Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

Pesage en marche par ponts instrumentés

Bernard Jacob*, Franziska Schmidt**

* Ingénieur général des ponts, des eaux et des forêts, Directeur scientifique délégué

** Chercheur, Département MAST

Table des matières

- 1. Enjeu et nature des surcharges
- 2. Aperçu des technologies
- 3. Pesage par ponts instrumentés (B-WIM)
- 4. Cas des ponts cadres
- 5. Cas des dalles orthotropes, viaduc de Millau
- 6. Conclusions

Enjeux

- Surcharges induisent une distorsion de concurrence entre sociétés et modes (transfert modal inverse) : un poids lourd en surcharge de 20% toute l'année a un gain compétitif de 25 000 €!
- Détérioration accélérée des infrastructures, risque et coût sociétal
- Accroissement du risque d'accident: instabilités (renversement, sortie de voie...), allongement distances de freinage, aggravation des collisions
- ⇒ Besoin de contrôles efficaces, sans perturbation du trafic et en sécurité

Nature des surcharges

- 8 à 15% des camions surchargés, (site et jours/heures)
- Majorité des surcharges entre 5 et 10%, mais jusqu'à 20-25%
- Surcharges au PTC, essieu (2e tracteur), groupe (rare), remorque
- Utilisation abusive des VUL (≤ 3.5 t) avec PT jusqu'à 5 ou 6 t, soit > 60% surcharge
- Surcharges sont souvent liées à d'autres infractions : excès de vitesse, fraude au limiteur de vitesse, dépassement temps de conduite, défaut de licence de transport ...
- Depuis 2013: amendes proportionnelles
 - > 135 € (contravention 4e classe) par tranche de 1 t (PTC) ou 0,5 t pour essieux et groupes
 - Par ex.: (≈10%) 43 t, 2e essieu 14,5 t ⇒ 5 * 135 = 675 € (≈20%) 48 t, 2e essieu 15,5 t ⇒ 13 * 135 = 1755 €

Technologies du pesage en marche

Modes de pesage

Basse vitesse (LS) WIM: aires dédiées, contrôles

- Utilisation des divers types de capteurs : cellules de charge, plateaux à jauges, barreaux et rubans piézos...
- Multi-capteur (MS-)WIM pour compenser les effets dynamiques (uni de chaussée...)
- Ponts instrumentés
- Pesage embarqué

Vitesse courante (HS) WIM: dans le trafic

Pesage à basse vitesse

• Interception et pesée sur aire dédiée

- Pesée à 5-15 km/h, 50 à 120 véh./h
- Système fixe, semi-fixe ou portable, à plateaux de pesée (chemin de roulement)
- Vitesse constante, pas de transfert de charge
- ➤ Tolérances: ±5%, (OIML R134)

Avantages

- Présélection très fine ET verbalisation
- (semi-) automatique avec signalisation dynamique en pleine voie (Canada, USA)
- Efficacité x10 par rapport au statique
- Gain de temps pour véhicules OK

Pesage à vitesse courante

 Mesure de force d'impact d'essieu par capteur en chaussée

- Variations de forces d'impact (dynamique verticale)
- Ecart statique/dynamique (uni, suspensions, charge (5 à 25%, jusqu'à 100% à vide)
- \triangleright Poids total Σ charges d'essieux (+ précis)
- > Effets de pompage, tangage, roulis....
- Précision selon extension capteur
- Avantages/inconvénients
 - Pesage automatique tous véhicules
 - Pas d'interception, systèmes discrets, coûts abordables
 - Précision variable (10-25%)
 - Etalonnage, maintenance, qualité des donnees
 - Non homologué par métrologie légale

Réseau de stations de pesage (EPM) en France

- 29 systèmes installés
- sur autoroutes + routes à grande circulation : > 1500-2000 PL/jour
- répartition régionale, 30 M pesées/an
- Précision B(10)/C(15), efficacité 96%
- 100 k€/système y.c. maintenance
- Ciblage des PL avant contrôles + profilage des sociétés

Pesage par pont instrumenté (B-WIM)

Pesage par types de ponts

- Ponts cadres
- Ponts à dalles orthotropes
- Ponts à poutres (VIPP)

- Système discret
- Algorithmes / type de pont
- Détect. présence multiple
- Homologation verbalisation ?

