Nonlinear Transformation

Wenlu Zhang

CECS@CSULB

Readings for Chapter 3

Excluding: 3.2.2; 3.4.2 (Generalization part)

Ignore other discussions of generalization, VC dimension

RECAP: The Linear Model

linear in x: gives the line/hyperplane separator

linear in \mathbf{w} : makes the algorithms work

Mechanics of the Feature Transform I

Transform the data to a \mathcal{Z} -space in which the data is separable.

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} \qquad \qquad \mathbf{z} = \mathbf{\Phi}(\mathbf{x}) = \begin{bmatrix} 1 \\ x_1^2 \\ x_2^2 \end{bmatrix} = \begin{bmatrix} 1 \\ \Phi_1(\mathbf{x}) \\ \Phi_2(\mathbf{x}) \end{bmatrix}$$

Mechanics of the Feature Transform II

Separate the data in the \mathcal{Z} -space with $\tilde{\mathbf{w}}$:

$$\tilde{g}(\mathbf{z}) = \operatorname{sign}(\tilde{\mathbf{w}}^{\mathrm{T}}\mathbf{z})$$

Mechanics of the Feature Transform III

To classify a new \mathbf{x} , first transform \mathbf{x} to $\Phi(\mathbf{x}) \in \mathcal{Z}$ -space and classify there with \tilde{g} .

$$g(\mathbf{x}) = \tilde{g}(\mathbf{\Phi}(\mathbf{x}))$$

= $\operatorname{sign}(\tilde{\mathbf{w}}^{T}\mathbf{\Phi}(\mathbf{x}))$
 $\tilde{g}(\mathbf{z}) = \operatorname{sign}(\tilde{\mathbf{w}}^{T}\mathbf{z})$

The General Feature Transform

\mathcal{X} -space is \mathbb{R}^d

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$$

$$y_1, y_2, \ldots, y_N$$

no weights

$$g(\mathbf{x}) = \operatorname{sign}(\tilde{\mathbf{w}}^{\mathrm{T}} \Phi(\mathbf{x}))$$

$\underline{\mathcal{Z}}$ -space is $\mathbb{R}^{\tilde{d}}$

$$\mathbf{z} = \mathbf{\Phi}(\mathbf{x}) = \begin{bmatrix} 1 \\ \Phi_1(\mathbf{x}) \\ \vdots \\ \Phi_{\tilde{d}}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} 1 \\ z_1 \\ \vdots \\ z_{\tilde{d}} \end{bmatrix}$$

$$\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N$$

$$y_1, y_2, \ldots, y_N$$

$$\tilde{\mathbf{w}} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_{\tilde{d}} \end{bmatrix}$$

Many Nonlinear Features May Work

A rat! A rat!

This is called data snooping: looking at your data and tailoring your \mathcal{H} .

Must Choose Φ BEFORE Your Look at the Data

After constructing features carefully, before seeing the data . . .

... if you think linear is not enough, try the 2nd order polynomial transform.

$$\begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} = \mathbf{x} \longrightarrow \Phi(\mathbf{x}) = \begin{bmatrix} 1 \\ \Phi_1(\mathbf{x}) \\ \Phi_2(\mathbf{x}) \\ \Phi_3(\mathbf{x}) \\ \Phi_4(\mathbf{x}) \\ \Phi_5(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}$$

The General Polynomial Transform Φ_k

We can get even fancier: degree-k polynomial transform:

$$\begin{split} &\Phi_1(\mathbf{x}) \ = \ (1, x_1, x_2), \\ &\Phi_2(\mathbf{x}) \ = \ (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2), \\ &\Phi_3(\mathbf{x}) \ = \ (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3), \\ &\Phi_4(\mathbf{x}) \ = \ (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3, x_1^4, x_1^3 x_2, x_1^2 x_2^2, x_1 x_2^3, x_2^4), \\ &\vdots \end{split}$$

- Dimensionality of the feature space increases rapidly $(d_{VC})!$
- Similar transforms for d-dimensional original space.
- Approximation-generalization tradeoff Higher degree gives lower (even zero) $E_{\rm in}$ but worse generalization.

Be Careful with Feature Transforms

Be Careful with Feature Transforms

High order polynomial transform leads to "nonsense".

Use the Linear Model!

• First try a linear model – simple, robust and works.

- Algorithms can tolerate error plus you have nonlinear feature transforms.
- Choose a feature transform before seeing the data. Stay simple. Data snooping is hazardous to your E_{out} .
- Linear models are fundamental in their own right; they are also the building blocks of many more complex models like support vector machines.
- Nonlinear transforms also apply to regression and logistic regression.

Data		Target
x_1	x_2	t
0	0	1
0	1	0
1	0	0
1	1	1

Data		Target
x_1	x_2	t
0	0	1
0	1	0
1	0	0
1	1	1

Courtesy of Dr. Hung-yi Lee

Data		Target
x_1	x_2	t
0	0	1
0	1	0
1	0	0
1	1	1

Courtesy of Dr. Hung-yi Lee

Data		Target
x_1	x_2	t
0	0	1
0	1	0
1	0	0
1	1	1

Data		Target
x_1	x_2	t
0	0	1
0	1	0
1	0	0
1	1	1

We can't separate them well using a simple logistic regression (not linearly separable)

Feature Transformation $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

$$x_1'$$
: distance to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ x_2' : distance to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Courtesy of Dr. Hung-yi Lee

Courtesy of Dr. Hung-yi Lee

- Accuracy
 - The ratio of correct predictions to total predictions made.

