Analyse fonctionnelle et distributions

2023-2024

Table des matières

1	\mathbf{Esp}	aces localement convexes	5
	1.1	Rappels de topologie	5
		1.1.1 Axiomes	5
		1.1.2 Cas particulier d'espaces topologiques : espaces métriques	5
		1.1.3 Comparaison des topologies	6
		1.1.4 Espaces vectoriels topologiques	7
	1.2	Semi-normes et espaces localement convexes	8
		1.2.1 Semi-normes sur X espace vectoriel	8
	1.3	Pourquoi "localement convexe"?	9
		1.3.1 Théorème de Hahn-Banach	11
	1.4	Espaces localement convexes métrisables, espaces de Fréchet	12
		1.4.1 Topologies définies par une distance	12
		1.4.2 Espace de Schwarz $\mathscr{S}(\mathbb{R}^d) \subset \mathcal{C}^{\infty}(\mathbb{R}^d)$	16

Chapitre 1

Espaces localement convexes

1.1 Rappels de topologie

J. Dieudonné 1 et 2.

Reed-Simon 1, 2 et 4.

Brézis, "Analyse fonctionnelle"

Soit X ensemble. Soit (X, \mathcal{T}) espace topologique où $\mathcal{T} \subset \mathcal{P}(X)$.

 \mathcal{T} parcourt l'ensemble des voisinages de x où x est un point quelconque de X.

1.1.1 Axiomes

- 1. Soient $x \in X$ et V' voisinage de x. Si $V \supset V'$ alors V est un voisinage de X.
- 2. $\bigcap_{\text{finie}} V_i$ est un voisinage de $x, \bigcap_{\text{finie}} V_i \in \mathcal{T}$, mais $\bigcap_{\varepsilon > 0} V_{\varepsilon} \neq \emptyset$ n'est pas un voisinage de 0.
- 3. $\bigcap_{i \in I} V_i$ est un voisinage de x.

Définition 1.1.1 (Ouvert). Ω ouvert si et seulement si Ω est voisinage de chacun de ses points.

Exemple 1. (-1,1) ouvert tandis que [-1,1) non ouvert car -1 n'a pas de voisinage.

 $V(x)=(x-\varepsilon,x+\varepsilon)$ est une base de voisinage pour la topologie usuelle de \mathbb{R} .

Exercice 1. On peut définir axiomatiquement \mathcal{T} à partir de ses ouverts.

Définition 1.1.2 (Fermé). On dit que F est un fermé si et seulement si F^C est un ouvert.

1.1.2 Cas particulier d'espaces topologiques : espaces métriques

Définition 1.1.3 (Espace métrique, distance).

X est un ensemble, $d: X \times X \to \mathbb{R}^+$ distance sur X si et seulement si :

1. d(x,y) = 0 si et seulement si x = y;

Remarque. Si on a seulement $x = y \implies d(x, y) = 0$, alors d est un écart.

- 2. d(x,y) = d(y,x) (symétrie);
- 3. $d(x,y) \le d(x,z) + d(z,y)$ (inégalité triangulaire). De ce fait, $|d(x,z) d(y,z)| \le d(x,y)$.

Exemple 2. 1. Dans \mathbb{R}^n , d(x,y) = ||x - y||.

 $2.\ X$ ensemble. On définit d de la façon suivante :

$$\forall x, y \in X, d(x, y) = \begin{cases} d(x, y) = 0 \text{ si } x = y\\ d(x, y) = 1 \text{ si } x \neq y. \end{cases}$$

Il s'agit de la distance triviale.

Si x, y, z distincts alors $d(x, y) \le d(x, z) + d(z, y)$.

1.1.3 Comparaison des topologies

Soient X un ensemble et $\mathcal{T}, \mathcal{T}'$ des topologies sur X.

Définition 1.1.4 (Plus fine). On dit que \mathscr{T}' est plus fine que \mathscr{T} et on note $\mathscr{T}' \prec \mathscr{T}$ si et seulement si $\mathscr{T} \subset \mathscr{T}'$.

On dit aussi que \mathcal{T}' est plus forte que \mathcal{T} .

Remarque. Si $\mathcal{T}' \prec \mathcal{T}$, il y a plus d'ouverts dans \mathcal{T}' que dans \mathcal{T} (idem pour les fermés).

Démonstration. Soit Ω ouvert dans X. On a $\Omega \in \mathscr{T} \implies \Omega \in \mathscr{T}'$.

