

FCC PART 15.247 TEST REPORT

For

Sierra Monitor Corporation

1991 Tarob Court, Milpitas California 95035, UNITED STATES

Tested Model: FPA-C41 FCC ID: 2AIVJ-FPAC41

Report Type:
Original Report

Report Number:
REC190807001-0B

Date of Report Issue:

2019-12-18

Reviewed By:
Sula Huang

Bay Area Compliance Laboratories Corp. (Chengdu) No.5040, Huilongwan Plaza, No. 1, Shawan Road, Jinniu District, Chengdu, Sichuan, China

Tel: +86-28-65525123 Fax: +86-28-65525125 www.baclcorp.com

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA, or any agency of the Federal Government. BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
MEASUREMENT UNCERTAINTY	
TEST METHODOLOGY TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENTS LIST	13
FCC §15.247 & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	15
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	1
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	22
APPLICABLE STANDARD	
EUT SETUP	22
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	23
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARDTEST PROCEDURE	
TEST PROCEDURE	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	39
Applicable Standard	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	4 1
APPLICABLE STANDARD	
Test Procedure	41
TEST DATA	41

Bay Area Compliance Laboratories Corp. (Chengdu)

FCC §15.247(e) - POWER SPECTRAL DENSITY	46
APPLICABLE STANDARD	46
TEST PROCEDURE	
TEST DATA	47

Report No.: RSC190807001-0B

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Sierra Monitor Corporation
Product	M2M Gateway
Tested Model	FPA-C41
Multiple Models	FPA-C42, FPA-C41-XXXX, FPA-C42-XXXX (where X can be used as "0-9" for application software changes or marketing purposes only. And the difference of application software changes will not affect the power and other RF parameters.)
FCC ID	2AIVJ-FPAC41
Voltage Range	DC 12-24V
Measure approximately	100 mm (L) x 77 mm (W) x 28 mm (H)
Frequency	2.4G WiFi: 2412-2462MHz (802.11b/g/n-HT20) 2422-2452MHz (802.11n-HT40)
Modulation Type:	802.11b: DSSS 802.11g/n: OFDM
Sample serial number	190807001/01 (assigned by the BACL, Chengdu)
Sample/EUT Status	The test sample was in good condition and received: 2019-08-07

Note: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Objective

This report is prepared on behalf of **Sierra Monitor Corporation** in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules.

The tests were performed in order to determine the compliance of the EUT with FCC Part 15-Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DSS submissions with FCC ID: 2AIVJ-FPAC41

Report No.: RSC190807001-0B Page 4 of 53

Measurement Uncertainty

Item			Uncertainty
AC power line conducte	ed emission		2.24 dB
	30MHz-200MHz	Η	4.47 dB
	30101112-200101112	V	4.73 dB
	2001411- 4011-	Н	4.87 dB
Radiated Emission(Field Strength)	200MHz-1GHz	V	5.93 dB
, ,	1GHz-6GHz		4.51 dB
	6GHz-18GHz		4.49 dB
	18GHz-40GHz	<u>z</u>	5.48 dB
Conducted RF P	ower		±0.61dB
Power Spectrum D	Density		±0.61dB
Occupied Bandwidth			±5%
Conducted Emission			±1.5dB
Humidity			±5%
Temperature			±1℃

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the corresponding inclusion factor K when the inclusion probability is about 95%.

Test Methodology

All measurements contained in this report were conducted with:

- 1. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- 2. KDB558074 D01 DTS Meas Guidance v05r02.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Chengdu) to collect test data is located No.5040, Huilongwan Plaza, No. 1, Shawan Road, Jinniu District, Chengdu, Sichuan, China.

Bay Area Compliance Laboratories Corp. (Chengdu) lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4324.01) and the FCC designation No. CN1186 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

Report No.: RSC190807001-0B Page 5 of 53

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured in testing mode, which was provided by manufacturer.

For Wi-Fi mode, 802.11b, 802.11g, and 802.11n-HT20 mode, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	-	-

EUT were tested with Channel 1, 6 and 11.

For 802.11n-HT40 mode, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	7	2442
4	2427	8	2447
5	2432	9	2452
6	2437	-	-

802.11n HT40 was tested with Channel 3, 6 and 9.

Equipment Modifications

No modification was made to the EUT tested.

