SBML Model Report

Model name: "Talemi2014 - Arsenic toxicity and detoxification mechanisms in yeast"

September 10, 2014

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Vijayalakshmi Chelliah¹, Soheil Rastgou Talemi² and Audald Lloret i Villas³ at September fourth 2014 at 11:08 a.m. and last time modified at September tenth 2014 at 2:44 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	4
species types	0	species	12
events	0	constraints	0
reactions	14	function definitions	8
global parameters	52	unit definitions	1
rules	13	initial assignments	21

Model Notes

Talemi2014 - Arsenic toxicity anddetoxification mechanisms in yeastThe model implements arsenite (AsIII)transport regulation, its distribution within main cellular AsIIIpools and detoxification. The intracellular As pools considered arefree AsIII (AsIIIin), protein-bound AsIII

¹EMBL-EBI, viji@ebi.ac.uk

²Otto von Guericke University, soheil.rastgou@med.ovgu.de

³EMBL-EBI, lloret@ebi.ac.uk

(AsIIIprot), glutathioneconjugated AsIII (AsGS3) and vacuolar sequestered AsIII (vAsGS3).

This model is described in the article: Mathematical modelling of arsenic transport, distribution and detoxification processes in yeast. Talemi SR, Jacobson T, Garla V, Navarrete C, Wagner A, Tams MJ, Schaber J.Mol. Microbiol. 2014 Jun; 92(6): 1343-1356

Abstract:

Arsenic has a dual role as causative and curative agent of human disease. Therefore, there is considerable interest in elucidating arsenic toxicity and detoxification mechanisms. By an ensemble modelling approach, we identified a best parsimonious mathematical model which recapitulates and predicts intracellular arsenic dynamics for different conditions and mutants, thereby providing novel insights into arsenic toxicity and detoxification mechanisms in yeast, which could partly be confirmed experimentally by dedicated experiments. Specifically, our analyses suggest that: (i) arsenic is mainly protein-bound during short-term (acute) exposure, whereas glutathione-conjugated arsenic dominates during long-term (chronic) exposure, (ii) arsenic is not stably retained, but can leave the vacuole via an export mechanism, and (iii) Fps1 is controlled by Hog1-dependent and Hog1-independent mechanisms during arsenite stress. Our results challenge glutathione depletion as a key mechanism for arsenic toxicity and instead suggest that (iv) increased glutathione biosynthesis protects the proteome against the damaging effects of arsenic and that (v) widespread protein inactivation contributes to the toxicity of this metalloid. Our work in yeast may prove useful to elucidate similar mechanisms in higher eukaryotes and have implications for the use of arsenic in medical therapy.

This model is hosted on BioModels Database and identified by: BIOMD0000000547.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name substance

Definition μmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains four compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment_3 compartment_1	Cell		3 3 3	$5 \cdot 10^{-11} 5 \cdot 10^{-14} 2 \cdot 10^{-14}$	1 1 1		
$compartment_4$	Cell-vac		3	$3 \cdot 10^{-14}$	1		

3.1 Compartment compartment_2

This is a three dimensional compartment with a constant size of $5 \cdot 10^{-11}$ litre.

Name Medium

3.2 Compartment compartment_3

This is a three dimensional compartment with a constant size of $5 \cdot 10^{-14}$ litre.

Name Cell

3.3 Compartment compartment_1

This is a three dimensional compartment with a constant size of $2 \cdot 10^{-14}$ litre.

Name Vac

3.4 Compartment compartment_4

This is a three dimensional compartment with a constant size of $3\cdot 10^{-14}\, \text{litre}.$

Name Cell-vac

4 Species

This model contains twelve species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 10 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
species_6	AsIIIex	compartment_2	μmol		\overline{Z}
species_5	Ycf1	${\tt compartment_3}$	μmol		
species_10	Hog1PP	${\tt compartment_3}$	μmol		
species_9	Hog1	$compartment_3$	μmol		
species_15	Fps1P	compartment_3	μmol		
species_11	Fps1	compartment_3	μmol		
${ t species_14}$	Acr3	compartment_3	μmol		
${ t species_4}$	vAsGS3	${\tt compartment_1}$	μmol		
species_3	AsGS3	${\tt compartment_4}$	μmol		
${ t species}_{ extsf{-}}1$	AsIIIin	${\tt compartment_4}$	μmol		
species_2	AsIIIProt	${\tt compartment_4}$	μmol		
species_7	GSH	${\tt compartment_4}$	μmol		

