

통 합 구 현

소프트웨어 아키텍처

학습내용◆

- > 아키텍처의 기본 개념
- 비즈니스 아키텍처 설계
- 시스템 아키텍처 설계
- 아키텍처 결정 프로세스와 아키텍트의 역할과 종류

학습목표

- > 아키텍처(소프트웨어 아키텍처)의 기본 개념을 설명할 수 있다.
- 비즈니스 아키텍처의 정의 및 포함요소를 설명할 수 있다.
- 시스템 아키텍처의 정의 및 설계요소를 설명할 수 있다.
- 아키텍처 결정 프로세스 및 아키텍트의 역할에 대해 설명할 수 있다.

아키텍처의 정의

- 1. 아키텍처의 정의
 - 1) 아키텍처의 정의
 - (1) 아키텍처

아키텍처

- 비즈니스 요구사항을 만족하는 시스템을 구축하기 위해서 전체 시스템에 대한 구조를 정의한 문서로, 시스템을 구성하는 컴포넌트와 그 컴포넌트간 의 관계, 컴포넌트가 다루는 정보(데이터)
- ① 소프트웨어를 만들기 위한 청사진
 - 현재의 요구사항
 - 비즈니스 전략에 대응하는 장기적인 로드맵
 - 구현 및 사용하는 조직의 규모, 형태, 기술수준,
 - 비즈니스의 형태
- 2) 아키텍처 설계 프로세스
 - (1) 아키텍처 설계 프로세스의 특징
 - ① 특징
 - Zachman Framework, TOGAF, Federal Enterprise Architecture 등 다양한 프레임워크 사용
 - Open Group이 제시한 TOGAF(The Open Group Architecture Framework) 아키텍처 설계 방법론을 기반으로 설명

아키텍처의 정의

- 1. 아키텍처의 정의
 - 2) 아키텍처 설계 프로세스
 - (2) 아키텍처 설계 프로세스

(3) 설계 흐름

- ① 비즈니스 아키텍처 설계
 - 기술적 관점이 아닌 소프트웨어 기능, 시장상황, 로드맵 등 비즈니스 관점에서 소프트웨어 정의
 - 주로 요구사항 정의서나 시장 조사서를 기반으로 정리
- ② 아키텍처 설계 원칙 정의
 - 설계 옵션들에 대한 의사결정시 사용
 - 비즈니스 아키텍처와 아키텍처 설계 원칙을 기반으로 시스템 아키텍처 설계
- ③ 시스템 아키텍처의 정의
 - 실제 개발하고자 하는 목표에 대한 기술적 요구사항을 서술한 아키텍처
 - 애플리케이션 아키텍처, 테크니컬 아키텍처, 솔루션 아키텍처, 데이터 아키텍처로 구분
 - 시스템 아키텍처 설계하기 위해서는 레퍼런스 아키텍처와 디자인 패턴 참고

비즈니스 아키텍처 설계

- 2. 비즈니스 아키텍처 설계
 - 1) 비즈니스 아키텍처의 개요
 - (1) 정의 및 포함요소

비즈니스 아키텍처

- 어떤 기능을 제공하는가?, 누가 시스템을 사용하는가? 등 비즈니스 관점에서 시스템을 바라보는 아키텍처
- ① 비즈니스 아키텍처란 아래 요소들을 포함하여 "왜? 무엇을? 언제? 어떻게? 만들것인가?"를 서술함
 - 전체 서비스에 대한 요약
 - 시장 현황과 타 서비스와의 차별화 요소(선택)
 - 주요 기능
 - 도메인 모델
 - 전체적인 시스템 구성
 - 전체적인 로드맵과 일정

2) 비즈니스 아키텍처 설계의 포함 요소

(1) 서비스 개요

① 전체 서비스에 대한 기능과 배경 등을 서술한 요약 자료 (1~2장 분량)

LEAN ORGANIZATIONAL DEVELOPMENT CANVAS for DropBox (2007)
Strategic Problem Solving and Supply Chain Management Canvas (With Key Metrics)

