CSE 304 Design & Analysis of Algorithms

Greedy Algorithms (Part 1)

Greedy Algorithm

- Greedy algorithms make the choice that looks best at the moment.
- This locally optimal choice may lead to a globally optimal solution (i.e. an optimal solution to the entire problem).

When can we use Greedy algorithms?

We can use a greedy algorithm when the following are true:

- **1) The greedy choice property:** A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- **2) The optimal substructure property:** The optimal solution contains within its optimal solutions to subproblems.

Designing Greedy Algorithms

1. Cast the optimization problem as one for which:

 we make a choice and are left with only one subproblem to solve

Prove the GREEDY CHOICE

 that there is always an optimal solution to the original problem that makes the greedy choice

3. Prove the OPTIMAL SUBSTRUCTURE:

 the greedy choice + an optimal solution to the resulting subproblem leads to an optimal solution

Example: Making Change

- Instance: amount (in cents) to return to customer
- Problem: do this using fewest number of coins
- Example:
 - Assume that we have an unlimited number of coins of various denominations:
 - 1c (pennies), 5c (nickels), 10c (dimes), 25c (quarters), 1\$ (loonies)
 - Objective: Pay out a given sum \$5.64 with the smallest number of coins possible.

The Coin Changing Problem

- Assume that we have an unlimited number of coins of various denominations:
 - 1c (pennies), 5c (nickels), 10c (dimes), 25c (quarters), 1\$ (loonies)
- Objective: Pay out a given sum S with the smallest number of coins possible.
- The greedy coin changing algorithm:
 - This is a $\Theta(m)$ algorithm where m = number of denominations.

```
while S > 0 do
   c := value of the largest coin no larger than S;
   num := S / c;
   pay out num coins of value c;
   S := S - num*c;
```

Example: Making Change

• E.g.:

$$$5.64 = $2 + $2 + $1 + .25 + .25 + .10 + .01 + .01 + .01 + .01$$

Making Change – A big problem

- Example 2: Coins are valued \$.30, \$.20, \$.05,
 \$.01
 - Does not have greedy-choice property, since \$.40 is best made with two \$.20's, but the greedy solution will pick three coins (which ones?)

The Fractional Knapsack Problem

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
 - In this case, we let x_i denote the amount we take of item i
 - Objective: maximize

$$\sum_{i \in S} b_i(x_i / w_i)$$

Constraint:

$$\sum_{i \in S} x_i \leq W, 0 \leq x_i \leq w_i$$

Example

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with total weight at most W.

10 ml

"knapsack"

Solution:

- 1 ml of 5 50\$
- 2 ml of 3
- 40\$
- 6 ml of 4 30\$
- 1 ml of₁₀ 4\$

The Fractional Knapsack Algorithm

 Greedy choice: Keep taking item with highest value (benefit to weight ratio)

- Since
$$\sum_{i \in S} b_i(x_i / w_i) = \sum_{i \in S} (b_i / w_i) x_i$$

```
Algorithm fractionalKnapsack(S, W)
```

Input: set *S* of items w/ benefit b_i and weight w_i ; max. weight *W*

Output: amount x_i of each item i to maximize benefit w/ weight at most W

```
for each item i in S
```

```
x_i \leftarrow 0
v_i \leftarrow b_i / w_i {value}
w \leftarrow 0 {total weight}
while w < W
remove item i with highest v_i
x_i \leftarrow \min\{w_i, W - w\}
w \leftarrow w + \min\{w_i, W - w\}
```

The Fractional Knapsack Algorithm

- Running time: Given a collection S of n items, such that each item i
 has a benefit b_i and weight w_i, we can construct a maximum-benefit
 subset of S, allowing for fractional amounts, that has a total weight W in
 O(nlogn) time.
 - Use heap-based priority queue to store S
 - Removing the item with the highest value takes O(logn) time
 - In the worst case, need to remove all items

Huffman Codes

- Widely used technique for data compression
- Assume the data to be a sequence of characters
- Looking for an effective way of storing the data
- Binary character code
 - Uniquely represents a character by a binary string

Fixed-Length Codes

E.g.: Data file containing 100,000 characters

	a	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

- 3 bits needed
- a = 000, b = 001, c = 010, d = 011, e = 100, f = 101
- Requires: $100,000 \cdot 3 = 300,000$ bits

Huffman Codes

• Idea:

 Use the frequencies of occurrence of characters to build a optimal way of representing each character

	a	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

Variable-Length Codes

E.g.: Data file containing 100,000 characters

	a	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

- Assign short codewords to frequent characters and long codewords to infrequent characters
- a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
- $(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1,000$
 - = 224,000 bits

Prefix Codes

- Prefix codes:
 - Codes for which no codeword is also a prefix of some other codeword
 - Better name would be "prefix-free codes"
- We can achieve optimal data compression using prefix codes
 - We will restrict our attention to prefix codes

Encoding with Binary Character Codes

Encoding

 Concatenate the codewords representing each character in the file

• E.g.:

- -a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
- $abc = 0 \cdot 101 \cdot 100 = 0101100$

Decoding with Binary Character Codes

- Prefix codes simplify decoding
 - No codeword is a prefix of another ⇒ the codeword that begins an encoded file is unambiguous

Approach

- Identify the initial codeword
- Translate it back to the original character
- Repeat the process on the remainder of the file

• E.g.:

```
-a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
```

 $-001011101 = 0 \cdot 0 \cdot 101 \cdot 1101 = aabe$

Prefix Code Representation

- Binary tree whose leaves are the given characters
- Binary codeword
 - the path from the root to the character, where 0 means "go to the left child" and 1 means "go to the right child"
- Length of the codeword
 - Length of the path from root to the character leaf (depth of node)

20

Optimal Codes

- An optimal code is always represented by a full binary tree
 - Every non-leaf has two children
 - Fixed-length code is not optimal, variable-length is
- How many bits are required to encode a file?
 - Let C be the alphabet of characters
 - Let f(c) be the frequency of character c
 - Let $d_T(c)$ be the depth of c's leaf in the tree T corresponding to a prefix code

$$B(T) = \sum_{c \in C} f(c)d_T(c)$$
 the cost of tree T

Constructing a Huffman Code

- A greedy algorithm that constructs an optimal prefix code called a Huffman code
- Assume that:
 - C is a set of n characters
 - Each character has a frequency f(c)
 - The tree T is built in a bottom up manner
- Idea:

f: 5 e: 9 c: 12 b: 13 d: 16 a: 45

- Start with a set of |C| leaves
- At each step, merge the two least frequent objects: the frequency of the new node = sum of two frequencies
- Use a min-priority queue Q, keyed on f to identify the two least frequent objects

Example

Building a Huffman Code

```
Running time: O(nlgn)
Alg.: HUFFMAN(C)
1. n ← □C □
2. Q ← C ·
                                       O(n)
3. for i \leftarrow 1 to n-1
       do allocate a new node z
           left[z] \leftarrow x \leftarrow EXTRACT-MIN(Q)
5.
                                                      O(nlgn)
           right[z] \leftarrow y \leftarrow EXTRACT-MIN(Q)
6.
          f[z] \leftarrow f[x] + f[y]
7.
           INSERT (Q, z)
8.
   return EXTRACT-MIN(Q)
```