Ub Blat 6 Wester Aufgabe 1 a) L'régulaire sprache uper E => FDFA M= (Q, E, E, qo, F) der die sprache 2 2g: L= 5* \ L ist eine regulaire Sprache, 3DFA M'= (Q, Z, O, Q, Q), der die Sprache Z* \ L'entscheillet. Sei $\omega = \omega_1 ... \omega_n$ with $\omega \in \Sigma^* \setminus L$ $\Rightarrow \delta^* (\omega_0, \omega) \in (\Omega \setminus F) = F'$ M' extraheirle $\Sigma^* \setminus L$ denn wern or* (qo, w) & F' ware, writte gellen d*(qo, w) & F und das ist tin Wieless pmoh zur Annochme. => Theorem 3.12 => L'ist eine regulaire Sprache b) 22g L* = U L' = {w1, wn | N = No wed w1. wn ELG ist regulare Sprache That I ist regulaire s prache => R regulairer Ausdruck R. Rist regulairer Ausdruck unit L(R.R)=1(1),1(2)= {w₁... w_n ∈ No mulw₁... w_n ∈ L} R.R.Rist regulator Ausdruck L(R.R.R) = [11), 18, [3) Ry ist ein regulaiser Dusalmos für den bleerschin About L* von Lundergilt L((R)*) = L* = U L!) mit L!0= {E}, und L!i) = L.1-1

Blat 6 Aufgabe 2

a) $L_n = \{ \omega_n ... \omega_n \in \mathbb{Z}^* \mid n > n \text{ und}(\omega_n = 0 \text{ oder } \omega_n = 1\} = L_n \mathbb{R}_n \}$ $\mathbb{R}_n = \{ 0 (0+n)^* + (0+n)^* \}$

(b) $L_2 = \{ w_1 ... w_n \in \mathbb{Z}^* \mid n \ge 3 \text{ mod } \exists i \in \{1, ... n - 2\}; w_i \ne w_{i \ne w_{i \ne 2}} = 0 \}$ $R_2 = (0+1)^* o^3 (0+1)^*$

e) $L_3 = \{ w_1 ... w_n \in \mathbb{Z}^* \mid \forall i \in \{1, ..., \}: w_i = 1 \Rightarrow i < n \land w_{i+1} = 0 \} \}$ $R_3 = \{ 0 + 10 \}^*$

Blook 6 Aufgabe 4 g: NXM -> M $uu + g(x,y) = (x+y-2)(x+y-4) + y = y + \sum_{k=1}^{x+y-2} k$ zzg: g(x,y) ist bijektiv, d.h g(x)y) ist injektiv und Surjekho lujekhirbit: injektio: $\forall x, y \in \mathbb{N}$: $g(x,y) = g(x',y') \Longrightarrow \phi(x,y) = (x',y')$ $\Rightarrow (x,y) + (x',y') \Rightarrow g(x,y) + g(x',y')$ Falle1: x=x'y \ y \ y \ Sei OBdA y > y' \Rightarrow g(x,y) + g(x,y')Full2 x + x', W/# y=y' amalog Foll3: $x \neq x$ $y \neq y$ x + y - 2 $x \neq y - 2$ $x \neq y + 2$ $x \neq 0$ $x \neq 0$ xSoust wider y = y' of the Phandhase = g(x,y) + g(x',y') 3.2 $x_{+y} > x_{+y} \Rightarrow y_{+} > y_{+}$ >> g(x,y) ist injection

Blat 6 Augale 4 fortiery. ZEG G(X,Y) ist surjectio: theN: Jx,y: g(x,y)=n Bewels user vollstaulize habitation $A: N=1 \Rightarrow g(x,y)=1=1+0=1+\sum_{k=1}^{x+y-2} x_{k} \Rightarrow x_{k} = (1,1)$ Sy sei $M = y + \sum_{k=0}^{\infty} k = g(x,y)$ is: n->n+1 für y!=y+1 und x!=x-1 $g(x',y') = y' + \frac{x+y-2}{y+1} + \frac{(x-1)+(y+1)-2}{k}$ $= y + \sum_{k=1}^{n+1} x + 1 = g(x,y) + 1 = n + 1$ => g(x,y) ist surjektio => g(x,y) ist bijekho Aufgube 3 a) L(M) = (0+1)* 1 (0+1)*