BIOS 660/BIOS 672 (3 Credits): Probability and Statistical Inference I

Jianwen Cai

https://sakai.unc.edu/portal/site/bios660-bios672-3-credits
Notes 9

Moment Generating Functions	2
Moment Generating Function	
cont	
Example: Continuous	5
Example: Discrete	6
Linear transformations	7
Example: Continuous	8
Existence of moments	
Can moments not exist?	10
Cont	
Can mgf's not exist?	12
Characterizing distributions	
Convergence of mgfs	14
Application	
Relationship to other transforms	16
Characteristic functions	17
Characteristic Function	18
Examples	19
Properties	20
Characterizing distributions	21
Relationship to other transforms.	22

Moment Generating Function

(C-B 2.3, Gut III.3)

The moment generating function (mgf) of the rv X is defined to be

$$M_X(t) = \mathsf{E}(e^{tX})$$

provided that the expectation exists in a neighbourhood (-h,h) of t=0.

Theorem: Suppose the mgf $M_X(t)$ of X exists for $t \in (-h,h)$ for some h > 0. Then for any positive integer n,

$$\mathsf{E}(X^n) = M_X^{(n)}(0) = \frac{d^n}{dt^n} M_X(t) \bigg|_{t=0}$$

Notice that $M_X(0) = 1$ always.

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 3 / 22

cont.

Proof: Assuming that we can interchange expectation and differentiation,

$$\begin{split} \frac{d}{dt}M_X(t) &= \frac{d}{dt}\mathsf{E}(e^{tX}) = \mathsf{E}\bigg(\frac{d}{dt}e^{tX}\bigg) = \mathsf{E}(Xe^{tX}) \\ \Rightarrow & \left. \frac{d}{dt}M_X(t) \right|_{t=0} = \mathsf{E}(X) \\ & \left. \frac{d^2}{dt^2}M_X(t) \right|_{t=0} = \mathsf{E}(X^2e^{tX}) \right|_{t=0} = \mathsf{E}(X^2) \end{split}$$

Another way to see this is

$$M_X(t) = \mathsf{E}(e^{tX}) = \mathsf{E}\bigg(\sum_{n=0}^\infty \frac{t^n}{n!} X^n\bigg) = \sum_{n=0}^\infty \frac{t^n}{n!} \mathsf{E} X^n$$

so the moments can be obtained from a Taylor expansion of $M_X(t)$ around t=0.

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 4 / 22

Example: Continuous

Mgf of an exponential rv: Let $f_X(x) = \lambda e^{-\lambda x} 1(x > 0)$. Then

$$M_X(t) = \mathsf{E}(e^{tX}) = \int_0^\infty e^{tx} \cdot \lambda e^{-\lambda x} \, dx = \lambda \int_0^\infty e^{-(\lambda - t)x} \, dx$$
$$= \lambda \frac{-1}{\lambda - t} e^{-(\lambda - t)x} \Big|_0^\infty = \begin{cases} \frac{\lambda}{\lambda - t} & \text{if } t < \lambda \\ \infty & \text{otherwise} \end{cases}$$

This is fine as we only need the mgf to be defined near zero. To obtain the moments, assume $|t| < \lambda$:

$$M_X(t) = \frac{1}{1 - t/\lambda} = \sum_{n=0}^{\infty} \frac{t^n}{\lambda^n} = \sum_{n=0}^{\infty} \frac{t^n}{n!} \mathsf{E}(X^n) \ \Rightarrow \ \mathsf{E}(X^n) = \frac{n!}{\lambda^n}$$

In particular,

$$\label{eq:expectation} \begin{split} \mathsf{E}X &= 1/\lambda \\ \mathsf{Var}X &= \mathsf{E}X^2 - \mathsf{E}^2X = 2/\lambda^2 - 1/\lambda^2 = 1/\lambda^2 \end{split}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 5 / 22

