Calcul Diferențial și Integral - Curs 1

Şiruri şi serii de numere reale.

Eva Kaslik, Raluca Mureşan

Şiruri de numere reale - definiţie

Un şir de numere reale este o funcţie $n\mapsto a_n$ cu domeniul de definiţie $\mathbb N$ şi codomeniul (imaginea) $\mathbb R$.

Notaţii uzuale:

- \bullet a(n), pentru n=1,2,3,...
- a_n , pentru n = 1, 2, 3, ...
- $ullet \{a_n\}_{n=1}^{\infty} \ {\sf sau} \ \{a_1,a_2,a_3,...\}$

Şiruri definite prin diverse tipuri de notaţii:

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$

$$a_n = \frac{n}{n+1}$$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(b)
$$\left\{ \frac{(-1)^n(n+1)}{3^n} \right\}$$

$$a_n = \frac{}{3^n}$$

(b)
$$\left\{\frac{(-1)^n(n+1)}{3^n}\right\}$$
 $a_n = \frac{(-1)^n(n+1)}{3^n}$ $\left\{-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots, \frac{(-1)^n(n+1)}{3^n}, \dots\right\}$

$$(c) \quad \left\{ \sqrt{n-3} \right\}_{n=3}^{\infty}$$

$$a_n = \sqrt{n-3}, \ n \ge 3$$

$$a_n = \sqrt{n-3}, \ n \ge 3$$
 $\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\}$

(d)
$$\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$$

$$a_n = \cos\frac{n\pi}{6}, \ n \geqslant 0$$

(d)
$$\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$$
 $a_n = \cos\frac{n\pi}{6}, \ n \ge 0$ $\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \dots, \cos\frac{n\pi}{6}, \dots\right\}$

Exercițiul 1: Găsiți formula termenului general a_n al șirului:

$$\left\{\frac{3}{5}\;,\; -\frac{4}{25}\;,\; \frac{5}{125}\;,\; -\frac{6}{625}\;,\; \ldots\right\}$$

Şiruri definite prin diverse tipuri de notaţii:

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$

$$a_n = \frac{n}{n+1}$$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(b)
$$\left\{ \frac{(-1)^n(n+1)}{3^n} \right\}$$

$$a_n = \frac{(-1)(n+1)}{3^n}$$

(b)
$$\left\{\frac{(-1)^n(n+1)}{3^n}\right\}$$
 $a_n = \frac{(-1)^n(n+1)}{3^n}$ $\left\{-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots, \frac{(-1)^n(n+1)}{3^n}, \dots\right\}$

$$(c) \quad \left\{ \sqrt{n-3} \right\}_{n=3}^{\infty}$$

$$a_n = \sqrt{n-3}, \ n \ge 3$$

$$a_n = \sqrt{n-3}, \ n \ge 3$$
 $\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\}$

(d)
$$\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$$

$$a_n = \cos\frac{n\pi}{6}, \ n \ge 0$$

(d)
$$\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$$
 $a_n = \cos\frac{n\pi}{6}, \ n \ge 0$ $\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \dots, \cos\frac{n\pi}{6}, \dots\right\}$

Exercițiul 1: Găsiți formula termenului general a_n al șirului:

$$\left\{\frac{3}{5}\right\}$$

$$\frac{5}{125}$$
, $-\frac{6}{625}$, ...

$$\left\{ \frac{3}{5} \, , \, -\frac{4}{25} \, , \, \frac{5}{125} \, , \, -\frac{6}{625} \, , \, \ldots \right\} \quad \longrightarrow \quad a_n = (-1)^{n+1} \frac{n+2}{5^n}$$

• Şiruri definite recursiv:

Şirul Fibonacci:
$$F_n = F_{n-1} + F_{n-2}$$
, $\forall n \ge 2$, $F_0 = F_1 = 1$.

Acest şir a fost utilizat de matematicianul italian Leonardo Fibonacci (1170-1240) pentru a rezolva o problemă legată de dinamica populaţiei de iepuri.

• Şiruri care nu se pot defini prin relaţii simple:

 $\{p_n\}$ - populaţia României, în data de 1 ianuarie a anului n

Vizualizarea şirurilor - exemple: $a_n = \frac{n}{n+1}$

reprezentarea termenilor de-a lungul unei axe:

reprezentarea graficului termenilor şirului:

() ★ () ★

Şiruri monotone. Şiruri mărginite

Un şir (a_n) este crescător dacă $a_n \leq a_{n+1}$ pentru orice $n \in \mathbb{N}$.

