Multi-type Resource Allocation with Partial Preferences

Haibin Wang⁺, Sujoy Sikdar[^], Xiaoxi Guo⁺, Lirong Xia^{*}, Yongzhi Cao⁺, Hanpin Wang^{+#}

*Peking University, ^Washington University in St. Louis, *Rensselaer Polytechnic Institute, #Guangzhou University

Multi-type Resource Allocation (MTRA)

Assignments: Each agents' allocation is a collection of fractional bundles

Partial Preferences

Compute an assignment that is fair and economically efficient

Upper Contour Set @ bundle x w.r.t. > is $U(>,x) = \{y: y > x \text{ or } y = x\}$

Allocation p stochastically dominates q w.r.t. >, if @ every bundle x,

$$\sum_{y \in U(>,x)} p_y \ge \sum_{y \in U(>,x)} q_y$$

Assignment *P* stochastically dominates Q if $p_i >_i^{sd} q_i$, for every agent j

P					
	0.5	0	0.25	0.25	
	0	0.5	0.25	0.25	
Q					
	0.5	0	0	0.5	
	0.5	0	0	0.5	
R					
	0	0.5	0.5	0	
	0.5	0	0	0.5	

Fairness, Efficiency, Strategyproofness, and Indivisibility

- A fractional assignment P satisfies:
- decomposability: if it is a probability distribution over *discrete* assignments
- equal treatment of equals: agents with identical preferences receive identical allocations
- sd-envy-freeness: if for every pair of agents $j, j', P_j >_j^{sd} P_j$,
- sd-efficiency: no assignment Q s.t. for every agent j, $Q_i >_i^{sd} P_i$
- —ordinal fairness: if for every pair of agents j, j', and every bundle x, s.t. $P_{j,x} > 0$, we have $\sum_{\hat{x} \in U(\succ_j,x)} P_{j,\hat{x}} \leq \sum_{\hat{x} \in U(\succ_{j'},x)} P_{j',\hat{x}}$
- weak-sd-envy-freeness: if for every pair of agents $j, j', P_j, >_j^{sd} P_j \Rightarrow P_j = P_j$,
- ex-post-efficiency: a probability distribution over sd-efficient *discrete* assignments

A mechanism f satisfies:

- —sd-strategyproofness: if $f(\gt) \gt_j^{sd} f(\gt')$, for every agent j, every misreport
- sd-weak-strategyproofness: if $f(\succ') \succ_j^{sd} f(\succ) \Rightarrow f(\succ')(j) = f(\succ)(j)$ In general, mechanism f satisfies property X if $f(\succ)$ satisfies X for every profile \succ

Assignments are NOT guaranteed to be decomposable when there are multiple types of items

NO mechanism is sd-efficient AND sd-envy-free under general partial preferences

Multi-type Random Priority (MRP)

Extends the Random Priority (RP) mechanism [Abdulkadiroglu and Sonmez, 1998]

- -Topologically sort partial order \succ_i to linear order \succ_i'
- -Pick priority ordering σ over agents uniformly at random
- -Agents arrive according to σ , and are allocated their favorite remaining bundle
- -Remove agent and all items in bundle

Multi-type Probabilistic Serial (MPS)

Extends Probabilistic Serial (PS) mechanism [Bogomolnaia and Moulin, 2001]

- -Topologically sort partial order \succ_j to linear order \succ_j' -While there is a remaining item:
 - -ALL agents simultaneously consume their favorite remaining bundle (per \succ_j') at an equal, uniform rate until supply of any item being consumed is exhausted

Multi-type General Dictatorship (MGD)

Hybrid of MRP and MPS

- -Topologically sort partial order \succ_i to linear order \succ_i'
- -For j = 1, ..., n do:
- -Agent j invites all other agents j' s.t. $\succ'_{j'} = \succ'_j$ to simultaneously consume their favorite remaining bundle until some item being consumed is exhausted

Fairness, Efficiency, and Non-Manipulability

Mechanism and Preference Domain		SE	EPE	OF	SEF	WSEF	ETE	UI	SS	WSS	DC	
MRP	General partial preferences	Ν [†]	Y	N [‡]	N [†]	Y	Y	N	N	Y	Y	
	CP-nets	Ν [†]	Y	N [‡]	N [†]	Y	Y	Y	Y	Y	Y	
	CP-nets with shared dependency graph	Ν [†]	Y	N [‡]	N [†]	Y	Y	Y	Y	Y	Y	
MPS	General partial preferences	Y	N	N	N	Y	Y	N	N [†]	N	N	
	CP-nets	Y	N	Y	Y	Y	Y	Y	N [†]	N	N	
	CP-nets with shared dependency graph	Y	N	Y	Y	Y	Y	Y	Ν [†]	Y	N	
MGD	General partial preferences	Y	Y	N [‡]	N	N	Y	N	N	N	Y	
	CP-nets	Y	Y	N [‡]	N	N	Y	N	N	N	Y	
	CP-nets with shared dependency graph	Y	Y	N [‡]	N	N	Y	N	N	N	Y	

SE: *sd-efficiency*

EPE: *ex-post-efficiency*

(W)SEF: (weak-)sd-envy-freeness (W)SS: (weak-)sd-strategyproofness

OF: ordinal fairness UI: upper-invariance DC: decomposability ETE: equal treatment of equals

Results annotated with † are due to [Bogomolnaia and Moulin, 2001], and those annotated ‡ are due to [Hashimoto et al., 2014]

Future Work

- Characterizing MRP and MPS
- Stronger properties under natural restrictions on the domain of preferences