LINEAR REGRESSION


```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import pylab
import scipy.stats as stats
import seaborn as sns
```

In [2]: data = pd.read_excel("HW_Data_Set.xlsx") data.head()

Out[2]:

	ind_5	ind_6	ind_8	ind_9	ind_10	ind_12	ind_13	ind_14	ind_15	ind_16	 ind_416	ind_418	ind_420	ind_422	ind_424	ind_426	ind_42
0	19	17	100.0	85.714286	14.285714	72.363515	60.808814	23.80	17.62	11.73	 -49.6	-54	-152	-353	1.0	0.498547	0.70190
1	24	19	100.0	78.571429	21.428571	74.275883	64.366798	11.45	18.16	12.22	 -55.6	-60	-158	-359	1.0	0.537088	0.69083:
2	30	24	100.0	71.428571	28.571429	75.140402	65.915803	8.75	17.86	12.28	 -58.4	-60	-160	-362	1.0	0.615169	0.69304
3	37	30	100.0	64.285714	35.714286	76.677846	68.584234	7.80	14.76	12.61	 -61.8	-65	-166	-367	1.0	0.661517	0.67341
4	41	37	100.0	57.142857	42.857143	81.603007	76.455495	14.90	11.92	14.25	 -79.8	-86	-186	-388	1.0	0.747204	0.70052

5 rows × 136 columns

In [3]: data.describe()

Out[3]:

	ind_5	ind_6	ind_8	ind_9	ind_10	ind_12	ind_13	ind_14	ind_15	ind_16 .	ind_41	2
count	6167.000000	6167.000000	6167.000000	6167.000000	6167.000000	6167.000000	6167.000000	6167.000000	6167.000000	6167.000000	6167.00000	0 616
mean	-0.803146	-0.803470	48.388890	48.289282	0.099609	49.488867	-18.497518	11.771485	11.773550	11.773392	0.00022	4 2
std	23.624403	23.624144	36.388526	36.478009	60.414625	12.198722	68.281120	6.803997	5.786089	4.970499	0.00566	0 2
min	-131.000000	-131.000000	0.000000	0.000000	-100.000000	12.134540	-625.093855	1.050000	1.660000	2.580000	0.02379	0
25%	-14.000000	-14.000000	14.285714	14.285714	-50.000000	40.868503	-45.687212	6.850000	7.260000	7.635000	0.00323	0 1
50%	0.000000	0.000000	50.000000	50.000000	0.000000	49.549766	-2.817298	10.550000	11.040000	11.270000	0.00005	3 2
75%	13.000000	13.000000	85.714286	85.714286	57.142857	58.504375	28.072613	14.950000	15.040000	14.960000	0.00341	4 3
max	76.000000	76.000000	100.000000	100.000000	100.000000	84.821848	81.105847	82.900000	54.240000	37.050000	0.02334	0 28

8 rows x 133 columns


```
In [4]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 6167 entries, 0 to 6166
        Columns: 136 entries, ind_5 to 90_target
        dtypes: float64(88), int64(45), object(3)
        memory usage: 6.3+ MB
  In [5]: # Veriseti içindeki kategorik değişkenleri;
           cate = data.select dtypes(include='object')
           cate
  Out[5]:
                 ind_109 ind_420 ind_422
              0 GREEN
                           -152
                                   -353
              1 GREEN
                           -158
                                   -359
              2 GREEN
                           -160
                                   -362
              3 GREEN
                           -166
                                   -367
              4 GREEN
                           -186
                                   -388
                             ---
                     ---
            6162
                    RED
                            -11
                                   -270
            6163
                    RED
                            -12
                                   -271
            6164 GREEN
                            -21
                                   -280
```