🥦 비즈니스 아키텍처 설계

2. 비즈니스 아키텍처 설계

2) 비즈니스 아키텍처 설계의 포함 요소

(2) 주요 기능 정의

- ① 비즈니스 관점에서 10 ~ 20개 정도의 큰 기능으로 정의
- ② 유스 케이스 다이어그램과 같은 도표 사용 권장 (예 : drop box use case)
- ③ 사용자와 시스템간의 상호작용 정의
 - 사용자는 페이스북과 구글 계정을 통해 로그인 한다.
 - 사용자가 파일을 업로드한다.
 - 사용자 기기와 클라우드의 파일을 동기화 한다.
- ④ 개발하고자 하는 목표가 명확해지고 어떤 사용자에게 무슨 서비스를 제공해야 하는지 구별할 수 있음

비즈니스 아키텍처 설계

- 2. 비즈니스 아키텍처 설계
 - 2) 비즈니스 아키텍처 설계의 포함 요소
 - (3) 도메인 모델

도메인 모델

• 서비스를 구성하는 사용자, 서비스 컴포넌트, 권한이나 역할 같은 개념과 그 관계를 도식화하여 표현한 것으로 DB의 ER-D와 유사함

① 목적

• 사용자 UX 시나리오와 데이터 모델링을 정의하거나 애플리케이션 컴포넌트들을 정의하는데 기초

② 예시

• 기업형 클라우드 스토리지: 개인형은 일반사용자와 시스템관리자로 두 가지 도메인이 존재하지만 기업협의 경우는 복잡도가 증가함

[기업형 클라우드 스토리지 서비스 도메인 모델 예시]

👂 비즈니스 아키텍처 설계

- 2. 비즈니스 아키텍처 설계
 - 2) 비즈니스 아키텍처 설계의 포함 요소
 - (4) 전체 아키텍처

전체 아키텍처

• 구현하고자 하는 기능과 서비스를 구현하는 개체들을 어떻게 SW로 구현할 지에 대한 전체적인 시스템 구성을 기술한 것

① 목적

- 개발원에게 대략적인 개요를 설명 할 수 있으며 무엇을 개발하는지 알려줄 수 있음
- ② 예시: 개인클라우드 스토리지 서비스의 전체 아키텍처

비즈니스 아키텍처 설계

- 2. 비즈니스 아키텍처 설계
 - 2) 비즈니스 아키텍처 설계의 포함 요소
 - (5) 비즈니스 로드맵

비즈니스 로드맵

- SW나 서비스에 대한 장기적인 일정을 서술함
- 출시 일정, 출시 국가, 주요 기능들을 기술한 계획표로 넓은 범위의 일정표
- ① 개발 일정 지연 등으로 손실을 유발할 수 있으므로 비즈니스 로드맵은 비즈니스 조직에서 정의
- ② 개발, 마케팅, 광고, 물류 등 다른 비즈니스 조직과 공유해서 로드맵에 제시된 일정을 준수할 수 있도록 관리

[Figure 5 블로그 시스템 비즈니스 로드맵]

🥦 비즈니스 아키텍처 설계

2. 비즈니스 아키텍처 설계

- 2) 비즈니스 아키텍처 설계의 포함 요소
 - (6) 시장 현황 분석 (선택사항)
 - ① 주요 내용
 - 현재 진입하고자 하는 시장의 대상고객, 시장 현황, 그리고 경쟁사에 대한 분석 내용 기술시장 차별화 전략을 고려하게 하고 서비스 트렌드를 반영하는데 도움을 줄 수 있음
 - 가트너와 같은 시장분석을 수행하는 업체의 리포트를 참고하거나 해당 비즈니스의 선두 업체들을 분석

② 정리

- 비즈니스 아키텍처는 프로젝트 계획서, 제품정의서, 시장조사서 등의 내용을 요약 정리한 내용
- 개발 관련 인원이 비즈니스에 대한 현황을 이해하고, 비즈니스 방향과 맞는 서비스 소프트웨어를 개발하도록 하는데 사용됨

