Fundamentos de Data Science, Data Mining e Análise Preditiva

Especialização em Ciência de Dados com Big Data, Ble Data Analytics

Prof. Dr. Carlos Barros

Princípios data mining

. Introdução a Data Mining e Ciência dos Dados. Obtendo informações a partir dos dados. Principais Paradigmas e Modelos para mineração de dados. Dados incertos, com ruídos/outliers e confiança nos dados. Análise de dados exploratória. Introdução ao uso de modelos de predição. Escolha de modelos para mineração de dados. Redução de dimensionalidade e engenharia de dados. Minerando dados complexos. Trabalhando e limpando os Dados.

Pré-processamento de dados e análise exploratória de dados

Conteúdo

Base de dados

- Dados de crédito
- Censo
- Carregamento de bases de dados
- Valores inconsistente
- Valores faltantes
- Escalonamento de atributos
- Transformação de variáveis categóricas
- Introdução a avaliação de algoritmos
- Base de treinamento e base de teste
- Vários recursos do pandas (localizar, remover linhas e colunas, alterar valores)

Tarefas

Classificação

Regressão

Agrupamentos

Regras de Associação

Números reais

Temperatura, altura, peso, salário

Conjunto de valores finito (inteiros)

Contagem de alguma coisa

Dados não mensuráveis

Sem ordenação: cor dos olhos, gênero

Categorizado sob uma ordenação

Tamanho P, M e G

Base de Dados de credito

```
import pandas as pd
base = pd.read_csv('credit_data.csv')
base.describe()
base.loc[base['age'] < 0]
# apagar a coluna
base.drop('age', 1, inplace=True)
# apagar somente os registros com problema
base.drop(base[base.age < 0].index, inplace=True)
# preencher os valores manualmente
# preencher as valores com a média
base.mean()
base['age'].mean()
base['age'][base.age > 0].mean()
base.loc[base.age < 0, 'age'] = 40.92
```

Base de Dados de credito

Tratamento de Valores faltantes

```
base.loc[base['age'] < 0]
W apagar a coluna
base.drop('age', 1, inplace=True)
# apagar somente os registros com problema
base.drop(base[base.age < 0].index, inplace=True)
# preencher os valores manualmente
# preencher os valores com a média
base.mean()
base['age'].mean()
base['age'][base.age > 0].mean()
base.loc[base.age < 0, 'age'] = 40.92
pd.isnull(base['age'])
base.loc[pd.isnull(base['age'])]
previsores = base.iloc[:, 1:4].values
classe = base.iloc[:, 4].values
from sklearn.preprocessing import Imputer
imputer = Imputer(missing values='NaN', strategy='mean', axis=0)
imputer = imputer.fit(previsores[:, 0:3])
previsores[:,0:3] = imputer.transform(previsores[:,0:3])
```

Base de Dados de credito

Escalonamento de atributos

```
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values='NaN', strategy='mean', axis=0)
imputer = imputer.fit(previsores[:, 0:3])
previsores[:,0:3] = imputer.transform(previsores[:,0:3])

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
previsores = scaler.fit_transform(previsores)
```

Padronização (Standardisation)

$$x = \frac{x - m\acute{e}dia(x)}{desvio\ padr\~ao(x)}$$

Normalização (Normalization)

$$x = \frac{x - m\text{i}nimo(x)}{m\text{a}ximo(x) - m\text{i}nimo(x)}$$

Base de Dados do Censo

- Transformação de variáveis categóricas

```
base = pd.read csv('census.csv')
previsores = base.iloc[:, 0:14].values
classe = base.iloc[:, 14].values
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder previsores = LabelEncoder()
#labels = labelencoder previsores.fit transform(previsores[:, 1])
previsores[:, 1] = labelencoder previsores.fit transform(previsores[:, 1])
previsores[:, 3] = labelencoder previsores.fit transform(previsores[:, 3])
previsores[:, 5] = labelencoder previsores.fit transform(previsores[:, 5])
previsores[:, 6] = labelencoder previsores.fit transform(previsores[:, 6])
previsores[:, 7] = labelencoder previsores.fit transform(previsores[:, 7])
previsores[:, 8] = labelencoder previsores.fit transform(previsores[:, 8])
previsores[:, 9] = labelencoder previsores.fit transform(previsores[:, 9])
previsores[:, 13] = labelencoder previsores.fit transform(previsores[:, 13])
onehotencoder = OneHotEncoder(categorical features = [1,3,5,6,7,8,9,13])
previsores = onehotencoder.fit transform(previsores).toarray()
labelencoder classe = LabelEncoder()
classe = labelencoder classe.fit transform(classe)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
previsores = scaler.fit transform(previsores)
```

