

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C07K 14/435, C12N 1/21, 5/10, 15/12, 15/67, 15/70, 15/85		A1	(11) International Publication Number: WO 00/61620 (43) International Publication Date: 19 October 2000 (19.10.00)
(21) International Application Number: PCT/US00/09069		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 6 April 2000 (06.04.00)			
(30) Priority Data: 60/128,702 9 April 1999 (09.04.99) US 60/177,049 20 January 2000 (20.01.00) US			
(71) Applicant (<i>for all designated States except US</i>): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).			
(71)(72) Applicant and Inventor: ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US).		Published <i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(72) Inventors; and			
(75) Inventors/Applicants (<i>for US only</i>): RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Laytonsville, MD 20882 (US). KOMATSOULIS, George [US/US]; 9518 Garwood Street, Silver Spring, MD 20901 (US).			
(74) Agents: HOOVER, Kenley, K. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).			

(54) Title: 49 HUMAN SECRETED PROTEINS**(57) Abstract**

The present invention relates to novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating diseases, disorders, and/or conditions related to these novel human secreted proteins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

nucleotide residues shown in SEQ ID NO:43, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 34

5 The computer algorithm BLASTX has been used to determine that the translation product of this gene shares sequence homology with, as a non-limiting example, the sequence accessible through the following database accession no. gi|57671 (all information available through the recited accession number is incorporated herein by reference) which is described therein as "ribonuclease inhibitor [Rattus norvegicus]." A partial alignment demonstrating the observed 10 homology is shown immediately below.

```

>gi|57671 ribonuclease inhibitor [Rattus norvegicus] >pir|S20597|S20597
      ribonuclease inhibitor - rat
 15 Length = 456

      Plus Strand HSPs:

 20 Score = 519 (182.7 bits), Expect = 3.6e-49, P = 3.6e-49
      Identities = 123/325 (37%), Positives = 170/325 (52%), Frame = +1

      Q:   640 EMGLAINDSFLSASLXRILCEQIASDTCHLQRVFKNISPADAHRNLCL-ALRGHKTVTY 816
          E+ L N+ A + + L + + + TC +Q++ +N S +A + LR T+
      S:   55 ELSLRTNE-LGDAGVGLVL-QGLQNPTCKIQKLSIQNCSLTEAGCGVLPDVLRLSLSLRE 112
 25      Q:   817 LTLOQNDQ-DDMFPALCEVLRHPECNLRYLGLVSCSATTQQWADLSLALEVNQSLTCVNL 993
          L L N D+ LCE LR P+C L L L C+ T L+ L V + L
      S:   113 LHLNDNPLGDEGLKLLCEGLRDPQCRLKQLEYCNLNTATSCEPLASVLRVKPDFKEVLV 172
      Q:   994 SDNELLDEGAKLLYTTLRHPKCFQLQRLSLENCHLTEAMCKDLAAVLVVSRELTHLCLAKN 1173
          S+N+ + G L L+ C L+ L LENC +T ANCKDL V+ L L L N
      S:   173 SNNDFHEAGIHTLCQGLKDASQLESLKLENCIGITSANCKDLCVDVVASKASLQELDLGSN 232
 30      Q:   1174 PIGNTGVKFLCEGLRYPECKLQTLVWNCDITSDGCCDLTKLLQEKSLLCDDLGGLNHIG 1353
          +GNTG+ LC GL P C+L+TL LW+CD+T++GC DL ++L+ K SL L L N +
      S:   233 KLGNTGIAALCGLLLPCSLRTLWWDVDVTAEGCKDLCRVLRAKQSLKELSLAGNELK 292
      Q:   1354 VKGMKFICEARLRKPLCNLRCWLWGCSIPPFSCEDLCSALSCNQSLVTLDLGQNPLGSSG 1533
          +G + LCE+L +P C L LW+ CS+ SC CS L+ N SL L + NPLG SG
 40      S:   293 DEGAQLLCESILLEPGCQLESLWVKTCSLTAASCPHFCSVLTKNSSLFELQMSSNPLGDSG 352
      Q:   1534 VKMLFETLTCSSGTLRTLRLKIDDFND 1614

```

This Page Blank (uspto)

