**■ Item Navigation** 

## Where to Start Induction?

Sometimes we prove statements which do not necessarily hold for all  $n \ge 1$ , but hold only for  $n \ge c$  for some number c. To do this, we can just start our induction base at n = c rather than at n = 1.

## **Problem:**

Prove that  $2^n \geq n^3$  for all  $n \geq 10$ .

The following plots show that this statement is not even true for n < 10.

```
import matplotlib.pyplot as plt
import numpy as np

for m in [10, 15]:

plt.clf()

n = np.linspace(2, m)

plt.plot(n, n ** 3, label='$n^3$')

plt.plot(n, 2 ** n, label='$2^n$')

plt.legend(loc='upper left')

plt.savefig(f'plotn3vs2n{m}.png')
```





We can prove the statement  $2^n \geq n^3$  for all  $n \geq 10$  using mathematical induction. The base case of n=10 is easy to check:  $2^n=1024>1000=n^3$ . For the step from n to n+1, the left-hand side is multiplied by 2, but the right-hand side is multiplied by  $\frac{(n+1)^3}{n^3}=\left(1+\frac{1}{n}\right)^3$ . For  $n\geq 10$ , this expression is bounded from above by  $1.1^3=1.331<2$ . Thus, for every  $n\geq 10$ , we multiply the greater left side by a larger number, and have that  $2^n\geq n^3$ .

/ Completed

Go to next item





Report an issue