Дифференциальные уравнения

- 1. Письменный Д.Т. Конспект лекций по высшей математике: Полный курс. 2004. 608с.
- 2. Сборник задач по математике для втузов. В 4-х частях. Ч.2: учебное пособие для втузов / Под общей ред. А.В. Ефимова и А.С. Поспелова., 2024. 432с.
- 3. Дифференциальные уравнения. Кратные, криволинейные и поверхностные интегралы. Ряды: Учеб. пособие / Кол. авторов. Чебоксары: Изд-во Чуваш. Ун-та, 2024. 138 с.
- 4. Картузова Т.В., Сабиров А.С., Селиверстова Л.В. Прикладные задачи по высшей математике: учеб. пособие. Чебоксары: Изд-во Чуваш. ун-та, 2024. 150 с.
- 5. Высшая математика в упражнениях и задачах. В 2 ч. Ч. 2: Учебное пособие для втузов / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова., 2015. 416 с.

<u>Лекционное занятие 1-2</u>. Задачи, приводящие к понятию дифференциального уравнения (ДУ). Обыкновенные ДУ. Основные понятия: порядок уравнения, частное и общее решения, задача Коши. Формулировка теоремы существования и единственности задачи Коши для уравнения первого порядка. Геометрический смысл уравнения первого порядка и его решения. Поле направлений и изоклины. Понятие об особых точках и особых решениях ДУ. ДУ с разделенными и разделяющимися переменными. Однородные ДУ. Линейные ДУ первого порядка. ДУ в полных дифференциалах. Уравнение Бернулли.

— Общие сведения о дифференциальных уравнениях —

Решение различных физических, биологических и экономических задач часто приводят к уравнениям, которые связывают независимые переменные, характеризующие ту или иную задачу, с какой — либо функцией этих переменных и производными этой функции различных порядков.

Основные понятия -

♦Опр. Дифференциальным уравнением (ДУ) называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции (Г. Лейбниц, 1676г.).

♦Опр. Если ДУ имеет одну независимую переменную, то оно называется **обыкновенным дифференциальным уравнением**, если же независимых переменных две или более, то такое ДУ называется **дифференциальным уравнением в частных производных.**

Обыкновенное дифференциальное уравнение n-го порядка в общем виде можно записать так:

$$F(x, y, y', y'', ..., y^{(n)}) = 0$$

где x - независимая переменная; y = y(x) - искомая функция переменной $x; y', y'', ..., y^{(n)}$ - ее производные; $F(x, y, y', y'', ..., y^{(n)})$ - заданная функция своих аргументов.

♦Опр. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения.

Пример: $x^3y' + 8y - x + 5 = 0$ - обыкновенное ДУ 1-го порядка. В общем виде записывается F(x, y, y') = 0.

$$x\frac{d^2y}{dx^2} + xy\frac{dy}{dx} + x^2 = y$$
 - обыкновенное ДУ 2-го порядка.

В общем виде записывается F(x, y, y', y'') = 0

$$y^2 \frac{\partial z}{\partial x} + xy \frac{\partial z}{\partial y} = 0$$
 - ДУ в частных производных первого порядка.

Процесс отыскания решения ДУ называется его *интегрированием*, а график решения ДУ – *интегральной кривой*.

_____ Задачи, приводящие к дифференциальным уравнениям _____

В качестве примера можно рассмотреть простейший случай равноускоренного движения материальной точки.

Известно, что перемещение материальной точки при равноускоренном движении является функцией времени и выражается по формуле:

$$S = v_0 t + \frac{at^2}{2}$$

В свою очередь ускорение a является первой производной по времени t от скорости v, которая также является второй производной по времени t от перемещения s. T.e.

$$v = \frac{dS}{dt}; \qquad a = \frac{dv}{dt} = \frac{d^2S}{dt^2}$$

Тогда получаем: $S=f(t)=\upsilon_0 t+\frac{f''(t)\cdot t^2}{2}$ - уравнение связывает функцию f(t) с независимой переменной t и производной второго порядка функции f(t) .

Пример: Пусть с некоторой высоты на землю сброшено тело массы m . Найти закон изменения скорости падения υ от времени t .

Решение: Т.е. нужно найти функцию v = v(t).

 $\overrightarrow{F} = m \overrightarrow{a}$ - II закон Ньютона (основной закон механики), где $a = \upsilon' = \frac{d\upsilon}{dt}$ - ускорение движущегося тела, а F - результирующая сила, действующая на тело в процессе движения.

В данном случае $F = mg - F_{conp}$, где mg - сила тяжести, F_{conp} - сила сопротивления со стороны воздуха.

Известно, что при обтекаемой форме тела и не слишком больших скоростях: $F_{conp} = \rho \cdot \upsilon$, F_{conp} пропорциональна скорости движущегося тела, где υ - скорость падения тела, ρ - коэффициент пропорциональности. Таким образом получаем: $m \cdot \frac{d\upsilon}{dt} = mg - \rho\upsilon$, $\frac{d\upsilon}{dt} = g - \frac{\rho}{m}\upsilon$, $\upsilon' + \frac{\rho}{m}\upsilon = g$ - это и есть закон изменения скорости падающего тела.

Другие задачи:

- Закон изменения массы радия в зависимости от времени «радиоактивный распад» описывается ДУ: $\frac{dm}{dt} = -km$, где k>0 коэффициент пропорциональности, m(t) масса радия в момент времени t .
- «Закон размножения бактерий» (зависимость массы от бактерий от времени): $\frac{dm}{dt} = km$, где k>0 .
- «Закон охлаждения тел», т.е. закон изменения температуры тела в зависимости от времени, описывается ДУ: $\frac{dT}{dt} = k(T-t_0)$, где T(t) температура тела в момент времени t, k- коэффициент пропорциональности, t_0 температура воздуха (среды охлаждения).
- Закон изменения давления воздуха в зависимости от высоты над уровнем моря описывается ДУ: $\frac{dp}{dh} = -kp$, где k>0 коэффициент пропорциональности, p(h) атмосферное давление воздуха на высоте h и др.

Дифференциальные уравнения первого порядка

Основные понятия

<u>◆Опр.</u> Дифференциальным уравнением первого порядка называется соотношение, связывающее функцию, ее первую производную и независимую переменную, т.е. соотношение вида: F(x, y, y') = 0.

Если такое соотношение преобразовать к виду y' = f(x, y) то это ДУ первого порядка будет называться уравнением, разрешенным относительно производной.

