PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A2

(51) International Patent Classification 6: C12N 15/57, 9/54, C11D 3/386, A23K 1/165

(11) International Publication Number:

WO 99/20770

(43) International Publication Date:

29 April 1999 (29.04.99)

PCT/US98/22572 (21) International Application Number:

(22) International Filing Date:

23 October 1998 (23,10.98)

(30) Priority Data:

08/956,323 23 October 1997 (23.10.97) US 08/956,324 23 October 1997 (23.10.97) US 08/956,564 23 October 1997 (23.10.97) US

(71) Applicants: GENENCOR INTERNATIONAL, INC. [US/US]; 4 Cambridge Place, 1870 South Winton Road, Rochester, NY 14618 (US), THE PROCTER & GAMBLE COMPANY [US/US]; Procter & Gamble Plaza, Cincinnati, OH 45202 (US).

- (72) Inventors: SCHELLENBERGER, Volker; 1747 Sequoia Avenue, Burlingame, CA 94010 (US). KELLIS, James, T., Jr.; 111 Tan Oak Drive, Portola Valley, CA 94028 (US). PAECH, Christian; 914 Moreno Avenue, Palo Alto, CA 94303 (US). NADHERNY, Joanne; 681 Arguello No. 6, San Francisco, CA 94118 (US). NAKI, Donald, P.; 4815 - 25th Street, San Francisco, CA 94118 (US). POULOSE, Ayrookaran, J.; 2848 Wakefield Drive, Belmont, CA 94002 (US). COLLIER, Katherine, D.; 915 Wilmington Way, Redwood City, CA 94062 (US). CALDWELL, Robert, M.; 915 Wilmington Way, Redwood City, CA 94062 (US). BAECK, André, C.; 273 Putsesteenweeg, B-2820 Bonheiden (BE).
- (74) Agent: ANDERSON, Kirsten, A.; Genencor International, Inc., 925 Page Mill Road, Palo Alto, CA 94304-1013 (US).
- (81) Designated States: AL, AM, AT, AT (Utility model), AU (Petty patent), AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: MULTIPLY-SUBSTITUTED PROTEASE VARIANTS

(57) Abstract

Novel protease variants derived from the DNA sequences of naturally-occurring or recombinant non-human proteases are disclosed. The variant proteases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant protease to generate the substitution of a plurality of amino acid residues in the amino acid sequence of a precursor protease. Such variant proteases have properties which are different from those of the precursor protease, such as altered wash performance. The substituted amino acid residue corresponds to position 103 in combination with one or more of the following substitutions at residue positions corresponding to positions 1, 3, 4, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274, and 275 of Bacillus amyloliquefaciens subtilisin, wherein when a substitution at a position corresponding to residue position 103 is combined with a substitution at a position corresponding to residue position 76, there is also a substitution at one or more residue positions other than residue positions corresponding to positions 27, 99, 101, 104, 107, 109, 123, 128, 166, 204, 206, 210, 216, 217, 218, 222, 260, 265 or 274 of Bacillus amyloliquefaciens subtilisin.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
\mathbf{BG}	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	\mathbf{PL}	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
\mathbf{DE}	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

-1-

MULTIPLY-SUBSTITUTED PROTEASE VARIANTS

Related Applications

5

15

20

25

30

The present application is a continuation-in-part application of United States Patent Application 08/956,323, filed October 23, 1998, United States Patent Application 08/956,564, filed October 23, 1998, and United States Patent Application 08/956,324 filed October 23, 1998, all of which are hereby incorporated herein in their entirety.

10 Background of the Invention

Serine proteases are a subgroup of carbonyl hydrolases. They comprise a diverse class of enzymes having a wide range of specificities and biological functions. Stroud, R. Sci. Amer., 131:74-88. Despite their functional diversity, the catalytic machinery of serine proteases has been approached by at least two genetically distinct families of enzymes: 1) the subtilisins and 2) the mammalian chymotrypsin-related and homologous bacterial serine proteases (e.g., trypsin and S. gresius trypsin). These two families of serine proteases show remarkably similar mechanisms of catalysis. Kraut, J. (1977), Annu. Rev. Biochem., 46:331-358. Furthermore, although the primary structure is unrelated, the tertiary structure of these two enzyme families bring together a conserved catalytic triad of amino acids consisting of serine, histidine and aspartate.

Subtilisins are serine proteases (approx. MW 27,500) which are secreted in large amounts from a wide variety of *Bacillus* species and other microorganisms. The protein sequence of subtilisin has been determined from at least nine different species of *Bacillus*. Markland, F.S., et al. (1983), Hoppe-Seyler's Z. Physiol. Chem., 364:1537-1540. The three-dimensional crystallographic structure of subtilisins from *Bacillus amyloliquefaciens*, *Bacillus licheniforimis* and several natural variants of *B. lentus* have been reported. These studies indicate that although subtilisin is genetically unrelated to the mammalian serine proteases, it has a similar active site structure. The x-ray crystal structures of subtilisin containing covalently bound peptide inhibitors (Robertus, J.D., et al. (1972), Biochemistry, 11:2439-2449) or product complexes (Robertus, J.D., et al. (1976), J. Biol. Chem., 251:1097-1103) have also provided information regarding the active site and putative substrate binding cleft of subtilisin. In addition, a large number of kinetic and chemical

PCT/US98/22572 WO 99/20770

-- 2 --

Biol. Chem., 244:5333-5338) and extensive site-specific mutagenesis has been carried out (Wells and Estell (1988) TIBS 13:291-297)

Summary of the Invention

5

10

15

20

25

30

35

It is an object herein to provide protease variants containing a substitution of an amino acid at a residue position corresponding to position 103 of Bacillus amyloliquefaciens subtilisin and substituting one or more amino acids at residue positions selected from the group consisting of residue positions corresponding to positions 1, 3, 4, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 245, 246. 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274 and 275 of Bacillus amyloliquefaciens subtilisin; wherein when a substitution at a position corresponding to residue position 103 is combined with a substitution at a position corresponding to residue position 76, there is also a substitution at one or more residue positions other than residue positions corresponding to positions 27, 99, 101, 104, 107, 109, 123, 128, 166, 204, 206, 210, 216, 217, 218, 222, 260, 265, or 274 of Bacillus amyloliquefaciens subtilisin.

While any combination of the above listed amino acid substitutions may be employed, the preferred protease variant enzymes useful for the present invention comprise the substitution of amino acid residues in the following combinations of positions. All of the residue positions correspond to positions of Bacillus amyloliquefaciens subtilisin:

- (1) a protease variant including substitutions of the amino acid residues at position 103 and at one or more of the following positions 236 and 245;
- (2) a protease variant including substitutions of the amino acid residues at positions 103 and 236 and at one or more of the following positions 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 230, 232, 248, 252, 257, 260, 270 and 275;
 - (3) a protease variant including substitutions of the amino acid residues at positions 103 and 245 and at one or more of the following positions 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 170, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 222, 230, 232, 248, 252, 257, 260, 261, 270 and 275; or

(4) a protease variant including substitutions of the amino acid residues at positions 103, 236 and 245 and at one or more of the following positions 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 230, 232, 243, 248, 252, 257, 260, 270 and 275.

-- 3 --

More preferred protease variants are substitution sets selected from the group consisting of residue positions corresponding to positions in Table 1 of *Bacillus* amyloliquefaciens subtilisin:

5

-- 4 -

							218	248	2						174		237		
222	104	104	107	104	246	104	183	104	104	261	160	216	104	104	104	104	104	104	183
104	103	103	104	103	104	103	104	103	103	104	104	104	103	103	103	103	103	103	104
103	98	78	103	9/	103	77	103	9/	76	103	103	103	76	92	77	9/	9/	9/	103
9/	9/	9/	9/	4	9/	9/	9/	16	-	9/	9/	9/	17	37	76	38	38	ω	9/

Table 1

-- 5 **--**

		,			_		,	Ψ		,	_	· · · · · · · · · · · · · · · · · · ·		,					
							185	274	3		240						177		
104	104	184	252	259	251	104	104	237	160	228	104	254	204	204	104	159	104	104	270
103	103	104	104	104	104	103	103	104	104	104	103	104	104	104	103	104	103	103	104
9/	9/	103	103	103	103	98	9/	103	103	103	9/	103	103	103	9/	103	9/	9/	103
13	19	9/	9/	9/	9/	9/	72	92	9/	9/	55	9/	9/	9/	43	9/	10	58	76
	76 103	76 103 76 103	76 103 76 103 103 104	76 103 76 103 103 104	76 103 76 103 103 104 103 104	76 103 76 103 103 104 103 104 103 104	76 103 76 103 103 104 103 104 103 104 86 103	76 103 104 76 103 104 103 104 184 103 104 252 103 104 259 103 104 251 86 103 104 76 103 104	76 103 104 76 103 104 103 104 252 103 104 259 103 104 251 86 103 104 76 103 104	76 103 104 76 103 104 103 104 252 103 104 251 103 104 251 86 103 104 76 103 104 103 104 237 103 104 237	76 103 104 76 103 104 103 104 252 103 104 259 103 104 251 86 103 104 76 103 104 103 104 237 103 104 237 103 104 237	76 103 104 76 103 104 103 104 252 103 104 259 103 104 251 86 103 104 76 103 104 103 104 237 103 104 237 103 104 237 103 104 237 103 104 160 ,	76 103 104 76 103 104 103 104 252 103 104 259 103 104 251 86 103 104 76 103 104 103 104 237 103 104 237 103 104 228 103 104 228 103 104 228 103 104 228	76 103 104 76 103 104 103 104 252 103 104 259 103 104 251 86 103 104 76 103 104 103 104 228 103 104 228 103 104 228 103 104 228 103 104 254 103 104 254	76 103 104 76 103 104 103 104 252 103 104 259 103 104 251 86 103 104 76 103 104 103 104 228 103 104 228 76 103 104 103 104 254 103 104 254 103 104 204	76 103 104 76 103 104 103 104 252 103 104 259 103 104 251 86 103 104 76 103 104 103 104 228 103 104 228 103 104 254 103 104 254 103 104 204 103 104 204 103 104 204	76 103 104 76 103 104 103 104 252 103 104 259 103 104 251 103 104 251 103 104 251 103 104 237 103 104 228 76 103 104 204 103 104 204 103 104 204 103 104 204 103 104 204 103 104 204 103 104 204	76 103 104 76 103 104 103 104 252 103 104 251 103 104 251 103 104 251 103 104 251 103 104 237 103 104 228 76 103 104 103 104 204 103 104 204 76 103 104 204 76 103 104 204 76 103 104 204	76 103 104 76 103 104 103 104 252 103 104 251 103 104 251 103 104 251 103 104 251 103 104 228 76 103 104 103 104 204 103 104 204 103 104 204 103 104 204 103 104 204 103 104 204 103 104 204 76 103 104 159 76 103 104

-- 6 --

								-									<u> </u>			-
																		-		
					251												183			
					236	237			204	337		271	261			242	116			
185	104	262	104	104	166	104	130	109	104	181	104	212	252	242	271	104	104	258	271	104
104	103	104	103	103	104	103	104	104	103	104	103	104	104	104	104	103	103	104	104	103
103	9/	103	78	9/	103	9/	103	103	66	103	76	103	103	103	103	9/	9/	103	103	92
9/	27	9/	9/	24	9/	17	92	9/	9/	92	12	9/	9/	9/	.92	12	43	9/	9/	61

-- 7 *-*

	T	Г	T			Γ			Τ	T	T	T	1	T	T	T	1	1		T
						<u> </u>											-			
													·							
				<u> </u>																ļ
			265																251	252
263			249	271															217	217
182	272	246	206	238		198	182	137	248	,206		258	271	261	206	206			159	159
104	182	109	104	137		182	104	119	137	104	206	212	104	206	104	104	158	206	104	104
103	104	104	103	104	228	104	103	104	104	103	104	104	103	104	103	103	104	104	103	103
9/	103	103	87	103	104	103	9/	103	103	9/	103	103	9/	103	9/	77	103	103	76	92
38	9/	9/	9/	9/	103	9/	21	9/	9/	13	9/	9/	28	9/	4	9/	9/	9/	4	4

-- 8 --

										*										
		<u> </u>									ļ									
251																		271	271	
185	244					159	236		159					271		271	27.1	212	243	
133	206	188	158	185	251	111	159	159	104	1,159	159	238	224	268		212	245	141	236	245
104	159	104	104	104	206	104	104	104	103	104	146	159	159	212	104	104	212	134	212	109
103	104	103	103	103	104	103	103	103	9/	103	104	104	104	104	103	103	104	104	104	104
22	103	9/	9/	77	103	9/	92	92	62	9/	103	103	103	103	83	87	103	103	103	103
9/	9/	4	4	9/	9/	48	89	42	12	42	9/	9/	9/	9/	9/	9/	9/	9/	9/	9/

-- 9 --

<u> </u>		T																		
																				-
										245										
					271					236		253	236				249			
			271	245	236				236	159	236	236	184	243	245		236	249		
			236	236	217			236	159	121	159	209	159	236	236	159	159	236		249
210	104	236	159	159	159	104		159	104	4160	104	159	117	159	159	142	123	159	245	222
109	103	104	104	104	104	103	104	104	103	103	103	104	104	104	104	104	104	104	222	104
104	9/	103	103	103	103	9/	103	103	9/	92	9/	103	103	103	103	103	103	103	104	103
103	62	9/	9/	9/	9/	89	9/	9/	75	76	68	9/	9/	9/	9/	9/	9/	9/	103	9/
9/	20	89	89	89	89	17	89	89	89	89	12	89	89	89	89	89	89	89	9/	12

-	-	1	0	-	-

										255		245		245		245			245	
									261	245	247	236	245	236	245	236			236	252
		263							245	236	245	204	236	218	236	203			232	245
		237		271			248		236	159	236	174	204	159	232	194	245		159	236
222	263	222	222	222	222	222	222	249	159	√341	159	159	159	133	159	159	222	245	104	232
173	222	104	109	109	104	137	109	222	104	104	104	104	104	104	104	104	104	232	103	159
104	104	103	104	104	103	104	104	104	103	103	103	103	103	103	103	103	103	104	9/	104
103	103	9/	103	103	92	103	103	103	9/	92	9/	9/	9/	9/	92	9/	92	103	68	103
9/	9/	21	9/	9/	61	9/	9/	9/	89	89	89	89	89	89	68	89	12	9/	24	89

-- 11 --

								-												
260												275						269		245
245						252		252	252		252	252	262		262			262	251	243
236						248		245	245	245	245	245	248	245	245	261		245	245	222
232	245		245			245	245	236	236	236	236	236	245	222	227	245		222	222	185
213	244	245	222			236	236	232	232	232	232	232	222	215	222	222	245	218	130	170
159	222	210	130	104	184	232	232	159	159	,,159	159	159	130	130	130	130	222	130	104	130
104	104	222	104	103	104	159	159	140	104	104	104	104	104	104	104	104	130	104	103	104
103	103	103	103	92	103	104	104	104	103	103	103	103	103	103	103	103	104	103	9/	103
9/	9/	9/	9/	68	9/	103	103	103	89	89	89	87	9/	9/	9/	9/	103	9/	22	9/
89	12	12	12	22	89	89	89	89	43	43	43	89	12	12	12	12	9/	12	12	12

-- 12 --

									T											
					ļ								-							-
								<u> </u>	ļ					ļ						
									-											
								245		245							245	257		275
268	245	257	245	248	245	245	245	236	245	236	245	245	245	245	248	245	236	245		257
245	210	245	236	245	236	236	237	232	236	232	236	236	236	236	245	236	232	236	257	245
222	222	236	232	236	232	232	236	159	232	206	232	232	232	232	236	232	210	232	245	236
130	130	232	159	232	159	203	232	104	183	\$74	188	230	159	215	232	159	159	159	236	232
104	104	159	116	159	104	159	159	103	159	159	159	159	104	159	159	104	104	104	232	159
103	103	104	104	104	103	104	104	6/	104	104	104	104	103	104	104	103	103	103	104	104
9/	76	103	103	103	68	103	103	9/	103	103	103	103	98	103	103	9/	9/	76	103	103
12	12	89	89	89	10	89	89	89	89	89	89	89	89	89	89	89	89	89	9/	89

					245			259	260				245			251	272	245		
	257		245	245	236	245	245	245	245	261		245	236			248	245	236	256	245
	245	257	236	236	232	236	236	236	236	245		236	232		245	245	236	232	245	236
	236	245	232	232	214	232	232	232	232	236	245	232	159		236	236	232	206	236	232
	232	236	209	211	159	215	159	159	159	232	242	210	104	245	232	232	159	183	232	206
275	224	232	159	159	104	159	104	104	104	169	236	159	103	236	192	159	104	159	159	159
257	159	159	104	104	103	104	103	103	103	104	232	104	9/	232	159	147	103	104	104	104
104	104	104	103	103	9/	103	9/	9/	9/	103	104	103	89	104	104	104	9/	103	103	103
103	103	103	9/	9/	89	9/	89	89	87	9/	103	9/	48	103	103	103	89	9/	9/	9/
9/	89	9/	89	89	12	89	12	20	89	89	9/	89	12	9/	76.	92	12	89	89	89

	245				252									252						
	236	252	252	252	248		252	252	252	252	261	252	252	248	252	252		252	252	252
245	232	248	248	248	245		248	248	248	248	252	248	248	245	248	248	252	248	248	248
236	185	245	245	245	236	252	245	245	245	245	248	245	245	236	245	245	248	245	245	245
232	170	236	236	236	232	248	236	236	236	236	245	236	236	232	236	236	245	236	236	236
159	159	232	232	232	184	245	232	232	232	232	236	232	232	210	232	232	236	232	232	232
104	116	159	159	212	159	236	209	159	159	500	232	185	210	185	212	213	232	215	216	159
103	104	104	104	159	66	232	159	109	104	159	159	159	159	159	159	159	213	159	159	104
9/	103	103	103	104	104	159	104	104	103	104	104	104	104	104	104	104	104	104	104	103
68	9/	89	68	103	103	104	103	103	89	103	103	103	103	103	103	103	103	103	103	68
. 27	89	61	43	89	89	103	89	89	20	89	89	89	89	89	89	89	89	89	89	20

WO 99/20770

	T	l	Τ	T	Т	Τ	T	T	T	T	Т		T	ł	1	T -	T	1	1	T
																				260
										269	260									245
252	252	252		252	255	256	260	257	258	252	252	261	261	252				252		236
248	251	248	252	248	252	252	252	252	252	248	248	252	252	248			252	248	252	232
245	248	245	248	245	248	248	248	248	248	245	245	248	248	245	252	252	248	245	248	218
236	245	236	245	236	245	245	245	245	245	236	236	245	245	236	248	248	245	236	245	213
232	236	232	236	232	236	236	236	236	236	232	232	236	236	232	245	245	236	232	236	159
173	232	206	232	159	232	232	232	232	232	\$59	159	232	232	159	236	236	232	159	232	104
159	159	159	159	104	159	159	159	159	159	104	116	159	159	104	232	232	159	104	159	103
104	104	104	104	103	104	104	104	104	104	103	104	104	104	103	104	159	104	103	104	101
103	103	103	103	68	103	103	103	103	103	68	103	103	103	9/	103	104	103	68	103	76
89	89	89	89	55	89	89	89	89	89	ω	89	89	89	89	89	103	89	18	89	89

WO 99/20770

		260				252														
	252	245	252		252	248				252	252	252								
252	248	236	248		248	245	252		252	248	248	248								
248	245	232	245		245	236	248	252	248	245	245	245	252	252	252	252	252	252	252	261
245	236	213	236	245	236	232	245	248	245	236	236	236	248	248	248	248	248	248	248	252
236	232	210	232	236	232	159	236	245	236	232	232	232	245	245	245	245	245	245	245	248
232	159	159	159	232	159	137	232	236	232	160	104	167	236	236	236	236	236	236	236	245
228	104	104	104	210	130	133	159	232	218	4.59	103	159	232	232	232	232	232	232	232	236
159	103	103	103	205	104	104	133	159	159	104	92	104	159	159	159	159	159	159	159	232
104	9/	68	9/	159	103	103	104	104	104	103	89	103	104	104	104	104	104	106	109	159
103	89	9/	68	104	89	89	103	103	103	89	61	68	103	103	103	103	103	104	104	104
89	33	89	61	103	61	61	61	89	89	61	3	61	97	86	66	101	102	103	103	103

-- 17 **--**

	Τ					T		Τ	Τ	F	Ţ <u> </u>			T		Ţ	T		Ĭ	
				252									271	260	260	260				
				248	252	252	252					260	260	245	245	245	260			
252	252	252	252	245	248	248	248	252	252	252	252	245	245	236	236	236	245	260	260	
248	248	248	248	236	245	245	245	248	248	248	248	236	236	232	232	232	236	245	245	245
245	245	245	245	232	236	236	236	245	245	245	245	232	232	213	213	213	232	236	236	236
236	236	236	236	213	232	232	232	236	236	236	236	213	213	209	210	205	210	232	232	232
232	232	232	232	159	213	217	206	232	232	\$32	232	159	159	159	159	159	159	213	213	209
159	184	166	217	104	159	206	159	159	159	159	159	104	104	104	104	104	104	159	159	159
104	159	159	159	103	104	159	104	130	131	104	104	103	103	103	103	103	103	104	104	104
103	104	104	104	62	103	104	103	104	104	103	103	9/	9/	9/	9/	9/	9/	103	103	103
29	103	103	103	20	62	103	62	103	103	27	38	38	89	68	89	89	89	89	9/	89

-- 18 --

F	T	T	Ι	T	1		Γ	Г	1	T	1	T	T	T	T	T	T	T	1	T
												261					260			
												260					245	260		260
								257	257	257		245	261		252		236	245		245
245	245	245	245	245		260		245	245	245		236	257	260	248	257	232	236		236
236	236	236	236	236		245		236	236	236	257	232	245	245	245	245	213	232	257	232
232	232	232	232	232	245	236	245	232	232	232	245	213	236	236	236	236	210	213	245	213
210	230	126	205	210	236	232	236	174	194	509	236	159	232	232	232	232	159	209	236	210
159	159	159	159	159	230	159	232	159	159	159	232	104	159	213	210	209	104	159	232	205
104	104	104	104	104	159	104	159	104	104	104	159	103	104	159	159	159	103	104	209	159
103	103	103	103	103	104	103	104	103	103	103	104	9/	103	104	104	104	9/	103	104	104
89	89	89	89	89	103	89	103	89	89	89	103	89	89	103	103	103	89	12	103	103

	T	1	T							T			T		T	T	T	1	Τ	Τ
				260										252	252	252				
	245	257		245							252	261	252	248	248	248	252			
260	236	245	257	236	245					245	248	257	248	245	245	245	248	252	252	252
245	232	236	245	232	236	245	245	245		236	245	245	245	236	236	236	245	248	248	248
236	210	232	236	210	232	236	236	236	245	232	236	236	236	232	232	232	236	245	245	245
232	209	210	232	209	210	232	232	232	236	209	232	232	232	212	212	212	232	236	236	244
209	205	209	209	205	209	210	210	159	230	1,69	159	159	212	159	159	159	213	232	232	236
205	159	205	205	159	205	209	205	128	159	104	104	104	159	104	104	104	159	159	184	232
159	104	159	159	104	159	159	159	104	104	103	103	103	104	103	103	103	104	131	159	159
104	103	104	104	103	104	104	104	103	103	89	89	68	103	102	102	102	103	104	104	104
103	89	103	103	68	103	103	103	89	48	48	48	48	102	12	101	86	102	103	103	103

											252									
256	252						252		252	252	248			252			252	252	252	
252	248	252	252	252	252	252	248	252	248	248	245			248	252	252	248	248	248	260
248	245	248	248	248	248	248	245	248	245	245	236			245	248	248	245	245	245	252
245	236	245	245	245	245	245	236	236	236	236	232			236	245	245	236	236	236	248
236	232	236	236	236	236	236	232	232	232	232	213	252		232	236	236	232	232	232	245
232	213	232	232	232	232	232	212	212	213	213	212	248		213	232	232	213	213	213	236
213	159	185	206	213	159	159	159	159	159	2,12	159	245	245	159	159	159	159	159	159	232
159	104	159	159	159	104	104	104	104	109	159	104	232	230	130	130	128	104	128	128	159
104	103	104	104	104	103	103	103	103	104	104	103	159	159	104	104	104	103	104	104	104
103	62	103	103	103	102	102	102	102	103	103	101	104	104	103	103	103	101	103	103	103
62	12	101	101	101	98	101	86	98	62	62	62	103	103	62	101	101	62	62	62	101

WO 99/20770

			,	,			,	,	,	
										271
										252
								252		248
252	252	252	252	252	252		252	248	252	245
248	248	248	248	248	248		248	245	248	236
245	245	245	245	245	245		245	236	245	232
236	236	236	236	236	236	245	236	232	236	213
232	232	232	232	232	232	236	232	194	232	206
159	159	212	209	210	205	230	194	159	230	185
104	104	159	159	159	159	159	159	104	159	159
103	103	104	104	104	104	104	104	103	104	104
101	101	103	103	103	103	103	103	101	103	103
86	66	101	101	101	101	101	101	9/	101	62
	101 103 104 159 232 236 245 248	101 103 104 159 232 236 245 248 101 103 104 159 232 236 245 248	101 103 104 159 232 236 245 248 101 103 104 159 232 236 245 248 103 104 159 212 232 236 245 248	101 103 104 159 232 236 245 248 101 103 104 159 232 236 245 248 103 104 159 212 232 236 245 248 103 104 159 209 232 236 245 248 103 104 159 209 232 236 245 248	101 103 104 159 232 236 245 248 101 103 104 159 232 236 245 248 103 104 159 212 232 236 245 248 103 104 159 209 232 236 245 248 103 104 159 210 232 236 245 248	101 103 104 159 232 236 245 248 101 103 104 159 232 236 245 248 103 104 159 212 232 236 245 248 103 104 159 209 232 236 245 248 103 104 159 210 232 236 245 248 103 104 159 205 232 236 245 248 103 104 159 205 232 236 245 248	101 103 104 159 232 236 245 248 101 103 104 159 232 236 245 248 103 104 159 212 232 236 245 248 103 104 159 209 232 236 245 248 103 104 159 210 232 236 245 248 103 104 159 205 232 236 245 248 103 104 159 205 232 236 245 248 103 104 159 230 236 245 248	101 103 104 159 232 236 245 248 101 103 104 159 232 236 245 248 103 104 159 212 232 236 245 248 103 104 159 209 232 236 245 248 103 104 159 205 232 236 245 248 103 104 159 205 232 236 245 248 103 104 159 230 236 245 248 103 104 159 194 232 236 245 248	101 103 104 159 232 236 245 248 252 101 103 104 159 232 236 245 248 252 103 104 159 212 232 236 245 248 252 103 104 159 209 232 236 245 248 252 103 104 159 205 232 236 245 248 252 103 104 159 205 232 236 245 248 252 103 104 159 230 236 245 248 252 103 104 159 194 232 236 245 248 252 101 103 104 159 194 232 236 245 248 252	101 103 104 159 232 236 245 248 252 101 103 104 159 232 236 245 248 252 103 104 159 212 232 236 245 248 252 103 104 159 210 232 236 245 248 252 103 104 159 205 232 236 245 248 252 103 104 159 205 232 236 245 248 252 103 104 159 230 236 245 248 252 101 103 104 159 194 232 236 245 248 252 101 103 104 159 194 232 236 245 248 252 103 104 159 230 236 245 248<

Most preferred protease variants are those shown in Table 3.

It is a further object to provide DNA sequences encoding such protease variants, as well as expression vectors containing such variant DNA sequences.

Still further, another object of the invention is to provide host cells transformed with such vectors, as well as host cells which are capable of expressing such DNA to produce protease variants either intracellularly or extracellularly.

There is further provided a cleaning composition comprising a protease variant of the present invention.

Additionally, there is provided an animal feed comprising a protease variant of the present invention.

Also provided is a composition for the treatment of a textile comprising a protease variant of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

30

35

Figs. 1 A-C depict the DNA and amino acid sequence for *Bacillus amyloliquefaciens* subtilisin and a partial restriction map of this gene.

Fig. 2 depicts the conserved amino acid residues among subtilisins from *Bacillus* amyloliquefaciens (BPN)' and *Bacillus lentus* (wild-type).

Figs. 3A and 3B depict the amino acid sequence of four subtilisins. The top line represents the amino acid sequence of subtilisin from *Bacillus amyloliquefaciens* subtilisin (also sometimes referred to as subtilisin BPN'). The second line depicts the amino acid sequence of subtilisin from *Bacillus subtilis*. The third line depicts the amino acid sequence of subtilisin from *B. licheniformis*. The fourth line depicts the amino acid sequence of subtilisin from *Bacillus lentus* (also referred to as subtilisin 309 in PCT WO89/06276). The symbol * denotes the absence of specific amino acid residues as compared to subtilisin BPN'.

<u>Detailed Description of the Invention</u>

Proteases are carbonyl hydrolases which generally act to cleave peptide bonds of proteins or peptides. As used herein, "protease" means a naturally-occurring protease or a recombinant protease. Naturally-occurring proteases include α -aminoacylpeptide hydrolase, peptidylamino acid hydrolase, acylamino hydrolase, serine carboxypeptidase, metallocarboxypeptidase, thiol proteinase, carboxylproteinase and metalloproteinase. Serine, metallo, thiol and acid proteases are included, as well as endo and exo-proteases.

The present invention includes protease enzymes which are non-naturally occurring carbonyl hydrolase variants (protease variants) having a different proteolytic activity, stability, substrate specificity, pH profile and/or performance characteristic as compared to the precursor carbonyl hydrolase from which the amino acid sequence of the variant is derived. Specifically, such protease variants have an amino acid sequence not found in nature, which is derived by substitution of a plurality of amino acid residues of a precursor protease with different amino acids. The precursor protease may be a naturally-occurring protease or a recombinant protease.

5

10

15

20

25

30

The protease variants useful herein encompass the substitution of any of the nineteen naturally occurring L-amino acids at the designated amino acid residue positions. Such substitutions can be made in any precursor subtilisin (procaryotic, eucaryotic, mammalian, etc.). Throughout this application reference is made to various amino acids by way of common one - and three-letter codes. Such codes are identified in Dale, M.W. (1989), Molecular Genetics of Bacteria, John Wiley & Sons, Ltd., Appendix B.

The protease variants useful herein are preferably derived from a *Bacillus* subtilisin. More preferably, the protease variants are derived from *Bacillus lentus* subtilisin and/or subtilisin 309.

Subtilisins are bacterial or fungal proteases which generally act to cleave peptide bonds of proteins or peptides. As used herein, "subtilisin" means a naturally-occurring subtilisin or a recombinant subtilisin. A series of naturally-occurring subtilisins is known to be produced and often secreted by various microbial species. Amino acid sequences of the members of this series are not entirely homologous. However, the subtilisins in this series exhibit the same or similar type of proteolytic activity. This class of serine proteases shares a common amino acid sequence defining a catalytic triad which distinguishes them from the chymotrypsin related class of serine proteases. The subtilisins and chymotrypsin related serine proteases both have a catalytic triad comprising aspartate, histidine and serine. In the subtilisin related proteases the relative order of these amino acids, reading from the amino to carboxy terminus, is aspartate-histidine-serine. In the chymotrypsin related proteases, the relative order, however, is histidine-aspartate-serine. Thus, subtilisin herein refers to a serine protease having the catalytic triad of subtilisin related proteases. Examples include but are not limited to the subtilisins identified in Fig. 3 herein. Generally and for purposes of the present invention, numbering of the amino acids in proteases corresponds to the numbers assigned to the mature Bacillus amyloliquefaciens subtilisin sequence presented in Fig. 1.

"Recombinant subtilisin" or "recombinant protease" refer to a subtilisin or protease in which the DNA sequence encoding the subtilisin or protease is modified to produce a variant (or mutant) DNA sequence which encodes the substitution, deletion or insertion of one or more amino acids in the naturally-occurring amino acid sequence. Suitable methods to produce such modification, and which may be combined with those disclosed herein, include those disclosed in US Patent RE 34,606, US Patent 5,204,015 and US Patent 5,185,258, U.S. Patent 5,700,676, U.S. Patent 5,801,038, and U.S. Patent 5,763,257.

5

10

15

20

25

30

35

"Non-human subtilisins" and the DNA encoding them may be obtained from many procaryotic and eucaryotic organisms. Suitable examples of procaryotic organisms include gram negative organisms such as *E. coli* or *Pseudomonas* and gram positive bacteria such as *Micrococcus* or *Bacillus*. Examples of eucaryotic organisms from which subtilisin and their genes may be obtained include yeast such as *Saccharomyces cerevisiae*, fungi such as *Aspergillus* sp.

A "protease variant" has an amino acid sequence which is derived from the amino acid sequence of a "precursor protease". The precursor proteases include naturally-occurring proteases and recombinant proteases. The amino acid sequence of the protease variant is "derived" from the precursor protease amino acid sequence by the substitution, deletion or insertion of one or more amino acids of the precursor amino acid sequence. Such modification is of the "precursor DNA sequence" which encodes the amino acid sequence of the precursor protease rather than manipulation of the precursor protease enzyme *per se*. Suitable methods for such manipulation of the precursor DNA sequence include methods disclosed herein, as well as methods known to those skilled in the art (see, for example, EP 0 328299, WO89/06279 and the US patents and applications already referenced herein).

Specific substitutions corresponding to position 103 in combination with one or more of the following substitutions corresponding to positions 1, 3, 4, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274 and 275 of *Bacillus amyloliguefaciens* subtilisin are identified herein.

-- 25 --

Preferred variants are those having combinations of substitutions at residue positions corresponding to positions of *Bacillus amyloliquefaciens* subtilisin in Table 1. More preferred variants are those having combinations of substitutions at residue positions corresponding to positions of *Bacillus amyloliquefaciens* subtilisin in Table 3.

Further preferred variants are those having combinations of substitutions at residue positions corresponding to positions of *Bacillus amyloliquefaciens* subtilisin in Table 2.

5

Table 2

				ļ														
			260														245	
			245		252		252	252					245	257		245	236	245
		252	236		248		245	245	245	261		257	236	245	257	236	232	236
		245	232		245	245	236	236	236	245		245	232	236	245	232	214	232
		236	213		236	236	232	232	232	222	245	236	210	232	236	211	159	215
245	249	232	159	104	232	232	159	159	159	130	222	232	159	224	232	159	104	159
222	222	159	104	103	159	159	140	104	104	104	130	159	104	159	159	104	103	104
104	104	104	103	9/	104	104	104	103	103	103	104	104	103	104	104	103	9/	103
103	103	103	9/	89	103	103	103	89	89	9/	103	103	9/	103	103	9/	89	9/
92	92	89	89	22	89	89	89	43	43	12	9/	89	89	89	9/	89	12	89

									-										
	259	260		245		251	272	245				252		252	252	252	252	252	252
245	245	245	261	236		248	245	236	256	245	245	248		248	248	248	248	248	248
236	236	236	245	232	245	245	236	232	245	236	236	245	252	245	245	245	245	245	245
232	232	232	236	159	236	236	232	206	236	232	232	236	248	236	236	236	236	236	236
159	159	159	232	104	232	232	159	183	232	206	159	232	245	232	232	232	232	232	232
104	104	104	159	103	192	159	104	159	1594	159	104	212	236	209	159	159	209	210	212
103	103	103	104	9/	159	147	103	104	104	104	103	159	232	159	109	104	159	159	159
92	9/	87	103	89	104	104	9/	103	103	103	9/	104	159	104	104	103	104	104	104
89	68	9/	9/	48	103	103	68	9/	9/	9/	68	103	104	103	103	68	103	103	103
12	20	89	89	12	9/	9/	12	89	89	89	27	89	103	89	89	20	89	89	89

	1	1	1	1	Τ	T	Τ	T	Τ	т —
									260	
									245	
252		252	252	252	255	256	260	252	236	252
248	252	248	248	248	252	252	252	248	232	248
245	248	245	245	245	248	248	248	245	213	245
236	245	236	236	236	245	245	245	236	210	236
232	236	232	232	232	236	236	236	232	159	232
213	232	215	216	159	232	232	232	228	104₩	218
159	213	159	159	104	159	159	159	159	103	159
104	104	104	104	103	104	104	104	104	88	104
103	103	103	103	89	103	103	103	103	9/	103
68	89	89	89	20	89	89	89	89	89	89

These amino acid position numbers refer to those assigned to the mature *Bacillus* amyloliquefaciens subtilisin sequence presented in Fig. 1. The invention, however, is not limited to the mutation of this particular subtilisin but extends to precursor proteases containing amino acid residues at positions which are "equivalent" to the particular identified residues in *Bacillus* amyloliquefaciens subtilisin. In a preferred embodiment of the present invention, the precursor protease is *Bacillus* lentus subtilisin and the substitutions are made at the equivalent amino acid residue positions in *B. lentus*

5

10

15

20

25

30

corresponding to those listed above.

A residue (amino acid) position of a precursor protease is equivalent to a residue of *Bacillus amyloliquefaciens* subtilisin if it is either homologous (i.e., corresponding in position in either primary or tertiary structure) or analogous to a specific residue or portion of that residue in *Bacillus amyloliquefaciens* subtilisin (i.e., having the same or similar functional capacity to combine, react, or interact chemically).

In order to establish homology to primary structure, the amino acid sequence of a precursor protease is directly compared to the *Bacillus amyloliquefaciens* subtilisin primary sequence and particularly to a set of residues known to be invariant in subtilisins for which sequence is known. For example, Fig. 2 herein shows the conserved residues as between *B. amyloliquefaciens* subtilisin and *B. lentus* subtilisin. After aligning the conserved residues, allowing for necessary insertions and deletions in order to maintain alignment (i.e., avoiding the elimination of conserved residues through arbitrary deletion and insertion), the residues equivalent to particular amino acids in the primary sequence of *Bacillus amyloliquefaciens* subtilisin are defined. Alignment of conserved residues preferably should conserve 100% of such residues. However, alignment of greater than 75% or as little as 50% of conserved residues is also adequate to define equivalent residues. Conservation of the catalytic triad, Asp32/His64/Ser221 should be maintained. Siezen et al. (1991) Protein Eng. 4(7):719-737 shows the alignment of a large number of serine proteases. Siezen et al. refer to the grouping as subtilases or subtilisin-like serine proteases.

For example, in Fig. 3, the amino acid sequence of subtilisin from *Bacillus* amyloliquefaciens, *Bacillus subtilis*, *Bacillus licheniformis* (carlsbergensis) and *Bacillus lentus* are aligned to provide the maximum amount of homology between amino acid sequences. A comparison of these sequences shows that there are a number of conserved residues contained in each sequence. These conserved residues (as between BPN' and *B. lentus*) are identified in Fig. 2.

These conserved residues, thus, may be used to define the corresponding equivalent amino acid residues of *Bacillus amyloliquefaciens* subtilisin in other subtilisins such as subtilisin from *Bacillus lentus* (PCT Publication No. W089/06279 published July 13, 1989), the preferred protease precursor enzyme herein, or the subtilisin referred to as PB92 (EP 0 328 299), which is highly homologous to the preferred *Bacillus lentus* subtilisin. The amino acid sequences of certain of these subtilisins are aligned in Figs. 3A and 3B with the sequence of *Bacillus amyloliquefaciens* subtilisin to produce the maximum homology of conserved residues. As can be seen, there are a number of deletions in the sequence of *Bacillus lentus* as compared to *Bacillus amyloliquefaciens* subtilisin. Thus, for example, the equivalent amino acid for Val165 in *Bacillus amyloliquefaciens* subtilisin in the other subtilisins is isoleucine for *B. lentus* and *B. licheniformis*.

5

10

15

20

25

30

"Equivalent residues" may also be defined by determining homology at the level of tertiary structure for a precursor protease whose tertiary structure has been determined by x-ray crystallography. Equivalent residues are defined as those for which the atomic coordinates of two or more of the main chain atoms of a particular amino acid residue of the precursor protease and *Bacillus amyloliquefaciens* subtilisin (N on N, CA on CA, C on C and O on O) are within 0.13nm and preferably 0.1nm after alignment. Alignment is achieved after the best model has been oriented and positioned to give the maximum overlap of atomic coordinates of non-hydrogen protein atoms of the protease in question to the *Bacillus amyloliquefaciens* subtilisin. The best model is the crystallographic model giving the lowest R factor for experimental diffraction data at the highest resolution available.

$$R factor = \frac{\sum_{h} |Fo(h)| - |Fc(h)|}{\sum_{h} |Fo(h)|}$$

Equivalent residues which are functionally analogous to a specific residue of *Bacillus amyloliquefaciens* subtilisin are defined as those amino acids of the precursor protease which may adopt a conformation such that they either alter, modify or contribute to protein structure, substrate binding or catalysis in a manner defined and attributed to a specific residue of the *Bacillus amyloliquefaciens* subtilisin. Further, they are those residues of the precursor protease (for which a tertiary structure has been obtained by x-ray crystallography) which occupy an analogous position to the extent that, although the

main chain atoms of the given residue may not satisfy the criteria of equivalence on the basis of occupying a homologous position, the atomic coordinates of at least two of the side chain atoms of the residue lie with 0.13nm of the corresponding side chain atoms of *Bacillus amyloliquefaciens* subtilisin. The coordinates of the three dimensional structure of *Bacillus amyloliquefaciens* subtilisin are set forth in EPO Publication No. 0 251 446 (equivalent to US Patent 5,182,204, the disclosure of which is incorporated herein by reference) and can be used as outlined above to determine equivalent residues on the level of tertiary structure.

5

10

15

20

25

30

Some of the residues identified for substitution are conserved residues whereas others are not. In the case of residues which are not conserved, the substitution of one or more amino acids is limited to substitutions which produce a variant which has an amino acid sequence that does not correspond to one found in nature. In the case of conserved residues, such substitutions should not result in a naturally-occurring sequence. The protease variants of the present invention include the mature forms of protease variants, as well as the pro- and prepro-forms of such protease variants. The prepro-forms are the preferred construction since this facilitates the expression, secretion and maturation of the protease variants.

"Prosequence" refers to a sequence of amino acids bound to the N-terminal portion of the mature form of a protease which when removed results in the appearance of the "mature" form of the protease. Many proteolytic enzymes are found in nature as translational proenzyme products and, in the absence of post-translational processing, are expressed in this fashion. A preferred prosequence for producing protease variants is the putative prosequence of *Bacillus amyloliquefaciens* subtilisin, although other protease prosequences may be used.

A "signal sequence" or "presequence" refers to any sequence of amino acids bound to the N-terminal portion of a proprotease which may participate in the secretion of the mature or pro forms of the protease. This definition of signal sequence is a functional one, meant to include all those amino acid sequences encoded by the N-terminal portion of the protease gene which participate in the effectuation of the secretion of protease under native conditions. The present invention utilizes such sequences to effect the secretion of the protease variants as defined herein. One possible signal sequence comprises the first seven amino acid residues of the signal sequence from *Bacillus subtilis* subtilisin fused to the remainder of the signal sequence of the subtilisin from *Bacillus lentus* (ATCC 21536).

WO 99/20770 PCT/US98/22572 -- 32 --

A "prepro" form of a protease variant consists of the mature form of the protease having a prosequence operably linked to the amino terminus of the protease and a "pre" or "signal" sequence operably linked to the amino terminus of the prosequence.

5

10

15

20

25

30

35

"Expression vector" refers to a DNA construct containing a DNA sequence which is operably linked to a suitable control sequence capable of effecting the expression of said DNA in a suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding suitable mRNA ribosome binding sites and sequences which control termination of transcription and translation. The vector may be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may, in some instances, integrate into the genome itself. In the present specification, "plasmid" and "vector" are sometimes used interchangeably as the plasmid is the most commonly used form of vector at present. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which are, or become, known in the art.

The "host cells" used in the present invention generally are procaryotic or eucaryotic hosts which preferably have been manipulated by the methods disclosed in US Patent RE 34,606 to render them incapable of secreting enzymatically active endoprotease. A preferred host cell for expressing protease is the *Bacillus* strain BG2036 which is deficient in enzymatically active neutral protease and alkaline protease (subtilisin). The construction of strain BG2036 is described in detail in US Patent 5,264,366. Other host cells for expressing protease include *Bacillus subtilis* I168 (also described in US Patent RE 34,606 and US Patent 5,264,366, the disclosure of which are incorporated herein by reference), as well as any suitable *Bacillus* strain such as *B. licheniformis*. *B. lentus*, etc.

Host cells are transformed or transfected with vectors constructed using recombinant DNA techniques. Such transformed host cells are capable of either replicating vectors encoding the protease variants or expressing the desired protease variant. In the case of vectors which encode the pre- or prepro-form of the protease variant, such variants, when expressed, are typically secreted from the host cell into the host cell medium.

"Operably linked," when describing the relationship between two DNA regions, simply means that they are functionally related to each other. For example, a presequence is operably linked to a peptide if it functions as a signal sequence,

WO 99/20770 PCT/US98/22572 -- 33 --

5

10

15

20

25

30

35

participating in the secretion of the mature form of the protein most probably involving cleavage of the signal sequence. A promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation.

The genes encoding the naturally-occurring precursor protease may be obtained in accord with the general methods known to those skilled in the art. The methods generally comprise synthesizing labeled probes having putative sequences encoding regions of the protease of interest, preparing genomic libraries from organisms expressing the protease, and screening the libraries for the gene of interest by hybridization to the probes. Positively hybridizing clones are then mapped and sequenced.

The cloned protease is then used to transform a host cell in order to express the protease. The protease gene is then ligated into a high copy number plasmid. This plasmid replicates in hosts in the sense that it contains the well-known elements necessary for plasmid replication: a promoter operably linked to the gene in question (which may be supplied as the gene's own homologous promoter if it is recognized, i.e., transcribed, by the host), a transcription termination and polyadenylation region (necessary for stability of the mRNA transcribed by the host from the protease gene in certain eucaryotic host cells) which is exogenous or is supplied by the endogenous terminator region of the protease gene and, desirably, a selection gene such as an antibiotic resistance gene that enables continuous cultural maintenance of plasmidinfected host cells by growth in antibiotic-containing media. High copy number plasmids also contain an origin of replication for the host, thereby enabling large numbers of plasmids to be generated in the cytoplasm without chromosomal limitations. However, it is within the scope herein to integrate multiple copies of the protease gene into host genome. This is facilitated by procaryotic and eucaryotic organisms which are particularly susceptible to homologous recombination.

The gene can be a natural *B. lentus* gene. Alternatively, a synthetic gene encoding a naturally-occurring or mutant precursor protease may be produced. In such an approach, the DNA and/or amino acid sequence of the precursor protease is determined. Multiple, overlapping synthetic single-stranded DNA fragments are thereafter synthesized, which upon hybridization and ligation produce a synthetic DNA encoding the precursor protease. An example of synthetic gene construction is set forth in Example 3 of US Patent 5,204,015, the disclosure of which is incorporated herein by reference.

Once the naturally-occurring or synthetic precursor protease gene has been cloned, a number of modifications are undertaken to enhance the use of the gene beyond synthesis of the naturally-occurring precursor protease. Such modifications include the production of recombinant proteases as disclosed in US Patent RE 34,606 and EPO Publication No. 0 251 446 and the production of protease variants described

5

10

15

20

25

30

35

herein.

The following cassette mutagenesis method may be used to facilitate the construction of the protease variants of the present invention, although other methods may be used. First, the naturally-occurring gene encoding the protease is obtained and sequenced in whole or in part. Then the sequence is scanned for a point at which it is desired to make a mutation (deletion, insertion or substitution) of one or more amino acids in the encoded enzyme. The sequences flanking this point are evaluated for the presence of restriction sites for replacing a short segment of the gene with an oligonucleotide pool which when expressed will encode various mutants. Such restriction sites are preferably unique sites within the protease gene so as to facilitate the replacement of the gene segment. However, any convenient restriction site which is not overly redundant in the protease gene may be used, provided the gene fragments generated by restriction digestion can be reassembled in proper sequence. If restriction sites are not present at locations within a convenient distance from the selected point (from 10 to 15 nucleotides), such sites are generated by substituting nucleotides in the gene in such a fashion that neither the reading frame nor the amino acids encoded are changed in the final construction. Mutation of the gene in order to change its sequence to conform to the desired sequence is accomplished by M13 primer extension in accord with generally known methods. The task of locating suitable flanking regions and evaluating the needed changes to arrive at two convenient restriction site sequences is made routine by the redundancy of the genetic code, a restriction enzyme map of the gene and the large number of different restriction enzymes. Note that if a convenient flanking restriction site is available, the above method need be used only in connection with the flanking region which does not contain a site.

Once the naturally-occurring DNA or synthetic DNA is cloned, the restriction sites flanking the positions to be mutated are digested with the cognate restriction enzymes and a plurality of end termini-complementary oligonucleotide cassettes are ligated into the gene. The mutagenesis is simplified by this method because all of the oligonucleotides can be synthesized so as to have the same restriction sites, and no synthetic linkers are necessary to create the restriction sites.

-- 35 --

5

10

15

20

25

30

35

As used herein, proteolytic activity is defined as the rate of hydrolysis of peptide bonds per milligram of active enzyme. Many well known procedures exist for measuring proteolytic activity (K. M. Kalisz, "Microbial Proteinases," <u>Advances in Biochemical Engineering/Biotechnology</u>, A. Fiechter ed., 1988). In addition to or as an alternative to modified proteolytic activity, the variant enzymes of the present invention may have other modified properties such as K_m , k_{cat} , k_{cat} / K_m ratio and/or modified substrate specificity and/or modified pH activity profile. These enzymes can be tailored for the particular substrate which is anticipated to be present, for example, in the preparation of peptides or for hydrolytic processes such as laundry uses.

In one aspect of the invention, the objective is to secure a variant protease having altered, preferably improved wash performance as compared to a precursor protease in at least one detergent formulation and or under at least one set of wash conditions.

There is a variety of wash conditions including varying detergent formulations, wash water volume, wash water temperature and length of wash time that a protease variant might be exposed to. For example, detergent formulations used in different areas have different concentrations of their relevant components present in the wash water. For example, a European detergent typically has about 4500-5000 ppm of detergent components in the wash water while a Japanese detergent typically has approximately 667 ppm of detergent components in the wash water. In North America, particularly the United States, a detergent typically has about 975 ppm of detergent components present in the wash water.

A low detergent concentration system includes detergents where less than about 800 ppm of detergent components are present in the wash water. Japanese detergents are typically considered low detergent concentration system as they have approximately 667 ppm of detergent components present in the wash water.

A medium detergent concentration includes detergents where between about 800 ppm and about 2000ppm of detergent components are present in the wash water. North American detergents are generally considered to be medium detergent concentration systems as they have approximately 975 ppm of detergent components present in the wash water. Brazil typically has approximately 1500 ppm of detergent components present in the wash water.

A high detergent concentration system includes detergents where greater than about 2000 ppm of detergent components are present in the wash water. European detergents are generally considered to be high detergent concentration systems as they have approximately 4500-5000 ppm of detergent components in the wash water.

5

10

15

20

25

30

35

Latin American detergents are generally high suds phosphate builder detergents and the range of detergents used in Latin America can fall in both the medium and high detergent concentrations as they range from 1500 ppm to 6000 ppm of detergent components in the wash water. As mentioned above, Brazil typically has approximately 1500 ppm of detergent components present in the wash water. However, other high suds phosphate builder detergent geographies, not limited to other Latin American countries, may have high detergent concentration systems up to about 6000 ppm of detergent components present in the wash water.

-- 36 --

In light of the foregoing, it is evident that concentrations of detergent compositions in typical wash solutions throughout the world varies from less than about 800 ppm of detergent composition ("low detergent concentration geographies"), for example about 667 ppm in Japan, to between about 800 ppm to about 2000 ppm ("medium detergent concentration geographies"), for example about 975 ppm in U.S. and about 1500 ppm in Brazil, to greater than about 2000 ppm ("high detergent concentration geographies"), for example about 4500 ppm to about 5000 ppm in Europe and about 6000 ppm in high suds phosphate builder geographies.

The concentrations of the typical wash solutions are determined empirically. For example, in the U.S., a typical washing machine holds a volume of about 64.4 L of wash solution. Accordingly, in order to obtain a concentration of about 975 ppm of detergent within the wash solution about 62.79 g of detergent composition must be added to the 64.4 L of wash solution. This amount is the typical amount measured into the wash water by the consumer using the measuring cup provided with the detergent.

As a further example, different geographies use different wash temperatures. The temperature of the wash water in Japan is typically less than that used in Europe.

Accordingly one aspect of the present invention includes a protease variant that shows improved wash performance in at least one set of wash conditions.

In another aspect of the invention, it has been determined that substitutions at a position corresponding to 103 in combination with one or more substitutions selected from the group consisting of positions corresponding 1, 3, 4, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256,

-- 37 --

257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274 and 275 of *Bacillus amyloliquefaciens* subtilisin are important in improving the wash performance of the enzyme.

These substitutions are preferably made in *Bacillus lentus* (recombinant or native-type) subtilisin, although the substitutions may be made in any *Bacillus* protease.

5

10

15

20

25

30

35

Based on the screening results obtained with the variant proteases, the noted mutations in *Bacillus amyloliquefaciens* subtilisin are important to the proteolytic activity, performance and/or stability of these enzymes and the cleaning or wash performance of such variant enzymes.

Many of the protease variants of the invention are useful in formulating various detergent compositions or personal care formulations such as shampoos or lotions. A number of known compounds are suitable surfactants useful in compositions comprising the protease mutants of the invention. These include nonionic, anionic, cationic, or zwitterionic detergents, as disclosed in US 4,404,128 to Barry J. Anderson and US 4.261.868 to Jiri Flora, et al. A suitable detergent formulation is that described in Example 7 of US Patent 5,204,015 (previously incorporated by reference). The art is familiar with the different formulations which can be used as cleaning compositions. In addition to typical cleaning compositions, it is readily understood that the protease variants of the present invention may be used for any purpose that native or wild-type proteases are used. Thus, these variants can be used, for example, in bar or liquid soap applications, dishcare formulations, contact lens cleaning solutions or products, peptide hydrolysis, waste treatment, textile applications, as fusion-cleavage enzymes in protein production, etc. The variants of the present invention may comprise enhanced performance in a detergent composition (as compared to the precursor). As used herein, enhanced performance in a detergent is defined as increasing cleaning of certain enzyme sensitive stains such as grass or blood, as determined by usual evaluation after a standard wash cycle.

Proteases of the invention can be formulated into known powdered and liquid detergents having pH between 6.5 and 12.0 at levels of about 0.01 to about 5% (preferably 0.1% to 0.5%) by weight. These detergent cleaning compositions can also include other enzymes such as known proteases, amylases, cellulases, lipases or endoglycosidases, as well as builders and stabilizers.

The addition of proteases of the invention to conventional cleaning compositions does not create any special use limitation. In other words, any temperature and pH suitable for the detergent is also suitable for the present compositions as long as the pH

PCT/US98/22572 -- 38 --

is within the above range, and the temperature is below the described protease's denaturing temperature. In addition, proteases of the invention can be used in a cleaning composition without detergents, again either alone or in combination with builders and stabilizers.

The present invention also relates to cleaning compositions containing the protease variants of the invention. The cleaning compositions may additionally contain additives which are commonly used in cleaning compositions. These can be selected from, but not limited to, bleaches, surfactants, builders, enzymes and bleach catalysts. It would be readily apparent to one of ordinary skill in the art what additives are suitable for inclusion into the compositions. The list provided herein is by no means exhaustive and should be only taken as examples of suitable additives. It will also be readily apparent to one of ordinary skill in the art to only use those additives which are compatible with the enzymes and other components in the composition, for example, surfactant.

When present, the amount of additive present in the cleaning composition is from about 0.01% to about 99.9%, preferably about 1% to about 95%, more preferably about 1% to about 80%.

The variant proteases of the present invention can be included in animal feed such as part of animal feed additives as described in, for example, US 5,612,055; US 5,314,692; and US 5,147,642.

One aspect of the invention is a composition for the treatment of a textile that includes variant proteases of the present invention. The composition can be used to treat for example silk or wool as described in publications such as RD 216,034; EP 134,267; US 4,533,359; and EP 344,259.

The following is presented by way of example and is not to be construed as a limitation to the scope of the claims.

All publications and patents referenced herein are hereby incorporated by reference in their entirety.

Example 1

5

10

15

20

25

30 A large number of protease variants were produced and purified using methods well known in the art. All mutations were made in Bacillus lentus GG36 subtilisin. The variants are shown in Table 3.

Table 3

				т —									1	_	Υ	
															77.74	
							N218I	N248D							A174V	
M222S	V104I	V104I	1107V	V104I	1246V	V104I	N183D	V104I	V104I	N261D	S160T	S216C	V104I	V104I	V104I	V104I
A V104I M222S	S103A V104I	S103A V104I	V104I	N76D S103A V104I	S103A V104I 1246V	S103A	V104I N183D	S103A V104I	S103A V104I	S103A V104I N261D	A V104I	A V104I S216C	S103A	S103A	S103A	S103A V104I
S103A	A98E	S78T	S103A	N76D	S103A	N77D	S103A	N76D	N76D	S103A	S103A	S103A	N76D	U9/N	N77D	N76D
N76D	N76D	N76D	N76D	V4E	N76D	N76D	N76D	A16T	A1E	N76D	N76D	N76D	H17Q	S37T	N76D	T38S

-- 40 --

									-									
K237Q											N185D	T274A			S240T			
T38S N76D S103A V104I K237Q	V104I	N183D	V104I	V104I	V104I	N184D	N252D	S259C	K251T	V104I	+	1	S160L	A228V	 	A254T	N204T	N204D
S103A	S103A	S103A V104I N183D	S103A	S103A	S103A	-	V104I	V104I	V104I	S103A	S103A V104I	S103A V104I K237E		S103A V104I A228V	S103A V104I	1	1104N	S103A V104I N204D
N76D	N76D	S103A	N76D	N76D	N76D	S103A V104I	S103A	S103A	S103A	P86S	N76D	S103A	S103A V104I	S103A	N76D	S103A V104I	S103A 1104N	S103A
T38S	187	N76D	R19L	A13V	R19C	M76D	N76D	N76D	N76D	N76D	1727	N76D	N76D	N76D	P55S	N76D	N76D	N76D

-- 41 --

								1										
										K251R								
										-								
		V177A								Q236R	K237E			N204T			E271V	N261Y
V104I	G159D	V104I	V104I	A270V	N185D	V104I	L262M	V 104I	V104I	S166G	V104I	S130L	Q109R	V104I	D181N	V104I	S212P	N252K
S103A V104I	V104I G159D	S103A	S103A	V104I	V104I	S103A	V104I	S103A	S103A	V104I	S103A	V104I	V104I Q109R	S103A	V104I	S103A	V104I	V104I
N76D	S103A	N76D	N76D	S103A	S103A	N76D	S103A	S78P	N76D	S103A	N76D	S103A	S103A	S99R	S103A	N76D	S103A	S103A
N43S	N76D	R10H	T58S	N76D	N76D	K27N	N76D	N76D	S24P	N76D	H17L	N76D	N76D	N76D	N76D	Q12R	N76D	N76D

-- 42 --

	T	1	1	1			T	1		<u> </u>				1		_	1	
																	-	-
										S265G								
			N183I				Y263H			H249Q	E271V							
		S242T	N116K				Q182R	A272S	1246V	Q206R	N238Y		1198V	Q182R	Q137R	N248S	Q206R	
S242T	E271Q	V104I	V104I	G258R	E271G	V104I	V104I	Q182R	Q109R	V104I	Q137R		Q182R	V104I	M119I	Q137R	V104I	Q206R
S103A V104I	1	S103A	S103A	V104I	V104I	S103A	S103A	V1041 Q182R	V104I Q109R	S:103A	V104I	A228T	S103A V104I Q182R	S103A	A V104I	A V1041	S103A	A V104I
S103A	S103A V104I	N76D	N76D	S103A	S103A	N76D	N76D	S103A	S103A	S87G	S103A V104I	V104I	S103A	N76D	S103A	S103A	N76D	S103A
N76D	N76D	Q12R	N43S	M76D	N76D	G61R	T38S	N76D	N76D	M76D	N76D	S103A	N76D	L21M	N76D	N76D	A13T	N76D

WO 99/20770

-- 43 --

	1	7		1	T		T		Т	T-	1	Т	Т-		η			
											;							
															+-			
							K251Q	N252D	K251T									
							L217E	L217E	N185D	V244A					G159D	Ф236Н		G159D
G258R	E271G	N261D	Q206E	Q206E			G159D	G159D	A133T	Q206E	S188E	A158E	N185D	K251T	L111M	G159D	G159D	V104I
V104I S212P	V104I	Q206E	V104I	V104I	A158E	Q206E	V104I	V104I	V104I	G159D	V104I	V104I	V104I	V104I Q206E	V104I	V104I	V104I	S103A
V104I	S103A	V104I	S103A	S103A	V104I	V104I	S103A	S103A	S103A	V104I	S103A	S103A	S103A	V104I	S103A	S103A	S103A	N76D
S103A	N76D	S103A	N76D	N77D	S103A	S103A	N76D	09/N	N77D	S103A	N76D	N76D	U77D	S103A	N76D	N76D	U92N	N62H
N76D	T58S	N76D	V4E	N76D	N76D	N76D	V4E	V4E	N76D	M76D	V4E	V4E	M76D	N76D	A48T	V68A	L42V	Q12H

																>		
																E271V		
						, H		E271V	E271V					E271V	Q245R	Q236H		
				E271V		E271V	E271V	S212P	N243S					Q236H E271V	Q236H Q245R	L217I		
G159D	G159D	N238S	T224A	V268F		S212P	Q245L	S141N	Q236L	Q245R	P210L	V104I	Q236H	G159D	G159D	G159D	V104I	
S103A V104I	G146S	G159D	G159D	S212P	V104I	V104I	S212P	T134S	S212P	Q109R	Q109R	S103A	V104I	V104I	V104I	V104I	S103A	V104I
S103A	V104I	V104I	V104I	V104I	S103A	S103A	V104I	V104I	V104I	V104I	V104I	N76D	S103A	S103A	S103A	S103A	N76D	S103A
N76D	S103A	S103A	S103A	S103A	E89A	S87R	S103A	S103A	S103A	S103A	S103A	N62S	N76D	N76D	N76D	N76D	V68A	N76D
L42I	N76D	N76D	N76D	N76D	N76D	N76D	N76D	N76D	N76D	N76D	N76D	G20V	V68A	V68A	V68A	V68A	H17Q	V68A

		ıπ.																
		Q245R																
		Q236H		T253K	Q236H				H249Y									
	Q236H	G159D	Q236Н	Q236H	N184S	N243I	Q245L		Q236H	H249Q					Y263F			
Q236R	G159D	V121I	G159D	Y209S	G159D	Q236H	Q236H	G159D	G159D	Q236H		H249R			K237R		E271D	
N76D S103A V1041 G159D Q236R	V104I	A114V	V104I	G159D	N117K	G159D	G159D	A142V	N123S	G159D	Q245R	M222S	M222S	Y263F	M222S	M222S	M222S	M222S
V104I	S103A	S103A	S103A	V104I	M222S	Q12R	N173R	M222S	V104I	Q109R	Q109R	V104I						
S103A	N76D	N76D	N76D	S103A V104I M222S	V104I	A V104I N173R	A V104I M222S	S103A	V104I	V104I	S103A							
N76D	L75R	N76D	V68A	N76D	S103A	S103A V104I	S103A	S103A	N76D	S103A	S103A	N76D						
V68A	V68A	V68A	Q12R	V68A	N76D	N76D	N76D	N76D	L21M	N76D	N76D	G61R						

															T260A			
				T255S		Q245R		Q245R		Q245R			Q245R					
			NZ61D	Q245R	R247H	Q236H	Q245R	Д236Н	Q245R	Д236Н			О236Н	N252K	Q236H Q245R			
			Q245R	Q236H	Q245R	N204D	Q236H	N218D	Q236H	V203A			G159D A232V Q236H Q245R	Q236H Q245R	A232V	Q245R		Q245R
	N248S		Q236Н	G159D	Q236H	A174V N204D	N204D	G159D	A232V	A1941	Q245R		G159D	Q236 Н	T213R	V244I	Q245R	M222S Q245R
M222S	M222S	H249R	G159D	S141N	G159D	G159D	G159D	A133V	G159D	G159D	M222S	Q245R	V104I	A232V	G159D	M222S	P210T	S130T
V1041 Q137R M222S	Q109R	M222S	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	A232V	S103A	G159D	V104I	1104T	S103A M222S	1104T
V104I	V104I	V104I	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	V104I	N76D	V104I	S103A	S103A	S103A	S103A 1104T
S103A	S103A	S103A	N76D	Q9/N	N76D	09/N	N76D	U3/N	U9/N	U9/N	U3/2N	S103A	V68A	S103A	N76D	N76D	N76D	N76D
N76D	N76D	N76D	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	Q12R	N76D	S24T	V68A	V68A	Q12R	Q12R	Q12R

								R275S							N269D	e de la companya de l	Q245R	
		N252K		N252K	N252K		N252K	N252K	L262M		L262S				L262S	K251Q	N243D	
		N248D		A232V Q236H Q245R	A232V Q236H Q245R	Q245R	A232V Q236H Q245R	Q245R	N248S	Q245R	Q245R	Q245R	N261D		N218D M222S Q245R L262S N269D	S130T M222S Q245R K251Q	R170S N185D M222S N243D Q245R	V268A
		Q245R	Q245R	Q236H	Q236H	A232V Q236H	Q236H	A232V Q236H	Q245R	M222S	V227A	M222S	Q245R		M222S	M222S	N185D	Q245R
		Q236Н	Q236Н	A232V	A232V	A232V	A232V	A232V	M222S	A215V	M222S V227A	A215T	M222S	Q245R	N218D	S130T	R170S	M222S Q245R V268A
V104I		A232V Q236H Q245R N248D N252K	A232V Q236H Q245R	G159D	G159D	G159D	G159D	G159D	S130T	S130T	S130T	S130T	S130T	M222S	S130T	1104T	S130T	S130T
N76D S103A	N184D	S103A V104I G159D	G159D	N140D	V104I	V104I	V104I	V104I	1104T	1104T	1104T	1104T	1104T	S130T	1104T	S103A	1104T	1104T
N76D	S103A N184D	V104I	7	V104I	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	1104T	S103A 1104T	N76D	S103A 1104T	S103A 1104T
V68A	N76D	S103A	S103A V104I	S103A	V68A	V68A	V68A	S87G	N76D	N76D	N76D	N76D	N76D	S103A 1104T	N76D	S57P	N76D	N76D
T22K	V68A	V68A	V68A	V68A	N43S	N43K	N43D	V68A	Q12R	Q12R	Q12R	Q12R	Q12R	N76D	Q12R	Q12R	Q12R	Q12R

-- 48 --

							Q245R		Q245R							Q245R	L257V	
Q245R	L257V	Q245R	N248D	Q245R	Q245R	Q245R	Q236H	Q245R	Q236H	Q245R	Q245R	Q245R	Q245R	N248S	Q245R	Q236H	Q245R	
P210S	Q245R	Q236H Q245R	Q236H Q245R	Q236H Q245R	Q236H	K237E	A232V	Q236H	A232V	Q236H	Q236H	Q236H	Q236H	Q245R	Q236H	A232V Q236H		L257V
S130T M222S P210S Q245R	Q236H	A232V	Q236H	A232V	A232V	Q236H	G159D	A232V	Q206L	A232V	A232V Q236H	A232V Q236H	A232V Q236H	Q236H Q245R N248S	A232V Q236H Q245R	P210R	A232V Q236H	Q245R
S130T	A232V	G159D	A232V	G159D	V203E	A232V	V104I	N183D	A174V	S188C	A230T	G159D	A215T	A232V	G159D	G159D	G159D	Q236Н
1104T	G159D	N116D	G159D	V104I	G159D	G159D	S103A	G159D	G159D	G159D	G159D	V104I	G159D	G159D	V104I	V104I	V104I	A232V
S103A 1104T	V104I	V104I	V104I	S103A	V104I	V104I	N6/1	V104I	V104I	V104I	V104I	S103A	V104I	V104I	S103A	S103A	S103A	V104I
N76D	S103A	S103A	S103A	V68A	S103A	S103A	N76D	S103A	S103A	S103A	S103A	A98T	S103A	S103A	N76D	N76D	N76D	S103A
Q12R	V68A	V68A	V68A	R10C	V68A	V68A	V68A	V68A	V68A	V68A	V68A	N76D						

-- 49 --

							~			(D						\mathrew{\chi}		
							Q245R			S259G	T260V					Q245R		
R275H		L257V		Q245R	Q245R	Q245R	Q236H	Q245R	Q245R	Q245R	Q245R	N261G	N261W		Q245R	Q236H		
L257V		Q245R	L257V	Q236H	Q236H	Q236H	A232V	Q236H	Q236H	Q236H	Q236H	Q245R	Q245R		Q236H	A232V		Q245R
Q245R		A232V Q236H Q245R	Q236H Q245R	A232V	A232V	A232V Q236H	Y214L	A232V	A232V	A232V	A232V	Q236H	A232V Q236H Q245R N261W	Q245R	A232V	G159D		A232V Q236H Q245R
Q236H		A232V	Q236H	G159D Y209W	G211R	G211V	G159D	A215R	G159D	G159D	G159D	A232V	A232V	S242P Q245R	P210L	V104I	Q245R	A232V
A232V Q236H Q245R L257V R275H	R275H	T224A	A232V	G159D	G159D	G159D	V104I	G159D	V104I	V104I	V104I	G159D	G159D	Q236H	G159D	S103A	Q236H	Y192F
G159D	L257V	G159D	G159D	V104I	V104I	V104I	S103A	V1041	S103A	S103A	S103A	V104I	V104I	A232V	V104I	N76D	A232V	G159D
V104I	V104I	V104I	V104I	S103A	S103A	S103A	N76D	S103A	N76D	N76D	N76D	S103A	S103A	V104I	S103A	V68A	V104I	V104I
S103A V104I	S103A	S103A	S103A	N76D	N76D	N76D	V68A	N76D	V68A	V68A	S87R	N76D	N76D	S103A	N76D	A48V	S103A	S103A
V68A	N76D	V68A	N76D	V68A	V68A	V68A	Q12R	V68A	Q12R	G20R	V68A	V68A	V68A	N76D	V68A	Q12R	N76D	N76D

						Q245R				N252K								
K251R	A272S	Q245R				Q236H	N252K	N252K	N252K	N248D		N252K	N252K	N252K	N252K	N261D	N252K	N252K
N248S	Q245R	Q236H	S256R	Q245R	Q245R	A232V	N248D	N248D	N248D	Q245R		N248D	N248D	N248D	N248D	N252K	N248D	N248D
Q245R	A232V Q236H Q245R	A232V	Q245R	Q236H	Q236H	N185S	Q245R	Q245R	Q245R	Q236H	N252K	Q245R	Q245R	Q245R	Q245R	N248D	Q245R	Q245R
О236Н	A232V	Q206L	Q236H	A232V	A232V	R170S	Q236H	Q236H	Q236H	A232V	N248D	Q236H	A232V Q236H	A232V Q236H	A232V Q236H Q245R N248D	Q236H Q245R	A232V Q236H Q245R N248D	A232V Q236H Q245R N248D
A232V	G159D	N183K	A232V	Q206R	G159D	G159D	A232V	A232V	A232V	N184D	Q245R	A232V	A232V	A232V	A232V			A232V
G159D A232V Q236H Q245R N248S	V104I	G159D	G159D	G159D	V104I	N116T	G159D	G159D	S212P	G159D	Ф236Н	Y209W	G159D	G159D	Y209F	A232V	N185D	P210R
V147I	S103A	V104I	V104I	V104I	S103A	V104I	V104I	V104I	G159D	N66S	A232V	G159D	Q109R	V104I	G159D	G159D	G159D	G159D
V104I	N76D	S103A	S103A	S103A	N76D	S103A	S103A	S103A	V104I	V104I	G159D	V104I	V104I	S103A	V104I	V104I	V104I	V104I
S103A	V68A	N76D	N76D	N76D	V68A	N76D	V68A	V68A	S103A	S103A	V104I	S103A	S103A	V68A	S103A	S103A	S103A	S103A
N76D	Q12R	V68A	V68A	V68A	K27R	V68A	G61E	N43D	V68A	V68A	S103A	V68A	V68A	G20R	V68A	V68A	V68A	V68A

		N252K																
N252K	N252K	N248D	N252K	N252K	N252K	N252K	N252K		N252K	N252K	N252K	N252K	N252K	N252K	N252K	N252K	N252K	N252K
N248D	N248D	Q245R	N248D	N248D	N248D	N248D	N248D	N252K	N248D	N248D	N248D	N248D	N248D	N248D	N248D	N248D	N248D	N248D
Q245R	Q245R	A232V Q236H Q245R	Q245R	Q245R	A232V Q236H Q245R	A232V Q236H Q245R	Q245R	N248D	Q245R	Q245R	Q245R	Q245R	Q245R	A232V Q236H Q245R	A232V Q236H Q245R	A232V Q236H Q245R	Q245R	Q245R
A232V Q236H Q245R	Q236Н	A232V	A232V Q236H	A232V Q236H	Q236H	Q236H	A232V Q236H	Q245R	Q236H	Q236H	Q236H	Q236H	A232V Q236H	Q236H	Q236H	Q236H	A232V Q236H Q245R	Q236H
A232V	A232V	P210L	A232V	A232V	A232V	A232V	A232V	Q236H	A232V	A232V	A232V	A232V	A232V	A232V	A232V	A232V	A232V	A232V
P210T	P210S	N185D	P210L	S212A	S212G	S212E	T213E	A232V	T213E	T213R	T213G	A215V	A215R	S216T	S216V	S216C	G159D	N173D A232V Q236H Q245R N248D
G159D	G159D	G159D	G159D	G159D	G159D	G159D	G159D	T213S	G159D	G159D	G159D	G159D	G159D	G159D	G159D	G159D	V104I	G159D
V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V1041	V104I	V104I	S103A	V104I
S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	A103V	S103A	S103A	S103A	S103A	S103A	S103A	S103A	V68A	S103A
V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	G20A	V68A

-- 52 **--**

												N269D	T260E					
N252K	N252K			N252F	T255V	S256N	S256E	S256R	T260R	L257R	G258D	N252K	N252K	N261R	N261D	N252K		
K251V	N248D	N252F	N252L	N248D	N252K	N248D	N248D	N252K	N252K	N248D								
N248D	Q245R	N248D	N248D	Q245R	N248D	Q245R	Q245R	N248D N252K	N248D N252K	Q245R	N252K	N252K						
Q245R	Q236H	Q245R	Q245R	Q236Н	Q245R	Q236H	A232V Q236H Q245R N248D	Q245R	Q245R	Q236H	N248D	N248D						
Q236H	A232V	Q236Н	Q236H	A232V	Q236Н	Q236Н	Q236Н	Q236Н	О236Н	О236Н	Q236Н	A232V	A232V	Q236Н	Q236H	A232V	Q245R	Q245R
A232V Q236H Q245R N248D K251V	Q206R	A232V	A232V	G159D	A232V	G159D	G159D	A232V	A232V	G159D	Q236Н	Q236Н						
G159D	G159D	G159D	G159D	V104I	G159D	V104I	N116S	G159D	G159D	V104I	A232V	A232S						
V104I G159D	V104I	V104I	V104I	S103A	V104I	S103A	V104I	V104I	V104I	S103A	V104I	41 G159D						
S103A	S103A	S103A	S103A	V68A	S103A	V68A	S103A	S103A	S103A	N76D	S103A	V104I						
V68A	V68A	V68A	V68A	P55S	V68A	187	V68A	V68A	V68A	V68A	V68A	S103A						

	T	<u> </u>	1	1		1	1	1	T	T -	T	T		1	T	Т	Ī	
			T260A			T260A				N252K								
			Q245R		N252K	Q245R	N252K		N252K	N248D				N252K	N252K	N252K		
	N252K		Q236H	N252K	N248D	Q236H	N248D		N248D	Q245R	N252K		N252K	N248D	N248D	N248D		
N252K	N248D	N252K	A232V	N248D	Q245R	A232V	Q245R		Q245R	Q236Н	N248D	N252K	N248D	Q245R	Q245R	Q245R	N252K	N252K
	Q245R	N248D	N218S	Q245R	Q236H	T213R	Q236Н	Q245R	Q236H	A232V	Q245R	N248G	Q245R	Д236Н	Q236H Q245R	Q236H Q245R	N248D	N248D
Q245R	Q236H	Q245V N248D	T213R	Q236H Q245R N248D	A232V	P210L	A232V	Q236H	A232V	G159D	Q236H	Q245R	Q236H	A232V	A232V	A232V	Q245R	Q245R
Q236R	A232V	О236Н	G159D	A232V	G159D	G159D	G159D	A232V	G159D	Q137R	A232V	Q236H	A232V	S160V	V104I	S167F	Q236H	A232V Q236H
A232V Q236R Q245R N248D	G159D	A232V	V104I	A228V	V104I	V104I	V104I	P210I	S130A	A133S	G159D	A232V	N218S	G159D	S103A	G159D	A232V	A232V
G159D	V104I	G159D	S103A	G159D	S103A	S103A	S103A	V 2 051	V104I	V104I	A133V	G159D	G159D	V104I	M76D	V104I	G159D	G159D
V104I	S103A	V104I	S101T	V104I	N76D	E89D	N76D	G159D	S103A	S103A	V104I	V104I	V104I	S103A	V68A	S103A	V104I	V104I
S103A	V68A	S103A	N76D	S103A	V68A	N76D	V68A	V104I	V68A	V68A	S103A	S103A	S103A	V68A	G61E	V68A	S103A	S103A
V68A	N18S	V68A	V68A	V68A	T33S	V68A	G61E	S103A	G61E	G61E	G61E	V68A	V68A	G61E	S3L	G61E	G97E	A98D

WO 99/20770

-- 54 **--**

PCT/US98/22572

							ļ											
													- Land					
												N252K						
												N248D	N252K	N252K	N252K			
N252K	N252K	N252K	N252K	N252K	N252K	N261R	N252K	N252K	N252K	N252K	N252K	Q245R N248D	Q245R N248D	N248D	N248D	N252K	N252K	N252K
N248D	N248D	N248D	N248D	N248D	N248D	N252K	N248D	N248D	N248D	N248D	N248D	Q236H	Q245R	Q245R	Q245R	N248D	N248D	N248D
Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	N248D	Q245R	Q245R	Q245R	Q245R	Q245R	A232V		Q236H Q245R	Q236H	Q245R	Q245R	Q245R
Q236Н	A232V Q236H Q245R	Д236Н	Q236H	Q236H	Q236Н	Q245R	Q236H	Q236H	Q236H	Q236H	A232V Q236H Q245R	T213R	A232V Q236H	A232V	A232V Q236H Q245R N248D	О236Н	О236Н	Q236Н
A232V Q236H Q245R N248D	A232V	A232V	A232V	A232V	A232V	Q236H	A232V	A232V	A232V	A232V	A232V	G159D	T213R	L217E	Q206R	A232V	A232V	A232V
G159D	G159D	G159D	G159D	G159D	G159D	A232V	G159D	G159D	N184D	S166D	L217E	V104I	G159D	Q206R	G159D	G159D	G159D	G159D
S103A V104I G159D	V104I	V104I	V104I	S106E	Q109E	G159D	Q109R	V104I	G159D	G159D	G159D	S103A	V104I	G159D	V104I	S130G	P131V	V104I
S103A	S103A	S103A	S103A	V104I	V104I	V104I	V104I	S103A	V104I	V104I	V104I	N62D	S103A	V104I	S103A	V104I	V104I	S103A
S99E	S101E	S101G	G102A	S103A	S103A	S103A	S103A	N62D	S103A	S103A	S103A	G20R	N62D	S103A	N62D	S103A	S103A	K27N

-- 55 **--**

		C	A	A	A													
		E271G	T260A	T260A	T260A													
	T260A	T260A	Q245R	Q245R	Q245R	T260A												
N252K	Q245R	Q236H Q245R	Q236H	Q236H	Q236H	Q245R	T260A	T260A										L257V
N248D	Q236H	Q236H	A232V	A232V	A232V	Q236H	Q245R	Q245R		T260A		Q245R						
Q245R	A232V	A232V	T213R	T213R	T213R	A232V	Q236H	Q236H	Q236H	Q236Н	Q236H	Q236H	A232V Q236H	A232V Q236H		Q245R		A232V Q236H Q245R
Q236H	T213R	T213R	G159D Y209W	P210I	V205I	P210I	A232V	A232V	Q245R	Q236H	Q245R							
A232V Q236H Q245R N248D N252K	G159D	G159D	G159D	G159D	G159D	G159D	T213R	T213R	Y209W	P2101	A230V	L126F	V205I	P210L	Q236H	A232V	Q236H	A174V
G159D	V104I	V104I	V104I	V104I	V104I	V104I	G159D	G159D	A230V	G159D	A232V	G159D						
V104I	S103A	S103A	S103A	S103A	S103A	S103A	V104I	V104I	G159D	V104I	G159D	V104I						
S103A	N76D	N76D	N76D	N76D	N76D	N76D	S103A	S103A	V104I	S103A	V104I	S103A						
T38G	T38A	V68A	V68A	V68A	V68A	V68A	V68A	N76D	V68A	V68A	V68A	V68A	V68A	V68A	S103A	V68A	S103A	V68A

Γ	T	Ţ			I		Ţ					T			<u> </u>		T	T
			N261W					T260A								T260A		
			T260A					Q245R	T260A		T260A		Q245R	L257V		A232V Q236H Q245R		
L257V	L257V		Q245R	L257V N261W		N252K		Q236H	Q245R		Q245R	T260A	A232V Q236H	Q245R	L257V	Q236H	Q245R	
Q245R	Q245R		Q236H Q245R	L257V	T260A	N248D	L257V	A232V	Q236H		Q236H	Q245R	A232V	Q236H Q245R	Q245R	A232V	Q236Н	Q245R
Q236Н	Д236Н	L257V	A232V	Q245R	Q245R	Q245R	Q245R	T213R	A232V	L257V	A232V	Q236Н	P2101	A232V	Q236H	P2101	A232V	A232V Q236H Q245R
A232V	A232V Q236H Q245R	Q245R	T213R	Q236H	Q236H	Q236H	Q236H	P210L	T213R	Q245R	T213R	A232V	Y209W	P2101	A232V Q236H	Y209W	P210I	A232V
A194S A232V Q236H Q245R L257V	Y209W	Q236H Q245R	G159D	A232V	A232V	A232V	A232V	G159D	Y209W	Q236H	P210I	Y209W A232V Q236H Q245R	V205I	Y209W	Y209W	V205I	Y209W	P210I
G159D	G159D	A232V	V104I	G159D	T213R	P210I	Y209W	V 1041	G159D	A232V	V205I	V205I	G159D	V205I	V205I	G159D	V205I	G159D Y209W
V104I	V104I	G159D	S103A	V104I	G159D	G159D	G159D	S103A	V104I	Y209W	G159D	G159D	V104I	G159D	G159D	V104I	G159D	G159D
S103A	S103A	V104I	N76D	S103A	V104I	V104I	V104I	N76D	S103A	V104I	V104I	V104I	S103A	V104I	V104I	S103A	V104I	V104I
V68A	V68A	S103A	V68A	V68A	S103A	S103A	S103A	V68A	Q12R	S103A	S103A	S103A	V68A	S103A	S103A	V68A	S103A	S103A

							N252K	N252K	N252K							S256R	N252K	
				N252K	N261W	N252K	N248D	N248D	N248D	N252K						N252K	N248D	N252K
			Q245R	N248D	L257V	N248D	Q245R	Q245R	Q245R	N248D	N252K	N252K	N252K	N252K	N252K	N248D	Q245R	N248D
Q245R	Q245R		Q236H	Q245R	Q245R	Q245R	A232V Q236H	Q236H	Q236H	Q245R	N248D	N248D	N248D	N248D	N248D	Q245R	A232V Q236H	Q245R
Q236Н	Q236H	Q245R	A232V	Q236H	Q236H	Q236H	A232V	A232V	A232V	Q236H	Q245R	Q245R	Q245R	Q245R	Q245R	A232V Q236H	A232V	Q236Н
A232V Q236H Q245R	A232V Q236H	Q236H	G159D Y209W	A232V	A232V	A232V	S212G	S212G	S212G	A232V	Q236H	Q236H	Q236H Q245R	V244T Q245R	V244A Q245R	A232V	T213R	A232V Q236H Q245R
P210I	G159D	A230V	G159D	G159D	G159D	S212G	G159D	G159D	G159D	T213R	A232V	A232V	A232V	Q236H	Q236H	T213R	G159D	N185D
V205I	S128L	G159D	V104I	V104I	V104I	G159D	V104I	V*04I	V104I	G159D	G159D	N184S	N184G	A232V	A232V	G159D	V104I	G159D
G159D	V104I	V104I	S103A	S103A	S103A	V104I	S103A	S103A	S103A	V104I	P131V	G159D	G159D	G159D	G159D	V104I	S103A	V104I
V104I	S103A	S103A	V68A	V68A	V68A	S103A	G102A	G102A	G102A	S103A	V104I	V104I	V104I	V104I	V104I	S103A	N62D	S103A
S103A V104	V68A	A48V	A48V	A48V	A48V	G102A	Q12R	S101G	A98L	G102A	S103A	S103A	S103A	S103A	S103A	N62D	Q12R	S101G

		7	1		1	1	т —	1	7		T				1			
								N252K										
				N252K		N252K	N252K	N248D			N252K				N252K	N252K	N252K	
N252K	N252K	N252K	N252K	N248D	N252K	N248D	N248D	Q245R			N248D	N252K	N252K	N252K	N248D	N248D	N248D	T260A
N248D	N248D	N248D	N248D	Q245R	N248D	Q245R	Q245R	Q236Н			Q245R	N248D	N248D	N248D	Q245R	Q245R	Q245R	N252K
Q245R	Q245R	Q236H Q245R	Q245R	Q236H	Q236H	Q236H	Q236H	A232V			Q236H	Q245R	Q245R	Q245R	Q236H	Q236H	Q236H	N248D
Q236H Q245R N248D	Q236Н	Q236H	Q236H	A232V	A232V	A232V	A232V	T213R	N252K		A232V	Q236H	Q236H	Q236H	A232V	A232V	A232V	Q245R
A232V	A232V	A232V	A232V	S212G	S212G	T213R	T213R	S212G	N248D		T213R	A232V	A232V	A232V	T213R	T213R	T213R	Q236Н
Q206E	T213Q	G159D	G159D	G159D	G159D	G159D	S212G	G159D	Q245R	Q245R	G159D	G159D	G159D	G159D	G159D	G159D	G159D	A232V Q236H Q245R N248D N252K
G159D	G159D	V104I	V104I	V104I	V104I	Q109R	G159D	V1041	A232V	A230V	S130G	S130G	S128G	S128L	V104I	S128G	S128L	G159D
V104I	V104I	S103A	S103A	S103A	S103A	V104I	V104I	S103A	G159D	G159D	V104I	V104I	V104I	V104I	S103A	V104I	V104I	V104I
S103A	S103A	G102A	G102A	G102A	G102A	S103A	S103A	S101G	V104I	V104I	S103A	S103A	S103A	S103A	S101G	S103A	S103A	S103A
S101G	S101G	A98L	S101G	A98L	A98L	N62D	N62D	N62D	S103A	S103A	N62D	S101G	S101G	S101G	N62D	N62D	N62D	S101G

	T	Τ	T	_	т —	1	1	т	T	T	1
											E2710
											N252K
									N252K		N248D
N252K	N252K	N252K	N252K	N252K	N252K	N252K		N252K	N248D	N252K	Q245R
	N248D	N248D		N248D	N248D	N248D		N248D	Q245R	N248D	Q236Н
Q245R N248D	Q245R N248D	Q245R	Q245R	Q245R	Q245R	Q245R		Q245R	Q236H	Q245R	A232V
Q236Н	Q236H	Q236H	Q236H	Q236H	Q236H	Q236H	Q245R	Q236H	A232V	Q236H	T213R
A232V	A232V	A232V	A232V	A232V	A232V Q236H Q245R N248D N252K	A232V Q236H Q245R N248D	Q236H	A232V Q236H Q245R N248D	A194P	A232V	Q206E
P131V G159D A232V Q236H	G159D A232V Q236H	G159D A232V Q236H Q245R N248D	S212G A232V Q236H Q245R N248D	G159D Y209W A232V Q236H Q245R N248D	P2101	V205I	A V1041 G159D A230V Q236H Q245R	A194P	S101G S103A V104I G159D A194P A232V Q236H Q245R N248D	A230V A232V Q236H Q245R N248D	4 V104I G159D N185D Q206E T213R A232V Q236H Q245R N248D N252K E271Q
P131V	V104I	V104I	G159D	G159D			G159D	4 V104I G189D A194P	V104I	4 V104I G159D	G159D
4 V104I	3 S103A	3 S103A	V104I	V104I	V104I	V104I	V104I	V104I	S103A	V104I	V104I
S103A	S101G	S101G	S103A V104I	S103A V104I	S103A V104I G159D	S101G S103A V104I G159D	S103A	S103,	S101G	S103A	S103A
S101G S103/	A98V	S99G	S101G	S101G	S101G	S101G	S101G	S101G	N76D	S101G	N62D

Example 2

5

10

A large number of the protease variants produced in Example 1 were tested for performance in two types of detergent and wash conditions using a microswatch assay described in "An improved method of assaying for a preferred enzyme and/or preferred detergent composition", U.S. Serial No. 60/068,796.

Table 4 lists the variant proteases assayed and the results of testing in two different detergents. For column A, the detergent was 0.67 g/l filtered Ariel Ultra (Procter & Gamble, Cincinnati, OH, USA), in a solution containing 3 grains per gallon mixed Ca²⁺/Mg²⁺ hardness, and 0.3 ppm enzyme was used in each well at 20°C. For column B, the detergent was 3.38 g/l filtered Ariel Futur (Procter & Gamble, Cincinnati, OH, USA), in a solution containing 15 grains per gallon mixed Ca²⁺/Mg²⁺ hardness, and 0.3 ppm enzyme was used in each well at 40°C.

able 4

m	_	1.11	1.85	1.20	1.67	1.42	1.80	1.78	1.34	1.67	0.53	0.20	1.41	0.47	1.28	0.09	0.47	1.46
A	-	0.56	1.41	2.77	2.26	2.96	1.91	2.05	2.00	2.38	2.83	2.87	2.56	3.97	3.35	3.77	3.50	2.81
																N252K	N252K	N252K
				N252K		N252K	N252K		N252K					R275H	L257V	N248D	N248D	N248D
			N252K	N248D		Q245R	Q245R	Q245R	Q245R	L257V	N248D	Q245R	N252S	L257V	Q245R	Q245R	Q245R	Q245R
			Q245R	Q245R	Q245R	Q236H	Q236H	Q236H	Q236H	Q245R	Q245R	Q236H K237E	Q236H Q245R	Q245R	A232V Q236H	Q236Н	Q236H	A232V Q236H
			Q236H	Q236H	Q236H	A232V	A232V	A232V	A232V	Q236H	Q236H	Q236H	Q236H	Q236 Н	A232V	A232V	A232V	A232V
			A232V	A232V	A232V	G159D	G159D	G159D	G159D	A232V	A232V	A232V	A232V	G159D A232V	G159D T224A	G159D	G159D	S212P
			G159D	G159D	G159D	N140D	V104I	V104	V104I	G159D	G159D	G159D	G159D	G159D	G159D	V104I	V104I	G159D
	V104I	A228T	V104I	V104I	V104I	V104I	S103A	S103A	S103A	V104I	V104I	V104I	V104I	V104I	V104I	S103A	S103A	V104I
	S103A	V104I	S103A	S103A	S103A	S103A	V68A	V68A	V68A	S103A	S103A	S103A	S103A	S103A	S103A	V68A	V68A	S103A
	N76D	S103A	V68A	V68A	V68A	V68A	N43S	N43K	N43D	V68A	V68A	V68A	V68A	V68A	V68A	G61E	N43D	V68A

1.56 0.28	1.22 0.33	1.13 0.36	1.22 0.43	1.12 0.32	1.54 0.33	1.04 0.13	1.09 0.35	1.11 0.55	1.50 0.25	1.11 0.48	1.05 0.19	1.32 0.29	1.19 0.53	0.92 0.12	1.31 0.43	1.00 0.98	1.70 0.37	1.12 0.16	
		-	-				-	-	-		-	-	-	0	-	-	-	-	
																			 -
-																			
			N248D				A174V	K237Q									N185D	T274A	
V104I	V104I	V104I	V104I	V104I	N261D	S216C	V104I	V104I	N183D	V104I	V104I	N184D	N252D	S259C	K251T	V104I	V104I	K237E	1000
A98E S103A V104I	S103A	S103A	S103A	S103A	V104I	V104I	N77D S103A V104I	S103A	V104I N183D	S103A	S103A	V104I	V104I	V104I	V104I	S103A	S103A	V104I	17 077
A98E	N76D	N77D	N76D	N76D	S103A	S103A	N77D	N76D	S103A	N76D	Q9/N	S103A	S103A	S103A	S103A	S984	M76D	S103A	400,0
N76D	V4E	U9/N	A16T	A1E	N76D	N76D	N76D	T38S	N76D	R19L	R19C	09/N	N76D	N76D	M76D	N76D	172V	N76D	1700

0.23	0.28	0.71	1.26	0.87	1.07	1.31	1.35	1.02	0.92	1.25	1.32	1.10	1.17	1.25	0.95	0.98	0.91	1.02	1.01
1.88	1.29	0.52	0.23	0.21	0.24	0.61	0.69	0.37	0.98	0.63	0.49	0.39	0.34	0.57	0.22	0.24	0.13	0.16	0.31
								-											
-								-					-					<u> </u>	
												N183I							
	K237E			N204T			E271V	N261Y			S242T	N116K			11987	Q182R	Q137R	N248S	Q206R
G159D	V104I	S130L	Q109R	V104I	D181N	V104I	S212P	N252K	S242J	E271Q	V104I	V104I	G258R	E271G	Q182R	V104I	<u> </u>	Q137R	
N76D S103A V104I G159D	S103A	V104I	V104I	S103A	S103A V104I	N76D S103A	V104I	V104I	V104I	V104I	N76D S103A	S103A	V104I	V104I	V104I	S103A	V104I M119I	V104I	S103A V104I
S103A	N76D	S103A	S103A	S99R	S103A	N76D	S103A	S103A	S103A	S103A	N76D	N76D	S103A	S103A	S103A	N76D	S103A	S103A	N76D
N76D	H17L	N76D	N76D	N76D	N76D	Q12R	N76D	N76D	N76D	N76D	Q12R	N43S	N76D	U3/N	N76D	L21M	N76D	N76D	A13T

1.02	1.06	1.26	0.04	0.05	0.04	0.16	0.88	0.03	0.04	0.04	0.04	0.04	90.0	0.16	0.09	0.17	0.14	0.18	0.19
0.33	0.38	0.84	1.97	1.51	1.40	1.95	2.41	1.34	1.78	2.16	1.91	2.06	1.73	2.04	3.20	1.83	1.42	1.86	1.87
																		-	
									<u> </u>							ļ			
								K251T											
								N185D		V244A				G159D	Q236H		G159D		
	G258R	E271G	N261D	Q206E	Q206E			A133T	N261D	Q206E	S188E	A158E	K251T	L111M	G159D	G159D	V104I	G159D	G159D
Q206R	S212P	V104I	Q206E	V104I	V104I	A158E	Q206E	V104I	Q206F	G159D	V104I	V104I	Q206E	V104I	V104I	V104I	S103A	V104I	S103A V104I G146S G159D
V104I	V104I	S103A	V104I	S103A	S103A	V104I	V104I	S103A	V104I	V104I	S103A	S103A V104I	V104I	S103A	S103A	S103A	09/N	S103A	V104I
N76D S103A V104I	S103A	N76D	S103A	N76D	U77D	S103A	S103A	N77D	S103A	S103A	N76D	N76D	S103A	N76D	N76D	N76D	N62H	N76D	S103A
N76D	N76D	T58S	N76D	V4E	N76D	N76D	N76D	N76D	N76D	N76D	V4E	V4E	N76D	A48T	V68A	L42V	Q12H	L42I	N76D

0.15	0.07	1.42	2.03	1.79	1.78	1.21	0.78	0.44	0.45	0.61	0.12	0.38	0.61	0.11	0.14	0.40	0.34	0.03	0.06
1.90	1.61	0.44	0.39	0.62	0.11	0.12	1.63	2.37	2.97	3.00	2.71	2.46	2.46	3.31	3.06	3.11	3.12	3.18	2.78
																Q245R			
											E271V					Q236Н		T253K	Q236H
									E271V	Q245R	Q236 Н				Q236H	G159D	Q236Н	О236Н	N184S
		E271V	E271V	E271V					Q236H	Q236H	12171			Q236R	G159D	V121I	G159D Q236H	Y209S	G159D
N238S	T224A	V268F	S212P	Q245L	Q245R	P210L	V104I	Q236H	G159D	G159D	G159D	V104I		G159D	V104I	A114V	V104I	G159D	N117K
G159D	G159D	S212P	V104I	S212P	Q109R	Q109R	S103A	V104I	V104J.	V104I	V104I	S103A	V104I	V104I	S103A	V104I	S103A	V104I	V104I
N76D S103A V104I G159D N238S	V104I	V104I	S103A	V104I	V104I	V104I	N76D	S103A	S103A	S103A	S103A	N76D	S103A	S103A	N76D	S103A	N76D	S103A	S103A
S103A	S103A	S103A	S87R	S103A	S103A	S103A	N62S	N76D	N76D	N76D	N76D	V68A	N76D	N76D	L75R	N76D	V68A	N76D	M76D
N76D	N76D	N76D	N76D	N76D	N76D	N76D	G20V	V68A	V68A	V68A	V68A	H17Q	V68A	V68A	V68A	V68A	Q12R	V68A	V68A

0.57	0.03	0.03	0.04	0.03	0.62	0.03	0.02	0.02	0.03	0.58	0.13	1.73	1.13	1.54	0.8	1.5	0.15	1.09	0.99
2.49	3.37	3.11	3.15	3.31	3.26	2.78	3.28	3.34	3.28	2.91	2.86	1.30	1.83	1.28	3.72	9.0	1.91	1.92	3.57
												T260A							
					T255S		Q245R		Q245R		Q245R	Q245R		Q245R	L257V				Q245R
		H249Y		N261D	Q245R	R247H	Q236Н	Q245R	Q236H	Q245R	Q236H	Q236H		Q236H	Q245R			L257V	Ω236Н
	Q245L	Q236H	H249Q	Q245R	Q236H	Q245R	A174V N204D	Q236Н	N218D	Q236Н	V203A	A232V		A232V	Q236H	L257V		Q245R	A232V
	Q236H	G159D	Q236H	Q236H	G159D	Q236H	A174V	N204D	G159D	A232V	A194I	T213R		P210R	A232V	Q245R		Q236H	Y209W A232V
Q236Н	G159D	N123S	G159D	G159D	S141N	G159D	G159D	G159D	A133V	G159D	G159D	G159D	V104I	G159D	G159D	О236Н	R275H	A232V	G159D
V104I	V104I	V104	V104I	V104I	V104I	S103A	V104I	V104I	A232V	L257V	G159D	V104I							
S103A	S103A	S103A	S103A	S103A	S103A	N76D	S103A	S103A	V104I	V104I	V104I	S103A							
N76D	N76D	N76D	N76D	N76D	N76D	V68A	N76D	N76D	S103A	S103A	S103A	N76D							
V68A	V68A	V68A	V68A	V68A	V68A	T22K	V68A	V68A	N76D	N76D	N76D	V68A							

1.76	1.06	1.92	1.45	1.72	1.59	1.49	0.68	1.37	1.2	0.76	1.86	1.44	1.14	1.29	1.81	1.53	1.72	1.62	1.08
1.74	3.15	2.33	1.67	2.16	2.77	2.62	2.92	2.17	0.48	2.92	2.09	0.51	1.60	1.35	1.92	1.17	2.01	2.09	3.00
																		1	
		Q245R			S259G	T260V					Q245R			K251R	A272S	Q245R			
Q245R	Q245R	Q236 Н	Q245R	Q245R	Q245R	Q245R	N261G	N261W		Q245R	Q236H			N248S	Q245R	Q236H	S256R	Q245R	Q245R
V104 G159D G211R A232V Q236H	Q236H	A232V	Q236H	Q236H	Q236H	Q236H	Q245R	Q245R		Q236Н	A232V		Q245R	Q245R	Q236H	A232V	Q245R	Q236H	Ω236Н
A232V	A232V	Y214L	A232V	A232V	A232V	A232V	Q236Н	Q236H	Q245R	A232V	G159D		Q236H	Q236H	A232V	Q206L	Q236H	A232V	A232V
G211R	G211V	G159D	A215R	G159D	G159D	G159D	A232V	A232V	S242P	P210L	V104I	Q245R	A232V	A232V	G159D	N183K	A232V	Q206R	G159D
G159D	G159D	V104I	G159D	V104I	V104I	V104I	G159D	G159D	Q236H	G159D	S103A	Q236H	Y192F	G159D	V104I	G159D	G159D	G159D	V104I
V104I	V104I	S103A	V104I	S103A	S103A	S103A	V104I	V104I	A232V	V104I	N76D	A232V	G159D	V147I	S103A	V104I	V104I	V104I	S103A
S103A	S103A	M76D	S103A	N76D	N76D	S87R	S103A	S103A	V104I	S103A	V68A	V104I	V104I	V104I	N76D	S103A	S103A	S103A	N76D
N76D	N76D	V68A	M76D	V68A	V68A	N76D	N76D	N76D	S103A	N76D	A48V	S103A	S103A	S103A	V68A	N76D	N76D	N76D	V68A
V68A	V68A	Q12R	V68A	Q12R	G20R	V68A	V68A	V68A	N76D	V68A	Q12R	N76D	N76D	N76D	Q12R	V68A	V68A	V68A	K27R

QN	1.23	1.65	0.46	0.77	0.76	1.16	1.12	96.0	1.25	1.01	1.46	1.56	1.74	1.56	1.61	1.85	1.56	1.30	1.30
2	1.01	0.57	0.86	1.24	1.18	0.52	0.56	0.43	0.42	1.15	0.53	0.69	99.0	0.52	0.70	0.79	0.78	1.25	1.29
Q245R																			
Q236H																			
A232V Q236H Q245R																	L262S		
N185S							05									Q245R	Q245R	N261D	
R170S					Y263F								Q245R	Q245R	Q245R	A215V M222S		Q245R	
N116T G159D R170S		H249R			K237R		E271D				Q245R		V244I	P210T	M222S	A215V	M222S V227A	M222S	Q245R
N116T	Q245R	M222S	M222S	Y263F	M222S	M222S	M222S	M222S	M222S	H249R	M222S	Q245R	M222S	M222S	S130T	S130T	S130T	S130T	M222S
V104I	M222S	V104I	N173R	M222S	V104I	Q109R	Q109R	V104I	Q137R	M222S	V104I	A232V	1104T	V104I	1104T	1104T	1104T	1104T	S130T
S103A	V104I	S103A	V104I	S103A	S103A	S103A	S103A	S103A	S103A	1104T									
N76D	S103A	N76D	S103A	N76D	N76D	N76D	U36D	09/N	Q9/N	S103A									
V68A	N76D	Q12R	N76D	N76D	L21M	N76D	N76D	G61R	N76D	N76D	Q12R	N76D	Q12R	Q12R	Q12R	Q12R	Q12R	Q12R	N76D

1.44 0.16	2.01 0.04	0.77 1.60	0.73 1.66	2.09 0.86
1.44	2.01	0.77	0.73	2.09
	Q245R			
Q12R S57P N76D S103A 1104T S130T M222S Q245R K251Q	Q12R N76D S103A 1104T S130T R170S N185D M222S N243D Q245R			
Q245R	M222S	V268A	Q245R	Q245R
M222S	N185D	Q245R	P210S	Q236H
S130T	R170S	M222S	M222S	A232V
1104T	S130T	Q12R N76D S103A 1104T S130T M222S Q245R V268A	Q12R N76D S103A 1104T S130T M222S P210S Q245R	V68A N76D S103A V104I G159D A232V Q236H Q245R
S103A	1104T	1104T	1104T	V104I
N76D	S103A	S103A	S103A	S103A
S57P	N76D	N76D	N76D	N76D
Q12R	Q12R	Q12R	Q12R	V68A

Example 3

5

10

15

Table 5 lists the variant proteases assayed from Example 1 and the results of testing in four different detergents. The same performance tests as in Example 2 were done on the noted variant proteases with the following detergents. For column A, the detergent was 0.67 g/l filtered Ariel Ultra (Procter & Gamble, Cincinnati, OH, USA), in a solution containing 3 grains per gallon mixed Ca²⁺/Mg²⁺ hardness, and 0.3 ppm enzyme was used in each well at 20°C. For column B, the detergent was 3.38 g/l filtered Ariel Futur (Procter & Gamble, Cincinnati, OH, USA), in a solution containing 15 grains per gallon mixed Ca²⁺/Mg²⁺ hardness, and 0.3 ppm enzyme was used in each well at 40°C. For column C, 3.5g/l HSP1 detergent (Procter & Gamble, Cincinnati, OH, USA), in a solution containing 8 grains per gallon mixed Ca²⁺/Mg²⁺ hardness, and 0.3 ppm enzyme was used in each well at 20°C. For column D, 1.5 ml/l Tide KT detergent (Procter & Gamble, Cincinnati, OH, USA), in a solution containing 3 grains per gallon mixed Ca²⁺/Mg²⁺ hardness, and 0.3 ppm enzyme was used in each well at 20°C.

Table 5

	·•				_		<u>'1 -</u>	_										
Ω		1.26	2.35	1.19	1.31	2.02	2.70	0.80	2.88	1.78	2.07	2.01	2.66	2.78	0.75	2.01	1.06	1.54
၁	-	1.39	1.65	1.20	1.66	1.60	1.48	1.23	1.41	1.55	1.63	1.62	1.36	1.27	1.31	1.12	1.37	1.53
В	-	1.41	1.49	1.41	1.72	1.38	0.91	1.39	0.86	1.43	1.43	1.47	0.56	0.50	1.38	0.15	1.42	1.40
4	-	1.44	2.34	1.05	1.81	2.19	2.91	0.93	2.67	2.22	2.30	2.31	2.63	2.75	1.1	2.27	1.37	2.14
									N252K									
			N252K	N252K	N252K	N252K	N252K	N252K	N248D	N252K	N252K	N252K	N252K	N252K		N252K	N252K	N252K
			N248D	N248D	N248D	N248D	N248D	N248D	Q245R	N248D	N248D	N248D	N248D	N248D	N252K	N248D	N248D	N248D
		N252K	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Ф236Н	Q245R	Q245R	Q245R	Q245R	Q245R	N248D	Q245R	Q245R	Q245R
		N248D	Q236H	Q236H	Q236H	Q236H	Q236H	Q236H	A232V	Ф236Н	Ф236Н	Ф236Н	Ф236Н	Ф236Н	Q245R	Ф236Н	Ф236Н	Ф236Н
		Q245R	A232V	A232V	A232V	A232V	A232V	A232V	P210L	A232V	A232V	A232V	A232V	A232V	Ф236Н	A232V	A232V	A232V
		Q236H	Y209W	G159D	G159D	Y209F	N185D	P210R	N185D	P210L	S212C	S212G	S212E	T213E	A232V	T213E	T213R	A215V
		A232V	G159D	Q109R	V104I	G159D	G159D	G159D	G159D	G159D	G159D	G159D	G159D	G159D	T213S	G159D	G159D	G159D
	V104I	G159D	V104I	V104I	S103A	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I
	S103A	V104I	S103A	S103A	V68A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	A103V	S103A	S103A
	N76D	S103A	V68A	V68A	G20R	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A

WO 99/20770 PCT/US98/22572

								72												
1.20	1.56	1.87	2.89	2.42	0.95	2.42	1.85	3.22	1.72	1.65	2.58	0.94	1.05	1.18	2.64	0.84	0.73	2.67	1.57	2.44
1.47	1.56	1.47	1.07	1.29	1.24	1.42	1.30	1.43	1.58	1.59	1.33	1.46	1.31	0.85	1.30	1.37	1.32	1.41	1.53	1.33
1.58	1.36	1.36	0.33	0.46	1.46	1.00	1.13	0.91	1.36	1.46	0.77	1.52	1.41	1.41	0.59	1.47	1.50	0.93	1.38	0.25
1.22	2.12	1.88	2.24	2.43	0.98	2.52	2.05	2.61	2.18	2.14	2.46	1.31	1.21	1.51	2.56	1.02	1.04	2.60	2.31	2.83
																				Y
																				N252K
N252K	N252K	N252K	N252K	N252K	N252K			N252F	T255V	S256N	S256E	S256R	T260R	L257R	G258D	N261R			N252K	N248D
N248D	N248D	N248D	N248D	N248D	N248D	N252F	N252L	N248D	N252K	N252K	N252K	N252K	N252K	N252K	N252K	N252K		N252K	N248D	Q245R
Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	N248D	N248D	Q245R	N248D	N248D	N248D	N248D	N248D	N248D	N248D	N248D	N252K	N248D	Q245R	Q236H
Q236H	Ф236Н	Q236H	Q236H	Ф236Н	Q236H	Q245R	Q245R	Q236H	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	N248D	Q245V	Ф236Н	A232V
A232V	A232V	A232V	A232V	A232V	A232V	Q236H	Q236H	A232V	Ф236Н	Q236H	Ф236Н	Q236H	Q236H	Q236H	Ф236Н	Ф236Н	Q245R	Ф236Н	A232V	G159D
A215R	S216T	S216V	S216C	N173D	Q206R	A232V	A232V	G159D	A232V	A232V	A232W }	A232V	A232V	A232V	A232V	A232V	Q236H	A232V	A228V	S130A
G159D	V104I	G159D	G159D	G159D	G159D	G159D	G159D	G159D	G159D	A232V	G159D	G159D	V104I							
V104I	S103A	V104I	V1041	V1041	V104I	S103A														
S103A	V68A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	V68A							
V68A	P55S	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	G61E							

-- 73 **--**

2.29	1.27	1.56	1.15	1.28	2.25	1.28	1.45	1.55	1.40	1.72	1.71	1.90	1.33	1.69	2.71	2.40	2.58	1.82	2.46	2.84
1.36	0.89	1.62	1.67	1.11	1.43	2	9	2	9	2	S	2	2	₽	9	9	9	9	9	2
0.97	1.54	1.50	1.72	1.30	0.83	0.07	09.0	0.79	0.41	0.68	0.68	0.27	1.80	1.33	0.55	1.05	2.19	2.16	0.13	1.36
2.10	1.37	2.30	1.72	1.32	2.50	4.20	3.47	4.32	3.14	2.71	2.97	3.50	2.24	3.35	4.88	4.22	5.45	3.76	7.42	5.43
				T260A																
				Q245R		N252K	N252K	N252K												
N252K		N252K	N252K	Q236H	N252K	N248D	N248D	N248D												
N248D	N252K	N248D	N248D	A232V	N248D	Q245R	Q245R	Q245R	N252K	N252K	N252K	N252K	N252K	N252K	N252K	N252K	N261R	N252K	N252K	N252K
Q245R	N248G	Q245R	Q245R	T213R	Q245R	Q236H	Q236H	Q236H	N248D	N248D	N248D	N248D	N248D	N248D	N248D	N248D	N252K	N248D	N248D	N248D
Q236H	Q245R	Q236H	Q236H	P210L	Q236H	A232V	A232V	A232V	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	N248D	Q245R	Q245R	Q245R
A232V	Q236H	A232V	A232V	G159D	A232V	S160V	V104I	Y167F	Q236H	, Ф236Н	Q236H	Q236H	Q236H	Ф236Н	Ф236Н	Q236H	Q245R	Ф236Н	Ф236Н	Q236H
G159D	A232V	N218S	G159D	V104I	G159D	G159D	S103A	G159D	A232V	A232V.	A232V	A232V	A232V	A232V	A232V	A232V	Q236H	A232V	A232V	A232V
A133V	G159D	G159D	V104I	S103A	V104I	V104I	N76D	V104I	G159D	G159D	G159D	G159D	G159D	G159D	G159D	G159D	A232V	G159D	G159D	N184D
V104I	V104I	V104I	S103A	E89D	S103A	S103A	V68A	S103A	V104I	V104I	V104I	V104I	V104I	V104I	S106E	Q109E	G159D	Q109R	V104I	G159D
S103A	S103A	S103A	V68A	N76D	N76D	V68A	G61E	V68A	S103A	S103A	S103A	S103A	S103A	S103A	V104I	V1041	V104I	V1041	S103A	V104I
G61E	V68A	V68A	G20R	V68A	V68A	G61E	S3L	G61E	G97E	A98D	366S	S101E	S101G	G102A	S103A	S103A	S103A	S103A	N62D	S103A

WO 99/20770 PCT/US98/22572

								74												
3.97	3.09	2.60	2.54	1.10	2.55	2.40	1.86	1.95	2.47	1.82	1.44	1.99	5.39	1.92	1.36	1.01	2.88	3.84	3.19	2.17
2	2	QN	Q.	Q.	Q.	S	2	2	2	2	9	2	2	9	9	2	2	9	2	2
1.21	0.95	2.83	1.92	2.61	2.46	2.08	2.04	2.11	1.56	2.09	2.66	2.78	0.94	1.41	0.57	1.86	0.50	1.20	2.10	2.67
5.12	6.38	3.17	4.38	3.05	4.09	2.32	2.34	2.24	2.81	2.30	2.63	2.01	7.74	5.14	4.97	2.41	4.42	5.86	5.87	2.98
													E271Q							
													N252K							
		N252K									S256R	N252K	N248D							N252K
		N248D	N252K	N252K	N252K						N252K	N248D	Q245R	N252K	N252K	N252K	N252K	N252K	N252K	N248D
N252K	N252K	Q245R	N248D	N248D	N248D	N252K	N252K	N252K	N252K	N252K	N248D	Q245R	Q236H	N248D	N248D	N248D	N248D	N248D	N248D	Q245R
N248D	N248D	Ф236Н	Q245R	Q245R	Q245R	N248D	N248D	N248D	N248D	N248D	Q245R	Q236H	A232V	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Q236H
Q245R	Q245R	A232V	Ф236Н	Ф236Н	Q236H	Q245R	Q245R	Q245R	Q245R	Q245R	Ф236Н	A232V	T213R	Ф236Н	Ф236Н	Ф236Н	Ф236Н	Ф236Н	Ф236Н	A232V
Q236H	Q236H	T213R	A232V	A232V	A232V	Q236H	V244T	V244A	Q236H	Ф236Н	A232V	T213R	Q206E	A232V	A232V	A232V	A232V	A232V	A232V	S212G
A232V	A232V	G159D	T213R	L217E	Q206R	A232V	Ф236Н	Ф236Н	A232V	A233V ,	T213R	G159D	N185D	N185D	Q206E	T213Q	G159D	G159D	S212G	G159D
S166D	L217E	V104I	G159D	Q206R	G159D	N184G	A232V	A232V	G159D	G159D	G159D	V104I	G159D	G159D	G159D	G159D	V104I	V104I	G159D	V104I
G159D	G159D	S103A	V104I	G159D	V104I	G159D	G159D	G159D	V104I	V104I	V104I	S103A	V104I	V104I	V104I	V104I	S103A	S103A	V104I	S103A
V104I	V104I	N62D	S103A	V104I	S103A	V104I	V104I	V104I	S103A	S103A	S103A	N62D	S103A	S103A	S103A	S103A	G102A	G102A	S103A	G102A
S103A	S103A	G20R	N62D	S103A	N62D	S103A	S103A	S103A	K27N	T38G	N62D	Q12R	N62D	S101G	S101G	S101G	A98L	S101G	G102A	Q12R

								75												
2.25	2.08	2.25	2.34	1.86	1.49	2.58	1.61	9.0	1.08	2.35	1.77	1.45	3.05	1.08	1.20	1.01	8.7	1.03	1.05	1.23
2	2	9	2	2	2	Q.	Q.	ND ND	Q.	2	9	<u>R</u>	<u>N</u>	2	Q.	9	Q.	QQ.	2	Q.
0.41	2.07	2.48	2.76	2.10	2.35	0.71	1.32	1.23	0.71	0.83	1.38	0.07	1.16	1.34	1.47	1.38	1.18	1.23	1.38	1.51
4.02	6.63	2.03	2.96	2.74	2.11	3.42	2.59	1.30	2.94	3.17	2.15	3.07	2.26	1.82	2.16	1.79	1.15	1.47	1.90	1.55
N252K	N252K		N252K			N252K				N252K	N252K	N252K								
N248D	N248D	N252K	N248D			N248D	N252K	N252K	N252K	N248D	N248D	N248D	N252K	N252K	N252K	N252K	N252K	N252K	N252K	
Q245R	Q245R	N248D	Q245R			Q245R	N248D	N248D	N248D	Q245R	Q245R	Q245R	N248D	N248D	N248D	N248D	N248D	N248D	N248D	
Ф236Н	Q236H	Q245R	Q236H			Q236H	Q245R	Q245R	Q245R	Q236H	Q236H	Q236H	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	
A232V	A232V	Q236H	A232V	N252K		A232V	Q236H	Ф236Н	Q236H	A232V	A232V	A232V	Q236H	Q236H	Ф236Н	Q236Н	Q236H	Q236H	Ф236Н	Q245R
S212G	S212G	A232V	T213R	N248D		T213R	A232V	A232V	A232V	, T213R	T213R	T213R	A232V	A232V	A232V	A232V	A232V	A232V	A232V	Q236H
G159D	G159D	T213R	G159D	Q245R	Q245R	G159D	G159D	G159D	G159D	G159D	G159D	G159D	G159D	G159D	G159D	S212G	Y209W	P2101	V205I	A230V
V104I	V104I	G159D	Q109R	A232V	A230V	S130G	S130G	S128G	S128L	V104I	S128G	S128L	P131V	V104I	V104I	G159D	G159D	G159D	G159D	G159D
S103A	S103A	V104I	V104I	G159D	G159D	V104I	V104I	V104I	V104I	S103A	V1041	V104I	V104I	S103A	S103A	V104I	V104I	V104I	V104I	V104I
G102A	G102A	S103A	S103A	V1041	V104I	S103A	S103A	S103A	S103A	S101G	S103A	S103A	S103A	S101G	S101G	S103A	S103A	S103A	S103A	S103A
A98L	S101G	G102A	N62D	S103A	S103A	N62D	S101G	S101G	S101G	N62D	N62D	N62D	S101G	A98V	S88G	S101G	S101G	S101G	S101G	S101G

1.10	1.25
Q.	9
1.96 1.30 ND	2.49 0.80 ND
1.96	2.49
	N252K
N252K	A232V Q236H Q245R N248D
N248D	Q245R
Q245R	Q236H
A232V Q236H Q245R N248D N252K	A232V
A232V	A194P
A194P A2	4I G159D A1
G159D	V10
V104I G159D A194P	_
	N76D S101G S103A
S101G	N76D S10

PCT/US98/22572 WO 99/20770

WHAT IS CLAIMED:

1. A protease variant comprising substituting an amino acid at a residue position corresponding to position 103 of Bacillus amyloliquefaciens subtilisin and substituting one or more amino acids at residue positions selected from the group consisting of residue positions corresponding to positions 1, 3, 4, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274 and 275 of Bacillus amyloliquefaciens subtilisin; wherein when a substitution at a position corresponding to residue position 103 is combined with a substitution at a position corresponding to residue position 76, there is also a substitution at one or more residue positions other than residue positions corresponding to positions 27, 99, 101, 104, 107, 109, 123, 128, 166, 204, 206, 210, 216, 217, 218, 222, 260, 265, or 274 of Bacillus amyloliquefaciens subtilisin.

20

5

10

15

- 2. The protease variant according to claim 1 which is derived from a Bacillus subtilisin.
- 3. The protease variant according to claim 2 which is derived from Bacillus lentus 25 subtilisin.
 - 4. A DNA encoding a protease variant of claim 1.
 - 5. An expression vector encoding the DNA of claim 4.

- 6. A host cell transformed with the expression vector of claim 5.
- 7. A cleaning composition comprising the protease variant of claim 1.

- 8. An animal feed comprising the protease variant of claim 1.
- 9. A composition for treating a textile comprising the protease variant of claim 1.
- 5 10. The protease variant according to claim 1 comprising a substitution set selected from the group consisting of residue positions corresponding to positions in Table 1 of *Bacillus amyloliquefaciens* subtilisin.
- 11. The protease variant according to claim 10 comprising a substitution set
 selected from the group consisting of residue positions corresponding to positions in
 Table 3 of Bacillus amyloliquefaciens subtilisin.
 - 12. The protease variant according to claim 10 comprising a substitution set selected from the group consisting of residue positions corresponding to positions in Table 2 of *Bacillus amyloliquefaciens* subtilisin.

Ser TCC Met ATG Aa GCA Asp GAT ક & ¥ \$ ACG ACG SA SA ∂ 8 Ser TCT Lys AG Gly Ser GGC AGC -107 Met GTG Ser AGC Val GTA ∂ 8 His CAC ₹ 1 -60 Met ATG Cig Cig Ty TAT oto Val GTT Asp GAT Ala Phe GCG TTC ¥Ş Ş ₹Ş Ala GCT TAC TAC SAG GR 품 그 그 Ata GCT Pa CCT His CAT Met ATG ნ 🖇 SC BB Lys A¥ val GTC Ser TCT Gly Phe GGG TTT Thr ACG Lys AAG Ser AGC Lys **A**¥ Ser TCT Asp Pro GAC CCG Phe CAA E lle A∏ Asp GAT val. GTC Val GTG -90 Ile ATC 은 등 **X** lle ATC Gly Gly Lys GGC GGG AAA Gly GGT le A∏ **≹**₹ Ser TCA Leo GCG TTA Ser AGC Ty TAT Lys & Val GTA Ala ren وار 190 Asp GAC ly A Leu TG Ala GCT -70 Lys AAG ξ. \$ Ser Glu GAA lle ATC Tyr TAC Gly Glu GGG GAA Val Pro GTG CCT 30 Ala Val GCG GTT G& GA Phe Lys &¥s E Ala Val GCT GTA C1GLeu Ser TCT MAT Asn AAC 116 Leu lle A∏ Ser TCC Val GTA Gla CAG Ser TCA Saf GTC है. हेर् AGT ₹¥ Ser *≣* § Aa GCG ₹ **§** le ATC ss ga GAT Val G∏ Gly GGG Тр 166 Asn ₹ફ _ - ₹₹ Asn AAT Ala GCG Ata GCA Lys AG Z¥ 14 Val GTA Ser TCA Lys AAG Ala GCG ly A g∂ GGA ACA TH His CAT Gly Lys GGC AAA Gh CAG Ala GCT Ala GCT Aga CCA Thr ACT Ala GCC 88 600 600 Val GTA 14 14 14 14 % 59 1℃ 1℃ Arg AGA Ser AGC 2 2 2 3 3 3 CA CA CA Ala GCT Ser TCT 249 324 88 474 174 66

FIG._1B-1

Ala GCC Val His CAC Thr ACT GGA GGA SAC AS Ser TCT Asn Asp Asn AAC 60 Asp GAC ₽ C¥ Phe TTC Asn Pro CCT Pro Asn AAT Thr ACA Glu GAA Ser TCT Pro CCT Val GTT 50 Met ATG Ser AGC Ala GGA GGA ე დ__ Ala GCA

동물 Val GTA Ala GCT TX XC CH E 8 Ata Ser TCA Ser Ala GCA Ser AGC Pro CCA Ala GCG Val GTT Cit Cit Les TA Val GTA 80 Gly GGT lle ATC Ser TCA Asn AAC Asn AT CH CH Ata GCT Ata GCG Val GTT ¥Ç ∄ 2 2 2 3 3 3 954

Met ATG Asn AAT Asn AAC Ata CCA lle ATC Ala GCG Тр 766 Glu GAG lle ATC 110 Gly GGA Asn AAC lle ATT lle ATC Trp TGG Ser AGC 14 14C cy Cy Gi ටුදු පදිර Ser TCC 56. GGT Ala Asp GAC Asp Ala GCT Gly GGT S C C C Val GTT

66

Ala GCA Val GTT Afa ક્રફ Asp GAT Val GTT Ata GCA Ata GCG ક્રફ Leu Ala GCT Ala GCT Ser TCT Gly GGT 130 Ser 1CT Pro CCT GGA GGA S C C C Ser AGC Met ATG Asn AAC lle ATT Val GTT 120 Asp GAC 774

Gy GGT Pro CCT Ty TAC 3 3 3 3 val GTG ACA ACA Ser AGC Ser TCA Ser AGC 160 G²/₄ GGC Thr Ser TCC Ser Thr ACT 09 09 Gle GAA Asn AAC Gly GGT Ala GCC SC & Ata GCG 150 Val GTT Val GTC Val GTA val GTC SG SF Ser TCC 849

Pa CCT Gy GGA Val GTA Ser AGC 15e 13e ₹ 10 10 Ser TCT Ala GCA Arg AGA Asn Ser AGC Ser AGC Asp GAC 180 Val GTT Ala GCT 399 395 Val GTA SCA SCA A E Val GTC Se 101 Pro CCT IAC AC \$₹\$ 924

GGT Asn TY Ala GCG Gy GGG Tyr TAC Lys M Asn AAC Gy GGA Gin CAA 210 Pro CCT Leu CH Thr ACG Ser. ₽ C¥ lle ATC Ser 1CT Val GTA 6/ Pro CCT 200 Ala GCA Met ATG Val GTC Asp GAT Leu CT CT Oko GAG 86

₹ \$C1 AÇA AÇA Гр 766 240 Asn AAC Pro CCG His CAC Lys AAG Ser 1CT Leu CTT Leu Ne TTG ATT gg ₹ Ala GCT 6ly Ala / Ala GCC Val His CAC Pro CCG Ser TCT Ala GCA Mel ATG Ser 1CA 220 1hr ACG 1074

Asn AAC Gly Lys Gly Leu lle GGA AAA GGG CTG ATC 270

Val Gin Ala Ala Gin OC

1224 GTA CAG GCG GCA GCT CAG TAA AACATAAAAAACCGGCCTTGGCCCCGCCGCGTTTTTATTTTTCTTCCTCCGCATGTTCAATCCGCCTCC Tyr Tyr (Phe TTC Glu Asn Thr Thr Lys Leu Gly Asp Ser GAA AAC ACC ACT ACA AAA CTT GGT GAT TCT 7 Fen 220 Val Arg Ser Ser GTC CGC AGC AGT 1149 CAA 등

1416 CTICCCGGTTTCCGGTCAGCTCAATGCCGTAACGGTCGGCGCGTTTTCCTGATACCGGGAGACGCCATTCGTAATCGGATC

1316 ATAATCGACGGATGGCTCCCTCTGAAAATTTTAACGAGAAACGGCGGGTTGACCCGGGTCAGTCCCGTAACGGCCAAGTCCTGAAACGTCTCAATCGCCG

CONSERVED RESIDUES IN SUBTILISINS FROM BACILLUS AMYLOLIQUEFACIENS

1 A	Q	S	v	P	•.	G		•	10	•	•	A	P	A		н	•	•	20 G
21		G	s	.•	v	ĸ	v	A	3 (V		D	•	G	•	•	•	•	н	40 P
41 D		•	•	•	G	G	A	s	50		P	•	•	•	•	•	•	Q	60 D
61	N	•	н	G	T	н	v	A	7 (G	T	•	A	A	L	N	N	s	I	80 G
81 V	L	G	v	A	P	s	A	•	9 (L		A	v	ĸ	v	L	G	A		.00 G
10 S) 1 G	•	•	S		L	•		L10 G		E	W	A	•	N	•	•		.20
12 V		N	•	s	L	G	•		130 S			•	•	•	•	•	A		40
14		•	•	•	G	v	•		150 V		A	•	G	N	•	G	•		.60
16		•	•	•	•	Y	P		L70	Y	•	•	•	•	A	v	G	1 A	.80
18 D		•	N	•	•	A	s	F	L90 S		•							2	00
20 P)1 G	v	•	•	Q	s	T		210 P		•		Y			•	N		20 T
22 S		A	•	P	н	v	A		230 A		A	L	•	•	•	ĸ	٠		40
24 W		•	•	Q	•	R	•		250 L		N	т	•	•	•	L	G		60
	51		G		G	L			270		A	A	•	•					

FIG._2

Ë
Õ
S FROM
S
Ξ
\geq
Щ
S
5
≌
BT
Ξ
Ľ,
0
ARISON OF SUBTILISIN SEQUENCES F
Ω̈
AH
MPA
Ö
S

B.amyloliquefaciens B.subtilis B.licheniformis B.lentus

4 4 4 **H H H** \$ \$ \$ \$ \$ * SSAF 9998 HHHH 0000 SSHF 999 нныч >>> AAAA >>>> **KKKK** >>>> טעעע S S & S 0000 FFKF 工艺五五 20 G G 0 0 0 M SSAZ HHOH u u p A REME 4404 RARA **KKKQ** HHHP0 1 2 2 3 3 4 4 8 8 8 8 **>** H H H 0000 >>>> ខ្លួក ខ្លួ $\alpha \alpha \alpha \alpha$ NA A A A

0000 HHHHSSES **zzz**z ZZAZ 4444 RARA RARA P H P H 8 8 8 8 RARA >>>> **HHH** 8 8 8 8 0000 ннн 0 0 0 0 ZSZZ 60 D N D G D G aara H * K H N N N O H H A * 医医医医 8 8 8 8 444 >>>> SE FFF **8** 8 8 8 8 RARA 0000 0 0 0.0 **4 2 2 2**

2222

0000

Q Q Q H ZZZZ ZZUU **z** z z z ASHZ нны REER ZZZZ 西西西西 оннны 0 0 0 0 zzso $H + P \neq$ нннн 3 3 0 0 02 03 03 03 4 4 4 4 $\alpha \alpha \alpha \alpha$ 0000 100 G S G S G S G S OFS ASSA 0220 ココココ >>>> KKKK >>>> RRRR *** 061111 ちちらば REDE 8 8 8 8 4 4 4 4 RSKK >>>> 0000

0000 50 50 50 HSZK 0000 異思らら zzzz 0000 AAAS ** ** Ø > > **P < < <** > H > > 0000 50 22 24 24 **A 22 A 23** > > > H ** 140 D K D K N S >>>> A > A A AHOO K K K E ココガコ REEL RHHA 00 00 00 130 3 G 5 G 8 G 日日内日 0000 0000 пппп **8** 8 8 8 8 MMMA **z** z z z

	V	Ø	Ø	K	:	Z	H	z	တ						
	Σ	Σ	Σ	>	1	Ч	Ы	Д	Д						
	>	>	>	H	:	Ξ	H	H	Z						
	Д	Ω	ष्प	Ω	t	¥	×	K	ĸ						
	Н	7	1	7		S	S	Ŋ	ø						
	团	ы	H	Ŋ	٠	7	H	1	M			ø	ø	ø	ĸ
	Д	S	K	A	,	-	Н	H	>			A	K	K	H
	Ö	Ŋ	Ŋ	G	٠	7	7	7	1			¥	K	K	Ø
	>	K	>	×	•	A	ø	K	A			A	Ø	A	K
90	S	ß	ಬ	Ø	30	A	K	A	A		7.0	Ø	Ø	团	团
H	S	ß	S	S	7	A	K	Ø	A		3	>	>	>	A
	1	Ŀ	H	[±4	•	<u>ۍ</u>	Ö	Ŋ	Ŋ			Z	Z	Z	Z
	ಬ	ಭ	S	S	•	A	Ø	A	A			Η	H	H	>
	K	Ø	Ø	A	;	>	>	>	>			Ţ	L	H	L
	H	×	K	R	:	I	Ξ	H	H			Q	Ŋ	Ŋ	Q
	Ø	Ø	Z	Z	۶	71	Д	Д	ы			X	K	×	ಬ
	Z	Z	ಬ	Z	5	S	I	S	H			Ŋ	Ŋ	Ŋ	Ŋ
	ಭ	S	Z	Z	•	¥	A	A	A			×	×	×	×
	Ø	S	S	Ø	2	Ξ	Σ	Σ	Σ			×	×	×	Ţ
30	Q	Z	Q	Q	20	מ	S	S	ß		9	Ħ	ĬΞ	Ţ	Z
ĩ	>	>	V D	H	C E	H		1	H		7	Ø	Ø	ß	H
			A		ζ	٥	C	೮	Ç			Ω	Z	Ø	Ŋ
	Ŋ	Ŋ	ŋ	Ŋ	2	Ζ,	Z	Z	Z			Ö	Ö	Ŋ	Ŋ
	>	>	>	>				H				Ţ	7	Ţ	7
	A	K	¥	Ø	•	<	K	H	ໝ	3		K	×	×	S
	H	H	Н	Σ	ζ	פ	r C	K	K	٠.		H	H	H	H
	>	E٦	>	K	>	H	H	×	Ħ			H	K	K	A
	Ŋ	ಬ	S	Z	4	4	H	H	H			H	H	H	H
	Д	Д	Ω	A	2	Z, 1	U	Z	Ø			Z	ಬ	ß	Z
			×		2	י פ	Ŋ	H	Ö		50	团	凶	Ω	K
H	ĸ	K	K	ĸ	4	4	Д	Д	Д				H		
	O	K	K	M	۰	7	7	×	×				K		
	Д	Ы	Д	Ъ	E	H	H	H	H				D		
	×	×	×	×	3	ומ	S	S	Ŋ				R		
	Ö	U	Ö	လ	C	×	ď	×	Ø			>	>	>	H
	>	>	H	H	+	→ !	Η	>	>			_	Ø		
	H	H	H	*				Ö				_	K		
			Z		-			K					Z		
9			H		7						41				
H	ಭ	S	ಬ	*	~ F	۱ بد	Д	Д	Д		Ň	3	3	H	3

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/57, 9/54, C11D 3/386, A23K
1/165

(11) International Publication Number:

WO 99/20770

(43) International Publication Date:

29 April 1999 (29.04.99)

(21) International Application Number: PCT/US98/22572

(22) International Filing Date:

23 October 1998 (23.10.98)

(30) Priority Data:

08/956,323 23 October 1997 (23.10.97) US 08/956,324 23 October 1997 (23.10.97) US 08/956,564 23 October 1997 (23.10.97) US

- (71) Applicants: GENENCOR INTERNATIONAL, INC. [US/US]; 4 Cambridge Place, 1870 South Winton Road, Rochester, NY 14618 (US). THE PROCTER & GAMBLE COMPANY [US/US]; Procter & Gamble Plaza, Cincinnati, OH 45202 (US).
- (72) Inventors: SCHELLENBERGER, Volker, 1747 Sequoia Avenue, Burlingame, CA 94010 (US). KELLIS, James, T., Jr.; 111 Tan Oak Drive, Portola Valley, CA 94028 (US). PAECH, Christian; 914 Moreno Avenue, Palo Alto, CA 94303 (US). NADHERNY, Joanne; 681 Arguello No. 6, San Francisco, CA 94118 (US). NAKI, Donald, P.; 4815 25th Street, San Francisco, CA 94118 (US). POULOSE, Ayrookaran, J.; 2848 Wakefield Drive, Belmont, CA 94002 (US). COLLIER, Katherine, D.; 915 Wilmington Way, Redwood City, CA 94062 (US). CALDWELL, Robert, M.; 915 Wilmington Way, Redwood City, CA 94062 (US). BAECK, André, C.; 273 Putsesteenweeg, B-2820 Bonheiden (BE).
- (74) Agent: ANDERSON, Kirsten, A.; Genencor International, Inc., 925 Page Mill Road, Palo Alto, CA 94304-1013 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU (Petty patent), AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 2 September 1999 (02.09.99)

(54) Title: MULTIPLY-SUBSTITUTED PROTEASE VARIANTS

(57) Abstract

Novel protease variants derived from the DNA sequences of naturally-occurring or recombinant non-human proteases are disclosed. The variant proteases, in general, are obtained by *in vitro* modification of a precursor DNA sequence encoding the naturally-occurring or recombinant protease to generate the substitution of a plurality of amino acid residues in the amino acid sequence of a precursor protease. Such variant proteases have properties which are different from those of the precursor protease, such as altered wash performance. The substituted amino acid residue corresponds to position 103 in combination with one or more of the following substitutions at residue positions corresponding to positions 1, 3, 4, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274, and 275 of *Bacillus amyloliquefaciens* subtilisin, wherein when a substitution at a position corresponding to residue positions other than residue positions corresponding to positions 27, 99, 101, 104, 107, 109, 123, 128, 166, 204, 206, 210, 216, 217, 218, 222, 260, 265 or 274 of *Bacillus amyloliquefaciens* subtilisin.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
\mathbf{AM}	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	$\mathbf{s}\mathbf{G}$	Singapore		

International Application No Pc./US 98/22572

. CLASSIFICATION OF SUBJECT MATTER PC 6 C12N15/57 C12I A. CLASS A23K1/165 C11D3/386 C12N9/54 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ° WO 95 30011 A (PROCTER & GAMBLE) 9 November 1995 (1995-11-09) 1-11 tables 8-10,33-35 Υ WO 95 30010 A (PROCTER & GAMBLE) Χ 9 November 1995 (1995-11-09) 1-11 tables 7-9 WO 96 28566 A (PROCTER & GAMBLE) Х 19 September 1996 (1996-09-19) 1-11 tables 7-9 Υ 1-10 WO 91 00345 A (NOVONORDISK AS) 10 January 1991 (1991-01-10) claims 1,2.4 1-11 Υ Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Ospecial categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docucitation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled "P" document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 1 9, 07, 99 28 April 1999 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijawijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. VAN DER SCHAAL C.A. Fax: (+31-70) 340-3016

International Application No
Pull / US 98/22572

		PC1/US 90/223/2
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °		Relevant to claim No.
Y	WO 95 10615 A (GENENCOR INT) 20 April 1995 (1995-04-20) the whole document	10,11
Υ	US 5 316 935 A (ARNOLD FRANCES H ET AL) 31 May 1994 (1994-05-31) the whole document especially example XIII	1-9
Y	US 5 543 302 A (BOGUSLAWSKI GEORGE ET AL) 6 August 1996 (1996-08-06) claim 5	1-9

emational application No.

INTERNATIONAL SEARCH REPORT

PCT/US 98/22572

Box i	Observations where certain claims were found unsearchable (Continuation of item 1 of first sneet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
se	e continuation-sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-11 partially (invention 1. on continuation-sheet)
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Invention 1: Claims 1-11 partially

Subtilisin variants with an amino acid substitution at position 103 plus at least one amino acid substitution at position 1, DNA encoding these variants and their uses.

Inventions 2-136: Claims 1-11 partially 12 completely

Invention 2 being subtilisin variants with an amino acid substitution at position 103 plus at least one at position 3, but not at position 1, DNA encoding these variants and their uses; invention 3 being subtilisin variants with an amino acid substitution at position 103 plus at least one at position 4, but not at position 1 or 3, DNA encoding these variants and their uses etc.. Invention 136 being subtilisin variants with an amino acid substitution at position 103 plus one at position 275, DNA encoding these variants and their uses

iformation on patent family members

International Application No
Pul/US 98/22572

Patent document			Publication	P:	atent family		Publication
	in search report		date	member(s)			date
WO	9530011	Α	09-11-1995	AU	125369	95 A	04-05-1995
				AU	229449		29-11-1995
				AU	807979		04-05-1995
				BR	940783		13-05-1997
				BR	940783		13-05-1997
				BR	950760		19-08-1997 20-04-1995
				CA	217310 217310		20-04-1995
				CA	218942		09-11-1995
				CN	113728		04-12-1996
				CN	113728		04-12-1996
				CN	115118		04-06-1997
				CZ	96010		11-09-1996
				CZ	960109		11-09-1996
				CZ	960323		14-05-1997
				EP	072357	79 A	31-07-1996
				EP	072358		31-07-1996
				EP	075838		19-02-1997
				HU		84 A	28-05-1997
				HU		38 A	29-09-1997
				HU	755		28-05-1997
				JP	950584		10-06-1997 15-04-1997
				JP	950383		16-12-1997
				JP UO	951243		20-04-1995
				WO WO	951059 951059		20-04-1995
				US	567963		21-10-1997
				US	567727		14-10-1997
WO	9530010	Α	09-11-1995	ΑU	215919		29-11-1995
				AU	229319		29-11-1995
				BR	950759		23-09-1997 07-10-1997
				BR CA	950759 218942		09-11-1995
				CN	11517		11-06-1997
				CN	11517		11-06-1997
				CZ	96032		14-05-1997
				EP	075838		19-02-1997
				ĒP	07583		19-02-1997
				FI	9644		01-11-1996
				HU		59 A	28-05-1997
				JP	95116		25-11-1997
				JP	95124		16-12-1997
				NO	96459		30-10-1996
				MO	952997		09-11-1995
				ZA	950222		14-12-1995
				AU	787039		03-04-1995
				BR	940750		07-01-1997 23-03-1995
				CA	217049		30-10-1996
				CN CZ	113472 960079		12-06-1996
				EP	07193		03-07-1996
				HU		22 A	28-11-1996
				JP	95026		18-03-1997
				NO	9610		15-05-1996
				.TR	9601		21-06-1996
				WO	950799		23-63-1995

formation on patent family members

Pt./US 98/22572

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9628566 A	19-09-1996	AU 4868896 A CA 2214348 A CN 1183119 A CZ 9702793 A EP 0813596 A HU 9800765 A JP 11501812 T ZA 9601631 A	02-10-1996 19-09-1996 27-05-1998 12-11-1997 29-12-1997 28-07-1998 16-02-1999 06-09-1996
WO 9100345 A	10-01-1991	AU 5956690 A CA 2062732 A EP 0479870 A FI 102907 B FI 990023 A JP 4505856 T US 5665587 A	17-01-1991 27-12-1990 15-04-1992 15-03-1999 08-01-1999 15-10-1992 09-09-1997
WO 9510615 A	20-04-1995	AU 700373 B AU 8015794 A BR 9407825 A CA 2173973 A CN 1133068 A CZ 9601065 A EP 0723590 A FI 961631 A JP 9504170 T NO 961468 A NZ 274998 A PL 313942 A ZA 9408086 A	07-01-1999 04-05-1995 06-05-1997 20-04-1995 09-10-1996 11-09-1996 31-07-1996 15-04-1996 28-04-1997 12-04-1996 24-04-1997 05-08-1996 07-06-1995
US 5316935 A	31-05-1994	NONE	
US 5543302 A	06-08-1996	NONE	