Московский физико-технический университет Факультет общей и прикладной физики

Лабораторная работа № 3.2.4

(Общая физика: электричество и магнетизм)

Свободные колебания в электрическом контуре

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2017 год

Цель работы: исследование свободных колебаний в электрическом контуре.

Оборудование: генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, индуктивность, электронный осциллограф, мост.

1. Историческая справка

Колебания в контуре, содержащем конденсатор и катушку индуктивности, впервые были обнаружены в 1842 году американским ученым Джозефом Генри. Позднее электрические колебания были исследованы английским физиком Уильямом Томсоном.

Сейчас такие контуры, часто содержащие и сопротивление (катушки или резистора), называются колебательными.

2. Теоретическое введение

Основное уравнение колебательного контура

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0 \tag{1}$$

Где $\gamma = \frac{R}{2L}$ — коэффициент затухания, $\omega_0^2 = \frac{1}{LC}$ — собственная частота контура. Решением этого уравнения являются затухающие колебания:

Рис. 1: Колебательный контур

$$I = Ae^{-\gamma t}\cos(\omega t - \theta)$$

Здесь $\omega = \sqrt{\omega_0^2 - \gamma^2}$. Можно записать решение (1) и для напряжения:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta)$$

В контуре со слабым затуханием ($\omega \simeq \omega_0$) верна формула Томпсона для периода:

$$T = \frac{2\pi}{\omega_0} \simeq \frac{2\pi}{\omega} = 2\pi\sqrt{LC}$$

Режим работы контура, при котором $\gamma = \omega_0$, называется **критическим**. Его сопротивление равно

$$R_{\rm kp}=2\sqrt{\frac{L}{C}}$$

Потери затухающих колебаний принято характеризовать через **добротность** и **логариф-мический декремент затухания**:

$$Q = 2\pi \frac{W}{\Delta W} = \frac{1}{R} \sqrt{\frac{L}{C}} -$$
Добротность, потери энергии (2)

$$\Delta W = R \vee C$$
 — Дог. декремент, потери амплитуды (3)

3. Экспериментальная установка

Исследуемый колебательный контур состоит из индуктивности L, ёмкости C и резистора R (рис. 1). Конденсатор контура заряжается короткими одиночными импульсами, после каждого из которых в контуре возникают свободные затухающие колебания. Подав напряжение с конденсатора на осциллограф, можно по картине, возникающей на экране осциллографа, определить период колебаний в контуре, исследовать затухание колебаний и определить основные параметры колебательного контура.

Картину колебаний можно представить не только в координатах (U,t), но и в координатах (U,\dot{U}) , или, как говорят, на фазовой плоскости. В этих координатах кривая незатухающих колебаний ($\gamma=0$) имеет вид эллипса (или окружности - при одинаковых амплитудах U и \dot{U}), а картина реальных колебаний изображается сворачивающейся спиралью.

Схема подключения осциллографа для изучения колебаний на фазовой плоскости представлена на рис. 2. На вертикальный вход осциллографа подаётся напряжение U_C с конденсатора, а на горизонтальный — напряжение с резистора U_R .

На рис. 3 приведена схема для исследования свободных колебаний в контуре типа рис. 1. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Г5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтирован-

Рис. 2: Фазовый режим

ное в отдельном блоке (или на выходе генератора). Реле содержит диодный тиристор 1 D и ограничительный резистор R_1 . Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\simeq 1 \text{ MOM}$), так что его влиянием иа контур можно пренебречь.

Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

Рис. 3: Схема экспериментальной установки

4. Ход работы

4.1 Измерение периодов

Проведем измерения при R=0. Будем изменять емкость от $0{,}02$ до 90 мк Φ , проводя измерения периода по формуле:

$$T_{\text{эксп}} = T_0 \frac{x}{nx_0}$$

где $T_0=0.01$ с, x_0 — расстояние одного импульса, x — расстояние n импульсов. Погрешность $\sigma_x=\sigma_{x_0}=0.1,\sigma_{T_0}=0.001$ с. Тогда

$$\sigma_{T_{\vartheta}} = T_{\vartheta} \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_{x_0}}{x_0}\right)^2 + \left(\frac{\sigma_{T_0}}{T_0}\right)^2}$$

А $T_{\rm reop}=2\pi\sqrt{LC}$, где L=393 мГн, $\sigma_L=7$ мГн (получено как среднее и среднее отклонение от рассчитанных L=383,386,393,400). $\frac{\sigma_C}{C}\approx 0$. Тогда

$$\sigma_{T_{\rm T}} = \frac{1}{2} \frac{\sigma_L}{L}$$

Результаты сведем в таблицу 1 и построим график рис. 4.

