МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №3 по курсу «Параллельная обработка данных»

Технология МРІ и технология ОрепМР

Выполнил: Д.В. Коростелев

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

Цель работы:

Совместное использование технологии MPI и технологии ОрепMP. Реализация метода Якоби. Решение задачи Дирихле для уравнения Лапласа в трехмерной области с граничными условиями первого рода.

Вариант 2:

Распараллеливание в общем виде с разделением работы между нитями вручную ("в стиле CUDA").

Программное и аппаратное обеспечение

• Графический процессор NVIDA GeForce GTX 1050

Графическая память	2 Gb
Разделяемая память на блок	48 Mb
Константная память	64 Mb
Количество регистров на блок	65536
Максимальное количество блоков на процессор	32
Максимальное количество потоков на блок	1024
Количество мультипроцессоров	5

• Процессор Intel Core i7-7700HQ 4x 2.808ГГц

Количество ядер	4
Количество потоков	8
Базовая тактовая частота	2.8 GHz
Максимальная тактовая частота	3.8 GHz
Кеш-память	6 Mb

• Оперативная память DDR4-SODIMM

Объем памяти	8 Gb
Частота	2400 MHz
Форм-фактор	SODIMM
Количество плашек	2

• SSD и HDD накопители

Объем SSD накопителя	128 Gb
Объем HDD накопителя	1 Tb

• Программное обеспечение

Операционная система	Windows 10 Pro

Средство разработки на CUDA (IDE)	DE) Microsoft Visual	
	Studio 2019	
Компиляторы	MSVC 2019	
Версия CUDA Toolkit	11.4.2	
Дополнительный текстовый редактор	Notepad++	

Метод решения

Метод решения аналогичен методу решения в первой лабораторной работе, передача граничных значений осуществляется также как во второй лабораторной работе, отличие заключается в том, что значения ячеек вычислять при помощи ОМР на разных процессах.

Результаты

Сетка Задача	1x1x1	2x2x2	3x3x3	4x4x4
32 x 32 x 32	4.056	1.890	2.955	3.001
42 x 42 x 42	15.62	6.411	9.444	8.014
54 x 54 x 54	55.23	25.46	17.65	16.00
64 x 64 x 64	200.6	48.45	36.65	20.78

Выводы

Наиболее простая лабораторная работа, так как требовалось сделать минимум изменений в 8ой лабораторной работе — убрать вычисления на CUDA и добавить вычисления на отр, стиль распараллеливания, который напоминает CUDA. По написал только одну функцию, которая конвертирует одномерное число в id ячейки представленную набором из трех целых чисел.