DEVOIR SURVEILLÉ 2

Exercice 1 -

1.
$$D = 1 - \frac{1}{3} + \frac{1}{2} = \frac{6}{6} - \frac{2}{6} + \frac{3}{6} = \frac{7}{6}$$

2.
$$E = 3\left(1 - \frac{1}{5}\right) + 2 \times \frac{3}{7} = 3\left(\frac{5}{5} - \frac{1}{5}\right) + \frac{6}{7} = 3 \times \frac{4}{5} + \frac{6}{7} = \frac{12}{5} + \frac{6}{7} = \frac{84}{35} + \frac{30}{35} = \frac{114}{35}$$

3.
$$F = \frac{1 + \frac{1}{3}}{\frac{2}{7} + 3(2 - \frac{1}{2})} = \frac{\frac{4}{3}}{\frac{2}{7} + 3 \times \frac{3}{2}} = \frac{\frac{4}{3}}{\frac{2}{7} + \frac{9}{2}} = \frac{\frac{4}{3}}{\frac{4}{14} + \frac{63}{14}} = \frac{4}{3} \times \frac{14}{67} = \frac{56}{201}$$

4.
$$G = \left(\frac{1}{3} - \frac{1}{2}\right) \times \left(\frac{1}{4} - \frac{4}{3}\right) \div \left(1 - \frac{1}{2}\right) = \left(\frac{2}{6} - \frac{3}{6}\right) \times \left(\frac{3}{12} - \frac{16}{12}\right) \div \frac{1}{2} = -\frac{1}{6} \times \left(-\frac{13}{12}\right) \times 2 = \frac{13}{36}$$

Exercice 2 -

1. Je résous :
$$2x-4=1 \iff 2x=5 \iff x=\frac{5}{2}$$
. Donc $S=\left\{\frac{5}{2}\right\}$.

2. Je résous :
$$x+3 \le 2x-1 \iff -x \le -4 \iff x \ge 4$$
. Donc $S = [4, +\infty[$.

3. Je me ramène à une étude de signe :

$$\frac{x+2}{x-3} \leqslant 3 \quad \Longleftrightarrow \quad \frac{(x+2)-3(x-3)}{x-3} \leqslant 0 \quad \Longleftrightarrow \quad \frac{-2x+11}{x-3} \leqslant 0.$$

J'établis désormais le tableau de signe de $\frac{-2x+11}{x-3}$:

x	$-\infty$		3		$\frac{11}{2}$		+∞
-2x+11		+		+	0	_	
x - 3		_	0	+		+	
$\frac{-2x+11}{x-3}$		_		+	0	_	

Donc
$$S = \left] - \infty, 3\right[\cup \left[\frac{11}{2}, +\infty \right].$$

- 4. Je commence par chercher les éventuelles valeurs interdites : $x-2=0 \iff x=2$. Ensuite, $4x-1=0 \iff x=\frac{1}{4}$. Cette valeur ne fait pas partie des valeurs interdites. Donc $\mathcal{S}=\left\{\frac{1}{4}\right\}$.
- 5. Je calcule le discriminant du polynôme : $\Delta = (-10)^2 4 \times 2 \times 12 = 100 96 = 4 = 2^2 > 0$. Le polynôme admet donc deux racines

$$x_1 = \frac{10-2}{2 \times 2} = 2$$
 et $x_2 = \frac{10+2}{2 \times 2} = 3$.

Donc $S = \{2, 3\}.$

6. Je calcule le discriminant du polynôme : $\Delta = (-2)^2 - 4 \times (-1) \times 3 = 4 + 12 = 16 = 4^2 > 0$. Le polynôme admet donc deux racines

$$x_1 = \frac{2-4}{2 \times (-1)} = 1$$
 et $x_2 = \frac{2+4}{2 \times (-1)} = -3$.

J'établis le tableau de signe de $-x^2 - 2x + 3$:

x	$-\infty$		-3		1		+∞
$-x^2-2x+3$		_	0	+	0	-	

Donc $S =]-\infty, -3[\cup]1, +\infty[$.

7. Je pose $P(x) = 6x^3 + 7x^2 - x - 2$. Comme P(-1) = -6 + 7 + 1 - 2 = 0, alors -1 est une racine du polynôme P(x) et donc il existe un polynôme Q(x) tel que P(x) = (x - (-1))Q(x) = (x + 1)Q(x). Je détermine le polynôme Q(x) par division euclidienne.

