Tutorial Questions on FIR Filter Design

1. Starting with the ideal frequency response for a Lowpass filter

$$H_d(\omega) = \begin{cases} 1 & |\omega| \le \omega_c \\ 0 & \omega_c < |\omega| \le \pi \end{cases}$$

derive the ideal impulse response

$$h_d(n) = \begin{cases} \frac{\omega_c}{\pi} & n = 0\\ \frac{\sin \omega_c n}{\pi n} & n \neq 0 \end{cases}$$

2. Starting with the ideal frequency response for a Highpass filter

$$H_d(\omega) = \begin{cases} 0 & |\omega| \le \omega_c \\ 1 & \omega_c < |\omega| \le \pi \end{cases}$$

derive the ideal impulse response

$$h_d(n) = \begin{cases} 1 - \frac{\omega_c}{\pi} & n = 0\\ -\frac{\sin(\omega_c n)}{\pi n} & n \neq 0 \end{cases}$$

3. Starting with the ideal frequency response for a Bandpass filter

$$H_d(\omega) = \begin{cases} 0 & -\pi \le \omega < -\omega_{c2} \\ 1 & -\omega_{c2} \le \omega \le -\omega_{c1} \\ 0 & -\omega_{c1} < \omega < \omega_{c1} \\ 1 & \omega_{c1} \le \omega \le \omega_{c2} \\ 0 & \omega_{c2} < \omega \le \pi \end{cases}$$

derive the ideal impulse response

$$h_d(n) = \begin{cases} \frac{\omega_{c2} - \omega_{c1}}{\pi} & n = 0\\ \frac{\sin(\omega_{c2}n)}{\pi n} - \frac{\sin(\omega_{c1}n)}{\pi n} & n \neq 0 \end{cases}$$

4. Starting with the ideal frequency response for a Bandstop filter

$$H_d(\omega) = \begin{cases} 1 & -\pi \le \omega < -\omega_{c2} \\ 0 & -\omega_{c2} \le \omega \le -\omega_{c1} \\ 1 & -\omega_{c1} < \omega < \omega_{c1} \\ 0 & \omega_{c1} \le \omega \le \omega_{c2} \\ 1 & \omega_{c2} < \omega \le \pi \end{cases}$$

derive the ideal impulse response

$$h_d(n) = \begin{cases} 1 + \frac{\omega_{c1} - \omega_{c2}}{\sin(\omega_{c1}n)} & n = 0\\ \frac{\sin(\omega_{c1}n)}{\pi n} - \frac{\sin(\omega_{c2}n)}{\pi n} & n \neq 0 \end{cases}$$

5. Starting with the expression for the Frequency response for an FIR Filter:

$$H(\omega) = \sum_{n=0}^{M-1} h(n)e^{-j\omega n}$$

Show that a FIR filter with positive symmetric coefficients (h(n) = h(M - 1 - n)) and M odd has a frequency response

$$H(\omega) = e^{-j\omega(M-1)/2} \left[h\left(\frac{M-1}{2}\right) + 2\sum_{n=0}^{(M-3)/2} h(n)\cos\left(\omega\left(\frac{M-1}{2}-n\right)\right) \right]$$

6. Starting with the expression for the Frequency response for an FIR Filter:

$$H(\omega) = \sum_{n=0}^{M-1} h(n)e^{-j\omega n}$$

Show that a FIR filter with positive symmetric coefficients (h(n) = h(M - 1 - n)) and M even has a frequency response

$$H(\omega) = e^{-j\omega(M-1)/2} \left[2 \sum_{n=0}^{M/2-1} h(n) \cos\left(\omega \left(\frac{M-1}{2} - n\right)\right) \right]$$

7. Starting with the expression for the Frequency response for an FIR Filter:

$$H(\omega) = \sum_{n=0}^{M-1} h(n)e^{-j\omega n}$$

Show that a FIR filter with negative symmetric coefficients (h(n)=-h(M-1-n)), M odd and $h\left(\frac{M-1}{2}\right)=0$ has a frequency response

$$H(\omega) = e^{j[-\omega(M-1)/2 + \pi/2]} \left[2 \sum_{n=0}^{(M-3)/2} h(n) \sin \omega \left(\frac{M-1}{2} - n \right) \right]$$

