

o. 반도체

I.다이오드

Ⅱ. 트랜지스터

Ⅲ. 다이오드와 트랜지스터 규격 보는 법 IV. LED kit의 저항

33기 이희도

0. 반도체

도체:전기에 대한 저항이 작아전기가 통하는 물질

절연체:전기가 통하지 않는 물질

반도체: 도체와 부도체의 중간영역의 물질

P형 반도체 N형 반도체

0. 반도체

도체: 전기에 대한 저항이 작아 전기가 통하는 물질

절연체:전기가 통하지 않는 물질

반도체: 도체와 부도체의 중간영역의 물질

P형 반도체 N형 반도체

I. 다이오드(Di-[2개] + -ode[전극])

P형 반도체 + N형 반도체

공핍층 반도체 내부에 전하운반체가 없는 접합 부분 영역

일반 다이오드 —>

- → 순방향 전압을 걸어줘도 문턱전압만큼 전압강하 발생
- → 항복전압 이상의 역방향전압 을 걸어주면 다이오드가 손상 되면서 전류가 통과

항복

- 다이오드의 정류 작용을 이용하여 교류를 직류로 만들어준다.
- 반파정류회로

- 다이오드의 정류 작용을 이용하여 교류를 직류로 만들어준다.
- 반파정류회로

- 다이오드의 정류 작용을 이용하여 교류를 직류로 만들어준다.
- 전파정류회로

- 다이오드의 정류 작용을 이용하여 교류를 직류로 만들어준다.
- 전파정류회로

- 다이오드의 정류 작용을 이용하여 교류를 직류로 만들어준다.
- 전파정류회로

- 다이오드의 정류 작용을 이용하여 교류를 직류로 만들어준다.
- 전파정류회로

일반 다이오드

제너 다이오드 일반 다이오드에 비해서 항복전압이 낮고, 항복이 일어나도 다이오드가 손상되지 않는다. 이 때, 다이오드에서는 일정한 수치의 전압강하가 일어난다. (제너 다이오드의 정전압)

쇼트키 다이오드 순방향전압 손실이 적고 전압 회복속도가 빠르다 (고속 스위칭 용)

발광 다이오드

"변화하는 저항을 통한 신호 변환기(transfer of a signal through a varister 또는 transit resistor)"로부터 나온 조어이다.

항목	ВЈТ	FET
기본동작원리	전류로서 전류를 제어	전압로서 전류를 제어
반송자 종류	-Bipolar소자(양극성) - <mark>자유전자와 정공이 모두</mark> 전도 현상에 참여.	-Unipolar소자(단극성) - <mark>자유전자와 정공 중 하나만</mark> 이 전도 현상에 참여.
단자의 명칭	Base/ Emitter/ Collector	Gate/ Source/ Drain
종류	NPN, PNP	JFET, MOSFET(N채널, P채널)
역할	<mark>증폭</mark> 과 <mark>스위칭</mark> 을 하는 소자	

BJT(Bipolar(양극성) Junction(접합) Transistor)

-두 개의 P-N접합으로 이루어진 트랜지스터

-주로 NPN형을 사용한다.

-IE = IB + IC

BJT TR의 증폭 및 스위칭

-BJT 트랜지스터의 증폭 (전류) 및 스위칭 작용

B(베이스)에 신호를 주면 전류가 흐르고, B(베이스)에 신호를 주지 않으면 전류가 흐르지 않는 것이 기본적인 스위치 회로에서 스위치를 열고 닫는 것과 같아서 이를 스위칭 작용이라고 한다.

MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

N채널

[금속 산화막 반도체 전계효과 트랜지스터]

G(게이트) = BJT의 B(베이스)

D(드레인)= BJT의 C(콜렉터)

S(소스)= BJT의 E(이미터)

-산화막에 의하여 단자와 물질간은 전기적으로 분리되어 있다.

J(Junction)FET

N채널

-P형과 N형 반도체가 접촉되어 있다.

-GATE 전압이 얼마냐에 따라 공핍층이 조절되고 그에 따라 전류를 제어.

Ⅲ. 다이오드와 트랜지스터 규격 보는 법

http://www.alldatasheet.co.kr/

*트랜지스터 규격 보는 법

트랜지스터는 전압과 전류의 영향에 매우 취약므로 반드시 정격에 알맞게 사용해야 한다.

- 명 칭:숫자 문자 문자 숫자
- 제 1 번째 숫자 : 접합부의 수 표시
 - \bigcirc 1 \rightarrow 다이오드(접합부 1개), \bigcirc 2 \rightarrow 트랜지스터(접합부 2개)
- 제 2 번째 문자: S (semiconductor, 반도체를 뜻함)
- 제 3번째 문자
 - A → pnp형(고주파용)○ B → pnp형(저주파용)
 - C → npn형(고주파용)○ D → npn형(저주파용)
- 제 4번째 숫자 : 11보다 많은 숫자로서, 개량형에는 끝에 A, F의 문자를 쓴다

IV. LED kit의 저항

발광다이오드 회로 구성

LED: 전류 o.o1A, 전압 1.7V