Math 5223 Homework 5

Jiasong Zhu

October 20, 2025

Problem 1

Proof. (a) Let $r(\theta, \varphi) = (R \sin \varphi \cos \theta, ; R \sin \varphi \sin \theta, ; R \cos \varphi), -\pi < \theta < \pi, 0 < \varphi < \pi$. Note that

$$r_{\theta} = \frac{\partial r}{\partial \theta} = (-R\sin\phi\sin\theta, R\sin\phi\cos\theta, 0),$$

$$r_{\phi} = \frac{\partial r}{\partial \phi} = (R\cos\phi\cos\theta, R\cos\phi\sin\theta, -R\sin\theta).$$

Compute,

$$\langle \mathbf{r}_{\theta}, \mathbf{r}_{\theta} \rangle = R^{2} \sin^{2} \varphi (\sin^{2} \theta + \cos^{2} \theta) = R^{2} \sin^{2} \varphi,$$

$$\langle \mathbf{r}_{\varphi}, \mathbf{r}_{\varphi} \rangle = R^{2} (\cos^{2} \varphi + \sin^{2} \varphi) = R^{2},$$

$$\langle \mathbf{r}_{\theta}, \mathbf{r}_{\varphi} \rangle = 0.$$

Hence, in the coordinates (θ, φ) , the round metric is

$$g_R = \langle \mathbf{r}_{\varphi}, \mathbf{r}_{\varphi} \rangle \, d\varphi^2 + 2 \langle \mathbf{r}_{\theta}, \mathbf{r}_{\varphi} \rangle \, d\theta \, d\varphi + \langle \mathbf{r}_{\theta}, \mathbf{r}_{\theta} \rangle \, d\theta^2 = R^2 \, d\varphi^2 + R^2 \sin^2 \varphi \, d\theta^2,$$

as desired.

(b) In the coordinates (θ, φ) , the only nonzero components of the metric are

$$g_{\varphi\varphi} = R^2, \qquad g_{\theta\theta} = R^2 \sin^2 \varphi,$$

so the inverse metric satisfies

$$g^{\varphi\varphi} = \frac{1}{R^2}, \qquad g^{\theta\theta} = \frac{1}{R^2 \sin^2 \varphi}.$$

Since $g_{\theta\theta}$ depends only on φ and $g_{\varphi\varphi}$ is constant,

$$\partial_{\varphi}g_{\theta\theta} = 2R^2 \sin\varphi\cos\varphi, \qquad \partial_{\theta}g_{\theta\theta} = 0, \qquad \partial_{\varphi}g_{\varphi\varphi} = 0, \qquad \partial_{\theta}g_{\varphi\varphi} = 0$$

Hence the only nonzero Christoffel symbols are

$$\Gamma^{\varphi}{}_{\theta\theta} = \frac{1}{2}g^{\varphi\varphi}(0 + 0 - \partial_{\varphi}g_{\theta\theta}) = -\frac{1}{2} \cdot \frac{1}{R^2} \cdot 2R^2 \sin\varphi\cos\varphi = -\sin\varphi\cos\varphi,$$
$$\Gamma^{\theta}{}_{\theta\varphi} = \Gamma^{\theta}{}_{\varphi\theta} = \frac{1}{2}g^{\theta\theta}\partial_{\varphi}g_{\theta\theta} = \frac{1}{2} \cdot \frac{1}{R^2 \sin^2\varphi} \cdot 2R^2 \sin\varphi\cos\varphi = \cot\varphi.$$

(c) With the metric $g_R = R^2 d\varphi^2 + R^2 \sin^2 \varphi d\theta^2$ the only nonzero Christoffel symbols are

$$\Gamma^{\varphi}_{\theta\theta} = -\sin\varphi\cos\varphi, \qquad \Gamma^{\theta}_{\theta\varphi} = \Gamma^{\theta}_{\varphi\theta} = \cot\varphi.$$

