

Decision Trees and Ensemble Algorithms

Decision making at a bank

Decision tree formalism

- \blacktriangleright Decision tree is a binary tree V
- ➤ Internal nodes $u \in V$: predicates

$$\beta_u: \mathbb{X} \to \{0,1\}$$

- \triangleright Leafs $v \in V$: predictions x
- \rightarrow Algorithm h(x) starts at u = u₀
 - Compute $b = \beta_u(x)$
 - If b = 0, $u \leftarrow \text{LeftChild}(u)$
 - If $b = 1, u \leftarrow \text{RightChild}(u)$
 - If *u* is a leaf, return *b*
- \triangleright In practice: $\beta_u(\mathbf{x}; j, t) = [\mathbf{x}_j < t]$

Greedy tree learning for binary classification

- ightarrow Input: training set $X^{\ell}=\left\{ \left(\mathbf{x}_{i},y_{i}
 ight)
 ight\} _{i=1}^{\ell}$
 - 1. Greedily split X^{ℓ} into R_1 and R_2 :

$$R_1(j,t) = \{\mathbf{x} \in X^\ell | \mathbf{x}_j < t\}, \qquad R_2(j,t) = \{\mathbf{x} \in X^\ell | \mathbf{x}_j > t\}$$
 optimizing a given loss: $Q(X^\ell,j,t) \to \min_{(j,t)}$

- 2. Create internal node *u* corresponding to the predicate $[x_j < t]$
- 3. If a stopping criterion is satisfied for u, declare it a leaf, setting some $c_u \in Y$ as leaf prediction
- 4. If not, repeat 1–2 for $R_1(j, t)$ and $R_2(j, t)$
- \triangleright Output: a decision tree V

Greedy tree learning for binary classification

Greedy tree learning for binary classification

With decision trees, overfitting is extra-easy!

Design choices for learning a decision tree classifier

- > Type of predicate in internal nodes
- > The loss function $Q(X^{\ell}, j, t)$
- > The stopping criterion
- Hacks: missing values, pruning, etc.

The loss function $Q(X^{\ell}, j, t)$

- $\triangleright R_m$: the subset of X^{ℓ} at step m
- \blacktriangleright With the current split, let $R_l \subseteq R_m$ go left and $R_l \subseteq R_m$ go right
- Choose predicate to optimize

$$Q(R_m, j, t) = H(R_m) - \frac{|R_l|}{|R_m|} H(R_l) - \frac{|R_r|}{|R_m|} H(R_r) \to \max$$

- $\rightarrow H(R)$: impurity criterion
- $ightharpoonup Generally \qquad H(R) = \min_{c \in \mathbb{Y}} rac{1}{|R|} \sum_{(\mathbf{x}_i, y_i) \in R} L(y_i, c)$

The idea: maximize purity

Picture credit: https://dzone.com/refcardz/machine-learning-predictive

Examples of information criteria

Regression:

$$> H(R) = \min_{c \in \mathbb{V}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i - c)^2$$

- \triangleright Sum of squared residuals minimized by $c=|R|^{-1}\sum_{(\mathbf{x}_i,y_i)\in R}y_j$
- > Impurity ≡ variance of the target

Classification:

$$ightarrow$$
 Let $p_k = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i = k]$ (share of γ 's equal to k)

$$\blacktriangleright$$
 Miss rate: $H(R) = \min_{c \in \mathbb{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i \neq c]$

Minimizing miss rate
$$1-p_{k_*}$$
,
Gini index $\sum_{k=1}^{K} p_k (1-p_k)$,
Cross-entropy $-\sum_{k=1}^{K} p_k \log p_k$

Stopping rules for decision tree learning

- > Significantly impacts learning performance
- > Multiple choices available:
 - > Maximum tree depth
 - > Minimum number of objects in leaf
 - > Maximum number of leafs in tree
 - > Stop if all objects fall into same leaf
 - Constrain quality improvement
 - \triangleright (stop when improvement gains drop below s%)
- > Typically selected via exhaustive search and cross-validation

Decision tree pruning

- Learn a large tree (effectively overfit the training set)
- \blacktriangleright Detect overfitting via K -fold cross-validation
- > Optimize structure by removing least important nodes

Decision Tree in a nutshell

- > Intuitive algorithm
- > Suitable for classification and regression
- > Interpretable
- Does not require much preprocessing (e.g. feature normalisation)
- Prone to overfitting (unstable)

Bagging and Random Forests

The bootstrapping procedure

Input: a sample $X^\ell = \{(x_i,y_i)\}_{i=1}^\ell$

Bootstrapping: generate new samples X_1^m of $(x_i; y_i)$ drawn from X^l uniformly at random with replacement (replication possible!)

