Uvod v diferencialno geometrijo

Jaša Knap

21. oktober 2023

Uvod 1

Definicija 1.1. Topološki prostor M je n-dimenzionalna mnogoterost, če za vsak $m \in M$ obstaja okolica $m \in U \subseteq M$ in homeomorfizem $\varphi : U \to V^{\text{odp}} \subseteq \mathbb{R}^n$ (pri tem je $V \approx B^n$).

Primer 1.2. Naslednje množice so primeri mnogoterosti.

- 1. $M = \mathbb{R}^n$ je n-dimenzionalna mnogoterost,

- 2. S^1 je 1-dimenzionalna mnogoterost, 3. $S^n = \left\{ (x_1, x_2, \dots, x_n, x_{n+1}) \middle| \sum_{j=1}^{n+1} x_i^2 = 1 \right\} \subseteq \mathbb{R}^{n+1}$ je n-dimenzionalna mnogoterost, 4. Projektivni prostori $\mathbb{R}P^n = B^n /_{\sim}$, kjer je $\vec{x} \sim \vec{y} \iff \vec{y} = -\vec{x}$ so n-dimenzionalne mnogoterosti.
- 5. Grupa

$$\mathrm{SU}\left(2\right) = \left\{g = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \middle| \ \alpha, \beta \in \mathbb{C}, \det g = 1 \right\}$$

je 3-dimenzionalna mnogoterost. Topološko in geometrijsko je namreč $SU(2) = S^3$. To je primer Lijeve grupe.

6. Grupa

SO (3) =
$$\left\{ g = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \middle| g^T = g^{-1}, \det g = 1 \right\}.$$

Izkaže se, da je SO(3) = $B^3/_{\sim} = \mathbb{R}P^3$. To velja, ker vsaka preslikava iz SO(3) predstavlja rotacijo prostora, vsako rotacijo pa lahko predstavimo z osjo in velikostjo kota vrtenja. Pri tem kota π in $-\pi$ predstavljata vrtenje za isti kot. Če točki v krogli $B\left(0,\pi\right)^3 \approx B^3$ priredimo os in njeno razdaljo od izhodišča proglasimo za velikost kota vrtenja ter enačimo iste rotacije. dobimo natanko projektivni prostor $\mathbb{R}P^3$.

1.1 Gladke mnogoterosti

Na topoloških mnogoterostih bi radi znali odvajati različne objekte, kot so na primer funkcije, krivulje, tenzorji itd. Zato moramo mnogoterosti opremiti z dodatno strukturo. Za začetek se spomnimo definicije odvedljivosti preslikav v evklidskih prostorih.

Definicija 1.3. Preslikava $F: W^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^n$ je odvedljiva v točki $w \in W$, če obstaja linearna preslikava $A: \mathbb{R}^n \to \mathbb{R}^n$ in preslikava $\mathcal{O}: W \to \mathbb{R}^n$, da za vse ustrezne argumente velja

$$F(w+h) = F(w) + Ah + \mathcal{O}(h)$$

in $\lim_{h\to 0}\frac{||\mathcal{O}(h)||}{||h||}=0.$ Odvod preslikave Fv točki w je preslikava $A=D_wF=(DF)_w$.

Definicija 1.4. Preslikava $F: W^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^n$ je odvedljiva na množici W, če je odvedljiva v vsaki točki $w \in W$.

Definicija 1.5. Difeomorfizem je bijektivna odvedljiva preslikava, ki ima odvedljiv inverz.

