August 23 - August 29, 2019 Maribor, Slovenia Day 1 Tasks

covering
Lithuanian (LTU)

T - Padengimas

Jeigu kada nors žaidėte Tetrį, tai tikriausiai žinote, kad viena iš figūrų atrodo taip:

Šią figūrą vadinsime *T-tetrominu*. *Tetrominas* – įmantrus žodis, apibūdinantis keturis langelius, sujungtus į geometrinę figūrą. Langelis, pažymėtas simboliu ×, yra vadinamas *centriniu langeliu*.

Manca nupiešia tinklelį iš m eilučių ir n stulpelių, ir į kiekvieną langelį įrašo po skaičių. Eilutės tinkelyje sunumeruotos nuo 0 iki m-1, o stulpeliai – nuo 0 iki n-1. Kai kuriuos langelius ji pažymi kaip specialius, pavyzdžiui, nuspalvindama juos raudonai. Po to pasiūlo draugei Nikai turimus Ttetrominus sudėti į tinklelį taip, kad būtų tenkinamos šios sąlygos:

- T-tetrominų skaičius turi sutapti su specialiųjų langelių skaičiumi. Kiekvieno T-tetromino centrinis langelis turi gulėti ant vieno iš specialiųjų langelių.
- T-tetrominai negali persidengti.
- Visi T-tetrominai turi pilnai tilpti j tinklelj.

Atkreipkite dėmesį, kad egzistuoja keturi galimi T-tetromino išdėstymai (\top , \bot , \vdash ir \dashv).

Jeigu sąlygos negali būti išpildytos, Nika turi atsakyti *No*. Kitu atveju jai reikia surasti tokį T-tetrominų išdėstymą, kad suma skaičių, esančių T-tetrominų dengiamuose tinklelio langeliuose, būtų didžiausia. Tokiu atveju ji turi pateikti Mancai tą didžiausią sumą.

Parašykite programą, padedančią Nikai išspręsti šį galvosūkį.

Pradiniai duomenys

Kiekvienoje eilutėje yra pateikta tarpais atskirtų sveikųjų skaičių seka.

Pirmoje eilutėje pateikti sveikieji skaičiai m ir n. Kiekvienoje iš tolimesnių m eilučių pateikta n sveikųjų skaičių iš intervalo [0,1000]. j-asis skaičius i-ojoje eilutėje nurodo skaičių, esantį i-osios tinklelio eilutės j-ajame langelyje. Tolimesnėje eilutėje pateiktas sveikasis skaičius $k \in \{1,\ldots,mn\}$. Toliau pateiktos k eilučių, kur kiekvienoje iš jų pateikiami sveikieji skaičiai $r_i \in \{0,\ldots,m-1\}$ ir $c_i \in \{0,\ldots,n-1\}$, atitinkantys i-ojo specialaus langelio poziciją (atitinkamai eilutės ir stulpelio numeriai). Specialiųjų langelių sąraše nėra pasikartojimų.

Rezultatai

Išveskite didžiausią galimą sumą skaičių, esančių T-tetrominų dengiamuose tinklelio langeliuose. Jeigu toks padengimas neimanomas, išveskite No.

Ribojimai

• $1 \le mn \le 10^6$.

Dalinės užduotys

- 5 taškai: $k \leq 1000$; kiekvienai skirtingų specialiųjų langelių porai i ir j galioja $|r_i-r_j|>2$ arba $|c_i-c_j|>2$.
- 10 taškų: $k \leq 1000$; kiekvienai skirtingų specialiųjų langelių porai i ir j galioja: jeigu $|r_i-r_j| \leq 2$ ir $|c_i-c_j| \leq 2$, tada (r_i,c_i) ir (r_j,c_j) turi bendrą briauną arba kitaip tariant ($|r_i-r_j|=1$ ir $|c_i-c_j|=0$) arba ($|r_i-r_j|=0$ ir $|c_i-c_j|=1$).
- 10 taškų: $k \leq 1000$; kiekvienai skirtingų specialiųjų langelių porai i ir j galioja: jei $|r_i-r_j| \leq 2$ ir $|c_i-c_j| \leq 2$, tai $|r_i-r_j| \leq 1$ ir $|c_i-c_j| \leq 1$.
- 10 taškų: $k \le 1000$; visi specialieji langeliai yra toje pačioje eilutėje.
- 15 taškų: $k \le 10$.
- 20 taškų: $k \le 1000$.
- 30 taškų: papildomų ribojimų nėra.

Pavyzdys nr. 1

Pradiniai duomenys

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 4
```

Rezultatai

67

Paaiškinimas

Norėdama gauti didžiausią galimą sumą, Nika tetrominus gali išdėlioti taip:

- ∃ langelyje (1, 1);
- ⊥ langelyje (3, 4).

Pavyzdys nr. 2

Pradiniai duomenys

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 3
```

Rezultatai

No