5 Parameters

This model contains 52 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
parameter_5	AsIIIex_initial		100.000		✓
$parameter_6$	AsIIIex_shock		1000.000		
parameter_7	AsIIIex_t1		0.000		$\overline{\mathbf{Z}}$
$parameter_8$	AsIIex_t2		3600.000		
$parameter_9$	AsIIIex_tm		30.000		
$parameter_10$	Asngpermil_tot		2.236		
$parameter_11$	Asmolweight		74.922		\square
$parameter_13$	Asngpermil_in		0.030		
$parameter_14$	Asngpermil_pro		0.396		
$parameter_15$	Asngpermil_GS3		1.562		
$parameter_16$	Asngpermil_vac		0.248		
$parameter_17$	Hog1PPfit		0.614		
$parameter_18$	Fps1Pfit		94.485		
$parameter_1$	Fps1PPmax		0.030		
parameter_2	k18	2.1	6561157822054 · 10) ⁻¹⁷	
parameter_3	k20		0.076		
parameter_4	D_AsIIIin_initial		13.155		
$parameter_12$	Hog1_SUM		0.167		
$parameter_19$	GSH_wt		1600.000		
$parameter_20$	GSH_Acr3Hog1D		5.999		
$parameter_21$	GSH_Acr3		2.820		
$parameter_22$	GSH_damping-		1.000		
	_factor				
$parameter_23$	ko-8		1.000		
$parameter_24$	Ycf1_increase		20.000		
$parameter_25$	v12_ko		1.000		
$parameter_26$	v4_k		0.076		
$parameter_27$	v5_k1		161.334		
parameter_28	v4_ko		1.000		
parameter_29	v6_k		2.57134 · 10	0^{-4}	
$parameter_30$	v6_k1		1102.150		
$parameter_31$	v6_kb		0.073		
$parameter_32$	v7_k1		0.072		
$parameter_33$	v1_k		0.002		
parameter_34	v14_Vmax		1.000		$\overline{\mathbf{Z}}$
parameter_35	v14_Km		5.16159 · 1		$\overline{\mathbf{Z}}$
$parameter_36$	v10_k		3.49703 · 1	0^{-6}	

Id	Name	SBO	Value	Unit	Constant
parameter_37	v11_k		$1.92773 \cdot 10^{-7}$		✓
parameter_38	v10_ko		1.000		\square
parameter_39	v8_k		0.203		\square
$parameter_40$	v9_k1		6.143		\square
$parameter_41$	v2_k1		0.009		
$parameter_42$	v3_k1		$6.56918 \cdot 10^{-4}$		
$parameter_43$	v13_k1		$9.01422 \cdot 10^{-13}$		
Compartment-	Initial for Cell-vac		$3 \cdot 10^{-14}$		\square
_3					
${\tt Metabolite_9}$	Initial for AsIIIin		13.155		
${\tt Metabolite_6}$	Initial for Acr3		$3.16038478651879 \cdot 10^{-4}$		
${\tt Metabolite_5}$	Initial for Fps1		0.002		
${\tt Metabolite_0}$	Initial for AsIIIex		100.000		
Compartment-	Initial for Vac		$2 \cdot 10^{-14}$		
_2					
ModelValue-	Initial for		0.030		
_13	Fps1PPmax				
ModelValue-	Initial for ko-8		1.000		
_22					
Asngpermil-	Asngpermil_ex		0.375		
_ex					

6 Initialassignments

This is an overview of 21 initial assignments.

