- 서포트 벡터 머신 (SVM; Support Vector Machine)
  - 이진 클래스에 대한 분류 기법 중 하나
  - 두 개의 클래스를 구분하는 경계(boundary)들 중 클래스들
     사이의 최적의 경계를 찾는다.



- 두 개의 클래스를 구분하는 경계선은 무수히 많다. 이들 중 가장 적합한 경계선을 긋는 것이 SVM의 목표이다.

- 서포트 벡터 머신
  - 마진 (margin)
    - 클래스들 사이의 간격, 즉 여백
    - 각 클래스들의 말단에 위치한 데이터들 사이의 거리에 해당한다.



- 서포트 벡터 머신
  - 초평면 (hyperplane)
    - 한 영역을 두 개의 부분으로 나누는 결정 경계 (decision boundary)
    - 데이터를 분리하는 초평면은 무한히 많이 존재한다.



- 서포트 벡터 머신
  - 초평면 (hyperplane)
    - 예를 들어, 2차원 공간 영역을 나누는 경계는 직선이고 3차원 공간을 나누는 경계는 평면이다.
    - 일반적으로 표현해서, 초평면은 N차원 공간을 (N-1)차원 으로 나누는 경계를 뜻한다.



- 서포트 벡터 머신
  - 서포트 벡터 (support vector)
    - 마진에서 서로 가장 가까이 위치해 있는 데이터
    - 이 데이터들의 위치에 따라 초평면의 위치도 달라질 것이다. 즉, 이 값들은 초평면 함수를 지지(support)한다.



- 서포트 벡터 머신의 개념 요약
  - 데이터를 분리하는 최적의 초평면(hyperplane), 즉 최적의 결정 경계(decision boundary)를 찾는 기법
  - 결국, 최대 마진(maximum margin)이 되도록 클래스를 구분하는 것이 기본적인 목적이다.



하드 마진 분류

- 선형 SVM (Linear SVM)
  - 데이터를 선형으로 구분하는 최적의 초평면을 찾는 기법
  - 선형 SVM은 두 가지 경우로 구분할 수 있다.
    - 하드 마진 (hard margin) 분류 : 두 개의 클래스에 대해 최대 마진이 되는 초평면을 찾는다.
    - 소프트 마진 (soft margin) 분류: 하드 마진 분류에서 초평면이 존재하지 않을 때, 오분류를 허용하여 찾는다.

- 하드 마진 (Hard Margin) 분류
  - 두 개의 클래스에 대해 최대 마진이 되는 초평면을 찾는다.
    - 이와 같이 하드 마진 분류를 수행하는 선형 SVM을 최대 마진 분류기(maximum margin classifier)라고 한다.
  - 모든 훈련 데이터들은 마진의 바깥쪽에 위치하게 된다.
  - 데이터들이 정확하게 선형적으로 구분되는 경우에만 분류 가 가능하다.



- 하드 마진 분류의 한계
  - 모든 경우에 반드시 초평면이 존재하는 것은 아니다.
    - 데이터가 정확하게 선형적으로 구분되지 않는 경우에는 결정 경계를 찾는 것이 불가능하다.
  - 분류 모형이 일반화되기 어렵다.
    - 이상치가 존재할 경우, 초평면이 없거나 잘 일반화되지 않는다.



- 사이킷런으로 선형 SVM (하드 마진) 분류 수행 (1)
  - ① svm 모듈에 있는 LinearSVC를 이용하여 선형 SVM 객체를 생성한다.
    - 이 때 필요하다면 매개변수들을 설정할 수 있으나, 일단 처음에는 기본 상태로 적용한다.

```
1 import sklearn.svm as svm
2
3 svm_clf = svm.LinearSVC()
```

※ 학습 데이터는 연습용으로 다음과 같이 준비한다.

```
1 X_train = [[1, 2], [5, 6], [2, 3], [6, 7], [3, 1], [7, 5]]
2 y_train = [0, 1, 0, 1, 0, 1]
```

- 사이킷런으로 선형 SVM (하드 마진) 분류 수행 (1)
  - ② 선형 SVM 객체에 대하여 fit 메소드를 이용하여 훈련한다.

```
1 clf = svm_clf.fit(X_train, y_train)
```

③ 실행 객체 또는 분류 모형에 대하여 predict 메소드를 이용하여 예측을 수행한다.

```
1  X_test = [[1.5, 3.1], [4, 4.5], [6.7, 4.7]]
2  y_test = [0, 0, 1]
3  4  y_pred = clf.predict(X_test)
```

```
1 print(y_pred)
```

