This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

⑩日本国特許庁(JP)

① 特許出願公告

許 公 報(E2) 19 特

平5-78655

SInt.Cl. ⁵

識別記号

庁内整理番号

7713-3G

❷❷公告 平成5年(1993)10月29日

F 02 B 39/00 F 01 D 25/24 E Ŕ

発明の数 1 (全6頁)

会発明の名称

ターポ過給装置用ターピンハウジングの製造方法

前置客音に係属中

创特 題 昭59-161158 **多**公 開 昭61-40418

多出

顧昭59(1984)7月31日

③昭61(1986)2月26日

沢 伊発 明 老 中

朗·雄

東京都大田区下丸子 4 丁目21番 1 号 三菱自動車工業株式

会补更京自動車製作所丸子工場内

伊州 明 者 松 良 悦 Œ 東京都大田区下丸子4丁目21番1号 三菱自動車工業株式

会社東京自動車製作所丸子工場內

東京都港区芝5丁目33番8号

三菱自動車工業株式会 勿出 願 人

·社

弁理士 飯沼 義彦 79代 理 人

審査官 小 田 光春

特開 昭58-74807 (JP, A) 网络考文献

特公 昭38-51 (JP, B1)

1

の特許額求の範囲

1 排ガス導入部分を隔壁によつて仕切られた複 数の排気ガス入口および排気ガス流入路をそなえ るターボ過給装置用ターピンハウジングの上記排 気ガス流入路を中子によつて鋳造するターボ過給 5 装置用ターピンハウジングの製造方法において、 上記ターピンハウジングの内壁にターピン回転軸 の半径方向内方に滑らかに連続して延びる上記隔 壁の鋳物製基礎部が形成され且つ先端がターピン かつてさらに延びる先端部材の後端部が上記基礎 部の先端部に鋳込まれるように、上記複数のガス 流入路に対応する上記中子の部位の間に上記基礎 部に対応する空間部を形成し、同空間部のうち上 後端部が露出するようにして上記先端部材を上記 中子に埋設せしめ、同中子を用いて上記排気ガス 流入路の鋳造を行なうことを特徴とする、ターポ 過給装置用ターピンパウジングの製造方法。

発明の詳細な説明

〔産棄上の利用分野〕

本発明は、エンジンのターボ過給装置の製造方 法に関する。

2

〔従来の技術〕

自動車等車両用のエンジンは、アイドル回転数 から最高回転数までの極めて広い回転数域に亘つ て、しかも大きく変動する負荷範囲内で運転され るので、その排気ガス量を大幅に変動する。した がつて単一の流量特性を有する排気ガスターピン では、エンジンから排出される排気ガスエネルギ を十分に回収し利用することができない。そこ で、ターピンハウジング内に隔壁を設けて同ハウ ロータに近接する位置まで上記半径方向内方に向 10 ジング内の排気ガス流入路を2つ以上の流量特性 を異にする排気ガス流入路に区分するとともに、 上記分割された排気ガス流入路の1つ以上に弁装 置を設け、エンジンの回転数や負荷等の稼働条件 に応じて上記弁装置を閉閉し、排気ガスターピン 記基礎部の先端に対応する部分に上記先端部材の 15 の運転効率を向上させるようにした可変容量ター ボ過給機がすでに提案されている。

〔発明が解決しようとする問題点〕

ところで、このようなターボ過給装置用タービ ンハウジングの製造方法として、従来はターピン 20 ハウジングを鋳造した後、ターピンハウジングと は別工程で製造された隔壁を取り付けていた。し かし、鋳造により製造されたターピンハウジング と隔壁との接触面に高精度を期待することはでき

なかつた。このため、隔壁とターピンロータとの 距離を短く高精度に保つように形成することが思 難であり、隔壁とターピンロータとの間隔を大き く取らなければならなくなり、隔壁先端部からタ ーピンロータに至る排気ガス流入路が急拡大さ れ、損失が生じてしまう不具合がある。