8. Starting with the expression for the Frequency response for an FIR Filter:

$$H(\omega) = \sum_{n=0}^{M-1} h(n)e^{-j\omega n}$$

Show that a FIR filter with negative symmetric coefficients (h(n) = -h(M-1-n)) and M even has a frequency response

$$H(\omega) = e^{j[-\omega(M-1)/2 + \pi/2]} \left[2 \sum_{n=0}^{(M/2)-1} h(n) \sin \omega \left(\frac{M-1}{2} - n \right) \right]$$

9. A FIR low pass filter designed using the rectangular window has the impulse response

$$h(n) = \begin{cases} \frac{\sin(\omega_c(n - \frac{M-1}{2}))}{\pi(n - \frac{M-1}{2})} & 0 \le n \le M - 1 & n \ne \frac{M-1}{2} \\ \frac{\omega_c}{\pi} & n = \frac{M-1}{2} & \text{for } M \text{ odd} \\ 0 & 0 > n, M - 1 < n \end{cases}$$

With M odd, show that the filter coefficients have positive symmetry

$$h(n) = h(M - 1 - n)$$

10. A FIR high pass filter designed using the rectangular window has the impulse response

$$h(n) = \begin{cases} -\frac{\sin(\omega_c(n - \frac{M-1}{2}))}{\pi(n - \frac{M-1}{2})} & 0 \le n \le M - 1 & n \ne \frac{M-1}{2} \\ 1 - \frac{\omega_c}{\pi} & n = \frac{M-1}{2} & \text{for } M \text{ odd} \\ 0 & 0 > n, M - 1 < n \end{cases}$$

With M odd, show that the filter coefficients have positive symmetry

$$h(n) = h(M - 1 - n)$$

11. A FIR band pass filter designed using the rectangular window has the impulse response

$$h(n) = \begin{cases} \frac{\sin(\omega_{c2}(n - \frac{M-1}{2}))}{\pi(n - \frac{M-1}{2})} - \frac{\sin(\omega_{c1}(n - \frac{M-1}{2}))}{\pi(n - \frac{M-1}{2})} & 0 \le n \le M - 1 & n \ne \frac{M-1}{2} \\ \frac{\omega_{c2} - \omega_{c1}}{\pi} & n = \frac{M-1}{2} & \text{for } M \text{ odd} \\ 0 & 0 > n, M - 1 < n \end{cases}$$

With M odd, show that the filter coefficients have positive symmetry

$$h(n) = h(M - 1 - n)$$

12. A FIR band pass filter designed using the rectangular window has the impulse response

$$h(n) = \begin{cases} \frac{\sin(\omega_{c1}(n - \frac{M-1}{2}))}{\pi(n - \frac{M-1}{2})} - \frac{\sin(\omega_{c2}(n - \frac{M-1}{2}))}{\pi(n - \frac{M-1}{2})} & 0 \le n \le M - 1 & n \ne \frac{M-1}{2} \\ 1 + \frac{\omega_{c1} - \omega_{c2}}{\pi} & n = \frac{M-1}{2} & \text{for } M \text{ odd} \\ 0 & 0 > n, M - 1 < n \end{cases}$$

With M odd, show that the filter coefficients have positive symmetry

$$h(n) = h(M - 1 - n)$$

13. For a low pass filter designed using a rectangular window, with M=5 and $\omega_c=\frac{\pi}{3}$ determine the frequency response

The plot of the magnitude response of this filter for $0 \le \omega \le \pi$ is:

Plot the phase response $\theta(\omega)$ for $-\pi \le \omega \le \pi$

- 14. Starting with the ideal frequncy response $H_d(\omega)$, describe the windows method of designing a low pass filter.
- 15. Starting with the ideal frequncy response $H_d(\omega)$, describe the windows method of designing a high pass filter.
- 16. Starting with the ideal frequency response $H_d(\omega)$, describe the windows method of designing a bandpass filter.
- 17. Starting with the ideal frequecy response $H_d(\omega)$, describe the windows method of designing a bandstop filter.
- 18. Determine the filter length M and the coefficients h(1) and $h(\frac{M-1}{2})$ using the "Windows" method of the low pass filter design that meets the following specification:
 - Passband edge frequency:- $F_p = 15 \text{kHz}$
 - Transition Width:- 4kHz
 - Passband Ripple:- 0.02dB
 - Stopband attenuation:- > 40dB
 - Sampling frequency:- 40kHz

The parameters of common window functions are given in the Appendix.

