Exam preparation cheetzheet: *Stuff from*

MNF130V2020

May 21, 2020

Propositional logic: Logical \land, \lor, \oplus are trivial.

Conditional statements (implication): $p \to q$, if p then $q \equiv p$ only if $q \equiv p$ is a sufficient condition for q.

In other words, q is a necessary condition for p. $p \to q$ is false then p is true and q is false and otherwise true. $\neg(p \to q) \equiv p \land (\neg q), \ p \to q$ is equivalent to its contrapositive $\neg q \to \neg p$, but **not** to its **converse** $q \to p$ **or** its inverse $\neg p \to \neg q$.

Biconditional statements: $p \leftrightarrow q$ or expanded to $(p \rightarrow q) \land (q \rightarrow p)$.

De Morgan: $\neg(p \lor q) \equiv (\neg p) \land (\neg q)$; $\neg(p \land q) \equiv (\neg p) \lor (\neg q)$ Propositional logic can be represented by gates, creating combinational circuits which can represent **any** logical expression.

Quantifiers:

$$\forall x(P(x) \rightarrow Q(x)) \equiv \text{for all } x, \text{ if } P(x) \text{ then } Q(x)$$

 $\exists x(P(x) \land Q(x)) \equiv \text{there exists an } x \text{ such that } P(x) \text{ and } Q(x)$

P(x), Q(x) are propositional functions and there is always a **domain** or **universe of discourse**, either implicit or explicitly stated, over which the variable ranges.

Negations of quantified propositions: $\neg \forall x P(x) \equiv \exists x \neg P(x); \neg \exists P(x) \equiv \forall x \neg P(x).$

Theorem: A proposition that can be proved; **lemma:** a simple theorem, commonly used as part of a greater picture to prove other theorems; **proof:** A demonstration that a proposition is true, **collorary:** A proposition that can be proved as a consequence of a theorem that has just been proved. A collorary can be seen as "Side effects" of the prooved theorem.

A **valid** argument is an argument using correct rules of inference based on tautologies (something that will always give the **true** conclusion in **any** given scenario. I. E. a tautology is something that is always true for all possible combinations.)

An **invalid** argument can be referred to as a **fallacy**, such as affirming the conclusion, denying the hypothesis, begging the question or circular reasoning. They can lead to false conclusions.

Some rules of inference:

- $[p \land (p \rightarrow q)]$ Modus Ponens
- $[\neg q \land (p \rightarrow q)]$ Modus Tollens
- $[(p \to q) \land (q \to r)] \to (p \to r)$ Hypothetical syllogism (Transitivity)
- $[(p \lor q) \land (\neg p)] \rightarrow q$ Disjunctive syllogism
- $\{P(a) \land \forall x [P(x) \to Q(x)]\} \to Q(a)$ Universal modus ponens
- $\{\neg Q(a) \land \forall x [P(x) \to Q(x)]\} \to \neg P(a)$ Universal modus tollens
- $(\forall x P(x)) \rightarrow P(c)$ Universal instantiation
- $(P(c)arbitrary c) \rightarrow \forall x P(x)$ Universal generalization
- $(\exists x P(x)) \rightarrow (P(c) \ for \ some \ c)$ Existential instantiation
- $(P(c) \ for \ some \ element \ c) \rightarrow \exists x P(x)$ Existential generalization.

a Proofs

Trivial proof: A proof that $p \to q$ just shows that q is true witout using the hypothesis p.

Vacuous proof: A proof of $p \rightarrow q$ that just shows that the hypothesis p is false.

Direct proof: A proof of $p \to q$ that shows that the assumption of the hypothesis p implies the conclusion of q.

Proof by contraposition: A proof of $p \to q$ that shows that the assumption of the negation of the conclusion q implies the negation of the hypothesis p (in other words, proof of contrapositive).