本発明は、このような問題点の解決をはかろう とするもので、排気ガス流入路の急拡大による損 失を防止できるようにターピンハウジングの隔壁 上配隔壁の鋳造製基礎部の先端で且つ半径方向内 方に向かうように鋳込むことにより、ターピンハ ウジングの隔壁の先端部を、ターピンロータに対 しターピンハウジングと隔壁との一体鈎物による き、このことにより排気ガス流入路の急拡大によ る損失を防止できるようにした、ターボ過給装置 用ターピンハウジングの製造方法を提供すること を目的とする。

[問題点を解決するための手段]

上述の目的を達成するため、本発明のターボ過 給装置用クーピンハウジングの製造方法は、排ガ ス導入部分を隔壁によつて仕切られた複数の排気 ガス入口および排気ガス流入路をそなえるターボ 入路を中子によつて鋳造するターボ過給装置用タ ーピンハウジングの製造方法において、上記ター ピンハウジングの内壁にターピン回転軸の半径方 向内方に滑らかに連続して延びる上記隔壁の鋳物 近接する位置さで上記半径方向内方に向かつてさ らに延びる先端部材の後端部が上記基礎部の先端 部に鋳込まれるように、上記複数のガス流入路に 対応する上記中子の部位の間に上記基礎部に対応 の先端に対応する部分に上記先端部材の後端部が 露出するようにして上記先端部材を上記中子に埋 設せしめ、同中子を用いて上記排気ガス流入路の 鉾造を行なうことを特徴としている。

〔作 用〕

上述の構成により、本発明のターボ過給装置用 ターピンハウジングの製造方法では、ターピンハ ウジング内の隔壁の先端部が先端部材で形成され るため、隔壁の先端部をターピンロータに接近す

るように正確に形成することができ、排ガス流入 路の急拡大が防止され、排気ガス流の急拡大によ る損出がなくなり、高い効率で運転される。

さらに、隔壁により複数の分割された各排気ガ 5 ス流入路の内壁はそれぞれ連続して滑らかな形状 となり、排気ガスは効率的に流動することができ

また、それぞれの排気ガス流入路を構成するタ ーピンハウジングと隔壁の基礎部とを全て一体に の先端部を形成すべく、先端部材をその後端部が 10 形成したので、排気ガス流入路を構成するタービ ンハウジングから排気ガスが漏れることは全くな

さらにまた、先端部材をターピンハウジングの 隔壁と別部材にしたため、ハウジグが熱せられて 製法では通常得られない位置に接近して形成で 15 いないときに同ハウジング内に高温ガスが流入し た過渡時における熱応力が小さく、耐久性を悪化 させることがない。

(実施例)

以下、図面により本発明の実施例について説明 20 すると、第1~5図は本発明の実施例としてのタ ーポ遇給装置用ターピンハウジングの製造方法を 示すもので、第1図はその方法により製造される 可変容量ターポ過給装置の要部を示す縦断面図、 第2図はその製造方法に用いられる中子を示す模 過給装置用ターピンハウジングの上記排気ガス流 25 式図、第3~5図はその方法により製造された可 変容量ターボ渦給装置を示すもので、第3図はそ の擬断面図。第4.5図はそれぞれその特性を示 すグラフである。

本実施例により製造される可変容量ターボ過給 製基礎部が形成され且つ先端がターピンロータに 30 装置は、第1,3図に示すように構成されてお り、ターポ過給装置10に、排気ガスターピン1 2および排気ガスターピン12によつて駆動され るコンプレツサ14が設けられている。排気ガス ターピン12は、ターピンロータ16を収容する する空間部を形成し、同空間部のうち上記基礎部 35 ターピンハウジング18をそなえており、同ター ピンハウジング18の内部には半径方向に延在す る隔壁20によつてロータ軸線方向に区分された それぞれ流量特性を異にする排気ガス流入路すな わちスクロールA、Bが設けられている。

> また、上記ターピンハウジング18の排気ガス **4**0 入口22には、後に詳述する弁ケーシング24が 連結され、同弁ケーシング24は更に図示しない エンジンの排気装置すなわちこの実施例では排気 マニホルド28に連結されている。

