

FIT5196 DATA WRANGLING

Week 7

Data Quality & Anomalies

By Jackie Rong, additional materials: Sailaja Rajanala

Faculty of Information Technology Monash University

Data Wrangling Tasks (Recap)

Data structuring is a critical aspect of managing and organizing data in a way that it can be efficiently accessed and manipulated.

The **main goal** is to enable data to be processed in an efficient manner, enhancing both speed and accessibility while minimizing resource usage.

Data Quality

- Definition of Data Quality
- Impact of Poor Data Quality
- Data Quality Dimensions and Measures
- Data Quality Challenges
- Data Anomalies and Data Quality Issues
- Data Quality Management Frameworks

Data Quality

- **Data quality** refers to the condition or state of data based on factors that influence its accuracy, completeness, reliability, relevance, and timeliness.
- High-quality data is essential for businesses, governments, and organizations to make informed decisions, improve operational efficiency, and gain competitive advantage.

https://www.capellasolutions.com/blog/10-data-management-challenges-every-it-director-must-conquer

Enhanced decision-making

- High-quality data ensures that decisions are based on accurate and factual information, reducing the risk of costly mistakes.
- Stakeholders can make decisions with greater confidence when they trust the data's accuracy and completeness.

Regulatory compliance and risk management

- Maintaining high data quality helps organizations comply with these regulations, avoiding legal penalties.
- Accurate and reliable data helps in identifying potential risks and vulnerabilities, allowing for proactive measures to mitigate them.

Operational efficiency

- Clean, accurate data streamlines operational processes, reducing time spent on corrections and verifications.
- With reliable data, organizations can optimize resource allocation, ensuring that efforts and investments are directed where they are most needed.

Customer satisfaction

- High-quality data enables personalized customer experiences by accurately understanding customer preferences and behaviours.
- By analysing accurate data, organizations can identify areas for service improvement, enhancing overall customer satisfaction and loyalty.

Rapid-Fire Fulfillment by Kasra Ferdows, Michael A. Lewis and Jose A.D. Machuca

Zara manufactures and distributes products in sma ll batches. Instead of outside partners, the compan y manages all design, warehousing, distribution, a nd logistics functions itself. The result is a superr esponsive supply chain exquisitely tailored to Zar a's business model. Zara can design, produce, and deliver a new garment to its 600plus stores worldwide in a mere 15 days.

This is how Netflix's top-secret recommendation system works

Netflix splits viewers up into more than two thousands taste groups. Which one you're in dictates the recommendations you

MORE THAN 80 per cent of the TV shows people watch on Netflix are discovered through the platform's recommendation system. That means the majority of what you decide to watch on Netflix is the result of decisions made by a mysterious, black box of an algorithm. Intrigued? Here's how it works.

Netflix uses machine learning and algorithms to help break viewers' preconceived notions and find shows that they might not have initially chosen. To do this, it looks at nuanced threads within the content, rather than relying on broad genres to make its predictions. This explains how, for example, one in eight people who watch one of Netflix's Marvel shows are completely new to comic book-based stuff on Netflix.

Financial health

- Reducing errors and inefficiencies leads to significant cost savings, as less time is spent correcting mistakes or dealing with data-related issues.
- Accurate data can uncover new opportunities for revenue generation, whether through improved customer targeting, product development, or market expansion.

Reputation and trust

- Consistently high-quality data builds trust among stakeholders, including customers, investors, and partners, by demonstrating reliability and commitment to excellence.
- Organizations known for managing their data well are often seen as more reliable and trustworthy, positively impacting their brand reputation.

Hundreds of post office operators were wrongly convicted based on data produced by the faulty Horizon IT system the Post Office imposed on them in the late 1990s. Many were accused of theft, fraud and false accounting after the Horizon software made it appear as if money was going missing from their branches. link

Innovation and growth

- High-quality data is a cornerstone for analytics and business intelligence, providing the insights necessary for innovation and strategic growth.
- Organizations that leverage high-quality data effectively can gain a competitive edge by identifying trends, optimizing operations, and creating more value for their customers faster than their competitors.

