# K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC CIRCUITS

#### Numerical 1:

Find the voltage of point A w.r.t point B in the Figure 1. Is it positive w.r.t B?



Figure 1: Circuit 1

#### Solution:

In the circuit 1,

For loop 1;

$$I_1 = \frac{V_1}{R_1 + R_2} = \frac{10}{5+3} = 1.25A$$
 ...(By Ohm's Law)

For loop 2;

$$I_2 = I = 5A$$
 ...(From circuit 1)

Applying KVL to the path from A to B,

$$V_A - 3I_1 - 8 + 3I_2 - V_B = 0$$

$$V_A - 3 \times 1.25 - 8 + 3 \times 5 - V_B = 0$$

$$V_A - V_B = -3.25V$$

$$\therefore V_{AB} = -3.25 \mathbf{V}$$

Above circuit is simulated in LTspice. The results are presented below:



Figure 2: Circuit Schematic

Simulated results are shown in Figure 3.

| * C:\Users\le | enovo\Desktop\LTspiceXVII\ | sanika_week1_day1_circuit1.asc |
|---------------|----------------------------|--------------------------------|
| (             | Operating Point            | -                              |
| V(a):         | 3.75                       | voltage                        |
| V(n002):      | -8                         | voltage                        |
| V(b):         | 7                          | voltage                        |
| V(n003):      | 27                         | voltage                        |
| V(n001):      | 10                         | voltage                        |
| I(I):         | 5                          | device_current                 |
| I(R1):        | -1.25                      | device_current                 |
| I(R4):        | 5                          | device_current                 |
| I(R3):        | -5                         | device_current                 |
| I(R2):        | 1.25                       | device_current                 |
| I(V2):        | -4.44089e-016              | device_current                 |
| I(V1):        | -1.25                      | device_current                 |
|               |                            |                                |

Figure 3: Simulated Results

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $I_1$      | 1.25A              | 1.25A            |
| $I_2$      | 5A                 | 5A               |
| $V_A$      | 3.75V              | 3.75V            |
| $V_B$      | 7V                 | 7V               |

Table 1: Numerical 1

#### Numerical 2:

Find the value of  $V_{R_1}$  in the circuit of Figure 4.



Figure 4: Circuit 2

#### Solution:

$$I_1 = 0.6A, I_2 = 0.2A$$
 ...(From Circuit 2)

Applying KVL to circuit 2,

$$V_{R_1} - 100(I_1 - I_2) = 0$$

$$V_{R_1} = 100 \times (0.6 - 0.2)$$

$$V_{R_1} = 100 \times 0.4$$

$$\therefore V_{R_1} = \mathbf{40V}$$

#### SIMULATED RESULTS:

Above circuit is simulated in LTspice. The results are presented below:



Figure 5: Circuit Schematic

Simulated results are shown in Figure 6.

\* C:\Users\lenovo\Desktop\LTspiceXVII\sanika\_week1\_day1\_circuit2(a).asc

| -       | Operating | Point          |
|---------|-----------|----------------|
| V(n001) | 40        | voltage        |
| I(I2):  | 0.2       | device current |
| I(I1):  | 0.6       | device current |
| I(R1):  | 0.4       | device current |

Figure 6: Simulated Results

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $V_{R_1}$  | 40V                | 40V              |

Table 2: Numerical 2

#### Numerical 3:

Find the value of  $V_1$ ,  $V_2$  in the circuit of Figure 7.



Figure 7: Circuit 3

#### Solution:

 $\therefore V_2 = \mathbf{15V}$ 

$$I_1 = 3A, \ I_2 = 2A$$
 ....(From Circuit 3)  
Applying KVL to circuit 3,  
 $V_1 - 3(I_1 + I_2) - 2I_1 = 0$   
 $V_2 - 3(I_1 + I_2) = 0$   
 $\therefore V_1 = 15 + 6 = \mathbf{21V}$ 

# SIMULATED RESULTS:

Above circuit is simulated in LTspice. The results are presented below:



Figure 8: Circuit Schematic

Simulated results are shown in Figure 9.

