Dvanáctá přednáška

NAIL062 Výroková a predikátová logika

 ${\sf Jakub\ Bul\'in\ (KTIML\ MFF\ UK)}$

Zimní semestr 2024

Dvanáctá přednáška

Program

- axiomatizovatelnost
- rekurzivní axiomatizace a rozhodnutelnost
- aritmetické teorie
- nerozhodnutelnost predikátové logiky
- Gödelovy věty o neúplnosti

Materiály

Zápisky z přednášky, Sekce 9.4 z Kapitoly 9, Kapitola 10

9.4 Axiomatizovatelnost

Axiomatizovatelnost

Třída struktur $K \subseteq M_L$ je:

- axiomatizovatelná, existuje-li teorie T taková, že $M_L(T) = K$
- konečně/otevřeně axiomatiz., je-li ax. konečnou/otevřenou T
- teorie T' je konečně/otevřeně axiomatizovatelná, platí-li to o třídě jejích modelů $K = M_L(T')$

Pozorování: Je-li K axiomatizovatelná, musí být uzavřená na \equiv .

Například, jak ukážeme:

- grafy a částečná uspořádání jsou konečně i otevřeně ax.
- tělesa jsou konečně, ale ne otevřeně axiomatizovatelná
- nekonečné grupy jsou axiomatizovatelné, ale ne konečně
- konečné grafy nejsou axiomatizovatelné

Neaxiomatizovatelnost konečných modelů

Věta: Má-li T libovolně velké konečné modely, má i nekonečný model. Potom není třída jejích konečných modelů axiomatizovatelná.

Důkaz: Je-li jazyk bez rovnosti, vezmeme kanonický model pro bezespornou větev v tablu z T pro $F \perp (T$ je bezesporná).

Je-li jazyk s rovností, přidáme spočetně mnoho nových konst. symbolů c_i a vezmeme extenzi: $T' = T \cup \{ \neg c_i = c_j \mid i \neq j \in \mathbb{N} \}$

Každá konečná část T' má model: buď k největší, že c_k je v této konečné části: lib. $\geq (k+1)$ -prvkový model,21 interpretuj c_0,\ldots,c_k jako různé prvky.

Věta o kompaktnosti dává model T', ten je nekonečný, redukt na původní jazyk (zapomenutí c_i^A) je nekonečný model T.

- např. konečné grafy nejsou axiomatizovatelné
- nekonečné modely teorie jsou vždy axiomatizovatelné, máme-li rovnost: stačí přidat 'existuje alespoň n prvků' pro vš. $n \in \mathbb{N}$

Konečná axiomatizovatelnost

Věta (O konečné axiomatizovatelnosti): $K \subseteq M_L$ je konečně axiomatizovatelná, právě když K i $\overline{K} = M_L \setminus K$ jsou axiomatizovatelné.

Důkaz: \Rightarrow Je-li K axiomatizovatelná sentencemi $\varphi_1, \ldots, \varphi_n$ (vezmi gen. uzávěry), potom $\neg(\varphi_1 \land \varphi_2 \land \cdots \land \varphi_n)$ axiomatizuje \overline{K} .

 \leftarrow Bud' K = M(T) a $\overline{K} = M(S)$. Potom $T \cup S$ je sporná, neboť:

$$M(T \cup S) = M(T) \cap M(S) = K \cap \overline{K} = \emptyset$$

Věta o kompaktnosti dává konečné $T' \subseteq T$ a $S' \subseteq S$ takové, že:

$$\emptyset = \mathsf{M}(T' \cup S') = \mathsf{M}(T') \cap \mathsf{M}(S')$$

Nyní si všimněme, že platí:

$$M(T) \subseteq M(T') \subseteq \overline{M(S')} \subseteq \overline{M(S)} = M(T)$$

Tím jsme dokázali, že M(T) = M(T'), neboli T' je konečná axiomatizace K.

4

Tělesa charakteristiky 0 nejsou konečně axiomatizovatelná

Buď T teorie těles. Těleso $\mathcal{A} = \langle A, +, -, 0, \cdot, 1 \rangle$ je

- charakteristiky p, je-li p nejmenší prvočíslo takové, že $\mathcal{A} \models p1 = 0$, kde p1 je term $1 + 1 + \cdots + 1$ (s p jedničkami),
- charakteristiky 0, pokud není charakteristiky p pro žádné p.
- Tělesa charakteristiky p jsou konečně axiomatizovatelná:

$$T_p = T \cup \{p1 = 0\}$$

Tělesa char. 0 jsou axiomatizovatelná, ale ne konečně:

$$T_0 = T \cup \{ \neg p1 = 0 \mid p \text{ prvočíslo} \}$$

Tvrzení: Třída K těles char. 0 není konečně axiomatizovatelná.