Soit
$$F$$
 un fermé dans X . On a $F \in \mathcal{T}$, mais $\Omega = F^C \in \mathcal{T} \implies F^C \in \mathcal{T}'$, donc $F \in \mathcal{T}'$.

Formulations équivalentes

- 1. On suppose que $\mathscr{T}' \prec \mathscr{T}$. Si $\forall x \in X$, U est un voisinage de x pour \mathscr{T} , alors U voisinage de x pour \mathscr{T}' , car si U est un ouvert de \mathscr{T} , alors U est un ouvert de \mathscr{T}' .
- 2. Pour l'application identité définie comme suit

$$id: (X, \mathscr{T}') \longrightarrow (X, \mathscr{T}),$$

on a $\mathcal{T}' \prec \mathcal{T}$ si et seulement si id est continue.

Par exemple, prenons $X = \{f : [0,1] \to \mathbb{R}\}$. On prend \mathscr{T} topologie de la convergence simple, i. e. f_n converge vers f simplement si $\forall x \in [0,1], f_n(x) \to f(x)$.

Ouverts de Ω

$$\Omega_{a,\varepsilon} = \{ f \in X \mid \sup_{i=1,\dots,k} |f(a_i)| < \varepsilon \},$$

avec $a = a_0, \ldots, a_k \in [0, 1]$ et $\varepsilon > 0$.

 $\Omega_{a,\varepsilon}$ est un voisinage de 0 (la fonction nulle) dans X.

Pour $f_0 \in X$, $\Omega_{a,\varepsilon} + f_0$ est une base de voisinage de f_0 , car X est un espace vectoriel (on agit par translation).

On considère maintenant la topologie de la convergence uniforme \mathcal{T}' .

 $\Omega_\varepsilon = \{f \in X, \sup_{x \in [0,1]} |f(x)| < \varepsilon\} \text{ est un voisinage de } 0 \text{ (la fonction nulle)}.$

Proposition 1.1.1. \mathscr{T}' est plus fine que \mathscr{T} , ie $\mathscr{T} \subset \mathscr{T}'$.

Démonstration. Soit $\Omega_{a,\varepsilon} \in \mathscr{T}$.

Si
$$f \in \Omega_{\varepsilon}$$
, alors

$$\forall x \in [0, 1], |f(x)| < \varepsilon,$$

ce qui implique que

$$\forall i \in \{1, \dots, k\}, |f(a_i)| < \varepsilon \text{ (car c'est vrai pour tout } x).$$

Donc Ω_{ε} est un voisinage de 0 dans $\mathscr{T}.$ On a ainsi démontré que \mathscr{T}' est plus fine que $\mathscr{T}.$

On considère l'espace des fonctions continues \mathcal{C}^0 avec la norme

$$||f||_0 = \sup |f(x)|$$

et l'espace des fonctions de classe \mathcal{C}^1 \mathcal{C}^1 avec la norme

$$||f||_1 = \sup |f(x)| + \sup |f'(x)|.$$

La topologie sur \mathcal{C}^1 est plus fine que celle sur \mathcal{C}^0 .

Démonstration. On a pour tout f,

$$||f||_0 \le ||f||_1.$$

Ainsi si

$$||f||_1 < \varepsilon,$$

alors

$$||f||_0 < \varepsilon$$
.

Par conséquent, $\{f, \|f\|_1 < \varepsilon\} \subset \{f, \|f\|_0 < \varepsilon\}$.

Donc $\mathcal{T}' \prec \mathcal{T}$.

On sait également que si U est un voisinage de 0 pour \mathscr{T} , alors U est un voisinage de 0 pour \mathscr{T}' . \square

Topologie métrisable (exemples)

1. Topologie grossière $\mathcal{T} = \{\emptyset, X\}$. C'est la topologie la moins fine.

Remarque. $\mathcal{T}' = \mathcal{P}(X)$ est la topologie la plus fine.

Vérifions si la topologie grossière est métrisable dans différents cas.

- Si $X = \{a\}$, on a d(a, a) = 0. Le seul voisinage de a est $X = \{a\}$. Donc \mathscr{T} est métrisable.
- Supposons que $X = \{a, b\}$. Mais $\mathscr T$ n'est plus métrisable, avec d(a, b) = 1 (distance triviale). Raisonnons par l'absurde. Si $\mathscr T$ était métrisable, $\mathscr T$ devrait contenir un ouvert Ω tel que $a \in \Omega$ et $b \notin \Omega$. Or $\mathscr T = \{\emptyset, X\}$, donc c'est impossible.

Pour \mathcal{T}' , on choisit la distance d telle que d(x,y)=0 ou 1. Est-ce que \mathcal{T}' est métrisable?

