(p+2) est: 20 %	α=-10 α=2.5 α=-2.5 K=10 K=5 K=1 T= 8
La constante de temps T du système $G(p) = \frac{8}{p+4}$ est:	T= 0.25
Exercice 9 l'équation de Riccati du Problème de CO Système $\begin{cases} \dot{x} = 2x + 7u , x(0) = 2 \\ \text{Critère à minimiser } J = \frac{1}{2} \int_{0}^{\infty} (5y^{2} + 4u^{2}) dt \end{cases}$	KA+A ^T K-KBR- ¹ B ^T K+Q=0 K+KA+A ^T K-KBR- ¹ B ^T K+C ^T QC=0
y = 2.8 x 10 l'équation de Riccati du Problème de CO	KA+A'K-KBR'B'K+C'QC=0
Système $\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$	Pm 1 - 1 Pm B (R+B Pm B) B Pm 1
Critère à minimiser $J = \frac{1}{2} \sum_{k=0}^{\infty} (0.5)^{-2k} \left(x_k^T Q x_k + u_k^T R u_k \right)$ $P = Q + \frac{\Lambda^T}{r}$	- 'R-'** P B (R+B' P B)' B' P A

TD de COptimale 2

Mettre une croix « X » dans la bonne case

	$A = \begin{bmatrix} 3 & 3 \\ 2 & 2 \end{bmatrix}$	
<i>></i>	$A = \begin{bmatrix} 3 & 3 \\ 3 & 2 \end{bmatrix}$	
	$A = \begin{bmatrix} 3 & 1 \\ 1 & 6 \end{bmatrix}$	la matrice A associée à la forme quadratique $P(x,y) = 3x^3 + 2y^3 + 6xy$
43	$H(x, y, z) = 2x^{3} + 6y^{3} + 18z^{3} + xy + 3yz$	[2 0 18]
77.00	$H(x, y, z) = 2x^{2} + 6y^{2} + 18z^{2} + 3xy + 5xz$	la forme quadratique H(x,y,z) associée à la matrice B = 1 6 0
×	$H(x,y,z) = 2x^{3} + 6y^{3} + 18z^{3} + xy + 7xz$	Exercice 2
	$Q(x,y) = 15x^3 + 2y^3 + 19xy$	
×	$Q(x, y) = 2x^{3} + 15y^{3} + 19xy$	la forme quadratique Q(x,y) associée à la matrice $A = \begin{bmatrix} 2 & 9 \\ 10 & 15 \end{bmatrix}$
	$Q(x, y) = 2x^{3} + 19y^{3} + 15xy$	Exercice

声点

Exercice 16	b=3
Compléter le gain de Riccati $K = \begin{bmatrix} 5 & b \\ b & 2 \end{bmatrix}$	b=4
	b=1.5
Exercice 17 le critère associé au Problème de Poursuite d'état à horizon fini	$J = \frac{1}{2} \sum_{k=0}^{133} r^{-2k} \left[(x_k - 8)^T Q (x_k - 8) + u_k^T R u_k \right] \times avec R = J.$
Système $\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$	$\mathbf{J} = \frac{1}{2} \sum_{k=0}^{\infty} \left[(\mathbf{x}_k - 8)^{T} \mathbf{Q} (\mathbf{x}_k - 8) + \mathbf{u}_k^{T} \mathbf{R} \mathbf{u}_k \right]$
ou accuse riponse.	$J = \frac{1}{2} \int_0^{135} ((x-8)^2 + Ru^2) dt$

Exercice 18 Le système $F(p) = \frac{10}{p^2 + 3p + 2}$	Oui	
est Oscillatoire amorti (z < 1) ?	Non	×
Exercice 19 Le système $H(p) = \frac{5}{p^2 + 2p + 4}$	Oui	320 ,
est Hyper amorti (z > 1) ?	Non	×

Exercice 20	Régulation d'état avec degré de stabilité 2
le Type de Problème de CO	A horizon infini
Système $\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$	Régulation de sortie avec Perturbation 2
$y_k = Cx_k$	à horizon fini
avec min $J = \frac{1}{2} \sum_{k=0}^{201} \left[(x_k - 2)^T Q(x_k - 2) + u_k^T R u_k \right]$	Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 20 27 27 27	Poursuite d'état désirée 2 à horizon fini X

Fin ./.

