Neural Networks p1

Recap Loss Functions

Loss Functions

Дано:

у - истинное значение

 $\widehat{\mathcal{Y}}$ - предсказание

Задача:

$$\hat{y} \rightarrow y$$

Loss Functions: One Data Point

 $l(y_i, \widehat{y_i})$ – функция потерь на i-м примере

d – число, мера близости между y_i и $\widehat{y_i}$

Loss Functions: Many Data Points

Loss Functions Examples

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

$$l(y_i, \widehat{y_i}) = (y_i - \widehat{y_i})^2$$

$$A(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$CE = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{k} y_{i,c} \log \hat{y}_{i,c}$$

$$l(y_i, \widehat{y}_i) = -\sum_{c=1}^{k} y_{i,c} \log \widehat{y}_{i,c}$$

$$A(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Loss Functions Examples: Honorable Mentions

Regression

Classification

Mean Absolute Error

Mean Bias Error

Mean Absolute Percentage Error

...

Hinge Loss

Exponential Loss

Generalized Smooth Hinge Loss

Recap Linear/Logistic Regression

Linear Regression

$$\widehat{y_i} = x_i^T W$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T W)^2 \to 0$$

 $x_i - i$ -ый пример из выборки (m признаков на 1)

W — вектор весов (m признаков на 1)

 y_i — истинное значение i-го примера

 $\widehat{y_i}$ – предсказание i-го примера

Linear Regression Vectorized Form

$$\hat{Y} = X^T W$$

$$MSE = \frac{1}{n} (Y - X^T W)^T (Y - X^T W) \to 0$$

X — выборка (m признаков на n примеров)

W — вектор весов (m признаков на 1)

Y — вектор истинных значений (n примеров на 1)

 \widehat{Y} – предсказания (n примеров на 1)

Linear Regression Solution: Linear Equations

$$MSE = \frac{1}{n}(Y - X^{T}W)^{T}(Y - X^{T}W) \to 0$$

Как подобрать матрицу W?

$$W = (X^T X)^{-1} X^T Y$$

В чем проблема?

Иногда нельзя взять обратную матрицу от X^TX (e.g. linear dependence)

Recap: Gradient Descent

Градиент – направление наискорейшего роста функции

Recap: Gradient Descent

Linear Regression Solution: Gradient Descent

$$L(W) = \frac{1}{n} (Y - X^T W)^T (Y - X^T W) \to 0$$

$$W_{t+1} = W_t - \alpha(\frac{2}{n}X(X^TW - Y))$$

$$\nabla L(W)$$

Linear Regression Solution: Gradient Descent

$$W_{t+1} = W_t - \alpha(\frac{2}{n} X (X^T W - Y))$$

Как подобрать матрицу W?

Повторяя обновление параметров до сходимости

В чем проблема?

Иногда вся выборка не помещается в память
Иногда сходится слишком долго

Linear Regression Solution: SGD

Разобьем выборку X на h подвыборок B

$$X = \{B_1, \dots, B_h\}$$

$$W_{t+1} = W_t - \alpha(\frac{2}{n} B_i (B_i^T W - Y))$$

Linear Regression Solution: SGD

$$W_{t+1} = W_t - \alpha(\frac{2}{n} B_i (B_i^T W - Y))$$

Как подобрать матрицу W?

Повторяя обновление параметров до сходимости

В чем проблема?

Обновления параметров могут быть нестабильными

Linear Regression Solution: SGD

Binary Logistic Regression

$$\widehat{y}_i = \frac{1}{1 + e^{-x_i^T W}}$$

$$CE = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)) \to 0$$

 x_i – один пример из выборки (m признаков на 1) W – вектор весов (m признаков на 1)

Binary Logistic Regression Vectorized Form

$$\widehat{Y} = \frac{1}{1 + e^{-X^T W}}$$

$$CE = -\frac{1}{n} (Y^T \log \hat{Y} + (1 - Y)^T \log(1 - \hat{Y})) \to 0$$

X — выборка (m признаков на n примеров)

W — вектор весов (m признаков на 1)

Logistic Regression Solution: Linear Equations

Logistic Regression Solution: Gradient Descent

$$\hat{Y} = \frac{1}{1 + e^{-X^T W}}$$

$$L(W) = -\frac{1}{n} (Y^T \log \hat{Y} + (1 - Y)^T \log(1 - \hat{Y})) \to 0$$

$$W_{t+1} = W_t - \alpha(\frac{1}{n}X(\hat{Y} - Y))$$

$$\nabla L(W)$$

Multilayer Perceptron: Formulation

Dense Layer

Stacked Dense Layers

$$Z_{k+2} = (Z_k^T W_{k+1})^T W_{k+2}$$

Stacked Dense Layers

$$\widehat{Y} = (X^T W_1)^T W_2 = W_1^T X W_2$$
 — — — Минейная функция

Stacked Dense Layers with Activations

$$\widehat{Y} = (a_2(((a_1(X^TW_1))^TW_2))$$
——— Нелинейная функция

Stacked Dense Layers with Activations

$$\hat{Y} = a_n(((a_{n-1}((...)^T W_{n-1}))^T W_n))$$
— Нейронная сеть

Neural Networks: Different Perspective

 x_1, \dots, x_n — признаки одного примера h_1, \dots, h_n — нейроны

 w_i , ..., w_n – веса нейрона для каждого из признаков f(s) – функция активации

Neural Networks: Different Perspective

В каждом скрытом слое нейронная сеть комбинирует признаки, пришедшие из предыдущего слоя (или напрямую из данных).

