Miscellaneous notes for D. Huybrechts's Complex Geometry

Taper

September 16, 2016

Abstract

Miscellaneous notes for D. Huybrechts's book $Introduction\ to\ Complex\ Geometry,$ include some homeworks done.

Contents

1	The structure of almost complex structures on \mathbb{R}^{2n}
	1.1 Understand $\frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$
	1.1.1 Determinants of Block Matrices
	1.1.2 Why $M_n = \frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$ (continued)
2	Anchor
2	Liconso

1 The structure of almost complex structures on \mathbb{R}^{2n}

In exercise 1.2.1, it says that the set of all compatible almost complex structures on a euclidean space of dimension 2n, is two copies of S^2 .

To show it, I tried first a straight calculation. Assuming the almost complex structure $I = (a_{ij})$. Then we have:

Exercises

1.2-1.

Q: Let
$$(\nabla, \langle \cdot, \rangle)$$
: euclidian space of din=4. Show: {all compatible almost complex structures } two copies of $S^2 = a two balls$.

Recap: compatible: $I: I^2=-1, \langle I(v), I(w) \rangle = \langle v, w \rangle$

Choose an orthogonal basis:
$$e_1 \cdots e_4$$

Let
$$I = (a_{ij}^{\alpha^{i}j})$$

$$I^{2} = a^{i}_{j} a^{j}_{k} = -\delta^{i}_{k}$$

also
$$\langle , \rangle \approx \delta_j^i$$
 &

$$\langle I(w), I(w) \rangle = (a^{i}_{j} v^{j}) \cdot \delta^{i}_{k} (a^{k}_{i} w^{k}) = v^{i} \delta^{i}_{k} w^{k}$$

$$(\forall \vec{v}, \vec{w})$$
Hence $a^{i}_{j} \delta^{i}_{k} a^{k}_{i} = \delta_{j} \ell$ or $\int \underline{a^{i}_{j}} a^{i}_{k} = \delta_{j} k$

For example:

$$\frac{\sum_{j} \alpha_{j}^{1} \alpha_{2}^{j}}{a_{1}^{j} \alpha_{2}^{j}} = 0 = \sum_{j} \alpha_{1}^{j} \alpha_{2}^{j} \Rightarrow \frac{4}{\sum_{j=2}^{4}} \alpha_{1}^{1} \alpha_{2}^{0} = \frac{4}{\sum_{j=2}^{4}} \alpha_{1}^{1} \alpha_{2}^{0}$$

This can be generalized:
$$\int_{j=1}^{j=2} \frac{1}{a_{k}^{j}} a_{k}^{j} = \frac{1}{2} a_{k}^{j} a_{k}^{j} = (k \neq l) \text{ (beets where } \\
\int_{j\neq k}^{q} \frac{1}{j\neq k} a_{k}^{j} a_{k}^{j} = \frac{1}{2} a_{k}^{j} a_{k}^{j} = (k \neq l) \text{ (beets where } \\
\frac{1}{2} a_{k}^{j} a_{k}^{j} = \frac{1}{2} a_{k}^$$

Figure 1: Draft

Then I discover this too hard to work, because too many equations are involed, and none of them could be eliminiated by other. Meanwhile, I found a post in Math.SE about this [2].

1.1 Understand $\frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$

To understand that post, I read this [3]. However, the answer in the second post is not perfect:

The claim is: If V is an n-dimensional complex vector space with underlying 2n-dimensional real vector space W, then the canonical group monomorphism $\operatorname{GL}(V) \to \operatorname{GL}(W)$ lands inside $\operatorname{GL}^+(W) = \{f \in \operatorname{GL}(W) : \det(f) > 0\}$. The purpose of this abstract reformulation is that we may use operations on vector spaces in order to simplify the problem: If V' is another finite-dimensional complex vector space with underlying real vector space W', the diagram

$$\begin{array}{ccc} \operatorname{GL}(V) \times \operatorname{GL}(V') & \to & \operatorname{GL}(W) \times \operatorname{GL}(W') \\ \downarrow & & \downarrow & \\ \operatorname{GL}(V \oplus V') & \to & \operatorname{GL}(W \oplus W') \end{array} \tag{1.1.1}$$

commutes, and the image of $\operatorname{GL}^+(W) \times \operatorname{GL}^+(W')$ is contained in $\operatorname{GL}^+(W \oplus W')$. Therefore, if some element in $\operatorname{GL}(V \oplus V')$ lies in the image of $\operatorname{GL}(V) \times \operatorname{GL}(V')$, it suffices to consider the components. Combining this with the fact that $\operatorname{GL}(V)$ is generated by elementary matrices (after chosing a basis of V), we may reduce the whole problem to the following three types of matrices:

- the 1×1 -matrices (λ) ,
- the 2 \times 2-matrices $\begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix},$
- and the 2 × 2-matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Write $\lambda = a + ib$ with $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. Then, the complex 1×1 -matrix (λ) becomes the real 2×2 -matrix $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, which

has determinant $a^2+b^2>0$. The complex 2×2 -matrix $\begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$

becomes the real 4×4 -matrix $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ a & -b & 1 & 0 \\ b & a & 0 & 1 \end{pmatrix}$, which has

determinant 1. Finally, the complex 2×2 -matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ be-

comes the real 4×4 -matrix $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, which has deter-

Here I digressed to another problem. I will come back later.

minant 1.

This proof is not complete because, to build the proof from \mathbb{R}^2 to \mathbb{R}^{2n} , it requries, in his argument, that any element in $\mathrm{GL}(V \oplus V)$ is in the image of $\mathrm{GL}(V) \times \mathrm{GL}(V')$, which is not the case.

On the other hand, it seems that this property can be proved directly by calculation. The following will be a notes of a paper [4], which one comment mentions in the Math.SE post [3].

1.1.1 Determinants of Block Matrices

This paper tries to prove the theorem:

Theorem 1.1. Let R be a commutative subring of ${}^nF^n$, where F is a field (or a commutative ring), and let $M \in {}^mR^m$. Then

$$det_F \mathbf{M} = det_F (det_R \mathbf{M}) \tag{1.1.2}$$

In particular, we have:

$$\det_{F} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \det_{F} (AD - BC) \tag{1.1.3}$$

Note that, that the ring being is commutative excludes some ambiguity. For example, when the ring 4 is not commutative, then the quantity:

$$\det_F \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array} \right) \tag{1.1.4}$$

is not well-defined. It can be AD - BC, or DA - CB, etc.

Before the proof of the main theorem, it establishes several facts:

$$\det_{F} \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \det_{F} \mathbf{A} \det_{F} \mathbf{D}$$
 (1.1.5)

$$\det_{F} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{D} \end{pmatrix} = \det_{F} \mathbf{A} \det_{F} \mathbf{D}$$
 (1.1.6)

$$\det_{F} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{0} \end{pmatrix} = \det_{F} - \mathbf{C} \det_{F} \mathbf{B}$$
 (1.1.7)

$$\det_F \mathbf{A} \det_F \mathbf{D} = \det_F \mathbf{I}_n \det_F (\mathbf{A} \mathbf{D}) \tag{1.1.8}$$

He first builds up a seemingly simplified, but is actually different version of the main theorem:

Theorem 1.2. Let
$$\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \in {}^n F^n$$
. Let $\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}$. If $\mathbf{CD} = \mathbf{DC}$, then,

$$det_F \mathbf{M} = det_F (\mathbf{AD} - \mathbf{BC}) \tag{1.1.9}$$

and similar results:

if
$$\mathbf{AC} = \mathbf{CA}$$
then, $\det_F \mathbf{M} = \det_F (\mathbf{AD} - \mathbf{CB})$ (1.1.10)

if
$$\mathbf{BD} = \mathbf{DB}$$
then, $\det_F \mathbf{M} = \det_F (\mathbf{DA} - \mathbf{BC})$ (1.1.11)

if
$$AB = BA$$
then, $det_F M = det_F (DA - CB)$ (1.1.12)

These equalities can be proved easily by the following:

$$\begin{pmatrix} D & 0 \\ -C & i \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} AD - BC & B \\ CD - DC & D \end{pmatrix} = \begin{pmatrix} AD - BC & B \\ 0 & D \end{pmatrix} \text{ when } C, D \text{ commutes}$$

$$\begin{pmatrix} D & -B \\ 0 & i \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} DA - BC & DB - BD \\ C & D \end{pmatrix} = \begin{pmatrix} DA - BC & 0 \\ C & D \end{pmatrix} \text{ when } D, B \text{ commutes.}$$

The author also gives an illuminative explanation for why

$$(\det_{F} \mathbf{M} - \det_{F} (\mathbf{AD} - \mathbf{BC})) \det_{F} \mathbf{D} = 0$$

necessarily implies:

$$\det_F \mathbf{M} = \det_F (\mathbf{AD} - \mathbf{BC})$$

However, I am dubious about this conclusion, since I think it needs in addition that the polynomial ring F[x] has not nonzero zero divisor.

Having demonstrated the above simple case, the author continues to prove the main theorem. He proves by induction. He first uses:

$$\begin{pmatrix} A & b \\ c & d \end{pmatrix} \begin{pmatrix} dI & 0 \\ -c & 1 \end{pmatrix} = \begin{pmatrix} A_0 & b \\ 0 & d \end{pmatrix}$$
 (1.1.13)

where $A, A_0 \in {}^{m-1}R^{m-1}, b \in {}^{m-1}R, c \in R^{m-1}, d \in R$. Therefore, (let $M = \begin{pmatrix} A & b \\ c & d \end{pmatrix}$) with similar reason mentioned before, he shows if:

$$\det_F \mathbf{A_0} = \det_F (\det_{\mathbf{R}} \mathbf{A_0}) \tag{1.1.14}$$

(which is true by induction) then:

$$\det_{F} \mathbf{M} = \det_{F} (\det_{\mathbf{R}} \mathbf{M}) \tag{1.1.15}$$

Proof completes.

He also mentions a corollary:

Corollary 1.1. Let $\mathbf{P} \in {}^{n}F^{n}$ and $\mathbf{Q} \in {}^{m}F^{m}$, then

$$det_F(\mathbf{P} \otimes \mathbf{Q}) = (det_F \mathbf{P})^m (det_F \mathbf{Q})^n$$
(1.1.16)

The proof is quite straightforward and is omitted.

1.1.2 Why
$$M_n = \frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$$
 (continued)

Coming back to my point. This is a note of my question on Math.SE [5] First, I try to do it when n=1. I inject a complex number a+bi by identify it with $a\mathbb{I}+b\mathbb{J}$, where \mathbb{I} is the identify matrix and \mathbb{J} is $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. I take one set of basis of $\mathrm{GL}(2,\mathbb{R})$ as:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

(I think this is a basis because the following matrix is non-singular:

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right)$$

) Then the $\frac{\mathrm{GL}(2n,\mathbb{R})}{\mathrm{GL}(n,\mathbb{C})}$ becomes equivalent classes represented by

$$\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}$$

However, I don't know how to link this with an almost complex structure.

I have a feeling that I might have been in the wrong direction. It was pointed out that $\mathrm{GL}(2n,\mathbb{R})$ is not even a vector space. So what I did is in fact nonsense.

Below is one correct answer I got:

An almost-complex structure is a matrix J such that $J^2 = -I$ is the negative identity. As you said, one example of such a matrix J is

$$\begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$
.

Interpreting $GL(n,\mathbb{C})$ as a subgroup of $GL(2n;\mathbb{R})$ depends on having fixed such an almost-complex structure. Once we have a matrix J, we can call a matrix $A \in GL(2n;\mathbb{R})$ complex-linear if it commutes with J, i.e. $AJA^{-1} = J$.

(The idea is that \mathbb{C} -linear maps T are just real linear maps with the additional property that T(iv)=iT(v) for all vectors v)

Given any matrix $A \in GL(2n; \mathbb{R})$, we get another almost-complex structure AJA^{-1} . This is the same almost-complex structure J if and only if $A \in GL(n; \mathbb{C})$. On the other hand, all almost-complex structures are similar (although it may take some work to be convincing that they are similar over \mathbb{R} and not only \mathbb{C}) since they are diagonalizable with the same eigenvalues $\pm i$. That gives you a bijection

$$GL(2n; \mathbb{R})/GL(n; \mathbb{C}) \longrightarrow \{\text{almost} - \text{complex structures}\}$$

under which a class $A \cdot GL(n; \mathbb{C})$ corresponds to the almost-complex structure AJA^{-1} .

I questioned him:

- 1. Why AJA^{-1} is the same almost-complex structure J if and only if $A \in \mathrm{GL}(n;\mathbb{C})$.
- 2. Why all almost-complex structures are similar over \mathbb{R} .

He responsed that:

- 1. is the definition of $GL(n; \mathbb{C})$ as matrices A with $AJA^{-1} = J$.
- 2. comes from the fact that any real matrices that are similar over C are already similar over R. This isn't trivial but it has been asked and answered many times on this site: here is one reference http://math.stackexchange.com/questions/57242/similar-matrices-and-field-extensions?noredirect=1&lq=1

Inside the reference, the following theorem is proved:

Theorem 1.3. Let E be a field, let F be a subfield, and let A and B be nxn matrices with coefficients in F. If A and B are similar over E, they are similar over F.

2 Anchor

References

- $[1]\,$ D Huybrechts's Introduction to Complex Geometry.
- [2] set of almost complex structures on \mathbb{R}^4 as two disjoint spheres.
- [3] Does $GL(n,\mathbb{C})$ inject into $GL^+(2n,\mathbb{R})$ for all n?
- [4] John R. Silvester, Determinants of Block Matrices. Available in WebArchive link: https://web.archive.org/web/20140505161153/ http://www.mth.kcl.ac.uk/~jrs/gazette/blocks.pdf
- [5] Making sense of $\frac{GL(2n,\mathbb{R})}{GL(n,\mathbb{C})}$

3 License

The entire content of this work (including the source code for TeX files and the generated PDF documents) by Hongxiang Chen (nicknamed we.taper, or just Taper) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at mailto:we.taper[at]gmail[dot]com.