Problem Decomposition

This is a Longest Increasing/Decreasing Subsequence variant, adapted to train cars.

- Each car weight arrives in a fixed order.
- Erin can only attach cars to the **front** (heavier than current head of train) or to the **back** (lighter than current tail).
- The goal is to form the **longest possible valid train**, where cars are sorted in strictly decreasing order.

Subproblem Definition

We define two DP subproblems for each car *i*;

- max_increasing[i]: the longest subsequence of heavier cars that can be placed in front of car i.
- max_decreasing[i]: the longest subsequence of lighter cars that can be placed behind car i.
- The total length if pivoting at car i:
 - \circ train(i) = max increasing[i] + max decreasing[i] 1

Recursion & Order of Subproblems

Base Case = 1

• At least one car (itself) can always be placed, so there will always be a valid train length of 1.

```
max increasing[i] = 1 and max decreasing[i] = 1
```

Recursive Step

We compute values by traversing from **last car** \rightarrow **first car** (right to left; bottom-up), comparing each car with later arrivals:

Case 1 – Increasing (add to front)

Front (heavier cars):

- Look at all later cars j > i.
- If weight[i] < weight[j], then car j can be placed in front.
- Extend the sequence:
 - o max increasing [i] = max(max increasing [i], 1 + max increasing [j])

If the current car's weight is less than a later car's weight, then we can extend the **increasing sequence length** at the current index by 1 + the sequence length at that later index.

Case 2 — Decreasing (add to back)

Back (lighter cars):

- If weight[i] > weight[j], then car j can go behind.
- Extend the sequence:

```
o max\_decreasing[i] = max(max\_decreasing[i], l + max\_decreasing[j])
```

Boundary and Termination

After you compute all subproblems, you will combine the two:

```
longest train= max(max increasing [i] + max decreasing [i] - 1)
```

For each pivot car i, imagine it standing in the middle. In front, we attach the tallest sequence of heavier cars. Behind, we attach the longest sequence of lighter cars. We subtract 1 so the pivot isn't double-counted, then pick the pivot that gives the longest total train.

Summary of Notation

```
n - number of cars
weight [i]
max_increasing[i]
max_decreasing[i]
train(i)
```

Example:

```
Input:
3
1
2
3
So,
index: 0 1 2
weight: [1, 2, 3]
```

Step 0 - Base case

- Each car alone is length 1
 - o max_increasing = [1, 1, 1] #by index
 - \circ max decreasing = [1, 1, 1]

Step 1 - Pivot at index 2 (weight = 3)

- There are no cars after index 2, so the sequence stays:
 - o max increasing[2] = 1
 - \circ max decreasing[2] = 1

Train Sorting

Visual:

- Front (heavier) \rightarrow none
- Pivot \rightarrow car at index 2 (weight 3)
- Back (lighter) \rightarrow none

Step 2 — Pivot at index 1 (weight = 2)

- Compare with index 2 (weight 3):
 - \circ weight 2 < weight 3 \rightarrow can go in front \rightarrow extend:
 - \blacksquare max_increasing[1] = 1 + max_increasing[2] = 1 + 1 = 2
- No lighter cars →
 - o max decreasing[1] = 1

Visual:

- Front (heavier) $\rightarrow 3$
- Pivot \rightarrow 2
- Back (lighter) \rightarrow none

Step 3 — Pivot at index 0 (weight = 1)

- Compare with index 1 (weight 2):
 - \circ 1 (weight) \leq 2 (weight) \rightarrow
 - \blacksquare max_increasing[0] = 1 + max_increasing[1] = 1 + 2 = 3
- Compare with index 2 (weight 3):
 - 0 1 (weight) < 3 (weight) \rightarrow max_increasing[0] = max(3, 1 + max_increasing[2]) = max(3, 1 + 1) = 3
- No lighter cars after index $0 \rightarrow$
 - \circ max decreasing[0] = 1

Visual

- Front (heavier) \rightarrow car at index 1 (weight 2) \rightarrow car at index 2 (weight 3)
- Pivot \rightarrow car at index 0 (weight 1)
- Back (lighter) \rightarrow none

Step 4 - Combining at Each Pivot

$$train(i) = max_increasing[i] + max_decreasing[i] - 1$$

So from what we have done in the above steps:

$$train(0) = 3 + 1 - 1 = 3$$

$$train(1) = 2 + 1 - 1 = 2$$

$$train(2) = 1 + 1 - 1 = 1$$

Train Sorting

(work backwards)

Time and Space Complexity

- Time Complexity:
 - $\circ \quad \text{Each car compares with all later cars} \to \mathrm{O}(n^2).$
- Space Complexity:
 - We store two arrays (max_increasing, max_decreasing) of size $n \to O(n)$.