1 ANÁLISE DOS RESULTADOS

A interpolação é o procedimento que permite estabelecer um novo conjunto de dados a partir de um conjunto discreto de dados pontuais previamente conhecidos. Através da interpolação, pode-se construir uma função que aproximadamente se "encaixe" nestes dados pontuais, conferindo-lhes, então, a continuidade desejada. A interpolação permite fazer a reconstituição (aproximada) de uma função, bastando para tanto conhecer apenas algumas das suas abscissas e respectivas ordenadas (imagens no contra-domínio da função). A função resultante garantidamente passa pelos pontos fornecidos, e, em relação aos outros pontos, pode ser considerada um mero ajuste. É necessária uma reconstrução do sinal para que este possa ser amostrado em intervalos uniformes de tempo. Com a finalidade de reconstruir o sinal de frequência cardíaca a partir da série de intervalos R-R (sinal R-R), que são utilizadas as técnicas de interpolação.

Diagrama de blocos da interpolação:

Para que se obtivesse um processamento mais robusto dos sinais de ECG foi feita a interpolação dos sinais, consequentemente aumentando a taxa de amostragem. A Figura 2 apresenta o sinal de ECG original com os pontos utilizados para a interpolação e o sinal de ECG no período de 3:00 à 3:10 minutos já interpolado.

Figura 2 - (a) Sinal de ECG com os pontos de Interpolação e (b) Sinal interpolado.

Em seguida foi realizado um procedimento para detecção dos picos (onda R) baseado na diferenciação da onda interpolada, como pode ser visto na Figura 3.

Figura 3 - Identificação e detecção da onda R, através da diferenciação.

Após a detecção dos picos foi feito o janelamento das ondas, sendo 200ms antes da onda R e 400ms após a onda R. Por meio dessa janelas, foi possível fazer a promediação da onda de ECG. O resultado dessa promediação é mostrado na Figura 4 juntamente com a janela utilizada para referência na detecção dos picos.

Figura 4 - Janela de referência e sinal promediada por meio de janelamento da onda.

Os sinais estatísticos calculados, tais como média, desvio padrão, variância e valor RMS são mostrados na Tabela 1. Esses cálculos foram feitos com base no filtro de média móvel (MA) de 5 termos, para 5 minutos e em intervalos de 1 minuto para o ECG.

Tabela 1 - Valores estatísticos calculados.

Tempo	Média	Variância	Desvio Padrão	RMS
0 – 5 minutos	639,78	379.52	19.48	640.07
	639.78	344.39	18.56	640.05
0 - 1 minutos	642,42	568,70	23,85	642,86
	642,40	515,50	22,70	642,80
1 - 2 minutos	632,91	222,52	14,92	633,09
	632,94	194,87	13,96	633,10
2 - 3 minutos	636,63	250,59	15,83	636,83
	636,66	222,01	14,90	636,84
3 - 4 minutos	648,29	174,73	13,22	648,42
	648,27	157,80	12,56	648,39
4 – 5 minutos	648,29	545,88	23,36	638,94
	648,28	497,18	22,30	638,92

Na Figura 5 é apresentado o gráfico do sinal de ECG original e o sinal filtrado pelo filtro de média móvel de 5 termos, conforme especificado para posterior cálculo dos valores estatísticos correspondentes.

Figura 5 - Picos consecutivos RR detectados e rejeitados.

A Figura 6 apresenta o gráfico dos sinais RR consecutivos detectados pelo algoritmo desenvolvido. Selecionamos os intervalos RR para a faixa: MRR - 2δ < RR < MRR + 2δ , (MRR é o valor médio de todos intervalos RR selecionados). No gráfico também são apresentados os pontos selecionados e os pontos rejeitados, ou outliers do sinal de ECG, tais sinais são representados por um x.

Figura 6 – Picos consecutivos RR detectados e rejeitados.