Workshop Notes

Robert Dougherty-Bliss

10 February 2021

Logistics

Nothing to say here.

New stuff

Since I last saw you, you learned more about sequences and got some new homework. We're going to talk about some sequence topics and a problem from the new homework, as well as any other questions you might have.

Cesàro means

If we have a sequence x(n), then we can take averages of it by defining

$$y(n) = \frac{1}{n} \sum_{k=1}^{n} x(k).$$

Plausible statement: If x(n) converges, then the averages also converge to the same thing.

This is true. It's called Cesàro summation. The proof illustrates one of the main techniques of analysis: Splitting a problem into two managable parts.

Theorem 1. If $x(n) \to x$, then

$$y(n) = \frac{1}{n} \sum_{k=1}^{n} x(k) \to x.$$

Proof. We want to show that, given any $\epsilon > 0$, there exists some integer N such that

$$|y(n) - x| < \epsilon$$

for n > N.

The trick about averaging is that we can break up a single x into many terms:

$$y(n) - x = \frac{1}{n} \sum_{k=1}^{n} x(k) - x = \frac{1}{n} \sum_{k=1}^{n} (x(k) - x).$$

Therefore, by the triangle inequality,

$$|y(n) - x| \le \frac{1}{n} \sum_{k=1}^{n} |x(k) - x|.$$

For "large" k, we have the "sharp" bound $|x(k) - k| < \epsilon$. For "small" k, we only have the "coarse" fact that |x(k) - k| is bounded, since $x(k) - k \to 0$.

To make this idea rigorous, pick M such that $|x(k)-x| \leq M$ for all k (by boundedness), and N such that $|x(k)-x| < \epsilon$ for k > N (by convergence). Then, for n > N,

$$|y(n) - x| \le \frac{1}{n} \sum_{k=1}^{N} |x(k) - x| + \frac{1}{n} \sum_{N < k \le n} |x(k) - x|$$

$$\le \frac{NM}{n} + \frac{\epsilon(n-N)}{n}$$

$$\le \frac{NM}{n} + \epsilon.$$

To get the right bound here, we need to turn that NM/n into something involving ϵ . But N and M are both fixed relative to ϵ , so we can just require n to be really big in comparison. That is, let N' be such that N' > N and $NM/n < \epsilon$ for n > N'. Then, for n > N', the bound becomes

$$|y(n) - x| \le \epsilon + \epsilon = 2\epsilon.$$

Since ϵ was arbitrary, this is equivalent and shows that $y(n) \to x$.

Interesting question: If the averages converge, does x(n) converge?

Limits superior and inferior

Not every sequence has a limit, but sometimes we want to talk about "limits" even when they don't exist. For example, $a(n) = (-1)^n$ does not "converge," but it kind of has two "pseudo-limits," 1 and -1. These "peusdo-limits" are made precise by the *limits superior and inferior*.

Given any sequence a(n), there exists a number β (possibly ∞) such that:

- 1. For every $\epsilon > 0$, we have $a(n) < \beta + \epsilon$ eventually.
- 2. For every $\epsilon > 0$, there are infinitely many n such that a(n) is in $(\beta \epsilon, \beta]$.

The number β is called the *limit superior* of a(n), and we denote it by $\beta = \limsup_{n} a(n)$.

The above properties actually uniquely define the limit superior, but they don't prove that it exists. Let's go through how Abbott does it. For now, suppose that a(n) is a bounded sequence.

- (a) Prove that $y(n) = \sup\{a(k) \mid k \ge n\}$ converges. Let $\limsup_n a(n) = \lim_n y(n)$.
- (b) Give the analogous definition for $\liminf_n a(n)$.
- (c) Show that $\liminf_n a(n) \leq \limsup_n a(n)$. [Hint: If x(n) and y(n) converge and $x(n) \leq y(n)$, then $\lim_n x(n) \leq \lim_n y(n)$. (You should prove this!)]
- (d) Show that $\lim_n a(n) = x$ iff $\lim_n a(n) = x = \lim_n a(n)$. (You can't use the above properties I mentioned unless you prove them!)

Exercise 1 If $a(n) \leq b(n)$, we can't always say that $\lim_n a(n) \leq \lim_n b(n)$, because the limits might not even exist. Show that

$$\limsup_{n} a(n) \le \limsup_{n} b(n)$$

and

$$\liminf_n a(n) \leq \liminf_n b(n)$$

whenever $a(n) \leq b(n)$ for all n.