	P _k =C ^T QC+A ^T P _{w1} A-A ^T P _{w1} B(R+B ^T P _{w1} B) ^T B ^T P _{w1} A	$y_{1}J = \frac{1}{2}\sum_{k=0}^{\infty}(0.6)^{-2k}(y_{k}^{T}Qy_{k} + u_{k}^{T}Ru_{k})$
×	$P_{k} = C^{T}QC + \frac{A^{T}}{r} P_{km} \frac{A}{r} \cdot \frac{A^{T}}{r} P_{km} \frac{B}{r} (R + \frac{B^{T}}{r} P_{km} \frac{B}{r})^{t} \frac{B^{T}}{r} P_{km} \frac{A}{r}$	
	P. =Q+ATPA-ATPB(R+BTPB)'BTPA	Exercice 20 l'équation de Riccati du Problème de CO
		Critère à minimiser $J = \frac{1}{2} \sum_{k=0}^{\infty} (x_k^T Q x_k + u_k^T R u_k)$
	$P=Q+\frac{A^{T}}{r}P\frac{A\cdot A^{T}}{r}P\frac{B}{r}(R+\frac{B^{T}}{r}P\frac{B}{r})^{+}\frac{B^{T}}{r}P\frac{A}{r}$	
X		
	P. "C'QC+A'P.,, A-A'P.,, B(R+B'P.,, B)'B'P.,, A	ion de Riccati du Problème de CO
	KA+ATK-KBR-BTK+CTQC=0	Système { y = (2) x Cintere a millimissor 2 Jo
	K+KA+ATK-KBR-BTK+Q=0	$(\dot{x} = 12x + 17u + x(0) = 1)$
	K+KA+ATK-KBR-BTK+CTQC=0	Péquation de Riccati du Problème de CO
	KA+ATK-KBR-BTK+CTQC=0	Système $\begin{cases} x = 5x + 1/u , x(0) = 2x \text{ Critère à minimiser } J = \frac{1}{2}J_0 \text{ (by You)} J_0 \\ y = 8x \end{cases}$
×	K+KA+ATK-KBR-BTK+CTQC=0	Exercice 17 l'équation de Riccati du Problème de CO
	VALATK-KBR'BIK+O=0	La constante de sempe : 4p + 4
	T=4	est:
×	Tal.	Exercice 16
	Tu 7	La constante de temps i du systeme K(p) = 4p+1
×		8 est
	Tal	Exercise 15
	1.00	

