Методы предобработки текстовых данных для ускорения обучения языковых моделей

Сурков Максим Константинович

Научный руководитель: Ямщиков Иван Павлович

Санкт-Петербургская школа физико-математических и компьютерных наук НИУ ВШЭ СПБ

17 марта 2021 г.

Обработка естественного языка в реальной жизни

- социальные сети
- электронная почта
- службы доставки
- голосовые помощники
- переводчики
- чат боты

Задачи обработки естественного языка

- классификация последовательностей
 - спам
 - грубая речь¹
- генерация выходной последовательности из исходной
 - машинный перевод
 - ответы на вопросы
- выделение информации из последовательностей
 - ullet выделение именованных сущностей 2

¹G. H. Paetzold et al., SemEval'19 Task 5: Hate Speech Identification with RNN.

²Vikas Yadav et al., SemEval'19 Task 12: Deep-Affix Named Entity Recognition of Geolocation Entities. ACL'19

Современные методы решения задач обработки естественного языка

- Механизм внимания¹
- BERT (Google)²
- GPT-3 (OpenAI)³

¹Ashish Vaswani et al., Attention Is All You Need, 2017

²Jacob Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019

³Tom B. Brown et al., Language Models are Few-Shot Learners, 2020 ← ≥ →

BERT. Использование

BERT. Обучение

BERT. Требуемые ресурсы

- количество параметров: 110M 340M
- время на предобучение: от 2-4 дней до 1-2 недель¹
 - мировой рекорд: 47 минут на **1472** V100 GPU²
- время на дообучение: 1-2 дня
- размеры данных:

Датасет	Размер				
Wikipedia	3-600M				
HND	600k-2M				
s140	1.6M				
IWSLT	200-230k				
QQP	364k				
MNLI	393k				

¹При использовании 1x-4x GPU Nvidia Tesla V100 32Gb

BERT. Существующие методы оптимизации

- квантизация¹
- дистилляция²
- прунинг³

¹Sheng Shen et al., Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. 2019

²Victor Sanh et al., DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter, 2020

³Hassan Sajjad et al., Poor Man's BERT: Smaller and Faster Transformer Models, 2020

Обучение с расписанием. Начало

Обучение с расписанием. Применение

ullet компьютерное зрение 1

- обучение с подкреплением²
- глубокое обучение³

¹Guy Hacohen, Daphna Weinshall, On The Power of Curriculum Learning in Training Deep Networks, 2019

²Sanmit Narvekar et al., Curriculum Learning for Reinforcement Learning Domains:

A Framework and Survey, 2020

³Mermer et al., Scalable Curriculum Learning for Artificial Neural Networks, 2017

- Задача: машинный первод
- Модель: BERT, LSTM
- Датасеты: IWSLT'15, IWSLT'16, WMT'16
- Алгоритм:
- сортируем тексты по сложности (длина, логарифм веротности правдоподобия)
- $oldsymbol{2}$ в течение T шагов (рассмотрим шаг t)
 - ullet считаем $c(t) \in [0,1]$
 - ullet строим батч из c(t) первых текстов корпуса
 - шаг обучения

Difficulty

E. A. Platanios et al., Competence-based Curriculum Learning for Neural Machine Translation. ACL'19

• Задача: классификация

BERT

• Датасеты: SQuAD 2.0, NewsQA, GLUE

• Алгоритм: в течение Т шагов

Benfeng Xu et al., Curriculum Learning for Natural Language Understanding,

	MNLI-m	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	Avg
results on dev									
BERT Large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0	84.1
BERT Large*	86.6	92.5	91.5	74.4	93.8	91.7	63.5	90.2	85.5
BERT Large+CL	86.6	92.8	91.8	76.2	94.2	91.9	66.8	90.6	86.4
results on test									
BERT Large	86.7	91.1	89.3	70.1	94.9	89.3	60.5	87.6	83.7
BERT Large*	86.3	92.2	89.5	70.2	94.4	89.3	60.5	87.3	83.7
BERT Large+CL	86.7	92.5	89.5	70.7	94.6	89.6	61.5	87.8	84.1

Обучение с расписанием в обработке языка. Направления для исследований

- Много важных задач обработки естественного языка с **большими** корпусами тренировочных данных
- Решаются с помощью тяжелых моделей, которые долго учатся
- Не исследованы метрики оценки сложности текста (длина текущий предел)
- Эксперименты проведены только на определенных задачах
 - ACL'19 только задача машинного перевода
 - ACL'20 только задача классификации¹
- Не исследовано влияние обучения с расписанием на этапе предобучения

¹Не совсем честное обучение с расписанием; Не ускоряет; Требует еще больших ресурсов

Цели и задачи

Цель: ускорить обучение языковой модели BERT с помощью обучения с расписанием за счет метрики оценки сложности текстовых данных на задачах предобучения, классификации и машинного перевода Задачи:

- Найти эффективные¹ метрики оценки сложности текста
- Реализовать механизм подсчета найденных метрик на больших датасетах
- Исследовать влияние найденных метрик на скорость обучения языковой модели BERT
- Сравнить найденные метрики с существующими метриками оценки сложности текста

¹с точки зрения сокрости обучения модели