Stroke Prediction Jason A., Kimberly,

and Oliver

Why Stroke Prediction?

Stroke remains the second leading cause of death in the world. Being able to have early prediction of the likelihood of a person having a stroke would allow to provide preventative care.

Data Set

Features

- **Demograchics**
 - Age
 - Gender
- **Medical History**
 - Avg glucose
 - Hypertension
 - Heart disease

Work type
 BMI
 Smoking status

Target Variable

Data Cleaning

```
df.drop('id', axis=1, inplace=True)
```

id	0
gender	0
age	0
hypertension	0
heart_disease	0
ever_married	0
work_type	0
Residence_type	0
<pre>avg_glucose_level</pre>	0
bmi	201
smoking_status	0
stroke	0
dtype: int64	

Data Encoding

```
df['gender'] = df['gender'].map({'Male': 0, 'Female':
df['ever married'] = df['ever married'].map({'Yes':
work types = {
df['work type'] = df['work type'].map(work types)
```

```
df['Residence type'] =
df['Residence type'].map({'Urban': 1, 'Rural': 0})
df['smoking status'] = df['smoking status'].map({
   'formerly smoked': 0,
```


Top correlations with stroke:

- Age + <u>.25</u>
- Hypertension + .13
- Heart disease + .13
- Average glucose level + .13

Negative correlations:

- Smoking status 0.066
- Work type 0.058
- Gender 0.0091

Dealing with Imbalanced Data

```
# Count how many had a stroke (1) and how many didn't (0)
    print(df['stroke'].value_counts())
    print(df['stroke'].value_counts(normalize=True)) # percentages
                                                       Stroke vs. No Stroke
                                            5000
     4860
                                            4000
      249
                                           Count
Name: stroke, dtype: int64
                                            2000
0
     0.951262
     0.048738
                                            1000
Name: stroke, dtype: float64
                                                    No Stroke
                                                                   Stroke
                                                            Stroke
```

SMOTE for Imbalanced Data Sets

```
15 # Deal with imbalanced data using SMOTE
16 sm = SMOTE(random_state=42)
17
18 # Check class distribution before resampling
19 print("Before resampling:", Counter(y_train))
20
21 # Apply SMOTE
22 X_train_resampled, y_train_resampled = sm.fit_resample(X_train, y_train)
23
```

SMOTE = Synthetic Minority Over-sampling Technique

It creates new, synthetic examples of the minority class (e.g., strokes = 1) by interpolating between existing cases, helping the model better recognize these rare events.

Training and Comparing Different Models

Training Rand Accuracy: 0.9 Confusion Mat [[691 29] [42 5]] Classificatio	074 rix:			
	precision	recall	f1–score	support
0	0.94	0.96	0.95	720
1	0.15	0.11	0.12	47
accuracy			0.91	767
macro avg	0.54	0.53	0.54	767
weighted avg	0.89	0.91	0.90	767

