(NATURAL SCIENCE)

주체105(2016)년 제62권 제8호

Vol. 62 No. 8 JUCHE105 (2016).

고속아미노산분석기와 고성능액체크로마토그라프를 리용한 애기젖가루속의 아미노산분석

박향미, 리혁철

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《나라의 과학기술을 세계적수준에 올려세우자면 발전된 과학기술을 받아들이는것과 함께 새로운 과학기술분야를 개척하고 그 성과를 인민경제에 적극 받아들여야 합니다.》 (《김정일선집》 중보판 제11권 138~139폐지)

아미노산분석은 식료품과 의약품, 먹이첨가제를 비롯한 각이한 제품의 질평가와 영양 학적평가에서 중요한 의의를 가지며 특히 생화학연구에서 필수적이다.[1] 아미노산분석방법 에는 아미노산분석기법(AAA)과 역상고성능액체크로마토그라프(RP-HPLC)법 등이 있다.[3, 4]

아미노산분석기법은 전통적인 아미노산분석방법으로서 이온교환크로마토그라프로 아 미노산들을 분리하고 탑통과후 닌히드린으로 아미노산을 유도화하여 검출한다.[1, 5]

RP-HPLC법은 탑통과전에 아미노산을 유도화하고 RP-HPLC로 아미노산유도체들을 분리검출하는 분석방법이다.[2] RP-HPLC법에서 리용하는 대표적인 유도화시약으로는 o- 탈알데히드(OPA)와 페닐이소티오시아나트(PITC), 염화단실(Dansyl-Cl), 2, 4- 디니트로플루오로벤졸(FDNB) 등이 있다.[2, 6]

우리는 17종의 아미노산이 들어있는 표준시료를 전용아미노산분석탑을 장비한 역상 고성능액체크로마토그라프와 고속아미노산분석기로 분석한 결과를 비교하고 애기젖가루 속의 아미노산을 정량하였다.

실 험 방 법

장치로는 고속아미노산분석기(《L-8900》)와 고성능액체크로마토그라프(《LC-5510》), 원심분리기(《TGL-10B》), 초음파세척기(《JL-120DTH》), 항온수욕조(《C-WBE》)를, 시약으로는 N, N-디메틸포름아미드(N, N-DMF), 2, 4-디니트로플루오로벤졸(FDNB), 아세토니트릴, 초순수를 리용하였으며 기타 모든 시약들은 분석순이다. 완충용액으로는 유도화완충용액(탄산염완충용액 pH 9.2)과 평형화완충용액(린산완충용액 pH 7.0)을 리용하였다.

아미노산분석기법 10mL들이 눈금플라스크에 시료 0.4mL를 넣고 0.02mol/L HCl용액으로 눈금을 맞춘 다음 10μL를 취하여 자동시료주입구에 주입하였다.

분석조건은 다음과 같다.

질소압력: 34~40kPa; 이동상: 완충용액 B1, B2, B3, B4, B5, B6; 유도화시약: R1, R2, R3; 류속: 완충용액 0.400mL/min, 발색시약 0.350mL/min; 분리탑온도: 57℃; 반응탑온도: 135℃; 측정파장: 검출기 1-570nm, 검출기 2-440nm; 측정시간 53min

RP-HPLC법 10mL들이 눈금플라스크에 시료 0.4mL를 넣고 유도화완충용액으로 눈금을 맞춘 다음 1mL를 취하여 암시험관에 넣었다. 여기에 0.1% FDNB용액 0.5mL를 넣고 항온수욕조 (60°C) 에서 1h동안 반응시켰다. 다음 평형화완충용액으로 5mL 되게 맞춘 다음 $10\mu\text{L}$ 를 취하여 시료주입구에 주입하였다.

분석조건은 다음과 같다.

탑압력: 20MPa; 분리탑: Elite-AAK; 분리탑온도: 27℃; 류속: 1.2mL/min; 시료주입량: 10μL; 검출파장: 360nm; 측정시간: 38min; 이동상 A(초산완충용액+1% N, N-DMF)와 이동상 B(아세토니트릴+초순수(1:1))로 2원구배를 주었다.

실험결과 및 해석

표준시료에 의한 아미노산분석기법과 RP-HPLC법의 비교 17종의 아미노산이 들어있는 종합아미노산표준시료를 두가지 방법으로 분석한 결과는 그림 1,2와 같다.

그림 1, 2에서 보는바와 같이 고속아미노산분석기를 리용하면 17종의 아미노산들이 이온교환탑을 통과한 후 완전히 분리되며 RP-HPLC법을 리용하면 아미노산분리탑을 통과한 17종의 아미노산들이 비교적 정확히 분리된다는것을 알수 있다.

두 방법에 의한 분석결과를 비교한 자료는 표 1과 같다.

표 1에서 보는바와 같이 상대표준편차는 아미노산분석기법에서 1.5%이하이고 RP-HPLC법에서 3%이하이다.

최소검출한계는 아미노산분석기법에서 3pmol/L이며 RP-HPLC법에서 50pmol/L이다. 즉 아미노산분석기법이 RP-HPLC법에 비하여 우월하다고 볼수 있다.

아미노산분석기법에서는 분석시간이 53min이고 RP-HPLC법에서는 38min으로서 아미노산분석기법에서 약간 길다. 또한 RP-HPLC법에서는 아미노산의 유도화를 1h이상 진행한 다음 시료주입구에 주입하여야 하지만 아미노산분석기법에서는 시료를 주입하면 분리 탑통과후 아미노산들이 자동적으로 유도화된다.

