simsem: SIMulated Structural Equation Modeling in R

Alexander M. Schoemann
Sunthud Pornprasertmanit
Patrick J. Miller

Motivation

 A comprehensive framework to simulate data, analyze data, combine results, and play with simulation results.

Monte Carlo Simulations

- Monte Carlo simulations are a popular tool for methodologists with many uses
 - Determine the accuracy of new methods
 - Compare different methods
 - Perform power analyses
 - Determine model fit in SEM

Monte Carlo Simulations

- General steps in a Monte Carlo Simulation
 - 1. Specify population parameters
 - 2. Create a sample of size N, based on population parameters
 - Analyze sample data from step 2 with chosen statistical method(s).
 - 4. Repeat steps 2 and 3 for each of r replications.

Get Started

Data-Generating Model

Analysis Model

Get Started

```
library(lavaan)
popModel <- "</pre>
f1 = 0.6*y1 + 0.7*y2 + 0.8*y3
f2 = 0.6*y4 + 0.7*y5 + 0.8*y6
f1 \sim 0.1*f2
f1 ~~ 1*f1
f2 ~~ 1*f2
v1 ~~ 0.64*v1
y2 \sim 0.51 * y2
y3 ~~ 0.36*y3
y4 \sim 0.64 * y4
y5 ~~ 0.51*y5
v6 ~~ 0.36*v6
```

Get Started

```
analyzeModel <- "</pre>
f1 = ~y1 + y2 + y3
f2 = ~y4 + y5 + y6
11
data <- cfa(analyzeModel, data = data, std.lv = TRUE)</pre>
# Use simsem to simulate and analyze multiple data sets
library(simsem)
Output1 <- sim(1000, analyzeModel, n=200, generate=popModel,
   lavaanfun = "cfa", std.lv=TRUE)
summary(Output1)
```

> summary(Output1)

RESULT OBJECT

Model Type

[1] "lavaan"

======= Fit Indices Cutoffs ======== Alpha

Fit	Indices	0.1	0.05	0.01	0.001	Mean	SD
	chisq	13.705	15.625	20.026	25.550	8.095	4.074
	aic	3199.306	3217.672	3253.027	3292.959	3135.957	50.059
	bic	3242.185	3260.550	3295.905	3335.837	3178.835	50.059
	rmsea	0.060	0.069	0.087	0.105	0.019	0.026
	cfi	0.980	0.973	0.958	0.927	0.994	0.010
	tli	0.963	0.949	0.920	0.864	1.000	0.028
	srmr	0.047	0.051	0.058	0.069	0.033	0.010

====== Parameter Estimates and Standard Errors ========

0.091 0.088

0.198

f1~~f2

				-					
f1=~y1	0.605	0.074	0.075	1.000	0.605	0.058	0.60	0.005	0.949
f1=~y2	0.696	0.076	0.076	1.000	0.699	0.058	0.70	-0.004	0.946
f1=~y3	0.796	0.076	0.078	1.000	0.799	0.057	0.80	-0.004	0.946
f2=~y4	0.598	0.074	0.075	1.000	0.600	0.059	0.60	-0.002	0.952
f2=~y5	0.699	0.077	0.076	1.000	0.699	0.059	0.70	-0.001	0.956
f2=~y6	0.801	0.080	0.078	1.000	0.801	0.060	0.80	0.001	0.938
у1~~у1	0.628	0.077	0.079	1.000	0.631	0.070	0.64	-0.012	0.943
у2~~у2	0.503	0.083	0.081	1.000	0.509	0.081	0.51	-0.007	0.938
у3~~у3	0.354	0.090	0.090	0.946	0.359	0.092	0.36	-0.006	0.959
у4~~у4	0.631	0.077	0.079	1.000	0.637	0.070	0.64	-0.009	0.950
у5~~у5	0.505	0.081	0.082	0.999	0.508	0.082	0.51	-0.005	0.953
у6~~у6	0.351	0.093	0.091	0.932	0.354	0.096	0.36	-0.009	0.960

Estimate.Average Estimate.SD Average.SE Power..Not.equal.O. Std.Est Std.Est.SD Average.Param Average.Bias Coverage