Data Quality Failure: Test Case

The Therac-25 incident is a clear example of how data quality issues can have life-threatening consequences. Here's how data quality was a problem in this case:

- **Software Errors:** The Therac-25 software contained errors that led to incorrect calculations and radiation overdoses. These errors could be considered data quality issues within the software itself, as the software was processing and manipulating critical data (treatment settings) incorrectly.
- Lack of Data Validation: The software lacked proper checks to ensure the
 accuracy and validity of the data being entered (treatment settings). This could
 have involved features like dose range limitations or checks for conflicting
 settings.
- Unrealistic Risk Assessments: The manufacturer's initial risk assessment underestimated the likelihood of software errors and overdoses, essentially assigning very low probabilities to the possibility of software malfunction. This assessment was based on faulty data or assumptions.
- In summary, the Therac-25 case highlights how flaws in software design, data handling within the software, and the lack of proper data validation all contributed to the radiation overdoses. These issues ultimately stemmed from a lack of focus on data quality within the safety-critical system.

Therac-25 Medical Accelerator
1985-1987

Radiation therapy device malfunctions, delivers lethal doses at several facilities

The 25 was an improved version of an older model

It could deliver betaparticles (electron beam) or x-rays

The **Therac-25** is a computercontrolled <u>radiation therapy</u> machine produced by <u>Atomic Energy of</u> Canada Limited (AECL) in 1982.

Therac-25.jpg (960×720) (bp.blogspot.com)

MONASH University

Impacts of Poor Data Quality

- Inaccurate decision making
- Reduced efficiency and productivity
- Increased costs
- Damaged reputation
- Compliance and legal risks
- Customer dissatisfaction
- Misguided strategic initiatives
- Loss of competitive edge
- Data breaches and security edge
- Data breaches and security issues
- Analytical and forecasting errors

Data Quality Dimensions

- **Data quality dimensions** are the qualitative aspects or characteristics of data that contribute to its overall quality.
- They represent the broad categories or criteria used to assess the quality of data.
- These dimensions provide a framework for understanding what aspects of data need to be measured and managed to ensure its quality.

Data Quality Measures

- Data quality measures are the quantitative metrics or indicators used to evaluate the quality of data against the various dimensions.
- Measures are specific, measurable criteria used to assess how well the data meets quality standards.
- Measures are the practical tools used to perform the assessment.

- Data quality challenges can arise from technical issues, organizational dynamics, data complexity, and the ever-evolving landscape of data sources and types.
- Addressing these challenges requires concerted effort across various levels of an organization.

Volume and variety of data

- The sheer volume of data generated by modern businesses, combined with the variety of data types and sources, can make managing and maintaining quality a daunting task.
- Integrating and ensuring consistency across diverse data sets is particularly challenging.

Data silos

- Data stored in isolated silos within an organization can lead to inconsistencies, redundancies, and difficulties in achieving a unified view of data.
- Breaking down these silos to ensure seamless data flow and integrity is a significant challenge.

Evolving data

- Data is not static; it changes and evolves over time.
- Maintaining data quality in the face of changing business processes, regulatory requirements, and market conditions requires flexible and adaptive data management strategies.

Human error

- Data entry, interpretation, and management are prone to human error.
- Even small mistakes can propagate through systems, leading to significant data quality issues.

Source: **Evidently Al**

- Lack of comprehensive data governance
 - Without a robust data governance framework, it's challenging to establish standards, roles, policies, and procedures necessary for maintaining data quality.
 - Data governance provides the structure needed to address data quality systematically.

... from collection, processing, storage, use, security, and management of data

Complexity of data integration

 Integrating data from various sources, each with its formats, structures, and quality standards, can introduce errors and inconsistencies, complicating data quality efforts.

Inadequate data quality tools

- The lack of effective tools for data quality management can hinder an organization's ability to detect, correct, and prevent data quality issues.
- Investment in the right tools and technologies is crucial for maintaining high data quality.

Poor data quality awareness

- A lack of awareness or understanding of the importance of data quality across the organization can result in inadequate prioritization of data quality initiatives.
- Cultivating a data-quality culture is essential for overcoming this challenge.

Regulatory compliance

- Keeping up with and adhering to an ever-changing landscape of regulatory requirements related to data can be challenging.
- Non-compliance can lead to data quality issues and legal penalties.