4.2 Критическое сопротивление и декремент затухания

Теперь, считая L=200 мГн, вычислим частоту емкость, считая $\nu_0=\frac{1}{LC}=5$ кГц $\Rightarrow C=5$ нФ. Тогда

$$R_{\mathrm{kp}} = 2\sqrt{\frac{L}{C}} pprox 12,6$$
к
Ом

С, мкФ	x_0	n	x	$T_{\text{эксп}}$, мс	$\sigma_{T_{\mathfrak{s}}},\;\mathrm{MC}$	$T_{ m reop},{ m mc}$	$\sigma_{T_{\mathrm{T}}}$, MC
0.02	6.0	2	0.7	0.58	0.2	0.56	0.01
0.09	3.0	2	0.6	1.00	0.39	1.18	0.02
0.15	6.0	4	3.5	1.46	0.17	1.52	0.02
0.22	6.0	3	3.0	1.67	0.21	1.84	0.02
0.35	6.0	3	3.3	1.83	0.22	2.32	0.03
0.48	6.0	3	4.0	2.22	0.26	2.72	0.04
0.59	6.5	3	4.5	2.31	0.26	3.02	0.04
0.75	6.5	2	3.4	2.62	0.32	3.4	0.04
0.87	6.5	2	4.3	3.31	0.38	3.66	0.05
0.90	6.5	2	4.6	3.54	0.4	3.72	0.05

Таблица 1: Результаты измерений

Рис. 4: Зависимость $T_{\text{теор}}$ от $T_{\text{эксп}}$

Установим эту C на магазине емкостей, будем наблюдать картину затухающих колебаний, изменяя R от $0.1R_{\rm kp}$ до $R_{\rm kp}$. Сопротивление магазина, при котором колебания переходят в апериодический, примерно равен критическому.

Теперь, изменяя сопротивление от примерно $0.1R_{\rm kp}$ до $0.3R_{\rm kp}$, будем измерять амплитуды колебаний, разделенных на n частей, для вычисления декремента по формуле (3). Погрешности амплитуд $\sigma_{U_k} = \sigma_{U_{k+n}} = 0.1$, т.е.

R, Om	n	U_k	U_{k+n}	Θ	σ_{Θ}	R_{κ} , Om	$\sigma_{R_{\kappa}}$, Om
1100	3	3.0	0.9	0.40	0.05	1142	2
1400	3	3.0	0.6	0.54	0.09	1442	3
1800	2	2.9	0.8	0.64	0.08	1842	4
2200	2	2.8	0.6	0.77	0.13	2242	4
2500	1	2.7	1.0	0.99	0.11	2542	5
2700	1	2.6	0.9	1.06	0.12	2742	5
3300	1	2.5	0.8	1.14	0.15	3342	7
3600	1	2.5	0.7	1.27	0.19	3642	7

Таблица 2: Результаты измерений

$$\sigma_{\Theta} = \Theta \sqrt{\left(\frac{\sigma_{U_k}}{U_k}\right)^2 + \left(\frac{\sigma_{U_{k+n}}}{U_{k+n}}\right)^2}$$

Измерив на универсальном мосте сопротивление катушки при нашей частоте 5 к Γ ц, добавим его к сопротивлению магазина, получив сопротивление контура $R_{\rm K}$. Результаты сведем в таблицу 2. Теперь построим график $\frac{1}{\Theta^2}$ от $\frac{1}{R^2}$, считая погрешность $\sigma_{\frac{1}{\Theta^2}} = 2\frac{1}{\Theta^2}\frac{\sigma_{\Theta}}{\Theta}$ Данные для графика рис. 5 сведены в таблице 3.

