СОДЕРЖАНИЕ

BBE	ЕДЕНИЕ	2
	ССАРИЙ	
	ПРОИЗВОДСТВЕННАЯ ПРАКТИКА	
1.1	Анализ вариатнов поставки информационно-технологического сервис	ca 5
1.2	Анализ вариантов компонентов ИТ-инфраструктуры	8
1.3	Системное программное обеспечение	. 13
2	Заключение	. 14
СПИ	ИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	. 16

ВВЕДЕНИЕ

Исследуемым объектом в рамках проекта является сервис хранения и обработки данных модуля потребительского кредитования. Этот модуль включает в себя ответственность за управление ипотечными и кредитными продуктами, так же за хранение и обработку данных клиентов и генерацию отчетов, как по клиентам так и работе модуля.

Актуальность темы исследования обусловлена стремительным развитием информационных технологий и их внедрением во все сферы социальноэкономической жизни, включая сектор финансовых технологий. Кредитные организации в настоящее время находятся в условиях сильной конкуренции, а это вынуждает активно внедрять новые технологии, в частности цифровые технологии, которые позволяют оптимизировать затраты и внутренние процессы, повышать качество обслуживания клиентов и обеспечивать устойчивость бизнес-моделеи. В этом ключе важное значение приобретает проектирование фунциольное моделирование ИТ-инфраструктуры И одного из ключевых элементов, который обеспечивает эффективаность функционирования автоматизированных кредитных систем, а именно модуля потребительского кредитования.

В отечественной и зарубежной литературе существует много работ, рассматриващих проблемы проектирования и моделирования ИТ-инфраструктуры в которых так же рассматриваются архитектурные подходы, выбор технических решений и методы оптимизации процессов. Однако в условиях быстро меняющейся регулятороной и потребительской среды задача создания адаптированной, масштабируемой и безопасной ИТ-инфраструктуры с учетом специфики бизнес-процессов конкретной организации остается актуальной.

Целью данной работы является проектирование и функциональное моделирование ИТ-инфраструктуры, поддерживающей модуль потребительского кредитования в кредитной организации, включающего описание архитектуры и обоснование выбранного программно-аппаратного решения.

Для достижения поставленной цели в работе решаются следующие задачи:

1. Анализ вариантов поставки информационно-технологического

сервиса;

- 2. Анализ вариантов компонентов ИТ-инфраструктуры и обоснование выбранного варианта;
- 3. Выбор системного программного обеспечения;
- 4. Моделирование топологии развертывания;
- 5. Составление спецификации рабочих станций;
- 6. Моделирование топологии развертывания инструментального программного обеспечения;
- 7. Анализ сетевой инфраструктуры и моделирование сетевой топологии.

Практическая значимость работы заключается в возможности использования представленных разработок для модернизации или внедрения модулей автоматизированных систем потребительского кредитования в ИТ-инфраструктуру кредитных организаций, что способствует повышению надежности, безопасности, отказаустойчивости и производительности.

ГЛОССАРИЙ

- VPC Virtual Private Cloud (виртуальная частная сеть).
- ЦОД Центр обработки данных.
- СХД Система хранения данных.
- СУБД Система управления базами данных.
- СПО Системное программное обеспечение.
- FC Fiber Channel (оптоволоконный канал).
- ИТ Информационные технологии.
- ИТ-инфраструктура Информационно-технологическая инфраструктура.
- UML Unified Modeling Language (Унифицированный язык моделирования)

1 ПРОИЗВОДСТВЕННАЯ ПРАКТИКА

1.1 Анализ вариатнов поставки информационно-технологического сервиса

В работе произведен анализ четырех вариантов поставки информационнотехнологического сервиса, который включает в себя выбор между такими вариантами поставки, как полностью самостоятельный, облачный (SaaS, Paas, IaaS), мульти-облачный и гибридный. На основе анализа выбран, как самый оптимальный вариант поставки, полностью самостоятельный вариант.