Definicija 1.6. Naj bo M n-dimenzionalna mnogoterost. Gladek atlas \mathcal{U} na M je družina parov $\mathcal{U} = \{(U_{\alpha}, \varphi_{\alpha}) \mid \alpha \in A\}$, če za vsak $\alpha \in A$ velja:

- 1. $U_{\alpha}^{\text{odp}} \subseteq M$
- 2. $\varphi_\alpha:U_\alpha\to V_\alpha\subseteq\mathbb{R}^n$ je homeomorfizem za nek $V_\alpha\subseteq\mathbb{R}^n$
- 3. $\{U_{\alpha} | \alpha \in A\}$ je pokritje M
- 4. za vsaka $\alpha, \beta \in A$ je preslikava $g_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1} : (\varphi_{\alpha})_*(U_{\alpha} \cap U_{\beta}) \to (\varphi_{\beta})_*(U_{\alpha} \cap U_{\beta})$ difeomorfizem

Dodatek: Če so vse prehodne preslikave $g_{\alpha\beta}$ k-difeomorfizmi z zveznim k-tim odvodom, imamo \mathcal{C}^k -atlas. Če so vse preslikave gladke, imamo \mathcal{C}^{∞} -atlas, če so vse analitične, pa \mathcal{C}^{ω} -atlas.

Opomba. Preslikava $g_{\alpha\beta}$ iz prejšnje definicije je preslikava iz $U_{\alpha} \subseteq \mathbb{R}^n \to \mathbb{R}^n$. Torej jo znamo odvajati in vemo, da je v izbranih koordinatah na \mathbb{R}^n matrika odvoda enaka Jacobijevi matriki:

$$F(x_1, \dots, x_n) = \begin{pmatrix} F_1(x_1, \dots, x_n) \\ \vdots \\ F_n(x_1, \dots, x_n) \end{pmatrix} \implies D_w F = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \dots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_n}{\partial x_1} & \dots & \frac{\partial F_n}{\partial x_n} \end{pmatrix}_w.$$

 $\mathbf{Definicija}$ 1.7. Topološka mnogoterost M, ki premore kakšen gladek atlas, je gladka mnogoterost.

Za motivacijo naslednje definicije se spomnimo dejstva, da vemo, kakšne so gladke preslikave iz \mathbb{R}^n . Nismo pa še definirali gladkih preslikav iz mnogoterosti $M \to \mathbb{R}$.

Definicija 1.8. Naj bo M n-dimenzionalna mnogoterost. Funkcija $f: M \to \mathbb{R}$ je gladka, če je gladka vsaka preslikava $f \circ \varphi_{\alpha}^{-1}: V_{\alpha} \subseteq \mathbb{R}^{n} \to \mathbb{R}$.

Definicija 1.9. Naj bo (M, \mathcal{U}) gladka mnogoterost. Krivulja $\gamma: (a, b) \to M$ je gladka krivulja, v M, če za $\forall \alpha \in A$ velja, da je $\varphi_{\alpha} \circ \gamma: (a, b) \to V_{\alpha} \subseteq \mathbb{R}^n$ gladka krivulja v $V_{\alpha} \subseteq \mathbb{R}^n$.

Definicija 1.10. Atlasa $\mathcal{U} = \{(U_{\alpha}, \varphi_{\alpha}) | \alpha \in A\}$ in $\mathcal{V} = \{(W_{\beta}, \varphi_{\beta}) | \beta \in B\}$ na mnogoterosti M sta ekvivalentna, če za vsak par $(\alpha, \beta) \in A \times B$ iz $U_{\alpha} \cap W_{\beta} \neq \emptyset$ sledi, da je

$$\psi_{\beta} \circ \varphi_{\alpha}^{-1} : (\varphi_{\alpha})_{\star} (U_{\alpha} \cap W_{\beta}) \subseteq \mathbb{R}^{n} \to (\psi_{\beta})_{\star} (U_{\alpha} \cap W_{\beta}) \subseteq \mathbb{R}^{n}$$

difeomorfizem.

Opomba. Ekvivalentnost atlasov je ekvivalenčna relacija, ekvivalenčni razred atlasa \mathcal{U} označimo z $[\mathcal{U}]$.

Definicija 1.11. Naj bo M topološka mnogoterost in \mathcal{U} gladek atlas na M. Potem je $[\mathcal{U}]$ gladka struktura na M.

