Aggregate Conditions, Child Growth & the DHS or

Linked Data, Disciplinary Expertise & Statistical Delusions

Joseph R. Cummins
University of California, Riverside
AAEA Virtual Workshop

Friendly Fire: UC Davis Edition

 Tom Beatty told us it is now much harder to publish in Econ Journals just using public data

But I try a lot and sometimes succeed!

- So 3 Things in 20 Minutes:
 - Publishing in Econ using Public Data
 - The Demographic and Health Surveys
 - Determinants of Child Growth Faltering

Part 1: Two Things You Need to Publish Well With Public Survey Data

- Document a Really Interesting Pattern:
 - N.b. Tens of millions of women have exited the labor market in India over the last decade or two.... Why?

- Bring In More Data:
 - A lot of things you can do on one DHS you can do on most DHS. And you can do it simultaneously.
 - A lot of things about the world have been measured for a long time. And you can match them to people.

The Problem of Finding Something New and Interesting....

 You have to have a new perspective to see something new:

The Problem of Adding More Data...

- Often this Requires Multiple Fields of Expertise:
 - X is not in field: Environmental (Pollution Exposure)
 - Y is not in field: Health (Child Growth)
- Failing to Embrace Expertise Can Be Problematic
 - You can misunderstand magnitudes
 - You can report (physically, biologically) impossible things
 - You can be lead down blind alleys
 - You won't learn as much.

Part 2: Data Linkages in the DHS

• 1. The DHS

2. Appending

• 3. Merging

How to Create: Appending and Merging

- Appending: adding rows
 - stacking multiple data collection rounds (panel or repeated cross-section)
- Merging: adding columns
 - Adding information to individuals or groups of people that was not in the original data via some form of matching
 - E.g.: geography (space) or survey year (time) or exposure timing (cohort)
- You don't even have to Append anymore. ¡Thanks iPums!