Таблица 3: Результаты измерений

$\frac{1}{\Theta^2}$	$\sigma_{rac{1}{\Theta^2}}$	$\frac{1}{R^2}$, 10^{-6} Om ⁻²
6.21	0.75	0.77
3.47	0.68	0.48
2.41	0.63	0.29
1.69	0.57	0.2
1.01	0.22	0.15
0.89	0.21	0.13
0.77	0.2	0.09
0.62	0.18	0.08

Аппроксимируя полученные данные, получаем следующий результат:

Таблица 4: Расчет апроксимированной прямой y = ax + b

	Estimate	Standard Error
b	0.039	0.176
a	7.957	0.281

Если заменить $\frac{1}{\Theta^2}=Y, \ \frac{1}{R^2}=X,$ то получаем, что $\frac{\Delta Y}{\Delta X}=7.957\cdot 10^6~{
m Om}^2.$ Посчитаем

Puc. 5: Зависимость $\frac{1}{\Theta^2}$ от $\frac{1}{R^2}$

$$R_{\mathrm{kp}} = 2\pi \sqrt{\frac{\Delta Y}{\Delta X}} \approx 17{,}71 \; \mathrm{кOm}$$

Погрешность равна $\sigma_{R_{\rm kp}}=R_{\rm kp}\frac{1}{2}\frac{\sigma_a}{a}\approx 0.31$ кОм.

Вычислим теоретическое значение $R_{\rm kp}=2\sqrt{\frac{L}{C}}$, где C=5 нФ, L=393 мГн. Получаем $R_{\rm kp}\approx 17{,}73$ кОм, погрешность $\sigma_{R_{\rm kp}}=R_{\rm kp}\frac{1}{2}\frac{\sigma_L}{L}\approx 0{,}33$ кОм.

Таким образом, мы видим, что эти результаты прекрасно согласуются между собой.

4.3 Добротность

По формуле (2) посчитаем добротность через параметры контура C=5 нФ, L=393 мГн, беря минимум и максимум сопротивления контура из таблицы 2. Погрешность равна $\sigma_Q=Q\frac{1}{2}\frac{\sigma_L}{L}$.

$$R = 1.1 \; \mathrm{кOm}, \qquad Q = 7.76 \pm 0.09$$

$$R = 3.6 \text{ kOm}, \qquad Q = 2.43 \pm 0.03$$

Теперь сделаем это по формуле

$$Q = \frac{\pi}{\Theta}$$

Аналогично возьмем минимум и максимум декремента из таблицы 2. Погрешность равна $\sigma_Q = Q \frac{\sigma_\Theta}{\Theta}.$

$$\Theta = 0.4,$$
 $Q = 7.82 \pm 0.51$
 $\Theta = 1.27,$ $Q = 2.47 \pm 0.27$

Теперь возьмём логарифмический декремент затухания, полученные через отношения радиусов спиралей, т.е. $\Theta=\frac{1}{n}\ln\frac{r_k}{r_{k+n}}$. Радиус мы будем измерять, наблюдая картину фазовых колебаний (см. рис. 2). При R=1,2 кОм, $r_k=0,7, r_{k+3}=3,1 \Rightarrow \Theta\approx 0,51$. При R=3,6 кОм, $r_k=0,6, r_{k+1}=2,4 \Rightarrow \Theta\approx 1,39$. Погрешность считается аналогично формулам выше. Получаем:

$$\Theta = 0.51,$$
 $Q = 6.33 \pm 0.87$
 $\Theta = 1.27,$ $Q = 2.27 \pm 0.43$

5. Вывод

Итак, в этой работе мы изучили свободные колебания в электрическом контуре: сначала измеряли периоды при $\gamma \approx 0$, затем находили критическое сопротивление и изучали колебательный контур при сопротивлениях порядка $0.1-0.4R_{\rm kp}$. Мы исследовали зависимость логарифмического декремента затухания от сопротивления контура, а также добротности от параметров контура и от декремента.

Основные результаты занесены в таблицы:

Таблица 5: Расчет критического сопротивления

I	$R_{ m \kappa p}$			
L	Teop.	Подбор	Граф.	
393 ± 7 м Γ н	$17,73 \pm 0,33$ кОм	12,6 кОм	$17,71 \pm 0,31$ кОм	

Таблица 6: Расчет добротности

R	Q				
11	Teop.	$f(\Theta)$	Спираль		
1242 Ом	$7,76 \pm 0,09$	$7,82 \pm 0,51$	$6,33 \pm 0.87$		
3642 Ом	$2,43 \pm 0,03$	$2,47 \pm 0,27$	$2,27 \pm 0,43$		