Un şir (a_n) este descrescător dacă $a_n \ge a_{n+1}$ pentru orice $n \in \mathbb{N}$.

Un şir crescător sau descrescător se numește monoton.

Un şir (a_n) este mărginit dacă există un număr M > 0 astfel încât

$$|a_n| \le M, \quad \forall \ n \in \mathbb{N}.$$

Convergenţă

Spunem că un şir (a_n) converge la limita L, adică

$$\lim_{n \to \infty} a_n = L$$

dacă a_n ajunge oricât de aproape de valoarea reală L pentru n sufficient de mare.

Convergenţa

Definiţie

Un şir (a_n) converge la numărul real L (sau are limita L) dacă pentru orice $\varepsilon>0$ există $N=N(\varepsilon)\in\mathbb{N}$ astfel încât

$$|a_n - L| < \varepsilon, \quad \forall \ n \ge N.$$

Proprietăţi

- Dacă şirul (a_n) converge la L, atunci orice subşir (a_{n_k}) al şirului (a_n) converge la L.
- Nu orice şir are limită (ex. $a_n = (-1)^n$).
- Dacă limita unui şir (a_n) există, atunci ea este unică.
- Dacă şirul (a_n) converge la L, atunci el este mărginit.
- Convergenţa şirurilor monotone şi mărginite:
 Orice şir monoton şi mărginit este convergent (la un număr real).
- Teorema Bolzano-Weierstrass: Orice şir mărginit (a_n) conţine cel puţin un subşir convergent.

Eva Kaslik, Raluca Muresan

Limite infinite

Limita şirului (a_n) este egală cu $+\infty$ dacă pentru orice M>0 există N_M astfel încât

$$a_n > M, \quad \forall \ n > N_M.$$

Limita şirului (a_n) este egală cu $-\infty$ dacă pentru orice M>0 există N_M astfel încât

$$a_n < -M, \quad \forall \ n > N_M.$$

Reguli de calcul pentru limite de şiruri:

Dacă limitele $\lim_{n\to\infty} a_n = A$ și $\lim_{n\to\infty} b_n = B$ există $(A, B \in \mathbb{R})$ atunci:

- (regula înmulţirii cu scalar) $\lim_{n\to\infty} ca_n = cA$ pentru orice $c\in\mathbb{R}$.
- (regula sumei) $\lim_{n\to\infty} (a_n + b_n) = A + B$
- (regula produsului) $\lim_{n\to\infty} a_n b_n = AB$
- (regula raportului) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$ (presupunând că $b_n \neq 0$ și $B \neq 0$)

Regula cleştelui

Dacă $a_n \leq b_n \leq c_n$ pentru orice $n \in \mathbb{N}$ și $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$ atunci $\lim_{n \to \infty} b_n = L$.

Regula lui L'Hospital pentru şiruri

Fie $a_n = f(n)$ şi $b_n = g(n) \neq 0$ unde f şi g sunt funcţii derivabile satisfăcând una din următoarele proprietăţi:

- a. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$ sau
- b. $\lim_{x \to \infty} f(x) = \pm \infty$ şi $\lim_{x \to \infty} g(x) = \pm \infty$.

Atunci

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

(atunci când limita din partea dreaptă există).

Leme importante

Lemă (Lema Stolz-Cesaro)

Dacă (a_n) şi (b_n) sunt două şiruri, (b_n) este pozitiv, strict crescător şi nemărginit, atunci

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$$

(în cazul în care limita din partea dreaptă există).

Lemă (Lema Cauchy-d'Alembert)

 $Dacă(a_n)$ este un şir de numere reale pozitive atunci

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \sqrt[n]{a_n}$$

(în cazul în care limita din partea dreaptă există).

Mulţimea punctelor limită

Mulţimea punctelor limită $\mathcal{L}(a_n)$ a unui şir (a_n) este muţimea punctelor $x \in \mathbb{R}$ pentru care există un subşir (a_{n_k}) al şirului (a_n) a.î.

$$\lim_{n_k \to \infty} a_{n_k} = x.$$

ullet Şirul (a_n) este convergent şi $\lim_{n o +\infty} a_n = L$ dacă şi numai dacă $\mathcal{L}(a_n) = \{L\}.$

Limita superioară a şirului (a_n) este $\sup \mathcal{L}(a_n)$. Notăm $\limsup_{n\to\infty} a_n$ sau $\overline{\lim_{n\to\infty}} a_n$.