6.1 Initialassignment compartment_1

Derived unit contains undeclared units

Math $0.4 \cdot \text{vol} (\text{compartment}_3)$

6.2 Initialassignment compartment_4

Derived unit contains undeclared units

Math $0.6 \cdot vol (compartment_3)$

6.3 Initialassignment species_5

Derived unit contains undeclared units

$$\begin{tabular}{ll} \begin{tabular}{ll} \be$$

6.4 Initialassignment species_10

Derived unit contains undeclared units

6.5 Initialassignment species_9

Derived unit contains undeclared units

6.6 Initialassignment species_15

Derived unit contains undeclared units

6.7 Initialassignment species_11

Derived unit contains undeclared units

Math
$$\frac{0.03}{\frac{\text{parameter}_29 \cdot \frac{\text{species}_1}{\text{vol(compartment}_4)} + \text{parameter}_30 \cdot \frac{\text{species}_10}{\text{vol(compartment}_3)} + \text{parameter}_31}}_{\text{parameter}_32} + 1} \cdot \text{vol (compartment}_3)}$$

6.8 Initialassignment species_14

Derived unit contains undeclared units

6.9 Initialassignment species_4

Derived unit contains undeclared units

6.10 Initialassignment species_3

Derived unit contains undeclared units

6.11 Initialassignment species_1

Derived unit contains undeclared units

$$\label{eq:math} \mbox{Math} \ \, \begin{cases} parameter_4 & if \ parameter_25 > 0 \\ 100 & otherwise \end{cases} \cdot vol\left(compartment_4\right)$$

6.12 Initialassignment species_2

Derived unit contains undeclared units

$$\begin{array}{ll} \textbf{Math} & \frac{parameter_41 \cdot \frac{species_1}{vol(compartment_4)}}{parameter_42} \cdot vol\left(compartment_4\right) \end{array}$$

6.13 Initialassignment species_7

Derived unit contains undeclared units

6.14 Initialassignment Compartment_3

Derived unit 1

Math vol (compartment_4)

6.15 Initialassignment Metabolite_9

Derived unit µmol

Math species_1

6.16 Initialassignment Metabolite_6

Derived unit µmol

Math species_14

6.17 Initialassignment Metabolite_5

Derived unit µmol

Math species_11

6.18 Initialassignment Metabolite_0

Derived unit μmol

Math species_6

6.19 Initialassignment Compartment_2

Derived unit 1

Math vol(compartment_1)

6.20 Initialassignment ModelValue_13

Derived unit contains undeclared units

Math parameter_1

6.21 Initialassignment ModelValue_22

Derived unit contains undeclared units

Math parameter_23

7 Function definitions

This is an overview of eight function definitions.

7.1 Function definition function_3

Name 2p modified mass action (irrev)

Arguments S, M, k, ko

Mathematical Expression

 $k \cdot ko \cdot M \cdot S$ (1)

7.2 Function definition function_7

Name 2p modified constant flux (irrev)

Arguments M, k, ko

Mathematical Expression

$$k \cdot ko \cdot M$$
 (2)

7.3 Function definition function_6

Name Mixed Hill

Arguments Substrate, k, Mod1, Mod, k1, kb

Mathematical Expression

Substrate
$$\cdot (k \cdot Mod1 + k1 \cdot Mod + kb)$$
 (3)

7.4 Function definition function_2

Name 2p 2sub

Arguments k, ko, sub, sub2

Mathematical Expression

$$k \cdot ko \cdot sub \cdot sub2$$
 (4)

7.5 Function definition function_1

Name corrected modified diffusion

Arguments V, Mod, k, Ex, In

Mathematical Expression

$$(36 \cdot \pi)^{\frac{1}{3}} \cdot V^{\frac{2}{3}} \cdot Mod \cdot k \cdot (Ex - In)$$
 (5)

7.6 Function definition function_8

Name corrected mass action

Arguments V, k, Sub

Mathematical Expression

$$(36 \cdot \pi)^{\frac{1}{3}} \cdot V^{\frac{2}{3}} \cdot k \cdot Sub \tag{6}$$

7.7 Function definition function_4

Name corrected 2p modified mass action

Arguments ko, Mod, k, V, Sub

Mathematical Expression

$$ko \cdot Mod \cdot k \cdot (36 \cdot \pi)^{\frac{1}{3}} \cdot V^{\frac{2}{3}} \cdot Sub$$
 (7)

7.8 Function definition function_5

Name Rate Law for v20

Arguments V, Mod, Vmax, Sub, Km

Mathematical Expression

$$\frac{(36 \cdot \pi)^{\frac{1}{3}} \cdot V^{\frac{2}{3}} \cdot Mod \cdot Vmax \cdot Sub}{Km + Sub}$$
 (8)

8 Rules

This is an overview of 13 rules.

