P8108 Homework 11

Ryan Wei, rw2844

2022-12-11

Since the events for right eye and left eye are not recurrent events, we cannot order which event come "first" and it is not proper to exclude subjects outside the risk set of the other eye even if the subject had a event before in another eye. Therefore it is better to use a marginal approach, which is the WLW methods.

Method 1: Wei -Lin-Weissfeld (WLW) method

- Events are ORDERED or CLASSIFIED INTO DIFFERENT TYPES
- The order/type is used as a stratification factor
 - Correlation among strata due to cluster effect different types of events occurred in the same subjects
- Apply stratified Cox proportional hazard regression model
 - Time scale: Time from the study entry or randomization to the different types of events
 - Risk set A marginal approach
 - * Each stratum has its own risk set
 - * All subjects are eligible in the risk set for the analysis of all stratums at the beginning
 - Regression:
 - * Covariates can be stratum-specific
 - * Effect parameter can be
 - · Strata-specific
 - · Common effect
- WLW Method Structure Data for analysis:
 - Structure data set for K types of events: Form K strata
 - Observations are in counting process style (start, stop):
 - * Start always study entry or randomization
 - · Stop the kth event time or censored
 - \cdot Id cluster indicator
 - · Strata indicator for the K types of events
 - · Censoring indicator
 - * Each subject has K observations -> K strata

The dataset Diabetic from the survival package satisfies the structure for WLW method, therefore, I implement the WLW method analysing both stratum specific treatment effects and the common effects.

First, let's look at the stratum specific effect.

Model Fit Statistics									
Criterion	Without Covariates	With Covariates							
-2 LOG L	1520.452	1481.278							
AIC	1520.452	1497.278							
SBC	1520.452	1521.626							

Testing Global Null Hypothesis: BETA=0									
Test Chi-Square DF Pr > ChiS									
Likelihood Ratio	39.1741	8	<.0001						
Score (Model-Based)	37.4002	8	<.0001						
Score (Sandwich)	34.5127	8	<.0001						
Wald (Model-Based)	34.0491	8	<.0001						
Wald (Sandwich)	31.1894	8	0.0001						

Analysis of Maximum Likelihood Estimates										
Parameter	DF	Parameter Estimate	Standard Error	StdErr Ratio	Chi-Square	Pr > ChiSq	Hazard Ratio			
laserL	1	0.62220	0.41026	0.896	2.3001	0.1294	1.863			
laserR	1	-0.21277	0.37026	0.969	0.3302	0.5655	0.808			
ageL	1	0.02832	0.01462	0.950	3.7487	0.0528	1.029			
ageR	1	-0.00367	0.01246	0.971	0.0868	0.7682	0.996			
trtL	1	-1.34765	0.32172	1.053	17.5473	<.0001	0.260			
trtR	1	-0.51931	0.21746	0.998	5.7031	0.0169	0.595			
riskL	1	0.15204	0.08436	0.993	3.2480	0.0715	1.164			
riskR	1	0.11958	0.07406	1.000	2.6070	0.1064	1.127			

Wei-Lin-Weissfeld Model

The PHREG Procedure

Linear Coefficients for Test TREATMENT									
Parameter	Row 1	Row 2	Average Effect						
laserL	0	0	0.00000						
laserR	0	0	0.00000						
ageL	0	0	0.00000						
ageR	0	0	0.00000						
trtL	1	0	0.33111						
trtR	0	1	0.66889						
riskL	0	0	0.00000						
riskR	0	0	0.00000						
CONSTANT	0	0	0.00000						

Test TREATMENT Results									
Wald Chi-Square	DF	Pr > ChiSq							
25.8077	2	<.0001							

Average	Average Effect for Test TREATMENT								
Estimate	Standard Error	z-Score	Pr > z						
-0.7936	0.1704	-4.6567	<.0001						

From the above stratum specific analysis results, we found that the treatment effect to the Left eye (trtL) and Right eye (trtR) are both significant, and it seems that the effect is greater for left eye than the right eye (hazard ratio 0.260 vs. 0.595). The test results also shows that the treatment effects are significantly different.

Here are the analysis results for the common effect.

Testing Global Null Hypothesis: BETA=0									
Test Chi-Square DF Pr > Chi									
Likelihood Ratio	31.5619	4	<.0001						
Score (Model-Based)	31.4211	4	<.0001						
Score (Sandwich)	30.3609	4	<.0001						
Wald (Model-Based)	30.1842	4	<.0001						
Wald (Sandwich)	31.8039	4	<.0001						

Type 3 Tests									
Effect	DF	Wald Chi-Square	Pr > ChiSq						
laser	1	0.2125	0.6448						
age	1	0.6121	0.4340						
trt	1	28.7542	<.0001						
risk	1	6.1495	0.0131						

	Analysis of Maximum Likelihood Estimates										
Parameter		DF	Parameter Estimate	StdErr Ratio	Chi-Square	Pr > ChiSq	Hazard Ratio	Label			
laser	argon	1	-0.13722	0.29767	1.024	0.2125	0.6448	0.872	laser argon		
age		1	0.00799	0.01021	1.054	0.6121	0.4340	1.008			
trt		1	-0.81738	0.15243	0.897	28.7542	<.0001	0.442			
risk		1	0.14525	0.05857	1.055	6.1495	0.0131	1.156			

From the above result, we can see that the hazard ratio for the common treatment effect is 0.442, and it's significant. That means patients with treatment reduces the risk of recurrence by a factor of 0.442 compared to patients without laser treatment, holding other effects.

