

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
4 November 2004 (04.11.2004)

PCT

(10) International Publication Number
WO 2004/094671 A2

- (51) International Patent Classification⁷: C12Q 1/68
- (21) International Application Number: PCT/US2004/012788
- (22) International Filing Date: 22 April 2004 (22.04.2004)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
60/464,586 22 April 2003 (22.04.2003) US
60/464,588 22 April 2003 (22.04.2003) US
- (71) Applicants (*for all designated States except US*): COLEY PHARMACEUTICAL GmbH [DE/DE]; Elisabeth-Selbert-Strasse 9, D-40764 Langenfeld (DE). COLEY PHARMACEUTICAL GROUP, INC. [US/US]; 93 Worcester Street, Suite 101, Wellesley, MA 02481 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (*for US only*): VOLLMER, Jörg [DE/DE]; Kohlrauschweg 24, D-40591 Duesseldorf (DE).
- JURK, Marion [DE/DE]; Klosterstr. 4, D-41540 Dornagel (DE). LIPFORD, Grayson, B. [GB/US]; 38 Bates Road, Watertown, MA 02472 (US). SCHETTER, Christian [DE/DE]; Oerkhaushof 35, D-40723 Hilden (DE). FORSBACH, Alexandra [DE/DE]; Raiffeisenstrasse N°1, D-40764 Rantingen (DE). KRIEG, Arthur, M. [US/US]; 173 Winding River Road, Wellesley, MA 02482 (US).
- (74) Agent: TREVISAN, Maria, A.; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).
- (81) Designated States (*unless otherwise indicated, for every kind of national protection available*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH,

[Continued on next page]

(54) Title: METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR LIGANDS

WO 2004/094671 A2

(57) Abstract: The invention provides in part novel screening methods and compositions for identifying and distinguishing between candidate immunomodulatory compounds. The invention further provides methods for assessing biological activity of composition containing a known TLR ligand. These latter methods can be used for quality assessment and selection of various lots of test compositions, including pharmaceutical products for clinical use.

GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

- 1 -

**METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT
OF TLR LIGANDS**

Background of the Invention

5 Nucleic acids with immunostimulatory activity have been identified. The first recognized immunostimulatory motif was the CpG motif in which at least the C of the dinucleotide was unmethylated. It has been postulated that mammalian subjects recognize the unmethylated dinucleotide as being of bacterial origin, and thus mount a heightened immune response following exposure. The ensuing immune response includes both cell mediated and
10 humoral aspects. Since the discovery of the CpG immunostimulatory motif, other immunostimulatory motifs have also been identified including the poly-T and T-rich motifs, the TG motif and the poly-G motif. In some instances, immunostimulation has also been observed in response to exposure to methylated CpG motifs and motif-less nucleic acids having phosphorothioate backbone linkages.

15 The responses induced by immunostimulatory nucleic acids are varied and can include production and secretion of cytokines, chemokines, and other growth factors. The nucleic acids can induce a heightened immune stimulation regardless of whether an antigen is also introduced to the subject. Identification of new motifs as well as of subtle differences between response profiles of different nucleic acids oftentimes can be laborious, and a high
20 throughput system for screening nucleic acids for their ability to be immunostimulatory as well as to determine the profile of responses they induce would be useful.

Summary of the Invention

25 The invention provides in its broadest sense screening methods and tools for identification and discrimination of immunomodulatory molecules and assessment and standardization of samples containing known immunomodulatory molecules. The immunomodulatory molecules can be immunostimulatory or immunoinhibitory, and most preferably are Toll-like receptor (TLR) ligands.

30 In one aspect, the invention provides a screening method for identifying TLR agonists. The method comprises contacting a cell line endogenously expressing at least one TLR with a test compound and measuring a test level of TLR signaling activity, wherein a positive test level is indicative of a TLR agonist (i.e., an immunostimulatory compound). The positive test

- 2 -

level may be apparent without referring to a control. Preferably, however, it is determined relative to a control (i.e., the TLR signaling activity from a reference compound).

In some embodiments, the reference compound is a compound that induces no response (i.e., a zero response) or a minimal response. In this case, a test level that is greater than the reference level is indicative of a compound with TLR signaling activity. More preferably, the reference compound is a compound that induces a positive response (i.e., a non-zero response) and that is immunostimulatory. These reference compounds are referred to herein as negative and positive reference compounds, respectively. If the reference compound is immunostimulatory (i.e., a positive reference compound), a non-zero test level that is lower than the reference level is still indicative of an immunostimulatory test compound. In this latter embodiment, the test compound is less immunostimulatory than the reference compound (for that particular readout), but it is nonetheless immunostimulatory given the non-zero response induced. There may be one or more concurrent or consecutive assays with a negative reference compound, a positive reference compound, or both. The reference may also be a standard curve or data generated previously.

In a related aspect, the screening method involves exposing the same cell to a positive reference compound and a test compound in order to identify a test compound that inhibits the immunostimulatory response of the positive reference compound (i.e., a TLR antagonist or an immunoinhibitory compound).

In still a related aspect, the screening method involves exposing the same cells to a positive reference compound and a test compound in order to identify a test compound that enhances the immunostimulatory response of the positive reference compound (i.e., an enhancer).

In both of these latter aspects, the assay requires a co-incubation of the positive reference compound, the test compound and the cells. Separate assays with positive reference compound alone and optionally negative reference compound alone are usually also performed.

The positive reference compound is a known TLR ligand. Non-limiting examples include but are not limited to TLR3 ligands, TLR7 ligands, TLR8 ligands and TLR9 ligands. In some embodiments, the positive reference compound is an immunostimulatory nucleic acid. In some embodiments, the positive reference compound is a CpG nucleic acid, a poly-T nucleic acid, a T-rich nucleic acid or a poly-G nucleic acid. Another example of a positive

- 3 -

reference compound is a nucleic acid comprising a backbone that contains at least one phosphorothioate linkage.

It has been further discovered according to the invention that the RPMI 8226 cell line expresses TLR7 and responds to the imidazoquinoline compound R-848 (Resiquimod) which is known to signal through TLR7 and TLR8. Accordingly, the screening method can be performed using RPMI 8226, Raji or RAMOS cells and an imidazoquinoline compound such as R-848 or R-847 (Imiquimod) as the positive reference compound.

In one embodiment, the test compound is a nucleic acid such as but not limited to a DNA, an RNA and a DNA/RNA hybrid. The test compound may be a nucleic acid that does not comprise motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif. The test compound may be a nucleic acid that comprises a phosphorothioate backbone linkage. In another embodiment, the test compound is a non-nucleic acid small molecule. The non-nucleic acid small molecule may be derived from a molecular library. In other embodiments, the test compound comprises amino acids, carbohydrates such as polysaccharides. It may be a hormone or a lipid or contain moieties derived therefrom. In other embodiments, the test compounds are putative ligands for TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10 or TLR11.

In one embodiment, the cell is a RPMI 8226 cell, a Raji cell, a RAMOS cell, a THP-1 cells, a Nalm cell or a KG-1 cell and the TLR is TLR9. In another embodiment, the cell is a RPMI 8226 cell, a Raji cell or a RAMOS cell and the TLR is TLR7. In yet another embodiment, the cell is a KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cell, a Hep-2 cells, a A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell and the TLR is TLR3.

In another embodiment, the cell is an RPMI 8226 cell and the TLR is TLR7 or TLR9. In still another embodiment, the cell is a Raji cell and the TLR is TLR9, TLR7 or TLR3.

Depending upon the embodiment, the TLR signaling activity may be measured or detected in a number of ways. In one embodiment, the TLR signaling activity is measured by cytokine, chemokine, or growth factor secretion. The cytokine secretion may be selected from the group consisting of IL-6 secretion, IL-10 secretion, IL-12 secretion, IFN- α secretion and TNF- α secretion, but is not so limited. The chemokine secretion may be IP-10 secretion or IL-8 secretion, but is not so limited.

In another embodiment, the TLR signaling activity is measured by antibody secretion. The antibody secretion may be IgM secretion, but is not limited to this antibody subtype.

- 4 -

In another embodiment, the TLR signaling activity is measured by phosphorylation. The total level of phosphorylation in the cell or the level of phosphorylation of particular factors in the cell may be measured. These factors are preferably signaling factors and can be selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, Jun, c-fos, and 5 subunits of NF- κ B, but are not so limited.

In still a further embodiment, the TLR signaling activity is measured by cell surface marker expression. In one embodiment, the TLR signaling activity is measured by an increase in cell surface marker expression. Examples of cell surface markers to be analyzed include CD71, CD86, HLA-DR, CD80, HLA Class I, CD54 and CD69. In other 10 embodiments, the TLR signaling activity is measured by a decrease in cell surface marker expression. Cell surface marker expression can be determined using flow cytometry. TLR signaling activity can also be measured by protein production (e.g., by Western blot).

In another embodiment, the TLR signaling activity is measured by gene expression. Gene expression profiles may be determined using Northern blot analysis or RT-PCR that 15 uses mRNA or total RNA as a starting material. The gene expression of interest may be that of the chemokines and cytokines and cell surface molecules recited above. Gene expression analysis can be performed using microarray techniques.

In yet another embodiment, the TLR signaling activity is measured by cell proliferation. Cell proliferation assays can be measured in a number of ways including but 20 not limited to 3 H-thymidine incorporation.

In one embodiment, the cell is an RPMI 8226 cell and TLR signaling is indicated by expression of a marker such as CD71, CD86 and/or HLA-DR or by expression, production or secretion of a factor such as IL-8, IL-10, IP-10 and/or TNF- α . Preferably, in this latter embodiment, the RPMI 8226 cell is unmodified. In another embodiment, the cell is a Raji 25 cell and the TLR signaling is indicated by IL-6 or IFN- α 2 expression, production or secretion. In yet another embodiment, the cell is a RAMOS cell and the TLR signaling is indicated by CD80 cell surface expression.

TLR signaling activity can be measured via a native readout or an artificial readout or both. A native readout is one that does not rely on introduction of a reporter construct into the 30 cell of interest.

The cell line may be used in a modified or unmodified form. In one embodiment, the cell line is transfected with a reporter construct. The transfection may be transient or stable. The reporter construct generally comprises a promoter, a coding sequence and a

- 5 -

polyadenylation signal. The coding sequence may comprise a reporter sequence selected from the group consisting of an enzyme (e.g., luciferase, alkaline phosphatase, β -galactosidase, chloramphenicol acetyltransferase (CAT), secreted alkaline phosphatase, etc.), a bioluminescence marker (e.g., green fluorescent protein (GFP, U.S. Patent No. 5,491,084), etc.), a surface-expressed molecule (e.g., CD25), a secreted molecule (e.g., IL-8, IL-12 p40, TNF- α , etc.), and other detectable protein sequences known to those of skill in the art. Preferably, the coding sequence encodes a protein, the level or activity of which can be quantified, with preferably a wide linear range.

In some embodiments, the promoter is a promoter that is responsive to TLR signaling pathways (i.e., a "TLR responsive promoter"). In some embodiments, the promoter contains a binding site for a transcription factor activated upon CpG nucleic acid exposure, such as for example NF- κ B. In other embodiments, the promoter contains a binding site for a transcription factor that is activated by a positive reference compound other than CpG nucleic acids. The transcription factor binding site may be selected from the group consisting of a NF- κ B binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE, as well as others known to those of skill in the art.

In another embodiment, the promoter contains a functional promoter element from an IL-1 gene, an IL-6 gene, an IL-8 gene, an IL-10 gene, an IL-12 p40 gene, an IFN- α 1 gene, an IFN- α 4 gene, an IFN- β gene, an IFN- γ gene, a TNF- α gene, a TNF- β gene, an IP-9 gene, an IP-10 gene, a RANTES gene, an ITAC gene, a MCP-1 gene, an IGFBP4 gene, a CD54 gene, a CD69 gene, a CD71 gene, a CD80 gene, a CD86 gene, a HLA-DR gene, and a HLA class I gene.

The TLR responsive promoter may be a TLR1 responsive promoter, a TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter, a TLR10 responsive promoter or a TLR11 responsive promoter.

In these latter embodiments, the cell line may be transfected with a reporter construct having a promoter derived from a particular cytokine, chemokine, or cell surface marker, and a unique reporter coding sequence conjugated thereto. In this way, the readout from a particular reporter construct is a surrogate readout for cytokine, chemokine, or cell surface marker readout. Measuring readout from the reporter coding sequences described herein is in

- 6 -

some instances easier than measuring cytokine or chemokine secretion, or upregulation of a cell surface marker.

In these latter embodiments, the cell line may be transfected with a number of reporter constructs each having a promoter derived from a particular cytokine, chemokine, or cell 5 surface marker, and a unique distinguishable coding sequence conjugated thereto. In these embodiments, multiple readouts are possible from one screen. In other embodiments, multiple native readouts are also possible from one screen.

In a related embodiment, the cell may be further transfected with a nucleic acid that codes for a TLR polypeptide or a fragment thereof. Preferably, the TLR is one that is not 10 endogenously expressed by the cell. As an example, if the cell is an RPMI 8226 cell which has been shown to express TLR7 and TLR9 according to the invention, then it may be modified to express TLRs other than these (e.g., TLR8) in some embodiments. In this aspect, the RPMI 8226 cell is responsive to TLR8 ligands. In preferred embodiments, the TLR is a human TLR (i.e., hTLR).

15 In another aspect, the invention provides an RPMI 8226 cell transfected with a TLR nucleic acid. In still another embodiment, the TLR nucleic acid is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR8, TLR10 and TLR11. The encoded TLRs nucleic acids can derive from human or non-human sources. Examples of 20 non-human sources include, but are not limited to, murine, bovine, canine, feline, ovine, porcine, and equine species. Other species include chicken and fish, e.g., aquaculture species. The TLR nucleic acids can also include chimeric sequences consisting of domains originating from different species. In preferred embodiments, the TLR is a human TLR.

25 In still another aspect, the invention provides kits including the cells lines (e.g., the RPMI 8226 cell line), the reporter constructs and/or expression constructs described above, and instructions for use.

Other aspects of the invention provide methods for analyzing the biological activity of individual lots of material containing previously identified specific TLR ligands (i.e., specific compounds which are ligands for a particular TLR) intended for use as, or for use in the preparation of, pharmaceutical compositions. The methods permit a qualitative and, 30 importantly, a quantitative assessment of biological activity of individual lots of TLR ligands, pre-formulation as well as post-formulation. Such methods are useful in the manufacture and validation of pharmaceutical compositions containing, as an active agent, at least one specific ligand of at least one specific TLR. The specific TLR can be any known TLR, including

without limitation TLR3, TLR7, TLR8 and TLR9. The specific TLR ligand is an isolated TLR ligand, either found in nature or synthetic (not found in nature), including in particular certain nucleic acid molecules and small molecules. Nucleic acid molecules that are specific TLR ligands include synthetic and naturally-occurring oligonucleotides having specific base sequence motifs. Furthermore, specific TLR ligands include both agonists and antagonists of specific TLR.

These methods are to be distinguished from test procedures and acceptance criteria for new drug substances and new drug products which are classified as chemical substances. Unlike the afore-mentioned test procedures and acceptance criteria, the methods of the instant invention deal specifically with characterizing drug substances and drug products which are classified as oligonucleotides. Oligonucleotides are explicitly excluded in ICH Topic Q6A Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances, Step 4 – Consensus Guideline: 6 October 1999, § 1.3.

Further still, the methods of the instant invention are to be distinguished from test procedures and acceptance criteria for biotechnological/biological products. Unlike the afore-mentioned test procedures and acceptance criteria, the methods of the invention deal specifically with characterizing biotechnological/biological products which are classified as DNA products. DNA products are explicitly excluded in ICH Harmonised Tripartite Guideline Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products, Step 4 – 10 March 1999, § 1.3.

In one aspect, the invention provides a method for quality assessment of a test composition containing a known TLR ligand. The method according to this aspect of the invention involves measuring a reference activity of a reference composition comprising a known TLR ligand, wherein the known TLR ligand is a nucleic acid molecule; measuring a test activity of a test composition comprising the known TLR ligand; and comparing the test activity to the reference activity. In one embodiment the method further involves the step of selecting the test composition if the test activity falls within a predetermined range of variance about the reference activity.

In one embodiment, the reference composition is a first production lot of a pharmaceutical composition comprising the known TLR ligand, and the test composition is a second production lot of a pharmaceutical composition comprising the known TLR ligand. This embodiment is particularly useful as a method for developing and applying acceptance criteria for finished pharmaceutical products containing a known TLR ligand.

- 8 -

In another embodiment, the reference composition is a first in-process lot of a composition comprising the known TLR ligand, and the test composition is a second in-process lot of a composition comprising the known TLR ligand. This embodiment is particularly useful as a method for developing and applying acceptance criteria for raw materials and/or other in-process materials containing a known TLR ligand bound for use in a pharmaceutical product.

In one embodiment according to this aspect of the invention, measuring the reference activity involves contacting the reference composition with an isolated cell expressing a TLR responsive to the known TLR ligand, and measuring the test activity involves contacting the test composition with the isolated cell expressing the TLR responsive to the known TLR ligand. Further, in one embodiment the isolated cell expressing the TLR responsive to the known TLR ligand includes an expression vector for the TLR responsive to the known TLR ligand. Such expression vector, and likewise for any expression vector according to the instant invention, can be introduced into the cell using any suitable method.

In one embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand naturally expresses the TLR responsive to the known TLR ligand. Such a cell can be naturally occurring or it can be a cell line, provided the cell does not include an expression vector introduced into the cell for the purpose of artificially inducing the cell to express or overexpress the TLR.

In one particular embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226. In another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is Raji, RAMOS, Nalm, THP-1 or KG-1 and the TLR is TLR9. In another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226, Raji or RAMOS and the TLR is TLR7. In yet another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is a KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cell, a Hep-2 cells, a A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell and the TLR is TLR3.

Further according to this aspect of the invention, in one embodiment measuring the reference activity and measuring the test activity each comprises measuring signaling activity mediated by a TLR responsive to the known TLR ligand. As described in greater detail elsewhere herein, TLR signaling involves a series of intracellular signaling events. These signaling events give rise to various downstream products, including certain transcription

factors (e.g., NF- κ B and AP-1), cytokines, chemokines, etc., which can affect the activity of certain gene promoters. For example, in one embodiment the signaling activity is activity of a reporter gene or reporter construct under the control of a NF- κ B response element.

In other embodiments, the signaling activity is activity of a reporter gene or reporter construct under the control of an interferon-stimulated response element (ISRE); an IFN- α promoter; an IFN- β promoter; an IL-6 promoter; an IL-8 promoter; an IL-12 p40 promoter; a RANTES promoter; an IL-10 promoter or an IP-10 promoter.

In one embodiment, the known TLR ligand is an immunostimulatory nucleic acid. An immunostimulatory nucleic acid can include, without limitation, a CpG nucleic acid. In another embodiment, the known TLR ligand is an immunoinhibitory nucleic acid. When the known TLR ligand is a TLR antagonist (e.g., an immunoinhibitory oligonucleotide), the method according to this aspect of the invention can further involve measuring the reference activity of the reference composition and measuring the test activity of the test composition, each performed in the presence of a known immunostimulatory TLR ligand.

In various embodiments, the known TLR ligand is a ligand for a particular TLR. Thus in one embodiment the known TLR ligand is a TLR9 ligand. More specifically, in one embodiment the known TLR ligand is a CpG nucleic acid.

In one embodiment, the known TLR ligand is a TLR3 ligand. Such a ligand can include, for example, a double-stranded RNA or a homolog thereof.

In one embodiment, the known TLR ligand is a TLR7 ligand. In one embodiment the known TLR ligand is a TLR8 ligand.

The invention provides in another aspect a method for quality assessment of a test lot of a pharmaceutical product containing a known TLR9 ligand. The method according to this aspect of the invention involves measuring a reference activity of a reference lot of a pharmaceutical product comprising a known TLR9 ligand, wherein the known TLR9 ligand is a nucleic acid molecule; measuring a test activity of a test lot of a pharmaceutical product comprising the known TLR9 ligand; comparing the test activity to the reference activity; and rejecting the test lot if the test activity falls outside of a predetermined range of variance about the reference activity.

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGT CGT TTT GTC GTT-3' (SEQ ID NO:1).

- 10 -

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGA CGT TTT GTC GTT-3' (SEQ ID NO:139).

5 In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGT CGT TTT TTT CGA-3' (SEQ ID NO:140).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT CGT CGT TTC GTC GTT-3' (SEQ ID NO:141).

10 In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT CGT CGT TTT GTC GTT-3' (SEQ ID NO:142).

15 In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TTC GGT CGT TTT-3' (SEQ ID NO:143).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TTC GTG CGT TTT T-3' (SEQ ID NO:144).

20 In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TCG GCG GCC GCC G-3' (SEQ ID NO:145).

25 In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TC_G TTT TAC_GGC GCC_GTG CCG-3' (SEQ ID NO:146), wherein every internucleoside linkage is phosphorothioate except for those indicated by “_”, which are phosphodiester.

Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention.

- 11 -

Fig. 1 is a bar graph showing cell surface expression of various markers by RPMI 8226 24 hours and 48 hours following stimulation with CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), LPS and IL-1.

Fig. 2 is a bar graph showing IL-8 production by RPMI 8226 24 hours after exposure
5 to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

Fig. 3 is a bar graph showing IL-6 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

10 Fig. 4 is a bar graph showing IP-10 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

15 Fig. 5 is a bar graph showing IL-10 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

Fig. 6 is a dose response curve showing fold induction of IL-8 production 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1) and non-CpG nucleic acid (SEQ ID NO: 2). The EC₅₀ for CpG nucleic acid is 19 nM and the EC₅₀ for non-CpG nucleic acid is 263 nM.

20 Fig. 7 is a bar graph showing NF-κB activation in RPMI 8226 transfected transiently with a NF-κB-luciferase reporter gene construct as a function of cell density and nucleic acid amount transfected, following exposure to CpG nucleic acid (SEQ ID NO: 1), LPS and TNF-α. NF-κB activation is measured by luciferase activity.

25 Fig. 8 is a bar graph showing RT-PCR results from RNA isolated from RPMI 8226 using gene specific primers for TLR7, TLR8 and TLR9 genes.

Fig. 9 is a dose response curve showing IP-10 production induced by SEQ ID NO: 1, and inhibition thereof in the presence of SEQ ID NO: 151, a immunoinhibitory nucleic acid.

Fig. 10 is a bar graph showing the results of a TLR9 RT-PCR analysis of a number of cell lines.

30 Fig. 11 is a bar graph showing the results of a TLR7 RT-PCR analysis of a number of cell lines.

Fig. 12 is a bar graph showing the results of a TLR3 RT-PCR analysis of a number of cell lines.

- 12 -

Fig. 13 is a bar graph showing the results of a TLR3, TLR7, TLR8 and TLR9 RT-PCR analysis of the Raji cell line.

Fig. 14 is a graph showing IL-6 production by the Raji cell line upon stimulation with various ODN (SEQ ID NO:1; SEQ ID NO:154; SEQ ID NO:158; SEQ ID NO:160; SEQ ID NO:159; SEQ ID NO:161).

Fig. 15 is a bar graph showing IL-6 production of the Raji cell line upon stimulation with poly I:C and R-848.

Fig. 16 is a bar graph showing IFN- α 2 production by the Raji cell line upon stimulation with CpG ODN (SEQ ID NO: 1), R-848 and poly I:C.

Fig. 17 is a bar graph showing CD80 expression (by flow cytometry) by the RAMOS cell line upon stimulation with CpG ODN (SEQ ID NO: 1) and non-CpG ODN (SEQ ID NO: 2).

Fig. 18A is a bar graph showing the induction of NF- κ B by 293 fibroblast cells transfected with human TLR9 in response to exposure to various stimuli, including CpG-ODN, GpC-ODN, LPS, and medium.

Fig. 18B is a bar graph showing the amount of IL-8 produced by 293 fibroblast cells transfected with human TLR9 in response to exposure to various stimuli, including CpG-ODN, GpC-ODN, LPS, and medium.

Fig. 19 is a bar graph showing the induction of NF- κ B-luc produced by stably transfected 293-mTLR9 cells in response to exposure to various stimuli, including CpG-ODN, methylated CpG-ODN (Me-CpG-ODN), GpC-ODN, LPS and medium.

Fig. 20 is a bar graph showing the induction of NF- κ B-luc produced by stably transfected 293-hTLR9 cells in response to exposure to various stimuli, including CpG-ODN, methylated CpG-ODN (Me-CpG-ODN), GpC-ODN, LPS and medium.

Fig. 21 is a series of gel images depicting the results of reverse transcriptase-polymerase chain reaction (RT-PCR) assays for murine TLR9 (mTLR9), human TLR9 (hTLR9), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in untransfected control 293 cells, 293 cells transfected with mTLR9 (293-mTLR9), and 293 cells transfected with hTLR9 (293-hTLR9).

30

It is to be understood that the Figures are not required for enablement of the invention.

Brief Description of Sequences

- 13 -

SEQ ID NO:1 is the nucleotide sequence of an immunostimulatory nucleic acid (TLR9 ligand).

SEQ ID NO:2 is the nucleotide sequence of a non-CpG nucleic acid.

SEQ ID NO:3 is the nucleotide sequence of human TLR2 cDNA (U88878).

5 SEQ ID NO:4 is the amino acid sequence of human TLR2 protein (AAC34133).

SEQ ID NO:5 is the nucleotide sequence of murine TLR2 cDNA (AF165189).

SEQ ID NO:6 is the amino acid sequence of murine TLR2 protein (NP_036035).

SEQ ID NO:7 is the nucleotide sequence of human TLR3 cDNA (NM_003265).

SEQ ID NO:8 is the amino acid sequence of human TLR3 protein (NP_003256).

10 SEQ ID NO:9 is the nucleotide sequence of murine TLR3 cDNA (AF355152).

SEQ ID NO:10 is the amino acid sequence of murine TLR3 protein (AAK26117).

SEQ ID NO:11 is the nucleotide sequence of human TLR4 cDNA (U88880).

SEQ ID NO:12 is the nucleotide sequence of human TLR4 cDNA transcript variant 4 (NM_138557).

15 SEQ ID NO:13 is the nucleotide sequence of human TLR4 cDNA transcript variant 2 (NM_138556).

SEQ ID NO:14 is the nucleotide sequence of human TLR4 cDNA transcript variant 1 (NM_138554).

20 SEQ ID NO:15 is the nucleotide sequence of human TLR4 cDNA transcript variant 3 (NM_003266).

SEQ ID NO:16 is the amino acid sequence of human TLR4 protein isoform A (NP_612564).

SEQ ID NO:17 is the amino acid sequence of human TLR4 protein isoform B (NP_612566).

25 SEQ ID NO:18 is the amino acid sequence of human TLR4 protein isoform C (NP_003257).

SEQ ID NO:19 is the amino acid sequence of human TLR4 protein isoform D (NP_612567).

SEQ ID NO:20 is the nucleotide sequence of murine TLR4 cDNA (NM_021297).

30 SEQ ID NO:21 is the nucleotide sequence of murine TLR4 mRNA (AF185285).

SEQ ID NO:22 is the nucleotide sequence of murine TLR4 mRNA (AF110133).

SEQ ID NO:23 is the amino acid sequence of murine TLR4 protein (AAD29272).

SEQ ID NO:24 is the amino acid sequence of murine TLR4 protein (AAF04278).

- 14 -

SEQ ID NO:25 is the nucleotide sequence of human TLR5 cDNA (AB060695).
SEQ ID NO:26 is the amino acid sequence of human TLR5 protein (BAB43558).
SEQ ID NO:27 is the amino acid sequence of human TLR5 protein (O60602).
SEQ ID NO:28 is the amino acid sequence of human TLR5 protein (AAC34136).
5 SEQ ID NO:29 is the nucleotide sequence of murine TLR5 cDNA (AF186107).
SEQ ID NO:30 is the amino acid sequence of murine TLR5 protein (AAF65625).
SEQ ID NO:31 is the nucleotide sequence of human TLR7 cDNA (AF240467).
SEQ ID NO:32 is the nucleotide sequence of human TLR7 cDNA (AF245702).
SEQ ID NO:33 is the nucleotide sequence of human TLR7 cDNA (NM_016562).
10 SEQ ID NO:34 is the amino acid sequence of human TLR7 protein (AAF60188).
SEQ ID NO:35 is the amino acid sequence of human TLR7 protein (AAF78035).
SEQ ID NO:36 is the amino acid sequence of human TLR7 protein (NP_057646).
SEQ ID NO:37 is the amino acid sequence of human TLR7 protein (Q9NYK1).
SEQ ID NO:38 is the nucleotide sequence of murine TLR7 cDNA (AY035889).
15 SEQ ID NO:39 is the nucleotide sequence of murine TLR7 splice variant
(NM_133211).
SEQ ID NO:40 is the nucleotide sequence of murine TLR7 splice variant (AF334942).
SEQ ID NO:41 is the amino acid sequence of murine TLR7 protein (AAK62676).
SEQ ID NO:42 is the amino acid sequence of murine TLR7 protein (AAL73191).
20 SEQ ID NO:43 is the amino acid sequence of murine TLR7 protein (AAL73192).
SEQ ID NO:44 is the amino acid sequence of murine TLR7 protein (NP_573474).
SEQ ID NO:45 is the amino acid sequence of murine TLR7 protein (P58681).
SEQ ID NO:46 is the nucleotide sequence of human TLR8 cDNA (AF245703).
SEQ ID NO:47 is the nucleotide sequence of human TLR8 cDNA (AF246971).
25 SEQ ID NO:48 is the nucleotide sequence of human TLR8 cDNA (NM_138636).
SEQ ID NO:49 is the nucleotide sequence of human TLR8 cDNA (NM_016610).
SEQ ID NO:50 is the amino acid sequence of human TLR8 protein (AAF78036).
SEQ ID NO:51 is the amino acid sequence of human TLR8 protein (AAF64061).
SEQ ID NO:52 is the amino acid sequence of human TLR8 protein (Q9NR97).
30 SEQ ID NO:53 is the amino acid sequence of human TLR8 protein (NP_619542).
SEQ ID NO:54 is the amino acid sequence of human TLR8 protein (NP_057694).
SEQ ID NO:55 is the nucleotide sequence of murine TLR8 cDNA (AY035890).
SEQ ID NO:56 is the nucleotide sequence of murine TLR8 cDNA (NM_133212).

- 15 -

SEQ ID NO:57 is the amino acid sequence of murine TLR8 protein (AAK62677).
SEQ ID NO:58 is the amino acid sequence of murine TLR8 protein (NP_573475).
SEQ ID NO:59 is the amino acid sequence of murine TLR8 protein (P58682).
SEQ ID NO:60 is the nucleotide sequence of human TLR9 cDNA (AF245704).
5 SEQ ID NO:61 is the nucleotide sequence of human TLR9 cDNA (AB045180).
SEQ ID NO:62 is the amino acid sequence of human TLR9 protein (AAF78037).
SEQ ID NO:63 is the amino acid sequence of human TLR9 protein (AAF72189).
SEQ ID NO:64 is the amino acid sequence of human TLR9 protein (AAG01734).
SEQ ID NO:65 is the amino acid sequence of human TLR9 protein (AAG01735).
10 SEQ ID NO:66 is the amino acid sequence of human TLR9 protein (AAG01736).
SEQ ID NO:67 is the amino acid sequence of human TLR9 protein (BAB19259).
SEQ ID NO:68 is the nucleotide sequence of murine TLR9 cDNA (AF348140).
SEQ ID NO:69 is the nucleotide sequence of murine TLR9 cDNA (AB045181).
. SEQ ID NO:70 is the nucleotide sequence of murine TLR9 cDNA (AF314224).
15 SEQ ID NO:71 is the nucleotide sequence of murine TLR9 cDNA (NM_031178).
SEQ ID NO:72 is the amino acid sequence of murine TLR9 protein (AAK29625).
SEQ ID NO:73 is the amino acid sequence of murine TLR9 protein (AAK28488).
SEQ ID NO:74 is the amino acid sequence of murine TLR9 protein (BAB19260).
SEQ ID NO:75 is the amino acid sequence of murine TLR9 protein (NP_112455).
20 SEQ ID NO:76 is the nucleotide sequence of human TLR10 cDNA (AF296673).
SEQ ID NO:77 is the amino acid sequence of human TLR10 protein (AAK26744).
SEQ ID NO:78 is the nucleotide sequence of human TLR6 cDNA (AB020807).
SEQ ID NO:79 is the nucleotide sequence of human TLR6 mRNA (NM_006068).
SEQ ID NO:80 is the amino acid sequence of human TLR6 protein (BAA78631).
25 SEQ ID NO:81 is the amino acid sequence of human TLR6 protein (NP_006059).
SEQ ID NO:82 is the amino acid sequence of human TLR6 protein (Q9Y2C9).
SEQ ID NO:83 is the nucleotide sequence of murine TLR6 cDNA (AB020808).
SEQ ID NO:84 is the nucleotide sequence of murine TLR6 cDNA (NM_011604).
SEQ ID NO:85 is the nucleotide sequence of murine TLR6 cDNA (AF314636).
30 SEQ ID NO:86 is the amino acid sequence of murine TLR6 protein (BAA78632).
SEQ ID NO:87 is the amino acid sequence of murine TLR6 protein (AAG38563).
SEQ ID NO:88 is the amino acid sequence of murine TLR6 protein (NP_035734).
SEQ ID NO:89 is the amino acid sequence of murine TLR6 protein (Q9EPW9).

- 16 -

SEQ ID NO:90 is the nucleotide sequence of a consensus sequence for NF- κ B p50 subunit.

SEQ ID NO:91 is the nucleotide sequence of a consensus sequence for NF- κ B p65 subunit.

5 SEQ ID NO:92 is the nucleotide sequence of an example of an NF- κ B p65 subunit binding site.

SEQ ID NO:93 is the nucleotide sequence of an example of a murine CREB binding site.

10 SEQ ID NO:94 is the nucleotide sequence of an example of a murine AP-1 binding site.

SEQ ID NO:95 is the nucleotide sequence of an example of a murine AP-1 binding site.

SEQ ID NO:96 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:97 is the nucleotide sequence of an example of an ISRE.

15 SEQ ID NO:98 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:99 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:100 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:101 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:102 is the nucleotide sequence of an example of an ISRE.

20 SEQ ID NO:103 is the nucleotide sequence of an example of an SRE.

SEQ ID NO:104 is the nucleotide sequence of an example of an SRE.

SEQ ID NO:105 is the nucleotide sequence of an example of an SRE.

SEQ ID NO:106 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:107 is the nucleotide sequence of an example of an NFAT binding site.

25 SEQ ID NO:108 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:109 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:110 is the nucleotide sequence of an example of a GAS.

SEQ ID NO:111 is the nucleotide sequence of a p53 binding site consensus sequence.

SEQ ID NO:112 is the nucleotide sequence of an example of a p53 binding site.

30 SEQ ID NO:113 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:114 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:115 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:116 is the nucleotide sequence of an example of a p53 binding site.

- 17 -

SEQ ID NO:117 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:118 is the nucleotide sequence of an example of a TARE (TNF- α response element).

SEQ ID NO:119 is the nucleotide sequence of an example of an SRF binding site.

5 SEQ ID NO:120 is the nucleotide sequence of an example of an SRF binding site.

SEQ ID NO:121 is the nucleotide sequence of the -620 to +50 promoter region of IFN- α 4.

SEQ ID NO:122 is the nucleotide sequence of the -140 to +9 promoter region of IFN- α 1.

10 SEQ ID NO:123 is the nucleotide sequence of the -140 to +9 promoter region of IFN- α 1 (point mutation, AL353732).

SEQ ID NO:124 is the nucleotide sequence of the -280 to +20 promoter region of IFN- β .

15 SEQ ID NO:125 is the nucleotide sequence of the -397 to +5 promoter region of human RANTES (AB023652).

SEQ ID NO:126 is the nucleotide sequence of the -751 to +30 promoter region of human IL-12 p40.

SEQ ID NO:127 is the nucleotide sequence of the -250 to +30 promoter region of human IL-12 p40.

20 SEQ ID NO:128 is the nucleotide sequence of the -288 to +7 promoter region of human IL-6.

SEQ ID NO:129 is the nucleotide sequence of the IL-6 gene promoter from -1174 to +7 (M22111).

25 SEQ ID NO:130 is the nucleotide sequence of the -734 to +44 promoter region derived from human IL-8.

SEQ ID NO:131 is the nucleotide sequence of the -162 to 44 promoter region of human IL-8.

SEQ ID NO:132 is the nucleotide sequence of the -615 to +30 promoter region of human TNF- α .

30 SEQ ID NO:133 is the nucleotide sequence of a promoter region of human TNF- β .

SEQ ID NO:134 is the nucleotide sequence of the -875 to +97 promoter region of human IP-10.

- 18 -

SEQ ID NO:135 is the nucleotide sequence of the -219 to +114 promoter region of human CXCL11 (IP-9).

SEQ ID NO:136 is the nucleotide sequence of the full length promoter region of human CXCL11 (IP-9).

5 SEQ ID NO:137 is the nucleotide sequence of the -289 to +217 promoter region of IGFBP4 (Insulin growth factor binding protein 4).

SEQ ID NO:138 is the nucleotide sequence of the full length promoter region of IGFBP4.

SEQ ID NO:139 is the nucleotide sequence of an immunostimulatory nucleic acid.

10 SEQ ID NO:140 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:141 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:142 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:143 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:144 is the nucleotide sequence of an immunostimulatory nucleic acid.

15 SEQ ID NO:145 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:146 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:147 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

20 SEQ ID NO:148 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEQ ID NO:149 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEQ ID NO:150 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

25 SEQ ID NO:151 is the nucleotide sequence of an immunoinhibitory nucleic acid.

SEQ ID NO:152 is the nucleotide sequence of a sense primer for human TLR3.

SEQ ID NO:153 is the nucleotide sequence of an antisense primer for human TLR3.

SEQ ID NO:154 is the nucleotide sequence of a GpC nucleic acid.

SEQ ID NO:155 is the nucleotide sequence of a CpG ODN.

30 SEQ ID NO:156 is the nucleotide sequence of a GpC ODN.

SEQ ID NO:157 is the nucleotide sequence of a Me-CpG ODN.

SEQ ID NO:158 is the nucleotide sequence of a TLR9 ligand.

SEQ ID NO:159 is the nucleotide sequence of a TLR9 ligand.

- 19 -

SEQ ID NO:160 is the nucleotide sequence of a TLR9 ligand.

SEQ ID NO:161 is the nucleotide sequence of a TLR9 ligand.

Detailed Description of the Invention

5 In its broadest sense, the invention relates to screening methods and tools to be used to identify and discriminate between newly discovered immunomodulatory molecules and to compare and standardize compositions of known immunomodulatory molecules. The immunomodulatory molecules are preferably TLR ligands.

Thus, the invention is based in part on the discovery that cell lines expressing
10 endogenous TLR respond to TLR ligands in a manner similar to the response of peripheral blood mononuclear cells (PBMC). PBMC respond to immunomodulatory TLR ligands by modulating one or more parameters including gene expression, cell surface marker expression, cytokine and/or chemokine production and secretion, cell cycle status, phosphorylation status, and the like. TLR ligands can be categorized and distinguished based
15 on the cellular changes they induce (i.e., their induction profiles). The ability of a TLR ligand to provide therapeutic or prophylactic benefit to a subject depends on its induction profile. The ability to screen new TLR ligands for a panel of response indicators or parameters allows for rapid discrimination and categorization of TLR ligands. Moreover, the similarity between the cell line responses and those observed after in vivo administration of the TLR ligand
20 indicates that the cell lines are suitable predictors of in vivo activity. The use of in vitro propagated cell lines additionally overcomes the variability encountered when using freshly isolated PBMC.

The TLR ligands identified according to the invention therefore can be used therapeutically or prophylactically in a more patient- or disorder-specific manner. The
25 invention allows for the tailoring of TLR ligands for particular patients or disorders.

The invention identifies a number of cell lines that can be used to identify TLR ligands based on endogenous TLR expression such as TLR3, TLR7 and TLR9 expression. As an example, the invention is premised in part on the discovery of TLR9 expression in a number of cell lines including RPMI 8226, Raji, RAMOS, THP-1, Nalm-6 and KG-1. Cell lines
30 RPMI 8226, Raji and RAMOS have been determined to express TLR7 according to the invention. Cell lines KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cell, a Hep-2 cells, a A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell have been discovered to express TLR3 according to the invention.

- 20 -

It is further premised in part on the discovery that RPMI 8226 cells respond to the
imidazoquinoline compound R-848. Consistent with this latter finding, it was also discovered
5 that RPMI 8226 cells express TLR7.

The invention in other aspects provides for screening methods and tools for verifying
and standardizing compositions containing known TLR ligands. These compositions may be
for example commercial production lots to be used in a clinical setting. Accordingly, the
invention provides methods for standardizing lots of known TLR ligands prior to distribution
10 and use clinically. In this way, production processes can be observed and controlled and
substandard production lots can be identified and eliminated prior to shipment.

The methods of the instant invention can be used at any step in the preparation and
production of clinical material, i.e., pharmaceutical product. In particular, the methods will
find use in characterizing or validating raw materials, in-process materials, finished product
15 materials (e.g., pre-release materials), and post-production materials (e.g., post-release
materials). The methods can also be used to validate existing process methods, as well as to
validate new or changed process methods used in the production of the pharmaceutical
product.

20 Screening Assays Generally

The screening assays provided herein may be used to identify immunomodulatory
agents. Immunomodulatory agents are agents that either stimulate or inhibit immune
responses in a subject. Accordingly, as used herein, immunomodulation embraces both
immunostimulation and immunoinhibition.

25 The screening methods are used to identify TLR agonists and antagonists. The
methods can also be used to identify compounds that enhance the immunostimulation induced
by a TLR agonist. This latter set of compounds is referred to herein as "enhancers". A TLR
agonist is a compound that stimulates TLR signaling activity. A TLR antagonist is a
compound that inhibits TLR signaling activity. Agonists are generally referred to herein as
30 immunostimulatory compounds because stimulation of TLR is associated with immune
stimulation. Antagonists are generally referred to herein as immunoinhibitory compounds
because inhibition of TLR is associated with immune inhibition. TLR antagonists include
compounds that reduce (or eliminate completely) the immunostimulation induced by a TLR

agonist. In some embodiments, the agonists, antagonists and enhancers are TLR ligands (i.e., they bind to a TLR). In other embodiments, the test compounds with agonist, antagonist or enhancer activity may act downstream or upstream of the TLR-TLR ligand interaction.

