18,19. Векторная диаграмма, комплексный метод.

Изображения синусоидальных функций времени в векторной форме:

При расчете электрических цепей часто приходится складывать или вычитать величины токов или напряжений, являющиеся синусоидальными функциями времени. Графические построения или тригонометрические преобразования в этом случае могут оказаться слишком громоздкими.

Задача упрощается, если представить наши синусоидальные функции в векторной форме. Имеем синусоидальную функцию: $i = I_m * sin(\omega t + \varphi)$ Известно, что проекция отрезка, вращающегося вокруг оси с постоянной угловой скоростью, на любую линию, проведенную в плоскости вращения, изменяется по синусоидальному закону.

Пусть отрезок прямой длиной I_m начинает вращаться вокруг оси 0 из положения, когда он образует с горизонтальной осью угол ϕ , и вращается против часовой стрелки с постоянной угловой скоростью ω . Проекция отрезка на вертикальную ось в начальный момент времени: $0\alpha = I_m * sin\phi$

Когда отрезок повернется на угол α_1 , проекция его: $b'b = I_m * sin(\phi + \alpha_1)$

Откладывая углы α_1 , α_2 , ... на горизонтальной оси, а проекции отрезка прямой - на вертикальной оси, получим ряд точек синусоиды (рис. 5.1). Пусть даны два синусоидальных тока:

$$i_1 = I_{1m} * sin(\omega t + \varphi_1)$$
 и $i_2 = I_{2m} * sin(\omega t + \varphi_2)$

Нужно сложить эти токи и получить результирующий ток:

$$i_3 = i_1 + i_2 = I_{1m} * sin (\omega t + \varphi_1) + I_{2m} * sin (\omega t + \varphi_2) = I_{3m} * sin(\omega t + \varphi_3)$$

Рис 5.1

Представим синусоидальные токи i_1 и i_2 в виде двух радиус - векторов, длина которых равна в соответствующем масштабе I_{1m} и I_{2m} . Эти векторы расположены в начальный момент времени под углами $\phi 1$ и $\phi 2$ относительно горизонтальной оси. Сложим геометрически отрезки I_{1m} и I_{2m} . Получим отрезок, длина которого равна амплитудному значению результирующего тока I_{3m} . Отрезок расположен под углом ϕ_3 относительно горизонтальной оси. Все три отрезка вращаются вокруг оси 0 с постоянной угловой скоростью ω . Проекции отрезков на вертикальную ось изменяются по синусоидальному

закону. Будучи остановленными для рассмотрения, данные отрезки образуют векторную диаграмму (рис.5.2).

Векторная диаграмма - это совокупность векторов, изображающих синусоидальные напряжения, токи и ЭДС одинаковой частоты.

Необходимо отметить, что напряжение, ток и ЭДС - это скалярные, а не векторные величины.

Мы представляем их на векторной диаграмме в виде не пространственных, а временных радиус - векторов, вращающихся с одинаковой угловой скоростью. Изображать на векторной диаграмме два вектора, вращающихся с различной угловой

скоростью, бессмысленно.

Рис 5.2

Положительным считается направление вращения векторов против часовой стрелки.

Векторные диаграммы используются для качественного анализа электрических цепей, а также при решении некоторых электротехнических задач.

Изображение синусоидальных функций времени в комплексной форме

При расчетах цепей синусоидального тока используют символический метод расчета или метод комплексных амплитуд. В этом методе сложение двух синусоидальных токов заменяют сложением двух комплексных чисел, соответствующих этим токам.

Из курса математики известно, что комплексное число может быть записано в показательной или алгебраической форме: $C = c * e^{j\phi} = a + j * b$ где c - модуль комплексного числа;

ф- аргумент;

а - вещественная часть комплексного числа;

b - мнимая часть;

j - мнимая единица, j = √-1.

С помощью формулы Эйлера можно перейти от показательной формы записи к алгебраической: $c*e^{j\varphi} = c*cos\varphi + j*c*sin\varphi = a+j*b$

$$a = c * cos\phi$$

$$b = c * sin\varphi$$

От алгебраической формы записи переходят к показательной форме с помощью формул:

$$c = \sqrt{a^2 + b^2}$$
 $\varphi = arctg \frac{b}{a}$

Комплексное число может быть представлено в виде радиус - вектора в комплексной плоскости. Вектор длиной, равной модулю \mathbf{c} , расположен в начальный момент времени под углом $\boldsymbol{\phi}$ относительно вещественной оси (рис. 5.3).

Умножим комплексное число на множитель $e^{j\beta}$.

Радиус - вектор на комплексной плоскости повернется на угол β.

Множитель $e^{i\beta}$ называется поворотным.

(рис. 5.3)