考试课程: **数学实验** 考试时间: 2015年6月22日

姓名	学号_20	班级
	_	<u> </u>

[说明]

- (1) 第一、二、三、四、五题的答案直接填在试题纸上;
- (2) 第六、七题、简单的解题过程和结果写在试题纸上; 卷面空间不够时请写在背面
- (3) 除非特别说明, 计算结果保留 4 位有效数字
- (4) 考试时间为 120 分钟
- 1. $(8\, \%)$ 主对角线元素均为 2,两个次对角线元素均为 1 的矩阵 $A = \begin{bmatrix} 2 & 1 & & \\ 1 & 2 & 1 & & \\ & & \ddots & \\ & & 1 & 2 \end{bmatrix}$, b 为分量

- 3. (6分) 某工厂用三种原料生产三种产品Q1,Q2,Q3,已知的条件如表所示,

单位产品所需原料量(公斤)	Q1	Q2	Q3	原料可用量(公斤/日)
原料 P1	2	3	0	1500
原料 P2	0	2	4	2000
原料 P3	3	2	5	2000
单位产品的利润(千元)	3	5	4	

5. $(6\,
m eta)$ 对正态总体 $N(\mu,4^2)$ 考虑如下假设检验问题, H_0 : $\mu=6$ vs H_1 : $\mu \neq 6_0$,若样本容量 n=28 ,则检验统计量 $\bar{x}=6.56$ 对应的 p 值为_______,在显著性水平 $\alpha=0.05$ 下, $\mu=6.2$ 时,犯第二类错误的概率为_______ ;若使显著性水平 $\alpha=0.05$ 下接受原假设的 \bar{x} 取值范围不超过 0.15,样本容量 n 应满足______。

- 6. (8分)确定非线性方程 $\int_0^x \cos(e^{3/(t+1)})\sin(2t)dt = 0.36$ 在 $x \in [0,10]$ 区间上有几个根,设初值 为 $x_0 = 2$,用 Newton 法迭代 8 次,计算 x_8 。给出计算程序和结果。
- 7. (12分)有如下一组父亲和儿子的身高数据

父亲身高 (cm)	176	163	180	184	174	177	183	159	165	170
儿子身高 (cm)	182	165	171	179	187	178	191	175	170	178

假设父亲身高 X 和儿子身高 Y 服从二维正态分布

- (1) 分别给出父亲和儿子平均身高置信水平 95%的置信区间;
- (2) 建立以儿子身高为因变量,父亲身高为自变量的回归模型。写出回归直线方程,计算总偏差平方和与回归平方和,并检验模型的有效性,解释得到的结果;
- (3) 设 E(X) = 173, E(Y) = 176, $\sigma_X = \sigma_Y = 8$, 相关系数 $\rho(X,Y)$ = 0.6, 求 (x,y) 处于以 (175,175) 为圆心、5cm 为半径的圆形区域内的概率。简要给出计算方法和程序。