

AOT460

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AOT460/L uses advanced trench technology and design to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. This device is suitable for use in UPS, high current switching applications.

AOT460and AOT460L are electrically identical.

- -RoHS Compliant
- -Halogen Free

Features

$$\begin{split} V_{DS} & (V) = 60V \\ I_{D} = 85 \text{ A} & (V_{GS} = 10V) \\ R_{DS(ON)} < 7.5 \text{m}\Omega & (V_{GS} = 10V) \end{split}$$

100% UIS Tested!

Absolute Maximum Ratings T _A =25℃ unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	60	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain	T _C =25℃		85					
Current ^G	T _C =100℃	I_D	66	Α				
Pulsed Drain Current ^C		I _{DM}	340					
Avalanche Current ^C		I _{AR}	80	А				
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	320	mJ				
	T _C =25℃	P _D	268	W				
Power Dissipation ^B	ssipation ^B T _C =100℃		134]				
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to 175	C				

Thermal Characteristics									
Parameter	Symbol	Symbol Typ Max		Units					
Maximum Junction-to-Ambient A	Steady-State	$R_{\theta JA}$	45	60	℃/W				
Maximum Junction-to-Case ^B	Steady-State	$R_{ heta JC}$	0.45	0.56	℃/W				

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V	60			V
I _{DSS}	Zava Cata Valtaga Brain Current	V _{DS} =60V, V _{GS} =0V			10	μΑ
	Zero Gate Voltage Drain Current	T _J =55℃			50	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	2.95	4	V
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V	340			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =30A		6.3	7.5	mΩ
		T _J =125℃		10.5	13	
g _{FS}	Transconductance	V_{DS} =5V, I_{D} =30A		90		S
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.7	1	V
I _S	Maximum Body-Diode Continuous Current ^G				85	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			3800	4560	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =30V, f=1MHz		430		pF
C_{rss}	Reverse Transfer Capacitance			190		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		1.5	2.3	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			68	88	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =30V, I _D =30A		33		nC
Q_{gs}	Gate Source Charge	VGS-10V, VDS-30V, ID-30A		15		nC
Q_{gd}	Gate Drain Charge			19		nC
t _{D(on)}	Turn-On DelayTime			18		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_L =1 Ω ,		35		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		44		ns
t _f	Turn-Off Fall Time	7		23		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =30A, dI/dt=100A/μs		53	64	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =30A, dl/dt=100A/μs		98		nC

A: The value of R $_{\rm \theta JA}$ is measured with the device in a still air environment with T $_{\rm A}$ =25 $^{\circ}$ C.

Rev1: Jan. 2009

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175 $^{\circ}$ C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175° C.

D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175° C.

G. The maximum current rating is limited by bond-wires.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Time in avalanche, $t_{\rm A}$ (s) Figure 10: Single Pulse Avalanche capability

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