Report No.: RSC190807001-0B Page 6 of 53

EUT Exercise Software

The worst condition (maximum power with maximum duty cycle) was setting by the software as following table:

Test Mode	Test Software Version	Putty		
	Test Frequency	2412MHz	2437MHz	2462MHz
802.11b	Data Rate	CCK 1M	CCK 1M	CCK 1M
	Power Level	18	18	18
	Test Frequency	2412MHz	2437MHz	2462MHz
802.11g	Data Rate	OFDM 6M	OFDM 6M	OFDM 6M
	Power Level	18	18	18
	Test Frequency	2412MHz	2437MHz	2462MHz
802.11n-	Data Rate	MCS0	MCS0	MCS0
HT20	Power Level	18	18	18
	Test Frequency	2422MHz	2437MHz	2452MHz
802.11n- HT40	Data Rate	MCS0	MCS0	MCS0
H140	Power Level	18	18	18

Duty Cycle information is below:

Mode	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle (%)
802.11b	100	100	100
802.11g	100	100	100
802.11n-HT20	100	100	100
802.11n-HT40	100	100	100

Report No.: RSC190807001-0B Page 7 of 53

802.11n-HT20

802.11n-HT40

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL Laptop		E6410	42159296809
Jiuzhou	Jiuzhou Adapter		Unknown

External I/O Cable

Cable Description	Length (m)	From	То
Unshielded DC Power Cable	1.0	Adapter	EUT
Unshielded RJ45 Cable	10.0	EUT	Laptop
Unshielded RS232 Cable	10.0	EUT	Laptop

Report No.: RSC190807001-0B Page 10 of 53

Block Diagram of Test Setup

Conducted Emissions

Report No.: RSC190807001-0B Page 11 of 53

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 & §1.1310 & §2.1091	MaximuM Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum conducted output power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Report No.: RSC190807001-0B Page 12 of 53

TEST EQUIPMENTS LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
	Conducted Emission					
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2019-04-15	2020-04-14	
ROHDE&SCHWARZ	L.I.S.N.	ENV216	3560.6550.16	2019-02-25	2020-02-24	
EMCO	L.I.S.N.	3810/2BR	9509-1102	NCR	NCR	
HP	RF Limiter	11947A	3107A01270	2018-11-02	2019-11-01	
Unknown	Conducted Cable	L-E003	000003	2019-08-05	2020-08-04	
Rohde & Schwarz	EMC32	EMC32	V 8.52.0	NCR	NCR	
		Radiated Emission	on			
EMCT	Semi-Anechoic Chamber	966	001	2017-05-18	2020-05-17	
SONOMA INSTRUMENT	Amplifier	310 N	186684	2019-09-06	2020-09-05	
SUNOL SCIENCES	Broadband Antenna	JB3	A121808	2017-05-19	2020-05-18	
INMET	Attenuator	18N-6dB	N/A	2018-11-27	2019-11-26	
Rohde & Schwarz	EMI Test Receiver	ESR3	102456	2019-04-15	2020-04-14	
Rohde & Schwarz	Spectrum Analyzer	FSU26	200835	2019-04-15	2020-04-14	
ETS	Horn Antenna	3115	003-6076	2017-05-19	2020-05-18	
A.H. Systems, Inc	Amplifier	PAM-0118P	467	2019-08-30	2020-08-29	
EM Electronics	RF Pre-Amplifier	EM18G40	060725	2019-07-24	2020-07-23	
Rohde & Schwarz	EMI Test Receiver	ESIB 40	100215	2019-04-15	2020-04-14	
A.H. Systems, Inc	Horn Antenna	SAS-574	510	2019-09-02	2021-09-01	
Sinoscite.,Co Ltd	Reject Band Filter	BSF 2402-2480MN	0898-005	2018-11-11	2019-11-10	
MICRO-TRONICS	High Pass Filter	HPM50111	G216	2018-11-11	2019-11-10	
Unknown	RF Cable (Below 1GHz)	L-E005	000005	2019-09-06	2020-09-05	
Unknown	RF Cable (Below 1GHz)	T-E128	000128	2018-11-27	2019-11-26	
MICRO-COAX	Flexible microwave cable	T-E237	233522-001	2019-07-19	2020-07-18	
Unknown	RF Cable (Above 1GHz)	T-E069	000069	2019-07-24	2020-07-23	
Micro-coax	RF Cable (Above 1GHz)	T-E209	MFR 64639 2310	2019-07-19	2020-07-18	
Rohde & Schwarz	EMC32	EMC32	V9.10.00	NCR	NCR	

Report No.: RSC190807001-0B Page 13 of 53

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
RF Conducted Test								
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2019-04-15	2020-04-14			
Agilent	USB power sensor	U2021XA	MY53320008	2019-01-17	2020-01-16			
WEINSCHEL ENGINEERING	Attenuator	1A 10dB	AB1165	2019-08-05	2020-08-04			
E-Microwave	DC Block	EMDCB-00036	OE01304225	2019-08-05	2020-08-04			
Unknown	RF Cable	Unknown	000007	Each Time	Each Time			

