Review

- Last Class:
 - GPU architecture and GPU programming model
- Today's class:
 - GPU optimizations
- Announcement and reminder
 - HW4 dues tonight. Answers will be released by Friday

40

GPU Performance

Lesson 1: Parallelism is Important

42

Thread Level Parallelism

- Superscalars and VLIWs are useful only if...
 - Program exhibits ILP (Instruction Level Parallelism) in the code
- GPUs are useful only if...
 - Program has **TLP (Thread Level Parallelism)** in the code
 - TLP can be expressed as the number of threads in the code
- How that TLP is laid out in the kernel is also important
 - How many **threads** are in a thread block
 - If less than threads in warp, some SPs may get unused
 - How many thread blocks are in the grid
 - If less than number of SMs, some SMs may get unused
 - → If not careful, your GPU may get **underutilized**

Example: Kernels with Bad Layout

- Suppose there are 4 SMs in GPU with 32 SPs in each SM.
 - Case 1, 2 below have enough TLP (1024 threads) but bad layout.
 - Utilized threads are marked in red. Rest are unused.
- Case 1: Not enough threads kernel<<<1024, 1>>(...);
- 0 1 2 ... 31 0 1 2 ... 31 0 1 2 ... 31 0 1 2 ... 31

SM 2

- Case 2: Not enough blocks kernel<<<1, 1024>>(...);
- SM 0 SM 1 SM 2 SM 3 0 1 2 ... 31 0 1 2 ... 31 0 1 2 ... 31 0 1 2 ... 31 \$\frac{1}{2} \frac{1}{2} \fr
- Balanced threads and blocks kernel<<<32, 32>>(...);
 - kernel << 32, 32 >> (...); kernel << 16, 64 >> (...);
 - kernel <<<4, 256>>(...);

44

Lesson 2: Bandwidth is Important

Performance Results for y(i) = A(i, j) * x(j)

- Was it because the GPU was wimpy and can't do enough FLOPS?
- NVIDIA GF119-825-A1 is a Fermi GPU Capability 2.1
 - Max FLOPS = 100.4 GFLOPS
- What was the FLOPS achieved?
 - -y[i] += A[i*n+j] *x[j] = 2 FP ops each iteration for n * n iterations
 - n = 8192, so FP ops = 8192 * 8192 * 2 = 134 M
 - Time = 0.27 seconds (shortest at 32 thread block size)
 - FLOPS = 134 M / 0.27 = **496 MFLOPS**
 - Not even close to the limit!

48

Performance Results for y(i) = A(i, j) * x(j)

- Could it be that the GPU didn't have enough memory bandwidth?
- NVIDIA GF119-825-A1 is a Fermi GPU Capability 2.1
 - Memory Type: DDR3
 - Memory Bandwidth: 14.00 GB/s
- GPUs also have Performance Monitoring Units (PMUs)
 - NVIDIA Profiler (nvprof) provides an easy way to read them: https://docs.nvidia.com/cuda/profiler-users-guide/index.html
 - Let's use the PMU to profile the following:
 - DRAM Transfer Rate (GB/s)
 - L1 Hit Rate (%)
 - L2 Hit Rate (%)

Is there a way we can reach max FLOPS?

- Let's take a look at the GPU design metrics again:
 - Max FLOPS = 100.4 GFLOPS
 - Memory Bandwidth: 14.00 GB/s
- To sustain max FLOPS, you need to do a lot of work per byte
 - 100.4 GFLOPS / 14.00 GB/s = 7.17 FP ops / byte
 - Or, about **28 FP ops / float** (4 bytes) fetched from memory
 - Otherwise, the memory bandwidth cannot sustain the FLOPS
- All GPUs have this problem with memory bandwidth:
 - It's easy to put in more SMs using transistors for Moore's Law
 - Your memory bandwidth is limited due to your DDR interface

52

Arithmetic Intensity: A property of the program

- How many FP ops / float for our mat-vec multiplication?
 - y[i] += A[i*n+j] * x[j] each iteration with n * n iterations
 - FP ops = 2 * n * n (one multiply and one add)
 - Float accesses = n * n + 2n (1 matrix and 2 vector accesses)
 - That's counting only cold misses but could be even more
 - So approx. **2 FP ops / float** (a far cry from 28 FP ops / float)
 - This metric is called **arithmetic intensity**
- Arithmetic intensity is a property of the program needed by GPUs
 - Just like TLP (thread-level-parallelism) is needed by GPUs
 - Matrix-vector multiplication has low intensity
 - → Fundamentally not suited for fast GPU computation

