

SEQUENCE LISTING

<110> Merck & Co., Inc.
Monaci, Paolo
Nuzzo, Maurizio
La Monica, Nicola
Ciliberto, Gennaro
Lahm, Armin

<120> RHESUS HER2/NEU, NUCLEOTIDES ENCODING
SAME AND USES THEREOF

<130> ITR0043-PCT

<150> 60/437,846
<151> 2003-01-03

<160> 43

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 3768
<212> DNA
<213> Rhesus Monkey

<220>
<221> misc_feature
<222> (1)...(3768)
<223> R = A or G

<400> 1
atggagctgg cggcctggta ccgctggggg ctcccttcctcg ccctcttgcc ccccgagct 60
gcgggcaccc aagtgtcac cgacacagac atgaagctgc ggctccctgc cagtccccag 120
accacacctgg acatgctccg ccacactctac cagggtctgcc aggtggtgca gggtaacctg 180
gaactcacct acctgcccac caatgccagg ctctccttcc tgcaggatat ccaggagggtg 240
cagggctacg tgctcatcgc tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300
attgtgcgag gcacccagct ctttggggac aactatgccc tggccgtgct agacaatgga 360
gacctgctga acaataccac ccctgtcaca ggggcctccc caggaggcct gcgggagctg 420
cagcttcgaa gcctcacaga gatcttgaaa ggagggtct tgcaggatcg gaaaccccccag 480
ctctgctacc aggacacatg ttgtggaaag gacatcttcc ataagaacaa ccagctggct 540
ctcacactga tcgacaccaa ccgtctcgg gcctgcacc cctgttctcc agtgtgtaaag 600
ggctcccgct gctggggaga gagttcttag gattgtcaga gcctgacgcg cactgtctgt 660
gcccgtggct gtggccctg caaggggcca ctgcccactg actgctgcca tgagcagtgt 720
gctgccggct gcacggccca caagcactct gactgcctgg cctgccttca cttaaccac 780
agcggcatct gtgarctgca ctggcccgcc ctggtcaccc acaacacaga cacctttgag 840
tccatgccc accccggaggg ccgtataaca ttccggccca gctgtgtac tgcctgtccc 900
tacaactacc ttctacgga cgtgggatcc tgcaccctcg tctgcccct gcacaaccaa 960
gaggtgacag cggaggacgg aacacacgca tgtgagaagt gcagcaagcc ctgtgcccga 1020
gtgtgctatg gtctggcat ggagcacttg cgagagggtg gggcggtcac cagtgcacat 1080
atccaggagt ttgctgtcg caagaagat tttggggact tggcatttct gccagagagc 1140
tttgcgtggcg acccagcctc caacacggcc ccgtttcagc cggagcactgtt 1200
gagacttggc aagagatcac agtttaccta tacatctcg catggccaga cagcctgcct 1260
gacccatggc tcctccagaa cctgcaagta atccggggac gaattctgca caatggcgcc 1320
tactcaactga ccctgcaagg gctggcattc agctggctgg ggctgcgtc gctgaggaa 1380
ctggcgatgt gactggccct catccaccaat aacacccgac tctgcttgc gcacacgggtg 1440
ccctgggacc agctctccg gaacccgcac caagccctgc tccacactgc caacccggca 1500
gaggacgagt gtgtggcga gggcctggcc tgccaccagc tgtgcgcctg agggcactgc 1560
tgggtccag ggcccaccca gtgtgtcaac tgcagccagt tccttcgggg ccaggagtgc 1620
gtggaggaat gccgagact gcaagggctc cccagggagt atgtgaatgc cagacactgt 1680
ttggccgtgcc accctgagtg tcaagccccag aatggctcg tgacatgttt tgacccggag 1740
gctgaccagt gtgtggcgt tgcccaactt aaggaccctc ctttgcgt ggcccgctgc 1800
ccacgggtg tgaaacctga cctctcctac atgcccattt ggaagttcc agatgaggag 1860

<210> 2
<211> 1255
<212> PRT
<213> Rhesus Monkey

```

<400> 2
Met Glu Leu Ala Ala Trp Tyr Arg Trp Gly Leu Leu Leu Ala Leu Leu
      5          10          15
1      Pro Pro Gly Ala Ala Gly Thr Gln Val Cys Thr Gly Thr Asp Met Lys
      20          25          30
Pro     35          40          45
Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His
Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr
      50          55          60
Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val
      65          70          75          80
Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu
      85          90          95
Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr
      100         105         110
Ala Leu Ala Val Leu Asp Asn Gly Asp Leu Leu Asn Asn Thr Thr Pro
      115         120         125
Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser
      130         135         140
Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln
      145         150         155         160
Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn
      165         170         175
Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys
      180         185         190
His Pro Cys Ser Pro Val Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser

```

195	200	205
Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val	Cys Ala Gly Gly Cys	
210	215	220
Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys	Cys His Glu Gln Cys	
225	230	235
Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys	Leu Ala Cys Leu	240
245	250	255
His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys	Pro Ala Leu Val	
260	265	270
Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn	Pro Glu Gly Arg	
275	280	285
Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys	Pro Tyr Asn Tyr Leu	
290	295	300
Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys	Pro Leu His Asn Gln	
305	310	315
Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys	Glu Lys Cys Ser Lys	320
325	330	335
Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met	Glu His Leu Arg Glu	
340	345	350
Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu	Phe Ala Gly Cys Lys	
355	360	365
Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu	Ser Phe Asp Gly Asp	
370	375	380
Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu	Gln Leu Arg Val Phe	
385	390	395
Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr	Ile Ser Ala Trp Pro	400
405	410	415
Asp Ser Leu Pro Asp Leu Ser Val Leu Gln Asn	Leu Gln Val Ile Arg	
420	425	430
Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu	Thr Leu Gln Gly Leu	
435	440	445
Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg	Glu Leu Gly Ser Gly	
450	455	460
Leu Ala Leu Ile His His Asn Thr Arg Leu Cys	Phe Val His Thr Val	
465	470	475
Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln	Ala Leu Leu His Thr	480
485	490	495
Ala Asn Arg Pro Glu Asp Glu Cys Val Gly	Glu Leu Ala Cys His	
500	505	510
Gln Leu Cys Ala Arg Gly His Cys Trp Gly	Pro Gly Pro Thr Gln Cys	
515	520	525
Val Asn Cys Ser Gln Phe Leu Arg Gly Gln	Glu Cys Val Glu Glu Cys	
530	535	540
Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val	Asn Ala Arg His Cys	
545	550	555
Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn	Gly Ser Val Thr Cys	560
565	570	575
Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys	Ala His Tyr Lys Asp	
580	585	590
Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly	Val Lys Pro Asp Leu	
595	600	605
Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu	Glu Gly Thr Cys Gln	
610	615	620
Ser Cys Pro Ile Asn Cys Thr His Ser Cys Val	Asp Leu Asp Asp Lys	
625	630	635
Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu	Thr Ser Ile Ile Ser	640
645	650	655
Ala Val Val Gly Ile Leu Leu Val Val Leu	Gly Val Val Phe Gly	
660	665	670
Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg	Lys Tyr Thr Met Arg	
675	680	685
Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro	Leu Thr Pro Ser Gly	
690	695	700
Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu	Lys Glu Thr Glu Leu	

705	710	715	720
Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys			
725	730	735	
Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile			
740	745	750	
Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu			
755	760	765	
Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg			
770	775	780	
Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu			
785	790	795	800
Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg			
805	810	815	
Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly			
820	825	830	
Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala			
835	840	845	
Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe			
850	855	860	
Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp			
865	870	875	880
Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg			
885	890	895	
Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val			
900	905	910	
Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala			
915	920	925	
Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro			
930	935	940	
Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met			
945	950	955	960
Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe			
965	970	975	
Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu			
980	985	990	
Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu			
995	1000	1005	
Leu Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr Leu			
1010	1015	1020	
Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly Thr Gly			
1025	1030	1035	1040
Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg Ser Gly Gly			
1045	1050	1055	
Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu Ala Pro Arg			
1060	1065	1070	
Ser Pro Arg Ala Pro Ser Glu Gly Thr Gly Ser Asp Val Phe Asp Gly			
1075	1080	1085	
Asp Leu Gly Met Gly Ala Ala Lys Gly Leu Gln Ser Leu Pro Ala His			
1090	1095	1100	
Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu Asp Pro Thr Val Pro Leu			
1105	1110	1115	1120
Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Leu Thr Cys Ser Pro Gln			
1125	1130	1135	
Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pro Gln Pro Pro Ser Pro			
1140	1145	1150	
Gln Glu Gly Pro Leu Ser Pro Ala Arg Pro Thr Gly Ala Thr Leu Glu			
1155	1160	1165	
Arg Pro Lys Thr Leu Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val			
1170	1175	1180	
Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr Leu Ala Pro Arg			
1185	1190	1195	1200
Gly Gly Ala Ala Pro Gln Pro His Leu Pro Pro Ala Phe Ser Pro Ala			
1205	1210	1215	
Phe Asp Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Ser Glu Arg Gly Ala			

1220	1225	1230
Pro Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr		
1235	1240	1245
Leu Gly Leu Asp Val Pro Val		
1250	1255	

<210> 3
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 3
agccatgggg ccggagccgc a

21

<210> 4
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 4
agggctgggc agtgcagetc acagat

26

<210> 5
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 5
ctgcgggagc tgcagcttcg aag

23

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 6
ccaaagatct tcttgagcc

20

<210> 7
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 7
atctgtgagc tgcactgccc agccct

26

<210> 8
<211> 19

<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 8
gagcgcagcc ccagccagc 19

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 9
ggctgcaaga agatctttgg 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 10
tgggtgcagt tgatggggca 20

