039,7	16,246	3,6600	9,7800	14,36	1,36	0,22	4,9900
nov-09	512,574	1095,63	77,28	2,0181	4,848	3,149	1 181,1	18,495	4,0275	10,6050	15,31	1,42	0,22	5,6050
déc-09	524,621	1115,1	79,36	2,1188	5,572	3,328	1 095,2	16,822	4,1450	10,3975	14,57	1,36	0,27	5,3625
janv-10	486,145	1073,87	72,89	1,9029	5,131	3,046	1 083,0	16,183	3,5650	9,1400	14,20	1,32	0,30	4,8700
févr-10	517,484	1104,49	79,66	2,0249	4,813	3,269	1 118,3	16,500	3,7800	9,5100	13,43	1,29	0,24	5,1100
mars-10	530,159	1169,43	83,76	2,1646	3,869	3,546	1 113,3	17,512	3,4500	9,4100	12,22	1,36	0,17	4,6175
avr-10	549,941	1186,69	86,15	2,2885	3,920	3,338	1 180,1	18,611	3,6625	9,8950	12,36	1,35	0,15	5,0550
mai-10	488,193	1089,41	73,97	1,9802	4,341	3,097	1 212,2	18,411	3,5900	9,3775	11,64	1,34	0,14	4,8150
juin-10	495,178	1030,71	75,63	1,9817	4,616	2,936	1 245,5	18,671	3,5425	9,4850	9,43	1,64	0,18	4,8600
juil-10	524,809	1101,6	78,95	2,0427	4,923	3,307	1 181,7	17,987	3,9275	10,5250	10,56	1,76	0,20	6,7450
août-10	499,162	1049,33	71,92	1,9944	3,816	3,361	1 248,3	19,398	4,2450	10,0800	11,09	1,77	0,20	6,8775
sept-10	546,065	1141,2	79,97	2,2440	3,872	3,646	1 307,8	21,798	4,9575	11,0675	12,57	1,83	0,25	7,0775
oct-10	564,16	1183,26	81,43	2,2201	4,038	3,732	1 357,1	24,560	5,8200	12,2600	14,43	2,03	0,29	7,7100
nov-10	575,838	1180,55	84,11	2,3169	4,180	3,823	1 385,0	28,185	5,3000	12,4300	13,88	2,01	0,28	7,3000
déc-10	631,831	1257,64	91,38	2,5437	4,405	4,440	1 421,1	30,910	6,2900	13,9375	14,00	2,41	0,32	8,5100
janv-11	655,265	1286,12	92,19	2,7468	4,420	4,451	1 333,8	28,174	6,5950	14,1300	15,51	2,45	0,34	9,2475
févr-11	-	1327,22	96,97	2,9258	4,037	4,478	1 409,3	33,804	7,2250	13,5725	13,85	2,72	0,33	9,0250
mars-11	725,623	1325,83	106,72	3,0898	4,389	4,300	1 438,9	37,872	6,9325	14,1025	13,99	2,64	0,27	9,0800
avr-11	758,795	1363,61	113,93	3,2558	4,698	4,166	1 556,0	48,584	7,5400	13,9275	14,81	2,99	0,23	8,9300
mai-11	707,256	1345,2	102,70	3,0563	4,666	4,174	1 535,9	38,303	7,4750	13,7600	15,06	2,65	0,23	9,0800
juin-11	668,845	1320,64	95,42	2,9327	4,374	4,272	1 502,3	34,812	6,2900	13,0625	13,89	2,65	0,28	6,8875
juil-11		1292,28	95,70	3,0962	4,145	4,474	1 628,3	40,092	6,6550	13,5425	16,12	2,40	0,30	7,6700
août-11	-	1218,89	88,81	3,0782	4,054	4,187	1 828,5	41,699	7,5750	14,4900	17,68	2,89	0,30	8,7100
sept-11	590,999	1131,42	79,20	2,7948	3,666	3,145	1 620,4	30,041	5,9250	11,7900	15,95	2,29	0,26	7,0400
oct-11	647,955	1253,3	93,19	3,0429	3,934	3,629	1 724,2	34,337	6,4700	12,0750	16,64	2,27	0,26	7,2500
