Blind Spots in Neural Networks

by Wojciech Zaremba

with Christian Szegedy, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus

Blind Spots in Neural Networks

Correctly predicted object

Predicts ostrich,
Struthio camelus

Blind Spots in Neural Networks

 Negative examples generated with Backpropagation

 Constrained to be in feasible set (proper color range)

Other examples

Cross model transfer

	Training Error
Model A	0%
Model B	0%

	Negative examples for Model A	Negative examples for Model B	Gaussian noise std = 0.1
Model A	100%	6.6%	0%
Model B	20.3%	100%	0%

Different fully connected networks trained on MNIST dataset. Average distortions by ~6%.

Cross training data transfer

	Training P1	Training P2
Model A	0%	2.4%
Model B	2.5%	0%

	Test distortion for A	Test distortion for B
Model A	100%	6.25%
Model B	26.2%	100%

Different fully connected networks trained on MNIST dataset. Distortions by ~6%.

Possible explanations

 High-dimensional dot-product is unstable under small perturbations in every dimension.*

 Our linear operators are dominated by few high eigenvalues.

^{*} ref.: Goodfellow et al. "Explaining and Harnessing Adversarial Examples"

Conclusions

 Different networks share properties, which are dependent on statistics of training sets (not only particular samples).

 Can be negative examples used to improve generalization?

Q & A

Adversarial example generation

Cross model transfer

Cross different training data transfer