ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ЗАРЯДА ЭЛЕКТРОНА К МАССЕ МЕТОДОМ МАГНЕТРОНА

Цель работы: Изучение движения электронов во взаимно перпендикулярных электрическом и магнитном полях в магнетроне; определение по параметрам этого движения отношения заряда электрона к его массе.

Приборы и оборудование:

- 1. Модуль «ФПЭ-О3».
- 2. Постоянное оборудование: источник питания «ИП», два цифровых вольтметра.

СОДЕРЖАНИЕ РАБОТЫ

Движение электрона в скрещенных электрическом и магнитном полях

1. Качественное описание движения

Если в пространстве одновременно существуют электрическое и магнитное поля, то на движущийся электрон будет действовать результирующая сила, представляющая собой суперпозицию кулоновской и лоренцовой сил:

$$\vec{F} = e \cdot \vec{E} + e \cdot \vec{v} \cdot \vec{B} \tag{12.1}$$

где e — заряд электрона (e < 0), \vec{E} - напряженность электрического поля, \vec{B} — магнитная индукция, $\vec{\upsilon}$ - скорость электрона.

В зависимости от конфигурации электрического и магнитного полей движение электрона под действием силы \vec{F} происходит по траектории, которая приводит к эффекту поддержания или отсутствия электрического тока в некоторой цепи.

Существуют различные методы определения удельного заряда электрона. Одним из них является метод магнетрона. Название метода происходит от сходства конфигураций электрического и магнитного полей в нем и в магнетронах — генераторах электромагнитных полей сверхвысоких частот.

Сущность метода состоит в следующем. Специальная двухэлектродная лампа с коаксиальными цилиндрическими катодом и анодом помещается в магнитное поле так, что ось симметрии лампы направлена вдоль магнитного поля (вдоль вектора магнитной индукции), как изображено на рис.12.1. В отсутствие магнитного поля вылетевшие из катода электроны движутся радиально в направлении анода. При наличии поля на электроны кроме

электрической начинает действовать еще и Лоренца, магнитная сила направленная перпендикулярно вектору скорости электрона, вследствие чего траектория Ha электронов искривляется. рис.12.2 изображено промежуточное положение декартовой электрона полярной координат. же системах Там указано мгновенной скорости направление электрона \vec{v} , а так же радиус-вектор \vec{r} точки наблюдения. Если магнитная сила сравнительно мала, TO ПОД действием ускоряющего электрического поля в меж -

Рис.12.1. Схема магнетрона. электродном пространстве электрон достигает анода. По мере увеличения индукции магнитного поля траектория электрона все более искривляется (рис.12.3). При достижении некоторого критического

Рис.12.2. Схема движения

Рис.12.3. Траектории электронов

значения поля $B_{\kappa p}$ электрон, вылетевший вдоль оси x, не попадает на анод, а возвратится на катод по симметричной относительно оси х траектории. При значении индукции поля $B > B_{\kappa n}$ все электроны вернутся на катод, т.к. их кривизну. Эта критическая траектории имеют большую ситуация

Рис.12.4. Зависимость анодного тока от индукции магнитного поля.

соответствует сильному ослаблению тока в цепи диода (на рис.12.4 кривая изображена штриховой линией). В случае многоэлектронного приближения качественная картина сохраняется. В связи c тем, что электроны ИЗ катода выходят разными скоростями, часть из них при все—таки достигнет анода. $B > B_{\kappa n}$

При дальнейшем росте индукции В анодный ток в действительности изменяется в соответствии со сплошной линией на рис. 12.4.

2. Аналитическое описание движения 3.