\* C:\Users\lenovo\Desktop\LTspiceXVII\sanika\_week1\_day1\_circuit2(b).asc

|         |   | Operating | Point |                 |
|---------|---|-----------|-------|-----------------|
| V(n002) | : | 15        |       | voltage         |
| V(n001) | : | 21        |       | <b>v</b> oltage |
| I(I2):  |   | 2         |       | device current  |
| I(I1):  |   | 3         |       | device_current  |
| I(R2):  |   | 5         |       | device current  |
| I(R1):  |   | -3        |       | device current  |
|         |   |           |       | <u> </u>        |
|         |   |           |       |                 |
| I       |   |           |       |                 |

Figure 9: Simulated Results

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $V_1$      | 21V                | 21V              |
| $V_2$      | 15V                | 15V              |

Table 3: Numerical 3

#### Numerical 4:

Find the value of  $i_1$ ,  $i_2$  in the circuit of Figure 10.



Figure 10: Circuit 4

#### Solution:

$$V_1=12V,\ V_2=6V$$
 ...  
Applying KVL to loop 1 in circuit 4, 
$$V_1+6(i_1+i_2)=0$$

$$i_1 + i_2 = -2 \qquad ...(1)$$

Applying KVL to loop 2 in circuit 4,

$$6(i_1 + i_2) + 2i_2 = 6$$

$$6i_1 + 8i_2 = 6$$

$$3i_1 + 4i_2 = 3$$
...(2)

Solving (1) and (2) simultaneously,

$$\therefore i_2 = \mathbf{9A} \qquad \qquad \therefore i_1 = -\mathbf{11A}$$

#### SIMULATED RESULTS:

Above circuit is simulated in LTspice. The results are presented below:



Figure 11: Circuit Schematic

Simulated results are shown in Figure 12.  $(i_2 \text{ is negative due to its direction.})$ 

\* C:\Users\lenovo\Desktop\LTspiceXVII\sanika\_week1\_day1\_circuit2(c).asc -- Operating Point ---V(n001): 12 voltage V(n002): -6 voltage -9 device\_current I(R2): I(R1): 2 device current -9 device current I(V2): -11 device current I(V1):

Figure 12: Simulated Results

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $i_1$      | -11A               | -11A             |
| $i_2$      | 9A                 | 9A(↓)            |

Table 4: Numerical 4

#### Numerical 5:

Find the current I and the power absorbed by each element in the circuit of Figure 13.



Figure 13: Circuit 5

#### Solution:

Applying KCL at node 1 in circuit 5,

$$I+2A = 8A$$

$$I = 8-2$$

$$I = 6A$$

$$R_a = \frac{V_a}{I_a} = \frac{9}{2} = 4.5\Omega$$

$$R_b = \frac{V_b}{I_b} = \frac{3}{6} = \mathbf{0.5}\Omega$$

... Power absorbed by each element,

$$P_{I_1} = V_{I_1} \times I_1 = 9 \times -8 = -72 \mathbf{W}$$

$$P_a = V_a \times I_a = 9 \times 2 = 18\mathbf{W}$$

$$P_b = V_b \times I_b = 6 \times 3 = \mathbf{18W}$$

$$P_{V_1} = V_1 \times I_{V_1} = 6 \times 6 = 36 \mathbf{W}$$

Above circuit is simulated in LTspice. The results are presented below:



Figure 14: Circuit Schematic

Simulated results are shown in Figure 15.

\* C:\Users\lenovo\Desktop\LTspiceXVII\task\sanika.p\_week1\_day2\_circuit1.asc

| (        | Operating Poin | nt             |
|----------|----------------|----------------|
| V(n001): | 9              | voltage        |
| V(n002): | 6              | voltage        |
| I(I1):   | 8              | device current |
| I(R2):   | 6              | device current |
| I(R1):   | 2              | device current |
| I(V1):   | 6              | device current |
|          |                | _              |
|          |                |                |

Figure 15: Simulated Results

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| I          | 6A                 | 6A               |
| $P_{I_1}$  | -72W               | -72W             |
| $P_a$      | 18W                | 18W              |
| $P_b$      | 18W                | 18W              |
| $P_{V_1}$  | 36W                | 36W              |

Table 5: Numerical 5

#### Numerical 6:

Find v (voltage across  $R_2$ ) and i (current through  $R_3$ ) in the circuit of Figure 16.



