

Page 1 of 136

Full SAR Test Report

Applicant Name: Shanghai Longcheer3g Technology Co., Ltd

Applicant Address: No.1, Building 5, 299 Bisheng Rd, Zhangjiang Hi-Tech Park, Pudong,

Shanghai, P.R. China

The following samples were submitted and identified on behalf of the client as:

Sample Description	Mobile phone		
SGS Ref	GSM10170698S01		
Model Number	W660		
FCC ID	WLPW660		
Final Software Version Tested	LQARZ01_240005_0.0.4		
Final Hardware Version Tested	W660_344		
Date Initial Sample Received	03-07,2010		
Testing Start Date	03-08,2010		
Testing End Date	03-17,2010		

According to:

FCC 47CFR § 2.1093, IEEE Std C95.1-2005

IEEE1528-2003, OET Bulletin 65 Supplement C

Comments/ Conclusion:

The configuration tested complied to the certification requirements specified in this report. Signed for on behalf of SGS

Project Manager

Technical Manager

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/terms_and_conditions.htm. and, for electronic format documents to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained heron reflects the company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligation under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorised alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Table of Contents

Cha	ange Hi	istory		4	
1.	Repo	rt Ove	rview	5	
2.	Test I	Lab De	eclaration or Comments	5	
3.	Appli	Applicant Declaration or Comments5			
4.	Full T	est Re	eport	5	
5.	Partia	al Test	Report	5	
6.	Meas	ureme	ent Uncertainty	5	
7.	Testir	ng Env	vironment	7	
8.	Prima	ary Tes	st Laboratory	7	
9.	Detai	Is of A	pplicant	7	
10.	Detai	Is of N	lanufacturer	7	
11.	Other	testir	ng Locations	7	
12.	Refer	enced	Documents	8	
13.			boratory Accreditation Details		
14.	SGS	Shang	hai Wireless Telecommunications lab, Personnel	10	
15.	Test I	Equipr	ment Information	11	
	15.1	SPEA	G DASY4	11	
	15.2	The S	AR Measurement System	12	
	15.3	Isotro	ppic E-field Probe ES3DV3	14	
	15.4	SAM	Twin Phantom	15	
	15.5	Devic	e Holder for Transmitters	16	
16.	Detai		st Results		
	16.1		nary of Results		
	16.2		num Results		
	16.3	-	ation Configurations		
	16.4		urement procedure		
	16.5	Detail	led Test Results	24	
17.	ldenti	ificatio	on of Samples	85	
		.	ns of EUT		
Anr			ographs of Test Setup		
Anr			e Simulant Liquid		
	Annex		Recipes for Tissue Simulant Liquid		
	Annex		Measurement for Tissue Simulant Liquid		
			System Validation		
Anr			ription of Test Position		
	Annex		SAM Phantom Shape		
	Annex		EUT constructions		
	Annex	_	Definition of the "cheek" position		
	Annex		Definition of the "tilted" position		
Anr	nex E	Calib	ration certificate	106	

Report No.: GSM10170698S01

Issue Date: 03-22,2010

Page 3 of 136

Annex E.1	Probe Calibration certificate	106
Annex E.2	DAE Calibration certificate	117
Annex E.3	Dipole Calibration certification	122
END OF REPOR	T	130

Report No.: GSM10170698S01

Issue Date: 03-22,2010 Page 4 of 136

Change History

Version	Change Contents	Author	Date
V1.0	First edition	Ken Wang	03-22,2010

Page 5 of 136

Report Overview

This report details the results of testing carried out on the samples listed in section 17, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of SGS Shanghai Wireless Telecommunications lab or testing done by SGS Shanghai Wireless Telecommunications lab made in connection with the distribution or use of the tested product must be approved in writing by SGS Shanghai Wireless Telecommunications lab.

Test Lab Declaration or Comments

None

Applicant Declaration or Comments

None

Full Test Report

A full test report contains, within the results section, all the applicable test cases from the certification requirements of the permanent reference documents of the listed certification bodies.

Partial Test Report

A partial test report contains within the results section a sub-set of all the applicable test cases from the certification requirements of the permanent reference documents of the listed certification bodies.

Measurement Uncertainty

Measurements and results are all in compliance with the standards listed in section 12 of this report. All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/fail criteria.

Page 6 of 136

a	b1	С	d	e =	g	i =	k
	- ·			f(d,k)		cxg/e	
Uncertainty Component	Section	Tol	Prob .	Div.	Ci	1g	Vi
Uncertainty Component	in P1528	(%)	Dist.		(1g)	ui (%)	(Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.3	∞
Axial isotropy	E.2.2	0.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	0.20	8
hemispherical isotropy	E.2.2	2.6	R	$\sqrt{3}$	$\sqrt{c_p}$	1.06	8
Boundary effect	E.2.3	0.8	R	$\sqrt{3}$	1	0.46	∞
Linearity	E.2.4	0.6	R	$\sqrt{3}$	1	0.35	∞
System detection limit	E.2.5	0.25	R	$\sqrt{3}$	1	0.15	∞
Readout electronics	E.2.6	0.3	N	1	1	0.3	8
Response time	E.2.7	0	R	$\sqrt{3}$	1	0	∞
Integration time	E.2.8	2.6	R	$\sqrt{3}$	1	1.5	∞
RF ambient Condition -Noise	E.6.1	3	R	$\sqrt{3}$	1	1.73	8
RF ambient Condition - reflections	E.6.1	3	R	$\sqrt{3}$	1	1.73	8
Probe positioning- mechanical tolerance	E.6.2	1.5	R	$\sqrt{3}$	1	0.87	∞
Probe positioning- with respect to phantom	E.6.3	2.9	R	$\sqrt{3}$	1	1.67	8
Max. SAR evaluation	E.5.2	1	R	$\sqrt{3}$	1	0.58	∞
Test sample positioning	E.4.2	4	N	1	1	3.7	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.6	8
Output power variation -SAR drift measurement	6.62	5	R	$\sqrt{3}$	1	2.89	8
Phantom uncertainty	E.3.1	4	R	, -	1	2.31	∞
(shape and thickness tolerances)	E.S.1	4	K	$\sqrt{3}$		2.31	
Liquid conductivity	E 2 2	5	R	_	0.64	1 05	∞
- deviation from target values	E.3.2	5	K	$\sqrt{3}$		1.85	
Liquid conductivity	E.3.2	4	N	1	0.64	2.56	5
- measurement uncertainty	L.3.2		IN	'		2.50	
Liquid permittivity	E.3.3	5	R	$\sqrt{3}$	0.6	1.73	∞
- deviation from target values	2.0.0	Ŭ		, -		1.70	
Liquid permittivity	E.3.3	4	N	1	0.6	2.40	5
- measurement uncertainty							
Combined standard uncertainty				RSS		10.71	430
Expanded uncertainty				K=2		21.43	
(95% CONFIDENCE INTERVAL)				1,-2		21.40	

Page 7 of 136

7. Testing Environment

Normal Temperature	+20 to +24 °C
Relative Humidity	35 to 60 %

8. Primary Test Laboratory

Name:	Wireless Telecommunications Laboratory	
	SGS-CSTC Standards Technical Services(Shanghai) Co., Ltd	
Address:	9F, 3rd Building, No.889, Yishan Rd, Xuhui District, Shanghai,	
	China 200233	
Telephone:	+86 (0) 21 6140 2666	
Fax:	+86 (0) 21 5450 0149	
Internet:	http://www.cn.sgs.com	
Contact:	Mr. Peter Xue	
Email:	peter.xue@sgs.com	

9. Details of Applicant

Name:	Shanghai Longcheer3g Technology Co.,Ltd	
Address:	No.1,Building 5, 299 Bisheng Rd, Zhangjiang Hi-Tech Park,	
Address.	Pudong, Shanghai, P.R. China	
Telephone:	+86-21-64088898	
Fax	+86-21-54970816	
Contact:	Zhengfang Hu	
Email:	huzhengfang@longcheer.net	

10. Details of Manufacturer

Name:	Shanghai Longcheer3g Technology Co.,Ltd	
Address:	No.1, Building 5, 299 Bisheng Rd, Zhangjiang Hi-Tech Park,	
Address.	Pudong, Shanghai, P.R. China	
Telephone:	+86-21-64088898	
Fax	+86-21-54970816	
Contact:	Zhengfang Hu	
Email:	huzhengfang@longcheer.net	

11. Other testing Locations

Name:	Not Required
Address:	
Telephone:	
Contact:	
Email:	

12. Referenced Documents

The Equipment under Test (EUT) has been tested at SGS's (own or subcontracted) laboratories according to FCC 47CFR § 2.1093, IEEE Std C95.1-2005, IEEE1528-2003, OET Bulletin 65 Supplement C

The following table summarizes the specific reference documents such as harmonized standards or test specifications which were used for testing as SGS's (own or subcontracted) laboratories.

Identity	Document Title	Version
FCC 47CFR § 2.1093	Radiofrequency radiation exposure evaluation:portable devices	2001
IEEE Std C95.1-2005	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.	2005
IEEE1528-2003	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	2003
OET Bulletin 65 Supplement C	Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions	2001
KDB 648474 D01	SAR Evaluation Considerations for Handsets with Multiple Transmitters andAntennas	-
KDB 941225 D01	SAR Measurement Procedures for 3G Devices	-
KDB 941225 D03	Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE	-

Human Exposure	Uncontrolled Environment General Population
Spatial Peak SAR	1.60 W/kg (averaged over a mass of 1g)

Table 11-1 RF Exposure Limits

Notes:

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

13. Primary Laboratory Accreditation Details

Page 10 of 136

14. SGS Shanghai Wireless Telecommunications lab, Personnel

SGS Wireless Shanghai Project Management Team and list of approved Testers for SGS Wireless Shanghai.

Surname	Forename	Initials
CAI	CAI	CAICAI
Xue	Peter	PETERXUE
Xu	Anya	ANYA
Ni	Lemon	LEMONNI
Тао	Kevin	KEVINTAO
Wang	Lawrence	LAWRENCE
Zhang	Sean	SEANZH
Liu	Felix	FILEX
Ruan	Roger	ROGER
Tan	Terry	TERRY
Zhang	Zenger	ZENGER
Wang	Ken	KENWANG
Gao	Keilefen	KEILEFENGAO
Tang	Eva	EVATANG
Но	James	JAMESHO
Tang	Kenny	KENNY
Hailiang	Cai	HAILIANG
Kuang	Connie	CONNIE
Chan	Hik Kwong	HKC
Nie	Neo	Neo

Version 2010-02-04

Member of the SGS Group (Société Générale de Surveillance)

15. Test Equipment Information

15.1 **SPEAG DASY4**

Test Platform	SPEAG DASY4 Pr	ofessional		
Location	SGS SH Lab #8			
Manufacture	SPEAG			
		Frequency range 300N	,	
Description		00, 2000, 2450 freque	ncy band	
	HAC Extension			
Software Reference	DASY4: V4.7 Build			
	SEMCAD: V1.8 Bu	ıild 186		
Hardware Reference			<u> </u>	Donatate of
Equipment	Model	Serial Number	Calibration Date	Due date of calibration
Robot	RX90L	F03/5V32A1/A01	n/a	n/a
Phantom	SAM 12	TP-1283	n/a	n/a
DAE	DAE3	569	2009-11-18	2010-11-17
E-Field Probe	ES3DV3	3088	2009-11-19	2010-11-18
Validation Kits	D835V2	4d070	2008-12-15	2010-12-14
Validation Kits	D1800V2	2d070	2009-11-24	2010-11-23
Validation Kits	D1900V2	5d028	2009-11-24	2010-11-23
Agilent Network Analyzer	E5071B	MY42100549	2009-11-25	2010-11-24
RF Bi-Directional Coupler	ZABDC20-252H	n/a	2009-05-18	2010-05-17
Agilent Signal Generator	E4438C	14438CATO-19719	2009-11-30	2010-11-29
Mini-Circuits Preamplifier	ZHL-42	D041905	2009-11-30	2010-11-29
Agilent Power Meter	E4416A	GB41292095	2009-11-25	2010-11-24
Agilent Power Sensor	8481H	MY41091234	2009-11-25	2010-11-24
R&S Power Sensor	NRP-Z92	100025	2009-04-28	2010-04-27
R&S Universal Radio Communication Tester	CMU200	103633	2009-11-26	2010-11-25

15.2 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. 15-1.

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ES3DV3 3088 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY4 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

Fig. 15-1 SAR System Configuration

- Υ
 The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- Υ A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- Ÿ A computer operating Windows 2000.

Page 13 of 136

- Ϋ DASY4 software.
- Ÿ Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- Ÿ The SAM twin phantom enabling testing left-hand, right-hand and BodyWorn usage.
- Ϋ The device holder for handheld mobile phones.
- Ϋ Tissue simulating liquid mixed according to the given recipes.
- Ϋ Validation dipole kits allowing to validating the proper functioning of the system

Page 14 of 136

15.3 Isotropic E-field Probe ES3DV3

Fig. 15-2 E-field Probe

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL 1810

Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range $5 \mu W/g \text{ to} > 100 \text{ mW/g}$; Linearity: $\pm 0.2 \text{ dB}$

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

> Dosimetry in strong gradient fields Compliance tests of mobile phones

15.4 **SAM Twin Phantom**

Fig. 15-3 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left hand
- · Right hand

Description

Flat phantom

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Phantom specification:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Shell Thickness 2+0.2mm, Center ear point: 6+0.2mm

Filling Volume Approx.25 liters

Dimensions Length: 1000mm, Width: 500mm, Height: 850mm

Page 16 of 136

15.5 **Device Holder for Transmitters**

Fig. 15-4 Device Holder for Transmitters

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

16. Detailed Test Results

16.1 Summary of Results

16.1.1 Measurement of RF conducted Power

N	Mode		GP	RS					EGI	PRS				GSM
Slot (Uplink)		1	2	3	4	1		2	2			4		-
Band	Channel		GM	ISK		GMSK	8PSK	GMSK	8PSK	GMSK	8PSK	GMSK	8PSK	-
	128	31.2	29.1	27.7	25.7	31.2	26.9	29.1	25.3	27.7	23.8	25.7	22.8	31.2
850	90	31.2	29.2	27.7	25.7	31.2	27.0	29.2	25.4	27.7	23.9	25.7	22.9	31.2
	251	31.4	29.4	27.9	25.9	31.4	27.1	29.4	25.5	27.9	24.0	25.9	23.0	31.4
	512	30.2	28.5	27.1	25.6	30.2	26.8	28.5	25.2	27.1	24.2	25.6	23.2	30.2
1900	661	30.0	28.5	27.1	25.5	30.0	26.8	28.5	25.1	27.1	24.1	25.5	23.2	30.0
	810	29.6	28.1	26.7	25.2	29.6	26.3	28.1	24.9	26.7	23.9	25.2	22.9	29.6

Calculation of time-averaged power for GSM850 and PCS1900

(10Log1/8.3=-9.0, 10log1/4=-6.0, 10log3/8=-4.2, 10log1/2=-3.0)

N	lode		GP	RS					EGI	PRS				GSM
Slot	(Uplink)	1	2	3	4 1 2 3		4		-					
Duty	Duty factor		1/4	3/8	1/2	1/8.3		1/4		3/8		1/2		
Band	Channel		GM	SK		GMSK	8PSK	GMSK	8PSK	GMSK	8PSK	GMSK	8PSK	-
	128	22.2	23.1	23.5	22.7	22.2	17.9	23.1	19.3	23.5	19.6	22.7	19.8	22.2
850	90	22.2	23.2	23.5	22.7	22.2	18.0	23.2	19.4	23.5	19.7	22.7	19.9	22.2
	251	22.4	23.4	23.7	22.9	22.4	18.1	23.4	19.5	23.7	19.8	22.9	20.0	22.4
	512	21.2	22.5	22.9	22.6	21.2	17.8	22.5	19.2	22.9	20.0	22.6	20.2	21.2
1900	661	21.0	22.5	22.9	22.5	21.0	17.8	22.5	19.1	22.9	19.9	22.5	20.2	21.0
	810	20.6	22.1	22.5	22.2	20.6	17.3	22.1	18.9	22.5	19.7	22.2	19.9	20.6

	Mode	WCDMA
	Subtests	
Band	Channel	
	1312	21.2
IV	1412	21.4
	1513	21.4
	4132	22.5
V	4182	22.7
	4233	22.5
Loopback mode		Test mode 1

Page 18 of 136

RMC	12.2kbps RMC
TPC	All bits up
Power control algorithm	Algorithm 2
Вс	Not applicable
Bd	Not applicable
Bec	Not applicable
Bc/ Bd	8/15
Bhs	Not applicable
Bed	Not applicable

	Mode	HSDPA(Rel 5)					
	Subtests	1	2	3	4		
Band	Channel						
IV	1312	21.1	21.0	20.2	19.3		
(Category 6)	1412	21.3	21.2	20.3	19.4		
(Oategory o)	1513	21.3	21.2	20.4	19.4		
V	4132	22.4	22.3	21.3	20.4		
(Category 6)	4182	22.5	22.4	21.4	20.5		
(Category 0)	4233	22.3	22.3	21.3	20.3		
Loopback mode		Test mode 1					
RMC		12.2kbps RMC					
TPC		All bits up					
HSDPA FRC		H-set 1 QPSK					
HSUPA test		Not applicable)				
Power control alg	porithm	Algorithm 2					
Вс		2/15	12/15	15/15	15/15		
Bd		15/15	15/15 8/15		4/15		
Bec		-	-	-	-		
Bc/ Bd		2/15	12/15	15/8	15/4		
Bhs		4/15	24/15	30/15	30/15		
Bed		-	-	-	-		
CM (dB)		0.0	1.0	1.5	1.5		
MPR (dB)		-	-	-	-		
ΔACK,ΔNACK,Δ0	CQI	8					
ACK-NACK repe	tition factor	3					
CQI Feedback		4 ms					
CQI repetition fac	etor	2					
Ahs= Bhs/ Bc		30/15					

Report No.: GSM10170698S01

Issue Date: 03-22,2010 Page 19 of 136

16.1.2 Measurement of SAR average value

GSM 850

				Averaged	d SAR over 1	g (W/kg)		
Band	EUT Position	 Mode 	Mode Test Configuration CH128 CH190		CH190	CH251	SAR limit (W/kg)	Verdict
				824.2MHz	836.6MHz	848.8 MHz		
	Left	GSM	Cheek	0.712	0.731	0.842	1.6	Passed
		GSIVI	Tilt	-	0.388	-	1.6	Passed
		GSM	Cheek	0.667	0.668	0.763	1.6	Passed
GSM850	Right		Tilt	-	0.408	-	1.6	Passed
GSIVIOSU			Front of EUT facing phantom	-	0.651	•	1.6	Passed
		GPRS 3TS Uplink	Rear of EUT facing phantom	0.762	0.833	0.948	1.6	Passed
	Body Worn		Worstcase with headset	-	-	0.759	1.6	Passed
		EGPRS 3TS Uplink	Rear of EUT facing phantom	-	-	0.835	1.6	Passed

PCS1900

				Averaged	SAR over 1	g (W/kg)		
Band	 EUT Position 	 Mode 	Test Configuration	CH512	CH661	CH810	SAR limit (W/kg)	Verdict
				1850.2MHz	1888MHz	1909.8MHz		
	l off	CCM	Cheek	0.887	0.978	0.949	1.6	Passed
	Left	GSM	Tilt	-	0.322	-	1.6	Passed
		GSM	Cheek	0.892	1.04	1.04	1.6	Passed
DCC4000	Right	GSIVI	Tilt	-	0.439	-	1.6	Passed
PCS1900			Front of EUT facing phantom	-	0.552	-	1.6	Passed
		GPRS 3TS Uplink	Rear of EUT facing phantom	0.561	0.636	0.599	1.6	Passed
	Body Worn		Worstcase with headset	-	0.564	-	1.6	Passed
		EGPRS 3TS Uplink	Rear of EUT facing phantom	-	0.579	-	1.6	Passed

Member of the SGS Group (Société Générale de Surveillance)

				Average	d SAR over 1	g (W/kg)		
Band	EUT Position	Mode	Test Configuration	CH1312	CH1412	CH1513	SAR limit (W/kg)	Verdict
				1712.4MHz	1732.4MHz	1752.6MHz		
	l off	IA/CDM A	Cheek	1.18	1.19	1.2	1.6	Passed
	Left	WCDMA	Tilt	-	0.470	-	1.6	Passed
	Right	Right WCDMA	Cheek	1.17	1.23	1.28	1.6	Passed
UMTS FDD			Tilt	-	0.672	-	1.6	Passed
IV			Front of EUT facing phantom	-	0.483	-	1.6	Passed
		WCDMA	Rear of EUT facing phantom	0.625	0.684	0.597	1.6	Passed
	Body Worn		Worstcase with headset	-	0.679	-	1.6	Passed
	-	HSDPA	Rear of EUT facing phantom	0.619	0.668	0.571	1.6	Passed

UMTS FDD V

				Average	d SAR over 1	g (W/kg)		
Band	EUT Position	Mode	Test Configuration	CH4132 CH4182		CH4233	SAR limit (W/kg)	Verdict
				826.4MHz	836.4 MHz	846.6 MHz		
	Loft	MCDMA	Cheek	0.889	0.894	0.951	1.6	Passed
	Left	WCDMA	Tilt	-	0.435	-	1.6	Passed
	Right	WCDMA	Cheek	0.803	0.783	0.840	1.6	Passed
UMTS FDD		VVCDIVIA	Tilt	-	0.441	-	1.6	Passed
V			Front of EUT facing phantom	-	0.650	-	1.6	Passed
		WCDMA	Rear of EUT facing phantom	0.787	0.817	0.832	1.6	Passed
	Body Worn		Worstcase with headset	-	-	0.668	1.6	Passed
		HSDPA	Rear of EUT facing phantom	0.786	0.785	0.817	1.6	Passed

Page 21 of 136

16.2 **Maximum Results**

The maximum measured SAR values for Head configuration and BodyWorn configuration are given in section 16.2.1 and 16.2.2 respectively.

16.2.1 Head Configuration

Frequency Band	EUT Position	Conducted Power (dBm)	SAR, Averaged over 1g (W/Kg)	Power Drift (dB)	SAR limit (W/kg)	Verdict
GSM850	Left,Cheek,GSM,High	31.4	0.842	-0.002	1.6	Passed
PCS1900	Right,Cheek,GSM,Middle	30.0	1.04	-0.076	1.6	Passed
UMTS FDD IV	Right,Cheek, WCDMA,High	21.4	1.28	-0.035	1.6	Passed
UMTS FDD V	Left,Cheek, WCDMA,High	22.5	0.951	0.038	1.6	Passed

16.2.2 BodyWorn Configuration

Frequency Band	EUT Position	Conducted Power (dBm)	SAR, Averaged over 1g (W/Kg)	Power Drift (dB)	SAR limit (W/kg)	Verdict
GSM850	Body Worn,Rear,GPRS/3TS,High	27.9	0.948	-0.258	1.6	Passed
PCS1900	Body Worn,Rear,GPRS/3TS,Middle	27.1	0.636	-0.102	1.6	Passed
UMTS FDD IV	Body Worn,Rear,WCDMA,Middle	21.4	0.684	0.071	1.6	Passed
UMTS FDD V	Body Worn,Rear,WCDMA,High	22.5	0.832	0.042	1.6	Passed

16.2.3 Maximum Drift

Maximum Drift during measurement	0.346 dB
----------------------------------	----------

16.2.4 Measurement Uncertainty

Extended Uncertainty (k=2) 95%	21.43%

Page 22 of 136

Operation Configurations 16.3

The EUT is controlled by using a radio communication tester (CMU200) with air link, and the EUT is set to maximum output power by CMU200 during all tests.

a. The tests in the band of GSM850, PCS1900 are performed in the GSM/GPRS/EGPRS mode.

