Дед

Exam

TL;DR

- 1. У вас 3 часа.
- 2. (пишите на отдельных листках)
- ^{3.} Не пишите красным
- 4. Дед с удовольствием даст вам баллы если поймет что вы делаете
- 4 задания по математическим навыкам критичным для ТФ,и 3 задания полный разбор заданной физической системы через координаты, Лагранжиан и решение полученных дифуров / приближенная картина в phase space
- 6. Бонусные задания отмечены *. Решайте их когда будет нефиг делать.
- 7. Всего есть 90 + 50 = 140 баллов, для зачета достаточно 30. Решить весь экзамен нереально, дед накидал вам 100+ возможностей и идей
- 8. для того чтобы решить те куски, что вам нравятся. Ничего не использовать, кроме своего же мозга. (+ дед подскажет если что)
- 9. Ключевая стратегия не занимайтесь фигней и не пытайтесь решить вообще все. Соберите как можно больше баллов. Если чувствуете, что не видите решения сразу бросайте и идите к букве дальше.

Бла-бла.Подпись что делал сам.

family name

given name

matriculation number

1			700	2				3	1			
*[a]	(b)	(c)	(d)	(a)	(b)	(c)	*[d]	(a)	(b)	*[c]	*[d]	(e)
4	1	3	4+1	2	1	3	3	3	4	2	4	4+3

4					5									6	
(a)	(b)	(c)	(d)	(e)	(a)	*[b]	(c)	(d)	(e)	*[f]	*[g]	(h)	*[i]	*[a]	*[b]
2	4	2	1	4	2	2	3	3	4	4	6	4+1	1	1	2

				100				7							
*[c]	(d)	(e)	(<i>f</i>)	(g)	*[h]	(<i>i</i>)	(<i>j</i>)	(a)	*[b]	(c)	(d)	(e)	(<i>f</i>)	(g)	*[h]
2	4	2	2	5	6	2	3	3	1	3	3	2	2+2	5	5
2	1	2	2	0	0	2		0		0	J	2	2+2	0	

total points grade

Задача 1. Изолинии и градиенты

Мы рассматриваем волны на воде с высотой заданной как:

$$H(x, y, t) = A \frac{\sin(k \sqrt{x^2 + y^2} - \omega t)}{x^2 + y^2}$$

Где (x,y) это положение на поверхности, а t - время

Source: Collection of water ripples in pluspng.com

- * а) Н это функция расстояния R от начала координат.Найти нижнюю и верхнюю границы для H(R,t) и набросатьрадиальный профиль H(R,t).
 - b) Определить градиент R.
 - с) Определить градиент H(x,y,t) для заданного времени t.Как это сделать проще всего используя результат b)?
 - d) Определить изолинии H(x,y,t) для заданного времениt. Набросать их на рисунке, обозначить градиенты на нем. Как изолинии меняются во времени?

Задача 2. Паралеллепипед

Координаты вершин паралеллепипеда задаются векторами q_i, где i от 1 до 8

$$\boldsymbol{q}_i \in \left\{ \begin{pmatrix} s_1 \ a \\ s_2 \ b \\ s_3 \ c \end{pmatrix} \quad \text{with} \ \ s_1, \ s_2, \ s_3 \in \{\pm 1\} \right\}$$

source: A2569875, Public domain, via Wikimedia Commons

- а) Нарисуйте правостороннюю координатную системух-у-z, и обозначьте все на ней
- b) Почему все диагонали пересекаются в начале координат?
- с) Определить косинус угла между каждой парой диагоналей.
- * d) Какая связь между теми парами диагоналей, у которых одинаковый угол пересечения?

Задача 3. Линейные интегралы.