8.1 Rule parameter_10

Rule parameter_10 is an assignment rule for parameter parameter_10:

$$parameter_10 = \left(\frac{species_1}{vol (compartment_4)} + \frac{species_2}{vol (compartment_4)} + \frac{species_3}{vol (compartment_4)}\right)$$

$$\cdot Compartment_3 \cdot parameter_11 \cdot 10^9 + \frac{species_4}{vol (compartment_1)}$$

$$\cdot Compartment_2 \cdot parameter_11 \cdot 10^9$$
(9)

8.2 Rule parameter_13

Rule parameter_13 is an assignment rule for parameter parameter_13:

$$parameter_{13} = \frac{\text{species}_{1}}{\text{vol}(\text{compartment}_{4})} \cdot \text{Compartment}_{3} \cdot \text{parameter}_{11} \cdot 10^{9}$$
 (10)

8.3 Rule parameter_14

Rule parameter_14 is an assignment rule for parameter parameter_14:

$$parameter_14 = \frac{species_2}{vol\left(compartment_4\right)} \cdot Compartment_3 \cdot parameter_11 \cdot 10^9 \tag{11}$$

8.4 Rule parameter_15

Rule parameter_15 is an assignment rule for parameter parameter_15:

$$parameter_15 = \frac{species_3}{vol(compartment_4)} \cdot Compartment_3 \cdot parameter_11 \cdot 10^9$$
 (12)

8.5 Rule species_6

Rule species_6 is an assignment rule for species species_6:

8.6 Rule parameter_16

Rule parameter_16 is an assignment rule for parameter parameter_16:

$$parameter_{16} = \frac{\text{species}_{4}}{\text{vol}(\text{compartment}_{1})} \cdot \text{Compartment}_{2} \cdot \text{parameter}_{11} \cdot 10^{9}$$
 (14)

8.7 Rule parameter_18

Rule parameter_18 is an assignment rule for parameter parameter_18:

$$parameter_{18} = \frac{100 \cdot \frac{\text{species}_{15}}{\text{vol(compartment}_{3})}}{\text{ModelValue}_{13}}$$
(15)

8.8 Rule parameter_2

Rule parameter_2 is an assignment rule for parameter parameter_2:

$$parameter_2 = \frac{parameter_43 \cdot Metabolite_6}{Metabolite_9}$$
 (16)

8.9 Rule parameter_3

Rule parameter $_3$ is an assignment rule for parameter $_3$:

$$= \begin{cases} \frac{parameter_33 \cdot Metabolite_5 \cdot (Metabolite_0 - Metabolite_9)}{Metabolite_6 \cdot Metabolite_9} & if parameter_25 > 0\\ 0 & otherwise \end{cases}$$
(17)

8.10 Rule parameter_12

Rule parameter_12 is an assignment rule for parameter parameter_12:

$$parameter_{12} = \frac{species_{9}}{vol(compartment_{3})} + \frac{species_{10}}{vol(compartment_{3})}$$
(18)

Derived unit $\mu mol \cdot l^{-1}$

8.11 Rule parameter_17

Rule parameter_17 is an assignment rule for parameter parameter_17:

$$parameter_{17} = \frac{100 \cdot \frac{\text{species}_{10}}{\text{vol(compartment}_{.3)}}}{\text{parameter}_{12}}$$
(19)

8.12 Rule parameter_22

Rule parameter_22 is an assignment rule for parameter parameter_22:

$$parameter_22 = \begin{cases} 1 & \text{if ModelValue}_22 > 0 \\ 0.2175 & \text{otherwise} \end{cases}$$
 (20)

8.13 Rule Asngpermil_ex

Rule Asngpermil_ex is an assignment rule for parameter Asngpermil_ex:

$$Asngpermil_ex = \frac{species_6}{vol (compartment_2)} \cdot vol (compartment_3) \cdot parameter_11 \cdot 10^9 \quad (21)$$

