

Information Technology

FIT1006 Business Information Analysis

Lecture 10 Probability (cont...)

Topics covered:

- Independent and conditional events.
- Probability trees.
- Bayes' Theorem.
- *Notes on background concepts for Bayes' Theorem.
- *Notes on background mathematics for probability distributions.

Question 1. Motivating problem

- The probability of disease X in the population is 1%
- If a person has disease X the probability they will test positive is 90%
- If a person doesn't have disease X the probability they will test positive is 9%

(Adapted from: Gigerenzer, G. et al, Knowing your chances. *Sci Am Mind*, April/May 2009)

I have just been tested and the test is positive. What is the probability I have disease X?

Today's lecture

- How do we incorporate additional information in to our estimates of a probability?
- For the motivating problem, without knowing the test results there is a 0.01 chance that a person selected at random has disease X.
- If that person tested positive then we would expect the probability the person had the disease to increase. Similarly, it should decrease for a negative test.
- Bayes' theorem gives us a tool for calculating these probabilities.

Bayes' Theorem

- Bayes' Theorem is a method for updating the probability of an event when the occurrence of that event is affected (conditional) on another event.
- The stages of a Bayesian problem:
 - 1. Start with the *Prior* probability this is the probability of an event in the absence of any other information. Sometimes called the *state of nature*.

 Probability of getting disease x is 1%
 - Receive additional information as conditional probabilities. doesn't have disease X the probability of being tested positive is 9%
 Update the Prior probability using the additional
 - 3. Update the Prior probability using the additional information to determine the *Posterior* probability.

Prior probability

- Draw the motivating problem as a probability tree.
- Use X to indicate person has disease,
- 'denotes complement.
- The first stage of the tree reflects the state of nature.

Conditional probabilities

- Use T to indicate a positive test result.
- Recall that: P(T|X) = 0.90 and P(T|X') = 0.09.
- That is, the probability of positive result is conditional on a person's disease state.

Joint probabilities

 Probabilities for each of the 4 situations corresponding to disease status and test outcome are evaluated. These are the joint probabilities.

As a Venn Diagram

- Venn Diagram showing disease status. Without a test, the probability a person chosen at random has disease is <u>o.o1</u>.
- This is the *prior* probability of X.

Redraw... showing test results

As a Venn Diagram showing disease status and test result after calculation of joint probabilities (using probability tree).

... positive test results only

- As a Venn Diagram showing disease status and test result.
- Conditioning on a positive test result means that only a subset of the original problem is relevant.

Posterior probabiliy

0.009 + 0.0891

The probability of a Positive test result (T) is <u>0.0981</u>.

The probability of having disease after positive test is P(X|T) = 0.0917. The *posterior* probability of X.

<u>0.009 </u>= 0.0917 0.0981

... calculated

P(T) is 0.009 + 0.891 = 0.0981. P(X|T) = 0.009 / 0.0981 = 0.0917. Approx 10% chance of having disease after a positive test result.

Summary

Begin with state of nature

$$P(X) = 0.01$$

prior probability

Incorporate additional information

$$P(T|X) = 0.9$$

conditional probability

$$P(T|X') = 0.09$$

conditional (false positive)

Calculate

 $P(X \cap T)$ and $P(X' \cap T)$ joint probabilities

$$P(T) = P(X \cap T) + P(X' \cap T)$$

 $P(X|T) = P(X \cap T)/P(T)$ posterior probability

Summary

As a probability tree:

$$\mathbf{P}(X \cap T) + P(X' \cap T)$$

P(T) is 0.009 + 0.891 = 0.0981.

$$P(X|T) = 0.009 / 0.0981 = 0.0917.$$

Summary

As a table:

$$P(T)$$
 is $0.009 + 0.891 = 0.0981$.

$$P(X|T) = 0.009 / 0.0981 = 0.0917.$$

						Posterior after
Disease	Prior	Test	Conditional	Joint		+ve Test
Has	0.01	+ve	0.	9	0.0090	0.0917
		-ve	θ.	1	0.0010	
Not	0.99	+ve*	0.0	9	0.0891	0.9083
		-ve	0.9	1	0.9009	
			Pr +ve =		0.0981	

Note: we could adapt this method to calculate posterior probability after a negative test.

Question 2

Using the Venn diagram below P(B) =

A. 0.2

✓ B. 0.4

C. 0.5

D. 0.6

E. None of these.

E

Question 3

Using the Venn diagram below P(A|B) =

A. 0.2

B. 0.4

✓ C. 0.5

D. 0.6

E. None of these.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.2}{0.4} = 0.5$$

Example 1

- A plant has two machines.
- Machine A produces 60% of the output with the fraction defective being 0.02.
- Machine B produces 40% of the output with the fraction defective being 0.04.
- The quality control inspector finds a defective part awaiting pack and ship.
- What is the probability that it was produced by Machine A?

Answer

Example 2

- The local football team has a 20% chance of winning any given match (W).
 P(F|W) =0.6
- The local commentator is 'quite' good at predicting winners: he correctly forecasts the team will win (F) in 60% of cases and correctly predicts the team will lose in 70% of cases.
- What is the probability the team will win when the commentator predicts they will win?

P(W)??

Question 4

For the football problem shown below, without knowing the forecast, the team's probability of winning is:

- B. 0.3
- C. 0.6
- D. 0.8
- E. None of these.

Question 5

For the football problem shown below, the probability the team wins <u>and</u> the commentator forecasts they win is: $P(w \cap F)$?

