CPE301 - SPRING 2019

Design Assignment DA6

Student Name: Jett Guerrero Student #: 5002377713

Student Email: guerrj1@unlv.nevada.edu

Primary Github address: https://github.com/guerrj1/Submission_DA.git
Directory: DA6 - https://github.com/guerrj1/Submission_DA/tree/master/DA6

Submit the following for all Labs:

- 1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.
- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- -ATMega328p
- -Male to female wires
- -Micro USB cable
- -MPU6050 Module

Atmega328P using PB5 and PB4 for SDA and SCL. 5v for VCC and GND for GND.

2. DEVELOPED CODE OF TASK 1 C CODE

```
//DA6
#ifndef F CPU
#define F_CPU 16000000UL
#endif
#include <avr/io.h>
#include <util/delay.h>
#include <math.h>
#include <stdlib.h>
Include standard library file */
#include <stdio.h>
Include standard library file */
#include "libraries\MPU6050_def.h"
                                                                             /* Include MPU6050
register define file */
#include "libraries\i2c_master.h"
#include "libraries\i2c_master.c"
#include "libraries\uart.h"
                                                              /* Include i2c Master header file */
                                                               /* Include USART header file */
#include "libraries\uart.c"
#define MPU6050 WRITE 0xD0
#define MPU6050 read 0xD1
float Acc_x, Acc_y, Acc_z, Gyro_x, Gyro_y, Gyro_z;
void init_uart(uint16_t baudrate){
        uint16_t UBRR_val = (F_CPU/16)/(baudrate-1);
        UBRROH = UBRR_val >> 8;
        UBRRØL = UBRR val;
```

```
UCSR0B |= (1<<TXEN0) | (1<<RXEN0) | (1<<RXCIE0); // UART TX (Transmit - senden)</pre>
einschalten
       UCSROC |= (1<<USBSO) | (3<<UCSZOO); //Modus Asynchron 8N1 (8 Datenbits, No Parity, 1
Stopbit)
void uart putc(unsigned char c){
       while(!(UCSR0A & (1<<UDRE0))); // wait until sending is possible</pre>
       UDR0 = c; // output character saved in c
}
void uart_puts(char *s){
       while(*s){
               uart_putc(*s);
              S++;
       }
}
void init MPU6050(void){
       delay ms(150);
       /* Power up time >100ms */
       i2c_start(MPU6050_WRITE); // Set Gyroscope Sample Rate = 1 KHz, Accelerometer Sample
Rate = 1 KHz (default)
       i2c_write(SMPLRT_DIV); // Sample Rate is generated by dividing the gyroscope output
rate by SMPLRT DIV
       i2c_write(0x07); // Gyroscope Output Rate = 8kHz, Sample Rate = Gyroscope Output Rate /
(1 + SMPLRT DIV)
       i2c_stop();
       i2c start(MPU6050 WRITE);
       i2c write(PWR MGMT 1);
       i2c write(0x01); // PLL with X axis gyroscope reference
       i2c_stop();
       i2c start(MPU6050 WRITE);
       i2c_write(CONFIG); //Frame Synchronization & Digital Low Pass Filter (DLPF) setting
       i2c_write(0x00);
       i2c_stop();
       i2c start(MPU6050 WRITE);
       i2c_write(GYRO_CONFIG); //gyroscopes' scale range = FS_SEL selects = 11 = ± 2000 °/s
       i2c write(0x18);
                                     // accelerometer range = ± 2g (default)
       i2c stop();
       i2c start(MPU6050 WRITE);
       i2c write(INT ENABLE); // DATA RDY EN = 1
       i2c_write(0x01);
       i2c_stop();
}
void getreading(void){
       i2c start(MPU6050 WRITE);
       i2c_write(ACCEL_XOUT_H); // set pointer
       i2c_stop();
       i2c start(MPU6050 read);
       Acc x = (((int)i2c read ack()<<8) | (int)i2c read ack());
       Acc_y = (((int)i2c_read_ack() << 8) | (int)i2c_read_ack());
       Acc_z = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
```

```
Gyro_x = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
       Gyro_y = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
       Gyro_z = (((int)i2c_read_ack()<<8) | (int)i2c_read_nack());</pre>
       i2c_stop();
}
int main(void){
       char buffer[20], float_[10];
       float Xa, Ya, Za;
       float Xg, Yg, Zg;
       init_uart(9600);
       i2c_init();
       init_MPU6050();
       while(1){
               getreading();
               Xa = Acc_x/16384.0; /* Divide raw value by sensitivity scale factor to get real
values */
               Ya = Acc_y/16384.0;
        Za = Acc_z/16384.0;
        Xg = Gyro_x/16.4;
        Yg = Gyro_y/16.4;
        Zg = Gyro_z/16.4;
               dtostrf( Xa, 3, 2, float_ ); /* Take values in buffer to send all parameters
over USART */
               sprintf(buffer, "Xa: %s ",float_);
               USART_SendString(buffer);
               dtostrf( Ya, 3, 2, float_ );
               sprintf(buffer, "Ya: %s ",float_);
               USART_SendString(buffer);
               USART_SendString(buffer);
               //GYRO
               dtostrf( Xg, 3, 2, float_ );
sprintf(buffer,"Xg: %s ",float_);
               USART SendString(buffer);
               dtostrf( Yg, 3, 2, float_ );
sprintf(buffer, "Yg: %s  ",float_);
               USART_SendString(buffer);
               dtostrf( Zg, 3, 2, float_ );
               sprintf(buffer,"Zg: %s \r\n ",float_);
               USART_SendString(buffer);
               _delay_ms(1000);
       }
       return 0;
}
```

3. SCHEMATIC

MPU6050 Diagram Schematic

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Terminal window of the UART display for the 6-dimension values.

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Board set up for the MPU6050 connection to the Atmega328p

6. EXTRA CREDIT (VISUALIZING THE ACCELEROMETER AND GYRO VALUES)

Accelerometer and Gyro values

7. VIDEO LINKS OF EACH DEMO

https://youtu.be/l9Y3AdRotis

8. GITHUB LINK OF THIS DA

https://github.com/guerrj1/Submission_DA/tree/master/DA6

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Jett Guerrero