<210> 11
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 11
ccagtttaaa catttaaatg ccgccaccat ggagctggcg gcct 44

<210> 12
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 12
tgctgggttc cagggccac ccagtg 26

<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 13
tcagggatct cccgggctgg gat 23

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 14
gtggaggaat gccgagtact gcag

24

<210> 15
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 15
tgtgtttcc ctcaacacgg cgatggccac tggaattt

39

<210> 16
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 16
aaaattccag tggccatcgc cgtgttgagg gaaaacaca

39

<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 17
ctggcatct gcctgacatc cac

23

<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 18
ggtttcaggg acagtctctg aa

22

<210> 19
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 19

gccgtcgact ttacatggca cgtccagacc ca 32
<210> 20
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 20
cttcatgtct gtgcgggt 18

<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 21
ggccggagcc gcagtgagca cc 22

<210> 22
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 22
cttcgaagct gcagctcccg cag 23

<210> 23
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 23
atggagctgg cggccttgtg ccgct 25

<210> 24
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 24
accggcacag acatgaag 18

<210> 25
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 25
cactgggtgg gcccctggacc ccagca 26

<210> 26
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 26
gatccaagca ccttcacccctt cct 23

<210> 27
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 27
gctggctggg gctgcgcctc 19

<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 28
gggatccaga tgcccttgta gac 23

<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 29
tgccccatca actgcacccca 20

<210> 30
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 30
gtggatgtca ggcagatgcc cag 23

<210> 31
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 31
aggaagggtga aggtgcttgg atc 23

<210> 32
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 32
taaggtttgg ccccaaaaagt catcag 26

<210> 33
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 33
gtctacaagg gcatctggat ccc 23

<210> 34
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 34
ggctgggggc tgcagggtcag ggg 23

<210> 35
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 35
ctgatgactt ttggggccaa acctta 26

<210> 36
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 36
ttctgcggac ttggcattct gg 22

<210> 37
<211> 23
<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 37

atcccagccc gggagatccc tga

23

<210> 38

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 38

tggcagggttc ccctgga

17

<210> 39

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 39

cccttgacct gcagccccca gcc

23

<210> 40

<211> 3768

<212> DNA

<213> Rhesus Monkey

<220>

<221> misc_feature

<222> (1) ..(3768)

<223> R = A or G

<221> misc_feature

<222> (1) ..(3768)

<223> Y = C or T

<400> 40

atggagctgg	cggcctggta	ccgctggggg	ctccctcctcg	ccctcttgcc	ccccggagct	60
gcgggcaccc	aagtgtgcac	cggcacagac	atgaagctgc	ggctccctgc	cagtcccggag	120
accacacctgg	acatgcctcg	ccacactctac	caggctgcc	aggtgggtca	gggtaacacgt	180
gaactcacct	acctgcccac	caatgccagc	ctctccttcc	tgcaggatat	ccaggagggtg	240
cagggtctacg	tgctcatcg	tcacaaccaa	gtgaggcagg	tcccactgca	gaggctgcgg	300
atttgtcgag	gcacccagct	ctttgaggac	aactatgcc	tggccgtgct	agacaatgg	360
gaccggctga	acaataccac	ccctgtcaca	ggggcttccc	caggaggct	gcggggagctg	420
cagttcggaa	gcctcacaga	gatcttgaaa	ggagggggtct	tgatccagcg	gaaccccccag	480
ctctgctacc	aggacacat	tttgtggaa	gacatcttcc	ataagaacaa	ccagctggct	540
ctcacactga	tcgacaccaa	ccgctctcg	gcctgtccacc	cctgttctcc	agtgtgtaa	600
ggctcccgct	gctggggaga	gagttctgag	gattgtcaga	gcctgacgcg	cactgtctgt	660
gcccggctgt	gtgcccgtc	caagggccca	ctgcccactg	actgtgcaca	tgagcagtgt	720
gctccggct	gcacggcc	caagcactt	gactgcttgg	cctgcctcca	cttcaaccac	780
agcggcatct	gtgarctgca	ctgcccagcc	ctggtcacct	acaacacaga	cacctttgag	840
tccatgccc	accccgaggg	ccggtataca	ttcgccgcca	gtgtgtgac	tgcctgtccc	900
tacaactacc	tttctacgga	cgtggatcc	tgcacccctcg	tctgccccct	gcacaaccaa	960
gaggtgacag	cgaggacgg	aacacagcga	tgtgagaagt	gcagcaagcc	ctgtgcccga	1020
gtgtgctatg	gtctgggcat	gagcactt	cgagagggtga	ggcggtcac	cagtgccaat	1080
atccaggagt	ttgctggct	caagaagatc	tttgggagyt	tggcatttct	gccagagagc	1140

