Analísis Complejo

Hugo Del Castillo Mola

25 de septiembre de 2022

Índice general

I	An	álisis Complejo	2	
1.	Prel	iminares	3	
	1.1.	El Plano Complejo	3	
	1.2.	Función Exponencial	5	
	1.3.	Función Logaritmo	7	
2.	Funciones Holomorfas 11			
	2.1.	Derivación Compleja	11	
	2.2.	Ecuaciones de Cauchy-Riemann	13	
	2.3.	Función Inversa	15	
	2.4.	Funciones Harmónicas	16	
	2.5.	Aplicaciones Conformes	17	

Parte I Análisis Complejo

Capítulo 1

Preliminares

1.1. El Plano Complejo

Definición 1.1 (Plano Complejo). Definimos los números complejos como el conjunto $\mathbb{C}=\{(a,b):a,b\in\mathbb{R}\}$ junto con las operaciones suma y producto

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b) \cdot (c,d) = (ac-bd,bc+ad)$

Observación. $(\mathbb{C}, +, \cdot)$ es un cuerpo conmutativo.

- (I) La identidad de la suma es (0,0) y la identidad del producto es (1,0).
- (II) Se satisfacen la prorpiedad asociativa, la distributiba y la conmutativa.
- (III) Todo elemento distinto de cero tiene inverso en \mathbb{C} .

Observación. Consideramos los números reales $\mathbb R$ como el subconjunto de los números complejos $\mathbb C$ de la forma (a,0). Dado $(a,b)\in\mathbb C$ podemos escribir (a,b)=a(1,0)+b(0,1). Sea i=(0,1) entonces (a,b)=a+ib. Notese que $i=(0,1)\cdot(0,1)=(-1,0)\to 1\in\mathbb R$.

Observación. La parte real de $z=a+ib\in\mathbb{C}$ es a y se denota $\Re(z)=a$. La parte imaginaria de z es b y se denota $\Im(z)=b$.

Definición 1.2 (Módulo). Sea
$$z=a+ib\in\mathbb{C}$$
, el módulo de z es

$$|z| = \sqrt{a^2 + b^2}$$

Observación. El módulo de un número complejo es la distancia desde el punto del plano hasta el origen.

Definición 1.3 (Conjugado). Sea $z = a + ib \in \mathbb{C}$, el conjugado de z es

$$\overline{z} = a - ib$$

Observación. El conjugado de un número complejo es su simétrico respecto al eje de coordenadas.

Proposición 1.1. Se verifican las siguientes propiedades:

(I)
$$\overline{\overline{z}} = z \ y \ \overline{z} = z \Leftrightarrow z \in \mathbb{R}$$
.

(II)
$$z + \overline{z} = 2\Re(z)$$
 y $z - \overline{z} = 2\Im(z)$.

(III)
$$\overline{z+w} = \overline{z} + \overline{w}$$
 y $\overline{-z} = -\overline{z}$

(IV)
$$\overline{zw} = \overline{z} \cdot \overline{w}$$
 y si $z \neq 0$ entonces $\overline{z^{-1}} = \overline{z}^{-1}$

(v)
$$|z|^2 = z\overline{z} \ y \ z^{-1} = \frac{\overline{z}}{|z|^2}, \ \forall z \neq 0.$$

(VI)
$$|zw|=|z||w|$$
, $|\frac{z}{w}|=\frac{|z|}{|w|}$ si $(w\neq 0)$ y $|z|=|\overline{z}|$

(VII)
$$|z+w| \leq |z| + |w|$$
. Además, si $\exists t \geq 0: z=tw$ se tiene $|z+w| = |z| + |w|$.

Observación. El módulo permite definir una distancia en el plano complejo d(z,w)=|z-w|. De esta forma $\mathbb C$ y $\mathbb R$ son topológicamente iguales.

