ALESSANDRO BACCARINI

Curriculum Vitae

CONTACT INFORMATION

RESEARCH INTERESTS

My interests span across areas of information security, applied cryptography, and privacy-enhancing technologies. I design and implement protocols for secure multi-party computation (MPC) based on secret sharing for a variety of practical applications, such as privacy-preserving machine learning, sustainability, and outsourcing. Additionally, I research how to quantify information disclosure from arbitrary secure function evaluations through information-theoretic approaches. I am also interested in quantum-resilient cryptographic techniques.

EDUCATION

PhD, Computer Science , University at Buffalo	Aug. 2024
Advisor: Marina Blanton	
MS, Cybersecurity, Fordham University	May 2019
Advisor: Thaier Hayajneh	
BS, Physics, Fordham University	May 2017
Minor, Mathematics	

WORK EXPERIENCE

Research/Teaching Assistant, Computer Science University at Buffalo	Jun. 2019 – July 2024
Adjunct Assistant Professor , Physics Fordham University	Aug. 2017 – May 2019
Graduate Research Assistant , Cybersecurity Fordham University	Aug. 2017 – May 2019

AWARDS AND RECOGNITION

Alan Selman Scholarship, University at Buffalo

Mar. 2024

First place \$2000 cash prize, focus in theoretical computer science.

GSAS Centennial Scholarship, Fordham University

2017 - 2019

Tuition support, stipend for both academic years and summer semesters.

PUBLICATIONS

Thesis

[1] **A. Baccarini**. New Directions in Secure Multi-Party Computation: Techniques and Information Disclosure Analysis. *PhD Thesis*, University at Buffalo, 2024.

Conference Proceedings

- [2] **A. Baccarini**, M. Blanton, and S. Zou. Understanding Information Disclosure from Secure Computation Output: A Study of Average Salary Computation. *ACM Conference on Data and Application Security and Privacy (CODASPY)*, pages 187–198, 2024.
- [3] **A. Baccarini**, M. Blanton, and C. Yuan. Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning. In *Proceedings on Privacy Enhancing Technologies (PoPETs)*, 2023(1):608-626, and in *Privacy Enhancing Technologies Symposium (PETS)*[†], 2023.
- [4] **A. Baccarini** and T. Hayajneh. Evolution of Format Preserving Encryption on IoT Devices: FF1+. In *Hawaii International Conference on System Sciences (HICSS)*, pages 1628–1637, 2019.
- [5] A. Alhayajneh, **A. Baccarini**, and T. Hayajneh. Quality of Service Analysis of VoIP Services. In *IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)*, pages 812–818, 2018.

Refereed Journals

- [6] **A. Baccarini**, M. Blanton, and S. Zou. Understanding Information Disclosure from Secure Computation Output: A Comprehensive Study of Average Salary Computation. *ACM Transactions on Privacy and Security (TOPS)*, to appear.
- [7] A. Alhayajneh, **A. Baccarini**, G.M. Weiss, T. Hayajneh, and A. Farajidavar. Biometric Authentication and Verification for Medical Cyber Physical Systems. *Electronics*, 7(12):436, 2018.

[†]PETS is a conference that switched to organizing accepted papers in journal-style volumes and issues. It is currently listed as a journal in DBLP.

[8] K.N. Griggs, O. Ossipova, C.P. Kohlios, **A. Baccarini**, E.A. Howson, and T. Hayajneh. Health-care Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring. *Journal of Medical Systems*, 42(7):130, 2018.

RESEARCH PROJECTS

MPC and Privacy-Preserving Machine Learning University at Buffalo

2020 – Present Repository

- Designed a comprehensive ring-based framework of replicated secret sharing multi-party protocols for an arbitrary number of parties in the semi-honest (passively secure), honest majority setting.
- Implemented protocol constructions in C++ and extensively benchmarked our framework, obtaining an up to 33× performance gain over existing state-of-the-art secret sharing techniques.
- Applied techniques to privacy-preserving machine learning tasks, including (quantized) neural network inference and support vector machine classification.
- Discovered an algebraic optimization for secure quantized neural network inference that significantly improved efficiency and led to an over 2× improvement over prior works.

PICCO Compiler

2022 – Present Repository

University at Buffalo

- Core developer and maintainer of *PICCO*, a source-to-source compiler used to translate general-purpose programs into their secure implementations for deployment in a distributed setting.
- Extensively optimized existing field-based protocol implementations, while simultaneously
 performing a large-scale refactor to improve future maintainability and support extensibility
 to stronger security settings.
- Integrated ring-based protocol constructions into the compiler to support general-purpose computation over integer and floating-point inputs.
- Mentored a summer REU student tasked with optimizing the compiler's networking functionalities.

Disclosure Analysis from Secure Function Evaluation University at Buffalo

2021 – Present Repository

• Designed a novel information-theoretic approach for evaluating the information disclosure about private inputs from the output of secure function evaluations.

- Comprehensively analyzed a practically significant statistical function (the average salary) through extensive theoretical and analytical analysis in a variety of computational configurations.
- Applied our framework to complex descriptive statistical functions in conjunction with datadriven techniques to estimate the information disclosure.

Blockchain Applications in Healthcare

2017 - 2019

Fordham University

- Led the design of one of the first frameworks that fused blockchain and healthcare into a HIPAA-compliant IoT remote patient monitoring system, based on the Ethereum protocol.
- Assisted in prototype smart contract development in Solidity to support real-time automated monitoring.

RELEVANT COURSE PROJECTS

Implementation of the Apple PSI System

2021

University at Buffalo, Security and Privacy in IoT

Repository

- Developed a modified variant of Apple's private set intersection (PSI) system in Python to obliviously detect harmful media within a database through neural network-based perceptual hash functions.
- Implemented various necessary cryptographic primitives to build the framework, including secret sharing of private keys, HMAC key derivation and pseudorandom functions, and Diffie-Hellman group construction.

Quantum Secret Sharing of Classical Information

2020

University at Buffalo, *Applied Cryptography and Computer Security*

Repository

• Analyzed the Hillery-Buek-Berthiaume quantum secret sharing protocol of classical information, and implemented the construction in IBM's Python Qiskit framework.

PROFESSIONAL SERVICE

Conference Committees

USENIX Security Symposium, artifact evaluation committee member	2024
USENIX Security Symposium, artifact evaluation committee member	2023

Conference and Journal Refereeing

IEEE Transactions on Information Forensics and Security (TIFS)

IEEE Transactions on Dependable and Secure Computing (TDSC)

European Symposium on Research in Computer Security (ESORICS)

IEEE/ACM International Conference on Automated Software Engineering (ASE)

Multidisciplinary Digital Publishing Institute (MDPI) Entropy, Sensors, Symmetry, Information Hawaii International Conference on System Sciences (HICSS)

TECHNICAL SKILLS

Cryptographic secure multi-party computation, secret sharing, differential privacy, encryp-

tion, signatures and commitments, zero-knowledge proofs

Languages C/C++, Python, Bash, Lua, Solidity, LTEX

Developer Git, SVN, Neovim, VS Code, Unix

Libraries GNU MP and MPFR, OpenSSL, NumPy, Matplotlib, TensorFlow

TEACHING

At the **University at Buffalo**:

CSE 116 Computer science II (Instructor)

CSE 4/529 Algorithms for Modern Computing Systems

CSE 4/531 Analysis of Algorithms

1 semester

CSE 542 Software Engineering Concepts

1 semester

At Fordham University:

PHYS 1511/12 Physics I/II Lab (Instructor) 4 semesters