\mathbf{Seq}	no:
----------------	-----

Name: SR No.: Dept.:

Maximum Points: 15 E2-243: Quiz 4 **Duration**: 40 minutes

- Tick the correct answer (1+1+1+1) points. -0.5 point for each negative answer
 - 1. Variance of any random variable is
 - a) Always positive
 - b) Always zero
 - c) Could be positive or negative
 - d) Always non negative

Answer: d. Since it is expectation of non-negative variable $(X - \mu_x)^2$

- 2. X and Y are random variables defined on the same probability space. It is given that Var(X + Y) = Var(X) + Var(Y). Then
 - a) X and Y are always independent
 - b) Cov(X,Y) = 0
 - c) Both (a) and (b) are true
 - d) E(X) = E(Y)

Answer: b. Cov(X,Y)=0

- 3. Let W be a non empty subset of \mathbb{R}^3 .
 - a) If null vector $\theta_3 \in W$ then W is always a subspace of \mathbb{R}^3
 - b) If $x \in W$, $\alpha \in R \Rightarrow \alpha * x \in W$ then W is always a subspace of R^3
 - c) If W is a subspace of R^3 then null vector $\theta_3 \in W$ is always true
 - d) Both (a) and (c) are always true

Answer: c. null vector $\theta_3 \in W$ and $\alpha * x \in W$ are necessary conditions but not sufficient condition for W to be a subspace of R^3

- 4. Let W be a subspace in \mathbb{R}^3 . It is given that the vector $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 \in W \forall \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$. Then
 - a) Only one of $u_1, u_2, u_3 \in W$
 - b) Exactly two amongst $u_1, u_2, u_3 \in W$
 - c) All $3 u_1, u_2, u_3 \in W$
 - d) None of $u_1, u_2, u_3 \in W$

Answer: c. Could be proven by making any two of the vectors α_1 , α_2 , $\alpha_3 = 0$

- Random variables X and Y are defined on the same probability space as follows:
 - X = 1 and -1 with probability 0.05 each
 - X = 2 and -2 with probability 0.1 each
 - X = 3 and -3 with probability 0.15 each
 - X = 4 and -4 with probability 0.2 each
 - Y = |X|

Answer the following questions (6 points.)

1. Plot the CDF of Y.

(1 point)

Ans:

$$F_Y(x) = \begin{cases} 0, & \text{if } x \in (-\infty, 1) \\ 0.1, & \text{if } x \in [1, 2) \\ 0.3, & \text{if } x \in [2, 3) \\ 0.6, & \text{if } x \in [3, 4) \\ 1, & \text{if } x \in [4, \infty) \end{cases}$$

Figure 1: Optimal and approximate policy for $p = 0.7, \psi = 10, d = 21$.

2. Find the expectation of Y.

(1 point)

Ans: 3. (1*0.1)+(2*0.2)+(3*0.3)+(4*0.4)

- 3. Prove or disprove. X and Y are independent. (1.5 points) Ans: No. P(X=1,Y=2) = 0. P(X=1).P(Y=2)=0.05*0.2. Since both are not equal, they are not independent.
- 4. Prove or disprove. X and Y are uncorrelated. (1.5 points) Ans: Yes. E(XY)=0=E(X)E(Y).
- 5. Can we apply Markov's inequality to find $P(X \ge 0)$. State your reason. (1 point) **Ans:** No. Since Markov's inequality could be applied only to non-negative random variables.
- State whether the following are true or false (1+1+1 points. -0.5 point for each negative answer)
 - 1. A sequence, $\{X_n\}_{n\in\mathbb{N}}$, of random variables on a Probability space $(\Omega, \mathbb{B}, \mathbb{P})$ is said to converge "in probability" to a random variable X on $(\Omega, \mathbb{B}, \mathbb{P})$ if

$$\lim_{n \to \infty} P(w \in \Omega : |X_n(w) - X(w)| < \epsilon) = 1$$

for every $\epsilon > 0$

Ans: True. As the definition says,

$$\lim_{n \to \infty} P(w \in \Omega : |X_n(w) - X(w)| \ge \epsilon) = 0$$

for every $\epsilon > 0$, it implies

$$\lim_{n \to \infty} P(w \in \Omega : |X_n(w) - X(w)| < \epsilon) = 1$$

for every $\epsilon > 0$

2. If x > y, then $\forall a \in \mathbb{R}$, ax > ay.

Ans: False. If a > 0, then ax > ay. Note that 3 > 2 but $-1 \times 3 < -1 \times 2$.

3. $\lim_{n\to\infty} \mathbb{E}(|X_n - X|^k) = 0 \iff X_n \xrightarrow{p} X$, where k is any positive integer.

Ans: False. As $\lim_{n\to\infty} \mathbb{E}(|X_n-X|^k) = 0 \Rightarrow X_n \xrightarrow{p} X$, where k is any positive integer. Find the following example

$$X_n = \begin{cases} n, & \text{w.p. } \frac{1}{n} \\ 0, & \text{w.p. } 1 - \frac{1}{n} \end{cases}$$

$$P(X_n > \epsilon) = \begin{cases} \frac{1}{n}, & \text{if } \epsilon \in [0, n) \\ 0, & \text{otherwise} \end{cases}$$

Therefore, $\lim_{n\to\infty} P(|X_n-0|>\epsilon)=0$. Hence it converges in probability. Let us look at k^{th} mean convergence

$$\lim_{n \to \infty} E[|X_n - 0|^k] = \lim_{n \to \infty} n^k * \frac{1}{n} + 0^2 * (1 - \frac{1}{2}) \neq 0$$

Therefore, convergence in probability does not imply convergence in k^{th} mean.

• Give an example where Markov inequality provides a tightest bound. . (2 points) Ans: Consider the following example where X, a non negative random variable that can take either 0 or k > 0.

$$P(X = 0) = 1 - \frac{1}{k^2}, P(X = k) = \frac{1}{k^2}$$

Let us evaluate Markov inequality as follows

$$P(X \ge k) \le \frac{E(X)}{k} = \frac{1}{k^2}$$

Also, note that $P(X \ge k) = \frac{1}{k^2}$. Thus Markov inequality is tight for this example.