Table S1. List of all primer pairs used in experiments described in the paper.

Primer Set	Description	Forward Primer	Reverse Primer	Probe / Additional Primer
A	OMG1 5' flanking region	5'-CCGGATCCACTTTTCTACAACCCGAATGG-3'	5'-GG <u>CCATGG</u> TTTTTACACTTAATTTAAAAAC-3'	
В	GUSA SYBR RT-qPCR	5'-GTTCTGCGACGCTCACACCGATACC-3'	5'-TCACCGAAGTTCATGCCAGTCCAG-3'	
C	UBQ11 SYBR RT-qPCR	5'-AGCAACTTGAGGACGGCAGA-3'	5'-GTGATGGTCTTTCCGGTCAAA-3'	
D	OMG1 Taqman RT-qPCR	5'-CTCACGGAGCTAATCGATGAATT-3'	5'-CGATGACATACCAGATGCTGAAG-3'	5'-6FAM-CAGAGACCACGCCGACCAATACTTTACCA-TAMRA-3'
E	UBQ11 Taqman RT-qPCR	5'-AACTTGAGGACGGCAGAACTTT-3'	5'-GTGATGGTCTTTCCGGTCAAA-3'	5'-VIC-CAGAAGGAGTCTACGCTTCATTTGGTCTTGC-TAMRA-3'
F	SALK_045742C primers	LP: 5'-AGACCGCTCTTGTAGAATCCC-3'	RP: 5'-TAATTTGTTTCCCAAACCTGC-3'	LBb1.3: 5' ATTTTGCCGATTTCGGAAC-3'
G	GRX480 SYBR RT-qPCR	5'-GCTGCTTCTTGGACTTGGAG-3'	5'- TAAACCGCCGGTAACTTCAC-3'	
Н	PUMP5 SYBR RT-qPCR	5'- AGCGTTGCGAGTAATCCTGT-3'	5'- TCAACCGCTCCTTTATACGG-3'	
I	OMG1 cds for fusion	5'-AA <u>CTGCAG</u> ATGGGATCACCATTGTGCGAGC-3'	5'-CC <u>ACTAGT</u> TGTTTGTATTTTCCCTTTGTTAA-3'	
J	sGFP cds for fusion	5'-AT <u>ACTAGT</u> AAGGGCGAGGAGCTGTT-3'	5'-CTGGTCACCTTACTTGTACAGCTCG-3'	
K	OMG1-sGFP fusion	5'-AA <u>CCATGG</u> ATGGGATCACCATTGTGCGAGC-3'	5'-CTGGTCACCTTACTTGTACAGCTCG-3'	
L	XT1 SYBR RT-qPCR	5'-TGGGATGAGCAGAGACGTGA-3'	5'-GCGCCACGAAATTAGGGAAG-3'	
M	TCH4 SYBR RT-qPCR	5'-GGCACTCTGTTTCCCAAGAACA-3'	5'-CTCGTTGCCCAATCATCAGC-3'	
N	MYB77 SYBR RT-qPCR	5'-GCGTTGATGTTTCCGAGATT-3'	5'-TTTCCGCCATGTAACTCCTC-3'	
O	TCH2 SYBR RT-qPCR	5'-AATCGGAGGAGGTAACAA-3'	5'-CCGAGATCCTTCCATTACCA-3'	
P	PBP1 SYBR RT-qPCR	5'-TCCCAACAATGGCAGGAAA-3'	5'-GCTCGAACCCTTTGCAAATCT-3'	
Q	ACS6 SYBR RT-qPCR	5'-TGGGTCTGCCTGGTTTAAGAG-3'	5'-TGCGATCTGAACCACCCTGT-3'	
R	RBOHD SYBR RT-qPCR	5'-CTGGACACGTAAGCTCAGGA-3'	5'-GCCGAGACCTACGAGGAGTA-3'	

Table S1. List of all the primer pairs used in experiments presented in this paper. Primer sequences used in experiments presented in this paper are listed in the table.

