Complex Analysis I

Minerva

2021-1st

Contents

1	Not		3
	1.1	Basics of analytic functions	3
		1.1.1 Cauchy-Riemann equation	3
		8	4
		1.1.3 Power series	5
		1.1.4 Basic example	8
	1.2		9
			9
		1.2.2 Winding number	3
		1.2.3 Simply connected	
	1.3	Cauchy's integral theorem	
	1.4	Singularity	
	1.5	Analytic function as mappings	
	1.6	Automorphism of unit disk and half plane	
		1.6.1 Automorphism of unit disk	
		1.6.2 Automorphism of half plane	
	1.7	Residue	
		1.7.1 Laurent series	
		1.7.2 Evaluation definite integrals	
		1.7.3 Rouche's theorem	
	1.8	Sum and product	
	1.9	Gamma function	
	1.10	Entire function	8
	1.11	Gamma function	
	1.12	Prime number theorem	5
	1.13	Normal family	
	1.14	Riemann mapping theorem	6
		1.14.1 Riemann mapping theorem	6
		1.14.2 Automorphism of $\mathbb{C}, \mathbb{C}^{\times}, \widetilde{\mathbb{C}}$	9
		1.14.3 Cross ratio	0
		Conformal mapping	
	1.16	Harmonic functions and subharmonic function	4
	1.17	Dirichlet problem	0
		1.17.1 Uniqueness of Dirichlet problem	0
		1.17.2 Existence of Dirichlet problem	0
		1.17.3 harmonic measure	2
	1.18	Elliptic functions	5
		1.18.1 periodic function	5
		1.18.2 Weierstrass elliptic function $\dots \dots \dots$	8
	1.19	Weierstrass theory	1

CONTENTS Minerva notes

2	Hom	nework	82
	2.1		82
	2.2		83
	2.3		84
	2.4		85
	2.5		86
	2.6		86
	2.7		87
	2.8		87
	2.9		88
	2.10		88
	2.11		89
	2.12		89
	2.13		90
	2.14		90
	2.15		91
	2.16		92
	2.17		92
	2.18		92
	2.19		92
	2.20		93
	2.21		94
	2.22		94
	2.23		94
	2.24		95
	2.25		95

Chapter 1

Not sure yet

1.1 Basics of analytic functions

1.1.1 Cauchy-Riemann equation

Let Ω be a connect open subset of \mathbb{C} and $f:\Omega\to\mathbb{C}$.

Definition 1.1.1. For $a \in \Omega$,

- $\lim_{z \in a} f(z) = A \iff \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall z \in \Omega \text{ and } 0 < |z a| < \delta \leadsto |f(z) A| < \varepsilon.$
- f(z) is **continuous** at a if $\lim_{z\to a} f(z) = f(a)$.
- $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$ provide the limit exists.

Observation: f(z) = u(z) + iv(z) can be regard as f(x,y) = u(x,y) + iv(x,y) where z = x + iy, then $f: (x,y) \mapsto (u(x,y),v(x,y))$. Recall that

- f is conti. at $z_0 = (x_0, y_0) \iff u, v$ are conti. at z_0
- f is differentiable at $z_0 \implies f$ is conti. at z_0 .

Also, $|z - z_0|^2 = (x - x_0)^2 + (y - y_0)^2 = d((x, y), (x_0, y_0))^2$, so we have same result what we learn in calculus in \mathbb{R}^2 .

Now we see some different between \mathbb{C} and \mathbb{R}^2 :

Theorem 1.1.1 (Cauchy Riemann equation). Let $u, v \in C^1(\Omega)$. Then

$$f$$
 is differentiable $\iff \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial x} = -\frac{\partial u}{\partial y}$

Proof: Let $z = x + iy \in \Omega$. Since Ω is open, we can that the line segment $\overline{z(z + \Delta z)} \subseteq \Omega$, where $\Delta z = \Delta x + i\Delta y$.

• (\Rightarrow) : Since f'(z) exists, we have

$$f'(z) = \lim_{\substack{\Delta x \to 0 \\ \Delta y = 0}} \frac{u(x + \Delta x, y) + iv(x + \Delta x, y) - (u(x, y) + iv(x, y))}{\Delta x} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial f}{\partial x}$$

and

$$f'(z) = \lim_{\substack{\Delta x = 0 \\ \Delta y \to 0}} \frac{u(x, y + \Delta y) + iv(x, y + \Delta y) - (u(x, y) + iv(x, y))}{i\Delta y} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} = \frac{1}{i}\frac{\partial f}{\partial y}$$

Hence we have
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial x} = -\frac{\partial u}{\partial y} \end{cases} \text{ or } \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}.$$

• (\Leftarrow) : Since u, v are differentiable,

$$\begin{cases} \Delta u = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + |\Delta z| \psi_1(\Delta z) \\ \Delta v = \frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + |\Delta z| \psi_2(\Delta z) \end{cases}$$

where $\psi_1(\Delta), \psi_2(\Delta z) \to 0$ as $\Delta z \to 0$. Combine with assumption we have

$$\begin{split} \frac{\Delta f}{\Delta z} &= \frac{\Delta u}{\Delta z} + i \frac{\Delta v}{\Delta z} = \frac{1}{\Delta z} \left(\left(\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} \right) (\Delta x + i \Delta y) + |\Delta z| (\psi_1(\Delta z) + \psi_2(\Delta z)) \right) \\ &= \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} + \underbrace{\frac{|\Delta z|}{\Delta z} (\psi_1(\Delta z) + \psi_2(\Delta z))}_{\rightarrow 0 \text{ as } \Delta z \rightarrow 0} \end{split}$$

Hence $\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$ exists.

Definition 1.1.2.

- f(z) is said to be **analytic** in open set Ω if it has derivative at each point of Ω .
- f(z) is called an **entire function** if it is analytic in \mathbb{C} .

Example 1.1.1. f(z) = Re z is continuous but nowhere analytic since $\frac{\partial u}{\partial x} = 1 \neq 0 = \frac{\partial v}{\partial y}$.

Corollary 1.1.1. If f'(z) = 0 in open connected subset Ω , then f is constant in Ω .

Proof: By f'(z) = 0, $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$ and thus $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$. Given point $z, z' \in \Omega$, use line segment $\overline{z_k z_{k+1}}$ which parallel x-axis or y-axis to connect $z := z_0, z' := z_n$. By partial derivative of u, v with respect to x, y are all zero we have

$$f(z) = f(z_1) = \dots = f(z_{n-1}) = f(z')$$

Change of coordinate 1.1.2

1. complex conjugate

If z = x + iy, $\overline{z} = x - iy$, then $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2} \rightsquigarrow f(x, y) = f(z, \overline{z})$. By chain rule,

$$\begin{cases} \frac{\partial}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) \\ \frac{\partial}{\partial \overline{z}} = \frac{\partial x}{\partial \overline{z}} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \overline{z}} \frac{\partial}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right) \end{cases} \implies \begin{cases} \frac{\partial}{\partial x} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \overline{z}} \\ \frac{\partial}{\partial y} = i \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial \overline{z}} \right) \end{cases}$$

Hence, f is differentiable $\iff \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y} \iff \frac{\partial f}{\partial \overline{z}} = 0$. So $f'(z) = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial z}$

Example 1.1.2.
$$f(z) = a_n z^n + \dots + a_1 z + a_0 \in \mathbb{C}[z] \leadsto f'(z) = n a_n z^{n-1} + \dots + a_1$$

Author: Minerva

4

Theorem 1.1.2 (Lucas's theorem). The half plane that contains the zeros of f(z) also contains the zeros of f'(z).

Proof: Recall that give two point a, b on line ℓ with $b \neq 0$, then we can write ℓ by z = a + tb with $t \in \mathbb{R} \iff \operatorname{Im}\left(\frac{z-a}{b}\right) = 0$. So two half plane cut by ℓ are

$$H^+ := \operatorname{Im}\left(\frac{z-a}{b}\right) > 0 \text{ and } H^- := \operatorname{Im}\left(\frac{z-a}{b}\right) < 0$$

Let $f(z) = a_n(z - \alpha_1) \cdots (z - \alpha_n)$ with $\alpha_i \in H^- \ \forall i = 1, ..., n$. Notice that

$$\frac{f'(z)}{f(z)} = \frac{1}{z - \alpha_1} + \dots + \frac{1}{z - \alpha_n}$$

Assume $z_0 \in H^+ \cup \ell$ i.e. $\operatorname{Im}(\frac{z_0 - a}{b}) \geq 0$, then

$$\operatorname{Im}\left(\frac{z_0 - \alpha_i}{b}\right) = \operatorname{Im}\left(\frac{z_0 - a}{b}\right) - \operatorname{Im}\left(\frac{\alpha_i - a}{b}\right) > 0 \implies \operatorname{Im}\frac{b}{z_0 - \alpha_i} < 0$$

Hence
$$\operatorname{Im} \frac{bf'(z_0)}{f(z_0)} = \sum_{i=1}^n \operatorname{Im} \frac{b}{z_0 - \alpha_i} < 0 \text{ i.e. } bf'(z_0) \neq 0 \rightsquigarrow f'(z_0) \neq 0.$$

2. polar coordinate

Let
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \longleftrightarrow \begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \tan^{-1} \frac{y}{x} \end{cases} \leadsto f(x, y) = f(r, \theta).$$

$$\begin{cases} \frac{\partial r}{x} = \frac{x}{r} = \cos \theta \\ \frac{r}{y} = \frac{y}{r} = \sin \theta \end{cases} \text{ and } \begin{cases} \frac{\partial \theta}{\partial x} = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{-y}{x^2} = \frac{-y}{r^2} = \frac{-\sin \theta}{r} \\ \frac{\partial \theta}{\partial y} = \frac{x}{r^2} = \frac{\cos \theta}{r} \end{cases}$$

$$\implies \frac{\partial}{\partial x} = \cos \theta \frac{\partial}{\partial r} - \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \text{ and } \frac{\partial}{\partial y} = \sin \theta \frac{\partial}{\partial r} + \frac{\cos \theta}{r} \frac{\partial}{\partial \theta}$$

Hence

$$\begin{cases}
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} \\
\frac{\partial u}{\partial y} = -\frac{\partial u}{\partial x}
\end{cases} \Longrightarrow
\begin{cases}
\cos \theta \frac{\partial u}{\partial r} - \frac{\sin \theta}{r} \frac{\partial u}{\partial \theta} = \sin \theta \frac{\partial v}{\partial r} + \frac{\cos \theta}{r} \frac{\partial v}{\partial \theta} & (1) \\
\sin \theta \frac{\partial u}{\partial r} + \frac{\cos \theta}{r} \frac{\partial u}{\partial \theta} = -\cos \theta \frac{\partial v}{\partial r} + \frac{\sin \theta}{r} \frac{\partial v}{\partial \theta} & (2)
\end{cases}$$

$$\begin{cases}
(1) \times \cos \theta + (2) \times \sin \theta & \Longrightarrow r \frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta} \\
-(1) \times \sin \theta + (2) \times \cos \theta & \Longrightarrow r \frac{\partial v}{\partial r} = -\frac{\partial u}{\partial \theta}
\end{cases}$$

and

$$f'(z) = (\cos \theta - i \sin \theta) \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) = \left(\frac{\cos \theta - i \sin \theta}{r} \right) \left(\frac{\partial v}{\partial \theta} - i \frac{\partial v}{\partial \theta} \right)$$

1.1.3 Power series

Recall:

• $\{\alpha_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$, let $a_n = \max\{\alpha_1, ..., \alpha_n\} \leadsto a_n \nearrow \text{(non-decrasing)}$, so $\exists A_1 \text{ s.t. } \lim_{n \to \infty} a_n = A_1 \text{ (least upper bound or supremum)}$. Let $A_k = \sup\{\alpha_n\}_{n=k}^{\infty} \leadsto A_k \searrow \text{(non-increasing)}$, so we can define **limit superior**

$$\overline{\lim} \alpha_n = \lim_{k \to \infty} A_k = A \in \mathbb{R} \text{ or } \pm \infty$$

If $A \in \mathbb{R}$, then by definition, $\forall \varepsilon > 0$, $\exists n_0$ s.t. $n \ge n_0$, $A_n < A + \varepsilon \leadsto \alpha_n < A + \varepsilon$. Similarly, we can define **limit inferior** by

$$\underline{\lim} \alpha_n = \lim_{k \to \infty} \inf_{n > k} \alpha_n = B$$

If $B \in \mathbb{R}$, then $\forall \varepsilon > 0$, $\exists n_0 \text{ s.t. } n \geq n_0$, $\alpha_n > B - \varepsilon$.

• $\{\alpha_n\}$ converge $(\overline{\lim}\alpha = \underline{\lim}\alpha) \iff \{\alpha_n\}$ is a Cauchy sequence :

Proof:

- •• $(\Rightarrow): \forall \varepsilon > 0, \exists n_0 \text{ s.t. } \forall n \geq n_0, |\alpha_n A| < \varepsilon/2 \leadsto \forall m, n \geq n_0, |\alpha_n \alpha_m| < \varepsilon.$
- •• (\Leftarrow): Assume $A = \overline{\lim} \alpha_n > \underline{\lim} \alpha = B$. Let $\varepsilon = \frac{A-B}{3}$, then $\exists n_0$ s.t.

$$\begin{cases} \forall n \ge n_0, \ B - \varepsilon < \alpha_n < A + \varepsilon \\ \forall n, m > n_0, \ |\alpha_n - \alpha_m| < \varepsilon \end{cases}$$

Then $\forall n, m \geq n_0$

$$3\varepsilon = |A - B| \le |A - \alpha_n| + |\alpha_n - \alpha_m| + |\alpha_m - B| < 3\varepsilon$$
 (----)

- Let $S_n = \sum_{k=1}^n \alpha_k$. $\sum_{n=1}^\infty \alpha_n$ converges $\iff \{S_n\}$ converges $\iff \{S_n\}$: Cauchy. Especially $|\alpha_n| < \varepsilon$ i.e. $\lim_{n \to \infty} \alpha_n = 0$.
- Since $|\alpha_n + \cdots + \alpha_{n+p}| \le |\alpha_n| + \cdots + |\alpha_{n+p}|$, $\sum_{n=1}^{\infty} |\alpha_n|$ converges $\implies \sum_{n=1}^{\infty} \alpha_n$ converges, which is call **absolutely convergent**.
- Uniformly converge : $f_n(x) \xrightarrow{\text{unif.}} f(x)$ on Ω if $\forall \varepsilon > 0, \exists n_0 \text{ s.t. } \forall n \geq n_0$

$$|f(x) - f_n(x)| < \varepsilon \ \forall x \in \Omega$$

• Weierstrass M-test : If $\forall n >> 0$, $|f_n(x)| \leq M_n \ \forall x \in \Omega$. Then

$$\sum_{n=1}^{\infty} M_n \text{ conv.} \implies \sum_{n=1}^{\infty} f_n(x) \text{ unif. conv.}$$

Definition 1.1.3. $\sum_{n=0}^{\infty} a_n z^n \ (a_n \in \mathbb{C})$ is called a **power series**.

Theorem 1.1.3 (Abel's 1st theorem). Given $\sum_{n=0}^{\infty} a_n z^n$, $\exists 0 \le R \le \infty$ s.t.

- (1) if |z| < R, then $\sum_{n=0}^{\infty} a_n z^n$ absolutely. converge and for $0 \le \rho < R$, the converge is uniform for $|z| < \rho$
- (2) if |z| > R, then $\sum_{n=0}^{\infty} a_n z^n$ is diverge

(3) if |z| < R, then $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic and $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ converge for |z| < R.

Hadamard's formula : $R^{-1} = \overline{\lim} \sqrt[n]{|a_n|}$

Proof:

(1) For z with |z| < R, $\exists \rho$ s.t. $|z| < \rho < R \rightarrow 1/\rho > 1/R$. By def of $\overline{\lim}$, $\exists n_0$ s.t. $\forall n \ge n_0$, $\sqrt[n]{|a_n|} < 1/\rho \rightarrow |a_n| < \rho^{-n}$. So $|a_n z^n| < (|z|/\rho)^n \ \forall n \ge n_0$. Since $\sum (\underline{|z|/\rho})^n$ converge, $\sum_{i=1}^{\infty} |a_n z^n|$ converge.

For $0 \le \rho < R$, pick ρ' s.t. $\rho < \rho' < R \rightsquigarrow \exists n_0$ s.t. $n \ge n_0$, $|a_n| < (1/\rho')^n$. So $|a_n z^n| < (\rho/\rho')^n \ \forall |z| \le \rho$ and thus $\sum a_n z^n$ conv. unif. by Weierstrass M-test.

- (2) For z with |z| > R, $\exists \rho$ s.t. $|z| > \rho > R \rightsquigarrow 1/\rho < 1/R$. Then exists infinitely n s.t. $\sqrt[n]{|a_n|} > \rho^{-1} \rightsquigarrow |a_n z^n| > (\underbrace{|z|/\rho}_{\sim 1})^n$ which is unbound i.e. $\lim_{n \to \infty} a_n z^n \neq 0$.
- (3) For |z| < R, write $f(z) = S_n(z) + R_n(z)$ with $S_n(z) = \sum_{k=0}^{n-1} a_k z^k$. Let $f_1(z) = \sum_{n=1}^{\infty} n a_n z^{n-1} = \lim_{n \to \infty} S'_n(z)$.
 - Let $|z| < \rho < R$. $\exists n_0 \text{ s.t. } n \ge n_0, |a_n| < \rho^{-n}$, then

$$|na_n z^{n-1}| < \frac{n}{\rho} \left(\frac{|z|}{\rho}\right)^{n-1}$$

Let $r = |z|/\rho < 1$, then by ratio test, $\sum nr^{n-1}/\rho$ converges and thus $f_1(z)$ converges in |z| < R.

• Claim : $f'(z_0) = f_1(z_0)$ for $|z_0| < R$ subproof : For $n \ge n_0$,

$$\frac{f(z) - f(z_0)}{z - z_0} - f_1(z_0) = \left(\frac{S_n(z) - S_n(z_0)}{z - z_0} - S'_n(z_0)\right) + \left(S'_n(z_0) - f_1(z)\right) + \underbrace{\frac{R_n(z) - R_n(z_0)}{z - z_0}}_{(3)}$$

where $z \neq z_0$, |z|, $|z_0| < \rho < R$. Also

$$|(3)| = \left| \sum_{k=n}^{\infty} a_k (z^{k-1} + z^{k-2} z_0 + \dots + z_0^{k-1}) \right| \le \sum_{k=n}^{\infty} \frac{k}{\rho} r^{k-1} : \text{converge, where } r = \max \left\{ \frac{|z|}{\rho}, \frac{|z_0|}{\rho} \right\}$$

 $\forall \varepsilon > 0,$

$$\begin{cases} \exists n_1 \text{ s.t. } \forall n \geq n_1, \ |(3)| < \varepsilon/3 \\ \exists n_2 \text{ s.t. } \forall n \geq n_2, \ |S'_n(z_0) - f_1(z_0)| < \varepsilon/3 \end{cases}$$

Choose a fixed $n \ge n_0, n_1, n_2, \exists \delta \text{ s.t. } 0 < |z - z_0| < \delta$,

$$\left| \frac{S_n(z) - S_n(z_0)}{z - z_0} - S'_n(z_0) \right| < \frac{\varepsilon}{3}$$

Hence, $f'(z_0)$ exists and equal to $f_1(z_0)$.

7

Theorem 1.1.4 (Abel's 2nd theorem). If the convergence radius R of $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is 1 and the series converges at z = 1, then $f(z) \to f(1)$ as $z \to 1$ in a such way that |1 - z|/|1 - |z| is bounded.

Proof: Let |1-z|/(1-|z|) < M If $\sum_{n=0}^{\infty} a_n = C$, then we consider $(a_0 - C) + \sum_{n=1}^{\infty} a_n z^n$. So we may assume "f(1) = 0". Write $S_n = \sum_{k=0}^{n} a_k$.

$$S_n(z) = \sum_{k=0}^n a_k z^k = S_0 + \sum_{k=1}^n (S_k - S_{k-1}) z^k = \sum_{k=0}^{n-1} S_k (z^k - z^{k+1}) + S_n z^n$$
$$= (1 - z) \sum_{k=0}^{n-1} S_k z^k + S_n z^n$$

 $S_n z^n \to 0$ as $n \to \infty$ since |z| < 1 and $S_n \to 0$. For |z| < 1, $f(z) = \lim_{n \to \infty} S_n(z) = (1-z) \sum_{n=0}^{\infty} S_n z^n$. Let $n \ge n_0$, $|S_n| < \varepsilon$. Then

$$|f(z)| \le |1 - z| \left| \sum_{k=0}^{n_0 - 1} S_k z^k \right| + \varepsilon |1 - z| \sum_{k=n_0}^{\infty} |z^k|$$

$$\le |1 - z| \left| \sum_{k=0}^{n_0 - 1} S_k z^k \right| + \underbrace{\varepsilon |1 - z| |z|^{n_0}}_{\le \varepsilon M}$$

As $z \to 1$ subject to |1 - z|/(1 - |z|) < M, $f(z) \to 0 = f(1)$.

1.1.4 Basic example

Problem: Solve f'(z) = f(z) with f(0) = 1.

Ans: Write $f(z) = \sum_{n=0}^{\infty} a_n z^n \rightsquigarrow f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$. By assumption, $a_{n-1} = n a_n$ and thus $a_n = 1/n! \rightsquigarrow f(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ (0! = 1).

Definition 1.1.4. $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

• $R = \overline{\lim} \sqrt[n]{n!} = \infty$:

$$(n!)^2 = \prod_{k=1}^n k(n+1-k) \ge n^n \implies \sqrt[n]{n!} \ge \sqrt{n} \,\forall n$$

So f(z) is entire.

- $e^{z_1+z_2} = e^{z_1} \cdot e^{z_2} : (e^z \cdot e^{c-z})' = e^z e^{c-z} e^z e^{c-z} = 0 \implies e^z e^{c-z}$ is a constant. Substitute $z = 0 \implies e^z e^{c-z} = e^c$.
- $e^z e^{-z} = e^0 = 1 \leadsto e^z \neq 0 \ \forall z.$

For $z = iy \in \text{imaginary axis}$,

$$\begin{cases} e^{iy} = 1 + iy + \frac{(iy)^2}{2!} + \frac{(iy)^3}{3!} + \cdots \\ \overline{e^{iy}} = 1 - iy + \frac{(iy)^2}{2!} - \frac{(iy)^3}{3!} + \cdots = e^{-iy} \end{cases}$$

 $|e^{iy}|^2 = e^{iy}e^{-iy} = 1 \implies |e^{iy}| = 1 \implies |e^{x+iy}| = e^x.$

$$e^{iy} = \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} + \dots\right) + i\left(y - \frac{y^3}{3!} + \frac{y^5}{5!} + \dots\right) = \cos y + i\sin y$$

$$\implies e^z = e^x(\cos y + i\sin y) \text{ and } \begin{cases} \cos y = \frac{e^{iy} + e^{-iy}}{2} \\ \sin y = \frac{e^{iy} - e^{-iy}}{2i} \end{cases}$$

Definition 1.1.5.
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 and $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ $(\rightarrow \cos^2 z + \sin^2 z = 1, (\cos z)' = -\sin z, (\sin z)' = \cos z)$

Definition 1.1.6. f(z) has the period ω if $f(z + \omega) = f(z) \ \forall z \in \Omega$ and $z + \omega \in \Omega$.

Proposition 1.1.1. The smallest positive period of e^{iz} is 2π . (then for $\cos z$, $\sin z$)

Proof:

- $e^{i(z+\omega)} = e^{iz} \implies e^{i\omega} = 1 \rightsquigarrow \omega \in \mathbb{R}$.
- Let $\varphi: (\mathbb{R}, +, 0) \to \text{unit circle in } \mathbb{C}$ define by $y \mapsto e^{iy} = \cos y + i \sin y$, then $\ker \varphi = \langle 2\pi \rangle_{\mathbb{Z}}$.

Now we consider the inverse function of e^z , denoted by $\log z$. $z=e^\omega$, where $z=re^{i\theta}$ and $\omega=u+iv$, then $r=e^u$ and $v=\arg z+2k\pi$, so $\log z$ is a multiple-valued function. Note that $\arg z$ is discontinuous on the negative real axis. Let $\log z=\ln|z|+i\arg z$, $-\pi<\arg z<\pi$ which is called **principal branch**.

• $\log z$ is analytic on $\mathbb{C} \setminus \mathbb{R}^-$: $z = re^{i\theta}$, $-\pi < \theta < \pi \leadsto \log z = \ln r + i\theta$.

$$\begin{cases} r\frac{\partial \ln r}{\partial r} = \frac{\partial \theta}{\partial \theta} \\ r\frac{\partial \theta}{\partial r} = -\frac{\partial \ln r}{\partial \theta} \end{cases} \quad \text{and } \frac{1}{r}, 1, 0, 0 \text{ are conti.}$$

$$\implies (\log z)' = (\cos \theta - i \sin \theta) \left(\frac{\partial \ln r}{\partial r} + i \frac{\partial \theta}{\partial r} \right) = \frac{1}{r(\cos \theta + i \sin \theta)} = \frac{1}{z}$$

1.2 Cauchy theorem

1.2.1 Line integral

Definition 1.2.1. Let $f: (a,b) \longrightarrow \mathbb{C}$ $t \longmapsto u(t) + iv(t)$, then define

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt$$

Property 1.2.1. $\left| \int_a^b f(t)dt \right| \leq \int_a^b |f(t)|dt$

Proof: Let $\theta = \arg \left(\int_a^b f(t) dt \right)$, then

$$\left| \int_{a}^{b} f(t)dt \right| = \operatorname{Re}\left(e^{i\theta} \int_{a}^{b} f(t)dt\right) = \int_{a}^{b} \operatorname{Re}\left(e^{i\theta} f(t)\right)dt$$

$$\leq \int_{a}^{b} |e^{i\theta} f(t)|dt = \int_{a}^{b} |f(t)|dt$$

Definition 1.2.2.

- γ is a **piecewise smooth curve (arc)** in $\mathbb C$ if γ is parameterized by z(t) = x(t) + iy(t), $t \in [\alpha, \beta]$ and exists a partition $\{[\alpha_i, \beta_i]\}$ of $[\alpha, \beta]$ s.t. $z|_{[\alpha_i, \beta_i]} \in C^1$.
- Let f be continuous on Ω and $\gamma \subset \Omega$, define

$$\int_{\gamma} f(z)dz := \sum_{i=1}^{n} \int_{\alpha_{i}}^{\beta_{i}} f(z(t))z'(t)dt$$

By chain rule, the definition is independent of the choice of parameters of γ .

••
$$dz = z'(t)dt = (x'(t) + iy'(t))dt$$
, $\overline{dz} = (x'(t) - iy'(t))dt$

••
$$|dz| = \sqrt{x'(t)^2 + y'(t)^2} dt = ds$$

Property 1.2.2.

$$\left| \int_{\gamma} f dz \right| = \left| \int_{a}^{b} f(z(t))z'(t)dt \right| \le \int_{a}^{b} |f(z(t))||z'(t)|dt = \int_{\gamma} |f||dz|$$

Observation: If f = u + iv, then

$$\int_{\gamma} f(z)dz = \int_{\gamma} (u+iv)(x'+iy')dt = \int_{\gamma} (ux'-vy')dt + i \int_{\gamma} (vx'+uy')dt$$
$$= \int_{\gamma} (udx-vdy) + i \int_{\gamma} (vdx+udy)$$

Recall: Ω : open connected in \mathbb{R}^2 , $A, B \in C^1(\Omega)$. Then $\int Adx + Bdy$ is only determined by P, Q in Ω and is independent of arcs connecting P and $Q \iff \exists U \in C^1(\Omega)$ s.t. dU = Adx + Bdy i.e. $\frac{\partial U}{\partial x} = A, \frac{\partial U}{\partial y} = B$. Actually, $U(x,y) = \int_{\gamma} Adx + Bdy$, where $\gamma \subset \Omega$ is any curve connected P, Q.

Proposition 1.2.1. Let f be continuous on Ω . Then $\int_{\gamma} f dz$ depends only on the end points of $\gamma \iff f$ is the derivative of an analytic function F on Ω .

Proof:

• (
$$\Leftarrow$$
): Say $F = U + iV$, then $f = F' = \frac{\partial U}{\partial x} + i\frac{\partial V}{\partial x} = \frac{\partial V}{\partial y} - i\frac{\partial U}{\partial y} = u + iv$. Then $udx - vdy = dU \ vdx + udy = dV$

By observation, $\int_{\gamma} f dz$ is independent on arcs.

• (\Rightarrow) : By recall, $\exists U, V \in C^1(\Omega)$ s.t.

$$dU = udx - vdy \ dV = vdx + udy$$

Let $F = U + iV \rightsquigarrow F$ is analytic and F' = f.

Example 1.2.1.

• $\forall n \in \mathbb{N}, \ \int_{\gamma} (z-a)^n dz = 0 \ \forall \gamma : \text{closed arc in } \mathbb{C}, \text{ since } \left(\frac{(z-a)^{n+1}}{n+1}\right)' = (z-a)^n.$

• Let $C_r(a) := \{ z \in \mathbb{C} : |z - a| = r \}$, then

$$\int_{C_r(a)} \frac{dz}{z - a} = \int_0^{2\pi} \frac{rie^{i\theta}}{re^{i\theta}} d\theta \ (z = a + re^{i\theta})$$
$$= 2\pi i$$

We can't apply proposition 1.2.1 since we can't define a single-valued branch of $\log(z-a)$ in $B_r(a) := \{z : |z-a| < r\}.$

Theorem 1.2.1 (Cauchy theorem for a rectangle). Let f be analytic in a rectangle R (i.e analytic in an open set containing R). Then

$$\int_{\partial R} f(z)dz = 0$$

where the preset orientation of ∂R is counterclockwise.

Proof: Divide R to four small rectangle $R_1^{(1)}, ..., R_1^{(4)}$. Define $\Gamma(R) := \int_{\partial R} f(z) dz$, then

$$\Gamma(R) = \Gamma(R_1^{(1)}) + \cdots + \Gamma(R_4^{(1)})$$

Then exists $R_1^{(k)}$ for some $k \in \{1, ..., 4\}$ s.t. $|\Gamma(R_1^{(k)})| \ge \frac{1}{4}|\Gamma(R)|$. Say $R_1 = R_1^{(k)}$ and define $R_2, ...$ by same method. Let d_i, L_i be the diameter, perimeter of R_i respectively. We obtain a nested rectangles $R \supset R_1 \supset R_2 \supset \cdots$ with $d_i = d_{i-1}/2$, then $\exists ! \ z^* \in R_i \ \forall i \ \text{i.e.} \ \forall \delta > 0, \ \exists n_0 \ge 0$ s.t. $\forall n \ge n_0, R_n \subset B_\delta(z^*)$. Since f is analytic at $z^*, \forall \varepsilon > 0, \ \exists \delta > 0 (\leadsto \exists n_0) \ \text{s.t.}$

$$\left| \frac{f(z) - f(z^*)}{z - z^*} - f'(z^*) \right| < \varepsilon \ \forall z \in R_n, \ n \ge n_0$$

$$\implies |f(z) - f(z^*) - (z - z^*)f'(z^*)| < \varepsilon |z - z^*| \ \forall z \in R_n, \ n \ge n_0$$

By example 1.2.1, $\int_{\partial R_n} dz = 0$ and $\int_{\partial R_n} z dz = 0$, then

$$\Gamma(R_n) = \int_{\partial R_n} (f(z) - f(z') - (z - z^*) f'(z^*)) dz$$

$$\implies \frac{1}{4^n} |\Gamma(R)| \le |\Gamma(R_n)| \le \varepsilon \int_{\partial R_n} |z - z^*| |dz| \le \varepsilon L_n d_n \quad \forall n \ge n_0$$

$$\implies |\Gamma(R)| \le \varepsilon 4^n L_n d_n = \varepsilon L d \quad \forall \varepsilon \implies \Gamma(R) = 0$$

Author: Minerva 11

Theorem 1.2.2 (Stronger form). Let $R' = R \setminus \{\xi_1, ..., \xi_n\}$ with $\xi_i \in (R \setminus \partial R) =: R^o$ and f be analytic in R'. If $\lim_{z \to \xi_i} (z - \xi_i) f(z) = 0$, then

$$\int_{\partial R} f(z)dz = 0$$

Proof:

• $n = 1 : \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } |z - \xi| < \delta \implies |z - \xi||f(z)| < \varepsilon$. Choose a square R_0 with center ξ s.t. $R \subset B_{\delta}(\xi)$. Extend the side length of R_0 and cut R into nine rectangle $R_0, R_1, ..., R_8$. We already know $\Gamma(R_i) = 0$, so $\Gamma(R) = \Gamma(R_0)$.

$$|\Gamma(R)| = |\Gamma(R_0)| = \left| \int_{\partial R_0} f(z) dz \right| \le \varepsilon \int_{\partial R_0} \frac{|dz|}{|z - \xi|} \le \varepsilon \frac{8}{L_0} L_0 = 8\varepsilon$$

where L_0 is the perimeter of R_0 . Hence, $\Gamma(R) = 0$.

• In general n, we just cut R into several rectangle and apply Cauchy theorem for a rectangle and the case of n = 1.

Theorem 1.2.3 (local existence of primitives). Any analytic function f in $B_{\rho}(a)$ has a primitive (antiderivatives) in $B_{\rho}(a)$.

Proof: For $z \in B_r(a)$, let γ_z connected a and z by one horizontal line first and one vertical line. Define $F(z) = \int_{\gamma_z} f(u) du$.

Claim: F is analytic in $B_{\rho}(a)$ and F'(z) = f(z).

subproof: Apply Cauchy theorem for a rectangle we have

$$F(z + \Delta z) - F(z) = \int_{\overline{z(z + \Delta x)}} f(u)du + \int_{\overline{(z + \Delta x)(z + \Delta z)}} f(u)du$$

Since f is continuous at z, we can write $f(u) = f(z) + \delta(u)$, where $\delta(u) \to 0$ as $u \to z$.

$$\int_{\overline{z(z+\Delta x)}} f(z)du + \int_{\overline{(z+\Delta x)(z+\Delta z)}} f(z)du = f(z)\Delta z$$

$$\int_{\overline{z(z+\Delta x)}} |\delta(u)||du| + \int_{\overline{(z+\Delta x)(z+\Delta z)}} |\delta(u)||du| \le (\sup |\delta(u)|)(|\underline{\Delta x}| + |\underline{\Delta y}|)$$

where sup $|\delta(u)|$ is consider $u \in \overline{z(z + \Delta x)} \cup \overline{(z + \Delta x)(z + \Delta z)}$.

$$\implies \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = f(z) + \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left(\quad \bigstar \quad \right)$$

where $\frac{1}{\Delta z} |\bigstar| \leq \frac{2|\Delta z| \sup |\delta(u)|}{|\Delta z|} \to 0$ as $\Delta z \to 0$. Hence, F'(z) = f(z).

Theorem 1.2.4 (Cauchy theorem for a disk). If f is a analytic in $B_{\rho}(a)$, then

$$\int_{\gamma} f(z)dz = 0$$

for all closed arc $\gamma \subset B_{\rho}(a)$.

Proof: Since f has a primitive in $B_{\rho}(a)$, by proposition 1.2.1 the statement will holds.

Corollary 1.2.1. If f is analytic in Ω and $B_{\rho}(a) \subsetneq \Omega$, then

$$\int_{C_{\rho}(a)} f(z)dz = 0$$

Proof: Choose a larger $B_{\rho'}(a')$ s.t. $B_{\rho}(a) \subsetneq B_{\rho'}(a') \subseteq \Omega$. Then $\gamma = C_{\rho}(a) \subseteq B_{\rho'}(a')$ and apply Theorem 1.2.4

Theorem 1.2.5 (Stronger form). Let $B = B_{\rho}(a) \setminus \{\xi_1, ..., \xi_n\}$ and f be analytic in B. If $\lim_{z \to \xi_i} (z - \xi_i) f(z) = 0$, then f has a primitive in B. Moreover,

$$\int_{\gamma} f(z)dz = 0$$

for all closed arc in B.

Proof: For $z \in B$, define

$$F(z) = \int_{\gamma_z} f(u) du = \int_{\gamma_z'} f(u) du$$

where γ_z, γ_z' connected a and z and composed by finite horizontal line and vertical line not pass $\{\xi_1, ..., \xi_n\}$. The red equation will holds since $\gamma_z' - \gamma_z = \sum_{\text{finite}} \pm \partial R_i$ and by stronger form of Cauchy theorem for a rectangle $\Gamma(R_i) = 0$. By the similar argument, F'(z) = f(z).

1.2.2 Winding number

Theorem 1.2.6 (winding number). Let γ be a closed arc and $a \notin \gamma$. Then

$$\int_{\gamma} \frac{dz}{z - a} = 2\pi i n$$

for some nonnegative integer n.

Proof: Let $z: [\alpha, \beta] \to \gamma$ with $t \mapsto z(t)$ and $z|_{[\alpha_i, \beta_i]}$: smooth. Consider

$$p(x) = \int_{0}^{x} \frac{z'(t)}{z(t) - a} dt$$

Then we have

$$\begin{cases} p(x) \text{ is continuous on } [\alpha, \beta] \\ p'(x) = \frac{z'(x)}{z(x) - a} \text{ on } (\alpha, \beta) \setminus \{t_1, ..., t_{n-1}\} \\ p(\beta) = \int_{\gamma} \frac{dz}{z - a} \end{cases}$$

Notice that $2\pi i$ is the period of e^x , so hope that $e^{p(\beta)} = 1$. Now

$$(e^{-p(x)})' = -p'(x)e^{-p(x)} = \frac{-z'(x)}{z(x) - a}e^{-p(x)} \implies (z(x) - a)(e^{-p(x)})' + z'(x)e^{-p(x)} = 0$$

$$\implies \left(e^{-p(x)}(z(x)-a)\right)'=0 \implies e^{-p(x)}(z(x)-a)=\text{constant}=e^{-p(\alpha)}(z(\alpha)-a)=z(\alpha)-a$$

Hence,
$$e^{p(x)} = \frac{z(x) - a}{z(\alpha) - a} \rightsquigarrow e^{p(\beta)} = 1 \implies p(\beta) = (2\pi i)n$$
 for some $n \in \mathbb{N}$.

Observation: Define

$$n(\gamma, a) := \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a} \in \mathbb{Z}$$

be the winding number of γ around a. It will be the number of turns of γ around a.

- $n(-\gamma, a) = -n(\gamma, a)$
- If $\gamma \subseteq B_{\rho}(a) \subseteq \Omega$, then $\forall a \in \Omega \setminus B_{\rho}(z)$, $n(\gamma, a) = 0$: Since $(z - a)^{-1}$ is analytic in $B_{\rho}(z)$.
- $n(\gamma, a)$ is constant for each region cut by γ and $n(\gamma, a) = 0 \ \forall a$ in unbounded region.

Claim: If $\gamma \cap \overline{aa'} = \emptyset$, then $n(\gamma, a) = n(\gamma, a')$.

subproof: for $z \in \overline{aa'}$, $\frac{z-a}{z-a'} \in \mathbb{R}_{\leq 0}$ and $\frac{z-a}{z-a'} \notin \mathbb{R}_{\leq 0}$ for all $z \notin \overline{aa'}$. Then $\log \left(\frac{z-a}{z-a'}\right)$ is analytic on $\mathbb{C} \setminus \overline{aa'}$. Hence,

$$0 = \int_{\gamma} \left(\log \left(\frac{z - a}{z - a'} \right) \right)' dz = \int_{\gamma} (\log(z - a) - \log(z - a'))' dz = \int_{\gamma} \left(\frac{1}{z - a} - \frac{1}{z - a'} \right) dz$$

Hence,
$$n(\gamma, a) = n(\gamma, a')$$
.

In the same region, we can connected by polyline, hence $n(\gamma, z)$ is constant on same region. Choose a open ball $B_{\rho}(a)$ that cover γ , and choose a point $b \in \mathbb{C} \setminus B_{\rho}(a)$, then $n(\gamma, b) = 0$. Hence, $n(\gamma, z) = 0$ on unbound region.

• Let γ be the simple curve around 0, then $n(\gamma, 0) = 1$:

Let $C = C_{\rho}(0)$ for some ρ s.t. $C \cap \gamma = \emptyset$. Choose $a_1, a_2 \in \gamma$, $b_1, b_2 \in C$ s.t. $a_2, b_2, 0, b_1, a_1$ collinear as this order. Let γ, C be cut by this line into $\gamma_1 \cup \gamma_2, C_1 \cup C_2$ respectively and C_1, γ_1 are in same side w.r.t. this line. Let $\sigma_1 = \gamma_1 + \overline{a_1b_1} - c_1 - \overline{a_2b_2}$, $\sigma_2 = \gamma_2 + \overline{a_2b_2} - C_1 - \overline{a_1b_1}$. By definition of winding number,

$$n(\gamma, 0) = n(C, 0) + n(\sigma_1, 0) + n(\sigma_2, 0) = 1$$

where $n(\sigma_1, 0) = n(\sigma_2, 0) = 0$ by 0 is in the unbounded region w.r.t. to σ_1, σ_2 .

Let f(z) be analytic in $B_{\rho}(b)$, $\gamma \subset B_{\rho}(b)$ and $a \in B_{\rho}(b) \setminus \gamma$. Then $F(z) = \frac{f(z) - f(a)}{z - a}$ is analytic for $z \neq a$ and $\lim_{z \to a} (z - a)F(a) = \lim_{z \to a} (f(z) - f(a)) = 0$. By Theorem 1.2.5,

$$\int_{\gamma} \frac{f(z) - f(a)}{z - a} dz = 0 \implies \int_{\gamma} \frac{f(z)}{z - a} = f(a) \int_{\gamma} \frac{dz}{z - a}$$

Then we have Cauchy integral formula:

$$f(a) = \frac{1}{2\pi i \cdot n(r, a)} \int_{\gamma} \frac{f(z)}{z - a} dz$$

In particular, if $n(\gamma, z) = 1$, then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

1.2.3 Simply connected

Set up

• extended complex plane (**Riemann sphere**) : $\widetilde{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ with $a + \infty = \infty + 0 = \infty$, $b \cdot \infty = \infty \cdot b = \infty$ for $b \neq 0$. $a/0 = \infty$ for $a \neq 0$, $b/\infty = 0$ for $b \neq \infty$.

