Project 1: Navigation

Project Details

For this project, I trained an agent to navigate (and collect bananas!) in a large, square world.

- A reward of +1 is provided for collecting a yellow banana, and a reward of -1 is provided for collecting a blue banana.
- The goal is to collect as many yellow bananas as possible while avoiding blue bananas, within 300 fixed timesteps.
- The state space has 37 continuous dimensions and contains the agent's velocity, along with raybased perception of objects around agent's forward direction.
- The action space is 1-dimensional, whose value has 4 discrete (0-indexed) options: move forward, move backward, turn left, turn right
- The task is considered solved when the agent gets an average score of +13 over 100 consecutive episodes (during training).

Getting Started

- 1. Download the environment from one of the links below. You need only select the environment that matches your operating system:
 - Linux: click here
 - Mac OSX: click here
 - Windows (32-bit): click here
 - Windows (64-bit): click here

(*For Windows users*) Check out this link if you need help with determining if your computer is running a 32-bit version or 64-bit version of the Windows operating system.

(For AWS) If you'd like to train the agent on AWS (and have not enabled a virtual screen), then please use this link to obtain the environment.

- 2. Place the file in the DRLND GitHub repository, in the p1_navigation/ folder, and unzip (or decompress) the file.
- 3. Follow these instructions to install conda Python 3.6 env and create drlnd venv.
- 4. Navigate terminal to (unzipped) project directory, activate drlnd conda venv, and run pip install -r requirements.txt to install Python dependencies.

Instructions

Run all cells in Navigation.ipynb sequentially to both train and evaluate my DQN agent.

Report

The DQN implementation is heavily derived from DRLND's solution codebase from the previous lesson on DQN.

Learning Algorithm

I used the plain DQN implementation, with the following simple modifications:

- The Q Network model class now takes a list of hidden_layers rather than 2 layers of hardcoded 64 neurons each.
- All hyperparameters are exposed as constructor arguments for the DQN agent class.
- Instead of a geometric decaying exploration parameter epsilon, I used a linear decay procedure instead.

The chosen hyperparameters for the algorithm and training regime are as follows:

- number of episodes (num_episodes): 1800
- reproducible random seed (seed): 0
- discount factor for environment (gamma): 0.99
- number of neurons in each hidden layer (hidden_layers): (128, 64)
- learning rate (lr): 1e-3
- target network soft exponential update gain (tau): 1e-3
- training batch size (batch_size): 128
- do one step of backprop learning after every N env steps (update_every): 4
- replay memory buffer size (buffer_size): 300,000
- Initial epsilon exploration factor (epsilon_decay_init): 1.0
- Final epsilon exploration factor (epsilon_decay_final): 0.05
- Number of episodes for linear epsilon decay (epsilon_decay_num_episodes): 1500

In particular, the architecture of the Q network takes the state as input, has 2 fully-connected layers (MLP) with rectified linear unit (ReLU) activation, and a final linear layer that predicts the Q value for each of the 4 possible action values.

Plot of rewards

As shown below, my agent solved the environment in 1674 episodes (a.k.a. reached an average reward over 100 past episodes of at least +13).

Future Work Ideas

- Integrate training loop into Ray Tune and perform efficient automated hyperparameter tuning (e.g. using Bayesian Optimization, or Population-Based Bandits).
- Implement RAINBOW (a.k.a. tuned version of Double DQN, Dueling DQN, N-step TD targets, PER Prioritized Experience Replay, C51 Distributional DQN, NoisyNets Noisy DQN).
- Further improve upon Distributional DQN formulation with QR-DQN Quantile Regression DQN / IQN Implicit Quantile Network / FPF Fully Parametrized Quantile Function.