Definición 1.4 (Representación polar de un número complejo). Sea $z = a + ib \in \mathbb{C}$, z representa el punto (a,b) en el plano, cuya expresión en coordenadas polares es $(r\cos\theta, r\sin\theta)$. Y escribimos

$$z = r(\cos\theta + i\sin\theta) := re^{i\theta}$$

donde
$$r = |z|$$
 y $\theta = \arg(z) = \arg(\frac{b}{a})$.

Observación. Si $-\pi < \theta < \pi$ lo llamamos argumento principal y se denota (z). El conjunto de todos los posibles argumentos de z es $\{Arg(z) + 2k\pi : k \in \mathbb{Z}\}$.

Proposición 1.2. (I) $e^{i\theta} = e^{i(\theta + 2k\pi)} \forall k \in \mathbb{Z}$.

(II)
$$|e^{i\theta}| = 1, |\overline{e^{i\theta}}| = e^{-i\theta} = (e^{i\theta})^{-1}.$$

(III)
$$e^{i(\theta+\sigma)} = e^{i\theta}e^{i\sigma}$$
.

(IV)
$$\arg(zw) = \arg(z) + \arg(w)$$
 y $\arg(\overline{z}) = \arg(z^{-1}) = -\arg(z)$

Proposición 1.3. Si
$$z = re^{i\theta}$$
 entonces $z^n = r^n e^{in\theta} = |z|^n e^{in \arg(z)}$.

Observación. Una raíz n-esima de un número complejo w es número z que cumple $z^n = w$. Si w = 0 la única raíz es 0, si $w \neq 0$ entonces por el Teorema Fundamental del Álgebra tenemos que hay n raíces distintas.

Sean $w=|w|e^{i\theta}$ y $z=|z|e^{i\alpha}$, tenemos que

$$|w|e^{i\theta} = |z|^n e^{in\alpha}$$

y por tanto $|z|=|w|^{\frac{1}{n}}$ y $e^{i\theta}=e^{in\alpha}$, lo cual implica que $n\alpha=\theta+2k\pi$ para $k\in\mathbb{Z}$. Los valores de α son

$$\frac{\theta}{n}, \frac{\theta+2\pi}{n}, \cdots, \frac{\theta+2\pi(n-1)}{n}$$

Proposición 1.4. Sea $w \in \mathbb{C}$ entonces w tiene n raíces n-simas distintas.

Observación. Estas n raíces son los vértices de un polígono regular de n lados inscritos en la circunferencia de centro 0 y radio $|w|^{\frac{1}{n}}$.

1.2. Función Exponencial

Definición 1.5 (Función polinómica). Sea $P: \mathbb{C} \to \mathbb{C}: z \mapsto a_0 + a_1z + \cdots + a_nz^n$ donde $a_0, \cdots, a_n \in \mathbb{C}$.

Observación. Como $f(z)=z^k$ es continua (de $\mathbb{R}^2\to\mathbb{R}^2$) se tiene que f es continua de $\mathbb{C}\to\mathbb{C}$.

Definición 1.6 (Función Exponencial). *Definimos la función exponencial como la solución de la ecuación diferencial*

$$f'(z) = f(z)$$

con el valor inicial f(0) = 1. Haciendo

$$f(z) = a_0 + a_1 z + \dots + a_n z^n + \dots$$

$$f'(z) = a_1 + 2a_2z + \dots + na_nz^{n-1} + \dots$$

se tiene que $a_{n-1}=na_n$ y $a_0=1$ y por inducción $a_n=\frac{1}{n!}.$

La solución se denota

$$e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots$$

que es una serie convergente.