- 3. 시스템 아키텍처 설계
 - 1) 시스템 아키텍처 설계의 개요
 - (1) 정의

시스템 아키텍처

- 실제 개발하고자 하는 목표에 대한 기술적 요구사항을 서술한 아키텍처
- ① 비즈니스 모델(비즈니스 아키텍처)을 정의하고 기본 설계 원칙이 정해졌다면 시스템 아키텍처 설계에 들어감
- ② 시스템 아키텍처는 비즈니스 아키텍처를 기반으로 아키텍처 디자인 패턴이나 레퍼런스 아키텍처를 참고해서 설계

(2) 개요

① 아키텍처 설계 프레임 워크

[아키텍처 설계 프레임 워크]

3. 시스템 아키텍처 설계

- 1) 시스템 아키텍처 설계의 개요
- (3) 기본 설계 원칙 및 설계 요소
 - ① 기본 설계 원칙
 - 비즈니스의 요구사항에 의해 개발할 시스템에 적용할 7~15개 정도의 설계 원칙 설정
 - 아키텍처 변경 시 판단의 기준으로 사용 : 요구사항변경, 기술적인 난이도, 조직숙련도 등

예) 개인 스토리지 서비스 아키텍처 설계 워칙

퍼블릭 클라우드에 종속성이 없으며, 기업 내 배포할 수 있어야 한다.

글로벌 서비스를 충족해야 한다.

모바일, PC 등 멀티 디바이스를 지원해야 한다.

② 설계요소

애플리케이션 아키텍처

실제 개발하고자 하는 애플리케이션의 구조

테크니컬 아키텍처

개발한 애플리케이션을 배포할 솔루션 및 하드웨어에 대한 구조

데이터 아키텍처

시스템에서 저장하고 다루는 정보에 대한 정의와 관리 구조

- 3. 시스템 아키텍처 설계
 - 2) 시스템 아키텍처 설계 애플리케이션 아키텍처
 - (1) 정의 및 구성

애플리케이션 아키텍처

- 직접 개발하는 애플리케이션 소프트웨어의 구조
- → 개발해야 할 애플리케이션간의 데이터 흐름, 관계를 명확하게 하기 위해 기술함
- ① 구성
 - 컴포넌트
 - 컴포넌트의 상호관계
 - 특정기능 수행을 위한 컴포넌트 호출 순서
 - 컴퍼넌트 간의 인터페이스에 대한 패턴과 프로토콜

[애플리케이션 아키텍처 구성요소]

3. 시스템 아키텍처 설계

- 2) 시스템 아키텍처 설계 애플리케이션 아키텍처
 - (2) 애플리케이션의 구분
 - ① 구분
 - 정적 아키텍처 : 컴포넌트의 구성 , 컴포넌트 상호관계
 - 동적 아키텍처 : 특정 기능에 대해 컴포넌트 간의 호출 흐름
 - 인터페이스: 컴포넌트간 통신규격

(3) 정적 아키텍처 설계

① 정의

정적 아키텍처

- 각 컴포넌트들을 계층별로 표현하고, 컴포넌트의 기능을 간략하게 설명
- •레벨 0 ~ 3까지 기술하고, 레벨이 올라갈수록 상세 설계가 됨
- ② 일반적인 웹 서비스를 위한 아키텍처의 레벨 0 컴포넌트
 - User Interface: 웹, 모바일 등의 사용자 인터페이스 계층
 - Access Layer : 비즈니스 로직을 Open API를 이용하여 외부로 서비스 하는 계층 외부 시스템과 인터페이스 제공
 - Business Component Layer : 비즈니스 로직을 구현하는 계층
 - Storage Layer : 데이터를 저장하는 계층
 - OSS(Operations Support Systems) : 운영 모니터링 관리를 위한 계층
 - BSS(Business Support Systems): 비즈니스를 위한 지표분석 리포팅 서비스
 - Component Level 0