V L + L LR L L D D
S: 353 VVELCKALGYPDTVLRLWLGDCDVTD 379

- The segment of gil57671 that is shown as "S" above is set out in the sequence
- 5 listing as SEQ ID NO. 143. Based on the structural similarity these homologous polypeptides are expected to share at least some biological activities. Such activities are known in the art, some of which are described elsewhere herein. Assays for determining such activities are also known in the art, some of which have been described elsewhere herein.
- 10 Preferred polypeptides of the invention comprise a polypeptide having the amino acid sequence set out in the sequence listing as SEQ ID NO. 144 which corresponds to the "Q" sequence in the alignment shown above (gaps introduced in a sequence by the computer are, of course, removed).

It has been discovered that this gene is expressed primarily in the following

15 tissues/cDNA libraries: Human Testes Tumor and to a lesser extent in Soares fetal liver spleen 1NFLS; NCI_CGAP_GCB1; Human Testes; Human Endometrial Tumor; Soares placenta Nb2HP; Soares infant brain 1NIB; 12 Week Old Early Stage Human, II; Human Uterine Cancer; Human Whole Six Week Old Embryo; Activated T-Cell (12hs)/Thiouridine labelledEco; Spleen, Chronic lymphocytic leukemia and

20 Soares_placenta_8to9weeks_2NbHP8to9W.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 93 as residues: Asp-194 to Leu-199, Ile-206 to Pro-211, Glu-224 to Ser-229.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are

25 related to SEQ ID NO:44 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence

This Page Blank (uspto)

would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1978 of SEQ ID NO:44, b is an integer of 15 to 1992, where both a and b correspond to the positions of 5 nucleotide residues shown in SEQ ID NO:44, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 35

The computer algorithm BLASTX has been used to determine that the

10 translation product of this gene shares sequence homology with, as a non-limiting example, the sequence accessible through the following database accession no. gi|2559012 (all information available through the recited accession number is incorporated herein by reference) which is described therein as "chaperonin containing t-complex polypeptide 1, beta subunit; CCT-beta [Homo sapiens]." A 15 partial alignment demonstrating the observed homology is shown immediately below.

>gi|2559012 (AF026293) chaperonin containing t-complex polypeptide 1, beta
subunit; CCT-beta [Homo sapiens] >gi|2559012 (AF026293)
20 chaperonin
[Homo sapiens]. >gi|4090929 (AF026166) chaperonin-containing TCP-1
beta
25 subunit homolog [Homo sapiens] >sp|G4090929|G4090929
CHAPERONIN-CONTAINING TCP-1 BETA SUBUNIT HOMOLOG.
>sp|G2559012|G2559012 CHAPERONIN CONTAINING T-COMPLEX
POLYPEPTIDE
30 1, BETA SUBUNIT. >gi|1871210 T-complex protein 1, Beta subunit
(TCP-1-BETA) [Homo sapiens] {SUB 1-217}
Length = 535

Plus Strand HSPs:

Score = 2610 (918.8 bits), Expect = 9.4e-271, P = 9.4e-271
35 Identities = 525/535 (98%), Positives = 525/535 (98%), Frame = +2

Q: 92 MASLSLAPVNIFKAGADEERAETARLTSFIGAIAIGDLVKSTLGPKGMDKILLSSGRDAS 271

This Page Blank (uspto)

What Is Claimed Is:

1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
 - (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X,
- 20 having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;

(i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.

5

2. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.

10

3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

15

4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

20

5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.

6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.

7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.

5 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.

9. A recombinant host cell produced by the method of claim 8.

10 10. The recombinant host cell of claim 9 comprising vector sequences.

11. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:

- (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;
- (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- 20 (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (e) a secreted form of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- 25 (g) a variant of SEQ ID NO:Y;

(h) an allelic variant of SEQ ID NO:Y; or

(i) a species homologue of the SEQ ID NO:Y.

12. The isolated polypeptide of claim 11, wherein the secreted form or the full length protein comprises sequential amino acid deletions from either the C-
5 terminus or the N-terminus.

13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.

10 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.

15. A method of making an isolated polypeptide comprising:

(a) culturing the recombinant host cell of claim 14 under conditions such that

15 said polypeptide is expressed; and

(b) recovering said polypeptide.

