Recurrences

Goal

- Learn how to design and analyze recursive algorithms
- Learn when to use or not to use recursive algorithms
- Derive & solve recurrence equations to analyze recursive algorithms

Recursion

• What is the recursive definition of *n*!?

$$n! = \begin{cases} 1 & \text{if } n \text{ is } 0 \text{ or } 1\\ n * ((n-1)!) \text{ otherwise} \end{cases}$$

Program

```
fact(n) {
  if (n<=1) return 1;
  else return n*fact(n-1);
}
// Note '*' is done after returning from fact(n-1)</pre>
```

Recursive algorithms

- A recursive algorithm typically contains recursive calls to the same algorithm
- In order for the recursive algorithm to terminate, it must contain code to directly solve some "base case(s)" with no recursive calls
- We use the following notation:
 - DirectSolutionSize is the "size" of the base case
 - DirectSolutionCount is the number of operations done by the "direct solution"

A Call Tree for fact(3)

```
returns 6
           fact(3)
               fact(2)
                     fact(1
      int fact(int n) {
           if (n<=1) return 1;
      else return n*fact(n-1);
```

The Run Time Environment

- When a function is called an activation records('ar') is created and pushed on the program stack.
- The activation record stores copies of local variables, pointers to other 'ar' in the stack and the return address.
- When a function returns the stack is popped.

Goal: Analyzing recursive algorithms

 Until now we have only analyzed (derived the count of) non-recursive algorithms.

- In order to analyze recursive algorithms, we must learn to:
 - Derive the recurrence equation from the code
 - Solve recurrence equations

Deriving a Recurrence Equation for a Recursive Algorithm

- Our goal is to compute the count (Time) T(n) as a function of n, where n is the size of the problem
- We will first write a recurrence equation for T(n)
 For example, T(n)=T(n-1)+1 and T(1)=0
- Then we will solve the recurrence equation. What's the solution to T(n)=T(n-1)+1 and T(1)=0?

Deriving a Recurrence Equation for a Recursive Algorithm

1. Determine the "size of the problem". The count T is a function of this *size*

Determine DirectSolSize, such that for size ≤
 DirectSolSize the algorithm computes a direct
 solution, with the DirectSolCount(s).

$$T(size) = \begin{cases} DirectSolCount & size \leq DirectSolSize \\ GeneralCount & \text{otherwise} \end{cases}$$

Deriving a Recurrence Equation for a Recursive Algorithm

To determine *GeneralCount*:

- 3. Analyze the total number of recursive calls, k, done by a single call of the algorithm and their counts, $T(n_1), \ldots, T(n_k) \rightarrow Recursive CallSum = \sum_{i=1}^{k} T(n_i)$
- 4. Determine the "non recursive count" *t(size)* done by a single call of the algorithm, i.e., the amount of work, excluding the recursive calls done by the algorithm

$$T(size) = \begin{cases} DirectSolCount & size \leq DirectSolSize \\ RecursiveCallSum + t(size) & otherwise \end{cases}$$

Deriving DirectSolutionCount for Factorial

```
int fact(int n) {
    if (n<=1) return 1;
    else return n*fact(n-1); }</pre>
```

- 1. Size = n
- 2. DirectSolSize is 1 because n<=1
- 3. *DirectSolCount* is θ (1)

```
The algorithm does a small constant number of operations (comparing n to 1, and returning)
```

Deriving a GeneralCount for Factorial

```
int fact(int n) {
                  if)(n<=1) return 1;
                  // Note '*' is done after returning from fact(n-1)
Operations
                  else
counted in
                    return n(* )fact(n-1);
                                                           The only recursive
t(n)
                                                           call, requiring
                                                           T(n-1) operations
       3. RecursiveCallSum = T(n - 1)
       4. t(n) = \theta(1) (if, *, -, return)
                      T(n) = \begin{cases} \Theta(1) & \text{for } n \le 1 \\ T(n-1) + \Theta(1) & \text{for } n > 1 \end{cases}
```

Reminder: Pitfall

- Is the complexity of recursive factorial $\Theta(n)$? Is it a linear time algorithm then?
- No! Recall for algorithms handling arbitrarily big numbers, we need to consider the input size in terms of the number of bits needed to express the input
- In recursive factorial, we have only one input data, n, but the counts are proportional to the magnitude of $n \ge 2^{s-1}$ where s is the number of bits used to express n $(s = |\lg n| + 1)$
- So, it has exponential time complexity! (Chap. 1)

Solving recurrence equations

- Techniques for solving recurrence equations:
 - Recursion tree
 - Iteration method
 - T(n) = T(n-1) + c
 - T(n) = T(n/2) + c (See the next slide)
 - Master Theorem
- We discuss these methods with examples.