Exercice 6		α=-2	1
Compléter a = ? du gain de Riccati			
$K = \begin{bmatrix} \alpha & 0.5 \\ 0.5 & 1 \end{bmatrix}$		α = 0.3	×
		$\alpha = 0.2$	
Système $\begin{cases} \dot{x} = 1.2x + 7.5u , x(0) = 20 \end{cases}$		K+KA+ATK-KBR-1BTK+Q=0	T
y = 2 x		K+KA+A ^T K-KBR-B ^T K+C ^T QC=0	×
Avec Critère à minimiser $J = \frac{1}{2} \int_{0}^{\infty} (2y^2 + 6u^2) dt$		KA+A ^T K-KBR- ¹ B ^T K+C ^T QC=0	19
Exercice 8 l'équation de Riccati du Problème de CO	P, =Q+	$A^{T} P_{k+1} A - A^{T} P_{k+1} B (R + B^{T} P_{k+1} B)^{-1} B^{T} P_{k+1} A$	1×
Système $\begin{cases} x_{k-1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$	P. =Q+	$\frac{A^{T}}{r} P_{k+1} \frac{A}{r} - \frac{A^{T}}{r} P_{k+1} \frac{B}{r} (R + \frac{B^{T}}{r} P_{k+1} \frac{B}{r})^{-1} \frac{B^{T}}{r} P_{k+1} \frac{A}{r}$	-
Critère à minimiser	·	tr r r mrr mr	X
$\mathbf{J} = \frac{1}{2} \sum_{k=0}^{169} (1)^{-2k} \left(\mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k \right)$	P=Q+A	$P \stackrel{A}{r} \stackrel{A}{r} P \stackrel{B}{r} (R + \frac{B^{T}}{r} P \stackrel{B}{r})^{T} \stackrel{B}{r} P \stackrel{A}{r}$	\vdash
Exercice 9			
		K=20	
Le gain statique K du système :		K=20	_
Le gain statique K du système : $G(p) = \frac{20}{(3p+4)(p^2+p+2.5)}$		K=20	_
$G(p) = \frac{20}{(3p+4)(p^2+p+2.5)}$ Exercice 10	Lare v	K=1	
$G(p) = \frac{20}{(3p+4)(p^2+p+2.5)}$ Exercice 10	_12	K=1 K=2 T= 3	X
$G(p) = \frac{20}{(3p+4)(p^2+p+2.5)}$ Exercice 10	$\frac{12}{3p+3}$	K=1 K=2 T= 3 est T= 1	
Le gain statique K du système : $G(p) = \frac{20}{(3p+4)(p^3+p+2.5)}$ Exercice 10 La constante de temps T du système H(p) =	12 3p + 3	K=1 K=2 T= 3 est T= 1	x

3 Avril 2021

Devoir de contrôle en Commande Optimale GEA2

Pat: Mohamed Maceur ABDELKRIM & Manel CHETOUI

Documents: Non autorisée Durée: 1h30 Nombre de pages : 1 et Extrait utile CO.

Exercice 1 : (4= 2+2 points)

If Donner la forme quadratique Q(x,y) associée à la matrice $A = \begin{bmatrix} 5 & 5 \\ 1 & 4 \end{bmatrix}$. Puis étudier son signe à partir d'une matrice convenable.

d'étudier son signe. 2) Donner une matrice B associée à la forme quadratique $H(x,y,z) = 16x^3 + y^3 + 10xy + 2yz$ qui permet

Exercise 2 : (6=2+2+2 points)

Préciser la nature de chaque Problème et donner l'équation de Riceati convenable

1=\frac{7}{1}\bigce_{10}^{\epsilon}c_{11}[2\lambda_3+\perior 1]q1	$x \in \{X\}$	
	$01 = (0)x \cdot u0 + x2 = x$	Problème 3
$1 = \frac{1}{1} \int_{-\infty}^{\infty} (\lambda \lambda_1 + 2n_1) dt$	$0\zeta = (0)x , 0 = u\zeta + x8 - = \dot{x}$ $x \xi = \chi$	Problème 2
$\int_0^\infty \left[6(x-10)^2 + 3u^2 \right] dt$	02 = (0)x, $u0 + x2 = x$	Problème I
rictre à minimiser	Système et C	Problème

Soit le système suivant : (S) : $\begin{bmatrix} x \\ x \end{bmatrix} = X$, $\begin{bmatrix} 01 \\ 02 \end{bmatrix} = (0)X$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + X \begin{bmatrix} 0 \\ 2 \end{bmatrix} + X \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \dot{X}$: (C) : Interview of the système suivant X = X = X = X

 $J = \frac{1}{2} \int_0^\infty (x_1^2 + x_2^2 + u^2) dt$ alors donner l'équation de cette commande optimale. Préciser la nature de ce problème si l'on veut que la commande optimale minimise le critère

2) Complèter le calcul du gain de Riccati : $K = \begin{bmatrix} 0.48 & -0.33 \\ -0.33 & \alpha \end{bmatrix}$ avec $1.5 < \alpha < 2.5$;

Conclure. 3/ Vérifier que le système optimal est stable. Donner la valeur de la sortie en régime permanent y (∞).

