Gov 50: 11. Tidying and Joining Data

Matthew Blackwell

Harvard University

Roadmap

- 1. Causality review
- 2. Pivoting data longer
- 3. Joining data sets

1/ Causality review

Potential outcomes

Potential outcomes:

• $Y_i(1)$ is the value that the outcome would take if gave unit i **treatment** and changed nothing else about them.

Potential outcomes

Potential outcomes:

- Y_i(1) is the value that the outcome would take if gave unit i treatment
 and changed nothing else about them.
- Y_i(0) is the value that the outcome would take if gave unit i no
 treatment and changed nothing else about them.

Potential outcomes

Potential outcomes:

- Y_i(1) is the value that the outcome would take if gave unit i treatment
 and changed nothing else about them.
- Y_i(0) is the value that the outcome would take if gave unit i no
 treatment and changed nothing else about them.
- Not the **possible values** of the outcome

Treatment: $T_i = 1$ if vaccinated, $T_i = 0$ if not

Treatment: $T_i = 1$ if vaccinated, $T_i = 0$ if not

Outcome: $Y_i = 1$ if acquired COVID after 12 weeks, $Y_i = 0$ if not

Treatment: $T_i = 1$ if vaccinated, $T_i = 0$ if not

Outcome: $Y_i = 1$ if acquired COVID after 12 weeks, $Y_i = 0$ if not

1. What are the potential outcomes $Y_i(1)$ and $Y_i(0)$?

Treatment: $T_i = 1$ if vaccinated, $T_i = 0$ if not

Outcome: $Y_i = 1$ if acquired COVID after 12 weeks, $Y_i = 0$ if not

- 1. What are the potential outcomes $Y_i(1)$ and $Y_i(0)$?
- 2. Why not compare early volunteers for the vaccine to the overall population?

2/ Pivoting data longer

Mortality data

library(tidyverse)
library(gov50data)
mortality

```
## # A tibble: 217 x 52
##
     country
                  count~1 indic~2 `1972` `1973` `1974` `1975`
##
     <chr>
                 <chr>
                         <chr>
                                 <dbl>
                                        <dbl>
                                              <dbl>
                                                    <dbl>
##
   1 Aruba
                  ABW
                         Mortal~
                                  NA
                                         NA
                                               NA
                                                     NA
##
   2 Afghanistan
                AFG
                         Mortal~ 291
                                        285.
                                              280.
                                                    274.
   3 Angola
##
                 AG0
                         Mortal~
                                  NA
                                         NA
                                               NA
                                                     NA
##
   4 Albania
                  ALB
                         Mortal~
                                  NA
                                         NA
                                               NA
                                                     NA
   5 Andorra
                         Mortal~
##
                  AND
                                  NA
                                         NA
                                               NA
                                                     NA
##
   6 United Arab ~ ARE
                         Mortal~ 80.1
                                        72.6
                                               65.7 59.4
##
   7 Argentina
                 ARG
                         Mortal~ 69.7
                                        68.2
                                               66.1 63.3
   8 Armenia
                  ARM
                         Mortal~
                                  NA
                                         NA
##
                                               NA
                                                     NA
   9 American Sam~ ASM
##
                        Mortal~
                                  NA
                                         NA
                                               NA
                                                     NA
  10 Antigua and ~ ATG Mortal~ 26.9 25.1
                                               23.5
                                                     22.1
  # ... with 207 more rows, 45 more variables: `1976` <dbl>,
##
     `1977` <dbl>, `1978` <dbl>, `1979` <dbl>, `1980` <dbl>,
##
      `1981` <dbl>, `1982` <dbl>, `1983` <dbl>, `1984` <dbl>,
##
##
      `1985` <dbl>, `1986` <dbl>, `1987` <dbl>, `1988` <dbl>,
## #
      `1989` <dbl>, `1990` <dbl>, `1991` <dbl>, `1992` <dbl>,
```

Pivoting longer

Mortality data in a "wide" format (years in columns).