0.601 0.198

0.091

0.20

-0.002

0.943

```
chisq aic bic rmsea cfi tli srmr
chisq 1.000 0.013 0.013 0.941 -0.909 -0.991 0.853
aic 0.013 1.000 1.000 0.011 -0.035 -0.011 -0.005
bic 0.013 1.000 1.000 0.011 -0.035 -0.011 -0.005
rmsea 0.941 0.011 0.011 1.000 -0.932 -0.931 0.788
cfi -0.909 -0.035 -0.035 -0.932 1.000 0.909 -0.741
tli -0.991 -0.011 -0.011 -0.931 0.909 1.000 -0.851
srmr 0.853 -0.005 -0.005 0.788 -0.741 -0.851 1.000
```

Number of replications = 1000

Number of converged replications = 997

Number of nonconverged replications:

- 1. Nonconvergent Results = 0
- 2. Nonconvergent results from multiple imputation = 0
- 3. At least one SE were negative or NA = 0
- 4. At least one variance estimates were negative = 3
- 5. At least one correlation estimates were greater than 1 or less than -1 = 0

Play with the output

- summaryFit (Output1)
- summaryParam (Output1)
- getCutoff(Output1, alpha=0.05)
- plotCutoff(Output1)
- summaryConverge (Output1)

• See class?SimResult for available functions

Varying Sample Sizes

```
Output2 <- sim(NULL, analyzeModel, n=100:1000, generate=popModel,
   lavaanfun = "cfa", std.lv=TRUE)
summary (Output2)
  > summary(Output2)
  RESULT OBJECT
  Model Type
  [1] "lavaan"
  ====== Fit Indices Cutoffs ========
      N chisq aic bic rmsea cfi tli srmr
  1 100 15.705 1629.736 1668.456 0.073 0.973 0.950 0.054
  2 325 15.905 5182.826 5228.549 0.061 0.979 0.961 0.045
  3 550 16.106 8735.916 8788.642 0.049 0.985 0.973 0.036
  4 775 16.307 12289.006 12348.734 0.037 0.991 0.984 0.028
  5 1000 16.508 15842.096 15908.827 0.024 0.997 0.995 0.019
```

====== Parameter Estimates and Standard Errors ======== Estimate.Average Estimate.SD Average.SE Power..Not.equal.O. Std.Est Std.Est.SD Average.Param Average.Bias Coverage r coef.n r se.n 0.053

0.056

0.056

0.053

0.066

0.051

0.052

0.053

0.051

0.060

0.604

0.698

0.798

0.598

0.196

f1=~v1

f1=~y2

f1=~y3

f2=~y4

f1~~f2

f2=~y5	0.697	0.054	0.052	1.000	0.698	0.042	0.70	-0.003	0.958	0.071 -0.899
f2=~y6	0.801	0.055	0.053	1.000	0.803	0.041	0.80	0.001	0.947	0.018 -0.880
y1~~y1	0.633	0.056	0.054	1.000	0.634	0.050	0.64	-0.007	0.939	0.016 -0.882
у2~~у2	0.507	0.060	0.055	0.999	0.510	0.060	0.51	-0.003	0.952	-0.001 -0.861
у3~~у3	0.356	0.065	0.061	0.982	0.359	0.067	0.36	-0.004	0.951	0.076 -0.829
y4~~y4	0.637	0.057	0.054	1.000	0.640	0.051	0.64	-0.003	0.942	-0.024 -0.885
у5~~у5	0.509	0.059	0.055	1.000	0.511	0.059	0.51	-0.001	0.938	-0.027 -0.874
y6~~y6	0.352	0.064	0.062	0.974	0.354	0.067	0.36	-0.008	0.952	0.125 -0.797

