

中华人民共和国国家标准

GB 20073—2018 代替 GB 20073—2006

摩托车和轻便摩托车制动性能要求及试验方法

Performance and measurement method for braking of motorcycles and mopeds

2018-02-06 发布 2018-07-01 实施

中华人民共和国国家质量监督检验检疫总局 发布中国国家标准化管理委员会

目 次

前	言·	••••		• • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	•••••	• • • • • • •	•••••	•••••		• • • • • • •	•••••		• • • • • • •	•••••	•••••	•••••	••••	Ι
1	范	围	•••••	•••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••	1
2	规	范性	生引月]文化	‡ ····		•••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • •					•••••				1
3	术	语和	印定义	ζ	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • •					•••••			•••••	1
4	要	求	••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	••••	3
5	试!	验									• • • • • • •									5
6	标	准自	勺实菌	<u>i</u>	•••••			• • • • • • • • • • • • • • • • • • • •			• • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••		•••••			••••	7
附:	录 <i>A</i>	4	规范	生附	录)	制动证	式验和信	性能要	要求 ・		• • • • • • •			•••••						8
附:	录 E	3 (‡	规范性	生附	录)	防抱列	2制动3	系统试	1验和1	性能要	要求			• • • • • •						18
附:	录 C	()	规范性	生附	录)	多回路	8行车制	制动系	统的语	部分夠	失效试	验和性	生能要	求 …		•••••				22
附:	录 I) (j	规范性	生附:	录)	助力制	引动系统	充失效	(试验:	和性負	能要求			• • • • • •						23
附:	录 E	E (规范性	生附是	录)	联动制	引动系统	充失效	试验	和性負				• • • • • • • • • • • • • • • • • • • •						24
附:	录 F	()	规范性	生附	录)	峰值制	动力系	系数的]确定											25

前言

本标准的第一	章	、第4	4章	、第	5	章和附录	\mathbf{A}	至附录	F	为	强制性	生。
1 13 1 1 1 3 2 1		! -				- 1 · · · · · · · · · · · · · · · · ·					2 mm - 1 - 2 1 m	_ ~

本标准按照 GB/T 1.1-2009 给出的规则起草。

本标准代替 GB 20073-2006《摩托车和轻便摩托车制动性能要求及试验方法》。

本标准与 GB 20073-2006 相比主要变化如下:

- ——修改了范围,删除"最高设计车速小于 25 km/h 的车辆"(见第 1 章,2006 年版的第 1 章);
- ——修改了规范性引用文件(见第2章,2006年版的第2章);
- ——增加了行车制动系统、应急制动系统、独立制动系统、多回路行车制动系统、助力制动系统、防 抱死制动系统、车轮抱死、峰值制动力系数、最高车速、脱开发动机、初始制动温度、轻负载、试 验速度、制动距离、基准试验和全循环的术语和定义(见第3章);
- ——删除了制动装置零部件、空载车辆、湿制动器的术语和定义(见 2006 年版的 3.5、3.8 和 3.9);
- ——修改了制动系统的功能和特性要求(见 4.2 和 4.3,2006 年版的 4.1.2 和 4.2);
- 一一增加了制动主缸要求、警示灯要求、摩擦衬片要求和制动系统的性能要求(见 4.4、4.5、4.6 和 4.7);
- ——修改了试验道路要求、环境条件要求、试验速度要求、自动变速器要求、车辆位置和车轮抱死要求、试验顺序要求和试验方法(见第5章,2006年版的A.1.2和A.1.3);
- ——增加了磨合、单独操纵制动控制器的干式制动试验、同时操纵制动控制器的干式制动试验、高速制动试验、多回路行车制动系统部分失效试验、助力制动系统失效试验和联动制动系统失效 试验的试验方法和性能要求(见附录 A~附录 E);
- ——删除了脱开发动机的 0 型试验和两轮摩托车、结合发动机的 0 型试验的试验方法和性能要求 (见 2006 年版的 A.1.4.2 和 A.1.4.3);
- ——修改了湿式制动试验和衰退试验的试验方法(见 A.3.4 和 A.3.6,2006 年版的 A.1.4.4 和 A.1.6);
- ——修改了驻车制动系统试验的适用范围、试验方法和性能要求(见 A.3.5,2006 年版的 A.2.3);
- ——修改了防抱死制动系统试验的试验方法和性能要求(见附录 B,2006 年版的附录 B、附录 C);
- ——增加了试验路面峰值制动力系数的试验方法,并作为规范性附录写入标准(见附录 F)。

本标准由中华人民共和国工业和信息化部提出并归口。

本标准负责起草单位:天津摩托车技术中心、上海摩托车质量监督检验所。

本标准参加起草单位:江门大长江集团有限公司、五羊-本田摩托车(广州)有限公司、福田雷沃国际 重工股份有限公司、江苏宗申三轮摩托车制造有限公司、重庆南方摩托车技术研发有限公司。

本标准主要起草人:贺文杰、路林、王青、王佳佳、阮宜山、施继民、马玉林、王成芳、汪盛。

本标准所代替标准的历次版本发布情况为:

- ——GB 5382—1985;
- ----GB/T 5382.1-1996;
- ----GB 17355-1998;
- ——GB 20073—2006。

摩托车和轻便摩托车 制动性能要求及试验方法

1 范围

本标准规定了摩托车和轻便摩托车制动性能要求和试验方法。

本标准适用于摩托车和轻便摩托车。

本标准不适用于残疾人用车。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 5359.4 摩托车和轻便摩托车术语 第4部分:两轮车和三轮车质量

GB/T 5378 摩托车和轻便摩托车道路试验方法

GB/T 15089-2001 机动车辆及挂车分类

ASTM E867 与车辆路面系统有关的术语(Terminology Relating to Vehicle-Pavement Systems)

ASTM E1136 标准的子午线基准试验轮胎的标准技术要求(Specification for A Radial Standard Reference Test Tire)

ASTM F408 用拖挂车朝正前方制动时潮湿牵引用轮胎的试验方法(Test Method for Tires for Wet Traction in Straight-Ahead Braking, Using a Towed Trailer)

ASTM F457 装有模拟或数字仪器的测速轮上速率及距离校准的方法(Test Method for Speed and Distance Calibration of Fifth Wheel Equipped With Either Analog or Digital Instrumentation)

3 术语和定义

GB/T 15089-2001 界定的 L 类车辆的定义以及下列术语和定义适用于本文件。

3.1

制动系统 brake system

使行驶中的车辆逐渐减速或停车,或使已经停驶的车辆保持静止状态的零部件组合。该装置由控制器、传能装置和制动器组成,但不包括发动机。

3.2

控制器 control

由驾驶员直接操纵用以向传能装置提供制动或控制所需能量的部件。

3.3

传能装置 transmission

控制器和制动器之间连接其功能的零部件组合。

3.4

制动器 brake

制动系统中产生阻止车辆运动作用力的部件。

GB 20073-2018

3.5

行车制动系统 service brake system

使行驶中的车辆减速的制动系统。

3.6

应急制动系统 secondary brake system

装有联动制动系统的车辆上安装的第二套行车制动系统。

3.7

独立制动系统 single brake system

只作用于一个车轴上的制动系统。

3.8

联动制动系统 combined brake system; CBS

- a) 对于两轮轻便摩托车(L₁类)和两轮摩托车(L₃类),操纵单个控制器可以联合控制不同车轮上至少两个制动器的一套行车制动系统;
- b) 对于三轮轻便摩托车(L₂类)和正三轮摩托车(L₅类),操纵单个控制器可以联合控制全部车 轮上制动器的一套行车制动系统;
- c) 对于边三轮摩托车(L₄类),操纵单个控制器可以至少控制前轮和后轮上制动器的一套行车制动系统。同时控制后轮和边轮的制动系统应认为是一个后制动器。

