Московский Физико-Технический Институт

Кафедра радиоэлектроники и прикладной информатики

Практическая работа 201М-10

Вольт-амперные и температурные характеристики полупроводниковых диодов

Работу выполнил Ринат Валиев, 711 гр.

Под руководством Д.Н. Щелкунова

Оборудование

В работе используется набор диодов №2.

Импульсный	Выпрямительный	Выпрямительный	Варикап	Стабилитрон
ВЧ диод	НЧ диод	диод Шоттки		
D1N4149	D1N4002	D1N5818	D1N5443A	D04AZ2_2

Таблица 1: Диоды, содержащиеся в используемом наборе

Приведем некоторые характеристические параметры для диодов из таблицы 1.

D1N4149: Is=2.682n N=1.836 Rs=.5664 Ikf=44.17m Xti=3 Eg=1.11 Cjo=2p M=.3333 Vj=.5 Fc=.5 Isr=1.565n Nr=2 Bv=100 Ibv=100u Tt=11.54n

D1N4002: Is=14.11E-9 N=1.984 Rs=33.89E-3 Ikf=94.81 Xti=3 Eg=1.110 Cjo=51.17E-12 M=.2762 Vj=.3905 Fc=.5 Isr=100.0E-12 Nr=2 Bv=100.1 Ibv=10

D1N5818: Is=2.835u Rs=47.12m Ikf=.3227 N=1 Xti=0 Eg=1.11 Cjo=359.3p M=.6513 Vj=.75 Fc=.5 Isr=26.46u Nr=2

 $\begin{array}{l} \textbf{D1N5443A:} \ \text{Is} = 10.51 \\ \text{E} - 18 \ \text{Rs} = .1 \ \text{Ikf} = 0 \ \text{N} = 1 \ \text{Xti} = 3 \ \text{Eg} = 1.11 \ \text{Cjo} = 21.95 \\ \text{p M} = .426 \ \text{Vj} = .75 \\ \text{Fc} = .5 \ \text{Isr} = 12.84 \\ \text{p Nr} = 2 \ \text{Bv} = 30 \ \text{Ibv} = 10 \\ \text{u} \end{array}$

D04AZ2_2: Rs=1.000E-3 Cjo=1.000E-12 M=.3333 Vj=.75 Isr=96.31E-6 Bv=2.260 Ibv=51.73E-3 Tt=5.000E-9

Схемы для исследования диодов:

Рис. 1: Схема последовательного включения диодов

Рис. 2: Схема параллельного включения диодов

¹Диоды аналогичны указанным в наборе из таблицы 1

2.1. Вольт-амперные характеристики

Температурная зависимость обратной ветви ВАХ диода $I_{\mathrm{obp}} = f(U_d, T = const)$

2.1.1. Получим зависимость токов заданного набора диодов от напряжения в диапазоне от -1V до 0.05V с шагом 1mV при температурах 17,27,37 градусов Цельсия. Для температуры $T=27^{\circ}\mathrm{C}$ запишем на графике каждого диода значение обратного тока при напряжении $U_d=-0.1V$. Сравним с паспортными данными.

Рис. 3: D1N4149: $I_{\text{обр}} = -3.7787 \ nA$

Рис. 4: D1N4002: $I_{\text{обр}} = -12.191 \ nA$

Рис. 5: D1N5818: $I_{\text{обр}} = -27.360 \ uA$

Рис. 6: D1N5443A: $I_{\text{обр}} = -11.593 \ pA$

Рис. 7: D04AZ2_2: $I_{\text{обр}} = -85.940 \ uA$

2.1.1.а. Для импульсного ВЧ диода напечатаем значения обратных токов также для напряжения $U_d = -1V$ и рассчитаем абсолютный и относительный температурные коэффициенты обратного тока для температуры $T = 27^{\circ}\mathrm{C}$:

абс. TKOT =
$$\left(\frac{\partial I_{\text{обр}}(T)}{\partial T}\right)_{U}[A/^{\circ}\mathbf{C}]$$
 относ. TKOT = $\frac{\text{абс. TKOT}(T)}{I_{\text{обр}}(T)} \cdot 100\,[\%/^{\circ}\mathbf{C}]$

