Track an Object in 3D Space

FP.1

My code loops through all the DMatch matches and uses queryldx and trainldx to get the keypoint form previous frame and current frame. With the keypoint from previous frame, the code loops over all the bounding boxes from previous frame and check it the kepoint lies in the "roi" of any of the bounding boxes. If in "roi", the boxID is added to a vector "prevBoxIDs". Similarly with keypoint from current frame, boxID is added to vector "currBoxIDs". Next, the boxID mapping along with count is stored in boxIDMap. Next, we match the boxIDs having max count. Additionally, we maintain a reverse count map to filter out matches where one boxID is mapped to multiple boxIDs.

FP.2

My code uses a priority queue to keep track of the "n" $x_min values$. The value "n" is configurable. I have results with n=5, 10, 50 and 100. The median value is taken from the "n" $x_min values$ to avoid severe estimation errors.

FP.3

In order to eliminate bad matches, the Euclidean distance is calculated between previous keypoint and current keypoint for all matches. I tried using 1.5*IQR to eliminate outliers but it did not work well. Instead, I used a rangeFactor of 2.5 times of the median. Also I observed that the "roi" for the bounding box around the car was very tight and some of the matches were filtered out as a result. In order to fix it, I increased the "roi" of the bounding box by using a shrink factor of -0.10. With this implementation, I was able to get better results for some of the detector+descriptor pairs.

FP.4

This code is based on the previous coding exercise. I included an maxDist value of 160 as compared to distCurr to filter out more outlier keypoints.

FP.5

For lidar based TTC estimation, without any

<u>Case 1:</u> The outlier causes the estimated TTC to be -10.85. As can be seen below xmin should have been bigger than 7.20m. But because of the outlier the value is much lower (at 7.20m) and it seemed like xmin is larger from 7.20m (frame 11) to 7.27m (frame 12). This is fixed by using median of lowest 5 x values to give new xmin as 7.349m.

Zoomed in version of outlier below.

<u>Case 2:</u> The outlier causes the estimated TTC to be -9.99. As can be seen below xmin should have been bigger than 6.83m. But because of the outlier the value is much lower (at 6.83m) and it seemed like xmin is larger from 6.83m (frame 16) to 6.90m (frame 17). This is fixed by using median of lowest 5 x values to give new xmin as 6.966m.

Please refer to the below tables for detailed data on all 18 frames without any outlier filtering (first 18 rows) and with outlier filtering (last 18 rows).

	prevBB	currBB		Size of queue				
	lidar	lidar	Use	for	frame	prev X	curr X	
img#	points	points	Median	median	rate	min	min	TTC
1	326	338	No		10	7.974	7.913	12.9722
2	338	305	No		10	7.913	7.849	12.264
3	305	321	No		10	7.849	7.793	13.9161
4	321	319	No		10	7.793	7.685	7.11572
5	319	340	No		10	7.685	7.638	16.2511
6	340	345	No		10	7.638	7.577	12.4213
7	345	315	No		10	7.577	7.555	34.3404
8	315	307	No		10	7.555	7.475	9.34376
9	307	302	No		10	7.475	7.434	18.1318
10	302	278	No		10	7.434	7.393	18.0318
11	278	300	No		10	7.393	7.205	3.83244
12	300	300	No		10	7.205	7.272	-10.8537
13	300	314	No		10	7.272	7.194	9.22307
14	314	305	No		10	7.194	7.129	10.9678
15	305	286	No		10	7.129	7.042	8.09422
16	286	288	No		10	7.042	6.827	3.17535
17	288	273	No		10	6.827	6.896	-9.99424
18	273	295	No		10	6.896	6.814	8.30978

1	326	338	Yes	5	10	7.976	7.916	13.1933
2	338	305	Yes	5	10	7.916	7.851	12.0785
3	305	321	Yes	5	10	7.851	7.804	16.6043
4	321	319	Yes	5	10	7.804	7.744	12.9067
5	319	340	Yes	5	10	7.744	7.683	12.5951
6	340	345	Yes	5	10	7.683	7.581	7.43234
7	345	315	Yes	5	10	7.581	7.56	36.0002
8	315	307	Yes	5	10	7.56	7.515	16.7
9	307	302	Yes	5	10	7.515	7.47	16.6
10	302	278	Yes	5	10	7.47	7.415	13.4819
11	278	300	Yes	5	10	7.415	7.349	11.1349
12	300	300	Yes	5	10	7.349	7.274	9.69869
13	300	314	Yes	5	10	7.274	7.195	9.1076
14	314	305	Yes	5	10	7.195	7.134	11.695
15	305	286	Yes	5	10	7.134	7.045	7.91575
16	286	288	Yes	5	10	7.045	6.966	8.81772
17	288	273	Yes	5	10	6. 966	6.897	9.99562
18	273	295	Yes	5	10	6.897	6.816	8.41483

<u>FP.6</u>
Please refer to the "camera FP6" sheet of "results.xlsx" excel file for results of all the detector + descriptor combinations. The fields of the excel are:

			original	filtered			
img#	detector	descriptor	matches	matches	cameraTTC	lidarTTC	TTCdiff

Also, the chart below shows result comparison of the best results I got for TTC estimation. We can definitely see a downward trend from frame 1 to frame 18, indicating that the preceding vehicle is slowing down.

The below chart shows the top 5 best results for TTC estimation. (more outliers, so difficult to read)