Accuracy

• The ratio of correct predictions to total predictions made.

Cases

- True Positive: Correctly identified as relevant
- True Negative: Correctly identified as not relevant
- False Positive: Incorrectly labeled as relevant
- False Negative: Incorrectly labeled as not relevant

Accuracy

• The ratio of correct predictions to total predictions made.

Cases

- True Positive: Correctly identified as relevant
- True Negative: Correctly identified as not relevant
- False Positive: Incorrectly labeled as relevant
- False Negative: Incorrectly labeled as not relevant

Accuracy

• The ratio of correct predictions to total predictions made.

Cases

- True Positive: Correctly identified as relevant
- True Negative: Correctly identified as not relevant
- False Positive: Incorrectly labeled as relevant
- False Negative: Incorrectly labeled as not relevant

Accuracy

• The ratio of correct predictions to total predictions made.

$$Accuracy = \frac{\# \ of \ True \ Positives + \# \ of \ True \ Negatives}{\# \ of \ samples}$$

- Accuracy
 - The ratio of correct predictions to total predictions made.

$$Accuracy = \frac{\# \ of \ True \ Positives + \# \ of \ True \ Negatives}{\# \ of \ samples}$$

However, using classification accuracy only can be misleading,

- when you have an unequal number of observations in each class
- when you have more than two classes in your dataset.

• Suppose we have a classifier for identify the object in a image is cat or not.

If
$$y(x) \ge 0.5$$
, we predict 1 (cat)
If $y(x) < 0.5$, we predict 0 (not cat)

the accuracy is 99% on testing datasets (1000 images).

Is this classifier good or not?

• Suppose we have a classifier for identify the object in a image is cat or not.

If
$$y(x) \ge 0.5$$
, we predict 1 (cat)
If $y(x) < 0.5$, we predict 0 (not cat)

the accuracy is 99% on testing datasets (1000 images).

- Is this classifier good or not?
- What do think if the 1000 images contain only 5 cat images?

• Suppose we have a classifier for identify the object in a image is cat or not.

```
If y(x) \ge 0.5, we predict 1 (cat)
If y(x) < 0.5, we predict 0 (not cat)
```

the accuracy is 99% on testing datasets (1000 images).

- Is this classifier good or not?
- What do think if the 1000 images contain only 5 cat images?

def classifier(img):
return 0

The problem comes from an unequal number of observations in each class

- Precision, Recall, and Accuracy
 - Precision
 - Percentage of positive labels that are correct
 - Precision = (# true positives) / (# true positives + # false positives)
 - Recall
 - Percentage of positive examples that are correctly labeled
 - Recall = (# true positives) / (# true positives + # false negatives)
 - Accuracy
 - Percentage of correct labels
 - Accuracy = (# true positives + # true negatives) / (# of samples)

Reference: Nvidia - Deep Learning Teaching Kit

- Precision
 - Percentage of positive labels that are correct

$$Precision = \frac{\# \ of \ True \ Positives}{\# \ of \ True \ Positives + \# \ of \ False \ Positives}$$

- Precision
 - Percentage of positive labels that are correct

$$Precision = \frac{\# of \ True \ Positives}{\# of \ True \ Positives + \# of \ False \ Positives}$$

- Recall
 - Percentage of positive examples that are correctly labeled

$$Recall = \frac{\# of \ True \ Positives}{\# of \ True \ Positives + \# of \ False \ Negatives}$$

- Recall
 - Percentage of positive examples that are correctly labeled

$$Recall = \frac{\# of \ True \ Positives}{\# of \ True \ Positives + \# of \ False \ Negatives}$$

 Suppose we have a classifier for identify the object in a image is cat or not.

If
$$y(x) \ge 0.5$$
, we predict 1 (cat)
If $y(x) < 0.5$, we predict 0 (not cat)

• The testing datasets (1000 images contain only 5 cat images)

def classifier(img):
return 0

		Predicted Class	
		1	0
Actual Class	1		
	0		

 Suppose we have a classifier for identify the object in a image is cat or not.

If
$$y(x) \ge 0.5$$
, we predict 1 (cat)
If $y(x) < 0.5$, we predict 0 (not cat)

• The testing datasets (1000 images contain only 5 cat images)

def classifier(img):
 return 0

		Predicted Class	
		1	0
Actual Class	1	0	5
	0	0	995

 Suppose we have a classifier for identify the object in a image is cat or not.

If
$$y(x) \ge 0.5$$
, we predict 1 (cat)
If $y(x) < 0.5$, we predict 0 (not cat)

• The testing datasets (1000 images contain only 5 cat images)

def classifier(img): return 0

Accuracy = 99.5% Precision = ? (0/0) Recall = 0 %

Confusion Matrix

		Predicted Class	
		1	0
Actual Class	1	0	5
	0	0	995

• F1 score is a measure of a classifier's performance

$$F_1 = 2 \frac{Precision \times Recall}{Precision + Recall}$$

• Measure precision and recall on validation sets and select a model that gives max F1 score.