

BRAINWARE GROUP OF INSTITUTIONS

398 Ramkrishnapur Road, Barasat, Kolkata 700124 1.a> Define automata: -The term "Automata" is derived from the greek word, which means "Self-Acting". Automata is an abstract
Self-propelled computing device which follows Which follows a predetermined sequence of operations. automatically An automation with finite numbers of state is called - finite Automata or FA. * Automata can be defined by 3 fouples -

(1) Q - finite set of states.

(1) & - alphabets

1 of - Tramisation function.

90 - initial state.

F - final state.

1. by Types of automata:

There are 2 types - (1) finite Automata.

NOW; finite automata Deferenciation FA (DFA)

Non-deforministic FA (NFA)

BRAINWARE GROUP OF INSTITUTIONS

398 Ramkrishnapur Road, Barasat, Kolkata 700124

1. (f) Transitiationtable: (8) In Automata theory transition table is a table showing what state a finite state machine will moved to, based on the current state & other inputs It is essentially a buthtable in which Some of the inputs are current state, & Output is equal to next state.

Examp	ole!-	_	
1	SQ.	0	<u>(S)</u>

	7 6	
5	12 1	52
1 / S	2 52	SI
State Transition table for NFA	4.5-	l

_			
4		1	10
-	Si	Si	S521533
	Sz	52	'SI
	53	52	SI
	13		·

Fig: Truth table.

1. (e) défine DFA:

In Automata Theory, DFA is a finite state machine that accepts of rejects state machine that accepts of rejects strings of symbols and produces ungain

BRAINWARE GROUP OF INSTITUTIONS

398 Ramkrishnapur Road, Barasat, Kolkata 700124 Deferminissie cames from the Computation. produces imque output. (A) example;-It can be defermines by (5 Q = finite state sets. E = finite set of i/p symbols (#) Toubles:--toubles -> δ = Q X Z -> Q Pramifiching table) 902 imitial state F = final state 1. (b) dead state | trap state !-It NFA, when we don't have any output regading of a input symbol, then the output state is called dead state. = \$ = dead state.

i. as ε is given here, we have to ε -closure ε -Closurce $(0) \rightarrow \{0,1,7,2,4\} = \{0,1,2,4,7\} = A$ let, $\Sigma = \{a,b\}$ More (A,a) = E. clusure (More (A,a)) $= \left\{3,6,1,2,4,8\right\}$ $= \left\{1,2,3,4,6,7,8\right\} = B$ ->(A)->(B) < DFA More (A, b) = E. Closure (More (A, b)) = E. Cluswee ({ 5}) = {5,6,7,1,2,4} $= \{1,2,4,5,6,7\} = (c)$

hove $(B, a) = \in . \text{clusture}(\text{move}_{NFA}(B, a))$ = £. closurce ({3,8}) = { 3,6,7,1,2, 48} $=\{1,2,3,4,6,7,8\}=$ $Move_{DFA}(B,b) = \in closure(nume_{DFA}(B,b))$ = E. Closure ({5,9}) = {5,6,7,1,2,4,9} 2 {1,2,4,5,6,7,9} here (c,a) = E. closuce (none (c,a) = E. closuce ({ 3, 8}) = {3,6,7,1,2,4,8} 2 { 1, 2,7,4, 6, 7, 8}

BRAINWARE GROUP OF INSTITUTIONS 398 Ramkrishnapur Road, Barasat, Kolkata 700124

= E. Chriwce (fo)

= {5,6,7,1,2,4}

DFA.

vill be (optimised)

