EE4211: Data Science for the Internet of Things

Regression

Biplab Sikdar

- Examples
- Fitting to bivariate data
- Fitting polynomials
- Fitting to multivariate data
- Errors and overfitting

Regression

- Regression analysis: describes the relationship between two (or more) variables
- Examples:
 - Income and educational level
 - Demand for electricity and the weather
 - Home sales and interest rates
- Our focus:
 - Gain some understanding of the mechanics (e.g. regression line, regression error)
 - Learn how to setup a regression analysis.
 - Learn how to interpret and use the results.

Example

Example

Milage(in 1000 miles)	Groove Depth (in mils)	· -
0	394.33	450.00
4	329.50	400.00
8	291.00	350.00 2 300.00
12	255.17	(s) 300.00 (s) 250.00 (s) 250.00 (s) 4 (s) 250.00 (s) 4 (s) 250.00 (s) 4 (s) 250.00 (s) 4 (s) 250.00 (s) 250.0
16	229.33	200.00
20	204.83	150.00
24	179.00	100.00
28	163.83	50.00
32	150.33	0.00 0.00 0.00 15 10 15 20 25 30 35 Mileage (in 1000 miles)

Tire tread wear vs. mileage. From: Statistics and Data Analysis; Tamhane and Dunlop; Prentice Hall.

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Oth Order Polynomial

F

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error

- □ Linear Regression:
 - \square Simple linear regression: $\{y; x\}$
 - □ Multiple linear regression: $\{y; x_1, x_2, \dots, x_n\}$
 - □ Multivariate linear regression: $\{y_1, y_2, \dots, y_m; x_1, x_2, \dots, x_n\}$

- \square Response/outcome/dependent variable: y
- \square Predictor/explanatory/independent variable: x
- □ Example 1: Estimate electricity demand for home cooling (y) from the average daily temperature (x)
- Example 2: Relationship between the head size and body size of a newborn
- lacktriangle Regression analysis: statistical methodology to estimate the relationship between x and y
- □ Correlation analysis: statistical methodology used to asses the strength of relationship between x and y

- One response variable and one explanatory variable
- $lue{}$ We denote the explanatory variable as X and response variable as Y
- \square n pairs of observations $\{y_i; x_i\}$, $i = 1, \dots, n$

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- \Box ϵ_i : random error with $E[\epsilon_i] = 0$ and $VAR[\epsilon_i] = \sigma^2$
- $\ \square$ The "true regression line" models the true but unknown mean of Y_i

$$E[Y_i] = \hat{y}_i = \beta_0 + \beta_1 x_i$$

- \square The error ϵ_i :
 - Independent and identically distributed
 - □ Variety of cause:
 - Measurement errors
 - \square Other variables affecting Y_i not included in the model
 - \square Assumption $E[\epsilon_i] = 0$: implies there is no systematic bias
 - \square Usual model for ϵ_i : $\epsilon_i \sim N(0, \sigma^2)$

□ Step 1: Plot the data and inspect for linearity

	X	Υ
1	37.70	9.82
2	16.31	5.00
3	28.37	9.27
4	-12.13	2.98
•	:	:
98	9.06	7.34
99	28.54	10.37
100	-1 <i>7</i> .19	2.33

□ In simple linear regression, the data is represented as:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where $\epsilon_i \sim N(0, \sigma^2)$

The fitted model:

$$\hat{y} = \beta_0 + \beta_1 x$$

where

- $\square \beta_0$: intercept
- \square β_1 : slope of regression line

Milage(in 1000 miles)	Groove Depth (in mils)		
0	394.33	450.00	
4	329.50	350.00	
8	291.00	<u>-</u>	
12	255.17	<u>i.</u> 250.00	
16	229.33	250.00	
20	204.83	§ 150.00	•
24	179.00	50.00	
28	163.83	0.00	
32	150.33	0 5 10 15 20 25 30 Mileage (in 1000 miles)	35

Tire tread wear vs. mileage. From: Statistics and Data Analysis; Tamhane and Dunlop; Prentice Hall.