tttgatggcg	acccagcctc	caacaccgccc	ccgcttcagc	cgaggacagct	ccgagtgttt	1200
gagactctgg	aagagatcac	agtttaccta	tacatcttag	catggccaga	cagcctgcct	1260
gaccttagcg	tcctccagaa	cctgcaagta	atccggggac	gaattctgca	aatggcgcc	1320
tactcaactga	ccctgcaagg	gctggcatac	agctggctgg	ggctgcgctc	gctgagggaa	1380
ctggggcagtg	gactggccct	catccaccat	aacacccgccc	tctgcttgt	gcacacggtg	1440
ccctgggacc	agctctccg	gaacccgcac	caagccctgc	tccacactgc	caaccggcca	1500
gaggacgagt	gtgtggcga	gggcctggcc	tgccaccage	tgtgcgcrr	aggcactgc	1560
tgggttccag	ggcccaaaaa	gtgttcac	tgcagccagt	tccttcgggg	ccaggagtg	1620
gtggaggaat	gccgagact	gcaggggctc	cccaggaggt	atgtgaatgc	cagacactgt	1680
ttggcgtgcc	accctgagtg	tcagccccag	aatggcttag	tgacatgtt	tggaccggag	1740
gctgaccagt	gtgtggcctg	tgcccactat	aaggaccctc	ccttctgcgt	ggcccgctgc	1800
cccaaggggtg	tgaaacctga	cctctccctac	atgcccattct	ggaagttcc	agatgaggag	1860
ggcacgtgcc	agccttgc	catcaactgc	acccactct	gtgtggacct	ggtatgacaag	1920
ggctgccccg	ccgagcagar	agccagccct	ctgacgtcca	tcatctctgc	tgtggtgggc	1980
attctgctgg	tcgtggctt	gggggtggtc	tttgaatcc	tcatcaagcg	acggcagcag	2040
aagatccgga	agtacacgat	ggggaggctg	ctgcaggaaa	cgagacttgt	ggagccactg	2100
acaccgagt	gagcgatgcc	caaccaggcg	cagatgcgga	tcctgaaaaga	gacggagctg	2160
aggaaggtga	aggtgttgg	atctggagct	tttggcaca	tctacaagg	catctggatc	2220
cctgatgggg	aaatgtgaa	aattccagtg	gccatcaaag	tgttgaggga	aaacacatcc	2280
cccaaagcca	acaaagaaat	cttagacgaa	gcatatgtga	tggctgggt	gggctcccca	2340
tatgtctccc	gcctccctgg	catctgcctg	acatccacgg	tgcagcttgt	gacacagctt	2400
atgccctatg	gctgcctctt	agaccatgtc	cgagaaaacc	gcccgcct	gggctcccaag	2460
gacctgctga	actgggttat	gcagattgcc	aaggggatga	gctacctgga	ggtatgtgcgg	2520
ctogtacaca	gggacttggc	tgctcggaac	gtgctggta	agagtcccaa	ccatgtcaaa	2580
attacagact	ttgggctggc	tcggctgctg	gacatttgacg	agacagagta	ccatgcagat	2640
gggggcaagg	tgcccataa	gtggatggcg	ctggagtcca	ttctccgacg	ggggttcacc	2700
caccagatg	atgtgtggag	ttagtgggt	actgtgtggg	agctgtatgc	tttggggcc	2760
aaaccttacg	atgggatccc	agccccggag	atccctgacc	tgtgtggaaa	gggggagcgg	2820
ctgcccccagc	cccccatctg	caccatttgat	gtctcatgaa	tcatggtaa	atgttgatg	2880
attgactctg	aatgtcggcc	gagattccgg	gagttgggt	cggaatttctc	ccgcatggcc	2940
agggacccccc	agcgcttgt	ggtcatccag	aatgaggact	tggggccagc	cagtccttgc	3000
gacagcacct	tctaccgctc	actgctggag	gacgatgaca	tggggacct	ggtggatgct	3060
gaggagtato	tggtacccca	gcagggcttc	ttctgtccag	accctgcccc	gggcacttgg	3120
ggcatggtcc	accacaggca	ccgcagctca	tctaccagga	gtggcggtgg	ggacctgacg	3180
ctagggtctgg	agccctctga	agaggaggcc	cccaggtctc	cacrccgaccc	ctccgaagg	3240
actggctctg	atgttattgt	tggtgaccta	ggaatggggg	cagccaaagg	gctgcaaagc	3300
ctccccgac	atgacccttac	ccctctacag	cggtagactg	aggaccccac	gttacccctg	3360
ccttctgaga	ctgacggcta	cgttggcccc	ctgacactgca	gyccccagcc	cgaatatgt	3420
aaccagccag	atgttcggcc	acagccccct	tgccttcaag	agggccctct	gtctctgc	3480
cgacctactg	gtgccactct	ggaaaggccc	aagactctct	ccccaggaa	gaatggggtt	3540
gtcaaagacg	tttttgcctt	tggggggtgt	gtggagaacc	ccgagactt	ggcaccccg	3600
ggaggagctg	ccctcagcc	ccaccttct	cctgccttca	gcccagcctt	cgacaacctc	3660
tattactggg	accaggaccc	atcagagccg	ggggctccac	ctagcacctt	caaagggaca	3720
cctacggcag	agaacccaga	gtacctgggt	ctggacgtgc	cagtgtga		3768

