2017 年度化学 C 中間試験 (計算問題は有効数字 3 桁で答えよ。)

1. 電気陰性度の意味、および下記の式の各記号の意味を示せ。

$$\chi_{AR} = 0.744 + \frac{3590 Z}{r^2}$$
 $\chi_{M} = \frac{1}{2} (I + E_a)$

2. 解答用紙の図のカッコ内に適切な語句を記入し、さらに、下記の物質からアーオ内にあてはまるものを選べ。

Li Li₂O LiC Ge Ga O₂ Cl₂ NF₃ MgO GaN MgF₂ CF₄

- 3. Pt 結晶は面心立方格子で、密度は 21.45 g/cm³ である。格子定数と最近接原子間の距離を求めよ。
- 4. 7つの結晶系の名称を記入し、各辺の長さ、角度の大きさの組み合わせを以下のア〜ウ、A〜Hから選べ。

辺の	長さ	角度					
7	a=b=c	A	$\alpha = \beta = \gamma = 90^{\circ}$				
1	$a=b \neq c$		$\alpha = \beta = 90^{\circ} \ \gamma \neq 90^{\circ}$				
ウ	$a \neq b \neq c$		$\alpha = 90^{\circ} \beta = \gamma \neq 90^{\circ}$				
		D	$\alpha = \beta = \gamma \neq 90^{\circ}$				
		E	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$				
		F	$\alpha = 120^{\circ} \ \beta = \gamma = 90^{\circ}$				
	25 20 TEST	G	$\alpha = \beta = 120^{\circ} \ \gamma = 90^{\circ}$				
		H	$\alpha = \beta = \gamma = 120^{\circ}$				

5. 以下の()に適切な語句を埋めよ。

結晶中の原子の配列は7つの結晶系と (ア)種類の複合格子の組み合わせであらわされる。 このうち、重複するものを除いた (イ)種類をブラベ格子と呼ぶ。

- 6. ミラー指数 (222) および (002) の面を図に示しなさい。
- 7. ブラッグの式を示せ。ただし、記号の意味も記述すること。
- 8. CsCl 結晶における Cs-Cl イオン間距離は 356 pm である。(100)面からの 1 次および 2 次の回折角度を求めよ。ただし、 測定に用いられる X 線の波長は 154 pm とする。
- 9. 以下の表は、陽イオンと陰イオンの半径比をもとに、配位数、形、結晶構造をまとめたものである。空欄に当てはまる数値、語句を示せ。数値は有効数字 2 ケタで記すこと。

r_c/r_a	ア以上	7以上	ウ以上
工	4	6	8
形	正四面体	正八面体	才
結晶構造(AB型)	ZnS 型	力	+
結晶構造(AB2型)	SiO2型	7	ケ

- 10. Rb と Brのしゃへい定数およびイオン半径比を求めよ。また、RbBrの結晶構造を推定せよ。
- 11. HI のイオン間距離を $169 \,\mathrm{pm}$ として双極子モーメントを計算せよ。また、HI のイオン性が 0.05 であると仮定して、測定される双極子モーメントの値を推定せよ。($1\,\mathrm{D}=3.336\,\times\,10^{-30}\,$ C·m、電子の電荷量 $\mathrm{e}=1.602\,\times\,10^{-19}\,$ C)
- 12. 狭義のファンデルワールス力について説明せよ。その際、距離と力との関係性も示せ。
- 13. 下図のp型半導体のバンド図を参考にして、真性半導体とn型半導体のバンド構造を図示せよ。また、カッコ内に適切な語句を入れよ。

pn 接合を形成すると(ア)作用が見られる。この構造は、(イ)や(ウ)などの機能デバイスに応用されている。

- 14. ダイヤモンドおよびグラファイトはどちらも炭素からなる結晶である。これらを比較してどちらの電気伝導性が高いかを述べ、その理由を説明せよ。
- 15. ヘキサクロロ白金(IV)は (ア)配位の (イ) 構造の錯体である。

この錯体の化学式を示し、カッコ内に適切な語句を入れよ。

(イ) 構造における配位場による d 電子のエネルギーの分裂を図示せよ。

中心金属の電子数が以下の場合結晶場安定化エネルギー CFSE および不対電子数を示せ。

- $(1)d^2$
- ②強い場におけるd5
- ③弱い場における d6
- (4)d10

M	元素の周期表2012年版																	
A	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	* # 1.00784~ 1.00811																	² He
2	3 Li 7774 8.938~ 6.997	4 Be 4000A 9,012182		源子集4 元素4		元素記	· par						5 B **7.8 10.800~ 10.821	6 C # # 12,0096~ 12,0116	7 N # # 14,00645~ 14,00726	8 O M X 15.99903~ 15.99977	9 F 798 18.9984032	10 Ne *4> 20,1797
3	11 Na + 1- 1/9 A 22 980 76026	12 Mg 27.5050 24.3050			LINE					195.0	84		13 Al 7A 2 27 A 26 9815386	14 Si 74 # 28.084~ 28.086	15 P 7 2 30.973762	16 S 16 S 18 R 32.069~ 32.076	17 CI 18 8 35.446~ 35.457	18 Ar 7ASS 30 948
4	19 K 5074 39,0983	20 Ca 312454 40.078	21 Sc 252224 44,955912	1 77	23 V	24 Cr 204 51,0001	25 Mn マンガン 54,038045	26 Fe 8 55.845	27 Co 3/04 h 58,933186	28 Ni =97h 50,6934	29 Cu #	30 Zn	31 Ga 31/04 82.723	32 Ge 4747=34 72.63(1)	33 As E # 74.92160	34 Se #100 78.96	35 Br * * 79.904	38 Kr グリプトン 83.798
5	85.4578	38 Sr 21-02-924 87.62	39 Y	40 Zr 90.00000 91.224	41 Nb =#7 92.90638	42 Mo #117#> 96.96	43 Tc* +7*+74.	44 Ru 55-554 101.07	45 Rh	48 Pd 19994 106.42	47 Ag	48 Cd 5 F 2 2 4	49 In インジウム 114,818	50 Sn 2 X 118.710	51 Sb 72742 121.760	52 Te 7/4/4 127.60	53 37A 125,9047	54 Xe 44/2 131,293
3	55 Cs ±574 132,8054519	56 Ba 50/94 137,327	57~71 323/4F	117-74	73 Ta 9292 180,94788	CONSTRUCTION	75 Re	76 OS #X894 19023	77 Ir 49904 192,217	78 Pt	79 Au ±	80 Hg * # 200.58	9171 91724 204.382~ 204.385	82 Pb 81 207.2	83 Bi* 2242 208.98040	84 Po*	85 At* 72.972 (210)	86 Rn*
	87 Fr* フランシウム (223)	88 Ra* 9994 (228)	89~103 797/4F	104 Rf* 9940-994 (267)	105 Db* F7=9A (268)	106Sg* 5-#-474 (271)	107Bh* #-994 (272)	108Hs*	109 Mt" 74 14-1724 (276)	110 Ds* #-119+71 (281)	111 Rg*			Maria Charles				118 Uno 22/22/27/2 2294)

			59 Pr												
	ランタン	4004	プラセオジム	4454	プロメチウム	みるハネア	コクロピウム	ガドリニウム	テルピウム	ジスプロシウム	オルミウム	エルピウム	2924	イッテルビウム	ルチサウム
229748	138.90547	140.116	プラセオジム 140.90760	144,242	(145)	150.36	151.964	157.25	156.92535	162.500	164.93032	187.259	166.93421	173 054	174.9558
89~103	89 Ac*	™Th*	91 Pa'	82 U.	83 Np*	94 Pu*	95 Am*	[∞] Cm [*]	97 BK*	98 Cf*	99 Es*	100 Fm*	101 Md*	102 No*	103 Lr
777/48	704-704	LUMB	201799225	ウラン	*プリニウム	プルトニウム	アメリンウム	41994	パーラリウム	Transfer	740034000	フェルミウム	*245-607	ノーペリウム (250)	ローレアハム

注1:元素記号の右層の*はその元素には安定同位体が存在しないことを示す。そのような元素については放射性同位体の質量数の一例を ()内に示した。ただし、RLTR Pa, UICついては天然で特定の同位体組成を示すので原子量が与えられる。 注2:この周期表には最新の原子量「原子量表(2012)」が示されている。原子量は単一の数値あるいは変動範囲で示されている。原子量が範囲で示されている10元素には複数の安定同位体が存在し、その組成が天然において大きく変動するため単一の数値で原子量が 与えられない。その他の74元素については、原子量の不確かさは示された数値の最後の析にある。

Н	47 D. B. S						U-
2.20							He 5.5
3.06							0.0
2.20							
Li	Be	В	C	N	0	F	Ne
0.98	1.57	2.04	2.55	3.04	3.44	3.98	110
1.28	1.99	1.83	2.67	3.08	3.22	4.43	4.60
0.97	1.47	2.01	2.50	3.07	3.50	4.10	5.10
Na	Mg	Al	Si	P	S	Cl	Ar
0.93	1.31	1.61	1.90	2.19	2.58	3.16	
1.21	1.63	1.37	2.03	2.39	2.65	3.54	3.36
1.01	1.23	1.47	1.74	2.00	2.44	2.83	3,30
K	Ca	Ga	Ge	As	Se	Br	Kr
0.82	1.00	1.81	2.01	2.18	2.55	2.96	3.0
1.03	1.30	1.34	1.95	2.26	2.51	3.24	2.98
0.91	1.04	1.82	2.02	2.20	2.48	2.74 +	3.10
Rb	Sr	In	Sn	Sb	Te	I	Xe
0.82	0.95	1.78	1.96	2.05	2.10	2.66	2.6
0.99	1.21	1.30	1.83	2.06	2.34	2.88	2.59
0.89	0.99	1.49	1.72	1.82	2.01	2.21	2.40
			Pb	Bi			
Cs	Ba	TI		2.02			
0.79	0.89	2.04	2.33				
0.70	0.90	1.80	1.90	1.90			
0.86	0.97	1.44	1.55	1.67			