Полностью облачный сервис [1] по одному из моделей SaaS, PaaS или IaaS, позволяет снизить затраты на создержание и поддержку ИТ-инфраструктуры, но не является лучшим решением, так как вводит за собой ряд ограничений, таких как сильная зависимость от поставщика, ограниченные возможности кастомизации и настройки, а также, что является критичным, возможные проблемы с безопасностью и сохранностью данных.

Мульти-облачный вариант, подразумевает под собой так же использование облачной инфраструктуры, но в отличие от полностью облачного варианта, позволяет использовать разные облачные решения от разных поставщиков, что позволяет избежать некоторых проблем, связанных с безопасностью и кастомизацией. Однако, данный вариант так же не является оптимальным, так как требует высококвалифицированных специалистов для поддержки и настройки, а так же имеет риски конфликтов совместимости, что существенно сказывается на затратах.

Гибридный подход позволяет совместное исопльзование облачных решений и собственных ресурсов. Такой вариант позволяет наиболее гибко и без особых затруднений масштабировать инфраструктуру, но является более дорогим в долгосрочной перспективе, не исключает пенно данный подход явялется наиболее гибким, чтобы отвечать всем требованиям регуляторов и требованиям сранения персональных данных, например, Федеральный закона №152-ФЗ «О персональных данных».

В Таблице 1.1 приведено сравнение всех четырех вариантов поставки инфраструктуры. Таблица позволяет точечно рассмотреть все возможные

варианты, их преимущества и недостатки.

Таблица 1.1 — Сравнение вариантов поставки ИТ-инфраструктуры

Вариант поставки	Преимущества	Недостатки	
Полностью самостоятельный	Частный контроль над	Высокие первоначальные	
	чувствительныи данными	затраты на развертывание;	
	и инфраструктурой;	необходимость содержания	
	отсутствие зависимости	ИТ-персонала; более	
	от облачных поставщиков; длительное внедрение.		
	гибгость в соответствии		
	требованиям регуляторов		
	(например, 152-ФЗ).		
Облачный (SaaS, PaaS, IaaS)	Более низкие затраты на	Сильная зависимость от	
	поддержку и обслуживание;	поставщика; ограниченные	
	быстрое масштабирование	возможности настройки;	
	и внедрение; меньшая	риски утечки данных и	
	потребность в локальных	проблемы с безопасностью.	
	pecypcax.		
Мульти-облачный	Снижение зависимости	Необходимость	
	от одного поставщика;	высококвалифицированного	
	гибкость в выборе сервисов;	персонала; риски	
	потенциально лучшая	несовместимости решений;	
	безопасность.	повышенные затраты на	
		администрирование; риски	
		утечки данных и проблемы с	
		безопасностью.	
Гибридный	Гибкость масштабирования;	Более высокая стоимость в	
	возможность совмещать	долгосрочной перспективе;	
	преимущества облака и	повышенные затраты	
	локальной инфраструктуры;	на администрирование;	
	частичный контроль над	не исключены риски	
	критичными компонентами.	утечки данных; сложность	
		интеграции компонентов.	

На основе описанных выше данных становится понятно, что для модуля потребительского кредитования оптимальным вариантом является полностью самостоятельный вариант поставки, так как он позволяет иметь полный контроль над данными и инфраструктурой, окупается в долгосрочной песпектие, не требует высококвалифицированного персонала и позволяет избежать проблем с безопасностью.

Компоненты инфраструктуры размещены в серверной стойке внутри Центра обработки данных (ЦОД) предоставляемым Selectel [2]. Selectel это Россйская компания, которая предоставляет услуги облачных вычислений, выделенных серверов и услуги по размещению оборудования в ЦОД. Базовая тарификация серверной стойки включает в себя 5 кВА мощности и 30ТБ интернет трафика в месяц. Оба этих параметра предоставляются бесплатно при базовом тарифе, при необходимости большей мощности, трафика или же 10ГБит/с портов, Selectel предоставляет возможность доплатить. Вендор обеспечивает круглосуточную поддержку и мониторинг оборудования с базовым удаленным обслуживаем.

Такой подход к размещению инфраструктуры позволяет избежать затрат на содержание, позволяет избавиться от затрат на сетевое оборудование, так как вендор предоставляет все необходимое оборудование и нужные каналы связи в аренду.