Hence the geodesic equations in coordinates $(\theta(t), \varphi(t))$ are

$$\theta'' + 2 \Gamma^{\theta}_{\theta\varphi} \theta'\varphi' = \theta'' + 2 \cot \varphi \theta'\varphi' = 0,$$

$$\varphi'' + \Gamma^{\varphi}_{\theta\theta} (\theta')^2 = \varphi'' - \sin \varphi \cos \varphi (\theta')^2 = 0.$$

Consider a meridian: $\theta(t) \equiv \theta_0$ and $\varphi(t) = t$. Then $\theta' = \theta'' = 0$, so the first equation holds trivially, and the second becomes $\varphi'' = 0$, which is satisfied by $\varphi(t) = at + b$. Therefore $(\theta(t), \varphi(t)) = (\theta_0, t)$ is a geodesic.

Problem 2

Proof. On the unit sphere with spherical coordinates (θ, φ) , the round metric is $g = d\varphi^2 + \sin^2 \varphi d\theta^2$. From Problem 1(b), the only nonzero Christoffel symbols are

$$\Gamma^{\varphi}_{\theta\theta} = -\sin\varphi\cos\varphi, \qquad \Gamma^{\theta}_{\theta\varphi} = \Gamma^{\theta}_{\varphi\theta} = \cot\varphi.$$

Let $V = \frac{\partial}{\partial \omega}$. Using $\nabla_{\partial_i} \partial_j = \Gamma^k_{ij} \partial_k$ for the coordinate frame, we have

$$\nabla_{\frac{\partial}{\partial \theta}} V = \nabla_{\partial_{\theta}} \partial_{\varphi} = \Gamma^{\theta}{}_{\theta\varphi} \partial_{\theta} + \Gamma^{\varphi}{}_{\theta\varphi} \partial_{\varphi} = \cot \varphi \frac{\partial}{\partial \theta},$$

since $\Gamma^{\varphi}_{\theta\varphi} = 0$. Also,

$$\nabla_{\frac{\partial}{\partial \varphi}} V = \nabla_{\partial_{\varphi}} \partial_{\varphi} = \Gamma^{\theta}{}_{\varphi\varphi} \partial_{\theta} + \Gamma^{\varphi}{}_{\varphi\varphi} \partial_{\varphi} = 0,$$

because $\Gamma^{\theta}_{\varphi\varphi} = \Gamma^{\varphi}_{\varphi\varphi} = 0$.

Along the equator $\varphi = \pi/2$, the tangent is ∂_{θ} and

$$\nabla_{\partial_{\theta}} V = \cot(\pi/2) \, \partial_{\theta} = 0,$$

so V is parallel along the equator. Along any meridian $\theta = \theta_0$, the tangent is ∂_{φ} and $\nabla_{\partial_{\varphi}}V = 0$, so V is parallel along each meridian.

Problem 3

Proof. Fix $p \in M$. Using the standard identification $T_{(p,0)}(TM) \cong T_pM \oplus T_pM$ (horizontal \oplus vertical), write a tangent vector as (X, W). Consider the map $G : TM \to M$, $G(q, V) = \exp_q V$. Then

$$dG_{(p,0)}(X,W) = X + W.$$

Indeed, if $V \equiv 0$ and q(s) is a curve with q(0) = p, q'(0) = X, then G(q(s), 0) = q(s), hence $\frac{d}{ds}|_{0}G = X$. If $q \equiv p$ and V(s) is a curve in $T_{p}M$ with V(0) = 0, V'(0) = W, then $\frac{d}{ds}|_{0}\exp_{p}V(s) = d(\exp_{p})_{0}(W) = W$ since $d(\exp_{p})_{0} = \mathrm{id}_{T_{p}M}$. By linearity the general variation gives X + W.