16. The polypeptide produced by claim 15.

20 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11 or the polynucleotide of claim 1.

25 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:

(a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and

(b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.

5

19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:

(a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and

10 (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:

15 (a) contacting the polypeptide of claim 11 with a binding partner; and

(b) determining whether the binding partner effects an activity of the polypeptide.

21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.

20

22. A method of identifying an activity in a biological assay, wherein the method comprises:

(a) expressing SEQ ID NO:X in a cell;

(b) isolating the supernatant;

25 (c) detecting an activity in a biological assay; and

(d) identifying the protein in the supernatant having the activity.

415

23. The product produced by the method of claim 20.

<400> 43

aaantaaccc	tcactaaagg	gaacaaaagc	tggagcncca	ccgcgtgkc	rtmsgcwmta	60
gwwccgtsc	acgwccctr	cttcgggtt	gttcgttgt	ggcgtcggag	ccgagccgga	120
ctggtcagga	tgatcacgga	cgtca	gccatctcg	ccaacatgct	gggcgtgtcg	180
ctcttctgc	ttgtcggtt	ctatca	gtggccgtca	acaatccaa	gaagcaggaa	240
tgaaagtggc	gcttctccg	ccccagggtt	coaggacata	gtctgaggca	agatggaggg	300
tatgaggggc	cttcacactt	cactcatec	cttcctacc	atcacaacat	acaaagcaac	360
tacaccttga	ttttccaaa	caactttat	ttcctcagag	tcttccttaa	tcctatggaa	420
caagaagctg	ccactgaata	gggcccagta	taggggctt	cttttctact	ccctcccccc	480
aatataaaaa	tatagacttt	aaaaaaaaaa	aaaaaaaaaa	aaaa		524

<210> 44

<211> 1992

<212> DNA

<213> Homo sapiens

<400> 44

gcatcctccg	ccaggacaga	gtctccaaag	gctgctactc	tttcatccac	ctcagcttcc	60
agcagtttct	cactgccc	ttctacaccc	tggagaagga	ggaggaagag	gatagggacg	120
gcccacrmctg	gkacattggg	gacgtacaga	agytgsttcc	cgagtagra	agactcagga	180
accccgacct	gatccaagca	ggctactact	ccttcggcct	cgctaacgag	aagagagcca	240
aggagttgga	ggccactttt	ggctgcsga	tgtcaccgga	catcaaacag	gaattgctgc	300
gatgcgacat	aagttgtaa	ggtggacatt	caacggtgac	agacctgcag	garctgctcg	360
gctgtctgt	cgagtctcg	gaggaggagc	tgtgaa	ggtgtatggct	cakttcaaag	420
aaatatccct	gcacttaat	gcagtagacg	tttgccatc	ttcatttgc	gtcaagcact	480
gtcgaaacct	gcagaaaatg	tcactgcagg	taataaagga	aatctcccg	gagaatgtca	540
ctgcgtctga	atmagacg	gaggttkaga	gatcccagg	tgtcagcac	awgcttcc	600
tytggacgga	cctttgttcc	atattttgg	tcaaataas	agatgggtct	agcaatcaat	660
gatagcttc	tcagtgcctc	cctartaa	atcctgtgt	aacaatagc	ctctgacacc	720
tgtcatctcc	agagagtgg	gttcaaaaac	attccccag	ctgatgtca	tcggAACCC	780
tgcctagetc	ttaggaggtca	caagactgt	actatctga	cccttcaagg	caatgaccag	840
gatgatatgt	ttcccgatt	gtgtgagg	ttgagacatc	cagaatgtaa	cctgcgat	900
ctcgggttgg	tgtttgttc	cgctaccact	cagcagtgg	ctgatcttc	cttggccctt	960
gaagtcaacc	agtccctgac	gtgcgtaa	ctctccgaca	atgagttt	ggatgagg	1020
gctaagtgtc	tgtacacaac	tttgagacac	cccaagtgt	ttctgcagag	gttgcgttg	1080
aaaaactgtc	accc tacaga	agccaattgc	aaggacctt	ctgctgtgtt	gttgcgtac	1140
cgggagctga	cacacctgt	cttggccaag	aaccccat	ggaatacagg	gttgcgttt	1200
ctgtgtgagg	gcttgaggta	ccccgagtgt	aaactgcaga	ccttgcgt	ttggactgc	1260
gacataacta	gcgatggct	ctgcgtctc	acaaagctt	tccaaaaaaa	atcaagcct	1320
tttgttttgg	atctggggct	gaatcacata	ggagttaa	aatgaagtt	cctgtgtgag	1380
gctttgagga	aaccactgt	caacttgaga	tgtctgtgtt	tgtgggatg	ttccatcc	1440
ccgttcagtt	gtgaagac	ctgctctg	ctcagctgc	accagac	cgtca	1500
gacctgggtc	agaatccctt	ggggcttagt	ggagtgaga	tgtctttga	aaccttgaca	1560
tgttccagtg	gcaccctcc	gacactcagg	ttgaaaatag	atgacttta	tgtgact	1620
aataagctgc	tggaa	agaagaaaa	aacccacaac	tgattattga	tactgagaa	1680
catcatccct	ggaaagaa	gccttctt	catgactca	tgtatgt	ccccccgagt	1740
cattcattct	ccatgaa	atcgat	cagggtgg	tgaactgc	gtgactcc	1800
tcctcccc	cccc	tcaggataa	ttagttcatt	gctggctag	atgttttag	1860
catgattctg	cctctt	atacctgcac	acgtcc	tttgcata	tatgaaat	1920
ctgtatc	acg	ggtatattga	gagaaataaa	ggtgagagca	ttcacaaaaaa	1980

