Question	Answer	
1(a)	rate of change of velocity	B1
1(b)(i)	$s = ut + \frac{1}{2}at^2$ and $u = 0$ or $s = \frac{1}{2}at^2$	C1
	$t = \sqrt{(2 \times 14 / 9.81)}$	
	t = 1.7 s	A1
	OR	(C1)
	$v = \sqrt{(0^2 + 2 \times 9.81 \times 14)}$ $v = 17 \text{ (m s}^{-1)}$	
	$17 = (0 + 9.81) \times t$ or $17 = 9.81 \times t$	
	or $14 = \frac{1}{2} \times (0 + 17) \times t$ or $14 = \frac{1}{2} \times 17 \times t$	
	t = 1.7 s	(A1)
1(b)(ii)	$s = ut + \frac{1}{2}at^2$	C1
	$u = (3.6 - \frac{1}{2} \times 9.81 \times 1.7^{2}) / 1.7$	
	$u = (-) 6.2 \mathrm{m s^{-1}}$	A1
	OR	(C1)
	$v = (3.6 + \frac{1}{2} \times 9.81 \times 1.7^{2}) / 1.7$ $v = 10 \text{ (m s}^{-1})$	
	$10 = u + 9.81 \times 1.7$ or $10^2 = u^2 + (2 \times 9.81 \times 3.6)$ or $3.6 = \frac{1}{2} \times (u + 10) \times 1.7$	
	$u = (-) 6.2 \mathrm{m s^{-1}}$	(A1)

Question	Answer	Marks				
1(c)(i)	time (as it reaches a lower height)					
	(because) the initial vertical (component of the) velocity is smaller (than in part (b))	B1				
1(c)(ii)	The (total) initial energy is the same (as in part (b))	B1				
	change in gravitational potential energy is same, so speed is the same	B1				

Question	Answer		
2(a)	in (rotational) equilibrium	B1	
	sum / total of clockwise moments about a point = sum / total of anticlockwise moments about the (same) point.	B1	
2(b)	$80 \times 9.81 \times 3$ or $60 \times 9.81 \times 3$ or $45 \times 9.81 \times x$	C1	
	$80 \times 9.81 \times 3 = (60 \times 9.81 \times 3) + (45 \times 9.81 \times x)$	C1	
	x = 1.3 m	A1	
2(c)(i)	k = F/x	C1	
	x = 0.80 - 0.59 = 0.21 m	C1	
	$k = (60 \times 9.81) / 0.21$	A1	
	$= 2800 \text{ N m}^{-1}$		

Question	Answer		
2(c)(ii)	$= \frac{1}{2} kx^2$ or $E = \frac{1}{2} Fx$ or $E = \frac{1}{2} F^2/k$		
	= $\frac{1}{2} \times 2800 \times 0.21^{2}$ or = $\frac{1}{2} \times 60 \times 9.81 \times 0.21$ or = $\frac{1}{2} \times (60 \times 9.81)^{2} / 2800$		
	= 62 J	A1	

Question	Answer	Marks
3(a)	work done per unit time	B1
3(b)(i)	$P = F \times v$	C1
	= 1750 × 35	
	$= 6.1 \times 10^4 \mathrm{W}$	A1
3(b)(ii)	W = Fs	C1
	= 1750 × 17 000	
	$= 3.0 \times 10^7 \mathrm{J}$	A1
	or	(C1)
	W = Pt	
	$=6.1\times10^{4}\times(17\ 000\ /\ 35)$	
	$= 3.0 \times 10^7 \mathrm{J}$	(A1)

Question	Answer	Marks
3(b)(iii)	$P = V \times I$	C1
	Power in = $600 \times I$	
	Efficiency = useful power output (total) power input	C1
	$0.85 = 6.1 \times 10^4 / (600 \times I)$	A1
	<i>I</i> = 120 A	
3(c)(i)	Air resistance is the same, as the speed is the same	B1
3(c)(ii)	The motor is producing less power (because of gravitational force / conversion of gravitational potential energy to kinetic energy) so the current will be smaller.	B1