Thus, for F(q, V) = (q, G(q, V)),

$$dF_{(p,0)}(X,W) = (X, dG_{(p,0)}(X,W)) = (X, X+W) \in T_pM \oplus T_pM \cong T_{(p,p)}(M\times M).$$

With respect to the decompositions $T_{(p,0)}(TM) \cong T_pM \oplus T_pM$ and $T_{(p,p)}(M \times M) \cong T_pM \oplus T_pM$, this is the block matrix

$$dF_{(p,0)} = \begin{pmatrix} \mathrm{id} & 0 \\ \mathrm{id} & \mathrm{id} \end{pmatrix}, \quad \text{whose inverse is } \begin{pmatrix} \mathrm{id} & 0 \\ -\mathrm{id} & \mathrm{id} \end{pmatrix}.$$

Hence $dF_{(p,0)}$ is an isomorphism.

By the inverse function theorem, there exist neighborhoods $\mathcal{U}_p \subset TM$ of (p,0) and $\mathcal{V}_p \subset M \times M$ of (p,p) such that $F: \mathcal{U}_p \to \mathcal{V}_p$ is a diffeomorphism. Since p was arbitrary, shrinking and taking the union over p shows that F is a local diffeomorphism from a neighborhood of the zero section in TM onto a neighborhood of the diagonal $\Delta \subset M \times M$.

Problem 4

Proof. (a) Let $T(s,t) = \partial_t \Gamma(s,t)$. Note that

$$\frac{d}{ds}\Big|_{s=0} L(\Gamma_s) = \frac{d}{ds}\Big|_{s=0} \sum_{i=1}^{k-1} \int_{a_i}^{a_{i+1}} |T(s,t)|, dt$$

$$= \sum_{i=1}^{k-1} \int_{a_i}^{a_{i+1}} \frac{\langle \nabla_{\partial_s} T, T \rangle}{|T|} \Big|_{s=0} dt$$

$$|T|=1 \text{ at } s=0 \sum_{i=1}^{k-1} \int_{a_i}^{a_{i+1}} \langle \nabla_{\partial_s} T, \dot{\gamma} \rangle, dt.$$

Since the Levi-Civita connection is torsion free, we have $\nabla_{\partial_s} T = \nabla_{\partial_t} \partial_s \Gamma$. Thus, with $V(t) = \partial_s \Gamma(0, t)$, we have

$$\frac{d}{ds}\Big|_{s=0} L(\Gamma_s) = \sum_{i=1}^{k-1} \int_{a_i}^{a_{i+1}} \langle D_t V, \dot{\gamma} \rangle, dt.$$

By integration by part,

$$\int_{a_i}^{a_{i+1}} \langle D_t V, \dot{\gamma} \rangle, dt = \left[\langle V, \dot{\gamma} \rangle \right]_{t=a_i^+}^{t=a_{i+1}^-} - \int_{a_i}^{a_{i+1}} \langle V, D_t \dot{\gamma} \rangle, dt.$$

Take the sum over all i, we have

$$\sum_{i=1}^{k-1} \left[\langle V, \dot{\gamma} \rangle \right]_{a_i^+}^{a_{i+1}^-} = \langle V(b), \dot{\gamma}(b) \rangle - \langle V(a), \dot{\gamma}(a) \rangle - \sum_{i=2}^{k-1} \langle V(a_i), \Delta_i \dot{\gamma} \rangle,$$

since the interior endpoint contributions telescope and leave the jumps of $\dot{\gamma}$ at the break points a_i . Therefore,

$$\frac{d}{ds}\Big|_{s=0} L(\Gamma_s) = -\int_a^b \langle V, D_t \dot{\gamma} \rangle, dt + \langle V(b), \dot{\gamma}(b) \rangle - \langle V(a), \dot{\gamma}(a) \rangle - \sum_{i=1}^{k-1} \langle V(a_i), \Delta_i \dot{\gamma} \rangle.$$

(b) Fix any $w \in T_qN$. Take a smooth curve $\eta : (-\delta, \delta) \to N$ with $\eta(0) = q$ and $\eta'(0) = w$. For |s| small, join p to $\eta(s)$ by a unit-speed minimizing geodesic γ_s , and define a smooth variation

$$\Gamma: (-\varepsilon, \varepsilon) \times [0, 1] \to M, \qquad \Gamma(s, t) = \gamma_s(t).$$

Let $V(t) := \partial_s \Gamma(0,t)$ be its variation field along γ . Then V(0) = 0 and $V(1) = \eta'(0) = w \in T_q N$.