Proof by contradiction: A proof of p that shows that the assumption of the negation of p leads to a contradiction. **Proof by cases:** A proof of $(p_1 \lor p_2 \lor p_3...p_n) \to q$ that shows that each conditional statement $p_i \to q$ is true. Statements of the form $p \leftrightarrow q$ require that both $p \to q$ and $q \to p$ be proved. It is sometimes necessary to give the two separate proof (usually a direct proof or a proof by contraposition); other times a string of equivalences can be constructed starting with p and ending with $q: p \leftrightarrow p_1 \leftrightarrow p_2... \leftrightarrow p_n \leftrightarrow q$.

To give a **constructive proof** of $\exists x P(x)$ is to show how to find an element x that makes P(x) true. **Non-constructive existence proofs** are also possible, often using **proof by contradiction**.

One can **disprove** a universally quantified proposition $\forall x P(x)$ simply by giving a **counter example**, i.e. an object x such that P(x) is **false**. One can, however, not proove it with such an example.

Fermat's last theorem: There are no positive integer solutions of $x^n + y^n = z^n$ if n > 2.

An integer is **even** if it can be written as 2k for some integer k; an integer is **odd** if it can be written as 2k + 1 for some integer k. Every number is even or odd but not both. A number is **rational**, if it can be written as p/q with p being an integer and q strictly a non-zero integer.

a Sets

Empty set: A set with no elements, commonly denoted as \emptyset . Do not confuse this with the set only containing the empty set. The difference is that the empty itself is empty, whereas the set containing the empty set has a single element.

Subset: $A \subseteq B \equiv \forall x (x \in A \to x \in B)$, whereas a proper subset is $A \subset B \equiv (A \subseteq B) \land (A \neq B)$, in other words, B has at least one element different from the set A.

Equality of sets: $A = B \equiv (A \subseteq B \land B \subseteq A) \equiv \forall x (x \in A \leftrightarrow x \in B).$

Power set: $\mathcal{P}(A) = \{B | B \subseteq A\}$, the set of all subsets of A. A set with n elements has 2^n subsets.

Cardinality: |S|, the number of elements in S.

Some specific sets in regards to cardinality: \mathbb{R} is the set of real numbers, represented by either finite or infinite decimals;

 \mathbb{N} is the set of all natural numbers (eg. $\{0,1,2,3,4,5...\}$), \mathbb{Z} is the set of integers $\{...-2,-1,0,1,2,...\}$ and can also be denoted with only the positive or negative subset. \mathbb{Q} is the set of rational numbers, where $\{p/q|p,q\in\mathbb{Z}\land q\neq 0\}$, \mathbb{Q}^+ is the set of positive rational numbers and a subset of \mathbb{Q} .

Set operations: $A \times B = \{(a,b) | a \in A \land b \in B\}$ (Cartesian Product); \overline{A} is the set of elements in the universe which are **not** in A (complement); $A \cap B = \{x | x \in A \land x \in B\}$ (intersection); $A \cup B = \{x | x \in A \lor x \in B\}$ (union); $A - B = A \cap \overline{B}$ (difference); $A \oplus B = (A - B) \cup (B - A)$, (symmetric difference/xor)

Inclusion-exclusion (simple case): $|A \cup B| = |A| + |B| - |A \cap B|$

De Morgan's laws for sets: $\overline{A \cap B} = \overline{A} \cup \overline{B}$; $\overline{A \cup B} = \overline{A} \cap \overline{B}$

A function f from A (the domain) to B (the co-domain) is an assignment of a unique element of B to each element of A. Write $f: A \to B$. Write f(a) = b if B is assigned to B. Range of B is $\{f(a) | a \in A\}$; A is onto/surjective B range A is one-to-one/injective B is one-to-one/injective B is one-to-one/injective.

If f is one-to-one **and** onto, it is **bijective** and the **inverse** function $f^{-1}: B \to A$ is defined by $f^{-1}(y) = x \equiv f(x) = y$.

