CMOS Transistor and Circuits

Outline

- MOS Capacitor
- nMOS I-V Characteristics
- pMOS I-V Characteristics
- DC characteristics and transfer function
- Noise margin
- □ Latchup
- Pass transistors
- □ Tristate inverter

delta V: hiệu điện thế cấp vào 2 bản của tụ

delta t: thời gian nạp xả tụ

Introduction

- ☐ So far, we have treated transistors as ideal switches
- □ An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- ☐ Transistor gate, source, drain all have capacitance
 - $-I = C (\Delta V/\Delta t) \rightarrow \Delta t = (C/I) \Delta V$
 - Capacitance and current determine speed
- Also explore what a "degraded level" really means

transistor nmos

để bán dẫn loại p và polysilicon giống như 1 cái tụ điện bởi vì ở giữa là lớp điện môi SiO2

MOS Capacitor

- Operating modes tich luy

 Accumulation

Vt là 1 điện áp ngưỡng (0.4 - 0.7 V)

suy giảm Depletion

đảo cực mạnh Inversion

nếu electron di chuyển theo 1 chiều nhất định sẽ tạo ra dòng điện bằng cách tăng Vg đủ lớn, hạt mang điện sẵn sàng muốn có dòng điện đi qua bán dẫn, phân cực cho điện thế của 2 phía lệch nhat electron sẽ di chuyển có hướng -> có dòng điên tương ứng

do điện áp phân cực đưa vào 2 cực khá lớn, trong bán đã**MQS**p, **trác ngư sáp t**ử bị phân tách manh ra thành electron và lỗ trấ**h**g, lỗ trống hút xuống đáy body manh hơn nữa, electron có xu hướng tập trung ở lớp trên, gần sát bề mặt tiếp xúc với lớp oxide, kọ thể nhảy qua vì là lớp điện môi cách điện

Terminal Voltages

kí hiệu transistor nMOS

Mode of operation depends on V_g, V_d, V_s

$$-V_{gs} = V_g - V_s$$

$$- V_{gs} = V_g - V_s$$

$$- V_{gd} = V_g - V_d$$

$$- V_{ds} = V_d - V_s = V_{dg} + V_{gs} = V_{gs} - V_{gd}$$

$$+ V_{gs} = V_{ds} - V_{ds}$$

$$+ V_{gs} = V_{gs} - V_{gd}$$

$$+ V_{ds} = V_{ds} - V_{ds}$$

$$-V_{ds} = V_{d} - V_{s} = V_{dg} + V_{gs} = V_{gs} - V_{gd}$$
 khuếch tán

- ☐ Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \ge 0$
- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
 - Cutoff
 - Linear
 - Saturation bão hòa

nMOS Cutoff

môi trường giữa cực s và cực d là channel

- No channel không có sự xuất hiện của electron không tạo thành cái kênh
- $\Box I_{ds} = 0$ không có dòng điện

ko có j xảy ra

nMOS Linear

- electron sẵn sàng ở lớp trên của p-type body
- Channel forms
- Current flows from d to s
 - e from s to d qua bên điện thế cao hơn
 - current: d to s
- I_{ds} increases with V_{ds} tăng Vds sẽ tăng dòng, ko thể tăng mãi, ngưỡng là Vgs - Vt
- Similar to linear resistor

Vds > 0, chênh lệch điện thế giữa 2 cực d và s, điện thế bên d lớn hơn, dòng từ d sang s, electron ngược lại

nMOS Saturation

☐ Channel pinches off

I_{ds} independent of V_{ds}

Vds có tăng, dòng ko tăng lên nữa mà đi ngang

☐ We say current saturates

□ Similar to current source

Đặc tính dòng và áp

I-V Characteristics

- ☐ In Linear region, I_{ds} depends on:
 - How much charge is in the channel
 - How fast is the charge moving

