Quiz 4

Form A	Name	
Math 130B, 5 PM		
Please justify all your answers		April 20, 2022
Please also write your full name on the back		

1. Let X and Y be independent discrete random variables with probability mass functions given by

$$\Pr[X = x] = \frac{1}{n}, \quad \text{for } 1 \le x \le n$$
$$\Pr[Y = y] = 2^{-y}, \quad \text{for } y \ge 1.$$

(Here, x and y are integers)

(a) Find the joint probability mass function, $\Pr[X = x, Y = y]$.

(b) What possible values can the sum Z = X + Y take?

(c) Find the probability mass function for Z = X + Y. Be careful here. There are a couple of cases to consider.

Quiz 4

Form B	Name
Math 130B, 6 PM Please justify all your answers Please also write your full name on the back	April 20, 2022
1. Let X and Y be independent random variable $\{0, 1, \ldots, n-1\}$, where n is a fixed positive into	
(a) Find the joint probability mass function, F	$\Pr[X = x, Y = y].$
(b) What possible values can the sum $Z=X$	
(c) Find the probability mass function for $Z = more\ likely\ than\ others?$	= X + Y. Be careful here. Are some sum