1. Betrakta matrisen

$$A = \begin{pmatrix} 1 & 1 & 2 & 0 & 1 \\ 1 & 2 & 2 & 1 & 1 \\ 3 & 4 & 6 & 1 & 3 \end{pmatrix}.$$

- (a) Finn en bas i nollrummet till A.
- (b) Finn en bas i radrummet till A.
- (c) Finn en bas i kolonnrummet till A bestående av kolonner ur A.

Svar. (a) Gausseliminering på raderna i $A\mathbf{x} = \mathbf{0}$ ger t.ex.

$$\begin{pmatrix} 1 & 0 & 2 & -1 & 1 & \vdots & 0 \\ 0 & 1 & 0 & 1 & 0 & \vdots & 0 \\ 0 & 0 & 0 & 0 & \vdots & 0 \end{pmatrix}, \text{ vilket tolkas som } \mathbf{x}^t = (-2r + s - t, -s, r, s, t) = \\ = r(-2, 0, 1, 0, 0) + s(1, -1, 0, 1, 0) + t(-1, 0, 0, 0, 1), \\ \text{där de 3 vektorernas transponat ger en bas.}$$

- (b) De två nollskilda radvektorererna i den Gausseliminerade matrisen i (a).
- (c) Kolumnerna på platserna med de ledande ettorna i Gausseliminerade matrisen ger: $(1,1,3)^t$ och $(1,2,4)^t$. Alternativt, om k_i betecknar kolumn i: $k_2 = k_1 + k_4$, $k_3 = 2k_1$, $k_5 = k_1$ så $\{k_1, k_4\}$ utgör också en bas.
- **2.** (a) Ange dimensionen för vektorrummet $M_2(\mathbb{R})$ bestående av alla 2×2 -matriser. Endast svar räcker.
 - (b) Låt delrummet $U \subset M_2(\mathbb{R})$ bestå av alla 2×2 -matriser sådana att summan av diagonalelementen är lika med noll. Med andra ord:

$$U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) \mid a + d = 0 \right\}$$

Ange U:s dimension, finn en bas i U och utvidga denna bas till en bas för hela $M_2(\mathbb{R})$.

Svar. (a) 4. (b) a, b, c kan väljas fritt, medan d = -a, alltså är dim(U) = 3. En bas är $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ som kan utvidgas med t.ex. $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

3. Betrakta vektorerna
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix}, \ v_3 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 2 \end{pmatrix}$$
 i \mathbb{R}^4 .

(a) Är vektorerna v_1, v_2, v_3 linjärt oberoende eller inte?

(b) Avgör om vektorn
$$v = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 ligger i $span\{v_1, v_2, v_3\}$ eller inte.

Svar. (a) Ekvationen $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = \mathbf{0}$ ger ekvationssystemet $A_{4\times 3}\lambda = \mathbf{0}$ som bara har triviala lösningen, dvs vektorerna är linjärt oberoende.

(b) Gausseliminering på ekvationssystemet $A_{4\times 3}\mathbf{x} = v$ ger t.ex. 0+0+0+0=-1. Alt.: systemets första rad är $x_1+x_1+x_3+x_4=1$ medan den sista är $2x_1+2x_1+2x_3+2x_4=1\neq 2$. Alltså, p.g.a. motsägelser saknar systemet en lösning, och v tillhör ej $span\{v_i\}$.

4. För vilka värden på $a \in \mathbb{R}$ är matrisen

$$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ a & a & 0 \\ -a & a & -1 \end{array}\right)$$

diagonaliserbar?

Svar. $\det(\lambda I - A) = (\lambda - 2)(\lambda + 1)(\lambda - a)$. Om polynomet har 3 skilda rötter, dvs $a \neq 2, -1$, är A diagonaliserbar. $\underline{a = 2}$: systemet $2I - A = \mathbf{0}$ har lösning $(0, 3s, 2s)^t$, dvs geometriska multipliciteten < algebraiska (1 < 2), och A kan ej diagonaliseras. $\underline{a = -1}$ ger $(0, 0, s)^t$ och samma svar som för a = 2.

5. Låt
$$v_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$.

- (a) Använd Gram–Schmidts ortogonaliseringsprocess på v_1, v_2, v_3 för att producera en ortonormerad bas i \mathbb{R}^3 .
- (b) Om v_3 byts mot $v_3' = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$ kommer Gram-Schmidt *inte* att ge en ortonormerad bas i \mathbb{R}^3 Varför?

Svar. (a) $u_1 = \frac{v_1}{||v_1||} = \frac{1}{\sqrt{3}}(1, -1, 1)^t$. Nästa ortogonala vektor blir $u_2' = v_2 - \langle v_2, u_1 \rangle u_1 = (2, 2, 2)^t - \frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}(1, -1, 1)^t = \frac{4}{3}(1, 2, 1)^t$, vars normering ger $u_2 = \frac{1}{\sqrt{6}}(1, 2, 1)^t$. Slutligen, $u_3' = v_3 - \langle v_3, u_1 \rangle u_1 - \langle v_3, u_2 \rangle u_2 = (3, 1, 1)^t - \frac{3}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}(1, -1, 1)^t - \frac{6}{\sqrt{6}} \cdot \frac{1}{\sqrt{6}}(1, 2, 1)^t = (1, 0, -1)^t$, som normerad är $u_3 = \frac{1}{\sqrt{2}}(1, 0, -1)^t$. $\{u_1, u_2, u_3\}$ ger en ortonormerad bas.