2. Prenons \mathcal{T} telle que $\mathcal{T} = \{\emptyset, \{a\}, X\}$.

On suppose que X contient au moins deux éléments. Dans ce cas, \mathscr{T} est une topologie sur X non métrisable, car si d(a,b)=1, avec $b\neq a$, alors dans \mathscr{T} il n'existe pas de boule ouverte qui contient $\{b\}$ sans contenir $\{a\}$.

3. Considérons $X=\{a,b\}$ muni de la topologie $\mathscr{T}=\{\emptyset,\{a\},\{b\},X\}=\mathscr{P}(X).$

On a d(a,b) = 1, car $a \neq b$.

De ce fait:

- $\{a\}$ voisinage de a qui ne contient pas b ($\{a\} = \{x \text{ tel que } d(x, a) < 1\}$);
- $\{b\}$ voisinage de b qui ne contient pas a.

1.1.4 Espaces vectoriels topologiques

Dans le cas où (X, \mathcal{T}) est un espace vectoriel topologique, il suffit de connaître les voisinages de 0 et on agit par translation pour déterminer les voisinages de n'importe quel $x \in X$.

Définition 1.1.5 (Continuité). Soient X,Y deux espaces vectoriels topologiques et $f:X\to Y$ une application. On considère :

$$(U_a)_{a \in A}$$
 voisinage de 0 dans X
 $(V_b)_{b \in B}$ voisinage de 0 dans Y

f est continue si pour tout $V = V_b + f(x_0)$ dans Y, il existe $U = \bigcap_{finie} (U_a + x_0)$ voisinage de x dans X tel que $x \in U \implies f(x) \in V$.

Cas particulier : X normé

Définition 1.1.6 (Norme). $\|\cdot\|$ est une norme sur X si

- 1. $||x|| = 0 \iff x = 0 \ (séparation)$:
- 2. $\|\lambda x\| = |l| \|x\|$ (absolue homogénéité);
- 3. $||x+y|| \le ||x|| + ||y||$ (inégalité triangulaire).

De cette norme, on construit la distance d telle que

$$\forall x, y \in X, d(x, y) = ||x - y||.$$

Voisinages de 0.

 $(U_a) = B(0, a)$

 $A = \mathbb{R}^+$.

 $-f: X \to Y$ continue en $x_0, \forall V = V_b + f(x_0), \exists U = B(0, \delta) + x_0, f(U) \subset V.$

-X,Y EVN.

 $\forall \varepsilon > 0, \exists \delta > 0, f(B(0, \delta) + x_0) \subset B(f(x_0), \varepsilon).$

1.2 Semi-normes et espaces localement convexes

1.2.1 Semi-normes sur X espace vectoriel

Définition 1.2.1 (Semi-norme). L'application $\rho: X \to \mathbb{R}^+$ est une semi-norme si :

- 1. $\rho(0) = 0$;
- 2. $\rho(\lambda x) = |\lambda| \rho(x)$;
- 3. $\rho(x+y) \le \rho(x) + \rho(y)$.

X est un espace vectoriel \mathbb{R} ou \mathbb{C} .

Remarque. \triangle On n'a pas forcément $\rho(x) = 0 \implies x = 0$.

Exemple 3. 1. Si ρ est une norme, c'est aussi une semi-norme.

2.
$$X = \mathcal{C}^0([0,1], \mathbb{R} \ (ou \ \mathbb{C}))$$
. On prend $a = (a_0, \ldots, a_k) \subset [0,1]$. On définit

$$\rho_a(f) = \sup_{0 \le i \le k} |f(a_i)|.$$

3. Topologie faible. X est un espace vectoriel et X' est son dual (espace contenant les formes linéaires sur X).

Soit l'une forme linéaire dans X'. Alors

$$p(x) = |\langle l, x \rangle|.$$

Définition 1.2.2 (Famille de semi-normes séparée). Soit $(\rho_a)_{a\in A}$ une famille de semi-normes. On dit que $(\rho_a)_{a\in A}$ sépare les points (ou est séparée) si et seulement si

$$\forall a \in A, \rho_a(x) = 0 \implies x = 0.$$

Définition 1.2.3 (Espace localement convexe (ELC)). X est un espace localement convexe si et seulement si X est muni d'une famille de semi-normes qui séparent les points.

Proposition 1.2.1. Si X est un espace localement convexe, alors X est un espace vectoriel topologique pour la topologie définie par ρ_a .

Démonstration. On note \mathcal{T} la topologie définie par la famille de semi-normes $(\rho_a)_{a\in A}$.