nov-11	658,024		100,36	3,0214	3,550	3,563	1 745,5	32,731	6,0125	11,3125	14,84	2,34	0,24	6,5100
déc-11	644,914	1257,6	98,83	2,9350	2,989	3,432	1 565,8	27,875	6,4650	11,9850	14,61	2,27	0,23	7,1700
janv-12		1312,41	98,48	3,0628	2,503	3,788	1 737,8	33,233	6,3900	11,9900	14,00	2,15	0,24	7,1550
févr-12	-	1365,68	107,07	3,1880	2,616	3,871	1 709,9	34,583	6,5650	13,1350	14,21	2,03	0,26	6,9900
mars-12		1408,47	103,02	3,1684	2,126	3,824	1 669,3	32,469	6,4400	14,0300	14,77	1,82	0,25	6,9750
avr-12		1397,91	104,87	3,1834	2,285	3,834	1 663,4	30,959	6,6025	15,0300	14,87	1,78	0,21	6,4925
mai-12	596,204	1310,33	86,53	2,7062	2,422	3,363	1 562,6	27,741	5,5525	13,4000	14,23	1,61	0,19	6,6500

juin-12	599,443	1362,16	84,96	2,6960	2,824	3,490	1 603,5	27,580	6,7250	15,1275	14,19	1,70	0,22	7,3850
juil-12	635,822	1379,32	88,06	2,8417	3,209	3,420	1 610,5	27,895	8,0650	17,2100	15,62	1,74	0,23	8,9250
août-12	675,033	1406,58	96,47	3,1696	2,799	3,454	1 684,6	31,370	8,0275	17,6450	15,01	1,65	0,20	8,8075
sept-12	665,726	1440,67	92,19	3,1694	3,320	3,773	1 771,1	34,517	7,5625	16,0100	15,48	1,74	0,20	9,2750
oct-12	637,737	1412,16	86,24	3,0682	3,692	3,527	1 717,5	32,288	7,5575	15,4700	14,83	1,55	0,19	9,0400
nov-12	650,05	1416,18	88,91	3,0413	3,561	3,630	1 710,9	33,204	7,4800	14,3875	15,27	1,42	0,19	8,9750
déc-12	646,585	1426,19	91,82	3,0451	3,351	3,641	1 674,8	30,173	6,9825	14,1875	14,86	1,44	0,20	8,3100
janv-13	675,366	1498,11	97,49	3,1298	3,339	3,724	1 660,6	31,335	7,4050	14,6850	15,51	1,47	0,19	8,3775
févr-13	648,21	1514,68	92,05	2,9719	3,486	3,528	1 577,7	28,395	7,1950	14,7425	15,50	1,43	0,18	7,4700
mars-13	655,046	1569,19	97,23	2,9152	4,024	3,395	1 594,8	28,292	6,9525	14,0475	15,36	1,37	0,18	7,2675
avr-13	624,435	1597,57	93,46	2,8734	4,343	3,188	1 472,2	24,144	6,8325	14,6775	14,86	1,35	0,18	7,9800
mai-13	615,458	1630,74	91,97	2,7923	3,984	3,289	1 392,6	22,228	6,6200	15,1000	15,30	1,27	0,17	7,5100
juin-13	611,299	1606,28	96,56	2,8798	3,565	3,051	1 223,8	19,451	6,7925	15,6450	15,74	1,20	0,16	6,7625
juil-13	638,638	1685,73	105,03	3,0431	3,446	3,119	1 312,4	19,617	4,9900	13,7400	15,83	1,19	0,17	7,0675
août-13	657,051	1632,97	107,65	3,1396	3,581	3,225	1 396,1	23,463	4,9500	14,2400	15,81	1,12	0,16	7,0075
sept-13	632,4	1681,55	102,33	2,9710	3,560	3,321	1 326,5	21,656	4,4150	12,8275	15,13	1,14	0,17	7,3950
oct-13	622,524	1756,54	96,38	2,9678	3,581	3,295	1 323,6	21,832	4,2825	12,8025	15,03	1,05	0,18	7,4050
nov-13	620,117	1805,81	92,72	3,0478	3,954	3,231	1 250,6	19,981	4,1525	13,3650	15,96	1,10	0,17	7,1325
