Contrôle de cours (1 heure)

Nom:	Prénom :	Classe:
calibrée pour du	porte deux parties distinctes associées aux rer 30 minutes mais c'est à vous de gérer vo x parties est sur 20 points. Il y aura deux n	tre temps.
1 Contrôle de d	cours sur l'ECUE EV (durée : 30	O minutes). Note EV: /20
Cours 1 : familles d	e vecteurs (12 points)	
1. Soient E un espace	vectoriel sur \mathbb{R} et $\mathscr{F} = (u_1, \dots, u_n)$ une famille de	e n vecteurs de E $(n \in \mathbb{N}^*)$.
(a) Donner la défini	tion mathématique, avec les quantificateurs, de : «	\mathscr{F} est une famille libre de E ».
(b) Donner la carac	térisation mathématique, avec les quantificateurs,	$\mathrm{de}: \mathscr{F} \text{ est une base de } E \text{`}.$
(c) Donner un exen	nple d'une famille libre de $E=\mathbb{R}^3$ qui ne soit pas u	une base. Ne pas justifier.
(d) Donner un exen	aple d'une base de $E=\mathbb{R}^2$ autre que la base canon	ique. Ne pas justifier.
Dans les phrases su a. Si $Card(\mathscr{F}) = 3$ b. Si $Card(\mathscr{F}) = 5$ c. Si $Card(\mathscr{F}) = 6$ d. Si $Card(\mathscr{F}) = 4$	vectoriel de dimension finie égale à 4. Soit \mathscr{F} une ivantes, entourer toutes les réponses plausibles par alors \mathscr{F} peut être : libre génératrice alors \mathscr{F} peut être : libre génératrice alors \mathscr{F} est forcément : libre génératrice alors \mathscr{F} peut être : libre génératrice = $\mathbb{R}_2[X]$. On admet que la famille $\mathscr{B} = (P_1 = 1, P_2)$	rmi les mots « libre », « génératrice » et « liée ». liée liée trice liée liée
(a) Justifier que ${\mathcal B}$	est une base de E .	
(b) Donner $Q \in E$ of	dont les coordonnées de Q dans la base ${\mathscr B}$ sont $1,2$	2 et 3 (en respectant l'ordre des vecteurs de \mathscr{B}).
(c) Rappeler ce qu' part dans la bas	est \mathscr{B}_c la base canonique de E . Donner les coordo e \mathscr{B}_c .	onnées de P_3 d'une part dans la base $\mathscr{B},$ d'autre

Cours 2: autour du Vect (8 points)

Les questions sont indépendantes.

1. Dans \mathbb{R}^2 , on considère F = Vect((1,2)). Écrire cet ensemble avec une autre notation ensembliste et le dessiner dans le plan.

2.	Dans \mathbb{R}^3 , on considère deux vecteurs non nuls u_1 et u_2 . Soit $F = \{\alpha u_1 + \beta u_2, (\alpha, \beta) \in \mathbb{R}^2\}$. Comment peut-on réécrire F ? Que représente-t-il géométriquement dans \mathbb{R}^3 ? Soyez précis.
3.	On se place dans $\mathbb{R}_2[X]$. Soit $F = \text{Vect}(P_1 = 1, P_2 = X^2 - X, P_3 = X^2 - X - 1)$. Dire si $Q = 2X^2 - 2X - 5$ et $R = X^2$ sont des éléments de F . Justifier.

2

	1 : définitions et propriétés (12 points)
	et F deux \mathbb{R} -espaces vectoriels et $f: E \longrightarrow F$.
1. Do	nner la définition mathématique de : f est linéaire de E vers F .
2. Dε	nner la définition mathématique du noyau de f dans le contexte précis où $E = \mathbb{R}_2[X]$ et $F = \mathbb{R}^2$.
3. Dc	onner la définition mathématique de l'image de f dans le contexte précis où $E = \mathbb{R}_2[X]$ et $F = \mathbb{R}^2$.
•••	
4. So	it $f \in \mathcal{L}(E, F)$ (E et F quelconques).
(a)	Compléter la phrase suivante :
	Ker(f) est un sous-espace vectoriel de et $Im(f)$ est un sous-espace vectoriel de
(b)	Rappeler la définition mathématique (=celle du séminaire, avec les quantificateurs!) de « f surjective de E vers E et donner proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à cette notion.
(c)	${\tt donner\ et\ d\acute{e}montrer\ proprement\ une\ condition\ n\acute{e}cessaire\ et\ suffisante\ reliant\ le\ noyau\ et/ou\ l'image\ de\ }f\ \grave{a}\ cessaire\ et\ suffisante\ reliant\ le\ noyau\ et/ou\ l'image\ de\ }f\ \grave{a}\ cessaire\ et\ suffisante\ reliant\ le\ noyau\ et/ou\ l'image\ de\ }f\ \grave{a}\ cessaire\ et\ suffisante\ reliant\ le\ noyau\ et/ou\ l'image\ de\ }f\ \grave{a}\ cessaire\ et\ suffisante\ reliant\ le\ noyau\ et/ou\ l'image\ de\ }f\ \grave{a}\ cessaire\ et\ suffisante\ reliant\ le\ noyau\ et/ou\ l'image\ de\ }f\ \grave{a}\ cessaire\ et\ suffisante\ reliant\ le\ noyau\ et/ou\ l'image\ de\ }f\ \hat{a}\ cessaire\ et\ suffisante\ reliant\ le\ noyau\ et/ou\ l'image\ de\ f\ a$
(c)	Rappeler la définition mathématique (=celle du séminaire, avec les quantificateurs!) de « f injective de E vers F donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à conotion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à conotion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à conotion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à conotion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à conotion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à ce notion.
(c)	donner et démontrer proprement une condition nécessaire et suffisante reliant le noyau et/ou l'image de f à conotion.

Cours 2: exemples (8 points)

Les questions sont indépendantes.

1.	Proposer une application non linéaire de \mathbb{R}^3 vers \mathbb{R}^2 . Ne pas justifier.
2.	Trouver rigoureusement une base du noyau de l'application linéaire $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (x-z,0,x-z) \end{array} \right.$
3.	Proposer une application linéaire g de \mathbb{R}^2 vers \mathbb{R}^2 telle que $\text{Im}(g) = \text{Vect}((1,2))$. Justification non demandée.