- γ : piecewise-smooth curve $(z|_{[\alpha_i,\beta_i]}:$ smooth i.e. z'(t) continuous and $z'(t)\neq 0)$
 - •• simple : $z(t_1) = z(t_2) \iff t_1 = t_2$
 - •• closed : $z(\alpha) = z(\beta)$
 - .. Jordan curve : simple closed curve
 - •• opposite arc : $-\gamma$ define by z(-t).
- Let $\gamma_1, ..., \gamma_n$ be arcs in Ω . A form sum $\gamma_1 + \cdots + \gamma_n$ is called a **chain** in Ω .
- Define $\gamma_1 + \cdots + \gamma_n \sim \gamma_1' + \cdots + \gamma_m' \iff \int_{\gamma_1 + \cdots + \gamma_n} f dz = \int_{\gamma_1' + \cdots + \gamma_m'} f dz \ \forall f \text{ on } \Omega$, where

$$\int_{\gamma_1 + \dots + \gamma_n} f dz = \sum_{i=1}^n \int_{\gamma_i} f dz$$

In general, we can write a chain $\gamma = b_1 \gamma_1 + \cdots + b_n \gamma_n$, where γ_i are distinct arcs and $b_i \in \mathbb{Z}$.

• γ is a **cycle** if $\forall \gamma_i$ is closed

$$\implies \int_{\gamma} dF = 0$$
 and define $n(\gamma, a) := \sum b_i n(r_i, a)$

Definition 1.2.3. A region $\Omega \subseteq \mathbb{C}$ is simply connected if $\widetilde{\mathbb{C}} \setminus \Omega$ is connected.

Property 1.2.3. Ω is simply connected $\iff n(\gamma, a) = 0 \ \forall \gamma : \text{cycle in } \Omega \text{ and } a \in \widetilde{\mathbb{C}} \setminus \Omega.$

Proof:

- (\Rightarrow) Since $\widetilde{\mathbb{C}} \setminus \Omega$ is connected and $\gamma \subseteq \Omega$, $\widetilde{\mathbb{C}} \setminus \Omega$ is contained in the unbounded region determined by $\gamma \leadsto n(\gamma, a) = 0 \ \forall a \in \widetilde{\mathbb{C}} \setminus \Omega$.
- (\Leftarrow): Assume $\widetilde{\mathbb{C}} \setminus \Omega = A \sqcup B$ with A, B closed and assume A is bounded. Let δ be the shortest distance between A and B. Let

$${Q:Q \text{ is a square of side} = \frac{\delta}{2\sqrt{2}}}$$

covers A and a be a center of some Q in A. Let $\gamma = \sum_{Q_j \cap A \neq \emptyset} \partial Q_j$, then $\gamma \in \Omega$ and

$$n(\gamma, a) = \sum_{Q_j \cap A \neq \varnothing} n(\partial Q_j, a) = n(\partial Q, a) = 1 \ (\longrightarrow -)$$

since ∂Q is a simple curve around a and a is in the unbounded region w.r.t. others ∂Q_i .

Remark 1.2.1. If Ω is not simply connected, then $\exists \gamma$ in Ω s.t. $n(\gamma, a) \neq 0$ for some $a \in \widetilde{\mathbb{C}} \setminus \Omega$. Now $(z - a)^{-1}$ is analytic in Ω , but

$$\int_{\gamma} \frac{1}{z-a} dz = n(\gamma, a) \neq 0$$

i.e. Cauchy theorem doesn't hold in this case.

Definition 1.2.4. γ in Ω is said to be **homologous to** 0 w.r.t. Ω if $n(\gamma, a) = 0 \ \forall a \in \widetilde{\mathbb{C}} \setminus \Omega$, and denoted by $\gamma \sim 0 \pmod{\Omega}$.

For example, $C_1 \sim 0 \pmod{K \setminus H}$, but $C_2 \not\sim 0 \pmod{K \setminus H}$.

Theorem 1.2.7 (Cauchy theorem). If f(z) is analytic in Ω , then $\int_{\gamma} f(z)dz = 0$ for all cycle $\gamma \sim 0$ in Ω .

Corollary 1.2.2. Let Ω be simply connected and f be analytic in Ω . Then

- $\int_{\gamma} f dz = 0$ for all cycle γ in Ω , since $\gamma \sim 0$.
- $\int f dz$ is independent of the path connecting P and Q. Which means f dz = dF for some F i.e. f has a primitive.

Proof: (Cauchy theorem)

• Ω is bounded: For $\delta > 0$, let $\{S_i : i \in I\}$ be a subset of closed squares of side δ which are contained in Ω (Ω : bounded $\leadsto |I| < \infty$). Let $\Gamma_{\delta} = \sum_{i \in I} \partial S_i$, $\Omega_{\delta} = \left(\bigcup_{i \in I} S_i\right)^{\circ}$. Choose δ s.t. $\gamma \subset \Omega_{\delta}$. Let $\xi \in \Gamma_{\delta} \subseteq \Omega \setminus \Omega_{\delta}$, then exists a square $S \notin \{S_i : i \in I\}$ s.t. $\xi \in S$. Let $\xi_0 \in S \setminus \Omega \leadsto \overline{\xi_0} \subset S \leadsto \overline{\xi_0} \in \Omega_{\delta} = \emptyset$. Since $\gamma \sim 0 \pmod{\Omega}$, $n(\gamma, \xi_0) = 0$ and thus $n(\gamma, \xi) = n(\gamma, \xi_0) = 0$ since they are in same region w.r.t. Ω_{δ} .

• If $z \in S_j^o$, then

$$\frac{1}{2\pi i} \int_{\partial S_i} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} f(z) & \text{,if } i = j \\ 0 & \text{, if } i \neq j \end{cases}$$

since $\frac{f(\xi)}{\xi - z}$ is analytic on S_i when $i \neq j$ and by Cauchy integral formula when i = j. Then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \frac{f(\xi)}{\xi - z} d\xi \quad \forall z \in \bigcup_{j \in I} S_j^o \underset{\text{by conti.}}{\Longrightarrow} f(z) = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \frac{f(\xi)}{\xi - z} d\xi \quad \forall z \in \Omega_{\delta}$$

Hence,

$$\int_{\gamma} f(z)dz = \frac{1}{2\pi i} \int_{\gamma} \int_{\Gamma_{\delta}} \frac{f(\xi)}{\xi - z} d\xi dz = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \int_{\gamma} \frac{f(\xi)}{\xi - z} dz d\xi \text{ (since it conti. on } \Gamma_{\delta}, \gamma)$$

$$= \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \left(f(\xi) \int_{\gamma} \frac{-1}{z - \xi} dz \right) d\xi = \frac{-1}{2\pi i} \int_{\Gamma_{\delta}} f(\xi) \underline{n(\gamma, \xi)} d\xi = 0$$

• If Ω is unbound: We replace Ω by $\Omega' := \Omega \cap B_R(0)$ for R large enough to get $\gamma \subset \Omega'$. Then $\forall a \in \widetilde{\mathbb{C}} \setminus \Omega'$,

$$\begin{cases} a \in \widetilde{\mathbb{C}} \setminus \Omega \implies n(\gamma, a) = 0 &, \text{ since } \gamma \sim 0 \pmod{\Omega} \\ a \in \widetilde{\mathbb{C}} \setminus B_R(0) \implies n(\gamma, a) = 0 &, \text{ since } \frac{1}{z - a} \text{ is analytic on } B_R(0) \end{cases}$$

Hence, $\gamma \sim 0 \pmod{\Omega'}$, which is follow from the bounded case.

1.3 Cauchy's integral theorem

Recall: Let f: analytic in $B_{\rho}(a)$, γ : closed arc in $B_{\rho}(a)$. For $z \neq \gamma$,

$$f(z) = \frac{1}{2\pi i n(\gamma, z)} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

In fact we can have more relax assumption : f : analytic in $B_{\rho}(a) \setminus \{a\}$ with $\lim_{z \to a} (z - a) f(z) = 0$. Then

$$f(z) = \frac{1}{2\pi i n(\gamma, z)} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

Proof: For $z \in B_{\rho}(a)$, let $F(\xi) = \frac{f(\xi) - f(z)}{\xi - z}$, then F analytic on $B_{\rho}(a) \setminus \{a, z\}$. Also

$$\begin{cases} \lim_{\xi \to z} (\xi - z) F(\xi) = 0\\ \lim_{\xi \to a} (\xi - a) F(\xi) = \lim_{\xi \to a} \frac{(\xi - a)(f(\xi) - f(z))}{\xi - z} = 0 \end{cases}$$

By stronger Cauchy theorem,

$$\int_{\gamma} F(\xi)d\xi = 0 \implies f(z) = \frac{1}{2\pi i n(\gamma, z)} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

Author: Minerva 17

Lemma 1.3.1 (key lemma). If $\varphi(\xi)$ is continuous on γ , then

$$F_n(z) := \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n} d\xi$$

is analytic in each regions determined by γ and $F'_n(z) = nF_{n+1}(z)$.

Proof:

- n = 1:
 - •• continuous : $\forall z_0 \notin \gamma$, pick $\delta > 0$ s.t. $B_{\delta}(z_0) \cap \gamma = \emptyset$. If $|z z_0| < \delta/2 \rightsquigarrow |\xi z| > \delta/2 \, \forall \xi \in \gamma$. So

$$|F_1(z) - F_1(z_0)| = \left| \int_{\gamma} \varphi(\xi) \frac{z - z_0}{(\xi - z)(\xi - z_0)} dz \right| \le |z - z_0| M \frac{2}{\delta^2} L$$

where $M = \max_{\xi \in \gamma} \varphi(\xi)$ and L be the length of γ . Hence, $F_1(z)$ is continuous.

• differentiable :

$$\frac{F(z) - F(z_0)}{z - z_0} = \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)(\xi - z_0)} d\xi \xrightarrow{z \to z_0} F'(z_0) = \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z_0)^2} d\xi = F_2(z_0)$$

where red approaching is by

$$\left| \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)(\xi - z_0)} d\xi - \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z_0)^2} d\xi \right| \le \int_{\gamma} \left| \frac{\varphi(\xi)(z - z_0)}{(\xi - z)(\xi - z_0)^2} \right| |d\xi| \le \frac{4ML}{\delta^3} |z - z_0|$$

- By induction on n > 1:
 - continuous:

$$|F_n(z) - F_n(z_0)| = \left| \int_{\gamma} \varphi(\xi) \left(\frac{1}{(\xi - z)^n} - \frac{1}{(\xi - z_0)^n} \right) dz \right|$$

$$= \left| \int_{\gamma} \varphi(\xi) \left(\frac{\xi - z + z - z_0}{(\xi - z)^n (\xi - z_0)} - \frac{1}{(\xi - z_0)^n} \right) dz \right|$$

$$= \left| \int_{\gamma} \frac{\varphi(\xi)}{\xi - z_0} \left(\frac{1}{(\xi - z)^{n-1}} - \frac{1}{(\xi - z_0)^{n-1}} \right) d\xi + (z - z_0) \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n (\xi - z_0)} d\xi \right|$$

By induction hypothesis on $\varphi(\xi)/(\xi-z_0)$, we have

$$\left| \int_{\gamma} \frac{\varphi(\xi)}{\xi - z_0} \left(\frac{1}{(\xi - z)^{n-1}} - \frac{1}{(\xi - z_0)^{n-1}} \right) d\xi \right| \to 0$$

and similar method,

$$\left| (z - z_0) \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n (\xi - z_0)} d\xi \right| \le \frac{2^n M L}{\delta^{n+1}} |z - z_0|$$

Hence, $F_n(z)$ is continuous.

• differentiable :

$$\frac{F_n(z) - F_n(z_0)}{z - z_0} = \frac{1}{z - z_0} \int_{\gamma} \left(\frac{\varphi(\xi)/(\xi - z_0)}{(\xi - z)^{n-1}} - \frac{\varphi(\xi)/(\xi - z_0)}{(\xi - z_0)^{n-1}} \right) d\xi + \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n (\xi - z_0)} d\xi$$

$$\longrightarrow (n - 1) \int_{\gamma} \frac{\varphi(\xi)/(\xi - z_0)}{(\xi - z_0)^n} d\xi + \int_{\gamma} \frac{\varphi(\xi)/(\xi - z_0)}{(\xi - z_0)^n} d\xi = nF_{n+1}(z)$$

the former is by induction hypothesis.

Corollary 1.3.1. Let f be analytic in Ω . For $a \in \Omega$, $\exists B_{\rho}(a) \subset \Omega$, if $\gamma = C_{\rho}(a)$, then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$
 and $f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(z - \xi)^{n+1}} d\xi$

Hence, if f is analytic in Ω , then $f \in C^{\infty}(\Omega)$.

Theorem 1.3.1 (Removable singularities). If f is analytic in $\Omega' = \Omega \setminus \{\xi_1, ..., \xi_n\}$ and $\lim_{z \to \xi_i} (z - \xi_i) f(z) = 0 \ \forall i$, then $\exists !$ analytic function \widetilde{f} in Ω s.t. $\widetilde{f}|_{\Omega} = f$.

Proof: Let $a = \xi_i \rightsquigarrow \exists B_\rho(a) \setminus \{a\} \subseteq \Omega'$. If \widetilde{f} exists, then

$$\begin{cases} \widetilde{f}(a) = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{\widetilde{f}(\xi)}{\xi - a} d\xi = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{f(\xi)}{\xi - a} d\xi \\ \widetilde{f}(z) = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{\widetilde{f}(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{f(\xi)}{\xi - z} d\xi = f(z) \ \forall z \neq a \end{cases}$$

So we should define $\widetilde{f}(a) = \frac{1}{2\pi i} \int_{C_{\varrho}(a)} \frac{f(\xi)}{\xi - a} d\xi$

Observation: Let $F(z) = \frac{f(z) - f(a)}{z - a}$. $\because \lim_{z \to a} (z - a) F(z) = 0$. $\exists !$ analytic function s.t.

$$f_1(z) = \begin{cases} F(z) & \text{, for } z \neq a \\ f'(z) & \text{, for } z = a \end{cases}$$

 $\therefore \lim_{z \to a} (z - a) \frac{f_1(z) - f_1(a)}{z - a} = 0 \therefore \exists! \text{ analytic function s.t.}$

$$f_2(z) = \begin{cases} \frac{f_1(z) - f_1(a)}{z - a} & \text{, for } z \neq a \\ f'_1(z) & \text{, for } z = a \end{cases}$$

That is $f_{k-1}(z) = f_{k-1}(a) + (z-a)f_k(z) \ \forall k = 1, ..., n$, where $f_0(z) = f(z)$.

$$\implies f(z) = f(a) + (z-a)f_1(a) + \dots + (z-a)^{n-1}f_{n-1}(a) + (z-a)^n f_n(z)$$

Differentiate n times and evaluation z = a, we can get $f^{(n)}(a) = n! f_n(a)$. Then we have

$$f(z) = f(a) + \frac{f'(a)}{1!}(z-a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(z-a)^{n-1} + (z-a)^n f_n(z)$$

Here for $z \in B_{\rho}(a)$,

$$f_n(z) = \frac{1}{2\pi i} \int_{C_{\rho(a)}} \frac{f_n(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{C_{\rho(a)}} \frac{1}{\xi - z} \left(\frac{f(\xi)}{(\xi - a)^n} - \sum_{k=0}^{n-1} \frac{f^k(a)}{k!(\xi - a)^{n-k}} \right) d\xi$$

Let $G_k(u) = \int_{C_{\rho(a)}} \frac{1/(\xi - z)}{(\xi - u)^k} d\xi$ for $u \in B_{\rho}(a)$. By key lemma, $G_{k+1}(u) = G_1^k(u)/k!$.

$$G_1(u) = \int_{C_{\rho(a)}} \frac{d\xi}{(\xi - u)(\xi - z)} = \frac{1}{u - z} \int_{C_{\rho(a)}} \left(\frac{1}{\xi - u} - \frac{1}{\xi - z} \right) d\xi$$
$$= \frac{2\pi i (n(C_{\rho(a)}, u) - n(C_{\rho(a)}, z))}{u - z} = 0$$

Hence, $G_k(u) = 0 \ \forall k$ and thus

$$f_n(z) = \frac{1}{2\pi i} \int_{C_o(a)} \frac{f(\xi)}{(\xi - z)(\xi - a)^n} d\xi$$

Theorem 1.3.2 (Cauchy's estimate). Let $M = \max_{\xi \in C_{\rho}(a)} |f(\xi)|$, then

$$|f^{n}(a)| = \left| \frac{n!}{2\pi i} \int_{C_{\rho}(a)} \frac{f(\xi)}{(\xi - a)^{n+1}} d\xi \right| \le \frac{n!}{2\pi} \frac{M \cdot 2\pi \rho}{\rho^{n+1}} \le n! M \rho^{-n}$$

Theorem 1.3.3 (Liouville's theorem). If f is bounded entire function, then f is a constant.

Proof: Say $|f(z)| \leq M \ \forall z \in \mathbb{C}$. For all $a \in \mathbb{C}$, $|f'(a)| \leq M\rho^{-1} \to 0$ as $\rho \to \infty$. Hence, $f'(a) = 0 \ \forall a \in \mathbb{C}$ which means f is constant.

Theorem 1.3.4 (Fundamental theorem of algebra). Given $p(z) = a_n z^n + \cdots + a_1 z + a_0$ with $a_n \neq 0, n \geq 1$, then $\exists \alpha \in \mathbb{C}$ s.t. $p(\alpha) = 0$.

Proof: If $\forall z \in \mathbb{C}$, $p(z) \neq 0$, then 1/p(z) is entire. Also

$$\left| \frac{1}{p(z)} \right| \le \frac{1}{|a_n||z|^n - |a_{n-1}||z|^{n-1} - \dots - |a_1||z| - |a_0|} \to 0 \text{ as } |z| \to \infty$$

Then $\exists R \in \mathbb{R} \text{ s.t. } |z| > R, |1/p(z)| \le 1$. Since $|z| \le R$ is compact set, $M := \max_{|z| \le R} |1/p(z)|$ exists. Then $|1/p(z)| \le \max\{1, M\} \ \forall z \in \mathbb{C}$. By Liouville's theorem, 1/p(z) = c, which contradict to $n \ge 1$.

Theorem 1.3.5 (Morera's theorem). If $\int_{\gamma} f(z)dz = 0 \ \forall \gamma$: closed arc in Ω , then f(z) is analytic in Ω .

Proof: Since the line integral is independent on path, there exists F: analytic s.t. F'(z) = f(z). Then f'(z) = F''(z) i.e. f is analytic.

Theorem 1.3.6 (zero order). If $\exists a \text{ s.t. } f(a) = 0 \text{ and } f^{(k)}(a) = 0 \ \forall k \in \mathbb{N}, \text{ then } f \equiv 0.$

Proof: $\forall n \in \mathbb{N}, f(z) = f_n(z)(z-a)^n$, for some analytic function $f_n(z)$ in Ω . For $z \in B_\rho(a)$

$$f_n(z) = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{f(\xi)}{(\xi - a)^n (\xi - z)} d\xi$$

$$\implies |f(z)| = |z-a|^n |f_n(z)| \le \frac{|z-a|^n}{2\pi} \frac{M \cdot 2\pi\rho}{\rho^n(\rho - |a-z|)} = \left(\frac{|z-a|}{\rho}\right)^n \frac{M\rho}{\rho - |a-z|} \to 0 \text{ as } n \to \infty$$

Define

$$A_1 = \{z \in \Omega | f(z) = 0, f^{(k)}(z) = 0 \ \forall k \ge 1\}$$
 which is open

 $A_2 = \{z \in \Omega | f(z) \neq 0 \text{ or } f^k(z) \neq 0 \text{ for some } k \geq 1\}$ which is also open

Since $\Omega = A_1 \sqcup A_2$ is open connected and $A_1 \neq 0$, $A_2 = \emptyset$ and thus $f \equiv 0$ in Ω .

Definition 1.3.1. If $f \neq 0$ and f(a) = 0, then \exists the smallest $m \in \mathbb{N}$ s.t. $f^m(a) \neq 0$. This m is called the **zero order** of a. Since we can write $f(z) = (z - a)^m f_m(z)$ with $f_m(z)$ is analytic and $f_m(a) = \frac{1}{m!} f^m(a) \neq 0$.

1.4. SINGULARITY Minerva notes

1.4 Singularity

Recall: If $f \not\equiv 0$ in Ω , m: the zero order of $a \leadsto f(z) = (z-a)^m f_m(z)$ and $f_m(a) = \frac{1}{m!} f^m(a) \neq 0 \leadsto \exists$ a neighborhood of a s.t. $f_m(a) \neq 0$ in this neighborhood $\leadsto f(z) \neq 0$ in this neighborhood except a. Then z = a is an isolated zero.

Proposition 1.4.1. If f, g are analytic in Ω and $U \subset \Omega$ with an accumulation point $a \in U$, then f = g on $U \implies f = g$ on Ω .

Proof: Assume $f \neq g$ on Ω and $(f - g)(a) = 0 \implies a$ is not isolated zero $(-\times)$.

Corollary 1.4.1. $f \equiv 0$ in a subregion of $\Omega \leadsto f \equiv 0$ in Ω .

Corollary 1.4.2. $f \equiv 0$ on an arc $\rightsquigarrow f \equiv 0$ in Ω .

Corollary 1.4.3. Let f be analytic in Ω and $f(z) = f(a) + \frac{f'(a)}{1!}(z-a) + \cdots$ in $B_{\rho}(a)$. Let R be the radius of convergence, then $f(z) = f(a) + \frac{f'(a)}{1!} + \cdots$ in $\Omega \cap B_R(a)$.

Definition 1.4.1. Let f be analytic in $0 < |z - a| < \delta$ except perhaps at a itself. We call a an isolated singularity.

- removable : $\lim_{z \to a} (z a) f(z) = 0 \rightsquigarrow f(a)$ can be define s.t. f is analytic in $|z a| < \delta$.
- pole : $\lim_{z \to a} f(z) = \infty \rightsquigarrow \exists \delta' \leq \delta$ s.t. $f(z) \neq 0$ for $0 < |z a| < \delta' \rightsquigarrow g(z) = f(z)^{-1}$ is analytic for $0 < |z a| < \delta' \rightsquigarrow \lim_{z \to a} g(z) = \frac{1}{\infty} = 0 \rightsquigarrow g(z)$ has removable singularity. $g(z) \neq 0$ in $G(z) \setminus \{a\} : g(z) = (z a)^m g_m(z)$ with $G(z) \neq 0 \rightsquigarrow f(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$ and define $G(z) = g(z)^{-1}$ be the **order of pole** $G(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$ and define $G(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$ and define $G(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$ and define $G(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$ and define $G(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$ and define $G(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$
- f(z) is analytic in Ω except for removable singularity or poles $\sim f$: meromorphic in Ω .

Property 1.4.1. f, g: analytic in Ω with $g \neq 0 \rightsquigarrow \frac{f}{g}$ is meromorphic, since the only possible pole are the zero of g and a common zero of f, g is pole or removable.

Definition 1.4.2.

- An isolated singularity is called an **essential singularity** if is not a removable singularity or a pole.
- $f(\infty)$ is always not defined so ∞ is regard as an isolated singularity

$$\infty$$
 is a $\begin{cases} \text{removable} \\ \text{pole} \\ \text{essential} \end{cases}$ if $g(z) = f(z^{-1})$ is a $\begin{cases} \text{removable} \\ \text{pole} \\ \text{essential} \end{cases}$ at 0

Example 1.4.1. Classify singularity for

(a)
$$\frac{\sin z}{z}$$
:
$$z = 0 \text{ is singularity and } \sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \cdots \Rightarrow \frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \cdots \Rightarrow \text{removable}$$

- (b) $e^{1/z}$: z=0 is singularity: It is clear that is not removable. If it is a pole, then $z^m e^{1/z}$ is analytic at z=0 (\rightarrow). Hence z=0 is essential and thus $z=\infty$ is essential singularity for e^z .
- (c) $\frac{1}{z^3(z-2)^2}$: z=0 is pole of order 3 and z=2 is pole of order 2
- (d) $\frac{\sin z}{z^4}$ z = 0 is pole of order 4
- (e) $\frac{z+1}{z^{1/2}-1}$ z=1 is pole of order 1, since $\frac{z+1}{z^{1/2}-1} = \frac{(z+1)(z^{1/2}+1)}{z-1}$.

Theorem 1.4.1 (Weierstrass-Casorati). If z = a is an essential singularity of f, then $\forall B_{\rho}(a)$, f comes arbitrary close to any complex value in $B_{\rho}(a)$.

Proof: If not, $\exists B_{\rho}(a), A \in \mathbb{C}, \exists \delta > 0 \text{ s.t. } |f(z) - A| > \delta \text{ for } 0 < |z - a| < \rho, \text{ then}$

$$\lim_{z \to a} \frac{f(z) - A}{z - a} = \infty$$

We can write $\frac{f(z) - A}{z - a} = (z - a)^{-m} \frac{1}{g_m(z)}$ with $g_m(z) \neq 0$.

- If $m = 1 \leadsto f(z) A = \frac{1}{g_m(z)} \leadsto f$ is analytic at z = a
- If $m \ge 2 \leadsto f(z) = A + (z-a)^{-(m-1)} \frac{1}{g_m(z)} \leadsto \lim_{z \to a} f(z) = \infty \leadsto z = a$ is a pole of f(z).

1.5 Analytic function as mappings

f: analytic in Ω , $f:\Omega\to\mathbb{C}$. We say that $\Omega\subseteq\mathbb{C}$ is z-plane and \mathbb{C} is w-plane. Given a curve γ in Ω and a parameterize $z:[\alpha,\beta]\to\gamma$ with $t\mapsto z(t)$, Γ be the image of γ via f can be parameterized by $t\mapsto f(z(t))=:w(t)$.

• w'(t) = z'(t)f'(z(t)): If $z'(t_0) \neq 0$, then $f'(z_0) \neq 0 \implies w'(t_0) \neq 0$. Then we have $\arg w'(t_0) = \arg f'(z_0) + \arg z'(t_0)$

So if $f'(z_0) \neq 0$, then f is conformal in the neighborhood of z_0 .

- Now we still not know the image of analytic function, so we may ask that
 - •• whether $w_0 \in \operatorname{Im} f$ or not.
 - •• and how many such z_0 ? i.e. find the zero order of $f(z) w_0$ at $z = z_0$
- Now we consider $f \not\equiv 0$:

•• f has zero $z_1, ..., z_m$ (count multiplicity) in $B_{\rho}(a)$ and $\gamma \subset B_{\rho}(a)$ with $f \neq 0$ on γ .

Write $f(z) = (z - z_1) \cdots (z - z_m) g(z)$ with g(z): $\begin{cases} \text{analytic in } B_{\rho}(a) \\ \text{no zero in } B_{\rho}(a) \end{cases}$, then

$$\frac{f'(z)}{f(z)} = \frac{1}{z - z_1} + \dots + \frac{1}{z - z_m} + \frac{g'(z)}{g(z)}$$

$$\implies \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{m} n(\gamma, z_k) + \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz$$

Since g'(z)/g(z) is analytic in $B_{\rho}(a)$, by Cauchy theorem, $\int_{\gamma} \frac{g'(z)}{g(z)} dz = 0$ and thus

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{m} n(\gamma, z_k)$$

•• f has infinite zero in $B_{\rho}(a)$: Let $\gamma \subset B_{\rho'}(a) \subsetneq B_{\rho}(a)$

Claim: exists only finite many $z_{i_1},...,z_{i_m}$ in $B_{\rho'}(a)$

subproof: If \exists infinitely many $z_j's$ in $B\rho'(a)$, then by Bolzano-Weiestrass theorem, exists an accumulation point of $z_j's$ in $\overline{B_{\rho'}(a)} \subseteq B_{\rho}(a) \leadsto f \equiv 0$ on $\overline{B_{\rho'}(a)} \leadsto f \equiv 0$ in Ω (\longrightarrow).

For $z'_k s$ outside $B_{\rho'}(a)$, $n(\gamma, z_k) = 0$. Hence,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{m} n(\gamma, z_{i_k}) = \sum_{i} n(\gamma, z_i) \text{ (finite sum)}$$

This formula is called **argument principal**.

•• If $\gamma = C_{\rho}(b)$, then $n(\gamma, z_i) = 0$ or 1, then $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \# \text{of zeros inside } \gamma$. Moreover we have it equal to

$$\frac{1}{2\pi i} \int_{\alpha}^{\beta} \frac{f'(z(t))}{f(z(t))} z'(t) dt = \frac{1}{2\pi i} \int_{\alpha}^{\beta} \frac{w'(t)}{w(t)} dt = \frac{1}{2\pi i} \int_{\Gamma} \frac{dw}{w} = n(\Gamma, 0)$$

•• Let $f(z) \neq w_0$ on γ . If $\{z_j(w_0) : j = 1, ...\}$ is the set of zeros of $f(z) = w_0$, then

$$\sum_{j} n(\gamma, z_{j}(w_{0})) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z) - w_{0}} dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{w}{w - w_{0}} dw = n(\Gamma, w_{0})$$

In particular, choose γ be the circle $C_{\rho}(b)$, then # of zeros of $f(z) - w_0$ inside $\gamma = n(\Gamma, w_0)$. Hence, if w_1, w_2 lie in the same region determined by Γ , then $\#f^{-1}(w_1) = \#f^{-1}(w_2)$ inside γ .

Property 1.5.1 (key result). If $f(z) - w_0$ has a zero with order being n, then for small $\varepsilon > 0$, $\exists \delta > 0$ s.t. $0 < |w - w_0| < \delta$, f(z) = w has exactly n roots in $|z - z_0| < \varepsilon$.

Proof: Pick $\varepsilon > 0$ s.t.

$$\begin{cases} f \text{ is analytic for } |z - z_0| < \varepsilon \\ z_0 \text{ is the only zero of } f(z) = w_0 \quad \text{(since } z_0 \text{ is isolated)} \\ f'(z) \neq 0 \text{ for } 0 < |z - z_0| < \varepsilon \end{cases}$$

We can get the third since

fif $f'(z_0) = 0$: since zero point is isolated or $f' \equiv 0$ i.e. f is constant $\rightsquigarrow n = \infty$ if $f'(z_0) \neq 0$: we can choose it by continuous

Choose ε suitable s.t. $B_{\delta}(w_0) \cap \Gamma = \emptyset$. Then $n(\Gamma, w_0) = \sum_{n \text{ times}} n(\gamma, z_0) = n$. Now $\forall w$ with $0 < |w - w_0| < \delta$, $\sum_{i=1}^{\infty} n(\gamma, z_i(w)) = n(\Gamma, w) = n(\Gamma, w_0) = n$ and $f'(z_i(w)) \neq 0$. $f'(z_i(w)) \neq 0$. $f'(z_i(w)) \neq 0$. $f'(z_i(w)) \neq 0$. $f'(z_i(w)) \neq 0$.

Corollary 1.5.1.

- f is an open mapping : for U open in Ω , $\forall z_0 \in U$, $\exists B_{\rho}(z_0) \subseteq \Omega$, choose smaller ε with $0 < \varepsilon < \rho$ s.t. if $w_0 = f(z_0)$, $\exists \delta > 0$ s.t. $B_{\delta}(w_0) \subseteq f(B_{\varepsilon}(z_0)) \subseteq f(U) \Longrightarrow f(U)$ is open in \mathbb{C} .
- f is analytic at z_0 and $f'(z_0) \neq 0$. For small ε (in above), there exists δ satisfy key result. We will prove that $B_{\varepsilon}(z_0)$ is homeomorphic to it image. Given a open ball $B_{\rho}(w)$ in $f(B_{\varepsilon}(z_0))$, say w = f(z), then $f^{-1}(B_{\delta}(w)) \stackrel{f}{\to} B_{\delta}(w)$. Since $f'(z) \neq 0$, f will be 1 1 and thus f will be homeomorphism (topologically).

Conversely, if $f'(z_0) = 0$, then f is not topologically. Thus $n = 1 \rightsquigarrow f'(z_0) \neq 0 \ (-\times -)$.

Theorem 1.5.1 (maximal principal). If f(z) is analytic and non-constant, then |f(z)| has no max in Ω .

Proof: For $z \in \Omega$, if $f(z) = w_0$, then $\exists \delta > 0$ s.t. $B_{\delta}(w_0) \subset f(\Omega)$, and there exists w s.t. $|w| > |w_0|$, so $|w_0|$ is not max.

We have another form of maximal principal.

Theorem 1.5.2. If f is analytic in a bounded region Ω and continuous on $\partial\Omega$, then |f(z)| attains its max on $\partial\Omega$.

Proof: Since $\Omega \cup \partial \Omega$ is a compact set, $M = \max_{z \in \Omega \cup \partial \Omega} |f(z)|$ exists. If $f \neq \text{constant}$, then $M \notin \{|f(z)| : z \in \Omega\} \implies M \in \{|f(z)| : z \in \partial \Omega\}$

Proof: (Another proof for maximal principal) If not, $\exists z_0 \in \Omega$ s.t. $|f(z)| \leq |f(z_0)| \, \forall \Omega$. Let $\gamma = C_{\rho}(z_0) \subseteq \Omega \leadsto z = z_0 + \rho e^{i\theta}, \, \theta \in (-\pi, \pi)$. Then

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{f(z_0 + \rho e^{i\theta}) \cdot i\rho e^{i\theta}}{\rho e^{i\theta}} d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(z_0 + \rho e^{i\theta}) d\theta$$

• If $\exists z \in \gamma$ s.t. $|f(z)| < |f(z_0)| \rightsquigarrow \exists [\theta_1, \theta_2] \subseteq [-\pi, \pi]$ s.t. $|f(z_0 + \rho e^{i\theta})| < |f(z_0)|$ for all $\theta \in [\theta_1, \theta_2]$. So

$$|f(z_0)| = \left| \frac{1}{2\pi} \left(\int_{-\pi}^{\theta_1} + \int_{\theta_1}^{\theta_2} + \int_{\gamma_2}^{\pi} \right) f(z_0 + \rho e^{i\theta}) d\theta \right| < |f(z_0)| \ (\longrightarrow)$$

• $\forall z \in \gamma$, $|f(z)| = |f(z_0)|$. Since ρ is arbitrary (only need $C_{\rho}(z_0) \subseteq \Omega$), $|f(z)| = |f(z_0)| \ \forall z \in B_{\rho}(z_0)$. Set

$$S = \{ z \in \Omega : |f(z)| = |f(z_0)| \}$$

which is open, since for all $z' \in S$, we can replace z_0 in above argument to get $|f(z)| = |f(z')| = |f(z_0)| \ \forall z \in B_{\rho}(z')$. Also $\Omega \setminus S = \{z \in \Omega : |f(z)| < |f(z_0)|\}$ is open. Since Ω is simply connect and $z_0 \in S$, $\Omega = S$ i.e. |f(z)| is constant. Since

$$|f(z)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(z + \rho e^{i\theta}) d\theta \right| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(z_0 + \rho e^{i\theta})| d\theta = |f(z)|$$

the equality holds, which means f(z) is constant on $C_{\rho}(z)$ for all $z \in \Omega$ and suitable ρ i.e. f(z) is constant in Ω .

Theorem 1.5.3 (Schwarz lemma).

- If f is analytic in $B_1(0)$ and $\begin{cases} f(B_1(0)) \subseteq \overline{B_1(0)} \\ f(0) = 0 \end{cases}$, then $|f(z)| \le |z|$ and |f'(0)| = 1
- If |f(z)| = |z| for some $z \neq 0$ or if |f'(0)| = 1, then f(z) = cz with |c| = 1.

Proof:

• Define $g(z) = \begin{cases} \frac{f(z)}{z} & \text{for } z \neq 0 \\ f'(0) & \text{for } z = 0 \end{cases}$. For $0 < \rho < 1, \forall z \in B_{\rho}(0)$, by maximal principal,

$$|g(z)| \le \max_{z \in C_{\rho}(0)} |g(z)| = \frac{|f(z)|}{\rho} \le \frac{1}{\rho}$$

As $\rho \to 1$, $|g(z)| \le 1$ on $B_1(0)$ i.e. $|f(z)| \le |z|$ and $|f'(0)| \le 1$.

• If |f(z)| = |z| for some $z \neq 0$ in $B_1(0)$, then $|g(z)| = 1 \rightsquigarrow |g(z)|$ attains a max in $B_1(0) \rightsquigarrow g(z) = c$ is a constant function. Since |f(z)| = |z|, |c| = 1.

1.6 Automorphism of unit disk and half plane

1.6.1 Automorphism of unit disk

- $f(z) = e^{i\theta}z : B_1(0) \to B_1(0)$ is a rotation $\leadsto f \in \text{Aut}(B_1(0))$, the group of **bianalytic map** from $B_1(0)$ to $B_1(0)$.
- For $0 \neq a \in B_1(0), T_a(z) = \frac{a-z}{1-\overline{a}z} \leadsto T_a \in Aut(B_1(0))$:
 - •• $|a| < 1 \rightarrow |1/\overline{a}| > 1 \rightarrow T_a$ is analytic in $B_1(0)$
 - •• $\forall |z| = 1$,

$$|T_a(z)| = \frac{|a-z|}{|1-\overline{a}z|} \frac{1}{|\overline{z}|} = \frac{|a-z|}{|\overline{z}-\overline{a}|} = 1$$

By maximal principal, $|T_a(z)| < 1 \ \forall z \in B_1(0)$.

- •• $T_a(0) = a, T_a(a) = 0 \rightsquigarrow T_a \circ T_a(0) = 0, T_a \circ T_a(a) = a \rightsquigarrow T_a \circ T_a(0) = 0, T_a \circ T_a(a) = a$. By Schwarz lemma, $T_a \circ T_a(z) = cz$. Evaluate a, then $c = 1 \rightsquigarrow T_a \circ T_a = id$ on $B_1(0)$
- •• $\operatorname{Aut}(B_1(0)) = \{e^{i\theta} \circ T_a : \theta \in \mathbb{R}, a \in B_1(0)\} :$ $\forall f \in \operatorname{Aut}(B_1(0)), \text{ let } a \text{ s.t. } f(a) = 0. \text{ Define } g := f \circ T_a \in \operatorname{Aut}(B_1(0)) \leadsto g(0) = 0, g^{-1}(0) = 0. \text{ By Schwarz lemma}, \begin{cases} |g'(0)| \leq 1 \\ |(g^{-1})'(0)| \leq 1 \end{cases} \implies |g'(0)| = 1 \leadsto g(z) = e^{i\theta}z \text{ i.e.}$ $f = e^{i\theta} \circ T_a.$

1.6.2 Automorphism of half plane

Since we already knew all element in $Aut(B_1(0))$, our idea is construct the bianalytic between $B_1(0)$ and half plane \mathbb{H} . Construct

$$S: \mathbb{H} \longrightarrow B_1(0)$$

$$z \longmapsto \frac{i-z}{i+z}$$

which is analytic in \mathbb{H} . $|i+z| < |i-z| \ \forall z \in \mathbb{H}$, since z in the half plane divide by perpendicular bisector of i, -i which contain i. Also $S^{-1}(z) = i\left(\frac{1-z}{1+z}\right)$ will sent $B_1(0)$ to \mathbb{H} , since

$$\operatorname{Im} S^{-1}(z) = \frac{(1 - r^2)\cos^2\theta + (1 + r^2)\sin^2\theta}{(1 + r\cos\theta)^2 + (r\sin\theta)^2} > 0 \text{ if } z = re^{i\theta} \text{ with } r < 1$$

Hence, S is bianalytic from $B_1(0)$ to \mathbb{H} , which will induce the group homomorphism

$$\varphi: \operatorname{Aut}(B_1(0)) \longrightarrow \operatorname{Aut}(\mathbb{H})$$

$$f \longmapsto s^{-1} \circ f \circ s$$

and it clear that the inverse is

$$\varphi^{-1}: \operatorname{Aut}(\mathbb{H}) \longrightarrow \operatorname{Aut}(B_1(0))$$

 $g \longmapsto s \circ f \circ s^{-1}$

Hence, $\operatorname{Aut}(B_1(0)) \simeq \operatorname{Aut}(\mathbb{H})$.

Definition 1.6.1. A linear functional transformation is $F_A(z) = \frac{az+b}{cz+d}$ with $ad-bc \neq 0$, where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$. It is clear that $F_B \circ F_A = F_{AB}$.

Theorem 1.6.1. $\operatorname{Aut}(\mathbb{H}) \simeq \operatorname{SL}_2(\mathbb{R})/\{\pm 1\} \simeq \{A \in \operatorname{SL}_2(\mathbb{R}) : \det A > 0\} =: \overline{\operatorname{SL}_2(\mathbb{R})}$

Proof:

- $A \in \overline{\mathrm{SL}_2(\mathbb{R})} \leadsto F_A \in \mathrm{Aut}(\mathbb{H})$:
 - •• pole is $z=-d/c\in\mathbb{R}$ which is not in $\mathbb{H} \sim F_A$ is analytic in \mathbb{H}

••
$$\operatorname{Im} \frac{az+b}{cz+d} = \operatorname{Im} \frac{(az+b)(c\overline{z}+d)}{|cz+d|^2} = \operatorname{Im} \frac{adz+bc\overline{z}}{|cz+d|^2} = \frac{(ad-bc)\operatorname{Im} z}{|cz+d|^2} > 0$$

- •• $F_A^{-1} = F_{A^{-1}} \leadsto F_A : \mathbb{H} \xrightarrow{\sim} \mathbb{H}$
- If $g \in \operatorname{Aut}(\mathbb{H})$ with $g(i) = i \rightsquigarrow \varphi^{-1}(g)(0) = s \circ g \circ s^{-1}(0) = 0$. By Schwarz lemma, $|(\varphi^{-1}(g))'(0)| \leq 1$. Similar we have $|\varphi(g)'(0)| \leq 1$. By Schwarz lemma, $\varphi(g) = e^{i\theta}$. Let

$$B = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \in \overline{\mathrm{SL}_2(\mathbb{R})} \implies \begin{cases} F_B(i) = i \\ F_B'(i) = e^{i\theta} \end{cases} \implies \varphi^{-1}(F_B)(z) = cz$$

Differentiate in both side and substitute z=0 we have $e^{i\theta}=c$. Hence, $\varphi^{-1}(F_B)=\varphi^{-1}(g) \rightsquigarrow g=F_B$.

