

Plano de Ensino para o Ano Letivo de 2020

	O (di see de Die delle e
	Código da Disciplina:
	EAL405
Carga horária sema	anal: 00 - 02 - 00
Série:	Período:
4	Diurno
luação	Pós-Graduação
de Alimentos	Mestre
luação	Pós-Graduação
de Alimentos	Mestre
יו	Série: 4 uação de Alimentos

Conhecimentos:

- C1 Representação gráfica de processos da indústria de alimentos (P&Ids)
- C2 Fundamentos e aplicações da instrumentação utilizada em processos de alimentos industriais;
- C3 Formulação de modelos matemáticos de unidades de processos de alimentos (operações unitárias) através da aplicação dos princípios de conservação de massa e de energia, fenômenos de transporte, termodinâmica e cinética;

Habilidades:

- Hl Ler e Interpretar representações gráficas de processos industriais (P&Ids)
- H2 Conceber, a partir de um descritivo básico, a representação gráfica de parte de um processo industrial.
- H3 Identificar os componentes que compõem a instrumentação de processos de alimentos aplicadas à automação industrial: sensores para a medição de variáveis de processo (pressão, nível, vazão, temperatura, pH, etc.), elementos eletrônico-digitais de comunicação e processamento de sinais (conversores, amplificadores, filtros, etc.), controladores em malha aberta e fechada com configurações convencionais e avançadas (PID, preditivo, adaptativo, etc.), elementos de manipulação de variáveis de processo (válvulas, bombas, etc.) e sistemas supervisórios;
- H4 Compreender a aplicação da equação de conservação de massa e da equação de conservação de energia (balanço de energia), fenômenos de transporte, termodinâmica de modelos matemáticos, discernindo sobre os termos que as constituem e as aplicações em modelagem e controle de processos de alimentos; H5 Analisar o comportamento de unidades de processos de alimentos (operações unitárias) em malha aberta e fechada (com controlador), relacionando o projeto

2020-EAL405 página 1 de 9

dessas unidades como etapa da engenharia de processos (planta de alimentos).

INSTITUTO MAUÁ DE TECNOLOGIA

H6 - Interpretar os aspectos fenomenológicos que originam o equacionamento matemático das unidades de processos de alimentos (operações unitárias), relacionando a causa e efeito entre o dimensionamento dessas unidades e as variáveis de processo.

Atitudes:

- A1 Autonomia intelectual A2 Criatividade
- A3 Senso prático
- A4 Rigor científico

EMENTA

Estudo da modelagem, simulação e controle de processos de alimentos. Modelagem matemática e técnicas de resolução numérica aplicadas a processos de alimentos. Fundamentos e aplicações da instrumentação na indústria de alimentos.

SYLLABUS

Study of modeling, simulation and control of food processes. Mathematical modeling and numerical techniques applied to food processes. Fundamentals of instrumentation and applications in the food industry.

TEMARIO

Estudio de modelado, simulación y control de procesos alimentarios. Los modelos matemáticos y técnicas numéricas aplicadas a los procesos de alimentos. Fundamentos de la instrumentación y aplicaciones en la industria alimentaria.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Exercício - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Sala de aula invertida
- Project Based Learning
- Problem Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas e de exercícios. Exemplos e estudo de casos.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Os conhecimentos prévios necessários para o aproveitamento da disciplina podem ser divididos em tópicos relacionados às disciplinas já cursadas:

- (1) Matemática e física: conceitos de cálculo diferencial e integral, de algarismos significativos e de medidas físicas experimentais;
- (2) Química: conceitos de físico-química (estequiometria, termodinâmica e cinética química) e de química orgânica, inorgânica e analítica;
- (3) Estatística: conceitos de erros, de ajuste de equações (regressões), de sensibilidade de variáveis de processo e de critérios estatísticos de validação

de modelos matemáticos;

2020-EAL405 página 2 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

- (4) Computação: utilização de planilhas para resolução de equações algébricas e diferenciais, com a posterior síntese de gráficos, tabelas e análise estatística;
- (5) Fundamentos de engenharia de processos: balanço material e de energia, conceitos de transferência de quantidade de movimento, calor e massa, conceitos dos principais equipamentos envolvidos com aspectos de transferência de quantidade de movimento (agitação e fluxo de líquidos/gases), de energia (trocadores de calor, evaporadores e secadores), de massa (destilação, absorção, adsorção, extração líquido-líquido e extração líquido-sólido) e de separações (envolvendo as fases gás-líquido-sólido);
- (6) Português: leitura e interpretação de textos (livros, listas de exercícios e provas), além da escrita de relatórios resultantes das atividades de laboratório e de projeto;
- (7) Inglês: leitura básica e vocabulário técnico.

CONTRIBUIÇÃO DA DISCIPLINA

A área de modelagem e controle de processos de alimentos está relacionada com a aplicação dos principais temas que constituem a Engenharia de Alimentos, como fenômenos de transporte, termodinâmica, microbiologia/bioquímica e operações unitárias, na formulação de modelos matemáticos visando à simulação com o objetivo de operar, projetar, otimizar e controlar essas unidades de processamento para a consequente automação da planta de alimentos.

Neste contexto, é de fundamental importância a capacitação deste profissional nos diversos tópicos considerados multidisciplinares que formam o conteúdo desta área. Assim, tendo sempre como objetivo final a análise de processos de alimentos industriais, deve-se inicialmente considerar uma conceituação na área da instrumentação industrial, com ênfase nos elementos que a constituem: sensores para a medição de variáveis de processo (pressão, nível, vazão, etc.), elementos eletrônico-digitais de comunicação e temperatura, pH, processamento de sinais (conversores, amplificadores, filtros, etc.), controladores em malhas abertas e fechadas com configurações convencionais e avançadas (PID, preditivo, adaptativo, etc.), elementos de manipulação de variáveis de processo (válvulas, bombas, etc.) e sistemas supervisórios. Na sequência, a modelagem matemática fenomenológica com base nos balanços material e de energia.

Dessa forma, atinge-se o objetivo de fornecer condições para modelar e controlar as diversas unidades presentes em processos de alimentos industriais no intuito de viabilizar a automação industrial.

2020-EAL405 página 3 de 9

BIBLIOGRAFIA

Bibliografia Básica:

ALVES, José Luiz Loureiro. Instrumentação, controle e automação de processos. 2. ed. Rio de Janeiro, RJ: LTC, 2012. 201 p. ISBN 9788521617624.

BEGA, Egídio Alberto (Org.) et al. INSTRUMENTAÇÃO industrial. 3. ed. Rio de Janeiro, RJ: Interciência, 2011. 694 p. ISBN 9788571932456.

BEGA, Egídio Alberto (Org.). Instrumentação industrial. 2. ed. Rio de Janeiro: Interciência, 2006. 583 p. ISBN 85719313.

HUGHES, Thomas A; ISA. Measurement and control basics. 2. ed. Research Triangle Park: ISA, 1995. 315 p. (Resources for Measurement and Control Series). ISBN 1-55617-541-8.

LIPTÁK, Béla G. Instrument engineer's handbook. 4. ed. Boca Raton: CRC, 2003. v. 1. ISBN 0849310830.

Bibliografia Complementar:

HOUGEN, Joel O; ISA. Methods for solving process plant problems. Research Triangle Park: ISA, 1996. 237 p. (Resources for Measurement and Control Series). ISBN 1-55617-539-6.

INSTRUMENT Society of America. BASIC automatic process control. [S.l.]: ISA, 2000. Fita de video 28min e 38 seg.

LIPTÁK, Béla G., ed. Instrument engineer's handbook: process control. 3. ed. Boca Raton: CRC, 2000. 1551 p. ISBN 0-8019-8242-1.

LOPEZ GOMEZ, Antonio; BARBOSA-CÁNOVAS, Gustavo V. Food plant design. Boca Raton: CRC: Francis & Taylor, 2005. 388 p. ISBN 1574446029.

PLATT, George. Process control: a primer for the nonspecialist and the newcomer. 2. ed. Research Triangle Park: ISA, 1998. 216 p. ISBN 1-55617-633-3.

SINGH, R. Paul; HELDMAN, Dennis R. Introduction to food engineering. 3. ed. Amsterdan: Academic Press, 2003. 659 p. ISBN 0-12-646384-0.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

2020-EAL405 página 4 de 9

Disciplina semestral, com trabalhos e provas (uma e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0$

Peso de $MP(k_{D})$: 0,7 Peso de $MT(k_{D})$: 0,3

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Disciplina semestral, avaliada por provas e trabalhos (duas provas mais uma prova substitutiva)

A nota do trabalho será formada a partir de atividades relacionadas ao desenvolvimento de projetos, e pelo relatório escrito, cujas datas serão combinadas a cada trabalho.

A programação da disciplina inclui a realização de 1 (um) trabalho a ser realizado em grupo:

Os temas dessas atividades serão sistemas de processos de alimentos envolvendo:

T1 - Instrumentação típica de processos da indústria de alimentos (tempo estimado para execução da tarefa - 20 horas).

Os trabalhos serão corrigidos e devolvidos no intuito de utilizá-los para a melhoria do aprendizado por meio da discussão dos diversos itens que o constituem, a saber: objetivos propostos, fundamentos teóricos utilizados, metodologias realizadas, resultados obtidos, análise das interpretações entre as relações "causa-efeito" e conclusões.

2020-EAL405 página 5 de 9

OUTRAS INFORMAÇÕES

As necessidades de recursos materiais e humanos são as seguintes:	Lousa	e giz,
projetor		
A disciplina incluirá atividade prática na planta piloto		

2020-EAL405 página 6 de 9

SOFTWARES NECESSÁRIOS PARA A DISCIPLIN	IA

2020-EAL405 página 7 de 9

2020-EAL405 página 8 de 9

PROGRAMA DA DISCIPLINA			
N° da	Conteúdo	EAA	
semana			
22 E	Apresentação da disciplina/ Diagrama de blocos	41% a 60%	
23 E	Simbologia de processos - P&ID	11% a 40%	
24 E	Leitura e interpretação básica de P&IDs	41% a 60%	
25 E	Exercícios P&ID	41% a 60%	
26 E	Exercícios P&ID	41% a 60%	
27 E	Introdução ao controle de processos	11% a 40%	
28 E	P3	0	
29 E	Introdução ao controle de processos +	11% a 40%	
30 E	apresentação dos trabalhos de instrumentação	91% a	
		100%	
31 E	Atividade na planta piloto	91% a	
		100%	
32 E	Modos de controle clássicos empregados numa malha de controle:	41% a 60%	
	Proporcional, Integral e Derivativo (Continuação)		
33 E	Modos de controle clássicos empregados numa malha de controle:	41% a 60%	
	Proporcional, Integral e Derivativo		
34 E	SEM AULA	0	
35 E	Revisão geral e exercícios	11% a 40%	
36 E	P4	0	
37 E	P4	0	
38 E	Revisões de provas	0	
39 E	PSUB	0	
Legenda	: T = Teoria, E = Exercício, L = Laboratório		

2020-EAL405 página 9 de 9