0.857 0.196

1.000 0.800

1.000 0.598

0.604

0.699

0.042

0.043

0.042

0.043

0.066

0.60

0.70

0.80

0.60

0.20

0.004

-0.002

-0.002

-0.002

-0.004

0.943 -0.023 -0.906

0.943 -0.032 -0.896

-0.002 -0.901

0.056 -0.905

0.048 -0.916

0.940

0.949

0.939

1.000

1.000

```
chisq aic bic rmsea cfi tli srmr n
chisq 1.000 -0.008 -0.008 0.866 -0.711 -0.808 0.556 -0.008
aic -0.008 1.000 1.000 -0.218 0.289 0.023 -0.661 1.000
bic -0.008 1.000 1.000 -0.218 0.289 0.023 -0.661 1.000
rmsea 0.866 -0.218 -0.218 1.000 -0.916 -0.877 0.701 -0.218
cfi -0.711 0.289 0.289 -0.916 1.000 0.866 -0.707 0.290
tli -0.808 0.023 0.023 -0.877 0.866 1.000 -0.561 0.023
srmr 0.556 -0.661 -0.661 0.701 -0.707 -0.561 1.000 -0.661
n -0.008 1.000 1.000 -0.218 0.290 0.023 -0.661 1.000
```

============ Replications =================

Number of replications = 901

Number of converged replications = 900

Number of nonconverged replications:

- 1. Nonconvergent Results = 0
- 2. Nonconvergent results from multiple imputation = 0
- 3. At least one SE were negative or NA = 0
- 4. At least one variance estimates were negative = 1
- 5. At least one correlation estimates were greater than 1 or less than -1 = 0 NOTE: The sample size is varying.

Varying Sample Sizes

```
powTable2 <- getPower(Output2)
findPower(powTable2, "N", 0.80)

> findPower(powTable2, "N", 0.80)
f1=~y1 f1=~y2 f1=~y3 f2=~y4 f2=~y5 f2=~y6 y1~~y1 y2~~y2 y3~~y3 y4~~y4 y5~~y5 y6~~y6 f1~~f2
Inf Inf Inf Inf Inf Inf Inf Inf Inf 100 100 Inf Inf 132
```

Varying Sample Sizes

plotPower(Output2, powerParam = "f1~~f2")

