

(ApprovedInstitute of Technology by NBA &

(Autonomous Institute, Affiliated to VTU) by AICTE, New Delhi & Govt. of Karnataka)

Accredited

NAAC with 'A' Grade

EXAMINATIONS SEPTEMBER /OCTOBER 2020 SUPPLEMENTARY SEMESTER / GRADE IMPROVEMENT/ RE -REGISTERED CANDIDATES

Program : B.E.: Computer Science and Engineering Semester : IV

Course Name : Computer Organization Max. Marks : 100

Course Code : CS45(0) Duration : 3 Hrs

Instructions to the Candidates:

format.

Multiplier.

c)

• Answer any one full question from each unit.

UNIT- I							
1.	a)	List and explain the different data transfer instructions with an example in ARM Processor.	CO1	(06)			
	b)	Discuss the following ARM addressing modes with an example: i) PC relative addressing mode ii) Immediate pre-indexed addressing mode iii) Scaled Register offset.	CO1	(80)			
	c)	Write a Recursive procedure that calculates factorial of number using ARM instructions	CO1	(06)			
2.	a)	Write the instruction format for: i) MOV r6, r5, LSR r3 ii) MVN r5, r1 iii) STR r5, [r3, #120]	CO1	(80)			
	b)	Illustrate the stack allocation before, during and after the procedure call and also the typical ARM memory allocation for program and data.	CO1	(06)			
	c)	Discuss the following ARM addressing modes with an example: i) Register offset post indexed addressing mode ii) Immediate offset pre-indexed addressing mode.	CO1	(06)			
UNIT- II							
3.	a)	Perform Multiplication for the number $+13$ and $+11$ (Multiplier) using sequential circuit binary multiplier.	CO2	(05)			
	b) c)	Write a note on Special values and Exceptions. Multiply each of the following pairs of signed 2's complement numbers using booth algorithm and bit pairing of the multiplier(Assume A is the Multiplicand and B is the Multiplier) i) A=010111 B=110110	CO2 CO2	(05) (10)			
4.	a)	ii) A=110011 B=101100 .Give an Algorithm for Restoring division method. Illustrate the working	CO2	(07)			
	b)	of the Algorithm for 8/3. Represent (1259.125) ₁₀ in single and double precision IEEE floating point	CO2	(06)			

Illustrate the working of CSA with 45 and 63 as the Multiplicand and CO2

(07)

CS45(0)

UNTT- TIT

	UNIT- III						
5.	a)	Explain the Clocking Methodology of MIPS Architecture.	CO3	(06)			
	b)	Create the portion of Datapath used for fetching the instruction and incrementing the PC.	CO3	(06)			
	c)	Explain and draw the datapath which is modified to resolve Hazards via forwarding.	CO3	(80)			
6.	a)	Create a simple datapath for the MIPS architecture that combines the elements required by different instruction classes.	CO3	(10)			
	b)	Explain data hazards and discuss the different solutions used to overcome data hazard.	CO3	(10)			
		UNIT- IV					
7.	a)	Explain the basic structure of a memory hierarchy and also explain Hitrate, Missrate, Hittime and Misspenality.	CO4	(80)			
	b)	Assume a cache consists of 8 oneword blocks. Find the number of misses	CO4	(80)			
		for the following sequence of block addresses 9,54,84,1,55,85,18,2,44,41,69 using the following cache mapping					
		techniques: i) Direct- mapped ii)Two-way set-associative iii)Fully associative cache					
	c)	Define the steps to be taken on an instruction cache miss.	CO4	(04)			
8.	a)	Explain with a neat diagram, the three primary method of achieving higher memory bandwidth to increase the physical or logical width.	CO4	(08)			
	b)	Differentiate between direct mapped, Set associative and fully associative.	CO4	(80)			
	c)	Define the following:	CO4	(04)			
		i) Memory-stall clock cycles using single missrate and misspenalityii) Read-stall clock cycleiii) Write stall clock cycle.					
UNIT- V							
9.	a)	Explain Reliability and Availability with respect to Service Accomplishment.	CO5	(06)			
	b)	Explain the steps that must occur in handling an interrupt and draw the cause and Status register.	CO5	(10)			
	c)	Write a short note on Disk Storage.	CO5	(04)			
10.	a) b)	Describe the three ways to improve MTTF. Demonstrate how DMA technique is used to transfer the data between	CO5 CO5	(06) (10)			
	,	I/O devices and memory efficiently.					
	c)	Discuss two methods that are used to address the I/O devices.	CO5	(04)			
