TITLE

by

Kraig Andrews

Ph.D. Disseration Prospectus

YEAR		
Advisor		
Advisor		

${\bf ABSTRACT}$

TITLE HERE

by

Kraig J. Andrews

August 2008

Advisor: Dr. Zhixain Zhou

Major: Physics

Degree: Doctor of Philosophy

Abstract here

Table of Contents

	List of Figures	111
	List of Tables	iv
1	Introduction	1
	1.1 The Conception of Semiconductors	1
	1.2 Evolution of Semiconductors	1
	1.3 Interest and Development of Two-dimensional Materials	1
	1.4 Current State of Two-dimensional Materials	1
2	Chapter 2	2
	2.1 Section Heading	2
3	Chapter 3	3
	Chapter 3 3.1 Section Heading	3
4	Conclusion	4
	4.1 Heading	4

List of Figures

List of Tables

1 1	operties of selected semiconductors	-
1.1	operites of selected semiconductors	-

Introduction

1.1 The Conception of Semiconductors

Here we present work by [2, 1].

Semiconductor	Band Gap	Electron Mobility ¹	Hole Mobility ¹	Lattice Constant
	(eV)	$(\mathrm{cm^2/V \cdot s})$	$(\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s})$	(Å)
Si	1.12	1,500	470	5.43095^{a}
Ge	0.67	3,900	1,900	$5.64613^{\rm a}$
GaAs	1.42	8,500	400	$5.6533^{ m b}$
CdS	2.5	300	50	5.8320^{c}
AlAs	2.16	1,200	400	$5.6622^{ m b}$
ZnS	3.66	165	5	$5.410^{\rm d}$

Table 1.1: Selected properties of some common semiconductors at $T = 300 \,\mathrm{K}$. Adapted from ref. [5].

1.2 Evolution of Semiconductors

1.3 Interest and Development of Two-dimensional Materials

1.4 Current State of Two-dimensional Materials

¹ Drift mobilities in the purest materials.

^a Diamond cubic crystal structure [4].

^b Zinc blende crystal structure [3].

^c Hexagonal and cubic... citation needed.

^d Notes on ZnS structure.

Chapter 2

2.1 Section Heading

Chapter 3

3.1 Section Heading

Conclusion

4.1 Heading

Bibliography

- [1] J. W. Allen. Gallium Arsenide as a Semi-insulator. Nature, 187:403–405, jul 1960.
- [2] M. Cutler and N. F. Mott. Observation of Anderson Localization in an Electron Gas. *Physical Review*, 181:1336–1340, may 1969.
- [3] A. Ledwith and S. J. Moss. *Chemistry of the Semiconductor Industry*. Springer Science, New York, NY, 1 edition, 1989.
- [4] W.C. O'Mara, R.B. Herring, and L.P. Hunt. *Handbook of Semiconductor Silicon Technology*. Materials science and process technology series. Noyes Publications, 1990.
- [5] Dieter K. Schroder. Semiconductor Material and Device Characterization. John Wiley and Sons, Inc., Hoboken, New Jersey, 3rd edition, 2006.