Computer Systems I

Class 2

Why UNIX instead of Windows?

- UNIX is actually simpler
- It lets us get closer to the bits more easily
- But everything we are learning transfers to other environments.

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

■ A&B = 1 when both A=1 and

&	0	1
0	0	0
1	0	1

Not

■ ~A = 1 when A=0

Or

■ A|B = 1 when either A=1 or

Exclusive-Or (Xor)

A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

Boolean Algebra ≈ Integer Ring

Commutativity

$$A \mid B = B \mid A$$

 $A \& B = B \& A$

Associativity

$$(A \mid B) \mid C = A \mid (B \mid C)$$
 $(A + B) + C = A + (B + C)$ $(A & B) & C = A & (B & C)$ $(A * B) * C = A * (B * C)$

Product distributes over sum

$$A \& (B | C) = (A \& B) | (A \& C)$$
 $A * (B + C) = A * B + B * C$

Sum and product identities

$$A \mid 0 = A$$
$$A \otimes 1 = A$$

Zero is product annihilator

$$A \& 0 = 0$$

Cancellation of negation

$$\sim$$
 (\sim A) = A

$$A + B = B + A$$

$$A * B = B * A$$

$$(A + B) + C = A + (B + C)$$

$$(A * B) * C = A * (B * C)$$

$$A * (B + C) = A * B + B * C$$

$$A + O = A$$

$$A * 1 = A$$

$$A * 0 = 0$$

$$-(-A) = A$$

Boolean Algebra ≠ Integer Ring

Boolean: Sum distributes over product

$$A \mid (B \& C) = (A \mid B) \& (A \mid C)$$
 $A + (B * C) \neq (A + B) * (B + C)$

$$A + (B * C) \neq (A + B) * (B + C)$$

■ Boolean: *Idempotency*

$$A \mid A = A$$

$$A + A \neq A$$

• "A is true" or "A is true" = "A is true"

$$A \& A = A$$

$$A * A \neq A$$

Boolean: Absorption

$$A \mid (A \& B) = A$$

$$A + (A * B) \neq A$$

• "A is true" or "A is true and B is true" = "A is true"

$$A \& (A \mid B) = A$$

$$A * (A + B) \neq A$$

Boolean: Laws of Complements

$$A \mid ^{\sim}A = 1$$

$$A + -A \neq 1$$

- "A is true" or "A is false"
- Ring: Every element has additive inverse

$$A \mid ^{\sim}A \neq 0$$

$$A + -A = 0$$

Boolean Ring

Properties of & and ^

- ⟨{0,1}, ^, &, *I*, 0, 1⟩
- Identical to integers mod 2
- I is identity operation: I(A) = A $A \wedge A = 0$

Property

- Commutative sum
- Commutative product A & B = B & A
- Associative sum
- Associative product
- Prod. over sum
- 0 is sum identity
- 1 is prod. identity
- 0 is product annihilator
- Additive inverse

Boolean Ring

$$A \wedge B = B \wedge A$$

$$A \& B = B \& A$$

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \& B) \& C = A \& (B \& C)$$

$$A \& (B \land C) = (A \& B) \land (B \& C)$$

$$A \wedge O = A$$

$$A \& 1 = A$$

$$A \& 0 = 0$$

$$A \wedge A = 0$$

Relations Between Operations

DeMorgan's Laws

- Express & in terms of |, and vice-versa
 - $A \& B = ^{(\sim}A | ^{\sim}B)$
 - A and B are true if and only if neither A nor B is false
 - $A \mid B = ^{(A \& ^{B})}$
 - A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or

- A ^ B = (~A & B) | (A & ~B)
 - Exactly one of A and B is true
- $A \wedge B = (A \mid B) \& \sim (A \& B)$
 - A or B is true, but not both

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

2

```
01101001 01101001 01101001

& 01010101 01010101 01010101 ~ 01010101

01000001 01111101 00111100 10101010
```

All of the Properties of Boolean Algebra Apply

Representing & Manipulating Sets

Representation

■ Width w bit vector represents subsets of {0, ..., w-1}

```
■ a_j = 1 if j \in A

01101001 {0,3,5,6}

76543210 {0,2,4,6}

76543210
```