3.9

多回路行车制动系统 split service brake system; SSBS

控制所有车轮上制动器的制动系统,该系统由单一控制器控制两个或多个子系统。任意一个子系统的失效(如液压管路泄漏引起的系统失效)不能影响其他子系统的功能。

3.10

助力制动系统 power-assisted braking system

由一个或者多个供能装置辅助驾驶员的体力施加制动力的制动系统。例如真空助力制动系统(带真空助力器)。

3.11

防抱死制动系统 antilock brake system; ABS

一个能够判别车轮相对于地面的打滑程度,且能自动调整车轮的制动力,从而限制车轮相对于地面的打滑程度的系统。

3.12

车轮抱死 wheel lock

当车轮滑移率为 1.00 时的情况。

3.13

峰值制动力系数 peak braking coefficient; PBC

基于滚动轮胎最大减速度测得的轮胎与道路表面的摩擦系数。

3.14

最高车速 $V_{\rm max}$

按 GB/T 5378 规定的试验方法测得的最高车速。

3.15

脱开发动机 engine disconnected

发动机与驱动轮断开连接。

3.16

初始制动温度 initial brake temperature

实施任何制动前,制动器的温度。若同时控制多个制动器,选取温度最高的制动器的温度。

3.17

满载 laden

将车辆加载到其厂定最大总质量(按 GB/T 5359.4)。

3.18

轻负载 lightly loaded

车辆整车整备质量(按 GB/T 5359.4)加上驾驶员质量(75 kg)加上试验设备质量(15 kg)的总质量与满载质量相比的较小者。

在低摩擦系数路面上进行防抱死制动系统试验时,试验设备质量(包括保护支架)为 30 kg。

3.19

试验速度 test speed

驾驶员开始操纵控制器时刻的车辆速度。若试验中规定应同时操纵两个控制器,以开始操纵第一个控制器的时刻作为开始操纵控制器时刻。

3.20

制动距离 stopping distance

车辆从驾驶员开始操纵控制器时刻至车辆完全停止时刻所经过的距离。若试验中规定应同时操纵两个控制器,以开始操纵第一个控制器的时刻作为开始操纵控制器时刻。

3.21

基准试验 baseline test

为判定制动器性能,在热衰退过程或湿式试验之前进行的一次或多次制动试验。

3.22

全循环 fully cycling

防抱死制动系统反复或持续调节制动力,以防止直接控制的车轮抱死。

4 要求

4.1 基本要求

车辆应满足其车辆类型和制动系统特性所规定的试验要求。

4.2 制动系统的功能

4.2.1 行车制动系统功能

应保证驾驶员在正常驾驶位置上,双手无须离开方向把(或方向盘)就能操纵行车制动系统的控制器。

4.2.2 应急制动系统功能(若装有)

应保证驾驶员在正常驾驶位置上,至少一只手握住方向把(或方向盘)就能操纵应急制动系统的控制器。

4.2.3 驻车制动系统功能(若装有)

4.2.3.1 如果车辆上装有驻车制动系统,该系统应使车辆稳定在 5.1.1.3 描述的试验坡道上。

GB 20073-2018

- 4.2.3.2 驻车制动系统应:
 - a) 包含一个控制器,且与行车制动系统的控制器分开;
 - b) 仅使用纯机械方式将工作部件锁止。
- 4.2.3.3 应保证驾驶员在正常驾驶位就能操纵驻车制动系统。
- 4.2.3.4 三轮轻便摩托车(L_2 类)、边三轮摩托车(L_4 类)和正三轮摩托车(L_5 类)安装的驻车制动系统应按附录 A 的 A.3.5 进行试验并满足性能要求。

4.3 制动系统的特性

- 4.3.1 两轮轻便摩托车(L₁类)和两轮摩托车(L₃类)上应装有两套独立的行车制动系统,或装有一套 多回路行车制动系统,其中至少一个制动器控制前轮,一个制动器控制后轮。
- 4.3.2 两轮摩托车(L。类)的特殊要求:
 - a) 发动机实际排量大于 150 mL 且小于等于 250 mL 的两轮摩托车(L₃类)应安装防抱死制动系统或联动制动系统;
 - b) 发动机实际排量大于 250 mL 的两轮摩托车(L₃类),前、后轮均应安装防抱死制动系统。
- 4.3.3 边三轮摩托车(L₄类)应符合 4.3.1 的规定,若能满足各项试验所规定的各项性能要求,则边车不必装制动器。
- 4.3.4 三轮轻便摩托车(L。类)应装有一套驻车制动系统以及下列制动系统之一:
 - ——两套独立的行车制动系统(联动制动系统除外),同时操纵时可以控制全部车轮上的制动器,或;
 - ——一套多回路行车制动系统,或;
 - ——一套能够控制全部车轮上制动器的联动制动系统以及一套应急制动系统,该应急制动系统可以是驻车制动系统。
- 4.3.5 正三轮摩托车(L。类)应装有一套驻车制动系统和一套控制全部车轮上制动器的脚控行车制动系统,该脚控行车制动系统为:
 - ——一套多回路行车制动系统,或;
 - ——一套联动制动系统和一套应急制动系统,该应急制动系统可以是驻车制动系统。
- 4.3.6 如能满足联动制动系统失效试验的要求,两套独立的行车制动系统可以共用同一制动器和传能装置。

4.4 制动主缸

使用液压传能装置的车辆,制动主缸应符合下列要求:

- ——每套制动系统应有一个独立、密封、有盖的储液室;
- ——储液室最小容积应为制动器从全新摩擦衬片状态调整到摩擦衬片完全磨损状态所需液体容量的 1.5 倍;
- ——应在不打开储液室的情况下,即可对液面进行检查。

4.5 警示灯

- 4.5.1 制动系统警示灯的位置应方便正常操纵位置上的驾驶员观察识别。
- 4.5.2 安装防抱死制动系统的车辆应装有一个黄色警示灯:
 - a) 警示灯应在车辆点火开关打开时点亮,功能检查完毕后熄灭;
 - b) 当防抱死制动系统出现故障,影响系统信号的产生和传递时,警示灯应予以指示。只要故障存在且点火开关处于"开"位置,警示灯应一直指示。
- 4.5.3 安装多回路行车制动系统的车辆应装有一个红色警示灯:

- a) 警示灯应在车辆点火开关打开时点亮,功能检查完毕后熄灭;
- b) 警示灯应在下列情况下予以指示:
 - ——作用在控制器上的控制力不大于 90 N 时产生液压失效的情况,或;
 - ——未操纵控制器时,制动主缸储液室的液面低于下列情况中较高的一项时:
 - 1) 车辆技术文件规定的液面高度;
 - 2) 小于或等于储液室容积的一半。
- c) 只要故障存在且点火开关处于"开"位置,警示灯应一直指示。

4.6 摩擦衬片

- 4.6.1 制动器摩擦衬片的磨损应能通过自动或手动调整装置来补偿。
- 4.6.2 应在不拆除制动器的情况下观察到摩擦衬片的磨损情况。若无法观察到摩擦衬片的磨损情况, 应利用适当的装置进行检查。
- 4.6.3 试验进行中及完成后,摩擦衬片不应分离,制动液不应泄漏。
- 4.6.4 摩擦衬片材料不应包含石棉。

4.7 制动系统的性能

- 4.7.1 制动性能要求见附录 A。
- 4.7.2 防抱死制动系统(若装有)的性能要求见附录 B。
- 4.7.3 多回路行车制动系统(若装有)部分失效试验的性能要求见附录 C。
- 4.7.4 助力制动系统(若装有)失效试验的性能要求见附录 D。
- 4.7.5 联动制动系统失效试验的性能要求见附录 E。

5 试验

5.1 试验条件

5.1.1 试验道路要求

5.1.1.1 高摩擦系数路面

- 5.1.1.1.1 试验区域应保持清洁、干燥,试验路面应水平,坡度不大于1%。
- 5.1.1.1.2 除非有其他特殊要求,试验路面的峰值制动力系数(PBC)为 0.9±0.1。
- 5.1.1.1.3 高摩擦系数路面峰值制动力系数(PBC)的试验方法见附录 F。

5.1.1.2 低摩擦系数路面

- 5.1.1.2.1 试验区域应保持清洁,试验路面应水平,坡度不大于1%。
- 5.1.1.2.2 试验路面的峰值制动力系数(PBC)不大于 0.45。
- 5.1.1.2.3 低摩擦系数路面峰值制动力系数(PBC)的试验方法见附录 F。

5.1.1.3 驻车制动系统试验坡道

驻车制动系统试验坡道应为 18%坡度的试验平面,试验平面应清洁、干燥,且在试验车辆的重量下不发生变形。

5.1.1.4 试验道路宽度

5.1.1.4.1 对于两轮轻便摩托车(L₁类)和两轮摩托车(L₃类),试验道路的宽度为 2.5 m。

GB 20073-2018

5.1.1.4.2 对于三轮轻便摩托车(L₂类)、边三轮摩托车(L₄类)和正三轮摩托车(L₅类),试验道路的宽 度为 2.5 m 加上车辆宽度。

5.1.2 环境条件要求

- 5.1.2.1 试验时,环境温度应在4℃和45℃之间。
- 5.1.2.2 试验时,平均风速应不大于 3m/s,瞬时风速应不大于 5 m/s。

5.1.3 试验速度要求

试验速度的误差范围是±5 km/h。如果实际试验速度偏离规定试验速度,则实际制动距离应按附 录 A.1.3 的公式进行修正。

5.1.4 自动变速器要求

- 5.1.4.1 无论试验条件要求"脱开发动机"或"结合发动机",装有自动变速器的车辆均应完成全部的制 动性能试验。
- 5.1.4.2 如果车辆安装的自动变速器有空档,则应在试验条件为"脱开发动机"时,将变速器置于空档。

5.1.5 车辆位置和车轮抱死要求

每一项制动性能试验开始时,试验车辆均应处于 5.1.1.4 规定的试验道路的中央位置。制动时,车 轮不能超出试验道路,且制动过程中车轮不能抱死。

表 1 试验顺序

5.2 试验流程

如无特殊要求,应按表1规定的试验顺序进行。

序号 试验项目

序号	试验项目	条目
1	单独操纵制动控制器的干式制动试验	附录 A.3.1
2	同时操纵制动控制器的干式制动试验	附录 A.3.2
3	高速制动试验	附录 A.3.3
4	湿式制动试验	附录 A.3.4
5	驻车制动系统试验	附录 A.3.5
6	防抱死制动系统试验	附录 B
7	多回路行车制动系统部分失效试验	附录 C
8	助力制动系统失效试验	附录 D
9	联动制动系统失效试验	附录 E
10	衰退试验	附录 A.3.6

