Departamento de Eng. Informática da FCTUC

Introdução às Redes de Comunicação Exame de Época Normal

Com Consulta

Duração: 2h00m

Notas importantes:

- Apenas é permitida a consulta de materiais em papel.
- Todos os dispositivos eletrónicos têm que permanecer desligados.
- As questões <u>Teóricas</u> devem ser respondidas na folha de resolução.
- As questões <u>Práticas</u> devem ser respondidas na própria <u>folha de enunciado</u>.
- Caso não consiga realizar todos os cálculos indique-os apenas.

O emcapsulamento de dadas funciona de eima para baixo emquanto ao membagens são eminadas numa ade. Em eada emmado su perior são comsiderados dodos dentro do protocolo emcapsulador. Bo exemplo, o xegmento Tep é comsiderado dodos dentro do paco EP.

QUESTÕES TEÓRICAS

O desemento subamento é o processo de emeropsulamento rerestido no hast recestar e um processo usado por um ou mais coleganas de protecto. Os dodos e de desemento de semento de medida de soberm ma pilho em direção à aplicação de utilización final

Questão 1

Em que consistem as operações de encapsulamento e desencapsulamento no contexto dos protocolos de comunicação Internet? Justifique a sua resposta, apresentando um exemplo de aplicação destas técnicas em protocolos da pilha protocolar Internet (TCP/IP).

Questão 2

Considere que pretende implementar um servidor de música, cujo objetivo é o de permitir o acesso em *streaming*, por parte de clientes, aos ficheiros de música alojados no servidor. Considere igualmente que o protocolo de transporte a usar nas comunicações entre o servidor e os clientes é o UDP (User Datagram Protocol). De que forma a aplicação servidor deverá usar *sockets* e portos, por forma a garantir que o servidor suporta o acesso simultâneo de vários clientes? Justifique a sua resposta (nota: não é necessário apresentar código).

Questão 3

Considere o protocolo TCP. Que mecanismos este protocolo dispõe para garantir desempenho adequado (elevado) nas comunicações através de canais com elevado delay de transmissão? Justifique a sua resposta.

O protocolo Tel formes um seviso de transmissão de dado Frárel, resistem às perdas de imformaçõe e ao desondemamento que pade aconter mos míreis imfeniores. Comtém ainda meamismos de retransmissão autormática para recuperação de intermação pedida - garante o and marmento da instanmação deson de mada para atravos e duplicação occanidas mos níveis instancionos. Tem, com isto, mecanismos de controlo de son impedir a amperto instancia. Introdução às Redes de comunicação evitando aspandação de consequente falhas.

Quamdo se presende transmitir algo para determinada máquina, tem de se sales o seu emdereso físico (the Acthess). Parém quamco determinado paeste e emiado o que comesta é o emdereso IP da máquima destino, logo é mecasiário o protocolo ARP que rai transformar o emdereso IP no emdereso físico da máquina destino. Este protocolo de o sistema Eroadeast quamdo pertende descobrir que emdereso físico comesçando a determinado emdereso IP.

Questão 4

Considere um cenário no qual um *router* interliga duas redes, Rede A e Rede B. De que forma o protocolo ARP (Address Resolution Protocol) e utilizado para possibilitar as comunicações entre um *host* na Rede A e outro na Rede B? Justifique a sua resposta.

Questão 5

Considere o protocolo CSMA (Carrier-sense Multiple Access). O que difere na sua utilização em comunicações Wi-Fi (IEEE 802.11) e Ethernet (IEEE 802.3), no que respeita a lidar com colisões? Justifique a sua resposta.

O esta é um protocolo que rai rentican se podem ocorren colisses de dodos. Este é um protocolo fécil de implementou em redes por cabo mos difícil em redes eem fio. Por esta nação o wifi mão utiliza o emesmo algoritmo de Ethernet (esta 106) mos sim esta 100 and utiliza uma estadtegia de prevenção de colisão.

