位相幾何

Fefr

目次

1	位相空間の (コ) ホモロジー	2
1.1	圏と関手	2
1.2	特異ホモロジー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8

1 位相空間の (コ) ホモロジー

1.1 圏と関手

圏の定義は略。

圏の例をすこしあげる。

例 1

位相空間 X から位相空間 Y への写像の族 $f_t: X \to Y$ に対し、写像 $F: X \times [0,1] \to Y$ を

$$F(x,t) = f_t(x)$$
 $(x \in X, t \in [0,1])$

で定義するとき、F が連続ならば写像族 $\{f_t\}$ を f_0 から f_1 へのホモトピー (homotopy) という。

連続写像 $f, f': X \to Y$ に対し、f から f' へのホモトピーが存在するとき f は f' に**ホモトープ** (homotop) であるといい、 $f \simeq f': X \to Y$ で表す。

ホモトープという関係は同値関係となる。

実際、反射律は $f \simeq f: X \to Y$ は $f_t = f$ とすることにより、対称律は $f \simeq f': X \to Y$ とすると、f' の f へのホモトピー $\{f_t'\}$ は f の f' へのホモトピー $\{f_t\}$ を用いて $f_t' = f_{1-t}$ で与えられる。推移律は、 $f \simeq f', f' \simeq f'': X \to Y$ ならば f の f'' へのホモトピー $\{h_t\}$ が f から f' へのホモトピー $\{f_t\}$ 、f' から f'' へのホモトピー $\{g_t\}$ を用いて

$$h_t = \begin{cases} f_{2t} & (0 \le t \le 1/2) \\ g_{2t-1} & (1/2 \le t \le 1) \end{cases}$$

で与えられる。

上の同値類を連続写像のホモトピー類 (homotopy class) という。

明らかに $f \simeq f': X \to Y$ で $g \simeq g': Y \to Z$ ならば

$$g \circ f \simeq g \circ f' \simeq g' \circ f' \simeq g' \circ f : X \to Z$$

である。 $(\{g \circ f_t\})$ が $g \circ f$ から $g \circ f'$ へのホモトピーを与え、 $\{g_t \circ f'\}$ が $g \circ f'$ から $g' \circ f'$ へのホモトピーを与える。)

すなわち、ホモトープな連続写像の合成はホモトープである。

よって、対象を位相空間とし、射を連続写像のホモトピー類で定義することにより、1 つの 圏が得られる。

ホモトープな例

 $X = \mathbf{R}, Y = \mathbf{R}^2$ とし、それぞれ通常の位相を入れる。そして、 $f, g: X \to Y$ を

$$f(x) = (x, 0),$$
 $g(x) = (x, 1)$

で定義する。そして、 $F: X \times [0,1] \rightarrow Y$ を

$$F(x,t) = (x,t)$$

で定義すれば、F(x,0)=f(x), F(x,1)=g(x)となり、位相空間論の知識より F,f,g は連続なので f,g はホモトープである。

加群, 加群の準同型写像の定義は略。R 加群、R 準同型写像を単に加群、準同型写像という。簡単のため R を可換環と仮定する。可換性が必要がない場面もある。

例 2

整数の集合 ${\bf Z}$ を添字集合とする R 上の加群の族 $C=\{C_q\}$ を R 上の次数つき加群 (graded module) といい、 C_q の元 c を C の次数 q の元といって、 $q=\deg c$ と書く。C,C' を次数つき加群とし、d を 1 つの整数とする。このとき ${\bf Z}$ を添字集合とする準同型写像 $\varphi_q:C_q\to C_{q+d}$ の族 $\varphi=\{\varphi_q\}$ を C から C' への次数 d の準同型写像といい、 $\varphi:C\to C'$ で表す。

C''も加群とし、 $\varphi':C'\to C''$ を次数 d' の準同型写像とするとき、次数 d+d' の準同型写像 $\varphi'\circ\varphi:C\to C''$ を

$$(\varphi' \circ \varphi)_q = \varphi'_{d+q} \circ \varphi_q$$

で定義し、 φ と φ' の合成という。いま、次の二つの圏が得られる。

- 次数つき加群を対象とし、任意の次数の準同型写像を射とする圏
- 次数つき加群を対象とし、次数 0 の準同型写像を射とする圏

R 上の次数つき加群 C において、次数 -1 の準同型写像 $\partial: C \to C$ で

$$\partial \circ \partial = 0$$

を満たすものが与えられたとき、 (C,∂) を R 上のチェイン複体 (chain complex) という。 チェイン複体は加群 C_q と準同型写像 $\partial_q:C_q\to C_{q-1}$ の列

$$\cdots \longrightarrow C_{q+1} \xrightarrow{\partial_{q+1}} C_q \xrightarrow{\partial_q} C_{q-1} \xrightarrow{\partial_{q-1}} C_{q-2} \xrightarrow{} \cdots$$

