Problema ${\mathcal A}$

PΙ

Autoria: Edmilson Marmo
Timelimit: 1.0s

O famoso matemático Arquibaldo decidiu calcular o valor de π usando uma série bastante conhecida: a série de Leibniz, dada por:

$$\pi \approx 4 \cdot \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots\right)$$

Essa é uma série alternada: os sinais se alternam a cada termo, os valores absolutos dos termos diminuem, e a série converge para π .

É possível determinar uma aproximação de π somando apenas os primeiros termos da série. O erro absoluto cometido ao parar no n-ésimo termo é sempre menor que o valor absoluto do próximo termo.

A cada novo termo somado, a aproximação de π melhora um pouco, mas Arquibaldo é impaciente e quer saber: quantos termos da série ele precisa calcular para que a aproximação de π esteja a uma distância menor que um determinado erro aceitável?

Você foi encarregado de escrever um programa que ajude Arquibaldo nessa missão.

Entrada

A entrada consiste de um único número real ϵ $(1 \times 10^{-4} \le \epsilon \le 1 \times 10^{-1})$, representando o erro máximo absoluto permitido na aproximação de π .

Saída

Seu programa deve imprimir um único número inteiro: a menor quantidade de termos da série de Leibniz necessários para que o módulo do próximo termo da série seja estritamente menor que ϵ .

Exemplos

Entrada	Saída
0.5	2

Entrada	Saída
0.1	6

Entrada	Saída
0.01	51