Уравнение y'=f(x,y) устанавливает связь (зависимость) между координатами точки (x,y) и угловым коэффициентом y' касательной к интегральной кривой, проходящей через эту точку. Следовательно, ДУ y'=f(x,y) дает совокупность направлений (поле направлений) на плоскости Oxy.

ФОпр. Кривая, во всех точках которой направление поля одинаково называется **изоклиной.** Изоклинами можно пользоваться для приближенного построения интегральных кривых. Уравнение изоклин можно получить, если представить y' = C, т.е. f(x,y) = C.

Преобразуя уравнение y' = f(x, y) далее, получим:

$$\frac{dy}{dx} = f(x, y), \quad dy = f(x, y)dx, \quad f(x, y)dx - dy = 0.$$

Функцию f(x,y) представим в виде: $f(x,y) = -\frac{P(x,y)}{Q(x,y)}, \quad Q(x,y) \neq 0;$

тогда при подстановке в полученное выше уравнение имеем: P(x,y)dx + Q(x,y)dy = 0 - это так называемая **дифференциальная форма** уравнения первого порядка.

- <u>◆Опр.</u> Общим решением ДУ первого порядка называется такая дифференцируемая функция $y = \varphi(x; C)$, содержащая одну произвольную постоянную и удовлетворяющая условиям:
- 1) функция $y = \varphi(x; C)$ является решением ДУ при каждом фиксированном значении C;
- 2) при каких-либо начальных условиях $x=x_0$, $y(x_0)=y_0$ существует такое значение $C=C_0$, при котором решением ДУ уравнения является функция $y=\varphi(x;C_0)$.
- $igspace \Phi$ Опр. Частным решением ДУ первого порядка называется любая функция вида $y=\varphi(x;C_0)$, полученная из общего решения $y=\varphi(x;C)$ при конкретном значении постоянной $C=C_0$.

ФОпр. Интегральной кривой называется график $y = \varphi(x)$ решения дифференциального уравнения на плоскости Oxy.

С геометрической точки зрения $y=\varphi(x;C)$ есть семейство интегральных кривых на плоскости $O\!xy$, а частное решение $y=\varphi(x;C_0)$ — одна кривая из этого семейства, проходящая через точку $(x_0;y_0)$.

Пример 1: Из семейства окружностей $x^2 + y^2 = C^2$ выделить ту, которая проходит через точку A(3;4).

Решение. Чтобы выделить нужную окружность, надо найти соответствующее ей значение параметра $C=C_0$. Так как искомая функция проходит через точку A(3;4), то координаты этой точки удовлетворяют уравнению $x^2+y^2=C_0^2$. Подставляя значения $x=3,\quad y=4$, получим $C_0^2=25$. Уравнение искомой окружности будет $x^2+y^2=25$.

igoplus Onp. Задачей Коши (Огюстен Луи Коши (1789-1857) - французский математик) называется нахождение любого частного решения ДУ вида $y=\varphi(x;C_0)$, удовлетворяющего начальным условиям $y(x_0)=y_0$.

Теорема Коши (теорема о существовании и единственности решения задачи Коши).

Если функция f(x,y) непрерывна в некоторой области D в плоскости Oxy и имеет в этой области непрерывную частную производную $f_y'(x,y)$, то какова бы не была точка $(x_0;y_0)$ в области D, существует единственное решение $y=\varphi(x)$ уравнения y'=f(x,y), удовлетворяющее условию $y=y_0$ при $x=x_0$, т.е. существует единственное решение дифференциального уравнения.

<u>Геометрический смысл теоремы</u>: при выполнении условий теоремы существует единственная интегральная кривая ДУ, проходящая через точку $(x_0; y_0)$.

Пример 2: Найти общее решение дифференциального уравнения xy' + y = 0.

Решение. Общее решение ДУ ищется с помощью интегрирования левой и правой частей уравнения, которое предварительно преобразовано следующим образом:

$$x\frac{dy}{dx} + y = 0$$
, $xdy = -ydx$, $\frac{dy}{y} = -\frac{dx}{x}$.

Теперь интегрируем: $\int \frac{dy}{y} = -\int \frac{dx}{x}$, $\ln|y| = -\ln|x| + C_0$, $\ln|y| + \ln|x| = C_0$, $\ln|xy| = C_0$,

$$xy = e^{C_0} = C$$
. $y = \frac{C}{r}$ - это общее решение исходного ДУ.

Допустим, заданы некоторые начальные условия: $x_0=1; y_0=2$, тогда имеем $2=\frac{C}{1}; \quad C=2;$

При подстановке полученного значения постоянной в общее решение получаем частное решение при заданных начальных условиях (решение задачи Коши): $y = \frac{2}{r}$.

Особым решением ДУ называется такое решение, во всех точках которого условие единственности Коши не выполняется, т.е. в окрестности некоторой точки (x, y) существует не менее двух интегральных кривых.

Особые решения не зависят от постоянной ${\it C}$.

Особые решения нельзя получить из общего решения ни при каких значениях постоянной C. Если построить семейство интегральных кривых ДУ, то особое решение будет изображаться линией, которая в каждой своей точке касается по крайней мере одной интегральной кривой.

Отметим, что не каждое ДУ имеет особые решения.

Пример 3: Найти общее решение дифференциального уравнения: y' + y = 0. Найти особое решение, если оно существует.

Решение.
$$\frac{dy}{dx} = -y$$
, $\frac{dy}{y} = -dx$, $\int \frac{dy}{y} = -\int dx$, $\ln |y| = -x + C$, $y = e^{-x} \cdot e^{C}$, $y = C_1 \cdot e^{-x}$

Данное ДУ имеет также особое решение y=0. Это решение невозможно получить из общего, однако при подстановке в исходное уравнение получаем тождество. Мнение, что решение y=0 можно получить из общего решения при $C_1=0$ ошибочно, ведь $C_1=e^C\neq 0$.

Далее рассмотрим подробнее приемы и методы, которые используются при решении ДУ различных типов.

ФОпр. Дифференциальное уравнение y' = f(x,y) называется **уравнением с** разделяющимися переменными, если его можно записать в виде

$$y' = f_1(x)f_2(y).$$

Пусть в уравнении: y' = f(x; y) функция f(x; y) может быть разложена на множители $f_1(x)$ и $f_2(y)$, т.е. $f(x; y) = f_1(x) \cdot f_2(y)$. Тогда $y' = f_1(x) \cdot f_2(y)$, т.е. $\frac{dy}{dx} = f_1(x) \cdot f_2(y)$.