• $\forall z_0 \in \mathbb{H}, \exists D \in \overline{\mathrm{SL}_2(\mathbb{R})} \text{ s.t. } F_D(i) = z_0 :$

Let
$$D_1 = \begin{pmatrix} \sqrt{\text{Im } z_0} & 0 \\ 0 & \sqrt{\text{Im } z_0}^{-1} \end{pmatrix} \rightsquigarrow F_{D_1}(i) = i \text{ Im } z_0$$
. Let $D_2 = \begin{pmatrix} 1 & \text{Re} z_0 \\ 0 & 1 \end{pmatrix}$, then $F_{D_2} \circ F_{D_1}(i) = z_0$. Let $D = D_2 D_1$, then $F_D(i) = z_0$.

• $\forall f \in \text{Aut}(\mathbb{H}), \ \exists z_0 \text{ s.t.} \ f(z_0) = \underline{i} \leadsto \exists D \in \overline{\operatorname{SL}_2(\mathbb{R})} \text{ s.t. } F_D(i) = z_0 \leadsto g = f \circ F_D \text{ and } g(i) = i \leadsto g = F_B \text{ for some } B \in \overline{\operatorname{SL}_2(\mathbb{R})} \leadsto f = F_D^{-1} \circ F_B = F_{D^{-1}B}$

1.7 Residue

1.7.1 Laurent series

Recall: f(z) is analytic in Ω and $z_0 \in \Omega$.

$$f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \dots + \frac{f^n(z_0)}{n!}(z - z_0)^n + f_{n+1}(z)(z - z_0)^{n+1}$$

where

$$f_{n+1}(z) = \frac{1}{2\pi i} \int_{C_{\rho}(z_0)} \frac{f(\xi)}{(\xi - z_0)^{n+1}(\xi - z)} d\xi$$

Then we can general the Taylor expansion.

Theorem 1.7.1 (Laurent series). f: analytic in Ω : $\rho < |z - z_0| < \eta$. Then $f(z) = \sum_{-\infty}^{\infty} a_n (z - z_0)^n$ converge in Ω with $a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)d\xi}{(\xi - z_0)^{n+1}}$, where γ : simple closed arc in Ω , z_0 lies inside γ . The part of $\sum_{-\infty}^{-1} a_n (z - z_0)^n$ is called **singular part**.

Proof: Given $z \in \Omega$, choose $\rho < \rho_1 < \eta_1 < \eta$ such that $\rho_1 < |z - z_0| < \eta$, C_1 contain γ and C_2 inside γ . Choose two (black) segments connected C_1 and C_2 do not pass z and let L_1, L_2 be the right and left half curve in below, then $L_1 + L_2 = C_1 - C_2$. WLOG z inside L_1 .

$$f(z) = \frac{1}{2\pi i} \int_{L_1} \frac{f(\xi)}{\xi - z} d\xi + \frac{1}{2\pi i} \int_{L_2} \frac{f(\xi)}{\xi - z} d\xi = \underbrace{\frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)}{\xi - z} d\xi}_{(1)} - \underbrace{\frac{1}{2\pi i} \int_{C_2} \frac{f(\xi)}{\xi - z} d\xi}_{(2)}$$

$$(1) = \frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)d\xi}{(\xi - z_0) \left(1 - \frac{z - z_0}{\xi - z_0}\right)} = \frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)}{\xi - z_0} \left(1 + \frac{z - z_0}{\xi - z_0} + \dots + \frac{\left(\frac{z - z_0}{\xi - z_0}\right)^n}{1 - \frac{z - z_0}{\xi - z_0}}\right) d\xi$$

$$\implies a_n = \frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi$$

and the error is

$$R_n = \frac{(z - z_0)^n}{2\pi i} \int_{C_1} \frac{f(\xi)d\xi}{(\xi - z_0)^n (z - z_0)} \implies |R_n| \le \frac{|z - z_0|^n}{2\pi} \frac{M \cdot 2\pi \eta_1}{\eta_1^n (\eta_1 - |z - z_0|)} \to 0$$

Similarly, we have

$$-(2) = \int_{C_2} \frac{f(\xi)}{z - z_0} \left(\frac{1}{1 - \frac{\xi - z_0}{z - z_0}} \right) d\xi \implies a_{-m} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z_0)^{-m+1}} d\xi$$

Remark 1.7.1. z_0 : isolated singularity $\rightarrow f$ analytic in $\Omega: 0 < |z - z_0| < \eta \implies f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$

- $a_n = 0 \ \forall n < 0 \leadsto z_0$: removable
- $a_n = 0 \ \forall n < -m \ \text{but} \ a_m \neq 0 \leadsto z_0$: pole of order m
- $a_n \neq 0 \ \forall n \to \infty \leadsto z_0$: essential singularity

If z_0 is a pole of order m, then

$$\frac{1}{2\pi i} \int_{C_{\rho}(z_0)} f(z) dz = \underbrace{\frac{1}{2\pi i} \int_{C_0(z_0)} \frac{a_{-m}}{(z - z_0)^m} dz}_{\text{have primitive}} + \dots + \underbrace{\frac{1}{2\pi i} \int_{C_0(z_0)} \frac{a_{-1}}{(z - z_0)} dz}_{\text{have primitive}} + \underbrace{\frac{1}{2\pi i} \int_{C_0(z_0)} p(z) dz}_{\text{analytic}}$$

$$= a_{-1} n(C_{\rho}(z_0), z_0) = a_{-1} =: \operatorname{Res}_{z=z_0} f(z)$$

Definition 1.7.1.

- A region Ω is called **multiply connected** if it is not simply connected
- Ω has the finite **connectivity** n if $\widetilde{C} \setminus \Omega$ has exactly n connected components $A_1, A_2, ..., A_n$ and usually let $\infty \in A_n$.

Recall $\forall \gamma$: cycle in Ω , $n(\gamma, a)$ is constant in $A_i \ \forall i$ and $n(\gamma, a) = 0$ on A_n . For i = 1, ..., n - 1, since A_i is bounded, as in the proof of fact about simply connectivity, $\exists \gamma_i \subset \Omega$ s.t. $n(\gamma_i, a) = 1 \ \forall a \in A_i$ and $n(\gamma_i, b) = 0 \ \forall b \in A_j \neq A_i$. $\forall \gamma$: cycle in Ω , let $c_i = n(\gamma, a) \ \forall a \in A_i$. Since $\forall a \in \widetilde{\mathbb{C}} \setminus \Omega$, say $a \in A_i$, then

$$n(\gamma - c_1\gamma_1 - \dots - c_{n-1}\gamma_{n-1}, a) = n(\gamma, a) - c_i n(\gamma_i, a) = 0$$

i.e. $\gamma \sim c_1 \gamma_1 + \cdots + c_{n-1} \gamma_{n-1}$ w.r.t. Ω . Hence, if f is analytic in Ω , then

$$\int_{\gamma} f dz = c_1 \int_{\gamma_1} f dz + \dots + c_{n-1} \int_{\gamma_{n-1}} f dz$$

f(z) is analytic in Ω except for isolated singularities $a_1,...,a_n$. Let $\Omega'=\Omega\setminus\{a_1,...,a_n\}$ and $\gamma_i=C_{\rho_i}(a_i)$ with $\begin{cases} 0<|z-a|<\rho_i\subset\Omega'\\ \gamma_i\sim 0 \text{ w.r.t. }\Omega \end{cases}$. Let γ be a cycle in Ω' with $\gamma\sim 0$ w.r.t. Ω . Since

$$n(\sum_{i=1}^{n} n(\gamma, a_i)\gamma_i, a_j) = \sum_{i=1}^{n} n(\gamma, a_i)n(\gamma_i, a_j) = n(\gamma, a_j) \ \forall j$$

and $\gamma \sim \sum_{i=1}^{n} n(\gamma, a_i) \gamma_i$ w.r.t. $\Omega, \gamma \sim \sum_{i=1}^{n} n(\gamma, a_i) \gamma_i$ w.r.t. Ω' . Hence, we have

$$\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{i=1}^{n} n(\gamma, a_i) \left(\frac{1}{2\pi i} \int_{\gamma_i} f(z)dz \right)$$

If a_i is pole, then $\frac{1}{2\pi i} \int_{\gamma_i} f(z) dz = \operatorname{Res}_{z=a_i} f(z)$. If all a_i are pole, we can rewrite it as

$$\sum_{i=1}^{n} n(\gamma, a_i) \operatorname{Res}_{z=a_i} f(z)$$

Property 1.7.1 (key fact). If z_0 is a pole of f of order m, then

$$a_{-1} = \operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} \frac{1}{(m-1)!} \left(\frac{d}{dz}\right)^{m-1} (z-z_0)^m f(z)$$

Proof: Since $(z-z_0)^{m-1}f(z) = a_{-m} + a_{-m+1}(z-z_0) + \dots + a_{-1}(z-z_0)^{m-1} + p(z)(z-z_0)^m$. \square

1.7.2 Evaluation definite integrals

$$(1) \ \int_0^{2\pi} \frac{\sin^2 \theta}{5 + 4\cos \theta} d\theta : z = e^{i\theta} \leadsto dz = ie^{i\theta} = izd\theta, \\ \sin \theta = \frac{z - z^{-1}}{2}, \\ \cos \theta = \frac{z + z^{-1}}{2}.$$

$$L = \frac{-1}{4i} \int_{|z|=1} \underbrace{\frac{(z^2 - 1)^2}{z^2 (2z^2 + 5z + 2)}}_{=f} dz = \frac{-2\pi i}{4i} (\operatorname{Res}_{z=-1/2} f + \operatorname{Res}_{z=0} f) = \frac{-5}{4}$$

(2) $\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2 + 1} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1 - \cos 2x}{x^2 + 1} dx$: Consider the curve Γ consists the segment from -R to R and counterclockwise circular arc γ from R to -R with radius R and center in 0.

$$\int_{\Gamma} \frac{1 - e^{2\pi iz}}{z^2 + 1} dz = \int_{-R}^{R} \frac{1 - (\cos 2x + i \sin 2x)}{x^2 + 1} dx + \int_{\gamma} \frac{1 - e^{2\pi iz}}{z^2 + 1} dz$$

Calculate residue, it will be $2\pi i \operatorname{Res}_{z=i} f = \pi (1 - e^{-2})$. Also,

$$\left| \int_{\gamma} f dz \right| \le \int_{\gamma} \frac{1 + |e^{2zi}|}{|z|^2 - 1} |dz| \le \int_{\gamma} \frac{1 + |e^{-2\operatorname{Im} z}|}{|z|^2 - 1} |dz| \le \frac{2\pi R}{R^2 - 1} \to 0 \text{ as } R \to \infty$$

Hence,

$$\pi(1 - e^{-2}) = \lim_{R \to \infty} \left(\int_{-R}^{R} \frac{1 - (\cos 2x + i \sin 2x)}{x^2 + 1} dx + \int_{\gamma} \frac{1 - e^{2\pi i z}}{z^2 + 1} dz \right)$$
$$= \int_{-\infty}^{\infty} \frac{1 - (\cos 2x + i \sin 2x)}{x^2 + 1} dx$$

Consider the real part and thus $L = \pi(1 - e^{-2})$.

(3) $\int_0^\infty \frac{\ln x}{x^2 + a^2} dx$, a > 0: First we check that will converge.

•
$$\int_{1}^{\infty} \frac{\ln x}{x^2 + a^2}$$
 will converge since $\frac{\ln x}{x^2 + a^2} < \frac{1}{x^{1.5}}$ for x sufficiently large.

•
$$\int_0^1 \frac{\ln x}{x^2 + a^2} dx$$
 will converge since in

$$\int_0^1 \frac{-\ln x dx}{x^2 + a^2} dx \le \int_0^1 \frac{-\ln x dx}{a^2} = \frac{-1}{a^2} \left(x \ln x - x \right) \Big|_0^1 = \frac{1}{a^2}$$

Let C_{ρ} be the curve $\{\rho e^{i\theta}: 0 \leq \theta \leq \pi\}$ and $\gamma = \overline{(-R)(-r)} - C_r + \overline{rR} + C_R$. We define $\ln x$ by branch $-\pi/2$. By residue,

$$\int_{\gamma} \frac{\log z}{z^2 + a^2} dz = 2\pi i \operatorname{Res}_{z=ai} \frac{\log z}{z^2 + a^2} = 2\pi i \lim_{z \to ai} \frac{\log z}{z + ai} = \frac{\pi}{a} \left(\ln a + \frac{\pi}{2} \right)$$

On C_R , $z = Re^{i\theta}$, $0 \le \theta \le \pi$

$$\left| \frac{\log z}{z^2 + a^2} \right| = \left| \frac{\ln R + \theta i}{R^2 - a^2} \right| \le \frac{\ln R + \pi}{R^2 - a^2} \implies \left| \int_{C_R} \frac{\log z}{z^2 + a^2} \right| \le \frac{\pi R (\ln R + \pi)}{R^2 - a^2} \to 0 \text{ as } R \to 0$$

On $-C_r$,

$$\left| \int_{-C_r} \frac{\log z}{z^2 + a^2} dz \right| \le \left(\frac{-\ln r + \pi}{a^2 - r^2} \right) \pi r \to 0 \text{ as } r \to 0$$

Hence,

$$\frac{\pi}{a} \left(\ln a + \frac{\pi}{2} i \right) = \lim_{\substack{r \to 0 \\ R \to \infty}} \left(\int_{-R}^{-r} \frac{\ln z}{z^2 + a^2} dz + \int_{r}^{R} \frac{\ln z}{z^2 + a^2} dz + \int_{C_R} f dz + \int_{-C_r} f dz \right)$$

$$= \int_{0}^{\infty} \frac{\ln x}{x^2 + a^2} dx + \int_{-\infty}^{0} \frac{\ln(-x) + \pi i}{x^2 + a^2} dx = 2 \int_{0}^{\infty} \frac{\ln x}{x^2 + a^2} dx + \pi i \int_{0}^{\infty} \frac{dx}{x^2 + a^2}$$

Hence,
$$\int_0^\infty \frac{\ln x}{x^2 + a^2} dx = \frac{\pi \ln a}{2a}$$

1.7.3 Rouche's theorem

Recall: Argument principle: Let $f \not\equiv 0$ be analytic in $B_{\rho}(a)$ and $\gamma \subseteq B_{\rho}(a)$ with $f \neq 0$ on γ . Let z_i be the roots of f(z) = 0, then

$$\sum_{j} n(\gamma, z_j) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

Theorem 1.7.2 (General form). Let f(z) be meromorphic in Ω with zeros a_i 's and the poles b_k 's. Then $\forall \gamma \sim 0$ w.r.t. Ω and $a_i, b_k \notin \gamma$,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)dz}{f(z)} = \sum_{j} n(\gamma, a_j) - \sum_{k} n(\gamma, b_k)$$

Proof: Rearrange a_i 's and b_k 's s.t. there is $h_i \widetilde{a}_i$'s in $\{a_1, a_2, ...\}$ and $\ell_j \widetilde{b}_j$'s in $\{b_1, b_2, ...\}$, where $\widetilde{a}_i \neq \widetilde{a}_j, \widetilde{b}_i \neq \widetilde{b}_j \ \forall i \neq j$. Since zero and pole are isolated, $\exists \gamma_i$ and γ_i' s.t.

$$\begin{cases} n(\gamma_i, \widetilde{a}_j) = n(\gamma_i', \widetilde{b}_j) = \delta_{ij} \\ n(\gamma_i, \widetilde{b}_k) = n(\gamma_i', \widetilde{a}_k) = 0 \\ \gamma_i \sim 0, \gamma_i' \sim 0 \text{ w.r.t. } \Omega \end{cases}$$

We have known that $\gamma \sim \sum_{i} n(\gamma, \tilde{a}_i) \gamma_i + \sum_{j} n(\gamma, \tilde{b}_j) \gamma'_j$ w.r.t. $\Omega' = \Omega \setminus \{a_i, b_j \ \forall i, j\}$. Observe that $\frac{f'(z)}{f(z)}$ is meromorphic. By residue formula,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i} n(\gamma, \widetilde{a}_{i}) \operatorname{Res}_{z=\widetilde{a}_{i}} f + \sum_{j} n(\gamma, \widetilde{b}_{j}) \operatorname{Res}_{z=\widetilde{b}_{j}} f$$

Now, for $a = \tilde{a}_i$, $h = h_i$, write $f(z) = (z - a)^h f_h(z)$, $\frac{f'(z)}{f(z)} = \frac{h}{z - a} + \frac{f'_h(z)}{f_h(z)} \rightsquigarrow \operatorname{Res}_{z=a} \frac{f'(z)}{f(z)} = h$. For $b = \tilde{b}_j$, $\ell = \ell_j$, write $f(z) = (z - b)^{-\ell} g_{\ell}(z)$, $\frac{f'(z)}{f(z)} = \frac{-\ell}{z - b} + \frac{g'_{\ell}(z)}{g_{\ell}(z)} \rightsquigarrow \operatorname{Res}_{z=b} \frac{f'(z)}{f(z)} = -\ell$. Hence,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i} n(\gamma, \widetilde{a}_{i}) h_{i} - \sum_{j} n(\gamma, \widetilde{b}_{j}) \ell_{j} = \sum_{i} n(\gamma, a_{i}) - \sum_{k} n(\gamma, b_{k})$$

Remark 1.7.2. More general, if g(z) is analytic in Ω , then

$$\frac{1}{2\pi i} \int_{\gamma} g(z) \frac{f'(z)}{f(z)} dz = \sum_{i} n(\gamma, a_i) g(a_i) - \sum_{j} n(\gamma, b_j) g(b_j)$$

which can prove by same method in above.

Theorem 1.7.3 (Rouche's theorem). Let $\gamma \sim 0$ w.r.t. Ω and $n(\gamma, z) = 0$ or $1 \ \forall z \notin \gamma$. Let f and g be analytic in Ω . If |f(z) - g(z)| < |f(z)| on γ , then f and g have the same number of zeros inside γ .

Proof: By assumption, $f \neq 0$ and $g \neq 0$ on γ , $\left| \frac{g(z)}{f(z)} - 1 \right| < 1$ on γ . Let $\omega = F(z) = \frac{g(z)}{f(z)} \rightsquigarrow \Gamma := \operatorname{Im} F|_{\gamma} \subset B_1(1) \rightsquigarrow n(\Gamma, 0) = 0$. Then

$$0 = n(\Gamma, 0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{d\omega}{\omega} = \frac{1}{2\pi i} \int_{\gamma} \frac{F'(z)dz}{F(z)}$$

$$= \# \text{ zero of } F - \# \text{ pole of } F \text{ inside } \gamma$$

$$= \# \text{ zero of } g - \# \text{ zero of } f \text{ inside } \gamma$$

Example 1.7.1. Show that $e^z = az^n$ has exactly n solution in |z| < 1, where a > e.

Author: Minerva 31

Proof: $|e^z| = e^x \le e \ \forall z \in C_1(0), \ |-az^n| = a > e \ \forall z \in C_1(0) \implies |-az^n| > |e^z| \ \forall z \in C_1(0) \rightsquigarrow e^z = az^n \text{ and } -az^n \text{ have the same number of zeros in } |z| < 1 \rightsquigarrow e^z = az^n \text{ has exactly } n \text{ solution in } |z| < 1.$

Question 1: Let w = f(z) be analytic in Ω . For $w_0 \in f(\Omega)$, find $z_j(w_0) \in \Omega$ s.t. $f(z_j(w_0)) = w_0$.

Assume that for $|w-w_0| < \delta$, f-w has exactly n roots $z_j(w)$ in $|z-z_0| < \varepsilon$.

• Set $g(z) = z \sim \sum_{j=1}^{n} z_j(w) = \frac{1}{2\pi i} \int_{C_{\varepsilon}(z_0)} \frac{f'(z)}{f(z) - w} z dz$. In particular, n = 1 we have

$$f^{-1}(w) = \frac{1}{2\pi i} \int_{C_{\varepsilon}(z_0)} \frac{f'(z)}{f(z) - w} z dz$$

• Set $g(z) = z^m \rightsquigarrow \sum_{j=1}^n z_j(w)^m = \frac{1}{2\pi i} \int_{C_{\varepsilon}(z_0)} \frac{f'(z)}{f(z) - w} z^m dz$ which is analytic w.r.t. w. Since the elementary symmetric polynomial of $z_1(w), ..., z_n(w)$ is in the \mathbb{C} -algebra generated by k-power sum $z_k(w)$ of $z_1(w), ..., z_n(w)$ which is also analytic in Ω . Hence, we can calculate the roots of $z^n - s_1(w)z^{n-1} + \cdots + (-1)^n s_n(w)$ which is $z_1(w), ..., z_n(w)$.

Question 2: Find the number of zero of f in |z| < R. Write $f(z) = P_{n-1} + z^n f_n(z)$. If we can choose n s.t. $R^n |f_n(z)| < |P_{n-1}(z)|$ on |z| = R, then # zero of f(z) = # zero of $P_{n-1}(z)$ in |z| < R.

1.8 Sum and product

Definition 1.8.1. We write $f_n \xrightarrow{\overline{\text{unif}}} f$ in Ω if f_n converge uniform on each compact subset in Ω .

Theorem 1.8.1 (Weierstrass theorem). f_n : analytic in Ω_n with $(\Omega_n \subset \Omega_{n+1})$ and $f_n \xrightarrow{\overline{\text{unif}}} f$ in $\Omega = \bigcup_n \Omega_n$. Then f is analytic and $f'_n \xrightarrow{\overline{\text{unff}}} f'$.

Proof:

• For a fixed $\overline{B_{\rho}}(a) \subset \Omega$, $\exists n_0 \text{ s.t. } \overline{B_{\rho}(a)} \subseteq \Omega_n \ \forall n \geq n_0$. By Cauchy integral formula,

$$f_n(z) = \frac{1}{2\pi i} \int_{C_\rho(a)} \frac{f_n(\xi)}{\xi - z} d\xi \text{ in } B_\rho(a)$$

By assumption, since $f_n \to f$ uniformly converge in $B_{\rho}(a)$

$$f(z) = \lim_{n \to \infty} f_n(z) = \frac{1}{2\pi i} \int_{C_0(a)} \frac{\lim_{n \to \infty} f_n(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{C_0(a)} \frac{f(\xi)}{\xi - z} d\xi$$

which is analytic.

• $\forall n \geq n_0, f'_n(z) = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{f_n(\xi)}{(\xi - z)^2} d\xi$ in $B_{\rho}(a)$. For all $\delta < \rho$, choose $\delta' \in (\delta, \rho)$. Since f_n uniformly converge to f in $\overline{B_{\delta'}(a)}$, for sufficiently large n, we have

$$|f'(z) - f'_n(z)| \le \frac{1}{2\pi} \int_{C_{\delta'}(a)} \frac{|f(\xi) - f_n(\xi)|}{|\xi - z|^2} |d\xi| \le \frac{\varepsilon \delta \pi}{2\pi |\delta' - \delta|^2} \ \forall z \in \overline{B_{\delta}(a)}$$

and thus f'_n is uniformly converge to f in $\overline{B_\delta(a)}$. Since any compact subset of Ω can be covered by $\{\overline{B(\delta_1)(a_1)},...,\overline{B(\delta_k)(a_k)}\}$, the result follow.

Theorem 1.8.2 (Mittag-Leffler theorem). Let $\{b_n\} \subset \mathbb{C} \setminus \{0\}$ with $\lim_{n \to \infty} b_n = \infty$ and let $P_m(z) \in \mathbb{C}[z]$ with $P_m(0) \neq 0$. Then \exists a meromorphic function f(z) in \mathbb{C} with pole at b_m 's and singularity part is $P_m(1/(z-b_m))$.

Proof:

• Since $P_m\left(\frac{1}{z-b_m}\right)$ is analytic for $|z|<|b_m|$, consider the Taylor series at z=0

$$F_m(z) := P_m\left(\frac{1}{z - b_m}\right) = a_0^m + a_1^m + \dots + \left(\frac{1}{2\pi i} \int_{C_{|b_m|/2}(0)} \frac{F_m(\xi)}{\xi^{n+1}(\xi - z)} d\xi\right) z^{m+1}$$

Let $M_m := \max_{|z|=|b_m|/2} |F_m(z)|$, $q_m(z) = a_0^m + \dots + a_{n_m}^m z^{n_m}$ and choose n_m s.t. $2^{n_m} \ge M^m \cdot 2^m$.

Then

$$|F_m(z) - q_m(z)| \le \frac{M_m}{2\pi} \frac{|z|^{n_m+1}}{(|b_m|/2)^{n_m+1}} \frac{2\pi |b_m|/2}{|b_m|/4} = \frac{M_m}{2^{n_m}} \le \frac{1}{2^m}$$

 $\forall N \in \mathbb{N}, \exists n_N > 0 \text{ s.t. } n \geq n_N, |b_n| > N. \text{ So for } |z| \leq N/4 < |b_n|/4 \ \forall n \geq n_N,$

$$|F_n(z) - q_n(z)| \le \left(\frac{1}{2}\right)^n \ \forall n \ge n_N, \ |z| \le \frac{|N|}{4}$$

By Weierstrass M-test, $g_N(z) := \sum_{n=n_N}^{\infty} (F_n(z) - q_n(z))$ converge uniformly on $|z| \le N/4$ and thus is analytic in |z| < N/4. Define

$$f_N(z) = \sum_{n=1}^{N_n-1} (F_n(z) - q_n(z)) + g_N(z)$$
: meromorphic $|z| < N/4$ with poles $b_1, ..., b_{n_N-1}$

Notice that

$$|g_{N+1} - g_N| = \left| \sum_{n=n_N}^{n_{N+1}-1} (F_n(z) - q_n(z)) \right| \le \sum_{n=n_N}^{n_{N+1}-1} \frac{1}{2^n} \le \frac{1}{2^{n_N}} \to 0 \text{ as } N \to \infty$$

Then g_N is Cauchy sequence and thus $g_N \to g$ uniformly in \mathbb{C} .

$$|f_{N+1} - f_N| \le \left| \sum_{n=n_N}^{n=n_{N+1}} (F_n(z) - q_n(z)) \right| + |g_{N+1} - g_N| \le \frac{2}{2^{n_N - 1}} \text{ for } |z| \le N/4$$

Then f_N is Cauchy sequence and thus

$$f_n \to f = \sum_{n=1}^{\infty} (F_n(z) - q_n(z)) + g(z)$$
 as $N \to \infty$

where g(z) is entire function.

Remark 1.8.1. If we consider $\{b_m\}_{m\in\mathbb{N}}\cup\{0,...,0\}$, then $\widetilde{f}(z)=f(z)+\sum_{i=1}^{\ell}\overline{P}_i(1/z)$.

Example 1.8.1. $f(z) = \frac{\pi^2}{\sin^2 \pi z}$ has pole when $z \in \mathbb{Z}$.

$$\frac{\pi^2}{\sin^2 \pi z} = \frac{\pi^2}{\left(\sum_{n=1}^{\infty} \frac{(-\pi z)^{2n-1}}{(2n-1)!}\right)^2} = \frac{1}{z^2} \left(1 - \frac{(\pi z)^2}{3!} + \cdots\right)^{-2} = \frac{1}{z^2} \left(1 - \left(\frac{(\pi z)^2}{3!} + \cdots\right) + \cdots\right)^2$$

The singularity part at 0 is $\frac{1}{z^2}$. Since $\sin^2 \pi (z - n) = \sin^2 \pi z$. the singularity part at n is $\frac{1}{(z-n)^2}$. Then

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} + g(z)$$

where g(z) analytic in \mathbb{C} . Claim g(z) = 0:

subproof : g has period $\omega = 1$.

$$|\sin \pi z|^2 = \cosh^2 \pi y - \cos^2 \pi x$$

and thus

$$\frac{\pi^2}{|\sin^2 \pi z|} \le \frac{\pi^2}{|\cosh^2 \pi y| - \cos^2 \pi x} \le \frac{\pi^2}{|\cosh^2 \pi y| - 1} \xrightarrow[0 \le x \le 1]{\text{unif.}} 0 \text{ as } |y| \to \infty$$

and $\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} \xrightarrow{\text{unif.} \atop 0 \le x \le 1} 0$ as $|y| \to \infty \implies g(z) \xrightarrow{\text{unif.} \atop 0 \le x \le 1} 0$ as $|y| \to \infty$. Then |g(z)| is bounded in $0 \le x \le 1$ and thus bounded in \mathbb{C} . By Lioville's theorem, g = c is constant. Since $\lim_{|y| \to \infty} g(z) = 0 \leadsto g = 0$.

Definition 1.8.2.

- $p_n \neq 0 \ \forall n, \ q_n = p_1 p_2 \cdots p_n, \ \prod_{n=0}^{\infty} p_n = \lim_{n \to \infty} q_n.$
- In general, $\prod_{n=1}^{\infty} p_n$ converge $\iff \#\{p_i|p_i=0\} < \infty$ and $\prod_{p_n \neq 0} p_n$ exists.

Fact 1.8.1.

- $\prod_{n=1}^{\infty} p_n$ converge $\implies \lim_{n\to\infty} p_n = 1 \rightsquigarrow \prod_{n=1}^{\infty} (1+a_n)$ with $\lim_{n\to\infty} a_n = 0$.
- $\prod (1+a_n)$ with $(1+a_n) \neq 0 \iff \sum \log(1+a_n)$ converge (principal branch).
- $\prod (1+a_n)$ absolutely converge $\iff \sum |a_n|$ converge :

$$\lim_{z \to 0} \frac{\log(1+z)}{z} = 1 \longrightarrow \forall \varepsilon > 0, \ (1-\varepsilon)|a_n| < |\log(1+a_n)| < (1+\varepsilon)|\varepsilon|$$

• g(z): entire $\leadsto f(z) = e^{g(z)}$: entire and $\neq 0$.

• f(z): entire and never zero, for a fixed z_0

$$g(z) := \int_{\gamma_z} \frac{f'(\xi)}{f(\xi)} d\xi + c_0, \ e^{c_0} = f(z_0)$$

where γ_z . Then $g'(z) = \frac{f'(z)}{f(z)} \rightsquigarrow \frac{d}{dz} \left(f(z)e^{-g(z)} \right) = 0 \rightsquigarrow f(z)e^{-g(z)} = c \xrightarrow{z=z_0} c = 1 \rightsquigarrow f(z) = e^{g(z)}$.

Theorem 1.8.3 (Weierstrass). Given $\{a_n\} \subseteq \mathbb{C} \setminus \{0\}$ with $\lim_{n \to \infty} a_n = \infty$, there exists entire functions with zeros $= \{a_n\}$. possibly including 0.

Proof:

- # of $\{a_n\} < \infty : f(z) = z^m e^{g(z)} \prod_{i=1}^n \left(1 \frac{z}{a_i}\right), g(z) : \text{entire function.}$
- # of $\{a_n\} = \infty$:
 - •• $\sum |a_n|^{-1}$ converge $\iff \sum \frac{|z|}{|a_n|}$ converge $\forall |z| \leq R \iff \prod \left(1 \frac{z}{a_n}\right)$ converge uniform $\forall |z| < R$. So $f(z) = z^m \prod_{n=1}^{\infty} \left(1 \frac{z}{a_n}\right)$ analytic in \mathbb{C} .
 - •• In general, \exists polynomial $p_n(z)$ s.t. $\prod \left(1 \frac{z}{a_n}\right) e^{p_n(z)}$ converge to entire function. subproof: For R > 0, say $|a_n| > R \ \forall n > N$. For $|z| \le R$, $\forall n \in \mathbb{N}$

$$\log\left(1-\frac{z}{a_n}\right) = \frac{z}{a_n} - \frac{1}{2}\left(\frac{z}{a_n}\right)^2 - \frac{1}{3}\left(\frac{z}{a_n}\right)^3 - \cdots$$

Let $p_n(z) = \sum_{k=1}^{m_n} \frac{1}{k} \left(\frac{z}{a_n} \right)^k$ for some $m_n \in \mathbb{Z}_{\geq 0}$. If $R_n(z) = \log \left(1 - \frac{z}{a_n} \right) + P_n(z)$, then

$$|R_n(z)| \le \frac{1}{m_n + 1} \left(\frac{R}{|a_n|}\right)^{m_n + 1} \left(1 - \frac{R}{|a_n|}\right)^{-1}$$

Choose $m_n = n$, then by root test, $\sum_{n=N}^{\infty} \frac{1}{m_n + 1} \left(\frac{R}{|a_n|}\right)^{m_n + 1}$ converge. Then

- ••• $R_n(z) \to 0 \leadsto -\pi < \operatorname{Im} R_n(z) < \pi \ \forall n \ge N_0 > N.$
- ••• $\sum_{n=N_0}^{\infty} R_n$ converge absolutely convergent and uniformly for $|z| \leq R \rightsquigarrow \prod_{n=N_0}^{\infty} \left(1 \frac{z}{a_n}\right) e^{p_n(z)}$ is analytic for $|z| \leq R$ and thus

$$\prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n} \right) e^{p_n(z)}$$

is analytic for $|z| \leq R$, where $p_n(z) \in \mathbb{C}[z]$. By a similar argument for Mittag-Leffler theorem, $\prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right) e^{p_n(z)}$ is analytic in \mathbb{C} .

Hence, in general,

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n} \right) e^{\frac{z}{a_n} + \dots + \frac{1}{m_n} \left(\frac{z}{m_n} \right)^{m_n}}$$

Author: Minerva 35

1.9. GAMMA FUNCTION Minerva notes

Definition 1.8.3.

• $m_n = n$, $E_n(z/m) = \left(1 - \frac{z}{a_m}\right) \exp\left(\frac{z}{a_n} + \dots + \frac{1}{n}\left(\frac{z}{a_n}\right)^n\right)$ is called **canonical factor**

• h is called the **genus of canonical product** of f if h is the smallest integer s.t.

$$\sum \frac{1}{h+1} \left(\frac{R}{|a_n|}\right)^{h+1}$$
 converge i.e. $\sum \frac{1}{|a_n|^{h+1}}$ converge

Example 1.8.2. $f(z) = \sin \pi z = z e^{g(z)} \prod_{n \neq 0} \left(1 - \frac{z}{n}\right) e^{z/n}$, since $\sum n^{-1}$ diverge and $\sum n^{-2}$ converge $\rightsquigarrow m_n = 1 \ \forall n$. Consider f'(z)/f(z), we have

$$\pi \cot \pi z = \frac{1}{z} + g'(z) + \underbrace{\sum_{n \neq 0} \left(\frac{1}{z - n} + \frac{1}{n} \right)}_{(1)}$$

Recall that $\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$ and integrate both side :

$$\sum_{n \neq 0} \left(\frac{1}{z - n} + \frac{1}{n} \right) = \int_0^z \left(\frac{\pi^2}{\sin^2 \pi x} - \frac{1}{x^2} \right) dx = \pi \cot \pi z - \frac{1}{z}$$

Hence, g'(z) = 0 and thus g(z) is constant. $\because \lim_{z \to 0} \frac{\sin \pi z}{z} = \pi \therefore e^{g(z)} = \pi$. Now we check that (1) is converge for all $z \in \mathbb{C}$.

$$\sum_{n\neq 0} \left(\frac{1}{z-n} + \frac{1}{n} \right) = z \sum_{n\neq 0} \frac{1}{n(z-n)}$$

which will converge by comparison test with $\sum n^{-2}$.

Proposition 1.8.1. If f(z) is meromorphic in \mathbb{C} , then F(z) = f(z)/g(z), where f(z), g(z): entire.

Proof: Let g(z) be an entire function with zero = poles of $F(z) \rightsquigarrow g(z)F(z)$ is an entire function $f(z) \rightsquigarrow F(z) = f(z)/g(z)$.

1.9 Gamma function

Recall that

$$\frac{\sin \pi z}{\pi} = z \prod_{n \neq 0} \left(1 - \frac{z}{n} \right) e^{z/n} \underbrace{\prod_{n \neq 0} \left(1 + \frac{z}{n} \right) e^{z/n}}_{:=G(z)}$$

Observation: zero of $G(z-1)=\{0,-1,-2,...\} \rightarrow G(z-1)=zG(z)e^{g(z)}$ for some g(z): entire. Consider $\frac{(\cdot)'}{(\cdot)}$, we have

$$\sum_{n=1}^{\infty} \left(\frac{1}{z-1+n} + \frac{1}{n} \right) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z+n} + \frac{1}{n} \right) + g'(z) \implies g'(z) = 0 \text{ i.e. } g(z) = c$$

1.9. GAMMA FUNCTION Minerva notes

Let
$$z = 1$$
, $1 = G(0) = e^c \prod_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) e^{-1/n} \leadsto e^{-c} = \prod_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) e^{-1/n} = \lim_{n \to \infty} (n+1) e^{-(1+\dots+1/n)}$, then $c = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log(n+1)\right) = \gamma$ which is Euler's constant. Then $G(z-1) = zG(z)e^c$.

•
$$H(z) := e^{cz}G(z) \rightsquigarrow H(z-1) = e^{c(z-1)}G(z-1) = ze^{cz}G(z) = zH(z)$$
.

•
$$\Gamma(z) := 1/zH(z)$$
, then $\Gamma(z-1) = \frac{1}{(z-1)H(z-1)} = \frac{1}{z(z-1)H(z)} = \frac{1}{z-1}\Gamma(z)$
 $\implies \Gamma(z) = (z-1)\Gamma(z-1)$

In particular, $\Gamma(1) = 1/H(1) = 1/e^c G(1) = 1$, $\Gamma(2) = 1$, $\cdots \Gamma(n) = (n-1)!$.

•• $\Gamma(z) = 1/(ze^{cz}G(z)) = z^{-1}e^{-cz}\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1}e^{-z/n}$ which is meromorphic function with poles $0, -1, -2, \dots$ and no zero.

••
$$\Gamma(1-z) = (1-z)^{-1}e^{cz-z} \prod_{n=1}^{\infty} \left(1 + \frac{1-z}{n}\right)^{-1} e^{(1-z)/n}$$
. Then

$$\Gamma(z)\Gamma(1-z) = z^{-1}(1-z)^{-1}e^{-c}\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1}\left(1+\frac{1-z}{n}\right)^{-1}e^{1/n}$$

$$= \frac{1}{z(1-z)}\prod_{n=1}^{\infty}\left(\left(1+\frac{z}{n}\right)\left(1+\frac{1-z}{n}\right)\left(\frac{n}{n+1}\right)\right)^{-1}$$

$$= \frac{1}{z(1-z)}\prod_{n=1}^{\infty}\left(\left(1+\frac{z}{n}\right)\left(1-\frac{z}{n+1}\right)\right)^{-1}$$

$$= \frac{1}{z(1-z)}\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1}(e^{z/n})^{-1}\prod_{n=1}^{\infty}\left(1-\frac{z}{n+1}\right)^{-1}(e^{-z/(n+1)})$$

$$= \frac{1}{z(1-z)}\frac{1}{G(z)}\cdot\frac{1-z}{G(-z)} = \frac{\pi}{\sin\pi z}$$

In particular, $\Gamma(1/2)^2 = \frac{\pi}{\sin(\pi/2)} \implies \Gamma(1/2) = \sqrt{\pi}$.

•• Legendre's duplication formula : $\sqrt{\pi}\Gamma(2z) = 2^{2z-1}\Gamma(z)\Gamma(z+1/2)$:

•••
$$\frac{\Gamma'(z)}{\Gamma(z)} = \frac{-1}{z} - c + \sum_{n=1}^{\infty} \left(\frac{-1}{z+n} + \frac{1}{n} \right)$$
 and $\frac{d}{dz} \left(\frac{\Gamma'(z)}{\Gamma(z)} \right) = \frac{1}{z^2} + \sum_{n=1}^{\infty} \frac{1}{(z+n)^2} = \sum_{n=0}^{\infty} \frac{1}{(z+n)^2}$ and thus

$$\frac{d}{dz} \left(\frac{\Gamma'(z)}{\Gamma(z)} + \frac{\Gamma'(z+1/2)}{\Gamma(z+1/2)} \right) = 4 \left(\sum_{n=0}^{\infty} \frac{1}{(2z+2n)^2} + \sum_{n=0}^{\infty} \frac{1}{(2z+1+n)^2} \right) = 2 \frac{d}{dz} \left(\frac{\Gamma'(2z)}{\Gamma(2z)} \right)$$

Integral in both side we have

$$\frac{\Gamma'(z)}{\Gamma(z)} + \frac{\Gamma'(z+1/2)}{\Gamma(z+1/2)} = \frac{\Gamma'(2z)}{\Gamma(2z)} + a$$

Integral in both side we have

$$\Gamma(z)\Gamma(z+1/2) = \Gamma(2z)e^{az+b}$$

Substitute z = 1, 1/2, we have

$$\begin{cases} \Gamma(1)\Gamma(3/2) = \Gamma(2)e^{a+b} \\ \Gamma(1/2)\Gamma(1) = \Gamma(1)e^{a/2+b} \end{cases} \implies \begin{cases} e^{a+b} = \sqrt{\pi}/2 \\ e^{a/2+b} = \sqrt{\pi} \end{cases} \implies \begin{cases} e^a = 1/4 \\ e^b = 2\sqrt{\pi} \end{cases}$$

Hence, $2^{2z-1}\Gamma(z)\Gamma(z+1/2) = \Gamma(2z)\sqrt{\pi}$.

1.10 Entire function

Definition 1.10.1. $u: \mathbb{C} \to \mathbb{R}$ is harmonic if u_{xx}, u_{yy} continuous and $\Delta u = u_{xx} + u_{yy} = 0$.

Fact 1.10.1.

