BÀI TẬP ÔN THI CUỐI KỲ

1. Danh sách liên kết

Dạng 1	Cài đặt các thao tác trên danh sách liên kết đơn: 1. Tạo dslk đơn L gồm N Node với info thuộc kiểu số nguyên 2. Duyệt ds L			
	 3. Đếm số lượng các Node có info là số nguyên tố 4. Sắp xếp ds L theo thứ tự tăng dần giá tri info 5. Thêm 1 Node có info = x vào ds L sao cho ds L vẫn có thứ tự 6. Kiểm tra ds L có phải là ds chứa toàn số chẵn hay không? ds L là ds tăng hay giảm hay không tăng không giảm 7. Tìm Node có giá trị info là số tăng / số đối xứng 8. Tìm Node có giá trị info lớn nhất / nhỏ nhất 9. Tìm Node có giá trị info xuất hiện đúng K lần / nhiều nhất 10. In giá trị info các Node ở vị trí lẻ trong ds L (Vị trí đầu tiên trong ds là số lẻ 1) 			
Dạng 2	Viết chương trình quản lý SÁCH trong thư viện bằng danh sách liên kết đơn, với thông tin mỗi node gồm:			
	THÔNG TIN SÁCH KIỂU DỮ LIỆU			
	- Mã sách - int			
	- Loại sách (A, B, C) - char			
	- Tình trạng (1: còn, 0 : hết) - int			
	 Nhập danh sách gồm n quyển sách trong thư viện với đầy đủ các thông tin trong bảng mô tả trên. Kiểm tra loại sách nào có nhiều nhất trong thư viện. Thống kê số lượng sách theo từng loại sách. Sắp xếp danh sách theo thứ tự giảm dần mã sách. Xóa tất cả các sách có tình trạng = 0. 			
Dạng 3	#include <iostream> using namespace std;</iostream>			
	// Câu 1 - 2 điểm			

```
// Câu 2 - 4 điểm
// Câu 3 - 4 điểm
int main()
       // Câu 1 - 2 điểm
       int A[10]=\{6,2,7,1,5,9,8,4,0,1\};
       int N=10;
       BubbleSort(A,N);
       // Câu 2 - 4 điểm
       List 1;
       CreateList(l);
       InputList(1,N);
       DanhsachTang(l);
       // Câu 3 - 4 điểm
       int Arr[11]=\{44,18,88,13,37,59,99,15,23,55,71\};
       int M=11;
       int Tong=0;
       TREE T;
       InputTree(T, A, M);
       TongNodeChan(T,Tong);
       cout << endl;
       //system("pause");
       return 0;
Khai báo các cấu trúc dữ liêu và hàm cần thiết để hàm main thực thi được
```

2. Stack - Queue

- 1. Cài đặt Stack trên dslk đơn
- 2. Úng dụng Stack để giải bài toán đảo mảng
- 3. Ứng dụng Stack để giải bài toán chuyển đổi hệ cơ số
- 4. Úng dụng Stack để giải bài toán Bracket Matching

- 1. Cài đặt Queue trên dslk đơn
- 2. Úng dụng Queue để giải bài toán Palindrome
- 3. Úng dụng Queue để giải bài toán Demerging

3. Các thuật toán tìm kiếm và sắp xếp

Cài đặt các thuật toán trên mảng 1 chiều số nguyên A gồm n phần tử

- 1. Thuật toán tìm kiếm tuyến tính (Cải tiến)
- 2. Thuật toán tìm kiếm nhị phân
- 3. Thuật toán tìm kiếm nội suy
- 4. Thuật toán sắp xếp InterchangeSort
- 5. Thuật toán sắp xếp BubbleSort
- 6. Thuật toán sắp xếp SelectionSort
- 7. Thuật toán sắp xếp InsertionSort
- 8. Thuật toán sắp xếp HeapSort
- 9. Thuật toán sắp xếp QuickSort
- 10. Thuật toán sắp xếp MergeSort

Cài đặt các thuật toán trên danh sách liên kết đơn gồm n node:

- 1. Thuật toán sắp xếp InterchangeSort
- 2. Thuật toán sắp xếp SelectionSort
- 3. Thuật toán sắp xếp QuickSort

4. Cây nhị phân tìm kiếm

4.1. Kiểm tra thao tác trên cây

Cho dãy số sau: 56, 37, 20, 83, 41, 25, 39, 70, 71, 49, 60, 79, 58

- 1. Hãy vẽ cây nhị phân tìm kiếm
- 2. Duyệt trước NLR, giữa LNR, sau LRN
- 3. Liệt kê node lá, node gốc, node 1 con, node 1 con bên trái, 1 con bên phải, node 2 con
- 4. Cho biết chiều cao cây, các node ở từng mức, đường đi từ node gốc đến node X
- 5. Xóa lần lượt các node sau đây: 20, 37, 70, 83, 56

4.2. Kiểm tra code

Viết chương trình thực hiện các thao tác trên cây nhị phân tìm kiếm NPTK với Key thuộc kiểu số nguyên

