Setting up your Raspberry Pi Zero W (Wireless)

Instructions below are

- specific to the Raspberry Pi Zero W target board
- valid as of August 2022.

Table of Contents

I Installing the Raspberry Pi OS on an SD card	2
II Login to the board over SSH	
Obtain the device's IP address.	
Headless login over SSH	
What to do once logged in to the Raspberry Pi	
What to do once 1055cd in to the rasportry 1 in	•••

(c) 2022 kaiwanTECH Page 1 of 9

I Installing the Raspberry Pi OS on an SD card

- 1. Burn the microSD card with a recent and stable Raspberry Pi OS image; simultaneously have the Raspberry Pi *Imager app* setup the network, username, and so on...
 - i. Download the Raspberry Pi Imager app
 Navigate to https://www.raspberrypi.com/software/, download and install it on your
 host system (you can even install it onto a Linux guest (that supports graphics) and run it
 from there)
 - ii. Run it, thus installing a recent stable Raspberry Pi OS image onto your microSD card!
 - a) A 45 second video demonstrating how: https://youtu.be/ntaXWS8Lk34; take a look!
 - iii. Select the OS:
 - a) click the 'CHOOSE OS' button
 - b) To optimize, and for the Raspberry Pi Zero (W) target, click on the second choice: Raspberry Pi OS (other) [below]

c) then click on the first one: *Raspberry Pi OS Lite (32-bit)* – no desktop environment

(c) 2022 kaiwanTECH Page 2 of 9

iv. Then select the microSD card via the STORAGE button

v. NOTE: Very IMPORTANT -

Next, before writing the image, DO make use of the Imager app's **Settings gearwheel** button!It's *very useful* to use the Imager app to pre-configure the R Pi OS – you can select:

- a) the board hostname ('rpi0w_<myname>' perhaps)
- b) do Enable SSH
 - i. to keep it simple, you can initially use password authentication, but, as you learn more, DO switch to authentication via SSH keys only its far more secure!
- c) Security: be sure to choose a username other than the default one (pi); f.e., labrat; supply a password
- d) *Very Important:* Configure the wireless LAN the WiFi AP; specify the SSID and password. We're going to use the Raspberry Pi Zero W in 'headless' mode no HDMI monitor and all that jazz! You'll need to configure the WiFi AP in order to login over SSH.

i. Don't forget to scroll down, set the:

(c) 2022 kaiwanTECH Page 3 of 9

- 1. Country for Wireless to India (IN)
- 2. Locale (Time zone as Asia/Kolkata, keyboard as 'us')
- e) Click on the **SAVE** button when all set...

vi. Now click on the **WRITE** button; once you confirm, the image gets written and verified.

It can take a while, be patient... When done, eject the SD card, click on the **CONTINUE** button.

2. On a Linux (or MacOS) host (*or guest!*), I reinsert the SD card and do this to verify the OS image is written:

(c) 2022 kaiwanTECH Page 4 of 9

```
$ df -h | grep "^/dev/mmcblk"
lev/mmcblk0p2 1.6G 1.2G 296
lev/mmcblk0p1 253M 50M 203
                             296M
                                    81% /media/kaiwan/rootfs
                              203M
                                    20% /media/kaiwan/boot
 $ ls /media/kaiwan/boot
bcm2708-rpi-b.dtb
                         bcm2710-rpi-3-b-plus.dtb
                                                     cmdline.txt
                                                                      fixup.dat
                                                                                         overlays/
bcm2708-rpi-b-plus.dtb
                         bcm2710-rpi-cm3.dtb
                                                     config.txt
                                                                      fixup db.dat
                                                                                         start4cd.elf
bcm2708-rpi-b-rev1.dtb
                         bcm2710-rpi-zero-2.dtb
                                                     COPYING.linux
                                                                     fixup x.dat
                                                                                         start4db.elf
bcm2708-rpi-cm.dtb
                         bcm2710-rpi-zero-2-w.dtb
                                                     firstrun.sh
                                                                      issue.txt
                                                                                         start4.elf
                                                     fixup4cd.dat
bcm2708-rpi-zero.dtb
                         bcm2711-rpi-400.dtb
                                                                      kernel7.img
                                                                                         start4x.elf
bcm2708-rpi-zero-w.dtb
                         bcm2711-rpi-4-b.dtb
                                                     fixup4.dat
                                                                                         start cd.elf
                                                                      kernel7l.img
bcm2709-rpi-2-b.dtb
                         bcm2711-rpi-cm4.dtb
                                                     fixup4db.dat
                                                                      kernel8.img
                                                                                         start db.elf
bcm2710-rpi-2-b.dtb
                         bcm2711-rpi-cm4s.dtb
                                                     fixup4x.dat
                                                                      kernel.img
                                                                                         start.elf
bcm2710-rpi-3-b.dtb
                         bootcode.bin
                                                     fixup cd.dat
                                                                      LICENCE.broadcom start x.elf
 $ ls /media/kaiwan/rootfs/
boot/ etc/ lib@
                                                 sbin@ sys/
                   media/
                                         root/
$ cat /media/kaiwan/rootfs/etc/issue
Raspbian GNU/Linux 11 \n \l
 $
```

On a Windows host you can always lookup the SD card content with the File explorer app.

