Contrôler en live l'harmonie d'un morceau de musique électronique

Alice Rixte

Université de Bordeaux Journées d'Informatique Musicale

25 mai 2023

Vue d'ensemble

Introduction

Niveau de langage d'une performance en EDM Contrôle individuel versus collectif

Fonctionnement de LiveScaler

Architecture de LiveScaler Appliquer une transformation

Espace des hauteurs linéaire

Base et ancre Transformer l'espace des hauteurs

Transformations affines

Inversions Modes à transposition limitée

Conclusion

Perspectives

Alice Rixte 2 / 29

Qu'est-ce que l'Electronic Dance Music?

L'EDM est un terme parapluie pour désigner tout une partie de la musique électonique populaire :

- house (David Guetta, Nervo, Martin Garrix...)
- trance (Armin van Buuren, Vini Vici, Astrix ...)
- bass music (Rezz, Skrillex, Knife Party ...)
- techno (Amelie Lens, Nina Kraviz ...)

L'EDM est souvent associée à son aspect commercial (festivals tels que Tomorrowland).

Alice Rixte 3 / 29

Les principaux rôles des DJs sont

Introduction

- Créer un ensemble cohérent de morceaux de musique
- Ordonner ces morceaux
- Opérer des transitions entre les morceaux
- Appliquer des effets audio

Un langage "haut-niveau"

Les DJs manipulent des objets déjà complexes : des morceaux de musique complets.

Performance live en musique électronique

Les artistes d'EDM qui jouent leur propres morceaux optent souvent pour du DJing.

Sinon, on peut combiner différentes techniques telles que :

- Jouer en live un des synthétiseurs (le lead)
- Jouer d'un instrument de musique
- Recréer la structure du morceau (Ableton Live)
- Mixer en live
- Live coding
- Recréer le morceau avec des boucles

Un langage "bas-niveau"

On accède aux pistes individuelles une par une.

Alice Rixte 5 / 29

Mon idéal

Introduction

000000

Contrôler simultanément toutes les pistes d'un morceau de musique électronique à la manière d'une cheffe d'orchestre.

Que contrôler?

- Timbre
- Nuances
- Harmonie
- Rythme
- TOUT (ce serait super non?)

LiveScaler se concentre sur l'harmonie

Alice Rixte 6 / 29

LiveScaler, la version courte

Un problème : Une structure complexe

On ne peut pas contrôler individuellement une trentaine d'instruments à la fois.

Une méthode : Paramètres communs

On aimerait trouver des paramètres qui impacteraient tous les instruments de manière cohérente.

Une solution: Transformer l'espace MIDI

On applique des transformations de l'espace MIDI pour modifier l'harmonie de tous les instruments.

Alice Rixte 7 / 29

Vue d'ensemble

Introduction

Niveau de langage d'une performance en EDM Contrôle individuel versus collectif

Fonctionnement de LiveScaler

Architecture de LiveScaler Appliquer une transformation

Espace des hauteurs linéaire

Base et ancre
Transformer l'espace des hauteurs

Transformations affines

Inversions Modes à transposition limitée

Conclusion

Perspectives

Alice Rixte 8 / 29

Appliquer une transformation

Idéalement, la transformation s'applique au moment où elle est déclenchée.

Mais que faire si des notes sont déjà en train d'être jouées?

- Legato Les notes transformées remplacent instantanément les notes en train d'être jouées.
 - Wait La transformation ne s'appliquera qu'aux notes commencées après son déclenchement.
 - Stop Les notes en train d'être jouées sont stoppées.
- Retrig Un court délai est ajouté avant le déclenchement des nouvelles notes pour éviter le *legato*.

Mapping dans LiveScaler

Restriction à un intervalle

Ecart de hauteur entre note initiale et note transformée

Une transformation arbitraire pourrait engendrer un grand écart de hauteur voire générer des notes complètement inaudibles!

Comment faire pour préserver la tessiture?

Restriction de l'écart de hauteur

On choisit la note modulo l'octave la plus proche possible de notre note d'origine.

Vue d'ensemble

Introduction

Niveau de langage d'une performance en EDM Contrôle individuel versus collectif

Fonctionnement de LiveScaler

Architecture de LiveScaler Appliquer une transformation

Espace des hauteurs linéaire

Base et ancre Transformer l'espace des hauteurs

Transformations affines

Inversions

Modes à transposition limitée

Conclusion

Perspectives

Transformation de hauteurs : principe général

- 1. Linéarisation de l'espace des fréquences
- 2. Discrétisation de l'espace des fréquences linéaires
- **3.** Appliquer une transformation $T: \mathbb{Z} \to \mathbb{Z}$ des entiers vers les entiers

Espace des hauteurs linéaire : tempérament égal

On part d'une fréquence $f \in R_+^*$.

Ancre (linéarisation)

On choisit arbitrairement une origine (l'ancre) α :

$$I = \log_2(\frac{f}{\alpha})$$

Base (discrétisation)

On divise l'octave en β microtons.

$$n = |\beta I| \in \mathbb{Z}$$

On obtient le tempérament β -TET.

