Алгебра и Теория чисел

Конспект по 2 семестру специальности «прикладная информатика» (лектор Γ . В. Матвеев)

Содержание

1	Прямая сумма подпространств	3
2	Критерий совместности системы линейных уравнений	4
3	Однородные системы линейных уравнений	5
4	Линейные преобразования векторных пространств	7
5	Операции над линейными преобразованиями	8
6	Ранг и дефект линейного преобразования	9
7	Матрица линейного преобразования	10
8	Подобные матрицы	15
9	Инвариантные подпространства	17
10	Характеристическая матрица и характеристический многочлен	19
11	Собственные векторы и собственные значения линейного преобразования	20
12	Основные свойства делимости в кольце целых чисел 12.1 НОД	

1 Прямая сумма подпространств

Пусть W_1 , W_2 — подпространства.

ullet $W_1\oplus W_2$ — сумма называется **прямой**, если $W_1\cap W_2=\vec{0}$.

Справедливо и следующее: $W_1\oplus W_2\oplus ... \oplus W_k$ называется прямой, если $W_i\cap \sum\limits_{i\neq j}W_j=\vec{0}$

Теорема.

$$\dim(W_1 \oplus W_2) = \dim W_1 + \dim W_2$$

♦ По теореме о сумме подпространств

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$$

 \boxtimes

 \boxtimes

А так как $W_1 \cap W_2 = \vec{0}$, то $\dim(W_1 \cap W_2) = 0$.

Следствие.

$$\dim(W_1 \oplus W_2 \oplus \ldots \oplus W_k) = \dim W_1 + \dim W_2 + \ldots + \dim W_k$$

Теорема. Если $W \subset V_n \Rightarrow V_n = W \oplus U$, где U - noд пространство.

•

1.
$$W = \vec{0} \Rightarrow U = V_n, V_n = \vec{0} \oplus V_n$$

- 2. $W=V_n\Rightarrow U=\vec{0},\,V_n=V_n+\vec{0}$ Оба равенства справедливы, так как $\vec{0}\cap V_n=\vec{0}$
- 3. Рассмотрим нетривиальный случай:

$$W = L(v_1, v_2, ..., v_r), \quad 0 < r < n$$
$$U = L(v_{r+1}, v_{r+2}, ..., v_n)$$

Возьмем произвольный вектор x, не нарушая общности:

$$x = (\alpha_1 v_1 + ... + \alpha_r v_r) + (\alpha_{r+1} v_{r+1} + ... + \alpha_n v_n) \Rightarrow x = W + U$$

Докажем, что $W \cap U = \vec{0}$.

Пусть $x \in W \cap U$.

$$x = \alpha_1 v_1 + \ldots + \alpha_r v_r = \alpha_{r+1} v_{r+1} + \ldots + \alpha_n v_n \Rightarrow \forall \alpha_i = 0 \Rightarrow x = 0 \Rightarrow W \cap U = \vec{0}$$

Следствие. Каждое пространство раскладывается в прямую сумму n одномерных подпространств.

$$V_n = L(e_1) \oplus L(e_2) \oplus ... \oplus L(e_n)$$

 $e_1, e_2, ..., e_n$ -базис.

То есть любой вектор раскладываетя по базису:

$$x = \alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n$$

Критерий совместности системы линейных уравнений 2

Теорема. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы коэффицентов равен рангу расширенной матрицы.

♦ Рассмотрим систему алгебраических уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 — матрица коэффицентов A .

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix} = \widetilde{A} = (A|B) — расширенная матрица.$$

Система совместна \Leftrightarrow rank $A = \operatorname{rank} \widetilde{A}$.

 \Rightarrow Пусть система совместна с решением (j_1, j_2, \dots, j_n)

$$\begin{pmatrix}
a_{11} \\
a_{21} \\
\vdots \\
a_{n1}
\end{pmatrix} \cdot j_1 + \begin{pmatrix}
a_{12} \\
a_{22} \\
\vdots \\
a_{n2}
\end{pmatrix} \cdot j_2 + \dots + \begin{pmatrix}
a_{1n} \\
a_{2n} \\
\vdots \\
a_{nn}
\end{pmatrix} \cdot j_n = \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix}$$
(1)

Это значит, что при добавлении столбца свободных членов базис не изменился, так как новый столбец выражается через старый. Следовательно, rank $A = \operatorname{rank} A$.

 \Leftarrow Базисный минор матрицы A есть базисный минор матрицы \widetilde{A} , так как $rankA = rank\widetilde{A}$.

 \Leftarrow Базисный минор матрицы 17 оста сально. Следовательно, столбец свободных членов $\begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}$ выражается через базисные столбцы по

принципу (1). Коэффиценты остальных столбцов равны 0. И тогда полученные коэффиценты будут являться решением системы.

Решение системы линейных алгебраических уравнений с помощью критерия

- 1. Нахождение базисного минора матрицы А методом окаймления минора.
- 2. Проверяем условие $\operatorname{rank} A = \operatorname{rank} \widetilde{A}$ методом окаймления миноров.
- 3. Отбрасываем все небазисные строки.
- 4. Базисные неизвестные оставляем слева, а свободные переносим вправо.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1r}x_r = b_1 - a_{1,r+1}x_{r+1} - \dots - a_{1n}x_n \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nr}x_r = b_n - a_{n,r+1}x_{r+1} - \dots - a_{nn}x_n \end{cases}$$

Полученную систему рассматриваем как крамеровскую.

$$M = \begin{vmatrix} a_{11} & \dots & a_{1r} \\ \dots & \ddots & \dots \\ a_{r1} & \dots & a_{rr} \end{vmatrix} \neq 0$$

$$\begin{cases} x_1 = f_1(x_{r+1}, \dots, x_n) \\ \dots \\ x_r = f_r(x_{r+1}, \dots, x_n) \end{cases}$$

3 Однородные системы линейных уравнений

Рассмотрим однородную систему линейных уравнений

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0
\end{cases}$$
(1)

Где
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 — матрица системы, $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ — столбец неизвестных.

$$0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} -$$
 столбец нулей.

Тогда систему (1) можно записать в матричном виде как

$$AX=0$$

Теорема. Решения однородной системы линейных уравнений образуют векторное пространство, размерность которого $\dim W = n - r$ (n - число неизвестных, r - ране системы, r = rank(A|0).