Resource constraints

 Allocating the necessary resources, including time, budget, and skilled personnel, to data quality initiatives can be difficult, especially for organizations with tight budgets or competing priorities.

- Data anomalies refer to irregularities or deviations in data that can indicate errors, inconsistencies, or unusual occurrences that deviate from expected patterns.
- Identifying and addressing data anomalies is crucial for maintaining data quality, ensuring accurate analysis, and supporting effective decision-making.
- There are primarily three types of data anomalies
 - Point Anomalies
 - Contextual Anomalies
 - Collective Anomalies

https://www.techmagic.co/blog/aianomaly-detection

Fraud detection

- Identifying fraudulent transactions
- Mitigating risks and financial losses

Healthcare

- Monitoring patient data for early signs of diseases
- Early detecting anomalies of health issues

Industrial systems

- Predicting equipment failures
- Optimizing operational efficiency

Predictive maintenance

- Anticipate maintenance needs
- Optimize asset utilization and extend its life
- Reduce maintenance costs

Point Anomalies

- A point anomaly occurs when a single data point significantly deviates from the rest of the data set.
- This type of anomaly is the simplest form and is often detected through thresholdbased methods or statistical analysis.
- Such anomalies might indicate data entry errors, fraud, or other significant events.

In-class participation:

Task 1:

Find out the possible data anomalies in this table.

Staff_ID	First_Name	Last_Name	Level	Work_Hour
S001	John	Smith	D	6
S002	Kate	Joyce	С	8
S003	Mary	Wen	D	6
S004	Jenny	Wood	D	6
S005	Jon	Dolly	E	4
S006	Amy	Yeewood	Α	10
S007	Addy	Zhang	В	9
S008	Allen	Fan	В	9
S009	James	Vu	Α	10
S010	Anddy	Lee	D	500
S011	Jane	Jones	С	8
S012	Mike	Giacometti	С	8
S013	Anna	Nord	E	4
S014	Sunny	Johnson	E	4
S015	Ross	Hart	Α	10

Contextual Anomalies

- Contextual anomalies, also known as conditional anomalies, occur when a data point is anomalous within a specific context or condition but not otherwise.
- These anomalies can only be identified within a specific context, such as time or space.
- Identifying contextual anomalies requires understanding the context and conditions under which data is expected to behave in a certain way.

	Energy Usage																							
Property	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00
P0001	24	13	7	4	2	6	25	37	47	58	36	43	46	36	35	32	56	68	86	84	94	65	55	34
P0002	12	21	11	4	5	3	16	24	35	63	66	76	34	42	32	23	34	56	67	86	74	58	34	21
P0003	34	22	9	3	3	1	11	21	33	21	37	35	23	43	23	29	35	32	30	45	67	84	89	90
P0004	56	43	21	35	37	32	43	26	11	21	35	14	22	17	16	9	23	97	63	59	66	46	78	89

Point anomalies
Unusual inside the
whole dataset

anomalies
Unusual compared to
neighbouring values

Connected records that are unusual

Source: h internet/9 Anomaly detection types

- Detecting anomalies can be challenging, especially in large or complex datasets.
- Techniques for anomaly detection include statistical methods, machine learning models, and domain-specific rules or thresholds.
- Once detected, it's important to investigate anomalies to determine their cause, which could range from simple data entry errors to indications of systemic issues or fraudulent activity.

- Data quality issues refer to problems in the data that can negatively impact its usefulness, reliability, and accuracy for decision-making, analysis, and operational processes.
- These issues often arise from various sources throughout the data lifecycle, from collection and storage to processing and analysis.
- Addressing these issues is critical for organizations to ensure that their data assets provide value and support their objectives.