なお、上記排気ガス入口22には、前記隔壁2 0 の延長部分によって区分され上記排気ガス流入 路A、Bのそれぞれに連続する入口22a、22 bが設けられている。

そして、隔壁20は、その内周側に別部材で形 5 成されたタ:嫡部材20 aが後述する製造方法によ り装 されており、先端部材202の先端がター ピンロータ16外周に近接するようになつてい る、

これにより、排気ガス流入路A, Bがそれぞれ 10 ターピンロータ16外周へ至る部分において、急 拡大されることなく、スムーズにターピンロータ 18へ至るようになつている。

次に上記弁ケーシング24は、外形がほぼ箱形 マニホルド26に連通する上流閉口28が設けら れ、また下方の壁面には入口22a, 22bにそ れぞれ接続する下流閉口30,30bが設けられ ている。

との間には、90度の角度をなしてV字状に交叉す る二つの平面内にシート面を有する弁座32a, 32 bが設けられ、これら弁座の弁関口は、それ ぞれ弁部材34a,34bによつて開閉される。

弁部材34a,34bはそれぞれの背面に突軸 25 応する中子N(第2図参照)を作成する。 36a, 36bをそなえており、突軸36a, 3 B b はそれぞれ半径方向に十分な遊隊を存して揺 動腕38a,38bの自由端部に支持され、さら に各揺動腕38a,38bの他端は弁ケーシング 40a, 40bに固着されている。そして、弁ケ ーシング24は、上配弁部材34a, 34bの取 り付け、取り外し、点検等のために、図において 左方および右方に閉口をそなえており、通常時こ ている。

なお、本実施例では、弁部材34a,34bが 球面座によって揺動腕38a,38bの自由端部 に支持されているが、必ずしも球面座である必要 はなく、平面座によつて支持されるようにするこ 40 Nを取り除く。 ともでき、この場合には両者間に突軸36a,3 6 bの軸線方向にも適当な遊隊を与えることが望 ましい。

また、上記の上流開口28、弁座32aの弁開

6

口、同弁閉口から下流の入口22a,22bに至 る排気ガス流入路の断面形状は、四隅を丸めた長 方形、長円形、楕円、円形のいずれでもよく、ま たこれらの組み合わせでもよい。 さらに、弁部材 34の形状は、上紀弁座32aの弁開口の形状と 大体相似の形状であることが望ましい。

また、44は弁ケーシング24内に設けられ、 ターピンハウジング入口22の隔壁20と連結す る隔壁である。

さらに、上記装置において、弁部材34a,3 **4 b を揺動腕 3 8 a , 3 8 b を介して開閉させる** 支持軸40a.40bは、それぞれ図示しない適 宜のアクチユエータ装置例えば空気圧応動装置に 連結され、図示しないエンジンの回転数、負荷等 をなし、図面において上方の壁面には、上記排気 15 稼働状態に応じて閉閉される。また図示の装置で は、ターピンハウジング18内の排気ガス流入路 Aは流入路Bよりも大きい流量特性を有するもの として示されている。

本発明の一実施例としての製造方法により形成 また、上記開口28と下流閉口30a,30b *20* される可変容量ターボ過給装置は、上述のごとく 構成されているので、その製造の際、特に隔壁2 **0およびターピンハウジング18の製造は、以下** のようにして行なわれる。

まず、ターピンハウジング18の内部形状に対

すなわち中子Nが、ターピンハウジング18の 内壁にターピン回転軸の半径方向内方に滑らかに 連続して延びる隔壁20の鋳物製基礎部をターピ ンハウジング18と一体に形成するための空間部 2.4の比較的上流側の側壁上に枢支された支持軸 30 ngと同空間部ngをはさんで2本の排気ガス流入路 A, Bを形成するための2つの曲面部niとで形成 されている。そして、中子Nには、先端がターピ ンロータに近接する位置までターピンロータの半 径方向内方に向かつて延びるように先端部材20 れらの閉口は着脱自在の蓋42によつて閉鎖され。35 aの後端部を隔壁20の鋳物製基礎部の先端に鋳 込むべく、先端郎材20aがその後端部を空間部 naに露出し一埋設されている。