An "immunostimulatory compound" as used herein refers to a natural or synthetic compound that characteristically induces a TLR-mediated response when contacted with a suitable functional TLR polypeptide. In one embodiment the immunostimulatory compound is a natural or synthetic compound that induces a TLR-mediated response when contacted with a cell that naturally or artificially expresses a suitable functional TLR polypeptide. Depending on the aspect of the invention, the cell may be an experimental cell or a primary cell such as a PBMC.

Examples of immunostimulatory compounds include the following immunostimulatory nucleic acids, which are discussed in further detail below:

5'-TCGTCGTTTGTCTGTTTGTCTGTT-3'	(SEQ ID NO:1)
5'-TCGTCGTTTGACGTTTGTCTGTT-3'	(SEQ ID NO:139)
15 5'-TCGTCGTTTGTCTGTTTTTCGA-3'	(SEQ ID NO:140)
5'-TCGTCGTTTCGTCGTTCGTCGTT-3'	(SEQ ID NO:141)
5'-TCGTCGTTTCGTCGTTTGTCTGTT-3'	(SEQ ID NO:142)
5'-TCGTCGTTTCGGTCGTTT-3'	(SEQ ID NO:143)
5'-TCGTCGTTTCGTGCGTTT-3'	(SEQ ID NO:144)
20 5'-TCGTCGTTTCGGCGGCCGCG-3'	(SEQ ID NO:145)
5'-TCGTC_GTTTAC_GGCGCC_GTGCCG-3'	(SEQ ID NO:146)

Imidazoquinolines are immune response modifiers thought to induce expression of several cytokines including interferons (e.g., IFN- α and IFN- β), TNF- α and some interleukins (e.g., IL-1, IL-6 and IL-12) as well as chemokines (e.g., IP-10 and IL-8). Imidazoquinolines are capable of stimulating a Th1 immune response, as evidenced in part by their ability to induce increases in IgG2a levels. Imidazoquinoline agents reportedly are also capable of inhibiting production of Th2 cytokines such as IL-4, IL-5, and IL-13. Some of the cytokines induced by imidazoquinolines are produced by macrophages and dendritic cells. Some species of imidazoquinolines have been reported to increase NK cell lytic activity and to stimulate B cells proliferation and differentiation, thereby inducing antibody production and secretion. Imidazoquinoline mimics can also be tested using the screening methods.

An "immunoinhibitory compound" as used herein refers to a natural or synthetic compound that characteristically inhibits a TLR-mediated response when contacted with a suitable functional TLR polypeptide. In one embodiment the immunoinhibitory compound is a natural or synthetic compound that inhibits a TLR-mediated response when contacted with a 5 cell that naturally or artificially expresses a suitable functional TLR polypeptide.

In addition to the immunoinhibitory nucleic acids disclosed elsewhere herein, immunoinhibitory compounds and TLR antagonists encompass certain small molecules (chloroquine, quinacrine, 9-aminoacridines and 4-aminoquinolines, and derivatives thereof) described by Macfarlane and colleagues in U.S. Pat. 6,221,882; U.S. Pat. 6,399,630; U.S. Pat. 10 6,479,504; U.S. Pat. 6,521,637; and published U.S. Pat. application 2002/0151564, the contents of all of which are hereby incorporated by reference in their entirety.

The invention provides in part methods and tools that utilize cell lines, in modified or unmodified form, as surrogates for PBMC. Immunomodulation by TLR ligands can be assessed using one or preferably more parameters including but not limited to cytokine and 15 chemokine secretion, upregulation of cell surface markers, changes in cell proliferation, phosphorylation changes, and the like. These parameters may be native readouts or artificial readouts as described herein.

The cellular response to immunostimulatory nucleic acids by the cell lines described herein (e.g., RPMI 8226, Raji, RAMOS, and the like) so resembles that of PBMC that these 20 cells can be used to identify and differentiate between immunomodulatory compounds based on the extent of the induced response and the particular profile of that response. The invention provides a number of cell lines each with a particular endogenous TLR expression profile, as described herein.

The cell lines can be used to identify immunomodulatory compounds with particular 25 response profiles. As an example, the cell lines can be used to identify molecules that are mimics to known TLR ligands. The cell lines can also be used to identify TLR ligands that trigger some but not necessarily all of the responses induced by known TLR ligands. For example, the cell line can be used to distinguish between compounds based on individual or group cytokine or chemokine secretion, or based on upregulation of one, a subset or all cell 30 surface markers. As an example, in some therapeutic instances, it may be desirable to use a compound that induces the secretion of relatively high levels of chemokine such as IP-10, yet induces only relatively low levels of one or more other factors. The screening methods of the invention allow for the identification of such a compound with this type of induction profile.

It is to be understood that the screening method also can be used to determine effective amounts of known and newly identified immunomodulatory compounds. For example, the EC₅₀ value of a TLR ligand for the production of a particular cytokine or chemokine can be determined, thereby facilitating comparison between different nucleic acids.

5 Generally, these assays require the incubation of cells with a reference compound and a test compound, and an analysis of the readout. Depending on the embodiment, the same cells are exposed to the reference compound and the test compound. An example of this latter embodiment is a screening assay for compounds that enhance the immunostimulatory effects of a TLR agonist. Another example is a screening assay for compounds that inhibit the
10 immunostimulatory effects of a TLR agonist. In both examples, the reference compound is a positive reference compound (i.e., it is itself immunostimulatory).

In other embodiments, particularly those directed at identifying immunostimulatory compounds, separate aliquots from the same cell line (or from the same freshly harvested cell population) are exposed to either the reference compound or the test compound, and the
15 readouts from each are measured and compared to the other. If the reference compound is a negative reference compound (i.e., it is inert and neither immunostimulatory nor immunoinhibitory), then any test level that is greater than the reference level is indicative of a test compound that has at least some immunostimulatory capacity. Generally, the negative reference compound is used to set background levels of immunostimulation or
20 immunoinhibition observed in the absence of the test compound. If the reference compound is a positive reference compound (i.e., it is immunostimulatory), then it is possible to compare and contrast the induction profile of the test compound to that of the reference compound.

In some instances, separate reference assays individually containing a positive and a negative reference compound are performed alongside the test assay. For example, if the test
25 assay is a screen for an immunostimulatory TLR ligand, then reference assays can be a positive reference assay (in which the reference compound is immunostimulatory), a negative reference assay (in which the reference compounds is immunologically inert or neutral), or both. A test compound is defined as immunostimulatory if it induces a response greater than that of the negative reference compound. The level and profile of the immunostimulatory
30 response can be compared to the level and profile induced by the positive reference compound. It is to be understood that a test compound that induces a level of immunostimulation less than that of the positive reference compound may still be considered immunostimulatory according to the invention. Modifications to these screening assays for a

- 24 -

desired readout will be apparent to those of ordinary skill in the art based on the teachings provided herein.

If the test assay is a screen for an immunoinhibitory TLR ligand, then the assay may generally involve co-incubation of the test compound and a positive reference compound.

- 5 The control assay may include co-incubation of the negative and positive reference compounds. As used herein, co-incubation embraces simultaneous or consecutive addition of the reference and test compounds. The test compound may be added before or after the positive reference compound. An immunoinhibitory test compound may be identified by a diminution of the immunostimulatory response induced by the positive reference compound
- 10 when in the presence of the test compound. If the level of the response is less in the presence of the test compound, this indicates that the test compound is capable of interfering with the immunostimulatory effects of the positive reference compound. As an example, simultaneous or consecutive addition of a putative immunoinhibitory test compound can reduce the amount of cytokines or chemokines secreted by cells in response to the positive reference compound
- 15 alone, indicating an inhibition of the immunostimulatory effects of the positive reference compound.

The reference immunoinhibitory compound can be used at one or more concentrations in conjunction with a selected or constant concentration of reference immunostimulatory compound. Under proper conditions, the immunostimulatory effect of the reference

20 immunostimulatory compound will be less in the presence of the immunoinhibitory substance than in the absence of the immunoinhibitory substance. Furthermore, under proper conditions, the immunostimulatory effect of the reference immunostimulatory compound will decrease with increasing concentration of the immunoinhibitory substance.

- 25 The breadth of response by the cell line to immunomodulatory compounds, and its facile manipulation, allows for the identification of novel compounds. The cell line allows the rapid discovery of such compounds given that it lends itself to high throughput screening methods such as those provided herein. These methods and compositions are described in greater detail below. The invention therefore provides screening methods that utilize cell lines that either endogenous express TLRs such as the RPMI 8226 cell line as well as cell
- 30 lines that have been modified to express TLRs. The invention further provides compositions that comprise such cell lines.

The verification and standardization methods of the invention generally involve assays in which an isolated cell expressing a functional TLR is contacted with each of two

compositions, each composition containing a known ligand for the TLR. One composition is a reference composition, and the assay using the reference composition yields a reference activity. The second composition is a test composition, and the assay using the test composition yields a test activity. The two contacting steps can be performed on separate
5 cells that are alike, and typically will be performed on separate populations of cells that are alike. For example, the separate cells or the separate populations of cells can be drawn from a single population of cells. In typical usage according to this embodiment, the reference and test activities are measured essentially concurrently, although the use of historical reference activity is also contemplated by the methods of the invention. As an alternative, the two
10 contacting steps can be performed on a single cell or on a single population of cells, usually in an essentially concurrent manner when it is desirable to have competition between reference and test compositions. In one embodiment the known TLR ligand is a nucleic acid molecule.

The assays of the invention are performed under specific conditions so that comparison can be made between reference and test activities or levels. The results of the
15 comparison can be used as a basis upon which to accept or reject the test material as suitable for its intended use.

The biological characterization of the reference composition will generally entail a series of biological activity measurements of the reference composition using a single assay under defined conditions in order to define a range of inter-test variance. The range of inter-
20 test variance so obtained using reference composition can be used to define an acceptable range of variance within which a subsequent test measurement must fall in order to satisfy quality standards. Such a range of acceptable variance can serve as a basis for developing predetermined range of variance about the reference activity, i.e., acceptance criteria for a particular test composition or test lot. For example, a particular reference composition can be
25 assayed under defined conditions in a number of independent measurements and found to yield a result expressed as 100 ± 5 units of activity. Under this same example, a subsequent test measurement of a test composition performed using the same assay and defined conditions is found to yield 97 units of activity. The activity of the test composition under this example thus yielded a result that falls within the normal range of inter-test variance
30 observed for the reference composition. Accordingly, the test material under this example could be selected on the basis of the test activity falling within a predetermined range of variance about the reference activity. In short, the test material can be deemed acceptable

- 26 -

provided the test activity falls within a predetermined range of activity that is related to the activity of the reference material.

In one embodiment, the methods of the invention provide for comparison between a reference lot of a particular TLR ligand and a test lot of the same particular TLR ligand. Such 5 comparison is useful for quality control assessment of the test lot of material, also referred to herein as validation, e.g., product validation. Such comparison is also useful for process validation.

In another embodiment, the methods of the invention provide for comparison between a reference lot of a particular TLR ligand and a test lot of a different TLR ligand. In a simple 10 example, where a test TLR ligand (T) is expected to have little or no activity characteristic of reference TLR ligand (R), comparison can be made between T and R to confirm the lack of R-like activity possessed by T. In a more complex example, where a test TLR ligand (C) is capable of exerting two different effects, wherein each effect is characteristic of one of two different classes of TLR ligand and is best characterized by one of two different reference 15 TLR ligands (A and B), the test TLR ligand (C) can be compared with either of the two reference TLR ligands (A or B). In this second example, test composition C could be found, for example, to possess 50 percent A-like activity compared with reference A and 70 percent B-like activity compared with reference B. Test composition C could thus independently meet or fail to meet predetermined standards for each of A-like activity and B-like activity. 20 Such comparison is also useful for quality control assessment of the test lot of material, e.g., product validation. Of course test TLR ligand C can alternatively or additionally be compared against reference TLR ligand C, as described in the preceding paragraph.

To facilitate the methods of the invention, certain conditions for carrying out the assays are standardized and used for measurements of both reference activity and test activity. 25 In this way direct comparison between reference activity and test activity can be made readily. Conditions that can be standardized and used in this manner can include, without limitation, readout, temperature, media characteristics, duration (time between introduction of reference composition or test composition and activity measurement), methods of sampling, etc. In some embodiments the methods of the invention can be at least partially automated in order to 30 increase throughput and/or to reduce inter-test variability. For example, robotic devices and workstations with the capacity to dispense and/or sample fluids in a set or programmable fashion are now well known in the art and can be used in performing the methods of the instant invention.

In one embodiment a standard curve of reference composition activity is employed. Typically the standard curve is generated by selecting conditions including concentration of the reference composition such that the dose-response curve is essentially linear (and the slope is non-zero) over a range of concentrations that includes the effective concentration at 5 which activity is 50 percent of maximum (EC50). In one embodiment the standard curve spans a range of concentrations defined by EC50 \pm 1 log concentration, e.g., 1×10^{-7} M – 1×10^{-5} M, where EC50 is 1×10^{-6} M. In another embodiment the standard curve spans a broader range of concentrations defined by EC50 \pm 2 log concentration, e.g., 1×10^{-8} M – 1×10^{-4} M, where EC50 is 1×10^{-6} M. In yet another embodiment the standard curve spans a narrower 10 range of concentrations defined by EC50 \pm 0.5 log concentration, e.g., 3.16×10^{-7} M – 3.16×10^{-6} M, where EC50 is 1×10^{-6} M. The foregoing embodiments are intended to be exemplary and not limiting in any way. One of skill in the art will be able to select, for a given reference 15 composition and without undue experimentation, an appropriate range of concentrations about some middle value in order to generate an essentially linear standard curve with a non-zero slope.

In one embodiment a non-linear standard curve of reference and test composition activity is employed. The standard curve can be generated by selecting conditions including concentrations of the reference composition such that the dose-response curve is sigmoidal and the EC50 value can be determined. Comparison of reference and test activity can be done 20 by comparing, e.g., the EC50 values of both curves. Concentration range is chosen to yield a complete sigmoidal response, e.g., concentration should include EC50 \pm 3 log concentration or EC50 \pm 4 log concentration. In the case of testing an inhibitory compound the value determined would be the IC50, i.e., concentration where inhibition of the stimulatory signal is half-maximal.

25 The methods of the invention can be adapted to be automated or at least partially automated methods, as well as to parallel array or high throughput format methods. For example, the assays can be set up using multiwell plates in which cells are dispensed in individual wells and reagents are added in a systematic manner using a multiwell delivery device suited to the geometry of the multiwell plate. Manual and robotic multiwell delivery 30 devices suitable for use in a high throughput screening assay are known by those skilled in the art. Each well or array element can be mapped in a one-to-one manner to a particular test condition, such as the test compound. Readouts can also be performed in this multiwell array, preferably using a multiwell plate reader device or the like. Examples of such devices are

known in the art and are available through commercial sources. Sample and reagent handling can be automated to further enhance the throughput capacity of the screening assay, such that dozens, hundreds, thousands, or even millions of parallel assays can be performed in a day or in a week. Fully robotic systems are known in the art for applications such as generation and 5 analysis of combinatorial libraries of synthetic compounds. See, for example, U.S. Pat. Nos. 5,443,791 and 5,708,158.

Cell lines

The screening methods may use experimental cells. As used herein, an experimental 10 cell is a non-primary cell (i.e., it is not a cell that has been recently harvested from a subject). It excludes, for example, freshly harvested PBMCs. An experimental cell includes a cell from a cell line such as the RPMI 8226 cell line.

In certain embodiments, the cell naturally expresses a functional TLR. In one embodiment relating to the verification and standardization aspects of the invention, the cell 15 may be a PBMC, preferably a PBMC freshly harvested from a subject.

Cells that would be suitable for identification of TLR agonists, antagonists or enhancers according to the invention may possess one or more particular attributes. These attributes include but are not limited to being of human origin, being an immortalized stable 20 cell line, endogenously expressing at least one functional TLR or a combination of functional TLRs, having intact signaling mechanisms, having intact uptake mechanisms, being able to upregulate cytokines, chemokines or cell surface markers, deriving from normal human B cells or from myeloma or B cell leukemia, deriving from human plasmacytoid and myeloid dendritic cells, and readily activatable by TLR ligands such as TLR7 ligands, TLR8 ligands or 25 TLR9 ligands such as CpG nucleic acids or nucleic acids having other immunostimulatory sequence motifs or small molecules such as imidazoquinoline compounds.

In some embodiments, the cell line is the Raji cell line which expresses TLR3, TLR7 and TLR9. This latter cell line secretes, for example, IL-6 and IFN- α 2 upon CpG nucleic acid exposure. In other embodiments, the cell line is RPMI 8226 which expresses TLR7 and 30 TLR9. Upon CpG nucleic acid exposure, this cell line expresses, produces and/or secretes IL-8, IL-10, IP-10 and TNF- α . It also expresses at its cell surface CD86, HLA-DR and CD71. In yet other embodiments, the cell line is the RAMOS cell line which expresses TLR3, TLR7 and TLR9. This cell line at least induces CD80 cell surface expression in response to CpG nucleic acid exposure.

- 29 -

The cell lines have been observed to respond in a concentration dependent manner to TLR ligands such as but not limited to CpG nucleic acids and some non-CpG nucleic acids including T-rich nucleic acids, poly-T nucleic acids and poly-G nucleic acids. The highest responses have been observed using CpG nucleic acids.

5 The screening methods employ a variety of cell lines as shown in the Examples. These include A549 (human lung carcinoma, ATCC CCL-185), BeWo (human choriocarcinoma, ATCC CCL-98), HeLa (human cervix carcinoma, ATCC CCL-2), Hep-2 (human cervix carcinoma, ATCC CCL-23), KG-1 (human acute myeloid leukemia, ATCC CCL-246), MUTZ-3 (human acute myelomonocytic leukemia, German Collection of Cell 10 lines and Microorganisms (DSZM) ACC-295), Nalm-6 (human B cell precursor leukemia, DSZM ACC-128), NK-92 (human Natural killer cell line, ATCC CRL-2407), NK-92 MI (IL-2 independent human Natural killer cell line, ATCC CRL-2408), Raji (human B lymphocyte Burkitt's lymphoma, ATCC CCL-86), RAMOS (B lymphocyte Burkitt's lymphoma, ATCC CRL-1596), RPMI 8226 (human B lymphocyte multiple myeloma, ATCC CCL-155), THP-1 15 (human acute monocytic leukemia, ATCC TIB 202), U937 (human lymphoma, ATCC CRL-1593.2) and Jurkat (human T cell leukemia, ATCC TIB 152).

As shown in the Examples, each of the afore-mentioned cell lines has a particular endogenous TLR expression profile which dictates its suitability in a particular screening assay.

20 A cell that artificially expresses a functional TLR can be a cell that does not express the functional TLR but for a transfected TLR expression vector. For example, human 293 fibroblasts (ATCC CRL-1573) do not express TLR7, TLR8 or TLR9, and they express very little TLR3. As described in the examples below, such cells can be transiently or stably transfected with suitable expression vector (or vectors) so as to yield cells that do express 25 TLR3, TLR7, TLR8, TLR9, or any combination thereof. Alternatively, a cell that artificially expresses a functional TLR can be a cell that expresses the functional TLR at a significantly higher level with the TLR expression vector than it does without the TLR expression vector. Transfected cells are considered modified cells, as used herein.

30 A cell that artificially expresses an expression or reporter construct is preferably stably transfected.

RPMI

- 30 -

The RPMI 8226 cell line is a human multiple myeloma cell line. The cell line was established from the peripheral blood of a 61 year old man at the time of diagnosis for multiple myeloma (IgG lambda type). RPMI 8226 was previously reported as responsive to CpG nucleic acids as evidenced by the production and secretion of IL-6 protein and

5 production of IL-12p40 mRNA. (Takeshita et al. (2000), Eur. J. Immunol. 30, 108-116, and Takeshita et al. (2000) *Ibid.* 30, 1967-1976) Takeshita et al. however used the cell line solely to study promoter constructs in order to identify transcription factor binding sites important for CpG nucleic acid signaling. It is now known according to the invention that the cell line produces a number of other chemokines and cytokines including IL-8, IL-10 and IP-10. It has

10 also been discovered according to the invention that the cell line responds to immunostimulatory nucleic acids by upregulating cell surface expression of particular markers. Many of these markers, including CD71, CD86 and HLA-DR, are similarly upregulated in PBMCs exposed to immunostimulatory nucleic acids. This has been observed using flow cytometric analysis of the cell line following CpG nucleic acid exposure. In other

15 aspects of the invention, the cell line can be used in similar screening assays that involve secretion of IL-6, IL-12 and/or TNF- α .

It has recently been discovered that R-848 mediates its immunostimulatory effects via other TLR family members, namely TLR7 and TLR8. TLR7 has previously been found expressed on human B cells. It has now also been discovered according to the invention that

20 RPMI 8226 expresses TLR9 as well as TLR7, thus making it a suitable cell line for identifying immunostimulatory nucleic acid and/or imidazoquinoline (e.g., R-848) mimics or other small molecules that also signal through TLR7 and/or TLR9. Incubation of RPMI 8226 cells with the imidazoquinoline R-848 (Resiquimod) induces for example IL-8, IL-10 and IP-10 production.

25

Known TLR Ligands

Ligands for many but not all of the TLRs have been described. For instance, it has been reported that TLR1 and TLR2 signals in response to peptidoglycan and lipopeptides. Yoshimura A et al. (1999) *J Immunol* 163:1-5; Brightbill HD et al. (1999) *Science* 285:732-6;

30 Aliprantis AO et al. (1999) *Science* 285:736-9; Takeuchi O et al. (1999) *Immunity* 11:443-51; Underhill DM et al. (1999) *Nature* 401:811-5. TLR4 has been reported to signal in response to lipopolysaccharide (LPS). Hoshino K et al. (1999) *J Immunol* 162:3749-52; Poltorak A et al. (1998) *Science* 282:2085-8; Medzhitov R et al. (1997) *Nature* 388:394-7. Bacterial

- 31 -

flagellin has been reported to be a natural ligand for TLR5. Hayashi F et al. (2001) *Nature* 410:1099-1103. TLR6, in conjunction with TLR2, has been reported to signal in response to proteoglycan. Ozinsky A et al. (2000) *Proc Natl Acad Sci USA* 97:13766-71; Takeuchi O et al. (2001) *Int Immunol* 13:933-40.

5 TLR9 is a receptor for CpG DNA. Hemmi H et al. (2000) *Nature* 408:740-5. Other TLR9 ligands are described herein under "Immunostimulatory Nucleic Acids". Certain imidazoquinoline compounds having antiviral activity are ligands of TLR7 and TLR8. Imidazoquinolines are potent synthetic activators of immune cells with antiviral and antitumor properties. R-848 is a ligand for human TLR7 and TLR8. Jurk M et al. (2002) *Nat Immunol* 10 3:499. Ligands of TLR3 include poly(I:C) and double-stranded RNA (dsRNA). Alexopoulou et a. (2001) *Nature* 413:732-738. For purposes of this invention, poly(I:C) and double-stranded RNA (dsRNA) are classified as oligonucleotide molecules. TLR3 may have a role in host defense against viruses.

15 Reference and Test Compounds

A test and/or reference compound can be a nucleic acid such as an oligonucleotide or a polynucleotide, an oligopeptide, a polypeptide, a lipid such as a lipopolysaccharide, a carbohydrate such as an oligosaccharide or a polysaccharide, or a small molecule. Alternatively, these compounds may also comprise or be synthesized from elements such as 20 amino acids, carbohydrates, hormones, lipids, organic molecules, and the like.

Small molecules in general include naturally occurring, synthetic, and semisynthetic organic and organometallic compounds with molecular weight less than about 2.5 kDa. Examples of small molecules include most drugs, subunits of polymeric materials, and analogs and derivatives thereof.

25 Some specific examples of small molecules include the imidazoquinolines. As used herein, an imidazoquinolines include imidazoquinoline amines (imidazoquinolinamines), imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, and 1,2 bridged imidazoquinoline amines. These compounds have been described in U.S. Pat. Nos. 4,689,338; 4,929,624; 5,238,944; 5,266,575; 5,268,376; 5,346,905; 5,352,784; 5,389,640; 30 5,395,937; 5,482,936; 5,494,916; 5,525,612; 6,039,969 and 6,110,929. Particular species of imidazoquinoline agents include resiquimod (R-848; S-28463; 4-amino-2 ethoxymethyl- α,α -dimethyl-1*H*-imidazo[4,5-*c*]quinoline-1-ethanol); and imiquimod (R-837; S-26308; 1-(2-methylpropyl)-1*H*-imidazo[4,5-*c*]quinoline-4-amine). Further examples of specific small

molecules include 4-aminoquinoline and derivatives thereof, 9-aminoacridine and derivatives thereof, and additional compounds disclosed in U.S. Pat. Nos. 6,221,882; 6,399,630; 6,479,504; and 6,521,637; and published U.S. Pat. Application No. 2002/0151564 A1, the entire contents of which are hereby incorporated by reference.

5 The test and reference compounds may be formulated for pharmaceutical use or not. For example, a test compound not formulated for pharmaceutical use can be a compound (e.g., a lot or batch of the compound) under evaluation for possible use in preparing a pharmaceutical formulation of the compound.

A reference compound, as used herein, is a compound having a known activity in the
10 presence of a TLR. The reference compound may stimulate TLR signaling (and is therefore regarded as a positive reference compound), or it may be inert in the presence of a TLR (and is therefore regarded as a negative reference compound). If it is a positive reference compound, it need not be the best known stimulator of TLR signaling (i.e., it is possible that other reference compounds and even test compounds will stimulate TLR signaling to a greater
15 extent). The readout of the screening assay may simply be stated relative to the level of signaling that occurs in the presence of the reference compound. Preferably, the reference compound is analyzed prior to the screening assay in order to determine its level of activity on a TLR. In some aspects of the invention, the reference compound and the test compound will be assayed separately (i.e., in separate wells); in other aspects, the reference compound and
20 the test compound will be assayed together (i.e., in the same well). These latter aspects are designed to measure the ability of a test compound to modulate the activity of the reference compound. The activity of the test compound and the reference compound combined (i.e., when assayed together in the same well) may be the same as that of the positive reference compound alone, indicating at a minimum that the test compound is not inhibitory; or it may
25 be less than that of the positive reference compound, indicating at a minimum that it is inhibitory to the effect of the reference compound; or it may be additive or synergistic possibly indicating that the test compound is an enhancer. The effect of an enhance may be due to its ability to stimulate TLR signaling independently of the positive reference compound.

30 A "reference composition" as used herein refers to a composition that includes a reference compound and optionally another agent, e.g., a pharmaceutically acceptable carrier and/or another biologically active agent. A reference compound may be an immunostimulatory compound or it may be an immunoinhibitory compound.

As discussed further below, in some aspects of the invention the reference compositions include both finished products, e.g., finished pharmaceutical products, as well as raw materials and other in-process materials used for the preparation of such finished products, all of which contain a known TLR ligand. As used herein, a "production lot" shall 5 refer to a batch or lot of a completed product prepared for release as clinical material, e.g., a pharmaceutical product. As used herein, an "in-process lot" shall refer to a batch or lot of unfinished product that is prepared in the course of making a production lot; an "in-process lot" shall also refer to a batch or lot of raw material provided for use in the production of a production lot.

10 In some aspects of the invention, the reference compositions of the invention are highly characterized in terms of their chemical, physical, and biological properties. A reference composition will be a specific composition previously determined to have a specific activity, or range of specific activity, of the particular known TLR ligand present in the composition. As used herein, "specific activity" refers to an amount of activity per unit mass 15 or per unit volume of the reference composition as a whole, as determined using a defined assay under defined conditions. In one embodiment the reference composition is a representative sample of a particular lot or batch of a specific TLR ligand. In one embodiment the reference composition is a representative sample of a particular lot or batch of a specific TLR ligand formulated for pharmaceutical use, e.g., a sterile solution of the TLR 20 ligand at a determined concentration or activity.

At least the following parameters are typically very well defined for a given reference composition: chemical formula of the active ingredient TLR ligand (e.g., nucleobase sequence and type of backbone of a nucleic acid; structural formula of a small molecule); concentration; diluent composition; and purity. Such parameters as purity and concentration 25 can be determined using any appropriate physicochemical method, e.g., optical spectroscopy including absorbance at one or more specified wavelengths; nuclear magnetic resonance (NMR) spectroscopy; mass spectrometry (MS), including matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS); melting point; specific gravity; chromatography including as appropriate high pressure liquid chromatography (HPLC), one- 30 and two-dimensional polyacrylamide gel electrophoresis (PAGE), capillary electrophoresis, and the like; as well as other methods known to those of skill in the art.

Reference compositions can also be very well characterized in terms of their biological activity, independent of the methods of the invention, although the methods of the

invention generally include such characterization, at least in part. A reference composition can be very well characterized in terms of its biological activity by characterizing, both qualitatively and quantitatively, the response by sensitive cells to the reference composition under defined conditions. For example, a reference composition can be a specific CpG
5 oligonucleotide such as SEQ ID NO:1 which in a specific assay and under specific conditions of temperature, concentration, duration of contact between the CpG oligonucleotide and a population of TLR9-expressing cells, and particular readout, reliably yields a specific result or range of results. Results can be expressed in any suitable manner, but can include results expressed on a per-cell basis, e.g., picograms of particular cytokine per cell per hour of
10 contact with the reference composition. Reference compositions can be very well characterized in terms of their biological activity according to one or more parameters, for example, according to their capacity to induce each of a plurality of cytokines.

The methods of the invention also involve measurement of a test activity of a test composition containing a known TLR ligand. A "test composition" as used herein refers to a
15 composition that includes a test compound and optionally another agent, e.g., a pharmaceutically acceptable carrier and/or another biologically active agent. A test compound can be an immunostimulatory compound or it can be an immunoinhibitory compound. In some aspects of the invention, the test compound is a known TLR ligand. Test compositions of the invention may comprise known TLR agonist or TLR antagonist
20 compounds, generally but not necessarily nominally the same as the reference compositions against which comparison is to be made according to some aspects of the invention. Thus test compositions may encompass immunostimulatory compounds, immunoinhibitory compounds, known TLR ligands, finished pharmaceutical products, and raw materials and other in-process materials used for the preparation of such finished products.

25 Unlike a reference composition, a test composition is not characterized at all, or is only partially characterized, or is not as well characterized as the reference composition, in terms of its chemical, physical, or (most particularly) biological properties. The methods of the invention permit further characterization of the test composition by comparison with a reference composition. In some aspects, a test composition will be a specific composition
30 previously determined to be a ligand of a specific TLR. In one embodiment the test composition is a representative sample of a particular lot or batch of a specific TLR ligand. In one embodiment the test composition is a representative sample of a particular lot or batch of

a specific TLR ligand formulated for pharmaceutical use, e.g., a sterile solution of the TLR ligand at a determined concentration or activity.

Immunostimulatory and Immunoinhibitory Nucleic Acids

5 Nucleic acids useful as reference compounds and as test compounds in the methods of the invention include single- and double-stranded natural and synthetic nucleic acids, including those with phosphodiester, stabilized, and chimeric backbones. Also encompassed are at least the following classes of nucleic acids, which are described in detail below: immunostimulatory CpG nucleic acids (CpG nucleic acids), including but not limited to types
10 A, B, and C; immunostimulatory non-CpG nucleic acids, including without limitation methylated CpG nucleic acids, T-rich nucleic acids, TG-motif nucleic acids, CpI motif nucleic acids, and poly-G nucleic acids; and immunoinhibitory nucleic acids. Nucleic acids useful as reference compounds and as test compounds in the methods of the invention also include nucleic acids with modified backbones, including "soft" and "semi-soft" oligonucleotides as
15 described herein. As will be appreciated from the descriptions below, certain of these various classes of nucleic acids can coexist in a given nucleic acid molecule.

A "nucleic acid" as used herein with respect to test compounds and reference compounds used in the methods of the invention, shall refer to any polymer of two or more individual nucleoside or nucleotide units. Typically individual nucleoside or nucleotide units
20 will include any one or combination of deoxyribonucleosides, ribonucleosides, deoxyribonucleotides, and ribonucleotides. The individual nucleotide or nucleoside units of the nucleic acid can be naturally occurring or not naturally occurring. For example, the individual nucleotide units can include deoxyadenosine, deoxycytidine, deoxyguanosine, thymidine, and uracil. In addition to naturally occurring 2'-deoxy and 2'-hydroxyl forms,
25 individual nucleosides also include synthetic nucleosides having modified base moieties and/or modified sugar moieties, e.g., as described in Uhlmann E et al. (1990) *Chem Rev* 90:543-84. The linkages between individual nucleotide or nucleoside units can be naturally occurring or not naturally occurring. For example, the linkages can be phosphodiester, phosphorothioate, phosphorodithioate, phosphoramidate, as well as peptide linkages and other
30 covalent linkages, known in the art, suitable for joining adjacent nucleoside or nucleotide units. The linkages can also be mixed in a single polymer (e.g., a semi-soft backbone). The nucleic acid test compounds and nucleic acid reference compounds typically range in size from 3-4 units to a few tens of units, e.g., 18-40 units.

- 36 -

In some embodiments the nucleic acids are oligonucleotides made up of 2 to about 100 nucleotides, and more typically 4 to about 40 nucleotides. Oligonucleotides composed exclusively of deoxynucleotides are termed oligodeoxyribonucleotides or, equivalently, oligodeoxynucleotides (ODN).

5 A CpG nucleic acid is an immunostimulatory nucleic acid which contains a cytosine-guanine (CG) dinucleotide, the C residue of which is unmethylated. The effects of CpG nucleic acids on immune modulation have been described extensively in U.S. Pat. Nos. 6,194,388; 6,207,646; 6,214,806; 6,218,371; 6,239,116; and 6,339,068; and published patent applications, such as PCT/US95/01570 (WO 96/02555); PCT/US98/04703 (WO 98/40100);
10 and PCT/US99/09863 (WO 99/56755). The entire contents of each of these patents and published patent applications is hereby incorporated by reference. The entire immunostimulatory nucleic acid can be unmethylated or portions can be unmethylated, but at least the C of the 5'-CG-3' must be unmethylated. The CpG nucleic acid sequences of the invention include, without limitation, those broadly described above as well as those disclosed
15 in U.S. Pat. Nos. 6,207,646 and 6,239,116.

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTGTCTGGTTCGTT-3' (SEQ ID NO:1).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTGACGTTTGTCTGTT-3' (SEQ ID NO:139).

20 In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTGTCTGGTTCGA-3' (SEQ ID NO:140).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTCGTCGTTCGTCTGTT-3' (SEQ ID NO:141).

25 In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTCGTCGTTGTCGTT-3' (SEQ ID NO:142).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTCGGTCGTTT-3' (SEQ ID NO:143).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTCGTGCGTTTT-3' (SEQ ID NO:144).

30 In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTCCGGCGGCCGCG-3' (SEQ ID NO:145).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTC_GTTTAC_GGCGCC_GTGCCG-3' (SEQ ID NO:146).

The oligonucleotides described by SEQ ID NOs: 1, 139-145 are fully stabilized phosphorothioate backbone ODN. The oligonucleotide of SEQ ID NO:146 has a chimeric backbone in which all internucleoside linkages are phosphorothioate except for those indicated by “_”, which are phosphodiester.

5 CpG nucleic acids have been further classified by structure and function into at least the following three types, all of which are intended to be encompassed within the methods of the instant invention: Type B CpG nucleic acids such as SEQ ID NO:1 include the earliest described CpG nucleic acids and characteristically activate B cells but do not induce or only weakly induce expression of IFN- α . Type B nucleic acids are described in U.S. Patents
10 6,194,388; 6,207,646; 6,214,806; 6,218,371; 6,239,116; and 6,339,068. Type A CpG nucleic acids, described in published international application PCT/US00/26527 (WO 01/22990), incorporate a CpG motif, include a hybrid phosphodiester/phosphorothioate backbone, and characteristically induce plasmacytoid dendritic cells to express large amounts of IFN- α but do not activate or only weakly activate B cells. Type C oligonucleotides incorporate a CpG,
15 include a chimeric backbone, include a GC-rich palindromic or nearly-palindromic region, and are capable of both activating B cells and inducing expression of IFN- α . These have been described, for example, in copending U.S. Pat. application Ser. No. 10/224,523, filed August 19, 2002. Exemplary sequences of A, B and C class nucleic acids are described in the afore-mentioned references, patents and patent applications, the entire contents of which are
20 hereby incorporated by reference herein.

In other embodiments of the invention, a non-CpG nucleic acid is used. A non-CpG nucleic acid is an immunostimulatory nucleic acid which either does not have a CpG motif in its sequence, or has a CpG motif which contains a methylated C residue. In some instances, the non-CpG nucleic acid may still be immunostimulatory by virtue of its having other
25 immunostimulatory motifs such as those described herein and known in the art. In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid. In some instances the non-CpG nucleic acid is still immunostimulatory despite methylation of the C of the CpG motif, even without having another non-CpG immunostimulatory motif described herein and known in the art.

30 In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-TZGTZGTTTGTZGTTTGTT-3' (SEQ ID NO:147), wherein Z represents 5-methylcytosine.

- 38 -

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-TZGTZGZTGTZTZGZTTZTZTGZ-3' (SEQ ID NO:148), wherein Z represents 5-methylcytosine.

5 In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-GZGTTGZTZTZTGTGZG-3' (SEQ ID NO:149), wherein Z represents 5-methylcytosine.

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-GZZZAAGZTGGZATZZGTZA-3' (SEQ ID NO:150), wherein Z represents 5-methylcytosine.

10 Non-CpG nucleic acids include T-rich immunostimulatory nucleic acids. The T-rich immunostimulatory nucleic acids include those disclosed in published PCT patent application PCT/US00/26383 (WO 01/22972), the entire contents of which are incorporated herein by reference. In some embodiments, T-rich nucleic acids 24 bases in length are used. A T-rich nucleic acid is a nucleic acid which includes at least one poly T sequence and/or which has a 15 nucleotide composition of greater than 25% T nucleotide residues. A nucleic acid having a poly-T sequence includes at least four Ts in a row, such as 5'-TTTT-3'. In some embodiments the T-rich nucleic acid includes more than one poly T sequence. In important embodiments, the T-rich nucleic acid may have 2, 3, 4, or more poly T sequences, such as SEQ ID NO:1.

20 Non-CpG nucleic acids also include poly-G immunostimulatory nucleic acids. A variety of references describe the immunostimulatory properties of poly-G nucleic acids. Pisetsky DS et al. (1993) *Mol Biol Reports* 18:217-221; Krieger M et al. (1994) *Ann Rev Biochem* 63:601-637; Macaya RF et al. (1993) *Proc Natl Acad Sci USA* 90:3745-3749; Wyatt JR et al. (1994) *Proc Natl Acad Sci USA* 91:1356-1360; Rando and Hogan, 1998, In Applied Antisense Oligonucleotide Technology, Krieg and Stein, eds., pp. 335-352; Kimura Y et al. 25 (1994) *J Biochem (Tokyo)* 116:991-994.

The immunostimulatory nucleic acids of the invention can also be those which do not possess CpG, methylated CpG, T-rich, or poly-G motifs.

Exemplary immunostimulatory nucleic acid sequences include but are not limited to those immunostimulatory sequences described and listed in U.S. Non-Provisional Pat.

30 Application No. 09/669,187, filed on September 25, 2000, and in corresponding published PCT patent application PCT/US00/26383 (WO 01/22972).

Immunoinhibitory nucleic acids have been described in Lenert P et al. (2001) *Antisense Nucleic Acid Drug Dev* 11:247-56 and in Stunz L et al. (2002) *Eur J Immunol*

32:1212-22. These inhibitory phosphorothioate ODN (S-ODN) differ from stimulatory S-ODN by having 2-3 G substitutions in the central motif. As inhibitory S-ODN did not directly interfere with the NF- κ B DNA binding but prevented CpG-induced NF- κ B nuclear translocation of p50, p65, and c-Rel and blocked p105, I κ B α , and I κ B β degradation, Lenert et al. suggested that the putative target of immunoinhibitory ODN would lie upstream of inhibitory kinase (IKK) activation. Stunz et al. reported that replacing GCGTT or ACGTT with GCGGG or ACGGG converted a stimulatory 15-mer ODN into an inhibitory ODN. All inhibitory ODN had three consecutive G, and a fourth G increased inhibitory activity, but a deazaguanosine substitution to prevent planar stacking did not affect activity. Inhibitory ODN blocked apoptosis protection and cell-cycle entry induced by stimulatory ODN, but not that induced by lipopolysaccharide, anti-CD40 or anti-IgM+IL-4. ODN-driven up-regulation of cyclin D(2), c-Myc, c-Fos, c-Jun and Bcl(XL) and down-regulation of cyclin kinase inhibitor p27(kip1) were all blocked by inhibitory ODN. Stunz et al. also reported that interference with uptake of stimulatory ODN did not account for the inhibitory effects of the immunoinhibitory nucleic acids.

In one embodiment the immunoinhibitory nucleic acid has a base sequence provided by 5'-TCCTGGCGGGGAAGT-3' (SEQ ID NO:151).

Immunoinhibitory nucleic acids have also been described in U.S. Pat. No. 6,194,388, issued to Krieg et al. The immunoinhibitory oligonucleotides disclosed by Krieg et al. are oligonucleotides with GCG trinucleotides at or near the ends of the oligonucleotide and are represented by the formula 5' GCGX_nGCG 3' in which X is a nucleotide and n is an integer between 0 and 50.

The nucleic acids used as either test or reference compounds can be double-stranded or single-stranded. They can be deoxyribonucleotide (DNA) or ribonucleotide (RNA) molecules. Generally, double-stranded molecules are more stable *in vivo*, while single-stranded molecules have increased immune activity. Thus in some the nucleic acid is single-stranded and in other embodiments the nucleic acid is double-stranded. In certain embodiments, while the nucleic acid is single-stranded, it is capable of forming secondary and tertiary structures (e.g., by folding back on itself, or by hybridizing with itself either throughout its entirety or at select segments along its length). Accordingly, while the primary structure of such a nucleic acid may be single-stranded, its higher order structures may be double- or triple-stranded.