Таким образом: $\frac{dy}{f_2(y)} = f_1(x) dx$, $f_2(y) \neq 0$. Иногда такие ДУ называют уравнениями *с разделенными переменными*.

Интегрируя левую часть по y , а правую по x , приходим в каждом из них к общему интегралу исходного ДУ.

Пример 1: Решить уравнение: $y' = \frac{2x}{3y^2 + 1}$.

Решение: $\frac{dy}{dx} = \frac{2x}{3y^2 + 1}$, разделяем переменные: $(3y^2 + 1)dy = 2xdx$.

Интегрируя обе части, получим: $\int (3y^2+1)dy = 3 \cdot \frac{y^3}{3} + y + C_1$, $\int 2xdx = 2 \cdot \frac{x^2}{2} + C_2$, т.е. $y^3 + y + C_1 = x^2 + C_2$, $y^3 + y - x^2 = -C_1 + C_2$.

Пусть $-C_1 + C_2 = C$, тогда $y^3 + y - x^2 = C$ - общий интеграл ДУ.

Замечание: Если в уравнении с разделяющими переменными

$$y' = f_1(x) \cdot f_2(y)$$

функция $f_2(y)$ имеет действительный корень y_0 , т.е. $f_2(y_0) = 0$, то функция $y(x) = y_0$ является решением данного уравнения. При делении обеих частей этого уравнения на $f_2(y)$ (при разделении переменных) решение $y(x) = y_0$ может быть потеряно. Поэтому, получив указанным выше методом разделения переменных общий интеграл уравнения, надо проверять, входят ли в его состав упомянутые частные решения.

Пример 2: Решите уравнение $\frac{dy}{dx} = y \cdot tgx$.

Решение: 1) Разделим переменные: $\frac{dy}{dx} = y \cdot tgx$ | : $y = \frac{dy}{dx} = tgxdx$

2) Проинтегрировав обе части, получим: $\ln |y| = -\ln |\cos x| + C_1$, $\ln |y \cdot \cos x| = C_1$ Для удобства обозначим $C_1 = \ln C_2$ ($C_2 \neq 0$). Таким образом, получим:

$$\ln|y\cdot\cos x| = \ln C_2, \ y\cdot\cos x = C_2.$$

Но при делении на y могло быть потеряно решение: y=0 , которое не входит в запись $y\cdot\cos x=C_2$.

Если вместо $C_2 \neq 0$ взять новую константу C (которая в отличие от C_2 может принимать и нулевое значение), то решение y=0 войдет в состав общего решения уравнения:

 $y \cdot \cos x = C$ - общий интеграл уравнения.

Пример 3: Решить уравнение $(x^2-1)y'+2xy^2=0$, y(0)=1.

Решение: 1) «Разделим» переменные: $(x^2 - 1)dy = 2xy^2 dx$ |: $(1 - x^2) \cdot y^2$

$$\frac{dy}{y^2} = \frac{2xdx}{1 - x^2}$$

2) Интегрируя, получим: $-\frac{1}{y} = -\ln \left|1-x^2\right| + C_1$, $\frac{1}{y} = \ln \left|1-x^2\right| + C_2$, где $C_2 = -C_1$.

Таким образом: $y(\ln |1-x^2|+C_2)=1$ - общий интеграл уравнения

3) При делении на $(1-x^2)y^2$ могли быть потеряны решения:

$$1 - x^2 = 0$$

$$x = \pm 1$$

$$y^2 = 0$$

$$y = 0$$

При $x = \pm 1$ уравнение $(x^2 - 1)y' + 2xy^2 = 0$ примет вид y = 0.

Проверим y=0: общий интеграл не включает в себя частное решение y=0 (т.е. $0 \neq 1$), поэтому решение y=0 считается потерянным решением и записывается отдельно. Таким образом, общее решение: $y\Big(\ln \big|1-x^2\big|+C\Big)=1, \quad y=0$

4) Найдем частное решение при условии y(0) = 1.

$$1 \cdot (\ln|1-0|+C) = 1$$
, $C = 1 \Rightarrow y(\ln|1-x^2|+1) = 1$ - частное решение.

1.2. Однородные уравнения —

ФОПР. Функция f(x; y) называется **однородной n-го порядка (измерения)** относительно своих аргументов x и y, если для любого значения параметра t (кроме нуля) выполняется тождество:

$$f(tx,ty) = t^n f(x,y).$$

Пример 1: Является ли однородной функция $f(x, y) = x^3 + 3x^2y$?

Решение. $f(tx,ty) = (tx)^3 + 3(tx)^2 ty = t^3 x^3 + 3t^3 x^2 y = t^3 (x^3 + 3x^2 y) = t^3 f(x,y)$

Таким образом, функция f(x; y) является однородной 3- го порядка.

Любое уравнение вида P(x,y)dx + Q(x,y)dy = 0 является однородным, если функции P(x,y) и Q(x,y) — однородные функции одинакового измерения.

Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.

Рассмотрим однородное уравнение y' = f(x, y).

Т.к. функция f(x; y) — однородная нулевого измерения, то можно записать: f(tx, ty) = f(x, y).

Т.к. параметр t вообще говоря произвольный, предположим, что $t=\frac{1}{x}$. Получаем:

$$f(x,y) = f\left(1, \frac{y}{x}\right)$$

Правая часть полученного равенства зависит фактически только от одного аргумента $u = \frac{y}{x}$, т.е. $f(x,y) = \phi \left(\frac{y}{x} \right) = \phi(u);$

Исходное дифференциальное уравнение таким образом можно записать в виде: $y' = \varphi(u)$

Далее заменяем y = ux, y' = u'x + ux'.

 $u'x + ux' = \varphi(u); \quad u'x + u = \varphi(u); \quad u' = \frac{\varphi(u) - u}{x};$ таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.

$$\frac{du}{\varphi(u)-u} = \frac{dx}{x}; \quad \int \frac{du}{\varphi(u)-u} = \int \frac{dx}{x} + C;$$

Далее, заменив вспомогательную функцию u на ее выражение через x и y и найдя интегралы, получим общее решение однородного ДУ.

Пример 2: Решить уравнение
$$y' = \frac{y}{x} \left(\ln \frac{y}{x} + 1 \right)$$
.

Решение. Введем вспомогательную функцию и:

$$u = \frac{y}{x}$$
; $y = ux$; $y' = u'x + u$.

Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное ДУ, содержащее $\ln u = \ln \frac{y}{x}$.

