DEEP LEARNING FOR COMPUTER VISION

Summer Seminar UPC TelecomBCN, 4 - 8 July 2016

Giró-i-Nieto

Salvador

Mohedano

McGuinness

Organizers

Day 3 Lecture 2

Rankings

+ info: TelecomBCN.DeepLearning.Barcelona

Content Based Image Retrieval

Given an image query, generate a rank of all similar images.

2

Classification

Query: This chair

Results from dataset classified as "chair"

Retrieval

Query: This chair

Similar images

Retrieval Pipeline

Retrieval Pipeline

INVERTED FILE					
INVERTED FILE					
word	Image ID				
1	1, 12,				
2	1, 30, 102				
3	10, 12				
4	2,3				
6	10				

Large vocabularies (50k-1M)

Very fast!

Typically used with SIFT features

CNN for retrieval

Classification

Object Detection

Segmentation

FC layers as global feature representation

Babenko, A., Slesarev, A., Chigorin, A., & Lempitsky, V. (2014). Neural codes for image retrieval. In *ECCV*Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. In *CVPRW*

sum/max pool conv features across filters

Babenko, A., & Lempitsky, V. (2015). <u>Aggregating local deep features for image retrieval</u>. ICCV Tolias, G., Sicre, R., & Jégou, H. (2015). <u>Particular object retrieval with integral max-pooling of CNN activations</u>. *arXiv preprint arXiv:1511.05879*. Kalantidis, Y., Mellina, C., & Osindero, S. (2015). Cross-dimensional Weighting for Aggregated Deep Convolutional Features. *arXiv preprint arXiv:1512.04065*.

Descriptors from convolutional layers

R-MAC: Regional Maximum Activation of Convolutions

BoW, VLAD encoding of conv features

Ng, J., Yang, F., & Davis, L. (2015). Exploiting local features from deep networks for image retrieval. In *CVPRW*Mohedano, E., Salvador A., McGuinnes K, Marques F, O'Connor N, Giro-i-Nieto X (2016). Bags of Local Convolutional Features for Scalable Instance Search. In ICMR

Descriptors from convolutional layers

Mohedano, E., Salvador A., McGuinnes K, Marques F, O'Connor N, Giro-i-Nieto X (2016). <u>Bags of Local Convolutional Features for Scalable Instance Search</u>. In ICMR

Descriptors from convolutional layers

		Oxford 5k	Paris 6k	INS 23k
BoW	GS LS	0.650 0.739	0.698 0.819	0.323 0.295
Sum pooling (as ours)	GS LS	$0.606 \\ 0.583$	$0.712 \\ 0.742$	$0.156 \\ 0.097$
Sum pooling (as in [7])	GS LS	$0.672 \\ 0.683$	$0.774 \\ 0.763$	0.139 0.120

TRECVID Instance Search 2013

(subset of 23k frames)

[7] Kalantidis, Y., Mellina, C., & Osindero, S. (2015). Crossdimensional Weighting for Aggregated Deep Convolutional Features. arXiv preprint arXiv:1512.04065.

Mohedano, E., Salvador A., McGuinnes K, Margues F, O'Connor N, Giro-i-Nieto X (2016). Bags of Local Convolutional Features for 15 Scalable Instance Search, In ICMR

CNN representations

- I2 Normalization + PCA whitening + I2 Normalization
- Cosine similarity
- Convolutional features better than fully connected features
- Convolutional features keep spatial information → Retrieval+object location
- Convolutional layers allows custom input size.
- If data labels available, fine tuning the network to the image domain improves CNN representations.

Siamese Network: Network to learn a function that maps input patterns into a target space such that I2-norm in the target space approximates the semantic distance in the input space.

