heme biosynthesis

salvage pathways of guanine, xanthine and their nucleosides

salvage pathways of purines and their nucleosides

Hours

tryptophan biosynthesis

de novo biosynthesis of purine nucleotides

glycolysis

22

Hours

72.3

salvage pathways of adenine, hypoxanthine and their nucleosides

serine biosynthesis from 3-phosphoglycerate

tryptophan degradation via kynurenine

S-adenosylmethionine biosynthesis

S-adenosylmethionine cycle

folate biosynthesis

folate interconversions

folate transformations

glycine cleavage complex

de novo biosynthesis of pyrimidine ribonucleotides

lysine biosynthesis

de novo biosynthesis of pyrimidine deoxyribonucleotides

sulfate assimilation pathway

superpathway of histidine, purine, and pyrimidine biosynthesis

ethanol degradation

isoleucine degradation

leucine degradation

phenylalanine degradation

superpathway of glucose fermentation

tryptophan degradation

valine degradation

diphthamide biosynthesis

oxidative branch of the pentose phosphate pathway

TCA cycle, aerobic respiration

glutathione biosynthesis

non-oxidative branch of the pentose phosphate pathway

2-ketoglutarate dehydrogenase complex

parginate debyablationa(se zerobie)

gluconeogenesis

phosphatipaite biiosymthesiis (fikemeldy apathevay)

lipid-linked oligosaccharide biosynthesis

sphingolipid metabolism

allantoin degradation

asparagine biosynthesis

folate polyglutamylation

glycine biosynthesis from serine

serine biosynthesis from glyoxylate

ergosterol biosynthesis

arginine biosynthesis

histidine biosynthesis

superpathway of glutamate biosynthesis

methionine salvage pathway

phenylalanine biosynthesis

tyrosine biosynthesis

tyrosine degradation

mevalonate pathway

fatty acid oxidation pathway

citrulline biosynthesis

inositol phosphate biosynthesis

aspartate biosynthesis

chorismate biosynthesis

nicotinamide riboside salvage pathway II

nicotinate riboside salvage pathway II

asparagine degradation

homocysteine biosynthesis

superpathway of sulfur amino acid biosynthesis

formalgleltanhatækblationtHe(gisifathnoane-ndepiandent)

thiamine biosynthesis

dehydro-D-arabinono-1,4-lactone biosynthesis

methionine biosynthesis

leucine biosynthesis

cysteine biosynthesis from homocysteine

cysteine biosynthesis/homocysteine degradation

spermidine and methylthioadenosine biosynthesis

spermine and methylthioadenosine biosynthesis

acetoin biosynthesis

isoleucine biosynthesis

valine biosynthesis

proline biosynthesis

de novo NAD biosynthesis

proline utilization

dolichyl glucosyl phosphate biosynthesis

galactose degradation

glycogen biosynthesis

glutathione-glutaredoxin redox reactions

phphphptidtittabighigtathittaissils(lilittaglgidayidlss)statnesphatatay)ay)

triglyceride biosynthesis

ubiquinone biosynthesis from 4-hydroxybenzoate

phospholipid biosynthesis

glycerol biosynthesis

fatty acid biosynthesis, initial steps

glycine biosynthesis from threonine

NAD salvage pathway

threonine degradation

pyridoxal 5'-phosphate salvage pathway

phosphatidylinositol phosphate biosynthesis

phospholipids degradation

riboflavin, FMN and FAD biosynthesis

homoserine biosynthesis

threonine biosynthesis