Operations

&	Intersection	01000001 {0,6}
•	Union	01111101 { 0, 2, 3, 4, 5, 6 }
■ ∧	Symmetric difference	00111100 { 2, 3, 4, 5 }
■ ~	Complement	10101010 { 1, 3, 5, 7 }

Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41
 ~0x00
 0x69 & 0x55
- 0x69 | 0x55

Contrast: Logic Operations in C

Contrast to Logical Operators

- **&**&, | |,!
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 --> 0x00
- !0x00 --> 0x01
- !!0x41 --> 0x01
- 0x69 && 0x55 --> 0x01
- $-0x69 \mid 0x55 --> 0x01$
- p && *p (avoids null pointer access)

Shift Operations

Left Shift: x << y</p>

- Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right

4 Right Shift: $x \gg y$

- Shift bit-vector x right y positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0's on left
- Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two's complement integer representation

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010	
<< 3	00010 <i>000</i>	
Log. >> 2	00101000	
Arith. >> 2	11101000	

Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse

$$A \wedge A = 0$$

```
int x = ...
int y = ...
x = x ^ y;  /* #1 */
y = x ^ y;  /* #2 */
x = x ^ y;  /* #3 */
}
```

	х	У	
Begin	A	В	
1	A^B	В	
2	A^B	$(A^B)^B = A$	
3	$(A^B)^A = B$	A	
End	В	A	

Main Points

It's All About Bits & Bytes

- Numbers
- Programs
- Text

Different Machines Follow Different Conventions

- Word size
- Byte ordering
- Representations

Boolean Algebra is Mathematical Basis

- Basic form encodes "false" as 0, "true" as 1
- General form like bit-level operations in C
 - Good for representing & manipulating sets

Lab Hints

When you want to work with some of the bits of the word:

- Use & and mask to turn some bits off (ex. set most significant bit to0)
- use | and mask to turn some bits on (ex. set bit in position 2 to 1)
- Use rotation to get the bits you want where you want (often at the least significant position). (ex. what bit is in position 4?)
- Exercise: Set the least significant byte of x to 0x12.

If you are not sure where to begin with a function

- Imagine the function works on single bits (Booleans) instead of words
- Draw the table for the function and pick out the true answers
- Exercise: majority function on 3 inputs.

Integers (Sections 2.2 and 2.3)

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Sign

Bit

Encoding Integers

Unsigned
$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

short int
$$x = 15213;$$

short int $y = -15213;$

C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

-				-
Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
		`		

Sum 15213 -15213

Numeric Ranges

Unsigned Values

- *UMin* = 0 000...0
- $UMax = 2^w 1$ 111...1

4 Two's Complement Values

- $TMin = -2^{w-1}$ 100...0
- $TMax = 2^{w-1} 1$ 011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 111111111	
TMin	-32768	80 00	10000000 000000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- \blacksquare | TMin | = TMax + 1
 - Asymmetric range
- \blacksquare UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	- 3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

♣ ⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Mapping Between Signed & Unsigned

Mappings been unsigned and two's complement numbers: keep bit representations and reinterpret

Mapping Signed ← **Unsigned**

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
- 5
-4
-3
-2
-1

Mapping Signed ← **Unsigned**

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Relation between Signed & Unsigned

Maintain Same Bit Pattern

Large negative weight becomes

Large positive weight

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

Conversion Visualized

Conversion visualize

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

```
OU, 4294967259U
```

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```

Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Malicious Usage /* Declaration of library function memcpy */

```
void *memcpy(void *dest, void *src, size t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user dest, int maxlen) {
   /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
   memcpy(user dest, kbuf, len);
   return len;
```

```
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
```

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Integers:

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

Sign Extension Example

```
short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;
```

	Decimal	Нех	Binary
х	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

Truncating (e.g., unsigned to unsigned short)

- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small numbers yields expected behaviour

Integers:

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Negation: Complement & Increment

Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

Complete Proof?

