AI For World Domination

Oliver Krengel, Edward Terry, Henry Chen April 23, 2018

Risk: The board game

Challenges

- Environment Construction
 - Asynchronous turn order
 - Variable number of players
 - 4 Action types: Allot, Attack, Reinforce, Fortify
- State space
 - 42 territories
 - 7 players
 - Maximum 12 armies per territory
 - True state space: $(12 * 7)^42 = 6.6e80$
 - Simplified state space: (12 * 2)^42 = 9.3e57
 - 42 element vector
- Action space
 - 83 edges + 1 pass action = 84 element vector
 - Small subset are valid
- Highly stochastic dynamics
- State aggregation does not generalize well to valid actions
- But... reward shaping is straightforward!

Constructing The Markov Decision Process

Approach

Key decisions in construction:

- Flatten choices to single dimension game theory
- Game: formulate object as state machine, naive to players
- Environment: translates game state into Markov Decision Process
- Players: objects that hold a policy for each action type
- Policies: common interface
- Built informed heuristics to deploy as adversaries, and for imitation learning

To train: Initialize with imitation learning, then play against itself

Algorithm for imitation learning:

- 1. Repeat for N games:
 - a. Generate episode with heuristics: states (S), valid masks (V), actions (A)
 - b. Add winner's (S,V,A) to dataset
- 2. Repeat for E epochs:
 - a. Feed (S,V) into function approximator
 - b. Compute cross-entropy loss
 - c. Perform batch gradient descent

Hypothesis for Imitation Learning

Heuristics:

- conservative is typically better than aggressive, but not always
- Do not make any state-specific decisions
- Don't treat continents any differently

Hypothesis:

By using winner moves, we will encode better policies than the dominant heuristic Reasoning:

Winners have made better state-specific decisions

Carnegie Mellon University

Results: Imitation Learning

Began with simpler environment: Australia!

Owner of Eastern Australia gets a bonus army

Hypothesis: best network will be #3

Network: {16:tanh:16:tanh:mask:sigmoid}

#	Hyperparameters					1000 games versus		
#	Players	Attack Heuristic	α	N	Е	Conservative	Aggressive	Random
1	2	Conservative x 2	1e-4	1000	10000	506 wins	522 wins	733 wins
2	2	Conservative, Aggressive	1e-4	1000	10000	449 wins	451 wins	634 wins
3	2	Conservative, Aggressive	1e-4	1000	20000	518 wins	503 wins	668 wins
4	2	Aggressive x 2	1e-4	1000	1000	465 wins	488 wins	640 wins

Results were inconclusive, but it took much longer to train the network attempting to learn from both policies

Carnegie Mellon University

Full board challenges

- Generalizing human data: autoencoder?
- How to best explore state-space?
- Bad policies can still win
 - Random wins ~5% against 6 conservative opponents
 - Some untrained networks can beat random policies
 - Makes testing very difficult!
- Attack heuristics break down, "gloat"
- For game with 7 conservative players, states visited:
 - Median: 405, μ = 420, σ =102
 - Most of these states are end-game, irrelevant
 - Solution: trim number of states visited, using:
 - $Max_States = \mu \sigma = 318$
- Playing 100 games takes 250s on 4-core Intel i5 @2.5Ghz

Full board results

KEY: Attack policies

F	N	С	A	R
Untrained network	Trained network	Conservative heuristic	Aggressive heuristic	Random policy

Hyperparameters

Architecture	α	N	E	Expert Policy	Max States
512:tanh:256:tanh:128	1e-4	100	2700	Winner of 7x conservative heuristics	318

Results: out of 100 games

	Wins by Player									
Matchup	0	1	2	3	4	5	6			
RAAACCC	7	8	7	13	30	19	16			
FAAACCC	2	7	5	6	29	30	21			
NAAACCC	7	18	25	25	6	10	9			
RC	6	94	-	-	-	-	-			
NC	20	80	-	-	-	-	-			

Lingering questions

- Train on/against human game data
- How to get state space sample
- More accurate n-player state space representation?
 - Separate maps for each player
 - Complex state-space representation
 - Angle corresponds to player
 - Magnitude corresponds to armies
 - Generalizes mid-game
- How to measure best policy?
 - No optimal game-theoretic policy exists
 - How can we manipulate other players??
-an utter lack of diplomacy......