- 1. Khai báo cấu trúc cây NPTK
- 2. Tạo 1 cây rỗng

- 3. Tạo 1 nút có trường Key bằng x
- 4. Thêm 1 nút vào cây nhị phân tìm kiếm
- 5. Thêm n nút vào cây nhị phân tìm kiếm
- 6. Duyệt cây LNR, NLR, LRN
- 7. Tìm 1 nút có khoá bằng x trên cây
- 8. Xóa 1 nút có Key bằng x trên cây
- 9. Tính chiều cao cây
- 10. Viết hàm xuất / đếm / tính tổng giá trị các node có giá trị là số chẵn / số nguyên tố / có giá trị lớn hơn x và nhỏ hơn y ...
- 11. Viết hàm xuất / đếm / tính tổng giá trị các node lá / node 1 con (trái hoặc phải) / node 1 con bên trái / node 1 con bên phải / node 2 con
- 12. Viết hàm xuất / đếm / tính tổng giá trị các node ở tầng thứ K trên cây
- 13. Viết hàm xuất / đếm / tính tổng giá trị các node ở tất cả trên cây theo thứ tự từ tầng 0 đến tầng h-1 của cây (với h là chiều cao của cây)
- 14. Viết hàm xuất / đếm / tính tổng giá trị các node ở tầng cao hơn tầng thứ K trên cây
- 15. Viết hàm xuất / đếm / tính tổng giá trị các node ở tầng thấp hơn tầng thứ K trên cây

```
Đối với bài tập cây NPTK yêu cầu liệt kê (xuất) / đếm số lượng / tính tổng giá trị các node theo
yêu cầu ta có code tổng quát như sau:
void DieuKienNode(Tree T, int &Dem, int &S)
       if(T)
              if (T->Key % 2!=0) // Điều kiên node --> Ví du như node 1 con / node 2 con /
                                   // node lá / node có giá tri chẵn - lẽ - số nguyên tố...
              {
                     cout << T->Key << " "; // xuất hoặc liệt kê các node theo điều kiện
                                            // "dem" thể hiện số lương các node theo điều kiên
                     Dem++;
                                            // "S" thể hiện tổng giá tri các node theo điều kiên
                      S += T->Kev:
              DieuKienNode(T->pLeft, Dem, S);
              DieuKienNode(T->pRight, Dem, S);
       }
Đối với bài tập cây NPTK yêu cầu liệt kê (xuất) / đếm số lượng / tính tổng giá trị các node trên
tầng K ta có code tổng quát như sau:
void TangK(TREE T, int TangK, int &Dem, int &S)
```

```
if (T) {

TangK--;

if (TangK==0) {

cout << T->key << " ";// xuất hoặc liết kế các node trên tầng K

Dem++; // "dem" thể hiện số lượng các node trên tầng K

S += T->key ;// "S" thể hiện tổng giá trị các node trên tầng K

TangK(T->pLeft, TangK, Dem, S);

TangK(T->pRight, TangK, Dem, S);

}
```

5. B-Tree

Vẽ cây B-Tree bậc 5 từ dãy các khóa sau: 20, 40, 10, 30, 15, 35, 7, 26, 18, 22, 5, 42, 13, 46, 27, 8, 32, 38, 24, 45, 25

Xóa node 8, 22, 32, 38, 35 (35 hoặc 40)

6. Bảng băm

Thêm các nút 32, 53, 22, 92, 17, 34, 24, 37, 56 vào bảng băm. Hàm băm H=Key%11 Giải quyết xung đột bằng các phương pháp băm sau:

Phương pháp nối kết

- Nối kết trực tiếp Direct Chaining
- Nối kết hợp nhất Coalesced Chaining

Phương pháp băm lại

- Dò tuyến tính Linear probing
- Dò bậc 2 Quadratic probing
- Băm kép Double hashing

Phương pháp		Hàm băm f(key)	Giải quyết xung đột
Nối kết	Nối kết trực tiếp - Direct Chaining	H(key) = key % M	Gom thành 1 dslk
	Nối kết hợp nhất - Coalesced Chaining	H(key) = key % M	Nút trống phía cuối mảng

Băm lại	Dò tuyến tính - Linear probing	H(key) = key % M	H'(key) = (H(key)+i) % M		
	Dò bậc 2 - Quadratic probing	H(key) = key % M	$H'(key) = (H(key)+i^2) \% M$		
	Băm kép - Double hashing	$H_1(\text{key}) = \text{key } \% \text{ M}$ $H_2(\text{key}) = \text{key } \% \text{ M}$	$H'(key) = (H_1(key) + i*H_2(key))\%M$		
i = 0, 1, 2, M-1					

7. Đồ thị

- Biểu diễn đồ thị bằng ma trận kề, danh sách kề, ma trận có trọng số. Làm bài tập này cho đồ thị có hướng và vô hướng
- 2. Duyệt đồ thị theo chiều sâu DFS (Stack)
- 3. Duyệt đồ thị theo chiều rộng BFS (Queue)