

## CHEM 110 Hand-in-Sheet 1, 2013

## Chapters 1-4, The Atom, The Language of Chemistry, Chemical Reactions and Stoichiometry, Atomic Energy Levels

Please e-submit via the CHEM110 Moodle website or post to T&LC by: Wednesday 20<sup>th</sup> March.

| Name:<br>Student No: |                                                                                                                                                                                                                                                  |                                                                                                                                                            |                                                                                         | <b>Mark:</b> (Out of 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1                    |                                                                                                                                                                                                                                                  | nosphorous and chlorine used in P for every 4.12 g of Cl. Suppon?                                                                                          |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 2                    |                                                                                                                                                                                                                                                  | g Mg is composed of 78.99% of .01% of .26Mg (atomic mass 25                                                                                                |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 3                    | * /                                                                                                                                                                                                                                              | nical formula for calcium hydri<br>PAC-approved name for CH <sub>3</sub> C                                                                                 |                                                                                         | , and the second | swer. [2 marks]   |
| 4                    | Write the equation that expresses in acceptable chemical shorthand the following statement: 'Iron can be made to react with molecular oxygen, O <sub>2</sub> , to give iron oxide with the formula Fe <sub>2</sub> O <sub>3</sub> .' [1 mark]    |                                                                                                                                                            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 5                    | (a) Which contains more molecules: 2.5 moles of H <sub>2</sub> O or 2.5 moles of H <sub>2</sub> ? (b) How many moles of (i) hydrogen atoms, (ii) sulphur atom and (iii) oxygen atoms are in 1 mole of H <sub>2</sub> SO <sub>4</sub> ? [2 marks] |                                                                                                                                                            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                      | (a)                                                                                                                                                                                                                                              |                                                                                                                                                            | (b) (i)                                                                                 | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (iii)             |
| 6                    |                                                                                                                                                                                                                                                  | an organic compound contained 0.805 g of H <sub>2</sub> O were obtained                                                                                    |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 7                    | Suppose that, in (a) Balance the a                                                                                                                                                                                                               | balanced equation shows the real Al(s) + Fe <sub>2</sub> tone batch of reactants, 114 g of above reaction. (b) Which reacter. (c) Calculate the mass of Fe | $O_3(s) \rightarrow Al_2O_3(s) + Fe$<br>All was mixed with 28 ant, if either, was the l | (1)<br>80 g of Fe <sub>2</sub> O <sub>3</sub> .<br>imiting reactant? Sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w your working to |
|                      | (b)                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

|    | (c)                                                                                                                                                          |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
| 8  | What volume of 0.150 M FeCl <sub>3</sub> (aq) solution is needed to react completely with 20.0 mL of 0.0450 M AgNO <sub>3</sub> (aq)                         |  |  |  |  |
|    | What mass of AgCl will be formed? The net ionic reaction is: $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$ [6 marks]                                         |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
| 9  | When light of wavelength 231 nm shines on the surface of caesium metal, electrons are ejected with a maximum                                                 |  |  |  |  |
|    | kinetic energy of $5.2 \times 10^{-19}$ J. Calculate: (a) the frequency (in s <sup>-1</sup> ) of the light, (b) the binding energy of                        |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
| _  | electrons to the caesium metal, (c) the longest wavelength of light that will eject electrons. [5 marks]                                                     |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
| 10 | Arrange the following in order of decreasing size (radius): Cl <sup>-</sup> , K <sup>+</sup> , Cl, Br <sup>-</sup> . Explain your rankings in terms of       |  |  |  |  |
|    | quantum numbers and electrical (i.e., positive-negative) interactions. [3 marks]                                                                             |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
| 11 | The first form invitation and size of alternative and fill and E 577.11 11 E 1017.11 11 E 0745.11                                                            |  |  |  |  |
| 11 | The first four ionization energies of aluminium are as follows: $E_{i1}$ =577 kJ mol <sup>-1</sup> , $E_{i2}$ =1817 kJ mol <sup>-1</sup> , $E_{i3}$ =2745 kJ |  |  |  |  |
|    | $\text{mol}^{-1}$ , and $E_{i4}=11578$ kJ $\text{mol}^{-1}$ . (i) Explain the trend in ionization energies. (ii) Which ion of aluminium has the              |  |  |  |  |
|    | largest electron affinity? [2 marks]                                                                                                                         |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
| 12 | (-) W. (-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,                                                                                                              |  |  |  |  |
| 12 | (a) Write the electron configuration for the Mn and $Mn^{2+}$ ground state, and give a set of quantum numbers for all                                        |  |  |  |  |
|    | electrons in the <i>least stable</i> occupied orbital. (b) Is Mn <sup>2+</sup> paramagnetic? Draw an orbital diagram to support your                         |  |  |  |  |
|    | answer. (c) What orbital is represented by the quantum numbers $n = 4$ , $l = 1$ ? How many electrons can this                                               |  |  |  |  |
|    | orbital contain? [6 marks]                                                                                                                                   |  |  |  |  |
|    | (a) (b) Paramagnetic? Y/N (circle one)                                                                                                                       |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |
| -  |                                                                                                                                                              |  |  |  |  |
|    | (c)                                                                                                                                                          |  |  |  |  |
|    |                                                                                                                                                              |  |  |  |  |