Syntax Analysis

What is Syntax?

- Refers to the way words are arranged together, and the relationship between then.
- Language Models: Importance of modeling word order
- POS categories: An equivalence class for words
- More complex notions: constituency, grammatical relations, subcategorization etc.

What is Syntax?

It is the set of rules and processes that govern the structure of sentences (sentence structure) in a given language.

Syntax Tree: Example

Constituency

Constituent

A group of words acts as a single unit - phrases, clauses etc.

Part of Speech - "Substitution Test"

The {sad, intelligent, green, fat, ...} one is in the corner.

Constituency: Noun Phrase

- Kermit the frog
- they
- December twenty-sixth
- the reason he is running for president

Constituency

- Working based on Constituency (Phrase structure)
 - Organizing words into nested constituents
 - Showing that groups of words within utterances can act as single units
 - Forming coherent classes from these units that can behave in similar ways
 - With respect to their internal structure
 - With respect to other units in the language
 - Considering a head word for each constituent

Constituency

the writer talked to the audiences about his new book.

the writer talked about his new book to the audiences. C

about his new book the writer talked to the audiences. C

the writer talked book to the audiences about his new. C

Constituent Phrases

Usually named based on the word that heads the constituent:

- the man from India: Noun Phrase (head = man)
- extremely clever: Adjective Phrase (head = clever)
- on December 26th: Preposition Phrase (head = on)

Single word can also act as a phrase. Any example?

Words can also act as phrases

Joe grew potatoes

Joe and potatoes are both nouns and noun phrases

Compare with: The man from Amherst grew beautiful russet potatoes.

Joe appears in a place that a larger noun phrase could have been.

Evidence that constituency exists

They appear in similar environments

Kermit the frog comes on stage

They come to Massachusetts every summer

December twenty-sixth comes after Christmas

The reason he is running for president comes out only now.

But not each individual word in the consituent

*The comes our... *is comes out... *for comes out...

Can be placed in a number of different locations

Consituent = Prepositional phrase: On December twenty-sixth On December twenty-sixth I'd like to fly to Florida.

I'd like to fly on December twenty-sixth to Florida.
I'd like to fly to Florida on December twenty-sixth.
But not split apart

*On December I'd like to fly twenty-sixth to Florida.

*On I'd like to fly December twenty-sixth to Florida.

Evidences of Constituency

Appear in similar syntactic environments (ex: before a verb)

- three parties from Brooklyn arrive ...
- a high-class spot such as Mindy's attracts ...

But, 'from arrive' ..., 'as attracts' ..., is incorrect.

Can be placed in a number of different location in a sentence

- On September seventeenth, I'd like to fly from Atlanta to Denver
- I'd like to fly on September seventeenth from Atlanta to Denver
- I'd like to fly from Atlanta to Denver on September seventeenth

But, 'On September, I'd like to fly seventeenth from Atlanta to Denver' is incorrect.

Main Grammar Fragments

- Sentence
- Noun Phrase
 - Agreement
- Verb Phrase
 - Sub-categorization

Grammar Fragments: Sentence

- Declaratives A plane left. S → NP VP
- Imperatives Leave! S → VP
- Yes-No Questions Did the plane leave? S → Aux NP VP
- WH Questions When did the plane leave? S → NP_{WH} Aux NP VP

Grammar Fragments: NP

- Each NP has a central critical noun called head
- The head of an NP can be expressed using
 - Pre-nominals: the words that can come before the head
 - Post-nominals: the words that can come after the head

Grammar Fragments: NP

- Pre-nominals
 - □ Simple lexical items: *the, this, a, an, ... a car*
 - Simple possessives John's car
 - Complex recursive possessives
 John's sister's friend's car
 - Quantifiers, cardinals, ordinals...
 three cars
 - Adjectives large cars

Grammar Fragments: NP

- Post-nominals
 - Prepositional phrases flight from Seattle
 - Non-finite clauses flight arriving before noon
 - Relative clauses flight that serves breakfast

Agreement

- Having constraints that hold among various constituents
- Considering these constraints in a rule or set of rules

Example: determiners and the head nouns in NPs have to agree in number

This flight C Those flights C This flights C Those flight C

- Grammars that do not consider constraints will over-generate
 - Accepting and assigning correct structures to grammatical examples (this flight)
 - □ But also accepting incorrect examples (these flight)

