2024 年全国大学测绘学科创新创业智能大赛 测绘程序设计比赛赛前测试

一、比赛环境要求

参赛小组由1人组成,每人配置1台电脑、1个外置摄像头。竞赛过程中选择安静、封闭、整洁的环境,避免无关人员干扰。

图 1 考试环境示例

二、比赛软件要求

- 1. 编程环境与编程语言:考试软件为 Visual studio 2017。编程语言限制为 Basic、C/C++、C#,不允许使用二次开发平台(如 Matlab、AutoCAD、ArcGIS等)。
 - 2. 报告编写软件: WPS Office 或 Microsoft Office。
- 3. 比赛软件: 2024 年全国大学生测绘学科创新创业智能大赛考生监考系统(考生端)。

三、成果及要求

比赛时长 240 分钟, 所有成果必须在考试开始后现场制作。在成果的任何地方都不得出现参赛编号、学校信息或参赛队员信息。

1、成果一:程序正确性

在考生端"程序正确性"界面,根据试题要求填写计算结果。该成果用于程序正确性评分,提交方式如图 2 所示。

图 2 程序正确性提交方式

2、成果二:报告文档.pdf

3、成果三:源码文件.rar

将源码文件、可执行文件、计算结果等内容,压缩为一个文件,

文件名称:源码文件.rar。

图 3 成果二和成果三提交

说明:程序正确性可以多次保存,以最后一次为准;文件上传只能提交一次;考试结束后,需要关闭考生端软件(该时刻作为考试结束时间)。

附件1:报告文档模板

一、程序优化性说明

- 1. 用户交互界面说明(建议 200 字以内, 给出主要用户交互界面图)
- 2.程序运行过程说明(建议200字以内,给出程序运行过程截图)
- 3.程序运行结果(给出程序运行结果)

二、程序规范性说明

- 1.程序功能与结构设计说明(建议500字以内)
- 2. 核心算法源码(给出主要算法的源码)

附件 2: 评分说明

测绘程序设计比赛满分 100 分,其中比赛用时成绩 20 分,程序正确性成绩 60 分,程序规范性和优化性成绩 20 分。比赛用时成绩和程序正确性成绩由计算机自动评分,程序规范性和优化性由专家团队评分。

1. 程序正确性评分(60分)

根据《试题册》要求,编程完成相关算法,根据"程序正确性"给分点要求,将相关计算结果填写考生端"程序正确性"界面,并提交。

本项内容用于检验算法的正确性, 该项成绩由计算机自动评阅。

2. 比赛用时评分(20分)

比赛用时成绩总分为 20 分,记为 S_0 。第 i 组参赛选手提交的时间设为 T_i ,其本项成绩得分 S_i 的计算公式为:

$$S_i = \left(1 - \frac{T_i - T_1}{T_n - T_1} \times 40\%\right) \times S_0$$

式中: T_1 是第一组"程序正确性成绩 \geq 30分"参赛队伍的比赛时间。 T_n 是在规定时间内最后一组参赛队伍的比赛时间。由该公式可知:第一组的时间得分为 20分, T_n 组的时间分为 12分。

特殊情况说明: (1) 第一组之前提交的参赛选手,本项成绩为 15 分; (2) 比赛用时超过比赛规定时间 15 分钟以内,本项成绩为 7 分; (3) 比赛用时超过比赛规定时间 15 分钟以上,取消比赛资格。

3. 专家评分(20分)

评测内容	评分细则说明
和片小儿园	人机交互界面设计良好(4分)
程序优化性 (10分)	容错性、鲁棒性好(3分)
(10 %)	计算成果规范 (3分)
	程序设计合理(3分)
程序规范性	类结构、函数设计清晰(3分)
(10分)	注释规范(2分)
	类、函数和变量命名规范(2分)

试题:纵横断面计算

根据给定道路中心线上已知的 N 个关键点和散点数据,绘制 1 条纵断面,并计算断面面积。如图 1 所示, K_0 , K_1 , K_2 是道路中心线上的 3 个关键点,过这 3 个点构建纵断面。 M_0 是 K_0 、 K_1 的中心点, M_1 是 K_1 、 K_2 的中心点,分别过 M_0 和 M_1 点绘制横断面。

