1. Soit $\mathbf{H}=\{z\in\mathbb{C},\ \exists n\in\mathbb{N}^*,\ z^n=1\}$. Montrer que (\mathbf{H},\times) est un sous-groupe de (\mathbb{C}^*,\times) .

2. On admet que $(\mathbb{R}^{\mathbb{N}},+,\times)$ est un anneau. Cet anneau est-il intègre ? Justifier.

 $\text{3. On note } \mathbb{D} \text{ l'ensemble des nombres décimaux i.e. } \mathbb{D} = \left\{\frac{k}{10^{\mathfrak{n}}}, \ (k, \mathfrak{n}) \in \mathbb{Z} \times \mathbb{N} \right\} \!\! . \ (\mathbb{D}, +, \times) \text{ est-il un corps? Justifier.}$

5. Soit
$$(a,b,q,r)\in\mathbb{Z}^4$$
 tel que $a=bq+r.$ Montrer que $\alpha\wedge b=b\wedge r.$

6. Soit
$$(a,b,c)\in\mathbb{Z}^3$$
. Montrer qu'il existe $(u,v)\in\mathbb{Z}^2$ tel que $au+bv=c$ si et seulement si $a\wedge b$ divise c .