I/ Reformuler ce problème pour que l'état du système soit proche de [2].

2) Donner l'équation de la nouvelle commande u(t).

3/ Donner un schéma fonctionnel du système commandé

Exercice 15	9=0	-
Compléter le gain de Riccati $K = \begin{bmatrix} 5.2 & 2.1 \\ 2.1 & a \end{bmatrix}$	a=1.8	×
Exercice 16 le critère associé au Problème de Poursuite d'état du	$J = \frac{1}{2} \sum_{k=0}^{\infty} r^{-2k} \left[(x_k - 8)^T Q(x_k - 8) + u_k^T R u_k \right]$	
Système (y, = Cx, Thu,	$J = \frac{1}{2} \sum_{k=0}^{\infty} \left[(x_k - 8)^T Q(x_k - 8) + u_k^T R u_k \right]$	×
Exercice 17 l'équation de Commande Auxiliaire du Problème de CO	q+{A ^T -KBR'B ^T]q+Ky=0	×
Système $\begin{cases} x = 2x + /u + 0.5, & x(0) = 10 \text{ Critère à minimiser } J = \frac{1}{2} \int_0^{\infty} (6x^2 + 6u^2) dt \\ y = 9x \end{cases}$	q+[A ^T -KBR ⁻¹ B ^T]q+C ^T Qy ₄ =0	
Exercice 18 l'équation de Riccati du Problème de CO	K+KA+ATK-KBR-BTK+CTQC=0	
Système $\int \dot{x} = 12x + 17u$, $x(0) = 1$ Critère à minimiser $J = \int_{-\infty}^{\infty} (9x^2 + 14u^2) dt$	K+KA+ATK-KBR-BTK+Q=0	
	KA+A ^T K-KBR- ¹ B ^T K+Q=0	×
.p	=Q+ATP _{b+1} A-ATP _{b+1} B(R+BTP _{b+1} B)-BTP _{b+1} A	+
Système $\{x_1 = Cx_1, Critere a minimiser J = \frac{2}{2} \sum_{k=0}^{\infty} (0.0) (x_k \nabla x_k + u_k \nabla u_k) \}$ $\{y_k = Cx_k, Cx_k + u_k \nabla u_k\}$	$\frac{A^{T}}{r}P_{t+1}\frac{A}{r}\frac{A^{T}}{r}P_{t+1}\frac{B}{r}(R+\frac{B^{T}}{r}P_{t+1}\frac{B}{r})^{T}\frac{B^{T}}{r}P_{t+1}\frac{A}{r}$	×
Exercice 20 le Type de Problème de CO	Régulation d'état avec degré de stabilité 7	_
Système $\begin{cases} \mathbf{I}_{\lambda+1} = \mathbf{A}\mathbf{I}_{\lambda} + \mathbf{B}\mathbf{u}_{\lambda} & \text{avec min } \mathbf{J} = \frac{1}{2} \sum_{k=0}^{100} \left[(\mathbf{y}_{k} - 7)^{T} \mathbf{Q} (\mathbf{y}_{k} - 7) + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right] \end{cases}$ Pours	Poursuite de sortie désirée 7 à horizon fini	*

5p' + p + 1 (c'est à dire facteur d'amortissement z < 1)	Non , car	
Exercice 12 Le système $H_1(p) = \frac{4}{5p^2 + p + 1}$ a deux pôles complexes	Oui alors donner ses pôles : X	
You the All The Land Comments of the Comments	C = 5 4 6 0 2 3	
	[2 4 0]	
$Q(x,y,z) = 2x^{2} + 3y^{2} + 4z^{3} + 10xy + 8yz$	$C = \begin{bmatrix} 2 & 5 & 0 \\ 5 & 3 & 6 \\ 0 & 2 & 4 \end{bmatrix} $	
la matrice C associée à la forme quadratique	$C = \begin{bmatrix} 2 & 10 & 0 \\ 0 & 3 & 0 \\ 0 & 8 & 4 \end{bmatrix} $	
Exercice 11	[2 10 0]	

