	Numer indeksu:	$Grupa^1$:				
		8–10 s. 5	8–10 s.103	8–10 s.104		
Wersja: \mathbf{A}		8–10 s.105	8–10 s.140	12–14 zaaw		
		12–14 LPA	14–16 s.105	14–16 s.139		
	Logika dla inform	natyków				
	Sprawdzian nr 1, 21 li czas pisania: 30+6					
$A \cap (B \cup C) = B \cap (A \cup C)$	kty). Jeśli istnieją takie zbiory $\cup C$), to w prostokąt poniżej wpoadku wpisz słowo "NIE".					
Zadanie 2 (2 punkty). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postaci normalnej równoważną formule $\neg(p \Leftrightarrow q)$						
Zadanie 3 (2 punkt	t v) – Jeśli zbiór klauzul <i>{¬n∨r</i>	$\neg a \lor n$ $s \lor a$ $\neg a$	$r \vee \neg n \neg s \vee a$	iest sprzecz-		
ny, to w prostokąt p	ty). Jeśli zbiór klauzul $\{\neg p \lor r,$ oniżej wpisz rezolucyjny dowóc tościowanie spełniające ten zbi	d sprzeczności te				
ny, to w prostokąt p	oniżej wpisz rezolucyjny dowód	d sprzeczności te				
ny, to w prostokąt p	oniżej wpisz rezolucyjny dowód	d sprzeczności te				
ny, to w prostokąt p	oniżej wpisz rezolucyjny dowód	d sprzeczności te				
ny, to w prostokąt p	oniżej wpisz rezolucyjny dowód	d sprzeczności te				

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4	(2	punkty)	. W	${\it prostokat}$	poniżej	wpisz	dowód	tautologii

$((p \Rightarrow r)$	$\wedge (q \Rightarrow$	$r)) \Rightarrow 0$	$((p \vee$	$q) \Rightarrow r$
----------------------	-------------------------	---------------------	------------	--------------------

v systemie nati	ıralnej dedukcji.				
ż 1 wspólnych zględnie pierw niennych, naw	punkty). Mówimy, że n dzielników. Na przyk zsze, bo 3 jest wspólny riasów, spójników A, V, terpretowana w zbiorz	kład liczby 14 i 1 ym dzielnikiem 1 , \Rightarrow , \Leftrightarrow i symboli	5 są względnie p 2 i 15. Używają $+,-,\times,=,\neq$ wp	oierwsze, a 12 i 15 c tylko kwantyfika oisz prostokąt poniż	nie są torów, zej for-

		Numer indeksu:	_	$Grupa^1$:	
				8–10 s. 5	8–10 s.103
Wersja:	A			8–10 s.105	8–10 s.140
				12–14 LPA	14–16 s.105

Zadanie 6 (5 punktów). Które z poniższych zdań są prawdziwe dla dowolnych formuł φ i ψ rachunku zdań?

8-10 s.104

12-14 zaaw

14-16 s. 139

- 1. Jeśli $\varphi \lor \psi$ jest spełnialna oraz ψ jest sprzeczna, to φ jest spełnialna.
- 2. Jeśli $\varphi \lor \psi$ jest tautologią oraz ψ jest spełnialna, to φ jest spełnialna.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 7 (5 punktów). Rozważmy spójnik logiczny \oplus zdefiniowany tabelką

φ	ψ	$\varphi \oplus \psi$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Spójnik ten jest czasem nazywany alternatywą wykluczającą lub xor. Udowodnij przez indukcję, że każda formuła zbudowana wyłącznie ze zmiennej zdaniowej p i spójnika \oplus (oraz nawiasów) jest równoważna jednej z dwóch formuł: p lub \perp .