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex	Binary		
x	15213	3B 6D	00111011 01101101		
~x	-15214	C4 92	11000100 10010010		
~x+1	-15213	C4 93	11000100 10010011		

$$x = 0$$

	Decimal	Hex	Binary		
0	0	00 00	00000000 00000000		
~0	-1	FF FF	11111111 11111111		
~0+1	0	00 00	0000000 00000000		

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Standard Addition Function

Ignores carry output

Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^w$
- At most once

Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \leq \mathsf{UAdd}_{w}(u, v) \leq 2^{w} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

• 0 is additive identity

$$UAdd_{w}(u,0) = u$$

- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Characterizing TAdd

Functionality

- True sum requires *w*+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Mathematical Properties of TAdd

Isomorphic Group to unsigneds with UAdd

- $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

Two's Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

Multiplication

Lesson 1 Computing Exact Product of *w*-bit numbers *x*, *y*

Either signed or unsigned

Ranges

- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2*w*–1 bits
- Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for $(TMin_w)^2$ (because of sign bit)

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Discard w bits: w bits

Standard Multiplication Function

Ignores high order w bits

Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Code Security Example #2

SUN XDR library

Widely used library for transferring data between machines

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```


malloc(ele_cnt * ele_size)

XDR Code

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     * /
   void *result = malloc(ele_cnt * ele_size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
   void *next = result;
    int i;
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele_src[i], ele_size);
       /* Move pointer to next memory region */
       next += ele size;
   return result;
```

XDR Vulnerability

malloc(ele_cnt * ele_size)

What if:

```
• ele_cnt = 2<sup>20</sup> + 1
• ele_size = 4096 = 2<sup>12</sup>
```

• Allocation = ??
$$2^{32} + 2^{12} = 4096$$

4 How can I make this function secure?

Signed Multiplication in C

Discard w bits: w bits

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

k

• • •

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

 \mathcal{U}

Examples

- u << 3 ==
- u << 5 u << 3 u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

C compiler automatically generates shift/add code when multiplying by constant

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
- Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $\mathbf{x} \gg \mathbf{k}$ gives $\lfloor \mathbf{x} / 2^k \rfloor$
- Uses arithmetic shift
- Rounds wrong direction when x < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	11111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil \mathbf{x} / \mathbf{2}^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - $\ln C: (x + (1 << k) 1) >> k$
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
testl %eax, %eax
  js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```

Explanation

```
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```

Uses arithmetic shift for int For Java Users

Arith. shift written as >>

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

Casting between unsigned and signed ints does not change the bits, only the interpretation.

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Integers:

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative and associative
 - Multiplication is commutative and associative
 - Multiplication distributes over addtion

```
UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))
```

Properties of Two's Comp. Arithmetic

Comparison to (Mathematical) Integer Arithmetic

- Addition and Multiplication are commutative and associative for both
- Integers obey ordering properties, e.g.,

$$u > 0$$
 $\Rightarrow u + v > v$
 $u > 0, v > 0$ $\Rightarrow u \cdot v > 0$

These properties are not obeyed by two's comp. arithmetic

```
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words)
```

Why Should I Use Unsigned?

- Don't Use Just Because Number Nonnegative
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . . .
```

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Interested In The Bit Pattern.

Integer C Puzzles

Initialization

•
$$x < 0$$
 $\Rightarrow ((x^*2) < 0)$

•
$$ux >= 0$$

•
$$x \& 7 == 7$$
 $\Rightarrow (x << 30) < 0$

•
$$x * x >= 0$$

•
$$x > 0 \&\& y > 0$$
 $\Rightarrow x + y > 0$

•
$$x \ge 0$$
 $\Rightarrow -x \le 0$

•
$$x \le 0$$
 $\Rightarrow -x \ge 0$

•
$$(x|-x)>>31==-1$$

•
$$ux >> 3 == ux/8$$

•
$$x >> 3 == x/8$$

•
$$x & (x-1) != 0$$

C Puzzle Answers

- Assume machine with 32 bit word size, two's comp. integers
- TMin makes a good counterexample in many cases

$$\square x < 0$$
 \Rightarrow $((x*2) < 0)$ False: *TMin*

$$\Box$$
 ux >= 0 True: $0 = UMin$

$$\square$$
 ux > -1 False: 0

$$\square x > y$$
 $\Rightarrow -x < -y$ False: -1, *TMin*

$$x * x >= 0$$
 False: 30426

$$\square x > 0 \&\& y > 0 \implies x + y > 0$$
 False: TMax, TMax

$$\square x >= 0$$
 $\Rightarrow -x <= 0$ True: $-TMax < 0$

$$\square x \ll 0$$
 $\Rightarrow -x \gg 0$ False: *TMin*