ProxyBO: Accelerating Neural Architecture Search via Bayesian Optimization with Zero-cost Proxies

· 作者: Yu Shen, Yang Li, Jian Zheng et.al.

· 机构: 北大、快手

· 会议: arxiv

· 地址: https://arxiv.org/abs/2110.10423

· 代码: 暂无

论文主要内容

摘要

之前的NAS方法能搜到promising结果但是慢,zero-cost proxies 运行很快但是搜索结果不够 promising。最近有工作将zero-cost proxies 作为简单的warm-up手段。但受unforeseeable reliability 和 one-shot usage两个局限。文章提出ProxyBO来解决这两个问题,达到SOTA。

贡献

- 1. 不需要预先知道proxies对task的适用性(无需计算秩相关系数)**自适应**
- 2. 第一个effectively组合BO与zero-cost proxies两者优势的算法框架

研究内容

Motivation

- ·一方面:目前Baysian Optimization(BO)在NAS上的应用具有的缺点:得到一个好的 surrogate需要**相当多的evaluations**,evaluation少的时候surrogate会under-fit
 - 。介绍:BO会用已有的评估观测数据去训练一个predictor(surrogate),根据预测结果挑选下一个网络架构做evaluate。已有的工作主要在predictor的选取上(BNN、GNN)
- · 另一方面:NAS中使用zero-cost proxies速度很快,但是结果没有BO-based NAS的好
 - 介绍:正常evaluate一个网络架构需要拿去train(耗时)。zero-cost proxies不需要训练来估计 网络架构的性能

(a) NAS-Bench-201 CIFAR-10

(b) NAS-Bench-101

Figure 1: Spearman ρ of jacob_cov over NAS search spaces using 1000 randomly sampled architectures.

- 。 同时zero-cost proxies在不同搜索空间、不同数据集的有效性(秩相关系数)还不一样
- Unforeseeable reliability:实践中,在真正搜索前秩相关系数是未知的(使用需要先验知识)
- One-shot usage: 先前proxy作为warm-up手段,这样proxy在整个搜索过程中是一次性的作用(在搜索的后期中难以消除bad proxies的影响)。
- · 这篇文章就通过结合BO与zero-cost proxies的优点来加速NAS

Intuition

evaluations少的时候用proxies、evaluations多的时候用BO(dynamic importance)

方法

介绍

把NAS看作黑盒优化问题:

$$\operatorname{argmin}_{x \in \mathcal{X}} f_{obj}(x)$$

 ${\cal X}$ 是NAS中的search space, f_{obj} 是架构的性能metric(对于分类任务:在val集上的分类误差)

Zero-cost Proxy

简化讨论:这里所有proxy score都一致设为越小代表越好

· snip

$$egin{aligned} S(heta) &= \left| rac{\partial L}{\partial heta} \odot heta
ight| \ P(x) &= -\sum_{ heta \in \Theta} S(heta) \end{aligned}$$

· Synflow

$$egin{aligned} S(heta) &= rac{\partial L}{\partial heta} \odot heta \ P(x) &= -\sum_{ heta \in \Theta} S(heta) \end{aligned}$$

· jacob cov

$$P(x) = -\log |K_H|$$

Table 1: Spearman ρ of proxies for all (and top-10%) architectures in NAS spaces. "NB2" refers to NAS-Bench-201.

	snip	synflow	jacob_cov
NAS-Bench-101	-0.16 (-0.00)	0.37 (0.14)	-0.38 (-0.08)
NB2 CIFAR-10	0.60 (-0.36)	0.72 (0.12)	0.74 (0.15)
NB2 CIFAR-100	0.64 (-0.09)	0.71 (0.42)	0.76 (0.06)
NB2 ImageNet16-120	0.58 (0.13)	0.70 (0.55)	0.75 (0.06)
NAS-Bench-ASR	0.03 (0.13)	0.41 (-0.01)	-0.36 (0.06)

no proxy dominates the others on all the tasks(没有免费的午餐)

