Questão 1

Ainda não respondida Vale 40,00

ponto(s).

- - (a) O conjunto F(N, N) das funções de N em N é enumerável;

Verdadeiro ou Falso? Prove ou dê um contraexemplo quando necessário.

- (b) A sequência (a_n) tal que $a_n = \frac{n}{n+1}$ diverge;
- (c) A função $f:(a,b) \rightarrow \mathbb{R}$ dada por

$$f(x) = \frac{1}{a-x} + \frac{1}{b-x}$$

é contínua;

(d) A sequência (x_k) definida recursivamente por

$$x_1 = n$$
, $x_{k+1} = n + \frac{1}{x_k}$

converge, qualquer que seja $n \in \mathbb{N}$;

(e) A função f : ℝ → ℝ dada por

$$f(x) = \begin{cases} 1/q, & \text{se } x = p/q,, \, \operatorname{mdc}(p,q) = 1, \, q > 0, \\ 0, & \text{se } x \not\in \mathbb{Q} \end{cases}$$

é contínua em Q;

- (f) Se a série $\sum a_n$ converge então $\sum 2^{-n}a_n$ converge;
- (g) Seja $f : \mathbb{R} \to \mathbb{R}$ tal que

$$\forall X \subset \mathbb{R}, \overline{X} = X \implies \overline{f^{-1}(X)} = f^{-1}(X),$$

Então f é contínua;

(h) Todo polinômio de grau ímpar possui pelo menos uma raíz real.

Questão 2

Ainda não respondida

Vale 15,00 ponto(s).

Mostre que existe apenas uma solução real para a equação $x^2=e^x$.

Questão 3

Ainda não respondida

Vale 15,00 ponto(s).

Seja $f : [0, 1] \rightarrow \mathbb{R}$ integrável. Mostre que

$$\lim_{n \to \infty} \int_0^1 f(x) x^n dx = 0.$$

Dica: Para cada $\epsilon > 0$ escolha um $\gamma > 0$ adequado e use o fato que para n suficientemente grande $(1 - \gamma)^n < \gamma$. (Por que isto vale?). Separe a integral.

Questão 4

Ainda não respondida

Vale 30,00 ponto(s).

4. Seja $f:[a,b]\to\mathbb{R}$ limitada. Defina

$$\omega(f;x) = \inf_{\delta>0} \{\omega(f; V_{\delta}(x) \cap [a,b])\}.$$

- (a) Mostre que f é contínua em $c \in [a, b]$ se e somente se $\omega(f; c) = 0$;
- (b) Seja $f:[a,b]\to\mathbb{R}$ integrável. Mostre que existe partição P de [a,b] tal que $\omega_i(f;P)<1$. Dica: $\varepsilon=b-a$;
- (c) Seja $f:[a,b] \to \mathbb{R}$ integrável. Use os itens anteriores para mostrar que existe pelo menos um ponto $c \in (a,b)$ onde f é contínua. Dica: Use a partição do item anterior e encontre intervalos encaixados tais que $\omega(f;I_k)<\frac{1}{k}$.