Finalement j'obtiens que $P(x) = (x+1)(6x^2+x-2)$. Je calcule maintenant le discriminant de $6x^2+x-2$. $\Delta = 1^2-4\times6\times(-2)=1+48=49=7^2>0$. Il y a donc deux racines

$$x_1 = \frac{-1-7}{2 \times 6} = -\frac{8}{12} = -\frac{2}{3}$$
 et $x_2 = \frac{-1+7}{12} = \frac{6}{12} = \frac{1}{2}$.

Donc
$$S = \left\{-1, -\frac{2}{3}, \frac{1}{2}\right\}.$$

Exercice 3 -

- 1. La fonction a est une fonction polynomiale donc a est définie sur \mathbb{R} .
- 2. La fonction b est une fraction rationnelle dont je cherche les valeurs interdites. Celles-ci sont les solutions de $4x 1 = 0 \iff 4x = 1 \iff x = \frac{1}{4}$. Donc b est définie sur $\mathbb{R} \setminus \left\{ \frac{1}{4} \right\}$.
- 3. La fonction c est une fraction rationnelle dont je cherche les valeurs interdites. Celles-ci sont les solutions de $x^2 5x + 6 = 0$, dont le discriminant est $\Delta = (-5)^2 4 \times 1 \times 6 = 25 24 = 1^2 > 0$. Il y a donc deux racines

$$x_1 = \frac{5-1}{2} = 2$$
 et $x_2 = \frac{5+1}{2} = 3$.

Donc c est définie sur $\mathbb{R} \setminus \{2,3\}$.

4. La fonction d est de la forme \sqrt{u} avec $u(x) = x^2 - 2x - 3$. Il me faut résoudre $x^2 - 2x - 3 \ge 0$. Je calcule le discriminant $\Delta = (-2)^2 - 4 \times 1 \times (-3) = 4 + 12 = 16 = 4^2 > 0$. Il y a donc deux racines

$$x_1 = \frac{2-4}{2} = -1$$
 et $x_2 = \frac{2+4}{2} = 3$.

J'établis le tableau de signe de u(x):

х	$-\infty$		-1		3		+∞
$x^2 - 2x - 3$		+	0	_	0	+	

Donc d est définie sur $]-\infty,-1] \cup [3,+\infty[$.

5. La fonction e est une somme, de la forme f+g avec $f(x)=\frac{1}{x}$ et g(x)=4x-5. f est la fonction inverse, définie sur \mathbb{R}^* et g est une fonction polynomiale, définie sur \mathbb{R} . Donc e est définie sur l'intersection $\mathbb{R}^* \cap \mathbb{R} = \mathbb{R}^*$.

6. La fonction f est de la forme $\sqrt{u(x)}$ avec $u(x) = \frac{2x-1}{-x+3}$. Il me faut donc résoudre $\frac{2x-1}{-x+3} \geqslant 0$. J'établis le tableau de signe de u(x):

x	$-\infty$		$\frac{1}{2}$		3		+∞
2x-1		_	0	+		+	
-x+3		+		+	0	_	
$\frac{2x-1}{-x+3}$		_	0	+		-	

Donc f est définie sur $\left[\frac{1}{2},3\right[$.

Exercice 4 -

1. La fonction f est une fraction rationnelle dont je cherche les valeurs interdites. Celles-ci sont les solutions de $2x-3=0 \iff 2x=3 \iff x=\frac{3}{2}$. Donc f est définie sur $\mathbb{R}\setminus\left\{\frac{3}{2}\right\}$. La fonction g est une fonction polynomiale donc g est définie sur \mathbb{R} .

2. f est définie sur $\mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$ qui n'est pas symétrique par rapport à 0. Donc f ne peut être ni paire, ni impaire. g en revanche est définie sur \mathbb{R} , qui est bien symétrique par rapport à 0. Je calcule alors g(-x): $g(-x) = 2(-x)^2 + 3 = 2x^2 + 3 = g(x)$. Donc g est paire.

3. Je détermine les expressions des fonctions composées.

$$f \circ f(x) = f\left(\frac{1}{2x-3}\right) = \frac{1}{2 \times \frac{1}{2x-3} - 3} = \frac{1}{\frac{2}{2x-3} - \frac{3(2x-3)}{2x-3}} = \frac{1}{\frac{2-6x+9}{2x-3}} = \frac{2x-3}{-6x+11}.$$

 $f \circ f$ est une fraction rationnelle dont je cherche les valeurs interdites. Celles-ci sont les solutions de -6x + 11 = 0, *i.e.* $x = \frac{11}{6}$. Donc $f \circ f$ est définie sur $\mathbb{R} \setminus \left\{ \frac{11}{6} \right\}$.

$$f \circ g(x) = f(2x^2 + 3) = \frac{1}{2(2x^2 + 3) - 3} = \frac{1}{4x^2 + 3}.$$

 $f \circ g$ est une fraction rationnelle qui n'a pas de valeur interdite, puisque $4x^2 + 3 \ge 3 > 0$ pour tout $x \in \mathbb{R}$. Donc $f \circ g$ est définie sur \mathbb{R} .

$$g \circ g(x) = g(2x^2 + 3) = 2(2x^2 + 3)^2 + 3 = 8x^4 + 24x^2 + 18 + 3 = 8x^4 + 24x^2 + 21$$
.

