

Figure 1A

1	CCACCGCGTCCGGGAGCTTGCACAACTACAATGGCTCTAAAAGCACAGATGAC	60
61	CTGCTACACTTCCTGACTTGCTTGTATTGGTGGCACTGTTCATAAATATAATTTGCTC	120
121	TTTCACTTTCTTGAAATGAGCAACCTGAATTACTCGGAGGAGAAAGGCAGGAGAGATA	180
181	GAGGCAGCAGAAGCCAGGGCAGCTGAAAGACAGAGACCTTCAGTCTGAACCAACAACAAG	240
241	CAAAGTTAAATTATGGATATCCAAGGGAGTCTATAGAAGGTCCATGCAAGACATTTGAC	300
301	TACTTGTCTGAACTAGATATCCCTTGAATGTGCACACAAAAAGTGAATGGGTCAATTGAT	360
361	AAGGGAAAATAGGTTCCAAGATGGCTGAATAGGAAGAGCTCCAGTCTGCAGATCCCAGT	420
421	GTGAGCAACGTGGAAGATGGGTGATTCTGCATTTCAACTGAGCATGGAGAGAAAAATT	480
481	TATGTCCTTGCACCACATCCATCTCGTATCAGAAATGGAACCAAATGGCACCTTCAGCAA	540
1	M E P N G T F S N	9
541	TAACAACAGCAGGAACTGCACAATTGAAAACCTCAAGAGAGAATTTCCTCAATTGTATA	600
10	N N S R N C T I E N F K R E F F P I V Y	29
601	TCTGATAATATTTTCTGGGGAGTCTGGAAATGGGTGTCCATATATGTTTCCTGCA	660
30	<u>L I I F F W G V L G N G L S I Y V F L Q</u>	49
661	GCCTTATAAGAACATCTGTGAACGTTTCATGCTAAATCTGCCATTCAGATCT	720
50	P Y K K S T S V N V F M L N L A I S D L	69
721	CCTGTTCATAGCACGCTTCCCTCAGGGCTGACTATTATCTTAGAGGCTCCAATTGGAT	780
70	<u>L F I S T L P F R A D Y Y L R G S N W I</u>	89
781	ATTTGGAGACCTGGCCTGCAGGATTATGTCTTATTCTTGTATGTCAACATGTACAGCAG	840
90	F G D L A C R I M S Y S L Y V N M Y S S	109
841	TATTTATTCCTGACCGTGTGAGTGTGCGTTCTGGCAATGGTCACCCCTTCG	900
110	<u>I Y F L T V L S V V R F L A M V H P F R</u>	129