déc-13	632,286	1848,36	98,42	3,0772	4,230	3,442	1 201,9	19,339	4,2200	13,1250	15,51	1,11	0,16	6,4050
janv-14	622,256	1782,59	97,49	3,2794	4,943	3,221	1 240,1	19,105	4,3400	12,8275	15,40	1,25	0,16	6,1550
févr-14	649,644	1859,45	102,59	3,0893	4,609	3,239	1 321,4	21,204	4,5750	14,1425	15,38	1,80	0,16	6,7700
mars-14	648,857	1872,34	101,58	2,9320	4,371	3,047	1 283,4	19,734	5,0200	14,6400	15,60	1,78	0,18	7,6400
avr-14	652,511	1883,95	99,74	2,9349	4,815	3,030	1 295,6	19,119	5,1400	15,3075	15,62	2,03	0,17	8,0975
mai-14	649,632	1923,57	102,71	2,8846	4,542	3,136	1 245,6	18,653	4,6575	14,9325	14,99	1,78	0,17	7,2300
juin-14	658,572	1960,23	105,37	2,9708	4,461	3,188	1 321,8	21,007	4,2425	14,0050	14,54	1,73	0,17	7,1050
juil-14	621,703	1930,67	98,17	2,8866	3,841	3,223	1 281,3	20,373	3,5700	12,2450	12,99	1,95	0,16	6,2575
août-14	610,917	2003,37	95,96	2,8569	4,065	3,135	1 285,8	19,398	3,5900	10,8950	12,59	1,96	0,15	6,2625
sept-14	574,294	1972,29	91,16	2,6472	4,121	3,006	1 210,5	17,006	3,2075	9,1325	12,75	1,93	0,15	5,5800
oct-14	539,592	2018,05	80,54	2,5145	3,873	3,061	1 171,1	16,077	3,7675	10,4650	12,01	1,88	0,16	5,9375
nov-14	482,112	2067,56	66,15	2,2308	4,088	2,860	1 175,2	15,489	3,7575	10,1600	12,34	1,87	0,16	6,3700
déc-14	418,123	2058,9	53,27	1,8466	2,889	2,839	1 183,9	15,565	3,9700	10,1925	11,49	1,67	0,15	6,2650
janv-15	389,682	1994,99	48,24	1,6863	2,691	2,528	1 278,5	17,192	3,7000	9,6100	10,57	1,62	0,15	5,4025
févr-15	421,242	2104,5	49,76	2,2989	2,734	2,716	1 212,6	16,513	3,8450	10,3075	10,47	1,37	0,14	5,3450
mars-15	396,649	2067,89	47,60	1,7179	2,640	2,747	1 183,1	16,581	3,7625	9,7325	10,88	1,33	0,12	5,5925
avr-15	445,585	2085,51	59,63	1,9763	2,751	2,887	1 182,4	16,124	3,6250	9,7850	10,03	1,37	0,13	4,9025
mai-15	439,094	2107,39	60,30	1,9553	2,642	2,760	1 189,4	16,684	3,5150	9,3400	9,51	1,26	0,12	4,9875
juin-15	440,693	2063,11	59,47	1,8866	2,832	2,624	1 171,5	15,551	4,1400	10,5625	10,17	1,31	0,12	5,9325
juil-15	378,384	2103,84	47,12	1,5840	2,716	2,368	1 094,9	14,746	3,7100	9,8075	11,52	1,25	0,11	4,9225
août-15	380,848	1972,18	49,20	1,6736	2,689	2,338	1 131,6	14,577	3,6375	8,9750	11,88	1,21	0,11	4,6375
sept-15	359,337	1920,03	45,09	1,5126	2,524	2,346	1 115,5	14,513	3,8775	8,9200	13,20	1,21	0,12	5,0175
oct-15	363,444	2079,36	46,59	1,4994	2,321	2,314	1 141,5	15,566	3,8225	8,8375	11,61	1,21	0,15	4,9375
nov-15	336,15	2080,41	41,65	1,3369	2,235	2,045	1 065,8	14,050	3,6500	8,8100	11,91	1,17	0,15	4,5700
