Even and Odd Numbers

Even Numbers and Odd Numbers

Definitions

Definition 1 (Even and Odd Numbers)

- To say that x is an even number means that there exists an integer k such that x=2k.
- To say that x is an odd number means that there exists an integer k such that x=2k+1.

Examples

Example 2 (Sum of Odd Numbers)

If x is odd and y is odd, then x+y is even.

Examples (cont')

Example 3 (Product with Even Numbers)

Let x and y be integers. If x is even or y is even, then xy is even.

Fundamental Properties

Even/Odd Dichotomy (I)

Let \boldsymbol{x} be an integer. Then:

- $\mathbf{0}$ x is even or x is odd.
- 2 If x is not even, then x is odd.
- **3** If *x* is not odd, then *x* is even.

Note. If P stands for "x is even" and Q stands for "x is odd", then three statements above are $P \lor Q$, $\neg P \Rightarrow Q$, and $\neg Q \Rightarrow P$, respectively. Note that the three sentences are logically equivalent.

Fundamental Properties (cont')

Even/Odd Dichotomy (II)

Let x be an integer. Then:

- $\mathbf{1}$ x is not both even and odd.
- 2 If x is even, then x is not odd.
- **3** If *x* is odd, then *x* is not even.

Note. If P stands for "x is even" and Q stands for "x is odd", then three statements above are $\neg(P \land Q), P \Rightarrow \neg Q$, and $Q \Rightarrow \neg P$, respectively. Note that the three sentences are logically equivalent.

Examples

Example 4 (When Sum of Two Integers Is Odd)

Let x and y be integers. If x+y is odd, then x is even or y is even.