Analysis of Pseudorandom Sequences

Charles Celerier

NCUR 2012

What is a pseudorandom sequence?

What is a pseudorandom sequence?

uniform distribution

What is a pseudorandom sequence?

- uniform distribution
- low auto-correlation

0100111001000011010101010101010 = NCUR

0100111001000011010101010101010 = NCUR 00000101000010010010010010000010

```
01001110010000110101010101010 = NCUR

⊕ 0000010100001001000110010000010 = KJLP
```

Why use stream ciphers?

- fast
- easy to implement with hardware
- plaintext length is not always known
- near one-time-pad security

My research

- Boolean functions
- 2-adic integers
- pseudorandom sequences
- shift registers

\mathbb{F}_2 or "GF two"

XOR	AND
$0 \oplus 0 := 0$	$0 \cdot 0 := 0$
$0 \oplus 1 := 1$	$0 \cdot 1 := 0$
$1 \oplus 0 := 1$	$1 \cdot 0 := 0$
$1\oplus1:=0$	$1 \cdot 1 := 1$

Table: Binary Operations for \mathbb{F}_2

\mathbb{F}_2^n or "GF two to the n"

Example

Let $a,b\in\mathbb{F}_2^3$ such that a=(1,0,1) and b=(0,1,1) then

$$a+b=(1\oplus 0,0\oplus 1,1\oplus 1)=(1,1,0)$$

$$a\cdot b=1\cdot 0\oplus 0\cdot 1\oplus 1\cdot 1=1$$

Fact

 \mathbb{F}_2^n is a vector space.

Properties of $x \in \mathbb{F}_2^n$

Definition

Let $x, y \in \mathbb{F}_2^n$. Then $wt : \mathbb{F}_2^n \to \mathbb{N} \cup \{0\}$ is defined by

$$wt(x) := \sum_{i=0}^{n-1} x_i$$

and $d: \mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{N} \cup \{0\}$ is defined by

$$d(x,y):=w(x+y).$$

Then wt(x) is the Hamming weight of x and d(x, y) is the Hamming distance between x and y.

Some examples

Example

Let $a,b,c\in\mathbb{F}_2^5$ such that

$$a = (0, 1, 1, 0, 1), b = (1, 1, 1, 0, 0), and c = (0, 0, 1, 1, 0).$$

Then,

$$wt(a) = 3$$
 $d(a, b) = 2$
 $wt(b) = 3$ $d(a, c) = 3$
 $wt(c) = 2$ $d(b, c) = 3$.

Boolean functions in \mathcal{BF}_n

Definition

Any function f defined such that

$$f: \mathbb{F}_2^n \to \mathbb{F}_2$$

is a *Boolean function*. The set of all Boolean functions on n variables will be denoted by \mathcal{BF}_n .

An example

Example

Let $f = x_0 + x_1$.

<i>x</i> ₀	<i>x</i> ₁	$f(x_0,x_1)$
0	0	0
1	0	1
0	1	1
1	1	0

Table: Truth Table of f

Characters of \mathbb{F}_2^n

Definition

A character χ of a finite abelian group G is a group homomorphism from G into a multiplicative group of complex numbers.

Fact

 $\chi_{\lambda}(x) := (-1)^{\lambda \cdot x}$ where $\lambda, x \in \mathbb{F}_2^n$ is a group character of \mathbb{F}_2^n .

Discrete Fourier Transform

Definition

The discrete Fourier transform or DFT of a Boolean function is defined by

$$\mathcal{F}f(\lambda) = \sum_{x \in \mathbb{F}_2^n} f(x) \chi_{\lambda}(x) \tag{1}$$

Pseudo Boolean Functions

Definition

$$\hat{f}(x) := (-1)^{f(x)}$$
 and $\mathcal{BF}_n = \{\hat{f} : f \in \mathcal{BF}_n\}.$

Lemma

The characters of \mathbb{F}_2^n are functions in $\hat{\mathcal{BF}}_n$ and form an orthonormal basis of that set.

Pseudo Boolean Functions

Lemma

$$\hat{f}(x) = \frac{1}{2^{n/2}} \sum_{\lambda \in \mathbb{F}_2^n} c(\lambda) \chi_{\lambda}(x)$$
 (2)

where $c(\lambda)$, the Fourier coefficients of $\hat{f}(x)$ are given by

$$c(\lambda) = \frac{1}{2^{n/2}} \mathcal{F}\hat{f}(\lambda). \tag{3}$$

Rothaus' Definition and First Theorem

Definition

If all of the Fourier coefficients of \hat{f} are ± 1 then f is a bent function.

