"アツい" RFC / DNS を逆から読む

JPNIC 大谷 亘 <alt@nic.ad.jp>

2024/09/30 IETF120 情報交換会

アジェンダ

各ミーティングから一部のトピックを抜き出してお伝えします

- HotRFC Lightning Talks (Material/YouTube)
 - What would a post-IETF look like?
 - privacy.txt: A File Format to Aid in Consumer Privacy Enforcement,
 Research, and Tools
 - Implementing <u>Digital Emblems</u> on top of the DNS/DNSSEC protocol stack
- RSSAC Caucus Member Meeting RSSAC Messaging Project
 - The World Turned Upside Down (from RIPE88)

- IETF 前のネットワーク (インターネット)
 - 実験的・プロプライエタリ
 - 独自仕様の乱立
 - ピアネットワーク間のアドホックな接続
- 標準化の必要性
 - 互換性の欠如
 - プロトコル間の非互換性
 - 信頼性の低さ
 - 共通プロトコルへの合意
 - 相互運用性の向上
 - ネットワークの自律的な拡大

- IETF の役割
 - インターネットの通信プロトコル標準化
 - 通信ソリューションの相互運用性の向上
- IETF の貢献
 - 互換性のあるプロトコルの策定
 - 業界全体での協力
 - 最適化の推進
 - コスト削減

- ポスト IETF 時代の可能性
 - 機械の自動運用時代の到来
 - 自律的なシステム間の連携
 - 動的なプロトコル選択によるアドホックな相互運用性
 - コラボレーションの変化
 - 業界内協力の減少? →プロプライエタリシステムの台頭
- 合意された全体最適化 vs. アドホックな個別最適化

- IETF の今後の課題
 - 現在の変化への対応
 - 標準化の再定義
 - プロトコルの終焉は訪れるのか?
 - ○未来への準備
 - 戦略的アプローチ

privacy.txt

- 現状分析
 - ePrivacy Directive や GDPR などプライバシ保護が重要視
 - ウェブサイト・サービスでのプライバシポリシの不十分な実装
 - プライバシ保護のための標準が必要
- privacy.txt
 - 機械が読める形のプライバシポリシの形式
 - / /.well-known に配置(Web)
 - プライバシ情報のサービス単位での一元管理

privacy.txt

サービス視点

- プライバシポリシの明示
 - テキストや対応する URL の提供
- ユーザアクションのサポート
 - データ削除リクエストの方法
 - マーケティングオプトアウトの方法
- ユーザへの明確な情報提供
 - データ収集・利用方法の明示→透明性の担保・向上
 - GDPR 準拠への一助?

privacy.txt

開発者・研究者の視点

- プライバシツール開発の基盤
- コンプライアンスチェックの効率化

実装

- データ収集ツール
- Cookie 比較ツール
- その他
 - privacy.txt 作成ツール
 - 検証ツール
 - 監査ツール

Digital Emblems

- 紋章 (Emblems) の歴史的な役割
 - 法による特別な保護や権利の象徴
 - 戦時の記者章, UN マーク, 放射線シンボルなど
- デジタル環境での実装
 - データやサービスの表示
 - 国際法で保護される対象をデジタル空間で識別

Digital Emblems

- 実装方法: DNSSEC 基盤
 - 発行者と資産を結びつける Digital Emblems と検証者
 - 信頼性の高い既存インフラの活用
 - デジタルエンブレムの発行と検証
- 適用範囲
 - データ保存 (zone file 形式)
 - データ転送 (TLS/DANE)
 - ネットワーク応答 (DNS/DoT)

Digital Emblems

- Digital Emblems への期待
 - 国際的なデータ保護の標準実装・強化
 - 法的識別のデジタル基盤構築
- 今後の展望
 - IETF における詳細なプロトコル開発
 - コミュニティでの議論

RSSAC Caucus Member Meeting

The World Turned Upside Down by Jeff Osborn (from RIPE88)

課題

- ほとんどのポリシーメーカは RSS (ルートサーバシステム) を理解していない
- 従来の説明ではフルサービスリゾルバのコールドスタートから名前空間の構造を理解するものが多かった
 - フルサービスリゾルバ・IANA・RZM の役割が過小評価
 - RSS がインターネットのゲートキーパーであるという誤解
 - RSS の一部が止まっても RSS 全体では問題はなく DNS は動く
 - ○「階層性」などの用語に過剰な意味付け

RSSAC Messaging Project の解決策

- フルサービスリゾルバの現実とクエリの頻度を基に説明
- これまでの「Root から下層へ」とは逆の整理
- フルサービスリゾルバにキャッシュがあることを強調

ロードマップ

- チュートリアルや資料の作成
- RSSAC Official な非技術者向け資料の作成
- チュートリアルに基づいたスライドの作成

▶▶▶ チュートリアル概要

- DNS と名前の役割・安定性・重要性
- フルサービスリゾルバの役割・実行時間とクエリ数
- フルサービスリゾルバと権威サーバの関係
- クエリプロセス
 - キャッシュにある場合
 - キャッシュにない場合
 - 目的ゾーンの権威サーバに問い合わせる場合
 - TLD 権威サーバに問い合わせる場合
 - RSS に問い合わせる場合
- Root zone について
- 各 zone data は誰がどのように管理しているか
- RSS について

