ECON 703 - PS 7

Alex von Hafften*

10/7/2020

(1) Let $X \subset \mathbb{R}^n$ be a convex set, and $\lambda_1, ..., \lambda_k \geq 0$ with $\sum_{i=1}^k \lambda_i = 1$. Prove that if $x_1, ..., x_k \in X$, then $\sum_{i=1}^k \lambda_i x_i \in X$.

Proof (by induction): For the base step, choose $\lambda_1, \lambda_2 \geq 0$ such that $\lambda_1 + \lambda_2 = 1$. For any $x_1, x_2 \in X \subset \mathbb{R}^n$, $\lambda_1 x_1 + \lambda_2 x_2 \in X$ because X is convex. For some k, assume that $\sum_{i=1}^k \lambda_i x_i \in X$ for $x_1, ..., x_k \in X$ with $\lambda_1, ..., \lambda_k \geq 0$ and $\sum_{i=1}^k \lambda_i = 1$. Consider k+1. Choose $\lambda'_1, ..., \lambda'_{k+1} \geq 0$ such that $\sum_{i=1}^{k+1} \lambda'_i = 1$:

$$\sum_{i=1}^{k+1} \lambda_i' x_i = \sum_{i=1}^k \lambda_i' x_i + \lambda_{k+1}' x_{k+1} = \left(\sum_{i=1}^k \lambda_i'\right) \sum_{i=1}^k \left(\frac{\lambda_i'}{\sum_{i=1}^k \lambda_i'} x_i\right) + \lambda_{k+1}' x_{k+1}$$

By the induction hypothesis, $y := \sum_{i=1}^k \left(\frac{\lambda_i'}{\sum_{i=1}^k \lambda_i'} x_i \right) \in X$ because $\sum_{i=1}^k \frac{\lambda_i'}{\sum_{i=1}^k \lambda_i'} = 1$. Thus,

$$\sum_{i=1}^{k+1} \lambda_i' x_i = \left(\sum_{i=1}^k \lambda_i'\right) y + \lambda_{k+1}' x_{k+1}$$

By the definition of convexity, $\sum_{i=1}^{k+1} \lambda_i' x_i \in X$ because $\sum_{i=1}^k \lambda_i' + \lambda_{k+1}' = 1$. \square

(2) The sum $\sum_{i=1}^{k} \lambda_i x_i$ defined in Problem (1) is called a convex combination. The convex hull of a set S, denoted by co(S), is the intersection of all convex sets which contain S. Prove that the set of all convex combinations of the elements of S is exactly co(S).

Proof: We show that an arbitrary convex combination of elements of S is in co(S) and an arbitrary point in co(S) can be represented by a convex combination of elements of S. First, notice that $S \subset co(S)$ and co(S) is convex because it is the intersection of convex sets.

Consider an arbitrary convex combination of elements of S, $\sum_{i=1}^k \lambda_i s_i$ with $s_1, ..., s_k \in S$. Since $s_i \in S$, $s_i \in \text{co}(S)$ for $i \in \{1, ..., k\}$. Since co(S) is convex, $\sum_{i=1}^k \lambda_i s_i \in \text{co}(S)$.

Consider $x \in co(S)$. Assume for the sake of a contradiction that x cannot be represented as a convex combination of elements of S. Then there exists a convex set Y such that $S \subset Y$ and $x \notin Y$. This is a contradiction because co(S) is the intersection of all convex sets which contain S. Thus, x can be represented as a convex combination of elements of S. \square

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

(3) For any set $X \subset \mathbb{R}^n$, let its closure be $\operatorname{cl} X = X \cup \{\text{all limit points of } X\}$. Show that the closure of a convex set is convex.

Proof: Let X be a convex set. Choose two points $x, y \in X$. Thus, there exists sequences $\{x_n\}, \{y_n\} \in X$ such that $\{x_n\} \to x$ and $\{y_n\} \to y$. Since X is convex, $\lambda x_n + (1-\lambda)y_n \in X$ for all n with $\lambda \in [0,1]$. Because $\mathrm{cl} X$ contains all limit points of X, $\lambda x + (1-\lambda)y = \lim_{n\to\infty} (\lambda x_n + (1-\lambda)y_n) \in \mathrm{cl} X$. \square

(4) The function $f: X \to \mathbb{R}$, where X is a convex set in \mathbb{R}^n , is concave if $\forall \lambda \in [0,1], x', x'' \in X$, $f((1-\lambda)x'+\lambda x'') \geq (1-\lambda)f(x') + \lambda f(x'')$. Given a function $f: X \to \mathbb{R}$, its hypograph is the set of points (y,x) lying on or below the graph of the function: hyp $f = \{(y,x) \in \mathbb{R}^{n+1} | x \in X, y \leq f(x)\}$. Show that the function f is concave if and only if its hypograph is a convex set.

