Age Analysis OBPD

```
##### Simulations #####
SIS <- function(
  obs, #observed table
  {\tt n.sim} = 1000, # Tables to generate per simulation
  dist = c("unif") #default proposal dist. is uniform but can also take hypergeometric
) {
  r.sums \leftarrow rowSums(obs); #= c(10,62,13,11,39), #vector of row sums
  c.sums <- colSums(obs); \#=c(65,25,45), \#vector\ of\ column\ sums
 r.dim <- length(r.sums);#dimensions row</pre>
 c.dim <- length(c.sums);# dimensions column</pre>
 w <- as(1:n.sim,"mpfr"); # weights for simulated table I</pre>
  1.x \le as(1:n.sim, "mpfr"); #proportional dist. to <math>pi(x).
  for(z in 1:n.sim){
    X <- matrix(nrow = r.dim,ncol = c.dim) #Empty Matrix representing a table
    g <- matrix(nrow = (r.dim-1), ncol = (c.dim-1)) #simulated proposal dist.
    #saving the lower and upper values to compute q(T)
    lower <- matrix(nrow = r.dim-1,ncol = c.dim - 1);</pre>
    upper <- matrix(nrow = r.dim-1,ncol = c.dim - 1);</pre>
    for(j in 1:(c.dim-1)){
      for(i in 1:(r.dim-1)){
        #finding the lower and upper bound for each cell
        lower[i,j]<-max(0,c.sums[j]-sum(X[(1:i),j],na.rm = TRUE)-#total column sum</pre>
                            sum(
                              r.sums[(i+1):r.dim], #row sums of non simulated values
                              -sum(X[(i+1):r.dim,1:j],na.rm = TRUE),#row sum of already si
m. values
                              na.rm = TRUE))
        upper[i,j]<- min(
          c.sums[j]- sum(X[1:i,j],na.rm = TRUE),#column sum - values already simulated i
n the col.
          sum(r.sums[i],-sum(X[i,1:j],na.rm = TRUE),na.rm = TRUE))#row sum - values sim.
 in row
        if(dist == c("unif")){#simulate from uniform distribution
          X[i,j] <- round(runif(1,min = lower[i,j],max =upper[i,j]))</pre>
          g[i,j] <- 1/(upper[i,j]-lower[i,j] + 1);
        if(dist == c("hyper")){#simulate from hypergeometric distribution
          X[i,j] \leftarrow \text{rhyper}(1,m = \text{upper}[i,j], n = \text{upper}[i,j], k = \text{lower}[i,j] + \text{upper}[i,j]);
          g[i,j] \leftarrow dhyper(X[i,j], m = upper[i,j], n = upper[i,j], k =
lower[i,j]+upper[i,j]);
        }
      }
      X[r.dim,j] <- c.sums[j] - sum(X[1:(r.dim-1),j]);
    }
    X[,c.dim]<- (r.sums - apply(X,1,function(x)sum(x,na.rm = TRUE)));</pre>
```

```
1.x[z] < -1/prod(gamma(as(X+1, "mpfr")))
    w[z]<- prod(g)/prod(gamma(as(X+1, "mpfr"))); #weight l.x/g.x</pre>
    #q.x is the product of conditionals and l.x is proportional to multinomial
  }
  p.val <- sum((1/prod(factorial(obs))>=1.x)*w)/sum(w); #p-value
  #let h(x) = indicator function. w = weight.
  #use normal importance sampling to get an estimate of p-value
  list(weight = w, #vector with length (n.sim) of weights
       last.weight = g, #example of proposal dist of last table
       upper = upper, #example of the upper bounds of the last table
       lower = lower, #example of the lower bounds of the last table
       X = X, #example of last table
       #n.sim = n.sim, # number of simulated tables
       p.value = p.val #simulated p-value
  )
}
#list of files in dir.
contigency.table.dir <- "/Users/omachowda/Google Drive/StatCom 3/OBPD/Contingency table</pre>
s/"
cont.tables.list <- list.files(contigency.table.dir)</pre>
#take only .csv files
cont.tables.list <- cont.tables.list(grep(cont.tables.list,pattern = ".csv"))</pre>
#get table names
table.name <- gsub(cont.tables.list,pattern = ".csv",replacement = "");</pre>
#assign table to name
for(i in 1:length(table.name)){
  tab <- read.csv(cont.tables.list[i]);</pre>
 tab <- tab[-c(1,2,nrow(tab)),-c(1,ncol(tab))]; #get rid of row and column sums and fir
st 2 rows
 assign(table.name[i],tab)
}
SIS <- dqet("/Users/omachowda/Google Drive/StatCom 3/OBPD/Robin/Sequential Importance Sa
mpling Function.R") #import SIS function
## Warning: package 'Rmpfr' was built under R version 3.2.5
```

```
## Loading required package: gmp
## Warning: package 'gmp' was built under R version 3.2.5
```

```
## Attaching package: 'gmp'
```

```
## The following objects are masked from 'package:base':
##
## %*%, apply, crossprod, matrix, tcrossprod

## C code of R package 'Rmpfr': GMP using 64 bits per limb

##
## Attaching package: 'Rmpfr'

## The following objects are masked from 'package:stats':
##
## dbinom, dnorm, dpois, pnorm

## The following objects are masked from 'package:base':
##
## cbind, pmax, pmin, rbind
```