Подставляем в исходное уравнение:

$$u'x + u = u(\ln u + 1), \quad u'x + u = u \ln u + u, \quad u'x = u \ln u.$$

Разделяем переменные: $\frac{du}{u \ln u} = \frac{dx}{x}$, $\int \frac{du}{u \ln u} = \int \frac{dx}{x}$.

Интегрируя, получаем: $\ln |\ln u| = \ln |x| + C$; $\ln u = Cx$; $u = e^{Cx}$.

Переходя от вспомогательной функции обратно к функции y, получаем общее решение: $y = xe^{Cx}$.

1.3. Уравнения, приводящиеся к однородным

Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут приведены к однородным.

Это уравнения вида $y'=f\left(\frac{ax+by+c}{a_1x+b_1y+c_1}\right).$

Если определитель $\begin{vmatrix} a & b \\ a_1 & b_1 \end{vmatrix} \neq 0$, то переменные могут быть разделены подстановкой

 $x=u+lpha; \qquad y=v+eta;$ где lpha и eta - решения системы уравнений $egin{cases} ax+by+c=0 \\ a_1x+b_1y+c_1=0 \end{cases}$

Пример 1: Решить уравнение (x-2y+3)dy+(2x+y-1)dx=0.

Решение: Получаем $(x-2y+3)\frac{dy}{dx} = -2x - y + 1, \qquad \frac{dy}{dx} = \frac{-2x - y + 1}{x - 2y + 3}.$

Находим значение определителя $\begin{vmatrix} -2 & -1 \\ 1 & -2 \end{vmatrix} = 4+1=5 \neq 0$.

Решаем систему уравнений $\begin{cases} -2x - y + 1 = 0 \\ x - 2y + 3 = 0 \end{cases}, \quad \begin{cases} y = 1 - 2x \\ x - 2 + 4x + 3 = 0 \end{cases}, \quad \begin{cases} x = -1/5 \\ y = 7/5 \end{cases}.$

Применяем подстановку x = u - 1/5, y = v + 7/5 в исходное уравнение: (u - 1/5 - 2v - 14/5 + 3)dv + (2u - 2/5 + v + 7/5 - 1)du = 0; (u - 2v)dv + (2u + v)du = 0;

$$\frac{dv}{du} = \frac{2u + v}{2v - u} = \frac{2 + \frac{v}{u}}{2\frac{v}{u} - 1}.$$

Заменяем переменную $\frac{v}{u}=t, \quad v=ut, \quad v'=t'u+t$ при подстановке в выражение, записанное выше, имеем: $t'u+t=\frac{2+t}{2t-1}$.

Разделяем переменные:

$$\frac{dt}{du}u = \frac{2+t}{2t-1} - t = \frac{2+t-2t^2+t}{2t-1} = \frac{2(1+t-t^2)}{2t-1}, \frac{du}{u} = -\frac{1}{2} \cdot \frac{1-2t}{1+t-t^2} dt,$$

$$\int \frac{du}{u} = -\frac{1}{2} \int \frac{(1-2t)dt}{1+t-t^2}, \qquad -\frac{1}{2} \ln|1+t-t^2| = \ln|u| + \ln C_1, \qquad \ln|1+t-t^2| = -2 \ln|C_1u|,$$

$$\ln|1+t-t^2| = \ln\left|\frac{C_2}{u^2}\right|, 1+t-t^2 = \frac{C_2}{u^2}.$$

Переходим теперь к первоначальной функции y и переменной x:

$$t = \frac{v}{u} = \frac{y - 7/5}{x + 1/5} = \frac{5y - 7}{5x + 1}; \qquad u = x + 1/5;$$

$$1 + \frac{5y - 7}{5x + 1} - \left(\frac{5y - 7}{5x + 1}\right)^2 = \frac{25C_2}{(5x + 1)^2};$$

$$(5x + 1)^2 + (5y - 7)(5x + 1) - (5y - 7)^2 = 25C_2,$$

$$25x^2 + 10x + 1 + 25xy + 5y - 35x - 7 - 25y^2 + 70y - 49 = 25C_2,$$

$$25x^2 - 25x + 25xy + 75y - 25y^2 = 25C_2 + 49 - 1 + 7, \qquad x^2 - x + xy + 3y - y^2 = C_2 + \frac{55}{25} = C.$$

Итого, выражение $x^2 - x + xy + 3y - y^2 = C$ является общим интегралом исходного дифференциального уравнения.

В случае если в исходном уравнении вида $y' = f\left(\frac{ax + by + c}{a_1x + b_1y + c_1}\right)$ определитель $\begin{vmatrix} a & b \\ a_1 & b_1 \end{vmatrix} = 0$, то переменные могут быть разделены подстановкой ax + by = t.

Пример 2: Решить уравнение 2(x + y)dy + (3x + 3y - 1)dx = 0.

Решение: Получаем
$$2(x+y)\frac{dy}{dx} = -3x - 3y + 1;$$
 $\frac{dy}{dx} = \frac{-3x - 3y + 1}{2x + 2y} = -\frac{3x + 3y - 1}{2x + 2y};$

Находим значение определителя $\begin{vmatrix} -3 & -3 \\ 2 & 2 \end{vmatrix} = -6 + 6 = 0$.

Применяем подстановку 3x + 3y = t, получаем $\frac{dy}{dx} = \frac{t'}{3} - 1$.

Подставляем это выражение в исходное уравнение:

$$\frac{t'}{3} - 1 = -\frac{3(t-1)}{2t}; \quad 2t(t'-3) = -9t + 9, \quad 2tt' = 6t - 9t + 9, \quad 2tt' = -3t + 9.$$

Разделяем переменные:
$$\frac{2t}{-3t+9}dt=dx$$
, $\frac{t}{t-3}dt=-\frac{3}{2}dx$, $\int \left(1+\frac{3}{t-3}\right)dt=-\frac{3}{2}\int dx$,

$$t + 3\ln|t - 3| = -\frac{3}{2}x + C_1$$
.

Далее возвращаемся к первоначальной функции у и переменной x.

$$2x + 2y + 2\ln|3(x+y-1)| = -x + C_2, \quad 3x + 2y + 2\ln|3 + 2\ln|x + y - 1| = C_2,$$
$$3x + 2y + 2\ln|x + y - 1| = C_2,$$

таким образом, мы получили общий интеграл исходного дифференциального уравнения.