В связи с тем, что сохранность пользовательских данных является критически важной, то в проектиремой инфраструктуре предусмотрено использование системы резервного, которая заключается в полном дублировании данных СХД на облачное блочное хранилище (Cold Object Storage) предоставляемое вендором Selectel [3]. Объектное хранилище предоставляемое вендором по официальной документации полностью соответстуает требованиям регуляторов и федеральному закону №152-ФЗ «О персональных данных».

Структурная модель выбранного моделя поставки ИТ-инфраструктуры представлена на Рисунке 1.1.

Рисунок 1.1 — Структурная модель выбранного моделя поставки ИТ-инфраструктуры

1.2 Анализ вариантов компонентов ИТ-инфраструктуры

В данном разделе произведен анализ возможных компонентов ИТ-инфраструктуры, которые могут быть использованы в проектируемой инфраструктуре. Основными компонентами являются серверы, системы хранения данных, сетевое оборудование, системы резервного копирования и восстановления и системы виртуализации.

Основным критерием для инфраструктуры модуля потребительского кредитования является отказаустойчивость, безопасность хранения данных и возможность масштабирования. В связи с этим основные модули инфрастуктури имеют дубликаты физических компонентов.

Анализ серверов показывает, что для проектируемой инфраструктуры хорошим решением является использование сервера средней мощности производителя пристутвивующего в реестре минцифры РФ, что упрощает поиск и содержвание персонала для обслуживания. Под указанные критерии подходит производитель оборудования «Гравитон» [4]. У произаводителя

имеется широкий выбор серверов, которые поддерживают разные конфигурации, наиболее подходящим является Сервер «Гравитон» С2122ИУ [5]. Данный эземпляр имеет большой потенциал для увеличения объема оперативной памяти, в отличие от других серверов данной категории, поддерживает до двух процессоров Intel Xeon. Поддерживает горячую замену блоков питания и вентиляторов, имеет встроенный модуль управления ВМС и полностью соответствует требованиям регуляторов. Технические характеристики сервера приведены в Таблице 1.2.

В сервер установлены два диска SSD SATA 2.5 типа «Intel D3-S4610» каждый на 1 ТБ для работоспособности гипервизора и работы системы.

Посколько сервер использует СХД для хранения данных, а подключение происходит благодаря фабрике, это значит, что сервер требует установки дополнительного контроллера НВА, так как изначально не имеет его. Установка контроллера производится производителем по предзаказу самого сервера.

В сервер устанолено 2 процессора Intel Xeon Gold 6233 с тактовой частотой 2.5 ГГц, он имеет 24 ядра и 48 потоков.

Таблица 1.2 — Технические характеристики сервера Гравитон С2122ИУ

Параметр	Значение		
Процессор	До 2× Intel Xeon 4-го или 5-го поколения (TDP до		
	150 Bt)		
Сокет	2× LGA 4677		
Чипсет	Intel C741		
Оперативная память	До 8 ТБ DDR5; 32 слота DIMM		
Поддерживаемые модули памяти	RDIMM: 8/16/32/64 ГБ; LRDIMM: 64/128/256 ГБ		
Форм-фактор	2U, стойка 19"		
Дисковая подсистема	Передняя панель: 8× 3.5"SAS/SATA/NVMe U.2 +		
	4× 3.5"SAS/SATA; Задняя панель (опционально):		
	до 4× 2.5"SATA/SAS; 2× M.2 (2280/22110 PCIe 4.0		
	x4); microSD для BMC		
Слоты расширения	2× PCIe 4.0 x8 (низкопрофильные, опционально);		
	2× PCIe 5.0 x16 (полнопрофильные); 4× PCIe 5.0		
	х8 (полнопрофильные); ОСР NIC		
Сетевые интерфейсы	Выделенный порт управления (1 Гбит/с RJ-45); 1×		
	OCP 3.0		