Calcule a velocidade teórica máxima de transmissão através de um cabo metálico com uma largura de banda de 100MHz com uma relação sinal ruído de 20 dB. Apresente os cálculos efetuados.

$$V_{p} = 2 \times 10^{8} \text{ m/s}$$
 $B = 100 \text{ HHz} = 10^{8} \text{ Hz}$
 $S/N = 10^{\frac{20}{10}} = 10^{2}$
 $C = 8 \log_{2}(1+8/N)$
 $C = 10^{8} \log_{2}(1+10^{2}) = 10^{8} \log_{2}(101)$ (bps)

Departamento de Eng. Informática da FCTUC Introdução às Redes de Comunicação Exame de Época Normal

QUESTÕES PRÁTICAS

(Nota: As questões seguintes deverão ser respondidas diretamente na folha de enunciado)

4 9-		
NOME DO ALUNO:		
NÚMERO:	3111	
		h

Cenário: Na resolução das questões seguintes deverá considerar o cenário ilustrado a seguir, no qual as redes "REDE 1", "REDE 2" e "REDE 6" encontram-se interligadas através das redes "REDE 3", "REDE 4" e "REDE 5".

Questão 7

a) Considerando que a <u>REDE 1 tem o endereço 10.1.144.0/20</u>, que a <u>REDE 2 tem o endereço 10.10.10.0/24</u> e que a <u>REDE 6 tem o endereço 10.20.20.0/26</u> indique, para essas redes, a gama de endereços utilizáveis para endereçar *hosts*, o endereço da rede e o endereço de *broadcast*:

Introdução às Redes de comunicação

Pág. 3/6

09-Jan-2019

Rede:	Gama de endereços:	Endereço da rede:	Endereço de broadcast:
REDE 1	0 10.1.144.1	10.1.144.0	10.1.159.255
REDE 2	10.10.10.1	10.10.10.0	10.10.10.255
REDE 6	10.40.60.1	0.0%.01	10.20.20.63

b) Considere que dispõe da gama de endereços IPv4 172.16.1.176/28 para endereçar as Redes 3, 4 e 5 (as redes de interligação dos *routers* no cenário). Segmente esta gama de forma a que todas as redes fiquem com o mesmo número de endereços disponíveis e indique, para as redes indicadas na tabela seguinte, a seguinte informação:

	REDE 3:	REDE 5:
Endereço da Rede:	172.16.1.180	176.16.1.188
Endereço de broadcast:		
	172.16.1.183	46.16.1.191
Gama de endereços disponíveis para endereçar	ጎት <i>ል.</i> ነG. 1. ነ8ነ	176, 16.1.189
hosts:	9 178.16.1-182	9 136.16.1.190

c) Utilizando a gama de endereços IPv4 convencionada anteriormente para a REDE 6, atribua um endereço à interface e0/0 do router Router_R4 e uma configuração de rede adequada ao Computador PC-5, indicando a seguinte informação de configuração a utilizar:

	Computador PC-5:	Interface e0/0 do Router_R4:
Endereço IP:	10.00.00.1	10.20.20.62
Máscara de Rede:	255. 255. 255. 19d	
Endereço do default gateway:	10.20.20.62	

d) Considere que o router Router_R2 utiliza o sistema IOS da Cisco. Tendo em consideração as configurações atribuídas anteriormente, caso tivesse que configurar as rotas no router Router_R2 utilizando apenas encaminhamento estático e o comando "ip route", que comando(s) teria que usar?

<u>Nota</u>: a sintaxe deste comando é a seguinte: ip route {destination_network} {subnet_mask} {default_gateway}

Introdução às Redes de comunicação

Pág. 4/6

09-Jan-2019

Questão 8

Considere as comunicações entre os routers Router_R1 e Router_R3 do cenário, através do router Router_R2. Considere igualmente que os links de comunicação apresentam as seguintes

Link R1-R2: distância: 10km, velocidade de transmissão: 10Mbps

Link R2-R3: distância: 20km, velocidade de transmissão: 20Mbps Link R2-R3: distância: 20km, velocidade de transmissão: 20Mbps

a) Considere que o delay total de queuing e processamento dos pacotes IP nos routers é de 0.05 ms. Calcule o delay total das comunicações entre os routers Router_R1 e Router_R3, considerando a transmissão de um pacote com 10000 bits e a velocidade de propagação de 2x108 m/s. Deverá considerar igualmente que os routers operam no modo store and forward. dans + dpoc = 0.05 ms = 0.05 × 10-35

