Machine Learning Final Project: Mental Health in Tech Company

Chuanlong Pan, Lina Yu Dated:11/21/201

Introduction

Mental health, as defined by the Public Health Agency of Canada, is an individual's capacity to feel, think, and act in ways to achieve a better quality of life whilst respecting the personal, social, and cultural boundaries. Mental health can affect daily living, relationships, and physical health. Mental health problems has unprecedented importance in today's world, especially in tech companies. Tech companies are developing at a fast speed and employees in these companies are often under intense pressure to contribute their skills and knowledge. Poor mental health can cause a range of physical illness and thus has a direct impact on companies' business and revenue. From a manager's point of view, it's important to know how to improve employees' mental health and thus run business better.

Open Sourcing Mental Illness is a non-profit corporation dedicated to raising awareness, educating and providing resources to support mental wellness in the tech and open source communities. Every year, OSMI conducts a survey to measure employees' attitudes towards mental health in the tech workplace and examines the frequency of mental health disorders among tech workers.

This project aims to explore wheather we can predict a personal's possibility to seek treatment for mental illness based on information from a survey conducted by OSMI in 2014.

```
In [199]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          # Prep
          from sklearn.model selection import train test split
          from sklearn.preprocessing import StandardScaler
          from sklearn.preprocessing import binarize, LabelEncoder
          # Models
          import statsmodels.api as sm
          from sklearn.linear_model import LogisticRegression
          from sklearn.ensemble import RandomForestClassifier
          from xgboost import XGBClassifier
          from sklearn.naive_bayes import GaussianNB
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
          from sklearn.neural network import MLPClassifier
          from sklearn import metrics
          from sklearn.metrics import accuracy_score, mean_squared_error, precis
          from sklearn.model_selection import cross_val_score
          from imblearn.over sampling import SMOTE
          from sklearn.metrics import confusion_matrix, accuracy_score, classifi
          from sklearn.metrics import precision_score
          from sklearn.metrics import recall_score
```

```
In [200]: df = pd.read_csv("survey.csv")
```

In [201]: df

Out[201]:

	Timestamp	Age	Gender	Country	state	self_employed	family_history	treatment	worl
0	2014-08-27 11:29:31	37	Female	United States	IL	NaN	No	Yes	
1	2014-08-27 11:29:37	44	М	United States	IN	NaN	No	No	
2	2014-08-27 11:29:44	32	Male	Canada	NaN	NaN	No	No	
3	2014-08-27 11:29:46	31	Male	United Kingdom	NaN	NaN	Yes	Yes	
4	2014-08-27 11:30:22	31	Male	United States	TX	NaN	No	No	
1254	2015-09-12 11:17:21	26	male	United Kingdom	NaN	No	No	Yes	
1255	2015-09-26 01:07:35	32	Male	United States	IL	No	Yes	Yes	
1256	2015-11-07 12:36:58	34	male	United States	CA	No	Yes	Yes	;
1257	2015-11-30 21:25:06	46	f	United States	NC	No	No	No	
1258	2016-02-01 23:04:31	25	Male	United States	IL	No	Yes	Yes	;

1259 rows × 27 columns

In [202]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1259 entries, 0 to 1258
Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype
0	Timestamp	1259 non-null	object
1	Age	1259 non-null	int64
2 3	Gender	1259 non-null	object
3	Country	1259 non-null	object
4	state	744 non-null	object
5	self_employed	1241 non-null	object
6	family_history	1259 non-null	object
7	treatment	1259 non-null	object
8	work_interfere	995 non-null	object
9	no_employees	1259 non-null	object
10	remote_work	1259 non-null	object
11	tech_company	1259 non-null	object
12	benefits	1259 non-null	object
13	care_options	1259 non-null	object
14	wellness_program	1259 non-null	object
15	seek_help	1259 non-null	object
16	anonymity	1259 non-null	object
17	leave	1259 non-null	object
18	mental_health_consequence	1259 non-null	object
19	phys_health_consequence	1259 non-null	object
20	coworkers	1259 non-null	object
21	supervisor	1259 non-null	object
22	mental_health_interview	1259 non-null	object
23	phys_health_interview	1259 non-null	object
24	mental_vs_physical	1259 non-null	object
25	obs_consequence	1259 non-null	object
26	comments	164 non-null	object

dtypes: int64(1), object(26)
memory usage: 265.7+ KB

This dataset has 27 columns. Information of this survey can be split into 4 categories:

- 1. **Geographic and Demographic information of responders**: e.g. Age, Gender, Country, family history of mental illness
- 2. **Relevant information about responder's workspace**: e.g. if the responder is selfemployed or not, how many employees of the company, remote work or not
- 3. Workspaces' support for mental health problem:
- benefits: Does your employer provide mental health benefits?
- care_options: Do you know the options for mental health care your employer provides?
- wellness_program: Has your employer ever discussed mental health as part of an employee wellness program?
- **seek_help**: Does your employer provide resources to learn more about mental health issues and how to seek help?
- **anonymity**: Is your anonymity protected if you choose to take advantage of mental health or substance abuse treatment resources
- leave: How easy is it for you to take medical leave for a mental health condition?
- 4. The survey also asks some possible negative consuquence about mental health occur in workspaces:
- mental_health_consequence: Do you think that discussing a mental health issue with your employer would have negative consequences?
- phys_health_consequence: Do you think that discussing a physical health issue with your employer would have negative consequences?
- coworkers: Would you be willing to discuss a mental health issue with your coworkers?
- **supervisor**: Would you be willing to discuss a mental health issue with your direct supervisor(s)?
- mental_health_interview: Would you bring up a mental health issue with a potential employer in an interview?
- **phys_health_interview**: Would you bring up a physical health issue with a potential employer in an interview?
- mental_vs_physical: Do you feel that your employer takes mental health as seriously as physical health?
- obs_consequence: Have you heard of or observed negative consequences for coworkers with mental health conditions in your workplace?

Data Cleaning

Check Missing Value

```
In [203]: raw_data = df.copy()
    null_count = df.isnull().sum().sort_values(ascending=False)
    null_percent = null_count/len(df.index)*100
    null_summary = pd.concat([null_count, null_percent], axis = 1, keys = print("Missing value count and percentage: ")
    print(null_summary)
```

Missing value count and percentage:

5	Count	Percentage
comments	1095	86.973789
state	515	40.905481
work_interfere	264	20.969023
self_employed	18	1.429706
seek_help	0	0.000000
obs_consequence	0	0.000000
mental_vs_physical	0	0.000000
<pre>phys_health_interview</pre>	0	0.000000
mental_health_interview	0	0.000000
supervisor	0	0.000000
coworkers	0	0.000000
phys_health_consequence	0	0.000000
mental_health_consequence	0	0.000000
leave	0	0.000000
anonymity	0	0.000000
Timestamp	0	0.000000
wellness_program	0	0.000000
Age	0	0.000000
benefits	0	0.000000
tech_company	0	0.000000
remote_work	0	0.000000
no_employees	0	0.000000
treatment	0	0.000000
family_history	0	0.000000
Country	0	0.000000
Gender	0	0.000000
care_options	0	0.000000

Drop Columns

We simply drop Timestamp column since time and date are irrelevant to the result of this project.

Because not all the responders wrote down their comments and about 87% comments were missing, we will drop the comments column.

```
In [204]: df = df.drop("comments",axis = 1)
```

We can see the state column also contains many missing values. Let's look at the state column along with the Country column.

```
In [205]: country_count = df.Country.value_counts()
    country_percent = country_count/len(df.index)*100
    country_summary = pd.concat([country_count, country_percent], axis = 1
    print("Country value count and percentage: ")
    print(country_summary)
```

Country value count and percentage:

Count	Percentage
751	59.650516
185	14.694202
72	5.718824
45	3.574265
27	2.144559
27	2.144559
21	1.667990
13	1.032566
10	0.794281
8	0.635425
7	0.555997
7	0.555997
7	0.555997
7	0.555997
6	0.476569
6	0.476569
6	0.476569
5	0.397141
4	0.317712
4	0.317712
3	0.238284
3	0.238284
3	0.238284
3	0.238284
2	0.158856
2	0.158856
2	0.158856
2	0.158856
	0.158856
1	0.079428
	751 185 72 45 27 21 13 10 8 7 7 7 6 6 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Georgia Bahamas, The China	1 1 1	0.079428 0.079428 0.079428
Thailand	1	0.079428
Czech Republic	1	0.079428
Norway	1	0.079428
Romania	1	0.079428
Nigeria	1	0.079428
Japan	1	0.079428
Hungary	1	0.079428
Bosnia and Herzegovina	1	0.079428
Uruguay	1	0.079428
Spain	1	0.079428
Zimbabwe	1	0.079428
Latvia	1	0.079428
Costa Rica	1	0.079428
Slovenia	1	0.079428
Philippines	1	0.079428

Explore state column

About 60% of responders come from US and responders from other contries only has a small portion. Responders will only fillin state information if they live in US, thus many state data are missing, so we will simply drop country and state columns.

```
In [207]: df.drop(["Country", "state"],axis = 1, inplace = True)
```

Work Interfere

work_interfere column answers the question "If you have a mental health condition, do you feel that it interferes with your work?" and has about 21% data missing. Some responders who are not sure about the answers will leave this question blank, so we just fill the missing value as "Don't know".

Self-employed

Name: self_employed, dtype: int64

self_employed column has only 18 missing data and "No" constitutes majority of the answers. We will replace these missing value to 'No' and assume that they are not self-employed.

