Lazy Caterer's Sequence

William Peters, Gihan Mendis

November 25, 2015

1 Illustration of structures

1.1 Pancake Structure

1. n = 4

(a) Pancake structure

2. n = 5

(a) Pancake structure

1.2 Binary Words

When n > 3 the sequence gives the number of binary words where there are at least two ones and at most two two's. In these formulas n represents the length of a binary word, so a(n) gives the number of possible binary words formed with these constraints. The following are two illustrations of this structure. The first is when n = 4 and the second is when n = 5.

- 1. n = 4
 - (a) Binary words structure illustration

$$\mid 0011, 0101, 0110, 0111, 1001, 1010, 1011, 1100, 1101, 1110, 1111$$

- 2. n = 5
 - (a) Binary words structure illustration

 $11111,01111,10111,11011,11101,11110,00111,10011,10101,10110,\\01011,01101,01110,11100,11001,11010$

2 Formula Demonstrations

2.1 Binomial

 $1. \ a(n) = Binomial(n+2,1) - 2 \times Binomial(n+1,1) + Binomial(n+2,2)$

$$\binom{n+2}{1} - 2 \times \binom{n+1}{1} + \binom{n+2}{2}$$

(a) n = 4

$$a(4) = {4+2 \choose 1} - 2 \times {4+1 \choose 1} + {4+2 \choose 2}$$
$$a(4) = {6 \choose 1} - 2 \times {5 \choose 1} + {6 \choose 2}$$
$$a(4) = 6 - 10 + 15$$
$$a(4) = 11$$

(b)
$$n = 5$$

$$a(5) = {5+2 \choose 1} - 2 \times {5+1 \choose 1} + {5+2 \choose 2}$$

$$a(5) = \binom{7}{1} - 2 \times \binom{6}{1} + \binom{7}{2}$$

$$a(5) = 7 - 12 + 21$$

$$a(4) = 16$$

2.2 Generating Function

1.
$$G.f: A(x) = (1 - x + x^2)/(1 - x)^3$$

(a)
$$n = 4$$

$$\left[\frac{d^4}{dx^4} (1 - x + x^2) / (1 - x)^3 \right]_{x=0} = 264$$

$$And \frac{264}{4!} = 11$$

(b)
$$n = 5$$

$$\left[\frac{d^5}{dx^5}(1-x+x^2)/(1-x)^3\right]_{x=0} = 1920$$

$$And \frac{1920}{5!} = 16$$

2.3 Exponential Generating Function

1.
$$E.g.f: A(x) = e^x + xe^x + \frac{e^x x^2}{2}$$

(a)
$$n = 4$$

(b)
$$n = 5$$

$$\boxed{ [\frac{d^5}{dx^5}(e^x + xe^x + \frac{e^xx^2}{2})]_{x=0} = 16}$$

2.4 Recursive Formula

1.
$$a(n+3) = 3 * a(n+2) - 3 * a(n+1) + a(n), a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 7, a(4) = 11, a(5) = 16, a(6) = 22, a(7) = 29, a(8) = 37$$

(a)
$$n = 6$$

$$a(6+3) = a(9) = 3 * a(6+2) - 3 * a(6+1) + a(6)$$

$$a(9) = 3 * a(8) - 3 * a(7) + a(6)$$

$$a(9) = 3 * 37 - 3 * 29 + 22$$

$$a(9) = 111 - 87 + 22 = 46$$

(b) n = 7

$$a(7+3) = a(10) = 3 * a(7+2) - 3 * a(7+1) + a(7)$$

$$a(10) = 3 * a(10) - 3 * a(8) + a(7)$$

$$a(10) = 3 * 46 - 3 * 37 + 29$$

$$a(10) = 138 - 111 + 29 = 56$$

(c) n = 8

$$a(8+3) = a(11) = 3 * a(8+2) - 3 * a(8+1) + a(8)$$

$$a(11) = 3 * a(10) - 3 * a(9) + a(8)$$

$$a(11) = 3 * 56 - 3 * 46 + 37$$

$$a(11) = 168 - 138 + 37 = 67$$