VE401 Probabilistic Methods in Eng. RC 7

CHEN Xiwen

UM-SJTU Joint Institute

April 25, 2020

Table of contents

Simple Linear Regression

Simple Linear Regression Model Estimators and Predictors Model Analysis Calculations for Simple Linear Regression

Multiple Linear Regression

Linear Algebra Basics Multiple Linear Regression Model Model Analysis

Simple Linear Regression

Simple Linear Regression Model

Estimators and Predictors Model Analysis Calculations for Simple Linear Regression

Multiple Linear Regression

Linear Algebra Basics Multiple Linear Regression Model Model Analysis

Simple Linear Regression Model

Model. We assume that

$$Y|x = \beta_0 + \beta_1 x + E,$$

where E[E] = 0. We want to find estimators

$$B_0 := \widehat{\beta_0} = \text{estimator for } \beta_0, \qquad b_0 = \text{estimate for } \beta_0,$$

$$B_1:=\widehat{\beta_1}=$$
 estimator for $\beta_1, \qquad b_1=$ estimate for $\beta_1.$

Assumptions.

- For each value of x, the random variable follows a normal distribution with variance σ^2 and mean $\mu_{Y|x} = \beta_0 + \beta_1 x$.
- ▶ The random variables $Y|x_1$ and $Y|x_2$ are independent if $x_1 \neq x_2$.

Least Squares Estimation

Least squares estimation. We have the error sum of squares

$$SS_E := \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - (b_0 + b_1 x_i))^2.$$

To minimize it, we take

$$\frac{\partial SS_E}{\partial b_0} = -2 \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) = 0,$$

$$\frac{\partial SS_E}{\partial b_1} = -2 \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) x_i = 0.$$

which gives

$$b_1 = \frac{S_{xy}}{S_{xy}}, \qquad b_0 = \overline{y} - b_1 \overline{x},$$

Useful Properties

Properties.

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} (x_i - \overline{x}) x_i = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 = \sum_{i=1}^{n} x_i^2 - n \overline{x}^2,$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \overline{y}) y_i = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i \right)^2 = \sum_{i=1}^{n} y_i^2 - n \overline{y}^2,$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y}) = \sum_{i=1}^{n} (x_i - \overline{x}) y_i = \sum_{i=1}^{n} (y_i - \overline{y}) x_i = \sum_{i=1}^{n} x_i y_i - n \overline{x} \cdot \overline{y}$$

$$= \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right).$$

$$b_1 = \frac{\mathsf{S}_{xy}}{\mathsf{S}_{xy}}, \qquad b_0 = \overline{y} - b_1 \overline{x}, \qquad \mathsf{SS}_\mathsf{E} = \mathsf{S}_{yy} - b_1 \mathsf{S}_{xy}.$$

Simple Linear Regression

Simple Linear Regression Model

Estimators and Predictors

Model Analysis
Calculations for Simple Linear Regression

Multiple Linear Regression

Linear Algebra Basics Multiple Linear Regression Model Model Analysis

Distribution of Estimator for Variance

LSE for variance. An unbiased estimator for variance σ^2 is given by

$$S^2 = \frac{\mathsf{SS}_\mathsf{E}}{n-2} = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \widehat{\mu}_{Y|x_i})^2.$$

Distribution of estimator for variance. The statistic

$$\chi_{n-2}^2 = \frac{(n-2)S^2}{\sigma^2} = \frac{SS_E}{\sigma^2}$$

follows a chi-squared distribution with n-2 degrees of freedom.