Remarque (Personnelle). On cherche à montrer que les $\mathcal{O}_{a,\varepsilon}$ forment une topologie. On va vérifier les axiomes de topologie.

Dans ce cas, les ouverts $\mathcal{O} \in \mathcal{T}$ sont $\mathcal{O} = \mathcal{O}_{a,\varepsilon}, a \in A, \varepsilon > 0$ définis ci-dessous :

$$\mathcal{O}_{a,\varepsilon} = \{ x \mid \rho_a(x) < \varepsilon \}$$

 $\mathcal{O}_{a,\varepsilon}$ une base de voisinages de 0.

Les voisinages de x sont donnés par translation :

$$x + \mathcal{O}_{a,\varepsilon} = \{x + y, y \in \mathcal{O}_{a,\varepsilon}\}.$$

On montre facilement que $\bigcap_{\text{finie}} \mathcal{O}_{a,\varepsilon} \in \mathscr{T}$ et $\bigcup_{\text{quelconque}} \mathcal{O}_{a,\varepsilon} \in \mathscr{T}$.

Proposition 1.2.2. \mathcal{T} est la topologie la moins fine sur X qui rend continues

$$(x,y) \mapsto x + y \ et \ (\lambda,x) \to \lambda x.$$

Il y a donc une compatibilité avec la structure des espaces vectoriels.

Démonstration. 1. \mathscr{T} rend continues les deux opérations de X. On a en effet

$$\rho_a(x+y) < \rho_a(x) + \rho_a(y)$$

Il suffit de prendre $\rho_a(x) < \frac{\varepsilon}{2}$ et $\rho_a(x) < \frac{\varepsilon}{2}$, on obtient $\rho_a(x+y) < \varepsilon$. On a $\rho(\lambda x) = |\lambda|\rho(x)$ et on démontre ce résultat par analogie.

2. La moins fine (en exercice).

Théorème 1. La topologie de X espace localement convexe est Hausdorff, i. e. elle sépare les points.

Définition 1.2.4 (Hausdorff). (X, \mathcal{T}) est de Hausdorff si et seulement si pour tout $x, y \in X$ tel que $x \neq y$, il existe \mathcal{O}_x et \mathcal{O}_y voisinages de x et de y tels que

$$\mathcal{O}_x \cap \mathcal{O}_y = \emptyset.$$

Exemple 4. On prend $X = \{a, b\}$, $\mathcal{T} = \{\emptyset, \{a\}, \{b\}, X\}$. On a $\{a\} \cap \{b\} = \emptyset$. Donc (X, \mathcal{T}) est séparée.

Démonstration du théorème 1. Par contraposée, on prend $y \neq 0$ et x = 0.

Si X est un espace localement convexe, alors il existe $a \in A$ tel que $\rho_a(y) = \varepsilon > 0$. On pose

$$V_x = \left\{ z, \rho_a(z) < \frac{\varepsilon}{2} \right\} \text{ et } V_y = \left\{ z, \rho(z - y) < \frac{\varepsilon}{2} \right\}.$$
 (1.1)

Par l'inégalité triangulaire, on obtient $V_x \cap V_y = \emptyset$, car

$$\rho_a(x-y) > |\rho_a(x) - \rho_a(y)| > \left| \frac{\varepsilon}{2} - \varepsilon \right| = \frac{\varepsilon}{2} > 0.$$

1.3 Pourquoi "localement convexe"?

Définition 1.3.1. *Soit* X *un* \mathbb{R} *ou* \mathbb{C} *espace vectoriel.*

1. On dit que $C \subset X$ est convexe si

$$\forall x, y \in C, \forall t \in [0, 1], z = tx + (1 - t)y \in C.$$

2. On dit que $B \subset X$ est balancé (sur \mathbb{R}) ou cerclé (sur \mathbb{C}) si

$$\forall \lambda \in \mathbb{R}, |\lambda| = 1 \implies \forall x \in B, \lambda x \in B.$$

3. On dit que $E \subset X$ est équilibré si

$$\forall \lambda \in \mathbb{R} \ ou \ \mathbb{C}, |\lambda| \leq 1 \implies \forall x \in E, \lambda x \in E.$$

FIGURE 1.1 – Ensemble convexe

4. On dit que A est absorbant si

$$\bigcup_{t > 0} tA = X.$$

Exemple 5. 1. Si X est un espace vectoriel normé, A = B(0,1) et $x \in X$, on a $\frac{x}{\|x\|} \in B(0,1)$. Alors $x \in \|x\|B(0,1)$.

