Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет Кафедра «Информационные технологии и автоматизированные системы» направление подготовки: 09.03.01— «Информатика и вычислительная техника»

Лабораторная работа №1 «Машина Тьюринга»

Выполнил студент гр. ИВТ-24-1б				
Попов Егор Александрович				
	Проверил:			
Доцент кафедры ИТАС				
Полякова Ольга Андреевна				
(оценка)	(подпись)			
	(дата)			

Разработка алгоритма машины Тьюринга

1. Постановка задачи

Задача №1: Дано число, состоящее из 0 и 1. Заменить все 0 на 1 и 1 на 0.

Алфавит: $A = \{0,1\}$.

Изначальное положение головы – конец числа.

Задача №2: На ввод подается случайное число. Прибавить 4.

Алфавит: $A = \{0,1,2,3,4,5,6,7,8,9\}.$

Изначальное положение головы – конец числа.

Задача №3: На ввод подается случайное число. Если число четное — заменить в нем все цифры на 0, иначе на 1.

Алфавит: $A = \{0,1,2,3,4,5,6,7,8,9\}.$

Изначальное положение головы – конец числа.

2. Описание алгоритма

Задача №1. Для выполнения алгоритма необходимо смотреть на входное число и делать сдвиг на 1, меняя 0 на 1, а 1 на 0. В случае если голова будет стоять на пустом месте, остановить выполнение программы.

Задача №2. Для выполнения алгоритма необходимо прибавить к исходному числу 4. При добавлении 4 к таким числам как 0,1,2,3,4,5 у нас проблем не будет, а когда мы будет прибавлять 4, например, к 7, мы получаем 4+7=11. Следовательно у нас добавляется еще один разряд, который нам необходимо перенести на высший разряд. В случае если голова стоит на пустом месте и алгоритм еще не закончен, необходимо заменить это пустое место на 1.

Задача №3. Для выполнения алгоритма необходимо проверить изначальное число на четность. Если число оканчивается на 0,2,4,6,8 - значит число четное, а если на 1,3,5,7,9 – значит число нечетное. После

определения четности числа, необходимо поменять цифры в числе так, как это прописано в условиях задачи.

3. Таблицы команд

Таблица команд для задачи №1(рисунок 1):

Таблица команд для задачи №2(рисунок 2):

Таблица команд для задачи №3(рисунок 3):

Рисунок 1- Таблица команд для задачи №1

	Q ₁	Q ₂
0	4 ← 👄	1 ← 👄
1	5 🗲 🖨	2 🗲 🖨
2	6 🗲 🖨	3 ← 👄
3	7 ← 👄	4 ← 👄
4	8 🖛 👄	5 ← 👄
5	9 🗕 🖨	6 🗲 👄
6	0 ← Q ₂	7 🗲 👄
7	1 ← Q ₂	8 🖛 👄
8	2 ← Q ₂	9 🗕 🖨
9	3 ← Q ₂	1 ← Q ₂
	1 ← 👄	1 ← 👄

Рисунок 2 – Таблица команд для задачи №2

	Q ₁	Q ₂	Q ₃
0	0 ← Q ₂	0 ← Q ₂	1 ← Q ₃
1	1 ← Q ₃	0 ← Q ₂	1 ← Q ₃
2	0 ← Q ₂	0 ← Q ₂	1 ← Q ₃
3	1 ← Q ₃	0 ← Q ₂	1 ← Q ₃
4	0 ← Q ₂	0 ← Q ₂	1 ← Q ₃
5	1 ← Q ₃	0 ← Q ₂	1 ← Q ₃
6	0 ← Q ₂	0 ← Q ₂	1 ← Q ₃
7	1 ← Q ₃	0 ← Q ₂	1 ← Q ₃
8	0 ← Q ₂	0 ← Q ₂	1 ← Q ₃
9	1 ← Q ₃	0 ← Q ₂	1 ← Q ₃
]	_ ← 🗢	_ ← 👄	_ ← 🗢

Рисунок 3 – Таблица команд для задачи №3

4. Разбор задачи на ленте с последовательностью шагов

Для задачи №1:

Входные данные: 1100.

Выходные данные: 0011.

- а. Встать в конец числа (0, рисунок 4)
- b. Заменить 0 на 1 и сдвинуть вправо (рисунок 5)
- с. Проделать пункт 2 еще раз (рисунок 6)
- d. Встать на число 1 и заменить его на 0 (рисунок 7)
- е. Сдвинуться вправо
- f. Заменить 1 на 0 (рисунок 8)
- g. Завершить выполнение программы

Для задачи №2:

Входные данные: 1898.

Выходные данные: 1912.

а) Встать в конец числа (8, рисунок 9)

- b) Перезаписать 8 на 2 и запомнить 1 (рисунок 10)
- с) После выполнения действия выше, программа переходит из Q1
 в Q2. Следовательно 9 меняется на 1, и запоминаем 1.
 Сдвинуться влево. (рисунок 11)
- d) Так как мы работает в Q2, мы меняем 8 на 9. (рисунок 12)
- е) Завершить выполнение программы

Для задачи №3:

Входные данные: 834.

Выходные данные: 000.

- а) Встать в конец числа (4, рисунок 13)
- в) Заменить 4 на 0 (рисунок 14)
- с) Заменить 3 на 0 (рисунок 15)
- d) Заменить 8 на 0 (рисунок 16)
- е) Завершить выполнение программы

Рисунок 6

Рисунок 7

Рисунок 8

Рисунок 9

Рисунок 10

Рисунок 11

Рисунок 12

Рисунок 13

Рисунок 14

Рисунок 15

Рисунок 16

5. Скриншоты выполненного алгоритма в программной среде

Результаты выполнения задачи №1 (рисунки 17-20)

Результат выполнения задачи №2 (рисунки 21- 24)

Результат выполнения задачи №3 (рисунки 24- 28)

Рисунок 17

Рисунок 18

Рисунок 19

Рисунок 20

Рисунок 21

Рисунок 22

Рисунок 25

Рисунок 26

Рисунок 27

Рисунок 28