PAST CLASS TESTS

The 2018 Information booklet for MATH1231/1241 lists the material available for examination in the current schedule of class tests.

The following past tests are samples only and are not a replacement for doing tutorial problems. They are intended to give you some idea regarding the style and length of the class tests.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2007 TEST 1 VERSION 1B

This sheet must be filled in and stapled to the front of your answers

	<u>'</u>		
Stu	ident's Family Name	Initials	Student Number
Tut	orial Code	Tutor's Name	Mark
Not	e: The use of a calcula	tor is NOT permitted in this test	
QUI	ESTIONS (Time allowed	d: 20 minutes)	
1.	(4 marks)		
	Consider the set		
		$S = \{ \mathbf{x} \in \mathbb{R}^4 \mid x_1 - 5x_3 = 2x_4 \} .$	
	(i) Show that S is a sul	bspace of \mathbb{R}^4 .	
	(ii) Find one non–zero e	element in S .	
2.	(3 marks)		
	Do the polynomials $p_1(t)$	the of all polynomials with degree at most $p_2(t) = 1 - t + 2t^2$, $p_2(t) = 2 - t + 3t^2$, ning set for \mathbb{P}_2 ? Give reasons for your a	$p_3(t) = -1 + 5t - 5t^2$ and
3.	(3 marks)		
	Are the vectors $\begin{pmatrix} 1\\4\\-2 \end{pmatrix}$,	$\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ linearly independent? G	ive reasons for your answer

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2009 TEST 1 VERSION 2B

	This sheet mus	st be filled in and stapled to the front of yo	our answers
Stu	dent's Family Name	Initials	Student Number
Tut	orial Code	Tutor's Name	Mark
Not	e: The use of a calcula	ator is NOT permitted in this test	
QUI	ESTIONS (Time allow	ved: 20 minutes)	
1.	(1 mark)		
	Show that		
		$S = \{ \mathbf{x} \in \mathbb{R}^2 \mid 3x_1 - 2x_2 = 1 \}$	
	is not a subspace of \mathbb{R}^2 .		
2.	(3 marks)		
		$f(x) = 1 - 3x + 2x^2$, $p_2(x) = 3 - 8x + 5x^2$, er write one of the given polynomials as a this is not possible.	
3.	(3 marks)		
	Do the vectors	$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 4 \\ 3 \\ -7 \end{pmatrix}$	
	form a basis for \mathbb{R}^3 ? She	ow all your working and give full reasons for	or your answer.

4. (3 marks)

Are the following statements true or false? Give reasons.

- (i) A set of 5 vectors in \mathbb{R}^5 must be a basis for \mathbb{R}^5 .
- (ii) A set of 6 vectors in \mathbb{R}^5 cannot be a basis for \mathbb{R}^5 .
- (iii) A set of 7 vectors in \mathbb{R}^5 must be a spanning set for \mathbb{R}^5 .

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2011 TEST 1 VERSION 1A

This sheet must be filled in and stapled to the front of your answers

	<u> </u>	<u> </u>	
Stu	ident's Family Name	Initials	Student Number
Tut	corial Code	Tutor's Name	Mark
Not	e: The use of a calculat	or is NOT permitted in this test	
\mathbf{QU}	ESTIONS (Time allowe	d: 20 minutes)	
1.	(3 marks) Show that $S =$	$= \{ \mathbf{x} \in \mathbb{R}^3 \mid 7x_1 + 3x_2 = 0 \text{ and } x_2 - 4x_3 \}$	$_{3}=0$ }
	is a subspace of \mathbb{R}^3 .		
2.	(3 marks) Let $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ - \end{pmatrix}$	$\mathbf{v}_1, \mathbf{v}_2 = \begin{pmatrix} 2\\3\\4\\1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} -2\\1\\1\\6 \end{pmatrix} \text{ and }$	$\mathbf{b} = egin{pmatrix} b_1 \ b_2 \ b_3 \ b_4 \end{pmatrix} .$
	Find conditions, if any, o	n b_1, b_2, b_3, b_4 such that b is an element	of span($\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$).
3.	Let P_n be the vector space true or false? Give reason (i) A set of 5 polynomia	of polynomials having degree n or less. als in P_4 must be a basis for P_4 . als in P_4 may be a basis for P_4 .	Are the following statements
4.	(2 marks) Show that the function T	$f: \mathbb{R} \to \mathbb{R}$ defined by	
		$T(x) = x \cos x$	
	is not a linear transforma	ation.	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2011 TEST 1 VERSION 1B