This Page Blank (uspto)

aaaaaaactcg ag

1992

<210> 45
<211> 1973
<212> DNA
<213> Homo sapiens

<400> 45

ggcacgagcg	tcacttccgg	cttccttcag	tccgctggc	ccgagcacga	gctgtgaggg	60
gattcaacttg	tgtcggaac	tcctcgaaac	catggcgcc	ctttcccttg	cacctgttaa	120
catctttaag	gcaggagctg	atgaagagag	agcagagaca	gctcgctga	cttcttttat	180
tggtgccatc	gocattggag	acttggtaaa	gagcacctt	ggacccaaag	gcatggacaa	240
aattcttcta	agcagtggac	gagatgcctc	tcttatggta	accaatgtat	gtgccactat	300
tctaaaaaac	attggtgtt	acaatccagc	agctaaagtt	ttagttgata	tgtcaagggt	360
tcaagatgt	gaagttgggt	atggcactac	ctctgttacc	gttttagcag	cagaattatt	420
aagggaagca	aatctttaa	ttgcaaaaaa	gattcatcca	cagaccatca	tagcggggt	480
gagagaagcc	acgaaggctg	caagagaggc	gctgttgagt	tctgcagtt	atcatggttc	540
cgatgaagtt	aaattccgtc	aagatttaat	gaatattgcg	ggcacaacat	tatcctcaaa	600
acttcttact	catcacaaag	accacttac	aaagtttagct	gtagaagcag	ttctcagact	660
gaaaggctct	ggcaacctgg	aggcaattca	tattatcaag	aagctaggag	gaagtttgc	720
agattccat	ttagatgaag	gcttcctgtt	ggataaaaaa	attggagtaa	atcaaccaaa	780
acgaattgaa	aatgctaaaa	ttcttattgc	aaatactggt	atggatacag	acaaaataaa	840
gatatttggt	tcccgggtaa	gagttgactc	tacagcaaag	gttgcagaaa	tagaacatgc	900
ggaaaaggaa	aaaatgaagg	agaaaggta	acgtattctt	aagcatggaa	taaattgctt	960
tattaacagg	caattaattt	ataattatcc	tgaacagctc	tttggtgctg	ctgggtgtcat	1020
ggctattttag	catcgagatt	ttgcagggt	ggaacgccta	gctctgtca	caggtggtga	1080
aattgcctct	acctttgate	acccagaact	ggtaagctt	ggaagttgca	aacttatacg	1140
ggaagtcatg	attggagaag	acaaactcat	tcactttct	ggggttgccc	ttggtgaggc	1200
ttgttaccatt	gttttgcgt	gtgccactca	acaaatttta	gatgaagcag	aaagatcatt	1260
gcatgtatgt	ctttgtgtt	ttgcgcaaac	tgtaaaggac	tctagaacag	tttatggagg	1320
aggctgttct	gagatgttga	tggctcatgc	tgtgacacag	cttgcataa	gaacaccagg	1380
caaagaagct	gttcaatgg	agtcttatgc	taaagcactg	agaatgtgc	caaccatcat	1440
agctgacaat	gcaggctatg	acagtgcaga	cctggtggca	cagctcagg	ctgctcacag	1500
tgaaggcaat	accactgctg	gattggatat	gagggaaaggc	accattggag	atatggctat	1560
cctgggtata	acagaaagtt	ttcaagtga	gcgacagg	cttctgagtg	cagctgaagc	1620
agcagagggt	attctgcgt	tggacaacat	catcaaagcg	gcaccagg	aacgtgtccc	1680
tgatcaccac	ccctgttaag	cattccacg	tgtgtcgat	ctttggacca	gtttctagca	1740
aagttgttt	tgaaagatac	tctattaaag	aagactgtgg	aatctgttta	tcggtgccca	1800
ttatatcctt	aagttggat	athtagctga	cttcgctt	aacataggc	taatttattt	1860
gccgtgtcat	tttccatatac	aatcaggta	ttaaaaaaag	ttcatttctc	atactgtgca	1920
ttaaaataaa	aatttgaaca	attaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaa	1973

