ECE 863 Analysis of Stochastic Systems

Part IV.1: Power Spectral Density of Random Processes

Hayder Radha
Associate Professor
Michigan State University
Department of Electrical & Computer Engineering

ECE 863

Reading Assignment

Section 7.1 - Power Spectral Density

Section 7.2 - Linear Systems

Section 7.4 - Optimum Linear Systems

E 863: Part IV.1 Page 2 Prof. Hayder Radha

ECE 863

■ Exam 3 is on:

Wednesday, December 5

Chapter 7 reading assignment and related lecture notes are the last material included in Exam 3

ECE 863: Part IV.1 Poge 3 Prof. Hayder Radha

Power Spectral Density

- The "power spectral density" S_X(f) measures the average energy (or power) of a random process X(t) at the frequency (f)
- Therefore, if the random process X(t) "changes slowly", then X(t) must have most of its power concentrated at low frequencies, (and vice versa).

ECE 863: Part IV.1 Page 4 Prof., Hayder Rodha

- A slowly (or rapidly) changing random process implies a highly-correlated (or highlyuncorrelated) process across the time axis.
- For a random process we need to measure the "average change"
- The autocorrelation R_X provides a measure of the "average change" for a random process

ECE 863: Part IV.1 Page 5 Prof. Hayder Radha

Power Spectral Density

- Therefore, we expect the power spectral density $S_X(f)$ to be related to the autocorrelation function $R_X(\tau)$, where X(t) is a WSS process.
- We can derive the power spectral density
 S_X from R_X by using the Fourier Transform

FCF 863: Part TV 1 Page 6 Prof. Hayder Radha

Power Spectral Density

■ The power spectral density $S_X(f)$ of the WSS process X_n is the discrete-time Fourier Transform of the autocorrelation $R_X(d)$:

$$S_X(f) = \sum_{d=-\infty}^{\infty} R_X(d) e^{-j2\pi f d}$$

ECE 863: Part IV.1 Page 7 Prof., Hayder Radha

Power Spectral Density

For any discrete-time WSS random process X_n, the power spectral density S_X(f) is a periodic function of (f) with a period of one:

$$S_{X}(f+1) = \sum_{d=-\infty}^{\infty} R_{X}(d)e^{-j2\pi(f+1)d}$$

$$S_X(f+1) = \sum_{d=-\infty}^{\infty} R_X(d) e^{-j2\pi f d} e^{-j2\pi d}$$

$$\left| S_X(f+1) = \sum_{d=-\infty}^{\infty} R_X(d) e^{-j2\pi f d} = S_X(f) \right|$$

ECE 863: Part IV.1 Page 8 Prof. Hayder Radha

The power spectral density S_X(f) is a "non-negative" function (it is a measure of power):

$$S_X(f) \ge 0 \quad \forall f$$

ECE 863: Part IV,1 Page 9 Prof. Hayder Radha

Power Spectral Density

- The autocorrelation R_X(d) can be computed as the inverse Fourier Transform of the power spectral density function S_X(f)
- Since, for discrete-time processes, S_X(f) is a periodic function of (f). Therefore,

$$R_X(d) = \int_{-1/2}^{1/2} S_X(f) e^{j2\pi f d} df$$

FCF 863: Part TV 1 Page 10 Prof. Howder Bodha

Power Spectral Density

■ For a continuous-time WSS process X(t), the power spectral density $S_X(f)$ is the Fourier Transform of the autocorrelation function $R_X(\tau)$:

$$S_{X}(f) = \int_{-\infty}^{\infty} R_{X}(\tau) e^{-j2\pi f \tau} d\tau$$

This is known as the Wiener-Khinchin Theorem

ECE 863: Part IV.1 Prof. Hayder Radha

Power Spectral Density

■ The autocorrelation function $R_X(\tau)$ for a continuous-time WSS process X(t) is the inverse Fourier Transform of the power spectral density $S_X(f)$:

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{j2\pi f \tau} df$$

ECE 863: Part IV,1 Page 12 Prof, Hayder Radho

■ Since $S_X(f)$ is the power spectral density, then integrating $S_X(f)$ over all possible frequencies gives the total "average power":