Proposición 1.5 (Propiedades Exponencial). *Se verfican las siguientes propiedades:*

- (I) Si $z \in \mathbb{R}$ entonces e^z coincide con la exponencial real.
- (II) $|e^z| = e^x \ y \arg(e^z) = y$.
- (III) $e^{\overline{z}} = \overline{e^{\overline{z}}}$.
- (IV) $e^z \neq 0$ y $(e^z)^{-1} = e^{-z}$.
- (v) $e^{z+w} = e^z e^w, \forall z, w \in \mathbb{C}$.
- (VI) $e^{2k\pi i} = 1, \forall k \in \mathbb{Z}.$
- (VII) es periódica, $e^z = e^{z+2\pi i}$
- (VIII) es continua, Sea $(z_n)_{n\in\mathbb{N}}$ una sucesión de números complejos, si $z_n \xrightarrow[n\to\infty]{} z_0 \Rightarrow e^{z_n} \xrightarrow[n\to\infty]{} e^{z_0}$.
 - (IX) No es inyectiva, exiten infinitos $z \in \mathbb{C}$ tal que $e^x = 1$.

Observación. En el plano la exponencial compleja transforma las rectas horizontales de la forma z=x+ib en semirectas de radio e^x y ángulo b. Y rectas verticales de la forma z=a+iy a circunferenciasde radio e^a y ángulo y.

Definición 1.7 (Funciones Trigonométricas). Se definene las funciones sen y cos como

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}, \ \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

Proposición 1.6 (Propiedades cos y sen). (I) Son funciones continuas.

(II) Sobre los números reales coinciden con las correspondientes funciones reales.

6

(III)
$$\cos(z) = \cos(-z)$$
 $y \sin(z) = -\sin(-z), \forall z \in \mathbb{C}$.

(IV)
$$\cos(z) = 0 \Leftrightarrow z = \frac{\pi}{2} + k\pi \ \text{y} \ \text{sen}(z) = 0 \Leftrightarrow z = k\pi \ \text{para} \ k \in \mathbb{Z}.$$

- (v) $\forall z, w \in \mathbb{C}$, se tien $\cos(z + w) = \cos(z)\cos(w) \sin(z)\sin(w)$ y $\sin(z + w) = \sin(z)\cos(w) + \sin(w)\cos(z)$.
- (VI) El coseno y el seno son funciones periódicas de periodo 2π .
- (VII) $\cos(z)^2 + \sin(z)^2 = 1, \forall z \in \mathbb{C}.$

Demostración (ii). Veamos que si $z \in \mathbb{R}$ entonces la exponencial compleja coincide con la real

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2} =$$

$$= \frac{1}{2} (\cos(x) + \sin(x) + \cos(-x) + i \sin(-x)) = \cos(x)$$

Demostración. (iv) $\cos(z) = 0 \Leftrightarrow e^{iz} + e^{-iz} = 0 \Leftrightarrow e^{iz}(e^{iz} + e^{-iz}) = e^{2iz} + 1 = 0 \Leftrightarrow e^{2iz} = -1 \Rightarrow z \in \mathbb{R}$. Si $y \neq 0$ entonces $e^{2iz} = e^{2ix-2y} \Rightarrow |e^{2iz}| \neq -1$.

Definición 1.8 (Función Tangente). A partir de las funciones seno y coseno se define la tangente,

$$\tan(z) = \frac{\sin(z)}{\cos(z)} = -i\frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}$$

Observación. Todas las funciones trigonométricas son funciones de e^{iz} .

Observación. También podemos definir las funciones

$$\operatorname{senh}(z) = \frac{e^z - e^{-z}}{2} y \cosh(z) = \frac{e^z + e^{-z}}{2}$$

1.3. Función Logaritmo

Definición 1.9 (Logaritmo). La función logaritmo se define como la inversas de la función exponencial,

$$\log : \mathbb{C} \setminus \{0\} \to \mathbb{C}$$

$$z \mapsto \log(z) = w$$

donde $\log(z) = w$ es la raíz de la ecuación $e^w = z$.

Observación. $e^z \neq 0, \forall z \in \mathbb{C} \Rightarrow el 0$ no tiene logaritmo.