1.4. Линейные уравнения —

ФОпр. Дифференциальное уравнение называется **линейным** относительно неизвестной функции и ее производной, если оно может быть записано в виде: y' + P(x)y = Q(x), при этом, если правая часть Q(x) равна нулю, то такое уравнение называется **линейным однородным ДУ**, если правая часть Q(x) не равна нулю, то такое уравнение называется **линейным неоднородным ДУ**.

P(x) и Q(x) - функции непрерывные на некотором промежутке а < x < b.

1.4.1. Линейные однородные дифференциальные уравнения

Рассмотрим методы нахождения общего решения линейного однородного ДУ первого порядка вида y' + P(x)y = 0.

Для этого типа дифференциальных уравнений разделение переменных не представляет сложностей: $\frac{dy}{y} = -P(x)dx$, $\ln |y| = -\int P(x)dx + \ln |C|$, $\ln \left|\frac{y}{C}\right| = -\int P(x)dx$.

Общее решение: $y = Ce^{-\int P(x)dx}$.

1.4.2. Линейные неоднородные дифференциальные уравнения

Для интегрирования линейных неоднородных уравнений ($Q(x) \neq 0$) применяются в основном два метода: метод Бернулли и метод Лагранжа.

Метод Бернулли.

(Якоб Бернулли (1654-1705) – швейцарский математик.)

Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций y = uv, где u = u(x), v = v(x).

При этом очевидно, что $y' = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$ - дифференцирование по частям.

Подставляя в исходное уравнение, получаем:

$$u\frac{dv}{dx} + v\frac{du}{dx} + P(x)uv = Q(x), \quad u\frac{dv}{dx} + v\left(\frac{du}{dx} + P(x)u\right) = Q(x)$$

Далее следует важное замечание — т.к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению.

Например, функция $y=2x^2$ может быть представлена как $y=1\cdot 2x^2$, $y=2\cdot x^2$, $y=2x\cdot x$ и т.п.

Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение $\frac{du}{dx} + P(x)u = 0$.

Таким образом, возможно получить функцию u , проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше

CXEME:
$$\frac{du}{u} = -P(x)dx,$$

$$\int \frac{du}{u} = -\int P(x)dx, \qquad \ln|u| = -\int P(x)dx,$$

$$\ln|C_1| + \ln|u| = -\int P(x)dx, \quad u = Ce^{-\int P(x)dx}, \quad \varepsilon \partial e \quad C = 1/C_1.$$

Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение $u\frac{dv}{dx}+v\bigg(\frac{du}{dx}+P(x)u\bigg)=Q(x)$ с учетом того, что выражение, стоящее в скобках, равно нулю.

$$Ce^{-\int P(x)dx} \frac{dv}{dx} = Q(x);$$
 $Cdv = Q(x)e^{\int P(x)dx} dx;$

Интегрируя, можем найти функцию v : $Cv=\int Q(x)e^{\int P(x)dx}dx+C_1$, $v=\frac{1}{C}\int Q(x)e^{\int P(x)dx}dx+C_2\,.$

Т.е. была получена вторая составляющая произведения y = uv, которое и определяет искомую функцию.

Подставляя полученные значения, получаем:

$$y = uv = Ce^{-\int P(x)dx} \cdot \frac{1}{C} \left(\int Q(x)e^{\int P(x)dx} dx + C_2 \right).$$

Окончательно получаем формулу: $y = e^{-\int P(x)dx} \cdot \left(\int Q(x)e^{\int P(x)dx}dx + C_2\right)$, C_2 произвольный коэффициент.

Это соотношение может считаться решением неоднородного линейного ДУ в общем виде по способу Бернулли.

Метод Лагранжа.

(Ларганж Жозеф Луи (1736-1813) - французский математик).

Метод Лагранжа решения неоднородных линейных дифференциальных уравнений еще называют методом **вариации произвольной постоянной**.

Вернемся к поставленной задаче: y' + P(x)y = Q(x)

Первый шаг данного метода состоит в отбрасывании правой части уравнения и замене ее нулем.

$$y' + P(x)y = 0$$

Далее находится решение получившегося однородного дифференциального уравнения: $y = C_1 e^{-\int P(x) dx}$.

Для того, чтобы найти соответствующее решение неоднородного ДУ, будем считать постоянную C_1 некоторой функцией от x.

Тогда по правилам дифференцирования произведения функций получаем:

$$y' = \frac{dy}{dx} = \frac{dC_1(x)}{dx}e^{-\int P(x)dx} + C_1(x)e^{-\int P(x)dx} \cdot (-P(x));$$

Подставляем полученное соотношение в исходное уравнение

$$\frac{dC_1(x)}{dx}e^{-\int P(x)dx} - C_1(x)P(x)e^{-\int P(x)dx} + P(x)C_1(x)e^{-\int P(x)dx} = Q(x), \quad \frac{dC_1(x)}{dx}e^{-\int P(x)dx} = Q(x);$$

Из этого уравнения определим переменную функцию $C_1(x)$: $dC_1(x) = Q(x)e^{\int P(x)dx}dx$;

Интегрируя, получаем: $C_1 = \int Q(x)e^{\int P(x)dx}dx + C$.

Подставляя это значение в исходное уравнение, получаем: $y = e^{-\int P(x) dx} \left(\int Q(x) e^{\int P(x) dx} dx + C \right).$

Таким образом, мы получили результат, полностью совпадающий с результатом расчета по методу Бернулли.

При выборе метода решения линейных ДУ следует руководствоваться простотой интегрирования функций, входящих в исходный интеграл.

Далее рассмотрим примеры решения различных ДУ различными методами и сравним результаты.

Пример 1: Решить уравнение $x^2y' + y = ax^2e^{\frac{1}{x}}$.

Решение: Сначала приведем данное уравнение к стандартному виду: $y' + \frac{1}{r^2} y = a e^{\frac{1}{x}}.$

Применим полученную выше формулу: $P = \frac{1}{x^2}$, $Q = ae^{\frac{1}{x}}$,

$$y = e^{-\int \frac{1}{x^2} dx} \left(\int a e^{\frac{1}{x}} e^{\int \frac{1}{x^2} dx} dx + C \right), \ \ y = e^{\frac{1}{x}} \left(\int a e^{\frac{1}{x}} e^{-\frac{1}{x}} dx + C \right) = e^{\frac{1}{x}} \left(\int a dx + C \right), \ \text{r.e.}$$

$$y = e^{\frac{1}{x}} (ax + C).$$

Пример 2: Найти решение дифференциального уравнения, удовлетворяющее заданным начальным условиям $y'\cos x = (y+1)\sin x$, y(0) = 0.

