Teste 2

O enunciado do teste depende de uma constante c, calculada como se descreve a seguir.

Cotação:

- 1. Por cada resposta correcta: 1 valor.
- 2. Por cada resposta incorrecta (para as perguntas de escolha múltipla): $-\frac{1}{9}$ de valor.
- 3. Por cada resposta em branco: valor 0 (zero).
- 4. No caso de a soma das cotações das perguntas de escolha múltipla ser negativa, o valor total destas será de zero.
- 5. A nota final do teste será o resultado de arredondar às centésimas por cima $\frac{20}{3}$ do valor total.

Nome:

Número de aluno:

Constante c: resto da divisão inteira do número de aluno por 3:

c =

1. Considere as afirmações na linha c sobre uma valoração booleana v:

linha 0: $v(p \land q) = 0, v(p) = 1$

linha 1: $v(p \to q) = 1, v(p) = 1$

linha 2: $v(p \lor \neg q) = 1, v(p) = 0$

Então

A. $v(q \to p) = 0$

B. $v(q \lor p) = 0$

 $\begin{aligned} \mathbf{C.} \ v(\neg q \lor p) &= 0 \\ \mathbf{E.} \ v(p \to q) &= 0 \end{aligned} \qquad \begin{aligned} \mathbf{D.} \ v(\neg p \land q \to p) &= 0 \\ \mathbf{F.} \ v(\neg p \to \neg q) &= 0 \end{aligned}$

G. $v(\neg p \land q) = 1$

H. $v(q \wedge p) = 1$

I. $v(\neg p \rightarrow q \land p) = 0$ **J.** Nenhuma das

anteriores.

Resposta:

2. Observe a seguinte dedução no sistema DN, que está incompleta - falta informação nos sítios assinalados com (0), (1) e (2):

> 1 $\phi \wedge \psi$

Η

2 ϕ

3 $\phi \lor \theta$ $1(\wedge_{1}^{-})$

 ψ

(0)

(1)

 $\eta \lor \psi$

(2)

 $(\phi \lor \theta) \land (\eta \lor \psi)$

 $3,5(\wedge^+)$

Indique a informação que devia estar no lugar de (c).

A. 1 (\wedge_2^-)

B. 1 (\wedge_2^+)

C. 4 (\vee_1^+)

D. 4 (\vee_2^+)

E. 2 (\vee_1^+)

F. 3 (\vee^-)

G. 2, 3 (MT)

H. 2 (\vee_2^+)

I. 1 (MP)

J. Nenhuma das

anteriores.

Resposta:

3. Mostre que o conjunto das fórmulas equilibradas é fechado para a conjunção (\wedge).

Resposta:		