♦ Докажем, что это пространство. Вспомним необходимые критерии:

$$W_1, W_2 \in W \Rightarrow W_1 + W_2 \in W$$

 $W_1 \in W \Rightarrow \lambda W_1 \in W$

Пусть
$$X_1$$
 — конкретный набор, $X_1 = \begin{pmatrix} x_1 \prime \\ x_2 \prime \\ \vdots \\ x_n \prime \end{pmatrix}$. Тогда выполняются свойства

$$AX_1 = 0, \ AX_2 = 0 \Rightarrow A(X_1 + X_2) = 0$$
$$AX_1 = 0 \Rightarrow \lambda AX_1 = 0$$

Перенесем свободные неизвестные в системе в левую сторону.

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1r}x_r = b_1 - a_{1,r+1}x_{r+1} - \ldots - a_{1n}x_n \\
\ldots \\
a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mr}x_r = b_m - a_{m,r+1}x_{r+1} - \ldots - a_{mn}x_n
\end{cases}$$
(3)

Базисный минор для этой системы

$$M = \begin{vmatrix} a_{11} & \dots & a_{1r} \\ \dots & \ddots & \dots \\ a_{r1} & \dots & a_{rr} \end{vmatrix} \neq 0$$

Где неизвестные x_1, \ldots, x_r — базисные, а x_{r+1}, \ldots, x_n — свободные. Выражаем базисные неизвестные через свободные по правилу Крамера или Гаусса:

$$\begin{cases} x_1 = f_1(x_{r+1}, \dots, x_n) \\ \dots \\ x_r = f_r(x_{r+1}, \dots, x_n) \end{cases}$$

Найдем базисные решения. Для этого передадим значения

$$\begin{cases}
c_1 = (c_{11}, c_{12}, \dots, c_{1r}, 1, 0, \dots, 0) \\
c_2 = (c_{21}, c_{22}, \dots, c_{2r}, 0, 1, \dots, 0) \\
\dots \\
c_{n-r} = (c_{n-r,1}, c_{n-r,2}, \dots, c_{n-r,r}, 0, 0, \dots, 1)
\end{cases}$$

Переменные, которым были переданы значения 0 и 1, являются базисными. Векторы являются линейно независимыми благодаря этим переменным.

Докажем, что любое решение выражается через базис.

$$(\gamma_1, \ldots, \gamma_r, \gamma_{r+1}, \ldots, \gamma_n) - \gamma_{r+1}c_1 - \ldots - \gamma_n c_{n-r} = (\gamma_1 c_1, \gamma_2 c_2, \ldots, \gamma_n c_{n-r})$$

 \boxtimes

Значит все решения выражаются через базис.

• Базисные решения ОСЛУ называются фундаментальной системой решений.

Решение неоднородной системы через однородную

Будем обозначать AX = B — **неоднородная система**, AY = 0 — **однородная система**.

$$AX = B \ AY = 0$$
 $= A(X + Y) = AX + AY = B + 0 = B$

- 1. Разность 2-ух решений неоднородной системы будет решением однородной.
- 2. Если от решения неоднородной системы отнять фиксированное решение неоднородной системы, то получится решение однородной системы.

$$AX - AX_0 = B - B = 0$$

3. Произвольное решение неоднородной системы можно получить, добавляя к фиксированному решению некоторые решения однородной системы.

4 Линейные преобразования векторных пространств

- Отображение $\varphi: V \to V$ (само в себя) называется **линейным**, если
 - 1. Образ суммы равен сумме образов:

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

2. При умножении вектора на скаляр его образ умножается на этот же скаляр:

$$\varphi(\lambda a) = \lambda \varphi(a)$$

Если $\varphi: V \to W$, то φ — линейное отображение.

Свойства линейного преобразования:

1. Образ линейной комбинации равен такой же линейной комбинации образов (под действием линейного преобразования)

$$\varphi(\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_n a_n = \lambda_1 \varphi(a_1) + \lambda_2 \varphi(a_2) + \dots + \lambda_n \varphi(a_n)$$

2. Преобразование $\vec{0}$

$$\begin{split} \phi(\vec{0}) &= \vec{0} \\ \phi(\vec{0}) &= \phi(\vec{0} \cdot \vec{a}) = 0 \cdot \phi(\vec{a}) = \vec{0} \end{split}$$

3. Вынесение минуса

$$\phi(-\vec{a}) = -\phi(\vec{a})$$

4. Линейное преобразование переводит линейно зависимые векторы в линейно зависимые с такими же скалярами.

Теорема. Любое линейное преобразование вполне определяется своими значениями на базисных векторах и эти значения могут быть любыми.

♦ Пусть e_1, e_2, \dots, e_n — базис, a_1, a_2, \dots, a_n — системы векторов. Возьмем функцию φ такую, что:

$$\begin{cases} \varphi(e_1) = a_1 \\ \varphi(e_2) = a_2 \\ \dots \\ \varphi(e_n) = a_n \end{cases}$$

Докажем, что такое пространство существует:

$$x = x_1e_1 + x_2e_2 + \dots + x_ne_n$$

$$\varphi(x) = x_1 a_1 + x_2 a_2 + \dots + x_n a_n$$

Докажем, что оно линейное:

$$y = y_1 e_1 + y_2 e_2 + \dots + y_n e_n$$

- $\varphi(x+y) = (x_1+y_1)a_1 + (x_2+y_2)a_2 + \ldots + (x_n+y_n)a_n = x_1a_1 + y_1a_1 + \ldots + x_na_n + y_na_n = (x_1a_1 + x_2a_2 + \ldots + x_na_n) + (y_1a_1 + y_2a_2 + \ldots + y_na_n) = \varphi(x) + \varphi(y);$
- $\varphi(\lambda x) = \lambda x_1 a_1 + \lambda x_2 a_2 + \ldots + \lambda x_n a_n = \lambda \varphi(x)$.

Докажем, что единственное:

Пусть существует

$$\begin{cases} \psi(e_1) = a_1 \\ \psi(e_2) = a_2 \\ \dots \\ \psi(e_n) = a_n \end{cases}$$

с такими же свойствами. Тогда

$$\psi(x) = \psi(x_1e_1 + x_2e_2 + \dots + x_ne_n) = x_1\psi(e_1) + x_2\psi(e_2) + \dots + x_n\psi(e_n) = x_1a_1 + x_2a_2 + \dots + x_na_n = \varphi(x)$$

 \boxtimes

5 Операции над линейными преобразованиями

Пусть f, ϕ — линейные преобразования векторного пространства V.