CMOS Transistor

Channel Charge

MOS structure looks like parallel plate capacitor while operating in inversion

lượng điện tích của tụ ảo c là channel
$$V_{gc} = V_{gs} + V_{sc} = V_{gs} + V_{sd}/2 = V_{gs} - V_{ds}/2$$

$$C = C_g = \varepsilon_{ox} WL/t_{ox} = C_{ox} WL \quad \text{chèn thêm điểm s}$$

$$V = V_{rs} - V_{rs} = (V_{rs} - V_{rs}/2) - V_{rs} (V_{rs} - V_{rs}) \text{ is the amount of}$$

L: độ dài kênh, khoảng cách giữa cực s và d

W: độ rộng của transistor

t ox: độ dày của oxide

CMOS Transistor

Carrier velocity

hạt mang điện quan tâm là e

- ☐ Charge is carried by e-
- □ Carrier velocity v proportional to lateral E-field between source and drain

vận tốc di chuyển của hạt mang điện

$$\Box$$
 $V = \mu E$

μ called mobility tính di động

$$\Box$$
 E = V_{ds}/L

thời gian để hạt mang điện xuyên qua kênh truyền, giữa cực s và cực d

□ Time for carrier to cross channel:

$$-t=L/v$$

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t} = \frac{C_{ox} WL \cdot (V_{gs} - V_{ds})}{2} \cdot \frac{WV_{ds}}{2}$$

$$= \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$\beta = \mu C_{ox} \frac{W}{L}$$

nMOS Saturation I-V

- If $V_{gd} < V_t$, channel pinches off near drain When $V_{ds} > V_{dsat} = V_{gs} V_t$
 - sat: bão hòa
- Now drain voltage no longer increases current

$$\begin{split} I_{ds} &= \beta \bigg(V_{gs} - V_t - \frac{V_{dsat}}{2} \bigg) V_{dsat} = \beta \bigg(V_{gs} - V_t - \frac{V_{gs} - V_t}{2} \bigg). \\ &= \frac{\beta}{2} \bigg(V_{gs} - V_t \bigg)^2 \\ &= \beta \bigg(V_{gs} - V_t \bigg)^2 \\ &= \beta \bigg(V_{gs} - V_t \bigg). \\ &= \beta \bigg(V_{gs} - V_t \bigg).$$

nMOS I-V Summary

☐ Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2}\right) V_{ds}^{\text{Vgs} > \text{Vt}} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2} & \text{Vgs} > \text{Vt} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

Example

- \Box We will be using a 0.18 μ m process for your project
 - $-t_{ox} = 100 \text{ Å} = 100 \text{x} 10^{-8} \text{ cm}$
 - ε = 3.9 ε_0 = 3.9x8.85.10^-14 **F/cm**
 - $\mu = 350 \text{ cm}^2/\text{V*s}$
- $-V_{t} = 0.4 \text{ V}$ $\square \text{ Plot } I_{ds} \text{ vs. } V_{ds}$
 - $-V_{as} = 0$, 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8V.
 - Use W/L = $4/2 (\lambda)$

$$\beta = \mu C_{ox} \frac{W}{L} = (350) \left(\frac{3.9 \cdot 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L^{2}} \frac{4}{\mu} A / V^{2}$$

= 240

hình chưa chuẩn

pMOS I-V

tạp chất tạo thành bán dẫn sản xuất pMOS ngược lại vs nMOS

- All doping and voltages are inverted for pMOS
- Mobility μ_p is determined by holes
 độ linh động của lỗ trống nhỏ hơn so vs độ linh động của electron -> khả năng dẫn điện thấp hơn , số hạt mang điện thấp hơn
 - Typically 2-3x lower than that of electrons μ_n
- ☐ Thus pMOS must be wider to provide same current

độ rộng kênh rộng hơn để có độ dẫn điện tương đương

- In this class, assume μ_n / μ_p = 2 Wp = 2 Wr

kích thước pMOS lớn hơn khoảng 2 lần

B = 120Vtp = -0.4

hình chưa chuẩn

CMOS Transistor i.e., current: $s \rightarrow d$ of pmos

DC Transfer Characteristics

hàm truyền của 1 mạch

sự biến đổi

Objective: Find the variation of output voltage Vout for changes in input voltage Vin.