Opomba. Dejstvo, da lahko obstajajo kakšne netrivialne (eksotične strukture) na mnogoterostih, je zelo netrivialno. Iz Donaldsonovega in Freedmanovega izreka sledi, da ima \mathbb{R}^4 neštevno neskončno eksotičnih gladkih struktur. Vsi ostali \mathbb{R}^n imajo zgolj svojo trivialno in nobene eksotične.

2 Gladke vložene ploskve

V splošnem bi lahko mnogoterosti obravnavali kot abstraktne matematične strukture, ki ne prebivajo nujno v evklidskih prostorih. Pri uvodu v diferencialno geometrijo pa se bomo v glavnem ukvarjali z eno in dvodimenzionalnimi mnogoterostmi, vloženimi v prostor \mathbb{R}^3 .

Definicija 2.1. Množica $X\subseteq\mathbb{R}^3$ je gladka vložena ploskev, če za vsak $m\in X$ obstaja krogla za m $W\subseteq\mathbb{R}^n$ in gladka funkcija $f:W\to\mathbb{R}$, za katero velja 1. $X\cap W=f^*\left(\{0\}\right)$ 2. $(Df)_w\neq 0$ za vsak $w\in X\cap W$

Vložena ploskev $X \subseteq \mathbb{R}^n$ je tudi abstraktna mnogoterost. Poglejmo si, kako bi konstruirali atlas na X. Vzemimo točko $m \in X$. Po definiciji vložene ploskve obstaja nivojnica $f: W \ni m \to \mathbb{R}$ in vemo, da $D_m f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)(m) \neq 0$. Zdaj se spomnimo izreka o implicitni funkciji. Naj bo $m = (x_0, y_0, z_0)$ in BŠS naj bo $\frac{\partial f}{\partial z}(m) \neq 0$. Torej obstaja gladka okolica $V \ni (x_0, y_0) \subseteq \mathbb{R}^2$ in gladka funkcija $g: V \to \mathbb{R}$, da velja f(x, y, g(x, y)) = 0 za vsak $(x, y) \in V$. Po potrebi lahko množico W zmanjšamo na $W_0 \subseteq W$, da dobimo difeomorfizem

$$r: V \longrightarrow W_0 \cap X$$

 $(x, y) \longmapsto (x, y, g(x, y))$

z inverzom

$$\varphi: W_0 \cap X \longrightarrow V$$
$$(x, y, z) \longmapsto (x, y).$$

Ta inverz je v bistvu projekcija na prvi dve koordinati. Če definiramo $U = W_0 \cap X$, postane par (U, φ) karta na X.

2.1Metrika na ploskvi

Če hočemo meriti razdalje med pari točk na gladki mnogoterosti, potrebujemo še dodatno strukturo – metriko. Ta nam omogoča merjenje dolžin krivulj. Če si predstavljamo krivuljo $\gamma:(a,b)\to M$, je najbolj naravna definicija njene dolžine

$$\mathcal{L}(\gamma) = \int_{a}^{b} ||\dot{\gamma}(t)|| dt.$$

Znati moramo torej izračunati dolžino oziroma normo tangentnega vektorja. Najbolje je, če je ta norma porojena s skalarnim produktom, torej $||x|| = \sqrt{\langle x, x \rangle}$.

Naj bo $\langle \cdot, \cdot \rangle$ neki skalarni produkt na $\mathcal{V} = \mathbb{R}^n$ in naj bo $\{v_1, \dots, v_n\}$ baza za \mathcal{V} , ki ni nujno ortonormirana. Vzemimo vektorja $\vec{x} = \sum_{i=1}^n a_i v_i$ in $\vec{y} = \sum_{i=1}^n b_i v_i$. Potem velja, da je skalarni produkt enak

$$\langle \vec{x}, \vec{y} \rangle = \sum_{i,j=1}^{n} a_i b_j \langle v_i, v_j \rangle = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \begin{pmatrix} \langle a_1, a_1 \rangle & \dots & \langle a_1, a_n \rangle \\ \vdots & \ddots & \vdots \\ \langle a_n, a_1 \rangle & \dots & \langle a_1, a_n \rangle \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Iz simetričnosti skalarnega produkta ($\langle v_i, v_j \rangle = \langle v_j, v_i \rangle$) sledi, da je zgornja matrika simetrična. Iz pozitivne definitnosti skalarnega produkta ($\langle v_i, v_i \rangle > 0$) pa sledi še pozitivna definitnost te matrike.