Report No.: RSC190807001-0B Page 14 of 53

FCC §15.247 & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)				
0.3–1.34	614	1.63	*(100)	30				
1.34–30	824/f	2.19/f	*(180/f²)	30				
30–300	27.5	0.073	0.2	30				
300–1500	/	/	f/1500	30				
1500–100,000	/	1	1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Per 447498 D01 General RF Exposure Guidance v06, simultaneous transmission MPE test exclusion applies when the sum of the MPE for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modeled or measured field strengths or power density, is ≤ 1.0 .

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = PG/4\pi R^2$$

Where:

S = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \leq 1$$

Page 15 of 53

Report No.: RSC190807001-0B

Calculated Data:

WiFi or Bluetooth + WCDMA/LTE module (FCC ID: RI7LE910NAV2)

MPE evaluation for single transmission:

Mode	Frequency Range	Antenna Gain		Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
WLAN	2412-2462	1.9	1.55	21.0	125.89	20	0.039	1.0
BT 3.0	2402-2480	1.9	1.55	9.5	8.91	20	0.003	1.0
WCDMA Band 5	824-849	2.0	1.58	24.5	281.84	20	0.089	0.55
LTE Band 5	824-849	2.0	1.58	24.0	251.19	20	0.079	0.55
WCDMA Band 2	1850-1910	3.0	2.00	24.5	281.84	20	0.112	1.0
LTE Band 2	1850-1910	3.0	2.00	24.0	251.19	20	0.100	1.0
LTE Band 4	1710-1755	3.0	2.00	24.0	251.19	20	0.100	1.0
LTE Band 12	699-716	2.0	1.58	24.0	251.19	20	0.079	0.47
LTE Band 13	777-787	2.0	1.58	24.0	251.19	20	0.079	0.52
LTE Band 17	704-716	2.0	1.58	24.0	251.19	20	0.079	0.47

MPE evaluation for simultaneous transmission:

Note: 1. Wi-Fi & Bluetooth can't transmit simultaneously.

2. Wi-Fi & WCDMA/LTE or Bluetooth&WCDMA/LTE can transmit simultaneously, MPE evaluation is as below formula:

PD1/Limit1+PD2/Limit2+.....<1, PD (Power Density)

The worst case is as below:

Max MPE of Wi-Fi + Max MPE of LTE = 0.039/1.0+0.079/0.47=0.207<1.0

Result: MPE evaluation of single and simultaneous transmission meet the requirement of standard.

Report No.: RSC190807001-0B Page 16 of 53

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has one 2.4G WIFI/Bluetooth antenna, one LTE main antenna and one LTE diversity antenna, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna	Manufacturer	Model Number	Antenna Gain (Max)	Antenna Connector	Antenna Type
WLAN/ Bluetooth	Dongguan YiJia	GX042S.100001.S01	1.9dBi	IPEX	FPC
LTE Main	Electronics Communication Technology Co.,Ltd. AC-Q7027-YZW 2.0dBi (698-960MHz) 3.0 dBi (1710-2700MHz)		SMA(Male)	Monopole	
LTE Diversity	recimology co.,Lta.	AC-Q7027-YZW	2.0 dBi (698-960MHz) 3.0 dBi (1710-2700MHz)	SMA(Male)	Monopole

Result: Compliance.

Report No.: RSC190807001-0B Page 17 of 53

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the lea

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: RSC190807001-0B Page 18 of 53

Test Procedure

During the conducted emission test, the adapter was connected to the first L.I.S.N.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

 $C_f = A_C + VDF$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude

A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Test Environment Conditions

Temperature:	25 °C
Relative Humidity:	57 %
ATM Pressure:	95.2 kPa

The testing was performed by Eric Xiao on 2019-09-24.

Test Mode: Transmitting (802.11b-Low channel)-Worst case

Report No.: RSC190807001-0B

Line:

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	46.4	200.0	9.000	L1	19.6	19.6	66.0
0.204199	39.6	200.0	9.000	L1	19.6	23.8	63.4
0.401705	42.0	200.0	9.000	L1	19.6	15.8	57.8
0.536077	28.2	200.0	9.000	L1	19.6	27.8	56.0
1.119461	28.0	200.0	9.000	L1	19.6	28.0	56.0
1.421419	26.7	200.0	9.000	L1	19.6	29.3	56.0

