Problem 1

Consider the Markov chain with three states, $S=\{1,2,3\}$, that has the following transition matrix

$$P = egin{bmatrix} 1 & 1 & 1 \ 2 & 4 & 4 \ 1 & 0 & 2 \ 3 & 0 & 3 \ 1 & 1 & 0 \end{bmatrix}.$$

- a. Draw the state transition diagram for this chain.
- b. If we know $P(X_1=1)=P(X_1=2)=rac{1}{4}$, find $P(X_1=3,X_2=2,X_3=1)$.

Problem 2

Consider the Markov chain in Figure. There are two recurrent classes, $\,R_1=\{1,2\}$, and $\,R_2=\{5,6,7\}$. Assuming $X_0=\!3$, find the probability that the chain gets absorbed in R_1 .

Problem 3

Consider the Markov chain of Problem 2. Again assume $X_0 = 3$. We would like to find the expected time (number of steps) until the chain gets absorbed in $\overline{R_1}$ or $\overline{R_2}$. More specifically, let T be the absorption time, i.e., the first time the chain visits a state in R_1 or R_2 . We would like to find $E[T|X_0=3]$.

Problem 4

Consider the Markov chain shown in Figure. $R = \min\{n \geq 1 : X_n = 1\}.$

Assume $X_0 = 1$, and let R be the first time that the chain returns to state 1,

Find $E[R|X_0=1]$.

Problem 5

Consider the Markov chain shown in Figure .

- a. Is this chain irreducible?
- b. Is this chain aperiodic?
- c. Find the stationary distribution for this chain.
- d. Is the stationary distribution a limiting distribution for the chain?

Problem 6

Consider the Markov chain shown in Figure. Assu

Assume that $\, rac{1}{2} Does this chain have a limiting distribution? For$

all $i,j \in \ \{0,1,2,\cdots\}$, find

$$\lim_{n o\infty}P(X_n=j|X_0=i).$$