Продолжение таблицы 1.2

Параметр	Значение		
Порты ввода-вывода (передняя панель)	Кнопка включения питания; UID-кнопка; 2× USB		
	3.0; Индикаторы: питания, сетевой активности,		
	UID, состояния системы		
Порты ввода-вывода (задняя панель)	1× COM4; 1× RJ-45; 1× VGA; 2× USB 3.0; UID-		
	кнопка; Кнопка сброса		
Модуль управления	BMC Aspeed AST2600; Поддержка IPMI 2.0 +		
	iKVM; Выделенный порт IPMI (RJ-45)		
Операционные системы	Astra Linux, BaseALT, ROSA, RedOS		
Система охлаждения	4× 80 мм вентиляторов с горячей заменой		
Блоки питания	2× 800–2000 Вт, 80+ Platinum, с поддержкой		
	горячей замены		
Безопасность	Intrusion Switch		
Габариты (Д×Ш×В)	$763 \times 447 \times 87 \text{ mm}$		

Количество физических серверов в проектируемой инфраструктуре наиболее корректно сформировать составляет три, ЭТО позволит системой отказаустойчивый И высокодоступный кластер В паре витруализации zVirt.

Система хранения данных (СХД) является наиболее важным звеном в инфраструктуре внутри ЦОД и отвечает за хранение персональных данных клиентов, их кредитной истории и данных сервисов.

Посколько общеприянтой хорошей практикой является использование одного вендора для всех компонентов инфраструктуры, так как это позволяет избежать проблем с совместимостью и обеспечить более простое администрирование. Исходя из этого, в качестве системы хранения данных выбрана СХД «Гравитон» СХ424И24БМ-РЭ. К конкурентным преимуществам данной модели можно отнести гибкую мультипротокольную архитектуру, возможноть реализации сложных уровней RAID и поддержка WORK (write once, read many), что подходит для хранения персональных данных клиентов, программное обеспечение RAIDIX, которая является Россйской разработкой и имеет все необходимые сертификаты. Так же не менее важной особенностью является поддержка горячей замены дисков, блоков питания и вентиляторов. Выбранный СХД поддерживает до 24 дисков формата 2.5"/3.5 чего достаточно для организации отказаустойчивого RAID и учета роста объема данных, это определяет целесообразность использования одного экземпляра.

В СХД устанолены 4 процессора Intel Xeon Gold 6233 с тактовой частотой 2.5 ГГц, он имеет 24 ядра и 48 потоков.

Таблица 1.3 — Технические характеристики СХД Гравитон СХ424И24БМ-РЭ

Параметр	Значение
Форм-фактор	4U, установка в 19"стойку
Процессоры	4× Intel Xeon Gen2
Оперативная память	До 4 ТБ
Контроллеры	Двухконтроллерная конфигурация
	(Active-Active)
Дисковая подсистема	24× 2.5"/3.5"SSD/HDD c
	поддержкой горячей замены
Максимальная емкость хранения	До 2 ПБ
Поддерживаемые интерфейсы дисков	SAS, NL-SAS, SATA
Поддерживаемые уровни RAID	0, 1, 5, 6, 7.3, 10, 50, 60, 70, N+M
Максимальное количество дисков в RAID	64
Максимальное количество LUN	447
Поддерживаемые файловые протоколы	SMB v2/v3, NFS v3/v4, AFP, FTP
Поддерживаемые блочные протоколы	FC 8/16/32 Гбит/с, iSCSI/iSER
	10/25/40/100 Гбит/с, InfiniBand
	SRP 20/40/56/100 Гбит/с, SAS 12
	Гбит/с
Поддерживаемые платформы виртуализации	VMware ESXi, Microsoft Hyper-
	V, KVM, XenServer, Proxmox VE,
	RHEV
Поддерживаемые операционные системы инициаторов	Windows Server 2016/2019/2022,
	Ubuntu 18.04/20.04/22.04, RHEL
	7.x/8.x, Astra Linux 1.7, Альт
	Сервер 10, РЕД ОС 7.3, macOS
Программное обеспечение СХД	RAIDIX 5.X
Дополнительные функции	WORM, упреждающая и
	частичная реконструкция, защита
	от скрытого повреждения данных,
	SSD-кэш, QoSmic, SAN Optimizer
Сетевые интерфейсы	до 32× 10 Гбит/с Ethernet, до 16×
	32 Гбит/c Fibre Channel, до 32×
	8/16 Гбит/с Fibre Channel, 4× 1
	Гбит/с RJ-45, выделенный порт
	управления 1 Гбит/с RJ-45
Блоки питания	2× 1300 B _T , 80+ Platinum, c
	поддержкой горячей замены