5.3 试验方法

- 制动试验见附录 A。 5.3.1
- 5.3.2 防抱死制动系统(若装有)试验见附录 B。
- 5.3.3 多回路行车制动系统(若装有)部分失效试验见附录 C。

- 5.3.4 助力制动系统(若装有)失效试验见附录 D。
- 5.3.5 联动制动系统失效试验见附录 E。

6 标准的实施

- 6.1 自本标准发布之日起,即可依据本标准进行型式检验。自 2018 年 7 月 1 日起,新申请型式批准的车型应符合本标准要求。自 2019 年 7 月 1 日起,所有新申请型式批准和已获得型式批准的车型应符合本标准的要求。
- **6.2** 本标准条款 4.3.2 的实施过渡期:自 2019 年 7 月 1 日起对新申请型式批准的两轮摩托车实施,自 2020 年 7 月 1 日起对所有新申请型式批准和已获得型式批准的两轮摩托车实施。

附 录 A (规范性附录)制动试验和性能要求

A.1 总则

A.1.1 技术要求

行车制动系统性能的判定涉及充分发出的平均减速度、制动距离和连续减速度三种方式,各项性能的试验方法见 A.3。

A.1.2 充分发出的平均减速度(MFDD)

充分发出的平均减速度见式(A.1):

$$d_{m} = \frac{V_{b}^{2} - V_{e}^{2}}{25.92 \times (S_{c} - S_{b})}$$
 (A.1)

式中:

 d_{m} ——充分发出的平均减速度,单位为米每二次方秒(m/s^{2});

 V_b ——试验速度为 V_1 的80%,单位为千米每小时(km/h);

 V_{c} ——试验速度为 V_{1} 的 10%,单位为千米每小时(km/h);

 S_b ——从 V_1 到 V_b 之间经过的距离,单位为米(m);

 S_{e} ——从 V_{1} 到 V_{e} 之间经过的距离,单位为米(m);

 V_1 — 驾驶员开始操纵制动控制器时的车辆速度,单位为千米每小时(km/h)。

速度和距离测量仪器的准确度为 1%,充分发出的平均减速度也可通过其他方法来确定,此时其准确度应在 3%以内。

A.1.3 制动距离(S)

基于基本运动学公式,式(A.2)所示:

$$S = 0.1 \times V + (X) \times V^2 \qquad \cdots \qquad (A.2)$$

式中:

S ——制动距离,单位为米(m);

V ——车辆行驶速度,单位为千米每小时(km/h);

X——根据不同试验确定的变量。

根据实际试验速度,计算修正后制动距离,修正公式如式(A.3)所示:

式中:

S。——修正制动距离,单位为米(m);

V。——规定试验速度,单位为千米每小时(km/h);

 S_a —实际制动距离,单位为米(m);

V。——实际试验速度,单位为千米每小时(km/h)。

注:此公式只在实际试验速度与规定试验速度差值在±5 km/h 以内时有效。

A.1.4 连续减速度(a)

对于磨合试验、湿式制动试验和衰退试验的热衰退过程,应连续记录车辆从操纵制动控制器开始到 车辆完全停止这一制动过程中各时刻的瞬时减速度。

A.2 试验准备

A.2.1 发动机转速

发动机怠速转速应符合车辆技术文件的规定。

A.2.2 轮胎气压

根据不同试验规定的负载条件,轮胎气压应调节到车辆技术文件规定的气压值。

A.2.3 控制力的作用点及方向

A.2.3.1 对于制动手把,手握力(F)应作用在制动手把的前平面,且方向垂直于制动手把旋转时形成的平面上的操纵杆支点到最远端的连线。手握力作用点应在制动手把最外端向内 50 mm 处,该作用点应在制动操纵杆支点与最外端连线所形成的直线段上测量(见图 A.1)。

图 A.1 手握力作用点及方向示意图

A.2.3.2 对于制动踏板,作用力应垂直作用于制动踏板中心。

A.2.4 制动器温度

制动器温度的测量应尽量选取盘式制动器和鼓式制动器制动区域的中心位置,可以使用下列方法 之一来测量制动器的温度:

- a) 附于制动盘和制动鼓表面的摩擦式热电偶;
- b) 嵌入摩擦材料的插塞式热电偶。

A.2.5 磨合程序

A.2.5.1 技术要求

性能试验前应对车辆的制动器进行磨合,磨合程序可以由制造厂完成。

A.2.5.2 车辆状态

- A.2.5.2.1 轻负载状态。
- A.2.5.2.2 脱开发动机。

A.2.5.3 试验条件及程序

A.2.5.3.1 规定试验速度:

初始速度:50 km/h 或 $0.8 V_{max}$ 中的较低值;

结束速度:5 km/h~10 km/h。

A.2.5.3.2 制动系统实施:各行车制动系统控制器分别实施。

A.2.5.3.3 车辆减速度:

独立前制动系统:1.5 m/s²~2.0 m/s²(L_1 与 L_2 类);

 $3.0 \text{ m/s}^2 \sim 3.5 \text{ m/s}^2 (L_3 与 L_4 类);$

独立后制动系统:1.5 $m/s^2 \sim 2.0 m/s^2$;

联动制动系统或多回路行车制动系统: $3.5 \text{ m/s}^2 \sim 4.0 \text{ m/s}^2$ 。

- A.2.5.3.4 制动次数:每套制动系统进行 100 次。
- A.2.5.3.5 每次制动实施前,初始制动温度应不大于 100 ℃。

A.2.5.3.6 第一次制动时,车辆加速至初始速度,在规定条件下进行制动,直至车辆达到结束速度。再次加速至初始速度并保持,当制动器温度达到初始制动温度规定范围时,再次按规定条件进行制动。重复这一程序直至达到磨合次数的要求。磨合程序结束后,可以根据制造厂建议对制动器进行调节。

A.3 试验方法和性能要求

A.3.1 单独操纵制动控制器的干式制动试验

A.3.1.1 车辆状态

- **A.3.1.1.1** 适用于 L₁、L₂、L₃、L₄ 和 L₅ 类车辆。
- A.3.1.1.2 满载,装有联动制动系统和多回路行车制动系统的车辆还应在轻负载状态下进行试验。
- A.3.1.1.3 脱开发动机。

A.3.1.2 试验条件及程序

- A.3.1.2.1 初始制动温度:≥55 ℃且≤100 ℃。
- A.3.1.2.2 规定试验速度:
 - 40 km/h 或 0.9 V_{max}中的较小值(L₁ 与 L₂ 类);
 - 60 km/h 或 0.9 V_{max}中的较小值(L₃、L₄ 与 L₅ 类)。
- A.3.1.2.3 制动系统实施:各行车制动系统控制器分别实施。
- A.3.1.2.4 制动控制力:

手控制器:≤200 N;

脚控制器:≤350 N(L1 、L2 、L3 与 L1 类);

≤500 N(L₅ 类)。

- A.3.1.2.5 制动次数:最多制动6次,有1次满足性能要求即可。
- A.3.1.2.6 每一次制动,车辆加速至规定试验速度,在规定条件下进行制动。

A.3.1.3 性能要求

当车辆按照 A.3.1.2 的要求进行试验时,车辆的制动距离或充分发出的平均减速度的要求如表 A.1~表 A.4 所示。

表 A.1 独立制动系统-前轮制动性能要求

车辆分类	制动距离 S m	充分发出的平均减速度 MFDD m/s²
L_1	$S \le 0.1 \times V + 0.011 \ 1 \times V^2$	≥3.4
L_2	$S \le 0.1 \times V + 0.014 \ 3 \times V^2$	≥2.7
L_3	$S \le 0.1 \times V + 0.008 \ 7 \times V^2$	≥4.4
L_4	$S \le 0.1 \times V + 0.010 5 \times V^2$	≥3.6
L_{5}	不适用	不适用

表 A.2 独立制动系统-后轮制动性能要求

车辆分类	制动距离 S m	充分发出的平均减速度 MFDD m/s ²
L_1	$S \leqslant 0.1 \times V + 0.014 3 \times V^2$	≥2.7
L_2	$S \le 0.1 \times V + 0.014 \ 3 \times V^2$	≥2.7
L_3	$S \le 0.1 \times V + 0.013 \ 3 \times V^2$	≥2.9
L_4	$S \leqslant 0.1 \times V + 0.010 5 \times V^2$	≥3.6
L_5	不适用	不适用

表 A.3 联动制动系统或多回路行车制动系统性能要求

车辆分类	制动距离 S m	充分发出的平均减速度 MFDD m/s²
L_1	$S \le 0.1 \times V + 0.008 \ 7 \times V^2$	≥4.4
L_2	$S \le 0.1 \times V + 0.008 \ 7 \times V^2$	≥4.4
L_3	$S \le 0.1 \times V + 0.007 6 \times V^2$	≥5.1
L_4	$S \le 0.1 \times V + 0.007 \ 1 \times V^2$	≥5.4
L_5	$S \le 0.1 \times V + 0.007 \ 7 \times V^2$	≥5.0