2. $Si\ 0 \in C$ convexe, alors C est équilibré si et seulement si C est balancé.

Démonstration. On suppose que C est balancé. Pour $x \in C \implies -x \in C$, donc $[-x,x] \in C$ par convexité.

 ${f Th\'eor\`eme}$ 2. Soit X un espace vectoriel topologique. Les assertions suivantes sont équivalentes :

- 1. X est un espace localement convexe (réel ou complexe);
- 2. Il existe une base de voisinages de $0 \in X$ qui sont convexes, balancés (cerclés), absorbants.

 $\label{eq:demonstration.} D\'{e}monstration. \qquad 1. \text{ Si } X \text{ est un espace localement convexe, alors une base de voisinages de 0 est donnée par }$

$$\mathcal{O}_{a,\varepsilon} = \{ x \in X \mid \rho_a(x) < \varepsilon \}$$

Les $\mathcal{O}_{a,\varepsilon}$ sont convexes, balancés et absorbants (TD).

2. On utilise la jauge de Minkowski 1.3.2.

On pose

$$\rho_C(x) = \mu_C(x).$$

et on vérifie que ρ_C est une semi-norme. Grâce au lemme 1.3, on obtient les résultats suivants :

- (a) $\rho_C(x+y) \leq \rho_C(x) + \rho_C(y)$, car C est convexe;
- (b) $\rho_C(\lambda x) = \lambda \rho_C(x)$ si $\lambda > 0$ et $\rho_C(\lambda x) = |\lambda| \rho_C(x)$, car C est cerclé.

X muni de ρ_C est un espace localement convexe.

Définition 1.3.2 (Jauge de Minkowski). Soit X espace vectoriel réel ou complexe. On suppose que C tel que $0 \in C$ est absorbant. Alors la jauge de Minkowski est définie comme suit :

$$\mu_C(x) = \inf\{\alpha > 0, x \in \alpha C\}.$$

Remarque. Si C est absorbant, alors $\forall x \in X$, $\mu_C(x) < \infty$.

Lemme. Soit $C \subset X$ absorbant tel que $0 \in C$.

- 1. Si $\lambda \geq 0$, $\mu_C(\lambda x) = \lambda \mu_C(x)$;
- 2. Si C est convexe, alors $\mu_C(x+y) \leq \mu_C(x) + \mu_C(y)$;
- 3. Si C est cerclé, alors $\mu_C(\lambda x) = |\lambda| \mu_C(x)$;
- 4. $\{x \in X, \mu_C(x) < 1\} \subset C \subset \{x \in X, \mu_C(x) \le 1\}.$

FIGURE~1.2-La~jauge~de~Minkowski

1.3.1 Théorème de Hahn-Banach

Il y a la forme analytique et la forme géométrique de ce théorème.

Théorème 3 (De Hahn-Banach, forme analytique). Pour simplifier, on prend X espace vectoriel $sur \mathbb{R}$. Soit $p: X \longrightarrow \mathbb{R}$ qui vérifie :

- $\star \ \forall x \in X, \forall \lambda > 0, p(\lambda x) = \lambda p(x);$
- $\star \ \forall x, y \in X, \ p(x+y) \le p(x) + p(y).$

Soient Y un sous espace vectoriel de X et l une forme linéaire sur Y qui vérifie

$$\forall x \in Y, l(x) < p(x), \forall x \in Y.$$

Alors (prolongement) il existe L forme linéaire sur X telle que $L_{|Y} = l$ et

$$\forall x \in X, L(x) \le p(x).$$

On l'applique aux espaces vectoriels normés, espaces localement convexes,...

Théorème 4 (Norme sur un espace dual). Soit X espace vectoriel normé, X' formes linéaires continues sur X, X' est un espace vectoriel normé. La norme sur X' est définie de la façon suivante :

$$\|L\|_{X'} \stackrel{\text{def}}{=} \sup_{\substack{x \in X \\ \|x\| = 1}} \left| \langle L, x \rangle \right| = \sup_{x \in X \backslash \{0\}} \left| \left\langle L, \frac{x}{\|x\|} \right\rangle \right| = \sup_{x \in X \backslash \{0\}} \frac{\left| \langle L, x \rangle \right|}{\|x\|}.$$

Exercice 2. Montrer que $\|\cdot\|_{X'}$ est une norme.

Si X est un espace vectoriel normé complet (de Banach), alors X' l'est aussi.