Variáveis "Dummy"

Race	White	Black	Asian-Pac-Islander	Amer-Indian-Eskim
White	1	0	0	0
Black	0	1	0	0
Asian-Pac-Islander	0	0	1	0
Amer-Indian-Eskimo	0	0	0	1
Black	0	1	0	0
Black	0	1	0	0

Avaliação de Algoritmos -

- -> Matriz de Confusão
- -> Validação Cruzada
- -> Holdout
- -> GridSearch
- -> Outliers
- -> Overfitting e underfitting

AVALIANDO O QUE FOI APRENDIDO

1 - USANDO MESMO CONJUNTO DE DADOS

AVALIANDO O QUE FOI APRENDIDO

2 – HOLD OUT

AVALIANDO O QUE FOI APRENDIDO

3 – VALIDAÇÃO CRUZADA

COMO "MELHORAR" UM MODELO?

- TESTANDO DIFERENTES ALGORITMOS
- PARAMETRIZANDO ALGORITMOS
- SELECIONANDO E TRATANDO DADOS
- SELEÇÃO DE ATRIBUTOS

Avaliação de Algoritmos -

-> Matriz de Confusão

		Valor P	revisto
		Positivo	Negativo
Valor Verdadeiro	Negativo	Verdadeiros Positivos	Falsos Negativos
Valor Ve	Positivo	Falsos Positivos	Verdadeiros Negativos

MÉTRICAS

			Treino	
ais		Aprovado	Reprovado	
rigin	Aprovado	1	1004	208
Ori	Reprovado		202	294

Métrica	Fórmula	Descrição	Cálculo
Acertos	(VP+VN)/Total	Total de Acertos	75,99
Erros	(FP+FN)/Total	Total de Erros	24,00
Precisão	VP/(VP+FP)	Quantos registros de fato são positivos	83,25
Lembrança ou Positivos Verdadeiros	VP/(VP+FN)	Positivos corretamente previstos	82,83
Negativos Verdadeiros	VN/(VN+FP)	Total de Negativos Verdadeiros	59,27
Positivos Falsos	FP/(VN+FP)	Total de Positivos Falsos	40,72
Negativos Falsos	FN/(VP+FN)	Total de Negativos Falsos	17,16

Métricas de Erros

Previsão de valores numéricos (reais, inteiros)

Métricas diferentes da previsão de categorias

Uso:

- Regressão clássica
- Regressão ML
- Series Temporais
- Etc.

Mean Erro (ME) Dependente de Escala

A média da diferença entre realizado e previsto

Previsto	Realizado	Dif.
3,34	3,00	-0,34
4,18	4,00	-0,18
3,00	3,00	0
2,99	3,00	0,01
4,51	4,50	-0,01
5,18	4,00	-1,18
8,18	4,50	-3,68

$$MAE = \sum_{I=1}^{N} \frac{p_i - t_i}{n}$$

$$ME = \frac{-5,38}{7} = -0,76$$

Mean Absolute Erros (MAE) Dependente de Escala

A média da diferença absoluta entre o realizado e o previsto

Previsto	Realizado	Dif. Absoluta
3,34	3,00	0,34
4,18	4,00	0,18
3,00	3,00	[0]
2,99	3,00	0,01
4,51	4,50	0,01
5,18	4,00	1,18
8,18	4,50	3,68
		5,4

$$MAE = \sum_{I=1}^{N} \frac{|p_i - t_i|}{n}$$

MAE =
$$\frac{5,4}{7}$$
 = 0,77

Root Mean Squared Error (RMSE) Independente de Escala

O desvio padrão da amostra da diferença entre o previsto e o teste

Previsto	Realizado	Dif. ao Quad.
3,34	3,00	0,1156
4,18	4,00	0,0324
3,00	3,00	0
2,99	3,00	1E-04
4,51	4,50	1E-04
5,18	4,00	1,3924
8,18	4,50	13,5424

$$\mathsf{RMSE} = \sqrt{\frac{\sum_{I=1}^{N}(p_i - t_i)^2}{N}}$$

RMSE =
$$\sqrt{\frac{15,083}{7}}$$

$$RMSE = 1,46$$

Mean Percentage Error (MPE) Independente de Escala (%)