Figure S1. Characterization of the omg1 homozygous KO line (SALK_045742C). A) Shows a schematic diagram of SALK_045742C line T-DNA insertion in exon 3 of OMG1. Black arrows indicate primers derived from the SALKSignal T-DNA primer design web tool (http://signal.salk.edu/tdnaprimers.2.html) used to screen the SALK line. B) The same primers illustrated in Fig. S3A [LP + LBb + RP (Table S1, set F)] were used to screen the SALK_045742C T1 seeds received from the Salk Institute Genomic Analysis Laboratory. PCR gel showed a mixture of wild type (1140bp), Homozygous (600bp) and heterozygous (1140bp +600bp) lines. After selfing the homozygous lines, all T3 progenies were homozygous for the T-DNA insertion. These seeds were then used as the omg1 KO line for downstream analyses. C) RT-PCR gel for the full length OMG1 cDNA in Col-0 WT and omg1 KO lines was done to ensure that the OMG1 transcript is not present in the KO line. Primers used are listed in Table S1, set I. Actin was used as a loading control. M denotes the marker. D) OMG1 transcript abundance was measured after wounding for the indicated time points in both WT-Col and omg1 KO. OMG1 transcripts were not detected in the omg1 KO line.

Table S2. List of genes shared between spaceflight experiments, rapid wounding and pollen tube growth.

	ATG#	Gene name	TAGES root	cs ¹	30mins post wounding(F		germination and		Details ⁴
							tube grow		
			Pvalue	FC	Pvalue	FC	Pvalue	FC	
1	At1g28480	GRX480	5.98E-03	3.6	1.80E-01	3.6			Regulates protein redox state by detoxifying reactive chemicals
2	At2g22500	PUMP5	3.27E-03	3.2	1.70E-03	3.1	4.00E-05	2.39	Oxidative phosphorylation uncoupler activity
3	At3g62720	XXT1	2.75E-03	2.7	1.60E-03	2.4	2.00E-05	2.58	Enzyme that adds several xylosyl residues on to polysaccharides
4	At5g37770	TCH2	7.94E-03	2.1	6.20E-04	2.5	2.00E-05	4.87	Response to calcium
5	At4g11280	ACS6	5.88E-03	3.2	8.60E-04	2.5	3.00E-05	2.32	Respond to mechanical stimuli
6	At3g50060	MYB77	3.17E-03	3.6	2.30E-02	3.3	8.00E-05	3.93	TF involved in lateral root development and ROS metabolism
7	At5g54490	PBP1	6.52E-04	3.6	1.20E-01	2.8			Response to calcium
8	At5g57560	TCH4	2.80E-03	5.1					Respond to mechanical stimuli

Table S2. List of genes shared between spaceflight, rapid wounding and pollen tube growth transcriptomic datasets. The list was derived by comparing the genes that were differentially expressed in spaceflight1 (Paul et al, 2013) against those shared in rapid wounding2 (Hasegawa et al, 2011; Supplemental Table S2) and in pollen tube germination & growth3 (Wang et al, 2008; Supplemental Table S2). The list of 7 genes with the respective ATG numbers, gene names, and functional details are listed along with the p-values and fold change from the respective experiments. Functional details4 of each gene were analyzed using available resources such as TAIR and PubMed.

Figure S2. Full length sequence of Arabidopsis OMG1 aligned to Arabidopsis COL11-12 and the basal species *Amborella trichopoda*. Full length sequence of Arabidopsis OMG1 aligned to its closest homolog Arabidopsis COL11-12 and the basal species of that clade *Amborella trichopoda*. The alignment was done using default settings in the BioEdit software. The regions of conserved domains are indicated by the black arrows and the consensus sequences are listed for each domain.

Table S3. List of all unique plant species represented in the phylogenetic analysis.

