Firm-Level Shock Exposures, Stock Returns, and Real Outcomes: A Text-Analytic Approach

Steven J Davis, 1 Stephen Hansen, 2 and Cristhian Seminario-Amez 3

¹Hoover Institution

²UCL, IFS, and CEPR

3ITAM

BdI-EIEF

Outline

1. Introduction

- 2. Constructing Firm-Level Exposures with Text
- 3. Is Text Informative about Asset Price Response?
- 4. Shock Exposures and Real Outcomes
- 5. Shock Exposures and Distribution of Firm-Level Outcomes

Introduction

Firm heterogeneity is a widely accepted empirical phenomenon (Davis and Haltiwanger 1992, 1999) and increasingly incorporated into macro models (Hopenhayn 1992).

How such heterogeneity arises is less clear.

We assess the extent to which macro shocks interact with firm characteristics to generate heterogeneity.

Limited evidence on heterogeneous transmission of macro shocks (Ottonello and Winberry 2020, Gürkaynak et. al. 2022).

Important identification problem of isolating the contribution of macro shocks to firm-level real outcomes.

Evidence for Jump Dates since 2020

Limitations of Asset Price Responses Overcome with Text

Heterogeneity in asset price response \neq heterogeneity in real outcomes.

No accounting of drivers of heterogeneous responses.

Limitations of Asset Price Responses Overcome with Text

Heterogeneity in asset price response \neq heterogeneity in real outcomes.

No accounting of drivers of heterogeneous responses.

To address these, we use the Risk Factors discussions of 10-K filings.

RF texts detail sources of risk/uncertainty in future earnings; exhaustive due to their legal status.

Full set of RF corpora downloaded for the 2015-2019 time period. We use one compiled report by firm.

Matched to stock return data to form sample of ca. 2,000 firms.

Example: linking price reactions, text, and outcomes

Company	NAICS	Abnormal Return ¹	
NetApp Inc	3341 ²	4.34%	
Scientific Games	3341	-4.92%	
Domino's Pizza	722511 ³	-0.04%	
Ruth's Hospitality Group	722511	-9.28%	

Key points:

1. Sector membership imperfect proxy for exposure.

¹Average abnormal return on "Economic Fallout of COVID" dates as defined above

²Computer and Peripheral Equipment Manufacturing

³Full-Service Restaurants

Example: linking price reactions, text, and outcomes

Company	NAICS	Abnormal Return ¹	Revenue Growth 2018Q3-2020Q3
NetApp Inc	3341 ²	4.34%	-6.9%
Scientific Games	3341	-4.92%	-64.2%
Domino's Pizza	722511 ³	-0.04%	20.8%
Ruth's Hospitality Group	722511	-9.28%	-44.5%

Key points:

- 1. Sector membership imperfect proxy for exposure.
- 2. Link between abnormal returns and real outcomes.

¹Average abnormal return on "Economic Fallout of COVID" dates as defined above

²Computer and Peripheral Equipment Manufacturing

³Full-Service Restaurants

Example: linking price reactions, text, and outcomes

Company	NAICS	Abnormal Return ¹	Revenue Growth 2018Q3-2020Q3
NetApp Inc	3341 ²	4.34%	-6.9%
Scientific Games	3341	-4.92%	-64.2%
Domino's Pizza	722511 ³	-0.04%	20.8%
Ruth's Hospitality Group	722511	-9.28%	-44.5%

Key points:

- 1. Sector membership imperfect proxy for exposure.
- 2. Link between abnormal returns and real outcomes.
- 3. Different outcomes linked to pre-pandemic business practices, which can be informed by text from 10Ks!