- Looking for errors
 - Incomplete data
 - Inaccurate data
 - Inconsistent data
 - Data Duplication

ID	Landgrabbed		Landgi abbei	Base	Section	Hect ares	Production	Projected investment	Status of deal	Start	End
A23	Algeria	DZA	Al Qudia	LIAE	Finance		Milk, olive oil, potatoes		Cone	06/2005	01/2015
A4 5	Algeria		Al Qudia	LIAE	ieal estate	31000.00	Milk, olive oil, potatoes		Cone	06/1905	01/2012
	Angol a		CAMC Engineering Co. Lid	Chi na	Construction	1500, 00	Rice	US\$77 million	Cone		
A3										06/2010	05/2005
A1	Phili ppi nes		Kuwai 1	Kuwai 1	Government		Maize, iice		In process	10/2015	12/ 1917
A34			Zuellig Group	ktal aysi a	Agri busi ness, heal th care		Maize		In process	06/2016	OB/ 2020
A45	Phili ppi nes		Onn n	Oman	Government	10,000	Ri œ	150m	Processing	06/1909	09/1917
	Phili ppines	PHL	Brunei Investment Authority	Brunei	Gover	10,000	Ri ce		Proposed		
A34										03/2016	
A56	Phili ppines		Chi na	Chi na		100, 280, 000			Sus pended	02/2000	11/2001
<i>1</i> 64	Phili ppi nes		Green Future Innovation	Japan			Sugai cane	US\$120 million		06/2014	09/2015
A4	arganti n	ARG	Bei dahuang	CH		320000	Maize, soybeans, wheat	US\$1,500 million	Sus pended	12/ 1900	07/1901
A65	Tanzáni a		Niimal Seeds	Indi ë	Agri busi ness	30000	Seeds		In process	03/2013	06/2016
	1 anzani a		Yes Bank	Indi a	Fi nance	50000	Rice, wheat		In process	06/2010	06/2017
A3	Tansani a		Export Trading Group	Si ngapore	Agri busi ness	8000	Ri ce		Cone	12/2015	
A23	Brazil	BRA	Clean Energy Brazil	UK		30,000	Sugar cane		Cone	03/2012	
		BRA	Adecoagi o	US	Agri busi ness	165, 000	Cattle, cofee, grains, soybeans, sugar cane	9B, 00Q, 000	Cone	11, 21, 12	
N67							lastermat andm anne			10/2010	07/2005
A67	brazil	BRA	Archer Daniels Midland	US	Agri busi ness	12, 000	Dil palm		In process	06/2014	
	Brasil		Black River Asset	Uni 1 ed	Fi nance	50,000	Crops	20000000	Done		
<i>1</i> 56			Management	states						02/2010	2015

I D	Landgrabbed		Landgi abbei	Base	Section	Hect ares	Production	Projected investment	Status of deal	Start	End
	Algeria	DZA	Al Qudia	UAE	Finance	31000 00	Milk, olive oil,		Cone		
A23	41 : -		di Sudi e	1145		24000 00	pot at oes		D	06/2005	01/2015
A45	Algeria		Al Qudia	LIAE	ieal estate	31000.00	Milk, olive oil, potatoes		Cone	06/1905	01/2012
A413	Angol a	 	CAMC Engineering	Chi na	Construction	150Q 00	1.	US\$77 million	Cone	007 1903	017 20 12
	I singor a		Ca Lid	""	COMMITTED TO SE		"" ~~		100.110		
A3										06/2010	05/2005
	Phili ppines		Kuwai 1	Kuwai 1	Government	20000	Maize, iice		In process		
A1										10/2015	12/ 1917
10.1			Zuellig Group	Malaysia	Agri busi ness, healith daire	30000	Maize		In process	0000000	00/0000
A34	Phili ppines	_	Dman	Dma n	Government	10,000	Di co	150m	Processing	06/2016	0B/2020
A45	гин г рргиеа			I CIII III	DOVETHING!!!	10,000	lii ce	130111	rrocessing	06/ 1909	09/1917
10	Phili ppines	PHL	Brunei Investment	Brunei	Gover	10,000	Ri ce		Proposed	00, 1707	93, 13.11
			Auf hority								
A34										03/2016	
A5 6	Phili ppi nes		Chi na	Chi na		10Q 2B0, 000	1		Sus pended	02/2000	11/2001
	Phili ppines		Green Fulure	Japan		11, 000	Sugai cane	US\$120 million	Done		
A54		4.00	I nnovati on	1011		222000		1001 500	0	06/2014	09/2015
A4	arganti n	ARG	Bei dahuang	СН		320000	Maize, soybeans, wheat	ເຣຣເ,ວຫ million	Sus pended	12/ 1900	07/1901
		 	Niimal Seeds		Agri busi ness	30000	Seeds	12111011	In process	127 1700	077 1201
A65	Tanzánia		30000	l ndi ë	l gi i baai iicaa				Fr & Cod	03/2013	06/2016
	1 arzania		Yes Bank	Indi a	Finance	50000	Riice, wheat		In process	·	
										06/2010	06/2017
1	Tansania		Export Trading	Si ngapore	Agri busi ness	B000	Ri ce		Done		
A3	D. sai I	חחי	Group	luv.		20.000	Curry		Po ne	12/2015	10/201B
A23	Brazil	6 164	Clean Energy Brazil	UK		30,000	Sugar cane		Cone	03/2012	09/2013
723		R RA	Adecoagi o	us	Agri busi ness	165 000	Cattle, cofee, grains,	9B, 00Q, 000	Cone	10/ 2012	07/ 20 13
			1 130 7 5 11 31	"	1 131 1 2231 11233		soybeans, sugai cane	72,004,000			
N67							_			10/2010	07/2005
	brazil	B RA	Archer Daniels	us	Agri busi ness	12, 000	Dil palm		In process		
A67			Midl and	<u> </u>	 			********		06/2014	01/2015
	Brasil		Black River Asset Management	United states	Finance	50, 000	C) ops	20000000	Done		
A5 6			mailage neill	310163						02/2010	2015
~0					L					0515010	2013