Example: Discrete

Mgf of a geometric rv: Let $f_X(x) = pq^{x-1}$, $x = 1, 2, \dots$ (q = 1 - p).

$$\begin{split} M_X(t) &= \mathsf{E}(e^{tX}) = \sum_{x=1}^{\infty} e^{tx} \cdot pq^{x-1} = \frac{p}{q} \sum_{x=1}^{\infty} (qe^t)^x \\ &= \frac{p}{q} \bigg(\frac{1}{1 - qe^t} - 1 \bigg) = \frac{pe^t}{1 - qe^t} \end{split}$$

The sum converges if $e^t q < 1$, that is, $t < \log(1/q)$.

The moments can be obtained by differentiation:

$$\mathsf{E} X = \frac{d}{dt} \left[\frac{p}{e^{-t} - q} \right]_{t=0} = \frac{p e^{-t}}{(e^{-t} - q)^2} \bigg|_{t=0} = \frac{1}{p}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 6 / 22

Linear transformations

For any constants a, b, the mgf of the rv g(X) = aX + b is

$$M_{aX+b}(t) = e^{bt} M_X(at)$$

Proof:

$$\begin{split} M_{aX+b}(t) &= \mathsf{E}(e^{t(aX+b)}) = \mathsf{E}(e^{taX}e^{bt}) \\ &= e^{bt}\mathsf{E}(e^{(at)X}) = e^{bt}M_X(at) \end{split}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 7 / 22

Assign as HW

Example: Continuous

Mgf of a Gaussian: Let $X \sim N(0,1)$. Then

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} \cdot \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx = e^{t^2/2} \int_{-\infty}^{\infty} \frac{e^{-(x-t)^2/2}}{\sqrt{2\pi}} dx = e^{t^2/2}$$

Also,

$$e^{t^2/2} = \sum_{n=0}^{\infty} \frac{1}{n!} \bigg(\frac{t^2}{2}\bigg)^n = \sum_{n=0}^{\infty} \frac{t^{2n}}{2^n n!} = \sum_{m: \text{ even}} \frac{t^m}{m!} \frac{m!}{2^{m/2} (m/2)!}$$

Matching coefficients of $t^m/m!$ we get that all the odd moments are zero and that the even moments are $E(X^m)=m!/(2^{m/2}(m/2)!)$.

Now let $Y = \mu + \sigma X$ so that $Y \sim N(\mu, \sigma^2)$,

$$M_Y(t) = e^{\mu t} M_X(\sigma t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 8 / 22

Existence of moments

Too hard. May eliminate. **Theorem**: Suppose the mgf $M_X(t)$ of X exists for $t \in (-h, h)$ for some h > 0. Then all moments exist: $|\mathsf{E}X^r| < \infty$ for all r > 0.

<u>Proof</u>: Fix $t \in (-h, h)$. There exists C > 0 such that

$$|x^r| \le Ce^{|tx|}, \quad \forall x \in \mathbb{R}$$

(What is C?)

so

$$\begin{split} |\mathsf{E}X^r| &\leq \mathsf{E}|X^r| \\ &\leq C \mathsf{E}e^{|tX|} \\ &\leq C \mathsf{E}(e^{tX} + e^{-tX}) \\ &\leq C \left[M_X(t) + M_X(-t) \right] < \infty \end{split}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 9 / 22

Can moments not exist?

Example: Cauchy distribution

$$f_X(x) = \frac{1}{\pi} \frac{1}{1+x^2}, \qquad x \in \mathbb{R}$$

The mean is

$$\begin{split} \mathsf{E} X &= \int_{-\infty}^{\infty} x \, \frac{1}{\pi} \frac{1}{1+x^2} \, dx \\ &= \int_{-\infty}^{0} \frac{1}{\pi} \frac{x}{1+x^2} \, dx + \int_{0}^{\infty} \frac{1}{\pi} \frac{x}{1+x^2} \, dx \\ &= \int_{0}^{\infty} \frac{1}{\pi} \frac{x}{1+x^2} \, dx - \int_{0}^{\infty} \frac{1}{\pi} \frac{x}{1+x^2} \, dx = \ ?? \end{split}$$

because

$$\int_0^\infty \frac{1}{\pi} \frac{x}{1+x^2} \, dx = \int_0^\infty \frac{1}{2\pi} \frac{dy}{1+y} = \frac{1}{2\pi} \log(1+y) \Big|_0^\infty = \infty$$

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 10 / 22

Cont.