No	Unique species	No	Unique species	No	Unique species
1	Aegilops_tauschii	56	Festuca_pratensis	111	Oryza_nivara
2	Agapanthus_praecox	57	Fragaria_vesca	112	Oryza_officinalis
3	Allium_cepa	58	Fragaria_x	113	Oryza_rufipogon
4	Amborella_trichopoda	59	Galdieria_sulphuraria	114	Oryza_sativa
5	Ananas_comosus	60	Genlisea_aurea	115	Ostreococcus_lucimarinus
6	Annona_squamosa	61	Gentiana_triflora	116	Ostreococcus_tauri
7	Aquilegia_formosa	62	Glycine_max	117	Oxybasis_rubra
8	Arabidopsis_halleri	63	Glycine_soja	118	Paeonia_suffruticosa
9	Arabidopsis_kamchatica	64	Gonium_pectorale	119	Petunia_x
10	Arabidopsis_lyrata	65	Gossypium_arboreum	120	Phalaenopsis_hybrid
11	Arabidopsis_thaliana	66	Gossypium_barbadense	121	Phaseolus_vulgaris
12	Arabis_alpina	67	Gossypium_darwinii	122	Phoenix_dactylifera
13	Arachis_duranensis	68	Gossypium_herbaceum	123	Phyllostachys_edulis
14	Arachis_hypogaea	69	Gossypium_hirsutum	124	Physcomitrella_patens
15	Arachis_ipaensis	70	Gossypium_mustelinum	125	Picea_abies
16	Beta_vulgaris	71	Gossypium_raimondii	126	Picea_sitchensis
17	Betula_luminifera	72	Gossypium_tomentosum	127	Pinus_pinaster
18	Boehmeria_nivea	73	Helianthus_annuus	128	Pinus_radiata
19	Brachypodium_distachyon	74	Hordeum_vulgare	129	Pinus_sylvestris
20	Brassica_juncea	75	Ipomoea_nil	130	Pisum_sativum
21	Brassica_napus	76	Jatropha_curcas	131	Populus_balsamifera
22	Brassica_nigra	77	Klebsormidium_flaccidum	132	Populus_deltoides
23	Brassica_oleracea	78	Lagerstroemia_indica	133	Populus_euphratica
24	Brassica_rapa	79	Larix_kaempferi	134	Populus_tomentosa
25	Cajanus_cajan	80	Lemna_aequinoctialis	135	Populus_trichocarpa
26	Camelina_sativa	81	Lemna_gibba	136	Primula_vulgaris
27	Capsella_rubella	82	Lilium_hybrid	137	Prunus_mume
28	Capsicum_annuum	83	Litchi_chinensis	138	Prunus_persica
29	Chondrus_crispus	84	Lolium_perenne	139	Pyrus_x
30	Chrysanthemum_seticuspe	85	Lolium_temulentum	140	Raphanus_sativus
31	Chrysanthemum_x	86	Magnolia_virginiana	141	Ricinus_communis
32	Cicer_arietinum	87	Malus domestica	142	Secale_cereale
33	Citrus_clementina	88	Mangifera_indica	143	Selaginella_moellendorffii
34	Citrus_sinensis	89	Manihot_esculenta	144	Sesamum_indicum
35	Coccomyxa_subellipsoidea	90	Marchantia_polymorpha	145	Setaria_italica
36	Coffea_arabica	91	Medicago_sativa	146	Sinapis_alba
37	Coffea_canephora	92	Medicago_truncatula	147	Solanum_lycopersicum
38	Cucumis_melo	93	Miscanthus_floridulus	148	Solanum_pennellii
39	Cucumis_sativus	94	Miscanthus_sacchariflorus	149	Solanum_tuberosum
40	Cymbidium_ensifolium	95	Miscanthus_sinensis	150	Sorghum_bicolor
41	Cymbidium_goeringii	96	Morus_notabilis	151	Spinacia_oleracea
42	Cymbidium_sinense	97	Musa_AAB	152	Tarenaya_hassleriana
43	Cynara_cardunculus	98	Musa_acuminata	153	Tectona_grandis
43	Daucus_carota	98 99	Nelumbo_nucifera	154	Theobroma_cacao
45	Dendrobium_loddigesii	100	Nicotiana_sylvestris	155	Thespesia_populneoides
46	Dendrocalamus_xishuangbannaensis	100	Nicotiana_tabacum	156	Trifolium_subterraneum
46 47	Dimocarpus_longan	101	Nicotiana_tomentosiformis	157	Triticum_aestivum
48	Dorcoceras_hygrometricum	102	Olea_europaea	157	Triticum_urartu
49 50	Elaeis_guineensis	104	Oryza_australiensis	159	Vigna_angularis
50 51	Erycina_pusilla	105	Oryza_barthii	160	Vigna_radiata
51	Erythranthe_guttata	106	Oryza_brachyantha	161	Vitis_vinifera