Since q realizes the distance from p to N, the length function $L(\Gamma_s)$ has a minimum at s = 0, hence

$$\frac{d}{ds}\Big|_{s=0} L(\Gamma_s) = 0.$$

Applying the first variation formula from part (a),

$$\frac{d}{ds}\Big|_{s=0} L(\Gamma_s) = -\int_0^1 \langle V, D_t \dot{\gamma} \rangle dt + \langle V(1), \dot{\gamma}(1) \rangle - \langle V(0), \dot{\gamma}(0) \rangle.$$

Because γ is a geodesic, $D_t \dot{\gamma} = 0$, and V(0) = 0, we obtain

$$0 = \langle V(1), \dot{\gamma}(1) \rangle = \langle w, \dot{\gamma}(1) \rangle.$$

This holds for every $w \in T_q N$, so $\dot{\gamma}(1) \perp T_q N$. Therefore any minimizing geodesic from p to a nearest point $q \in N$ meets N orthogonally.

Problem 5

Proof. Let (M, g) and (M', g') be Riemannian manifolds and suppose $\varphi, \psi : M \to M'$ are local isometries with

$$\varphi(p) = \psi(p) =: q$$
 and $\varphi_*|_p = \psi_*|_p$.

Because φ and ψ are local isometries, there are open neighborhoods $U \ni p$ and $U' \ni q$ such that $\varphi|_U : U \to U'$ and $\psi|_U : U \to U'$ are Riemannian isometries (diffeomorphisms onto U'). Define

$$h := (\psi|_U)^{-1} \circ (\varphi|_U) : U \longrightarrow U.$$

Then h is a local isometry of (U, g), with

$$h(p) = p$$
 and $h_*|_p = (\psi|_U)_*^{-1}|_q \circ \varphi_*|_p = \mathrm{id}_{T_pM}$.

Claim. h is the identity on some neighborhood of p.

Let $v \in T_pM$ be small and let $\gamma_v(t) = \exp_p(tv)$ be the unit-speed geodesic with $\gamma_v(0) = p$ and $\dot{\gamma}_v(0) = v$. Since h is a local isometry, it preserves the Levi–Civita connection and therefore maps geodesics to geodesics. Hence $h \circ \gamma_v$ is a geodesic with

$$(h \circ \gamma_v)(0) = h(p) = p,$$

$$\frac{d}{dt}\Big|_{t=0} (h \circ \gamma_v) = h_*|_p(v) = v.$$

By uniqueness of geodesics with given initial data, $h \circ \gamma_v = \gamma_v$ for all t sufficiently small. Since points near p are of the form $\exp_p(tv)$, we obtain $h = \mathrm{id}$ on a neighborhood $W \subset U$ of p.

Next, we propagate the identity along broken geodesics. Let $x \in M$. Because M is connected, there exists a piecewise smooth geodesic

$$p = x_0 \xrightarrow{\gamma_0} x_1 \xrightarrow{\gamma_1} \cdots \xrightarrow{\gamma_{m-1}} x_m = x$$

such that each segment γ_i lies in a normal neighborhood of x_i . Assume inductively that $h(x_i) = x_i$ and $h_*|_{x_i} = \mathrm{id}$. Then $h \circ \gamma_i$ is a geodesic with the same initial point x_i and the same initial velocity as γ_i , hence (by uniqueness) $h \circ \gamma_i = \gamma_i$ on its whole segment. In particular $h(x_{i+1}) = x_{i+1}$ and $h_*|_{x_{i+1}} = \mathrm{id}$. Starting from $x_0 = p$ (where this holds by construction), we conclude h(x) = x for all $x \in M$. Therefore $h = \mathrm{id}_M$.

Finally, on U we have

$$\varphi = \psi \circ h = \psi$$
.

Since the set $\{x \in M : \varphi(x) = \psi(x)\}$ is closed and contains a nonempty open set (the neighborhood W), by connectedness of M it must be all of M. Hence $\varphi \equiv \psi$.