

Business Intelligence para las Finanzas Ayudantía 3

Profesor: David Díaz S. Ayudantes: Gabriel Cabrera G. 1 28 agosto 2019

Concatenar y Merge

- 1. Construya los tres DataFrames que se encuentran en el apéndice.
- 2. Utilizando la función pd.concat(), concatene los DataFrames df_a y df_b por columna. Denomine a este nuevo objeto df_nueva.
- 3. Utilizando la función pd.merge(), fusione los DataFrames df_nueva y df_n.
- 4. Encuentre:
 - a. La intersección entre df_a y df_b.
 - b. La union entredf_a y df_b.
- 5. Fusione los DataFrames df_a y df_b:
 - a. Por la derecha.
 - b. Por la izquierda
- 6. Cambie el nombre de las columnas generadas en (5.b) usando sufijos.
- 7. Fusiene los DataFrames df_a y df_b, a través de los índices (index).

Trabajando con Datos Financieros

- 1. Utilizando la librería pandas_datareader, construya una función que le permita descargar (la fuente debe ser *Yahoo Finance*) los índices accionarios de Microsoft (**MSFT**), Nvidia (**NVDA**), AMD (**AMD**) y Apple (**AAPL**) con frecuencia, diaria desde el 1 de Enero del 2010 hasta hoy.
- 2. Seleccione el precio al cierre (*Close*) y luego construya una función para calcular los retornos de cada índice accionario. El retorno logarítmico se define como:

¹**∢**:gcabrerag@fen.uchile.cl

$$r_t = log(1 + R_t) = log(\frac{P_t}{P_{t-1}}) = p_t - p_{t-1}$$

- 3. Utilice la función pd.pivot() de manera que cada columna (4) contenga el retorno correspondiente a cada índice accionario. El nombre de las columnas deben corresponder al nombre del nemotécnico del índice.
- 4. Construya los retornos acumulados y luego gráfique utilizando la librería matplotlib. El color de cada serie como las "capas" del gráfico quedan a su elección.

Complejidad computacional

1. Genere una función que entregue la secuencia de Fibonacci.

$$x_n = x_{n-1} + x_{n-2}$$

La secuencia es una sucesión infinita de números naturales 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ∞ . Por ejemplo, si su función la define como fibonacci, debería esperarse que fibonacci(1) = 0, fibonacci(2) = 1, fibonacci(3) = 1 y así sucesivamente.

- 2. Utilizando la función generada en (1), demuestre que la complejidad computacional en términos de tiempo para la secuencia de Fibonacci es $\mathcal{O}(2^n)$.
- 3. Utilizando la función generada en (1), demuestre que la complejidad computacional en términos de espacio para cada n en una iteración es $\mathcal{O}(1)$.

Apéndice

Table 1: DataFrame df_a

id	nombre	apellido
1	Tom	Cruise
2	Will	Smith
3	Tom	Hanks
4	Jennifer	Aniston
5	Charlize	Theron

Table 2: DataFrame df_b

id	nombre	apellido
4	Julia	Roberts
5	Nicole	Kidman
6	Emma	Watson
7	George	Clooney
8	Al	Pacino

Table 3: DataFrame df_n

id	test_id
1	51
2	15
3	15
4	61
5	16
7	14
8	15
9	1
10	61
11	16