APPLICANT(S): BARTLETT, Philip Nigel et al.

SERIAL NO.:

10/538,769

FILED: Page 2

June 10, 2005

AMENDMENTS TO THE CLAIMS

Please amend claim 1.

The following listing of claims replaces all versions, and listings, of claims in this application.

Listing of Claims:

1. (Currently Amended) A portable electronic device comprising an electrochemical cell, said cell comprising a positive electrode, a negative electrode and an electrolyte,

wherein said positive electrode comprises a mesoporous structure having a periodic arrangement of substantially uniformly sized pores with a diameter in the order of 10^{-9} to 10^{-8} m.

wherein said mesoporous structure comprises a metal oxide, hydroxide or oxyhydroxide is gold oxide, palladium oxide, nickel oxide (NiO), nickel hydroxide (NiOH)₂), nickel oxy-hydroxide (NiOOH) or ruthenium oxide, and

wherein said negative electrode comprises a material that is carbon or palladium.

- 2. (Canceled)
- 3. (Previously Presented) A portable electronic device according to claim 1, wherein the mesoporous structure of the positive electrode additionally comprises a metal, wherein said metal oxide, metal hydroxide or metal oxy-hydroxide forms a surface layer over said metal and extends over the pore surfaces.
- 4. (Previously Presented) A portable electronic device according to claim 1, wherein the mesoporous structure of the positive electrode comprises a metal that is nickel or nickel alloys.
- 5-6. (Canceled)
- 7. (Previously Presented) A portable electronic device according to claim 1, wherein the mesoporous structure has a pore number density of about $4x10^{11}$ to $3x10^{13}$ pores per cm².
- 8. (Previously Presented) A portable electronic device according to claim 1, wherein at least 85 % of the pores in said mesoporous structure have pore diameters within 30 % of the average pore diameter.

APPLICANT(S): BARTLETT, Philip Nigel et al.

SERIAL NO.:

10/538,769 June 10, 2005

FILED:

Page 3

9. (Previously Presented) A portable electronic device according to claim 1, wherein the

mesoporous structure has a hexagonal arrangement of pores that are continuous through the

thickness of the electrode.

10. (Previously Presented) A portable electronic device according to claim 9, wherein the

hexagonal arrangement of pores has a pore periodicity in the range of 5 to 9 nm.

11. (Previously Presented) A portable electronic device according to claim 1, wherein the

negative electrode comprises a mesoporous structure having a periodic arrangement of

substantially uniformly sized pores with a diameter in the order of 10^{-9} to 10^{-8} m.

12. (Previously Presented) The portable electronic device of claim 1, wherein said

mesoporous structure is a film having a thickness in the range of about 0.5 to about 5

micrometers.

13-14. (Canceled)

15. (Previously Presented) The portable electronic device of claim 1, wherein said

mesoporous structure comprises nickel and a nickel oxide, a nickel hydroxide or a nickel

oxy-hydroxide that is NiO, Ni(OH)2 and NiOOH, said nickel oxide, nickel hydroxide, or

nickel oxy-hydroxide forming a surface layer over said nickel and extending over the pore

surfaces, and wherein said negative electrode has a mesoporous structure comprised of

carbon or palladium.

16. (Previously Presented) The portable electronic device of claim 15, wherein said negative

electrode comprises nanoparticulate carbon.

17. (Previously Presented) The portable electronic device of claim 1, wherein said cell is

constructed to function as a battery, as a supercapacitor or a combination thereof.

18. (Previously Presented) A portable electronic device according to claim 6, wherein the

mesoporous structure has a pore diameter in the range of about 2.0-8.0 nm.

19. (Previously Presented) A portable electronic device according to claim 7, wherein the

mesoporous structure has a pore number density of 1×10^{12} to 1×10^{13} pores per cm².

APPLICANT(S): BARTLETT, Philip Nigel et al.

SERIAL NO.: FILED:

10/538,769 June 10, 2005

Page 4

20. (Previously Presented) The portable electronic device of claim 8, wherein at least 85 % of the pores in said mesoporous structure have pore diameters to within 10 % of the average pore diameter.

- 21. (Previously Presented) The portable electronic device of claim 8, wherein at least 85 % of the pores in said mesoporous structure have pore diameters to within 5 % of the average pore diameter.
- 22. (Previously Presented) The portable electronic device of claim 4, wherein said Nickel alloys are alloys with a transition metal, nickel/cobalt alloys, iron/nickel alloys, cobalt, platinum, palladium or ruthenium.