Distribution of B_1

Theorem. The least squares estimator B_1 for β_1 follows a normal distribution with

$$\mathsf{E}[B_1] = \beta_1, \qquad \mathsf{Var}[B_1] = \frac{\sigma^2}{\sum (x_i - \overline{x})^2} = \frac{\sigma^2}{\mathcal{S}_{xx}}.$$

Proof.

$$B_{1} = \frac{1}{S_{xx}} \sum_{i=1}^{n} (x_{i} - \overline{x})(Y_{i} - \overline{Y}) = \frac{1}{S_{xx}} \sum_{i=1}^{n} (x_{i} - \overline{x})Y_{i}$$

$$= \frac{1}{S_{xx}} \sum_{i=1}^{n} (x_{i} - \overline{x})(\beta_{0} + \beta_{1}x_{i} + E_{i})$$

$$= \frac{1}{S_{xx}} \cdot \beta_{1}S_{xx} + \frac{1}{S_{xx}} \sum_{i=1}^{n} (x_{i} - \overline{x})E_{i}$$

$$= \beta_{1} + \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})E_{i}}{S_{xx}}.$$

Distribution of B_1 with Estimated Variance

Distribution. The statistics

$$T_{n-2} = \frac{B_1 - \beta_1}{S/\sqrt{S_{xx}}}$$

follows T-distributions with n-2 degrees of freedom.

Confidence interval. The $100(1-\alpha)\%$ confidence intervals of β_1 is given by

$$B_1 \pm t_{\alpha/2,n-2} \frac{S}{\sqrt{S_{xx}}}$$
.

Test for Significance

Test for significance of regression. Let $(x_i, Y | x_i)$, i = 1, ..., n be a random sample from Y | x. We reject

$$H_0: \beta_1 = 0$$

at significance level α if the test statistic

$$T_{n-2} = \frac{B_1}{S/\sqrt{S_{xx}}}$$

satisfies $|T_{n-2}| > t_{\alpha/2,n-2}$.

Distribution of B_0

Theorem. The least squares estimator B_0 for β_0 follows a normal distribution with

$$\mathsf{E}[B_0] = \beta_0, \qquad \mathsf{Var}[B_0] = \frac{\sigma^2 \sum x_i^2}{n \sum (x_i - \overline{x})^2}.$$

Proof. Since

$$B_{0} = \overline{Y} - B_{1}\overline{x} = \beta_{0} + \beta_{1}\overline{x} + \overline{E} - \left(\beta_{1} + \frac{\sum(x_{i} - \overline{x})E_{i}}{S_{xx}}\right)\overline{x}$$
$$= \beta_{0} + \overline{E} - \frac{\overline{x}\sum(x_{i} - \overline{x})E_{i}}{S_{xx}},$$

we can see that

$$\begin{aligned} \mathsf{E}[B_0] &= \beta_0, \qquad \mathsf{Var}[B_0] = \frac{\sigma^2}{n} + \overline{\mathsf{x}}^2 \frac{\sigma^2}{\mathsf{S}_{\mathsf{xx}}} - 2 \sum \mathsf{Cov} \left[\frac{E_i}{n}, \frac{\overline{\mathsf{x}} \sum (x_i - \overline{\mathsf{x}}) E_i}{\mathsf{S}_{\mathsf{xx}}} \right] \\ &= \sigma^2 \cdot \frac{\mathsf{S}_{\mathsf{xx}} + n \overline{\mathsf{x}}^2}{n \mathsf{S}_{\mathsf{xx}}} = \frac{\sigma^2 \sum_i x_i^2}{n \mathsf{S}_{\mathsf{xx}}}. \end{aligned}$$

Distribution of B_0 with Estimated Variance

Distribution. The statistics

$$T_{n-2} = \frac{B_0 - \beta_0}{S\sqrt{\sum x_i^2}/\sqrt{nS_{xx}}}$$

follows T-distributions with n-2 degrees of freedom.