Limita inferioară a şirului (a_n) este $\inf \mathcal{L}(a_n)$. Notăm $\liminf_{n\to\infty} a_n$ sau $\underset{n\to\infty}{\underline{\lim}} a_n$.

Mulţimea punctelor limită

Exemplu. Fie $a_n = (-1)^n$. În acest caz,

$$a_{2k} = 1$$
 şi $a_{2k+1} = -1$

and

$$\mathcal{L}(a_n) = \{-1, 1\}.$$

Serii de numere reale: Introducere

Care este însemnătatea reprezentării zecimale a unui număr real?

Exemplu:

$$\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\ 50288\dots$$

Convenție: orice număr real se poate scrie ca și o serie infinită:

De exemplu:

$$\pi = 3 + \frac{1}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{5}{10^4} + \frac{9}{10^5} + \frac{2}{10^6} + \frac{6}{10^7} + \frac{5}{10^8} + \frac{3}{10^9} + \frac{5}{10^{10}} + \dots$$

Definiție: serii infinite

O serie infinită este o expresie de forma

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

unde (a_n) este un şir de numere reale.

Numărul real a_n se numește termenul de rang n al seriei.

Are sens să vorbim despre suma unei serii infinite de numere reale?

Seria următoare nu are o sumă finită

$$1+2+3+4+5+...$$

Pentru seria următoare, obţinem o sumă finită:

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{64} + \frac{1}{128} + \dots + \frac{1}{2^n} + \dots = 1$$

n	Sum of first <i>n</i> terms
1	0.50000000
2	0.75000000
3	0.87500000
4	0.93750000
5	0.96875000
6	0.98437500
7	0.99218750
10	0.99902344
15	0.99996948
20	0.99999905
25	0.99999997

Definiții: sume parțiale, convergență, divergență

Suma parţială de ordinul n s_n a seriei $\sum a_n$ este suma primilor n termeni:

$$s_n = a_1 + a_2 + \dots + a_n$$

Dacă (s_n) este un şir convergent, atunci seria $\sum a_n$ se numeşte convergentă.

Dacă (s_n) este un şir divergent atunci seria $\sum a_n$ se numeşte divergentă.

Suma unei serii este limita şirului sumelor parţiale:

$$S = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n$$

Eva Kaslik, Raluca Muresan

Serii geometrice

Seria geometrică cu raţia r este

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \dots + ar^n + \dots \quad (a \neq 0)$$

Dacă r=1 atunci $s_n=a+a+\ldots+a=na\to\pm\infty$, deci seria este divergentă.

Dacă $r \neq 1$ atunci

$$s_n = a + ar + \dots ar^{n-1} = a\frac{1-r^n}{1-r} \overset{n \to \infty}{\longrightarrow} \begin{cases} \frac{a}{1-r} &, \text{ dacă } |r| < 1 \\ \text{divergentă} & \text{ dacă } |r| \geq 1 \end{cases}$$

Seria geometrică $\sum_{n=0}^{\infty} ar^n$ este convergentă d.n.d. |r|<1.

În acest caz, suma ei este $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$.

Dacă $|r| \ge 1$, atunci seria geometrică este divergentă.

Eva Kaslik, Raluca Muresan CDI - Lecture 1 21/

Serii telescopice

Exemplu: Arătaţi că seria $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ este convergentă.

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) =$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{2}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) =$$

$$= 1 - \frac{1}{n+1} \xrightarrow{n \to \infty} 1$$

În concluzie, seria este convergentă, și suma ei este 1.

Eva Kaslik, Raluca Muresan

Limita termenului general

Teoremă (Limita termenului general)

Dacă
$$\sum_{n=1}^{\infty} a_n$$
 este convergentă, atunci $\lim_{n\to\infty} a_n = 0$.

Dem.: Dacă $\sum a_n$ converge, atunci și șirul sumelor parțiale (s_n) converge.

Deci:
$$a_n = s_n - s_{n-1} \stackrel{n \to \infty}{\longrightarrow} \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0.$$

Reciproca NU este adevărată (ex. $\sum_{n=1}^{\infty} \frac{1}{n}$ e divergentă)

Corolar (Test pentru divergenţă)

Dacă $\lim_{n\to\infty}a_n\neq 0$ sau limita nu există, atunci seria $\sum_{n=1}^\infty a_n$ este divergentă.

