

Basic plots in R

Osama Mahmoud

Website: http://osmahmoud.com E-mail: o.mahmoud@bristol.ac.uk

14 November 2019

Goals

In this session, we aim to cover:

- what data visualisation is.
- why we need visualisation.
- what the base graphics and their types are.
- How to produce base plots.
- How to save your generated graphics.

Contents

- Introduction to data visualisation
- Overview of base graphics
- 3 Histograms
- Bar plots
- Box plots
- 6 Scatter plots

Graphics reveal data

"The greatest value of a picture is when it forces us to notice what we never expected to see."

JOHN W. TUKEY (1915 - 2000)

Why do we need visualisations?

I		II		III	
X	y	X	y	X	y
10.0	8.04	10.0	9.14	10.0	7.46
8.0	6.95	8.0	8.14	8.0	6.77
13.0	7.58	13.0	8.74	13.0	12.74
9.0	8.81	9.0	8.77	9.0	7.11
11.0	8.33	11.0	9.26	11.0	7.81
14.0	9.96	14.0	8.10	14.0	8.84
6.0	7.24	6.0	6.13	6.0	6.08
4.0	4.26	4.0	3.10	4.0	5.39
12.0	10.84	12.0	9.13	12.0	8.15
7.0	4.82	7.0	7.26	7.0	6.42
5.0	5.68	5.0	4.74	5.0	5.73

n = 11

mean x = 9.0mean y = 7.5 variance x = 11.0variance y = 4.12 correlation x & y = 0.816 regression line: y = 3+0.5x

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● める◆

Why do we need visualisations?

Base graphics

THE UGLY

The ugly

The ugly

FEW ISSUES

Few issues

• Human perception can be ...

Few issues

• Human perception can be deceiving

• Another example:

Few issues

• Another example:

Few issues

Selective attention

Selective attention test

Types of R graphics

- Base graphics.
- Grid graphics.
- Lattice graphics.
- ggplot2 graphics.

Base graphics

Installing course R package: BristolVis

> install.packages("drat")

Base graphics

- > drat::addRepo("statcourses")
- > install.packages("BristolVis")

Overview of base graphics

- Graphics can be easily created in R and subsequently included in Word, Power Point, LATEX, etc.
- Let's plot a simple graphic:
- > plot(rate ~ conc, data = Puromycin)

This implicitly opens a new graphics window.

Overview of base graphics

Change settings of active graphic window

```
> par(mfrow = c(1,2), mar = c(4,4,0,0) + 0.1)
```

- > x <- seq(-3,3, 0.1)
- > plot(x, x^2, type = '1')
- > plot(x, x^3, type = '1')

Overview of base graphics

- Close active graphics window:
- > dev.off()
- Close all graphics windows:
- > graphics.off()

Histograms

Histograms

Simple histogram (next slide left)

- > data(birthweight, package = "BristolVis")
- > hist(birthweight\$weightgain)
- with a fixed set of "bars": (breaks give number of cut-points)
- > hist(birthweight\$weightgain, breaks = 3)
- with a defined scale for the y-axis:
- > hist(birthweight\$weightgain, breaks = 3, ylim = c(0,
 10))
- with colored bars:
- > hist(birthweight\$weightgain, breaks = 3, ylim = c(0, 10), col = gray(4:7 / 7))

with arbitrary text, vertical and double text size (next slide right)

> text(1500, 5, "some text", srt = 90, cex = 2)

Histograms

Bar plots

Bar plots

Simple bar plot (next slide left)

- > data(med, package = "BristolVis")
- > treatment = table(med\$treatment)
- > barplot(treatment, ylim = c(0, 500))
- stacked bar plot:
- > health_treat = table(med\$health, med\$treatment)
- > barplot(health_treat, ylim = c(0, 500))
- with juxtaposed bars:

barplot(health_treat, ylim = c(0, 300), beside = TRUE)

with legend (next slide right)

> barplot(health_treat, ylim = c(0, 300), beside = TRUE,
legend.text = rownames(health_treat))

Bar plots

Box plots

Box plots

Simple box plot (next slide left)

- > boxplot(birthweight\$weight)
- grouped by sex:
- > boxplot(weight ~ sex, data = birthweight)

with new labels for sex, main title and a defined y-scale (next slide right)

```
> boxplot(weight ~ sex, data = birthweight, names =
c("girls", "boys"), ylab = "birth weight [g]", ylim =
c(2000, 4000), main = "Distribution of birth weight")
```

- with additional line:
- > abline(h = 3000, col = "gray", lty = 4)

Box plots

Scatter plots

Scatter plots

Simple scatter plot (next slide left)

```
> plot(weightgain ~ weight, data = birthweight)
```

• for a subset:

```
> plot(weightgain ~ weight, data = birthweight, subset =
(sex == "F"))
```

with colored solid points by sex and add a legend (next slide right)

```
> plot(weightgain ~ weight, data = birthweight, subset =
(sex == "M"), col = "blue", pch = 20)
> points(weightgain ~ weight, data = birthweight, subset =
(sex == "F"), col = "red", pch = 20) # add girls data
> legend("bottomleft", title = "sex", legend = c("girls",
"boys"), col = c("red","blue"), pch = 20) # add legend
```

Scatter plots

Examples of the graphic library

An overview of available demos for the built-in R library (graphics):

> demo(graphics)

Saving plots

Saving plots

- Graphics can be saved directly from within R using different devices,
 e.g. postscript(), pdf(), bmp(), (see ?Devices)
- For publications vector graphics such as PDFs or postscript files are preferable to pixel graphics such as jpg, bmp, etc.

```
> pdf("Fig1.pdf", width = 10, height = 7)
```

- > boxplot(weight ~ sex, data = birthweight)
- > dev.off()

Useful links

Choice of graphic colours

Names of colours in various formats:

http://colorbrewer2.org/

Web-page of the course

The BristolVis tool for learners of data visualisation using R:

https://github.com/statcourses/BristolVis

References

Thank You