b) Wyznacz średnią wartość zmierzonej średnicy przedmiotu. Obliczyć jej
niepewność pomiarową, Kulka

Ku	lka		Legenda
Lp.	d[mm]	Со	Tlumaczenie
1	8.44	r	Niepewnosc pomiarowa
2	8.44	\bar{x}	Średnia arytmetyczna
3	8.05	n	liczba prób
4	8.17	x_i	i-ta próba
5	8.01		
6	8.06	Dane	Wyniki [mm]
7	8.02	$\Delta_p x$	0.05
8	8.02	\bar{x} –	8.167
9	8.05	średnicy	8.107
10	8.41	n	10
\bar{x}	8.167	-	

Dane	Wyniki [mm]	
$\Delta_p x$	0.05	
\bar{x} – średnicy	8.167	
n	10	

Niep. Stand. Ocena Typu A - Obliczenie

$$u_A(x) = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)}} = \sqrt{\frac{0.31481}{10*9}} = 0.059142953 \approx 0.06$$

Niep. Stand. Ocena Typu B - Obliczenie

$$u_B(x) = \sqrt{\frac{(\Delta_p x)^2}{3} + \frac{(\Delta_e x)^2}{3}} = \sqrt{\frac{(0.05)^2}{3} + \frac{(0)^2}{3}} = \sqrt{\frac{0.0025}{3}} = \sqrt{0.000833333} = 0.028867513 \approx 0.029$$

Całkowita Niep. Stand.- Obliczenie

$$u(x) = \sqrt{u_A^2(x) + u_B^2(x)}$$

$$= \sqrt{0.06^2 + 0.029^2} = \sqrt{0.0036 + 0.000841}$$

$$= \sqrt{0.004441} = 0.066640828 \approx 0.067$$