pacale: 10000 bits ND = 8 x 108 cm 18

$$R1 \rightarrow R2$$

$$Tp = \frac{10^{4}}{2 \times 10^{8}} = \frac{1}{2} \times 10^{-4} 5$$

$$Tp = \frac{8^{4} \times 10^{4}}{2 \times 10^{8}} = 10^{-4} 5$$

$$T_{x} = \frac{10000}{10^{7}} = 10^{-3}$$

$$T_{x} = \frac{10000}{2 \times 10^{7}} = \frac{1}{2} \times 10^{-3} 5$$

$$T_{y} = \frac{10000}{2 \times 10^{7}} = \frac{1}{2} \times 10^{-3} 5$$

$$T_{z} = \frac{1}{2} \times 10^{-4} + 10^{-3}$$

$$T_{z} = 10^{-4} + \frac{1}{2} \times 10^{-3}$$

$$T_{z} = 10^{-4} + \frac{1}{2} \times 10^{-3} + 0.05 \times 10^{-3} (5)$$

$$T_{z} = \frac{1}{2} \times 10^{-4} + 10^{-3} + 10^{-4} + \frac{1}{2} \times 10^{-3} + 0.05 \times 10^{-3} (5)$$

b) Considere que se pretende transferir 20000 bits de informação entre os routers Router_R1 e Router_R3, e assuma que não há mais comunicações entre estes routers. Qual é a taxa de transmissão máxima para as comunicações entre os dois routers?

A taxa de transmissão máxima é igual ao memon ralon de relo eidade de transmissão, partanto, meste aso, é igual a 10 Mbps.

c) Ignorando agora os delays nas comunicações entre os routers Router_R1 e Router_R3, qual é o tempo total para transmissão dos 20000 bits de informação do router Router_R1 para o Router_R3? paere: 20000 bits

$$R_{1} \rightarrow R_{2}$$

$$T_{p} = \frac{10^{4}}{2 \times 10^{3}} = \frac{1}{2} \times 10^{4} \text{ 5}$$

$$T_{k} = \frac{80000}{10^{3}} = 2 \times 10^{-3} \text{ 5}$$

$$T_{k} = \frac{1}{2} \times 10^{-4} + 8 \times 10^{-3} + 10^{-4} + 10^{-3} \text{ (s)}$$

Exame época especial 2019

Endereços das redes		
Rede 1	189.201.0.0/16	
Rede 6	189.206.0.0/25	

Questão 8

Suponha que pretende efetuar um download de dados entre uma estação terrestre e a Estação Espacial Internacional (EEI). Para cada ligação, a estação terrestre tem no máximo 30s para completar o download total dos dados. Supondo que a distância entre a estação terrestre e a EEI é de 400Km, que cada pedido de download enviado pela estação terrestre usa um pacote de tamanho total de 500bytes, que a resposta enviada pela EEI é um pacote com tamanho total de 20MB, que o tempo de processamento do pedido na EEI é de 2seg e que o canal usado tem uma largura de banda de 1MHz, qual será o número mínimo de estados de sinalização que teremos de usar para assegurar que a transmissão possa ser realizada no tempo pretendido? Suponha que ca dados só poderão começar a ser transmitidos pela EEI após o pedido ter sido completamente lo e que a velocidade de transmissão é a mesma em ambos os sentidos.

Máscaras de rede

Subnet Mask	CIDR	Subnet Mask	CIDR
255.128.0.0	/9	255.255.240.0	/20
255.192.0.0	/10	255.255.248.0	/21
255.224.0.0	/11	255.255.252.0	122
255.240.0.0	/12	255.255.254.0	/23
255.248.0.0	/13	255.255.255.0	/24
255.252.0.0	/14	255.255.255.128	/25
255.254.0.0	/15	255.255.255.192	/26
255.255.0.0	/16	255.255.255.224	/27
255.255.128.0	/17	255.255.255.240	/28
255.255.192.0	/18	255.255.255.248	/29
255.255.224.0	/19	255.255.255.252	/30

/30	255.255.255.252	0.0.0.3
/29	255.255.255.248	0.0.0.7
/28	255.255.255.240	0.0.0.15
/27	255.255.255.224	0.0.0.31
/26	255.255.255.192	0.0.0.63
125	255.255.255.128	0.0.0.127
124	255.255.255.0	0.0.0.255
/23	255.255.254.0	0.0.1.255
/22	255.255.252.0	0.0.3.255
/21	255.255.248.0	0.0.7.255
/20	255.255.240.0	0.0.15.255

/19	255.255.224.0	0.0.31.255
/18	255.255.192.0	0.0.63.255
/17	255.255.128.0	0.0.127.255
/16	255.255.0.0	0.0.255.255
/15	255.254.0.0	0.1.255.255
/14	255.252.0.0	0.3.255.255
/13	255.248.0.0	0.7.255.255
<i>i</i> 12	255.240.0.0	0.15.255.255
/11	255.224.0.0	0.31.255.255
/10	255.192.0.0	0.63.255.255
/9	255.128.0.0	0.127.255.255