Missing Data

```
missModel <- miss(pmMCAR = 0.1, numImps = 10)
Output3 <- sim(NULL, analyzeModel, n=100:1000, generate=popModel,
     miss=missModel, lavaanfun = "cfa", std.lv=TRUE)
summary (Output3)
             > summary(Output3)
             RESULT OBJECT
             Model Type
             [1] "lavaan"
             ====== Fit Indices Cutoffs =======
                                aic
                                         bic rmsea
                                                    cfi
                                                          tli srmr
             1 100 15.343 1495.381 1556.060 0.070 0.968 0.941 0.053
             2 325 15.587 4726.438 4797.084 0.059 0.976 0.954 0.044
             3 550 15.830 7957.496 8038.109 0.048 0.983 0.968 0.035
             4 775 16.074 11188.554 11279.133 0.037 0.990 0.981 0.027
             5 1000 16.317 14419.612 14520.158 0.026 0.997 0.994 0.018
             ====== Parameter Estimates and Standard Errors ========
                   Estimate.Average Estimate.SD Average.SE Power..Not.equal.O. Std.Est Std.Est.SD Average.FMI1 SD.FMI1 r coef.n r se.n
             f1=~v1
                              0.604
                                         0.059
                                                   0.055
                                                                      1.000
                                                                             0.604
                                                                                       0.047
                                                                                                    0.139
                                                                                                           0.025
                                                                                                                 -0.018 -0.901
             f1=~v2
                                                                                       0.048
                                                                                                           0.029
                              0.697
                                         0.060
                                                   0.056
                                                                             0.699
                                                                                                    0.151
                                                                                                                  -0.006 -0.892
                                                                      1.000
             f1=~v3
                              0.799
                                         0.060
                                                   0.058
                                                                      1.000
                                                                             0.800
                                                                                       0.046
                                                                                                    0.166
                                                                                                           0.032
                                                                                                                  -0.039 -0.875
             f2=~v4
                              0.599
                                         0.057
                                                   0.055
                                                                      1.000
                                                                             0.600
                                                                                       0.046
                                                                                                    0.140
                                                                                                           0.028
                                                                                                                   0.022 -0.897
             f2=~v5
                              0.698
                                         0.062
                                                   0.056
                                                                      1.000
                                                                             0.699
                                                                                       0.048
                                                                                                    0.152
                                                                                                           0.030
                                                                                                                   0.040 -0.891
             f2=~y6
                              0.801
                                         0.061
                                                   0.058
                                                                                       0.047
                                                                                                    0.167
                                                                                                                   0.013 -0.868
                                                                      1.000
                                                                             0.802
                                                                                                           0.033
             v1~~v1
                                                   0.058
                                                                                       0.057
                                                                                                    0.156
                              0.632
                                         0.062
                                                                      1.000
                                                                             0.633
                                                                                                           0.023
                                                                                                                    0.052 - 0.874
             y2~~y2
                              0.506
                                         0.067
                                                   0.061
                                                                      0.996
                                                                             0.510
                                                                                       0.067
                                                                                                    0.191
                                                                                                           0.032
                                                                                                                    0.013 -0.843
             y3~~y3
                                                   0.069
                                                                                       0.074
                                                                                                                    0.079 -0.789
                              0.355
                                         0.072
                                                                      0.961
                                                                             0.358
                                                                                                    0.217
                                                                                                           0.035
             v4~~v4
                              0.635
                                         0.062
                                                   0.059
                                                                      1.000
                                                                             0.638
                                                                                       0.056
                                                                                                    0.157
                                                                                                           0.024
                                                                                                                    0.020 -0.873
             v5~~v5
                              0.507
                                         0.065
                                                   0.061
                                                                      0.999
                                                                             0.510
                                                                                       0.067
                                                                                                    0.191
                                                                                                           0.032
                                                                                                                    0.013 - 0.850
             y6~~y6
                              0.351
                                         0.075
                                                   0.070
                                                                      0.961
                                                                             0.354
                                                                                       0.077
                                                                                                    0.219
                                                                                                           0.036
                                                                                                                    0.116 - 0.776
             f1~~f2
                              0.196
                                         0.068
                                                   0.063
                                                                      0.832
                                                                             0.196
                                                                                       0.068
                                                                                                    0.096
                                                                                                           0.030
                                                                                                                    0.049 -0.906
             v1~1
                              0.003
                                         0.054
                                                   0.050
                                                                      0.059
                                                                             0.003
                                                                                       0.054
                                                                                                    0.076
                                                                                                           0.012
                                                                                                                    0.045 -0.899
                                                   0.050
             y2~1
                              0.000
                                         0.052
                                                                             0.000
                                                                                       0.053
                                                                                                    0.070
                                                                                                           0.012
                                                                                                                    0.029 -0.900
                                                                      0.052
             v3~1
                              0.002
                                         0.054
                                                   0.050
                                                                      0.052
                                                                             0.002
                                                                                       0.054
                                                                                                    0.066
                                                                                                           0.011
                                                                                                                    0.014 -0.898
             v4~1
                             -0.002
                                         0.051
                                                   0.050
                                                                      0.047 -0.002
                                                                                       0.052
                                                                                                    0.077
                                                                                                           0.012
                                                                                                                    0.017 -0.903
             y5~1
                             -0.002
                                         0.052
                                                   0.050
                                                                      0.052 -0.002
                                                                                       0.053
                                                                                                    0.071
                                                                                                           0.012
                                                                                                                    0.072 - 0.901
             v6~1
                             -0.001
                                         0.052
                                                   0.050
                                                                      0.051 -0.001
                                                                                       0.052
                                                                                                    0.066
                                                                                                           0.011
                                                                                                                    0.007 -0.899
```

Missing Data

```
powTable3 <- getPower(Output3)</pre>
  findPower(powTable3, "N", 0.80)
> findPower(powTable3, "N", 0.80)
f1=~y1 f1=~y2 f1=~y3 f2=~y4 f2=~y5 f2=~y6 y1~~y1 y2~~y2 y3~~y3 y4~~y4 y5~~y5 y6~~y6 f1~~f2
  Inf
         Inf
                Inf
                       Inf
                              Inf
                                     Inf
                                           Inf
                                                                Inf
                                                                              164
                                                                                     394
                                                  107
                                                         167
                                                                       100
```

Missing Data

plotPower(Output3, powerParam = "f1~~f2")