表 A.4 应急制动系统性能要求

车辆分类	制动距离 S m	充分发出的平均减速度 MFDD m/s²
$L_1\!\sim\!L_5$	$S \le 0.1 \times V + 0.015 \ 4 \times V^2$	≥2,5

A.3.2 同时操纵制动控制器的干式制动试验

A.3.2.1 车辆状态

A.3.2.1.1 适用于 L₃、L₄ 和 L₅ 类车辆。

GB 20073-2018

- A.3.2.1.2 轻负载。
- A.3.2.1.3 脱开发动机。

A.3.2.2 试验条件及程序

- A.3.2.2.1 初始制动温度:≥55 ℃且≤100 ℃。
- A.3.2.2.2 规定试验速度:100 km/h 或 0.9 V_{max}中的较小值。
- A.3.2.2.3 制动系统实施:如果装有两套行车制动系统,则同时操纵两套行车制动系统的控制器;如果装有一套行车制动系统,则操纵一套行车制动系统的控制器。
- A.3.2.2.4 制动控制力:

手控制器:≤250 N;

脚控制器:≤400 N(L3 与 L4 类);

≤500 N(L₅ 类)。

- A.3.2.2.5 制动次数:最多制动6次,有1次满足性能要求即可。
- A.3.2.2.6 每一次制动,车辆加速至规定试验速度,在规定条件下进行制动。

A.3.2.3 性能要求

当车辆按照 A.3.2.2 的要求进行试验时,性能要求如下:

制动距离公式如式(A.4)所示

式中:

- V ——规定试验速度,单位为千米每小时(km/h);
- S ——制动距离,单位为米(m)。

A.3.3 高速制动试验

A.3.3.1 车辆状态

- A.3.3.1.1 适用于 L₃、L₄ 和 L₅ 类,且最高车速大于 125 km/h 的车辆。
- A.3.3.1.2 轻负载。
- A.3.3.1.3 结合发动机,变速器置于最高档位。

A.3.3.2 试验条件及程序

- A.3.3.2.1 初始制动温度:≥55 ℃且≤100 ℃。
- A.3.3.2.2 规定试验速度:
 - $0.8 V_{\text{max}} (125 \text{ km/h} \le V_{\text{max}} \le 200 \text{ km/h})$ 或 $160 \text{ km/h} (V_{\text{max}} \ge 200 \text{ km/h})$ 。
- A.3.3.2.3 制动系统实施:如果装有两套行车制动系统,则同时操纵两套行车制动系统的控制器;如果装有一套行车制动系统,则操纵一套行车制动系统的控制器。
- A.3.3.2.4 制动控制力:

手控制器:≪200 N;

脚控制器:≤350 N(L₃ 与 L₄ 类);

≤500 N(L₅ 类)。

- A.3.3.2.5 制动次数:最多制动6次,有1次满足性能要求即可。
- A.3.3.2.6 每一次制动,车辆加速至规定试验速度,在规定条件下进行制动。

A.3.3.3 性能要求

当车辆按照 A.3.3.2 的要求进行试验时,性能要求如下:

- a) 充分发出的平均减速度:MFDD≥5.8 m/s²,或
- b) 制动距离要求如式(A.5)所示:

$$S \leq 0.1 \times V + 0.006 \ 7 \times V^2$$
 (A.5)

式中:

V ——规定试验速度,单位为千米每小时(km/h);

S ——制动距离,单位为米(m)。

A.3.4 湿式制动试验

A.3.4.1 试验概述

- **A.3.4.1.1** 适用于 L₁、L₂、L₃、L₄ 和 L₅ 类车辆。
- A.3.4.1.2 不适用于驻车制动系统,除非驻车制动系统为应急制动系统。
- A.3.4.1.3 不适用于鼓式制动器或者全封闭的盘式制动器,除非其上有通风孔或检查孔。
- A.3.4.1.4 对每套制动系统,应连续进行下述两部分试验:
 - a) 按 A.3.1 要求进行单独操纵制动控制器的干式制动试验作为基准试验;
 - b) 在向制动器持续喷水的状态下,根据基准试验的试验参数测定制动器在湿态下的性能。
- A.3.4.1.5 试验车辆需安装可持续记录制动器控制力和车辆减速度的装置。充分发出的平均减速度和制动距离不适用于该项试验。

A.3.4.2 车辆状态

- A.3.4.2.1 满载,装有联动制动系统和多回路行车制动系统的车辆还应在轻负载状态下进行试验。
- A.3.4.2.2 脱开发动机。
- A.3.4.2.3 各制动器上均应安装淋水装置,安装要求如下:
 - a) 盘式制动器

试验装置应以 15 L/h 的流量连续给各制动器喷水,水流应直接喷在旋转的制动盘上,图 A.2 为安装位置示意图。若制动盘上安装有护罩或护板,水流应在护罩或护板前 45°处直接喷向制动盘面。若在规定位置无法安装淋水设备或规定位置与通气孔或类似装置重合,则应沿同一半径在规定位置前最大 90°以内进行喷水。

b) 带有观察孔或通风孔的鼓式制动器

水应均匀喷淋在鼓式制动器(即制动鼓盖和制动鼓)两侧,喷水流量为 15 L/h。喷嘴应位于制动鼓外缘到轮毂中心距离的 2/3 处。喷嘴应安装在制动鼓盖上通气孔或检查孔边缘 15°范围以外。

图 A.2 盘式制动器淋水装置示意图

A.3.4.3 基准试验

- **A.3.4.3.1** 各制动系统按 A.3.1 要求进行单独操纵制动控制器的干式制动试验,调整控制器作用力,使车辆以 2.5 $m/s^2 \sim 3.0 \ m/s^2$ 的减速度进行制动,并记录下列三个数值:
 - a) 车辆从80%规定试验速度减速至10%规定试验速度过程中的平均控制力;
 - b) 制动开始后 0.5 s~1.0 s 间的平均减速度;
 - c) 制动开始至车辆完全停止前 0.5 s 的最大减速度。
- A.3.4.3.2 进行三次基准试验,得到上述三项数值的平均值。

A.3.4.4 湿态试验

- A.3.4.4.1 应在与基准试验相同的规定试验速度下进行,除了安装制动器喷水装置外,制动系统不得有任何变动或调整。
- A.3.4.4.2 骑行 500 m 之后,使用基准试验中得到的制动控制力平均值进行制动。
- **A.3.4.4.3** 测量制动开始后 0.5 s~1.0 s 内的平均减速度。
- A.3.4.4.4 测量制动开始至车辆完全停止前 0.5 s 的最大减速度。

A.3.4.5 性能要求

当车辆按照 A.3.4.4 的要求进行试验时,性能要求如下:

- a) 按 A.3.4.4.3 测得的平均减速度应不小于基准试验对应减速度平均值的 60%;
- b) 按 A.3.4.4.4 测得的最大减速度应不大于基准试验对应减速度平均值的 120%。

A.3.5 驻车制动系统试验

A.3.5.1 车辆状态

- A.3.5.1.1 适用于 L₂, L₁ 和 L₅ 类车辆。
- A.3.5.1.2 满载。
- A.3.5.1.3 脱开发动机。

A.3.5.2 试验条件及程序

- A.3.5.2.1 初始制动温度:≤100 ℃。
- A.3.5.2.2 制动控制力:

手控制器:≤400 N;

脚控制器:≤500 N。

- A.3.5.2.3 将车辆沿坡道向上停驻,若车辆可以稳定在坡道上,则开始计时。
- A.3.5.2.4 将车辆沿坡道向下停驻,若车辆可以稳定在坡道上,则开始计时。

A.3.5.3 性能要求

当车辆按照 A.3.5.2 的要求进行试验时,性能要求如下:

驻车制动系统可以维持车辆在上、下坡道上处于静止状态 5 min。

A.3.6 衰退试验

A.3.6.1 试验概述

- A.3.6.1.1 适用于 L₃, L₄ 和 L₅ 类车辆。
- A.3.6.1.2 不适用于驻车制动系统和应急制动系统。
- A.3.6.1.3 对每套制动系统,应连续进行下述三部分试验:
 - a) 按 A.3.1 要求进行单独操纵制动控制器的干式制动试验作为基准试验;
 - b) 进行一系列重复制动的热衰退过程;
 - c) 按 A.3.1 要求进行单独操纵制动控制器的干式制动试验作为剩余性能试验,测定制动器在热衰退过程之后的剩余性能。
- A.3.6.1.4 车辆在满载状态下进行全部试验。
- A.3.6.1.5 热衰退过程中,试验车辆需安装可持续记录制动器控制力和车辆减速度的装置。充分发出的平均减速度和制动距离不适用于热衰退过程。基准试验和剩余制动性能试验应测量充分发出的平均减速度或制动距离。

A.3.6.2 基准试验

A.3.6.2.1 车辆状态

脱开发动机。

A.3.6.2.2 试验条件及程序

- A.3.6.2.2.1 初始制动温度:≥55 ℃且≤100 ℃。
- A.3.6.2.2.2 规定试验速度:60 km/h 或 0.9 V_{max}中的较小值。
- A.3.6.2.2.3 制动系统实施:各行车制动系统控制器分别实施。
- A.3.6.2.2.4 制动控制力:

手控制器:≪200 N;

脚控制器:≤350 N(L₃ 与 L₄ 类);

≤500 N(L₅ 类)。

A.3.6.2.2.5 加速车辆至规定试验速度,根据规定条件实施制动,记录使车辆达到表 A.1~表 A.4 中车辆类型所对应的规定制动性能的控制力。

A.3.6.3 热衰退过程

A.3.6.3.1 车辆状态

从规定试验速度至 50%规定试验速度,结合发动机,选择能够保证发动机转速高于制造厂规定怠速转速的最高档。从 50%规定试验速度至车辆完全停止,脱开发动机。

A.3.6.3.2 试验条件及程序

- A.3.6.3.2.1 第一次制动前的初始制动温度:≥55 ℃且≤100 ℃。
- A.3.6.3.2.2 规定试验速度:

独立前制动系统:100 km/h 或 $0.7 V_{max}$ 的较小值;

独立后制动系统:80 km/h 或 $0.7 V_{max}$ 的较小值;

联动制动系统或多回路行车制动系统:100 km/h 或 0.7 Vmax 的较小值。

A.3.6.3.2.3 制动系统实施:各行车制动系统控制器分别实施。

A.3.6.3.2.4 制动控制力:

- a) 第一次制动:施加恒定的控制力,使车辆在 80%规定试验速度减速至 10%规定试验速度过程中的减速度达到 $3.0 \text{ m/s}^2 \sim 3.5 \text{ m/s}^2$ 。如果车辆无法达到这一要求,则应达到表 $A.1 \sim$ 表 A.4中车辆类型所对应的规定减速度;
- b) 其余重复的制动过程:使用与第一次制动时相同的控制力,连续制动 10 次,两次相邻制动之间的距离为 1 000 m。

A.3.6.3.2.5 每次制动停车后,应立刻以最大加速度使车辆达到规定试验速度,并保持该速度至下一次制动的开始。

A.3.6.4 剩余性能试验

完成热衰退过程后,在 1 min 内该制动系统按基准试验的条件进行一次单独的制动,所用控制力应 小于等于基准试验所用控制力。

A.3.6.5 性能要求

当车辆按照 A.3.6.4 的要求进行试验时,性能要求如下:

- a) 充分发出的平均减速度:MFDD≥基准试验中获得的充分发出的平均减速度的 60%,或
- b) 制动距离要求如式(A.6)所示

式中:

- V ——规定试验速度,单位为千米每小时(km/h);
- S_1 ——A.3.6.2 基准试验获得的修正后制动距离,单位为米(m);
- S_z ——A.3.6.4 剩余性能试验获得的修正后制动距离,单位为米(m)。

附录B

(规范性附录)

防抱死制动系统试验和性能要求

B.1 试验概述

- B.1.1 本试验用于确认装有防抱死制动系统的制动性能,以及防抱死制动系统出现电气故障后的制动性能。
- B.1.2 适用于安装有防抱死制动系统的 L₁ 和 L₃ 类车辆。
- B.1.3 防抱死制动系统的工作不得受到电磁场的干扰。
- B.1.4 在不影响车辆稳定性的前提下,即驾驶员不需松开控制器或车轮未偏出试验道路时,允许出现车轮抱死的情况。
- B.1.5 整个试验包含下列多个独立的试验(表 B.1),这些试验可以按照任意顺序进行:

防抱死制动系统试验项目	对应章条
高摩擦系数路面制动试验——在 5.1.1.1 规定的高摩擦系数路面进行	B.3
低摩擦系数路面制动试验——在 5.1.1.2 规定的低摩擦系数路面进行	B.4
在高、低两种摩擦系数路面上的车轮抱死检查	B.5
由高至低摩擦系数路面过渡时的车轮抱死检查	B.6
由低至高摩擦系数路面过渡时的车轮抱死检查	B.7
防抱死制动系统出现电气故障后的制动性能	B.8

表 B.1 防抱死制动系统性能试验项目

B.2 车辆状态

- B.2.1 轻负载状态。
- B.2.2 脱开发动机。

B.3 高摩擦系数路面制动试验

B.3.1 试验条件及程序

- **B.3.1.1** 初始制动温度:≥55 ℃且≤100 ℃。
- B.3.1.2 规定试验速度:60 km/h 或 0.9 Vmax 的较小值。
- **B.3.1.3** 制动系统实施:如果装有两套行车制动系统,则同时操纵两套行车制动系统的控制器;如果装有一套行车制动系统,则操纵一套行车制动系统的控制器。
- B.3.1.4 制动控制力:应施加足够的控制力,保证每次制动过程中防抱死制动系统处于全循环状态,直到车速降至 10 km/h 以下。
- B.3.1.5 如果某一车轮未安装防抱死制动系统,则作用在该车轮行车制动系统控制器上的控制力应小

于使该车轮抱死所需的控制力。

- B.3.1.6 制动次数:最多制动 6次,有 1次满足性能要求即可。
- B.3.1.7 每一次制动,车辆加速至规定试验速度,在规定条件下进行制动。

B.3.2 性能要求

当车辆按照 B.3.1 的要求进行试验时,性能要求如下:

- a) 车轮没有出现抱死现象,车轮未偏出试验道路;
- b) 充分发出的平均减速度:MFDD≥6.17 m/s²,或
- c) 制动距离要求如式(B.1):

式中:

- V ——规定试验速度,单位为千米每小时(km/h);
- S ——制动距离,单位为米(m)。

B.4 低摩擦系数路面制动试验

B.4.1 试验条件及程序

按 B.3.1 的要求在低摩擦系数路面进行试验。

B.4.2 性能要求

当车辆按照 B.4.1 的要求进行试验时,性能要求如下:

- a) 车轮没有出现抱死现象,车轮未偏出试验道路;
- b) 充分发出的平均减速度:MFDD \geqslant 6.87 $\times P$ m/s²,或
- c) 制动距离要求如式(B.2)所示:

式中:

- V ——规定试验速度,单位为千米每小时(km/h);
- S ——制动距离,单位为米(m);
- P ——峰值制动力系数。

B.5 在高、低两种摩擦系数路面上的车轮抱死检查

B.5.1 试验条件及程序

- B.5.1.1 试验道路:高摩擦系数路面和低摩擦系数路面。
- **B.5.1.2** 初始制动温度:≥55 ℃且≤100 ℃。
- B.5.1.3 规定试验速度:

高摩擦系数路面为 80 km/h 或 $0.8 V_{max}$ 的较小值;

低摩擦系数路面为 60 km/h 或 0.8 Vmax 的较小值。

- **B.5.1.4** 制动系统实施:各行车制动系统控制器分别实施;若全部车轮均安装防抱死制动系统,还应进行各行车制动系统控制器同时实施。
- **B.5.1.5** 制动控制力:应施加足够的控制力,保证每次制动过程中防抱死制动系统处于全循环状态,直到车速降至 10 km/h 以下。

GB 20073-2018

- **B.5.1.6** 制动效率:制动控制器作用力应在 $0.1 \text{ s} \sim 0.5 \text{ s}$ 内起作用。
- B.5.1.7 制动次数:最多制动 3 次,有 1 次满足性能要求即可。
- B.5.1.8 每一次制动,车辆加速至规定试验速度,在规定条件下进行制动。

B.5.2 性能要求

当车辆按照 B.5.1 的要求进行试验时,性能要求如下: 车轮没有出现抱死现象,车轮未偏出试验道路。

B.6 由高至低摩擦系数路面过渡时的车轮抱死检查

B.6.1 试验条件及程序

- B.6.1.1 试验道路:高摩擦系数试验路面紧接低摩擦系数试验路面。
- **B.6.1.2** 初始制动温度:≥55 ℃且≤100 ℃。
- B.6.1.3 通过速度:车辆到达两种摩擦系数路面连接点时的通过速度为 50 km/h 或 0.5 V_{max}的较小值。
- **B.6.1.4** 制动系统实施:各行车制动系统控制器分别实施;若所有车轮均安装防抱死制动系统,还应进行各行车制动系统控制器同时实施。
- **B.6.1.5** 制动控制力:应施加足够的控制力,保证每次制动过程中防抱死制动系统处于全循环状态,直到车速降至 10 km/h 以下。
- B.6.1.6 制动次数:最多制动3次,有1次满足性能要求即可。
- B.6.1.7 每一次制动,车辆加速至适当速度,在两种摩擦系数路面连接点前实施制动。

