CSE2310 Algorithm Design Lecture/Q&A 4: Greedy Algorithms

Stefan Hugtenburg, Emir Demirović, and Mathijs de Weerdt

©2019-2024 TU Delft

 ${\sf Algorithmics\ group--EEMCS--TU\ Delft}$

2023-2024 Q2

You are here

The course so far

- Introduction
- Greedy algorithms and proofs: scheduling, MSTs, clustering

Today's content

- Huffman's Optimal Encoding
- Some exam-level assignments
- Q&A

The future

- Divide & Conquer algorithms
- Dynamic programming
- Network Flow

lft

Huffman codes

Image from Wikipedia

©2024 TU Delf

Encoding text

Efficiency in both runtime and output space!?

Problem: Efficient encoding

Given a text, encode the text in binary as efficiently as possible, so that the encoding is non-ambiguous.

E)2024 TU Delft

Encoding text

Efficiency in both runtime and output space!?

Problem: Efficient encoding

Given a text, encode the text in binary as efficiently as possible, so that the encoding is non-ambiguous.

Answer: The best in it's own subclass

A Huffman encoding is the optimal encoding when encoding each symbol separately! It is a *prefix* coding.

© 2024 TU Delft

4

Do not repeat your starts!

Definition (Prefix code)

A prefix code for a set S is a function $c: S \to \{0,1\}^+$ so that $\forall x, y \in S: x \neq y \to c(x)$ is not the same as a prefix (first part) of c(y).

Note that $\{0,1\}^+$ means any string of length ≥ 1 consisting of only zeroes and ones.

2)2024 TU Delft

Do not repeat your starts!

Definition (Prefix code)

A prefix code for a set S is a function $c:S \to \{0,1\}^+$ so that

 $\forall x,y \in S : x \neq y \rightarrow c(x)$ is not the same as a prefix (first part) of c(y).

Note that $\{0,1\}^+$ means any string of length ≥ 1 consisting of only zeroes and ones

Question: Does this work?

Take $S = \{a, b, d\}$, and c(a) = 01, c(b) = 010, c(d) = 1. Is this a prefix code?

- Yes
- No
- I don't know

© 2024 TU Delft

Do not repeat your starts!

Definition (Prefix code)

A prefix code for a set S is a function $c: S \to \{0,1\}^+$ so that

 $\forall x, y \in S : x \neq y \rightarrow c(x)$ is not the same as a prefix (first part) of c(y).

Note that $\{0,1\}^+$ means any string of length > 1 consisting of only zeroes and ones

Question: Does this work?

Take $S = \{a, b, d\}$, and c(a) = 01, c(b) = 010, c(d) = 1. Is this a prefix code?

- Yes
- No
- I don't know

Answer: Nah!

Nope! c(a) is a prefix of c(b)

Do not repeat your starts!

Definition (Prefix code)

A prefix code for a set S is a function $c: S \to \{0,1\}^+$ so that $\forall x, y \in S: x \neq y \to c(x)$ is not the same as a prefix (first part) of c(y).

Note that $\{0,1\}^+$ means any string of length ≥ 1 consisting of only zeroes and ones.

Problem: More complexity!

What does 1001000001 mean, given that

$$c(a) = 000, c(e) = 01, c(k) = 11, c(n) = 10, c(t) = 001$$
?

Do not repeat your starts!

Definition (Prefix code)

A prefix code for a set S is a function $c:S \to \{0,1\}^+$ so that

 $\forall x,y \in S : x \neq y \rightarrow c(x)$ is not the same as a prefix (first part) of c(y).

Note that $\{0,1\}^+$ means any string of length ≥ 1 consisting of only zeroes and ones.

Problem: More complexity!

What does 1001000001 mean, given that

$$c(a) = 000, c(e) = 01, c(k) = 11, c(n) = 10, c(t) = 001$$
?

Answer: Is that a good translation of 'leuk'?

neat

© 2024 TU Delft

5

Problem: How do we define optimal?

How do we measure a "good encoding"?

Problem: How do we define optimal?

How do we measure a "good encoding"?

Answer: Average it out!

By looking at the average encoding length of text we want to encode!

Problem: How do we define optimal?

How do we measure a "good encoding"?

Answer: Average it out!

By looking at the average encoding length of text we want to encode!

Problem: Average of what?

But what is the "average text"?

)2024 TU Delft

Problem: How do we define optimal?

How do we measure a "good encoding"?

Answer: Average it out!

