CONCOURS COMMUNS POLYTECHNIQUES 2003

Corrigé de la seconde épreuve de mathématiques

1. On obtient directement:

$$H = \begin{pmatrix} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \end{pmatrix} = I_3 + 5J \text{ avec } J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

J est clairement de rang 1, donc 0 est valeur propre double de J, la troisième valeur propre étant égale à 3 puisque Tr(J) = 3. Comme (1, 1, 1) est un vecteur propre évident associé à la valeur propre 3, posons

$$e_1 = \frac{\sqrt{3}}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Le noyau de J est alors l'orthogonal de e_1 . Nous posons donc $e_2 = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $e_3 = e_1 \wedge e_2 = \frac{\sqrt{6}}{6} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$,

pour obtenir
$$P^{-1}HP = I_3 + 5 \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = D^2 \text{ avec } P = \begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & 0 & -\frac{\sqrt{6}}{3} \end{pmatrix} \text{ et } D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Comme S est inversible (les valeurs propres de S sont égales à celles de D), on peut poser $U = \Gamma S^{-1}$. Nous avons ensuite ${}^tUU = {}^tS^{-1}{}^t\Gamma\Gamma S^{-1} = S^{-1}HS^{-1} = PD^{-1}P^{-1}PD^2P^{-1}PDP^{-1} = I_3$ et U est bien orthogonale. Il reste à calculer U:

$$U = \Gamma P D^{-1t} P = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

3. On a, pour $A = (a_{i,j})$ et $B = (b_{i,j})$ matrices de $\mathcal{M}_n(\mathbb{R})$:

$$(A | B) = \sum_{1 \le i,j \le n} a_{i,j} b_{i,j}.$$

L'application (|) est donc le produit scalaire canonique de $\mathcal{M}_n(\mathbb{R})$, pour lequel la base canonique est une base orthonormale.

4. Si $M \in \mathcal{M}_n(\mathbb{R})$, on a $M = \frac{M + {}^t M}{2} + \frac{M - {}^t M}{2}$ avec $\frac{M + {}^t M}{2} \in \mathcal{S}_n(\mathbb{R})$ et $\frac{M - {}^t M}{2} \in \mathcal{A}_n(\mathbb{R})$. Comme $\mathcal{A}_n(\mathbb{R}) \cap \mathcal{S}_n(\mathbb{R}) = \{0\}$, les deux espaces sont supplémentaires. Ils sont également orthogonaux car, pour $A \in \mathcal{A}_n(\mathbb{R})$ et $S \in \mathcal{S}_n(\mathbb{R})$,

$$(A \mid S) = \operatorname{Tr} \left({}^t A S \right) = - \operatorname{Tr} \left(A S \right) = - \operatorname{Tr} \left(S A \right) = - \operatorname{Tr} \left({}^t S A \right) = - (S \mid A),$$

et donc $(A \mid S) = 0$.

- 5. Si A est une matrice quelconque, la distance de A à $\mathcal{S}_n(\mathbb{R})$ est égale à la distance de A au projeté orthogonal de A sur $\mathcal{S}_n(\mathbb{R})$, soit encore à la norme du projeté orthogonal de A sur $\mathcal{A}_n(\mathbb{R})$, ce qui est exactement le résultat demandé. Par symétrie, on a $d(A, \mathcal{A}_n(\mathbb{R})) = ||\frac{1}{2}(A + {}^tA)||$.
- 6. On a facilement $\frac{\Gamma + {}^t\Gamma}{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -2 \end{pmatrix}$ puis $d(\Gamma, \mathcal{A}_n(\mathbb{R})) = 2\sqrt{2}$.
- 7. Soit $S \in \mathcal{S}_n(\mathbb{R})$. Le théorème de réduction des matrices symétriques permet d'affirmer qu'il existe une matrice orthogonale P telle que $D = PS^tP$ soit diagonale. Pour $X \in \mathbb{R}^n$, nous obtenons donc:

$$^{t}XSX = ^{t}(PX)D(PX) = \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$

en notant λ_i les termes diagonaux de D (i.e. les valeurs propres de S) et y_i les coefficients de la matrice colonne PX. Ainsi, il faut et il suffit que les λ_i soit tous positif pour que S soit positive puisque PX décrit \mathbb{R}^n quand X décrit \mathbb{R}^n .

