Balance de materia IMClick Project

Problema 20. En un reactor se quema metano para formar dióxido de carbono y agua. Se alimentan 100 moles de metano y 250 moles de oxígeno molecular. A la salida se obtiene una corriente que contiene agua (120 moles), entre otros compuestos. Calcular:

- a) El flujo y la composición de la corriente de salida.
- b) El porcentaje de conversión.

$$\mathrm{CH_4} + 2\mathrm{O_2} \longrightarrow \mathrm{CO_2} + 2\mathrm{H_2O}$$

Como es un proceso continuo en estado estacionario reaccionante, entonces la ecuación general de balance en el sistema es:

• Reactivos:

$$\label{eq:consumo} \begin{split} \operatorname{Entrada} + \operatorname{Generaci\'on} &- \operatorname{Salida} - \operatorname{Consumo} = \operatorname{Acumulaci\'on} \\ \operatorname{Entrada} &= \operatorname{Salida} + \operatorname{Consumo} \end{split}$$

• Productos:

$$\label{eq:entrada} \begin{split} \text{Entrada} + \text{Generación} &- \text{Salida} - \frac{\text{Consumo}}{\text{Consumo}} = \frac{\text{Acumulación}}{\text{Entrada}} \\ &= \text{Salida} - \text{Generación} \end{split}$$

Por la reacción química sabemos que 100 moles de metano reaccionan con 200 moles de oxígeno, por lo que el reactivo limitante es el metano y el reactivo en exceso es el oxígeno. Sea ξ el grado de avance de la reacción.

Ecuaciones independientes (4):

• Balance de CH₄:

Corriente 1 = Corriente 2 + Consumo

$$100 \text{ mol } \text{CH}_4 = \text{B}_1 \text{ mol } \text{CH}_4 + \xi \text{ mol } \text{CH}_4$$

• Balance de O_2 :

$$\begin{array}{l} \mbox{Corriente 1} = \mbox{Corriente 2} + \mbox{Consumo} \\ 250 \mbox{ mol } \mbox{O}_2 = \mbox{B}_2 \mbox{ mol } \mbox{O}_2 + 2\xi \mbox{ mol } \mbox{O}_2 \\ \end{array}$$

• Balance de CO₂:

$$0 = \text{Corriente 2 - Generación}$$

$$0 \text{ mol } \text{CO}_2 = \text{B}_3 \text{ mol } \text{CO}_2 \text{ - } \xi \text{ mol } \text{CO}_2$$

Balance de materia IMClick Project

• Balance de H₂O:

$$0 = \text{Corriente } 2$$
 - Generación
 $0 \text{ mol } \text{H}_2\text{O} = 120 \text{ mol } \text{H}_2\text{O}$ - $2\xi \text{ mol } \text{H}_2\text{O}$

En donde hay 4 incógnitas = $\{B_1, B_2, B_3, \xi\}$. Entonces, el grado de libertad es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 4 - $4=0$

Por lo que el problema tiene solución única.

En el balance de H_2O :

0 mol H₂O = 120 mol H₂O - 2
$$\xi$$
 mol H₂O
 ξ mol H₂O = $\frac{120 \text{ mol H}_2\text{O}}{2}$ = 60 mol H₂O

En el balance de CH₄:

$$100~mol~CH_4=B_1~mol~CH_4+60~mol~CH_4 \\ B_1~mol~CH_4=100~mol~CH_4-60~mol~CH_4=40~mol~CH_4$$

En el balance de O_2 :

$$250 \text{ mol } O_2 = B_2 \text{ mol } O_2 + 2(60) \text{ mol } O_2$$

$$B_2 \text{ mol } O_2 = 250 \text{ mol } O_2 - 2(60) \text{ mol } O_2 = 130 \text{ mol } O_2$$

En el balance de CO_2 :

0 mol
$$CO_2 = B_3$$
 mol CO_2 - 60 mol CO_2
 B_3 mol $CO_2 = 60$ mol CO_2

a) La corriente de salida es la Corriente 2:

Cantidad molar (mol)			Fracción molar			
	1	2		1	2	
CH_4	100	40	CH_4	0.2857	0.1143	
O_2	250	130	O_2	0.7143	0.3714	
CO_2	0	60	CO_2	0	0.1714	
$\rm H_2O$	0	120	$\rm H_2O$	0	0.3429	
Total	350	350				

Sabiendo que C = 12 g/mol, H = 1 g/mol y O = 16 g/mol se tiene que:

- $O_2 = [16(2)] = 32 \text{ g/mol}$
- $CO_2 = [12+16(2)] \text{ g/mol} = 44 \text{ g/mol}$
- $H_2O = [1(2)+16] \text{ g/mol} = 18 \text{ g/mol}$

Cantidad másica (g)			Fracción másica		
	1	2		1	2
CH_4	1600	640	CH_4	0.2	0.0667
O_2	8000	4160	O_2	0.8	0.4333
CO_2	0	2640	CO_2	0	0.275
H_2O	0	2160	$\rm H_2O$	0	0.225
Total	9600	9600			

b)

$$Conversión de metano = \frac{Reactivo \ consumido}{Reactivo \ suministrado} \ x \ 100 \% = \frac{60 \ mol}{100 \ mol} \ x \ 100 \% = 60 \%$$