- 1. Testing Head SAR at GSM mode for all bands with Left Cheek/Tilt and Right Cheek/Tilt conditions.
- 2. Testing Body SAR at GPRS/EGPRS for all bands by separating 1.5cm from the EUT (both front and rear) to flat phantom
- 3. Test reduction has been adopted according to conducted output power and produced SAR level:

Low and High channel SAR are optional if SAR value produced in the middle channel is 3dB lower than the applicable SAR limit:

In GPRS/EGPRS mode, the multislot configuration which produces highest SAR value is regard as the worst case to be measured, other multislot configurations are selectively confirmed;

- 4.In EGPRS mode, the test is in the GMSK modulation according to the power between GMSK and 8PSK.
- 5.The (max.cube) labeling indicates that during the grid scanning an additional peak was found which within 2dB of the highest peak

b. The tests in the band of UMTS FDDIV, UMTS FDD V are performed in the WCDMA/HSDPA mode.

- 1. Testing Head SAR at WCDMA/RMC 12.2kbps mode for all bands with Left Cheek/Tilt and Right Cheek/Tilt conditions
- 2. Testing Body SAR at WCDMA/RMC 12.2kbps and HSDPA/RMC 12.2kbps/subtest-1mode for all bands by separating 1.5cm from the EUT (both front and rear) to flat phantom

c. Bluetooth

The maximum output power is below 2 Pref(24mw), and the distance between GSM/WCDMA antenna and BT antenna is high than 5cm(as below)

according to the KDB 648474 D01 stand alone SAR evaluation for BT is not required.

Page 23 of 136

d.Simultaneous transmission

stand alone SAR evaluation for BT is not required so the simultaneous transmission is not required

16.4 Measurement procedure

Step 1: Power reference measurement

The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 7*7*7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure: The data at the surface was extrapolated, since the center of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification) The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluated the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points (10*10*10) were interpolated to calculate the average. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Power reference measurement (drift)

The SAR value at the same location as in step 1 was again measured. (If the value changed by more than 5%, the evaluation should be done repeatedly)

Detailed Test Results 16.5 16.5.1 GSM850-LeftHandSide-Cheek-Middle

Date/Time: 2010-3-8 11:21:18

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz;Duty Cycle: 1:8.3

Medium: HSL835_Head Medium parameters used: f = 836.6 MHz; $\sigma = 0.895$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Mid/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.840 mW/g

Cheek position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.62 V/m; Power Drift = -0.215 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.731 mW/g; SAR(10 g) = 0.504 mW/gMaximum value of SAR (measured) = 0.778 mW/g

0 dB = 0.778 mW/g

Date/Time: 2010-3-8 13:28:14

Page 25 of 136

16.5.2 GSM850-LeftHandSide-Tilt-Middle

Test Laboratory: SGS-GSMGSM850-LeftHandSide-Tilt-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL835_Head Medium parameters used: f = 836.6 MHz; $\sigma = 0.895$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Mid/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.405 mW/g**

Tilt position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.9 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 0.505 W/kg

SAR(1 g) = 0.388 mW/g; SAR(10 g) = 0.284 mW/gMaximum value of SAR (measured) = 0.409 mW/g

0 dB = 0.409 mW/g

Date/Time: 2010-3-8 11:46:51

Page 26 of 136

16.5.3 GSM850-LeftHandSide-Worstcase-Low

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-Low DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz;Duty Cycle: 1:8.3

Medium: HSL835_Head Medium parameters used: f = 824.2 MHz; $\sigma = 0.884$ mho/m; $\varepsilon_r = 42.4$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.814 mW/g**

Cheek position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.41 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.712 mW/g; SAR(10 g) = 0.493 mW/gMaximum value of SAR (measured) = 0.754 mW/g

0 dB = 0.754 mW/g

16.5.4 GSM850-LeftHandSide-Worstcase-High

Date/Time: 2010-3-8 13:00:57

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-High

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz;Duty Cycle: 1:8.3

Medium: HSL835_Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.909 \text{ mho/m}$; $\epsilon_r = 42$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position -High/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.961 mW/g**

Cheek position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.90 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.842 mW/g; SAR(10 g) = 0.577 mW/gMaximum value of SAR (measured) = 0.892 mW/g

0 dB = 0.892 mW/g

16.5.5 GSM850-RightHandSide-Cheek-Middle

Date/Time: 2010-3-8 14:51:25

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL835_Head Medium parameters used: f = 836.6 MHz; $\sigma = 0.895$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Middle/Area Scan (61x111x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.716 mW/g**

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.39 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 0.922 W/kg

SAR(1 g) = 0.668 mW/g; SAR(10 g) = 0.459 mW/gMaximum value of SAR (measured) = 0.711 mW/g

0 dB = 0.711 mW/g

Date/Time: 2010-3-8 16:18:55

16.5.6 GSM850-RightHandSide-Tilt-Middle

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Tilt-Middle
DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz;Duty Cycle: 1:8.3

Medium: HSL835_Head Medium parameters used: f = 836.6 MHz; $\sigma = 0.895$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$

kq/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle 2/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.431 mW/g**

Tilt position - Middle 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.4 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 0.541 W/kg

SAR(1 g) = 0.408 mW/g; SAR(10 g) = 0.298 mW/gMaximum value of SAR (measured) = 0.429 mW/g

0 dB = 0.429 mW/g

16.5.7 GSM850-RightHandSide-Worstcase-Low

Date/Time: 2010-3-8 15:17:16

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-Low

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL835_Head Medium parameters used: f = 824.2 MHz; $\sigma = 0.884$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.713 mW/g**

Cheek position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.61 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 0.919 W/kg

SAR(1 g) = 0.667 mW/g; SAR(10 g) = 0.459 mW/gMaximum value of SAR (measured) = 0.717 mW/g

0 dB = 0.717 mW/g

16.5.8 GSM850-RightHandSide-Worstcase-High

Date/Time: 2010-3-8 15:51:01

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-High

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL835_Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.909 \text{ mho/m}$; $\epsilon_r = 42$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - High/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.816 mW/g**

Cheek position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.91 V/m; Power Drift = 0.062 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.763 mW/g; SAR(10 g) = 0.521 mW/gMaximum value of SAR (measured) = 0.829 mW/g

0 dB = 0.829 mW/g

Page 32 of 136

16.5.9 GSM850-BodyWorn-GPRS-3TS-Middle-Front

Date/Time: 2010-3-17 17:42:26

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-3TS-Middle-Front

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GPRS Mode; Frequency: 836.6 MHz;Duty Cycle: 1:2.7

Medium: HSL835 Body Medium parameters used: f = 836.6 MHz; $\sigma = 0.974$ mho/m; $\epsilon_r = 56.6$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle front/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.688 mW/g**

Body Worn - Middle front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.2 V/m; Power Drift = 0.057 dB

Peak SAR (extrapolated) = 0.849 W/kg

SAR(1 g) = 0.651 mW/g; SAR(10 g) = 0.479 mW/gMaximum value of SAR (measured) = 0.690 mW/g

0~dB = 0.690 mW/g

16.5.10 GSM850-BodyWorn-GPRS-3TS-Middle-Rear

Date/Time: 2010-3-17 16:11:30

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-3TS-Middle-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GPRS Mode; Frequency: 836.6 MHz;Duty Cycle: 1:2.7

Medium: HSL835 Body Medium parameters used: f = 836.6 MHz; σ = 0.974 mho/m; ϵ_r = 56.6; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle Rear/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.892 mW/g**

Body Worn - Middle Rear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.8 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.833 mW/g; SAR(10 g) = 0.603 mW/gMaximum value of SAR (measured) = 0.882 mW/g

0 dB = 0.882 mW/g

16.5.11 GSM850-BodyWorn-GPRS-3TS-Low-Rear

Date/Time: 2010-3-17 16:54:15

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-3TS-Low-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GPRS Mode; Frequency: 824.2 MHz;Duty Cycle: 1:2.7

Medium: HSL835 Body Medium parameters used: f = 824.2 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon_r = 56.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Low/Area Scan (61x81x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.811 mW/g**

Body Worn - Low/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 27.3 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.762 mW/g; SAR(10 g) = 0.551 mW/gMaximum value of SAR (measured) = 0.810 mW/g

0 dB = 0.810 mW/g

Page 35 of 136

16.5.12 GSM850-BodyWorn-GPRS-3TS-High-Rear

Date/Time: 2010-3-17 16:32:54

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-3TS-High-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GPRS Mode; Frequency: 848.8 MHz;Duty Cycle: 1:2.7

Medium: HSL835 Body Medium parameters used: f = 848.8 MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 56.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - High/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.996 mW/g**

Body Worn - High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.3 V/m; Power Drift = -0.258 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.948 mW/g; SAR(10 g) = 0.683 mW/gMaximum value of SAR (measured) = 0.997 mW/g

0 dB = 0.997 mW/g

16.5.13 GSM850-BodyWorn-GPRS-3TS-Worstcase with headset

Date/Time: 2010-3-17 17:17:38

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-3TS-Worstcase with headset DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-GPRS Mode; Frequency: 848.8 MHz;Duty Cycle: 1:2.7

Medium: HSL835 Body Medium parameters used: f = 848.8 MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 56.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Worstcase with headset/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.816 mW/g**

Body Worn - Worstcase with headset/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 25.0 V/m; Power Drift = -0.046 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.759 mW/g; SAR(10 g) = 0.550 mW/gMaximum value of SAR (measured) = 0.799 mW/g

0 dB = 0.799 mW/g

16.5.14 GSM850-BodyWorn-EGPRS-3TS-High-Rear

Date/Time: 2010-3-17 18:14:21

Test Laboratory: SGS-GSM

GSM850-Body-Worn-EGPRS-3TS-High-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: GSM850-EGPRS Mode; Frequency: 848.8 MHz;Duty Cycle: 1:2.7

Medium: HSL835 Body Medium parameters used: f = 848.8 MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 56.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.887 mW/g**

Body Worn - Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 25.7 V/m; Power Drift = -0.168 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.835 mW/g; SAR(10 g) = 0.603 mW/gMaximum value of SAR (measured) = 0.888 mW/g

0 dB = 0.888 mW/g

16.5.15 PCS1900-LeftHandSide-Cheek-Middle

Date/Time: 2010-3-10 13:12:55

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Cheek-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Mid/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.08 mW/g**

Cheek position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.92 V/m; Power Drift = -0.097 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.978 mW/g; SAR(10 g) = 0.555 mW/gMaximum value of SAR (measured) = 1.08 mW/g

0 dB = 1.08 mW/g

16.5.16 PCS1900-LeftHandSide-Tilt-Middle

Date/Time: 2010-3-10 14:38:15

Test Laboratory: SGS-GSM PCS1900-LeftHandSide-Tilt-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Mid/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.382 mW/g**

Tilt position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = -0.069 dB

Peak SAR (extrapolated) = 0.515 W/kg

SAR(1 g) = 0.322 mW/g; SAR(10 g) = 0.196 mW/gMaximum value of SAR (measured) = 0.346 mW/g

0 dB = 0.346 mW/g

Page 40 of 136

16.5.17 PCS1900-LeftHandSide-Worstcase-Low

Date/Time: 2010-3-10 13:39:02

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Cheek-Low

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1850.2 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon_r = 39.1$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.986 mW/g**

Cheek position - Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.55 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.887 mW/g; SAR(10 g) = 0.504 mW/gMaximum value of SAR (measured) = 0.981 mW/g

0 dB = 0.981 mW/g

Page 41 of 136

16.5.18 PCS1900-LeftHandSide-Worstcase-High

Date/Time: 2010-3-10 15:18:30

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Cheek-High

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1909.8 MHz; $\sigma = 1.43 \text{ mho/m}$; $\epsilon_r = 38.9$; $\rho = 1000 \text{ medium}$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - High 2/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.05 mW/g**

