Introduction to Symplectic Topology

Lyu JunZhe

Contents

1

1 Maslov Index for Lagrangian subspace

Maslov Index for Lagrangian subspace

1

We give a definition of Maslov index of Lagrangian subspace for $(\mathbb{R}^{2n}, \omega_0)$, here ω_0 the standard symplectic form (And hence all symplectic vector space). My definition is same to the one in the text book, but I will give more details and a new proof.

Theorem 1. The space of all Lagrangian subspace $(\mathcal{L}(n))$ admits a topology and differential structure such that it is diffeomorphism to U(n)/O(n).

lemma 1. For any matrix(a linear map:
$$\mathbb{R}^n \to \mathbb{R}^{2n}$$
) in the form $Z = \begin{pmatrix} X \\ Y \end{pmatrix}$, ImZ a

Lagrangian subspace is equivalent to $X^TY = Y^TX$ and rk(Z) = n.

Proof. Omit. The proof given in the book is clear enough. Note that since every dimension n subspace can be represent as ImZ, hence all Lagranigian subspace is represented.

Proof. For all matrices satisfy $X^TY = Y^TX$, we give a another description of this matrix,

consider:
$$\bar{Z} = \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix}$$
, $rk(Z = n \Rightarrow rk(X, -Y) = n)$, the condition $X^TY = Y^TX$

implys that :
$$\bar{Z}^T \bar{Z} = \begin{pmatrix} X^T X + Y^T Y & 0 \\ 0 & X^T X + Y^T Y \end{pmatrix}$$
, Since $rkX = rkX^T X$, for any

 $0 \neq u \in \mathbb{R}^n \Rightarrow u^T(X^TX + Y^TY)u > 0$, so $X^TX + Y^TY$ is positive definite. We choose $U \in GL_n(\mathbb{R}^n)$ such that $U^T(X^TX + Y^TY)U = Id$. Note that (Xu, Yu) and (XUu, YUu) represent the same space in \mathbb{R}^{2n} . So we can choose a representation of \bar{Z} (for all \bar{Z} represent the same Lagrangian subspace) such that $X^TX + Y^TY = Id$, in another words $X + iY \in U(n)$.

Note that the stablizer is O(n), hence we can give $\mathcal{L}(n)$ a differential structure as the orbit space U(n)/O(n).

Corollary 1. Every two pairs of Lagrangian subspace Λ and Λ' , there exist a symplectic map ψ such that $\Lambda = \psi \Lambda'$.

Proof. It suffices to check the case $\Lambda' = \mathbb{R}^{2n}$. So we consider the matrix : $\begin{pmatrix} X \\ Y \end{pmatrix}$ represent the Λ such that $X + iY \in U(n) \subset Sp(2n)$.

Remark: Since U(n) is connected then so does Sp(2n), so we can find a path from id to ψ , using this path we can prove that $\mathcal{L}(n)$ is path connected.

The Maslov index for Lagrangian subspace

Consider the map

$$S^1 \xrightarrow{I(t)} U(n)/O(n) \xrightarrow{det^2} U(1)$$

Which induce a map in the fundamental group, we call the degree of $det^2 \circ I(t)$ the Maslov index of path I(t). It's easy to check the it is well-defined.

Theorem 2. The Maslov index represent the isomorphism $\pi(\mathcal{L}(n)) \cong \mathbb{Z} : \mu(\Lambda(t)) \to \mathbb{Z}$. Here $\Lambda(t) \in \pi_1(\mathcal{L}(n)).\mu$ denotes the Maslov index.

Proof. Consider the commutative diagram for principal bundle:

$$O(n) \xrightarrow{-det} O(1) \xrightarrow{\cong} \mathbb{Z}/2\mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$U(n) \xrightarrow{-det} U(1) \xrightarrow{\cong} S^{1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{z \to z^{2}}$$

$$\mathcal{L}(n) \xrightarrow{-det^{2}} U(1) \xrightarrow{\cong} \mathbb{RP}^{1} \xrightarrow{\cong} S^{1}$$

The first two columns give the long exact sequences:

$$\pi_1(S^1) \longrightarrow \pi_1(S^1) \longrightarrow \pi_0(O(0)) \longrightarrow \pi_0(S^1) \longrightarrow \pi_0(S^1)$$

$$\uparrow^{det} \qquad \uparrow^{det^2} \qquad \uparrow^{det} \qquad \uparrow^{det} \qquad \uparrow^{det^2}$$

$$\pi_1(U(n)) \longrightarrow \pi_1(\mathcal{L}(n)) \longrightarrow \pi_0(O(n)) \longrightarrow \pi_0(U(n)) \longrightarrow \pi_0(\mathcal{L}(n))$$

Since $\mathcal{L}(n)$ is path connected the fifth column is isomorphism, the 1st, 3rd and 4th quivers are all isomorphism. By five lemma we have the 2nd map is isomorphism.

Theorem 3. The Maslov index satisfy the product property, i.e. for $\psi(t) \in \pi_1(Sp(2n))$ and $\Lambda(t) \in \pi_1(\mathcal{L}(n))$,

$$\mu(\psi(t)\Lambda(t)) = 2\mu(\psi(t)) + \mu(\Lambda(t))$$

(here $\mu(\psi)$ is the Maslov index of loop in Sp(2n), which is explained clearly in the book.)

Maslov index satisfy some basic properties but we only prove this one.

Proof. It's easy to see that μ is a homotopy invariant, so write $\psi(s,t) = U(s,t)P(s,t)$, here $U(t) \in Sp(2n) \cap O(2n).\psi(1,t) = U(t); \psi(0,t) = \psi(t)$. So it suffices to calculate $\mu(U(t)\Lambda(t))$, which is $2\mu(U(t)) + \mu(\Lambda(t))$ by straight forward calculation.