Уравнение движения для электрона в декартовых координатах (рис.12.2) таковы:

$$\begin{cases}
m \cdot \ddot{x} = e \cdot \frac{d\varphi}{dx} - e \cdot B \cdot \dot{y} \\
m \cdot \ddot{y} = e \cdot \frac{d\varphi}{dy} - e \cdot B \cdot \dot{x}
\end{cases} \tag{12.2}$$

где $\vec{v} = x \cdot \vec{i} + y \cdot \vec{j}$, $\vec{B} = B \cdot \vec{k}$, $\dot{x} = dx / dt$, $\dot{y} = dy / dt$,

$$e \cdot \vec{v} \cdot B = e \cdot (y \cdot B \cdot \vec{i} - x \cdot B \cdot \vec{j}), \vec{E} = \frac{d\varphi}{dx} \cdot \vec{j} + \frac{d\varphi}{dy} \cdot \vec{j}$$
 (12.3)

Удобнее, однако, рассматривать движение электрона в цилиндрических координатах, где независимыми переменными будут радиус-вектор \vec{r} и угол поворота θ электрона (см.рис.12.2). Для этого используются известные соотношения между координатами:

$$\frac{d\varphi}{dx} = \frac{x \cdot d\varphi}{r \cdot dv}, \frac{d\varphi}{dv} = \frac{y \cdot d\varphi}{r \cdot dr}, r = \sqrt{x^2 + y^2}$$
 (12.4)

После подстановки (1.4) в (1.2) и некоторых преобразований, уравнение движения принимает вид

$$r \cdot \ddot{\theta} + 2\dot{r} \cdot \dot{\theta} = \frac{d \cdot (r^2 \cdot \dot{\theta})}{r \cdot dt} = \omega \cdot \frac{dr}{dt}$$
 (12.5)

где
$$\omega = \frac{e \cdot B}{m}$$

Интегрирование этого уравнения с учетом начальных условий движения электрона приводит к соотношению

$$\dot{\theta} = \frac{\omega}{2} \cdot \left[1 - (r_k / r_A)^2 \right] \tag{12.6}$$

где r_k — радиус катода.

Так как напряженность электрического поля вблизи поверхности катода наибольшая, то можно считать, что уже у поверхности катода электрон приобретает максимальную скорость и поэтому в остальной части межэлектродного пространства он движется с почти постоянной скоростью. Как показывает анализ, в таком случае большая часть траектории электрона будет близка к окружности, и движение по ней будет происходить с угловой скоростью ω . Период вращения электрона по такой траектории определяется известным соотношением:

$$T = 2\pi \cdot \frac{m}{e \cdot B} \tag{12.7}$$

и зависит только от величины магнитного поля $\it B$.

Еще раз повторим, что в случае многоэлектронного приближения, вследствие разброса начальных скоростей электронов, а также некоторой неэквипотенциальности поверхности катода вдоль его длины и возможной асимметрии расположения электродов лампы, «отсечка» тока в лампе при $U_a = const$ происходит в некотором интервале значений B (рис.12.4).

Рассмотрим движение электрона по критической траектории $(B \cong B_{\kappa p})$. В этом случае радиальная составляющая \dot{r} скорости электрона в точке поворота при $r_{\max} = r_a$ равна нулю. Однако тангенциальная (линейная) составляющая скорости электрона отлична от нуля и приближенно равна

$$\upsilon_{\theta} = \upsilon = r_{A} \cdot \dot{\theta} \tag{12.8}$$

где $\dot{\theta}$ — угловая скорость вращательного движения электрона (по окружности).

Так как электрон движется в потенциальном электрическом поле, а сила Лоренца не совершает работы, то полная энергия электрона постоянна. Для критической траектории $B = B_{\kappa p}, U = U_a, r = r_a$ имеем:

$$m \cdot v^2 / 2 = e \cdot U_A \tag{12.9}$$

откуда

$$\frac{e}{m} = \frac{\upsilon^2}{2 \cdot U_A} = \frac{(r_A \cdot \dot{\theta})^2}{2 \cdot U_A} \tag{12.10}$$

Подставляя в (12.10) выражение для $\dot{\theta}$ из соотношения (12.6), получим:

$$\frac{e}{m} = \frac{8 \cdot U_A}{\left\{ r_A \cdot \left[1 - (r_K / r_A)^2 \cdot B_{KP} \right] \right\}^2}$$
 (12.11)

Это и есть основное выражение для экспериментального определения величины e/m .