Name: self_employed, dtype: int64

Gender

In [212]: df['Gender'].value_counts() Out[212]: Male 615 male 206 Female 121 116 female 62 38 m 34 15 4 Make 3 Male Woman 3 Cis Male 2 2 Man 2 Female (trans) 2 Female Trans woman 1 msle 1 male leaning androgynous 1 Neuter 1 cis male 1 queer 1 Female (cis) 1 Mail 1 cis-female/femme 1 A little about you 1 Malr 1 1 р femail 1 Cis Man 1 Guy (-ish) ^_^ 1 Enby 1 Agender 1 Androgyne 1 1 Male-ish maile 1 Trans-female 1 Cis Female 1 something kinda male? 1 Mal 1 Male (CIS) 1 queer/she/they 1 non-binary 1 **Femake** 1 1 woman 1 Nah All 1 fluid 1

Genderqueer

1

```
ostensibly male, unsure what that really means 1
Name: Gender, dtype: int64
```

As you can see, there are lots of distinct response in Gender's input data, so we need to transform and rename any inputs with the same meaning.

```
In [213]: gender = df['Gender'].str.lower()
    gender = df['Gender'].unique()
    male_str = ["male", "m", "male_ish", "maile", "mal", "male (cis)", "ma
    trans_str = ["trans_female", "something kinda male?", "queer/she/they"
    female_str = ["cis female", "f", "female", "woman", "femake", "female

    for (row, col) in df.iterrows():
        if str.lower(col.Gender) in male_str:
            df['Gender'].replace(to_replace=col.Gender, value='male', inpl

        if str.lower(col.Gender) in female_str:
            df['Gender'].replace(to_replace=col.Gender, value='female', in

        if str.lower(col.Gender) in trans_str:
            df['Gender'].replace(to_replace=col.Gender, value='trans', inp

        stk_list = ['A little about you', 'p']
        df = df[~df['Gender'].isin(stk_list)]

        print(df['Gender'].unique())
```

['female' 'male' 'trans']

Age

There are some unreasonable age values in this column, such as age 5 which is under the minimum federal working age or extrmely large value over 100. We set an age range from 16 to 65 years old and drop those unreasonable values.

In [214]:	df['Age	df['Age'].unique()							
Out[214]:	-	[37,	44,	32,	31,	3			
	3,	35,	39,	42,	23,	2			
	9,	36,	27,	46,	41,	3			
	4,	30,	40,	38,	50,	2			
	4,	18,	28,	26,	22,	1			
	9,	25,	45,	21,	-29 ,	4			
	3,	56,	60,	54,	329,	5			
	5,	9999999999,	48,	20,	57,	5			
	8,	47,	62,	51,	65,	4			
	9,	-1726 ,	5,	53,	61,	1			
	1,	72])	σ,	33,	01,	_			
In [215]:	df dror	o(df[df['Age'] - 1	61 index in	nlace-True)					

```
In [215]: df.drop(df[df['Age'] < 16].index, inplace=True)
    df.drop(df[df['Age'] > 65].index, inplace=True)
    print(np.sort(df['Age'].unique()))
```

[18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 53 54 55 56 57 58 60 61 62 65]

Let's check again the missing value.

```
In [216]: null_count = df.isnull().sum().sort_values(ascending=False)
    null_percent = null_count/len(df.index)*100
    null_summary = pd.concat([null_count, null_percent], axis = 1, keys = print("Missing value count and percentage: ")
    print(null_summary)
```

Missing value count and percentage:

,	Count	Percentage
Timestamp	0	0.0
Age	0	0.0
mental_vs_physical	0	0.0
<pre>phys_health_interview</pre>	0	0.0
<pre>mental_health_interview</pre>	0	0.0
supervisor	0	0.0
coworkers	0	0.0
phys_health_consequence	0	0.0
mental_health_consequence	0	0.0
leave	0	0.0
anonymity	0	0.0
seek_help	0	0.0
wellness_program	0	0.0
care_options	0	0.0
benefits	0	0.0
tech_company	0	0.0
remote_work	0	0.0
no_employees	0	0.0
work_interfere	0	0.0
treatment	0	0.0
family_history	0	0.0
self_employed	0	0.0
Gender	0	0.0
obs_consequence	0	0.0

Exploratory Data Analysis

Target Variable

```
In [217]: sns.set_style("whitegrid")
  plt.figure(figsize = (8,5))
  plt.title('Get Treatment for Mental Health ', fontsize=18, fontweight=
  eda_percentage = df['treatment'].value_counts(normalize = True).rename

ax = sns.barplot(x = 'treatment', y = 'Percentage', data = eda_percent
  for p in ax.patches:
    width = p.get_width()
    height = p.get_height()
    x, y = p.get_xy()
    ax.annotate(f'{height:.0%}', (x + width/2, y + height*1.02), ha='c
```


Our target variable is "treatment" which answers the question "Have you get treatment for a mental health condition?". From the diagram, the percentage of responders who have got treatment is 50% which is pretty high. It indicates that tech companies need to put more attention on promoting mental health and supporting employees on mental health issues.

Next, we'll explore the attributes from the four categories to see the relationship with the mental illness treatment.

