

Environmental Remote Sensing GEOG 2021

Lecture 4

Image classification

Purpose

- categorising data
- data abstraction / simplification
- data interpretation
- mapping
 - for land cover mapping
 - use land cover class as a surrogate for other information of interest (ie assign relevant information/characteristics to a land cover class)

Multispectral image classification

- Very widely used method of extracting <u>thematic</u> information
- Use multispectral (and other) information
- Separate different land cover classes based on spectral response, texture,

. . . .

• i.e. separability in "feature space"

Basis for 'classifying'

- method: pattern recognition
- use any/all of the following properties in an image to differentiate between land cover classes:
 - spectral
 - spatial
 - temporal
 - directional
 - [time / distance-resolved (LIDAR)]

Spatial pattern recognition

- use spatial context to distinguish between different classes
 - e.g. measures of image texture, spatial context of 'objects' derived from data.

Temporal pattern recognition

- the ability to distinguish based on spectral or spatial considerations may vary over the year
- use variations in image DN (or derived data) over time to distinguish between different cover types
 - e.g. variations in VI over agricultural crops

Directional pattern recognition

 surface with different structures will tend to give different trends in reflectance as a function of view and illumination angles

Spectral pattern recognition

- most widely used
- distinguish between different land cover classes from differences in the spectral reflectance (or more typically, image DN) in different wavebands

i.e. separate in feature space

• Use different spectral response of different materials to separate e.g. plot red v NIR DN values....

Approaches to Classification

- We need some form of automated (rule-based) classification algorithm to allow us to distinguish one surface type from another
 - Supervised Classification
 - Unsupervised Classification

Supervised classification

- training stage (significant user input/expertise)
- Identify areas of cover types of interest (map, ground survey, spectral characteristics) in bands of an image

Supervised classification: training stage

- areas of interest delineated by user
- spectral information on the cover types is gathered for these areas
 - Training data (subset of whole)
 - These are "classes" we will place all remaining pixels in according to their DN values
- Can plot in feature space do we see clusters?

Supervised classification: classification stage

- Need rule(s) to decide into which class we put given pixel
- e.g. Minimum distance to means (MDM)
 - for each land cover class, calculate the mean vector in feature space (i.e. the mean value in each waveband)
 - Put every pixel into nearest class/cluster
 - define a limit beyond which a pixel remains unclassified
- a simple and fast technique but has major limitations...

Supervised classification

- Feature space clusters
- E.g. 2 channels of information
- Are all clusters separate?

ter diagram.

Supervised classification: MDM

- Find closest cluster mean for each pixel
- Simple and quick BUT what about points 1, 2?
- i.e. MDM insensitive to variance of clusters
- Can we improve?

Figure 7.40 Minimum distance to means classification strategy.

UCL

Supervised classification: parallelepiped ('box')

- Assign boundaries around the spread of a class in feature space i.e. take account of variance
- typically use minimum/maximum of DN in a particular class to define limits, giving a rectangle in 2D, box in 3D (if we have > 2 bands) etc.
- pixels outside of these regions are unclassified (which is good or bad, depending on what you want!!)
- problems if class regions overlap or if high covariance between different bands (rectangular box shape inappropriate)
 - can modify algorithm by using stepped boundaries with a series of rectangles to partially overcome such problems
- simple and fast technique
- takes some account of variations in the variance of each class

Supervised classification: parallelepiped ('box')

Band 4 digital number

Figure 7.42 Parallelepiped classification strategy employing stepped decision region boundaries.

Simple boxes defined by min/max limits of each training class. But overlaps.....?

...so use stepped boxes

LUCL

Supervised classification: Gaussian maximum likelihood

- assumes data in a class are (unimodal)
 Gaussian (normal) distributed
 - class then defined through a mean vector and covariance matrix
 - calculate the probability of a pixel belonging to any class using probability density functions defined from this information
 - we can represent this as equiprobability contours
 & assign a pixel to the class for which it has the highest probability of belonging to

Supervised classification: Gaussian maximum likelihood

- Now we use probability rather than distance in feature space
- Which class is each pixel "most likely" to belong to??

17

Supervised classification: Gaussian maximum likelihood

- Now pixel 1 correctly assigned to corn class
- Much more sophisticated BUT is computationally expensive compared to distance methods

Figure 7.44 Equiprobability contours defined by a maximum likelihood classifier.