No	Unique species	No	Unique species	No	Unique species
52	Eucalyptus_grandis	107	Oryza_glumipatula	162	Volvox_carteri
53	Eutrema_salsugineum	108	Oryza_granulata	163	Zea_mays
54	Fagus_sylvatica	109	Oryza_longistaminata	164	Ziziphus_jujuba
55	Festuca_arundinacea	110	Oryza_meridionalis	165	Zostera_marina

Table S3. List of all unique plant species represented in the phylogenetic analysis. All the unique plant species represented in the 1547 protein sequences used to generate the phylogenetic tree are listed in this table.

Figure S3. B-box2 domain sequence in all species within the OMG1 clade. The alignment was done with the Aliview software. The sequences highlighted within the black box indicates additional mutations after the B-box2 domain in the same sequences that also harbors the B-box1 deletion (Fig. 8). Residues within the sequences that create the first zinc binding interface are indicated by the black lines, whereas residues that might create a second zinc binding interface with higher uncertainty are indicated by the blue lines. Interestingly, in the consensus sequence listed above, all the residues involved in the second zinc binding interface are not conserved within the OMG1 clade (multicolored arrows). The red arrows indicated the sequences carrying the cysteine to serine substitution. The green arrows indicate the histidine to cysteine substitution. The blue arrows indicate other substitutions from the basal species *Amborella trichopoda*.

WS Col-0	1	T F L Q P E W F G S V W F N * Y Y N S K ACTTTTCTACAACCCGAATGGTTCGGGTCGGTTTGGTTT	60 60
WS	61	F * S H A * Y H I * Y T I I * Y K F T N TTCTAAAGTCATGCTTAATATCATATTTAATATACAATTATTTAGTATAAGTTTACTAAT	120
Col-0	61		120
WS	121	S S N L K I F N S F N N * F * A * M R A TCTTCTAATCTCAAAATATTTAATTCGTTTAATAATTAAT	180
Col-0	121		180
ws	181	T L * W R G N D L V T V K F H V G N I I ACTCTCTGATGGCGCAATGATTTAGTCACAGTAAAATTTCATGTGGGAAATATTATA	240
Col-0	181		240
ws Col-0	241 241	N C E F W * N F F N N V H A I C K G N I AACTGTGAATTTTGGTGAAATTTCTTCAACAATGTTCATGCAATCTGCAAGGAAATATA	300
WS	301	T D G Y R * K S R I K R Y N S E I Q N C ACAGATGGATATAGATGAAAATCAAGGATAAAACGTTATAACAGTGAGATTCAAAACTGT	360
Col-0	301		360

WS	361	* I I F R L E R L R T F * P I L I * I L TAAATTATATTTAGACTCGAAAGGTTAAGAACTTTCTAACCAATCTTAATCTAAATTCTC	420
Col-0	361		420
WS	421	C Y I F F L F * I I N L K I R N F R * L TGTTATATTTTTTTTTTTTTTATAATTAAACTTGAAAATTCGAAATTTTCGCTGATTG	480
Col-0	421		480
WS	481	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	540
Col-0	481		540
WS Col-0	541 541	S Y Y L P I C H P K N P I K Q T E S D Q TCCTACTATTACCAATCTGCCACCCCAAAAACCCTATCAAGCAAACGGAATCCGATCAA	600
WS	601	Y A F I N S * H S I D I Y H V * K V T L TATGCTTTTATTAATTCATAACACAGCATCGATATTTACCACGTGTAAAAAGTAACTCTT	660
Col-0	601		660
WS	661	N * Y K R S T S L R S H I Y N A F L S F AATTAGTATAAAAGAAGCACAAGCTTGAGATCTCATATCTACAATGCCTTTCTTT	720
Col-0	661		720