9 Reactions

This model contains 14 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation SBO
1	reaction_1	v1	species_6 species_11, species_6, species_1 species_1 species_1
2	${\tt reaction_4}$	v4	species_9 $\xrightarrow{\text{species}_1, \text{species}_9, \text{species}_1}$ species_10
3	reaction_5	v5	$species_10 \xrightarrow{species_10} species_9$
4	reaction_6	v7	$species_15 \xrightarrow{species_15} species_11$
5	${\tt reaction_7}$	v2	$species_1 \xrightarrow{species_2} species_2$
6	reaction_8	v3	$species_2 \xrightarrow{species_2} species_1$
7	reaction_9	v8	$species_1 + species_7 \xrightarrow{species_1, species_7} species_3$
8	reaction_10	v10	species_3 $\xrightarrow{\text{species}_5, \text{ species}_5, \text{ species}_3}$ species_4
9	reaction_13	v12	$\emptyset \xrightarrow{\text{species}_1, \text{species}_1} \text{species}_14$
10	reaction_14	v13	species_14 $\xrightarrow{\text{species}_14} \emptyset$
11	reaction_15	v14	species_1 $\xrightarrow{\text{species}_14, \text{ species}_14, \text{ species}_1}$ species_6
12	reaction_16	v6	species_11 species_1, species_10, species_11, species_1, species_10 species_1
13	reaction_17	v9	species_3 $\xrightarrow{\text{species}_3}$ species_1 + species_7
14	reaction_18	v11	$species_4 \xrightarrow{species_4} species_3$

9.1 Reaction reaction_1

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name v1

Reaction equation

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
species_6	AsIIIex	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
species_11	Fps1	
species_11	Fps1	
species_6	AsIIIex	
species_1	AsIIIin	

Product

Table 8: Properties of each product.

Id	Name	SBO
species_1	AsIIIin	

Kinetic Law

Derived unit contains undeclared units

$$v_{1} = \text{function_1}\left(\text{vol}\left(\text{compartment_3}\right), \frac{\text{species_11}}{\text{vol}\left(\text{compartment_3}\right)}, \text{parameter_33}, \frac{\text{species_6}}{\text{vol}\left(\text{compartment_2}\right)}, \frac{\text{species_1}}{\text{vol}\left(\text{compartment_4}\right)}\right)$$
(23)

$$function_{-}1\left(V,Mod,k,Ex,In\right)=\left(36\cdot\pi\right)^{\frac{1}{3}}\cdot V^{\frac{2}{3}}\cdot Mod\cdot k\cdot \left(Ex-In\right) \tag{24}$$

9.2 Reaction reaction_4

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name v4

Reaction equation

species_9
$$\xrightarrow{\text{species}_1, \text{ species}_9, \text{ species}_1}$$
 species_10 (25)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
species_9	Hog1	

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
species_1 species_9	AsIIIin Hog1	
species_1	AsIIIin	

Product

Table 11: Properties of each product.

Id	Name	SBO
species_10	Hog1PP	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol (compartment_3)} \cdot \text{function_3} \left(\frac{\text{species_9}}{\text{vol (compartment_3)}}, \frac{\text{species_1}}{\text{vol (compartment_4)}}, \right)$$

$$parameter_26, parameter_28$$
(26)

function_3
$$(S, M, k, ko) = k \cdot ko \cdot M \cdot S$$
 (27)

function_3
$$(S, M, k, ko) = k \cdot ko \cdot M \cdot S$$
 (28)

9.3 Reaction reaction_5

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v5

Reaction equation

$$species_{10} \xrightarrow{species_{10}} species_{9}$$
 (29)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
species_10	Hog1PP	

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
species_10	Hog1PP	

Product

Table 14: Properties of each product.

Id	Name	SBO
species_9	Hog1	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{parameter}_2 \cdot \text{species}_1 0$$
 (30)

9.4 Reaction reaction_6

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v7

Reaction equation

$$species_{15} \xrightarrow{species_{15}} species_{11}$$
 (31)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
species_15	Fps1P	

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
species_15	Fps1P	

Product

Table 17: Properties of each product.