<210> 41
<211> 1255
<212> PRT
<213> Rhesus Monkey

<220>
<221> VARIANT
<222> 517
<223> Xaa = Q or R

<221> VARIANT
<222> 647
<223> Xaa = K or R

<221> VARIANT
<222> 1075
<223> Xaa = Q or R

<400> 41

Met Glu Leu Ala Ala Trp Tyr Arg Trp Gly Leu Leu Leu Ala Leu Leu
 1 5 10 15
 Pro Pro Gly Ala Ala Gly Thr Gln Val Cys Thr Gly Thr Asp Met Lys
 20 25 30
 Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His
 35 40 45
 Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr
 50 55 60
 Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val
 65 70 75 80
 Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu
 85 90 95
 Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr
 100 105 110
 Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro
 115 120 125
 Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser
 130 135 140
 Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln
 145 150 155 160
 Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn
 165 170 175
 Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys
 180 185 190
 His Pro Cys Ser Pro Val Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser
 195 200 205
 Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys
 210 215 220
 Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys
 225 230 235 240
 Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu
 245 250 255
 His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val
 260 265 270
 Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg
 275 280 285
 Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu
 290 295 300
 Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln
 305 310 315 320
 Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys
 325 330 335
 Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu
 340 345 350
 Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys
 355 360 365
 Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp
 370 375 380
 Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Arg Val Phe
 385 390 395 400
 Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro
 405 410 415
 Asp Ser Leu Pro Asp Leu Ser Val Leu Gln Asn Leu Gln Val Ile Arg
 420 425 430
 Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu
 435 440 445
 Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly
 450 455 460
 Leu Ala Leu Ile His His Asn Thr Arg Leu Cys Phe Val His Thr Val
 465 470 475 480
 Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr
 485 490 495
 Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His
 500 505 510

Gln Leu Cys Ala Xaa Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys
 515 520 525
 Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys
 530 535 540
 Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys
 545 550 555 560
 Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys
 565 570 575
 Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp
 580 585 590
 Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu
 595 600 605
 Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Thr Cys Gln
 610 615 620
 Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys
 625 630 635 640
 Gly Cys Pro Ala Glu Gln Xaa Ala Ser Pro Leu Thr Ser Ile Ile Ser
 645 650 655
 Ala Val Val Gly Ile Leu Leu Val Val Leu Gly Val Val Phe Gly
 660 665 670
 Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg
 675 680 685
 Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly
 690 695 700
 Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu
 705 710 715 720
 Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys
 725 730 735
 Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile
 740 745 750
 Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu
 755 760 765
 Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg
 770 775 780
 Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu
 785 790 795 800
 Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg
 805 810 815
 Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly
 820 825 830
 Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala
 835 840 845
 Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe
 850 855 860
 Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp
 865 870 875 880
 Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg
 885 890 895
 Arg Arg Phé Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val
 900 905 910
 Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala
 915 920 925
 Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro
 930 935 940
 Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met
 945 950 955 960
 Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe
 965 970 975
 Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu
 980 985 990
 Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu
 995 1000 1005
 Leu Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr Leu
 1010 1015 1020

Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly Thr Gly
 1025 1030 1035 1040
 Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg Ser Gly Gly
 1045 1050 1055
 Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu Glu Ala Pro Arg
 1060 1065 1070
 Ser Pro Xaa Ala Pro Ser Glu Gly Thr Gly Ser Asp Val Phe Asp Gly
 1075 1080 1085
 Asp Leu Gly Met Gly Ala Ala Lys Gly Leu Gln Ser Leu Pro Ala His
 1090 1095 1100
 Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu Asp Pro Thr Val Pro Leu
 1105 1110 1115 1120
 Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Leu Thr Cys Ser Pro Gln
 1125 1130 1135
 Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pro Gln Pro Pro Ser Pro
 1140 1145 1150
 Gln Glu Gly Pro Leu Ser Pro Ala Arg Pro Thr Gly Ala Thr Leu Glu
 1155 1160 1165
 Arg Pro Lys Thr Leu Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val
 1170 1175 1180
 Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr Leu Ala Pro Arg
 1185 1190 1195 1200
 Gly Gly Ala Ala Pro Gln Pro His Leu Pro Pro Ala Phe Ser Pro Ala
 1205 1210 1215
 Phe Asp Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Ser Glu Arg Gly Ala
 1220 1225 1230
 Pro Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr
 1235 1240 1245
 Leu Gly Leu Asp Val Pro Val
 1250 1255