$$e_i = y_i - \hat{y}_i = y_i - (\beta_0 + \beta_1 x_i)$$

Goal: minimize the sum of the square of the error

$$Q = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

 \square Obtain the values of β_0 and β_1 that minimizes the squared error

$$\frac{\partial Q}{\partial \beta_0} = -2 \sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i)] = 0$$

$$\frac{\partial Q}{\partial \beta_1} = -2 \sum_{i=1}^n x_i [y_i - (\beta_0 + \beta_1 x_i)] = 0$$

$$n\beta_0 + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$

$$\Rightarrow \beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \beta_1 \sum_{i=1}^n x_i y_i$$

$$\hat{\beta}_0 = \frac{\left(\sum_{i=1}^n x_i^2\right) \left(\sum_{i=1}^n y_i\right) - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n x_i y_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - (\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} y_{i})}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

To simplify:

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=0}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=0}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i\right)^2$$

$$\hat{\beta}_0 = \bar{y} + \beta_1 \bar{x}$$

$$\Rightarrow \qquad \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

Example

7	n	5	7
	Z	7	

	P	<mark>P</mark>
$n = 9$ $\sum x_i = 144, \sum x_i^2 = 3264$	Milage(in 1000 miles)	Groove Depth (in mils)
$\sum y_i = 2197.32, \sum y_i^2 = 589887.08$	0	394.33
$\sum x_i y_i = 28167.72$	4	329.50
$\bar{x} = 16, \bar{y} = 244.15$	8	291.00
$S_{xy} = -6989.40$	12	255.17
$S_{xx} = 960$	16	229.33
\hat{o} S_{xy} 7.201	20	204.83
$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = -7.281$	24	179.00
$\hat{\beta}_0 = \bar{y} + \beta_1 \bar{x} = 360.64$	28	163.83
$\hat{\mathbf{v}} = 360.64 - 7.281x$	32	150.33

28

- \square Residuals: $e_i = \hat{y}_i \hat{\hat{y}}_i$
- Least squares fitting minimized "error sum of squares": $Q = \sum (y_i \hat{y}_i)^2$
- □ Is this good enough?
 - Compare with benchmarks
 - One possible benchmark:

$$Y_i = \beta_0 + \epsilon_i$$

 \square Corresponding $Q_{min} = \sum (y_i - \bar{y})^2 = S_{yy}$

Checking the Goodness of Fit

□ Referred to as SST: total sum of squares

Checking the Goodness of Fit

- □ SST: total sum of squares
- SSR: regression sum of squares
- □ SSE: error sum of squares

$$SST = \sum (y_i - \bar{y})^2$$

$$= \sum ((\hat{y}_i - \bar{y}) + (y_i - \hat{y}_i))^2$$

$$= \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2 + 2\sum (\hat{y}_i - \bar{y})(y_i - \hat{y}_i)$$

$$= \sum_{SSR} SSR = SSR = SSR = SSR = SSR = 0$$

Checking the Goodness of Fit

- □ SSR: regression sum of squares
 - $\ \square$ Represents the variation in y that is accounted for by the regression on x
- \square SST: measures the variability of y_i s around \bar{y}
- Coefficient of determination:

$$r^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = \frac{SSR}{SSR + SSE}$$

represents the proportion of variation in y that is accounted for by the regression on x

Example

$$SST = S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = 53418.73$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 2531.53$$

$$SSR = SST - SSE = 50887.20$$

$$r^2 = \frac{50887.20}{53418.73} = 0.953$$

95.3% of the variation in the tread wear is accounted for
 by linear regression on mileage (strongly linear relationship)

Prediction of Future Observations

 $lue{}$ Common use of a regression model: predict the value of the response variable Y when the predictor variable x is set at a specific value x^*

$$\widehat{Y}^* = \widehat{\beta}_0 + \widehat{\beta}_1 x^*$$

 \square A $100(1-\alpha)\%$ confidence interval of the prediction

$$\left[\hat{Y}^* \pm t_{n-2,\alpha/2} \sqrt{MSE} \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}}} \right]$$

where:

 $\Box t_{n-2,\alpha/2}$: t-distribution with n-2 degrees of freedom

Example

 Compute a 95% confidence interval for the groove depth of a tire with a mileage of 25000

$$\square MSE \stackrel{\triangleright}{=} \frac{SSE}{n-2} = \frac{2531.53}{9-2} = 361.65$$

$$t_{n-2,\alpha/2} = 2.365$$

$$\hat{Y}^* = \hat{\beta}_0 + \hat{\beta}_1 x^* = 178.62$$

$$\Box \left[\hat{Y}^* \pm t_{n-2,\alpha/2} \sqrt{MSE} \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}}} \right]$$

$$\boxed{178.62 \pm 2.365\sqrt{361.65}\sqrt{1 + \frac{1}{9} + \frac{(25 - 16)^2}{960}}}$$

