게으른 학습: 최근접 이웃 분류

Machine Learning with R

Contents

- 최근접 이웃(Nearest Neighbor) 분류기
- 게으른 학습자(Lazy learner)
- 거리를 이용한 두 관찰값(example)의 유사도 측정 방법
- k-NN 적용 방법

최근접 이웃 분류의 이해

- 정지 영상 및 동영상에서 광학 글자 인식과 얼굴 인식을 포함하는 컴퓨터 비전응용
- 영화나 음악 추천에 대한 개인별 선호 예측
- 특정 단백지 및 질병 발견에 사용 가능한 유전자 데이터의 패턴 인식

장점	단점
 단순하고 효율적 기저 데이터 분포에 대한 가정을 하지 않음 훈련 단계가 빠름 	 모델을 생성하지 않아 특징과 클래스 간의 관계를 이해하는 능력이 제약됨 적절한 k의 선택이 필요 분류 단계가 느림 명목 특징 및 누락 데이터를 위한 추가 처리가 필요

재료	단맛	아삭한 맛	음식 종류
사과	10	9	과일
베이컨	1	4	단백질
바나나	10	1	과일
당근	7	10	채소
샐러리	3	10	채소
치즈	1	1	단백질

• k-NN 알고리즘: 유유상종

• 유클리드 거리(Euclidean distance)

$$dist(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2}$$

dist(토마토, 껍질 콩) =
$$\sqrt{(6-3)^2 + (4-7)^2} = 4.2$$

재료	단맛	아삭한 맛	음식 종류	토마토와의 거리
포도	8	5	과일	$sqrt((6 - 8)^2 + (4 - 5)^2) = 2.2$
껍질 콩	3	7	채소	$sqrt((6-3)^2 + (4-7)^2) = 4.2$
견과	3	6	단백질	$sqrt((6-3)^2 + (4-6)^2) = 3.6$
오렌지	7	3	과일	$sqrt((6-7)^2 + (4-3)^2) = 1.4$

- 적절한 k 값 선택
 - o k = 1: 오렌지 → 토마토는 과일이다.
 - o k = 3: 오렌지, 포도, 견과 → 토마토는 과일이다.
- 편향-분산 트레이드오프(bias-variance tradeoff): overfitting과 underfitting 사이의 균형 문제

k-NN 알고리즘을 위한 데이터 준비

- 특징(변수)들마다 단위가 다르기 때문에, 각 특징이 거리 공식에 상대적으로 동일하게 기여할 수 있도록 범위를 줄이거나 늘려줘야 할 필요가 있음.
 - 정규화(Normalization)
 - 표준화(Standardization)
- 최소-최대 정규화(min-max normalization)

$$X_{new} = \frac{X - \min(X)}{\max(X) - \min(X)}$$

● z-점수 표준화(z-score standardization)

$$X_{new} = \frac{X - \mu}{\sigma} = \frac{X - Mean(X)}{StdDev(X)}$$

k-NN 알고리즘 예제

- 위스콘신 유방암 진단 데이터셋(Wisconsin Breast Cancer Diagnosis Dataset)
 - https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
 - https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
- 569개의 암 조직검사 관찰값(observation, example), 32개 변수(variable, featrue)
 - Malignant 악성 종양
 - Benign 양성 종양