Iteration for binary search

$$W(n) = 1 + W(\lfloor n/2 \rfloor)$$

$$= 1 + (1 + W(\lfloor \lfloor n/2 \rfloor / 2 \rfloor)) = 2 + W(\lfloor n/4 \rfloor)$$

$$= 2 + (1 + W(\lfloor n/8 \rfloor)) = 3 + W(\lfloor n/8 \rfloor)$$
...
$$= k + W(\lfloor n/2^k \rfloor) = k + W(1) = k + 1$$

$$= |\lg n| + 1 \in \Theta(\lg n)$$

Deriving the count using the recursion tree method

- Recursion trees provide a convenient way to represent the unrolling of a recursive algorithm
- It is not a formal proof but a good technique to compute the count.
- Once the tree is generated, each node contains its "non recursive number of operations" t(n) or DirectSolutionCount
- The count is derived by summing the "non recursive number of operations" of all the nodes in the tree
- For convenience, we usually compute the sum for all nodes at each given depth, and then sum these sums over all depths.

Building the recursion tree

- The initial recursion tree has a single node containing two fields:
 - The recursive call, (for example Factorial(n)) and
 - the corresponding count T(n).
- The tree is generated by:
 - unrolling the recursion of the node depth 0,
 - then unrolling the recursion for the nodes at depth 1, etc.
- The recursion is unrolled as long as the size of the recursive call is greater than *DirectSolutionSize*

Building the recursion tree

- When the "recursion is unrolled", each current leaf node
 is substituted by a subtree containing a root and a child for
 each recursive call done by the algorithm.
 - The root of the subtree contains the nonrecursive call, and the corresponding "non recursive count".
 - Each child node contains a recursive call, and its corresponding count.
- The unrolling continues, until the "size" in the recursive call is *DirectSolutionSize*
- Nodes with a call of DirectSolutionSize, are not "unrolled", and their count is replaced by DirectSolutionCount

Example: Recursive factorial

Factorial(n) T(n)

- Initially, the recursive tree is a node containing the call to Factorial(n), and count T(n).
- When we unroll the computation this node is replaced with a subtree containing a root and one child:
- •The root of the subtree contains the call to Factorial(n), and the "non recursive count" for this call $t(n) = \Theta(1)$.
- •The child node contains the recursive call to Factorial(n-1), and the count for this call, T(n-1).

After the first unrolling

nd denotes the number of nodes at that depth

$$T(n) = \begin{cases} \Theta(1) & \text{for } n \le 1 \\ T(n-1) + \Theta(1) & \text{for } n > 1 \end{cases}$$

After the second unrolling

$$Factorial(n) \quad t(n) = \Theta(1) \qquad depth \quad nd \qquad T(n)$$

$$0 \quad 1 \quad \Theta(1)$$

$$Factorial(n-1) \quad t(n-1) = \Theta(1) \qquad 1 \quad 1 \quad \Theta(1)$$

$$Factorial(n-2) \quad T(n-2) \qquad 2 \quad 1 \quad T(n-2)$$

$$T(n) = \begin{cases} \Theta(1) & \text{for } n \le 1 \\ T(n-1) + \Theta(1) & \text{for } n > 1 \end{cases}$$

After the third unrolling

$$Factorial(n) \quad t(n) = \Theta(1) \qquad depth \quad nd \qquad T(n)$$

$$\hline Factorial(n-1) \quad t(n-1) = \Theta(1) \qquad 1 \qquad 1 \qquad \Theta(1)$$

$$\hline Factorial(n-2) \quad t(n-2) = \Theta(1) \qquad 2 \qquad 1 \qquad \Theta(1)$$

$$\hline Factorial(n-2) \quad t(n-2) = \Theta(1) \qquad 3 \qquad 1 \qquad T(n-3)$$

$$T(n) = \begin{cases} \Theta(1) & \text{for } n \le 1 \\ T(n-1) + \Theta(1) & \text{for } n > 1 \end{cases}$$

