Trigonometric Identities

 $\sin 0 = \cos \frac{\pi}{2} = \tan 0 = 0$ $\sin^2 \theta + \cos^2 \theta = 1$ $\sin\frac{\pi}{2} = \cos 0 = \tan\frac{\pi}{4} = 1$ $1 + \tan^2 \theta = \sec^2 \theta$ $\sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$ $1 + \cot^2 \theta = \csc^2 \theta$

 $\sin 2\theta = 2\sin\theta\cos\theta$

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$ $sin(A \pm B) = sin A cos B \pm sin B cos A$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

 $\sin P + \sin Q = 2\sin\frac{1}{2}(P+Q)\cos\frac{1}{2}(P-Q)$ $\sin P - \sin Q = 2 \cos \frac{1}{2} (P + Q) \sin \frac{1}{2} (P - Q)$ $\cos P + \cos Q = 2 \cos \frac{1}{2} (P + Q) \cos \frac{1}{2} (P - Q)$ $\cos P - \cos Q = -2\sin\frac{1}{2}(P+Q)\sin\frac{1}{2}(P-Q)$

Functions and Limits

Continuous: $\lim_{x \to a} f(x) = f(a)$ continuous at point a. Continuous at every point $\rightarrow f$ is continuous.

Operations on Functions

 $(f \pm g)(x) = f(x) \pm g(x) \qquad (fg)(x) = f(x)g(x)$

 $a^2 = b^2 + c^2 - 2bc \cos \theta$

 $(f \circ g)(x) = f(g(x))$

Rules of Limits For $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = L'$: $\lim_{x \to a} (f \pm g)(x) = L \pm L'$ $\lim_{x \to a} (fg)(x) = LL'$ $\lim_{x \to a} \frac{f}{g}(x) = \frac{L}{L'}, L' \neq 0 \qquad \qquad \lim_{x \to a} kf(x) = kL$

Differentiation

Derivative of f at point a (provided limit exists):

berivative of
$$f$$
 at point a (provided limit exists):

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \frac{dy}{dx}\Big|_{x=0}$$

Rules of Differentiation

Linearity: (kf)'(x) = kf'(x) $(f \pm g)'(x) = f'(x) \pm g'(x)$

Product: (fg)'(x) = f'(x)g(x) + f(x)g'(x) $(f \circ g)'(x) = f'(g(x))g'(x) \equiv (f' \circ g)(x)g'(x)$

 $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$

Parametric Differentiation: x = v(t), y = u(t)

$$\frac{dy}{dx} = \frac{u'(t)}{v'(t)}$$

Implicit Differentiation:

Differentiate both sides w.r.t. x, solve for $\frac{dy}{dx}$. Second Order Derivative/Higher Order Derivative:

$$\frac{d^2y}{d^2y} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$

 $f^{(n)} = \frac{d^n y}{dx^n}$

Trigonometric, Exponential, Logarithmic and Inverse **Trigonometric Derivatives**

 $\frac{d}{dx}(\cot x) = -\csc^2 x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$

 $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$ $\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$

 $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$ $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}$

 $\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2} \quad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x^2-1}}$

 $\frac{a}{dx}(\sin x) = \cos x \qquad \qquad \frac{a}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\tan x) = \sec^2 x$ $\frac{d}{dx}(\sec x) = \sec x \tan x$

 $\frac{d}{dx}e^x = e^x \qquad \qquad \frac{d}{dx}\ln x = \frac{1}{x}$

Maxima and Minima

Finding Extreme Values:

Finding Local Extremes:

f(c) is a **local maximum**.

f(c) is a **local minimum**.

(Second Derivative Test)

Finding Absolute Extremes:

(First Derivative Test)

Critical Point:

 $\frac{d}{dx}a^x = a^x \ln a \qquad \qquad \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$

f(c) is **local maximum** if $f(c) \ge f(x)$ for x near c.

f(c) is **local minimum** if $f(c) \le f(x)$ for x near c.

f(c) is absolute maximum if $f(c) \ge f(x) \ \forall x \in D$.

f(c) is absolute minimum if $f(c) \le f(x) \ \forall x \in D$.

For **critical point** of function f, $c \in (a, b)$:

Interior point of domain where f' = 0 or does not exist.

Extreme values of f at **critical points** and end-points of D.

If f'(x) > 0 for $x \in (a, c) \& f'(x) < 0$ for $x \in (c, b)$, then

If f'(x) < 0 for $x \in (a, c) \& f'(x) > 0$ for $x \in (c, b)$, then

If f'(c) = 0 & f''(c) < 0, then f(c) is a **local maximum**.