<210> 46
<211> 1924
<212> DNA
<213> Homo sapiens

<400> 46

ggcacgaggc	aaacaaaaat	ctccagctgc	ccacgttgct	ttggtcatga	cccttccttc	60
------------	------------	------------	------------	------------	------------	----

This Page Blank (uspto)

50 55

<210> 92
<211> 38
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (38)
<223> Xaa equals stop translation

<400> 92
Met Ile Thr Asp Val Gln Leu Ala Ile Phe Ala Asn Met Leu Gly Val
1 5 10 15

Ser Leu Phe Leu Leu Val Val Leu Tyr His Tyr Val Ala Val Asn Asn
20 25 30

Pro Lys Lys Gln Glu Xaa
35

<210> 93
<211> 235
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (235)
<223> Xaa equals stop translation

<400> 93
Lys Leu Leu Tyr Thr Leu Arg His Pro Lys Cys Phe Leu Gln Arg
1 5 10 15

Leu Ser Leu Glu Asn Cys His Leu Thr Glu Ala Asn Cys Lys Asp Leu
20 25 30

Ala Ala Val Leu Val Val Ser Arg Glu Leu Thr His Leu Cys Leu Ala
35 40 45

Lys Asn Pro Ile Gly Asn Thr Gly Val Lys Phe Leu Cys Glu Gly Leu
50 55 60

Arg Tyr Pro Glu Cys Lys Leu Gln Thr Leu Val Leu Trp Asn Cys Asp
65 70 75 80

Ile Thr Ser Asp Gly Cys Cys Asp Leu Thr Lys Leu Leu Gln Glu Lys

This Page Blank (uspto)

66

	85	90	95
Ser Ser Leu Leu Cys Leu Asp Leu Gly Leu Asn His Ile Gly Val Lys			
100	105		110
Gly Met Lys Phe Leu Cys Glu Ala Leu Arg Lys Pro Leu Cys Asn Leu			
115	120		125
Arg Cys Leu Trp Leu Trp Gly Cys Ser Ile Pro Pro Phe Ser Cys Glu			
130	135		140
Asp Leu Cys Ser Ala Leu Ser Cys Asn Gln Ser Leu Val Thr Leu Asp			
145	150	155	160
Leu Gly Gln Asn Pro Leu Gly Ser Ser Gly Val Lys Met Leu Phe Glu			
165	170		175
Thr Leu Thr Cys Ser Ser Gly Thr Leu Arg Thr Leu Arg Leu Lys Ile			
180	185		190
Asp Asp Phe Asn Asp Glu Leu Asn Lys Leu Leu Glu Glu Ile Glu Glu			
195	200		205
Lys Asn Pro Gln Leu Ile Ile Asp Thr Glu Lys His His Pro Trp Glu			
210	215		220
Glu Arg Pro Ser Ser His Asp Phe Met Ile Xaa			
225	230		235