Don't forget to unmount (eject) the SD card before physically removing it from it's slot.

II Login to the board over SSH

To login over SSH, we obviously **require the system's (DHCP-assigned) IP address**. We're assuming you've installed the Raspberry Pi OS and configured the wireless network – as the previous section described.

IMP: To enable SSH on the R Pi board:

Create an empty file named ssh in the boot partition.

Obtain the device's IP address

- Power off the Raspberry Pi board
- Insert the microSD card containing the installed Raspberry Pi OS into your board, and apply power
- It should boot up ... give it a minute or two and then proceed to the next step...
- Ensure you're *on the same local network* as the device (f.e. 192.168.1.x or 10.20.1.x). To find it's IP address:
 - On a Windows host, via a browser:
 - navigate to the router gateway (f.e. 192.168.1.1 or 10.20.1.1)
 - login if required
 - Lookup the DHCP client list in the web browser app; the Raspberry Pi should show up; look for the hostname you gave it when installing the image. Once located, note it's allocated IP address.

(c) 2022 kaiwanTECH Page 5 of 9

- On a Linux/Mac host:
 - Here too you can of course use a browser as in the previous paragraph (assuming you're on a Linux system running a graphical desktop)
 - Via the Linux CLI, there are several ways to figure the device's IP address; among them are:
 - Install the nmap and arp-scan utils: sudo apt install nmap arp-scan -y
 - sudo arp-scan --localnet |egrep -i "Raspberry"
 - sudo nmap -sn -PR <domain-to-scan>/24 # domain f.e. 10.20.1.0
 - The 'nmap' way tends to be best; use my <u>localnet_discov.sh</u> helper script to make it easy!

An example of using it to discover the board's IP address:

You can see the board hostname (highlighted in red colour) clearly.

Advanced: how to setup the Wireless network on the CLI

Just in case the Raspberry Pi *Imager* app does not succeed in setting up the wireless network...

1. On your Linux host, run *wpa_passphrase* and obtain the required snippet for a given SSID:

2. Copy-paste the output into the *wpa_supplicant.conf* file on the SD card:

```
sudo nano <rootfs_mountpoint>/etc/wpa_supplicant/wpa_supplicant.conf
<copy-paste>
<save & exit>
```

Obviously, delete the commented-out cleartext password line for security.

(c) 2022 kaiwanTECH Page 6 of 9

Headless login over SSH

Once you obtain the board IP address, login over SSH:

```
F.e. ssh myname@192.168.1.108

If it fails with a message like:
"... Too many authentication failures ..."

try this:
```

alias ssh='ssh -o IdentitiesOnly=yes -o StrictHostKeyChecking=no'alias scp='scp -o IdentitiesOnly=yes -o StrictHostKeyChecking=no'