Observación. Si $w = x + iy \neq 0$, $z = e^w = e^{x+iy}$ tiene soluciones

$$e^x = |z|, \ e^{iy} = \frac{w}{|w|}$$

donde la primera ecución tiene solución única $x = \log(|z|)$ y la segunda ecuación tiene inifinitas soluciones módulo 2π .

Observación. Distinguiendo la parte real y la parte imaginaria de w podemos escribir

$$z = \log(z) = \log|z| + i\arg(z)$$

dado que $e^{\log(z)} = e^{\log|z|}e^{i\arg(z)} = |z|e^{i\arg(z)} = z$.

Observación. Para distinguir las soluciones, se llama **rama** del logaritmo a la función que reside en $\{x+iy:y_0\leq y\leq y:0+2\pi\}$. Solo definimos la función $\log(z)$ cuando se especifica un intervalo de longitud 2π donde $\arg(z)$ toma valores y se dice elegir una rama específica.

Observación. La determinación principal del argumento induce una rama del logaritmo.

Definición 1.10 (Potencias). *Sea* $a, \alpha \in \mathbb{C}, a, \alpha \neq 0$

$$a^{\alpha} = e^{\alpha \log(a)}$$

Observación. Si $\alpha = 0 \Rightarrow a^0 = 1$.

Observación. En general, a^{α} tiene infinitos valores. Una excepción es $\alpha = n \Rightarrow a^n = e^{n \log(a)} = e^{\log(a)} \cdot \dots \cdot e^{\log(a)} = a \cdot \dots \cdot a$.

Proposición 1.7 (Propiedades Potencias). *El logaritmo verifica las siguientes propiedades:*

(I)
$$a^{-n} = \frac{1}{a^n}$$

(II) $a^{\alpha+\beta}=a^{\alpha}a^{\beta}$ solo si fijamos el valor de $\log(a)$

(III) $1 = e^{-2k\pi y}(\cos(2k\pi x) + i\sin(2k\pi x))$ donde $\alpha = x + iy$

Proposición 1.8. (I) $f(z) = a^z$ es continua en \mathbb{C}

(II) Sea $\alpha\in\mathbb{C}, f(z)=z^{\alpha}$ es continua en el dominio de la rama del logaritmo.

Definición 1.11 (Transformación de Möbius). Sean $a,b,c,d\in\mathbb{C}$ tal que $ad-bc\neq 0$. Entonces, a la función de la forma

$$S(z) = \frac{az+b}{cz+d}$$

se llama transfomación de Möbius.

Observación. S es continua en $\mathbb{C} \setminus \{-\frac{d}{c}\}$.

Proposición 1.9. La composición de transformaciones de Möbius es transformación de Möbius.

Proposición 1.10. $S: \mathbb{C} \setminus \{-\frac{d}{c}\} \to \mathbb{C} \setminus \frac{a}{c}$ es un homeomorfismo (biyectiva, S continua y S^{-1} continua) cuya inversa es

$$S^{-1}: z \mapsto \frac{dw - b}{a - cw}$$

Observación. $S \circ S^{-1}(z) = S^{-1} \circ S(z) = z$

Observación. Las transformaciones de Möbuis forman un grupo bajo la operación de composición de aplicaciones.

Definición 1.12 (Möbius Ampliada). Sea S la transfomación de Möbius tal que $S(-\frac{d}{c})=\infty$ y $S(\infty)=\frac{a}{c}$ si c=0 y $S(\infty)=\infty$ si c=0. Entoces, podemos definir $S:\mathbb{C}^*\to\mathbb{C}^*$.

Observación. La transfomación de Möbius ampliada también es homeomorfismo.

Teorema 1.1. Toda transfomación de Möbius es composición de homotrcias, translaciones, inversiones y giros.

9

Teorema 1.2. Sean $z_0, z_1, z_2 \in \mathbb{C}^*, w_0, w_1, w_2 \in \mathbb{C}^* : z_i \neq z_j, w_i \neq w_j, \forall i \neq j$. Entonces, $\exists ! T(z)$ transformación de Möbius tal que $T(z_i) = w_i, \forall i \in \{0,1,2\}$.