In [218]: import warnings warnings.filterwarnings("ignore") plt.figure(figsize = (18,5)) plt.subplot(1,2,1) sns.distplot(df['Age'], label = 'Skewness : %.2f'%(df['Age'].skew())) plt.legend(loc = 0, fontsize = 10) plt.title('Distribution for Age') plt.subplot(1,2,2) sns.boxplot(x = "Age", y = "treatment", data = df) plt.title('Boxplot for Age') age = str(df['Age'].describe().round(2)) plt.text(56, 0.85, age) plt.show()

In this survey, most employees age 25 to early 40s. The distribution of ages is right-skewed which matches the tech industry tends to have younger employees.

From the boxplot above, there is no huge difference of age between employees who get treattment or not.

```
In [219]: warnings.filterwarnings("ignore")
    plt.figure(figsize = (20,5))
    plt.subplot(1,2,1)
    percentage = df['Gender'].value_counts(normalize = True).rename_axis('
    sns.barplot(x = 'Gender', y = 'Percentage', data = percentage.head(10)
    plt.title('Gender')
    plt.subplot(1,2,2)
    sns.countplot(df['Gender'], hue = df['treatment'])
    plt.title('Gender')
    plt.show()
```


Almost 80% of responders are male. However, larger proportion of female responders have sought treatments than male responders. That could be caused by the pressure from large gap between the proportion of male and female employees in the tech workspaces.

Around 40% of responders have a family history of mental problem. These responders with family history of mental illness were more likely to seek treatment than the other groups, because family history is a significant factor for mental health.

```
In [221]: warnings.filterwarnings("ignore")
    plt.figure(figsize = (20,5))
    plt.subplot(1,2,1)
    percentage = df['remote_work'].value_counts(normalize = True).rename_a
    sns.barplot(x = 'remote_work', y = 'Percentage', data = percentage)
    plt.title('Remote or not')
    plt.subplot(1,2,2)
    sns.countplot(df['remote_work'], hue = df['treatment'])
    plt.title('Remote or not')
    plt.show()
```


The survey was conducted in 2014. Only about 30% responders worked remotely at that time. For those who worked remotely, the percentage of seeking treatment is slightly higher.

For work interfere, around 37% say if they have mental health condition, they feel that it interferes with their work sometimes. Larger porportion of this group would seek treatment.

```
In [223]: warnings.filterwarnings("ignore")
    plt.figure(figsize = (20,5))
    plt.subplot(1,2,1)
    sns.countplot(df['coworkers'], hue = df['treatment'])
    plt.title('Coworkers')
    plt.subplot(1,2,2)
    sns.countplot(df['supervisor'], hue = df['treatment'])
    plt.title('Supervisor')
    plt.show()
```


Regarding the question, 'Would you be willing to discuss a mental health issue with your coworkers?', responders who answer yes have higher possibility to get treatment.

The survey also asks if the responders are willing to discuss a mental health issue with their direct supervisor. There are more people say yes to discuss with their supervisors, over 50% of them do not get a treatment. Talking to someone with a higher level may be helpful for their mental health condiction.

Encoding

```
In [224]: list_col=['Age', 'Gender', 'self_employed', 'family_history', 'treatme
                  'work_interfere', 'no_employees', 'remote_work', 'tech_company'
                  'benefits', 'care_options', 'wellness_program', 'seek_help',
                  'anonymity', 'leave', 'mental_health_consequence',
                  'phys_health_consequence', 'coworkers', 'supervisor',
                  'mental_health_interview', 'phys_health_interview',
                  'mental_vs_physical', 'obs_consequence']
          for col in list col:
              print('{} :{} ' . format(col.upper(),df[col].unique()))
          AGE: [37 44 32 31 33 35 39 42 23 29 36 27 46 41 34 30 40 38 50 24 18
          28 26 22
           19 25 45 21 43 56 60 54 55 48 20 57 58 47 62 51 65 49 53 61]
          GENDER :['female' 'male' 'trans']
          SELF EMPLOYED :['No' 'Yes']
          FAMILY_HISTORY :['No' 'Yes']
          TREATMENT : ['Yes' 'No']
          WORK_INTERFERE : ['Often' 'Rarely' 'Never' 'Sometimes' "Don't know"]
          NO_EMPLOYEES : ['6-25' 'More than 1000' '26-100' '100-500' '1-5' '500-
          1000']
          REMOTE WORK :['No' 'Yes']
          TECH COMPANY : ['Yes' 'No']
          BENEFITS: ['Yes' "Don't know" 'No']
          CARE OPTIONS: ['Not sure' 'No' 'Yes']
          WELLNESS PROGRAM : ['No' "Don't know" 'Yes']
          SEEK HELP: ['Yes' "Don't know" 'No']
          ANONYMITY: ['Yes' "Don't know" 'No']
          LEAVE :['Somewhat easy' "Don't know" 'Somewhat difficult' 'Very diffi
          cult'
           'Very easy']
          MENTAL HEALTH CONSEQUENCE :['No' 'Maybe' 'Yes']
          PHYS HEALTH CONSEQUENCE : ['No' 'Yes' 'Maybe']
          COWORKERS: ['Some of them' 'No' 'Yes']
          SUPERVISOR :['Yes' 'No' 'Some of them']
          MENTAL HEALTH INTERVIEW :['No' 'Yes' 'Maybe']
          PHYS_HEALTH_INTERVIEW : ['Maybe' 'No' 'Yes']
          MENTAL_VS_PHYSICAL :['Yes' "Don't know" 'No']
          OBS CONSEQUENCE : ['No' 'Yes']
In [225]: le = LabelEncoder()
          dfencode = df.copy()
```

