Business Report

SMDM Project Business Report DSBA

Sanjay Srinivasan

PGP-DSBA Online

JULY' 21 Batch

Date: 19-12-2021

<u>INDEX</u>

S. No	Contents	Page No
1.	Problem - 1	5
	Summary	5
	Introduction	5
	Data Description	5
	Sample Dataset	5
	Exploratory Data Analysis	6
	Checking for missing values in the dataset	6
	1)Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, Data types, shape, EDA, duplicate values). Perform Univariate and Bivariate Analysis.	6
	2) Impute null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Check for the possibility of combining the sub levels of a ordinal variables and take actions accordingly. Explain why you are combining these sub levels with appropriate reasoning.	9
	3) Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from statsmodel. Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models and select the best one with appropriate reasoning.	11
	4) Inference: Basis on these predictions, what are the business insights and recommendations	15
2.	Problem - 2	16
	Summary	16
	Introduction	16
	Data Description	16
	Sample Dataset	16
	Exploratory Data Analysis	17
	Checking for missing values in the dataset	17
	1) Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis.	17
	2) Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).	22
	3) Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.	23
	4) Inference: Basis on these predictions, what are the insights and recommendations.	30

List Of Tables

S.No	Content							
1.1	Dataset sample	5						
1.2	Datatypes of the variable	6						
1.3	Check null values	6						
1.4	Null values in x,y,z variable	10						
1.5	After null values treatment	10						
1.6	After scaling	10						
1.7	Sample Encoded data	11						
1.8	sample Dataframe without the TARGET variable	11						
1.9	sample Dataframe with the TARGET variable	11						
2.1	Dataset Sample	16						
2.2	Datatypes of the variable	17						
2.3	Check null values	17						
2.4	Null values	17						
2.5	Sample Dataset after dropping Unnamed :0 column.	22						
2.6	Sample dataframe after Encoding	22						
2.7	Train dataframe	23						
2.8	Comparing Logistic Regression and Linear Discriminant Analysis results	29						

List Of Figures

S.No	Content Po						
1.1	diamond colour count	6					
1.2	Univariate Analysis	7					
1.3	Jointplot for price vs. carat using Bivariate Analysis	7					
1.4	Bivariate Analysis	8					
1.5	Multivariate analysis of pairplot	8					
1.6	Multivariate analysis for correlation	9					
1.7	Multivariate analysis of plotting correlation in heatmap	9					
1.8	Null values count	9					
1.9	Before Scaling	10					
1.10	After Scaling	11					
1.11	Coefficient of independent variable	12					
1.12	Intercept of our model	12					
1.13	R – Square Value for Training data	12					
1.14	R – Square Value for Testing data	12					
1.15	Mean squared error for training data	12					
1.16	Mean squared error for testing data	12					
1.17	Variance Inflation Factor of our model	12					
1.18	Coefficient of independent variable	13					
1.19	R – Square Value for Training and Testing data	13					
1.20	Intercept of our model	13					
1.21	Mean squared error for Training data	13					
1.22	Mean squared error for Testing data	13					
1.23	Coefficient of independent variable	13					
1.24	OLS Summary	14					
1.25	OLS Summary Mean squared error	14					
1.26	predicted Output vs. testing data	14					
1.27	predicted Output vs. testing data Linear equation	15					
2.1	Categorical value count	18					
2.2	Number of duplicate rows	18					
2.3	Univariate analysis	18					

2.4	Univariate analysis for Holiday package	19
2.5	Univariate analysis for Foreign	19
2.6	Bivariate analysis Salary vs. Educ	20
2.7	Bivariate analysis	20
2.8	Multivariate analysis of pairplot	21
2.9	Multivariate analysis heatmap	21
2.10	Before Treating Outlier	22
2.11	After Treating Outlier	22
2.12	Parameters for GridsearchCV in Logistic Regression	23
2.13	Best parameter for Logistic Regression	23
2.14	Best estimator for Logistic Regression	23
2.15	Predicted values from the train dataset of Logistic Regression model	24
2.16	confusion matrix from Train data of Logistic Regression	24
2.17	confusion matrix from test data of Logistic Regression	24
2.18	Classification Report from train data of Logistic Regression	24
2.19	Classification Report from test data of Logistic Regression	24
2.20	AUC and ROC curve train data of Logistic Regression	25
2.21	AUC and ROC curve test data of Logistic Regression	25
2.22	Predicted values from the train dataset of LDA	26
2.23	confusion matrix from Train data of LDA Model	26
2.24	confusion matrix from test data of LDA Model	26
2.25	Classification Report from train data of LDA Model	26
2.26	Classification Report from test data of LDA Model	26
2.27	AUC and ROC curve train and test data of LDA model	27
2.28	Accuracy,F1-Score and Confusion Matrix of LDA model at different cut off value	27 - 29

Problem - 1

Summary

The data is gathered from the company Gem Stones co ltd, which deals in distinguish between higher profitable stones and lower profitable stones to make better profitable stones. You are hired by a company Gem Stones co ltd, which is a cubic zirconia manufacturer. You are provided with the dataset containing the prices and other attributes of almost 27,000 cubic zirconia (which is an inexpensive diamond alternative with many of the same qualities as a diamond). The company is earning different profits on different prize slots. You have to help the company in predicting the price for the stone on the bases of the details given in the dataset so it can distinguish between higher profitable stones and lower profitable stones so as to have better profit share.

