MAT 690 ADV TOPICS IN MATH: LINEAR STATISTICAL MODELS

Practice Problems #1

- 1. Standard notation for a linear statistical model (with only fixed effects) is $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{Y} is a $n \times 1$ random vector, \mathbf{X} is a $n \times p$ matrix, $\boldsymbol{\beta}$ is a $p \times 1$ vector, and $\boldsymbol{\epsilon}$ is a $n \times 1$ random vector.
- **a.** Why is the phrase "only fixed effects" used above? Please explain.
- **b.** Under what conditions is $E(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$?
- **c.** Describe the subspace of \mathbb{R}^n in which the mean vector of **Y** resides.
- **d.** Based on the linear statistical model above, explain how one may form an estimator of the mean vector of \mathbf{Y} .
- **e.** What sampling conditions give rise to $Cov(\mathbf{Y}) = \sigma^2 \mathbf{I}$? Please explain.
- **f.** Is $\frac{1}{n-1}\mathbf{y}'(\mathbf{I} \frac{1}{n}\mathbf{J})\mathbf{y} > 0$ for all possible observed samples $\mathbf{y}' = (\mathbf{y_1}, \mathbf{y_2}, ..., \mathbf{y_n})'$? Please explain.
- 2. Using matrix A in Problem 2.75, please answer the following.
- **a.** Are the columns of **A** linearly independent? Please explain.
- **b.** After normalizing the columns of \mathbf{A} , is the resulting matrix an orthogonal matrix? Please explain.
- **c.** Is $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}'$, where \mathbf{U} is an orthogonal matrix and \mathbf{D} is a diagonal matrix? Please explain.
- **d.** Is **A** a projection matrix? Please explain.
- e. Is $A^- = A^{-1}$? Please explain.
- **3.** Answer Problem 2.77 without using a calculator or software.
- **4.** Problem 3.21