Продолжение таблицы 1.3

Параметр	Значение	
Температурный диапазон	Эксплуатация: 10°C 35°C,	
	хранение: -20°C 45°C	

Операционная система RAIDX [6] используемая в СХД позволяет реализовать автоматический перенос на разные уровни хранения. Все уровни хранения используемые в инфраструктуре представлены в Таблице 1.4.

Таблица 1.4 — Уровни хранения данных СХД

Уровень хранения данных	Тип Дисков	Назначение	Модель	Описание
				модели
Горячие данные	4–6 × SSD	Базы данных,	Intel D3-	Стабилен в
	SAS / NVMe	кэш, логи	S4610	работу, имеет
				большой
				pecypc DWPD
				и сертиф
				ицирован под
				RAIDIX
Операционные данные	8–12 × HDD	Справочники,	Seagate Exos	Лучшие
	10K SAS	актуальные	10K.2	по цене и
		документы		надежности,
				широко
				поддер
				живаются
Архив/бэкап	8–12 × NL-	Архивы,	Seagate Exos	Очень
	SAS 7.2K	резервы,	X16	популярные,
		исторические		высокая
		данные		плотность,
				поддержка
				PowerChoice

В облачном блочном хранилище Selectel дублируются исключительно резервные копии всех данных, которые хранятся на локальной СХД. Данные на облачное хранилище переносятся по протоколу S3 в зашифрованном виде с использованием алгоритма AES256.

Автоматизированные работчие места (APM) сотрудников - это корпоративные ноутбуки, которые являются опциольными для сотрудников, так как все сотрудники компании работют удаленно. В связи с этим, для

проектируемой инфраструктуры выбраны ноутбуки «Aquarius AQbook NE355» [7]. Ноутбук поддерживает процессор AMD ryzen 5600, до 64 ГБ оперативной памяти и от 256 ГБ постоянной памяти. Тот факт, что это ноутубки Российского производства позволяет иметь быстрое сервисоное обслуживание и поддержку.

Общая топология развертывания приведена на Рисунке 1.2.

Рисунок 1.2 — Топология развертывания ИТ-инфраструктуры

1.3 Системное программное обеспечение

Топология развертывания ЦОД с указанием СПО приведена на Рисунке 1.3.

Рисунок 1.3 — Топология развертывания ЦОД с указанием СПО

Топология развертывания APM сотрудников с указанием СПО приведена на Рисунке 1.4.

Рисунок 1.4 — Топология развертывания АРМ сотрудников с указанием СПО

2 Заключение

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Shanan R., Collier M. Основы Micrasoft Azure. 2015. 268 с.
- Selectel: Аренда места под сервер в дата-центре // URL: https://selectel.ru/services/colocation/?section=products (дата обращения: 18.04.2025).
- 3. Selectel: Блоковое хранилище // URL: https://selectel.ru/services/cloud/storage/?section=prices (дата обращения: 18.04.2025).
- 4. Гравитон: О компании // URL: https://graviton.ru (дата обращения: 18.04.2025).
- 5. Технические характеристики сервера «Гравитон» C2122ИУ // URL: https://graviton.ru/catalog/servery-i-khranenie-dannykh/servery/server-graviton-s2122iu (дата обращения: 18.04.2025).
- 6. RAIDIX: Облачные решения // URL: https://www.raidix.com/solutions/cloud (дата обращения: 18.04.2025).
- 7. Описание и характеристики ноутбука Aquarius AQbook NE355 // URL: https://www.aq.ru/product/aquarius-cmp-ne355 (дата обращения: 17.03.2025).