5.1
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$
 $A^{\dagger} = \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$

$$A^{\dagger}A = \begin{bmatrix} 5 & 4 \\ 4 & 4 \end{bmatrix}$$

$$A^{\dagger}A - \lambda I = 0 \Rightarrow \begin{bmatrix} 5 - \lambda & 4 \\ 4 & 4 - \lambda \end{bmatrix} = 0$$

$$\Rightarrow (\lambda - 5)(\lambda - 4) - 16 = 0$$

$$\Rightarrow \lambda^{2} - 9\lambda + 4 = 0$$

$$\lambda = \underbrace{9 \pm \sqrt{81 - 16}}_{2} = \underbrace{9 \pm \sqrt{65}}_{2}$$

$$\therefore T_{\text{max}} = \underbrace{\left(9 + \sqrt{65}\right)^{1/2}}_{2} \qquad \forall min = \underbrace{\left(9 - \sqrt{65}\right)^{1/2}}_{2}$$
5.2 T.P: Set of full rank matrices is a dense subset.

Use $\|\cdot\|_{2}$ for proof

we need to show that is

5.2 T.P: Set of full rank matrices is a dense subset of C^{mxn} .

Use $\|\cdot\|_2$ for proof

we need to show that if we perturb

A by \mathcal{E} to get $A_{\mathcal{E}}$ $\|A - A_{\mathcal{E}}\|_2 \to 0$ as $\mathcal{E} \to 0$

Let $A = U \Sigma V^*$ $A_{\varepsilon} \triangleq U (\Sigma + 8 T_{mxn}) V^*$ We know that if Q is unitary, $\|QA\|_2 = \|A\|_2$ $go \|A\|_2 = \|\Sigma\|_2 \text{ for the SVD.}$ $\|A - A_{\varepsilon}\|_2 = \|U(\varepsilon T_{mxn}) V^*\|_2 = \varepsilon$ $\therefore \lim_{\varepsilon \to 0} \|A - A_{\varepsilon}\|_2 = 0$

$$5.3 \qquad A = \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix}$$

(a)
$$A^*A = \begin{bmatrix} -2 & -10 \\ 11 & 5 \end{bmatrix} \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix} = \begin{bmatrix} 104 & -72 \\ -72 & 146 \end{bmatrix}$$

$$\det (\lambda I - A^*A) = (\lambda - 104)(\lambda - 146) - 72*72 = 0$$

$$\Rightarrow \lambda^2 - 250\lambda + (146*104 - 72*72) = 0$$

$$\Rightarrow \lambda^2 - 250\lambda + 10000 = 0$$

$$\lambda = 50, 200$$

$$\nabla_1 = \sqrt{200} = 10\sqrt{2}$$

$$\nabla_2 = \sqrt{50} = 5\sqrt{2}$$

Also, $AA^* = \begin{bmatrix} 125 & 75 \\ 75 & 125 \end{bmatrix}$

Columns of U and V are eigenvectors of A*A and AA*, respectively (recall Ex 4.1)

We can compute them to get:

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{and} \quad V = \frac{1}{5} \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix}$$

(b)
$$\nabla_1 = 10\sqrt{2}$$
, $\nabla_2 = 5\sqrt{2}$

Left singular vectors: $\pm \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$, $\pm \begin{bmatrix} \sqrt{2} \\ -\sqrt{2} \end{bmatrix}$

Right singular vectors: $\pm \begin{bmatrix} -3/5 \\ 4/5 \end{bmatrix}$, $\pm \begin{bmatrix} 4/5 \\ 3/5 \end{bmatrix}$

(c)
$$\|A\|_{2} = \sigma_{\text{max}} = 10\sqrt{2}$$

$$\|A\|_{F} = \sqrt{\sigma_{1}^{0} + \sigma_{2}^{2}} = 5\sqrt{10}$$

$$\|A\|_{1} = \max^{m} \text{ column sum of } |A| = \max(12,16) = 16$$

$$\|A\|_{\infty} = \max^{m} \text{ row sum of } |A| = \max(13,15) = 15$$

(d)
$$A^{-1} = (U \Sigma V^*)^{-1} = V \Sigma^{-1} U^*$$

$$= \frac{1}{5\sqrt{2}} \begin{bmatrix} -3 & 4 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} \frac{1}{10\sqrt{2}} & 0 \\ 0 & \frac{1}{5\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$= \frac{1}{100} \begin{bmatrix} -3 & 4 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$= \frac{1}{100} \begin{bmatrix} 5 & -11 \\ 10 & -2 \end{bmatrix}$$