Решение: Это уравнение с разделяющимися переменными.

$$\frac{y'}{y+1} = \frac{\sin x}{\cos x}, \quad \frac{dy}{y+1} = tgxdx, \quad \int \frac{dy}{y+1} = \int tgxdx, \quad \ln|y+1| = -\ln|\cos x| + \ln C, \ln|(y+1)\cos x| = \ln C, \\ (y+1)\cos x = C.$$

Общее решение имеет вид: $y = \frac{C}{\cos x} - 1$.

Найдем частное решение при заданном начальном условии y(0) = 0: $0 = \frac{C}{1} - 1$, C = 1.

Окончательно получаем: $y = \frac{1}{\cos x} - 1$.

Пример 3: Решить предыдущий пример другим способом.

Решение: Действительно, уравнение $y'\cos x = (y+1)\sin x$ может быть рассмотрено как линейное неоднородное ДУ: $y'\cos x - y\sin x = \sin x$.

Решим соответствующее ему линейное однородное уравнение.

$$y'\cos x - y\sin x = 0, \quad y'\cos x = y\sin x, \quad \frac{dy}{y} = tgxdx,$$
$$\int \frac{dy}{y} = \int tgxdx + \ln C, \qquad \ln|y| = -\ln|\cos x| + \ln C, \qquad y\cos x = C, \quad y = \frac{C}{\cos x}.$$

Решение неоднородного уравнения будет иметь вид: $y = \frac{C(x)}{\cos x}$.

Тогда
$$y' = \frac{C'(x)\cos x + C(x)\sin x}{\cos^2 x}$$
.

Подставляя в исходное уравнение, получаем:

$$\frac{\left[C'(x)\cos x + C(x)\sin x\right]\cdot\cos x}{\cos^2 x} - \frac{C(x)\sin x}{\cos x} = \sin x, \quad \frac{C'(x)\cos x}{\cos x} = \sin x, \quad C'x) = \sin x,$$

$$C(x) = \int \sin x dx = -\cos x + C. \text{ MTOOO} \quad y = \frac{-\cos x + C}{\cos x}, \quad y = \frac{C}{\cos x} - 1.$$

С учетом начального условия y(0) = 0 получаем $y = \frac{1}{\cos x} - 1$.

Как видно результаты, полученные при решении данного дифференциального уравнения различными способами, совпадают.

При решении дифференциальных уравнений бывает возможно выбирать метод решения, исходя из сложности преобразований.

Пример 4: Решить дифференциальное уравнение $y' + e^{\frac{y}{x}} - \frac{y}{x} = 0$ с начальным условием y(1) = 0.

Решение:

Первый способ решения: В этом уравнении также удобно применить замену переменных. Пусть $e^{\frac{y}{x}} = u$, $\frac{y}{x} = \ln u$, $y = x \ln u$, $y' = \ln u + \frac{xu'}{u}$.

Уравнение принимает вид: $\ln u + \frac{xu'}{u} + u - \ln u = 0; \quad xu' + u^2 = 0.$ $xu' = -u^2; \quad \frac{du}{dx} = -\frac{dx}{x}; \quad \int \frac{du}{dx} = -\int \frac{dx}{x}. \quad \frac{1}{u} = \ln|x| + \ln C; \quad \frac{1}{u} = \ln Cx.$

Делаем обратную подстановку: $e^{-\frac{y}{x}}=\ln Cx;$ $-\frac{y}{x}=\ln(\ln Cx)$. Общее решение: $y=-x\ln(\ln Cx)$.

С учетом начального условия y(1) = 0: $0 = -\ln(\ln C)$, C = e.

Частное решение: $y = -x \ln(\ln ex)$.

Второй способ решения: $y' + e^{\frac{y}{x}} - \frac{y}{x} = 0$.

Замена переменной: $u = \frac{y}{x}$, y = ux, y' = u'x + u, $u'x + u + e^u - u = 0$, $u'x + e^u = 0$,

$$\frac{du}{dx}x = -e^{u}, \qquad -e^{-u}du = \frac{dx}{x}, \qquad -\int e^{-u}du = \int \frac{dx}{x}, \qquad e^{-u} = \ln|x| + \ln C, \qquad e^{-u} = \ln|Cx|,$$

$$-u = \ln(\ln|Cx|), \qquad u = -\ln(\ln|Cx|).$$

Общее решение: $y = -x \ln(\ln Cx)$.

– 1.5. Уравнение Бернулли —

ФОпр. Уравнением Бернулли называется уравнение вида $y' + Py = Q \cdot y^n$, где P и Q — функции от x или постоянные числа, а n — постоянное число, не равное 1.

Для решения уравнения Бернулли применяют подстановку $z=\frac{1}{y^{n-1}}$, с помощью которой, уравнение Бернулли приводится к линейному.

Для этого разделим исходное уравнение на y^n : $\frac{y'}{y^n} + P \frac{1}{y^{n-1}} = Q$.

Применим подстановку, учтя, что $z' = -\frac{(n-1)y^{n-2}}{y^{2n-2}} \cdot y' = -\frac{(n-1)y'}{y^n}$, получаем

$$-\frac{z'}{n-1} + Pz = Q, \quad z' - (n-1)Pz = -(n-1)Q.$$

Т.е. получилось линейное уравнение относительно неизвестной функции z.

Решение этого уравнения будем искать в виде: $z=e^{-\int Pdx}\bigg(\int Q_1e^{\int P_1dx}dx+C\bigg),$ $Q_1=-(n-1)Q;\ P_1=-(n-1)P.$

Пример 1: Решить уравнение $xy' + y = xy^2 \ln x$.

Решение: Разделим уравнение на xy^2 : $\frac{y'}{y^2} + \frac{1}{x} \cdot \frac{1}{y} = \ln x$.

Полагаем $z = \frac{1}{y}$, $z' = -\frac{y'}{y^2}$: $-z' + \frac{1}{x}z = \ln x$, $z' - \frac{1}{x}z = -\ln x$.

Полагаем $P=-rac{1}{x}$, $Q=-\ln x$: $z=e^{\int rac{dx}{x}} \Biggl(\int -\ln x e^{-\int rac{dx}{x}} dx + C\Biggr)$, $z=e^{\ln x} \Bigl(\int -\ln x e^{-\ln x} dx + C\Bigr)$,

$$z = x \left(\int -\ln x \cdot \frac{dx}{x} + C \right), \ z = x \left(-\int \ln x d(\ln x) + C \right), \ z = x \left(-\frac{\ln^2 x}{2} + C \right).$$

Произведя обратную подстановку, получаем: $\frac{1}{y} = x \left(-\frac{\ln^2 x}{2} + C \right)$

Пример 2: Решить уравнение $xy' - 4y = x^2 \sqrt{y}$.