3. 시스템 아키텍처 설계

- 2) 시스템 아키텍처 설계 애플리케이션 아키텍처
 - (3) 정적 아키텍처 설계
 - ③ 특징
 - 레벨 0이 정해졌으면 각 블록을 상세화하여 1,2,3 단계로 정의해 나감 (Top-down 접근)

Level 0. Component Diagram

• 레벨 1

Level 1. Component Diagram

- 3. 시스템 아키텍처 설계
 - 2) 시스템 아키텍처 설계 애플리케이션 아키텍처
 - (3) 정적 아키텍처 설계
 - ③ 특징
 - 레벨 2

Level 2. Component Diagram

- 3. 시스템 아키텍처 설계
 - 2) 시스템 아키텍처 설계 애플리케이션 아키텍처
 - (3) 정적 아키텍처 설계
 - ④ 컴포넌트 간의 관계 표현
 - 컴포넌트 구성을 정의했으면 각 컴포넌트들을 호출관계 도식화 함 예) 아마존 웹 서비스의 컴포넌트 간 관계

- 3. 시스템 아키텍처 설계
 - 2) 시스템 아키텍처 설계 애플리케이션 아키텍처
 - (4) 동적 아키텍처

동적 아키텍처

• 각 시나리오를 처리하기 위한 흐름을 기술한 문서

- ① 예시
 - 첨부파일을 업로드 하는 시나리오

클라이언트가 HTTP방식으로 파일에 대한 파일 메타 정보와 함께 파일 업로드

Reverse Proxy를 통해서 request를 뒤에 연결되어 있는 웹 애플리케이션 서버(WAS)로 전달

WAS로 업로드 된 파일의 처리를 위해 임시 저장소로 보냄

3. 시스템 아키텍처 설계

2) 시스템 아키텍처 설계 - 애플리케이션 아키텍처

(4) 동적 아키텍처

- ② 정적 및 동적 아키텍처
 - 정적 아키텍처와 동적 아키텍처를 통해 전체 시스템에 대한 대략적인 설명 가능
 - 정적 및 동적 아키텍처 설계를 통해 도출된 각 컴포넌트와 컴포넌트간의 작업 흐름을 개발팀에서 상세히 설계하는 상세 아키텍처 설계를 수행하고 실제 구현과 테스트 진행

(5) 인터페이스

- ① 정의
 - 각 컴포넌트가 통신하는 방법
 - Protocol, Message Format, Message Exchange Pattern 3가지 항목으로 구성

② 특징

- Protocol : 인터넷 또는 다수의 컴퓨터 상에서의 데이터 전송 규약 (REST, SOAP)
- Message Format : 프로토콜에 실려서 전송되는 메시지에 대한 포맷으로 요청(request), 응답(response) 양쪽을 정의
- Message Exchange Pattern : 메시지를 주고 받는 방법에 대한 정의로 동기식 방식과 비 동기식 방식이 있고, 메시지를 전송하는 다양한 패턴들 존재

- 3. 시스템 아키텍처 설계
 - 3) 시스템 아키텍처 설계 테크니컬 아키텍처
 - (1) 정의, 목적 및 구성요소

테크니컬 아키텍처

- 애플리케이션을 배포할 솔루션과 하드웨어에 대한 구조를 기술한 아키텍처
- 애플리케이션에서 하드웨어까지 연관구조 정의
- ① 목적
 - 구현 할 애플리케이션이 동작되는 하드웨어와 미들웨어 등의 특성을 기술하고 관리하기 위해 기술
- ② 구성요소
 - 하드웨어 배포 아키텍처
 - 솔루션 배포 아키텍처
- (2) 하드웨어 배포 아키텍처

하드웨어 배포 아키텍처

- 하드웨어를 구성하는 각 컴포넌트, 서버 랙, 서버, 네트워크장비 스토리지에 대한 디자인 정의
- ① 구성요소
 - 서버 디자인 아키텍처
 - 네트워크 디자인 아키텍처
 - 스토리지 디자인 아키텍처
 - 랙 디자인 아키텍처