Důkaz: Stačí ukázat, že \overline{K} (tělesa nenulové char. a netělesa) není axiomatizovatelná. Sporem: $\overline{K} = \mathsf{M}(S)$. Potom $S' = S \cup T_0$ má model, neboť každá konečná část má model: těleso charakteristiky větší než jakékoliv p z axiomu T_0 tvaru $\neg p1 = 0$. Je-li \mathcal{A} je model S', potom $\mathcal{A} \in \mathsf{M}(S) = \overline{K}$. Zároveň ale $\mathcal{A} \in \mathsf{M}(T_0) = K$, spor. \square

Otevřená axiomatizovatelnost

Tvrzení: Je-li T otevřeně axiomatizovatelná, potom je každá podstruktura modelu T také modelem T.

Důkaz: Buď T' otevřená axiomatizace T, \mathcal{A} model T', $\mathcal{B} \subseteq \mathcal{A}$. Pro každou $\varphi \in T'$ platí $\mathcal{B} \models \varphi$ (φ je otevřená), tedy i $\mathcal{B} \models T'$. \square

Poznámka: Platí i obráceně, je-li každá podstruktura modelu také model, potom je otevřeně axiomatizovatelná. (Důkaz neuvedeme.)

- DeLO není otevřeně axiomatizovatelná, např. žádná konečná podstruktura modelu DeLO není hustá
- teorie těles není otevřeně axiomatizovatelná, podstruktura $\mathbb{Z}\subseteq\mathbb{Q}$ není těleso, nemá inverzní prvek k 2 vůči násobení
- pro dané n∈ N jsou nejvýše n-prvkové grupy otevřeně axiomatizovatelné (i jejich podgrupy jsou nejvýše n-prvkové);
 k (otevřené) teorii grup stačí přidat: V_{1≤i<j≤n+1} x_i = x_j

Kapitola 10:

NEROZHODNUTELNOST A NEÚPLNOST

Nerozhodnutelnost a neúplnost

Jak lze s teoriemi pracovat algoritmicky?

- + zlatý hřeb přednášky: Gödelovy věty o neúplnosti (1931)
 - ukazují limity formálního přístupu
 - zastavily program formalizace matematiky
 - pojem algoritmu budeme chápat jen intuitivně
 - technické podrobnosti důkazů vynecháme

Typicky potřebujeme spočetný jazyk.

rozhodnutelnost

10.1 Rekurzivní axiomatizace a

Rekurzivní axiomatizace

- v dokazování povolujeme nekonečné teorie, jak jsou zadané?
- pro ověření že daný důkaz (např. tablo, rezoluční zamítnutí) je korektní potřebujeme algoritmický přístup ke všem axiomům
- mohli bychom požadovat enumerátor pro T, tj. algoritmus, který vypisuje axiomy z T, a každý axiom někdy vypíše
- ale kdyby byl v důkazu chybný axiom, nikdy bychom se to nedozvěděli: stále bychom čekali, zda ho enumerátor vypíše
- proto požadujeme silnější vlastnost:

T je rekurzivně axiomatizovaná, pokud existuje algoritmus, který pro každou vstupní formuli φ doběhne a odpoví, zda $\varphi \in \mathcal{T}$. (ekvivalentní enumerátoru vypisujícímu axiomy v lexikograf. pořadí)

Rozhodnutelnost

Můžeme v dané teorii 'algoritmicky rozhodovat pravdu'?

- T je rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní formuli φ doběhne a odpoví, zda $T \models \varphi$,
- *T* je <u>částečně rozhodnutelná</u>, existuje-li algoritmus, který:
 - pokud $T \models \varphi$, doběhne a odpoví "ano"
 - pokud $T \not\models \varphi$, buď nedoběhne, nebo doběhne a odpoví "ne"

Tvrzení: Je-li T je rekurzivně axiomatizovaná, potom:

(i) T je část. rozhod. (ii) je-li navíc kompletní, je rozhodnutelná

Důkaz: (i) Algoritmus konstruuje systematické tablo z T pro $F\varphi$; stačí enumerátor pro T, nebo postupně generovat vš. sentence a testovat, jsou-li v T. Je-li $T \models \varphi$, konstrukce skončí, ověříme, že je tablo sporné. (Jinak skončit nemusí.)