Corollaire (Prolongement isométrique de l sur Y). Soit X espace vectoriel normé, $Y \subset X$ sous espace vectoriel de X et $l \in Y'$ avec

$$||l|| = \sup_{\substack{||y|| \le 1 \\ y \in Y}} |\langle l, y \rangle|.$$

Alors il existe un prolongement L de l de même norme

$$\sup_{\substack{x \in X \\ \|x\| \le 1}} |\langle l, x \rangle| = \sup_{\substack{y \in Y \\ \|y\| \le 1}} |\langle l, y \rangle|.$$

Démonstration. Par le théorème de Hahn-Banach, on pose p telle que $p(x) = ||l||_{Y'}||x||$ (l'application définie ainsi vérifie les propriétés de p nécessaires à l'application du théorème).

Par Hahn-Banach, il existe L une forme linéaire sur X telle que

$$L(x) = \langle L, x \rangle \le p(x) = ||l||_{Y'} ||x||.$$

Mais

$$\langle L, -x \rangle \le ||l||_{Y'}|| - x||,$$

donc

$$|\langle L, x \rangle| \le ||l||_{Y'} ||x||.$$

Ainsi, en divisant par ||x||, on obtient le résultat suivant :

$$\forall x \in X, \left| \left\langle L, \frac{x}{\|x\|} \right\rangle \right| \le \|l\|_{Y'}.$$

Or si on prend $x \in Y$,

$$\left| \left\langle L, \frac{x}{\|x\|} \right\rangle \right| \le \|l\|_{Y'} = \sup_{y \in Y \setminus \{0\}} \left| \left\langle L, \frac{y}{\|y\|} \right\rangle \right|.$$

Comme $Y \subset X$ (ce qui entraı̂ne que $\sup_{y \in Y \setminus \{0\}} \left| \left\langle L, \frac{y}{\|y\|} \right\rangle \right| \leq \sup_{x \in X \setminus \{0\}} \left| \left\langle L, \frac{x}{\|x\|} \right\rangle \right|$), on a donc égalité, d'où l'isométrie.

Corollaire. $\forall x_0 \in X$ espace vectoriel réel, il existe $L_0 \in X'$, $||L_0||_{X'} = ||x_0||_X$.

Démonstration. $Y = \mathbb{R}x_0$. Soit $l(tx_0) \stackrel{\text{def}}{=} t ||x_0||^2$ forme linéaire continue sur Y. Alors, en posant t = 1, on obtient

$$||l||_{Y'} = ||x_0||$$

et, par le théorème de Hahn-Banach,

$$||L_0||_{X'} = ||x_0||_X.$$

Exercice 3. Traduire Hahn-Banach dans le cas où X est un espace localement convexe.

Théorème 5 (De Hahn-Banach, forme géométrique). Soit X espace vectoriel normé (ou espace localement convexe). Soient $A, B \subset X$ convexes et disjoints.

- 1. On suppose que A est ouvert. Alors il existe un hyperplan affine (d'équation $\langle L, x \rangle = constante$) \mathscr{H} qui sépare au sens large A et B.
- 2. Si A est fermé, B est compact, alors il existe \mathcal{H} hyperplan qui sépare A et B au sens strict.

1.4 Espaces localement convexes métrisables, espaces de Fréchet

1.4.1 Topologies définies par une distance

On rappelle la définition 1.1.3.

Définition 1.4.1 (Distances équivalentes). On dit que d_1 est équivalente à d_2 si et seulement si il existe C > 0 tel que

$$\frac{1}{C}d_1(x,y) \le d_2(x,y) \le Cd_1(x,y).$$

FIGURE 1.3 –
$$A = \{x_1 < 0\}, B = \{x_2 \ge 0\}, \mathcal{H} = \{x_1 = 0\}.$$

 $d_1 \sim d_2 \implies (X,d_1) \simeq (X,d_2),$ mais la réciproque est fausse.

Exemple 6. On prend un espace métrique (X, d) avec les distances

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)} \ et \ \delta'(x,y) = \inf(1,d(x,y)).$$

Ces deux distances sont équivalentes entre elles.

Démonstration.

1. Montrons que $(X,d) \sim (X,\delta')$. On remarque d'abord que

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)} \le d(x,y),$$

ce qui veut dire que $(X, d) \prec (X, \delta)$.

Prenons $f(t) = \frac{t}{1+t}$. La fonction f est une bijection de \mathbb{R}^+ dans [0,1]. En effet, montrons qu'il existe $g:[0,1] \to \mathbb{R}^+$ telle que $g \circ f = f \circ g = \mathrm{id}$.