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.322729	26.5	200.0	9.000	L1	19.6	23.1	49.6
0.405722	35.5	200.0	9.000	L1	19.6	12.2	47.7
0.434989	23.9	200.0	9.000	L1	19.6	23.3	47.2
1.119461	23.1	200.0	9.000	L1	19.6	22.9	46.0
22.823661	26.0	200.0	9.000	L1	20.3	24.0	50.0
24.961902	27.8	200.0	9.000	L1	20.4	22.2	50.0

Report No.: RSC190807001-0B

Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.151500	47.8	200.0	9.000	N	19.6	18.1	65.9
0.200176	41.5	200.0	9.000	N	19.6	22.1	63.6
0.275230	34.8	200.0	9.000	N	19.6	26.2	61.0
0.393790	40.2	200.0	9.000	N	19.6	17.8	58.0
0.466367	25.5	200.0	9.000	N	19.6	31.1	56.6
1.379615	24.6	200.0	9.000	N	19.6	31.4	56.0

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.151500	29.7	200.0	9.000	N	19.6	26.2	55.9
0.405722	29.8	200.0	9.000	N	19.6	17.9	47.7
0.515160	19.7	200.0	9.000	N	19.6	26.3	46.0
1.130656	20.8	200.0	9.000	N	19.7	25.2	46.0
22.823661	24.1	200.0	9.000	N	20.4	25.9	50.0
24.961902	25.8	200.0	9.000	N	20.5	24.2	50.0

Note:

- 1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation The corrected factor has been input into the transducer of the test software.
- 2) Corrected Amplitude = Reading + Correction Factor3) Margin = Limit Corrected Amplitude

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

Report No.: RSC190807001-0B Page 22 of 53

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz-1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1GHz	1MHz	3 MHz	/	PK
ADOVE TOTIZ	1MHz	3 MHz	/	AV

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Data

Test Environment Conditions

Temperature:	26 °C
Relative Humidity:	52 %
ATM Pressure:	95.1 kPa

The testing was performed by Eric Xiao on 2019-09-25

Test Mode: Transmitting

Report No.: RSC190807001-0B Page 23 of 53

1) 30 MHz to 1 GHz

802.11b-Low channel - Worst Case

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
46.684000	22.83	40.00	17.17	200.0	120.000	107.0	V	89.0	-14.8
62.786000	26.28	40.00	13.72	200.0	120.000	109.0	V	163.0	-17.1
143.296000	28.74	43.50	14.76	200.0	120.000	142.0	V	264.0	-10.5
335.938000	28.01	46.00	17.99	200.0	120.000	104.0	Н	173.0	-9.7
338.654000	25.81	46.00	20.19	200.0	120.000	110.0	Н	238.0	-9.6
392.586000	32.11	46.00	13.89	200.0	120.000	105.0	Н	263.0	-8.7

