Задача А. Игра на графе

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан ориентированный граф. Узнать для каждой вершины является ли игра, начинающаяся в этой вершине, выигрышной, проигрышной или ничейной.

Формат входного файла

В первой строке входного файла содержится два целых числа n и m (1 $\leq n \leq 50000$; $0 \leq m \leq 250000$) — число вершин и ребер в графе.

Далее следуют m строк по два целых числа x_i , y_i в каждой, означающие, что в графе есть ребро из вершины с номером x_i в вершину с номером y_i . Вершины нумеруются с единицы.

Формат выходного файла

В выходной файл выведите n строк. В i-ой строке выведите «Win», если игра начинающаяся в вершине с номером i выигрышная, «Loss» — проигрышная, и «Draw» в случае ничейной игры.

стандартный поток ввода	стандартный поток вывода
3 3	Loss
1 2	Win
2 1	Loss
2 3	
4 5	Draw
1 2	Draw
2 1	Win
2 3	Loss
3 2	
3 4	

Задача В. Игра престолов

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

На шахматной доске размера $n \times n$ прошли жаркие баталии. На поле остались лишь два короля. Но они решили продолжить сражение.

Из-за долгой войны m клеток доски стали непригодными для жизни, то есть король, попадающий на такое поле моментально умирает. Короли ходят по очереди. В свой ход король может передвинуться в любую из восьми соседних клеток, как и обычный шахматный король. Если на клетке, куда был совершен ход, находится король противника, то походивший король убивает своего соперника и становится победителем сражения.

Вам известны позиции клеток непригодных для жизни и начальное расположение королей. Напишите программу, которая определит победителя сражения. Первым ходит белый король.

Формат входного файла

В первой строке входного файла два целых числа n и m ($2 \le n \le 50$; $0 \le m \le n^2 - 2$) — размер доски и число непригодных для жизни клеток. Во второй строке находятся четыре целых числа r_w , c_w , r_b и c_b ($1 \le r_w, c_w, r_b, c_b \le n$) — начальные позиции белого и черного королей соответственно. Гарантируется, что начальные положения королей различны и короли не находятся на клетках, непригодных для жизни.

Далее следуют m строк по два целых числа в каждой — позиции клеток, не пригодных для жизни. Все позиции различны.

Формат выходного файла

В единственной строке выходного файла выведите «White», если победит белый король, «Black», если победит черный, и «Draw», если при оптимальной игре ни один из королей не сможет одержать победу.

стандартный поток ввода	стандартный поток вывода
3 1	Draw
1 1 3 3	
2 2	
3 2	White
1 1 3 3	
2 2 2 3	

Задача С. Функция Гранди

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан ориентированный ациклический граф. Для каждой вершины найдите функцию Гранди игры, начинающейся в этой вершине.

Формат входного файла

В первой строке входного файла содержится два целых числа n и m (1 $\leq n \leq 10000$; $0 \leq m \leq 100000$) — число вершин и ребер в графе.

Далее следуют m строк по два целых числа x_i , y_i в каждой, означающие, что в графе есть ребро из вершины с номером x_i в вершину с номером y_i . Вершины нумеруются с единицы.

Формат выходного файла

В выходной файл выведите n строк. В i-ой строке выведите единственное целое число — функция Гранди игры, начинающейся в вершине i.

стандартный поток ввода	стандартный поток вывода
4 5	1
1 2	0
1 4	1
3 2	2
4 2	
4 3	

Задача D. Малыш и Карлсон

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

На свой День рождения Малыш позвал своего лучшего друга Карлсона. Мама испекла его любимый пирог прямоугольной формы $a \times b \times c$ сантиметров. Карлсон знает, что у Малыша еще есть килограмм колбасы. Чтобы заполучить ее, он предложил поиграть следующим образом: они по очереди разрезают пирог на две ненулевые по объему прямоугольные части с целыми измерениями и съедают меньшую часть (в случае, когда части равные, можно съесть любую). Проигрывает тот, кто не может сделать хода (то есть когда размеры будут $1 \times 1 \times 1$). Естественно, победителю достается колбаса.

Малыш настаивает на том, чтобы он ходил вторым.

Помогите Карлсону выяснить, сможет ли он выиграть, и если сможет — какой должен быть его первый ход для этого.

Считается, что Малыш всегда ходит оптимально.

Формат входного файла

Во входном файле содержится 3 целых числа $a, b, c \ (1 \le a, b, c \le 5\,000)$ — размеры пирога.

