Precision, recall and F1 score

Precision

Precision is the ratio of number of **True Positive** to the **total number of Predicted Positive**. It measures, out of the total predicted positive, how many are actually positive.

Precision measures the error caused by **False Positives**. Hence it is a good evaluation metric when **False Positive** predictions are critical.

ex: face recognition

Recall

Recall is the ratio of number of **True Positive** to the **total number of Actual Positive**. It measures, out of the total actual positive, how many are predicted as True Positive.

Recall measures the error caused by **False Negatives**. Hence it is a good evaluation metric when **False Negative** predictions are critical.

ex: cancer diagnosis

F1 Score

F1 Score is an important evaluation metric for binary classification that combines Precision & Recall. F1 Score is the **harmonic mean** of Precision & Recall.

This is a very useful metric when a dataset has imbalanced classes.

Precision, Recall & F1 Score

Example:

		Predicted		
		Positive	Negative	
Actual	Positive	TP = 50	FN = 10	
	Negative	FP = 5	TN = 20	

Precision =
$$\frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}} = \frac{50}{50 + 5}$$

Precision = 0.91

Recall =
$$\frac{\text{True Positive}}{\text{True Positive} + \text{ False Negative}} = \frac{50}{50 + 10}$$

Recall = 0.83

F1 Score =
$$2 \times \frac{\text{Precision x Recall}}{\text{Precision + Recall}} = 2 \times \frac{0.91 \times 0.83}{0.91 + 0.83}$$
F1 Score = 0.87