Diferença percentual de erro

Previsto	Realizado	Erro %
3,34	3,00	-11,3333
4,18	4,00	-4,5
3,00	3,00	0
2,99	3,00	0,333333
4,51	4,50	-0,22222
5,18	4,00	-29,5
8,18	4,50	-81,7778

$$MPE = \frac{\sum_{I=1}^{N} \frac{(t_i - p_i)}{t_i - 100}}{N}$$

$$MPE = \frac{-127}{7}$$

$$MPE = -18,14$$

Mean Absolute Percentage Error (MAPE) Independente de Escala (%)

Diferença absoluta percentual de erro

Previsto	Realizado	Erro abs.	Erro % abs.
3,34	3,00	0,1156	0,1133333
4,18	4,00	0,0324	0,045
3,00	3,00	0	0
2,99	3,00	1E-04	0,0033333
4,51	4,50	1E-04	0,0022222
5,18	4,00	1,3924	0,295
8,18	4,50	13,5424	0,8177778

MAPE =
$$\frac{\sum_{I=1}^{N} \frac{|p_i - t_i|}{|t_i|}}{N}$$
MAPE =
$$\frac{1,2766667}{7}$$
MAPF = 0.18

$$MAPE = 0.18$$

Previsto	Realizado	Diferença	Dif. Abs.	Dif. Quad.	Erro %	Erro % abs	ME	-0,76857
3,34	3	-0,34	0,34	0,1156	-11,3333	11,33333	MAE	0,77143
4,18	4	-0,18	0,18	0,0324	-4,5	4,5	RMSE	1,46789
3	3	0	0	0	0	0	MPE	-18,1429
2,99	3	0,01	0,01	1E-04	0,33333	0,333333	MAPE	18,2381
4,51	4,5	-0,01	0,01	1E-04	-0,22222	0,222222		

-29,5

13,5424 -81,7778 81,77778

1,3924

5,18

8,18

-1,18

-3,68

4,5

1,18

3,68

29,5

Outliers

- -> Valores fora do padrão: Afastado dos demais elementos- média
- -> Várias formas de encontrá-los

Valores Anormais podem ser:

- Natural
- Erros
- Ruídos
- Exceções
- Fraudes

Outliers

Variáveis categóricas

Outliers - O que fazer?

- Remover o registro
- • Não fazer nada
- • Substituir

```
import matplotlib.pyplot as plt
import pandas as pd
from pyod.models.knn import KNN
iris = pd.read_csv('iris.csv')
plt.boxplot(iris.iloc[:,1], showfliers = True)
outliers = iris[(iris['sepal width'] > 4.0) | (iris['sepal width'] < 2.1)]
sepal width = iris.iloc[:,1]
sepal_width = sepal_width.reshape(-1,1)
detector = KNN()
                                                                    import pandas as pd
detector.fit(sepal_width)
previsoes = detector.labels_
                                                                    base = pd.read csv('credit data.csv')
                                                                    base = base.dropna()
                                                                    # outliers idade
                                                                    import matplotlib.pyplot as plt
                                                                    plt.boxplot(base.iloc[:,2], showfliers = True)
                                                                    outliers age = base[(base.age < -20)]
```

outliers loan

plt.boxplot(base.iloc[:,3])

