Groepen theorie

Luc Veldhuis

18 April 2017

Samenvatting

```
G een groep H \leqslant G gH = \{gh \text{ met } h \in H\} is de linkernevenklassen Hg = \{hg \text{ met } h \in H\} is de rechternevenklassen In het algemeen gH \neq Hg
```

Stelling

Zij $H \le G$, de collectie linkernevenklassen van H in G vormen een partitie van G. Er geldt $uH = vH \Leftrightarrow v^{-1}u \in H \Leftrightarrow u^{-1}v \in H$

Bewijs

Definieer $x \sim y$ in G als $x^{-1}y \in H$ \sim is een equivalentic relatic.

- $x \sim x \ \forall x \in G$: $x^{-1}x = e \in H$
- $x \sim y \Rightarrow y \sim x$: We weten $x^{-1}y \in H$, dus $(x^{-1}y)^{-1} = y^{-1}x \in H$, dus $y \sim x$
- Als $x \sim y$ en $y \sim z$, dan $x \sim z$. Zelf doen

De equivalentieklasse van \sim vormen een partitie. Wat is de equivalentie klasse van y?

Neem
$$x^{-1}y = h \in H$$
, dan $x = yh^{-1}$

Dit geeft
$$\{x \in G | x \sim y\} = \{x \in G | x^{-1}y \in H\} = \{yh^{-1} | h \in H\} = \{yh^{-1} | h \in H\}$$

$$\{yh|h\in H\}=yH$$

Dan geldt $uH = vH \Leftrightarrow u \sim v \Leftrightarrow u^{-1}v \in H$

Vergelijk

$$\mathbb{Z}/n\mathbb{Z}$$
: $(a+n)\mathbb{Z} = \overline{a} = \overline{b} = (b+n)\mathbb{Z} \Leftrightarrow (-a+b) \in n\mathbb{Z}$

Opmerking

 $x \sim y \Leftrightarrow xy^{-1} \in H$ geeft equivalentie klasse van rechternevenklasse van H in G

Opmerking

 $G/H = \{gH|g \ inG\} = \text{collectie linkernevenklasse}$ Net zo: $H \setminus G = ^{def} \{Hg|g \in G\} = \text{collectie rechternevenklasse}$

Voorbeeld

- Als $G = \mathbb{Z}$, $H = n\mathbb{Z}$ $(n \ge 1)$, dan is $G/H = \{(a+n)\mathbb{Z} | a \in \mathbb{Z}\} = \mathbb{Z}/n\mathbb{Z} = (n\mathbb{Z}) \setminus \mathbb{Z}$
- $G = \mathbb{C}^*$, $H = \mathbb{R}^*$, $G/H = \{z\mathbb{R}^* | z \in \mathbb{C}^*\}$

$$uR^* = v\mathbb{R}^* \Leftrightarrow u^{-1}v \in \mathbb{R}^*$$

Idee: probeer G/H een groep te maken via $aH \cdot bH = abH$ $\mathbb{Z}/n\mathbb{Z}$ is een groep via $\overline{a} + \overline{b} = \overline{a+b}$, dat wil zeggen: $((a+n)\mathbb{Z}) + ((b+n)\mathbb{Z}) = (a+b+n)\mathbb{Z}$

Stelling

Neem $N \leqslant G$. De afbeelding $G/N \times G/N \to G/N$ met $(uN, vN) \mapsto uvN$

- Is goedgedefinieerd $\Leftrightarrow gng^{-1} \in N$, $\forall g \in G$ en $\forall n \in N$
- Als $gng^{-1} \in N$, $\forall g \in G$, $\forall n \in N$, dan G/N, met de afbeelding als bovenstaande, een groep. (???)

Voorbeeld

$$G = D_{2n} = \{e, r, \dots, r^{n-1}, s, sr, \dots, sr^{n-1}\} \text{ met } n \geq 3.$$
 Dan geldt $\{e, r, \dots, r^{n-1}\} = \langle r \rangle = N \text{ en } \{s, sr, \dots, sr^{n-1}\} = sN$ $N\langle r \rangle$ want $gr^ig^{-1} \in N \ \forall r^i \in N \text{ en } \forall g \in G.$ Dus $G/N = \{N, sN\} \text{ met } N = eN \text{ en } |N| = n \text{ en } |sN| = n$ Een groep via $xN \cdot yN = xyN \text{ met } x, y \in G \text{ bijvoorbeeld}$ $sN \cdot sN = s^2N = eN = N$

Definitie

Voor $N \leqslant G$ noemen we:

- gng^{-1} de geconjungeerde van n onder g
- $gNg^{-1} = \{gng^{-1} | n \in N\}$ de geconjungeerde van N onder g. (Een ondergroep van g)
- g normalizeert $N \Leftrightarrow gNg^{-1} = N$
- N heet de normaaldeler van $g \Leftrightarrow gNg^{-1} = N \ \forall g \in G$. Notatie: $N \leq G$

Stelling

Voor $N \leqslant G$ zijn equivalent:

- N ≤ G
- \bullet gN = Ng
- G/N is een groep via $xN \cdot yN = xyN$ voor $x, y \in G$
- $gNg^{-1} \subseteq N$, $\forall g \in G$

Voorbeeld

- ullet Alle ondergroepen van Q_8 zijn normaaldelers van Q_8 (ga na)
- $V_4 = \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\} \leqslant S_4$ Ook: $V_4 \leq S_4$: we gaan na dat $\sigma\tau\sigma^{-1} \in V_4$, $\forall \sigma \in S_4$ en $\forall \tau \in V_4$
 - $\tau = e : \sigma e \sigma^{-1} = e \in V_4$
 - $\tau = (a \ b)(c \ d) \text{ met } \{a, b, c, d\} = \{1, 2, 3, 4\} \text{ (Alle 4 verschillend)}$

Dan is
$$\sigma\tau\sigma^{-1} = \sigma(a\ b)(c\ d)\sigma^{-1} = \sigma(a\ b)\sigma^{-1}\sigma(c\ d)\sigma^{-1} = (\sigma(a)\ \sigma(b))(\sigma(c)\ \sigma(d))$$

 σ is een permutatie, dus $\sigma(a), \sigma(b), \sigma(c), \sigma(d)$ zijn alle 4 verschillend en dus $\sigma\tau\sigma^{-1} \in V_4$

Voorbeeld (vervolg)

- G een groep. $Z(G) = \{g \in G | gx = xg, \forall x \in G\}$ is een normaaldeler van G:
 - $Z(G) \leqslant G$. Al gezien
 - Als $n \in Z(G)$, $g \in G$, dan is $gng^{-1} = gg^{-1}n = en = n \in Z(G)$

Voorbeeld

$$G = D_1 2, \ N = Z(G) = \{e, r^3\} \subseteq G$$

 $G/N = \{gN|g \in G\} = \{N, rN, r^2N, sN, srN, sr^2N\}$
Nu geldt $r^2N \cdot srN = r^2srN = sr^5N = sr^2N$ want $sr^5(sr^2)^{-1} = sr^5sr^2 = s^2r^{-5}r^2 = r^3 \in N$

Notatie

Als $N \subseteq G$ schrijven we \overline{x} voor xN

Dan is G/N ('G modulo N') een groep met rekenregels:

- $(\overline{x})^{-1} = \overline{x^{-1}}$
- $\bullet \ \overline{x} \ \overline{y} = \overline{x \cdot y}$
- $\overline{x} = \overline{y} \Leftrightarrow x^{-1}y \in N \ (\overline{x} = \overline{e} \Leftrightarrow x \in N)$