déc-15	311,652	2043,94	37,04	1,1007	2,337	2,126	1 060,3	13,775	3,5875	8,7125	11,57	1,27	0,15	4,6850
janv-16	300,668	1940,24	33,62	1,0551	2,298	2,064	1 116,4	14,229	3,7200	8,8225	11,35	1,16	0,13	4,7200
févr-16	303,63	1932,23	33,75	1,0760	1,711	2,129	1 233,9	14,896	3,5350	8,5300	10,50	1,13	0,15	4,4500
mars-16	323,419	2059,74	38,34	1,1848	1,959	2,182	1 234,2	15,460	3,5150	9,1075	9,69	1,27	0,15	4,7625

i														ĺ
avr-16	360,407	2065,3	45,92	1,3779	2,178	2,279	1 289,2	17,789	3,9025	10,2100	10,84	1,21	0,16	4,6525
mai-16	370,946	2096,96	49,10	1,4975	2,288	2,098	1 214,8	15,972	4,0475	10,7850	10,94	1,22	0,17	4,4725
juin-16	374,032	2098,86	48,33	1,4847	2,924	2,195	1 318,4	18,582	3,5875	11,7500	10,51	1,44	0,20	4,0425
juil-16	339,395	2173,6	41,60	1,2760	2,876	2,221	1 349,0	20,312	3,3450	10,3250	9,94	1,46	0,19	4,0975
août-16	348,208	2170,95	44,70	1,4102	2,887	2,070	1 306,9	18,622	3,0150	9,6000	9,20	1,46	0,20	3,7125
sept-16	364,471	2168,27	48,24	1,5279	2,906	2,202	1 313,3	19,139	3,3675	9,5400	9,89	1,52	0,23	4,1550
oct-16	361,623	2126,15	46,86	1,4955	3,026	2,201	1 271,5	17,762	3,5475	10,0225	9,86	1,64	0,22	4,1475
nov-16	377,221	2198,81	49,44	1,5709	3,352	2,622	1 170,8	16,406	3,3675	10,3225	9,71	1,48	0,20	3,9125
déc-16	398,204	2238,83	53,72	1,7043	3,724	2,498	1 150,0	15,936	3,5200	9,9650	9,36	1,37	0,20	4,1850
janv-17	395,83	2278,87	52,81	1,6117	3,117	2,722	1 208,6	17,512	3,5975	10,2450	9,54	1,50	0,20	4,2950
févr-17	402,22	2363,64	54,01	1,6208	2,774	2,704	1 252,6	18,420	3,6675	10,2500	9,29	1,41	0,19	4,5125
mars-17	388,225	2362,72	50,60	1,5736	3,190	2,647	1 247,3	18,235	3,6425	9,4600	9,90	1,39	0,17	4,2050
avr-17	382,766	2384,2	49,33	1,5040	3,276	2,597	1 266,1	17,191	3,5800	9,4525	9,13	1,31	0,16	4,2475
mai-17	377,854	2411,8	48,32	1,5153	3,071	2,577	1 272,0	17,368	3,7200	9,1600	11,13	1,29	0,15	4,3175
juin-17	372,378	2423,41	46,04	1,4755	3,035	2,699	1 240,7	16,568	3,7050	9,4225	11,51	1,24	0,14	5,1125
juil-17	388,065	2470,3	50,17	1,6519	2,794	2,888	1 266,6	16,750	3,7075	9,9450	12,26	1,39	0,15	4,7475
août-17	386,004	2471,65	47,23	1,7575	3,040	3,079	1 316,2	17,480	3,4225	9,3625	12,55	1,28	0,14	4,0875
sept-17	399,308	2519,36	51,67	1,8117	3,007	2,938	1 281,5	16,607	3,5525	9,6825	12,00	1,28	0,14	4,4275
oct-17	415,142	2575,26	54,38	1,8845	2,896	3,092	1 267,0	16,645	3,4575	9,7375	11,29	1,25	0,15	4,1650
nov-17	424,257	2647,58	57,40	1,8927	3,025	3,037	1 273,2	16,382	3,4175	9,8575	12,53	1,26	0,15	4,1450