Total "Average Power"
$$=\int_{-\infty}^{\infty} S_X(f) df$$

$$\mathsf{E}\Big[\big(\mathsf{X}(\mathsf{t})\big)^2\Big] \ = \int\limits_{-\infty}^{\infty} \mathsf{S}_\mathsf{X}\big(\mathsf{f}\big)\mathsf{d}\mathsf{f}$$

$$R(\tau = 0) = \int_{0}^{\infty} S_{X}(f) df$$

ECE 863: Part IV.1

Page 13

Prof. Wayder Dadha

Power Spectral Density

If X(t) is a real (i.e. not a complex) process, then R_X(τ) is a real and symmetric function:

$$R_X(\tau) = R_X(-\tau)$$

■ Therefore, the power spectral density $S_X(f)$ is also real and symmetric:

$$S_x(f) = S_x(-f)$$

ECE 863: Part IV.1

Page 14

Prof Wouder Dadha

Power Spectral Density

■ For a real process X(t), the expression for $S_X(f)$ can be simplified by taking advantage of the symmetry of the autocorrelation function $R_X(\tau)$:

$$S_{X}(f) = \int_{-\infty}^{\infty} R_{X}(\tau) \cos(2\pi f \tau) d\tau$$
$$-j \int_{-\infty}^{\infty} R_{X}(\tau) \sin(2\pi f \tau) d\tau$$

$$S_{X}(f) = \int_{-\infty}^{\infty} R_{X}(\tau) \cos(2\pi f \tau) d\tau$$

ECE 863: Part IV.1

Page 15

Prof. Hayder Radha

Example: White Noise

The "white noise" process X'(t) is generated by taking the derivative of a Wiener process X(t):

$$X'(t) = \frac{dX(t)}{dt}$$

We need to find the power spectral density $S_{X'}(f)$ of X'(t)

ECE 863: Part IV.1

Page 16

Prof. Hayder Radha

Example: White Noise

- Finding the power spectral density of the "white noise" process X'(t) requires computing its autocorrelation function R_X(t₁,t₂)
- Since X'(t) is the derivative of X(t), we need to know how to take derivatives of random processes

ECE 863: Part IV,1 Page 17 Prof., Hayder Radha

Example: White Noise

■ Under certain conditions, the autocorrelation function $R_X(\tau)$ of X'(t)=dX(t)/dt can be obtained by taking the partial derivatives of the autocorrelation $R_X(\tau)$ of X(t):

If
$$X'(t) = \frac{dX(t)}{dt}$$

$$\Rightarrow |R_{X'}(t_1,t_2) = \frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1,t_2)$$

(See Appendix B for more details.)

ECE 863: Part IV,I Page 18 Prof, Hayder Radha

Example: White Noise

Recall that the autocorrelation function for the Wiener process:

$$R_X(t_1,t_2) = \alpha \min(t_1,t_2)$$

For the Wiener process, the partial derivative of $R_X(t_1,t_2)$:

: $R_{X'}(t_1, t_2) = \frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1, t_2)$

is zero everywhere except when $t_1=t_2$

ECE 863: Part IV.1 Poge 20 Prof. Hayder Radha

Example: White Noise

■ This leads to the following expression for the autocorrelation $R_{\chi'}(t_1,t_2)$ of the "white noise" process:

$$R_{x'}(t_1,t_2) = \alpha \delta(t_1 - t_2)$$

$$R_{\mathsf{X}}(\tau) = \alpha \ \delta(\tau)$$

ECE 863: Part IV,1 Prof. Hayder Radha

Example: White Noise

- Therefore, the white noise process is a WSS process
- \blacksquare Hence, now, we can compute the power spectral density $\textbf{S}_{\textbf{X}}(\textbf{f})$:

$$S_{x'}(f) = \int_{-\infty}^{\infty} R_{x'}(\tau) \cos(2\pi f \tau) d\tau$$

$$S_{X'}(f) = \int_{-\infty}^{\infty} \alpha \, \delta(\tau) \cos(2\pi f \tau) d\tau$$

$$S_{X'}(f) = \alpha \quad \forall f$$

ECE 863: Part IV.1 Page 22 Prof. Hayder Radha

Example: White Noise

- Therefore, the "white noise" process X'(t) has a "flat" power spectral density that covers all frequencies.
- Consequently, the "white noise" process has infinite power!