Agreement at sentence level

Considering similar constraints at sentence level

Example: subject and verb in sentences have to agree in number and person

John flies C We fly C John fly C We flies C

Agreement

Possible CFG solution

$$\begin{array}{ll} S_{sg} \rightarrow & NP_{sg} \ VP_{sg} \\ S_{pl} \rightarrow & NP_{pl} \ VP_{pl} \\ NP_{sg} \rightarrow & Det_{sg} \ N_{sg} \\ NP_{pl} \rightarrow & Det_{pl} \ N_{pl} \\ VP_{sg} \rightarrow & V_{sg} \ NP_{sg} \\ VP_{pl} \rightarrow & V_{pl} \ NP_{pl} \end{array}$$

- Shortcoming:
 - Introducing many rules in the system

Grammar Fragments: VP

 VPs consist of a head verb along with zero or more constituents called arguments

```
VP \rightarrow V disappear

VP \rightarrow V NP prefer a morning flight

VP \rightarrow V PP fly on Thursday

VP \rightarrow V NP PP leave Boston in the morning

VP \rightarrow V NP NP give me the flight number
```

- Arguments
 - Obligatory: complement
 - Optional: adjunct

Sub-categorization

Even though there are many valid VP rules, not all verbs are allowed to participate in all VP rules

disappear a morning flight C

Solution:

- Subcategorizing the verbs according to the sets of VP rules that they can participate in
- This is a modern take on the traditional notion of transitive/intransitive
- Modern grammars may have 100s or such classes

Sub-categorization

Example:

Sneeze John sneezed

Find Please find [a flight to NY]_{NP}
Give Give [me]_{NP}[a cheaper fair]_{NP}

Help Can you help [me]NP[with a flight]PP

Prefer | I prefer [to leave earlier] TO-VP | Told | I was told [United has a flight]s

John sneezed the book C I prefer United has a flight C Give with a flight C

Sub-categorization

- The over-generation problem also exists in VP rules
 - Permitting the presence of strings containing verbs and arguments that do not go together

John sneezed the book $VP \rightarrow V NP$

- Solution:
 - Similar to agreement phenomena, we need a way to formally express the constraints

For details refer following Speech and Language Processing by <u>Dan Jurafsky</u> and <u>James H. Martin</u>

Modeling Constituency: what tool do we need?

Modeling Constituency

Context-free grammar

The most common way of modeling constituency

Consists of production Rules

These rules express the ways in which the symbols of the language can be grouped and ordered together

Example

Noun phrase can be composed of either a ProperNoun or a determiner (Det) followed by a Nominal; a Nominal can be more than one nouns

 $NP \rightarrow Det Nominal$

NP → ProperNoun

Nominal → Noun | Noun Nominal

CFG:
$$G = (T, N, S, R)$$

- T: set of terminals
- N: set of non-terminals
 - ullet For NLP, we distinguish out a set $P\subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- **R**: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$

Terminals and pre-terminals

Terminals mainly correspond to words in the language while pre-terminals mainly correspond to POS categories

CFG

- Terminals
 - The set of words in the text
- Non-Terminals
 - The constituents in a language (noun phrase, verb phrase,)
- Start symbol
 - The main constituent of the language (sentence)
- Rules
 - Equations that consist of a single non-terminal on the left and any number of terminals and non-terminals on the right

Example

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

Example

 $NP \rightarrow Det Nominal$

NP → ProperNoun

Nominal → Noun | Noun Nominal

Now, these can be combined with other rules, that express facts about a lexicon.

Example

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

Now, these can be combined with other rules, that express facts about a lexicon.

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Example

NP → Det Nominal

NP → ProperNoun

Nominal → Noun | Noun Nominal

Now, these can be combined with other rules, that express facts about a lexicon.

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Can you identify the terminal, non-terminals and preterminals?

CFG as a generator

```
NP 	o Det Nominal
NP 	o ProperNoun
Nominal 	o Noun | Noun Nominal
Det 	o a
Det 	o the
Noun 	o flight
Generating 'a flight':
NP 	o Det Nominal
Out 	o Det Noun 	o a flight
```

- Thus a CFG can be used to randomly generate a series of strings
- This sequence of rule expansions is called a derivation of the string of words, usually represented as a tree

CFGs and Grammaticality

A CFG defines a formal language = set of all sentences (string of words) that can be derived by the grammar

- Sentences in this set are said to be grammatical
- Sentences outside this set are said to be ungrammatical

CFGs and Recursion

Recursive Definition

- PP → Prep NP
- NP → Noun PP

Example Sentence

[$_S$ The mailman ate his [$_{NP}$ lunch [$_{PP}$ with his friend [$_{PE}$ from the cleaning staff [$_{PP}$ of the building [$_{PP}$ at the intersection [$_{PP}$ on the north end [$_{PP}$ of town]]]]]]].