For Factorial

DirectSolutionSize = 1 and $DirectSolutionCount = \Theta(1)$

The recursion tree

$$Factorial(n) \quad t(n) = \Theta(1)$$

$$Factorial(n-1) \quad t(n-1) = \Theta(1)$$

$$Factorial(n-2) \quad t(n-2) = \Theta(1)$$

$$1 \quad 1 \quad \Theta(1)$$

$$Factorial(n-2) \quad t(n-2) = \Theta(1)$$

$$2 \quad 1 \quad \Theta(1)$$

$$Factorial(n-3) \quad t(n-3) = \Theta(1)$$

$$3 \quad 1 \quad \Theta(1)$$

$$Factorial(1) \quad T(1) = \Theta(1)$$

$$The sum \quad T(n) = n^* \Theta(1) = \Theta(n)$$

Divide and Conquer

- Basic idea: divide a problem into smaller portions, solve the smaller portions and combine the results (if necessary).
- Name some algorithms you already know that employ this technique.
- D&C is a top down approach. We often use recursion to implement D&C algorithms.
- The following is an "outline" of a divide and conquer algorithm

Divide and Conquer

- Let size(I) = n
- DirectSolutionCount = DS(n)
- t(n) = D(n) + C(n) where:
 - -D(n) = instruction counts for dividing problem into subproblems
 - -C(n) = instruction counts for combining solutions

$$T(n) = \begin{cases} DS(n) & \text{for } n \leq DirectSolutionSize} \\ \sum_{i=1}^{k} T(n_i) + D(n) + C(n) & \text{otherwise} \end{cases}$$

Divide and Conquer

- Main advantages
 - Code: simple
 - Algorithm: efficient
 - Implementation
 - Parallel computation is possible, e.g., parallel quick sort, parallel merge sort, parallel convex hull, etc.
 - Parallel algorithm is an advanced topic. If we have time, we can discuss a few representative parallel algorithms in the end of the semester

Binary search

- Assumption: The list S[low...high] is sorted, and x is the search key
- If the search key x is in the list, x == S[i], and the index i is returned.
- If x is not in the list a NoSuchKey is returned

Binary search

- The problem is divided into 3 cases
 - $-x=S[mid], x \in S[low,...,mid-1], x \in S[mid+1,...,high]$
- The first case x=S[mid] is easily solved
- The other cases
 x∈ S[low,..,mid-1], or x∈ S[mid+1,..,high] require a recursive call
- When the array is empty the search terminates with a "non-index value"

```
BinarySearch(S, x, low, high)
  if low > high then
       return NoSuchKey
  else
       mid \leftarrow floor ((low+high)/2)
       if (x == S[mid])
           return mid
       else if (x < S[mid]) then
           return BinarySearch(S, x, low, mid-1)
       else
           return BinarySearch(S, x, mid+1, high)
```

Worst case analysis

- A worst input (what is it?) causes the algorithm to keep searching until low>high
- Assume $2^k \le n < 2^{k+1} k = \lfloor \lg n \rfloor$
- *T* (*n*): worst case number of comparisons for the call to *BS*(*n*)

$$T(n) = \begin{cases} 0 \text{ for } n = 0 \\ 1 \text{ for } n = 1 \\ 1 + T(\lfloor n/2 \rfloor) \text{ for } n > 1 \end{cases}$$

Recursion tree for BinarySearch (BS)

$$BS(n)$$
 $T(n)$

- Initially, the recursive tree is a node containing the call to BS(n), and total amount of work in the worst case, T(n).
- When we unroll the computation this node is replaced with a subtree containing a root and one child:
- •The root of the subtree contains the call to BS(n), and the "nonrecursive work" for this call t(n).
- •The child node contains the recursive call to BS(n/2), and the total amount of work in the worst case for this call is T(n/2).

After first unrolling

$$BS(n) \quad t(n)=1 \qquad depth \quad nd \qquad T(n)$$

$$0 \quad 1 \qquad 1$$

$$BS(n/2) \quad T(n/2) \qquad 1 \qquad 1 \qquad T(n/2)$$

$$T(n) = \begin{cases} 0 \text{ for } n = 0\\ 1 \text{ for } n = 1\\ 1 + T(\lfloor n/2 \rfloor) \text{ for } n > 1 \end{cases}$$

After second unrolling

$$T(n) = \begin{cases} 0 \text{ for } n = 0\\ 1 \text{ for } n = 1\\ 1 + T(\lfloor n/2 \rfloor) \text{ for } n > 1 \end{cases}$$

After third unrolling

For *BinarySearch*, *DirectSolutionSize* = 0 or 1 and *DirectSolutionCount* = 0 for 0 and 1 for 1

Terminating the unrolling

- Let $2^k \le n < 2^{k+1}$
- $k = \lfloor \lg n \rfloor$
- When a node has a call to $BS(n/2^k)$, (or to $BS(n/2^{k+1})$):
 - − The size of the list is *DirectSolutionSize* since $\lfloor n/2^k \rfloor = 1$, (or $\lfloor n/2^{k+1} \rfloor = 0$)
 - In this case the unrolling terminates, and the node is a leaf containing *DirectSolutionCount* (DSC) = 1, (or 0)

The recursion tree

Merge Sort

Input: *S* of size *n*.