By looking at the average encoding length of text we want to encode!

Problem: Average of what?

But what is the "average text"?

Answer: Frequency analysis to the rescue!

We do a frequency analysis! So we formulate our question as: Given some letters S and the frequency of their use as a function f that sums to 1, what is the encoding function f that minimises the Average Bits per Letter: $ABL(c) = \sum_{c} f(x) \cdot |c(x)|$?

lft

Making it visual!

A binary tree as an encoding!

A binary tree represents a code where:

- Children are uniquely identified by an edge label (0 or 1)
- Nodes are labeled with symbol x iff the path from the root is labeled with the encoding c(x).

© 2024 TU Delft

Making it visual!

A binary tree as an encoding!

A binary tree represents a code where:

- Children are uniquely identified by an edge label (0 or 1)
- Nodes are labeled with symbol x iff the path from the root is labeled with the encoding c(x).

As an example...

$$c(d) = 1, c(e) = 0, c(k) = 01$$

| $c(x)$ | is now the depth of the node in the tree!

lft

© 2024 TU Delft

Making it visual!

A binary tree as an encoding!

A binary tree represents a code where:

- Children are uniquely identified by an edge label (0 or 1)
- Nodes are labeled with symbol x iff the path from the root is labeled with the encoding c(x).

As an example...

$$c(d) = 1, c(e) = 0, c(k) = 01$$

 $|c(x)|$ is now the depth of the node in the tree!

How do we see from the tree that this is not a prefix code?

lft

Or is it leafs, I always forget

An important observation

Only leaves can have a label in a prefix code!

©2024 TU Delft

Or is it leafs, I always forget

An important observation

Only leaves can have a label in a prefix code!

Proof.

If an internal node x has a label, its path is a prefix of another one, and... The path of x is a prefix of the path of y iff its encoding is prefix of encoding of y.

As an example...

lft

Or is it leafs, I always forget

An important observation

Only leaves can have a label in a prefix code!

Question: Get out your pencils!

Draw the tree for the prefix encoding we had before:

$$c(a) = 000, c(e) = 01, c(k) = 11, c(n) = 10, c(t) = 001$$

Or is it leafs, I always forget

An important observation

Only leaves can have a label in a prefix code!

Question: Get out your pencils!

Draw the tree for the prefix encoding we had before:

$$c(a) = 000, c(e) = 01, c(k) = 11, c(n) = 10, c(t) = 001$$

Question: Get out your pencils!

You get a 0010110 for this!

© 2024 TU Delft

Full binary trees

Trust us, this will all come together:)

Definition (Full binary trees)

A binary tree is full if every node has either 2 or 0 children.

Claim: The binary tree corresponding to the optimal prefix code is full.

Full binary trees

Trust us, this will all come together:)

Definition (Full binary trees)

A binary tree is full if every node has either 2 or 0 children.

Claim: The binary tree corresponding to the optimal prefix code is full.

Full binary trees

Trust us, this will all come together:)

Claim: The binary tree corresponding to the optimal prefix code is full.

Proof by contradiction.

- Suppose for the sake of contradiction that *T* is a *non-full* binary tree of an optimal prefix code.
- There must then be a node u with one child v. u does not have a label (no leaf).
- Now there are two options (division into cases!):
 - u is the root. Now create T' where we delete u and use v as the root.
 - u is not the root. Create T' where we delete u and let v be the child of w where w is the parent of u.
- In both cases the number of bits needed to encode any leaf in the subtree of v is decreased and the rest of the tree remains the same.
- Thus the ABL of T' is smaller than T, which contradicts our assumption that T

Okay, so it's full, now what?

Based on Shannon-Fano, 1949

Question: A greedy strategy

Where do the more common letters (highest frequencies) go?

Okay, so it's full, now what?

Based on Shannon-Fano, 1949

Question: A greedy strategy

Where do the more common letters (highest frequencies) go?

Answer: Like on a mountain

At the top!

Idea: Create the tree top-down. Split S into sets S_1 and S_2 with (almost) equal frequencies, then recursively build the tree for S_1 and S_2 .

)2024 TU Delft

Okay, so it's full, now what?

Based on Shannon-Fano, 1949

Question: A greedy strategy

Where do the more common letters (highest frequencies) go?

Answer: Like on a mountain

At the top!

Idea: Create the tree top-down. Split S into sets S_1 and S_2 with (almost) equal frequencies, then recursively build the tree for S_1 and S_2 .