Id	Name	SBO
species_11	Fps1	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{parameter} \cdot 32 \cdot \text{species} \cdot 15$$
 (32)

9.5 Reaction reaction_7

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v2

Reaction equation

$$species_{-1} \xrightarrow{species_{-1}} species_{-2}$$
 (33)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
species_1	AsIIIin	

Modifier

Table 19: Properties of each modifier.

Id	Name	SBO
species_1	AsIIIin	

Product

Table 20: Properties of each product.

Id	Name	SBO
species_2	AsIIIProt	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{parameter} \cdot 41 \cdot \text{species} \cdot 1$$
 (34)

9.6 Reaction reaction_8

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v3

Reaction equation

$$species_2 \xrightarrow{species_2} species_1$$
 (35)

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
species_2	AsIIIProt	

Modifier

Table 22: Properties of each modifier.

Id	Name	SBO
species_2	AsIIIProt	

Product

Table 23: Properties of each product.

Id	Name	SBO
species_1	AsIIIin	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{parameter_42} \cdot \text{species_2}$$
 (36)

9.7 Reaction reaction_9

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

$\textbf{Name}\ v8$

Reaction equation

$$species_1 + species_7 \xrightarrow{species_1, species_7} species_3$$
 (37)

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
species_1 species_7	AsIIIin GSH	

Modifiers

Table 25: Properties of each modifier.

Id	Name	SBO
species_1 species_7	AsIIIin GSH	

Product

Table 26: Properties of each product.

Id	Name	SBO
species_3	AsGS3	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol (compartment_4)} \cdot \text{function_2} \left(\text{parameter_39, parameter_22,} \right)$$

$$\frac{\text{species_1}}{\text{vol (compartment_4)}}, \frac{\text{species_7}}{\text{vol (compartment_4)}} \right)$$
(38)

$$function_{-2}(k, ko, sub, sub_{2}) = k \cdot ko \cdot sub \cdot sub_{2}$$
(39)

$$function_2(k, ko, sub, sub2) = k \cdot ko \cdot sub \cdot sub2$$
 (40)

9.8 Reaction reaction_10

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

 $\textbf{Name}\ v10$

Reaction equation

species_3
$$\xrightarrow{\text{species}_5, \text{ species}_5, \text{ species}_3}$$
 species_4 (41)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
species_3	AsGS3	

Modifiers

Table 28: Properties of each modifier.

Id	Name	SBO
species_5	Ycf1	
species_5	Ycf1	
species_3	AsGS3	

Product

Table 29: Properties of each product.

Id	Name	SBO
species_4	vAsGS3	

Kinetic Law

Derived unit contains undeclared units

$$v_{8} = \text{function_4} \left(\text{parameter_38}, \frac{\text{species_5}}{\text{vol} (\text{compartment_3})}, \text{parameter_36}, \right. \\ \left. \text{vol} \left(\text{compartment_1} \right), \frac{\text{species_3}}{\text{vol} \left(\text{compartment_4} \right)} \right)$$

$$(42)$$

$$function_4\left(ko,Mod,k,V,Sub\right) = ko \cdot Mod \cdot k \cdot (36 \cdot \pi)^{\frac{1}{3}} \cdot V^{\frac{2}{3}} \cdot Sub \tag{43}$$

9.9 Reaction reaction_13

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name v12

Reaction equation

$$\emptyset \xrightarrow{\text{species_1, species_1}} \text{species_14}$$
 (44)

Modifiers

Table 30: Properties of each modifier.

Id	Name	SBO
species_1	AsIIIin	
${ t species}_{ extsf{-}} 1$	AsIIIin	

Product

Table 31: Properties of each product.

Id	Name	SBO
species_14	Acr3	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol} (\text{compartment_3}) \cdot \text{function_7} \left(\frac{\text{species_1}}{\text{vol} (\text{compartment_4})}, \text{parameter_2}, \text{parameter_25} \right)$$
(45)

function_7 (M, k, ko) =
$$k \cdot ko \cdot M$$
 (46)

$$function_{-}7 (M, k, ko) = k \cdot ko \cdot M$$
(47)

9.10 Reaction reaction_14

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name v13

Reaction equation

$$species_{-14} \xrightarrow{species_{-14}} \emptyset$$
 (48)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
species_14	Acr3	

Modifier

Table 33: Properties of each modifier.

