_ page=feyzioğlu-059

and b). 2) Evaluate F(a) and F(b). 3) Put I(f) = F(b) - F(a). There are many functions F with F'(x) = f(x) for all $x \in [a, b]$. For two different choices F_1 and F_2 , we have $F_1(b) \neq F_2(b)$ and $F_1(a) \neq F_2(a)$ in general. So we may suspect that $F_1(b) - F_1(a) \neq F_2(b) - F_2(a)$. In order to show that I is a well defined function, we must prove $F_1(b) - F_1(a) = F_2(b) - F_2(a)$ whenever F_1 and F_2 are functions on [a, b] such that $F'_1(x) = f(x) = F'_2(x)$ for all $x \in [a, b]$. We know from the calculus that, when F_1 and F_2 have this property, there is a constant c such that $F_1(x) = F_2(x) + c$ for all $x \in [a, b]$. So $F_1(b) - F_1(a) = (F_2(b) + c) - (F_2(a) + c) = F_2(b) - F_2(a)$. Therefore, I is well defined.

After this lengthy digression, we return to the integers mod n and to the "operations" \bigoplus and \bigotimes .

LEMMA 0.1. \bigoplus and \bigotimes are well defined operations on \mathbb{Z}_n

PROOF. We are to prove $\bar{a} \oplus \bar{b} = \bar{a}' \oplus \bar{b}'$ whenever $\bar{a} = \bar{a}'$ and $\bar{b} = \bar{b}'$ in \mathbb{Z}_n (different names for identical residue classes should not yield different results.) This follows from $\underline{Lemma}\ 6.1$. Indeed, if $\bar{a} = \bar{a}'$ and $\bar{b} = \bar{b}'$, then $a \equiv a'(modn)$ and $b \equiv b'(mod\ n)$ by definition, so we obtain $\underline{a+b} = a' + \underline{b}'(mod\ n)$ and $ab = a'b'(mod\ n)$ by $\underline{Lemma}\ 6.1$, hence $\overline{a+b} = \overline{a'+b'}$ and $\overline{ab} = \overline{a'b'}$, which gives $\bar{a} \oplus \bar{b} = \overline{a+b} = \overline{a'+b'} = \bar{a}' \oplus \bar{b}'$ and $\bar{a} \oplus \bar{b} = \overline{a'b} = \overline{a'b'} = \bar{a}' \otimes \bar{b}'$.

Having proved that \bigoplus and \bigotimes are well defined operations on \mathbb{Z}_n , we proceed to show that \bigoplus and \bigotimes possess many (but not all) properties of the usual addition ad multiplication of integers. First we simplify our notation. From now on, we write + and \cdot instead of \bigoplus and \bigotimes . In fact, we shall even drop and use simply juxtaposition to denote a product of two integers $\mathrm{mod}\ n$. Thus we will have $\bar{a}+\bar{b}=\overline{a+b}$ and \bar{a} . $\bar{b}=\overline{ab}$ or simply \bar{a} $\bar{b}=\overline{ab}$. The reader should note that the same sign "+" is used to denote two very distinct operations: \bigoplus in the old notation and the usual addition of integers. If anything, they are defined on distinct sets \mathbb{Z}_n and \mathbb{Z} . The same remarks apply to multiplication.