# Fast algorithm for approximating the inner and the outer boundaries of the iris

A. Cherepkov, R. Neychev

Moscow Institute of Physics and Technology

April 24, 2019

#### Problem

#### Problem

Describe and implement a fast algorithm that determines the inner and the outer boundaries of the iris in the image of the eye.

#### Applications

- Biometrics
- Medicine

#### Literature

#### Basic algorithm

• Iris border detection using a method of paired gradients Y. S. Efimov, I. A. Matveev, 2015

#### Related to this paper

- Use of the Hough transformation to detect lines and curves in pictures
  - R. O. Duda, P. E. Hart, 1972
- Learning using privileged information R.Neychev, 2018

### Data description

#### Input data

Monochromatic raster graphic image  $\mathbf{I}_0$  size of  $W \times H$ , obtained by photographing wide-open eye located approximately on the optical axis.

#### Output data

The radiuses and the coordinates of the centers of the circles approximating the inner and the outer borders of the iris:  $\{i_{\text{iris}}, j_{\text{iris}}, r_{\text{iris}}\}, \{i_{\text{pupil}}, j_{\text{pupil}}, r_{\text{pupil}}\}$ 

#### Expert data

True parameters are provided by an expert for each image:

$$\{\widetilde{i}_{\text{iris}},\widetilde{\widetilde{j}}_{\text{iris}},\widetilde{r}_{\text{iris}}\},\,\{\widetilde{i}_{\text{pupil}},\widetilde{j}_{\text{pupil}},\widetilde{r}_{\text{pupil}}\}$$

# Input data example









# Output data example









# Quality criterion

#### Absolute error

The maximum deviation from expert values among all parameters:

$$\Delta := \max\{|\widetilde{i}_{\text{iris}} - i_{\text{iris}}|, |\widetilde{j}_{\text{iris}} - j_{\text{iris}}|, |\widetilde{r}_{\text{iris}} - r_{\text{iris}}|, |\widetilde{i}_{\text{pupil}} - i_{\text{pupil}}|, |\widetilde{j}_{\text{pupil}} - j_{\text{pupil}}|, |\widetilde{r}_{\text{pupil}} - r_{\text{pupil}}|\}$$

#### Relative error

The ratio of the absolute error to the outer circle's radius:  $\varepsilon := \frac{\Delta}{\tilde{r}_{\text{iris}}}$ 

#### Quality

The percentage of images on which the absolute error does not exceed the threshold  $\delta$  set by the expert.

### Basic algorithm results



### Algorithm flowchart



Figure: Algorithm stages

# Space transformation



Figure: Detection of boundary points

Let  $\rho(i,j) \to \{0,1\}$  be the result of the binarization stage.

Consider the following space transformation  $T: \mathbb{R}^2 \to \mathbb{R}^5$ :  $T(x,y) \triangleq (x^2, x, y^2, y, 1)$ .

Let  $\mathcal{X}$  be the result of transformation T applied to the boundary points:  $\mathcal{X} = \{T(i,j) : \rho(i,j) = 1\}.$ 

# Multimodel optimization problem

Let 
$$\mathbf{w_j} = \left(x_j^2, x_j, y_j^2, y_j, 1\right), j = 1, 2$$
 denote the approximating circles.

Let  $\pi_{j,\mathbf{z}_i}$  be the indicator of point  $\mathbf{z}_i$  belonging to class j.

The classes are:

- 1. The inner boundary
- 2. The outer boundary
- 3. Noise, which is assumed to be normally distributed

#### Multimodel optimization problem

$$\mathbf{w_1}, \mathbf{w_2} = \operatorname*{argmin}_{\mathbf{w_1}, \mathbf{w_2}, \pi} \sum_{\mathbf{z_i} \in \mathcal{X}} \pi_{1,i} \left( \mathbf{z_i}^\top \mathbf{w_1} \right)^2 + \pi_{2,i} \left( \mathbf{z_i}^\top \mathbf{w_2} \right)^2 + \pi_{3,i} \frac{(z_i - \mathbf{Ez})^2}{\mathrm{Var} \mathbf{z}}$$

### Linear Expert for approximating one circle

Let point (x, y) belong to circle with center  $(c_1, c_2)$  and radius r. Equation for this circle:

$$(x-c_1)^2 + (y-c_2)^2 = r^2$$

$$2x \cdot c_1 + 2y \cdot c_2 + 1 \cdot (\underbrace{r^2 - c_1^2 - c_2^2}_{c_3}) = x^2 + y^2$$

# Linear expert for approximating one circle

$$2x \cdot c_1 + 2y \cdot c_2 + 1 \cdot c_3 = x^2 + y^2$$

Let  $P = \{(x_i, y_i)\}_{i=1}^m$  be the set of points we want to approximate with a circle.

Consider the following system of linear equations:

$$\underbrace{\begin{pmatrix} 2x_1 & 2y_1 & 1 \\ 2x_2 & 2y_2 & 1 \\ \vdots & \vdots & \vdots \\ 2x_m & 2y_m & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}}_{\mathbf{c}} = \underbrace{\begin{pmatrix} x_1^2 + y_1^2 \\ x_2^2 + y_2^2 \\ \vdots \\ x_m^2 + y_m^2 \end{pmatrix}}_{\mathbf{Y}}$$

#### Least Squares

$$\hat{\mathbf{c}} = \underset{\mathbf{c}}{\operatorname{argmin}} (\mathbf{X}\mathbf{c} - \mathbf{Y})^{\top} \mathbf{A} (\mathbf{X}\mathbf{c} - \mathbf{Y}) + (\mathbf{c} - \mathbf{c_0})^{\top} \mathbf{B} (\mathbf{c} - \mathbf{c_0})$$

# Linear expert example



# MoE example



# Summary

- The basic experiment has been conducted
- The problem is formulated in terms of conditional optimization