Question: Does it work?

Try it for $f_a = 0.32$, $f_e = 0.25$, $f_k = 0.2$, $f_n = 0.18$, $f_t = 0.05$. Does it work?

- Yes!
- No!
 - Wait whut?

lft

No dice, I'm afraid

$$f_a = 0.32$$
, $f_e = 0.25$, $f_k = 0.2$, $f_n = 0.18$, $f_t = 0.05$.

This is not optimal! $ABL(t) = 0.05 \cdot 3 + 0.2 \cdot 3 + 0.25 \cdot 2 + 0.18 \cdot 2 + 0.32 \cdot 2 = 2.25$

© 2024 TU Delft

No dice, I'm afraid

$$f_a = 0.32$$
, $f_e = 0.25$, $f_k = 0.2$, $f_n = 0.18$, $f_t = 0.05$.

This is not optimal! $ABL(t) = 0.05 \cdot 3 + 0.2 \cdot 3 + 0.25 \cdot 2 + 0.18 \cdot 2 + 0.32 \cdot 2 = 2.25$

This is better! $ABL(t) = 0.05 \cdot 3 + 0.18 \cdot 3 + 0.20 \cdot 2 + 0.25 \cdot 2 + 0.32 \cdot 2 = 2.23$

Based on Huffman, 1952

Lemma

If u and v are leaves in T^* and $depth_{T^*}(u) < depth_{T^*}(v)$ then $f_u \geq f_v$.

E)2024 TU Delft

Based on Huffman, 1952

Lemma

If u and v are leaves in T^* and $depth_{T^*}(u) < depth_{T^*}(v)$ then $f_u \ge f_v$. (Proof by contradiction and exchange argument, showing decrease of ABL.)

Siblings claim

For every optimal prefix code T, there is an optimal T^* where the two lowest-frequency items are assigned to leaves that are siblings at the lowest level.

)2024 TU Delft

Based on Huffman, 1952

Lemma

If u and v are leaves in T^* and $depth_{T^*}(u) < depth_{T^*}(v)$ then $f_u \ge f_v$. (Proof by contradiction and exchange argument, showing decrease of ABL.)

Siblings claim

For every optimal prefix code T, there is an optimal T^* where the two lowest-frequency items are assigned to leaves that are siblings at the lowest level.

Proof

• From Lemma we see that the lowest frequency item is assigned to the lowest level.

lft

Based on Huffman, 1952

Lemma

If u and v are leaves in T^* and $depth_{T^*}(u) < depth_{T^*}(v)$ then $f_u \ge f_v$. (Proof by contradiction and exchange argument, showing decrease of ABL.)

Siblings claim

For every optimal prefix code T, there is an optimal T^* where the two lowest-frequency items are assigned to leaves that are siblings at the lowest level.

Proof

- From Lemma we see that the lowest frequency item is assigned to the lowest level.
- This leaf has a sibling (for n > 1) because trees are full.
- The order in which items appear in a level does not matter.
- So the two lowest frequency items can be made to appear next to each other.

lft

Based on Huffman, 1952

Lemma

If u and v are leaves in T^* and $depth_{T^*}(u) < depth_{T^*}(v)$ then $f_u \ge f_v$. (Proof by contradiction and exchange argument, showing decrease of ABL.)

Siblings claim

For every optimal prefix code T, there is an optimal T^* where the two lowest-frequency items are assigned to leaves that are siblings at the lowest level.

Now what?

©)2024 TU Delft

Based on Huffman, 1952

Lemma

If u and v are leaves in T^* and $depth_{T^*}(u) < depth_{T^*}(v)$ then $f_u \ge f_v$. (Proof by contradiction and exchange argument, showing decrease of ABL.)

Siblings claim

For every optimal prefix code T, there is an optimal T^* where the two lowest-frequency items are assigned to leaves that are siblings at the lowest level.

Now what?

Idea: Create tree bottom-up. Make two leaves for two lowest frequency letters y and

z. Recursively build tree for the rest using a meta-letter for yz.