Решение: Разделим обе части уравнения на $x\sqrt{y}$: $\frac{1}{\sqrt{y}}\frac{dy}{dx} - \frac{4}{x}\sqrt{y} = x$.

Полагаем
$$z = \sqrt{y}$$
, $z' = \frac{1}{2\sqrt{y}}y'$, $y' = 2\sqrt{y}z'$, $\frac{1}{\sqrt{y}}2\sqrt{y}z' - \frac{4}{x}z = x$, $\frac{dz}{dx} - \frac{2z}{x} = \frac{x}{2}$.

Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:

$$\frac{dz}{dx} - \frac{2z}{x} = 0, \qquad \frac{dz}{dx} = \frac{2z}{x}, \qquad \frac{dz}{z} = \frac{2dx}{x},$$

$$\int \frac{dz}{z} = 2\int \frac{dx}{x} + C_1, \quad \ln z = 2\ln x + \ln C, \quad z = Cx^2.$$

Полагаем С=С(х) и подставляем полученный результат в линейное неоднородное

уравнение, с учетом того, что: $\frac{dz}{dx} = 2xC(x) + x^2 \frac{dC(x)}{dx}$, $2xC(x) + x^2 \frac{dC(x)}{dx} - \frac{2x^2C(x)}{x} = \frac{x}{2}$, dC(x) = 1, dC(x

$$\frac{dC(x)}{dx} = \frac{1}{2x}, C(x) = \frac{1}{2}\ln x + C_2.$$

Получаем: $z = x^2 \left(C_2 + \frac{1}{2} \ln x \right)$.

Применяя обратную подстановку, получаем окончательный ответ:

$$y = x^4 \left(C_2 + \frac{1}{2} \ln x \right)^2.$$

– 1.6. Уравнения в полных дифференциалах (тотальные) —

igoplus Onp. ДУ уравнение первого порядка вида M(x,y)dx + N(x,y)dy = 0 называется **уравнением в полных дифференциалах**, если левая часть этого уравнения представляет собой полный дифференциал некоторой функции u = F(x,y).

Интегрирование такого уравнения сводится к нахождению функции u, после чего решение легко находится в виде: $du=0; \quad u=C.$

Таким образом, для решения надо определить:

- 1) в каком случае левая часть уравнения представляет собой полный дифференциал функции u;
- 2) как найти эту функцию.

Если дифференциальная форма M(x,y)dx + N(x,y)dy является полным дифференциалом некоторой функции u, то можно записать:

$$du = M(x, y)dx + N(x, y)dy = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy.$$

T.e.
$$\begin{cases} \frac{\partial u}{\partial x} = M(x, y) \\ \frac{\partial u}{\partial y} = N(x, y) \end{cases}$$
.

Найдем смешанные производные второго порядка, продифференцировав первое уравнение по y, а второе — по x:

$$\begin{cases} \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial M(x, y)}{\partial y} \\ \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial N(x, y)}{\partial x} \end{cases}$$

Приравнивая левые части уравнений, получаем **необходимое и достаточное условие** того, что левая часть дифференциального уравнения является полным дифференциалом. Это условие также называется **условием тотальности.**

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$

Теперь рассмотрим вопрос о нахождении собственно функции и.

Проинтегрируем равенство
$$\frac{\partial u}{\partial x} = M(x,y)$$
: $u = \int M(x,y) dx + C(y)$.

Вследствие интегрирования получаем не постоянную величину C, а некоторую функцию C(y), т.к. при интегрировании переменная y полагается постоянным параметром.

Определим функцию С(у).

Продифференцируем полученное равенство по у.

$$\frac{\partial u}{\partial y} = N(x, y) = \frac{\partial}{\partial y} \int M(x, y) dx + C'(y).$$

Откуда получаем: $C'(y) = N(x,y) - \frac{\partial}{\partial y} \int M(x,y) dx$.

Для нахождения функции C(y) необходимо проинтегрировать приведенное выше равенство. Однако, перед интегрированием надо доказать, что функция C(y) не зависит от x. Это условие будет выполнено, если производная этой функции по x равна нулю.

$$\begin{aligned} & \left[C'(y) \right]_{x}^{'} = \frac{\partial N(x,y)}{\partial x} - \frac{\partial}{\partial x} \frac{\partial}{\partial y} \int M(x,y) dx = \frac{\partial N(x,y)}{\partial x} - \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} \int M(x,y) dx \right) = \\ & = \frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} = 0. \end{aligned}$$

Теперь определяем функцию C(y): $C(y) = \int \left[N(x,y) - \frac{\partial}{\partial y} \int M(x,y) dx \right] dy + C$

Подставляя этот результат в выражение для функции и, получаем:

$$u = \int M(x, y)dx + \int \left[N(x, y) - \frac{\partial}{\partial y} M(x, y) dx \right] dy + C.$$

Тогда общий интеграл исходного дифференциального уравнения будет иметь вид:

$$\int M(x,y)dx + \int \left[N(x,y) - \frac{\partial}{\partial y} M(x,y) dx \right] dy = C.$$

Следует отметить, что при решении уравнений в полных дифференциалах не обязательно использовать полученную формулу. Решение может получиться более компактным, если просто следовать методу, которым формула была получена.

Пример: Решить уравнение $(3x^2 + 10xy)dx + (5x^2 - 1)dy = 0$.

Решение. Проверим условие тотальности: $\frac{\partial M(x,y)}{\partial y} = \frac{\partial (3x^2 + 10xy)}{\partial y} = 10x$,

$$\frac{\partial N(x,y)}{\partial x} = \frac{\partial (5x^2 - 1)}{\partial x} = 10x.$$

Условие тотальности выполняется, следовательно, исходное дифференциальное уравнение является уравнением в полных дифференциалах.

Определим функцию u.

$$u = \int M(x, y)dx + C(y) = \int (3x^2 + 10xy)dx + C(y) = x^3 + 5x^2y + C(y),$$

$$\frac{\partial u}{\partial y} = 5x^2 + C'(y) = N(x, y) = 5x^2 - 1, \quad C'(y) = -1, \quad C(y) = \int (-1)dy = -y + C_1.$$

Итого, $u = x^3 + 5x^2y - y + C_1$.

