UFBA – IGeo – Dep. Oceanografia Disicplina: Introdução à Oceanografia Profa. Juliana Leonel

Introdução à Oceanografia

Composição da Água do Mar

Objetivos da Aula

- 1. Revisar as propriedades da água e como elas se comportam na presença de sal.
- 2. Entender a composição da água do mar
- 3. Entender o que é salinidade e explicar a sua distribuição horizontal.

Molécula de Água

Molécula de Água

Propriedades Anômalas da Água

-alto calor específico

- alto calor de fusão

-alto calor de vaporização

- expansão térmica

-alto ponto de ebulição e evaporação

-alta tensão superficial

-alta condução de calor

-alta transparência

-alta viscosidade

-baixa compressibilidade

Molécula de Água Ponto Ebulição

Molécula de Água Ponto Ebulição

Molécula de Água

Ponto Ebulição

Molécula de Água Densidade

Molécula de Água Densidade

Composição dos Oceanos - Água

Composição dos Oceanos - Água

De onde veio a água do mar?

UFBA - IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar

```
(96,5\%)
      Agua
Sais Dissolvidos (3,5%)
                       56%
       (cloreto)
Cl-
        (sódio)
Na^+
                       28%
SO_4
        (sulfato)
                        8^{0/0}
        (magnésio) 4%
Mg^{2+}
Ca^{2+}
       (cálcio)
                      1,5%
        (potássio)
                       1%
 \mathbf{K}^{+}
HCO<sub>3</sub> (bicarbonato)0,5%
                       1%
 outros íons
    Gases Dissolvido
   N_2, O_2, CO_2, He, Ar
```

Composição da Água do Mar

Gases

(conservativo x não-conservativo)

Particulados

(orgânicos x inorgânico)

Dissolvidos

(maiores x menores)

Coloidais

(orgânicos x inorgânico)

Gases

Gases

Gases

Particulado x Dissolvido

Material Particulado

Conservativo e Não-Conservativo

Conservativo

Concentração influenciada apenas por processos físicos (pptação, evaporação, etc).

Não-Conservativo

Concentração influenciada por processos químicos (redução, oxidação) e biológicos (respiração, fotossíntese)

Componentes menores - Nutrientes

Elementos Menores (elementos traços)

```
Macronutrientes
     fosfato
     silicato
     nitrato/nitrito
Oligonutrientes/Micronutrientes
     Fe
     Cu
Elementos radioativos
     Ra
     Rn
```

Elementos Menores (elementos traços)

¡Exemplos de importância dos macronutrientes:

C, H, N, P, S → componentes estruturais dos compostos bioquímicos comuns (carboidratos, lipídios, proteínas, etc)

Exemplos de importância dos micronutrientes:

vertebrados marinhos (Fe): hemoglobina

moluscos e crustáceos (Cu): hemocianina

tunicados (V)

vitamina B12 – cobalamina (Co)

poliquetas (Zn)

UFBA - IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar

UFBA - IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar

Por que a água do mar é salgada?

UFBA - IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar

Mar	Rio
Cl ⁻ (19,3‰)	HCO ₃ - (0,058‰)
Na ⁺ (10,8‰)	Ca ²⁺ (0,015‰)
SO ₄ ²⁻ (2,7‰)	SiO ₂ (0,013‰)
Mg ²⁺ (1,3‰)	SO ₄ ²⁻ (0,011‰)
Ca ²⁺ (0,4‰)	Cl ⁻ (0.008‰)

Os oceanos estão ficando mais salgados com o tempo?

Composição dos Oceanos - Água

"Todas as águas marinhas contem os mesmos ingredientes (maiores), nas mesmas proporções; apenas a quantidade total varia."

Marcet, 1819

UFBA - IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar

Sais Dissolvidos Salinidade

O que é salinidade?

Quais os fatores responsáveis pela alteração de salinidade dos oceanos?

Por que a salinidade é importante para a oceanografia?

Quais as formas de determinar a salinidade?

Salinidade

"Salinidade é a massa em gramas das substâncias sólidas contidas em 1Kg de água do mar, sendo os carbonatos transformados em óxidos, os brometos e os iodetos substituídos por cloretos e a matéria orgânica decomposta."

(Knudsen, Forch e Sorense)

Salinidade Prática (S_P) – sem unidade

"Razão entre a medida de condutividade elétrica de uma amostra a 15°C e pressão de 1 atm, pela condutividade elétrica de uma solução de 0,0324356 g de cloreto de potássio (KCl), na mesma temperatura e pressão da amostra"

(PSS, 1978)

Salinidade de Referência (S_R) – g kg⁻¹

$$S_R = S_P * F$$

F = fator de referencia em função do melhor conhecimento dos sais dissolvidos

(Millero, 2008)

Salinidade Absoluta (S_A) – g kg⁻¹

$$S_A = S_R + \Delta S$$

ΔS = anomalia da constância de sal – varia com longitutde, latitude e pressão. É calculada a partir de um proxy de distribuição de silica.

(Millero, 2008)

UFBA - IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar UFBA - IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar

UFBA – IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar

UFBA - IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar

UFBA - IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar

UFBA - IGeo -Introdução à Oceanografia Aula 11 - Composição da Água do Mar

