卷积神经网络基础

1. 计算机视觉

Computer Vision Problems

计算机视觉常见的问题:图片分类、目标识别、风格迁移等。

深度神经网络能够很好的处理尺寸较小的图片,然而在大尺寸图片上(比如 $1000 \times 1000 \times 3$),输入的规模非常大,使得学习参数的成本大增,这时神经网络便很难满足需要。

2. 边缘检测

2.1 垂直边缘检测

对于一个 $6\times6\times1$ 大小的图片,使用一个 3×3 大小的filter(卷积核)进行卷积运算(convolution)卷积运算符号为"*"。最终得到的图片大小为 4×4 ,如下图所示。

Vertical edge detection

2.2 垂直边缘检测的原理

由下图可以明显看出,使用该filter可以使中间的分界线变得明显。

Vertical edge detection

2.3 其他边缘检测filter

- horizontal filter
 - image-20220516150423064
- sobel filter
 - image-20220516150716505
- Scharr filter
 - image-20220516150809781

在深度学习中,不一定要采用已有的filter,可以将filter中的9个值作为参数。相比传统的filter,学习得到的filter可以有更好的效果。

3. padding

3.1 没有padding的缺点

• 每次做卷积操作,图片的尺寸会变小。 如果一个 $n \times n$ 大小的图片,在利用 $f \times f$ 的filter进行卷积后,图片的大小会变成:

$$n imes n \stackrel{f imes f}{\Longrightarrow} (n-f+1) imes (n-f+1)$$

• 角落和边缘的像素进行卷积的次数较少, 会丢掉一些信息。

3.2 加padding

相当于在图像周围填充了一层的像素,使得卷积计算过后图片的大小不变。

如果一个 $n \times n$ 大小的图片,在增加大小为p的padding后,再利用 $f \times f$ 的filter进行卷积,图片的大小会变成:

$$n imes n \stackrel{p}{\Longrightarrow} (n+2p) imes (n+2p) \stackrel{f imes f}{\Longrightarrow} (n+2p-f+1) imes (n+2p-f+1)$$

3.3 valid convolution和same convolution

• valid: 不加padding, (n-f+1) imes (n-f+1)。

ullet same: 加padding, 输出图片的尺寸与原图相同。 $p=rac{f-1}{2}$, 一般来说p为奇数。

4. 卷积步长 (stride)

在之前的例子中,我们设置stride=1。下面是stribe=2时的卷积结果:

image-20220516155655739

用s表示stride的大小,进行卷积后,图像大小的变化为:

$$n imes n
ightarrow \left | \left | rac{n+2p-f}{s} + 1
ight | imes \left | \left | rac{n+2p-f}{s} + 1
ight |$$

5. 互相关与卷积

在数学上,卷积操作会将卷积核先水平反转后垂直反转,得到一个卷积核的镜像。但是在深度学习中一般不会这么操作。因此严格来说深度学习中的卷积应该被称为互相关。

6. 三维卷积

6.1 RGB图像中的卷积

灰色图像的卷积核一般是二维的。而在RGB图片中,图片有3个通道,此时的卷积核是三维的。卷积核的维度要与图片的通道数相同。

image-20220516162710795

最终会得到一个4×4大小的图片。

6.2 多卷积核

使用垂直边缘检测和水平边缘检测, 提取图像的垂直和水平的特征。

Multiple filters

6.3 summary

$$n imes n imes n_c * f imes f imes n_c
ightarrow (n-f+1) imes (n-f+1) imes n_c^{'}$$

其中 $n_c^{'}$ 表示卷积核的个数 (即下一层的通道数)。

7. 单层卷积网络

输入的图像作为X,卷积核视为权重W,因此与普通的神经网络不同的是,卷积神经网络的权重与数据做的是卷积运算。

7.1 单层卷积的参数个数

10个卷积核,每个卷积核的大小为 $3 \times 3 \times 3$,则参数的个数为:

$$(3\times3\times3+1)\times10=280$$

7.2 标记的总结

设1为一个卷积层:

- f^[l]: 卷积核/filter的大小;
- $p^{[l]}$: padding的大小;
- $s^{[l]}$: 步长stride的大小;
- input的图像大小: $n_H^{[l-1]} imes n_W^{[l-1]} imes n_c^{[l-1]}$
- output的大小: $n_H^{[l]} imes n_W^{[l]} imes n_c^{[l]}$, 其中 $n_H^{[l]}=\left\lfloor rac{n_H^{[l-1]}+2p^{[l]}-f^{[l]}}{s^{[l]}}+1
 ight
 floor$, $n_W^{[l]}$ 同理
- $n_c^{[l]}$: 卷积核个数/通道数
- 卷积核大小: $f^{[l]} imes f^{[l]} imes n_c^{[l-1]}$
- Activations: $a^{[l]}
 ightarrow n_H^{[l]} imes n_w^{[L]} imes n_c^{[l]}$
- ullet Weights: $f^{[l]} imes f^{[l]} imes n_c^{[l-1]} imes n_c^{[l]}$
- bias: $n_c^{[l]} o (1,1,1,n_c^{[l]})$

7.3 简单卷积神经网络

7.4 卷积网络层的类型

一般来说,卷积网络有三层:

- 卷积层 (convolution)
- 池化层 (pooling)
- 全连接层 (FC, fully connected)

8. 池化层

8.1 Max pooling

对前一层的图像进行区域的划分,每个区域的最大值就是池化后的值。虽然pooling的大小是个超参数,但其实只是个固定运算。

Pooling layer: Max pooling

用f表示pooling的大小,s表示stride大小:

$$n imes n o \left\lfloor rac{n+2p-f}{s} + 1
ight
floor imes \left\lfloor rac{n+2p-f}{s} + 1
ight
floor$$

注意,pooling后图像的通道数 n_c 不变。

8.2 Average pooling

选择区域的均值代表pooling后的区域。

Pooling layer: Average pooling

8.3 Summary of pooling

超参数(皆不需要学习):

• f: pooling的filter的大小;

• s: stride的大小

• 选择Max pooling或者是Average pooling;

• p: padding, 基本不使用

pooling后的数据大小: $n_H imes n_W imes n_c o \left| rac{n-f}{s} + 1
ight| imes \left| rac{n-f}{s} + 1
ight| imes n_c$

9. 卷积神经网络示例 (LeNet-5)

image-20220518200617692

8.1 深度卷积的常见模式

- 图片的大小逐渐减少, 但是通道数量逐渐增加。
- Conv Pool Conv Pool Fc Fc Fc Softmax

8.2 深度卷积网络的激活函数

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{tol}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	208 <
POOL1	(14,14,8)	1,568	0 ←
CONV2 (f=5, s=1)	(10,10,16)	1,600	416 <
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48,001
FC4	(84,1)	84	10,081
Softmax	(10,1)	10	841

- Conv层的参数较少;
- Pooling层没有参数;
- 全连接层有大量参数;
- Activation Size逐渐减少,但减少太快会影响整体的性能。

9. 为什么使用卷积?

9.1 卷积神经网络的优势

卷积神经网络的参数较少。如果使用全连接网络,则有 3072×4704 个参数。如果使用卷积神经网络,参数的个数为 $(5 \times 5 + 1) \times 6$ 个参数。

image-20220518201746303

• 参数共享: 一个卷积核可以在图片的不同区域提取特征, 不仅适用于低阶特征。

• 稀疏连接:每个输出单元仅取决于少量的输入。

9.2 训练卷积神经网络

image-20220518202804117