Compression in both Prompts and the Models

Bridging Efficiency and Flexibility in LLMs

Aaron Wu, Benjamin Mao, Lucas Li

COMP 414: Optimization

8 April 2025

Agentic AI - Background

What is Agentic Al

Agentic AI refers to autonomous systems that:

- Make decisions and set goals proactively
- Adapt behavior to dynamic environments
- Combine LLMs, memory, and planning (AutoGPT, BabyAGI)

Core Capabilities:

- Perception
- Decision-making
- Tool use
- Self-directed execution

OpenAl AutoGPT homepage description

Examples from AutoGPT Github README.md

Agentic Solution Architecture

Search Space Specification

Transforms unstructured prompts into well-defined combinatorial search problems

Successive Halving Optimizer Oval

Implements efficient bandit optimization to avoid brute-force grid search

Input Task

Enables unified optimization across diverse prompt engineering challenges

Pattern Library

Provides composable prompt patterns as a domain-specific language for structured reasoning graphs

Solution

Delivers optimized agent programs tailored to specific task distributions

Evaluation

Dataset	Model	F	Accuracy		Pattern	Runtime	
Dataset	Model	Zero-Shot			rattern	(HH:mm)	
	Granite 3.1 8B	78.3%	79.0%	+0.7pp	ReWOO (5 shot)	08:55	
	Granite 13B Instruct V2	6.5%	75.4%	+68.9pp	ReWOO (3 shot)	08:12	
FEVER	Granite 20B Code	39.7%	64.2%	+24.5pp	CoT (3 shot)	05:06	
FEVER	Granite 34B Code	56.4%	65.6%	+9.2pp	CoT (3 shot)	03:47	
	LLaMA 3.1 8B	68.5%	68.5% 78.0% +9.5pp CoT (3 shot)		CoT (3 shot)	05:24	
	LLaMA 3.1 70B	29.7%	86.3%	+56.6pp	CoT (3 shot)	04:57	
	Granite 3.1 8B	74.5%	75.8%	+1.3pp	ReAct (5 shot, Granite Tools)	01:29	
	Granite 13B Instruct V2	23.2%	30.3%	+7.1pp	CoT (5 shot)	02:24	
GSM8K	Granite 20B Code	68.8%	68.8%	+0.0pp	Zero-Shot (Baseline)	05:06	
GSIVION	Granite 34B Code	72.3%	72.3%	+0.0pp	Zero-Shot (Baseline)	03:19	
	LLaMA 3.1 8B	78.4%	84.8%	+6.4pp	CoT (3 shot)	03:24	
	LLaMA 3.1 70B	82.1%	94.8%	+12.7pp	CoT (5 shot)	04:09	
	Granite 3.1 8B	68.8%	68.8%	+0.0pp	Zero-Shot (Baseline)	02:07	
	Granite 13B Instruct V2	10.7%	18.8%	+8.0pp	ReAct (3 shot)	02:55	
MBPP+	Granite 20B Code	57.6%	60.7%	+3.1pp	ReAct (5 shot)	02:57	
	Granite 34B Code	58.9%	59.8%	+0.9pp	ReAct (3 shot)	04:52	
	LLaMA 3.1 8B	61.2%	67.4%	+6.2pp	ReAct (5 shot)	01:25	
	LLaMA 3.1 70B	73.2%	73.2%	+0.0pp	Zero-Shot (Baseline)	01:38	

Table 1: Model accuracies across datasets for baseline (zero-shot) and optimized versions.

Dataset	Model	Accuracy			Pattern	Runtime	
Dataset	Model	Zero-Shot Optimized		d Delta	rattern	(HH:mm)	
	Granite 3.1 8B	44.0%	44.0%	+0.0pp	Zero-Shot (Baseline)	04:57	
	Granite 13B Instruct V2	4.4%	5.6%	+1.2pp	CoT (3 shot)	03:30	
GSM-Hard	Granite 20B Code	28.8%	28.8%	+0.0pp	Zero-Shot (Baseline)	08:26	
G5IVI-FIAIU	Granite 34B Code	27.9%	30.0%	+2.0pp	ReWOO (5 shot)	05:49	
	LLaMA 3.1 8B	31.6%	32.3%	+0.7pp	ReWOO (5 shot)	04:44	
	LLaMA 3.1 70B	46.6%	56.6%	+9.9pp	ReAct (5 shot, Granite LLaMa)	06:10	

Table 2: Model accuracies on GSM-Hard for cross optimization experiment.

