Statistical Modelling of City Bikes and Points of Interest (POIs)

Approach and findings

- 1) Goals
- 2) Process
- 3) Findings
- 4) Challenges
- 5) Future Goals

Goals

- The project aim is to statistically model a relationship (if any) between city bike availability and Points of Interest (POIs) in the area.
- Join bike and venue data, explore any relationships and model these with linear regression.
- City chosen: Toronto, Ontario
- Tools:
 - City Bike API (bike station data)
 - Foursquare API (venue/location data)
 - Yelp API (venue/location data)
- See city_bikes.ipynb

Process

- Foursquare's API used to obtain various places of interest in 800m (city density and constraints from API) of a city bike station
- Began with a sample request of one bike station latitude/longitude location and manipulating the data returned by Foursquare
 - Number of bars/restaurants, parks, live venues and cafes, total number of POIs.
 - Sampled the Foursquare API calls on bike different stations to build a catch-all word search (Regex).

Process

- For each of the 826 stations, Foursquare obtained up to 50 POIs in the bar/restaurant, park, cafe and live venue categories. Build the model and perform a linear regression later.
- The individual venue data such as name, address, venue category for saving into a SQL .db file, as with the city bikes stations.
- We now have a database holding tens of thousands venues and hundreds of bike stations, we can search by ll, search by bike station, search by venue where there is a bike station nearby.
- EDA to find correlations between number of POIs, bike availability, correlation heatmaps and scatter graphs
- See joining_data.ipynb.

Findings

- -0.51 corr between latitude and n_POIs
- -0.31 corr between latitude and bike availability (image on right)
- 0.17 corr between n_POIs and bike availability

All three of the above are statistically significant (p < 0.05)

Findings

Simple linear regression:

- Adjusted R² of 0.096 for bike availability / latitude. Latitude only explains 9.6% of the variance
- Adjusted R² of 0.27 for n_POIs / latitude. Latitude only explains 27% of the variance of n_POIs. I expected higher because south is downtown, more densely packed than northern Toronto.
- Multilinear regression: Adj. R² of 0.096 – predicting bike availability against latitude and n_POIs

Conclusion: Latitude and n_POIs do contribute to bike availability but they are by no means the only factors.

model_building.ipynb

OLS Regression Results

Dep. Variab	le: bi	ke_availabili	ty	R-squ	uared:		0.097
Model:			LS	Adj.	R-squared:		0.096
Method:		Least Squar	es	F-sta	atistic:		88.47
Date: Ti		hu, 08 Aug 20	24	Prob	(F-statistic):	4.98e-20
Time:		17:31:	55	Log-l	ikelihood:		-3928.8
No. Observations:		8	26	AIC:			7862.
Df Residuals:		8	24	BIC:			7871.
Df Model:			1				
Covariance	Type:	nonrobu	st				
	coef	std err		t	P> t	[0.025	0.975]
const	1.196e+04	1267.362	9	.434	0.000	9468.269	1.44e+04
latitude	-272.9633	29.020	-9	.406	0.000	-329.926	-216.001
Omnibus: 80.969			==== 69	Durbi	in-Watson:		1.920
Prob(Omnibus):		0.0	00	Jarqu	ue-Bera (JB):		57.577
Skew:		0.5	38	Prob			3.14e-13
Kurtosis:		2.2	82	Cond.	No.		5.65e+04
			====				

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.65e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Challenges

- Avoiding multicollinearity in this is very difficult with n_POIs and bike availability/latitude
- API is damaging the power of the n_POIs data, need > 50 returns. This impacted the radius that I
 was calling as well

Future Goals

- Run the model on other categories of POI, or only with the specific categories. This would still have problems with collinearity though (in >= 50 POIs, more bars will mean less cafes are pulled)
- Run the Monday afternoon data instead of Saturday afternoon for different findings?
- Classification problem categorize high and low density / high and low traffic stations and try and predict using other features in the data.
- Use the n_POIs, bike availability and other features (Yelp distance from venue to bike station) to identify stations that are underserving the area build more bike stations?