Caleb Logemann MATH 520 Methods of Applied Math II Homework 3

Section 11.4

#2	Verify that $\mathbf{H} \times \mathbf{H}$ is a Hilbert space with the inner product given by (11.1.2), and prove Proposit 11.1.	ion
	Proof.	

#5 If $T:D(T)\subset \mathbf{H}\to \mathbf{H}$ is a densely defined linear operator, $v\in \mathbf{H}$ and the map $u\to \langle Tu,v\rangle$ is bounded on D(T), show that there exists $v^*\in \mathbf{H}$ such that (v,v^*) is an admissible pair for T^* .

#8 Show that if T is self-adjoint and one-to-one then T^{-1} is also self-adjoint.

#11 Assume that T is closed and S is bounded

- (a) Show that S + T is closed
- (b) Show that TS is closed, but that ST is not closed, in general.

#14 It T is closable, show that T and \overline{T} have the same adjoint.