Theory of Automata – Home Work 3

Name – Akshay Kumar Singh

R11603620

1. Draw a state diagram for nondeterministic finite automata that accepts the following languages

$$1.1((ab)^*(ba)^*) \cup aa^*$$

Sol: The easiest way to do this is to make a 2 state FSA for aa* and a 4 state one for (ab)*(ba)*, then make a seventh state, the start state, that non-deterministically guesses which class an input string will fall into.

1.2. (ba \cup b)* \cup (bb \cup a)*

Sol: This is the set of strings where either:

- (1) every a is preceded by a b, or
- (2) all b's occur in pairs. So, we can make a 5 state nondeterministic machine by making separate machines (each with two states) for the two languages and then introducing ε transitions from the start state to both of them.

2. Give the regular expression for the language accepted by the following finite automaton

Sol: a* (ba* ba*)*

Sol: abb(ab)*

- 3. Write the regular expression for the following sets
- 3.1 All strings over $\{a, b\}$ that are odd in length

3.2 All strings over $\{a, b\}$ that end with bb