- (b) Då $v_1 + v_2 = v_3'$ får vi ett 2-dimensionellt delvektorrum, som inte kan generera \mathbb{R}^3 .
- **6.** Låt Q vara ett kägelsnitt (andragradskurva) definierat via $13x^2 + 13y^2 10xy = 144$ i ett givet xy-koordinatsystem.

- (a) Vilken geometrisk figur beskriver Q?
- (b) Skissera Q med speciellt angivande av symmetrilinjer och kurvans skärning med dessa.
- Svar. (a) Karakteristiska ekvationen för motsvarande matris $\begin{pmatrix} 13 & -5 \\ -5 & 13 \end{pmatrix}$ är $\lambda^2 26\lambda 144 = (\lambda 18)(\lambda 8)$, som beskriver en ellips. (b) Egenvärdet $\lambda_1 = 18$ har egenvektorer $r(1,-1)^t$ och $\lambda_2 = 8$ har $s(1,1)^t$. Alltså, i de nya variablerna är kurvan $18a^2 + 8b^2 = 144 \Leftrightarrow (\frac{a}{2\sqrt{2}})^2 + (\frac{b}{3\sqrt{2}})^2 = 1$. Då är $13x^2 + 13y^2 10xy = 144$ en ellips med mittpunkt i origo med lillaxeln $4\sqrt{2}$ (symmetrilinjen y = -x) och storaxeln $6\sqrt{2}$ (symmetrilinjen y = x).
- 7. Låt $P_2(\mathbb{R})$ respektive $P_1(\mathbb{R})$ vara vektorrummen av alla polynom med reella koefficienter av grad ≤ 2 respektive ≤ 1 . Låt $B = \{1, 1+x, 1+x+x^2\}$ vara en bas i $P_2(\mathbb{R})$ och $B' = \{2, 1+2x\}$ en bas i $P_1(\mathbb{R})$. Antag vidare att $f: P_2(\mathbb{R}) \to P_1(\mathbb{R})$ är en linjär avbildning sådan att avbildningsmatrisen för f med avseende på baserna B och B' är

$$[f]_{B'B} = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 5 & 1 \end{pmatrix}.$$

Bestäm bilden $f(ax^2 + bx + c)$ för ett godtyckligt polynom i $P_2(\mathbb{R})$ (där $a, b, c \in \mathbb{R}$). Beteckningen $[f]_{B'B}$ avser matrisen som avbildar koordinatvektorer i basen B till koordinatvektorer i basen B'. Alternativ beteckning är $[f]_{B' \leftarrow B}$.

Svar. Låt $E = \{1, x, x^2\}$ vara standardbasen för $P_2(\mathbb{R})$ och $E' = \{1, x\}$ standardbasen för $P_1(\mathbb{R})$. Vi har $[f]_{E'E} = [f]_{E'B'}[f]_{B'B}[f]_{BE} =$

$$= \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 2 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 2 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 & -1 & -4 \\ 4 & 6 & -8 \end{pmatrix}$$

så att $f(ax^2 + bx + c) = [f]_{E'E}(c, b, a)^t = (8c - b - 4a) + (4c + 6b - 8a)x.$

Kontroll: $f(ax^2 + bx + c) = f((c - b) \cdot 1 + (b - a) \cdot (1 + x) + a \cdot (1 + x + x^2)) = [f]_{B'B}((c - b, b - a, a)^t)) = (3(c - b) + (b - a) + a) \cdot 2 + (2(c - b) + 5(b - a) + a) \cdot (1 + 2x) = (8c - b - 4a) + (4c + 6b - 8a)x.$

- **8.** Låt V vara ett vektorrum med basen $e_1, ..., e_4$ och låt $F: V \to V$ vara en linjär avbildning som uppfyller $F(e_1) = F(e_2) = F(e_3) = F(e_4) \neq \mathbf{0}$.
 - (a) Bestäm $\dim(\ker(F))$ och $\dim(R(F))$. Här betecknar $\ker(F)$ nollrummet till F och R(F) bilden.
 - (b) Har F några egenvektorer? Vad kan du säga om egenvärdena?

Svar. (a) Då alla basvektorerna avbildas på en enda nollskild vektor är $\dim(R(F)) = 1$ och $\dim(\ker(F)) \stackrel{dim.satsen}{=} 4 - \dim(R(F)) = 4 - 1 = 3$.

(b) Ja, uppenbarligen är t.ex. $v = e_1 - e_2 \neq \mathbf{0}$ en egenvektor, ty $F(v) = \mathbf{0} = 0 \cdot v$. 0 är ett trippelt egenvärde då även $e_2 - e_3$ och $e_3 - e_4$ avbildas på $\mathbf{0}$.

Enligt sats i boken har F och F^t samma egenvärden. Eftersom $F(e_i)$ avbildas på samma vektor, säg, $v=(a,b,c,d)^t$ får vi

$$F^{t} = \begin{pmatrix} a & b & c & d \\ a & b & c & d \\ a & b & c & d \\ a & b & c & d \end{pmatrix}.$$

Nu är det enkelt att se att $F^t(1,1,1,1)^t = (a+b+c+d)(1,1,1,1)^t$, dvs att F^t och därmed F har egenvärde (a+b+c+d). Observera att det inte är trivialt att räkna ut motsvarande egenvektor till F, men det efterfrågas inte heller. Det går att räkna ut $det(\lambda I_4 - F)$ på sedvanligt sätt också, men är litet mödosamt.