Graphische Datenverarbeitung WS17/18 Theorieübung 1

Salmah Ahmad (2880011) Markus Höhn (1683303) Tobias Mertz (2274355) Steven Lamarr Reynolds (1620638) Sascha Zenglein (2487032)

15. November 2017

Aufgabe 1: Pipeline

a) Aus was besteht der Input der Pipeline?

Der Input der Pipeline besteht aus einer gegebenen Szenenbeschreibung.

- b) Zum Input gehören unter anderem "Objekte". In welcher Form sind konkrete "Objekte" im Input gegeben?
 - (virtuelle) Kamera
 - Dreidimensionale Objekte
 - Lichtquellen
 - Beleuchtungsalgorithmen
 - Texturen
 - ...
- c) Was ist der Output der Pipeline?

Der Output der Pipeline ist ein 2D Bild der gegeben Szenenbeschreibung.

d) Weshalb ist eine Pipeline die aus *n* Abschnitten besteht (theoretisch) *n*-mal schneller als eine Pipeline mit nur einem Abschnitt?

Bei einer Pipeline mit n Abschnitten kann eine parallele Verarbeitung durchgeführt werden.

e) Weshalb ist die Pipeline Geschwindigkeit vom Bottleneck abhängig? Wieso warten die anderen Pipeline-Abschnitte bis der Bottleneck-Abschnitt fertig ist?

Der Bottleneck-Abschnitt ist der langsamste der Pipeline. Die Berechnung eines Frames basiert auf den Ergebnissen der vorausgegangenen Pipeline-Abschnitte. Daher ist die Geschwindigkeit der Pipeline abhängig vom langsamsten Verarbeitungsschritt.

Aufgabe 2: Model & View Transformation

a) Stellen Sie die Gleichung $(x,z)^T=f(u,v)$ auf, die die u,v Koordinaten in das Weltkoordinatensystem transformiert. Bestimmen Sie nun die Position der Szenenobjekte bezüglich des Weltkoordinatensystems.

$$f(u,v) = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) & r \cdot \cos(\alpha) \\ \sin(\alpha) & -\cos(\alpha) & -r \cdot \sin(\alpha) \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

Ergebnisse:

• Sonne: $(0,0)^T$

• Planet: $(-2\sqrt{3}, -2)^T$

• Mond: $(2-2\sqrt{3},-3)^T$

b) Bestimmen Sie, welche Translation und welche Rotation auf die Szene ausgeübt werden müssen, um die Kamera in den Ursprung zu verschieben und anschließend die Blickrichtung nach -z zu rotieren.

• Translation: $(-2, -2\sqrt{3})^T$

• Winkel: $\arctan(\frac{2}{2\sqrt{3}}) = 30^{\circ}$

• Rotation: $\begin{pmatrix} \cos(30^\circ) & -\sin(30^\circ) \\ \sin(30^\circ) & \cos(30^\circ) \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$

c) Berechnen Sie die Position der Szenenobjekte nach der Model- und View-Transformation. Fertigen Sie eine Skizze an.

Aufgabe 3: Optische Triangulation

a) Stellen Sie die Gleichung $\beta=f_1(p)$ auf, um aus einer Pixelposition p den Winkel β zu berechnen. Verwenden Sie dabei die Koordinate des Pixelmittelpunktes! Wie groß ist β , wenn der Laserpunkt in der Mitte von Pixel 5223 registriert wird?

$$f_1(p) = \arctan\left(\frac{\left|\left(\frac{p}{8191}\right) \cdot 48mm - 24mm\right)\right|}{24mm}\right) := \beta$$

 $f_1(5223) = 15,3923^{\circ}$

b) Stellen Sie die Gleichung $\alpha=f_2(\gamma)$ auf, um aus dem Spiegelwinkel γ den Winkel α zu berechnen.

2

Berechnen Sie $f_2(45^\circ)$ und $f_2(77^\circ)$.

• $f_2(45^\circ) = 2 \cdot 45^\circ - 90^\circ = 0^\circ$

• $f_2(77^\circ) = 2 \cdot 77^\circ - 90^\circ = 64^\circ$

$$\begin{split} \alpha &= \epsilon - (90^{\circ} - \gamma) & mit \quad \epsilon = 90^{\circ} - (90^{\circ} - \gamma) \\ &= (90^{\circ} - (90^{\circ} - \gamma)) - (90^{\circ} - \gamma) \\ &= 90^{\circ} - 90^{\circ} + \gamma - 90^{\circ} + \gamma \\ &= 2\gamma - 90^{\circ} \end{split}$$

b) Berechnung α

c) Berechnung z

c) Stellen Sie die Gleichung $z=f_3(\alpha,\beta)$ auf, um aus den Winkeln α und β den Tiefenwert z zu berechnen.

Welcher Tiefenwert gehört zu den Winkeln $\alpha=15^{\circ}$ und $\beta=30^{\circ}$?

Mithilfe des Sinussatzes gilt:

$$a = b \cdot \frac{\sin(90^{\circ} - \beta)}{\sin(\alpha + \beta)}$$

Weiter gilt:

$$\cos(\alpha) = \frac{h_b}{a}$$

Mit $h_b := z$ gilt:

$$z = f_3(\alpha, \beta) = \cos(\alpha) \cdot \frac{b \cdot \sin(90^\circ - \beta)}{\sin(\alpha + \beta)}$$

Für $\alpha=15^{\circ}$ und $\beta=30^{\circ}$ folgt:

$$z = \cos(15^{\circ}) \cdot \frac{150mm \cdot \sin(90^{\circ} - 30^{\circ})}{\sin(15^{\circ} + 30^{\circ})} = 177.4519mm$$

d) Stellen Sie die Gleichung $x=f_4(\beta,z)$ auf, um aus dem Winkel β und z die x-Koordinate zu berechnen

Berechnen sie $f_4(40^{\circ}, 100cm)$.

$$x = f_4(\beta, z) = \tan(\beta) \cdot z$$

$$f_4(40^\circ, 100cm) = \tan(40^\circ) \cdot 100cm = 83,91m$$

e) Stellen Sie nun die Gesamtgleichung $(x,z)^T=f_5(p,\gamma)$ auf, um aus der Pixelposition p und dem Winkel γ die Koordinaten $(x,z)^T$ des abgetasteten Punktes zu berechnen.

$$f_5(p,\gamma) = \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} f_4(f_1(p), f_3[f_2(\gamma), f_1(p)]) \\ f_3[f_2(\gamma), f_1(p)] \end{pmatrix}$$

f) Zum Spiegelwinkel $\gamma=67^\circ$ wird ein Laserpunkt im Mittelpunkt von Pixel 5730 registriert. Welche Koordinaten hat der abgetastete Punkt mit oben beschriebenen Aufbau?

$$f_5(67^{\circ}, 5730) = (43, 8637, 109, 9074)^T$$