Planche no 10. Familles sommables

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice nº 1 (**)

Déterminer une suite $(a_n)_{n\in\mathbb{N}}$ telle que, pour tout réel $x,\,e^{e^x}=\sum_{n=0}^{+\infty}a_nx^n.$

Exercice nº 2 (**)

Existence et calcul de $\sum_{n=0}^{+\infty} \left(\sum_{p=n+1}^{+\infty} \frac{1}{p!} \right).$

Exercice nº 3 (*** I) (d'après CCINP 2019 MP Math 1)

Soit $x \in]-1,1[$.

- 1) Montrer que la famille $(x^{k,l})_{(k,l)\in(\mathbb{N}^*)^2}$ est sommable.
- 2) Montrer que $\sum_{p=1}^{+\infty} \frac{x^p}{1-x^p} = \sum_{n=1}^{+\infty} d(n) x^n \text{ où } d(n) \text{ est le nombre de diviseurs de } n.$

Exercice nº 4 (***)

 $\text{Etudier la sommabilité de la famille } \left(\frac{1}{(p^2+q^2)^{\alpha}}\right)_{(\mathfrak{p},\mathfrak{q})\in(\mathbb{N}^*)^2},\ \alpha\in\mathbb{R}.$

Exercice no 5 (***)

Montrer que pour tout nombre complexe z tel que |z| < 1, $\sum_{n=0}^{+\infty} \frac{z^{(2^n)}}{1 - z^{(2^{n+1})}} = \frac{z}{1 - z}.$

Exercice nº 6 (***)

- 1) Soit α un réel strictement supérieur à 1. Pour $n \in \mathbb{N}$, on pose $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$. Déterminer un équivalent de R_n quand n tend vers $+\infty$. Pour quelles valeurs de α la série de terme général R_n est-elle convergente?
- $\textbf{2)} \ \mathrm{Montrer} \ \mathrm{que} \ \mathrm{pour} \ \mathrm{tout} \ \alpha > 2, \ \sum_{n=0}^{+\infty} R_n = \sum_{p=1}^{+\infty} \frac{1}{p^{\alpha-1}} (=\zeta(\alpha-1)).$

Exercice nº 7 (***)

Pour x>1, on pose $\zeta(x)=\sum_{k=1}^{+\infty}\frac{1}{k^x}.$ Existence et calcul de $\sum_{n=2}^{+\infty}(-1)^n(\zeta(n)-1).$