5. Serie armonica, serie armonica generalizzata

La serie armonica è la serie

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

che diverge positivamente.

La serie armonica generalizzata è la serie

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$

 $\operatorname{\mathsf{con}} \alpha \in \mathbb{R}$. Essa

converge se $\alpha > 1$

diverge se $\alpha \leq 1$.

Esempi

Analizzare il carattere delle seguenti serie:

- 1) $\sum_{k=0}^{\infty}\frac{4}{k+3}$. Posto k+3=n la serie diventa $4\sum_{n=3}^{\infty}\frac{1}{n}$, cioè multiplo della serie armonica, quindi diverge
- 2) $\sum_{k=1}^{\infty} \frac{1}{k^{\frac{4}{\sqrt{k}}}}$. Si può scrivere $\frac{1}{k^{\frac{4}{\sqrt{k}}}} = \frac{1}{k^{\frac{5}{4}}}$ perciò si tratta di una serie armonica generalizzata convergente.
- 3) $\sum_{k=2}^{\infty} \frac{1}{\sqrt[3]{k-1}}$. Posto k-1=n la serie diventa $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{3}}}$, quindi diverge.

Esercizi

(gli esercizi con asterisco sono avviati)

Analizzare il carattere delle seguenti serie:

*1.
$$\sum_{k=0}^{\infty} \frac{1}{k+1}$$

$$2.\sum_{k=1}^{\infty} \frac{1}{k^7}$$

*3.
$$\sum_{k=1}^{\infty} \frac{5+2k^2}{k}$$

*4.
$$\sum_{k=1}^{\infty} \frac{3+k}{k^3}$$

5.
$$\sum_{k=1}^{\infty} \frac{1}{k^{4}\sqrt{k^{3}}}$$

$$6. \sum_{k=0}^{\infty} \frac{-5}{k+3}$$

$$7. \quad \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$$

*8.
$$\sum_{k=1}^{\infty} \left(\frac{1}{k+1} + \frac{1}{4^k} \right)$$

9.
$$\sum_{k=2}^{\infty} \frac{1}{\sqrt{k-1}}$$

*10.
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{k^2}}$$

*11.
$$\sum_{k=1}^{\infty} \frac{\sqrt[3]{k}}{k^{\frac{5}{\sqrt{k^3}}}}$$

*12.
$$\sum_{k=0}^{\infty} \frac{1}{(k+2)^2}$$

*13.
$$\sum_{k=0}^{\infty} \frac{1}{\sqrt[4]{k^2+4k+4}}$$

Soluzioni

- *1. S. diverge positivamente; (posto k+1=n si ha $\sum_{n=1}^{\infty}\frac{1}{n}$);
 - 2. S. converge;
- *3. S. diverge positivamente ; (è somma della serie $\sum_{k=1}^{\infty} \frac{5}{k}$ armonica e della serie $\sum_{k=1}^{\infty} 2k$ entrambe divergenti positivamente);
- *4. S. converge ; (somma di due serie armoniche generalizzate $\sum_{k=1}^{\infty} \frac{3}{k^3}$ e $\sum_{k=1}^{\infty} \frac{1}{k^2}$ entrambe convergenti);
- **5. S.** converge; **6. S.** diverge negativamente;

L.Mereu – A. Nanni Serie numeriche

- 7. S. diverge positivamente;
- *8. S. diverge positivamente ;(somma della serie $\sum_{k=1}^{\infty} \frac{1}{k+1}$ divergente positivamente e della serie geometrica $\sum_{k=1}^{\infty} \frac{1}{4^k}$ convergente);
- *9. S. diverge positivamente ; ($k-1=n\Rightarrow\sum_{n=1}^{\infty}\frac{1}{n^{\frac{1}{2}}}$);
- *10. S. diverge positivamente; ($\alpha = \frac{2}{3}$);
- *11. S. converge; $\left(\frac{\sqrt[3]{k}}{k\sqrt[5]{k^3}} = \frac{1}{k^{\frac{19}{15}}}, \alpha = \frac{19}{15} > 1\right)$;
- *12. S. converge ; ($k+2=n \Rightarrow \sum_{n=2}^{\infty} \frac{1}{n^2}$);
- *13. S. diverge positivamente; $(\frac{1}{\sqrt[4]{k^2+4k+4}} = \frac{1}{\sqrt{k+2}})$, posto k+2=n ...);