Report No.: RSC190807001-0B Page 24 of 53

2) Above 1GHz

802.11b Mode

	Receiver		Rx Ar	ntenna	Cable Amplifier		Corrected	1 ! !1	M =!
Frequency	Reading	Measurement	Polar	Factor	loss	Gain	Amplitude	Limit	Margin
MHz	dΒμV	PK/AV	H/V	dB(1/m)	dB	dB	dBμV/m	dBµV/m	dB
			Fr	equency: 2	412 MHz				
2412	78.57	PK	Н	28.74	3.55	0.00	110.86	N/A	N/A
2412	74.06	AV	Н	28.74	3.55	0.00	106.35	N/A	N/A
2412	72.03	PK	V	28.74	3.55	0.00	104.32	N/A	N/A
2412	67.41	AV	V	28.74	3.55	0.00	99.70	N/A	N/A
2390	27.77	PK	Н	28.67	3.54	0.00	59.98	74.00	14.02
2390	17.87	AV	Н	28.67	3.54	0.00	50.08	54.00	3.92
4824	60.14	PK	Н	33.91	5.06	44.72	54.39	74.00	19.61
4824	48.83	AV	Н	33.91	5.06	44.72	43.08	54.00	10.92
7236	45.36	PK	Н	36.43	6.44	44.00	44.23	74.00	29.77
7236	32.37	AV	Н	36.43	6.44	44.00	31.24	54.00	22.76
9648	54.72	PK	Н	38.04	7.41	44.61	55.56	74.00	18.44
9648	45.23	AV	Н	38.04	7.41	44.61	46.07	54.00	7.93
			Fr	equency: 2	437 MHz				
2437	77.98	PK	Н	28.81	3.57	0.00	110.36	N/A	N/A
2437	73.95	AV	Н	28.81	3.57	0.00	106.33	N/A	N/A
2437	71.98	PK	V	28.81	3.57	0.00	104.36	N/A	N/A
2437	67.41	AV	V	28.81	3.57	0.00	99.79	N/A	N/A
4874	60.02	PK	Н	34.05	5.09	44.72	54.44	74.00	19.56
4874	48.94	AV	Н	34.05	5.09	44.72	43.36	54.00	10.64
7311	45.82	PK	Н	36.54	6.48	44.20	44.64	74.00	29.36
7311	32.57	AV	Н	36.54	6.48	44.20	31.39	54.00	22.61
9748	53.96	PK	Н	38.20	7.44	44.51	55.09	74.00	18.91
9748	44.92	AV	Н	38.20	7.44	44.51	46.05	54.00	7.95
			Fr	equency: 2	462 MHz				
2462	78.14	PK	Н	28.89	3.59	0.00	110.62	N/A	N/A
2462	74.13	AV	Н	28.89	3.59	0.00	106.61	N/A	N/A
2462	72.55	PK	V	28.89	3.59	0.00	105.03	N/A	N/A
2462	68.01	AV	V	28.89	3.59	0.00	100.49	N/A	N/A
2483.5	28.56	PK	Н	28.95	3.61	0.00	61.12	74.00	12.88
2483.5	17.61	AV	Н	28.95	3.61	0.00	50.17	54.00	3.83
4924	60.67	PK	Н	34.19	5.12	44.71	55.27	74.00	18.73
4924	48.63	AV	Н	34.19	5.12	44.71	43.23	54.00	10.77
7386	46.68	PK	Н	36.64	6.52	44.40	45.44	74.00	28.56
7386	33.27	AV	Н	36.64	6.52	44.40	32.03	54.00	21.97
9848	53.64	PK	Н	38.36	7.48	44.41	55.07	74.00	18.93
9848	44.18	AV	Н	38.36	7.48	44.41	45.61	54.00	8.39

Report No.: RSC190807001-0B Page 25 of 53

802.11g Mode

802.11g		eceiver	Rx Ar	ntenna	Cable	Amplifier	Corrected		
Frequency	Reading	Measurement	Polar	Factor	loss	Gain	Amplitude	Limit	Margin
MHz	dΒμV	PK/AV	H/V	dB(1/m)	dB	dB	dBµV/m	dBµV/m	dB
	•		Fred	uency: 241	2 MHz				
2412	73.87	PK	Н	28.74	3.55	0.00	106.16	N/A	N/A
2412	64.41	AV	Н	28.74	3.55	0.00	96.70	N/A	N/A
2412	67.51	PK	V	28.74	3.55	0.00	99.80	N/A	N/A
2412	57.99	AV	V	28.74	3.55	0.00	90.28	N/A	N/A
2390	30.25	PK	Н	28.67	3.54	0.00	62.46	74.00	11.54
2390	17.66	AV	Н	28.67	3.54	0.00	49.87	54.00	4.13
4824	53.37	PK	Н	33.91	5.06	44.72	47.62	74.00	26.38
4824	39.04	AV	Н	33.91	5.06	44.72	33.29	54.00	20.71
7236	44.96	PK	Н	36.43	6.44	44.00	43.83	74.00	30.17
7236	32.53	AV	Н	36.43	6.44	44.00	31.40	54.00	22.60
9648	46.74	PK	Н	38.04	7.41	44.61	47.58	74.00	26.42
9648	33.25	AV	Н	38.04	7.41	44.61	34.09	54.00	19.91
			Fred	quency: 243	7 MHz				
2437	73.49	PK	Н	28.81	3.57	0.00	105.87	N/A	N/A
2437	63.28	AV	Н	28.81	3.57	0.00	95.66	N/A	N/A
2437	66.45	PK	V	28.81	3.57	0.00	98.83	N/A	N/A
2437	57.29	AV	V	28.81	3.57	0.00	89.67	N/A	N/A
4874	52.64	PK	Н	34.05	5.09	44.72	47.06	74.00	26.94
4874	38.18	AV	Н	34.05	5.09	44.72	32.60	54.00	21.40
7311	45.28	PK	Н	36.54	6.48	44.20	44.10	74.00	29.90
7311	32.42	AV	Н	36.54	6.48	44.20	31.24	54.00	22.76
9748	46.09	PK	Н	38.20	7.44	44.51	47.22	74.00	26.78
9748	32.83	AV	Н	38.20	7.44	44.51	33.96	54.00	20.04
			Fred	quency: 246	2 MHz				
2462	73.52	PK	Н	28.89	3.59	0.00	106.00	N/A	N/A
2462	62.84	AV	Н	28.89	3.59	0.00	95.32	N/A	N/A
2462	66.32	PK	V	28.89	3.59	0.00	98.80	N/A	N/A
2462	56.75	AV	V	28.89	3.59	0.00	89.23	N/A	N/A
2483.5	29.84	PK	Н	28.95	3.61	0.00	62.40	74.00	11.60
2483.5	17.31	AV	Н	28.95	3.61	0.00	49.87	54.00	4.13
4924	51.94	PK	Н	34.19	5.12	44.71	46.54	74.00	27.46
4924	37.67	AV	Н	34.19	5.12	44.71	32.27	54.00	21.73
7386	46.24	PK	Н	36.64	6.52	44.40	45.00	74.00	29.00
7386	33.07	AV	Н	36.64	6.52	44.40	31.83	54.00	22.17
9848	46.07	PK	Н	38.36	7.48	44.41	47.50	74.00	26.50
9848	33.15	AV	Н	38.36	7.48	44.41	34.58	54.00	19.42