One intuitive explanation for this is that the Cauchy distribution has infinite variance:

$$\mathsf{E} X^2 = \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{x^2}{1 + x^2} \, dx = \int_{-\infty}^{\infty} \frac{1}{\pi} \left(1 - \frac{1}{1 + x^2} \right) dx$$
$$= \frac{1}{\pi} \int_{-\infty}^{\infty} dx - 1 = \infty$$

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 11 / 22

Can mgf's not exist?

Example: Cauchy distribution

If the 1st and 2nd moments do not exist, certainly the mgf does not either! (How would you prove this statement is true?)

Example: Log-normal distribution

If $X \sim N(0,1)$ then $Y = e^X$ is called log-normal.

$$f_Y(y) = \frac{1}{y\sqrt{2\pi}}e^{-(\log y)^2/2}, \quad y > 0$$

For $n=0,1,2,\ldots$ the moments exist, but the mgf does not, i.e. the integral $\mathsf{E}(e^{tY})$ does not converge. (Homework).

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 12 / 22

Characterizing distributions

For rvs with unbounded support, the moments do not specify the distribution: there exist distributions with different pdfs and yet have all the same moments (see Example C-B 2.3.10).

However, moments uniquely identify distributions when the rvs have bounded support.

Also, mgfs uniquely identify distributions when the mgfs exist.

Theorem: Let $F_X(x)$ and $F_Y(y)$ be cdfs all of whose moments exist.

- 1. If X and Y have bounded support, then $F_X(u) = F_Y(u)$ for all u iff $\mathsf{E} X^n = \mathsf{E} Y^n$ for all $n=0,1,2,\ldots$
- 2. If the mgfs exist and $M_X(t)=M_Y(t)$ for all t in a neighborhood of 0, then $F_X(u)=F_Y(u)$ for all u.

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 13 / 22

Convergence of mgfs

Convergence of mgfs implies convergence of cdfs.

Theorem 2.3.12 C-B: Let X_1,X_2,\ldots be a sequence of rvs with corresponding mgfs $M_{X_1}(t),M_{X_2}(t),\ldots$ such that

$$\lim_{n \to \infty} M_{X_n}(t) = M_X(t), \qquad \forall t \in (-h, h), \ h > 0.$$

Then $\exists!$ a unique cdf $F_X(t)$ whose moments are given by $M_X(t)$ and for all x where $F_X(x)$ is continuous,

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x).$$

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 14 / 22

Application

Example: Normal approximation to Poisson.

Let $X \sim Poisson(\lambda)$, then $M_X(t) = \exp[\lambda(e^t - 1)]$

(Exercise C-B 2.33), with $EX = \lambda$, $VarX = \lambda$.

Let $Y = (X - \lambda)/\sqrt{\lambda}$. Then

$$M_Y(t) = \mathsf{E}(e^{tY}) = \mathsf{E}(t(X - \lambda)/\sqrt{\lambda}) = e^{-\sqrt{\lambda}t} M_X(t/\sqrt{\lambda}).$$

Hence,

$$\begin{array}{lcl} log(M_Y(t)) & = & -t\sqrt{\lambda} + \lambda(e^{t/\sqrt{\lambda}} - 1) \\ \text{(when λ is large)} & = & -t\sqrt{\lambda} + \lambda(\frac{t}{\sqrt{\lambda}} + \frac{t^2}{2\lambda} + \frac{t^3}{3!\lambda^{3/2}} + \cdots) \\ & = & \frac{t^2}{2} + \frac{t^3}{3!\lambda^{1/2}} + \cdots \end{array}$$

Therefore,

$$\lim_{\lambda \to \infty} M_Y(t) = e^{t^2/2},$$

which is the mgf of a N(0,1) variable.

