Interpolacja część II

Seweryn Tasior, WI, grupa 5

04.04.2025

1 Treść ćwiczenia

Dla poniższej funkcji wyznacz dla zagadnienia Lagrange'a wielomian interpolujący dla metody Hermita.

$$f(x) = -2x\sin(3x - 3)$$

dla $x \in [-\pi + 1, 2\pi + 1].$

2 Dane techniczne

Programy zostały napisane w języku Python w wersji 3.11.5. Dodatkowo do narysowania wykresów i tabel zostały użyte biblioteki Pandas i matplotlib. Pomocniczo do wykonywania obliczeń zastosowano funkcjonalości biblioteki Numpy. Zadania programistyczne wykonano na laptopie Lenovo IdeaPad Gaming 3 15ACH6. Urządzenie posiada 6 rdzeniowy procesor o taktowaniu 4,4 GHz. Korzystano przy tym z systemu operacyjnego Windows 11.

3 Przebieg ćwiczenia

W ćwiczeniu wykorzystano i zaimplementowano wzory na wartości interpolacji Hermita. Użyto przy tym wzoru Newtona. Do obliczeń użyto N=1000 punktów na przedziale $[-\pi+1,2\pi+1]$, zarówno dla funkcji interpolowanej, jak i wielomianu interpolującego. Pochodną wyliczono i wynosi ona:

$$f'(x) = -6x\cos(3-3x) + 2\sin(3-3x)$$

Wyznaczono węzły interpolacyjne, rozmieszczone równomiernie lub według pierwiastków wielomianu Czebyszewa. W eksperymentach przyjęto liczbę węzłów n (każdy o innej wartości) z zakresu:

$$n \in \{2, 3, 4, \dots, 200\}$$

Natomiast liczbę pochodnych pierwszego stopnia, użytych dla węzłów o krotności 2, określono jako k z zakresu:

$$k \in \{1, 2, 3, \dots, 200\}$$

Tak więc stopień wielomianu interpolującego można określić jako:

$$h = n + k - 1$$

W obliczeniach uwzględniałem dwa przypadki:

- Węzły nieparzyste (o indeksach nieparzystych) są drugiego stopnia.
- Każdy węzeł jest drugiego stopnia.

Oszacowanie błędów wykonano na podstawie następujących wzorów:

Błąd średni =
$$\sqrt{\frac{\sum_{x \in P} (f(x) - w(x))^2}{|P|}}$$

Błąd maksymalny =
$$\max_{x \in P} |f(x) - w(x)|$$

Gdzie:

- \bullet f(x) oznacza wartość funkcji interpolowanej w punkcie x.
- $\bullet \ w(x)$ oznacza wartość wielomianu interpolującego w punkcie x.
- \bullet Pjest zbiorem punktów, w których obliczane są błędy.
- |P| oznacza moc zbioru P.

Na podstawie uzyskanych wyników sporządzono wykresy porównujące wyniki interpolacji. Wartości błędów średnich i maksymalnych zostały przedstawione w tabelach.

4 Wyniki

4.1 Tabele błędów dla węzłów rozmieszczonych równomiernie

Tabela 1: Zestawienie błędów dla metody Hermita przy co drugim węźle drugiego stopnia, efekt Rungego przy liczbie węzłów 8,9,10, błędy arytmetyczne przy liczbie węzłów 25

Liczba węzłów	Liczba pochodnych	Błąd maksymalny	Błąd średni
2	1	$3.54574~\times 10^{1}$	7.14979×10^{-1}
3	1	$4.67020\ \times 10^{1}$	$6.47234\ \times 10^{-1}$
4	2	$6.09877\ \times 10^{1}$	7.07102×10^{-1}
5	2	2.20274×10^{1}	$2.37614\ \times 10^{-1}$
6	3	8.49806×10^{1}	7.62744×10^{-1}
7	3	$7.08791\ imes 10^{1}$	$6.90824\ imes 10^{-1}$
8	4	3.29374×10^{2}	2.13013
9	4	8.25766×10^{1}	$6.23586\ imes 10^{-1}$
10	5	2.17201×10^{2}	8.96315×10^{-1}
11	5	$3.71618\ \times 10^{1}$	2.41931×10^{-1}
12	6	2.92060×10^2	7.49738×10^{-1}
13	6	1.02455×10^{1}	5.45227×10^{-2}
14	7	8.06744×10^{1}	1.74305×10^{-1}
15	7	1.28547	$7.69037\ \times 10^{-3}$
20	10	$7.44211\ \times 10^{-2}$	$1.26359\ imes 10^{-4}$
25	12	$1.28018\ \times 10^{-6}$	$2.04096\ \times 10^{-9}$
30	15	5.96718×10^{-4}	9.09863×10^{-7}
35	17	2.00989×10^{-3}	2.71316×10^{-6}
40	20	6.21113	8.80660×10^{-3}
45	22	$1.75521\ \times 10^2$	2.26198×10^{-1}
50	25	$5.00158\ \times 10^{5}$	$6.68554\ \times 10^{2}$
55	27	9.23955×10^6	$1.15410\ \times 10^4$
60	30	1.17101×10^{10}	1.70255×10^7
70	35	2.67867×10^{16}	$5.62562\ \times 10^{13}$
170	85	$1.84350\ \times 10^{88}$	$2.55219\ imes 10^{85}$
180	90	$2.06095\ \times 10^{95}$	2.21208×10^{92}
190	95	$2.46527\ \times 10^{102}$	$3.28907\ \times 10^{99}$
200	100	1.00653×10^{110}	1.51998×10^{107}

