NAME

NOBONITA NONDE

<u>ID</u>

20-43819-2

COURSE

INTRODUCTION TO DATA SCIENCE

SECTION

E

DEPARTMENT

COMUTER SCIENCE AND ENGINEERING

SUBMISSION DATE

13.03.23

Descriptions of the Project:

This dataset contains information on caesarean section outcomes for 80 pregnant women with key features of childbirth problems in the medical field. The dataset uses various columns such as age, number of deliveries, delivery time, blood pressure, and heart condition. Here, delivery times are divided into Premature, Timely and Latecomer. Blood pressure is also classified as low, normal, and high mood. Finally, for heart problems is classified with apt and inept. There are missing values, noisy values, they should be preprocessed, and the dataset should be filled without missing. To get a clean preprocessed dataset which would be free of any discrepancies we might be using some preprocessing techniques which are data cleaning, data transformation, data reduction, data discretization, data integration, clean data, verification.

Data Preprocessing for the data set:

For age and weight we can use the mean value to find out the missing values.

Task 1:

Age:

#to import missing value

is.na(Dataset midterm\$Age) <- Dataset midterm\$Age == 0

Dataset_midterm\$Age = ifelse(is.na(Dataset_midterm\$Age),ave(Dataset_midterm\$Age, FUN = function(x) mean(x, na.rm = TRUE)),Dataset midterm\$Age)

Figure 1: Task 1

Figure 2: task 1

Task 2:

Weight:

#to import missing value

is.na(Dataset midterm\$'weight(kg)') <- Dataset midterm\$'weight(kg)' == 0

Dataset midterm\$`weight(kg)` =

ifelse(is.na(Dataset_midterm\$`weight(kg)`),ave(Dataset_midterm\$`weight(kg)`,

FUN = function(x) mean(x, na.rm = TRUE)),Dataset_midterm\$`weight(kg)`)

Figure 3: task 2

Figure 4: task 2

There are some **noisy values** in Age and Weight Column. Now we have to remove the **noisy value** from the age and weight column with some mean value.

Age:

is.na(Dataset_midterm\$Age) <- Dataset_midterm\$Age == 95
Dataset_midterm\$Age = ifelse(is.na(Dataset_midterm\$Age),ave(Dataset_midterm\$Age,
FUN = function(x) mean(x, na.rm = TRUE)),Dataset_midterm\$Age)
print(Dataset_midterm)</pre>

Figure 5: task 3

is.na(Dataset_midterm\$Age) <- Dataset_midterm\$Age == 90
Dataset_midterm\$Age = ifelse(is.na(Dataset_midterm\$Age),ave(Dataset_midterm\$Age,
FUN = function(x) mean(x, na.rm = TRUE)),Dataset_midterm\$Age)</pre>

id	÷	Age ‡
	65	31.00000
	66	35.00000
	67	28.00000
	68	29.00000
	69	25.00000
	70	27.00000
	71	28.07436

Figure 6: task 3

Weight:

id ‡	Age [‡]	weight(kg)		
57	32.00000	07.50000		
58	95.00000	64.55926		

Figure 7: task 4

_	id ‡	Age 🗦	weight(kg)	[
65	65	31.00000	66.00000	
66	66	35.00000	72.00000	
67	67	28.00000	62.50000	
68	68	29.00000	64.50000	
69	69	25.00000	62.00000	
70	70	27.00000	61.00000	
71	71	90.00000	64.04736	

Figure 8: task 4

Delivery number missing value finding:

Task 5:

#to import missing value

is.na(Dataset midterm\$Delivery number) <- Dataset midterm\$Delivery number == 0

Dataset_midterm\$Delivery_number =

ifelse(is.na(Dataset midterm\$Delivery number),ave(Dataset midterm\$Delivery number,

FUN = function(x) mean(x, na.rm =

TRUE)),Dataset_midterm\$Delivery_number)

Figure 9: task 5

Delivery time missing value finding:

Task 6:

is.na(Dataset midterm\$Delivery time) <- Dataset midterm\$Delivery time == 0

Dataset midterm\$Delivery time =

ifelse(is.na(Dataset_midterm\$Delivery_time),ave(Dataset_midterm\$Delivery_time,

FUN = function(x) mean(x, na.rm =

TRUE)), Dataset midterm\$Delivery time)

Figure 10: task 6

Figure 11: task 6

For missing value of Blood pressure:

```
Task 7:

Suppose,

High = 0

Normal = 1

Low = 2

Dataset_midterm$Blood = factor(Dataset_midterm$Blood,

levels = c('high','normal','low'),

labels = c(0,1,2)

)
```


Figure 12: task 7

Figure 13: task 7

Figure 14: task 8

2 is mode value, so 2 will take place of the N/A

For missing value of caesarian:

Task 9:

x<-

f<-table(x)

which(f==max(f))

Figure 15: task 9

Here mode value is 1, so all the NA values can be replaced with 1.

Conclusion:

The target of getting a fulfilled data set is complete through the preprocessing of data set. As part of this project, we dealt with missing data with mean and mode, noisy value and discretized some data and with all this I have completed my preprocessing of data set.

•	id [‡]	Age [‡]	weight(kg)	Delivery_number	Delivery_time	Blood [‡]	Heart [‡]	Caesarian [‡]
27	27	18.00000	50.00000	1.000000	1.5	0	1	1
28	28	30.00000	68.00000	1.000000	1.5	1	0	0
29	29	32.00000	73.00000	1.000000	1.5	0	1	1
30	30	26.00000	62.50000	2.000000	1.0	1	1	0
31	31	25.00000	58.00000	1.000000	1.5	2	0	0
32	32	40.00000	82.00000	1.000000	1.5	1	1	1
33	33	32.00000	68.00000	2.000000	1.5	0	1	1
34	34	27.00000	63.00000	2.000000	1.5	1	1	1
35	35	26.00000	59.00000	2.000000	2.0	1	0	1
36	36	28.00000	66.00000	3.000000	1.5	0	0	1
37	37	33.00000	75.00000	1.000000	1.0	1	0	0
38	38	31.00000	69.00000	2.000000	2.0	1	0	0
39	39	31.00000	63.00000	1.000000	1.5	1	0	0
40	40	26.00000	59.00000	1.000000	2.0	2	1	1
41	41	27.00000	63.00000	1.000000	1.5	0	1	1
42	42	19.00000	51.00000	1.000000	1.5	1	0	1

Figure 16: A complete Data Set