- ✓ A. 0.12
 - B. 0.08
 - C. 0.24
 - D. 0.56
 - E. None of these.

Question 6

For the football problem shown below, the probability the commentator forecasts the team will win is: P(F)?

A. 0.12

B. 0.20

C. 0.24

 \checkmark D. 0.36 0.12 + 0.24

E. None of these.

Question 7

For the football problem shown below, the probability the team wins when the commentator forecasts they win is: $\frac{|w|_{F}}{|w|_{F}}$

A. 0.12

B. 0.20

C. 0.24

✓ D. 0.33

E. 0.67.

$$P(W | F) = \frac{P(F \cap W)}{P(F)} = \frac{0.12}{0.12 + 0.24} = 0.33$$

Answer

Match	Prior	Forecast	Conditional		Posterior after predicting win.
Win	0.2	Win	0.6	0.1200	0.3333
		Lose	0.4	0.0800	
Lose	0.8	Win	0.3	0.2400	0.6667
		Lose	0.7	0.5600	
			Pr Win	0.3600	

Reading:

- For you to read:
- Formal statement of Bayes' Theorem.
- The following slides take you through the components of the formal statement.

Independent Events

- If two events are independent then the probability of one event occurring has no effect on the other.
- Thus, for independent events A and B,
 - P(B|A) = P(B) and P(A|B) = P(A)
 - $P(A \cap B) = P(A) \cdot P(B)$
- For tosses of a coin, let A be the outcome of a head with the first toss and B the outcome of a head with the second toss.
- Then $P(A \cap B) = P(A)*P(B) = 0.5*0.5 = 0.25$

Mutually Exclusive Events

- Mutually exclusive events are events which cannot all occur in the same trial.
 - For example, a person tosses a coin, the outcome of head and tails is mutually exclusive.
 - A person may choose product A or B or C.
 - A person may be infected or not infected.
- For mutually exclusive events A and B $P(A \cap B) = 0$.

Collectively Exhaustive Events

- Collectively exhaustive events cover the whole sample space.
 - For example Head or Tails
 - Infected or Not Infected.

The Law of Total Probability

- X, Y and Z are mutually exclusive and collectively exhaustive because they do not intersect and together they cover the total sample space (or universe).
- Let $A = (A \cap X) \cup (A \cap Y) \cup (A \cap Z)$. Then by the law of total probability:

$$P(A) = P(A \cap X) + P(A \cap Y) + P(A \cap Z).$$

Conditional Probabilities

From earlier work with Venn and Tree Diagrams the following is true:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
thus
$$P(A \cap B) = P(B|A) P(A)$$

Bayes' Theorem

Formal statement:

For an event with outcomes $B_1, B_2...B_n$, and event R. what is the probability that outcome B_x occurred given that event R has occurred?

$$P(\mathbf{B}_{\mathbf{x}} \mid R) = \frac{P(\mathbf{B}_{\mathbf{x}})P(\mathbf{R} \mid \mathbf{B}_{\mathbf{x}})}{\sum_{j=1}^{n} P(\mathbf{B}_{j})P(\mathbf{R} \mid \mathbf{B}_{j})} = \frac{P(\mathbf{B}_{\mathbf{x}} \cap R)}{P(\mathbf{R})}$$

Probability Distributions

- For many commonly occurring situations we don't have to create a probability distribution from scratch but instead use well understood mathematical models. Next week we cover three of the most important:
- Binomial and Poisson Distributions. Both are discrete, where the random variable can take on natural (counting) number values, and the
- Normal Distribution, the most important continuous distribution.

Background for next week...

If you intend doing calculations by hand you will need to know some basic mathematical functions:

Exponential

Factorial

Combinatorial

Exponents

We describe the notation a^b as a raised to the power of b.

a and b can take on non-integer values and we often use the number 'e' as a base. $e \approx 2.7182...$

Using a calculator you should be able to calculate expressions such as: 6^2 , e^2 , $e^{-0.5}$, 0.3^{10} , 0.994^{10} , $e^{-0.44}$, 8^8 , -0.001^2 , e^{-20} . You should be able to use the $\begin{bmatrix} y^x \end{bmatrix}$ and $\begin{bmatrix} e^x \end{bmatrix}$ or $\begin{bmatrix} \exp \end{bmatrix}$ keys on your calculator.

Factorial

Factorial notation, '!' is easiest to understand with an example.

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$
, $1! = 1$, and $0! = 1$ by convention.

Formally,
$$n! = n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \cdots \cdot 3 \cdot 2 \cdot 1$$

Combinations

We use the notation ${}^{n}C_{x}$ or $\binom{n}{x}$ to describe the number of different ways we can select x objects at a time from a group of n objects.

$${}^{\mathrm{n}}C_{x} = \frac{n!}{x!(n-x)!}$$

The number of ways that we can select 4 students from a class of 10

students is given by
$${}^{10}C_4 = \frac{10!}{4!(10-4)!} = \frac{10!}{4! \ 6!} = \frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} = 210$$

The number of ways that we can select 3 cards from a deck of 52 cards

is given by
$${}^{52}C_3 = \frac{52!}{3!(52-3)!} = \frac{52!}{3! \cdot 49!} = \frac{52 \cdot 51 \cdot 50}{3 \cdot 2 \cdot 1} = 22100$$

Reading/Questions

- Reading:
 - 7th Ed. Sections 6.2 6.6.
- Questions:
 - 7th Ed. Questions 6.18, 6.22, 6.32, 6.45, 6.52, 6.77, 6.79, 6.81, 6.84.