Universidade Estadual de Campinas Faculdade de Engenharia Agrícola

Nome: Renan da Silva Guedes

RA: 223979

1 Início

2 Volume da trincheira

$$V_{\text{trincheira}} = A_{\text{trincheira}} \cdot L = \frac{(10+5)\cdot 2}{2} \cdot 600 = 9000 \,\text{m}^3$$
 (1)

3 Cálculo dos volumes de aterro

3.1 Áreas

3.1.1 Seção central

$$A_1 = \frac{(B+b) \cdot h}{2}$$

$$= \frac{(18+15+10+10) \cdot 8}{2} = 212 \,\mathrm{m}^2$$
(3)

3.1.2 Seção transversal em $L/6 = \frac{100}{100}$ m

$$A_2 = \frac{(12+10+10+10) \cdot 5.333}{2}$$

$$= 111.73 \,\mathrm{m}^2$$
(4)

3.1.3 Seção transversal em $2L/6 = 200 \,\mathrm{m}$

$$A_3 = \frac{(10+10+6+5) \cdot 2.666}{2}$$

$$= 41.33 \,\mathrm{m}^2$$
(6)

3.2 Volumes

$$V_1 = \left(\frac{A_1 + A_2}{2}\right) \cdot \frac{L}{6} = 16\,196.5\,\mathrm{m}^3$$
 (8)

$$V_2 = \left(\frac{A_2 + A_3}{2}\right) \cdot \frac{L}{6} = 7663 \,\mathrm{m}^3$$
 (9)

$$V_1 = \left(\frac{A_2 + A_3}{2}\right) \cdot \frac{L}{6} = 2066.5 \,\mathrm{m}^3$$
 (10)

Somando as três porções de volume, obtemos metade do total

$$V_T' = \sum_{i=1}^3 V_i = 25\,926\,\mathrm{m}^3 \tag{11}$$

portanto o volume de aterro total será

$$V_T = 2V_T' = 51\,852\,\mathrm{m}^3\tag{12}$$

Volume do rip-rap 4

$$V_{rip\text{-}rap} = \sqrt{H^2 + V^2} \cdot L \cdot \text{espessura}$$
 (13)

$$= \sqrt{2.5^2 + 7.5^2 \cdot 600 \cdot 0.3} \tag{14}$$

$$= \sqrt{2.5^2 + 7.5^2} \cdot 600 \cdot 0.3 \tag{14}$$

$$\therefore V_{rip-rap} = 1423.025 \,\mathrm{m}^3 \tag{15}$$

Área de grama **5**

$$A_{\text{grama}} = \frac{\sqrt{8^2 + 15^2 \cdot 600}}{2}$$

$$= = 5100 \,\text{m}^2$$
(16)

$$= = 5100 \,\mathrm{m}^2 \tag{17}$$

Filtro horizontal 6

$$V_{FH} = \frac{l L \text{ espessura}}{2}$$
 (18)
= $\frac{15 \cdot 600 \cdot 0.7}{2}$ (19)
= $3150 \,\text{m}^3$ (20)

$$= \frac{15 \cdot 600 \cdot 0.7}{2} \tag{19}$$

$$= 3150 \,\mathrm{m}^3$$
 (20)

Filtro vertical

$$V_{FV} = \frac{8 \cdot 600 \cdot 0.5}{2}$$

$$= 1200 \,\mathrm{m}^3 \tag{21}$$

$$= 1200 \,\mathrm{m}^3 \tag{22}$$

Seção do sangradouro 8

Para o cálculo, considerou-se H = 0.5 (mínimo permitido para pequenas barragens), logo

$$Q = 1.55 L H^{1.5} (23)$$

$$Q = 1.55 L H^{1.5}$$

$$1 = 1.55 \cdot L \cdot 0.5^{1.5}$$
(23)
(24)

$$L = 1.82 \,\mathrm{m} \tag{25}$$

9 Tabela de custos

	Nome	RA	Valor de L	Valor de H
	Renan Guedes	223979	900m	9m
Item	Atividade	Volume	Custo Unitário (R\$)	Custo Total (R\$)
01	Solo Compactado - Trincheira			
02	Solo Compactado - Aterro			
03	Tal. Montante Pedras - Rip-rap			
04	Tal. Jusante Grama			
05	Areia - Filtro Vertical			
06	Areia - Filtro Horizontal			
07	Topografia			
08	Controle - Tecnológico Aterro - Filtro			
09	Ensaio de Campo-SPT- Trado (No eixo-1 a cada 50m)			
10	Ensaio de Campo: - Permeabilidade in situ - Ensaio de perda d'água			
11	Ensaios Laboratoriais: - Granulometria - Lim. Liquidez - Lim. Plasticidade - Massa específica dos Sólidos - Umidade - Densidade Natural			
12	E <mark>ns</mark> aios Lab <mark>orat</mark> oriais: - Proctor Normal			
13	Ensaios Laboratoriais: - Ensaio de compressão triaxial - Ensaio de permeabilidade			
14	Sangradouro e Canal (Escavação e lajes de concreto) (Depende do tamanho)			

Table 1 continued from previous page

	Nome	RA	Valor de L	Valor de H
	Tubulação de fundo			
	(Custo da tubulação: m R\$)			
15	(Comprimento > largura da			
	barragem no centro)			
	(Diâmetro >= 0.8 m)			
16	Vista inicial ai local (R\$)			
17	Deslocamento inicial ao local			
18	Licenciamento Ambiental			
19	Anteprojeto			
20	Projeto Executivo			
	Fornecim. de ART - Anotação			
	de responsabilidade técnica			
	(CREA)			
	Custo Total			

Tabela 1:

