Structure d'espace vectoriel

1 Définition

On appelle espace vectoriel sur \mathbb{K} (ou \mathbb{K} -espace vectoriel) un ensemble E muni de deux lois :

- 1. une loi interne, notée +, telle que (E, +) soit un groupe commutatif. L'élément nul est noté 0_E .
- 2. une loi externe, notée \cdot , qui est une application de $\mathbb{K} \times E$ dans E vérifiant :
 - $\forall (\alpha, \beta) \in \mathbb{K}^2, \ \forall x \in E, \ (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x.$
 - $\forall \alpha \in \mathbb{K}, \ \forall (x,y) \in E^2, \ \alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y.$
 - $\forall (\alpha, \beta) \in \mathbb{K}^2, \ \forall x \in E, \ \alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x.$
 - $\bullet \ \forall x \in E, \ 1 \cdot x = x.$

2 Famille de vecteurs

Une combinaison linéaire de la famille finie de vecteurs (x_1, \ldots, x_n) de E est un vecteur $x \in E$ s'écrivant $x = \sum_{i=1}^n \alpha_i x_i$ où les α_i sont des scalaires (des éléments de \mathbb{K}). ¡li¿Une combinaison linéaire d'une famille quelconque $(x_i)_{i \in I}$ est un vecteur x s'écrivant $x = \sum_{i \in I} \alpha_i x_i$ où tous les α_i , sauf un nombre fini, sont nuls. ¡li¿Une famille finie de vecteurs (x_1, \ldots, x_n) est ¡span class=rougedico¿libre;/span¿ si, pour tout choix de $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$,

$$\sum_{i=1}^{n} \alpha_i x_i = 0 \implies \forall i \in \{1, \dots, n\}, \ \alpha_i = 0.$$

¡li¿Une famille quelconque de vecteurs est libre si toute sous-famille finie extraite est libre. ¡li¿Une famille qui n'est pas libre est une ¡span class=rougedico¿famille liée¡/span¿. ¡li¿Une famille $(x_i)_{i\in I}$ est ¡span class=rougedico¿génératrice¡/span¿ de E si tout vecteur de E est combinaison linéaire des $(x_i)_{i\in I}$. ¡/ul¿ ¡/div¿

¡div class=titrepartie¿Sous-espaces vectoriels¡/div¿ ¡div class=liste¿ ¡ul¿ ¡li¿Une partie F de E est un ¡span class=rougedico¿sous-espace vectoriel¡/span¿ de E si F est non-vide et si F est stable par + et \cdot . Dans ce cas, F est lui-même un espace vectoriel. ¡li¿¡div class=theo¿¡span class=grastheo¿Caractérisation des sous-espaces vectoriels :¡/span¿ Une partie F de E est un sous-espace vectoriel de E si et seulement si les F propriétés suivantes sont vérifiées : ¡ol¿ ¡li¿F et tout F et tout F et tout F et tout F et lii¿ li¿ lii¿ lii¿ lii¿ liii¿ liii¿ liiiù liiiù liiiù liiiù liiiù liiiù liiiù liiù liiiù li

¡div class=titrepartie¿Somme de sous-espaces vectoriels¡/div¿ ¡div class=liste¿ ¡ul¿ ¡li¿Soient F et G deux sous-espaces vectoriels de E. On appelle ¡span class=rougedico¿somme¡/span¿ de F et G l'espace vectoriel noté F+G défini par

$$F + G = \{x + y; \ x \in F, \ y \in G\}.$$

¡li¿Deux sous-espaces F et G sont en ¡span class=rougedico¿somme directe¡/span¿ si la décomposition de tout vecteur de F+G comme somme d'un vecteur de F et d'un vecteur de G est unique. On note alors $F \oplus G$. ¡li¿¡div class=theo¿¡span class=grastheo¿Proposition :¡/span¿ Deux sous-espaces F et G sont en somme directe si et seulement si $F \cap G = \{0\}$.¡/div¿ ¡li¿On dit que F et G sont ¡span class=rougedico¿supplémentaires¡/span¿ dans E s'ils sont en somme directe et si $F \oplus G = E$. ¡li¿Plus généralement, on définit la somme de P sous-espaces vectoriels F_1, \ldots, F_p de E par

$$F_1 + \dots + F_p = \{x_1 + \dots + x_p; \ x_1 \in F_1, \dots, x_p \in F_p\}.$$

