Solution Quiz-4

1.)Given,

My Roll number is = 2205025

Multiplier=Q=Last three digits of roll%5+6=025%5+6=6 (What is given M in the question)

Multiplicand=M=-11=10101, 2's of M=M^{2s}=01011

To multiply (-11 x 6)

	1		To multiply (-	11 1 0)	
Register	Multiplier Register		Multiplicand Register	Operation	Remark
A	Q	Q-1	M		
00000	0011 <mark>0</mark>	0	10101	10101 Initial configuration	
00000	00110	0	No Add/Sub		First Crest
00000	00011	0		Shift	First Cycle
01011	00011	0		$A=A-M=A+M^{2S}$	Second
00101	1000 <mark>1</mark>	1		Shift	Cycle
00101	10001	1		No Add/Sub	Third
00010	1100 <mark>0</mark>	1		Shift	Cycle
10111	11000	1		A=A+M	Fourth
11011	1110 <mark>0</mark>	0		Shift	Cycle
11011	11100	0		No Add/Sub	Fifth
11101	11110	0		Shift	Cycle

Result = Contains of AQ register = $\frac{11101}{11110} = -66$ (Answer of -11 x 6)

As multiplier will vary from (0+6) to (4+6) => from 6 to 10 So the last step (contains of AQ register) will be

-11 x 7 = -77 = 11101 10011 -11 x 8 = -88 = 11101 01000

 $-11 \times 9 = -99 = 11100 \ 11101$

 $-11 \times 10 = -110 = 11100 \ 10010$

2) <u>Division operation using restoring Method (14 ÷ 3 = ?)</u> Dividend=Q=14=1110, Divisor=M=3=11

As length of dividend is 4 bit, So length of A and M should be (4+1)=5 bits. So, A=00000 and M=00011 $\,$ M^{2s}=11101

Steps	Sub- step	Step/Action	Accumulator (A)	Dividend (Q)	Divisior/Remarks (M)
0	0	Initial values	00000	1110	00011
	a)	Shift left A,Q	00001	110_	
	b)	Perform $A = A - M$	11110	110_	$A=A-M=A+M^{2s}$
		(A-Column)			A = 00001
First					$M^{2s} = 11101$
Cycle					A = 11110
	c)	Now A is –ve,	00001	110 <u>0</u>	
		$set q_0 = 0 (Q-column)$			
		and perform A=A+M			
		(A-Column)	00011	100	
	a)	Shift left A,Q	00011	100	A A N A A N A A N A 2 S
	b)	Perform $A = A - M$	00000	10 <u>0</u>	$A=A-M=A+M^{2s}$ A = 00011
Second		(A-Column)			A = 00011 $M^{2s} = 11101$
Cycle					A = 00000
	c)	Now A is +ve,	00000	10 01	A - 00000
		$\begin{array}{c c} \text{Now A is + vc,} \\ \text{set } q_0 = 1 \text{ (Q-column)} \end{array}$	00000	10 <u>01</u>	
	a)	Shift left A,Q	00001	0 <u>01</u>	
	b)	Perform $A = A - M$	11110	001	$A=A-M=A+M^{2s}$
		(A-Column)	11110	<u> </u>	A = 00001
					$M^{2s} = 11101$
Third Cycle					A = 11110
	c)	Now A is –ve,	00001	0 <u>010</u>	
		set $q_0 = 0$ (Q-column)			
		and perform A=A+M			
		(A-Column)			
Fourth Cycle	a)	Shift left A,Q	00010	<u>010_</u>	
	b)	Perform $A = A - M$	11111	<u>010</u> _	$A=A-M=A+M^{2s}$
		(A-Column)			A = 00010
					$\frac{M^{2s} = 11101}{A = 11111}$
	\ \ \	NT A	00010	0100	A = 11111
	c)	Now A is –ve,	00010	<u>0100</u>	
		$ set q_0 = 0 (Q-column) $			
		and perform A=A+M			
		(A-Column)			

So Quotient is the contains of register Q=0100=4

.....

$\begin{array}{l} \underline{Division\ operation\ using\ Non-Restoring\ Method\ (14 \div 3 =?)} \\ \underline{Dividend=Q=14=1110,\ Divisor=M=3=11} \end{array}$

As length of dividend is 4 bit, So length of A and M should be (4+1)=5 bits. So, A=00000 and M=00011 $M^{2s}=11101$

Steps	Sub- step	Step/Action	Accumulator (A)	Dividend (Q)	Divisior/Remarks (M)
0	0	Initial values	00000	1110	00011
First Cycle	a)	As sign of A is 0, so Shift left A, Q and do	00001	110_	
		Subtract (A=A-M)	11110	110_	$A=A-M=A+M^{2s}$ $A = 00001$ $M^{2s} = 11101$ $A = 11110$
	b)	Set q ₀ =0 as sign of A is 1	11110	110 <u>0</u>	
Second Cycle	a)	As sign of A is 1, so Shift left A, Q and do	11101	10 <u>0</u>	
		Add (A=A+M)	00000	10 <u>0</u>	A=A+M A = 11101
	b)	Set q ₀ =1 as sign of A is 0	00000	10 <u>01</u>	
Third Cycle	a)	As sign of A is 0, so Shift left A, Q and do	00001	0 <u>01</u>	
		Subtract (A=A-M)	11110	0 <u>01</u>	$A=A-M=A+M^{2s}$ $A = 00001$ $M^{2s} = 11101$ $A = 11110$
	b)	Set q ₀ =0 as sign of A is 1	11110	0 <u>010</u>	
Fourth Cycle	a)	As sign of A is 1, so Shift left A, Q and do	11100	<u>010</u>	
		Add (A=A+M)	11111	<u>010</u>	A=A+M $A = 11100$ $M = 00011$ $A = 11111$
	b)	Set q ₀ =0 as sign of A is 1	11111	<u>0100</u>	

As the sign of A is 1, so do A=A+M=11111+00011=00010=2=Remainder So Quotient is the contains of register Q=0100=4

- 3) Ans: The sequence of events involved in handling an IRQ:
- ✓ Devices raise an IRQ.
- ✓ The processor interrupts the program currently being executed.
- ✓ The device is informed that its request has been recognized and the device deactivates the request signal.
- ✓ The requested action is performed.

An interrupt is enabled and the interrupted program is resumed.