This sheet must be filled in and stapled to the front of your answers

Tims shoot is	industrial in the start of the field of	J 5 61 6116 616
Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calc	ulator is NOT permitted in this test	
QUESTIONS (Time al	lowed: 20 minutes)	
1. (2 marks)		
Let		
	$S = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 - 3x_2 = 5 \} .$	
(i) Write down one	non-zero element of S .	
(ii) Show that S is a	not closed under scalar multiplication.	
2. (4 marks)		
	x^2 , $p_2(x) = -4 - 3x + 3x^2$, $p_3(x) = 1 + 2x - 4$ al q an element of span (p_1, p_2, p_3) ? Give rea	
(ii) Does the set $\{p\}$ less? Explain.	$\{p_1, p_2, p_3\}$ span P_2 , the vector space of poly	rnomials having degree 2 or
3. (4 marks)		
A linear transformati	on $T: \mathbb{R}^2 \to \mathbb{R}^2$ has the values	
	$T \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 9 \\ 8 \end{pmatrix} \text{and} T \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$	
(i) Evaluate $T \begin{pmatrix} 1 \\ 0 \end{pmatrix}$		

Please begin your answers below this line, and continue on the other side of the sheet.

Use extra paper if necessary.

(ii) Find a matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^2$.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2011 TEST 1 VERSION 2A

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark

Note: The use of a calculator is NOT permitted in this test

QUESTIONS (Time allowed: 20 minutes)

1. (3 marks)

Let A be a fixed 3×2 matrix. Show that

$$S = \{ \mathbf{x} \in \mathbb{R}^2 \mid A\mathbf{x} = \mathbf{0} \}$$

is a subspace of \mathbb{R}^2 .

2. (3 marks)

Let

$$\mathbf{b} = \begin{pmatrix} -1\\5\\5\\-6 \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} 1 & 4\\-1 & -3\\0 & 2\\2 & 7 \end{pmatrix}.$$

Is the vector **b** in the column space of A? Give reasons.

3. (2 marks)

Let V be a vector space with dimension n, and let S be a set of m vectors from V. Giving reasons, state the relationship (if any) between the numbers m and n if

- (i) S is a basis for V;
- (ii) S is linearly dependent.
- 4. (2 marks)

A function $T: \mathbb{R}^2 \to \mathbb{R}^3$ has values

$$T\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}1\\1\\-1\end{pmatrix}, \quad T\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}2\\3\\2\end{pmatrix} \quad \text{and} \quad T\begin{pmatrix}5\\-1\end{pmatrix}=\begin{pmatrix}4\\-1\\3\end{pmatrix}.$$

Show that T is not a linear transformation.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2012 TEST 1 VERSION 1A

This sheet must be filled in and stapled to the front of your answers

	L		<u> </u>
Stu	ident's Family Name	Initials	Student Number
Tut	corial Code	Tutor's Name	Mark
Not	e: The use of a calcula	tor is NOT permitted in this to	est
QUI	ESTIONS (Time allow	ed: 20 minutes)	
1.	(3 marks) Show that S	$=\{ \mathbf{x}\in\mathbb{R}^3 \mid x_1-2x_2=0 ext{and} 5x_2 + x_1 + x_2 = 0 ext{and} 5x_2 + x_2 = 0 ext{and} 5x_2 + x_1 + x_2 = 0 ext{and} 5x_2 + x_2 = 0 ext{and} 5x_$	$+x_3=0$ }
	is a subspace of \mathbb{R}^3 .		
2.	(3 marks) Let $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -5 \\ 7 \\ -8 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} -2 \\ 5 \\ 1 \\ 1 \end{pmatrix}$	and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$.
	Find conditions, if any, o	on b_1, b_2, b_3, b_4 such that b is an elem	nent of span($\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$).
3.	statements true or false? (i) A set of 6 polynomia	ace of real polynomials having degrative reasons for your answer. Tals in P_5 must be a basis for P_5 . Tals in P_5 may be a basis for P_5 .	ree n or less. Are the following
4.	(0.1)		
4.	Show that the function 7	$T: \mathbb{R} \to \mathbb{R}$ defined by	
		$T(x) = x^2 \sin x$	
	is not a linear transform.	ation.	
	Please begin your answe	rs below this line, and continue on t	the other side of the sheet.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2012 TEST 1 VERSION 1B