In [227]: dfencode.head()

Out[227]:

	Timestamp	Age	Gender	self_employed	family_history	treatment	work_interfere	no_empl
0	2014-08-27 11:29:31	37	0	0	0	1	2	
1	2014-08-27 11:29:37	44	1	0	0	0	3	
2	2014-08-27 11:29:44	32	1	0	0	0	3	
3	2014-08-27 11:29:46	31	1	0	1	1	2	
4	2014-08-27 11:30:22	31	1	0	0	0	1	

5 rows × 24 columns

Run correlation heatmap

It is important to see whether the dependent variables have any relationships with target variable.

In [228]: corr = dfencode.corr(method="spearman")
corr

Out[228]:

	Age	Gender	self_employed	family_history	treatment	wc
Age	1.000000	0.067082	0.074379	0.020262	0.068120	
Gender	0.067082	1.000000	0.035909	-0.131841	-0.157417	
self_employed	0.074379	0.035909	1.000000	0.002911	0.016733	
family_history	0.020262	-0.131841	0.002911	1.000000	0.376067	
treatment	0.068120	-0.157417	0.016733	0.376067	1.000000	
work_interfere	0.050687	-0.088686	0.040300	0.316552	0.598370	
no_employees	0.016107	0.024291	-0.330170	-0.046526	-0.042632	
remote_work	0.142302	0.003100	0.314619	0.012760	0.025321	
tech_company	-0.057162	0.061665	0.075858	-0.047636	-0.030903	
benefits	0.157818	-0.097850	-0.061450	0.128271	0.224420	
care_options	0.103276	-0.094725	0.036717	0.103849	0.232769	
wellness_program	0.114399	-0.008125	0.001164	0.062801	0.093025	
seek_help	0.120450	-0.005046	0.042656	0.040409	0.086911	
anonymity	0.039896	-0.026185	0.102070	0.063607	0.144256	
leave	0.007599	0.034225	0.178654	0.026732	0.071898	
mental_health_consequence	0.032821	0.029412	0.025741	0.019634	0.019651	
phys_health_consequence	-0.036222	0.026126	0.010170	-0.004990	-0.015956	
coworkers	0.003710	0.053775	0.073500	-0.002673	0.070142	
supervisor	0.007219	0.076461	0.036865	0.001512	-0.034721	
mental_health_interview	0.062741	-0.055973	-0.028039	0.041051	0.094681	
phys_health_interview	-0.009706	-0.031482	-0.030967	0.041386	0.049311	
mental_vs_physical	-0.012938	-0.011733	0.125921	0.046671	0.070932	
obs_consequence	0.046345	-0.047310	0.068590	0.115500	0.151016	

23 rows × 23 columns

From the graph above, there is almost no relationship between our target variable "treatment" and other variables like "Age", "self_employeed", "remote_work", "tech_company", "no_employees", "physical_health_consequence", "coworkers", "phys_health_interview", "mental_vs_physical". Also, some variables such as "wellness_program", "seek_help", "anonymity", "obs_consequence", "mental_health_interview" have weak relationship with "tratment" about 10%. "family_history", "benefits", "care_options" have rilatively stronger relationship around 20% to 40%. "Gender" has a weak negatively relationship with the target variable. Lastly, there is a strong relationship between treatment and work interfere with 63%.

In [230]: corr_mat = dfencode.corr()
 corr_mat

Out[230]:

	Age	Gender	self_employed	family_history	treatment	wc
Age	1.000000	0.067751	0.075854	0.003675	0.070164	
Gender	0.067751	1.000000	0.035267	-0.128249	-0.151373	
self_employed	0.075854	0.035267	1.000000	0.002911	0.016733	
family_history	0.003675	-0.128249	0.002911	1.000000	0.376067	
treatment	0.070164	-0.151373	0.016733	0.376067	1.000000	
work_interfere	0.040788	-0.089456	0.038597	0.323940	0.616119	
no_employees	0.029288	0.026645	-0.335913	-0.050156	-0.048147	
remote_work	0.142003	0.002027	0.314619	0.012760	0.025321	
tech_company	-0.049431	0.059041	0.075858	-0.047636	-0.030903	
benefits	0.152279	-0.093233	-0.055376	0.126620	0.224037	
care_options	0.109536	-0.089779	0.037356	0.105083	0.235477	
wellness_program	0.109810	-0.005029	0.001504	0.062849	0.092857	
seek_help	0.127741	-0.006418	0.037509	0.041909	0.088047	
anonymity	0.027887	-0.022193	0.097806	0.060630	0.143013	
leave	-0.011632	0.035631	0.168266	0.017920	0.060104	
mental_health_consequence	0.032221	0.026937	0.020526	0.025673	0.027956	
phys_health_consequence	-0.045506	0.019443	0.012023	-0.001538	-0.013122	
coworkers	-0.007608	0.053414	0.073675	-0.002505	0.070239	
supervisor	0.004687	0.072111	0.036628	0.001481	-0.034300	
mental_health_interview	0.062833	-0.045849	-0.024563	0.037824	0.093321	
phys_health_interview	-0.024435	-0.015080	-0.026736	0.035344	0.049111	
mental_vs_physical	-0.007535	-0.010654	0.131839	0.040050	0.063594	
obs_consequence	0.061374	-0.044123	0.068590	0.115500	0.151016	