Figure 1B

901 GCTTCTGCATGTCAACCAGCATCAGGAGTCCTGGATCTCTGTGGATCATATGGATCCT 960
 130 L L H V T S I R S A W I L C G I I W I L 149
 . . .
 961 TATCATGGCTTCCTCAATAATGCTCCTGGACAGTGGCTCTGAGCAGAACGGCAGTGTAC 1020
 150 I M A S S I M L L D S G S E Q N G S V T 169
 . . .
 1021 ATCATGCTTAGAGCTGAATCTCTATAAAATTGCTAAGCTGCAGACCATGAACATATATTGC 1080
 170 S C L E L N L Y K I A K L Q T M N Y I A 189
 . . .
 1081 CTTGGTGGGGCTGCCTGCTGCCATTTCACACTCAGCATCTGTTATCTGCTGATCAT 1140
 190 L V V G C L L P F F T L S I C Y L L I I 209
 . . .
 1141 TCGGGTTCTGTTAAAAGTGGAGGTCCCAGAACATGGGGCTGCGGGTTCTCACAGGAAGGC 1200
 210 R V L L K V E V P E S G L R V S H R K A 229
 . . .
 1201 ACTGACCACCATCATCACCTGATCATCTTCTTGTTCTGCCCTATCACAC 1260
 230 L T T I I I T L I I F F L C F L P Y H T 249
 . . .
 1261 ACTGAGGACCGTCCACTTGACGACATGGAAAGTGGGTTATGCAAAGACAGACTGCATAA 1320
 250 L R T V H L T T W K V G L C K D R L H K 269
 . . .
 1321 AGCTTTGGTTATCACACTGGCCTGGCAGCAGCCAATGCCGCTCAATCCTCTGCTCTA 1380
 270 A L V I T L A L A A A N A C F N P L L Y 289
 . . .
 1381 TTACTTTGCTGGGAGAATTAAAGGACAGACTAAAGTCTGCACTCAGAAAAGGCCATCC 1440
 290 Y F A G E N F K D R L K S A L R K G H P 309
 . . .
 1441 ACAGAAGGCAAAGACAAAGTGTGTTTCCCTGTTAGTGTGGTTGAGAAAGGAAACAAG 1500
 310 Q K A K T K C V F P V S V W L R K E T R 329
 . . .
 1501 AGTATAAGGAGCTCTAGATGAGACCTGTTCTGTATCCTGTGTCATCTCATTCACT 1560
 330 V * 331
 . . .
 1561 CATAGTCTCAAATGACTTTGTATTTACATCACTCCAACAAATGTTGATTCTTAATATT 1620
 . . .
 1621 TAGTTGACCATTACTTTGTTAATAAGACCTACTTCAAAAATTATTCACTGTAAAAAA 1680
 . . .
 1681 AAAAAAAAAAAAAAAAAAAAAAA 1708

Figure 2A

1 50

HGPRBMY11	(1) -----MSLOPSISVSEMEPNC-----	-TFSNNSRNCIEN--FK
HGPRBMY11v1	(1) MERKFMSLQPSISVSEMEPNC-----	-TFSNNNSRNCIEN--FK
P2Y5_CHICK	(1) -----	-MVSSNQSTEDS-FK
P2YR_CHICK	(1) MTEALISAALNGTQPEELLAGG-----	-WAACNAATTKGSITKTGFO
P2YR_MELGA	(1) MTEALISAALNGTQPEELLAGG-----	-WAACNAATTKGSITKTGFO
P2YR_RAT	(1) MTEVPWSAVPNGTDAAFLAGLGSLGWNSTIASTAAVSSSFRCALIKTGFO-----	-NLTVSSATGHD TIDDFR
Q9Y271	(1) -----MDETG-----	-LTNFSLATAEQQGQETPEE
GPRH_HUMAN	(1) -----MNGLLEVAPP-----	

51 100

HGPRBMY11	(22) REFFPIVYIILIFEWGVVLGNGLSIYVFLQPYKKSTSVDVNFMENLAISDLIE-----	
HGPRBMY11v1	(38) REFFPIVYIILIFEWGVVLGNGLSIYVFLQPYKKSTSVDVNFMENLAISDLIE-----	
P2Y5_CHICK	(14) YTLIGCVESMVEVIGLITANCVAIYIFTITLKVRNETTTYMDLNLAISDLIE-----	
P2YR_CHICK	(40) FYYLPTVYILVFITGFLGNSVAIWMFVHFMRPWSGISVYMFNLALADELY-----	
P2YR_MELGA	(40) FYYLPTVYILVFITGFLGNSVAIWMFVHFMRPWSGISVYMFNLALADELY-----	
P2YR_RAT	(51) FYYLPAVYILVFITGFLGNSVAIWMFVHFHKPWSGISVYMFNLALADELY-----	
Q9Y271	(23) NQVYSTLISMISVWGFEGNGFVYVLIKTHKSAFOVYMINLAVALDLIC-----	
GPRH_HUMAN	(31) NMIFASFYLLDFILALVGNTIALWLFIRDHKSGTPANVBFEMHLAVADILSC-----	

101 150

HGPRBMY11	(72) I STL PF RAD YY Y ERGSN W IFGDI A CRIMSY S IYVNMY S IYFLIVLSVVR F -----	
HGPRBMY11v1	(88) I STL PF RAD YY Y ERGSN W IFGDI A CRIMSY S IYVNMY S IYFLIVLSVVR F -----	
P2Y5_CHICK	(64) VFTLPP F RIYYEVVRN-WPFGDVMCKLQR F IFHHVNLYGSILFLTCISVDR F -----	
P2YR_CHICK	(90) VLTLPA L I F YYFNKTDWIFGDVMCKLQR F IFHHVNLYGSILFLTCISVHR F -----	
P2YR_MELGA	(90) VLTLPA L I F YYFNKTDWIFGDVMCKLQR F IFHHVNLYGSILFLTCISVHR F -----	
P2YR_RAT	(101) VLTLPA L I F YYFNKTDWIFGDVMCKLQR F IFHHVNLYGSILFLTCISAH F -----	
Q9Y271	(73) VCTLPLRVYYVHKG I W I FGDFL C RLSTY A LYVNLYCS I FFMTAMSFFRC-----	
GPRH_HUMAN	(81) VLVLPLTR E VYH F SGNHWP F GET A CR L TGF F YL N MYAS I YFLTCISADRF-----	

151 200

HGPRBMY11	(122) LAMVHP F RLIHVT S IRS A WILCG I WILIMASSIML D S-----GSEONGSV-----	
HGPRBMY11v1	(138) LAMVHP F RLIHVT S IRS A WILCG I WILIMASSIML D S-----GSEONGSV-----	
P2Y5_CHICK	(113) LAIVHP F RSK T IRTKRNARI V CVAVWITVLAGSTPA S EFQ S TNRQNTEQ-----	
P2YR_CHICK	(140) TGVVHPL K SLGR L KKKN A YV S SLV W ALVVAVIA P ILFY S CTGVRRNKT I -----	
P2YR_MELGA	(140) TGVVHPL K SLGR L KKKN A YV S SLV W ALVVAVIA P ILFY S CTGVRRNKT I -----	
P2YR_RAT	(151) SGVWYPL K SLGR L KKKN A YV S VL W LVVVA I S P ILFY S CTGVRRNKT I -----	
Q9Y271	(123) IAI V FPVONINIVTO Q KARF V CVGI W IFV L ISSPFLMAKPQ K DEKNNT K -----	
GPRH_HUMAN	(131) LAIVHPV K SLKLRR P LYAHLACAFL W WVAVAMAP L VSPOTVQT N HTV V -----	

201 250

HGPRBMY11	(169) TSCLE--LNLYKIAKLOTMNYIALVVGC L LPFETES I CYLL L IRV L LKVE-----	
HGPRBMY11v1	(185) TSCLE--LNLYKIAKLOTMNYIALVVGC L LPFETES I CYLL L IRV L LKVE-----	
P2Y5_CHICK	(163) RTCFENFPESTWKTYLSRIV I FI E TVGH F IP L ILNVTC S TMV I RTLNKPL-----	
P2YR_CHICK	(190) TCYDT--TADEYLRSYFVYSMCTTVF M C I PF V ILG C YGLIVKAL I YKD-----	
P2YR_MELGA	(190) TCYDT--TADEYLRSYFVYSMCTTVF M C I PF V ILG C YGLIVKAL I YKD-----	
P2YR_RAT	(201) TCYDS--TSDEYLRSYF I YSMCTTVAMFC I PLV V ILG C YGLIVR A LYKD-----	
Q9Y271	(173) CFEPP--QDNQTKNHVLVLHYVSLFVGFI I PF V ILVCYTMI I L L LLKKS-----	
GPRH_HUMAN	(181) CLQLY-----REKASHHALVSLAVAF T FP I TTV T CYLL L IRSLRQGL-----	

Figure 2B

		251		
HGPRBMY11	(217)	VPESGLRVSHRKALTTIITLIIIFFLCFLPYHTLRTVHL		TWKV
HGPRBMY11v1	(233)	VPESGLRVSHRKALTTIITLIIIFFLCFLPYHTLRTVHL		TWKV
P2Y5_CHICK	(213)	TLSRNKLS-KKKVLEKMTIEVHLVIECFCEFPVNITLILYSLMR	--	TOTWIN
P2YR_CHICK	(238)	LDNSPLR--RKSTIYLVIIVLTVEAWSYLPFHVMKTLNLRARLDFQTPQM		
P2YR_MELGA	(238)	LDNSPLR--RKSTIYLVIIVLTVEAWSYLPFHVMKTLNLRARLDFQTPQM		
P2YR_RAT	(249)	LDNSPLR--RKSTIYLVIIVLTVEAWSYIIPFHVMKTMLNRARLDFQTPQM		
Q9Y271	(221)	MKKNLSS--HKKAIGMTMVVTAASFLVSFMPYHIQRTIHLHFLHN	--	ETKP
GPRH_HUMAN	(224)	RVEKRLK---TKAVRMIAIVIAIFIICFVFPYHVNRSSVYVLHYR	--	SHGAS
		301		
HGPRBMY11	(261)	GLCKDRLHKAIVITIALAAAANACENPLLYYFAGENFKDRLKSALRKGHPO		
HGPRBMY11v1	(277)	GLCKDRLHKAIVITIALAAAANACENPLLYYFAGENFKDRLKSALRKGHPO		
P2Y5_CHICK	(260)	GSVVTAVRTMYPVTLICIAVSNCFCDPIVYYFTSDINSELDK--KQQ--VH		
P2YR_CHICK	(285)	CAFNDKVYATYQVTRGLASLNSCVDPILYFLAGDTFRRRLSRATRKSSRR		
P2YR_MELGA	(285)	CAFNDKVYATYQVTRGLASLNSCVDPILYFLAGDTFRRRLSRATRKSSRR		
P2YR_RAT	(296)	CDFNDRVYATYQVTRGLASLNSCVDPILYFLAGDTFRRRLSRATRKASRR		
Q9Y271	(267)	CDSVIRMQSKSVITLSLAASNCFCDFLLYFFSGGNFRKRRLS-TERKHSL		
GPRH_HUMAN	(269)	CATORILALANRITSCLTSINGALDPIMYFFVAEKFRLHALCNLLCGKRLK		
		351	379	
HGPRBMY11	(311)	KAK-TKCVFPVSVWLRKETRV-----		
HGPRBMY11v1	(327)	KAK-TKCVFPVSVWLRKETRV-----		
P2Y5_CHICK	(306)	QNT-----		
P2YR_CHICK	(335)	SEP-NVQSKSEEMILNILTEYKONGDTSL		
P2YR_MELGA	(335)	SEP-NVQSKSEEMILNILTEYKONGDTSL		
P2YR_RAT	(346)	SEA-NLQSKSEEMILNILSEFKONGDTSL		
Q9Y271	(316)	SVT-YVPRKKASLPEKGEEICKV-----		
GPRH_HUMAN	(319)	GPPPSFEKGKTNSSLAKSEL-----		

Figure 3

Figure 4.**Expression Profiling of Novel Human GPCR, HGPRBMY11**

Figure 5.**HGPRBMY11**

Protein	Genbank ID	Identities	Similarities
human cysteinyl leukotriene receptor	gi 11422069	37%	49%
chick purinergic receptor 5	gi P32250	36%	46%
human G-protein-coupled receptor GPR17	gi Q13304	36%	46%
chick purinergic receptor	gi P34996	30%	45%
turkey purinergic receptor	gi P49652	30%	45%
rat purinergic receptor	gi P49651	30%	44%

HGPRBMY11v1

Protein	Genbank ID	Identities	Similarities
human cysteinyl leukotriene receptor	gi 11422069	37.2%	49%
chick purinergic receptor 5	gi P32250	36.7%	46.1%
human G-protein-coupled receptor GPR17	gi Q13304	36.2%	46.1%
chick purinergic receptor	gi P34996	29.5%	43.9%
turkey purinergic receptor	gi P49652	29.8%	44.2%
rat purinergic receptor	gi P49651	29.6%	44%

Figure 6A

1 ATGGAGAGAAAATTATGTCCTTGCACCATCCATCTCCGTATCAGAAATGGAACCAAAT 60
 1 M E R K F M S L Q P S I S V S E M E P N 20

61 GGCACCTTCAGCAATAACAACAGCAGGAACACTGCACAAATTGAAAACCTCAAGAGAGAATT 120
 21 G T F S N N N S R N C T I E N F K R E F 40

121 TTCCCAATTGTATATCTGATAATATTTCTGGGGAGTCTTGGAAATGGGTTGTCCATA 180
 41 F P I V Y L I I F F W G V L G N G L S I 60

181 TATGTTTCCTGCAGCCTTATAAGAACGTCACATCTGTGAACGTTTCATGCTAAATCTG 240
 61 Y V F L Q P Y K K S T S V N V F M L N L 80

241 GCCAATTTCAGATCTCCTGTTCATAGCACCGCTTCCCTTCAGGGCTGACTATTATCTAGA 300
 81 A I S D L L F I S T L P F R A D Y Y L R 100

301 GGCTCCAATTGGATAATTGGAGACCTGGCCTGCAGGATTATGCTTATTCTGTATGTC 360
 101 G S N W I F G D L A C R I M S Y S L Y V 120

361 AACATGTACAGCAGTATTATTCCTGACCGTGCTGAGTGTGCGTTCTGGCAATG 420
 121 N M Y S S I Y F L T V L S V V R F L A M 140

421 GTTCACCCCTTCGGCTCTGCATGTACAGCATCAGGAGTGGCTGGATCCTCTGGGG 480
 141 V H P F R L L H V T S I R S A W I L C G 160

481 ATCATATGGATCCTTATCATGGCTTCCTCAATAATGCTCCTGGACAGTGGCTCTGAGCAG 540
 161 I I W I L I M A S S I M L L D S G S E Q 180

541 AACGGCAGTGTACATCATGCTTAGAGCTGAATCTCTATAAAATTGCTAAGCTGCAGACC 600
 181 N G S V T S C L E L N L Y K I A K L O T 200

601 ATGAACATATTGCCTTGGTGGTGGCTGCCATTTTACACTCAGCATCTGT 660
 201 M N Y I A L V V G C L L P F F T L S I C 220

661 TATCTGCTGATCATTGGGTTCTGTTAAAGTGGAGGTCCCAGAACATGGGCTGGGGTT 720
 221 Y L L I I R V L L K V E V P E S G L R V 240

721 TCTCACAGGAAGGCACTGACCAACCACATCACCATCACCTGATCATCTTCTTGTGTTTC 780
 241 S H R K A L T T I I I T L I I F F L C F 260

781 CTGCCCTATCACACACTGAGGACCGTCCACTTGACGACATGGAAAGTGGGTTATGCAA 840
 261 L P Y H T L R T V H L T T W K V G L C K 280

841 GACAGACTGCATAAAGCTTGGTTATCACACTGGCCTTGGCAGCAGCCAATGCCCTGCTTC 900
 281 D R L H K A L V I T L A A A N A C F 300

Figure 6B

901 AATCCTCTGCTCTATTACTTTGCTGGGGAGAATTAAAGGACAGACTAAAGTCTGCACTC 960
301 N P L L Y Y F A G E N F K D R L K S A L 320

961 AGAAAAGGCCATCCACAGAACAGCAAAGACAAGTGTGTTCCCTGTTAGTGTGTGGTTG 1020
321 R K G H P Q K A K T K C V F P V S V W L 340

1021 AGAAAAGGAAACAAGAGTATAA 1041
341 R K E T R V 346

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Cho NFAT Ga15 Control (Fluorescent vs. Bright Field)

Cho NFAT Ga15 BMY11 (Fluorescent vs. Bright Field)

Figure 14

a. Cho-NFAT CRE

b. Cho-NFAT CRE + F/T/P

c. Cho-NFAT CRE oGPCR-Intermediate

d. Cho-NFAT CRE oGPCR High

Figure 15A

1	ATGTCCTTGCAACCACCATCTCCGTATCAGAAATGGAACCAAATGGCACCTTCAGCAAT	60
1	M S L Q P S I S V S E M E P N G T F S N	20
61	AACAACAGCAGGAAC TG CACAATTGAAAAC TT CAAGAGAGAATT T T T C C A A T T G T A T A T	120
21	N N S R N C T I E N F K R E F F P I V Y	40
121	CTGATAATATTTCTGGGAGTCTGGAAATGGGTGTCCATATATGTTTCTGCAG	180
41	L I I F F W G V L G N G L S I Y V F L Q	60
181	CCTTATAAGAACATCTGTGAACGTTTCATGCTAAATCTGCCATTCAAGATCTC	240
61	P Y K K S T S V N V F M L N L A I S D L	80
241	CTGTTCATAGCACCGCTCCCTCAGGGCTGACTATTATCTTAGAGGCTCCAATTGGATA	300
81	L F I S T L P F R A D Y Y L R G S N W I	100
301	TTTGGAGACCTGGCTGCAGGATTATGTCTTATTCTGTATGTCACATGTACAGCAGT	360
101	F G D L A C R I M S Y S L Y V N M Y S S	120
361	ATTTATTTCCTGACCGTGCTGAGTGTGCGTTCTGGCAATGGTCACCCCTTCGG	420
121	I Y F L T V L S V V R F L A M V H P F R	140
421	CTTCTGCATGTCAACCAGCATCAGGAGTGCCTGGATCCTCTGTGGATCATATGGATCCTT	480
141	L L H V T S I R S A W I L C G I I W I L	160
481	ATCATGGCTTCCTCAATAATGCTCCTGGACAGTGGCTCTGAGCAGAACGGCAGTGTCA	540
161	I M A S S I M L L D S G S E Q N G S V T	180
541	TCATGCTTAGAGCTGAATCTCTATAAAATGCTAAGCTGCAGACCATGAACTATATTGCC	600
181	S C L E L N L Y K I A K L Q T M N Y I A	200
601	TTGGTGGTGGCTGCCTGCTGCCATTTCACACTCAGCATCTGTTATCTGCTGATCATT	660
201	L V V G C L L P F F T L S I C Y L L I I	220
661	CGGGTTCTGTTAAAGTGGAGGTCCCAGAATCGGGCTGCAGGGTTCTCACAGGAAGGCA	720
221	R V L L K V E V P E S G L R V S H R K A	240
721	CTGACCACCATCATCACCTTGATCATCTCTTCTGTGTTCTGCCCTATCACACA	780
241	L T T I I T L I I F F L C F L P Y H T	260
781	CTGAGGACCGTCCACTTGACGACATGGAAAGTGGTTATGCAAAGACAGACTGCATAAA	840
261	L R T V H L T T W K V G L C K D R L H K	280
841	GCTTTGGTTATCACACTGGCCTGGCAGCAGCCAATGCCTGCTCAATCCTCTGCTCTAT	900
281	A L V I T L A L A A A N A C F N P L L Y	300

Figure 15B

901	TAC	TTG	C	GGG	GAGA	AT	TTA	A	GGC	A	CA	GACT	AA	AGT	CTG	CA	T	CAG	AAA	AGGCC	ATCCA		
301	Y	F	A	G	E	N	F	K	D	R	L	K	S	A	L	R	K	G	H	P			
961	CAGA	AGG	CAA	AG	ACA	AA	AGT	GT	TTT	CC	CTG	TT	AGT	GT	GT	GG	TT	GAG	AA	AGG	AA	ACA	AGA
321	Q	K	A	K	T	K	C	V	F	P	V	S	V	W	L	R	K	E	T	R			
1021	GTATAA																						
341	V																						

bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.11.553022>; this version posted September 11, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).