Содержание

1	Про топологию	3	
2	Метрические пространства	3	
	2.1 Метрика	3	
	2.2 Норма	4	
3	Открытое множество в метрическом пространстве	8	
4	Топологические пространства	9	
5	Открытое множество в метрическом пространстве	11	
6	Топологические пространства	12	
7	База и предбаза топологии	14	
8	Сходимость последовательностей в топологическом пространстве	16	
9	Замыкание, внутренность, граница	17	
	9.1 Замыкание	17	
	9.2 Внутренность	18	
10	Аксиомы счетности	19	
11	Непрерывные отображения	21	
	11.1 Подпространства топологических пространств	24	
12	Инициальные топологии. Произведения топологических простран	ІСТВ	26
	12.1 Инициальные точки	26	
	12.2 Произведения множеств	27	
	12.3 Произведения топологических пространств	28	
13	Финальные топологии и дизъюнктные объединения	31	
	13.1 Финальные топологии	31	

	13.2 Дизъюнктное объединение множеств	32		
	13.3 Дизъюнктное объединение топологических пространств (несвязные			
	суммы)	32		
14	Связные топологические пространства	32		
	14.1 Свойства связных пространств	33		
	14.2 Линейно связные пространства	35		
	14.3 Свойства линейно связных пространств	35		
15	Связные компоненты	37		
	15.1 Свойства связных компонентов	37		
	15.2 Линейно связные компоненты	38		
	15.3 Свойства линейной связных компонент	38		
	15.4 Локально линейно связные пространства	38		
16	Компактные топологические пространства	39		
	16.1 Свойства компактных пространств	40		
17	Некоторые свойства центрированных семейств	41		
18	Теорема Тихонова (очень важная)	42		
19	Локально компактные пространства	43		
20	Одноточечная компактификация	45		
21	Эквивалентность норм	47		
22	Факторпространства	48		
23	Частный случай фактопространств: стягивание подмножества в			
	точку	50		
	23.1 Частный случай факторпространств: склейка по отображению	50		
24	Нормальные пространства. Лемма Урысона	54		
	24.1 Нормальные пространства	54		
	24.2 Лемма Урысона	56		

1 Про топологию

Топология **изучает** свойства пространств, сохраняющихся при непрерывных преобразованиях. Делится на общую (завершенный раздел, переживший период бурного развития) и современную.

Общая топология — элементарная, т.е. не требует предварительных глубоких познаний, и является фундаментом математики. Основные объекты изучения — топологические пространства и непрерывные отображения.

Современная топология состоит из многих разделов, среди которых алгебраическая — изучает топологические пространства алгебраическими методами, т.е. проецирует топологию на алгебру, рассматривает топологические пространства, имеющие хорошие комбинаторные свойства, — дифференциальная, объектами которой являются пространства, снабженные дополнительной дифференциальной структурой, и методы дифференциального исчисления, геометрическая, связанная с пространствами малой размерности, и другие. Стоит отметить, что разделы не изолированы, а взаимодействуют друг с другом.

2 Метрические пространства

2.1 Метрика

Определение. Метрика на множестве X — функция ρ : $X \times X \to [0; +\infty]$, удовлетворяющая следующим условиям:

- (1) $\rho(x,y) = \rho(y,x) \quad \forall x,y \in X;$
- (2) $\rho(x,x) = 0 \quad \forall x \in X;$
- (3) $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ $\forall x,y,z \in X$ неравенство треугольника;
- (4) $\rho(x, y) > 0 \quad \forall x \neq y$.

Таким образом, мы аксиоматически задали способ определить расстояние, т.е. то, что понимать под расстоянием в общем случае.

Метрическое пространство (x, ρ) — множество (точнее — пара), снабженное метрикой. Если выполняется только (1)–(3), то ρ называется полуметрикой, а (x, ρ) — полуметрическим пространством.

Пример 0. Дискретная метрика

$$\rho(x,y) = \begin{cases} 1, & \text{если } x \neq y, \\ 0, & \text{если } x = y. \end{cases}$$

Пример 1. Классический

 $x=\mathbb{R},\; \rho(x,y)=|x-y|.$ Легко проверить, что выполняются все аксиомы метрики, причем неравенство треугольника — свойство модуля.

Пример 2. Три метрики на \mathbb{R}^n

- $\rho_1(x,y) = \sum_{i=1}^n |x_i y_i|$, где $x = (x_1,...,x_n) \in \mathbb{R}^n, y \in \mathbb{R}^n$. Для каждой координаты выполняется неравенство треугольника: просуммируем координаты и получим, что для суммы тоже выполняется.
 - \bullet $\rho_2(x,y) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$ «обычное» расстояние евклидова метрика.
 - $\rho_{\infty}(x,y) = \max_{1 \leq i \leq n} |x_i y_i|$ (пояснение: если вместо 1 или 2 стоит р, метрика

выглядит так: $\rho_p = \sqrt[p]{\sum_{i=1}^n (x_i - y_i)^p}$, это — пример для $p \to \infty$).

Пример 3. $X = \dot{C}[a, b]$ — множество всех непрерывных функций $[a, b] \to \mathbb{R}$.

Равномерная метрика (также супметрика): $\rho(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|$. Т.к. функция непрерывна и ограничена, можно назвать max, а не sup.

Наблюдение. В примерах 1-3 X — векторное пространство над \mathbb{R} : $\rho(x,y) = \rho(x-y,0)$ — т.к. это пространства специального вида — нормированные.

2.2 Норма

Определение. Пусть X — векторное пространство над \mathbb{K} (где $\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$). Функция $X \to [0; +\infty], \ x \in X \mapsto ||x||$, называется **нормой** на X (т.е. мы аксиоматически определяем, что такое длина вектора, — тогда говорят норма), если она удовлетворяет следующим условиям:

- (1) $||\lambda \cdot x|| = |\lambda| \cdot ||x||$, $\lambda \in \mathbb{K}$, $x \in X$ (т.е. λ число, x вектор);
- (2) аналог неравенства треугольника: $||x+y|| \le ||x|| + ||y||$, $(x,y \in X)$ прим.: на плоскости сводится к неравенству треугольника;
 - (3) $||x|| > 0 \quad \forall x \neq 0 \ (x = 0 : \text{из аксиомы } (1) \Rightarrow ||x|| = 0).$

Пространство на X, снабженное нормой, — **нормированное пространство.** Например, $(x, ||\cdot||)$.

Если (1), (2) выполняются, а (3) — нет, то это **полунорма**, соответственно

пространство — полунормированное.

Наблюдение. Пусть $(x, ||\cdot||)$ — нормированное пространство. Тогда $\rho(x, y) = ||x - y|| \ (x, y \in X)$ — метрика на X, порожденная нормой.

Упражнение. Проверить выполнение аксиом метрики для $\rho(x,y)$.

- Всякая норма порождает метрику;
- Подмножество метрического пространства метрическое пространство;
- Подмножество нормированного пространства нормированное пространство;
- Всякое метрическое пространство изометрично нормированному пространству (изометрия биекция между метрическими пространствами, сохраняющая расстояния между точками, *мое* примечание.)

Пример 4. Три нормы на \mathbb{K}^n , порожденные метриками из Примера 2

$$\bullet ||x||_1 = \sum_{i=1}^n |x_i|;$$

$$\bullet ||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2} - \text{евклидова норма};$$
 $\bullet ||x||_2 = \max_i |x_i|^2$

$$\bullet ||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Пример 5. Равномерная норма на пространстве непрерывных функций C[a,b], порожденная метрикой из Примера 3.

$$||f|| = \sup_{t \in [a,b]} |f(t)|.$$

Обозначение. Напомним, что если X, Y — множества, то Y^X — множество всех отображений $X \to Y$. В частности, $\mathbb{K}^{\mathbb{N}}$ — множество числовых последовательностей в \mathbb{K} .

Пример 6. $l^{\infty}(S)$ — множество всех ограниченных функций на множестве S: $\{f \in \mathbb{K}^S : \text{f ограничена}\}.$

 $||\mathbf{f}|| = \sup_{s \in S} |f(s)|$ — равномерная норма. Повторное замечание: непрерывная функция ограничена (сверху и снизу) — достигает максимум, можно писать не \sup , а \max .

Частный случай: пространство ограниченных последовательностей $l^{\infty} = l^{\infty}(\mathbb{N})$.

Пример 7. $l^1 = \{x = (x_i) \in \mathbb{K}^{\mathbb{N}}: \text{ряд сходится}\}$, где x_i — числовая последовательность.

Норма на
$$l^1$$
: $||x||_1 = \sum_{i=1}^{\infty} |x_i|$.

Пример 8 (важный)

$$l^2$$
 (можно также писать l_2) = $\{x = (x_i) \in \mathbb{K} : \text{ряд } \sum_{i=1}^{\infty} |x_i|^2 \text{ сходится} \}.$

 l^2 — векторное подпространство в $\mathbb{K}^{\mathbb{N}}$ — следует из неравенства $(a+b)^2 \leq 2(a^2+b^2), \ a,b \geq 0.$

Мое доказательство. l^2 — векторное подпространство в $\mathbb{K}^{\mathbb{N}}$ — 1) если $\sum_{i=1}^{\infty} |x_i|^2 < \infty$, то и $\sum_{i=1}^{\infty} |c \cdot x_i|^2 = \sum_{i=1}^{\infty} |c| |x_i|^2 = |c| \sum_{i=1}^{\infty} |x_i|^2 < \infty$ для любого c из \mathbb{K} , 2) $(a+b)^2 \le 2(a^2+b^2)$, $\forall a,b \ge 0$, то есть ряд, составленный из $|x_n+y_n|^2$, сходится, т.к. каждый его элемент не больше суммы двух соответственных элементов $|x_n|^2$, $|y_n|^2$ сходящихся рядов. □

Норма на $l^2: ||x||_2 = \sqrt{\sum_{i=1}^{\infty} |x_i|^2}.$

Мое доказательство. Проверим, что выполняются аксиомы нормы:

$$(1) ||\lambda \cdot x|| = |\lambda| \cdot ||x||, \ \lambda \in \mathbb{K}, \ x \in X : \sqrt{\sum_{i=1}^{\infty} |\lambda \cdot x_i|^2} = \sqrt{\sum_{i=1}^{\infty} \lambda^2 |x_i|^2} = |\lambda| \sqrt{\sum_{i=1}^{\infty} |x_i|^2};$$

(2)
$$||x+y|| \le ||x|| + ||y||$$
, $(x,y \in X)$, to ects $||\sqrt{\sum_{i=1}^{\infty}}|(x+y)_i|^2 \le \sqrt{\sum_{i=1}^{\infty}}|x_i|^2 + \sum_{i=1}^{\infty}|x_i|^2 + \sum_{i=1$

$$\sqrt{\sum_{i=1}^{\infty} |y_i|^2}$$
. Также следует из $(a+b)^2 < a^2 + b^2$.

(3) $||x|| > 0 \quad \forall x \neq 0 \ (x = 0$: из аксиомы (1) $\Rightarrow ||x|| = 0$). $|x_i| \geq 0$, причем равенство достигается, только когда $x_i = 0$. Значит, $||x||_2 = 0 \Leftrightarrow \forall x_i = 0$, во всех остальных случаях $\exists |x_i| > 0 \Rightarrow ||x||_2 > 0$. \square

В некоторых пространствах норма исходит из скалярного произведения, поэтому напоминание из геометрии:

Определение. Евклидово пространство — аксиоматически определено скалярное произведение, а не расстояние.

Скалярное произведение на E, где E — векторное пространство над \mathbb{R} — функция $E \times E \to \mathbb{R}$, $(x,y) \in E \times E \mapsto \langle x,y \rangle \in \mathbb{R}$ (прим.: пишем $\langle x,y \rangle$, чтобы отличать скалярное произведение от пары), удовлетворяющая следующим условиям:

- (1) линейность: $<\alpha x + \beta y, z> = \alpha < x, z> +\beta < y, z>, \ \alpha, \beta \in \mathbb{R}, \ x, y, z \in E$ линейность по первому аргументу;
- (2) < x,y> = < y,x> $x,y\in E\Rightarrow$ линейность и по второму аргументу симметричная билинейная форма;
 - $(3) < x, x > 0 \quad \forall x \neq 0.$

Евклидово пространство — векторное пространство Е над \mathbb{R} , снабженное скалярным произведением.

Факты:

- (1) **неравенство Коши-Буняковского**: $|\langle x,y\rangle| \leq \sqrt{\langle x,x\rangle} \cdot \sqrt{\langle y,y\rangle} \Rightarrow$ над каждым векторным пространством есть норма:
- (2) $||x|| = \sqrt{\langle x, x \rangle}$ норма на Е \Rightarrow нормированное \Rightarrow метрическое пространство.

Пример 9. Норма $||\cdot||_2$ на \mathbb{R}^n порождается скалярным произведением $<\!x,y\!> = \sum_{i=1}^n x_i y_i$. Норма $||\cdot||_2$ на l^2 порождается скалярным произведением $<\!x,y\!> = \sum_{i=1}^n x_i y_i$.

Упражнение. Доказать сходимость ряда.

Пример 10. р-адическая метрика на Q

Наблюдение. Каждое $x \in \mathbb{Q} \setminus \{0\}$ имеет вид $x = p^r \frac{a}{b}$, где $p \in \mathbb{P}$, $a, r \in \mathbb{Z}$, $b \in \mathbb{N}$, причем $p \nmid a, p \nmid b$.

Определение. р-адическая норма ненулевого числа ненулевого рационального числа х: $x \in \mathbb{Q} \setminus \{0\}$ — это $|x|_p = p^{-r}$, т.е. число тем меньше, чем на большую степень оно делится. $|0|_p = 0$.

р-адическая норма не является нормой в предыдущем смысле, поэтому для отличия обозначается, как модуль. $\mathbb Q$ не является векторным пространством над $\mathbb R$.

Упражнение. Для $x,y \in \mathbb{Q}$

- $(1) \mid -x \mid_p = |x|_p;$
- (2) $|xy|_p = |x|_p |y|_p$;
- (3) $|x|_p > 0 \ \forall x \neq 0$;
- (4) «Усиленное неравенство треугольника»: $|x+y|_p \le \max\{|x|_p,|y|_p\} \le |x|_p + |y|_p$;
 - (5) $\rho_p(x,y) |x-y|_p$ метрика на \mathbb{Q} .

Пример 11. Метрика Хаусдорфа — способ измерить расстояние между точками и множествами.

Определение. X — метрическое пространство, $x \in X$, $A \subset X$. $\rho(X,A) = \inf\{\rho(x,a) : a \in A\}$ — расстояние от X до A, т.е. расстояние до ближайшего элемента, если inf достигается.

Определение. Ограниченное подмножество в любом метрическом пространстве можно определить, как на плоскости: подмножество $A \subset X$ ограничено, если $\exists c > 0$, т.ч. $\rho(x,y) \leq c \quad \forall x,y \in A$.

Обозначим $\mathfrak{B}(x) = \{A \subset X : A \text{ ограничено}\}.$

Определение. Расстояние Хаусдорфа между двумя ограниченными множе-

ствами $A, B \in \mathfrak{B}(X)$ — это $\rho_H(A, B) = \max \{ \sup_{a \in A} \rho(a, B), \sup_{b \in B} p(b, A) \}.$ Упражнение. ρ_H — полуметрика на $\mathfrak{B}(X)$.

3 Открытое множество в метрическом пространстве

 (X, ρ) — метрическое пространство, $x \in X, r \ge 0$.

Определение. Открытый шар с центром в x радиуса r — это $B_r(x) = \{y \in X: \rho(y,x) < r\}$ — r-окрестность x.

Замкнутый шар с центром в x радиуса r — это $\overline{B}_r(x) = \{y \in X : \rho(y,x) \le r\}$.

Пример. $x = \mathbb{R} \Rightarrow B_r(x) = (x - r, x + r); \quad \overline{B}_r(x) = [x - r, x + r].$

Упражнение. Нарисовать $B_1(0)$ на $(\mathbb{R}^2, \ \rho_p)$ для $p=1, p=2, p=\infty$ (для p=2 — круг, для p=3 — шар, как в школе).

Пример. X = C[a,b] с равномерной метрикой.

Определение. (X, ρ) — метрическое пространство, $A \subset X, x \in A$.

x — внутренняя точка $A \Leftrightarrow \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset A$.

A называется **открытым** \Leftrightarrow все его точки — внутренние.

Предложение 1. Открытый шар $B_r(x)$ открыт.

Доказательство. Пусть $y \in B_r(x)$, т.е $\rho(y, x) < r$.

Положим $\varepsilon = r - \rho(y, x)$.

Покажем: $B_{\varepsilon}(y) \subset B_r(x)$. (*)

Пусть $z \in B_{\varepsilon}(y)$.

Неравенство треугольника: $\rho(z,x) \leq \rho(z,y) + \rho(y,x) < \varepsilon + \rho(y,x) = r \Rightarrow z \in B_r(x) \Rightarrow (*)$ доказано $\Rightarrow B_r(x)$ открыто.

- (2) X открыто;
- $(3) \ \{U_i\}_{i\in I} \text{ семейство открытых множеств}$ в $X\Rightarrow \bigcup_{i\in I} U_i$ открыто.
- $(4) \ U_1, U_2, ..., U_n \subset X \ \text{открыты} \ \Rightarrow \ \bigcap_{i=1}^n U_i \ \text{открыто}.$

Доказательство. (1), (2) очевидны (из определения).

 $\overline{B}_r(f)$ состоит из тех непрерывных функций, графики которых содержатся в заштрихованном множестве.

$$(3) \ x \in \bigcup_{i \in I} U_i \Rightarrow \exists i_0 \in X : x \in U_{i_o} \Rightarrow \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset U_{i_0} \Rightarrow B_{\varepsilon}(x) \subset \bigcup_{i \in I} U_i.$$

(4) достаточно для n=2.

 $\exists \varepsilon_1, \ \varepsilon_2 > 0: B_{\varepsilon_1}(x) \subset U_1, B_{\varepsilon_2} \subset U_2.$

Обозначим $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\} \Rightarrow B_{\varepsilon}(x) \subset U_1 \cap U_2$.

 $x \in U_1 \cap U_2$

4 Топологические пространства

Определение. Пусть X — множество, $\tau \subset 2^X$.

au называется **топологией** на X, если

- $(1) \varnothing \in \tau;$
- $(2) X \in \tau;$
- (3) $\{U_i\}_{i\in I}$ семейство множеств из $\tau \Rightarrow \bigcup_{i\in I} U_i \in \tau$.

(4) $U_1, ..., U_n \in \tau \Rightarrow \bigcap_{i=1}^n U_i \in \tau.$

 2^X Обозначение. множество всех

под-

(X, au) называется топологическим пространмножеств множества X.

ством. Множества из au называются **открытыми**.

Наблюдение. Из предложения 2: каждая метрика ρ на множестве X порождает топологию τ_{ρ} на X.

Определение. Топологическое пространство (X, τ) называется **метризуе**мым $\Leftrightarrow \exists$ метрика ρ : $X \times X \to [0; +\infty)$: $\tau_{\rho} = \tau$.

Замечание. Если $au= au_{
ho}$, то такая ho не единственная! Например, $au_{
ho}= au_{2
ho}$.

Пример-упражнение. Метрики $\rho_1, \ \rho_2, \ \rho_\infty$ на \mathbb{K}^n (где $\mathbb{K} = \mathbb{R}$ либо \mathbb{C}) порождают одну и ту же топологию на \mathbb{K}^n .

Пример 1. Дискретная топология

 $X - \forall$ множество, $\tau = 2^X$.

Рассмотрим
$$\rho: X \times X \to [0; +\infty), \quad \rho(x,y) = \begin{cases} 1, \text{ если } x \neq y, \\ 0 \text{ иначе.} \end{cases}$$

Заметим: $\tau = \tau_{\rho}$.

Действительно: $B_1(x)=x\Rightarrow x$ открыто в τ_{ρ} $\forall x\in X\Rightarrow$ каждое $A\subset X$ открыто в τ_{ρ} , т.к. $A=\bigcup_{x\in A}x\Rightarrow au_{
ho}= au$ — дискретная топология (метризуема).