Cheek position - High 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.30 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.949 mW/g; SAR(10 g) = 0.548 mW/gMaximum value of SAR (measured) = 1.04 mW/g

0 dB = 1.04 mW/g

Page 42 of 136

16.5.19 PCS1900-RightHandSide-Cheek-Middle

Date/Time: 2010-3-10 10:44:34

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Middle/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.14 mW/g**

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 14.5 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.579 mW/gMaximum value of SAR (measured) = 1.12 mW/g

0 dB = 1.12 mW/g

Page 43 of 136

16.5.20 PCS1900-RightHandSide-Tilt-Middle

Date/Time: 2010-3-10 10:19:38

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Tilt-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.530 mW/g**

Tilt position - Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 17.4 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 0.696 W/kg

SAR(1 g) = 0.439 mW/g; SAR(10 g) = 0.255 mW/gMaximum value of SAR (measured) = 0.479 mW/g

0 dB = 0.479 mW/g

Page 44 of 136

16.5.21 PCS1900-RightHandSide-Worstcase-Low

Date/Time: 2010-3-10 11:09:02

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-Low

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1850.2 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon_r = 39.1$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.964 mW/g**

Cheek position - Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.4 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.892 mW/g; SAR(10 g) = 0.494 mW/gMaximum value of SAR (measured) = 0.968 mW/g

0 dB = 0.968 mW/g

16.5.22 PCS1900-RightHandSide-Worstcase-High

Date/Time: 2010-3-10 12:00:45

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-High

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1909.8 MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position -High 2/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.16 mW/g**

Cheek position -High 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.2 V/m; Power Drift = -0.072 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.583 mW/gMaximum value of SAR (measured) = 1.12 mW/g

Cheek position -High 2/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.2 V/m; Power Drift = -0.072 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.793 mW/g; SAR(10 g) = 0.487 mW/gMaximum value of SAR (measured) = 0.874 mW/g

0 dB = 0.874 mW/g

Page 46 of 136

16.5.23 PCS1900-BodyWorn-GPRS-3TS-Middle-Front

Date/Time: 2010-3-16 13:09:24

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-3TS-Middle-Front

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GPRS Mode; Frequency: 1880 MHz;Duty Cycle: 1:2.7

Medium: HSL 1900 Body Medium parameters used: f = 1880 MHz; σ = 1.51 mho/m; ϵ_r = 53.4; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle-Front/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.625 mW/g**

Body Worn - Middle-Front/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 17.3 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 0.865 W/kg

SAR(1 g) = 0.552 mW/g; SAR(10 g) = 0.338 mW/gMaximum value of SAR (measured) = 0.600 mW/g

0~dB=0.600mW/g

Page 47 of 136

16.5.24 PCS1900-BodyWorn-GPRS-3TS-Middle-Rear

Date/Time: 2010-3-16 10:55:08

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-3TS-Middle-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GPRS Mode; Frequency: 1880 MHz;Duty Cycle: 1:2.7

Medium: HSL 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle-Rear/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.724 mW/g**

Body Worn - Middle-Rear/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 21.7 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.636 mW/g; SAR(10 g) = 0.384 mW/gMaximum value of SAR (measured) = 0.690 mW/g

0 dB = 0.690 mW/g

Page 48 of 136

16.5.25 PCS1900-BodyWorn-GPRS-3TS-Low-Rear

Date/Time: 2010-3-16 13:34:16

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-3TS-Low-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GPRS Mode; Frequency: 1850.2 MHz;Duty Cycle: 1:2.7

Medium: HSL 1900 Body Medium parameters used: f = 1850.2 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 53.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Low/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.624 mW/g**

Body Worn - Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.2 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 0.896 W/kg

SAR(1 g) = 0.561 mW/g; SAR(10 g) = 0.337 mW/gMaximum value of SAR (measured) = 0.607 mW/g

0 dB = 0.607 mW/g

16.5.26 PCS1900-BodyWorn-GPRS-3TS-High-Rear

Date/Time: 2010-3-16 13:58:10

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-3TS-High-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GPRS Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:2.7

Medium: HSL 1900 Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 53.1$; $\rho = 1000 \text{ medium}$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - High/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.664 mW/g**

Body Worn - High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.3 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.988 W/kg

SAR(1 g) = 0.599 mW/g; SAR(10 g) = 0.359 mW/gMaximum value of SAR (measured) = 0.642 mW/g

0 dB = 0.642 mW/g

16.5.27 PCS1900-BodyWorn-GPRS-3TS-Worstcase with headset

Date/Time: 2010-3-16 14:23:53

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-3TS-Worstcase with headset DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-GPRS Mode; Frequency: 1880 MHz;Duty Cycle: 1:2.7

Medium: HSL 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle-with headset/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.622 mW/g**

Body Worn - Middle-with headset/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 19.0 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 0.903 W/kg

SAR(1 g) = 0.564 mW/g; SAR(10 g) = 0.344 mW/gMaximum value of SAR (measured) = 0.606 mW/g

0~dB=0.606mW/g

Page 51 of 136

16.5.28 PCS1900-BodyWorn-EGPRS-3TS-Middle-Rear

Date/Time: 2010-3-16 15:14:03

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-EGPRS-3TS-Middle-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: PCS1900-EGPRS Mode; Frequency: 1880 MHz;Duty Cycle: 1:2.7

Medium: HSL 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle-Rear/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.622 mW/g**

Body Worn - Middle-Rear/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 19.7 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 0.932 W/kg

SAR(1 g) = 0.579 mW/g; SAR(10 g) = 0.350 mW/gMaximum value of SAR (measured) = 0.624 mW/g

0 dB = 0.624 mW/g

Page 52 of 136

16.5.29 UMTS FDD IV-LeftHandSide-Cheek-Middle

Date/Time: 2010-3-12 14:16:27

Test Laboratory: SGS-GSM

UMTS FDD IV-LeftHandSide-Cheek-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: HSL1800_Head Medium parameters used: f = 1732.4 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5, 5, 5); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Mid/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.32 mW/g**

Cheek position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.58 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.706 mW/gMaximum value of SAR (measured) = 1.30 mW/g

0 dB = 1.30 mW/g

Page 53 of 136

16.5.30 UMTS FDD IV-LeftHandSide-Tilt-Middle

Date/Time: 2010-3-12 16:08:36

Test Laboratory: SGS-GSM

UMTS FDD IV-LeftHandSide-Tilt-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: HSL1800_Head Medium parameters used: f = 1732.4 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5, 5, 5); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Mid/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.542 mW/g**

Tilt position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.3 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 0.681 W/kg

SAR(1 g) = 0.470 mW/g; SAR(10 g) = 0.307 mW/gMaximum value of SAR (measured) = 0.503 mW/g

0 dB = 0.503 mW/g

Page 54 of 136

16.5.31 UMTS FDD IV-LeftHandSide-Cheek-Low

Date/Time: 2010-3-12 15:07:24

Test Laboratory: SGS-GSM

UMTS FDD IV-LeftHandSide-Cheek-Low

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1712.4 MHz; Duty Cycle: 1:1

Medium: HSL1800_Head Medium parameters used: f = 1712.4 MHz; $\sigma = 1.35$ mho/m; $\epsilon_r = 39$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5, 5, 5); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.30 mW/g**

Cheek position - Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.25 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.703 mW/gMaximum value of SAR (measured) = 1.28 mW/g

0 dB = 1.28 mW/g

Page 55 of 136

16.5.32 UMTS FDD IV-LeftHandSide-Cheek-High

Date/Time: 2010-3-12 14:42:15

Test Laboratory: SGS-GSM

UMTS FDD IV-LeftHandSide-Cheek-High

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1752.6 MHz; Duty Cycle: 1:1

Medium: HSL1800_Head Medium parameters used: f = 1752.6 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 38.8$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5, 5, 5); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - High/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.35 mW/g**

Cheek position - High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.65 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 1.2 mW/g; SAR(10 g) = 0.704 mW/gMaximum value of SAR (measured) = 1.32 mW/g

0 dB = 1.32 mW/g

Page 56 of 136

16.5.33 UMTS FDD IV-RightHandSide-Cheek-Middle

Date/Time: 2010-3-12 10:16:39

Test Laboratory: SGS-GSM

UMTS FDD IV-RightHandSide-Cheek-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: HSL1800_Head Medium parameters used: f = 1732.4 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5, 5, 5); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.31 mW/g

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 2.09 W/kg

SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.685 mW/g

Maximum value of SAR (measured) = 1.35 mW/g

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.952 mW/g; SAR(10 g) = 0.592 mW/g

Maximum value of SAR (measured) = 1.10 mW/g

0 dB = 1.10 mW/g

16.5.34 UMTS FDD IV-RightHandSide-Tilt-Middle

Date/Time: 2010-3-12 13:03:25

Test Laboratory: SGS-GSM

UMTS FDD IV-RightHandSide-Tilt-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: HSL1800_Head Medium parameters used: f = 1732.4 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5, 5, 5); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.783 mW/g**

Tilt position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.2 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.672 mW/g; SAR(10 g) = 0.409 mW/gMaximum value of SAR (measured) = 0.731 mW/g

0 dB = 0.731 mW/g

Page 58 of 136

16.5.35 UMTS FDD IV-RightHandSide-Cheek-Low

Date/Time: 2010-3-12 9:43:21

Test Laboratory: SGS-GSM

UMTS FDD IV-RightHandSide-Cheek-Low

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1712.4 MHz; Duty Cycle: 1:1

Medium: HSL1800_Head Medium parameters used: f = 1712.4 MHz; σ = 1.35 mho/m; ϵ_r = 39; ρ = 1000

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5, 5, 5); Calibrated: 2009-11-19

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.21 mW/g**

Cheek position - Low/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 10.3 V/m; Power Drift = 0.196 dB

Peak SAR (extrapolated) = 1.97 W/kg

SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.650 mW/gMaximum value of SAR (measured) = 1.28 mW/g

0 dB = 1.28 mW/g

16.5.36 UMTS FDD IV-RightHandSide-Cheek-High

Date/Time: 2010-3-12 12:29:44

Test Laboratory: SGS-GSM

UMTS FDD IV-RightHandSide-Cheek-High

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1752.6 MHz; Duty Cycle: 1:1

Medium: HSL1800_Head Medium parameters used: f = 1752.6 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 38.8$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5, 5, 5); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position -High 2/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.36 mW/g**

Cheek position -High 2/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 13.0 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 2.17 W/kg

SAR(1 g) = 1.28 mW/g; SAR(10 g) = 0.707 mW/gMaximum value of SAR (measured) = 1.42 mW/g

0 dB = 1.42 mW/g

16.5.37 UMTS FDD IV- BodyWorn-WCDMA-Middle-Front

Date/Time: 2010-3-15 10:51:21

Test Laboratory: SGS-GSM

UMTS FDD IV-Body-Worn-WCDMA-Middle-Front

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: HSL-1800-Body Medium parameters used: f = 1732.4 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.76, 4.76, 4.76); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle-Front/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.521 mW/g**

Body Worn - Middle-Front/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 13.4 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 0.770 W/kg

SAR(1 g) = 0.483 mW/g; SAR(10 g) = 0.291 mW/gMaximum value of SAR (measured) = 0.530 mW/g

0 dB = 0.530 mW/g

16.5.38 UMTS FDD IV- BodyWorn-WCDMA-Middle-Rear

Date/Time: 2010-3-15 11:24:05

Test Laboratory: SGS-GSM

UMTS FDD IV-Body-Worn-WCDMA-Middle-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: HSL-1800-Body Medium parameters used: f = 1732.4 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 52.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.76, 4.76, 4.76); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle-Rear/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.771 mW/g**

Body Worn - Middle-Rear/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 21.8 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.684 mW/g; SAR(10 g) = 0.401 mW/gMaximum value of SAR (measured) = 0.749 mW/g

0 dB = 0.749 mW/g

16.5.39 UMTS FDD IV- BodyWorn-WCDMA-Low-Rear

Date/Time: 2010-3-15 11:59:55

Test Laboratory: SGS-GSM

UMTS FDD IV-Body-Worn-WCDMA-Low-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1712.4 MHz; Duty Cycle: 1:1

