DATA 442: Neural Networks & Deep Learning

Dan Runfola - danr@wm.edu

icss.wm.edu/data442/

Summary

Total Loss=

$$\sum_{i=1}^{N=3} \{(x_i, y_i)\}$$

def predict(image, W):

return(W*image)

	V		
Cat	3.2	1.3	
Car	5.1	4.9	

-1.7

2.0

2.2

Τ	$=-log(\frac{1}{2})$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
→ <i>L</i> ₁ -	-tog(
	•	$\sum_{j=1}^{e_j} e_j$

Froq

Summary

Total Loss=

 $\sum_{i=1}^{N=3} \{(x_i, y_i)\} \frac{1}{N} \sum_{i=1}^{N} Loss_i(f(x_i, W), y_i) + \lambda R(W)$

def predict(image, W):

return(W*image)

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

<i>I</i> —	-10a(e_k
-L ₁ $-$	$-log(\frac{1}{\nabla}$	$\overline{J}_{\rho S}$
	Z	ر $j=1$ e_j°

Optimization

Optimization

Tea drinking temperature

Awesome example from https://brohrer.github.io/how_optimization_works_1.html

Exhaustive search

Gradient descent

Gradient descent

Gradient descent

Gradient Descent

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Suffering (0-3)

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

In practice we don't just have one variable (temperature). Instead, we have hundreds, thousands, or millions of Weights parameters (W). You can imagine calculating a function similar to the one above for each one of those weights parameters, and getting a resultant vector in which you have one slope for every parameter **W**. This vector is called the gradient, and the slopes for each W are the partial derivatives.

 $W = [0.34, -1.11, 0.78, 0.12 \dots 0.3, 0.77]$

Total Loss:

1.25347

Gradient

dW: [?, ?, ?, ? ...?, ?]

```
W = [0.34, -1.11, 0.78, 0.12 ... 0.3, 0.77] Total Loss:
h = .0001
```

W+h: [0.34 + 0.0001, -1.11, 0.78, 0.12 ... 0.3, 0.77]

Gradient dW: [?, ?, ?, ?, ? ...?, ?]

```
W = [0.34, -1.11, 0.78, 0.12 ... 0.3, 0.77] Total Loss:
h = .0001
```

W+h: [0.34 + 0.0001, -1.11, 0.78, 0.12 ... 0.3, 0.77]

Total Loss: 1.25322

Gradient dW: [?. ?. ?. ?. ? ...?. ?

W =
$$[0.34, -1.11, 0.78, 0.12 \dots 0.3, 0.77]$$
 Total Loss: $\frac{1.25347}{1.25347}$

W+h: [0.34 + 0.0001, -1.11, 0.78, 0.12 ... 0.3, 0.77]

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
(1.25322 - 1.25347) / 0001 = -2.5

Total Loss: 1.25322

(1.25322 - 1.25347) / .0001 = -2.5

Gradient

dW:

[**-2.5**,

?, ?, ? ...?, ?]

W =
$$[0.34, -1.11, 0.78, 0.12 \dots 0.3, 0.77]$$
 Total Loss: $\frac{1.25347}{1.25347}$

W+h: [0.34, <u>-1.11+.0001</u>, 0.78, 0.12 ... 0.3, 0.77]

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
(1.25353 - 1.25347) / .0001 = 0.6

Total Loss:

1.25353

Gradient

dW:

[-2.5, 0.6, ?, ? ...?, ?]

 $W = [0.34, -1.11, 0.78, 0.12 \dots 0.3, 0.77]$

W+h: [0.34, <u>-1.11+.0001</u>, 0.78, 0.12 ... 0.3, 0.77]

Gradient

dW: [-2.5, 0.6, 4.3, 0.5 ... 0, 0.3]

Analytic Gradient

$$W = [0.34, -1.11, 0.78, 0.12 \dots 0.3, 0.77]$$

$$dw = f(X, W)$$

$$\nabla f(X, W) = [\dots]$$

Gradient

dW: [-2.5, 0.6, 4.3, 0.5 ... 0, 0.3]

Gradient Descent in Code

```
maxIterations = 1000
count = 0

while count < maxIterations:
    count = count + 1
    W_gradient_dW = calculateGradient(lossFunction, X, W)
    W = W + -1 * (stepSize * W_gradient_dW)</pre>
```


Batch Sizes & Stochastic Gradient Descent

```
maxIterations = 1000
count = 0

while count < maxIterations:
    count = count + 1
    W_gradient_dW = calculateGradient(lossFunction, X, W)
    W = W + -1 * (stepSize * W_gradient_dW)</pre>
```

Can be VERY slow for large training datasets.

Batch Sizes & Stochastic Gradient Descent

```
while count < maxIterations:
    count = count + 1
    X_sample = X.sample(n=256)
    W_gradient_dW = calculateGradient(lossFunction, X_sample, W)
    W = W + -1 * (stepSize * W_gradient_dW)</pre>
```

Batch Size (can be anything,

Recap

- What is optimization?
- How does it interrelate with the loss function?
- How can we solve for W using random guessing or an exhaustive search?
- What is gradient descent and stochastic gradient descent, and how does SGD interrelate with batch size?

