

Transformer 구현하기

현청천 / cchyun@gmail.com

- 1. Why Transformer
- 2. Embedding
 - 1. Weight Shared Embedding
 - 2. Positional Encoding
- 3. Scaled Dot-Product Attention
- 4. Scaled Dot-Product Attention (masked)
- 5. Multi-Head Attention
- 6. Position-wise Feed-Forward Network
- 7. Reference

Why Transformer

LangCon 2020

Source Sentence Encoding

Source Sentence의 모든 정보를 저장 해야 함 (Information bottleneck)

Source Sentence Encoding

과거 step의 정보는 최신 step의 보다 덜 사용 됨(Vanishing Gradient)

Why Transformer (Transformer)

Embedding

LangCon 2020

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

 $PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$
 $PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$

Embedding - Positional Encoding

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$

 $\cos(pos/10000^{2i/d_{model}})$

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$

Embedding - Positional Encoding

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$

LangCon 2020

Dot-product Attention

Dot-product Attention

 $Attention(Q, K, V) = softmax(QK^T)V$

- $Q \in \mathbb{R}^{|Q| \times d_k}$
- $K \in \mathbb{R}^{|K| \times d_k}$
- $V \in \mathbb{R}^{|K| \times d_v}$
- $QK^T = [|Q| \times d_k] \times [d_k \times |K|]$

Problem of Dot-product Attention

- d_k 가 커지면 QK^T 의 결과값의 편차가 커짐
- $softmax(QK^T)$ 의 결과 값이 편차가 커짐
- Gradient가 작아짐
- 학습이 잘 안됨

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

- QK^T 의 결과를 $\sqrt{d_k}$ 로 나눔
- 값의 편차가 줄어듬

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

- Q: decoder hidden
- K: decoder hidden
- V: decoder hidden

Decoder Self Attention (masked)

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

Education	0.1	0.2	0.3	0.4
is	0.2	0.3	0.4	0.5
most	0.3	0.4	0.5	0.6
powerful	0.4	0.3	0.2	0.1
weapon	0.5	0.4	0.3	0.2
[pad]	0.1	0.1	0.1	0.1

교육은	0.1	0.2	0.3	0.4
가장	0.2	0.3	0.4	0.5
중요한	0.3	0.4	0.5	0.6
무기이다	0.4	0.3	0.2	0.1
[pad]	0.1	0.1	0.1	0.1

 $[seq_K \times d_{model}]$

- seq_K : 6
- d_{model} : 4

 $[seq_Q \times d_{model}]$

- seq_Q : 5
- d_{model} : 4

	Education	is	most	powerful	weapon	[pad]
교육은	0.3	0.4	0.5	0.2	0.3	0.1
가장	0.4	0.54	0.68	0.3	0.44	0.14
중요한	0.5	0.68	0.86	0.4	0.58	0.18
무기이다	0.2	0.3	0.4	0.3	0.4	0.1
[pad]	0.1	0.14	0.18	0.1	0.14	0.04

$$[seq_Q \times d_{model}] \times [d_{model} \times seq_K] = [seq_Q \times seq_K]$$

	Education	is	most	powerful	weapon	[pad]
교육은	0.15	0.2	0.25	0.1	0.15	0.05
가장	0.2	0.27	0.34	0.15	0.22	0.07
중요한	0.25	0.34	0.43	0.2	0.29	0.09
무기이다	0.1	0.15	0.2	0.15	0.2	0.05
[pad]	0.05	0.07	0.09	0.05	0.07	0.02

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

	Education	is	most	powerful	weapon	[pad]
교육은	0.15	0.2	0.25	0.1	0.15	-inf
가장	0.2	0.27	0.34	0.15	0.22	-inf
중요한	0.25	0.34	0.43	0.2	0.29	-inf
무기이다	0.1	0.15	0.2	0.15	0.2	-inf
[pad]	0.05	0.07	0.09	0.05	0.07	-inf

$$Attention(Q, K, V) = softmax \left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

		Education	is	most	powerful	weapon	[pad]
교육은	<u> </u>	0.19	0.20	0.21	0.18	0.10	0
가장		0.19	0.20	0.22	0.18	0.19	0
중요현	한	0.18	0.20	0.22	0.18	0.19	0
무기이	다	0.18	0.19	0.20	0.19	0.20	0
[pad]	l	0.19	0.20	0.20	0.19	0.20	0

Mativial

SoftMax
1
Mask (opt.)
Scale
MatMul
† † V
of V

softmax	$\frac{QK^T}{\sqrt{d_k}}$ V	-
---------	-------------------------------	---