Opomba. Kvadratne matrike so lahko koordinatni zapisi linearnih preslikav iz $\mathbb{R}^n \to \mathbb{R}^n$, lahko pa so tudi koordinatni zapisi skalarnih produktov. To je odvisno od tega, kako se matrike transformirajo pri prehodu v različno bazo.

Naj bo P poljubna preslikava med bazama, L_e linearna preslikava glede na bazo $\{e_1, \ldots, e_n\}$, L_f pa glede na bazo $\{f_1, \ldots, f_n\}$. Potem iz algebre 1 vemo, da je

$$L_f = PL_eP^{-1}.$$

Zdaj pa izpeljimo, kako se transformira matrika skalarnega produkta. Naj bosta $a_f = Pa_e$ in $b_f = Pb_e$. Potem dobimo iz enakosti

$$\langle a_f, b_f \rangle = \langle a_e, b_e \rangle$$

$$a_f^T A_f b_f = a_e^T A_e b_e$$

$$a_e^T P^T A_f P b_e = a_e^T A_e b_e, \forall a_e, b_e.$$

Od tod sledi, da je $P^T A_f P = A_e$ oziroma zaradi ortogonalnosti P ekvivalentno

$$A_f = PA_eP^T$$
.

Torej transformacijska pravila določajo vrsto preslikave, podobno kot pri fiziki.

Preden se lotimo definicije tangentne ravnine, se spomnimo naslednje definicije.

Definicija 2.2. Naj bo preslikava $F:W\subseteq\mathbb{R}^n\to\mathbb{R}^m$ odvedljiva. Rang preslikave F v točki $w\in W$ je enak rangu matrike D_wF . Pravimo, da ima F v točki $w\in W$ maksimalen rang, če ima matrika D_wF maksimalen rang.

Definicija 2.3. Naj bo $X \subseteq \mathbb{R}^3$ vložena ploskev in točka $m \in X$. Tangentna ravnina $T_m X$ je množica tangent vseh krivulj v X, ki v času t = 0 gredo skozi m.

$$T_{m}X = \left\{\dot{\gamma}\left(0\right) \mid \gamma: \left(-\varepsilon, \varepsilon\right) \to X \subseteq \mathbb{R}^{3} \text{ krivulja, } \gamma\left(0\right) = m\right\}$$

Trditev 2.4. T_mX je dvodimenzionalen realni vektorski podprostor v \mathbb{R}^3 .

Dokaz: Naj bo $r:V\subseteq\mathbb{R}^2\to X\subseteq\mathbb{R}^3$ neka regularna parametrizacija ploskve X (to pomeni, da mora biti rang preslikave r maksimalen, torej konstantno enak 2) v okolici točke $m\in X$. Naj bo $p=(u,v)\in V\subseteq\mathbb{R}^2$. Pišimo

$$r(p) = r(u, v) = \begin{pmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{pmatrix}.$$

Naj bo $m=r\left(u_0,v_0\right)$. Trdimo, da je $T_mX=\operatorname{im}\left(D_{(u_0,v_0)}r\right)$. Najprej dokažimo inkluzijo $T_mX\subseteq\operatorname{im}\left(D_{(u_0,v_0)}r\right)$. Naj bo $\gamma:\left(-\varepsilon,\varepsilon\right)\to X\subseteq\mathbb{R}^2,\ \gamma(0)=m=r\left(u_0,v_0\right)$ poljubna krivulja. Direktno po definiciji tangentne krivulje sledi $\gamma(0)\in T_mX$. Dokazati moramo $\gamma(0)\in\operatorname{im}\left(D_{(u_0,v_0)r}\right)$. Naj bo $\gamma(t):\left(-\varepsilon,\varepsilon\right)\to V$ podana z $\beta(t)=r^{-1}\left(\gamma(t)\right)$. Ker je praslika preslikave β vsebovana v \mathbb{R}^2 , obstajata funkciji u(t),v(t), da je $\beta(t)=(u(t),v(t))$. Pri tem velja, da je $\beta(0)=(u(0),v(0))=(u_0,v_0)$. Vidimo, da je $\gamma(t)=r(u(t),v(t))$. Po verižnem pravilu za odvajanje imamo

$$\dot{\gamma}(0) = \frac{d}{dt}|_{t=0}\gamma(t) = (D_{(u_0,v_0)}r)\dot{\beta}(0).$$

Torej je $\dot{\gamma}(0) \in \operatorname{im} \left(D_{(u_0,v_0)} r \right)$.

Nato dokažimo še obratno inkluzijo $T_mX\supseteq \operatorname{im}\left(D_{(u_0,v_0)}r\right)$. Vzemimo poljuben vektor \mathbb{R}^2 in naj bo $v=\left(D_{(u_0,v_0)r}\cdot w\right)$. Potrebujemo krivuljo $\gamma(t),\gamma(0)=m$, za katero bo veljalo $\dot{\gamma}(0)=v$. Oglejmo si

$$\left(D_{(u_0,v_0)}r\right)(\dot{\beta}(0)) = \frac{d}{dt}|r(\beta(t)).$$

Trdimo, da za $\gamma(t) = r(\beta(t))$ velja, da je $\dot{\gamma}(0) \in T_m X$. To je res, saj velja, da je $\gamma(t) : (-\varepsilon, \varepsilon) \to X \subseteq \mathbb{R}^3$, hkrati pa velja tudi $\gamma(0) = r(\beta(0)) = r(u_0, v_0) = m$. Torej velja, da je $T_m X = \operatorname{im}(D_{(u_0, v_0)} r)$. Ker smo zahtevali, da je parametrizacija regularna, je matrika $D_{(u_0, v_0)} r$ reda 2, torej je $T_m X$ dvodimenzionalen vektorski prostor.

Opomba. Tangentna ravnina je pravi vektorski prostor in ne afin kot recimo pri analizi 2a.

Do nadaljnjega nas bodo zanimale lokalne lastnosti ploskev, zato bomo delali v glavnem s ploskvami, ki jih lahko pokrijemo z eno samo karto oziroma z eno samo parametrizacijo.

Definicija 2.5. Metrika na ploskvi $X\subseteq\mathbb{R}^3$, opremljeni s parametrizacijo $r:V\subseteq\mathbb{R}^2\to X\subseteq\mathbb{R}^3$, je preslikava

$$g: X \longrightarrow M_2(\mathbb{R})$$

$$m \longmapsto \begin{pmatrix} g_{11}(m) & g_{12}(m) \\ g_{21}(m) & g_{22}(m) \end{pmatrix},$$

kjer za vsak $m \in X$ velja $g_{12}(m) = g_{21}(m)$ in g(m) je pozitivno definitna matrika. To lahko povemo s pogojema det g(m) > 0 in $g_{11}(m) > 0$.

Opomba. Za drugo parametrizacijo ploskve X bi dobili druge koeficiente matrike.

Naj bo $\gamma:[a,b]\to X$ krivulja. Njeno parametrizacijo r lahko napišemo v obliki $\gamma(t)=r(u(t),v(t))$ za primerne funkcije $u,v:[a,b]\to\mathbb{R},\ \beta(t)=(u(t),v(t)),\ \gamma(t)=r(\beta(t)).$ V koordinatah lahko zapišemo

$$\gamma(t) = \begin{pmatrix} x(u(t), v(t)) \\ y(u(t), v(t)) \\ z(u(t), v(t)) \end{pmatrix},$$

$$\dot{\gamma}(t) = \frac{d}{dt}\Big|_{t=t_0} r(\beta(t)) = (D_{(u_0, v_0)} r)(\dot{\beta}(t_0)) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix}_{(u_0, v_0)} \begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = r_u(u_0, v_0)\dot{u}(t_0) + r_v(u_0, v_0)\dot{v}(t_0).$$

To je razvoj vektorja $\dot{\gamma}(t_0)$ po bazi $\{r_u(u_0, v_0), r_v(u_0, v_0)\}$ prostora $T_{\gamma(t_0)}X$, ki pa ni nujno ortogonalna. Pravzaprav je ortogonalna le v precej posebnih primerih.