$$E\Big[\big(X'(t)\big)^2\Big] = \int_{-\infty}^{\infty} S_{X'}(f) df$$

$$\mathsf{E}\Big[\big(\mathsf{X}'(\mathsf{t})\big)^2\Big] = \mathsf{R}(\mathsf{t}=\mathsf{0}) = \alpha \ \delta(\mathsf{0}) = \alpha \int_{-\infty}^{\infty} \mathsf{d}\mathsf{f} = \infty$$

ECE 863: Part IV.1 Page 23 Prof. Hayder Radh

Example: Bandlimited White Noise

 A "bandlimited white noise" process X'(t) has a "flat" power spectral density over a certain range of frequencies: [-W,W]

$$S_{X'}(f) = \alpha \quad \forall f \in [-W,W]$$

ECE 863: Part IV.1 Page 24 Prof. Hayder Radh

Example: Bandlimited White Noise

■ The "bandlimited white noise" process X'(t) has finite power:

$$E[(X'(t))^2] = \int_{-W}^{W} S_{X'}(f) df$$

$$\mathsf{E}\Big[\big(\mathsf{X'(t)}\big)^2\Big] = \alpha \int_{-\mathsf{W}}^{\mathsf{W}} \mathsf{df} \qquad \qquad \Big[\mathsf{E}\Big]$$

ECE 863: Part IV.1

$$E\left[\left(X'(t)\right)^{2}\right]=2W\alpha$$

Example: Bandlimited White Noise

The autocorrelation function R_X(τ) of the bandlimited white noise process can be computed using the inverse Fourier Transform:

$$R_{X'}(\tau) = \alpha \int_{-W}^{W} e^{j2\pi f\tau} df = \alpha \int_{-W}^{W} cos(2\pi f\tau) df$$

$$R_{X'}(\tau) = \frac{(2\alpha)\sin(2\pi W\tau)}{2\pi\tau}$$

63: Part IV.1 Page 26 Prof. Hayder Radha

Example: Bandlimited White Noise

■ The autocorrelation function $R_{X'}(\tau)$:

$$R_{X'}(\tau) = \frac{(2\alpha)\sin(2\pi W\tau)}{2\pi\tau}$$

is zero at periodic values of $\boldsymbol{\tau}\textsc{:}$

$$R_{X^{'}}(\tau)=0 \hspace{1cm} \forall \ \tau=\pm\,\frac{k}{2W}, \hspace{0.2cm} k=1,2,3,.... \label{eq:RX'}$$

Example: Discrete-time White Noise

Let X_n be a zero-mean discrete-time process with the following autocorrelation function:

$$\boxed{ \mathbf{R}_{\mathbf{X}} \left(\mathbf{k} \right) \ = \ \mathbf{\sigma}_{\mathbf{X}}^{2} \ \delta_{\mathbf{k}} } \qquad \delta_{\mathbf{k}} = \begin{cases} 1 & \mathbf{k} = 0 \\ 0 & \mathbf{k} \neq 0 \end{cases}$$

This is a "discrete time" white-noise process

Find the power spectral density $S_X(f)$

ECE 863: Part IV.1 Page 30 Prof. Hayder Radha

Example: Discrete-time White Noise

■ First, we note that X_n is a WSS process. Since:

$$m_X(k) = constant = 0$$

and

$$R_X(k) = \sigma_X^2 \delta_k$$

The auto-correlation function $R_X(k)$ is a function of the time difference (k) only

ECE 863: Part IV.1 Prof. Hayder Radho

Example: Discrete-time White Noise

■ Therefore, by using:

$$S_{X}(f) = \sum_{k=-\infty}^{\infty} R_{X}(k)e^{-j2\pi fk}$$

$$S_X(f) = \sum\limits_{k=-\infty}^{\infty} \left(\sigma_X^2 \ \delta_k\right) \ e^{-j2\pi f k}$$

$$S_X(f) = \sigma_X^2$$
 For all $-\frac{1}{2} < f < \frac{1}{2}$

ECE 863: Part IV.1 Page 32 Prof. Hayder Radha

Cross-Power Spectral Density

■ Two processes X(†) and Y(†) have a

"cross-power spectral density" $S_{XY}(f)$

if X(t) and Y(t) are

jointly WSS processes

ECE 863: Part IV.1

Cross-Power Spectral Density

X(t) and Y(t) are jointly WSS processes when the following conditions are satisfied:

1)
$$R_X(t_1,t_2) = R_X(t_1-t_2) = R_X(\tau)$$
 i.e. $X(t)$ is WSS

2)
$$R_y(t_1,t_2) = R_y(t_1-t_2) = R_y(\tau)$$
 i.e. $Y(t)$ is WSS

3)
$$R_{XY}(t_1,t_2) = R_{XY}(t_1-t_2) = R_{XY}(\tau)$$

Cross-Power Spectral Density

■ If X(t) and Y(t) are jointly WSS processes, then:

$$R_{XY}(\tau) = E[X(t+\tau)Y(t)]$$

$$\mathsf{R}_{\mathsf{YX}}(\tau) = \mathsf{E}[\mathsf{Y}(\mathsf{t} + \tau)\mathsf{X}(\mathsf{t})] = \mathsf{E}[\mathsf{X}(\mathsf{t})\mathsf{Y}(\mathsf{t} + \tau)] = \mathsf{R}_{\mathsf{XY}}(-\tau)$$

$$|\mathsf{R}_{\mathsf{YX}}(\tau) = \mathsf{R}_{\mathsf{XY}}(-\tau)|$$

When computing cross-functions for wide sense stationary processes, we have to use a consistent definition for $\boldsymbol{\tau}\!:$

 τ = t_1 - t_2 OR τ = t_2 - t_1 Here, and in the book, we use the convention: τ = t_1 - t_2

ECE 863: Part IV.1

Cross-Power Spectral Density

If X(†) and Y(†) are continuous-time jointly WSS processes, then the cross-power spectral densities $S_{xy}(f)$ and $S_{yx}(f)$ are:

$$S_{XY}(f) = \int_{-\infty}^{\infty} R_{XY}(\tau) e^{-j2\pi f \tau} d\tau$$

$$S_{XY}(f) = \int_{-\infty}^{\infty} R_{XY}(\tau) e^{-j2\pi f \tau} d\tau$$
$$S_{YX}(f) = \int_{-\infty}^{\infty} R_{YX}(\tau) e^{-j2\pi f \tau} d\tau$$

ECE 863: Part IV.1

Cross-Power Spectral Density

Since for jointly WSS processes (discrete- or continuous-time):

$$\boxed{\mathsf{R}_{\mathsf{y}\mathsf{X}}(\tau) = \mathsf{R}_{\mathsf{X}\mathsf{Y}}(-\tau)}$$

then

$$S_{yx}(f) = S_{xy}^*(f)$$

where $S_{xy}^{*}(f)$ is the complex conjugate of $S_{xy}(f)$

ECE 863: Part IV.1

Cross-Power Spectral Density

■ Similarly, if X_n and Y_n are discrete-time jointly WSS processes, then the cross-power spectral densities $S_{XY}(f)$ and $S_{YX}(f)$ are:

$$R_{XY}(d) = E[X_{n+d}Y_n]$$

$$S_{yx}(f) = \sum_{d=-\infty}^{\infty} R_{yx}(d) e^{-j2\pi f d}$$

$$R_{yx}(d) = E[Y_{n+d}X_n]$$

ECE 863: Part IV.1

Example: Additive Noise

- A signal Z(t) is corrupted by an additive noise process N(t).
- Z(t) and N(t) are jointly WSS processes with PSD functions $S_7(f)$, $S_N(f)$, and $S_{ZN}(f)$
- Derive an expression for the PSD $S_x(f)$ of the received process X(t)and the cross-PSD function $S_{ZX}(f)$

Example: Additive Noise

- First, we evaluate the PSD function $S_X(f)$
- We start by using the definition of the autocorrelation function $R_X(\tau)$
- Then, we take the Fourier Transform of $R_X(\tau)$ to express $S_X(f)$