Рис. 8: D1N4149: абс. ТКОТ = $-398.710~pA/^{\circ}$ С и относ. ТКОТ = $8~\%/^{\circ}$ С

2.1.1.6. Рассчитаем обратный ток диода при $T=47^{\circ}\mathrm{C}$, используя примерную температуру удвоения $\Delta T=10^{\circ}\mathrm{C}$.

$$I_{\text{обр}}(T = 47^{\circ}\text{C}) = I_{\text{обр}}(T = 27^{\circ}\text{C}) \cdot 4 = -3.7787 \ nA * 4 = 15.1148 \ nA$$

2.1.1.в. Рассчитаем фактическую температуру удвоения $\Delta T_{\rm факт}$.

$$\Delta T_{
m факт} = \Delta T \cdot rac{0.693}{\ln N} = 9.98^{\circ} {
m C}$$
 где $N = rac{I_{
m oбp}(T+\Delta T)}{I_{
m ofp}(T)}$

Температурная зависимость прямой ветви ВАХ диода $I_{\text{пр}} = f(U_d, T = const)$

2.1.2. Повторим получение токов диодов при тех же значениях температуры 17, 27, 37 градусов Цельсия, но в диапазоне положительных напряжений от +0.1V до +0.6V с шагом 1mV.

Рис. 9: D1N4149

Рис. 10: D1N4002

Рис. 11: D1N5818

Рис. 12: D1N5443A

Рис. 13: D04AZ2_2

2.1.2.а. Напечатаем на графике для импульсного ВЧ диода значения токов при напряжении $U_d = 0.6V$.

Рис. 14: D1N4149: относ. TKOT = 4.1%

Прямая ВАХ диода в полулогарифмических координатах

2.1.3. Получим на одном графике в логарифмическом масштабе зависимости токов от напряжения всех диодов заданного набора в диапазоне от +0.05V до +5V при температуре $T=27^{\circ}\mathrm{C}$.

Рис. 15: Список диодов на представлен по порядку, показанному снизу для линий

2.1.3.а. Для импульсного ВЧ диода получим в логарифмическом масштабе семейство температурно-зависимых ВАХ прямого тока $I_{\rm np}=f(U_d,T=const)$ при $-40^{\circ}{\rm C},\,27^{\circ}{\rm C},\,85^{\circ}{\rm C}.$

Рис. 16: ВАХ прямого тока для импульсного ВЧ диода при -40° С, 27° С, 85° С

Для экспоненциальной ($U_d \approx 0.6V$) и линейной ($U_D \approx 4V$) области ВАХ рассчитаем относительные температурные коэффициенты прямого тока при температуре 27°C.

относ. ТКПТ =
$$\frac{\text{абс. ТКПТ}(T)}{I_{\text{np}}(T)} \cdot 100 \, [\%/^{\circ}\text{C}]$$

Рис. 17: Области $(U_d \approx 0.6V) \implies \text{ТКПТ} \approx 0.1\%$ и $(U_D \approx 4V) \implies \text{ТКПТ} \approx 0.4\%$

2.1.3.6. Для ВАХ с параметром $T=27^{\circ}\mathrm{C}$ в линейном масштабе определим по наклону кривой в области линейности среднее значение омического сопротивления диодной структуры.

Рис. 18: Рассматривая $\frac{1}{DIFF}$ приходим к ответу .5839 $\approx Rs$

2.1.3.в. Найдем также зависимость дифференциальной проводимости.

Рис. 19: Также получаем в линейной области .5852 $\approx Rs$ При нуле получаем $r_0=9.788M$ \Longrightarrow $\frac{U_T}{r_o}=2.643n\approx I_s$

2.1.3.г. Для ВАХ с параметром $T=27^{\circ}\mathrm{C}$ в линейном масштабе получим в области экспоненциальной зависимости коэффициент неидеальности при $I_{xx}=Is$ или Isr.

$$m = \frac{U}{U_T} / \ln\left(\frac{I + Is}{Is}\right) \approx \left(\frac{U}{U_T}\right) / \ln\left(\frac{I}{I_{xx}}\right)$$

Рис. 20: Коэффициент неидеальности $(Is) = 1.836 \approx N$: совпадает с паспортом

Рис. 21: Коэффициент неидеальности $(Isr) = 1.999 \approx Nr$: совпадает с паспортом

ВАХ стабилитрона $I_{\text{стб}} = f(U, T = const)$

2.1.4. Получим зависимости тока стабилитрона от напряжения в диапазоне от $-(U_{st}+\Delta U)$ до +0.3V при $-40^{\circ}\mathrm{C},27^{\circ}\mathrm{C},85^{\circ}\mathrm{C}$. Также рассмотрим это в малой окрестности напряжения стабилизации.

