Nonlinear Regression – Part IV

Johns Hopkins Engineering

625.461 Statistical Models and Regression

Module 14 – Lecture 14B

$$y = f(x, \theta_1, \theta_2) + \varepsilon = \frac{\theta_1 x}{\theta_2 + x} + \varepsilon$$

$$\frac{\partial f(x,\theta_1,\theta_2)}{\partial \theta_1} = \frac{x}{\theta_2 + x} \quad \text{and} \quad \frac{\partial f(x,\theta_1,\theta_2)}{\partial \theta_2} = \frac{-\theta_1 x}{(\theta_2 + x)^2}$$

Set initial value: $\theta_{10} = 205$, $\theta_{20} = 0.08$.

$$\hat{\boldsymbol{\beta}}_0 = \begin{bmatrix} 8.03 \\ -0.017 \end{bmatrix}$$

$$S(\boldsymbol{\theta}_0) = 3155$$

TABLE 12.2 Data, Fitted Values, Residuals, and Derivatives for the Puromycin Data at $\hat{\theta}_0' = [205, 0.08]'$

i	x_l	y _i	f_i^0	$y_i - f_i^0$	Z^0_{i1}	Z_{i2}^0
1	0.02	76	41.00	35.00	0.2000	-410.00
2	0.02	47	41.00	6.00	0.2000	-410.00
3	0.06	97	87.86	9.14	0.4286	-627.55
4	0.06	107	87.86	19.14	0.4286	-627.55
5	0.11	123	118.68	4.32	0.5789	-624.65
6	0.11	139	118.68	20.32	0.5789	-624.65
7	0.22	159	150.33	8.67	0.7333	-501.11
8.	0.22	152	150.33	1.67	0.7333	-501.11
9	0.56	191	179.38	11.62	0.8750	-280.27
10	0.56	201	179.38	21.62	0.8750	-280.27
11	1.10	207	191.10	15.90	0.9322	-161.95
12	1.10	200	191.10	8.90	0.9322	-161.95

$$\hat{\boldsymbol{\theta}}_{1} = \hat{\boldsymbol{\beta}}_{0} + \boldsymbol{\theta}_{0}$$

$$= \begin{bmatrix} 8.03 \\ -0.017 \end{bmatrix} + \begin{bmatrix} 205.00 \\ 0.08 \end{bmatrix} = \begin{bmatrix} 213.03 \\ 0.063 \end{bmatrix}$$

$$S(\hat{\boldsymbol{\theta}}_1) = 1206$$

The Gauss-Newton algorithm converges at

$$\hat{\boldsymbol{\theta}} = [212.7, 0.0641]'$$
 $S(\hat{\boldsymbol{\theta}}) = 1195$

Figure 12.4 Plot of fitted nonlinear regression model, Example 12.5.

Figure 12.6 Normal probability plot of residuals, Example 12.5.

$$\hat{\sigma}^2 = MS_{\text{Res}} = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - p} = \frac{\sum_{i=1}^{n} \left[y_i - f\left(\mathbf{x}_i, \hat{\boldsymbol{\theta}}\right) \right]^2}{n - p} = \frac{S(\hat{\boldsymbol{\theta}})}{n - p}$$

$$\hat{\sigma}^2 = \frac{S(\hat{\theta})}{n-p} = \frac{1195}{12-2} = 119.5$$

$$Var(\hat{\boldsymbol{\theta}}) = \hat{\sigma}^{2} (\mathbf{Z}'\mathbf{Z})^{-1} = 119.5 \begin{bmatrix} 0.4037 & 36.82 \times 10^{-5} \\ 36.82 \times 10^{-5} & 57.36 \times 10^{-8} \end{bmatrix}$$

The correlation between $\hat{\theta}_1$ and $\hat{\theta}_2$

$$\frac{36.82 \times 10^{-5}}{\sqrt{0.4037(57.36 \times 10^{-8})}} = 0.77$$