- 3. 시스템 아키텍처 설계
 - 3) 시스템 아키텍처 설계 테크니컬 아키텍처
 - (3) 솔루션 배포 아키텍처

솔루션 배포 아키텍처

- 애플리케이션이 작동하기 위한 데이터 베이스, 미들웨어 등의 구성과 배포 구조를 정의한 아키텍처
- 고가용성 지원 등의 기능을 요구하는 솔루션 배포 아키텍처는 하드웨어 배포 아키텍처에 영향을 줄 수 있음
- 4) 시스템 아키텍처 설계 데이터 아키텍처
- (1) 정의 및 구성요소

데이터 아키텍처

- 시스템에서 저장하고 다루는 정보에 대한 정의와 관리구조에 대한 아키텍처
- ① 구성요소
 - 데이터 모델링
 - 데이터 저장소
 - 데이터 관리프로세스
- (2) 데이터 모델링

데이터 모델링

- 데이터 모델링(데이터 아키텍처)은 시스템에서 다루는 정보를 구성하는 개체와 그 개체들 간의 관계에 대한 정의
- DB에서 사용하는 ERD와 비슷한 개념

3. 시스템 아키텍처 설계

4) 시스템 아키텍처 설계 - 데이터 아키텍처

(2) 데이터 모델링

- ① 진행 순서
 - 개념 모델링, 논리 모델링, 상세 모델링 순서로 진행

개념 모델링

- 시스템을 이루는 정보를 표현하는 개체와 개체간의 관계
- 속성(Attribute)나
 키(key)는 정의하지 않음

<u>논</u>리 모델링

 개념 모델링후에 각 개체에 속성과 기본키, 외래키 정의

상세 모델링

- 논리 모델을 물리적인 테이블로 설계
- 데이터 아키텍처 설계 시 논리 모델링까지 수행하고 상세 설계를 할 때 상세 모델링을 함

② 예시

TABLE: USER

column	data type	Index
id	VARCHER(255)	PK
name	VARCHER(255)	
email	VARCHER (255)	

[블로그 시스템 데이터 상세 모델링]

- 3. 시스템 아키텍처 설계
 - 4) 시스템 아키텍처 설계 데이터 아키텍처
 - (3) 데이터 저장소

데이터 저장소

- RDBMS에 들어가는 데이터 이외에도 파일, 메타데이터 등 데이터 아키텍 처에서 정의되는 모든 형태의 데이터를 담아두는 장소
- ① 논리 모델에서 정의한 개체들을 각 저장소의 타입에 맞게 배치하고, 각 저장소 특성에 맞게 상세 설계 단계에서 구현 모델을 설계함
- ② 데이터의 종류와 각 속성이 정의되고 저장소가 결정되면 각 데이터를 사용하는 애플리케이션 컴포넌트와의 관계 정의

각 데이터 개체는 단일 애플리케이션이 다루도록 설계하는 것이 바람직함

같은 데이터 개체를 여러 애플리케이션이 동시에 업데이트 할 때 일관성을 유지하여야 함

하나의 기능을 구현할 때 데이터는 같은 저장소에 있는 것이 유리함

③ 예시

[구현 모델을 데이터 저장소별로 분리한 예시]

- 3. 시스템 아키텍처 설계
 - 4) 시스템 아키텍처 설계 데이터 아키텍처
 - (4) 데이터 관리 프로세스

데이터 관리 저장소

- 사용할 데이터에 대한 관리 정책에 대한 아키텍처
- ① 구성요소

Security

• 데이터에 대한 암호화, 접근을 위한 인증에 대한 정의

Life Cycle

- 데이터의 생성부터 폐기까지의 주기에 대한 정의
- 데이터 백업 정책 정의

Sharing & Integration

• 시스템 간의 데이터 공유나 통합을 위해서 데이터 전송을 위한 아키텍처 정의

Analysis & Reporting

 축적된 데이터를 기반으로 분석과 리포팅 서비스를 제공할 수 있는 아키텍처 정의

[구현 모델을 데이터 저장소별로 분리한 예시]