Corolario 1.2.1. Si una transformación de Möbius tiene tres puntos fijos entonces es la identidad.

Corolario 1.2.2. Si dos transformaciones de Möbius coinciden en tres puntos entonces son la misma.

Teorema 1.3. Las transformaciones de Möbius transforman circunferencias de \mathbb{C}^* en circunferencias de \mathbb{C}^*

Capítulo 2

Funciones Holomorfas

2.1. Derivación Compleja

Definición 2.1 (Derivada). Sea $\Omega \subset \mathbb{C}$ abierto, $f : \mathbb{C} \to \mathbb{C}$, $z_0 \in \mathbb{C}$. Decimos que f es derivable si existe

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

Ejemplo. (I) f constante $\Rightarrow f'(z_0) = 0$.

(II)
$$f(z) = z \Rightarrow f'(z_0) = 1$$
.

(III)
$$f(z) = \overline{z} \Rightarrow \frac{\overline{z} - \overline{z_0}}{z - z_0} = \begin{cases} 1, & \text{si } z - z_0 \in \mathbb{R} \\ -1, & \text{si } z - z_0 \in i\mathbb{R} \end{cases} \Rightarrow \beta \lim_{z \to z_0} z \to z_0$$

Observación. La continuidad de una función compleja es equivalente a la continuidad de la parte real y la parte imaginaria. No pasa lo mismo con derivabilidad.

Proposición 2.1. Sea $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ derivable en $z_0\in\Omega$. Entonces, f es continua en $z_0\in\Omega$.

Demostración. Sigue de la reglas de los limites

$$f(z) = f(z) + f(z_0) - f(z_0)$$

$$= f(z_0) + \frac{f(z) - f(z_0)}{z - z_0}(z - z_0)$$

donde
$$\frac{f(z)-f(z_0)}{z-z_0} \xrightarrow{z \to z_0} f'(z_0)$$
 y $(z-z_0) \xrightarrow{z \to z_0} 0 \Rightarrow f(z) \xrightarrow{z \to z_0} f(z_0)$

Proposición 2.2. Sean $f,g:\Omega\subset\mathbb{C}\to\mathbb{C}$ derivables en $z_0\in\Omega$. Entonces,

(I) Si
$$\alpha, \beta \in \mathbb{C}$$
, $(\alpha f \beta g)'(z_0) = \alpha f'(z_0) + \beta g'(z_0)$

(II)
$$(fg)'(z_0) = f(z_0)g'(z_0) + f'(z_0)g(z_0)$$
.

(III) Si
$$g(z_0) \neq 0$$
 entonces $(\frac{f}{g})'(z_0) = \frac{f'(z_0)g(z_0) + f(z_0)g'(z_0)}{g(z_0)^2}$.

Demostración.

Ejemplo. (I) $f(z) = z^n \Rightarrow f'(z) = nz^{n-1}, \forall z \in \mathbb{C}.$

- (II) Todo polinomio es derivable en \mathbb{C} .
- (III) $f(z) = \frac{1}{z}$ es derivable $\forall z \neq 0$.

Teorema 2.1 (Regla de la Cadena). Sean $\Omega_1, \Omega_2 \subset \mathbb{C}$ abiertos, $f: \Omega_1 \to \mathbb{C}$, $g: \Omega_2 \to \mathbb{C}$ tal que f es derivable en $f(z_0) \in \Omega_2$ y g es derivable en $z_0 \in \Omega_1$. Entonces, $(f \circ g)$ es derivable en $z_0 \in \Omega_1$ y $(g \circ f)'(z_0) = g'(f(z_0))f'(z_0)$.