Пример 2. Антидискретная топология

 $X - \forall$ множество, $\tau = \{\varnothing, X\}$.

Определение. Пусть τ_1, τ_2 — топологии на множестве X.

Говорят, что τ_1 грубее τ_2 (τ_2 тоньше τ_1), если $\tau_1 \subset \tau_2$.

Синонимы: грубее = слабее, тоньше = сильнее.

Дискретная топология — самая тонкая, антидискретная — самая грубая.

Определение. Окрестность точки x в топологическом пространстве X — любое открытое множество $U \subset X$, содержащее x.

Определение. Топологическое пространство X называется **хаусдорфовым** $\Leftrightarrow \forall x,y \in X, \ x \neq y, \ \exists \$ окрестности $U \ni x,V \ni y$: $U \cap V = \varnothing$.

Предложение. Метризуемое топологическое пространство хаусдорфово.

Доказательство. Пусть (X, ρ) — метрическое пространство, $x, y \in X, \ x \neq y$. Обозначим $a = \rho(x, y), \ a > 0$.

Следствие. Антидискретная топология на множестве, содержащем более одного элемента, неметризуема (т.к. неухаусдорфова).

Определение. Пусть X — топологическое пространство.

Множество $F\subset X$ называется **замкнутым** $\Leftrightarrow X\backslash F$ Из неравенства открыто. треугольника:

Предложение. Пусть X — топологическое про- $B_{\frac{a}{2}}(x) \cap B_{\frac{a}{2}}(y) = \varnothing$. странство, $\tau' = \{F \subset X : F \text{ замкнуто}\}$. Тогда:

- $(1) \varnothing \in \tau';$
- $(2) x \in \tau';$
- (3) $\{F_i\}$ семейство множеств из $\tau'\Rightarrow\bigcap_{i\in I}F_i\in\tau';$
- (4) $F_1, F_2, ..., F_n \in \tau' \Rightarrow \bigcup_{i=1}^n F_i$ замкнуто.

Наблюдение. Если X — множество, $\tau' \subset 2^X$ удовлетворяет (1)-(4) из предложения $\Rightarrow \{X \backslash F \colon F \in \tau'\}$ — топология на X.

Напоминание: $X \setminus \bigcap_{i \in I} F_i$

 $\bigcup_{i \in I} (X \backslash F_i);$

 $\bigcap_{i\in I} (X\backslash F_i)$.

$$X \setminus \bigcup_{i \in I} F_i =$$

Пример. Топология Зарисского

$$X$$
 — множество, $\mathbb{K} = \mathbb{R}$ или \mathbb{C} .

Определение. $A\subset \mathbb{K}^X$ — подалгебра в \mathbb{K}^X , если

- (1) A векторное подпространство в \mathbb{K}^X ;
- (2) $1 \in A$ (где 1 функция, тождественно равная единице);
- $(3) \ f,g \in A \Rightarrow fg \in A \ (fg -$ поточечное произведение f и g).

Зафиксируем какую-либо подалгебру $A \subset \mathbb{K}^X$.

$$\forall S \subset A$$
 обозначим $V(S) = \{x \in X : \forall f \in S \ f(x) = 0\}$

Упражнение. На X существует топология, в которой $F\subset X$ замкнуто \Leftrightarrow F=V(S) для некоторого $S\subset A$. Она называется **топологией Зарисского.**

Важный частный случай: $X = \mathbb{K}^n$, $A = \mathbb{K}[t_1, ..., t_n]$.

Упражнение. Описать топологию Зарисского в явном виде для следующих случаев:

- (1) X любое множество, $A = \mathbb{K}^X$;
- $(2) X = \mathbb{K}, A = \mathbb{K}[t];$
- (3) $X = [a, b] \subset \mathbb{R}, A = C[a, b].$

5 Открытое множество в метрическом пространстве

 (X, ρ) — метрическое пространство, $x \in X, r \ge 0$.

Определение. Открытый шар с центром в x радиуса r — это $B_r(x) = \{y \in X: \rho(y,x) < r\}$ — r-окрестность x.

Замкнутый шар с центром в x радиуса r — это $\overline{B}_r(x) = \{y \in X : \rho(y,x) \le r\}.$

Пример. $x = \mathbb{R} \Rightarrow B_r(x) = (x - r, x + r); \quad \overline{B}_r(x) = [x - r, x + r].$

Упражнение. Нарисовать $B_1(o)$ на (\mathbb{R}^2, ρ_p) для $p = 1, p = 2, p = \infty$ (для p = 2 — круг, для p = 3 — шар, как в школе).

Пример. X = C[a, b] с равномерной метрикой.

Определение. (X, ρ) — метрическое пространство,

 $A\subset X, x\in A.\ x$ — внутренняя точка $A\Leftrightarrow \exists \varepsilon>0$: $B_{\varepsilon}(x)\subset A.$

A называется **открытым** \Leftrightarrow все его точки — внутренние.

Предложение 1. Открытый шар $B_r(x)$ открыт.

Доказательство. Пусть $y \in B_r(x)$, т.е $\rho(y, x) < r$.

Положим $\varepsilon = r - \rho(y, x)$.

Покажем: $B_{\varepsilon}(y) \subset B_r(x)$. (*)

Пусть $z \in B_{\varepsilon}(y)$.

Неравенство треугольника: $\rho(z,x) \leq \rho(z,y) + \rho(y,x) < \varepsilon + \rho(y,x) = r \Rightarrow z \in B_r(x) \Rightarrow (*)$ доказано $\Rightarrow B_r(x)$ открыто.

(2) X открыто;

 $\overline{B}_r(f)$ состоит из тех непрерывных функций, графики которых содержатся в заштрихованном множестве.

 $(3) \ \{U_i\}_{i\in I} - \text{семейство открытых множеств}$ в $X \to \bigcup_{i\in I} U_i$ открыто.

(4)
$$U_1, U_2, ..., U_n \subset X$$
 открыты $\Rightarrow \bigcap_{i=1}^n U_i$ открыто.

Доказательство. (1), (2) очевидны (из определения).

(3)
$$x \in \bigcup_{i \in I} U_i \Rightarrow \exists i_0 \in X : x \in U_{i_0} \Rightarrow \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset U_{i_0} \Rightarrow B_{\varepsilon}(x) \subset \bigcup_{i \in I} U_i.$$

(4) достаточно для n=2

$$\exists \varepsilon_1, \ \varepsilon_2 > 0: B_{\varepsilon_1}(x) \subset U_1, B_{\varepsilon_2} \subset U_2.$$

Обозначим $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\} \Rightarrow B_{\varepsilon}(x) \subset U_1 \cap U_2$.

6 Топологические пространства

Определение. Пусть X — множество, $\tau \subset 2^X$. τ называется **топологией** на X, если

$$(2) X \in \tau;$$

(3)
$$\{U_i\}_{i\in I}$$
 — семейство множеств из $\tau\Rightarrow\bigcup_{i\in I}U_i\in\tau$.

(4)
$$U_1, ..., U_n \in \tau \Rightarrow \bigcap_{i=1}^n U_i \in \tau.$$

(X, au) называется **топологическим простран- ством**.

 $x \in U_1 \cap U_2$

Обозначение. 2^{X} — множество всех подмножеств множества X.

Множества из au называются **открытыми**.

Наблюдение. Из предложения 2: каждая метрика ρ на множестве X порождает топологию τ_{ρ} на X.

Определение. Топологическое пространство (X, τ) называется метризуемым $\Leftrightarrow \exists$ метрика $\rho: X \times X \to [0; +\infty): \tau_{\rho} = \tau.$

Замечание. Если $au= au_{
ho}$, то такая ho не единственная! Например, $au_{
ho}= au_{2
ho}$

Пример-упражнение. Метрики $\rho_1, \rho_2, \rho_\infty$ на \mathbb{K}^n (где $\mathbb{K} = \mathbb{R}$ либо \mathbb{C}) порождают одну и ту же топологию на \mathbb{K}^n .

Пример 1. Дискретная топология

$$X - \forall$$
 множество, $\tau = 2^X$.

Рассмотрим
$$\rho$$
: $X \times X \to [0; +\infty)$, $\rho(x,y) = \begin{cases} 1, \text{если } x \neq y, \\ 0 \text{ иначе.} \end{cases}$

Заметим: $\tau = \tau_{\rho}$.

Действительно: $B_1(x) = x \Rightarrow x$ открыто в $\tau_\rho \ \forall x \in X \Rightarrow$ каждое $A \subset X$ открыто в τ_ρ , т.к. $A = \bigcup_{x \in A} x \Rightarrow \tau_\rho = \tau$ — дискретная топология (метризуема).

Пример 2. Антидискретная топология

X —fa \forall множество, $\tau = \{\emptyset, X\}$.

Определение. Пусть τ_1, τ_2 — топологии на множестве X.

Говорят, что τ_1 грубее τ_2 (τ_2 тоньше τ_1), если $\tau_1 \subset \tau_2$.

Синонимы: грубее = слабее, тоньше = сильнее.

Дискретная топология — самая тонкая, антидискретная — самая грубая.

Определение. Окрестность точки x в топологическом пространстве X — любое открытое множество $U \subset X$, содержащее x.

Определение. Топологическое пространство X называется хаусдорфовым $\Leftrightarrow \forall x,y \in X, x \neq y, \exists$ окрестности $U \ni x, V \ni y : U \cap V = \varnothing$.

Предложение. Метризуемое топологическое пространство хаусдорфово.

Доказательство. Пусть (X, ρ) — метрическое пространство, $x, y \in X, x \neq y$. Обозначим $a = \rho(x, y), \ a > 0$.

Следствие. Антидискретная топология на множестве, содержащем более одного элемента, неметризуема (т.к. неухаусдорфова).

Определение. Пусть X — топологическое пространство.

Множество $F\subset X$ называется **замкнутым** $\Leftrightarrow X\backslash F$ Из неравенства открыто. треугольника:

Предложение. Пусть X — топологическое про- $B_{\frac{a}{2}}(x) \cap B_{\frac{a}{2}}(y) = \varnothing$. странство, $\tau' = \{F \subset X : F$ замкнуто $\}$. Тогда:

- $(1) \varnothing \in \tau';$
- (2) $x \in \tau'$;
- (3) $\{F_i\}$ семейство множеств из $\tau' \Rightarrow \bigcap_{i \in I} F_i \in \tau';$
- (4) $F_1, F_2, ..., F_n \in \tau' \Rightarrow \bigcup_{i=1}^n F_i$ замкнуто.

Наблюдение. Если X — множество, $\tau' \subset 2^X$ удовлетворяет (1)-(4) из предложения $\Rightarrow \{X \backslash F \colon F \in \tau'\}$ — топология на X.

Пример. Топология Зарисского

X — множество, $\mathbb{K} = \mathbb{R}$ или \mathbb{C} .

Напоминание:

Определение. $A\subset \mathbb{K}^X$ - подалгебра в \mathbb{K}^X , если

$$X \setminus \bigcap_{i \in I} F_i =$$

(1) A — векторное подпространство в \mathbb{K}^X ;

$$\bigcup_{i \in I} (X \backslash F_i);$$

$$X \backslash I = F.$$

(2) $1 \in A$ (где 1 — функция, тождественно равная $X \setminus \bigcup_{i \in I} F_i$ единице); $\bigcap_{i \in I} (X \setminus F_i)$

$$X \setminus \bigcup_{i \in I} F_i = \bigcap_{i \in I} (X \setminus F_i).$$

(3) $f,g\in A\Rightarrow fg\in A$ (fg — поточечное произведение f и g).

Зафиксируем какую-либо подалгебру $A \subset \mathbb{K}^X$.

$$\forall S \subset A$$
 обозначим $V(S) = \{x \in X : \forall f \in S \ f(x) = 0\}$

Упражнение. На X существует топология, в которой $F\subset X$ замкнуто \Leftrightarrow F=V(S) для некоторого $S\subset A$.

Она называется топологией Зарисского.

Важный частный случай: $X = \mathbb{K}^n, \ A = \mathbb{K}[t_1, ..., t_n].$

Упражнение. Описать топологию Зарисского в явном виде для следующих случаев:

- (1) X любое множество, $A = \mathbb{K}^X$;
- (2) $X = \mathbb{K}, A = \mathbb{K}[t];$
- (3) $X = [a, b] \subset \mathbb{R}, A = C[a, b].$

7 База и предбаза топологии

Лемма. X — множество, $\beta \subset 2^X$. Следующие свойства множества $A \subset X$ эквиваленты:

- (1) $\exists \gamma \subset \beta$ т.ч. $A = \cup \gamma$;
- (2) $\forall x \in A \exists B \in \beta \text{ T.4. } x \in B \subset A.$

Доказательство. (1) \Rightarrow (2). Пусть $A = \cup \gamma, \gamma \subset \beta, x \in A \Rightarrow \exists B \in \gamma : x \in B \Rightarrow B$ удовлетворяет (2).

 $(2) \Rightarrow \forall x \in A \ \exists B_1 \in \beta : x \in B_1 \subset A \Rightarrow \gamma = \{B_x : x \in A\}$ удовлетворяет (1).

Определение. (x,τ) — топологическое пространство.

 $\gamma \subset 2^X$

 $(1)\ \beta\in \tau$ — база τ (или база (X,τ)) \Leftrightarrow каждое $U\in \tau$ — Обозначение: $\bigcup_{C\in\gamma}C=$ является объединением некоторого подсемейства в $\beta\Leftrightarrow \cup\gamma$

$$\forall U \in \tau \ \forall x \in U \ \exists B \in \beta \text{ T.H. } x \in B \subset U.$$

(2) $\sigma \subset \tau$ — предбаза τ (предбаза (x,τ) — из леммы) \Leftrightarrow семейство $\{U_1 \cap ... \cap U_n : u_n \in T_n \cap U_n : u_n \in T_n$ $U_i \in \sigma$, $n \in \mathbb{N}$ } — база τ .

Пример. (x, ρ) — метрическое пространство $\Leftrightarrow \{B_r(x) : x \in X, r > 0\}$ — база τ_p .

Пример. $X = \mathbb{R}, \ \sigma = \{(-\infty, b); (a, +\infty) : a, b \in \mathbb{R}\}$ — предбаза \mathbb{R} , но не база. Предложение. X — множество, $\beta, \sigma \subset 2^X$.

Предложение. X — множество,
$$\beta, \sigma \subset 2^X$$
.

(1) На X \exists топология с базой $\beta \Leftrightarrow \begin{cases} (a) \cup \beta = X \\ (b) \forall B_1, B_2 \in \beta \ \forall x \in B_1 \cap B_2 \ \exists B_3 \in \beta : \\ x \in B_3 \subset B_1 \cap B_2. \end{cases}$

(2) На X \exists топология с предбазой $\sigma \Leftrightarrow \cup \sigma = X$.

Доказательство. (1) (\Leftarrow) следует из открытости X и $B_1 \cap B_2$.

 \Rightarrow Обозначим $\tau = \{ \cup \gamma : \gamma \in \beta \}.$ Покажем, что τ топология на Х.

 $\emptyset = \bigcup \emptyset \in \tau; \ X = \bigcup \beta \in \tau;$ объединение множеств из τ принадлежит τ .

Пусть $x \in U_1 \cap U_2 \xrightarrow{\text{из леммы}} \exists B_1, B_2 \in \beta$ т.ч. $x \in B_k \subset$ $U_k(k=1,2)\Rightarrow x\in B_1\cap B_2\Rightarrow^{(b)}\Rightarrow\exists B_3\in\beta$ т.ч. $x\in B_3\subset B_1\cap B_2\subset U_1\cap U_2\stackrel{\text{из леммы}}{\Longrightarrow}$ $U_1 \cap U_2 \in \tau \Rightarrow \tau$ — топология на X, β — ее база.

- (2) (\Rightarrow) из открытости X.
- (⇐) семейство $\{U_1 \cap ... \cap U_n : U_i \in \sigma, n \in \mathbb{B}\}$ удовлетворяет (a), (b) ⇒ оно база топологии, а σ — ее предбаза.

Пример. Топология поточечной сходимости

Пусть $\mathbb{K} = \mathbb{R}$ или \mathbb{C} , $S \subset \mathbb{K}^X$, где $X - \forall$ множество)

 $\forall x \in X, \forall$ интервала $I \subset \mathbb{R}$ обозначается G(x, I) = $\{f \in S : f(x) \in I\}.$

Семейство $\{G(x,I):x\in X,I\subset R$ — интервал (для $\mathbb{K} = \mathbb{C}$ — открытый круг)} является предбазой некоторой топологии на S. Она называется топологией поточечной сходимости на S.

8 Сходимость последовательностей в топологическом пространстве

(Окрестность точки — это любое открытое множество, содержащее эту точку) X — топологическое прространство, $x \in X$, (x_n) — последовательность в X.

Опредедение. (x_n) сходится к x (x является пределом $(x_n) \Leftrightarrow \forall$ окрестности $U \ni x \; \exists N \in \mathbb{N} \; \forall n \geq N \; x_n \in U.$

Обозначение. $x_n \to x(n \to \infty)$, или $x = \lim_{n \to \infty} x_n$.

Определение. (1) Семейство β_x окрестностей точки $x \in X$ — база окрестностей x (база в x) $\Rightarrow \forall$ окрестности $U \in ($ знак наоборот $) \exists V \in \beta_x, V \subset U.$

(2) Семейство σ_1 окрестностей точки $x \in X$ — предбаза окрестностей х (предбаза в х).

$$\Leftrightarrow \{U_1 \cap ... \cap ... U_n : U_i \in \sigma_x, n \in \mathbb{N}\}$$
 — база в х.

Пример. (x, ρ) — метрическое пространство.

$$\{B_r(x): r > 0\}$$
 — база в х.

 $\{B_{\frac{1}{n}}(x):n\in\mathbb{N}\}$ — тоже (важный пример, запомнить.)

Предложение. X — топологическое пространство, $x \in X$, σ_x — предбаза в х, (x_n) — последовательность в X.

$$x_n \to x \ (n \to \infty) \Leftrightarrow \forall V \in \sigma_x \ \exists N \in \mathbb{N} \ \forall n \ge N \ x_n \in V.$$

Доказательство. (\Leftarrow) Пусть U — окрестность х $\Rightarrow \exists V1,...,V_p \in \sigma_x$ т.ч. $V_1 \cap ... \cap V_p \subset U$.

$$\exists N_1, ..., N_p \text{ т.ч. } \forall n \geq N_i \ x_n \in V_i \ (i = 1, ..., p).$$

Обозначим
$$N = \max_{1 \le i \le n} N_i \Rightarrow \forall n \ge N \ x_n \in V_1 \cap ... \cap V_p \subset U.$$

Следствие. (x, ρ) — метрическое пространство, $x \in X$, (x_n) — последовательность в X. Следующие утверждения эквивалентны:

- (1) $x_n \to x$;
- (2) \forall открытого щара V с центром в х $\exists N \in \mathbb{N} \ \forall n \geq N \ x_n \in V$;
- (3) $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N \quad \rho(x_n, x) < \varepsilon;$
- (4) $\rho(x_n, x) \to 0$.

Предложение. X — хаусдорфово топологического пространство, (x_n) — последовательность в X, $x_n \to x \in X, \ x_n \to y \in X \Rightarrow x = y.$

Доказательство. Пусть $x \neq y \Rightarrow \exists$ окрестности $U \ni x, V \ni y, U \cap V = \varnothing$.

Из $\exists N_1$ т.ч. $\forall n \geq N_1 x_n \in U$ и $\exists N_2$ т.ч. $\forall n \geq N_2$ $x_n \in V$ следует, что $x_n \in U \cap V \ \forall n \geq \max\{N_1,N_2\}$ — противоречие.

Пример. X — антидискретное пространство. Каждая последовательность в X сходится к каждой точке $x \in X$.

Пример. X — дискретное топологическое пространство $x_n \to x \Leftrightarrow \exists N \in \mathbb{N} \ \forall n \geq N \ x_n = x.$

Действительно: (\Rightarrow) x — окрестность \mathbf{x} . Далее $\mathbf{c}\mathbf{m}$. определение $\mathbf{c}\mathbf{x}$ одимости.