- 8. La matrice tAA est clairement symérique et ${}^tX({}^tAA)X = {}^t(AX)(AX) = ||AX||^2 \ge 0$ pour tout X (en notant $|| \ ||$ la norme euclidienne canonique de \mathbb{R}^n). Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, tAA est donc symétrique et positive.
- 9. a) tA_iA_j est le coefficient d'indice (i,j) de la matrice tAA : il est donc nul si $i \neq j$ et égal à d_i^2 si i = j. En particulier, si $d_i = 0$, $||A_i||^2 = {}^tA_iA_i = d_i^2 = 0$ et la colonne A_i est nulle.
 - b) Notons I l'ensemble des i tels que $e_i \neq 0$ et, pour chaque $i \in I$, posons $E_i = \frac{A_i}{||A_i||} = \frac{A_i}{d_i}$. La famille $(E_i)_{i \in I}$ est alors une famille orthonormale, que nous pouvons complétée en une base orthonormale $(E_i)_{1 \leq i \leq n}$. Comme $d_i = 0$ et $A_i = 0$ pour $i \notin I$, l'égalité $A_i = d_i E_i$ est vraie pour tout i.
 - c) Soit E la matrice de passage de la base canonique de \mathbb{R}^n à la base $(E_i)_{1 \leq i \leq n}$. Cette base étant orthonormale, E est une matrice orthogonale et $A_i = d_i E_i$ pour tout i se traduit par A = ED.
- a) tAA est symétrique réelle, donc il existe P orthogonale telle que $P^{-1t}AAP$ soit diagonale. D'autre part, tAA est positive donc ses valeurs propres sont positives (questions $\mathbf{7}$ et $\mathbf{8}$). On en déduit que $D = P^{-1t}AAP = P^{-1t}BBP$ est une matrice diagonale à termes positifs.
 - b) On déduit de la question $\mathbf{9c}$ qu'il existe deux matrices orthogonales E et F telles que A = ED et B = FD, ce qui donne A = UB avec $U = EF^{-1}$, qui est bien orthogonale.
- Soit $A \in \mathcal{M}_n(\mathbb{R})$. Comme tAA est symétrique positive, il existe $P \in \mathcal{O}_n(\mathbb{R})$ et D diagonale positive telle que ${}^tAA = {}^tPD^2P$, que l'on peut écrire ${}^tAA = {}^tSS$ où $S = {}^tPDP$ est symétrique positive. On déduit de la question précédente qu'il existe U orthogonale telle que A = US, ce qui est le résultat demandé.
- 12. Nous avons:

$$||\Omega M||^2 = \operatorname{Tr}(^t M \Omega^t \Omega M) = \operatorname{Tr}(^t M M) = ||M||^2$$

et en utilisant la propriété classique $\mathrm{Tr}\left(AB\right)=\mathrm{Tr}\left(BA\right)$:

$$||M\Omega||^2 = \operatorname{Tr}(^t\Omega^t MM\Omega) = \operatorname{Tr}(^t MM\Omega^t\Omega) = \operatorname{Tr}(^t MM) = ||M||^2,$$

ce qui donne bien $||\Omega M|| = ||M\Omega|| = ||M||$.

13. a) On a $||A - \Omega|| = ||US - \Omega|| = ||U(S - U^{-1}\Omega)|| = ||S - U^{-1}\Omega||$ d'après la question 12.

Quand Ω décrit $O_n(\mathbb{R})$, $U^{-1}\Omega$ décrit également $O_n(\mathbb{R})$, donc $d(A, O_n(\mathbb{R})) = d(S, O_n(\mathbb{R}))$.

b) Pour tout $\Omega \in \mathcal{O}_n(\mathbb{R})$, nous avons $||S - \Omega|| = ||PDP^{-1} - \Omega|| = ||P(D - P^{-1}\Omega P)P^{-1}|| = ||D - P^{-1}\Omega P||$ car $P, P^{-1} \in \mathcal{O}_n(\mathbb{R})$. Une nouvelle fois, $P^{-1}\Omega P$ décrit $\mathcal{O}_n(\mathbb{R})$ quand Ω décrit $\mathcal{O}_n(\mathbb{R})$ donc

$$d(A, \mathcal{O}_n(\mathbb{R})) = d(S, \mathcal{O}_n(\mathbb{R})) = d(D, \mathcal{O}_n(\mathbb{R})).$$