What does Context stand for in CFG?

- The notion of context has nothing to do with the ordinary meaning of word context in language
- All it really means is that the non-terminal on the left-hand side of a rule is out there all by itself (free of context)

$A \rightarrow BC$

- I can rewrite A as B followed by C regardless of the context in which A is found
- Or when I see a B followed by a C, I can infer an A regardless of the surrounding context

Noun Phrase -> Proper Noun | Det Nominal

Nominal -> noun | noun Nominal

RAY > X BCY

Grammar Rewrite Rules

 $S \rightarrow NP VP$ S -> Aux NP VP $S \rightarrow VP$ NP → Det NOM NOM -> Noun

NOM -> Noun NOM

 $VP \rightarrow Verb$

VP → Verb NP

 $Det \rightarrow that \mid this \mid a \mid the$ Noun \rightarrow book | flight | meal | man Verb → book | include | read Aux - does

 $S \rightarrow NP VP$

- → Det NOM VP
- \rightarrow The NOM VP
- → The Noun VP
- \rightarrow The man VP
- → The man Verb NP
- \rightarrow The man read NP
- → The man read Det NOM
- → The man read this NOM
- → The man read this Noun
- → The man read this book

The man head this book VP -> Det Nom -> The Nom UP -> The Moun VP VP -> the man VERD NP -> The man Read NP -> The mon read Det Nom > The man

Parse Tree

$S \rightarrow NP VP$

- → Det NOM VP
- \rightarrow The NOM VP
- → The Noun VP
- \rightarrow The man VP
- \rightarrow The man Verb NP
- \rightarrow The man read NP
- \rightarrow The man read Det NOM
- → The man read this NOM
- \rightarrow The man read this Noun
- → The man read this book

What is Parsing?

- The process of taking a string and a grammar and returning all possible parse trees for that string
- That is, find all trees, whose root is the start symbol *S*, which cover exactly the words in the input

What are the constraints? "book that flight"

- There must be three leaves, book, that and flight
- The tree must have one root, the start symbol S
- Give rise to two search strategies: top-down (goal-oriented) and bottom-up (data-directed)

Parsing

Grammar

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Lexicon

Det \rightarrow the | a | that | this

Noun → book | flight | meal | money

 $Verb \rightarrow book \mid include \mid prefer$

Pronoun \rightarrow I | he | she | me

Proper-Noun → Houston | NWA

 $Aux \rightarrow does$

Prep → from | to | on | near | through

Parsing

Draw the trees

Does American airlines have a flight between five a.m. and six a.m.?

- Searches for a parse tree by trying to build upon the root node S down to the leaves
- \bullet Start by assuming that the input can be derived by the designated start symbol S
- Find all trees that can start with S, by looking at the grammar rules with S
 on the left-hand side
- Trees are grown downward until they eventually reach the POS categories at the bottom
- Trees whose leaves fail to match the words in the input can be rejected

- The parser starts with the words of the input, and tries to build trees from the words up, by applying rules from the grammar one at a time
- Parser looks for the places in the parse-in-progress where the right-hand-side of some rule might fit.

- The parser starts from the words of the input and builds the tree up.
- It looks for the places in the current parse-tree where some right side of the grammar can fit.
- Trees that do not match any derivation are rejected.

book that flight

Difference between top-down and bottom-up

- Top down never explores options that will not lead to a full parse, but can explore many options that never connect to the actual sentence.
- Bottom up never explores options that do not connect to the actual sentence but can explore options that can never lead to a full parse.
- Relative amounts of wasted search depend on how much the grammar branches in each direction.

Top-Down vs. Bottom-Up

- In both cases, we left out how to keep track of the search space and how to make choices
- Solutions
 - Backtracking
 - · Making a choice, if it works out then fine
 - If not, then back up and make a different choice
 ⇒ duplicated work
 - Dynamic programming
 - Avoiding repeated work
 - Solving exponential problems in polynomial time
 - Storing ambiguous structures efficiently

Dynamic Programming Parsing

- To avoid extensive repeated work, must cache intermediate results, i.e. completed phrases.
- Caching (memoizing) critical to obtaining a polynomial time parsing (recognition) algorithm for CFGs.
- Dynamic programming algorithms based on both top-down and bottom-up search can achieve $O(n^3)$ recognition time where n is the length of the input string.