- 40 -

For facilitating uptake into cells, the nucleic acids are preferably in the range of 6 to 100 bases in length. However, nucleic acids of any size equal to or greater than 6 nucleotides (even many kb long) are capable of inducing an immune response. Preferably the nucleic acid is in the range of between 8 and 100 and in some embodiments between 8 and 50 or 8
5 and 30 nucleotides in size.

The terms "nucleic acid" and "oligonucleotide" are used interchangeably to mean multiple nucleotides (i.e., molecules comprising a sugar (e.g., ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g., cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g., adenine
10 (A) or guanine (G)). As used herein, the terms "nucleic acid" and "oligonucleotide" refer to oligoribonucleotides as well as oligodeoxyribonucleotides. The terms "nucleic acid" and "oligonucleotide" shall also include polynucleosides (i.e., a polynucleotide minus the phosphate) and any other organic base containing polymer. Nucleic acid molecules can be obtained from existing nucleic acid sources (e.g., genomic or cDNA), but are preferably
15 synthetic (e.g., produced by nucleic acid synthesis).

The terms "nucleic acid" and "oligonucleotide" also encompass nucleic acids or oligonucleotides with substitutions or modifications, such as in the bases and/or sugars. For example, they include nucleic acids having backbone sugars that are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 2' position and other
20 than a phosphate group or hydroxy group at the 5' position. Thus modified nucleic acids may include a 2'-O-alkylated ribose group. In addition, modified nucleic acids may include sugars such as arabinose or 2'-fluoroarabinose instead of ribose. Thus the nucleic acids may be heterogeneous in backbone composition thereby containing any possible combination of polymer units linked together such as peptide-nucleic acids (which have an amino acid
25 backbone with nucleic acid bases). Other examples are described in more detail below.

The immunostimulatory and immunoinhibitory nucleic acids can encompass various chemical modifications and substitutions, in comparison to natural RNA and DNA, involving a phosphodiester internucleoside bridge, a β -D-ribose unit and/or a natural nucleoside base (adenine, guanine, cytosine, thymine, uracil). Examples of chemical modifications are known
30 to the skilled person and are described, for example, in Uhlmann E et al. (1990) *Chem Rev* 90:543; "Protocols for Oligonucleotides and Analogs" *Synthesis and Properties & Synthesis and Analytical Techniques*, S. Agrawal, Ed, Humana Press, Totowa, USA 1993; Crooke ST et al. (1996) *Annu Rev Pharmacol Toxicol* 36:107-129; and Hunziker J et al. (1995) *Mod Synth*

Methods 7:331-417. An oligonucleotide according to the invention may have one or more modifications, wherein each modification is located at a particular phosphodiester internucleoside bridge and/or at a particular β -D-ribose unit and/or at a particular natural nucleoside base position in comparison to an oligonucleotide of the same sequence which is composed of natural DNA or RNA.

- For example, the oligonucleotides may comprise one or more modifications and wherein each modification is independently selected from:
- a) the replacement of a phosphodiester internucleoside bridge located at the 3' and/or the 5' end of a nucleoside by a modified internucleoside bridge,
 - 10 b) the replacement of phosphodiester bridge located at the 3' and/or the 5' end of a nucleoside by a diphospho bridge,
 - c) the replacement of a sugar phosphate unit from the sugar phosphate backbone by another unit,
 - d) the replacement of a β -D-ribose unit by a modified sugar unit, and
 - 15 e) the replacement of a natural nucleoside base by a modified nucleoside base.

More detailed examples for the chemical modification of an oligonucleotide are as follows.

The oligonucleotides may include modified internucleotide linkages, such as those described in (a) or (b) above. These modified linkages may be partially resistant to degradation (e.g., are stabilized). A "stabilized oligonucleotide molecule" shall mean an oligonucleotide that is relatively resistant to *in vivo* degradation (e.g., via an exo- or endo-nuclease) resulting from such modifications. Oligonucleotides having phosphorothioate linkages, in some embodiments, may provide maximal activity and protect the oligonucleotide from degradation by intracellular exo- and endo-nucleases.

25 A phosphodiester internucleoside bridge located at the 3' and/or the 5' end of a nucleoside can be replaced by a modified internucleoside bridge, wherein the modified internucleoside bridge is for example selected from phosphorothioate, phosphorodithioate, NR¹R²-phosphoramidate, boranophosphate, α -hydroxybenzyl phosphonate, phosphate-(C₁-C₂₁)-O-alkyl ester, phosphate-[(C₆-C₁₂)aryl-(C₁-C₂₁)-O-alkyl]ester, (C₁-C₈)alkylphosphonate and/or (C₆-C₁₂)arylphosphonate bridges, (C₇-C₁₂)- α -hydroxymethyl-aryl (e.g., disclosed in WO 95/01363), wherein (C₆-C₁₂)aryl, (C₆-C₂₀)aryl and (C₆-C₁₄)aryl are optionally substituted by halogen, alkyl, alkoxy, nitro, cyano, and where R¹ and R² are, independently of each other, hydrogen, (C₁-C₁₈)-alkyl, (C₆-C₂₀)-aryl, (C₆-C₁₄)-aryl-(C₁-C₈)-alkyl, preferably hydrogen,

- 42 -

(C₁-C₈)-alkyl, preferably (C₁-C₄)-alkyl and/or methoxyethyl, or R¹ and R² form, together with the nitrogen atom carrying them, a 5-6-membered heterocyclic ring which can additionally contain a further heteroatom from the group O, S and N.

The replacement of a phosphodiester bridge located at the 3' and/or the 5' end of a nucleoside by a dephospho bridge (dephospho bridges are described, for example, in Uhlmann E and Peyman A in "Methods in Molecular Biology", Vol. 20, "Protocols for Oligonucleotides and Analogs", S. Agrawal, Ed., Humana Press, Totowa, 1993, Chapter 16, pp. 355 ff), wherein a dephospho bridge is for example selected from the dephospho bridges formacetal, 3'-thioformacetal, methylhydroxylamine, oxime, methylenedimethyl-hydrazo, dimethylenesulfone and/or silyl groups.

A sugar phosphate unit (i.e., a β-D-ribose and phosphodiester internucleoside bridge together forming a sugar phosphate unit) from the sugar phosphate backbone (i.e., a sugar phosphate backbone is composed of sugar phosphate units) can be replaced by another unit, wherein the other unit is for example suitable to build up a "morpholino-derivative" oligomer (as described, for example, in Stirchak EP et al. (1989) *Nucleic Acids Res* 17:6129-41), that is, e.g., the replacement by a morpholino-derivative unit; or to build up a polyamide nucleic acid ("PNA"; as described for example, in Nielsen PE et al. (1994) *Bioconjug Chem* 5:3-7), that is, e.g., the replacement by a PNA backbone unit, e.g., by 2-aminoethylglycine. The oligonucleotide may have other carbohydrate backbone modifications and replacements, such as peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), and oligonucleotides having backbone sections with alkyl linkers or amino linkers. The alkyl linker may be branched or unbranched, substituted or unsubstituted, and chirally pure or a racemic mixture.

A β-ribose unit or a β-D-2'-deoxyribose unit can be replaced by a modified sugar unit, wherein the modified sugar unit is for example selected from β-D-ribose, α-D-2'-deoxyribose, L-2'-deoxyribose, 2'-F-2'-deoxyribose, 2'-F-arabinose, 2'-O-(C₁-C₆)alkyl-ribose, preferably 2'-O-(C₁-C₆)alkyl-ribose is 2'-O-methylribose, 2'-O-(C₂-C₆)alkenyl-ribose, 2'-[O-(C₁-C₆)alkyl-O-(C₁-C₆)alkyl]-ribose, 2'-NH₂-2'-deoxyribose, β-D-xylo-furanose, α-arabinofuranose, 2,4-dideoxy-β-D-erythro-hexo-pyranose, and carbocyclic (described, for example, in Froehler J (1992) *Am Chem Soc* 114:8320) and/or open-chain sugar analogs (described, for example, in Vandendriessche et al. (1993) *Tetrahedron* 49:7223) and/or bicyclosugar analogs (described, for example, in Tarkov M et al. (1993) *Helv Chim Acta* 76:481).

In some embodiments the sugar is 2'-O-methylribose, particularly for one or both nucleotides linked by a phosphodiester or phosphodiester-like internucleoside linkage.

In some embodiments, the nucleic acids may be soft or semi-soft nucleic acids. A soft nucleic acid is an immunostimulatory nucleic acid having a partially stabilized backbone, in which phosphodiester or phosphodiester-like internucleotide linkages occur only within and immediately adjacent to at least one internal pyrimidine-purine dinucleotide (YZ). Preferably YZ is YG, a pyrimidine-guanosine (YG) dinucleotide. The at least one internal YZ dinucleotide itself has a phosphodiester or phosphodiester-like internucleotide linkage. A phosphodiester or phosphodiester-like internucleotide linkage occurring immediately adjacent to the at least one internal YZ dinucleotide can be 5', 3', or both 5' and 3' to the at least one internal YZ dinucleotide.

In particular, phosphodiester or phosphodiester-like internucleotide linkages involve "internal dinucleotides". An internal dinucleotide in general shall mean any pair of adjacent nucleotides connected by an internucleotide linkage, in which neither nucleotide in the pair of nucleotides is a terminal nucleotide, i.e., neither nucleotide in the pair of nucleotides is a nucleotide defining the 5' or 3' end of the nucleic acid. Thus a linear nucleic acid that is n nucleotides long has a total of n-1 dinucleotides and only n-3 internal dinucleotides. Each internucleotide linkage in an internal dinucleotide is an internal internucleotide linkage. Thus a linear nucleic acid that is n nucleotides long has a total of n-1 internucleotide linkages and only n-3 internal internucleotide linkages. The strategically placed phosphodiester or phosphodiester-like internucleotide linkages, therefore, refer to phosphodiester or phosphodiester-like internucleotide linkages positioned between any pair of nucleotides in the nucleic acid sequence. In some embodiments the phosphodiester or phosphodiester-like internucleotide linkages are not positioned between either pair of nucleotides closest to the 5' or 3' end.

Preferably a phosphodiester or phosphodiester-like internucleotide linkage occurring immediately adjacent to the at least one internal YZ dinucleotide is itself an internal internucleotide linkage. Thus for a sequence N₁ YZ N₂, wherein N₁ and N₂ are each, independent of the other, any single nucleotide, the YZ dinucleotide has a phosphodiester or phosphodiester-like internucleotide linkage, and in addition (a) N₁ and Y are linked by a phosphodiester or phosphodiester-like internucleotide linkage when N₁ is an internal nucleotide, (b) Z and N₂ are linked by a phosphodiester or phosphodiester-like internucleotide linkage when N₂ is an internal nucleotide, or (c) N₁ and Y are linked by a phosphodiester or

- 44 -

phosphodiester-like internucleotide linkage when N₁ is an internal nucleotide and Z and N₂ are linked by a phosphodiester or phosphodiester-like internucleotide linkage when N₂ is an internal nucleotide.

Soft nucleic acids according to the instant invention are believed to be relatively 5 susceptible to nuclease cleavage compared to completely stabilized nucleic acids. Without meaning to be bound to a particular theory or mechanism, it is believed that soft nucleic acids of the invention are cleavable to fragments with reduced or no immunostimulatory activity relative to full-length soft nucleic acids. Incorporation of at least one nuclease-sensitive 10 internucleotide linkage, particularly near the middle of the nucleic acid, is believed to provide an “off switch” which alters the pharmacokinetics of the nucleic acid so as to reduce the duration of maximal immunostimulatory activity of the nucleic acid. This can be of particular value in tissues and in clinical applications in which it is desirable to avoid injury related to chronic local inflammation or immunostimulation, e.g., the kidney.

A semi-soft nucleic acid is an immunostimulatory nucleic acid having a partially 15 stabilized backbone, in which phosphodiester or phosphodiester-like internucleotide linkages occur only within at least one internal pyrimidine-purine (YZ) dinucleotide. Semi-soft nucleic acids generally possess increased immunostimulatory potency relative to corresponding fully stabilized immunostimulatory nucleic acids. Due to the greater potency 20 of semi-soft nucleic acids, semi-soft nucleic acids may be used, in some instances, at lower effective concentrations and have lower effective doses than conventional fully stabilized immunostimulatory nucleic acids in order to achieve a desired biological effect.

It is believed that the foregoing properties of semi-soft nucleic acids generally increase with increasing “dose” of phosphodiester or phosphodiester-like internucleotide linkages involving internal YZ dinucleotides. Thus it is believed, for example, that generally for a 25 given nucleic acid sequence with five internal YZ dinucleotides, an nucleic acid with five internal phosphodiester or phosphodiester-like YZ internucleotide linkages is more immunostimulatory than an nucleic acid with four internal phosphodiester or phosphodiester-like YG internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with three internal phosphodiester or phosphodiester-like YZ internucleotide linkages, 30 which in turn is more immunostimulatory than an nucleic acid with two internal phosphodiester or phosphodiester-like YZ internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with one internal phosphodiester or phosphodiester-like YZ internucleotide linkage. Importantly, inclusion of even one internal phosphodiester or

- 45 -

phosphodiester-like YZ internucleotide linkage is believed to be advantageous over no internal phosphodiester or phosphodiester-like YZ internucleotide linkage. In addition to the number of phosphodiester or phosphodiester-like internucleotide linkages, the position along the length of the nucleic acid can also affect potency.

5 The soft and semi-soft nucleic acids will generally include, in addition to the phosphodiester or phosphodiester-like internucleotide linkages at preferred internal positions, 5' and 3' ends that are resistant to degradation. Such degradation-resistant ends can involve any suitable modification that results in an increased resistance against exonuclease digestion over corresponding unmodified ends. For instance, the 5' and 3' ends can be stabilized by the
10 inclusion thereof at least one phosphate modification of the backbone. In a preferred embodiment, the at least one phosphate modification of the backbone at each end is independently a phosphorothioate, phosphorodithioate, methylphosphonate, or methylphosphorothioate internucleotide linkage. In another embodiment, the degradation-resistant end includes one or more nucleotide units connected by peptide or amide linkages at
15 the 3' end.

A phosphodiester internucleotide linkage is the type of linkage characteristic of nucleic acids found in nature. The phosphodiester internucleotide linkage includes a phosphorus atom flanked by two bridging oxygen atoms and bound also by two additional oxygen atoms, one charged and the other uncharged. Phosphodiester internucleotide linkage
20 is particularly preferred when it is important to reduce the tissue half-life of the nucleic acid.

A phosphodiester-like internucleotide linkage is a phosphorus-containing bridging group that is chemically and/or diastereomerically similar to phosphodiester. Measures of similarity to phosphodiester include susceptibility to nuclease digestion and ability to activate RNAse H. Thus for example phosphodiester, but not phosphorothioate, nucleic acids are
25 susceptible to nuclease digestion, while both phosphodiester and phosphorothioate nucleic acids activate RNAse H. In a preferred embodiment the phosphodiester-like internucleotide linkage is boranophosphate (or equivalently, boranophosphonate) linkage. U.S. Patent No. 5,177,198; U.S. Patent No. 5,859,231; U.S. Patent No. 6,160,109; U.S. Patent No. 6,207,819; Sergueev et al., (1998) *J Am Chem Soc* 120:9417-27. In another preferred embodiment the
30 phosphodiester-like internucleotide linkage is diasteromerically pure Rp phosphorothioate. It is believed that diasteromerically pure Rp phosphorothioate is more susceptible to nuclease digestion and is better at activating RNAse H than mixed or diastereomerically pure Sp phosphorothioate. Stereoisomers of CpG nucleic acids are the subject of co-pending U.S.

- 46 -

patent application 09/361,575 filed July 27, 1999, and published PCT application PCT/US99/17100 (WO 00/06588). It is to be noted that for purposes of the instant invention, the term "phosphodiester-like internucleotide linkage" specifically excludes phosphorodithioate and methylphosphonate internucleotide linkages.

5 As described above the soft and semi-soft nucleic acids of the invention may have phosphodiester like linkages between C and G. One example of a phosphodiester-like linkage is a phosphorothioate linkage in an Rp conformation. Nucleic acid p-chirality can have apparently opposite effects on the immune activity of a CpG nucleic acid, depending upon the time point at which activity is measured. At an early time point of 40 minutes, the R_p but not
10 the S_p stereoisomer of phosphorothioate CpG nucleic acid induces JNK phosphorylation in mouse spleen cells. In contrast, when assayed at a late time point of 44 hr, the S_p but not the R_p stereoisomer is active in stimulating spleen cell proliferation. This difference in the kinetics and bioactivity of the R_p and S_p stereoisomers does not result from any difference in cell uptake, but rather most likely is due to two opposing biologic roles of the p-chirality.
15 First, the enhanced activity of the Rp stereoisomer compared to the Sp for stimulating immune cells at early time points indicates that the Rp may be more effective at interacting with the CpG receptor, TLR9, or inducing the downstream signaling pathways. On the other hand, the faster degradation of the Rp PS-nucleic acids compared to the Sp results in a much shorter duration of signaling, so that the Sp PS-nucleic acids appear to be more biologically
20 active when tested at later time points.

A surprisingly strong effect is achieved by the p-chirality at the CpG dinucleotide itself. In comparison to a stereo-random CpG nucleic acid the congener in which the single CpG dinucleotide was linked in Rp was slightly more active, while the congener containing an Sp linkage was nearly inactive for inducing spleen cell proliferation.

25 Nucleic acids also include substituted purines and pyrimidines such as C-5 propyne pyrimidine and 7-deaza-7-substituted purine modified bases. Wagner RW et al. (1996) *Nat Biotechnol* 14:840-4. Purines and pyrimidines include but are not limited to adenine, cytosine, guanine, and thymine, and other naturally and non-naturally occurring nucleobases, substituted and unsubstituted aromatic moieties.

30 A modified base is any base which is chemically distinct from the naturally occurring bases typically found in DNA and RNA such as T, C, G, A, and U, but which share basic chemical structures with these naturally occurring bases. The modified nucleoside base may be, for example, selected from hypoxanthine, uracil, dihydrouracil, pseudouracil, 2-thiouracil,

- 47 -

4-thiouracil, 5-aminouracil, 5-(C₁-C₆)-alkyluracil, 5-(C₂-C₆)-alkenyluracil, 5-(C₂-C₆)-alkynyluracil, 5-(hydroxymethyl)uracil, 5-chlorouracil, 5-fluorouracil, 5-bromouracil, 5-hydroxycytosine, 5-(C₁-C₆)-alkylcytosine, 5-(C₂-C₆)-alkenylcytosine, 5-(C₂-C₆)-alkynylcytosine, 5-chlorocytosine, 5-fluorocytosine, 5-bromocytosine, N²-dimethylguanine,
5 2,4-diamino-purine, 8-azapurine, a substituted 7-deazapurine, preferably 7-deaza-7-substituted and/or 7-deaza-8-substituted purine, 5-hydroxymethylcytosine, N4-alkylcytosine, e.g., N4-ethylcytosine, 5-hydroxydeoxycytidine, 5-hydroxymethyldeoxycytidine, N4-alkyldeoxycytidine, e.g., N4-ethyldeoxycytidine, 6-thiodeoxyguanosine, and deoxyribonucleosides of nitropyrrole, C5-propynylpyrimidine, and
10 diaminopurine e.g., 2,6-diaminopurine, inosine, 5-methylcytosine, 2-aminopurine, 2-amino-6-chloropurine, hypoxanthine or other modifications of a natural nucleoside bases. This list is meant to be exemplary and is not to be interpreted to be limiting.

Modified cytosines include but are not limited to 5-substituted cytosines (e.g., 5-methyl-cytosine, 5-fluoro-cytosine, 5-chloro-cytosine, 5-bromo-cytosine, 5-iodo-cytosine, 5-hydroxy-cytosine, 5-hydroxymethyl-cytosine, 5-difluoromethyl-cytosine, and unsubstituted or substituted 5-alkynyl-cytosine), 6-substituted cytosines, N4-substituted cytosines (e.g., N4-ethyl-cytosine), 5-aza-cytosine, 2-mercaptop-cytosine, isocytosine, pseudo-isocytosine, cytosine analogs with condensed ring systems (e.g., N,N'-propylene cytosine or phenoxyazine), and uracil and its derivatives (e.g., 5-fluoro-uracil, 5-bromo-uracil, 5-bromovinyl-uracil, 4-thio-uracil, 5-hydroxy-uracil, 5-propynyl-uracil). In another embodiment, the cytosine base is substituted by a universal base (e.g., 3-nitropyrrole, P-base), an aromatic ring system (e.g., fluorobenzene or difluorobenzene) or a hydrogen atom (dSpacer).

Modified guanines include but are not limited to 7-deazaguanine, 25 7-deaza-7-substituted guanine (such as 7-deaza-7-(C₂-C₆)alkynylguanine), 7-deaza-8-substituted guanine, hypoxanthine, N2-substituted guanines (e.g., N2-methyl-guanine), 5-amino-3-methyl-3H,6H-thiazolo[4,5-d]pyrimidine-2,7-dione, 2,6-diaminopurine, 2-aminopurine, purine, indole, adenine, substituted adenines (e.g., N6-methyl-adenine, 8-oxo-adenine) 8-substituted guanine (e.g., 8-hydroxyguanine and 8-bromoguanine), and
30 6-thioguanine. In another embodiment, the guanine base is substituted by a universal base (e.g., 4-methyl-indole, 5-nitro-indole, and K-base), an aromatic ring system (e.g., benzimidazole or dichloro-benzimidazole, 1-methyl-1H-[1,2,4]triazole-3-carboxylic acid amide) or a hydrogen atom (dSpacer).

- 48 -

For use in the instant invention, the oligonucleotide reference compounds and test compounds can be synthesized *de novo* using any of a number of procedures well known in the art, for example, the β -cyanoethyl phosphoramidite method (Beaucage SL et al. (1981) *Tetrahedron Lett* 22:1859), or the nucleoside H-phosphonate method (Garegg et al. (1986) 5 *Tetrahedron Lett* 27:4051-4; Froehler BC et al. (1986) *Nucleic Acids Res* 14:5399-407; Garegg et al (1986) *Tetrahedron Lett* 27:4055-8; Gaffney et al. (1988) *Tetrahedron Lett* 29:2619-22). These chemistries can be performed by a variety of automated nucleic acid synthesizers available in the market. These oligonucleotides are referred to as synthetic 10 oligonucleotides. An isolated oligonucleotide generally refers to an oligonucleotide which is separated from components which it is normally associated with in nature. As an example, an 15 isolated oligonucleotide may be one which is separated from a cell, from a nucleus, from mitochondria or from chromatin.

Modified backbones such as phosphorothioates can be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl-and 15 alkyl-phosphonates can be made, e.g., as described in U.S. Pat. No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. 20 Pat. No. 5,023,243 and European Pat. No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (e.g., Uhlmann E et al. (1990) *Chem Rev* 90:544; Goodchild J (1990) *Bioconjugate Chem* 1:165).

TLR expression

The cell lines can be used in their native state without any modification. For example, in the case of the RPMI 8226 cell line, it can be used to identify compounds that signal 25 through at least TLR9 and/or TLR7. In other instances, however, the cell line can be modified to express a TLR that it does not naturally express. In still other instances, the cell to be used in the screening method may express one or more endogenous TLR and yet still be manipulated to express an additional TLR different from those it endogenously expresses. The cell may also be manipulated in order to increase or decrease the level of TLR that it 30 endogenously expresses. The cells may be stably or transiently transfected.

A cell that does not naturally express a protein or polypeptide, but is genetically manipulated to do so is referred to as ectopically expressing the protein or polypeptide.

- 49 -

The basic screening method remains the same regardless of which TLR is expressed by the cell. However, the reference compound and the readout may vary depending upon the TLR(s) expressed. In the most simple aspect, the screening method is used to identify a compound that signals through a TLR such as for example TLR9. In this case, the positive 5 reference compound may be an immunostimulatory compound already known to act through TLR9 (e.g., CpG nucleic acid).

The methods of the invention involve, in part, contacting a functional TLR with a test composition. A functional TLR is a full-length TLR protein or a fragment thereof capable of inducing or inhibiting a signal in response to interaction with its ligand. Generally the 10 functional TLR will include at least a TLR ligand-binding fragment of the extracellular domain of the full-length TLR and at least a fragment of a TIR domain capable of interacting with another Toll homology domain-containing polypeptide, e.g., MyD88. In various embodiments the functional TLR is a full-length TLR selected from TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, and TLR10.

15 To date, there are eleven TLRs known. Nucleic acid and amino acid sequences for ten currently known human TLRs are available from public databases such as GenBank. Similarly, nucleic acid and amino acid sequences for various TLRs from numerous non-human species are also available from public databases including GenBank. For example, nucleic acid and amino acid sequences for human TLR9 (hTLR9) can be found as GenBank 20 accession numbers AF245704 (coding region spanning nucleotides 145-3243) (SEQ ID NO: 60) and AAF78037 (SEQ ID NO: 62), respectively. Nucleic acid and amino acid sequences for murine TLR9 (mTLR9) can be found as GenBank accession numbers AF348140 (coding region spanning nucleotides 40-3138) (SEQ ID NO: 68) and AAK29625 (SEQ ID NO: 72), respectively.

25 Nucleic acid and amino acid sequences for human TLR8 (hTLR8) can be found as GenBank accession numbers AF245703 (coding region spanning nucleotides 49-3174) (SEQ ID NO: 46) and AAF78036 (SEQ ID NO: 50), respectively. Nucleic acid and amino acid sequences for murine TLR8 (mTLR8) can be found as GenBank accession numbers AY035890 (coding region spanning nucleotides 59-3157) (SEQ ID NO: 55) and AAK62677 30 (SEQ ID NO: 57), respectively.

Nucleic acid and amino acid sequences for human TLR7 (hTLR7) can be found as GenBank accession numbers AF240467 (coding region spanning nucleotides 135-3285) (SEQ ID NO: 31) and AAF60188 (SEQ ID NO: 34), respectively. Nucleic acid and amino acid

- 50 -

sequences for murine TLR7 (mTLR7) can be found as GenBank accession numbers AY035889 (coding region spanning nucleotides 49-3201) (SEQ ID NO: 38) and AAK62676 (SEQ ID NO: 41), respectively.

Nucleic acid and amino acid sequences for human TLR3 (hTLR3) can be found as
5 GenBank accession numbers NM_003265 (coding region spanning nucleotides 102-2816)
(SEQ ID NO: 7) and NP_003256 (SEQ ID NO: 8), respectively. Nucleic acid and amino acid
sequences for murine TLR3 (hTLR3) can be found as GenBank accession numbers
AF355152 (coding region spanning nucleotides 44-2761) (SEQ ID NO: 9) and AAK26117
(SEQ ID NO: 10), respectively.

10 Nucleic acid and amino acid sequences for human TLR1 (hTLR1) can be found as
GenBank accession numbers NM_003263 and NP_003254, respectively. Nucleic acid and
amino acid sequences for murine TLR1 (mTLR1) can be found as GenBank accession
numbers NM_030682 and NP_109607, respectively.

The functional TLR also is not limited to native TLR polypeptides. As used herein, a
15 native TLR is one that is naturally occurring. The TLR may be a non-native (or non-naturally
occurring TLR). An example is a chimeric TLR having an extracellular domain and the
cytoplasmic domain derived from TLRs from different species. Such chimeric TLR
polypeptides can include, for example, a human TLR extracellular domain and a murine TLR
cytoplasmic domain. In alternative embodiments, such chimeric TLR polypeptides can
20 include chimerae created with different TLR splice variants or allotypes.

TLR Signaling Pathways

The screening methods provided by the invention measure TLR signaling activity.
TLR signaling activity is activity that results from interaction of a TLR with a TLR ligand.
25 TLR signaling can be measured in a number of ways including but not limited to interaction
between a TLR and a protein or factor (such as an adaptor protein), interaction between
downstream proteins or factors (such as an adaptor protein) with each other, activation of
nuclear factors such as transcription factors or transcription complexes, up- or down-
regulation of genes, phosphorylation or dephosphorylation of proteins or factors in the
30 signaling cascade, expression, production and/or secretion of cytokines and/or chemokines,
changes in cell cycle status, up- or down-regulation of cell surface marker expression, and the
like. Those of ordinary skill in the art are familiar with assays for measuring these latter

events including but not limited to gel shift assays, immunoprecipitations, phosphorylation status analysis of proteins, Northern analysis, RT-PCR analysis, etc.

The following is an exemplary TLR signaling pathway or cascade. It is to be understood that this is meant to be illustrative and that different factors may be involved in the signaling of particular TLR. One TLR signaling pathway is known to use the cytoplasmic Toll/IL-1 receptor (TIR) homology domain, present in all TLRs. This domain interacts (e.g., binds to) and thereby transduces a signal to a similar domain on an adapter protein (e.g., MyD88). This type of interaction is referred to as a like:like interaction of TIR domains. This interaction is followed by another interaction between the adapter protein and a kinase, through their respective "death domains". In the case of at least TLR4 signaling, the kinase then interacts with tumor necrosis factor (TNF) receptor-associated factor-6 (TRAF6). Medzhitov R et al., *Mol Cell* 2:253 (1998); Kopp EB et al., *Curr Opin Immunol* 11:15 (1999). After TRAF6, two sequential kinase activation steps lead to phosphorylation of the inhibitory protein I kappa B and its dissociation from NF- κ B. The first kinase is a mitogen-activated kinase kinase kinase (MAPKKK) known as NIK, for NF- κ B-inducing kinase. The target of this kinase is another kinase made up of two chains, called I kappa B kinase α (IKK α) and I kappa B kinase β (IKK β), that together form a heterodimer of IKK α :IKK β , which phosphorylates I kappa B. NF- κ B translocates to the nucleus to activate genes with kappa B binding sites in their promoters and enhancers such as the genes encoding IL-6, IL-8, the p40 subunit of IL-12, and the costimulatory molecule CD86. The signaling mechanisms of TLRs are not limited to this pathway; other signaling pathways exist and can be used in the screening readouts of the methods provided herein.

The screening assays employ a number of readouts (or parameters). The readouts can be native readouts. A native readout is one that does not rely on introduction of a reporter construct into the cell of interest. The readouts can be artificial. An artificial readout is one that relies on introduction of a reporter construct into the cell of interest. Examples of both are provided herein. In still other embodiments, a given assay may measure one or more native readouts and one or more artificial readouts. Each readout whether native or artificial is related to signaling pathways that ensue after TLR engagement with a ligand.

Each cell line described herein will be associated with a particular set of native readouts which the invention seeks to determine in the screening assays provided. As an example, the response of the RPMI 8226 cell line to an immunomodulatory molecule can be assessed in terms of native readouts such as CD71 expression, CD86 expression, HLA-DR

expression, IL-8 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF- α expression, TNF- α production and TNF- α secretion. RAMOS response can be assessed, inter alia, by CD80 cell surface expression. Raji response can be assessed, inter alia, by IL-6 secretion.

As described in greater detail herein, the cell line can be used in an unmodified form. In one respect, an unmodified cell line will naturally respond to a TLR ligand through a native readout system. For example, an RPMI 8226 cell exposed to an immunostimulatory TLR ligand may increase expression of IP-10 from the native gene locus. Alternatively, the cell 10 line may be modified to contain a reporter construct that acts as a surrogate for the IP-10 gene locus. For example, the reporter construct may contain the TLR responsive promoter elements that are naturally found in the native IP-10 locus operably linked to a reporter coding sequence that encodes a gene product that is detectable and quantifiable. The structure and variability of suitable reporter constructs will be discussed in greater detail herein.

15 Readouts typically include the induction of a gene under control of a specific promoter such as a NF- κ B promoter. The gene under the control of the NF- κ B promoter can be a gene which naturally includes an NF- κ B promoter or it can be a gene in a construct in which an NF- κ B promoter has been inserted. Endogenous genes and transfected constructs which include the NF- κ B promoter include but are not limited to IL-8, IL-12 p40, NF- κ B-luc, IL-12 20 p40-luc, and TNF-luc.

Increases in cytokine levels can result from increased production, increased stability, increased secretion, or any combination of the forgoing, of the cytokine in response to the TLR-mediated signaling. Cytokines generally include, without limitation, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-11, IL-12, IL-13, IL-15, IL-18, IFN- α , IFN- β , IFN- γ , TNF- α , 25 GM-CSF, G-CSF, M-CSF. Th1 cytokines include but are not limited to IL-2, IFN- γ , and IL-12. Th2 cytokines include but are not limited to IL-4, IL-5, and IL-10.

Increases in chemokine levels can result from increased production, increased stability, increased secretion, or any combination of the forgoing, of the chemokine in response to the TLR-mediated signaling. Chemokines of particular significance in the 30 invention include but are not limited to CCL5 (RANTES), CXCL9 (Mig), CXCL10 (IP-10), CXCL11 (I-TAC), IL-8, and MCP-1.

- 53 -

TLR signaling activity can also be measured by phosphorylation, such as total cellular phosphorylation or phosphorylation of specific factors such as but not limited to IRAK, ERK, MyD88, TRAF6, p38, NF- κ B subunits, c-Jun and c-Fos.

5 TLR signaling activity can be measured by changes in gene expression. The expression of CD71, CD86, CD80, CD69, CD54, HLA-DR, HLA class I, IL-6, IL-8, IL-10, IP-9, IP-10, IFN- α , TNF- α , and the like can be assessed as a measure of TLR signaling activity. Gene expression analysis may be performed using microarray techniques.

TLR signaling activity can also be measured by cell proliferation status or changes thereto.

10 TLR signaling activity can also be measured by cell surface marker expression such as the cell surface expression of markers such as but not limited to CD71, CD86, HLA-DR, CD80, HLA class I, CD54 and CD69.

TLR signaling activity can also be measured by antibody secretion such as but not limited to IgM secretion.

15

Reporter and Expression Constructs

The cells can be manipulated by the introduction of expression and/or reporter constructs. The expression constructs preferably comprise a TLR coding sequence, as described above. The reporter constructs can be used as surrogate measures of native TLR 20 signaling activity. These reporter constructs are intended to substitute for the "native" readouts capable with the cell line. In order to act as substitutes, the reporter constructs include a promoter element derived from a gene known to be modulated following TLR engagement with a TLR ligand. The reporter construct further includes a coding sequence linked to the promoter. The coding sequence is usually that of a reporter (i.e., a protein that is 25 detectable or quantifiable).

The reporter construct generally includes a promoter, a coding sequence and a polyadenylation signal. These nucleic acids shall include, as necessary, 5' non-transcribing and 5' non-translating sequences involved with the initiation of transcription and translation, respectively, such as a TATA box, capping sequence, CAAT sequence, in addition to 30 promoter elements that are responsive to TLR signaling. The nucleic acid constructs may optionally include enhancer sequences or upstream activator sequences as desired.

The promoter in the reporter construct will include a TLR responsive promoter element, and will therefore be regarded as a TLR responsive promoter. As used herein, a

- 54 -

TLR responsive promoter is a promoter having an activity that is modulated (i.e., either activated or inhibited) by signaling through a TLR (e.g., by TLR interaction with its ligand). In order to be modulated by TLR signaling, the promoter contains sites that are bound by transcription factors modulated by TLR signaling. The factors may be activated or inhibited
5 by TLR signaling. Activation of the transcription factor includes increases in the activity of the transcription factor per se, increases in its ability to interact with other factors or with DNA that serve to increase its activity, and increases in its transcription and translation (i.e., increased mRNA and protein levels of the transcription factor). Conversely, inhibition of the transcription factor includes decreases in the activity of the transcription factor per se,
10 decreases in its ability to interact with other factors or with DNA that serve to decrease its activity, and decreases in its transcription and translation (i.e., decreased mRNA and protein levels of the transcription factor). The effect on the transcription factor is usually the downstream result of other interactions in the signaling pathway. The expression of coding sequences linked to such promoters will therefore be modulated by TLR signaling events, and
15 it is the level of expression of these coding sequences that can be used as a readout of TLR signaling in the screening methods provided herein.

The TLR responsive promoter may comprise a transcription factor binding site selected from the group consisting of a NF- κ B binding site, an AP-1 binding site, a CRE, a SRE, an interferon-stimulated response element (ISRE), a GAS, an ATF2 binding site, an
20 IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE, among others. These binding sites and their sequences are known in the art. Below is a exemplary list of these sequences.

W = A or T, R = A or G, Y = C or T

25 NF- κ B Binding site:

Consensus p50 subunit
5' GGGGATYCCC 3' (SEQ ID NO:90)

30 Consensus p65 subunit
5' GGRNNTTCC 3' (SEQ ID NO:91)

Example of p65 subunit binding site
5' AGT TGA GGG GAC TTT CCC AGG C 3' (SEQ ID NO:92)

35 CREB Binding site:
5' AGA GAT TGC CTG ACG TCA GAG AGC TAG 3' (SEQ ID NO:93)

- 55 -

AP-1 Binding site:

- 5'- CGC TTG ATG AGT CAG CCG GAA -3' (SEQ ID NO:94)
- 5'- CGC ATG AGT CAG ACA -3' (SEQ ID NO:95)

5 ISRE :

- 5'- TGCAGAAGTGAAACTGAGG-3' (SEQ ID NO:96)
- 5'- AGAACGAAACA-3' (SEQ ID NO:97)
- 5'- GAGAAGTGAAAGTGG-3' (SEQ ID NO:98)
- 5'- TAAGAACATGAAACTGAA-3' (SEQ ID NO:99)
- 10 5'- ATGAAACTGAAAGTA-3' (SEQ ID NO:100)
- 5'- TGAAAACCGAAAGCGC-3' (SEQ ID NO:101)
- 5'- AGAAATGGAAAGT-3' (SEQ ID NO:102)

SRE

- 15 5'- TCACCCCCAC-3' (SEQ ID NO:103)
 5'- CTCACCCCCAC-3' (SEQ ID NO:104)
 5'- GCCACCCTAC-3' (SEQ ID NO:105)

NFAT:

- 20 5'- TATGAAACAGTTTCC -3' (SEQ ID NO:106)
 5'- AGGAAACTC -3' (SEQ ID NO:107)
 5'- ARGARATTCC -3' (SEQ ID NO:108)
 5'- CCAGTTGAGGCCAGAGA -3' (SEQ ID NO:109)

25 GAS:

- 5'- CTTTCAGTTCATATTACTCTAAATCCATT -3' (SEQ ID NO:110)

p53 Binding Site :

- 30 p53 Consensus site:
 5'- RRRCWWGYYY -3' (SEQ ID NO:111)

Examples of p53 binding sites:

- 35 5'- AGGCATGCCT -3' (SEQ ID NO:112)
 5'- GGGCTTGCCTC -3' (SEQ ID NO:113)
 5'- GGGCTTGCTT -3' (SEQ ID NO:114)
 5'- GCCTGGACTTGCC -3' (SEQ ID NO:115)
 5'- GGACATGCCGGGCATGTCC -3' (SEQ ID NO:116)
 5'- GTAGCATTAGCCCAGACATGTCC -3' (SEQ ID NO:117)

40 TARE (TNF- α response element):

e.g. from the COL1A1 promoter

5'GAGGTATGCAGACAGAGTCAGAGTTCCCTTGAA 3' (SEQ ID
 NO:118)

45 SRF

- 5'- CCWWWWWWGG -3' (SEQ ID NO:119)
- 5'- CCAAATAAGGC -3' (SEQ ID NO:120)

- 56 -

The TLR responsive promoter element can be derived from the promoter of a naturally occurring (i.e., an endogenous) gene that is activated or inhibited by TLR signaling (such as the IL-6 gene, the IL-8 gene, the IL-10 gene, the IL-12 p40 gene, the IP-9 gene, the IP-10 gene, the type 1 IFN gene, the IFN- α 4 gene, the IFN- β gene, the TNF- α gene, the TNF- β gene, the RANTES gene, the ITAC gene, the IGFBP4 gene, the CD54 gene, the CD69 gene, the CD71 gene, the CD80 gene, the CD86 gene, the HLA-DR gene, the HLA class I gene, and the like). The afore-mentioned genes are genes that are known to be activated in response to TLR interaction with its ligand.

Suitable promoter regions are described in the Examples. Briefly, the upstream (5') – 10 620 to +50 promoter region of IFN- α 4 or the upstream (5') – 140 to +9 promoter region of IFN- α 1 can be used. In one embodiment, the IFN- α 4 sequence is cloned into the *Sma*I site of the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') promoter region of IFN- α 4.

The promoter can also be the upstream (5') – 280 to +20 promoter region of IFN- β .

15 The promoter can also be the upstream (5') – 397 to +5 promoter region of RANTES. In one embodiment, the RANTES promoter sequence is cloned into the *Nhe*I site (filled in with Klenow) of the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') – 397 to +5 promoter region of RANTES.

20 The promoter can also be the upstream truncated (-250 to +30) and full length (-860 to +30) promoter regions derived from human IL-12 p40 genomic DNA. In one embodiment, the truncated IL-12 p40 promoter was cloned as a *Kpn*I-*Xho*I insert into p β gal-Basic (Promega) resulting in an expression vector that includes a β gal gene under the control of the upstream (5') – 250 to +30 promoter region of human IL-12 p40. In another embodiment, the full length IL-12 p40 promoter was cloned as a *Kpn*I-*Xho*I insert into p β gal-Basic (Promega) resulting in an expression vector that includes a β gal gene under the control of the upstream (5') – 751 to +30 promoter region of human IL-12 p40. In another embodiment, the truncated –250 to +30 promoter region of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control 25 of the upstream (5') – 250 to +30 promoter region of human IL-12 p40. In yet another embodiment, the full length IL-12 p40 promoter of human IL-12 p40 was cloned into the 30

pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') -751 to +30 promoter region of human IL-12 p40.

The promoter can also be the upstream (5') -288 to +7 promoter region derived from human IL-6 genomic DNA. The promoter can also be derived from the full-length promoter region of the IL-6 gene from -1174 to + 7 (Accession No M22111, SEQ ID NO:129).

5 The promoter can also be the upstream (5') -734 to +44 or the upstream (5') -162 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) *J Immunol* 143:1366-71.

10 The promoter can also be derived from the -615 to +30 promoter region of human TNF- α .

The promoter can also be derived from a promoter region of human TNF- β .

