

数据结构与算法

Data Structures and Algorithms

谢昊

xiehao@cuz.edu.cn

第二章

半线性结构 Semi-Linear Structures

大纲

1. 树与二叉树

2. 小结

表 1: 线性结构的优势与不足

	顺序列表	链式列表
访问元素 增删元素	O(1) $O(n)$	O(n) $O(1)$

表 1: 线性结构的优势与不足

	顺序列表	链式列表
访问元素 增删元素	O(1) $O(n)$	O(n) $O(1)$

半线性结构: 可去二者之糟粕, 取二者之精华

树的存储结构

- 可采用顺序或链式存储结构
- 每结点须记录: 数据信息、与其他结点的逻辑关系

树的存储结构

- 可采用顺序或链式存储结构
- 每结点须记录: 数据信息、与其他结点的逻辑关系

树的结点关系表示方法

- 父结点表示法: 只记录父结点信息
- 子结点表示法: 只记录子结点信息
- 父子结点表示法: 同时记录父子结点信息
- 长子兄弟表示法: 同时记录第一个子结点与兄弟结点信息

父结点表示法

- 采用数组按层存储各结点
- 每结点包括数据信息与父结点序号

复杂度

- 空间: O(n)
- 时间:
 - 查找父结点 O(1)
 - 但查找子结点*O(n)*

图 1: 父结点表示法

```
typedef struct {
DataType data; // 数据信息
int parent; // 父结点序号
TreeNode;
```


A	-1	
В	0	
С	0	
D	1	
Е	1	
F	1	
G	3	
Н	3	
I	5	

(b) 存储表示

图 2: 父结点表示法

子结点表示法

- 采用数组按层存储各结点
- 每结点包括数据信息与子结点序号链表

data children

图 3: 子结点表示法

复杂度

- 空间: O(n)
- 时间:
 - 查找子结点 O(d)¹
 - 但查找父结点○(n)

```
typedef struct {
DataType data; // 数据信息
LinkedList children; // 子结点序号链表
TreeNode;
```

¹若该结点度数为 d

图 4: 子结点表示法

父子结点表示法

• 结合上述二者

复杂度

- 空间: O(n)
- 时间:
 - 查找子结点 O(d)
 - 但查找父结点 O(1)

图 5: 父子结点表示法

```
typedef struct {

DataType data; // 数据信息

int parent; // 父结点序号

LinkedList children; // 子结点序号链表

TreeNode;
```


图 6: 父子结点表示法

父子结点表示法的性质

• 优势: 一定程度上兼顾了查找效率

• 不足: 插入/删除结点操作需大量修改链表, 效率偏低

父子结点表示法的性质

• 优势: 一定程度上兼顾了查找效率

• 不足: 插入/删除结点操作需大量修改链表, 效率偏低

基本术语

- 若同一结点的所有子结点间具备某种线性次序,则称之为有序树 (ordered tree)
- 有序树的任意非叶结点均有且仅有1个长子 (eldest son)

长子兄弟表示法

- 采用数组按层存储各结点
- 每结点包括
 - 数据信息
 - 长子结点序号
 - 首个兄弟结点序号

图 7: 长子兄弟表示法

```
typedef struct {

DataType data; // 数据信息

int eldest_son; // 长子结点序号

int sibling; // 兄弟结点序号

TreeNode;
```


A	1	-1
В	3	2
С	-1	-1
D	6	4
Е	-1	5
F	8	-1
G	-1	7
Н	-1	-1
I	-1	-1

(b) 存储表示

图 8: 长子兄弟表示法

二叉树 (binary tree)

- 度不大于 2 的树
- 子结点可按左右区分

转化为二叉树

- 令长子为左子结点、首个兄弟为右子结点
- 任何树均可按此法转化为二叉树
- 因二叉树的表示与运算相对方便,故树的问题均可转化为二叉树形式进行研究

图 9: 树到二叉树的转化

小结

小结

•