Arithmetic Intensity: A property of the program

- * Courtesy of Lawrence Berkeley National Laboratory: https://crd.lbl.gov/departments/computer-science/par/research/roofline/introduction/
- **BLAS**: Basic Linear Algebra Subprograms
 - BLAS 1: Vector operations only (e.g. saxpy) → Bad intensity
 - BLAS 2: General Matrix-Vector Multiplication (GeMV) → Bad intensity
 - BLAS 3: General Matrix Multiplication (GeMM) → Good intensity

54

Matrix-Matrix Multiply: Good Arithmetic Intensity

Matrix-multiplication:

- What's the arithmetic intensity for this program?
 - FP ops = 2 * n * n * n (one multiply and one add)
 - Float accesses = 3 * n * n (3 matrix accesses)
 - If we only have cold misses and no capacity misses
 - Arithmetic intensity = 2 * n / 3 = 0.66 * n = O(n)
 - Implication: The larger the matrix size, the better suited for GPUs!
 - Important result for deep learning and other apps

Example: Computing C(i,j) = A(i,k) * B(k,j)

C program (on CPU)

void mm_cpu(float* C, float* A, float* B, int n) { for (int i=0; i<n; i++) for (int j=0; j<n; j++) for (int k=0; k<n; k++) C[i*n+j] += A[i*n+k] * B[k*n+j]; }</pre>

CUDA program (on CPU+GPU)

```
void mm_gpu(float* C, float* A, float* B, int n) { float Cvalue = 0; int i = blockIdx.y * blockDim.y + threadIdx.y; int j = blockIdx.x * blockDim.x + threadIdx.x; for (int k = 0; k < n; ++k) Cvalue += A[i * n + k] * B[k * n + j]; C[i * n + j] = Cvalue; }
```

void main () {

```
{
    mm_cpu(C, A, B, n);
}
```

void main ()

$$\label{lock_size} \begin{split} & \text{dim3 dimBlock(block_size, block_size);} \\ & \text{dim3 dimGrid(n / dimBlock.x, n / dimBlock.y);} \\ & \text{mm_gpu} <<<& \text{dimGrid, dimBlock}>>> (C, A, B, n);} \end{split}$$

So what is Shared Memory?

- Shared Memory: memory shared among threads in a thread block
 - Variables declared with __shared__ modifier live in shared memory
 - Is same as L1 cache in terms of latency and bandwidth!
 - Storing frequently used data in shared memory can save on bandwidth

59

Loop Tiling with Shared Memory

- Store a "tile" within matrix in shared memory while operating on it
 Can reduce accesses to DRAM memory
- Code in: https://docs.nvidia.com/cuda/cuda-c-best-practicesguide/index.html#shared-memory-in-matrix-multiplication-c-ab

```
bTile[TILE_DIM][TILE_DIM];
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
float sum = 0.0f;
aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x];
bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col];
__syncthreads();
for (int i = 0; i < TILE_DIM; i++)
sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x];
```

Assumption: TILE DIM = w. What if $w > TILE_DIM$?

shared float aTile[TILE DIM][TILE DIM],

c[row*N+col] = sum;

A C

Lesson 3: Programmability vs. Performance

Explicit memory management

Explicit Memory Management

```
void *data, *d_data;
data = malloc(N);
cudaMalloc(&d_data, N);
cpu_func1(data, N);
cudaMemcpy(d_data, data, N, ...)
gpu_func2<<<...>>>(d_data, N);
cudaMemcpy(data, d_data, N, ...)
    cudaFree(d_data);
cpu_func3(data, N);
```

Three problems:

- GPU memory capacity limitation
- · Difficult to program
- Poor portability

63

SINGLE POINTER

Explicit vs Unified Memory

```
Explicit Memory Management

void *data, *d_data;
data = malloc(N);
cudaMalloc(&d_data, N);
cpu_func1(data, N);
cudaMemcpy(d_data, data, N, ...)
gpu_func2<<<...>>(d_data, N);
cudaMemcpy(data, d_data, N, ...)
cudaMemcpy(data, d_data, N, ...)
cudaFree(d_data);
cpu_func3(data, N);

free(data);
```

```
GPU code w/ Unified Memory
void *data;
data = malloc(N);
cpu_func1(data, N);
gpu_func2<<<...>>>(data, N);
cudaDeviceSynchronize();
cpu_func3(data, N);
free(data);
```