- (1) f = u + iv: analytic $\rightsquigarrow u, v \in \mathcal{H}$: By Cauchy Riemann equation, $u_x = v_y, u_y = -v_x \rightsquigarrow u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0$
- (2) $u \in \mathcal{H}(\Omega)$ with Ω : simply connected $\rightsquigarrow \exists v \in \mathcal{H}(\Omega)$ s.t. f = u + iv is analytic in Ω :
 - $g = u_x iu_y$ is analytic, since $\begin{cases} u_{xx} = (-u_y)_y & \text{, since } u \in \mathcal{H} \\ u_{xy} = -(-u_y)_x \end{cases}$
 - Since Ω is simply connected, g has a primitive $f(z) = \int_{z_0}^z g(z)dz + u(x_0, y_0)$
 - $f = U + iV \rightarrow f' = U_x iU_y$ and equal to $g = u_x iu_y \implies U_x = u_x, U_y = u_y$ and thus U = u + c
 - $f(z_0) = u(x_0, y_0) = U(x_0, y_0) + iV(x_0, y_0) \rightsquigarrow c = 0$
- (3) Mean-value property : $u \in \mathcal{H}$, let $v \in \mathcal{H}$ s.t. f = u + iv is analytic.

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta \implies u(x_0, y_0) = \frac{1}{2\pi i} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$$

(4) Poisson's formula : $u \in \mathcal{H}(\overline{B_R(0)}), \forall z \in B_R(0)$

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} u(Re^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}\left(\frac{Re^{i\theta} + z}{Re^{i\theta} - z}\right) u(Re^{i\theta}) d\theta$$

proof: For $a \in B_R(0)$, i.e. |a| < R. Consider $w = T(\xi) = \frac{R(R\xi + a)}{R + \overline{a}\xi}$, then

$$T: \quad |\xi| \le 1 \quad \longrightarrow \quad |w| \le R$$
$$\xi = 0 \quad \longmapsto \quad w = a$$

Then $u(T(\xi)) \in \mathcal{H}(|\xi| < 1)$, then

$$u(a) = u(T(0)) = \frac{1}{2\pi} \int_{|\xi|=1} u(T(\xi)) d\arg \xi$$

Notice that $\xi = |\xi| e^{i \arg \xi} \leadsto d\xi = i |\xi| e^{i \arg \xi} d \arg \xi \leadsto d \arg \xi = \frac{d\xi}{i\xi}$. Also

$$\xi = \frac{R(w-a)}{R^2 - \overline{a}w} \rightsquigarrow \frac{1}{\xi} = \frac{R^2 - \overline{a}w}{R(w-a)} \text{ and } d\xi = \frac{R(R^2 - |a|^2)}{(R^2 - \overline{a}w)^2} dw$$

Also, for $|\xi| = 1$, $|T(\xi)|^2 = \frac{R^2(R\xi + a)(R\overline{\xi} + \overline{a})}{(R + \overline{a}\xi)(R + a\overline{\xi})} = R^2$. Let $w = Re^{i\theta}$, then $-idw = wd\theta$.

$$\frac{d\xi}{i\xi} = \frac{(R^2 - |a|^2)dw}{i(w - a)(R^2 - \overline{a}w)} = -i\left(\frac{1}{w - a} + \frac{\overline{a}}{R^2 - \overline{a}w}\right)dw = \left(\frac{w}{w - a} + \frac{\overline{a}w}{w\overline{w} - \overline{a}w}\right)d\theta$$
$$= \left(\frac{a}{w - a} + \frac{\overline{a}}{\overline{w} - \overline{a}}\right) = \frac{R^2 - |a|^2}{|w - a|^2}d\theta$$

Also,

$$\operatorname{Re}\left(\frac{w+a}{w-a}\right) = \frac{1}{2}\left(\frac{w+a}{w-a} + \frac{\overline{w}+\overline{a}}{\overline{w}-\overline{a}}\right) = \frac{R^2 - |a|^2}{|w-a|^2}$$

which proved the equation.

Theorem 1.10.1 (Jensen's formula). f: analytic for $|z| \leq \rho$ with $f(0) \neq 0$. Then

$$\log|f(0)| = -\sum_{i=1}^{n} \log\left(\frac{\rho}{|a_i|}\right) + \frac{1}{2\pi} \int_{0}^{2\pi} \log|f(\rho e^{i\theta})| d\theta$$

where $a_1, ..., a_n$ are zero of f in $\overline{B_{\rho}(0)}$.

Proof:

- If $f \neq 0$ in $|z| \leq \rho$: OK!
- $\forall i, |a_i| = \rho$: By induction on n:

$$n=1:$$
 Let $g=\frac{f}{z-a_1} \leadsto g \neq 0$ in $|z| \leq \rho$ and thus

$$\log|g(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log|g(\rho e^{i\theta})| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \left(\log|f(\rho e^{i\theta})| - \log\rho|e^{i\theta} - e^{i\theta_0}| \right) d\theta$$

where $a_1 = \rho e^{i\theta_0}$. We can calculate that

$$\frac{1}{2\pi} \int_0^{2\pi} \log|1 - e^{i\theta}| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \log 2 \left| \sin \frac{\theta}{2} \right| d\theta = \log 2 + \frac{2}{\pi} \underbrace{\int_0^{\pi/2} \log \sin x dx}_{\text{ind}} \tag{1}$$

Notice that $x^{1/2} \log \sin x = x^{1/2} \log x + x^{1/2} \log (\sin x/x) \to 0$ as $x \to 0$, so I converge. Consider $x = \pi/2 - \theta$, then

$$I = \int_{\pi/2}^{0} \log \cos x (-dx) = \int_{0}^{\pi} \log \cos x dx$$

and thus

$$2I = \int_0^{\pi} \log \sin x dx = 2 \int_0^{\pi/2} \log \sin 2\theta d\theta = \frac{1}{2} \int_0^{\pi/2} \log(2 \sin \theta \cos \theta) d\theta = \pi \log 2 + 4I$$

So we have $I = \frac{-\pi}{2} \log 2$ and thus (1) = 0. So

$$\log|f(0)| - \log|\rho| = \log|g(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log|f(e^{i\theta})| d\theta - \log|\rho| \implies \log|f(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log|f(e^{i\theta})| d\theta - \log|\rho|$$

For n > 1, we can do same argument.

• In general, let $F(z) = f(z) \prod_{i=1}^{n} \frac{\rho^2 - \overline{a_i}z}{\rho(z - a_i)} \neq 0$ in $|z| < \rho$, since $|\rho^2/\overline{a_i}| \ge \rho$. Also, |F(z)| = |f(z)| on $z = \rho$, so

$$\log|f(0)| + \sum_{i=1}^{n} \log \frac{\rho}{|a_i|} = \log|F(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log|F(\rho e^{i\theta})| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \log|f(\rho e^{i\theta})| d\theta$$

Author: Minerva 39

Notice that $\log(z)$ is analytic in \mathbb{C} except one line, and $\log|z|$ be the real part of $\log(z)$ which is harmonic. Then we have below formula.

Theorem 1.10.2 (Poisson-Jensen's formula). For $z \in B_{\rho}(0)$ with $f(z) \neq 0$, by Possion formula for $\log |F(z)|$,

$$\log|f(z)| + \sum_{i=1}^{m} \log\left|\frac{\rho^2 - \overline{a_i}z}{\rho(z - a_i)}\right| = \log|F(z)| = \int_0^{2\pi} \operatorname{Re}\left(\frac{\rho e^{i\theta} + z}{\rho e^{i\theta} - z}\right) \log|f(\rho e^{i\theta})| d\theta$$

Definition 1.10.2. Let f be an entire function. The **order** of f is defined by

$$\lambda := \limsup_{r \to \infty} \frac{\log \log M(\rho)}{\log \rho} \text{ where } M(\rho) = \max_{|z| = \rho} |f(z)|$$

Fact 1.10.2. λ is the smallest number s.t. $M(\rho) \leq e^{\rho^{\lambda+\varepsilon}}$ for any $\varepsilon > 0$ as soon as large enough.

Proof:

• $\lambda = \lim_{\delta \to \infty} \sup_{\rho \geq \delta} \frac{\log \log M(\rho)}{\log \rho} \rightsquigarrow \forall \varepsilon > 0, \ \exists \delta_0 > 0 \text{ s.t. for all } \delta > \delta_0$

$$\left| \sup_{\rho \ge \delta} \frac{\log \log M(\rho)}{\log \rho} - \lambda \right| < \varepsilon \implies \frac{\log \log M(\rho)}{\log \rho} < \lambda + \varepsilon \ \forall \rho \ge \delta_0$$

and thus $M(\rho) \leq e^{\rho^{\lambda+\varepsilon}}$.

• For $\mu < \lambda$, let $\varepsilon = (\lambda - \mu)/3 \rightsquigarrow \exists \rho > 0$ s.t. $\frac{\log \log M(\rho)}{\log \rho} > \lambda - \varepsilon = \mu + 2\varepsilon$ i.e. $M(\rho) > e^{\mu + 2\varepsilon}$.

Theorem 1.10.3 (Main theorem). Let f(z) be the entire function with order $\lambda < \infty$ and h be the largest integer $\leq \lambda$ i.e. $h \leq \lambda < h + 1$. If $a_1, a_2, ...$ be the zero of f(z) and $0 \neq a_i \ \forall i$, then

• $\sum |a_n|^{-(h+1)}$ converge

• $f(z) = e^{g(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right) e^{\frac{z}{a_n} + \dots + \frac{1}{h} \left(\frac{z}{a_n}\right)^h}$ with g(z) is a polynomial with $\deg \leq h$.

Proof:

• Assume $\mu(\rho)$ be the number of a_i 's with $|a_i| \leq \rho$, then $n \leq \mu(|a_n|)$. By Jensen's formula,

$$\log|f(0)| = -\sum_{i=1}^{\mu(2\rho)} \log\left|\frac{2\rho}{a_i}\right| + \frac{1}{2\pi} \int_0^{2\pi} |f(2\rho e^{i\theta})| d\theta$$

Observer that if $\rho \leq |a_i| \leq 2\rho \rightsquigarrow 0 \leq \log \left| \frac{2\rho}{a_i} \right| \leq \log 2$. Then

$$\mu(\rho)\log 2 \le \sum_{|a_i| < \rho} \log \frac{2\rho}{|a_i|} \le \sum_{i=1}^{\mu(2\rho)} \log \frac{2\rho}{|a_i|} = \frac{1}{2\pi} \int_0^{2\pi} \log |f(2\rho e^{i\theta})| d\theta - \log |f(0)|$$

and $\log |f(2\rho e^{i\theta})| \le \log M(2\rho) < (2\rho)^{\lambda+\varepsilon}$.

$$\implies \mu(\rho) \le \frac{1}{\log 2} (2^{\lambda + \varepsilon} \rho^{\lambda + \varepsilon} - \log |f(0)|) < K(2\rho)^{\lambda + \varepsilon}$$

for some constant K > 0. So $n \le \mu(|a_n|) < K(2|a_n|)^{\lambda+\varepsilon}$. Choose $\varepsilon > 0$ s.t. $\lambda + \varepsilon < h + 1$ and thus

$$|a_n|^{-(h+1)} = (|a_n|^{-(\lambda+\varepsilon)})^{\frac{h+1}{\lambda+\varepsilon}} \le \frac{2^{h+1} K^{\frac{h+1}{\lambda+\varepsilon}}}{n^{\frac{h+1}{\lambda+\varepsilon}}}$$

Since $\frac{h+1}{\lambda+\varepsilon} > 1$, $\sum |a_n|^{-(h+1)}$ converge.

• By Poisson-Jensen's formula,

$$\log|f(z)| = -\sum_{i=1}^{\mu(\rho)} \log \left| \frac{\rho^2 - \overline{a_i}z}{\rho(z - a_i)} \right| + \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}\left(\frac{\rho e^{i\theta} + z}{\rho e^{i\theta} - z} \right) \log|f(\rho e^{i\theta})| d\theta$$

Note
$$f = u + iv$$
, then $f' = 2\frac{\partial u}{\partial z}$, $\frac{f'(z)}{f(z)} = (\log f(z))' = 2\frac{\partial}{\partial z}\log|f(z)|$

••
$$\frac{\partial}{\partial z} \left(\sum 2 \log \left| \frac{\rho^2 - \overline{a_i} z}{\rho(z - a_i)} \right| \right) = \sum \frac{\partial}{\partial z} \log \left(\frac{\rho^2 - \overline{a_i} z}{\rho(z - a_i)} \right) \left(\frac{\rho^2 - a_i \overline{z}}{\rho(\overline{z} - \overline{a_i})} \right) = -\sum \left(\frac{1}{z - a_i} + \frac{\overline{a_i}}{\rho^2 - \overline{a_i} z} \right)$$

••
$$2\frac{\partial}{\partial z} \operatorname{Re} \left(\frac{\rho e^{i\theta} + z}{\rho e^{i\theta} - z} \right) = \left(\frac{\rho e^{i\theta} + z}{\rho e^{i\theta} - z} \right)' = \frac{2\rho e^{i\theta}}{(\rho e^{i\theta} - z)^2}$$

Hence,

$$\frac{f'(z)}{f(z)} = \sum_{i=1}^{\mu(\rho)} \frac{1}{z - a_i} + \sum_{i=1}^{\mu(\rho)} \frac{\overline{a_i}}{\rho^2 - \overline{a_i}z} + \frac{1}{\pi} \int_0^{2\pi} \frac{\rho e^{i\theta}}{(\rho e^{i\theta} - z)^2} \log|f(\rho e^{i\theta})| d\theta$$

Differentiate h times, we have

$$\left(\frac{f'(z)}{f(z)}\right)^{(h)} = \sum_{i=1}^{\mu(\rho)} \frac{-h!}{(a_i - z)^{h+1}} + \sum_{\underline{i=1}}^{\mu(\rho)} \frac{h! \cdot \overline{a_i}^{h+1}}{(\rho^2 - \overline{a_i}z)^{h+1}} + \underbrace{\frac{2}{\pi} \int_0^{2\pi} \frac{(h+1)! \rho e^{i\theta}}{(\rho e^{i\theta} - z)^{h+2}} \log|f(\rho^{i\theta})| d\theta}_{(3)}$$

•• (3): If $\rho > 2|z|$, then

$$|(3)| \le \frac{(h+1)! \cdot 2}{\pi} \int_0^{2\pi} \frac{\log M(\rho)}{(\rho - |z|)^{h+2}} d\theta = \frac{4(h+1)! \log M(\rho)}{\rho^{h+1} (1 - |z|/\rho)^{h+2}}$$

since $\log M(\rho) \le \rho^{\lambda+\varepsilon} \ \forall \varepsilon > 0 \leadsto \rho^{-(h+1)} \log M(\rho) \le \rho^{\lambda-h-1+\varepsilon}$. Choose ε s.t. $\lambda - h - 1 + \varepsilon < 0$. Hence, $(3) \to 0$ as $\rho \to \infty$.

•• $(2): \rho > 2|z|, |a_i| \le \rho$, then

$$|(2)| \le h! \sum_{i=1}^{\mu(\rho)} \frac{\rho^{h+1}}{(\rho^2/2)^{h+1}} = h! \cdot \mu(\rho) 2^{h+1} \rho^{-(h+1)} < h! \cdot K 2^{h+1+\lambda+\varepsilon} \rho^{\lambda+\varepsilon-h-1} \to 0$$

as $\rho \to \infty$.

Therefore,

$$\left(\frac{f'(z)}{f(z)}\right)^{(h)} = -h! \sum_{i=1}^{\infty} \frac{1}{(a_i - z)^{h+1}}$$

Let
$$p(z) = \prod \left(1 - \frac{z}{a_n}\right) e^{\frac{z}{a_n} + \dots + \frac{1}{h}\left(\frac{z}{a_n}\right)^h}$$
 and $f(z) = e^{g(z)}p(z)$. Then
$$\left(\frac{p'(z)}{p(z)}\right)^{(h)} = \sum_{n=1}^{\infty} \frac{-h!}{(a_n - z)^{h+1}} = \left(\frac{f'(z)}{f(z)}\right)^{(h)}$$
 and $g^{(h+1)}(z) = \left(\frac{f'(z)}{f(z)}\right)^{(h)} - \left(\frac{p'(z)}{p(z)}\right)^{(h)} = 0 \implies g(z) \in \mathbb{C}[z] \text{ and } \deg g \leq h.$

Definition 1.10.3. f has genus h if h is the smallest integer s.t.

$$\begin{cases} \sum |a_n|^{-(h+1)} \text{ converge} \\ \deg g(x) \le h \end{cases}$$

Theorem 1.10.4. Let h be the genus of f and λ be the order of f, then $h \leq \lambda \leq h+1$.

Proof:

• If h is finite, then $\lambda \leq h+1$: Claim: $\log |E_h(z)| \leq (2h+1)|z|^{h+1}$: subproof:

•• If
$$|z| \le 1$$
, $\log(1-z) = -z - \frac{z^2}{2} - \cdots$, then $E_n(z) = e^{\log(1-z) + z + \cdots + \frac{1}{h}z^h} = e^{-\sum_{n=h+1}^{\infty} \frac{z^n}{n}}$

$$\implies |E_n(z)| \le e^{\sum_{n=h+1}^{\infty} \frac{|z|^n}{n}} \implies \log|E_n(z)| \le \sum_{n=h+1}^{\infty} \frac{|z|^n}{n} \le \frac{1}{h+1} \cdot \frac{|z|^{h+1}}{1-|z|}$$

and thus $(1-|z|)\log |E_n(z)| \le \frac{|z|^{h+1}}{h+1} \le |z|^{h+1}$

••
$$h = 0 : \log |E_0(z)| = \log |1 - z| \le \log(1 + |z|) \le |z|$$

•• For
$$h \ge 1$$
: We induction on h . $\log |E_h(z)| \le \log |E_{h-1}(z)| + \frac{|z|^h}{h} \le \log |E_{h-1}(z)| + |z|^h$

•••
$$|z| \ge 1 : \log |E_h(z)| \le (2h-1)|z|^h + |z|^h \le (2h+1)|z|^{h+1}$$

•••
$$|z| \le 1 : \log |E_h(z)| \le |z| \log |E_h(z)| + |z|^{h+1} \le |z| (2h|z|^h) = (2h+1)|z|^{h+1}$$

By Claim,

$$\log |f(z)| \le \log |e^{g(z)}| + \log |p(z)| \le |g(z)| + \sum_{n} \log |E_h(z/a_n)|$$

$$\le |z|^{h+1} \left(\frac{|b_q|}{|z|^{h+1-q}} + \dots + \frac{|b_0|}{|z|^{h+1}}\right) + (2h+1)|z|^{h+1} \sum_{n} |a_n|^{-(h+1)}$$

Hence,

$$\log\log|f|(z)| \le (h+1)\log|z| + \log\left(\frac{|b_q|}{|z|^{h+1-q}} + \dots + \frac{|b_0|}{|z|^{h+1}} + (2h+1)\sum_n |a_n|^{-(h+1)}\right)$$

When z on $C_r(0)$:

$$\frac{\log\log M(r)}{\log r} \le h + 1 + \log\left(O(|r|^{q-h-1}) + (2h+1)\sum_{n} |a_n|^{-(h+1)}\right) / \log r$$

As $r \to \infty$, we have $\lambda \le h + 1$ and hence λ is finite.

• If λ is finite, let h_0 be the smallest integer h_0 s.t. $h_0 \leq \lambda$. By Theorem 1.10.3, $\begin{cases} \sum |a_n|^{-(h_0+1)} \text{ converge} \\ \deg g \leq h_0 \end{cases}$ By definition of genus, $h \leq h_0 \leq \lambda$.

Theorem 1.10.5. Let
$$f(z) = \sum_{n=1}^{\infty} c_n z^n$$
 and $\alpha = \liminf \frac{\log(1/|c_n|)}{n \log n}$. Then

- $\alpha > 0 \implies f$ is entire of order α
- $\alpha = 0 \implies f$ has infinite order

Also, if f(z) is entire of finite order λ , then $\lambda = 1/\alpha$.

Proof:

- $\alpha > 0$: $\forall \varepsilon > 0$, $\exists n_0$ s.t. $\forall n > n_0$, $\log(1/|c_n|) > (\alpha \varepsilon)n \log n$ i.e. $|c_n| \le n^{-n(\alpha \varepsilon)}$, then $\sum c_n z^n$ converge for all $z \in \mathbb{C} \leadsto f$ is entire.
 - •• α is finite: Notice that $|c_n|$ is bounded, say $|c_n| \leq A$ with A > 1. $\forall r > 1$, for $|z| \leq r$,

$$|f(z)| \le Ar^{n_0} + \sum_{n=n_0+1}^{\infty} r^n n^{-n(\alpha-\varepsilon)}$$

where $n_0 = \lfloor (2r)^{1/(\alpha-\varepsilon)} \rfloor$. Then $\forall n > n_0, n \geq (2r)^{1/(\alpha-\varepsilon)} \leadsto rn^{-(\alpha-\varepsilon)} \leq 1/2$ and thus

$$\sum_{n=n_0+1}^{\infty} r^n n^{-n(\alpha-\varepsilon)} \le \sum_{n=n_0+1}^{\infty} \frac{1}{2^n} \le 1$$

Hence,

$$|f(z)| \le 2Ar^{n_0} \implies \log |f(z)| \le \log 2 + n_0 \log r \le (2r)^{1/\alpha - \varepsilon} \log r$$

$$\implies \frac{\log \log M(r)}{\log r} \le \frac{\frac{1}{\alpha - \varepsilon} \log r + \log \log r}{\log r}$$

as $r \to \infty$, we have $\lambda \le \frac{1}{\alpha - \varepsilon}$ for all $\varepsilon > 0 \implies \lambda \le \frac{1}{\alpha}$.

•• $\alpha = \infty$: By definition, $\forall N > 0, \varepsilon > 0, \exists n_0 \text{ s.t. } \forall n > n_0,$

$$\log(1/|c_n|) > (N - \varepsilon)n\log n \implies \cdots \implies \lambda \le \frac{1}{N} \xrightarrow{N \to \infty} \lambda = 0 = \frac{1}{\infty}$$

•• If $0 < \alpha < \infty \rightsquigarrow \lambda \ge \frac{1}{\alpha} : \forall \varepsilon > 0, \exists n_{\varepsilon} \text{ s.t. } (\alpha + \varepsilon) n_{\varepsilon} \log n_{\varepsilon} > \log(1/|c_{n_{\varepsilon}}|) \text{ i.e.}$

$$|c_{n_{\varepsilon}}| > n^{-n_{\varepsilon}(\alpha+\varepsilon)} \implies |c_{n_{\varepsilon}}| r^{n_{\varepsilon}} > (rn_{\varepsilon}^{-(\alpha+\varepsilon)})^{n_{\varepsilon}}$$

Choose $r = (2n)^{(\alpha+\varepsilon)}$, then

$$|c_{n_{\varepsilon}}|r^{n_{\varepsilon}} > 2^{n_{\varepsilon}(\alpha+\varepsilon)} \implies \log|c_{n_{\varepsilon}}|r^{n_{\varepsilon}} > \frac{r^{1/(\alpha+\varepsilon)}(\alpha+\varepsilon)}{2}\log 2$$

By Cauchy estimate,

$$|c_{n_{\varepsilon}}| = \frac{|f^{(n_{\varepsilon})}(0)|}{n!} \le M(r)r^{-n_{\varepsilon}} \implies \log\log M(r) \ge \frac{1}{\alpha + \varepsilon}\log r + \log\frac{(\alpha + \varepsilon)\log 2}{2}$$

Hence, $\lambda \ge \frac{1}{\alpha + \varepsilon} \ \forall \varepsilon > 0 \leadsto \lambda \ge \frac{1}{\alpha}$.

• If $\alpha = 0 : \forall \frac{1}{N}, \ \lambda \ge \frac{1}{1/N + \varepsilon} \xrightarrow{\varepsilon \to 0} \lambda \ge N \xrightarrow{N \to \infty} \lambda = \infty.$

Author: Minerva 43

1.11. GAMMA FUNCTION Minerva notes

1.11 Gamma function

Recall that we had already define

$$\Gamma(z) = z^{-1}e^{-cz} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}$$

where $c = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right)$. And our goal in this section is

Theorem 1.11.1 (Stirling's formula).

$$\log \Gamma(z) = \frac{1}{2} \log 2\pi - z + \left(z - \frac{1}{2}\right) \log z + J(z) \text{ or } \Gamma(z) = \sqrt{2\pi} z^{z - 1/2} e^{-z} e^{J(z)}$$

where error function is

$$J(z) = \frac{1}{\pi} \int_0^\infty \frac{z}{v^2 + z^2} \log(1 - e^{2\pi v})^{-1} dv$$

Proof:

• First we have

$$\left(\frac{\Gamma'(z)}{\Gamma(z)}\right)' = \sum_{n=0}^{\infty} \frac{1}{(z+n)^2} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{(z+k)^2}$$
$$\pi \cot \pi z = \frac{1}{z} + \sum_{n \neq 0} \left(\frac{1}{z-n} + \frac{1}{n}\right)$$

• Let $\varphi(\xi) = \frac{\pi \cot \pi \xi}{(\xi + z)^2}$ with a fixed z with Rez > 0, then

$$\varphi(\xi) = \frac{1}{\frac{(\xi+z)^2}{\varphi_1(\xi)}} \cdot \frac{1}{\xi} + \frac{1}{\frac{(\xi+z)^2}{\varphi_2(\xi)}} \sum_{n \neq 0} \left(\frac{1}{\xi-n} + \frac{1}{n}\right)$$

Let γ_n be consisted by $V_0^{(Y)}, V_{n+1/2}^{(Y)}, H_Y$ and H_{-Y} , where

$$V_x^{(Y)} = \{ \text{Re}z = x, |\text{Im }z| \le Y \} \text{ and } H_Y = \{ 0 \le \text{Re}z \le n + 1/2, \text{Im }z = Y \}$$

••
$$\frac{1}{2\pi i} \int_{\gamma_n} \varphi_2(\xi) d\xi = \sum_{k=1}^n \operatorname{Res}_{\xi=k} \varphi_2(\xi) = \sum_{k=1}^n \frac{1}{(z+k)^2}$$

•• Let $c_{\varepsilon} = \{ \varepsilon e^{-i\theta} : -\pi/2 \le \theta \le \pi/2 \}$, then

$$\frac{1}{2\pi i} \int_{\gamma_n} \varphi_1(\xi) d\xi = \lim_{\varepsilon \to 0} \int_{c_{\varepsilon}} \varphi_1(\xi) d\xi = \frac{-1}{2} \lim_{\varepsilon \to 0} \int_{C_{\varepsilon}} \varphi_1(\xi) d\xi = \frac{-1}{2} \operatorname{Res}_{\xi=0} \varphi_1(\xi) = \frac{-1}{2z^2}$$

Hence,

$$\frac{1}{2\pi i} \int_{\gamma_n} \varphi_1(\xi) d\xi = \frac{-1}{2z^2} + \sum_{k=1}^n \frac{1}{(z+k)^2}$$

•• On $H_{\pm Y}$: Let $\xi = u + iv \in H_{\pm Y}$, then

$$\cot \pi \xi = i \frac{e^{2\pi i \xi} + 1}{e^{2\pi i \xi} - 1} = i \frac{e^{-2\pi v + i(2\pi u)} + 1}{e^{-2\pi v + i(2\pi u)} - 1} \xrightarrow{u \in [0, n+1/2]} \begin{cases} -i & \text{as } Y \to \infty \\ i & \text{as } Y \to -\infty \end{cases}$$

Since
$$\left| \frac{1}{(z+\xi)^2} \right| = \frac{1}{|z+u+iv|^2} \to 0 \text{ as } v \to \pm \infty$$
, we have

$$\lim_{Y \to \infty} \int_{H_{\pm Y}} \varphi(\xi) d\xi = 0$$

•• On $V_{n+1/2}^{(Y)}$: For $\xi = n + 1/2 + iy$, $e^{2\pi i \xi} = e^{-2\pi y + 2n\pi i + \pi i} = -e^{-2\pi y}$ and thus

$$|\cot \pi \xi| = \left| \frac{-e^{-2\pi y} + 1}{-e^{-2\pi y} - 1} \right| \le \frac{e^{-2\pi y} + 1}{e^{-2\pi y} + 1} = 1$$

Hence,

$$\left| \int_{V_{n+1/2}^{(Y)}} \varphi(\xi) d\xi \right| \le \int_{V_{n+1/2}^{(Y)}} \frac{|d\xi|}{|\xi + z|^2} = \int_{V_{n+1/2}^{(Y)}} \frac{|d\xi|}{(\xi + z)(\overline{\xi + z})}$$

Since $\xi \in V_{n+1/2}^{(Y)}$, $\xi + \overline{\xi} = 2n+1$ and thus $\overline{\xi + z} = 2n+1+\overline{z}-z$. Then $\frac{1}{|\xi + z|^2}$ has pole at $-z, 2n+1+\overline{z}$, which doesn't contain in bounded region of γ_n .

1.12 Prime number theorem

Goal: Let $\pi(x)$ be the number of prime $\leq x$, we will prove that $\pi(x) \sim \frac{x}{\ln x}$ as $x \to \infty$.

Definition 1.12.1 (Riemann ζ -function).

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$

is analytic for $\operatorname{Re}(s) > 1$, since $\sum_{n=1}^{\infty} n^{-\operatorname{Re}(s)}$ uniformly converge for $\operatorname{Re} s \geq \rho > 1$.

Fact 1.12.1.
$$\zeta(s) = \prod_{p:\text{prime}} (1 - p^{-s})^{-1} \text{ for } \text{Re}s > 1.$$

Proof: By UFD property of \mathbb{N} and absolutely convergent of $\zeta(s)$,

$$\zeta(s) = \sum_{r_2, r_3, \dots \in \mathbb{Z}_{\geq 0}} (2^{r_2} 3^{r_3}, \dots)^s = \prod_{p: \text{prime}} \left(\sum_{r \in \mathbb{Z}_{\geq 0}} p^{-rs} \right) = \prod_{p: \text{prime}} (1 - p^{-s})^{-1}$$

Fact 1.12.2. $\zeta(s) - \frac{1}{s-1}$ extends analytically to Re(s) > 0.

$$\begin{aligned} \textbf{Proof: For Re}(s) & \geq 1, \ \zeta(s) - \frac{1}{s-1} = \sum_{n=1}^{\infty} \frac{1}{n^s} - \int_{1}^{\infty} \frac{1}{x^s} dx = \sum_{n=1}^{\infty} \int_{n}^{n+1} \left(\frac{1}{n^s} - \frac{1}{x^s} \right) dx \\ \left| \int_{n}^{n+1} \left(\frac{1}{n^s} - \frac{1}{x^s} \right) dx \right| & = \left| \int_{n}^{n+1} \left(s \int_{n}^{x} \frac{dy}{y^{s+1}} \right) dx \right| = \left| \int_{n}^{n+1} s \cdot \frac{(x-n)}{y_x^{s+1}} dx \right| \ (\text{MVT}) \\ & \leq \int_{n}^{n+1} (x-n) \max_{n \leq y \leq n+1} \left| \frac{s}{y^{s+1}} \right| dx \leq \frac{|s|}{2n^{\text{Re}(s)+1}} \end{aligned}$$

Fact 1.12.3. If Re(s) > 1, then $\log \zeta(s) = \sum_{p,m} \frac{p^{-ms}}{m} = \sum_{n=1}^{\infty} c_n n^{-s}$ for some $c_n \ge 0$.

Proof: Recall for $0 \le x < 1$, $\log \left(\frac{1}{1-x} \right) = \sum_{m=1}^{\infty} \frac{x^m}{m}$. Now, for s > 1,

$$\log \zeta(s) = \sum_p \log \left(\frac{1}{1-p^{-s}}\right) = \sum_p \sum_m \frac{p^{-sm}}{m} = \sum_m \sum_p \frac{p^{-sm}}{m}$$

since it is absolutely converge. By Fact 1.12.1, $\zeta(s)$ has no zero for $\text{Re}(s) > 1 \rightsquigarrow \log \zeta(s)$ is analytic for Re(s) > 1 and RHS is also analytic for Re(s) > 1. So for Re(s) > 1,

$$\log \zeta(s) = \sum_{p,m} \frac{p^{-sm}}{m} = \sum_{n=1}^{\infty} c_n n^{-s}$$

where
$$c_n = \begin{cases} m^{-1} & \text{if } n = p^m \\ 0 & \text{otherwise} \end{cases}$$
.

Fact 1.12.4. $\zeta(s)$ has no zero on line Re(s) = 1.

Proof: Claim: If x > 1 and $y \in \mathbb{R}$, then

$$\log|\zeta(x)^3\zeta(x+iy)^4\zeta(x+2iy)| \ge 0$$

subproof: Let $s = x + iy \rightarrow \operatorname{Re}(n^{-s}) = e^{-x \log n} \cos(y \log n) =: n^x \cos \theta_n$. Then it will equal to

$$3\log|\zeta(x)| + 4\log|\zeta(x+iy)| + \log|\zeta(x+2iy)|$$

$$= 3\operatorname{Re}\log\zeta(x) + 4\operatorname{Re}\log\zeta(x+iy) + \operatorname{Re}\log\zeta(x+2iy)$$

$$= 3\sum_{n=1}^{\infty} c_n n^{-x} + 4\sum_{n=1}^{\infty} c_n n^{-x} \cos\theta_n + \sum_{n=1}^{\infty} c_n n^{-x} \cos(2\theta_n)$$

$$= \sum_{n=1}^{\infty} c_n n^{-x} \cdot 2(\cos\theta_n + 1)^2 \ge 0$$

Now, suppose $\zeta(1+iy_0)=0$ for some $y_0\neq 0$. By Fact 1.12.2, $\zeta(s)$ is analytic at $s=1+iy_0$, then order of s is ≥ 1 . By factorization, $|\zeta(x+iy_0)|^4\leq c_1(x-1)^4$ as $x\to 1$, where $c_1>0$. By fact 1.12.2, $\zeta(s)$ has simple pole at z=1, then $|\zeta(x)|^3\leq c_2|x-1|^{-3}$ as $x\to 1$ for some $c_2>0$. Since $\zeta(s)$ is analytic at $s=1+2iy_0$, $|\zeta(x+2iy_0)|$ is bounded for $x\to 1$. Then

$$|\zeta(x)^3\zeta(x+iy_0)^4\zeta(x+2iy_0)| \to 0 \text{ as } x \to 1$$

Then $\log |\zeta(x)^3 \zeta(x+iy_0)^4 \zeta(x+2iy_0)| < 0 \text{ as } x \to 1 \ (\longrightarrow).$

Author: Minerva 46

Fact 1.12.5. $D(s) = \sum_{p} \frac{\log p}{p^s} \rightsquigarrow D(s) - \frac{1}{s-1}$ is analytic for $\text{Re}(s) \ge 1$.

Proof:
$$\frac{\zeta'(s)}{\zeta(s)} = (\log \zeta(s))' = \sum_{p} \left(\log \frac{1}{1 - p^{-s}}\right)' = \sum_{p} \frac{-\log p}{p^{s} - 1},$$
$$D(s) + \frac{\zeta'(s)}{\zeta(s)} = \sum_{p} \frac{-\log p}{p^{s}(p^{s} - 1)} \text{ converge for Re}(s) > \frac{1}{2}$$

Note $\zeta(s)$ has a simple pole at s=1, say $\zeta(s)=(s-1)^{-1}g(s),$ then

$$\frac{\zeta'(s)}{\zeta(s)} = \frac{-1}{s-1} + \frac{g'(s)}{g(s)} \leadsto D(s) - \frac{1}{s-1} = -\frac{g'(s)}{g(s)} + \sum_{p} \frac{-\log p}{p^s(p^s - 1)}$$

Since g(s) has not zero for Res ≥ 1 (By Fact 1.12.1,1.12.4), $D(s) - (s-1)^{-1}$ is analytic for Re $(s) \geq 1$.

Fact 1.12.6. For
$$x > 0$$
, $\mathscr{I}(x) := \sum_{p \le x} \log p = O(x)$ as $x \to \infty$.

Proof: For
$$n \in \mathbb{N}$$
, $(1+1)^{2n} = \sum_{k=0}^{2n} {2n \choose k} \ge {2n \choose n} > \prod_{n . Then$

$$\mathscr{I}(2n) - \mathscr{I}(n) < (\log 2)(2n)$$

•
$$\forall x > 0$$
, $\exists n \text{ s.t. } n \leq x < n+1 \rightsquigarrow \mathscr{I}(x) = \mathscr{I}(n)$

•
$$n = 2m \Rightarrow \begin{cases} 2m \le x \le 2m + 1 & \Longrightarrow \mathscr{I}(2m) = \mathscr{I}(x) \\ m \le x/2 \le m + 1/2 & \Longrightarrow \mathscr{I}(m) = \mathscr{I}(x/2) \end{cases}$$
. So

$$\mathscr{I}(x) - \mathscr{I}(x/2) = \mathscr{I}(2m) - \mathscr{I}(m) < (\log 2)(2m) \le (\log 2)x$$

•
$$n = 2m + 1 \Rightarrow \begin{cases} 2m + 1 \le x < 2m + 2 & \Longrightarrow \mathscr{I}(2m + 1) = \mathscr{I}(x) \\ m + 1/2 \le x/2 < m + 1 & \Longrightarrow \mathscr{I}(m) = \mathscr{I}(x/2) \end{cases}$$
. So

$$\mathscr{I}(x) - \mathscr{I}(x/2) = \mathscr{I}(2m+1) - \mathscr{I}(m) \leq \mathscr{I}(2m) - \mathscr{I}(m) + \log(2m+1) < (\log 2)(2m) + \log(2m+1) < cx + \log(2m+1) < (\log 2)(2m) + \log(2m+1) < cx + \log(2m+1) < (\log 2)(2m) + \log(2m) + \log(2m)$$

Let $\ell_x \in \mathbb{N}$ s.t. $x/2^{\ell_x} < 2$. Then $\mathscr{I}(x/2^{\ell_x}) = 0$ and thus

$$\mathscr{I}(x) = \sum_{k=1}^{\ell_x} (\mathscr{I}(x/2^{k-1}) - \mathscr{I}(x/2^k)) < c \sum_{k=1}^{\ell_x} x/2^{k-1} < 2cx$$

Theorem 1.12.1 (Convergence theorem). Let s(t) be a bounded locally integrable complex-valued function for t>0 and suppose $f(s)=\int_0^\infty s(t)e^{-st}dt$ holds for $\mathrm{Re}(s)>0$ and f(s) can extend to an analytic function on $\Omega\supset\{\mathrm{Re}(s)\geq 0\}$. Then $\int_0^\infty s(t)dt$ exists and equals f(0). In general, $\int_0^\infty s(t)e^{-st}dt$ converge for $\mathrm{Re}(s)=0$ and equals to f(s).

Author: Minerva 47

Remark 1.12.1. $f(t) = \int_0^\infty s(t)e^{-st}dt$ is called the **Laplace transformation** of s(t).

Proof:

• Let R > 1, for all z on y-axis with $|z| \le R$, $\exists B_{\rho_z}(z) \subseteq \Omega$. Then $\{B_{\rho_z/3}(z)\}$ is the open cover of $\{yi : |y| \le R\}$. Say $\{B_{\rho_{z_i}/3}(z_i)\}$ is it finite subcover, then $\{B_{2\rho_{z_i}/3}(z_i)\}$ cover $\{yi : |y| \le R\}$. Let $\delta_R = \min_i(\rho_{z_i}/3, 1/2)$, then f is analytic on

$$U_R = \{-\delta_R \le \text{Re}(s) \le 0, |\text{Im}(s)| \le R\} \cup \{\text{Re}(s) \ge 0, |s| \le R\}$$

Let $M_R := \max_{s \in U_R} |f(s)|$ and $\gamma = \partial U_R$. Let $C_1 = \gamma \cap \{\text{Re}s \geq 0\}$ and $C_2 = \gamma \cap \{\text{Re}s \leq 0\}$. Define

$$S_N(s) = \int_0^N \frac{s(t)e^{-st}}{q(s,t)} dt$$

• $S_N(s)$ is entire : $g(s,t): \mathbb{C} \times [0,N] \to \mathbb{C}$, for fixed t, g(s,t) is analytic in \mathbb{C} . Let $a_1,...,a_n$ be the discontinuity points of s(t) and let $a_0 = 0$, $a_{n+1} = N$. For any closed curve $\gamma \subset \mathbb{C}$,

$$\int_{\gamma} S_N(s) ds = \sum_{m=0}^n \int_{\gamma} \int_{a_m}^{a_{m+1}} g(s,t) dt ds = \sum_{m=0}^n \int_{a_m}^{a_{m+1}} \left(\int_{\gamma} g(s,t) ds \right) dt = 0$$

The second equality is by Fubini theorem and last equality is by Morera's theorem. Now, by Morera's theorem, $S_N(s)$ is analytic in \mathbb{C} .