Question	Answer				
4(a)	(when two or more) waves meet/overlap (at a point)				
	(resultant) displacement is sum of the individual displacements	B1			
4(b)(i)	Fringe width, $x = 3.2 \times 10^{-2} / 8$				
	$=4.0\times10^{-3}$ (m)				
	$D = ax/\lambda$	C1			
	= $(4.0 \times 10^{-3} \times 0.16 \times 10^{-3}) / 7.2 \times 10^{-7}$				
	= 0.89 m	A 1			

Question	Answer	Marks
4(b)(ii)	Curved line with a negative gradient of decreasing magnitude throughout, from slit separation 0.04 mm to 0.16 mm	B1
	Line of negative gradient ending at (0.16, 0.4), from slit separation 0.04 mm	B1
	Line of negative gradient passing through (0.08, 0.8) and (0.04, 1.6)	B1

Question	Answer	Marks			
5(a)	wavelength: • wavelength = distance between successive / adjacent in phase points / wavefronts / crests / troughs • $\lambda = d$ / (number of) oscillations	B1			
	frequency: frequency = (number of) oscillations / cycles crests / troughs / wavefronts (passing a point) per unit time f = (number of) oscillations / t				
	One correct point from either list				
	One correct point from both lists and speed = distance / time and one of: • wavelength × frequency (= distance per unit time) = speed • [(number of) oscillations / t] × [d / (number of) oscillations] = $f\lambda$ • v (= d / t) = λ / ($1/f$) = $f\lambda$ or v (= d / t) = λ / T = $f\lambda$	B1			
5(b)(i)	$T = 4 \times 10^{-3}$	C1			
	f = 1/T = 1/0.004				
	f = 250 Hz	A1			

Question	Answer		
5(b)(ii)	$f_{\rm o} = f_{\rm s} \ v / \left(v - v_{\rm s} \right)$	C1	
	$250 = 236 \times v/(v-20)$		
	$v = (250 \times 20) / (250 - 236)$		
	$= 360 \mathrm{m s^{-1}}$	A1	

Question	Answer	Marks				
6(a)(i)	I = 1.3/1.1	A1				
	= 1.2 A					
6(a)(ii)	v = I/nqA	C1				
	$= 1.2 / (8.5 \times 10^{28} \times 1.60 \times 10^{-19} \times 4.7 \times 10^{-7})$					
	$= 1.9 \times 10^{-4} \mathrm{m s^{-1}}$					
6(a)(iii)	$\rho = RA/L$	C1				
	$= (1.1 \times 4.7 \times 10^{-7}) / 0.45$	C1				
	= $1.1 \times 10^{-6} \Omega$ m	A1				
6(b)(i)	(Total) resistance decreases (and the potential difference stays the same)	M1				
	(so the reading on the ammeter) increases	A1				
6(b)(ii)	(The average drift speed will be) the same because the current is the same (in X).	B1				

Question			Answer	Marks
7(a)	$^{12}_{7}N \rightarrow {}^{12}_{6}C + {}^{0}_{1}\beta^{+}$	+ ⁽⁰⁾ ₍₀₎ n		B1
	beta-plus shown	1		
	neutrino shown			B1
	symbols, nucleo	n numbers and pro	oton numbers all correct	B1
7(b)(i)	+1			B1
7(b)(ii)	Lepton(s)			B1
7(b)(iii)	flavour	charge / e		
	up/u	$-\frac{2}{3}$		
	up/u	$-\frac{2}{3}$		
	down / d	$(+)\frac{1}{3}$		
	3 correct quark f	lavours		B1
	Charge on anti-u	ıp quark –⅔(e)		B1
	Charge on anti-c	down quark (+)⅓(e	•)	B1