で、各々に対し

$$\partial_{q-1} \circ \partial_q = 0$$

の成り立つもの、と言い換えることができる。 $\partial = \{\partial_q\}$ を**バウンダリ作用素** (boundary operator) という。チェイン複体 (C,∂) を単に C で表す。

C,C' をチェイン複体とするとき、次数 0 の準同型写像 $\varphi:C\to C'$ で、C,C' のバウンダリ作用素 ∂,∂' に対し

$$\partial' \circ \varphi = \varphi \circ \partial$$

を満たすものを**チェイン写像** (chain map) という。すなわち、準同型写像 $\varphi_q:C_q\to C_q'$ の族 $\varphi=\{\varphi_q\}$ で、各 q に対し

$$\partial_q' \circ \varphi_q = \varphi_{q-1} \circ \partial_q$$

の成り立つものがチェイン写像である。

チェイン複体の恒等写像 (恒等射) はチェイン写像であり $(\partial' \varphi = \varphi \partial$ で次数 0 だから)

チェイン写像の合成はチェイン写像である。(確かめること)

よって、チェイン複体を対象とし、射をチェイン写像とすることにより、1つの圏を得る。

チェイン写像 $\varphi, \varphi': C \to C'$ に対し、次数 +1 の準同型写像 $\Phi: C \to C'$ があって、

$$\partial \circ \Phi + \Phi \circ \partial = \varphi - \varphi'$$

が成り立つとき、 φ は φ' へのチェインホモトープ (chain homotopic) であるといい、 $\varphi \simeq \varphi': C \to C'$ で表す。 Φ を φ の φ' へのチェインホモトピー (chain homotopy) という。

チェインホモトープという関係は C から C' へのチェイン写像の集合における同値関係である。(あとで証明を追加したい。) この同値類をチェインホモトピー類 (chain homotopy class) という。

 $\varphi \simeq \varphi': C \to C'$ で $\psi \simeq \psi': C' \to C''$ ならば、 $\psi \circ \varphi \simeq \psi' \circ \varphi': C \to C''$ である。実際、 Φ を φ から φ' への、 Ψ を ψ から ψ' へのチェインホモトピーとするとき

$$\psi' \circ \Phi + \Psi \circ \varphi : C \to C''$$

は ψ ο φ から ψ' ο φ' へのチェインホモトピーである。

よって、チェイン複体を対象とし、チェイン写像のチェインホモトピー類を射とすること により、1 つの圏が得られる。

同型射、同型、関手の定義は略。例 1 の圏における同型射、同型はふつうホモトピー同値写像 (homotopy equivalent map?)、ホモトピー同値 (homotopy equivalent) とよばれている。 例 4 での同型射をチェイン同値写像 (chain equivalent map?) という。 C をチェイン複体とする。

$$Z_q(C) = \operatorname{Ker} \partial_q, \qquad B_q(C) = \operatorname{Im} \partial_{q+1}$$

とおけば、 $\partial_q \circ \partial_{q+1} = 0$ だから、 $B_q(C) \subset Z_q(C)$ である。商加群

$$H_q(C) = Z_q(C)/B_q(C)$$

を C の q ホモロジー群 (q-homology group?) といい、次数つき加群 $H_*(C) = \{H_q(C)\}$ を C のホモロジー群 (homology groups) という。 C_q の元を C の q チェイン (q-chain?)。 $Z_q(C)$ の元を q サイクル (q-cycle?)(。 $B_q(C)$ の元を q バウンダリ (q-boundary?) といい、 $c \in Z_q(C)$ で代表される $H_q(C)$ の元を [c] で表して、c のホモロジー類 (homology class) という。

チェイン写像 $\varphi:C\to C'$ は C の q サイクル、q バウンダリを C' の q サイクル、q バウンダリに移す。実際、 $c\in Z_q(C)=\mathrm{Ker}\ \partial_q$ をとると、 $\partial_q(c)=0$ だから

$$\partial_q'(\varphi(c)) = (\partial_q' \circ \varphi)(c) = (\varphi \circ \partial_q)(c) = \varphi(\partial_q(c)) = \varphi(0) = 0$$

よって、 $c \in Z_q(C) \Rightarrow \varphi(c) \in Z_q(C')$ が成り立つ。

また、 $a \in B_q(C)$ をとると、ある $b \in C_{q+1}$ があって $a = \partial_{q+1}(b)$ を満たすから

$$\varphi(a) = \varphi(\partial_{q+1}(b)) = (\varphi \circ \partial_{q+1})(b) = (\partial'_{q+1} \circ \varphi)(b) = \partial'_{q+1}(\varphi(b)) \in B_q(C')$$

よって、 $c \in B_q(C) \Rightarrow \varphi(c) \in B_q(C')$ が成り立つ。

したがって次数 0 の準同型写像 $H_*(\varphi): H_*(C) \to H_*(C')$ が

$$H_*(\varphi)([c]) = [\varphi(c)] \qquad (c \in Z_q(C))$$

により定義される。 $H_*(\varphi)$ を φ により誘導される準同型写像 (induced homomorphism?) といい、しばしば φ_* でかく。明らかに、 $H_*(1)=1, H_*(\varphi\circ\varphi')=H_*(\varphi)\circ H_*(\varphi')$ である。したがって H_* はチェイン複体とチェイン写像の圏 (例 3) から次数つき加群と次数 0 の準同型写像の圏 (例 2(2)) への共変関手である。 H_* をホモロジー函手 (homology functor) という。