2024 T.H. Delft

Let's try it out!

$$f_a = 0.32, f_e = 0.25, f_k = 0.2, f_n = 0.18, f_t = 0.05$$

Lowest frequencies: n and t , together 0.23

©2024 TU Delft

Let's try it out!

$$f_a=0.32, f_e=0.25, f_k=0.2, f_\omega=0.23$$

Lowest frequencies: k and ω , together 0.43

)2024 TU Delft

Let's try it out!

$$f_a = 0.32, f_e = 0.25, f_\omega = 0.43$$

Lowest frequencies: e and a, together 0.57

Let's try it out!

$$f_{\alpha} = 0.57, f_{\omega} = 0.43$$

Lowest frequencies: ω and α

20024 TIL Delft

Getting it into a computer?

```
function Huffman(S)  \begin{aligned} &\textbf{if} \ |S| = 2 \textbf{ then} \\ &\textbf{return} \ \text{tree with root and 2 leaves} \end{aligned} \\ &\textbf{else} \\ &\text{let } y \ \text{and } z \ \text{be the lowest frequency letters in } S \\ &S' \leftarrow S - \{y,z\} \cup \{\omega\}, \ \text{so that } f_\omega = f_y + f_z \\ &T' \leftarrow \text{Huffman}(S') \\ &T \leftarrow \text{add two children } y \ \text{and } z \ \text{to leaf } \omega \ \text{in } T' \\ &\textbf{return } T \end{aligned}
```

Question: Efficient?

How do we implement this efficiently?

Answer: PQs galore!

With a priority queue for S we can implement this in $O(n \log n)$ time!

But is it optimal?

Well yes, but let us convince you!

Claim: Huffman code for ${\it S}$ achieves the minimal ABL of any prefix code.

 $Huffman\ T:$

©2024 TU Delf

15

But is it optimal?

Well yes, but let us convince you!

Claim: Huffman code for S achieves the minimal ABL of any prefix code. Huffman T: Some optimal tree Z:

©2024 TU Delf

15

But is it optimal?

Well yes, but let us convince you!

Claim: Huffman code for S achieves the minimal ABL of any prefix code.

Proof by induction (sketch).

Base case (n = 2): there is no shorter code than a root and two leaves.

IH: The Huffman tree T' of any S' of size n-1 is optimal.

Induction step:

- Let Z be the optimal prefix code for S of size n, and T be the Huffman tree.
- Delete the lowest frequency items y and z from Z to create Z' of size n-1.
- Same for T to create T' of size n-1.
- The induction hypothesis (T' is optimal) implies that $ABL(T') \leq ABL(Z')$.
- Question: how do ABL(T') and ABL(Z') relate to ABL(T) and ABL(Z)?
- Then $ABL(T) \leq ABL(Z)$, and thus T is optimal.

lft

2)2024 TU Delft

Quick side-step

Claim: $ABL(T') = ABL(T) - f_{\omega}$ when T' is T with y, z replaced with ω .

©2024 TU Delft

Quick side-step

Claim: $ABL(T') = ABL(T) - f_{\omega}$ when T' is T with y, z replaced with ω .

Proof.

$$ABL(T) = \sum_{x \in S} f(x) \cdot depth_{T}(x)$$

$$= f(y) \cdot depth_{T}(y) + f(z) \cdot depth_{T}(z) + \sum_{x \in S - \{y, z\}} f(x) \cdot depth_{T}(x)$$

$$= (f_{y} + f_{z}) \cdot (1 + depth_{T}(\omega)) + \sum_{x \in S - \{y, z\}} f(x) \cdot depth_{T}(x)$$

$$= f_{\omega} \cdot (1 + depth_{T}(\omega)) + \sum_{x \in S - \{y, z\}} f(x) \cdot depth_{T}(x)$$

$$= f_{\omega} + \sum_{x \in S'} f(x) \cdot depth_{T}(x) \quad \text{(including } \omega \text{ in the sum)}$$

$$= f_{\omega} + ABL(T')$$

lft

(C)2024 TU Delf

Finishing our proof

Claim: Huffman code for S achieves the minimal ABL of any prefix code.

Proof by induction.

Base case (n = 2): there is no shorter code than a root and two leaves.

IH: The Huffman tree T' of any S' of size n-1 is optimal. Induction step:

- Let Z be the optimal prefix code for S of size n, and T be the Huffman tree.
- Using the siblings claim we may assume w.l.o.g. that the lowest frequency items y and z are siblings in Z (and they are by definition siblings in T).
- Let Z' and T' be the trees created by replacing y and z by ω .
- The induction hypothesis (T' is optimal) implies that $ABL(T') \leq ABL(Z')$.
- We know that $ABL(Z') = ABL(Z) f_{\omega}$ and $ABL(T') = ABL(T) f_{\omega}$.
- Thus also $ABL(T) \leq ABL(Z)$, and thus T is optimal.