If f'(c) = 0 & f''(c) > 0, then f(c) is a **local minimum**.

Evaluate f(c) for all interior **critical points** & **end points** of

maximum and absolute minimum respectively.

For any two points x_1 and x_2 ($x_2 > x_1$) in interval I:

Increasing and Decreasing Functions:

domain. Largest and smallest of these values will be absolute

L'Hôpital's rule

f and g are continuous (differentiable) at x = a (f' and g'exists), f(a) = g(a) = 0 and $g'(x) \neq 0$ except at x = a. $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
 Use for $\frac{0}{0}$ and $\frac{\infty}{\infty}$ forms.

Convert $0 \cdot \infty$, $\infty - \infty$ using algebra manipulation. Convert 1^{∞} , ∞^{0} , 0^{0} using ln.

Integration

$$\int f(x) dx = F(x) + C$$
Gradient of all curves $y = F(x) + C$ at x is $f(x)$

Rules of Integration

Rules of Integration
$$\int kf(x) dx = k \int f(x) dx$$

$$\int -f(x) dx = - \int f(x) dx$$

$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

Trigonometric, Exponential, Logarithmic and Inverse

Trigonometric Integrals

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

$$\int \sin kx \, dx = -\frac{\cos kx}{k} + C$$

$$\int \cos kx \, dx = \frac{\sin kx}{k} + C$$

$$\int \tan x \, dx = \ln|\sec x| + C$$

 $\csc x \, dx = \ln|\csc x - \cot x| + C$

 $\sec x \, dx = \ln|\sec x + \tan x| + C$

 $\cot x \, dx = \ln|\sin x| + C$ $\sec x \tan x \, dx = \sec x + C$

 $\csc x \cot x \, dx = \csc x + C$

 $\tan^2 x \, dx = \tan x - x + C$

 $\sec^2 x \, dx = \tan x + C$

 $\csc^2 x \, dx = -\cot x + C$

 $e^x dx = e^x + C$

 $\ln x \, dx = x \ln x - x + C$

 $\int a^x dx = \frac{a^x}{\ln a}$

 $\int \frac{1}{x} dx = \ln x + C$

 $\frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + C$

 $\frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$

If $f(x_2) > f(x_1)$ or $\forall x$ on I, f'(x) > 0, f is increasing on I. If $f(x_2) < f(x_1)$ or $\forall x$ on I, f'(x) < 0, f is **decreasing** on I.

Concavity:

y = f(x) concaves down on any interval where y'' < 0. y = f(x) concaves up on any interval where y'' > 0.

Points of Inflection:

c is point of inflection if f is continuous at c and concavity of f changes at c.

Riemann (Definite) Integrals Area under a curve f on interval [a, b]:

$$\int_a^b f(x) \ dx = \lim_{n \to \infty} \sum_{k=1}^n f(c_k) \triangle x$$
 Rules of Definite Integrals

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} [f(x) dx] = -\int_{b}^{a} f(x) dx$$

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$f(x) \ge g(x) \text{ on } [a, b] \to \int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$$

$$f(x) \ge 0 \text{ on } [a, b] \to \int_{a}^{b} f(x) dx \ge 0$$
Continuous f on interval joining a, b and c , then
$$\int_{a}^{b} f(x) dx + \int_{a}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

Fundamental Theorem of Calculus

If f is continuous on [a, b], then

$$F(x) = \int_{a}^{b} f(t) dt$$
ative at every point on $[a, b]$, a

has a derivative at every point on [a, b], and

$$\frac{d}{dx}F(x) = \frac{d}{dx}\int_{a}^{x}f(t)\ dt = f(x)$$
 If f is continuous on $[a,b]$ & F is any antiderivative of f on

[a,b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$\frac{d}{dx} \int_{0}^{x^{3}} \cos t \, dt = \frac{d}{dx^{3}} \int_{0}^{x^{3}} \cos t \, dt \cdot \frac{dx^{3}}{dx} = 3x^{2} \cdot \cos x^{3}$$

$$\frac{d}{dx} \int_{x^{2}}^{x^{3}} f(t) \, dt = \frac{d}{dx^{3}} \int_{a}^{x^{3}} f(t) \, dt \cdot \frac{dx^{3}}{dx} - \frac{d}{dx^{2}} \int_{a}^{x^{2}} f(t) \, dt \cdot \frac{dx^{2}}{dx}$$