- 4. 아키텍처 결정 프로세스와 아키텍트의 역할과 종류
 - 1) 아키텍처 결정 프로세스의 개요

(1) 개요

- 설계과정에서 아키텍처를 변경하는 것은 일정, 비용 등에 영향을 줄 수 있음
- 아키텍처 변경 과정에서의 조직의 기술 또는 전략에 따라 선택을 할 수 있음

아키텍처 결정 프로세스

- 아키텍처 옵션에 대한 의사결정을 하는 프로세스
- 아키텍처의 단독적인 결정이 아닌 위원회를 통하여 아키텍처 의사결정 진행

• 아키텍처 결정 프로세스를 사용함으로써 잘못된 선택의 위험성을 줄이고 위험에 대한 대책을 마련하기 위함

- NEW : 변경의 필요성이 있음을 파악하고 변경 방법과 AD템플릿에 포맷에 맞게 작성
- ASSIGNED : 해당 AD 검토
- ESCALATED : 해당 AD가 개발이나 비즈니스에 영향이 클 경우 아키텍처 위원회로 이관
- RESOLVED : 해당 AD에 대해서 결정사항을 통보
- CLOSED : AD 종료

4. 아키텍처 결정 프로세스와 아키텍트의 역할과 종류

2) AD 템플릿

(1) AD 템플릿 특징 및 항목

- ① AD 템플릿 특징
 - AD 프로세스 의사 결정에 필요한 기본 자료로 활용되는 자료
 - 각 옵션별 아키텍처에 대한 설명이 들어가야 함
 - 옵션별 장·단점, 의사 결정 결과 등에 대한 설명이 들어가야 함
 - 기술인력 이외의 사람들도 이해 가능한 수준으로 작성해야 함
- ② AD 템플릿 항목
 - Description & Motivation(설명과 동기) : 해당 문제에 대한 간략한 정의와 의사 결정이 필요한 이유
 - Assumption(가정사항)
 - Consideration(고려사항)
 - Options(옵션) : 문제 해결을 위한 옵션에 대한 설명
 - Pros & Cons(장·단점) : 옵션별 장단점 기술
 - Decision(결정사항) : 어느 옵션을 선택했는지 명시
 - Implication(영향) : 의사 결정이 미치는 영향(기술 및 비즈 측면에서 다양한 영향 기술 : 일정, 솔루션 추가 구매 등)

4. 아키텍처 결정 프로세스와 아키텍트의 역할과 종류

2) AD 템플릿

(1) AD 템플릿 특징 및 항목

ADI. Architecture Decision Item Title

4. 아키텍처 결정 프로세스와 아키텍트의 역할과 종류

- 3) 아키텍트의 역할과 종류
 - (1) 아키텍트 역할
 - ① 정의

아키텍트

- 아키텍처를 설계하는 사람
- 비즈니스 요구 사항을 기술적인 요구 사항으로 변경하여 정의하고 이를
 바탕으로 전체적인 시스템을 정의하는 비즈니스와 기술 조직 간의 소통자 역할

(2) 아키텍트 설계 시 고려해야 할 사항

- ① 비즈니스
 - 비즈니스가 추구하는 가치에 맞게 아키텍처 설계
 - 예) 빠른 시장 출시 목적 → 아키텍처의 복잡도를 낮추고 빠르게 구현하기 위한 아키텍처 설계
 - 예) 고객의 반응에 따라서 빠르게 기능을 추가하고 업데이트를 해야 하는 것이 목적 → 배포와 업데이트에 유리한 아키텍처 설계
 - 예) 은행 → 트랜잭션에 대한 무결성과 장애에 대비한 설계