If $f: B \to C$ and $g: A \to B$, then the **composition** $f \circ g$ is the function from A to C defined by $f \circ g(x) = f(g(x))$. **Rounding functions:** $\lfloor x \rfloor$ is the largest integer less than or equal to x **floor function**; $\lceil x \rceil$ is the smallest integer greater than or equal to x **the ceiling function**.

Summation notation:

$$\sum_{n=1}^{n} a_i = a_1 + a_2 + a_3 + \dots + a_n$$

Sum of first n positive integers:

$$\sum_{i=1}^{n} j = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Sum of squares of first n positive integers:

$$\sum_{j=1}^{n} j^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Sum of geometric progression: (I don't think we did this in the course)

Two sets are said to have the **same cardinality** if there is a **bijection** between them. We can say that $|A| \le |B|$ if there is a one-to-one function from A to B.

A set is *countable* if it is finite or there is a **bijection** from the positive integers to the set. **In other words**, if the elements of the set can be listed (e.g. $a_1, a_2, ...$). Sets of the latter type are called *countablyinfinite* and the **cardinality of these sets are denoted with** \aleph_0 . The empty set, the integers and the rational numbers **are countable**. The union of a countable number of countable sets is countable.

Schroder-Bernstein theorem: If $|A| \le |B|$ and $|B| \le |A|$ then it must be that |A| = |B|. This can be explained as if there is a one-to-one function from A to B and a one-to-one function from B to A, then there is a one-to-one and onto function from A to B.

Matrix Multiplication: The $(i, j)^{th}$ entry of **AB** is $\sum_{t=1}^{k} a_{it} b_{tj}$ for $1 \le i \le m$ and $1 \le j \le n$, where **A** is an $m \times k$ matrix and **B** is a $k \times n$ matrix.

Identity matrix I_n with 1's on the main diagonal and 0's elsewhere is the multiplicative identity.

Cardinality arguments can be used to show that some functions are **uncomputable**.

Matrix addition (+), Boolean meet (\land) and join (\lor) are done entry-wise; Boolean matrix product (\odot) is like matrix multiplication using boolean operators.

Transpose: A^t is the matrix whose $(i, j)^{th}$ entry is a_{ij} (the $(j, i)^{th}$ entry of A); A is **symmetric** if $A^t = A$;

Algorithm are commonly expressed in **pseudo-code** when not directly implemented in a domain specific area.

Keywords for algorithms: {input, output, definiteness, correctness, finiteness, effectiveness, generality}.

Greedy algorithms: Will examine and pick the best choice at a given step. Not always the best.

Brute forcing: Specifically in discrete mathematics, this referres to examining the entire space of solutions and then determine the best one (very inefficient, sometimes necessary). Not explained in this course: **dynamic programming, probabilistic algorithms, divide-and-conquer**.

Halting problem: The unsolvable computing problem whether a program will halt given input. (Alan Turing for reference...)

Big-O: Half of inf102 is just this:

f(x) = O(g(x)) means $\exists C \exists k \forall x (x > k \to |f(x)| \le C|g(x)|)$. Big-O of a sum is the largest (fastest growing) of the functions in the sum. Big-O of a product is the product of the big-O's of the factors. If f is O(g), the g is O(g) "big-omega". If f is both big-O and big-Omega of g, then f is O(g) "big-theta".

Little-O: We say that f(x) is o(g(x)) if $\lim_{x\to\infty} f(x)/g(x) = 0$.

Powers grow faster than logs: $(\log n)^c$ is $O(x^d)$ but not the other way around, where c and d are positive numbers. If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1+f_2)(x)$ is $O(\max(g_1(x),g_2(x)))$ and $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$. $\log n!$ is $O(n\log n)$.

Time complexity: Binary search = $O(\log n)$ (cut half of possibilites at each step), linear search O(n) (all input is examined exactly once), both have **space complexity** (in terms of computer memory) O(1) without taking the input into account. Bubble sort and insertion sort have $O(n^2)$.