Demostración. Sea $G:\Omega_2\to\mathbb{C}:G(w)=\begin{cases} \frac{g(w)-g(f(z_0))}{w-f(z_0)}, w\neq f(z_0)\\ g'(f(z_0)), w=f(z_0) \end{cases}$ entonces, G está bien definida y $\lim_{w\to f(z_0)}\frac{g(w)-g(f(z_0))}{w-f(z_0)}=g'(z_0)\Rightarrow G$ esta continua en $f(z_0)$.

Si $z \neq 0$, entonces

$$\frac{(g \circ f)(z) - (g \circ f)(z_0)}{z - z_0} =$$

$$= \frac{g(f(z)) - g(f(z_0))}{f(z) - f(z_0)} \cdot \frac{f(z) - f(z_0)}{z - z_0} =$$

$$= G(f(z)) \frac{f(z) - f(z_0)}{z - z_0}$$

$$\lim_{z \to z_0} G(f(z)) \frac{f(z) - f(z_0)}{z - z_0} =$$

$$= \lim_{z \to z_0} G(f(z)) \cdot \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =$$

$$= G'(f(z_0))f'(z_0).$$

Observación. $f: \Omega \to \mathbb{C}$ es derivable $\forall z \in \Omega$. Entonces, f es holomorfa en Ω .

2.2. Ecuaciones de Cauchy-Riemann

Notación. Sea $f:\Omega\subset\mathbb{C}\to\mathbb{C}$

$$f(x,y) = (u(x,y), v(x,y)) = u(x,y) + iv(x,y),$$

donde $u, v : \mathbb{R}^2 \to \mathbb{R}^2$. Entonces, la matriz jacobiana de f es

$$J_f(x,y) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Nota. Queremos ver que significa qeu u,v sean diferenciables. Si derivamos f en $z_0 \in \Omega$ respecto de x y y, parte real y parte imaginaria respectivamente, obtenemos dos expresiones de $f'(z_0)$ que dan lugar a las ecuaciones de Cauchy-Riemann.

Teorema 2.2 (Ecuaciones Cauchy-Riemann). Sea $f: \Omega \subset \mathbb{C} \to \mathbb{C}$. Entonces $f'(z_0)$ existe $\Leftrightarrow f$ es diferenciable en $z_0 = (x_0, y_0) \in \mathbb{R}^2$ con

$$u_x = v_y, \ u_y = -v_x$$
 (Ecuaciones de C-R),

es decir, si $\exists u_x, u_y, v_x, v_y$, son continuas en Ω y satisfacen las ecuaciones, entonces f es analítica en Ω .

Demostración. (\Rightarrow) En el límite

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

sustituimos $z = x + iy_0$

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{u(x, y_0) + iv(x, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{x - x_0}$$

$$= \frac{u(x, y_0) + u(x_0, y_0)}{x - x_0} + i \frac{v(x, y_0) - iv(x_0, y_0)}{x - x_0}$$

donde $\frac{f(z)-f(z_0)}{z-z_0} \xrightarrow{x \to x_0} f'(z_0)$ implica

$$\lim_{x \to x_0} \frac{u(x, y_0) + u(x_0, y_0)}{x - x_0} + i \frac{v(x, y_0) - iv(x_0, y_0)}{x - x_0}$$
$$= \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0).$$

De manera análoga, si $z = x_0 + iy$ entonces

$$\lim_{y \to y_0} \frac{u(x_0, y) + u(x_0, y_0)}{i(y - y_0)} + \frac{v(x_0, y) - v(x_0, y_0)}{(y - y_0)}$$

$$= \frac{1}{i} \frac{\partial u}{\partial y}(x_0, y_0) + \frac{\partial v}{\partial y}(x_0, y_0)$$

$$= \frac{\partial u}{\partial y}(x_0, y_0) - i \frac{\partial v}{\partial y}(x_0, y_0).$$

Por tanto, $\exists f'(z_0)$ y tiene el mismo valor independientemente de como z se acerque a z_0

$$f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial u}{\partial y} - i \frac{\partial v}{\partial y}$$