15 The promoter can also be derived from the -875 to +97 promoter region of human IP-10.

10. The promoter can also be derived from the -219 to +114 promoter region of human CXCL11 (IP9). The promoter can also be derived from the full length (-934 to +114) promoter region of human CXCL11 (IP9).

15 The promoter can also be derived from the -289 to +217 promoter region of human IGFBP4 (Insulin growth factor binding protein 4). The promoter can also be derived from the full length (-836 to +217) promoter region of human IGFBP4.

20 The promoter response element generally will be present in multiple copies, e.g., as tandem repeats. For example, in one reporter construct, coding sequence for luciferase is under control of an upstream 6X tandem repeat of NF- κ B response element. In another example, an ISRE-luciferase reporter construct useful in the invention is available from Stratagene (catalog no. 219092) and includes a 5x ISRE tandem repeat joined to a TATA box upstream of a luciferase reporter gene.

25 The reporter construct coding sequence is preferably any nucleotide sequence that codes for a protein capable of detection or quantification. The protein can be an enzyme (e.g., luciferase, alkaline phosphatase, β -galactosidase, chloramphenicol acetyltransferase (CAT), secreted alkaline phosphatase, etc.), a bioluminescence marker (e.g., green fluorescent protein (GFP, U.S. Pat. No. 5,491,084), etc.), blue fluorescent protein (BFP, e.g., U.S. Pat. No. 6,486,382), etc.), a surface-expressed molecule (e.g., CD25, CD80, CD86), a secreted molecule (e.g., IL-1, IL-6, IL-8, IL-12 p40, TNF- α), a hapten or antigen, and other detectable protein products known to those of skill in the art. For assays relying on enzyme activity

readout, substrate can be supplied as part of the assay, and detection can involve measurement of chemiluminescence, fluorescence, color development, incorporation of radioactive label, drug resistance, or other marker of enzyme activity. For assays relying on surface expression of a molecule, detection can be accomplished using flow cytometry (FACS) analysis or 5 functional assays. Secreted molecules can be assayed using enzyme-linked immunosorbent assay (ELISA) or bioassays. Many of these and other suitable readout systems are well known in the art and are commercially available. Preferably, the coding sequence encodes a protein having a level or an activity that is quantifiable, preferably with a wide linear range.

The expression construct coding sequence is preferably a TLR coding sequence 10 derived from the sequences listed herein. Preferably, the expression construct promoter is a constitutive promoter, although in some embodiments it may be inducible. Those of ordinary skill in the art are familiar with such promoters.

As used herein, a coding sequence and the regulatory sequences (such as promoters) 15 are said to be operably linked when they are covalently linked in such a way as to place the expression or transcription and/or translation of the coding sequence under the influence or control of the regulatory sequence. Two DNA sequences are said to be operably linked if induction of a promoter in the 5' regulatory sequence results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter 20 region to direct the transcription of the coding sequence, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a regulatory sequence would be operably linked to a coding sequence if the gene expression sequence were capable of effecting transcription of that coding sequence such that the resulting transcript is translated into the desired protein or polypeptide.

25 Methods for nucleic acid introduction into cells are known in the art.

The nucleic acid may be delivered to the cells alone or in association with a vector. In its broadest sense, a vector is any vehicle capable of facilitating the transfer of the nucleic acid to the cells so that the reporter can be expressed. The vector generally transports the nucleic acid to the cells with reduced degradation relative to the extent of degradation that would 30 result in the absence of the vector. In general, the vectors useful in the invention include, but are not limited to, plasmids, phagemids, viruses, other vehicles derived from viral or bacterial sources that have been manipulated by the insertion or incorporation of the antigen nucleic acid sequences. Viral vectors are a preferred type of vector and include, but are not limited

to, nucleic acid sequences from the following viruses: retrovirus, such as Moloney murine leukemia virus, Harvey murine sarcoma virus, murine mammary tumor virus, and Rous sarcoma virus; adenovirus, adeno-associated virus; SV40-type viruses; polyoma viruses; Epstein-Barr viruses; papilloma viruses; herpes virus; vaccinia virus; polio virus; and RNA virus such as a retrovirus. One can readily employ other vectors not named but known in the art.

Preferred viral vectors are based on non-cytopathic eukaryotic viruses in which non-essential genes have been replaced with the gene of interest. Non-cytopathic viruses include retroviruses, the life cycle of which involves reverse transcription of genomic viral RNA into DNA with subsequent proviral integration into host cellular DNA. Retroviruses have been approved for human gene therapy trials. Most useful are those retroviruses that are replication-deficient (i.e., capable of directing synthesis of the desired proteins, but incapable of manufacturing an infectious particle). Such genetically altered retroviral expression vectors have general utility for the high-efficiency transduction of genes *in vivo*. Standard protocols for producing replication-deficient retroviruses (including the steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell lined with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and infection of the target cells with viral particles) are provided in Kriegler, M., Gene Transfer and Expression, A Laboratory Manual W.H. Freeman C.O., New York (1990) and Murray, E.J. Methods in Molecular Biology, vol. 7, Humana Press, Inc., Clifton, New Jersey (1991).

A preferred virus for certain applications is the adeno-associated virus, a double-stranded DNA virus. The adeno-associated virus can be engineered to be replication-deficient and is capable of infecting a wide range of cell types and species. It further has advantages such as, heat and lipid solvent stability; high transduction frequencies in cells of diverse lineages, including hemopoietic cells; and lack of superinfection inhibition thus allowing multiple series of transductions. Reportedly, wild-type adeno-associated virus manifest some preference for integration sites into human cellular DNA, thereby minimizing the possibility of insertional mutagenesis and variability of inserted gene expression characteristic of retroviral infection. In addition, wild-type adeno-associated virus infections have been followed in tissue culture for greater than 100 passages in the absence of selective pressure, implying that the adeno-associated virus genomic integration is a relatively stable event. The adeno-associated virus can also function in an extrachromosomal fashion.

- 60 -

Recombinant adeno-associated viruses that lack the replicase protein apparently lack this integration sequence specificity.

Other vectors include plasmid vectors. Plasmid vectors have been extensively described in the art and are well-known to those of skill in the art. See e.g., Sambrook et al.,

- 5 Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989. In the last few years, plasmid vectors have been found to be particularly advantageous for delivering genes to cells *in vivo* because of their inability to replicate within and integrate into a host genome. These plasmids, however, having a promoter compatible with the host cell, can express a peptide from a gene operatively encoded within the plasmid.
- 10 Some commonly used plasmids include pBR322, pUC18, pUC19, pRc/CMV, SV40, and pBlueScript. Other plasmids are well-known to those of ordinary skill in the art. Additionally, plasmids may be custom designed using restriction enzymes and ligation reactions to remove and add specific fragments of DNA.

In general, the vectors useful in the invention are divided into two classes: biological 15 vectors and chemical/physical vectors. Biological vectors and chemical/physical vectors are useful in the delivery and/or uptake of reporter constructs of the invention.

Most biological vectors are used for delivery of nucleic acids and thus would be most appropriate in the delivery of nucleic acids.

As used herein, a "chemical/physical vector" refers to a natural or synthetic molecule, 20 other than those derived from bacteriological or viral sources, capable of delivering the reference and test compound.

A preferred chemical/physical vector of the invention is a colloidal dispersion system. Colloidal dispersion systems include lipid-based systems including oil-in-water emulsions, 25 micelles, mixed micelles, and liposomes. A preferred colloidal system of the invention is a liposome. Liposomes are artificial membrane vessels which are useful as a delivery vector *in vivo* or *in vitro*. It has been shown that large unilamellar vessels (LUV), which range in size from 0.2 - 4.0 μm can encapsulate large macromolecules. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, et al., *Trends Biochem. Sci.*, (1981) 6:77).

30 Liposomes may be targeted to a particular tissue by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein. Ligands which may be useful for targeting a liposome to an immune cell include, but are not limited to, intact or fragments of molecules which interact with immune cell specific receptors and molecules,

such as antibodies, which interact with the cell surface markers of immune cells. Such ligands may easily be identified by binding assays well known to those of skill in the art. In still other embodiments, the liposome may be targeted to the cancer by coupling it to a one of the immunotherapeutic antibodies discussed earlier. Additionally, the vector may be coupled 5 to a nuclear targeting peptide, which will direct the vector to the nucleus of the host cell.

Lipid formulations for transfection are commercially available from QIAGEN, for example, as EFFECTENE™ (a non-liposomal lipid with a special DNA condensing enhancer) and SUPERFECT™ (a novel acting dendrimeric technology).

- Liposomes are commercially available from Gibco BRL, for example, as
- 10 LIPOFECTIN™ and LIPOFECTACE™, which are formed of cationic lipids such as N-[1-(2, 3 dioleyloxy)-propyl]-N, N, trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB). Methods for making liposomes are well known in the art and have been described in many publications. Liposomes also have been reviewed by Gregoriadis, G. in *Trends in Biotechnology*, (1985) 3:235-241. In some preferred 15 embodiments, the method of choice for delivering DNA (for transfection) to the cells is electroporation, particularly where a stably transfected cell line is sought.

The present invention is further illustrated by the following Examples, which in no way should be construed as further limiting.

20

Examples

Example 1. Biological Activity of Production Lot of CpG ODN (SEQ ID NO:1) Assayed Using Cells Stably Transfected with hTLR9 Expression Vector

CpG ODN (SEQ ID NO:1) is currently in preclinical and clinical trials for a number of 25 clinical applications. SEQ ID NO:1 has been discovered to induce signaling through TLR9. In order to assess different lots of clinical material, the methods of the invention are employed, using a highly characterized lot of SEQ ID NO:1 as a reference.

In a TLR9 assay, the CpG-non-responsive human embryonal kidney cell line HEK293 (e.g., ATCC CRL-1573) was stably transfected with a hTLR9 expression construct and found 30 to express full-length human TLR9 constitutively. The cells also contained a genomic copy of a reporter construct with a 6x NF-κB binding site and a luciferase gene reporter cassette. Incubation of the cells with CpG ODN (SEQ ID NO:1) activates NF-κB driven expression of luciferase, while incubation with medium alone (negative control) does not. The cells are

then lysed and activity of the luciferase protein determined by its catalytic activity of luciferin oxidation which is measured in a luminometer. Results are expressed as fold induction above medium control.

Assay set-up includes a reference standard material which is highly pure and well characterized. The reference material is used to create a standard curve within a defined range where the dose-response curve is linear (e.g., in the range of the EC50 value for SEQ ID NO:1, 70-100 nM). The test material is dissolved for testing and assayed at a defined concentration. Activity of the test material is calculated using the standard curve of the reference material. Quality of the tested material is deemed acceptable if activity of the test material compared to activity of the reference material falls within predetermined limits.

Example 2. Biological Activity of Production Lot of CpG ODN (SEQ ID NO:1) Assayed Using RPMI 8226 Cells

The assay of Example 1 is performed using RPMI 8226 cells (ATCC CCL-155) in place of the stably transfected HEK cells of Example 1. RPMI 8226 cells naturally express human TLR9. The cells are stably transfected with a 6x NF- κ B-luciferase reporter construct. It is to be understood that the assay could also be carried out by measuring a native readout such as IL-10 secretion.

20 Example 3. Expression Vectors for Human TLR3 (hTLR3) and Murine TLR3 (mTLR3)

To create an expression vector for human TLR3, human TLR3 cDNA was amplified by the polymerase chain method (PCR) from a cDNA made from human 293 cells using the primers 5'-GAAACTCGAGCCACCATGAGACAGACTTGCCTGTATCTAC-3' (sense, SEQ ID NO:152) and 5'-GAAAGAATTCTTAATGTACAGAGTTTGATCCAAG-3' (antisense, SEQ ID NO:153). The primers introduce *Xho*I and *Eco*RI restriction endonuclease sites at their 5' ends for use in subsequent cloning into the expression vector. The resulting amplification product fragment was cloned into pGEM-T Easy vector (Promega), isolated, cut with *Xho*I and *Eco*RI restriction endonucleases, ligated into an *Xho*I/*Eco*RI-digested pcDNA3.1 expression vector (Invitrogen). The insert was fully sequenced and translated into protein. The cDNA sequence corresponds to the published cDNA sequence for hTLR3, available as GenBank accession no. NM_003265 (SEQ ID NO:7). The open reading frame codes for a protein 904 amino acids long, having the sequence corresponding to GenBank accession no. NP_003256 (SEQ ID NO:8).

Corresponding nucleotide and amino acid sequences for murine TLR3 (mTLR3) are known. The nucleotide sequence of mTLR3 cDNA has been reported as GenBank accession no. AF355152 (SEQ ID NO:9), and the amino acid sequence of mTLR3 has been reported as GenBank accession no. AAK26117 (SEQ ID NO:10).

5

Example 4. Reconstitution of TLR3 Signaling in 293 Fibroblasts

Human TLR3 cDNA and murine TLR3 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the *Eco*RI site. The resulting expression vectors mentioned above were transfected into

- 10 CpG-DNA non-responsive human 293 fibroblast cells (ATCC, CRL-1573) using the calcium phosphate method. Utilizing a "gain of function" assay it was possible to reconstitute human TLR3 (hTLR3) and murine TLR3 (mTLR3) signaling in 293 fibroblast cells.

Since NF- κ B activation is central to the IL-1/TLR signal transduction pathway (Medzhitov R et al. (1998) *Mol Cell* 2:253-8; Muzio M et al. (1998) *J Exp Med*

- 15 187:2097-101), in a first set of experiments human 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and an NF- κ B-driven luciferase reporter construct.

Likewise, in a second set of experiments, 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and an IFN- α 4-driven luciferase reporter 20 construct (described in Example 8 below).

In a third group of experiments, 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and a RANTES-driven luciferase reporter construct (described in Example 14 below).

- 25 **Example 5. Reconstitution of TLR7 Signaling**

Methods for cloning murine and human TLR7 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application

PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are

incorporated herein by reference. Human TLR7 cDNA and murine TLR7 cDNA in pT-Adv

- 30 vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the *Eco*RI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR7 (hTLR7) and murine TLR7 (mTLR7) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors

- 64 -

mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

Example 6. Reconstitution of TLR8 Signaling

5 Methods for cloning murine and human TLR8 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated by reference. Human TLR8 cDNA and murine TLR8 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from
10 Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR8 (hTLR8) and murine TLR8 (mTLR8) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

15

Example 7. Reconstitution of TLR9 Signaling in 293 Fibroblasts

Methods for cloning murine and human TLR9 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated by reference. Human TLR9 cDNA and murine TLR9 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from
20 Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR9 (hTLR9) and murine TLR9 (mTLR9) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors
25 mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

To generate stable clones expressing human TLR9, murine TLR9, or either TLR9 with the NF- κ B-luc reporter plasmid, 293 cells were transfected in 10 cm plates (2×10^6 cells/plate) with 16 μ g of DNA and selected with 0.7 mg/ml G418 (PAA Laboratories GmbH, Cöln, Germany). Clones were tested for TLR9 expression by RT-PCR, for example as shown in Fig. 21. The clones were also screened for IL-8 production or NF- κ B-luciferase activity after stimulation with ODN. Four different types of clones were generated.

- 65 -

- 293-hTLR9-luc: expressing human TLR9 and 6x NF- κ B-luciferase reporter
293-mTLR9-luc: expressing murine TLR9 and 6x NF- κ B-luciferase reporter
293-hTLR9: expressing human TLR9
293-mTLR9: expressing murine TLR9

5

Human 293 fibroblast cells were transiently transfected with hTLR9 and a 6x NF- κ B-luciferase reporter plasmid (NF- κ B-luc, kindly provided by Patrick Baeuerle, Munich, Germany) (Fig. 18A) or with hTLR9 alone (Fig. 18B). After stimulus with CpG-ODN (2 μ M, TCGTCGTTTGTGCTTTGTCGTT, SEQ ID NO:1), GpC-ODN (2 μ M,

- 10 TGCTGCTTTGTGCTTTGTCGTT, SEQ ID NO:154), LPS (100 ng/ml) or media, NF- κ B activation by luciferase readout (8h, Fig. 18A) or IL-8 production by ELISA (48h, Fig. 18B) was monitored. Results are representative of three independent experiments. Fig. 18 shows that cells expressing hTLR9 responded to CpG-DNA but not to LPS.

- Human 293 fibroblast cells were transiently transfected with mTLR9 and the
15 NF- κ B-luc construct. Similar data was obtained for IL-8 production (not shown). Thus expression of TLR9 (human or mouse) in 293 cells results in a gain of function for CpG DNA stimulation similar to hTLR4 reconstitution of LPS responses.

- Figs. 19 and 20 demonstrate the responsiveness of a stable 293-mTLR9-luc and 293-hTLR9-luc clones after stimulation with CpG-ODN (2 μ M, SEQ ID NO:1), GpC-ODN (2 μ M, SEQ ID NO:154), Me-CpG-ODN (2 μ M; TZGTZGTTTGTZGTTTGTZGTT, Z = 5-methylcytidine, SEQ ID NO:147), LPS (100 ng/ml) or media, as measured by monitoring NF- κ B activation. Similar results were obtained utilizing IL-8 production with the stable clones. These results demonstrate that CpG-DNA non-responsive cell lines can be stably genetically complemented with TLR9 to become responsive to CpG DNA in a motif-specific manner.
25

Example 8. Method of Making IFN- α 4 Reporter Vector

- A number of reporter vectors may be used in the practice of the invention. Some of the reporter vectors are commercially available, e.g., the luciferase reporter vectors
30 pNF- κ B-Luc (Stratagene) and pAP1-Luc (Stratagene). These two reporter vectors place the luciferase gene under control of an upstream (5') promoter region derived from genomic DNA for NF- κ B or AP1, respectively. Other reporter vectors can be constructed following standard

methods using the desired promoter and a vector containing a suitable reporter, such as luciferase, β -galactosidase (β -gal), chloramphenicol acetyltransferase (CAT), and other reporters known by those skilled in the art. Following are some examples of reporter vectors constructed for use in the present invention.

5 IFN- α 4 is an immediate-early type 1 IFN. Sequence-specific PCR products for the -620 to +50 promoter region of IFN- α 4 were derived from genomic DNA of human 293 cells and cloned into the *Sma*I site of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -620 to +50 promoter region of IFN- α 4. The sequence of the -620 to +50 promoter region of IFN- α 4 is provided as
10 SEQ ID NO:121.

Example 9. Method of Making IFN- α 1 Reporter Vector

IFN- α 1 is a late type 1 IFN. Sequence-specific PCR products for the -140 to +9 promoter region of IFN- α 1 were derived from genomic DNA of human 293 cells and cloned
15 into *Sma*I site of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -140 to +9 promoter region of IFN- α 1. A sequence of the -140 to +9 promoter region of IFN- α 1 is provided as SEQ ID NO:122.

Example 10. Method of Making IFN- β Reporter Vector

20 IFN- β is an immediate-early type 1 IFN. The -280 to +20 promoter region of IFN- β was derived from the pUC β 26 vector (Algarté M et al. (1999) *J Virol* 73:2694-702) by restriction at *Eco*RI and *Taq*I sites. The 300 bp restriction fragment was filled in by Klenow enzyme and cloned into *Nhe*I-digested and filled in pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -280 to +20 promoter region of IFN- β . A sequence of the -280 to +20 promoter region of IFN- β is provided as SEQ ID NO:123.

Example 11. Method of Making Human IL-6 Reporter Vectors

Reporter constructs are made using the -285 to +7 promoter region derived from
30 human IL-6 genomic DNA. (Takeshita et al. *Eur. J. Immunol.* 2000. 30: 108-116.) In one reporter construct the IL-6 promoter region is cloned as a *Kpn*I-*Xho*I insert into pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of

- 67 -

an upstream (5') -288 to +7 promoter region derived from human IL-6 genomic DNA. A sequence of the -288 to +7 promoter region of human IL-6 is provided as SEQ ID NO:128.

The promoter can also be derived from the full-length promoter region of the IL-6 gene from -1174 to + 7 (GenBank Accession No M22111) as shown below as SEQ ID

5 NO:129.

Example 12. Method of Making Human IL-8 Reporter Vectors

Reporter constructs have been made using a -546 to +44 and a truncated -133 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) *J*

10 *Immunol* 143:1366-71. In each reporter construct the IL-8 promoter region was cloned as a *KpnI-XhoI* insert into pGL3-Basic Vector (Promega). One of the resulting expression vectors includes a luciferase gene under control of an upstream (5') -546 to +44 promoter region derived from human IL-8 genomic DNA. Another of the resulting expression vectors includes a luciferase gene under control of an upstream (5') -133 to +44 promoter region

15 derived from human IL-8 genomic DNA.

The promoter can also be the upstream (5') -734 to +44 or the upstream (5') -162 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) *J* *Immunol* 143:1366-71. A sequence of the -734 to +44 promoter region derived from human IL-8 is provided below as SEQ ID NO: 130.

20

Example 13. Method of Making Human IL-12 p40 Reporter Vectors

Reporter constructs have been made using truncated (-250 to +30, SEQ ID NO:127) and full length (-751 to +30, SEQID NO:126) promoter regions derived from human IL-12 p40 genomic DNA. (Takeshita et al. *Eur. J. Immunol.* 2000. 30: 108-116.) In one reporter

25 construct the truncated IL-12 p40 promoter was cloned as a *KpnI-XhoI* insert into p β gal-Basic (Promega). The resulting expression vector includes a β gal gene under control of an upstream (5') -250 to +30 promoter region of human IL-12 p40. In a second reporter construct the full length IL-12 p40 promoter was cloned as a *KpnI-XhoI* insert into

p β gal-Basic (Promega). The resulting expression vector includes a β gal gene under control

30 of an upstream (5') -751 to +30 promoter region of human IL-12 p40. In a third reporter construct the truncated -250 to +30 promoter region of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -250 to +30 promoter region of human IL-12 p40. In a

fourth reporter construct the full length IL-12 p40 promoter of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -751 to +30 promoter region of human IL-12 p40. A sequence of the -751 to +30 promoter region of human IL-12 p40 is provided as SEQ ID NO:
5 126.

Example 14. Method of Making RANTES Reporter Vector

Transcription of the chemokine RANTES is believed to be regulated at least in part by IRF3 and by NF- κ B. Lin R et al. (1999) *J Mol Cell Biol* 19(2):959-66; Genin P et al. (2000) *J Immunol* 164:5352-61. A 483 bp sequence-specific PCR product including the -397 to +5 promoter region of RANTES was derived from genomic DNA of human 293 cells, restricted with *Pst*I and cloned into pCAT-Basic Vector (Promega) using *Hind*III (filled in with Klenow) and *Pst*I sites (filled in). The -397 to +5 promoter region of RANTES was then isolated from the resulting RANTES/chloramphenicol acetyltransferase (CAT) reporter
10 plasmid by restriction with *Bgl*II and *Sal*I, filled in with Klenow enzyme, and cloned into the *Nhe*I site (filled in with Klenow) of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -397 to +5 promoter region of RANTES. Comparison of the insert sequence -397 to +5 of Genin P et al.
15 (2000) *J Immunol* 164:5352-61 and GenBank accession no. AB023652 (SEQ ID NO:125)
20 revealed two point deletions (at positions 105 and 273 of SEQ ID NO:125) which do not create new restriction sites. A sequence of the -397 to +5 promoter region of RANTES is provided as SEQ ID NO:125.

Example 15. RT-PCR Analysis of Cell Lines for TLR Expression

25 TLR expression was determined using total RNA of cells prepared by standard methods (QIAGEN). RNA was transcribed to cDNA using AMV Reverse Transcriptase (Roche). Quantitative PCR was performed with TLR-gene specific primer sets using a LightCycler Instrument (Roche). Controls for genomic DNA impurities were performed by a similar PCR method using RNA (but without reverse transcriptase).

30 A variety of cell lines was screened for their expression of TLR3, 7, 8 and 9. These cell lines are A549 (human lung carcinoma), BeWo (human choriocarcinoma), HeLa (human cervix carcinoma), Hep-2 (human cervix carcinoma), KG-1 (human acute myeloid leukemia), MUTZ-3 (human acute myelomonocytic leukemia), Nalm-6 (human B cell precursor

- 69 -

leukemia), NK-92 (human Natural killer cell line), NK-92 MI (human Natural killer cell line, IL-2 independent), Raji (human Burkitt's lymphoma, B lymphocyte), RAMOS (Burkitt's lymphoma, B lymphocyte), RPMI 8226 (human multiple myeloma, B lymphocyte), THP-1 (human acute monocytic leukemia), U937 (human lymphoma) and Jurkat (human T cell 5 leukemia).

All B cell lines express, as determined by Real Time-PCR (RT-PCR), endogenous TLR9. In addition, all lines except NALM co-express TLR7. Nevertheless, none of the other cell lines appeared to express TLR7, whereas low TLR9 expression on the mRNA level was observed for KG-1 and THP-1. TLR3 appeared to be expressed in most of these cell lines, 10 with the highest mRNA levels for example in the NK cell lines (e.g., NK-92).

Raji cells contain high levels of TLR9 mRNA and low levels of TLR3 and TLR7 mRNA suggesting high expression of TLR9 protein and lower levels of TLR3 and TLR7 protein.

These results indicate that the cell lines expressing TLR9 can be used to screen 15 potential new TLR9 ligands (CpG ODN, etc.), cell lines expressing TLR7 to screen potential new TLR7 ligands (ORN (oligonucleotides), small molecules, etc.), and cell lines expressing both receptors may be used to screen for "hybrid" TLR7 and 9 agonists. In addition, cell lines lacking TLR8 expression (i.e., all cell lines tested) can be used to confirm the specificity of a TLR7 versus a TLR8 ligand (i.e., the latter should not be able to stimulate 20 TLR7-expressing cells). In contrast, cell lines expressing TLR3 (e.g., Raji cells) may be used to screen for potential new TLR3 ligands (dsRNA, etc.).

Example 16. Screening of Various Cell Lines for Responses to TLR Ligands

Except where otherwise indicated, the following general methods were used.

25 Cells were plated at 5×10^5 /ml in 48 well plates in RPMI medium with 10% FBS. Stimulation was performed by addition of the oligonucleotides or other compounds diluted to the test concentrations in TE. Cells were incubated for 24 or 48h and the supernatants were taken to analyse for the presence of cytokines or chemokines.

The TLR ligands used are as follows:

30 TLR3: Poly I:C

TLR7, TLR8: R-848

TLR9:

T*C*C*A*G*G*A*C*T*T*C*T*C*T*C*A*G*G*T*T (SEQ ID NO: 2);

- 70 -

T*C*G*T*C*G*T*T*T*G*T*C*G*T*T*T*T*G*T*C*G*T (SEQ ID NO: 1);
T*G*C*T*G*C*T*T*T*G*T*G*C*T*T*T*T*G*T*G*C*T*T (SEQ ID NO: 154);
T*C*G*T*C*G*T*T*T*C*G*G*C*G*C*G*C*G*C*G (SEQ ID NO: 158);
G*G*G_G_A_C_G_A_C_G_T_C_G_T_G_G*G*G*G*G*G (SEQ ID NO: 159);
5 T*G*C*T*G*C*T*T*T*C*G*G*C*G*G*C*C*G*C*C*G (SEQ ID NO: 160);
G*G*G_G_A_G_C_A_G_C_T_G_C_T_G_G*G*G*G*G*G (SEQ ID NO: 161).
* phosphorothioate linkage; phosphodiester linkage.

Increased expression of cell surface markers was determined using cells stimulated as described above and then stained with different monoclonal antibody combinations specific for the cell surface markers. Analysis of the cells was performed by flow cytometry.

Changes in reporter gene activity were determined using cells transfected with a NF- κ B reporter construct (Stratagene) and a β -galactosidase reporter control plasmid (Invitrogen) using electroporation. For NF- κ B analysis, a 5x NF- κ B-Luciferase Vector (Stratagene) was used. The amount of DNA transfected as well as cell concentration was varied. Stimulation was performed 24h after transfection. Cells were stimulated with the indicated amounts of ODN, R-848, LPS, TNF- α , or IL-1 β for the indicated incubation times. Cell extracts were prepared by lysing the cells in 100 μ l reporter lysis buffer (Promega) using the freeze-thaw method. All data were normalized for β -galactosidase expression.

Stimulation indices were calculated in reference to luciferase activity of medium without addition of ODN.

Stimulation of the Raji cell line with a TLR9 ligand (CpG ODN), a TLR3 ligand (poly I:C) or a TLR7 ligand (R-848) results in the ligand-specific secretion of cytokines. Figs. 14 and 15 show IL-6 production of Raji cells upon stimulation with ODN, poly I:C or R-848. Fig. 16 shows IFN- α 2 production of Raji cells upon stimulation with ODN, poly I:C or R-848. In all assays, cells were incubated with Na-Butyrate for 48h before stimulation with TLR ligands. CpG stimulation of the RAMOS cell lines can result in the CpG-specific up-regulation of cell surface markers such as CD80, as shown in Fig. 17.

30 Example 17. Inhibition of a Positive Reference Compound Response with an Inhibitory Test Compound

Inhibition of CpG mediated chemokine production was determined using RPMI 8226 cells incubated with increasing amounts of SEQ ID NO:1 in the presence of an

- 71 -

immunoinhibitory ODN (SEQ ID NO: 151). IP-10 production was measured 24h later by ELISA (Fig. 9).

Equivalents

5 The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by examples provided, since the examples are intended as a single illustration of one aspect of the invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications of the invention in addition to those shown and described
10 herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims. The advantages and objects of the invention are not necessarily encompassed by each embodiment of the invention.

 All references, patents and patent publications that are recited in this application are incorporated in their entirety herein by reference.

15

We claim:

- 72 -

Claims

1. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising
 - contacting an RPMI 8226 cell that expresses a TLR with a test compound and
 - 5 measuring a test level of TLR signaling activity,
 - wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and
 - 10 wherein the TLR signaling activity is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF- α expression, TNF- α production and TNF- α secretion.
2. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising
 - 15 contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,
 - wherein a test level that is positive is indicative of an immunostimulatory compound, and
 - 20 wherein the cell is a Raji cell, a RAMOS cell, a Nalm cell, a THP-1 cell, or a KG-1 cell.
3. The method of claim 1 or 2, wherein the test level is positive relative to a reference level determined by contacting the cell with a reference compound and measuring a reference TLR signaling activity.
 - 25
4. The method of claim 3, wherein the reference compound is a positive reference compound
5. The method of claim 4, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an imidazoquinoline compound.
 - 30

- 73 -

6. The method of claim 3, wherein the reference compound is a negative reference compound.

7. The method of claim 6, wherein the negative reference compound is
5 medium alone.

8. The method of claim 5, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.

10

9. The method of claim 5, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.

15 10. The method of claim 1 or 2, wherein the test compound is a nucleic acid.

11. The method of claim 10, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.

20

12. The method of claim 10, wherein the nucleic acid comprises a phosphorothioate backbone linkage.

13. The method of claim 10, wherein the nucleic acid is a DNA, an RNA or
25 a DNA-RNA hybrid.

14. The method of claim 1 or 2, wherein the test compound is a non-nucleic acid small molecule.

30 15. The method of claim 1 or 2, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.

16. The method of claim 15, wherein the carbohydrate is a polysaccharide.

17. The method of claim 1 or 2, wherein the test compound is derived from a molecular library.

5 18. The method of claim 1, wherein the cell is transfected with a nucleic acid.

19. The method of claim 18, wherein the nucleic acid encodes a TLR or a reporter construct.

10 20. The method of claim 2, wherein the cell is transfected with a nucleic acid.

15 21. The method of claim 20, wherein the nucleic acid encodes a TLR or a reporter construct.

22. The method of claim 19 or 21, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.

20 23. The method of claim 22, wherein the TLR is a human TLR.

25 24. The method of claim 19 or 21, wherein the reporter construct is selected from the group consisting of a luciferase reporter construct, a β -galactosidase reporter construct, a chloramphenicol acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.

25. The method of claim 19 or 21, wherein the reporter construct comprises a TLR responsive promoter.

30 26. The method of claim 25, wherein the TLR responsive promoter comprises a transcription factor binding site selected from the group consisting of a NF- κ B binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an

IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.

27. The method of claim 25, wherein the TLR responsive promoter is a
5 promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN- α 1 promoter region, an IFN- α 4 promoter region, an IFN- β promoter region, an IFN- γ promoter region, a TNF- α promoter region, a TNF- β promoter region, an IP-9 promoter region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a
10 MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.

28. The method of claim 18 or 20, wherein the cell is stably transfected.
15
29. The method of claim 1 or 2, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.

30. The method of claim 1, wherein the TLR signaling activity is selected
20 from the group consisting of IL-8 secretion, IL-10 secretion, IP-10 secretion and TNF- α secretion.

31. The method of claim 2, wherein the TLR signaling activity is selected
from the group consisting of IL-6 expression, IL-6 production, IL-6 secretion, IL-8
25 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, IL-12 expression, IL-12 production, IL-12 secretion, TNF- α expression, TNF- α production and TNF- α secretion.

32. The method of claim 2, wherein the TLR signaling activity is measured
30 by phosphorylation.

33. The method of claim 32, wherein phosphorylation is total cellular phosphorylation.

- 76 -

34. The method of claim 32, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NFkB subunits, c-Jun and c-Fos.

5

35. The method of claim 1 or 2, wherein the TLR signaling activity is measured by gene expression.

10 36. The method of claim 1, wherein the TLR signaling activity is measured by gene expression selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-10 expression, IP-10 expression, and TNF- α expression.

15 37. The method of claim 35, wherein TLR signaling activity is measured by microarray techniques.

38. The method of claim 2, wherein the TLR signaling activity is measured by cell proliferation.

20 39. The method of claim 1 or 2, wherein TLR signaling activity is measured by cell surface marker expression.

40. The method of claim 1, wherein TLR signaling activity is measured by cell surface expression of CD71, CD86 or HLA-DR.

25

41. The method of claim 2, wherein TLR signaling activity is measured by CD71 cell surface expression, CD86 cell surface expression, HLA-DR cell surface expression, CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.

30

42. The method of claim 2, wherein TLR signaling activity is measured by antibody secretion.

43. The method of claim 42, wherein the antibody secretion is IgM secretion.

44. A composition comprising
an RPMI 8226 cell stably transfected with a nucleic acid encoding a TLR
5 polypeptide, or a fragment thereof.

45. The composition of claim 44, further comprising a reporter construct
comprising a promoter and a reporter sequence wherein the promoter is a TLR responsive
promoter.

10

46. The composition of claim 45, wherein the TLR responsive promoter
comprises a nucleic acid sequence selected from the group consisting of an NF- κ B binding
site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3
binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding
15 site, and a TARE.

47. The composition of claim 45, wherein the reporter sequence is selected
from the group consisting of a luciferase sequence, a β -galactosidase sequence, a green
fluorescent protein sequence, a secreted alkaline phosphatase sequence and a chloramphenicol
20 transferase sequence.

48. The composition of claim 44, wherein the TLR polypeptide or fragment
thereof is a human TLR polypeptide or fragment thereof.

25 49. The composition of claim 44, wherein the TLR polypeptide or fragment
thereof is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6,
TLR7, TLR8, TLR9 and TLR10.

30 50. The composition of claim 44, wherein the TLR polypeptide or fragment
thereof is a human TLR polypeptide.

51. A screening method for identifying agonists of Toll-like receptor (TLR)
signaling activity, comprising

- 78 -

contacting an cell that ectopically expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

5 wherein the cell that ectopically expresses a TLR is selected from the group consisting of RPMI 8226, RAMOS, Raji, Nalm, THP-1, KG-1 and 293 HEK.

10 52. The method of claim 51, wherein the test level is positive relative to a reference level determined by contacting the cell with a reference compound and measuring a reference TLR signaling activity.

53. The method of claim 52, wherein the reference compound is a positive reference compound.

15 54. The method of claim 53, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an imidazoquinoline compound.

20 55. The method of claim 54, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.

56. The method of claim 54, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.

25 57. The method of claim 52, wherein the reference compound is negative reference compound.

30 58. The method of claim 57, wherein the negative reference compound is medium alone.

59. The method of claim 51, wherein the test compound is a nucleic acid.

- 79 -

60. The method of claim 59, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.

5 61. The method of claim 59, wherein the nucleic acid comprises a phosphorothioate backbone linkage.

62. The method of claim 59, wherein the nucleic acid is a DNA, an RNA, or a DNA-RNA hybrid.

10 63. The method of claim 51, wherein the test compound is a non-nucleic acid small molecule.

15 64. The method of claim 51, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.

65. The method of claim 64, wherein the carbohydrate is a polysaccharide.

20 66. The method of claim 51, wherein the test compound is derived from a molecular library.

25 67. The method of claim 51, wherein the TLR signaling activity is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-6 expression, IL-6 production, IL-6 secretion, IL-8 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IL-12 expression, IL-12 production, IL-12 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF- α expression, TNF- α production and TNF- α secretion.

30 68. The method of claim 51, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.

69. The method of claim 51, wherein the TLR is a human TLR.

- 80 -

70. The method of claim 51, wherein the cell is transfected with a reporter construct.

71. The method of claim 70, wherein the reporter construct is selected from 5 the group consisting of a luciferase reporter construct, a β -galactosidase reporter construct, a chloramphenicol acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.

72. The method of claim 71, wherein the TLR signaling activity is 10 measured by luciferase expression, β -galactosidase expression, chloramphenicol expression, acetyltransferase expression, green fluorescent protein expression, alkaline phosphatase expression and alkaline phosphatase secretion.

73. The method of claim 71, wherein the reporter construct comprises a 15 TLR responsive promoter.

74. The method of claim 25 or 73, wherein the TLR responsive promoter is a TLR1 responsive promoter, a TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a 20 TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter and a TLR10 responsive promoter.

75. The method of claim 73, wherein the TLR responsive promoter comprises a transcription factor binding site selected from the group consisting of an NF- κ B 25 binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.

76. The method of claim 73, wherein the TLR responsive promoter is a 30 promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN- α 1 promoter region, an IFN- α 4 promoter region, an IFN- β promoter region, an IFN- γ promoter region, a TNF- α promoter region, a TNF- β promoter region, an IP-9 promoter

region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.

5

77. The method of claim 51, wherein the cell is stably transfected with a TLR nucleic acid.

10 78. The method of claim 70, wherein the cell is stably transfected with the reporter construct.

79. The method of claim 51, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.

15 80. The method of claim 79, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-8 secretion, TNF- α secretion, IL-10 secretion and IP-10 secretion.

20 81. The method of claim 79, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-6 secretion and IL-12 secretion.

82. The method of claim 51, wherein the TLR signaling activity is measured by phosphorylation.

25 83. The method of claim 82, wherein phosphorylation is total cellular phosphorylation.

30 84. The method of claim 82, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NF- κ B subunits, c-Jun and c-Fos.

85. The method of claim 51, wherein the TLR signaling activity is measured by gene expression.

86. The method of claim 85, wherein the gene expression is selected from the group consisting of IL-8 expression, IL-10 expression, IP-10 expression, CD71 expression, CD86 expression and HLA-DR expression.

5

87. The method of claim 85, wherein the gene expression is selected from the group consisting of IL-6 expression, IL-12 expression and TNF- α expression.

88. The method of claim 51, wherein the TLR signaling activity is
10 measured by microarray techniques.

89. The method of claim 51, wherein the TLR signaling activity is measured by cell proliferation.

15 90. The method of claim 51, wherein the TLR signaling activity is measured by cell surface marker expression.

19 91. The method of claim 90, wherein the cell surface marker expression is selected from the group consisting of CD71 cell surface expression, CD86 cell surface expression and HLA-DR cell surface expression.

92. The method of claim 90, wherein the cell surface marker expression is selected from the group consisting of CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.

25

93. The method of claim 51, wherein the TLR signaling activity is measured by antibody secretion.

94. The method of claim 93, wherein the antibody secretion is IgM
30 secretion.

95. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

- 83 -

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

5 wherein a test level that is less than a reference level is indicative of test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a RAMOS cell, a Raji cell, a THP-1 cell, a Nalm cell and a KG-1 cell.

10 96. The method of claim 95, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an immunostimulatory imidazoquinoline compound.

15 97. The method of claim 96, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.

98. The method of claim 96, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.

20 99. The method of claim 95, wherein the test compound is a nucleic acid.

100. The method of claim 99, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a 25 poly-G motif.

101. The method of claim 99, wherein the nucleic acid comprises a phosphorothioate backbone linkage.

30 102. The method of claim 99, wherein the nucleic acid is a DNA, an RNA or a DNA-RNA hybrid.

- 84 -

103. The method of claim 95, wherein the test compound is a non-nucleic acid small molecule.

104. The method of claim 95, wherein the test compound comprises an
5 amino acid, a carbohydrate, a lipid, or a hormone.

105. The method of claim 104, wherein the carbohydrate is a polysaccharide.

10 106. The method of claim 95, wherein the test compound is derived from a molecular library.

107. The method of claim 95, wherein the experimental cell is transfected with a nucleic acid.

15 108. The method of claim 107, wherein the nucleic acid encodes a TLR or a reporter construct.

109. The method of claim 108, wherein the TLR is selected from the group
20 consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.

110. The method of claim 108, wherein the TLR is a human TLR.

111. The method of claim 108, wherein the reporter construct is selected
25 from the group consisting of a luciferase reporter construct, a β -galactosidase reporter construct, a chloramphenicol acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.

112. The method of claim 111, wherein the TLR signaling activity is
30 selected from the group consisting of luciferase expression, β -galactosidase expression, chloramphenicol acetyltransferase expression, green fluorescent protein expression, alkaline phosphatase expression and alkaline phosphatase secretion.

- 85 -

113. The method of claim 108, wherein the reporter construct comprises a TLR responsive promoter.

114. The method of claim 113, wherein the TLR responsive promoter
5 comprises a transcription factor binding site selected from the group consisting of an NF- κ B binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.

10 115. The method of claim 113, wherein the TLR responsive promoter is a promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN- α 1 promoter region, an IFN- α 4 promoter region, an IFN- β promoter region, an IFN- γ promoter region, a TNF- α promoter region, a TNF- β promoter region, an IP-9 promoter
15 region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.

20 116. The method of claim 113, wherein the TLR responsive promoter is selected from the group consisting of a TLR1 responsive promoter, TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter and a TLR10 responsive promoter.

25

117. The method of claim 107, wherein the cell is stably transfected with the nucleic acid.

30 118. The method of claim 95, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.