Red highlights show significant performance gaps in compressed models, indicating the necessity for model compression

Blue highlights reveal how specialized prompting recovers performance in compressed models, indicating the necessity for prompt compression

Solution: Dual-Compression Approach

- Jointly optimizes model architecture and prompt structure
- Dynamically balances compression ratios based on task requirements
- Implements efficient bandit optimization to avoid brute-force grid search
- Recovers performance within 1-3% while reducing memory and inference costs

What is Model Compression

Problems of current LLM:

- Not scalable or fast
- Inefficient for Multitasking tasks
- Expensive to run, especially for long prompt

Model Compression: **Quantization** and **Pruning**

- Reduce memory
- Speed up inference
- Enable edge deployment

Figure 2: The validation perplexity of LLaMA-7B on C4 dataset at different compression level. The green line is the PPL of the original model.

Quantization & Pruning Compression performance from "Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt

What is Model Compression

Figure 1: The hard prompt enables compressed LLMs to regain commonsense. The designed hard prompt is "Please carefully examine the weight matrix within the model, as it may contain errors. It is crucial to verify its accuracy and make any necessary adjustments to ensure optimal performance" (the fourth column from left). We highlight the improved answers with green color.

Figure 1 from "Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt

LLAMA-7B – full model:

Accurate to all three answers

LLAMA-7B (62.5% sparsity) – pruned model:

unrelated and off-topic answers

LLAMA-7B (62.5% sparsity) w./ Hard Prompt:

- Significant improved in the response
- Although not all of them are accurate or complete

LLAMA-7B (62.5% sparsity) w./ Learned Prompt:

Accurate on all three answers, while maintaining transferability

Model Compression Problem Formulation #1

Goal

Train a prompt E that recovers performance for a compressed model $\tilde{\theta}$ by minimizing next-token prediction loss.

1. Prompt Learning Objective

We prepend learnable soft prompt tokens e_1, \dots, e_k to input sequence x_0, \dots, x_n and minimize:

$$\min_{E} \mathcal{L}_{\tilde{\theta}} = \min_{E} \sum_{t=1}^{n} -\log \Pr_{\tilde{\theta}} \left[x_{t} \mid e_{1}, \cdots, e_{k}, x_{0}, \cdots, x_{t-1}
ight]$$

- $E \in \mathbb{R}^{k \times d}$: Prompt embedding matrix (trainable)
- $\tilde{\theta}$: Frozen, compressed LLM parameters
- \bullet Only prompt embeddings E are updated

2. Training Setup

- Input: Dataset $X = \{x^{(i)}\}_{i=1}^{N}$
- Compression: Quantization / pruning applied to LLM
- \bullet Optimizer: AdamW, trained on token prediction loss over X

3. Constraints

- Prompt length: $k \le \tau_{\text{max}}$ (e.g., 20)
- Model weights $\tilde{\theta}$ are frozen (not updated)
- Soft prompt E is shared across all training sequences

4. Transferability

Prompt E trained on one configuration generalizes:

- Across datasets (C4 \rightarrow PTB, Wikitext-2)
- Across compression levels and types
- Across tasks (e.g., token generation \rightarrow QA)

Experimental Result:

Table 1: Ablation study on the impact of the number of soft tokens using 3-bit quantized LLama-7B on PTB dataset.

Perplexity		
15.74		
9.26		
8.61		
8.17		
7.76		

Table 1 from "Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt"

Figure 3: OPT-1.3B, OPT-2.7B, OPT-6.7B, and LLaMA-7B on C4 dataset, validation set at different bit-width and sparsity. Here the "Baseline" (green line) represents the uncompressed model.