Appending

- Increased Sample Size
 - Smaller standard errors/confidence intervals

- Represents a larger population of people
 - More countries

- Extends over longer period of time
 - More years of data and cohorts of people

Merging

- Geography:
 - Your Country, City, Neighborhood, Address

- Calendar Time:
 - Something happened in year Y

- Cohort Time:
 - Some condition when a person was age A

Part 3: Know Your (New) Data

Height-for-Age Z-score

Example 1: GDP Growth and Child HAZ

Example 2: The Indian Enigma

Example 3: Anaka Aiyar on Examples 1 & 2

Know Your Y

Vollmer et al. 2014, Lancet Global Health

Weak to null association between GDP per capita and child stunting rates

	Adjusted			Unadjusted			
	Stunted	Wanted	Underweight	Stunted	Wasted	Underweight	
Full sample							
OR (95% CI)	0-996 (0-993-1-000)	0983 (0979-0986)	0.989 (0.985-0.992)	0-993 (0-989-0-995)	0-984 (0-983-0-986)	0-986 (0-982-0-990)	
pvalue	0-071	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	
N	462854	459538	485152	462854	459 538	485152	
Poorestwealth qu	zintile						
OR (95% CI)	0-997 (0-990-1-004)	0991 (0978-1-004)	0-999 (0-991-1-008)	0-995 (0-992-0-998)	0-985 (0-982-0-987)	0-988 (0-983-0-993)	
pvalue	0-367	0.153	0.784	0-002	< 0.0001	<0.0001	
N	104 040	103473	109 329	104 040	103473	109 329	
Richestwealth qu	intile						
OR (95% CI)	0-997 (0-992-1-001)	0984 (0-981-0987)	0-990 (0-987-0-993)	0-990 (0-987-0-993)	0-983 (0-981-0-986)	0-985 (0-980-0-989)	
pvalue	0-086	< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	
N	74575	73902	77 883	74575	73907	77888	
Children aged 0-1	1 months						
OR (95% CI)	0-991 (0-981-1-001)	0-998 (0-988-1-008)	0-994 (0-987-1-001)	0-985-0-993)	0-985 (0-982-0-989)	0-987 (0-984-0-989)	
pvalue	0-071	0-593	0-054	< 0.0001	< 0.0001	<0.0001	
N	162048	158770	170633	162048	158770	170633	
Children aged 12-	23 months						
OR (95% CI)	0-989 (0-979-1-000)	0-989 (0-977-1-002)	0.996 (0.985-1.006)	0-993 (0-990-0-997)	0-983 (0-983-0-986)	0-985 (0-979-0-991)	
pvalue	0-035	0.085	0-372	0.0002	< 0.0001	<0.0001	
N	155071	155 437	162378	155071	155437	162378	
Children 24-35 m	onths						
OR (95% CI)	0-997 (0-994-1-000)	0982 (0979-0986)	0-988 (0-984-0-997)	0-995 (0-993-0-997)	0-982 (0-979-0-985)	0-986 (0-982-0-990)	
pvalue	0.008	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	
N	145734	145 330	152140	145735	145331	152141	
Sub-SaharanA fri	18						
OR (95% CI)	0-996 (0-994-0-997)	0984 (0983-0986)	0-992 (0-990-0-994)	0-995 (0-994-0-996)	0-988 (0-986-0-991)	0-993 (0-992-0-995)	
pvalue	<0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	
N	241 448	239546	250507	241 448	239547	250 508	
Ania							
OR (95% CI)	0-999 (0-999-1-000)	0979 (0978-0979)	0984 (0984-0985)	0-992 (0-992-0-992)	0-978 (0-978-0-978)	0-980 (0-980-0-980)	
pvalue	0-0002	< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	
N	112342	111587	123619	112342	111 587	123619	
					(Table 2	continues on rest pa	

Jayachandran & Pande, 2014 American Economic Review

TABLE 2—INDIA'S DIFFERENTIAL BIRTH ORDER GRADIENT IN CHILD HEIGHT AND RELATED OUTCOMES

Indian Enigma

 Partly result of Son Preference in India

	HFA z-score					Stunted	WFA z-score	Hb level	Deceased
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
India	-0.082 [0.011]	0.092 [0.018]							
India × 2nd child		-0.144 [0.025]	-0.161 [0.027]	-0.110 [0.063]	-0.243 [0.048]	0.051 [0.007]	-0.146 [0.020]	-0.094 [0.030]	0.003 [0.004]
India × 3rd+child		-0.377 [0.024]	-0.227 [0.032]	-0.193 [0.092]	-0.436 [0.085]	0.064 [0.009]	-0.198 [0.024]	-0.159 [0.036]	0.002 [0.004]
2nd child		0.023 [0.015]	-0.011 [0.017]	-0.097 [0.053]	-0.167 [0.027]	0.009 [0.004]	0.009 [0.012]	-0.011 [0.022]	-0.014 [0.002]
3rd+ child		-0.066 [0.013]	-0.118 [0.019]	-0.169 [0.074]		0.036 [0.005]	-0.063 [0.014]	-0.037 [0.025]	-0.011 [0.003]
Africa mean of outcome	-1.351	-1.351	-1.351	-1.351	-1.351	0.375	-0.877	10.150	0.071
Child's age dummies × India	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mother's literacy × India	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mother's age at birth × India	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
PSU fixed effects	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Mother fixed effects	No	No	No	No	Yes	No	No	No	No
Completed fertility sample	No	No	No	Yes	No	No	No	No	No
Observations	168,108	168,108	167,737	66,566	83,228	167,737	167,737	88,838	199,514

Aiyar & Cummins, 2020 Journal of Development Economics

Figure GDP: Data + Model

Weighted mean HAZ by age-in-years Cyan to Magenta moves from lowest decile (Cyan) to highest decile (Magenta) of within-sample GDP/cap averaged over the sample period.

Figure Indian Enigma: Extra Dimensions of Model + Data

Conclusion: (My) Lessons

- GDP Estimates Were Needlessly Imprecise
 - Personal Takeaway: I think improved incomes lead to improvements in the stream of health inputs to children

- Indian Enigma Was Under-Explained
 - Personal Takeaway: I think it's largely about the moms and their early life streams of health inputs.