Ayudantía 2

Análisis de Algoritmos

Universidad Técnico Federico Santa Maria

Carlos Lagos carlos.lagosc@usm.cl Nangel Coello nangel.coello@usm.cl

11 de abril de 2024

Análisis Amortizado

Contenidos

Análisis Amortizado

Análisis Amortizado

¿Qué es?

En un análisis de este tipo, el tiempo requerido para llevar a cabo una **secuencia de operaciones** sobre una estructura de datos es **promediado** sobre todas las operaciones.

¿Cuándo se usa?

Cuando se desea mostrar que el costo promedio de una operación es pequeño, aún cuando una única ejecución de la operaciones podría ser muy costosa.

Diferencias con Caso Promedio

No utiliza probabilidades ya que en este caso se garantiza el comportamiento promedio de cada operación en el peor caso.

Método de Agregación

- Primero se muestra que, para todo n, una secuencia de n operaciones sobre una estructura de datos toma tiempo de peor caso T(n).
- Luego se puede concluir que en el peor caso, el costo amortizado por operación es T(n)/n.
- Este costo aplica para cualquiera de las operaciones realizara dentro de la secuencia, **independiente del costo o tipo de operación**.

Cuack! (no hablo de patos)

Un Quack es una mezcla entre una cola y una pila, con las siguientes operaciones:

- PUSH(P, E): Coloca el elemento E en el tope de la pila P.
- POP(P): Elimina el elemento que está en el tope de la pila P.
- PULL(P): Elimina el elemento que está en la base de la pila P.

Implemente un quack usando 2 pilas y una cantidad O(1) de espacio adicional, de manera que el tiempo amortizado para una secuencia de n operaciones PUSH, POP, y PULL sea O(1) por operación. Muestre el análisis amortizado de su solución.

BACKUP

Se realizan una serie de operaciones sobre una pila cuyo tamaño nunca excede los k elementos. Después de k operaciones, se realiza un respaldo de la pila, creando una copia completa de sus elementos. Se demuestra que el costo de n operaciones, incluida la copia de la pila, es O(1) amortizado por operación.

Las potencias

Se ejecuta una secuencia de n operaciones sobre una estructura de datos. La i-ésima operación tiene un costo de i si i es una potencia de 2, y de 1 en caso contrario. En este contexto, se busca determinar el costo amortizado por operación.