Задано силовое поле:

$$F(x, y, z) = \begin{pmatrix} y \sin \alpha + x \cos \alpha \\ y \cos \alpha - x \sin \alpha \\ z \end{pmatrix}$$

где q=(x,y,z) это радиус-вектор в R^3

- а) Рассчитайте работу силы от южного полюса до северного полюса единичной сферы вдоль пути, параметризуемого какq(t) = (0, 0, t) где -1 < t < 1 (путь 1)
- b) Определить потенциал поля для всех значений альфа,когда поле консервативно.
- * с) Показать что поле также может быть выражено как

$$F(R, \theta, \phi) = \frac{f R}{L} \hat{r}(\theta, \phi - \alpha)$$

где $q = R \, \hat{r}(\theta, \phi)$ в сферических координатах

Рассмотрим путь где R=R0 = const, а фи может бытьвыражен как функция тета, т.е. of θ , i.e., $\phi(t) = \phi(\theta(t))$. Показать что работа

$$W = -\int_{t_I}^{t_F} dt \; \dot{\boldsymbol{q}}(t) \cdot \boldsymbol{F}(\boldsymbol{q}(t))$$

тогда может быть выражена как интеграл по углу тета

$$W = f(\alpha) \int_{c_1}^{c_2} d\theta \sin(2\theta) + g(\alpha) \int_{c_1}^{c_2} d\theta \frac{d\phi(\theta)}{d\theta} \sin^2 \theta$$

и определить границы интегрирования c1, c2 и функции $\underline{f}(aльфa)$ и $\underline{g}(aльфa)$ в этом выражении

- e) Определить работу поля от южного полюса и до ceверногона единичной сфере вдоль траекторий где:
 - ii. $\phi = constant$

iii.
$$\phi(\theta) = \frac{\cos \theta}{\sin \theta}$$

Намек: имейте в виду результат d для простых расчетов

Как выглядят траектории 1-3?

Задача 4. Линейное неоднородное дифференциальное уравнение

$$\dot{x}(t) + \gamma \ x(t) = A \Omega \cos(\Omega t) \tag{4.1}$$

x(t) это положение в 1D.

Действительные параметры γ , A, and Ω принимают постоянные положительные значения

а)Мы задаем положение х в дюймах и время в часах.Какие тогда единицы в СИ у всех трех параметров?

b) Проверьте что ДУ имеет частное решение вида

$$x_s(t) = K e^{-i\phi} e^{i\Omega t} + c.c.$$

где с.с. обозначает комплексно-сопряженное число первого слагаемого. Как действ. константы K и фи зависят от трех параметров системы?

- с) Определить общее решение однородного уравнения (с правой частью равной нулю).
- d) Достаточно ли начального положения чтобы полностью предсказать эволюцию системы?
- e) Задайте итоговое уравнение x(t) при начальных условияхx(t0) = x0.

Задача 5. Массы на колесах.

Задана система из двух колес с осями закрепленными на стене, так что колеса вращаются вокруг них. На каждом колесе нанизаны массы m1, m2. Радиусы R1, R2. Углы отклонения масс от вертикали - тета1, тета2. Ограничения на движение: не проскальзывающая общая веревка вокруг колес. Гравитация вертикально вниз.

а) Сделать набросок и все обозначить

 * b) $^{\prime}$ Обосновать что из-за веревки всегда $^{\prime}$ $\dot{\theta}_{1}(t)=\rho\,\dot{\theta}_{2}(t),$ и в результате будет

$$\theta_1 = \rho \, \theta_2(t) - \alpha$$

Какой смысл альфа в этом уравнении,и как ро определяется через параметры системы?

Почему имеет смысл говорить что $0 < \rho \le 1$?

с) Показать что всю кинетическую энергию системы можно выразить как

$$T = k_T \dot{\theta}_1^2$$

где константа k_T определяется параметрами системы. Определить ee.