We can convert this to country-year rows with pivot_longer().

```
mydata |>
  pivot_longer(
    cols = <<variables to pivot>>,
    names_to = <<new variable to put column names>>,
    values_to = <<new variable to put column values>>
)
```

Pivoting the mortality data

```
mortality |>
  select(-indicator) |>
  pivot_longer(
   cols = `1972`:`2020`,
   names_to = "year",
   values_to = "child_mortality"
)
```

```
## # A tibble: 10,633 x 4
##
      country country code year child mortality
     <chr> <chr>
                                            <fdh>>
##
                           <chr>>
##
    1 Aruba ABW
                           1972
                                               NA
##
    2 Aruba
            ABW
                           1973
                                               NA
##
   3 Aruba
            ABW
                           1974
                                               NA
##
    4 Aruba
            ABW
                           1975
                                               NA
##
    5 Aruba
            ABW
                           1976
                                               NA
##
    6 Aruba
            ABW
                           1977
                                               NA
##
    7 Aruba
            ABW
                           1978
                                               NA
##
   8 Aruba
            ABW
                           1979
                                               NA
##
    9 Aruba
            ABW
                           1980
                                               NA
##
  10 Aruba
              ABW
                           1981
                                               NA
  # ... with 10,623 more rows
```

Let's do line plots!

```
mortality |>
  select(-indicator) |>
  pivot_longer(
    cols = `1972`:`2020`,
    names_to = "year",
    values_to = "child_mortality"
  ) |>
  ggplot(mapping = aes(x = year, y = child_mortality, group = country)) +
  geom_line(alpha = 0.25)
```

Hmm, what's going on?

Making sure year is numeric

By default, pivoted column names are characters, but we can transform them:

```
mortality_long <- mortality |>
  select(-indicator) |>
  pivot_longer(
    cols = `1972`:`2020`,
    names_to = "year",
    values_to = "child_mortality"
    ) |>
    mutate(year = as.integer(year))
mortality_long
```

10 / 29

```
## # A tibble: 10,633 x 4
     country country_code year child_mortality
##
     <chr> <chr>
                                          <fdh>>
##
                          <int>
                           1972
##
   1 Aruba ABW
                                             NA
##
   2 Aruba ABW
                           1973
                                             NA
##
   3 Aruba ABW
                           1974
                                             NA
##
   4 Aruba ABW
                           1975
                                             NA
##
   5 Aruba
           ABW
                           1976
                                             NA
##
   6 Aruba
           ABW
                           1977
                                             NA
```

Let's (re)do line plots!

```
mortality_long |>
  ggplot(mapping = aes(x = year, y = child_mortality, group = country)) +
  geom_line(alpha = 0.25)
```

There we go

Spotify data

spotify

```
## # A tibble: 490 x 54
##
     Track ~1 Artist week1 week2 week3 week4 week5 week6 week7
##
     <chr>
              <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
##
   1 The Box
              Roddv~
                          1
                                     1
                                            1
                                                  1
                                                        1
                                                             1
##
   2 ROXANNE
              Arizo~
                               4
                                     5
                                           4
                                                       4
                                                             6
##
   3 Yummv
              Justi~
                               6
                                    17
                                          17
                                                 17
                                                       24
                                                            15
##
   4 Circles Post ~
                         4
                                     9
                                           10
                                                       10
                                                             11
                         5
                               5
##
   5 BOP
              DaBaby
                                            5
                                                 11
                                                       12
                                                             18
##
   6 Falling Trevo~
                         6
                               8
                                    10
                                                 6
                                                       8
                                                            10
##
   7 Dance M~ Tones~
                              13
                                    13
                                          12
                                                 12
                                                       13
                                                            17
   8 Bandit ~ Juice~
                         8
                                                       20
##
                              11
                                    14
                                          14
                                                 15
                                                            27
   9 Futsal ~ Lil U~
                         9
                               9
                                    19
                                                 24
                                                       32
                                                            40
##
                                          21
  10 everyth~ Billi~
                        10
                                           9
                              17
                                    28
                                                 8
                                                       11
                                                            14
  # ... with 480 more rows, 45 more variables: week8 <dbl>,
##
##
      week9 <dbl>, week10 <dbl>, week11 <dbl>, week12 <dbl>,
##
      week13 <dbl>, week14 <dbl>, week15 <dbl>, week16 <dbl>,
##
      week17 <dbl>, week18 <dbl>, week19 <dbl>, week20 <dbl>,
##
  #
      week21 <dbl>, week22 <dbl>, week23 <dbl>, week24 <dbl>,
## #
      week25 <dbl>, week26 <dbl>, week27 <dbl>, week28 <dbl>,
##
  #
      week29 <dbl>, week30 <dbl>, week31 <dbl>, ...
```

