LMD Tipo A

Prueba de clase 31 de Marzo de 2014

Alumno:______ D.N.I.:____

Ejercicio 1. Sean $X = \{0, a, b, 1\}$ e $Y = \{0, x, y, 1\}$ dos conjuntos. Definimos las siguientes operaciones en X y en Y:

■ *En X*:

V	0	a	b	1
0	0	a	b	1
a	a	a	b	1
\overline{b}	b	b	b	1
1	1	1	1	1

\wedge	0	a	b	1
0	0	0	0	0
a	0	a	a	a
b	0	a	b	b
0	0	a	b	1

■ En Y:

V	0	x	y	1
0	0	x	y	1
x	x	x	1	1
y	y	1	y	1
1	1	1	1	1

\wedge	0	x	y	1
0	0	0	0	0
x	0	x	0	x
y	0	0	y	y
0	0	x	y	1

Estudia cual o cuales de los conjuntos X e Y, con las operaciones dadas, es un álgebra de Boole.

Ejercicio 2. Sea $f: \mathbb{B}^3 \to \mathbb{B}$ la función booleana

$$f(x, y, z) = \begin{cases} \overline{x} + y & \text{si } z = 0\\ x + \overline{x}y & \text{si } z = 1 \end{cases}$$

Escribe la función f con una sola fórmula y usando únicamente los operadores suma y complementario.

Ejercicio 3. Sea $g: \mathbb{B}^4 \to \mathbb{B}$ la función booeana dada por

$$g(x, y, z, t) = \begin{cases} 0 & \text{si } x \leq y \\ \overline{z} + t & \text{si } x > y \end{cases}$$

Encuentra una expresión minimal de la función g como producto de sumas.

Ejercicio 4. Utiliza el algoritmo de Davis-Putnam para determinar si el siguiente conjunto de cláusulas es satisfacible o insatisfacible.

$$\Sigma = \{d \lor a \lor \neg e, \neg d \lor a, \, d \lor \neg c \lor a \lor e, \, \neg d \lor b \lor a, \, d \lor \neg a \lor e, \, d \lor \neg a \lor \neg e, \, b \lor c \lor a, \, \neg d\}$$

Ejercicio 5. De entre los siguientes problemas de consecuencia lógica ¿cuáles son ciertos?

a)
$$\{a \lor \neg b \to \neg c\} \vDash (c \lor a) \to (b \land a)$$

b)
$$\{a \lor \neg b \to \neg c\} \vDash (\neg c \to a) \to (b \lor a)$$

c)
$$\{(a \lor \neg b) \to (b \land \neg c)\} \vDash c \to (a \to b)$$