블록체인을 적용한 성적인증 시스템

> 1871227 IT공과대학 임세진

현재 시스템의 문제점

성적 전산조작 사건 터진 부산외대 보안강화 뒷북 대책

대학교 해킹해 성적 조작...'F'에서 'A'로

[뉴스탐색] "우리 학교도 성적조작..." 학사비리 의혹에 경찰수사 나선다

기사입력 2018-11-30 09:01

경찰, 제자와 성관계맺고 성적 조작해준 교사 소환

이 사건은 대학 당국이 특정 학생의 성적을 임의로 올렸다는 점에서 '정유라 사건'과 흡사하다.

中 대학생 해커, 대학 전산 시스템 해킹해 성적조직

현재 시스템의 문제점

- 고등학교와 대학교) 확정된 성적을 일정기간이 지난 뒤 개인적인 목적으로 조작한 사례 有
- 대학의 경우, 학생들이 각 평가요소에서 자신이 받은 점수를 제때에 확인하지 못하고 마지막에 학점으로만 확인하게 되는 경우가 많음 => 정보의 비대칭성
- 학번으로 평가요소별 성적을 공개하는 등의 방법이 있지만 익명성이 떨어짐
- 각 평가요소마다 본인의 상대적인 성적이 어느 정도인지를 정확히 알 수 가 없어 만족스럽지 못한 성적이 나와도 선뜻 이의제기를 할 수 없음

블록체인: 참여하는 모든 사용자들이 데이터를 서로 분산, 저장하여 데이터 가 조작되는 것을 막는 기술

- **탈중앙화**: 분산화 된 서버들에 블록이 보관되고 이 기록은 누구나 확인 가능
- 보안성: 해킹을 하려면 모든 노드들의 거래 데이터를 공격해야 하므로 불 가능
- 투명성: 기록의 참,거짓 여부를 과반수의 합의를 얻어야 하며, 누구나 기록 열람 가능

노드 권한에 따른 블록체인의 종류

- 퍼블릭(Public) 블록체인
- : 누구나 장부의 관리에 참여가능
- 프라이빗 (private) 블록체인
 - : 하나의 기관이나 기업이 독자적으로 운영하며, 사전허가를 받은 사람만이 참여가능
- 컨소시엄 블록체인(Consortium blockchain)
- : 네트워크에 허가된 여러 참여자가 블록을 생성가능 즉, 기업 연합형 블록체인

퍼블릭(Public) 블록체인

- 어느 누구나 열람이 가능한 공개형태의 블록체인
- 컴퓨팅 파워를 이용한 채굴(Proof-of-Work)과정을 통해 거래의 정당성 인 증
- 개인 또는 중앙기관의 영향을 받지 않는 탈중앙화, 분권화된 시스템

- 많은 인원이 참여할 시 네트워크 처리속도가 더뎌질 수 있고, 인증이 안된, 악의적인 목적을 가진 해커의 접근이 가능
- 모든 노드가 같은 권한을 가져 규제가 필요한 영역 적용에 한계

프라이빗 (private) 블록체인

- 폐쇄형 블록체인 => 한 집단의 독자적인 블록체인
- 완전히 개인화된 블록체인으로서, 한 중앙기관이 모든 권한을 가지며 네트 워크에 참여하기 위해선 그 중앙기관의 허락이 필요함 => 기밀성과 보안 성
- 하나의 주체와 블록체인의 참여자가 분명함
- 허가된 참여자 외에게는 거래내역이 공유되지 않음
- 네트워크 처리속도 신속
- 블록체인의 중요가치인 탈중앙성을 잃게 됨

컨소시엄 블록체인(Consortium blockchain)

- 퍼블릭과 프라이빗 블록체인의 중간형태
- 같은 목적을 가지고 있는 여러 기관이 하나의 컨소시엄을 구성하여 공정 성과 확장성을 보완한 반 중앙형 블록체인
- N개의 기관이 노드를 한 개씩 운영하고 각 기관의 노드 간 동의가 일어나 야 거래생성가능
- 블록체인의 기록 열람 권리를 대중에게 부여할 수도 있고(퍼블릭), 참여자에게 및 제공하거나 API를 통해 특정 인원에게만 공개할 수도 있음

퍼블릭 블록체인 (Public blockchain)	컨소시엄 블록체인 (Consortium blockchain)	
거래증명자가 익명이기 때문에 무법적 요소가 강함. 51% 공격이나 이중송금(double spending)의 위험성이 존재	거래 증명자가 인증을 거쳐 알려진 상태(known)이기 때문에 51% 공격이나 이중송금(double spending)과 같은 문제가 없음	
한번 정해진 법칙을 바꾸기 굉장히 어려움	블록체인 소유자에게 알맞게 법칙을 바꿀 수 있음	
네트워크 유지(채굴)하는데 드는 비용이 큼	네트워크 유지비용이 거의 없음	
네트워크 확장이 어렵고 거래속도가 느림	네트워크 확장이 쉽고 거래속도가 빠름	

	퍼블릭 블록체인	컨소시엄 블록체인	프라이빗 블록체인
신뢰성	높음	중간	낮음
안정성	낮음	중간	높음
익명성	높음	중간	낮음

구현해보기(앱)

컨소시엄 블록체인 적용

참여노드: 각 수업의 교수님들

열람 권리를 가진 사람: 참여노드, 해당 수업의 학생들

노드: 앱에서 교수인증을 통해 노드 허가를 받음 -> 각 평가(시험이나 과제물)마다 정정기간을 거친 뒤, 확정된 점수를 입력한 블록 생성

열람권리: 앱에서 학생인증을 통해 해시ID생성 -> 열람권리를 받음

구현해보기(앱)

블록에 들어가는 내용

헤더: Prev_Hash + Time + 해당 교수의 수업명

출력: 해당 평가이름(ex. 중간평가) + 학생들 석차(이름 부분은 해시ID로) + 학생들 점수

기대효과

- 학생들이 해당 점수의 분포와 자신의 상대적 위치를 보고 학점예상이나 다음 시험 때 더욱 열심히 준비한다든지 등의 방향을 잡을 수 있음

석차가 상위권이었음에도 불구하고 납득할 수 없는 학점을 받은 경우,
 이의제기를 하기에 용이함 (실수로 학점이 잘못 나가는 경우 방지 가능)

- 추후에 개인적 이익을 위한 성적조작을 방지할 수 있음

한계점

- 수정이 불가능 (양날의 검)
 블록을 수정하는 순간 해당 블록의 해시가 변경되고
 블록 헤더에 이전 해시(Prev_hash)가 들어있는데 블록 해시가 변경되면
 다음 블록 헤더에 있는 이전 해시와는 다른 해시 값이 되어 연결이 끊어지며
 사용할 수 없게 됨

=> 정정기간을 다 거친 뒤, 확정된 평가요소별 성적을 블록으로 만들어야 함

성적 입력하여 블록 생성할 때 조작을 하는 경우는 막을 수 없음
 또한 수정이 어렵기 때문에 조작된 성적을 원래대로 복구하는 일도 어려움