This sheet must be filled in and stapled to the front of your answers

This sheet m	ust be filled in and stapled to the front of y	your answers
Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcu	ulator is NOT permitted in this test	
QUESTIONS (Time allo	owed: 20 minutes)	
1. (2 marks)		
Let		
(1)	$S = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 - 5x_2 < 2 \} .$	
(i) Write down one i	non-zero element of S .	
(ii) Show that S is no	ot closed under scalar multiplication.	
2. (4 marks)		
Let $p_1(x) = 1 - x + 2x$	x^{2} , $p_{2}(x) = 3 - x$, $p_{3}(x) = -1 + x^{2}$ and $q(x)$ l q an element of span (p_{1}, p_{2}, p_{3}) ? Give reas	
(ii) Does the set $\{p_1 \text{ or less? Explain.}\}$	$\{p_1, p_2, p_3\}$ span P_2 , the vector space of real p	olynomials having degree 2
3. (4 marks)		
A linear transformation	on $T: \mathbb{R}^2 \to \mathbb{R}^2$ has the values	
	$T\begin{pmatrix} 5\\3 \end{pmatrix} = \begin{pmatrix} 8\\-1 \end{pmatrix}$ and $T\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} 3\\-1 \end{pmatrix}$	
(i) Evaluate $T\begin{pmatrix} 1\\0 \end{pmatrix}$.		
(ii) Find a matrix A	such that $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^2$.	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2009 TEST 2 VERSION 3B

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark

Note: The use of a calculator is NOT permitted in this test

QUESTIONS (Time allowed: 20 minutes)

1. (3 marks)

Let \mathbb{P}_n be the vector space of polynomials with degree at most n. Prove that the function $T: \mathbb{P}_3 \to \mathbb{R}^2$ defined by

$$T(p(x)) = \begin{pmatrix} p(1) \\ p(3) \end{pmatrix}$$

is a linear transformation.

2. (3 marks)

Let

$$A = \begin{pmatrix} -1 & 2 & 1 & 0 & 1 \\ 1 & -1 & 0 & -1 & 0 \\ 3 & -2 & 1 & -4 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ 8 \end{pmatrix} .$$

- (i) Find, giving reasons, rank(A) and nullity(A).
- (ii) Is **b** in the image of A? Explain.
- 3. (1 mark)

The 2 × 2 matrix $A = \begin{pmatrix} 11 & -3 \\ 8 & 1 \end{pmatrix}$ has eigenvalues and eigenvectors

$$\lambda_1 = 5$$
, $\mathbf{v}_1 = \alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\lambda_2 = 7$, $\mathbf{v}_2 = \alpha \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

Write down the general solution of the system of differential equations

$$\frac{dy_1}{dt} = 11y_1 - 3y_2$$
, $\frac{dy_2}{dt} = 8y_1 + y_2$.

4. (3 marks)

A discrete random variable X has probability distribution given by

$$p_k = ck^2$$
 for $1 \le k \le 5$.

- (i) Find the value of the constant c.
- (ii) Calculate P(X=3).
- (iii) Calculate $P(X \le 4)$.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2009 TEST 2 VERSION 7A

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number		
Tutorial Code	Tutor's Name	Mark		
Note: The use of a calculator is NOT permitted in this test				

QUESTIONS (Time allowed: 20 minutes)

1. (4 marks)

For the matrix

$$A = \begin{pmatrix} 1 & -3 & -1 & 1 \\ 2 & -5 & 0 & 1 \\ -3 & 5 & -6 & 3 \end{pmatrix}$$

- (i) find, giving reasons, rank(A) and nullity(A);
- (ii) find a basis for the kernel of A.
- 2. (3 marks)

Find all the eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} -7 & 5 \\ 2 & -4 \end{pmatrix}$.

3. (3 marks)

A new diagnostic test is being developed for a disease which affects 6% of the population. A person who has the disease tests positive in 90% of cases, and a person who does not have the disease tests positive in 5% of cases. If the test is administered to a randomly chosen person, find the probability that

- (i) the person has the disease and tests positive;
- (ii) the person tests positive;
- (iii) the person has the disease, given that the test is positive (leave your answer as a fraction).