Data-Generating Model

Analysis Model


```
wrongModel <- "
f1 =~ c1*y1 + c1*y2 + c1*y3
f2 =~ c2*y4 + c2*y5 + c2*y6
"
Output4 <- sim(NULL, wrongModel, n=100:1000, generate=popModel, lavaanfun = "cfa", std.lv=TRUE)
summary(Output4)</pre>
```

```
> summary(Output4)
RESULT OBJECT
Model Type
[1] "lavaan"
======= Fit Indices Cutoffs =========
                           bic rmsea cfi tli srmr
    N chisq
                  aic
1 100 28.447 1630.049 1656.919 0.091 0.930 0.913 0.089
2 325 40.215 5191.432 5222.869 0.086 0.937 0.921 0.081
3 550 51.983 8752.815 8788.819 0.081 0.944 0.930 0.074
4 775 63.750 12314.198 12354.768 0.076 0.951 0.939 0.066
5 1000 75.518 15875.581 15920.718 0.070 0.958 0.947 0.059
====== Parameter Estimates and Standard Errors ========
      Estimate.Average Estimate.SD Average.SE Power..Not.equal.O. Std.Est Std.Est.SD r coef.n r se.n
c1
                 0.704
                            0.036
                                      0.033
                                                          1.00
                                                                0.677
                                                                          0.024 -0.026 -0.905
                0.703
                           0.034
                                      0.032
                                                          1.00
                                                                0.676
                                                                         0.025 0.075 -0.907
C2
                0.585
                           0.054
                                     0.051
                                                          1.00
                                                                0.541
                                                                         0.033 -0.003 -0.877
v1~~v1
v2~~v2
                0.496
                           0.048
                                    0.046
                                                                0.500
                                                                        0.037 -0.020 -0.886
                                                          1.00
                                  0.043
v3~~v3
                0.443
                           0.045
                                                          1.00
                                                                0.471
                                                                        0.040 0.053 -0.884
v4~~v4
                0.587
                          0.054
                                    0.051
                                                         1.00
                                                                0.542
                                                                         0.034 -0.040 -0.880
v5~~v5
                0.498
                                    0.046
                                                                         0.036 -0.037 -0.885
                           0.048
                                                         1.00
                                                                0.501
                                      0.042
v6~~v6
                0.442
                           0.044
                                                          1.00
                                                                0.472
                                                                        0.039 0.107 -0.880
                0.199
                            0.068
                                      0.062
                                                          0.85
                                                                0.199 0.068 0.052 -0.913
f1~~f2
====== Correlation between Fit Indices ========
      chisq
               aic
                     bic rmsea
                                  cfi
                                         tli
                                             srmr
chisq 1.000 0.699 0.699 0.652 -0.597 -0.605 0.215 0.698
      0.699 1.000 1.000 0.111 0.011 -0.016 -0.428 1.000
aic
      0.699 1.000 1.000 0.111 0.011 -0.016 -0.428 1.000
bic
rmsea 0.652 0.111 0.111 1.000 -0.944 -0.958 0.711 0.109
cfi
    -0.597 0.011 0.011 -0.944 1.000 0.992 -0.789 0.013
    -0.605 -0.016 -0.016 -0.958 0.992 1.000 -0.767 -0.014
tli
srmr 0.215 -0.428 -0.428 0.711 -0.789 -0.767 1.000 -0.430
      0.698 1.000 1.000 0.109 0.013 -0.014 -0.430 1.000
============= Replications ================
Number of replications = 901
Number of converged replications = 901
Number of nonconverged replications:
  1. Nonconvergent Results = 0
  2. Nonconvergent results from multiple imputation = 0
  3. At least one SE were negative or NA = 0
  4. At least one variance estimates were negative = 0
   5. At least one correlation estimates were greater than 1 or less than -1 = 0
NOTE: The sample size is varying.
NOTE: The data generation model is not the same as the analysis model. See the summary of the population
```

plotPowerFit(Output4, cutoff=cutoff)

Other Features

- Generate/Analyze Data with lavaan, OpenMx, or user-specified functions
- Can request additional output for each data analysis and save as a list
- Other types of missing data, such as MAR, dropout, or planned missing data
 - Missing data can be handled with FIML or multiple imputation through Amelia or mice

Other Features

- Nonnormal distributions
- Nested or nonnested model comparisons
- Use fixed values of covariates to generate data
- Parallel processing
- And many more...

Questions?

- Thanks to:
 - Paul Johnson
 - Todd Little
 - Yves Rosseel
 - And all the contributors to simsem development

simsem: simsem.org

example code available at: simsem.org