(⇒) A partir del teoremade Taylor

$$u(x+s,y+t) = u(x,y) + \frac{\partial u}{\partial x}(x,y)s + \frac{\partial u}{\partial y}(x,y)t + R(s,t)$$

donde $\frac{R(s,t)}{|h|} \xrightarrow{z \to z_0} 0$. También

$$v(x+s,y+t) = v(x,y) + \frac{\partial v}{\partial x}(x,y)s + \frac{\partial v}{\partial y}(x,y)t + G(s,t)$$

donde $\frac{G(s,t)}{|h|} \xrightarrow{z \to z_0} 0$. Entonces,

$$f(z+h) = f(z) + \frac{\partial u}{\partial x}(x,y)s + \frac{\partial u}{\partial y}(x,y)t + R(h)$$

$$+i\frac{\partial v}{\partial x}(x,y)s + i\frac{\partial v}{\partial y}(x,y)t + iG(h)$$
$$= f(z) + \left(\frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y)\right)h + R(h) + iG(h)$$

Entonces,

$$\frac{f(z+h) - f(z)}{h} = \left(\frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y)\right) + \frac{R(h) + iG(h)}{h}$$

Por tanto.

$$f'(z_0) = \frac{\partial u}{\partial x}(x, y) + i \frac{\partial v}{\partial x}(x, y)$$

 $\exists f'(z_0) \text{ y es continua} \Rightarrow f(z) \text{ es anlítica.}$

Corolario 2.2.1. Sea $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ holomorfa, Ω abierto. Entonces, $f'(z)=0, \forall z\in\Omega\Rightarrow f$ es constante.

Teorema 2.3. Si f(z) es diferenciable, entonces la matriz Jacobian $J_f: \mathbb{R}^2 \to \mathbb{R}^2$ tiene determinante

$$\det J_f(z) = |f'(z)|^2.$$

2.3. Función Inversa

Teorema 2.4 (Función Inversa). Sea $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ holomorfa, $z_0\in\Omega$ y $f'(z_0)\neq 0$. Entonces, existe un entorno $U\subset D:z_0\in U$ y un entorno de $V\subset\mathbb{C}:f(z_0)\in V$ tal que $f:U\to V$ es biyectiva y f^{-1} es holomorfa con

$$(f^{-1})'(f(z)) = \frac{1}{f'(z)}, z \in U.$$

Demostración.

Sea $J_f(x_0,y_0)$ la matriz Jacobiana de f en $z_0=(x_0,y_0)$, por el Teorema 2.3 $\det(J_f(z_0))=|f'(z_0)|^2\neq 0$. Entonces, podemos aplicar el Teorema de la Función Inversa Real ya que $J:\mathbb{R}^2\to\mathbb{R}^2$. Solo falta ver que $J_f(z)^{-1}$ cumple las ecuaciones de Cauchy-Riemann.

$$J_f(x,y) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Entonces la matriz Jacobiana invera es

$$(J_f(x,y))^{-1} = \frac{1}{\det(J_f)} \begin{pmatrix} v_y & -u_y \\ -v_x & u_x \end{pmatrix}$$

y la matriz Jacobiana de la función inversa

$$J_{f^{-1}}(x,y) = \begin{pmatrix} t_x & t_y \\ s_x & s_y \end{pmatrix}$$

Entonce,

$$t_x = \frac{1}{\det(J_f)} v_y = \frac{1}{\det(J_f)} u_x,$$

$$s_x = -\frac{1}{\det(J_f)} v_x = \frac{1}{\det(J_f)} u_y,$$

$$t_y = \frac{1}{\det(J_f)} v_x,$$

$$s_y = \frac{1}{\det(J_f)} v_y$$

las ecuaciones de Cauchy-Riemann se cumplen.