Training NeuralNetwork (MLP) Accuracy: 0.7510 Confusion Matrix: [[551 169]					
[22 25]]					
Classification	Report:				
р	recision	recall	f1-score	support	
0	0.96	0.77	0.85	720	
1	0.13	0.53	0.21	47	
accuracy			0.75	767	
macro avg	0.55	0.65	0.53	767	
weighted avg	0.91	0.75	0.81	767	

```
Training XGBoost...
Accuracy: 0.8996
Confusion Matrix:
[[686 34]
[ 43
      4]]
Classification Report:
                           recall f1-score
              precision
                                              support
                   0.94
                             0.95
                                       0.95
                                                  720
                   0.11
                             0.09
                                       0.09
                                                   47
                                       0.90
                                                  767
   accuracy
                   0.52
                             0.52
                                       0.52
                                                  767
   macro avo
                                                  767
weighted avg
                   0.89
                             0.90
                                       0.89
```

```
Training Gradient Boost...
Accuracy: 0.8370
Confusion Matrix:
[[630 90]
 [ 35 12]]
Classification Report:
              precision
                           recall f1-score
                   0.95
                             0.88
                                        0.91
                                                   720
                   0.12
                             0.26
                                        0.16
                                                    47
                                        0.84
                                                   767
    accuracy
                   0.53
                             0.57
                                        0.54
                                                   767
   macro avq
weighted avg
                   0.90
                             0.84
                                        0.86
                                                   767
```

```
Training Logistic Regression...
Logistic Regression Coefficients and Odds Ratios:
             Feature Coefficient Odds Ratio
        ever married
                        -1.255477
                                      0.284940
       heart disease
                        -1.112779
                                      0.328644
6
      Residence_type
                         -1.031300
                                      0.356543
        hypertension
                         -0.956649
                                      0.384178
                         -0.655357
                                      0.519257
           work_type
9
      smoking status
                         -0.329349
                                      0.719392
0
                         -0.101988
                                      0.903040
              gender
                                      1.093905
                          0.089753
                 age
                         -0.007439
                                      0.992589
                 bmi
   avg_glucose_level
                                      1.007011
                          0.006986
Accuracy: 0.7731
Confusion Matrix:
[[562 158]
 [ 16 31]]
Classification Report:
                            recall f1-score
              precision
                                               support
                              0.78
                                                    720
                   0.97
                                        0.87
                   0.16
                              0.66
                                        0.26
           1
                                                     47
                                        0.77
                                                    767
    accuracy
                              0.72
                                        0.56
   macro avg
                   0.57
                                                    767
                              0.77
weighted avg
                   0.92
                                                    767
                                        0.83
```

Deciding What's Valuable

- Picking "No" every time gives 95% accuracy.
- What's the important metric ethically?

- **Recall** (true positive rate) measures how well the model accurately predicts true positives.
- Out of all the positive cases in the data set, how many did the model predict correctly?

Training and Comparing Different Models

Training Random Forest Accuracy: 0.9074 Confusion Matrix: [[691 29] [42 51]				
Classification	Report:			
	precision	recall	f1-score	support
0	0.94	0.96	0.95	720
1	0.15	0.11	0.12	47
accuracy			0.91	767
macro avg	0.54	0.53	0.54	767
weighted avg	0.89	0.91	0.90	767

Training NeuralNetwork (MLP) Accuracy: 0.7510 Confusion Matrix: [[551 169] [22 25]]				
Classification	Report:			
F.	recision	recall	f1-score	support
0	0.96	0.77	0.85	720
1	0.13	0.53	0.21	47
accuracy			0.75	767
macro avg	0.55	0.65	0.53	767
weighted avg	0.91	0.75	0.81	767

Training XGBoos Accuracy: 0.899 Confusion Matri [[686 34] [43 4]]	96			
Classification	Report:			
t	recision	recall	f1-score	support
0	0.94	0.95	0.95	720
1	0.11	0.09	0.09	47
accuracy			0.90	767
macro avg	0.52	0.52	0.52	767
weighted avg	0.89	0.90	0.89	767

```
Training Gradient Boost...
Accuracy: 0.8370
Confusion Matrix:
[[630 90]
[ 35 12]]
Classification Report:
              precision
                           recall f1-score
                   0.95
                             0.88
                                       0.91
                                                  720
                   0.12
                             0.26
                                       0.16
                                                    47
                                       0.84
                                                  767
    accuracy
                   0.53
                             0.57
                                       0.54
                                                  767
   macro avq
weighted avg
                   0.90
                             0.84
                                       0.86
                                                  767
```

```
Training Logistic Regression...
Logistic Regression Coefficients and Odds Ratios:
             Feature Coefficient Odds Ratio
        ever married
                        -1.255477
                                      0.284940
       heart disease
                        -1.112779
                                      0.328644
6
      Residence_type
                        -1.031300
                                      0.356543
        hypertension
                        -0.956649
                                      0.384178
                        -0.655357
                                      0.519257
           work_type
9
      smoking status
                        -0.329349
                                      0.719392
0
                        -0.101988
                                      0.903040
              gender
                         0.089753
                                      1.093905
                 age
                        -0.007439
                                      0.992589
                 bmi
   avg_glucose_level
                         0.006986
                                      1.007011
Accuracy: 0.7731
Confusion Matrix:
[[562 158]
 [ 16 31]]
Classification Report:
                            recall f1-score
                                               support
              precision
                              0.78
                                        0.87
                                                   720
                   0.97
                   0.16
                             0.66
                                        0.26
                                                    47
    accuracy
                                        0.77
                                                   767
                   0.57
                              0.72
                                        0.56
                                                   767
   macro avg
                   0.92
                             0.77
weighted avg
                                        0.83
                                                   767
```

Why Logistic Regression is the Best Model for Stroke Prediction

Model Chosen: Logistic Regression

Why?