14. a)
$$||D - \Omega||^2 = \operatorname{Tr}(^t(D - \Omega)(D - \Omega)) = \operatorname{Tr}(D^2 - {}^t\Omega D - D^t\Omega + I_n) = \sum_{i=1}^n \lambda_i^2 - 2\operatorname{Tr}(D\Omega) + n.$$

b) En notant $d_{i,j}$ et $\omega_{i,j}$ les termes génériques de D et de Ω , nous obtenons:

$$\operatorname{Tr}(D\Omega) = \sum_{i=1}^{n} \sum_{k=1}^{n} d_{i,k} \omega_{k,i} = \sum_{i=1}^{n} \lambda_{i} \omega_{i,i} \leq \sum_{i=1}^{n} \lambda_{i}$$

car Ω étant orthogonale, les $\omega_{i,j}$ sont éléments de [-1,1]

c) On en déduit que pour tout $\Omega \in \mathcal{O}_n(\mathbb{R})$:

$$||D - \Omega||^2 \ge \sum_{i=1}^n \lambda_i^2 - 2\sum_{i=1}^n \lambda_i + n = \sum_{i=1}^n (\lambda_i - 1)^2 = ||D - I_n||^2.$$

Comme $I_n \in \mathcal{O}_n(\mathbb{R})$, ceci prouve que la distance de D à $\Omega \in \mathcal{O}_n(\mathbb{R})$ est minimale pour $\Omega = I_n$.

- Nous venons de démontrer que $d(A, \mathcal{O}_n(\mathbb{R})) = d(D, \mathcal{O}_n(\mathbb{R})) = d(D, I_n) = \sqrt{\sum_{i=1}^n (\lambda_i 1)^2}$, où les λ_i sont les racines carrées des valeurs propres de tAA , appelées valeurs singulières de A.
- **16.** Nous avons ici n = 3, $\lambda_1 = 4$ et $\lambda_2 = \lambda_3 = 1$, donc $d(\Gamma, O_n(\mathbb{R})) = 3$.
- a) Soit α le minimum de l'ensemble des $|\lambda|$ pour λ valeur propre (réelle) non nulle de M (si M n'a aucune valeur propre réelle non nulle, on choisit $\alpha > 0$ quelconque). Pour tout $\lambda \in]0, \alpha[, M \lambda I_n]$ est inversible car λ n'est pas valeur propre de M.
 - b) Pour M quel conque et α comme au a, la suite $\left(M-\frac{\alpha}{k+2}I_n\right)_{k\geq 0}$ est une suite de matrices inversibles qui converge vers $M: \mathrm{GL}_n\left(\mathbb{R}\right)$ est donc dense dans $\mathcal{M}_n\left(\mathbb{R}\right)$.
- On en déduit que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, $d(A, \operatorname{GL}_n(\mathbb{R})) = 0$. Comme $\operatorname{GL}_n(\mathbb{R})$ est contenu dans tous les Δ_p pour $p \leq n$, on a à plus forte raison $d(A, \Delta_p) = 0$ pour tout $A \in \mathcal{M}_n(\mathbb{R})$ et pour tout $p \leq n$.
- 19. Si nous notons q la forme quadratique admettant A pour matrice dans la base canonique, nous savons que la matrice de q dans la base (C_1, C_2, \ldots, C_n) est égale à tPAP , i.e. à D. Nous en déduisons que ${}^tXAX = q(x) = \sum_{i=1}^n \lambda_i x_i^2$.

D'autre part, la base (C_1, C_2, \dots, C_n) est orthonormale pour le produit scalaire usuel, donc ${}^tXX = ||X||^2 = \sum_{i=1}^n x_i^2$.

