1. Montrer que la suite de terme général $u_n = \frac{n}{2} - \left\lfloor \frac{n}{2} \right\rfloor$ n'admet pas de limite.

2. Soit $q \in \mathbb{U} \setminus \{1\}$. Montrer que la suite de terme général $u_n = q^n$ n'admet pas de limite.

3. On admet qu'il existe une suite (x_n) telle que $nx_n = \cos(x_n)$ pour tout $n \in \mathbb{N}$. Déterminer la limite de (x_n) puis un équivalent simple de x_n lorsque n tend vers $+\infty$.

4.	Soit G un groupe. On pose $Z = \{a \in G \ \forall x \in G, \ ax = xa\}$. Montrer que Z est un sous-groupe de G.

5. Soit G un groupe. On définit une relation binaire \sim sur G de la manière suivante :

$$\forall (x,y) \in G^2, x \sim y \iff \exists g \in G, y = g^{-1}xg$$

Montrer que \sim est une relation d'équivalence.

6. On pose
$$\mathbb{Q}[i] = \{a + ib, (a, b) \in \mathbb{Q}^2\}$$
. Montrer que $(\mathbb{Q}[i], +\times)$ est un corps.