Music analysis and deep learning

Brian McFee 2016.04.05

Plan for today

- 1. What do we want to do with music?
- 2. How does music differ from other domains?
- 3. Overview of traditional analysis pipelines
- 4. Deepification
- 5. Example applications
- 6. Tips, tricks, and resources

What can we do with (or to) music?

Why analyze music with computers?

- Recommender systems (Spotify, Pandora, etc.)
- Musicology / discography / archival applications
- Educational tools
- Visualization / interactivity
- Creative applications

What do we mean by music?

• Score / symbolic representation

Applications of music analysis: corpus level

Recommendation / similarity

Fingerprinting / duplicate detection

Cover / composition identification

Applications of music analysis: track level

Auto-tagging / search and retrieval

Applications of music analysis: time-varying

- Instrument detection
- Chord recognition
- Beat / meter tracking
- Structural segmentation
- Transcription

What's special about music?

Audio vs. Images

- 1D Input
 - o amplitude(time)

o downsampling/pooling does not preserve structures like in images

Models should support variable-length input

Interactions can be local or long-range

Music vs. Speech

- Sources overlap in time and frequency
- "Ground truth" usually doesn't exist
- Input is more varied
- Repetition is important

Traditional analysis pipelines

A standard pipeline, ca. 2011

Spectrograms

- Break sound apart into different frequencies
 - Fourier analysis

- Measure how energy changes over time
 - Short-time Fourier transform

Break audio into small, overlapping frames

frame[t] → frame[t] * window[t]

Note: neighboring frames differ mostly by shifts

Fourier transform

• **Complex**-valued coefficient for each frequency

$$X(f) = Ae^{j\varphi}$$

- \circ A = Magnitude (energy)
- \circ φ = Phase (shift)

- Usually we discard phase and analyze only the magnitude
 - Raw phase is non-linear, unstable wrt frame alignment
 - Complex math is hard :(
 - Energy carries a lot of information anyway

Perceptual model: frequency # 1905.1

FFT uses linearly-spaced frequencies

- Mel frequency scale is log-spaced above a threshold frequency
 - Tuned by psychoacoustic experiments

- Often used as dimensionality reduction
 - o Eq, 1025 FFT bins -> 128 Mel bins

Decent representation for timbre, not so great for pitch

Perceptual model: amplitude

- Perception of "loudness" is approximately logarithmic, not linear
- Convert |A| to $\log |A|^2$
- Linearizes energy ratio comparisons

What did all of this do?

- 1. Framing = local feature extraction + downsampling
- 2. FFT = linear change of basis
 - a. Magnitude spectrum = non-linearity
- 3. Mel-scaling = dimensionality reduction
- 4. Log amplitude = non-linearity
- **End result**: time-series of feature vectors

	Global output	Time-varying output (local)	Time-varying output (long-range)
Example	Tag prediction	Instrument activations	Chord recognition
Method	Summarize features over timeModel the summary vector	 Predict on local feature windows I.e., convolution with classifier 	 Hidden Markov Model or DP

Prediction time

Deepification

Going deep: option 1

- Stick a deep network on top of the existing feature stack
- Add time-convolution or recurrence to exploit temporal dependencies

Common architectures: convnets

- Whitening (or batch-norm) after log-scaling
- Full-height filters = time-convolution
- For global prediction tasks, temporal pooling is fine
- For time-varying tasks, time-pooling reduces output resolution
 - Dense layers should be avoided
- After first conv layer, looks like any other convnet

Some issues with that approach...

- It can only exploit time-shift invariance.
 - O What about pitch-invariance?
- Mel scaling is lossy dimensionality reduction.
 - Can we do better? Do we need it at all?

Do we even need FFTs? Why not just learn from raw audio?

That said, this approach is often effective!

Pitch invariant features

We want

Constant vertical shift = constant change in pitch

- This requires **log-spaced** frequencies
 - E.g., piano equal temperament scale:

$$f_{i+1} = 2^{1/12} f_i$$

- Fourier basis does not do this
- Mel only does this at the high end
 - Poor bass resolution

Constant-Q Transform

• **Log-scaled** frequency representation

- Slightly lossy (compared to FFT)
 - but still invertible

Works by using different-length windows for each frequency

Good representation for both pitch and timbre

What about learning from raw audio?

- People have tried
 - [Dieleman and Schrauwen, 2014]
 - o [Tsainath et al., 2015] (speech)
- It's possible, but not always worth it
 - May require many more filters to match performance
- FFT and CQT have nice properties that we understand
- Nobody complains about frequency decompositions for images...

Example applications

Example 1: Similarity / recommendation

- Input:
 - 30 sec of log-Mel spectra (128x600)
- Output:
 - Vector in \mathbb{R}^{40}
 - Collaborative filter embedding
- Application:
 - Track-level similarity / recommendation
- Dataset:
 - MSD, private Spotify data

http://benanne.github.io/2014/08/05/spotify-cnns.html

Example 2: Beat tracking

Input:

- Multi-resolution log Mel-spectra (20 bins * 3 resolution)
- Thresholded deviation from local median (rising energy detector)
- 120x*T* input data

Output:

- Time-series beat/not-beat
- BLSTM + peak-picking heuristic

Dataset:

- "Ballroom set" (88 tracks)
- MIREX2006 (26 + 6 tracks)
- JPB (6 tracks)

Example 3: Instrument identification

Input:

- 1sec CQT clip (216x44)
- o 36 bins per octave
- o 6 octaves (C2-C8)
- log-scaled

Output:

15 binary instrument labels

Dataset:

- MedleyDB
- + lots of data augmentation

Tips, tricks, resources

Software

- Librosa
 - Audio feature extraction in python
- Mir_eval
 - Standard metrics for music tasks
- Muda
 - Musical data augmentation
- JAMS
 - JSON annotated music specification

Data sets

Million Song Dataset

- Pre-computed features
- Tags*, Lyrics*, Collaborative filter, Cover songs, Similar songs, ...

MedleyDB

- Separated sources (stems) with audio
- Melody and instrument annotations

SALAMI

• Structure annotations, multiple annotators

ISOPhonics

• Chords, keys, beats, structure for Beatles + a few othres

General tips

Understand where your data comes from!

Think about what properties your model should exploit in the signal

Always do error analysis:

• when something doesn't work, find out why!

People have thought a lot about DSP -- use that knowledge!

Questions?

brian.mcfee@nyu.edu