Method 2: Frailty Model

Another way to deal with the correlation of different types of events for the same subject is to treat it as random effect: either left eye or right eye getting vision loss from the same subjects may share similar risk, thus subjects are considered as random effect by applying frailty model. There are j = 197 subjects in this study, so values $r_1, r_2, \ldots, r_{197}$ represent the frailty of developing events. The shared frailty model for the ith events in the jth group:

$$h_{ij}\left(t\mid Z_{ij}\right) = \xi_{j}h_{0}(t)e^{\beta'Z_{ij}}$$

Here, I assume $\xi_j = e^{r_j}$ follows log-normal distribution with mean 0.

trt Unit=1

				Testi	ng Gl	lobal N	lull Hyp	othesis	5			
		Т	est			Chi-Square		Adjusted DF Pr >		> ChiSq		
		L	ikelih	ood Ratio	203.9117		17	75.01		<.0001		
		V	<i>l</i> ald		1	131.07	57	75.01		<.0001		
										_		
		Covariance Parameter Estimates										
				Cov Parm	ı R	EML E	stimate		dard Error			
				id		0.7865 0.2110						
		Type 3 Tests										
		Wald Effect Chi-Square			DF	DF Pr > ChiSq Adjusted DF F			Adjusted Pr > ChiSq			
		laser		0.3174	1	0.5732		0.6011		0.3816		
		age		0.9207	1 0.		0.3373	0.6011		0.2003		
	1	trt		26.9421	1		<.0001	0.9	592	2 <.0001		
	1	risk		6.0213	1	(0.0141	0.7	501	0.0	089	
	i	id		103.8895				71.0	137	0.0	0067	
				Analysis of			Likeliho	od Est	imate	S		T
Parameter		DI		arameter Estimate		ndard Error	Chi-Se	quare	Pr>	ChiSq	Hazard Ratio	Label
laser	argoi	n	1	-0.21417	0.3	38014	0	.3174		0.5732	0.807	laser argon
age			1	0.01221	0.0	1272	0	.9207		0.3373	1.012	
trt			1	-0.90896	0.17512		26	.9421		<.0001	0.403	
risk			1	0.16472	0.0	06713	6	.0213		0.0141	1.179	
				railty Mod								
		Des	cripti	on Point	Estir	mate	95% W	ald Co	nfider	ice Limi	ts	

From the frailty model, we can see that the hazard ratio for the common treatment effect is 0.403, and it's significant. That means patients with treatment reduces the risk of recurrence by a factor of 0.403 compared to patients without laser treatment, holding other effects.

0.286

0.568

0.403

Appendix: Code for this report

```
knitr::opts_chunk$set(echo = FALSE, message = FALSE, warning = FALSE)
library(tidyverse)
library(knitr)
library(kableExtra)
library(survival)
library(flexsurv)
library(survminer)
library(survMisc)
library(MASS)
diabetic = survival::diabetic
# For WLW method
diabetic_WLW = diabetic %>% mutate(
  eye_ind = ifelse(eye == "left", 1,2),
 laser_ind = ifelse(laser == "argon", 0, 1)
) %>%
 select(-eye,-laser)
write_csv(diabetic_WLW, "diabetic_WLW.csv")
knitr::include_graphics("./hw11_WLW_strata.png")
knitr::include_graphics("./hw11_WLW_strata_test.png")
knitr::include graphics("./hw11 WLW common.png")
proc import out = diabetic WLW
   datafile="/home/u62725158/diabetic_WLW.csv"
   dbms=csv
   replace;
   GETNAMES=yes;
run;
proc import out = diabetic
   datafile="/home/u62725158/Diabetic.csv"
   dbms=csv
   replace;
   GETNAMES=yes;
run;
title'Wei-Lin-Weissfeld Model';
proc phreg data=diabetic_WLW covs(aggregate);
    /*class laser:*/
   model time*status(0)=laserL laserR ageL ageR trtL trtR riskL riskR;
   laserL = laser_ind * (eye_ind = 1);
   laserR = laser_ind * (eye_ind = 2);
   ageL = age * (eye_ind = 1);
   ageR = age * (eye_ind = 2);
   trtL = trt * (eye_ind = 1);
   trtR = trt * (eye_ind = 2);
   riskL = risk * (eye_ind = 1);
   riskR = risk * (eye_ind = 2);
   strata eye_ind;
   id id;
   TREATMENT: test trtL,trtR/average e;
```

```
run;
title'Wei-Lin-Weissfeld Model for
Common Effect';
proc phreg data=diabetic
    covs(aggregate);
    class laser eye;
    model time*status(0)=laser age trt risk;
    strata eye;
    id id;
run;
title'Frailty Model for Common Effect';
proc phreg data=diabetic ;
class id laser eye;
model time*status(0)=laser age trt risk;
random id;
hazardratio'Frailty Model Analysis' trt;
knitr::include_graphics("./hw11_WLW_frailty.png")
```