WS Col-0	721 721	AAATCTATA(GATCTCA gatctca	 aaatttt	ACACTG'	TTCGTAT	 cttttt	 tttttc	 ttttt	 tttt	tttg	780 780
WS	781	K S I I F L N TTTTTAAAT	* V >	* K M	I G S	P L	C E	F S H L GCATTT	F F A R GGCTA	_	L C TTGT	840
Col-0	781	 tttttaaatt F L N	taagtgt		TGGGAT	CACCATT						840
WS	841	CTTCAATGT(GATTTGA		ACTCTA	AGAGTAG	TGTAAA 	<u> </u>	11111	1111	1111	900
Col-0	841	CTTCAATGT(L Q C I	J	AAGTTAC K L H		AGAGTAG S S	<mark>TGTAAA</mark> V N	CAATTA N Y	. <mark>CAACT.</mark> N Y	ATTC S	<mark>GCGG</mark> R	900
WS	901	I P L (ATTCCGTTG	rgtaat <i>i</i>		- ~		-	-	L E CCTTG.	Q AACA	G AGGG	960
WS Col-0	901 901	ATTCCGTTG <mark>ATTCCGTTG</mark>	TGTAATA <mark>TGTAAT</mark> A	AATTGCG	TTTCGC TTTCGC	AGACCGC <mark>AGACCGC</mark>	TCTTGT.	AGAATC <mark>AGAATC</mark>	CCTTG.	AAĈA <mark>AACA</mark>	AGGG 	960 960
		ATTCCGTTG	FGTAATA FGTAATA N FGTAATA C N FGCCAA	AATTGCG	TTTCGC	AGACCGC I AGACCGC T A P N ATCCCAA	TCTTGT TCTTGT L V V I TGTAAT	AGAATC <mark>AGAATC</mark> E S	CCTTG. CCTTG. L E F L	AACA <mark>AACA</mark> Q	AGGG <mark>AGGG</mark> G	
Col-0	901	ATTCCGTTG	FGTAATA FGTAATA FGTAATA FGCAATA FGCCAATA	AATTGCG	TTTTCGC. STTTTCGC. STTTTCGC. STTTTCA. STTTTCA.	AGACCGC AGACCGC T A P N ATCCCAA	TCTTGT TCTTGT L V V I TGTAAT	AGAATC AGAATC E S S R CTCGCG	CCTTG. CCTTG. L E F L TTTTC	AACA AACA Q L ITCT	AGGG AGGG G L TCTT	960
Col-0	901	ATTCCGTTG'	TGTAATA TGTAATA TGTAATA TGTAATA TGCCAATA TGCCAATA	AATTGCG AATTGCG C V S C F CCATGCT CCATGCT S C F	TTTCGC. IIIIIII TTTCGC. S Q S N TTTCAA. IIIIIIII TTTCAA. S N TTTCAA.	AGACCGC AGACCGC T A P N ATCCCAA ATCCCAA P N Y N	TCTTGT TCTTGT L V V I TGTAAT TGTAAT V I	AGAATC AGAATC E S S R CTCGCG CTCGCG S R	CCTTG. CCTTG. L E F L TTTTC TTTTC F L	AACA AACA Q L ITCT ITCT L	AGGG AGGG G L TCTT TCTT L	960

WS Col-0	1081	S S S C S S S F I D R N W E F S L G S L TCTTCGTCTTGTTCATCTTCTTTTATCGATCGCAATTGGGAATTTTCCCTTGGTTCCTTA	1140 1140
WS	1141	P L N N E D S S S S F E I L Q I F E D H CCTCTCAATAATGAGGACTCATCATCTTTTGAAATCCTTCAAATATTTGAAGATCAT	1200
Col-0	1141		1200
WS	1201	T K N Y S D Q Q V L T L Q P D Y L D I I ACAAAGAATTATAGTGATCAACAAGTGTTGACGCTTCAGCCCGATTATTTGGACATAATT	1260
Col-0	1201		1260
WS	1261	P K V Y T Y L F L F C * R G V L F I V M CCTAAGGTATATACTTATTTATTTTTTTTTTTTTAAAGAGGGGTTTTGTTCATTGTTATG	1320
Col-0	1261		1320
WS	1321	R Y I C L L N S F H C F L C V T F T Q D AGATATATATGTTTGCTTAACTCGTTCCATTGTTTCCTGTGTGTCACTTTTACGCAGGAT	1380
Col-0	1321		1380
WS	1381	S S C S G F K S Y E T K E D I E N V L M AGTTCATGCTCAGGCTTCAAAAGCTACGAAACTAAAGAAGATATAGAGAATGTTTTGATG	1440
Col-0	1381		1440

