Contents

1	EDA(电子线路设计自动化)	1
2	电子设计流程	1
3	Altium Designer 常见文件后缀名	2
4	编辑元件属性	2
5	原理图绘制	3
6	原理图编译	4
7	PCB 封装创建	4
8	手工绘制 PCB 封装	5
9	PCB 布局	5
10	一些术语的作用	6
11	生产文件输出步骤 Gerber	7
1	EDA(电子线路设计自动化)	
	• 补充 ¹	
	• AD 使用辅助设计电路软件	
	• 学习 AD 可以让我们掌握电路设计流程	
2	电子设计流程	
	1. 项目立项	
	2. 原理图设计	
	3. PCB 建库 ²	
	4 PCB 设计	

 $^{^1}$ 下划线是我补充可能的考点 2 印制电路板

- 5. 生产文件输出
- 6. PCB 文件加工

3 Altium Designer 常见文件后缀名

- 工程文件: PrjPcb
- 元件库文件: SchLib
- 原理图文件: SchDoc
- PCB 库文件: PcbLib
- 网络表文件: NET
- PCB 文件: PcbDoc

4 编辑元件属性

- 绘制元件库
 - 多个部分的元件需要 add 为元件添加新的部分
 - 需要给 model 添加 Footprint 等描述
 - 放管脚时注意有 x 的朝外
- Designator: 元件位号, 元件的唯一表示
 - U?(IC),R?(电阻),C?(电容),J?(接口)³
- 元件的移动
 - 选择
 - * 单选: 鼠标左键
 - * 多选: shift+ 鼠标左键
 - 旋转
 - * 选中后按空格逆时针旋转
 - * Shift+ 空格顺时针旋转
 - * X or Y 根据 X 或 Y 进行镜像

 $^{^{3}}$ R: 电阻,C: 电容,RN: 排阻,EC: 电解电容,U: 芯片,X: 晶振,D: 二极管,Q: 三极管,J: 跳线,LED: 发光二极管,ZD: 整流二极管,FB: 磁珠

5 原理图绘制

- 设计方式
 - 自顶向下
 - * 将大模块逐步分解为小模块去设计
 - 自底向上
 - * 从底层开始设计逐步扩大最后完成
- 导线
 - 命今 Place + Wire
 - 功能:
 - * 连接电气元件
 - * 具有电气特性
 - 接地和电源
 - * 点击图标或者 Place + Power Port
 - * 按住 Tab 可以配置属性
- 网络标号
 - 表示多个具有电气意义的导线, 降低原理图复杂度
 - Place + Net Label
 - 同一个网络标号需要完全一致
 - TAA (tools + annotation + annotation schematics)
 - * 可以对一个原理图的标号进行编辑和选择
- 页连接符
 - 由于网络符号无法在多张图纸中连接, 所以需要使用 Port⁴进行 连接
 - Place Port
 - 其他作了解5
- 总线
 - Place + Bus

⁴端口

⁵Sheet Entry, Off Sheet Connector, Power Port

- 表示具有相同电气意义的一组导线
- 总线以总线分支引出各条分导线,以网络标号做区分
 - * 总线分支 Place + Bus Entry(PU)
- No ERC
 - x 图标
 - 可以忽略该管脚的错误,双击或者 TAB 可以修改检查属性
- 辅助线
 - 无电气意义, 用于区分电路的各个部分
 - Place + Line(PDL)

6 原理图编译

- Project + compile PCB Project xxx.PrjPcb
- BOM
 - 物料清单表
 - Report + Bill of Materials(RI)

7 PCB 封装创建

- 向导法创建
 - 通过对封装类型模板的选择比如 DIP 对称的封装 ⁶
 - 根据芯片手册填写焊盘参数, 一般要比数据手册大一点, 内径, 外径
 - 焊盘间距参数: 纵向 e-2.54mm, 横向 E1-7.62mm
 - finish

⁶穿孔, 双列

8 手工绘制 PCB 封装

- 焊盘
 - Place + Pad
 - 设置形状 7
- 过孔
 - Place + via
- 放置敷铜
 - Place polygon place
- 网表
 - 网络连接和联系的表示
 - 通过网表连接关系进行 PCB 的导入
 - Design + Netlist for Project + Protel 生成
- 固定孔
 - -3mm
 - (5mm,5mm)

9 PCB 布局

- 设置 PCB 板子大小
 - Q 切换 grid(方格) 单位 or View + grids + set global snap grids
 - Place line (Keep out layer 或者 Mechanical layer) 需要闭合
 - Designer + Board shape + define from objects
- 按照信号走向布局, 以每个功能为核心布局
- PCB 类
 - 同一属性的网络或元件或差分放在一起构成一个类别, 比如电源,GND,VCC
 - 便与管理和编辑

⁷表贴焊盘需要放在 Top layer, 通孔放在 Multi-Layer

- Design + Class 在大类的子类别中使用鼠标右键 add class

• PCB 规则设置

- Clearance 安全距离设计可以选择规则适配范围⁸
- Track 是走线 Hole 是钻孔 TH Pad 通孔焊盘 Copper 铜皮
- enable 启用规则
- 不要勾选允许短路和开路
- 设置线宽规则

10 一些术语的作用

- 泪滴
 - 避免电路板收到巨大外力冲撞时导线与焊盘接触点断开,是的更加美观
 - 保护焊盘避免多次焊接时脱落
 - 信号传输时平滑阻抗, 降低急剧跳变
 - tools + teardrops

• 敷铜

- 增加载流面接和能力
- 减小底线阻抗, 抗干扰
- 降低压降,提高电源效率
- 与地线连接,减少环路面积
- 对称敷铜可以对多层板起到平衡作用
- DRC 检查设计是否满足规则
 - 电源线与接地线要宽一些
- 设置相对原点
 - Edit + Origin + set
- 尺寸标注
 - Place + Dimension linear
 - 便于设计者和生产者获取 PCB 尺寸以及相关信息

⁸不同网络, 相同网络, 所有网络, 不同差分

11 生产文件输出步骤 Gerber

- file + fabrication Outputs Gerber
- 是一个所有电路设计软件都可以生产的模板文件, 又叫做光绘文件
- 单位:inches
- 比例:2:4
- 选择使用的层 Plot Layer used on
- 丝印层 (GTO9) 做标识
- GM1(机械标注层 1) GKO(禁止布线层)

⁹Gerber Top Overlayer