B.6.2 性能要求

当车辆按照 B.6.1 的要求进行试验时,性能要求如下: 车轮没有出现抱死现象,车轮未偏出试验道路。

B.7 由低至高摩擦系数路面过渡时的车轮抱死检查

B.7.1 试验条件及程序

- B.7.1.1 试验道路:低摩擦系数试验路面紧接 PBC 不小于 0.8 的高摩擦系数试验路面。
- **B.7.1.2** 初始制动温度:≥55 ℃且≤100 ℃。
- **B.7.1.3** 通过速度:车辆到达两种摩擦系数路面连接点时的通过速度为 50 km/h 或 $0.5 V_{max}$ 的较小值。
- **B.7.1.4** 制动系统实施:各行车制动系统控制器分别实施;若所有车轮均安装防抱死制动系统,还应进行各行车制动系统控制器同时实施。
- B.7.1.5 制动控制力:应施加足够的控制力,保证每次制动过程中防抱死制动系统处于全循环状态,直到车速降至 10 km/h 以下。
- **B.7.1.6** 制动次数:最多制动 3 次,有 1 次满足性能要求即可。
- B.7.1.7 每一次制动,车辆加速至适当速度,在两种摩擦系数路面连接点前实施制动。
- B.7.1.8 记录车辆的连续减速度。

B.7.2 性能要求

当车辆按照 B.7.1 的要求进行试验时,性能要求如下:

a) 车轮没有出现抱死现象,车轮未偏出试验道路;

b) 车辆后轮到达两种摩擦系数路面连接点后1s内,车辆的减速度应增加。

B.8 防抱死制动系统出现电气故障后的制动性能

B.8.1 试验条件及程序

在防抱死制动系统出现电气故障的情况下,按 A.3.1 要求进行单独操纵制动控制器的干式制动试验。

B.8.2 性能要求

当车辆按照 B.8.1 的要求进行试验时,性能要求如下:

- a) 防抱死制动系统出现电气故障后,应符合 4.5 警示灯的要求;
- b) 车辆制动距离或充分发出的平均减速度的最小性能要求如表 B.2 所示:

表 B.2 防抱死制动系统出现电气故障后的性能要求

车辆分类	制动距离 S m	充分发出的平均减速度 MFDD m/s ²
L_1	$S \leqslant 0.1 \times V + 0.014 3 \times V^2$	≥2.7
L_3	$S \le 0.1 \times V + 0.013 \ 3 \times V^2$	≥2.9

附 录 C

(规范性附录)

多回路行车制动系统的部分失效试验和性能要求

C.1 试验概述

- C.1.1 本试验用于确认当多回路行车制动系统的一个液压子系统出现泄漏故障时,剩余子系统的性能。
- C.1.2 适用于装有多回路行车制动系统的 La、La和 La类车辆。

C.2 车辆状态

- C.2.1 轻负载。
- C.2.2 脱开发动机。

C.3 试验条件及程序

- C.3.1 初始制动温度:≥55 ℃且≤100 ℃。
- C.3.2 规定试验速度:50 km/h 和 100 km/h(如果 0.8 V_{max}低于 100 km/h,则速度取为 0.8 V_{max})。
- C.3.3 制动控制力:

手控制器≤250 N;

脚控制器≤400 N。

- C.3.4 制动次数:最多制动6次,有1次满足性能要求即可。
- C.3.5 调整多回路行车制动系统,使其任意一套子系统完全失效。每一次制动,车辆加速至规定试验速度,在规定条件下进行制动。
- C.3.6 各子系统均需进行试验。

C.4 性能要求

当车辆按照 C.3 的要求进行试验时,性能要求如下:

- a) 应符合 4.5 警示灯的要求;
- b) 充分发出的平均减速度:MFDD≥3.3 m/s²,或
- c) 制动距离要求如式(C.1)所示

$$S \leq 0.1 \times V + 0.011 \ 7 \times V^2$$
 (C.1)

式中:

V ——规定试验速度,单位为千米每小时(km/h);

S ——制动距离,单位为米(m)。

附 录 D (规范性附录) 助力制动系统失效试验和性能要求

D.1 试验概述

- D.1.1 本试验用于确认辅助动力失效后的行车制动系统性能。
- D.1.2 不适用于装有另外一套独立的行车制动系统的车辆。

D.2 试验条件及程序

在行车制动系统辅助动力失效的情况下,根据 A.3.1 单独操纵制动控制器的干式制动试验的要求对各行车制动系统进行试验。

D.3 性能要求

D.3.1 当车辆按照 D.2 的要求进行试验时,性能要求如表 D.1 所示:

表 D.1 助力制动系统失效试验的性能要求

车辆分类	制动距离 S m	充分发出的平均减速度 MFDD m/s²					
独立行车制动系统							
L_1	$S \leqslant 0.1 \times V + 0.014 3 \times V^2$	≥2.7					
L_2	$S \le 0.1 \times V + 0.014 \ 3 \times V^2$	≥2.7					
L_3	$S \le 0.1 \times V + 0.013 \ 3 \times V^2$	≥2.9					
L_4	$S \leqslant 0.1 \times V + 0.010 5 \times V^2$	≥3.6					
联动制动系统或多回路行车制动系统							
$L_1 \sim L_5$	$S \leqslant 0.1 \times V + 0.015 \ 4 \times V^2$	≥2.5					

D.3.2 如果车辆的助力制动系统可以由多个控制器操纵,则单独操纵每个控制器时,均应满足 D.3.1 的性能要求。

附 录 E (规范性附录) 联动制动系统失效试验和性能要求

E.1 试验概述

- E.1.1 本试验用于确认传能装置失效后的行车制动系统性能。传能装置的失效由制动软管或制动拉索的故障造成。
- E.1.2 仅适用于车辆装有联动制动系统,且不同的行车制动系统共用液压或机械传能装置。

E.2 试验条件及程序

- E.2.1 调整制动系统,使制动系统中共用部分完全失效。
- E.2.2 车辆在满载状态下,只操纵未受到失效影响的控制器,根据 A.3.1 单独操纵制动控制器的干式制动试验的要求进行试验。
- E.2.3 试验条件参照 A.3.1.1.3、A.3.1.2.1、A.3.1.2.2、A.3.1.2.4、A.3.1.2.5 进行。

E.3 性能要求

当车辆按照 E.2 的要求进行试验时,性能要求如表 E.1 所示:

表 E.1 联动制动系统失效试验的性能要求

车辆分类	制动距离 S m	充分发出的平均减速度 MFDD m/s ²
前轮制动		
L_1	$S \le 0.1 \times V + 0.011 \ 1 \times V^2$	≥3.4
L_2	$S \le 0.1 \times V + 0.014 \ 3 \times V^2$	≥2.7
L_3	$S \le 0.1 \times V + 0.0087 \times V^2$	≥4.4
L_4	$S \le 0.1 \times V + 0.010 \ 5 \times V^2$	≥3.6
L_5	$S \le 0.1 \times V + 0.011 \ 7 \times V^2$	≥3.3
后轮制动		
L_1	$S \le 0.1 \times V + 0.014 \ 3 \times V^2$	≥2.7
L_2	$S \le 0.1 \times V + 0.014 \ 3 \times V^2$	≥2.7
L_3	$S \le 0.1 \times V + 0.013 \ 3 \times V^2$	≥2.9
L_4	$S \le 0.1 \times V + 0.010 \ 5 \times V^2$	≥3.6
L_5	$S \le 0.1 \times V + 0.011 \ 7 \times V^2$	≥3.3

附 录 F (规范性附录) 峰值制动力系数的确定

F.1 峰值制动力系数的试验方法一

F.1.1 试验概述

- F.1.1.1 本试验方法用于确认试验路面的峰值制动力系数。
- F.1.1.2 适用于 L₁ 和 L₃ 类车辆。
- F.1.1.3 为了确定车辆的最大制动速率,可以通过改变制动控制力进行一系列制动试验来找到所有车轮同时制动至抱死之前的临界点。
- F.1.1.4 车辆的最大制动速率为该系列试验结果中的最大值。
- F.1.1.5 峰值制动力系数(PBC)为车辆的最大制动速率,计算如式(F.1)所示:

$$PBC = \frac{0.556}{t}$$
 (F.1)

式中:

t——车速由 40 km/h 降到 20 km/h 时所测定的时间,单位为秒(s)。

如果车速达不到 50 km/h,应以车速从 0.8 V_{max} 降到(0.8 V_{max} — 20)时所测定的时间来确定制动速率。

F.1.1.6 峰值制动力系数(PBC)的试验结果圆整至 2 位小数。

F.1.2 车辆状态

- **F.1.2.1** 车速在 40 km/h~20 km/h 时,防抱死制动系统应不起作用。
- F.1.2.2 轻负载。
- F.1.2.3 脱开发动机。

F.1.3 试验条件及流程

- **F.1.3.1** 初始制动温度:≥55 ℃且≤100 ℃。
- F.1.3.2 规定试验速度:60 km/h 或 0.9 Vmax 中的较小值。
- F.1.3.3 制动系统实施:
 - a) 同时操纵所有行车制动系统的控制器,或者操纵一套能够作用在所有车轮上制动器的独立行车制动系统的控制器。
 - b) 对于装有独立行车制动系统控制器的车辆,若某一车轮无法达到最大减速度,应可以调整制动系统以使其达到最大制动速率。
- F.1.3.4 制动控制力:应能使车辆达到最大制动速率,且制动期间控制力保持恒定。
- F.1.3.5 制动次数:直至车辆获得最大制动速率。
- F.1.3.6 每一次制动,车辆加速至规定试验速度,在规定条件下进行制动。