Report No.: RSC190807001-0B Page 26 of 53

802.11n-HT20 Mode

	n-H I ∠U IVIC	eceiver	Rx Ar	ntenna	Cable	Amplifier	Corrected		Morgin
Frequency	Reading	Measurement	Polar	Factor	loss	Gain	Amplitude	Limit	Margin
MHz	dΒμV	PK/AV	H/V	dB(1/m)	dB	dB	dBμV/m	dΒμV/m	dB
			Frequ	ency: 2412	MHz				
2412	74.04	PK	Н	28.74	3.55	0.00	106.33	N/A	N/A
2412	64.24	AV	Н	28.74	3.55	0.00	96.53	N/A	N/A
2412	67.93	PK	V	28.74	3.55	0.00	100.22	N/A	N/A
2412	58.24	AV	V	28.74	3.55	0.00	90.53	N/A	N/A
2390	28.82	PK	Н	28.67	3.54	0.00	61.03	74.00	12.97
2390	16.35	AV	Н	28.67	3.54	0.00	48.56	54.00	5.44
4824	53.73	PK	Н	33.91	5.06	44.72	47.98	74.00	26.02
4824	39.38	AV	Н	33.91	5.06	44.72	33.63	54.00	20.37
7236	45.08	PK	Н	36.43	6.44	44.00	43.95	74.00	30.05
7236	32.56	AV	Н	36.43	6.44	44.00	31.43	54.00	22.57
9648	47.10	PK	Н	38.04	7.41	44.61	47.94	74.00	26.06
9648	33.42	AV	Н	38.04	7.41	44.61	34.26	54.00	19.74
			Frequ	ency: 2437	MHz		,		
2437	73.77	PK	Н	28.81	3.57	0.00	106.15	N/A	N/A
2437	63.67	AV	Н	28.81	3.57	0.00	96.05	N/A	N/A
2437	67.61	PK	V	28.81	3.57	0.00	99.99	N/A	N/A
2437	57.89	AV	V	28.81	3.57	0.00	90.27	N/A	N/A
4874	53.43	PK	Н	34.05	5.09	44.72	47.85	74.00	26.15
4874	38.62	AV	Н	34.05	5.09	44.72	33.04	54.00	20.96
7311	46.15	PK	Н	36.54	6.48	44.20	44.97	74.00	29.03
7311	33.08	AV	Н	36.54	6.48	44.20	31.90	54.00	22.10
9748	47.33	PK	Н	38.20	7.44	44.51	48.46	74.00	25.54
9748	33.54	AV	Н	38.20	7.44	44.51	34.67	54.00	19.33
			Frequ	ency: 2462	MHz				
2462	73.08	PK	Н	28.89	3.59	0.00	105.56	N/A	N/A
2462	62.87	AV	Н	28.89	3.59	0.00	95.35	N/A	N/A
2462	67.11	PK	V	28.89	3.59	0.00	99.59	N/A	N/A
2462	57.41	AV	V	28.89	3.59	0.00	89.89	N/A	N/A
2483.5	29.63	PK	Н	28.95	3.61	0.00	62.19	74.00	11.81
2483.5	17.21	AV	Н	28.95	3.61	0.00	49.77	54.00	4.23
4924	52.36	PK	Н	34.19	5.12	44.71	46.96	74.00	27.04
4924	37.80	AV	Н	34.19	5.12	44.71	32.40	54.00	21.60
7386	46.72	PK	Н	36.64	6.52	44.40	45.48	74.00	28.52
7386	33.52	AV	Н	36.64	6.52	44.40	32.28	54.00	21.72
9848	46.20	PK	Н	38.36	7.48	44.41	47.63	74.00	26.37
9848	33.64	AV	Н	38.36	7.48	44.41	35.07	54.00	18.93