<210> 42
 <211> 3768
 <212> DNA
 <213> Rhesus Monkey

<400> 42
 atggagctgg cggcctggta ccgctggggg ctcctcctcg ccctcttgcc ccccgagct 60
 ggggcaccc aagtgtcac cggcacagac atgaagtcg ggctccctgc cagtcccgag 120
 acccacctgg acatgcctcg coacctctac caggctgcc aggtggtgcg ggttaacctg 180
 gaactcacct acctgcctcc caatgcctcg ctctcccttc tgcaaggatcc caggaggtg 240
 caggctacg tgctcatcgc tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300
 attgtgcggag gcacccagct ctttgaggac aactatgccc tggccgtgct agacaatgga 360
 gacctgtga acaataccac ccotgtcaca ggggcctccc caggaggct gcgggagctg 420
 cagttcgaa gcctcacaga gatctgaaa ggagggtct tgatccagcg gaacccccag 480
 ctctgttacc aggacacgt tttgtggaa gacatcttcc ataagaacaa ccagctggct 540
 ctcacactga tcgacaccaa ccgcctctcg gcctgccacc cctgttctcc agtgtgtaa 600
 ggctcccgct gctggggaga gagttcttag gattgtcaga gcctgacgcg cactgtctgt 660
 gccgggtggcgt gtggccgtcg caaggggccca ctgcccactg actgctgcca tgagcagtgt 720
 getggcggt gcacggggcc caagcactt gactgctgg cctgccttca cttaaccac 780
 agccggcatct gtgaactgca ctgcccagcc ctggtcaccc acaacacaga caccttttag 840
 tccatgccccca accccggaggcc cggtataca ttccggccca gctgtgtgac tgcctgtccc 900
 tacaactacc tttctacggc cgtggatcc tgcaccctcg tctgccccct gcacaaccaa 960
 gaggtgacag cggaggacgg aacacagcga tgtgagaagt gcagcaagcc ctgtgcccga 1020
 gtgtgtatg gtctggcat ggagcacttgc cgagaggta gggcggtcac cagtgc当地 1080
 atccaggagt ttgctggctg caagaagatc tttggagct tggcatttgc gccagagagc 1140
 tttgatggcg acccaggctc caacaccggcc cgccttcagc cggagcactt cggagtgttt 1200
 gagactctgg aagagatcac aggttaccta tacatctcg catggccaga caggctgcct 1260
 gacccatcg tcctccagaa cctgcaagta atccggggac gaattctgca caatggcgcc 1320
 tactcaactga ccctgcaagg gctgggcattc agctggctgg ggctgcgtc getgagggaa 1380
 ctggggcagtg gactggccct catccaccat aacaccggcc tctgctttgt gcacacgggt 1440
 ccctgggacc agctctccg gaacccggcac caagccctgc tccacactgc caaccggcca 1500
 gaggacgagt gtgtggcga gggcctggcc tgccaccaggc tggcgtcccg agggcactgc 1560