Medium: HSL-1800-Body Medium parameters used: f = 1712.4 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.76, 4.76, 4.76); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Low-Rear/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.704 mW/g**

Body Worn - Low-Rear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.4 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.625 mW/g; SAR(10 g) = 0.367 mW/gMaximum value of SAR (measured) = 0.684 mW/g

0 dB = 0.684 mW/g

Page 64 of 136

16.5.40 UMTS FDD IV- BodyWorn-WCDMA-High-Rear

Date/Time: 2010-3-15 13:34:32

Test Laboratory: SGS-GSM

UMTS FDD IV-Body-Worn-WCDMA-High-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1752.6 MHz; Duty Cycle: 1:1

Medium: HSL-1800-Body Medium parameters used: f = 1752.6 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 52.5$; $\rho = 1000 \text{ m}$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.76, 4.76, 4.76); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - High-Rear 2/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.663 mW/g**

Body Worn - High-Rear 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.7 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 0.973 W/kg

SAR(1 g) = 0.597 mW/g; SAR(10 g) = 0.351 mW/gMaximum value of SAR (measured) = 0.650 mW/g

0 dB = 0.650 mW/g

16.5.41 UMTS FDD IV- BodyWorn-WCDMA-Worstcase with headset

Date/Time: 2010-3-15 14:02:06

Test Laboratory: SGS-GSM

UMTS FDD IV-Body-Worn-WCDMA-Worstcase with headset DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: HSL-1800-Body Medium parameters used: f = 1732.4 MHz; σ = 1.51 mho/m; ϵ_r = 52.4; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.76, 4.76, 4.76); Calibrated: 2009-11-19

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle-Rear with headset/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.757 mW/g**

Body Worn - Middle-Rear with headset/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 21.6 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.679 mW/g; SAR(10 g) = 0.407 mW/gMaximum value of SAR (measured) = 0.742 mW/g

0 dB = 0.742 mW/g

16.5.42 UMTS FDD IV- BodyWorn-HSDPA- Middle-Rear

Date/Time: 2010-3-15 15:52:21

Test Laboratory: SGS-GSM

UMTS FDD IV-Body-Worn-HSDPA-Middle-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV HSDPA; Frequency: 1732.4 MHz;Duty Cycle: 1:1

Medium: HSL-1800-Body Medium parameters used: f = 1732.4 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.76, 4.76, 4.76); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.753 mW/g**

Body Worn - Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 21.1 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.668 mW/g; SAR(10 g) = 0.396 mW/gMaximum value of SAR (measured) = 0.727 mW/g

0 dB = 0.727 mW/g

16.5.43 UMTS FDD IV- BodyWorn-HSDPA-Low-Rear

Date/Time: 2010-3-15 16:50:45

Test Laboratory: SGS-GSM

UMTS FDD IV-Body-Worn-HSDPA-Low-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV HSDPA; Frequency: 1712.4 MHz;Duty Cycle: 1:1

Medium: HSL-1800-Body Medium parameters used: f = 1712.4 MHz; σ = 1.46 mho/m; ϵ_r = 52.5; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.76, 4.76, 4.76); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Low/Area Scan (81x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.693 mW/g**

Body Worn - Low/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 20.5 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.619 mW/g; SAR(10 g) = 0.367 mW/gMaximum value of SAR (measured) = 0.676 mW/g

0 dB = 0.676 mW/g

Page 68 of 136

16.5.44 UMTS FDD IV- BodyWorn-HSDPA- High-Rear

Date/Time: 2010-3-15 16:20:48

Test Laboratory: SGS-GSM

UMTS FDD IV-Body-Worn-HSDPA-High-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band IV HSDPA; Frequency: 1752.6 MHz;Duty Cycle: 1:1

Medium: HSL-1800-Body Medium parameters used: f = 1752.6 MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.76, 4.76, 4.76); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - High/Area Scan (81x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.644 mW/g**

Body Worn - High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.2 V/m; Power Drift = 0.000 dB

Peak SAR (extrapolated) = 0.928 W/kg

SAR(1 g) = 0.571 mW/g; SAR(10 g) = 0.338 mW/gMaximum value of SAR (measured) = 0.622 mW/g

0~dB=0.622mW/g

Page 69 of 136

16.5.45 UMTS FDD V-LeftHandSide-Cheek-Middle

Date/Time: 2010-3-9 13:10:04

Test Laboratory: SGS-GSM

UMTS FDD V-LeftHandSide-Cheek-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835_Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.895$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Mid/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.01 mW/g**

Cheek position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 8.23 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.894 mW/g; SAR(10 g) = 0.626 mW/gMaximum value of SAR (measured) = 0.944 mW/g

0 dB = 0.944 mW/g

Page 70 of 136

16.5.46 UMTS FDD V-LeftHandSide-Tilt-Middle

Date/Time: 2010-3-9 14:35:52

Test Laboratory: SGS-GSM

UMTS FDD V-LeftHandSide-Tilt-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835_Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.895$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Mid/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.442 mW/g**

Tilt position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = 0.143 dB

Peak SAR (extrapolated) = 0.564 W/kg

SAR(1 g) = 0.435 mW/g; SAR(10 g) = 0.320 mW/gMaximum value of SAR (measured) = 0.459 mW/g

0 dB = 0.459 mW/g

Page 71 of 136

16.5.47 UMTS FDD V-LeftHandSide-Cheek-Low

Date/Time: 2010-3-9 15:10:29

Test Laboratory: SGS-GSM

UMTS FDD V-LeftHandSide-Cheek-Low

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: HSL835_Head Medium parameters used: f = 826.4 MHz; $\sigma = 0.885$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.02 mW/g**

Cheek position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.85 V/m; Power Drift = 0.152 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.889 mW/g; SAR(10 g) = 0.626 mW/gMaximum value of SAR (measured) = 0.938 mW/g

0 dB = 0.938 mW/g

16.5.48 UMTS FDD V-LeftHandSide-Cheek-High

Date/Time: 2010-3-9 13:37:07

Test Laboratory: SGS-GSM

UMTS FDD V-LeftHandSide-Cheek-High

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: HSL835_Head Medium parameters used: f = 846.6 MHz; $\sigma = 0.907 \text{ mho/m}$; $\epsilon_r = 42$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn569; Calibrated: 2009-11-18
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position -High/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.08 mW/g**

Cheek position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 8.34 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.951 mW/g; SAR(10 g) = 0.662 mW/gMaximum value of SAR (measured) = 1.01 mW/g

0 dB = 1.01 mW/g

Page 73 of 136

16.5.49 UMTS FDD V-RightHandSide-Cheek-Middle

Date/Time: 2010-3-8 17:24:54

Test Laboratory: SGS-GSM

UMTS FDD V-RightHandSide-Cheek-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 836.4 MHz;Duty Cycle: 1:1

Medium: HSL835_Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.895$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Middle/Area Scan (61x111x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.832 mW/g**

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.7 V/m; Power Drift = 0.034 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.783 mW/g; SAR(10 g) = 0.543 mW/gMaximum value of SAR (measured) = 0.844 mW/g

0 dB = 0.844 mW/g

Page 74 of 136

16.5.50 UMTS FDD V-RightHandSide-Tilt-Middle

Date/Time: 2010-3-8 17:00:09

Test Laboratory: SGS-GSM

UMTS FDD V-RightHandSide-Tilt-Middle

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 836.4 MHz;Duty Cycle: 1:1

Medium: HSL835_Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.895$ mho/m; $\varepsilon_r = 42.2$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.456 mW/g**

Tilt position - Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 17.2 V/m; Power Drift = 0.346 dB

Peak SAR (extrapolated) = 0.577 W/kg

SAR(1 g) = 0.441 mW/g; SAR(10 g) = 0.322 mW/gMaximum value of SAR (measured) = 0.467 mW/g

0 dB = 0.467 mW/g

Page 75 of 136

16.5.51 UMTS FDD V-RightHandSide-Cheek-Low

Date/Time: 2010-3-9 15:35:50

Test Laboratory: SGS-GSM

UMTS FDD V-RightHandSide-Cheek-Low

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: HSL835_Head Medium parameters used: f = 826.4 MHz; $\sigma = 0.885$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.843 mW/g**

Cheek position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.143 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.803 mW/g; SAR(10 g) = 0.570 mW/gMaximum value of SAR (measured) = 0.857 mW/g

0~dB=0.857mW/g

16.5.52 UMTS FDD V-RightHandSide-Cheek-High

Date/Time: 2010-3-9 11:37:24

Test Laboratory: SGS-GSM

UMTS FDD V-RightHandSide-Cheek-High

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: HSL835_Head Medium parameters used: f = 846.6 MHz; $\sigma = 0.907 \text{ mho/m}$; $\epsilon_r = 42$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - High/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.881 mW/g**

Cheek position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.174 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.840 mW/g; SAR(10 g) = 0.584 mW/gMaximum value of SAR (measured) = 0.915 mW/g

0 dB = 0.915 mW/g

16.5.53 UMTS FDD V-Body Worn-WCDMA-Middle-Front

Date/Time: 2010-3-17 10:18:20

Test Laboratory: SGS-GSM

UMTS FDD V-Body-Worn-WCDMA-Middle-Front

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835 Body Medium parameters used: f = 836.4 MHz; $\sigma = 0.974$ mho/m; $\epsilon_r = 56.6$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle Front/Area Scan (71x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.684 mW/g**

Body Worn - Middle Front/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 22.6 V/m; Power Drift = 0.193 dB

Peak SAR (extrapolated) = 0.838 W/kg

SAR(1 g) = 0.650 mW/g; SAR(10 g) = 0.479 mW/gMaximum value of SAR (measured) = 0.686 mW/g

0 dB = 0.686 mW/g

Page 78 of 136

16.5.54 UMTS FDD V-Body Worn-WCDMA-Middle-Rear

Date/Time: 2010-3-17 10:44:06

Test Laboratory: SGS-GSM

UMTS FDD V-Body-Worn-WCDMA-Middle-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835 Body Medium parameters used: f = 836.4 MHz; σ = 0.974 mho/m; ϵ_r = 56.6; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle Rear/Area Scan (71x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.862 mW/g**

Body Worn - Middle Rear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.7 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.817 mW/g; SAR(10 g) = 0.588 mW/gMaximum value of SAR (measured) = 0.867 mW/g

0 dB = 0.867 mW/g

Page 79 of 136

16.5.55 UMTS FDD V-Body Worn-WCDMA-Low-Rear

Date/Time: 2010-3-17 11:55:04

Test Laboratory: SGS-GSM

UMTS FDD V-Body-Worn-WCDMA-Low-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: HSL835 Body Medium parameters used: f = 826.4 MHz; $\sigma = 0.962$ mho/m; $\epsilon_r = 56.8$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn -Low/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.824 mW/g**

Body Worn -Low/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 24.8 V/m; Power Drift = 0.089 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.787 mW/g; SAR(10 g) = 0.567 mW/gMaximum value of SAR (measured) = 0.834 mW/g

0 dB = 0.834 mW/g

Page 80 of 136

16.5.56 UMTS FDD V-Body Worn-WCDMA-High-Rear

Date/Time: 2010-3-17 11:12:20

Test Laboratory: SGS-GSM

UMTS FDD V-Body-Worn-WCDMA-High-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: HSL835 Body Medium parameters used: f = 846.6 MHz; $\sigma = 0.986$ mho/m; $\epsilon_r = 56.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - High/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.890 mW/g**

Body Worn - High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.6 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.832 mW/g; SAR(10 g) = 0.599 mW/gMaximum value of SAR (measured) = 0.884 mW/g

0 dB = 0.884 mW/g

16.5.57 UMTS FDD V-Body Worn-WCDMA-Worstcase with headset

Date/Time: 2010-3-17 14:06:11

Test Laboratory: SGS-GSM

UMTS FDD V-Body-Worn-WCDMA-Worstcase with headset DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: HSL835 Body Medium parameters used: f = 846.6 MHz; $\sigma = 0.986$ mho/m; $\epsilon_r = 56.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Worstcase with headset/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.708 mW/g**