• Observe that

$$\frac{1}{2\pi i} \int_{\gamma} f(s)e^{sN} \left(1 + \frac{s^2}{R^2} \right) \frac{ds}{s} = \text{Res}_{s=0} \left(f(s)e^{sN} \left(1 + \frac{s^2}{R^2} \right) \frac{1}{s} \right) = f(0)$$

Similarly for $S_N(s)$, we have

$$S_N(0) = \frac{1}{2\pi i} \int_{C_R(0)} S_N(s) e^{sN} \left(1 + \frac{s^2}{R^2} \right) \frac{ds}{s}$$

For $C_R(0) - C_1 : z(t) = Re^{i(\pi+t)} = -Re^{it}$ for $t \in [-\pi/2, \pi/2]$, so

$$\int_{C_R(0)-C_1} S_N(s) e^{sN} \left(1 + \frac{s^2}{R^2} \right) \frac{ds}{s} = \int_{C_1} S_N(-s) e^{-sN} \left(1 + \frac{s^2}{R^2} \right) \frac{ds}{s}$$

Hence,

$$f(0) - S_N(0) = \frac{1}{2\pi i} \int_{C_1} (f - S_N) e^{sN} \left(1 + \frac{s^2}{R^2} \right) \frac{ds}{s}$$
 (I)

$$-\frac{1}{2\pi i} \int_{C_1} S_N(-s) e^{-sN} \left(1 + \frac{s^2}{R^2} \right) \frac{ds}{s}$$
 (II)

$$+\frac{1}{2\pi i} \int_{C_2} f(s)e^{sN} \left(1 + \frac{s^2}{R^2}\right) \frac{ds}{s} \tag{III}$$

•• (I): Let L be the bound of s(t), then

$$|f(s) - S_N(s)| = \left| \int_N^\infty s(t)e^{-st}dt \right| \le L \int_N^\infty e^{-xt}dt = \frac{Le^{-xN}}{x}$$

where x = Re(s) > 0. On |s| = R,

$$\left|e^{sN}\left(1+\frac{s^2}{R^2}\right)\frac{1}{s}\right|=e^{xN}\left|\frac{1}{s}+\frac{s}{R^2}\right|=e^{xN}\left|\frac{\overline{s}+s}{R^2}\right|=\frac{2xe^{xN}}{R^2}$$

Hence,

$$|(I)| \le \frac{1}{2\pi} \int_{C_1} \frac{2L}{R^2} |ds| = \frac{1}{2\pi} \cdot \frac{2L \cdot \pi R}{R^2} = \frac{L}{R}$$

•• (II) :

$$|S_N(-s)| = \left| \int_0^N s(t)e^{sN}dt \right| \le L \int_0^N e^{xt}dt = \frac{L(e^{xN} - 1)}{x}$$
$$\left| e^{-sN} \left(1 + \frac{s^2}{R^2} \right) \frac{1}{s} \right| = \frac{e^{-xN} \cdot 2x}{R^2}$$

Hence, $|(II)| \leq \frac{L}{R}$

•• (III) :

$$|(\text{III})| \leq \frac{M_R}{2\pi} \left(\int_{-R}^R e^{-\delta_R N} \left| 1 + \frac{(\delta_R + iy)^2}{R^2} \right| \frac{dy}{|-\delta_R + iy|} + 2 \int_{-\delta_R}^0 e^{xN} \left(1 + \frac{|x \pm iR|^2}{R^2} \right) \frac{dx}{|x \pm iR|} \right)$$

$$\leq \frac{M_R}{2\pi} \left(\int_{-R}^R e^{-\delta_R N} \left(1 + \frac{\delta_R^2 + R^2}{R^2} \right) \frac{dy}{R} + 2 \int_{-\delta_R}^0 e^{xN} \frac{3dx}{R} \right)$$

$$\leq \frac{M_R}{2\pi} \left(6e^{-\delta_R N} + \frac{6(1 - e^{\delta_R N})}{RN} \right) \to 0 \text{ as } N \to \infty$$

Choose $R = 3L/\varepsilon$, then $|(I)+(II)| \le 2\varepsilon/3$. Now choose N sufficiently large s.t. $|(III)| \le \varepsilon/3$, then $|f(0) - S_N(0)| \le \varepsilon$. Hence, $\lim_{N \to \infty} S_N(0) = f(0)$.

Corollary 1.12.1. Let $\{c_n\} \subseteq \mathbb{R}_{\geq 0}$ and let $D(s) = \sum_n \frac{c_n \log n}{n^s}$. Suppose $s(x) = \sum_{n \leq x} c_n \log n$ is O(x) and that $D(s) - \frac{1}{s-1}$ is analytic for $\operatorname{Re}(s) \geq 1$. Then $\sum_{n \leq x} c_n \log n \sim x$.

Proof: We write the sum D(s) as Riemann Stieltjes integral (note that s(x) is positive and non-decreasing) and by integration by part,

$$D(s) = \int_1^\infty t^{-s} ds(t) = s \int_1^\infty s(t) t^{-s-1} dt$$
$$= s \int_0^\infty s(e^u) e^{-us} du \qquad (t = e^u)$$

For Re(s) > 0,

$$\frac{D(s+1)}{s+1} - \frac{1}{s} = \int_0^\infty (s(e^t)e^{-t} - 1)e^{-ts}dt$$

Notice that $\frac{D(s+1)}{s+1} - \frac{1}{s}$ is analytic for $\text{Re}(s) \ge 0$ and $s(e^t)e^t - 1$ is bounded since s(x) = O(x). By convergence theorem,

$$\int_0^\infty (s(e^t)e^{-t} - 1)dt = \int_1^\infty \frac{s(u) - u}{u^2} du \qquad (u = e^t)$$

converges.

• Suppose $\exists \varepsilon > 0$ s.t. $s(x) > (1 + \varepsilon)x \ \forall x \gg 0$, then $\forall x \gg 0$

$$\int_{x}^{(1+\varepsilon)x} \frac{s(t)-t}{t^2} dt \ge \int_{x}^{(1+\varepsilon)x} \frac{s(x)-t}{t^2} dt \ge \int_{x}^{(1+\varepsilon)x} \frac{(1+\varepsilon)x-t}{t^2} dt \stackrel{t=ux}{=} \int_{1}^{1+\varepsilon} \frac{(1+\varepsilon)-u}{u^2} du > 0$$
contradict with
$$\int_{1}^{\infty} \frac{s(u)-u}{u^2} du$$
 converge.

• Suppose $\exists \varepsilon > 0$ s.t. $s(x) < (1 - \varepsilon)x \ \forall x \gg 0$, then $\forall x \gg 0$

$$\int_{(1-\varepsilon)x}^{x} \frac{s(t) - t}{t^{2}} dt \ge \int_{(1-\varepsilon)x}^{x} \frac{s(x) - t}{t^{2}} dt \le \int_{(1-\varepsilon)x}^{x} \frac{(1-\varepsilon)x - t}{t^{2}} dt \stackrel{t=ux}{=} \int_{1-\varepsilon}^{1} \frac{(1-\varepsilon) - u}{u^{2}} du < 0$$

contradict with $\int_{1}^{\infty} \frac{s(u) - u}{u^2} du$ converge.

Hence,
$$\forall \varepsilon > 0$$
, $(1 - \varepsilon)x < s(s) < (1 + \varepsilon)x \ \forall x \gg 0 \sim s(x) \sim x$.

Lemma 1.12.1 (key lemma). Let
$$f(x)$$
 satisfy $\sum_{p \le x} f(p) \log p \sim rx$. Then $\sum_{p \le x} f(p) \sim \frac{rx}{\log x}$

Proof: Let $\theta(x) = \sum_{p \le x} f(p) \log p$ and $\varphi(x) = \sum_{p \le x} f(p)$. By Riemann Stieltjes integral,

$$\varphi(x) \sim \int_a^x d\varphi(t) = \int_a^x \frac{1}{\log t} d\theta(t) = \frac{\theta(t)}{\log t} \Big|_a^x + \int_a^x \frac{\theta(t)dt}{t(\log t)^2} \sim \frac{rx}{\log x} + \int_a^x \frac{rdt}{(\log t)^2}$$

Notice that

$$\int_{a}^{x} \frac{dt}{(\log t)^{2}} = \left(\int_{a}^{\sqrt{x}} + \int_{\sqrt{x}}^{x}\right) \frac{dt}{(\log t)^{2}} \le \int_{a}^{\sqrt{x}} \frac{\sqrt{x}dt}{t(\log t)^{2}} + \int_{\sqrt{x}}^{x} \frac{dt}{(\log \sqrt{x})^{2}}$$
$$= \sqrt{x} \left(\frac{1}{\log a} - \frac{1}{\log \sqrt{x}}\right) + \frac{x - \sqrt{x}}{(\log \sqrt{x})^{2}} = o\left(\frac{x}{\log x}\right)$$

Hence,
$$\varphi(x) \sim \frac{rx}{\log x}$$
.

Proof: (prime number theorem)

- Let $\mathscr{I}(x) = \sum_{p \leq x} \log p = \sum_{n \leq x} c_n \log n$, where $c_n = \begin{cases} 1 & \text{if } n = p \\ 0 & \text{otherwise} \end{cases} \rightsquigarrow \mathscr{I}(x) = O(x)$ by Fact 1.12.6.
- Let $D(s) = \sum_{n} \frac{c_n \log n}{n^s} = \sum_{p} \frac{\log p}{p^s} \rightsquigarrow D(s) \frac{1}{s-1}$ is analytic for $\text{Re}(s) \ge 1$ by Fact 1.12.5.
- By Corollary 1.12.1, $\sum_{p \le x} \log p \sim x$.
- Let $f(p) \equiv 1$. By key lemma, $\pi(x) = \sum_{p \le x} f(p) \sim \frac{x}{\log x}$

1.13. NORMAL FAMILY Minerva notes

1.13 Normal family

Definition 1.13.1.

• A family \mathcal{F} of functions : $\Omega \to X$ with (X,d) is a metric space is **normal** if $\forall \{f_n\} \subseteq \mathcal{F}$ contains a subsequence which converge uniformly on each compact subset of Ω .

• An **exhaustion** of Ω is nest compact set $E_1 \subseteq E_2 \subseteq \cdots \subseteq \Omega$ s.t. $E_i \subseteq E_{i+1}^{\circ}$ and \forall compact subset E of Ω , $\exists k$ s.t. $E \subseteq E_k$ i.e. $\bigcup_{k=1}^{\infty} E_k = \Omega$. e.g.

$$E_k := \{ z \in \Omega : |z| \le k \text{ and } |z - z_0| \ge k^{-1} \ \forall z_0 \in \mathbb{C} \setminus \Omega \}$$

Definition 1.13.2. Let $\mathfrak{X} = \{f : \Omega \to X\}$ be the function space equip the metric as follow:

• Replace d by δ :

$$\delta(a,b) = \frac{d(a,b)}{1 + d(a,b)}$$

Then δ satisfies the triangle inequality and δ is bounded.

- •• $d(a,b) < \varepsilon \leadsto \delta(a,b) < d(a,b) < \varepsilon$
- •• $\delta(a,b) < \varepsilon \rightsquigarrow d(a,b) < \frac{\varepsilon}{1-\varepsilon}$, if we take $\varepsilon = N^{-1}$, then $d(a,b) < \frac{1}{N-1}$
- $\delta_k(f,g) := \sup_{z \in E_k} \delta(f(z), g(z))$
- $\rho(f,g) := \sum_{k=1}^{\infty} \delta_k(f,g) \cdot 2^{-k}$ be the metric define on \mathfrak{X} .

Fact 1.13.1.
$$f_n \xrightarrow{\overline{\text{unif}}} f \iff \lim_{n \to \infty} \rho(f, f_n) = 0$$

Proof:

• (\Rightarrow) : $\forall \varepsilon > 0$, $\exists k_0 \text{ s.t. } \sum_{k=k_0+1}^{\infty} 2^{-k} < \varepsilon/2$. Since $f \xrightarrow{\overline{\text{unif}}} f$ on E_{k_0} , $\exists n_0 \text{ s.t. } \forall n \geq n_0, \forall z \in E_{k_0}$, $\delta(f_n(z), f(z)) < \varepsilon/2$. Then

$$\rho(f_n, f) = \sum_{k=1}^{k_0} 2^{-k} \delta_k(f_n, f) + \sum_{k=k_0+1}^{\infty} 2^{-k} \delta_k(f_n, f) \le \sum_{k=1}^{k_0} 2^{-k} \frac{\varepsilon}{2} + \varepsilon/2 < \varepsilon$$

• (\Leftarrow): Let $E \subset_{\text{cpt.}} \Omega$ and $E \subseteq E_k$. By assumption, $\forall \varepsilon > 0$, $\exists n_0 > 0$ s.t. $\forall n \geq n_0$, $\rho(f, f_n) < \varepsilon \cdot 2^{-k}$, then

$$\varepsilon > 2^k \rho(f_n, f) \ge \delta_k(f_n, f) > \delta(f_n(z), f(z)) \ \forall z \in E_k, \forall n \ge n_0$$

Proposition 1.13.1. \mathcal{F} is normal \iff the closure of \mathcal{F} w.r.t. ρ is compact.

Proof:

1.13. NORMAL FAMILY Minerva notes

• $(\Rightarrow): \forall \{g_n\} \subseteq \overline{\mathcal{F}}, \ \exists \{f_n\} \subseteq \mathcal{F} \text{ s.t. } \rho(g_n, f_n) < n^{-1}. \text{ Since } \mathcal{F} \text{ is normal, } \exists \{f_{i_k}\} \text{ s.t. } f_{i_k} \xrightarrow{\overline{\text{unif}}} f.$ By Fact 1.13.1, $\lim_{n \to \infty} \rho(f_{i_k}, f) = 0$ and $f \in \overline{\mathcal{F}}.$ Also, $g_{i_k} \to f \in \overline{\mathcal{F}}.$

•
$$(\Leftarrow)$$
: $\forall \{f_n\} \subseteq \mathcal{F} \subseteq \overline{\mathcal{F}}, \exists \{f_{i_k}\} \text{ and } f \in \overline{F} \text{ s.t. } \lim_{k \to \infty} \rho(f_{i_k}, f) = 0. \text{ By Fact 1.13.1, } f_{i_k} \xrightarrow{\overline{\text{unif}}} f.$

Definition 1.13.3. A metric space (X, d) is **totally bounded** if $\forall \varepsilon > 0, \exists x_1, ..., x_n \in X$ s.t.

$$\forall x \in X, \ \exists i \text{ s.t. } d(x, x_i) < \varepsilon$$

Fact 1.13.2. $Y \subseteq X$ is totally bounded $\iff \overline{Y}$ is totally bounded.

Proof:

• (\Rightarrow) : $\forall \varepsilon > 0$, $\exists y_1, ..., y_n \in Y$ s.t. $\forall y \in Y$, $\exists i$ s.t. $d(y, y_i) < \varepsilon/2$. Now, $\forall \widetilde{y} \in \overline{Y}$, $\exists y \in Y$ s.t. $d(\widetilde{y}, y) < \varepsilon/2$ and $\exists i$ s.t. $d(y, y_i) < \varepsilon/2$. Then

$$d(\widetilde{y}, y_i) \le d(\widetilde{y}, y) + d(y, y_i) < \varepsilon$$

• $\forall \varepsilon > 0, \ \exists \widetilde{y_i}, ..., \widetilde{y_n} \in \overline{Y} \text{ s.t. } \forall \widetilde{y} \in \overline{Y}, \ \exists i \text{ s.t. } d(\widetilde{y}, \widetilde{y_i}) < \varepsilon/2. \text{ Pick } y_i \in Y \text{ s.t. } d(\widetilde{y_i}, y_i) < \varepsilon/2 \ \forall i = 1, ..., n. \text{ Then } \forall y \in Y \subseteq \overline{Y}, \ \exists i \text{ s.t. } d(y, \widetilde{y}) < \varepsilon/2 \text{ and thus}$

$$d(y, y_i) \le d(y, \widetilde{y_i}) + d(\widetilde{y_i}, y_i) < \varepsilon$$

Fact 1.13.3. If X is total bounded, then $\{y_n\} \subseteq X$ has a Cauchy subsequence.

Proof: May assume $|\{y_n\}| = \infty$. $\forall k \in \mathbb{N}, \exists x_1^{(k)}, ..., x_{n_k}^{(k)} \text{ s.t. } \forall x \in X, \exists i_k \text{ s.t. } d(x, x_{i_k}^{(k)}) < (2k)^{-1}$. For $k = 1, \exists i_1 \text{ s.t. } \{y_j | d(y_j, x_{i_1}^{(1)}) < 1/2\} = \{y_{j_1}^{(1)}, y_{j_2}^{(1)}, ...\}$ is infinite set. Then for all m, n,

$$d(y_{j_m}^{(1)}, d_{j_n}^{(1)}) \leq d(y_{j_m}^{(1)}, x_{i_1}^{(1)}) + d(y_{j_n}^{(1)}, x_{i_1}^{(1)}) < 1$$

Construct by induction, $\exists i_k$ s.t. $\{y_{j_i}^{(k-1)}|d(y_{j_i}^{(k-1)},x_{i_k}^{(k)})<1/(2k)\}=\{y_{j_1}^{(k)},y_{j_1}^{(k)},...\}$ is infinite set. Then for all m,n,

$$d(y_{j_m}^{(k)}, d_{j_n}^{(k)}) \le d(y_{j_m}^{(k)}, x_{i_k}^{(k)}) + d(y_{j_n}^{(k)}, x_{i_k}^{(k)}) < \frac{1}{k}$$

Consider $\{y_{i_k}^{(k)}: k \in \mathbb{N}\}$, then $d(y_{i_m}^{(m)}, y_{i_n}^{(n)}) < \frac{1}{\min(m, n)} \ \forall m, n \text{ i.e. } \{y_{i_k}^{(k)}\} \text{ is Cauchy sequence.}$

Fact 1.13.4. $\mathfrak{X} = \{f : \Omega \to X\}$ is complete $\iff X$ is complete.

Proof:

- (\Rightarrow) : Consider constant function.
- (\Leftarrow): $\forall z \in \Omega$, $\exists k$ s.t. $z \in E_k$. $\forall N \in \mathbb{N}$, $\exists n_N$ s.t. $\forall m, n > n_N$, $\rho(f_n, f_m) < 2^{-k}/N$. Then $\delta_k(f_n, f_m) < 1/N$ and thus $\delta(f_n(z), f_m(z)) < 1/N$. Then $\{f_{n_1}(z), f_{n_2}(z), ...\}$ is a Cauchy sequence in X. Define $f(z) = \lim_{k \to \infty} f_{n_k}(z)$ and thus $f_{n_i} \xrightarrow{\overline{\text{unif}}} f$.

Author: Minerva 52

Proposition 1.13.2. Let X be complete. Then \mathcal{F} is normal $\iff \mathcal{F}$ is total bounded.

Proof: By Fact 1.13.4, X: complete $\implies \mathfrak{X}$: complete. By Fact 1.13.2, we may assume \mathcal{F} is closed.

- $(\Rightarrow): \mathcal{F}$ is normal $\rightsquigarrow \mathcal{F}$ is compact $\rightsquigarrow \mathcal{F}$ is total bounded.
- (\Leftarrow): \mathcal{F} is complete totally bounded metric space. By Fact 1.13.3, \mathcal{F} is compact and thus is normal (By Proposition 1.13.1).

Proposition 1.13.3. \mathcal{F} is totally bounded $\iff \forall E \subset \Omega, \forall \varepsilon > 0, \exists f_1, ..., f_n \in \mathcal{F} \text{ s.t.}$

$$\forall f \in \mathcal{F} \ \exists j \ \text{s.t.} \ \delta(f(x), f_i(x)) < \varepsilon \ \forall x \in E$$

Proof:

- (\Rightarrow): Let $E \subset_{\text{cpt.}} \Omega \leadsto \exists k \text{ s.t. } E \subset E_k$. $\forall \varepsilon > 0, \exists f_1, ..., f_n \in \mathcal{F}, \forall f \in \mathcal{F} \text{ s.t. } \rho(f.f_j) < \varepsilon/2^k$. Then $\delta_k(f, f_j) < \varepsilon$.
- (\Leftarrow): $\forall \varepsilon > 0$, pick k_0 s.t. $\sum_{k=k_0}^{\infty} 2^{-k} < \varepsilon/2$. Then $\forall f \in \mathcal{F}, \exists j \text{ s.t. } \delta(f(x), f_j(x)) < \varepsilon/2 \ \forall x \in E_{k_0}$. Then

$$\rho(f, f_j) = \sum_{k < k_0} \delta_k(f, f_j) \cdot 2^{-k} + \sum_{k \ge k_0} \delta(f, f_j) \cdot 2^{-k} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Theorem 1.13.1 (Arzela-Ascoli theorem). $\forall f \in \mathcal{F}, f : \Omega \xrightarrow{\text{cont.}} X \text{ with } X : \text{complete. Then } \mathcal{F} \text{ is normal } \iff$

- (1) \mathcal{F} is equicontinuous on each compact subset $E \subset \Omega$
- (2) $\forall z \in \Omega, \{f(z)|f \in \mathcal{F}\} \subset E \underset{\text{cpt.}}{\subset} X \text{ for some } E.$

Proof:

- (⇒):
 - (1) By Proposition 1.13.3, $\forall \varepsilon > 0$, $\exists f_1, ..., f_n$ s.t. $\forall f \in \mathcal{F}$, $\exists j$ s.t. $\delta(f(z), f_j(z)) < \varepsilon/3 \, \forall z \in E$. Since E is compact, f_j is uniformly continuous on E. Then $\exists \delta > 0$ s.t. $\forall z, z_0 \in E$ with $d(z, z_0) < \delta \leadsto \delta(f_j(z), f_j(z_0)) < \varepsilon/3$. Hence,

$$\delta(f(z), f(z_0)) \le \delta(f(z), f_j(z)) + \delta(f_j(z), f_j(z_0)) + \delta(f_j(z_0), f(z_0)) < \varepsilon$$

- (2) Claim: $Z = \overline{\{f(z) : f \in \mathcal{F}\}}$ is compact in X. subproof: Let $\{x_n\} \subset Z, \forall n \in \mathbb{N}, \exists f_n(z) \in Z \text{ s.t. } \delta(f_n(z), x_n) < n^{-1}$. Since \mathcal{F} is normal, $\exists \{f_{i_m}\} \subset \{f_n\}$ and f continuous in Ω s.t. $\lim_{m \to \infty} f_{i_m} = f$ and thus $\lim_{m \to \infty} x_{i_m} = f(z)$.
- (\Leftarrow): Since $\mathbb{Q} \times \mathbb{Q}$ is countably dense in $\mathbb{R} \times \mathbb{R} = \mathbb{C}$, we can enumerate $(\mathbb{Q} \times \mathbb{Q}) \cap \Omega$ by $\{\xi_n : n \in \mathbb{N}\}$. Given $\{f_n\} \subseteq \mathcal{F}$.

Author: Minerva 53

П

1.13. NORMAL FAMILY Minerva notes

•• For $\{f_n(\xi_1): n \in \mathbb{N}\}$, exists converge subsequence $\{f_{n_k^{(1)}}(\xi_1): k \in \mathbb{N}\}$ by (2). For $\{f_{n_k^{(i)}}(\xi_{i+1}): k \in \mathbb{N}\}$, exists converge subsequence $\{f_{n_k^{(i+1)}}(\xi_{i+1}): k \in \mathbb{N}\}$ by (2). Pick $\{f_{n_k^{(k)}}\} \subset \{f_n\}$, then $\{f_{n_k^{(k)}}(\xi_i): k \in \mathbb{N}\}$ converge for all i. So we may assume $\{f_i\}$ converge at $\xi_i \ \forall i$.

•• Let $E \subset \Omega$. $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $\forall z, z' \in E$ with $d(z, z') < \delta \leadsto \delta(f(z), f(z')) < \varepsilon/3 \ \forall f \in \mathcal{F}$. Since E is compact, $\exists \{B_{\delta/2}(z_i)\}_{i=1}^m$ cover E. Pick $\xi_{\ell_i} \in B_{\delta/2}(z_i) \ \forall i = 1, ..., m$. $\exists n_0$ s.t. $\forall n, m > n_0$, $\delta(f_n(\xi_{\ell_i}), f_m(\xi_{\ell_i})) < \varepsilon/3 \ \forall i = 1, ..., m$. $\forall z \in E$, say $z \in B_{\delta/2}(z_t)$ for some $t \in \{1, ..., m\}$. Then $d(z, \xi_{\ell_t}) \leq d(z, z_t) + d(z_t, \xi_{\ell_t}) < \delta$ and thus $\forall m, n > n_0$

$$\delta(f_n(z), f_m(z)) \le \delta(f_n(z), f_n(\xi_{\ell_t})) + \delta(f_n(\xi_{\ell_t}), f_m(\xi_{\ell_t})) + \delta(f_m(\xi_{\ell_t}), f_m(z)) < \varepsilon$$

Hence, $\{f_n\}$ converge uniformly on each compact subset.

Definition 1.13.4 (metric on $\widetilde{\mathbb{C}}$). For $z, z' \in \widetilde{\mathbb{C}}$, the distance of z, z' is the distance of z, z' on Riemann Sphere with Euclidean norm

$$d(z, z') = \frac{2|z - z'|}{\sqrt{(1+|z|^2)(1+|z'|^2)}}$$

Notice that $z \to z_0 \iff d(z, z_0) \to 0$ and if $z \to \infty \iff d(z, \infty) = 0$.

Theorem 1.13.2 (Hurwitz's theorem (I)). If f_n is analytic and has no zero in Ω and $f \xrightarrow{\overline{\text{unif}}} f$ in Ω , then f = 0 or f has no zero in Ω .

Proof: Suppose $f \not\equiv 0$ in Ω . Since the zero of f is isolated, $\forall z_0 \in \Omega, \exists \rho > 0$ s.t. f has not zero in $\{z | 0 < |z - z_0| \le \rho\} \subset \Omega$. And

$$\frac{1}{f_n(z)} \to \frac{1}{f(z)}$$
 uniformly on $C_\rho(z)$ and $f'_n(z) \to f'(z)$ uniformly on $C_\rho(z)$

By argument principle,

$$0 = \lim_{n \to \infty} \frac{1}{2\pi i} \int_{C_{\varrho}(z)} \frac{f'_n(z)}{f_n(z)} dz = \frac{1}{2\pi i} \int_{C_{\varrho}(z)} \lim_{n \to \infty} \frac{f'_n(z)}{f_n(z)} dz = \frac{1}{2\pi i} \int_{C_{\varrho}(z)} \frac{f'(z)}{f(z)} dz$$

and thus $f(z_0) \neq 0$.

Proposition 1.13.4. Let $f_n: \Omega \to \widetilde{\mathbb{C}}$: meromorphic function $\forall n$. If $f_n \xrightarrow{\overline{\text{unif}}} f$, then f is meromorphic or $f \equiv \infty$.

Proof:

- If $f(z_0) \neq 0$: f is bounded near $z_0 \rightsquigarrow$ for $n \gg 0$, f_n is bounded near $z_0 \rightsquigarrow n \gg 0$, $f_n \neq \infty$ near $z_0 \rightsquigarrow f_n$ analytic near z_0 . By Weierstrass theorem, f is analytic near z_0 .
- If $f(z_0) = \infty : f_n^{-1} \xrightarrow{\overline{\text{unif}}} f^{-1}$ near $z_0 \leadsto f$ is analytic near $z_0 \leadsto z_0$ is pole of f.

Author: Minerva 54

1.13. NORMAL FAMILY Minerva notes

Remark 1.13.1. If f_n is analytic near z_0 and $f(z_0) = \infty \leadsto f_n^{-1}$ has no zero near z_0 and f^{-1} has at z_0 , then by Hurwitz's theorem I, $f^{-1} = 0 \leadsto f = \infty$. Hence,

$$f_n:\Omega\to\widetilde{\mathbb{C}}$$
: analytic and $f_n\xrightarrow{\overline{\mathrm{unif}}}f$, then f : analytic or $f\equiv\infty$

Theorem 1.13.3 (Montel theorem). Let \mathcal{F} is family of analytic functions. If the function in \mathcal{F} are uniformly bounded on each compact subset $E \subset \Omega$, then \mathcal{F} is normal.

Proof:

• Claim : Let $\gamma = C_{\rho}(z) \subset \Omega$ and $M = \max_{z \in \gamma} |f(z)|$. For $z_1, z_2 \in B_{\rho/2}(z)$,

$$|f(z_1) - f(z_2)| \le \frac{4M}{\rho} |z_1 - z_2|$$

subproof: By Cauchy integral formula,

$$|f(z_1) - f(z_2)| = \frac{1}{2\pi} \left| \int_{\gamma} \frac{f(\xi)(z_1 - z_2)d\xi}{(\xi - z_1)(\xi - z_2)} \right| \le \frac{4M}{\rho} |z_1 - z_2|$$

• $\forall E \subset \Omega$, $\forall z \in E \leadsto \exists \overline{B_{\rho}(z)} \subset \Omega$, then $\{B_{\rho/4}(z) : z \in E\}$ cover E. By compactness, $\{B_{\rho_i/4}(z_i) : i = 1,...,n\}$ covers E. $\forall i = 1,...,n$, let $|f(z)| \leq M_i \ \forall f \in \mathcal{F} \ \forall z \in C_{\rho_i}(z_i)$. Let $M = \max_i M_i$ and $\rho = \min_i \rho_i$. $\forall \varepsilon > 0$, let $\delta = \min\left(\frac{\rho\varepsilon}{4M}, \frac{\rho}{4}\right)$. For $z, z' \in E$ with $|z - z'| < \delta$, say $z' \in B_{\rho_i/4}(z_i) \leadsto |z - z_i| \leq |z - z'| + |z' - z_i| < \rho_i/2$. By Claim, $\forall f \in \mathcal{F}$,

$$|f(z) - f(z')| \le \frac{4M_i|z - z'|}{\rho_i} \le \varepsilon$$

Also, $\forall z \in \Omega$, $\{f(z) : z \in \Omega\}$ is bounded, then $\{f(z) : z \in \Omega\}$ contained in a compact subset of \mathbb{C} . By Arzela-Ascoli theorem, \mathcal{F} is normal.

Theorem 1.13.4. If the analytic function in \mathcal{F} are uniformly bounded on each compact subset, then so are the derivatives of \mathcal{F} .

Proof: By Cauchy integral formula,

$$|f'(z)| = \frac{1}{2\pi} \left| \int_{C_{\rho}(z_0)} \frac{f(\xi)d\xi}{(\xi - z)^2} \right| \le \frac{4M}{\rho} \ \forall z \in B_{\rho/2}(z_0) \ \forall f \in \mathcal{F}$$

Definition 1.13.5. A family \mathcal{F} of meromorphic function $f: \Omega \to \widetilde{\mathbb{C}}$ is normal if $\forall \{f_n\} \subset \mathcal{F}$, $\exists \{f_{n_i}\} \text{ s.t. } f_{n_i} \xrightarrow{\overline{\text{unif}}} f \text{ or } f_{n_i} \xrightarrow{\overline{\text{unif}}} \infty$.

Remark 1.13.2. Consider $f_n(z) = nz^2 - n \xrightarrow{\overline{\text{unif}}} \infty$, but $f'_n(z) = 2nz \to \begin{cases} \infty & \text{for } z \neq 0 \\ 0 & \text{for } z = 0 \end{cases}$.

Definition 1.13.6. $f:\Omega\to\widetilde{\mathbb{C}}$: meromorphic. The **spherical derivative** of f is

$$f^{\sharp}(z) = \frac{2|f'(z)|}{1+|f(z)|^2}$$

Author: Minerva 55

which is come from $d(f(z), f(z_0)) = \frac{2|f(z) - f(z_0)|}{\sqrt{(1+|f(z)|^2)(1+|f(z_0)|^2)}}$. Notice that if $f \neq 0$, then $f^{\sharp} = (f^{-1})^{\sharp}$, so we can define the spherical derivative at pole by $f^{\sharp} = (f^{-1})^{\sharp}$.

Fact 1.13.5. If f has a pole at a, then

$$\begin{cases} f^{\sharp}(a) = 0 \iff \text{ the order of } a \ge 2\\ a \text{ is simple pole } \rightsquigarrow f^{\sharp}(a) = \frac{2}{|\operatorname{Res}_{z=a} f|} \end{cases}$$

Theorem 1.13.5 (Marty theorem). A family \mathcal{F} of meromorphic functions is normal \iff $\{f^{\sharp}: f \in \mathcal{F}\}$ is uniformly bounded on each compact subset.

Proof:

- (\Rightarrow): If $\{f^{\#}: f \in \mathcal{F}\}$ is not uniformly bounded on $E \subset \Omega$. Choose $f_n \in \mathcal{F}$ s.t. $\max_{z \in E} f_n^{\#}(z) > n$. Then exists $f_{n_k} \xrightarrow{\overline{\text{unif}}} f$ on Ω . For all $z \in E$, exists closed disk contain z and contained in Ω s.t. f is analytic or 1/f is analytic. If f is analytic on the closed disk, then f is bounded i.e. f_{n_k} has no pole for $k \gg 0$. By Weierstrass theorem, $f'_{n_k} \to f'$ uniformly on the smaller closed disk. Hence, $f^{\#}_{n_k} \to f^{\#}$ on that smaller closed disk and thus $f^{\#}$ continuous on it. If 1/f is analytic on the closed disk, by same argument combine $(1/f)^{\#} = f^{\#}$, we still have $f^{\#}_{n_k} \to f^{\#}$ converge uniformly on smaller closed disk and $f^{\#}$ continuous on it. Since E is compact, $f^{\#}_{n_k} \to f^{\#}$ converge uniformly on E. Since $f^{\#}$ continuous on compact set E, $\max_{z \in E} f^{\#}(z)$ exists and thus $f^{\#}_{n_k}(z)$ is bounded for k > N (\longrightarrow).
- (\Leftarrow): Let $E \subset_{\text{cpt.}} \Omega$, there exists M s.t. $f^{\#}(z) < M \ \forall z \in E$. Let γ be the segment from z_1 to z_2 , then

$$d(f(z_1), f(z_2)) \le \int_{f \circ \gamma} \frac{|dw|}{1 + |w|^2} = \int_{\gamma} \frac{|f'(z)dz|}{1 + |f(z)|^2} = \frac{1}{2} \int_{\gamma} f^{\#}(z)|dz| \le \frac{M}{2}|z_2 - z_1|$$

and hence \mathcal{F} is equicontinuous. $\{f(z): f \in \mathcal{F}\} \subset \widetilde{\mathbb{C}}$: compact. By Arzela-Ascoli theorem, \mathcal{F} is normal.

1.14 Riemann mapping theorem

1.14.1 Riemann mapping theorem

Theorem 1.14.1 (Riemann mapping theorem). Let $\Omega \subsetneq \mathbb{C}$ be simply connected. Then for $z_0 \in \Omega$, $\exists!$ biholomorphism $F: \Omega \to B_1(0) =: \mathbb{D}$ s.t. $F(z_0) = 0$ and $F'(z_0) > 0$.

Proof: (uniqueness) Let $F_1, F_2 : \Omega \to \mathbb{D}$. Consider $f = F_2 \circ F_1^{-1} : \mathbb{D} \to \mathbb{D}$, then f(0) = 0 and $f'(0) = \frac{F'_2(z_0)}{F'_1(z_0)} > 0$. By Schwarz's lemma, $|f(z)| = |z| \leadsto f(z) = az$ with |a| = 1. Since $f'(0) > 0 \leadsto a = 1$ and thus $F_1 = F_2$.

Theorem 1.14.2 (Hurwitz's theorem (II)). Let $\{f_n\}$ be a sequence of holomorphic function in Ω . If $f_n \xrightarrow{\overline{\text{unif}}} f$ and $f_n : \Omega \to \mathbb{C}$ is injective $\forall n$, then f is injective or f is constant.

Author: Minerva 56

Proof: Assume f is not constant on Ω and f is not 1-1, say f(a)=w=f(b) with $a\neq b$. Let $w_n=f_n(a) \sim \lim_{n\to\infty} w_n=w$. Since $f\neq \text{constant}$, $\exists \rho>0$ s.t. $\forall z\in B_\rho(b)\setminus\{b\}$, $f(z)\neq f(b)\sim a\neq B$ (b) Since f is injective $\forall n, f=w$ has not solution in B (b) But f=w $\xrightarrow{\text{unif}} f=w$

 $a \notin B_{\rho}(b)$. Since f_n is injective $\forall n, f_n - w_n$ has not solution in $B_{\rho}(b)$. But $f_n - w_n \xrightarrow{\overline{\text{unif}}} f - w$ and f - w has a zero b. By Hurwitz's theorem (I), $f - w \equiv 0$ in $B_{\rho}(b)$ (\longrightarrow).

Now we fix $z_0 \in \Omega$ and let $\mathcal{F} = \{f : \Omega \to \mathbb{D} | f(z_0) = 0, f : \text{ holomorphic and injective} \}$.

Lemma 1.14.1. $\mathcal{F} \neq \emptyset$:

Proof: Since $\Omega \neq \mathbb{C}$, $\exists a \in \mathbb{C} \setminus \Omega \leadsto z - a \neq 0$ on Ω . Since Ω is simply connected, exists a holomorphic branch of $\log(z - a)$. Say it is $\ell : \Omega \xrightarrow[\text{inj.}]{\text{hol.}} \mathbb{C}$ and $e^{\ell(z)} = z - a$. Since ℓ is injective,

for $z_1, z_1 \in \Omega$ and $z_1 \neq z_2 \rightsquigarrow \ell(z_1) - \ell(z_2) \notin 2\pi i \mathbb{Z}$.

Claim: $\exists \varepsilon > 0 \text{ s.t. } |\ell(z) - (\ell(z_0) + 2\pi i)| > \varepsilon \ \forall z \in \Omega.$

subproof: If not,
$$\exists \{z_n\} \subset \Omega$$
 s.t. $\ell(z_n) \to \ell(z_0) + 2\pi i \leadsto e^{\ell(z_n)} \to e^{\ell(z_0) + 2\pi i} = e^{\ell(z_0)} \leadsto z_n \to z_0 \leadsto \ell(z_n) \to \ell(z_0)$

Consider $g(z) = \frac{1}{\ell(z) - \ell(z_0) - 2\pi i} \Rightarrow g$ is bounded by claim and holomorphic, injective on Ω .

Say
$$g: \Omega \to B_R(0)$$
 with $g(z_0) = \alpha$, where $R = \varepsilon^{-1}$. Then $f(z) := \frac{g(z) - \alpha}{R + \alpha} \in \mathcal{F}$.

Lemma 1.14.2.
$$\lambda := \sup_{f \in \mathcal{F}} |f'(z_0)|$$
, then $\lambda > 0$

Proof: Recall a holomorphism is locally injective on $\Omega \iff f'(z) \neq 0 \ \forall z \in \Omega$. Since f is injective $\forall f \in \mathcal{F} \leadsto |f'(z)| > 0 \ \forall f \in \mathcal{F} \leadsto \lambda > 0$.

Lemma 1.14.3. $\exists f \in \mathcal{F} \text{ s.t. } |f'(z_0)| = \lambda \text{ i.e. } \lambda < \infty.$

Proof: Let $\{f_n\} \subset \mathcal{F}$ s.t. $\lim_{n \to \infty} |f'_n(z_0)| = \lambda$. Since $|f_n(z)| < 1$, by Montel theorem, $\exists \{f_{n_i}\} \subset \{f_n\}$ s.t. $f_{n_i} \xrightarrow{\overline{\text{unif}}} f$. By Weierstrass theorem, f is holomorphic and $f'_n \xrightarrow{\overline{\text{unif}}} f' \leadsto |f(z)| \le 1$, $f(z_0) = \lim_{i \to \infty} f_{n_i}(z_0) = 0$ and $|f'(z_0)| = \lim_{i \to \infty} |f'_{n_i}(z_0)| = \lambda$.

- |f(z)| < 1: Since $f \neq \text{constant}$, by maximal principle, |f(z)| < 1 in Ω .
- f is injective: It follows from Hurwitz's theorem II.

Hence,
$$f \in \mathcal{F}$$

Proof: (existence of Riemann mapping theorem) Let F be given in Lemma 1.14.3 : $F(z_0) = 0$, $F'(z_0) \neq 0$, say $\arg F'(z_0) = \theta$. Consider $e^{-i\theta}F \rightsquigarrow (e^{-i\theta}F)'(z_0) > 0$, so we may assume $F'(z_0) > 0 \rightsquigarrow F : \Omega \to \mathbb{D}$: injective.

Claim: F is surjective: If not, $\exists a \in \mathbb{D}$ s.t. F(z) = a has no solution in Ω . Let $T_a(z) = \frac{a-z}{1-\overline{a}z} \in \operatorname{Aut}(\mathbb{D}) \leadsto "T_a(z) = 0 \iff z = a$ ". Consider $g(z) = \sqrt{T_a \circ F(z)} = \exp(T_a(F(z))/2)$ which has a holomorphic branch since Ω is simply connected. Define $G(z) = T_{\sqrt{a}} \circ g(z)$ which is injective and $G(z_0) = 0 \leadsto G \in \mathcal{F}$. We claim that $|G'(z_0)| > |F'(z_0)|$ and thus contradict to defintion of F. Let $S: \mathbb{D} \to \mathbb{D}$ define by $z \to z^2$, then $F = \underbrace{T_a^{-1} \circ S \circ T_{\sqrt{a}}^{-1} \circ G} \leadsto \Phi: \mathbb{D} \to \mathbb{D}$ with

 $\Phi(0) = 0$. By Schwarz's lemma, $|\Psi'(0)| \le 1$. If $|\Psi'(0)| = 1$, then $\Psi(z) = cz$ with $|c| = 1 \rightsquigarrow \Psi$ is $1 - 1 \rightsquigarrow S$ is 1 - 1 in \mathbb{D} ($\rightarrow \sim$). So $|\Psi'(0)| < 1$ and thus

$$|F'(z_0)| = |\Psi'(G(z_0))| \cdot |G'(z_0)| < |G'(z_0)|$$

Author: Minerva 57

Example 1.14.1.

- $\operatorname{Aut}(\mathbb{D}) = \{ e^{i\theta} \circ T_a : \theta \in \mathbb{R}, a \in \mathbb{D} \}$
- $\operatorname{Aut}(\mathbb{H}) \simeq \operatorname{SL}_2(\mathbb{R})/\{\pm 1\}$

Corollary 1.14.1. If $\Omega \subset \widetilde{\mathbb{C}}$ is simply connected, then either $\Omega = \widetilde{\mathbb{C}}$ or $\Omega \xrightarrow{\sim} \mathbb{C}$ or $\Omega \xrightarrow{\sim} \mathbb{D}$.

Proof: Let $Z = \widetilde{\mathbb{C}} \setminus \Omega$.

- If $Z = \emptyset \rightsquigarrow \Omega = \widetilde{\mathbb{C}}$.
- If $Z \neq \emptyset$, say $a \in Z$. If $\infty \in Z$, $\Omega \xrightarrow{\sim} \mathbb{C}$ or \mathbb{D} by Riemann mapping theorem. If $a \neq \infty$, consider $T(z) = \frac{1}{z-a}$, then

$$T: \begin{tabular}{lll} $\widetilde{\mathbb{C}}$ & $\stackrel{\sim}{\longrightarrow}$ & $\widetilde{\mathbb{C}}$ \\ & $a & \longmapsto & \infty \\ & $\Omega & \longrightarrow & T(\Omega) \subset \mathbb{C}$ \\ \end{tabular}$$

 $\Omega \xrightarrow{\sim} T(\Omega) \xrightarrow{\sim} \mathbb{C}$ or \mathbb{D} .

Remark 1.14.1.

• Let $U_0 = \widetilde{C} \setminus \{\infty\}$ and $U_\infty = \widetilde{C} \setminus \{0\}$. Then

$$\varphi_0: U_0 \xrightarrow{\sim} \mathbb{C}$$
 and $\varphi_\infty: U_\infty \xrightarrow{\sim} \mathbb{C}$ $z \longmapsto z^{-1}$

and $U_0 \cap U_\infty \xrightarrow{\sim} U_0 \cap U_\infty$ define by $z \mapsto z^{-1}$.