- Looking for errors
 - Incomplete data
 - Inaccurate data
 - Inconsistent data
 - Data Duplication

25 6	355	5	靐	₹ 55		*	a e ≃	\$ 5	Á56	至	Æ	至	22-	855	套	靐	
<u> </u>			Blazil	e juesu e j	tanzaria	Tarvània	argantin	Phi li ppi nes	Philippines	Philippines	Philippines		Philippines	Angol a	Algeria	Agriia	lanlyrabbed
		窦	窦				奏			2						ŒA	180
Nack River Asset Ubnagement		Adecaglo	Clean Energy Brazil	dhoig Buipeil tiodas	Yes Bank	Nimal Seeds	bei dahwang	Green Future I noviation	Chi na	Brunei I nvestment Authority	D ra n	Zuellig Goup		ANC Engineering Do. Ltd	A Qudia	Al Quella	ladjráber
Wided states		ß	=	Singapore	India	Indé	오	ueder	China	bi unei	Omen	Maysia	Kuwait	China	돆	嵯	kse
fi mance		Agii busi ness		seu isnq ilby	fi mace	Agii busi ness				lovel	Gove i n ne ni	heal th care ,ssen isud i liby	(bye) nami	bustuation	ाक्षा क्षांबार	स्थाता ह	Section
2 <u>1</u> 100		165,000	31,000	9008	50000	3000	32000	11,000	100,280,000	10,000	11,000	3000	2000	1500.00	31000.00	31 000 00	lectures
gool		lattle, cofee, grains, soybeans, sugar cane	Sugai cane	90 N	Rice, wheat	Seeds	Mize, soybears, wheat	आह्य हिंग	Various	No.	li Ce	95 lBJ	Mize, lice	#ice	Milk, dive oil, potatoes	Milk, dive oil, potatoes	Kolotia
200000		98, DOQ, DOD					uS\$1,500 million	IS\$120 million			50m			U\$77 million			hojestel inestrert. Status of leal
lone	In process	lone	lone	lone	In process	In piocess	Suspended	lone	Suspended	Proposed	hoesi ig	In process	In places	bre	lone	lone	Status of Head
R/2010	16/2114	10/2010	18/2012	12/2015	16/2111	D4/2013	12/1900	16/2114	R/2000	18/2116	D6/19D9	16/2116	10/2015	06/2010	D6/1905	16/2105	Surt
2015		17/2005	D9/2013	11/2018		DQ/2016	07/190	D\$/2015	11/2001		D\$/1917		12/19/7	D\$/2005	01/2012	01/2015	重