② 자원

- 개발에 투여하는 인적, 물적 자원의 수준으로 팀의 역량 범위 내에서 실현 가능한 아키텍처 설계
- •예) 넉넉한 비용→ 신기술, 상용서비스, 컨설팅을 활용 높은 수준의 설계
- 예) 구현에 투여할 시간 부족 → 빠르게 핵심 기능을 구현하고 점진적으로 진화시키는 구조로 설계

③ 기술

- 비즈니스와 자원의 한정성을 고려한 후 두 조건을 충족시킬 수 있는 기술 선택
- 팀이 수용할 수 있는 범위의 기술로써, 해당 기술을 습득하는데 걸리는 시간과 비용, 추후 유지보수에 들어가는 비용과 라이선스 정책 등을 검토하여 적절한 기술 선택

4. 아키텍처 결정 프로세스와 아키텍트의 역할과 종류

3) 아키텍트의 역할과 종류

(2) 아키텍트의 종류

① 종류

- 다루는 기술과 설계 범위에 따라서 구분
- Enterprise Architecture (EA) : 비즈니스 아키텍처를 포함한 전체 아키텍처 설계 (비즈니스와 기술사이의 전략수립)
- Application Architecture (AA) : 애플리케이션에 대한 표준 가이드 정리 및 아키텍처 설계
- Solution Architecture (SA): 소프트웨어 솔루션 구성 설계
- Technical Architecture (TA): 시스템 하드웨어와 네트워크 아키텍처 설계
- Data Architecture (DA) : 데이터 아키텍처 설계
- Global Architecture (GA) : EA를 보조하고 AA, SA, TA, DA를 관할해서 기술위주의 설계에 집중하는 역할

[아키텍처 모델에 대응되는 아키텍트의 종류]

핵심정리

1. 아키텍처의 기본 개념

- 아키텍처의 정의
 - 비즈니스 요구사항을 만족하는 시스템을 구축하기 위해서 전체 시스템에 대한 구조를 정의한 문서로 시스템을 구성하는 컴포넌트와 그 컴포넌트간의 관계, 컴포넌트가 다루는 정보(데이터)
- 비즈니스 아키텍처
 - 기술적 관점이 아닌 소프트웨어 기능, 시장상황, 로드맵 등 비즈니스 관점에서 소프트웨어
- 시스템 아키텍처
 - 실제 개발하고자 하는 목표에 대한 기술적 요구사항을 서술한 아키텍처

2. 비즈니스 아키텍처 설계

- 비즈니스 아키텍처란 아래 요소들을 포함하여 "왜? 무엇을? 언제? 어떻게? 만들것인가?"를 서술함
 - 전체 서비스에 대한 요약
 - 시장 현황과 타 서비스와의 차별화 요소 (선택)
 - 주요 기능
 - 도메인 모델
 - 전체적인 시스템 구성
 - 전체적인 로드맵과 일정

핵심정리

3. 시스템 아키텍처 설계

- 시스템 아키텍처
 - 실제 개발하고자 하는 목표에 대한 기술적 요구사항을 서술한 아키텍처
 - 비즈니스 모델(비즈니스 아키텍처)을 정의하고 기본 설계 원칙이 정해졌다면 시스템 아키텍처 설계에 들어감
 - 시스템 아키텍처는 비즈니스 아키텍처를 기반으로 아키텍처 디자인 패턴이나 레퍼런스 아키텍처를 참고해서 설계
- 애플리케이션 아키텍처
 - 직접 개발하는 애플리케이션 소프트웨어의 구조
- 테크니컬 아키텍처
 - 애플리케이션을 배포할 솔루션과 하드웨어에 대한 구조를 기술한 아키텍처
- 데이터 아키텍처
 - 시스템에서 저장하고 다루는 정보에 대한 정의와 관리구조에 대한 아키텍처

4. 아키텍처 결정 프로세스와 아키텍트 역할과 종류

- 아키텍트
 - 아키텍처를 설계하는 사람을 지칭
 - 비즈니스 요구 사항을 기술적인 요구 사항으로 변경하여 정의하고 이를 바탕으로 전체적인 시스템을 정의하는 비즈니스와 기술 조직 간의 소통자 역할