(ii) Víme, že buď $T \vdash \varphi$ nebo $T \vdash \neg \varphi$. Paralelně konstruujeme tablo pro $F\varphi$ a pro $T\varphi$ (důkaz a zamítnutí φ z T). Jedna z konstrukcí po konečně mnoha krocích skončí.

Rekurzivně spočetná kompletace

T má rekurzivně spočetnou kompletaci, je-li (nějaká) množina až na \sim všech jednoduchých kompletních extenzí T rekurzivně spočetná, tj. existuje algoritmus, který pro vstup (i,j) vypíše i-tý axiom j-té extenze (v nějakém uspořádání), nebo odpoví, že už neexistuje.

Tvrzení: Je-li T rekurzivně axiomatizovaná a má rekurzivně spočetnou kompletaci, potom je rozhodnutelná.

Důkaz: Buď $T \models \varphi$, nebo existuje protipříklad $\mathcal{A} \not\models \varphi$, tj. kompl. jedn. extenze T_i , že $T_i \not\models \varphi$. Kompletnost T_i dává $T_i \models \neg \varphi$.

Algoritmus paralelně konstruuje tablo důkaz φ z T a (postupně) tablo důkazy $\neg \varphi$ ze všech kompletních jedn. extenzí T_1, T_2, \ldots (Je-li jich nekonečně mnoho, uděláme dovetailing: 1. krok 1. tabla, potom 2. krok 1., 1. krok 2., 3. krok 1., 2. krok 2., 1. krok 3., atd.)

Alespoň jedno z tabel je sporné, můžeme předpokládat konečné, algoritmus ho po konečně mnoha krocích zkonstruuje.

Příklady

Následující teorie jsou rekurzivně axiomatizované a mají rekurzivně spočetnou kompletaci, tedy jsou rozhodnutelné:

- (a) Teorie čisté rovnosti
- (b) Teorie unárního predikátu ($T = \emptyset$, $L = \langle U \rangle$ s rovností)
- (c) Teorie hustých lineárních uspořádání DeLO*
- (d) Teorie Booleových algeber (Alfred Tarski 1940),
- (e) Teorie algebraicky uzavřených těles (Tarski 1949),
- (f) Teorie komutativních grup (Wanda Szmielew 1955).

Rekurzivní axiomatizovatelnost

Kdy lze třídu struktur 'efektivně (algoritmicky) popsat'?

 $K \subseteq M_L$ je rek. axiomatizovatelná, pokud existuje rek. axiomatizovaná T, že $K = M_L(T)$. T' je rek. axiomatizovatelná, platí-li to pro třídu jejích modelů (tj. je-li ekvivalentní rek. axiomatizované teorii).

(podobně lze definovat rek. spočetnou axiomatizovatelnost)

Tvrzení: Je-li $\mathcal A$ konečná struktura v konečném jazyce s rovností, potom je teorie $\mathsf{Th}(\mathcal A)$ rekurzivně axiomatizovatelná.

(z toho plyne i rozhodnutelnost Th(\mathcal{A}), ale $\mathcal{A} \models \varphi$ lze ověřit přímo)

Důkaz: Buď $A = \{a_1, \ldots, a_n\}$. Th(A) axiomatizujeme sentencí "existuje právě n prvků a_1, \ldots, a_n splňujících právě ty základní vztahy o funkčních hodnotách a relacích, které platí v A".

Např. je-li $f^{\mathcal{A}}(a_4, a_2) = a_{17}$, přidej atom. formuli $f(x_{a_4}, x_{a_2}) = x_{a_{17}}$, je-li $(a_3, a_3, a_1) \notin R^{\mathcal{A}}$ přidej $\neg R(x_{a_3}, x_{a_3}, x_{a_1})$.

Příklady

Pro následující struktury je $\mathsf{Th}(\mathcal{A})$ rekurzivně axiomatizovatelná:

- $\langle \mathbb{Z}, \leq \rangle$, jde o tzv. teorii diskrétních lineárních uspořádání
- $\langle \mathbb{Q}, \leq \rangle$, jde o teorii DeLO
- $\langle \mathbb{N}, S, 0 \rangle$, teorie následníka s nulou
- $\langle \mathbb{N}, S, +, 0 \rangle$, Presburgerova aritmetika
- $\langle \mathbb{R}, +, -, \cdot, 0, 1 \rangle$, teorie reálně uzavřených těles, znamená že lze algoritmicky rozhodovat Euklid. geometrii (Tarski, 1949)
- $\langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$, teorie algebraicky uzavřených těles char. 0

Důsledek: Pro struktury výše platí, že $\mathsf{Th}(\mathcal{A})$ je rozhodnutelná. **Důkaz:** $\mathsf{Th}(\mathcal{A})$ je vždy kompletní.