Находим общий интеграл исходного дифференциального уравнения:

$$u = x^3 + 5x^2y - y + C_1 = C_2$$
; $x^3 + 5x^2y - y = C$.

$$-$$
 1.7. Уравнения вида $y = f(y')$ и $x = f(y')$ —

Решение уравнений, не содержащих в одном случае аргумента *x*, а в другом – функции *y*, ищем в параметрической форме, принимая за параметр производную неизвестной функции:

$$y'=p$$
.

Для уравнения первого типа получаем: y = f(p), $y' = f'(p) \frac{dp}{dx}$.

Делая замену, получаем: $p = f'(p) \frac{dp}{dx}$.

В результате этих преобразований имеем дифференциальное уравнение с разделяющимися переменными: $dx = \frac{f'(p)}{p} dp, \qquad x = \int \frac{f'(p)}{p} dp + C.$

Общий интеграл в параметрической форме представляется системой уравнений:

$$\begin{cases} x = \int \frac{f'(p)}{p} dp + C \\ y = f(p) \end{cases}.$$

Исключив из этой системы параметр p , получим общий интеграл и не в параметрической форме.

Для дифференциального уравнения вида x=f(y') с помощью той же самой подстановки и аналогичных рассуждений получаем результат: $\begin{cases} y=\int pf'(p)dp + C \\ x=f(p) \end{cases}$

Пример: Проинтегрировать уравнение $x = y' \sin y' + \cos y'$...

Решение. Положим y' = p. Тогда $x = p \sin p + \cos p$.

Продифференцируем это равенство: $dx = (\sin p + p\cos p - \sin p)dp = p\cos pdp$ и подставим это значение dx в равенство dy = pdx: $dy = p^2\cos pdp$, т.е. $y = \int p^2\cos pdp = (p^2-2)\sin p + 2p\cos p + C$.

Таким образом, общее решение в параметрической форме имеет вид:

$$\begin{cases} x = p \sin p + \cos p, \\ y = (p^2 - 2) \sin p + 2p \cos p + C. \end{cases}$$

(Алекси Клод Клеро (1713 – 1765) французский математик)

ФОпр. Уравнением Лагранжа называется дифференциальное уравнение, линейное относительно x и y, коэффициенты которого являются функциями от y': P(y')x + Q(y')y + R(y') = 0.

Для нахождения общего решение применяется подстановка p = y'.

$$y = xf(p) + \varphi(p), \quad f(p) = -\frac{P(y')}{Q(y')}, \quad \varphi(p) = -\frac{R(y')}{Q(y')}.$$

Дифференцируя это уравнение, с учетом того, что dy = pdx, получаем: $pdx = f(p)dx + xf'(p)dp + \varphi'(p)dp$.

Если решение этого (линейного относительно x) уравнения есть x=F(p,C), то общее решение уравнения Лагранжа может быть записано в виде: $\begin{cases} x=F(p,C) \\ y=xf(p)+\varphi(p)=F(p,C)f(p)+\varphi(p) \end{cases}.$

Пример 1: Проинтегрировать уравнение $y = xy'^2 + y'^2$...

Решение. Положим y' = p. Тогда $y = xp^2 + p^2$.

Продифференцируем это равенство: $dy=p^2dx+2pxdp+2pdp$. Производя замену dy=pdx, переходим к уравнению $pdx=p^2dx+2pxdp+2pdp$. Отсюда, сокращая на p, получаем уравнение с разделяющимися переменными

$$(1-p)dx = 2(x+1)dp, \ \frac{dx}{x+1} = \frac{2dp}{1-p}.$$

Интегрируя его, находим $\ln(x+1) = -2\ln |x+1| + \ln C$, $x+1 = \frac{C}{(p-1)^2}$. Используя данное уравнение $y = p^2(x+1)$, получим $y = Cp^2/(1-p^2)$.

Произведенное сокращение на $\,p\,$ могло привести к потере особого решения; полагая $\,p=0\,$, находим из данного уравнения $\,y=0\,$.

Таким образом, общее решение в параметрической форме имеет вид:

$$\begin{cases} x+1 = \frac{C}{(p-1)^2} \\ y = Cp^2 / (1-p^2) \end{cases}$$
 - общее решение; $y=0$ - особое решение.

В общем решении параметр p можно исключить и привести его к виду

$$(\sqrt{y} + \sqrt{x+1})^2 = C.$$

Опр. Уравнением Клеро называется уравнение первой степени (т.е. линейное) относительно функции и аргумента вида: $y = xy' + \varphi(y')$.

Вообще говоря, уравнение Клеро является частным случаем уравнения Лагранжа. С учетом замены y'=p, уравнение принимает вид: $y=xp+\varphi(p)$.

$$y' = p + x \frac{dp}{dx} + \varphi'(p) \frac{dp}{dx};$$
 $p = p + x \frac{dp}{dx} + \varphi'(p) \frac{dp}{dx};$ $\left[x + \varphi'(p) \right] \frac{dp}{dx} = 0;$

Это уравнение имеет два возможных решения: dp = 0 или $x + \varphi'(p) = 0$.

В первом случае: p = c; $y = cx + \varphi(c)$.

Видно, что общий интеграл уравнения Клеро представляет собой семейство прямых линий.

Во втором случае решение в параметрической форме выражается системой уравнений:

$$\begin{cases} y = xp + \varphi(p) \\ x + \varphi'(p) = 0 \end{cases}.$$

Исключая параметр p , получаем второе решение F(x,y)=0 . Это решение не содержит произвольной постоянной и не получено из общего решения, следовательно, не является частным решением.

Это решение будет являться особым интегралом.

Пример 2: Проинтегрировать уравнение $y = xy' - e^{y'}$...

Решение. Положим y' = p. Тогда $y = xp - e^p$.

Продифференцируем это равенство: $dy=pdx+xdp-e^pdp$. Производя замену dy=pdx, переходим к уравнению $xdp-e^pdp=0$, или $xdp-e^pdp=0$. Отсюда, либо dp=0, либо $x=e^p$.

При $x=e^p$, то $y=pe^p-e^p=(p-1)e^p$, и приходим к особому решению исходного уравнения $\begin{cases} x=e^p \\ y=(p-1)e^p \end{cases}.$

Исключая параметр p (в данном случае $p = \ln x$), находим особое решение в явном виде: $y = x(\ln x - 1)$.