23 rows × 23 columns

```
In [231]: corr_treatment = corr_mat['treatment'].sort_values(ascending=False).to
    plt.subplots(figsize=(25,1))
    sns.heatmap(corr_treatment, vmin = -.3, vmax=.3, annot=True)
```

Out[231]: <AxesSubplot:>

The top 9 highly correlated with treatment is: work_interfere, family history, care options, Gender, obs consequence, benefits, leave, mental health consequence, anonymity

For Gender variable, we can see female gender is positively correlated with treatment, while male gender is the opposite: negatively correlated the "treatment" target. That is consistent with our observation in preliminary analysis that female responders tend to seek treatment more often.

The top 9 variables are also consistent with our preliminary analysis.

Check the correlations between the 9 variables.

Model

Prediction Model

I will try these base models and ensemble models to predict whether or not a responder has sought for treatment in a mental health condition from these features. For this task, I evaluated the following algorithms:

Random Forest: This model uses lots of decision trees to classifies the dataset into smaller subsets, and to define a conclusion about a target value. The tree consists of leaves, where the intermediate ones are the decision nodes and the ones from the extremes are the final outcomes. This model was chosen, because it can be easily interpreted, visualized and explained. Also due the fact that this model implicitly perform variable screening or feature selection.

Naive Bayes: (GaussianNB): This model is a classification technique based on the Bayes' Theorem. It assumes the independence among the involved features. Nevertheless, this approach performers well even on data that are dependent between them. This algorithm was created by Bayes to prove the existence of God. It relies on the probability of an event, based on prior knowledge of conditions that might be related to the event. This model was chosen, because this family of algorithms can predict well with small set of data and when there is a large number of features comparatively.

K-nearest neighbors (KNN): This algorithm takes in consideration the k closest points (neighbors) around the target and use them learn how to classify the desired point. This model was chosen, because its simple to implement, no assumption about the data is necessary and the non-parametric nature of KNN gives an advantage in certain settings where the data may be highly unusual.

XGBoost: This is an algorithm that has recently been dominating applied machine learning and Kaggle competitions for structured or tabular data. XGBoost is an implementation of gradient boosted decision trees designed for speed and performance.

LDA: is an unsupervised learning algorithm that attempts to describe a set of observations as a mixture of distinct categories. LDA is most commonly used to discover a user-specified number of topics shared by documents within a text corpus. This model was chosen, because provides probabilities for outcomes and a convenient probability scores for observations.

Neural Network: adapt to changing input; so the network generates the best possible result without needing to redesign the output criteria. The concept of neural networks, which has its roots in artificial intelligence, is swiftly gaining popularity in the development of trading systems.

Model

Random Forest, Gaussian naive Bayes, K-nearest neighbors, Logistic regression, XGBoost, LDA, Neural Network

In [234]:	X

_			$\Gamma \sim$	-		٦.
	ш	т.	ı,	٠.	7	
u	···u				•	

	work_interfere	family_history	care_options	benefits	obs_consequence	anonymity	men
0	2	0	1	2	0	2	
1	3	0	0	0	0	0	
2	3	0	0	1	0	0	
3	2	1	2	1	1	1	
4	1	0	0	2	0	0	
1254	0	0	0	1	0	0	
1255	2	1	2	2	0	2	
1256	4	1	2	2	0	0	
1257	0	0	2	1	0	0	
1258	4	1	2	2	0	2	

1250 rows × 9 columns

```
In [235]: y = dfencode["treatment"]
In [236]: y
Out[236]: 0
                   1
           2
                   0
           3
                   1
                   0
           1254
                   1
           1255
           1256
                   1
           1257
                   0
           1258
                   1
          Name: treatment, Length: 1250, dtype: int64
```

X = scaler.fit_transform(X)

Feature Normalization

In [237]: scaler = StandardScaler()