F.2 峰值制动力系数的试验方法二

F.2.1 范围

- F.2.1.1 本试验规定了采用 E1136 规定的标准的基准试验轮胎来测定铺装路面峰值制动系数的试验方法。规定了独立于路面条件的峰值制动系数的一般试验规程和限制条件。路面条件由使用者在试验时确定和控制。规定了试验和试验路面条件的文件编写程序及细节。试验测定的数值为试验时的峰值制动系数,不一定是最大值或固定值。
- F.2.1.2 本试验采用制动试验轮胎在试验跑道上测得的数据表征峰值制动力。该试验轮胎应在规定车速下装载名义垂直载荷,轮胎主平面应平行于移动方向且与路面垂直。
- F.2.1.3 采用本方法规定的试验规程所测得的制动力系数并不一定与采用其他路面系数测定方法所获取的值相一致或直接相关。
- F.2.1.4 以英制单位的数值为基准。括号中的数值为换算后的国际标准单位数值,该数值只用于提供相关信息,并不作为基准。
- F.2.1.5 本标准无意强调与其相关的所有安全问题。使用者有义务在使用本标准前了解、制定适合的安全和健康操作规范并确定法规的使用范围。

F.2.2 参考文献

ASTM E274 采用原尺寸轮胎进行铺装路面滑动阻力测定的标准试验方法(Test Method for Skid Resistance of Paved Surfaces Using a Full-Scale Tire)

ASTM E556 采用校准平台校准车轮里和扭矩传感器的标准试验方法(用户版)[Test Method for Calibrating a Wheel Force or Torque Transducer Using a Calibration Platform (User Level)]

ASTM E867 与车辆路面系统有关的术语(Terminology Relating to Vehicle-Pavement Systems) ASTM E1136 标准的子午线基准试验轮胎的标准技术要求(Specification for A Radial Standard Reference Test Tire)

ASTM F377 试验轮胎测量装置制动力/牵引力校准的标准操作(Practice for Calibration of Braking / Tractive Measuring Devices for Testing Tires)

ASTM F408 用拖挂车朝正前方制动时潮湿牵引用轮胎的试验方法(Test Method for Tires for Wet Traction in Straight-Ahead Braking, Using a Towed Trailer)

ASTM F457 装有模拟或数字仪器的测速轮上速率及距离校准的方法(Test Method for Speed and Distance Calibration of Fifth Wheel Equipped With Either Analog or Digital Instrumentation)

F.2.3 术语

F.2.3.1 定义

ASTM E867 和 ASTM F408 规定的定义适用于本文件。

线性调频试验 chirp test

渐进增加制动力矩作用使产生的纵向制动力达到最大值(发生在车轮抱死前),然后解除制动以防止车轮抱死(轮胎滑移)。

F.2.3.2 条款描述

- F.2.3.2.1 制动力系数,轮胎——制动力与垂直载荷的比值。
- F.2.3.2.2 制动力系数,轮胎,峰值——如 F.2.12.2 定义的,渐进增加制动力矩,在车轮抱死前的轮胎制

动力系数最大值。

- F.2.3.2.3 制动力系数,轮胎,滑移——车轮抱死时的轮胎制动力系数。
- F.2.3.2.4 制动力,轮胎——施加制动扭矩产生的负纵向力。
- F.2.3.2.5 制动扭矩——反向于车轮扭矩。
- \mathbf{F} .2.3.2.6 纵向力,轮胎(Fx)——轮胎力的x向分力
- **F.2.3.2.7** 轮胎坐标系——轮胎与地面的接触点为轮胎坐标系的原点。X 轴为轮胎平面与地面的交线,且指向滚动方向。Z 轴垂直于路面指向下方。Y 轴在路面上,其方向应使坐标系正交并满足右手定则(见 ASTM F408)。
- F.2.3.2.8 轮胎力——地面对轮胎的外力。
- **F.2.3.2.9** 扭矩轮(T)——车辆对于车轮旋转轴施加给轮胎的外部扭矩。驱动扭矩是正向车轮扭矩,制动扭矩是反向车轮扭矩。
- F.2.3.2.10 垂直载荷(Fz)——轮胎与地面间作用力的垂直向下分力。

F.2.4 试验方法摘要

- F.2.4.1 试验方法采用在试验挂车上安装标准的基准试验轮胎的方法。试验挂车应装有传感器、试验设备和试验轮胎制动驱动控制装置。挂车试验设备见 F.2.6.5 规定。
- F.2.4.2 试验设备通常加速至 40 mph(64 km/h)的试验速度。在车轮发生抱死以前,渐进作用制动器直至制动力矩足以产生最大制动力。借助适当的测量仪器和数据采集装置来记录纵向力、垂直载荷和车速。
- F.2.4.3 路面峰值制动系数根据制动力矩逐渐增加时,制动力在车轮抱死之前所能达到的最大值与该瞬间的垂直载荷之比确定。

F.2.5 意义和用途

- F.2.5.1 受路面材质、粘合物、用途、环境暴露以及路面状态(如湿态或干态)等多种因素影响,铺装路面具有多种不同的牵引特性。
- F.2.5.2 测定值为乘用车在使用者规定的路面状态下、使用普通类型的轮胎在规定路面上的峰值制动系数。路面状态应包括用于淋湿路面的水深和外部喷水方法的类型。这些条件的变化会影响试验结果。

F.2.6 仪器设备

F.2.6.1 牵引车辆

即使以最大制动力作用时,车辆应能维持 40 mph(64 km/h) ± 0.5 mph(0.8 km/h)的试验速度。

F.2.6.2 试验挂车

- F.2.6.2.1 试验车轮应装有能够产生足够的制动力矩以使制动试验车轮的纵向力在规定条件下达到最大值的制动系统。
- F.2.6.2.2 在静态和动态两种试验条件下,挂车车轮的悬架能在最大垂直悬架位移范围内,使试验车轮的前束角和外倾角保持在±0.05°以内。
- F.2.6.2.3 应能够控制制动作用的速度,使从开始制动至达到峰值纵向力的时间间隔为 0.3 s~0.5 s。

F.2.6.3 垂直载荷

挂车的设计应能保证给试验车轮施加 1 031±15 lbf (4 586±67 N)的静态载荷,对脱开的挂车,应

GB 20073-2018

能在连接点处产生大小为 100 lbf~200 lbf (445 N~890 N)的向下静态载荷。

F.2.6.4 轮胎和轮辋

- F.2.6.4.1 试验轮胎应为符合 E1136 规定的标准的基准试验轮胎,使用轮辋尺寸为 14×6 in。
- F.2.6.4.2 当试验导致轮胎磨损或损坏或轮胎磨损影响试验结果时,应停止继续使用该轮胎。

F.2.6.5 仪器要求

F.2.6.5.1 试验系统的一般要求

当环境温度处于 40 °F~100 °F(4 °C~38 °C)之间时,测量仪器应能符合以下要求:

a) 精度

系统整体精度应满足当作用力从 200 lbf(890 N)增加至最大范围时,精度为作用力的±1.5%。例如,当作用力为 200 lbf(890 N)时,系统输出校准的作用力应在±3 lbf(±13 N)内。

b) 防护

系统的暴露部分应能适应 100%的相对湿度(下雨或喷水)和道路操作中可能遇到的污物、冲击、振动以及其他所有不利条件。

c) 制动力

制动力测量传感器应测量由制动作用在轮胎和铺装路面接触面所产生的纵向反力,测量范围应在 0 lbf~2 000 lbf(0 kN~8.9 kN)之间。轮胎力测量传感器应能在惯性作用最小的情况下测定轮胎-路面接触面的力。建议输出直接与作用力成比例,迟滞作用小于作用载荷的 1%,在作用载荷不超过最大期望载荷的情况下非线性度应小于作用载荷的 1%,对任何期望横轴载荷或扭矩载荷的敏感度都小于作用载荷的 1%。力传感器的安装方式应使其在最大期望载荷下对测量平面的转角小于 1°。

d) 垂直载荷

传感器应在制动作用期间测量试验车轮上的垂直载荷。传感器技术要求同 F.2.6.5.1 c)的规定。 注: 若其他传感器系统可以证明与力测量传感器系统相关的整体精度相同,也可用于测定峰值制动系数。

e) 车辆速度传感器

五轮仪或空转轮耦合转速表所能提供的速度分辨率和精度应为指示车速的±1.5%或±0.5 mph (±0.8 km/h),取较大值。输出的结果同时予以记录,驾驶员应能直接查看输出。五轮仪系统应符合 F457 的规定。

f) 信号处理和数据记录

所有信号处理和数据记录设备的输出均为线性并且数据读取分辨率满足 F.2.6.5.1 a)的要求。

g) 信号校准

所有应变仪传感器都应装备并联校准电阻或能够在试验序列前后连接的类似装置。校准信号至少应为额定垂直载荷的 50%并予以记录。

h) 数据获取

应安装数字化数据获取系统,分别将制动力、垂直载荷和车速模拟输出进行数字化。从未过滤的模拟信号的每个通道中,以每秒 100 个样本的速度对应数字化的制动力、垂直载荷和试验车轮速度输入信号进行取样(尽可能接近同时取样从而将相位变化最小化)。由于车速是稳定信号,必要时可通过模拟-过滤去掉噪音(干扰信号)。