核心在于怎么去评判这些indicator的相对重要性

测定indicator泛化能力

$$F\left(P_{i};D
ight) = \sum_{i=1}^{|D|} \sum_{k=j+1}^{|D|} 1\left(\left(P_{i}\left(x_{j}
ight) < P_{i}\left(x_{k}
ight)
ight) \otimes \left(y_{j} < y_{k}
ight)
ight)$$

实际意义: proxy能够正确rank架构的能力(越大越好)

测定BO surrogate泛化能力

k-fold cross-validation

$$F(M;D) = \sum_{j=1}^{|D|} \sum_{k=j+1}^{|D|} 1\left(\left(M_{-f\left(x_{j}
ight)}\left(x_{j}
ight) < M_{-f\left(x_{k}
ight)}\left(x_{k}
ight)
ight) \, \otimes \left(y_{j} < y_{k}
ight)
ight)$$

泛化能力的统一表示

$$G(\cdot; D) = 2F(\cdot; D)/(|D| * (|D| - 1))$$

有了这个measurement,就能在搜索过程中判定proxies、BO surrogate的对NAS的贡献(权重)

动态加权组合

- · 一般的BO迭代中会选择使得acquisition function最大的一个样本作为将要evaluate的架构
- · ProxyBO对candidates做一个rank,rank第一的candidate样本作为将要evaluate的架构
- · rank具体计算方式: combine rank:

$$CR\left(x_{j}
ight) = I(M;D)R_{M}\left(x_{j}
ight) + \sum_{i=1}^{K}I\left(P_{i};D
ight)R_{P_{i}}\left(x_{j}
ight) \ I(\cdot;D) = rac{\exp(G(\cdot;D)/ au)}{\sum \exp(G(\cdot;D)/ au)}, au = rac{ au_{0}}{1 + \log T}$$

 $oldsymbol{I}$ 理解为权重, au 温度参数控制softmax, T 迭代次数来控制温度

作用:

- 1. 在搜索过程中逐渐降低Proxies的权重,增加BO的权重
- 2. 在搜索过程中不同proxy可以无先验知识的使用(不知道哪个proxy对于当前task是有效的)

Algorithm 1: Pseudo code for Sample in ProxyBO

Input: the observations D, the current number of iteration T, the number of sampled configurations Q, the Bayesian optimization surrogate M, the zero-cost proxies $P_{1:K}$, and the temperature hyper-parameter τ_0 .

Output: the next architecture configuration to evaluate.

- 1: if |D| < 5, then **return** a random configuration.
- 2: compute $G(\cdot; D)$ for each proxy and the surrogate.
- 3: compute $I(\cdot; D)$ according to Eq. 8
- 4: draw Q configurations via random and local sampling.
- 5: compute the Expected Improvement (EI) based on surrogate M according to Eq. $\boxed{1}$ and the proxy values for $P_{1:K}$ according to Eq. $\boxed{2}$ $\boxed{3}$ $\boxed{4}$ for each sampled configuration.
- 6: rank the Q configurations and obtain the ranking value of configuration x_j as $R_M(x_j)$ and $R_{P_i}(x_j)$ for the i-th proxy.
- 7: calculate the combined ranking $CR(x_j)$ for each configuration x_j according to Eq. 7
- 8: **return** the configuration with the lowest combined ranking value.

整体算法流程

Algorithm 2: Pseudo code for the framework of ProxyBO

Input: the search budget \mathcal{B} , the architecture search space \mathcal{X} .

Output: the best observed architecture configuration.

- 1: initialize observations $D = \emptyset$.
- 2: **while** budget \mathcal{B} does not exhaust **do**
- 3: build surrogate M based on observations D.
- 4: call *Sample* for the next configuration to evaluate.
- 5: evaluate the selected configuration x_j and obtain its performance y_j .
- 6: augment $D = D \cup (x_j, y_j)$.
- 7: end while
- 8: **return** the configuration with the best observed performance.

实验结果

- OpenBox
- · 64 'AMD EPYC 7702P' CPU cores and two 'RTX 2080Ti' GPUs.

Results

Figure 3: Test results during neural architecture search on three benchmarks. The black dash lines refer to the global optima.