Introduction

The purpose of this exercise is to explore the dataset and make the price predictions for the diamonds, based on the higher and lower profitable stones.

Data Description

Carat	Carat weight of the cubic zirconia.
Cut	Describe the cut quality of the cubic zirconia. Quality is increasing order Fair, Good, Very Good, Premium, Ideal.
Color	Colour of the cubic zirconia. With D being the worst and J the best.
Clarity	Clarity refers to the absence of the Inclusions and Blemishes. (In order from Worst to Best in terms of avg price) IF, VVS1, VVS2, VS1, VS2, SI1, SI2, I1
Depth	The Height of cubic zirconia, measured from the Culet to the table, divided by its average Girdle Diameter.
Table	The Width of the cubic zirconia's Table expressed as a Percentage of its Average Diameter.
Price	The Price of the cubic zirconia.
Χ	Length of the cubic zirconia in mm.
Υ	Width of the cubic zirconia in mm.
Z	Height of the cubic zirconia in mm.

Sample of the dataset:

	Unnamed: 0	carat	cut	color	clarity	depth	table	x	у	Z	price
0	1	0.30	Ideal	Е	SI1	62.1	58.0	4.27	4.29	2.66	499
1	2	0.33	Premium	G	IF	60.8	58.0	4.42	4.46	2.70	984
2	3	0.90	Very Good	Е	VVS2	62.2	60.0	6.04	6.12	3.78	6289
3	4	0.42	Ideal	F	VS1	61.6	56.0	4.82	4.80	2.96	1082
4	5	0.31	Ideal	F	VVS1	60.4	59.0	4.35	4.43	2.65	779

Table 1.1 Dataset Sample

Exploratory Data Analysis

Let us check the types of variables in the data frame.

Unnamed: 0	int64
carat	float64
cut	object
color	object
clarity	object
depth	float64
table	float64
x	float64
у	float64
Z	float64
price	int64
dtype: object	

Table- 1.2. Datatypes of the variable

There are total 26967 rows and 11 columns in the dataset. 6 columns are of float64 type , 3 columns are object and 2 columns are int64