Figure 16: Circuit 6

#### Solution:

Using nodal analysis in the circuit 6,

$$V_1 - v = 6V$$
 (Supernode) ...(1)

Applying KCL at supernode,

$$\frac{v-14}{4} + \frac{v}{3} + \frac{V_1}{2} + \frac{V_1}{6} = 0$$

$$\therefore \frac{v}{4} + \frac{v}{3} + \frac{V_1}{2} + \frac{V_1}{6} = 3.5$$

$$\frac{3v + 4v + 6V_1 + 2V_1}{12} = 3.5$$

$$7v + 8V_1 = 42$$

$$7v + 8 \times (6 + v) = 42$$
 ...(from (1))

$$15v + 48 = 42$$

$$v = -\frac{6}{15}$$

$$v = -0.4V$$

$$V_1 = 6 + v = 6 - 0.4$$

$$V_1 = 5.6V$$

$$i = \frac{V_1}{R_3} = \frac{5.6}{2}$$

$$:: i = 2.8A$$

Above circuit is simulated in LTspice. The results are presented below:



Figure 17: Circuit Schematic

Simulated results are shown in Figure 18.

| * C:\Users\ler | novo\Desktop\LTspiceX | VII\task\sanika.p_week1_day2_circuit2.asc |
|----------------|-----------------------|-------------------------------------------|
| 0              | perating Point        |                                           |
|                | $A \lambda \lambda$   |                                           |
| V(n001):       | 14                    | <b>v</b> oltage                           |
| V(n003):       | 5.6                   | voltage                                   |
| V(n002):       | -0.4                  | voltage                                   |
| I(R4):         | 0.933333              | device current                            |
| I(R3):         | 2.8                   | device current                            |
| I(R2):         | -0.133333             | device current                            |
| I(R1):         | -3.6                  | device current                            |
| I (Vb):        | -3.73333              | device current                            |
| I (Va):        | -3.6                  | device current                            |
|                |                       | _                                         |

Figure 18: Simulated Results

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $v_{R_2}$  | -0.4V              | -0.4V            |
| $V_1$      | 5.6V               | $5.6\mathrm{V}$  |
| $i_{R_3}$  | 2.8A               | 2.8A             |

Table 6: Numerical 6

#### Numerical 7:

Find the current  $I_{XY}$  flowing in the branch XY in the circuit of Figure 19 by superposition theorem.



Figure 19: Circuit 7(a)

#### Solution:

In the circuit 7(a),

$$R_O = R_3 + R_4 + R_5$$

**CASE 1**: Only  $V_1$  is active

...(Refer Figure 20)

In circuit 7(b),

$$R_T = (R_{V_1} + R_1) + (R_2||R_O)$$

$$R_T = (1+2) + (3||6)$$

$$R_T = 5\Omega$$

$$R_T = (1+2) + (3)|6$$

$$I_{V_1} = \frac{V_1}{R_T} = \frac{20}{5} = 4A$$

$$I_{R_2} = \frac{I_{V_1} \times R_O}{R_O + R_2} = \frac{4 \times 6}{6 + 3}$$

$$\therefore I_{R_2} = 2.667 A(\downarrow)$$

$$\therefore I_{(XY)_1} = \mathbf{2.667A}(\downarrow) \qquad \qquad \dots (1)$$



Figure 20: Circuit 7(b) - only  $V_1$  is active

**CASE 2**: Only  $V_2$  is active

...(Refer Figure 21)

In circuit 7(c),

$$R_T = R_2 + (R_{V_1} + R_1 || R_O)$$

$$R_T = 3 + (3||6)$$

$$R_T = \mathbf{5}\Omega$$

$$I_{V_2} = \frac{V_2}{R_T} = \frac{20}{5} = 4A$$

$$\therefore I_{(XY)_2} = \mathbf{4A}(\uparrow)$$

...(2)

 $\therefore$  From (1) and (2),

$$I_{XY} = 4 - 2.667$$

$$\therefore I_{XY} = \mathbf{1.33A}(\uparrow)$$



Figure 21: Circuit 7(c) - only  $V_2$  is active

Above circuit is simulated in LTspice. The results are presented below:



Figure 22: Circuit Schematic

Simulated results are shown in Figure 23.