Exercice 13 l'équation de Commande Auxiliaire du Problème de CO Système $\begin{cases} \dot{x} = x + u + 2 , x(0) = 8 \\ y = 3x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_0^\infty (3x^2 + 5u^2) dt$	$\dot{q}+[A^T-KBR^{-1}B^T]q+K\underline{y}=0$ $\dot{q}+[A^T-KBR^{-1}B^T]q+C^TQ\underline{y}_4=0$ $\dot{q}+[A^T-KBR^{-1}B^T]q+KB=0$	\ ×
Exercice 14 I'équation de Riccati du Problème de CO Système $\begin{cases} \dot{x} = 12 x + 6 u , x(0) = 1 \\ y = 5 x \end{cases}$	24K-18K ² +75=0 (q ²) K+24K-18K ² +9=0	7
Critère à minimiser $J = \frac{1}{2} \int_0^{\infty} (3y^2 + 2u^2) dt$ Exercice 15	$24K-18K^{2}+9=0$ $J=\frac{1}{2}\int_{4}^{36}e^{2t}((x-1)^{2}+3u^{2})dt$	1
le critère J à minimiser du Problème de poursuite d'état à horizon fini avec degré de stabilité 2 du système : $\dot{x} = -5x + 2u + 3$, $x(0) = 4$	$J = \frac{1}{2} \int_0^{100} e^{4t} ((x-5)^2 + 2u^2) dt$	X
	$J = \frac{1}{2} \int_0^{\infty} 2 ((x-2)^2 + 8u^2) dt$	

TD Commande Optimale - 4

Garder la bonne réponse

et

Justifier brièvement votre réponse

Exercice 1		$Q(x,y) = 4x^3 - 2y^3 + 10xy$	1
la forme quadratique Q(x,y) associée à la matr $A = \begin{bmatrix} 4 & -2 \\ 8 & 10 \end{bmatrix}$	rice	$Q(x,y) = 4x^{3} + 10y^{3} + 6xy$ $Q(x,y) = 4x^{3} + 10y^{3} - 16xy$	×
* · · · · · · · · · · · · · · · · · · ·		$A = \begin{bmatrix} 7 & 14 \\ 0 & 7 \end{bmatrix}$	-17-4
Exercice 3 Corriger 3 erreurs dans la forme quadratique	H(x,	$y,z) = 5x^2 - 3y^2 + z^2 - 8xy - 2x$	1
$I(x,y,z) = 2 + 5x^2 - 3y^2 + z^2 - 8xy - 2xzy$	H(x,	$(y,z) = 5x^{2} - 3y^{2} + z^{2} - 8xy - 2zy$	×
	H(x,	$(x,z) = 2 + 5x^3 - 3y^3 + z^3 - 8xy$	
retime avec le Critique à minimient		Régulation d'état à horizon fini	
stème avec le Critère à minimiser $x = 2x + 3u$, $x(0) = 3$ $y = \frac{1}{2} \int_0^{10} 5(y^2 + u^2) dt$		Poursuite de sortie à horizon fini	
aucune reponte.		Régulation de sortie à horizon infi	ni
ercice 5 critère J à minimiser du Problème de Poursui tie à horizon infini du système = 2x +3.8u , x(0) = 20	ite de	$J = \frac{1}{2} \int_0^{\infty} (2x^2 + 3u^2) dt$	
est:		$\mathbf{J} = \frac{1}{2} \sum_{k=0}^{m} (0.5)^{-2k} \left(\mathbf{x}_{k}^{T} \mathbf{Q} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right)$	
		$J = \frac{1}{2} \int_0^{\infty} 5((y-7)^2 + u^2) dt$	