> この後、中子を用いた鋳型への注潙により、タ ーピンハウジング18を鋳造成形し、冷却後中子

> このとき、先端部材20aは、上配のようにし て露出させた外周部が、ターピンハウジング18 に突出して形成された隔壁20の鋳物製基礎部先 端に埋め込まれた状態に形成される。

このようにして、先端部材20a先端をターピ ンロータ16外周に近接させるように装着するこ とが行なわれる。

7

すなわち、このような方法による場合、ターピ 1を、2m程度まで形成できるようになる。

通常の鋳造による場合、3m以下の一定の間隙 を正確に有するように形成することはできないた め、流入路の急拡大は不可避であつたが、上述の

そして、先端部材20 a をなめらかな曲線形状 を有するように形成しておくことにより、排気ガ ス流入路A、Bからターピンロータ16へ至る排 形成される。これにより、排気ガス流入路の急拡 大部分がなくなる。

このようにして、形成された隔壁20、先端部 材20 aおよびターピンハウジング18を有する

エンジンの低速、高負荷運転時(第4図のBi 領域)には、弁部材34aが閉鎖され且つ弁部材 34 bは開かれて、排気マニホルド26からの排 対応する下流開口30b、ターピンハウジングの 入口22bから、排気ガス流入路Bを通つてター ピンロータ18の羽根に作用し、第5図Biで示 **す流量特性により、排気ガスターピン12を効率** 的に運転する。この状態で、閉いている弁部材3 30 4 bが隔壁 4 4 と協働して弁座 3 2 bから下流側 の弁ケーシング24内において、大体なだらかに 屈曲した抵抗の少ない排気ガス流入路を形成し、 一方、弁座32bを含む平面と約90度の角度をな して交わる平面内に含まれている弁座32aに 着 35 序している弁部材34aが、上紀弁座32bより 上流側の通路壁の一部を構成してなだらかな抵抗 の少ない排気液入路を形成する。そして、先端部 材20aにより、排気流入路の急拡大が防止され

また、エンジンが高速、高負荷状態(第4図の B.領域)で運転しているときは、弁郎材34a が開き弁郎材34bが閉じられて、上記と全く向 様の態様で、流量特性が大きい排気ガス流入路A

h

からターピンロータ16に排気ガスが供給され る。すなわち、流風特性Bzにより運転される。

8

この場合にも、図示のとおり、弁ケーシング2 4内で隔壁44の両側にほぼ対称的に弁座および ンロータ18外周と先端部材20a先端との間隙 5 排気ガス流入路が形成されていることから、上記 と全く同様に流通抵抗が小さいなだらかな流入路 が形成されることとなる。そして、先端部材20 aにより、流入路の急拡大が防止される。

さらに、エンジンの低負荷運転時(第4図の ような方法によれば、これを避けることができ 10 Ba領域)には、その回転数の如何にかかわりな く上記二つの弁部材34a, 34bがともに開か れ、上流閉口28から弁ケーシング24内に流入 した排気ガスは、中央の隔壁44によつて左右に 分割された流入路を通り、下流閉口30a,30 気ガス流入路がなだらかに変化する流入路として 15 bからそれぞれターピンハウジングの入口 2 2 a, 22bに流入し、排気ガス流入路A, Bの両 方から流量特性Bsによりターピンロータ16に 供給される。

この場合にも開かれた弁部材34a,34bが ターポ**過給装置10は、**以下のようにして作動す 20 上記隔壁44と協働して排気ガス流入路の一側壁 としての役目を果たすこととなる。また、先端部 材20aにより、流入路の急拡大が防止される。

<u>上述</u>したように、ターポ**過給機**の排気ガスター ピンとエンジンの排気装置例えば排気マニホルド 気ガスが、上流閉口28、弁座32bの弁閉口、 25 との間に、弁座および弁部材を特殊な態様で配置 することによつて、エンジンの運転状態に応じそ の排気ガスを適切な、そして流通抵抗が小さい選 択された流入路を径て排気ガスターピンに供給す ることができる。