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 15 / 22

Relationship to other transforms

For continuous rvs:

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) \, dx$$

is similar to the two-sided *Laplace transform* of the function $f_X(x)$.

The transform

$$S_X(t) = \log M_X(t) = \log \mathsf{E} e^{tX}$$

is called $\it cumulant generating function$. The derivatives at t=0 are called $\it cumulant$ s. In particular, (Homework)

$$S_X(0) = 0, \qquad S_X^{(1)}(0) = \mathsf{E} X, \qquad S_X^{(2)}(0) = \mathsf{Var} X$$

E.g. $X \sim N(\mu, \sigma^2)$,

$$S_X(t) = \log(e^{\mu t + \sigma^2 t^2/2}) = \mu t + \sigma^2 t^2/2$$

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 16 / 22

Characteristic Function

(Gut III.4)

The characteristic function (cf) of the rv X is defined as

$$\phi_X(t) = \mathsf{E}e^{itX} = \mathsf{E}[\cos(tX) + i\sin(tX)]$$

where $i^2 = -1$.

- The cf is complex-valued, $\phi_X(t) \in \mathbb{C}$.
- The cf always exists because

$$|\mathsf{E}e^{itX}| \le \mathsf{E}|e^{itX}| = \mathsf{E}1 = 1$$

• For calculations, the cf can often be obtained from the mgf replacing the argument t by it (as long as the mgf exists!).

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 18 / 22

Examples

 $X \sim Exp(\lambda)$:

$$\phi_X(t) = \frac{\lambda}{\lambda - it}$$

 $X \sim N(\mu, \sigma^2)$:

$$\phi_X(t) = \exp\left(i\mu t - \frac{\sigma^2 t^2}{2}\right)$$

 $X \sim Geom(p)$:

$$\phi_X(t) = \frac{pe^{it}}{1 - qe^{it}}$$

And the range is $t \in \mathbb{R}$ in all cases.

Also, for X with the Cauchy distribution

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$
 \Rightarrow $\phi_X(t) = e^{-|t|}$

Exists!

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 19 / 22

Properties

- 1. $|\phi_X(t)| \le \phi_X(0) = 1$ 2. Complex conjugate: $\overline{\phi_X(t)} = \phi_X(-t)$ (Homework)
- 3. Linear transformations:

$$\phi_{aX+b}(t) = e^{ibt}\phi_X(at)$$

- The distribution is symmetric about 0, $f_X(x) = f_X(-x)$, iff $\phi_X(t)$ is real.
- Moment generation:

$$\phi_X^{(n)}(0) = \frac{d^n}{dt^n} M_X(t) \bigg|_{t=0} = i^n \mathsf{E}(X^n)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 20 / 22

Characterizing distributions

Characteristic functions uniquely identify distributions, always.

Theorem: If X and Y are rvs with cfs $\phi_X(t) = \phi_Y(t)$, then $F_X(u) = F_Y(u)$ for all u.

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 21 / 22

Relationship to other transforms

For continuous rvs:

$$\phi_X(t) = \int_{-\infty}^{\infty} e^{itx} f_X(x) \, dx$$

is similar to the *Fourier transform* of the function $f_X(x)$.

For discrete rvs:

$$\phi_X(t) = \sum_{x=-\infty}^{\infty} e^{itx} f_X(x)$$

is similar to the *discrete Fourier transform* of the sequence $f_X(x)$ (when x is sampled at equal intervals).

Thus Fourier transform tables can be helpful for finding cfs.

BIOS 660/BIOS 672 (3 Credits)

Notes 9 - 22 / 22