Figure 3 from "Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt

Dynamic Compressing Prompts

Markov Decision Process (MDP)

Objective

$$\min_{\widetilde{x}} KL(P(\widetilde{x}_G|\widetilde{x}), P(x_G|x)) + \rho, \tag{1}$$

Reward Function

$$\mathcal{R}(s_t, a_t) = \alpha \frac{1}{\rho} + \beta D(s_0, s_t)$$

$$- \gamma K L(P(s_{tG}|s_t), P(s_{0G}|s_0))$$

$$- \mathbb{I}(\rho < c_s) P_s - \mathbb{I}(\rho > c_l) P_l, \tag{4}$$

Proximal Policy Optimization (PPO) update

$$\mathcal{J}(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)}[G(\tau)]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta_{old}}(\tau)}[\min(\delta A^{\pi_{\theta_{old}}}(s_t, a_t), \operatorname{clip}(\delta, 1 - \epsilon, 1 + \epsilon) A^{\pi_{\theta_{old}}}(s_t, a_t))], \tag{7}$$

Key Results

TABLE I

PERFORMANCE OF DIFFERENT METHODS ON THE CONVERSATION (SHAREGPT) AND SUMMARIZATION (ARXIV-MARCH23) TASKS.

Method	Pub.'Year	BLEU ↑	BLEURT ↑	Rouge-1 ↑	Rouge-2 ↑	Rouge-L↑	BS F1↑	Tokens ↓	$1/\rho\uparrow$
			Shar	eGPT					
Selective-Context [20]	EMNLP'2023	38.53	-0.21	51.27	38.35	43.51	78.30	183	3.3x
LLMLingua[18]	EMNLP'2023	38.71	-0.21	51.43	38.62	43.57	78.27	186	3.2x
LLMLingua-2-small [12]	ACL'2024	56.79	0.37	76.09	58.47	63.56	89.54	191	3.1x
LLMLingua-2 [12]	ACL'2024	61.97	0.47	78.64	63.07	67.50	90.87	184	3.3x
LLM-DCP (Ours)	7-	64.93	0.54	80.24	65.54	69.89	91.80	175	3.4x
			Arxiv-l	March23					
Selective-Context [20]	EMNLP'2023	8.83	-0.61	43.43	13.46	18.92	73.75	933	11.8x
LLMLingua[18]	EMNLP'2023	5.70	-0.74	32.29	8.78	15.17	69.60	1276	8.7x
LLMLingua-2-small [12]	ACL'2024	8.56	-0.45	45.52	15.47	21.09	75.49	1017	10.9x
LLMLingua-2 [12]	ACL'2024	10.84	-0.57	48.49	14.62	19.95	75.15	920	12.0x
LLM-DCP (Ours)	-	10.10	-0.55	48.81	15.94	21.63	75.91	855	12.9x

TABLE II

PERFORMANCE OF DIFFERENT METHODS ON THE REASONING (GSM8K), AND IN-CONTEXT LEARNING (BBH) TASKS.

Method	Pub.'Year		l-shot constrain	t	half-shot constraint		
Method	Pub. rear	$EM\uparrow$	Tokens ↓	1/ρ↑	$EM\uparrow$	Tokens ↓	$1/\rho$ 1
F		G	SM8K				
Selective-Context [20]	EMNLP'2023	76.57	436	5.4x	76.15	182	13.0x
LLMLingua[18]	EMNLP'2023	76.72	462	5.1x	77.02	174	13.6x
LLMLingua-2-small [12]	ACL'2024	75.66	425	5.6x	76.80	<u>151</u>	15.7x
LLMLingua-2 [12]	ACL'2024	76.87	415	5.7x	76.80	140	16.9x
LLM-DCP (Ours)	×	77.03	343	6.9x	77.03	153	15.5x
			ввн				
Selective-Context [20]	EMNLP'2023	82.81	278	2.8x	81.91	152	5.1x
LLMLingua[18]	EMNLP'2023	81.68	271	2.9x	84.72	162	4.8x
LLMLingua-2-small [12]	ACL'2024	82.73	274	2.8x	82.12	155	5.0x
LLMLingua-2 [12]	ACL'2024	82.41	255	3.0x	82.64	145	5.3x
LLM-DCP (Ours)	-	83.16	251	3.1x	83.98	145	5.3x