チェイン写像 $\varphi,\varphi':C\to C'$ がチェインホモトープならば、 φ の φ' へのチェインホモトピー Φ に対し

$$\varphi(c) - \varphi'(c) = \partial(\Phi(c)) \qquad (c \in Z_q(C))$$

だから、 $[\varphi(c)]=[\varphi'(c)]$ で、したがって、 $H_*(\varphi)=H_*(\varphi'):H_*(C)\to H_*(C')$ よってホモロジー函手 H_* はまたチェイン複体とチェイン写像のチェインホモトピー類の圏 (例 4) から次数つき加群と次数 0 の準同型写像の圏への共変函手ともみられる。

位相空間 X に対し、X の弧状連結成分の集合を考え、これより生成される自由加群を $H_0(X)$ で表す。また、位相空間の間の連続写像 $f:X\to Y$ に対し、次の条件によって準同 型写像 $H_0(f):H_0(X)\to H_0(Y)$ を定義する。X の弧状連結成分 X_λ に対し、 $H_0(f)(X_\lambda)$ は $f(X_\lambda)$ を含む Y の弧状連結成分を表す。明らかに連続写像 $f,g:X\to Y$ がホモトープ ならば $H_0(f)=H_0(g)$

 H_0 は位相空間と連続写像の圏、または位相空間と連続写像のホモトピー類の圏 (例 1) から 加群の圏への共変函手である。

また、函手の定義から函手は同型を保存することがわかる。

1.2 特異ホモロジー

q 次元 Euclid 空間を \mathbf{R}^q で表し、その原点を P_0 , 第 i 軸上の単位点を P_i で表す $(i=1,2,\cdots,q)$ P_0,P_1,\cdots,P_q で張られる q 次元単体を Δ^q で表し、標準 q 単体 (standard q-simplex) という。 $\Delta^1=[0,1]$ である。

 $q \ge 1$ と $i = 0, 1, \cdots, q$ に対し、

$$\varepsilon_q^i:\Delta^{q-1}\to\Delta^q$$

によって

$$\varepsilon_q^i(P_j) = \begin{cases} P_j & (j < i) \\ P_{j+1} & (j \ge i) \end{cases}$$

なる線型写像を表す。定義より明らかに

$$\varepsilon_{q+1}^{j} \circ \varepsilon_{q}^{i} = \varepsilon_{q+1}^{i} \circ \varepsilon_{q}^{j-1} \quad (i < j)$$
 (1.1)

が成り立つ。

位相空間 X が与えられたとき、任意の連続写像 $\sigma: \Delta^q \to X$ を X の特異 q 単体 (singular q-simplex) という $(q \ge 0)$ q > 0 のとき、各 $i = 0, 1, \cdots, q$ に対し、特異 q-1 単体 $\sigma \circ \varepsilon_q^i: \Delta^{q-1} \to X$ が得られるが、これを $d_i \sigma$ で表し、 σ の第 i 面 (i-face?) という。

いま、単位元 1 をもつ可換環 R が与えられたとする。このとき次数つき加群 $S(X)=\{S_q(X)\}$ を $q\geq 0$ ならば $S_q(X)$ は X のすべての特異 q 単体の集合によって生成される自由加群を表し、q<0 ならば $S_q(X)=0$ であるとして定義する。さらに次数 -1 の準同型写像 $\partial:S(X)\to S(X)$ を

$$\partial_{q} = \begin{cases} \sum_{i=0}^{q} (-1)^{i} d_{i} & (q > 0) \\ 0 & (q \le 0) \end{cases}$$

によって定義する。 ここに $d_i:S_q(X)\to S_{q-1}(X)$ は σ を $d_i\sigma$ にうつす準同型写像 (これを**面作用素** (英訳がわからない) という)

$$d_i \circ d_j = d_{j-1} \circ d_i \quad (i < j) \tag{1.2}$$

したがって

$$\begin{split} \partial_q \circ \partial_{q+1} &= \sum_{i,j} (-1)^{i+j} d_i \circ d_j \\ &= \sum_{i < j} (-1)^{i+j} d_i \circ d_j + \sum_{i \ge j} (-1)^{i+j} d_i \circ d_j \\ &= \sum_{i < j} (-1)^{i+j} d_{j-1} \circ d_i + \sum_{i \ge j} d_i \circ d_j \\ &= \sum_{i \le j} (-1)^{i+j+1} d_j \circ d_i + \sum_{i \le j} (-1)^{i+j} d_j \circ d_i \\ &= 0 \end{split}$$

よって S(X) は ∂ をバウンダリ作用素としてチェイン複体である。 これを (R に係数をもつ)X **の特異チェイン複体** (singular chain complex) という。