注: 经验表明,以每秒 100 个样本的速度对未过滤模拟数据进行取样可以恰当的显示显著频率。对含有频率超过 50 Hz 的任何明显频率或其他类型的模拟数据进行数字化时应小心处理,以防止出现假频。

F.2.7 危害

除法律和法规规定外,应采取所有必要的预防措施保证操作人员和其他交通使用者的安全。若发 28 生洒水导致路面结冰的情况时,不应进行试验。

F.2.8 试验轮胎准备

- F.2.8.1 修剪试验轮胎,去除浇注空气入口所导致的胎面毛刺或模具连接处的飞边。
- F.2.8.2 轮胎存放地点应确保所有轮胎试验以前处于相同的环境温度中,应避免阳光照射以防温度过高。
- F.2.8.3 采用传统安装方法,将试验轮胎安装到轮胎和轮辋协会(TRA)建议的轮辋上(见 F.2.6.4)。
- **F.2.8.4** 实验前,检查环境温度下(冷态)试验轮胎的规定充气压力。试验轮胎气压应为 35 psi \pm 0.5 psi (241 kPa \pm 3 kPa)。

F.2.9 车辆速度校准

选择长度适合的平直路面,试验挂车加载至规定操作重量,试验车辆将车速稳定在试验车速通过该路面,测取试验车辆驶过该路面的时间,以校准试验车辆速度指示器。在各试验速度点至少进行三次行驶,记录校准过程中的速度变化值。允许使用其他等效的方法。五轮仪的校准方法见 ASTM F457。

F.2.10 调节

F.2.10.1 预试验轮胎处理

F.2.10.1.1 在试验之前,对所有试验轮胎进行预处理。每次实际试验测定前应进行一次预处理。推荐进行预处理以防止新胎打磨效应对峰值制动系数的影响,使瞬态制动性能产生的试验偏差最小化。

F.2.10.1.2 应在干燥水平路面上进行预处理,在试验载荷下以 20 mph(32 km/h)的速度对每个轮胎进行 10 次线性调频试验。

F.2.10.2 一般试验条件

- F.2.10.2.1 试验路面应无松散物或堆积异物。
- F.2.10.2.2 当风力条件影响试验重复性时,不要在湿路面上试验。试验结果可能受风速、风向以及二者综合影响。其程度受水深、加水方式和路面防风措施的影响。

F.2.11 程序

- F.2.11.1 出于稳定性考虑,对电子试验装备进行暖机。
- F.2.11.2 将标准的基准试验轮胎安装在试验挂车的试验位置。如采用两轮挂车,为使车轴水平及制动扭矩作用下的挂车横摆最小化,可在相反的一侧安装一个具有类似负荷半径及较高侧偏特性的轮胎。
- F.2.11.3 检查试验轮胎负荷,并调整至规定试验载荷(见 F.2.6.3)。
- F.2.11.4 在试验即将开始前,检查试验轮胎的规定充气压力(见 F.2.8.4)。
- **F.2.11.5** 当在外部淋湿的试验路面上试验时,最好使挂车试验车轮偏离牵引车辆车轮 12 in~16 in (305 mm~406 mm),以防止牵引车的车轮在试验车轮前形成印迹。
- F.2.11.6 记录轮胎识别代号和其他数据,包括日期、时间、环境温度、试验路面温度、轮胎硬度值、试验路面类型和水深(如采取外部淋湿路面)。采用合适的装置(如高速可调的探针装置)测定水深。
- F.2.11.7 应在试验前、后或为确保数据有效性记录校正电信号。
- F.2.11.8 对首次在跑道上进行试验的轮胎,应按 F.2.10.1 进行预处理。
- F.2.11.9 在要求的试验速度下进行试验。进行峰值制动系数测定,推荐使用线性调频试验方法进行试验,以将轮胎滑移对轮胎造成的损害将至最低。
- F.2.11.10 使用试验系统,以规定试验速度平均分布进行至少8次峰值制动系数测定。

F.2.11.11 通常,应对试验车辆所采用的两条车轮轨迹中每一条的中心位置进行测定。在报告数据时记录与跑道和车轮轨迹有关的具体细节。

F.2.11.12 试验速度要求

- a) 标准试验速度为 40 mph(64 km/h),试验通常应在该车速下进行。若试验地区的法律规定最高车速低于 40 mph(64 km/h),试验可以在较低的车速下进行。若试验地区的法律规定车速远远大于 40 mph(64 km/h)时,试验可以在普遍的行驶车速下进行。但是建议在相同地点进行 40 mph(64 km/h)试验速度的附加试验。试验速度误差为规定试验速度的±1 mph(±1.5 km/h)。
- b) 应记录获得峰值制动系数瞬间的试验速度,可以在峰值制动系数后的括号内标明实际试验速度,单位为 mph。例如 0.50(50),说明峰值制动力系数是在 50 mph(80 km/h)时获得的。

F.2.12 计算

F.2.12.1 数据约简

F.2.12.1.1 用五点平移法对数字化的制动力、垂直载荷和车速输入模拟信号进行数字化过滤。

F.2.12.1.2 数字化过滤方法——计算第一组、5个数字化数据点的平均值。去掉第1个数据点,增加第6个数据点,然后计算这5个点的平均值。对其余的所有数据点重复该过程。根据所有上述数字化的输入模拟信号分别计算该结果。下面用一个通道的计算来说明该方法。

然后规定用一组新的数据点(用大写字母表示)来表示每个通道过滤后的数据(ptx 平均值 = PTy)

F.2.12.2 测定和计算峰值制动系数

F.2.12.2.1 应测定每次行驶(制动作用)的峰值制动系数。

F.2.12.2.2 使用数字化过滤的数据(PT1, PT2, PT3, 等),扫描纵向通道并确定车轮抱死前的最高绝对滤波值(PT $_y$)。利用和其前(PT $_{y-1}$)、后(PT $_{y+1}$)紧挨的一个滤波点来计算平均峰值制动力值。这三个点的平均值就是本次试验得到的峰值制动力值。

F.2.12.2.3 按 F.2.12.2.2 的方法,根据各自的数字化过滤数据,确定与制动力最高绝对值相对应的垂直载荷。用这个对应垂直载荷及其前、后紧挨的一个数据点来计算平均垂直载荷值。这三个点的平均值即为与该次试验平均峰值制动力对应的垂直载荷值。

F.2.12.2.4 用三点平均峰值制动力除以三点平均垂直载荷计算峰值制动系数。峰值制动系数报告应 精确至两位小数。

F.2.12.3 偏差计算

对每次试验(见 F.2.11.10),按各次测定的结果计算峰值制动系数的平均偏差和标准偏差。

F.2.13 报告

F.2.13.1 每个试验区段的场地报告应包括:

a) 所采用的试验规程识别代号;

- b) 试验区段的识别代号和位置;
- c) 日期和时间;
- d) 天气条件;
- e) 试验通道和车轮轨迹;
- f) 每次试验的试验速度;
- g) 每次试验的峰值制动系数;
- h) 使用湿路面时的水深;
- i) 环境和路面温度。

F.2.13.2 总报告应包括每个试验区段内与研究变量或变量组合相关的下列信息:

- a) 试验区段的位置和识别代号;
- b) 车道数量和分隔带位置;
- c) 坡度和分布;
- d) 铺装类型,路面行车道、条件和聚合类型(专用行车道,如适用)的混合设计;
- e) 路龄;
- f) 平均日交通量;
- g) 限速;
- h) 试验日期和时间;
- i) 天气条件;
- j) 试验通道和车轮轨迹;
- k) 环境温度和路面温度;
- 试验区段的平均、高、低峰值制动系数和试验速度。(如果报告中的数据未被用于计算平均峰值制动系数,需说明原因)。

F.2.14 精度和偏差

F.2.14.1 精度

没有数据支持对本试验方法的精度做出规定。当有可用数据时,将增加精度说明。

F.2.14.2 偏差

没有可用的标准或参考对试验结果进行比较。试验的作用是采用相同轮胎对不同路面进行对比。在外部参考以评价准确性的情况下,该试验方法得到的结果足以进行该类比较。应注意的是,摩擦特性受环境条件、使用、路龄和路面污染等很多可变因素的影响。这些条件中的任何一项发生明显变化都会改变测量值。

F.2.15 轮胎的使用和操作要求

当试验导致轮胎发生异常磨损或损坏或轮胎的磨损和使用影响试验结果时,应停止继续使用该轮胎。

注:制动力等试验结果测量可能受轮胎花纹深度、硬度以及两者综合影响。影响程度取决于水膜厚度、铺装参数、试验速度、轮胎老化和磨合(预处理)等。

中 华 人 民 共 和 国 国 家 标 准 摩托车和轻便摩托车制动性能要求及试验方法

GB 20073—2018

*

中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100029) 北京市西城区三里河北街16号(100045)

> 网址:www.spc.org.cn 服务热线:400-168-0010 2018 年 2 月第一版

> > *

书号: 155066 • 1-57446

版权专有 侵权必究

GB 20073-2018