Calculus 6.3 Key Points

Derivatives of Inverse Trigonometric Functions:

$f(x) = \sin^{-1}(g(x)),$ $f'(x) = \frac{g'(x)}{\sqrt{1 - g^2(x)}}$	$f(x) = \cos^{-1}(g(x)), f'(x) = -\frac{g'(x)}{\sqrt{1-g^2(x)}}$
$f(x) = tan^{-1}(g(x)),$ $f'(x) = \frac{g'(x)}{1+g^{2}(x)}$	$f(x) = \cot^{-1}(x), f'(x) = -\frac{g'(x)}{1+g^2(x)}$
$f(x) = \sec^{-1}(g(x)),$ $f'(x) = \frac{g'(x)}{ g(x) \cdot \sqrt{g^2(x) - 1}}$	$f(x) = csc^{-1}(g(x)),$ $f'(x) = -\frac{g'(x)}{ g(x) \cdot \sqrt{g^2(x) - 1}}$

Derivatives of Logarithmic Functions:

$$f(x) = \log_a x, f'(x) = \frac{1}{x \cdot \ln(a)} \text{ or } \frac{\log_a(e)}{x}$$
$$f(x) = \ln(x), f'(x) = \frac{1}{x}$$

Derivatives of Inverse Functions:

If we have a function f(x) where $f^{-1}(x) = g(x)$, then:

$$g'(x) = \frac{1}{f'(g(x))}$$

In other words, $[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$