Output: a permutation of S, such that if i > j then $S[i] \ge S[j]$

Divide: If *S* has at least 2 elements, divide it into S_1 and S_2 . S_1 contains the the first $\lceil n/2 \rceil$ elements of *S*. S_2 has the last $\lceil n/2 \rceil$ elements of *S*.

Recursion: Recursively sort S_1 and S_2 .

Conquer: Merge sorted S_1 and S_2 into S.

Merge Sort Example

Image source: http://en.wikipedia.org/wiki/File:Merge_sort_algorithm_diagram.svg

Deriving a recurrence equation for Merge Sort

```
Sort(S)
     if (n \ge 2)
              // Divide S into S1 and S2
              Sort(S_1)
                                           // recursion
              Sort(S_2)
                                           // recursion
              Merge(S_1, S_2, S) // conquer
DirectSolutionSize is n < 2
DirectSolutionCount is \theta(1)
Recursive Call Sum is T ( \lceil n/2 \rceil ) + T( \lfloor n/2 \rfloor )
The non-recursive count t(n) = \theta(n) \rightarrow \text{Merge}
```

Merge Sort Algorithm

Algorithm 2.2

Mergesort

Problem: Sort *n* keys in nondecreasing sequence.

Inputs: positive integer n, array of keys S indexed from 1 to n.

Outputs: the array S containing the keys in nondecreasing order.

```
void mergesort (int n, keytype S[])
{
   if (n>1) {
     const int h = [ n/2], m = n - h;
     keytype U[1..h], V[1..m];
     copy S[1] through S[h] to U[1] through U[h];
     copy S[h+1] through S[n] to V[1] through V[m];
     mergesort(h, U);
     mergesort(m, V);
     merge(h, m, U, V, S);
}
```

Merge Algorithm

Algorithm 2.3

Merge

Problem: Merge two sorted arrays into one sorted array.

Inputs: positive integers h and m, array of sorted keys U indexed from 1 to h, array of sorted keys V indexed from 1 to m.

Outputs: an array S indexed from 1 to h + m containing the keys in U and V in a single sorted array.

```
void merge (int h, int m, const keytype U[],
                           const keytype V[],
                                 keytype S[])
  index i, j, k;
  i = 1; j = 1; k = 1;
  while (i \le h \&\& j \le m){
     if (U[i] < V[j]) {
        S[k] = U[i];
        i++;
     else {
        S[k] = V[j];
        j++;
     k++;
  if (i>h)
     copy V[j] through V[m] to S[k] through S[h+m];
  else
     copy U[i] through U[h] to S[k] through S[h+m];
```

Merge Example

k	U	V	S(Result)
1	10 12 20 27	13 15 22 25	10
2	10 12 20 27	13 15 22 25	10 12
3	10 12 20 27	13 15 22 25	10 12 13
4	10 12 20 27	13 15 22 25	10 12 13 15
5	10 12 20 27	13 15 22 25	10 12 13 15 20
6	10 12 20 27	13 15 22 25	10 12 13 15 20 22
7	10 12 20 27	13 15 22 25	10 12 13 15 20 22 25
	10 12 20 27	13 15 22 25	10 12 13 15 20 22 25 27 \leftarrow Final values

Merge Sort

- In-place sort: does not use any extra space beyond that needed to store the input.
- The previous merge sort algorithm is NOT in-place sort.
 - Why?
- Extra space: $n\left(1 + \frac{1}{2} + \frac{1}{4} + \cdots\right) = 2(n-1)$.

Merge Sort (with less extra space)

Algorithm 2.4

Mergesort 2

Problem: Sort *n* keys in nondecreasing sequence.

Inputs: positive integer n, array of keys S indexed from 1 to n.

Outputs: the array S containing the keys in nondecreasing order.

```
void mergesort2 (index low, index high)
{
  index mid;

if (low < high) {
    mid = \[ (low + high)/2 \];
    mergesort2(low, mid);
    mergesort2(mid + 1, high);
    merge2(low, mid, high);
}
</pre>
```

Merge (with less extra space)

```
void merge2 (index low, index mid, index high)
 index i, j, k;
 keytype U[low...high]; // A local array needed for the
                         // merging
  i = low; j = mid + 1; k = low;
  while (i \leq mid \&\& j \leq high){
     if (S[i] < S[j]) {
        U[k] = S[i];
       i++;
     else{
      U[k] = S[j];
       j++;
  if (i > mid)
     move S[j] through S[high] to U[k] through U[high];
  else
     move S[i] through S[mid] to U[k] through U[high];
 move U[low] through U[high] to S[low] through S[high];
```