ngưỡng

bán dẫn loại p

Vtp – Threshold voltage of p-device

Vtn – Threshold voltage of n-device

sơ đồ nguyên lí cổng invertor

tuyến tính bão hòa

	CUTOFF	NON SATURATED	SATURATED
P-device	Vgsp>Vtp Vin>Vtp+Voo	Vgsp < Vtp Vin < Vtp+VDD Vdsp > Vgsp-Vtp Vout > Vin - Vtp	Vgsp < Vtp Vin < Vtp+Voo Vdsp < Vgsp-Vtp Vout < Vin - Vtp
m-device	Vin Vtn	Vgsn>Vtn Vin >Vtn Vdsn <vgsn-vtn -vtn<="" th="" vout<vin=""><th>$V_{gsm} > V_{tm}$ $V_{in} > V_{tm}$ $V_{dsm} > V_{gsm} - V_{tn}$ $V_{out} > V_{in} - V_{tn}$</th></vgsn-vtn>	$V_{gsm} > V_{tm}$ $V_{in} > V_{tm}$ $V_{dsm} > V_{gsm} - V_{tn}$ $V_{out} > V_{in} - V_{tn}$

ngược lại

Recall CMOS device

Cutoff: Ids=0
$$Vgs \leq Vt$$

linear: Ids= $\beta \left[(Vgs-Vt)Vds - \frac{Vds^2}{2} \right]$ $o < Vds < Vgs-Vt$

Saturation: Ids= $\beta \frac{(Vgs-Vt)^2}{2}$ $o < Vgs-Vt < Vds$

CMOS inverter characteristics is chuyển hóa derived by solving for Vinn=Vinp and Idsn=-Idsp

FIG 2.23 A CMOS inverter

CMOS inverter is divided into five regions of operation

setting
$$\beta m = \beta p$$
 and $V_{tm} = -V_{tp}$ and νm_{tg}

$$I_{dom} = -I_{dop}, \quad we \quad obtain$$

$$V_{tm} = \frac{V_{00}}{2}$$

Region c exist only for one Value of Vin. Possible Values of Vout are m-device Vout > Vin-V+m p-device Vout < Vin-Vtp Concluding Vin-Vin-Vout < Vin-Vip

Region E: Vim > Vop + VtpM-device linear

P-device cutoff ở bên trên cutoff hở mạch ra, ngõ ra nối xuống đất $Vds_n = O \implies Vout = O$

I-V Characteristics

 \square Make pMOS is wider than nMOS such that $\beta_n = \beta_p$

Current vs. V_{out}, V_{in}

Load Line Analysis

- \Box For a given V_{in} :
 - Plot I_{dsn}, I_{dsp} vs. V_{out}
 - V_{out} must be where |currents| are equal in

Load Line Summary

DC Transfer Curve

☐ Transcribe points onto V_{in} vs. V_{out} plot

Operating Regions

☐ Revisit transistor operating regions

Region	nMOS	pMOS	
Α	Cutoff	Linear	
В	Saturation	Linear	
С	Saturation	Saturation	
D	Linear	Saturation	
E	Linear	Cutoff	

=1 thì đường cong giữa Vdd/2, =0.5 dịch về trái, =10 thì lệch về phải

Beta Ratio

- ☐ If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$ ☐ Called *skewed* gate
- Other gates: collapse into equivalent inverter

DC Transfer function is symmetric for $\beta_n = \beta_p$

Table 2.3 Summary of CMOS inverter operation						
Region	Condition	p-device	n-device	Output		
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$		
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$		
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply		
D	$V_{DD}/2 < V_{\mathrm{in}} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out}$ < $V_{DD}/2$		
E	$V_{\rm in}$ > V_{DD} - $ V_{tp} $	cutoff	linear	$V_{\rm out} = 0$		