Integration by Substitution Let u = g(x) and find du = g'(x) dx

$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

For $a^2 - u^2$, sub $u = a \sin \theta$, use $1 - \sin^2 \theta = \cos^2 \theta$ For $a^2 + u^2$, sub $u = a \tan \theta$, use $1 + \tan^2 \theta = \sec^2 \theta$ For $u^2 - a^2$, sub $u = a \sec \theta$, use $\sec^2 \theta - 1 = \tan^2 \theta$

Integration by Parts
$$\int uv' \ dx = uv - \int u'v \ dx$$

u: Logarithmic \rightarrow Inverse Trigo \rightarrow Algebraic \rightarrow Trigo \rightarrow Exponential

Area between Curves

$$A = \int_{a}^{b} (f_2(x) - f_1(x)) dx \qquad A = \int_{c}^{d} (g_2(y) - g_1(y)) dy$$

Volume of Solid

$$V = \int_a^b \pi[f(x)]^2 dx \qquad \qquad V = \int_c^d \pi[g(y)]^2 dy$$

Series

$$S_n = \frac{a(1-r^n)}{1-r} \qquad \qquad S_\infty = \frac{a}{1-r}, |r| < 1$$
 Rules of Series

$$\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n \qquad \sum ka_n = k \sum a_n$$
 Ratio Test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| =$$

Converges if $\rho < 1$, Diverges if $\rho > 1$, No Conclusion if $\rho = 1$

Convergence of Power Series

Geometric Series (ar^{n-1})

$$\sum_{n=0}^{\infty} c_n (x-a)^n \qquad \lim_{n \to \infty} \left| \frac{C_{n+1}}{C_n} \right| \left| \frac{(x-a)^{n+1}}{(x-a)^n} \right| \qquad C = \lim_{n \to \infty} \left| \frac{C_{n+1}}{C_n} \right|$$
1. $C = 0 < 1$, Converges $\forall x$, Radius of Convergence, $r = \infty$.

- 2. $C = \infty > 1$, Diverges $\forall x$ except at x = a, r = 0.
- 3. $C \neq 0$ or $C \neq \infty$, Converges for $C|x-a| < 1, r = \frac{1}{c}$

Differentiation and Integration of Power Series

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n \qquad a - h < x < a + h \qquad r = h$$

$$f'(x) = \sum_{n=1}^{\infty} n c_n (x - a)^{n-1} \qquad r = h$$

$$f''(x) = \sum_{n=2}^{\infty} n (n - 1) c_n (x - a)^{n-2} \qquad r = h$$

$$\int \sum_{n=0}^{\infty} c_n (x - a)^n dx = \sum_{n=0}^{\infty} c_n \frac{(x - a)^{n+1}}{n+1} \qquad r = h$$

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

Maclaurin Series (Taylor Series at x = 0)

Range: -1 < x < 1, Radius r = 1:

Range:
$$-1 < x < 1$$
, Radius $r = 1$:
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \qquad \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n \qquad \frac{1}{1-x^2} = \sum_{n=0}^{\infty} x^{2n}$$

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} \qquad \frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=2}^{\infty} n(n-1)x^{n-2}$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n} \qquad (1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n$$

$$\ln(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \cdots$$
 Gradient Vector
$$\frac{\nabla f(x,y,z) \cdot \mathbf{t}}{\nabla f(x,y,z) \cdot \mathbf{t}}$$
 fincreases most respectively.

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$

Taylor Polynomials

 n^{th} order Taylor Polynomial of f at x = a:

$$\sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 Best polynomial approximation of degree n .

Vectors

Dot Product

$$\mathbf{v_1} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, \ \mathbf{v_2} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \quad \mathbf{v_1} \cdot \mathbf{v_2} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

$$\mathbf{v_1} \cdot \mathbf{v_2} = \|\mathbf{v_1}\| \|\mathbf{v_2}\| \cos \theta, \ 0 \le \theta \le \pi$$
Properties of Dot Product

$$\begin{array}{c} \mathbf{v_1} \cdot \mathbf{v_1} = \|\mathbf{v_1}\|^2 \geq 0 & \mathbf{v_1} \cdot \mathbf{v_2} = \mathbf{v_2} \cdot \mathbf{v} \\ (\mathbf{v_1} + \mathbf{v_2}) \cdot \mathbf{v_3} = \mathbf{v_1} \cdot \mathbf{v_3} + \mathbf{v_2} \cdot \mathbf{v_3} \\ (c\mathbf{v_1}) \cdot \mathbf{v_2} = \mathbf{v_1} \cdot (c\mathbf{v_2}) = c(\mathbf{v_1} \cdot \mathbf{v_2}) \\ \end{array}$$
 Unit Vector

$$\frac{1}{\|\mathbf{w}\|}\mathbf{w} = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$$

