

## Règle de Neuber Contraintes résiduelles

On considère la tenue en fatigue d'une pièce contenant une entaille caractérisée par son facteur de concentration de contrainte  $K_t$ . Lors d'une surcharge, on introduit des contraintes résiduelles au voisinage de cette entaille. On note  $S_{sur}$  et  $e_{sur}$  les valeurs nominales de la contrainte et de la déformation de la surcharge appliquée à la pièce lors de la surcharge, et  $\sigma_{sur}$  et  $\varepsilon_{sur}$  les valeurs locales en fond d'entaille. On applique ensuite à cette pièce un chargement de fatigue caractérisé par une amplitude  $\sigma_a = 50$  MPa et une contrainte moyenne  $\sigma_{moy} = 100$  MPa.

1°) On suppose que le comporte élasto-plastique est décrit par une courbe bi-linéaire avec une limite d'élasticité de 300MPa et un module plastique H, c'est-à-dire que la partie « plastique » de la courbe est obtenue par :  $\sigma\!-\!\sigma_y\!=\!H\!\!\times\!\!\left(\epsilon\!-\!\frac{\sigma_y}{E}\right)$ . Montrer qu'alors, en appliquant la règle de Neuber,  $\sigma_{sur}$  est racine d'une équation du second degré. Application numérique :  $K_t\!=\!2,5$  ;  $S_{sur}\!=\!200$  MPa ;  $E\!=\!210$  000 MPa ;  $H\!=\!E/20$  ;  $\sigma_y\!=\!300$ MPa .

2°) Montrer qu'avec la règle d'énergie de déformation équivalente,  $\sigma_{sur}$  est donnée par :  $\sigma_{sur}^2 = \frac{H}{E} \left[ (K_t \times S_{sur})^2 - \sigma_y^2 \right] + \sigma_y^2$ 

(Indice : séparer l'intégration en deux domaines de part et d'autre de  $\sigma_y$ .Le résultat peut également être obtenu graphiquement par un calcul d'aire).

- $3^{\circ}$ ) La valeur de la contrainte résiduelle  $\sigma_{res}$  après déchargement est calculée en faisant la différence entre la valeur de  $\sigma_{sur}$  et la contrainte locale « fictive » calculée en l'absence de plasticité. Indiquer une méthode de détermination graphique de la contrainte résiduelle  $\sigma_{res}$  par la méthode de Neuber. Calculer la valeur de  $\sigma_{res}$  par les deux méthodes.
- 4°) Sur quel(s) paramètre(s) du chargement de fatigue va agir la contrainte résiduelle induite par la surcharge ?

On suppose que l'influence de la contrainte moyenne peut être décrite à l'aide de la relation de Goodman :  $\sigma_D = \sigma_D(\sigma_m = 0) \sqrt{1 - \left(\frac{\sigma_m}{R_m}\right)}$ . Etablir l'expression du rapport  $\rho$  entre la limite

de fatigue de la pièce après surcharge  $\sigma_{\text{\tiny Dsur}}$  et la celle que l'on aurait obtenue sans surcharge préalable  $\sigma_{\text{\tiny D}0}$ .

Application numérique : R<sub>m</sub>=345MPa.