Gram-Schmidt Orthogonalization

©Barry Van Veen 2019

The Gram-Schmidt procedure finds an orthonormal basis that spans the same space as vectors $\mathbf{a}_i, i = 1, 2, ..., P$. It proceeds through the vectors sequentially, starting with \mathbf{a}_1 , and adds the orthonormal component associated with each \mathbf{a}_i that is not represented by $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_{i-1}$. Let $\mathbf{u}_i, i = 1, 2, ..., R$ be the orthonormal basis where $R \leq P$. The vector \mathbf{u}_1 spans the same space as \mathbf{a}_1 . Then $\mathbf{u}_1, \mathbf{u}_2$ span the same space as $\mathbf{a}_1, \mathbf{a}_2$ (assuming \mathbf{a}_1 and \mathbf{a}_2 are linearly independent), $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ span the same space as $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ (assuming $\mathbf{a}_1, \mathbf{a}_2$ and \mathbf{a}_3 are linearly independent), and so on.

At each stage, we first find the component of \boldsymbol{a}_i that lies orthogonal to $\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_{i-1}$, and then define \boldsymbol{u}_i to be this component normalized to unit length. Let $\boldsymbol{U}_{i-1} = \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 & \cdots & \boldsymbol{u}_{i-1} \end{bmatrix}$. Then the component of \boldsymbol{a}_i that lies in the space spanned by the columns of \boldsymbol{U}_{i-1} is $\boldsymbol{b}_i = \boldsymbol{U}_{i-1}\boldsymbol{U}_{i-1}^T\boldsymbol{a}_i$, since $\boldsymbol{U}_{i-1}\boldsymbol{U}_{i-1}^T$ is a projection matrix for the space spanned by the columns of \boldsymbol{U}_{i-1} . Note that we may also write $\boldsymbol{b}_i = \sum_{k=1}^{i-1} \boldsymbol{u}_k(\boldsymbol{u}_k^T\boldsymbol{a}_i)$. Hence, the component of \boldsymbol{a}_i that is not in the space spanned by the columns of \boldsymbol{U}_{i-1} is $\boldsymbol{c}_i = \boldsymbol{a}_i - \boldsymbol{b}_i$ and we define $\boldsymbol{u}_i = \boldsymbol{c}_i/||\boldsymbol{c}_i||_2$.

Figure 1: Gram-Schmidt orthogonalization of two vectors.

This process is illustrated in Fig. 1 for a two-dimensional problem. The upper left panel shows u_1 as a normalized version of a_1 . Then the upper right panel shows b_2 as the projection

of a_2 onto the space spanned by u_1 . The lower left panel depicts c_2 as the projection of a_2 onto the space orthogonal to that spanned by u_1 . Finally, in the lower right panel we normalize c_2 to obtain u_2 .

Figure 2 illustrates computation of u_3 for a three-dimensional subspace. The process for finding u_1 and u_2 is identical to that illustrated in Fig. 1. The left panel illustrates computation of b_3 , the projection of a_3 onto the space spanned by u_1 and u_2 . The vector b_3 lies in the plane corresponding to the span of a_1 and a_2 or a_1 and a_2 . Hence, a_3 , shown on the right panel, is the component of a_3 that is orthogonal to the plane defined by span{ u_1, u_2 }. We obtain u_3 by normalizing u_3 to unit length.

Figure 2: Gram-Schmidt orthogonalization of three vectors.

Note that if the a_i , i = 1, 2, ..., P are linearly dependent, then one of the c_i will be all zeros. In that case a_i lies in the space spanned by $a_1, a_2, ..., a_{i-1}$. In such a case we move on to a_{i+1} to find the next orthonormal basis vector.

A psuedo-code for the Gram-Schmidt orthogonalization procedure is given as:

$$egin{aligned} & m{u}_1 = m{a}_1/||m{a}_1||_2 \ & m{U}_1 = m{u}_1 \ j = 1 \end{aligned}$$
 for $i = 2$ to P $m{c}_i = (m{I} - m{U}_j m{U}_j^T) m{a}_i$ if $||m{c}_i||_2 >$ tol, then $j = j + 1$ $m{u}_j = m{c}_i/||m{c}_i||_2$ $m{U}_j = \left[m{U}_{j-1} \quad m{u}_j \ \right]$

end if end for

Example 1. Find an orthonormal basis for the space spanned by the columns of

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 3 \end{array} \right]$$

Here $\boldsymbol{a}_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$, so

$$oldsymbol{u}_1 = oldsymbol{a}_1/||oldsymbol{a}_1||_2 = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \ 1 \end{array}
ight]$$

Next, we find u_2 as follows: $c_2 = (I - u_1 u_1^T) a_2$ or

$$oldsymbol{c}_2 = \left[egin{array}{c}1\\3\end{array}
ight] - rac{1}{2}\left[egin{array}{c}1\\1\end{array}
ight] \left(\left[egin{array}{cc}1&1\end{array}
ight] \left[egin{array}{c}1\\3\end{array}
ight]
ight)$$

SO

$$\boldsymbol{c}_2 = \left[\begin{array}{c} 1 \\ 3 \end{array} \right] - \left[\begin{array}{c} 2 \\ 2 \end{array} \right]$$

or

$$c_2 = \left[\begin{array}{c} -1 \\ 1 \end{array} \right]$$

which implies

$$oldsymbol{u}_2 = oldsymbol{c}_2/||oldsymbol{c}_2||_2 = rac{1}{\sqrt{2}} \left[egin{array}{c} -1 \ 1 \end{array}
ight]$$

Figure 3 depicts the columns of A and orthonormal bases.

