Math 600 Fall 2017 Homework #3

Due Oct. 9, Mon. in class

Note: For the Euclidean space \mathbb{R}^n , consider the usual metric induced by the Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^n , unless otherwise stated.

- 1. Let (x_n) be a Cauchy sequence in the metric space (M,d). Show that for any given $z \in M$, the real sequence $(d(x_n,z))$ converges.
- 2. Let (M,d) be the discrete metric space. A sequence (x_n) in (M,d) is said to have a constant tail if there exist $K \in \mathbb{N}$ and $c \in M$ such that $x_n = c, \forall n \geq K$. Prove the following:
 - (1) A sequence in (M, d) is convergent if and only if it has a constant tail;
 - (2) A Cauchy sequence in (M, d) has a constant tail;
 - (3) Show that (M, d) is complete using (1)-(2).
- 3. Let A be a nonempty set in the metric space (M,d). Show that A is sequentially compact if and only if any infinite subset of A (namely, a subset having infinitely many points) has a limit point that belongs to A.
- 4. Let (M,d) be a metric space such that M is sequentially compact. Show that (M,d) is complete.
- 5. (1) Use the sequential argument to show that the union of two sequentially compact sets in a metric space is sequentially compact.
 - (2) Use the open cover definition to show that the intersection of two compact sets in a metric space is compact. (*Hint*: note that the intersection of two compact sets is closed (why?).)

Miscellaneous practice problems: Do not submit

1. Let (x^k) be a sequence in \mathbb{R}^2 , where for each k,

$$x^k = (x_1^k, x_2^k),$$
 with $x_1^k = (-1)^k + 1/k,$ $x_2^k = \exp(\cos(k)).$

Show that (x^k) is divergent. Does (x^k) have a convergent subsequence? Explain why.

- 2. Determine which of the following sets is sequentially compact:
 - (1) On \mathbb{R} : $A_1 = \{2/n : n \in \mathbb{N}\}, A_2 = \mathbb{Q} \cap [0,1]$ (where \mathbb{Q} is the set of rational numbers);
 - (2) On \mathbb{R}^2 : $A_3 = \mathbb{Q} \times \mathbb{Q}$, $A_4 = \{(x_1, x_2) \in \mathbb{R}^2 : |x_1| + x_2^2 \le 4\}$.

If a set is *not* (sequentially) compact, briefly explain why; otherwise, give a proof.

- 3. Use the definition of compactness (i.e., the open cover definition) to show that the following sets are *not* compact, by exhibiting an open cover with no finite sub-cover:
 - (1) The open ball B(x, 1/2) centered at a fixed $x \in \mathbb{R}^n$ with the radius 1/2 in the Euclidean space \mathbb{R}^n ;
 - (2) The set $A = \{(x_1, x_2) \in \mathbb{R}^2 : 0 \le x_1 \le 1, x_2 \ge 0\}$ in \mathbb{R}^2 ;
 - (3) An infinite set in the metric space (M, d) with the discrete metric d.