outliers loan = base[(base.loan > 13400)]

```
import pandas as pd
                                                           import pandas as pd
base = pd.read csv('credit data.csv')
                                                           base = pd.read csv('credit data.csv')
base = base.dropna()
                                                           base = base.dropna()
base.loc[base.age < 0, 'age'] = 40.92
                                                           from pyod.models.knn import KNN
# income x age
                                                           detector = KNN()
import matplotlib.pyplot as plt
                                                           detector.fit(base.iloc[:,1:4])
plt.scatter(base.iloc[:,1], base.iloc[:,2])
                                                           previsoes = detector.labels
# income x loan
                                                           confianca previsoes = detector.decision scores
plt.scatter(base.iloc[:,1], base.iloc[:,3])
                                                           outliers = []
# age x loan
                                                           for i in range(len(previsoes)):
plt.scatter(base.iloc[:,2], base.iloc[:,3])
                                                               #print(previsoes[i])
                                                               if previsoes[i] == 1:
base_census = pd.read_csv('census.csv')
                                                                    outliers.append(i)
# age x final weight
                                                          lista outliers = base.iloc[outliers, :]
plt.scatter(base census.iloc[:, 0], base census.iloc[:,2])
```

Overfitting-e-underfitting

Overfitting-e-underfitting

Underfitting

- •Resultados ruins na base de treinamento
- ②Overfitting
- •Resultados bons na base de treinamento
- •Resultados ruins na base de teste
- Muito específico
- Memorização
- Erros na variação de novas instâncias

Avaliação de Algoritmos

```
import pandas as pd
base = pd.read csv('credit data.csv')
base.loc[base.age < 0, 'age'] = 40.92
previsores = base.iloc[:, 1:4].values
classe = base.iloc[:, 4].values
from sklearn.preprocessing import Imputer
imputer = Imputer(missing values = 'NaN', strategy = 'mean', axis = 0)
imputer = imputer.fit(previsores[:, 1:4])
previsores[:, 1:4] = imputer.transform(previsores[:, 1:4])
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
previsores = scaler.fit transform(previsores)
from sklearn.cross validation import train test split
previsores treinamento, previsores teste, classe treinamento, classe teste = train test split(previsores, classe, test size=0.25, random state=0)
# importação da biblioteca
# criação do classificador
classificador.fit(previsores treinamento, classe treinamento)
previsoes = classificador.predict(previsores teste)
from sklearn.metrics import confusion matrix, accuracy score
precisao = accuracy score(classe teste, previsoes)
matriz = confusion matrix(classe teste, previsoes)
```

Avaliação de Algoritmos

```
base = pd.read csv('census.csv')
previsores = base.iloc[:, 0:14].values
classe = base.iloc[:, 14].values
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder previsores = LabelEncoder()
previsores[:, 1] = labelencoder previsores.fit transform(previsores[:, 1])
previsores[:, 3] = labelencoder previsores.fit transform(previsores[:, 3])
previsores[:, 5] = labelencoder previsores.fit transform(previsores[:, 5])
previsores[:, 6] = labelencoder previsores.fit transform(previsores[:, 6])
previsores[:, 7] = labelencoder previsores.fit transform(previsores[:, 7])
previsores[:, 8] = labelencoder previsores.fit transform(previsores[:, 8])
previsores[:, 9] = labelencoder previsores.fit transform(previsores[:, 9])
previsores[:, 13] = labelencoder previsores.fit transform(previsores[:, 13])
onehotencoder = OneHotEncoder(categorical features = [1,3,5,6,7,8,9,13])
previsores = onehotencoder.fit transform(previsores).toarray()
labelencoder classe = LabelEncoder()
classe = labelencoder classe.fit transform(classe)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
previsores = scaler.fit transform(previsores)
from sklearn.cross validation import train test split
previsores_treinamento, previsores_teste, classe_treinamento, classe_teste = train_test_split(previsores, classe, test_size=0.15, random_state=0)
# importação da biblioteca
# criação do classificador
classificador.fit(previsores treinamento, classe treinamento)
previsoes = classificador.predict(previsores_teste)
from sklearn.metrics import confusion matrix, accuracy score
precisao = accuracy score(classe teste, previsoes)
matriz = confusion matrix(classe teste, previsoes)
```

EDA- Análise Exploratória de Dados

Análise Exploratória de Dados – AED John Wilder Tukey em 1977- EDA

Busca Obter:

- 1. Variação
- 2. Anomalias
- 3. Distribuições
- 4. Tendências
- 5. Padrões
- 6. Relações

Iniciar uma analise de dados pela EDA, Só então decidir como buscar a solução para o problema

EDA vs Gráficos

- Não são a mesma coisa, porém eda é altamente baseado na produção de gráficos
- Gráficos de dispersão, box plots, histogramas etc