Tabela 2: Zestawienie błędów dla metody Hermita przy każdym węźle drugiego stopnia, efekt Rungego przy liczbie węzłów 6,7, błędy arytmetyczne przy liczbie węzłów 20

Liczba węzłów	Liczba pochodnych	Błąd maksymalny	Błąd średni
2	2	5.70241×10^{1}	1.02646
3	3	$3.50010\ \times 10^{1}$	$3.91534\ \times 10^{-1}$
4	4	4.96840×10^{1}	5.50871×10^{-1}
5	5	$2.35198\ imes 10^{1}$	2.78399×10^{-1}
6	6	$6.45517\ imes 10^{1}$	5.80441×10^{-1}
7	7	9.51759×10^{1}	7.44506×10^{-1}
8	8	$6.61124\ \times 10^{1}$	4.72044×10^{-1}
9	9	2.99489×10^{1}	1.99435×10^{-1}
10	10	1.07843×10^{1}	$6.29924\ \times 10^{-2}$
11	11	3.97910	1.59066×10^{-2}
12	12	1.15037	3.36982×10^{-3}
13	13	2.69334×10^{-1}	6.20529×10^{-4}
14	14	5.23246×10^{-2}	$1.01458\ \times 10^{-4}$
15	15	$8.59465\ \times 10^{-3}$	$1.48414\ imes 10^{-5}$
20	20	5.90773×10^{-7}	1.47204×10^{-9}
25	25	4.82788×10^{-4}	$6.59222\ imes 10^{-7}$
30	30	6.73863×10^{-1}	8.90129×10^{-4}
35	35	2.44619×10^{1}	3.14671×10^{-2}
40	40	8.05189×10^5	$1.00910\ \times 10^3$
45	45	9.52765×10^{8}	2.61742×10^6
50	50	1.01086×10^{13}	2.49928×10^{10}
55	55	1.66461×10^{19}	3.26222×10^{16}
60	60	3.36255×10^{23}	4.99676×10^{20}
70	70	2.93400×10^{32}	5.24275×10^{29}
170	170	7.38346×10^{127}	7.92847×10^{124}
180	180	1.89294×10^{138}	2.30404×10^{135}
190	190	6.40996×10^{147}	$8.92310\ \times 10^{144}$
200	200	2.85814×10^{157}	inf

4.2 Tabele błędów dla węzłów rozmieszczonych w zerach Czebyszewa

Tabela 3: Zestawienie błędów dla metody Hermita przy co drugim węźle drugiego stopnia, błędy arytmetyczne przy liczbie węzłów 25

Liczba węzłów	Liczba pochodnych	Błąd maksymalny	Błąd średni
2	1	4.15206×10^{1}	7.90953×10^{-1}
3	1	3.11431×10^{1}	2.31569×10^{-1}
4	2	2.84986×10^{1}	$2.82504\ \times 10^{-1}$
5	2	1.41412×10^{1}	1.74506×10^{-1}
6	3	$2.07070\ \times 10^{1}$	$2.61082\ \times 10^{-1}$
7	3	1.71449×10^{1}	1.196488×10^{-1}
8	4	$1.62386\ \times 10^{1}$	1.94725×10^{-1}
9	4	9.37463	1.17234×10^{-1}
10	5	1.19902×10^{1}	6.80106×10^{-2}
11	5	1.75892	$2.49314\ \times 10^{-2}$
12	6	2.08082	1.05341×10^{-2}
13	6	1.06183	2.46736×10^{-3}
14	7	$2.50717\ \times 10^{-1}$	$1.10115\ \times 10^{-3}$
15	7	5.63769×10^{-2}	1.78477×10^{-4}
20	10	5.09171×10^{-5}	$7.27984\ \times 10^{-8}$
25	12	1.44738×10^{-6}	4.12240×10^{-9}
30	15	6.85770×10^{-6}	1.80160×10^{-8}
35	17	1.58275×10^{-5}	3.97770×10^{-8}
40	20	$7.64113\ \times 10^{-2}$	$1.05413\ \times 10^{-4}$
45	22	1.35734×10^{2}	$2.64458\ \times 10^{-1}$
50	25	2.27609×10^{5}	3.95348×10^{2}
55	27	1.35880×10^{8}	$3.47194\ \times 10^{5}$
60	30	4.38676×10^{12}	$7.95212\ \times 10^9$
		•••	
150	75	2.31335×10^{80}	$4.09523\ \times 10^{77}$
160	80	$3.31630\ \times 10^{89}$	$4.47504\ \times 10^{86}$
170	85	1.03747×10^{97}	1.34116×10^{94}