C'est un sous-espace vectoriel de E. ¡li¿La somme $F_1 + \cdots + F_p$ est directe si la décomposition de tout vecteur de $F_1 + \cdots + F_p$ sous la forme $x_1 + \cdots + x_p$ avec $x_i \in F_i$ est unique. Ceci revient à dire que si $x_1 + \cdots + x_p = 0_E$ avec $x_i \in F_i$, alors $x_i = 0$. ¡li¿Attention! On ne peut pas caractériser le fait que F_1, \ldots, F_p soient en somme directe en vérifiant que $F_i \cap F_j = \{0_E\}$ si $i \neq j$. ¡/ul¿ ¡/div¿

įdiv class=titrepartie; Applications linéaires
į/div; įdiv class=liste; įul; įli; Une application $f: E \to F$ est appelée une įspan class=rougedico; application linéaire
į/span; si, pour tous $x,y \in E$ et tous $\lambda,\mu \in \mathbb{K}$, on a

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y).$$

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F, et $\mathcal{L}(E)$ si E=F. Une application linéaire de E dans E s'appelle aussi un ¡span class=rougedico¿endomorphisme¡/span¿ de E. ¡li¿Toute combinaison linéaire d'applications linéaires est linéaire. La composée d'applications linéaires est linéaire. ¡li¿On dit qu'une application linéaire $f:E\to F$ est un isomorphisme si elle est bijective. La réciproque d'un isomorphisme est linéaire. ¡li¿L'image directe d'un sous-espace vectoriel de E par une application linéaire est un sous-espace vectoriel de E. ¡li¿On appelle ¡span class=rougedico¿noyau¡/span¿ de l'application linéaire $f\in \mathcal{L}(E,F)$ le sous-espace vectoriel de E

$$\ker(f) = \{ x \in E; \ f(x) = 0 \}.$$

¡li¿¡div class=theo¿¡span class=grastheo¿Théorème :¡/span¿ $f \in \mathcal{L}(E,F)$ est injective si et seulement si ker $(f) = \{0\}$. ¡li¿On appelle ¡span class=rougedico¿image¡/span¿ de l'application linéaire $f \in \mathcal{L}(E,F)$ le sous-espace vectoriel de F

$$Im(f) = \{ f(x); \ x \in E \}.$$

¡li¿Si $(x_i)_{i\in I}$ est une famille génératrice de E, alors $\operatorname{Im}(f) = \operatorname{vect}(f(x_i); i \in I)$. ¡/div¿ ¡div class=titrepartie¿Symétries et projections¡/div¿ ¡div class=liste¿ ¡ul¿ ¡li¿Soient F et G deux sous-espaces supplémentaires de E. On appelle ¡span class=rougedico¿projecteur¡/span¿ sur F parallèlement à G l'application linéaire p définie sur E par p(z) = x où $z \in E$ se décompose uniquement en z = x + y avec $x \in F$ et $y \in G$. On a alors $\operatorname{Im}(p) = F$ et $\operatorname{ker}(p) = G$. ¡li¿¡div class=theo¿¡span class=grastheo¿Caractérisation des projecteurs :¡/span¿ Un endomorphisme $p \in \mathcal{L}(E)$ est un projecteur si et seulement si $p \circ p = p$. L'application p est alors le projecteur sur $\operatorname{Im}(p)$ parallèlement à $\operatorname{ker}(p)$. ¡/div¿ ¡li¿Soient F et G deux sous-espaces supplémentaires de E. On appelle ¡span class=rougedico¿symétrie¡/span¿ par rapport à F parallèlement à F l'application linéaire F définie sur F parallèlement en F et F et