图 1 纵断面示意图

一、读取数据文件

数据内容和格式如表 1 所示,其中第 1 行参考高程点名和参考高程数字,第 2 行为 3 个关键点的点名,第 3 和第 4 行为 2 测试点。其余行为各点的相关信息,格式为"点名, X 分量, Y 分量, 高程 H"。

表 1 数据内容和格式说明

式说明 参考高程值 名 3 (三点为道路中
夕 2 (二占为治败由
有 3 (一点 7) 但 时下
坐标见后面数据主体)
X), X (m) , Y
Y(m) , $H(m)$

【程序正确性】 将"参考高程点 H_0 、 K_0 、 K_1 、 K_2 "的高程数值填写在"程序正确性"中, 结果保留 3 位小数。

二、程序算法

1. 基本算法

1.1 坐标方位角计算

已知两点 $A(x_A, y_A), B(x_B, y_B)$,则A, B的坐标方位角为:

$$\alpha_{AB} = \operatorname{atan}\left(\frac{\Delta y_{AB}}{\Delta x_{AB}}\right) = \operatorname{atan}\left(\frac{y_B - y_A}{x_B - x_A}\right)$$
 (1)

方位角的值与所在象限有关,判定方法如表 2 所示。

表 2 方位角取值范围判断

$\Delta {m y}_{AB}$	Δx_{AB}	坐标方位角
+	+	α_{AB}
+	-	$180^{\circ}+ \alpha_{AB}$
-	-	$180^{\circ}+ \alpha_{AB}$
-	+	$360^{\circ}+~\alpha_{AB}$
>0	0	90°
<0	0	270°

【程序正确性】计算 AB 的坐标方位角,以弧度为单位,结果保留 5 位小数。

1.2 内插点 P 的高程值的计算方法

采用反距离加权法求内插点 P 的高程, 计算方法为:

- (1) 以点 P(x, y) 为圆心,寻找最近的 n 个离散点 $Q_i(x_i, y_i)$,形成点集 Q(**在搜索离** 散点时,包括关键点 K_i 和一般点 P_i ,其中 n 取 S_i);
- (2) 计算 P 到 Q 中每一已知点 Q_i 的距离 d_i , 计算公式为:

$$d_{i} = \sqrt{(x - x_{i})^{2} + (y - y_{i})^{2}}$$
 (2)

(3) 计算 P 点的内插高程

设 $Q_i(x_i, y_i)$ 的高程为 h_i ,P点高程 h 的插值为:

$$h = \frac{\sum_{i=1}^{n} (h_i/d_i)}{\sum_{i=1}^{n} (1/d_i)}$$
 (3)

【程序正确性】以 A、B 为内插点,搜索各自最近 5 个点(关键点和实测点)、计算 A、B 的内插高程,结果保留 3 位小数。

1.3 断面面积的计算

已知梯形两点 P_i , P_{i+1} 两点间的平面投影距离为 ΔL_i (计算方法见公式 2),基准高程为 h_0

 P_i , P_{i+1} 的点高程为 h_i , h_{i+1} , 如图 2 所示,则该梯形的面积为:

$$S_{i} = \frac{\left(h_{i} + h_{i+1} - 2h_{0}\right)}{2} \Delta L_{i} \tag{4}$$

将断面的所有梯形进行累和得到最后的总面积

$$S = \Sigma S_i \tag{5}$$

图 2 梯形面积示意图

【程序正确性】以 H_0 为高程参考面,以 A、B 为梯形的两个端点(不考虑中间内插点),计算其梯形面积。结果保留 3 位小数。

2. 道路纵断面计算

以道路中心线上的 n+1 个点关键点 K_0 , K_1 …… K_n ,形成道路的纵断面,在计算时 n=2。

2.1 计算纵断面的平面距离

已知 $K_i(X_i,Y_i)$, $K_{i+1}(X_{i+1},Y_{i+1})$,可以计算它们之间的平面距离,公式为:

$$D_{i} = \sqrt{(X_{i+1} - X_{i})^{2} + (Y_{i+1} - Y_{i})^{2}}$$
(6)