- Missing a stroke case is worse than a false alarm.
- Prioritize Recall, which measures how well we catch actual stroke cases.
- NIH states: "This metric [Recall] is also regarded as being among the most important for medical studies, since it is desired to miss as few positive instances as possible, which translates to a high recall."
- Logistic Regression had the highest recall and the most true positives.

Goal:

- Maximize identification of real stroke cases to save lives.

Recall Scores for Stroke Prediction (Class 1):

Logistic Regression: 0.6596

Random Forest: 0.1064

XGBoost: 0.0851

Gradient Boost: 0.2553

NeuralNetwork (MLP): 0.5319

An Interpretable Model

- Logistic Regression allows us to interpret how each feature impacts the prediction.
- Doctors can ask: "Why did the model flag this patient?" and get a clear answer.
- In contrast: Black-box models like neural networks offer less explainability.

Factor Contribution

Feature	Odds Ratio	Interpretation
ever_married (Yes = 1)	0.285	Being married significantly reduces the odds of stroke (~72% lower than unmarried).
heart_disease (Yes = 1)	0.329	Having heart disease decreases stroke odds by ~67% counterintuitive. This could point to a data issue, label imbalance, or confounding features.
Residence_type (Urban = 1)	0.357	Living in an urban area reduces stroke odds by ~64% compared to rural. Possibly reflects better access to healthcare.
hypertension (Yes = 1)	0.384	Hypertension reduces stroke odds by ~62% another counterintuitive result. Clinically, this should increase stroke risk.

work_type (Private = 0 → Never_worked = 4)	0.519	As the work type shifts toward less conventional employment (e.g., never worked, children), stroke risk decreases. But it's a multi-category ordinal, so this interpretation needs caution.
smoking_status (formerly smoked = 0 → Unknown = 3)	0.719	Higher smoking associated with lower stroke risk , which is the opposite of expected. Suggests potential encoding or sampling bias.
gender (Male = 0, Female = 1)	0.903	Being female slightly reduces stroke risk compared to male (~10% less).
age (numeric)	1.094	Every additional year increases stroke odds by ~9%.
bmi (numeric)	0.993	Small effect — higher BMI very slightly reduces stroke odds (~0.7% per unit).
avg_glucose_level (numeric)	1.007	Slight increase in stroke risk with higher glucose (~0.7% per unit).

Learning

- Recall vs. Precision
- Critical thinking:
 - What metric matters most for this problem?
- Interesting factors:
 - Work type
 - Ever married

Potential Implementations

Preventative Care (Online Prediction)

- Doctors input your data to these models at an annual checkup
- If you are predicted to have a stroke, you can consult with your doctor to take preventative measures before hand.

Sources

Patni, Ayush. "How to Choose the Right Evaluation Metrics for Your ML Model?" *Medium*, Medium, 27 Nov. 2023, ayushdpatni.medium.com/how-to-choose-the-right-evaluation-metrics-for-your-ml-model-ad1f448ae3a5.

Hicks, Steven A, et al. "On Evaluation Metrics for Medical Applications of Artificial Intelligence." *Scientific Reports*, U.S. National Library of Medicine, 8 Apr. 2022, pmc.ncbi.nlm.nih.gov/articles/PMC8993826/.

Feigin VL;Brainin M;Norrving B;Martins SO;Pandian J;Lindsay P;F Grupper M;Rautalin I; "World Stroke Organization: Global Stroke Fact Sheet 2025." *International Journal of Stroke: Official Journal of the International Stroke Society*, U.S. National Library of Medicine, pubmed.ncbi.nlm.nih.gov/39635884/. Accessed 23 Apr. 2025.

Kaggle DataSet: https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset/code

Kaggle Dataset SMOTE reference:

https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset/discussion?sort=undefined