Pivoting not ideal

Last approach isn't ideal because of the week prefix:

```
spotify |>
  pivot_longer(
   cols = c(-`Track Name`, -Artist),
   names_to = "week_of_year",
   values_to = "rank"
)
```

```
## # A tibble: 25,480 x 4
## `Track Name` Artist week_of_year rank
## <chr> <chr> <chr>
                                     <dbl>
##
  1 The Box Roddy Ricch week1
## 2 The Box Roddy Ricch week2
## 3 The Box
               Roddy Ricch week3
               Roddy Ricch week4
## 4 The Box
## 5 The Box
               Roddy Ricch week5
##
  6 The Box
               Roddy Ricch week6
## 7 The Box
               Roddy Ricch week7
               Roddy Ricch week8
## 8 The Box
               Roddy Ricch week9
## 9 The Box
## 10 The Box
               Roddy Ricch week10
```

Removing a column name prefix

When the data in the column name has a fixed prefix, we can use the names_prefix to remove it when moving the data to rows

```
spotify |>
  pivot_longer(
    cols = c(-`Track Name`, -Artist),
    names_to = "week_of_year",
    values_to = "rank",
    names_prefix = "week"
) |>
  mutate(
    week_of_year = as.integer(week_of_year)
)
```

Removing a column name prefix

```
## # A tibble: 25,480 x 4
  `Track Name` Artist week of year rank
##
## <chr> <chr>
                            <int> <dbl>
  1 The Box Roddy Ricch
##
  2 The Box Roddy Ricch
##
##
  3 The Box Roddy Ricch
## 4 The Box Roddy Ricch
## 5 The Box Roddy Ricch
##
  6 The Box Roddy Ricch
## 7 The Box
               Roddy Ricch
## 8 The Box
           Roddy Ricch
## 9 The Box Roddy Ricch
## 10 The Box Roddy Ricch
                                  10
## # ... with 25,470 more rows
```

3/ Joining data sets

Gapminder data

library(gapminder) gapminder

```
## # A tibble: 1,704 x 6
##
     country
                 continent
                            year lifeExp
                                             pop gdpPercap
##
     <fct>
                 <fct>
                           <int>
                                   <dbl>
                                           <int>
                                                     <dbl>
##
   1 Afghanistan Asia
                            1952
                                   28.8 8425333
                                                      779.
##
   2 Afghanistan Asia
                            1957
                                   30.3 9240934
                                                      821.
##
   3 Afghanistan Asia
                            1962
                                   32.0 10267083
                                                      853.
##
   4 Afghanistan Asia
                            1967
                                   34.0 11537966
                                                      836.
##
   5 Afghanistan Asia
                           1972
                                    36.1 13079460
                                                      740.
##
   6 Afghanistan Asia
                            1977
                                   38.4 14880372
                                                      786.
##
   7 Afghanistan Asia
                            1982
                                    39.9 12881816
                                                      978.
##
   8 Afghanistan Asia
                            1987
                                   40.8 13867957
                                                      852.
   9 Afghanistan Asia
##
                            1992
                                    41.7 16317921
                                                      649.
## 10 Afghanistan Asia
                                   41.8 22227415
                                                      635.
                            1997
  # ... with 1,694 more rows
```

Joining data sets

What if we want to add the child_mortality variable to the gampinder data?

Joining data sets

What if we want to add the child_mortality variable to the gampinder data?