Example: Additive Noise

The autocorrelation function
$$R_X(\tau)$$

$$R_X(\tau) = E[X(t+\tau)X(t)]$$

$$R_X(\tau) = E[(Z(t+\tau)+N(t+\tau))(Z(t)+N(t))]$$

$$Z(t) = X(t) + X(t) = Z(t) + X(t)$$

$$ECE 863: Part IV.1$$

$$Prof. Hayder Radia$$

Example: Independent Additive Noise IF Z(t) and N(t) are independent, then: $R_{NZ}(\tau) = E[N(t+\tau)Z(t)]$ $= E[N(t+\tau)]E[Z(t)]$ Z(t) X(t) = Z(t) + N(t)ECE 863 For TV 1 For Heyder Baddo

- We start by looking at the "periodogram" of a discrete-time WSS random process X_n
- If X_0 , X_1 , X_{k-1} are k samples from the WSS process X_n , then we can take the discrete-time Fourier Transform of these samples:

$$\tilde{x}_{k}(f) = \sum_{m=0}^{k-1} X_{m} e^{-j2\pi f m}$$

ECE 863: Part IV.1 Page 55 Prof. Hayder Radh

Power Spectral Density

■ To estimate the average power that the random process X_n has at frequency (f), we use the "periodogram estimate" :

$$\widetilde{p_k(f)} = \frac{1}{k} |\widetilde{x_k(f)}|^2$$

where

$$\tilde{x}_{k}(f) = \sum_{m=0}^{k-1} X_{m} e^{-j2\pi f m}$$

ECE 863: Part IV.1 Page 36 Prof. Hayder Radha

■ Taking the expected value of the periodogram:

$$\begin{split} & E \Big[\tilde{p}_k \left(f \right) \Big] = E \bigg[\frac{1}{k} \Big| \, \tilde{x}_k \left(f \right) \Big|^2 \, \bigg] \\ & E \Big[\tilde{p}_k \left(f \right) \Big] = \frac{1}{k} E \Big[\tilde{x}_k \left(f \right) \tilde{x}_k^* \left(f \right) \Big] \end{split}$$

ECE 863: Part IV.1 Page 57 Prof, Hayder Radha

Power Spectral Density

$$\begin{split} & E \Big[\tilde{p}_k \left(f \right) \Big] = \frac{1}{k} E \Big[\tilde{x}_k \left(f \right) \tilde{x}_k^* \left(f \right) \Big] \\ & = \frac{1}{k} E \Big[\sum_{m=0}^{k-1} X_m e^{-j2\pi f m} \sum_{m'=0}^{k-1} X_{m'} e^{j2\pi f m'} \Big] \\ & = \frac{1}{k} \sum_{m=0}^{k-1} \sum_{m'=0}^{k-1} E \Big[X_m X_{m'} \Big] e^{-j2\pi f \left(m - m' \right)} \end{split}$$

number 1

Power Spectral Density

• Using $E[X_mX_{m'}]=R_X[m,m']$

$$\text{E}\big[\tilde{p}_{k}\left(f\right)\big] = \frac{1}{k} \sum_{m=0}^{k-1} \sum_{m'=0}^{k-1} \text{E}\big[X_{m}X_{m'}\big] e^{-j2\pi f\left(m-m'\right)}$$

$$= \frac{1}{k} \sum_{m=0}^{k-1} \sum_{m'=0}^{k-1} R_X(m,m') e^{-j2\pi f(m-m')}$$

ECE 863: Part IV,1 Page 59 Prof. Hayder Radha

Power Spectral Density

Since X_n is a WSS process, then: R_X[m,m']=R_X[m-m']:

$$\text{E}\!\left[\tilde{p}_{k}\left(f\right)\right]\!=\frac{1}{k}\sum_{m=0}^{k-1}\sum_{m'=0}^{k-1}R_{X}\left(m-m'\right)e^{-j2\pi f\left(m-m'\right)}$$