- d) Определить потенциальную энергию системы и использоватьрезультат b) чтобы выразить тета2 через тета1. Тогда у нас будетфункция Лагранжа которая зависит только от
- е) Определить уравнение для тета1 и выбрать шкалы единиц, чтобыв безразмерной форме оно выглядело так

$$\ddot{\theta}_1 = \sin \theta_1 + \mu \sin \left(\frac{\theta_1}{\rho} - \varphi \right)$$

Какая шкала времени тут выбрана? Как константы $\mu: \mathbf{V} \ \varphi$ определяются параметрами системы?

- \star f) Показать что при $\mu < \rho$ v vравнения движения одна vстойчивая и одна неустойчивая неподвижная точка (fixed point) в каждый период sin(тета1) Тогда фазовое пространство системы очень похоже на таковое у
- математического маятника. А в чем разница? $\star \; {\rm g}) \; \; {\rm Теперь \; рассмотрим \; cлучай} : \rho = 1/3, \, \mu = 10, \, {\rm and} \; \varphi = 0. \, {\rm Использовать \; тригонометрию}$

$$\ddot{\theta}_1 = a \sin \theta \left(\cos^2 \theta - b \right)$$

где 0 < b < 1. Определить константы а и b.

для sin(3тета) чтобы показать

Определить неподвижные точки системы, и какие будут стабильные, а какие нестабильные.

h) Ниже показан эффективный потенциал для $\rho=1/3$ and $\mu=4$. Для φ мы взяли числа 0° and 60° соответственно. В чем различие потенциалов? Нарисуйте фазовое пространство для обоих случаев.

Как вы понимаете какой случай относится к $\varphi = 0^{\circ}$?

* i) Что изменится в этой задаче еслиповернуть систему так,что большое колесо будетнад малым?

Задача 6. Тор (бублик)

Рассмотрим движение материальной точки без трения на поверхности тора. В декартовой 3-мерной системе его форма описывается окружностью в (x,z) плоскости, вращающейся вокруг оси z. Обозначим радиус окружности как R, и поместим центр ее в положение

ее центр в положение $D\,\hat{x}$. Действует гравитация

$$g = -g \hat{z}$$

- \star a) Почему нужно D>R?
- \star b) Зададим положение в (x,y) плоскости полярными координатами с ортом $\hat{
 ho}$ and $\hat{\phi}=\partial_{\phi}\hat{
 ho}$. Вместе с $\hat{z}=\hat{
 ho}\times\hat{\phi}$ они образуют правосторонний ортонормированный базис для цилиндрических координат.

Также, зададим сферические координаты на основе орта $\hat{m{r}}(heta,\phi)=\sin heta~\hat{m{
ho}}(\phi)+\cos heta\hat{m{z}}.$

- і. Показать что $\hat{m{r}} imes \hat{m{ heta}} = \hat{m{\phi}} = \partial_{\phi} \hat{m{
 ho}}$
- \hat{u} . Определить как производная $\partial_{\phi}\hat{\phi}$ может быть выражена как линейная комбинация ортов \hat{r} and $\hat{\theta}$.
- \star c) Показать что положение \hat{q} на торе можно всегда задать как

$$\mathbf{q} = D \,\hat{\boldsymbol{\rho}}(\phi) + R \,\hat{\boldsymbol{\theta}}(\theta,\phi)$$

Почему важно что не только $(0, 2\pi)$?

 ϕ но и θ принимает значения в интервале

 ${
m d})$ Определить скорость \dot{q} ${
m i}$ и показать что кинетическая энергия принимает вид

$$T = C \left(\dot{\theta}^2 + \left(\Delta + \sin \theta \right)^2 \dot{\phi}^2 \right)$$

Какая размерность С в этом выражении?Как С и Дельта зависят от параметров системы R, D, m и g?

- определить потенциальную энергию частицы и функцию Лагранжа системы.
- f)Показать что фи это циклическая (игнорируемая) переменная и определить связанный с ней закон сохранения, определив величину К.
- ϕ Определить уравнение движения для тета, используя К чтобы исключить ϕ ізиз уравнения. Ввести нужные шкалы, чтобы показать что безразмерная вторая производная по времени θ Принимает вид

$$\ddot{\theta} = \sin \theta + \frac{\kappa \cos \theta}{\left(1 + \rho \sin \theta\right)^3}$$

Какая шкала времени была принята тут? Как величина κ зависит от параметров системы?