Формат выходного файла

В случае, если Карлсон не сможет выиграть в Малыша, выведите NO. В противном случае в первой строке выведите YES, во второй — размеры пирога после первого хода Карлсона в том же порядке, что и во входном файле.

стандартный поток ввода	стандартный поток вывода
1 1 1	NO
2 1 1	YES
	1 1 1

Задача Е. Смит

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан ориентированный граф. Для каждой вершины найдите класс эквивалентности игры, начинающейся в этой вершине.

Формат входного файла

В первой строке входного файла содержится два целых числа n и m (1 $\leq n \leq 1000$; $0 \leq m \leq 10000$) — число вершин и ребер в графе.

Далее следуют m строк по два целых числа x_i , y_i в каждой, означающие, что в графе есть ребро из вершины с номером x_i в вершину с номером y_i . Вершины нумеруются с единицы.

Формат выходного файла

В выходной файл выведите n строк. Если игра, начинающаяся в i-ой вершине, эквивалентна какому-либо ниму, то в i-ой строке выведите единственное число — число камней в этом ниме. В случае, если игра эквивалента ∞_K , выведите -1, затем через пробел |K|, после чего |K| целых числех разделенных пробелмами — элементы множества K в возрастающем порядке.

стандартный поток ввода	стандартный поток вывода
5 7	0
2 1	1
3 1	-1 2 0 1
3 2	-1 0
3 4	-1 0
4 3	
4 5	
5 4	

Задача F. Snakes & Arrows

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Аркадий и Борис играют в увлекательную игру. Игра состоит из поля, имеющего n клеток, пронумерованных с единицы. На поле также присутствуют змеи и стрелы. Каждая стрела/змея соединяет две различных клетки поля, при в каждой клетке поля начинается не более одной стрелы и/или змеи. Также ни один конец стрелы/змеи не совпадает с началом какой-либо стрелы или змеи. В клетке с номером n не начинается ни одной стрелы/змеи.

Игра играется по слеющим правилам: изначально на поле расположены k фишек, i-ая фишка находится в клетке s_i , при этом гарантируется, что в s_i не начинается никакой змеи/стрелы.

Игроки совершают ходы по очереди. В свой ход игрок выбрает одну из фишек и продвигает ее вперед на несколько клеток. Игрок должен продвинуть фишку хотя бы на одну клетку вперед, при этом он может продвинуть ее не более чем на q позиций. Естественно, игроку запрещается двигать фишку за пределы поля.

Если в клетке, куда игрок переместил фишку, начинается змеи или стрела, то фишка моментально перемещается в конец змеи/стрелы. Если же ни стрелы, ни змеи в клетке не начинается, то фишка остается стоять на клетке. Игрок, который не может сделать ни одного хода проигрывает.

Вам дано поле и начальное расположение фишек. Требуется определить, кто из игроков побеждает при оптимальной игре, если первым ходит Аркадий.

Формат входного файла

В первой строке даны четыре целых числа n, m, k и q ($1 \le n \le 500; 0 \le m; 0 \le k \le 1000; 1 \le q \le n$) — число клеток на поле, змей/стрел, фишек в начале игры, а также лимит перемещения фишки.

Во второй строке даны k целых чисел — начальное расположение фишек на поле. Далее следуют m строк по два числа в каждой — номер начальное и конечной клеток змеи/стрелы.

Формат выходного файла

В первой строке выведите «Boris», если при оптимальной игре выигрывает Борис, и «Draw» в случае ничейного исхода. Если выигрывает Аркадий, то в первой строке выведите «Arkadii», а во второй строке выведите два числа — номер фишки, которую необходимо переместить Аркадию для победы и число позиций, на которое ее необходимо переместить. Если оптимальных ходов несколько, выведите любой из них.

стандартный поток ввода	стандартный поток вывода
25 11 2 4	Arkadii
1 18	1 2
3 13	
6 4	
8 24	
9 25	
10 18	
11 21	
12 1	
15 5	
17 5	
19 7	
20 23	
25 11 2 4	Draw
4 13	
3 13	
6 4	
8 24	
9 25	
10 18	
11 21	
12 1	
15 5	
17 5	
19 7	
20 23	

Задача G. Green Hackenbush

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф. Требуется выяснить, кто выигрывает в игру «Зеленый Хакенбуш» на таком графе. Землей считается вершина с номером 1.

Формат входного файла

В первой строке входного файла содержится два целых числа n и m (1 $\leq n \leq 10000$; $0 \leq m \leq 100000$) — число вершин и ребер в графе.

Далее следуют m строк по два целых числа x_i , y_i в каждой, означающие ребро, соединяющее вершины с номерами x_i и y_i . Вершины нумеруются с единицы.

Формат выходного файла

В первой строке выведите «First», если при оптимальной игре выигрывает первый игрок. Если выигрывает второй, выведите «Second»

стандартный поток ввода	стандартный поток вывода
4 4	Second
1 2	
1 3	
2 4	
3 4	
7 9	First
1 2	
1 4	
2 3	
4 5	
3 2	
4 6	
2 3	
5 7	
6 7	

Лабораторная работа по теории игр. Справедливые игры. Несправедливые игры. Классические игры.

Задача H. \sqrt{Nim}

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Корневой ним — игра со следующими правилами. Имеются n кучек, по a_i камней в каждой. Игроки ходят по очереди. Ход заключается в том, что игрок выбирает одну из непустых кучек с a_i камней и берет из нее от 1 до $\lfloor \sqrt{a_i} \rfloor$ камней. Например, из кучки с 10 камнями можно взять только 1, 2 или 3 камня. Игрок, который не может сделать ход проигрывает.

Вам даны число и размеры кучек, определите, кто выигрывает при оптимальной игре.

Формат входного файла

В первой строке дано целое число n ($0 \le n \le 500$) — число кучек. В следующей строке n целых чисел a_i ($1 \le a_i \le 10^{10}$) — начальные размеры кучек.

Формат выходного файла

В единственную строку выходного файла выведите «First», если при оптимальной игре выигрывает первый игрок, и «Second» иначе.

стандартный поток ввода	стандартный поток вывода
1	First
1	
2	Second
100 100	

Задача І. Короткие игры

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана короткая игра G. Найдите игру H = G без доминируемых и обратимых ходов (опций).

Формат входного файла

Единственная строка входного файла содержит запись игры G — строку s ($3 \le |s| \le 200$).

Формат выходного файла

В первой строке выходного файла выведите запись игры H в аналогичном формате.

стандартный поток ввода	стандартный поток вывода
{{ { }}} }	{ }
{{ } {{ } ,{{ } },{{ } }}}}	{{ } {{ }} {{ }} {{ }}}}

Задача Ј. Распил шоколада

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

У Вовы и его финского друга Гены есть набор из n шоколадок. Шоколадка с номером i имеет размеры $a_i \times b_i$ долек. Вместо того, чтобы просто съесть сладости, мальчики хотят сначала поиграть в увлекательную игру. Игроки ходят по очереди. Ход состоит в том, чтобы выбрать один из оставшихся кусочков шоколадок и распилить его одной прямой на две непустые части. Вове разрешается пилить шоколадки только вертикальной прямой, а Гене — только горизонтальной. Естественно ни один распил не должен ломать долек шоколадки. Также ребята договорились, что не будут поворачивать кусочки шоколадок. Например, шоколадку размером 4×2 Вова может разделить единственным способом на два кусочка размера 4×1 , а Гена — на два кусочка 2×2 или на кусочки 3×2 и 1×2 .

Игрок, который не может сделать ход проигрывает. Поворачивать кусочки шоколадок запрещено.

Вам требуется написать программу, которая по размерам шоколадок назовет имя победителя, если известно, что первым пилить шоколадки будет Вова.

Формат входного файла

В первой строке дано одно целое число n $(1 \le n \le 1000)$ — число шоколадок. Далее следуют n строк по два целых числа a_i и b_i $(1 \le a_i, b_i \le 300)$ в каждой — размеры шоколадок.

Формат выходного файла

В единственной строке выведите имя победителя.

стандартный поток ввода	стандартный поток вывода
1	Gena
2 2	
2	Vova
3 4	
3 2	

Задача К. Дерево

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф, являющийся деревом, ребра которого покрашены в синий и красный цвета. Требуется выяснить, какому числу эквивалентна игра Хакенбуш на таком графе. Землей считается вершина с номером 1.

Формат входного файла

В первой строке входного файла содержится одно целое число $n\ (1 \le n \le 1000)$ — число вершин в дереве.

Далее следуют n-1 строка, по три целых числа x_i , y_i и c_i в каждой, означающие ребро цвета c_i , соединяющее вершины с номерами x_i и y_i . c_i равно нулю в случае синего цвета и единице в случае красного. Вершины нумеруются с единицы.