Report No.: RSC190807001-0B Page 27 of 53

802.11n-HT40 Mode

Eroguenes	Receiver		Rx Ar	Antenna C		Amplifier	Corrected	Limelt	Manain
Frequency	Reading	Measurement	Polar	Factor	loss	Gain	Amplitude	Limit	Margin
MHz	dΒμV	PK/AV	H/V	dB(1/m)	dB	dB	dBµV/m	dBμV/m	dB
			Freq	uency: 242	2 MHz				
2422	71.84	PK	Н	28.77	3.56	0.00	104.17	N/A	N/A
2422	62.26	AV	Н	28.77	3.56	0.00	94.59	N/A	N/A
2422	65.61	PK	V	28.77	3.56	0.00	97.94	N/A	N/A
2422	55.79	AV	V	28.77	3.56	0.00	88.12	N/A	N/A
2390	31.91	PK	Н	28.67	3.54	0.00	64.12	74.00	9.88
2390	19.45	AV	Н	28.67	3.54	0.00	51.66	54.00	2.34
4844	53.44	PK	Н	33.96	5.07	44.72	47.75	74.00	26.25
4844	39.38	AV	Н	33.96	5.07	44.72	33.69	54.00	20.31
7266	45.05	PK	Н	36.47	6.46	44.08	43.90	74.00	30.10
7266	32.26	AV	Н	36.47	6.46	44.08	31.11	54.00	22.89
9688	46.75	PK	Н	38.10	7.42	44.57	47.70	74.00	26.30
9688	33.11	AV	Н	38.10	7.42	44.57	34.06	54.00	19.94
			Freq	uency: 243	7 MHz				
2437	71.63	PK	Н	28.81	3.57	0.00	104.01	N/A	N/A
2437	61.40	AV	Н	28.81	3.57	0.00	93.78	N/A	N/A
2437	64.92	PK	V	28.81	3.57	0.00	97.30	N/A	N/A
2437	55.27	AV	V	28.81	3.57	0.00	87.65	N/A	N/A
4874	52.78	PK	Н	34.05	5.09	44.72	47.20	74.00	26.80
4874	38.55	AV	Н	34.05	5.09	44.72	32.97	54.00	21.03
7311	45.81	PK	Н	36.54	6.48	44.20	44.63	74.00	29.37
7311	33.06	AV	Н	36.54	6.48	44.20	31.88	54.00	22.12
9748	46.60	PK	Н	38.20	7.44	44.51	47.73	74.00	26.27
9748	33.36	AV	Н	38.20	7.44	44.51	34.49	54.00	19.51
			Freq	uency: 245	2 MHz				
2452	71.05	PK	Н	28.86	3.58	0.00	103.49	N/A	N/A
2452	60.34	AV	Н	28.86	3.58	0.00	92.78	N/A	N/A
2452	64.02	PK	V	28.86	3.58	0.00	96.46	N/A	N/A
2452	54.45	AV	V	28.86	3.58	0.00	86.89	N/A	N/A
2483.5	30.01	PK	Н	28.95	3.61	0.00	62.57	74.00	11.43
2483.5	17.77	AV	Н	28.95	3.61	0.00	50.33	54.00	3.67
4904	51.85	PK	Н	34.13	5.10	44.71	46.37	74.00	27.63
4904	37.46	AV	Н	34.13	5.10	44.71	31.98	54.00	22.02
7356	46.44	PK	Н	36.60	6.51	44.32	45.23	74.00	28.77
7356	33.48	AV	Н	36.60	6.51	44.32	32.27	54.00	21.73
9808	45.92	PK	Н	38.29	7.47	44.45	47.23	74.00	26.77
9808	33.14	AV	Н	38.29	7.47	44.45	34.45	54.00	19.55

Report No.: RSC190807001-0B Page 28 of 53

Please refer to the below pre-scan plot of worst case:

802.11b Mode: Low Channel_Horizontal_1GHz-18GHz

802.11b Mode: Low Channel _Vertical_1GHz-18GHz

Report No.: RSC190807001-0B Page 29 of 53

802.11b Mode: Low Channel_Horizontal_18GHz-25GHz

802.11b Mode: Low Channel_Vertical_18GHz-25GHz

Report No.: RSC190807001-0B Page 30 of 53

FCC §15.247(a) (2) - 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3×RBW
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Report No.: RSC190807001-0B Page 31 of 53

Test Data

Environmental Conditions

Temperature:	30 °C
Relative Humidity:	52 %
ATM Pressure:	95.1 kPa

The testing was performed by Eric Xiao on 2019-08-08.

