Problem Definition:

- Given a directed graph G=(V, E, W), where each edge has a weight (length, cost),
- Find a shortest path from s to v.
 - s-source
 - v—destination.

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V \setminus \{s\}
     do d[v] \leftarrow \infty, \pi[v] \leftarrow NIL.
 S \leftarrow \emptyset
 Q \leftarrow V % Q=V/S is a priority queue
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
                                                              relaxation step
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u] \& v \in V \setminus S
              do if d[v] > d[u] + w(u, v)
                       then d[v] \leftarrow d[u] + w(u, v), \pi[v] \leftarrow u,
```

Example of Dijkstra's algorithm

The algorithm does not work if there are negative weight edges in the graph

s \rightarrow v is shorter than s \rightarrow u, but it is longer than s \rightarrow u \rightarrow v.

Lecture 10: Shortest Paths with Negative weighted edges Bellman-Ford algorithm

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path lengths from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Shortest Paths: Dynamic Programming

Def. OPT(i, v)=length of shortest s-v path P using at most i edges.

- Case 1: P uses at most i-1 edges.
 - OPT(i, v) = OPT(i-1, v)
- Case 2: P uses exactly i edges.
 - If (w, v) is the last edge, then OPT use the best s-w path using at most i-1 edges and edge (w, v).

$$OPT(i,v) = \begin{cases} 0 & \text{if } i = 0 \text{ and } v = s \\ \infty & \text{if } i = 0, \text{and } v \neq s \\ \min\{OPT(i-1,v), \min_{(w,v) \in E} \{OPT(i-1,w) + C_{wv}\}\} & \text{otherwise} \end{cases}$$

Remark: if no negative cycles, then OPT(n-1, v)=length of shortest s-v path. n: the number of nodes.

 Using this recursive equation, You can design a DP algorithm. Opt(v, i) is a subproblem (exercise).

$$OPT(i,v) = \begin{cases} 0 & \text{if } i = 0 \text{ and } v = s \\ \infty & \text{if } i = 0, \text{and } v \neq s \end{cases}$$

$$\min\{OPT(i-1,v), \min_{(w,v)\in E} \{OPT(i-1,w) + C_{wv}\}\} & \text{otherwise}$$

d: $0 \infty \infty \infty \infty$

π: s - - -

$$OPT(i,v) = \begin{cases} 0 & \text{if } i = 0 \text{ and } v = s \\ \infty & \text{if } i = 0, \text{and } v \neq s \end{cases}$$

$$\min\{OPT(i-1,v), \min_{(w,v) \in E} \{OPT(i-1,w) + C_{wv}\}\} & \text{otherwise}$$

d: $0 6 \infty 7 \infty$

 π : s s - s -

$$OPT(i,v) = \begin{cases} 0 & \text{if } i = 0 \text{ and } v = s \\ \infty & \text{if } i = 0, \text{and } v \neq s \end{cases}$$

$$\min\{OPT(i-1,v), \min_{(w,v)\in E} \{OPT(i-1,w) + C_{wv}\}\} \text{ otherwise}$$

d: 0 6 4 7 2

 π s s x s u

$$OPT(i,v) = \begin{cases} 0 & \text{if } i = 0 \text{ and } v \\ \infty & \text{if } i = 0, \text{and } v \end{cases}$$

$$\min \{OPT(i-1,v), \min_{(w,v) \in E} \{OPT(i-1,w) + C_{wv}\}\} \quad \text{otherwise}$$

$$if i = 0 and v = s$$

 $if i = 0, and v \neq s$
 $otherwise$

i=3

d: 0 2 4 7 2

 π : s v x s u

d: 0 2 4 7 -2

 π : s v x s u

$$OPT(i,v) = \begin{cases} 0 & \text{if } i = 0 \text{ and } v = s \\ \infty & \text{if } i = 0, \text{and } v \neq s \end{cases}$$

$$\min\{OPT(i-1,v), \min_{(w,v) \in E} \{OPT(i-1,w) + C_{wv}\}\} & \text{otherwise}$$

d: 0 2 4 7 -2

 π : s v x s u

$$OPT(i,v) = \begin{cases} 0 & \text{if } i = 0 \text{ and } v = s \\ \infty & \text{if } i = 0, \text{and } v \neq s \end{cases}$$

$$\min\{OPT(i-1,v), \min_{(w,v) \in E} \{OPT(i-1,w) + C_{wv}\}\} \quad \text{otherwise}$$

vertex: s u v x y

d:
$$\infty$$
 ∞ ∞ ∞ ∞ ∞ i=0

 π : s ----

d: 0 6 ∞ 7 ∞ i=1

 π : s s - s -

d: 0 6 4 7 2 i=2

 π : s s x s u

d: 0 2 4 7 2 i=3

 π : s v x s u

d: 0 2 4 7 -2 i=4

 π : s v x s u

d: 0 2 4 7 -2 i=5

 π : s v x s u

So, no negative cycle.

• Bellman-Ford algorithm is more efficient.

Bellman-Ford algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
do d[v] \leftarrow \infty
initialization
```

```
for i \leftarrow 1 to |V| - 1

do for each edge (u, v) \in E

do if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)
```

for each edge $(u, v) \in E$ do if d[v] > d[u] + w(u, v)then report that a negative-weight cycle exists

At the end, $d[v] = \delta(s, v)$. Time = O(|V||E|).

The result for i=2 is the same as i=1, so are i=3, 4. Conclusion: no negative cycle.

Corollary: If negative-weight circuit exists in the given graph, in the n-th iteration, the cost of a shortest path from *s* to *some* node *v* will be further reduced.

Demonstrated by the following examples.

An example with negative-weight cycle

i=1

i=4

i=5

i=6

0-1 Knapsack Problem

Knapsack Problem 0-1 version

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_i / w_i .

Ex: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow$ greedy not optimal.

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w wi
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, w<sub>1</sub>,...,w<sub>N</sub>, v<sub>1</sub>,...,v<sub>N</sub>

for w = 0 to W
   M[0, w] = 0

for i = 1 to n
   for w = 1 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
   else
        M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}

return M[n, W]
```

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

$$OPT(i,w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1,w) & \text{if } w_i > w \\ \max\{OPT(i-1,w), v_i + OPT(i-1,w-w_i)\} & \text{otherwise} \end{cases}$$
 Knapsack Algorithm

		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
5	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
\	{ 1, 2, 3, 4, 5 }	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 } value = 22 + 18 = 40

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Summary

- Bellman-ford algorithm
 - Comparison with Dijkstra Algorithm.

Knapsack Problem.