déc-17	442,436	2673,61	60,42	2,0755	2,953	3,280	1 306,3	17,060	3,5075	9,5175	11,68	1,26	0,15	4,2725
janv-18	456,533	2823,81	64,73	2,0692	2,995	3,184	1 339,0	17,204	3,6150	9,9575	12,44	1,22	0,13	4,6725
févr-18	443,381	2713,83	61,64	1,9136	2,667	3,108	1 315,5	16,324	3,7450	10,4500	12,39	1,21	0,13	5,0825
mars-18	452,935	2640,87	64,94	2,0284	2,733	3,019	1 322,8	16,223	3,8775	10,4475	12,36	1,18	0,12	4,6725
avr-18	475,762	2648,05	68,57	2,1674	2,763	3,053	1 316,2	16,312	3,9250	10,3775	12,79	1,21	0,12	5,1850
mai-18	481,427	2705,27	67,04	2,1914	2,952	3,058	1 300,1	16,402	3,9400	10,1850	11,56	1,24	0,13	5,4250
juin-18	487,437	2718,37	74,15	2,2093	2,924	2,951	1 251,3	16,104	3,5025	8,5850	11,61	1,12	0,12	4,7075
juil-18	464,832	2816,29	68,76	2,1319	2,782	2,819	1 223,7	15,500	3,7225	9,0375	11,92	1,10	0,11	5,5650
août-18	468,688	2901,52	69,80	2,2413	2,916	2,649	1 200,3	14,438	3,5100	8,3300	10,83	0,98	0,11	5,2300
sept-18	486,279	2913,98	73,25	2,3518	3,008	2,787	1 191,5	14,623	3,5625	8,4550	9,78	1,02	0,10	5,1125
oct-18	456,317	2711,74	65,31	2,2618	3,261	2,664	1 212,3	14,229	3,6325	8,3900	10,58	1,13	0,13	4,9325
nov-18	406,52	2760,17	50,93	1,8455	4,612	2,778	1 220,2	14,094	3,6650	8,9475	10,89	1,03	0,13	4,8650
déc-18	374,328	2506,85	45,41	1,6808	2,940	2,628	1 278,3	15,433	3,7500	8,8250	10,10	1,02	0,12	4,8875
janv-19	407,891	2704,1	53,79	1,8788	2,814	2,789	1 319,7	16,022	3,7650	9,1525	10,61	1,06	0,13	4,9900
févr-19	426,347	2784,49	57,22	2,0235	2,812	2,950	1 312,8	15,538	3,6200	8,9750	10,40	0,95	0,13	4,4100
mars-19	434,125	2834,4	60,14	1,9734	2,662	2,936	1 293,0	15,060	3,5650	8,8425	10,85	0,95	0,13	4,3000
avr-19	446,452	2945,83	63,91	2,0812	2,575	2,902	1 282,8	14,900	3,5325	8,4125	10,28	0,92	0,12	3,8625
mai-19	407,764	2752,06	53,50	1,8418	2,454	2,646	1 305,8	14,530	4,2700	8,7775	11,46	1,05	0,12	4,7300
juin-19	425,358	2941,76	58,47	1,9446	2,308	2,706	1 409,7	15,253	4,2025	8,9975	11,28	1,08	0,12	4,5150
juil-19	422,439	2980,38	58,58	1,9550	2,233	2,658	1 426,1	16,346	4,0025	8,6400	11,95	1,00	0,12	4,2275
août-19	397,058	2926,46	55,10	1,8282	2,285	2,533	1 519,1	18,185	3,5800	8,5700	11,67	0,94	0,11	3,7825
sept-19	403,613	2976,74	54,07	1,9056	2,330	2,565	1 465,7	16,898	3,8800	9,0600	12,02	1,01	0,12	4,1500
oct-19	407,51	3037,56	54,18	1,8780	2,633	2,633	1 511,4	18,014	3,9000	9,1675	11,73	1,02	0,12	4,1975
nov-19	409,191	3140,98	55,17	1,8789	2,281	2,642	1 465,6	16,969	3,7125	8,7675	12,49	1,19	0,13	4,3875
déc-19	436,219	3230,78	61,06	2,0283	2,189	2,794	1 519,5	17,828	3,8775	9,4300	13,14	1,30	0,13	4,8600