 $_{\star \; \mathrm{h})}$ Показать что неподвижные точки системы можно получить как решение уравнения

$$1 + \rho \sin \theta = -\left(\frac{\kappa}{\tan \theta}\right)^{1/3}$$

Нарисовать графики обоих сторон уравнения и показать что для тора с маленькой "дыркой" (т.е. R близкое к D) и малых значений k, вторая стабильная неподвижная точка возникает на верхней внутренней стороне тора. Какой физический смысл этой стабильной точки?

- і) Определить эффективный потенциал движения.
- j) График справа показывает потенциал для значений $\kappa = 0.01 \; {
 m and} \; \rho = 0.95.$

Нарисуйте фазовое пространство для этого случая где четко покажите heteroclinic (которые соединяют две нестабильные точки)и homoclinic (начинается на нестабильной и возвращается к ней) траектории.

Задача 7. Совместное плавание

Рассмотрим двух пловцов которые двигаются по окружности так, что положения задаются углами θ_i with i=1 and 2, соответственно. У них есть предпочтительные скорости Ω_i и тенденция находится близко друг к другу. Тогда, их движение можно описать дифференциальным уравнением

$$\ddot{\theta}_i = -\gamma \left(\dot{\theta}_i - \Omega_i\right) - \frac{2k}{f_i} \sin \frac{\theta_i - \theta_{3-i}}{2}$$

Тут θ_{3-i} это короткая нотация для положения второго пловца: 3-i принимает значения 2 and 1 for i=1 для 2, соответственно.

 $^{\rm a)}$ Чтобы понять первое слагаемое в ускорении, рассмотрим случай $^{k\,=\,0.}$

Сделать график скорости $\dot{\theta}_1(t)$ и положения $\theta_1(t)$, и описать как на них влияют величины γ and Ω_1 .

- $_{\star \; \mathrm{b})}$ Какая причина включить синус чтобы моделировать желание пловцов быть рядом? Какой вывод отсюда можно сделать о знаках k, f1 и f2?
 - $^{
 m c)}$ Рассмотрим положение ψ между пловцами (аналог центра масс в задаче Кеплера):

$$\psi = f_1 \,\theta_1 + f_2 \,\theta_2$$

Определить $\ddot{\phi}$, показать что $\dot{\psi}$ падает экспоненциально к постоянному значению, как в случае одиночного пловца разобранного в а). Определить релаксацию и асимптотическую скорость движения этого углового "центра масс".

 $^{
m d)}$ Мы обозначим расстояние между пловцами как $\phi=(\theta_2-\theta_1)/2$. Показать что уравнение для ϕ сводится к дифференциальному уравнению вида

$$\ddot{\phi} + a\,\dot{\phi} + \sin\phi = c \tag{7.1}$$

Как константы a, c зависят от параметров системы: γ , Ω_i , k and f_i .

- $^{
 m e)}$ Какое расстояние ϕ_∞ в итоге установится между пловцами? При каких условиях ϕ_∞ маленькое?
 - f) Определить неподвижные точки диффура (7.1).Описать их стабильность/нестабильность.

А при каких условиях их не будет? Как тогда будет выглядеть движение двух пловцов?

- ${
 m g}$) Предположим $a=0~{
 m in~Eq.}~(7.1)$. Определить потенциал который описывает движение в этом случае, и нарисовать фазовое пространство для случая когда система имеет неподвижные точки.
- \star h) 1. Как фазовое пространство в g) выглядит когда в системе нет неподвижных точек?
 - 2. Как фазовое пространство в g) меняется в случае если а принимает малое положительное значение?