Body Worn - Worstcase with headset/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 25.1 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 0.900 W/kg

SAR(1 g) = 0.668 mW/g; SAR(10 g) = 0.477 mW/gMaximum value of SAR (measured) = 0.714 mW/g

0 dB = 0.714 mW/g

16.5.58 UMTS FDD V-Body Worn-HSDPA-Middle- Rear

Date/Time: 2010-3-17 14:55:43

Test Laboratory: SGS-GSM

UMTS FDD V-Body-Worn-HSDPA-Middle-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V HSDPA; Frequency: 836.4 MHz;Duty Cycle: 1:1

Medium: HSL835 Body Medium parameters used: f = 836.4 MHz; σ = 0.974 mho/m; ϵ_r = 56.6; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.837 mW/g**

Body Worn - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.3 V/m; Power Drift = -0.157 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.785 mW/g; SAR(10 g) = 0.558 mW/gMaximum value of SAR (measured) = 0.817 mW/g

0 dB = 0.817 mW/g

16.5.59 UMTS FDD V-Body Worn-HSDPA-Low- Rear

Date/Time: 2010-3-17 15:16:07

Test Laboratory: SGS-GSM

UMTS FDD V-Body-Worn-HSDPA-Low-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V HSDPA; Frequency: 826.4 MHz;Duty Cycle: 1:1

Medium: HSL835 Body Medium parameters used: f = 826.4 MHz; $\sigma = 0.962$ mho/m; $\varepsilon_r = 56.8$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Low/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.823 mW/g**

Body Worn - Low/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 27.4 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.786 mW/g; SAR(10 g) = 0.566 mW/gMaximum value of SAR (measured) = 0.833 mW/g

0 dB = 0.833 mW/g

16.5.60 UMTS FDD V-Body Worn-HSDPA-High- Rear

Date/Time: 2010-3-17 14:31:34

Test Laboratory: SGS-GSM

UMTS FDD V-Body-Worn-HSDPA-High-Rear

DUT: M0002AW01; Type: Head; Serial: 352129049999924

Communication System: WCDMA Band V HSDPA; Frequency: 846.6 MHz;Duty Cycle: 1:1

Medium: HSL835 Body Medium parameters used: f = 846.6 MHz; $\sigma = 0.986$ mho/m; $\varepsilon_r = 56.4$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - High/Area Scan (81x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.860 mW/g**

Body Worn - High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.5 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.817 mW/g; SAR(10 g) = 0.585 mW/gMaximum value of SAR (measured) = 0.863 mW/g

0 dB = 0.863 mW/g

17. Identification of Samples

Product Name	GSM/GPRS/EDGE/M	/CDMA/HSDPA Handhold Phone	
Brand Name	-		
Marketing Name	W660		
Final Hardware Version	W660_344		
Final Software Version	LQARZ01_240005_0	.0.4	
Normal Voltage	3.8 V		
Low Voltage	3.5 V		
High Voltage	4.2 V		
Battery Type	Li-ion		
	3.7V / 1000mAh		
Antenna Type	Inner antenna		
GSM Frequency Bands	CCM050(tootod)	Tx: 824~849MHz	
	GSM850(tested)	Rx: 869~894MHz	
	EGSM 900	Tx: 880~915MHz	
		Rx: 925~960 MHz	
	DCS 1800	Tx: 1710~1785 MHz	
		Rx: 1805~1880 MHz	
	PCS1900(tested)	Tx:1850~1910MHz	
		Rx:1930~1990MHz	
UMTS Frequency Bands	FDDI	Tx:1920~1980MHz	
		Rx:2110~2170MHz	
	FDDIV(tested)	Tx:1710~1755MHz	
		Rx: 2110 - 2155MHz	
	FDDV(tested)	Tx:824~849MHz	
		Rx: 869~894MHz	
Modulation Mode	GMSK,8PSK,QPSK,16QAM		
GSM / GPRS Power Class	GSM850	4	
	PCS1900	1	
EGPRS Power Class	GSM850	E2	
	PCS1900	E2	
WCDMA Power Class	FDDIV, FDDV	3	
GPRS Multislot class	GSM850.PCS1900	Class 12	

EGPRS Multislot class	GSM850.PCS1900	Class 12
Reference Number	GSM10170698S01	
Serial Number	M0002AW01	
IMEI	352129049999924	
Date of receipt	03-07,2010	
Date of Testing Start	03-08,2010	
Date of Testing End	03-17,2010	

18. Photographs of EUT

Fig.18-1 Front View

Fig.18-2 Back View

Fig.18-3 Battery

Fig.18-4 Headset

Photographs of Test Setup

Fig.A-1 Photograph of the SAR measurement System

Fig.A-2a Photograph of the Tissue Simulant Liquid depth 15cm for Head

Fig.A-2b Photograph of the Tissue Simulant Liquid depth 15cm for Head

Fig.A-2cPhotograph of the Tissue Simulant Liquid depth 15cm for Head

- Fig.A-3a. Photograph of the Tissue Simulant Liquid depth 15cm for Body Worn

Fig.A-3b.Photograph of the Tissue Simulant Liquid depth 15cm for Body Worn

Fig.A-3c. Photograph of the Tissue Simulant Liquid depth 15cm for Body Worn

Fig.A-4a Photograph of the Left Hand Side Cheek status

Page 90 of 136

Fig.A-4b Photograph of the Left Hand Side Tilted status

Fig.A-4c Photograph of the Right Hand Side Cheek status

Page 91 of 136

Fig.A-4d Photograph of the Right Hand Side Tilted status

Fig.A-4e Photograph of the Body Worn status-front

Fig.A-4f Photograph of the Body Worn status-rear

Report No.: GSM10170698S01 Issue Date: 03-22,2010

Page 92 of 136

Tissue Simulant Liquid

Annex B.1 Recipes for Tissue Simulant Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands.

Frequency (MHz)	8:	35	90	00	1800	-2000
Tissue Type	Head	Body	Head	Body	Head	Body
	Ingred	lient (% by v	veight)			
Water	40.30	50.75	40.30	50.75	55.24	70.17
Salt (NaCl)	1.38	0.94	1.38	0.94	0.31	0.39
Sucrose	57.90	48.21	57.90	48.21	0	0
HEC	0.24	0	0.24	0	0	0
Bactericide	0.18	0.10	0.10	0.10	0	0
DGBE	0	0	0	0	44.45	29.44
	Measureme	nt dielectric	parameters			
Dielectric Constant	41.9	55.0	41.1	54.5	39.2	53.2
Conductivity (S/m)	0.93	0.97	1.04	1.06	1.45	1.59
		Target value	s			
Dielectric Constant	41.5	55.2	41.5	55.0	40.0	53.3
Conductivity (S/m)	0.90	0.97	0.97	1.05	1.40	1.52
Salt: 99 ⁺ % Pure Sodium Chloride	•	Sucr	ose: 98+% Pu	ire Sucrose	-	-

Water: De-ionized, 16 MW⁺ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Table B-1 Recipe of Tissue Simulat Liquid

Annex B.2 Measurement for Tissue Simulant Liquid

The dielectric properties for this Tissue Simulant Liquids were measured by using the Agilent Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5071B Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was 22±2°C.

Report No.: GSM10170698S01 Issue Date: 03-22,2010

Page 93 of 136

Frequency (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp (°C)	
		Recommended Limit	41.5±5%	0.90±5%	22±2	
	Head	Recommended Limit	(39.43~43.57)	(0.86~0.94)		
	пеац	Measured,03-08,2010	42.2	0.894	22.1	
835		Measured, 03-09,2010	42.1	0.9	22.1	
		Recommended Limit	55.2±5%	0.97±5%	22±2	
	Body	Recommended Limit	(52.44~57.96)	(0.92~1.01)		
		Measured, 03-17,2010	56.6	0.972	22.0	
		December ded Limit	40±5%	1.40±5%	22±2	
	Head	Recommended Limit	(38-42)	(1.33~1.47)		
1800			Measured, 03-12,2010	38.6	1.44	22.2
1800		Recommended Limit	53.3±5%	1.52±5%	22±2	
	Body		(50.64~55.96)	(1.45~1.59)		
		Measured, 03-15,2010	52.2	1.57	21.9	
		Recommended Limit	40±5%	1.40±5%	22±2	
	Head	Recommended Limit	(38-42)	(1.33~1.47)		
4000		Measured, 03-10,2010	38.9	1.42	21.8	
1900			53.3±5%	1.52±5%	22±2	
	Body	Recommended Limit	(50.64~55.96)	(1.45~1.59)		
		Measured,03-16,2010	53.2	1.54	22.2	

Table B-2 Measurement result of Tissue electric parameters

Annex C SAR System Validation

The microwave circuit arrangement for system verification is sketched in Fig. C-1. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 835&1800&1900MHz. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table C-1 (A power level of 250mw was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Issue Date: 03-22,2010

Page 94 of 136

Fig. C-1 the microwave circuit arrangement used for SAR system verification

- A. Agilent E4438C Signal Generator
- B. Mini-Circuit ZHL-42 Preamplifier
- C. Mini-Circuit VLF-2500+ Low Pass Filter
- D. Mini-Circuits ZABDC20-252H-N+ Bi-DIR Coupling
- PM1. Power Sensor NRP-Z92
- PM2. Agilent Model E4416A Power Meter
- PM3. Power Sensor NRP-Z92

Validation Frequency Kit (MHz)		Tissue	Limit/Measurement			
Kit	(MHz)	Туре	Condition	Recommended/Measured	1g	
			Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	9.62±10% (8.66-10.58)	
D835V2 835	Head	Nomalized to 1W(for nominal Head TSL parameters)	-	9.93		
		250mW input power	Measured, 03-08,2010	2.46		
		Nomalized to 1W(for nominal Head TSL parameters)		9.71		
		250mW input power	Measured, 03-09,2010	2.42		
				Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	9.89±10% (8.90-10.87)
		Body	Nomalized to 1W(for nominal Head TSL parameters)	-	10.08	
			250mW input power	Measured, 03-17,2010	2.51	
	D4000\/0	Head Body	Nomalized to 1W(for nominal Head TSL parameters)	Recommended Limit	38.6±10% (34.74-42.46)	
			Nomalized to 1W(for nominal Head TSL parameters)		37.53	
D4000\/0			250mW input power	Measured, 03-12,2010	9.62	
D1800V2	1800		Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	38.2±10% (34.38-42.02)	
			Nomalized to 1W(for nominal Head TSL parameters)	-	38.64	
			250mW input power	Measured, 03-15,2010	9.9	
			Nomalized to 1W(for nominal Head TSL parameters)	Recommended Limit	39.3±10% (35.37-43.23)	
	Head	Nomalized to 1W(for nominal Head TSL parameters)		40.60		
D.1000\'0			250mW input power	Measured, 03-10,2010	10.3	
D1900V2	1900		Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	40.4±10% (36.36-44.44)	
		Body	Nomalized to 1W(for nominal Head TSL parameters)		40.86	
			250mW input power	Measured, 03-16,2010	10.3	

Table C-1 SAR System Validation Result

System Validation for 835MHz-Head-1

Date/Time: 2010-3-8 9:55:39

Test Laboratory: SGS-GSMSystem-Validation-D835-Head

DUT: Dipole 835MHz; Type: D835V2; Serial: D835V2 - SN:4d070 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900_Head Medium parameters used: f = 835 MHz; $\sigma = 0.894 \text{ mho/m}$; $\epsilon_r = 42.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18
 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.59 mW/g**

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 54.1 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 3.77 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.58 mW/gMaximum value of SAR (measured) = 2.66 mW/g

0 dB = 2.66 mW/g

Page 97 of 136

System Validation for 835MHz-Head-2

Date/Time: 2010-3-9 10:53:46

Test Laboratory: SGS-GSMSystem-Validation-D835-Head

DUT: Dipole 835MHz; Type: D835V2; Serial: D835V2 - SN:4d070 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900_Head Medium parameters used: f = 835 MHz; $\sigma = 0.9 \text{ mho/m}$; $\epsilon_r = 42.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.57 mW/g**