1. Сумма линейных преобразований:

$$f(x) + \varphi(x) = (f + \varphi)(x), \ \forall x \in V.$$

$$\Phi (f + \varphi)(\lambda_1 x_1 + \lambda_2 x_2) = f(\lambda_1 x_1 + \lambda_2 x_2) + \varphi(\lambda_1 x_1 + \lambda_2 x_2) = f(\lambda_1 x_1) + f(\lambda_2 x_2) + \varphi(\lambda_1 x_1) + \varphi(\lambda_2 x_2) = \lambda_1 f(x_1) + \lambda_2 f(x_2) + \lambda_1 \varphi(x_1) + \lambda_2 \varphi(x_2) = \lambda_1 (f(x_1) + \varphi(x_1)) + \lambda_2 (f(x_2) + \varphi(x_2)) = \lambda_1 (f + \varphi)(x_1) + \lambda_2 (f + \varphi)(x_2).$$

2. Произведение на скаляр линейного преобразования:

$$(\lambda f)(x) = \lambda f(x), \ \forall x \in V.$$

3. Композиция линейных преобразований:

$$(f \circ \varphi)(x) = f(\varphi(x)), \ \forall x \in V.$$

♦
$$(f \varphi)(\lambda_1 x_1 + \lambda_2 x_2) = f(\varphi(\lambda_1 x_1 + \lambda_2 x_2)) = f(\varphi(\lambda_1 x_1) + \varphi(\lambda_2 x_2)) = f)\lambda_1 \varphi(x_1) + \lambda_2 \varphi(x_2) = \lambda_1 f(\varphi(x_1)) + \lambda_2 f(\varphi(x_2)) = \lambda_1 (f \varphi)(x_1) + \lambda_2 (f \varphi)(x_2).$$
 \boxtimes

6 Ранг и дефект линейного преобразования

Пусть $\varphi: V \to V$ — линейное преобразование.

- Множество $\ker \varphi = \{x \mid \varphi(x) = \vec{0}\}$ **ядро** линейного преобразования. dim $\ker \varphi$ **дефект** линейного преобразования (размерность ядра).
- Множество Іт $\varphi = \varphi(v) = \{\varphi(x) \mid x \in V\}$ образ линейного преобразования. dim Іт φ ранг линейного преобразования (размерность образа).

Пример 1

Рассмотрим функцию $\sin(x)$. Функция синуса не является линейной, в чем легко убедиться $(\sin(a+b) \neq \sin a + \sin b)$, однако для нее можно определить ядро и образ. Таким образом

$$\ker(\sin) = \pi n$$

$$Im(\sin) = [-1, 1]$$

Пример 2

Тождественное преобразование - $\varphi(v) = v \quad \forall v \in V$

$$\ker(\varphi) = \vec{0}$$

$$\operatorname{Im}(\varphi) = V$$

Пример 3

Возьмем прямую l и плоскость P, где $l \perp P$.

$$\varphi(\vec{a}) = \vec{p}ra$$

$$\operatorname{Im}(\varphi) = l = V_1$$

$$\ker(\varphi) = P = V_2$$

Теорема. Ядро и образ линейного преобразования — подпространства исходного векторного пространства.

♦ Проверим выполнимость свойств:

1.
$$w_1, w_2 \in \ker(\varphi) \Rightarrow \varphi(w_1) = \varphi(w_2) = \vec{0} \varphi(w_1 + w_2) = \varphi(w_1) + \varphi(w_2) = \vec{0} + \vec{0} = \vec{0} \Rightarrow w_1 + w_2 \in \ker(\varphi)$$

2.
$$\lambda \varphi(w) = \lambda \vec{0} = \vec{0} \Rightarrow \lambda \varphi \in \ker(\varphi)$$

3.
$$\varphi(w_1), \varphi(w_2) \in \operatorname{Im}(\varphi)$$

 $\varphi(w_1) + \varphi(w_2) = \varphi(w_1 + w_2) \in \operatorname{Im}(\varphi)$

4.
$$\lambda \varphi(w_1) = \varphi(\lambda w_1) \in \operatorname{Im}(\varphi)$$

ullet Размерность ядра — $oldsymbol{\partial e}\phi e\kappa m$. Будем обозначать $d=\dim(\ker(\phi))$.

• Размерность образа — ранг. Будем обозначать $r = \operatorname{rank} \varphi = \dim(\operatorname{Im}(\varphi))$.

Тогда ϕ — **нулевое преобразование**, если d=n, r=0.

- ϕ тождественное преобразование, если d = 0, r = n.
- ϕ проектирование векторов, если d = 2, r = 1.

Теорема. Сумма ранга и дефекта равняется размерности пространства.

igoplus Рассмотрим образ $\phi(V)$. Пусть базис $\phi(V): \phi(\phi(l_1), \phi(l_2), \dots, \phi(l_r))$ Докажем, что

$$V_n = L(l_1, l_2, \dots, l_r) \oplus \ker(\varphi)$$

 $n = r + d$

- 1. l_1, l_2, \ldots, l_r линейно независимы. По свойству линейное преобразование сохраняет зависимость. Если бы l_1, l_2, \ldots, l_r были зависимы, то и $\phi(l_1), \phi(l_2), \ldots, \phi(l_r)$ были бы зависимы, но это базис, значит не зависимы.
- 2. $\vec{v} \in V_n = \vec{x} \in L(l_1, l_2, \dots, l_r) + \vec{y} \in ker \varphi$

$$\varphi(V) = \alpha_1 \varphi(l_1) + \alpha_2 \varphi(l_2) + dots + \alpha_r \varphi(l_r)$$

$$\varphi(v - \alpha_1 l_1 - \dots - \alpha_r l_r) = \vec{0} \Rightarrow v - \alpha_1 l_1 - \dots - \alpha_r l_r = y \in \ker \varphi$$

$$v = \alpha_1 l_1 - \dots - \alpha_r l_r + y = x + y$$

3. $L \cap ker \varphi = \vec{0}$ $\Pi yeth x \in L \cap ker \varphi$. $x = \alpha_1 l_1 + \ldots + \alpha_r l_r$ $\varphi(x) = \vec{0}$, $\varphi(x) = \varphi(\alpha_1 l_1 + \ldots + \alpha_r l_r) = \varphi(\alpha_1 l_1) + \varphi(\alpha_2 l_2) + \ldots + \varphi(\alpha_r l_r) = \alpha_1 \varphi(l_1) + \alpha_2 \varphi(l_2) + \ldots + \alpha_r \varphi(l_r) = \vec{0} \Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_r = 0 \Rightarrow x = \vec{0}$

7 Матрица линейного преобразования

Пусть V — векторное пространство с базисом e_1, e_2, \ldots, e_n .

$$x \in V$$
, $x = x_1e_1 + x_2e_2 + \dots + x_ne_n$

 \boxtimes

 \boxtimes

• Пусть $\varphi: V \to V$ — **линейное преобразование** векторного пространства V. Подействуем этим преобразованием поочередно на все базисные векторы и полученные векторы выразим через базис:

$$\begin{cases}
\varphi(e_{1}) = \alpha_{11}e_{1} + \alpha_{21}e_{2} + \dots + \alpha_{n1}e_{n} \\
\varphi(e_{2}) = \alpha_{12}e_{1} + \alpha_{22}e_{2} + \dots + \alpha_{n2}e_{n} \\
\dots \\
\varphi(e_{n}) = \alpha_{1n}e_{1} + \alpha_{2n}e_{2} + \dots + \alpha_{nn}e_{n}
\end{cases} (1)$$

Матрица
$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix}$$
 — матрица линейного преобразования ϕ .