On a

$$\frac{t}{1+t} = s \implies t = ts + s \implies t = \frac{s}{1-s}.$$

Donc $d(x,y) = \frac{\delta(x,y)}{1-\delta(x,y)}$. Donc si $d(x,y) < \varepsilon$, alors $d(x,y) < \frac{\varepsilon}{1-\varepsilon}$. Donc $(X,\delta) \prec (X,d)$.

2. Montrons que $\delta \sim \delta'$.

On a

$$\frac{d}{1+d} \le \begin{cases} 1 \\ \delta \end{cases} ,$$

donc

$$\delta(x,y) \le \delta'(x,y).$$

Mais $\delta' \leq 2\delta$.

Si $d \le 1$ et $\delta' = d$, alors $d \le 2d$.

Si $d \ge 1$ et $\delta' = 1$, alors $1 \le 2d$.

- 3. Montrons que δ est une distance.
 - (a) Montrons l'inégalité triangulaire. Si $d(x,y) \leq d(x,z) + d(z,y)$, montrons que $\delta(x,y) \leq \delta(x,z) + \delta(z,y)$.

Est-ce que
$$f(d(x,y)) \le f(d(x,z)) + f(d(z,y))$$
?

- i. f est croissante, donc $f(d(x,y)) \leq f[d(x,z)+d(z,y)]$. Il suffit de voir que $f(t) \leq f(u)+f(v)$.
- ii. Montrons la sous-additivité de f. Posons

$$v \mapsto \varphi(v) = f(u+v) - f(u) - f(v).$$

On a $\varphi(0) = 0$, car f(0) = 0 et $\varphi(v) = f'(u+v) - f'(v) < 0$, car f est une fonction croissante.

Sous quelles conditions un espace localement convexe est métrisable?

On remarque par exemple que $\mathscr{F}([0,1],\mathbb{R})$ muni de la topologie de la convergence simple n'est pas métrisable. Plus généralement, les topologies faibles ne sont pas métrisables, sauf si on travaille en dimension finie. De plus, X muni de la topologie grossière n'est pas métrisable (non séparée).

Proposition 1.4.1. Soit X un espace localement convexe (donc séparé). Alors les assertions suivantes sont équivalentes.

- 1. X est métrisable.
- 2. Il existe une base dénombrable de voisinages de 0 dans X, et ce pour tout $x \in X$.
- 3. La topologie de X est engendrée par une famille dénombrable de semi-normes.

Démonstration. 1. (1) \Longrightarrow (2). La topologie sur X est équivalente à (X, d). Soit (X, d) un espace métrique. Il suffit de poser

$$\mathcal{O}_{\frac{1}{n}} = \left\{ x \mid d(x,0) < \frac{1}{n} \right\} \ (\mathbb{R} \text{ est archimédien}).$$

Alors $\forall \varepsilon > 0, \exists n$ tel que $\mathcal{O}_{\frac{1}{n}} \subset \mathcal{O}_{\varepsilon}$. Donc $x + \mathcal{O}_{\frac{1}{n}}$ est une base dénombrable de voisinages de x.

2. (2) \Longrightarrow (3). On sait que $\mathcal T$ topologie de X est donnée par une famille de semi-normes. Les voisinages de 0 dans X sont donnés par

$$\mathcal{O}_{a,\varepsilon} = \bigcap_{i=1}^{n} \mathcal{O}_{\varepsilon,a_i}, \text{ avec } i \in \{1,\dots,n\}.$$

On rappelle que $\mathcal{O}_{\varepsilon,a_i} = \{x \mid \rho_{a_i} < \varepsilon\}.$

On peut choisir $\varepsilon = \frac{1}{n}$. On sait qu'il existe une base dénombrable de voisinages de 0 dans X. Soit U_n une base de voisinages dénombrable de 0. On pose

$$\rho_n(x) = \mu_{U_n}(x).$$

On prend les U_n convexes, balancés, absorbants (c'est possible, car X est un espace localement convexe).

- $3. (3) \Longrightarrow (1).$
 - (a) Soit (ρ_n) une famille dénombrable de semi-normes sur X. On pose

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{\rho_n(x-y)}{1 + \rho_n(x-y)}.$$

Montrons que $(X, ELC) \prec (X, d)$. Soit $U \in \mathcal{T}$. On se ramène aux voisinages de 0. On a

$$U = \bigcap_{\text{finie}} \mathcal{O}_{\varepsilon,a}, a \in A.$$

Comme il existe une base dénombrable de voisinages, on peut choisir

$$U_{\varepsilon} = \bigcap_{j=1}^{N} = \{x \mid \rho_j(x-0) < \varepsilon\}, \text{ avec } A = \mathbb{N}.$$

Ce voisinage est inclus dans $\{x \mid \sum \rho_j(x-0) \leq N\varepsilon\}.$

Montrons que U est un voisinage de x pour la topologie métrique (X, d).