Confidence interval. The $100(1-\alpha)\%$ confidence intervals of β_0 is given by

$$B_0 \pm t_{\alpha/2,n-2} \frac{S\sqrt{\sum x_i^2}}{\sqrt{nS_{xx}}}.$$

Distribution of Estimated Mean

Distribution. The estimated mean $\widehat{\mu}_{Y|X}$ follows a normal distribution with mean and variance

$$\mathsf{E}[\widehat{\mu}_{Y|x}] = \mu_{Y|x}, \qquad \mathsf{Var}[\widehat{\mu}_{Y|x}] = \left(\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}\right) \sigma^2.$$

Therefore, the statistic

$$T_{n-2} = \frac{\widehat{\mu}_{Y|X} - \mu_{Y|X}}{S\sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}}}$$

follows a T-distribution with n-2 degrees of freedom. A $100(1-\alpha)\%$ confidence interval for $\mu_{Y|X}$ is given by

$$\widehat{\mu}_{Y_x} \pm t_{\alpha/2,n-2} S \sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}}.$$

Distribution and CI for Predictor

Predictor. The statistic $Y|x-\widehat{Y}|\widehat{x}$ follows a normal distribution with mean and variance

$$\mathsf{E}[Y|x-\widehat{Y|x}]=0, \qquad \mathsf{Var}[Y|x-\widehat{Y|x}]=\left(1+\frac{1}{n}+\frac{(x-\overline{x})^2}{S_{xx}}\right)\sigma^2.$$

Therefore, the statistic

$$T_{n-2} = \frac{Y|x - \widehat{Y}|x}{S\sqrt{1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}}}$$

follows a T-distribution with n-2 degrees of freedom. A $100(1-\alpha)\%$ confidence interval for Y|x is given by

$$\widehat{Y|x} \pm t_{\alpha/2,n-2} S \sqrt{1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}}.$$

Simple Linear Regression

Simple Linear Regression Model Estimators and Predictors

Model Analysis

Calculations for Simple Linear Regression

Multiple Linear Regression

Linear Algebra Basics Multiple Linear Regression Model Model Analysis

Model Analysis

Crucial quantities.

► Total sum of squares:

$$SS_{\mathsf{T}} = S_{yy} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2.$$

Error sum of squared:

$$SS_{E} = \sum_{i=1}^{n} (Y_{i} - (b_{0} + b_{1}x))^{2} = S_{yy} - B_{1}S_{xy} = S_{yy} - \frac{S_{xy}^{2}}{S_{xx}}.$$

► Coefficient of determination: the proportion of the total variation in Y that is explained by the linear model.

$$R^2 = \frac{\mathsf{SS}_\mathsf{T} - \mathsf{SS}_\mathsf{E}}{\mathsf{SS}_\mathsf{T}} = \frac{S_{xy}^2}{S_{xx}S_{yy}}.$$

Test for Significance with R^2

Test for significance of regression. Let $(x_i, Y | x_i)$, i = 1, ..., n be a random sample from Y | x. We reject

$$H_0: \beta_1 = 0$$

at significance level α if the test statistic

$$T_{n-2} = \frac{B_1}{S/\sqrt{S_{xx}}} = \frac{R\sqrt{n-2}}{\sqrt{1-R^2}}$$

satisfies $|T_{n-2}| > t_{\alpha/2,n-2}$.

Test for Correlation with R^2

Test for correlation. Let (X,Y) follow a bivariate normal distribution with correlation coefficient $\rho \in (-1,1)$. Let R be the estimator for ρ . Then we reject

$$H_0: \rho = 0$$

at significance level α if the test statistic

$$T_{n-2} = \frac{R\sqrt{n-2}}{\sqrt{1-R^2}}$$

satisfies $|T_{n-2}| > t_{\alpha/2,n-2}$.

Lack-of-Fit and Pure Error

Source of SS_E . SS_E is the variance of Y explained by the model.

Error sum of squares due to pure error.

$$\mathsf{SS}_{\mathsf{E},\mathsf{pe}} := \sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_i)^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} Y_{ij}^2 - \sum_{i=1}^k \frac{1}{n_i} \left(\sum_{j=1}^{n_i} Y_{ij} \right)^2.$$

The statistic $SS_{E,pe}/\sigma^2$ follows a chi-squared distribution with n-k degrees of freedom.

► Error sum of squares due to lack of fit:

$$SS_{E,lf} := SS_E - SS_{E,pe}$$
.

The statistic $SS_{E,lf}/\sigma^2$ follows a chi-squared distribution with k-2 degrees of freedom.

