

Linear Programming II

Simplex method 効率よく実行可能領域の端点を辿る方法

総当たり法の欠点の克服

総当たり法の欠点

- ・ 端点の候補をすべて走査
- 実行可能でない交点は破棄

1回の走査の手間= 連立方程式を解く手間

結果的に無駄な計算

なんとかならない?

数理計画の巨人 George Dantzig

できます!

実行可能領域の端点だけを発見 ⇒シンプレックス法 (単体法, simplex method)

Koopmans Kantrovich Leontief

線形計画問題に対する歴史上初の実用的解法 >• 1947年 Dantzig

改良を重ね, 現在でも強力な解法

復習 基本解

標準形

max.
$$z=20x_1+30x_2$$

s.t. $x_1+2x_2+s_1=800$ ① $3x_1+4x_2+s_2=1800$ ② $3x_1+x_2+s_3=1500$ ③ $x_1, x_2, s_1, s_2, s_3 \ge 0$

変数:5つ,制約式:3本⇒独立変数:2つ

⇔2変数を0とする←残った3変数の連立方程式が解ける

非基底変数

基底変数

⇔端点の候補が得られる

基本解

例 すべての基本解

x1	x2	s1	s2	s3	端点?	目的関数値
0	0	800	1800	1500	0	0
0	400	0	200	1100	0	12000
0	450	-100	0	1100	×	
0	1500	-2200	-4200	0	×	
500	0	300	300	0	0	10000
800	0	0	-600	-900	×	
600	0	200	0	-300	×	
200	300	0	0	600	0	13000
440	180	0	-240	0	×	
366.7	100	133.3	0	0	0	12333

値を0に指定した変数=非基底変数

最適解 $(x_1,x_2)=(200,300)$, 最適值 13000

端点と基本解の関係

隣り合う端点の基本解には どんな関係がある?

隣り合う端点・隣り合う基本解

$$x_1 + 2x_2 + s_1 = 800$$
 ① $3x_1 + 4x_2 + s_2 = 1800$ ② $+s_3 = 1500$ ③

 x_1,s_1 を非基底変数に選んだ時の 連立方程式を示す行列(括弧省略)

基底変数	x1	x2	s1	s2	s3	
x2	1	(2)	1	0	0	800
s2	3	4	0	1	0	1800
s3	3	1	0	0	1	1500

ガウスの消去法

基底変数	x1	x2	s1	s2	s3	
x2	1/2	1	1/2	0	0	400
s2	1	0	-2	1	0	200
s3	5/2	0	-1/2	0	1	1100

端点が1つ見つかった!! (x_1,x_2) =(0,400)

隣の端点を 見つける方法

基底変数	x1	x2	s1	s2	s3	
x2	1/2	1	1/2	0	0	400
x1	1	0	-2	1	0	200
s3	5/2	0	-1/2	0	1	1100

ガウスの消去法

基底変数	x1	x2	s1	s2	s3	
x2	0	1	3/2	-1/2	0	300
x1	1	0	-2	1	0	200
s3	0	0	9/2	-5/2	1	600

隣の端点を見つけた $(x_1,x_2)=(200,300)$

演習1隣の端点を発見する

考えてみよう

2変数の線形計画問題 隣の端点は高々2つ

非効率

×隣の端点をすべて列挙

たくさん存在する隣の端点から 「より良い」隣の端点だけを 探す必要がある

シンプレックス法(単体法)

simplex method

大枠

Step1: 端点を1つ見つける

原点が端点なら すぐみつかる

Step2: 端点の最適性をチェック?→最適なら終了

Step3: 隣の端点を1つ見つける

繰り返

基底変数の組の変更 (掃き出し操作)で可能 目的関数値が大きい 隣の端点が存在 最適ではない

どうせなら 目的関数値が優れている 隣の端点を見つけよう

隣の端点を見つける度に より良い解が得られる

シンプレックス法の詳細は別プリントで

演習2

は原点から順に隣の端点を見つけていき最適 解を見つけている. どのような順で端点をたどっ たのか左の図を利用して示しなさい.

練習 生産計画

- 2つの液体製品P,Qは機械A,Bを用いて加工される
- 利益が最大になる1週間の製品P,Qの加工量は?

	液体P 1ml	液体Q 1ml	使用可能量
機械A	3(h)	1(h)	45(h/週)
機械B	1(h)	2(h)	40(h/週)
利益	6(万円)	5(万円)	

→ シンプレックス法で最適解と最適値を求めてみよう.

練習 解答例

*x*₁:液体Pの生産量

*x*₂:液体Qの生産量

max.
$$z=6x_1+5x_2$$

s.t. $3x_1+x_2 \le 45$
 $x_1+2x_2 \le 40$
定式化 $x_1, x_2 \ge 0$

標準形に変形し

IIIax. Z	
s.t. $3x_1 + x_2 + s_1$	=45
$x_1 + 2x_2$	$+s_2 = 40$
z -6 x_1 -5 x_2	=0
x_1, x_2, s_1	$s_2 \ge 0$

基底	Z	x_1	x_2	s_1	s_2	定数項	増加 限界
s_1	0	3	1	1	0	45	15
s_2	0	1	2	0	1	40	40
Z	1	-6	-5	0	0	0	
x_1	0	1	1/3	1/3	0	15	45
s_2	0	0	5/3	-1/3	1	25	10
Z	1	0	-3	2	0	90	
x_1	0	1	0	2/5	-1/5	10	
x_2	0	0	1	-1/5	3/5	15	
Z	1	0	0	7/5	9/5	135	

最適

最適解 $(x_1,x_2)=(10,15)$, 最適值 135

練習解答例シンプレックス法の動き

最適解 (10,15) 基底変数 x₁,x₂

目的関数増加方向

初期解 (0,0) 基底変数 s₁,s₂

> 実行可能解 (15,0)基底変数 x_1,s_2

実行中のトラブル

あれ?

