Pretraining Transformers for Domain Adaptation

NeurIPS 2021

Burhan Ul Tayyab and Nicholas Chua

Problem Statement

Constrained Environment

Problem Statement

Constrained Environment

Unconstrained Environment

Current Solutions

Aligning the distributions of source and target domains by learning domain-invariant representations by either

- 1. Moment Alignment Methods (max mean discrepancy [1, 2], second-order correlation [3, 4] or other distance metrics calculated on task-specific representations)
- 2. Adversarial Learning Methods (ADDA [5], CyCADA [6], MCD [7], CDAN [8] and GVB [9])

References:

- 1. Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features with deep adaptation networks. In International conference on machine learning, pages 97–105, 2015.
- 2. Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint adaptation networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2208–2217. JMLR. org, 2017.
- 3. Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In European Conference on Computer Vision, pages 443–450. Springer, 2016
- 4. Junbao Zhuo, Shuhui Wang, Weigang Zhang, and Qingming Huang. Deep unsupervised convolutional domain adaptation. In Proceedings of the 25th ACM international conference on Multimedia, pages 261–269. ACM, 2017.
- 5. Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7167–7176, 2017.
- 6. Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei A Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International conference on machine learning, pages 1989–1998, 2018.
- 7. Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3723–3732, 2018.
- 8. Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial domain adaptation. In Advances in Neural Information Processing Systems, pages 1647–1657, 2018.
- 9. Shuhao Cui, Shuhui Wang, Junbao Zhuo, Chi Su, Qingming Huang, and Tian Qi. Gradually vanishing bridge for adversarial domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020

Inspiration

Pre-training

Original **Image**

 \mathcal{X}

Image Patches

224 x 224 (shape) 16 x 16 patches 14 x 14 (Each patch size)

$$oldsymbol{x} \in \mathbb{R}^{H imes W imes C}$$

$$\boldsymbol{x}^p \in \mathbb{R}^{N \times (P^2C)}$$
 $N = HW/P^2$

$$N = HW/P^2$$

denotes height

W denotes width

C denotes channels

P denotes resolution of each patch

Original Image

Image Patches

Blockwise Masking

$$\mathcal{M} \in \{1, \dots, N\}^{0.4N}$$

Pretraining

Algorithm 1 Blockwise Masking

```
Input: N(=h \times w) image patches

Output: Masked positions \mathcal{M}
\mathcal{M} \leftarrow \{\}

repeat
s \leftarrow \mathsf{Rand}(16, 0.4N - |\mathcal{M}|) \qquad \triangleright Block \ size
r \leftarrow \mathsf{Rand}(0.3, \frac{1}{0.3}) \qquad \triangleright Aspect \ ratio \ of \ block
a \leftarrow \sqrt{s \cdot r}; b \leftarrow \sqrt{s/r}
t \leftarrow \mathsf{Rand}(0, h - a); l \leftarrow \mathsf{Rand}(0, w - b)
\mathcal{M} \leftarrow \mathcal{M} \bigcup \{(i, j) : i \in [t, t + a), j \in [l, l + b)\}

until |\mathcal{M}| > 0.4N \qquad \triangleright Masking \ ratio \ is \ 40\%
return \mathcal{M}
```

Original Image

Image Patches

Blockwise Matching

Flatten

$$oldsymbol{E} \in \mathbb{R}^{(P^2C) imes D}$$

Original Image

Image Patches

14 x 14 visual tokens Vocabulary Size: 8192

References:

Original Image

Visual Tokens

 123
 456
 645
 446

 733
 842
 993
 742

 123
 563
 645
 473

 973
 456
 645
 793

Image Patches

BeIT Encoder (ViT-B)

Original Image

Visual Tokens

$oldsymbol{W}_c \in \mathbb{R}^{|\mathcal{V}| imes D} \;\; oldsymbol{b}_c \in \mathbb{R}^{|\mathcal{V}|}$

 $\operatorname{softmax}_{z'}(\boldsymbol{W}_{c}\boldsymbol{h}_{i}^{L}\!+\!\boldsymbol{b}_{c})$

1

Original Image

Visual Tokens

$$\max \sum_{x \in \mathcal{D}} \mathbb{E}_{\mathcal{M}} \left[\sum_{i \in \mathcal{M}} \log_{\operatorname{softmax}_{z'}(W_c h_i^L + b_c)}
ight]$$

