Nom: CASTELLETTI

Prénom : ALESSIO

Classe: I/2
Date: 21.11.2011

Ý

Problème nº 1 (architecture générale)

a) Dessinez et décrivez succinctement l'architecture Von Neumann:

b) Pour une organisation de la mémoire est en « little-endian », représentez (en hexadécimal pour les entiers et en caractère ascii pour les strings) dans le tableau ci-dessous les variables suivantes :

, j	Adresse: 0xa0000100		taille/type:	valeur:
		var1	.asciz	"bonjour"
N	0xa000010d	var2	.byte 8	252 ₁₀
0	0xa0000110	var3	.long 32	67832b ₁₆
人	0xa0000116	var4	.short 16	406 ₈
1	0xa000010a	var5	.byte 🖔	-4 ₁₀
011				

	_/ Adder (Register + novetick)
	*
Décrivez (avec un graphique ou	une figure) le principe de fonctionnement des processeurs ARM
Décrivez (avec un graphique ou	une figure) le principe de fonctionnement des processeurs ARM:
Décrivez (avec un graphique ou	une figure) le principe de fonctionnement des processeurs ARM:
Décrivez (avec un graphique ou	une figure) le principe de fonctionnement des processeurs ARM:
Décrivez (avec un graphique ou	une figure) le principe de fonctionnement des processeurs ARM:
Décrivez (avec un graphique ou	une figure) le principe de fonctionnement des processeurs ARM:
Décrivez (avec un graphique ou	une figure) le principe de fonctionnement des processeurs ARM:

Gac/I-2/11.2011 Page 2 / 5

Problème n° 3 (traitement numérique des nombres)

a) Prévoyez l'état des flags Z, C, N et V ainsi que le résultat contenu dans le registre RO (en décimal) suite à l'exécution des instructions assembleur suivantes :

Remarque : toutes les opérations sont faites avec des registres de 8 bits au lieu de 32 bits

2. mov r0, #139

r0, #193

3. mov r0, #-3
subs r0, #125

adds

b) Représentez en hexadécimal sur 32 bits (simple précision) les valeurs réelles suivantes et donner le développement :

(pour rappel : exposant est codé sur 8 bits avec un biais de 127)

b) 49 / 2048 L 2⁴⁴

Problème nº 4 (Mode d'adressage)

Pour le code assembleur et la représentation de la mémoire (little-endian / 8-bits) et l'état des registres du processeur ci-dessous, donnez le résultat des opérations (état des registres, état de la mémoire):

	Mémoi	re
	(little-endian	/ 8 bits)
	0xa0001000	0x43
	0xa0001001	0x83
	0xa0001002	0x97
	0xa0001003	0x25
	0xa0001004	0xd7
-0	0xa0001005	0x25
	0xa0001006	0x73
	0xa0001007	0xc2
	0xa0001008	0xaa
	0xa0001009	0x89
	0xa000100a	0x00
	0xa000100b	0xc0
P	0xa000100c	
	0xa000100d	OX TI
	0xa000100e	
	0xa000100f	

	Registres				
	(avant)				
R0	0xa000'0100				
R1	0x0000/1022				
R2	0x0000'0400				
R3	0xff00'ff00				
R4	0xa000'1000				
R5	0x0000'0001				
R6	0x0000′0004				
R7	0xffff'8ff6				
R8	0xa000'1008				
R9	0x0000'0100				
R10	0x0000′0000				
R11	0xa000'0100				
R12	0x0000'0010				

0. 0xa000'4400: backup: .long 102,105,106,107,110,111,112

3. strh r7, [r4,#12]!

ldmia r9!, {r2,r5-r7,r10-r12}

Problème n° 5 (Programmation en assembleur)

Coder en langage assembleur ARM l'algorithme suivant :

```
f #define MAX 200
 char str[] = "un message avec des chiffres 123458";
char msg[MAX]; long digits=0; short len=0;
 void main() {
   int i = 0; int j=0;
   do {
     char c = str[i++];
     if ((c >= '0') && (c <= '9')) {
      digits++; c = '*';
     msg[j++] = c;
     len++;
   } while ((c != 0) && (len < MAX));</pre>
   msg[MAX-1] = 0;
 ---en assembleur-----
 MAX = 200
 str:
         .asciz "un message avec des chiffres 123458"
          .space MAX
 digits: .long 0
          .short 0
```

main:

Gac/I-2/11.2011 Page 5 / 5