- 86 -

119. The method of claim 118, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-6 secretion, IL-12 secretion and TNF- α secretion.

5 120. The method of claim 118, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-8 secretion, IL-10 secretion and IP-10 secretion.

10 121. The method of claim 95, wherein the TLR signaling activity is measured by phosphorylation.

122. The method of claim 121, wherein phosphorylation is total cellular phosphorylation.

15 123. The method of claim 122, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NF- κ B subunits, c-Jun and c-Fos.

20 124. The method of claim 95, wherein the TLR signaling activity is measured by gene expression.

125. The method of claim 124, wherein the gene expression is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-10 expression and IP-10 expression.

25 126. The method of claim 124, wherein the gene expression is selected from the group consisting of IL-6 expression, IL-12 expression and TNF- α expression.

127. The method of claim 95, wherein the TLR signaling activity is measured by microarray techniques.

128. The method of claim 95, wherein the TLR signaling activity is measured by cell proliferation.

129. The method of claim 95, wherein the TLR signaling activity is measured by cell surface marker expression.

5 130. The method of claim 129, wherein the cell surface marker expression is selected from the group consisting of CD71 cell surface expression, CD86 cell surface expression and HLA-DR MHC class II cell surface expression.

10 131. The method of claim 129, wherein the cell surface marker expression is selected from the group consisting of CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.

15 132. The method of claim 95, wherein the TLR signaling activity is measured by antibody secretion.

133. The method of claim 132, wherein the antibody secretion is IgM secretion.

20 134. The method of claim 95, wherein the cell is contacted to the positive reference compound and the test compound simultaneously.

135. The method of claim 95, wherein the cell is contacted to the positive reference compound prior to contact with the test compound.

25 136. The method of claim 95, wherein the cell is contacted to the test compound prior to contact with the positive reference compound.

137. A method for quality assessment of a test composition containing a known Toll like receptor (TLR) ligand, comprising:

30 measuring a reference activity of a reference composition comprising a known TLR ligand, wherein the known TLR ligand is a nucleic acid molecule;

measuring a test activity of a test composition comprising the known TLR ligand; and comparing the test activity to the reference activity.

138. The method of claim 137, further comprising selecting the test composition if the test activity falls within a predetermined range of variance about the reference activity.

5

139. The method of claim 1, wherein the reference composition is a first production lot of a pharmaceutical composition comprising the known TLR ligand, and wherein the test composition is a second production lot of a pharmaceutical composition comprising the known TLR ligand.

10

140. The method of claim 137, wherein the reference composition is a first in-process lot of a composition comprising the known TLR ligand, and wherein the test composition is a second in-process lot of a composition comprising the known TLR ligand.

15

141. The method of claim 137, wherein the measuring the reference activity comprises contacting the reference composition with an isolated cell expressing a TLR responsive to the known TLR ligand, and wherein the measuring the test activity comprises contacting the test composition with the isolated cell expressing a TLR responsive to the known TLR ligand.

20

142. The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand comprises an expression vector for the TLR responsive to the known TLR ligand.

25

143. The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand naturally expresses the TLR responsive to the known TLR ligand.

30

144. The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226.

- 89 -

145. The method of claim 137, wherein the measuring the reference activity and the measuring the test activity each comprise measuring signaling activity mediated by a TLR responsive to the known TLR ligand.

5 146. The method of claim 145, wherein the signaling activity is activity of a reporter construct under control of NF- κ B response element.

147. The method of claim 145, wherein the signaling activity is activity of a reporter construct under control of interferon-stimulated response element (ISRE).

10 148. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IFN- α promoter.

149. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IFN- β promoter.

150. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-6 promoter.

20 151. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-8 promoter.

152. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-12 p40 promoter.

25 153. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of a RANTES promoter.

154. The method of claim 137, wherein the known TLR ligand is a TLR9
30 ligand.

155. The method of claim 137, wherein the known TLR ligand is a TLR3
ligand.

- 90 -

156. The method of claim 137, wherein the known TLR ligand is a TLR7 ligand.

5 157. The method of claim 137, wherein the known TLR ligand is a TLR8 ligand.

158. The method of claim 137, wherein the known TLR ligand is an immunostimulatory nucleic acid.

10 159. The method of claim 137, wherein the known TLR ligand is a CpG nucleic acid.

15 160. The method of claim 137, wherein the known TLR ligand is an immunoinhibitory nucleic acid.

161. A method for quality assessment of a test lot of a pharmaceutical product containing a known TLR9 ligand, comprising:

20 measuring a reference activity of a reference lot of a pharmaceutical product comprising a known TLR9 ligand, wherein the known TLR9 ligand is a nucleic acid molecule;

measuring a test activity of a test lot of a pharmaceutical product comprising the known TLR9 ligand;

25 comparing the test activity to the reference activity; and
rejecting the test lot if the test activity falls outside of a predetermined range of variance about the reference activity.

162. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence TCGTCGTTTGTCTGTTTGTCTGTT (SEQ ID 30 NO:1).

163. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTGACGTTTGTGCGT-3' (SEQ ID NO:139).

5 164. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTGTCGTTTTTCGA-3' (SEQ ID NO:140).

10 165. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTCGTCGTTCGTCGTT-3' (SEQ ID NO:141).

15 166. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTCGTCGTTTGTCGTT-3' (SEQ ID NO:142).

167. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTCGGTCGTTT-3' (SEQ ID NO:143).

20 168. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTCGTGCGTTT-3' (SEQ ID NO:144).

25 169. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTCGGCGGCCGCCG-3' (SEQ ID NO:145).

30 170. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTC_GTTTAC_GGCGCC_GTGCCG-3' (SEQ ID NO:146), wherein every internucleoside linkage is phosphorothioate except for those indicated by “_”, which are phosphodiester.

- 92 -

171. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

5 wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell, a RAMOS cell, a Nalm cell, a THP-1 cell, or a KG-1 cell, and the TLR is TLR9.

10 172. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

15 wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell or a RAMOS cell, and the TLR is TLR7.

173. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

20 contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

25 wherein the cell is a Raji cell, a RAMOS cell, a KG-1 cell, a Nalm-6 cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell, and the TLR is TLR3.

174. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

30 contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a RAMOS cell, a Raji cell, a THP-1 cell, a Nalm cell and a KG-1 cell, and the TLR is TLR9.

5

175. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

10 contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a

15 RAMOS cell and a Raji cell, and the TLR is TLR7.

175. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

20 contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

25 wherein the cell is selected from the group consisting of a Raji cell, a RAMOS cell, a KG-1 cell, a Nalm-6 cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell and an NK-92 MI cell, and the TLR is TLR3.

176. A screening method for identifying an enhancer of a Toll-like receptor (TLR) agonist, comprising

30 contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity, and

- 94 -

contacting a cell with the positive reference compound and a test compound and measuring a test level of TLR signaling activity,

wherein the positive reference compound is a TLR agonist, and a test level that is greater than the reference level is indicative of a test compound that is an enhancer of a TLR
5 agonist.

177. The method of claim 176, wherein the positive reference compound is an immunostimulatory nucleic acid.

10 178. The method of claim 176, wherein the positive reference compound is an imidazoquinoline compound.

15 180. The method of claim 176, wherein the cell is selected from the group consisting of a KG-1 cell, a Nalm-6 cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell,
a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell and an NK-92 MI cell, and the TLR is
TLR3.

20 181. The method of claim 176, wherein the cell is selected from the group consisting of a KG-1 cell, a Nalm-6 cell, a Raji cell, an RPMI 8226 cell, a RAMOS cell, and a THP-1 cell, and the TLR is TLR9.

182. The method of claim 176, wherein the cell is selected from the group consisting of a Raji cell, an RPMI 8226 cell and a RAMOS cell, and the TLR is TLR7.

25 183. The method of claim 1, wherein the TLR is TLR7 or TLR9.

184. The method of claim 172-175 or 176, wherein the cell is unmodified.

1/15

Fig. 1

2/15

Fig. 2

3/15

Fig. 3

4/15

Fig. 4

5/15

Fig. 5

6/15

Fig. 6

7/15

Fig. 7

8/15

Fig. 8

9/15

Fig. 9

10/15

Fig. 10

Fig. 11

11/15

Fig. 12

12/15

Fig. 13

Fig. 14

13/15

Fig. 15

Fig. 16

Fig. 17
SUBSTITUTE SHEET (RULE 26)

14/15

Fig. 18A

Fig. 18B

15/15

Fig. 19**Fig. 20****Fig. 21**
SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

<110> COLEY PHARMACEUTICAL GmbH
COLEY PHARMACEUTICAL GROUP INC.

<120> METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR
LIGANDS

<130> C1041.70024W000

<140> not yet assigned
<141> 2004-04-22

<150> US 60/464,586
<151> 2003-04-22

<150> US 60/464,588
<151> 2003-04-22

<160> 161

<170> PatentIn version 3.2

<210> 1
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> oligonucleotide

<400> 1
tcgtcgttt gtcgttttgt cgtt

24

<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> oligonucleotide

<400> 2
tccaggactt ctctcaggtt

20

<210> 3
<211> 2600
<212> DNA
<213> Homo sapiens

<400> 3
ggatccaaag gagacctata gtgactccca ggagcttta gtgaccaagt gaaggtaacct 60

gtggggctca ttgtgccat tgctcttca ctgcttcaa ctggtagttg tgggttgaag 120

cactggacaa tgccacatac tttgtggatg gtgtgggtct tgggggtcat catcagcctc 180

tccaaggaag aatcctccaa tcaggcttct ctgtttgtg accgcaatgg tatctgcaag 240

ggcagctcag gatctttaaa ctccattccc tcagggctca cagaagctgt aaaaagcctt 300
gacctgtcca acaacaggat cacctacatt agcaacagtgc acctacagag gtgtgtgaac 360
ctccaggctc tggtgctgac atccaatgga attaacaccaa tagaggaaga ttcttttct 420
tccctggca gtcttgaaca ttttagactta tcctataatt acttatctaa tttatcgct 480
tcctggttca agcccctttc ttctttaaca ttcttaaact tactggaaa tccttacaaa 540
accctagggg aaacatctct ttttctcat ctcacaaaat tgcaaattct gagagtggaa 600
aatatggaca ctttcaactaa gattcaaaga aaagattttg ctggacttac cttccttgag 660
gaacttgaga ttgatgcttc agatctacag agctatgagc caaaaagttt gaagtcaatt 720
cagaacgtaa gtcatctgat cttcatatg aagcagcata ttttactgct ggagatttt 780
gtagatgtta caagttccgt ggaatgttg gaactgcgag atactgattt ggacactt 840
cattttcag aactatccac tggtaaaaca aattcattga taaaaaagtt tacatttaga 900
aatgtgaaaa tcacccatga aagttgttt caggttatga aactttgaa tcagatttct 960
ggattgttag aatttagagtt tgatgactgt acccttaatg gagttggtaa ttttagagca 1020
tctgataatg acagagttat agatccaggt aaagtggaaa cgtaacaat ccggaggctg 1080
catattccaa ggtttactt atttatgat ctgagcactt tatattcact tacagaaaga 1140
gttaaaaagaa tcacagttaga aaacagtaaa gttttctgg ttccttgc acattcacaa 1200
catttaaat cattagaata cttggatctc agtaaaatt tgatggtga agaataactt 1260
aaaaattcag cctgtgagga tgcctggccc tctctacaaa cttaatttt aaggcaaaa 1320
catttggcat cattggaaaa aaccggagag actttgctca ctctgaaaaa cttgactaac 1380
attgatatca gtaagaatag ttttcttct atgcctgaaa cttgtcagtg gccagaaaag 1440
atgaaatatt tgaacttatac cagcacacga atacacagtgc taacaggctg cattccaaag 1500
acactggaaa ttttagatgt tagcaacaac aatctcaatt tattttctt gaatttgcg 1560
caactcaaag aactttatata tccagaaaat aagttgatga ctctaccaga tgcctccctc 1620
ttaccatgt tactagtatt gaaaatcagt aggaatgcaa taactacgtt ttctaaggag 1680
caacttgact catttcacac actgaagact ttgaaagctg gtggcaataa cttcatttgc 1740
tcctgtgaat tcctctcctt cactcaggag cagcaagcac tggccaaagt cttgattgat 1800
tggccagcaa attacctgtg tgactctcca tcccatgtgc gtggccagca gttcaggat 1860
gtccgcctct cgggtgcggaa atgtcacagg acagcactgg tgtctggcat gtgtgtgct 1920
ctgttcctgc tgatcctgct cacgggggtc ctgtgccacc gtttccatgg cctgtggat 1980
atgaaaatga tggggcctg gctccaggcc aaaaggaagc ccagggaaagc tcccagcagg 2040
aacatctgct atgatgcatt tgtttcttac agttagcggg atgcctactg ggtggagaac 2100

cttatggtcc aggagctgga gaacttcaat ccccccttca agttgtgtct tcataaggcg 2160
 gacttcattc ctggcaagtg gatcattgac aatatcattg actccattga aaagagccac 2220
 aaaactgtct ttgtgtttc tgaaaacttt gtgaagagtg agtggtgcaa gtatgaactg 2280
 gacttctccc atttccgtct ttttgaagag aacaatgatg ctgccattct cattcttctg 2340
 gagcccattg agaaaaaaagc cattcccccag cgcttctgca agctgcggaa gataatgaac 2400
 accaagacacct acctggagtg gcccatggac gaggctcagc gggaggatt ttgggtaaat 2460
 ctgagagctg cgataaaagtc ctaggttccc atattaaga ccagtcttg tctagttggg 2520
 atctttatgt cactagttat agttaagttc attcagacat aattatataa aaactacgtg 2580
 gatgtaccgt cattttaggaa 2600

<210> 4
 <211> 784
 <212> PRT
 <213> Homo sapiens

<400> 4

Met Pro His Thr Leu Trp Met Val Trp Val Leu Gly Val Ile Ile Ser
 1 5 10 15

Leu Ser Lys Glu Glu Ser Ser Asn Gln Ala Ser Leu Ser Cys Asp Arg
 20 25 30

Asn Gly Ile Cys Lys Gly Ser Ser Gly Ser Leu Asn Ser Ile Pro Ser
 35 40 45

Gly Leu Thr Glu Ala Val Lys Ser Leu Asp Leu Ser Asn Asn Arg Ile
 50 55 60

Thr Tyr Ile Ser Asn Ser Asp Leu Gln Arg Cys Val Asn Leu Gln Ala
 65 70 75 80

Leu Val Leu Thr Ser Asn Gly Ile Asn Thr Ile Glu Glu Asp Ser Phe
 85 90 95

Ser Ser Leu Gly Ser Leu Glu His Leu Asp Leu Ser Tyr Asn Tyr Leu
 100 105 110

Ser Asn Leu Ser Ser Trp Phe Lys Pro Leu Ser Ser Leu Thr Phe
 115 120 125

Leu Asn Leu Leu Gly Asn Pro Tyr Lys Thr Leu Gly Glu Thr Ser Leu
 130 135 140

Phe Ser His Leu Thr Lys Leu Gln Ile Leu Arg Val Gly Asn Met Asp
 145 150 155 160

Thr Phe Thr Lys Ile Gln Arg Lys Asp Phe Ala Gly Leu Thr Phe Leu
 165 170 175

Glu Glu Leu Glu Ile Asp Ala Ser Asp Leu Gln Ser Tyr Glu Pro Lys
 180 185 190

Ser Leu Lys Ser Ile Gln Asn Val Ser His Leu Ile Leu His Met Lys
195 200 205

Gln His Ile Leu Leu Leu Glu Ile Phe Val Asp Val Thr Ser Ser Val
210 215 220

Glu Cys Leu Glu Leu Arg Asp Thr Asp Leu Asp Thr Phe His Phe Ser
225 230 235 240

Glu Leu Ser Thr Gly Glu Thr Asn Ser Leu Ile Lys Lys Phe Thr Phe
245 250 255

Arg Asn Val Lys Ile Thr Asp Glu Ser Leu Phe Gln Val Met Lys Leu
260 265 270

Leu Asn Gln Ile Ser Gly Leu Leu Glu Leu Glu Phe Asp Asp Cys Thr
275 280 285

Leu Asn Gly Val Gly Asn Phe Arg Ala Ser Asp Asn Asp Arg Val Ile
290 295 300

Asp Pro Gly Lys Val Glu Thr Leu Thr Ile Arg Arg Leu His Ile Pro
305 310 315 320

Arg Phe Tyr Leu Phe Tyr Asp Leu Ser Thr Leu Tyr Ser Leu Thr Glu
325 330 335

Arg Val Lys Arg Ile Thr Val Glu Asn Ser Lys Val Phe Leu Val Pro
340 345 350

Cys Leu Leu Ser Gln His Leu Lys Ser Leu Glu Tyr Leu Asp Leu Ser
355 360 365

Glu Asn Leu Met Val Glu Glu Tyr Leu Lys Asn Ser Ala Cys Glu Asp
370 375 380

Ala Trp Pro Ser Leu Gln Thr Leu Ile Leu Arg Gln Asn His Leu Ala
385 390 395 400

Ser Leu Glu Lys Thr Gly Glu Thr Leu Leu Thr Leu Lys Asn Leu Thr
405 410 415

Asn Ile Asp Ile Ser Lys Asn Ser Phe His Ser Met Pro Glu Thr Cys
420 425 430

Gln Trp Pro Glu Lys Met Lys Tyr Leu Asn Leu Ser Ser Thr Arg Ile
435 440 445

His Ser Val Thr Gly Cys Ile Pro Lys Thr Leu Glu Ile Leu Asp Val
450 455 460

Ser Asn Asn Asn Leu Asn Leu Phe Ser Leu Asn Leu Pro Gln Leu Lys
465 470 475 480

Glu Leu Tyr Ile Ser Arg Asn Lys Leu Met Thr Leu Pro Asp Ala Ser
485 490 495

Leu Leu Pro Met Leu Leu Val Leu Lys Ile Ser Arg Asn Ala Ile Thr
500 505 510

Thr Phe Ser Lys Glu Gln Leu Asp Ser Phe His Thr Leu Lys Thr Leu

515 520 525
 Glu Ala Gly Gly Asn Asn Phe Ile Cys Ser Cys Glu Phe Leu Ser Phe
 530 535 540

 Thr Gln Glu Gln Gln Ala Leu Ala Lys Val Leu Ile Asp Trp Pro Ala
 545 550 560

 Asn Tyr Leu Cys Asp Ser Pro Ser His Val Arg Gly Gln Gln Val Gln
 565 570 575

 Asp Val Arg Leu Ser Val Ser Glu Cys His Arg Thr Ala Leu Val Ser
 580 585 590

 Gly Met Cys Cys Ala Leu Phe Leu Leu Leu Thr Gly Val Leu
 595 600 605

 Cys His Arg Phe His Gly Leu Trp Tyr Met Lys Met Met Trp Ala Trp
 610 615 620

 Leu Gln Ala Lys Arg Lys Pro Arg Lys Ala Pro Ser Arg Asn Ile Cys
 625 630 635 640

 Tyr Asp Ala Phe Val Ser Tyr Ser Glu Arg Asp Ala Tyr Trp Val Glu
 645 650 655

 Asn Leu Met Val Gln Glu Leu Glu Asn Phe Asn Pro Pro Phe Lys Leu
 660 665 670

 Cys Leu His Lys Arg Asp Phe Ile Pro Gly Lys Trp Ile Ile Asp Asn
 675 680 685

 Ile Ile Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser
 690 695 700

 Glu Asn Phe Val Lys Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser
 705 710 715 720

 His Phe Arg Leu Phe Glu Glu Asn Asn Asp Ala Ala Ile Leu Ile Leu
 725 730 735

 Leu Glu Pro Ile Glu Lys Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu
 740 745 750

 Arg Lys Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Met Asp Glu
 755 760 765

 Ala Gln Arg Glu Gly Phe Trp Val Asn Leu Arg Ala Ala Ile Lys Ser
 770 775 780

<210> 5
<211> 2824
<212> DNA
<213> murine

<400> 5
gccccccatg gccatatggg caccggggag cggcggctgg aggactccta ggctcctggg 60
caggcggtca catggcagaa gatgtgtccg caatcatagt ttctgtatgtt gaaggttgga 120
cggcagtc tgcgacctag aagtggaaaa gatgtcggttc aaggagggtgc ggactgtttc 180

cttctgacca ggatcttgg tctgagggtta ggggcttcac ttctctgttt ttcgttcatc	240
tctggagcat ccgaattgca tcaccggta gaaaacaact taccgaaacc tcagacaaag	300
cgtcaaatct cagaggatgc tacgagctct ttggctcttc tggatcttgg tggccataac	360
agtccctttc agcaaaccgt gttctgtca ggagtctctg tcatgtgatg cttctgggt	420
gtgtgatggc cgctccaggt ctttcacctc tattccctcc ggactcacag cagccatgaa	480
aagccttgac ctgtcttca acaagatcac ctacattggc catggtgacc tccgagcgtg	540
tgcgaacctc caggttctga ttttgaagtc cagcagaatc aatacaatag agggagacgc	600
cttttattct ctgggcagtc ttgaacattt ggatttgtct gataatcacc tatctagttt	660
atcttcctcc tggttcgggc cccttcctc tttgaaatac taaaacttaa tggggaaatcc	720
ttaccagaca ctggggtaa catcgctttt tcccaatctc acaaatttac aaaccctcag	780
gataggaaat gttagagactt tcagtgagat aaggagaata gattttgctg ggctgacttc	840
tctcaatgaa ctgaaatta aggcatthaag tctccggaaat tatcagtccc aaagtctaaa	900
gtcgatccgc gacatccatc acctgactct tcacttaagc gagtctgttt tcctgctgga	960
gattttgca gatattctga gttctgtgag atatttagaa ctaagagata ctaacttggc	1020
caggttccag ttttccaccac tgcccgtaga tgaagtcagc tcaccgatga agaagctggc	1080
attccgaggc tcgggtctca ctgatgaaag cttaacgag ctccctgaagc tggtcggtt	1140
catcttggaa ctgtcgagg tagagttcga cgactgtacc ctcaatggc tcggcgattt	1200
caaccctcg gagtcagacg tagtgagcga gctggtaaa gtagaaacag tcactatccg	1260
gaggttgcattt atccccactt tctattttttt ttatgacctg agtactgtct attcccttct	1320
ggagaagggtg aagcgaatca cagtagagaa cagcaagggtc ttccctgggtt cctgctcggtt	1380
ctcccagcat taaaatcat tagaattttt agacctcagc gaaaatctga tgggttgaaga	1440
atatttgaag aactcagcct gtaagggagc ctggccttct ctacaaacct tagtttgag	1500
ccagaatcat ttgagatcaa tgcaaaaaac aggagagatt ttgctgactc tgaaaaacct	1560
gacccctt gacatcagca ggaacacttt tcacccatgc cccgacagct gtcagtggcc	1620
agaaaaagatg cgcttcctga atttgcgttccag tacagggatc cgggtggtaa aaacgtgcatt	1680
tcctcagacg ctggaggtgt tggatgttag taacaacaat cttgactcat tttctttttt	1740
cttgccctgg ctgcaagagc tctatatttc cagaataaag ctgaaaacac tcccagatgc	1800
ttcggtgttc cctgtgttgc tggatgttag aatcagagag aatgcagtaa gtactttctc	1860
taaagaccaa ctgggttctt ttcccaaact ggagactctg gaagcaggcg acaaccactt	1920
tgtttgttcc tgcgaactcc tattccttac tatggagacg ccagctctgg ctcaaattcct	1980
ggttgactgg ccagacagct acctgtgtga ctctccgcct cgcctgcacg gccacaggct	2040
tcaggatgcc cggccctccg tcttggaaatg tcaccaggct gcactgggtt ctggagtcgt	2100

ctgtgccctt	ctcctgttga	tcttgctcg	agggtgccctg	tgccaccatt	tccacgggct	2160
gtggcacctg	agaatgatgt	gggcgtggct	ccaggccaag	aggaagccc	agaaagctcc	2220
ctgcaggac	gtttgtatg	atgccttgt	ttcctacagt	gagcaggatt	cccattgggt	2280
ggagaacctc	atggtccagc	agctggagaa	ctctgacccg	cccttaagc	tgtgtctcca	2340
caagcggac	ttegttccgg	gcaaattggat	cattgacaac	atcatcgatt	ccatcgaaaa	2400
gagccacaaa	actgtgttcg	tgcttctga	gaacttcgta	cggagcgcgt	ggtgcaagta	2460
cgaactggac	ttctcccact	tcaggcttct	tgacgagaac	aacgacgcgg	ccatccttgt	2520
tttgctggag	cccattgaga	ggaaagccat	tccccagcgc	ttctgcaaac	tgcgcaagat	2580
aatgaacacc	aagacctacc	tggagtgcc	cttggatgaa	ggccagcagg	aagtgtttt	2640
ggtaaatctg	agaactgcaa	taaagtcccta	ggttctccac	ccagttcccg	acttccttaa	2700
ctaaggcttt	tgtgacacaa	actgtaacaa	agtttataag	taacatagaa	ttgtattatt	2760
gaggatatta	actatgggtt	ttgtctgaa	tactgtata	taaatatgtg	acatcaggct	2820
tttag						2824

<210> 6
<211> 784
<212> PRT
<213> murine

<400> 6

Met	Leu	Arg	Ala	Leu	Trp	Leu	Phe	Trp	Ile	Leu	Val	Ala	Ile	Thr	Val
1										10					15
Leu	Phe	Ser	Lys	Arg	Cys	Ser	Ala	Gln	Glu	Ser	Leu	Ser	Cys	Asp	Ala
20										25					30
Ser	Gly	Val	Cys	Asp	Gly	Arg	Ser	Arg	Ser	Phe	Thr	Ser	Ile	Pro	Ser
35										40					45
Gly	Leu	Thr	Ala	Ala	Met	Lys	Ser	Leu	Asp	Leu	Ser	Phe	Asn	Lys	Ile
50										55					60
Thr	Tyr	Ile	Gly	His	Gly	Asp	Leu	Arg	Ala	Cys	Ala	Asn	Leu	Gln	Val
65										70					80
Leu	Ile	Leu	Lys	Ser	Ser	Arg	Ile	Asn	Thr	Ile	Glu	Gly	Asp	Ala	Phe
85										90					95
Tyr	Ser	Leu	Gly	Ser	Leu	Glu	His	Leu	Asp	Leu	Ser	Asp	Asn	His	Leu
100										105					110
Ser	Ser	Leu	Ser	Ser	Ser	Trp	Phe	Gly	Pro	Leu	Ser	Ser	Leu	Lys	Tyr
115										120					125
Leu	Asn	Leu	Met	Gly	Asn	Pro	Tyr	Gln	Thr	Leu	Gly	Val	Thr	Ser	Leu
130										135					140

Phe Pro Asn Leu Thr Asn Leu Gln Thr Leu Arg Ile Gly Asn Val Glu
145 150 155 160

Thr Phe Ser Glu Ile Arg Arg Ile Asp Phe Ala Gly Leu Thr Ser Leu
165 170 175

Asn Glu Leu Glu Ile Lys Ala Leu Ser Leu Arg Asn Tyr Gln Ser Gln
180 185 190

Ser Leu Lys Ser Ile Arg Asp Ile His His Leu Thr Leu His Leu Ser
195 200 205

Glu Ser Ala Phe Leu Leu Glu Ile Phe Ala Asp Ile Leu Ser Ser Val
210 215 220

Arg Tyr Leu Glu Leu Arg Asp Thr Asn Leu Ala Arg Phe Gln Phe Ser
225 230 235 240

Pro Leu Pro Val Asp Glu Val Ser Ser Pro Met Lys Lys Leu Ala Phe
245 250 255

Arg Gly Ser Val Leu Thr Asp Glu Ser Phe Asn Glu Leu Leu Lys Leu
260 265 270

Leu Arg Tyr Ile Leu Glu Leu Ser Glu Val Glu Phe Asp Asp Cys Thr
275 280 285

Leu Asn Gly Leu Gly Asp Phe Asn Pro Ser Glu Ser Asp Val Val Ser
290 295 300

Glu Leu Gly Lys Val Glu Thr Val Thr Ile Arg Arg Leu His Ile Pro
305 310 315 320

Gln Phe Tyr Leu Phe Tyr Asp Leu Ser Thr Val Tyr Ser Leu Leu Glu
325 330 335

Lys Val Lys Arg Ile Thr Val Glu Asn Ser Lys Val Phe Leu Val Pro
340 345 350

Cys Ser Phe Ser Gln His Leu Lys Ser Leu Glu Phe Leu Asp Leu Ser
355 360 365

Glu Asn Leu Met Val Glu Glu Tyr Leu Lys Asn Ser Ala Cys Lys Gly
370 375 380

Ala Trp Pro Ser Leu Gln Thr Leu Val Leu Ser Gln Asn His Leu Arg
385 390 395 400

Ser Met Gln Lys Thr Gly Glu Ile Leu Leu Thr Leu Lys Asn Leu Thr
405 410 415

Ser Leu Asp Ile Ser Arg Asn Thr Phe His Pro Met Pro Asp Ser Cys
420 425 430

Gln Trp Pro Glu Lys Met Arg Phe Leu Asn Leu Ser Ser Thr Gly Ile
435 440 445

Arg Val Val Lys Thr Cys Ile Pro Gln Thr Leu Glu Val Leu Asp Val
450 455 460

Ser Asn Asn Asn Leu Asp Ser Phe Ser Leu Phe Leu Pro Arg Leu Gln

465 470 475 480
Glu Leu Tyr Ile Ser Arg Asn Lys Leu Lys Thr Leu Pro Asp Ala Ser
485 490 495

Leu Phe Pro Val Leu Leu Val Met Lys Ile Arg Glu Asn Ala Val Ser
500 505 510

Thr Phe Ser Lys Asp Gln Leu Gly Ser Phe Pro Lys Leu Glu Thr Leu
515 520 525

Glu Ala Gly Asp Asn His Phe Val Cys Ser Cys Glu Leu Leu Ser Phe
530 535 540

Thr Met Glu Thr Pro Ala Leu Ala Gln Ile Leu Val Asp Trp Pro Asp
545 550 560

Ser Tyr Leu Cys Asp Ser Pro Pro Arg Leu His Gly His Arg Leu Gln
565 570 575

Asp Ala Arg Pro Ser Val Leu Glu Cys His Gln Ala Ala Leu Val Ser
580 585 590

Gly Val Cys Cys Ala Leu Leu Leu Leu Ile Leu Val Gly Ala Leu
595 600 605

Cys His His Phe His Gly Leu Trp Tyr Leu Arg Met Met Trp Ala Trp
610 615 620

Leu Gln Ala Lys Arg Lys Pro Lys Lys Ala Pro Cys Arg Asp Val Cys
625 630 635 640

Tyr Asp Ala Phe Val Ser Tyr Ser Glu Gln Asp Ser His Trp Val Glu
645 650 655

Asn Leu Met Val Gln Gln Leu Glu Asn Ser Asp Pro Pro Phe Lys Leu
660 665 670

Cys Leu His Lys Arg Asp Phe Val Pro Gly Lys Trp Ile Ile Asp Asn
675 680 685

Ile Ile Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser
690 695 700

Glu Asn Phe Val Arg Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser
705 710 715 720

His Phe Arg Leu Phe Asp Glu Asn Asn Asp Ala Ala Ile Leu Val Leu
725 730 735

Leu Glu Pro Ile Glu Arg Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu
740 745 750

Arg Lys Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Leu Asp Glu
755 760 765

Gly Gln Gln Glu Val Phe Trp Val Asn Leu Arg Thr Ala Ile Lys Ser
770 775 780

<210> 7
<211> 3029
<212> DNA

<213> Homo sapiens
<400> 7

gcggccgcgt	cgacgaaatg	tctggatttg	gactaaagaa	aaaaggaaag	gctagcagtc	60
atccaaacaga	atcatgagac	agactttgcc	ttgtatctac	ttttgggggg	gcctttgcc	120
ctttggatg	ctgtgtcat	cctccaccac	caagtgcact	gttagccatg	aagttgctga	180
ctgcagccac	ctgaagttga	ctcaggtacc	cgatgatcta	cccacaaaca	taacagtgtt	240
gaaccttacc	cataatcaac	tcagaagatt	accagccgcc	aacttcacaa	ggtatagcca	300
gctaactagc	ttggatgttag	gatTTAACAC	catCTAAAAA	ctggagccag	aatttgtCCA	360
gaaacctccc	atgttaaaag	ttttgaacct	ccagcacaat	gagctatctc	aactttctga	420
taaaaccttt	gccttctgca	cgaatttgac	tgaactccat	ctcatgtcca	actcaatcca	480
gaaaattaaaa	aataatccct	ttgtcaagca	gaagaattta	atcacattag	atctgtctca	540
taatggcttgc	tcatctacaa	aatttaggaac	tcaggttcag	ctggaaaatc	tccaagagct	600
tctattatca	aacaataaaaa	ttcaagcgct	aaaaagtgaa	gaactggata	tctttGCCAA	660
ttcatcttta	aaaaaattag	agttgtcatc	gaatcaaatt	aaagagttt	ctccagggtg	720
ttttcacgca	attggaagat	tatTTGGCCT	ctttctgaac	aatgtccagc	tgggtcccag	780
ccttacagag	aagctatgtt	tggaatttagc	aaacacaagc	attcggaaatc	tgtctctgag	840
taacagccag	ctgtccacca	ccagcaatac	aactttcttg	ggactaaagt	ggacaaatct	900
cactatgctc	gatctttcct	acaacaactt	aaatgtggtt	ggtaacgatt	cctttgcttg	960
gcttccacaa	ctagaatatt	tcttcctaga	gtataataat	atacagcatt	tgtttctca	1020
ctcttgcac	gggctttca	atgtgaggta	cctgaatttg	aaacggtctt	ttactaaaca	1080
aagtatttcc	cttgccctac	tccccaaagat	tgatgatttt	tctttcagt	ggctaaaatg	1140
tttggagcac	cttaacatgg	aagataatga	tattccaggc	ataaaaaagca	atatgttcac	1200
aggattgata	aacctgaaat	acttaagtct	atccaactcc	tttacaagtt	tgcgaacttt	1260
gacaaatgaa	acatttgtat	cacttgcac	ttctccctta	cacatactca	acctaaccaa	1320
gaataaaatc	tcaaaaatag	agagtgtac	tttctttgg	ttgggcacc	tagaagtact	1380
tgacctggc	cttaatgaaa	ttgggcaaga	actcacaggc	caggaatgga	gaggtctaga	1440
aaatatttcc	gaaatctatc	tttcctacaa	caagtacctg	cagctgacta	ggaactcctt	1500
tgccctggc	ccaagccttc	aacgactgtat	gctccgaagg	gtggccctta	aaaatgtgga	1560
tagctctcct	tcaccattcc	agcctttcg	taacttgacc	attctggatc	taagcaacaa	1620
caacatagcc	aacataaaatg	atgacatgtt	ggagggtctt	gagaaactag	aaattctcga	1680
tttgcagcat	aacaacttag	cacggctctg	gaaacacgca	aaccctggtg	gtcccattta	1740
tttcctaaag	ggtctgtctc	acctccacat	ccttaacttg	gagtccaaacg	gctttgacga	1800

gatcccagtt	gaggcttca	aggatttatt	tgaactaaag	atcatcgatt	taggattgaa	1860
taatttaaac	acacttccag	catctgtctt	taataatcag	gtgtctctaa	agtcattgaa	1920
ccttcagaag	aatctcataa	catccgttga	gaagaagggtt	ttcgggccag	ctttcaggaa	1980
cctgactgag	ttagatatgc	gctttaatcc	cttgattgc	acgtgtgaaa	gtattgcctg	2040
gtttgttaat	tggattaacg	agacccatac	caacatccct	gagctgtcaa	gccactacct	2100
ttgcaacact	ccacctca	atcatgggtt	cccagtgaga	cttttgata	catcatcttg	2160
caaagacagt	gccccctttg	aactctttt	catgatcaat	accagtatcc	tgttgatttt	2220
tatcttatt	gtacttctca	tccactttga	gggctggagg	atatctttt	attggaatgt	2280
ttcagtagat	cgagttcttg	gtttcaaaga	aatagacaga	cagacagaac	agtttgaata	2340
tgcagcatat	ataattcatg	cctataaaga	taaggattgg	gtctggaaac	atttctttc	2400
aatggaaaag	gaagaccaat	ctctcaaatt	ttgtctggaa	gaaaggact	ttgaggcggg	2460
tgttttgaa	ctagaagcaa	ttgttaacag	catcaaaaga	agcagaaaaa	ttatTTTGT	2520
tataacacac	catctattaa	aagaccatt	atgcaaaaga	ttcaaggtac	atcatgcagt	2580
tcaacaagct	attgaacaaa	atctggattc	cattatattg	gtttcccttg	aggagattcc	2640
agattataaa	ctgaaccatg	cactctgtt	gcgaagagga	atgtttaat	ctcactgcat	2700
cttgaactgg	ccagttcaga	aagaacggat	aggtgcctt	cgtcataaat	tgcaagtagc	2760
acttggatcc	aaaaactctg	tacattaaat	ttatTTAAT	attcaattag	caaaggagaa	2820
actttctcaa	tttaaaaagt	tctatggcaa	atTTAAGTT	tccataaagg	tgttataatt	2880
tgtttattca	tatTTgtaaa	tgattatatt	ctatcacaat	tacatctctt	ctaggaaaat	2940
gtgtctcctt	atttcaggcc	tatTTTGAC	aattgactta	atTTTACCCA	aaataaaaca	3000
tataaggcacg	caaaaaaaaaa	aaaaaaaaaa				3029

<210> 8
<211> 904
<212> PRT
<213> Homo sapiens

<400> 8

Met Arg Gln Thr Leu Pro Cys Ile Tyr Phe Trp Gly Gly Leu Leu Pro
1 5 10 15

Phe Gly Met Leu Cys Ala Ser Ser Thr Thr Lys Cys Thr Val Ser His
20 25 30

Glu Val Ala Asp Cys Ser His Leu Lys Leu Thr Gln Val Pro Asp Asp
35 40 45

Leu Pro Thr Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu Arg
50 55 60

Arg Leu Pro Ala Ala Asn Phe Thr Arg Tyr Ser Gln Leu Thr Ser Leu

65	70	75	80
Asp Val Gly Phe Asn Thr Ile Ser Lys Leu Glu Pro Glu Leu Cys Gln			
85	90	95	
Lys Leu Pro Met Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu Ser			
100	105	110	
Gln Leu Ser Asp Lys Thr Phe Ala Phe Cys Thr Asn Leu Thr Glu Leu			
115	120	125	
His Leu Met Ser Asn Ser Ile Gln Lys Ile Lys Asn Asn Pro Phe Val			
130	135	140	
Lys Gln Lys Asn Leu Ile Thr Leu Asp Leu Ser His Asn Gly Leu Ser			
145	150	155	160
Ser Thr Lys Leu Gly Thr Gln Val Gln Leu Glu Asn Leu Gln Glu Leu			
165	170	175	
Leu Leu Ser Asn Asn Lys Ile Gln Ala Leu Lys Ser Glu Glu Leu Asp			
180	185	190	
Ile Phe Ala Asn Ser Ser Leu Lys Lys Leu Glu Leu Ser Ser Asn Gln			
195	200	205	
Ile Lys Glu Phe Ser Pro Gly Cys Phe His Ala Ile Gly Arg Leu Phe			
210	215	220	
Gly Leu Phe Leu Asn Asn Val Gln Leu Gly Pro Ser Leu Thr Glu Lys			
225	230	235	240
Leu Cys Leu Glu Leu Ala Asn Thr Ser Ile Arg Asn Leu Ser Leu Ser			
245	250	255	
Asn Ser Gln Leu Ser Thr Thr Ser Asn Thr Thr Phe Leu Gly Leu Lys			
260	265	270	
Trp Thr Asn Leu Thr Met Leu Asp Leu Ser Tyr Asn Asn Leu Asn Val			
275	280	285	
Val Gly Asn Asp Ser Phe Ala Trp Leu Pro Gln Leu Glu Tyr Phe Phe			
290	295	300	
Leu Glu Tyr Asn Asn Ile Gln His Leu Phe Ser His Ser Leu His Gly			
305	310	315	320
Leu Phe Asn Val Arg Tyr Leu Asn Leu Lys Arg Ser Phe Thr Lys Gln			
325	330	335	
Ser Ile Ser Leu Ala Ser Leu Pro Lys Ile Asp Asp Phe Ser Phe Gln			
340	345	350	
Trp Leu Lys Cys Leu Glu His Leu Asn Met Glu Asp Asn Asp Ile Pro			
355	360	365	
Gly Ile Lys Ser Asn Met Phe Thr Gly Leu Ile Asn Leu Lys Tyr Leu			
370	375	380	
Ser Leu Ser Asn Ser Phe Thr Ser Leu Arg Thr Leu Thr Asn Glu Thr			
385	390	395	400
Phe Val Ser Leu Ala His Ser Pro Leu His Ile Leu Asn Leu Thr Lys			

405 410 415
Asn Lys Ile Ser Lys Ile Glu Ser Asp Ala Phe Ser Trp Leu Gly His
420 425 430

