Automatizační cvičení

A4	309. Dynast2 – Modelování regulačního obvodu			
Tenk Jakub			1/11	Známka:
23. 3. 2022		30. 3. 2022		Odevzdáno:

Zadání:

Vytvořte model regulačního obvodu z bloků pro PID regulátor a zpoždění 1. řádu a statický systém 2. řádu s koeficienty dle zadaných rovnic. Odsimulujte přechodové charakteristiky bloků a odečtěte z nich konstanty (k₀, k₋₁, k₁, T_U, T_N, s₀). Odsimulujte FCHVKR otevřeného regulačního obvodu a vyhodnoť te stabilitu. Propojte obvod do uzavřené regulační smyčky a odsimulujte průběh neoptimálního regulačního pochodu. Parametry regulátoru optimalizujte Z-N metodou (zjistěte K_{KRIT}, T_{KRIT}, vypočtěte k₀, k₋₁ a k₁). Odsimulujte optimální regulační pochod. Porovnejte kvalitu před a po optimalizaci integrálním kritériem kvality.

PID:
$$1.5 \cdot u' + u = 2.2 \cdot e + 0.5 \int e \, dt + 1.1 \cdot e'$$

Systém: $2.5 \cdot y'' + 4.4 \cdot y' + 1.9 \cdot y = u$

Postup:

1. Upravíme si zadané diferenciální rovnice (PID rovnici si rozdělíme na složky P, I a D) a vypočítáme koeficienty.

```
P:
1.5 \cdot u' + u = 2.2 \cdot e
1.5 \cdot u' = 2.2 \cdot e - u
                                 /: 1,5
u' = 1,46e - 0,67u
I:
1.5 \cdot u' + u = 0.5 \cdot fe dt
1.5 \cdot u' = 0.5 \cdot fe dt - u
                                 /: 1,5
u' = 0.33 fe dt -0.67u
D:
1.5 \cdot u' + u = 1.1 \cdot e'
1.5 \cdot u' = 1.1 \cdot e' - u
                                  /:1,5
u' = 0.73e' - 0.67u
Systém:
2.5 \cdot y"+ 4.4 \cdot y"+ 1.9 \cdot y = u
2.5 \cdot y" = u - 4.4 \cdot y · v - 1.9 \cdot y
                                                     /:9,2
y''=0.4u-1.76y'-0.76y
```

- 2. Dle rovnic si navrhneme schémata všech zapojení (P, I, D, PI, PD, PID, Systém) a postupně je v programu Dynast sestavíme.
- 3. Vykreslíme si výsledné charakteristiky a uložíme si snímky obrazovky.
- 4. V programu Dynast vytvoříme PID regulátor s ideálními složkami P a I a zapojíme do série s modelem regulovaného systému, propojíme zpětnou vazbu a zaznamenáme regulační pochod a vyhodnotíme jej.
- 5. Optimalizujeme nastavení konstant regulátoru pomocí Z-N metody a vypočítáme si díky tomu K_{0KRIT} a T_{KRIT}.
- 6. Upravíme konstanty regulátoru dle vypočítaných hodnot a zaznamenáme regulační pochod.
- 7. Rozpojíme zpětnou vazbu a zaznamenáme FCHVKR
- 8. Z FCHVKR vyhodnotíme pomocí Nyquistovo kritéria stabilitu regulačního obvodu a určíme amplitudovou a fázovou bezpečnost.
- 9. Všechny data z měření vhodně vypracujeme do technické zprávy.

Schéma řešení:

(Schéma zapojení pro charakteristiky FCHVKR a FCHVLS se liší jen ve zdroji, kde je místo step zdroje použit zdroj sinusového signálu)

b) I regulátor:

c) D regulátor:

d) PI regulátor:

e) PD regulátor:

f)

h) Uzavřený regulační obvod:

i) Optimalizace pomocí Z-N metody:

j) Optimalizace s vypočítanými hodnotami:

a) P regulátor:

Přechodová charakteristika:

$$k_0 = 2,2$$

$$T = 1,75s$$

b) I regulátor:

$$k_{-1} = 0.25$$

$$T_i = 1s$$

c) D regulátor:

Přechodová charakteristika:

$$k_1 = T_D = 1,6s$$

d) PI regulátor:

$$k_{-1} = 1,4$$

Střední průmyslová škola a Vyšší odborná škola, Chomutov, Školní 50, příspěvková organizace

e) PD regulátor:

Přechodová charakteristika:

$$k_0 = 2,4$$

$$T = 2,2s$$

f) PID regulátor:

g) Systém:

Přechodová charakteristika:

FCHVKR:

FCHVLS:

h) Uzavřený regulační obvod:

Přechodová charakteristika:

i) Optimalizace pomocí Z-N metody:

Přechodová charakteristika:

j) Optimalizace s vypočítanými hodnotami:

k) Otevřený regulační obvod:

Přechodová charakteristika:

FCHVKR:

Závěr:

Tuto úlohu jsem bez problému při cvičení stihnul celou udělat. Při optimalizaci po použití metody Z-N jsem získal hodnoty $K_{0KRIT} = 25$ a $T_{KRIT} = 3,24$ s.

Díky tomu jsem pomocí vzorců vypočítal hodnoty koeficientů regulátoru:

$$k_0 = 0.59 \cdot 25 = 14.75$$

$$k_{-1} = 0.5 / 3.24 = 0.154$$

$$k_1 = 0.12 \cdot 3.24 = 0.3888$$

Z FCHVKR otevřeného regulačního obvodu jsem zjistil, že obvod je stabilní. Dále jsem určil fázovou bezpečnost ($\alpha = 18^{\circ}$) a amplitudovou bezpečnost (1/m = 0.55).