Training / Testing set split

```
In [238]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =0
In [239]: X_test
Out[239]: array([[-0.18355047, -0.80026242,
                                            1.21166515, \ldots, -2.03968502,
                   1.68540583, 1.58104851],
                 [-0.81043048, -0.80026242,
                                            1.21166515, ..., 0.31235029,
                 -1.79971789, -1.31040817],
                                            0.05549611, ..., 0.31235029,
                 [ 1.07020956, 1.2495901,
                 -0.05715603, 0.13532017],
                 [1.07020956, -0.80026242, -1.10067292, ..., 0.31235029,
                 -0.05715603, 0.13532017],
                 [1.07020956, -0.80026242, 1.21166515, ..., 0.31235029,
                   1.68540583, 1.58104851],
                 [-0.81043048, 1.2495901,
                                            1.21166515, ..., 0.31235029,
                 -1.79971789, 1.58104851]])
```

Random Forest

```
In [240]: RandomForest = RandomForestClassifier()
    model_rf = RandomForest.fit(X_train, y_train)
    pred = model_rf.predict(X_test)
    print(classification_report(y_true = y_test, y_pred = pred))
    plot_confusion_matrix(model_rf, X = X_test, y_true = y_test,cmap = 'Gr
```

	precision	recall	f1-score	support
0 1	0.84 0.79	0.77 0.85	0.81 0.82	155 158
accuracy macro avg weighted avg	0.82 0.82	0.81 0.81	0.81 0.81 0.81	313 313 313


```
In [241]: accuracy_rf=accuracy_score(y_test,pred)
    recall=recall_score(y_test,pred)
    precision=precision_score(y_test,pred)
    print("Random forest's accuracy = ",accuracy_rf )
    print("Random forest's recall= ",recall)
    print("Random forest's precision= ",precision,"\n" )
```

Random forest's accuracy = 0.8146964856230032 Random forest's recall= 0.8544303797468354 Random forest's precision= 0.7941176470588235

XGBoost - Classification

In [243]: warnings.filterwarnings("ignore") model_xgb = XGBClassifier() model_xgb.fit(X_train, y_train) pred = model_xgb.predict(X_test) print(classification_report(y_true = y_test, y_pred = pred)) plot_confusion_matrix(model_xgb, X = X_test, y_true = y_test, cmap = accuracy_xgb=accuracy_score(y_test,pred) recall=recall_score(y_test,pred) print("XGBoost's accuracy = ",accuracy_xgb) print("XGBoost's recall= ",recall) print("XGBoost's precision= ",precision,"\n")

[09:09:31] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logis tic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

	precision	recall	†1-score	support
0	0.82	0.75	0.79	155
1	0.78	0.84	0.80	158
accuracy			0.80	313
macro avg	0.80	0.80	0.80	313
weighted avg	0.80	0.80	0.80	313

XGBoost's accuracy = 0.7955271565495208 XGBoost's recall= 0.8354430379746836 XGBoost's precision= 0.7764705882352941


```
In [244]: pred_prob = model_xgb.predict_proba(X_test)
    pred_prob = pred_prob[:,1]
    metrics.roc_auc_score(y_test, pred_prob)
    fpr, tpr, thresholds = metrics.roc_curve(y_test, pred_prob)
    roc_auc = metrics.auc(fpr, tpr)
    plt.figure(figsize = (9,8))
    plt.title('Receiver Operating Characteristic')
    plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
    plt.legend(loc = 'lower right')
    plt.plot([0, 1], [0, 1], 'r--')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()
```


Naive Bayes

```
In [245]: model_nb = GaussianNB()
model_nb.fit(X_train, y_train)
pred = model_nb.predict(X_test)
```

```
In [246]: pred = model_nb.predict(X_test)
    print(classification_report(y_true = y_test, y_pred = pred))
    plot_confusion_matrix(model_nb, X = X_test, y_true = y_test, cmap='Gre
    accuracy_nb=accuracy_score(y_test,pred)
    recall=recall_score(y_test,pred)
    precision=precision_score(y_test,pred)
    print("Naive Bayes' accuracy = ",accuracy_nb )
    print("Naive Bayes's recall= ",recall)
    print("Naive Bayes's precision= ",precision,"\n" )
```

	precision	recall	f1-score	support
0 1	0.79 0.78	0.77 0.80	0.78 0.79	155 158
accuracy macro avg weighted avg	0.78 0.78	0.78 0.78	0.78 0.78 0.78	313 313 313

Naive Bayes' accuracy = 0.7827476038338658 Naive Bayes's recall= 0.7974683544303798 Naive Bayes's precision= 0.77777777777778

Knn

```
In [248]:
```

```
from sklearn.neighbors import KNeighborsClassifier
model_knn = KNeighborsClassifier(n_neighbors=5)
model_knn.fit(X_train, y_train)
pred = model_knn.predict(X_test)
print(classification_report(y_true = y_test, y_pred = pred))
plot_confusion_matrix(model_knn, X = X_test, y_true = y_test, cmap='Gr
accuracy_nb=accuracy_score(y_test,pred)
recall=recall_score(y_test,pred)
precision=precision_score(y_test,pred)
print("KNN accuracy = ",accuracy_nb )
print("KNN's recall= ",recall)
print("KNN's precision= ",precision,"\n" )
```

	precision	recall	f1-score	support
0 1	0.85 0.77	0.74 0.87	0.79 0.82	155 158
accuracy macro avg weighted avg	0.81 0.81	0.80 0.81	0.81 0.80 0.80	313 313 313