-33

-28

-292

-288

6165 GREEN

6166 GREEN

```
(ind 109 - GREEN/RED) dummy uygulandı """
           X = dataset.iloc[:,0:133]
           y = dataset.iloc[:,133]
           X = pd.get dummies(X)
In [73]: X.tail()
Out[73]:
                      ind_13 ind_14 ind_15 ind_16 ... ind_416 ind_418 ind_420 ind_422 ind_424 ind_426 ind_428 ind_109_-153 ind_109_GREEN ind_109_RED
            ind_12
          30.010531 32.362582
                                                                  -40
                                                                                 -270 0.270270 0.840000 0.600846
                               9.70
                                      9.38 13.66 ...
                                                        -28.2
                                                                         -11
                                                                                                                          0
                                                                                                                                         0
          50.209998 32.914628
                               7.65
                                      8.84
                                            11.79 ...
                                                        -28.6
                                                                  -41
                                                                         -12
                                                                                 -271 0.000000 0.737470 0.527673
                                                                                                                                         0
                                                                                                                          0
          34.329611 43.550592
                                            10.30 ...
                                                                                 -280 0.769231 0.632107 0.551759
                               8.95
                                      9.06
                                                        -37.2
                                                                  -49
                                                                          -21
                                                                                                                          0
                                                                                                                                         1
                                                                                                                                                     0
                                     10.36
          59.027764 54.130755
                              13.55
                                            10.55 ...
                                                        -48.9
                                                                  -61
                                                                         -33
                                                                                 -292 1.000000 0.733010 0.591584
                                                                                                                          0
                                                                                                                                         1
                                                                                                                                                     0
          35.157180 45.524973
                             11.45
                                     10.16
                                             9.68 ...
                                                        -44.0
                                                                  -56
                                                                                 -288 1.000000 0.687500 0.593936
                                                                                                                          0
                                                                          -28
                                                                                                                                         1
                                                                                                                                                     0
```

"""Veri Seti X ve y Değişkenlerine ayrılıp, X değişkeni içindeki kategorik değişkenler için

In [58]:

LINEAR MODEL

In [59]: from sklearn.linear model import LinearRegression

```
# Fitting the model
         dataset model = LinearRegression()
         dataset model.fit(X, y)
         # Returning the R^2 for the model
         data r2 = dataset model.score(X, y)
         print('R^2: {0}'.format(data r2))
         R^2: 0.9526885446804413
In [36]: ### STATSMODELS ###
          from sklearn import datasets, linear model
          from sklearn.linear model import LinearRegression
          import statsmodels.api as sm
          from scipy import stats
          X1 = sm.add constant(X)
          model = sm.OLS(y, X1).fit()
          predictions = model.predict(X1)
          print model = model.summary()
         print(print model)
```

OLS Regression Results

Den Variable:

Dep. variable:		20 target	K-square	ea:		0.955		
Model:		OLS	Adj. R-s	quared:		0.952		
Method:	L	east Squares	F-statis	stic:		913.4		
Date:	Thu,	23 Jul 2020	Prob (F-		0.00			
Time:		13:59:45	Log-Like	elihood:		-24475.		
No. Observations:		6167	AIC:		4	.922e+04		
Df Residuals:		6033	BIC:		5	.012e+04		
Df Model:		133						
Covariance Type:		nonrobust						
=======================================	coef	std err	t	P> t	[0.025	0.975]		
const 3.171	e+09	4.36e+09	0.727	0.467	-5.38e+09	1.17e+10		
ind 5 -0.	0770	0.339	-0.227	0.821	-0.742	0.588		
ind 6 0.	3160	0.276	1.146	0.252	-0.225	0.857		
ind_8 -5.006	e+07	5.33e+07	-0.939	0.348	-1.55e+08	5.44e+07		

0.953

VARSAYIMLAR: DOĞRUSALLIK

Lineer dağılıma sahip örnek bir plot. Tahminler çizgiyi takip etmeli.

VARSAYIMLAR: HATALARIN NORMALLİĞİ

Residuals

VARSAYIMLAR: HOMOSCEDASTICITY

Residuals should have relative constant variance

LINEER MODEL II

```
In [38]: # Düşük p değerli değişkenleri atıyoruz (backvard elimineted)

X2 = X.loc[:, ['ind_15','ind_17','ind_18','ind_22','ind_28','ind_30',

model2 = sm.OLS(y, X2).fit()
predictions = model2.predict(X2)

print_model = model2.summary()
print(print_model)
```

```
In [62]: dataset_model1 = LinearRegression()
   dataset_model1.fit(X2, y)

# Returning the R^2 for the model
   data_r2 = dataset_model1.score(X2, y)
   print('R^2: {0}'.format(data_r2))
```

