Álgebra lineal II, Grado en Matemáticas

Junio 2014, 1^a semana.

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz de Gram un producto escalar.
- (b) Vectores conjugados respecto a una forma cuadrática.
- (c) Polinomio anulador de un endomorfismo.
- (d) Forma polar.

Ejercicio 1: (2 puntos)

Demuestre que, en un espacio vectorial euclídeo (V, <, >), la matriz de cambio de base entre dos bases ortonormales B y B' es una matriz ortogonal.

Ejercicio 2: (3 puntos)

Sea f la isometría vectorial de \mathbb{R}^3 cuya matriz en la base canónica es

$$\begin{pmatrix} -1/2 & -\sqrt{2}/2 & 1/2 \\ \sqrt{2}/2 & 0 & \sqrt{2}/2 \\ 1/2 & -\sqrt{2}/2 & -1/2 \end{pmatrix}$$

Determine el tipo de isometría y los elementos geométricos que la caracterizan: eje de giro, ángulo, plano de simetría; según corresponda.

Ejercicio 3: (2 puntos)

Encontrar la matriz canónica de Jordan, J, de un endomorfismo f de \mathbb{K}^4 que cumpla:

$$Ker(f-I)^3$$
: $x_1 - x_2 + x_3 - x_4 = 0$
 $Ker(f-I)^2$: $(x_1 - x_2 + x_3 = 0, x_4 = 0)$
 $Ker(f-I)$: $(x_1 + x_3 = 0, x_4 = 0, x_2 = 0)$
 $Ker(f)$: $x_1 = x_2 = x_3 = 0$

Determinar una base B tal que $M_B(f) = J$.

Ejercicio 4: (1 punto)

Determine la signatura de una forma cuadrática $\Phi:\mathbb{R}^3\to\mathbb{R}$ que cumpla las siguientes condiciones:

- a) Existe un plano $U \subset \mathbb{R}^3$, tal que, es el subespacio de mayor dimensión respecto al cual la restricción de Φ a U, $\Phi_{|U}$, es definida positiva.
- b) En el subespacio conjugado de U existen vectores autoconjugados no nulos.