

超小型低電圧動作シングル CMOS コンパレータ

■概 要

NJU7109 は、低電圧動作可能な 1 回路入りの CMOS コンパレータで、プッシュプル出力となっています。

1.8~5.5Vの単一電源で動作するため、TTL,CMOS などほとんどのロジック IC と接続可能で、高い汎用性を有しています。

また、入力オフセット電圧は 7mV(max)で、非常に小型なパッケージである SC88A のため、バッテリー駆動の携帯機器に最適です。

■外 形

Red

(R)

NJU7109F

NJU7109F3

■特 徴

●低電圧単電源動作
 ●低入力オフセット電圧
 ●低消費電流
 ●伝搬遅延時間(t_{PLH}/t_{PHL})

V_{DD}=1.8~5.5V
V_{IO}=7mV max
100 μ A(typ.)
110/70ns(typ)

●出力立ち上がり

立ち下がり時間(t_{TLH}/t_{THL}) 7/6ns(typ)

●プッシュプル出力

●CMOS 構造

●外形 SOT-23-5, SC88A

■端子配列

■等価回路図

NJU7109

■絶対最大定格

(Ta=25°C)

							· · · · · · · · · · · · · · · · · · ·	
		項	目			記号	定格	単 位
電	源		電		圧	V_{DD}	7.0	V
差	動	入	力	電	圧	V_{ID}	±7.0 (注 1)	V
同	相	入	カ	電	圧	V _{IC}	-0.3~7.0	V
許		容	損	İ	失	P _D	SOT-23-5: 200 SOT-23-5: 390(注 2) SC88A: 250 (注 2)	mW
動	作	温	度	範	井	Topr	-40 ~ +85	°C
保	存	温	度	範	井	Tstg	-55~+125	°C

注 1)入力電圧は、V_{DD} または 7.0V より小さい方の値を越えて印加しないで下さい。

注 2)許容損失は、EIA/JEDEC 仕様基板(76.2×114.3×1.6mm、2 層、FR-4)実装時

注 3)IC を安定して動作させるために、 V_{DD} - V_{SS} 間にデカップリングコンデンサを挿入して下さい。

■電気的特性

 $(V_{DD}=3.0V,R_L=\infty,Ta=25^{\circ}C)$

項目	記号	条件	MIN	TYP	MAX	単位
動 作 電 圧	V_{DD}		1.8	_	5.5	V
入力オフセット電圧	V _{IO}	V _{IN} =V _{DD} /2	_	1	7	mV
入カオフセット電流	I _{IO}		_	1	_	pА
入力バイアス電流	I _{IB}		_	1	_	pА
同相入力電圧幅	V_{ICM}		0~2.4	I	_	V
H レベル出力電圧	V _{OH}	I _{OH} =-5mA	2.7	1	-	V
Lレベル出力電圧	V_{OL}	I _{OL} =+5mA	-	1	0.3	V
消 費 電 流	I _{DD}	_	_	100	200	uA

 $(V_{DD}=3.0V,f=10kHz,C_1=15pF,Ta=25^{\circ}C)$

			(00		,	
項目	記号	条件	MIN	TYP	MAX	単位
立ち上がり伝搬遅延時間	t _{PLH}	オーバードライブ=100mV	ı	110	_	ns
立ち下がり伝搬遅延時間	t _{PHL}	オーバードライブ=100mV	I	70	_	ns
出力立ち上がり	t _{TLH}	オーバードライブ=100mV	I	7	_	ns
出力立ち下がり	t _{THL}	オーバードライブ=100mV	ı	6	_	ns

■特性例

消費電流 対 電源電圧特性例(温度特性)

消費電流 対 周囲温度特性例

入力オフセット電圧 対 電源電圧特性例

入力オフセット電圧 対 電源電圧特性例(温度特性)

入力オフセット電圧 対 周囲温度特性例

- 3 -

NJU7109

■特性例

入力オフセット電流 対 周囲温度特性例

入力オフセット電圧 対 同相入力電圧特性例

入力オフセット電圧 対 同相入力電圧特性例(温度特性)

Hレベル出力電圧 対 周囲温度特性例

Lレベル出力電圧 対 周囲温度特性例

■特性例

Hレベル出力電圧 対 出力電流特性例(温度特性)

Lレベル出力電圧 対 出力電流特性例(温度特性)

Hレベル出力電圧 対 出力電流特性例(温度特性)

Lレベル出力電圧 対 出力電流特性例(温度特性)

Hレベル出力電圧 対 出力電流特性例(温度特性)

Lレベル出力電圧 対 出力電流特性例(温度特性)

■特性例

出力立ち上がり時間特性

出力立ち下がり時間特性例

時間 [nS]

出力遅延時間 対 周囲温度特性例

出力応答時間 対 周囲温度特性例

■スイッチング特性測定回路

<注意事項> このデータブックの掲載内容の正確さには 万全を期しておりますが、掲載内容について 何らかの法的な保証を行うものではありませ ん。特に応用回路については、製品の代表的 な応用例を説明するためのものです。また、 工業所有権その他の権利の実施権の許諾を伴 コネが有権との他の権利の关心権の計略を行 うものではなく、第三者の権利を侵害しない ことを保証するものでもありません。