ECE 863: Part IV.1 Page 60 Prof. Hayder Radha

■ If we let d=m-m', then the double summation:

$$\text{E}\!\left[\tilde{p}_{\!k}\left(f\right)\right]\!=\frac{1}{k}\!\sum_{m=0}^{k-1}\sum_{m'=0}^{k-1}\!R_{\!X}\!\left(m-m'\right)\!e^{-j2\pi f\left(m-m'\right)}$$

reduces to the following single summation

$$\text{E}\!\left[\tilde{p}_{k}\!\left(f\right)\right] = \frac{1}{k} \sum_{d=-(k-1)}^{k-1}\!\left\{k - \left|\,d\,\right|\right\}\!R_{X}\!\left(d\right)\!e^{-j2\pi f d}$$

ECE 863: Part IV.1 Page 61 Prof. Hayder Radha

Power Spectral Density

■ Therefore:

$$\text{E}\!\left[\tilde{p}_{k}\left(f\right)\right] = \frac{1}{k} \sum_{d=-(k-1)}^{k-1} \!\left\{k - \left| d \right| \right\} \! R_{X}\left(d\right) e^{-j2\pi f d}$$

$$\boxed{ E \Big[\tilde{p}_{k} \left(f \right) \Big] = \sum_{d = -(k-1)}^{k-1} \left\{ 1 - \frac{\left| d \right|}{k} \right\} R_{X} \left(d \right) e^{-j2\pi f d}}$$

ECE 863: Part IV.1 Page 62 Prof. Hayder Radha

Power Spectral Density

- Note that we are only considering k samples of the random process X_n
- Considering all samples of the process X_n leads to the power spectral density $S_X(f)$:

$$\begin{split} S_X(f) &= \underset{k \to \infty}{lim} \, E\Big[\tilde{p}_k\left(f\right)\Big] \\ &= \underset{k \to \infty}{lim} \, \underset{d = -(k-1)}{\overset{k-1}{\sum}} \left\{1 - \frac{\left|d\right|}{k}\right\} R_X\left(d\right) e^{-j2\pi f d} \end{split}$$

E 863: Part IV,1 Page 63 Prof. Hayder Ra

Power Spectral Density

Therefore, the power spectral density S_X(f) of the WSS process X_n is the discrete-time Fourier Transform of the autocorrelation R_X(d):

$$S_X(f) = \sum_{d=-\infty}^{\infty} R_X(d) e^{-j2\pi f d}$$

ECE 863: Part IV.1 Page 64 Prof. Hayder Radha

■ Moreover, the power spectral density $S_X(f)$ is a "non-negative" function since it results from the "periodogram estimate":

$$S_{X}(f) = \lim_{k \to \infty} E\left[\tilde{p}_{k}(f)\right] = \lim_{k \to \infty} E\left[\frac{1}{k} |\tilde{x}_{k}(f)|^{2}\right]$$

$$S_{X}(f) \ge 0 \qquad \forall f$$

ECE 863; Part IV,1 Page 65 Prof, Hayder Radha

Appendix B

Derivatives of

Random Processes

ECE 863: Part IV.1 Page 66 Prof. Hayder Radha

Derivative of Random Processes

■ The derivative of any random process X(t):

$$X'(t) = \frac{dX(t)}{dt}$$

$$X'(t) = \lim_{\epsilon \to 0} \frac{X(t+\epsilon) - X(t)}{\epsilon}$$

may exist for some sample functions and may not exist for other sample functions.

ECE 863: Part IV.1 Page 67 Prof. Hayder Radho

Derivative of Random Processes

Therefore, it is customary to define the "Mean Square Derivative":

X'(t) is the "mean square derivative" of X(t) if the following is satisfied:

$$\lim_{\epsilon \to 0} E \left[\left(\frac{X(t+\epsilon) - X(t)}{\epsilon} - X'(t) \right)^2 \right] = 0$$

ECE 863: Part IV.1 Page 68 Prof. Hayder Radha

Derivative of Random Processes

It can be shown that if the "mean square derivative" exists, then the autocorrelation function of X'(t) can be obtained by taking the partial derivative of the autocorrleation of X(t):

$$R_{X'}(t_1, t_2) = \frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1, t_2)$$

(This is a general result that is true for any process which has a mean-square-derivative; See section 6.6 for more details.)

ECE 863: Part IV.1

Page 69

Prof Wayder Badhr