tgggttccag	ggcccaccca	gtgtgtcaac	tgcagccagt	tccttcgggg	ccaggagtgc	1620
gtggaggaat	gccgagtaact	gcaggggctc	cccaggaggt	atgtgaatgc	cagacactgt	1680
ttggcggtcc	accctgagtg	ttagccccag	aatggctcag	tgacatgttt	tggaccggag	1740
gctgaccagt	gtgtggcctg	tgcccactat	aaggaccctc	ccttctgcgt	ggcccgctgc	1800
cccaagcggtg	tgaaacctga	cctctctcac	atgcccacatct	ggaagttcc	agatgaggag	1860
ggcacgtgcc	agtcttgccc	catcaactgc	acccactcct	gtgtggacct	ggtatgacaag	1920
ggctgccccg	ccgagcagag	agccagccct	ctgacgttca	tcatctctgc	tgtggtgggc	1980
attctgtctgg	tcgtggtctt	gggggtggtc	tttggaatcc	tcatcaagcg	acggcagcag	2040
aagatccgga	agtacacgat	gcccgggctg	ctgcaggaaa	cgagcttgtt	ggagccactg	2100
acaccgagtg	gagcgatgcc	caaccaggcg	cagatgcgga	tcctgaaaga	gacggagctg	2160
aggaaggtga	agggtcttgg	atctggagct	tttggcacaag	tctacaagg	cacatctggatc	2220
cctgtatgggg	agaatgtga	aaatcccagg	gcccataaag	tgttgaggaa	aaacacatcc	2280
cccaaagcca	acaaagaat	cttagacgaa	gcatatgtga	tggctgggt	gggtccccc	2340
tatgtctccc	gcctctggg	catctgcctg	acatccacgg	tgcagcttgtt	gacacagctt	2400
atgccctatg	gtgccttctt	agaccatgtc	cgagaaaaacc	gcggacgcct	gggctcccaag	2460
gacctgtga	actgggttat	gcagattgcc	aaggggatga	gtaaccttga	ggtatgtgcgg	2520
ctcgacaca	gggacttggc	tgctcggaa	gtgctggtca	agagtccaa	ccatgtcaaa	2580
attacagact	ttgggctggc	tcggctgctg	gacattgacg	agacagagta	ccatgcagat	2640
gggggcaagg	tgcccataa	gtggatggcg	ctggagtcca	ttctccgacg	gcggttcacc	2700
caccagagt	atgtgtggag	ttatggtgt	actgtgtggg	agctgtatgc	ttttggggcc	2760
aaaccttacg	atggatccc	agcccgggag	atccctgacc	tgttgaaaa	gggggagcgg	2820
ctgccccagc	cccccatctg	caccattgt	gtctacatga	tcatgttcaa	atgttggatg	2880
attgactctg	aatgtcgcc	gagattccgg	gagttgggt	cggaattctc	ccgcatggcc	2940
aggacccccc	agcgcttgc	gttcatccag	aatgaggact	tgggcccaagc	cagtcccttg	3000
gacagcacct	tctaccgctc	actgtggag	gacgatgaca	ttggggacct	ggtggatgct	3060
gaggagtatc	tggtacccc	gcagggcttc	ttctgtccag	accctgcccc	gggcacttggg	3120
ggcatggtcc	accacaggca	ccgcagctca	tctaccagga	gtggcggtgg	ggacctgacg	3180
ctagggctgg	agccctctga	agaggaggcc	cccaggtctc	cacggcacc	ctccgaaggg	3240
actggctctg	atgtatttga	tggtgaccta	ggaatggggg	cagccaagg	gctgcaaagc	3300
ctccccgac	atgaccccg	ccctctacag	cggtacatgt	aggacccac	ggtacccctg	3360
cctcttgaga	ctgacggcta	cggtggccccc	ctgacctgca	gtccccagcc	cgaatatgtg	3420
aaccagccag	atgttgcgg	acagccccct	tcgccccaa	agggccctt	gtctctgccc	3480
cgacactctg	gtgccactct	ggaaaggccc	aagactctc	ccccaggaa	aatgggggtt	3540
gtcaaagacg	tttttgcctt	tggggggtgt	gtggagaacc	ccgagttactt	ggcaccccg	3600
ggaggagctg	cccttcagcc	ccaccttct	ctgccttca	gcccagcctt	cgacaacctc	3660
tattactggg	accaggaccc	atcagagcgg	ggggctccac	ctagcacctt	caaagggaca	3720
cctacggcag	agaaccacaga	gtacctgggt	ctggacgtgc	cagtgtga		3768

<210> 43
<211> 3768
<212> DNA
<213> Rhesus Monkey

<400> 43						
atggagctgg	cgccctggta	ccgctggggg	ctccttcctcg	ccctcttgcc	ccccggagct	60
gcgggcaccc	aagtgtgcac	ccgcacagac	atgaagctgc	ggctccctgc	cagtcccgag	120
accacaccc	acatgtcccg	ccacctctac	caggctgccc	aggtggtgc	gggtaacctg	180
gaactcacct	acctgtcccc	caatgccagc	ctcttccttcc	tgcaggatat	ccaggaggtg	240
cagggctacg	tgctcatcgc	tcacaaccaa	gtgaggccagg	tcccactgca	gaggctgcgg	300
attgtgcgg	gcaccccgat	ctttgaggac	aactatgccc	tggccgtgt	agacaatgg	360
gactctgt	acaataacc	ccctgtcaca	ggggctccc	caggaggct	gccccggact	420
cacttcgaa	gcctcacaga	gatcttggaa	ggaggggct	tgatccagcg	gaaccccccag	480
ctctgctacc	aggacacgat	tttggaa	gacatcttcc	ataagaacaa	ccagctggct	540
ctcacactga	tcgacaccaa	ccgctctcgg	gcctgcccacc	cctgttctcc	agtgtgtaa	600
ggctcccgct	gctggggaga	gagttctgag	gattgtcaga	gcctgacgcg	cactgtctgt	660
gccccgtggct	gtgcccgtg	caaggggcca	ctgcccactg	actgtgttcca	tgacgtgtt	720
gctgccccgct	gcacgggccc	caagcactt	gactgcctgg	cctgccttcca	cttcaaccac	780
agccgcacatc	gtgagctgca	ctgcccagcc	ctggtcaccc	acaacacaga	cacctttgag	840
tccatgccca	accccgaggg	ccggatataca	ttcggccca	gctgtgttgc	tgccctgtccc	900
tacaactacc	tttctacgga	cgtgggatcc	tgcacccctcg	tctgccccct	gcacaaccaa	960
gagggtgacag	cggaggacgg	aacacagcga	tgtgagaagt	gcagcaagcc	ctgtgccccg	1020
gtgtgctatg	gtctggcat	ggagcacttgc	cgagagggtga	gggcgggtcac	cagtgcacat	1080
atccaggagt	ttgctggctg	caagaagatc	tttggggagct	tggcatttct	gccagagagc	1140
tttgcgtggcg	acccagcctc	caacaccggcc	ccgcttcagc	cgagcagat	cogagtgttt	1200