L'ancre

Introduction

- correspond à la tonique de la tonalité dans laquelle on se trouve
- permet de transposer sans changer le doigté

La base

- permet la restriction des intervalles de hauteurs
- pourrait permettre des transformations microtonales (non expérimenté)

Transformer l'espace des hauteurs

- Pour transformer notre espace des hauteurs, on peut appliquer des fonctions $T: \mathbb{Z} \to \mathbb{Z}$ des entiers vers les entiers.
- Les transformations octaviantes sont particulièrement utiles : elles sont périodiques modulo la base.

Quantisation vers une gamme majeure :

Vue d'ensemble

Introduction

Niveau de langage d'une performance en EDM Contrôle individuel versus collectif

Fonctionnement de LiveScaler

Architecture de LiveScaler Appliquer une transformation

Espace des hauteurs linéaire

Base et ancre
Transformer l'espace des hauteurs

Transformations affines

Inversions Modes à transposition limitée

Conclusion

Perspectives

Transformations affines

Définition

$$A\langle \mu, \tau \rangle : n \mapsto \mu n + \tau$$

Mode

Introduction

 μ détermine le mode d'arrivée en fonction du départ

Transposition

au correspond à une transposition de au demi-tons.

Inversions

L'image de la gamme de Do majeur par $A\langle -1,4\rangle$ est un mode de Mi

Inversion $A\langle -1, 4\rangle$

Inversions

$$\begin{array}{cccc} C & \mapsto & Am \\ Dm & \mapsto & G \\ Em & \mapsto & F \\ F & \mapsto & Em \\ G & \mapsto & Dm \\ Am & \mapsto & C \\ B^o & \mapsto & B^o \end{array}$$

Image des triades de la gamme de Do majeur par $A\langle -1,4\rangle$

Inversion $A\langle -1, 4\rangle$

Nommer les inversions et transpositions

Degré	Transformation		
1	$A\langle 1, 0 \rangle$		
ii	$A\langle -1, -3 \rangle$		
iii	$A\langle -1,-1 angle$		
IV	$A\langle 1, 5 \rangle$		
V	$A\langle 1, 7 \rangle$		
vi	$A\langle -1, 4 \rangle$		
vii	$A\langle -1, 6 \rangle$		

Correspondances entre triades d'une gamme majeure et transformations de gamme

Lien avec la théorie transformationnelle

Relative mineure

 $A\langle -1,4\rangle$ se comporte comme la relative mineure R dans le Tonnetz :

$$A\langle -1,4\rangle^2(n) = -(-n+4)+4 = n$$

Groupe T/I

- ullet on garde seulement $\mu=\pm 1$
- on quotiente modulo 12

Automorphismes du groupe T/I

- on garde $\mu=\pm 1$ et $\mu=\pm 5$
- on quotiente modulo 12

Alice Rixte 22 / 29

		Wiode a	.i aii
÷	:	; a	:
G_5	7	7	G_5
$F\sharp_5$	6	, 6	$F\sharp_5$
F_5	5	5	F_5
E_5	4	✓ 4	E_5
$D\sharp_5$	3	3	$D\sharp_5$
D_5	2	2	D_5
C#5	1	1	C#5
C_5	0 —	0	C_5
B_4	-1 _	-1	B_4
$A\sharp_4$	-2	→ -2	$A\sharp_4$
A_4	-3	-3	A_4

μ	Transformation	Classes
-1	Inversions	12
0	Octaves	1
1	Transpositions	12
-2,2	Gamme par tons	6
-3,3	Tierces mineures	4
-4,4	Tierces majeures	3
-5,5	$F\langle 5, au angle$, $F\langle 7, au angle$	12
-6,6	Tritons	2

Gamme par tons $(A\langle 2,0\rangle)$

Introduction

Vue d'ensemble

Introduction

Niveau de langage d'une performance en EDM Contrôle individuel versus collectif

Fonctionnement de LiveScaler

Architecture de LiveScaler Appliquer une transformation

Espace des hauteurs linéaire

Base et ancre
Transformer l'espace des hauteurs

Transformations affines

Inversions Modes à transposition limitée

Conclusion

Perspectives

Alice Rixte 24 / 29

LiveScaler dans une coquille de noisette

- Des transformations sont appliquées par tous les instruments.
- Les transformations affines sont pertinentes dans ce contexte.

Alice Rixte 25 / 29

Perspectives

Théorie transformationnelle

- Définir proprement le semi-groupe inversif des transformations affines.
- Faire le lien avec les autres structures algébrique de la théorie transformationnelle.

Logiciel

- Implémenter un noyau de contrôle externe.
- Utiliser un protocole tel que OSC pour contrôler n'importe quel logiciel, et pas seulement Ableton Live.

Alice Rixte 26 / 29

Rythme

Introduction

Ajoute plusieurs difficultés

- Causalité
- Représentation symbolique adaptée
- Modélisation mathématique (programmation tuilée)

Faire des concerts!

Pour de vrai dans la vraie vie.

Merci pour votre attention!

Alice Rixte 28 / 29

Introduction

Niveau de langage d'une performance en EDM Contrôle individuel versus collectif

Fonctionnement de LiveScaler

Architecture de LiveScaler Appliquer une transformation

Espace des hauteurs linéaire

Base et ancre Transformer l'espace des hauteurs

Transformations affines

Inversions Modes à transposition limitée

Conclusion

Perspectives