Testing for Lack of Fit

Test for lack of fit. Let x_1, \ldots, x_k be regressors and Y_{i1}, \ldots, Y_{in_i} , $i = 1, \ldots, k$ the measured responses at each of the regressors. Let $SS_{E,pe}$ and $SS_{E,lf}$ be the pure error and lack-of-fit sums of squares for a linear regression model. Then we reject at significance level α

 H_0 : the linear regression model is appropriate

if the test statistic

$$F_{k-2,n-k} = \frac{\mathsf{SS}_{\mathsf{E},\mathsf{lf}}/(k-2)}{\mathsf{SS}_{\mathsf{E},\mathsf{pe}}/(n-k)}$$

satisfies $F_{k-2,n-k} > f_{\alpha,k-2,n-k}$.

Simple Linear Regression

Simple Linear Regression Model Estimators and Predictors Model Analysis

Calculations for Simple Linear Regression

Multiple Linear Regression

Linear Algebra Basics Multiple Linear Regression Model Model Analysis

Calculations for Simple Linear Regression

1. Find $\sum x_i, \sum y_i, \sum x_i^2, \sum y_i^2, \sum x_i y_i$ and calculate

$$S_{xx} = \sum x_i^2 - \frac{1}{n} \left(\sum x_i \right)^2, \quad S_{yy} = \sum y_i^2 - \frac{1}{n} \left(\sum y_i \right)^2,$$

$$S_{xy} = \sum x_i y_i - \frac{1}{n} \left(\sum x_i \right) \left(\sum y_i \right).$$

2. Obtain b_1 and b_0 by

$$b_1 = \frac{S_{xy}}{S_{xx}}, \qquad b_0 = \overline{y} - b_1 \overline{x}.$$

3. Calculate other quantities as required, e.g.,

$$SS_E = S_{yy} - \frac{S_{xy}}{S_{xx}}, \qquad R^2 = \frac{S_{xy}^2}{S_{xx}S_{yy}}.$$

Simple Linear Regression

Simple Linear Regression Model
Estimators and Predictors
Model Analysis
Calculations for Simple Linear Regression

Multiple Linear Regression

Linear Algebra Basics

Multiple Linear Regression Model Model Analysis

Gradient of Matrix

Gradient. Suppose $a, x \in \mathbb{R}^n, A \in \mathsf{Mat}(n \times n; \mathbb{R})$, then we have the following properties.

 $\nabla_x(x^Tx) = 2x$, since

$$x^T x = \sum_{i=1}^n x_i^2 \quad \Rightarrow \quad \nabla_x (x^T x) = \begin{pmatrix} \frac{\partial x^T x}{x_1} \\ \vdots \\ \frac{\partial x^T x}{x_n} \end{pmatrix} = 2x.$$

 $\nabla_x(a^Tx) = a$, since

$$a^T x = \sum_{i=1}^n a_i x_i \quad \Rightarrow \quad \nabla_x (x^T x) = \begin{pmatrix} \frac{\partial a^T x}{x_1} \\ \vdots \\ \frac{\partial a^T x}{x_n} \end{pmatrix} = a.$$

Idempotent Matrix

Idempotent matrix. A $n \times n$ matrix P satisfying the property that $P^2 = P$ is called idempotent. Then

$$(\mathbb{1}_n - P)^2 = \mathbb{1}_n - P - P + P^2 = \mathbb{1}_n - P$$

is also idempotent. Furthermore, its eigenvalues may only be 0 or 1, since

$$\lambda v = Pv = P^2v = P(\lambda v) = \lambda^2 v,$$

where v is an eigenvector. This gives $\lambda^2 = \lambda$.

The Spectral Theorem of Linear Algebra

Spectral theorem. Let $A \in \operatorname{Mat}(n \times n; \mathbb{R})$ be a self-adjoint matrix, which means $A = A^* = A^T$. Then there exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.

