

Mathématiques et Calcul 1

Contrôle continu n°2 — 26 novembre 2018 durée: 1h30

Tout document interdit. Les calculatrices et les téléphones portables, même prévus à titre d'horloge, sont également interdits.

MERCI DE BIEN INDIQUER VOTRE GROUPE DE TD SUR VOTRE COPIE

Tous les exercices sont indépendants.

Exercice 1. Soit f la fonction définie par

$$f(x) = \operatorname{Arctan}\left(\frac{1}{x^2}\right) - \ln(x^2 + 1).$$

- (1) Déterminer le domaine de définition \mathcal{D}_f de f et justifier la continuité de la fonction f sur cet ensemble.
- (2) Calculer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- (3) En déduire que l'équation f(x) = 0 possède au moins une solution dans $[0, +\infty[$.
- (4) Montrer que f est dérivable sur \mathcal{D}_f et calculer f'.
- (5) Montrer que f est une bijection de $]0, +\infty[$ dans A, où A est un ensemble que l'on précisera.
- (6) En déduire que l'équation f(x) = 0 a une unique solution dans $]0, +\infty[$.
- (7) Montrer que pour tout $x \ge 0$ on a $1 \frac{2x}{1 + x^2} \ge 0$.
- (8) En déduire, à l'aide du théorème des accroissements finis, que si $1 \le x < y$ alors $|f(x) f(y)| \le 2|x y|$.

Exercice 2. Déterminer les limites suivantes quand elles existent, ou prouver que la limite n'existe pas.

(1)
$$\lim_{x \to +\infty} \frac{3x^5 - 4x^6 + 20\ln x}{4x^5 + 1}$$

(3)
$$\lim_{x \to 1} \frac{|x-1|}{x-1}$$

(2)
$$\lim_{x \to 0} \frac{\sqrt{\sin x + 1} - 1}{2x^2 - 5x}$$

$$(4) \lim_{x \to 0} \frac{\operatorname{ch} x - 1}{\operatorname{Arcsin} x}$$

Exercice 3. Soit f la fonction définie par

$$f(x) = x^2 \cos\left(\frac{1}{x}\right).$$

- (1) Déterminer le domaine de définition \mathcal{D}_f de f et justifier la continuité de la fonction f sur cet ensemble.
- (2) Montrer que f est prolongeable par continuité sur $\mathbb R.$ On note encore f la fonction prolongée.
- (3) Justifier que f est dérivable sur \mathbb{R}^* et calculer sa dérivée.
- (4) Montrer que f est dérivable en 0.
- (5) Étudier la limite de f'(x) quand x tend vers 0. Est-ce que f' est continue en 0 ?

Exercice 4.

- (1) Calculer le développement limité de $f(x) = e^{x^2} + \sin(x)$ à l'ordre 4 en 0.
- (2) Soit g et h deux fonctions dont les développements limités en 0 sont donnés par

$$g(x) = 2 - x + o(x^2)$$
 et $h(x) = 3x + x^2 - 2x^3 + o(x^3)$.

Donner un développement limité à l'ordre 3 en 0 de $g \times h$.

Exercice 5. Pour $n \in \mathbb{N}$, on considère la fonction f_n définie sur \mathbb{R} par

$$f_n(x) = x^5 + nx - 1.$$

- (1) Étudier, pour n fixé, les variations de f_n sur [0,1].
- (2) Montrer que pour tout $n \in \mathbb{N}$, l'équation $f_n(x) = 0$ admet une unique solution dans [0,1]. Dans toute la suite, on note x_n cette solution (autrement dit, x_n est défini par $f_n(x_n) = 0$ pour tout n).
- (3) Montrer que $f_{n+1}(x_n) \ge 0$ et en déduire que la suite $(x_n)_{n \in \mathbb{N}}$ est décroissante.
- (4) Montrer que la suite $(n x_n)$ est bornée, et en déduire que $\lim_{n\to\infty} x_n = 0$.
- (5) Montrer que $x_n \underset{n\to\infty}{\sim} \frac{1}{n}$.