MoskaliovYV 29112024-141936

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Задан двухполюсник на рисунке 1, причём R1 = 262.88 Ом.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 2 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	Freq s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.568	150.0	4.012	63.6	0.066	57.4	0.256	-46.9
1.7	0.588	141.1	3.289	55.7	0.078	55.5	0.250	-52.1
2.0	0.602	132.6	2.781	48.5	0.090	53.2	0.244	-57.9
2.3	0.622	124.8	2.418	41.6	0.101	50.6	0.236	-64.8
2.6	0.647	117.5	2.122	34.8	0.112	47.8	0.229	-72.4
2.9	0.667	110.9	1.887	28.2	0.122	44.8	0.223	-80.9
3.2	0.685	105.0	1.697	22.5	0.132	42.0	0.217	-89.9
3.5	0.708	99.4	1.531	16.1	0.142	39.4	0.218	-99.3
3.8	0.724	94.5	1.398	10.9	0.151	36.3	0.218	-109.5

и частоты $f_{\scriptscriptstyle \rm H}=1.7$ $\Gamma\Gamma\mathrm{t},\,f_{\scriptscriptstyle \rm B}=3.5$ $\Gamma\Gamma\mathrm{t}.$

Найти обратные потери по входу на $f_{\scriptscriptstyle \rm B}.$

- 1) 2.3 дБ
- 2) 3 дБ
- 3) 1.5 дБ
- 4) 4.6 дБ

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=0.6+0.31\mathrm{i}$.

Рисунок 3 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать $unde\kappa c$ выбранной точки.

Даны значения s-параметров:

Freq	eq s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.353	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Найти точку (см. рисунок 4), соответствующую s_{11} на частоте 5.5 $\Gamma\Gamma$ ц.

Рисунок 4 — Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.6	0.364	168.0	5.044	67.3	0.084	63.6	0.176	-88.0
2.8	0.366	165.1	4.673	64.9	0.090	62.5	0.171	-91.5
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
3.5	0.375	156.7	3.707	57.7	0.110	58.9	0.159	-102.4
4.0	0.380	151.1	3.239	52.7	0.125	55.9	0.154	-108.8
4.5	0.388	146.3	2.880	47.8	0.140	52.8	0.145	-114.6
5.0	0.393	142.2	2.599	43.2	0.154	49.5	0.135	-120.4
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
6.0	0.406	132.7	2.181	33.6	0.181	42.9	0.103	-135.0
6.5	0.418	127.4	2.017	28.9	0.194	39.4	0.088	-148.8
7.0	0.433	121.7	1.872	24.0	0.207	36.0	0.073	-167.0

и частоты $f_{\scriptscriptstyle \mathrm{H}}=4$ ГГц, $f_{\scriptscriptstyle \mathrm{B}}=6$ ГГц.

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

- 1) 1.7 дБ
- 2) 8.6 дБ
- 3) 1.3 дБ
- 4) 3.4 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
2.9	0.667	110.9	1.887	28.2	0.122	44.8	0.223	-80.9
3.0	0.674	108.9	1.818	26.1	0.126	43.9	0.220	-83.8
3.1	0.679	106.9	1.757	24.4	0.129	42.9	0.219	-86.9
3.2	0.685	105.0	1.697	22.5	0.132	42.0	0.217	-89.9
3.3	0.692	103.1	1.640	20.5	0.135	41.1	0.217	-93.1
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
3.5	0.708	99.4	1.531	16.1	0.142	39.4	0.218	-99.3
3.6	0.713	97.7	1.485	14.5	0.145	38.3	0.217	-102.7
3.7	0.719	96.1	1.441	12.7	0.148	37.3	0.217	-106.1
3.8	0.724	94.5	1.398	10.9	0.151	36.3	0.218	-109.5

и частоты $f_{\text{H}}=2.8$ ГГц, $f_{\text{B}}=3.7$ ГГц. **Найти** модуль s_{11} в дБ на частоте f_{H} .

- 1) -12.9 дБ
- 2) -18.5 дБ
- 3) 5.8 дБ
- 4) -3.6 дБ