\* C:\Users\lenovo\Desktop\LTspiceXVII\task\sanika.p\_week1\_day3\_circuit1.asc

|          | Operating Point |                |
|----------|-----------------|----------------|
| V(x):    | 16              | voltage        |
| V(n001): | 18.6667         | voltage        |
| V(n002): | 13.3333         | voltage        |
| V(n005): | 5.33333         | voltage        |
| V(n004): | 20              | voltage        |
| V(n003): | -1.33333        | voltage        |
| I(Rv1):  | -1.33333        | device_current |
| I(R4):   | 2.66667         | device_current |
| I(R2):   | -1.33333        | device_current |
| I(R5):   | 2.66667         | device_current |
| I(R3):   | -2.66667        | device_current |
| I(R1):   | -1.33333        | device_current |
| I(V2):   | -1.33333        | device_current |
| I(V1):   | -1.33333        | device current |

Figure 23: Simulated Results

| Parameters   | Theoretical Values | Simulated Values |
|--------------|--------------------|------------------|
| $I_{(XY)_1}$ | 2.667A             | 2.667A           |
| $I_{(XY)_2}$ | 4A                 | 4A               |
| $I_{XY}$     | 1.33A(↑)           | 1.33A (↑)        |

Table 7: Numerical 7

#### Numerical 8:

Find the Norton equivalent circuit in the Figure 24 at terminals a-b.



Figure 24: Circuit 8(a)

#### Solution:

...(Refer Figure 25) **1.** For calculating  $R_N$  $R_N = (R_1 + R_2)||R_3|$  $R_N = (3+3)||6=6||6$ 

 $R_N = \mathbf{3}\Omega$ 



Figure 25: Circuit 8(b) - calculating  $R_N$ 



Figure 26: Circuit 8(c) - calculating  $I_N$ 

- **2.** For calculating  $I_N$  ...(Refer Figure 26)
- Using nodal analysis in the circuit 8(c),

For  $V_1$ ,

$$\frac{V_1 - 15}{3} + \frac{V_1 - V_2}{3} = 4$$

$$\therefore 2V_1 - V_2 = 27 \qquad \dots (1)$$

For  $V_2$ ,

$$\frac{V_2 - V_1}{3} + \frac{V_2}{6} = 0$$

$$\therefore 3V_2 = 2V_1 \qquad \dots(2)$$

Substituting (2) in (1),

$$3V_2 - V_2 = 27$$

$$\therefore V_2 = \frac{27}{2} = 13.5V$$

$$I_N = \frac{V_2}{R_N} = \frac{13.5}{3}$$

$$\therefore I_N = \mathbf{4.5A}$$

... Norton equivalent circuit is shown in Figure 27.



Figure 27: Norton equivalent circuit

Above circuit is simulated in LTspice. The results are presented below:



Figure 28: Circuit Schematic

Simulated results are shown in Figure 29.

| * C:\Users\lenovo\Desktop\LTspiceXVII\task\sanika.p_week1_day3_circuit2.asc |                 |                |  |  |
|-----------------------------------------------------------------------------|-----------------|----------------|--|--|
|                                                                             | Operating Point |                |  |  |
|                                                                             |                 | •              |  |  |
| V(n002):                                                                    | 20.25           | voltage        |  |  |
| V(n001):                                                                    | 15              | voltage        |  |  |
| V(a):                                                                       | 13.5            | voltage        |  |  |
| I(I1):                                                                      | 4               | device current |  |  |
| I(R3):                                                                      | 2.25            | device current |  |  |
| I(R2):                                                                      | -2.25           | device current |  |  |
| I(R1):                                                                      | 1.75            | device current |  |  |
| I(V1):                                                                      | 1.75            | device current |  |  |
|                                                                             |                 | _              |  |  |