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2011 TEST 2 VERSION 1A

This s	heet must be filled in and stap	pled to the front of	your answers
Student's Family N	ame	Initials	Student Number
Tutorial Code	Tutor's I	Vame	Mark
Note: The use of	a calculator is NOT permi	tted in this test	
QUESTIONS (T	me allowed: 20 minutes)		
1. (3 marks)			
Let P_n be the $T: P_2 \to \mathbb{R}^2$ de	T(p(x))	with degree at most $= \begin{pmatrix} p(1) \\ p'(2) \end{pmatrix}$	n. Prove that the function
	ioi mation.		
2. (4 marks) For the matrix	$A = \begin{pmatrix} 1 & 2 \\ -2 & -5 \\ 1 & 5 \end{pmatrix}$	$ \begin{array}{ccc} 1 & -1 & 3 \\ -1 & 3 & -8 \\ -2 & -3 & 5 \end{array} $	
	g reasons, $rank(A)$ and nullity s for the kernel of A .	r(A);	
1, 1, 1, 1, 2, 3 an	four red dice and three blue d each of the blue dice has six ted at random and thrown an	faces marked $1, 2,$	2, 3, 3, 3. If one of the dice in

probability that (i) one of the red dice was selected and a 1 was thrown;

- (ii) a 1 was thrown;
- (iii) one of the red dice was selected, given that a 1 was thrown.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2011 TEST 2 VERSION 1B

This sheet must be filled in and stapled to the front of your answers

Student's Femily Ness	Initiala	Ctradont Nl
Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calculate	ator is NOT permitted in this test	
QUESTIONS (Time allow	ved: 20 minutes)	
1. (3 marks)		
Let	$A = \begin{pmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & 3 & 1 \\ 2 & -1 & 7 & 5 \\ -1 & 1 & -2 & 0 \end{pmatrix} \text{and} \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 6 \\ -1 \end{pmatrix}$	
(i) Find, giving reason(ii) Is b in the image of	as, $rank(A)$ and $nullity(A)$. of A ? Explain.	
2. (4 marks) (i) Find all the eigenv	alues and eigenvectors of the matrix $A =$	$\begin{pmatrix} 7 & -1 \\ 6 & 2 \end{pmatrix}$.
(ii) Is A diagonalisable	? Give reasons.	
3. (3 marks) Show that the sequence	defined by	
	$p_k = \frac{20}{5^k}$ for $k = 2, 3, 4, \dots$	
is a probability distribu	tion.	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2011 TEST 2 VERSION 2A

This sheet must be filled in and stapled to the front of your answers

ident's Family Name	Initials	Student Number
torial Code	Tutor's Name	Mark
e: The use of a calcu	lator is NOT permitted in this test	
ESTIONS (Time allo	owed: 20 minutes)	
Let	$A = \begin{pmatrix} 1 & 3 & 1 & 2 & 0 \\ 1 & 5 & 0 & 3 & 1 \\ -2 & 4 & -7 & 2 & 4 \end{pmatrix} \text{and} \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
		4).
(4 marks) For	$A = \begin{pmatrix} 2 & -5 \\ -3 & 4 \end{pmatrix}$	
find a diagonal matrix	D and an invertible matrix M such that A	$A = MDM^{-1}.$
who buy hamburgers, drinks. If a customer i (i) the customer bou (ii) the customer bou	30% also buy drinks; of those who do not s chosen at random, find the probability the ght a hamburger and a drink; ght a drink;	buy hamburgers, 20% buy aat
	(3 marks) Let (i) Find, giving rease (ii) Find condition(s) (4 marks) For find a diagonal matrix (3 marks) At Angry Jack's takea who buy hamburgers, drinks. If a customer i (i) the customer bou (ii) the customer bou (iii) the customer bou (iii) the customer bou	torial Code Tutor's Name e: The use of a calculator is NOT permitted in this test ESTIONS (Time allowed: 20 minutes) $A = \begin{pmatrix} 1 & 3 & 1 & 2 & 0 \\ 1 & 5 & 0 & 3 & 1 \\ -2 & 4 & -7 & 2 & 4 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} b & b & b \\ b & b & b \\ b & b & b \end{pmatrix}$ (i) Find, giving reasons, rank(A) and nullity(A). (ii) Find condition(s), if any, on b_1, b_2, b_3 for \mathbf{b} to belong to im(A marks) For $A = \begin{pmatrix} 2 & -5 \\ -3 & 4 \end{pmatrix}$ find a diagonal matrix D and an invertible matrix M such that A marks (3 marks) At Angry Jack's takeaway outlets 60% of the customers buy ham who buy hamburgers, 30% also buy drinks; of those who do not drinks. If a customer is chosen at random, find the probability the (i) the customer bought a hamburger and a drink; (ii) the customer bought a hamburger, given that he/she bought