Zadanie 8 (5 punktów). Niech A, B i C będą dowolnymi zbiorami. Udowodnij, że $A \subseteq A \cup B$ i $B \subseteq A \cup B$. Udowodnij, że jeśli $A \subseteq C$ oraz $B \subseteq C$, to $A \cup B \subseteq C$. Innymi słowy suma zbiorów A i B jest najmniejszym (w sensie inkluzji) zbiorem zawierającym zbiory A i B.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

			G 1		
	Numer indeksu:	1	Grupa ¹ : 8-10 s. 5	8-10 s.103	8–10 s.104
Wersja:			8–10 s. 5 8–10 s.105	8–10 s.103 8–10 s.140	12–14 zaaw
Weisja.			12–14 LPA	14–16 s.105	14–16 s.139
]	12 14 LIN	14 10 5.100	14 10 5.100
	Logika dla infor	ma	tyków		
	Sprawdzian nr 1, 21 czas pisania: 30+		-		
	_				
Zadanie 1 (2 punk równoważną formule	ty). W prostokąt poniżej wpis: $\neg(p \Rightarrow (q \land r))$	z foi	rmułę w dysju	nkcyjnej posta	ci normalnej
	ty). Jeśli zbiór klauzul $\{s \lor q,$				
	ej wpisz rezolucyjny dowód sp ziowanie spełniające ten zbiór.	rzec	znosci tego zb	noru. w przec	ıwnym przy-
- Paaka wpisz wartose	nowanie spermające ten zbior.				
$A \cap (B \cup C) \neq B \cap (A$	kty). Jeśli istnieją takie zbior $\cup C$), to w prostokąt poniżej w				
vv przeciwnym przyj	padku wpisz słowo "NIE".				

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). W prostokąt poniżej wpisz dowód tautologii
$((p \Rightarrow q) \land (p \Rightarrow r)) \Rightarrow (p \Rightarrow (q \land r))$
w systemie naturalnej dedukcji.
Zadanie 5 (2 punkty). Mówimy, że liczby m i n są $względnie pierwsze$, jeśli nie mają innych niż 1 wspólnych dzielników. Na przykład liczby 14 i 15 są względnie pierwsze, a 12 i 15 nie są względnie pierwsze, bo 3 jest wspólnym dzielnikiem 12 i 15. Używając tylko kwantyfikatorów, zmiennych, nawiasów, spójników \land , \lor , \Rightarrow , \Leftrightarrow i symboli $+$, $-$, \times , $=$, \neq wpisz prostokąt poniżej formułę, która, interpretowana w zbiorze liczb naturalnych, mówi że liczby m i n nie sq względnie pierwsze.

		Numer indeksu:	Grupa ¹ :		
			8–10 s. 5	8–10 s.103	8–10 s.104
Wersja:	C		8 10 s. 105	8–10 s.140	12–14 zaaw
			12–14 LPA	14–16 s.105	14–16 s.139

Zadanie 6 (5 punktów). Które z poniższych zdań są prawdziwe dla dowolnych formuł φ i ψ rachunku zdań?

- 1. Jeśli $\varphi \Leftrightarrow \psi$ jest spełnialna oraz ψ jest sprzeczna, to φ jest sprzeczna.
- 2. Jeśli $\varphi \Leftrightarrow \psi$ jest tautologią oraz ψ jest spełnialna, to φ jest spełnialna.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 7 (5 punktów). Rozważmy spójnik logiczny \oplus zdefiniowany tabelką

φ	ψ	$\varphi \oplus \psi$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Spójnik ten jest czasem nazywany alternatywą wykluczającą lub xor. Udowodnij przez indukcję, że dla każdej formuły zbudowanej wyłącznie ze zmiennych zdaniowych i spójnika \oplus (oraz nawiasów) istnieje równoważna jej formuła zbudowana wyłącznie ze zmiennych zdaniowych i spójników \Leftrightarrow , \neg (oraz nawiasów).

Zadanie 8 (5 punktów). Niech A, B i C będą dowolnymi zbiorami. Udowodnij, że $A \cap B \subseteq A$ i $A \cap B \subseteq B$. Udowodnij, że jeśli $C \subseteq A$ oraz $C \subseteq B$, to $C \subseteq A \cap B$. Innymi słowy przekrój zbiorów A i B jest największym (w sensie inkluzji) zbiorem zawartym w zbiorach A i B.

¹Proszę zakreślić właściwą grupę ćwiczeniową.