CS6013 - Modern Compilers - Assignment - 1

Bersilin C CS20B013

February 2, 2024

1. Regular Expressions and DFA

Draw DFAs for the following languages

(a) The language of all strings over the alphabet {a, b} where every 'a' is immediately followed by at least one 'b'.

Solution: The DFA for the language of all strings over the alphabet $\{a, b\}$ where every 'a' is immediately followed by at least one 'b' is the 5-tuple $(Q, \Sigma, \delta, s, F)$.

$$Q = \{q_0, q_1, q_2\} \qquad \Sigma = \{a, b\} \qquad s = q_0 \qquad F = \{q_0\}$$

$$\begin{array}{c} b \\ a, b \\ \hline \\ a \\ \hline \\ q_1 \\ \hline \\ a \\ \hline \\ q_2 \\ \end{array}$$

The regular expression for the above DFA is (ab | b)*

(b) The language of all strings over the alphabet $\{0, 1\}$ in which the number of consecutive 1s is divisible by 3.

Solution: The DFA for the language of all strings over the alphabet $\{0, 1\}$ in which the number of consecutive 1s is divisible by 3 is the 5-tuple $(Q, \Sigma, \delta, s, F)$.

$$Q = \{q_0, q_1, q_2, q_3\} \qquad \Sigma = \{0, 1\} \qquad s = q_0 \qquad F = \{q_0\}$$
 start $q_0 \qquad q_3 \qquad 0, 1$

The regular expression for the above DFA is $(111 \mid 0)^*$

(c) The language of all strings over the alphabet {a, b} where each 'a' is followed by an even number of 'b's.

Solution: The DFA for the language of all strings over the alphabet $\{a, b\}$ where each 'a' is followed by an even number of 'b's is the 5-tuple $(Q, \Sigma, \delta, s, F)$.

$$Q = \{q_0, q_1, q_2, q_3\} \qquad \Sigma = \{a, b\} \qquad s = q_0 \qquad F = \{q_0, q_1\}$$

The regular expression for the above DFA is (a(bb)*)*|b*

2. **CFG**

Write the CFG for the following language:

(a) L= $\{w \in \{0,1\}^* | w \text{ contains double the number of 0s than 1s} \}$.

Solution: The CFG for the language of $\{0, 1\}$ which contains double the number of 0s than 1s is the 4-tuple (V_n, V_t, P, S)

$$V_n = \{S, T, V\}$$
 $V_t = \{0, 1\}$ $S(goal) = S$

The productions (P):

(b) L= $\{w \in \{0,1\}^* | w \text{ contains unequal number of 0s and 1s} \}$.

Solution: The CFG for the language of $\{0, 1\}$ which contains unequal number of 0s and 1s is the 4-tuple (V_n, V_t, P, S)

$$V_n = \{S, T, V, E, U\}$$
 $V_t = \{0, 1\}$ $S(goal) = S$

The productions (P):

(c) L={ $w \in \{lock_x, unlock_x, access_x\}* | w$ denotes a sequence of valid accesses over a shared location and x is any integer.

Solution: The CFG for the language: $\{w \in \{lock_x, unlock_x, access_x\} * | w \text{ denotes a sequence of valid accesses over a shared location and x is any integer, is the 4-tuple <math>(V_n, V_t, P, S)$

$$V_n = \{S, T_x\}$$
 $V_t = \{lock_x, unlock_x, access_x\}$ $S(goal) = S(goal)$

The productions (P):

3. Parsing

Consider the grammar

```
stmt ...= id(); stmt stmt | { stmt } | if (id) stmt
```

where stmt is the only non-terminal symbol, stmt is the start symbol, and

is the list of terminal symbols. The terminal symbol id is defined using the regular expression (letter+) where letter is an ascii character in the interval a. . . z. The grammar generates a subset of the Java statements. Rewrite the grammar into a grammar which is LL(1), and use the rewritten grammar as the basis for implementing a recursive descent parser.

(a) Write the LL(1) grammar

Solution: The given grammar is ambiguous. We can eliminate ambiguity and left recursion by introducing two new non-terminals. The rewritten grammar is:

```
stmt -> stmt1 stmt2 stmt1 -> id(); | if(id) stmt1 | { stmt } stmt2 -> stmt | \epsilon
```

(b) Write the FIRST and FOLLOW sets for each non-terminal symbol

Solution: The FIRST and FOLLOW sets for the rewritten grammar are:

	FIRST	FOLLOW		
stmt	id, if, {	\$, }		
stmt1	id, if, {	id, if, {, \$, }		
stmt2	id, if, $\{, \epsilon\}$	\$, }		
id	id	-		
((-		
))	-		
;	;	-		
{	}	-		
}	{	-		
if	if	-		

(c) Write the predictive parsing table for the grammar

Solution: The predictive parsing table for the rewritten grammar:

NT	id	()	;	if	{	}	\$
(s)	s -> s1 s2				s -> s1 s2	s -> s1 s2		
(s1)	s1 -> id();				s1 -> if(id) s1	s1 -> {s}		
(s2)	s2 -> s				s2 -> s	s2 -> s	s2 → <i>ϵ</i>	s2 -> ϵ

(d) Argue that the rewritten grammar is LL(1)

Solution: A grammar G is LL(1) iff. for each set of productions $A \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_n$:

- 1. FIRST(α_1), FIRST(α_2), FIRST(α_n) are all pairwise disjoint. Here,
 - (a) stmt has only one production.
 - (b) stmt1 has three productions whose FIRSTs are id, if, { which are all pairwise disjoint.
 - (c) stmt2 has 2 productions where one of them is stmt1 and the other, ϵ . FIRST(stmt1) doesn't have an ϵ , so it satisfies the condition.
- 2. If any of the $\alpha_i \to *\epsilon$, then $\mathrm{FIRST}(\alpha_j) \cap \mathrm{FOLLOW}(A) = \phi$, $\forall 1 \leq j \leq n, i \neq j$. Here, stmt2 goes to ϵ and the other production has stmt1 whose $\mathrm{FIRST} = \{\mathrm{id}, \mathrm{if}, \{\}, \mathrm{none} \mathrm{of} \mathrm{which} \mathrm{match} \mathrm{with} \mathrm{the} \mathrm{FOLLOW} \mathrm{of} \mathrm{stmt2} \mathrm{which} \mathrm{is} \{\}, \$\}.$

Thus the rewritten grammar is LL(1).