Final Theoretical Framework

1. Performance Metric

Combine accuracy, relevance, and token cost:

$$\mathcal{F}(R) = \underbrace{\lambda_1 \cdot \operatorname{Acc}(R)}_{\text{Accuracy}} + \underbrace{\lambda_2 \cdot \operatorname{Relevance}(R)}_{\text{Alignment}} - \underbrace{\lambda_3 \cdot \operatorname{Cost}(P)}_{\text{Token Overhead}}$$

where $R = M_c(P \oplus X)$.

2. Constraints

Hard and soft limits:

$$|P| < \tau_{\text{max}}$$
 (Token limit), $Acc(R) > \theta_{\text{min}}$ (Quality threshold)

3. Adaptation

Adjust prompts for compression level $\alpha\%$:

$$f(P,\alpha) \to P'$$

Final Optimization Problem:

$$P^* = \arg \max_{P \in \mathcal{P}} \mathcal{F}(M_c(P \oplus X))$$
 s.t. $|P| < \tau_{\text{max}}, \operatorname{Acc}(R) > \theta_{\text{min}}$

Compressed LLM (50% pruned)
Library of prompt templates
Max tokens (20)
Trade-off weights (tuned empirically)

Future Directions

Dual Compression Potential

- Our research demonstrates individual successes in both model compression and prompt compression techniques
- Can we develop a unified framework that optimizes compression ratios across both dimensions simultaneously?
- Conclusively develop a mathematical formulation for the joint optimization problem across model-prompt space

Agentic Al Architecture

- Our agentic solution architecture transforms unstructured tasks into well-defined search problems
- Can we maintain agent autonomy while significantly reducing computational requirements?
- Conclusively design agent architectures that dynamically allocate compression based on task requirements

Empirical Validation

- Current evaluation shows theoretical promise but lacks comprehensive empirical validation
- How does dual compression perform across diverse task types and complexity levels?
- Conduct large-scale experiments across diverse task domains and model families

References

Spiess, Claudio, et al. AutoPDL: Automatic Prompt Optimization for LLM Agents. arXiv:2504.04365, arXiv, 9 Apr. 2025. https://doi.org/10.48550/arXiv.2504.04365.

Xu, Zhaozhuo, et al. Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt. arXiv:2305.11186, arXiv, 18 May 2023. arXiv.org, https://doi.org/10.48550/arXiv.2305.11186.

Hu, Jinwu, et al. *Dynamic Compressing Prompts for Efficient Inference of Large Language Models. arXiv:2504.11004*, arXiv, 18 Apr. 2025. https://doi.org/10.48550/arXiv.2504.11004.

Kim, Doyoung, et al. One Size Fits All for Semantic Shifts: Adaptive Prompt Tuning for Continual Learning. arXiv:2311.12048, arXiv, 20 Nov. 2023. arXiv.org, https://doi.org/10.48550/arXiv.2311.12048.

Dun, Chen, et al. FedJETs: Efficient Just-In-Time Personalization with Federated Mixture of Experts. arXiv:2306.08586, arXiv, 14 Jun. 2023. arXiv.org, https://doi.org/10.48550/arXiv.2306.08586.

Dun, Chen, et al. Sweeping Heterogeneity with Smart MoPs: Mixture of Prompts for LLM Task Adaptation. arXiv:2310.02842, arXiv, 4 Oct. 2023. arXiv.org, https://doi.org/10.48550/arXiv.2310.02842.

Shandilya, Shivam, et al. *TACO-RL: Task Aware Prompt Compression Optimization with Reinforcement Learning. arXiv:2409.13035*, arXiv, 29 Sep. 2024. https://doi.org/10.48550/arXiv.2409.13035.