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plots.

Mode	Channel	Frequency (MHz)	6dB Emission Bandwidth (MHz)	Limit (MHz)
	Low	2412	10.10	≥0.50
802.11b	Middle	2437	10.02	≥0.50
	High	2462	10.10	≥0.50
	Low	2412	16.67	≥0.50
802.11g	Middle	2437	16.67	≥0.50
	High	2462	16.67	≥0.50
	Low	2412	17.88	≥0.50
802.11n-HT20	Middle	2437	17.88	≥0.50
	High	2462	17.80	≥0.50
	Low	2422	36.71	≥0.50
802.11n-HT40	Middle	2437	36.71	≥0.50
	High	2452	37.84	≥0.50

Report No.: RSC190807001-0B Page 32 of 53

Wi-Fi mode, 802.11b Low Channel

Wi-Fi mode, 802.11b Middle Channel

Wi-Fi mode, 802.11g Middle Channel

Wi-Fi mode, 802.11g High Channel

Wi-Fi mode, 802.11n-HT20 Low Channel

Wi-Fi mode, 802.11n-HT20 Middle Channel

Wi-Fi mode, 802.11n-HT40 Low Channel

Report No.: RSC190807001-0B

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
- 3. Add a correction factor to the display.

Report No.: RSC190807001-0B Page 39 of 53

Test Data

Environmental Conditions

Temperature:	30 °C
Relative Humidity:	52 %
ATM Pressure:	95.1 kPa

The testing was performed by Eric Xiao on 2019-08-08.

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table.

Mode	Channel	Frequency (MHz)	Max Peak Conducted Output Power (dBm)	Max Average Conducted Output Power (dBm)	Limit (dBm)
	Low	2412	20.61	17.36	30
802.11b	Middle	2437	20.35	17.06	30
	High	2462	20.60	17.40	30
802.11g	Low	2412	19.42	11.25	30
	Middle	2437	20.06	11.87	30
	High	2462	19.92	11.75	30
802.11n-HT20	Low	2412	19.79	11.27	30
	Middle	2437	20.42	11.86	30
	High	2462	20.61	12.09	30
802.11n-HT40	Low	2422	19.60	11.40	30
	Middle	2437	19.94	11.74	30
	High	2452	20.17	11.94	30

Report No.: RSC190807001-0B Page 40 of 53

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	30 °C	
Relative Humidity:	52 %	
ATM Pressure:	95.1 kPa	

The testing was performed by Eric Xiao on 2019-08-08.

Test mode: Transmitting

Test Result: Compliance. Please refer to following plots.

Report No.: RSC190807001-0B Page 41 of 53

802.11b: Band Edge, Left Side

802.11g: Band Edge, Left Side

802.11n-HT20 Band Edge, Left Side

802.11n-HT40 Band Edge, Left Side

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW ≥ 3×RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Report No.: RSC190807001-0B Page 46 of 53

Test Data

Environmental Conditions

Temperature:	30 °C
Relative Humidity:	52 %
ATM Pressure:	95.1 kPa

The testing was performed by Eric Xiao on 2019-08-08.

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plots

Mode	Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
	Low	2412	-11.24	≪8
802.11b	Middle	2437	-11.34	≪8
	High	2462	-10.64	≪8
802.11g	Low	2412	-16.51	≪8
	Middle	2437	-15.86	≪8
	High	2462	-16.38	≪8
802.11n-HT20	Low	2412	-16.02	≤8
	Middle	2437	-15.41	≪8
	High	2462	-14.99	≪8
802.11n-HT40	Low	2422	-16.99	≤8
	Middle	2437	-17.20	≤8
	High	2452	-16.77	≪8

Report No.: RSC190807001-0B Page 47 of 53

Power Spectral Density, 802.11b Low Channel

Power Spectral Density, 802.11b Middle Channel

Power Spectral Density, 802.11b High Channel

Power Spectral Density, 802.11g Low Channel

Power Spectral Density, 802.11g Middle Channel

Power Spectral Density, 802.11g High Channel

Power Spectral Density, 802.11n-HT20 Low Channel

Power Spectral Density, 802.11n-HT20 Middle Channel

Power Spectral Density, 802.11n-HT20 High Channel

Power Spectral Density, 802.11n-HT40 Low Channel

Report No.: RSC190807001-0B Page 52 of 53

Power Spectral Density, 802.11n-HT40 Middle Channel

Power Spectral Density, 802.11n-HT40 High Channel

END OF REPORT

Report No.: RSC190807001-0B Page 53 of 53