13. Selection: How do populations *stop* growing?

Modelling replication

We have seen that populations grow through replication represented by the model:

$$\dot{x} = r x$$

where x is the size of a population and r is the specific growth rate of that population. This model generates the exponential growth story, for which we can formulate an exact model:

$$x(t) = x_0 e^{rt}$$
, with doubling time $T_2 = \ln(2)/r$.

- ? A bacteria population has $r = 0.035 \, \mathrm{min^{-1}}$. Calculate the population's doubling time.
- ? How many minutes are in a day? How many cells does 1 bacterium generate in 3 days?

This number is enormous. In fact, it is so enormous that it cannot be true! *There is no such thing as exponential growth in real life*. Rather, limited resources cause the population growth rate to drop as the population gets bigger. This is modelled by the logistic model:

$$\dot{x} = rx \left(1 - x/K \right)$$

Here, r is the specific replication rate of the population only when x is much smaller than the resource limitation (carrying capacity) K. If $x \to 0$, or if $x \to K$, $\dot{x} \to 0$, so the population has an *unstable* fixed point at $x^* = 0$, but grows from any initial value $x_0 > 0$ towards the *stable* fixed point at $x^* = K$. (A superscript asterisk denotes a fixed-point value.)

Modelling selection

Suppose we have two exponential populations x and y that reproduce at different rates r and s. Suppose they have initial conditions $x(0) = x_0$, $y(0) = y_0$, then:

$$\begin{array}{c} \dot{x} = r x \\ \dot{y} = s y \end{array} \implies \begin{cases} x(t) = x_0 e^{r t} \\ y(t) = y_0 e^{s t} \end{cases}$$

Both x and y grow exponentially. x has doubling time $\ln 2/r$ and y has doubling time $\ln 2/s$, so if r > s, x will grow faster than y. Eventually, there will be more x's than y's.

? Define $\rho(t) \equiv \frac{x(t)}{y(t)}$. Use the quotient rule to prove that $\dot{\rho} = (r - s)\rho$.

The solution of this equation is $\rho(t) = \rho_0 e^{(r-s)t}$, so if r > s, ρ will grow toward infinity, and x outcompetes y. If in addition we assume resource are limited, the total population x + y will remain constant, so if x gets infinitely bigger than y, this must mean that $y \to 0$.

This is *selection*: where the growth of x drives y to extinction. For selection to happen, we need different rates of growth of the populations x and y, *plus* resource limitation.

To study selection situations, we often use two simple modelling tricks:

- We think of x and y not as populations, but as *frequencies*. That is, we assume the sum of both population types is 1 (x + y = 1), so that x describes what proportion of the combined population are x-individuals, and y describes what proportion are y.
- In addition, we think of the growth rates r and s as *fitness* values: r describes how fit the type x is, in terms of how effectively it grows by comparison with y.
- ? We want to make sure that the sum x + y = 1 of the two frequencies stays constant. To do this, we reduce the growth rates of x and y by equal amounts R in the selection

- equations: $\dot{x} = (r R)x$ and $\dot{y} = (s R)y$. Prove that this is only possible if R is the average fitness of the two population types: R = rx + sy.
- ? One advantage of this selection model is that y depends upon x: y = 1 x. Show how we can eliminate y from the two selection equations, so that we only need to solve the single equation: $\dot{x} = (r s)x(1 x)$.

We know this equation: it is the logistic equation with specific growth rate (r-s) and carrying capacity 1. We also know how the logistic story evolves over time – it has two equilibria at 0 and 1:

- If r > s, $x \to 1$, so $y \to 0$, and type x is selected over type y;
- If s > r, $x \to 0$, so $y \to 1$, and type y is selected over type x;

Martin Nowak calls this situation "Survival of the Fitter".

Survival of the fittest

We can extend this 2-type model to selection between n different types in a population. If we name the individual type frequencies $x_i(t)$ (where $i=1,\ldots,n$), the structure describing all n types is a vector: $\mathbf{x}\equiv(x_1,x_2,\ldots,x_n)$. Now define $r_i\geq 0$ as the fitness of type i, then the average fitness of the entire population of n types is:

$$R = \sum_{i=1}^{n} x_i r_i = \boldsymbol{x} \cdot \boldsymbol{r}$$

We can then write the selection dynamics model as:

$$\dot{x}_i = x_i(r_i - R)$$
 (Linear selection model)

The frequency x_i of type i increases if its fitness r_i is higher than the population average R; otherwise x_i decreases. However, the total population stays constant: $\sum_{i=1}^n x_i = 1$ and $\sum_{i=1}^n \dot{x}_i = 0$. This is useful if we want to study the rise and fall of types within a population.