> なお、弁座32は、大体鉛直面に対し、45度の 角度で交叉する面(必ずしも平面でなくてもよ い) 内に配置されることが最も好ましいが、その 角度は約30度から60度まで幅広く変更することが 可能であり、概ね同様の効果が得られる。

また本発明の応用例として、排気ガスターピン ハウジング内に実施例における流入路A。Bの他 に第3の排気ガス流入路を設けることができ、こ の場合第3流入路は弁を有しない流入路とするこ ともできるし、上配弁部材34,34とは別の第 40 3の弁によつて開閉されるようにすることもでき

〔発明の効果〕

以上群述したように、本発明のターボ過給装置 用ターピンパウジングの製造方法によれば、排ガ

ス導入部分を隔壁によって仕切られた複数の排気 ガス入口および排気ガス流入路をそなえるターボ 過給装置用ターピンハウジングの上記排気ガス流 入路を中子によつて鋳造するターポ過給装置用タ ーピンハウジングの製造方法において、上記ター 5 ピンハウジングの内壁にターピン回転軸の半径方 向内方に滑らかに連続して延びる上記隔壁の鋳物 製基礎部が形成され且つ先端がターピンロータに 近接する位置まで上記半径方向内方に向かつてさ らに延びる先端部材の後端部が上記基礎部の先端 10 部に鋳込まれるように、上配複数のガス流入路に 対応する上記中子の部位の間に上記基礎部に対応 する空間部を形成し、同空間部のうち上記基礎部 の先端に対応する部分に上記先端部材の後端部が 設せしめ、同中子を用いて上記排気ガス施入路の 鋳造を行なうという簡素な手段により、次のよう

(1) ターピンハウジング内の隔壁の先端をターピ ンロータに対して、一体鋳物による製法では通 20 グラフである。 常得られない位置に接近するよう形成できる。 これにより、排ガス流入路の急拡大が防止さ れ、排気ガス流の急拡大による損出がなくな り、高い効率で運転される可変容量ターポ過給 装置を提供できる。

な効果ないし利点が得られる。

- (2) 隔壁により複数に分割された各排気導入路の 内壁はそれぞれ連続して滑らかな形状となり、 排気ガスを効率的に流動させることができる。
- (3) それぞれの排気ガス流入路を構成するターピ 成したので、排気ガス流入路を構成するタービ ンハウジングから排気ガスが漏れることが全く

ない。

(4) 隔壁をターピンハウジングと別体構造とした ものでは、ハウジングが熱せられていないのに 同ハウジング内に高温ガスが流入した過流時に 福壁のみが加熱されて同隔壁の膨張がハウジン グより大きくなるため、熱応力が大きくなり耐 久性が悪くなるが、本発明の場合、隔壁の先端 部分のみを別部材(先端部材)で形成したた め、上記のような過渡時における熱応力は小さ くなり、耐久性の点で有利である。

10

図面の簡単な説明

第1~5図は本発明の一実施例としてのターポ **過給装置用ターピンハウジングの製造方法を示す** もので、第1図はその方法により製造される可変 露出するようにして上記先端部材を上記中子に埋 15 容量ターポ過給装置の要部を示す縦断面図、第2 図はその製造方法に用いられる中子を示す模式 図、第3~5図はその方法により製造された可変 容量ターポ過給装置を示すもので、第3図はその 縦断面図、第4,5図はそれぞれその特性を示す

10…ターポ過給装置、12…排気ガスターピ ン、14…コンプレツサ、16…ターピンロー タ、18…ターピンハウジング、20…隔壁、2 0 a…先遍部材、22…拼気ガス入口、22a, 25 22 b…入口、24…弁ケーシング、26…排気 マニホルド、28…上流開口、30a, 30b… 下流閉口、32a, 32b…弁座、34a, 34 b…弁部材、36a,36b…突軸、38a,3 8 b…搖動腕、40a, 40b…支持軸、42… ンハウジングと隔壁の基礎部とを全て一体に形 30 蓋、4 4 ···隔壁、A, B···排気ガス流入路、N··· 中子、V···弁装罐。

第1図

第2図