Image Patches

Loss Function Training Objective

 \tilde{x}

 ${\mathcal X}$ Original Image

123 456 645 446 733 842 993 742 123 563 645 473 973 456 645 793

 ${\mathcal X}$ Original Image

$$\tilde{x}$$

$$\sum_{(x_i, \tilde{x}_i) \in \mathcal{D}} \log p(x_i | \tilde{x}_i) \ge \sum_{(x_i, \tilde{x}_i) \in \mathcal{D}} \left(\mathbb{E}_{z_i \sim q_{\phi}(\mathbf{z} | x_i)} [\log p_{\psi}(x_i | z_i)] - D_{\mathrm{KL}}[q_{\phi}(\mathbf{z} | x_i), p_{\theta}(\mathbf{z} | \tilde{x}_i)] \right)$$

 ${\mathcal X}$ Original Image

$$\tilde{x}$$

$$\sum_{(x_i, \tilde{x}_i) \in \mathcal{D}} \log p(x_i | \tilde{x}_i) \ge \sum_{(x_i, \tilde{x}_i) \in \mathcal{D}} \left(\mathbb{E}_{z_i \sim q_{\phi}(\mathbf{z} | x_i)} [\log p_{\psi}(x_i | z_i)] - D_{\mathrm{KL}} [q_{\phi}(\mathbf{z} | x_i), p_{\theta}(\mathbf{z} | \tilde{x}_i)] \right)$$

 \boldsymbol{x} Original Image

$$\tilde{x}$$

$$\sum_{(x_i, \tilde{x}_i) \in \mathcal{D}} \log p(x_i | \tilde{x}_i) \ge \sum_{(x_i, \tilde{x}_i) \in \mathcal{D}} \left(\mathbb{E}_{z_i \sim q_{\phi}(\mathbf{z} | x_i)} [\log p_{\psi}(x_i | z_i)] - D_{\mathrm{KL}} [q_{\phi}(\mathbf{z} | x_i), p_{\theta}(\mathbf{z} | \tilde{x}_i)] \right)$$

 ${\mathcal X}$ Original Image

$$\tilde{x}$$

$$\sum_{(x_i, \tilde{x}_i) \in \mathcal{D}} \left(\underbrace{\mathbb{E}_{z_i \sim q_\phi(z|x_i)} [\log p_\psi(x_i|z_i)]}_{\text{Stage 1: Visual Token Reconstruction}} \right. \\ \left. + \underbrace{\log p_\theta(\hat{z}_i|\tilde{x}_i)}_{\text{Stage 2: Masked Image Modeling}} \right)$$

Finetuning

Parameters

Augmentation	Color Jitter, Horizontal Flipping, and Random Resized Cropping
Dataset	ImageNet-1k
Batch Size	1000
Epochs (Pretraining)	500
Epochs (Fine-tuning)	500
Learning Rate	1.5e-3 with cosine learning decay
Optimizer	Adam with B1: 0.9 and B2: 0.999
Parameters	86M
Image Size	224 x 224 (Pretraining); 384 × 384(Last 100 Epochs Finetuning)
Architecture	ViT-Base (12 layer transformer, 768 hidden size, 12 attention heads)

Dataset

Dataset	Number of Images	Number of Classes	Note*
ImageNet(source)	1.4M	1000	
ObjectNet	50,000	313	Only 113 classes are the same as the source
ImageNet-R	30,000	200	Different tex- ture/style
ImageNet-C	1.4M	1000	Corrupted

Accuracy

Methods	Parameters	ACC
ImageNet-1K(pretraining)	86M	82.4%
ImageNet-1K(pretraining + fine-tuning)	86M	83.0%

Methods	ACC(Adapted	AUC(Adapted	ACC(Source	AUROC(Source
	Model)	Model)	model)	model)
Babychick(ours)	56.29	69.79	56.29	69.79
liaohaojin	48.56	70.72	41.25	64.48
chamorajg	48.49	76.86	0.07	50.00
DXM-DI-AI-CV-TEAM	48.60	68.29	25.70	62.43
fomenxiaoseng	45.23	78.76	40.22	60.43

Results

Image taken from:

Results

Future Works

- Multi-attribute domain adaptation (where source and target datasets have almost no correlation)
- Vision Reconstruction in Humans / Animals via fMRI data (partially achieved)
- Reaching OpenAl's CLIP moment for Object Detection

Thanks

Questions?