TD de COptimale

Mettre une croix « X » dans la bonne case

x	$A = \begin{bmatrix} 7 & 5 \\ 0 & 10 \end{bmatrix}$ $A = \begin{bmatrix} 7 & 5 \\ 5 & 8 \end{bmatrix}$ $A = \begin{bmatrix} 7 & 25 \\ 0 & 8 \end{bmatrix}$ $H(x,y,z) = 5x^3 - 3y^3 + z^3 + 7xy + 16x^3z - 2z$ $H(x,y,z) = 5x^3 - 3y^3 + z^3 + 7xy + 16xz - 2yz$ $H(x,y,z) = 5x^3 - 3y^3 + z^3 + 7xyz + 16xz - 2yz$ $H(x,y,z) = 5x^3 - 3y^3 + z^3 + 7xyz + 16xz - 2yz$ $H(x,y,z) = 5x^3 - 3y^3 + z^3 + 7xyz + 16xz - 2yz$ $Regulation de sortie à horizon fini$ $Poursuite de sortie à horizon infini$ $J = \frac{1}{2} \int_0^{10} (2y^3 + 3u^3) dt$ $J = \frac{1}{2} \int_0^{10} (2x^3 + 3u^3) dt$ $J = \frac{1}{2} \int_0^{10} (2x^3 + 3u^3) dt$	t	Exercice 3 Corriger 3 erreurs dans la forme quadratique $P(x,y) = 7x^3 + 8y^3 + 10xy$ Exercice 3 Corriger 3 erreurs dans la forme quadratique $H(x,y,z) = 5x^3 - 3y^3 + z^3 + 7xyz + 16x^3z - 2z$ Exercice 4 le Type de Problème de CO Système $\begin{cases} \dot{x} = 1.3x + 3u \ y = 1.7x \end{cases}$ Exercice 5 Le critère J à minimiser du Problème de Régulation d'état à horizon infini du système : $\dot{x} = 0.2x + 3u$, $\dot{x}(0) = 10$ est :
×			la forme quadratique $Q(x,y)$ associée à la matrice $A = \begin{bmatrix} 4 & 7 \\ 7 & 10 \end{bmatrix}$
	$O(x, y) = 4x^3 + 14y^3 + 10xy$		Exercice 1

TD3 de C.Optimale 3

Mettre une croix « X » dans la bonne case

Exercice 8	Cxercice /	i			Exercice 6 l			Exercice 5		Exercice 4		Exercice 3		Exercice 2		Exercice 1
La forme ou	a torne qua				a constante o			La constante		Le système		Le système		Le système		Le système
la forme quadratique O(x v z) associée à la matrice. R = 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Exercise / la forme quadranque $n(x,y,z)$ associed à la marice $A = \begin{bmatrix} 1 & 10 & 0 \\ 7 & 0 & 6 \end{bmatrix}$	[2 3]		5+10p	Exercice 6 La constante de temps T et le gain statique K de $G_{\cdot}(p) = \frac{25}{100}$ sont		2+3p	Exercice 5 La constante de temps T et le gain statique K de $G_{(p)} = \frac{6}{}$ sont	p'+p+2	Exercice 4 Le système H (p) = 10 est Hyper amorti (z > 1) >> 1 (= -14.	+ 3p)	Exercice 3 Le système H (p) = 15 est Oscillatoire amorti (z < 1)	5p'+p+1 A40	Exercice 2 Le système H, (p) = 4 a deux pôles complexes (z < 1)		Exercice 1 Le système H (p) = 5 a deux pôles réels (z > 1)
Q(x,y,z) = 2x' + 6y' + 18z' + 4xy + 7xz	$H(x, y, z) = 2x^{3} + 18y^{3} + 6z^{3} + 4xy + 8xz$	$H(x, y, z) = 2x^{3} + 18y^{3} + 6z^{3} + 2xy + 10xz$	K=5, T= 10	K=25, T= 10	K=5, T= 2	K=3, T=3	K=3, T= 1.5	K=6, T= 3	non	oui	non	oui	non	oui	non	oui
	-	×	-		×		×		×		×	_		×		×