I D	lanigrabbed	1.90	landgrabber	t ase	Sector	lectures	Production	Projectel innestment	Status of deal	Start	End
A23	Algeria	IZA	Al Qudia	UAE	Fi nance	31 DD D. DD	Malk, olive oil, potatoes		Done	06/2005	DI/2DI5
A45	Algeria		Al Qudia	UAE	real estate	31 DD D. DD	Milk, olive oil, potatoes		Done	D6/19D5	01/2012
A3	Angol a		CAMC Engineering Co. L1d	Chi na	Construction	I 500. DD	Rice	US\$77 million	Done	D6/201 D	05/2005
Al	Phi Li ppi nes		Kuwai 1	Kuwa i 1	Government	20 DDD	Maize, rice		In process	10/2015	12/1917
A34	888		Zwellig Group	Mal aysia	Agribusiness, health care	30 DDD	Mai ze		In process	D6/2DL6	
A45	Phi li ppi nes		Oman n	Ome n	Government	I D, DDD	Rice	1 5D m	Priodesisting	06/1909	09/1917
A34	Phi li ppi nes	PHL	Brunei Investment Aufhority	Bi unei	Gover	I D, DDD	Rice		Pro pos ed	D3/2DI 6	
A56	Philippines		Chi na	Chi na		100,280,000	Various		Suspended	02/2000	11/2001
A54	Philippines		Green Future I nnovation	Japan		II, DDD	Sugai cane	US\$12D million	Done	06/2014	09/2015
A4	argantin	ARG	Beidahuang	CH		32DDDD	Maize, soy bears, wheat	US\$1,500 million	Suspended	12/1900	D7/ 19 DI
A65	Tanzánia		Hirmal Seeds	Indiê	Agri busi ness	30 DDD	Seeds		In process	03/2013	D6/2016
	tanzani a		Yes Bant	India	Fi nance	50 DDD	Rice, wheat		In process	D6/2010	
A3	Tansania		Export Trading Group	Singapore	Agri busi ness	8DDD	Rice		Done	12/2015	1 DV 2018
A23	Biazi I	BRA	Clean Energy Brazil	UK		3D, DDD	Sugai cane		Done	03/2012	D9/ 2D13
H67		BRA	Adecoagio	US	Agri busi ness	1 65, DDD	Cattle, cofee, grains, soybeans, sugar cane	98, DDD, DDD	Done	10/2010	D7/ 2DD5
A67	brazil								In process	D6/2 DI 4	
A56	Brasil		Black River Asset Management	Uni 1 ed s1 a1 es	Fi nance	50, DDD	Сторя	20000000	Done	D2/2 DI D	2015

- Poor data standardization
- Lack of data timeliness
- Data relevance issues
- Poor data security and privacy
- Complex data structures
- Data accessibility issues

Data quality problems can be categorized based on data sources.

From "Data Cleaning: Problems and Current Approaches" by Rahm and Do

Single-Source Problems

Scope/Prob	lem	Dirty Data	Reasons/Remarks			
Attribute	Illegal values	bdate=30.13.70	values outside of domain range			
Record	Violated attribute	age=22, bdate=12.02.70	age = (current date – birth date)			
	dependencies		should hold			
Record	Uniqueness	emp ₁ =(name="John Smith", SSN="123456")	uniqueness for SSN (social security			
type	violation	emp ₂ =(name="Peter Miller", SSN="123456")	number) violated			
Source	Referential	emp=(name="John Smith", deptno=127)	referenced department (127) not defined			
	integrity violation		_			

Table 1. Examples for single-source problems at schema level (violated integrity constraints)

Single-Source Problems

Scope/Prol	olem	Dirty Data	Reasons/Remarks			
Attribute	Missing values	phone=9999-999999	unavailable values during data entry (dummy values or null)			
	Misspellings	city="Liipzig"	usually typos, phonetic errors			
	Cryptic values, Abbreviations	experience="B"; occupation="DB Prog."				
	Embedded values	name="J. Smith 12.02.70 New York"	multiple values entered in one attribute (e.g. in a free-form field)			
	Misfielded values	city="Germany"				
Record	Violated attribute dependencies	city="Redmond", zip=77777	city and zip code should correspond			
Record type	Word transpositions	name ₁ = "J. Smith", name ₂ ="Miller P."	usually in a free-form field			
	Duplicated records	emp ₁ =(name="John Smith",); emp ₂ =(name="J. Smith",)	same employee represented twice due to some data entry errors			
Contradicting records		emp ₁ =(name="John Smith", bdate=12.02.70); emp ₂ =(name="John Smith", bdate=12.12.70)	the same real world entity is described by different values			
Source Wrong references		emp=(name="John Smith", deptno=17)	referenced department (17) is defined but wrong			