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.3 V/m; Power Drift = 0.002 dB**

Peak SAR (extrapolated) = 3.69 W/kg

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.56 mW/gMaximum value of SAR (measured) = 2.62 mW/g

0 dB = 2.62 mW/g

System Validation for 835MHz-Body

Date/Time: 2010-3-17 9:26:50

Test Laboratory: SGS-GSMSystem-Validation-D835-Body

DUT: Dipole 835MHz; Type: D835V2; Serial: D835V2 - SN:4d070 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 Body Medium parameters used: f = 835 MHz; $\sigma = 0.972$ mho/m; $\epsilon_r = 56.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18
 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.68 mW/g**

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 51.5 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 3.73 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.65 mW/gMaximum value of SAR (measured) = 2.72 mW/g

0 dB = 2.72 mW/g

Page 99 of 136

System Validation for 1800MHz-Head

Date/Time: 2010-3-12 9:07:11

Test Laboratory: SGS-GSMSystem-Validation-D1800-Head

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d070 Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL1800_Head Medium parameters used: f = 1800 MHz; $\sigma = 1.44 \text{ mho/m}$; $\epsilon_r = 38.6$; $\rho = 1000 \text{ mHz}$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5, 5, 5); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x121x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 10.8 mW/g**

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 81.5 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 9.62 mW/g; SAR(10 g) = 4.94 mW/gMaximum value of SAR (measured) = 10.8 mW/g

0 dB = 10.8 mW/g

System Validation for 1800MHz-Body

Date/Time: 2010-3-15 9:47:32

Test Laboratory: SGS-GSMSystem-Validation-D1800-Body

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d070 Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL-1800-Body Medium parameters used: f = 1800 MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.76, 4.76, 4.76); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.7 mW/g**

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm** Reference Value = 77.9 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 18.0 W/kg

SAR(1 g) = 9.9 mW/g; SAR(10 g) = 5.13 mW/g

Maximum value of SAR (measured) = 11.3 mW/g

0 dB = 11.3 mW/g

Page 101 of 136

System Validation for 1900MHz-Head

Date/Time: 2010-3-10 9:45:02

Test Laboratory: SGS-GSMSystem-Validation-D1900-Head

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900_Head Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ_r = 38.9; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.0 mW/g**

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 85.4 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.19 mW/gMaximum value of SAR (measured) = 11.6 mW/g

0 dB = 11.6 mW/g

System Validation for 1900MHz-Body

Date/Time: 2010-3-16 9:45:22

Test Laboratory: SGS-GSMSystem-Validation-D1900-Body

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 53.2$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.4 mW/g**

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 81.9 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.37 mW/gMaximum value of SAR (measured) = 11.6 mW/g

0 dB = 11.6 mW/g

Page 103 of 136

Description of Test Position

Annex D.1 **SAM Phantom Shape**

Figure D-1 front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup of Figure D-2. Note: The center strip including the nose region has a different thickness tolerance.

Figure D-2 Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

Figure D-3 Close-up side view of phantom showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

Figure D-4 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

Page 104 of 136

Annex D.2 **EUT constructions**

Figure D-5a Handset vertical and horizontal reference lines-"fixed case"

Figure D-5b Handset vertical and horizontal reference lines-"clam-shell case"

Annex D.3 Definition of the "cheek" position

- a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position" see Figure 1-7). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE;
- b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until the phone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Annex D.4 Definition of the "tilted" position

- a) Position the device in the "cheek" position described above;
- b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

Page 105 of 136

Figure D-6 Definition of the reference lines and points, on the phone and on the phantom and initial position

Figure D-7 "Cheek" and "tilt" positions of the mobile phone on the left side

Report No.: GSM10170698S01 Issue Date: 03-22,2010

Page 106 of 136

Calibration certificate

Annex E.1 Probe Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swise Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client SGS SH (Auden)

Certificate No: ES3-3088 Nov09

ALIBRATION	CERTIFICAT	Exemple the start with	and the Table 16
Object	ES3DV3 - SN:3	880	
Calibration procedure(s)	POLICE GALLEGATION CONTRACTOR OF THE PARTY O	QA CAL-23.v3 and QA CAL-25.v2 edure for dosimetric E-field probe	
Calibration date:	November 19, 2	009	
The measurements and the unc	ertainties with confidence ucted in the diosed laborat	tional standards, which realize the physical unit probability are given on the following pages are ony facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E44198 Power sensor E4412A	GB41293874 MY41495277 MY41498087	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Apr-10 Apr-10 Apr-10
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	SN: S6054 (3c) SN: S6086 (20e) SN: S6129 (30e) SN: 3013 SN: 660	31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ESJ-3013_Jan09) 29-Sep-06 (No. DAE4-606_Sep06)	Mar-10 Mor-10 Mar-10 Jan-10 Sep-10
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	SN: \$5086 (206) SN: \$5129 (306) SN: 3013 SN: 660	31-Mar-06 (No. 217-01028) 31-Mar-06 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan99) 29-Sep-06 (No. DAE4-660_Sep05)	Mar-10 Mar-10 Mar-10 Jan-10 Sep-10
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8848C	SN: S5088 (206) SN: S5129 (30b) SN: 3013	31-Mar-06 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09)	Mar-10 Mor-10 Mar-10 Jan-10
Power sensor E4412A Seference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8848C Network Analyzer HP 8753E	SN: S5085 (206) SN: S5129 (306) SN: 3013 SN: 660 ID # US3842U01700	31-Mar-06 (No. 217-01028) 31-Mar-08 (No. 217-01027) 2-Jan-09 (No. ES3-3013, Jan09) 29-Sep-06 (No. DAE4-660, Sep06) Check Date (In house) 4-Aug-99 (in house check Oct-09)	Mar-10 Mor-10 Mar-10 Jan-10 Sep-10 Scheduled Check In house check: Oct-11
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8849C Network Analyzer HP 8753E	SN: S508 (206) SN: S5129 (306) SN: 3013 SN: 660 ID # US3642U01700 US37390516	31-Mar-06 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ESJ-3013_Jan09) 29-Sep-06 (No. DAE4-660_Sep05) Check Date (In house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Mar-10 Mar-10 Mar-10 Jan-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificale No: ES3-3088_Nov09

Page 1 of 11

Report No.: GSM10170698S01 Issue Date: 03-22,2010

Page 107 of 136

Calibration Laboratory of Schmid & Partner

Engineering AG sstrasse 43, 8004 Zurich, Switzerland

S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z ConvE

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A.B.C

DCP

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

φ rotation around probe axis

Polarization o Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

IEEE Std 1528-2003, TEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement

Techniques', December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)*, February 2005

Methods Applied and Interpretation of Parameters:

- $NORM_{X,Y,Z}$. Assessed for E-field polarization 3 = 0 ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORM_{X,Y,Z} are only intermediate values, i.e., the uncertainties of NORM_{X,Y,Z} does not effect the E²-field. uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y.z.* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Cartificate No: ES3-3088 Nov09

Page 2 of 11

Report No.: GSM10170698S01

Issue Date: 03-22,2010

Page 108 of 136

ES3DV3 SN:3088

November 19, 2009

Probe ES3DV3

SN:3088

Manufactured:

July 20, 2005

Last calibrated: Recal brated:

December 22, 2008 November 19, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No. ES3-3088_Nov09

Page 3 of 11

Page 109 of 136

ES3DV3 SN:3088

November 19, 2009

DASY - Parameters of Probe: ES3DV3 SN:3088

Basic Calibration Parameters

The second secon	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.32	1.27	1.26	± 10.1%
DCP (mV) ⁸	94.2	94.4	94.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	300.0	±1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3088_Nov09

Page 4 of 11

^{*} The uncertainties of NormX,Y,Z do not affect the E^c-field uncertainty inside TSL (see Pages 5 and 6).

Numerical ineutization parameter; uncertainty not required.

¹ Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the equare of the field value.

Page 110 of 136

ES3DV3 SN:3088

November 19, 2009

DASY - Parameters of Probe: ES3DV3 SN:3088

Calibration Parameter Determined in Head Tissue Simulating Media

f [NHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	mvF Y	ConvF Z	Alpha	Depth Unc (k=2)
900	±50/±100	$41.5\pm5\%$	0.97 ±5%	5.84	5.84	5.84	0.90	1.06 ± 11.0%
1810	±50/±100	$40.0\pm5\%$	1.40 ± 5%	5.00	5.00	5.00	0.38	1.75 ± 11.0%
1900	$\pm 50 / \pm 100$	$40.0\pm5\%$	$1.40 \pm 5\%$	4.97	4.97	4.97	0.48	1.53 ± 11.0%
2450	±50/±100	39.2 ± 5%	1.80 ± 5%	4.40	4.40	4.40	0.43	1.79 ± 11.0%

and the uncertainty for the indicated frequency band.

Certificate No. ES3-3088_Nov09

Page 5 of 11

Page 111 of 136

ES3DV3 SN:3088

November 19, 2009

DASY - Parameters of Probe: ES3DV3 SN:3088

Calibration Parameter Determined in Body Tissue Simulating Media

[SHM] t	Validity [MHz] ^C	Permittivity	Conductivity	ConvFX Co	onvF Y	ConvF Z	Alpha	Depth Unc (k=2)
900	$\pm 50 / \pm 100$	$55.0\pm5\%$	1.05 ± 5%	5.68	5.68	5.68	0.97	1.07 ± 11.0%
1810	±50/±100	$53.3 \pm 5\%$	1.52 ± 5%	4.76	4.76	4.76	0.41	1.88 ± 11.0%
1900	±50/±100	53.3 ± 5%	1.52 ± 5%	4.58	4.58	4.58	0.36	2.13 ± 11.0%
2450	±50/±100	52.7 ± 5%	1.95 ± 5%	4.20	4.20	4.20	0.99	1.04 ± 11.0%

E The validity of a 100 MHz only applies for DASY v4.4 and righer (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3088_Nov09

Page 6 of 11

Page 112 of 136

ES3DV3 SN:3088

November 19, 2009

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 5.3% (k=2)

Certificate No. E83-3088_Nov09

Page 7 of 11

ES3DV3 SN:3088

November 19, 2009

Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3088_Nov09

Page 8 cf 11

Page 114 of 136

ES3DV3 SN:3088

November 19, 2009

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3088_Nov09

Page 9 of 11

Page 115 of 136

ES3DV3 SN:3088

November 19, 2009

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (¢, 8), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3088_Nov09

Page 10 of 11

Page 116 of 136

ES3DV3 SN:3088

November 19, 2009

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3088_Nov09

Page 11 of 11

Page 117 of 136

Annex E.2 DAE Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBRATION C		Management Books	cate No: DAE3-569_Nov09			
Object	DAE3 - SD 000 D03 AA - SN: 569					
Calibration procedure(s)	QA CAL-06.v12 Calibration proced	dure for the data acquisition	n electronics (DAE)			
Calibration date:	November 18, 20	09				
The measurements and the unce All calibrations have been condu- Calibration Equipment used (MS	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration)	nal standards, which realize the phys obability are given on the following pa y facility: environment temperature (2	ages and are part of the certificate.			
Primary Standards	E) #	Cal Date (Certificate No.)	Scheduled Calibration			
Keithley Multimeter Type 2001	SN. 0810278	1-Oct-09 (No: 8055)	Oct-10			
Secondary Standards	10.4	Check Date (in house)	School/od Chook			
Galibrator Box V1.1	SE UMS 006 AB 1004	05-Jun-09 (in nouse check)	In house check: Jun-10			
		*				
	Name	Eurotion	Constus			
Calibrated by:	Name Dominique Steffen	Function Technician	Signature Well-72—			
			synoture Who i.v. Decurer			
Calibrated by: Approved by:	Dominique Steffen	Technician	Won			

Certificate No: DAE3-569_Nov09

Page 1 of 5

Page 118 of 136

Calibration Laboratory of Schmid & Partner Engineering AG strasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration certificat