Пример-упражнение. $\mathbb{K}=\mathbb{R}$ или \mathbb{C},X — множество, $S\subset\mathbb{K}^X.$

Пусть $f_n \to F$ в S с топологией поточечной сходимости $\Leftrightarrow \forall x \in X \ f_n(x) \to f(x)$.

9 Замыкание, внутренность, граница

9.1 Замыкание

X — топологическое пространство, $A \subset X$.

Определение. Замыкание А — множество $\overline{A} = \cap \{F \subset X : F \text{ замкнуто}, A \subset F\}.$

Наблюдение. \overline{A} — наименьшее замкнутое множество, содержащее A. В частности, если A замкнуто, то $A=\overline{A}$.

Предложение. (1) $A \subset B \subset X \Rightarrow \overline{A} \subset \overline{B}$;

- $(2) \overline{\overline{A}} = \overline{A};$
- $(3) \ \overline{A \cup B} = \overline{A} \cup \overline{B}.$

Доказательство. (1) из определения, (2) из наблюдения, (3) $A \subset A \cup B \stackrel{(1)}{\Longrightarrow} \subset \overline{A \cup B}$. Аналогично $\overline{B} \subset \overline{A \cup B} \Rightarrow \overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

 $A \cup B \subset \overline{A} \cup \overline{B} \stackrel{(1)}{\Longrightarrow} \overline{A \cup B} \subset \overline{\cup \overline{B}} = \overline{A} \cup \overline{B}$, т.к. $\overline{A} \cup \overline{B}$ замкнуто.

Предложение. $x \in \overline{A} \Leftrightarrow$ окрестности $U \ni x, \ U \cap A \neq \emptyset$.

Доказательство. $x \notin \overline{A} \Leftrightarrow \exists$ замкнутое $F \subset X$ т.ч. $F \supset A, \ x \notin F \iff \exists x \in U$ и \exists открытое $U \subset X$ т.ч. $U \cap A = \emptyset \Leftrightarrow \exists$ окрестность $U \ni x, \ U \cap A = \emptyset$.

Определение. X — топологическое пространство, $A \subset X$. Тогда $x \in X$ — предельная точка $A \Leftrightarrow x \in \overline{A \backslash \{x\}} \stackrel{\text{предложение}}{\Longleftrightarrow}$ в каждой окрестности x есть точки из A, отличные от x.

Обозначение. $A' = \{x \in X | x - \text{предельная точка A}\}$ — производное множество множества A.

Из предложения $\overline{A}=A\cup A'$. В частности: А замкнуто $\Leftrightarrow A'\subset A$.

Определение. $x \in A$ — изолированная точка $A \Leftrightarrow x \in A \backslash A' \Leftrightarrow \exists$ окрестность $U \ni x$ т.ч. $U \cap A = \{x\}$.

 $\overline{A} = A' \sqcup$ изолированные точки A.

9.2 Внутренность

X — топологическое пространство, $A \subset X$.

Определение. Внутренность A- это $\mathrm{Int}(A)=\bigcup\{U\subset X\!{:}\ U\$ открыто, $U\subset A\}.$

Наблюдение. (1) Int A — наибольшее открытое множество, содержащееся в A. В частности: A открытое \Leftrightarrow A = Int A.

(2) Если $(X,\ \rho)$ — метрическое пространство, то $x\in {\rm Int} A\Leftrightarrow \exists \varepsilon>0$ т.ч. $B_{\varepsilon}(x)\subset A.$

Упражнение. Int $A = X \setminus \overline{(X \setminus A)}; \quad \overline{A} = X \setminus \operatorname{Int}(X \setminus A).$

$$\left| \text{Int A} \subset A \subset \overline{A} \right|$$

Определение. Граница A — это $\Delta A = \overline{A} \setminus Int A$.

Наблюдение. $x \in \delta A \Leftrightarrow \forall$ окрестностей $U \ni x \ U \cap A \neq \emptyset, \ U \cap (X \backslash A) \neq \emptyset.$

Примечание 1. $X=\mathbb{R}, A=\mathbb{Z}\Rightarrow \overline{A}=\mathbb{Z},$ Int $A=\varnothing,\ \delta A=A=\mathbb{Z},$ все точки А изолированы, $A'=\varnothing.$

Примечание 2. $X=\mathbb{R}, A=(0,1)\Rightarrow \overline{A}=[0,1],$ Int A=A=(0,1), $\delta A=\{0,1\},$ изолированных точек нет, A'=[0,1].

Примечание 3. $X=\mathbb{R}, A=\{\frac{1}{n}:n\in\mathbb{N}\}\cup\{0\Rightarrow\overline{A}=A\ (\text{т.к. }\mathbb{R}\backslash A=(-\infty,0)\cup(1,+\infty)\cup(\bigcup_{n=1}^{\infty}(\frac{1}{n+1},\frac{1}{n})).$ Int $A=\varnothing,\ \delta A=A,$ {изолированные точки $A\}=\{\frac{1}{n}:n\in\mathbb{N}\};\{0\}=A'.$

Определение. X — топологическое пространство. Множество $A \subset X$ плотно в X (= всюду плотно в X) $\Leftrightarrow \overline{A} = X$.

Наблюдение. А плотно в $X \Leftrightarrow \forall x \in X \forall$ окрестности $U \ni x \ U \cap A \neq \varnothing \Leftrightarrow \forall$ непустого открытого $U \subset X \ U \cap A \neq \varnothing$.

Определение. X **сепарабельно** $\Leftrightarrow \exists$ не более чем счетное плотное подмножество в X.

Пример 1. Дискретное пространство сепарабельно \Leftrightarrow оно само не более чем счетно.

Пример 2. Антидискретное пространство сепарабельно (каждое непустое подмножество плотно).

Пример 3. \mathbb{R} сепарабельно (т.к. \mathbb{Q} плотно в \mathbb{R}).

Пример-упражнение 4. \mathbb{R}^n , \mathbb{C}^n , l^1 , l^2 сепарабельны, l^∞ несепарабельно.

Мое доказательство. Из доказанного мною выше (см. первая лекция) l^2 — векторное пространство в \mathbb{K}^N , норма на l^2 : $||x||_2 = \sqrt{\sum_{i=1}^{\infty} |x_i|^2}$.

Теперь найдем в l^2 счетное всюду плотное множество.

Пусть L — множество всех последовательностей с рациональными членами, у которых только конечное число членов не равно нулю, а остальные члены нулевые.

Покажем, что L — искомое.

- 1) Т.к. L объединение счетного числа счетных множеств, L счетно;
- 2) Теперь покажем, что L всюду плотно в l^2 , то есть что в любом шаре $B_{\varepsilon}(x) \in l^2$, где $x \in l^2$, $\varepsilon > 0$ произвольное, найдется точка r из $L: \sum_{i=1}^{\infty} |x_i r_i|^2 < \varepsilon$.

Возьмем в l^2 последовательность $\{x_n\}$. Тогда ряд $\sum_{i=1}^{\infty}|x_i|^2$ сходится. Это значит,

что $\lim_{n\to\infty}\sum_{k=N+1}^{\infty}|x_k|^2=0$, то есть, начиная с некоторого N, $\sum_{k=N+1}^{\infty}|x_k|^2<\frac{\varepsilon^2}{2}$, где $\varepsilon>0$ — произвольное.

Множество рациональных чисел всюду плотно в множестве действительных. Это значит, что если зафиксируем $\varepsilon > 0$ и рассмотрим каждый интервал $(x_i - \frac{\varepsilon}{\sqrt{2N}}, x_i + \frac{\varepsilon}{\sqrt{2N}})$, то в любом из них мы сможем найти некоторое рациональное число r (конечно, для каждого i — свое r). Перепишем это: $|x_i - r| < \frac{\varepsilon}{\sqrt{2N}}$. Возведем обе части неравенства в квадрат, так как они неотрицательные. Получим $|x_i - r|^2 < \frac{\varepsilon^2}{2N}$.

Тогда расстояние между $x \in l^2, \ r \in \mathbb{Q} = \sqrt{\sum\limits_{i=1}^{\infty} |x_i - r|^2} =$

$$= \sqrt{\sum_{i=1}^{N} |x_i - r|^2 + \sum_{i=N+1}^{\infty} |x_i|^2} < \sqrt{\frac{N \cdot \varepsilon^2}{2N} + \frac{\varepsilon^2}{2}} = \varepsilon \Rightarrow r \in B_{\varepsilon}(x).$$

Значит, L всюду плотно в l^2 . Тогда L — искомое. Значит, l^2 сепарабельно. Что и требовалось доказать. \square

10 Аксиомы счетности

X — топологическое пространство.

Определение. (1) X удовлетворяет **1-ой аксиоме счетности** $\Leftrightarrow \forall x \in X \exists$ не более чем счетная база окрестностей x.

(2) X удовлетворяет **2-ой аксиоме счетности** (является пространством со **счетной базой**) $\Leftrightarrow \exists$ не более чем счетная база топологии на X.

Предложение. X удовлетворяет 2-ой аксиоме счетности \Rightarrow X удовлетворяет 1-ой аксиоме счетности.

Доказательство. Пусть β — не более чем счетная база топологии на X. $x \in X$; тогда $\{U \in \beta: U \ni x\}$ — база окрестностей x.

Пример 1. X — метризуемо \Rightarrow X удовлетворяет 1-ой аксиоме счетности. Действительно, $\forall x \in X \ \{B_{\frac{1}{n}}(x): n \in \mathbb{N}\}$ — база окрестностей x.

Определение. Семейство β_x окрестностей точки $x\in X$ — база окрестностей $\mathbf{x}\Leftrightarrow \forall$ окрестности $U\ni x\;\exists V\in\beta_x,\;V\subset U.$

Пример 2. Дискретное пространство X удовлетворяет 1-ой аксиоме счетности. Оно удовлетворяет 2-ой аксиоме счетности ⇔ оно не более чем счетно.

Пример 3. \mathbb{R} удовлетворяет 2-ой аксиоме счетности. А именно, $\{(a,b)\colon a < b, \ a, \ b \in \mathbb{Q}\}$ — база \mathbb{R} . Действительно, $\forall c, d \in \mathbb{R}, \ c < d$, выполнено $(c,d) = \bigcup \{(a,b)\colon a,b \in \mathbb{Q}, \ c < a < b < d\}$ — в силу плотности \mathbb{Q} в \mathbb{R} .

Предложение. Топологическое пространство со счетной базой сепарабельно.

Доказательство. $\{U_n: n \in \mathbb{N}\}$ — счетная база в $X; U_n \neq \emptyset \quad \forall n$ (если пусто, можно выкинуть и ничего не потерять). $\forall n \in \mathbb{N}$ выберем $x_n \in U_n \Rightarrow \{x_n : n \in \mathbb{N}\}$ плотно в X.

Упражнение. Для метризуемых пространств: счетная база \Leftrightarrow сепарабельность. В частности: \mathbb{R}^n , \mathbb{C}^n , l^1 , l^2 — со счетной базой.

Лемма. Пусть X — топологическое пространство, удовлетворяющее 1-й аксиоме счетности. Тогда $\forall x \in X \; \exists \;$ база окрестностей $\{U_n : n \in \mathbb{N}\}$ точки x, т.ч. $U_n \supset U_{n+1} \; \forall n$.

Доказательство. Пусть $\{V_n: n \in \mathbb{N}\}$ — база окрестностей х; обозначим $U_n = V_1 \cap ... \cap V_n \Rightarrow \{U_n: n \in \mathbb{N}\}$ — искомая.

Предложение. X — топологическое пространство, $A \subset X, x \in X$.

- (1) Если \exists последовательность (x_n) в A т.ч. $x_n \to x \Rightarrow x \in \overline{A}$;
- (2) Если X удовлетворяет 1-й аксиоме счетности, то верно и обратное.

Доказательство. (1) \Rightarrow (2). Пусть U — окрестность x. $\Rightarrow \exists n \in \mathbb{N}$ т.ч. $x_n \in U \Rightarrow U \cap A \neq \varnothing \Rightarrow x \in \overline{A}$.

 $(2)\Rightarrow (1)$. Пусть $x\in \overline{A}$ и пусть $\{U_n\colon n\in \mathbb{N}\}$ — база окрестностей х т.ч. $U_{n+1}\subset U_n\ \forall n$ выберем $\forall x_n\in U_n\cap A$. Покажем: $x_n\to x$.

Пусть U — окрестность х. $\exists N \in N$ т.ч. $U_N \subset U \Rightarrow \forall n \neq N \ x_n \in U_n \subset U_N \subset U \Rightarrow x_n \to x$.

11 Непрерывные отображения

Определение. X, Y — топологические пространства, $f: X \to Y, x \in X$.

f непрерывно в х \Leftrightarrow \forall окрестности $V\ni f(x)$ \exists окрестность $U\ni x$ т.ч. $f(U)\subset V$.

f **непрерывно** \Leftrightarrow оно непрерывно в каждой $x \in X$.

Предложение. Пусть $f:X \to Y$ — отображение топологических пространств, $x \in X, \ y = f(x).$

 β_x — база топологии х, σ_y — предбаза окрестностей у. Тогда:

f непрерывно в x \Leftrightarrow $\forall V \in \sigma_y$ \exists окрестность $W \ni x$ т.ч. $f(w) \subset V, \; \exists V \in \beta_x$ т.ч. $U \subset W \Rightarrow f(x) \subset V.$

(⇐) Пусть V — окрестность у. $\exists V_1, ..., V_p \in \sigma_y$ т.ч. $V_1 \cap ... \cap V_p \subset V$; $\forall i = 1, ..., p ∃U_i \in \beta_x$ т.ч. $f(V_i) \subset V_i, f(U_1 \cap ... \cap U_p) \subset V$.

Следствие. $(X, \rho_X), (Y, \rho_Y)$ — метрические пространства, $x \in X$.

Отображение $f: X \to Y$ непрерывно в $\mathbf{x} \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{т.ч.} \; \forall x' \in X$, удовлетворяющей $\rho_X(x,x') < \delta$, выполнено $\rho_Y(f(x),f(x')) < \varepsilon$.

Доказательство. Применить предложение к базам окрестностей x и f(x), состоящим из открытых шаров с центрами x и y.

Теорема. X, Y — топологические пространства, $f: X \to Y$ — отображение. Следующие утверждения эквивалентны:

- (1) f непрерывно;
- (2)!!! \forall открытых $V \subset Y$ $f^{-1}(V)$ открыты в X часто берут в качестве определения непрерывности отображения;
 - (3) \forall замкнутого $B \subset Y$ $f^{-1}(B)$ замкнуто в X;
 - $(4) \ \forall A \subset X \ f(\overline{A}) \subset \overline{f(A)}.$

Доказательство. (1) \Rightarrow (2). Пусть $V \subset Y$ — открыто. $\forall x \in f^{-1}(V) \exists$ окрестность $U_x \ni x$ т.ч. $f(U_x) \subset V \Rightarrow U_x \subset f^{-1} \Rightarrow \bigcap_{x \in f^{-1}} U_x = f^{-1}(V) \Rightarrow f^{-1}(V)$ открыто.

- $(2) \Leftrightarrow (3)$ следствие из равенства $f^{-1}(Y \backslash B) = X \backslash f^{-1}(B) \ \forall B \subset Y$.
- $(3) \Rightarrow (4) \ \forall A \subset X \ A \subset f^{-1}(f(A)) \subset f^{-1}(\overline{f(A)}), \ \text{где} \ f^{-1}(\overline{f(A)}) \ \text{замкнуто}, \\ \Rightarrow \overline{A} \subset f^{-1}(\overline{f(A)}), \ \text{т.e.} \ f(\overline{A} \subset \overline{f(A)}.$

- $(4)\Rightarrow (3).$ Пусть $B\subset Y$ замкнуто, $A=f^{-1}(B).$ $f(\overline{A})\subset \overline{f(A)}\subset \overline{B}=B\Rightarrow \overline{A}\subset g^{-1}(B)=A,$ т.е. A замкнуто.
- $(2)\Rightarrow (1)\ \forall x\in X$ пусть V окрестность $f(x)\Rightarrow VU=f^{-1}(V)$ окрестность x, и $f(U)\subset V$. \square

Следствие. Пусть τ_1 , τ_2 — топологии на множестве X. Тогда $tau_1 \subset \tau_2 \Leftrightarrow$ отображение $f:(X,\tau_2)\to (X,\tau_1),\ f(x)=x$ — непрерывно. Т.е. следует из второго пункта теоремы.

Предложение. Пусть $f: X \to Y$ — отображение топологических пространств, σ — предбаза Y. f непрерывно $\Leftrightarrow \forall V \in \sigma \ f^{-1}(V)$ открыто в X.

Доказательство. (\Leftarrow) Пусть $V \subset Y$ открыто $\Rightarrow V = \bigcup_{\alpha \in A} \bigcap_{\beta \in B_{\alpha}} V_{\alpha\beta}$, где $V_{\alpha\beta} \in \sigma$, а множества B_x конечны.

$$\Rightarrow f^{-1}(V) = \bigcup_{\alpha \in A} \bigcap_{\beta \in B_{\alpha}} f^{-1}(V_{\alpha\beta})$$
 — открыто в X . \square Предложение. X,Y,Z — топологические пространства, $F:X \to Y,\ g:Y \to X$

Предложение.X,Y,Z — топологические пространства, $F:X\to Y,\ g:Y\to Z,\ x\in X,\ y=f(x).$

Предположение: f непрерывно в $x,\ g$ непрерывно в $y\Rightarrow g\circ f$ непрерывно в x. В частности: если f и g непрерывно, то и $g\circ f$ непрерывно.

Доказательство. Пусть W — окрестность $(g \circ f)(x) = g(x)$.

Из того, что \exists окрестность $V\ni y$ т.ч. $g(V)\subset W$, и \exists окрестность $U\ni x$, т.ч. $f(U)\subset V$, следует, что $(g\circ f)(U)\subset W$. Картинка1

Определение. X, Y — топологические пространства, $x \in X, f : X \to Y$.

f секвенциально непрерывно в $x \Leftrightarrow \forall$ последовательности (x_n) в X, т.ч. $x_n \to x$, выполнено $f(x_n) \to f(x)$.

Предложение. $f: X \to Y$ — отображение топологических пространств, $x \in X$.

- (1) f непрерывна в $x \Rightarrow f$ секвенциально непрерывно в x;
- (2) Если X удовлетворяет первой аксиоме счетности (например, метризуемо), то верно и обратное.

Доказательство. (1) Пусть $x_n \to x$, V — окрестность f(x).

 \exists окрестность $U\ni x$ т.ч. $f(U)\subset V$. $\exists N\in\mathbb{N}:\ \forall n\geq N\ x_n\in U\ \Rightarrow \forall n\geq N\ f(x_n)\in V\ \Rightarrow f(x_n)\to f(x).$

(2) Предположение: f не является непрерывным в x.

 \exists база окрестностей $\{U_n: n \in \mathbb{N}\}$ точки x, т.ч. $U_n \supset U_{n+1} \ \forall n$;

 \exists окрестность $V \ni f(x)$, т.ч. $f(U_n) \ni \subset V \ \forall n \in \mathbb{N}$.

Т.е. $\forall n \in \mathbb{N} \ \exists x_n U_n$, т.ч. $f(x_n) \ni V \Rightarrow x_n \to x$, но $f(x_n) \ni \to f(x)$ — противоречие. \square

Обозначение. $C(X,Y) = \{f : X \to Y | \text{f непрерывно} \}.$

 $C(X) = C(X, \mathbb{K})$, где $\mathbb{K} = \mathbb{R}$ или \mathbb{C} .

Определение. $f\in C(X,Y)$ — гомеоморфизм $\Leftrightarrow\exists g\in C(Y,X),$ т.ч. $fg=id_Y,\ gf=id_X.$

Определение' (эквивалентное предыдущему). $f: X \to Y -$ гомеоморфизм $\Leftrightarrow f$ непрерывно и биективно, f^{-1} непрерывно.

Наблюдение. (1) $f: X \to Y$ — гомеоморфизм $\Rightarrow f^{-1}: Y \to X$ — гомеоморфизм.

 $(2) \ f: X \to Y, \ g: Y \to Z$ — гомеоморфизм $\Rightarrow g \circ g: X \to Z$ — гомеоморфизм.

Определение. X и Y **гомеоморфны** $\Leftrightarrow \exists$ гомеоморфизм $X \to Y$.

Определение. X, Y — топологические пространства, $f: X \to Y$.

f открыто $\Leftrightarrow \forall$ открытых $U \subset X$ f(U) открыто в Y.

f замкнуто $\Leftrightarrow \ \forall$ замкнутых $B \subset X \quad f(B)$ замкнуто в Y.

Наблюдение. Отображение $f: X \to Y$ — гомеоморфизм $\Leftrightarrow f$ непрерывно, биективно и открыто или $\Leftrightarrow f: X \to Y$ непрерывно, биективно и замкнуто.

Пример-упражнение 1. X — нормированное пространство, $x \in X, r > 0$.

 $f: B_1(0) \to B_r(x), \ f(y) = x + ry$ — гомеоморфизм.

Пример-упражнение 2. X — нормированное пространство.

 $ff: B_1(0) \to X, \ f(x) = \frac{x}{1 - ||x||} -$ гомеоморфизм.

Пример-упражнение 3. $S^{1} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$

 $C = \{(x, y) \in \mathbb{R}^2 : \max\{|x|, |y|\} = 1\}.$

 $f: C \to S^1, \ f(p) = \frac{p^{(1)}}{||p||_2}$ — гомеоморфизм.

Пример-упражнение 4 (стереографическая проекция)

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\} - \text{copepa.}$$

 $f: S^2 \backslash \{\mathbb{N}\} \to \mathbb{R}^2$ — гомеоморфизм.

Упражнение. Построить аналогичный гомеоморфизм между $S^n \setminus \{\mathbb{N}\}$ и \mathbb{R}^n .

Определение. Топологическое пространство M — топологическое многообразие (C^0 -многообразие) размерности n, если

- (1) M хаусдорфово;
- (2) M со счетной базой;
- (3) $\forall x \in M \; \exists \; \text{окрестность} \; U \ni x$, гомеоморфная открытому подмножеству в \mathbb{R}^n (здесь топология на U определяется так: $V \subset U$ открыто в $U \Leftrightarrow V$ открыто в M).

Если U — как в (3), $\varphi:U\to V$ — гомеоморфизм, где $V\subset\mathbb{R}^n$ открыто, то (U,φ) называется **картой** на M.

Пример 1. \mathbb{R}^n — топологическое многообразие.

Пример-упражнение 2. Открытое подмножество в \mathbb{R}^n — топологическое многообразие (упражнение: доказать наличие счетной базы).

Пример-упражнение 3. Сфера $S^n \subset \mathbb{R}^{n+1}$, $S^n = \{x \in \mathbb{R}^{n+1} : ||x||_2 = 1\}$ — топологическое многообразие. Упражнение: сколькими картами она покрывается?

11.1 Подпространства топологических пространств

 (x, τ) — топологическое пространство, $Y \subset X$.

Обозначение. $\tau_Y = \{V \cap Y : U \in \tau\}.$

Наблюдение. τ_Y — топология на Y.

Определение. τ_Y — топология, индуцированная (унаследованная) из (x,τ) . (Y,τ_Y) называется топологическим подпространством в (X,τ) .

Предложение. Пусть (X, ρ) — метрическое пространство, $Y \subset X, \ \tau_{\rho}$ — топология на Y, порожденная ограничением метрики ρ на $Y \times Y \Rightarrow \tau_{\rho} = \tau_{Y}$.

Доказательство. Базу τ_{ρ} образуют шары $B_{r}^{Y} = \{z \in Y: \ \rho(z,y) < r\} \ (y \in Y, r > 0).$

Замечание. $B_r^Y(y) = B_r(y) \cap Y$ (где $B_r(y) = \{z \in X : \rho(z,y) < r\}) \Rightarrow B_r^Y \in \tau_Y \Rightarrow \tau_\rho \subset \tau_Y$.

Пусть $V \in \tau_Y$; $V = U \cap Y$, где U открыто в X.

Пусть $y \in V \Rightarrow \exists r > 0$, т.ч. $B_r(y) \subset U \Rightarrow B_r^Y(y) \subset V \Rightarrow V \in \tau_\rho \Rightarrow \tau_Y = \tau_\rho$. \square

Обозначение. X — множество, $Y \subset X$. $y_Y: Y \to X, \ i_Y(y) = y \ \forall y \in Y$ — отображение включения Y в X.

Теорема (основные свойства индуцированной топологии)

 (X, τ) — топологическое пространство, $Y \subset X$. Снабдим Y индуцированной топологией τ_y .

- (1) τ_Y самая грубая топология на Y, в которой $i_Y: Y \to X$ непрерывно;
- (2) Если Z топологическое пространство, то $f:Z\to Y$ непрерывно $\Leftrightarrow i_Y\circ f:Z\to X$ непрерывно.

Иначе говоря, f непрерывно как отображение из Z в $Y \Leftrightarrow$ оно непрерывно как отображение из Z в X.

Доказательство. (1) $i_Y^{-1}(U)=U\cap Y\Rightarrow i_Y$ непрерывно. Пусть σ — топология на Y, т.ч. $i_Y:(Y,\sigma)\to X$ непрерывно $\Rightarrow\ \forall U\in\tau\ i_Y^{-1}(=U\cap Y)\in\sigma\Rightarrow\tau_Y\subset\sigma.$

(2) $\forall U \subset X \ (i_Y \circ f)^{-1}(U) = f^{-1}(i_Y(U)) = f^{-1}(U \cap Y).$

 $i_Y\circ f$ непрерывно $\Leftrightarrow \forall U\in \tau\ (i_Y\circ f)^{-1}(U)$ открыто в $Z\Leftrightarrow \forall V\in \tau_Y\ f^{-1}(V)$ открыто в Z и $\Leftrightarrow f$ непрерывна. \square

Упражнение. τ_Y — единственная топология на Y, удовлетворяющая (1), и единственная топология на Y, удовлетворяющая (2).

[дальше лекция 21.11.19]

 (X,τ) — топологическое пространство $Y\subset X$.

 $\tau_Y = \{U \cap Y : U \in \tau\}$ — индуцированная топология на Y.

 $i_Y: Y \to X$ — отображение включения: $i_Y(y) = y \quad \forall y \in Y$.

 au_Y — самая грубая топология на Y, в которой i_Y непрерывно.

Определение. $f: X \to Y$ — отображение множеств, $A \subset X$.

Ограничение f на A — это $f|_A: A \to Y, (f|_A)(a) = f(a) \quad \forall a \in A.$

Предложение. X, Y — топологические пространства, $A \subset X, f : X \to Y$ непрерывно $\Rightarrow f \setminus_A : A \to Y$ непрерывно.

Доказательство. $f|_A = f \circ i_A$. \square

Предложение. (1) Множество $B \subset Y$ замкнуто в $\tau_Y \Leftrightarrow B = F \cap Y$ для некоторого замкнутого $F \subset X$.

 $(2) \forall A \subset Y$ (замыкание A в $(Y, \tau_Y) = \overline{A} \cap Y$, где \overline{A} — замыкание A в X.

Доказательство. (1) следует из формулы $Y \setminus B = (X \setminus B) \cap Y \ \forall B \subset Y$.

(2) (Замыкание A в $Y) = \bigcap \{C \subset Y: \ C$ замкнуто в $(Y, \ au_Y)$

и $C\supset A\}\stackrel{(1)}{=}igcap \{F\cap Y:\ F$ замкнуто в X и $F\supset A\}=(igcap \{F:F$ замкнуто в X и $F \supset A\}) \cap Y = \overline{A} \cap Y.$

Предложение. X — топологическое пространство, $A \subset Y \subset X$.

- (1) Если Y открыто в X, то A открыто в $Y \Leftrightarrow A$ открыто в X.
- (2) Если Y замкнут в X, то A замкнут в $Y \Leftrightarrow A$ замкнут в X.

Доказательство. (1) (\Rightarrow) $A = Y \cap U$, где U открыто в $X \Rightarrow A$ открыто в X. (\Leftarrow) $A=Y\cap A$, где A открыто в $X,\,\Rightarrow A$ открыто в Y.

(2) Аналогично.

12Инициальные топологии. Произведения топологических пространств

Инициальные точки 12.1

X — множество, $(X_i, \tau_i)_{i \in I}$ — семейство топологических пространств $(I \neq \varnothing); (f_i : I)$ $X \to X_i)_{i \in I}$ — семейство отображений.

Определение. Инициальная топология на X, порожденная семейством $(f_i)_{i\in I}$, — это топология τ_{in} на X с предбазой $\{f_i^{-1}(U): i\in I, U\in \tau_i\}$.

Пример 1. X — топологическое пространство, $Y \subset X$.

Инициальная топология на Y= инициальная топология, порожденная $\{i_Y:$ $Y \to X$ }.

Обозначение. pt — топологическое пространство, состоящее из одной точки.

Пример 2. X — множество. Инициальная топология на X, порожденная $\{X \to X\}$ pt}, — антидискретная топология.

Теорема (основные свойства инициальной топологии). X — множество, снабженное инициальной топологией, порожденной семейством $(f_i: X \to X_i)_{i \in I}$.

- (1) τ_{in} самая грубая топология на X, в которой все f_i непрерывны;
- (2) Если Y топологическое пространство, то отображение $g: Y \to X$ непрерывно $\Leftrightarrow f_i \circ g \colon Y \to X_i$ непрерывно $\forall i$.

Доказательство. (1) $\forall i \in I \ \forall U \in \tau_i \quad f_i^{-1}(U) \in \tau_{in} \ \Rightarrow f_i$ непрерывно.

Пусть σ — некоторая топология на X, т.ч. $\forall i \in I$ $f_i: \begin{cases} Y \xrightarrow{g} X \\ f_i \circ g \end{cases} \mid f_i$ $(X,\sigma) \to X_i$ непрерывно.

 $\forall i \in I \ \forall U \in \tau_i \quad f - i^{-1}(U) \in \sigma \ \Rightarrow ($ предбаза $\tau_{in}) \subset \sigma \Rightarrow$ $\tau_{in} \subset \sigma$.

- (2) (\Rightarrow) Если g непрерывно, то $f_i \circ g$ непрерывно, т.к. f_i непрерывно.
- (⇐) Пусть $f_i \circ g$ непрерывно $\forall i$.

Достаточно доказать: \forall множества $V \subset X$ из предбазы $\tau_{in} \quad g^{-1}(V)$ открыто в Y.

$$V=f_i^{-1}(U),$$
 где $U\subset X_i$ открыто $\Rightarrow g^{-1}(V)=g^{-1}(f_i^{-1}(U))=(f_i\circ g)^{-1}(U)$ открыто в $Y.$

Упражнение. τ_{in} — единственная топология на X со свойством (2).

12.2Произведения множеств

 $(X_i)_{i\in I}$ — семейство множеств.

Определение. Произведение семейства $(X_i)_{i\in I}$ — множество.

$$\prod_{i \in I} = \{x : I \to \bigcup_{i \in I} X_i \mid \forall i \in I \ x(i) \in X_i\}.$$

Частный случай. Если $X_i=Y$ $\forall i,$ то $\prod\limits_{i\in I}X_i=Y^I$ — множество всех отображений $I \to Y$.

Обозначения.
$$\forall x \in \prod_{i \in I} X_i, \quad x_i = x(i), \quad x = (x_i)_{i \in I} \ (x_i \in X_i).$$

Если $I = \{1, 2, ..., n\}$, то вместо $\prod_{i \in I} X_i$ пишут $\prod_{i=1}^n X_i$ или $X_1 \times X_2 \times ... \times X_n$. В этом случае элементы $X_1 \times ... \times X_n$ — упорядоченные наборы $(x_1, ..., x_n)$, где

 $x_i \in X_i$.

Обозначение. $\forall j \in I \ p_j: \prod\limits_{i \in I} X_i \to X_j, \ p_j(x) = x_j.$ p_j — каноническая проекция на $x_j.$

12.3 Произведения топологических пространств

 $(X_i, \tau_i)_{i \in I}$ — семейство топологических пространств, $X = \prod_{i \in I} X_i$.

Определение. Топология произведения (тихоновская топология) на X — это инициальная топология, порожденная семейством $\{p_j: X \to X_j\}_{j \in I}$ — канонических проекций.

Наблюдение. (1) \forall открытых $U \in X_i$

$$(*)$$
 $p_i^{-1}(U) = \prod_{j \in J} V_j$, где $V_j = \begin{cases} U & \text{при j} = \mathrm{i}, \\ X_j & \text{при } j \neq i. \end{cases}$

Множества вида (*) образуют предбазу X

(2) \forall конечного $I_0 \subset I$, $\forall i \in I_0$ пусть $U_i \subset X_i$ — открытое множество.

(**)
$$\bigcap_{i \in I_0} p_i^{-1}(U_i) = V_j$$
, где $V_j = \begin{cases} U_j, & \text{если } j \in I_0 \\ X_j, & \text{если } j \notin I_0 \end{cases}$

Множества вида (**) образуют базу X.

(3) Если I конечно, то базу X образуют множества вида U_i , где $U_i\subset X_i$ открыто.

Предостережение-упражнение. Если I бесконечно, то $\prod_{i \in I} U_i$ необязательно открыто в X (где $U_i \subset X_i$ открыто).

Отступление. Коммутативные диаграммы

Теорема (универсальное свойство произведения). $(x_i)_{i \in I}$ — семейство топологических пространств, $X = \prod\limits_{i \in I} X_i, \quad p_i : X \to X_i$ — каноническая проекция, Y — топологическое пространство.

Тогда \forall семейства $(f_i:Y\to X_i)_{i\in I}$ непрерывных отображений $\exists !$ непрерывное отображение $f:Y\to X$, т.ч. диаграмма (D) коммутативна $\forall i\in I$.

$$Y \xrightarrow{f} X \qquad \qquad \downarrow p_i \qquad (D) \\
X_i \qquad \qquad X_i$$

Доказательство. Определим $f:Y\to X$ так: $(f(y))_i=f_i(y) \ \ \forall y\in Y,\ \forall i\in I.$

Отображение f делает диаграмму (D) коммутативной и является единственным отображением с этим свойством. Его непрерывность следует из теоремы о свойствах инициальной топологии. \square

Предложение. (x_i, ρ_i) (i=1,2,3,...,n) — метрическое пространство, $X=\prod_{i=1}^{n} X_i$.

Определим $\rho: X \times X \to [0; +\infty)$ так: $\rho(x, y) = \max_{1 \le i \le n} \rho_i(x_i, y_i)$.

Тогда ρ — метрика на X, и она порождает топологию произведения на X.

Доказательство. Упражнение. ρ — метрика. Обозначим τ = топология на X, τ_{ρ} — топология, порожденная ρ .

Заметим: $\rho(x,y) < r \Leftrightarrow \rho_i(x_i,y_i) < r \quad \forall i=1,...,n \quad \Leftrightarrow B_r(x) = \prod_{i=1}^{n-1} B_r(x_i) \Rightarrow B_r(x)$ открыт в $\tau \Rightarrow \tau_\rho \subset \tau$.

Пусть U — множество из базы τ ; $U=\prod\limits_{i=1}^n U_i$, где $U_i\subset X_i$ $\forall i$ открыто.

Пусть $x \in U$. Тогда $\forall i = 1, ..., n$ $x_i \in U_i \Rightarrow \exists r_i > 0$ т.ч. $B_{r_i}(x_i) \subset \prod_{i=1}^n U_i = U$. $\Rightarrow U$ открыто в $\tau_\rho \Rightarrow \tau \subset \tau_\rho \Rightarrow \tau = \tau_\rho$. \square

Следствие. $\mathbb{K} = \mathbb{R}$ или \mathbb{C} . Стандартная топология на \mathbb{R}^n , порожденная $||\cdot||_{\infty}$ (или $||\cdot||_1$, $||\cdot||_2$), совпадает с топологией произведения $\mathbb{K} \times ... \times \mathbb{K}$.

Доказательство. Определим $f: Y \to X$ так: $(f(y))_i = f_i(y) \quad \forall y \in Y \quad \forall i \in I$.

Отображение f делает диаграмму (D) коммутативной и является отображением с этим свойством. Его непрерывность следует из теоремы о свойствах инициальной топологии. \square

Определение. (X_i, ρ_i) (i = 1, ..., n) — метрические пространства, $X = \prod_{i=1}^n X_i$. Определим ρ : $X \times X \to [0; +\infty]$ так: $\rho(x, y) = \max_{1 < i < n} \rho_i(x_i, y_i)$.

Тогда ρ — метрика на X, и она порождает топологию произведения на X.

Доказательство. Упражнение. ρ — метрика.

Обозначение. $\tau =$ топология произведения на X, τ_{ρ} — топология, порожденная ρ . Заметим: $\rho(x,y) < r \Rightarrow \rho_i(x_i,y_i) < r \quad \forall i=1,...,n \Rightarrow B_r(x) = \prod_{i=1}^n B_r(X_i) \Rightarrow B_r(X)$ открыто в $\tau \Rightarrow \tau_{\rho} \subset \tau$.

Пусть U — множество из базы τ ; $U = \prod_{i=1}^n U_i$, где $U_i \subset X_i$ $\forall i$ открыто.

Пусть $x \in U$. Тогда $\forall i = 1, ..., b$ $x_i \in U_i \Rightarrow \exists r_i > 0 : B_r(x_i) \subset U_i$.

Обозначим $r = \min_{1 \le i \le n} r_i \Rightarrow B_r(x) = \prod_{i=1}^n B_r(x_i) \subset \prod_{i=1}^n B_{r_i}(x_i) \subset \prod_{i=1}^n U_i = U \Rightarrow U$

открыто в $\tau_{\rho} \Rightarrow \tau \subset \tau_{\rho} \Rightarrow \tau = \tau_{\rho}$. \square

Следствия. Стандартная топология на \mathbb{K}^n , порожденная $||\cdot||_{\infty}$ (или $||\cdot||_1$, $||\cdot||_2$), где $\mathbb{K} = \mathbb{R}$ или \mathbb{C} , совпадает с топологией произведения $\mathbb{K} \times ... \times \mathbb{K}$.

X — множество, $(X_i)_{i \in I}$ — топологические пространства, $(f_i : X \to X_i)_{i \in I}$.

 $\{f_i^{-1}(U): U \subset X_i \text{ открыто}, i \in I\}$ является предбазой инициальной топологии τ_{in} , порожденной (f_i) .

 $(X_i)_{i\in I},\ (Y_i)_{i\in I}$ — семейства множеств, $f_i:\ (X_i\to Y_i)_{i\in I}$ — семейство отображений.

Определение. Декартово произведение семейства (f_i) — отображение $\prod\limits_{i\in I}f_i:\prod\limits_{i\in I}X_i\to\prod\limits_{i\in I}Y_i.$ $(X_i)_{i\in I}\to(f_i(X_i))_{i\in I}.$

Предположение. Пусть $(X_i)_{i \in I}$, $(Y_i)_{i \in I}$ — семейства топологических пространств, $f_i: X_i \to Y_i)_{i \in I}$ — семейство непрерывных отображений $\Rightarrow \Pi f_i: \Pi X_i \to \Pi Y_i$ непрерывно.

Доказательство. $\Pi X_i = X, \ \Pi Y_i = Y \ \Pi f_i = f.$

f непрерывно $\Leftrightarrow p_i^Y \circ f$ непрерывно $\forall i$ (см. свойства инициальной топологии) $\Leftrightarrow f_i \circ p_i^X$ непрерывно, а это верно по условию. \square

вию. \square Следствие. X — топологическое пространство. $\mathbb{K} = \mathbb{R}$ или p_i^X $\mathbb{C}, C(X) = C(X, \mathbb{R}).$ Тогла $\forall f, g \in C(X), f + g \in C(X), g \neq g \in C(X)$. Если

Тогда $\forall f,\ g\in C(X)\ f+g\in C(X)$ и $fg\in C(X)$. Если $f(x)\neq 0 \quad \forall x\in X\Rightarrow \frac{1}{f}\in C(X).$

$$X \xrightarrow[x_{\text{непрерывно}}]{\Delta} X \times X \xrightarrow[\text{непрерывно}]{f \times g} \mathbb{K} \times \mathbb{K} \xrightarrow[\text{непрерывно}]{+} \mathbb{K}, \text{ т.е. } X \xrightarrow{f+g} \mathbb{K}, \Rightarrow f+g$$

непрерывно. Аналогично fg непрерывно.

$$X \xrightarrow{f} \mathbb{K} \setminus \{0\} \xrightarrow{t \mapsto \frac{1}{t}}$$
, т.е. $X \xrightarrow{\frac{1}{t}} \mathbb{K} \Rightarrow \frac{1}{f}$ непрерывно. \square

Предложение. Топологическое пространство X хаусдорфово \Leftrightarrow диагональ $D_x = \{(x, x): x \in X\} \subset X \times X$ замкнута в $X \times X$.