 $g \circ g$ est une fonction polynomiale donc $g \circ g$ est définie sur \mathbb{R} .

$$g \circ f(x) = g\left(\frac{1}{2x-3}\right) = 2\left(\frac{1}{2x-3}\right)^2 + 3 = \frac{2+3(2x-3)^2}{(2x-3)^2} = \frac{2+3(4x^2-12x+9)}{(2x-3)^2} = \frac{12x^2-36x+29}{(2x-3)^2}$$

 $g \circ f$ est une fraction rationnelle dont l'unique valeur interdite est $x = \frac{3}{2}$. Donc $g \circ f$ est définie $\sup \mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$.

Exercice 5 -

1. Par lecture graphique, j'obtiens le tableau de variation de la fonction f:

Par lecture graphique, j'obtiens le tableau de signe de la fonction g :

х	$-\infty$		-4		6		$+\infty$
g(x)		-	0	+	0	_	

2. (a) Je développe la forme factorisée donnée par l'énoncé afin de retomber sur la définition de f(x):

$$\frac{(x+4)(x-2)^2}{16} = \frac{x^3 - 4x^2 + 4x + 4x^2 - 16x + 16}{16} = \frac{x^3 - 12x + 16}{16} = \frac{x^3}{16} - \frac{3}{4}x + 1 = f(x).$$

J'ai bien montré que pour tout réel x, $f(x) = \frac{(x+4)(x-2)^2}{16}$.

(b) J'étudie le signe de f(x) grâce à la forme factorisée. Un carré est toujours positif et 16 est un nombre strictement positif, donc j'établis le tableau de signe suivant :

x	$-\infty$		-4		2		+∞
<i>x</i> + 4		_	0	+		+	
$(x-2)^2$		+		+	0	+	
f(x)		-	0	+	0	+	

3. Je commence par calculer le discriminant : $\Delta = \left(\frac{1}{4}\right)^2 - 4 \times \left(-\frac{1}{8}\right) \times 3 = \frac{1}{16} + \frac{12}{8} = \frac{25}{16} = \left(\frac{5}{4}\right)^2 > 0$. Il y a donc deux racines

$$x_1 = \frac{-\frac{1}{4} - \frac{5}{4}}{-\frac{2}{8}} = -\frac{6}{4} \times \left(-\frac{8}{2}\right) = 6$$
 et $x_2 = \frac{-\frac{1}{4} + \frac{5}{4}}{-\frac{2}{8}} = -4$.

Je déduis donc la factorisation de g(x):

$$g(x) = -\frac{1}{8} \times (x+4)(x-6) = -\frac{(x+4)(x-6)}{8}.$$

4. (a) Grâce aux deux factorisations trouvées précédemment pour f(x) et g(x), alors pour tout réel $x \in \mathbb{R}$,

$$f(x) - g(x) = \frac{(x+4)(x-2)^2}{16} - \frac{-(x+4)(x-6)}{8} = \frac{(x+4)((x-2)^2 + 2x - 12)}{16}$$
$$= \frac{(x+4)(x^2 - 4x + 4 + 2x - 12)}{16} = \frac{(x+4)(x^2 - 2x - 8)}{16}.$$

(b) Puisque $f(x) \le g(x) \iff f(x) - g(x) \le 0$, il me faut étudier le signe de f(x) - g(x). J'utilise l'expression établie à la question précédente et m'intéresse au facteur de degré 2. Le discriminant de $x^2 - 2x - 8$ vaut $\Delta = (-2)^2 - 4 \times 1 \times (-8) = 4 + 32 = 36 = 6^2 > 0$. Il y a donc deux racines

$$x_1 = \frac{2-6}{2} = -2$$
 et $x_2 = \frac{2+6}{2} = 4$.

Je peux alors établir le tableau de signe de f(x) - g(x):

x	$-\infty$		-4		-2		4		+∞
x + 4		-	0	+		+		+	
$x^2 - 2x - 8$		+		+	0	_	0	+	
f(x) - g(x)		_	0	+	0	_	0	+	

Ainsi les solutions de l'inéquation $f(x) \le g(x)$ se trouvent dans $S =]-\infty, -4] \cup [-2, 4]$.