Supervised classification: decision tree

- Classify in steps, where the classifier has only to be able to distinguish between two or more classes at each step
 - can combine various types of classifiers as appropriate using such methods

Classification Accuracy

- How do we tell if classification is any good?
 - Classification error matrix (aka confusion matrix or contingency table)
 - Need "truth" data sample pixels of known classes
 - How many pixels of KNOWN class X are incorrectly classified as anything other than X (<u>errors of omission</u>)?
 - » So-called Type 2 error, or false negative
 - Divide correctly classified pixels in each class of truth data by COLUMN totals (Producer's Accuracy)
 - How many pixels are incorrectly classified as class X when they should be some other known class (errors of commission)?
 - » So-called Type 1 error, or false positive
 - Divide correctly classified pixels in each class by ROW totals (User's Accuracy)

Classification Accuracy

TABLE 7.3	Error Matrix	Resulting from	Classifying	Training Set Pixels
-----------	---------------------	----------------	-------------	---------------------

	Training Set Data (Known Cover Types) ^a								
ing the application of the state of the stat	W	S	F	U	С	H	Row Total		
Classification data		a assert	Errors of	JSKARJETAKON	t madeem	na lena mar	ald six		
W Errors of	480	0on	nission for	0	0	0	485		
		52	class U	20	0	0	72		
comission for	0 0	0	313	40	0	0	353		
u class U	0	16	0	126	0	0	142		
C C C C C C C C C C C C C C C C C C C	0	0	0	38	342	79	459		
H and the state of	0	0	38	24	60	359	481		
Column total	480	68	356	248	402	438	1992		
Producer's Accuracy				Heer's A	cenroov				
W = 480/480 = 100%		User's Accuracy W = 480/485 = 99%							
S = 052/068 = 76%					2/072 = 72				
F = 313/356 = 88%		F = 313/353 = 87%							
U = 126/248 = 51%					$5/142 = 89^{\circ}$				
C = 342/402 = 85%	C = 342/459 = 74%								
H = 359/438 = 82%		H = 359/481 = 75%							
Overall accuracy = (480 +	52 + 3	313 + 126	+ 342 + 35	(9)/1992 = 3	84%	Management in			

UCL

- Can use original training data to test BUT....
- ...this only tells us how well the classifier can classify the training areas
- Ideally, use an independent set of samples to give a better 'overall' accuracy estimate

Unsupervised Classification (clustering)

- Little input from user required (few assumptions)
 - BUT means results hard to interpret (may not represent classes we recognise)
- cluster pixels in feature space based on some measure of their proximity
- interpretation of results / assigned classes
 - can be useful, e.g. in picking up variations within what would otherwise be distinguished as a single class e.g. stressed/unstressed crop in a single field)
 - clusters can be of little intrinsic value in themselves
 - e.g. sunlit trees, shaded trees is perhaps not a useful discrimination if one simply wants to classify 'trees', and so clusters may have to be combined

Unsupervised Classification: K-means

- A large number of clustering algorithms exist
- K-means
 - input number of clusters desired
 - algorithm typically initiated with arbitrarily-located 'seeds' for cluster means
 - each pixel then assigned to closest cluster mean
 - revised mean vectors are then computed for each cluster
 - repeat until some convergence criterion is met (e.g. cluster means don't move between iterations)
 - computationally-expensive because it is iterative

Unsupervised classification: ISODATA (Iterative self-organising data analysis) algorithm

- Same as K-means but now we can vary number of clusters (by splitting / merging)
 - Start with (user-defined number) randomly located clusters
 - Assign each pixel to nearest cluster (mean spectral distance)
 - Re-calculate cluster means and standard deviations
 - If distance between two clusters < some threshold, merge them
 - If standard deviation in any one dimension > some threshold, split into two clusters
 - Delete clusters with small number of pixels
 - Re-assign pixels, re-calculate cluster statistics etc. until changes of clusters < some fixed threshold

ISODATA example: 2 classes, 2 bands

Hybrid Approaches

- useful if large variability in the DN of individual classes
- use clustering concepts from unsupervised classification to derive subclasses for individual classes, followed by standard supervised methods.
- can apply e.g. K-means algorithm to (test) subareas, to derive class statistics and use the derived clusters to classify the whole scene
- requirement that all classes of interest are represented in these test areas
- clustering algorithms may not always determine all relevant classes in an image e.g. linear features (roads etc.) may not be picked-up by the textural methods described above

Postclassification filtering

- The result of a classification from RS data can often appear rather 'noisy'
- Can we aggregate information in some way?
- Simplest & most common way is majority filtering
 - a kernel is passed over the classification result and the class which occurs most commonly in the kernel is used
- May not always be appropriate; the particular method for spatial aggregation of categorical data of this sort depends on the particular application to which the data are to be put
 - e.g. successive aggregations will typically lose scattered data of a certain class, but keep tightly-clustered data

Postclassification filtering