Gate Capacitance

liên quan đến tính dòng đi qua transistor

$$C_g = C_{\text{permicron}} \times W \tag{2.13}$$

where

$$C_{\text{permicron}} = C_{\text{ox}} L = \frac{\varepsilon_{\text{ox}}}{t_{\text{ox}}} L$$
 (2.14)

$$t_{ox} = 100 \text{ Å} = 100 \text{x} 10^{\circ} - 8 \text{ cm}$$

 $\varepsilon = 3.9 \ \varepsilon_{0} = 3.9 \text{x} 8.85.10^{\circ} - 14 \text{ F/cm}$

Leakage Current

Example 2.6

What is the minimum threshold voltage for which the leakage current through an OFF transistor ($V_{gs} = 0$) is 10^3 times less than that of a transistor that is barely ON ($V_{gs} = V_t$) at room temperature if n = 1.5? One of the advantages of silicon-on-insulator (SOI) processes is that they have smaller n (see Section 9.5). What threshold is required for SOI if n = 1.3?

SOLUTION: $v_T = 26 \text{ mV}$ at room temperature. Assume $V_{ds} >> v_T$ so leakage is significant. We solve

$$I_{ds0} = \beta v_T^2 e^{1.8}$$

$$I_{ds} \left(V_{gs} = 0 \right) = 10^{-3} I_{ds0} = I_{ds0} e^{\frac{-V_t}{nv_T}}$$

$$V_t = -nv_T \ln 10^{-3} = 270 \text{mV}$$

$$1 = 1.5$$
(2.46)

In the CMOS process, leakage rolls off by a factor of 10 for every 90 mV V_{gs} falls below threshold. This is often quoted as a subthreshold slope of S = 90 mV/decade. In the SOI process, the subthreshold slope S is 78 mV/decade, so a threshold of only 234 mV is required.

n = 1.3

Noise Margin

It determines the allowable noise at the input gate (0/1) so the output (1/0) is not affected

Noise margin is closely related to input-output transfer function

suy ra

It is derived by driving two inverters connected in series

Output Characteristics Input Characteristics

FIG 2.27 Noise margin definitions

Impact of skewing transistor size on noise margin

FIG 2.26 Transfer characteristics of skewed inverters

Increasing (decreasing) P / N ratio increases (decreases) the low noise margin and decreases (increases) the high noise margin

Latchup in CMOS Circuits

Parasitic bipolar transistors are formed by substrate and source / drain devices (p/n/p or n/p/n)

Latchup occurs by establishing a low-resistance paths connecting VDD to Vss

Latchup may be induced by power supply glitches or incident radiation

If sufficiently large substrate current flows, VBE of NPN device increases, and its collector current grows.

This increases the current through Rwell. Vbe of PNP device increases, further increasing substrate current.

If bipolar transistors satisfy $\beta_{PNP} \times \beta_{NPN} > 1$, latchup may occur.

Operation voltage of CMOS circuits should be below Vlatchup.

Remedies of latchup problem:

- 1. Reduce R_{substrate} by increasing P doping of substrate by process control.
- 2. Reducing Rwell and resistance of WELL contacts by process control.
- 3. Layout techniques: separation of P and N devices, guard rings, many WELL contacts (at design).

Pass Transistors

- We have assumed source is grounded
- \Box What if source > 0?
 - e.g. pass transistor passing $V_{\rm DD}$
- \Box $V_g = V_{DD}$
 - If $V_s > V_{DD} V_t => V_{gs} < V_t$
 - Hence transistor would turn itself off
- □ nMOS pass transistors pull no higher than V_{DD}-V_{tn}
 - Called a degraded "1"
 - Approach degraded value slowly (low I_{ds})
- pMOS pass transistors pull no lower than V_{tp}

Pass Transistor CKTs

(a)
$$V_{DD}^{DD} = V_{DD}^{DD} = V_{DD}^{DD$$

As the source can rise to within a threshold voltage of the gate, the output of several transistors in series is no more degraded than that of a single transistor.

