6.4 1) Puisque l'on a affaire à deux séries à termes positifs, le rapport $\frac{u_k}{v_k} \geqslant 0$ pour tout $k \in \mathbb{N}$.

Comme l'on suppose $L \neq 0$, il s'ensuit que L > 0.

Il suffit de choisir ε dans l'intervalle]0; L[.

Par définition de la limite d'une suite, il existe $p \in \mathbb{N}$ (n_0 si l'on préfère) tel que pour tout $k \ge p$ on ait $\left| \frac{u_k}{v_k} - \mathbf{L} \right| < \varepsilon$.

2) On a les équivalences suivantes :

$$\begin{aligned} \left| \frac{u_k}{v_k} - \mathbf{L} \right| &< \varepsilon \\ \frac{u_k}{v_k} &\in]\mathbf{L} - \varepsilon ; \mathbf{L} + \varepsilon [\\ \mathbf{L} - \varepsilon &< \frac{u_k}{v_k} < \mathbf{L} + \varepsilon \\ (\mathbf{L} - \varepsilon) v_k &< u_k < (\mathbf{L} + \varepsilon) v_k \end{aligned}$$

3) (a) Supposons que la série de terme v_k converge.

Alors la série de terme $(L + \varepsilon) v_k$ converge.

L'inégalité $u_k < (L + \varepsilon) v_k$ et les critères de comparaison impliquent que la série de terme u_k converge.

(b) Supposons que la série de terme v_k diverge.

Alors la série de terme $(L - \varepsilon) v_k$ diverge.

L'inégalité $(L - \varepsilon) v_k < u_k$ et les critères de comparaison entraı̂nent la divergence de la série de terme u_k .