Id	Name	SBO
species_14	Acr3	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{parameter}_43 \cdot \text{species}_14$$
 (49)

9.11 Reaction reaction_15

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name v14

Reaction equation

$$species_{-1} \xrightarrow{species_{-1}4, species_{-1}4, species_{-1}} species_{-6}$$
 (50)

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
species_1	AsIIIin	

Modifiers

Table 35: Properties of each modifier.

Id	Name	SBO
${\tt species_14}$	Acr3	
species_14	Acr3	
${\tt species_1}$	AsIIIin	

Product

Table 36: Properties of each product.

Id	Name	SBO
species_6	AsIIIex	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{function_5} \left(\text{vol} \left(\text{compartment_3} \right), \frac{\text{species_14}}{\text{vol} \left(\text{compartment_3} \right)}, \text{parameter_34}, \frac{\text{species_1}}{\text{vol} \left(\text{compartment_4} \right)}, \text{parameter_35} \right)$$
(51)

$$function_5\left(V,Mod,Vmax,Sub,Km\right) = \frac{\left(36 \cdot \pi\right)^{\frac{1}{3}} \cdot V^{\frac{2}{3}} \cdot Mod \cdot Vmax \cdot Sub}{Km + Sub} \tag{52}$$

9.12 Reaction reaction_16

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Name v6

Reaction equation

Reactant

Table 37: Properties of each reactant.

Id	Name	SBO
species_11	Fps1	

Modifiers

Table 38: Properties of each modifier.

Id	Name	CDO
10	Name	SBO
species_1	AsIIIin	
species_10	Hog1PP	
species_11	Fps1	
${ t species_1}$	AsIIIin	
$species_{-}10$	Hog1PP	

Product

Table 39: Properties of each product.

Id	Name	SBO
species_15	Fps1P	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol (compartment_3)} \cdot \text{function_6} \left(\frac{\text{species_11}}{\text{vol (compartment_3)}}, \text{parameter_29}, \right. \\ \left. \frac{\text{species_1}}{\text{vol (compartment_4)}}, \frac{\text{species_10}}{\text{vol (compartment_3)}}, \text{parameter_30}, \text{parameter_31} \right)$$
(54)

function_6 (Substrate, k, Mod1, Mod, k1, kb) = Substrate
$$\cdot$$
 (k \cdot Mod1 + k1 \cdot Mod + kb) (55)

$$function_6 (Substrate, k, Mod1, Mod, k1, kb) = Substrate \cdot (k \cdot Mod1 + k1 \cdot Mod + kb)$$
 (56)

9.13 Reaction reaction_17

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name v9

Reaction equation

species_3
$$\xrightarrow{\text{species}_3}$$
 species_1 + species_7 (57)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
species_3	AsGS3	

Modifier

Table 41: Properties of each modifier.

Id	Name	SBO
species_3	AsGS3	

Products

Table 42: Properties of each product.

Id	Name	SBO
species_1	AsIIIin	
species_7	GSH	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{parameter} \cdot 40 \cdot \text{species} \cdot 3$$
 (58)

9.14 Reaction reaction_18

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v11

Reaction equation

species_4
$$\xrightarrow{\text{species}_4}$$
 species_3 (59)

Reactant

Table 43: Properties of each reactant.

Id	Name	SBO
species_4	vAsGS3	

Modifier

Table 44: Properties of each modifier.

Id	Name	SBO
species_4	vAsGS3	

Product

Table 45: Properties of each product.

Id	Name	SBO
species_3	AsGS3	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{function_8} \left(\text{vol} \left(\text{compartment_1} \right), \text{parameter_37}, \frac{\text{species_4}}{\text{vol} \left(\text{compartment_1} \right)} \right)$$
 (60)

function_8 (V,k,Sub) =
$$(36 \cdot \pi)^{\frac{1}{3}} \cdot V^{\frac{2}{3}} \cdot k \cdot Sub$$
 (61)

10 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- · parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

10.1 Species species_6

Name AsIIIex

Initial amount $5 \cdot 10^{-9} \, \mu mol$

Involved in rule species_6

This species takes part in three reactions (as a reactant in reaction_1 and as a product in reaction_15 and as a modifier in reaction_1). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