Ensemble learning idea:

- 1. Generate N bootstrapped samples X_1^m, \ldots, X_N^m
- 2. Learn N hypotheses h_1, \ldots, h_N
- 3. Average predictions to obtain $\sum_{i=1}^{N} \sum_{j=1}^{N} (x_{ij})^{N}$

$$h(x) = \frac{1}{N} \sum_{i=1}^{N} h_i(x)$$

4. Profit!

Bagging: bootstrap aggregation

> Input: a sample

$$X^{\ell} = \{(x_i, y_i)\}_{i=1}^{\ell}$$

Weak learners via bootstrapping

$$\tilde{\mu}(X^{\ell}) = \mu(\tilde{X}^{\ell})$$

> Ensemble average

$$h_N(x) = \frac{1}{N} \sum_{i=1}^N h_i(x) =$$
$$= \frac{1}{N} \sum_{i=1}^N \tilde{\mu}(X^{\ell})(x^{\ell})$$

The Random Forest algorithm

- Bagging over (weak) decision trees
- Reduce error via averaging over instances and features
- ightharpoonup Input: a samp $X^{\ell} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{\ell}$ where $\mathbf{x}_i \in \mathbb{R}^{d}$, $y_i \in \mathbb{Y}$
- \succ The algorithm iterates for i = 1, ..., N:
 - 1. Pick ρ random features out of d
 - 2. Bootstrap a sample $X_i^m = \{(\mathbf{x}_i, y_i)\}_{i=1}^{\ell}$ where $\mathbf{x}_i \in \mathbb{R}^{\mathcal{O}}$, $y_i \in \mathbb{Y}$
 - 3. Learn a decision tree $h_i(\mathbf{x})$ using bootstrapped X_i^m
 - 4. Stop when leafs in h_i contain less that n_{\min} instances

$$x_i \in \{A, B, C\}$$

 $X^{\ell} = \{(x_i, y_i)\}_{i=1}^5$
Bootstrap X_i^m , $i \in \{1, 2, 3, 4\}$
Learn Tree_i(x) using_i X^m

Random Forest: synthetic examplesx

Remember: bias-variance decomposition

$$\begin{split} Q(\mu) &= \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \\ &+ \underbrace{\mathbb{E}_x \Big[\big(\mathbb{E}_{X^\ell} \big[\mu(X^\ell) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \\ &+ \underbrace{\mathbb{E}_x \Big[\mathbb{E}_{X^\ell} \Big[\big(\mu(X^\ell) - \mathbb{E}_{X^\ell} \big[\mu(X^\ell) \big] \big)^2 \Big] \Big]}_{\text{variance}} \end{split}$$

Bagging: bias

Bias: not made any worse by bagging multiple hypotheses

$$\mathbb{E}_{x,y} \left[\left(\mathbb{E}_{X^{\ell}} \left[\frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}(X^{\ell})(x) \right] - \mathbb{E}[y \mid x] \right)^{2} \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{X}^{\ell} [\tilde{\mu}(X^{\ell})(x)] - \mathbb{E}[y \mid x] \right)^{2} \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\mathbb{E}_{X^{\ell}} \left[\tilde{\mu}(X^{\ell})(x) \right] - \mathbb{E}[y \mid x] \right)^{2} \right]$$