Just add the columns? Rows are not aligned properly!

```
gapminder |>
  select(country, year) |>
  head()
## # A tibble: 6 x 2
##
     country
                  vear
##
     <fct>
             <int>
  1 Afghanistan
                 1952
  2 Afghanistan
                 1957
##
  3 Afghanistan
##
                 1962
  4 Afghanistan
                 1967
##
  5 Afghanistan
                 1972
  6 Afghanistan
                  1977
```

```
mortality_long |>
  select(country, year) |>
  head()
```

```
## # A tibble: 6 x 2
##
    country
             vear
    <chr>>
            <int>
##
## 1 Aruba
             1972
             1973
##
  2 Aruba
  3 Aruba
             1974
  4 Aruba
             1975
## 5 Aruba
             1976
## 6 Aruba
             1977
```

Key variables

A **primary key** is a variable or set of variables that uniquely identifies rows in the data.

• {country, year} in the gapminder data

Key variables

A **primary key** is a variable or set of variables that uniquely identifies rows in the data.

• {country, year} in the gapminder data

A **foreign key** is the corresponding variable(s) in another table.

{country, year} in the mortality_long data

Key variables

A **primary key** is a variable or set of variables that uniquely identifies rows in the data.

• {country, year} in the gapminder data

A **foreign key** is the corresponding variable(s) in another table.

{country, year} in the mortality_long data

If we align the two tables based on these variables, we can add variables from one to the other.

Checking that the keys are unique

Things get weird if these keys are not unique. Let's check.

Checking primary key is unique:

```
gapminder |>
  count(country, year) |>
  filter(n > 1)
```

A tibble: 0 x 3

Checking foreign key:

```
mortality_long |>
  count(country, year) |>
  filter(n > 1)
```

A tibble: 0 x 3

left_join(): add variables to primary table

left_join() keeps all rows from the first argument/piped data:

```
gapminder |>
 left join(mortality long) |>
 select(country, year, lifeExp, pop, gdpPercap, child_mortality) |>
 head(n = 6)
## Joining, by = c("country", "year")
## # A tibble: 6 x 6
## country year lifeExp pop gdpPercap child_morta~1
   <chr> <int> <dbl> <int>
##
                                    <dbl>
                                                <dbl>
## 1 Afghanistan 1952 28.8 8425333
                                     779.
                                                  NΑ
## 2 Afghanistan 1957 30.3 9240934
                                     821.
                                                 NA
## 3 Afghanistan 1962 32.0 10267083
                                    853.
                                                 NA
## 4 Afghanistan 1967 34.0 11537966 836.
                                              NA
  5 Afghanistan 1972 36.1 13079460 740.
                                                 291
## 6 Afghanistan 1977 38.4 14880372 786.
                                            262.
## # ... with abbreviated variable name 1: child_mortality
```

Rows in primary table not in foreign table: new values are NA.

inner_join(): add and filter

inner_join() adds the variables from the foreign table and filters to rows
in both tables:

```
gapminder |>
 inner join(mortality long) |>
 select(country, year, lifeExp, pop, gdpPercap, child_mortality) |>
 head(n = 6)
## Joining, by = c("country", "vear")
## # A tibble: 6 x 6
## country year lifeExp pop gdpPercap child_morta~1
##
    <chr> <int> <dbl>
                            <int>
                                     <fdb>>
                                                 <fdb>>
## 1 Afghanistan 1972 36.1 13079460
                                      740.
                                                  291
## 2 Afghanistan 1977 38.4 14880372
                                      786.
                                                  262.
## 3 Afghanistan 1982 39.9 12881816
                                      978.
                                               231.
## 4 Afghanistan 1987 40.8 13867957
                                      852.
                                              198.
## 5 Afghanistan 1992 41.7 16317921
                                      649.
                                               166.
## 6 Afghanistan 1997 41.8 22227415 635.
                                                142.
## # ... with abbreviated variable name 1: child_mortality
```

How inner joins work

Two data sets:

Find matching keys:

Credit: R for Data Science 23 / 29

How left joins work

Two data sets:

Keep all x keys:

Credit: R for Data Science 24/29

More complicated example

```
library(nycflights13)
flights2 <- flights |>
  select(year, time_hour, origin, dest, tailnum, carrier)
flights2
```

```
# A tibble: 336,776 x 6
                              origin dest tailnum carrier
##
      vear time hour
     <int> <dttm>
                                     <chr> <chr> <chr>
##
                              <chr>
##
   1 2013 2013-01-01 05:00:00 FWR
                                     TAH
                                           N14228
                                                   IJΑ
##
   2 2013 2013-01-01 05:00:00 LGA
                                     IAH
                                          N24211
                                                   UA
##
   3 2013 2013-01-01 05:00:00 JFK
                                     MTA
                                           N619AA
                                                   AA
##
    4 2013 2013-01-01 05:00:00 JFK
                                     BQN
                                           N804JB
                                                   B6
##
    5 2013 2013-01-01 06:00:00 LGA
                                     ATL
                                           N668DN
                                                   DI
##
    6 2013 2013-01-01 05:00:00 FWR
                                     ORD
                                           N39463
                                                   IJΑ
##
   7 2013 2013-01-01 06:00:00 EWR
                                     FLL
                                           N516JB
                                                   B6
##
    8 2013 2013-01-01 06:00:00 LGA
                                     TAD
                                           N829AS
                                                   FV
                                     MCO
##
      2013 2013-01-01 06:00:00 JFK
                                           N593JB
                                                   B6
##
  10
      2013 2013-01-01 06:00:00 LGA
                                           N3ALAA
                                     ORD
                                                   AA
  # ... with 336,766 more rows
```

Planes data

```
planes2 <- planes |>
   select(tailnum, year, type, engine, seats)
planes2
```

```
# A tibble: 3,322 x 5
##
     tailnum year type
##
                                           engine seats
   <chr> <int> <chr>
                                           <chr> <int>
##
   1 N10156 2004 Fixed wing multi engine Turbo-fan
                                                      55
##
##
   2 N102UW 1998 Fixed wing multi engine Turbo-fan
                                                      182
##
   3 N103US
              1999 Fixed wing multi engine Turbo-fan
                                                     182
##
   4 N104UW
              1999 Fixed wing multi engine Turbo-fan
                                                     182
              2002 Fixed wing multi engine Turbo-fan
                                                     55
##
   5 N10575
##
   6 N105UW
              1999 Fixed wing multi engine Turbo-fan
                                                      182
##
   7 N107US
             1999 Fixed wing multi engine Turbo-fan
                                                      182
              1999 Fixed wing multi engine Turbo-fan
                                                      182
##
   8 N108UW
##
   9 N109UW
              1999 Fixed wing multi engine Turbo-fan
                                                      182
## 10 N110UW
              1999 Fixed wing multi engine Turbo-fan
                                                      182
## # ... with 3,312 more rows
```

year here is manufacture year.

What happens with naive join?

2013 2013-01-01 06:00:00 JFK

2013 2013-01-01 06:00:00 LGA

##

10

```
flights2 |>
 left_join(planes2)
## Joining, by = c("year", "tailnum")
  # A tibble: 336,776 x 9
##
      year time_hour origin dest tailnum carrier type engine
                   <chr>
                                    <chr> <chr> <chr>
##
     <int> <dttm>
                                                         <chr> <chr>
##
   1 2013 2013-01-01 05:00:00 FWR
                                     TAH
                                          N14228
                                                  IJΑ
                                                         <NA>
                                                               <NA>
##
   2 2013 2013-01-01 05:00:00 LGA IAH
                                          N24211
                                                         <NA> <NA>
                                                  UA
##
   3 2013 2013-01-01 05:00:00 JFK
                                     MTA
                                          N619AA
                                                  AA
                                                         <NA> <NA>
##
   4 2013 2013-01-01 05:00:00 JFK
                                     BQN
                                          N804JB
                                                         <NA> <NA>
                                                  B6
      2013 2013-01-01 06:00:00 LGA
                                          N668DN
                                                         <NA> <NA>
##
                                     ATL
                                                  DL
##
      2013 2013-01-01 05:00:00 EWR
                                     ORD
                                          N39463
                                                  IJΑ
                                                         <NA> <NA>
      2013 2013-01-01 06:00:00 EWR
                                     FLL
                                          N516JB
##
                                                  B6
                                                         <NA> <NA>
##
      2013 2013-01-01 06:00:00 LGA
                                     IAD
                                          N829AS
                                                  FV
                                                         <NA> <NA>
```