Dynamic Programming Parsing Methods

Cache the intermediate results.

- CKY (Cocke-Kasami-Younger) algorithm: bottom-up, requires normalizing the grammar
- Earley Parser top-down, does not require normalizing grammar, more complex
- More generally, chart parsers retain completed phrases in a chart and can combine top-down and bottom-up searches.

CKY Algorithm

- Grammar must be converted to Chomsky normal form (CNF) in which all productions must have
 - Either, exactly two non-terminals on the RHS
 - Or, 1 terminal symbol on the RHS
- Parse bottom-up storing phrases formed from all substrings in a triangular table (chart)

Chomsky Normal Form

Each grammar can be represented by a set of binary rules

$$A \rightarrow B C$$

$$A \rightarrow W$$

A, B, C are non-terminals w is a terminal

A > a > terminal

Chomsky Normal Form

Converting to Chomsky normal form

$$A \rightarrow B C D$$

$$X \rightarrow BC$$

$$A \rightarrow X D$$

X does not occur anywhere else in the the grammar

Chomsky Normal Form

Converting to Chomsky normal form

$$A \rightarrow B$$

 $B \rightarrow C D$

$$A \rightarrow CD$$

$A \rightarrow B C$

If there is an A somewhere in the input, then there must be a B followed by a C in the input

If the *A* spans from *i* to *j* in the input, then there must be a k such that i < k < j

B spans from i to k C spans from k to j

Converting to CNF

Original Grammar

```
S \rightarrow NPVP
S \rightarrow Aux NP VP
S \rightarrow VP
NP → Pronoun
NP → Proper-Noun
NP \rightarrow Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP \rightarrow Verb
VP \rightarrow Verb NP
VP \rightarrow VP PP
PP \rightarrow Prep NP
Pronoun \rightarrow I | he | she | me
Noun → book | flight | meal | money
Verb \rightarrow book \mid include \mid prefer
```

Proper-Noun → Houston | NWA

<u>Syntax</u> 21 /36

Converting to CNF

Original Grammar

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

PP → Prep NP

 $Pronoun \rightarrow I \ | \ he \ | \ she \ | \ me$

Noun \rightarrow book | flight | meal | money

Verb → book | include | prefer

Proper-Noun → Houston | NWA

Chomsky Normal Form

 $S \rightarrow NP VP$

 $S \rightarrow X1 VP$

 $X1 \rightarrow Aux NP$

 $S \rightarrow book \mid include \mid prefer$

 $S \rightarrow Verb NP$

 $S \to VP \, PP$

 $NP \rightarrow I \mid he \mid she \mid me$

NP → Houston | NWA

 $NP \rightarrow Det\ Nominal$

Nominal → book | flight | meal | money

Nominal → Nominal Noun

 $Nominal \rightarrow Nominal PP$

 $VP \rightarrow book \mid include \mid prefer$

 $VP \rightarrow Verb NP$

 $VP \to VP \; PP$

PP → Prep NP

 $Pronoun \rightarrow I \ | \ he \ | \ she \ | \ me$

Noun \rightarrow book | flight | meal | money

 $Verb \rightarrow book \mid include \mid prefer$

Proper-Noun \rightarrow Houston | NWA

CKY Algorithm

- Let n be the number of words in the input. Think about n + 1 lines separating them, numbered 0 to n.
- lacksquare x_{ij} will denote the words between line i and j
- We build a table so that x_{ij} contains all the possible non-terminal spanning for words between line i and j.
- We build the Table bottom-up.

CKY for CFG

a	pilot 2	likes	flying	planes
1	2	3	4	5

 $S \rightarrow NP \ VP$ $VP \rightarrow VBG \ NNS$ $VP \rightarrow VBZ \ VP$ $VP \rightarrow VBZ \ NP$ $NP \rightarrow DT \ NN$ $NP \rightarrow JJ \ NNS$ $DT \rightarrow a$ $NN \rightarrow pilot$ $VBZ \rightarrow likes$ $VBG \rightarrow flying$ $JJ \rightarrow flying$ $NNS \rightarrow planes$

CKY for CFG

а	pilot	likes	flying	planes
1	2	3	4	5
DT	NP	-	_	SS
	NN	-	-	-
		VBZ	-	VP VP
			JJ VBG	NP VP
				NNS

 $\begin{array}{lll} S & \rightarrow & NP & VP \\ VP & \rightarrow & VBG & NNS \\ VP & \rightarrow & VBZ & VP \\ VP & \rightarrow & VBZ & NP \\ NP & \rightarrow & DT & NN \\ NP & \rightarrow & JJ & NNS \\ DT & \rightarrow & a \\ NN & \rightarrow & pilot \\ VBZ & \rightarrow & likes \\ VBG & \rightarrow & flying \\ JJ & \rightarrow & flying \\ NNS & \rightarrow & planes \\ \end{array}$

Use CKY algorithm to find the parse tree for "Book the flight through Houston" using the CNF form shown in the previous slide.