Teorie standardního modelu aritmetiky $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ ale není rekurzivně axiomatizovatelná (viz První Gödelova věta o neúplnosti).

10.2 Aritmetika

Aritmetika

- přirozená čísla hrají důležitou roli v matematice i v aplikacích
- jazyk aritmetiky je $L = \langle S, +, \cdot, 0, \leq \rangle$ s rovností
- standardní model aritmetiky $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ nemá rekurzivně axiomatizovatelnou teorii (První věta o neúplnosti)
- proto používáme rekurzivně axiomatizované teorie, které vlastnosti № popisují částečně; říkáme jim aritmetiky
- představíme dvě: Robinsonovu Q a Peanovu PA

Robinsonova aritmetika Q

$$\neg S(x) = 0 \qquad x \cdot 0 = 0$$

$$S(x) = S(y) \to x = y \qquad x \cdot S(y) = x \cdot y + x$$

$$x + 0 = x \qquad \neg x = 0 \to (\exists y)(x = S(y))$$

$$x + S(y) = S(x + y) \qquad x \le y \leftrightarrow (\exists z)(z + x = y)$$

- velmi slabá, nelze v ní dokázat např. komutativitu ani asociativitu + či ⋅, nebo tranzitivitu ≤
- ale lze dokázat všechna existenční tvrzení o numerálech pravdivá v $\underline{\mathbb{N}}$, tj. formule v PNF, jen \exists , za volné proměnné substituujeme numerály $\underline{n} = S(\dots S(0)\dots)$
- např. pro $\varphi(x,y)=(\exists z)(x+z=y)$ je $Q \vdash \varphi(\underline{1},\underline{2})$

Tvrzení: Je-li $\varphi(x_1,\ldots,x_n)$ existenční formule, $a_1,\ldots,a_n\in\mathbb{N}$, pak $Q \models \varphi(x_1/\underline{a_1},\ldots,x_n/\underline{a_n})$ právě když $\underline{\mathbb{N}} \models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]$ (Důkaz vynecháme.)

Peanova aritmetika PA

Extenze Q o schéma indukce, tj. pro každou L-formuli $\varphi(x, \overline{y})$:

$$(\varphi(0,\overline{y}) \land (\forall x)(\varphi(x,\overline{y}) \rightarrow \varphi(S(x),\overline{y}))) \rightarrow (\forall x)\varphi(x,\overline{y})$$

- mnohem lepší aproximace $\mathsf{Th}(\underline{\mathbb{N}})$
- dokáže 'základní' vlastnosti (např. komut. a asociativitu +)
- stále ale existují sentence platné v $\underline{\mathbb{N}}$ ale nezávislé v PA (opět dokážeme v První větě o neúplnosti)

Poznámka: strukturu $\underline{\mathbb{N}}$ lze axiomatizovat (až na \simeq) v predikátové logice 2. řádu, extenzí PA o tzv. axiom indukce:

$$(\forall X)((X(0) \land (\forall x)(X(x) \rightarrow X(S(x)))) \rightarrow (\forall x)X(x))$$

- X reprezentuje (libovolnou) podmnožinu modelu
- použijeme na množinu všech následníků 0
- lacktriangle každý prvek je následník 0 \Rightarrow izomorfismus s $\underline{\mathbb{N}}$

10.3 Nerozhodnutelnost predikátové

logiky

Nerozhodnutelnost predikátové logiky

Věta (O nerozhodnutelnosti predikátové logiky): Neexistuje algoritmus, který pro vstupní formuli φ rozhodne, zda je logicky platná.

