Problem set: 2 Course: M339J/M389J - Probability Models Page: 3 of 3

Problem 2.3. Find the ratio of the 90^{th} percentile to the median of the exponential distribution with parameter θ .

The substitute
$$(\Phi)$$

Fx(x) = 1-e^{-x/2} x>0

Let $p \in (0, \Lambda)$.

 $\pi p = ?$
 $f_X(\pi p) = p$
 $1-e^{-x/2} = p$
 $e^{-x/2} = 1-p$
 $e^{-x/2} = 1-p$
 $\pi p = -\Phi \ln(1-p)$
 $\pi p = -\Phi \ln(1-p)$

University of Texas at Austin

Lecture 4

The Inverse Transformation (Simulation) Method

Proposition 4.1. Let X be a continuous random variable with the cumulative distribution function F_X and probability density function f_X .

Assume that f(x) > 0 for all positive x and zero elsewhere.

Define $Y = F_X(X)$.

Then, $Y \sim U(0,1)$.

Support
$$(Y) \subseteq [0,1]$$

for $y \in (0,1)$:
 $F_{Y}(y) = P[Y \in y] = P[F_{X}(X) \in y]$

$$f_{X}(x) \neq 0$$

$$f_{X}(y) = P[F_{X}(F_{X}(X)) \neq F_{X}(Y)]$$

$$f_{X}(y) = P[F_{X}(F_{X}(Y)) = y]$$

Proposition 4.2. Let $U \sim U(0,1)$ and let F be a cumulative distribution function.

Define $X = F^{-1}(U)$.

Then, the random variable X has the cumulative distribution function F.

Proof in the book.

An Informal Implementation.

- 1. Set F to be the cdf of the distribution from which we want to simulate values. "Figure out" F^{-1} ; this can be analytic or numerical.
- 2. Draw the simulated values from the unit uniform U(0,1):

$$u_1, u_2, \ldots, u_n$$

3. Apply F^{-1} to the simulated values to obtain

$$x_1 = F^{-1}(u_1), x_2 = F^{-1}(u_2), \dots, x_n = F^{-1}(u_n)$$

The x_1, x_2, \ldots, x_n are the simulated values from your target distribution.

Example 4.3. In the exponential case $X \sim Exponential(\theta)$, we have already obtained the analytic expression for the quantile function F_X^{-1} . It is

$$F_X^{-1}(y) = -\theta \ln(1-y)$$

So, with $\{u_i, i = 1, ..., n\}$ generated from the unit uniform, the x_i defined as

$$-\theta \ln(1-u)$$
 for $i=1,\ldots,n$

will be simulated values from the exponential distribution with parameter θ .

Instructor: Milica Čudina