Soit $\varepsilon > 0$. On pose $d(x,0) = \left(\sum_{1}^{N} + \sum_{N+1}^{\infty}\right) \frac{\rho_n}{1+\rho_n}$. Or N est tel que

$$\sum_{N+1}^{\infty} 2^{-n} < \varepsilon \implies \sum_{N+1}^{\infty} 2^{-n} \frac{\rho_n}{1 + \rho_n} < \varepsilon.$$

De plus,

$$d(x,y) \le \varepsilon + \sum_{n=1}^{N} \frac{d_n}{1 + d_n} < \varepsilon + \sum_{n=1}^{N} d_n(x,y).$$

$$\tag{1.2}$$

Or $\rho_n(x-y) < \varepsilon$, car $x \in y + U_{\varepsilon}$.

Donc 1.2 devient

$$d(x,y) \le \varepsilon + N\varepsilon$$
 avec N fixé.

Donc $\mathcal{T} \prec (X, d)$.

(b) Montrons que $(X, d) \prec \mathcal{T}$. On doit majorer $\rho_m(x - y)$. Or

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{\rho_n(x-y)}{1 + \rho_n(x-y)} \ge 2^{-m} \frac{\rho_m(x-y)}{1 + \rho_m(x-y)}.$$

 Et

$$2^m d(x,y) \ge \frac{\rho_m(x-y)}{1 + \rho_m(x-y)} \ge f(t).$$

Donc on a $\rho_m \leq g(2^m d(x,y))$, où g est la réciproque de $t \mapsto \frac{1}{1+t}$.

Proposition 1.4.2. Soit X un espace localement convexe qui vérifie l'une des propriétés énoncées dans la proposition 1.4.1 (i. e. métrisable). On note la topologie de X ELC par \mathcal{T} . Alors X est complet pour \mathcal{T} si et seulement si (X,d) est complet.

Démonstration. Cette proposition se démontre comme 1.4.1.

Définition 1.4.2. Soit X un espace localement convexe. On dit que X est un espace de Fréchet si X est métrisable et complet.

Exemple 7.

- 1. Les espaces localement convexes qui ne sont pas des Fréchet.
 - (a) Non métrisables. $\mathscr{F}([0,1],\mathbb{R})$ muni de la topologie de la convergence simple, les topologies faibles, . . .
- 2. Les espaces localement convexes qui sont des Fréchet. Les espaces de Banach, par exemple $\mathscr{F}([0,1],\mathbb{R})$ muni de la topologie de la convergence uniforme, $\mathcal{C}_0^{\infty}(K),\ldots$

Espace de Schwarz $\mathscr{S}(\mathbb{R}^d) \subset \mathcal{C}^\infty(\mathbb{R}^d)$

$$\varphi \in \mathscr{S}(\mathbb{R}^d) \iff \rho_{\alpha,\beta}(\varphi) = \sup_{\mathbb{R}} |x^{\alpha} D_{\varphi}^{\beta}| < \infty.$$

 $\varphi\in\mathscr{S}(\mathbb{R}^d)\iff\rho_{\alpha,\beta}(\varphi)=\sup_{\mathbb{R}}\left|x^\alpha D_\varphi^\beta\right|<\infty.$ Montrons que $\mathscr{S}(\mathbb{R})$ est complet. On va regarder $\rho_{0,0},\rho_{0,1},\rho_{1,0},\rho_{1,1},\dots$

1.
$$\rho_{0,0}(\varphi_{p+q}-\varphi_p)<\varepsilon$$
, donc $\varphi_p\longrightarrow\varphi$, donc

$$\sup_{\mathbb{R}} |\varphi_{p+q}(x) - \varphi_p(x)| < \varepsilon.$$

En particulier pour tout $K \subset \mathbb{R}$, φ_n est de Cauchy dans $\mathcal{C}^0(K)$. Or $\mathcal{C}^0(K)$ est complet, donc $\varphi_n \xrightarrow[\text{uniformément}]{} \varphi$. Comme K est arbitraire, elle converge localement sur tout \mathbb{R} . On a

$$\rho_{0,0}(\varphi_{p+q}-\varphi_p)<\varepsilon,$$

donc

$$\rho_{0,0}(\varphi-\varphi_p)<\varepsilon.$$

Donc φ_p converge pour $\rho_{0,0}$.