• Столбцами матрицы линейного преобразования являются координаты образов базисных векторов.

Рассмотрим пример:

На вектор $x = x_1e_1 + x_2e_2 + \cdots + x_ne_n$ подействуем линейным преобразованием.

$$\varphi(x) = x_1 \varphi(e_1) + x_2 \varphi(e_2) + \ldots + x_n \varphi(e_n),$$

где $\varphi(e_1), \varphi(e_2), \ldots, \varphi(e_n)$ — столбцы матрицы A.

Тогда систему (1) можно переписать следующим образом:

Пусть $e = (e_1, e_2, \dots, e_n)$, тогда

$$(e_1, e_2, \dots, e_n)A = (\varphi(e_1), \varphi(e_2), \dots, \varphi(e_n))$$

$$\varphi(e) = eA$$

Вектор x запишем как x=eX, где $X=\begin{pmatrix} x_1\\x_2\\ \vdots\\x_n \end{pmatrix}$. Тогда линейное преобразование вектора x

примет вид:

$$\varphi(x) = \varphi(e)X$$
$$\varphi(x) = eAX$$

Это говорит о том, что $X \xrightarrow{\phi} AX \sim \phi(X) = AX$.

Теорема.

- 1. Πpu сложении линейных преобразований их матрицы в данном базисе складываются.
- 2. При умножении линейных преобразований их матрицы в данном базисе умножаются.
- 3. При умножении линейного преобразования на скаляр его матрица умножается на тот же скаляр.

lacktriangle Пусть V — векторное пространство с базисом e_1, e_2, \dots, e_n .

И пусть f, ϕ — линейные преобразования.

Подействовав этими линейными преобразованиями на базис V получим следующие системы:

$$\begin{cases}
f(e_1) = \alpha_{11}e_1 + \alpha_{21}e_2 + \dots + \alpha_{n1}e_n \\
f(e_2) = \alpha_{12}e_1 + \alpha_{22}e_2 + \dots + \alpha_{n2}e_n \\
\dots \\
f(e_n) = \alpha_{1n}e_1 + \alpha_{2n}e_2 + \dots + \alpha_{nn}e_n
\end{cases} \tag{1}$$

$$\begin{cases}
\varphi(e_1) = \beta_{11}e_1 + \beta_{21}e_2 + \dots + \beta_{n1}e_n \\
\varphi(e_2) = \beta_{12}e_1 + \beta_{22}e_2 + \dots + \beta_{n2}e_n \\
\dots \\
\varphi(e_n) = \beta_{1n}e_1 + \beta_{2n}e_2 + \dots + \beta_{nn}e_n
\end{cases} \tag{2}$$

Запишем матрицы линейных преобразований для f, φ :

$$A = egin{pmatrix} lpha_{11} & lpha_{12} & \dots & lpha_{1n} \ lpha_{21} & lpha_{22} & \dots & lpha_{2n} \ dots & dots & \ddots & dots \ lpha_{n1} & lpha_{n2} & \dots & lpha_{nn} \end{pmatrix}$$
 — матрица линейного преобразования f .

$$B = egin{pmatrix} eta_{11} & eta_{12} & \dots & eta_{1n} \ eta_{21} & eta_{22} & \dots & eta_{2n} \ dots & dots & \ddots & dots \ eta_{n1} & eta_{n2} & \dots & eta_{nn} \end{pmatrix}$$
 — матрица линейного преобразования ϕ .

1. Сложим почленно строки систем (1) и (2).

$$\begin{cases} f(e_1) + \varphi(e_1) = (\alpha_{11} + \beta_{11})e_1 + (\alpha_{21} + \beta_{21})e_2 + \dots + (\alpha_{n1} + \beta_{n1})e_n \\ f(e_2) + \varphi(e_2) = (\alpha_{12} + \beta_{12})e_1 + (\alpha_{22} + \beta_{22})e_2 + \dots + (\alpha_{n2} + \beta_{n2})e_n \\ \dots \\ f(e_n) + \varphi(e_n) = (\alpha_{1n} + \beta_{1n})e_1 + (\alpha_{2n} + \beta_{2n})e_2 + \dots + (\alpha_{nn} + \beta_{nn})e_n \end{cases}$$

Отсюда получим матрицу линейного преобразования $f + \varphi$:

$$\begin{pmatrix} \alpha_{11} + \beta_{11} & \alpha_{12} + \beta_{12} & \dots & \alpha_{1n} + \beta_{1n} \\ \alpha_{21} + \beta_{21} & \alpha_{22} + \beta_{22} & \dots & \alpha_{2n} + \beta_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} + \beta_{n1} & \alpha_{n2} + \beta_{n2} & \dots & \alpha_{nn} + \beta_{nn} \end{pmatrix} = A + B$$

2. Будем рассматривать умножение линейных преобразований как компзицию отображений $\varphi(f(e))$. Подействуем линейным преобразованием f на базисные векторы:

$$\begin{cases}
f(e_1) = \alpha_{11}e_1 + \alpha_{21}e_2 + \dots + \alpha_{n1}e_n \\
f(e_2) = \alpha_{12}e_1 + \alpha_{22}e_2 + \dots + \alpha_{n2}e_n \\
\dots \\
f(e_n) = \alpha_{1n}e_1 + \alpha_{2n}e_2 + \dots + \alpha_{nn}e_n
\end{cases} \tag{1}$$