Доказательство. D_X замкнута в $X \times X \Leftrightarrow \forall p \in (X \times X) \backslash D_X \exists$ окрестность $W \ni p$ вида $W = U \times V$, где U, V — открыто в X, т.ч. $W \cap D_x = \varnothing$.

 $\Leftrightarrow \forall x,y \in X,$ т.ч. $x \neq y$ \exists открытые $U,V \subset X,$ т.ч. $x \in U,y \in V$ и $U \cap V = \varnothing \Leftrightarrow X$ — хаусдорфово. \Box

Следствие 1. Предложение. X, Y — топологические пространства, Y — хаусдорфово, $f, g: X \to Y$ непрерывно $\Rightarrow \{x \in X: f(x) = g(x)\}$ замкнуто в X.

Доказательство. $F: X \to Y \times Y, \ F(x) = (f(x),g(x))$ F непрерывно, $\{x: f(x) = g(x)\} = F^{-1}(D_Y),$ а D_Y замкнуто в $Y \times Y.$ \square

Следствие 2. X, Y — топологические пространства, Y — хаусдорфово, $f,g:X\to Y$ непрерывно. Пусть $X_0\subset X$ — плотное подмножество, т.е. замыкание содержит все пространство, $f/_{X_0}=g/_{X_0}\Rightarrow f=g$.

Доказательство. Множество $S = \{x \in X : f(x) = g(x)\}$ замкнуто и содержит $X_0 \Rightarrow S = X$. \square

 $X \xrightarrow{g} Y$

13 Финальные топологии и дизъюнктные объединения

13.1 Финальные топологии

X — множество, $(X_i, \tau_i)_{i \in I}$ — семейство топологических пространств. $(f_i: X_i \to X)_{i \in I}$ — семейство отображений.

Определение. Финальная топология на X, порожденная $(f_i)_{i \in I}$ — это $\tau_{f_{i \notin I}} = \{U \subset X : f_i^{-1}(U) \in \tau_i \quad \forall i \in I\}.$

Замечание. $au_{f_{in}}$ является топологией на X.

Предложение. Финальная топология на X, порожденная отображением $\{\varnothing \to X\}$, — дискретная топология.

Теорема 1 (основные свойства финальной топологии)

- (1) $au_{f_{in}}$ самая тонкая топология на X, т.ч. все $f_i: X_i \to X$ непрерывны.
- (2) Если Y топологическое пространство, то отображение $g: X \to Y$ непрерывно $\Leftrightarrow g \circ f_i$ непрерывно $\forall i.$

Доказательство. (1) $\forall i \in I \ \forall \ U \subset \tau_{f_{in}} \ f_i^{-1} \in \tau_i$ — верно по определению $\tau_{f_{in}} \Rightarrow f_i^{-1}$ (открытое) = открытое $\Rightarrow f_i$ непрерывно.

Пусть σ — топология на X, т.ч. $\forall i \in I$ $f_i: X_i \to (X,\sigma)$ f_i непрерывно $\forall U \in \sigma \ \forall i \in I \ f_i^{-1}(U) \in \tau_i \Rightarrow U \in \tau_{fin} \Rightarrow \sigma \subset X_i$ τ_{fin} .

(2) g непрерывно $\Leftrightarrow \forall V \subset Y$ открыто, $g^{-1}(V) \in \tau_{fin} \Leftrightarrow \forall$ открытого $V \subset Y \quad \forall i \in I \quad f_i^{-1}(g^{-1}(V)) = (g \circ f_i)^{-1}(V) \in \tau_i$.

Упражнение. τ_{fin} — топология на X, обладающая свойством (2).

13.2 Дизъюнктное объединение множеств

 $(X_i)_{i\in I}$ — семейство множеств.

Определение. Дизъюнктное объединение семейства $(X_i)_{i\in I}$ — множество $\bigsqcup_{i\in I} X_i = \{(x,i): i\in I, x\in X_i\}.$

Обозначение. $\forall j \in I \ q_j: X_j \to \bigsqcup_{i \in I} X_i, \ q_j(X) = (X,j)$ — каноническое вложение X_j в $\bigsqcup_{i \in I} X_i$.

Наблюдение. (1) q_i — инъекция $\forall j$;

- $(2) q_i(X_i) \cap q_j(X_j) = 0 \quad \forall i \neq j;$
- $(3) \underset{i \in I}{\sqcup} X_i = q_i(X_i).$

Соглашение. Отождествляем X_j с $q_j(X)$ посредством q_j .

13.3 Дизъюнктное объединение топологических пространств (несвязные суммы)

 $(X_i)_{i\in I}$ — семейство топологических пространств, $X=\bigsqcup_{i\in I}X_i,\ q_i:X_j\to X.$

Определение. Топология дизъюнктного объединения на X — финальная топология, порожденная семейством $(q_i: X_i \to X)_{i \in I}$ канонических вложений.

Таким образом, $U \subset X$ открыто $\Leftrightarrow U \cap X_i$ открыто в $X_i \quad \forall i \in I$.

Теорема 2 (универсальное свойство дизъюнктных объединений)

 $(x_i)_{i\in I}$ — семейство топологических пространств, Y — топологическое пространство, $X = \bigsqcup_{i\in I} X_i$.

Тогда \forall семейства непрерывных отображений $(f_i: X_i \to Y)_{i \in I} \exists !$ непрерывное $f: X \to Y$, т.ч. диаграмма (D) коммутативна $\forall i \in I$.

Доказательство. Зададим $f: X \to Y$ так: $f((x,i)) = f_i(x) \ (\forall i \in I, \forall x \in X_i).$ (*)

Отображение f делает (D) коммутативной и является единственным отображеним с этим свойством (т.к. (*) эквивалетно $f(q_i(x)) = f_i(x)$). Непрерывность f — из теоремы 1. \square

14 Связные топологические пространства

Определение. Топологическое пространство X **связно** $\Leftrightarrow X$ непредставимо в виде $X = U \cup V$, где $U, V \subset X$ открыто, непусто, $U \cap V = \varnothing$. Иначе X называется

несвязным.

Подмножество $Y \subset X$ называется **связным** \Leftrightarrow оно связано как топологическое пространство в индуцированной топологии.

Наблюдение. X связно $\Leftrightarrow X$ непредставимо в виде $X=A\cup B$, где A,B замкнуты, непусты, $A\cap B=\varnothing \Leftrightarrow \not\exists$ подмножества $A\subset X,\ A\neq X, A\neq \varnothing,$ открыто и замкнуто одновременно.

Пример. Дискретное пространство, состоящее более чем из 1 точки, несвязно.

Пример. Антидискретное пространство связно.

Пример. $\mathbb{R}\setminus\{0\}$ несвязно, т.к. $\mathbb{R}\setminus\{0\}=(-\infty,0)\cup(0,+\infty)$.

Пример. $\overline{B_1}(0,0) \cup \overline{B_1}(0,3) \subset \mathbb{R}^2$ — несвязное.

Пример. X, Y — непустые топологические пространства $\Rightarrow X \sqcup Y$ несвязно (т.к. X, Y открыты в $X \sqcup Y$).

Пример. $\forall A \subset \mathbb{Q}$ (с топологией, индуцированной из \mathbb{R}), состоящего более чем из одной точки, несвязно.

 $a, \ b \in A, \ a < b \quad \exists$ иррациональное $c \in \mathbb{R}: \ a < c < b.$

 $\bigcup = A \cap (-\infty,c), \quad V = A \cap (c,+\infty) \Rightarrow U,V \text{ открыто в } A,\ U \cap V = \varnothing \text{ и } U \cup V = A.$

Предложение. Отрезок $[a,b] \subset \mathbb{R}$ связен.

Доказательство. Предположим, $[a,b]=U\cup V,\quad U,V\subset [a,b]$ открыты в топологии отрезка [a,b]), непусты, $U\cap V=\varnothing.$

Можем считать: $b \in V \Rightarrow \exists \varepsilon > 0$, т.ч. $(b - \varepsilon, b] \subset V$. (1)

Обозначим $c = \sup U$. Заметим: c > a (иначе бы $U = \{a\}$ — противоречие), c < b в силу (1).

Если $c\in U\Rightarrow \exists \delta>0,$ т.ч. $(c-\delta,c+\delta)\subset U\Rightarrow c+\frac{\delta}{2}\in U$ — противоречие с определением c.

Если $c\in V\Rightarrow\exists\delta>0$, т.ч. $(c-\delta,c+\delta)\subset V\Rightarrow \forall x\in U\ x\leq c-\delta-$ противоречие с определением $c\Rightarrow c\not\in U\cup V=[a,b]$ — противоречие $\Rightarrow [a,b]$ связен. \square

14.1 Свойства связных пространств

Теорема (свойства связных пространств)

- (1) X, Y топологические пространства, X связно, $f: X \to Y$ непрерывно $\Rightarrow f(X)$ связно.
- (2) Пусть $X = U \cup V$, U, V открыто, $U \cap v = \emptyset$; пусть $A \subset X$ связно $\Rightarrow A \subset U$ либо $A \subset V$.
 - (3) $A, B \subset X, \ A \subset B \subset \overline{A}, \ A$ связно $\Rightarrow B$ связно.
- (4) Пусть $(A_i)_{i\in I}$ семейство связных подмножеств X, имеющих общую точку $\Rightarrow A_i$ связно.
- $(ar{5})$ Пусть любые $x,y\in X$ лежат в некотором связном подмножестве $X\Rightarrow X$ связно.
 - (6) $X_1, ..., X_n$ связные топологические пространства $\Rightarrow X_1 \times ... \times X_n$ связно.

Доказательство. (1) Можем считать: f(X) = Y. Пусть $Y = U \cup V$, $U, V \subset Y$ открыты, непусты, $U \cap V = \emptyset$.

f — сюръекция $\Rightarrow X = f^{-1}(U) \cup f^{-1}(V)$, где $f^{-1}(U)$, $f^{-1}(V)$ открыты, непусты, не пересекаются, — противоречие.

- (2) $A = (U \cap A) \cup (V \cap A) \Rightarrow U \cap A$ либо $V \cap A$ пусто. Если $U \cap A = \emptyset \Rightarrow A = V \cap A$, т.е. $A \subset V$, где $U \cap A$, $V \cap A$ открыты в A и не пересекаются.
- (3) Можем считать: B=X, тогда $\overline{A}=X$. Пусть $X=U\cup V,\ U,V\subset X$ открыты, непусты, $U \cap V = \emptyset$.
- Из (2): $A\subset U$ либо $A\subset V$. Пусть $A\subset U\Rightarrow A\cap V=\varnothing$ противоречие с тем, что $\overline{A} = X \Rightarrow X$ связно.
 - (4) Можем считать: $\bigcup A_i = X$. Пусть $a \in A_i \quad \forall i \in I$.

Пусть $X=U\cap V,\quad \stackrel{i\in I}{U,V}\subset X$ открыты, непусты, $U\cap V=\varnothing.$

Пусть $a \in U$. Из (2): $A_i \subset U \quad \forall i \in I \Rightarrow V = \emptyset$ — противоречие $\Rightarrow X$ связно.

(5) Зафиксируем $\forall x \in X$.

 $\forall y \in X \quad \exists \text{ связное } A_{xy} \subset X, \text{ т.ч. } x,y \in A_{xy} \Rightarrow \bigcup_{y \in X} A_{xy} = X. \text{ Из (4) } X \text{ связно.}$

(6) Достаточно доказать для n=2 (индукция). Обозначим $X_1=X, X_2=Y$. Зафиксируем $p = (x_1, y_1) \in X \times Y, q = (x_2, y_2) \in X \times Y.$

Обозначим $A = \{x_1\} \times Y, \ B = X \times \{y_2\}.$ A гомеоморфно

 $Y,\ B$ гомеоморфно $X\Rightarrow A,B$ связно.

$$(x_1, y_2) \in A \cap B \Rightarrow A \cap B = \varnothing \xrightarrow{(4)} A \cup B$$
 связно. $p, q \in A \cup B \Rightarrow X \to Y$ связно. \square

Упражнение. Доказать: произведение ∀ семейства топологических пространств связно.

Определение. X — топологическое пространство, $x, y \in X$. Пусть в X из x в

y — непрерывное отображение $f: [0,1] \to X$, т.ч. f(0) = x, f(1) = y.

14.2 Линейно связные пространства

Определение. X линейно связно, если $\forall x,y \in X \;\; \exists \; \text{путь из } x \; \text{в } y.$

Предложение. X линейно связно $\Rightarrow X$ связно.

Доказательство. Пусть $x,y \in X, \ f: [0,1] \to X$ — пусть из x в $y, \ C = f([0,1]).$

C связно (т.к. [0,1] связен, см. пункт (1) теоремы), $x,y\in C$. Теорема, п. $(5)\Rightarrow X$ связно. \square

14.3 Свойства линейно связных пространств

Теорема (свойства линейно связных пространств)

- (1) X, Y топологические пространства, X линейно связно, $f: X \to Y$ непрерывно $\Rightarrow f(X)$ линейно связно;
- (2) $(A_i)_{i\in I}$ семейство линейно связных подмножеств в X, имеющих общую точку $\Rightarrow \bigcup A_i$ линейно связно;
 - $(3) X_1, ..., X_n$ линейно связны $\Rightarrow X_1 \times ... \times X_n$ линейно связны.

Доказательство. Упражнение. Подсказка к (2) — рисунок.

Пример 1. X — нормированное пространство над $\mathbb{R} \Rightarrow X$ линейно связно.

Действительно: $\forall x,y \in X$ рассмотрим f: $[0,1] \to X, \ f(t) = ty + (1-t)x. \ f$ непрерывно (упражнение), $f(0) = x, \ f(1) = y.$

Определение. Пусть X — векторное пространство над \mathbb{R} , $x,y\in X$. Обозначим $[x,y]=\{ty+(1-t)x\colon 0\leq t\leq 1\}$. Это множество называется **отрезком** с концами x,y.

Множество $A \subset X$ выпукло $\Leftrightarrow \quad \forall x,y \in A$ выполнено $[x,y] \subset A$.

Упражнение. Шар в нормированном пространстве — выпуклое множество.

Пример 2. \forall выпуклое подмножество нормированного пространства (над \mathbb{R}) линейно связно. Доказательство — см. пример 1.

Пример-упражнение 3. X — нормированное пространство над \mathbb{R} , dim $X > 1 \Rightarrow X \setminus \{0\}$ линейно связно.

Не выпукло Выпукло

Пример 4. X — нормированное пространство над \mathbb{R} , dim X > 1. Сфера S = $\{x \in X : ||x|| = 1\}$ линейно связна.

Действительно: рассмотрим $f: X \setminus \{0\} \rightarrow$

либо $A = \emptyset$.

Пример 5 (n-мерный тор). Обозначим $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ (окружность). $T^n = S^1 \times ... \times S^1$ (n раз) — n-мерный тор. T^n линейно связно.

Доказать: X связно, но не линейно связно.

Определение. Подмножество $A \subset \mathbb{R}$ промежуток $\Leftrightarrow A = (a, b)$, где $-\infty < a < b <$ $+\infty$), либо $A = [a, b] (-\infty < a < b < +\infty),$

Упражнение. A — промежуток $\Leftrightarrow A$ выпукло.

Предложение. Следующие свойства подмножества $A \subset \mathbb{R}$ эквивалентны:

 \boldsymbol{x}

Доказательство. (3) \Rightarrow (2) — очевидно, (2) \Rightarrow (1) — знаем.

 $(1) \Rightarrow (3)$: предположим, что A ограничено. Обозначим a = inf A, $b = \sup A \implies A \subset [a, b]$.

Покажем: $(a, b) \subset A$. (Этого нам достаточно)

Пусть $\exists c \in (a,b)$, т.ч. $c \notin A$. Обозначим $U = (-\infty,c) \cap A$, $V = (c,+\infty) \cap A$.

U,V открыты в $A,~U\cap V=\varnothing,~~U\cup V=A,~U\neq\varnothing,~V\neq\varnothing$ — противоречие со связностью A.

Для неограниченного A рассуждения аналогичны (упражнение). \square

Следствие (теорема о промежуточном значении)

X — связное топологическое пространство, $f\in C(X,\mathbb{R}), \quad x,y\in X \quad f(x)\leq f(y).$

Тогда $\forall c \in [f(x), f(y)] \exists z \in X$, т.ч. c = f(z).

Доказательство. f(X) — связное подмножество $\mathbb{R} \Rightarrow f(X)$ — промежуток; $f(x), f(y) \in f(X) \Rightarrow [f(x), f(y)] \subset f(X)$. \square

15 Связные компоненты

X — топологическое пространство.

Определение. Связная компонента — максимальная (по включению) связное подмножество X (т.е. такое связное подмножество X, которое не содержится ни в каком строго большем связном подмножестве).

Синоним: компонента связности (менее приоритетно).

15.1 Свойства связных компонентов

Теорема (свойства связных компонентов)

- (1) Связные компоненты образуют разбиение X (т.е. \forall компонент $X_1, X_2 \subset X$ либо $X_1 = X_2$, либо $X_1 \cap X_2 = \emptyset$, и X = объединение всех его связных компонент);
- (2) $\forall x \in X$ множество $C(X) = \bigcup \{A \subset X : A \text{ связно}, x \in A\}$ является связной компонентой X, содержащей x (связная компонента точки x);
 - (3) \forall непустое связное $A \subset X$ содержится ровно в одной связной компоненте;
 - (4) Связные компоненты замкнуты в X.

Доказательство. (1), (2): пусть $X_1, X_2 \subset X$ — связные компоненты. Предположим, $X_1 \cap X_2 \neq \emptyset$. Из связности пространств $\Rightarrow X_1 \cup X_2$ связно $\Rightarrow X_1 = X_1 \cup X_2 = X_2$. Из свойств связных пространств: C(x) связно и является наибольшим связных подмножеством, содержащим $x. \Rightarrow C(x)$ — компонента связности $X \Rightarrow (1), (2)$.

- (3) \exists связная компонента $B\subset X$, т.ч. $A\cap B\neq\varnothing\Rightarrow A\cup B$ связно $\Rightarrow B=A\cup B$, т.е. $A\subset B$. Единственность B из (1).
- (4) Пусть $B\subset X$ это связная компонента $\Rightarrow \overline{B}$ связно $\Rightarrow B=\overline{B}$ в силу максимальности B. \square

Следствие. Если X состоит из конечного числа связных компонент, то эти компоненты не только замкнуты, но еще и открыты в X.

Доказательство. $X = C_1 \cup ... \cup C_n$, где $C_1, ..., C_n$ — связные компоненты.

$$C_1 = X \setminus (C_2 \cup ... \cup C_n)$$
, где $C_2 \cup ... \cup C_n$ замкнуто, $\Rightarrow C_1$ открыто. \square

Пример 1. Связные компоненты $\mathbb{R}\setminus\{0\}$ — это $(-\infty,0)\cup(0,+\infty)$.

Пример 2. X_1, X_2 — непустые связные топологические пространства, $X = X_1 \sqcup X_2 \Rightarrow X_1$ и X_2 —связные компоненты X.

Пример 3. X дискретно \Leftrightarrow связные компоненты X — одноэлементные множества.

Пример 4. То же самое верно для $X = \mathbb{Q}$ (хотя \mathbb{Q} и не дискретно).

Упражнение. Описать все связные компоненты канторова множества.

15.2 Линейно связные компоненты

Определение. Линейно связная компонента X — максимальное (по включению) линейно связное подмножество X.