KNN accuracy = 0.805111821086262
KNN's recall= 0.8734177215189873
KNN's precision= 0.770949720670391

LDA

```
In [250]: model_lda = LinearDiscriminantAnalysis()
model_lda.fit(X_train, y_train)
pred = model_nb.predict(X_test)
```

```
In [251]: pred = model_lda.predict(X_test)
    print(classification_report(y_true = y_test, y_pred = pred))
    plot_confusion_matrix(model_lda, X = X_test, y_true = y_test, cmap='Gr
    accuracy_lda=accuracy_score(y_test,pred)
    recall_lda=recall_score(y_test,pred)
    precision_lda=precision_score(y_test,pred)
    print("LDA' accuracy = ",accuracy_lda )
    print("LDA's recall= ",recall_lda)
    print("LDA's precision= ",precision_lda,"\n" )
```

	precision	recall	f1–score	support
0	0.90 0.80	0.77 0.92	0.83 0.86	155 158
accuracy macro avg weighted avg	0.85 0.85	0.84 0.84	0.84 0.84 0.84	313 313 313

LDA's recall= 0.8434504792332268 LDA's recall= 0.9177215189873418 LDA's precision= 0.8011049723756906


```
In [252]: pred_prob = model_lda.predict_proba(X_test)
    pred_prob = pred_prob[:,1]
    metrics.roc_auc_score(y_test, pred_prob)
    fpr, tpr, thresholds = metrics.roc_curve(y_test, pred_prob)
    roc_auc = metrics.auc(fpr, tpr)
    plt.figure(figsize = (9,8))
    plt.title('Receiver Operating Characteristic')
    plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
    plt.legend(loc = 'lower right')
    plt.plot([0, 1], [0, 1], 'r--')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()
```


Neural Network

```
In [253]: model_nn = MLPClassifier(hidden_layer_sizes =(150,100,50),max_iter= 30
model_nn.fit(X_train,y_train)
pred = model_nn.predict(X_test)
print(classification_report(y_true = y_test, y_pred = pred))
plot_confusion_matrix(model_nn, X = X_test, y_true = y_test, cmap='Gre
accuracy_nb=accuracy_score(y_test,pred)
recall=recall_score(y_test,pred)
precision=precision_score(y_test,pred)
print("Neural Network's accuracy = ",accuracy_nb )
print("Neural Network's recall= ",recall)
print("Neural Network's precision= ",precision,"\n" )
```

	precision	recall	f1-score	support
0 1	0.79 0.74	0.71 0.82	0.75 0.78	155 158
accuracy macro avg weighted avg	0.77 0.77	0.76 0.76	0.76 0.76 0.76	313 313 313

Neural Network's accuracy = 0.7635782747603834 Neural Network's recall= 0.8164556962025317 Neural Network's precision= 0.7413793103448276


```
In [254]: pred_prob = model_nn.predict_proba(X_test)
    pred_prob = pred_prob[:,1]
    metrics.roc_auc_score(y_test, pred_prob)
    fpr, tpr, thresholds = metrics.roc_curve(y_test, pred_prob)
    roc_auc = metrics.auc(fpr, tpr)
    plt.figure(figsize = (9,8))
    plt.title('Receiver Operating Characteristic')
    plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
    plt.legend(loc = 'lower right')
    plt.plot([0, 1], [0, 1], 'r--')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()
```


Conclusion

Conclusion 1:

In this study, we analyzed and finally identified nine influential factors that most affect the mental state of employees. In terms of importance, they are: work_interfere, family history, care options, Gender, obs consequence, benefits, leave, mental health consequence, anonymity. And we analyzed how we can better improve employee well-being, how to encourage employees to actively seek mental treatment when necessary.

conclusion 2:

Six different algorithms were used to predict the mental state of future employees and to predict whether they would need mental treatment such as counseling.

ID	Model Name	Accuracy	Recall	Precision
1	Random Forest	79.55%	81.65%	78.66%
2	XGBoost	79.55%	83.54%	77.65%
3	Naive Bayes	78.27%	79.75%	77.78%
4	LDA	84.35%	91.77%	80.11%
5	KNN	80.51%	87.34%	77.09%
6	Neural Network	76.36%	81.65%	74.14%

By comparing the accuracy of the models, we found the best model:Linear Discriminant Analysis(LDA), with an accuracy of 84.35%, a recall of 91.77% and precision of 80.11%, which proves that we can effectively identify 91.77% of the employees who need mental treatment. Such efficient and accurate prediction model can help companies save a lot of labor cost, help employees get better mental state, improve work efficiency, increase performance, etc.

Data Resource

https://osmihelp.org/research (https://osmihelp.org/research)