- $\Omega \subset \widetilde{\mathbb{C}}$ and $f: \Omega \to \mathbb{C}$: continuous
 - $a \neq \infty$, f is holomorphic at a iff $f \circ \varphi_0^{-1}$ is holomorphic at $\phi_0(a)$
 - $a = \infty$, f is holomorphic at a iff $f \circ \varphi_{\infty}^{-1}$ is holomorphic at $\phi_{\infty}(a)$ i.e. $f(z^{-1})$ is holomorphic at 0.
- Consider a line (x(t), y(t)) on \mathbb{C} and it image on Riemann sphere $(\xi(t), \eta(t), \rho(t))$. The tangent slope at (0, 0, 1) is $\lim_{t \to \infty} \frac{\eta(t)}{\xi(t)} = \lim_{t \to \infty} \frac{y(t)}{x(t)} = \text{constant}$.
- $\widetilde{\mathbb{C}}$ is compact : Let $\{z_n\} \subset \widetilde{\mathbb{C}}$
 - •• $\{z_n\} \subset \mathbb{C}$ is bounded $\rightsquigarrow \exists \{z_{n_i}\}$ converge.
 - •• $\{z_n\} \subset \mathbb{C}$ is unbounded $\rightsquigarrow \exists \{z_{n_i}\} \text{ s.t. } |z_{n_i}| \to \infty \text{ as } i \to \infty, \ d(z_{n_i}, \infty) = \frac{2}{\sqrt{1 + |z_{n_i}|^2}} \to 0 \rightsquigarrow \lim_{i \to \infty} z_{n_i} = \infty.$
 - •• $\infty \in \{z_n\}$:
 - ••• ∞ is an accumulation point, then $\exists \{z_{n_i}\}$ s.t. $\lim_{i\to\infty} z_{n_i} = \infty$
 - ••• ∞ is not an accumulation point, then $\exists n_0$ st. $\{z_n\}_{n=n_0}^{\infty}$ is bounded, then exists converge subsequence.

Definition 1.14.1. $\mathbb{P}^1 := (\mathbb{C} \times \mathbb{C} \setminus \{(0,0)\}) / \sim$, where $(x_1, y_1) \sim (x_2, y_2) \iff \exists \lambda \in \mathbb{C}^\times \text{ s.t.}$ $(x_1, y_1) = \lambda(x_2, y_2)$. Denote [x, y] be the equivalent class for (x, y).

Remark 1.14.2.

$$U_0 = \{[x, y] \in \mathbb{P}^1 : x \neq 0\} \longrightarrow U_\infty = \{[x, y] \in \mathbb{P}^1 : y \neq 0\}$$
$$[x, y] = [1, y/x] \mapsto y/x \in \mathbb{C} \qquad [x, y] = [x/y, 1] \mapsto x/y \in \mathbb{C}$$
$$z \longmapsto z^{-1}$$

1.14.2 Automorphism of $\mathbb{C}, \mathbb{C}^{\times}, \widetilde{\mathbb{C}}$

Lemma 1.14.4. If $g: \mathbb{C}^{\times} \to \mathbb{C}$ is holomorphic and injective, then g cannot have an essential singularity at 0.

Proof: If not, recall Weierstrass-Casorati theorem, $\forall B_{\rho}(a)$, g can arbitrary closed to any complex value on $B_{\rho}(a) \leadsto g(\mathbb{D})$ is dense in \mathbb{C} . By open mapping theorem, $U = g(B_1(2))$ is an open neighborhood of $g(2) \leadsto U \cap g(\mathbb{D}) \neq \emptyset$. Say $w \in U \cap g(\mathbb{D})$ and $w = g(z_1) = g(z_2)$ with $z_1 \in \mathbb{D}$, $z_2 \in B_1(2)$, but $z_1 \neq z_2$ since $\mathbb{D} \cap B_1(2) = \emptyset$, which contradict to injective.

Lemma 1.14.5 (Generalization of Liouville's theorem). $f: \mathbb{C} \to \mathbb{C}$ is entire s.t. $|f(z)| \le M(1+|z|^n) \ \forall z \in \mathbb{C}$ for some M>0. Then f is polynomial of degree $\le n$.

Proof: By Cauchy estimate, for R > 1 and k > n

$$|f^k(0)| \le \frac{k! \cdot M(1+R^n)}{R^k} \le 2M \cdot k! \cdot R^{n-k} \to \infty \text{ as } R \to \infty$$

Hence, $f^k(0) = 0 \ \forall k > n$. By Taylor series, $a_k = \frac{f^{(k)}(0)}{k!} = 0 \ \forall k > n \leadsto f$ is polynomial of degree $\leq n$.

Theorem 1.14.3. Aut(\mathbb{C}) = { $az + b : a, b \in \mathbb{C}, a \neq 0$ }

Proof: (\supseteq): OK. (\subseteq): For $f \in Aut(\mathbb{C})$, $g(z) = f(z^{-1}): \mathbb{C}^{\times} \to \mathbb{C}$ is holomorphic and injective. By Lemma 1.14.4, g has a removable singularity or pole at $z = 0 \leadsto \exists M > 0$ and n s.t. $|z|^n |g(z)| < M^{-1}$ on |z| < 1 i.e. $|f(z)| \le M|z|^n \ \forall z > 1$. On $|z| \le 1$, $|f(z)| \le M'$. Then

$$|f(z)| \le \max(M, M')(1 + |z|^n) \ \forall z \in \mathbb{C}$$

By Lemma 1.14.5, f is polynomial of degree $\leq n$. By fundamental theorem of algebra, f has at exactly n roots in \mathbb{C} . Since f is 1-1, f(z) must be $a(z-\alpha)^n$. If n>1, then near α , f is n to $1(-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!\!-})$. Hence, n=1.

Theorem 1.14.4. Aut(\mathbb{C}^{\times}) = $\{az|a \neq 0\} \cup \{az^{-1}: a \neq 0\}$

Proof: (\supseteq) : OK. (\subseteq) : For $f \in Aut(\mathbb{C}^{\times})$, by Lemma 1.14.4, z=0 is either removable singularity or pole.

• z=0 is removable singularity: We can define $\widetilde{f}:\mathbb{C}\to\mathbb{C}$. We claim that \widetilde{f} is injective. If $\widetilde{f}(0)=\widetilde{f}(z_0)=w_0$ for some $z_0\neq 0$. By argument principle, exists a neighborhood V of w_0 and $B_{\rho}(z_0), B_r(0)$ with $B_{\rho}(z_0)\cap B_r(0)=\varnothing$ s.t. $\forall w_0\neq w\in V, \exists z_0\neq z_1\in B_{\rho}(z_0)$ and $0\neq z_2\in B_r(0)$ s.t. $\widetilde{f}(z_1)=w=\widetilde{f}(z_2)\leadsto f(z_1)=f(z_2)$ (\longrightarrow). Hence, f(0)=0 and thus $\widetilde{f}\in \operatorname{Aut}(\mathbb{C})\leadsto \widetilde{f}(z)=az+b$. Since $\widetilde{f}(0)=0\leadsto b=0$.

• z=0 is pole: $h(z)=f(z)^{-1} \rightsquigarrow h: \mathbb{C} \to \mathbb{C}$ s.t. $h(0)=0 \rightsquigarrow h(z)=cz \rightsquigarrow f(z)=(1/c)/z$.

Theorem 1.14.5. $\operatorname{Aut}(\widetilde{\mathbb{C}}) \simeq \operatorname{SL}_2(\mathbb{C})/\langle -I \rangle$.

Proof: We have know that $f(z) = \frac{az+b}{cz+d}$ with $ad-bc = 1 \leadsto f \in \operatorname{Aut}(\widetilde{\mathbb{C}})$. Conversely, let $T \in \operatorname{Aut}(\widetilde{\mathbb{C}})$, say $T(z_0) = \infty$ and $T(\infty) = w_0$.

- If $z_0 = \infty \rightsquigarrow w_0 = \infty \rightsquigarrow F := T|_{\mathbb{C}} \in \operatorname{Aut}(\mathbb{C}) \rightsquigarrow F(z) = az + b$ with $a \neq 0 \rightsquigarrow \widetilde{F} \in \operatorname{SL}_2(\mathbb{C})$, where \widetilde{F} is normalization transformation.
- $z_0 \neq \infty \rightsquigarrow w_0 \neq \infty$. $F(z) := T(z_0 + z) w_0 \rightsquigarrow F(\infty) = 0$ and $F(0) = \infty \rightsquigarrow F|_{\mathbb{C}^\times} \in \operatorname{Aut}(\mathbb{C}^\times)$. Since z = 0 is a pole of $f \rightsquigarrow f(z) = \frac{a}{z} \rightsquigarrow T(z) = \frac{a}{z - z_0} + w \rightsquigarrow \widetilde{T} \in \operatorname{SL}_2(\mathbb{C})$.

1.14.3 Cross ratio

We already know the automorphism of $\widetilde{\mathbb{C}}$, then three point can identify the unique automorphism of $\widetilde{\mathbb{C}}$.

•
$$S: z_1, z_2, z_3 \to 1, 0, \infty \leadsto S(z) = \frac{z - z_2}{z - z_3} \cdot \frac{z_1 - z_3}{z_1 - z_2}$$

• $S: 1, 0, \infty \to 1, 0, \infty \leadsto S = \mathrm{id}$

Definition 1.14.2. The **cross ratio** of z_0, z_1, z_2, z_3 is defined by

$$(z_0, z_1, z_2, z_3) = \frac{z_0 - z_2}{z_0 - z_3} \cdot \frac{z_1 - z_3}{z_1 - z_2} = S(z_0)$$

where $S: z_1, z_2, z_3 \to 1, 0, \infty$. Then we have some property for cross ratio :

• Given $T \in \text{Aut}(\widetilde{\mathbb{C}})$, then $(Tz_0, Tz_1, Tz_2, Tz_3) = (z_0, z_1, z_2, z_3)$: Since $S \circ T^{-1} : Tz_1, Tz_2, Tz_3 \to 1, 0, \infty$, we have

$$(Tz_0, Tz_1, Tz_2, Tz_3) = S \circ T^{-1}(T(z_0)) = S(z_0) = (z_0, z_1, z_2, z_3)$$

• $z_1, z_2, z_3 \xrightarrow{w(z)} w_1, w_2, w_3 \rightsquigarrow (z, z_1, z_2, z_3) = (w(z), w_1, w_2, w_3).$

Definition 1.14.3. z and z^* symmetric w.r.t. C for if $\forall z_1, z_2, z_3 \in \mathbb{C}$,

$$(z^*, z_1, z_2, z_3) = \overline{(z, z_1, z_2, z_3)}$$

- If C is a straight line : Consider $z_3 = \infty \leadsto \frac{z^* z_2}{z z_2} = \frac{\overline{z} \overline{z_2}}{\overline{z_1} \overline{z_2}} \leadsto \operatorname{Im} \frac{z^* z_2}{z_1 z_2} = -\operatorname{Im} \frac{z z_2}{z_1 z_2}$
- $C = C_R(a)$:

$$\overline{(z, z_1, z_2, z_3)} = \overline{(z - a, z_1 - a, z_2 - a, z_3 - a)} = \left(\overline{z} - \overline{a}, \frac{R^2}{z_1 - a}, \frac{R^2}{z_2 - a}, \frac{R^2}{z_3 - a}\right) \\
= \left(\frac{R^2}{\overline{z} - \overline{a}}, z_1 - a, z_2 - a, z_3 - a\right) = \left(\frac{R^2}{\overline{z} - \overline{a}} + a, z_1, z_2, z_3\right)$$

Then
$$z^* = \frac{R^2}{\overline{z} - \overline{a}} + a$$
 and $\frac{z^* - a}{z - a} = \frac{R^2}{|z - a|^2}$.

1.15 Conformal mapping

Theorem 1.15.1 (Schwarz reflection principle). Let Ω be symmetric w.r.t. x-axis and $\Omega \cap x$ -axis = (a,b), $\Omega + := \Omega \cap \mathbb{H}$. Assume $f: \Omega^+ \to \mathbb{C}$ is holomorphic and f is continuous on $\Omega^+ \cup (a,b)$ s.t. $f((a,b)) \subseteq \mathbb{R}$. Let $\Omega^- = \{\overline{z} : z \in \Omega^+\}$ and

$$\widetilde{f}(z) = \begin{cases} f(z) & \text{if } z \in \Omega^+ \cup (a, b) \\ \overline{f(\overline{z})} & \text{if } z \in \Omega^- \end{cases}$$

Then \widetilde{f} is holomorphic on Ω .

Proof: Define $g(z) = \overline{f(\overline{z})}$ for $z \in \Omega^-$. We claim that g is holomorphic in Ω^- and also continuous on (a,b).

subproof: $\forall z_0 \in \Omega^-, \overline{z_0} \in \Omega$. Say $f(z) = \sum a_n (z - \overline{z_0})^n$ near $\overline{z_0} \leadsto g(z) = \sum \overline{a_n} (z - z_0)^n$ near z_0 i.e. g is holomorphic near z_0 . Also, $g|_{(a,b)} = f|_{(a,b)}$.

 z_0 i.e. g is holomorphic near z_0 . Also, $g|_{(a,b)} = f|_{(a,b)}$.

By claim, \overline{f} holomorphic on Ω^+, Ω^- and is continuous on $\Omega^+ \cup (a,b) \cup \Omega^- = \Omega$. Now, for $z_0 \in (a,b)$, let $B_{\rho}(z_0) \subset \Omega$. For any rectangle $R \subseteq B_{\rho}(z_0)$. If $\partial R \cap (a,b) = \emptyset$, then $\partial R \subset \Omega^+$ or Ω^- . By Cauchy theorem, $\int_{\partial R} \widetilde{f} dz = 0$. If $\partial R \cap (a,b) \neq \emptyset$. Consider $C_{\varepsilon}^+, C_{\varepsilon}^-$ be defined in below,

Since \widetilde{f} is continuous at (a,b) and \widetilde{f} analytic in Ω^+,Ω^- , we have

$$\int_{\partial R} \widetilde{f}(z)dz = \lim_{\varepsilon \to 0} \left(\int_{C_{\varepsilon}^{+}} \widetilde{f}(z)dz + \int_{C_{\varepsilon}^{-}} \widetilde{f}(z)dz \right) = \lim_{\varepsilon} (0+0) = 0$$

and hence it will holds for all closed curve with same argument in Cauchy theorem. By Morera's theorem, \widetilde{f} is holomorphic at z_0 .

Remark 1.15.1.

• $f: B_1(0) \to \mathbb{C}$ holomorphic and is continuous on $\overline{B_1(0)}$ s.t. $f(C_1(0)) \subset \mathbb{R}$. Then $\exists \widetilde{f}: \mathbb{C} \to \widetilde{\mathbb{C}}$ s.t. $\widetilde{f}|_{\overline{B_1(0)}} = f$ and

$$\widetilde{f}(z) = \begin{cases} f(z) & \text{if } z \in \overline{B_1(0)} \\ \overline{f(1/\overline{z})} & \text{if } |z| > 1 \end{cases}$$

• $f: B_1(0) \to \mathbb{C}$ holomorphic and is continuous on $\overline{B_1(0)}$ s.t. $f(C_1(0)) \subset C_1(0)$. Then $\exists \widetilde{f}: \mathbb{C} \to \widetilde{\mathbb{C}}$ s.t. $\widetilde{f}|_{\overline{B_1(0)}} = f$ and

$$\widetilde{f}(z) = \begin{cases} f(z) & \text{if } z \in \overline{B_1(0)} \\ \frac{1}{\overline{f(1/\overline{z})}} & \text{if } |z| > 1 \end{cases}$$

• In general, Schwarz reflection principal follow from $\widetilde{f}(z) = f(z^*)^*$.

Goal: Construct a conformal map from \mathbb{H} to a polygon P.

Theoretical existence: By Riemann mapping theorem, $\exists F_0: P \xrightarrow{\sim} \mathbb{D} \leadsto F_0^{-1}: \mathbb{D} \to P$. Then we can extend it to $\overline{\mathbb{D}} \to \overline{P}$ s.t. $\partial \mathbb{D} \xrightarrow{\sim} \partial P$ by Lemma 1.15.1. Let $w: \mathbb{H} \to \mathbb{D}$ define $w(z) = \frac{i-z}{i+z}$ and it is continuous on $\mathbb{R} \leadsto f \circ w: \mathbb{H} \to P$ is conformal.

Construct explicitly: Want to construct $F: \mathbb{H} \to P$ and $a_i \in \mathbb{R}$ are the vertices of P s.t. $F: a_i \mapsto w_i$.

- If we try $f'(z) = (z-a)^{\alpha} = e^{\alpha(\log|z-a|+i\arg(z-a))}$ with $\alpha \in \mathbb{R}$
 - •• $z < a : \arg(z a) = \pi \rightsquigarrow \arg(z a)^{\alpha} = \alpha \pi$
 - •• $z > a : \arg(z a) = 0 \rightarrow \arg(z a)^{\alpha} = 0$

In fact, $f'(z) = \lambda(z-a)^{\alpha} \rightsquigarrow \arg f'(z) = \arg \lambda + \alpha \arg(z-a)$

- Now we try $f'(z) = \lambda (z-a)^{-\alpha} (z-b)^{-\beta}$ with a < b:
 - $z < a : \arg f'(z) = \arg \lambda \alpha \pi \beta \pi$
 - a < z < b: $\arg f'(z) = \arg \lambda \beta \pi$
 - z > b: arg $f'(z) = \arg \lambda$

Notice that $\overline{a_i a_{i+1}} \mapsto \overline{w_i w_{i+1}}$ and thus $\arg f'(z)$ is constant in (a_i, a_{i+1}) , which is the angle of $\overline{w_i w_{i+1}}$ and positive real axis. Let $f'(z) = \lambda (z - a_1)^{-\alpha_1} \cdots (z - a_n)^{-\alpha_n}$. For some argument, $\alpha_i \pi$ must be the exterior angle of vertex w_i of P. Then $\sum_{i=1}^n \alpha_i \pi = 2\pi \rightsquigarrow \sum_{i=1}^n \alpha_i = 2$. Notice that f'(z) is holomorphic on the region Ω by deleting n cuts i.e.

$$\Omega = \mathbb{C} \setminus \{ \text{Im } z \leq 0 \text{ and } \text{Re} z = a_i \text{ for some } i \}$$

Fix $b \in \Omega$, $\forall z \in \Omega$,

$$f(z) = \int_{b}^{z} (\xi - a_1)^{-\alpha_1} (\xi - a_2)^{-\alpha_2} \cdots (\xi - a_n)^{-\alpha_n} d\xi$$

is holomorphic on Ω , since Ω is simply connected.

Claim: f(z) is continuous at $a_i \ \forall i = 1, ..., n$

subproof: The only part of f'(z) is not holomorphic at a_i is the term $(z - a_i)^{-\alpha_i}$. The other terms are holomorphic. Fix i and let

$$\phi(z) = (z - a_1)^{-\alpha_1} \cdots \widehat{(z - a_i)^{-\alpha_i}} \cdots (z - a_n)^{-\alpha_n}$$

Then $\phi(z)$ is holomorphic at $a_i \rightsquigarrow \phi(z) = \phi(a_i) + (z - a_i)\psi(z)$, where $\psi(z)$ is holomorphic near a_i . Then

$$f'(z) = (z - a_i)^{-\alpha_i} \phi(z) = \phi(a_i)(z - a_i)^{-\alpha_i} + (z - a_i)^{1 - \alpha_i} \psi(z)$$

Notice that $0 < \alpha_i < 1$, then first term have primitive $\frac{\phi(a_i)(z-a_i)^{1-\alpha_i}}{1-\alpha_i}$ and the second term is holomorphic near a_i , so $f(a_i)$ exists and f continuous at a_i .

Definition 1.15.1. The **Schwarz-Christoffel integral** is given by

$$S(z) = \int_0^z \frac{d\xi}{(\xi - a_1)^{\alpha_1} \cdots (\xi - a_n)^{\alpha_n}}$$

where $a_1 < a_2 < \cdots < a_n$ and $\alpha_i < 1 \ \forall i \ \text{and} \ 1 < \sum_{i=1}^n \alpha_i$

- $\Omega := \mathbb{C} \setminus \bigcup_{k=1}^n \{a_k + iy : y \leq 0\} \rightsquigarrow S(z)$ is holomorphic on Ω .
- For large $|\xi|$, $\exists c > 0$ s.t. $\left| \prod_{k=1}^{n} (\xi a_k)^{-\alpha_k} \right| \le c|\xi|^{-\sum_{k=1}^{n} \alpha_k}$. Since $\sum_{k=1}^{n} \alpha_k > 1 \rightsquigarrow |z| \gg 0$ $\int_{2}^{\infty} \frac{1}{|\xi|^{\sum a_k}} d\xi \text{ conv. } \sim \int_{iy}^{i\infty} \frac{1}{|\xi|^{\sum a_k}} d\xi \text{ conv.}$

By Cauchy theorem, $\lim_{r\to\infty} S(re^{i\theta}) = w_{\infty}$ converge independent on θ . When $\sum_{i=1}^{n} \alpha_{i} \in (1,2)$, $S(\mathbb{H})$ is the polygon with verties $w_{1},...,w_{n},w_{\infty}$. If $\sum_{i=1}^{n} \alpha_{i} = 2$, $w_{\infty} \in \overline{w_{1}w_{n}}$.

Lemma 1.15.1. Let $f: \mathbb{D} \to P$ be the conformal mapping, then $\exists \widetilde{f}: \overline{\mathbb{D}} \xrightarrow{\sim} \overline{P}$ s.t. $\partial \mathbb{D} \xrightarrow{\widetilde{f}} \partial P$.

Proof:

• $\forall z_0 \in \partial \mathbb{D}$, $r \in (0, 1/2)$, choose arbitrary $z_r, z_r' \in \mathbb{D} \cap C_r(z_0)$ and let $\rho(r) = |f(z_r) - f(z_r')|$. Claim: $\exists r_n \to 0 \text{ s.t. } \rho(r_n) \to 0$.

subproof: If not, $\exists c > 0$ and $R \in (0, 1/2)$ s.t. $\rho(r) \geq c \ \forall 0 < r \leq R$. Let γ_r be the arc on $C_r(z_0)$ connected z_r, z_r' , then

$$c \le \rho(r) = |f(z_r) - f(z_r')| = \left| \int_{\gamma_r} f'(z) dz \right| = \left| \int_{\theta_r}^{\theta_r'} f'(z) r d\theta \right|$$
$$\le \int_{\theta_r}^{\theta_r'} |f'(z)|^2 r d\theta \le \left(\int_{\theta_r}^{\theta_r'} |f'(z)|^2 r d\theta \right)^{1/2} \left(\int_{\theta_r}^{\theta_r'} r d\theta \right)^{1/2}$$

The last inequality is from Cauchy Schwarz inequality. Hence,

$$\frac{c^2}{2\pi r} \le 2\pi \int_{\theta_r}^{\theta_r} |f'(z)|^2 r d\theta$$

Integral r from 0 to R in both side, we have

$$\int_0^R \frac{c^2}{2\pi r} dr \le \int_0^R \int_{\theta_r}^{\theta_r'} |f'(z)|^2 r d\theta dr \le \int_{\mathbb{D} \cap B_R(z_0)} |f'(z)|^2 dx dy = \operatorname{Area}(\mathbb{D} \cap B_R(z_0)) < \infty$$

The last equality is follow from

Area
$$(f(\Omega)) = \iint_{f(\Omega)} dx dy = \iint_{\Omega} \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} dx dy = \iint_{\Omega} |f'(z)|^2 dx dy$$

• $\lim_{z\to z_0} f(z)$ exists: If not, $\exists \lim_{n\to\infty} z_n = \lim_{n\to\infty} z'_n = z_0$ but $q_1 = \lim_{n\to\infty} f(z_n) \neq \lim_{n\to\infty} f(z'_n) = q_2 \rightsquigarrow q_1, q_2 \in \partial P$. If not, $\exists B_r(q_1) \subset P \rightsquigarrow f^{-1}(B_r(q_1)) \subset \mathbb{D} \rightsquigarrow z_n \not\to q_1 (\longrightarrow)$. Exists ρ_1, ρ_2 s.t. for $n \geq n_0, F(z_n) \in B_{\rho_1}(q_1), F(z'_n) \in B_{\rho_2}(q_2)$ s.t. $\inf_{\substack{x \in B_{\rho_1}(q_1) \\ y \in B_{\rho_2}(q_2)}} |x-y| = d > 0$. Construct the curve

 $\Gamma_1: [0,1] \to B_{\rho_1}(q_1)$ by $\Gamma_1(0) = f(z_{n_0}), \Gamma_1(1-2^{-k}) = f(z_{n_0+k})$ and connect z_{n_0+i}, z_{n_0+i+1} by curve in $B_{\rho_1}(z_1) \cap P$ (since it is path connected), then the end point of Γ_1 is q_1 . Similarly, construct Γ_2 . Let $\gamma_1 = F^{-1}(\Gamma_1), \ \gamma_2 = F^{-1}(\Gamma_2) \leadsto z_n \in \gamma_1, z'_n \in \gamma_2 \ \forall n \geq n_0$. For r sufficiently small, $\exists z_r \in C_1(z_0) \cap \gamma_1 \neq \emptyset, \ z'_r \in C_2(z_0) \cap \gamma_2 \neq \emptyset$, but $|f(z_r) - f(z'_r)| > d$ (\longrightarrow).

• Define $f(z_0) := \lim_{z \to z_0} f(z) \ \forall z \in \partial \mathbb{D} \leadsto f$ is continuous on $\partial \mathbb{D}$:

For $z_0 \in \partial \mathbb{D}$, $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $\forall z \in \mathbb{D}$ with $|z - z_0| < \delta \leadsto |f(z) - f(z_0)| < \varepsilon$. $\forall \varepsilon > 0$, $\forall z \in \partial \mathbb{D} \cap B_{\delta}(z_0)$, choose $w \in \mathbb{D} \cap B_{\delta}(z_0)$ s.t. $|f(z) - f(w)| < \varepsilon$, then

$$|f(z) - f(z_0)| \le |f(z) - f(w)| + |f(w) - f(z_0)| < 2\varepsilon$$

• Let $g=f^{-1}$ on $P \leadsto \widetilde{g}: \overline{P} \to \overline{\mathbb{D}}$ and $\partial P \to \partial \mathbb{D}$ and thus $\widetilde{g}=\widetilde{f}^{-1}$.

Theorem 1.15.2 (Main theorem). Given $F: \mathbb{H} \to P$ (*n*-polygon with vertices $w_1, ..., w_n$) $F: \underline{a_i} \mapsto w_i$ a conformal map, $\exists c_1, c_2 \in \mathbb{C}$ s.t.

$$F(z) = c_1 \int_0^z \frac{d\xi}{(\xi - a_1)^{\alpha_1} \cdots (\xi - a_n)^{\alpha_n}} + c_2$$

with $\alpha_1 + \cdots + \alpha_n = 2$.

Proof: Let α_i be defined above.

• Consider $h(z) = (F(z) - w_k)^{1/(1-\alpha_k)} \ \forall z \in H = \{z \in \overline{\mathbb{H}} : a_{k-1} \le \operatorname{Re}z \le a_{k+1}\}$. Notice that

$$\frac{1}{1 - \alpha_k} \arg(w_{k+1} - w_k) = \frac{\arg(w_k - w_{k-1}) + \alpha_k \pi}{1 - \alpha_k} = \frac{\arg(w_k - w_{k-1}) + \pi}{1 - \alpha_k} - \pi$$

and thus

$$\exp\left(\frac{\arg(w_{k+1}-w_k)}{1-\alpha_k}\right) = -\exp\left(\frac{\arg(w_k-w_{k-1})+\pi}{1-\alpha_k}\right) = -\exp\left(\frac{\arg(w_k-w_{k-1})}{1-\alpha_k}\right)$$

which show that $h([a_{k-1}, a_k])$ is a segment. We may assume $h : [a_{k-1}, a_k] \to \mathbb{R}$ by scaling and $h(\mathbb{H}) \subset \mathbb{H}$. By Schwarz reflection principle, h extend to $\widetilde{h} : \widetilde{H} = \{a_{k-1} \leq \operatorname{Re}z \leq a_{k+1}\} \to \mathbb{C}$.

• For
$$z \in H$$
, $\frac{F'(z)}{F(z) - w_k} = (1 - \alpha_k) \frac{h'(z)}{h(z)} \rightsquigarrow \begin{cases} F'(z) \neq 0 \implies h'(z) \neq 0 \\ \forall z \in H^-, \ \widetilde{h}(z) = \overline{h(\overline{z})} \rightsquigarrow \widetilde{h}'(z) \neq 0 \end{cases}$
 $\forall z \in (a_{k-1}, a_{k+1}), (\mathring{f} \mathring{a})$

• $F' = (1 - \alpha_k)h^{-\alpha_k}h' \implies F'' = (1 - \alpha_k)(-\alpha_k h^{-\alpha-1}(h')^2 + h^{-\alpha_k}h'')$. Note that $h(a_k) = 0$, $h'(a_k) \neq 0 \rightsquigarrow a_k$: zero of order 1.

$$\frac{F''}{F'} = -\alpha_k \frac{h'}{h} + \frac{h''}{h'}$$

1.16 Harmonic functions and subharmonic function

Recall that:

- $u: \Omega \to \mathbb{R}$ is harmonic if $u \in C^2(\Omega)$ and $\Delta u = u_{xx} + u_{yy} = 0$
- If Ω is simply connected and $u \in \mathcal{H}(\Omega) \leadsto \exists v \in \mathcal{H}(\Omega) \text{ s.t. } f = u + iv \text{ is holomorphic in } \Omega$.

Definition 1.16.1. $h: U \to \mathbb{R}$ continuous and $\overline{B_{\rho}(a)} \subset U$. The **anverage** of h on $C_r(a) \subseteq U$ is

$$A(r) = \frac{1}{2\pi} \int_0^{2\pi} h(a + re^{i\theta}) d\theta \text{ for } r \in (0, \rho)$$

Fact 1.16.1. $\lim_{r\to 0} A(r) = h(a)$

Proof:

$$|A(r) - h(a)| = \left| \frac{1}{2\pi} \int_0^{2\pi} (h(a + re^{i\theta}) - h(a)) d\theta \right| \le \frac{1}{2\pi} \int_0^{2\pi} \left| h(a + re^{i\theta}) - h(a) \right| d\theta \le M(r) \to 0$$

where M(r) is from uniformly continuous on compact set.

Proposition 1.16.1 (Mean value property). If u is harmonic, then

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta}) d\theta$$

Proof: By Green theorem,

$$\int_{C_{\rho}(a)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy = \iint_{\overline{B_{\rho}(a)}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) dx dy = 0$$

Parameterize $C_{\rho}(a)$ into $x = a + r \cos \theta$, $y = a + r \sin \theta$. Then

$$0 = r \int_0^{2\pi} (u_x \cos \theta + u_y \sin \theta) d\theta = r \int_0^{2\pi} \frac{\partial}{\partial r} u(a + re^{i\theta}) d\theta$$

$$\implies \frac{d}{dr} \left(\int_0^{2\pi} \frac{\partial}{\partial r} u(a + re^{i\theta}) d\theta \right) = \int_0^{2\pi} \frac{\partial u}{\partial r} (a + re^{i\theta}) = 0$$

and thus A(r) is constant on $(0, \rho)$. By fact 1.16.1, this constant is u(a).

Proposition 1.16.2. (Maximal principle) Let $u \in \mathcal{H}(\Omega)$ and $u(z) \leq M$ on Ω . If $\exists u \in \Omega$ s.t. u(a) = M, then u is constant.

Proof: Let $V = \{z \in \Omega : u(z) = M\} \neq \emptyset$ by assumption, which is a closed set. For $b \in V$, let $B_{\rho}(b) \subset \Omega$, then

$$u(b) = \frac{1}{2\pi} \int_0^{2\pi} u(b + re^{i\theta}) d\theta \text{ for } 0 < r < \rho$$

$$\implies 0 = \frac{1}{2\pi} \int_0^{2\pi} u(b + re^{i\theta}) - u(b) d\theta \le 0 \rightsquigarrow u(b + re^{i\theta}) = u(b) \in V \ \forall \theta$$

Then V is open. By Ω is connected, f is constant.

Remark 1.16.1. Mean value property $(M-V) \implies Maximal principle <math>(M-P)$.

Definition 1.16.2. u is called **C-harmonic** in Ω if $u \in \mathcal{H}(\Omega)$ and $u \in C^0(\overline{\Omega})$ and denoted by $u \in c\mathcal{H}(\Omega)$

Corollary 1.16.1. If $u_1, u_2 \in c\mathcal{H}(\Omega)$ with Ω : bounded and $u_1 \equiv u_2$ on $\partial\Omega$, then $u_1 \equiv u_2 \in \Omega$.

Proof: Let $u := u_1 - u_2$ attain max 0 on $\partial \Omega$, by M-P, $u_1 \leq u_2$ in Ω . Similarly, $u_2 \leq u_1$ in Ω and hence $u_1 \equiv u_2$ in $\overline{\Omega}$.

Theorem 1.16.1. If $u \in C^0(\overline{\mathbb{D}})$, define

$$P_{u} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - |z|^{2}}{|e^{i\theta} - z|^{2}} u_{0}(e^{i\theta}) d\theta$$

Then $P_u \in c\mathcal{H}(\mathbb{D})$ and $P_u = u$ on $P_u = u$ on $C_1(0)$.

Proof:

• Recall that $\frac{1-|z|^2}{|e^{i\theta}-z|^2} = \operatorname{Re}\left(\frac{e^{i\theta}+z}{e^{i\theta}-z}\right)$. Let

$$g(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} u(e^{i\theta}) d\theta$$
 in $\mathbb{D} \rightsquigarrow g$ is continuous in \mathbb{D}

 $\forall \gamma : \text{closed curve in } \mathbb{D},$

$$\int_{\gamma} g(z)dz = \frac{1}{2\pi} \int_{0}^{2\pi} u(e^{i\theta}) \left(\int_{\gamma} \frac{e^{i\theta} + z}{e^{i\theta} - z} dz \right) d\theta = 0$$

since $\frac{e^{i\theta}+z}{e^{i\theta}-z}dz$ analytic in \mathbb{D} . By Morera's theorem, g is holomorphic on $\mathbb{D} \leadsto P_u = \operatorname{Re} g$ is harmonic in \mathbb{D} .

- $\lim_{z \to e^{i\theta}} P_u(z) = u(e^{i\theta})$: Substitute $z = re^{i\psi}$ in $\frac{1 |z|^2}{|e^{i\theta} z|^2}$, it equal to $\frac{1 r^2}{1 2r\cos(\theta \psi) + r^2}$, which is called **Poisson kernel** and denoted by $k(\theta, z)$.
 - •• $k(\theta, z) > 0: 1 2r\cos\theta + r^2 \ge (r 1)^2 > 0$
 - •• Since $w \equiv 1 \in \mathcal{H}(\mathbb{D})$, by Poisson formula,

$$1 = w(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|e^{i\theta} - z|^2} w(e^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} k(\theta, z) d\theta$$

•• For $\delta > 0$, if $|\theta - \psi| > \delta$, then in $k(\theta, z)$, the denominator $\geq 1 - 2r \cos \delta + r^2$ and the numerator $\to 0$ as $z \to \partial \mathbb{D}$. Notice that

$$|P_u(z) - u(e^{i\psi})| = \left| \frac{1}{2\pi} \int_0^{2\pi} k(\theta, z) \left(u(e^{i\theta}) - u(e^{i\psi}) \right) d\theta \right|$$

Let $M = \max_{\theta} |u(e^{i\theta})|$. Since u_0 is continuous on $\overline{\mathbb{D}}$, $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $|\theta - \psi| < \delta \implies |u(e^{i\theta}) - u(e^{i\psi})| < \varepsilon$. So

$$|P_u(z) - u(e^{i\psi})| \le \frac{M}{\pi} \underbrace{\int_{|\theta - \psi| \ge \delta} k(\theta, z) d\theta}_{\to 0 \text{ as } z \to \partial \mathbb{D}} + \frac{1}{2\pi} \underbrace{\int_{\psi - \delta}^{\psi + \delta} \varepsilon k(\theta, z) d\theta}_{\le \varepsilon}$$

Hence, $\lim_{z \to e^{i\psi}} P_u(z) = u(e^{i\psi}).$

Theorem 1.16.2. Let $u \in C^0(\Omega)$. Then u satisfy M-V $\iff u \in \mathcal{H}(\Omega)$.

Proof:

• (⇐) : OK!

• (\Rightarrow): Pick $v \in \mathcal{H}(\Omega) \leadsto u - v$ satisfy M-V $\leadsto u - v$ satisfy M-P. Now, let $\overline{B_{\rho}(a)} \subseteq \Omega$ and $u_0 = u|_{\overline{B_{\rho}(a)}}$. For simplicity, we may assume a = 0, $\rho = 1$. Let $v = P_{u_0}$, then by lemma, $u_0 - v, v - u_0$ satisfy M-P and $u_0 \equiv v$ on $C_1(0) \leadsto u_0 \equiv v$ on $\overline{\mathbb{D}}$ and u_0 is harmonic and thus u is harmonic.

Remark 1.16.2. The condition of M-V only require locally.

Theorem 1.16.3 (Harnack's inequality). Let $u \in \mathcal{H}(\overline{B_{\rho}(0)})$ and $z = re^{i\theta}$, $r < \rho$. If $u(z) \ge 0$, then

$$\frac{\rho - r}{\rho + r}u(0) \le u(z) \le \frac{\rho + r}{\rho - r}u(0)$$

Proof: Notice that $\frac{\rho-r}{\rho+r} \le \frac{\rho^2-|z|^2}{|\rho e^{i\theta}-z|^2} \le \frac{\rho+r}{\rho-r}$ if |z|=r. Since $u(z)\ge 0$,

$$\frac{\rho - r}{\rho + r}u(0) \le \frac{1}{2\pi} \int_0^{2\pi} \frac{\rho^2 - |z|^2}{|\rho e^{i\theta} - z|^2} u(\rho e^{i\theta}) d\theta \le \frac{\rho + r}{\rho - r} u(0)$$

as the result. \Box

Theorem 1.16.4 (Harnack's principle). Let $u_n \in \mathcal{H}(\Omega_n) \ \forall n \in \mathbb{N}$. Let Ω be a region s.t. $\forall z_0 \in \Omega, \ z_0 \in \Omega_n$ for almost n, and $u_n(z) \leq u_{n+1}(z)$ for almost n near z_0 . Then $u_n \xrightarrow{\overline{\text{unif}}} \infty$ or $u_n \xrightarrow{\overline{\text{unif}}} u \in \mathcal{H}(\Omega)$.

Proof:

• If $z_0 \in \Omega$ s.t. $u_n(z_0) \to \infty$ as $n \to \infty$: $\exists r > 0, n_0 > 0$ s.t. $\{u_n(z)\}_{n=n_0}^{\infty}$ is non-decreasing $\forall z \in B_r(z_0)$. $\forall n > n_0$, let $v_n := u_n - u_{n_0} > 0$. For $z \in \overline{B_{r/2}(z_0)}$,

$$v_n(z) \ge \frac{1}{3}v_n(z_0) \to \infty \leadsto u_n(z) \to \infty$$

- If $z_0 \in \Omega$ s.t. $\lim_{n \to \infty} u_n(z_0) < \infty$: Similarly, $v_n(z) \le 3v_n(z_0) < \infty \ \forall z \in \overline{B_{r/2}(z_0)} \leadsto \lim_{n \to \infty} u_n(z) < \infty \ \forall z \in \overline{B_{r/2}(z_0)}$.
- Let $U = \{z \in \Omega : u_n(z) \to \infty \text{ as } n \to \infty\}$, which is open. Also $\Omega \setminus U = \{z \in \Omega : \lim_{n \to \infty} u_n(z) < \infty\}$, which is also open. By Ω is simply connected, one of $U, \Omega \setminus U$ is empty set.
 - •• If $U \neq \emptyset$, then $U = \Omega$. On compact subset, the convergence is uniformly by usual argument.
 - •• If $U = \varnothing : \forall n > n_0$,

$$u_{m+n}(z) - u_n(z) \le 3(u_{m+n}(z_0) - u_n(z_0)) < M \ \forall z \in \overline{B_{r/2}(z_0)}$$

where M is independent on m, so $u_n \to u$ on $\overline{B_{r/2}(z_0)}$ is uniformly. Consider

$$u_n(z) = \frac{1}{2\pi} \int_0^{2\pi} u_n(z + \rho e^{i\theta}) d\theta \xrightarrow{n \to \infty} u(z) = \frac{1}{2\pi} \int_0^{2\pi} u(z + \rho e^{i\theta}) d\theta \ \forall \rho \le \frac{r}{2}$$

By Theorem 1.16.2, $u \in \mathcal{H}(\Omega)$.

Definition 1.16.3.

• $u \in C^2(\Omega)$ is **subharmonic** if $\Delta u \geq 0$ in Ω .

• $u \in C^0(\overline{\Omega})$ is **subharmonic** if $\forall z \in \Omega, \exists \rho > 0$ s.t. $\overline{B_{\rho}(a)} \subset \Omega$ and $\forall r \leq \rho \ \forall h \in c\mathcal{H}(B_r(a))$ with $u \leq h$ on $C_r(a) \implies u \leq h$ in $B_r(a)$.

And denoted by $u \in \mathcal{S}h(\Omega)$.

Fact 1.16.2. Let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$. Then definition above equivalent.