WS Col-0	1441 1441	N T F D G A E A A V L D L K Q Y N P E E AACACTTTTGATGGCGCCGAGGCAGTATTAGACCTAAAACAATATAACCCCGAGGAA	1500 1500
WS Col-0	1501 1501	D L I L T E L I D E L A R D N S E T T P GATTTGATCCTCACGGAGCTAATCGATGAATTAGCAAGAGACAATTCAGAGACCACGCCG	1560 1560
001 0	1001	D L I L T E L I D E L A R D N S E T T P T N V N I S F N S V A Y * L S L I M V D	1000
WS	1561	ACCAATGTAAACATCAGCTTTAATTCTGTCGCATATTAATTA	1620
Col-0	1561	ACCAATgtaaacatcagctttaattctgtcgcatattaattatctttaattatggttgac T N V N I S F N S V A Y * L S L I M V D	1620
WS	1621	L F I Y F C F I V * * T L P T S A S G M TTATTTATATTTTTGTTTCATTGTGTAATAGACTTTACCAACTTCAGCATCTGGTATG	1680
Col-0	1621		1680
WS	1681	S S D I H K D Y N T E A L A N A S S Q D TCATCGGATATACATAAAGATTACAACACTGAAGCTTTGGCTAATGCAAGTTCTCAAGAT	1740
Col-0	1681	TCATCGGATATACATAAAGATTACAACACTGAAGCTTTGGCTAATGCAAGTTCTCAAGAT S S D I H K D Y N T E A L A N A S S Q D	1740
WS	1741	Y F I N Q M I G S K A K E E T N D L A I TATTTTATAAACCAAATGATTGGCTCAAAAGCAAAGGAAGAGACCAATGATCTTGCAATA	1800
Col-0	1741	TATTTTATAAACCAAATGATTGGCTCAAAAGCAAAGGAAGAGACCAATGATCTTGCAATA Y F I N Q M I G S K A K E E T N D L A I	1800

WS	1801	L P N A L V Q L D C G Q S Q L I L T D E CTCCCTAACGCTCTTGTTCAACTTGACTGTGGACAATCGCAGTTGATACTTACCGATGAG	1860
Col-0	1801		1860
WS	1861	M L P W E N Q T F V P V K G F S P K D R ATGTTACCATGGGAGAATCAAACATTTGTACCTGTTAAGGGATTTAGTCCGAAAGATCGA	1920
Col-0	1861		1920
WS	1921	E E A K K R Y F E K K K K R K * V L H L GAAGAGGCCAAGAAAGAAGAAGAAGAAGAAGAACGCAAGTAGGTATTACACCTC	1980
Col-0	1921		1980
WS Col-0	1981 1981	I I L I G R * L H A S V Y V L T S S N L ATTATACTTATAGGTAGATAACTCCATGCAAGTGTATACGTACTTACAAGTTCAAATTTA	2040
WS Col-0	2041	* Q C R F G K Q I R Y E S R K S T A D T TAACAATGCAGGTTTGGGAAACAATTAGATATGAATCTCGAAAATCTACAGCAGATACG	2100 2100
WS Col-0	2101	K K R M K G R F T K A G A D Y D Y D P R AAGAAAAGAATGAAAGGAAGATTTACAAAAAGCTGGTGCTGATTATGACTATGACCCACGA	2160 2160