Bagging: variance

Variance: N times lower for uncorrelated hypotheses, yet not as much an improvement for highly correlated

$$\begin{split} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X^{\ell}} \Big[\Big(\frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}(X^{\ell})(x) - \mathbb{E}_{X^{\ell}} \Big[\frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}(X^{\ell})(x) \Big] \Big)^{2} \Big] \Big] = \\ &= \frac{1}{N} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X^{\ell}} \Big[\Big(\tilde{\mu}(X^{\ell})(x) - \mathbb{E}_{X^{\ell}} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} \Big] \Big] + \\ &+ \frac{N(N-1)}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X^{\ell}} \Big[\Big(\tilde{\mu}(X^{\ell})(x) - \mathbb{E}_{X^{\ell}} \big[\tilde{\mu}(X^{\ell})(x) \big] \Big) \times \\ &\times \Big(\tilde{\mu}(X^{\ell})(x) - \mathbb{E}_{X^{\ell}} \big[\tilde{\mu}(X^{\ell})(x) \big] \Big) \Big] \Big] \end{split}$$

Bias-variance fix strategy

Picture credit http://www.learnopencv.com/bias-variance-tradeoff-in-machine-learni3n1g

Checkpoint

- Bootstrapping: a general statistical technique for computing sample functionals (and their variance)
- Bagging: meta-learner over arbitrary weak algorithms via bootstrap aggregation
- > The Random Forest algorithm: bagging over decision trees
- Bias/Variance trade-off important concept that allows to understand and improve model performance

Reweighting and AdaBoost

Adaptive boosting for classification

- ightharpoonup Training set $X^{\ell}=\{(\mathbf{x}_i,y_i)\}_{i=1}^{\ell}$, $y_i\in\{-1,+1\}$
- > Search for solution in the form of a weighted $a_N(\mathbf{x}) = \sum_{n=1}^N \gamma_n h_n(\mathbf{x})$ with weak learners $h_n \in \mathbf{H}$
- At step N, extend a with $h_N : a_N(\mathbf{x}_i) = a_{N-1}(\mathbf{x}_i) + \gamma_N h_N(\mathbf{x}_i)$. How do we choose h_N and its weight γ_N ?
- ightharpoonup Measure fit quality using exponential loss $Q(a_N, X^{\ell}) = \sum_{i=1}^{\ell} \exp\{-y_i a_N(\mathbf{x}_i)\}$
- > Derivation yields $h_N = \arg\min_h \sum_{i=1}^{\ell} (h(\mathbf{x}_i) w_i y_i)^2$ with weights $w_i = \exp\{-y_i a_{N-1}(\mathbf{x}_i)\}$
- ightarrow Weak learner weight: minimize $\ \gamma_N = rg \min Q(a_{N-1}(\mathbf{x}_i) + \gamma h_N(\mathbf{x}_i), X^\ell)$

Adaptive boosting for classification

Adaptive boosting for classification

[Video: AdaBoost in Action]

https://www.youtube.com/watch?v=k4G2VCuOMMg

Gradient Boosting

Gradient boosting: motivation

 \triangleright With $a_{N-1}(x)$ already built, how to find the next y_N and h_N if

$$\sum_{i=1}^{\ell} L(y_i, a_{N-1}(\mathbf{x}_i) + \gamma h(\mathbf{x}_i)) \to \min_{\gamma, h}$$

- Recall: functions decrease in the direction of negative gradient
- \triangleright View L(y, z) as a function of $z = a_N(x_i)$, execute gradient descent on z
- \triangleright Search for such s_1, \ldots, s_ℓ that

$$\sum_{i=1}^{\ell} L(y_i, a_{N-1}(\mathbf{x}_i) + s_i) \to \min_{s_1, \dots, s_{\ell}}$$

Choose
$$s_i = -\left. \frac{\partial L(y_i,z)}{\partial z} \right|_{z=a_{N-1}(\mathbf{x}_i)}$$
 ,approximate s /'s by h_N

The Gradient Boosting Machine [Friedman, 2001]

- > Input:
 - \succ Training set $X^\ell = \{(\mathbf{x}_i, y_i)\}_{i=1}^\ell$
 - \triangleright Number of boosting iterations N
 - > Loss function Q(y, z) with its gradient $\frac{\partial Q}{\partial z}$
 - A family $H = \{h(x)\}$ of weak learners and their associated learning procedures
 - > Additional hyperparameters of weak learners (tree depth, etc.)
- \triangleright Initialize GBM $h_0(x)$: with simple rules (zero, most popular class, etc.)
- \triangleright Execute boosting iterations t = 1, ..., N (see next slide)
- $ilde{r}$ Compose the final GBM learner $a_N(\mathbf{x}) = \sum_{t=0}^N \gamma_i h_i(\mathbf{x})$