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2012 TEST 2 VERSION 1A

This sheet must be filled in and stapled to the front of your answers

	This sheet mus	t be filled in and stapled to the front	or your answers
Stu	ident's Family Name	Initials	Student Number
Tut	corial Code	Tutor's Name	Mark
Not	e: The use of a calcula	tor is NOT permitted in this tes	st
QUI	ESTIONS (Time allow	ed: 20 minutes)	
1.	(3 marks)		
	Let P_n be the vector sp $T: P_2 \to \mathbb{R}^3$ defined by	ace of polynomials with degree at mo $T(p(x)) = \begin{pmatrix} p(0) \\ p(1) \\ p(2) \end{pmatrix}$	ost n . Prove that the function
	is a linear transformation	1.	
2.	(4 marks) For the matrix	$A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 3 & 5 & 0 & 4 \\ 2 & 6 & 8 & 1 \end{pmatrix}$	
	(i) find, giving reasons(ii) find a basis for the	, $rank(A)$ and $nullity(A)$; kernel of A .	
3.	caught speeding, while 5 at random, find the probability (i) the car was red and (ii) the car was caught	it was caught speeding;	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2012 TEST 2 VERSION 1B

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcul	lator is NOT permitted in this test	
QUESTIONS (Time allow	wed: 20 minutes)	
1. (3 marks)		
Let	$A = \begin{pmatrix} 1 & 2 & -1 \\ -3 & -3 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & -3 \end{pmatrix} \text{and} \mathbf{b} = \begin{pmatrix} 3 \\ -8 \\ 4 \\ 0 \end{pmatrix}$	
(i) Find, giving reason(ii) Is b in the image	ns, $rank(A)$ and $nullity(A)$. of A ? Explain.	
2. (4 marks)(i) Find all the eigenv	values and eigenvectors of the matrix $A =$	$\begin{pmatrix} 7 & -1 \\ 8 & 1 \end{pmatrix}$.
(ii) Is A diagonalisable	e? Give reasons.	
3. (3 marks) Show that the sequence	e defined by	
	$p_k = \frac{6}{3^k}$ for $k = 2, 3, 4, \dots$	
is a probability distribu	ntion.	
Please begin your answ	vers below this line, and continue on the o	ther side of the sheet.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231 MATHEMATICS 1B ALGEBRA S2 2012 TEST 2 VERSION 2A

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number	
Tutorial Code	Tutor's Name	Mark	
Note: The use of a calcula	tor is NOT permitted in this test		
QUESTIONS (Time allowed	ed: 20 minutes)		
1. (3 marks) Let $A =$	$= \begin{pmatrix} -1 & 1 & 3 & 2 & -1 \\ 2 & 0 & -5 & -3 & -1 \\ 1 & 1 & -2 & -1 & 3 \end{pmatrix} \text{and} \mathbf{b} =$	$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \ .$	
	s, rank(A) and nullity(A). f any, on b_1, b_2, b_3 for b to belong to im	n(A).	
2. (4 marks) For	$A = \begin{pmatrix} -3 & 4\\ 2 & 4 \end{pmatrix}$		
find a diagonal matrix D) and an invertible matrix M such that	$A = MDM^{-1}.$	
3. (3 marks) At Angry Jack's takeaway outlets 60% of the customers buy hamburgers. Of the customer who buy hamburgers, 30% also buy drinks; of those who do not buy hamburgers, 20% bu drinks. If a customer is chosen at random, find the probability that (i) the customer bought a hamburger and a drink; (ii) the customer bought a drink; (iii) the customer bought a hamburger, given that he/she bought a drink (leave your answer as a fraction).			
Please hegin vour answe	rs below this line, and continue on the	other side of the sheet	