Guillaume T. 05-2025

Affectation linéaire et transbordement

GRE

7 - Flots

Abstract

Definition

Table des matières

1. Différentes modélisations	1
1.1. Problème d'affectation linéaire	2
1.2. Problème du transbordement	2
1.3. Modélisation	2
1.4. Conditions et cas particuliers	2
1.5. Transformation en flot max-coût min	

Guillaume T. 05-2025

1. Différentes modélisations

1.1. Problème d'affectation linéaire

Posons le problème suivant:

- On considère n personnes et n tâches
- Pour chaque personne i et chaque tâche j, on connaît la durée c_{ij} que mets la personne a réaliser la tâche
- On cherche comment répartir les tâches entre les personnes pour minimiser la durée totale de réalisation

Dans ce genre de problème nous sommes ammenés à chercher un **couplage parfait de coût minimum dans un graphe biparti**. En utilisant la même technique que pour un couplage maximum dans un graphe biparti, nous pouvons facilement le transformer en problème de flot maximum à coût minimum.

1.2. Problème du transbordement

Réseau R = (V, E, c, u) avec :

- Sources (offre $b_i < 0$), puits (demande $b_i > 0$), transit ($b_i = 0$)
- Coûts c_{ij} et capacités u_{ij} sur les arcs
- Objectif : minimiser les coûts de transport

1.3. Modélisation

Équation de conservation pour chaque sommet i:

$$\sum_{j \in \operatorname{Pred}(i)} x_{ji} - \sum_{j \in \operatorname{Succ}(i)} x_{ij} = b_i$$

1.4. Conditions et cas particuliers

- Équilibre nécessaire : $\sum_{i \in V} b_i = 0$
- Transport : graphe biparti complet
- **Affectation**: transport avec offres/demandes = 1

1.5. Transformation en flot max-coût min

- 1. Ajouter source $s \rightarrow$ sommets sources (coût 0, capacité = offre)
- 2. Ajouter puits sommets $\rightarrow t$ puits (coût 0, capacité = demande)
- 3. Chercher flot max de s à t de coût min

Condition: solution optimale ⇔ valeur du flot = somme des demandes

À gauche : réseau initial comptant 2 sources (v_1 et v_2), 2 puits (v_4 et v_5) et un sommet de transbordement (v_3) (les coûts et les capacités des arcs ne sont pas représentés, ils ne sont pas affectés par la transformation).

À droite : réseau après transformation où il faut déterminer un flot max à coût min de s à t (les arcs ajoutés ont un coût unitaire d'utilisation nul).

RAPPEL. En transbordement, il est conventionnel de représenter les offres par des nombres négatifs et les demandes par des nombres positifs.