WS Col-0	2161 2161	A N D I N K G K I Q T * A N D N Q A Q L GCTAATGATATTAACAAAGGGAAAATACAAACATGAGCTAATGATAACCAAGCTCAATTG	2220 2220
WS Col-0	2221	* Y P N K E N K K M V A I I Y M M I I I TGATATCCAAATAAGGAAAATAAAAAGATGGTTGCAATAATATATGATGATCATC	2280
WS Col-0	2281 2281	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2340
WS Col-0	2341	F V * L V E I S I S T G C T R L K D C K TTTGTCTGATTGGTCGAGATATCGATATCCACTGGATGCACACGCTTAAAGGACTGCAAA	2400
WS Col-0	2401	G S Q R G Q N D L * F S T I V F * F H S GGTTCACAGAGAGGTCAAAACGATCTCTAGTTCTCTACTATAGTGTTTTGATTCCACTCT	2460
WS Col-0	2461 2461	I D F F P K L F F S F I I Y I Y L F L K ATAGATTTTTTTCCAAAATTATTTTTTTTTTTTTTATTACATTTATTTTTT	2520 2520

WS	2521	G A L L Q L L S N Y F T K N N N * I F R GGAGCTTTATTGCAGTTACTGTCAAATTATTTTACCAAAAACAATAACTAAATTTTTCGG	2580
Col-0	2521		2580
WS	2581	* D S N R K L I R F V * F G F C S V K F TAAGACTCTAACCGAAAGTTAATTCGGTTCGTTTGATTTGGTTTTTGTTCGGTTAAATTT	2640
Col-0	2581		2640
WS	2641	G L V W F L F D R L S F E * V S V G V A GGTTTGGTTTGGTTTGATCGATTAAGTTTTGAATGAGTTTCTGTGGGAGTTGCT	2700
Col-0	2641		2700
WS	2701	S Q R L K P A T W Q V F F L L L K P L S TCTCAAAGACTTAAACCTGCAACTTGGCAAGTTTTTTTTT	2760
Col-0	2701		2760
WS	2761	S S Y S S F K N K C D N N R L V D I Q * TCATCATATAGCTCTTTTAAAAATAAATGTGACAATAATCGATTGGTGGACATACAGTAG	2820
Col-0	2761		2820
WS	2821	N A K K K I A D W R R S K N I * T T S F AATGCTAAGAAAAAATAGCCGATTGGAGAAGAAGCAAGAATATATAAACCACCTCTTTT	2880
Col-0	2821		2880

WS Col-0	2881 2881	A N * R Y V F V M A F * F F L I T S S L GCAAATTAAAGATACGTGTTTGTCATGGCCTTTTAATTTTTCCTAATAACAAGTTCTTTA	2940 2940
WS Col-0	2941 2941	I I S H E T K L N C L R N I L I F P A A ATCATTTCTCACGAAACAAAACTCAACTGTCTTAGAAATATATTAATATTCCCTGCGGCT	3000
WS Col-0	3001	R I L * H C T C * G Q L N L R Y * T L L CGGATCTTGTGACACTGCACATGTTGAGGGCAGCTAAATTTACGTTACTAAACGTTGCTT	3060 3060
WS Col-0	3061	V S S R L N I L V C N K * * L Y M E Y N GTTTCGTCTCGTCTCAATATTTTAGTGTGTAATAAGTAATAACTATATATGGAATATAAT	3120 3120
WS Col-0	3121 3121	I * A F K K P S N N N K * K P S L N W T ATATGAGCATTTAAAAAACCATCGAACAATAATAAAAAACCAAGCCTTAATTGGACA	3180
WS Col-0	3181	S P I * N L T I D Q N K V R N E I * P S AGTCCGATTTAAAATCTTACAATTGACCAAAATAAAGTTAGGAACGAGATCTAGCCATCA	3240 3240