Old exam question: Dr. Huffman

5 minutes (+5 minutes)

Question: Let's code it up

Dr. Huffman is given the following letters to encode using an optimal prefix code: $\{p, e, a, r, l\}$ with the following frequencies:

 $f_p = 0.2, f_e = 0.35, f_a = 0.08, f_r = 0.12, f_l = 0.25$. Which of the following statements about Huffman's optimal prefix code is **true**?

- The encodings for p, e, and l are all of the same length.
- ① The encodings for p, r, and a are all of the same length.
- The shortest encoding is of length 1 and is for the letter e.
- There is one letter with an encoding of length 4, which is for the letter a.

)2024 TU Delft

Old exam question: Dr. Huffman

5 minutes (+5 minutes)

Question: Let's code it up

Dr. Huffman is given the following letters to encode using an optimal prefix code: $\{p, e, a, r, l\}$ with the following frequencies:

 $f_p = 0.2, f_e = 0.35, f_a = 0.08, f_r = 0.12, f_l = 0.25$. Which of the following statements about Huffman's optimal prefix code is **true**?

- \bigcirc The encodings for p, e, and l are all of the same length.
- \odot The encodings for p, r, and a are all of the same length.
- The shortest encoding is of length 1 and is for the letter e.
- There is one letter with an encoding of length 4, which is for the letter a.

Answer: Answer A

A possible correct encoding has:

c(a) = 000, c(r) = 001, c(p) = 01, c(e) = 10, c(l) = 11. So answer A is true.

Old exam question: Translated & slightly rephrased in the process.

10 minutes (+10 minutes)

Question: Placing pubs

There are houses along a road, which all want access to a pub. To ensure that people do not have to travel far after visiting a pub (this often leads to accidents), every house should have a pub within cycling distance, 5km. To minimise cost, we also want to minimise the number of pubs. Given distances x_1, \ldots, x_n , the municipality uses this algorithm to place the pubs:

```
Sort and relabel distances x_1, \ldots, x_n l \leftarrow -\infty; j \leftarrow 0 for i \leftarrow 1 to n do

if |x_i - l| > 5 then

print x_i + 5
l \leftarrow x_i + 5
j \leftarrow j + 1
```

Prove the algorithm is optimal, using the greedy stays ahead proof strategy.

Greedily filling your backpack

10 minutes (+5 minutes)

Problem: The lazy fitness

You have decided to start training your upper body strength. To this end you want to carry a weight w around with you every day.

You have *n* categories of items, with num_i items per category and a weight of $weight_i$ weight per item for $1 \le i \le n$.

Implement a greedy strategy for determining as few items of each category as possible needed (with a greedy strategy) to get to weight w.

E)2024 TU Delft

Greedily filling your backpack

10 minutes (+5 minutes)

Problem: The lazy fitness

You have decided to start training your upper body strength. To this end you want to carry a weight w around with you every day.

You have *n* categories of items, with num_i items per category and a weight of $weight_i$ weight per item for $1 \le i \le n$.

Implement a greedy strategy for determining as few items of each category as possible needed (with a greedy strategy) to get to weight w.

Hang on...

Does this greedy strategy lead to a minimal number of items for every input...? Problem for another day I guess...?

© 2024 TU Delft

20

You are here

The course so far

- Introduction
- Greedy algorithms and proofs: scheduling, MSTs, clustering

Today's content

- Huffman's Optimal Encoding
- Some exam-level assignments
- Q&A

The future

- Divide & Conquer algorithms
- Dynamic programming
- Network Flow

lft

(c) 2024 TU Deif

What is still unclear?

Question: After every lecture...

Give us some homework and tell us:

What is still unclear after attending today's lecture?

Homework for this week

- Before next lecture:
 - Study Chapter 4:
 - Huffman codes (Ch 4.8)
 - Do all skills of module Greedy (for your chosen path)

Homework for this week

- Before next lecture:
 - Study Chapter 4:
 - Huffman codes (Ch 4.8)
 - Do all skills of module Greedy (for your chosen path)
- Next TA check:
 - Greedy Triathlon: November 25 (tomorrow)

CSE2310 Algorithm Design

Lecture/Q&A 4: Greedy Algorithms

Stefan Hugtenburg, Emir Demirović, and Mathijs de Weerdt

©2019-2024 TU Delft

 ${\sf Algorithmics\ group--EEMCS--TU\ Delft}$

2023-2024 Q2

© 2024 TU Delft