En particulier, pour $X = C_k$, nous obtenons:

$$\frac{{}^tC_kAC_k}{{}^tC_kC_k} = \lambda_k.$$

20. Soit X élément non nul de F_k . Avec les notations de la question **19**, nous avons $x_i = 0$ pour i > k, ce qui

donne:

$$\frac{{}^{t}XAX}{{}^{t}XX} = \frac{\sum_{i=1}^{k} \lambda_{i} x_{i}^{2}}{\sum_{i=1}^{k} x_{i}^{2}} \ge \frac{\sum_{i=1}^{k} \lambda_{k} x_{i}^{2}}{\sum_{i=1}^{k} x_{i}^{2}} = \lambda_{k}$$

car les λ_i décroissent. Comme le minorant λ_k est atteint pour $X=C_k$, on en déduit :

$$\min_{X \in F_k \setminus \{O\}} \frac{{}^t X A X}{{}^t X X} = \lambda_k.$$

- a) On sait que dim $(F \cap G) = \dim(F) + \dim(G) \dim(F \cup G)$ pour F et G s.e.v. de E, donc $\dim(F \cap \operatorname{Vect}(C_k, C_{k+1}, \dots, C_n)) = k + (n k + 1) \dim(F \cup \operatorname{Vect}(C_k, C_{k+1}, \dots, C_n)) \ge 1$ car dim $(F \cup \operatorname{Vect}(C_k, C_{k+1}, \dots, C_n)) \le n$.
 - b) En reprenant encore les notations de la question 19, nous avons:

$$\frac{{}^{t}XAX}{{}^{t}XX} = \frac{\sum_{i=k}^{n} \lambda_{i} x_{i}^{2}}{\sum_{i=k}^{n} x_{i}^{2}} \le \frac{\sum_{i=k}^{n} \lambda_{k} x_{i}^{2}}{\sum_{i=1}^{k} x_{i}^{2}} = \lambda_{k}$$

car les λ_i décroissent.

22. En utilisant la question **20**, nous obtenons :

$$\max_{F\in\Psi_k} \ \min_{X\in F\setminus\{O\}} \frac{{}^tXAX}{{}^tXX} \geq \min_{X\in F_k\setminus\{O\}} \frac{{}^tXAX}{{}^tXX} = \lambda_k.$$

D'autre part, pour $F \in \Psi_k$, on peut choisir X_0 non nul dans $F \cap \text{Vect}(C_k, C_{k+1}, \dots, C_n)$ puisque cet espace vectoriel est de dimension non nulle. On en déduit :

$$\min_{X \in F_k \backslash \{O\}} \frac{{}^t X A X}{{}^t X X} \leq \frac{{}^t X_0 A X_0}{{}^t X_0 X_0} \leq \lambda_k.$$

Ceci achève la preuve du théorème de Courant et Fischer.

Soit P orthogonale et D diagonale positive telles que ${}^tAA = {}^tPD^2P$. On a alors ${}^t(A^tP)(A^tP) = D^2$, donc (question 9) il existe $E \in \mathcal{O}_n(\mathbb{R})$ telle que $A^tP = ED$, ce qui donne bien A = EDP avec $E, P \in \mathcal{O}_n(\mathbb{R})$ et D diagonale positive.

On en déduit que $\operatorname{rg}(A) = \operatorname{rg}(D) = \operatorname{rg}(D^2) = \operatorname{rg}(^tAA)$ puisque A est équivalente à D, D est diagonale et D^2 est semblable à tAA .

Remarque: il est plus rapide de montrer (classiquement) que A et ^tAA ont même noyau.

Posons $R_l = M_l P$ pour l compris entre 1 et n. On a ainsi $A = EDP = \sum_{i=1}^n \sqrt{\mu_l} \ R_l = \sum_{i=1}^r \sqrt{\mu_l} \ R_l$ et on vérifie facilement que (R_l) est orthonormale:

$$(R_l \mid R_k) = \operatorname{Tr} ({}^t P^t M_l M_k P) = \operatorname{Tr} ({}^t M_l M_k P^t P) = \operatorname{Tr} ({}^t M_l M_k)$$

4

or tM_lM_k a tous ses termes nuls, sauf peut-être celui d'indice (l,k) qui est égal au produit scalaire des l-ième et k-ième colonnes de E. Comme E est orthogonale, on obtient bien $(R_l,R_k)=0$ si $l\neq k$ et $(R_l,R_k)=1$ si l=k.

Enfin, chaque R_l est de rang 1 car rg (R_l) = rg (M_l) = 1 (P est inversible et M_l a une et une seule colonne non nulle).

25. On a clairement $\operatorname{Im}(N) \subset \operatorname{Im}(R_1) + \operatorname{Im}(R_2) + \cdots + \operatorname{Im}(R_p)$, puis $\operatorname{rg}(N) \leq p$ (les $\operatorname{Im}(R_i)$ sont des droites).

