An in-hardware cycle-accurate benchmarking tool for security critical operations.

Julian Pritzi
Advisor: Harshavardhan Unnibhavi
Chair of Decentralized Systems Engineering
https://dse.in.tum.de/

Introduction

- Opentitan: Open source silicon root of trust
- Composition of components to create new platforms
- Performance analysis: simulation vs in hardware

Benchmarking Tool for a general 32bit RISC-V platform.

Design

Opentitan - Earl Grey

- RISC-V 32bit Ibex CPU
- earlgrey_silver_v5

Hardware IP Core	Functionality
HMAC	SHA2 Hashing
KMAC	SHA3 Hashing
CSRNG	Random Number Generation
AES	AES Encryption

Hashing - Implementation

- 1. Initialize Accelerator
- 2. For each 32bit block:
 - a. Wait for input queue
 - b. Insert Block
- 3. Wait for completion
- 4. Read Digest

"Wait for"-Logic, ≥6 cycles on Ibex

Hashing - Evaluation

RNG - Evaluation

AES - Implementation

- Initialization configures mode, operation, key, ...
- Blockwise encryption:

AES - Evaluation

AES - Evaluation

Conclusion

CPU read/writes and "Wait for" loops significantly impact performance.

Future Work

- Opentitan Big Number Accelerator
- Masked vs. Unmasked
- Newest Opentitan Version

Backup

Design - Benchmarking Suite

Ibex Core - Changes

