

MEDICIÓN E INSTRUMENTACIÓN

SENSORES RESISTIVOS Sensor de Temperatura RTD

Roberto Giovanni Ramírez-Chavarría

RRamirezC@iingen.unam.mx
Facultad de Ingeniería, UNAM

Semestre 2020-2

- RTD: Resistencia dependiente de la temperatura -

LLamado TERMÓMETRO DE RESISTENCIA

• Un alambre o hilo conductor posee una resitividad eléctrica ρ asociada y por tanto una resistencia eléctrica R.

$$R = \rho \frac{L}{A}$$

$$A = \text{área}$$

$$L = \text{longitud}$$

$$\rho = \text{resistividad}$$

$$R = -\text{W} - \text{R}$$

En un RTD el alámbre es típicamente platino (Pt) debido a su estabilidad.

- RTD: Resistencia dependiente de la temperatura -

- La resistividad de un metal cambia con la temperatura.
- Pero... lógicamente en un metal la resistvidad es pequeña (porque es un conductor eléctrico)
- Sin embargo, SÍ existen cambios (muy pequeños en su resistencia)

- RTD: Resistencia dependiente de la temperatura -

Un RTD...

- Posee una resistencia nominal (por ejemplo 100 Ω)
- Al haber un cambio de temperatura ΔT , hay un cambio en la resistencia nominal ΔR
- Y sí medimos ΔR obtenemos el valor de la temperatura a sensar.

- RTD: Resistencia dependiente de la temperatura -

Ecuación de un RTD

$$R = R_0(1 + \alpha(T - T_0))$$

 $R [\Omega]$ es la resistencia a temperatura T

 R_0 $[\Omega]$ es la resistencia nominal del alambre

 $\alpha \ [^{\circ}C^{-1}]$ es el coeficiente térmico del material

 $T[{}^{\circ}C]$ es la temperatura a sensar

 $T_0[{}^{\circ}C]$ es la temperatura asociada a R_0

La ecuación es quasi-lineal e indica que la resistencia es directamente proporcional a la temperatura

- RTD: Resistencia dependiente de la temperatura -

RTD comerciales

Los sensores más comunes son

- Pt100: RTD de platino con $R_0 = 100[\Omega]$ @ $T_0 = 0[^{\circ}C]$
- Pt1000: RTD de platino con $R_0 = 1000[\Omega]$ @ $T_0 = 0[^{\circ}C]$

Son RTDs de platino (Pt) cuya resistencia nominal R_0 es de 100 y 1000 $[\Omega]$ a una temperatura nominal T_0 de 0 $[{}^{\circ}C]$ y un coeficiente térmico $\alpha=0.00385 [{}^{\circ}C^{-1}]$

- RTD: Resistencia dependiente de la temperatura -

RTD comerciales

Fotografía de RTD comunmente empleadas en la industria

Sensores Resistivos - RTD: Resistencia dependiente de la temperatura -

RTD comerciales Construcción interna, dos tipos:

* El material cerámico favorece la disipación del calor!

- RTD: Resistencia dependiente de la temperatura -

Medición de la resistencia en un RTD: Puente de Wheatstone

La resistencia a medir R_x es la RTD

• Si
$$T = 0^{\circ} C \to R_x = R_0 = 100\Omega; \Delta R = 0\Omega$$

• Si
$$T > 0^{\circ}C \rightarrow R_x = R_0 + \Delta R; \Delta R > 0\Omega$$

- RTD: Resistencia dependiente de la temperatura -

Medición de la resistencia en un RTD: Puente de Wheatstone

NOTA: ΔR es pequeño \approx decimas de Ohms, por lo que un PW es el instrumento adecuado para medir los pequeños cambios de resistencia y así obtener la temperatura asciada.

- RTD: Resistencia dependiente de la temperatura -

Ejercicio: Termómetro resistivo con RTD

Se desea diseñar uun termómetro con un campo de medida de 0 a 100 $^{\circ}C$ mediante una Pt100, usando un puente de Wheatstone (PW) alimentado con 5 V. Determine el voltaje de salida del puente para 0, 25, 50,75 y 100 $^{\circ}C$, sabiendo que el coeficiente térmico de platino es $0.00385^{\circ}C^{-1}$.

Procedimiento:

- ① Determinar la resistencia de compesnación R del PW para encontrar el punto de equilibrio del puente ($V_{AB}=0$) para $T=0^{\circ}C$.
- 2 Fijar la resistencias de la parte superior del puente (R_1) . Se sugiere $5k\Omega$ para usar la expresión lineal.

- RTD: Resistencia dependiente de la temperatura -

Ejercicio: Termómetro resistivo con RTD

Se desea diseñar uun termómetro con un campo de medida de 0 a 100 $^{\circ}C$ mediante una Pt100, usando un puente de Wheatstone (PW) alimentado con 5 V. Determine el voltaje de salida del puente para 0, 25, 50,75 y 100 $^{\circ}C$, sabiendo que el coeficiente térmico de platino es $0.00385^{\circ}C^{-1}$.

La expresión del voltaje (lineal) de salida del puente -Ver presentación anterior es

$$V_{AB} = V\left(\frac{Rx - R}{R1 + R}\right)$$

donde Rx es la ecuación del RTD (pg.6) es

$$R_x = R_0(1 + \alpha(T - T_o))$$

- RTD: Resistencia dependiente de la temperatura -

Ejercicio: Termómetro resistivo con RTD

Se desea diseñar uun termómetro con un campo de medida de 0 a 100 $^{\circ}C$ mediante una Pt100, usando un puente de Wheatstone (PW) alimentado con 5 V. Determine el voltaje de salida del puente para 0, 25, 50,75 y 100 $^{\circ}C$, sabiendo que el coeficiente térmico de platino es $0.00385^{\circ}C^{-1}$.

- Sustituir R_x en la ecuación de V_{AB} y obtendremos que el voltaje del puente es función de la temperatura T a medir.
- Recuerda que $T_0 = 0^{\circ}C$ y R_0 siempre vale 100Ω

- RTD: Resistencia dependiente de la temperatura -

Ejercicio: Termómetro resistivo con RTD

Se desea diseñar uun termómetro con un campo de medida de 0 a 100 $^{\circ}C$ mediante una Pt100, usando un puente de Wheatstone (PW) alimentado con 5 V. Determine el voltaje de salida del puente para 0, 25, 50,75 y 100 $^{\circ}C$, sabiendo que el coeficiente térmico de platino es $0.00385^{\circ}C^{-1}$.

Para entregar:

- La expresión completa del voltaje VAB
- Cálculos de V_{AB} y R_x para las 4 temperaturas solicitadas.
- Gráfica de V_{AB} (eje vertical) contra T (eje horizontal) para los resultados del punto anterior.
- Gráfica de V_{AB} (eje vertical) contra R_x (eje horizontal) para los resultados del punto 2.
- Gráfica de R_x (eje vertical) contra T (eje horizontal).

NO OLVIDES ESCRIBIR TUS OBSERVACIONES POR CADA GRÁFICA!

- RTD: Resistencia dependiente de la temperatura -

ACTIVIDAD 5

- Resolver el ejercicio sobre termómetro con RTD.
- En computadora (no fotografías).
- Gráficas en MATLAB

FECHA DE ENTREGA: Viernes 1 de mayo de 2020.

Enviar documento .pdf por correo.

Gracias!

Contact: https://rgunam.github.io

RRamirezC@iingen.unam.mx