 $[0 \ 1 \ 1]$ 

- 사이킷런으로 선형 SVM (하드 마진) 분류 수행 (1)
  - ④ 분석 결과를 평가한다. (정확도)
    - metrics 모듈에 있는 accuracy\_score 함수를 이용하여 정확도를 구한다.

```
1 import sklearn.metrics as mt
2
3 score = mt.accuracy_score(y_test, y_pred)
4 print("절확도: {:.3f}".format(score))
```

정확도: 0.667

- 사이킷런으로 선형 SVM (하드 마진) 분류 수행 (1)
  - ④ 분석 결과를 평가한다. (정확도)
    - 또는, 실행 객체 또는 분류 모형에 대하여 score 메소드 를 호출하여 정확도를 구할 수도 있다.
    - 이 때 첫 번째 매개변수는 검증 데이터의 특성이고, 두 번째 매개변수는 검증 데이터의 클래스이다.

```
1 score = clf.score(X_test, y_test)
2 print("정확도: {:.3f}".format(score))
```

정확도: 0.667

- 사이킷런으로 선형 SVM (하드 마진) 분류 수행 (2)
  - ① svm 모듈에 있는 SVC를 이용하여 선형 SVM 분류를 할 수 있다.
    - 매개변수 kernel을 "linear"로 지정한다. 선형으로 분류 결정 경계를 구하겠다는 의미이다.

```
1 import sklearn.svm as svm
2
3 svm_clf = svm.SVC(kernel="linear")
```

- ※ kernel에 대한 자세한 내용은 추후 설명한다.
- ※ 학습 데이터는 이전과 동일한 것을 이용한다.

```
1 X_train = [[1, 2], [5, 6], [2, 3], [6, 7], [3, 1], [7, 5]]
2 y_train = [0, 1, 0, 1, 0, 1]
```

- 사이킷런으로 선형 SVM (하드 마진) 분류 수행 (2)
  - ② LinearSVC와 동일한 방식으로 fit 메소드를 이용하여 훈련한다.

```
1 clf = svm_clf.fit(X_train, y_train)
```

③ 마찬가지로 predict 메소드를 이용하여 예측을 수행한다.

```
1  X_test = [[1.5, 3.1], [4, 4.5], [6.7, 4.7]]
2  y_test = [0, 0, 1]
3  4  y_pred = clf.predict(X_test)
```

```
1 print(y_pred)
```

 $[0\ 1\ 1]$ 

- 사이킷런으로 선형 SVM (하드 마진) 분류 수행 (2)
  - ④ 마찬가지로 accuracy\_score 함수 또는 score 메소드를 이용하여 정확도를 구한다.

```
1 import sklearn.metrics as mt
2
3 score = mt.accuracy_score(y_test, y_pred)
4 print("절확도: {:.3f}".format(score))
```

정확도: 0.667

```
1 score = clf.score(X_test, y_test)
2 print("정확도: {:.3f}".format(score))
```

정확도: 0.667

#### • LinearSVC와 SVC의 차이

| 구분              | LinearSVC                         | SVC                               |
|-----------------|-----------------------------------|-----------------------------------|
| 용도              | 선형 SVM 분류를 수행한다.                  | 선형 SVM 및 비선형 SVM<br>분류를 수행할 수 있다. |
| 수행 기법<br>(알고리즘) | liblinear                         | libsvm                            |
| 특징              | 훈련 데이터가 크거나 특성<br>수가 많아도 수행이 빠르다. | 복잡하지만 규모가 크지 않은<br>데이터의 학습에 적합하다. |
| 커널              | 없다. (선형 분류 전용)                    | 여러 가지 커널 트릭을 지원<br>한다.            |
| 기본 손실<br>함수     | 제곱 힌지 손실 (squared<br>hinge loss)  | 힌지 손실 (hinge loss)                |

- SVM의 스케일링
  - SVM은 데이터 특성의 스케일에 민감하다.
    - 아래와 같이 X축보다 Y축 값들의 스케일이 훨씬 크면 결정 경계가 거의 수평에 가깝게 된다.

```
1 import sklearn.svm as svm
2
3 # 월래 X_train = [[1, 2], [5, 6], [2, 3], [6, 7], [3, 1], [7, 5]]
4 X_train = [[item[0], item[1] * 10] for item in X_train]
5 y_train = [0, 1, 0, 1, 0, 1]
6
7 svm_clf = svm.SVC(kernel="linear")
8
9 clf = svm_clf.fit(X_train, y_train)
```

- SVM의 스케일링
  - SVM은 데이터 특성의 스케일에 민감하다.
    - 특성 값의 스케일 차이로 인해, 결정 경계가 거의 수평선 으로 표현되는 것을 확인할 수 있다.