15.3 Свойства линейной связных компонент

Теорема (свойства линейно связных компонент)

- (1) Линейно связные компоненты образуют разбиение X;
- (2) $\forall x \in X$ множество $PC(x) = \bigcup \{A \subset X : A$ линейно связно, $x \in A\}$ является линейно связной компонентой X, содержащей x (линейно связная компонента x). Это множество то же самое, что $\{y \in X : \exists \text{ путь из } x \text{ в } y\}$;
- (3) \forall непустое линейно связное подмножество X содержится ровно в одной линейно связной компоненте.

Доказательство. Упражнение (аналогично свойствам связных компонент).

Следствие. Разбиение пространства X на линейно связные компоненты является измельчением разбиения X на связные компоненты, т.е. каждая связная компонента является объединением линейно связных компонент X), — разбиение на линейно связные компоненты более мелкое, чем на связные.

Упражнение. $X = \{\sin \frac{1}{x}: 0 \le x \le 1\} \cup \{(0, y): -1 \le y \le 1\} \subset \mathbb{R}^2$. Описать линейно связные компоненты. Замкнуты ли они?

15.4 Локально линейно связные пространства

Определение. Топологическое пространство X локально линейно связно $\Leftrightarrow \forall x \in X$ каждая окрестность x содержит линейно связную окрестность x.

Пример 1. Открытое подмножество нормированного пространства локально линейно связно.

Пример 2. ∀ топологическое многообразие локально линейно связно.

Упражнение. Произведение топологических многообразий — топологическое многообразие (в конце доказать по индукции).

Предложение. X — локально линейно связное топологическое пространство. Тогда его линейно связные компоненты открыты в X и совпадают со связными компонентами. В частности: X связно \Leftrightarrow оно линейно связно.

Доказательство. Пусть $A \subset X$ — линейно связная компонента. $\forall x \in A \exists$ линейно связная окрестность $U_x \ni x. \Rightarrow A \cup U_x$ линейно связно $\Rightarrow A = A \cup U_x$ в силу максимальности A, т.е. $U_x \subset A. \Rightarrow A = \bigcup_x U_x$ открыто.

Пусть B — связная компонента X, т.ч. $A \subset B$. $B \setminus A = \bigcup \{$ линейно связных компонент $B \setminus A$ открыто $\Rightarrow B = A \cup (B \setminus A)$, где A, $B \setminus A$ открыты, B связно $\Rightarrow B \setminus A = \emptyset$, т.е. A = B. \square

16 Компактные топологические пространства

X — множество, $\mathfrak{U} \subset 2^X$.

Определение. \mathfrak{U} — покрытие подмножества $Y \subset X$ (\mathfrak{U} покрывает Y или Y покрывается семейством \mathfrak{U}), если $\bigcup \mathfrak{U} \supset Y$. Если X — топологическое пространство, то открытое покрытие X — это покрытие X открытыми множествами.

Определение. Топологическое пространство X **компактно** \Leftrightarrow каждое открытое покрытие X содержит конечное подпокрытие (т.е. конечное подсемейство, покрывающее X).

Определение. X — множество, $\mathfrak{F} \subset 2^X$. \mathfrak{F} — центрированное семейство $\Leftrightarrow \forall$ конечного $\mathfrak{F}_0 \subset \mathfrak{F}$ $\bigcap \mathfrak{F}_0 \neq \varnothing$.

Предложение. Топологическое пространство X компактно \Leftrightarrow каждое центрированное семейство его замкнутых поднможеств имеет непустое пересечение.

Доказательство. Пусть $X - \forall$ множество, $\mathfrak{F} \subset 2^X$, $\mathfrak{U} = \{X \backslash F : F \in \mathfrak{F}\}$. Заметим:

- $(1) \bigcap \mathfrak{F} = \emptyset \Leftrightarrow \mathfrak{U}$ покрытие X;
- (2) \mathfrak{F} центрированное \Leftrightarrow никакое конечное подсемейство в \mathfrak{U} не покрывает X. Из (1), (2) получаем требуемое. \square

Предложение. X — топологическое пространство, $Y \subset X$. Y компактно (в индуцированной топологии) \Leftrightarrow каждое покрытие Y множествами, открытыми в

X, имеет конечное подпокрытие.

Доказательство. (\Rightarrow) Пусть $\{U_i : i \in I\}$ — покрытие Y множествами, открытыми в X. Обозначим $V_i = U_i \cap Y \Rightarrow \{V_i : i \in I\}$ — покрытие Y множествами, открытыми в $Y, \Rightarrow \exists i_1, ..., i_n \in I$, т.ч. $Y = V_{i_1} \cup ... \cup V_{i_n} \Rightarrow Y \subset U_{i_1} \cup ... \cup U_{i_n}$.

(\Leftarrow) Пусть $\{V_i : i \in I\}$ — покрытие Y множествами, открытыми в Y. $\forall i \in I \exists$ открытое $U_i \subset X$, т.ч. $V_i = U_i \cap Y$. $\Rightarrow \{U_i : i \in I\}$ — покрытие $Y \Rightarrow \exists i_1, ..., i_n$, т.ч. $Y \subset U_{i_1} \cup ... \cup U_{i_n} \Rightarrow Y = V_{i_1} \cup ... \cup V_{i_n} \Rightarrow Y$ компактно. \square

Пример 1. Конечное топологическое пространство компактно.

Пример 2. Дискретное пространство компактно \Leftrightarrow оно конечно.

Пример 3. Антидискретное пространство компактно.

Теорема. Отрезок $[a,b] \subset \mathbb{R}$ компактен.

Доказательство. См. курс анализа.

16.1 Свойства компактных пространств

Теорема (свойства компактных пространств)

- (1) $f:X\to Y$ непрерывно, X компактно $\Rightarrow f(x)$ компактно;
 - (2) X компактен, $Y \subset X$ замкнуто $\Rightarrow Y$ компактно;
- $(3)\ X-\text{хаусдорфово},\ A,B\subset X\ компактен},\ A\cap B=\varnothing\Rightarrow\exists\ \text{открытые}\ U,V\subset X,\ \text{т.ч.}\ A\subset U,B\subset V,U\cap V=\varnothing;$

- (4) X хаусдорфово, $Y \subset X$ компактно $\Rightarrow Y$ замкнуто в X;
- (5) X метрическое пространство, $Y \subset X$ компактно $\Rightarrow Y$ ограничено;
- (6) X компактно, Y хаусдорфово, $f: X \to Y$ непрерывно $\Rightarrow f$ замкнуто (т.е. \forall замкнутых $B \subset X$ f(B) замкнуто в Y);
- (7) X компактно, Y хаусдорфово, $f: X \to Y$ непрерывная биекция $\Rightarrow f$ гомеоморфизм.

Напоминание. X — метрическое пространство, $A \subset X$.

 $\operatorname{diam} A = \sup \{ \rho(x, y) \colon x, y \in A \} \in [0; +\infty] -$ диаметр A.

Определение. A ограничено $\Leftrightarrow \operatorname{diam} A < \infty$.

Предложение. A ограничено $\Leftrightarrow A$ содержится в некотором шаре.

Доказательство. (\Leftarrow) $A \subset \overline{B}_r(x) \Rightarrow \operatorname{diam} A \leq 2r < \infty$.

 (\Rightarrow) Обозначается $d = \operatorname{diam} A; x \in A \Rightarrow A \subset \overline{B}_d(x)$. \square

Доказательство теоремы. (1) Можем считать: f(X) = Y. Пусть $U \subset 2^Y - 0$ открытое покрытие $\Rightarrow \{f^{-1}(V) : V \in U\} - 0$ ткрытое покрытие $X \Rightarrow \exists V_1, ..., V_n \in V$

U, т.ч. $\{f^{-1}(V_i): 1 \le i \le n\}$ — покрытие $X \stackrel{f \text{ сюръекция}}{\Rightarrow} \{V_i: 1 \le i \le n\}$ — покрытие Y.

- (2) Пусть U покрытие Y множествами, открытыми в $X\Rightarrow U\cup\{X\backslash Y\}$ открытое покрытие $X\Rightarrow\exists V_1,...,V_n\in U$, т.ч. $X=V_1\cup...\cup V_n\cup (X\backslash Y)\Rightarrow Y\subset V_1\cup...\cup V_n\Rightarrow Y$ компактно.
- (3) Зафиксируем $x \in A$. $\forall y \in B \exists$ открытое $U_{xy} \ni x, V_{xy} \ni y,$ т.ч. $U_{xy} \cap V_{xy} = \varnothing$.

 $\{V_{xy}\colon y\in B\}$ — покрытие $B\Rightarrow B\subset V_{xy_1}\cup\ldots\cup V_{xy_n}\stackrel{\text{обозначим}}{=}V_x$. Обозначим $U_x=U_{xy_1}\cap\ldots\cap U_{xy_n}$. $\Rightarrow U_x,\ V_x\subset X$ открыто, $x\in U_x,\ B\subset V_x,\ U_x\cap V_x=\varnothing$.

 $\{U_x\colon x\in A\}$ — покрытие $A\Rightarrow A\subset U_{x_1}\cup\ldots\cup U_{x_n}\stackrel{\text{обозначим}}{=}U.$

Обозначим $V=V_{x_1}\cap\ldots\cap V_{x_n}\Rightarrow U,V\subset X$ — искомое.

- (4) Пусть $x \in X \backslash Y$. Применим (4) к $\{x\}$ и $Y \Rightarrow \exists$ открытое $U \ni x, \ U \cap Y = \varnothing \Rightarrow x \notin \overline{Y} \Rightarrow Y = \overline{Y}$.
- (5) Зафиксируем $\forall x \in X \Rightarrow X = \bigcup_{r>0} B_r(x) \Rightarrow \exists r_1,...,r_n > 0$, т.ч. $Y \subset \bigcup_{i=1}^n B_{r_i}(x) = B_R(x)$, где $R = \max_{1 \le i \le n} r_i$.
- (6) Пусть $B \subset X$ замкнуто $\stackrel{(2)}{\Rightarrow} B$ компактно $\stackrel{(1)}{\Rightarrow} f(B)$ компактно $\stackrel{(4)}{\Rightarrow} f(B)$ замкнуто в Y.
- (7) частный случай (6) (т.к. гомеоморфизм то же, что замкнутая непрерывная биекция). \square

Следствие. X — компактное топологическое пространство, $X \neq \emptyset, f \in C(X, \mathbb{R}) \Rightarrow f$ ограничена и принимает наибольшее и наименьшее значения.

Доказательство. Теорема $(1) \Rightarrow f(X) \subset \mathbb{R}$ компактно $\stackrel{(5)}{\Rightarrow} f(X)$ ограничено, т.е. f ограничена. Обозначим $a = \inf f(X)$, $b = \sup f(X)$. Из (4) теоремы: f(X) замкнуто в $\mathbb{R} \Rightarrow a, b \in f(X)$, т.е. $a = \min_{x \in X} f(x)$, $b = \max_{x \in X} f(x)$. \square

17 Некоторые свойства центрированных семейств

X — множество.

Определение. Семейство $\mathfrak{F} \subset 2^X$ называется центрированным, если \forall конечного $\mathfrak{F}_0 \subset \mathfrak{F} \quad \bigcap \mathfrak{F}_0 \neq \varnothing$.

Предложение 1. Топологическое пространство X компактно $\Leftrightarrow \forall$ центрированного семейства \mathfrak{F} замкнутых подмножеств $X \cap \mathfrak{F} \neq \varnothing$.

Доказательство. Было.

Предложение 2. Топологическое пространство X компактно $\Leftrightarrow \forall$ центрированного семейства \mathfrak{F} замкнутых подмножеств $X \cap \{\overline{A} : A \in \mathfrak{F}\} \neq \varnothing$.

Доказательство. (←) Из предложения 1.

- (\Rightarrow) Семейство $\{\overline{A} \colon A \in \mathfrak{F}\}$ центрированное. Далее см. предложение 1. \square **Лемма.** X, Y множества.
- (1) $\mathfrak{R} \subset 2^X$ центрированное семейство, $g: X \to Y$ отображение $\Rightarrow \{g(A): A \in \mathfrak{F}\}$ центрированное семейство.
- (2) \forall центрированного семейства $\mathfrak{F} \subset 2^X$ \exists максимальное центрированное семейство, содержащее \mathfrak{F} , т.е. такое центрированное семейство, которое не содержится ни в каком строго большем центрированном семействе подмножеств X).
- (3) Пусть $\mathfrak{F} \subset 2^X$ максимальное центрированное семейство $\Rightarrow \forall A_1, ..., A_n \subset \mathfrak{F}$ выполнено $A_1 \cap ... \cap A_n \in \mathfrak{F}$.

Доказательство. (1) $\forall A_1,...,A_n \in \mathfrak{F}$ $\bigcap_{i=1}^n g(A_i) \supset g(\bigcap_{i=1}^n A_i) \neq \varnothing$, где $\bigcap_{i=1}^n A_i \neq \varnothing$.

- (2) Обозначим $\Gamma = \{ \varepsilon \subset 2^X : \varepsilon > \mathfrak{F} \}.$
- (Γ, \subset) ЧУМ. Покажем: Γ удовлетворяет условию леммы Цорна.

Пусть $\Pi \subset \Gamma$ — линейно упорядоченное подмножество. Обозначим $\mathfrak{H} = \bigcap \{ \varepsilon : \varepsilon \in \Pi \}$. Покажем: \mathfrak{H} центрированное.

Пусть $H_1, ..., H_n \in \mathfrak{H} \Rightarrow \forall i = 1, ..., n \quad H_i \in \varepsilon_i,$ где $\varepsilon_i \in \Pi$.

 $\exists k$, т.ч. $\varepsilon_i \subset \varepsilon_k \quad \forall i=1,...,n \Rightarrow H_1,...,H_n \in \varepsilon_k \Rightarrow \bigcap_{i=1}^n H_i \neq \varnothing \Rightarrow \mathfrak{H}$ центрированное $\Rightarrow \mathfrak{H} \in \Gamma$ и $\mathfrak{H} \supset \varepsilon \quad \forall \varepsilon \in \Pi \Rightarrow \Gamma$ удовлетворяет условию Леммы Цорна \Rightarrow в Γ есть максимальный элемент.

(3) Семейство $\{A_1 \cap ... \cap A_n \colon A_i \in \mathfrak{F}, \ n \in \mathbb{N}\}$ центрированное и содержит $\mathfrak{F} \Rightarrow$ оно равно \mathfrak{F} . \square

18 Теорема Тихонова (очень важная)

Теорема (А. Н. Тихонов). $(X_i)_{i \in I}$ — семейство компактных топологических пространств $\Rightarrow \prod_{i \in I} X_i$ компактно.

Доказательство. Обозначим $X = \prod_{i \in I} X_i$. Пусть $\mathfrak{F} \subset 2^X$ — центрированное семейство.

 $\Pi(2) \Rightarrow \exists$ максимальное центрированное семейство \mathfrak{F}_{\max} , $\mathfrak{F} \subset \mathfrak{F}_{\max}$.

Достаточно доказать: $\bigcap \{\overline{A} \colon A \in \mathfrak{F}_{\max}\} \neq \emptyset$ (см. предложение 2) (*)

 $\forall i \in I$ обозначим $p_i \colon X \to X_i$ каноническую проекцию.

Семейство $\{p_i(A): A \in \mathfrak{F}_{\max}\} \subset 2^{X_i}$ — центрированное $(\Pi(1))$. Предложение $(2) \Rightarrow \exists x_i \in X_i, \text{ т.ч. } x_i \in \overline{p_i(A)} \quad \forall A \in \mathfrak{F}_{\max}.$ Обозначим $x = (x_i)_{i \in I} \in X$.

Пусть U — базисная окрестность x вида $U=\bigcap_{i\in J}p_i^{-1}(U_i)$, где $J\subset I$ конечное, $U_i\subset X_i$ — открыто.

Покажем: $U \cap A \neq \emptyset \quad \forall A \in \mathfrak{F}_{\max}$.

 $\forall i \in J \quad x_i = p_i(x) \in U_i \Rightarrow U_i \cap p_i(A) \neq \varnothing \quad A \in \mathfrak{F}_{\max} \Rightarrow p_i^{-1}(U_i) \cap A \neq \varnothing \quad \forall A \in \mathfrak{F}_{\max}.$

- $\overset{\Pi(3)}{\Rightarrow} \mathfrak{F}_{\max} \cup \{p_i^{-1}(U_i)\}$ центрированное $\Rightarrow p^{-1}(U_i) \in \mathfrak{F}_{\max}$ (в силу максимальности) $\forall i \in J$.
- $\overset{\Pi(3)}{\Rightarrow}U\in\mathfrak{F}_{\max}\Rightarrow \forall A\in\mathfrak{F}_{\max}U\cap A\neq\varnothing\Rightarrow \forall A\in\mathfrak{F}_{\max}\quad x\in\overline{A},$ т.е. $x\in\bigcap\{\overline{A}\colon A\in\mathfrak{F}_{\max}\Rightarrow(*)$ доказано. \square

Следствие. Подмножество $X\subset\mathbb{R}^n$ компактно $\Leftrightarrow X$ замкнуто и ограничено (в евклидовой метрике).

Доказательство. (\Rightarrow) — из свойств компактных пространств.

 $(\Leftarrow)\ X$ ограничено $\Rightarrow X$ содержится в замкнутом кубе $C\subset \mathbb{R}^n,\ C$ компактен как произведение отрезков, X замкнут в $C\Rightarrow X$ компактен. \square

19 Локально компактные пространства

Определение. Топологическое пространство X **локально компактно** $\Leftrightarrow \forall x \in X \; \exists \; \text{окрестность} \; U \ni x, \; \text{т.ч.} \; \overline{U} \; \text{компактно}.$ Предупреждение: в разной литературе локальная компактность может пониматься по-разному.

Примеры. (1) компактность \Rightarrow локальная компактность;

- (2) Дискретное пространство локально компактно;
- (3) \mathbb{R}^n со стандартной топологией локально компактно (хотя само, конечно, не компактно);
- (4) (чуть более общий пример) Открытое подмножество в \mathbb{R}^n локально компактно;
 - (5) Топологическое многообразие локально компактно;

(6) \mathbb{Q} не локально компактно. Действительно: \forall интервала (a,b) замыкание $(a,b) \cap \mathbb{Q}$ в \mathbb{Q} — это $[a,b] \cap \mathbb{Q}$ — некомпактно (т.к. в \mathbb{R} он не замкнут);

 $(7) \ \mathbb{R}^{\mathbb{N}}$ не локально компактно. Действительно: пусть $U \subset \mathbb{R}^{\mathbb{N}}$ — базисное открытое множество, $U = \prod_{i \in \mathbb{N}} U_i, \ U_i \subset \mathbb{R}$, причем все U_i , кроме их конечного числа, — это \mathbb{R} . Зафиксируем $i \in \mathbb{N}$, т.ч. $U_i = \mathbb{R}$. Обозначим $p_i \colon \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ — каноническая проекция.

 $p_i(\overline{U}) = \mathbb{R}$ — некомпактен $\Rightarrow \overline{U}$ некомпактен $\Rightarrow \mathbb{R}^{\mathbb{N}}$ не локально компактен.

Предложение (доказательство в других курсах). Любое бесконечномерное нормированное пространство не локально компактно.

Предложение 1. $X_1, ..., X_n$ — локально компактные пространства $\Rightarrow \prod_{i=1}^n X_i$ локально компактно.

Доказательство. $\forall x = (x_1, ..., x_n) \in \prod_{i=1}^n x_i, \forall i = 1, ..., n \; \exists \; \text{окрестность} \; U_i \ni x_i,$ т.ч. $\overline{U_i}$ компактно.

 $U = \prod_{i=1}^{n} U_{i}$ — окрестность $x, \ \overline{U} = \prod_{i=1}^{n} \overline{U_{i}}$ (упражнение) $\Rightarrow \overline{U}$ компактно. \square Наблюдение. Произведение бесконечного числа локально компактных про-

Наблюдение. Произведение бесконечного числа локально компактных пространств необязательно локально компактно — см пример 7.

Предложение 2. X — локально компактное пространство, $Y \subset X$ замкнуто $\Rightarrow Y$ локально компактно.

Доказательство. $\forall y \in Y \; \exists U \subset X, \; U \ni y, \; \text{т.ч.} \; \overline{U} \; \text{компактно.}$

 $U\cap Y$ — окрестность y в Y, замыкание $U\cap Y$ в Y равно $\overline{U}\cap Y,$ где \overline{U},Y замкнуты.