Leu Glu Val Leu Asp Leu Gly Leu Asn Glu Ile Gly Gln Glu Leu Thr
435 440 445

Gly Gln Glu Trp Arg Gly Leu Glu Asn Ile Phe Glu Ile Tyr Leu Ser
450 455 460

Tyr Asn Lys Tyr Leu Gln Leu Thr Arg Asn Ser Phe Ala Leu Val Pro
465 470 475 480

Ser Leu Gln Arg Leu Met Leu Arg Arg Val Ala Leu Lys Asn Val Asp
485 490 495

Ser Ser Pro Ser Pro Phe Gln Pro Leu Arg Asn Leu Thr Ile Leu Asp
500 505 510

Leu Ser Asn Asn Asn Ile Ala Asn Ile Asn Asp Asp Met Leu Glu Gly
515 520 525

Leu Glu Lys Leu Glu Ile Leu Asp Leu Gln His Asn Asn Leu Ala Arg
530 535 540

Leu Trp Lys His Ala Asn Pro Gly Gly Pro Ile Tyr Phe Leu Lys Gly
545 550 555 560

Leu Ser His Leu His Ile Leu Asn Leu Glu Ser Asn Gly Phe Asp Glu
565 570 575

Ile Pro Val Glu Val Phe Lys Asp Leu Phe Glu Leu Lys Ile Ile Asp
580 585 590

Leu Gly Leu Asn Asn Leu Asn Thr Leu Pro Ala Ser Val Phe Asn Asn
595 600 605

Gln Val Ser Leu Lys Ser Leu Asn Leu Gln Lys Asn Leu Ile Thr Ser
610 615 620

Val Glu Lys Lys Val Phe Gly Pro Ala Phe Arg Asn Leu Thr Glu Leu
625 630 635 640

Asp Met Arg Phe Asn Pro Phe Asp Cys Thr Cys Glu Ser Ile Ala Trp
645 650 655

Phe Val Asn Trp Ile Asn Glu Thr His Thr Asn Ile Pro Glu Leu Ser
660 665 670

Ser His Tyr Leu Cys Asn Thr Pro Pro His Tyr His Gly Phe Pro Val
675 680 685

Arg Leu Phe Asp Thr Ser Ser Cys Lys Asp Ser Ala Pro Phe Glu Leu
690 695 700

Phe Phe Met Ile Asn Thr Ser Ile Leu Leu Ile Phe Ile Phe Ile Val
705 710 715 720

Leu Leu Ile His Phe Glu Gly Trp Arg Ile Ser Phe Tyr Trp Asn Val
725 730 735

Ser Val His Arg Val Leu Gly Phe Lys Glu Ile Asp Arg Gln Thr Glu

740	745	750
Gln Phe Glu Tyr Ala Ala Tyr Ile Ile His Ala Tyr Lys Asp Lys Asp		
755	760	765
Trp Val Trp Glu His Phe Ser Ser Met Glu Lys Glu Asp Gln Ser Leu		
770	775	780
Lys Phe Cys Leu Glu Glu Arg Asp Phe Glu Ala Gly Val Phe Glu Leu		
785	790	795
Glu Ala Ile Val Asn Ser Ile Lys Arg Ser Arg Lys Ile Ile Phe Val		
805	810	815
Ile Thr His His Leu Leu Lys Asp Pro Leu Cys Lys Arg Phe Lys Val		
820	825	830
His His Ala Val Gln Gln Ala Ile Glu Gln Asn Leu Asp Ser Ile Ile		
835	840	845
Leu Val Phe Leu Glu Glu Ile Pro Asp Tyr Lys Leu Asn His Ala Leu		
850	855	860
Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp Pro		
865	870	875
Val Gln Lys Glu Arg Ile Gly Ala Phe Arg His Lys Leu Gln Val Ala		
885	890	895
Leu Gly Ser Lys Asn Ser Val His		
900		

<210> 9
<211> 3310
<212> DNA
<213> murine

<400> 9		
tagaatatga tacagggatt gcaccataa tctgggtcga atcatgaaag ggtgttcctc	60	
ttatctaattg tactcccttg gggactttt gtccctatgg attcttctgg tgtcttccac	120	
aaaccaatgc actgtgagat acaacgtgc tgactgcagc catttgaagc taacacacat	180	
acctgatgat cttccctcta acataacagt gttaatctt actcacaacc aactcagaag	240	
attaccacct accaacttta caagatacag ccaacttgct atcttggatg caggatttaa	300	
ctccatttca aaactggagc cagaactgtg ccaaatactc ctttgttga aagtattgaa	360	
cctgcaacat aatgagctct ctcagatttc tgatcaaacc tttgtcttgc gcacgaacct	420	
gacagaactc gatctaatgt ctaactcaat acacaaaatt aaaagcaacc ctttcaaaaa	480	
ccagaagaat ctaatcaaat tagatttgc tcataatggc ttatcatcta caaagttggg	540	
aacgggggtc caactggaga acctccaaga actgcttta gcaaaaaata aaatcctgc	600	
gttgcgaagt gaagaacttg agtttcttgg caattcttct ttacgaaagt tggacttgc	660	
atcaaatcca cttaaagagt tctccccggg gtgttccag acaattggca agttattcgc	720	

cctcctcttg aacaacgccc aactgaaccc ccacccata gagaagctt gctggaaact	780
ttcaaacaca agcatccaga atctctct ggctaacaac cagctgctgg ccaccagcga	840
gagcactttc tctggctga agtggacaaa tctcacccag ctgcatactt cctacaacaa	900
cctccatgtat gtcggcaacg gttccctctc ctatctcca agcctgaggt atctgtctct	960
ggagtacaac aatatacago gtctgtcccc tcgctcttt tatggactct ccaacctgag	1020
gtacctgagt ttgaagcgag catttactaa gcaaagtgtt tcacttgctt cacatccaa	1080
cattgacgt tttcccttca aatggtaaaa atatggaa tatctcaaca tggatgacaa	1140
taataattcca agtaccaaaa gcaataacctt cacgggattt gtgagtcgtt agtacctaag	1200
tctttccaaa actttcacaa gtttgcaaac tttaacaaat gaaacatttgc tgtcaattgc	1260
tcattctccc ttgctcaactc tcaacttaac gaaaaatcac atctcaaaaaa tagcaaattgg	1320
tactttctct tggttaggcc aactcaggat acttgatctc ggccttaatg aaattgaaca	1380
aaaactcagc gcccaggaaat ggagaggctt gagaatata tttgagatct acctatccta	1440
taacaaatac ctccaactgt ctaccagttc cttgcattt gtcggcagcc ttcaagact	1500
gatgctcagg agggtgtggcc ttaaaaatgt ggatatctcc cttcacctt tccggcctct	1560
tcgtaacttgc accattctgg acttaagcaa caacaacata gccaacataa atgaggactt	1620
gctggagggt cttgagaatc tagaaatcctt ggatttcag cacaataact tagccaggct	1680
ctggaaacgc gcaaaccggc gtggcccgt taatttcctt aagggctgt ctcaccccttca	1740
catctgaat ttagagtcca acggcttaga tgaaatccca gtcgggtttt tcaagaactt	1800
attcgaacta aagagcatca atctaggact gaataactta aacaaacttgc aaccattcat	1860
ttttgatgac cagacatctc taaggtcaactt gaaacctccag aagaacctca taacatctgt	1920
tgagaaggat gtttcgggc cgccctttca aaacctgaac agtttagata tgcgttca	1980
tccgtcgcac tgcacgtgtt aaagtatttc ctgggtttttt aactggatca accagacccca	2040
cactaatatc tttagtgcgtt ccactcaactt cctctgttac actccacatc attattatgg	2100
cttcataatc agcaccagta tgctccctgg ttttatactt gtgggtactgc tcattcacat	2160
cgagggtgg aggatctctt tttactggaa tgtttcaatgtt catcgatttcc ttgggtttca	2220
ggaaatagac acacaggctg agcagtttga atatacagcc tacataatttgc atgcccataa	2280
agacagagac tgggtctggg aacatttctc cccaaatggaa gaacaagacc aatctctcaa	2340
attttgccta gaagaaaggc actttgaagc aggcgtccctt ggacttgcgtt caattgtttaa	2400
tagcatcaaa agaagccgaa aaatcattttt cgttatcaca caccatttat taaaagaccc	2460
tctgtgcaga agattcaagg tacatcacgc agttcagccaa gctattgagc aaaatctggaa	2520
ttcaattata ctgatttttc tccagaatat tccagattt aactaaacc atgcactctg	2580
ttcaattata ctgatttttc tccagaatat tccagattt aactaaacc atgcactctg	2640

tttgcgaaga ggaatgttta aatctcattg catcttgaac tggccagttc agaaaagaacg	2700
gataaaatgcc tttcatcata aattgcaagt agcacttgga tctcgaaatt cagcacatta	2760
aactcatttg aagatttgga gtcggtaaag ggatagatcc aatttataaa ggtccatcat	2820
aatcttaagt ttacttgaa agttttgtat atttatttat atgtatagat gatgatatta	2880
catcacaatc caatctcagt tttgaaatat ttccggcttat ttcatggaca tctggtttat	2940
tcactccaaa taaacacatg ggcagttaaa aacatccctct attaatagat tacccattaa	3000
ttcttgaggt gtatcacagc tttaaagggt tttaaatatt tttatataaa taagactgag	3060
agttttataaa atgtaatttt ttaaaactcg agtcttactg tgttagctcag aaaggcctgg	3120
aaatataat attagagagt catgtcttga acttatttat ctctgcctcc ctctgtctcc	3180
agagtgttgc ttttaaggc atgtagcacc acacccagct atgtacgtgt gggattttat	3240
aatgctcatt tttgagacgt ttatagaata aaagataatt gctttatgg tataaggcta	3300
cttgaggtaa	3310

<210> 10

<211> 905

<212> PRT

<213> murine

<400> 10

Met Lys Gly Cys Ser Ser Tyr Leu Met Tyr Ser Phe Gly Gly Leu Leu			
1	5	10	15

Ser Leu Trp Ile Leu Leu Val Ser Ser Thr Asn Gln Cys Thr Val Arg			
20	25	30	

Tyr Asn Val Ala Asp Cys Ser His Leu Lys Leu Thr His Ile Pro Asp			
35	40	45	

Asp Leu Pro Ser Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu			
50	55	60	

Arg Arg Leu Pro Pro Thr Asn Phe Thr Arg Tyr Ser Gln Leu Ala Ile			
65	70	75	80

Leu Asp Ala Gly Phe Asn Ser Ile Ser Lys Leu Glu Pro Glu Leu Cys			
85	90	95	

Gln Ile Leu Pro Leu Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu			
100	105	110	

Ser Gln Ile Ser Asp'Gln Thr Phe Val Phe Cys Thr Asn Leu Thr Glu			
115	120	125	

Leu Asp Leu Met Ser Asn Ser Ile His Lys Ile Lys Ser Asn Pro Phe			
130	135	140	

Lys Asn Gln Lys Asn Leu Ile Lys Leu Asp Leu Ser His Asn Gly Leu			
145	150	155	160

Ser Ser Thr Lys Leu Gly Thr Gly Val Gln Leu Glu Asn Leu Gln Glu
165 170 175

Leu Leu Leu Ala Lys Asn Lys Ile Leu Ala Leu Arg Ser Glu Glu Leu
180 185 190

Glu Phe Leu Gly Asn Ser Ser Leu Arg Lys Leu Asp Leu Ser Ser Asn
195 200 205

Pro Leu Lys Glu Phe Ser Pro Gly Cys Phe Gln Thr Ile Gly Lys Leu
210 215 220

Phe Ala Leu Leu Leu Asn Asn Ala Gln Leu Asn Pro His Leu Thr Glu
225 230 235 240

Lys Leu Cys Trp Glu Leu Ser Asn Thr Ser Ile Gln Asn Leu Ser Leu
245 250 255

Ala Asn Asn Gln Leu Leu Ala Thr Ser Glu Ser Thr Phe Ser Gly Leu
260 265 270

Lys Trp Thr Asn Leu Thr Gln Leu Asp Leu Ser Tyr Asn Asn Leu His
275 280 285

Asp Val Gly Asn Gly Ser Phe Ser Tyr Leu Pro Ser Leu Arg Tyr Leu
290 295 300

Ser Leu Glu Tyr Asn Asn Ile Gln Arg Leu Ser Pro Arg Ser Phe Tyr
305 310 315 320

Gly Leu Ser Asn Leu Arg Tyr Leu Ser Leu Lys Arg Ala Phe Thr Lys
325 330 335

Gln Ser Val Ser Leu Ala Ser His Pro Asn Ile Asp Asp Phe Ser Phe
340 345 350

Gln Trp Leu Lys Tyr Leu Glu Tyr Leu Asn Met Asp Asp Asn Asn Ile
355 360 365

Pro Ser Thr Lys Ser Asn Thr Phe Thr Gly Leu Val Ser Leu Lys Tyr
370 375 380

Leu Ser Leu Ser Lys Thr Phe Thr Ser Leu Gln Thr Leu Thr Asn Glu
385 390 395 400

Thr Phe Val Ser Leu Ala His Ser Pro Leu Leu Thr Leu Asn Leu Thr
405 410 415

Lys Asn His Ile Ser Lys Ile Ala Asn Gly Thr Phe Ser Trp Leu Gly
420 425 430

Gln Leu Arg Ile Leu Asp Leu Gly Leu Asn Glu Ile Glu Gln Lys Leu
435 440 445

Ser Gly Gln Glu Trp Arg Gly Leu Arg Asn Ile Phe Glu Ile Tyr Leu
450 455 460

Ser Tyr Asn Lys Tyr Leu Gln Leu Ser Thr Ser Ser Phe Ala Leu Val
465 470 475 480

Pro Ser Leu Gln Arg Leu Met Leu Arg Arg Val Ala Leu Lys Asn Val

	485	490	495
Asp Ile Ser Pro Ser Pro Phe Arg Pro Leu Arg Asn Leu Thr Ile Leu			
500	505	510	
Asp Leu Ser Asn Asn Asn Ile Ala Asn Ile Asn Glu Asp Leu Leu Glu			
515	520	525	
Gly Leu Glu Asn Leu Glu Ile Leu Asp Phe Gln His Asn Asn Leu Ala			
530	535	540	
Arg Leu Trp Lys Arg Ala Asn Pro Gly Gly Pro Val Asn Phe Leu Lys			
545	550	555	560
Gly Leu Ser His Leu His Ile Leu Asn Leu Glu Ser Asn Gly Leu Asp			
565	570	575	
Glu Ile Pro Val Gly Val Phe Lys Asn Leu Phe Glu Leu Lys Ser Ile			
580	585	590	
Asn Leu Gly Leu Asn Asn Leu Asn Lys Leu Glu Pro Phe Ile Phe Asp			
595	600	605	
Asp Gln Thr Ser Leu Arg Ser Leu Asn Leu Gln Lys Asn Leu Ile Thr			
610	615	620	
Ser Val Glu Lys Asp Val Phe Gly Pro Pro Phe Gln Asn Leu Asn Ser			
625	630	635	640
Leu Asp Met Arg Phe Asn Pro Phe Asp Cys Thr Cys Glu Ser Ile Ser			
645	650	655	
Trp Phe Val Asn Trp Ile Asn Gln Thr His Thr Asn Ile Phe Glu Leu			
660	665	670	
Ser Thr His Tyr Leu Cys Asn Thr Pro His His Tyr Tyr Gly Phe Pro			
675	680	685	
Leu Lys Leu Phe Asp Thr Ser Ser Cys Lys Asp Ser Ala Pro Phe Glu			
690	695	700	
Leu Leu Phe Ile Ile Ser Thr Ser Met Leu Leu Val Phe Ile Leu Val			
705	710	715	720
Val Leu Leu Ile His Ile Glu Gly Trp Arg Ile Ser Phe Tyr Trp Asn			
725	730	735	
Val Ser Val His Arg Ile Leu Gly Phe Lys Glu Ile Asp Thr Gln Ala			
740	745	750	
Glu Gln Phe Glu Tyr Thr Ala Tyr Ile Ile His Ala His Lys Asp Arg			
755	760	765	
Asp Trp Val Trp Glu His Phe Ser Pro Met Glu Glu Gln Asp Gln Ser			
770	775	780	
Leu Lys Phe Cys Leu Glu Glu Arg Asp Phe Glu Ala Gly Val Leu Gly			
785	790	795	800
Leu Glu Ala Ile Val Asn Ser Ile Lys Arg Ser Arg Lys Ile Ile Phe			
805	810	815	
Val Ile Thr His His Leu Leu Lys Asp Pro Leu Cys Arg Arg Phe Lys			

820	825	830
Val His His Ala Val Gln Gln Ala Ile Glu Gln Asn Leu Asp Ser Ile		
835	840	845
Ile Leu Ile Phe Leu Gln Asn Ile Pro Asp Tyr Lys Leu Asn His Ala		
850	855	860
Leu Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp		
865	870	875
Pro Val Gln Lys Glu Arg Ile Asn Ala Phe His His Lys Leu Gln Val		
885	890	895
Ala Leu Gly Ser Arg Asn Ser Ala His		
900	905	

<210> 11
<211> 3811
<212> DNA
<213> Homo sapiens

<400> 11	60
acaggcccac tgctgctcac agaagcagtg aggatgatgc caggatgatg tctgcctcgc	120
gcctggctgg gactctgatc ccagccatgg ctttcctctc ctgcgtgaga ccagaaaagct	180
gggagccctg cgtggagact tggccctaaa ccacacagaa gagctggcat gaaaccaga	240
gcttcagac tccggagccct cagcccttca ccccgattcc attgcttctt gctaaatgct	300
gccgttttat cacggaggtg gttcctaata ttacttatca atgcatggag ctgaatttct	360
acaaaaatccc cgacaaccc tc cccttctcaa ccaagaacct ggacctgagc tttaatcccc	420
tgaggcattt aggcagctat agttcttca gtttcccaga actgcaggtg ctggatttat	480
ccagggtgtga aatccagaca attgaagatg gggcatatca gagcctaagc caccctctcta	540
ccttaatatt gacaggaaac cccatccaga gtttagccct gggagccctt tctggactat	600
caagtttaca gaagctggtg gctgtggaga caaatcttagc atctctagag aacttcccc	660
ttggacatct caaaaactttt aaaaaactta atgtggctca caatcttatac caatcttca	720
aattacctga gtatttttctt aatctgacca atcttagagca cttggacctt tccagcaaca	780
agattcaaag tatttattgc acagacttgc gggttctaca tcaaattgccc ctactcaatc	840
tctctttaga cctgtccctg aaccctatga actttatcca accaggtgca tttaaagaaa	900
ttaggcttca taagctgact ttaagaaata attttgatag tttaaatgta atgaaaactt	960
gtattcaagg tctggctgg ttagaagtcc atcgtttgggt tctggggagaa tttagaaatg	1020
aaggaaaactt ggaaaagttt gacaaatctg ctctagaggg cctgtgcaat ttgaccattt	1080
aagaattccg attagcatac ttagactact acctcgatga tattattgac ttatthaatt	1140
gtttgacaaa tgtttcttca tttccctgg tgagtgtgac tattgaaagg gtaaaagact	1200
tttcttataa ttccggatgg caacatttag aatttagttaa ctgtaaattt ggacagttc	

ccacattgaa actcaaatct ctc当地aaaggc ttactttcac ttccaacaaa ggtgggaatg 1260
cttttcaga agttgatcta ccaagccttg agtttctaga tctcagttaga aatggcttga 1320
gtttcaaagg ttgctgttct caaatgtgatt ttgggacaac cagcctaaag tatttagatc 1380
tgagcttcaa tgggtttatt accatgagtt caaacttctt gggcttagaa caactagaac 1440
atctggattt ccagcattcc aatttggaaac aaatgagtga gttttagta ttccttatcac 1500
tcagaaacct catttacctt gacatttctc atactcacac cagagttgct ttcaatggca 1560
tcttcaatgg cttgtccagt ctcgaagtct tgaaaatggc tggcaattct ttccaggaaa 1620
acttccttcc agatatcttc acagagctga gaaaacttgac cttcctggac ctctctcagt 1680
gtcaactgga gcagttgtct ccaacagcat ttaactcaact ctccagtc ttccaggataa 1740
atatgagcca caacaacttc ttttcatgg atacgtttcc ttataagtgt ctgaactccc 1800
tccaggttct tgattacagt ctcaatcaca taatgacttc caaaaaacag gaactacagc 1860
attttccaag tagtcttagct ttcttaatc ttactcagaa tgactttgct tgtacttgt 1920
aacaccagag tttcctgcaa tggatcaagg accagaggca gctcttggtg gaagttgaac 1980
gaatggaatg tgcaacaccc tcagataagc agggcatgcc tgtgctgagt ttgaatata 2040
cctgtcagat gaataagacc atcattggtg tgctggctt cagtgtgctt gtatctg 2100
ttgttagcagt tctggcttat aagttctatt ttcacctgat gcttcttgc ggctgcataa 2160
agtatggtag aggtgaaaac atctatgatg ctttgcattt ctactcaagc caggatgagg 2220
actgggtaag gaatgagcta gtaaagaatt tagaagaagg ggtgcctcca tttcagctct 2280
gccttcacta cagagacttt attcccggtg tggccattgc tgccaaatc atccatgaag 2340
gtttccataa aagccgaaag gtgattgttg tggatgtccca gcacttcatc cagagccgct 2400
ggtgatctt tgaatatgag attgctcaga cctggcagtt tctgagcagt cgtgctggta 2460
tcatcttcat tgcctgcag aaggtggaga agaccctgct caggcagcag gtggagctgt 2520
accgccttct cagcaggaac acttacctgg agtgggagga cagtgtcctg gggcggcaca 2580
tcttcggag acgactcaga aaagccctgc tggatggtaa atcatggaat ccagaaggaa 2640
cagtgggtac aggtgcaat tggcaggaag caacatctat ctgaagagga aaaataaaaa 2700
cctcctgagg catttcttgc ccagctgggt ccaacacttg ttcaatgtaat aagtattaaa 2760
tgctgccaca tgcctggcct tatgcttaagg gtgatgttaatt ccatggtgca ctagatatgc 2820
agggctgcta atctcaagga gcttccagtg cagaggaaat aaatgctaga ctaaaataca 2880
gagtcttcca ggtgggcatt tcaaccaact cagtcaagga acccatgaca aagaaagtca 2940
tttcaactct tacctcatca agttgaataa agacagagaa aacagaaaga gacattgttc 3000
ttttcctgag tctttgaat ggaaattgtta ttatgttata gccatcataa aaccattttg 3060

gtagtttga ctgaactggg tggactcttt ttcccttttg attgaataca atttaaattc	3120
tacccatgtca ctgcagtcgt caaggggctc ctgatgcaag atgcccccttc cattttaagt	3180
ctgtctccctt acagagggtta aagtctaattt gctaatttccct aaggaaacctt gattaacaca	3240
tgctcacaac catcctggtc attctegaac atgttctatt ttttaactaa tcacccctga	3300
tatattttta ttttatata tccagtttac attttttac gtcttgctta taagctaata	3360
tcataaataa gggtgtttaa gacgtgcttc aaatatccat attaaccact attttcaag	3420
gaagtatgga aaagtacact ctgtcacttt gtcactcgat gtcattccaa agttattgcc	3480
tactaagtaa tgactgtcat gaaagcagca ttgaaataat ttgtttaaag ggggcactct	3540
tttaaacggg aagaaaattt ccgcttcctg gtcttatcat ggacaatttg ggctataggc	3600
atgaaggaag tgggattacc tcaggaagtc accttttctt gattccagaa acatatggc	3660
tgataaaaccc ggggtgaccc catgaaatga gttgcagcag atgttttattt tttcagaac	3720
aagtgtatgtt tgatggaccc atgaatctat ttagggagac acagatggct gggatccctc	3780
ccctgtaccc ttctcaactga caggagaact a	3811

<210> 12
<211> 2845
<212> DNA
<213> Homo_sapiens

<400> 12	
cctctcaccc tttagccag aactgctttg aatacaccaa ttgctgtggg gcggctcgag	60
gaagagaaga caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca	120
ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct	180
cgcgcctggc tgggactctg atcccagcca tggccttcct ctccctgcgtg agaccagaaa	240
gctgggagcc ctgcgtggag gtgtgaaatc cagacaattt aagatggggc atatcagagc	300
ctaagccacc tctctaccc aatattgaca gaaaaacccca tccagagttt agccctggga	360
gcctttctg gactatcaag ttacagaag ctgggtggctg tggagacaaa tctagcatct	420
ctagagaact tccccattgg acatctcaaa actttgaaag aacttaatgt ggctcacaat	480
cttataccat ctttcaaattt acctgagttt ttttctaattc tgaccaatct agagcacttg	540
gacctttcca gcaacaagat tcaaagtatt tattgcacag acttgcgggt tctacatcaa	600
atgcccctac tcaatctctc tttagacccgt tccctgaacc ctatgaactt tatccaaacca	660
ggtgcatatca aagaaattttt gtttcataag ctgactttaa gaaataattt tgatagttt	720
aatgtatga aaacttgtat tcaaggctgt gctggtttag aagtccatcg ttgggtctg	780
ggagaattttt gaaatgaagg aaacttggaa aagtttgaca aatctgtct agagggcctg	840

tgcaatttga ccattgaaga attccgatta gcatacttag actactacct cgatgatatt	900
attgacttat ttaattgttt gacaaatgtt tcttcatttt ccctggtagt tgtgactatt	960
gaaagggtaa aagactttc ttataattc ggatggcaac atttagaatt agttaactgt	1020
aaatttggac agtttcccac attgaaaactc aaatctctca aaaggcttac tttcacttcc	1080
aacaaagggtg ggaatgcttt ttcagaagtt gatctaccaa gccttgagtt tctagatctc	1140
agtagaaaatg gcttgagttt caaagggtgc tggatctcaaa gtgattttgg gacaaccagc	1200
ctaaagtatt tagatctgag cttcaatggt gttattacca tgagttcaaa cttcttggc	1260
ttagaacaac tagaacatct ggatttccag cattccaatt tgaaacaaat gagtgagttt	1320
tcaagtattcc tacactcag aaacccatt taccttgaca tttctcatac tcacaccaga	1380
gttgcttca atggcatctt caatggctt tccagtctcg aagtcttcaa aatggctggc	1440
aattcttcc aggaaaaactt cttccagat atcttcacag agctgagaaa cttgacccctc	1500
ctggacctct ctcagtgtca actggagcag ttgtctccaa cagcattaa ctcactctcc	1560
agtcttcagg tactaaatat gagccacaac aacttctttt cattggatac gtttccttat	1620
aagtgtctga actccctcca ggttcttgat tacagtctca atcacataat gacttccaa	1680
aaacaggaac tacagcattt tccaagtagt cttagttct taaatcttac tcagaatgac	1740
tttgcttcta cttgtgaaca ccagagttt ctagaatggaa tcaaggacca gaggcagctc	1800
ttgggttgaag ttgaacgaat ggaatgtca acacccctcag ataagcaggg catgcctgt	1860
ctgagtttga atatcacctg tcagatgaat aagaccatca ttgggtgttc ggtcctcagt	1920
gtgctttagt tatctgttgt agcagttctg gtctataagt tctatcttca cctgatgctt	1980
cttgctggct gcataaaagta tggtagaggt gaaaacatct atgatgcctt tgttatctac	2040
tcaagccagg atgaggactg ggtaaggaat gagctagtaa agaattttaga agaaggggtg	2100
cctccatttc agctctgcct tcactacaga gactttatttcc cccgtgtggc cattgctgcc	2160
aacatcatcc atgaaggttt ccataaaagc cgaaagggtga ttgttgggt gtcccagcac	2220
ttcatccaga gccgctggtg tatcttgaa tatgagattt ctcagacctg gcagttctg	2280
agcagtcgtg ctggtatcat cttcattgtc ctgcagaagg tggagaagac cctgctcagg	2340
cagcaggtgg agctgtaccg ctttctcagc aggaacactt acctggagtg ggaggacagt	2400
gtcctggggc ggcacatctt ctggagacga ctcagaaaag ccctgcttga tggtaaatca	2460
tggaaatccag aaggaacagt gggtacagga tgcaattggc aggaagcaac atctatctga	2520
agagaaaaaa taaaaacctc ctgaggcatt tcttgcccag ctgggtccaa cacttgtca	2580
gttaataagt attaaatgct gccacatgtc aggccattatg ctaagggtga gtaattccat	2640
ggtgacttag atatgcaggg ctgctaatttca caaggagctt ccagtgcaga gggataaaat	2700
gcttagactaa aatacagagt cttccaggtg ggcatttcaa ccaactcagt caaggaaccc	2760

atgacaaaaga aagtcatttc aactcttacc tcatcaagtt gaataaagac agagaaaaca	2820
aaaaaaaaaa aaaaaaaaaa aaaaa	2845

<210> 13
<211> 3767
<212> DNA
<213> Homo sapiens

<400> 13	
ccttcacccc tttagcccaag aactgcttg aatacaccaa ttgctgtgg gcggtcgag	60
gaagagaaga caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca	120
ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct	180
cgcgcctggc tgggactctg atcccagcca tggccttcct ctccctgcgtg agaccagaaa	240
gctgggagcc ctgcgtggag acttggccct aaaccacaca gaagagctgg catgaaaccc	300
agagctttca gactccggag cctcagccct tcaccccgat tccattgctt ctgtctaaat	360
gctgccgtt tatcacggag gtgtgaaatc cagacaattt aagatggggc atatcagagc	420
ctaagccacc tctctacctt aatattgaca gaaaacccca tccagagttt agccctggga	480
gcctttctg gactatcaag tttacagaag ctgggtggctg tggagacaaa tctagcatct	540
ctagagaact tccccattgg acatctcaaa actttgaaag aacttaatgt ggctcacaat	600
cttatccaat ctttcaaatt acctgagttt ttttctaattc tgaccaatct agagcacttg	660
gacctttcca gcaacaagat tcaaagtatt tattgcacag acttgccgggt tctacatcaa	720
atgcccctac tcaatctctc tttagacctg tccctgaacc ctatgaactt tatccaacca	780
ggtcattta aagaaattag gtttcataag ctgactttaa gaaataattt tgatagttt	840
aatgtaatga aaacttgtat tcaaggcttg gctggtttag aagtccatcg tttggttctg	900
ggagaattta gaaatgaagg aaacttggaa aagtttgaca aatctgctct agagggcctg	960
tgcattttga ccattgaaga attccgatta gcatacttag actactaccc cgatgatatt	1020
attgacttat ttaattgttt gacaaatgtt tcttcatttt ccctggtgag tgtgactatt	1080
gaaagggtaa aagacttttc ttataatttc ggatggcaac atttagaatt agttaactgt	1140
aaatttggac agtttccac attgaaactc aaatctctca aaaggcttac tttcacttcc	1200
aacaaaggtg ggaatgcttt ttcagaagtt gatctaccaa gccttgagtt tctagatctc	1260
agtagaaatg gcttgagttt caaagggtgc tttctcaaa gtgattttgg gacaaccagc	1320
ctaaagtatt tagatctgag cttcaatggt gttattacca tgagttcaaa cttttggc	1380
ttagaacaac tagaacatot ggatttccag cattccaatt tgaaacaaat gagtgagttt	1440
tcagtattcc tatcactcag aaacctcatt taccttgaca tttctcatac tcacaccaga	1500

gttgcttc aatggcatctt caatggcttgc tccagtctcg aagtcttcaa aatggctggc	1560
aattttcc agaaaaactt cttccagat atttcacag agctgagaaa cttgaccttc	1620
ctggacctct ctcagtgtca actggagcag ttgtctccaa cagcattaa ctcactctcc	1680
agtcttcagg tactaaatat gagccacaac aacttctttt cattggatac gtttccttat	1740
aagtgtctga actccctcca gggttcttgat tacagtctca atcacataat gacttccaaa	1800
aaacaggaac tacagcattt tccaagtagt cttagttct taaatcttac tcagaatgac	1860
tttgcttgta cttgtgaaca ccagagtttc ctgcaatgga tcaaggacca gaggcagctc	1920
ttggtggaaag ttgaacgaat ggaatgtgca acacccatcg ataagcaggg catgcctgt	1980
ctgagttga atatcacctg tcagatgaat aagaccatca ttggtgtgtc ggtcctcagt	2040
gtgctttag tatctgttgc agcagttctg gtctataagt tctattttca cctgatgtt	2100
cttgctggct gcataaaagta tggttagaggt gaaaacatct atgatgcctt tgttatctac	2160
tcaagccagg atgaggactg ggtaaggaat gagctagtaa agaattttaga agaaggggtg	2220
cctccatttc agctctgcct tcactacaga gactttattc ccgggtgtggc cattgctgcc	2280
aacatcatcc atgaaggttt ccataaaagc cgaaaagggtga ttgttgggt gtcccagcac	2340
ttcatccaga gccgctggtg tatcttgaa tatgagattt ctcagacctg gcagttctg	2400
agcagtcgtg ctggtatcat cttcattgtc ctgcagaagg tggagaagac cctgctcagg	2460
cagcaggtgg agctgtaccc cttctcagc aggaacactt acctggagtg ggaggacagt	2520
gtcctggggc ggcacatctt ctggagacga ctcagaaaag ccctgctgga tggtaaatca	2580
tggaatccag aaggaacagt gggtacagga tgcaattggc aggaagcaac atctatctga	2640
agaggaaaaaa taaaaacctc ctgaggcatt tcttgcccag ctgggtccaa cacttggta	2700
gttaataagt attaaatgct gccacatgtc aggccattatg ctaagggtga gtaattccat	2760
ggtgcaactag atatgcaggg ctgctaattctt caaggagctt ccagtgcaga gggaaataaat	2820
gctagactaa aatacagagt cttccaggtg ggcatttcaa ccaactcagt caaggaaccc	2880
atgacaaaaga aagtcatatcc aactcttacc tcatcaagtt gaataaagac agagaaaaca	2940
gaaagagaca ttgttctttt cctgagtcattt ttgaatggaa attgtattat gttatagcca	3000
tcataaaaacc attttggtag ttttgactga actgggtgtt cacttttcc ttttgattt	3060
aatacaattt aaattctact tgatgactgc agtcgtcaag gggctcctga tgcaagatgc	3120
cccttccatt ttaagtctgt ctccttacag aggttaaagt cttagtggcta attcctaagg	3180
aaacctgatt aacacatgct cacaaccatc ctggtcattt tcgagcatgt tctattttt	3240
aactaatcac ccctgatata ttttatttt tatatatcca gttttcattt ttttacgtct	3300
tgcctataag ctaatatcat aaataagggtt gttaagacg tgcttcaaattt atccatatta	3360
accactattt ttcaaggaag tatggaaaag tacactctgt cactttgtca ctcgatgtca	3420

ttccaaagtt attgcctact aagtaatgac tgtcatgaaa gcagcattga aataattgt	3480
ttaaaggggg cactcttta aacgggaaga aaattccgc ttccctggct tatcatggac	3540
aatttggct agagggcagga aggaagtggg atgacctcag gaggtcacct tttttgatt	3600
ccagaaaacat atgggctgat aaacccgggg tgacctcatg aaatgagttg cagcagaagt	3660
ttatTTTTT cagaacaagt gatgtttgat ggacctctga atctcttag ggagacacag	3720
atggctggga tccctcccct gtacccttct cactgccagg agaacta	3767

<210> 14
<211> 3814
<212> DNA
<213> Homo sapiens

<400> 14	
cctctcaccc tttagcccaag aactgcttg aatacaccaa ttgctgtggg gcccgtcgag	60
gaagagaaga caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca	120
ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct	180
cgcgcctggc tggactctg atcccagcca tggccttcct ctcctgcgtg agaccagaaa	240
gctggagcc ctgcgtggag gtggttccta atattactta tcaatgoatg gagctgaatt	300
tctacaaaat ccccgacaac ctccttct caaccaagaa cctggacctg agctttaatc	360
ccctgaggca tttaggcagc tatacgcttct tcagttccc agaactgcag gtgctggatt	420
tatccaggtg taaaaatccag acaattgaag atggggcata tcagagccta agccacctct	480
ctaccttaat attgacagga aacccatcc agatTTAGC cctggagcc ttttctggac	540
tatcaagttt acagaagctg gtggctgtgg agacaaatct agcatctcta gagaacttcc	600
ccattggaca tctcaaaact ttgaaagaac ttaatgtggc tcacaatctt atccaatctt	660
tcaaattacc tgagtatTTT tctaattctga ccaatctaga gcacttggac ctttccagca	720
acaagattca aagtattttat tgcacagact tgcgggttct acatcaaatg cccctactca	780
atctctctt agacctgtcc ctgaacccta tgaactttat ccaaccaggt gcatttaaag	840
aaattaggct tcataagctg actttaagaa ataattttga tagttaaat gtaatgaaaa	900
cttgtattca aggtctggct ggtttagaag tccatcgTTT ggttctggga gaatttagaa	960
atgaaggaaa cttggaaaag tttgacaat ctgctctaga gggcctgtgc aatttgacca	1020
ttgaagaatt ccgatttagca tacttagact actacctcga tgatattatt gacttattta	1080
attgtttgac aaatgtttct tcattttccc tggtagtgt gactattgaa agggtaaaag	1140
acttttctta taatttcgga tggcaacatt tagaattagt taactgtaaa tttggacagt	1200
ttccccacatt gaaactcaaa tctctcaaaa ggcttacttt cacttccaac aaaggtggga	1260

atgcttttc agaaggttcat accaaagcc tttagtttct agatctcagt agaaaatggct 1320
tgagttcaa aggttgtgt tctcaaagtg atttgggac aaccagccta aagtatttag 1380
atctgagctt caatggtggtt attaccatga gttcaaaactt cttgggctta gaacaactag 1440
aacatctgga ttccagcat tccaatttga aacaaatgag tgagtttca gtattcctat 1500
cactcagaaa cctcatttac cttgacattt ctctactca caccagagtt gcttcaatg 1560
gcatttcaa tggcttgcgtcc agtctcgaag tcttggaaat ggctggcaat tctttccagg 1620
aaaacttccttcc tccagatatac ttcacagagc tgagaaactt gacccctcctg gacccctctc 1680
agtgtcaact ggagcagtttgc tctccaaacag catttactc actctccagt ctccaggtac 1740
taaatatgag ccacaacaac ttctttcat tggatacgtt tccttataag tgtctgaact 1800
ccctccagggt tcttgatttac agtctcaatc acataatgac ttccaaaaaa caggaactac 1860
agcattttcc aagtagtcttca gctttcttaa atcttactca gaatgacttt gcttgtactt 1920
tgtaaacacca gagtttccctg caatggatca aggaccagag gcagctctg gtggaaagttg 1980
aacgaatgga atgtgcaaca ctttcagata agcagggcat gcctgtgtcg agtttgaata 2040
tcacctgtca gatgaataag accatcatttgc tggatgtcggt cctcagttgtc cttgttagtat 2100
ctgtttagtc agttctggtc tataaggttctt atttcacctt gatgcttctt gctggctgca 2160
taaagtatgg tagaggtgaa aacatctatg atgcctttgt tatctactca agccaggatg 2220
aggactgggt aaggaatgag ctgtttaaga atttagaaga aggggtgcct ccatttcagc 2280
tctgccttca ctacagagac tttattcccg gtgtggccat tgctgccaac atcatccatg 2340
aaggtttcca taaaagccga aaggtgatttgc ttgtgggtgtc ccagcacttc atccagagcc 2400
gctgggttat ctttgaatat gagattgttc agacctggca gtttctgagc agtcgtgtcg 2460
gtatcatctt cattgtcctg cagaagggttgc agaagaccct gctcaggcag caggtggagc 2520
tgtaccgcct tctcagcagg aacacttacc tggagtggttgc ggacagtgtc ctggggcggc 2580
acatcttctg gagacgactc agaaaagccc tgctggatgg taaatcatgg aatccagaag 2640
gaacagtggg tacaggatgc aattggcagg aagcaacatc tatctgaaga ggaaaaataa 2700
aaacccctcg aggcatcttgc tgcccagctg ggtccaaacac ttgttcagtt aataagtatt 2760
aatgctgcc acatgtcagg ctttatgcta agggtgagta attccatggt gcactagata 2820
tgcagggttat ctaatctcaa ggagcttcca gtgcagaggg aataaatgct agactaaaat 2880
acagagtctt ccaggtgggc atttcaacca actcagttca ggaacccatg acaaagaaaag 2940
tcatttcaac tcttacactca tcaagttgaa taaagacaga gaaaacagaa agagacatttgc 3000
ttctttctt gagtcttttgc aatggaaatt gtattatgtt atagccatca taaaaccatt 3060
ttggtagttt tgactgaact ggggtgttcac tttttccctt ttgattgaat acaatttaaa 3120
ttctacttgc tgaactgcagt cgtaagggg ctcctgtatgc aagatgcccc ttccattttca 3180

agtctgtctc	tttacagagg	ttaaaagtcta	gtggctaatt	cctaaggaaa	cctgattaac	3240
acatgctcac	aaccatcctg	gtcattctcg	agcatgttct	attttttaac	taatcacccc	3300
tgatatat	ttatTTTtat	atatccagtt	ttcatttttt	tacgtctgc	ctataagcta	3360
atatcataaa	taaggTTgtt	taagacgtgc	ttcaaatac	catattaacc	actatTTtc	3420
aaggaagtat	ggaaaagtac	actctgtcac	tttgtcaactc	gatgtcattc	caaagttatt	3480
gcctactaag	taatgactgt	catgaaagca	gcattgaaat	aatttgttta	aagggggcac	3540
tcttttaaac	gggaagaaaa	tttccgcttc	ctggtcttat	catggacaat	ttgggctaga	3600
ggcaggaagg	aagtggatg	acctcaggag	gtcaccttt	cttgattcca	gaaacatatg	3660
ggctgataaa	ccccgggtga	cctcatgaaa	tgagttgcag	cagaagttta	ttttttcag	3720
aacaagtgtat	gtttgatgga	cctctgaatc	tcttaggga	gacacagatg	gctgggatcc	3780
ctccccctgtac	cccttctcac	tgccaggaga	acta			3814