Corollary of spectral theorem. Let $A \in \operatorname{Mat}(n \times n; \mathbb{R})$ be a self-adjoint matrix. Then if (v_1, \ldots, v_n) is an orthonormal basis of eigenvectors of A and $U = (v_1, \ldots, v_n)$, then $U^{-1} = U^T$, and

$$D = U^{-1}AU = U^{T}AU$$

is a diagonal matrix containing eigenvectors of A. This can be seen from

$$De_k = U^{-1}AUe_k = U^{-1}Av_k = U^{-1}\lambda v_k = \lambda e_k.$$

Important Results from Linear Algebra for Regression

Results used multiple linear regression.

- ▶ If $A \in Mat(n \times n; \mathbb{R})$ is idempotent, then $\mathbb{1}_n A$ is idempotent, and P has eigenvalues only 0 or 1.
- ▶ If $A \in Mat(n \times n; \mathbb{R})$ is symmetric, then there exists a matrix $U = (v_1, \dots, v_n)$ of eigenvectors of A and $U^{-1} = U^T$ such that

$$D = U^T A U \Rightarrow A = U D U^T$$
.

▶ In discussions of multiple linear regression, the two properties above hold for matrices

$$P = \frac{1}{n} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \quad \text{and} \quad H = X(X^T X)^{-1} X^T.$$

Simple Linear Regression

Simple Linear Regression Model
Estimators and Predictors
Model Analysis
Calculations for Simple Linear Regression

Multiple Linear Regression

Linear Algebra Basics

Multiple Linear Regression Model

Model Analysis

Polynomial Regression Model

Model. For a polynomial model, we assume that

$$Y|x = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + E \quad \Leftrightarrow \quad Y = X\beta + E,$$

where

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} 1 & x_1 & \cdots & x_1^p \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^p \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix}, \quad E = \begin{pmatrix} E_1 \\ \vdots \\ E_n \end{pmatrix}.$$

Assumptions.

- For each value of x, the random variable follows a normal distribution with variance σ^2 and mean $\mu_{Y|x} = \beta_0 + \beta_1 x + \cdots + \beta_p x^p$.
- ▶ The random variables $Y|x_1$ and $Y|x_2$ are independent if $x_1 \neq x_2$.

The Multilinear Model

Model. For a multilinear model, we assume that Y depends on several factors,

$$Y|x = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + E \Leftrightarrow Y = X\beta + E,$$

where

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} 1 & x_{11} & \cdots & x_{p1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & \cdots & x_{pn} \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix}, \quad E = \begin{pmatrix} E_1 \\ \vdots \\ E_n \end{pmatrix}.$$

Assumptions.

- For each value of x, the random variable follows a normal distribution with variance σ^2 and mean $\mu_{Y|x} = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$.
- ▶ The random variables $Y|x_1$ and $Y|x_2$ are independent if $x_1 \neq x_2$.

Least Squares Estimation

Least squares estimation. For both cases, we have the error sum of squares

$$SS_{\mathsf{E}} = \langle Y - Xb, Y - Xb \rangle = (Y - Xb)^{\mathsf{T}} (Y - Xb).$$

To minimize it, we take

$$\nabla_b SS_E = \nabla_b (Y - Xb)^T (Y - Xb)$$

$$= \nabla_b \left(Y^T Y - Y^T Xb - b^T X^T Y + b^T X^T Xb \right)$$

$$= -2X^T Y + 2X^T Xb = 0 \quad \Rightarrow \quad b = (X^T X)^{-1} X^T Y,$$

where we have used since both Y^TXb and b^TX^TY are constants,

$$b^T X^T Y = (b^T X^T Y)^T = Y^T X b.$$

and if $a, x \in \mathbb{R}^n$, then $\nabla_x(a^Tx) = a$.

Simple Linear Regression

Simple Linear Regression Model
Estimators and Predictors
Model Analysis
Calculations for Simple Linear Regression

Multiple Linear Regression

Linear Algebra Basics Multiple Linear Regression Model Model Analysis

Error Analysis

Crucial quantities.