R^2: 0.9509129356282802

		01	LS Regressio	on Results			
Dep. Varia	 ble:	20_tar	get R-squa	ared (uncent	ered):		0.9
Model:		_ (DLS Adj. H	R-squared (v	0.95		
Method:		Least Squar	res F-stat	tistic:	2970		
Date:	Th	nu, 23 Jul 20	020 Prob	(F-statistic	0.0 -24588		
Time:		14:00:	:55 Log-Li	ikelihood:			
No. Observ	ations:	61	l67 AIC:			4.	4.927e+0
Df Residua	ls:	61	l19 BIC:			4.	960e+0
Df Model:			48				
Covariance	Type:	nonrobu	ıst				
=======	coef	std err	t	P> t	[0.025	0.975]	
 ind 15	-0.1850	0.050	-3.685	0.000	-0.283	-0.087	
	0.6034						
ind 18	0.2178	0.101	2.155	0.031	0.020	0.416	
ind_22	0.1043	0.019	5.440	0.000	0.067	0.142	
ind 28	0.0014	0.004	0.360	0.719	-0.006	0.009	
ind 30	-0.0152	0.004	-3.409	0.001	-0.024	-0.006	
	-0.0071	0.005	-1.371	0.170	-0.017	0.003	

VARSAYIMLAR

Doğrusallık

Normal Dağılım

LINEER MODEL III

```
In [66]: dataset_model2 = LinearRegression()
  dataset_model2.fit(X3, y)

# Returning the R^2 for the model
  data_r2 = dataset_model2.score(X3, y)
  print('R^2: {0}'.format(data_r2))
```

R^2: 0.950782989655487

Dep. Variab	le:	20_targ	get R-squa	ared (uncent		0.959	
Model:		_ (DLS Adj. I	R-squared (u		0.959	
Method:		Least Squar	es F-stat	tistic:			4598.
Date:	Th	u, 23 Jul 20	20 Prob	(F-statistic		0.00	
Cime:		14:11:	49 Log-L:	ikelihood:	-2459		
No. Observa	tions:	61	L67 AIC:			4	1.926e+04
of Residual	з:	61	l36 BIC:			4	1.946e+04
Of Model:			31				
Covariance	Type: 	nonrobu	ıst 				
					[0.025	-	
ind 15	-0.2005				-0.296		
ind_17	0.6422	0.085	7.540	0.000	0.475	0.809	
ind_18	0.1755	0.089	1.971	0.049	0.001	0.350	
ind_22	0.1039	0.018	5.681	0.000	0.068	0.140	
ind 30	-0.0147	0.004	-4.014	0.000	-0.022	-0.008	

VARSAYIMLAR

Normal Dağılım

TRAIN - TEST SPLIT

```
In [12]: # Train - Test Split Model 1
           from sklearn import metrics
           from sklearn.model_selection import train_test_split
           X train, X test, y train, y test = train test split(X, y,test size = 0.3, random state=41)
           # Instantiate model
           lm1 = LinearRegression()
           # Fit Model
           lm1.fit(X_train, y_train)
           # Predict
           y_pred = lm1.predict(X_test)
           print(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
           13.379902996452612
In [21]: # Train - Test Split Model 2
         from sklearn import metrics
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X2, y,test_size = 0.3, random_state=41)
          # Instantiate model
         lm1 = LinearRegression()
         # Fit Model
         lm1.fit(X_train, y_train)
         # Predict
         y_pred = lm1.predict(X_test)
         print(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
         13.246596808891518
   In [22]: # Train - Test Split Model 3
             from sklearn import metrics
             from sklearn.model_selection import train_test_split
             X train, X test, y train, y test = train_test_split(X3, y,test_size = 0.3, random_state=41)
             # Instantiate model
             lm1 = LinearRegression()
             # Fit Model
             lm1.fit(X_train, y_train)
             # Predict
             y_pred = lm1.predict(X_test)
             print(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
             13.222746489647099
```

RMSE: 13.379902996452612

RMSE: 13.246596808891518

RMSE: 13.222746489647099