The set of all values $x_i > 0$ obeying the property that $\sum_{i=1}^n x_i = 1$ is called a *simplex* (denoted S_n). The useful thing about simplexes is that we can represent them graphically:

n	Simplex S_n	Geometrical visualisation	
1	Point	•	
2	Line segment	$(1,0) \bullet \qquad \bullet \qquad \bullet \qquad \bullet \qquad (0,1)$ $\left(\frac{1}{4}, \frac{3}{4}\right)$	
3	Triangle	$(1,0,0) \bullet (0,1,0) \begin{pmatrix} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{pmatrix}$	
4	Tetrahedron	v_1 v_2 v_3	If v_i ($i=1,2,3,4$) are four vertex position vectors, the general point of S_4 is the <i>convex combination</i> : $x \equiv x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4$

For example, consider the 3-simplex (or triangle) S_3 . Here, we interpret the top point (0,0,1) as representing the situation in which only population type 3 is present, and the other two are not. On the other hand, we interpret the centre point $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ as the situation where all three types are present in equal quantities.

- ? Which point would represent the situation in which type 2 is absent, and types 1 and 3 are present in equal quantities?
- ? In the linear selection model above, imagine that type $k \in \{1,2,...,n\}$ has greater fitness than any other type: $r_k > r_i$, $\forall i \neq k$. What does this mean for the value of the factor $(r_i R)$? What does this mean for the growth rate \dot{x}_k of type k whenever other types are present? What will be the frequency of the types after a long time? What will happen to any interior point of the simplex S_n over time?

You have demonstrated that the exponential selection model only ever has one outcome: total competitive exclusion. This is the meaning of the phrase "Survival of the Fittest".

Exercise project (1 week)

In this project, we will use modelling to test a more general theory of selection:

$$\dot{x}_i = r_i x_i^c - R x_i;$$
 $R = \sum_{i=1}^n r_i x_i^c;$ $c < 1$ (Sublinear selection model) $\dot{x}_i = r_i x_i^c - R x_i;$ $R = \sum_{i=1}^n r_i x_i^c;$ $c > 1$ (Superlinear selection model)

- 1. Notice that when c=1, these equations reduce to the exponentially growing linear selection model. If c<1, population growth is slower (*subexponential*), and if c>1, growth is faster than exponential (*superexponential*). An extreme example of subexponential growth is immigration at a constant rate. A superexponential growth example is sexual reproduction, where two organisms must meet in order to replicate.
- 2. Let's take the simple case n=3. Show that in this case, if the population lies in the simplex S_3 (so $x_1+x_2+x_3=1$), then the rate of change $(\dot{x}_1+\dot{x}_2+\dot{x}_3)$ of the entire population is equal to zero. What does this imply for evolution in relation to S_3 ?
- 3. Design a type `Selector` (in module `Selection`) that uses RK2 to simulate the evolution of a population of three types. Your demo() function will use the type's constructor to set the value of c and the three specific growth rates, then call the method `simulate!()` to evolve the population over time T, starting from initial frequencies [x0,y0,z0], and plot this evolution graphically in the simplex S_3 . For example:

4. Use your Selector type to demonstrate that c < 1 leads to *Survival of All*, while c > 1 leads to *Survival of the First*.

Summary

- Charles Darwin and Alfred Russell Wallace realised in 1858 that *all* resources are limited, which *necessarily* leads to selection and prevents exponential growth.
- The linear selection model is $\dot{x}_i = x_i(r_i R)$, where x_i and r_i are the frequency and specific replication rate, or fitness, of population type i; $R = \sum_{i=1}^n x_i r_i = x \cdot r$ is the average fitness of the population; and $\sum_{i=1}^n x_i = 1$.
- The condition $\sum_{i=1}^{n} x_i = 1$ means that a population in the linear selection model is represented by a point moving over time within a *simplex* S_n whose k-th vertex represents the presence of only the single population type $k \in \{1,2,...,n\}$.
- Linear selection always leads to *Survival of the Fittest*: the movement of the population from any interior point of S_n to the vertex k whose fitness is highest.
- Sublinear selection $(\dot{x}_i = r_i x_i^c R x_i)$, where $R = \sum_{i=1}^n r_i x_i^c$ and c < 1) models subexponential growth such as immigration; it leads to Survival of All.
- Superlinear selection ($\dot{x}_i = r_i x_i^c R x_i$, where $R = \sum_{i=1}^n r_i x_i^c$ and c > 1) models superexponential growth such as sexual replication; it leads to Survival of the First.