На полученные векторы подействуем линейным преобразованием φ:

$$\begin{cases} \varphi(f(e_1)) = \beta_{11}f(e_1) + \beta_{21}f(e_2) + \dots + \beta_{n1}f(e_n) \\ \varphi(f(e_2)) = \beta_{12}f(e_2) + \beta_{22}f(e_2) + \dots + \beta_{n2}f(e_n) \\ \varphi(f(e_n)) = \beta_{1n}f(e_1) + \beta_{2n}f(e_2) + \dots + \beta_{nn}f(e_n) \end{cases}$$

Подставим в полученную систему уравнения системы (1):

$$\begin{cases} \varphi(f(e_1)) = \beta_{11}(\alpha_{11}e_1 + \alpha_{21}e_2 + \dots + \alpha_{n1}e_n) + \beta_{21}(\alpha_{12}e_1 + \alpha_{22}e_2 + \dots + \alpha_{n2}e_n) + \dots \\ \varphi(f(e_2)) = \beta_{12}(\alpha_{11}e_1 + \alpha_{21}e_2 + \dots + \alpha_{n1}e_n) + \beta_{22}(\alpha_{12}e_1 + \alpha_{22}e_2 + \dots + \alpha_{n2}e_n) + \dots \\ \varphi(f(e_n)) = \beta_{1n}(\alpha_{11}e_1 + \alpha_{21}e_2 + \dots + \alpha_{n1}e_n) + \beta_{2n}(\alpha_{12}e_1 + \alpha_{22}e_2 + \dots + \alpha_{n2}e_n) + \dots \end{cases}$$

Раскроем скобки:

$$\begin{cases} \varphi(f(e_1)) = \beta_{11}\alpha_{11}e_1 + \beta_{11}\alpha_{21}e_2 + \dots + \beta_{11}\alpha_{n1}e_n + \beta_{21}\alpha_{12}e_1 + \beta_{21}\alpha_{22}e_2 + \dots + \beta_{21}\alpha_{n2}e_n + \dots \\ \varphi(f(e_2)) = \beta_{12}\alpha_{11}e_1 + \beta_{12}\alpha_{21}e_2 + \dots + \beta_{12}\alpha_{n1}e_n + \beta_{22}\alpha_{12}e_1 + \beta_{22}\alpha_{22}e_2 + \dots + \beta_{22}\alpha_{n2}e_n + \dots \\ \varphi(f(e_n)) = \beta_{1n}\alpha_{11}e_1 + \beta_{1n}\alpha_{21}e_2 + \dots + \beta_{1n}\alpha_{n1}e_n + \beta_{2n}\alpha_{12}e_1 + \beta_{2n}\alpha_{22}e_2 + \dots + \beta_{2n}\alpha_{n2}e_n + \dots \end{cases}$$

Сгрупируем подобные слагаемые:

$$\begin{cases} \varphi(f(e_1)) = (\beta_{11}\alpha_{11} + \beta_{21}\alpha_{12} + \dots)e_1 + (\beta_{11}\alpha_{21} + \beta_{21}\alpha_{22} + \dots)e_2 + \dots \\ \varphi(f(e_2)) = (\beta_{12}\alpha_{11} + \beta_{22}\alpha_{12} + \dots)e_1 + (\beta_{12}\alpha_{21} + \beta_{22}\alpha_{22} + \dots)e_2 + \dots \\ \varphi(f(e_n)) = (\beta_{1n}\alpha_{11} + \beta_{2n}\alpha_{12} + \dots)e_1 + (\beta_{1n}\alpha_{21} + \beta_{2n}\alpha_{22} + \dots)e_2 + \dots \end{cases}$$

Запишем координаты векторов в матрицу линейного преобразования:

$$\begin{pmatrix} \beta_{11}\alpha_{11} + \beta_{21}\alpha_{12} + \dots & \beta_{12}\alpha_{11} + \beta_{22}\alpha_{12} + \dots & \dots & \beta_{1n}\alpha_{11} + \beta_{2n}\alpha_{12} + \dots \\ \beta_{11}\alpha_{21} + \beta_{21}\alpha_{22} + \dots & \beta_{12}\alpha_{21} + \beta_{22}\alpha_{22} + \dots & \dots & \beta_{2n}\alpha_{21} + \beta_{2n}\alpha_{22} + \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \beta_{11}\alpha_{n1} + \beta_{21}\alpha_{n2} + \dots & \beta_{12}\alpha_{n1} + \beta_{22}\alpha_{n2} + \dots & \dots & \beta_{1n}\alpha_{n1} + \beta_{2n}\alpha_{n2} + \dots \end{pmatrix} = A \cdot B$$

3. Умножим каждую строку системы (1) на произвольный скаляр γ :

$$\begin{cases} \gamma f(e_1) = \gamma \alpha_{11} e_1 + \gamma \alpha_{21} e_2 + \dots + \gamma \alpha_{n1} e_n \\ \gamma f(e_2) = \gamma \alpha_{12} e_1 + \gamma \alpha_{22} e_2 + \dots + \gamma \alpha_{n2} e_n \\ \dots \\ \gamma f(e_n) = \gamma \alpha_{1n} e_1 + \gamma \alpha_{2n} e_2 + \dots + \gamma \alpha_{nn} e_n \end{cases}$$

Получаем матрицу линейного преобразования γf :

$$\begin{pmatrix} \gamma \alpha_{11} & \gamma \alpha_{12} & \dots & \gamma \alpha_{1n} \\ \gamma \alpha_{21} & \gamma \alpha_{22} & \dots & \gamma \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma \alpha_{n1} & \gamma \alpha_{n2} & \dots & \gamma \alpha_{nn} \end{pmatrix} = \gamma A$$

 \boxtimes

Теорема. Ранг линейного преобразования равен рангу его матрицы.

 $\operatorname{rank} \boldsymbol{\varphi} = \dim \boldsymbol{\varphi}(V)$

Так как образ есть линейная оболочка $L(\varphi(e_1), \varphi(e_2), \dots, \varphi(e_n))$, то

$$\dim \varphi(V) = \dim L(\varphi(e_1), \varphi(e_2), \dots, \varphi(e_n)) = \operatorname{rank}(\varphi(e_1), \varphi(e_2), \dots, \varphi(e_n)) = \operatorname{rank} A$$
$$\operatorname{rank} \varphi = \operatorname{rank} A$$

 \boxtimes

Пример 1

 $\vec{\phi}(x) = \vec{0}, \quad \forall x$ — нулевое преобразование.

$$\begin{cases} \varphi(e_1) = 0e_1 + 0e_2 + \dots + 0e_n \\ \varphi(e_2) = 0e_1 + 0e_2 + \dots + 0e_n \\ \dots \\ \varphi(e_n) = 0e_1 + 0e_2 + \dots + 0e_n \end{cases}$$

$$A = egin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$
 — матрица нулевого преобразования.