Величина индукции магнитного поля соленоида, учитывая, что его длина L соизмерима с диаметром D, вычисляется по формуле (см. лаб.работу № 10):

$$B_{KP} = \frac{\mu_0 \cdot N \cdot I_{KP}}{\sqrt{L^2 + D^2}}$$
 (12.12)

где $\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma \text{H/M}, \ I_{\kappa p}$ - ток в цепи соленоида, соответствующий критической ситуации, N — число витков.

Таким образом, по экспериментальному значению B можно вычислить по формуле (12.11) величину e/m .

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Для определения $B_{\kappa p}$ анод лампы следует подать ускоряющее напряжение U_a и, включив ток I_c в соленоиде, постепенно увеличивать его, тем самым увеличивая магнитное поле в объеме лампы. Измерив зависимость $I_a = f(I_c)$ при некотором значении $U_a = const$,

адекватную зависимости $U_a = f(B)$, на графике определяют точку наиболее крутого спада тока лампы (точку перегиба кривой), которую и считают соответствующей критической ситуации (см.рис.12.4).

Возможные причины, связанные с плавным спадом опытной кривой, упоминались выше.

1. Соберите электрическую схему (см.рис12.5).

Для этого необходимо соединить кабелем модуль «ФПЭ-ОЗ» с источником питания «ИП» и подключить цифровой прибор В7-40 для измерения тока лампы I_a (род работы — «I =», предел — «АВП»).

Рис.12.5. Электрическая схема экспериментальной установки.

Второй цифровой прибор включается как амперметр последовательно со встроенным в «ИП», стрелочным амперметром для более точного измерения тока соленоида и в случае ввода данных непосредственно в ЭВМ.

- 2. Установите анодное напряжение $U_a = 10B$ по стрелочному вольтметру, встроенному в источник питания «ИП».
- 3. Изменяя ток в соленоиде от минимального начального значения до максимального через 0,1 A при постоянном анодном напряжении определите зависимость анодного тока I_a от тока в соленоиде I_c . Значения измеренных токов заносите в таблицу измерений.
- 4. Повторите измерения по пунктам 2 и 3 при других значениях анодного напряжения в интервале 110... 120 В.

Результаты измерений занесите в таблицу.

- 5. Для каждого значения анодного напряжения постройте графики зависимости анодного тока от тока соленоида. Для определения критического значения тока необходимо найти точку перегиба кривой на участке ее спада (рис.12.4).
- 6. Для каждого критического значения тока в соленоиде по формуле (12.12) вычислите индукцию магнитного поля $B_{\kappa p}$. При этом следует использовать следующие значения параметров катушки: L=0.168 м, D=0.058 м. Значения величин N, r_k и r_a узнайте у преподавателя или на рабочем месте.
- 7. По формуле (12.11) для каждого значения критического поля в соленоиде вычислите величину e/m и усредните опытные результаты.

РАСЧЕТ ПОГРЕШНОСТИ ОПРЕДЕЛЕНИЯ e/m

Для вывода формулы среднеквадратической погрешности метода определения величины e/m используются формулы (12.11) и (12.12). Выведите формулу для оценки величин $\Delta B_{\kappa p}$ и $\Delta e/m$ самостоятельно.

Выясните погрешности всех величин, входящих в полученные вами формулы: $\Delta r_a, \Delta r_k, \Delta r_{\kappa p}, \Delta U_a, \Delta N, \Delta L, \Delta D$.

Учтите, что наибольшие ошибки связаны с определением критического значения тока соленоида $I_{\kappa p}$ и соответствующей ему величины $B_{\kappa p}$ при графической или табличной обработке.

Сравните расчетную оценку погрешности метода по выведенной формуле для $\Delta e/m$ со среднеквадратическим разбросом величин e/m , полученных при различных значениях U_a .