Matrix multiplication has standard algorithm time complexity of $O(m_1m_2m_3)$ if the matrices have dimensions $m_1 \times m_2$ and $m_2 \times m_3$.

Efficient algorithms can reduce the complexity of multiplying two $n \times x$ matrices from $O(n^3)$ to $O(n^{\sqrt{7}})$ Important complexity classes include polynomials n^b , exponential $(b^n$ for b > 1) and factorial (n!).

A problem that can be solved by an algorithm with polynomial worst-case time complexity is called **tractable**; otherwise **intractable**.

P=NP problem: The class **P** is the class of tractable problems. The class **NP** consists of the problems for which it is possible to check solutions (**not FIND solutions**) in polynomial time. This means that $P \subseteq NP$ yet the **P=NP** problem is unsolved because it has not been shown whether **P=NP**.

Divisibility: a|b means $a \neq 0 \land \exists c (a \cdot c = b)$ (a is a **divisor** or **factor** of b such that b is a multiple of a).

Base b representiations: $(a_{n-1}a_{n-2}...a_2a_1a_0)_b = a_{n-1}b^{n-1} + ... + a_2b^2 + a_1b + a_0$.

To convert from base 10 to base b, continually divide by b and record remainders as $a_0, a_1, a_2, ...$ (b = 8 is **octal**, b = 16 is **hexadecimal**, using A-F for 10-15). Convert from binary to octal by grouping bits by **threes**, from the right, to hexadecimal by grouping by fours; because $2^3 = 8$ and $2^4 = 16$.

Addition: of two binary numerals each of *n* bits $((a_{n-1}a_{n-2}...a_2a_1a_0)_2)$ requires O(n) bit operations.

Multiplication: requires $O(n^2)$ bit operations if done naively, $O(n^{1.585})$ steps by more sophisticated algorithms. **Division "algorithm":**

$$\forall a \forall d > 0 \exists q \exists r (a = dq + r \land 0 \le r < d)$$

where q is the quotient and r is the remainder; we write $a \mod d$ for the remainder.

Example of the division "algorithm":

$$-18 = 5 \cdot (-4) + 2 \rightarrow -15 \mod 5 = 2$$

Congruent modulo m: $a \equiv b \pmod{m} \leftrightarrow m \mid a-b \leftrightarrow a \mod m = b \mod m$

One can do arithmetic in $\mathbb{Z}_m = \{0, 1, ..., m-1\}$ by working modulo m. There are fast algorithms for computing $b^n \mod m$, based on successive squaring.

Integer n > 1 is said to be **prime** \leftrightarrow its only factors are 1 and itself; otherwise it is referred to as a **composite**.

There are infinitely many **primes**, but it is not known whether there are infinitely many twin primes (**primes** that differ by 2), or whether every even positive integer greater than 2 is the sum of two primes (Goldbach's conjecture) or whether there are infinitely many Mersenne primes \rightarrow primes of the form $2^p - 1$.

Naive test for primeness and test for prime factorization: To find prime factorization of n, successively divide it by all primes less than \sqrt{n} ; if none is found, then **n** is **prime**. If a prime factor p is found, then continue the process to find the prime factorization of the remaining factor, namely n/p; this time the trial divisions can start with p. Continue until a prime factor remains.

Prime number theorem states that there are approximately $n/\ln(n)$ primes less than or equal to n.

Fundamental theorem of arithmetic: Every integer greater than 1 can be written as a product of one or more primes, and the product is unique except for the order of the factors. (A proof based on fact that if a prime divides a product of integers, then it divides at least one of those integers.)

Euclidean algorithm for greatest common divisor: $gcd(x,y) = gcd(y,x \bmod y)$ if $y \neq 0$; gcd(x,0) = x.

Using extended Euclidean algorithm or working backwards, one can find **Bezout coefficients** and write gcd(a,b) = sa + tb.

