

LE DEEP LEARNING Les dates clés

1943

Neurone Formel

1950

Test de Turing

1957

Perceptron

2012

Concours ImageNet Large Scale Visual Recognition Challenge 2012

Google Brain

Le Deep Learning et les Réseaux de neurone artificiel

Apprentissage profond

Ensemble de méthodes d'apprentissage automatique

Apprentissage automatique

Réseaux de neurones artificiels

Beaucoup de données

Neurone biologique vs artificiel

Perceptron

Perceptron simple

Une couche de neurone

Perceptron multicouche

Plusieurs couches de neurones

Calcul du perceptron

Perceptron simple

Perceptron multi-couche

Exemple de réseau de neurone

Algorithme de rétro-propagation du gradient

Utilisation d'un perceptron pour faire une Régression

Fonctions de coût

Régression

Mean Squared Error

Classification

Binaire : Binary cross entropy

Multi : Categorical cross entropy

Fonctions d'activation

Linéaire

Pour la régression, pas de transformation

ReLu

Filtre les valeurs négatives

Sigmoïde

Ramène les valeurs entre [0, 1]. Utilisé pour le classement. Y codé {0,1}

Ramène les valeurs entre [-1, 1]. Alternative à sigmoïde pour le classement. Y codé {-1,+1}

Utilisation d'un perceptron pour faire une Classification

Evolution

Réseaux de Neurones Convolutifs

Bibliothèques Python

Conclusion

Notre équipe de chercheurs

Denis

Sarah

Vincent

Charlène

Loic

Merci

Do you have any questions?