

CLAIMS

1 1. A method for controlling the voltage on a lens of an electron emitting device,
2 the method comprising the steps of:

3 supplying an emitter voltage to an electron emitter in the electron
4 emitting device, wherein a current amplitude is established;
5 sensing the emitter voltage on the electron emitter;
6 supplying a non-inverted input voltage to an amplifier that follows the
7 emitter voltage; and
8 providing an amplifier output voltage from the amplifier to the lens,
9 wherein the amplifier output voltage corresponds to the emitter voltage at the
10 electron emitter.

1 2. The method of claim 1, further comprising the step of:

2 driving other lenses in the emitting device based on the amplifier
3 output voltage supplied by the amplifier.

1 3. The method of claim 1, further comprising the step of:

2 adjusting the amplifier output voltage so that the lens optimizes the
3 focal point of a beam emitted from the electron emitter.

1 4. The method of claim 3, wherein the amplifier output voltage is adjusted by
2 varying the gain of the amplifier.

AUSTIN PATENT FIRM

1 5. The method of claim 4, wherein the gain is varied by a variable resistor
2 coupled to the amplifier.

1 6. The method of claim 1, wherein said sensing step is performed by a sensing
2 diode.

1 7. The method of claim 1, wherein said sensing step is performed by an
2 electronic switch.

1 8. The method of claim 1, wherein said sensing step is performed by one or more
2 high-breakdown voltage MOS transistors.

1 9. The method of claim 1, wherein said amplifier is a non-inverting summer
2 circuit that sums the emitter voltage and a desired lens voltage.

1 10. A storage device comprising:
2 an electron emitter;
3 a lens to adjust the focal point of a beam emitted from the electron
4 emitter;
5 a sensing switch coupled to the electron emitter to sense voltage on the
6 electron emitter;
7 an amplifier coupled to the sensing switch that follows the voltage on
8 the electron emitter, wherein the sensing switch is coupled to an input of the
9 amplifier and the output of the amplifier is coupled to the lens; and
10 wherein the output of the amplifier drives the voltage on the lens.

1 11. The storage device of claim 10, further comprising:
2 a variable resistor coupled to an input of the amplifier, wherein the
3 gain of the amplifier is adjusted according to the variable resistor.

1 12. The storage device of claim 10, wherein the sensing switch is a sensing diode.

1 13. The storage device of claim 12, further comprising:
2 a plurality of additional sensing diodes coupled to the input of the
3 amplifier and other electron emitters.

1 14. The storage device of claim 12, further comprising:
2 a compensating diode coupled to the sensing diode and the amplifier,
3 wherein the compensating diode compensates for a voltage drop across the
4 sensing diode; and
5 a bias resistor coupled to the amplifier side of the compensating diode
6 and ground.

1 15. The storage device of claim 10, further comprising:
2 an emitter current control switch; and
3 a current control circuit coupled to the sensing switch, emitter current
4 control switch, and the variable resistor, wherein the current control circuit
5 establishes the current amplitude supplied to the electron emitter.

1 16. An electron emitting storage device, comprising:
2 emitter means for emitting electrons toward a storage medium;
3 lens means for focusing emitted electrons from the emitter means into
4 an optimized focal point on the storage medium;
5 means for sensing voltage applied to the emitter means;
6 amplifier means for providing an output voltage to the lens means that
7 is relative to the voltage applied to the emitter means; and
8 means for adjusting input voltage to the amplifier means so that the
9 output voltage to the lens means changes.

1 17. The electron emitting storage device of claim 16, further comprising:
2 means for controlling the current in the emitter means; and
3 switching means for activating the emitter means.

1 18. The electron emitting storage device of claim 16, wherein the amplifier means
2 is in a non-inverting configuration.

1 19. A method for controlling the voltage on a lens of an electron emitting device,
2 the method comprising the steps of:
3 supplying an emitter voltage to an electron emitter in the electron
4 emitting device;
5 sensing the emitter voltage on the electron emitter;
6 summing the sensed emitter voltage and a desired lens voltage; and
7 providing a voltage output that is the sum of the emitter voltage and the
8 desired lens voltage to the lens of the electron emitting device.

1 20. The method of claim 19, further comprising the step of:
2 driving other lenses in the emitting device based on the provided
3 voltage output.

LAW OFFICES OF HARRIS, LINDLOF & STERN