Applied in:

Dimensionality reduction[1]

Face verification[2]

Learning local image representations[3]

[1] Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: <u>Deep metric learning via lifted structured feature embedding</u>. In: CVPR. [2] S. Chopra, R. Hadsell and Y. LeCun, <u>Learning a similarity metric discriminatively, with application to face verification</u>. (CVPR'05)[3] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, and F. Moreno-Noguer. <u>Fracking deep convolutional image descriptors</u>. CoRR, abs/1412. 6537, 2014

Siamese Network: Network to learn a function that maps input patterns into a target space such that I2-norm in the target space approximates the semantic distance in the input space.

$$egin{aligned} l(\mathbf{x}_1,\mathbf{x}_2,\delta) &= \delta \cdot l_P(d_D(\mathbf{x}_1,\mathbf{x}_2)) + (1-\delta) \cdot l_N(d_D(\mathbf{x}_1,\mathbf{x}_2)) \ & \ l_P(d_D(\mathbf{x}_1,\mathbf{x}_2)) &= d_D(\mathbf{x}_1,\mathbf{x}_2) \ & \ l_N(d_D(\mathbf{x}_1,\mathbf{x}_2)) &= \max(0,m-d_D(\mathbf{x}_1,\mathbf{x}_2)) \end{aligned}$$

Siamese Network with Triplet Loss: Loss function minimizes distance between query and

positive and maximizes distance between query and negative

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2$$

Deep Image Retrieval: Learning global representations for image search, Gordo A. et al. Xerox Research Centre, 2016

- R-MAC representation
- Learning descriptors for retrieval using three channels siamese loss: Ranking objective

$$L(I_q, I^+, I^-) = \max(0, m + q^T d^- - q^T d^+)$$

- Learning where to pool within an image: predicting object locations
- Local features (from predicted ROI) pooled into a more discriminative space (learned fc)
- Building and cleaning a dataset to generate triplets

Deep Image Retrieval: Learning global representations for image search,

Gordo A. et al. Xerox Research Centre, 2016

Dataset: Landmarks dataset:

- 214K images of 672 famous landmark site.
- Dataset processing based on a matching baseline: SIFT + Hessian-Affine keypoint detector.
- Important to select the "useful" triplets.

Deep Image Retrieval: Learning global representations for image search,

Gordo A. et al. Xerox Research Centre, 2016

7		R-MAC		Learned R-MAC		
Dataset	PCA	[14]	Reimp.	C-Full	C-Clean	R-Clean
Oxford 5k	PCA Paris PCA Landmarks	66.9	$66.1 \\ 64.7$	75.3	- 75.9	78.6
Paris 6k	PCA Oxford PCA Landmarks	83.0	$82.5 \\ 81.6$	82.2	83.7	84.5

Comparison between training for Classification (C) of training for Rankings (R)

Deep Image Retrieval: Learning global representations for image search,

Gordo A. et al. Xerox Research Centre, 2016

			3				
	Method	Dim.	Oxf5k	Par6k	Oxf105k	Par106k	Holidays
	Jégou & Zisserman [54]	1024	56.0	-	50.2	-	72.0
	Jégou & Zisserman [54]	128	43.3	-	35.3	-	61.7
	Gordo et al. [55]	512	-	-	-	-	79.0
descriptors	Babenko et al. [17]	128	55.7	-	52.3	-	78.9*
	Gong et al. [15]	2048	-	-	-	-	80.8
	Razavian et al. [56]	256	53.3	67.0	48.9	-	74.2*
	Babenko & Lempitsky[12]	256	53.1	-	50.1	-	80.2
ğ	Ng et al. [57]	128	59.3*	59.0*	-	-	83.6
al	Paulin et al. [32]	256K	56.5	-	-	-	79.3
Global	Perronnin & Larlus [31]	4000	-	-	-	-	84.7
5	Tolias et al. [14]	512	66.9	83.0	61.6	75.7	84.6
	Kalantidis et al. [13]	512	68.2	79.7	63.3	71.0	84.9
	Previous state of the art	t	68.2 [13]	83.0 [14]	63.3 [13]	75.7 [14]	84.9 [13]
	Ours	512	81.3	85.5	76.8	78.5	86.0

Summary

Pre-trained CNN are useful to generate image descriptors for retrieval

Convolutional layers allow us to encode local information

Knowing how to rank similarity is the primary task in retrieval

Designing CNN architectures to learn how to rank