- tj. zda je formule φ [v lib. jazyce 1. řádu] tautologie ($\models \varphi$)
- neboli T = ∅ není rozhodnutelná

Nemáme formalismus pro algoritmy (Turingovy stroje), dokážeme redukcí na jiný nerozhodnutelný problém: Hilbertův 10. problém

"Najděte algoritmus, který po konečně mnoha krocích určí, zda daná diofantická rovnice s libovolným počtem proměnných a celočíselnými koeficienty má celočíselné řešení."

diofantická rovnice: $p(x_1, ..., x_n) = 0$, kde p je celočíselný polynom ukážeme, že existuje redukce 'těžkého' Hilbertova 10. problému na náš problém, tedy i náš problém je 'těžký'

Nerozhodnutelnost Hilbertova desátého problému

Věta (Matiyasevich 1970): Problém existence celočíselného řešení dané diofantické rovnice s celočís. koeficienty je nerozhodnutelný. (Důkaz neuvedeme.)

Důsledek: Neexistuje algoritmus rozhodující, mají-li dané polynomy $p(x_1, ..., x_n), q(x_1, ..., x_n)$ s přiroz. koeficienty přirozené řešení, tj.

$$\underline{\mathbb{N}} \models (\exists x_1) \dots (\exists x_n) \ p(x_1, \dots, x_n) = q(x_1, \dots, x_n)$$

Důkaz: Lagrangeova věta o čtyřech čtvercích říká, že každé přirozené číslo lze vyjádřit jako součet čtyř čtverců (celých čísel). Naopak, každé celé číslo je rozdíl dvou přirozených. Diofantickou rovnici lze tedy transformovat na rovnici z důsledku, a naopak.

Důkaz nerozhodnutelnosti predikátové logiky

Uvažme φ tvaru $(\exists x_1) \dots (\exists x_n) \ p(x_1, \dots, x_n) = q(x_1, \dots, x_n)$ kde p a q jsou přirozené polynomy. Dle Tvrzení o Robinsonově aritmetice:

$$\underline{\mathbb{N}} \models \varphi \iff \mathbf{Q} \vdash \varphi$$

Buď ψ_Q konjunkce (gen. uzávěrů) axiomů Q (je konečná). Zřejmě:

$$Q \vdash \varphi \Leftrightarrow \psi_Q \vdash \varphi \Leftrightarrow \vdash \psi_Q \rightarrow \varphi$$

Dle Věty o úplnosti je to ale ekvivalentní $\models \psi_Q \rightarrow \varphi$. Dostáváme:

$$\underline{\mathbb{N}} \models \varphi \iff \models \psi_{Q} \to \varphi$$

Sporem: Pokud bychom měli algoritmus rozhodující logickou platnost, mohli bychom rozhodovat i existenci přirozeného řešení rovnice $p(x_1, \ldots, x_n) = q(x_1, \ldots, x_n)$, tj. Hilbertův 10. problém.

10.4 Gödelovy věty

První věta o neúplnosti + důsledek o nekompletnosti

Věta (Gödel 1931): Je-li T bezesporná rekurzivně axiomatizovaná extenze Robinsonovy aritmetiky, potom existuje sentence, která je pravdivá v $\underline{\mathbb{N}}$, ale není dokazatelná v T.

- vlastnosti aritmetiky přir. čísel nelze 'rozumně', efektivně popsat (v logice 1. řádu), takový popis je nutně 'neúplný'
- pravdivost je ve standardním modelu $\underline{\mathbb{N}}$ zatímco dokazatelnost v T (samozřejmě pravdivá v T je v T i dokazatelná)
- bezespornost nutná (sporná teorie dokáže vše)
- bez rekurzivní axiomatizovatelnosti by teorie nebyla 'užitečná'
- extenze Q znamená 'základní aritmetická síla' (různé varianty předpokladu; nelze-li zakódovat přir. čísla s $+,\cdot$ je moc 'slabá'

Důsledek: Splňuje-li teorie T předpoklady První věty o neúplnosti a je-li navíc $\underline{\mathbb{N}}$ modelem T, potom T není kompletní.

Důkaz: Vezměme Gödelovu sentenci φ ($\underline{\mathbb{N}} \models \varphi$, $T \not\models \varphi$). Je-li T kompletní, víme $T \models \neg \varphi$, z korektnosti $T \models \neg \varphi$, tedy $\underline{\mathbb{N}} \models \neg \varphi$. \Box

O důkazu

- Gödelova sentence formalizuje "Nejsem dokazatelná v T"
- převratná důkazová technika, dva hlavní principy:
- aritmetizace syntaxe, zakódování sentencí a jejich dokazatelnosti do přirozených čísel
- self-reference, sentence 'mluví sama o sobě' (o svém kódu)
- všechny technické detaily vynecháme, viz např. V. Švejdar:
 Logika neúplnost, složitost a nutnost, Academia 2002