Partial Differentiation

First Order Partial Derivatives

Differentiating f(x, y) w.r.t x at (a, b) (fix y as constant):

$$f_x(a,b) = \frac{\partial f}{\partial x}\Big|_{(a,b)}$$

Higher Order Partial Derivatives

$$f_{xx} = \frac{\partial^2 f}{\partial x^2}$$
 $f_{yy} = \frac{\partial^2 f}{\partial y^2}$ $f_{xy} = f_{yx} = \frac{\partial^2 f}{\partial y \partial x}$

For
$$w = f(x(s, t), y(s, t), z(s, t))$$
:
$$\frac{\partial w}{\partial s} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds} + \frac{\partial f}{\partial z} \frac{dz}{ds}$$

$$\frac{\partial w}{\partial t} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt}$$

Directional Derivative

Directional derivative of f at (x, y, z) in direction of unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$:

 $D_{u}f(x,y,z) = f_{x}(x,y,z) \cdot u_{1} + f_{y}(x,y,z) \cdot u_{2} + f_{z}(x,y,z) \cdot u_{3}$ Measures change in value of f, df, when we move a small distance, dt, from point (x, y, z) in the direction of vector **u**. $df = D_{ij} f(x, y, z) \cdot dt$

$$\nabla f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$$

 $\nabla f(x, y, z) \cdot \mathbf{u} = D_{ij} f(x, y, z) = ||\nabla f(x, y, z)|| \cos \theta$ fincreases most rapidly in direction $\nabla f(x, y, z)$. f decreases most rapidly in direction $-\nabla f(x, y, z)$. $D_{ij}f(x,y,z) > 0$ and largest when $\theta = 0$, $\cos \theta = 1$. $D_{\nu}f(x,y,z) < 0$ and smallest when $\theta = \pi$, $\cos \theta = -1$.

Maximum and Minimum Values

f(x,y) has **local maximum** at (a,b) if $f(x,y) \le f(a,b)$ for all points (x, y) near (a, b). f(a, b) is the **local maximum value**. f(x,y) has **local minimum** at (a,b) if $f(x,y) \ge f(a,b)$ for all points (x, y) near (a, b). f(a, b) is the **local minimum value**. f may have **local maximum** or **minimum** at (a, b) if $f_r(a, b)$ or $f_v(a,b)$ does not exist or if $f_x(a,b) = 0$ and $f_v(a,b) = 0$.

Second Derivative Test (Type of Critical Point)

Let
$$f_x(x, y) = 0$$
, $f_y(a, b) = 0$ to find $x = a$ and $y = b$.

$$D = f_{xx}(a, b) f_{yy}(a, b) - f_{xy}(a, b)^2$$

$$D > 0$$
 and $f_y(a, b) > 0$, $f_y(a, b) = 0$ and $f_y(a, b) > 0$.

- D > 0 and $f_{xx}(a, b) > 0$, f has **local minimum** at (a, b). D > 0 and $f_{rr}(a, b) < 0$, f has **local maximum** at (a, b).
- D < 0, f has **saddle point** at (a, b).
- D=0, no conclusion.

Ordinary Differential Equation

First Order Linear ODE

$$\pi = \begin{cases} 1. & \frac{dy}{dx} = \frac{M(x)}{N(y)} \to \int M(x) \, dx = \int N(y) \, dy \\ 0 & \text{if } x \in \mathcal{N} \end{cases}$$

2.
$$y' = f\left(\frac{y}{x}\right) \to v = \frac{y}{x}$$
, $y' = v + xv' \to v + xv' = f(v)$

$$\to \frac{1}{f(v) - v} dv = \frac{1}{x} dx \to \text{Solve for } v \to \text{Solve for } y$$

3. y' = f(ax + by + c), f is continuous and $b \neq 0$ \rightarrow Sub u = ax + by + c

$$4. y' + P(x)y = Q(x) \to R = e^{\int P dx} \to y = \frac{1}{R} \int RQ dx$$

5.
$$y' + Py = Qy^n \rightarrow z = y^{1-n} \rightarrow z' + (1-n)Pz = Q(1-n)$$

Radioactive decay: $\frac{dx}{dt} = kx, x = x_0 e^{kt}, k = -\frac{ln2}{t}$

Uranium-Thorium:
$$\frac{T}{U} = \frac{k_U}{k_T - k_H} \left(1 - e^{-(k_T - k_U)t} \right), k_N = \frac{\ln 2}{t_1}$$