Operații cu serii numerice

Dacă seriile $\sum_{n=1}^{\infty}a_n$ și $\sum_{n=1}^{\infty}b_n$ sunt convergente, atunci seriile $\sum_{n=1}^{\infty}(a_n+b_n)$ și

$$\sum_{n=1}^{\infty} c \; a_n \; (ext{cu} \; c \in \mathbb{R})$$
 sunt convergente şi

- $\bullet \sum_{n=1}^{\infty} c \ a_n = c \sum_{n=1}^{\infty} a_n$
- ② $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$

Criteriul integralei

Fie $f:\mathbb{R}^1_+ \to \mathbb{R}^1_+$ o funcție continuă și descrescătoare și $a_n=f(n)$.

Considerăm șirul (j_n) definit prin $j_n = \int_1^n f(x) dx$.

Seria $\sum_{n=1}^{\infty} a_n$ este convergentă d.n.d. şirul (j_n) este convergent.

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ 豊 めぬぐ

Serii armonice

Seria p-armonică $\sum_{n=1}^{\infty} \frac{1}{n^p}$ este convergentă d.n.d. p > 1.

- Dacă $p \le 0$, termenul $a_n = n^{-p}$ nu tinde la 0, deci seria este divergentă.
- Dacă p > 0 aplicăm criteriul integralei:

pentru
$$p \neq 1$$
: $j_n = \int_1^n \frac{1}{x^p} dx = \int_1^n x^{-p} dx = \left. \frac{x^{1-p}}{1-p} \right|_{x=1}^{x=n} = \frac{n^{1-p}-1}{1-p}$ pentru $p=1$: $j_n = \int_1^n \frac{1}{x} dx = \ln x |_{x=1}^{x=n} = \ln n$.

Eva Kaslik, Raluca Muresan CDI - Lecture 1

Serii armonice - Exemple

$$\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$$
 este divergentă pentru că $p=\frac{1}{2}<1$

$$\sum_{n=0}^{\infty} \frac{1}{n^2}$$
 este convergentă pentru că $p=2>1$

◆□▶◆□▶◆草▶◆草▶ 草 からぐ

Eva Kaslik, Raluca Muresan

Criteriile comparaţiei

Criteriul comparaţiei I. Dacă $0 \le a_n \le b_n$ pentru orice $n \in \mathbb{N}$, atunci:

- 1. Dacă $\sum b_n$ este convergentă atunci $\sum a_n$ este convergentă.
- 2. Dacă $\sum a_n$ este divergentă atunci $\sum b_n$ este divergentă.

Criteriul comparaţiei II.

Fie $\sum a_n$ şi $\sum b_n$ două serii cu termenii pozitivi astfel încât

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L\in(0,\infty).$$

Atunci, $\sum a_n$ este convergentă d.n.d. $\sum b_n$ este convergentă.

◆ロ → ◆ 個 → ◆ 差 → ◆ き め Q (や)

Convergență absolută

Ce se întâmplă dacă unii termeni ai seriei sunt negativi?

O serie $\sum a_n$ este absolut convergentă dacă $\sum |a_n|$ este convergentă.

convergenţa absolută ⇒ convergenţa

Reciproca nu este adevărată!

Exemplu: Seria $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ este convergentă, dar nu este absolut convergentă.

Seria $\sum a_n$ se numeşte condiţional convergentă dacă este convergentă, dar nu este absolut convergentă.

Eva Kaslik, Raluca Muresan

Serii alternante

Criteriul lui Leibniz (al seriilor alternante).

Dacă şirul (b_n) este descrescător şi $\lim_{n\to\infty}b_n=0$ atunci seria alternantă

$$\sum_{n=1}^{\infty} (-1)^{n-1} \cdot b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \dots$$

este convergentă.

Criteriul raportului și criteriul rădăcinii

Criteriul raportului:

Dacă limita $L=\lim_{n\to\infty}\left|rac{a_{n+1}}{a_n}
ight|$ există sau este infinită, atunci

- Seria $\sum a_n$ este absolut convergentă dacă L < 1.
- Seria $\sum a_n$ este divergentă dacă L > 1.
- **1** Dacă L = 1, atunci criteriul este neconcludent.

Criteriul rădăcinii:

Dacă limita $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ există sau este infinită, atunci

- Seria $\sum a_n$ este absolut convergentă dacă L < 1.
- Seria $\sum a_n$ este divergentă dacă L > 1.
- 3 Dacă L=1, atunci criteriul este neconcludent.

- (ロ)(部)(ミ)(ミ) (ミ) の(0