

Support Session II

Deep Learning with Python Shamsi Abdurakhmanova Aalto University 3.11.22

# ✓ Content

- Model selection and validation
- Python classes
- Implement ANN with np.arrays and Python classes

# Model Selection & Validation

# Overfitting

 Model performs well on training data, but much worse on new instances



# Overfitting

 Model performs well on training data, but much worse on new instances

- ✓ Collect more high-quality data (low noise, representative)
- ✓ Simplify model:
  - Choose "simpler" model with less parameters
  - Add regularization to existing model
- → keep track of *n/m* ratio (n.o. features/ n.o. samples)
- $\rightarrow n \ll m$

# Underfitting

- Model is too simple to learn underlying structure of the data
- ✓ Use more powerful model (more params)
- ✓ Reduce regularization
- ✓ Use better features (feature engineering)

| 10             | Underfitting                                                                                                    | Just right                                         | Overfitting                                                                      |
|----------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------|
| Symptoms       | <ul> <li>High training error</li> <li>Training error close</li> <li>to test error</li> <li>High bias</li> </ul> | - Training error slightly<br>lower than test error | - Low training error - Training error much lower than test error - High variance |
| Regression     |                                                                                                                 |                                                    | my                                                                               |
| Classification |                                                                                                                 |                                                    |                                                                                  |
| Deep learning  | Validation Training Epochs                                                                                      | Validation Training  Epochs                        | Error Validation  Training  Epochs                                               |
| Remedies       | - Complexify model - Add more features - Train longer                                                           |                                                    | - Regularize<br>- Get more data                                                  |

# Estimate performance of the trained model



• Hypothesis space: All functions of type  $h(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n$ 

Training:

Choose hypothesis h(x) with optimal parameters  $w^*$  (low training error)

# Estimate performance of the trained model

- Want to know how model will perform on new data (generalization property)
- ✓ Split dataset into training and test sets
- ✓ Train model only on training set





### Choose between two models





Hypothesis space:

All functions of type  $h(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n$ 

All functions of type  $h(\mathbf{x}) = w_1 x_1 + w_2 x_1^2 + w_3 x_1^3 + \cdots$ 

Training:

Choose hypothesis h(x) with optimal parameters  $w^*$  (low training error)

Choose hypothesis  $h(\mathbf{x})$  with optimal parameters  $\mathbf{w}^*$  (low training error)

### Choose between two models

- ✓ Split dataset into training and test sets
- ✓ Train both models on training set
- ✓ Choose the best performing model on training set
- ✓ Estimate generalization error on test set





### Choose between two models

- ✓ Split dataset into training and test sets
- ✓ Train both models on training set
- ✓ Choose the best performing model on test set
- ✓ Estimate generalization error on test set



increased chance that chosen model overfits test set

# Generalization error must be estimated on "new" data, not used to train or choose a model!

- ✓ Split data into training, validation, test sets
- √ Training set to tune model parameters (weights & biases)
- ✓ Validation set to tune model *hyperparameters*, model selection

√ Test set – to estimate generalization error

Parameters of a model – learnt during training

Hyperparameters of a model – cannot be learnt during training;
 must be set before training

✓ Parameters of a model – weights and bias

## Model selection



- Choose between several model (e.g. linear vs polynomial regression)
- ✓ Train both models on *training* set
- ✓ Choose model which perfors best on validation set

✓ Estimate generalization error on *test* set

# Hyperparameter tuning



- Choose between different values of regularization parameter (param C for logistic regression)
- ✓ Train several models with different values of param C on *training* set

- ✓ Choose param C values which performs best on validation set
- ✓ Estimate generalization error on *test* set



# 5-Fold Cross-Validation



# Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning

#### Sebastian Raschka

University of Wisconsin-Madison
Department of Statistics
November 2018
sraschka@wisc.edu

# Python classes

# Python class objects



Classes provide a means of bundling data and functionality together.

Creating a new class creates a new type of object, allowing new instances of that type to be made.

```
import numpy as np

x = np.arange(5)
print(dir(x)[-20:])
print(type(x))
```

['searchsorted', 'setfield', 'setflags', 'shape', 'size', 'sort', 'squeeze', 'std', 'strides', 'sum', 'swapax
es', 'take', 'tobytes', 'tofile', 'tolist', 'tostring', 'trace', 'transpose', 'var', 'view']
<class 'numpy.ndarray'>

# Python class objects

#### Company employees





#### **Attributes:**

- first name
- last name
- pay
- email

#### **Methods:**

- get full name
- pay raise

# Gradient Descent Algorithm



Forward pass



$$\mathbf{w}_{1}^{(1)} = (w_{1,1}^{(1)}, w_{1,2}^{(1)}, w_{1,3}^{(1)}, w_{1,4}^{(1)})$$

weight vector of 1st hidden neuron of 1st hidden layer



output of 1st hidden neuron of 1st hidden layer for *i*th datapoint

$$\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \mathbf{out}$$
(1,4) (4,1) (1,1)

$$\mathbf{w}_{1}^{(1)} = (w_{1,1}^{(1)}, w_{1,2}^{(1)}, w_{1,3}^{(1)}, w_{1,4}^{(1)})$$

Feature matrix; shape (m,4)



$$\mathbf{X} = \begin{bmatrix} x_1^{(1)} & \dots & x_4^{(1)} \\ \dots & \dots & \dots \\ x_1^{(m)} & \dots & x_4^{(m)} \end{bmatrix}$$

Weight matrix of the 1<sup>st</sup> hidden layer; shape (4,6)

$$\mathbf{W}^{(1)} = \begin{bmatrix} w_{1,1}^{(1)} & \dots & w_{6,1}^{(1)} \\ \dots & \dots & \dots \\ w_{1,4}^{(1)} & \dots & w_{6,4}^{(1)} \end{bmatrix}$$



output of 1st hidden layer for *m* datapoints

$$\sigma(XW^{(1)}) = h^{(1)}$$
 (m,4) (4,6) (m,6)

output of 2nd hidden layer for *m* datapoints

$$\sigma(\mathbf{h}^{(1)}\mathbf{W}^{(2)}) = \mathbf{h}^{(2)}$$
 (m,6) (6,6) (m,6)

output score for m datapoints

$$h^{(2)}W^{(3)} = score$$
  
(m,6) (6,1) (m,1)