Figure 29: Simulated Results

$$(I_N = I_{R_1} + I_{R_3})$$

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $R_N$      | $3\Omega$          | $3\Omega$        |
| $I_N$      | 4.5A               | 4.5A             |

Table 8: Numerical 8

#### Numerical 9:

For the circuit shown in Figure 30, calculate the current in  $6\Omega$  resistor by using Norton's Theorem



Figure 30: Circuit 9(a)

#### Solution:

1. Calculating  $I_N$ , ....(Refer Figure 31) Using Mesh analysis, For Mesh 1,  $3-4I_1-4(I_1-I_2)+5=0$   $-4I_1-4I_1+4I_2+8=0$   $8I_1-4I_2=8$   $\therefore 2I_1-I_2=2$  ....(1) For Mesh 2,  $-2I_2-4-5-4(I_2-I_1)=0$  $-2I_2-9-4I_2+4I_1=0$ 

Solving (1) and (2) simultaneously,

$$4I_2 = -5$$

 $\therefore 4I_1 - 6I_2 = 9$ 

$$I_1 = -1.25A$$
  $I_1 = 0.375A$ 

From Figure 31,  $I_2 = I_N$ 

 $\therefore I_N = 1.25A(\uparrow)$  ...(direction of current is different from assumed)

...(2)



Figure 31: Circuit 9(b) - calculating  $I_N$ 



Figure 32: Circuit 9(c) - calculating  $R_N$ 

**2.** Calculating  $R_N$ ,

...(Refer Figure 32)

$$R_N = (R_1||R_2) + R_3$$
  
 $R_N = (4||4) + 2 = 2 + 2$   
 $R_N = 4\Omega$ 

 $\therefore$  Norton equivalent circuit will be as shown in Figure 33.



Figure 33: Norton equivalent circuit

∴ current in 
$$6\Omega$$
 resistor is, 
$$I = -\frac{5}{4} \times \frac{4}{10}$$

$$I = -0.5A$$

### SIMULATED RESULTS:

Above circuit is simulated in LTspice. The results are presented below:



Figure 34: Circuit Schematic

Simulated results are shown in Figure 35.

| * C:\Users\lenovo\Desktop\LTspiceXVII\task\sanika.p_week1_day4_circuit1.asc |                 |                 |
|-----------------------------------------------------------------------------|-----------------|-----------------|
|                                                                             | Operating Point |                 |
| V(n002):                                                                    | 0               | voltage         |
| V(n001):                                                                    | 3               | voltage         |
| V(n005):                                                                    | -5              | voltage         |
| V(n003):                                                                    | 1               | voltage         |
| V(n004):                                                                    | -3              | <b>v</b> oltage |
| I(R4):                                                                      | -0.5            | device current  |
| I(R3):                                                                      | 0.5             | device current  |
| I(R2):                                                                      | 1.25            | device current  |
| I(R1):                                                                      | -0.75           | device current  |
| I(V3):                                                                      | -0.5            | device current  |
| I(V2):                                                                      | -1.25           | device current  |
| I(V1):                                                                      | -0.75           | device current  |
|                                                                             |                 |                 |

Figure 35: Simulated Results

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $I_N$      | 1.25A(↑)           | 1.25A(↑)         |
| I          | -0.5A              | -0.5A            |
| $I_1$      | 0.375A             | 0.375A           |

Table 9: Numerical 9

#### Numerical 10:

Find the value of current flowing through  $6\Omega$  resistor using Theorem.



