Project presentation

Paula Lozano Gonzalo

Predict diabetes using patient clinical data.

SOURCE

Dataset

KEY FEATURES

PREPROCESSING

Kaggle dataset

Features

- 1. Year
- 2. Age
- 3. Gender
- 4. Location
- 5. Race
- 6. Hypertension

- 7. Heart Disease
- 8. Smoking History
- 9. BMI
- 10. HbA1c Levels
- 11. Blood Glucose Levels
- 12. Clinical Notes

Key Features

Blood Glucose Level & HbA1c

Blood Glucose Level

Blood Glucose Level

NORMAL:

<100 mg/dL

PREDIABETES:

100-125 mg/dL

Blood Glucose Level

HbA1c

(Average blood glucose levels over approximately 3 months)

HbA1c

(Average blood glucose levels over approximately 3 months)

NORMAL:

<5.7%

PREDIABETES:

5.7% - 6.4%

HbA1c

(Average blood glucose levels over approximately 3 months)

Preprocessing

- 1. Handled missing values.
- 2. One hot-encoded categorical features.
- 3. Added polynomial features.
- 4. Dropped "clinical notes" feature.

Models Trained

First Models

```
SGDClassifier
      ===== Training Data =====
          | Predicted | Predicted
          | No (F) | Yes (T)
| Actual Yes. | 2,232 | 3,853
     | Metric
                 | Value
     | Precision
                 0.747
     | Recall
                0.633
     | F1 Score | 0.685
```

```
Forest Classifier
     ==== Training Data =====
          | Predicted | Predicted |
            No (F) | Yes (T) |
| Actual Yes. | 1,990 | 4,095
    | Metric
                | Value
    | Precision | | 0.993
    | Recall | 0.673
    | F1 Score | 0.802
```

First Models

```
SGDClassifier
      ===== Training Data =====
          | Predicted | Predicted
            No (F) | Yes (T)
 | Actual Yes. | (2,232) | 3,853
     | Metric
                 | Value
     | Precision
                 0.747
     | Recall
               10.633
                 0.685
     | F1 Score
```

```
Forest Classifier
      ==== Training Data =====
           | Predicted | Predicted |
              No (F) | Yes (T) |
| Actual No | 65.887 | 28
| Actual Yes. | (1,990) | 4,095
    | Metric
                   | Value
    | Precision | | 0.993
    | Recall | 0.673
    | F1 Score
                  0.802
```


Unbalanced Data

Total cases: 100,000

Positive cases: 8,500

Negative cases: 91,500

Total cases: 17,000

Positive cases: 8,500

Negative cases: 8,500

Best Models

Forest Classifier		
	=== Test Data -+ Predicted No (F) -+	++ Predicted.
Actual No Actual Yes +		
Metric 		
Precisi Recall F1 Scoi	0.9	
+	+	+

```
AdaBoost
        ==== Test Data =====
            | Predicted | Predicted
            No (F)
                      | Yes(T)
 | 191
  | Actual Yes. | 149
                      1,549
     | Metric
                  | Value
     | Precision
             | 0.890
                | 0.912
     | Recall
     | F1 Score
                | 0.901
```


Next Steps

01

Generating synthetic data instead of dropping so much data.

02

Try with more models and different hyperparameters.

Thank you very much!