纵断面的总长度为 $D = \sum_{i=0}^{1} D_i$

【程序正确性】计算纵断面 K_0 - K_1 , K_1 - K_2 的分段平面距离,以及纵断面的平面 总距离。结果保留 3 位小数。

2.2 计算 K_{ℓ} 到 K_{I} 之间的内插点平面坐标

在纵断面上,从起点 K_0 开始,每隔平面距离 Δ 内插一点(在计算时,取 Δ =10m),形成纵断面上的内插点序列。

当插值点在 K_0 , K_1 直线上, 记为 Z_i , 则 Z_i 点的坐标为

$$\begin{cases} x_i = X_0 + L_i \cos(\alpha_{01}) \\ x_i = Y_0 + L_i \sin(\alpha_{01}) \end{cases}$$
(7)

其中 α_{01} 为 $K_0(X_0,Y_0)$, $K_1(X_1,Y_1)$ 的方位角, L_i 是待插值 Z_i 点距 K_0 点的平面投影距离。

本断面记为第一条纵断面,按照 Δ =10m 的平面距离依次内插,点名依次为: $K_0, Z_1, Z_2, \dots, K_1$

根据内插点的平面坐标,依据公式(3)计算其高程。

【程序正确性】方位角 α_{01} ,以弧度为单位,保留 5 位小数。给出第一条纵断面的内插点 \mathbf{Z}_3 坐标值,结果保留 3 位小数。

2.3 计算 K_1 到 K_2 之间的内插点平面坐标

当插值点在 $K_1(X_1,Y_1)$ 和 $K_2(X_2,Y_2)$ 直线上,记为 Y_i ,则 Y_i ,点的坐标为

$$\begin{cases} x_i = X_1 + (L_i - D_0)\cos(\alpha_{12}) \\ y_i = Y_1 + (L_i - D_0)\sin(\alpha_{12}) \end{cases}$$
(8)

其中 α_{12} 为 K_1 、 K_2 的坐标方位角, L_i 是待插值 Y_i 点和 K_0 点之间沿中心线的平面投影距离, D_0 是 K_1 、 K_0 之间沿中心线的平面投影距离。

本断面记为第二条纵断面,按照 Δ =10m 的平面距离依次内插,内插点名依次为 $K_1, Y_1, Y_2, \dots, K_2$

根据内插点的平面坐标,依据公式(3)计算其高程。

【程序正确性】方位角 α_{12} ,以弧度为单位,保留 5 位小数。给出第二条纵断面的内插点 Y_3 坐标值,结果保留 3 位小数。

2.4 计算纵断面面积

根据 1.3 的面积计算公式,分别计算第一条纵断面 K_0 , Z_1 , Z_2 ,……, K_1 的面积,记为 S_1 ,同理,计算第二条纵断面 K_1 , Y_1 , Y_2 ,……, K_2 的面积,记为 S_2 。 则纵断面总面积 $S=S_1+S_2$ 。

【程序正确性】填写第一条纵断面面积、第二条纵断面面积、以及纵断面总

面积的计算结果,结果保留3位小数。

3. 道路横断面计算

3.1 计算横断面中心点

取 K_i , K_{i+1} 的中心点 $M_i(x_{M_i}, y_{M_i})$ 计算公式为:

$$x_{M_i} = \frac{x_i + x_{i+1}}{2}; y_{M_i} = \frac{y_i + y_{i+1}}{2}$$
 (8)

3.2 计算横断面插值的平面坐标和高程

过横断面中间点 M_i ,分别向直线 K_0,\ldots,K_n 垂直线,两边各延伸 25 米,得到 n 条横断面。

过 M_i 点的横断面的坐标方位角为 α_{M_i} 计算公式为:

$$\alpha_{M_i} = \alpha_{i,i+1} + 90^{\circ} \tag{9}$$

其中 $\alpha_{i,i+1}$ 是 K_i , K_{i+1} 的坐标方位角,

过 M_i 点横断面的内插点 P_i 平面坐标为:

$$\begin{cases} x_j = x_{M_i} + j\Delta\cos(\alpha_M) \\ y_j = y_{M_i} + j\Delta\sin(\alpha_M) \end{cases}$$
 (j= -5,···,-1,1,···, 5) (10)

在横断面上,按照 $\Delta=5m$ 的平面距离依次内插。

第一条横断面(过 M_0 点的横断面),点名依次记为 $Q_1, \dots, Q_5, M_0, Q_6, \dots, Q_{10}$;第二条横断面(过 M_1 点的横断面),点名依次记为 $W_1, \dots, W_5, M_1, W_6, \dots, W_{10}$;