- 19. Determine the filter length M and the coefficients h(1) and $h(\frac{M-1}{2})$ using the "Windows" method of the High pass filter design that meets the following specification:
 - Passband edge frequency:- $F_p = 300 \text{Hz}$
 - Stopband edge frequency:- $F_{stop} = 250 \mathrm{Hz}$
 - Passband Ripple:- 0.1dB
 - Stopband attenuation:- > 42dB

• Sampling frequency:- 1kHz

The parameters of common window functions are given in the Appendix.

- 20. Determine the filter length M and the coefficients h(1) and $h(\frac{M-1}{2})$ using the Windows method designing a bandpass filter that meets the following specification:
 - Passband: 12.5 − 20kHz
 - Transition Width: 5kHz
 - Passband Ripple: < 1dB
 - Stopband attenuation: > 15dB
 - Sampling frequency: 52kHz

The parameters of common window functions are given in the Appendix.

- 21. Determine the filter length M and the coefficients h(1) and $h(\frac{M-1}{2})$ using the Windows method designing a bandstop filter that meets the following specification:
 - Stopband: 40 60Hz
 - Transition Width: 5Hz
 - Passband Ripple: < 0.8dB
 - Stopband attenuation: > 20dB
 - Sampling frequency: 150Hz

The parameters of common window functions are given in the Appendix.

Appendix of Equations

• Window Functions

Window	Sidelobe	$\triangle f$	Stopband	Passband	
w(n)			Attenuation	Ripple	$\Delta\omega_{3db}$
Rectangular	-13db	$\frac{0.9}{N}$	21db	0.7416db	$0.89\frac{2\pi}{N}$
_		1 v			11
() [1	0 < n < 1	N - 1			
$w(n) = \begin{cases} 1\\0 \end{cases}$ Hanning	otherw	nice -			
	Otherw	130			
Hanning	-31db	$\frac{3.1}{N}$	44db	0.0546 db	$1.44\frac{2\pi}{N}$
C		1 V			1V
$(2\pi n)$					
$0.5 - 0.5 \cos(\frac{2\pi n}{N-1})$ $0 \le n \le N-1$					
$w(n) = \begin{cases} 0.5 - 0.5\cos\left(\frac{2\pi n}{N-1}\right) & 0 \le n \le N-1\\ 0 & \text{otherwise} \end{cases}$ Hamming -41db $\frac{3.3}{N}$ 53db 0.01					
		9 9	001101 1111		
Hamming	-41db	$\frac{3.3}{N}$	53 d b	0.0194 db	$1.30\frac{2\pi}{N}$
_		1 4			1 v
(2π)					
$\frac{1}{N} = \frac{1}{N} \frac{0.54 - 0.46 \cos{\left(\frac{2\pi n}{N-1}\right)}}{0.54 - 0.46 \cos{\left(\frac{2\pi n}{N-1}\right)}} = 0 \le n \le N-1$					
$w(n) = \begin{cases} 0.54 - 0.46\cos\left(\frac{2\pi n}{N-1}\right) & 0 \le n \le N-1\\ 0 & \text{otherwise} \end{cases}$					
(otherwise					

• Integration

$$f(x) \int f(x)dx$$

$$x^{n}(n \neq -1) \quad \frac{x^{n+1}}{n+1}$$

$$\cos x \quad \sin x$$

$$e^{x} \quad e^{x}$$

$$e^{ax} \quad \frac{1}{a}e^{ax}$$

• Integration by parts

$$\int u dv = uv - \int v du$$

• Euler Identity

$$\cos x = \frac{1}{2} \left(e^{-jx} + e^{jx} \right)$$

$$\sin x = \frac{1}{2}j\left(e^{-jx} - e^{jx}\right)$$