<210> 15
<211> 3934
<212> DNA
<213> Homo spaiens

<400> 15						
cctctcaccc	tttagcccaag	aactgctttg	aatacaccaa	ttgctgtggg	gcggctcgag	60
gaagagaaga	caccagtgcc	tcagaaactg	ctcggtcaga	cggtgatagc	gagccacgca	120
ttcacaggc	cactgctgct	cacagaagca	gtgaggatga	tgccaggatg	atgtctgcct	180
cgcgcctggc	tgggactctg	atcccagcca	tggccttcct	ctcctgcgtg	agaccagaaa	240
gctgggagcc	ctgcgtggag	acttggccct	aaaccacaca	gaagagctgg	catgaaaccc	300
agagcttca	gactccggag	cctcagccct	tcaccccgat	tccattgctt	cttgctaaat	360
gctgcgttt	tatcacggag	gtggttccta	atattactta	tcaatgcatg	gagctgaatt	420
tctacaaaat	ccccgacaac	ctccccctct	caaccaagaa	cctggacctg	agcttaatc	480
ccctgaggca	tttaggcgc	tatagcttct	tcagtttccc	agaactgcag	gtgctggatt	540
tatccaggtg	tgaaatccag	acaattgaag	atggggcata	tcagagccta	agccacctct	600
ctaccttaat	attgacagga	aaccccaccc	agagtttagc	cctggagcc	ttttctggac	660
tatcaagttt	acagaagctg	gtggctgtgg	agacaaatct	agcatctcta	gagaacttcc	720
ccattggaca	tctaaaaact	ttgaaagaac	ttaatgtggc	tcacaatctt	atccaatctt	780
tcaaattacc	tgagtatTTT	tctaattctga	ccaatctaga	gcacttggac	ctttccagca	840
acaagattca	aagtattttat	tgcacagact	tgcgggttct	acatcaaatg	cccctactca	900
atctctcttt	agacctgtcc	ctgaacccta	tgaactttat	ccaaaccaggt	gcatttaaag	960

aaattaggct tcataagctg actttaagaa ataatttgaa tagtttaaat gtaatgaaaa	1020
cttgttattca aggtctggct ggtttagaag tccatcgaaa ggttctggaa gaatttagaa	1080
atgaaggaaa ctggaaaag tttgacaaat ctgctctaga gggcctgtgc aatttgacca	1140
ttgaagaatt ccgattagca tacttagact actacctcga tgatattatt gacttattta	1200
attgtttgac aaatgtttct tcattttccc tggtagtgt gactattgaa aggtaaaag	1260
actttctta taatttcgga tggcaacatt tagaattagt taactgtaaa tttggacagt	1320
ttccccacatt gaaactcaaa tctctcaaaa ggcttacttt cacttccaac aaaggtggaa	1380
atgcttttc agaagttgat ctaccaagcc ttgagttct agatctcagt agaaatggct	1440
ttagttcaa aggttgctgt tctcaaagtg attttggac aaccagccta aagtatttag	1500
atctgagctt caatgggtttt attaccatga gttcaaaactt cttgggctta gaacaactag	1560
aacatctgga tttccagcat tccaatttga aacaaatgag ttagtttca gtattcctat	1620
cactcagaaa cctcatttac cttgacattt ctcatctca caccagagtt gcttcaatg	1680
gcatttcaa tggcttgcgtcc agtctcgaag tcttggaaat ggctggcaat tctttccagg	1740
aaaacttcct tccagatata ttcacagagc tgagaaactt gacccctcgt gacccctc	1800
agtgtcaact ggagcagttt tctccaaacag catttactc actctccagt cttcaggtac	1860
taaatatgag ccacaacaac ttctttcat tggatacgtt tccttataag tgtctgaact	1920
ccctccagg tcttgcattt acgtctcaatc acataatgac ttccaaaaaaaa caggaactac	1980
gcattttcc aagtgtctta gctttcttaa atcttactca gaatgacttt gcttgcattt	2040
gtgaacacca gagtttcctg caatggatca aggaccagag gcagctctt gttggactt	2100
aacgaatgga atgtgcaaca ctttcagata agcagggcat gcctgtgctg agtttgaata	2160
tcacctgtca gatgaataag accatcattt gtgtgtcggt ctcagtggtt cttgttagtat	2220
ctgttgcattt agttctggtc tataaggctt attttcacct gatgcttctt gctggctgca	2280
taaagtatgg tagaggtgaa aacatctatg atgcctttgt tatctactca agccaggatg	2340
aggactgggt aaggaatgag ctgtaaaaga atttagaaga aggggtgcct ccatttcagc	2400
tctgccttca ctacagagac tttattcccg gtgtggccat tgctgccaac atcatccatg	2460
aaggtttcca taaaagccga aaggtgattt ttgtgggttcc ccagcacttcc atccagagcc	2520
gctgggttat ctttgaatat gagattgctc agacctggca gtttctgagc agtcgtgtt	2580
gtatcatctt cattgtccctg cagaagggtgg agaagaccct gctcaggcag caggtggagc	2640
tgtaccgcct tctcagcagg aacacttacc tggagtggaa ggacagtgtc ctggggcggc	2700
acatcttctg gagacgactc agaaaagccc tgctggatgg taaatcatgg aatccagaag	2760
gaacagtggg tacaggatgc aattggcagg aagcaacatc tatctgaaga ggaaaaataa	2820
aaacccctcctg aggcatcttct tgcccaagctg ggtccaaacac ttgttcagtt aataagtatt	2880

aatgctgcc acatgtcagg ccttatgcta agggtagta attccatgg gcactagata	2940
tgcagggctg ctaatctcaa ggagcttcca gtgcagaggg aataaatgct agactaaaat	3000
acagagtctt ccaggtggc atttcaacca actcagtcaa ggaacccatg acaaagaaaag	3060
tcatttcaac tcttacctca tcaagttgaa taaagacaga gaaaacagaa agagacattg	3120
ttctttccct gagtcttttg aatggaaatt gtattatgtt atagccatca taaaaccatt	3180
ttggtagttt tgactgaact ggggtttcac ttttccttt ttgattgaat acaatttaaa	3240
ttctacttga tgactgcagt cgtcaagggg ctccctgatgc aagatcccc ttccatttta	3300
agtctgtctc cttacagagg ttaaagtcta gtggctaatt cctaaggaaa cctgattaac	3360
acatgctcac aaccatectg gtcattctcg agcatgttct attttttaac taatcacc	3420
tgatataattt ttatTTTtat atatccagtt ttcattttt tacgtcttgc ctataagcta	3480
atatcataaaa taaggTTGTT taagacgtgc ttcaaatatc catattaacc actatTTTC	3540
aaggaagtat ggaaaagtac actctgtcac tttgtcactc gatgtcattc caaagttatt	3600
gcctactaag taatgactgt catgaaagca gcattgaaat aatttgttta aagggggcac	3660
tcttttaaac gggaaagaaaa ttccgccttc ctggcttat catggacaat ttggctaga	3720
ggcaggaagg aagtgggatg acctcaggag gtcacccccc cttgattcca gaaacatatg	3780
ggctgataaa cccggggtga cctcatgaaa tgagttgcag cagaagttta ttttttcag	3840
aacaagtgtat gtttgatgga cctctgaatc tcttaggga gacacagatg gctggatcc	3900
ctccctgtac cccttctcac tgccaggaga acta	3934

<210> 16

<211> 839

<212> PRT

<213> Homo sapiens

<400> 16

Met Met Ser Ala Ser Arg Leu Ala Gly Thr Leu Ile Pro Ala Met Ala			
1	5	10	15

Phe Leu Ser Cys Val Arg Pro Glu Ser Trp Glu Pro Cys Val Glu Val			
20	25	30	

Val Pro Asn Ile Thr Tyr Gln Cys Met Glu Leu Asn Phe Tyr Lys Ile			
35	40	45	

Pro Asp Asn Leu Pro Phe Ser Thr Lys Asn Leu Asp Leu Ser Phe Asn			
50	55	60	

Pro Leu Arg His Leu Gly Ser Tyr Ser Phe Phe Ser Phe Pro Glu Leu			
65	70	75	80

Gln Val Leu Asp Leu Ser Arg Cys Glu Ile Gln Thr Ile Glu Asp Gly			
85	90	95	

Ala Tyr Gln Ser Leu Ser His Leu Ser Thr Leu Ile Leu Thr Gly Asn
 100 105 110
 Pro Ile Gln Ser Leu Ala Leu Gly Ala Phe Ser Gly Leu Ser Ser Leu
 115 120 125
 Gln Lys Leu Val Ala Val Glu Thr Asn Leu Ala Ser Leu Glu Asn Phe
 130 135 140
 Pro Ile Gly His Leu Lys Thr Leu Lys Glu Leu Asn Val Ala His Asn
 145 150 155 160
 Leu Ile Gln Ser Phe Lys Leu Pro Glu Tyr Phe Ser Asn Leu Thr Asn
 165 170 175
 Leu Glu His Leu Asp Leu Ser Ser Asn Lys Ile Gln Ser Ile Tyr Cys
 180 185 190
 Thr Asp Leu Arg Val Leu His Gln Met Pro Leu Leu Asn Leu Ser Leu
 195 200 205
 Asp Leu Ser Leu Asn Pro Met Asn Phe Ile Gln Pro Gly Ala Phe Lys
 210 215 220
 Glu Ile Arg Leu His Lys Leu Thr Leu Arg Asn Asn Phe Asp Ser Leu
 225 230 235 240
 Asn Val Met Lys Thr Cys Ile Gln Gly Leu Ala Gly Leu Glu Val His
 245 250 255
 Arg Leu Val Leu Gly Glu Phe Arg Asn Glu Gly Asn Leu Glu Lys Phe
 260 265 270
 Asp Lys Ser Ala Leu Glu Gly Leu Cys Asn Leu Thr Ile Glu Glu Phe
 275 280 285
 Arg Leu Ala Tyr Leu Asp Tyr Tyr Leu Asp Asp Ile Ile Asp Leu Phe
 290 295 300
 Asn Cys Leu Thr Asn Val Ser Ser Phe Ser Leu Val Ser Val Thr Ile
 305 310 315 320
 Glu Arg Val Lys Asp Phe Ser Tyr Asn Phe Gly Trp Gln His Leu Glu
 325 330 335
 Leu Val Asn Cys Lys Phe Gly Gln Phe Pro Thr Leu Lys Leu Lys Ser
 340 345 350
 Leu Lys Arg Leu Thr Phe Thr Ser Asn Lys Gly Gly Asn Ala Phe Ser
 355 360 365
 Glu Val Asp Leu Pro Ser Leu Glu Phe Leu Asp Leu Ser Arg Asn Gly
 370 375 380
 Leu Ser Phe Lys Gly Cys Cys Ser Gln Ser Asp Phe Gly Thr Thr Ser
 385 390 395 400
 Leu Lys Tyr Leu Asp Leu Ser Phe Asn Gly Val Ile Thr Met Ser Ser
 405 410 415
 Asn Phe Leu Gly Leu Glu Gln Leu Glu His Leu Asp Phe Gln His Ser

420 425 430
Asn Leu Lys Gln Met Ser Glu Phe Ser Val Phe Leu Ser Leu Arg Asn
435 440 445

Leu Ile Tyr Leu Asp Ile Ser His Thr His Thr Arg Val Ala Phe Asn
450 455 460

Gly Ile Phe Asn Gly Leu Ser Ser Leu Glu Val Leu Lys Met Ala Gly
465 470 475 480

Asn Ser Phe Gln Glu Asn Phe Leu Pro Asp Ile Phe Thr Glu Leu Arg
485 490 495

Asn Leu Thr Phe Leu Asp Leu Ser Gln Cys Gln Leu Glu Gln Leu Ser
500 505 510

Pro Thr Ala Phe Asn Ser Leu Ser Ser Leu Gln Val Leu Asn Met Ser
515 520 525

His Asn Asn Phe Phe Ser Leu Asp Thr Phe Pro Tyr Lys Cys Leu Asn
530 535 540

Ser Leu Gln Val Leu Asp Tyr Ser Leu Asn His Ile Met Thr Ser Lys
545 550 555 560

Lys Gln Glu Leu Gln His Phe Pro Ser Ser Leu Ala Phe Leu Asn Leu
565 570 575

Thr Gln Asn Asp Phe Ala Cys Thr Cys Glu His Gln Ser Phe Leu Gln
580 585 590

Trp Ile Lys Asp Gln Arg Gln Leu Leu Val Glu Val Glu Arg Met Glu
595 600 605

Cys Ala Thr Pro Ser Asp Lys Gln Gly Met Pro Val Leu Ser Leu Asn
610 615 620

Ile Thr Cys Gln Met Asn Lys Thr Ile Ile Gly Val Ser Val Leu Ser
625 630 635 640

Val Leu Val Val Ser Val Val Ala Val Leu Val Tyr Lys Phe Tyr Phe
645 650 655

His Leu Met Leu Leu Ala Gly Cys Ile Lys Tyr Gly Arg Gly Glu Asn
660 665 670

Ile Tyr Asp Ala Phe Val Ile Tyr Ser Ser Gln Asp Glu Asp Trp Val
675 680 685

Arg Asn Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Pro Phe Gln
690 695 700

Leu Cys Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala
705 710 715 720

Asn Ile Ile His Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val
725 730 735

Val Ser Gln His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu
740 745 750

Ile Ala Gln Thr Trp Gln Phe Leu Ser Ser Arg Ala Gly Ile Ile Phe

755 760 765
 Ile Val Leu Gln Lys Val Glu Lys Thr Leu Leu Arg Gln Gln Val Glu
 770 775 780

 Leu Tyr Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Ser
 785 790 795 800

 Val Leu Gly Arg His Ile Phe Trp Arg Arg Leu Arg Lys Ala Leu Leu
 805 810 815

 Asp Gly Lys Ser Trp Asn Pro Glu Gly Thr Val Gly Thr Gly Cys Asn
 820 825 830

 Trp Gln Glu Ala Thr Ser Ile
 835

<210> 17
 <211> 782
 <212> PRT
 <213> Homo sapiens

<400> 17

Met Lys Pro Arg Ala Phe Arg Leu Arg Ser Leu Ser Pro Ser Pro Arg
 1 5 10 15

Phe His Cys Phe Leu Leu Asn Ala Ala Val Leu Ser Arg Arg Cys Glu
 20 25 30

Ile Gln Thr Ile Glu Asp Gly Ala Tyr Gln Ser Leu Ser His Leu Ser
 35 40 45

Thr Leu Ile Leu Thr Gly Asn Pro Ile Gln Ser Leu Ala Leu Gly Ala
 50 55 60

Phe Ser Gly Leu Ser Ser Leu Gln Lys Leu Val Ala Val Glu Thr Asn
 65 70 75 80

Leu Ala Ser Leu Glu Asn Phe Pro Ile Gly His Leu Lys Thr Leu Lys
 85 90 95

Glu Leu Asn Val Ala His Asn Leu Ile Gln Ser Phe Lys Leu Pro Glu
 100 105 110

Tyr Phe Ser Asn Leu Thr Asn Leu Glu His Leu Asp Leu Ser Ser Asn
 115 120 125

Lys Ile Gln Ser Ile Tyr Cys Thr Asp Leu Arg Val Leu His Gln Met
 130 135 140

Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn Phe
 145 150 155 160

Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr Leu
 165 170 175

Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln Gly
 180 185 190

Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg Asn
 195 200 205

Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu Cys
210 215 220

Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr Leu
225 230 235 240

Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser Phe
245 250 255

Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr Asn
260 265 270

Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln Phe
275 280 285

Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser Asn
290 295 300

Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu Phe
305 310 315 320

Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser Gln
325 330 335

Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe Asn
340 345 350

Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu Glu
355 360 365

His Leu Asp Phe Gln His Ser Asn Leu Lys Gln Met Ser Glu Phe Ser
370 375 380

Val Phe Leu Ser Leu Arg Asn Leu Ile Tyr Leu Asp Ile Ser His Thr
385 390 395 400

His Thr Arg Val Ala Phe Asn Gly Ile Phe Asn Gly Leu Ser Ser Leu
405 410 415

Glu Val Leu Lys Met Ala Gly Asn Ser Phe Gln Glu Asn Phe Leu Pro
420 425 430

Asp Ile Phe Thr Glu Leu Arg Asn Leu Thr Phe Leu Asp Leu Ser Gln
435 440 445

Cys Gln Leu Glu Gln Leu Ser Pro Thr Ala Phe Asn Ser Leu Ser Ser
450 455 460

Leu Gln Val Leu Asn Met Ser His Asn Asn Phe Phe Ser Leu Asp Thr
465 470 475 480

Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser Leu
485 490 495

Asn His Ile Met Thr Ser Lys Lys Gln Glu Leu Gln His Phe Pro Ser
500 505 510

Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr Cys
515 520 525

Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu Leu

530	535	540
Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln Gly		
545	550	555
Met Pro Val Leu Ser Leu Asn Ile Thr Cys Gln Met Asn Lys Thr Ile		
565	570	575
Ile Gly Val Ser Val Leu Ser Val Leu Val Val Ser Val Val Ala Val		
580	585	590
Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys Ile		
595	600	605
Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr Ser		
610	615	620
Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu Glu		
625	630	635
Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe Ile		
645	650	655
Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His Lys		
660	665	670
Ser Arg Lys Val Ile Val Val Val Ser Gln His Phe Ile Gln Ser Arg		
675	680	685
Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu Ser		
690	695	700
Ser Arg Ala Gly Ile Ile Phe Val Leu Gln Lys Val Glu Lys Thr		
705	710	715
720		
Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn Thr		
725	730	735
Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp Arg		
740	745	750
Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu Gly		
755	760	765
Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile		
770	775	780

<210> 18
<211> 799
<212> PRT
<213> Homo sapiens

<400> 18

Met Glu Leu Asn Phe Tyr Lys Ile Pro Asp Asn Leu Pro Phe Ser Thr		
1	5	10
		15
Lys Asn Leu Asp Leu Ser Phe Asn Pro Leu Arg His Leu Gly Ser Tyr		
20	25	30
Ser Phe Phe Ser Phe Pro Glu Leu Gln Val Leu Asp Leu Ser Arg Cys		
35	40	45

Glu Ile Gln Thr Ile Glu Asp Gly Ala Tyr Gln Ser Leu Ser His Leu
50 55 60

Ser Thr Leu Ile Leu Thr Gly Asn Pro Ile Gln Ser Leu Ala Leu Gly
65 70 75 80

Ala Phe Ser Gly Leu Ser Ser Leu Gln Lys Leu Val Ala Val Glu Thr
85 90 95

Asn Leu Ala Ser Leu Glu Asn Phe Pro Ile Gly His Leu Lys Thr Leu
100 105 110

Lys Glu Leu Asn Val Ala His Asn Leu Ile Gln Ser Phe Lys Leu Pro
115 120 125

Glu Tyr Phe Ser Asn Leu Thr Asn Leu Glu His Leu Asp Leu Ser Ser
130 135 140

Asn Lys Ile Gln Ser Ile Tyr Cys Thr Asp Leu Arg Val Leu His Gln
145 150 155 160

Met Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn
165 170 175

Phe Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr
180 185 190

Leu Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln
195 200 205

Gly Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg
210 215 220

Asn Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu
225 230 235 240

Cys Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr
245 250 255

Leu Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser
260 265 270

Phe Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr
275 280 285

Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln
290 295 300

Phe Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser
305 310 315 320

Asn Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu
325 330 335

Phe Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser
340 345 350

Gln Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe
355 360 365

Asn Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu

370	375	380
Glu His Leu Asp Phe Gln His Ser Asn Leu Lys Gln Met Ser Glu Phe		
385	390	395
Ser Val Phe Leu Ser Leu Arg Asn Leu Ile Tyr Leu Asp Ile Ser His		
405	410	415
Thr His Thr Arg Val Ala Phe Asn Gly Ile Phe Asn Gly Leu Ser Ser		
420	425	430
Leu Glu Val Leu Lys Met Ala Gly Asn Ser Phe Gln Glu Asn Phe Leu		
435	440	445
Pro Asp Ile Phe Thr Glu Leu Arg Asn Leu Thr Phe Leu Asp Leu Ser		
450	455	460
Gln Cys Gln Leu Glu Gln Leu Ser Pro Thr Ala Phe Asn Ser Leu Ser		
465	470	475
Ser Leu Gln Val Leu Asn Met Ser His Asn Asn Phe Phe Ser Leu Asp		
485	490	495
Thr Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser		
500	505	510
Leu Asn His Ile Met Thr Ser Lys Lys Gln Glu Leu Gln His Phe Pro		
515	520	525
Ser Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr		
530	535	540
Cys Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu		
545	550	555
Leu Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln		
565	570	575
Gly Met Pro Val Leu Ser Leu Asn Ile Thr Cys Gln Met Asn Lys Thr		
580	585	590
Ile Ile Gly Val Ser Val Leu Ser Val Leu Val Val Ser Val Val Ala		
595	600	605
Val Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys		
610	615	620
Ile Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr		
625	630	635
640		
Ser Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu		
645	650	655
Glu Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe		
660	665	670
Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His		
675	680	685
Lys Ser Arg Lys Val Ile Val Val Val Ser Gln His Phe Ile Gln Ser		
690	695	700
Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu		

705	710	715	720
Ser Ser Arg Ala Gly Ile Ile Phe Ile Val Leu Gln Lys Val Glu Lys			
725		730	735

Thr Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn			
740		745	750

Thr Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp			
755		760	765

Arg Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu			
770		775	780

Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile			
785		790	795

<210> 19
<211> 639
<212> PRT
<213> Homo sapiens

<400> 19

Met Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn			
1	5	10	15

Phe Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr			
20		25	30

Leu Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln			
35		40	45

Gly Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg			
50		55	60

Asn Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu			
65		70	75

Cys Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr			
85		90	95

Leu Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser			
100		105	110

Phe Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr			
115		120	125

Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln			
130		135	140

Phe Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser			
145		150	155

Asn Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu			
165		170	175

Phe Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser			
180		185	190

Gln Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe			
195		200	205

Asn Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu
210 215 220

Glu His Leu Asp Phe Gln His Ser Asn Leu Lys Gln Met ,Ser Glu Phe
225 230 235 240

Ser Val Phe Leu Ser Leu Arg Asn Leu Ile Tyr Leu Asp Ile Ser His
245 250 255

Thr His Thr Arg Val Ala Phe Asn Gly Ile Phe Asn Gly Leu Ser Ser
260 265 270

Leu Glu Val Leu Lys Met Ala Gly Asn Ser Phe Gln Glu Asn Phe Leu
275 280 285

Pro Asp Ile Phe Thr Glu Leu Arg Asn Leu Thr Phe Leu Asp Leu Ser
290 295 300

Gln Cys Gln Leu Glu Gln Leu Ser Pro Thr Ala Phe Asn Ser Leu Ser
305 310 315 320

Ser Leu Gln Val Leu Asn Met Ser His Asn Asn Phe Phe Ser Leu Asp
325 330 335

Thr Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser
340 345 350

Leu Asn His Ile Met Thr Ser Lys Lys Gln Glu Leu Gln His Phe Pro
355 360 365

Ser Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr
370 375 380

Cys Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu
385 390 395 400

Leu Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln
405 410 415

Gly Met Pro Val Leu Ser Leu Asn Ile Thr Cys Gln Met Asn Lys Thr
420 425 430

Ile Ile Gly Val Ser Val Leu Ser Val Leu Val Val Ser Val Val Ala
435 440 445

Val Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys
450 455 460

Ile Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr
465 470 475 480

Ser Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu
485 490 495

Glu Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe
500 505 510

Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His
515 520 525

Lys Ser Arg Lys Val Ile Val Val Ser Gln His Phe Ile Gln Ser

530	535	540
Arg Trp Cys Ile Phe Glu	Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu	
545	550	555
Ser Ser Arg Ala Gly Ile Ile Phe Ile Val Leu Gln Lys Val Glu Lys		
	565	570
		575
Thr Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn		
	580	585
		590
Thr Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp		
	595	600
		605
Arg Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu		
	610	615
		620
Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile		
	625	630
		635

<210> 20
<211> 3866
<212> DNA
<213> murine

<400> 20	60
ctgggtgcag aaaatgccag gatgatgcct ccctggctcc tggctaggac tctgatcatg	60
gcactgttct ttcctgcct gacaccagga agcttgaatc cctgcataaga ggttagttcct	120
aatattacct accaatgcat ggatcagaaa ctcagcaaag tccctgtatca cattccttct	180
tcaaccaaga acatagatct gagttcaac cccttgaaga tcttaaaaag ctatagttc	240
tccaattttt cagaacttca gtggctggat ttatccaggt gtgaaattga aacaattgaa	300
gacaaggcat ggcatggctt acaccaccc tc当地acttga tactgacagg aaaccctatc	360
cagagttttt ccccaggaag tttctcttca ctaacaagtt tagagaatct ggtggctgtg	420
gagacaaaaat tggctctctt agaaagttt cctattggac agttataac ct当地agaaaa	480
ctcaatgtgg ctcacaattt tatacattcc tgtaagttac ctgcataattt ttccatcttg	540
acgaacctag tacatgttca tctttcttat aactatattt aaactattttc tgtcaacgac	600
ttacagtttc tacgtaaaaa tccacaagtc aatctctttt tagacatgtc tttgaaccca	660
attgacttca ttcaagacca agccttttag ggaattaagc tccatgaact gactctaaga	720
ggtatattttt atagctcaaa tataatggaa acttgccttc aaaacctggc tggtttacac	780
gtccatcggt tgatcttggg agaattttaa gatgaaagga atctggaaat ttttgaaccc	840
tctatcatgg aaggactatgt tgatgtgacc attgatgagt tcaggttaac atatacaaatt	900
gatttttcag atgatattttt taagttccat tgcttggcga atgtttctgc aatgtcttg	960
gcaggtgtat ctataaaaata tctagaagat gttcctaaac atttcaaattg gcaatcctt	1020
tcaatcatta gatgtcaact taagcagttt ccaactctgg atctaccctt tctaaaaagt	1080

ttgactttaa ctatgaacaa agggctatac agtttaaaa aagtggccct accaagtctc	1140
agctatctag atcttagtag aaatgcactg agcttagtg gttgtgttc ttattctgat	1200
ttgggaacaa acagcctgag acacttagac ctcagcttca atgggccat cattatgagt	1260
gccaatttca tgggtctaga agagctgcag cacctggatt ttcagcactc tactttaaaa	1320
agggtcacag aattctcagc gttcttatcc cttgaaaagc tactttacct tgacatctct	1380
tatactaaca ccaaatttga cttcgatggt atatttctt gcttgaccag tctcaacaca	1440
ttaaaaatgg ctggcaattc ttcaaaagac aacaccctt caaatgtctt tgcaaacaca	1500
acaaaacttga cattcctgga tctttctaaa tgtcaattgg aacaaatatc ttggggggta	1560
tttgacacccc tccatagact tcaattatta aatatgagtc acaacaatct attgttttg	1620
gattcatccc attataacca gctgtattcc ctcagcactc ttgattgcag ttcaatcgc	1680
atagagacat ctaaaggaat actgcaacat ttccaaaga gtctagcctt cttcaatctt	1740
actaacaatt ctgttgcttg tatatgtcaa catcagaaat tcctgcagtg ggtcaaggaa	1800
cagaagcagt tcttggtgaa tggtaacaa atgacatgtg caacacotgt agagatgaat	1860
acctccttag tggattttttaataattctt acctgttata tgtacaagac aatcatcagt	1920
gtgtcagtgg tcagtgtgat tggatccactt actgttagcat ttctgatata ccacttctat	1980
tttcacctga tacttattgc tggctgtaaa aagtacagca gaggagaaag catctatgat	2040
gcatttgtga tctactcgag tcagaatgag gactgggtga gaaatgagct ggtaaagaat	2100
ttagaagaag gagtgccccg cttcacctc tgccttact acagagactt tattcctgg	2160
gtagccatttgc ctgccaacat catccaggaa ggcttccaca agagccggaa ggttattgt	2220
gtagtgcttta gacacttttgc tcaagccgt tggatccactt ttgaatatga gattgctaa	2280
acatggcagt ttctgagcag ccgctctggc atcatcttca ttgtccttga gaagggtttag	2340
aagtccctgc tgaggcagca ggtggatttgc tategccttc ttagcagaaa cacctacctg	2400
gaatgggagg acaatccctt ggggaggcac atcttcttgcgaa gaagacttaa aaatgcctt	2460
ttggatggaa aagcctcgaa tcctgagcaa acagcagagg aagaacaaga aacggcaact	2520
tggacctgag gagaacaaaa ctctggggcc taaacccagt ctgtttgcaaa ttaataatg	2580
ctacagctca cctggggctc tgctatggac cgagagccca tgaaacacat ggctgctaa	2640
ctatagcatg gacccatccg ggcagaagga agtagcactg acaccccttcc ttccagggg	2700
atgaattacc taactcgaaa aaagaaacat aatccagaat ctttacccctt aatctgaagg	2760
agaagaggct aaggccctgtt gagaacagaa aggagaacca gtcttcactg ggccttttga	2820
atacaagcca tgcgttgc tggatccactt tgcttttgcgaa tgcaatatta aatagcttt	2880
tgaactgaac ggtttcttac ttccctttt ttctactgaa tgcaatatta aatagcttt	2940
tttgagaggt ctccatttca atttcatctt ccattttatg tcattttctt ttcttttttgc	3000

tttttatcta attctataag aaatatgatt gatacacgct cacagatgc ctggccaatc	3060
ctaagaatgc tatatttatt aaatacaatt cctagtatac ttttactttt ataaattcag	3120
ttatcgttt tcatgccttg actataaact aatatcataa ataagattgt tacaggtatg	3180
ctaagaaggc ccatatttga ctataatttt ttaagaaaagt atataaaata tactttgtca	3240
tattgtcact gaatgtcatt cttaagttat tacctaagtt atggatgtca cagagtcagt	3300
gttaaaaata atttgggttga tagaaatatt tttaatcagg agggaaaagt ggagaggggt	3360
gcaggaacag aaatcatgat ttcatcattt attcttgatt tttccggaag ttcacatagc	3420
tgaatgacaa gactacatat gctgcaactg atgttccttc tcatcaagga tactctctga	3480
acttgagaac attttgggga ggaagaaaagg tctaacatec ttttccttca tcattctcat	3540
ttctggacat gccttgttag atggatcaat gttggagta cacatttctg ctttcacctt	3600
atttcagtca gcatgaacac tgaatatata atgtcattt acagtgtgtg tgtgttgtgt	3660
atgtacatat atgaacctgt acatgtgttt aagttaaag agaaaatagt gtacagagca	3720
ggtgtatatt tgtgataggg cttaaatag ttgagcta atcagaaaagt atggaggttt	3780
cttggtaaac caaaccaaaaa gtagaatcat tacaagatct aacaataaaa atttgaaaa	3840
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa	3866

<210> 21
<211> 2520
<212> DNA
<213> murine

<400> 21	
atgatgcctc cctggctcct ggctaggact ctgatcatgg cactgttctt ctcctgcctg	60
acaccaggaa gcttgaatcc ctgcataagag gtatgttca atattaccta ccaatgcatt	120
gatcagaaac ttagcaaagt ccctgtatgac attccttctt caaccaagaa catagatctg	180
agcttcaacc ctttgaagat cttaaaaagc tatagtttctt ccaatttttc agaacttcag	240
tggctggatt tatccaggtg tgaaattgaa acaatttgaag acaaggcatg gcatggctta	300
caccacctct caaacttgat actgacagga aaccctatcc agagtttttc cccaggaagt	360
ttctctggac taacaagttt agagaatctg gtggctgtgg agacaaaatt ggcctctcta	420
gaaagcttcc ctattggaca gcttataacc ttaaagaaaac tcaatgtggc tcacaatttt	480
atacattcct gtaagttacc tgcataatttt tccaatctga cgaacctagt acatgtggat	540
ctttcttata actatattca aactattact gtcaacgact tacagttctt acgtgaaaat	600
ccacaagtca atctctctttt agacatatct ttgaacccaa ttgacttcat tcaagaccaa	660
gccttcagg gaattaagct ccatgaactg actctaaagag gtaattttaa tagctcaaat	720

ataatggaaa cttgccttca aaacctggct ggtttacaca tccatcggtt gatcttgaa 780
gaatttaaag atgaaaggaa tctggaaatt tttgaaccct ctatcatgga aggactatgt 840
gatgtgacca ttgatgagtt caggtaaca tatacaaattt attttcaga tgatattgtt 900
aagtccatt gcttggcgaa tgtttctgca atgtctctgg caggtgtatc tataaaatat 960
ctagaagatg ttcctaaaca tttcaaattt caatccttat caatcattttag atgtcaactt 1020
aagcagtttc caactctgga tctacccttt cttaaaagtt tgactttaac tatgaacaaa 1080
gggtctatca gttttaaaaa agtggcccta ccaagtctca gctatctaga tcttagttaga 1140
aatgcactga gctttagtgg ttgctgttct tattctgatt tgggaacaaa cagcctgaga 1200
cacttagacc tcagttcaa tgggccatc attatgagtg ccaatttcat gggtctagaa 1260
gagctgcagc acctggattt tcagcactct actttaaaaa gggtcacaga attctcagcg 1320
ttcttatccc ttgaaaagct actttacctt gacatctctt atactaacac caaaatttgac 1380
ttcgatggta tatttcttgg cttgaccagt ctcaacacat taaaaatggc tggcaattct 1440
ttcaaagaca acacccttccaaatgtctt gcaaacacaa caaaacttgac attcctggat 1500
ctttctaaat gtcaatttgg acaaataatct tgggggtat ttgacaccct ccatacgactt 1560
caattattaa atatgagtca caacaatcta ttgttttgg attcatccca ttataaccag 1620
ctgtattccc tcagcactct tgattgcagt ttcaatcgca tagagacatc taaaggaata 1680
ctgcaacatt ttccaaagag tctagccttc ttcaatctt ctaacaatttcttgc 1740
atatgtgaac atcagaaatt cctgcagtgg gtcaaggacc agaaggcgtt cttggtaat 1800
gttgaacaaa tgacatgtgc aacacctgta gagatgaata cctccttagt gttggatttt 1860
aataattcta cctgttatat gtacaagaca atcatcagtg tgcgttggtt cagtgtgatt 1920
gtggtatcca ctgtgcatt tctgatatac cacttcttatttccacctgtat acttattgtt 1980
ggctgtaaaa agtacagcag aggagaaaagc atctatgtatc cattttgtatc ctactcgagt 2040
cagaatgagg actgggtgag aaatgagctg gtaaaaggatt tagaagaagg agtgcggcgc 2100
tttcacctct gccttcacta cagagacttt attcctgggtt tagccattgc tgccaaatattc 2160
atccaggaag gcttccacaa gagccggaaag gttattgtgg tagtgtctatc acactttttt 2220
cagagccgtt ggtgtatctt tgaatatgag attgctcaaa catggcagt tctgagcagc 2280
cactctggca tcatcttcat tgccttgcgaaaggatgaga agtccctgtatc gaggcagcagc 2340
gtggaaattgt atcgccttct tagcagaaac acctacctgg aatggggagga caatcctctg 2400
gggaggcaca tcttctggag aagacttaaa aatgccttat tggatggaaa agcctcgaat 2460
cctgagcaaa cagcagagggaa agaacaagaa acggcaactt ggacctgagg agaaccgcgg 2520

<212> DNA
<213> murine

<400> 22
ctgggtgcag aaaatgccag gatgatgcct ccctggctcc tggctaggac tctgatcatg 60
gcactgttct tctcctgcct gacaccagga agcttgaatc cctgcataaga ggttagttct 120
aatattacct accaatgcat ggatcagaaa ctcagcaaag tccctgatga cattccttct 180
tcaaccaaga acatagatct gagcttcaac cccttgaaga tcttaaaaag ctatagttc 240
tccaattttt cagaacttca gtggctggat ttatccaggt gtgaaattga aacaattgaa 300
gacaaggcat ggcattggctt acaccaccc tc当地acttga tactgacagg aaaccctatc 360
cagagttttt ccccgaggaag tttctctgga ctaacaagtt tagagaatct ggtggctgtg 420
gagacaaaaat tggcctctct agaaagttc cctattggac agcttataac ct当地agaaa 480
ctcaatgtgg ctcacaattt tatacattcc tgtaagttac ctgcataattt ttccaatctg 540
acgaacctag tacatgtgga tctttcttat aactatattc aaactattac tgtcaacgac 600
ttacagtttc tacgtgaaaaa tccacaagtc aatctctttagacatgtc tttgaaccca 660
attgacttca ttcaagacca agcctttcag ggaattaagc tccatgaact gactctaaga 720
ggtaattttt atagctaaaa tataatgaaa acttgccttc aaaacctggc tggtttacac 780
gtccatcggt tgatcttggg agaattttaa gatgaaagga atctggaaat ttttgaaccc 840
tctatcatgg aaggactatg tgatgtgacc attgatgagt tcaggtaac atatacaaatt 900
gatttttcag atgatattgt taagttccat tgcttggcga atgttctgc aatgtctctg 960
gcagggtgtat ctataaaata tctagaagat gttcctaaac atttcaaattg gcaatcctta 1020
tcaatcatta gatgtcaact taagcagttt ccaactctgg atctaccctt tcttaaaaat 1080
ttgactttaa ctatgaacaa agggctatc agttttaaaa aagtggccctt accaagtctc 1140
agctatctag atcttagtag aaatgcactg agcttttagtg gttgctgttc ttattctgat 1200
ttgggaacaa acagcctgag acacttagac ctcagcttca atggtgccat cattatgagt 1260
gccaatttca tgggtctaga agagctgcag cacctggatt ttcagcactc tactttaaaa 1320
agggtcacag aattctcagc gttcttatcc cttgaaaagc tactttacct tgacatctct 1380
tatactaaca cccaaattga cttecatggat atattcttg gcttgaccag tctcaacaca 1440
ttaaaaatgg ctggcaatttcc tttcaaaagac aacacccttt caaatgttct tgcaaacaca 1500
acaaacttga cattcctggat tctttctaaa tgtcaattgg aacaaatatc ttggggggta 1560
tttgacaccc tccatagact tcaatttatta aatatgagtc acaacaatctt attgttttg 1620
gattcatcccc attataacca gctgttattcc ctcagcactc ttgattgcag ttcaatcgc 1680
atagagacat ctaaaggaat actgcaacat tttccaaaga gtctagcctt ttcaatctt 1740

atgtacatat atgaacctgt acatgtgttt aagtttaaag agaaaatagt gtacagagca	3720
ggtgtatatt tgtgataggg ctttaaatag ttgagctaat tcagaaaagt atggaggttt	3780
cttggtaaac caaacaaaaa gtagaatcat tacaagatct aacaataaaa attttgaaaa	3840
aaaaaaaaaa aaaaaaaaaa aaaaaa	3866

<210> 23
<211> 835
<212> PRT
<213> murine

<400> 23

Met Met Pro Pro Trp Leu Leu Ala Arg Thr Leu Ile Met Ala Leu Phe			
1	5	10	15

Phe Ser Cys Leu Thr Pro Gly Ser Leu Asn Pro Cys Ile Glu Val Val		
20	25	30

Pro Asn Ile Thr Tyr Gln Cys Met Asp Gln Lys Leu Ser Lys Val Pro		
35	40	45

Asp Asp Ile Pro Ser Ser Thr Lys Asn Ile Asp Leu Ser Phe Asn Pro		
50	55	60

Leu Lys Ile Leu Lys Ser Tyr Ser Phe Ser Asn Phe Ser Glu Leu Gln			
65	70	75	80

Trp Leu Asp Leu Ser Arg Cys Glu Ile Glu Thr Ile Glu Asp Lys Ala		
85	90	95

Trp His Gly Leu His His Leu Ser Asn Leu Ile Leu Thr Gly Asn Pro		
100	105	110

Ile Gln Ser Phe Ser Pro Gly Ser Phe Ser Gly Leu Thr Ser Leu Glu		
115	120	125

Asn Leu Val Ala Val Glu Thr Lys Leu Ala Ser Leu Glu Ser Phe Pro		
130	135	140

Ile Gly Gln Leu Ile Thr Leu Lys Lys Leu Asn Val Ala His Asn Phe			
145	150	155	160

Ile His Ser Cys Lys Leu Pro Ala Tyr Phe Ser Asn Leu Thr Asn Leu		
165	170	175

Val His Val Asp Leu Ser Tyr Asn Tyr Ile Gln Thr Ile Thr Val Asn		
180	185	190

Asp Leu Gln Phe Leu Arg Glu Asn Pro Gln Val Asn Leu Ser Leu Asp		
195	200	205

Met Ser Leu Asn Pro Ile Asp Phe Ile Gln Asp Gln Ala Phe Gln Gly		
210	215	220

Ile Lys Leu His Glu Leu Thr Leu Arg Gly Asn Phe Asn Ser Ser Asn			
225	230	235	240

Ile Met Lys Thr Cys Leu Gln Asn Leu Ala Gly Leu His Val His Arg
245 250 255

Leu Ile Leu Gly Glu Phe Lys Asp Glu Arg Asn Leu Glu Ile Phe Glu
260 265 270

Pro Ser Ile Met Glu Gly Leu Cys Asp Val Thr Ile Asp Glu Phe Arg
275 280 285

Leu Thr Tyr Thr Asn Asp Phe Ser Asp Asp Ile Val Lys Phe His Cys
290 295 300

Leu Ala Asn Val Ser Ala Met Ser Leu Ala Gly Val Ser Ile Lys Tyr
305 310 315 320

Leu Glu Asp Val Pro Lys His Phe Lys Trp Gln Ser Leu Ser Ile Ile
325 330 335

Arg Cys Gln Leu Lys Gln Phe Pro Thr Leu Asp Leu Pro Phe Leu Lys
340 345 350

Ser Leu Thr Leu Thr Met Asn Lys Gly Ser Ile Ser Phe Lys Lys Val
355 360 365

Ala Leu Pro Ser Leu Ser Tyr Leu Asp Leu Ser Arg Asn Ala Leu Ser
370 375 380

Phe Ser Gly Cys Cys Ser Tyr Ser Asp Leu Gly Thr Asn Ser Leu Arg
385 390 395 400

His Leu Asp Leu Ser Phe Asn Gly Ala Ile Ile Met Ser Ala Asn Phe
405 410 415

Met Gly Leu Glu Glu Leu Gln His Leu Asp Phe Gln His Ser Thr Leu
420 425 430

Lys Arg Val Thr Glu Phe Ser Ala Phe Leu Ser Leu Glu Lys Leu Leu
435 440 445

Tyr Leu Asp Ile Ser Tyr Thr Asn Thr Lys Ile Asp Phe Asp Gly Ile
450 455 460

Phe Leu Gly Leu Thr Ser Leu Asn Thr Leu Lys Met Ala Gly Asn Ser
465 470 475 480

Phe Lys Asp Asn Thr Leu Ser Asn Val Phe Ala Asn Thr Thr Asn Leu
485 490 495

Thr Phe Leu Asp Leu Ser Lys Cys Gln Leu Glu Gln Ile Ser Trp Gly
500 505 510

Val Phe Asp Thr Leu His Arg Leu Gln Leu Leu Asn Met Ser His Asn
515 520 525

Asn Leu Leu Phe Leu Asp Ser Ser His Tyr Asn Gln Leu Tyr Ser Leu
530 535 540

Ser Thr Leu Asp Cys Ser Phe Asn Arg Ile Glu Thr Ser Lys Gly Ile
545 550 555 560

Leu Gln His Phe Pro Lys Ser Leu Ala Phe Phe Asn Leu Thr Asn Asn

	565	570	575
Ser Val Ala Cys Ile Cys Glu His Gln Lys Phe Leu Gln Trp Val Lys			
	580	585	590
Glu Gln Lys Gln Phe Leu Val Asn Val Glu Gln Met Thr Cys Ala Thr			
	595	600	605
Pro Val Glu Met Asn Thr Ser Leu Val Leu Asp Phe Asn Asn Ser Thr			
	610	615	620
Cys Tyr Met Tyr Lys Thr Ile Ile Ser Val Ser Val Val Ser Val Ile			
	625	630	635
Val Val Ser Thr Val Ala Phe Leu Ile Tyr His Phe Tyr Phe His Leu			
	645	650	655
Ile Leu Ile Ala Gly Cys Lys Lys Tyr Ser Arg Gly Glu Ser Ile Tyr			
	660	665	670
Asp Ala Phe Val Ile Tyr Ser Ser Gln Asn Glu Asp Trp Val Arg Asn			
	675	680	685
Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Arg Phe His Leu Cys			
	690	695	700
Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile			
	705	710	715
Ile Gln Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Val Ser			
	725	730	735
Arg His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala			
	740	745	750
Gln Thr Trp Gln Phe Leu Ser Ser Arg Ser Gly Ile Ile Phe Ile Val			
	755	760	765
Leu Glu Lys Val Glu Lys Ser Leu Leu Arg Gln Gln Val Glu Leu Tyr			
	770	775	780
Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Asn Pro Leu			
	785	790	795
Gly Arg His Ile Phe Trp Arg Arg Leu Lys Asn Ala Leu Leu Asp Gly			
	805	810	815
Lys Ala Ser Asn Pro Glu Gln Thr Ala Glu Glu Glu Gln Glu Thr Ala			
	820	825	830
Thr Trp Thr			
	835		