Ejemplo. Sea $w = \log z$ la rama principal del logaritmo. Entonces, w es continua y es la inversa de $z = e^w, -\pi < w < \pi$. Como e^w es holomorfa con $(e^w)' \neq 0$, podemos aplicar el Teorema de la Función Inversa. Por tanto, $\log z$ es holomorfa.

$$z = e^{\log z} \Rightarrow$$

$$1 = e^{\log z} \frac{d}{dz} (\log z) = z \frac{d}{dz} (\log z) \Rightarrow$$

$$\frac{d}{dz} (\log z) = \frac{1}{z}.$$

2.4. Funciones Harmónicas

Definición 2.2 (Ecuación de Laplace). La ecuación

$$\frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_m^2} = 0$$

se llama ecuación de Laplace.

Definición 2.3 (Laplaciano). El operador

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_m^2}$$

se llama Laplaciano.

Observación. La ecuación de Laplace se escribe $\Delta u = 0$.

Definición 2.4 (Función Armónica). Las funciones que satisfacen la ecuación de Laplace se llaman funciones armónicas. Sea $u:A\to\mathbb{R},\ u\in C^2$ tal que

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Teorema 2.5. Si f=u+iv es holomorfa y $u,v\in C^2$. Entonces, u y v son armónicas.

Observación. $u = \Re(f), v = \Im(f)$.

Demostración. content

Definición 2.5 (Conjugado Armónico). Sea $u:D\subset\mathbb{R}\to\mathbb{R}$ armónica y v armónica tal que f=u+iv es holomorfa. Entonces, decimos que v es el conjugado armónico.

Ejemplo. $f(z) = z^2$, $u = x^2 + y^2$, v = 2xy.

Teorema 2.6. Sea D un disco abierto o $D=\mathbb{R}^2$, $u:D\to\mathbb{R}$ armónica. Entonces, existe v armónica conjugada.

Demostración. content

Corolario 2.6.1. Toda función armónica es localmente la parte real de una función holomorfa.

2.5. Aplicaciones Conformes

Definición 2.6 (Vector Tangente). Sea $\gamma(t)=x(t)+iy(t)$, $0\leq t<1$ una curva diferenciable parametrizada con $z_0=\gamma(0)$. Entonces,

$$\gamma'(0) = \lim_{t \to 0} \frac{\gamma(t) - \gamma(0)}{t} = x'(0) + iy'(0)$$

es el vector tangente a γ en z_0 .

Definición 2.7 (Ángulo entre dos curvas). Definimos el ángulo entre dos curvas en z_0 como el ángulo entre sus vectores tangentes en z_0

Teorema 2.7. Sea $\gamma:[0,1]\to\mathbb{C}$ una curva diferenciable parametrizada con $z_0=\gamma(0)$ y sea f(z) una función diferenciable en z_0 . Entonces la tangente de la curva $f(\gamma(t))$

$$(f \circ \gamma)'(0) = f'(z_0)\gamma'(0).$$

Definición 2.8 (Función Conforme). Sea $f:A\subset\mathbb{R}^2\to\mathbb{R}^2$ diferenciable y sean para dos curvas γ_1,γ_2 con $\gamma_1(0)=\gamma_2(0)=z_0$. Entonces, decimos que f es conforme en z_0 si las curvas $(f\circ\gamma_1), (f\circ\gamma_2)$ tienen $\gamma_1'(f(z_0))\neq 0, \gamma_2'(f(z_0))\neq 0$ y el ángulo entre $(f\circ\gamma_1')(z_0)$ y $(f\circ\gamma_2')(z_0)$ es el mismo que el ángulo entre $\gamma_1'(z_0)$ y $\gamma_2'(z_0)$.

Observación. Una función conforme $f:D\to V$ es una función diferenciable con derivadas parciales continuas que es conforme $\forall z\in D$ e inyectiva.

Teorema 2.8. Si f(z) es diferenciable en z_0 y $f'(z_0) \neq 0$, entonces f(z) es conforme en z_0 .