두가지 방법의 평균상대오차는 3.94%이며 최대 7.16%(His), 최소 1.12%(Tvr)이다.

애기젖가루속의 아미노산분석 애기젖가루 0.050g을 평량하여 플라스크에 넣고 여기에 6mol/L 염산 10mL를 넣었다. 마개를 막고 항온건조로(110°C)에서 24h동안 분해시켰다.

표 1. 아미노산분석기법과 RP-HPLC법에 의한 아미노산함량의 비교분석결과								
No.	아미노산	아미노산함량/(μ g \cdot m $ extsf{L}^{-1}$)		상대표준편차/%		- 상대오차/%		
		AAA법	RP-HPLC법	AAA법	RP-HPLC법	8 41 ± ^F/%		
1	Asp	266.208	284.103	1.13	2.83	3.25		
2	Glu	238.245	218.348	1.36	1.22	4.36		
3	Ser	210.237	219.756	1.34	1.75	2.21		
4	His	294.153	254.814	1.19	1.23	7.16		
5	Gly	150.145	162.293	1.17	1.37	3.89		
6	Thr	178.182	169.585	1.33	1.79	2.47		
7	Ala	480.612	496.134	1.45	1.46	1.59		
8	Arg	234.254	205.906	1.16	1.76	6.44		
9	Tyr	298.439	305.213	1.03	1.75	1.12		
10	Val	262.418	277.256	1.46	2.68	2.75		
11	Met	262.429	230.651	1.12	1.34	6.44		
12	Cys	362.495	352.334	1.01	1.08	1.42		
13	Phe	330.448	358.561	0.97	1.35	4.08		
14	Ile	292.456	266.613	1.18	1.88	4.62		
15	Leu	310.478	280.100	1.29	1.79	5.14		
16	Lys	348.433	376.970	0.91	2.83	3.93		
17	Pro	230.202	260.356	1.01	2.18	6.15		

분해시킨 시료를 리용하여 우에서와 같은 실험방법으로 애기젖가루속의 아미노산함 량을 분석한 결과는 표 2와 같다.

No.	아미노산	아미노산분석기법		액체크로마토그라프법	
		아미노산함량/%	변동곁수/%	아미노산함량/%	변동곁수/%
1	Asp	0.830	1.17	0.910	2.68
2	Thr	0.367	1.45	0.353	2.18
3	Ser	0.479	1.36	0.498	1.36
4	Glu	1.885	1.17	1.887	1.46
5	Gly	0.237	1.13	0.225	1.79
6	Ala	0.321	1.17	0.326	2.83
7	Cys	_	_	_	_
8	Val	0.439	1.36	0.445	1.79
9	Met	0.0164	0.60	0.016 8	0.60
10	Ile	0.305	1.29	0.298	2.68
11	Leu	0.677	1.13	0.588	1.79
12	Tyr	0.233	1.12	0.244	2.83
13	Phe	0.470	1.01	0.503	2.68
14	Lys	0.988	1.01	0.877	2.83
15	His	0.294	1.18	0.254	2.16
16	Arg	0.384	1.17	0.368	1.88
17	Pro	1.520	1.12	1.670	2.68

표 2. 애기젖가루속의 아미노산함량분석결과

표 2에서 보는바와 같이 애기젖가루속의 아미노산함량은 아미노산분석기를 리용할 때 변동결수 1.5%이하로 정확히 정량할수 있다.

맺 는 말

종합아미노산표준시료를 리용하여 아미노산분석기법과 고성능액체크로마토그라프법을 비교한 결과 상대표준편차는 아미노산분석기법에서 1.5%이하, RP-HPLC법에서 3%이하이다. 두 방법의 평균상대오차는 3.94%이며 최대 7.16%(His), 최소 1.12%(Tyr)이다.

아미노산분석기로 애기젖가루속의 아미노산을 변동결수 1.5%이하로 정량할수 있다.

참 고 문 헌

- [1] Francesco Busetti et al.; Journal of Chromatography, A 1370, 135, 2014.
- [2] Anthony Le et al.; Journal of Chromatography, B 944, 166, 2014.
- [3] 于泓 等; 分析化学, 33, 3, 398, 2005.
- [4] 陈日来 等; 华西药学杂志, 14, 3, 159, 1999.
- [5] 潘葳 等; 现代科学仪器, 3, 1, 25, 2004.
- [6] 劳燕文; 现代仪器, 10, 4, 52, 2004.

주체105(2016)년 4월 5일 원고접수

Analysis of Amino Acids in the Milk Powder by the High-Speed Amino Acid Analyzer and RP-HPLC

Pak Hyang Mi, Ri Hyok Chol

We analyzed and compared 17 kinds of amino acids by the high-speed amino acid analyzer and RP-HPLC. As a result in the amino acid analyzer method the relative standard deviation is below 1.5% and the minimum detection limit is 3pmol/L and in the RP-HPLC, below 3% and 50pmol/L.

Average relative deviation of two methods is 3.94%, maximum is 7.16%(His) and minimum is 1.12%(Tyr).

We can determine the amino acid in the milk powder with variable coefficient below 1.5% by the high-speed amino acid analyzer.

Key words: amino acid analyzer, RP-HPLC, milk powder