Aritmetizace syntaxe a dokazatelnosti

- Gödelovo číslování 'rozumně' kóduje konečné syntaktické objekty (termy, formule, tablo důkazy) do N: lze algoritmicky [de-]kódovat, simulovat 'manipulaci' s objekty na jejich kódech
- pro φ bude $\fbox{\varphi}$ příslušný kód, $\fbox{\varphi}$ odpovídající $\fbox{\varphi}$ -tý numerál
- pro danou T máme binární relaci $\mathsf{Proof}_{\mathcal{T}} \subseteq \mathbb{N}^2$ definovanou $(n,m) \in \mathsf{Proof}_{\mathcal{T}} \Leftrightarrow n = \lceil \varphi \rceil, \ m = \lceil \tau \rceil, \ \tau$ je tablo důkaz φ z T
- je-li T rek. axiomatizovaná, je relace $\mathsf{Proof}_{\mathcal{T}} \subseteq \mathbb{N}^2$ rekurzivní (lze algoritmicky ověřit korektnost tabla, tj. $(n,m) \in \mathsf{Proof}_{\mathcal{T}}$)
- klíčovou technickou částí důkazu První věty je fakt, že relaci
 Proof_T Ize reprezentovat predikátem v Robinsonově aritmetice

Predikát dokazatelnosti

Tvrzení: Je-li T rekurzivně axiomatizovaná extenze Robinsonovy aritmetiky, potom existuje formule $Prf_T(x,y)$ v jazyce aritmetiky, která reprezentuje relaci $Proof_T$, tj. pro každá $n,m \in \mathbb{N}$:

- je-li $(n, m) \in \mathsf{Proof}_{\mathcal{T}}$, potom $Q \models \mathit{Prf}_{\mathcal{T}}(\underline{n}, \underline{m})$
- jinak $Q \vdash \neg Prf_T(\underline{n}, \underline{m})$

(Důkaz vynecháme!)

- formule $Prf_T(x, y)$ vyjadřuje "y je důkaz x v T"
- formule $(\exists y) Prf_T(x, y)$ znamená "x je dokazatelná v T"
- svědek poskytuje kód tablo důkazu, a $\underline{\mathbb{N}}$ splňuje Q, proto:

Pozorování: $T \vdash \varphi$ právě když $\underline{\mathbb{N}} \models (\exists y) Prf_T(\underline{\varphi}, y)$.

Budeme potřebovat následující důsledek (také bez důkazu):

Důsledek: Je-li $T \vdash \varphi$, potom $T \vdash (\exists y) Prf_T(\varphi, y)$.

Self-reference

vyjádřili jsme φ je dokazatelná ale chceme já nejsem dokazatelná přirozené jazyky mají self-referenci: Tato věta má 22 znaků.; formální systémy obvykle ne, umožňují ale přímou referenci (mluvit o posloupnostech symbolů):

Následující věta má 29 znaků. "Následující věta má 29 znaků."

zde není žádná self-reference, pomůžeme si proto trikem zdvojení:

Následující věta zapsaná jednou a ještě jednou v uvozovkách má 149 znaků. "Následující věta zapsaná jednou a ještě jednou v uvozovkách má 149 znaků."

přímou referencí a zdvojením tedy získáme self-referenci; podobně program v C, který vypíše svůj kód (34 je ASCII kód uvozovek):

main(){char *c="main(){char *c=%c%s%c; printf(c,34,c,34);}";
printf(c,34,c,34);}

24

Věta o pevném bodě

Věta: Je-li T extenzí Robinsonovy aritmetiky, potom pro každou formuli $\varphi(x)$ (v jazyce teorie T) existuje sentence ψ taková, že:

$$T \vdash \psi \leftrightarrow \varphi(\psi)$$

- také "diagonalizační lemma" nebo "self-referenční" lemma
- ψ je self-referenční, říká o sobě: "já splňuji vlastnost φ "
- v důkazu První věty bude $\varphi(x)$ formule $\neg(\exists y)Prf_T(x,y)$
- všimněte si, jak se v důkazu použije přímá reference a zdvojení

Důkaz (myšlenka): Zdvojující funkce $d: \mathbb{N} \to \mathbb{N}$ dekóduje vstup n jako $\varphi(x)$, dosadí numerál \underline{n} , znovu zakóduje: pro vš. $\chi(x)$ platí:

$$d(\lceil \chi(x) \rceil) = \lceil \chi(\underline{\chi(x)}) \rceil$$

S využitím T extenze Q se dokáže, že d je v T reprezentovatelná. Pro jednoduchost ať ji reprezentuje term, označíme ho také d (ale ve skutečnosti je to složitá formule).