WS	3241	F T K H * I N D L L L S F I I * * L Y H TTTACTAAACATTAAATTAATGATTTACTTTTGTCATTTATTATAATAATTATATCAT	3300
Col-0	3241		3300
WS	3301	H K S S R W S I * Y S L Y K T * H V S C CATAAATCTAGCAGATGGAGTATTTAATACTCGTTATACAAAACATAACATGTATCTTGC	3360
Col-0	3301		3360
WS	3361	I L A N * * P K V E K N S I L L W Q N * ATTCTTGCTAATTAATGACCAAAAGTAGAAAAGAATTCTATATTGTTATGGCAAAATTAA	3420
Col-0	3361		3420
WS	3421	N L K N D L Y C F F L L S K N V S I V N AATTTAAAAAACGATCTCTATTGTTCTTTTTTTTTTTAAGTAAAAATGTCTCTATTGTTAAT	3480
Col-0	3421		3480
WS	3481	K K T R F F V * E F F L L L Y G T K * I AAAAAAA $\frac{1}{2}$ CTCGCTTTTTCGTTTAAGAATTTTTTTTTTTTTTTTTTGTATGGAACTAAGTGAA	3538
Col-0	3481		3540
WS	3539	E N N L T C V E * * I P L P N I * A S P TTGAGAATAATTTGACATGTGTCGAGTAATAGATTCCTTTACCAAATATATAAGCATCTC	3598
Col-0	3541		3600

WS	3599	CAATTAATTAAGATGTACATTACTTTAATTTGAAAAAATACAAAGTACAAGAAACGTATT	3658
Col-0	3601		3660
WS	3659	* Y N L L D S F F I Y A L A S V P N H N ACTAGTATAATTTATTAGACTCCTTCTTTATTTACGCCTTAGCTTCCGTGCCTAATCACA	3718
Col-0	3661		3720
WS	3719	T S Y L H I V * S A L I P Y T K T I F N ATACTAGTTATTTACATATAGTTTAGTCAGCATTAATTCCTTACACTAAAACCATTTTA	3778
Col-0	3721		3780
WS Col-0	3779 3781	M T P L L S L * S T L L X ACATGACTCCATTGCTCTCCTCTGATCAACCCTCCTCC 3820	

Figure S4: Alignment details of OMG1 in WS vs Col-0 Cultivar. Alignment of OMG1 genomic DNA in WS cultivar and Col-0 cultivar shows that sequence is identical in the upstream ATG region and coding region (highlighted in yellow). All differences between the alignments are highlighted in green. A point mutation is observed at position 2197and 3327 along with a 2 basepair deletion in WS observed at position 3488.

Figure S5. Characterization of *OMG1* expression in WT WS and WT Col-0 with qRT-PCR analysis upon wounding experiments. **A)** qRT-PCR shows that *OMG1* expression (normalized to UBQ11) is consistently upregulated immediately after wounding in both WS and Col-0 cultivars and diminishes rapidly. Black bars represent the wild type (WT) WS cultivar and the grey bars represent the WT Col-0 cultivars. **B)** Histochemical GUS stained transgenic *OMG1* 5'flanking region::GUS plants illustrates the wounding dosage experiment done in Fig. S2c . Forceps were used to wound the leaves to create a wounding response of increasing degrees. Scale bars: 100 μm. **C)** The WS and Col-0 cultivar respond to the wounding dosage differently. In Col-0, once wounded OMG1 expression researches a threshold and plateaus regardless of the wounding dosage, whereas in WS OMG1 expression increases with the wounding dosage. All error bars represent the standard error of the mean of triplicate representative experiments.

Figure S6: Time course of the DCF-DA fluorescent ROS assay described in Figure 5. A pipette tip was used to wound the surface of the leaves from the wild-type (WT) line, *omg1* KO line and *rboh D* KO line (a known ROS deficient mutant). Upon wounding, ROS is usually produced around the site of injury. The DCF-DA reagent is then oxidized by ROS resulting in appearance of green fluorescence. Plants were wounded and placed immediately, 10 mins post wounding, or 1 hr post wounding into the DCF-DA solution for 20 minutes before visualized on the light microscope. In the WT plants, green fluorescence around the wound site i was observed at all time points post wounding. Whereas, in the *omg1* KO line, the accumulation of ROS was only seen after 10 mins post wounding. However, in the *rboh D* KO line ROS production was not detected. Images were taken on the Olympus BX51 compound scope at 10x magnification, exposure time 55ms. Scale bars: 100 μm.