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Multilayer Perceptron: Training

Linear Regression Solution: Gradient Descent

$$L(W) = \frac{1}{n} (Y - X^{T}W)^{T} (Y - X^{T}W) \to 0$$

$$W_{t+1} = W_t - \alpha(\frac{2}{n}X(X^TW - Y))$$

$$\nabla L(W)$$

Чтобы обновить параметры линейной регрессии градиентным спуском нужно взять производную функции потерь по этим параметрам.

С нейронной сетью можно сделать то же самое.

Но как?

Recap: Chain Rule

$$f = f(g); g = g(x)$$

$$\frac{df}{dx} = \frac{df}{da} * \frac{dg}{dx}$$

Gradient of Neural Net

$$\hat{Y} = a_2(A_1^T W_2)$$

$$\frac{dL}{dW_2} = \frac{dL}{d\hat{Y}} * \frac{d\hat{Y}}{dW_2}$$

$$L(W) = \frac{1}{n} (Y - \hat{Y})^{T} (Y - \hat{Y})$$

$$\frac{dL}{dW_1} = \frac{dL}{d\hat{Y}} * \frac{d\hat{Y}}{dA_1} * \frac{dA_1}{dW_1}$$

Stacked Dense Layers with Activations

Finite Difference Method for Gradient Checking

Если нужно проверить аналитические градиенты нейронной сети, то можно посчитать численные градиенты по формуле finite difference.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$NN'_{w_k}(w_1, ..., w_k, ..., w_n) = \lim_{\Delta w_k \to 0} \frac{NN(w_k + \Delta w_k) - NN(w_k)}{\Delta w_k}$$

 $NN'(w_1,...,w_k,...,w_n)$ – нейронная сеть, с параметрами $w_1,...,w_k,...,w_n$ w_k – вес, градиент по которому хочется посчитать

Forward propagation – процесс последовательного применения операций (слоев) к входным данным нейронной сети (X) и получения предсказаний (\widehat{Y}) .

(синие стрелки на картинке)

Backward propagation – процесс последовательного получения производных функции потерь по всем параметрам нейронной сети.

(красные стрелки на картинке)

В результате backward pass становятся известны производные функции потерь по всем параметрам сети. Таким образом, можно обновить все параметры сети с помощью градиентного спуска.

Neural Networks: Gradient Descent

$$W_{k,t+1} = W_{k,t} - \alpha(\frac{dL}{dW_{k,t}})$$

 $W_{k,t}$ – веса k-го слоя нейронной сети в момент времени t (до шага градиентного спуска)

 $\frac{dL}{dW_{k,\,t}}$ — производная функции потерь по весам k-го слоя сети в момент времени t

Loss Surfaces of Neural Networks

Backpropagation in General

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \qquad \qquad f_c(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c$$
 $f_c(x)=c$ gradient

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) &= e^x &
ightarrow & rac{df}{dx} &= e^x & f(x) &= rac{1}{x} &
ightarrow & rac{df}{dx} &= -1/x^2 \ & f_a(x) &= ax &
ightarrow & rac{df}{dx} &= a & f_c(x) &= c + x &
ightarrow & rac{df}{dx} &= 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

Differentiable and Non-Differentiable Operations

Differentiable

- Сумма
- Произведение
- Возведение в степень
- •

Non-Differentiable

- Sampling
- Argmax
- Выбор ближайшего соседа
- •

DL Frameworks

DL Frameworks

DL Frameworks: Main Principle


```
output_2 = root(exp(mul(input_3, add(input_1, input_2))))
output_1 = exp(mul(input_3, add(input_1, input_2)))
```

DL Frameworks: Main Principle

Главное – определить вычислительный граф. Производные вычисляются автоматически.

Layers in DL Frameworks


```
def call(self, inputs):
    output = K.dot(inputs, self.kernel)
    if self.use_bias:
        output = K.bias_add(output, self.bias, data_format='channels_last')
    if self.activation is not None:
        output = self.activation(output)
    return output
```

Layers in DL Frameworks


```
def call(self, inputs):
    output = K.dot(inputs, self.kernel)
    if self.use_bias:
        output = K.bias_add(output, self.bias, data_format='channels_last')
    if self.activation is not None:
        output = self.activation(output)
    return output
```

DL Frameworks

Основная идея фреймворков – сборка архитектур нейронных сетей из автодифференцируемых блоков.

Static vs Dynamic Graphs

Статичный граф операций

- определяется один раз перед началом выполнения операций
- раньше был быстрее
 динамического (больше нет)
- некоторые операции либо нельзя либо очень сложно выполнить

Динамический граф операций

- определяется каждый раз при выполнении операций
- более гибкий (можно делать все, что угодно)

Materials

cs231n Lecture 3: https://www.youtube.com/watch?v=h7iBpEHGVNc&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&t=0s&index=4

Cs231n Lecture 4: https://www.youtube.com/watch?v=d14TUNcbn1k&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&t=0s&index=5

Vectorized implementation of cost functions and Gradient Descent: https://medium.com/ml-ai-study-group/vectorized-implementation-of-cost-functions-and-gradient-vectors-linear-regression-and-logistic-31c17bca9181

What are the top deep learning frameworks to utilize in 2019?: https://www.quora.com/What-are-the-top-deep-learning-frameworks-to-utilize-in-2019