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this
 - Cammon mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-569_Nov09

Page 2 of 5

Report No.: GSM10170698S01

Issue Date: 03-22,2010

Page 119 of 136

DC Voltage Measurement

A/D - Converter Resolution nominal

full range = -100...+300 mV full range = -1......+3mV High Range: 1LSB = 6.1µV Low Range: 1LSB = 61nV, full range = -1......+3c
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec 1LSB =

Calibration Factors	×	Y	z
High Range	404.766 ± 0.1% (k=2)	404.352 ± 0.1% (k=2)	404.129 ± 0.1% (k=2)
Low Range	3.94150 ± 0.7% (k=2)	3.93629 ± 0.7% (k=2)	3.95193 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	264.0 * ± 1 *
---	---------------

Certificate No: DAE3-569_Nov09

Page 3 of 5

Page 120 of 136

Appendix

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200000.4	3.78	0.00
Channel X + Input	20001.03	0.33	0.00
Channel X - Input	-19995.39	5.31	-0.03
Channel Y + Input	200010.9	3.93	0.00
Channel Y + Input	19997.76	-2.84	-0.01
Channel Y - Input	-20002.85	-3.05	0.02
Channel Z + Input	200008.6	4.33	0.00
Channel Z + Input	19999.52	-0.88	0.00
Channel Z - Input	-20001.79	0.01	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.7	-0.28	-0.01
Channel X + Input	199.60	-0.40	-0.20
Channel X - Input	-201.13	-1.23	0.62
Channel Y + Input	2000.0	9.02	0.00
Channel Y + Input	199.28	-0.82	-0.41
Channel Y - Input	-201.40	-1.50	0.75
Channel Z + Input	1999.9	-0.17	-0.01
Channel Z + Input	198.61	-1.39	-0.70
Channel Z - Input	-201.65	-1.75	D.88

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-3.14	-5.24
	- 200	6.52	4.85
Channel Y	200	7.98	7.35
	- 200	-8.52	-8.82
Channel Z	200	-5.05	-5.64
	- 200	3.96	4.09

3. Channel separation

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	- 4	2.19	0.12
Channel Y	200	2.65	+	3.55
Channel Z	200	1.86	-0.43	20

Certificate No: DAE3-569_Nov09

Page 4 of 5

Page 121 of 136

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16392	14986
Channel Y	15762	16421
Channel Z	16298	16514

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ.

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.18	-1.21	0.79	0.33
Channel Y	-0.61	-1.80	0.79	0.30
Channel Z	-0.97	-2.37	-0.10	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.8
Channel Y	0.2000	204.0
Channel Z	0.2001	204.9

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	-14
Supply (- Voc)	-0.01	-8	-9

Certificate No: DAE3-569_Nov09

Page 5 of 5

Page 122 of 136

Annex E.3 Dipole Calibration certification

D835V2

Certificate No: D835V2-4d070_Dec08

Page 1 of 9

Page 123 of 136

Measurement Conditions

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	0.89 mhoim ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 mW / g
SAR normalized	normalized to 1W	9.72 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.62 mW/g±17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.60 mW / g
SAR normalized	normalized to 1W	6.40 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.34 mW/g±16.5 % (k=2)

Certificate No: D835V2-4d070_Dec08

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Page 124 of 136

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2,55 mW/g
SAR normalized	normalized to 1W	10.2 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.89 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.68 mW / g
SAR normalized	normalized to 1W	6.72 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.58 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d070_Dec08

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

DASY5 Validation Report for Head TSL

Date/Time: 08.12.2008 10:31:04

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d070

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mbo/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm; dist=3.4mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy-5mm, dz-5mm

Reference Value = 56.7 V/m; Power Drift = -0.000938 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.73 mW/g

0 dB = 2.73 mW/g

Certificate No: D635V2-4d070 Dec08

Page 6 of 9

DASY5 Validation Report for Body TSL

Date/Time: 15.12.2008 11:58:06

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d070

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 54.7 V/m; Power Drift = 0.00608 dB

Peak SAR (extrapolated) = 3.69 W/kg

SAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.68 mW/g

Maximum value of SAR (measured) = 2.87 mW/g

0 dB = 2.87mW/g

Certificate No: D835V2-4d070 Dec08

Page 8 of 9

Page 127 of 136

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-SH (Auden)

Accreditation No.: SCS 108

C

Gertificate No: D1800V2-2d070_Nov09

CALIBRATION CERTIFICATE Object D1800V2 - SN: 2d070 QA CAL-05.v7 Calibration procedure for dipole validation kits November 24, 2009 Colibration date This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (MATE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A US37292783 00-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20a) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205 Jun09) Jun-10 SN: 601 07-Mar-09 (No. DAE4-601_Mar09) Mar-10 Secondary Standards Check Date (in house) Scheduled Check in house check: Oct-11 Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) RF generator R&S SMT-36 100005 4-Aug-99 (in house sheck Oct-09) In house check: Oct-11 US37390585 54206 Network Analyzer HP 6753C 10-Oct-01 (in house check Oct-09) in house sheck: Oct-10 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katia Pokovio Technical Manager Issued: November 25, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D1800V2-2d070 Nov09

Page 1 of 9

Page 128 of 136

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V6.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	7)
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C	more	-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.65 mW / g
SAR normalized	normalized to 1W	38.6 m/V / g
SAR for nomina. Head TSL parameters	normalized to 1W	38.6 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.10 mW / g
SAR normalized	normalized to 1W	20.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.4 mW /g ± 16.5 % (k=2)

Certificate No: D1800V2-2d070_Nov09

Page 3 of 9

Page 129 of 136

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.45 mW / g
SAR normalized	normalized to 1W	37.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	38.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.00 mW / g
SAR normalized	normalized to 1W	20.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.1 mW/g ± 16.5 % (k=2)

Certificate No: D1800V2-2d070_Nov09

Page 4 of 9

DASY5 Validation Report for Head TSL

Date/Time: 24.11,2009 11:39:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d070

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.25, 5.25, 5.25); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (frent); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW/d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.9 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.65 mW/g; SAR(10 g) = 5.1 mW/g

Maximum value of SAR (measured) = 12 mW/g

0 dB = 12mW/g

Certificate No: D1800V2-2d070_Nov09

Page 6 of 9

DASY5 Validation Report for Body

Date/Time: 17.11,2009 11:09:04

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d070

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.8, 4.8, 4.8); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03,2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.4 V/m; Power Drift = -0.00936 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.45 mW/g; SAR(10 g) = 5 mW/g

Maximum value of SAR (measured) = 12 mW/g

0 dB = 12 mW/g

Certificate No: D1800V2-2d070_Nov09

Page 8 of 9

Page 132 of 136

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBRATION (
Object	D1900V2 - SN: 5d028		
Calibration procedure(s)	QA CAL-05.v7		
	Calibration proce	dure for dipole validation kits	
Calibration date	November 24, 20	109	
		onal standards, which realize the physical un robability are given on the following pages ar	NO 40 1 C C C C C C C C C C C C C C C C C C
All calibrations have been condu	icled in the closed laborator	y facility: environment temperature (22 ± 3)*	C and humidity < 70%.
		ry facility: environment temperature (22 ± 3) ¹	C and humidity < 70%.
Calibration Equipment used (M&		ry facility: environment temperature (22 ± 3)* Cal Date (Certificate No.)	
Calibration Equipment used (IM& Primary Standards	TE critica for calibration)		C and humidity < 70%. Scheduled Calibration Oct-10
Calibration Equipment used (MS Primary Standards Power meter EFM-442A	TE critica for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (MS Primary Standards Power meter EPM-442A Power searour HP 8481A	ID W GB37480704	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	TE critica for calibration) ID # GB37490704 US37292783	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10 Oct-10
Calibration Equipment used (M8 Primary Standards Power meter EPf6-442A Power sensor HP 8461A Reference 20 dfs Attenuator Type-N mismatch combination	TE critica for calibration) ID # GB37490704 US37292783 SN: 5096 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Scheduled Calibration Oct-10 Oct-10 Mar-10
Calibration Equipment used (M8 Primary Standards Power meter EPM-442A. Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37490704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Scheduled Calibration Oct-10 Gct-10 Mar-10 Mar-10
Calibration Equipment used (M8 Primary Standards Power treter EPM-442A Power treter EPM-442A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37490704 US37292783 SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 801	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10
Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37499704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 801	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ESS-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar02)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10
Calibration Equipment used (M8 Primary Standards Power meter EPfA-442A. Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 UAL4 Secondary Standards Power sensor HP 8481A	TE critica for calibration) ID # GB37490704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 801 ID # MY41092317 100035	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun06) 07-Mar-09 (No. DAE4-601_Mar09) Check Oate (in house)	Scheduled Calibration Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check
Calibration Equipment used (M8 Primary Standards Power meter EPfM-442A Power sensor HP 8461A Reference 20 dfs Attenuator Type-N mismatch combination Reference Probe ES3DV3 UAL4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-08	ID # GB37490704 US37292783 SN: 5096 (20g) SN: 5047 2 / 06327 SN: 801 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E53-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house sheek: Gol-11
Calibration Equipment used (M8 Primary Standards Power meter EPfM-442A Power sensor HP 8461A Reference 20 dfs Attenuator Type-N mismatch combination Reference Probe ES3DV3 UAL4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-08	TE critica for calibration) ID # GB37490704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 801 ID # MY41092317 100035	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun06) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Cct-08) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
Calibration Equipment used (M8 Primary Standards Prower theter EPM-442A Power betrout HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-98 Network Analyzer HP 8753E	ID # GB37490704 US37292783 SN: 5096 (20g) SN: 5047 2 / 06327 SN: 2005 SN: 801 ID # MY41092317 100035 US37390685 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-08) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (M8 Primary Standards Power meter EPth-442A Power bensor HP 8481A Reference 20 dts Attenuator Type-N mismatch combination Reference Probe ES3DV3 UAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37490704 US37292783 SN: 5096 (20g) SN: 5047 2 / 06327 SN: 3205 SN: 601 ID # MY41092317 108035 US37390695 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01085) 31-Mar-09 (No. 217-01029) 31-Mar-09 (No. ES3-3205_Jun08) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-08) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
All calibrations have been condu- Calibration Equipment used (MS Primary Standards Power meter EPM-492A. Power sensor HP 8461A Reference 20 dis Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAL4 Secondary Standards Power sensor HP 8481A Ref generator R&S SMT-96 Network Analyzer HP 8753E Calibrated by: Approved by:	ID # GB37490704 US37292783 SN: 5096 (20g) SN: 5047 2 / 06327 SN: 2005 SN: 801 ID # MY41092317 100035 US37390685 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-08) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Certificate No: D1900V2-5d028_Nov09

Page 1 of 9

Page 133 of 136

Measurement Conditions

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1,40 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.44 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 mW / g
SAR normalized	normalized to 1W	40.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.3 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.22 mW / g
SAR normalized	normalized to 1W	20.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.7 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-5d028_Nov09

Page 3 of 9

Page 134 of 136

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		_

SAR result with Body TSL

SAR averaged over 1 cm ¹ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.44 mW / g
SAR normalized	normalized to 1W	21.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.5 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5c028_Nov09

Page 4 of 9

DASY5 Validation Report for Head TSL

Date/Time: 24.11.2009 13:29:02

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.44 \text{ mho/m}$; $\epsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06,2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom: 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW/d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96,4 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 10 mW/g; SAR(10 g) = 5.22 mW/g

Maximum value of SAR (measured) = 12.5 mW/g

0 dB = 12.5 mW/g

Certificate No: D1900V2-5c028 Nov09

Page 6 of 9

DASY5 Validation Report for Body

Date/Time: 17.11.2009 13:08:34

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.58 \text{ mho/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe; ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03,2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.9 V/m; Power Drift = 0.00895 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.44 mW/g.

Maximum value of SAR (measured) = 13 mW/g

0 dB = 13 mW/g

Certificate No: D1900V2-5d028_Nov09

Page 8 of 9

END OF REPORT