$\frac{E \times 3.4}{2.4}$ Let $f \in L_{R}(V)$. Show that the following one equivalent: (i) f is alternating

(ii) $f(...,V_{i},V_{i+1},...) = -f(...,V_{i+1},V_{i},...)$ for each neighbor pair.

(i) => (ii) OK since a neighbour trousposition how soon -1. (ii) => (i) We can write each $C \in S_R$ us a product $T = X_1 \cdot X_n$, whose each X_1 is a neighborser trompust him. $T \cdot f = (Y_1 \cdot Y_n) f = (-1)^n f = Sgn(C) f$.

Ex 3.5 Let $f \in L_{e}(V)$. Show

(i) fix alternating

(ii) $f(V_{1},...,V_{R}) = 0$ whenever $V_{i} = V_{i}$ for some $i \neq j$.

(ii) \Rightarrow (iii) If G = (i,i) $Gf(V_{1},...,V_{R}) = f(V_{1},...,V_{R})$ $-f(V_{1},...,V_{R})$ Sing sgn(G) = -1.

(ii) = (ii)0=f(..., V;+V;+, V;+V;+, 1...) = = f(... V; v; ...) + f(..., V; , V; + 1...) + f(__, Vita, Vi, __] + f(__ Vital Vital) => &(-- V;, V; **, ...) = - &(-.., V; **, V; ...) Conclusion by Ex. 3.4.

Ex. 3. 201 dim V=N, Q: V -> IR non-zero Show dim Kerf= n-1. Know Ykerf & IR and (=dim (Kest) = dim V - dim Kert.

Alternatively: h=dûn Kerf + dlun In f. chose (ii) Given f.g: U -> 12 st. Kerf=Kerg show There exists a Suppose f, g ±0) Choose Cell 2t. Cf(m) = g(m). Evry vector x in

V can be withen x=rw+xv!, where x'e ker(f) = ker(g). Then (f(x)=cf(rw)=crf(w)=+8(w)=g(rw)=g(x) Lou all xev.

product w V