Proof:

• $(\Rightarrow): \Delta(u) \ge 0 = \Delta(h) \rightsquigarrow \Delta(u-h) \ge 0.$

Claim: $\max_{\overline{B_{\rho}(a)}}(u-h) = \max_{C_{\rho}(a)}(u-h)$:

subproof: Let v = u - h. Define $\widetilde{v} = v(z) + \varepsilon e^x$ for $\varepsilon > 0$. Since $\Delta e^x = e^x > 0$, $\Delta \widetilde{v} > 0$. Assume $\exists z_0 \in B_{\rho}(a)$ s.t. $\widetilde{v}(z_0) = \max_{\overline{B_{\rho}(a)}} \widetilde{v} \leadsto \nabla \widetilde{v}(z_0) = 0$ and the Hessian $\begin{pmatrix} \widetilde{v}_{xx} & \widetilde{v}_{xy} \\ \widetilde{v}_{yx} & \widetilde{v}_{yy} \end{pmatrix} (z_0)$ is

negative semi-definite, then the trace $\Delta \widetilde{v}(z_0) = \widetilde{v}_{xx} + \widetilde{v}_{yy} \leq 0$ (\longrightarrow). So $\forall z \in \overline{B_{\rho}(a)}$,

$$v(z) < \widetilde{v}(z) \le \max_{C_{\rho}(a)} \widetilde{v} \le \max_{C_{\rho}(a)} v + \varepsilon \max_{C_{\rho}(a)} e^x \xrightarrow{\varepsilon \to 0} v(z) \le \max_{C_{\rho}(a)} v$$

• (\Leftarrow): If not, say $\Delta u(z_0) < 0$ for some $z_0 \in \Omega \leadsto \Delta u(z) < 0$ for $z \in B_{\rho}(z_0) \subset \Omega$. Let $v = P_u$ in $B_{\rho}(z_0) \leadsto v \in \mathcal{H}(B_{\rho}(z_0))$ and v = u on $C_{\rho}(z_0)$. Since $\Delta(v - u) = -\Delta u > 0$, by above, v - u satisfy M-P on $B_{\rho}(z_0)$, v < u in $B_{\rho}(z_0)$ or v = u in $B_{\rho}(z_0)$, but $v \ge u$ by assumption or $\Delta u = \Delta v = 0$ (\Longrightarrow).

Theorem 1.16.5. $u \in C^0(\Omega)$. Then u is subharmonic $\iff \forall z \in \Omega, \, \exists \rho > 0 \text{ s.t. } \overline{B_{\rho}(z)} \subseteq \Omega$ and

$$u(z_0) \le \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$$

for all $r \leq \rho$ (mean value inequality).

Proof:

• (\Rightarrow): For all $z_0 \in \Omega$, let ρ be given by definition of subharmonic. For all $r \leq \rho$, define $h = P_{u|_{C_r(z_0)}} \leadsto h \in c\mathcal{H}(B_r(z_0)), u = h \text{ on } C_r(z_0)$. Since u is subharmonic, $u \leq h$ for all $z \in \overline{B_r(z_0)}$ and thus

$$u(z_0) \le h(z_0) = \frac{1}{2\pi} \int_0^{2\pi} h(z_0 + re^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$$

Author: Minerva 68

• (\Leftarrow): For $a \in \Omega$ and ρ be corresponding radius in assumption. If $\exists r \leq \rho$ and $h \in c\mathcal{H}(B_r(a))$ with $u \leq h$ on $C_r(a)$, but $\exists z_0 \in B_r(a)$ s.t. $u(z_0) > h(z_0)$. Let $M = \max_{B_r(a)} (u - h) \rightsquigarrow M \geq u(z_0) - h(z_0) > 0$ and let

$$V = \{ z \in \overline{B_r(a)} : u(z) - h(z) = M \}$$

Then $V \cap C_{\rho}(a) = \emptyset$ i.e. $V \subset B_r(a)$. Since V is closed, $\partial V \subset V \subset B_r(a)$. Pick $z_1 \in \partial V$ and s > 0 small enough which can apply mean valued inequality s.t. $B_s(z_1) \subset B_r(a)$ but $C_s(z_1) \not\subset V$, which means there exists arc of $C_s(z_1)$ s.t. u - h < M on that arc. Then

$$M = u(z_1) - h(z_1) \le \frac{1}{2\pi} \int_0^{2\pi} \left(u(z_1 + se^{i\theta}) - h(z_1 + se^{i\theta}) \right) d\theta < M \ (\longrightarrow)$$

Theorem 1.16.6. If $u \in Sh(\Omega)$ and any open connect subset Ω' of Ω , then u is constant on Ω' or u doesn't attain maximum in Ω' .

Proof: If u attain maximum M in Ω' , then $V = \{z \in \Omega' : u(z) = M\}$ is a closed set. For all $z_0 \in V$, by Theorem 1.16.5, $\exists \rho$ s.t. $\overline{B_{\rho}(z_0)} \subset \Omega'$ and u satisfy mean value inequality on $C_r(z_0) \forall r \leq \rho$ and thus

$$M = u(z_0) \le \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta \le \frac{1}{2\pi} \int_0^{2\pi} M d\theta = M \ \forall r \le \rho$$

i.e. $u(z_0 + re^{i\theta}) = u(z_0) \ \forall \theta \in [0, 2\pi], \ \forall r \leq \rho \rightsquigarrow B_{\rho}(z_0) \subset V \rightsquigarrow V$ is clopen. Since Ω' is connected and $V \neq 0 \rightsquigarrow V = \Omega'$ i.e. u is constant on Ω' .

Corollary 1.16.2. If $u \in C^0(\overline{\Omega})$, then TFAE

- (1) $\forall z \in \Omega, \exists \rho > 0 \text{ s.t. } \overline{B_{\rho}(a)} \subset \Omega \text{ and } \forall r \leq \rho, \forall h \in c\mathcal{H}(B_r(a)) \text{ with } u \leq h \text{ on } C_r(a) \implies u \leq h \text{ in } B_r(a).$
- (2) $\forall \overline{B_{\rho}(a)} \subset \Omega$ and $\forall h \in c\mathcal{H}(B_{\rho}(a))$ with $u \leq h$ on $C_{\rho}(a) \implies u \leq h$ in $B_{\rho}(a)$.
- (3) $\forall z \in \Omega, \exists \rho > 0 \text{ s.t. } u \text{ satisfy mean value inequality on } C_r(z) \forall r \leq \rho.$
- (4) $\forall \overline{B_{\rho}(a)} \subset \Omega$, u satisfy mean value inequality on $B_{\rho}(a)$.

Proof:

- $(1) \iff (3)$: By Theorem 1.16.5
- $(3) \Rightarrow (2) : \forall \overline{B_{\rho}(a)} \subset \Omega$ and $\forall h \in c\mathcal{H}(B_{\rho}(a))$ with $u \leq h$ on $C_{\rho}(a)$. If u h is constant on $\overline{B_{\rho}(a)}$, then $u h = u(z) h(z) \leq 0 \ \forall z \in C_{\rho}(a)$. If not, since $\overline{B_{\rho}(a)}$ is compact and by Theorem 1.16.6, the maximal of u h in $\overline{B_{\rho}(a)}$ attain at point on $C_{\rho}(a)$ and thus $u h \leq \max_{C_{\rho}(a)} (u h) \leq 0$ on $B_{\rho}(a)$.
- $(2) \iff (4)$: Apply the proof in Theorem 1.16.5.
- $(4) \Rightarrow (3)$: Trivial.

Property 1.16.1.

Author: Minerva 69

- $u_1, u_2 \in Sh(\Omega) \rightsquigarrow u_1 + ku_2 \in Sh(\Omega)$ for k > 0: Since $u_1 + ku_2$ satisfy mean value inequality.
- $u_1, u_2 \in Sh(\Omega) \leadsto u = \max(u_1, u_2) \in Sh(\Omega)$: Since u satisfy mean value inequality.
- If $v \in Sh(\Omega)$ and $u = \begin{cases} P_v & \text{in } B_{\rho}(a) \\ v & \text{in } \Omega \setminus B_{\rho}(a) \end{cases}$, then $u \in Sh(\Omega)$: $P_v \in c\mathcal{H}(B_{\rho}(a)) \leadsto u \in C^0(\Omega)$ and u satisfy mean value inequality, since $v \leq P_v$ in $B_{\rho}(a)$.

1.17 Dirichlet problem

1.17.1 Uniqueness of Dirichlet problem

Dirichlet problem: Let Ω be a bounded region and $h \in C^0_{\mathbb{R}}(\partial\Omega)$ (continuous real function). Find $u \in c\mathcal{H}(\Omega)$ s.t. u = h on $\partial\Omega$.

Theorem 1.17.1 (uniqueness of Dirichlet problem). Exists at most one solution of u.

Proof:

- $h \equiv 0 \rightsquigarrow u \equiv 0$: Apply M-P on u and -u, we get $u \leq 0$ and $-u \leq 0$ in $\overline{\Omega} \rightsquigarrow u \equiv 0$ in $\overline{\Omega}$.
- $u_1, u_2 \in c\mathcal{H}(\Omega)$ with $u_1 = u_2 = h$ on $\partial \Omega \leadsto u_1 u_2 \equiv 0$ on $\partial \Omega$ and thus $u_1 u_2 \equiv 0$ in $\overline{\Omega}$.

Remark 1.17.1. Existence for $\Omega = \overline{\mathbb{D}} : h \in C^0_{\mathbb{R}}(C_1(0)) \rightsquigarrow u = P_h \in c\mathcal{H}(\mathbb{D})$ and u = h on $C_1(0)$.

Example 1.17.1. Let $h(e^{i\varphi}) = \begin{cases} 0 & \text{if } \phi \in (0,\pi) \\ 1 & \text{if } \phi \in (\pi,2\pi) \end{cases}$, then for $z = re^{i\psi}$

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} k(\theta, z) h(e^{i\theta}) d\theta = \frac{1}{2\pi} \int_{\pi}^{2\pi} \frac{1 - r^2}{1 - 2r\cos(\theta - \psi) + r^2} d\theta$$
$$= \frac{1}{\pi} \left(\tan^{-1} \left(\frac{1 + r}{1 - r} \tan \left(\frac{\theta - \psi}{2} \right) \right) \right) \Big|_{\pi}^{2\pi} = \frac{1}{\pi} \tan^{-1} \left(\frac{1 - r^2}{2r\sin\psi} \right)$$

1.17.2 Existence of Dirichlet problem

Perron method: f: bounded function on $\Gamma = \partial \Omega$, define the **Perron family**

$$\mathcal{F}_f = \{ v \in \mathcal{S}h(\Omega) : \overline{\lim}_{z \to \xi} v(z) \le f(\xi), \ \forall \xi \in \Gamma \}$$

is no mpty, since if $|f| \leq M \rightsquigarrow -M \in \mathcal{F}_f$.

Lemma 1.17.1. $u(z) := \sup_{v \in \mathcal{F}_f} v(z)$ is harmonic in Ω .

Proof:

• $v \in \mathcal{F}_f \leadsto v \leq M \leadsto u \leq M$: For $v \in \mathcal{F}_f$ and $\varepsilon > 0$, let

$$E_{\varepsilon} = \{ z \in \overline{\Omega} : v(z) \ge M + \varepsilon \}$$

is closed and bounded $\leadsto E_{\varepsilon}$ is compact. If $E_{\varepsilon} \neq \varnothing$, then \exists max of v in E_{ε} and thus in Ω (\Longrightarrow hence, $E_{\varepsilon} = \varnothing \ \forall \varepsilon > 0$, let $\varepsilon \to 0 \leadsto v \le M$.

- $\forall z_0 \in \Omega$, u is harmonic near z_0 : Let $\overline{B_{\rho}(z_0)} \subset \Omega$, by definition, $\exists \{v_n\} \subset \mathcal{F}_f$ s.t. $\lim_{n \to \infty} v_n(z_0) = u(z_0)$. Set $V_n = \max\{v_1, ..., v_n\} \rightsquigarrow V_n \in \mathcal{S}h(\Omega)$ and $\{V_n\}$: non-decreasing. Let $U_n = \begin{cases} P_{V_n} & \text{in } B_{\rho}(z_0) \\ V_n & \text{in } \Omega \setminus B_{\rho}(z_0) \end{cases} \rightsquigarrow U_n \in \mathcal{F}_f$ and $V_n \leq U_n$.
 - •• $v_n(z_0) \leq V_n(z_0) \leq U_n(z_0) \leq u(z_0) \xrightarrow{n \to \infty} \lim_{n \to \infty} U_n(z_0) = u(z_0).$ $\{U_n\} \subset c\mathcal{H}(B_{\rho}(z_0)) \text{ non-decreasing, by Harnack principle, } U_n \xrightarrow{\overline{\text{unif}}} U \in c\mathcal{H}(B_{\rho}(z_0)). \ \forall z \in B_{\rho}(z_0), U_n(z) U_{n+1}(z) \leq 0 \text{ and } U(z_0) = \lim_{n \to \infty} U_n(z_0) = u(z_0).$
 - •• For $z_1 \in B_{\rho}(z_0)$, $\exists \{w_n\} \subset \mathcal{F}_f$ s.t. $\lim_{n \to \infty} w_n(z_1) = u(z_1)$. Let $\overline{w_n} = \max(v_n, w_n) \in \mathcal{F}_f$, then

$$\begin{cases} v_n(z_0) \le \overline{w_n}(z_0) \le u(z_0) \text{ and } v_n(z_0) \to u(z_0) & \Longrightarrow \lim_{n \to \infty} v_n(z_0) = u(z_0) \\ w_n(z_1) \le \overline{w_n}(z_1) \le u(z_1) \text{ and } w_n(z_1) \to u(z_1) & \Longrightarrow \lim_{n \to \infty} w_n(z_0) = u(z_1) \end{cases}$$

Let $W_n = \max\{\overline{w_1}, ..., \overline{w_n}\}$ and $Q_n = \begin{cases} P_{W_n} & \text{in } B_{\rho}(z_0) \\ W_n & \text{in } \Omega \setminus B_{\rho}(z_0) \end{cases}$. By Haenack principle, $Q_n \xrightarrow{\overline{\text{unif}}} Q \in c\mathcal{H}(B_{\rho}(z_0))$ and

$$v_n, w_n \le \overline{w_n} \le W_n \le Q_n \le u \implies \begin{cases} Q(z_0) = \lim_{n \to \infty} Q(z_0) = u(z_0) \\ Q(z_1) = \lim_{n \to \infty} Q_n(z_1) = u(z_1) \end{cases}$$

Since $U_n \leq Q_n \leq u$, $U \leq Q \leq u$ in $B_{\rho}(z_0) \rightsquigarrow U - Q \leq 0$ in $B_{\rho}(z_0)$ and $U(z_0) = u(z_0) = Q(z_0)$. By M-P, $U \equiv Q$ in $B_{\rho}(z_0) \rightsquigarrow U(z_1) = Q(z_1) = u(z_1) \rightsquigarrow U = u$ in $B_{\rho}(z_0)$ i.e. $u \in \mathcal{H}(B_{\rho}(z_0))$.

Lemma 1.17.2 (barrior lemma). $z_0 \in \Gamma = \partial \Omega$. If $\exists w \in c\mathcal{H}(\Omega)$ s.t. $w(z_0) = 0$ and $w(z) > 0 \ \forall z \in \Gamma \setminus \{z_0\}$. If f is continuous at z_0 , then $\lim_{z \to z_0} u(z) = f(z_0)$, where $u = \sup_{v \in \mathcal{F}_f} v(z)$.

Proof:

• $\overline{\lim}_{z\to z_0} u(z) \leq f(z_0)$: $\forall \varepsilon > 0$, $\exists B_{\rho}(z_0)$ s.t. $\forall z \in \Gamma \cap B_{\rho}(z_0)$, $|f(z) - f(z_0)| < \varepsilon$. Let $w_0 = \min_{\Gamma \setminus B_{\rho}(z_0)} w > 0$. Consider

$$V_{+}(z) = f(z_0) + \varepsilon + \frac{M - f(z_0)}{w_0} w(z)$$

- •• $z \in \Gamma \cap B_{\varrho}(z_0) : V_+(z) \ge f(z_0) + \varepsilon > f(z)$
- •• $z \in \Gamma \setminus B_{\rho}(z_0) : V_+(z) \ge f(z_0) + \varepsilon + M f(z_0) > f(z)$.

By M-P, for $v \in \mathcal{F}_f$, $v(z) < V_+(z) \ \forall z \in \Omega \leadsto u(z) \le V_+(z) \ \forall z \in \Omega$. Then

$$\overline{\lim}_{z \to z_0} u(z) \le \overline{\lim}_{z \to z_0} V_+(z) = f(z_0) + \varepsilon$$

• $\underline{\lim}_{z\to z_0} u(z) \ge \varepsilon : \forall \varepsilon > 0$, consider

$$V_{-}(z) = f(z_0) - \varepsilon - \frac{M + f(z_0)}{w_0} w(z)$$

••
$$z \in \Gamma \cap B_{\rho}(z_0) : V_+(z) \le f(z_0) - \varepsilon < f(z)$$

•• $z \in \Gamma \setminus B_{\rho}(z_0) : V_+(z) \le f(z_0) - \varepsilon - M - f(z_0) < f(z)$
Then $V_- \in \mathcal{F}_f \leadsto V_- \le u \leadsto \lim_{z \to z_0} u(z) \ge \lim_{z \to z_0} V_-(z) = f(z_0) - \varepsilon$

Theorem 1.17.2 (Existence of Dirichlet problem). If $\forall z_0 \in \Gamma$, \exists line segment $\subseteq \mathbb{C} \setminus \overline{\Omega}$, but z_0 is an endpoint if this line segment, then the Dirichlet problem can be solved for Ω and h.

Proof: It is suffices to show that for all $z_0 \in \Gamma$, there exists $w \in c\mathcal{H}(\Omega)$ s.t. $w(z_0) = 0$ and $w(z) > 0 \ \forall z \in \Gamma \setminus \{z_0\}$. Then the result follow from Lemma 1.17.2 and Lemma 1.17.1. Now, for $z_0 \in \Gamma$, say $\overline{z_1 z_0}$ is that line segment in assumption. By rotation and translation, we may assume $z_0 = 0$, $z_1 = -a < 0$. Notice that $\frac{z}{z+a}$ has a holomorphic branch g(z) defined on $\mathbb{C} \setminus [-a, 0]$, since $\frac{z}{z+a} = -x \in \mathbb{R}_{\leq 0} \iff z \in [-a, 0]$. Consider

$$\sqrt{\frac{z}{z+a}} = \left| \frac{z}{z+a} \right|^{1/2} \left(\cos \left(\frac{1}{2} \arg \frac{z}{z+a} \right) + i \sin \left(\frac{1}{2} \arg \frac{z}{z+a} \right) \right)$$

Then $w(z) = \text{Re}\sqrt{\frac{z}{z+a}} \in c\mathcal{H}(\Omega)$ is the barrier, since

$$\frac{1}{2}\arg\frac{z}{z+a} \in (-\pi/2, \pi/2) \implies \operatorname{Re}\frac{z}{z+a} > 0 \text{ for } z \in \Gamma \setminus \{0\}$$

1.17.3 harmonic measure

Definition 1.17.1. $\Omega \subset \mathbb{C}$ is of connectivity n > 1 if $\widetilde{\mathbb{C}} \setminus \Omega = E_1 \sqcup \cdots \sqcup E_n$ with $\infty \in E_n$ with E_i : simply connected.

Let $C_i = \partial E_i$ with C_n is counterclockwise and C_i is clockwise $\forall i = 1, ..., n-1$. Let $\partial \Omega = C = C_1 + \cdots + C_n$. Since $\widetilde{\mathbb{C}} \setminus E_n$ is simply connected and contain in \mathbb{C} , by Riemann mapping theorem, $\varphi_0 : \widetilde{\mathbb{C}} \setminus E_n \to \mathbb{D}$ and send $C_n \to C_1(0)$. Apply Riemann mapping on $\widetilde{\mathbb{C}} \setminus \varphi(E_1)$, say $\varphi : \widetilde{\mathbb{C}} \setminus \varphi(E_1) \to \widetilde{\mathbb{C}} \setminus \mathbb{D}$, which send $C_1 \to C_1(0)$ and $C_1(0) \subset \widetilde{\mathbb{C}} \setminus \varphi(E_1)$ will send to a smooth curve. Continue this method, Ω will conformal to a region with smooth boundary.

Definition 1.17.2. Harmonic measure $w_k(z)$ of C_k w.r.t. Ω is

$$\begin{cases} \Delta w_k = 0 \text{ in } \Omega \leadsto w_k \in \mathcal{H}(\Omega) \\ w_k \equiv \delta_{ik} \text{ on } C_i \end{cases}$$

Then $0 < w_k < 1$ in Ω and $w_1 + \cdots + w_n \equiv$ on C.

Remark 1.17.2. The existence of harmonic measure is given by Dirichlet problem. Since we can use Riemann mapping theorem send C_i to circle. Apply Schwarz reflection principle, w_i can be extend cross $C_i \rightsquigarrow w_i \in \mathcal{H}(\Omega')$ with $\Omega' \supset \Omega$.

Proposition 1.17.1. $\lambda_1 w_1 + \cdots + \lambda_{n-1} w_{n-1}$ ($\lambda_i \in \mathbb{R}$) has single-valued conjugate, then $\lambda_i = 0 \ \forall i$.

Proof: If $\lambda_1 w_1 + \cdots + \lambda_{n-1} w_{n-1}$ with f: analytic in Ω , then f extends to $\Omega' \subset \Omega$. Then $\text{Re}(f)|_{C_i} = \lambda_i \ \forall i = 1, ..., n-1$ and $\text{Re}(f)|_{C_n} = 0$ i.e. each C_i is mapped to a vertical line segment. Let a not on any vertical line segment, then $\arg(f-a)$ is defined (single value) on each C_i . Recall that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a} = \frac{1}{2\pi i} \int_{\gamma} d\log(z-a) = \frac{1}{2\pi i} \left(\int_{\gamma} d\log|z-a| + \int_{\gamma} d\arg(z-a) \right)$$

Since arg(f - a) is single value on $f(C_i)$, we have

$$\int_{f(C_i)} \frac{dw}{w - a} = \int_{C_i} d\log|f - a| + \int_{C_i} d\arg(f - a) = 0 \implies \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f'(z)dz}{f(z) - a} = 0$$

Then $a \notin f(\Omega)$. Then $f(\Omega') \in \{\lambda_1, ..., \lambda_{n-1}, 0\}$, but f is continuous, it must be constant and thus $f \equiv 0$ on $\Omega' \leadsto \lambda = 0 \ \forall i$.

Observation: $u \in \mathcal{H}(\Omega)$, if exists $v \in \mathcal{H}(\Omega)$ s.t. f = u + iv is holomorphic in Ω , then

$$\begin{cases} du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \\ dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy = -\frac{\partial u}{\partial y} + \frac{\partial u}{\partial x} dy \end{cases}$$

In general, u is no single-value conjugate function, and in these circumstances it is better not use the notation dv. Instead we write

$$^*du = -\frac{\partial u}{\partial y} + \frac{\partial u}{\partial x}dy$$

and call the **conjugate differential** of du.

Example 1.17.2. If γ is smooth defined by z = z(t) and let $\alpha = \arg z'(t)$, then

$$dx = |dz| \cos \alpha, \ dy = |dz| \sin \alpha$$

Let
$$\beta = \alpha - \frac{\pi}{2}$$
, then

$$\frac{\partial u}{\partial n} = \frac{\partial u}{\partial x} \cos \beta + \frac{\partial u}{\partial y} \sin \beta = \frac{\partial u}{\partial x} \frac{dy}{|dz|} + \frac{\partial u}{\partial y} \left(-\frac{dx}{|dz|} \right) \rightsquigarrow \frac{\partial u}{\partial n} |dz| = *du$$

Goal: Construct F which is holomorphic in Ω' and

• We may assume $\partial\Omega$ is smooth. Define

$$\alpha_{kj} = \int_{C_j} {}^*dw_k = \int_{C_j} \left(-\frac{\partial w_k}{\partial y} dx + \frac{\partial w_k}{\partial y} dy \right) \in \mathbb{R}$$

• $A := (\alpha_{ij})_{(n-1)\times(n-1)}$ is invertible: If Av = 0 for $v = (\lambda_1, \dots, \lambda_{n-1})^T$ i.e.

$$\lambda_1 \alpha_{1,i} + \dots + \lambda_{n-1} \alpha_{n-1,i} = 0 \ \forall i \implies \int_{C_i} d(\underline{\lambda_1 w_1 + \dots + \lambda_{n-1} w_{n-1}}) = 0 \ \forall i = 1, \dots, n-1$$

Claim: *du = dv for some $v (\sim u + iv)$ is analytic and thus $\lambda_i = 0 \ \forall i$)

subproof: \forall closed curve γ in Ω , if the inside of γ not contain any C_i , then by Cauchy theorem, $\int_{\gamma} {}^*du = 0$. If the inside of γ contain $C_{i_1}, ..., C_{i_r}$. Since domain contain Ω , $\gamma \sim C_{i_1} + \cdots + C_{i_r} \implies \int_{\gamma} {}^*du = 0$. Hence, ${}^*du = dv$ for some v.

• $\exists!(\lambda_1,...,\lambda_{n-1})$ s.t.

$$\begin{cases} \lambda_1 \alpha_{1,1} + \dots + \lambda_{n-1} \alpha_{n-1,1} = 2\pi \\ \lambda_1 \alpha_{1,i} + \dots + \lambda_{n-1} \alpha_{n-1,i} = 0 \text{ for } i = 2, \dots, n-1 \end{cases}$$

and let $u := \lambda_1 w_1 + \cdots + \lambda_{n-1} w_{n-1} \in \mathcal{H}(\Omega')$. By Green theorem

$$\alpha_{k,1} + \dots + \alpha_{k,n} = \int_{\partial\Omega} dw_k = \iint_{\Omega} \left(\frac{\partial^2 w_k}{\partial x^2} + \frac{\partial^2 w_k}{\partial y^2} \right) dx dy = 0 \ \forall k = 1, ..., n-1$$

Then $\lambda_1\alpha_{1,n}+\cdots+\lambda_{n-1}\alpha_{n-1,n}=-2\pi$. We have $\int_{C_1}{}^*du=2\pi$, $\int_{C_n}{}^*du=-2\pi$, $\int_{C_i}{}^*du=0$ $\forall i=2,...,n-1$. If ${}^*du=dv$, then v is multiple valued with period 2π on C_1 , -2π on C_n , and 0 on C_j $\forall j=2,...,n-1$. Then f=u+iv is multiple valued with period $2\pi i$ on C_1 , $-2\pi i$ on C_n , and 0 on C_j $\forall j=2,...,n-1$. Re $f=u\mapsto \mathrm{Re} f|_{C_i}=\lambda_i$ $\forall i=1,...,n-1$, $\mathrm{Re} f|_{C_n}=0$. Let $F=e^f\mapsto F$ is single valued.

• Notice that $F(C_1) = C_{e^{\lambda_1}}(0)$, $F(C_n) = C_1(0)$ and $F(C_i) \subset C_{e^{\lambda_i}}(0)$. For $|w_0| \neq e^{\lambda_i}$, 1,

$$I_j(w_0) = \frac{1}{2\pi i} \int_{C_j} \frac{F'(z)}{F(z) - w_0} dz = \frac{1}{2\pi i} \int_{C_j} d\log(F(z) - w_0) = \frac{1}{2\pi} \int_{C_j} d\arg(F(z) - w_0)$$

First,

$$I_{j}(0) = \frac{1}{2\pi i} \int_{C_{j}} f'dz = \frac{1}{2\pi} \int_{C_{j}} (du + *du) = \begin{cases} 1 & \text{if } j = 1\\ 0 & \text{if } j = 2, ..., n - 1\\ -1 & \text{if } j = n \end{cases}$$

Then $F(C_1)$ wind counterclockwise one time and $F(C_n)$ wind clockwise one time. Since the winding number is constant in each region w.r.t. the curve, we have

••
$$I_j(w_0) = 0$$
 for $|w_0| \neq e^{\lambda_j} \ \forall j = 2, ..., n-1$

••
$$I_1(w_0) = \begin{cases} 0 & \text{if } |w_0| > e^{\lambda_1} \\ 1 & \text{if } |w_0| < e^{\lambda_1} \end{cases}$$

••
$$I_1(w_0) = \begin{cases} 0 & \text{if } |w_0| > 1 \\ -1 & \text{if } |w_0| < 1 \end{cases}$$

By argument principle,

$$I(w_0) := I_1(w_0) + \cdots + I_n(w_0)$$

is the number of zero of $F(z) - w_0$ in Ω . Since F is an open mapping, $F: \Omega \to F(\Omega)$ open in \mathbb{C} . If $w_0 \in F(\Omega)$, $I(w_0) \geq 1$. The possible situation is $I_1(w_0) = 1$, $I_j(w_0) = 0$ $\forall j = 2, ..., n-1$ and $I_n(w_0) = 0$ i.e. $1 < |w_0| < e^{\lambda_1}$.

(待補)

1.18 Elliptic functions

1.18.1 periodic function

Definition 1.18.1. Let f be a meromorphic function in \mathbb{C} . The period module M of f is

$$M = \{ \omega \in \mathbb{C} : f(z + \omega) = f(z) \ \forall z \in \mathbb{C} \}$$

- $\omega_1, \omega_2 \in M \leadsto \omega_1 \pm \omega_2 \in M \leadsto M$ is \mathbb{Z} -module
- $f \neq \text{constant} \rightsquigarrow M$ is discrete: If M has an accumulation point, then $f|_M = f(0) \rightsquigarrow f \equiv f(0) (\longrightarrow)$.

Proposition 1.18.1. $M = \{0\}, \langle \omega \rangle_{\mathbb{Z}} \text{ or } \langle \omega_1, \omega_2 \rangle_{\mathbb{Z}} \text{ with } \omega_1/\omega_2 \notin \mathbb{R}.$

Proof: If $M \neq \{0\}$, for $r \gg 0$ with $\overline{B_r(0)} \cap M \neq \{0\}$. Since M is discrete, $\overline{B_r(0)} \cap M$ is finite. We may choose $\omega_1 \in M$ s.t. $|\omega_1|$ is min. If $M = \langle \omega_1 \rangle_{\mathbb{Z}}$, then done. Otherwise, $\exists \omega_2 \in M \setminus \langle \omega_1 \rangle_{\mathbb{Z}}$ s.t. $|\omega_2|$ is min. If $\omega_2/\omega_1 \in \mathbb{R} \setminus \mathbb{Z}$, then $\exists n \in \mathbb{Z}$ s.t. $n < \omega_2/\omega_1 < n+1 \leadsto |n\omega_1-\omega_2| < |\omega_1| \ (-\times\!\!\!-)$. Since $\omega_2/\omega_1 \notin \mathbb{R}$, $\mathbb{C} = \langle \omega_1, \omega_2 \rangle_{\mathbb{R}}$.

Claim: $M = \langle \omega_1, \omega_2 \rangle_{\mathbb{Z}}$:

subproof: $\forall \omega \in M, \ \omega = \lambda_1 \omega_1 + \lambda_2 \omega_2 \text{ for } \lambda_1, \lambda_2 \in \mathbb{R} \text{ and choose } m_1, m_2 \in \mathbb{Z} \text{ s.t. } |\lambda_i - m_i| \leq \frac{1}{2}.$ Let $\omega' = \omega - m_1 \omega_1 - m_2 \omega_2 \in M$. Then

$$|\omega'| \le |\lambda_1 - m_1||\omega_1| + |\lambda_2 - m_2||\omega_2| \le \frac{1}{2}(|\omega_1| + |\omega_2|) \le |\omega_2|$$

The first equality of inequality will not holds since $\omega_2/\omega_1 \notin \mathbb{R}$. Hence, $\omega' \in \langle \omega_1 \rangle_{\mathbb{Z}} \rightsquigarrow \omega \in \langle \omega_1, \omega_2 \rangle_{\mathbb{Z}}$.

Remark 1.18.1.

• $M = \langle \omega \rangle_{\mathbb{Z}} \longrightarrow \exists ! F :$ meromorphic in \mathbb{C}^{\times} s.t. $f(z) = F(e^{2\pi i z/\omega}) :$ Consider

$$U = \{ z \in \mathbb{C} : 0 < \operatorname{Im} 2\pi z / \omega < 2\pi \}$$

Then $\xi = \exp(2\pi i z/\omega)$ maps U to \mathbb{C}^{\times} . For $\xi \in \mathbb{C}^{\times}$, $\exists ! z \in U$ s.t. $\xi = e^{2\pi i z/\omega} \rightsquigarrow F(\xi) = f(z)$ and f is meromorphic $\implies F$ is meromorphic.

• Assume $D = \{\xi : r_1 < |\xi| < r_2\} \subset \mathbb{C}^{\times}$ and F has no pole in D. By Laurent expansion, $F(\xi) = \sum_{n=-\infty}^{\infty} c_n \xi^n$, where

$$c_n = \frac{1}{2\pi i} \int_{|\xi| = r} F(\xi) \xi^{-n-1} d\xi, \ r_1 < r < r_2$$

Then $f(z) = \sum_{n=-\infty}^{\infty} c_n e^{2\pi i n z/\omega}$ and

$$c_n = \frac{1}{\omega} \int_{z}^{a+\omega} f(z)e^{2\pi i nz/\omega} dz$$

Definition 1.18.2. A meromorphic function in \mathbb{C} is **elliptic** (double periodic) if its periods module $M = \langle \omega_1, \omega_2 \rangle_{\mathbb{Z}}$ with $\omega_2/\omega_1 \notin \mathbb{R}$.

Proposition 1.18.2 (Canonical basis). $\exists (\omega_1, \omega_2) \text{ s.t. } \tau = \frac{\omega_2}{\omega_1} \text{ satisfies}$

(1) $\text{Im } \tau > 0$

The region defined in above is called **fundamental region** R.

Proof: Choose ω_1, ω_2 in Proposition 1.18.1, then $|\omega_1| \leq |\omega_2| \leq |\omega_1 \pm \omega_2| \rightsquigarrow |\tau| \geq 1$ and

$$|\omega_2|^2 \le |\omega_1|^2 + |\omega_2|^2 \pm (\omega_2 \overline{\omega_1} + \omega_1 \overline{\omega_2}) \implies |\text{Re}\tau| = \frac{1}{2} \left| \frac{\omega_2 \overline{\omega_1} + \omega_1 \overline{\omega_2}}{|\omega_1|^2} \right| \in \left[\frac{-1}{2}, \frac{1}{2} \right]$$

- If Im $\tau < 0$, then replace (ω_1, ω_2) by $(-\omega_1, \omega_2)$
- If $\text{Re}\tau = \frac{-1}{2}$, then replace (ω_1, ω_2) by $(\omega_1, \omega_1 + \omega_2)$
- If $|\tau| = 1$, Re $\tau < 0$, then replace (ω_1, ω_2) by $(-\omega_2, \omega_1)$. Notice that

$$\operatorname{Re} \frac{\omega_2}{\omega_1} = \frac{a_1 a_2 + b_1 b_2}{a_1^2 + b_1^2} \text{ and } \operatorname{Re} \frac{-\omega_1}{\omega_2} = \frac{-(a_1 a_2 + b_1 b_2)}{a_2^2 + b_2^2}$$

Remark 1.18.2.

• If $M = \langle \omega_1, \omega_2 \rangle_{\mathbb{Z}} = \langle \omega_1', \omega_2' \rangle_{\mathbb{Z}}$, then exists the basis transformation over \mathbb{Z}

$$\begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}_{:=-A} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix}$$

where $A \in M_{2\times 2}(\mathbb{Z}) \cap \mathrm{GL}_2(\mathbb{R})$. Then

$$\begin{pmatrix} \omega_2' & \overline{\omega_2}' \\ \omega_1' & \overline{\omega_1}' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_2 & \overline{\omega_2} \\ \omega_1 & \overline{\omega_1} \end{pmatrix}$$

- $\tau = \frac{\omega_2}{\omega_1}$, $\tau' = \frac{\omega_2'}{\omega_1'} \leadsto \tau' = \frac{a\tau + b}{c\tau + d}$ and $\operatorname{Im} \tau' = \operatorname{sign}(ad bc) \frac{\operatorname{Im} \tau}{|c\tau + d|^2}$.
- If $\tau, \tau' \in R \leadsto \tau = \tau'$
 - •• $(1) \sim ad bc = 1$
 - •• By symmetry, we may assume $\operatorname{Im} \tau' \geq \operatorname{Im} \tau \leadsto |c\tau + d| \leq 1$
 - ••• $c = 0 \implies d = \pm 1, \ ad = 1 \rightsquigarrow a = d = \pm 1 \rightsquigarrow \tau' = \tau \pm b.$ $(2) \implies |b| = |\text{Re}\tau \text{Re}\tau'| < 1 \rightsquigarrow b = 0 \rightsquigarrow \tau = \tau'$
 - ••• $c \neq 0 : |\tau + d/c| \leq |c|^{-1}$. If $|c| \geq 2 \leadsto d(\tau, x \text{axis}) \leq 2^{-1}$, but $d(\tau, x \text{axis}) \geq \frac{\sqrt{3}}{2}$. Hence, $|c| = 1 \leadsto |\tau \pm d| \leq 1 \leadsto d = 0$ or ± 1 .

••••
$$|\tau+1| \le 1 : \tau = e^{2\pi i/3} \notin R$$
•••• $|\tau-1| \le 1 : \tau = e^{\pi i/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \rightsquigarrow \operatorname{Im} \tau' = \operatorname{Im} \tau = \frac{\sqrt{3}}{2} \rightsquigarrow \tau = \tau'$
•••• $d=0: |\tau| \le 1$, by $(4) \rightsquigarrow \operatorname{Re}\tau \ge 0$. Since $bc = -1$, $b/c = -1$, then
$$\tau' = \pm a - \tau^{-1} = \pm a - \overline{\tau} \rightsquigarrow \operatorname{Re}\tau' + \operatorname{Re}\overline{\tau} = \pm a \in [-1, 1]$$

$$\begin{cases} a = 1 \leadsto \tau' + \overline{\tau} = 1 \implies \tau = \tau' = \frac{1}{2} + iy \\ a = 0 \leadsto \tau' = -\overline{\tau} \leadsto \tau = \tau' = i \end{cases}$$

- For a fixed $\tau \in R$, the number of pair (ω_1, ω_2) with $\tau = \omega_2/\omega_1$ is
 - •• $(\omega_1, \omega_2), (-\omega_1, -\omega_2) \rightsquigarrow \# = 2$

••
$$\tau = i \leadsto \tau = -\frac{1}{\tau} \leadsto \# = 4$$

••
$$\tau = e^{\pi i/3} \leadsto \tau = \frac{-(\tau + 1)}{\tau} \text{ or } \tau = \frac{-1}{\tau + 1} \leadsto \# = 6.$$

Definition 1.18.3.

- $z_1, z_2 \in \mathbb{C}, z_1 \equiv z_2 \pmod{M}$ if $z_1 z_2 \in M$
- For $a \in \mathbb{C}$, define

$$P_a = \{a + r_1\omega_1 + r_2\omega_2 : 0 \le r_1, r_2 < 1\}$$

• \mathcal{E}_M be the elliptic function with period module M.

Property 1.18.1.

- (1) $f \in \mathcal{E}_M$ is analytic $\Longrightarrow f$ is constant: f is bounded on $\overline{P_a}$ and thus bounded on \mathbb{C} . By Liouville theorem, f is constant.
- (2) $f \in \mathcal{E}_M$, the sum of residues of f is 0: Choose a s.t. no pole on ∂P_a , the sum of the residues of f in P_a° is

$$\frac{1}{2\pi i} \int_{\partial P_a} f(z) dz = \frac{1}{2\pi i} \left(\int_a^{a+\omega_1} + \int_{a+\omega_1+\omega_2}^{a+\omega_2} + \int_{a+\omega_1}^{a+\omega_1+\omega_2} + \int_{a+\omega_2}^{a} \right) f(z) dz = 0$$

- (3) $f \in \mathcal{E}_M$, f has no single pole in P_a : By (2).
- (4) $f \in \mathcal{E}_M$ is not constant, then # of zeros = # of poles: $\mathbf{subproof}: \text{Note } f' \in \mathcal{E}_M \text{ and } \frac{f'}{f} \in \mathcal{E}_M \text{ has simple pole at the zeros and poles of } f \text{ with } \text{corresponding residue is the multiplicity. By (2), } \frac{1}{2\pi i} \int_{\partial \mathcal{P}} \frac{f'(z)dz}{f(z)} = 0 \text{ and thus}$

$$\#$$
 of zeros $= \#$ of poles

(5) For $c \in \mathbb{C}$, f(x) - c and f(x) have same poles $\rightsquigarrow \#$ of zero of f(z) = c equal to # of zero of f(z) = 0, and defined this number be the **order** of f.

(6) $a_1, ..., a_n$: incongruent zeros of $f, b_1, ..., b_n$: incongruent poles of f. Then

$$a_1 + \dots + a_n \equiv b_1 + \dots + b_n \pmod{M}$$

subproof: Choose a s.t. f has no zeros and poles on ∂P_a . We have

$$\frac{1}{2\pi i} \int_{\partial P_a} \frac{zf'(z)}{f(z)} dz = a_1 + \dots + a_n - b_1 - \dots - b_n$$

$$\frac{1}{2\pi i} \left(\int_a^{a+\omega_1} - \int_{a+\omega_2}^{a+\omega_1+\omega_2} \right) \frac{zf'(z)}{f(z)} dz = \frac{-\omega_2}{2\pi i} \int_a^{a+\omega_1} \frac{f'(z)}{f(z)} dz \tag{*}$$

Notice that $\frac{1}{2\pi i} \int_a^{a+\omega_1} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \log f(z) \Big|_a^{a+\omega_1} = \frac{1}{2\pi} \arg f(z) \in \mathbb{Z}$ and thus $(*) \in \langle \omega_2 \rangle_{\mathbb{Z}}$ and thus get the result.

1.18.2 Weierstrass elliptic function

If the singular part of f is $\frac{1}{z^2} \rightsquigarrow f(z) - f(-z)$ is analytic and thus f(z) - f(-z) = c. Substitute $z = \frac{\omega_1}{2} \rightsquigarrow c = f(\omega_1/2) - f(-\omega_1/2) = 0 \implies f(z) = f(-z)$ and thus

$$f(z) = z^{-2} + a_0 + a_1 z^2 + \dots + a_2 z^4 + \dots$$

Since z=0 is pole then $z=\omega\in M$ is also pole. Then we may consider

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in M \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right)$$

which is called Weierstrass \wp function or Weierstrass elliptic function.