The Gradient Boosting Machine [Friedman, 2001]

At every iteration:

- 1. Compute pseudo-residuals:
- 2. Learn $h_N(\mathbf{x}_i)$ by regressing onto s_1, \ldots, s_ℓ :

$$h_N(x) = \operatorname*{arg\,min}_{h \in \mathbb{H}} \sum_{i=1}^{\ell} (h(\mathbf{x}_i) - s_i)^2$$

3. Find the optimal yn using plain gradient descent:

$$\gamma_N = rg \min_{\gamma \in \mathbb{R}} \sum_{i=1}^\ell Q(y_i, a_{N-1}(\mathbf{x}_i) + \gamma h_N(\mathbf{x}_i))$$

4. Update the GBM by $a_N(\mathbf{x}_i) \leftarrow a_{N-1}(\mathbf{x}) + \gamma_N h_N(\mathbf{x})$

GBM: an interactive demo

http://arogozhnikov.github.jo/2016/06/24/gradient_boosting_explained.html

GBM: an interactive demo

http://arogozhnikov.github.io/2016/07/05/gradient boosting playground.html

GBM: regulization via shrinkage

- ➤ For too simple weak learners, the negative gradient is approximated badly ⇒random walk in space of samples
- > For too complex weak learners, a few boosting steps may be enough for overfitting
- \triangleright Shrinkage: make shorter steps using a learning rate $\eta \in (0, 1]$

$$a_N(\mathbf{x}_i) \leftarrow a_{N-1}(\mathbf{x}) + \eta \gamma_N h_N(\mathbf{x})$$

(effectively distrust gradient direction estimated via weak learners)

GBM: shrinkage animated

Figure: High shrinkage

Figure: Low shrinkage

XGBoost Algorithm

Extreme Gradient Boosting

1. Approximate the descent direction constructed using second order derivatives

$$\sum_{i=1}^{\ell} \left(-s_i h(\mathbf{x}_i) + \frac{1}{2} t_i h^2(\mathbf{x}_i) \right) \to \min_h, \qquad t_i = \left. \frac{\partial^2}{\partial z^2} L(y_i, z) \right|_{a_{N-1}(\mathbf{x}_i)}$$

2. Penalize large leaf counts J and large leaf coefficient norm $\|b\|_2^2 = \sum_{j=1}^J b_j^2$

$$\sum_{i=1}^{\ell} \left(-s_i h(x_i) + \frac{1}{2} t_i h^2(x_i) \right) + \gamma J + \frac{\lambda}{2} \sum_{j=1}^{J} b_j^2 \to \min_h$$

where
$$b(\mathbf{x}) = \sum_{j=1}^{J} b_j [\mathbf{x} \in R_j]$$

Extreme Gradient Boosting

3. Choose split $[\mathbf{x}_j < t]$ at node R to maximize

$$Q = H(R) - H(R_{\ell}) - H(R_r) \to \max,$$

where the impurity criterion

$$H(R) = -\frac{1}{2} \left(\sum_{(t_i, s_i) \in R} s_j \right)^2 / \left(\sum_{(t_i, s_i) \in R} t_j + \lambda \right) + \gamma$$

4. The stopping rule: declare the node a leaf if even the best split gives negative ${\cal Q}$

Summary

- Boosting: a general meta-algorithm aimed at composing a strong hypothesis from multiple weak hypotheses
- Boosting can be applied for arbitrary losses, arbitrary problems (regression, classification) and over arbitrary weak learners
- The Gradient Boosting Machine: a general approach to boosting adding weak learners that approximate gradient of the loss function
- AdaBoost: gradient boosting with an exponential loss function resulting in reweighting training instances when adding weak learners
- XGBoost: gradient boosting with second order optimization, penalized loss and particular choice of impurity criterion