From "Data Cleaning: Problems and Current Approaches" by Rahm and Do

Multi-Source Problems

Custon	ner (source 1)							
CID	Name		Street		City		Sex	
11			2 Hurley Pl		South 1	Fork, MN 48503	0	
24	Christian Smit	h	Hurley St 2	2	S Fork	MN	1	
Client	(source 2)							
Cno	LastName	Fir	stName	$G\epsilon$	ender	Address		Phone/Fax
24	Smith	Chi	ristoph	M		23 Harley St, Chic	cago	333-222-6542 /
						IL, 60633-2394		333-222-6599
493	Smith	Kri	s L.	F		2 Hurley Place, So	outh	444-555-6666

Customers (integrated target with cleaned data)

No	LName	FName	Gender	Street	City	State	ZIP	Phone	Fax	CID	Cno
1	Smith	Kristen L.	F	2 Hurley	South	MN	48503-	444-555-		11	493
				Place	Fork		5998	6666			
2	Smith	Christian	M	2 Hurley	South	MN	48503-			24	
				Place	Fork		5998				
3	Smith	Christoph	M	23 Harley	Chicago	IL	60633-	333-222-	333-222-		24
		_		Street			2394	6542	6599		

Fork MN, 48503-5998

In-class participation:

Task 2:

Let's try to find out the problems in these examples.

Schema level, there are **name conflicts** (synonyms Customer/Client, Cid/Cno, Sex/Gender) and **structural conflicts** (different representations for names and addresses).

Instance level, we note that there are **different gender representations** ("0"/"1" vs. "F"/"M") and presumably a **duplicate record** (Kristen Smith).

The latter observation also reveals that while Cid/Cno are both source-specific identifiers, their contents are not comparable between the sources; different numbers (11/493) may refer to the same person while different persons can have the same number (24).

Requires both schema integration and data cleaning; the third table shows a possible solution. Note that the schema conflicts should be resolved first to allow data cleaning, in particular detection of duplicates based on a uniform representation of names and addresses, and matching of the Gender/Sex values.

From "Data Cleaning: Problems and Current Approaches" by Rahm and Do

- Data quality problems can be categorized based on data type.
 - Syntactical Anomalies: format and values
 - Lexical errors
 - data format discrepancies in terms of database
 - e.g., spelling errors, typos in terms of linguistics.
 - Domain format errors
 - inconsistent value format of an attribute
 - e.g., Buntine, Wray Lindsay v.s. Wray L. Buntine
 - Irregularities
 - the non-uniform use of values, units and abbreviations?
 - e.g., salary in difference currencies.

- Data quality problems can be categorized based on data type.
 - Syntactical Anomalies: format and values
 - Semantic Anomalies: comprehensiveness and non-redundancy
 - Integrity constraint violations
 - Contradictions
 - violation of dependencies between attributes
 - e.g., AGE and DOB.
 - Duplicates: observations representing the same entity.
 - \circ Invalid observations \rightarrow logical inconsistencies like 1000 year old person.

- Data quality problems can be categorized based on data type.
 - Syntactical Anomalies: format and values
 - Semantic Anomalies: comprehensiveness and non-redundancy
 - Coverage Anomalies: missing values
 - Missing values: due to omissions while collecting the data
 - Missing observations

They're gaps or distortions in how well your data covers the population, space, time, or category combinations you're supposed to analyze. Different from row-level missing values, these are missing records (or lopsided records) for whole slices of the universe.

Common types

- Under-coverage: parts of the population/time/space never (or rarely) recorded. Ex: Store #42 has no Sundays; Q2 has zero rows.
- Over-coverage: segments are overrepresented (duplicates, bursty collectors). *Ex:* Device sends the same reading 10×.
- Sparse regions: data exists but far below expected density.
- Boundary gaps/drift: start/end dates shifted.
- Group-attribute coverage holes: a field is present overall but missing within a subgroup. *Ex:* "income" absent for ages >65.

