

Roll No: Subject Code: BCS402

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

	SECTION A
1. Attem	apt <i>all</i> questions in brief. $2 \times 7 = 14$
a.	Give the mathematical definition of DFA. Differentiate between NFA and
	DFA.
b.	Construct Deterministic Finite Automata (DFA) to accept string that always
	ends with 101 over alphabet $\Sigma = \{0,1\}$
c.	Give regular expressions that represent the language (L), which has all binary
	strings having two consecutive 0s and two consecutive 1s over the alphabet Σ
	$= \{0, 1\}.$
d.	Compute the Language generated by the given CFG $G = (\{S\}, \{a, b\}, P, S\}$
	where P is defined by:
	$\{S \to SS, S \to ab, S \to ba, S \to \epsilon\}$
e.	Let G be the grammar
	$S \rightarrow 0B \mid 1A$
	$ A \rightarrow 0 $ 0S 1AA
	$B \rightarrow 1 \mid 1S \mid 0BB$
	Determine the leftmost derivation for the string 00110101
f.	Explain the concept of two stack PDA. Give an example of a language that is
	accepted by two stack PDA but not accepted by normal one stack PDA.

SECTION B

Explain Multi Tape Turing Machine.

2. Attempt any *three* of the following:

g.

 $7 \times 3 = 21$

Printed Page: 1 of 3

Construct a Finite automata (DFA) which accepts all binary numbers whose decimal equivalent is divisible by 4 over $\Sigma = \{0, 1\}$. Compute the regular expression using Arden's Theorem for the following b. DFA. Write an equivalent left linear grammar from the given right linear grammar. S→0A |1B $A \rightarrow 0C | 1A | 0$ $B \rightarrow 1B | 1A | 1$ $C \rightarrow 0 \mid 0A$ Differentiate between DPDA and NPDA. Construct a PDA that accepts d. language L = $\{a^nb^n \mid n \ge 1\}$. Differentiate between Deterministic Turing machine and Non-Deterministic e. Turing machine. Design a Turing machine for the language L={ww | w ε (a + b)*}.

Printed Page: 2 of 3
Subject Code: BCS402
Roll No:

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS M.MARKS: 70

SECTION C

3. Attempt any one part of the following:

 $7 \times 1 = 7$

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a. State Pumping Lemma for Regular Language. Show that the given language L={a^p | Where p is a prime} is not regular.
 b. Discuss closure properties (i.e. union, concatenation, complement, intersection and difference) of regular language.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a. Reduce the given grammar G = ({S, A, B}, {a, b}, P, S) to Chomsky Normal form. Where P is defined by:

S → bA | aB

A → bAA | aS | a

B → aBB | bS | b

b. Design a CFG for the following language:

(i) L= {0^m 1ⁿ | m ≠ n & m, n>=1}

(ii) L= {a^p b^q e^r | p + q = r & p, q > = 1}

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a.	Construct PDA equivalent to the following CFG $G = (\{S, A\}, \{0,1\}, P, S\}$
	where P is defined by:
	S →0S1 A
	$A \rightarrow 1A0 \mid S \mid \epsilon$

Subject Code: BCS402 Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS **M.MARKS: 70**

b.	Find the equivalent CFG of the following PDA	
	$P = (\{q0, q1,\}, \{a, b\}, \{a, z0\}, \delta, q0, z0)$ where δ is given by:	
	$\delta(q0, a, z0) = (q0, az0)$	
	$\delta(q0, a, a) = (q1, aa)$	
	$\delta(q1, a, a) = (q1, \varepsilon)$	
	$\delta(q1, \varepsilon, z0) = (q1, \varepsilon)$	

7. Attempt any *one* part of the following: $7 \times 1 = 7$

Printed Page: 3 of 3

- Construct Turing Machine that accepts language $L=\{a^{2n}b^n \mid n>=1\}$. Also show the instantaneous description for the string w = aaaabb.
- Explain the any two of the following: b.
 - Universal Turing Machine.
 - Post Correspondence Problem. ii.
 - Recursive and recursively Enumerable Languages iii.