Table 2: Mean \pm std. test errors (%) on NAS-Bench-101 and NAS-Bench-201, and test PERs (%) on NAS-Bench-ASR. "NB2 refers to NAS-Bench-201, and "Optimal" refers to the best result in the entire benchmark. The evaluation number of weight sharing methods and zero-cost proxies is computed by their runtime divided by the average training time of architecture. The zero-cost proxy-based methods apply all three proxies. The results of weight-sharing methods on NAS-Bench-201 an NAS-Bench-101 follow Dong and Yang (2019) and Yu et al. (2019), respectively.

Method	Runtime (#Eval)	NB2-CIFAR-10	NB2-CIFAR-100	NB2-ImageNet16-120	NAS-Bench-101	NAS-Bench-ASR		
Regular Methods								
RS	200	9.11 ± 0.21	27.97 ± 0.66	54.01 ± 0.55	6.29 ± 0.12	21.61 ± 0.10		
RL	200	9.02 ± 0.24	27.66 ± 0.65	53.58 ± 0.45	6.26 ± 0.14	21.62 ± 0.09		
REA	200	8.62 ± 0.21	26.67 ± 0.35	53.08 ± 0.36	6.14 ± 0.24	21.50 ± 0.07		
BO	200	8.80 ± 0.22	27.03 ± 0.45	53.12 ± 0.37	6.09 ± 0.23	21.47 ± 0.06		
BRP	200	8.58 ± 0.13	26.57 ± 0.12	52.96 ± 0.29	6.00 ± 0.16	21.50 ± 0.08		
	Weight-sharing Methods							
DARTS	≈9	45.70 ± 0.00	85.38 ± 0.00	83.68 ± 0.00	7.79 ± 0.61	23.59 ± 0.43		
ENAS	≈7	46.11 ± 0.58	86.04 ± 2.33	85.19 ± 2.10	8.17 ± 0.42	24.45 ± 0.90		
	Zero-cost Proxies							
Snip	<1	13.45 ± 1.80	36.41 ± 3.36	71.94 ± 9.09	10.68 ± 2.16	31.61 ± 18.17		
Jacob_cov	<1	12.19 ± 1.60	32.99 ± 2.84	60.43 ± 4.46	13.86 ± 1.86	69.95 ± 24.67		
Synflow	<1	10.30 ± 0.94	29.55 ± 1.77	56.94 ± 3.57	8.32 ± 1.64	25.70 ± 12.91		
Zero-cost Proxy-based Methods								
Warm-up BRP	200	8.58 ± 0.21	26.65 ± 0.31	53.02 ± 0.35	5.99 ± 0.15	21.51 ± 0.10		
ProxyBO	200	8.56 ± 0.10	26.52 ± 0.17	52.82 ± 0.19	5.91 ± 0.13	21.43 ± 0.03		
Optimal	/	8.55	26.49	52.69	5.68	21.40		

Table 3: Number of evaluations required to achieve the same average results as REA with 200 evaluations.

	BRP	Warm-up BRP	ProxyBO
NB2 CIFAR-10	170	178	75
NB2 CIFAR-100	142	184	37
NB2 ImageNet16-120	144	168	46
NAS-Bench-101	94	105	41
NAS-Bench-ASR	179	213	51

消融实验

Figure 2: Algorithm analysis of ProxyBO. Figure (a) is conducted on NAS-Bench-201 CIFAR-100 while Figures (b) and (c) are conducted on NAS-Bench-101. The solid lines and dash lines in Figure (b) refer to the generalization ability measurements and influence values, respectively.

- · 图a,对温度 au 进行消融实验:初始温度0.05最好
- ·图b,虚线是权重、实线是泛化能力
 - snip 与 jacob cov的秩相关系数是负数,观察到的权重也是变成0
 - 。 synflow在开始的36个evaluation权重最大
 - 。 BO surrogate权重从39个evaluation开始超过synflow,到后面保持1,ProxyBO变成BO

- · 图c,选不同proxy的影响(如果**挑选**helpful proxy需要先验知识,比如要知道在该task上的kendall-tau)
 - 。 当只引入helpless proxy的时候ProxyBO不会比BO差
 - 。 当引入helpful proxy的时候显著提升