Example 2. Find an orthonormal basis for the space spanned by the columns of

$$\mathbf{A} = \left[\begin{array}{rrr} -1 & 1 & 3 \\ 1 & -1 & 3 \end{array} \right]$$

Here $\boldsymbol{a}_1 = \begin{bmatrix} -1 & 1 \end{bmatrix}^T$, so

$$oldsymbol{u}_1 = oldsymbol{a}_1/||oldsymbol{a}_1||_2 = rac{1}{\sqrt{2}} \left[egin{array}{c} -1 \\ 1 \end{array}
ight]$$

Next, we find \boldsymbol{u}_2 as follows: $\boldsymbol{c}_2 = (\boldsymbol{I} - \boldsymbol{u}_1 \boldsymbol{u}_1^T) \boldsymbol{a}_2$ or

$$oldsymbol{c}_2 = \left[egin{array}{c} 1 \ -1 \end{array}
ight] - rac{1}{2} \left[egin{array}{c} -1 \ 1 \end{array}
ight] \left(\left[egin{array}{cc} -1 & 1 \end{array}
ight] \left[egin{array}{c} 1 \ -1 \end{array}
ight]
ight)$$

Figure 3: Gram-Schmidt orthogonalization Example 1.

so
$${m c}_2 = \left[\begin{array}{c} 1 \\ -1 \end{array} \right] - \left[\begin{array}{c} 1 \\ -1 \end{array} \right]$$
 or
$${m c}_2 = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

SO

Thus \boldsymbol{a}_2 is linearly dependent on \boldsymbol{a}_1 and we must use \boldsymbol{a}_3 to find \boldsymbol{u}_2 : $\boldsymbol{c}_3 = (\boldsymbol{I} - \boldsymbol{u}_1 \boldsymbol{u}_1^T) \boldsymbol{a}_3$ or

$$\boldsymbol{c}_{3} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \left(\begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right)$$

$$\boldsymbol{c}_{3} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$4 \text{ of } 7$$

or

$$c_3 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Hence

$$oldsymbol{u}_2 = oldsymbol{c}_3/||oldsymbol{c}_3||_2 = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \ 1 \end{array}
ight]$$

Figure 4 depicts the columns of A and orthonormal bases.

Figure 4: Gram-Schmidt orthogonalization Example 2.

Example 3. Find an orthonormal basis for the space spanned by the columns of

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Here $\boldsymbol{a}_1 = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^T$, so

$$oldsymbol{u}_1 = oldsymbol{a}_1/||oldsymbol{a}_1||_2 = rac{1}{\sqrt{2}} \left[egin{array}{c} -1 \ 1 \ 0 \end{array}
ight]$$

Next, we find \boldsymbol{u}_2 as follows: $\boldsymbol{c}_2 = (\boldsymbol{I} - \boldsymbol{u}_1 \boldsymbol{u}_1^T) \boldsymbol{a}_2$ or

$$oldsymbol{c}_2 = \left[egin{array}{c} 0 \ -1 \ 1 \end{array}
ight] - rac{1}{2} \left[egin{array}{c} -1 \ 1 \end{array}
ight] \left(\left[egin{array}{cccc} -1 & 1 & 0 \end{array}
ight] \left[egin{array}{c} 0 \ -1 \ 1 \end{array}
ight]
ight)$$

SO

$$oldsymbol{c}_2 = \left[egin{array}{c} 0 \ -1 \ 1 \end{array}
ight] - rac{1}{2} \left[egin{array}{c} 1 \ -1 \ 0 \end{array}
ight]$$

or

$$\boldsymbol{c}_2 = \left[\begin{array}{c} -0.5 \\ -0.5 \\ 1 \end{array} \right]$$

Thus

$$m{u}_2 = m{c}_2/||m{c}_2||_2 = \sqrt{rac{2}{3}} \left[egin{array}{c} -0.5 \\ -0.5 \\ 1 \end{array}
ight]$$

Next we find u_3 by removing the components in the space spanned by u_1 and u_2 from a_3 :

$$m{c}_3 = (m{I} - (m{u}_1 m{u}_1^T + m{u}_2 m{u}_2^T)) m{a}_3 = m{a}_3 - m{u}_1 (m{u}_1^T m{a}_3) - m{u}_2 (m{u}_2^T m{a}_3)$$

$$\boldsymbol{c}_{3} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \left(\begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right) - \frac{2}{3} \begin{bmatrix} -0.5 \\ -0.5 \\ 1 \end{bmatrix} \left(\begin{bmatrix} -0.5 & -0.5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right)$$

or

$$c_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} -0.25 \\ -0.25 \\ 0.5 \end{bmatrix}$$

SO

$$\boldsymbol{c}_3 = \begin{bmatrix} 2/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$

Hence

$$oldsymbol{u}_3 = oldsymbol{c}_3/||oldsymbol{c}_3||_2 = rac{1}{\sqrt{3}} \left[egin{array}{c} 1 \ 1 \ 1 \end{array}
ight]$$

Figure 5 depicts the columns of ${\bf A}$ and orthonormal bases.

Figure 5: Gram-Schmidt orthogonalization Example 3.