DM1 : Électricité – Corrigé

Exercice 1: POTENTIOMÈTRE

- 1. On a un pont diviseur de tension et $U_{CB} = e^{\frac{R'}{R}}$.
- 2. Lorsqu'on déplace le curseur du potentiomètre, R' varie entre 0 et R. Donc u_{CB} varie entre 0 et e.
- 3. Lorsque l'on ferme K. On note R_{eq} la résistance équivalente à r et R' en parallèle et on a à nouveau un pont diviseur de tension avec

$$U_{CB} = e \frac{R_{eq}}{R - R' + R_{eq}} = e \frac{rR'}{rR + R'R - R'^2}$$
(1)

4. La puissance absorbée par la résistance r est :

$$P_u = \frac{U_{CB}^2}{r} = e^2 \frac{rR'^2}{(rR + R'R - R'^2)^2}$$
 (2)

5. La puissance totale fournie par le générateur est $P_t = \frac{e^2}{R_{eq2}}$, où R_{eq2} est la résistance équivalente à toutes les résistances et vaut $R_{eq2} = R - R' + \frac{rR'}{r+R'}$. On trouve alors :

$$P_t = e^2 \frac{r + R'}{rR + R'R - R'^2} \tag{3}$$

6. α et x sont des nombres sans unité. En substituant $R' = \alpha R$ et r = xR dans l'expression de γ , on obtient :

$$\gamma(x) = \frac{\alpha^2 x}{x^2 + (2\alpha - \alpha^2)x + \alpha^2 - \alpha^3} \tag{4}$$

7. On calcule la dérivée de la fonction $\gamma(x)$ par rapport à x. On trouve :

$$\gamma'(x) = \alpha^2 \frac{-x^2 + \alpha^2 - \alpha^3}{(x^2 + (2\alpha - \alpha^2)x + \alpha^2 - \alpha^3)}$$
 (5)

 $\gamma'(x)$ s'annule pour une seule valeur de x positive : $x = \alpha \sqrt{1 - \alpha}$. Comme $\gamma(0) = 0$ et $\gamma(x) > 0$ pour tout x, on en conclut que $\gamma(x)$ passe par un maximum.

- 8. Le maximum est atteint pour $x = \alpha \sqrt{1-\alpha}$. En remplaçant α par $\frac{R'}{R}$ et x par $\frac{r}{R}$. On montre bien que le maximum est atteint pour $r = R' \sqrt{1 \frac{R'}{R}}$.
- 9. Avec les valeurs numériques données, on trouve $r_0=354\,\Omega.$