le critère J à minimiser du Problème de Régulation d'état à horizon fini du système : x = 5x + 30u , x(0) = 5 Exercice 10	$J = \frac{1}{2} \int_{0}^{\infty} (2x^{3} + 8u^{3}) dt$ $J = \frac{1}{2} \int_{0}^{4s} (7y^{3} + 5u^{3}) dt$ $J = \frac{1}{2} \int_{0}^{4s} (5x^{3} + 7u^{3}) dt$	
le critère J à minimiser du Problème de Régulation d'état avec degré de stabilité 5	$J = \frac{1}{2} \int_{0}^{\infty} e^{2\pi t} (3x^{2} + 5u^{2}) dt$	
à horizon infini du système : $\dot{x} = 12x + 31u$, $x(0) = 7$	$J = \frac{1}{2} \int_{0}^{6} e^{3t} (3x^{2} + 5u^{2}) dt$	
Exercice 11	$J = \frac{1}{2} \int_{0}^{\pi} (2x^{3} + 3u^{3}) dt$	
	a=1	
Compléter le gain de Riccati K = 2 a	a=5	
	n=3	
Exercice 12	b=-5	
Compléter le gain de Riccati K = b 2	b=5	,- 13
[د ک]	b=1	
Exercice 13	K=10	-
	K-5	
(5p+1)(2p+1)	K=1	
Exercice 14	K=10	
10	K=5	
Le gain standor n du systeme $G(p) = \frac{1}{(5p+1)(p^2 + p + 2)}$	K=1	

associée à la forme quadratique R(x,y,z)=x³+2y³+3z³+0	$Q(x,y,z) = 2x^{3} + 6y^{3} + 18z^{3} + 4xy + 7yz$ $C = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 2 & 1 \\ 0 & -1 & 3 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 2 & 1 \\ 0 & -1 & 3 \end{bmatrix}$	
Exercice 10 $F(x,y,z) = x^2y + y^2 + 2z^2 + 5xy + 9xz$ $F(x,y,z) = x^2y + y^2 + 2z^2 + 5xy + 9xz$	$F(x,y,z) = x^3 + y^3 + 2z^3 + 5xy + 9xz$ $F(x,y,z) = x^3y + y^3x + 2z^3y + 5xyz$	×
Exercice 11 le Type de Problème de CO Système $\begin{cases} \dot{x} = 6x + 3u , x(0) = 8 \\ y = 7x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_{0}^{\infty} (3(7-y)^{3} + 5u^{3}) dt$	Régulation de sortie à horizon fini Poursuite de sortie à horizon fini	×
-	Régulation d'état à horizon infini avec degré de stabilité	×
Système $\begin{cases} x = 3x + 2u , x(0) = 2 \\ y = 8x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_{0}^{\infty} e^{12t} (2x^2 + 6u^2) dt$	Poursuite d'état à horizon infini	
Exercice 13 le critère J à minimiser du Problème de Régulation d'état avec perturbation	$J = \frac{1}{2} \int_{0}^{\infty} (2x^{3} + 8u^{3}) dt$	×
du système: $\dot{x} = 5x + 30u + 0.2$, $x(0) = 0.2$	$J = \frac{1}{2} \int_0^{\infty} (6y^2 + 5u^2) dt$	_
Exercice 14 le critère J à minimiser du Problème de poursuite d'état avec degré de stabilité 1.5	$J = \frac{1}{2} \int_{0}^{\infty} e^{2t} (2(x-3)^{2} + 5u^{2}) dt$	×
du système: $\dot{x} = 1.5x + 9u$, $x(0) = 1.5$	$J = \frac{1}{2} \int_0^{\infty} 1.5(2(z-3)^2 + 5u^2) dt$	

डह

Exerci

