Dashboard / My cou	urses / Measure Theory & Integration (MA51002) - Spring 2021 / Topic 1 / Quiz-2 / Preview
	Monday, 1 March 2021, 11:55 AM
	Finished
	Monday, 1 March 2021, 11:58 AM 3 mins 30 secs
Time taken	2 111112 20 2672
Question 1	
Complete	
Marked out of 1.00	
If φ is a simple fund	ction, then $ \phi $ is also a simple function
Select one:	
True	
○ False	
Question 2	
Complete	
Marked out of 1.00	
1 -1 1 1 1 1 1 1 1	Di Thomas Control
Let $A = [0, 1] U [2, 3]$	
(write the numeric	value)
Answer: 0	
Answer: 0	
Question 3	
Complete	
Marked out of 1.00	
Let A B ⊂ R he sub	osets. Then $\chi_{A\cap(\mathbf{R}\setminus B)}=$
Letti, b <u>=</u> N be sur	23CB. HEH ∧A∩(k (B) −
\bigcirc a. $\chi_{(\mathbf{R}\setminus A)\cap B}$	
b. χ_B - χ_{A∩B}	
Ο c. χ _A χ _B	
d. χ_A - χ_{A∩B}	

Question 4
Complete
Marked out of 1.00
Let $E \subseteq \mathbf{R}$ be a measurable and dense subset. Then $m(E^c) = 0$
Let E \(\frac{1}{2} \) N be a measurable and defise subset. Then m(E) = 0
Select one:
○ True
False
_
Question 5 Complete
Marked out of 1.00
Let $f_n : E \to \mathbf{R}$ be measurable functions, for all $n \ge 1$, where E is a measurable set in \mathbf{R} . Suppose { f_n } converges pointwise to a function f on E. Then f is measurable.
E. Men is measurable.
Select one:
■ True
○ False
Question 6 Complete
Marked out of 1.00
Let $E \subseteq \mathbf{R}$ be a measurable set and m(E) > 0. Then for any $\alpha \in (0, 1)$, there exists a finite open interval $I \subseteq \mathbf{R}$ such that
$\alpha m(I) \leq m(E \cap I).$
Select one:
■ True
○ False
Question 7
Complete Marked out of 100
Marked out of 1.00
Let $g = \chi_{[0, 1]} + 3 \chi_{[1, 4]} - 2 \chi_{[2, 3]}$. Then $\int_{\mathbf{R}} g =$
(write the numeric value)
Answer: 8

Question 8
Complete
Marked out of 1.00
Let $f_n = \chi_{[n, n+1]}$, for all $n \geq 1$. Then $\{ f_n \}$ converges pointwise.
Select one:
○ False
Question 9
Complete
Marked out of 1.00
Let $\{f_n\}$ be a sequence of measurable functions defined on a measurable set $E \subseteq \mathbf{R}$. Then $\{x \in E : \lim f_n(x) \text{ exists as } n \to \infty \}$ is a measurable set.
illeasurable set.
Select one:
True
○ False
Laure 10
Question 10
Complete
Complete
Complete
Complete Marked out of 1.00
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable.
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one:
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one:
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True False
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True False
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True False
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True False Question 11 Complete Marked out of 1.00
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True False Question 11 Complete Marked out of 1.00 Let $f: \mathbf{R} \to \mathbf{R}$ be a non-negative measurable function. Then there exists an increasing sequence of non-negative simple functions that
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True False Question 11 Complete Marked out of 1.00
Complete Marked out of 1.00 Let $E \subseteq \mathbf{R}$ be a measurable set and $f: E \to \mathbf{R}$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True False Question 11 Complete Marked out of 1.00 Let $f: \mathbf{R} \to \mathbf{R}$ be a non-negative measurable function. Then there exists an increasing sequence of non-negative simple functions that
Complete Marked out of 1.00 Let $E \subseteq R$ be a measurable set and $f: E \to R$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True False Question 11 Complete Marked out of 1.00 Let $f: R \to R$ be a non-negative measurable function. Then there exists an increasing sequence of non-negative simple functions that converges pointwise to f .
Complete Marked out of 1.00 Let $E \subseteq R$ be a measurable set and $f: E \to R$ be a function. If f is not measurable, then there exists a rational number r such that $\{x \in E: f(x) < r\}$ is not measurable. Select one: True False Question 11 Complete Marked out of 1.00 Let $f: R \to R$ be a non-negative measurable function. Then there exists an increasing sequence of non-negative simple functions that converges pointwise to f . Select one:

Question 12
Complete
Marked out of 1.00
Every simple function is measurable.
Select one:
True
○ False
Question 13
Complete
Marked out of 1.00
Let $f = \chi_{[-1, 1]} - 2\chi_{[0, 2]} + 5\chi_{[1, 2]}$. Then $\int_{\mathbf{R}} f =$
(write the numeric value)
Answer: 3
Question 14
Complete
Marked out of 1.00
Let f: $\mathbf{R} \to \mathbf{R}$ be a function defined as $f(x) = \sin x$, if x is rational and $f(x) = \cos x$, if x is irrational. Then f is Lebesgue measurable but not Borel
measurable.
Select one:
○ True
False
© I dise
Question 15
Complete
Marked out of 1.00
Let $E \subseteq \mathbf{R}$ be a measurable set. Let $f: E \to \mathbf{R}$, be continuous almost everywhere (a.e) on E . Then f is a measurable function.
Select one:
Select one: True
Select one:
Select one: True
Select one: True False
Select one: True