Two hours

THE UNIVERSITY OF MANCHESTER

INTRODUCTION TO GEOMETRY. MOCK EXAMINATION

XX May-XX June 2017 XX:00 – XX:00

Answer **ALL FIVE** questions in Section A (50 marks in total).

Answer **TWO** of the THREE questions in Section B (30 marks in total).

If more than TWO questions in Section B are attempted, the credit will be given for the best TWO answers.

Electronic calculators may <u>not</u> be used.

1 of 4 P.T.O.

SECTION A

Answer **ALL** FIVE questions

A1.

- (a) Explain what is meant by saying that two bases in \mathbf{E}^3 have the opposite orientation.
- (b) Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be a basis in \mathbf{E}^3 .

Consider the ordered triple $\{e + f + g, e + f, e\}$.

Show that this triple is a basis.

Show that the bases $\{e, f, g\}$ and $\{e + f + g, e + f, e\}$ have opposite orientations.

(c) Suppose that the basis $\{e, f, g\}$ considered above is an orthonormal basis. Explain why the basis $\{e + f + g, e + f, e\}$ is not an orthonormal basis.

[10 marks]

A2.

- (a) State the Euler Theorem about rotations.
- (b) Let P_1 be a linear operator such that

$$P_1(\mathbf{e}) = \mathbf{f}, P_1(\mathbf{f}) = \mathbf{e}, P(\mathbf{g}) = \mathbf{g},$$

where $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is an orthonormal basis in \mathbf{E}^3 . Show that P_1 is an orthogonal operator.

Does this operator preserve orientation?

(c) Show that an operator $P_2 = -P_1$ is a rotation operator.

[10 marks]

2 of 4 P.T.O.

A3.

- (a) Give a definition of a differential 1-form in \mathbf{E}^n .
- (b) Let f be a function on \mathbf{E}^2 given by $f(x,y) = x^3 y^3$. Let ω be 1-form such that $\omega = df$, and let \mathbf{A} be a vector field such that $\mathbf{A} = x\partial_x + y\partial_y$. Show that $\omega(\mathbf{A}) = 3f$.
- (c) Explain why an 1- form $\sigma = xdy$ is not an exact form.

[10 marks]

A4.

- (a) Give the definition of a parabola with focus at the given point F and directrix l.
- (b) Let C be an ellipse in the plane \mathbf{E}^2 such that it has foci $F_1 = (0,2)$ and $F_2 = (0,6)$, and it passes through the point (3,2). Show that this ellipse passes through origin.
- (c) Find the area of this ellipse.

[10 marks]

A5.

- (a) Explain what is meant by the cross-ratio of four collinear points on the projective plane \mathbf{RP}^2 .
- (b) Four points $A, B, C, D \in \mathbf{RP}^2$ are given in homogeneous coordinates by

$$A = [1:-1:1], \quad B = [10:-15:5], \quad C = \left[1:-\frac{9}{5}:\frac{1}{5}\right], \quad D = [1:0:2].$$

Show that these points are collinear.

(c) Calculate their cross-ratio.

[10 marks]

3 of 4 P.T.O.

SECTION B

Answer $\underline{\mathbf{TWO}}$ of the THREE questions

B6.

(a) Let P be a linear operator on \mathbf{E}^3 such that

$$P(\mathbf{x}) = 2(\mathbf{n}, \mathbf{x})\mathbf{n} - \mathbf{x}$$
.

where \mathbf{n} is a unit vector, and (,) is scalar product.

Show that P is orthogonal operator preserving orientation.

(b) We know that, due to the Euler Theorem, P is a rotation operator. Find the axis and angle of this rotation.

[15 marks]

B7.

- (a) Let C be an ellipse in \mathbf{E}^2 with foci $F_1 = (0,0)$, $F_2 = (6,0)$ which passes through the point B = (0,8). Write down the equation of this ellipse
- (b) Calculate the integrals $\int_C x dy y dx$ and $\int_C x dy + y dx$. To what extent do these integrals depend on the choice of parameterisation?

[15 marks]

B8.

(a) Let C be a curve in \mathbf{E}^3 , defined by the intersection of the conic surface $4x^2 + 4y^2 - z^2 = 0$ with the plane z + kx = 1, and let C_{proj} be the orthogonal projection of the curve C onto the plane z = 0.

Show that if |k| < 2 then the curve C is an ellipse.

(b) Show that the curve C_{proj} is a parabola in the case if k=2, and find focus and directrix of this parabola.

[15 marks]