Check for missing values in the dataset:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26967 entries, 0 to 26966
Data columns (total 11 columns):
Unnamed: 0
              26967 non-null int64
              26967 non-null float64
cut
              26967 non-null object
color
             26967 non-null object
clarity
             26967 non-null object
depth
             26270 non-null float64
              26967 non-null float64
              26967 non-null float64
              26967 non-null float64
у
              26967 non-null float64
Z
              26967 non-null int64
price
dtypes: float64(6), int64(2), object(3)
memory usage: 2.3+ MB
```

Table- 1.3. Check null values

1.1. Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, Data types, shape, EDA, duplicate values). Perform Univariate and Bivariate Analysis.

Uni-Variate Analysis:

Fig - 1.1 diamond colour count

From the above chart (displot and boxplot), there are outliers present in the data.

Bi – variate Analysis:

Fig – 1.3 Jointplot for price vs. carat using Bivariate Analysis

Fig – 1.4 Bivariate Analysis

From the scatterplot, we can infer that as the 'price' and 'carat' increases, the 'carat', 'x' increases.

<u>Multi – variate Analysis:</u>

Fig – 1.5 Multivariate analysis of pairplot

	Unnamed: 0	carat	depth	table	X	у	Z	price
Unnamed: 0	1.000000	0.003490	-0.001588	0.003817	0.004626	0.006844	0.001681	0.002650
carat	0.003490	1.000000	0.035364	0.181685	0.976368	0.941071	0.940640	0.922416
depth	-0.001588	0.035364	1.000000	-0.298011	-0.018715	-0.024735	0.101624	-0.002569
table	0.003817	0.181685	-0.298011	1.000000	0.196206	0.182346	0.148944	0.126942
x	0.004626	0.976368	-0.018715	0.196206	1.000000	0.962715	0.956606	0.886247
у	0.006844	0.941071	-0.024735	0.182346	0.962715	1.000000	0.928923	0.856243
Z	0.001681	0.940640	0.101624	0.148944	0.956606	0.928923	1.000000	0.850536
price	0.002650	0.922416	-0.002569	0.126942	0.886247	0.856243	0.850536	1.000000

Fig – 1.6 Multivariate analysis for correlation

Fig – 1.7 Multivariate analysis of plotting correlation in heatmap

1.2 Impute null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Check for the possibility of combining the sub levels of a ordinal variables and take actions accordingly. Explain why you are combining these sub levels with appropriate reasoning.

Unnamed: 0	0
carat	0
cut	0
color	0
clarity	0
depth	697
table	0
x	0
y	0
Z	0
price	0
dtype: int64	

Fig – 1.8 Null values count

	Unnamed: 0	carat	cut	color	clarity	depth	table	X	у	Z	price
5821	5822	0.71	Good	F	SI2	64.1	60.0	0.00	0.00	0.0	2130
6034	6035	2.02	Premium	Н	VS2	62.7	53.0	8.02	7.95	0.0	18207
6215	6216	0.71	Good	F	SI2	64.1	60.0	0.00	0.00	0.0	2130
10827	10828	2.20	Premium	Н	SI1	61.2	59.0	8.42	8.37	0.0	17265
12498	12499	2.18	Premium	Н	SI2	59.4	61.0	8.49	8.45	0.0	12631
12689	12690	1.10	Premium	G	SI2	63.0	59.0	6.50	6.47	0.0	3696
17506	17507	1.14	Fair	G	VS1	57.5	67.0	0.00	0.00	0.0	6381
18194	18195	1.01	Premium	Н	11	58.1	59.0	6.66	6.60	0.0	3167
23758	23759	1.12	Premium	G	11	60.4	59.0	6.71	6.67	0.0	2383

Table – 1.4 Null values in x,y,z variable

Unnamed: 0	0
carat	0
cut	0
color	0
clarity	0
depth	0
table	0
X	0
y	0
Z	0
price	0
dtype: int64	

Table - 1.5 After null values treatment

Before Scaling and treating outliers:

Fig - 1.9 Before Scaling

After Scaling:

	Unnamed: 0	carat	depth	table	x	у	Z	price
0	-1.731904	-1.043125	0.253399	0.244112	-1.295920	-1.240065	-1.224865	-0.854851
1	-1.731776	-0.980310	-0.679158	0.244112	-1.162787	-1.094057	-1.169142	-0.734303
2	-1.731647	0.213173	0.325134	1.140496	0.275049	0.331668	0.335404	0.584271
3	-1.731519	-0.791865	-0.105277	-0.652273	-0.807766	-0.802041	-0.806936	-0.709945
4	-1.731390	-1.022187	-0.966099	0.692304	-1.224916	-1.119823	-1.238796	-0.785257

Table - 1.6 After scaling

Fig - 1.10 After Scaling

Yes, Scaling needs to be done as the values of the variables are different. price, carat, x, y, z, depth, table are in different values and this may get more weightage. The plot of the data prior and after scaling. Scaling will have all the values in the relative same range. I have used z-score to standardised the data to relative same scale -3 to +3

1.3 Encode the data (having string values) for Modelling. Data Split: Split the data into test and train (70:30). Apply Linear regression. Performance Metrics: Check the performance of Predictions on Train and Test sets using Rsquare, RMSE

Encoding the data:

carat	depth	table	x	у	Z	price	cut_Good	cut_ldeal	 color_H	color_l	color_J	clarity_IF	clarity_SI1	clarity_\$12	2 (
-1.043125	0.253399	0.244112	-1.295920	-1.240065	-1.224865	-0.854851	0	1	 0	0	0	0	1	C	D
-0.980310	-0.679158	0.244112	-1.162787	-1.094057	-1.169142	-0.734303	0	0	 0	0	0	1	0	0	D
0.213173	0.325134	1.140496	0.275049	0.331668	0.335404	0.584271	0	0	 0	0	0	0	0	C	D
-0.791865	-0.105277	-0.652273	-0.807766	-0.802041	-0.806936	-0.709945	0	1	 0	0	0	0	0	0	D
-1.022187	-0.966099	0.692304	-1.224916	-1.119823	-1.238796	-0.785257	0	1	 0	0	0	0	0	(D

Table - 1.7 Sample Encoded data

From the above dataframe, we can infer that the data are encoded using get dummies encoding method.

Dataframe after separating the Target variable:

	carat	depth	table	x	у	z	cut_Good	cut_ldeal	cut_Premium	cut_Very Good	 color_H	color_l	color_J	clarity_IF	cla
0	-1.043125	0.253399	0.244112	-1.295920	-1.240065	-1.224865	0	1	0	0	 0	0	0	0	
1	-0.980310	-0.679158	0.244112	-1.162787	-1.094057	-1.169142	0	0	1	0	 0	0	0	1	
2	0.213173	0.325134	1.140496	0.275049	0.331668	0.335404	0	0	0	1	 0	0	0	0	
3	-0.791865	-0.105277	-0.652273	-0.807766	-0.802041	-0.806936	0	1	0	0	 0	0	0	0	
4	-1.022187	-0.966099	0.692304	-1.224916	-1.119823	-1.238796	0	1	0	0	 0	0	0	0	

Table - 1.8 sample Dataframe without the TARGET variable

	price
0	-0.854851
1	-0.734303
2	0.584271
3	-0.709945
4	-0.785257

Table – 1.9 sample Dataframe with the TARGET variable

LINEAR REGRESSION:

```
The coefficient for carat is 1.081627832522888
The coefficient for depth is 0.012467768513946348
The coefficient for table is -0.010375104168364378
The coefficient for x is -0.28583158930894487
The coefficient for y is 0.3338652177635207
The coefficient for z is -0.17104194176343152
The coefficient for cut_Good is 0.08632175838808641
The coefficient for cut_Ideal is 0.14741709168972442
The coefficient for cut Premium is 0.13708966355071203
The coefficient for cut Very Good is 0.11958512818375423
The coefficient for color E is -0.056527359921143654
The coefficient for color F is -0.0696128596080928
The coefficient for color G is -0.11639282676700596
The coefficient for color H is -0.21601184437275148
The coefficient for color I is -0.33268780880422083
The coefficient for color J is -0.47964981363888193
The coefficient for clarity_IF is 1.014064310227127
The coefficient for clarity_SI1 is 0.6466590629622312
The coefficient for clarity_SI2 is 0.43938535770675996
The coefficient for clarity_VS1 is 0.8505783926251638
The coefficient for clarity_VS2 is 0.7780939346329789
The coefficient for clarity_VVS1 is 0.9446069412003394
The coefficient for clarity_VVS2 is 0.9476542157836995
```

Fig - 1.11 Coefficient of independent variable

The intercept for our model is -0.7523485007042121

Fig - 1.12 Intercept of our model

R square value for training data 0.9404067032706919

Fig - 1.13 R - Square Value for Training data

R square value for testing data 0.9416664173652372

Fig - 1.14 R - Square Value for Testing data

Mean squared error for the training data is 0.20982119520296377

Fig - 1.15 Mean squared error for training data

Mean squared error for the testing data is 0.2098640889031238

Fig – 1.16 Mean squared error for Testing data

```
carat ---> 33.35086119845924
depth ---> 4.573918951598584
table ---> 1.772885281261897
x ---> 463.5542785436457
y ---> 462.769821646584
z ---> 238.65819968687333
cut_Good ---> 3.609618194943713
cut_Ideal ---> 14.34812508118844
cut_Premium ---> 8.623414379121153
cut_Very Good ---> 7.848451571723695
color_E ---> 2.371070464762613
```

Fig - 1.17 Variance Inflation Factor of our model

RIDGE REGRESSION:

```
The coefficient for the Ridge model: [[ 1.08097395  0.01236059 -0.01041468 -0.28263441  0.33056432 -0.17055804  0.08692936  0.14804495  0.13757653  0.1203011 -0.05636345 -0.06942944  -0.11614727 -0.21578484 -0.33237215 -0.47917899  1.00672437  0.63986318  0.43266118  0.84368165  0.7712573  0.93753083  0.9406768 ]]
```

Fig – 1.18 Coefficient of independent variable

R square value for training data 0.9404058025987212 R square value for testing data 0.9416568212139137

Fig – 1.19 R – Square Value for Training and Testing data

The intercept for our model is [-0.7463866]

Fig – 1.20 Intercept of our model

Mean squared error for the training data is 0.2098227807785714

Fig - 1.21 Mean squared error for Training data

Mean squared error for the testing data is 0.20988135001282085

Fig – 1.22 Mean squared error for Testing data

ORDINARY LEAST SQUARE METHOD:

The Coefficient are

Intercept	-0.781720
carat	1.086958
depth	0.008694
table	-0.011344
X	-0.303284
y	0.318809
Z	-0.142880
cut_Good	0.097282
cut_Ideal	0.156601
cut_Premium	0.151019
cut_Very_Good	0.129184
color_E	-0.049548
color_F	-0.063134
color_G	-0.104572
color_H	-0.210754
color_I	-0.328478
color_J	-0.472208
clarity_IF	1.016587
clarity_SI1	0.658588
clarity_SI2	0.454275
clarity_VS1	0.861128
clarity_VS2	0.789454
clarity_VVS1	0.966044
clarity_VVS2	0.960458
dtype: float64	

Fig – 1.23 Coefficient of independent variable

OLS Regression Results

===========			========			
Dep. Variable:			R-square			0.941
Model:		OLS	Adj. R-s			0.941
Method:	L	east Squares	_	•	1	.862e+04
Date:		18 Dec 2021			_	0.00
Time:	,		Log-Like			3852.4
No. Observations		26958	AIC:			-7657.
Df Residuals:		26934	BIC:			-7460.
Df Model:		23				
Covariance Type:		nonrobust				
=======================================						
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.7817	0.014	-57.768	0.000	-0.808	-0.755
carat	1.0870	0.008	142.536	0.000	1.072	1.102
depth	0.0087	0.003	2.780	0.005	0.003	0.015
table	-0.0113	0.002	-6.383	0.000	-0.015	-0.008
X	-0.3033	0.028	-10.961	0.000	-0.358	-0.249
у	0.3188	0.029	10.986	0.000	0.262	0.376
Z	-0.1429	0.020	-6.980	0.000	-0.183	-0.103
cut_Good	0.0973	0.009	10.785	0.000	0.080	0.115
cut_Ideal	0.1566	0.009	17.821	0.000	0.139	0.174
cut_Premium	0.1510	0.008	17.909	0.000	0.134	0.168
cut_Very_Good	0.1292	0.009	14.981	0.000	0.112	0.146
color_E	-0.0495	0.005	-10.511	0.000	-0.059	-0.040
color_F	-0.0631	0.005	-13.219	0.000	-0.072	-0.054
color_G	-0.1046	0.005	-22.417	0.000	-0.114	-0.095
color_H	-0.2108	0.005	-42.348	0.000	-0.221	-0.201
color_I	-0.3285	0.006	-59.270	0.000	-0.339	-0.318
color_J	-0.4722	0.007	-69.454	0.000	-0.486	-0.459
clarity_IF	1.0166	0.013	75.358	0.000	0.990	1.043
clarity_SI1	0.6586	0.012	57.163	0.000	0.636	0.681
clarity_SI2	0.4543	0.012	39.232	0.000	0.432	0.477
clarity_VS1	0.8611	0.012	73.230	0.000	0.838	0.884
clarity_VS2	0.7895	0.012	68.162	0.000	0.767	0.812
clarity_VVS1	0.9660	0.012	77.536	0.000	0.942	0.990
clarity_VVS2	0.9605	0.012	79.250	0.000	0.937	0.984
Omnibus:		6631.652	Durbin-W			2.006
Prob(Omnibus):		0.000		era (JB):	2	5175.638
Skew:		1.191	Prob(JB)			0.00
Kurtosis:		7.091	Cond. No			58.0
=======================================						

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Fig – 1.24 OLS Summary

Mean squared error for the testing data is 0.20986408890312383

Fig – 1.25 OLS Summary Mean squared error

Fig – 1.26 predicted Output vs. testing data

```
price =
  (-0.78) * Intercept + (1.09) * carat + (0.01) * depth + (-0.01) * table + (-0.3) * x + (0.32) * y + (-0.14) * z + (0.1)
* cut_Good + (0.16) * cut_Ideal + (0.15) * cut_Premium + (0.13) * cut_Very_Good + (-0.05) * color_E + (-0.06) * color_F +
  (-0.1) * color_G + (-0.21) * color_H + (-0.33) * color_I + (-0.47) * color_J + (1.02) * clarity_IF + (0.66) * clarity_SI1
+ (0.45) * clarity_SI2 + (0.86) * clarity_VS1 + (0.79) * clarity_VS2 + (0.97) * clarity_WS1 + (0.96) * clarity_VVS2 +
```

Fig – 1.27 predicted Output vs. testing data Linear equation

1.4 Inference: Basis on these predictions, what are the business insights and recommendations.

Based on the R2(R squared) value, The company making out the better profitable share by distinguishing the higher profitable stones and lower profitable stones so that the company can increase the price for higher and lower profitable stones to make higher profits.

The best 5 attributes that are most important from the coefficients are carat, clarity_IF, clarity_VVS2, clarity_VVS1, clarity_VS1. These are the best attributes that will increase the price of the diamond costliest.

Business Insights:

Train set:

rsquare: 0.94

adjusted square: 0.94

R - Square is 0.94 which tells the correlation between price of diamonds vs. different independent variable's explained by 94%

If we see the final model:

```
price = (-0.78) * Intercept + (1.09) * carat + (0.01) * depth + (-0.01) * table + (-0.3) * x + (0.32) * y + (-0.14) * z + (0.1) * cut_Good + (0.16) * cut_Ideal + (0.15) * cut_Premium + (0.13) * cut_Very_Good + (-0.05) * color_E + (-0.06) * color_F + (-0.1) * color_G + (-0.21) * color_H + (-0.33) * color_I + (-0.47) * color_J + (1.02) * clarity_IF + (0.66) * clarity_SI1 + (0.45) * clarity_SI2 + (0.86) * clarity_VS1 + (0.79) * clarity_VS2 + (0.97) * clarity_VVS1 + (0.96) * clarity_VVS2
```

Co-efficient of the Carat is highest most, which signifies if there is increase of one unit of carat there will increase of 1.09 in price.

Next most positive effecting independent variable is IF clarity type variable.

Most Negatively effecting parameter is J colour type diamonds ,means a loss of -0.47 will occur with decrease the price of one unit of J colour type diamonds.

Test set:

rsquare: 0.941

Adjusted square: 0.941

Finally, Our linear model is good as the r-square difference in train & test dataset is less than 5%.

Recommendations:

To Increase the price of the diamond, carat, clarity of the diamond needs to be increased so that the price of the diamond increase which in turn increases profits. The company can sell the diamonds and make higher profitable price from the stone with lower profitable price.

Problem - 2

Summary

The data is gathered from an tour and travel agency which deals in selling holiday packages to sell their packages to employees. You are hired by a tour and travel agency which deals in selling holiday packages. You are provided details of 872 employees of a company. Among these employees, some opted for the package and some didn't. You have to help the company in predicting whether an employee will opt for the package or not on the basis of the information given in the data set. Also, find out the important factors on the basis of which the company will focus on particular employees to sell their packages.

Introduction

The purpose of this exercise is to sell tour and travel packages to their employees by predicting the employees would buy tour and travel package using Logistic regression and Linear discriminant analysis (LDA). This dataset consist of 872 rows and 8 columns,

Data Description

1. Holiday_Package: Opted for Holiday Package yes/no?

2. Salary: Employee salary

3. Age: Age in years

4. Edu: Years of formal education

5. No young children: The number of young children (younger than 7 years)

6. No_older_children: Number of older children

7. Foreign: foreigner Yes/No

Sample of the dataset:

	Unnamed: 0	Holliday_Package	Salary	age	educ	no_young_children	no_older_children	foreign
0	1	no	48412	30	8	1	1	no
1	2	yes	37207	45	8	0	1	no
2	3	no	58022	46	9	0	0	no
3	4	no	66503	31	11	2	0	no
4	5	no	66734	44	12	0	2	no

Table 2.1 Dataset Sample

Dataset has 8 variables with Tour and travel package. Based on the travel package, employees will buy the tour and travel packages.

Exploratory Data Analysis

Let us check the types of variables in the data frame.

```
Unnamed: 0
                      int64
Holliday_Package
                    object
Salary
                     int64
                     int64
age
educ
                      int64
no_young_children
                     int64
no_older_children
                     int64
foreign
                    object
dtype: object
```

Table 2.2 Datatypes of the variable

There are total 872 rows and 8 columns in the dataset. Out of 8, 2 column is of Object type and rest 6 are of integer data type.

Check for missing values in the dataset:

Table 2.3 Check null values

From this, it is clear that there are no null values present in the dataset.

2.1. Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis.

There are no null values present in the dataset