根据内插点的平面坐标,计算其高程,计算公式见2.2节。

【程序正确性】给出第一条横断面内插点 $Q_3(\mathbb{P}_{j=-3})$ 、第二条横断面内插点 $W_3(\mathbb{P}_{j=-3})$ 的坐标,结果保留 3 位小数。

3.3 计算横断面面积

根据公式5,计算横断面面积。

【程序正确性】给出第一条横断面的面积 S_{row1}、第二条横断面横断面的面积 S_{row2},结果保留 3 位小数。

三、程序正确性和计算结果输出

1. 程序正确性

根据读取的数据文件,编程完成相关算法,按照格式要求输出结果,如下表所示。并 将计算结果填写到"考生客户端"对应的"程序正确性"表格中。(已经填写的数据仅供 参考)

其中:

序号1至4:对应于"一、读取数据文件";

序号5至8:对应于"1. 基本算法";

序号 9 至 11:对应于"2.1 计算纵断面的平面距离";

序号 12 至 16: 对应于 "2.2 计算 K_0 到 K_1 之间的内插点平面坐标";

序号 17 至 19: 对应于 "2.3 计算 K1 到 K2 之间的内插点平面坐标";

序号 20 至 22: 对应于"2.4 计算纵断面面积";

序号 23 至 28: 对应于"3.2 计算横断面插值的平面坐标和高程";

序号 29 至 30: 对应于"3.2 计算横断面插值的平面坐标和高程";

	<u> </u>	
序号	说明	输出格式要求
1	参考高程点 H₀的高程值	100.000 (保留 3 位小数)
2	关键点 K₀的高程值	*.*** (保留3位小数)
3	关键点 K₁的高程值	*.*** (保留3位小数)
4	关键点 K₂的高程值	*.*** (保留3位小数)
5	测试点 AB 的坐标方位角	*.****(保留5位小数)
6	A 的内插高程 h	112.935
7	B 的内插高程 h	*.*** (保留3位小数)
8	以 A、B 为两个端点的梯形面积 S	*.*** (保留3位小数)
9	K0 到 K1 的平面距离 D0	127.626 (保留 3 位小数)
10	K1 到 K2 的平面距离 D1	*.*** (保留3位小数)
11	纵断面的平面总距离 D	*.*** (保留3位小数)
12	方位角an	0.21008
13	方位角ɑ12	*.**** (保留5位小数)
14	第一条纵断面的内插点 Z3 的坐标 X	135.127 (保留 3 位小数)
15	第一条纵断面的内插点 Z3 的坐标 Y	*.*** (保留3位小数)
16	第一条纵断面的内插点 Z3 的高程 H	*.*** (保留3位小数)
17	第二条纵断面的内插点 Y3 的坐标 X	*.*** (保留3位小数)
18	第二条纵断面的内插点 Y3 的坐标 Y	*.*** (保留3位小数)
19	第二条纵断面的内插点 Y3 的高程 H	*.*** (保留3位小数)
20	第一条纵断面面积 S1	*.*** (保留3位小数)
21	第二条纵断面面积 S2	*.*** (保留3位小数)
22	纵断面总面积 S	*.*** (保留3位小数)
23	第一条横断面内插点 Q3 的坐标 X	177.592
24	第一条横断面内插点 Q3 的坐标 Y	*.*** (保留 3 位小数)

25	第一条横断面内插点 Q3 的高程 H	*.***(保留3位小数)
26	第二条横断面内插点 W3 的坐标 X	*.*** (保留3位小数)
27	第二条横断面内插点 W3 的坐标 Y	*.*** (保留3位小数)
28	第二条横断面内插点 W3 的高程 H	*.*** (保留3位小数)
29	第一条横断面的面积 Srow1	*.*** (保留3位小数)
30	第一条横断面的面积 Srow2	*.*** (保留3位小数)

2. 计算结果输出

将上表结果,编程保存在"result.txt"文件中。文件格式如下:

序号,说明,计算结果

1,参考高程点 H0 的高程值,100.000

2,

••••

四、用户界面设计

1. 交互界面设计与实现要求

- (1) 包括菜单、工具栏、表格等功能;
- (2) 要求功能正确、可正常运行,布局合理、直观美观、人性化。

2. 计算报告的显示与保存

- (1) 将相关统计信息、计算报告在用户界面中显示;
- (2) 保存为文本文件(*.txt)。