Пример 2

 $\varphi(x) = x$, $\forall x$ — тождественное преобразование.

$$\begin{cases}
\varphi(e_1) = 1e_1 + 0e_2 + \dots + 0e_n \\
\varphi(e_2) = 0e_1 + 1e_2 + \dots + 0e_n \\
\dots \\
\varphi(e_n) = 0e_1 + 0e_2 + \dots + 1e_n
\end{cases}$$

$$A = egin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$
 — матрица тождественного преобразования.

Пример 3

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
 — матрица угла поворота системы координат на угол α .

• Биективное (взаимооднозначное) линейное преобразование называется **автоморфиз**мом.

Если $\varphi:V\to V$ — линейное преобразование, то φ — автоморфизм $\Leftrightarrow \varphi$ — биекция.

Теорема. Линейное преобразование ϕ — автоморфизм \Leftrightarrow его матрица невырожденная.

•

$$\varphi(X) = AX$$

 \Rightarrow Предположим, что |A| = 0 (т.е. матрица вырожденная).

Тогда $AX = 0 \Rightarrow$ система уравнений линейного преобразования имеет несколько решений и ноль имеет несколько прообразов, чего быть не может.

 \leftarrow Имеем, что $|A| \neq 0$ (т.е. матрица невырожденная).

Значит для AX=B имеется только одно решение по правилу Крамера $\Rightarrow \phi$ — биекция.

8 Подобные матрицы

Для определения подобия матриц рассмотрим задачу.

Задача

Пусть u, v — некоторые базисы, ϕ — линейное преобразование. Применим его к обоим базисам:

$$\varphi(u) = \varphi(u_1), \varphi(u_2), \dots, \varphi(u_n) = (u_1, u_2, \dots, u_n)A$$

Запишем полученные преобразования в матричном виде:

$$\varphi(u) = uA$$

$$\varphi(v) = vB$$

Пусть S — матрица перехода от базиса u к базису v ($|S| \neq 0$ — матрица невырожденная), то есть v = uS.

Решение:

Подействуем линейным преобразованием φ на v=uS:

$$\varphi(v) = \varphi(u)S$$

Подставим в это равенство значение $\varphi(u)$, полученное выше:

$$\varphi(v) = uAS \tag{1}$$

Так как $\varphi(v) = vB$ и v = uS, то, подставив значение v в первое уравнение, получим:

$$\varphi(v) = uSB \tag{2}$$

Приравняем правые части уравнений (1) и (2):

$$uAS = uSB$$

$$u(SB - AS) = (\vec{0}, \vec{0}, \dots, \vec{0})$$

Так как векторы u_1, u_2, \dots, u_n линейно независимы как базис и их линейные комбинации равны $\vec{0}$, то элементы матрицы SB - AS равны $0 \Rightarrow SB = AS \Rightarrow B = S^{-1}AS$.

- Матрицы A и B, связанные соотношением $B = S^{-1}AS$, называются **подобными**.
- Матрицы одного и того же преобразования в разных базисах подобны.
- Если для матриц A и B справедливо равенство $B = S^{-1}AS$, то можно найти линейное преобразование и базисы, которые будут иметь эти матрицы.

Теорема. Две квадратных матрицы одного и того же порядка являются матрицами одного и того же преобразования \Leftrightarrow они подобны.

Свойства подобных матриц

1. Всякая матрица подобна самой себе:

$$A = E^{-1}AE$$

2. Подобие матриц транзитивно:

Возьмем матрицы A, B, C, связанные соотношением:

$$C = T^{-1}BT$$

$$B = S^{-1}AS$$

Подставим значение B:

$$C = T^{-1}S^{-1}AST$$

Используя свойство обратных матриц

$$T^{-1}S^{-1} = (ST)^{-1}$$

и подставя полученное значение в предыдущее равенство, получаем:

$$C = (ST)^{-1}A(ST)$$

3. Подобие матриц симметрично:

$$A = T^{-1}BT \Leftrightarrow B = S^{-1}AS$$

Рассмотрим равенство $B = S^{-1}AS$. Домножим левую и правую часть на S^{-1} и S:

$$A = SBS^{-1}$$

Пусть $T = S^{-1} \Rightarrow T^{-1} = S$. Подставим это в равенство и получим:

$$A = T^{-1}BT$$

То есть если матрица B подобна матрице A, то мы можем найти такую матрицу T, чтобы матрица A была подобна матрице B.

4. Определители подобных матриц равны:

$$|B| = |S^{-1}AS| = |S^{-1}| \cdot |A| \cdot |S| = |A| \cdot |S| \cdot |S^{-1}| = |A| \cdot |SS^{-1}| = |A| \cdot |E| = |A| \cdot 1 = |A|$$

5. Ранги подобных матриц равны:

$$B = S^{-1}AS \Rightarrow \operatorname{rank} A = \operatorname{rank} B = \operatorname{rank} f$$

Это объясняется тем, что ранг преобразования равен рангу матрицы:

$$\operatorname{rank} A = \operatorname{rank} f$$
, $\operatorname{rank} B = \operatorname{rank} f \Rightarrow \operatorname{rank} A = \operatorname{rank} B$

9 Инвариантные подпространства

Пусть $\varphi: V \to V$ — преобразование векторного пространства, W — подпространство. W называется **инвариантным**, если $\varphi(W) \subset W$.

Примеры

- 1. $\varphi(V) = V$, $\varphi = e$ все подпространства инвариантны.
- 2. $W = \vec{0}, \ \phi(\vec{0}) = \vec{0}$ нулевое подпространство всегда инвариантно.
- 3. W = V само пространство инвариантно.
- 4. $\varphi(W) = 0 \in W$, $\varphi = 0$ нулевое преобразование. Все подпространства инвариантны.
- 5. $\phi = \lambda e$ скалярное преобразование. Все подпространства инвариантны.
- 6. Проектирование в 3-х мерном пространстве на прямую:

$$\varphi = \pi p_l P$$

Инвариантные подпространства:

- Все векторы прямой;
- Векторы, перпендикулярные плоскости.

Теорема. Сумма и пересечение инвариантных пространств инвариантны.

 $\blacklozenge \Pi_{\text{УСТЬ}} x = W_1 \cap W_2.$

Так как W_1 — инвариантно, то $\varphi(x) \in W_1$, аналогично для W_2 .