Definicija 2.6. Dolžina krivulje $\gamma:[a,b]\to X\subseteq\mathbb{R}^3$ glede na metriko g je v parametrizaciji r podana s formulo

$$\mathcal{L}_g(\gamma) = \int_a^b \sqrt{\left(\dot{u}(t) \quad \dot{v}(t)\right) \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \dot{u}(t) \\ \dot{v}(t) \end{pmatrix}} dt$$

Ustrezni skalarni produkti na ravnini T_mX so glede na parametrizacijo r podani s predpisi $\langle r_u, r_u \rangle_g = g_{11}$, $\langle r_u, r_v \rangle_g = g_{12}$, $\langle r_v, r_v \rangle_g = g_{22}$. Naj bo sedaj ambientni prostor \mathbb{R}^3 opremljen s fiksnim evklidskim skalarnim produktom, in koeficiente g_{ij} poračunamo z njim (na enak način kot prej). Pri tem uporabimo naslednje standardne oznake:

$$E(u,v) = \langle r_u(u,v), r_u(u,v) \rangle, \quad F(u,v) = \langle r_u(u,v), r_v(u,v) \rangle, \quad G(u,v) = \langle r_v(u,v), r_v(u,v) \rangle.$$

Včasih tudi zlorabimo notacijo

$$E(m) = E(r(u, v)) = E(u, v).$$

Definicija 2.7. Metrika na $X\subseteq\mathbb{R}^2$, ki je glede na $r:V\to X\subseteq\mathbb{R}^3$ podana z matrično funkcijo

$$\begin{split} g_f: V &\longrightarrow M_2(\mathbb{R}) \\ (u,v) &\longmapsto \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}, \end{split}$$

se imenuje prva fundamentalna forma ploskve.

Opomba. Dolžina krivulje $\mathcal{L}(\gamma)$ glede na prvo fundamentalno formo ploskve sovpada z običajno dolžino krivulje:

$$\begin{split} \mathcal{L}(\gamma) &= \int_{a}^{b} ||\dot{\gamma}(t)|| \, dt = \int_{a}^{b} \sqrt{\left\langle \dot{u}r_{u} + \dot{v}r_{v}, \dot{u}r_{u} + \dot{v}r_{v} \right\rangle} \, dt \\ &= \int_{a}^{b} \sqrt{\left(\dot{u}(t) \quad \dot{v}(t) \right) \left(\left\langle r_{u}, r_{u} \right\rangle \quad \left\langle r_{u}, r_{v} \right\rangle \right)_{\left(u(t), v(t) \right)} \left(\dot{u}(t) \right)} \, dt \\ &= \int_{a}^{b} \sqrt{\left(\dot{u}(t) \quad \dot{v}(t) \right) \left(\frac{E \quad F}{F \quad G} \right)_{\left(u(t), v(t) \right)} \left(\dot{u}(t) \right)} \, dt. \end{split}$$

Izomorfizmi v diferencialni geometriji so izometrije, katerih definicija pa je nekoliko drugačna, kot bi morda pričakovali.

Definicija 2.8. Preslikava $f:X\to X'$ nad dvema ploskvama $X,X'\subseteq\mathbb{R}^3$ je izometrija, če za vsako krivuljo $\gamma:[a,b]\to X$ velja enakost med dolžinama

$$\mathcal{L}_X(\gamma) = \mathcal{L}_{X'}(\gamma).$$

Opomba. Izometrije med ploskvama porodijo izometrije v običajnem metričnem smislu.