Figure 36: Circuit 10(a)

#### Solution:

Using source transformation, the circuit can be drawn as:



Figure 37: Circuit 10(b)

#### 1. Calculating $V_{th}$

..(Refer Figure 38)

Using Mesh analysis,

$$40 - 10I_1 - 10 - 2I_1 - 5 - 15I_1 = 0$$

 $27I_1 = 25$ 

$$I_1 = \frac{25}{27} = 0.9259A$$

writing  $V_{th}$  equation,

$$-V_{th} + 5I_1 + 15 = 0$$

$$V_{th} = (5 \times 0.9259) + 15$$

$$V_{th} = 19.629V$$



Figure 38: Circuit 10(c) - calculating  $V_{th}$ 



Figure 39: Circuit 10(d) - calculating  $R_{th}$ 

# **2.** Calculating $R_{th}$ ,

...(Refer Figure 39)

$$R_{th} = (R_1 + R_2)||R_3|$$

$$R_{th} = (10+2)||5$$

$$R_{th} = 12||5 = \frac{60}{17}$$
  
 $\therefore R_{th} = 3.5294\Omega$ 

$$R_{th} = 3.5294\Omega$$

 $\therefore$  The venin equivalent circuit will be as shown in Figure 40.



Figure 40: Thevenin equivalent circuit

$$I = \frac{V_{th}}{R_{th} + R_L} = \frac{19.629}{3.5294 + 6}$$
$$\therefore I = \mathbf{2.059A}$$

#### SIMULATED RESULTS:

Above circuit is simulated in LTspice. The results are presented below:



Figure 41: Circuit Schematic

Simulated results are shown in Figure 42.



Figure 42: Simulated Results

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $V_{th}$   | 19.629V            | 19.411V          |
| I          | 2.059A             | 2.037A           |

Table 10: Numerical 10

#### Numerical 11:

For the circuit given in Figure 43, what will be the  $R_L$  to get the maximum power? What is the maximum power delivered to the load?



Figure 43: Circuit 11(a)

#### Solution:

The circuit given in Figure 43 can also be drawn as shown in Figure 44.



Figure 44: Simplified Circuit



Figure 45: Circuit 11(b) - For calculating  $V_{th}$ 

#### 1. Calculating $V_{th}$ :

Applying Mesh analysis in Figure 45.

$$10 - 20I - 30I = 0$$

$$50I = 10$$

$$\therefore I = 0.2A$$

Writing  $V_{th}$  equation,

$$-V_{th} + 30I = 0$$

$$V_{th} = 30I$$

$$V_{th} = 30 \times 0.2$$

$$\therefore V_{th} = \mathbf{6V}$$



Figure 46: Circuit 11(c) - For calculating  $R_{th}$ 

# 2. Calculating $R_{th}$ :

$$R_{th} = R_1 || R_2 || R_3 || R_4$$

$$R_{th} = 20 || 90 || 60 || 180$$

$$\therefore R_{th} = \mathbf{12}\Omega$$

For Maximum Power Transfer,

$$R_L = R_{th}$$

$$\therefore R_L = \mathbf{12}\Omega$$

$$P_{max} = \frac{V_{th}^2}{4R_{th}} = \frac{6^2}{4 \times 12} = \frac{36}{48}$$

$$\therefore P_{max} = \mathbf{0.75W}$$

Above circuit is simulated in LTspice. The results are presented below:



Figure 47: Circuit Schematic

Simulated results are shown in Figure 48.

\* C:\Users\lenovo\Desktop\LTspiceXVII\task\sanika.p\_week1\_day5\_circuit1b.asc

| o        | perating Point - |                |  |
|----------|------------------|----------------|--|
| V(a):    | 6                | voltage        |  |
| V(n005): | 10               | voltage        |  |
| I(R4):   | 0.0333333        | device current |  |
| I(R3):   | 0.1              | device current |  |
| I(R2):   | 0.0666667        | device current |  |
| I(R1):   | -0.2             | device current |  |
| I(V1):   | -0.2             | device current |  |
|          |                  | _              |  |
|          |                  |                |  |

Figure 48: Simulated Results

For the circuit in Figure 47, 
$$P_{max} = \frac{V_a^2}{4R_{th}} = \frac{6^2}{4 \times 12} = \frac{36}{48}$$

 $\therefore P_{max} = \mathbf{0.75W}$ 

#### Comparison of theoretical and simulated values:

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $P_{max}$  | 0.75W              | 0.75W            |
| $V_{th}$   | 6V                 | 6V               |
| I          | 0.2A               | 0.2A             |

Table 11: Numerical 11

\*\*\*\*\*\*\*