ECON 139: Intermediate Financial Economics

Lecture 27 (last lecture) Scribe Notes

Yuqian Yu, Gina Wang, Jialin Dai, Tianyao Deng

Model of stock price movements: $dS = \mu S dt + \sigma S dz$ where

$$dz = \tilde{\varepsilon}(t)\sqrt{dt}, \tilde{\varepsilon}(t) \sim N(0,1)$$

By Ito's Lemma, a function G of S and t follows

$$dG = \left(\frac{\partial G}{\partial S}\mu S + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial S^2}\sigma^2 S^2\right)dt + \frac{\partial G}{\partial S}\sigma Sdz$$

Forward price: $F_t = S_t e^{r(T-t)}$, where $t \in [0, T]$

To apply Ito's Lemma:

$$\frac{\partial F}{\partial S} = e^{r(T-t)}$$
, $\frac{\partial^2 F}{\partial S^2} = 0$, $\frac{\partial F}{\partial t} = -rS_t e^{r(T-t)}$

$$dF = (e^{r(T-t)}\mu S - rSe^{r(T-t)})dt + e^{r(T-t)}\sigma Sdz$$

Since $S = e^{-r(T-t)}F$

We get:

$$\begin{split} dF &= \left(e^{r(T-t)}\mu e^{-r(T-t)}F - re^{-r(T-t)}Fe^{r(T-t)}\right)dt + e^{r(T-t)}\sigma e^{-r(T-t)}Fdz \\ &= (\mu F - rF)dt + \sigma Fdz \\ &= (\mu - r)Fdt + \sigma Fdz \end{split}$$

Example: logarithm of stock price

$$G = lnS$$

We know that
$$\frac{\partial G}{\partial S} = \frac{1}{S}$$
, $\frac{\partial^2 G}{\partial S^2} = -\frac{1}{S^2}$, $\frac{\partial G}{\partial t} = 0$

$$dG = \left(\frac{1}{S}\mu S - \frac{1}{2}\frac{1}{S^2}\sigma^2 S^2\right)dt + \frac{1}{S}\sigma Sdz$$
$$= \left(\mu - \frac{1}{2}\sigma^2\right)dt + \sigma dz$$

• Implies that change in G between time 0 and time T

$$\sim N \; (\; (\mu - \frac{\sigma^2}{2}) *T, \, \sigma^2 \, T)$$

at time =
$$0$$
, $G = \ln S$

at time =
$$T$$
, $G = ln St$

ln St- ln So ~ N
$$(\mu - \frac{\sigma^2}{2})T$$
, $\sigma^2 T$)

The log normal price distribution will be $\ln St \sim N \left(\ln So + (\mu - \frac{\sigma^2}{2})T, \sigma^2 T\right)$

• Distribution of CTS compounded return of stock

$$St = So * e^{\eta T}$$

$$\ln \operatorname{St} - \ln \operatorname{So} = \ln \left(\frac{\operatorname{St}}{\operatorname{So}} \right) = \ln \left(\frac{\operatorname{So} e^{\eta T}}{\operatorname{So}} \right) = e^{\eta T}$$

The expected return over some time T is $\eta T \sim N \left((\mu - \frac{\sigma^2}{2}) *T, \sigma^2 T \right)$

The rate of return is all normally distributed as $\eta \sim N \ (\mu - \frac{\sigma^2}{2}, \frac{\sigma^2}{T})$

• Supposed we have the following:

Case 1: Annual returns: Assume $\mu = 0.15$

	Year 1	Year 2	Year 3	Year 4	Year 5
R (%)	0.15	0.05	0.2	0.1	0.25
After a	1.15	1.05	1.2	1.1	1.25
year					
Five	2.01				
Years					

Total after five years is 1.15+1.05+1.2+1.1+1.25 = 1.99 compared to 2.01, the difference is due to volatility correction.

Case 2:

Annual returns:

Assume $\mu = 0.15$

	Year 1	Year 2	Year 3	Year 4	Year 5
R (%)	0.15	0.35	-0.05	0.05	0.25
After a	1.15	1.35	0.95	1.05	1.25
year					
Five Years	2.01				

Total after five years is 1.15+1.35+0.95+1.05+1.25 = 1.94 compared to 2.01, the difference is due to volatility correction.

Black-Scholes differential equation

$$\frac{\partial f}{\partial t} + rS\frac{\partial f}{\partial S} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2 = rf$$

Assumptions:

- 1. Stock follows $dS = \mu S dt + \sigma S dz$
- 2. Short-selling permitted
- 3. No transaction costs or taxes
- 4. No dividends
- 5. No arbitrage opportunities
- 6. Security trading continuous
- 7. Risk-free rate constant and same for all maturities

$$dS = \mu S dt + \sigma S dz$$
$$df = \left(\frac{\partial f}{\partial S} \mu S + \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2\right)$$

Consider a portfolio that short 1 share of derivative and long $\frac{\partial f}{\partial S}$ share of stock, and let V be the value of this portfolio.

$$\begin{split} V &= \frac{\partial f}{\partial S}S - f \\ dV &= \frac{\partial f}{\partial S}dS - df \\ &= \frac{\partial f}{\partial S}\mu S dt + \frac{\partial f}{\partial S}\sigma S dz - \frac{\partial f}{\partial S}\mu S dt - \frac{\partial f}{\partial t}dt - \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2 dt - \frac{\partial f}{\partial S}\sigma S dz \\ &= -\left(\frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2\right) dt \end{split}$$

$$\frac{dV}{V} = rdt$$
$$dV = rVdt$$

$$rV dt = -\left(\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2\right) dt$$

$$V = \frac{\partial f}{\partial S} \cdot S - f$$

$$r\left(\frac{\partial f}{\partial S} \cdot S - f\right) = -\left(\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2\right)$$

$$\frac{\partial f}{\partial S} \cdot r S + \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2 = r f$$

European call: $f = max (S_T - K, 0)$ when t = TEuropean put: $f = max (K - S_T, 0)$ when t = T

• Example: forward contract

$$f_{t} = S_{t} - K e^{-r(T-t)} \qquad t \in [0, T]$$

$$\frac{\partial f}{\partial t} = -r K e^{-r(T-t)}$$

$$\frac{\partial f}{\partial S} = 1$$

$$\frac{\partial^{2} f}{\partial S^{2}} = 0$$

$$r S - r K e^{-r(T-t)} = r f$$

$$r S - r K e^{-r(T-t)} = r S - r K e^{-r(T-t)}$$