 $^{^{1}\}mbox{Average abnormal return on "Economic Fallout of COVID" dates as defined above$

²Computer and Peripheral Equipment Manufacturing

³Full-Service Restaurants

Outline

- 1. Introduction
- 2. Constructing Firm-Level Exposures with Text
- 3. Is Text Informative about Asset Price Response?
- 4. Shock Exposures and Real Outcomes
- 5. Shock Exposures and Distribution of Firm-Level Outcomes

Jump Dates

2020	jumps	2021 jumps 2022 ju		jumps
02/24	03/17	02/25	03/07	05/27
02/25	03/18	03/01	03/09	06/13
02/27	03/23		03/16	06/16
03/02	03/24		04/22	06/24
03/03	03/26		04/26	07/19
03/05	03/27		04/29	09/13
03/10	03/30		05/05	10/03
03/11	04/01		05/09	10/04
03/16	04/06		05/13	10/07
04/08	04/14		05/18	10/17
04/17	04/21		11/10	12/15
04/29	05/01			
05/18	06/05			
06/24	09/08			
09/23	10/28			

Multinomial Inverse Regression

Procedure from Taddy (2013) and applied in Gentzkow et. al. (2019).

For jump date d and each term v, estimate Poisson regression

$$\log \mathbb{E}[c_{i,v}] = \alpha_v^d + \beta_v^d \text{AbnRet}_i^d + (\gamma_v^d)^T \mathbf{controls}_i^{y(d)}$$

- $ightharpoonup c_{i,v}$ is count of term v in firm i's RF filings (14K unique terms).
- ▶ $AbnRet_i^d$ is firm-level abnormal return.
- ightharpoonup controls $_{i}^{y(d)}$ includes NAICS2 effects; leverage; market cap.

Run for each jump date separately and for average return on P(andemic) and I(nflation) days.

Ranking of Terms for Pandemic Dates

Bottom Terms Top Ter		ns	
Term	Value	Term	Value
hotel	-33549.80	game	19595.17
unitholder	-18019.33	product_candidate	18475.38
general_partner	-14038.83	client	17157.35
gaming	-11840.90	drug_candidate	12859.84
restaurant	-11830.94	clinical_trial	11963.56
reit	-10605.63	cellular	9029.67
tenant	-10177.66	subscription	7706.73
satellite	-9343.81	solution	7571.91
crude_oil	-9220.05	patient	6222.35
common_unit	-9087.59	student	6058.91
hotel_property	-8337.83	platform	5430.79
refinery	-7749.49	drug	5120.28
travel	-6931.05	collaborator	4641.59
franchisee	-6722.54	datum_center	4317.81
trs	-6657.09	celgene	4266.25

Table: Influential Terms for Pandemic Jumps. The ranking of term v is based on its tf-idf score multiplied by $\hat{\beta}_{v}^{P}$.

Ranking of Terms for Inflation Dates

Bottom Terr	Top Terms		
Term	Value	Term	Value
tenant	-15810.95	hotel	31389.56
student	-9557.59	natural_gas	9899.49
operating_partnership	-7896.48	gaming	8074.73
reit	-7610.02	crude_oil	8016.95
real_estate	-7081.87	hotel_property	7193.75
homebuilding	-7078.13	aircraft	7111.44
the_company	-7038.95	solar	7065.24
product_candidate	-6580.21	pipeline	6868.64
home	-6515.21	oil	6852.39
client	-6057.50	ferc	6846.26
property	-5597.77	unitholder	6420.11
cellular	-5487.07	drilling	6027.62
fcc	-5200.31	ngl	5968.09
clinical_trial	-4671.19	fuel	5235.03
wireless	-4270.11	semiconductor	5142.39

Table: Influential Terms for Inflation Jumps. The ranking of term v is based on its tf-idf score multiplied by $\hat{\beta}_v^l$.

Outline

- 1. Introduction
- 2. Constructing Firm-Level Exposures with Text
- 3. Is Text Informative about Asset Price Response?
- 4. Shock Exposures and Real Outcomes
- 5. Shock Exposures and Distribution of Firm-Level Outcomes

Figure: Adjusted R^2 from regressing abnormal returns from jump dates on controls for NAICS2 sector, leverage, and size (x-axis) and additionally including text-based shock exposures and controls for text length (y-axis).

Outline

- 1. Introduction
- 2. Constructing Firm-Level Exposures with Text
- 3. Is Text Informative about Asset Price Response?
- 4. Shock Exposures and Real Outcomes
- 5. Shock Exposures and Distribution of Firm-Level Outcomes

Quantifying Firm-Level Shock Transmission

Main real outcome of interest is quarterly revenue growth

$$\Delta \text{rev}_{it} = \log(\text{rev}_{i,t}) - \log(\text{rev}_{i,t-12})$$
 $t = 2018Q1, \dots, 2022Q4$

Balanced panel built from COMPUSTAT \approx 1,000 firms.