Theorem

If f is a bent function on \mathbb{F}_2^n , then n is even, n=2k; the degree of f is at most k, except in the case k=1.

Properties of Bent Functions

- 1. perfectly non-linear
- 2. $wt(f) = 2^{n-1} \pm 2^{n/2-1}$
- 3. $\sum_{x \in \mathbb{F}_2^n} f(x) + f(x+a) = 0 \quad \forall a \in \mathbb{F}_2^n$

2-adic integers

What happens when we write positive integers with infinitely many digits?

2-adic integers

What happens when we write positive integers with infinitely many digits?

You get elements of N-adic integer rings!

$$1 = 1000 \cdots$$

$$2 = 0100 \cdots$$

$$3 = 1100 \cdots$$

$$-1 = 1111 \cdots$$

$$1/3 = 1101010101 \cdots$$

$$-1/3 = 1010101010 \cdots$$

I am intentionally skipping the details of how to construct rational numbers such as 1/3. It is only important to know that as long as the denominator is not divisble by 2, it can be done.

Definition

Let $\alpha=(a_n)\in\mathbb{Z}_2\setminus (0)$. If m is the smallest number in $\mathbb{N}\cup\{0\}$ such that $a_m\not\equiv 0\pmod 2^{m+1}$, then the 2-adic valuation of α is m, or $\log_2(\alpha)=m$. If $\alpha=0$, then $\log_2(\alpha)=\infty$.

Example

Let $\alpha = 00010111011111\cdots$. Then $\log_2(\alpha) = 3$.

Boolean Sequences

Definition

Let (a_n) be a sequence. If T is the smallest integer such that $a_i = a_{i+T}$, then the *minimal period* of (a_n) is T.

Definition

Let $f \in \mathcal{BF}_n$ and $v_i \in \mathbb{F}_2^n$ such that $v_i = B^{-1}(i)$ for $0 \le i < 2^n$. Then,

$$seq(f) = (f(v_0), f(v_1), \cdots, f(v_{2^n-1}), f(v_0), \cdots)$$
(4)

is a lexicographical Boolean sequence.

2-adic Expansion

Definition

Let $f \in \mathcal{BF}_n$ and $v_i \in \mathbb{F}_2^n$ such that $v_i = B^{-1}(i)$ for $0 \le i < 2^n$. Then,

$$\alpha_f = (f(v_0), f(v_0) + f(v_1) \cdot 2, \cdots, f(v_0) + \cdots + f(v_i) \cdot 2^i, \cdots)$$
 (5)

where $\alpha_f \in \mathbb{Z}_2$ is called the *2-adic expansion* of f.

Lemma

The digit representation of α_f is seq(f).

Figure: Linear Feedback Shift Register from Google Images

Eventually periodic shift registers

Solomon W. Golomb wrote the famous book *Shift Register Sequences* in 1967 which contain numerous elementary facts about finite state machines.

Theorem

If the input sequence to a finite state machine is eventually periodic, then the output sequence is eventually periodic.

Breaking a Stream Cipher

Kerckhoffs' principle: "In assessing the security of a cryptosystem, one should always assume the enemy knows the method being used."

Typically, breaking a stream cipher will mean recovering the state of the shift register at a given time.

State of the register

Figure: Linear Feedback Shift Register from Google Images

Two Methods

- 1. 2-adic integers
- 2. Boolean sequences

Maiorana-McFarland Class Boolean Functions

A simple bent function construction is accomplished by the Boolean functions in the *Maiorana-McFarland class*. This is the the set \mathcal{M} which contains all Boolean functions on $\mathbb{F}_2^n = \{(x,y): x,y \in \mathbb{F}_2^{n/2}\}$, of the form:

$$f(x,y) = x \cdot \pi(y) \oplus g(y)$$

where π is any permutation on $\mathbb{F}_2^{n/2}$ and g any Boolean function on $\mathbb{F}_2^{n/2}$. All functions in the Maiorana-McFarland class of Boolean functions are bent.

Using Bent functions for Boolean Sequences

Theorem

The lexicographical Boolean sequence of a Bent function has a period exactly 2^n .

Consider the subset of Maiorana-McFarland class Boolean functions where g(y) = 0. $\bar{\pi}$ will be the function which specifies where each index moves to under the permutation π .

Theorem

$$\log_2(\alpha_{x \cdot \pi(y)}) = 2^{n/2} + 2^{\bar{\pi}(y_0)}$$

The 2-adic valuation of the Boolean sequence of the functions in this subset is entirely dependent on the permutation π .

Conclusion

- Pseudorandom sequences
- Stream Ciphers
- Analysis using Boolean functions and 2-adic integers
- Connections between Bent functions and 2-adic valuation