- SVM의 스케일링
  - 스케일링을 통해, 보다 적합한 결정 경계를 도출할 수 있다.
    - preprocessing 모듈의 StandardScaler에서 fit\_trans form 메소드를 이용하여 표준 정규 분포로 전처리한다.

```
import sklearn.preprocessing as pp
import sklearn.svm as svm
# 원래 X_train = [[1, 2], [5, 6], [2, 3], [6, 7], [3, 1], [7, 5]]
X train = [[item[0], item[1] * 10] for item in X train]
y_train = [0, 1, 0, 1, 0, 1]
svm clf = svm.SVC(kernel="linear")
scl = pp.StandardScaler()
X_train = scl.fit_transform(X_train);
clf = svm_clf.fit(X_train, y_train)
                                                             22
```

- SVM의 스케일링
  - 스케일링을 통해, 보다 적합한 결정 경계를 도출할 수 있다.
    - 스케일을 조정한 결과, 원래의 경우보다 더 나은 결정 경계가 표현되는 것을 확인할 수 있다.



## 참고: 2차원 데이터 분류에서의 결정 경계

- 선형 SVM 분류의 초평면 (결정 경계)
  - 2차원 데이터에 대한 결정 경계 식은 다음과 같이 쓸 수 있다.

$$w_0 + w_1 \cdot X + w_2 \cdot y = 0$$
  
(이 때, 각  $w_i$ 는 계수와 절편이다.)

- 이 식을 y에 대해서 정리하면 다음과 같다.

$$y = -\frac{W_1}{W_2} \cdot X - \frac{W_0}{W_2}$$

- 사이킷런의 실행 결과
  - 분류 모형의 결과로 계수와 절편 값이 들어 있으며, 계수는 coef\_ 속성, 절편은 intercept\_ 속성에 값이 할당되어 있다.
  - 이 값들을 이용하여 결정 경계 식을 표현한다.

$$y = -\frac{W_1}{W_2} \cdot X - \frac{W_0}{W_2}$$

```
import numpy as np

xx = np.linspace(1, 7)

yy = -(clf.coef_[0][0] / clf.coef_[0][1]) * xx - #

clf.intercept_ / clf.coef_[0][1]
```

※ 클래스가 2종류일 때 coef\_ 속성은 1행, 2열 형태인 2차원 ndarray이다.

• 데이터 산점도 및 결정 경계 플롯



# 참고: 힌지 손실 함수와 초평면 상의 값

- 초평면과 결정 경계에 따른 값의 분포
  - 양성 초평면: 결과 값이 +1 이상이 되는 초평면 영역이다.
  - 음성 초평면: 결과 값이 -1 이하가 되는 초평면 영역이다.
  - 결정 경계: 이 경계 상에 있는 데이터의 결과 값은 0이다.
    - 데이터의 결과 값이 0 이상이면 클래스 1로 분류된다.
    - 데이터의 결과 값이 0 미만이면 클래스 0으로 분류된다.



- 힌지 손실 함수 (Hinge Loss Function)
  - 힌지 손실 함수



- t가 1 이상이면 함수 결과 값은 0이다.
- t가 1 미만이면 함수 결과 값은 1-t이다.
- 실제 클래스 집합이 +1 및 -1인 이진 분류 문제에서 t는 (실제값)×(예측값)으로 정의한다.

- 힌지 손실 함수 (Hinge Loss Function)
  - 힌지 손실 함수와 손실 값



- 양성 초평면 상에 있는 데이터들의 실제값들은 +1이고,
   예측값들은 +1 이상이다.
- 따라서, t = (실제값)×(예측값)은 1 이상이다.
- 즉, 힌지 손실 값은 max(0, 0 이하의 값) = 0이다.

- 힌지 손실 함수 (Hinge Loss Function)
  - 힌지 손실 함수와 손실 값



- 음성 초평면 상에 있는 데이터들의 실제값들은 -1이고,
   예측값들은 -1 이하이다.
- 따라서, t = (실제값)×(예측값)은 1 이상이다.
- 즉, 힌지 손실 값은 max(0, 0 이하의 값) = 0이다.

- 힌지 손실 함수 (Hinge Loss Function)
  - 힌지 손실 함수와 손실 값



- 결정 경계와 초평면 사이에 있는 (즉, 마진 내의 영역에 존재하는) 데이터에 대한 t의 값은 1 미만이다.
- 이 때의 힌지 손실 값은 1 미만의 값(= 1-t)이다.
- 분류 자체가 올바르다고 할지라도, 예측값과 실제값의 차이
   가 발생하면 그만큼의 손실을 고려한다.

- 힌지 손실 함수 (Hinge Loss Function)
  - 힌지 손실 함수와 손실 값



- 예측값과 실제값의 부호가 다르면 (즉, 분류 자체가 잘못 되었으면) 그 데이터에 대한 t의 값은 음수이다.
- 이 때의 힌지 손실 값은 1-(음수)이므로 1을 초과하는 값이다.
- 예측값과 실제값의 차이가 클수록 손실을 크게 간주한다.