シンプレックス法が 無限ループに・・・

対処法は?

退化に出会った

- 増加限界が0だ
- 目的関数値が増えない

• 初期解が見つからない

初期解を探そう

シンプレックス法を 開始できない・・・

探し方は?

準備 冗長な制約式の存在

max.
$$z=6x_1+5x_2$$

s.t. $3x_1+x_2 \le 45$
 $x_1+2x_2 \le 40$
 $3x_1-2x_2 \le 45$
 $x_1, x_2 \ge 0$

退化現象

max.
$$z=6x_1+5x_2$$

s.t. $3x_1+x_2 \le 45$
 $x_1+2x_2 \le 40$
 $3x_1-2x_2 \le 45$
 $x_1, x_2 \ge 0$

標準形に変形

max. z	
s.t. $3x_1 + x_2 + s_1$	=45
$x_1 + 2x_2 + s_2$	=40
$3x_1 - 2x_2 + $	$-s_3 = 45$
z -6 x_1 -5 x_2	= 0
$x_1, x_2, s_1, s_2,$	$s_3 \ge 0$

基底	Z	x_1	x_2	S ₁	S_2	S_3	定数項	増加 限界
s_1	0	3	1	1	0	0	45	15
S_2	0	1	2	0	1	0	40	40
S_3	0	3	-2	0	0	1	45	15
Z	1	-6	-5	0	0	0	0	
s_1	0	0	3	1	0	-1	0	0
s_2	0	0	8/3	0	1	-1/3	25	3/8
x_1	0	1	-2/3	0	0	1/3	15	-
Z	1	0	-9	0	0	2	90	
x_2	0	0	1	1/3	0	-1/3	0	-
s_2	0	0	0	-8/9	1	9/5	25	125/9
x_1	0	1	0	2/9	0	9/5	15	75/9
Z	1	0	0	3	0	-1	90	

基底変数の値が0⇔退化

変化無し

退化の悪戯

現実には発生 可能性は低い

実際に適用す

ると遅い

- 退化現象→巡回を起こす場合がある ⇒シンプレックス法が止まらない
- ・ 巡回の回避方法
 - 最小添字規則(Blandの選択規則) (準備)z以外の全変数に順番をつける (規則)自由度のあるとき順番に沿って選択

※ 退化は冗長な不等式がある場合だけに起きるわけではない

退化しているが冗長ではない例

初期解の見つけ方

- ・ 原点が端点の場合⇒原点を初期解
- 原点が端点でないときは?

見つける主な方法

- •2段階シンプレックス法
- •Big-M法(罰金法)

2段階シンプレックス法

初期解を見つけるアイディア

• 原点が端点の同等なLPを作ってしまう

原点が端点でない例

max.
$$z = -6x_1 + 6x_2$$

s.t. $2x_1 + 3x_2 \le 6$
 $-5x_1 + 9x_2 = 15$
 $-6x_1 + 3x_2 \ge 3$
 $x_1, x_2 \ge 0$

標準形

max.
$$z = -6x_1 + 6x_2$$

s.t. $2x_1 + 3x_2 + s_1 = 6$
 $-5x_1 + 9x_2 = 15$
 $-6x_1 + 3x_2 - s_3 = 3$
 $x_1, x_2, s_1, s_3 \ge 0$

人工変数の導入

原点を端点に持つ LPの生成

原問題に可能解有

max. z =

$$-t_1 - t_2$$

$$2x_1 + 3x_2 + s_1 = 6$$

$$-5x_1 + 9x_2$$

$$+t_2 = 15$$

$$-6x_1$$

$$-6x_1 + 3x_2$$
 $-s_3 + t_3 = 3$

$$x_1, x_2, s_1, s_3 \ge 0$$

人工問題の最適値は0

人工問題(1段階目)で 原問題の可能解を得る

原問題(2段階目)を解く

人工問題

詳しい解き方は別紙のプリントで

線形計画問題の計算量

• (巡回回避版)シンプレックス法:有限終了

Pかは 未解決

- 指数時間を要す問題例有⇔多項式時間解法でない!
- 実際には、高速に解を求める
- 線形計画問題はクラスP?
 - (答)YES!

非実用的

- 1979年 Khachiyan 楕円体法
- 1984年 Karmarkar 内点法

現在の 双璧

LPは組合せ最適化問題?

- LPの最適解を求める
 - ⇔最適な基底変数の組を見つける
 - ⇔組合せの問題=組合せ最適化問題

シンプレックス法の進化

改訂シンプレックス法 revised simplex method

- 計算速度の高速化
- メモリー節約
- 反復による計算誤差回避

他にも、双対シンプレックス法等様々存在

線形計画問題に対する解法の進化が 数理計画全体に影響を与え続けている

まとめ

線形計画問題はシンプレックス法で解ける

このあとは

シンプレックス法で得た最適解は 様々なおいしい情報も提供してくれる

線形計画問題の感度分析