CFG

 $S \rightarrow NP \ VP$ $S \rightarrow VP$ $NP \rightarrow N$ $NP \rightarrow Det \ N$ $NP \rightarrow NP \ NP$ $NP \rightarrow NP \ PP$ $VP \rightarrow V$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ NP$ $PP \rightarrow Prep \ NP$

 $N \rightarrow \text{book}$ $V \rightarrow \text{book}$ $Det \rightarrow \text{the}$ $N \rightarrow \text{flight}$ $Prep \rightarrow \text{through}$ $N \rightarrow \text{Houston}$

$ \begin{array}{c} \textbf{N} \rightarrow \textbf{book}_{[0,1]} \\ \textbf{V} \rightarrow \textbf{book}_{[0,1]} \end{array} $				
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det → the[1,2]	[[0,0]	[0,4]	[-,-]
	[1,2]	[1,3]	[1,4]	[1,5]
		$N \rightarrow flight_{[2,3]}$		
		[2,3]	[2,4]	[2,5]
			Prep → through _[3,4]	
			[3,4]	[3,5]
			[4,1]	N → houston _[4,5]
				[4,5]
Book	the	flight	through	Houston
0	4	_		4 5

$\begin{array}{c} \textbf{N} \rightarrow \textbf{boo} \\ \textbf{V} \rightarrow \textbf{boo} \\ \textbf{NP} \rightarrow \textbf{N}_{[0]} \\ \textbf{VP} \rightarrow \textbf{V}_{[0]} \\ \textbf{S} \rightarrow \textbf{VP}_{[0]} \\ [0,1] \end{array}$	ok (0,1] 1] 1] 1]	[0,2]		[0,3]		[0,4]		[0,5]
		Det → t	he[1,2]	[-,-]		[4, 1]		1.7.7
		[4 2]		[1,3]		[1,4]		[1,5]
	l	[1,2]			light[2,3]	[1,4]		[1,5]
				NP →	N[2,3]	[2,4]		[2,5]
			1	[2,0]			through[3,4]	[2,0]
						[3,4]		[3,5]
					'			$N \rightarrow houston_{[4,5]}$
								$NP \rightarrow N_{[4,5]}$
								[4,5]
_								
	ook		the		flight		ough	Houston
0		1		2		3		4

$\begin{array}{lll} \textbf{N} & \rightarrow & \textbf{book}_{[0,1]} & \textbf{V} & \rightarrow \\ \textbf{book}_{[0,1]} & \textbf{NP} & \rightarrow & \textbf{N}_{[0,1]} \\ \textbf{VP} & \rightarrow & \textbf{V}_{[0,1]} \\ \textbf{S} & \rightarrow & \textbf{VP}_{[0,1]} \\ [0,1] \end{array}$				
[-, -]	[0,2]	[0,3]	[0,4]	[0,5]
	Det → the[1,2]	NP → Det[1,2], N[2,3]		
	[1,2]	[1,3]	[1,4]	[1,5]
		$N \rightarrow flight_{[2,3]} NP \rightarrow N_{[2,3]}$		
		[2,3]	[2,4]	[2,5]
			Prep → through _[3,4]	
			[3,4]	[3,5]
				$N \rightarrow houston_{[4,5]} NP \rightarrow N_{[4,5]}$
				[4,5]

Book the flight through Houston $_{\mbox{\scriptsize 0}}$

$VP \to V0_{0,1}$ $S \to VP_{0,1}$ [0,1] $[0,2]$ $[0,3]$ $[0,4]$ $[0,5]$	
$\textbf{Det} \rightarrow \textbf{the}_{[1:2]} \qquad \qquad \textbf{NP} \rightarrow \textbf{Det}_{[1:2]}, \textbf{N}_{[2:3]}$	
[1,2] [1,3] [1,4] [1,5]	
N → flight(2.2) NP → N(2.3)	
[2,3] [2,4] [2,5]	
Prep → through _[3,4] PP→P	rep _[3,4] ,NP _[4,5]
[3,4] [3,5]	
$\begin{array}{c} N \rightarrow ht \\ NP \rightarrow l \end{array}$	ouston[4,5] N [4,5]
[4,5]	