= [129.44, 227.80]

T-distribution (Student-T Distribution)

Statistician William Sealy Gosset, known as "Student"

\square Residual plots: error $e_i = y_i - \hat{y}_i$ versus \hat{y}_i plots

ř			

i	x_i	y_i	$\widehat{y_i}$	e_i
1	0	394.33	360.64	33.69
2	4	329.50	331.51	-2.01
3	8	291.00	302.39	-11.39
4	12	255.17	273.27	-18.10
5	16	229.33	244.15	-14.82
6	20	204.83	215.02	-10.19
7	24	179.00	185.90	-6.90
8	28	163.83	156.78	7.05
9	32	150.33	127.66	22.67

 \square Residual plots: error $e_i = y_i - \hat{y}_i$ versus \hat{y}_i plots

\square Check for linearity: error $e_i = y_i - \hat{y}_i$ versus x_i plots

Data transformations: Linearizing transformations

X	У
logx	У
-1/x	y^2
Χ	y^3
Χ	У

X	У
logx	У
-1/x	У
X	logy
X	-1/y

X	У
X^2	У
x^3	У
X	y^2
X	y^3

 \square Check for linearity: error $e_i = y_i - \hat{y}_i$ versus x_i plots

i	x_i	y_i	$\widehat{\ln(y_i)}$	$\widehat{\mathcal{Y}}_i$	e_i
1	0	394.33	5.926	374.64	19.69
2	4	329.50	5.807	332.58	-3.08
3	8	291.00	5.688	295.24	-4.24
4	12	255.1 <i>7</i>	5.569	262.09	-6.92
5	16	229.33	5.450	232.67	-3.34
6	20	204.83	5.331	206.54	—1.71
7	24	179.00	5.211	183.36	-4.36
8	28	163.83	5.092	162.77	1.06
9	32	150.33	4.973	144.50	5.83

\square Check for linearity: error $e_i = y_i - \hat{y}_i$ versus x_i plots

- We have explored problems with one response variable and one explanatory variable
- Sometimes a straight line is not adequate and quadratic or cubic model is needed
- Sometimes there are more than one predictor variables and their simultaneous effect needs to be modeled
- \square n pairs of observations $\{y_i; x_{i1}, x_{i2}, \dots, x_{ik}\}, i = 1, \dots, n$
- Multiple regression model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

 \square Linear in β and not necessarily x's: $x_1 = x$, $x_2 = x^2$, $x_k = x^k$

□ Least squares fit:

$$Q = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik})]^2$$

Taking the partial derivatives and equating to zero:

$$\frac{\partial Q}{\partial \beta_0} = -2 \sum [y_i - (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik})] = 0$$

$$\frac{\partial Q}{\partial \beta_i} = -2 \sum [y_i - (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik})] x_{ij} = 0$$

for
$$j = 1, 2, \dots, k$$

 \square After simplification (for $j=1,2,\cdots,k$):

$$n\beta_0 + \beta_1 \sum x_{i1} + \dots + \beta_k \sum x_{ik} = \sum y_i$$

$$n\beta_0 \sum x_{ij} + \beta_1 \sum x_{i1}x_{ij} + \dots + \beta_k \sum x_{ik}x_{ij} = \sum y_i x_{ij}$$

 \square These have to be solved simultaneously for $\beta_1,\beta_2,\cdots,\beta_k$

Matrix form:

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}$$

$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix}, \quad \hat{\beta} = \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \vdots \\ \hat{\beta}_k \end{bmatrix}$$

Regression model:

$$Y = X\beta + \epsilon$$

Simultaneous linear equations whose solution gives the least square estimates:

$$X'X\beta = X'y$$

Regression parameters:

$$\widehat{\beta} = (X'X)^{-1}X'y$$

Acknowledgements

- A number of the slides in this lecture are based on material from various sources:
 - Wei Zhu
 - Ajit Tamahane
 - Dorothy Dunlop