5. Le tableau de signe de f obtenu à la question **2.(a)** est bien cohérent avec le graphique fourni. Aussi, en accord avec la question **4.(b)**, la courbe \mathcal{C}_f est bien en dessous de \mathcal{C}_g sur $]-\infty,-4]\cup[-2,4]$ et au-dessus de \mathcal{C}_g sur $[-4,-2]\cup[4,+\infty[$. Ceci est également cohérent avec le graphique fourni.

Exercice 6 -

- 1. Graphiquement, j'obtiens que:
 - (a) f(0) = -6,
 - (b) l'image de 3 par f est f(3) = 0,
 - (c) les antécédents de -4 par f sont -1 et 2,
 - (d) l'unique antécédent de 10 par f est 4.5,
 - (e) les antécédents de -6 par f sont 0 et 1,

- (f) l'ordonnée du point de C_f d'abscisse 5 est 14,
- (g) les solutions de l'équation f(x) = 3 sont -2.5 et 3.5.
- 2. Il me suffit de remplacer x par $\frac{1}{2}$ dans la formule de f(x):

$$f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} - 6 = \frac{1}{4} - \frac{1}{2} - 6 = \frac{1}{4} - \frac{2}{4} - \frac{24}{4} = -\frac{25}{4}.$$

3. Il me suffit de développer le produit et de retrouver la définition de f(x):

$$(x-3)(x+2) = x^2 - 3x + 2x - 6 = x^2 - x - 6 = f(x).$$

4. Grâce aux questions précédentes,

$$f(x) = 0 \iff (x-3)(x+2) = 0 \iff x-3 = 0 \text{ ou } x+2 = 0 \iff x = 3 \text{ ou } x = -2.$$

Je retrouve donc bien le fait que les antécédents de 0 par f sont -2 et 3.

Exercice 7 -

- 1. FAUX, [-1, -3] n'a même pas de sens mathématique.
- 2. FAUX, [5,2] n'a même pas de sens mathématique.
- 3. VRAI, la flèche monte de 2 à 4 sur cet intervalle.
- 4. VRAI, -3 est le minimum de f sur [-5, 12].
- 5. FAUX, puisque le minimum de f sur [-5, 12] est -3.
- 6. VRAI, puisque f(9) = 2 < 4 < 5 = f(4) et que f est décroissante sur [4,9].
- 7. VRAI, puisque f(12) = 4 et que f est croissante sur [9, 12].

Exercice 8 -

1. Je remplace n par les valeurs dans la définition de u_n :

$$u_0 = \frac{3 \times 0 + 4}{0 + 1} = \frac{4}{1} = 4$$
, $u_1 = \frac{3 + 4}{1 + 1} = \frac{7}{2}$, $u_2 = \frac{6 + 4}{2 + 1} = \frac{10}{3}$ et $u_3 = \frac{9 + 4}{3 + 1} = \frac{13}{4}$.

2. Pour les expressions suivantes, j'obtiens :

$$\begin{split} u_{n-1} &= \frac{3(n-1)+4}{n-1+1} = \frac{3n-3+4}{n} = \frac{3n+1}{n}, \\ u_{n}-1 &= \frac{3n+4}{n+1}-1 = \frac{3n+4}{n+1} - \frac{n+1}{n+1} = \frac{2n+3}{n+1}, \\ u_{n+2} &= \frac{3(n+2)+4}{n+2+1} = \frac{3n+6+4}{n+3} = \frac{3n+10}{n+3}, \\ u_{n}+2 &= \frac{3n+4}{n+1}+2 = \frac{3n+4}{n+1} + \frac{2(n+1)}{n+1} = \frac{3n+4+2n+2}{n+1} = \frac{5n+6}{n+1}, \\ u_{2n-1} &= \frac{3(2n-1)+4}{2n-1+1} = \frac{6n-3+4}{2n} = \frac{6n+1}{2n}, \\ 2u_{n}-1 &= 2 \times \frac{3n+4}{n+1} - 1 = \frac{6n+8}{n+1} - \frac{n+1}{n+1} = \frac{5n+7}{n+1}, \\ u_{2n}-1 &= \frac{3 \times 2n+4}{2n+1} - 1 = \frac{6n+4}{2n+1} - \frac{2n+1}{2n+1} = \frac{4n+3}{2n+1}. \end{split}$$

3. Le terme d'indice n + 1 est

$$u_{n+1} = \frac{3(n+1)+4}{n+1+1} = \frac{3n+3+4}{n+2} = \frac{3n+7}{n+2}.$$