Proof: Assume a function $f: X \to \mathbb{R}$ is concave where X is a convex set in \mathbb{R}^n . To show that its hypograph is a convex set, we need to show that, for any $\lambda \in [0,1]$ and $(y',x'), (y'',x'') \in \text{hyp} f$, $\lambda(y',x') + (1-\lambda)(y'',x'') = (\lambda y' + (1-\lambda)y'', \lambda x' + (1-\lambda)x'') \in \text{hyp} f$. First, notice that since X is convex, $\lambda x' + (1-\lambda)x'' \in X$. Since f is concave, $f(\lambda x' + (1-\lambda)x'') \geq (1-\lambda)f(x') + \lambda f(x'') \geq (1-\lambda)y' + \lambda y''$. Thus, $\lambda(y',x') + (1-\lambda)(y'',x'') \in \text{hyp} f$.

Assume that the hypograph of a function $f: X \to \mathbb{R}$ is convex. Choose $(x', y'), (x'', y'') \in \text{hyp} f$. To show that X is convex, we need to show that, for any $\lambda \in [0, 1]$, $f((1 - \lambda)x' + \lambda x'') \ge (1 - \lambda)f(x') + \lambda f(x'')$. Since hyp f is convex, we know that $\lambda f(x') + (1 - \lambda)f(x'') \le \lambda y' + (1 - \lambda)y'' \le f((1 - \lambda)x' + \lambda x'')$. Thus, f is concave.

(5) Let X and Y be disjoint, closed, and convex sets in \mathbb{R}^n , one of which is compact. Show that there exists a hyperplane $H(p,\alpha)$ that strictly separates X and Y.

Proof: Let X and Y be disjoint, closed, and convex sets in \mathbb{R}^n and X be compact. Let $Z:=X-Y=\{z\in\mathbb{R}^n|z=x-y\text{ for some }x\in X,y\in Y\}$. The set Z is convex and $\bar{0}\notin Z$ because $X\cap Y=\emptyset$. By the theorem on slide 6 of the lecture 14 slides, there exists a hyperplane $H(p,\beta)$ that strictly separates Z and $\{\bar{0}\}$. Thus, for all $z\in Z, x\in X, y\in Y$,

$$p \cdot \bar{0}$$

Pick $x' \in X$. Since $p \cdot y$ is bounded from above by $p \cdot x'$ for all $y \in Y$, define $\beta' := \sup_{y \in Y} \{p \cdot y\} \in \mathbb{R}$. Define $f : X \to \mathbb{R}$ as $f(x) = p \cdot x$. Since f is continuous and X is compact, f attains its minimum on X, by the extreme value theorem. Define $\beta'' := \min_{x \in X} \{f(x)\} = \min_{x \in X} \{p \cdot x\} \in \mathbb{R}$. Since X and Y are disjoint, β' is strictly less than β'' . By the denseness of rational numbers, there exists a $\beta^* \in \mathbb{Q}$ such that $\beta' < \beta^* < \beta''$. Therefore, for all $x \in X$ and $y \in Y$:

$$p \cdot y \le \sup_{y \in Y} p \cdot y = \beta' < \beta^* < \beta'' = \min_{x \in X} \{p \cdot x\} \le p \cdot x$$

Thus, X and Y are strictly separated by $H(p, \beta^*)$. \square

(6) Call a vector $\pi \in \mathbb{R}^n$ a probability vector if $\sum_{i=1}^n \pi_i = 1$ and $\pi_i \geq 0$ for all i=1,...,n. Interpretation is that there are n states of the world and π_i is the probability that state i occurs. Suppose that Alice and Bob each have a set of probability distributions (Π_A and Π_B) which are nonempty, convex, and compact. They propose bids on each state of the world. A vector $x = (x_1, ..., x_n) \in \mathbb{R}^n$, where x_i denotes the net transfer Alice receives from Bob in state i, is called a trade (Thus, -x is the net transfer Bob receives in each state of the world.) A trade is agreeable if $\inf_{\pi \in \Pi_A} \sum_{i=1}^n \pi_i x_i > 0$ and $\inf_{\pi \in \Pi_B} \sum_{i=1}^n \pi_i (-x_i) > 0$. The above means that both Alice and Bob expect to strictly gain from the trade. Prove that there exists an agreeable trade iff there is no common prior (i.e., $\Pi_A \cap \Pi_B = \emptyset$).