THE INVENTION CLAIMED IS:

-	1. A test control device adapted to:
2	couple to an electronic device that is adapted to be partitioned into
3	segments by using clock gating or signal gating; and
1	control the electronic device to identify one of the segments that is
5	a source of a failure by selectively disabling at least one of the segments.
1	2. A computer system chip comprising:
2	a test control device adapted to:
3	couple to an electronic device to be tested;
4	partition the electronic device into a plurality of segments
5	by using clock gating or signal gating; and
6	control the electronic device to identify one of the plurality
7	of segments that is a source of a failure by selectively disabling at least one of the
8	plurality of segments.
1	3. The computer system chip of claim 2 wherein the test control
2	device is adapted to partition the electronic device into the plurality of segments by using
3	clock gating.
1	4. The computer system chip of claim 2 wherein the test control
2	device is adapted to partition the electronic device into the plurality of segments by using
3	signal gating.
1	5. A computer system chip comprising:
2	a plurality of functional units;

3	a plurality of clock control macros, each clock control macro
4	coupled to a different one of the plurality of functional units and adapted to generate a
5	system clock for the functional unit to which the clock control macro is coupled; and
6	a register coupled to the plurality of clock control macros, and
7	adapted to:
8	partition the computer system chip into a plurality of
9	segments by using clock gating or signal gating; and
10	control the computer system chip to identify one of the
11	plurality of segments that is a source of a failure by selectively disabling at least one of
12	the plurality of segments.
1	6. The computer system chip of claim 5 wherein the register is
2	adapted to partition the computer system chip into the plurality of segments by using
3	clock gating.
1	7. The computer system chip of claim 5 wherein the register is
2	adapted to partition the computer system chip into the plurality of segments by using
3	signal gating.
1	8. The computer system chip of claim 5 wherein the register is further
2	adapted to apply a bit to at least one of the clock control macros; and
3	wherein the at least one clock control macro is adapted to employ
4	the bit to stop or gate-off a system clock provided to the functional unit coupled to the at

least one clock control macro.

5

	2	functional units include at least one of an L1 cache array, an L1 directory array, an
	3	instruction unit and an execution unit.
	1	10. The computer system chip of claim 5 wherein the plurality of clock
	2	control macros are clock gates.
	1	11. A testing arrangement comprising:
	2	a test control device adapted to:
	3	couple to an electronic device that is adapted to be
	4	partitioned into segments by using clock gating or signal gating; and
	5	control the electronic device to identify one of the segments
	6	that is a source of a failure by selectively disabling at least one of the segments; and
	7	a computer adapted to employ the test control device to:
	8	partition the electronic device into segments by using clock
	9	gating or signal gating; and
1	10	identify one of the segments that is a source of a failure by
1	11	selectively disabling at least one of the segments.

The computer system chip of claim 5 wherein the plurality of

9.

1