In [2]: ▶

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
```

In [7]:

df=pd.read_csv(r"C:\Users\G S R KARTHIK\Downloads\bottle.csv\bottle.csv",low_memory=Fal
df

Out[7]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426

Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Sainty O2ml_L **STheta** 20-1611SR-093.4 MX-310-864862 34404 864863 15 17.533 33.3880 5.774 24.15297 026.4 2239-09340264-In [8]: H 0015A-3 df=df[['Salnty','T_degC']] 864863400Ws= { 754columnsp |] In [10]: H df.head(10) Out[10]: Sal Temp **0** 33.440 10.50 **1** 33.440 10.46 2 33.437 10.46 **3** 33.420 10.45 **4** 33.421 10.45 **5** 33.431 10.45 **6** 33.440 10.45 **7** 33.424 10.24

In [11]:

9 33.494

8 33.420 10.06

9.86

M

df.tail()

Out[11]:

	Sal	Temp
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

In [12]: ▶

sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x2662f94cca0>

In [13]:

df.describe()

Out[13]:

	Sal	Temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

```
In [14]:
                                                                                        H
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 864863 entries, 0 to 864862
Data columns (total 2 columns):
     Column Non-Null Count
                              Dtype
     Sal
             817509 non-null float64
0
             853900 non-null float64
1
     Temp
dtypes: float64(2)
memory usage: 13.2 MB
In [15]:
                                                                                        H
df.fillna(method='ffill',inplace=True)
```

C:\Users\G S R KARTHIK\AppData\Local\Temp\ipykernel_8548\4116506308.py:1:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

In [16]: ▶

```
df.fillna(method='ffill',inplace=True)
x=np.array(df['Sal']).reshape(-1,1)
y=np.array(df['Temp']).reshape(-1,1)
df.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression: ",regr.score(x_test,y_test))
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```

C:\Users\G S R KARTHIK\AppData\Local\Temp\ipykernel_8548\228254547.py:1:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

C:\Users\G S R KARTHIK\AppData\Local\Temp\ipykernel_8548\228254547.py:4:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

Regression: 0.2054641425102084

```
H
dBOdropna(inplace=True)
C:\tJsers\G S R KARTHIK\AppData\Local\Temp\ipykernel_8548
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
                                                            .org/pandas-doc
See the caveats in the documentation:
s/stable/user_guide/inde
                                                             copy (https://
pandas.pydata.org/pandas-docs
view-versus-a-copy)
 df.dropna(inplace=True)
x_train,x_test,y_train,y_test=train
regr=LinearRegression()
reg@:fit(x_train,y_train)
print(regr.score(x_test,y_test))
                               32
                                             34
                                                           36
0.205487609959612
In [19]:
y_pred=regr.predict(x_test)
```


plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')

plt.show()

Out[29]:

<seaborn.axisgrid.FacetGrid at 0x2665f443910>


```
In [30]: ▶
```

```
df.fillna(method='ffill',inplace=True)
x=np.array(df['Sal']).reshape(-1,1)
y=np.array(df['Temp']).reshape(-1,1)
df.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression: ",regr.score(x_test,y_test))
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```

Regression: 0.8421580160837481


```
In [31]:

from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("r2 score:",r2)
```

r2 score: 0.8421580160837481

H In [33]: #elasticnet from sklearn.linear_model import ElasticNet regr=ElasticNet() regr.fit(x,y) print(regr.coef_) print(regr.intercept_) y_pred_elastic=regr.predict(x_train) mean_squared_error=np.mean((y_pred_elastic-y_train)**2) print("Mean Squared Error on test set", mean_squared_error) [-1.23013343] [49.21076752] Mean Squared Error on test set 8.82198837040491 In []: H