```
Unnamed: 0 0
Holliday_Package 0
Salary 0
age 0
educ 0
no_young_children 0
no_older_children 0
foreign 0
dtype: int64
```

Table 2.4 Null values

The numbers of unique variables are taken from the categorical column.

HOLLIDAY_PACKAGE : 2

yes 401 no 471

Name: Holliday_Package, dtype: int64

FOREIGN: 2 yes 216 no 656

Name: foreign, dtype: int64

Fig - 2.1 Categorical value count

The numbers of duplicate values are taken from the dataset and duplicate records have been dropped from the dataset.

Number of duplicate rows = 0

Fig - 2.2 Number of duplicate rows

Univariate Analysis:

Univariate analysis is the simplest form of analysing data. Analyzing each variable in a detailed manner. There are outliers present in all variables except age.

Fig – 2.3 Univariate analysis

The value counts from the Holiday Package variable are, 401 customers have opted for Holiday Package whereas 471 customers have not opted for Holiday Package.

no 471 yes 401 Name: Holliday_Package, dtype: int64

Fig – 2.4 Univariate analysis for Holiday package

The value counts from the Foreign variable are, 216 customers have opted for Foreign whereas 656 customers have not opted for Foreign.

no 656 yes 216

Name: foreign, dtype: int64

Fig - 2.5 Univariate analysis for Foreign

Bivariate Analysis:

Bivariate analysis is the simplest form of analysing data. Analyzing a single variable with another variable in detail.

Insights:

The Educ (Years of Education) is plotted against the salary. This Bi-variate plot shows the 20+ years of education earns 60000 whereas, education with 12 years, earns the salary greater than 200000.

Fig – 2.6 Bivariate analysis Salary vs. Educ

The salary and age in the x-axis is plotted against education and age. The plot 1 denotes, Only few employees with 10-17 years of education earns salary greater than 200000. In 2^{nd} plot, more number of employees gets salary in the range of 50000 - 100000.

Fig – 2.7 Bivariate analysis

Multivariate Analysis:

Analysing the data with two or more variable.

Insights:

There is no strong correlation observed between few fields.

Fig – 2.8 Multivariate analysis of pairplot

Fig - 2.9 Multivariate analysis heatmap

Before Treating Outlier:

Fig - 2.10 Before Treating Outlier

Fig - 2.11 After Treating Outlier

	Holliday_Package	foreign	Salary	age	educ	no_young_children	no_older_children
0	no	no	48412.0	30.0	8.0	0.0	1.0
1	yes	no	37207.0	45.0	8.0	0.0	1.0
2	no	no	58022.0	46.0	9.0	0.0	0.0
3	no	no	66503.0	31.0	11.0	0.0	0.0
4	no	no	66734.0	44.0	12.0	0.0	2.0

Table – 2.5 Sample Dataset after dropping Unnamed :0 column.

2.2 Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).

The get dummies encoding method is performed for Holiday_package and Foreign column.

	Salary	age	educ	no_young_children	no_older_children	Holliday_Package_yes	foreign_yes
0	48412.0	30.0	8.0	0.0	1.0	0	0
1	37207.0	45.0	8.0	0.0	1.0	1	0
2	58022.0	46.0	9.0	0.0	0.0	0	0
3	66503.0	31.0	11.0	0.0	0.0	0	0
4	66734.0	44.0	12.0	0.0	2.0	0	0

Table 2.6 Sample dataframe after Encoding

The Sample dataframe after removing the Target variable from the original dataframe. The dataframe are split into train and test data from the dataframe. The train data has 70% of the data and test data has 30% of the data from the dataframe.

	Salary	age	educ	no_young_children	no_older_children	foreign_yes
400	59692.00	43.0	11.0	0.0	2.0	0
234	22366.00	55.0	7.0	0.0	2.0	0
338	41582.00	36.0	9.0	0.0	3.0	0
71	35344.00	35.0	9.0	0.0	2.0	0
727	80687.75	55.0	15.0	0.0	0.0	1

Table 2.7 Train dataframe

2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.

Logistic Regression:

The Logistic Regression with the parameters using the grid search CV. The model is fitted into the Logistic Regression using the grid search CV.

Fig – 2.12 Parameters for GridsearchCV in Logistic Regression

The best parameters are identified from the decision tree algorithm by using the grid search CV.

```
{'penalty': 'l1', 'solver': 'liblinear', 'tol': 0.0001}

Fig - 2.13 Best parameter for Logistic Regression

LogisticRegression(max_iter=100000, n_jobs=2, penalty='l1', solver='liblinear')

Fig - 2.14 Best estimator for Logistic Regression
```

The values are predicted from the train data.

```
array([0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
      0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
      0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
      0, 1, 0, 0, 0,
                     0, 0, 0,
                              1, 1, 0,
                                       0, 0, 0, 1,
                                                   0, 0, 0, 0, 0, 1, 0,
      0, 0, 1,
               0, 0, 0, 1,
                           0,
                              1, 0, 0,
                                       1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0,
                                    0,
                        0,
                           0,
                              1,
                                 0,
                                       0,
                                          0,
                                             0,
                                                 0, 1,
                                                      0,
                     0,
                            0,
                              0,
                                 1,
                                    0,
                                       1,
                                          1,
                                             0,
                                                 0,
                                                   1,
                                                      0,
                        1.
                     1, 0, 0,
                              1,
                                 0, 0, 0,
                                          1, 0, 0,
                                                   1,
                                                      0,
                  0,
                     0, 0, 1,
                              0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
               0,
                  0,
                     0, 1, 0, 0, 0, 0,
                                       1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
               0,
                  0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,
            0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0,
      0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0,
      0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1,
      1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0,
      0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,
      0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1,
      0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
      1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
      1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0,
      0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
      0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0,
      0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1,
      0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0], dtype=uint8)
```

Fig – 2.15 Predicted values from the train dataset of Logistic Regression model

Confusion Matrix is obtained from the train data and test data using Logistic Regression.

```
array([[275, 54],
[168, 113]], dtype=int64)
```

Fig 2.16 confusion matrix from Train data of Logistic Regression

```
array([[117, 25],
[ 73, 47]], dtype=int64)
```

Fig 2.17 confusion matrix from test data of Logistic Regression

	precision	recall	f1-score	support
0	0.62	0.84	0.71	329
1	0.68	0.40	0.50	281
accuracy			0.64	610
macro avg	0.65	0.62	0.61	610
weighted avg	0.65	0.64	0.62	610

Fig 2.18 Classification Report from train data of Logistic Regression

	precision	recall	f1-score	support
0	0.62	0.82	0.70	142
1	0.65	0.39	0.49	120
accuracy			0.63	262
macro avg	0.63	0.61	0.60	262
weighted avg	0.63	0.63	0.61	262

Fig 2.19 Classification Report from test data of Logistic Regression

ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds. This curve plots two parameters.

- True Positive Rate
- False Positive Rate

The probability of the Area under the ROC curve for the train data is 66.1%

Fig 2.20 AUC and ROC curve train data of Logistic Regression

The probability of the Area under the ROC curve for the train data is 67.3%

Fig 2.21 AUC and ROC curve test data of Logistic Regression

Linear Discriminant Analysis:

The values are predicted from the train data.

```
array([0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
       0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,
       0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,
       0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
       1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,
       0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
       0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1,
       0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
       0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0,
       0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,
      0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
         0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
            1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
            1,
               0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0,
            0,
               1,
                  1, 0, 1,
                           0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0,
                  0, 0,
                        0, 1,
                              1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1,
               1, 0, 0, 0,
                           0,
                              0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
            1, 0, 0, 0, 1,
                           0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1,
            0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
         1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1,
         1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,
       0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,
       0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
       0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0], dtype=uint8)
```

Fig - 2.22 Predicted values from the train dataset of LDA

Confusion Matrix is obtained from the train data and test data using Random Forest Algorithm.

```
array([[268, 63],
[155, 124]], dtype=int64)
```

Fig 2.23 confusion matrix from Train data of LDA Model

```
array([[117, 23],
[72, 50]], dtype=int64)
```

Fig 2.24 confusion matrix from test data of LDA Model

	precision	recall	f1-score	support
0	0.63	0.81	0.71	331
1	0.66	0.44	0.53	279
accuracy			0.64	610
macro avg	0.65	0.63	0.62	610
weighted avg	0.65	0.64	0.63	610

Fig 2.25 Classification Report from train data of LDA Model

	precision	recall	f1-score	support
0	0.62	0.84	0.71	140
1	0.68	0.41	0.51	122
accuracy			0.64	262
macro avg	0.65	0.62	0.61	262
weighted avg	0.65	0.64	0.62	262

Fig 2.26 Classification Report from test data of LDA Model

ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds. This curve plots two parameters.

- True Positive Rate
- False Positive Rate

The probability of the Area under the ROC curve for the train data is 66.9%.

The probability of the Area under the ROC curve for the train data is 65.5%.

AUC for the Training Data: 0.669 AUC for the Test Data: 0.655

Fig 2.27 AUC and ROC curve train and test data of LDA model

Confusion Matrix, Accuracy and F1 score for different cut off value.

Accuracy Score 0.5131 F1 Score 0.6329

Confusion Matrix

0.4 Accuracy Score 0.6066 F1 Score 0.6238

Confusion Matrix

0.5 Accuracy Score 0.6426 F1 Score 0.5322

Confusion Matrix

0.6 Accuracy Score 0.6262 F1 Score 0.4571

Confusion Matrix

Accuracy Score 0.5787 F1 Score 0.2419

Confusion Matrix

0.8

Accuracy Score 0.5443 F1 Score 0.0071

Confusion Matrix

0.9

Accuracy Score 0.5426 F1 Score 0.0

Confusion Matrix

Fig 2.28 Accuracy,F1-Score and Confusion Matrix of LDA model at different cut off value

From this we can infer that, the better result comes at the cut off value of 0.2.

	LR Train	LR Test	LDA Train	LDA Test
Accuracy	0.64	0.63	0.64	0.64
AUC	0.68	0.67	0.67	0.65
Recall	0.68	0.65	0.66	0.68
Precision	0.50	0.49	0.53	0.51
F1 Score	0.40	0.39	0.44	0.41

Table 2.8 Comparing Logistic Regression and Linear Discriminant Analysis results

2.4 Inference: Basis on these predictions, what are the insights and recommendations.

Insights:

Based on these inference from Logistic Regression(LR) and Linear Discriminant Analysis(LDA), LDA(Linear Discriminant Analysis) gives the better predictions and accurate results for both train and test data.

Recommendations:

To increase more holiday packages for the employee

- > We can provide complimentary breakfast and dinner for the holiday package.
- > Great deals like extra-day stay for the holiday package from the normal trip package.
- > Travel package rewards for the employee performance