1 Comparison between optimizers

Figure 1: Normalized cost vs layers for different numbers and optimizers

2 Comparison between setups

We define the following setups:

- **standard**: quadratic Hamiltonian for evolution and quadratic Hamiltonian for cost evaluation.
- linear_quadratic: linear Hamiltonian for evolution and quadratic Hamiltonian for cost evaluation.
- linear_abs: linear Hamiltonian for evaluation and absolut value Hamiltonian for cost evaluation.

Where

- Quadratic Hamiltonian: $\hat{H}_{Q} = \left[N \mathbb{I} \left(\sum_{\ell=1}^{n_p} 2^{\ell} \hat{x}_{\ell} + \mathbb{I} \right) \left(\sum_{m=1}^{n_q} 2^m \hat{y}_m + \mathbb{I} \right) \right]^2$
- Linear Hamiltonian: $\hat{H}_{L} = \left[N\mathbb{I} \left(\sum_{\ell=1}^{n_p} 2^{\ell} \hat{x}_{\ell} + \mathbb{I} \right) \left(\sum_{m=1}^{n_q} 2^m \hat{y}_m + \mathbb{I} \right) \right]$

Figure 2: Normalized cost vs layers for different numbers and setups.

3 Populations

Figure 3: Average populations for different numbers and setups. The dark-colored bars represent the solution. The solutions are clearly identified except for 481.