(e)
$$det(\lambda T - A) = 0$$

$$\Rightarrow (\lambda + \lambda)(\lambda - 5) + 110 = 0$$

$$\Rightarrow \lambda^{2} - 3\lambda + 100 = 0$$

$$\therefore \lambda = \frac{3 \pm \sqrt{9 - 400}}{2} = \frac{3 \pm i\sqrt{391}}{2}$$

(f) can be easily verified

$$|\det A = \lambda_1 \lambda_2|$$
 $|\det A| = \sigma_1 \sigma_2$

Lg) The axes of the ellipsoid are ∇_1 and ∇_2 . Area = $\nabla_1 \cdot \nabla_2 = 100 \, \pi$

5.4
$$A \in C^{m \times m}$$
 $A = U \ge V^*$

$$B = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} \qquad B^* = B$$

$$B = \begin{bmatrix} X \\ X \end{bmatrix} X^{-1}$$

$$\Rightarrow \text{ diagonal matrix } A = B$$

 $B = X N X^{-1}$ \Rightarrow diagonal matrix whose entries are the contain linearly eigenvalues of B. eigenvalues of B.

independent eigenvertors

of B We cannot compute these matrices directly since we don't know A. So we must use properties

$$B = \begin{bmatrix} 0 & A^{*} \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & V \Sigma^{*} U^{*} \\ U \Sigma V^{*} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & I_{mem} \\ I_{mem} & 0 \end{bmatrix} \begin{bmatrix} U \Sigma V^{*} & 0 \\ 0 & V \Sigma^{*} U^{*} \end{bmatrix}$$
(Simple row transformation to get a diagonal looking matrix)

$$= \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix} \begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & \Sigma^* \end{bmatrix} \begin{bmatrix} v^* & 0 \\ 0 & U^* \end{bmatrix}$$
suppose this is X, then if this is X^{-1} , we are done.

Check!

$$X^{-1} = \begin{bmatrix} 0^{*} & 0 \\ 0 & V^{*} \end{bmatrix} \begin{bmatrix} 0 & I_{m} \\ I_{m} & 0 \end{bmatrix} = \begin{bmatrix} 0 & U^{*} \\ V^{*} & 0 \end{bmatrix} \quad \text{not the same!}$$

$$\begin{bmatrix} V^{*} & 0 \\ 0 & U^{*} \end{bmatrix} = \begin{bmatrix} 0 & I_{m} \\ I_{m} & 0 \end{bmatrix} X^{-1}$$
Plug this in

$$B = \chi \begin{bmatrix} \Sigma & 0 \\ 0 & \Sigma^* \end{bmatrix} \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix} \chi^{-1}$$

$$B = X \begin{bmatrix} 0 & \Sigma \\ \Sigma & 0 \end{bmatrix} X^{-1} \qquad \left\{ \Sigma = \Sigma^* \right\}$$

this is still not eigenvalue decomposition because Λ needs to be a diagonal matrix

need to do some matrix multiplication magic and update X and X^{-1} .

$$\begin{bmatrix} 0 & \Sigma \\ \Sigma & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} I_m & I_m \\ I_m & -I_m \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{bmatrix} \begin{bmatrix} I_m & I_m \\ I_m & -I_m \end{bmatrix}$$

need to have these equal so that X and X-1 are not broken

$$\therefore \quad B = \quad X \begin{bmatrix} \sum & 0 \\ o & -\sum \end{bmatrix} X^{-1}$$

$$for \quad X = \underbrace{1}_{2} \begin{bmatrix} 0 & I_{m} \\ I_{m} & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} I_{m} & I_{m} \\ I_{m} - I_{m} \end{bmatrix}$$