Optimization algorithms

10/10 points (100.00%)

Quiz, 10 questions

Congra	atulations! You passed!	N
~	1/1 points	
	notation would you use to denote the 3rd layer's activations wh h example from the 8th minibatch?	en the inpu
	$a^{[8]\{3\}(7)}$	
	$a^{[8]\{7\}(3)}$	
0	$a^{[3]\{8\}(7)}$	
Cori	rect	
	$a^{[3]\{7\}(8)}$	
~	1 / 1 points	
2. Which	of these statements about mini-batch gradient descent do you	agree with?
	You should implement mini-batch gradient descent without ar loop over different mini-batches, so that the algorithm process batches at the same time (vectorization).	•
	Training one epoch (one pass through the training set) using m gradient descent is faster than training one epoch using batch descent.	
0	One iteration of mini-batch gradient descent (computing on a batch) is faster than one iteration of batch gradient descent.	single mini-

Optimization algorithms

10/10 points (100.00%)

Quiz, 10 questions

Why is the best mini-batch size usually not 1 and not m, but instead something inbetween?

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.

Correct

If the mini-batch size is 1, you end up having to process the entire training set before making any progress.

Un-selected is correct

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.

Un-selected is correct

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

Correct

1/1 points

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Optimization algorithms

10/10 points (100.00%)

Quiz, 10 questions

Which of the following do you agree with?

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

1 / 1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the

Optimization algorithms

10/10 points (100.00%)

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
 , $v_2^{corrected}=7.5$

$$igcup_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$igcup v_2=10$$
, $v_2^{corrected}=10$

$$igcup v_2=10$$
, $v_2^{corrected}=7.5$

1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = 0.95^t lpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$\alpha = \frac{1}{1+2*t} \alpha_0$$

$$\bigcirc \quad \alpha = e^t \alpha_0$$

Correct

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line

Optimization algorithms using $\beta=0.9$. What would happen to your red curve as y40/10 points (100.00%) Quiz, 10 questions vary β ? (Check the two that apply)

Un-selected is correct

Optimization algorithms

Quiz, 10 questions Consider this figure:

10/10 points (100.00%)

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

	(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
0	(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
Corr	ect

(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3)

1/1 points

9

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

	Try tuning the learning rate $lpha$
Corr	oct

Try mini-batch gradient descent

Correct

Optimization algorithms 10/10 points (1						
Quiz, 10 questions		Try initializing all the weights to zero	•			
	Un-s	selected is correct				
		Try better random initialization for the weights				
	Correct					
		Try using Adam				
	Corr	rect				
	~	1/1 points				
	10. Which of the following statements about Adam is False?					
		We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)	า			
		Adam combines the advantages of RMSProp and momentum				
	0	Adam should be used with batch gradient computations, not with mini- batches.				
	Correct					
		The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned	d.			
	r) ir	~				