 $\overline{U}\cap Y$ — замкнутое подмножество в $\overline{U}\Rightarrow$ оно компактно. \square

Предложение 3. X — хаусдорфово локальное компактное пространство, $Y \subset X$ открыто $\Rightarrow Y$ локально компактно.

Лемма. X — хаусдорфово локальное компактное пространство, $x\in X$. Тогда \forall окрестности $U\ni x$ \exists окрестность $V\ni x$, т.ч. \overline{V} компактно и $\overline{V}\subset U$.

Доказательство. \exists окрестность $W\ni x$, т.ч. \overline{W} компактно. $K=\overline{W}\backslash U$ замкнуто в $\overline{W}\Rightarrow K$ компактно, $x\not\in K$.

 \exists открытые $U',V'\subset X$, т.ч. $K\subset U',x\in V',U'\cap V'=$

 \varnothing . Обозначим $V=V'\cap W$. V — окрестность $x;\ \overline{V}\subset \overline{W}\Rightarrow \overline{V}$ компактно.

$$\overline{V} \subset \overline{V'} \cap \overline{W} \subset \overline{(X \backslash U')} \cap \overline{W} = (X \backslash U') \cap \overline{W} \subset (X \backslash K) \cap \overline{W} \subset \overline{W} \backslash K \subset U. \square$$

Доказательство предложения 3. $\forall y \in Y \; \exists \;$ окрестность $V \ni y \;$ в X, т.ч. \overline{V} компактно, $\overline{V} \subset Y \;$ (см. лемму) $\Rightarrow V -$ окрестность $y \;$ в Y, замыкание $V \;$ в Y - это $\overline{V} \cap Y = \overline{V} -$ компактно. \square

Пусть $X - \forall$ топологическое пространство.

20 Одноточечная компактификация

Обозначим $X_{+} = X \sqcup \{\infty\}$ — дизъюнктное объединение множеств.

Обозначим $\tau_+ = \{U \subset X : U \text{ открыто в } X\} \cup \{U \subset X_+ \backslash U \text{ компактно и замкнуто в } X\}.$

Упражнение. τ_+ — топология на X_+ .

Определение. (X_+, τ_+) — одноточечная компактификация X.

Определение. X, Y — топологические пространства. Отображение $f \colon X \to Y$ — **открытое вложение** $\Leftrightarrow f$ непрерывно, инъективно и открыто.

Наблюдение. f — открытое вложение $\Rightarrow f$ — гомеоморфизм X на f(X).

Теорема. X — топологическое пространство.

- (1) $i_X: X \to X_+$ открыто вложение;
- (2) X_+ компактно;
- (3) X_{+} хаусдорфово $\Leftrightarrow X$ хаусдорфово и локально компактно;
- (4) Если X компактно, то X_+ дизъюнктное объединение X и $\{\infty\}$ как топологических пространств, $\{\infty\}$ изолированная точка X_+ ;
 - (5) X некомпактно $\Leftrightarrow X$ плотно в X_+ .

Доказательство. (1) i_X инъективно (очевидно) и открыто — из определения τ_+ . Докажем непрерывность. $U\subset X_+$ открыто. Если $\infty\not\in U\Rightarrow i_X^{-1}(U)=U$ и U открыто в X.

Если $\infty \in U$, то $i_X^{-1}(U)=U\cap X=X\backslash (X_+\backslash U)$, где $(X_+\backslash U)$ замкнуто в X, — открыто в X.

- (2) Пусть $\{U_i\}_{i\in I}$ открытое покрытие X_+ . $\exists j\in I$, т.ч. $\infty\in U_j$. $X_+\backslash U_j$ компактно, $\{U_i\}_{i\in I}$ покрытие $X_+\backslash U_j\Rightarrow\exists i_1,...,i_n\in I$, т.ч. $X_+\backslash U_j\subset U_{i_1}\cup...\cup U_{i_n}\Rightarrow X_+=U_j\cup U_{i_1}\cup...\cup U_{i_n}$.
- (3) (\Rightarrow) Пусть X_+ хаусдорфово. Из (1): топология на X, индуцированная из X_+ , совпадает с исходной топологией на $X\Rightarrow X$ хаусдорфово.

Пусть $x \in X$. \exists открытые $U, V \subset X_+$, т.ч. $x \in U, \infty \in V, U \cap V = \varnothing \Rightarrow U$ — окрестность x в X; $X_+ \backslash V \Rightarrow \overline{U} \subset X_+ \backslash V$ (где \overline{U} — замыкание U в X) $\Rightarrow \overline{U}$ компактно.

 (\Leftarrow) Пусть X хаусдорфово и локально компактно, $x,y\in X_+, x\neq y$. Покажем: \exists открытое $U,V\subset X_+,U\ni x,V\ni y,U\cap V=\varnothing$. Если $x,y\in X$, то такие $U,V\exists$, т.к. X хаусдорфово.

Пусть $x \in X, y = \infty$. \exists открытое $U \subset X, x \in U$, т.ч. \overline{U} компактно (где \overline{U} — замыкание U в X). Обозначим $V = X_+ \backslash \overline{U}$. $\infty \in V, U \cap V = \varnothing, V$ открыто (т.к. $X_+ \backslash V = \overline{U}$ замкнуто в X и компактно).

 $(4) \ X_{+} \setminus \{\infty\} = X$ — замыкнуто в X и компактно $\Rightarrow \{\infty\}$ — открытое подмножество $X_{+} \Rightarrow \{\infty\}$ — изолированная точка X_{+} .

 \forall открытого $U \subset X_+$ $U \cap X$ открыто и $U \cap \{\infty\}$ открыто (как пересечение двух открытых) $\Rightarrow \tau_+$ — топология дизъюнктного объединения X и $\{\infty\}$.

- $(5) (\Leftarrow) -$ из (4).
- (\Rightarrow) Если X не плотно в X_+ , то \exists открытое непустое $U\subset X_+, U\cap X=\varnothing\Rightarrow U=\{\infty\}\Rightarrow X_+\backslash U=X$ компактно. \square

Предложение. Y — компактное хаусдорфово топологическое пространство, $y_0 \in Y, X = Y \setminus \{y_0\}$. Определим $f: X_+ \to Y$ так: $f(x) = x \quad \forall x \in X, f(\infty) = y_0$. Тогда f — гомеоморфизм.

Доказательство. Очевидно, f — биекция \Rightarrow можем отождествить X_+ и Y как множества: $y_0 = \infty$. Обозначим $\tau =$ исходная топология на Y. Осталось доказать: $\tau = \tau_+$.

Пусть $U \in \tau$. Если $y_0 \notin U \Rightarrow U$ — открытое подмножество $X \Rightarrow U \in \tau_+$.

Если $y_0 \in U$, то $Y \setminus U$ замкнуто в $Y \Rightarrow Y \setminus U$ компактно и содержится в X. Оно замкнуто в X, т.к. X хаусдорфово.

Доказали, что $\tau \subset \tau_+$. Это значит, что отображение $I: (Y, \tau_+) \to (Y, \tau), \ I(y) = y$, непрерывно. Т.к. (Y, τ_+) компактно, а (Y, τ) — хаусдорфово, то есть I — непрерывная биекция из компактного пространства в хаусдорфово, то I — гомеоморфизм $\Rightarrow \tau = \tau_+$. \square

Примеры. (1) $[0;1)_+ \cong [0;1]$ (см. предложение).

- (2) $(0;1)_+ \cong S^1$ $S^1 = \{z \in \mathbb{C} : |z| = 1\}.$
- $f:(0;1)\to S^1\backslash\{1\}, f(t)=e^{2\pi it}$ гомеоморфизм (упражнение). Из предложения $(0,1)_+\cong (S^1\backslash\{1\}_+)\cong S^1.$

(4) (упражнение) $(\mathbb{R}^n)_+ \cong S^n$.

21 Эквивалентность норм

X — векторное пространство над \mathbb{K} ($\mathbb{K} = \mathbb{R}, \mathbb{C}$).

Пусть $||\cdot||'$ и $||\cdot||''$ — нормы на $X; \tau', \tau''$ — порожденные ими топологии на X.

Определение. 1) $||\cdot||'$ мажорируется $||\cdot||''$ ($||\cdot||' \prec ||\cdot||''$) $\Leftrightarrow \tau' \subset \tau''$;

 $|2| ||\cdot||'$ и $||\cdot||''$ эквиваленты $(||\cdot||' \sim ||\cdot||'') \Leftarrow \tau' = \tau''$.

Предложение. Следующие свойства эквивалентны:

 $(1) ||\cdot||' \prec ||\cdot||'';$

(2) Ms $x_n \xrightarrow{\sigma''} x \Rightarrow x_n \xrightarrow{\sigma'} x$;

(3) $\exists C > 0$, t.y. $\forall x \in X ||x||' \le C||x||''$.

Доказательство. (1) \Leftrightarrow Отображение $I:(X,\tau'')\to (X,\tau'),\ I(x)=x,$ непрерывно \Leftrightarrow оно секвенциально непрерывно \Leftrightarrow (2).

 $(3)\Rightarrow (2)$. Пусть $x_n\underset{\tau''}{\rightarrow} x$, т.е. $||x_n-x||''\rightarrow 0\Rightarrow ||x_n-x||'\leq C||x_n-x||''\rightarrow 0\Rightarrow ||x_n-x||'\rightarrow 0$, т.е. $x_n\underset{\tau'}{\rightarrow} x$.

(2) \Rightarrow (3). Пусть (3) не выполнено. $\Rightarrow \forall n \in \mathbb{N} \exists x_n \in X$, т.ч. $||x_n||' > n^2 ||x_n||''$. Обозначим $y_n = \frac{x_n}{n||x_n||''}$. $||y_n||'' = \frac{||x_n||''}{n||x_n||''} = \frac{1}{n} \to 0 \Rightarrow y_n \underset{\tau''}{\to} 0$.

$$||y_n||' = \frac{||x_n||'}{n||x_n||''} > \frac{n^2||x_n||''}{n||x_n||''} = n \to \infty \Rightarrow y_n \underset{\tau'}{\not\to} 0$$
 — противоречие с (2). \square

Следствие. $||\cdot||' \sim ||\cdot||'' \Leftrightarrow \exists c, \ C > 0, \text{ т.ч. } \forall x \in X \quad c||x||' \leq ||x||'' \leq C||x||'.$

Теорема. На конечномерном векторном пространстве любые две нормы эквиваленты.

Доказательство. Пусть $||\cdot||$ — какая-либо норма на \mathbb{K}^n . Покажем: $||\cdot|| \sim ||\cdot||_2$,

где $||\cdot||_2$ — евклидова норма: $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$. $\forall x = (x_1, ..., x_n \in \mathbb{K}^n)$.

$$||x|| = ||\sum_{i=1}^{n} x_i e_i|| \le \sum_{i=1}^{n} |x_i||e_i|| \le \sqrt{\sum_{i=1}^{n} |x_i|^2} \sqrt{\sum_{i=1}^{n} ||e_i||^2} = C||x||_2 \Rightarrow ||\cdot|| \prec ||\cdot||_2,$$

где $e_i = (0...010...0)$.

Обозначим f(x) = ||x||. Покажем: f непрерывна на $(\mathbb{K}^n, ||\cdot||_2)$. $\forall x, y \in \mathbb{K}^n \quad |f(x) - f(y)| = |||x|| - ||y||| \le ||x - y|| \le C||x - y||_2 \Rightarrow$ из $x_n \xrightarrow{\|\cdot\|_2} x$ следует $f(x_n) \to f(x)$.

 $\Rightarrow f$ секвенциально непрерывна, т.е. непрерывна на $(\mathbb{K}^n, ||\cdot||_2)$. Обозначим $S = \{x \in \mathbb{K}^n \colon ||x||_2 = 1\}$. S компактна (т.к. замкнута и ограничена). f непрерывна на $S \Rightarrow \exists \min_{x \in S} f(x) = a > 0$.

$$\forall x \in \mathbb{K}^n \setminus \{0\}$$
 рассмотрим $y = \frac{x}{||x||_2}$. $y \in S \Rightarrow f(y) = ||y|| \ge a$, т.е. $||\frac{x}{||x||_2}|| \ge a$,

T.e.
$$||x|| \ge a||x||_2 \Rightarrow ||\cdot|| \sim ||\cdot||_2$$
. \square

Теорема' (эквивалентна предыдущей). Любая норма на \mathbb{K}^n задает на \mathbb{K}^n топологию произведения $\underbrace{\mathbb{K} \times ... \times \mathbb{K}}_{n}$.

22 Факторпространства

Пусть X — множество, \sim — отношение эквивалентности на X.

Обозначение. $\forall x \in X \ [x] = \{y \in X : y \sim x\}$ — класс эквивалентности x.

Напоминание. Классы эквивалентности образуют разбиение X, то есть два класса эквивалентности либо равны, либо не пересекаются.

Обозначание. Факторпространство X по \sim — это множество $X_{/\sim}=\{[x]:$ $x \in X$.

Обозначение. $q\colon X \to X_{/\sim}, \ q(x) = [x]$ — отображение факторизации.

Пусть теперь X — топологическое пространство.

Определение. Фактортопология на $X_{/\sim}$ — финальная топология au_q , порожденная q. Т.е.: $U \in \tau_q \Leftrightarrow q^{-1}(U)$ открыто в X.

Определение. $(X_{/\sim}, au_q)$ — факторпространство X по \sim .

Теорема 1 (свойства фактортопологии)

(1) au_q — самая тонкая топология на $X_{/\sim}$, в которой q непрерывно.

(2) Если Y — топологическое пространство, то отображение $g\colon X_{/\sim}\to Y$ непрерывно $\Leftrightarrow g\circ q\colon X\to Y$ непрерывно.

Доказательство. См. теорему о свойствах финальной топологии.

Теорема 2 (универсальное свойство факторпространств) Пусть Y — топологическое пространство, $f: X \to Y$

— непрерывное отображение, постоянное на классах эквивалентности, т.е. из $x \sim y \Rightarrow f(x) = f(y)$. Тогда $\exists !$ непрерывное \widetilde{f} , делающее эту диаграмму коммутативной.

Доказательство. $\forall u \in X_{/\sim}$ выберем $\forall x \in u$ и положим $X \longrightarrow Y$ $\widetilde{f}(u) = f(x)$. Если $x, y \in \omega$ $\widetilde{f}(x) = \widetilde{f}(x)$. Если $\widetilde{f}(x) \in \widetilde{f}(x)$ $\widetilde{f}(x) = \widetilde{f}(x)$. По построению $\widetilde{f}(x) \in \widetilde{f}(x)$ означает, что $\widetilde{f}(x) \in \widetilde{f}(x)$ $\widetilde{f}(u) = f(x)$. Если $x,y \in u \Rightarrow f(x) = f(y)$ по условию

По построению \widetilde{f} делает диаграмму (1) коммутативной (т.к. определение \widetilde{f} означает, что $\widetilde{f}(a(x)) = f(x) \ \forall x)$ и является единственным отображением с этим свойством. Из

теоремы 1 и непрерывности f получаем непрерывность f. \square

Теорема 3. Пусть выполнены условия теоремы 2. Тогда:

- (1) f сюръекция $\Leftrightarrow f$ сюръекция;
- (2) \widetilde{f} инъекция $\Leftrightarrow \forall x, y \in X$ условия $x \sim y$ и f(x) = f(y) эквивалентны;
- (3) Пусть X компактно, Y хаусдорфово и выполнены (1), (2) $\Rightarrow \widetilde{f}$ гомеоморфизм.

Доказательство. (1) $\widetilde{f}(X_{/\sim}) = \widetilde{f}(q(X)) = f(X)$.

Доказательство. (1)
$$f(X_{/\sim}) = f(q(X)) = f(X)$$
.
 (2) \widetilde{f} — инъекция $\Leftrightarrow \forall u, v \in X_{/\sim}(\widetilde{f}(u) = \widetilde{f}(v) \Leftrightarrow u = v) \Leftrightarrow \forall x, y \in X$ $(\widetilde{f}(q(x)) = f(x)) \Leftrightarrow x \sim y)$.
 $= f(y)$

(3) X компактно $\Rightarrow X_{/\sim} = q(X)$ компактно; из (1), (2): \widetilde{f} — непрерывная биекция $\Rightarrow \widetilde{f}$ — гомеоморфизм. \square

Пример 1. Введем отношение эквивалентности на $[0,1]:0\sim 1$, остальные классы эквивалентности — одноэлементные множества. Покажем: $[0,1]_{/\sim} \simeq S^1$.

$$S^1=\{z\in\mathbb{C}\colon |z|=1\}$$

$$[0;1]\xrightarrow{f} S^1 \qquad f(t)=e^{2\pi it}$$

$$f$$
 удовлетворяет условию теоремы $3\Rightarrow \widetilde{f}-$ гомеоморфизм.

Пример 2. Введем отношение эквивалентности на $[0,1] \times [0,1]$:

$$(t,0) \sim (t,1), (0,t) \sim (1,t) \ \forall t \in [0,1].$$

Остальные классы эквивалентности — одноэлементные множества.

Покажем:
$$([0,1] \times [0,1])_{/\sim} \simeq T^2$$
 $f(s,t)=(e^{2\pi s},e^{2\pi it}).$ f удовлетворяет условию теоре-

мы $3 \Rightarrow \widetilde{f}$ — гомеоморфизм.

Пример 3. Введем отношение эквивалентности на $\mathbb{R}: x \sim$ $y \Leftrightarrow x-y \in \mathbb{Q}$. Покажем: топология на $\mathbb{R}_{/\sim}$ антидискретна.

Пусть $U \subset \mathbb{R}_{/\sim}$ открыто, непусто $\Rightarrow q^{-1}(U) \subset \mathbb{R}$ открыто, непусто и инвариантно относительно сдвигов на различные числа (т.е. если $x \in q^{-1}(U)$, то $\forall r \in \mathbb{Q} \ x + r \in q^{-1}(U)) \Rightarrow q^{-1}(U) =$ $\mathbb{R} \Rightarrow U = q(q^{-1}(U)) = q(\mathbb{R}) = \mathbb{R}_{/\sim} \Rightarrow$ фактортопология антидискретна.

Частный случай фактопространств: стягивание подмно-23 жества в точку

X — топологическое пространство, $A \subset X$.

Введем на X отношение эквивалентности: $x \sim y \Leftrightarrow$ либо x = y, либо $x, y \in A$.

Обозначение. $X / A = X / \sim$.

Говорят, Х / А получено из Х стягиванием А в точку.

Пример 1. $[0,1]/\{0,1\} \cong S^1$ (см. прошлую лекцию).

Лемма. Пусть Y — хаусдорфово топологическое простран-X — СТВО, X — X ство, $X\subset Y$ — открытое множество. Рассмотрим f: Y \to

Доказательство. Пусть $U \subset X_{+}$ открыто. Предположим: $\infty \not\in U \Rightarrow U \subset X, U$ открыто в $X \Rightarrow f^{-1}(U) = U \Rightarrow U$ открыто

вY.

Пусть теперь $\infty \in U \Rightarrow K = X_{+_{\backslash U}} \subset X, \ K$ компактен $\Rightarrow K$ замкнут в $Y\Rightarrow f^{-1}(U)=Y$ $f^{-1}(K)=Y$ K — открыто в Y. \square (Доказали, что прообраз открытого открыт \Rightarrow доказательство окончено.)

$$\overline{D} \xrightarrow{f} D_{+} \xrightarrow{\varphi} S^{2}$$
вкл

Пример 2.
$$D=\{(x,y)\in\mathbb{R}^2\colon x^2+y^2<1\}.$$
 $\overline{D}=\{(x,y):\in\mathbb{R}^2\colon x^2+y^2\leq 1\}, S^1=\partial\overline{D}.$ Покажем: $\overline{\overline{D}}/S^1\cong S^2.$

Знаем: $D_+ \cong \mathbb{R}^2_+ \cong S^2$.

Зафиксируем гомоморфизм $\varphi \colon D_+ \to S^2$.