10.2 Species species_5

Name Ycf1

Initial amount $6.5755 \cdot 10^{-16} \mu mol$

Initial assignment species_5

This species takes part in two reactions (as a modifier in reaction_10, reaction_10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_5 = 0 \tag{62}$$

10.3 Species species_10

Name Hog1PP

Initial amount $5.12422021489774 \cdot 10^{-17} \mu mol$

Initial assignment species_10

This species takes part in five reactions (as a reactant in reaction_5 and as a product in reaction_4 and as a modifier in reaction_5, reaction_16, reaction_16).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}10 = |v_2| - |v_3| \tag{63}$$

10.4 Species species_9

Name Hog1

Initial amount $8.29875779785102 \cdot 10^{-15} \mu mol$

Initial assignment species_9

This species takes part in three reactions (as a reactant in reaction_4 and as a product in reaction_5 and as a modifier in reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{9} = |v_{3}| - |v_{2}| \tag{64}$$

10.5 Species species_15

Name Fps1P

Initial amount $1.41558600877709 \cdot 10^{-15} \mu mol$

Initial assignment species_15

This species takes part in three reactions (as a reactant in reaction_6 and as a product in reaction_16 and as a modifier in reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}15 = |v_{12}| - |v_4| \tag{65}$$

10.6 Species species_11

Name Fps1

Initial amount $8.44139912229068 \cdot 10^{-17} \mu mol$

Initial assignment species_11

This species takes part in five reactions (as a reactant in reaction_16 and as a product in reaction_6 and as a modifier in reaction_1, reaction_1, reaction_16).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{11} = |v_4| - |v_{12}| \tag{66}$$

10.7 Species species_14

Name Acr3

Initial amount $1.5801923932594 \cdot 10^{-17} \mu mol$

Initial assignment species_14

This species takes part in five reactions (as a reactant in reaction_14 and as a product in reaction_13 and as a modifier in reaction_14, reaction_15, reaction_15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}14 = v_9 - v_{10} \tag{67}$$

10.8 Species species_4

Name vAsGS3

Initial amount $3.31525035810391 \cdot 10^{-12} \mu mol$

Initial assignment species_4

This species takes part in three reactions (as a reactant in reaction_18 and as a product in reaction_10 and as a modifier in reaction_18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{4} = |v_{8}| - |v_{14}| \tag{68}$$

10.9 Species species_3

Name AsGS3

Initial amount $2.08447005232452 \cdot 10^{-11} \mu mol$

Initial assignment species_3

This species takes part in six reactions (as a reactant in reaction_10, reaction_17 and as a product in reaction_9, reaction_18 and as a modifier in reaction_10, reaction_17).

$$\frac{d}{dt} \text{species}_{3} = |v_{7}| + |v_{14}| - |v_{8}| - |v_{13}| \tag{69}$$

10.10 Species species_1

Name AsIIIin

Initial amount $3.94647 \cdot 10^{-13} \mu mol$

Initial assignment species_1

This species takes part in 16 reactions (as a reactant in reaction_7, reaction_9, reaction_15 and as a product in reaction_1, reaction_8, reaction_17 and as a modifier in reaction_1, reaction_4, reaction_4, reaction_7, reaction_9, reaction_13, reaction_15, reaction_16, reaction_16).

$$\frac{d}{dt} \text{species}_{-1} = |v_1| + |v_6| + |v_{13}| - |v_5| - |v_7| - |v_{11}|$$
 (70)

10.11 Species species_2

Name AsIIIProt

Initial amount $5.29105658389632 \cdot 10^{-12} \mu mol$

Initial assignment species_2

This species takes part in three reactions (as a reactant in reaction_8 and as a product in reaction_7 and as a modifier in reaction_8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species} = v_5 - v_6 \tag{71}$$

10.12 Species species_7

Name GSH

Initial amount $4.8 \cdot 10^{-11} \mu mol$

Initial assignment species_7

This species takes part in three reactions (as a reactant in reaction_9 and as a product in reaction_17 and as a modifier in reaction_9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}7 = |v_{13}| - |v_{7}| \tag{72}$$

 $\mathfrak{BML2}^{lAT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany