Incremental Gradient, Subgradient and Proximal Methods for Convex Optimization

Dimitri P. Bertsekas

Akilesh B Indian Institute of Technology, Hyderabad

October 5, 2016

Recall the classical Subgradient and Proximal Algorithms

Convex Optimization problem

minimize f(x) subject to $x \in X$

where $f: \mathbb{R}^n \to \mathbb{R}$ is convex, and X is closed and convex.

Classical subgradient project algorithm: Typical iteration

$$x_{k+1} = P_X(x_k - \alpha_k \nabla f(x_k))$$

where α_k is a positive stepsize and ∇ denotes (any) subgradient.

Classical proximal algorithm : Typical iteration

$$x_{k+1} = \arg\min_{x \in X} \left\{ f(x) + \frac{\|x - x_k\|^2}{2\alpha_k} \right\}$$

where $\alpha_{\it k}$ is a positive stepsize.

- Proximal has more solid convergence properties, but requires more overhead.
- The dual problem of proximal algorithm is augmented Lagrangian method

Akilesh B

Problems with Many Additive Cost Components

minimize
$$\sum_{i=1}^m f_i(x)$$
 subject to $x \in X$ where $f_i : \mathbb{R}^n \to \mathbb{R}$ are convex, and X is closed and convex.

Incremental algorithms (long history, early 90s-present): Typical iteration

- Choose an index $i_k \in \{1, 2, \dots m\}$,
- Perform a subgradient iteration or a proximal iteration:

$$x_{k+1} = P_X(x_k - \alpha_k \nabla f_{i_k}(x_k))$$

or

$$x_{k+1} = \operatorname{arg\,min}_{x \in X} \left\{ f_{i_k}(x) + \frac{\|x - x_k\|^2}{2\alpha_k} \right\}$$

 Motivation is to avoid processing all the cost components at each iteration.

Outline

- Incremental Algorithms
- 2 Aggregated Incremental Algorithms
- Incremental Augmented Lagrangian Algorithms
- 4 Incremental Treatment of Constraints
- Convergence Analysis

Incremental Subgradient Methods

Problem: min $\sum_{i=1}^{m} f_i(x)$ subject to $x \in X$, where f_i and X are convex. **Long history**: LMS (Widrow-Hoff, 1960, for linear least squares without projection), stochastic approximation literature 1960s, neural network literature 1970s

Basic incremental subgradient method

$$x_{k+1} = P_X(x_k - \alpha_k \nabla f_{i_k}(x_k))$$

- Stepsize selection possibilities:
 - $\sum_{k=0}^{\infty} \alpha_k = \infty$ and $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$
 - Constant α_k .
 - Dynamically chosen (based on estimate of optimal cost).
- Index i_k selection possibilities:
 - Cyclically.
 - Fully randomized / equal probability 1/m.
 - Reshuffling / randomization within a cycle (frequent practical choice).

Convergence Mechanism

Quadratic One-Dimensional Example: min $\sum_{i=1}^{m} (a_i x - b_i)^2$ subject to $x \in \mathbb{R}$,

- Conceptually this idea generalizes to higher dimensions, but is hard to treat/quantify analytically.
- Adapting the stepsize α_k to the farout and confusion regions is an important issue.
- Shaping the confusion region is an important issue.

Incremental Proximal Method

Select index i_k and set

$$x_{k+1} = \operatorname{arg\,min}_{x \in X} \left\{ f_{i_k}(x) + \frac{\|x - x_k\|^2}{2\alpha_k} \right\}$$

Many similarities with incremental subgradient

- Similar stepsize choices.
- Similar index selection schemes.
- Can be written as

$$x_{k+1} = P_X(x_k - \alpha_k \nabla f_{i_k}(x_{k+1}))$$
 where $\nabla f_{i_k}(x_{k+1})$ is a special gradient at x_{k+1} (index advanced by 1).

Compared to incremental subgradient

- Likely more stable.
- May be harder to implement.

Incremental Subgradient-Proximal methods

Typical iteration

Choose an index $i_k \in \{1, 2, \dots m\}$ and do a subgradient iteration or a proximal iteration:

$$x_{k+1} = P_X(x_k - \alpha_k \nabla f_{i_k}(x_k))$$

or

$$x_{k+1} = \arg\min_{x \in X} \left\{ f_{i_k}(x) + \frac{\|x - x_k\|^2}{2\alpha_k} \right\}$$

where α_k is a positive stepsize and ∇ denoted any subgradient.

- Idea: Use proximal when easy to implement; use subgradient otherwise.
- A very flexible implementation.
- ullet The proximal iterations still require diminishing $lpha_k$ for convergence.

Convergence Analysis

Under Lipschitz continuity type assumptions (Nedic and Bertsekas, 2000

- Convergence to the optimum for diminishing stepsize.
- Convergence to the neighborhood of the optimum for constant stepsize.
- Faster convergence for randomized index selection (relative to a worst case cyclic choice).

Incremental Algorithms

2 Aggregated Incremental Algorithms

Incremental Augmented Lagrangian Algorithms

4 Incremental Treatment of Constraints

Convergence Analysis

Incremental Aggregated Gradient Method

$$\begin{aligned} x_{k+1} &= P_X \big(x_k - \alpha_k \sum_{i=1}^m \nabla f_i(x_{l_i}) \big) \\ \text{where } \nabla f_i(x_{l_i}) \text{ is a delayed subgradient of } f_i \text{ at some earlier iterate } x_{l_i} \text{ with } \\ k - b &\leq l_i \leq k \qquad \forall i, k \end{aligned}$$

- Key idea: Replace current subgradient components with earlier computed versions.
- Only one component subgradient may be computed per iteration.
- Proposed for nondifferentiable f_i and diminishing step size by Bertsekas et al. (2001).
- **Keywork:**(Blatt et al., 2008) Differentiable strongly convex f_i , no constraints, constant stepsize, and linear convergence.
- This is a gradient method with error proportional to the stepsize.
- A fundamentally different convergence mechanism, relies on differentiability and aims at cost function descent (no region of confusion).

Incremental Aggregated Proximal Method

Select index i_k and set

$$x_{k+1} \in \arg\min_{x \in X} \left\{ f_{i_k}(x) + \sum_{i \neq i_k} \nabla f_i(x_{l_i})(x - x_k) + \frac{\|x - x_k\|^2}{2\alpha_k} \right\}$$

and $\nabla f_i(x_{l_i})$ is a delayed subgradient of f_i at some earlier iterate x_{l_i} with $k - b < l_i < k$ $\forall i, k$

Equivalently,

$$x_{k+1} \in \operatorname{arg\,min}_{x \in X} \left\{ f_{i_k}(x) + \frac{\|x - z_k\|^2}{2\alpha_k} \right\},$$

where

$$z_k = x_k - \alpha_k \sum_{i \neq i_k} \nabla f_i(x_{l_i})$$

• If f is differentiable and strongly convex, linear convergence can be shown with constant but sufficiently small α_k (DPB 2015).

Incremental Algorithms

2 Aggregated Incremental Algorithms

3 Incremental Augmented Lagrangian Algorithms

4 Incremental Treatment of Constraints

Convergence Analysis

Separable Convex Optimization problem

minimize $\sum_{i=1}^m f_i(x^i)$ subject to $x^i \in X_i, i = \{1, 2, \dots m\} \sum_{i=1}^m h_i x^i = 0$ where $f_i : \mathbb{R}^n \to \mathbb{R}$ are convex, $h_i : \mathbb{R}^n \to \mathbb{R}^r$ are linear and $X_i \subset \mathbb{R}^n$ are closed and convex.

Dual problem decomposes

maximize $\sum_{i=1}^{m} q_i(\lambda)$ subject to $\lambda \in \mathbb{R}^r$ where q_i is a "component" dual function: $q_i(\lambda) = \inf_{x^i \in X} \{f_i(x^i) + \lambda^i h_i(x^i)\}$

- The proximal algorithm yields the augmented Lagrangian method but destroys the separable structure.
- Incremental versions of the proximal algorithm yield incremental augmented Lagrangian methods that exploit the separable structure.

relaxation).

Proximal - Augmented Lagrangian Relation

Proximal Algorithm for the Dual Problem

$$\lambda_{k+1} \in \operatorname{arg\,max}_{\lambda \in \mathbb{R}^r} \bigg\{ \sum_{i=1}^m q_i(\lambda) - \frac{\|\lambda - \lambda_k\|^2}{2\alpha_k} \bigg\},$$

Dualization using Fenchel duality \rightarrow augmented Lagrangian method

Introduce the augmented Lagrangian function

$$L_{\alpha}(x,\lambda) = \sum_{i=1}^{m} f_{i}(x^{i}) + \lambda \sum_{i=1}^{m} h_{i}(x^{i}) + \frac{\alpha \|\sum_{i=1}^{m} h_{i}(x^{i})\|^{2}}{2}$$
 where $\alpha > 0$ is a parameter. For a sequence $\{\alpha_{k}\}$ and a starting λ_{0} , set $x_{k+1} \in \arg\min_{x^{i} \in X^{i}, i=1,2...m} L_{\alpha_{k}}(x,\lambda_{k})$

Update λ according to

$$\lambda_{k+1} = \lambda_k + \alpha_k \sum_{i=1}^m h_i(x_{k+1}^i)$$

• A major flaw: min of $L_{\alpha_k}(x,\lambda_k)$ is not separable.

Incremental Augmented Lagrangian Method

Incremental Proximal Algorithm for the Dual Problem

At each iteration k, pick index i_k , and set

$$\lambda_{k+1} \in \operatorname{arg\,max}_{\lambda \in \mathbb{R}^r} \left\{ q_{i_k}(\lambda) - rac{\|\lambda - \lambda_k\|^2}{2lpha_k}
ight\}$$

Dualization using Fenchel duality \rightarrow Incremental augmented Lagrangian method

Pick index i_k , and update the single component x^{i_k} according to

$$x_{k+1}^{i_k} \in \operatorname{arg\,min}_{x^{i_k} \in X_{i_k}} \Big\{ f_{i_k}(x^{i_k}) + \lambda_k h_{i_k}(x^{i_k}) + \frac{\alpha_k \|h_{i_k}(x^{i_k})\|^2}{2} \Big\},$$

while keeping the others unchanged, $x_{k+1}^i = x_k^i$ for all $i \neq i_k$.

Update λ according to

$$\lambda_{k+1} = \lambda_k + \alpha_k h_{i_k}(x_{k+1}^{i_k})$$

Incremental Aggregated Augmented Lagrangian Method (IAAL)

Incremental Aggregated Proximal Algorithm for the Dual Problem

At each iteration k, pick index i_k , and set

$$\lambda_{k+1} \in rg \max_{\lambda \in \mathbb{R}^r} \left\{ q_{i_k}(\lambda) - rac{\|\lambda - z_k\|^2}{2lpha_k}
ight\}$$

where

$$z_k = \lambda_k + \alpha_k \sum_{i \neq i_k} \nabla q_i(\lambda_{l_i})$$

Implementation of IAAL

Dualization using Fenchel duality \rightarrow incremental aggregated augmented Lagrangian method

Pick index i_k , and update the single component x^{i_k} according to

$$x_{k+1}^{i_k} \in \operatorname{arg\,min}_{x^{i_k} \in X_{i_k}} \left\{ f_{i_k}(x^{i_k}) + \lambda_k h_{i_k}(x^{i_k}) + \frac{\alpha_k \left\| h_{i_k}(x^{i_k}) + \sum_{i \neq i_k} h_i(x_{i_i}^i) \right\|^2}{2} \right\}$$

while keeping the others unchanged, $x_{k+1}^i = x_k^i$ for all $i \neq i_k$.

Update λ according to

$$\lambda_{k+1} = \lambda_k + \alpha_k \left(h_{i_k}(x_{k+1}^{i_k}) + \sum_{i \neq i_k} h_i(x_{l_i}^i) \right)$$

Here $h_i(x_{l_i}^i)$, $i \neq i_k$, come from earlier iterations.

Comparison with Alternating Directions Methods of Multipliers (ADMM)

ADMM Iteration for Separable Problems (DPB 1989)

Perform a separate augmented Lagrangian minimization over x^i , for each $i = 1, 2 \dots m$,

$$x_{k+1}^i \in \operatorname{arg\,min}_{x^i \in X_i} \left\{ f_i(x^i) + \lambda_k h_i(x^i) + \frac{\alpha \left\| h_i(x^i) - h_i(x_k^i) + \frac{\sum_{j=1}^m h_j(x_k^j)}{m} \right\|^2}{2} \right\},$$

and then update λ_k according to

$$\lambda_{k+1} = \lambda_k + \frac{\alpha \sum_{i=1}^m h_i(x_{k+1}^i)}{m}$$

Comparison: ADMM vs IALL

- The two methods involve fairly similar operations.
- ADMM has guaranteed convergence for any constant α , and under weaker conditions (dual differentiability and strong convexity are not required).
- IAAL has stepsize restrictions.
- At each iteration, all components x^i are updated in ADMM, but a single component x^i is updated in IAAL (m times greater overhead per iteration)

Incremental Algorithms

2 Aggregated Incremental Algorithms

Incremental Augmented Lagrangian Algorithms

4 Incremental Treatment of Constraints

Convergence Analysi

Incremental Methods with Constraint Projection

minimize $\sum_{i=1}^m f_i(x)$ subject to $x \in \bigcap_{l=1}^q X_l$ where $f_i : \mathbb{R}^n \to \mathbb{R}$ are convex, and the sets X_l are closed and convex.

Incremental Constraint Projection Algorithm

- Choose an indexes $i_k \in \{1, 2, \dots m\}$ and $I_k \in \{1, 2, \dots q\}$,
- Perform a subgradient iteration or a proximal iteration:

$$x_{k+1} = P_{X_{i_k}}(x_k - \alpha_k \nabla f_{i_k}(x_k))$$

or

$$x_{k+1} = \operatorname{arg\,min}_{x \in X_{l_k}} \left\{ f_{i_k}(x) + \frac{\|x - x_k\|^2}{2\alpha_k} \right\}$$

where α_k is a positive stepsize and ∇ denotes (any) subgradient.

• Connection to feasibility or alternating projection methods.

Incremental Algorithms

2 Aggregated Incremental Algorithms

Incremental Augmented Lagrangian Algorithms

4 Incremental Treatment of Constraints

Convergence Analysis

Incremental Random Projection Method

Problem

minimize $\sum_{i=1}^{m} f_i(x)$ subject to $x \in \bigcap_{l=1}^{q} X_l$

where $f_i : \mathbb{R}^n \to \mathbb{R}$ are convex, and the sets X_I are closed and convex.

Typical Iteration

- Choose an indexes $i_k \in \{1, 2, \dots m\}$ and $I_k \in \{1, 2, \dots q\}$,
- Set

$$x_{k+1} = P_{X_{l_k}}(x_k - \alpha_k \nabla f_{i_k}(\bar{x}_k))$$

- $\bar{x_k} = x_k$ (subgradient iteration) or $\bar{x} = x_{k+1}$ (proximal iteration).
- $\sum_{k=0}^{\infty} \alpha_k = \infty$ and $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$ (diminishing stepsize is essential).

Two way progress

- Progress to feasibility: The projection $P_{l_k}(.)$
- Progress to optimality: The subgradient or proximal iteration $x_k \alpha_k \nabla f_{i_k}(\bar{x}_k)$

Visualization of Convergence

• Progress to feasibility should be faster than progress to optimality. Gradient stepsizes α_k should be \ll than the feasibility stepsize of 1.

Sampling Schemes for Constraint Index I_k

Nearly independent sampling

$$\inf_{k\geq 0} \operatorname{Prob} (I_k = X_I | \mathcal{F}_k > 0), \qquad I = 1, 2 \dots q$$
 where \mathcal{F}_k is the history of the algorithm up to time k .

Cyclic Sampling

Deterministic or random reshuffling every q iterations.

Most distant constraint sampling

$$I_k = \arg\max_{l=1,2...q} ||x_k - P_{X_l}(x_k)||$$

Markov Sampling

Generate I_k as the state of an ergodic Markov chain with states $1,2,\ldots q$.

Sampling Schemes for Cost Component Index i_k

Random independent uniform sampling

Each index $i \in \{1, 2, ... m\}$ is chosen with equal probability 1/m, independently of earlier choices.

Cyclic Sampling

Deterministic or random reshuffling every m iterations.

Markov Sampling

Generate i_k as the state of a Markov chain with states 1, 2, ..., m, and steady state distribution $\{1/m, 1/m ..., 1/m\}$

Convergence Theorem

Assuming Lipschitz continuity of the cost, linear regularity of the constraint, and nonemptiness of the optimal solution set, $\{x_k\}$ converges to some optimal solution x^* w.p 1, under any combination of the preceding sampling schemes.

Idea of the convergence proof

There are two convergence processes taking place:

- **Progress towards feasibility**, which is fast (geometric because of the linear regularity assumption).
- Progress towards optimality, which is slower (because of the diminishing stepsize α_k).
- The two-time scale convergence analysis idea is encoded in a coupled supermartingale convergence theorem, which governs the evolution of two measures of progress

 $E[dist^2(x_k, X)]$: Distance to the constraint set, which is fast.

 $E[dist^2(x_k, X^*)]$: Distance to the optimal solution set, which is slow.

Concluding Remarks

- Incremental methods exhibit interesting convergence behavior, and can lead to great efficiencies for large-sum cost functions.
- Incremental proximal methods enhance reliability and can be combined seamlessly with incremental gradient / subgradient methods.
- Incremental proximal methods when dualized yield incremental augmented Lagrangian methods that can take advantage of constrained problem separability.
- Constraint projection variants provide flexibility and enlarge the range of potential applications.
- Incremental methods are amenable to distributed asynchronous implementation.

 Reference: Incremental Gradient, Subgradient and Proximal Methods for Convex Optimization: A Survey

Thank you!