MATEMÁTICA DISCRETA

Universidad Complutense de Madrid

FACULTAD DE INFORMÁTICA

Doble Grado en Matemáticas e Ingeniería Informática

JAVIER PELLEJERO Curso 2014-2015

Aqu'i~va~la~dedicatoria~y/o~quote

Prefacio

Aquí va el prefacio.

Índice general

Capítulo 1

Introducción a la matemática discreta y a la lógica matemática

1.1. Introducción a la lógica Matemática

La lógica nos permite representar ideas de manera formal, mediante una sintaxis, que describe la idea y una semántica, que define el significado de la sintaxis. La lógica formal se usa entre otras cosas para:

- Formalizar propiedades del mundo.
- Interpretar; es decir, asociar a enunciados un significado.
- Deducción formal: demostrar que una cierta propiedad es verdadera a partir de unas propiedades anteriores

Veamos a continuación las aplicaciones de la lógica matemática a la informática:

- Especificación y verificación de programas.
- Derivación de programas.
- Reducción automática.
- Lógica como paradigma de programación: PROGRAMACIÓN LÓGICA.
- Inteligencia artificial.

Formalizaremos oraciones declarativas (verdaderas o falsas), como por ejemplo el 3 es primo, o todos los números racionales son mayores que 7.

Existen también oraciones no declarativas que no son ni verdaderas ni falsas, como por ejemplo ¿llueve?.

1.2. Lógica proposicional

Representamos un cierto enunciado representado por un símbolo de porposición (p,q,r,\ldots) que puede evaluarse a dos posibles valores (V o F). Símbolos de proposición:

$$\begin{array}{c|c} p & T & \bot \\ \text{prop.} & \text{verdad} & \text{falso} \end{array}$$