Recurrence Equation (cont'd)

- The cost of division is O(1) and merge is $\Theta(n)$. So, the total cost for dividing and merging is $\Theta(n)$.
- The recurrence relation for the run time of MergeSort is:

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n).$$

$$T(0) = T(1) = \Theta(1)$$

• The solution is $T(n) = \Theta(n \log n)$

After first unrolling of mergeSort

$$T(n) = \begin{cases} 1 & \text{for } n \le 1 \\ 2T(n/2) + \theta(n) & \text{for } n > 1 \end{cases}$$

After second unrolling

$$T(n) = \begin{cases} 1 & \text{for } n \le 1 \\ 2T(n/2) + \theta(n) & \text{for } n > 1 \end{cases}$$

After third unrolling

Terminating the unrolling

- For simplicity let $n = 2^k$
- $\lg n = k$
- When a node has a call to MergeSort(n/2^k):
 - The size of the list to merge sort is DirectSolutionSize since $n/2^k = 1$
 - In this case the unrolling terminates, and the node is a leaf containing $DirectSolutionCount = \Theta(1)$

The recursion tree

$$T(n)=(k+1)\Theta(n)=\Theta(n \lg n)$$

Master Theorem to Solve General Recurrence Equations

Suppose that (T(n) is eventually nondecreasing):

$$-T(n) = aT(n/b) + cn^k$$

$$-T(1) = d$$

where $b \ge 2$ and $k \ge 0$ are constant integers and a, c, d are constants such that a > 0, b > 0, and $d \ge 0$. Then,

- $T(n) = \Theta(n^k)$ if $a < b^k$
- $T(n) = \Theta(n^k \lg n)$ if $a = b^k$
- $T(n) = \Theta(n^{\log_b a})$ if $a > b^k$

Master method examples

• Case 1:

$$-T(n) = 8T(n/4) + 5n^2$$
 for n>1, n is a power of 4

$$-T(1) = 3$$

$$\rightarrow$$
 a=8, b=4, k=2

$$\rightarrow$$
 As a < b^k (i.e., 8 < 4²), T(n) = Θ (n²)

• Case 2:

 $-T(n) = 8T(n/2) + 5n^3$ for n>64, n is a power of 2

$$-T(64) = 200$$

$$\rightarrow$$
 As a = b^k (i.e., 8 = 2³), T(n) = Θ (n³ lgn)

• Case 3:

- -T(n) = 9T(n/3) + 5n for n > 1, n is a power of 3
- -T(1)=7

$$\rightarrow$$
a = 9, b = 3, k = 1

$$\rightarrow$$
Since a > b^k, $T(n) = \Theta(n^{\log_3 9}) = \Theta(n^2)$

Generalizing T(n) for n as a power of b

Theorem B.4

 Let b≥ 2 be an integer, let f(n) be a smooth complexity function, and let T(n) be an eventually non-decreasing complexity function.

$$T(n) \in \theta \big(f(n) \big)$$
 for n a power of b, then

$$T(n) \in \theta(f(n)).$$

$$T(n) = \begin{cases} 0 \text{ for } n = 0 \\ 1 \text{ for } n = 1 \\ 1 + T(\lfloor n/2 \rfloor) \text{ for } n > 1 \end{cases}$$

- We can prove $T(n) = lgn + 1 \in \theta(lgn)$ for n a power of 2.
- Need to show T(n) is eventually non-decreasing in order to apply Theorem B.4 to conclude $T(n) = lgn + 1 \in \theta(lgn)$.
- T(n) = lgn + 1 is only true for n a power of 2.
- Example B.25 showed that T(n) is eventually non-decreasing using mathematical induction.
 - Non-decreasing: if $1 \le k < n$, then $T(k) \le T(n)$.
 - A variation of induction:
 - Assume for all $m \le n$: if $1 \le k < m$, then $T(k) \le T(m)$.
 - Need to prove: for m = n+1: if $1 \le k < m$, then $T(k) \le T(m)$.

• Only need to show $T(n) \le T(n+1)$.

•
$$T(n) = T(\left\lfloor \frac{n}{2} \right\rfloor) + 1$$

•
$$T(n+1) = T(\lfloor \frac{n+1}{2} \rfloor) + 1$$

- Can you show $T(\left\lfloor \frac{n}{2} \right\rfloor) \le T(\left\lfloor \frac{n+1}{2} \right\rfloor)$?
- $\left|\frac{n}{2}\right| \le \left|\frac{n+1}{2}\right| \le n$ and induction hypothesis.