Book the flight through Houston

$\begin{array}{ll} N & \rightarrow book_{[0,1]} \\ V & \rightarrow book_{[0,1]} \\ NP & \rightarrow N_{[0,1]} \\ VP & \rightarrow V_{[0,1]} \\ S & \rightarrow VP_{[0,1]} \end{array}$		$\begin{array}{c} \text{NP} \to \text{NP}_{[0,1]}, \ \text{NP}_{[1,3]} \\ \text{VP} \to \text{VP}_{[0,1]}, \ \text{NP}_{[1,3]} \\ \text{S} \to \text{VP}_{[0,3]} \end{array}$		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det → the[1,2]	NP → Det[1,2], N[2,3]		
	[1,2]	[1,3]	[1,4]	[1,5]
	[[1]	$N \rightarrow flight_{[2,3]}$ $NP \rightarrow N_{[2,3]}$	1,,,,	(1,0)
		[2,3]	[2,4]	[2,5]
		[[-1-1	Prep → through[3,4]	PP→Prep[3,4],NP[4,5]
			[3,4]	[3,5]
				$N \rightarrow houston_{[4,5]}$ $NP \rightarrow N_{[4,5]}$
				[4,5]

Book the flight through Houston 0 1 2 3 4

$\begin{array}{ll} \textbf{N} & \rightarrow & \textbf{book}_{[0,1]} \\ \textbf{V} & \rightarrow & \textbf{book}_{[0,1]} \\ \textbf{NP} & \rightarrow & \textbf{N}_{[0,1]} \\ \textbf{VP} & \rightarrow & \textbf{V}_{[0,1]} \\ \textbf{S} & \rightarrow & \textbf{VP}_{[0,1]} \end{array}$		$\begin{array}{c} \text{NP} \rightarrow \text{NP}_{[0.1]}, \ \text{NP}_{[1.3]} \\ \text{VP} \rightarrow \text{VP}_{[0.1]}, \ \text{NP}_{[1.3]} \\ \text{S} \rightarrow \text{VP}_{[0.3]} \end{array}$		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det → the[1,2]	NP → Det[1,2], N[2,3]	[6,1]	[64]
	[4 0]	[1,3]	[4, 4]	[4 E]
	[1,2]	$N \rightarrow flight_{[2,3]}$ $NP \rightarrow N_{[2,3]}$	[1,4]	[1,5] NP → NP _[2,3] , PP _[3,5]
		[2,3]	[2,4]	[2,5]
				PP→Prep[3,4],NP[4,5]
			[3,4]	$[3,5] \\ N \rightarrow houston_{[4,5]} \\ NP \rightarrow N_{[4,5]}$
				[4,5]

Book the flight through Houston 0 1 2 3 4

$\begin{array}{ll} N & \rightarrow & book_{[0,1]} \\ V & \rightarrow & book_{[0,1]} \\ NP & \rightarrow N_{[0,1]} \\ VP & \rightarrow V_{[0,1]} \\ S & \rightarrow VP_{[0,1]} \end{array}$		$\begin{array}{l} \text{NP} \to \text{NP}_{[0.1]}, \ \text{NP}_{[1.3]} \\ \text{VP} \to \text{VP}_{[0.1]}, \ \text{NP}_{[1.3]} \\ \text{S} \to \text{VP}_{[0.3]} \end{array}$		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det → the[1,2]	$NP \rightarrow Det_{[1,2]}, N_{[2,3]}$	(5, 1)	NP → NP[1,3], PP[3,5]
	[4.0]	[1,3]	[4 4]	[4 5]
ı	[1,2]	$N \rightarrow flight_{[2,3]}$ $NP \rightarrow N_{[2,3]}$	[1,4]	[1,5] NP → NP _[2,3] , PP _[3,5]
		[2,3]	[2,4]	[2,5]
	'			PP→Prep[3,4],NP[4,5]
			[3,4]	$ \begin{array}{l} [3,5] \\ \textbf{N} \rightarrow \textbf{houston}_{[4,5]} \\ \textbf{NP} \rightarrow \textbf{N}_{[4,5]} \end{array} $
				[4,5]

Book the flight through Houston

$\begin{array}{ll} \textbf{N} & \rightarrow & \textbf{book}_{[0,1]} \\ \textbf{V} & \rightarrow & \textbf{book}_{[0,1]} \\ \textbf{NP} & \rightarrow & \textbf{N}_{[0,1]} \\ \textbf{VP} & \rightarrow & \textbf{V}_{[0,1]} \\ \textbf{S} & \rightarrow & \textbf{VP}_{[0,1]} \end{array}$		$\begin{array}{c} \text{NP} \rightarrow \text{NP}_{[0,1]_{\text{f}}} \text{ NP}_{[1,3]} \\ \text{VP} \rightarrow \text{VP}_{[0,1]_{\text{f}}} \text{ NP}_{[1,3]} \\ \text{S} \rightarrow \text{VP}_{[0,3]} \end{array}$		VP → VP _[0,1] , NP _[1,5]
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det → the[1,2]	NP → Det[1,2], N[2,3]		$NP \rightarrow NP_{[1.3]}, PP_{[3.5]}$
	[1,2]	[1,3]	[1,4]	[1,5]
		$N \rightarrow flight_{[2,3]}$ $NP \rightarrow N_{[2,3]}$		NP → NP _[2,3] , PP _[3,5]
		[2,3]	[2,4]	[2,5]
			$\textbf{Prep} \rightarrow \textbf{through}_{[3,4]}$	PP→Prep[3,4],NP[4,5]
			[3,4]	[3,5]
				$\begin{array}{c} \textbf{N} \rightarrow \textbf{houston}_{[4,5]} \\ \textbf{NP} \rightarrow \textbf{N}_{[4,5]} \\ \\ \hline \\ [4,5] \end{array}$
Book	the	flight	through	Houston 5

Probabilistic Context-free grammars (PCFGs)

Definition

Also known as a weighted grammar, a probabilistic context-free grammar (PCFG) is one that assigns a probability to each production rule.

It can be used to assign a probability to every string in the language (language model) and to every structure in the language.

Probabilistic Context-free grammars (PCFGs)

PCFG: G = (T, N, S, R, P)

- T: set of terminals
- N: set of non-terminals
 - ullet For NLP, we distinguish out a set $P\subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- **R**: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$
- \blacksquare P(R) gives the probability of each rule.

$$\forall X \in \mathbb{N}, \ \sum_{X \to \gamma \in \mathbb{R}} P(X \to \gamma) = 1$$

Computing rule probabilities

<u>Syntax</u> 27 /36

Computing rule probabilities

$$P(A \to \beta) = \frac{Count(A \to \beta)}{\sum_{\lambda} Count(A \to \lambda)} = \frac{Count(A \to \beta)}{Count(A)}$$
(1)

<u>Syntax</u> 27 /36

Computing rule probabilities

$$P(A \to \beta) = \frac{Count(A \to \beta)}{\sum_{\lambda} Count(A \to \lambda)} = \frac{Count(A \to \beta)}{Count(A)}$$
(1)
$$\forall X \in \mathbb{N}, \sum_{\beta} P(X \to \beta) = 1$$

<u>Syntax</u> 27 /36

A Simple PCFG (in CNF)

S	\rightarrow	NP VP	1.0	$NP \rightarrow$	NP PP	0.4
VP	\rightarrow	V NP	0.7	NP →	astronomers	0.1
VP	\rightarrow	VP PP	0.3	NP →	ears	0.18
PP	\rightarrow	P NP	1.0	NP →	saw	0.04
P	\rightarrow	with	1.0	NP →	stars	0.18
V	\rightarrow	saw	1.0	NP →	telescope	0.1

Example Trees

Example Trees

Probability of trees and strings

- \blacksquare P(t): The probability of tree is the product of the probabilities of the rules used to generate it
- $P(w_{1n})$: The probability of the string is the sum of the probabilities of the trees which have that string as their yield

Tree and String probabilities

"Book the dinner flight"

"Book the dinner flight"

Probabilities

- Parse tree 1: $.05 \times .20 \times .30 \times .20 \times .60 \times .20 \times .75 \times .10 \times .30 = 1.62 \times 10^{-6}$
- Parse tree 2: $.05 \times .05 \times .30 \times .20 \times .60 \times .75 \times .10 \times .15 \times .75 \times .30 = 2.28 \times 10^{-7}$

Features of PCFGs

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse
- But the probability estimates are based purely on structural factors, and do not factor in lexical co-occurrence. Thus, PCFG does not give a very good idea of the plausibility.
- Real text tends to have grammatical mistakes. PCFG avoids this problem by ruling out nothing, but by giving implausible sentences a low probability
- A PCFG is a worse language model for English than an n-gram model
- The probability of a smaller tree is greater than a larger tree.

How to find the most likely parse?: CKY for PCFG

How to find the most likely parse?: CKY for PCFG

а 1	pilot 2	likes 3	flying 4	planes 5

$S \rightarrow NP VP$	[1.0]
$VP \rightarrow VBG NNS$	[0.1]
$VP \rightarrow VBZ VP$	[0.1]
$VP \rightarrow VBZ NP$	[0.3
$NP \rightarrow DT NN$	[0.3
$NP \rightarrow JJ \ NNS$	[0.4]
$DT \rightarrow a$	[0.3]
$NN \rightarrow pilot$	[0.1]
$VBZ \rightarrow likes$	[0.4]
$VBG \rightarrow flying$	[0.5]
$JJ \rightarrow flying$	[0.1]
$NNS \rightarrow planes$	[.34

CKY for PCFG

а 1	pilot 2	likes 3	flying 4	planes 5	S Vi
DT [0.3]	NP [.009]	-	-	S [1.4688×10 ⁻⁵] S [6.12×10 ⁻⁶]	V F V F
	NN [0.1]	-	-	-	VI JJ NI
		VBZ [0.4]	-	VP [.001632] VP [.00068]	= P(NP->I
			JJ [0.1] VBG [0.5]	NP [.0136] VP [.017]	P(NN-> = 0.3*0.3
			[0]	NNS [.34]	0.009×0.0 1.0 = 6.12

 $\rightarrow NP VP$ [1.0] 'P → VBG NNS 0.1 $P \rightarrow VBZ VP$ [0.1] $P \rightarrow VBZ NP$ [6.0] $IP \rightarrow DT NN$ [0.3] IP → JJ NNS [0.4] $T \rightarrow a$ 0.3 IN → pilot 0.1 BZ → likes [0.4] $'BG \rightarrow flying$ [0.5] $J \rightarrow flying$ [0.1] [.34] $INS \rightarrow planes$

DT NN)* a)* pilot) 3*0.1 = 0.009

00068 x $2x10^{-6}$

Important Questions?

Let W_{1m} be a sentence, G a grammar, t a parse tree

• What is the most likely parse of sentence?

$$argmax_t P(t|w_{1m},G)$$

• What is the probability of a sentence?

$$P(w_{1m}|G)$$

How to learn the rule probabilities in the grammar G?

Probability of a String

$$P(w_{1m}|G)$$

- In general, simply summing the probabilities of all possible parse trees is not an efficient way to calculate the string probability
- We use inside algorithm, a dynamic programming algorithm based on inside probabilities.

Q1: You are given the grammar below. How many parse trees can you derive for the sentence:

Radha drove to Agra and Delhi in November.

Draw each parse tree. The rules of the CFG grammar where S is the start symbol are:

$$S \rightarrow NP V P$$
,
 $V P \rightarrow V NP | V P P | V P P P$,

 $NP \rightarrow NP P P | NP CNJ NP,$

 $V \rightarrow drove, P \rightarrow to \mid in,$ CNJ \rightarrow and

Solution: There are three parses:

Q2:Given the following PCFG G (where S is the start symbol)

Rule	Probability
$S \to VP$	1.0
$VP \rightarrow V NP$	0.7
$VP \rightarrow V NP PP$	0.3
$NP \rightarrow NP PP$	0.3
$NP \rightarrow DET N$	0.7
$PP \rightarrow P N$	1.0
$DET \rightarrow \text{the}$	0.1
$V \to \operatorname{cut} \operatorname{ask} \operatorname{find}$	0.1
$P \to \text{with} \mid \text{in}$	0.1
$N \to \text{envelope} \text{grandma} \text{scissors} \text{suits}$	0.1

Answer the following questions.
a) Is the PCGF G a proper PCFG? Why?

Solution:

No - not a proper PCFG. The total probability for several non-terminals does not add up to 1.0 - for example N; DET; V.

(b) For the sentence:

Cut the envelope with scissors.

Find the parse trees and their probabilities. Does the result look right? Justify.

Solution:

Probability = $0.3 \times 0.7 \times 0.1^5 = 21 \times 10^{-7}$

Probability = $0.3 \times 0.7 \times 0.7 \times 0.1^5 = 14.7 \times 10^{-7}$

The first tree has higher probability and it is the correct parse since 'with scissors' as the instrument for cutting should attach to 'cut' rather than 'envelope'.