교육은	0.29	0.32	0.34	0.36
가장	0.29	0.32	0.34	0.37
중요한	0.29	0.32	0.34	0.37
무기이다	0.30	0.32	0.34	0.36
[pad]	0.30	0.32	0.34	0.36

$$[seq_Q \times seq_K] \times [seq_K \times d_{model}] = [seq_Q \times d_{model}]$$

LangCon 2020

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

Education	0.1	0.2	0.3	0.4
is	0.2	0.3	0.4	0.5
most	0.3	0.4	0.5	0.6
powerful	0.4	0.3	0.2	0.1
weapon	0.5	0.4	0.3	0.2
[pad]	0.1	0.1	0.1	0.1

Q -

교육은	0.1	0.2	0.3	0.4
가장	0.2	0.3	0.4	0.5
중요한	0.3	0.4	0.5	0.6
무기이다	0.4	0.3	0.2	0.1
[pad]	0.1	0.1	0.1	0.1

 $[seq_K \times d_{model}]$

- seq_K : 6
- d_{model} : 4

 $[seq_Q \times d_{model}]$

- seq_Q : 5
- d_{model} : 4

	Education	is	most	powerful	weapon	[pad]
교육은	0.3	0.4	0.5	0.2	0.3	0.1
가장	0.4	0.54	0.68	0.3	0.44	0.14
중요한	0.5	0.68	0.86	0.4	0.58	0.18
무기이다	0.2	0.3	0.4	0.3	0.4	0.1
[pad]	0.1	0.14	0.18	0.1	0.14	0.04

$$[seq_Q \times d_{model}] \times [d_{model} \times seq_K] = [seq_Q \times seq_K]$$

		Education	is	most	powerful	weapon	[pad]
	교육은	0.15	0.2	0.25	0.1	0.15	0.05
	가장	0.2	0.27	0.34	0.15	0.22	0.07
	중요한	0.25	0.34	0.43	0.2	0.29	0.09
	무기이다	0.1	0.15	0.2	0.15	0.2	0.05
	[pad]	0.05	0.07	0.09	0.05	0.07	0.02

	Education	is	most	powerful	weapon	[pad]
교육은	0.15	-inf	-inf	-inf	-inf	-inf
가장	0.2	0.27	-inf	-inf	-inf	-inf
중요한	0.25	0.34	0.43	-inf	-inf	-inf
무기이다	0.1	0.15	0.2	0.15	-inf	-inf
[pad]	0.05	0.07	0.09	0.05	0.07	-inf

—— Can't see next value

$$Attention(Q, K, V) = softmax \left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

	Education	is	most	powerful	weapon	[pad]
교육은	1.00	0	0	0	0	0
가장	0.48	0.51	0	0	0	0
중요한	0.30	0.33	0.36	0	0	0
무기이다	0.23	0.24	0.26	0.24	0	0
[pad]	0.19	0.20	0.20	0.19	0.20	0

교육은

가장

중요한

무기이다

[pad]

0.30

$seq_0 \times seq_K$	$] \times [seq_K \times d_{mo}]$	$_{del}] = [se$	$q_0 \times d_{model}$

0.32

0.34

0.36

Multi-Head Attention

LangCon 2020

 $MultiHead(Q, K, V) = concatenate(head_1, ..., head_h)W^O$ $where\ head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Scaled Dot-Product

 $head_1$

 VW_i^V

Scaled Dot-Product

Attention

 $MultiHead(Q, K, V) = concatenate(head_1, ..., head_h)W^O$

 $concatenate(head_1, ..., head_4)$

Position-wise Feed-Forward Network

LangCon 2020

Position-wise Feed-Forward Network

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

$$FFN(x) = \max(0, xW_1 + b_1) W_2 + b_2$$

$$xW_1 + b_1 \longrightarrow xW_1 + b_1$$

$$xW_1 + b_1 \longrightarrow x_f \in \mathbb{R}^{seq \times 4d_{model}}$$

Position-wise Feed-Forward Network

Reference

Reference

• Attention is All You Need: https://arxiv.org/abs/1706.03762

• The Illustrated Transformer: https://nlpinkorean.github.io/illustrated-transformer/

• CS224n - Machine Translation, Seq2Seq and Attention:

http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture08-nmt.pdf

Yandex School of Data Analysis - Seq2seq and Attention :
 https://github.com/yandexdataschool/nlp_course/blob/2019/resources/slides/nlp19_04_seq2seq_attention.pdf

Learning Spoons - Attention :

https://github.com/changwookjun/learningspoons/blob/master/Slide/Lecture6.pdf