Так как $\varphi(x) \in W_1$ и $\varphi(x) \in W_2$, то $\varphi(x) \in W_1 \cap W_2 \Rightarrow W_1 \cap W_2$ — инвариантно.

Пусть $x \in W_1 + W_2 \Rightarrow x \in W_1$ или $x \in W_2$.

Так как W_1 и W_2 — инвариантны, то $\varphi(x) \in W_1$ или $\varphi(x) \in W_2 \Rightarrow \varphi(x) \in W_1 + W_2 \Rightarrow$

 \boxtimes

• Матрица называется полураспавшейся, если она имеет вид

где $k_1 + k_2 = n, k_1, k_2 > 0.$

Теорема. У данного преобразования имеется нетривиальное инвариантное подпространство \Leftrightarrow его матрица в некотором базисе **полураспавшаяся**.

♦ Пусть линейное преобразование φ имеет имеет инвариантное подпространство:

$$\varphi(W) \subset W$$

 \Rightarrow Возьмем базис подпространства w_1, w_2, \dots, w_{k1} и дополним его до базиса пространства:

$$w_1, w_2, \ldots, w_{k1}, v_1, v_2, \ldots, v_{k2}$$

Посчитаем матрицу линейного преобразования в новом базисе:

$$\varphi(w_1) \in W, \ \varphi(w_1) = \alpha_{11}w_1 + \alpha_{21}w_2 + \dots + \alpha_{k+1} w_{k1} + 0v_1 + \dots + 0v_{k2}$$
 (1)

← Если для линейного преобразования существует полураспавшаяся матрица, то выполнется разложение (1). А значит

$$\begin{cases}
\varphi(w_1) \in L(w_1, w_2, \dots, w_{k1}) \\
\varphi(w_2) \in L(w_1, w_2, \dots, w_{k1}) \\
\dots \\
\varphi(w_{k1}) \in L(w_1, w_2, \dots, w_{k1})
\end{cases}$$

Отсюда следует, что L — инвариантно.

Рассмотрим произвольный вектор w:

$$w = \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_{k1} w_{k1}$$
$$\varphi(w) = \alpha_1 \varphi(w_1) + \alpha_2 \varphi(w_2) + \dots + \alpha_{k1} \varphi(w_{k1})$$

Так как $\varphi(w_i) \in L$ то и $\varphi(w) \in L$.

Замечание. Инвариантность подпространства достаточно проверять только на базисных векторах.

10 Характеристическая матрица и характеристический многочлен

Пусть A — квадратная матрица.

• Характеристическая матрица матрицы А имеет вид:

$$xE - A$$

• Характеристическим многочленом называется определитель характеристической матрицы:

$$|xE - A|$$

Примеры.

1. A = E — единичная матрица.

$$(xE - E) = \begin{pmatrix} x - 1 & 0 & \dots & 0 \\ 0 & x - 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x - 1 \end{pmatrix}, \quad |xE - E| = (x - 1)^n$$

2. A = 0 — нулевая матрица.

$$xE - 0 = xE = \begin{pmatrix} x & 0 & \dots & 0 \\ 0 & x & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x \end{pmatrix}, \quad |xE - 0| = x^n$$

• Следом линейного преобразования называется выражение

$$\operatorname{tr} \varphi = \operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$$

где $A = (a_{ij})$ — матрица линейного преобразования φ .

Свойства характеристических матрицы и многочлена:

- 1. Характеристическая матрица всегда невырожденная.
 - Характеристический многочлен всегда $\neq 0$.
 - ullet Степень многочлена равна n- порядок матрицы.

$$2. f(x) = \begin{vmatrix} x - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & x - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & a_{n2} & \dots & x - a_{nn} \end{vmatrix} = x^n - (a_{11} + a_{22} + \dots + a_{nn})x^{n-1} + \dots$$

- 3. $f(0) = (-1)^n \cdot |A|$ свободный член.
- 4. Матрица будет вырожденной $\Leftrightarrow 0$ является корнем ее многочлена.

5. Характеристические многочлены подобных матриц равны.

♦ Пусть
$$B = S^{-1}AS$$

 $|xE - B| = |xE - S^{-1}AS| = |S^{-1}xES - S^{-1}AS| = |S^{-1}(xE - A)S| = |S^{-1}| \cdot |xE - A| \cdot |S| = |S^{-1}| \cdot |S| \cdot |xE - A| = |S \cdot S^{-1}| \cdot |xE - A| = |E| \cdot |xE - A| = |xE - A|$

⊠

6. Характеристический многочлен полураспавшейся (распавшейся) матрицы равен произведению характеристических многочленов ее диагональных блоков.

$$\begin{pmatrix} A_1 & C \\ 0 & A_2 \end{pmatrix}, \quad \begin{vmatrix} xE_{n1} - A_1 & -C \\ 0 & xE_{n2} - A_2 \end{vmatrix} = |xE_{n1} - A_1| \cdot |xE_{n2} - A_2|$$

11 Собственные векторы и собственные значения линейного преобразования

Пусть ϕ — линейное преобразование пространства V_n .

• $\vec{x} \neq 0$ — **собственный вектор** линейного преобразования ϕ , отвечающий собственному значению λ :

$$\varphi(x) = \lambda x$$

Примеры

1. $\varphi(v) = v$ — тождественное преобразование. Все векторы собственные, отвечают значению 1.

$$\varphi(v) = 1 \cdot v$$

2. $\varphi(v) = \vec{0}$ — нулевое преобразование. Все векторы собственные, отвечают значению 0.

$$\varphi(v) = \vec{0} = 0 \cdot v$$

3. Проектирование

Векторы прямой: $\varphi(\vec{a}) = 1 \cdot \vec{a}$ — отвечают значению 1.

Векторы перпендикулярной плоскости: $\varphi(\vec{a}) = \vec{0} = 0 \cdot \vec{a}$ — отвечают значению 0.

$$X \xrightarrow{\varphi} AX$$

$$AX = \lambda X$$

$$AX = \lambda EA$$

$$(A - \lambda E)X = 0 \sim (A - \lambda E|0)$$

То есть решения ОСЛУ образуют векторное пространство.

$$\varphi(x) = \lambda x \sim (\varphi - \lambda e)x = \vec{0}$$

Образует инвариантное подпространство.

Теорема. Собственные значения линейного преобразования — это корни характеристического многочлена (характеристические числа, принадлежащие основному полю).

lacktriangle По определению $\phi(x) = \lambda x$. Запишем условие существования собственного вектора в виде:

$$(\varphi - \lambda E)x = \vec{0}$$

Так как $\vec{x} \neq 0$ по определению, то преобразование $\phi - \lambda e$ должно быть вырожденным:

$$\det(\varphi - \lambda e) = 0 \tag{1}$$

Пусть в каком-нибудь базисе преобразование φ имеет матрицу A, тогда преобразование $\varphi - \lambda e$ будет иметь матрицу $A - \lambda E$.