... with 336,766 more rows, and 1 more variable: seats <int>

MCO

ORD

N593 JB

N3ALAA AA

B6

<NA> <NA>

<NA> <NA>

Specify the joining variables

```
flights2 |>
  left_join(planes2, by = "tailnum")
```

```
##
    A tibble: 336,776 x 10
##
     year.x time_hour
                                 origin dest tailnum carrier year.y
##
      <int> <dttm>
                                 <chr>
                                        <chr> <chr>
                                                      <chr>
                                                                <int>
##
   1
       2013 2013-01-01 05:00:00 EWR
                                        IAH
                                              N14228
                                                      UA
                                                                 1999
##
       2013 2013-01-01 05:00:00 LGA
                                        TAH
                                              N24211
                                                      IJΑ
                                                                 1998
       2013 2013-01-01 05:00:00 JFK
##
    3
                                        MIA
                                              N619AA
                                                      AA
                                                                 1990
##
       2013 2013-01-01 05:00:00 JFK
                                        BQN
                                              N804JB
                                                      B6
                                                                 2012
##
       2013 2013-01-01 06:00:00 LGA
                                        ATI
                                              N668DN
                                                       DI
                                                                 1991
        2013 2013-01-01 05:00:00 EWR
                                        ORD
                                              N39463
                                                      UA
                                                                 2012
##
    6
       2013 2013-01-01 06:00:00 FWR
                                        FLL
                                              N516 JB
                                                       B6
                                                                 2000
##
##
        2013 2013-01-01 06:00:00 LGA
                                        TAD
                                              N829AS EV
                                                                 1998
    8
       2013 2013-01-01 06:00:00 JFK
                                        MCO
##
                                              N593JB
                                                      B6
                                                                 2004
##
  10
        2013 2013-01-01 06:00:00 LGA
                                        ORD
                                              N3ALAA AA
                                                                   NΑ
     ... with 336,766 more rows, and 3 more variables: type <chr>,
##
##
       engine <chr>, seats <int>
  #
```

Change variables names

```
flights2 |>
 left_join(planes2 |> rename(manufacture_year = year))
## Joining, by = "tailnum"
## # A tibble: 336,776 x 10
##
     year time hour
                           origin dest tailnum carrier manufactur~1
##
     <chr> <chr>
                                               <chr>
                                                            <int>
##
   1 2013 2013-01-01 05:00:00 FWR
                                   TAH N14228 UA
                                                             1999
   2 2013 2013-01-01 05:00:00 LGA
##
                                   IAH N24211 UA
                                                             1998
##
   3 2013 2013-01-01 05:00:00 JFK
                                   MIA N619AA AA
                                                             1990
##
   4 2013 2013-01-01 05:00:00 JFK
                                   BON
                                      N804 JB
                                               B6
                                                             2012
##
   5 2013 2013-01-01 06:00:00 LGA
                                   ATL N668DN
                                               DL
                                                             1991
##
   6 2013 2013-01-01 05:00:00 FWR
                                   ORD
                                        N39463
                                               IJΑ
                                                             2012
##
     2013 2013-01-01 06:00:00 EWR
                                   FLL
                                               B6
                                                             2000
                                        N516JB
   8 2013 2013-01-01 06:00:00 LGA
##
                                   IAD
                                        N829AS
                                               ΕV
                                                             1998
```

MCO N593 JB

ORD

B6

N3ALAA AA

... with 336,766 more rows, 3 more variables: type <chr>,

2013 2013-01-01 06:00:00 JFK

2013 2013-01-01 06:00:00 LGA

engine <chr>, seats <int>, and abbreviated variable name

1: manufacture_year

##

10

2004

NA