Nanopore automata

Ian $\mathrm{Holmes}^{1,2,*}$

- 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- 2 Department of Bioengineering, University of California, Berkeley, CA, USA

Contents

1	Abs	stract	2					
2	Specification							
	2.1	Parameterization algorithm	2					
	2.2	Reference search algorithm	2					
	2.3	Implementation	3					
	2.4	Evaluation	3					
3	Me	thods	3					
	3.1	Model	3					
	3.2	Baum-Welch algorithm	5					
	3.3	Viterbi algorithm	5					
4	Results							
5	Discussion							
6	Acknowledgments							
7	Figure Legends							
8	Appendix							
	8.1	Gamma distribution	9					
	8.2	Normal distribution	9					

1 Abstract

State machine algorithms for aligning Nanopore reads. Initial goal is simple reusable code for aligning a nanopore read to a reference sequence. No attempt at optimization yet.

2 Specification

2.1 Parameterization algorithm

Given the following inputs

- Reference genome (FASTA)
- Segment-called reads (FAST5/HDF5)

Perform the following steps

• Perform Baum-Welch to fit a rich model

Rich model incorporates segment statistics.

2.2 Reference search algorithm

Given the following inputs

- Reference genome
- \bullet Segment-called reads (FAST5/HDF5)
- Parameterized rich model

Perform the following steps

• Perform Viterbi alignment

2.3 Implementation

Libraries etc.

 $\mathrm{HDF}5...$

2.4 Evaluation

Strategy...

Data sets...

3 Methods

Model & inference algorithms.

3.1 Model

- \bullet Order-N transducer.
- Input: nucleotide
- Output: nucleotide, segment mean, duration
- Emissions:
 - categorical (base k-mer)
 - mixture of Normal/gamma (mean/duration)
- Transitions:
 - Match: emit single segment, absorb 1 base
 - Insert: affine gap insertion of bases: emits segments, absorbs no bases
 - Delete: affine gap deletion of bases: emits no segments, absorbs bases
 - Merge: emit single segment, absorb 2 or 3 bases

- Split: emit single segment, absorb 0 bases
- Skip: emit single segment, absorb $2 \dots K$ bases (large K, low extension penalty)

This can be achieved by a Mealy transducer with 3×4^N states. The factor of 4^N accounts for the order-N context. For each such context, the three states are MAT, INS and DEL.

Parameters:

- Gap opening & extension probabilities λ_{go} , λ_{gx}
- Merge probability λ_{mo} , probability that it's a 3-merge is λ_{mx}
- Split probability λ_s
- Skip probability λ_{ko} , skip extension probability λ_{kx}

In general the emissions are of the form

$$(y, m, d) \sim \text{CNG}(L)$$

where L is a "label"

$$y \sim \text{Categorical}(\mathbf{p}_L)$$

$$m \sim \text{Normal}(\mu_L, \tau_L)$$

$$d \sim \operatorname{Gamma}(\alpha_L, \beta_L)$$

The transition table is as follows:

Transition	From	То	Weight	Input	Output
Match	MAT	MAT	$(1 - \lambda_{go})(1 - \lambda_{mo})(1 - \lambda_s)(1 - \lambda_{ko})$	$x\in \Omega$	$(y, m, d) \sim \text{CNG}(\text{match}, x, d)$
Insert	MAT	INS	$\lambda_{go}/2$		
	INS	INS	λ_{gx}		
	INS	MAT	$1 - \lambda_{gx}$	none	none
Delete	MAT	DEL	$\lambda_{go}/2$		
	DEL	DEL	λ_{gx}		
	DEL	MAT	$1 - \lambda_{gx}$	none	none
Merge	MAT	MAT			
Split	MAT	MAT			
Skip	MAT	MAT			

Here $y \in \Omega$ where Ω is the nucleotide alphabet and $c \in \Omega^N$ is the context.

3.2 Baum-Welch algorithm

3.3 Viterbi algorithm

- 4 Results
- 5 Discussion

6 Acknowledgments

7 Figure Legends

8 Appendix

8.1 Gamma distribution

$$x \sim \operatorname{Gamma}(\alpha, \beta)$$

 $\operatorname{E}[x] = \alpha/\beta$
 $\operatorname{Var}[x] = \alpha/\beta^2$

Shape parameter α , rate parameter β .

$$P(x|\alpha,\beta) = \frac{x^{\alpha-1}\beta^{\alpha}\exp(-x\beta)}{\Gamma(\alpha)}$$

where Γ is the gamma function

$$\Gamma(\alpha) = \int_0^\infty z^{\alpha - 1} \exp(-z) dz$$

Note $\Gamma(n) = (n-1)!$ for positive integer n.

8.2 Normal distribution

$$x \sim \text{Normal}(\mu, \tau)$$

Mean μ , precision τ (precision is reciprocal of variance).

$$P(x|\mu,\tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau}{2}(x-\mu)^2\right)$$