Comme
$$N \in \nabla_p$$
, $d(A, \nabla_p) \le d(A, N) = \left| \left| \sum_{l=p+1}^r \sqrt{\mu_i} R_i \right| \right| = \sqrt{\sum_{l=p+1}^r \mu_i} \operatorname{car}(R_i)$ est une famille orthonormale.

- $\mathbf{26.} \qquad \text{a) } \dim \left(G \right) = \dim \left(\operatorname{Ker} \left(M \right) \right) + \dim \left(\operatorname{Im} \left({}^t A A \right) \right) \dim \left(\operatorname{Ker} \left(M \right) \cup \operatorname{Im} \left({}^t A A \right) \right) \geq (n-p) + r n = r p.$
 - b) En appliquant le théorème de Courant et Fischer (plus exactement en appliquant la question 21) à la matrice A M, nous obtenons:

$$\alpha_k \ge \min_{X \in F \setminus \{0\}} \frac{{}^t X^t (A - M)(A - M)X}{{}^t XX}$$

mais pour $X \in F$, MX = 0 et ${}^tX^tM = 0$, donc

$$\alpha_k \ge \min_{X \in F \setminus \{0\}} \frac{{}^t X^t A A X}{{}^t X X}.$$

- c) On a $G \cap \text{Vect}(V_1, \dots, V_{k+p}) = \text{Ker}(M) \cap \text{Vect}(V_1, \dots, V_{k+p})$ car $\text{Vect}(V_1, \dots, V_{k+p}) \subset \text{Vect}(V_1, \dots, V_r) = \text{Im}(^t A A)$ (on a $k \leq r p$). On en déduit donc (comme au **a**) que $G \cap \text{Vect}(V_1, \dots, V_{k+p})$ est de dimension au moins (k+p) + (n-p) n = k.
- d) Comme $G \cap \text{Vect}(V_1, \dots, V_{k+p})$ est de dimension au moins égale à k, on peut choisir un sous-espace F de dimension k contenu dans $G \cap \text{Vect}(V_1, \dots, V_{k+p})$. Nous avons alors:
 - $\alpha_k \geq \min_{X \in F \setminus \{O\}} \frac{{}^t X^t A A X}{{}^t X X}$ d'après le \mathbf{b} ;
 - pour X élément que lconque de F, que l'on peut écrire sous la forme $X = \sum_{i=1}^{k+p} x_i V_i$:

$$\frac{{}^{t}X^{t}AAX}{{}^{t}XX} = \frac{\sum_{i=1}^{k+p} \mu_{i}x_{i}^{2}}{\sum_{i=1}^{k+p} x_{i}^{2}} \ge \mu_{k+p}$$

car les μ_i décroissent.

On en déduit l'inégalité demandée : $\alpha_k \geq \mu_{k+p}$.

Soit M une matrice de rang $q \le p < r$. En reprenant les notations et les résultats de la question **26**, et en remplaçant p par q (l'inégalité obtenue fonctionne aussi quand q = 0), nous obtenons:

$$d^{2}(A, M) = \operatorname{Tr}\left({}^{t}(A - M)(A + M)\right) = \sum_{i=1}^{n} \alpha_{i} \ge \sum_{i=1}^{r-q} \alpha_{i} \ge \sum_{i=1}^{r-q} \mu_{i+q} = \sum_{i=q+1}^{r} \mu_{i} \ge \sum_{i=n+1}^{r} \mu_{i}.$$

5

On en déduit que $d(A, \nabla_p) \geq \sum_{i=p+1}^r \mu_i$, ce qui donne, avec la question **25** :

$$d(A, \nabla_p) = \sqrt{\sum_{l=p+1}^r \mu_i}$$

où les μ_i sont les valeurs propres (décroissantes) de tAA .

28. Ici, nous avons $\mu_1=16,\,\mu_2=\mu_3=1$ et r=3. Nous en déduisons donc :

$$\gamma_0 = ||\Gamma|| = 3\sqrt{2}$$

$$\gamma_1 = \sqrt{2}$$

$$\gamma_2 = 1$$

$$\gamma_3 = d(\Gamma, \Gamma) = 0.$$