• \wp will converge uniformly on each compact subset of \mathbb{C} : For a given $z, \forall \omega \in M$ with $|\omega| > 2|z|$

$$\left| \frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right| = \frac{|z| \cdot |z - 2\omega|}{|\omega|^2 \cdot |z - \omega|^2} \le \frac{|z|(|z| + 2|\omega|)}{|\omega|^2 (|\omega| - |z|)^2} \le \frac{10|z|}{|\omega|^3}$$

Claim : $\sum_{\omega \in M \setminus \{0\}} |\omega|^{-3} < \infty$ (then done)

subproof: Let $R \ni \tau = \omega_2/\omega_1 = s + it$, then

$$|n + m\tau| = \sqrt{|n + ms|^2 + |mt|^2} \ge \frac{1}{\sqrt{2}} (|n + ms| + |mt|) \ge \frac{1}{\sqrt{2}} (|n| + (t - |s|)|m|)$$

Since $\tau \in R$, $t \ge \frac{\sqrt{3}}{2}$, $|s| \le \frac{1}{2} \to t - |s| > 0$. Let $k = \frac{|\omega_1|}{\sqrt{2}} \min(1, t - |s|)$ and thus

$$|n\omega_1 + m\omega_2| \ge \frac{|\omega_2|}{\sqrt{2}}(|n| + (t - |s|)|m|) \ge k(|n| + |m|)$$

Since there exists 4n pairs (n_1, n_2) s.t. $|n_1| + |n_2| = n$,

$$\sum_{\omega \in M \setminus \{0\}} \le \frac{1}{k^3} \sum_{n=1}^{\infty} \frac{n}{n^3} < \infty$$

•
$$\wp'(z) = -2\sum_{\omega \in M} \frac{1}{(z-\omega)^3} \in \mathcal{E}_M$$
. Then

$$\begin{cases} \wp(z + \omega_1) - \wp(z) = A \\ \wp(z + \omega_2) - \wp(z) = B \end{cases}$$

Substitute $z = \frac{\omega_1}{2}, \frac{\omega_2}{2}$ respectively and by \wp is even function, we have A = B = 0 i.e. $\wp \in \mathcal{E}_M$.

• Since $\left(\wp - \frac{1}{z^2}\right)(0) = 0$, we may assume $\wp(z) = \frac{1}{z^2} + \sum_{n=1}^{\infty} a_{2n} z^{2n} \rightsquigarrow f(z) := \wp(z) - \frac{1}{z^2}$ is analytic and thus $a_{2n} = \frac{f^{(2n)}(0)}{(2n)!}$. Since $f^{(n)}(z) = (-1)^n (n+1)! \sum_{\omega \in M} \frac{1}{(z-\omega)^{n+2}}$,

$$a_{2n} = (2n+1) \sum_{\omega \in M} \frac{1}{\omega^{2(n+1)}}$$

which is exists since $\sum \omega^k$ converge for k > 2 by the subproof in above.

• Define **Eisenstein series** $G_n = \sum_{\omega \neq 0} \frac{1}{\omega^{2(n+1)}} \rightsquigarrow G_n$ absolutely converge. Then we have

$$\begin{cases} \wp(z) = z^{-2} + 3G_2z^2 + 5G_3z^4 + \cdots \\ \wp'(z) = -2z^{-3} + 6G_2z + 20G_3z^3 + \cdots \\ \wp(z)^3 = z^{-6} + 9G_2z^{-2} + 15G_3 + \cdots \\ \wp'(z)^2 = 4z^{-6} - 24G_2z^{-2} - 80G_3 + \cdots \end{cases}$$

and thus

$$\wp'(z)^2 - 4\wp(z)^3 + 60\wp(z) = -140G_3 + \cdots$$

is analytic elliptic function and thus is constant. So we have

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3 = 0$$

where $g_2 = 60G_2$ and $g_3 = 140G_3$.

• Since $\wp'(z) = \sqrt{4\wp^3 - g_2\wp - g_3}$ and thus

$$z = \int_0^z \frac{d\wp(z)}{\sqrt{\wp(z)^3 - g_2\wp(z) - g_3}} = \int_0^{\wp(z)} \frac{dw}{\sqrt{w^3 - g_2w - g_3}}$$

Then $\wp(z)$ is the inverse function of elliptic integral.

Fact 1.18.1. \mathcal{E}_M forms a field and $\begin{pmatrix} \mathbb{C} & \hookrightarrow & \mathcal{E}_M \\ c & \mapsto & f \equiv c \end{pmatrix} \Longrightarrow \mathcal{E}_M$ is a \mathbb{C} -algebra.

Proof:

• $f \in \mathcal{E}_M$ with $\begin{cases} f : \text{ even} \\ \{\text{pole of } f\} \subset M \end{cases} \implies f \in \mathbb{C}[\wp] \text{ say } f = a_0 + a_1\wp + \dots + a_n\wp^n, \text{ where } 2n$ is order of f :

Let $f \neq \text{constant} \leadsto f$ has a least one pole in M, and hence a pole at $0 \leadsto f = a_{-2n}z^{-2n} + \cdots$, $n \geq 1$, $a_{-2n} \neq 0$. Also, $\wp(z)^n = z^{-2n} + \cdots$. Let $g = f - a_{-2n}\wp(z)^n \leadsto \text{order of } g \leq 2(n-1)$. By induction, $g \in \mathbb{C}[\wp]_{n-1} \leadsto f \in \mathbb{C}[\wp]_n$.

• $f \in \mathcal{E}_M$ with $f : \text{even} \implies f \in \mathbb{C}(\wp) :$

Let $f \neq \text{constant}$. If has a pole $a \notin M$, then $(\wp(z) - \wp(a))^N f(z)$ has a removable singularity at z = a for $N \gg 0$. Since f has only finitely many poles mod M, say $a_1, ...a_m$, and $\exists N_1, ..., N_m$ s.t.

$$g(z) = f(z) \prod_{i=1}^{m} (\wp(z) - \wp(a_i))^{N_i}$$

has no pole outside $M \implies g(z) \in \mathbb{C}[\wp] \implies f \in \mathbb{C}(\wp)$.

• For $f \in \mathcal{E}_M$: Notice that

$$f(z) = \frac{1}{2}(f(z) + f(-z)) + \frac{1}{2}(f(z) - f(-z))$$

$$= f_1(z) = \frac{1}{2}(f(z) - f(-z))$$

Then $f_1(z)$ is even and thus $f_1 \in \mathbb{C}(\wp)$. Since f_2/\wp' is even, $f_2/\wp' \in \mathbb{C}(\wp)$ and thus $f_2 \in \wp'\mathbb{C}(\wp)$. Hence, $\mathcal{E}_M = \mathbb{C}(\wp) + \wp'\mathbb{C}(\wp)$.

• Let
$$\xi(z)$$
 satisfy
$$\begin{cases} \xi'(s) = -\wp(z) \\ \lim_{z \to 0} \left(\xi(z) - \frac{1}{z} \right) = 0 \end{cases}$$
, then

$$\xi(z) = \frac{1}{z} + \sum_{\omega \neq 0} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right)$$

which will converge since $\left|\frac{1}{z-\omega} + \frac{1}{\omega} + \frac{z}{\omega^2}\right| = O\left(\frac{1}{|\omega|^3}\right)$ on each compact subset. Since $\wp(z+\omega) - \wp(z) = 0$ and ξ is odd function, we have

$$\begin{cases} \xi(z+\omega_1) - \xi(z) = \eta_1 & \xrightarrow{z=\omega_1/2} \eta_1 = \xi(\omega_1/2) - \xi(-\omega_1/2) = 2\xi(\omega_1/2) \\ \xi(z+\omega_2) - \xi(z) = \eta_2 & \xrightarrow{z=\omega_2/2} \eta_2 = \xi(\omega_2/2) - \xi(-\omega_2/2) = 2\xi(\omega_2/2) \end{cases}$$

Legendre's relation: $\eta_1\omega_2 - \eta_2\omega_1 = 2\pi i$: Choose $a \notin M$, then

$$1 = \frac{1}{2\pi i} \int_{\partial P_a} \xi(z) dz = \frac{1}{2\pi i} \left(\int_a^{a+\omega_1} (\xi(z) - \xi(z+\omega_2) dz) + \int_a^{a+\omega_2} (\xi(z+\omega_1) - \xi(z)) dz \right)$$
$$= \frac{1}{2\pi i} \left(-\eta_2 \omega_1 + \eta_1 \omega_2 \right)$$

Remark 1.18.3. Consider

$$f: P_0 \longrightarrow \mathbb{P}^2$$

 $z \neq 0 \longmapsto [1 : \wp(z) : \wp'(z)]$

We can naturally extend f to z = 0 by

$$0 \longmapsto [1, z^{-2} + \cdots, -2z^{-3} + \cdots]_{z \to 0} = [z^3, z + \cdots, -2 + \cdots]_{z \to 0} = [0 : 0 : 1]$$

Recall that $(\wp')^2 = 4\wp^3 - g_2\wp - g_3$, then $f(P_0)$ satisfy the homogeneous equation

$$z_0 z_2^2 - 4z_1^3 - g_2 z_0^2 z_1 - g_2 z_0^3 = 0$$

Consider the equation $y^2 = 4x^3 - g_2x - g_3$ in x - y plane, we can define the group structure by

i.e. the three intersection of line ℓ with elliptic curve A, B, C will satisfy

$$A + B + C = 0$$

where A, B, C may not be distinct and allow infinite point.

1.19 Weierstrass theory

Recall that
$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \neq 0} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)$$
, $\wp'(z) = -2 \sum_{\omega} \frac{1}{(z-\omega)^3}$, then

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

Let e_1, e_2, e_3 be three roots of $4x^3 - g_2x - g_3$, then

$$\wp'(z)^2 = 4(\wp(z) - e_1)(\wp(z) - e_2)(\wp(z) - e_3)$$

Observation: $\wp'(\omega_1 - z) = \wp'(-z) = -\wp'(z) \xrightarrow{z=\omega_1/2} \wp'(\omega_1/2) = 0$. Similarly, $\wp'(\omega_2/2) = \wp'((\omega_1 + \omega_2)/2) = 0$. So we may let $e_1 = \wp(\omega_1/2)$, $e_2 = \wp(\omega_2/2)$, $e_3 = \wp((\omega_1 + \omega_2)/2)$. Notice that e_1, e_2, e_3 are homogeneous of order -2 in ω_1, ω_2 i.e. $e_k(t\omega_1, t\omega_2) = t^{-2}e_k(\omega_1, \omega_2)$. Then $\frac{e_3 - e_2}{e_1 - e_2}$ is a well-defined function on $\{[\omega_1 : \omega_2] = [1, \tau] : \omega_2/\omega_1 \notin \mathbb{R}\}$ and thus $\lambda(\tau) = \frac{e_3 - e_2}{e_1 - e_2}$ is meromorphic in \mathbb{H} .

$$\begin{cases} e_1 \neq e_2 & \Longrightarrow \lambda(\tau) \text{ is holomorphic in } \mathbb{H} \\ e_3 \neq e_2 & \Longrightarrow \lambda \neq 0 \text{ in } \mathbb{H} \\ e_1 \neq e_3 & \Longrightarrow \lambda \neq 1 \text{ in } \mathbb{H} \end{cases}$$

• $\operatorname{GL}_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{Z}) : ad - bc = \pm 1 \right\} \curvearrowright \text{the } \mathbb{Z} - \text{basis of } M.$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}_{:=A} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} = \begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix}$$

Since M

Chapter 2

Homework

2.1

Problem 2.1.1. Show that

$$|\cos z|^2 = \sinh^2 y + \cos^2 x = \cosh^2 y - \sin^2 x = \frac{1}{2}(\cosh 2y + \cos 2x)$$

and

$$|\sin z|^2 = \sinh^2 y + \sin^2 x = \cosh^2 y - \cos^2 x = \frac{1}{2}(\cosh 2y - \cos 2x).$$

Problem 2.1.2. Determine all values of $2^i, i^i, (-1)^{2i}$.

Problem 2.1.3. Express $\arctan w$ in terms of the logarithm.

Problem 2.1.4. Determine the radius of convergence of the series $\sum_{n=1}^{\infty} a_n z^n$ when:

- (a) $a_n = (\log n)^2$
- (b) $a_n = n!$
- (c) $a_n = \frac{n^2}{4^n + 3n}$
- (d) $a_n = (n!)^3/(3n)!$
- (e) Find the radius of convergence of the hypergeometric series

$$F(\alpha, \beta, \gamma : z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha+1)\cdots(\alpha+n-1)\beta(\beta+1)\cdots(\beta+n-1)}{n!\gamma(\gamma+1)\cdots(\gamma+n-1)} z^{n}.$$

Here $\alpha, \beta \in \mathbb{C}$ and $\gamma \neq 0, -1, -2, \dots$

(f) Find the radius of convergence of the Bessel function of order r:

$$J_r(z) = \left(\frac{z}{2}\right)^r \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+r)!} \left(\frac{z}{2}\right)^{2n}$$

2.2. Minerva notes

Problem 2.1.5. Expand $(1-z)^{-m}$ in powers of z. Here m is a fixed positive integer. Also show that if

$$(1-z)^{-m} = \sum_{n=0}^{\infty} a_n z^n,$$

the one obtains the following asymptotic relation for the coefficients:

$$a_n \sim \frac{1}{(m-1)!} n^{m-1}$$
 as $n \to \infty$.

Problem 2.1.6. Show that for |z| < 1, one has

$$\sum_{n=0}^{\infty} \frac{z^{2^n}}{1 - z^{2^{n+1}}} = \frac{z}{1 - z},$$

and

$$\sum_{n=0}^{\infty} \frac{2^n z^{2^n}}{1 + z^{2^n}} = \frac{z}{1 - z}.$$

justify any change in the order of summation.

2.2

Problem 2.2.1. Let γ be a smooth curve in \mathbb{C} parametrized by $z(t):[a,b]\to\mathbb{C}$. Let γ^- denote the curve with the same image as γ but with the reserve orientation. Prove that for any continuous function f on γ

$$\int_{\gamma} f(z)dz = -\int_{\gamma^{-}} f(z)dz.$$

Problem 2.2.2. The next three calculations provide some insight into Cauchy's theorem, which we treat in the next chapter.

(a) Evaluate the integrals

$$\int_{\gamma} z^n dz$$

for all integers n. Here γ is any circle centered at the origin with the positive (counter-clockwise) orientation.

- (b) Same question as before, but with γ any circle not containing the origin.
- (c) Show that if |a| < r < |b|, then

$$\int_{\gamma} \frac{1}{(z-a)(z-b)} dz = \frac{2\pi i}{a-b}$$

where γ denotes the circle centered at the origin, of radius r, with the positive orientation.

Problem 2.2.3. It is possible to define $n(\gamma, a)$ for any continuous closed curve γ that does not pass through a, whether piecewise differentiable or not. For this purpose γ is divided into subarces $\gamma_1, ..., \gamma_n$, each contained in a disk that does not include a. Let σ_k be the directed line segment from the initial to the terminal point of γ_k , and set $\sigma = \sigma_1 + \cdots + \sigma_n$. We define $n(\gamma, a)$ to be the value of $n(\sigma, a)$. To justify the definition, prove the following:

2.3. Minerva notes

- (a) the result is independent of the subdivision;
- (b) if γ is piecewise differentiable the new definition is equivalent to the old;
- (c) If γ lies inside of a circle, then $n(\gamma, a) = 0$ for all points a outside of the same circle. As a function of a the index $n(\gamma, a)$ is constant in each of the regions determined by γ , and zero in the unbounded region.

Problem 2.2.4. The **Jordan cure theorem** asserts that every Jordan curve in the plane determines exactly two regions. The notion of winding number leads to a quick proof of one part of the theorem, namely that the complement of a Jordan curve γ has at least two components. This will be so if there exists a point a with $n(\gamma, a) \neq 0$.

We may assume that Rez > 0 on γ , and that there are points $z_1, z_2 \in \gamma$ with $\text{Im } z_1 < 0$, $\text{Im } z_2 > 0$. These point may be chosen so that there are no other points of γ on the line segments from 0 to z_1 and from 0 to z_2 . Let γ_1 and γ_2 be the arcs of γ from z_1 to z_2 (excluding the end points).

Let σ_1 be the closed curve that consists of the line segment from 0 to z_1 followed by γ_1 and the segment from z_2 to 0, and let σ_2 be constructed in the same way with γ_2 in the place of γ_1 . Then $\sigma_1 - \sigma_2 = \gamma$ or γ .

The positive real axis intersects both γ_1 and γ_2 . Choose the notation so that the intersection x_2 farthest to the right is with γ_2 .

FIG. 4-6. Part of the Jordan curve theorem.

Prove the following:

- (a) $n(\sigma_1, x_2) = 0$, hence $n(\sigma_1, z) = 0$ for $z \in \gamma_2$;
- (b) $n(\sigma_1, x) = n(\sigma_2, x) = 1 \text{ for small } x > 0;$
- (c) the first intersection x_1 of the positive real axis with γ lies on γ_1 ;
- (d) $n(\sigma_2, x_1) = 1$, hence $n(\sigma_2, z) = 1$ for $z \in \gamma_1$;
- (e) there exists a segment of the positive real axis with one end point on γ_1 , the other on γ_2 , and no other points on γ . The points x between the end points satisfy $n(\gamma, x) = 1$ or -1.

2.3

Example 2.3.1. Compute

$$\int_{|z|=1} \frac{e^z}{z} dz.$$

2.4. Minerva notes

Example 2.3.2. Compute

$$\int_{|z|=2} \frac{dz}{z^2 + 1}$$

by decomposition of the integrand in partial fractions.

Example 2.3.3. Compute

$$\int_{|z|=\rho} \frac{|dz|}{|z-a|^2}$$

under the condition $|a| \neq \rho$.

2.4

Problem 2.4.1. Prove that a function which is analytic in the whole plane and satisfies an inequality $|f(z)| < |z|^n$ for some n and all sufficiently large |z| reduces to a polynomial.

Problem 2.4.2. If f(z) is analytic for |z| < 1 and $|f(z)| \le 1/(1-|z|)$, find the best estimate of $|f^{(n)}(0)|$ that Cauchy's inequality will yield.

Problem 2.4.3. Show that the successive derivatives of an analytic function at a point can never satisfy $|f^{(n)}(z)| > n!n^n$. Formulate a sharper theorem of the same kind.

Problem 2.4.4. Let the function $\varphi(z,t)$ be continuous as a function of both variables when z lies in a region Ω and $\alpha \leq t \leq \beta$. Suppose further that $\varphi(z,t)$ is analytic as a function of $z \in \Omega$ for any fixed t. Then

$$F(z) = \int_{\alpha}^{\beta} \varphi(z, t) dt$$

is analytic in z and

$$F'(z) = \int_{\alpha}^{\beta} \frac{\partial \varphi(z, t)}{\partial z} dt. \tag{1}$$

to prove this represent $\varphi(z,t)$ as a Cauchy integral

$$\varphi(z,t) = \frac{1}{2\pi i} \int_C \frac{\varphi(\xi,t)}{\xi - z} d\xi$$

Fill in the necessary details to obtain

$$F(z) = \int_{C} \left(\frac{1}{2\pi i} \int_{\alpha}^{\beta} \varphi(\xi, t) dt \right) \frac{d\xi}{\xi - z}$$

and use Lemma 3 to prove (1).

Problem 2.4.5. Suppose f is an analytic function defined everywhere in \mathbb{C} and such that for each $z_0 \in \mathbb{C}$ at least one coefficient in the expansion

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

is equal to 0. Prove that f is a polynomial.

2.5. Minerva notes

2.5

Problem 2.5.1. If f(z) and g(z) have the algebraic orders h and k at z = a, show that fg has the order h + k, f/g the order h - k, and f + g an order which does not exceed $\max(h, k)$.

Problem 2.5.2. Show that a function which is analytic in the whole plane and has a nonessential singularity at ∞ reduces to a polynomial.

Problem 2.5.3. Show that any function which is meromorphic in the extended plane is rational.

Problem 2.5.4. Prove that an isolated singularity of f(z) is removable as soon as either Re f(z) or Im f(z) is bounded above or below.

Problem 2.5.5. Show that an isolated singularity of f(z) cannot be a pole of exp f(z).

2.6

Problem 2.6.1. Determine explicitly the largest disk about the origin whose image under the mapping $w = e^z$ is one to one.

Problem 2.6.2. If f(z) is analytic at the origin and $f'(0) \neq 0$, prove the existence of an analytic g(z) such that $f(z^n) = f(0) + g(z)^n$ in a neighborhood of 0.

Problem 2.6.3. Let f be analytic in $B_1(0)$. Show that $|f(z)| \le 1$ for $|z| \le 1$ implies

$$\frac{|f'(z)|}{(1-|f(z)|^2)} \le \frac{1}{1-|z|^2}$$

for all $z \in B_1(0)$ with $f(z) \neq 1$.

Problem 2.6.4. If γ is a piecewise differentiable arc contained in |z| < 1 the integral

$$\int_{\gamma} \frac{|dz|}{1 - |z|^2}$$

is called the **noneuclidean length** (or **hyperbolic length**) of γ . Show that an analytic function f(z) with |f(z)| < 1 for |z| < 1 maps every γ on an arc with smaller or equal noneuclidean length.

Problem 2.6.5. Prove that the arc of smallest noneuclidean length that joins two given points in the unit disk is a circular arc which is orthogonal to the unit circle. (Make use of a linear transformation that carries one end point to the origin, the other to a point on the positive real axis.)

The shortest noneuclidean length is called the **noneuclidean distance** between the end points. Derive a formula for the noneuclidean distance between z_1 and z_2 :

$$\frac{1}{2}\log\frac{1+\left|\frac{z_1-z_2}{1-\overline{z}_1z_2}\right|}{1-\left|\frac{z_1-z_2}{1-\overline{z}_1z_2}\right|}$$

2.7. Minerva notes

2.7

Problem 2.7.1. If f(z) is analytic and $\operatorname{Im} f(z) \geq 0$ for $\operatorname{Im} z > 0$, show that

$$\frac{|f(z) - f(z_0)|}{|f(z) - \overline{f(z_0)}|} \le \frac{|z - z_0|}{|z - \overline{z_0}|}$$

and

$$\frac{|f'(z)|}{\operatorname{Im} f(z)} \le \frac{1}{y} \ (z = x + iy)$$

Problem 2.7.2. In Ex.1 and 2, prove that equality implies that f(z) is a linear transformation.

(待修)

Problem 2.7.3. Derive corresponding inequalities if f(z) maps |z| < 1 into the upper half plane.

Problem 2.7.4. Prove by use of Schwarz's lemma that every one-to-one conformal mapping of a disk onto another (or a half plane) is given by a linear transformation.

Problem 2.7.5. How should noneuclidean length in the upper half plane be defined?

2.8

Problem 2.8.1. Find the poles and residues of the following functions:

(a)
$$\frac{1}{z^2 + 5z + 6}$$

(b)
$$\frac{1}{(z^2-1)^2}$$

$$(c) \frac{1}{\sin z}$$

$$(d) \cot z$$

$$(e) \frac{1}{\sin^2 z}$$

$$(f) \ \frac{1}{z^m (1-z)^n}$$

Problem 2.8.2. Evaluate the following integrals by the method of residues:

(a)
$$\int_0^{\pi/2} \frac{dx}{a + \sin^2 x}$$
, $|a| > 1$

(b)
$$\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx$$

(c)
$$\int_0^\infty \frac{x^2 dx}{(x^2 + a^2)^2} dx, \ a \in \mathbb{R}$$

(d)
$$\int_0^\infty \frac{\cos x}{x^2 + a^2} dx, \ a \in \mathbb{R}$$

Problem 2.8.3. Evaluate $\int_0^\infty \log(1+x^2) \frac{dx}{x^{1+\alpha}}$, $0 < \alpha < 2$.

2.9. Minerva notes

Problem 2.8.4. Complex integration can sometimes be used to evaluate area integrals. As an illustration, show that if f(z) is analytic and bounded for |z| < 1 and if $|\xi| < 1$, then

$$f(\xi) = \frac{1}{\pi} \iint_{|z|<1} \frac{f(z)dxdy}{(1-\overline{z}\xi)^2}$$

Remark. This is known as **Bergman's kernel formula**. To prove it, express the area integral in pole coordinates, then transform the inside integral to line integral which can be evaluated by residues.

Problem 2.8.5. Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^4}$$

where are the poles of $(1+z^4)^{-1}$?

Problem 2.8.6. Use contour integration to show that

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \xi}}{(1+x^2)^2} dx = \frac{\pi}{2} (1+2\pi |\xi|) e^{-2\pi |\xi|}$$

for all $\xi \in \mathbb{R}$.

2.9

Problem 2.9.1. Suppose f and g are holomorphic in a region containing the disc $|z| \le 1$. Suppose that f has a simple zero at z = 0 and vanishes nowhere else in $|z| \le 1$. Let

$$f_{\varepsilon}(z) = f(z) + \varepsilon g(z).$$

Show that if ε is sufficiently small, then

- (a) $f_{\varepsilon}(z)$ has a unique zero in $|z| \leq 1$, and
- (b) if z_{ε} is this zero, the mapping $\varepsilon \mapsto z_{\varepsilon}$ is continuous.

Problem 2.9.2. How many roots does the equation $z^7 - 2z^5 + 6z^3 - z + 1 = 0$ have in the disk |z| < 1?

Problem 2.9.3. How many roots of the equation $z^4 - 6z + 3 = 0$ have their modulus between 1 and 2?

2.10

Problem 2.10.1. Find the Hadamard products for :

- (a) $e^z 1$
- (b) $\cos \pi z$

2.11. Minerva notes

Problem 2.10.2. Suppose that $a_n \to \infty$ and that the A_n are arbitrary complex numbers. Show that there exists entire function which satisfy $f(a_n) = A_n$.

Problem 2.10.3. Prove that

$$\sin \pi (z + \alpha) = \sin \pi \alpha e^{\pi z \cot \pi \alpha} \prod_{n = -\infty}^{\infty} \left(1 + \frac{z}{n + \alpha} \right) e^{-z/(n + \alpha)}$$

whenever α is not an integer.

Problem 2.10.4. What is the genus of $\cos \sqrt{z}$.

Problem 2.10.5. Show that if f(z) is of genus 0 or 1 with real zeros, and if f(z) is real for real z, then all zeros of f'(z) are real.

2.11

Problem 2.11.1. Prove the formula of Gauss:

$$(2\pi)^{\frac{n-1}{2}}\Gamma(z) = n^{z-1/2}\Gamma\left(\frac{z}{n}\right)\Gamma\left(\frac{z+1}{n}\right)\cdots\Gamma\left(\frac{z+n-1}{n}\right)$$

Problem 2.11.2. Show that

$$\Gamma\left(\frac{1}{6}\right) = 2^{-1/3} \left(\frac{3}{\pi}\right)^{1/2} \Gamma\left(\frac{1}{3}\right)^2$$

Problem 2.11.3. What are the residues of $\Gamma(z)$ at the pole z=-n?

2.12

Problem 2.12.1. Assume that f(z) has genus zero so that

$$f(z) = z^m \prod_n \left(1 - \frac{z}{a_n} \right)$$

Compare f(z) with

$$g(z) = z^m \prod_n \left(1 - \frac{z}{|a_n|} \right)$$

and show that the maximum modulus $\max_{|z|=r} |f(z)|$ is \leq the maximum modules of g, and that the minimum modulus of f is \geq the minimum modulus of g.

Problem 2.12.2. Find the order of growth of the following entire functions:

- (a) p(z) where p is polynomial.
- (b) e^{bz^n} for $b \neq 0$.
- (c) e^{e^z} .

2.13. Minerva notes

Problem 2.12.3. Show that if τ is fixed with $\text{Im}(\tau) > 0$, the Jacobi theta function

$$\Theta(z|\tau) = \sum_{n=-\infty}^{\infty} e^{\pi i n^2 \tau} e^{2\pi i n z}$$

is order 2 as a function of z.

Problem 2.12.4. Let t > 0 be given and fixed, and define F(z) by

$$F(z) = \prod_{n=1}^{\infty} (1 - e^{-2\pi nt} e^{2\pi iz}).$$

Note that the product defines an entire function of z.

- (a) Show that $|F(z)| \leq Ae^{a|z|^2}$, hence F is order 2.
- (b) F vanishes exactly when z=-int+m for $n\geq 1$ and n,m integers. Thus, if z_n is an enumeration of these zeros we have

$$\sum \frac{1}{|z_n|^2} = \infty \text{ but } \sum \frac{1}{|z_n|^{2+\varepsilon}} < \infty.$$

2.13

Problem 2.13.1. Prove that the order of the function

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{(n!)^{\alpha}}$$

is $1/\alpha$.

Problem 2.13.2. If $\lambda \neq 0$, and p(z) is a nonzero polynomial, $e^{\lambda z} - p(z)$ has an infinitely of zeros.

Problem 2.13.3. If f(z) is of order ρ , and g(z) of order $\rho' \leq \rho$, and the zeros of g(z) are all zeros of f(z), then f(z)/g(z) is of order ρ at most.

2.14

Problem 2.14.1. Suppose that $\{a_n\}_{n=1}^{\infty}$ is a sequence of real numbers such that the partial sums

$$A_n = a_1 + \cdots + a_n$$

are bounded. Prove that the Dirichlet series

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

converges for Re(s) > 0 and defines a holomorphic function in this half-plane.

Problem 2.14.2. Consider the following function

$$\widetilde{\zeta}(s) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}$$

2.15. Minerva notes

(a) Prove that the series defining $\widetilde{\zeta}(s)$ converges for $\mathrm{Re}(s)>0$ and defines a holomorphic function in that half-plane.

- (b) Show that for s > 1 one has $\widetilde{\zeta}(s) = (1 2^{1-s})\zeta(s)$.
- (c) Conclude, since $\widetilde{\zeta}$ is given as an alternating series, that ζ has no zeros on the segment $0 < \sigma < 1$. Extend this last assertion to $\sigma = 0$ by using the function equation.

Problem 2.14.3. Show that for every c > 0

$$\lim_{N \to \infty} \frac{1}{2\pi i} \int_{c-iN}^{c+iN} a^s \frac{ds}{s} = \begin{cases} 1 & \text{if } a > 1, \\ 1/2 & \text{if } a = 1, \\ 0 & \text{if } 0 \le a < 1. \end{cases}$$

The integral is taken over the vertical segment from c - iN to c + iN.

2.15

Problem 2.15.1. In the theory of primes, a better approximation to $\pi(x)$ (instead of $x/\log x$) turns out to be Li(x) defined by

$$\operatorname{Li}(x) = \int_{2}^{x} \frac{dt}{\log t}.$$

(a) Prove that

$$\operatorname{Li}(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right) \text{ as } x \to \infty,$$

and that as a consequence

$$\pi(x) \sim \text{Li}(x) \text{ as } x \to \infty.$$

(b) Refine the previous analysis by showing that for every integer N>0 one has the following asymptotic expansion

$$\operatorname{Li}(x) = \frac{x}{\log x} + \frac{x}{(\log x)^2} + 2\frac{x}{(\log x)^3} + \dots + (N-1)! \frac{x}{(\log x)^N} + O\left(\frac{x}{(\log x)^{N+1}}\right)$$
 as $x \to \infty$.

Problem 2.15.2. Let

$$\varphi(x) = \sum_{p \le x} \log p$$

where the sum is taken over all prime \leq . Prove that the following are equivalent as $x \to \infty$:

- (a) $\varphi(x) \sim x$,
- (b) $\pi(x) \sim x/\log x$.
- (c) $\psi(x) \sim x$,
- (d) $\psi_1(x) \sim x^2/2$.

Problem 2.15.3. If p_n denotes the n^{th} prime, the prime number theorem implies that $p_n \sim n \log n$ as $n \to \infty$.

(a) Show that $\pi(x) \sim x/\log x$ implies that

$$\log \pi(x) + \log \log x \sim \log x$$
.

(b) As a consequence, prove that $\log \pi(x) \sim \log x$, and take $x = p_n$ to conclude the proof.

2.16. Minerva notes

2.16

Problem 2.16.1. Prove that in any region Ω the family of analytic functions with positive real part is normal. Under what added condition is it locally bounded?

Problem 2.16.2. Show that the functions z^n , n a nonnegative integer, form a normal family in |z| < 1, also in |z| > 1, but not in any region that contains a point on the unit circle.

Problem 2.16.3. If f(z) is analytic in the whole plane, show that the family formed by all functions f(kz) with constant k is normal in the annulus $r_1 < |z| < r_2$ if and only if f is a polynomial.

2.17

Problem 2.17.1 (Marty theorem). A family \mathcal{F} of meromorphic function is normal \iff $\{f^{\#}: f \in \mathcal{F}\}$ is uniformly bounded on each compact subset.

Problem 2.17.2. If the family \mathfrak{F} of analytic (or meromorphic) functions is not normal in Ω , show that there exists a point z_0 such that \mathfrak{F} is not normal in any neighborhood of z_0 .

2.18

Problem 2.18.1. Show that z and z' correspond to diametrically opposite points on the Riemann sphere if and only if $z\overline{z'} = -1$.

Problem 2.18.2. Let Z, Z' denote the stereographic projections of z, z', and let N be the north pole. Show that the triangles NZZ' and Nzz' are similar, and use this to derive

$$d(z, z') = \frac{2|z - z'|}{\sqrt{(1+|z|^2)(1+|z'|^2)}}$$

Problem 2.18.3. Find the radius of the spherical image of the circle in the plane whose center is a and radius R.

Problem 2.18.4. If z_0 is real and Ω is symmetric with respect to the real axis, prove by the uniqueness that f satisfies the symmetry relation $f(\overline{z}) = \overline{f(z)}$.

Problem 2.18.5. What is the corresponding conclusion if Ω is symmetric with respect to the point z_0 ?

2.19

All mappings below are to be conformal.

Problem 2.19.1. Map the common part of the disks |z| < 1 and |z - 1| < 1 on the inside of the unit circle. Choose the mapping so that the two symmetries are preserved.

Problem 2.19.2. Map the complement of the arc |z| = 1, $y \ge 0$ on the outside of the unit circle so that the point at ∞ correspond to each other.

2.20. Minerva notes

Problem 2.19.3. Map the inside of the lemniscate $|z^2 - a^2| = \rho^2$ ($\rho > a$) on the disk |w| < 1 so that symmetries are preserved.

Problem 2.19.4. Map the part of the z-plane to the left of the right-hand branch of the hyperbola $x^2 - y^2 = 1$ on a half plane.

2.20

Problem 2.20.1. Suppose F(z) is holomorphic near $z = z_0$ and $F(z_0) = F'(z_0) = 0$, while $F''(z_0) \neq 0$. Show that there are two curves Γ_1 and Γ_2 that pass through z_0 , are orthogonal at z_0 , and so that F restricted to Γ_1 is real and has a minimum at z_0 , while F restricted to Γ_2 is also real but has a maximum at z_0 .

Problem 2.20.2. Does there exist a holomorphic surjection from the unit disc to \mathbb{C} ?

Problem 2.20.3. Other examples of eliptic integrals providing conformal maps from the upper half-plane to rectangles are given below.

(a) The function

$$\int_0^x \frac{d\zeta}{\sqrt{\zeta(\zeta-1)(\zeta-\lambda)}}, \text{ with } \lambda \in \mathbb{R} \text{ and } \lambda \neq 1$$

maps the upper half-plane conformally to a rectangle, one of whose vertices is the image of the point at infinity.

(b) In the case $\lambda = -1$, the image of

$$\int_0^z \frac{d\zeta}{\sqrt{\zeta(\zeta^2 - 1)}}$$

is a square whose side lengths are $\frac{\Gamma^2(1/4)}{2\sqrt{2\pi}}$.

Problem 2.20.4. We consider conformal mappings to triangles.

(a) Show that

$$\int_0^z z^{-\beta_1} (1-z)^{-\beta_2} dz,$$

with $0 < \beta_1 < 1$, $0 < \beta_2 < 1$, and $1 < \beta_1 + \beta_2 < 2$, maps \mathbb{H} to a triangle whose vertices are the images of 0, 1, and ∞ , and with angles $\alpha_1 \pi$, $\alpha_2 \pi$ and $\alpha_3 \pi$, where $\alpha_j + \beta_j = 1$ and $\beta_1 + \beta_2 + \beta_3 = 2$.

- (b) What happens when $\beta_1 + \beta_2 = 1$?
- (c) What happens when $0 < \beta_1 + \beta_2 < 1$?
- (d) In (a), the length of the side of the triangle opposite angle $\alpha_i \pi$ is

$$\frac{\sin(\alpha_j \pi)}{\pi} \Gamma(\alpha_1) \Gamma(\alpha_2) \Gamma(\alpha_3)$$

2.21. Minerva notes

2.21

Where all Schwarz-Christoffel is from disk to polygon.

Problem 2.21.1. If a vertex of the polygon is allowed to be at ∞ , what modification does the formula undergo? If in this context $\beta_k = 1$, what is the polygon like?

Problem 2.21.2. Show that the mappings of a disk onto a parallel strip, or onto a half strip with two right angles, can be obtained as special cases of the Schwarz-Christoffel formula.

Problem 2.21.3. Show that

$$F(w) = \int_0^w (1 - w^n)^{-2/n} dw$$

maps |w| < 1 onto the interior of a regular polygon with n sides.

2.22

Problem 2.22.1. Suppose that f(z) is analytic in the annulus $r_1 < |z| < r_2$ and continuous on the closed annulus. If M(r) denotes the maximum of |f(z)| for |z| = r, show that

$$M(r) \le M(r_1)^{\alpha} M(r_2)^{1-\alpha}$$

where $\alpha = \frac{\log(r_2/r)}{\log(r_2/r_1)}$ (Hadamard's three-circle theorem). Discuss cases of equality.

Problem 2.22.2. Assume that $U(\xi)$ is piecewise continuous and bounded for all real ξ . Show that

$$P_U(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-\xi)^2 + y^2} U(\xi) d\xi$$

represents a harmonic function in the upper half plane with boundary values $U(\xi)$ at points of continuity (Poisson's integral for the half plane).

Problem 2.22.3. In above, assume that U has a jump at 0, for instance U(0+) = 0, U(0-) = 1. Show that $P_U(z) - \frac{1}{\pi} \arg z$ tends to 0 as $z \to 0$. Generalize to arbitrary jumps and to the case of the circle.

Problem 2.22.4. If C_1 and C_2 are complementary arcs on the unit circle, set U = 1 on C_1 , U = 0 on C_2 . Find $P_U(z)$ explicitly and show that $2\pi P_U(z)$ equals the length of the arc, opposite to C_1 , cut off by the straight lines through z and the end points of C_1 .

Problem 2.22.5. Show that the mean-value formula remains valid for $u = \log |1 + z|$, z_0 , r = 1, and use this fact to compute

$$\int_0^{\pi} \log \sin \theta d\theta$$

2.23

Problem 2.23.1. Show that the function |x|, $|z|^{\alpha}$ ($\alpha \geq 0$), $\log(1+|z|^2)$ are subharmonic.

2.24. Minerva notes

Problem 2.23.2. If f(z) is analytic, prove that $|f(z)|^{\alpha}$ ($\alpha \geq 0$) and $\log(1 + |f(z)|^2)$ are subharmonic.

Problem 2.23.3. Formulate and prove a theorem to the effect that a uniform limit of sub-harmonic function is subharmonic.

2.24

Problem 2.24.1. Suppose that a meromorphic function f has two periods ω_1 and ω_2 , with $\omega_2/\omega_1 \in \mathbb{R}$.

- (a) Suppose ω_2/ω_1 is rational, say equal to p/q, where p and q are relatively prime integers. Prove that as a result the periodicity assumption is equivalent to the assumption that f is periodic with the simple period $\omega_0 = \frac{1}{q}\omega_1$.
- (b) If ω_2/ω_1 is irrational, then f is constant. To prove this, use the fact that $\{m-n\tau\}$ is dense in \mathbb{R} whenever τ is irrational and m, n range over the integers.

Problem 2.24.2. Prove that the series

$$\sum_{n+m\tau\in\Lambda^*} \frac{1}{|n+m\tau|^2} \text{ where } \tau\in\mathbb{H}$$

does not converge. In fact, show that

$$\sum_{1 \le n^2 + m^2 \le R^2} \frac{1}{n^2 + m^2} = 2\pi \log R + O(1)$$

Problem 2.24.3. Let f and g be elliptic functions for the same lattice.

- (1) If f and g have the same poles, and for each pole respectively the same principal parts, then f and g differ by an additive constant.
- (2) If f and g have the same pole set and the same zero set, and if for any pole or zero the corresponding multiplicities coincide, then f and g differ by a multiplicative constant.

Problem 2.24.4. Let

$$\mathcal{F} := \{ z \in \mathbb{C} : z = t_1 \omega_1 + t_2 \omega_2, 0 \le t_1, t_2 \le 1 \}$$

be the fundamental region of the lattice $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ with respect to a fixed basis ω_1, ω_2 . Show that the Euclidian volume of the fundamental parallelogram is $|\operatorname{Im}(\overline{\omega_1}\omega_2)|$. Thus formula is independent of the choice of the basis.

2.25

Problem 2.25.1. For an odd elliptic function associated to the lattice L, the half-lattice points $\omega/2$, $\omega \in L$, are either zeros or poles.

2.25. Minerva notes

Problem 2.25.2. Let f be an elliptic function of order m. Then its derivative f' is also an elliptic function of some order n, and the following inequality holds:

$$m+1 \le n \le 2m$$

Construct examples for the extreme cases n = m + 1 and n = 2m.

Problem 2.25.3. Any elliptic function of order ≤ 2 with period lattice L, whose pole set is contained in L, is of the form $z \to a + b\wp(z)$.

Problem 2.25.4. For each of the elliptic functions $(\wp')^{-n}$, $1 \le n \le 3$, find the corresponding normal form $R(\wp) + S(\wp)\wp'$ with rational functions R and S.

Problem 2.25.5. Let us set $g_2 = g_2(L)$, $g_3 = g_3(L)$ for the *g*-invariants of a fixed lattice L. Let f be a meromorphic, non-constant function in some domain, which satisfies the same algebraic differential equation as \wp , i.e.

$$f'^2 = 4f^3 - g_2f - g_3$$

Show that f is composition of \wp with a translation, i.e. there exists an $a \in \mathbb{C}$ with $f(z) = \wp(z+a)$.