7

Minimization

Methods

The goal is to minimize

$$F(\mathbf{x}) = F(x_1, x_2, \dots, x_k)$$
, where $\mathbf{x} = [x_1, x_2, \dots, x_k]$

This is equivalent to solving

$$\nabla F(x_1, x_2, \dots, x_n) = \begin{bmatrix} F_1(x_1, x_2, \dots, x_n) \\ F_2(x_1, x_2, \dots, x_n) \\ \vdots \\ F_n(x_1, x_2, \dots, x_n) \end{bmatrix} = \mathbf{0}$$

Definitions

The gradient:

$$\nabla F(\mathbf{x}) = \nabla F(x_1, x_2, \dots, x_n) = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \frac{\partial F}{\partial x_2} & \cdots & \frac{\partial F}{\partial x_k} \end{bmatrix}$$

The Hessian matrix:

$$HF(\mathbf{x}) = HF(x_1, x_2, \dots, x_n) = \begin{bmatrix} \frac{\partial^2 F}{\partial x_1 \partial x_1} & \frac{\partial^2 F}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 F}{\partial x_k \partial x_1} \\ \frac{\partial^2 F}{\partial x_2 \partial x_1} & \frac{\partial^2 F}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 F}{\partial x_k \partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 F}{\partial x_1 \partial x_k} & \frac{\partial^2 F}{\partial x_2 \partial x_k} & \cdots & \frac{\partial^2 F}{\partial x_k \partial x_k} \end{bmatrix}$$

Newton's Method

It comes from the Taylor's formula in higher dimension. We find a root of x,close to your initial guess x^0 , such that $\nabla F(x) = 0$ which correspond to a minimum of F(x). You start with the function ∇F , the initial guess x^0 , a tolerance ε , and a max number of iteration ITMAX.

1. Calculate the next iteration (pick a small constant α)

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \alpha [HF(\mathbf{x}^n)]^{-1} \nabla F(\mathbf{x}^n)$$

2. If convergence is satisfactory, i.e. $||\nabla F(\mathbf{x}^{n+1})|| < \varepsilon$, or $||\mathbf{x}^{n+1} - \mathbf{x}^n|| < \varepsilon$, or iteration is *ITMAX*, return \mathbf{x}^{n+1} and stop.

Gradient Descent

We find the minimum of F(x). You start with the function ∇F , the intial guess x^0 , a tolerance ε , and a max number of iteration ITMAX.

1. Calculate the next iteration (pick a small constant α)

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \alpha \nabla F(\mathbf{x}^n)$$

2. If convergence is satisfactory, i.e. $||\nabla F(\mathbf{x}^{n+1})|| < \varepsilon$, or $||\mathbf{x}^{n+1} - \mathbf{x}^n|| < \varepsilon$, or iteration is *ITMAX*, return \mathbf{x}^{n+1} and stop.