Niveau: Première année de PCSI

COLLE 15 = MATRICES ET APPLICATIONS LINÉAIRES

Connaître son cours:

- 1. Soit E, F deux espaces vectoriels de dimension finie, β une base de E et ζ une base de F. Montrer que pour tout $u \in \mathcal{L}(E, F)$ et tout $x \in E$ on a : $\mathrm{Mat}_{\zeta}(u(x)) = \mathrm{Mat}_{\beta,\zeta}(u) \cdot \mathrm{Mat}_{\beta}(x)$.
- 2. Soit E, F, G trois espaces vectoriels de dimension finie, β une base de E, ζ une base de F et γ une base de G. Montrer que pour tout $u \in \mathcal{L}(E,F)$ et tout $v \in \mathcal{L}(F,G)$, on a : $\mathrm{Mat}_{\beta,\gamma}(v \circ u) = \mathrm{Mat}_{\zeta,\gamma}(v) \cdot \mathrm{Mat}_{\beta,\zeta}(u)$
- 3. Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions respectives p et n et $u \in \mathcal{L}(E, F)$ de rang r.

 Montrer qu'il existe une base β de E et une base ζ de F tel que : $\mathrm{Mat}_{\beta,\zeta}(u) = J_r = \begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix}$.

Exercices:

Exercice 1. (**)

Soit E un espace vectoriel de dimension finie n des sous-espaces $E_1, \ldots, E_p, F_1, \ldots, F_p$ tels que

- Pour tout $i \in [1, p], F_i \subset E_i$
- $\bullet \bigoplus_{i=1}^{p} F_i = \bigoplus_{i=1}^{p} E_i$

Montrer que, pour tout $i \in [1, p]$, $F_i = E_i$.

Exercice 2. (***)

Soit n un entier naturel supérieur ou égal à 2 et $\omega=e^{2i\pi/n}.$

Soit $A = (\omega^{(j-1)(k-1)})_{1 \leq j,k \leq n}$. Montrer que A est inversible et calculer A^{-1} .

Exercice 3. (**)

Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. On suppose que, pour tout $x \in E$, il existe un entier $n_x \in \mathbb{N}$ tel que $f^{n_x}(x) = 0$. Montrer qu'il existe un entier n tel que $f^n = 0$.

Exercice 4. (***)

Soit E un espace vectoriel de dimension finie. Soient f et g deux endomorphismes de E telles que $f \circ g - g \circ f = f$. Calculer la trace de f^{2010} .

Niveau: Première année de PCSI

Exercice 5. (**)

Soient E, F, G des K-espaces vectoriels et soient $u \in \mathcal{L}(E, G), v \in \mathcal{L}(F, G)$.

- 1. Montrer que : $\operatorname{Im} v \subseteq \operatorname{Im} u \Leftrightarrow \exists w \in \mathcal{L}(F, E) : v = u \circ w$.
- 2. En déduire que :

u surjective $\Leftrightarrow \exists w \in \mathcal{L}(G, E) : u \circ w = \mathrm{Id}_G$.

Exercice 6. (***)

Soient E un espace vectoriel de dimension 2 muni d'une base $\beta = (e_1, e_2), a \in \mathbb{R}$ et pour tout $n \in \mathbb{N}^*$ on définit $f_n \in \mathcal{L}(E)$ tel que $f_n(e_1) = e_1 + \frac{a}{n}e_2$, $f_n(e_2) = -\frac{a}{n}e_2 + e_2$. Justifier que la suite $(f_n^n)_{n\geq 0}$ converge dans $\mathcal{L}(E)$ et déterminer son expression suivant la base β .