Transmission Gates

- ☐ Single pass transistors produce degraded outputs
- ☐ Complementary Transmission gates pass both 0 and 1 well

$$g = 0$$
, $gb = 1$
 $a - b$

Input Output

$$g = 1$$
, $gb = 0$
 $0 \rightarrow \infty$ strong 0

$$g = 1$$
, $gb = 0$
 $1 \rightarrow \infty$ strong 1

Transmission gate ON resistance as input voltage sweeps from 0 to 1(Vss to VDD), assuming that output follows closely.

$$R_{EQ} = \frac{R_{onp}R_{onn}}{R_{onp} + R_{onn}}$$

Tristates

☐ *Tristate buffer* produces Z when not enabled

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Nonrestoring Tristate

- ☐ Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y

Tristate Inverter

- ☐ Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

ghép kênh

Multiplexers

☐ 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

Gate-Level Mux Design

- $\square Y = SD_1 + \overline{S}D_0 \text{ (too many transistors)}$
- ☐ How many transistors are needed? 20

Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
 - Only 4 transistors

Inverting Mux

- □ Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

- ☐ 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates

Sizing for Performance

 C_{int} NMOS and PMOS diffusion + diffusion-gate overlap.

 $C_{\rm ext}$ Fan-out (input gates) + interconnects.

 $R_{\rm eq}$ Equivalent gate resistance.

 $C_{\rm L} = C_{\rm int} + C_{\rm ext}$ Capacitive load of an inverter.

 $C_{\rm int} = SC_{\rm iref}$ $R_{\rm eq} = R_{\rm ref}/S$ S sizing factor.

Propagation delay: $t_p = 0.69R_{eq} \left(C_{int} + C_{ext} \right) = t_{p_0} \left(1 + \frac{C_{ext}}{SC_{int}} \right)$

 $t_{\rm p_0} = 0.69 R_{\rm eq} C_{\rm int}$ Inverter delay loaded only by intrinsic.

 $C_{\rm int} = \gamma C_{\rm g}$ Intrinsic cap to gate cap ratio ≈ 1 .

 $f = C_{\rm ext}/C_{\rm g}$ Effective fan-out.

$$t_{\rm p} = t_{\rm p_0} \left(1 + \frac{C_{\rm ext}}{\gamma C_{\rm g}} \right) = t_{\rm p_0} \left(1 + \frac{f}{\gamma} \right)$$
 is only a function of the ratio between its external

The delay of an inverter load cap to its input cap

$$t_{p} = \sum_{j=1}^{N} t_{p_{j}} = \sum_{j=1}^{N} t_{p_{0}} \left(1 + \frac{C_{g_{j+1}}}{\gamma C_{g_{j}}}\right), C_{g_{N+1}} = C_{L}$$

$$\frac{\partial t_{\rm p}}{\partial C_{\rm g_{\it j}}} = 0, \ 1 \leq j \leq N-1 \quad \text{imply} \quad \frac{C_{\rm g_{\it j+1}}}{C_{\rm g_{\it j}}} = \frac{C_{\rm g_{\it j}}}{C_{\rm g_{\it j-1}}} = f, \ 2 \leq j \leq N-1$$

It implies that same sizing factor *f* is used for all stages.

The optimal size of an inverter is the geometric mean of its neighbor drives

$$C_{g_j} = \sqrt{C_{g_{j+1}}C_{g_{j-1}}}$$

Given $C_{\rm g_1}$ and $C_{\rm L}$, and $F=C_{\rm L}/C_{\rm g_1}$ the optimal sizing factor is

$$f = \sqrt[N]{F}$$

The minimum delay through the chain is

$$t_{\rm p} = Nt_{\rm p_0} \left(1 + \frac{\sqrt[N]{F}}{\gamma} \right)$$

What should be the optimal *N*?

The derivative by
$$N$$
 of t_p yields $\gamma + \sqrt[N]{F} - \frac{\sqrt[N]{F} \ln F}{N} = 0$

or equivalently $f = e^{(1+\gamma/f)}$ having a closed form solution

f = e only for $\gamma = 0$, a case where the intrinsic self load is ignored and only the fan-out is considered.