Рис. 22: ВАХ стабилитрона

Рис. 23: BAX стабилитрона вблизи напряжения стабилизации

Обратная ветвь ВАХ реального диода

2.1.5. Отсоединим стабилитрон от источника и получим зависимости токов диодов от напряжения в диапазоне от -(30-60)V до +0.05V при $T=27^{\circ}\mathrm{C}$.

Рис. 24: D1N4149

Рис. 25: D1N4002

Рис. 26: D1N5818

Рис. 27: D1N5443A

2.2. Температурные характеристики

2.2.1. Установим напряжение V=0.6V. Получим зависимости прямого тока от температуры в диапазоне от $-50^{\circ}\mathrm{C}$ до $+100^{\circ}\mathrm{C}$.

Рис. 28: Зависимости прямого тока от температуры в диапазоне от $-50^{\circ}\mathrm{C}$ до $+100^{\circ}\mathrm{C}$

2.2.1.а. Для импульсного ВЧ диода получим температурную зависимость относ. ТКПТ в области $17^{\circ}\mathrm{C} < T < 47^{\circ}\mathrm{C}$ при $U_d = 0.6V$.

Рис. 29: D1N4149: при некоторых температурах

Рис. 30: D1N4149: относ. ТКПТ $\approx 4.3\%$

Температурная зависимость обратного тока $I_{\text{обр}} = f(T, U_d = const)$

2.2.2. Перевернем диоды обратной стороной, установим напряжение 1V. Получим графики в логарифмическом масштабе зависимости обратных токов всех диодов.

Рис. 31: Зависимости обратных токов всех диодов

2.2.2.а. Для импульсного ВЧ диода найдем значение обратного тока при $T=27^{\circ}\mathrm{C}.$

Рис. 32: Зависимости обратных токов всех диодов

Температурная зависимость прямого напряжения $U_d = f(T, I_d = const)$

2.2.3. Соединим все диоды последовательно с источником тока 1mA как на рисунке 2 получим графики зависимостей прямого напряжения на каждом диоде от температуры в диапазоне от -50°C до 100°C.

Рис. 33: D1N4149

Рис. 34: D1N4002

Рис. 35: D1N5818

Рис. 36: D1N5443A

Рис. 37: D04AZ2_2

Температурная зависимость напряжения пробоя стабилитрона

2.2.4. Повернем стабилитрон каком кверху к источнику тока и получим зависимость напряжения на стабилитроне от обратного тока $U = f(I_{\text{oбp}}, T = const)$ в диапазоне от (2-5)mA до (50-100)mA при значениях температуры: $-40^{\circ}\text{C}, 27^{\circ}\text{C}, 85^{\circ}\text{C}$.

2.2.4.а. Изобразим полученную зависимость на графике (рисунок 38).

Рис. 38: Стабилитрон

2.2.4.6. Для ВАХ с параметром $T=27^{\circ}\mathrm{C}$ напечатаем на графике необходимые данные и определим величину абсолютного и относительного изменений (относительно паспортного значения $U_{st}=Bv$) напряжения в использованном диапазоне $\Delta I=(50-100)mA-(2-5)mA$ изменений тока.

$$\frac{\Delta U}{U_{st}} \cdot 100\% \approx 2.7\%$$

Рис. 39: Стабилитрон при $T=27^{\circ}{\rm C}$

2.2.4.в. Получим зависимость дифференциального сопротивления стабилитрона от тока, а также найдем его значение при 10mA.

Рис. 40: Стабилитрон и его дифференциальное сопротивление

При I=10mA получаем значение дифференциального сопротивления

$$R(I = 10mA) \approx 2.61\Omega$$