#facilities to age output

Example of how table is simulated

```
SIS(get(table.name[1]),dist = "hyper")$upper
```

```
##
        [,1] [,2] [,3] [,4]
## [1,]
          35
               16
                      8
                           7
          50
                     14
## [2,]
               26
## [3,]
          81
               42
                     21
                          30
```

```
SIS(get(table.name[1]),dist = "hyper")$lower
```

```
## [,1] [,2] [,3] [,4]
## [1,] 0 0 0 0
## [2,] 0 0 0 0
## [3,] 0 0 0 0
```

```
SIS(get(table.name[1]),dist = "hyper")$X
```

```
##
        [,1] [,2] [,3] [,4] [,5]
## [1,]
          17
                9
                      4
                           2
                      7
                           2
## [2,]
          26
               11
                                 4
## [3,]
          42
               23
                     10
                          10
                               16
## [4,]
          39
               19
                     10
                          24 124
```

```
SIS(get(table.name[1]),dist = "hyper")$p.value
```

```
## 1 'mpfr' number of precision 128 bits
## [1] 0
```

SIS P-values for all questions based on income

```
#reference character items as objects
SIS.results <- lapply(sapply(table.name,get),function(x) SIS(x,dist = "hyper")$p.value)
SIS.results</pre>
```

```
## $facilities
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $`oversee sports core`
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $`park areas`
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $`recreation programs`
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $`satisfaction with district`
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $`satisfaction with facilities`
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $`satisfaction with maintenence`
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $`satisfaction with outdoor amenities and parks`
## 1 'mpfr' number of precision 128
## [1] 0
##
## $`satisfaction with programs`
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $`satisfaction with staff`
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $`special events`
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $`work with sports core`
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
```

```
##### M^2 Test #####
corr_calc <- function(df){</pre>
  columns = length(df)
  new_df = data.frame()
  v1=c()
 v2=c()
  z = 0
  for (i in 1:4){
    for (j in 1:columns){
      new_df <- rbind(new_df, c(i,j, df[i,j]))</pre>
      z = z + df[i,j]
    }
  }
  for (i in 1:(4*columns)){
    v1 = append(v1, c(rep(new_df[i,1],new_df[i,3])))
  for (i in 1:(4*columns)){
    v2 = append(v2, c(rep(new_df[i,2],new_df[i,3])))
  }
  fit = cor(x = v1, y = v2)
 M = (z-1)*(fit)
  p = pchisq(M, 12)
  return (p)
}
```

M^2 p-values for all questions based on income

```
resulted = lapply(sapply(table.name,get),FUN= corr_calc)
resulted
```

```
## $facilities
## [1] 0
##
## $`oversee sports core`
## [1] 0
##
## $`park areas`
## [1] 0
##
## $`recreation programs`
## [1] 0
##
## $`satisfaction with district`
## [1] 0
## $`satisfaction with facilities`
## [1] 0
##
## $`satisfaction with maintenence`
## [1] 0
##
## $`satisfaction with outdoor amenities and parks`
## [1] 0
##
## $`satisfaction with programs`
## [1] 0
##
## $`satisfaction with staff`
## [1] 0
##
## $`special events`
## [1] 0
##
## $`work with sports core`
## [1] 0
```

Mosaic Plots for questions based on income

```
counter=1;
par(mfrow=c(1,1))
for( i in 1:12){
  mosaicplot(x = get(table.name[i]), shade = TRUE, color = TRUE, main= table.name[i])
}
```

facilities

oversee sports core

3/1/2017 Age Analysis OBPD

park areas

recreation programs

satisfaction with district

satisfaction with facilities

satisfaction with maintenence

satisfaction with outdoor amenities and parks

satisfaction with programs

satisfaction with staff

special events

work with sports core