Формат выходного файла

В единственной строке выведите несократимую дробь $\frac{p}{q}$ (q>0) — число которому оказалась эквивалентна игра. Следуйте формату, используемому в примерах.

стандартный поток ввода	стандартный поток вывода
4	3 4
1 2 0	
2 3 1	
3 4 0	
4	-1 4
1 2 1	
2 3 0	
2 4 0	

Задача L. Blue-Red Hackenbush

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф, ребра которого покрашены в синий и красный цвета. Требуется выяснить, какому числу эквивалентна игра Хакенбуш на таком графе. Землей считается вершина с номером 1.

Формат входного файла

В первой строке входного файла содержится два целых числа n и m $(1 \le n \le 21; 0 \le m \le 20)$ — число вершин и ребер в графе.

Далее следуют m строк, по три целых числа x_i , y_i и c_i в каждой, означающие ребро цвета c_i , соединяющее вершины с номерами x_i и y_i . c_i равно нулю в случае синего цвета и единице в случае красного. Вершины нумеруются с единицы.

Формат выходного файла

В единственной строке выведите несократимую дробь $\frac{p}{q}$ (q>0) — число которому оказалась эквивалентна игра. Следуйте формату, используемому в примерах.

стандартный поток ввода	стандартный поток вывода
4 3	3 4
1 2 0	
2 3 1	
3 4 0	
4 4	0 1
1 2 0	
1 3 1	
2 4 1	
3 4 0	

Задача M. Hackenbush Hotchpotch

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф, ребра которого покрашены в синий, красный и зеленый цвета. Требуется выяснить, какой игрок выигрывает в игру Хакенбуш на таком графе. Землей считается вершина с номером 1.

Формат входного файла

В первой строке входного файла содержится два целых числа n и m $(1 \le n \le 21; 0 \le m \le 20)$ — число вершин и ребер в графе.

Далее следуют m строк, по три целых числа x_i , y_i и c_i в каждой, означающие ребро цвета c_i , соединяющее вершины с номерами x_i и y_i . c_i равно нулю в случае синего цвета, единице в случае красного и двойке в случае зеленого. Вершины нумеруются с единицы.

Формат выходного файла

В единственной строке выведите два слова — игрок, выигрывающий, если первым ходит левый, и игрок, выигрывающий, если первым ходит правый.

•		
станд	дартный поток ввода	стандартный поток вывода
3 4		Right Left
1 2 2		
2 2 0		
2 2 1		
1 3 2		
3 8		Left Left
1 2 2		
2 2 0		
2 2 1		
2 2 0		
1 3 2		
3 3 0		
3 3 1		
3 3 0		

Задача N. Чистые стратегии

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана матрица игры размера $m \times n$. Требуется найти все чистые стратегии игроков, приводящие к позиции равновесия.

Формат входного файла

В первой строке даны два целых числа m и n $(1 \le m, n \le 100)$ — размеры матрицы. Далее следуют m строк по n целых чисел a_{ij} в каждой $(|a_{ij}| \le 10^6)$.

Формат выходного файла

В первой строке выведите два целых числа p_1 и p_2 — число оптимальных чистых стратегий первого и второго игроков соответственно.

Во второй строке в любом порядке выведите через пробел p_1 чисел — номера строк, оптимальных для первого игрока.

В следующей строке в любом порядке выведите через пробел p_2 чисел — номера столбцов, оптимальных для второго игрока.

Строки и столбцы нумеруются с единицы. Если игра не содержит позиций равновесия в чистых стратегиях, выведите в выходной файл лишь «0 $\,$ 0».

стандартный поток ввода	стандартный поток вывода
3 2	2 2
0 0	2 3
1 1	1 2
1 1	
2 2	0 0
-1 1	
1 -1	

Задача О. Смешанные стратегии

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана матрица игры размера $m \times n$. Требуется найти оптимальные смешанные стратегии для каждого из игроков.

Формат входного файла

В первой строке даны два целых числа m и n $(1 \le m, n \le 30)$ — размеры матрицы. Далее следуют m строк по n целых чисел a_{ij} в каждой $(|a_{ij}| \le 1000)$.

Формат выходного файла

В первой строке выходного файла выведите m чисел — оптимальная стратегия первого игрока. Во второй строке выходного файла выведите n чисел — оптимальная стратегия второго игрока. Если оптимальных стратегий несколько, выведите любую из них.

стандартный поток ввода	стандартный поток вывода
2 2	0.50 0.50
3 1	0.25 0.75
0 2	

Задача Р. Графический метод

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана матрица игры размера $2 \times n$. Требуется найти оптимальные смешанные стратегии для каждого из игроков.