Two integers are **relatively prime** if their greatest common divisor (gcd) is 1. The integers $a_1, a_2, ..., a_n$ are **pairwise relatively prime** $\leftrightarrow gcd(a_i, a_j) = 1$ whenever $1 \le i < j \le n$.

Chinese reminder theorem: If $m_1, m_2, ...m_n$ are pairwise relatively prime, then the system $\forall i (x \equiv a_i \pmod{m_i})$ has unique solution modulo $m_1m_2...m_n$. An example of application of this: Handling very large integers on a computer.

Fermat's little theorem: $a^{p-1} \equiv 1 \pmod{p}$ if p prime and does not divide a. The converse is not true; for example $2^{340} \equiv 1 \pmod{341}$ so $341 (= 11 \cdot 31)$ is referred to as a **pseudo prime**;

If a and b are positive integers, then there exist integers s and t such that as + bt = gcd(a,b) linear combination. This theorem allows one to compute the **multiplicative inverse** \bar{a} of a modulo b (i.e $\bar{a}a \equiv 1 \pmod{b}$) as long as a and b are relatively prime, which enables one to solve **linear congruences** $ax \equiv c \pmod{b}$.

A primitive root modulo a prime p is an integer r in \mathbb{Z}_p such that every nonzero element of \mathbb{Z}_p is a power of r.

Discrete logarithms: $\log_r a = e \mod p$ if $r^e \mod p = a$ and $1 \le e \le p-1$

A common **hashing function:** $h(k) = k \mod m$, where k is the key.

Check digits for error-correcting codes like UPCs, involve modular arithmetic (??????????)

Pseudorandom numbers: can be generated by the **linear congruential method:** $x_{n+1} = (ax_n + c) \mod m$, where

 x_0 is arbitrarily chosen **seed**. Then $\{x_n/m\}$ will be rather randomly distributed numbers between 0 and 1.

Shift cipher: $f(p) = (p+k) \mod 26[A \leftrightarrow 0, B \leftrightarrow 1, ...]$. Caeser cipher used k = 3.

Affine cipher: Uses $f(p) = (ap + b) \mod 26$ with gcd(a, 26) = 1.

RSA public key encryption system: An integer M representing the plaintext is translated into an integer C representing the ciphertext using the function $C = M^e \mod b$, where n is a public numbers that is the product of two large (100-digit or so) primes and e is a public number *relatively* prime to (p-1)(q-1); the primes p and q are kept secret. Decryption is accomplished via $M = C^d \mod n$, where d is an inverse of e modulo (p-1)(q-1). It is infeasible to compute d without knowing p and q, which are infeasible to compute from n.

Similar methods can be used for key exchange protocols, digital signatures, signing stuff in general.

The well-ordering property: Every non-empty set of nonnegative integers has a "least element".

The principle of mathematical induction: Let P(n) be a propositional function in which the domain (the universe of discourse) is the set of positive integers. Then if one can show that P(1) is true (through **Base case/Base step**) and that for every positive integer k, the conditional statement $P(k) \to P(k+1)$ is true (**inductive step**), then one has proved that $\forall nP(n)$. The hypothesis P(k) in a proof of the inductive step is called the **inductive hypothesis**.

More generally, the indcution can start at any integer, and there could potentially be several base cases.

Strong induction: Let P(n) be a propositional function in which the domain (again, **universe of discourse**) is the set of positive integers. Then if one can show that P(1) is true, and that for every positive integer k the conditional statement $[P(1) \land P(2) \land ... \land P(k)] \rightarrow P(k+1)$ is true (**inductive step**), then one has proved $\forall nP(n)$. The hypothesis $\forall j \leq kP(j)$ in a proof of the inductive step is called the ((**strong**) **inductive hypothesis**). Again, the induction can start at any integer, and there can be several base cases.

Inductive/Recursive definitions (functions): Is a definition of a function f with the set of nonnegative integers as its domain: Specification of f(0), together with, for each n > 0, a rule for finding f(n) from values of f(k) for k < n.