Зафиксируем гомоморфизм
$$\varphi \colon D_+ \to S^2$$
.
$$f(x) = \begin{cases} x, & \text{если } x \in D, \\ \infty, & \text{если } x \in S^1. \end{cases}$$
 Из леммы: f непрерывна.

Обозначим $g = \varphi \circ f : \overline{D}/S^1 \cong S^2$.

Частный случай факторпространств: 23.1склейка по отображению

X, Y — топологические пространства, $A \subset$

 $Y, f: A \to X$ непрерывно.

Введем отношение эквивалентности на $X \sqcup Y : a \sim f(a) \ \forall a \in A$, остальные классы эквивалентности — одноэлементные множества.

Обозначение. $X \cup_f Y = (X \sqcup Y) / \sim -$ склейка X и Y по f.

X — топологическое пространство, \sim — отношение эквивалентности.

$$\forall x \in X \ [x] = \{ y \in X : y \sim x.$$

$$X_{/\sim} = \{[x] : x \in X \quad qX \to X_{/\sim} \quad q(x) = [x].$$

$$U\subset X_{/\sim}$$
 открыто $\Leftrightarrow q^{-1}(U)$ открыто в X .

Теорема 2 (универсальное свойство факторпространств)

f непрерывна, $x \sim y \Rightarrow f(x) = f(y)$. Тогда $\exists !$ непрерывна \widetilde{f} ,

т.ч. диаграмма коммутативна.

Теорема 3. Пусть выполняются условия теоремы 2. Тогда

- (1) \widetilde{f} сюръекция \Leftrightarrow f сюръекция;
- (2) \widetilde{f} инъекция $\Leftrightarrow \forall x, y \in X(x \sim y \Leftrightarrow f(x) = f(y)).$

(3) Если (1), (2) выполнены, X компактно, Y хаусдорфово, то \widetilde{f} — гомеоморфизм.

Пример 3. Рассмотрим $f = i_{s^1} \colon S^1 \to \overline{D}$ — отображение включения.

Покажем:
$$\overline{\overline{D}} \cup_f \overline{\overline{D}} \cong S^2$$
. Обозначим: $\overline{D_1} = \{(p,1) \colon p \in \overline{D}\}$.

$$\overline{D_{-1}} = \{(p, -1) \colon p \in \overline{D}\}.$$

$$\overline{D} \cup D = \overline{D_1} \sqcup \overline{D_1}.$$

Рассмотрим $g: \overline{D_1} \sqcup \overline{D_{-1}} \to S^2, \ g(x,y,\sqrt{1-x^2-y^2}, \ g(x,y,-1) = (x,y,-\sqrt{1-x^2-y^2})$ где $(x,y) \in \overline{D}$.

д непрерывно (свойства дизъюнктных объединений).

g сюръективно.

Пусть $p, q \in \overline{D_1} \sqcup \overline{D_{-1}}, p \neq q$.

Если q(p) = g(p), то либо $p \in \overline{D_1}$, $q \in \overline{D_{-1}}$, либо наоборот.

Пусть $p \in \overline{D_1}$, $q \in \overline{D_{-1}}$.

Тогда $g(p)=g(q)\Leftrightarrow g(p)=g(q)=(x,y,0), x^2+y^2=1\Leftrightarrow 1)p\in\partial\overline{D_1}=S^1,\ q=f(p),2)p\sim q.$

 $\Rightarrow g$ удовлетворяет условию Теоремы $3 \Rightarrow \overline{D_1} \cup_f \overline{D_{-1}} \cong S^2$.

Пусть X,Y — топологические пространства, $f\colon X\to Y$.

Определение. f — факторное $\Leftrightarrow f$ сюръективно, топология на Y совпадает с финальной топологией, порожденной $f \Leftrightarrow [f$ сюръективно, $U \subset Y$ открыто $\Leftrightarrow f^{-1}(U)$ открыто в X.]

Наблюдение. (1) Факторное \Rightarrow непрерывное.

(2) Сюръективное $f:X\to Y$ — факторное $\Leftrightarrow [B\subset Y$ замкнуто $\Leftrightarrow f^{-1}(B)$ замкнуто в X.]

Теорема 4. Пусть X, Y — топологические пространства, \sim — отношение эквивалентности на $X, q: X \to X/\sim$ — отображение факторизации, $f: X \to Y$ непрерывно.

Предположим, $[f(x) = f(y) \Leftrightarrow x \sim y].$

Тогда: $[\widetilde{f}-$ гомеоморфизм $\Leftrightarrow f-$ факторное].

Доказательство. (\Rightarrow) Пусть \widetilde{f} — гомеоморфизм \Rightarrow \widetilde{f} — сюръекция \Rightarrow f сюръекция (Теорема 3).

Пусть $U \subset Y$, $f^{-1}(U)$ открыто.

U открыто $\Leftrightarrow \widetilde{f}^{-1}(U)$ открыто $\Leftrightarrow q^{-1}(\widetilde{f}^{-1}(U))$ открыто. Поэтому f факторное. $=f^{-1}(U)$

 (\Leftarrow) Пусть f факторное. \widetilde{f} — непрерывная биекция (из Теоремы 2 и Теоремы 3).

Пусть $U \subset X/\sim$ открыто.

Из коммутативности диаграммы и из биекции \widetilde{f} $f^{-1}(\widetilde{f}(U))=q^{-1}(U)$ — открыто в X, f факторное \Rightarrow $\widetilde{f}(U)$ открыто \Rightarrow \widetilde{f} — гомеоморфизм. \square

Пусть X, Y — множества, $f: X \to Y$ — сюръекция.

Определение. Насыщение множества $A \subset X$ (относительно f) — это множество $f^{-1}(f(A))$. А **насыщено**, если $f^{-1}(f(A)) = A$.

Наблюдение. Введем отношение эквивалентности на $X: x \sim y \Leftrightarrow f(x) = f(y)$.

- $(1) \ \forall A \subset X \quad f^{-1}(f(A)) = \bigcup \{[a] : a \in A\}.$
- (2) A насыщенно $\forall a \in A \ [a] \subset A \Leftrightarrow A$ объединение некоторого семейства классов эквивалентности $\Leftrightarrow A = f^{-1}(B)$ для некоторого $B \subset Y$ (в этом случае B = f(A)).

Теорема 5. X, Y — топологические пространства, $f \colon X \to Y$ — непрерывная сюръекция.

Следующие утверждения эквивалентны:

- (1) f факторное;
- (2) \forall насыщенного открытого $U \subset X$ f(U) открыто в Y;
- (3) \forall насыщенного замыкания $B \subset X$ f(B) замкнут в Y.

Доказательство. (1) \Rightarrow (2) Пусть f факторное, $U \subset X$ открыто и насыщенно. $f^{-1}(f(U)) = U$ — открыто $\Rightarrow f(U)$ открыто.

 $(2)\Rightarrow (1)$ Пусть $V\subset Y$ таково, что $f^{-1}(V)$ открыто в X.

 $f^{-1}(V)$ насыщенно и открыто $\Rightarrow f(f^{-1}(V))$ открыто, но $f(f^{-1}(V)) = V \Rightarrow$ открыто \Rightarrow (1).

Следствие 1. X, Y — топологические пространства, $f: X \to Y$ — непрерывная сюръекция, f открыто либо замкнуто $\Rightarrow f$ факторное.

Следствие 2. X, Y — топологические пространства, $f: X \to Y$ — факторное, $Z\subset X$ — открыто либо замкнуто, Z насыщенно $\Rightarrow f_{\backslash Z}\colon Z\to f(Z)$ — факторное.

Следствие 3. X, Y — топологические пространства, $fX \to Y$ — непрерывная сюръекция, X компактно, Y хаусдорфово $\Rightarrow f$ — факторное.

Примечание X, Y — топологические пространства, $X \neq \emptyset, Y \neq \emptyset$.

Введем отношение эквивалентности на $X \times Y : (x_1, y_1) \sim (x_2, y_2) \Leftrightarrow x_1 = x_2$.

Рассмотрим $\rho: X \times Y \to X, \ \rho(x,y) = x.$ ρ открыто (упражнение) и сюръективно $\Rightarrow \rho$ факторное.

$$\rho(u) = \rho(v) \Leftrightarrow u \sim v$$
. Из Теоремы 4: $(X \times Y)_{/\sim} \cong X$.

Предложение. X — топологическое пространство, \sim — отношение эквивалетности, $q:X \to X_{/\sim}$ — отображение факторизации. Тогда $X_{/\sim}$ хаусдорфово $\Leftrightarrow \forall x,y \in X$, т.ч. $x \sim y$, \exists открытое насыщение множеств $U,V \subset X$, т.ч. $[x] \subset U, y \subset V, \ U \cap V = \varnothing.$

Доказательство. Заметим: \exists биекция между множествами $\{W \subset X_{/\sim} : W\}$ открыто} и $\{U \subset X : U \text{ открыто и насыщенно}\}: w \mapsto q^{-1}(w), \ U \mapsto q(U). \quad \square$

Пример. Вещественное проективное пространство. $n \in \mathbb{N}, \ \mathbb{R}P^n = \{l \subset$ \mathbb{R}^{n+1} : l — векторное подпространство, dim l=1 }.

 \mathbb{RP}^n снабжается финальной топологией, порожденной отображением $f\colon \mathbb{R}^{n+1}\backslash\{0\} \to$ \mathbb{RP}^n , $f(v) = \operatorname{span} v = \{\lambda v \colon \lambda \in \mathbb{R}\}.$

Эквивалентно: $\mathbb{R}P^n = (\mathbb{R}^{n+1}\setminus\{0\})/\sim$, где $u \sim v \Leftrightarrow u = \lambda v, \ \lambda \in \mathbb{R}\setminus\{0\}$.

Обозначение. $S^n = \{x \in \mathbb{R}^{n+1} : ||x||_2 = 1\}.$

Предположение. $\mathbb{RP}^n \cong S^n / \sim$, где $x \sim y \Leftrightarrow x = \pm y$.

Доказательство.

$$S^{n} \xrightarrow{i} \mathbb{R}^{n+1} \setminus \{0\} \xrightarrow{p} S^{n}$$

$$q_{1} \downarrow \qquad \qquad \downarrow q_{2} \qquad \qquad \downarrow q_{1}$$

$$S^{n}_{/\sim} \xrightarrow{f} \mathbb{RP}^{n} \xrightarrow{g} S^{n}_{/\sim}$$

- i- отображение включения; $q_1,\ q_2-$ отображение факторизации.

 q_2i постоянно на классах эквивалентности $\Rightarrow \exists !f$, т.ч. диаграмма коммутативна, f непрерывна (свойства факторпространств). Заметим: f — биекция (см. Теорему 3 из позапрошлой лекции). $p: \mathbb{R}^{n+1} \setminus \{0\} \to S^n, \ p(v) = \frac{v}{||v||_2}$.

 $q_1 p$ постоянно на классах эквивалентности $\Rightarrow \exists ! g$, т.ч. диаграмма коммутативна, g непрерывна.

 $p_i=\mathrm{id}_{S^n}\Rightarrow gf=\mathrm{id}S^n/_\sim$ (см. утверждение о единственности в универсальном свойстве факторпространств) $\Rightarrow g=f^{-1}\Rightarrow f^{-1}$ непрерывна $\Rightarrow f$ — гомеоморфизм. \square

Предложение. \mathbb{RP}^n — компактно и хаусдорфово.

Доказательство. $\mathbb{RP}^n \cong S^n_{\sim}, \ S^n$ — компактна $\Rightarrow S^n_{/\sim} = q(S^n)$ компактна (q непрерывно).

Пусть $x,y \in S^n, s \not\sim y \Rightarrow x,y,-x,-y$ попарно различны $\Rightarrow \exists r > 0$, т.ч. Br(x), Br(y), Br(-x), Br(-y) попарно не пересекаются.

$$U = (Br(x) \cup Br(-x)) \cap S^n.$$

$$V = (Br(y) \cup Br(-y)) \cap S^n.$$

Тогда $U,\ V$ открыто в $S^n,\ U\cap V=\varnothing,\ U\ni [x],\ V\ni [y]$ насыщенны $\Rightarrow S^n_{/\sim}$ хаусдорфово. \square

24 Нормальные пространства. Лемма Урысона

24.1 Нормальные пространства

Определение. Топологическое пространство $X - T_1$ -пространство $\Leftrightarrow \forall x \in X \{x\}$ замкнут в X.

Наблюдение. Хаусдорфово $\Rightarrow T_1$ -пространство.

Определение. X — топологическое пространство.

- (1) X называется **регулярным** $\Leftrightarrow X T_1$ —пространство, $\forall x \in X$, \forall замкнутого $B \subset X$, т.ч. $x \notin B \exists$ открытые $U, V \subset X, \ x \in U, \ B \subset V, U \cap V = \varnothing$. (*)
- (2) X называется **нормальным** $\Leftrightarrow X T_1$ —пространство, \forall замкнутых $A, B \subset X : A \cap B = \emptyset$ \exists открытые $U, V \subset X : A \subset U, B \subset V, U \cap V = \emptyset$. (*)

Наблюдение. Нормальное ⇒ регулярное ⇒ хаусдорфово.

Предложение. X — T_1 —пространство.

- (1) X регулярно $\Leftrightarrow \forall x \in X, \ \forall$ открытого $W \ni x, \ \exists$ открытая U, т.ч. $x \in U \subset \overline{U} \subset W$.
- (2) X нормально \Leftrightarrow \forall замкнутого $A\subset X,\ \forall$ открытого $W\supset A$ \exists открытая U, т.ч. $A\subset U\subset \overline{U}W.$

Доказательство. (2) X нормально $\Leftrightarrow \forall$ замкнутого $A \subset X, \forall$ открытого $W \subset X$ ($W = X \backslash B$, где B из определения), т.ч. $A \subset U, C \subset W, U \subset C \Leftrightarrow \forall$ замкнутого

 $A \subset X, \forall$ открытого $W \supset A \exists$ открытое U, т.ч. $A \subset U \subset \overline{U} \subset W$.

(1) Аналогично.

Предложение. X — локально компактное хаусдорфово топологическое пространство \Rightarrow X регулярное.

Доказательство. Ранее доказывали (*) для локально компактных хаусдорфовых пространств.

Предложение. (1) \forall компактное хаусдорфово топологическое пространство нормально.

 $(2) \forall$ метризуемое пространство нормально.

Определение. (X, ρ) — метризуемое пространство, $A \subset X, x \in X$.

$$\rho(x,A) = \int {\{\rho(x,a) : a \in A\}}$$
 — расстояние от x до A.

Лемма. X — метризуемое пространство, $A \subset X$.

- (1) $\rho(x, A) = 0 \Leftrightarrow x \in \overline{A}$.
- (2) Функция $f(x) = \rho(x, A)$. Тогда $|f(x) f(y)| \le \rho(x, y)$. Как следствие f непрерывна.

Доказательство. (1) — упражнение.

 $(2) \ \forall x,y \in X, \forall a \in A \ \rho(x,a) \leq \rho(x,y) + \rho(y,a). \ x, y \ фиксированные. Берем$ $\inf_{x \to y} \Rightarrow f(x) \le \rho(x, y) + f(y) \Rightarrow f(x) - f(y) \le \rho(x, y).$

$$\overrightarrow{xy} \Rightarrow f(y) - f(x) \le \rho(x, y) \Rightarrow |f(y) - f(x)| \le \rho(x, y).$$

Если $x_n \to x \Rightarrow |f(x_n) - f(x)| \le \rho(x_n, x) \to 0 \Rightarrow f(x_n) \to f(x) \Rightarrow f(x) \Rightarrow f(x_n) \to f(x_n)$ непрерывна. 🗆

Доказательство предложения. (1) X — компактное хаусдорфово топологическое пространство, $A, B \subset X$ замкнуто, $A \cap B = \emptyset \Rightarrow A, B$ компактно. Из свойств компактных пространств мы заключаем, что \exists открытые $U, V \subset X$, т.ч. $A \subset U$. $B \subset V$, $U \cap V = \emptyset$.

(2) (X, ρ) — метрическое пространство, $A, B \subset X$ замкнуто, $A \cap B = \emptyset$.

Рассмотрим функцию
$$\varphi(x) = \frac{\rho(x,A)}{\rho(x,B) + \rho(x,A)}, \ \varphi \colon X \to [0;1].$$
 Лемма $\Rightarrow \varphi$ непрерывна, $\varphi_{/A} = 0, \ \varphi_{/B} = 1.$

Предположим,
$$U = \varphi^{-1}([0, \frac{1}{2}]), \ V = \varphi^{-1}([\frac{1}{2}, 1]).$$

U,V открыты, $U \cap V = \varnothing, \tilde{A} \subset U, B \subset V \stackrel{\angle}{\Rightarrow} X$ нормально.

24.2 Лемма Урысона

Лемма Урысона. X — нормальное топологическое пространство, $A, B \subset X$ замкнуты, $A \cap B = \emptyset$. Тогда \exists непрерывная $f: X \to [0; 1]$, т.ч. $f|_A = 0, f|_B = 1$.

Доказательство. Обозначим $U_1 = X \setminus B$ U_1 открыто, $A \subset U_1 \Rightarrow \exists$ открытое $U_{1/2}$, т.ч. $A \subset U_{1/2} \subset \overline{U}_{1/2} \subset U_1$.

 \exists открытое $U_{1/4},U_{3/4},$ т.ч. $A\subset U_{1/4}\subset \overline{U}_{1/4}\subset U_{1/2}\subset \overline{U}_{1/2}\subset U_{3/4}\subset U_{3/4}\subset \overline{U}_{3/4}\subset U_1.$

И так далее.

Обозначим $D=\{r\in(0;1]:r-$ двоично-рационально $\}=\{\frac{k}{2^n}\colon n\in\mathbb{N}, k=1,...,2^n\}.$

D плотно на [0, 1] — упражнение.

По индукции: \exists семейство открытых множеств $\{U_t: t\in D\}$, т.ч. $\forall r,s\in D,r< s$, выполнено $A\subset U_r\subset \overline{U}_r\subset U_s\subset \overline{U}_s\subset U_1$.

Рассмотрим
$$f: X \to [0; 1], f(x) = \begin{cases} 1, \text{ если } x \in B, \\ \inf\{r \in D: x \in U_r\}, \text{ если } x \notin B. \end{cases}$$

Тогда $f|_B = 1, f|_A = 0.$

Докажем: f непрерывна. Достаточно доказать: $\forall t \in (0;1)$ множества $f^{-1}([0,t))$ и $f^{-1}((t,1])$ открыты. (Т.к. полуинтервалы [0, b), (a, 1] образуют предбазу топологии на [0, 1]).

$$\frac{1}{f(x)}$$
 t

$$x \in f^{-1}([0,t)) \Leftrightarrow f(x) < t \Leftrightarrow \exists r \in D$$
, т.ч. $x \in U_r, r < t \Leftrightarrow x \in \bigcup_{\substack{r \in D \\ r < t}} U_r$. Следовательно, $f^{-1}([0,t)) = \bigcup_{\substack{r < t \\ r \in D}} U_r$ — открыто. $x \in f^{-1}((t,1]) \Leftrightarrow f(x) > t \Leftrightarrow \exists s \in D$, т.ч. $s > t$ и $x \notin U_s \Leftrightarrow t$

 $x \in f^{-1}((t,1]) \Leftrightarrow f(x) > t \Leftrightarrow \exists s \in D, \text{ т.ч. } s > t \text{ и } x \notin U_s \Leftrightarrow \exists r \in D, \text{ т.ч. } r > t \text{ и } x \notin \overline{U_r}, \text{ т.е. } x \in X \backslash \overline{U_r}.$

Следовательно,
$$f^{-1}((t,1]) = \bigcup_{\substack{r>t\\r\in D}} (X\backslash \overline{U}_r)$$
 — открыто $\Rightarrow f$ непрерывна. \square

Теорема (Титце, Урысон) (дополнительная,

доказательство в следующих курсах). X — нормальное топологическое пространство, $Y \subset X$ — замкнутое подмножество. Тогда $\forall g \in C(Y,\mathbb{R}) \ \exists f \in C(X,\mathbb{R})$, т.ч. $f|_Y = g$. Если при этом $g(Y) \in [a,b]$, то и f можно выбрать так, что $f(X) \subset [a,b]$.