Tabela 4: Zestawienie błędów dla metody Hermita każdym węźle drugiego stopnia, błędy arytmetyczne przy liczbie węzłów 20

Liczba węzłów	Liczba pochodnych	Błąd maksymalny	Błąd średni
2	2	$3.53054\ \times 10^{1}$	4.69993×10^{-1}
3	3	$3.40732\ \times 10^{1}$	2.44482×10^{-1}
4	4	3.90468×10^{1}	4.18067×10^{-1}
5	5	3.16099×10^{1}	$2.60044\ \times 10^{-1}$
6	6	$1.80486\ \times 10^{1}$	$2.20421\ imes 10^{-1}$
7	7	$2.24680\ imes 10^{1}$	1.32765×10^{-1}
8	8	1.74098×10^{1}	5.47008×10^{-2}
9	9	7.43810	1.69359×10^{-2}
10	10	2.18089	4.15567×10^{-3}
11	11	4.79325×10^{-1}	8.24963×10^{-4}
12	12	8.29747×10^{-2}	1.34138×10^{-4}
13	13	1.16874×10^{-2}	1.81026×10^{-5}
14	14	$1.37138\ \times 10^{-3}$	2.05639×10^{-6}
15	15	$1.36486\ \times 10^{-4}$	$1.99299~\times 10^{-7}$
20	20	2.00640×10^{-6}	$6.06521\ \times 10^{-9}$
25	25	$1.01539\ \times 10^{-5}$	$2.31917\ \times 10^{-8}$
30	30	$7.18514\ \times 10^{-3}$	$1.63554\ \times 10^{-5}$
35	35	7.44379×10^{1}	1.61865×10^{-1}
40	40	2.53273×10^{7}	5.24485×10^4
45	45	$4.07611\ \times 10^{10}$	1.03685×10^{8}
50	50	3.85452×10^{17}	6.21665×10^{14}
55	55	2.88225×10^{22}	5.16146×10^{19}
60	60	$1.43496\ \times 10^{27}$	$2.39458\ \times 10^{24}$
70	70	$7.93523\ \times 10^{36}$	$1.72514\ \times 10^{34}$
150	150	1.02409×10^{118}	1.16479×10^{115}
160	160	7.72130×10^{127}	1.37629×10^{125}
170	170	2.15488×10^{137}	3.21109×10^{134}

4.3 Wizualizacje

4.3.1 Duże niedopasowanie przy małej liczbie n
 i k dla węzłów rozmieszczonych równomiernie, efekt Rungego dla n
=9

Rysunek 1: Porównanie wykresów dla metody interpolacji Hermita dla $n \in \{2, 5, 9\}$

4.3.2 Stablizacja przy większej liczbie n i k dla węzłów rozmieszczonych równomiernie

Rysunek 2: Porównanie wykresów dla metody interpolacji Hermita dla $n \in \{11, 15\}$

4.3.3 Dokładne dopasowanie dla dużych wartości n i k oraz zauważenie błedów arytmetyki komputerowej dla węzłów rozłożonych równomiernie

Rysunek 3: Porównanie wykresów dla metody interpolacji Hermita dla $n \in \{20, 40, 80\}$

4.3.4 Duże niedopasowanie przy małej liczbie n i k dla węzłów Czebyszewa

Rysunek 4: Porównanie wykresów dla metody interpolacji Hermita dla $n \in \{2, 5, 9\}$

4.3.5 Stablizacja przy większej liczbie n i k dla węzłów Czebyszewa

Rysunek 5: Porównanie wykresów dla metody interpolacji Hermita dla $n \in \{11, 15\}$

4.3.6 Dokładne dopasowanie dla dużych wartości n i k oraz zauważenie błedów arytmetyki komputerowej dla węzłów Czebyszewa

Rysunek 6: Porównanie wykresów dla metody interpolacji Hermita dla $n \in \{20, 40, 80\}$

5 Obserwacje

• Dokładność przybliżenia:

 $-\,$ Dla większych wartości noraz węzły Czebyszewa i rozłożone wykazują nieco lepszą dokładność przybliżeń.

- Przy bardzo dużych wartościach n, pojawiają się błędy arytmetyczne, które ograniczają dalszą poprawę dokładności.
- Wraz ze wzorstem liczby węzłów zwiększa się błąd maksymalny i błąd średni. Natomiast dla równomiernie rozłożonych w pewnych węzłach występuje efekt Rungego

• Węzły drugiego stopnia:

- Większa krotność węzłów drugiego stopnia umożliwia dokładniejsze obliczenia.
- Przy znajomości pochodnej funkcji interpolowanej warto dać krotność 2 dla wszystkich węzłów dla uzyskania lepszej dokładności interpolacji
- Przy dużych wartościach n należy rozwazyć zmniejszenie ilości węzłów drugiego stopnia, by uniknąć błędów arytmetyki komputerowej

• Najlepsze przybliżenie:

- Węzły Czebyszewa polepszają przybliżenie.
- Optymalna liczba węzłów zależy od funkcji, ale ogólnie, n w zakresie 15-40 daje bardzo dobre wyniki dla węzłów Czebyszewa.