Example: 0! = 1 and $(n+1)! = (n+1) \cdot n!$ (factorial function)

Inductive/Recusive definitions (sets): Definition of a set S: A rule specifying one or more particular elements of

S, together with a rule for obtaining more elements of S from those already in it. It is understood that S consists precisely of those elements that can be obtained by applying these two rules.

Structural induction: can be used to prove facts about recursively defined objects.

Fibonacci numbers: $f_0, f_1, f_2, ... : f_0 = 0, f_1 = 1, f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$.

Lame's theorem: The number of divisions used by the Euclidean algorithm to find gcd(a,b) is $O(\log b)$.

An algorithm is **recursive** if it solves a problem by reducing it to an instance of the same problem with smaller input. It is **iterative** if it is based on the repeated use of operations in a loop.

There is an efficient recursive algorithm for computing **modular powers** (b^n **mod** m), based on computing $b^{\left[\frac{n}{2}\right]}$ **mod** m.

Merge sort: is an efficient recursive algorithm for sorting a list: break the list into two parts, recursively sort each half, and then merge them together in order. It has $O(n \log n)$ time complexity in **all** cases.

A program segment S is **partially correct** with respect to **initial assertion** p and **final assertion** q, written $p\{S\}q$, if whenever p is true for the input values of S and S terminates, q is true for the output values of S.

A **loop invariant** for **while** *condition* S is an assertion p that remains true each time S is executed in the loop; i.e. $(p \land condition)\{S\}p$. If p is true before the program segment is executed, then p and $\neg condition$ are true after it terminates (if it terminates at all). In symbols, $p\{\text{while } condition \ S\}(\neg condition \ \land p)$.

Sum rule: Given t mutually exclusive tasks, if task i can be done in n_i ways, then the number of ways to do exactly one of the tasks is $n_1 + n_2 + ... + n_t$.

Size of union of disjoint sets: $|A_1 \cup A_2 \cup ... \cup A_n| = |A_1| + |A_2| + ... + |A_n|$. ?? Duplicates ??

Two-set case of inclusion-exclusion: $|A \cup B| = |A| + |B| - |A \cap B|$. Product rule: If a task consists of successively performing t tasks, and if task i can be done in n_i ways (after previous tasks have been completed), then the number of ways to do the task is $n_1 \cdot n_2 ... n_t$.

A set with n elements has 2^n subsets (equivalently, there are 2^n bit strings of length n).

Tree diagrams: Can be used to organize counting problems.

Pigeonhole principle: If more than k objects are placed in k boxes, then some box will have more than 1 object. **Generalized version of the pigeonhole principle:** If N objects are placed in k boxes, then some box will have at least $\lfloor N/k \rfloor$ objects.

Ramsey number: R(m,n) is the smallest number of people there must be at a party so that there exist either m mutual friends or n mutual enemies (assuming each pair of people are either friends or enemies). R(3,3) = 6. **r-permutation** of set with n objects, ordered arrangement of r of the objects from the set (no repetitions allowed); there are P(n,r) = n!/(n-r)! such permutations. **r-combination** of set with n objects, unordered selection (i.e subset) of r of the objects from the set (no repetitions allowed); there are C(n,r) = n!/[r!(n-r)!] such combinations. Alternative notation is $\binom{n}{r}$, also called the binomial coefficient.

Pascal's identity: not in curriculum.

Combinatorial identities: *not in curriculum.*

Number of **r-permutations** of an *n*-set with repetitions allowed is n^r ; number of **r-combinations** of an *n*-set with repetitions allowed is C(n+r-1,r). This latter value is the same as the number of solutions in nonnegative integers to $x_1 + x_2 + ... + x_n = r$.

If all outcomes are equally likely in a **sample space** S with n outcomes, then the **probability of an event** E is p(E) = |E|/n; more generally, if $p(s_i)$ is probability of i^{th} outcome s_i , then $p(E) = \sum_{s_i \in E} p(s_i)$. **Probability distributions:**