and then rerun the *ssh* command shown above! It should succeed. A sample screenshot:

```
~ $ localnet discov.sh 10.20.1.0 | grep -i rpi0wlabrat
B8:27:EB rpiθwlabrat.wlan, 10.20.1.63
~ $
                                                 IP address
~ $ alias ssh
alias ssh='ssh -o IdentitiesOnly=yes -o StrictHostKeyChecking=no'

    $ ssh labrat@10.20.1.63

labrat@10.20.1.63's password:
Linux rpi0wlabrat 5.15.32+ #1538 Thu Mar 31 19:37:58 BST 2022 armv6l
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sat Aug 27 16:57:21 2022 from 10.20.1.71
labrat@rpi0wlabrat:~ $
labrat@rpi0wlabrat:~ $ id
uid=1000(labrat) gid=1000(labrat) groups=1000(labrat),4(adm),20(dialout),24(cdrom),27(sudo)
998(i2c),999(spi)
labrat@rpi0wlabrat:~ $ pwd
/home/labrat
labrat@rpi0wlabrat:~ $ uname -a
Linux rpi0wlabrat 5.15.32+ #1538 Thu Mar 31 19:37:58 BST 2022 armv6l GNU/Linux
labrat@rpi0wlabrat:~ $ lsb release -a
No LSB modules are available.
Distributor ID: Raspbian
Description:
                Raspbian GNU/Linux 11 (bullseye)
Release:
                11
Codename:
                bullseve
labrat@rpi0wlabrat:~ $
labrat@rpi0wlabrat:~ $ free -h
                                                  shared buff/cache available
               total
                            used
                                        free
                            39Mi
                                       147Mi
Mem:
               429Mi
                                                   0.0Ki
                                                               243Mi
                                                                            337Mi
                99Mi
                             0B
                                        99Mi
Swap:
labrat@rpi0wlabrat:~ $ df -h|grep "^/dev"
/dev/root 59G 1.5G 55G 3% /
/dev/mmcblk0p1 253M 50M 203M 20% /boot
labrat@rpi0wlabrat:~ $ hostnamectl
  Static hostname: rpi0wlabrat
         Icon name: computer
        Machine ID:
           Boot ID:
  Operating System: Raspbian GNU/Linux 11 (bullseye)
            Kernel: Linux 5.15.32+
      Architecture: arm
labrat@rpi0wlabrat:~ $
```

Tips:

- On a Windows host:
 - if required, setup the SSH client (eg. Putty) to use these parameters:
 - -o IdentitiesOnly=yes -o StrictHostKeyChecking=no
 to ssh and scp
- On a Linux/Mac host:
 - o put the ssh and scp aliases into a startup script
- *Security: use password-less logins by setting up SSH keys!* Ref: https://www.raspberrypi-spy.co.uk/2019/02/setting-up-ssh-keys-on-the-raspberry-pi/
- If all else fails when trying to ssh in, power off the R Pi, attach a USB-to-serial dongle, setup a terminal emulator (Hyperterminal / Putty on Windows, minicom on Linux), login over it and get the IP address (ip a or ifconfig).

 Ref: WORKING ON THE CONSOLE WITH THE RASPBERRY PI, kaiwanTECH, Dec 2018. (Remember to add 'enable_uart=1' to /boot/config.txt!).

What to do once logged in to the Raspberry Pi

Once logged in to the R Pi board:

First run sudo raspi-config

and set things up as required...

(c) 2022 kaiwanTECH Page 8 of 9

• Next, install minimally required packages first:

```
sudo apt install -y git perl
```

• Then - optional, useful – to install common development + other tooling and utils:

```
git clone https://github.com/kaiwan/init
```

The partially truncated screenshot shows cloning the 'init' repo and running the apt_install_common_stuff.sh to install common tooling...

```
labrat@rpi0wlabrat:~ $ git clone https://github.com/kaiwan/init
Cloning into 'init'...
remote: Enumerating objects: 67, done.
remote: Counting objects: 100% (67/67), done.
remote: Compressing objects: 100% (50/50), done.
remote: Total 67 (delta 32), reused 40 (delta 17), pack-reused 0
Receiving objects: 100% (67/67), 16.77 KiB | 151.00 KiB/s, done.
Resolving deltas: 100% (32/32), done.
labrat@rpi0wlabrat:~ $
labrat@rpi0wlabrat:~ $ ls
init
labrat@rpi0wlabrat:~ $ cd init/
labrat@rpi0wlabrat:~/init $ ls
Osetup_rpi.bash
                            dot vimrc README.md
                                                         source_repos.txt ssh2rpi.sh
apt install common stuff.sh LICENSE
                                      rpi static ip.txt ssh2rpi
                                                                           wpa supplicant.conf
labrat@rpi0wlabrat:~/init $
labrat@rpi0wlabrat:~/init $ ./apt install common stuff.sh
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following NEW packages will be installed:
 raspberrypi-kernel-headers
0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 28.6 MB of archives.
After this operation, 182 MB of additional disk space will be used.
Get:1 http://archive.raspberrypi.org/debian bullseye/main armhf raspberrypi-kernel-headers armhf
.6 MB]
Fetched 28.6 MB in 9s (3,070 kB/s)
Selecting previously unselected package raspberrypi-kernel-headers.
(Reading database ... 42376 files and directories currently installed.)
Preparing to unpack .../raspberrypi-kernel-headers 1%3a1.20220328-1 armhf.deb ...
Unpacking raspberrypi-kernel-headers (1:1.20220328-1) ...
        <u>[ 20%]</u> [########################......
```

(This script even sets up a useful startup script that will auto-execute whenever you spawn a shell!).

There, you're all set!

(c) 2022 kaiwanTECH Page 9 of 9