Temperature: $\int \frac{dT}{T-T_E} = \int k \, dt$, $T(t) - T_E = (T_0 - T_E)e^{kt}$ Descend (Air Resistance): $m \frac{dv}{dt} = mg - bv^2$

Terminal Velocity
$$k=\sqrt{\frac{mg}{b}}$$
, $A=\frac{v_0-k}{v_0+k'}$, $v=k\frac{1+Ae^{-Bt}}{1-Ae^{-Bt}}$, $B=\frac{2kb}{m}$

Second Order Linear ODE

$$y'' + p(x)y' + q(x)y = F(x)$$
, homogeneous if $F(x) = 0$

General Solution of Homogeneous 2nd Order ODE y'' + Ay' + By = 0, A, B are constants

Linearly independent if $y_1 \neq ky_2$ for all constants k. General Solution: $y = c_1y_1 + c_2y_2$, y_1 , y_2 are linearly independent.

 $y = e^{\lambda x}$ is a solution if λ is a solution of $\lambda^2 + A\lambda + B = 0$: 1. 2 Distinct Real Roots $(e^{\lambda_1 x}, e^{\lambda_2 x})$: $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$

2. 1 Real Root (Double Root λ):

 $y = c_1 e^{\lambda x} + c_2 x e^{\lambda x}$ ($e^{\lambda x}$, $x e^{\lambda x}$ are linearly independent)

3. 2 Complex Roots $(\alpha \pm \beta i)$: $y = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$

Mathematical Modelling

Malthus Model (B = Birth Rate, D = Death Rate)

$$N(t) = N_0 e^{kt}$$
, $k = B - D$ (Constant)

- 1. k > 0 (B > D): Explosion $(t \to \infty, e^{kt} \to \infty, N(t) \to \infty)$
- 2. k = 0 (B = D): Stable ($\forall t, N(t) = N_0$)
- 3. k < 0 (B < D): Extinction ($t \rightarrow \infty$, $e^{kt} \rightarrow 0$, $N(t) \rightarrow 0$)

Logistic Model (B constant, D = SN, S constant)

$$\frac{dN}{dt} = BN - DN = BN - SN^2$$

Equilibrium Solutions: $\frac{dN}{dt} = 0$, N = 0, $N = \frac{B}{c}$ (Carrying Cap.)

$$N(t) = \frac{\frac{M}{N_{\infty}}}{1 + \left(\frac{N_{\infty}}{N_0} - 1\right)e^{-Bt}} = \frac{\frac{S}{B}}{S + \left(\frac{B}{N_0} - S\right)e^{-Bt}}$$

Case 1: B - SN(t) > 0 (Population < Stable): Increases Case 2: B - SN(t) < 0 (Population > Stable): Decreases Case 3: B - SN(t) = 0 (Population = Stable): Constant

Harvesting Model

 $\frac{dN}{dt} = BN - SN^2 - E$, E = Population Removed Per Time Unit

1. $E > \frac{B^2}{4S}$: No Equilibrium (decreases to extinction)

2. $0 < E < \frac{B^2}{4S}$: 2 Equilibrium Solutions (3 possible cases)

 β_2 is stable, $N(0) > \beta_1$, population tends to β_2 . β_1 is not stable, $N(0) < \beta_1$, population tends to 0.

3. $E = \frac{B^2}{4S}$: 1 Equilibrium Solution

Population Follows Equation

Given $\frac{dN}{dt} = f(N)$, find all values of N such that f(N) = 0(equilibrium points), evaluate sign of $f(N_0)$ to determine how N changes. N will increase $(f(N_0) = Positive)/decrease$ $(f(N_0)) = \text{Negative})$ until the next equilibrium point.

Partial Differential Equations

1. Let solution of PDE be $u(x, y) = X(x) \cdot Y(y)$

2. Sub u into PDE $(u_x, u_y, u_{xx}, u_{xy}, u_{yy}, u_{yx})$

3. Get 2 separable ODE (LHS = RHS = constant):

$$f(x) = g(y) = k$$

4. $\int f_1(X) dX = \int k f_2(x) dx$ and $\int g_1(Y) dY = \int k g_2(y) dy$

5. Solve for X(x), Y(y)6. $u(x, y) = X(x) \cdot Y(y)$

7. Sub x_1, y_1 into $u(x, y) = X(x) \cdot Y(y)$ to find constants.

8. Solve $u(x_2, y_2)$.