Pokračování důkazu

Tedy Q, proto i T, dokazuje o numerálech, že d opravdu 'zdvojuje':

$$T \vdash d(\underline{\chi(x)}) = \underline{\chi(\underline{\chi(x)})}$$

Hledaná self-referenční sentence ψ je sentence:

$$\varphi(d(\underline{\varphi(d(x))}))$$

Chceme dokázat, že $T \vdash \psi \leftrightarrow \varphi(\psi)$, neboli:

$$T \models \varphi(d(\underline{\varphi(d(x))})) \leftrightarrow \varphi(\varphi(d(\underline{\varphi(d(x))})))$$

K tomu stačí $T \vdash d(\varphi(d(x))) = \varphi(d(\varphi(d(x))))$ což máme z reprezentovatelnosti d, kde $\chi(x)$ je $\varphi(d(x))$.

 ψ tedy říká: »Následující věta zapsaná jednou a ještě jednou v uvozovkách má vlastnost φ . "Následující věta zapsaná jednou a ještě jednou v uvozovkách má vlastnost φ ." « kde v uvozovkách znamená numerál kódu (přímá reference)

Nedefinovatelnost pravdy

Věta: V žádném bezesporném rozšíření Robinsonovy aritmetiky nemůže existovat definice pravdy.

- definice pravdy v aritmetické teorii T je formule $\tau(x)$ taková, že pro každou sentenci ψ platí: $T \vdash \psi \leftrightarrow \tau(\psi)$
- kdyby existovala, místo dokazování by stačilo spočíst kód $\lceil \psi \rceil$, dosadit numerál ψ do τ , a vyhodnotit
- rozcvička pro důkaz Gödelovy První věty o neúplnosti
- důkaz užívá Paradox Iháře, vyjádříme "Nejsem pravdivá v T"
- důkaz První věty užívá stejný trik s "Nejsem dokazatelná v T"

Důkaz: Sporem, ať existuje definice pravdy $\tau(x)$. Z Věty o pevném bodě kde $\varphi(x)$ je $\neg \tau(x)$ dostáváme sentenci ψ takovou, že:

$$T \models \psi \leftrightarrow \neg \tau(\underline{\psi})$$

Protože $\tau(x)$ je definice pravdy, platí ale i $T \vdash \psi \leftrightarrow \tau(\underline{\psi})$, tedy i $T \vdash \tau(\underline{\psi}) \leftrightarrow \neg \tau(\underline{\psi})$. To by ale znamenalo, že T je sporná.

Důkaz První věty o neúplnosti

T bezesp. rek. ax. ext. Q. Gödelovu sentenci $(\underline{\mathbb{N}} \models \psi_T, T \not\models \psi_T)$ získáme z Věty o pevném bodě kde $\varphi(x)$ je $\neg(\exists y) Prf_T(x, y)$:

$$T \vdash \psi_T \leftrightarrow \neg(\exists y) Prf_T(\psi_T, y)$$

Tedy ψ_T je v T ekvivalentní " ψ_T není dokazatelná v T". Ekvivalence platí i v $\underline{\mathbb{N}}$ (z konstrukce, protože $\underline{\mathbb{N}}$ splňuje Q), a spolu s ekvivalencí z Pozorování o predikátu dokazatelnosti:

$$\underline{\mathbb{N}} \models \psi_{T} \iff \underline{\mathbb{N}} \models \neg(\exists y) Prf_{T}(\underline{\psi_{T}}, y) \iff T \not\vdash \psi_{T}$$

Stačí tedy ukázat nedokazatelnost ψ_T v T. Sporem: ať $T \vdash \psi_T$.

- Self-reference: $T \vdash \neg(\exists y) Prf_T(\psi_T, y)$
- Důsledek o predikátu dokazatelnosti: $T \vdash (\exists y) Prf_T(\psi_T, y)$

To by ale znamenalo, že T je sporná.