gagactctgg aagagatcac aggttaccta tacatcttag catggccaga cagcctgcct 1260
 gaccttagcg tcctccagaa cctgcaagta atccggggac gaattctgca caatggcgcc 1320
 tactcaactga ccctgcaagg gctgggcata agctggctgg ggctgcgc tc gctgaggaa 1380
 ctgggcagtg gactggccct catccaccat aacacccgc tccatcttc tctgctttgt gcacacgggt 1440
 ccctgggacc agctctccg gaacccgcac caagccctgc tccacactgc caacccgcca 1500
 gaggacgagt gtgtggcga gggcctggcc tgccaccagc tggcgcctgg aggactgc 1560
 tgggtccag ggcccaccca gtgtgtcaac tgcaaggat tccttcgggg ccaggagtgc 1620
 gtggaggaat gccgagact geaggggctc cccaggagat atgtgaatgc cagacactgt 1680
 ttgccgtgcc accctgagtg tcagccccag aatggcttag tgacatgttt tggaccggag 1740
 gctgaccagt gtgtggcctg tgcccactat aaggaccctc ccttctgcgt ggcccgtgc 1800
 cccagcggtg taaaaactga ccttcctac atgcccattt ggaagttcc agatgaggag 1860
 ggcacgtgcc agtcttgcctt catcaactgc acccacttctt gtgtggacctt ggatgacaag 1920
 ggctgccccg ccgagcagag agccagccct ctgacgttca tcatcttc tctggtgggc 1980
 attctgtgg tcgtggctt ggggtggc tttggatcc tcatcaagcg acggcagcag 2040
 aagatccgaa agtacacccat gggaggctg ctgcaggaaa cggagctgtt ggagccactg 2100
 acacccgagtg gaggcatgcc caaccaggcg cagatgcgg tccctgaaaga gacggagctg 2160
 aggaagggtga aggtgtttgg atctggagct tttggcacag tctacaaggg catctggatc 2220
 cctgatgggg agaatgtgaa aattccagtg gccatcaaag tggggaggaa aaacacatcc 2280
 cccaaagcca acaaagaaat cttagacgaa gcatatgtga tggctgggtt ggctccccca 2340
 tatgtctccc gcctccctggg catctgcctt acatccacgg tgcagctgtt gacacagctt 2400
 atgcccattt gctgccttctt agaccatgtc cgagaaaacc gcggacgcctt gggctcccag 2460
 gacctgtga actgggttat gcagattggc aaggggatga gctacttggaa gatgtgcgg 2520
 ctcgtacaca gggacttggc tgctcggaac gtgctggta agactccaa ccatgtcaaa 2580
 attacagact ttgggctggc tggctgtctg gacattgtac gacagagat ccatgcagat 2640
 gggggcaagg tgcccatcaa gttggatggcg ctggagttca ttctccgacg cggttccacc 2700
 caccagagtg atgtgtggag ttatgggtgt actgtgtggg agctgtatgac tttttggggcc 2760
 aaaccttacg atgggatccc agcccgggag atccctgacc tgctggaaaa gggggagcgg 2820
 ctgccccagc cccccatctg caccattgtat gtctacatga tcatggtcaa atgttggatg 2880
 attgactctg aatgtcgccg gagattccgg gagttgggtt cggaaatttcc ccgcattggcc 2940
 agggacccccc agcgctttgtt ggtcatcccg aatgaggact tggggccacg cagtccttgc 3000
 gacacccct tctaccgcctt actgtggag gacgtacatcg tggggggaccc ggtggatgt 3060
 gaggagtatc tggtacccca gcaaggcttc ttctgtcccg accctgcctt gggacttggg 3120
 ggcatggtcc accacaggca ccgcagctca tctaccaggat tgggggttgg ggacactgacg 3180
 cttagggctgg agccctctga agaggaggccccc cccaggatctc cacggggcacc ctccgaagg 3240
 actggctctg atgtattgtt gttgtgaccta ggaatggggg cagccaaagg gctgcaaaagc 3300
 ctccccgcac atgacccttccatcg ccgtacatcg aggacccac ggttacccctg 3360
 ccttctgaga ctgacgctt ctttgccttccatcg tggacactgca gtccccagcc cgaatatgtg 3420
 aaccagccag atgttccggcc acagccccct tcggcccaag agggccctt gtctccctg 3480
 cgaccaactg gtgccactt gggaaaggccc aagactctt ccccaggaa gaatggggtt 3540
 gtcaaagacg tttttggctt tgggggtgtt gttggagaaacc ccgagactt ggcaccccg 3600
 ggaggagctg cccctcagcc ccaccccttccatcg tggacacttca gcccagccctt cgacaacactc 3660
 tattactggg accaggaccc atcagagcgg ggggtccac ttagcacctt caaaggac 3720
 cctacggcag agaaccacca gttacctgggtt ctggacgtgc cagtgtga 3768