Формат входного файла

В первой строке дано целое число n ($1 \le n \le 100$) — размер матрицы. Далее следуют две строки по n целых чисел a_{ij} в каждой ($|a_{ij}| \le 1000$).

Формат выходного файла

В первой строке выходного файла выведите два числа — оптимальная стратегия первого игрока. Во второй строке выходного файла выведите n чисел — оптимальная стратегия второго игрока. Если оптимальных стратегий несколько, выведите любую из них.

стандартный поток ввода	стандартный поток вывода
2	0.50 0.50
3 1	0.25 0.75
0 2	
3	1.0 0.0
2 2 1	0.0 0.0 1.0
1 5 0	

Задача Q. Вполне смешанная игра

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана матрица вполне смешанной игры размера $n \times n$. Требуется найти оптимальные смешанные стратегии для каждого из игроков.

Формат входного файла

В первой строке дано целое число n ($1 \le n \le 50$) — размер матрицы. Далее следуют n строк по n целых чисел a_{ij} в каждой ($|a_{ij}| \le 1000$).

Формат выходного файла

В первой строке выходного файла выведите n чисел — оптимальная стратегия первого игрока. Во второй строке выходного файла выведите n чисел — оптимальная стратегия второго игрока. Если оптимальных стратегий несколько, выведите любую из них.

стандартный поток ввода	стандартный поток вывода
2	0.50 0.50
3 1	0.25 0.75
0 2	
3	0.375 0.125 0.500
2 2 1	0.625 0.250 0.125
1 5 0	
2 1 3	

Задача R. Равновесие по Нэшу

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана биматричная игра $\Gamma(A,B)$. Матрицы A и B имеют размер $m\times n$ Требуется найти ситуации равновесные по Нэшу.

Формат входного файла

В первой строке даны два целых числа m и n ($1 \le m, n \le 100$) — размеры матриц. Далее следует описание матрицы A-m строк по n целых чисел a_{ij} в каждой. Затем идет описание матрицы B в аналогичном формате. Все числа во входном файле по абсолютному значению не превосходят 10^6 .

Формат выходного файла

В первой строке выходного файла выведите одно число k— число равновесных по Нэшу ситуаций. Каждая из следующий k строк должна содержать описание ситуации— номер строки и столбца.

стандартный поток ввода	стандартный поток вывода
2 2	2
4 0	1 1
0 1	2 2
1 0	
0 4	
2 2	1
7 0	2 2
10 3	
7 10	
0 3	

Задача S. Сильное равновесие

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана биматричная игра $\Gamma(A,B)$. Матрицы A и B имеют размер $m\times n$ Требуется найти сильно равновесные ситуации.

Формат входного файла

В первой строке даны два целых числа m и n ($1 \le m, n \le 100$) — размеры матриц. Далее следует описание матрицы A-m строк по n целых чисел a_{ij} в каждой. Затем идет описание матрицы B в аналогичном формате. Все числа во входном файле по абсолютному значению не превосходят 10^6 .

Формат выходного файла

В первой строке выходного файла выведите одно число k— число сильно равновесных ситуаций. Каждая из следующий k строк должна содержать описание ситуации— номер строки и столбца.

стандартный поток ввода	стандартный поток вывода
2 2	1
3 0	2 2
0 1	
1 0	
0 4	
2 2	0
7 0	
10 3	
7 10	
0 3	

Задача Т. Парето

Имя входного файла: стандартный поток ввода Имя выходного файла: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана биматричная игра $\Gamma(A,B)$. Матрицы A и B имеют размер $m\times n$ Требуется найти оптимальные по Парето ситуации.

Формат входного файла

В первой строке даны два целых числа m и n ($1 \le m, n \le 100$) — размеры матриц. Далее следует описание матрицы A-m строк по n целых чисел a_{ij} в каждой. Затем идет описание матрицы B в аналогичном формате. Все числа во входном файле по абсолютному значению не превосходят 10^6 .

Формат выходного файла

В первой строке выходного файла выведите одно число k— число оптимальных по Парето ситуаций. Каждая из следующий k строк должна содержать описание ситуации— номер строки и столбца.

стандартный поток ввода	стандартный поток вывода
2 2	2
4 0	1 1
0 1	2 2
1 0	
0 4	
2 2	3
7 0	1 1
10 3	1 2
7 10	2 1
0 3	