Expérimentations B-WIM

Ponts cadres

- 2005: Rosay-en-Brie
 (77), RN4, 2005
- 2006: Nogent s/Seine (10), RN19, 2005-6
- 2009: Montpellier(34), A9, 2010

Dalles orthotropes

- Autreville (54), A31,1997-98 + 2008
- Millau (12), A75, 2009-2010 + 2016

Utilisation d'un système slovène SiWIM (Cestel), acquis par le LCPC en 2005

Résultats Nogent s/Seine

RN19: précision (dir. Paris-province), condition I/R4

	number	Mean	Std. Dev	Class	Global Class
Gross Weight	11	-0.03%	3.1%	B+(7)	
Group of Axle	12	-1.5%	3.9%	B+(7)	B(10)
Single Axle	21	-1.9%	6.4%	B(10)	
Axle of group	33	-0.7%	11.9%	C(15)	

RN19: précision (dir. Province-Paris), condition I/R4

	number	Mean	Std. Dev	Class	Global Class
Gross Weight	28	-0.26	4.64	C(15)	
Group of Axle	12	1.898	4.76	C(15)	C(15)
Single Axle	56	-0.45	5.74	C(15)	
Axle of group	36	1.906	9.67	D+(20)	

Résultats Montpellier

A9: précision, voie lente, direction S→N, condition I/R4

	number	Mean	Std. Dev	Class	Global Class
Gross Weight	91	2.06%	4.35%	B(10)	
Group of Axle	88	3.23%	5.28%	B(10)	B(10)
Single Axle	182	0.64%	4.99%	B+(7)	
Axle of group	265	3.51%	9.29%	B(10)	

Instrumentation Millau

Résultats Autreville & Millau

Autreville A31: précision, algorithme 2D de A. Dempsey et al., conditions I/R4

	number	Mean	Std. Dev	Class
Gross Weight	28	0.55%	5.55%	C(15)
Single Axle	55	0.79%	8.950%	C(15)
Group of Axle	27	0.17%	8.22%	C(15)

Millau (A75): précision, conditions I/R4

	number	Mean	Std. Dev	Class
Gross Weight	43	-3.24%	5.76%	C(15)
Group of Axle	39	-8.01%	5.32%	C(15)
Single Axle	86	1.09%	11.18%	D+(20)
Axle of group	115	-7.93%	946%	B(10)

Vers le CSA surcharges...

Pesage en marche pas encore approuvé par la Métrologie légale (OIML). Pas 100% des mesures dans la tolérance ±5% (PT)

- Défi technique
 - ➤ Le système doit détecter/corriger ou éliminer les mesures hors tolérances (±5% PT, ±8-10% essieux)
 - ➤ Le système doit identifier les contrevenants validés
- Défi juridique
 - ➤ Le code de la route doit être modifié pour permettre que la pesée à vitesse courante soit preuve d'infraction
 - ➤ La Métrologie légale doit délivrer une homologation des appareils
- Défi fiabiliste : Pas de sanction à tort, mais non détection OK
 - → CZ s'est lancée, mais difficultés de mise en œuvre...
 - → FR a lancé un projet de recherche national

Conclusions

- Collecte et utilisation des données de charges pour les infras
 - Bases de données à grande échelle, représentatives du trafic
 - Elaboration et calibration codes de calculs (ponts, chaussées)
 - Stratégies de maintenance, évaluations des structures
- · Respect des règles sur les poids et dimensions
 - > Respect réglementation, réduction impacts et saine concurrence
 - Solutions du pesage en marche: présélection, vers le CSA surcharge
- Pros/Cons du pesage par ponts instrumentés
 - Système non intrusif, discret, déplaçable, modulable
 - Intégrable à des systèmes de bridge monitoring
 - > Ergonomie, compétences spécifique et assistance technique
- Enjeu (DGITM/DST): aptitude au CSA surcharges