Quantifying Firm-Level Shock Transmission

Main real outcome of interest is quarterly revenue growth

$$\Delta \text{rev}_{it} = \log(\text{rev}_{i,t}) - \log(\text{rev}_{i,t-12})$$
 $t = 2018Q1, \dots, 2022Q4$

Balanced panel built from COMPUSTAT \approx 1,000 firms.

Heterogeneous shock exposure ⇒ heterogeneous real outcomes?

Answer depends on measure of firm-level shock exposure.

We estimate firm-level transmission based on:

- 1. Abnormal returns (in line with macro literature)
- 2. Text exposures + part of abnormal return unexplained by text

Baseline Regression Model

$$\Delta \mathrm{rev}_{\mathit{it}} = \textit{l}_{\mathit{i}} + \textit{l}_{\mathit{s(i)},\mathit{t}} + \sum_{t=19Q1}^{22Q4} \textit{l}_{\mathit{t}} \alpha_{\mathit{t}}' e_{\mathit{i}} + \sum_{t=18Q1}^{18Q4} \textit{l}_{\mathit{t}} \beta' \mathsf{controls}_{\mathit{it}} + \sum_{t=19Q1}^{22Q4} \textit{l}_{\mathit{t}} \beta_{\mathit{t}}' \mathsf{controls}_{\mathit{it}} + \epsilon_{\mathit{it}}$$

Firm fixed effects

Baseline Regression Model

$$\Delta \text{rev}_{it} = I_i + I_{s(i),t} + \sum_{t=19Q1}^{22Q4} I_t \alpha_t' \mathbf{e}_i + \sum_{t=18Q1}^{18Q4} I_t \beta' \text{controls}_{it} + \sum_{t=19Q1}^{22Q4} I_t \beta_t' \text{controls}_{it} + \epsilon_{it}$$

- ► Firm fixed effects
- ► Shock exposure measures

Baseline Regression Model

$$\Delta \text{rev}_{it} = I_i + I_{s(i),t} + \sum_{t=19Q1}^{22Q4} I_t \alpha_t' \mathbf{e}_i + \sum_{t=18Q1}^{18Q4} I_t \beta'_{controls_{it}} + \sum_{t=19Q1}^{22Q4} I_t \beta'_{t}_{controls_{it}} + \epsilon_{it}$$

- Firm fixed effects.
- Shock exposure measures.
- ▶ Key coefficients of interest → Does variation in exposure shift revenue growth relative to baseline?

First spec: $\mathbf{e}_i = (AbnRet_i^P, AbnRet_i^I)$

First spec: $\mathbf{e}_i = (\mathrm{AbnRet}_i^P, \mathrm{AbnRet}_i^I)$

Figure: Revenue Growth and Raw-Return Exposures

Second spec: $\mathbf{e}_i = (z_i^P, \hat{\varepsilon}_i^P, z_i^I, \hat{\varepsilon}_i^I)$

Second spec: $\mathbf{e}_i = (z_i^P, \hat{\varepsilon}_i^P, z_i^I, \hat{\varepsilon}_i^I)$

Figure: Revenue Growth and (Decomposed) Pandemic Exposures

Second spec: $\mathbf{e}_i = (z_i^P, \hat{\varepsilon}_i^P, z_i^I, \hat{\varepsilon}_i^I)$

Figure: Revenue Growth and (Decomposed) Inflation Exposures

Outline

- 1. Introduction
- 2. Constructing Firm-Level Exposures with Text
- 3. Is Text Informative about Asset Price Response?
- 4. Shock Exposures and Real Outcomes
- 5. Shock Exposures and Distribution of Firm-Level Outcomes

Shock Exposures Account for Much of Realized Dispersion

Figure: Realized and Fitted Standard Deviation of Revenue Growth

Distribution of 2020Q2 Revenue Growth

Figure: Realized and Predicted Revenue Growth in 2020Q2