Тогда условие (1) можно записать в следующем виде:

$$\det(A - \lambda E) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0$$

А $\det(A - \lambda E)$ — характеристический многочлен, корнями которого являются собственные значения λ . \boxtimes Собственные векторы, отвечающие найденным собственным значениям, и нулевой вектор образуют инвариантное подпространство $\ker(\varphi - \lambda e)$, и их можно найти, решая ОСЛУ $(A - \lambda E|0)$ и отбрасывая 0.

Теорема. Собственные векторы, отвечающие попарно различным собственным значениям, линейно независимы.

♦ Пусть $\lambda_1, \lambda_2, \dots, \lambda_k, \ \lambda_i \neq \lambda_j, \ i \neq j$ — некоторые собственные значения. $\varphi(x_i) = \lambda_i x_i, \ i = 1, 2, \dots, k$ — собственные векторы. Докажем теорему методом от противного.

Предположим, что векторы линейно зависимы. Следовательно, один вектор линейно выражается через все остальные, которые будут линейно независимы:

$$x_k = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_{k-1} x_{k-1} \tag{2}$$

где x_1, x_2, \dots, x_{k-1} — линейно независимы. Подействуем на обе части уравнения (2) линейным преобразованием φ :

$$\lambda_k x_k = \alpha_1 \lambda_1 x_1 + \alpha_2 \lambda_2 x_2 + \dots + \alpha_{k-1} \lambda_{k-1} x_{k-1}$$
(3)

Умножим обе части уравнения (2) на λ_k :

$$\lambda_k x_k = \alpha_1 \lambda_k x_1 + \alpha_2 \lambda_k x_2 + \dots + \alpha_{k-1} \lambda_k x_{k-1} \tag{4}$$

 \boxtimes

Вычтем из уравнения (3) уравнение (4):

$$\alpha_1(\lambda_1 - \lambda_k)x_1 + \alpha_2(\lambda_2 - \lambda_k)x_2 + \dots + \alpha_{k-1}(\lambda_{k-1} - \lambda_k)x_{k-1} = \vec{0}$$

Так как векторы x_i линейно независимы, то $\alpha_i(\lambda_i - \lambda_k) = 0, \ i = 1, 2, \dots, k-1.$

Так как вектор $x_k \neq 0$, то $\alpha_i \neq 0$ одновременно. Положим, что $\alpha_1 \neq 0$.

Так как $\alpha_1 \neq 0$, $\lambda_k \neq \lambda_i \Rightarrow \alpha_i(\lambda_1 - \lambda_k) \neq 0$.

Полученное противоречие доказывает наше утверждение.

Теорема. Если у преобразования φ пространства V_n имеется n попарно различных собственных значений, то для него существует базис, состоящий из собственных векторов, отвечающих этим значениям, и его матрица в этом базисе будет диагональной.

♦ Пусть $\lambda_1, \lambda_2, \dots, \lambda_n, \ \lambda_i \neq \lambda_j, \ i \neq j$ — собственные значения. v_1, v_2, \dots, v_n — векторы, отвечающие данным значениям. Разложим эти векторы:

$$\begin{cases}
\varphi(v_1) = \lambda_1 v_1 + 0v_2 + \dots + 0v_n \\
\varphi(v_2) = 0v_1 + \lambda_2 v_2 + \dots + 0v_n \\
\dots \\
\varphi(v_n) = 0v_1 + 0v_2 + \dots + \lambda_n v_n
\end{cases}$$

Тогда матрица преобразования имеет вид:

$$\begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Следствие. Если у квадратной матрицы имеется п попарно различных характеристических чисел, то эта матрица подобна диагональной.

 \boxtimes

 \boxtimes

12 Основные свойства делимости в кольце целых чисел

$$\mathbb{N} = \{1, 2, \dots\}$$

 $\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$

• Говорят, что a делит b (a|b), когда $a \neq 0$ и $\exists q: b = aq$.

Свойства делимости:

1.
$$b|a, b|c \Rightarrow b|a \pm c$$

2. $b|a \Rightarrow b|ac$

3. $a|b, b|a \Leftrightarrow a = \pm b$

4. $b|a \Rightarrow (a,b) = b$

Теорема. Всякое число а представимо единственным образом через положительное b в виде

$$a = bq + r, \quad 0 \le r < b$$

lacktriangle Возьмем наибольшее q с условием, что $bq \leq a$. Тогда $r=a-bq \Rightarrow r$ удовлетворяет условию $0 \leq r < b$. Покажем однозначность:

$$a = bq + r$$
$$a = bq_1 + r_1$$

Вычтем из одного равенства другое:

$$b(q-q_1) = r_1 - r$$

Очевидно, что $r_1-r < b$. Пусть тогда $r_1 > r$. Тогда $q-q_1 > 0 \Rightarrow$ равенство невозможно $\Rightarrow r = r_1 \Rightarrow r_1 - r = 0$.

A так как $b \neq 0$, то $q - q_1 = 0 \Rightarrow q = q_1$.

12.1 НОД

• HOД — наибольший общий делитель 2 чисел, обозначается (a,b).

Свойства НОДа:

- 1. Для (0,0) НОД не существует.
- 2. $(a,0) = a, a \neq 0.$
- 3. Знак не влияет на делимость.
- $4. \ a = bq + r \ \Rightarrow (a, b) = (b, r)$
 - igla Если d|a и $d|b \Rightarrow d|r$. Если d|r и $d|b \Rightarrow d|a$.

12.2 Алгоритм Евклида

1. Большее из чисел поделить с остатком на меньшее:

$$a = bq_1 + r_1$$

2. Делитель делим с остатком на остаток r_1 :

$$b = r_1 q_2 + r_2$$

3. Продолжаем до тех пор, пока не получим первый нулевой остаток. Последний, отличный от 0 остаток, будет НОДом.

$$r_{1} = r_{2}q_{3} + r_{3}$$

$$r_{n-1} = r_{n}q_{n+1} + r_{n+1}$$

$$r_{n} = r_{n+1}q_{n+2}$$

$$(a,b) = r_{n+1}$$

 $(a,b) = (b,r_1) = (r_1,r_2) = \cdots = r_{n+1}$

 \boxtimes

 \boxtimes