► *Total variation*: given orthogonal projection *P*,

$$P:=\frac{1}{n}\begin{pmatrix}1&\cdots&1\\\vdots&\ddots&\vdots\\1&\cdots&1\end{pmatrix}\qquad\Rightarrow\quad (\mathbb{1}_n-P)^2=\mathbb{1}_n-P,$$

giving

$$SS_T = \langle (\mathbb{1}_n - P)Y, (\mathbb{1}_n - P)Y \rangle = \langle Y, (\mathbb{1}_n - P)Y \rangle.$$

Sum of squares error: given orthogonal projection H,

$$H := X(X^T X)^{-1} X^T \quad \Rightarrow \quad \mathsf{SS}_{\mathsf{E}} = \langle Y - Xb, Y - Xb \rangle$$

$$= \langle (\mathbb{1}_n - H)Y, (\mathbb{1}_n - H)Y \rangle$$

$$= \langle Y, (\mathbb{1}_n - H)Y \rangle = \langle E, (\mathbb{1}_n - H)E \rangle.$$

Coefficient of multiple determination:

$$R^2 = \frac{\mathsf{SS}_\mathsf{R}}{\mathsf{SS}_\mathsf{T}}, \quad \mathsf{SS}_\mathsf{R} = \mathsf{SS}_\mathsf{T} - \mathsf{SS}_\mathsf{E} = \langle Y, (H-P)Y \rangle = \langle (H-P)Y, (H-P)Y \rangle.$$

Distribution of SS_E

Distribution of sum of squares error. The statistic given by the SS_E and variance σ^2

$$\frac{\mathsf{SS}_{\mathsf{E}}}{\sigma^{2}} = \left\langle \frac{E}{\sigma}, (\mathbb{1}_{n} - H) \frac{E}{\sigma} \right\rangle = \left\langle Z, (\mathbb{1}_{n} - H) Z \right\rangle \\
= \left\langle Z, U^{\mathsf{T}} D_{n-p-1} U Z \right\rangle = \left\langle U Z, D_{n-p-1} U Z \right\rangle \\
= \sum_{i=1}^{n-p-1} (U Z)_{i}^{2},$$

follows a chi-squared distribution with n-p-1 degrees of freedom, where the matrix U contains columns of eigenvectors of $(\mathbbm{1}_n-H)$ such that

$$U(\mathbb{1}_n - H)U^T = D_{n-p-1}.$$

Distribution of SS_F

- ► SS_E/σ^2 follows a chi-squared distribution with n-p-1 degrees of freedom.
- ▶ If $\beta = (\beta_0, 0, ..., 0)$, then SS_R/σ^2 follows a chi-squared distribution with p degrees of freedom.
- SS_R and SS_E are independent random variables. (Fisher-Cochran theorem.)
- ▶ An unbiased estimator for σ^2 is given by

$$\widehat{\sigma}^2 = S^2 = \frac{\mathsf{SS}_\mathsf{E}}{n - p - 1}.$$

▶ The regression sum of squares can be expressed as

$$SS_{R} = \langle Xb, Y \rangle - \frac{1}{n} \left(\sum_{i=1}^{n} Y_{i} \right)^{2}$$

$$= b_{0} \sum_{i=1}^{n} Y_{i} + \sum_{i=1}^{p} b_{j} \sum_{i=1}^{n} x_{ji} Y_{i} - \frac{1}{2} \left(\sum_{i=1}^{n} Y_{i} \right)^{2},$$

for multilinear model, and substitute x_{ji} with x_i^j for polynomial model.

F-Test for Significance of Regression

F-test for significance of regression. Let x_1, \ldots, x_p be the predictor variables in a multilinear model for Y. Then we reject at significance level α

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

if the test statistic

$$F_{p,n-p-1} = \frac{SS_R/p}{SS_E/(n-p-1)} = \frac{SS_R/p}{S^2} = \frac{n-p-1}{p} \frac{R^2}{1-R^2}$$

satisfies $F_{p,n-p-1} > f_{\alpha,p,n-p-1}$.

Thanks for your attention!