Důsledky a zesílení

Důsledek (už byl): Je-li T rekurzivně axiomatizovaná extenze Robinsonovy aritmetiky a je-li $\underline{\mathbb{N}}$ model T, potom T není kompletní. **Důkaz:** T není sporná, tedy splňuje předpoklady První věty. Víme, že G. sentence splňuje $\underline{\mathbb{N}} \models \psi_T$ a $T \not\models \psi_T$. Je-li T kompletní, máme $T \models \neg \psi_T$, z korektnosti $T \models \neg \psi_T$, tj. $\underline{\mathbb{N}} \models \neg \psi_T$, spor. \Box

Důsledek: Teorie $\mathsf{Th}(\underline{\mathbb{N}})$ není rekurzivně axiomatizovatelná.

Důkaz: Th($\underline{\mathbb{N}}$) je extenze Q, platí v $\underline{\mathbb{N}}$. Kdyby byla rekurzivně axiomatizovatelná, podle Důsledku by [její rekurzivní axiomatizace] nebyla kompletní, ale je.

Zesílení První věty: předpoklad $\underline{\mathbb{N}} \models T$ v Důsledku je nadbytečný. **Věta (Rosserův trik, 1936):** V bezesporné rekurzivně axiomatizované extenzi Robinsonovy aritmetiky existuje nezávislá sentence. (Bez důkazu.)

Gödelova Druhá věta o neúplnosti

Efektivně daná, dostatečně bohatá T nedokáže svou bezespornost.

- bezespornost vyjádří sentence Con_T : $\neg(\exists y)Prf_T(0 = S(0), y)$
- všimněte si: $\underline{\mathbb{N}} \models Con_T \Leftrightarrow T \not\vdash 0 = S(0)$
- tj. *Con_T* opravdu vyjadřuje, že "*T* je bezesporná"

Věta (Gödel, 1931): Je-li T bezesporná rekurzivně axiomatizovaná extenze PA, potom Con_T není dokazatelná v T.

- všimněte si: Con_T je pravdivá v $\underline{\mathbb{N}}$ (neboť T je bezesporná)
- není třeba plná síla PA, stačí slabší předpoklad
- ukážeme si hlavní myšlenku důkazu

Myšlenka důkazu

Gödelova sentence ψ_T vyjadřuje: "Nejsem dokazatelná v T."

V důkazu První věty o neúplnosti jsme ukázali:

"Pokud je T bezesporná, potom ψ_T není dokazatelná v T."

Z toho jednak plyne, že $T \not\vdash \psi_T$, neboť T bezesporná je.

Na druhou stranu to lze formulovat jako: "Platí $Con_T \to \psi_T$."

Je-li T extenze Peanovy aritmetiky, lze důkaz tohoto tvrzení zformalizovat v rámci teorie T, tedy ukázat, že:

$$T \vdash Con_T \rightarrow \psi_T$$

Kdyby platilo $T \models \mathit{Con}_T$, dostali bychom i $T \models \psi_T$, což je spor. \square

Důsledky

Důsledek: PA má model, ve kterém platí $(\exists y) Prf_{PA}(0 = S(0), y)$.

Důkaz: Sentence Con_{PA} není dokazatelná, tedy ani pravdivá v PA. Platí ale v $\underline{\mathbb{N}}$ (neboť PA je bezesporná), což znamená, že je Con_{PA} nezávislá v PA. V nějakém modelu tedy musí platit její negace, která je ekvivalentní $(\exists y)Prf_{PA}(0=S(0),y)$.

Poznámka: Musí to být nestandardní model *PA*, svědek nestandardní prvek (není hodnotou žádného numerálu).

Důsledek: PA má bezespornou rekurzivně axiomatizovanou extenzi, která "dokazuje svou spornost", tj. $T \vdash \neg Con_T$.

Důkaz: $T = PA \cup \{\neg Con_{PA}\}$ je bezesporná, neboť $PA \not\vdash Con_{PA}$. Také triviálně $T \vdash \neg Con_{PA}$, tj. T 'dokazuje spornost' PA. Protože $PA \subseteq T$, platí i $T \vdash \neg Con_T$.

Poznámka: $\underline{\mathbb{N}}$ nemůže být modelem T.

Bezespornost ZFC

Formalizace matematiky je založena na Zermelově–Fraenkelově teorii množin s axiomem výběru (ZFC). Formálně vzato to není extenze *PA*, ale můžeme v ní Peanovu aritmetiku 'interpretovat'.

Důsledek: Je-li ZFC bezesporná, není Con_{ZFC} v ZFC dokazatelná.

Pokud by tedy někdo v rámci ZFC dokázal, že je ZFC bezesporná, znamenalo by to, že je ZFC sporná.