- Dirty data manifests itself in three different ways:
 - missing data
 - not missing but wrong data
 - not missing and not wrong but unusable

Source: https://polgovpro.blog/2022/06/22/dirty-data-in-dirty-decisions-out/

- Dirty data manifests itself in three different ways:
 - missing data
 - Missing data where there is no Null-not-allowed constraint → The column is optional. It's OK for it to be blank because the business doesn't require that value for every row.
 - O Examples: middle_name, apartment_number, secondary_phone, marketing_opt_in_date (only exists if the user opted in)
 - Missing data where Null-not-allowed constraint should be enforced → The value is mandatory for correctness, integrity, safety, or compliance. A blank here is an error.
 - Examples: order_id, transaction_timestamp, amount, email_for_login, patient_identifier, allergy_status (recorded as "NKA/Unknown/HasAllergies" but not left blank).
 - not missing but wrong data
 - not missing and not wrong but unusable

- Dirty data manifests itself in three different ways:
 - missing data
 - not missing but wrong data
 - Integrity constraints
 - violation of data type constraint, including value range
 - violation of non-null uniqueness constraint, i.e., duplicated data
 - violation of referential integrity
 - Wrong categorical data
 - Outdated temporal data
 - Inconsistent spatial data
 - Data Entry error involving a single table
 - Data entry error involving a single field: erroneous entry, misspelling, extraneous data
 - Data entry error involving multiple fields: entry into wrong fields, wrong derived-field data
 - not missing and not wrong but unusable

- Dirty data manifests itself in three different ways:
 - missing data
 - not missing but wrong data
 - not missing and not wrong but unusable
 - Different data for the same entity across multiple databases
 - Ambiguous data due to the use of abbreviation (Dr. for doctor or drive)
 - Incomplete context (e.g., Sydney of Australia or Canada)
 - The use of abbreviation (e.g., ste for suite, rd for road, st for street, etc)
 - Alias/nick name (e.g., Bill Clinton, President Clinton)
 - Encoding formats (e.g, ASCII, ...)
 - Representations (e.g., negative number, precision, fraction)
 - Measurement units (e.g., data, time, currency, weight, area, etc.)
 - Uses of special characters (e.g., space, dash, parenthesis in phone numbers) in concatenated data

Data Quality Management Frameworks

- Data Quality Management Frameworks
 are structured approaches to ensuring that
 an organization's data is accurate,
 complete, reliable, and suitable for its
 intended use.
- These frameworks provide the principles, policies, standards, processes, and metrics necessary to manage the quality of data effectively throughout its lifecycle.
- Implementing a robust Data Quality
 Management Framework is essential for
 organizations that rely on data for decision making, compliance, and operational
 efficiency.

Data Quality Management Frameworks

- The implementation of a Data Quality
 Management Framework is an iterative
 process that requires engagement from
 stakeholders across the organization.
- It begins with a clear understanding of the organization's data quality needs and involves the development of a tailored framework that addresses those needs.
- Success relies on strong governance, clear communication, effective use of technology, and a commitment to continuous improvement.

The Role of Machine Learning in Data

- Machine Learning (ML) play increasingly vital roles in enhancing data quality by automating and refining the processes involved in identifying, correcting, and preventing data quality issues.
- ML's capabilities enable organizations to handle vast volumes of data more efficiently, uncover hidden insights, and improve the overall integrity and value of their data assets.
 - Automated Error Detection
 - Data Cleansing
 - Predictive Data Quality
 - Enhanced Data Matching and Merging
 - Natural Language Processing (NLP)
 - Data Governance and Metadata Management
 - Data Enrichment
 - Continuous Monitoring and Improvement

Summary & To-do List

- Please download and read the materials provided on Moodle.
- Review the content learnt from Week 7.
- Assessments
 - Complete Group Assessment 1 (Due: 11:55 pm, Monday, 15 September 2025)
 - → All the group members must click submit button.
 - → In text citations in the report for all the references.
- Next week: Data Cleansing