<210> 94

<211> 9

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (9)

<223> Xaa equals stop translation

<400> 94

Ser Leu Phe Trp Gly Cys Pro Trp Xaa

1

5

<210> 95

<211> 42

<212> PRT

<213> Homo sapiens

<220>

This Page Blank (uspto)

Glu Ser Leu Trp Val Lys Thr Cys Ser Leu Thr Ala Ala Ser Cys Pro
260 265 270

His Phe Cys Ser Val Leu Thr Lys Asn Ser Ser Leu Phe Glu Leu Gln
275 280 285

Met Ser Ser Asn Pro Leu Gly Asp Ser Gly Val Val Glu Leu Cys Lys
290 295 300

Ala Leu Gly Tyr Pro Asp Thr Val Leu Arg Val Leu Trp Leu Gly Asp
305 310 315 320

Cys Asp Val Thr Asp
325

<210> 144

<211> 325

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (16)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 144

Glu Met Gly Leu Ala Ile Asn Asp Ser Phe Leu Ser Ala Ser Leu Xaa
1 5 10 15

Arg Ile Leu Cys Glu Gln Ile Ala Ser Asp Thr Cys His Leu Gln Arg
20 25 30

Val Val Phe Lys Asn Ile Ser Pro Ala Asp Ala His Arg Asn Leu Cys
35 40 45

Leu Ala Leu Arg Gly His Lys Thr Val Thr Tyr Leu Thr Leu Gln Gly
50 55 60

Asn Asp Gln Asp Asp Met Phe Pro Ala Leu Cys Glu Val Leu Arg His
65 70 75 80

Pro Glu Cys Asn Leu Arg Tyr Leu Gly Leu Val Ser Cys Ser Ala Thr
85 90 95

Thr Gln Gln Trp Ala Asp Leu Ser Leu Ala Leu Glu Val Asn Gln Ser
100 105 110

Leu Thr Cys Val Asn Leu Ser Asp Asn Glu Leu Leu Asp Glu Gly Ala
115 120 125

This Page Blank (uspto)

Lys Leu Leu Tyr Thr Thr Leu Arg His Pro Lys Cys Phe Leu Gln Arg
130 135 140

Leu Ser Leu Glu Asn Cys His Leu Thr Glu Ala Asn Cys Lys Asp Leu
145 150 155 160

Ala Ala Val Leu Val Val Ser Arg Glu Leu Thr His Leu Cys Leu Ala
165 170 175

Lys Asn Pro Ile Gly Asn Thr Gly Val Lys Phe Leu Cys Glu Gly Leu
180 185 190

Arg Tyr Pro Glu Cys Lys Leu Gln Thr Leu Val Leu Trp Asn Cys Asp
195 200 205

Ile Thr Ser Asp Gly Cys Cys Asp Leu Thr Lys Leu Leu Gln Glu Lys
210 215 220

Ser Ser Leu Leu Cys Leu Asp Leu Gly Leu Asn His Ile Gly Val Lys
225 230 235 240

Gly Met Lys Phe Leu Cys Glu Ala Leu Arg Lys Pro Leu Cys Asn Leu
245 250 255

Arg Cys Leu Trp Leu Trp Gly Cys Ser Ile Pro Pro Phe Ser Cys Glu
260 265 270

Asp Leu Cys Ser Ala Leu Ser Cys Asn Gln Ser Leu Val Thr Leu Asp
275 280 285

Leu Gly Gln Asn Pro Leu Gly Ser Ser Gly Val Lys Met Leu Phe Glu
290 295 300

Thr Leu Thr Cys Ser Ser Gly Thr Leu Arg Thr Leu Arg Leu Lys Ile
305 310 315 320

Asp Asp Phe Asn Asp
325

<210> 145

<211> 535

<212> PRT

<213> Homo sapiens

<400> 145

Met Ala Ser Leu Ser Leu Ala Pro Val Asn Ile Phe Lys Ala Gly Ala
1 5 10 15

Asp Glu Glu Arg Ala Glu Thr Ala Arg Leu Thr Ser Phe Ile Gly Ala

This Page Blank (uspto)