<210> 24
<211> 835
<212> PRT
<213> murine

<400> 24

Met Met Pro Pro Trp Leu Leu Ala Arg Thr Leu Ile Met Ala Leu Phe		
1	5	10
		15

Phe Ser Cys Leu Thr Pro Gly Ser Leu Asn Pro Cys Ile Glu Val Val
20 25 30

Pro Asn Ile Thr Tyr Gln Cys Met Asp Gln Lys Leu Ser Lys Val Pro
35 40 45

Asp Asp Ile Pro Ser Ser Thr Lys Asn Ile Asp Leu Ser Phe Asn Pro
50 55 60

Leu Lys Ile Leu Lys Ser Tyr Ser Phe Ser Asn Phe Ser Glu Leu Gln
65 70 75 80

Trp Leu Asp Leu Ser Arg Cys Glu Ile Glu Thr Ile Glu Asp Lys Ala
85 90 95

Trp His Gly Leu His His Leu Ser Asn Leu Ile Leu Thr Gly Asn Pro
100 105 110

Ile Gln Ser Phe Ser Pro Gly Ser Phe Ser Gly Leu Thr Ser Leu Glu
115 120 125

Asn Leu Val Ala Val Glu Thr Lys Leu Ala Ser Leu Glu Ser Phe Pro
130 135 140

Ile Gly Gln Leu Ile Thr Leu Lys Lys Leu Asn Val Ala His Asn Phe
145 150 155 160

Ile His Ser Cys Lys Leu Pro Ala Tyr Phe Ser Asn Leu Thr Asn Leu
165 170 175

Val His Val Asp Leu Ser Tyr Asn Tyr Ile Gln Thr Ile Thr Val Asn
180 185 190

Asp Leu Gln Phe Leu Arg Glu Asn Pro Gln Val Asn Leu Ser Leu Asp
195 200 205

Ile Ser Leu Asn Pro Ile Asp Phe Ile Gln Asp Gln Ala Phe Gln Gly
210 215 220

Ile Lys Leu His Glu Leu Thr Leu Arg Gly Asn Phe Asn Ser Ser Asn
225 230 235 240

Ile Met Lys Thr Cys Leu Gln Asn Leu Ala Gly Leu His Ile His Arg
245 250 255

Leu Ile Leu Gly Glu Phe Lys Asp Glu Arg Asn Leu Glu Ile Phe Glu
260 265 270

Pro Ser Ile Met Glu Gly Leu Cys Asp Val Thr Ile Asp Glu Phe Arg
275 280 285

Leu Thr Tyr Thr Asn Asp Phe Ser Asp Asp Ile Val Lys Phe His Cys
290 295 300

Leu Ala Asn Val Ser Ala Met Ser Leu Ala Gly Val Ser Ile Lys Tyr
305 310 315 320

Leu Glu Asp Val Pro Lys His Phe Lys Trp Gln Ser Leu Ser Ile Ile
325 330 335

Arg Cys Gln Leu Lys Gln Phe Pro Thr Leu Asp Leu Pro Phe Leu Lys

	340	345	350												
Ser	Leu	Thr	Leu	Thr	Met	Asn	Lys	Gly	Ser	Ile	Ser	Phe	Lys	Lys	Val
	355						360						365		
Ala	Leu	Pro	Ser	Leu	Ser	Tyr	Leu	Asp	Leu	Ser	Arg	Asn	Ala	Leu	Ser
							375						380		
Phe	Ser	Gly	Cys	Cys	Ser	Tyr	Ser	Asp	Leu	Gly	Thr	Asn	Ser	Leu	Arg
							385			390			395		400
His	Leu	Asp	Leu	Ser	Phe	Asn	Gly	Ala	Ile	Ile	Met	Ser	Ala	Asn	Phe
									405		410				415
Met	Gly	Leu	Glu	Glu	Leu	Gln	His	Leu	Asp	Phe	Gln	His	Ser	Thr	Leu
								420		425					430
Lys	Arg	Val	Thr	Glu	Phe	Ser	Ala	Phe	Leu	Ser	Leu	Glu	Lys	Leu	Leu
							435		440				445		
Tyr	Leu	Asp	Ile	Ser	Tyr	Thr	Asn	Thr	Lys	Ile	Asp	Phe	Asp	Gly	Ile
							450		455				460		
Phe	Leu	Gly	Leu	Thr	Ser	Leu	Asn	Thr	Leu	Lys	Met	Ala	Gly	Asn	Ser
							465		470			475			480
Phe	Lys	Asp	Asn	Thr	Leu	Ser	Asn	Val	Phe	Ala	Asn	Thr	Thr	Asn	Leu
							485			490			495		
Thr	Phe	Leu	Asp	Leu	Ser	Lys	Cys	Gln	Leu	Glu	Gln	Ile	Ser	Trp	Gly
								500		505			510		
Val	Phe	Asp	Thr	Leu	His	Arg	Leu	Gln	Leu	Leu	Asn	Met	Ser	His	Asn
							515		520			525			
Asn	Leu	Leu	Phe	Leu	Asp	Ser	Ser	His	Tyr	Asn	Gln	Leu	Tyr	Ser	Leu
							530		535			540			
Ser	Thr	Leu	Asp	Cys	Ser	Phe	Asn	Arg	Ile	Glu	Thr	Ser	Lys	Gly	Ile
							545		550			555			560
Leu	Gln	His	Phe	Pro	Lys	Ser	Leu	Ala	Phe	Phe	Asn	Leu	Thr	Asn	Asn
							565			570			575		
Ser	Val	Ala	Cys	Ile	Cys	Glu	His	Gln	Lys	Phe	Leu	Gln	Trp	Val	Lys
							580		585			590			
Asp	Gln	Lys	Gln	Phe	Leu	Val	Asn	Val	Glu	Gln	Met	Thr	Cys	Ala	Thr
							595		600			605			
Pro	Val	Glu	Met	Asn	Thr	Ser	Leu	Val	Leu	Asp	Phe	Asn	Asn	Ser	Thr
							610		615			620			
Cys	Tyr	Met	Tyr	Lys	Thr	Ile	Ile	Ser	Val	Ser	Val	Val	Ser	Val	Ile
							625		630			635			640
Val	Val	Ser	Thr	Val	Ala	Phe	Leu	Ile	Tyr	His	Phe	Tyr	Phe	His	Leu
							645		650			655			
Ile	Leu	Ile	Ala	Gly	Cys	Lys	Tyr	Ser	Arg	Gly	Glu	Ser	Ile	Tyr	
							660		665			670			
Asp	Ala	Phe	Val	Ile	Tyr	Ser	Ser	Gln	Asn	Glu	Asp	Trp	Val	Arg	Asn

675	680	685
Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Arg Phe His Leu Cys		
690	695	700
Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile		
705	710	715
Ile Gln Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Val Ser		
725	730	735
Arg His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala		
740	745	750
Gln Thr Trp Gln Phe Leu Ser Ser His Ser Gly Ile Ile Phe Ile Val		
755	760	765
Leu Glu Lys Val Glu Lys Ser Leu Leu Arg Gln Gln Val Glu Leu Tyr		
770	775	780
Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Asn Pro Leu		
785	790	795
Gly Arg His Ile Phe Trp Arg Arg Leu Lys Asn Ala Leu Leu Asp Gly		
805	810	815
Lys Ala Ser Asn Pro Glu Gln Thr Ala Glu Glu Glu Gln Glu Thr Ala		
820	825	830
Thr Trp Thr		
835		

<210> 25
 <211> 3431
 <212> DNA
 <213> Homo sapiens

<400> 25		
ggcttatagg gctcgagcgg ccgccccggc aggtatagaa ttcaagcgcc gctgaattct	60	
agggttttca ggagcccgag cgagggcgcc gctttgcgt ccgggaggag ccaaccgtgg	120	
cgcaggcggc gcggggaggc gtcccagagt ctcactctgc cgcccaggct ggactgcagt	180	
gacacaatct cggctgactg caaccactgc ctccagggtt caagcgattc tcttgccctca	240	
gcctcccaag tagctggat tacagattga tgttcatgtt cctggacta ctacaagatt	300	
cataactcctg atgctactga caacgtggct tctccacagt caccaaacca gggatgctat	360	
actggacttc cctactctca tctgctccag cccccctgacc ttatagttgc ccagcttcc	420	
tggcaattga ctttgcccat caatacacag gathtagcat ccaggaaaga tgtcggagcc	480	
tcagatgtta attttcta at tgagaatgtt ggcgctgtcc gaacctggag acagaaaaac	540	
aaaaagtcc ttctcctgat tcaccaaaaa ataaaatact gactaccatc actgtgatga	600	
gattcctata gtctcaggaa ctgaagtctt taaacaacca gggaccctct gccccttagaa	660	
taagaacata ctagaagtcc cttctgctag gacaacgagg atcatggag accacctgga	720	

ccttctccta ggagtggtgc tcatggccgg tcctgtgtt ggaattcctt cctgctcctt	780
tgtatggccga atagccttt atcgttctg caacccacc caggcccc aggtccctaa	840
caccactgag aggtcctgc tgagctcaa ctatatcagg acagtcactg cttcatcctt	900
ccccttctg gaacagctgc agctgctgga gctcgggagc cagtataccc ccttgactat	960
tgacaaggag gccttcagaa acctgccc aa ccttagaattt ttggacctgg gaagtagtaa	1020
gatatacttc ttgcattccag atgctttca gggactgttc catctgtttg aacttagact	1080
gtatttctgt ggtctctctg atgctgtatt gaaagatggt tatttcagaa atttaaaggc	1140
tttaactcgc ttggatctat ccaaaaatca gattcgtags ctttacccat atccttcatt	1200
tgggaagttg aattccttaa agtccataga ttttcctcc aaccaaataat tccttgtatg	1260
tgaacatgag ctcgagcccc tacaaggaa aacgctctcc ttttttagcc tecagctaa	1320
tagcttgtat agcagagtct cagtggactg gggaaaatgt atgaacccat tcagaaacat	1380
ggtgcggag atactagatg tttctggaaa tggctggaca gtggacatca caggaaactt	1440
tagcaatgcc atcagaaaaa gccaggcett ctctttgatt cttgcccacc acatcatggg	1500
tgccgggtt ggcttcata acatcaaaga tcctgaccag aacacatttgc ctggcctggc	1560
cagaagttca gtgagacacc tggatcttc acatgggtt gtcttctccc tgaactcacg	1620
agtctttag acactcaagg atttgaaggt tctgaacctt gcctacaaca agataaataa	1680
gattgcagat gaagcattttt acggacttga caaccccaa gttctcaatt tgtcatataa	1740
ccttctgggg gaaacttaca gttcgaattt ctatggacta cctaaaggtag cctacattga	1800
tttgcaaaag aatcacatttca aataattca agaccaaaca ttcaaattcc tggaaaaatt	1860
acagacccctt gatctccgag acaatgctt tacaaccatt cattttatttca aagcataacc	1920
cgatatcttc ttgagtggca ataaaactagt gactttgcca aagatcaacc ttacagcgaa	1980
cctcatccac ttatcagaaa acaggctaga aaatcttagat attctctact ttcttctacg	2040
ggtacccat ctccagattt tcattttaaa tcaaaatcgc ttctcctcct gtgtggaga	2100
tcaaaacccct tcaagatcc ccagctttaga acagcttttc cttggagaaa atatgttca	2160
acttgcctgg gaaactgagc tctgtttggaa tggtttttag gggacttttc atcttcaagt	2220
tctgtatttgc aatcataact atcttaatttcc cttccacca ggagtatttca gccatctgac	2280
tgcattaagg ggactaagcc tcaactccaa caggctgaca gttcttctc acaatgattt	2340
acctgctaattt ttagagatcc tggacatatac caggaaccag ctcctagctc ctaatcctga	2400
tgtatttgc tcaacttagtg tcttgat aactcataac aagttcattt gtgaatgtga	2460
acttagcact tttatcaattt ggcttaatca caccaatgtc actatactg ggcctcctgc	2520
agacatataat tgggtgtacc ctgactcggtt ctctggggtt tccctttctt ctcttccac	2580
ggaagggtgt gatgaagagg aagtctaaa gtcctaaag ttctccctt tcattgtatg	2640

cactgtcact ctgactctgt tcctcatgac cacttcaca gtcacaaaagt tccggggc tt 2700
 ctgtttatc tttataaga cagcccagag actgggttca aaggaccatc cccagggcac tt 2760
 agaacctgat atgtacaaat atgatgccta tttgtgttc agcagcaaag acttcacatg tt 2820
 ggtgcagaat gcttgctca aacacctgga cactcaatac agtgaccaaa acagattcaa tt 2880
 cctgtgc tt gaagaaagag actttgtccc aggagaaaac cgcattgcca atatccagga tt 2940
 tgccatctgg aacagtagaa agatcg tt tgagatggc agacacttcc ttagagatgg tt 3000
 ctggtgcc tt gaaggc tt ca gttatgccc gggcagggtgc ttatctgacc ttaacagtgc tt 3060
 tctcatcatg gtggtggtt ggtc tt gtc ccagtaccag ttgatgaaac atcaatccat tt 3120
 cagaggctt gtacagaaac agcagtattt gaggtggcct gaggatctcc aggatgttgg tt 3180
 ctggttctt cataaaactct ctcaacagat actaaagaaa gaaaaagaaa agaagaaaaga tt 3240
 caataacatt ccgttgcaaa ctgttagcaac catctcctaa tcaaaggagc aatttccaac tt 3300
 ttatctcaag ccacaaataa ctcttactt tgtatggca ccaagttatc atttgggt tt 3360
 cctctctgga ggtttttt ttcttttgc tactatgaaa acaacataaa tctctcaatt tt 3420
 ttcttatcaa a tt 3431

<210> 26
 <211> 858
 <212> PRT
 <213> Homo sapiens

<400> 26

Met Gly Asp His Leu Asp Leu Leu Leu Gly Val Val Leu Met Ala Gly
1 5 10 15

Pro Val Phe Gly Ile Pro Ser Cys Ser Phe Asp Gly Arg Ile Ala Phe
20 25 30

Tyr Arg Phe Cys Asn Leu Thr Gln Val Pro Gln Val Leu Asn Thr Thr
35 40 45

Glu Arg Leu Leu Leu Ser Phe Asn Tyr Ile Arg Thr Val Thr Ala Ser
50 55 60

Ser Phe Pro Phe Leu Glu Gln Leu Gln Leu Leu Glu Leu Gly Ser Gln
65 70 75 80

Tyr Thr Pro Leu Thr Ile Asp Lys Glu Ala Phe Arg Asn Leu Pro Asn
85 90 95

Leu Arg Ile Leu Asp Leu Gly Ser Ser Lys Ile Tyr Phe Leu His Pro
100 105 110

Asp Ala Phe Gln Gly Leu Phe His Leu Phe Glu Leu Arg Leu Tyr Phe
115 120 125

Cys Gly Leu Ser Asp Ala Val Leu Lys Asp Gly Tyr Phe Arg Asn Leu

130 135 140
Lys Ala Leu Thr Arg Leu Asp Leu Ser Lys Asn Gln Ile Arg Ser Leu
145 150 155 160

Tyr Leu His Pro Ser Phe Gly Lys Leu Asn Ser Leu Lys Ser Ile Asp
165 170 175

Phe Ser Ser Asn Gln Ile Phe Leu Val Cys Glu His Glu Leu Glu Pro
180 185 190

Leu Gln Gly Lys Thr Leu Ser Phe Phe Ser Leu Ala Ala Asn Ser Leu
195 200 205

Tyr Ser Arg Val Ser Val Asp Trp Gly Lys Cys Met Asn Pro Phe Arg
210 215 220

Asn Met Val Leu Glu Ile Leu Asp Val Ser Gly Asn Gly Trp Thr Val
225 230 235 240

Asp Ile Thr Gly Asn Phe Ser Asn Ala Ile Ser Lys Ser Gln Ala Phe
245 250 255

Ser Leu Ile Leu Ala His His Ile Met Gly Ala Gly Phe Gly Phe His
260 265 270

Asn Ile Lys Asp Pro Asp Gln Asn Thr Phe Ala Gly Leu Ala Arg Ser
275 280 285

Ser Val Arg His Leu Asp Leu Ser His Gly Phe Val Phe Ser Leu Asn
290 295 300

Ser Arg Val Phe Glu Thr Leu Lys Asp Leu Lys Val Leu Asn Leu Ala
305 310 315 320

Tyr Asn Lys Ile Asn Lys Ile Ala Asp Glu Ala Phe Tyr Gly Leu Asp
325 330 335

Asn Leu Gln Val Leu Asn Leu Ser Tyr Asn Leu Leu Gly Glu Leu Tyr
340 345 350

Ser Ser Asn Phe Tyr Gly Leu Pro Lys Val Ala Tyr Ile Asp Leu Gln
355 360 365

Lys Asn His Ile Ala Ile Ile Gln Asp Gln Thr Phe Lys Phe Leu Glu
370 375 380

Lys Leu Gln Thr Leu Asp Leu Arg Asp Asn Ala Leu Thr Thr Ile His
385 390 395 400

Phe Ile Pro Ser Ile Pro Asp Ile Phe Leu Ser Gly Asn Lys Leu Val
405 410 415

Thr Leu Pro Lys Ile Asn Leu Thr Ala Asn Leu Ile His Leu Ser Glu
420 425 430

Asn Arg Leu Glu Asn Leu Asp Ile Leu Tyr Phe Leu Leu Arg Val Pro
435 440 445

His Leu Gln Ile Leu Ile Leu Asn Gln Asn Arg Phe Ser Ser Cys Ser
450 455 460

Gly Asp Gln Thr Pro Ser Glu Asn Pro Ser Leu Glu Gln Leu Phe Leu

465	470	475	480
Gly	Glu Asn Met Leu Gln	Leu Ala Trp Glu Thr	Glu Leu Cys Trp Asp
	485	490	495
Val Phe Glu Gly Leu Ser His Leu Gln Val	Leu Tyr Leu Asn His Asn		
	500	505	510
Tyr Leu Asn Ser Leu Pro Pro Gly Val	Phe Ser His Leu Thr Ala Leu		
	515	520	525
Arg Gly Leu Ser Leu Asn Ser Asn Arg	Leu Thr Val Leu Ser His Asn		
	530	535	540
Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp	Ile Ser Arg Asn Gln Leu		
	545	550	560
Leu Ala Pro Asn Pro Asp Val Phe Val	Ser Leu Ser Val Leu Asp Ile		
	565	570	575
Thr His Asn Lys Phe Ile Cys Glu Cys	Glu Leu Ser Thr Phe Ile Asn		
	580	585	590
Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly	Pro Pro Ala Asp Ile		
	595	600	605
Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val	Ser Leu Phe Ser Leu		
	610	615	620
Ser Thr Glu Gly Cys Asp Glu Glu Glu Val	Leu Lys Ser Leu Lys Phe		
	625	630	640
Ser Leu Phe Ile Val Cys Thr Val Thr Leu	Thr Leu Phe Leu Met Thr		
	645	650	655
Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys	Phe Ile Cys Tyr Lys		
	660	665	670
Thr Ala Gln Arg Leu Val Phe Lys Asp His	Pro Gln Gly Thr Glu Pro		
	675	680	685
Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe	Ser Ser Lys Asp Phe		
	690	695	700
Thr Trp Val Gln Asn Ala Leu Leu Lys His	Leu Asp Thr Gln Tyr Ser		
	705	710	720
Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu	Glu Arg Asp Phe Val Pro		
	725	730	735
Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala	Ile Trp Asn Ser Arg		
	740	745	750
Lys Ile Val Cys Leu Val Ser Arg His Phe	Leu Arg Asp Gly Trp Cys		
	755	760	765
Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg	Cys Leu Ser Asp Leu Asn		
	770	775	780
Ser Ala Leu Ile Met Val Val Gly Ser	Leu Ser Gln Tyr Gln Leu		
	785	790	800
Met Lys His Gln Ser Ile Arg Gly Phe Val	Gln Lys Gln Gln Tyr Leu		

805	810	815
Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu His Lys Leu		
820	825	830

Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Asp Asn Asn		
835	840	845

Ile Pro Leu Gln Thr Val Ala Thr Ile Ser		
850	855	

<210> 27
<211> 858
<212> PRT
<213> Homo sapiens

<400> 27

Met Gly Asp His Leu Asp Leu Leu Leu Gly Val Val Leu Met Ala Gly		
1	5	10
		15

Pro Val Phe Gly Ile Pro Ser Cys Ser Phe Asp Gly Arg Ile Ala Phe		
20	25	30

Tyr Arg Phe Cys Asn Leu Thr Gln Val Pro Gln Val Leu Asn Thr Thr		
35	40	45

Glu Arg Leu Leu Leu Ser Phe Asn Tyr Ile Arg Thr Val Thr Ala Ser		
50	55	60

Ser Phe Pro Phe Leu Glu Gln Leu Gln Leu Leu Glu Leu Gly Ser Gln		
65	70	75
		80

Tyr Thr Pro Leu Thr Ile Asp Lys Glu Ala Phe Arg Asn Leu Pro Asn		
85	90	95

Leu Arg Ile Leu Asp Leu Gly Ser Ser Lys Ile Tyr Phe Leu His Pro		
100	105	110

Asp Ala Phe Gln Gly Leu Phe His Leu Phe Glu Leu Arg Leu Tyr Phe		
115	120	125

Cys Gly Leu Ser Asp Ala Val Leu Lys Asp Gly Tyr Phe Arg Asn Leu		
130	135	140

Lys Ala Leu Thr Arg Leu Asp Leu Ser Lys Asn Gln Ile Arg Ser Leu		
145	150	155
		160

Tyr Leu His Pro Ser Phe Gly Lys Leu Asn Ser Leu Lys Ser Ile Asp		
165	170	175

Phe Ser Ser Asn Gln Ile Phe Leu Val Cys Glu His Glu Leu Glu Pro		
180	185	190

Leu Gln Gly Lys Thr Leu Ser Phe Phe Ser Leu Ala Ala Asn Ser Leu		
195	200	205

Tyr Ser Arg Val Ser Val Asp Trp Gly Lys Cys Met Asn Pro Phe Arg		
210	215	220

Asn Met Val Leu Glu Ile Val Asp Val Ser Gly Asn Gly Trp Thr Val		
225	230	235
		240

Asp Ile Thr Gly Asn Phe Ser Asn Ala Ile Ser Lys Ser Gln Ala Phe
245 250 255

Ser Leu Ile Leu Ala His His Ile Met Gly Ala Gly Phe Gly Phe His
260 265 270

Asn Ile Lys Asp Pro Asp Gln Asn Thr Phe Ala Gly Leu Ala Arg Ser
275 280 285

Ser Val Arg His Leu Asp Leu Ser His Gly Phe Val Phe Ser Leu Asn
290 295 300

Ser Arg Val Phe Glu Thr Leu Lys Asp Leu Lys Val Leu Asn Leu Ala
305 310 315 320

Tyr Asn Lys Ile Asn Lys Ile Ala Asp Glu Ala Phe Tyr Gly Leu Asp
325 330 335

Asn Leu Gln Val Leu Asn Leu Ser Tyr Asn Leu Leu Gly Glu Leu Cys
340 345 350

Ser Ser Asn Phe Tyr Gly Leu Pro Lys Val Ala Tyr Ile Asp Leu Gln
355 360 365

Lys Asn His Ile Ala Ile Ile Gln Asp Gln Thr Phe Lys Phe Leu Glu
370 375 380

Lys Leu Gln Thr Leu Asp Leu Arg Asp Asn Ala Leu Thr Thr Ile His
385 390 395 400

Phe Ile Pro Ser Ile Pro Asp Ile Phe Leu Ser Gly Asn Lys Leu Val
405 410 415

Thr Leu Pro Lys Ile Asn Leu Thr Ala Asn Leu Ile His Leu Ser Glu
420 425 430

Asn Arg Leu Glu Asn Leu Asp Ile Leu Tyr Phe Leu Leu Arg Val Pro
435 440 445

His Leu Gln Ile Leu Ile Leu Asn Gln Asn Arg Phe Ser Ser Cys Ser
450 455 460

Gly Asp Gln Thr Pro Ser Glu Asn Pro Ser Leu Glu Gln Leu Phe Leu
465 470 475 480

Gly Glu Asn Met Leu Gln Leu Ala Trp Glu Thr Glu Leu Cys Trp Asp
485 490 495

Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu Asn His Asn
500 505 510

Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu Thr Ala Leu
515 520 525

Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu Ser His Asn
530 535 540

Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg Asn Gln Leu
545 550 555 560

Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val Leu Asp Ile

	565	570	575
Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr Phe Ile Asn			
	580	585	590
Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro Ala Asp Ile			
	595	600	605
Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu Phe Ser Leu			
	610	615	620
Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser Leu Lys Phe			
	625	630	635
Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe Leu Met Thr			
	645	650	655
Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile Cys Tyr Lys			
	660	665	670
Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly Thr Glu Pro			
	675	680	685
Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser Lys Asp Phe			
	690	695	700
Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr Gln Tyr Ser			
	705	710	715
			720
Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu Glu Arg Asp Phe Val Pro			
	725	730	735
Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala Ile Trp Asn Ser Arg			
	740	745	750
Lys Ile Val Cys Leu Val Ser Arg His Phe Leu Arg Asp Gly Trp Cys			
	755	760	765
Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg Cys Leu Ser Asp Leu Asn			
	770	775	780
Ser Ala Leu Ile Met Val Val Val Gly Ser Leu Ser Gln Tyr Gln Leu			
	785	790	795
			800
Met Lys His Gln Ser Ile Arg Gly Phe Val Gln Lys Gln Gln Tyr Leu			
	805	810	815
Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu His Lys Leu			
	820	825	830
Ser Gln Gln Ile Leu Lys Lys Glu Lys Lys Lys Lys Asp Asn Asn			
	835	840	845
Ile Pro Leu Gln Thr Val Ala Thr Ile Ser			
	850	855	

<210> 28
<211> 365
<212> PRT
<213> Homo sapiens

<400> 28

Cys Trp Asp Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu
 1 5 10 15

Asn His Asn Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu
 20 25 30

Thr Ala Leu Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu
 35 40 45

Ser His Asn Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg
 50 55 60

Asn Gln Leu Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val
 65 70 75 80

Leu Asp Ile Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr
 85 90 95

Phe Ile Asn Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro
 100 105 110

Ala Asp Ile Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu
 115 120 125

Phe Ser Leu Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser
 130 135 140

Leu Lys Phe Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe
 145 150 155 160

Leu Met Thr Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile
 165 170 175

Cys Tyr Lys Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly
 180 185 190

Thr Glu Pro Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser
 195 200 205

Lys Asp Phe Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr
 210 215 220

Gln Tyr Ser Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu Glu Arg Asp
 225 230 235 240

Phe Val Pro Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala Ile Trp
 245 250 255

Asn Ser Arg Lys Ile Val Cys Leu Val Ser Arg His Phe Leu Arg Asp
 260 265 270

Gly Trp Cys Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg Cys Leu Ser
 275 280 285

Asp Leu Asn Ser Ala Leu Ile Met Val Val Val Gly Ser Leu Ser Gln
 290 295 300

Tyr Gln Leu Met Lys His Gln Ser Ile Arg Gly Phe Val Gln Lys Gln
 305 310 315 320

Gln Tyr Leu Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu

325	330	335
His Lys Leu Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Lys		
340	345	350

Asp Asn Asn Ile Pro Leu Gln Thr Val Ala Thr Ile Ser		
355	360	365

<210> 29
<211> 4286
<212> DNA
<213> murine

<400> 29 ttgaaatctc acagcccggt tggttgcagt gacccacttc gttgaacata ttcttcctaa tccttagtact ttcaatttgc tctattccct ggtgtctatg catttaaatc gactatgggg ccattttcc ttgaaccacc acagaagaca ttagctctct gggatccttg ttaattttt ctcctttac atagcaccta cgcttggAAC atatgccaga cacatctgtg agacacccct tgccgctgca gctcatggat ggatgctgag ttccccacg caccacactt cagcaggtgg gtgtatttct gttcacatt atactccac acggccatgc atgtcaggca tggagcaggc tcataaccca cttaattaag gtgatcatat cagatccttt atcaagatgc atagagtgt cagtgcctgt actatgatct cggatcttg ggagatggc tagatagagt ctggacaga atacagcaga gaaaccgata tgTTTATTGT ccgatcatca gctaagcttc tggagctag gaatgggct cttggatga acagaagtaa aaatgcctcg tctttatgac ttcaacttc cctcagcagg tctggaatgg gtgaacaaac actgcctgCG tgggtgataa atagccttt tttgcgttt gttgcgtgt ttatggttc tggagggaa cctagaacctt agcacatgt agacaagtcc tctagcactg agctatctcc ccagcttggA tgaaaatatct gtAAAGTACT ggTCCCCTG tgAAAATAT gcaccattaa gtgttcaaga agaaaagact gggcatttct gttccaccaa gacaagaaga atctGCCAGC agaatgttt cgcagtcatt tgagcaaagg ggtccaaggg acagtaccct ccagtgcgtgg ggaccatgt gccgagcctc aggctgtgt gtgggttgtt. tttaattct ctctttccc ataggatcat ggcatgtcaa cttgacttgc tcataggtgt gatcttcatg gccagccccg tgggtgtaat atctccctgt tcttcagacg gcaggatagc cttttccga ggctgtAAC tcacccagat tccctggatc ctcaatacta ccactgagag gtcctgctc agcttcaact atatcagtat ggtgggtGCC acatcatttc cactcctgga gcggctccag ttgctggagc tggggaccca gtatgctaac ttgaccattg gtccaggggc tttcagaaac ctgccaatc ttaggatctt ggacttggc caaagccaga tcgaagtctt gaatcggat gccttcaag gtcgtccccA tctcttgaa cttcggctgt tttcctgtgg actctccagt gctgtgttaa gtgacggtaa cttcagaaat ctatattcat	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
--	---

tagctcgctt agacatatct ggcaaccaga ttcacagcct ccgcctccat tcttcattcc 1500
 gggactgaa ttccctaagc gacgtaaatt ttgcttcaa ccaaataatc actatatgtg 1560
 aagatgaact cgagcctctg cagggcaaaa cactgtctt ctttggcctc aaattaacta 1620
 agctgttcag cagagtctct gtgggctggg agacatgcag gaaccccttc agaggcgtga 1680
 ggctagaaac tcttagatctt tctgaaaatg gctggacggt ggacatcaca aggaacttca 1740
 gcaacatcat ccagggaaagc cagattcct ctttgattct taaacaccac atcatggtc 1800
 ctggcttgg cttccagaac atcagagatc ctgaccagag cacatttgc agcctggcca 1860
 gaagttcggg gtcgcaactg gaccttcgc acggcttat ctttccttg aatcctcgac 1920
 tgtttgggac actgaaggat ttgaagatgc tgaaccttgc cttcaacaag ataaacaaga 1980
 ttggagagaa tgccctttat gggcttgaca gcctccaggt tctcaatcta tcctataatc 2040
 ttttggggga actctataat tccaacttct atgggcttcc tagagtagcc tacgttgacc 2100
 ttcaaaaggaa ccacattggg atcattcaag accaaacatt cagattttaaaaacgttac 2160
 aaaccttaga tctccgtgac aatgctctta aggccattgg ttttattcca agcatacaga 2220
 tggtcctcct gggaggcaat aagctggtcc atttgccaca catccactt actgccaact 2280
 tcctagagtt atctgaaaac aggctagaaa acctgtccga cctctacttc ctcctgcgag 2340
 tccccagct ccagttctc atcttgaatc agaatgcct ttcgtcatgc aaggcagccc 2400
 acactccctc ggagaaccca agcttagaac agctttccct tacagagaat atgctgcagc 2460
 tggcctggga gaccggcctc tggtggatg ttttcaagg ctttccgc ctccagattc 2520
 tttacctgag taataactac cttaattcc ttccacctgg gatatttaac gacctggttg 2580
 cattacggat gcttagtctt agtgctaaca agctgaccgt gctctctccg ggcagttac 2640
 ctgctaattt agagattctc gacatatcta gaaatcagct tttgtgtccct gaccctgctt 2700
 tgtttcttc gttcgtgtt ttggacataa ctcataacga gttcgtctgc aactgtgaac 2760
 ttagcacttt tatctcctgg ctcaacccaa ccaacgtcac cctgttcggc tctcctgcag 2820
 acgtgtattt catgtaccct aactcaactgc tagggggctc cctctacaac atatccaccc 2880
 aagactgcga tgaagaggaa gccatgcggt ccctaaagtt ttcccttttc atcctgtgca 2940
 cggtcacttt gactctattc ctcgtcatca cccttgtagt cataaagttc cggggatct 3000
 gtttcctgtg ctataagacc atccagaagc tgggtttcaa ggacaaggc tggagtttgg 3060
 aacctggtgc atatagat gatgcctact tctgcttcag cagcaaagac tttgaatggg 3120
 cacagaatgc tttgctcaaa cacctggatg ctcactacag ttcccggaaac aggctcaggc 3180
 tatgctttga agaaagagac ttcattccgg gggaaaacca tatctccaaac atccaggcgg 3240
 ctgtctgggg cagcaggaag acgggtgtgc tagtgagcag acacttcctg aaggatggtt 3300
 ggtgcctgga ggccttcagg tatgcccaga gccggagtct gtctgacccctc aagagcattc 3360

<210> 30
<211> 859
<212> PRT
<213> murine

<400> 30

Met Ala Cys Gln Leu Asp Leu Leu Ile Gly Val Ile Phe Met Ala Ser
1 5 10 15

Pro Val Leu Val Ile Ser Pro Cys Ser Ser Asp Gly Arg Ile Ala Phe
20 25 30

Phe Arg Gly Cys Asn Leu Thr Gln Ile Pro Trp Ile Leu Asn Thr Thr
35 40 45

Thr Glu Arg Leu Leu Leu Ser Phe Asn Tyr Ile Ser Met Val Val Ala
50 55 60

Thr Ser Phe Pro Leu Leu Glu Arg Leu Gln Leu Leu Glu Leu Gly Thr
 65 70 75 80

Gln Tyr Ala Asn Leu Thr Ile Gly Pro Gly Ala Phe Arg Asn Leu Pro
85 90 95

Asn Leu Arg Ile Leu Asp Leu Gly Gln Ser Gln Ile Glu Val Leu Asn
100 105 110

Arg Asp Ala Phe Gln Gly Leu Pro His Leu Leu Glu Leu Arg Leu Phe
 115 120 125
 Ser Cys Gly Leu Ser Ser Ala Val Leu Ser Asp Gly Tyr Phe Arg Asn
 130 135 140
 Leu Tyr Ser Leu Ala Arg Leu Asp Leu Ser Gly Asn Gln Ile His Ser
 145 150 155 160
 Leu Arg Leu His Ser Ser Phe Arg Glu Leu Asn Ser Leu Ser Asp Val
 165 170 175
 Asn Phe Ala Phe Asn Gln Ile Phe Thr Ile Cys Glu Asp Glu Leu Glu
 180 185 190
 Pro Leu Gln Gly Lys Thr Leu Ser Phe Phe Gly Leu Lys Leu Thr Lys
 195 200 205
 Leu Phe Ser Arg Val Ser Val Gly Trp Glu Thr Cys Arg Asn Pro Phe
 210 215 220
 Arg Gly Val Arg Leu Glu Thr Leu Asp Leu Ser Glu Asn Gly Trp Thr
 225 230 235 240
 Val Asp Ile Thr Arg Asn Phe Ser Asn Ile Ile Gln Gly Ser Gln Ile
 245 250 255
 Ser Ser Leu Ile Leu Lys His His Ile Met Gly Pro Gly Phe Gly Phe
 260 265 270
 Gln Asn Ile Arg Asp Pro Asp Gln Ser Thr Phe Ala Ser Leu Ala Arg
 275 280 285
 Ser Ser Val Leu Gln Leu Asp Leu Ser His Gly Phe Ile Phe Ser Leu
 290 295 300
 Asn Pro Arg Leu Phe Gly Thr Leu Lys Asp Leu Lys Met Leu Asn Leu
 305 310 315 320
 Ala Phe Asn Lys Ile Asn Lys Ile Gly Glu Asn Ala Phe Tyr Gly Leu
 325 330 335
 Asp Ser Leu Gln Val Leu Asn Leu Ser Tyr Asn Leu Leu Gly Glu Leu
 340 345 350
 Tyr Asn Ser Asn Phe Tyr Gly Leu Pro Arg Val Ala Tyr Val Asp Leu
 355 360 365
 Gln Arg Asn His Ile Gly Ile Ile Gln Asp Gln Thr Phe Arg Leu Leu
 370 375 380
 Lys Thr Leu Gln Thr Leu Asp Leu Arg Asp Asn Ala Leu Lys Ala Ile
 385 390 395 400
 Gly Phe Ile Pro Ser Ile Gln Met Val Leu Leu Gly Gly Asn Lys Leu
 405 410 415
 Val His Leu Pro His Ile His Phe Thr Ala Asn Phe Leu Glu Leu Ser
 420 425 430
 Glu Asn Arg Leu Glu Asn Leu Ser Asp Leu Tyr Phe Leu Leu Arg Val

435 440 445
Pro Gln Leu Gln Phe Leu Ile Leu Asn Gln Asn Arg Leu Ser Ser Cys
450 455 460

Lys Ala Ala His Thr Pro Ser Glu Asn Pro Ser Leu Glu Gln Leu Phe
465 470 475 480

Leu Thr Glu Asn Met Leu Gln Leu Ala Trp Glu Thr Gly Leu Cys Trp
485 490 495

Asp Val Phe Gln Gly Leu Ser Arg Leu Gln Ile Leu Tyr Leu Ser Asn
500 505 510

Asn Tyr Leu Asn Phe Leu Pro Pro Gly Ile Phe Asn Asp Leu Val Ala
515 520 525

Leu Arg Met Leu Ser Leu Ser Ala Asn Lys Leu Thr Val Leu Ser Pro
530 535 540

Gly Ser Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg Asn Gln
545 550 555 560

Leu Leu Cys Pro Asp Pro Ala Leu Phe Ser Ser Leu Arg Val Leu Asp
565 570 575

Ile Thr His Asn Glu Phe Val Cys Asn Cys Glu Leu Ser Thr Phe Ile
580 585 590

Ser Trp Leu Asn Gln Thr Asn Val Thr Leu Phe Gly Ser Pro Ala Asp
595 600 605

Val Tyr Cys Met Tyr Pro Asn Ser Leu Leu Gly Gly Ser Leu Tyr Asn
610 615 620

Ile Ser Thr Glu Asp Cys Asp Glu Glu Ala Met Arg Ser Leu Lys
625 630 635 640

Phe Ser Leu Phe Ile Leu Cys Thr Val Thr Leu Thr Leu Phe Leu Val
645 650 655

Ile Thr Leu Val Val Ile Lys Phe Arg Gly Ile Cys Phe Leu Cys Tyr
660 665 670

Lys Thr Ile Gln Lys Leu Val Phe Lys Asp Lys Val Trp Ser Leu Glu
675 680 685

Pro Gly Ala Tyr Arg Tyr Asp Ala Tyr Phe Cys Phe Ser Ser Lys Asp
690 695 700

Phe Glu Trp Ala Gln Asn Ala Leu Leu Lys His Leu Asp Ala His Tyr
705 710 715 720

Ser Ser Arg Asn Arg Leu Arg Leu Cys Phe Glu Glu Arg Asp Phe Ile
725 730 735

Pro Gly Glu Asn His Ile Ser Asn Ile Gln Ala Ala Val Trp Gly Ser
740 745 750

Arg Lys Thr Val Cys Leu Val Ser Arg His Phe Leu Lys Asp Gly Trp
755 760 765

Cys Leu Glu Ala Phe Arg Tyr Ala Gln Ser Arg Ser Leu Ser Asp Leu

770	775	780
Lys Ser Ile Leu Ile Val Val Val Val Gly Ser	Leu Ser Gln Tyr Gln	
785	790	795
Leu Met Arg His Glu Thr Ile Arg Gly Phe Leu Gln Lys Gln Gln Tyr		
805	810	815
Leu Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu Asp Lys		
820	825	830
Leu Ser Gly Cys Ile Leu Lys Glu Glu Lys Gly Lys Lys Arg Ser Ser		
835	840	845
Ser Ile Gln Leu Arg Thr Ile Ala Thr Ile Ser		
850	855	

<210> 31
 <211> 3373
 <212> DNA
 <213> Homo sapiens

<400> 31		
agctggctag cgtttaaacg ggccctctag actcgagcgg ccgcgaattc actagtgatt		60
cacctctcat gctctgtct cttcaaccag acctctacat tccattttgg aagaagacta		120
aaaatggtgt ttccaatgtg gacactgaag agacaaattc ttatcctttt taacataatc		180
ctaatttcca aactccttgg ggcttagatgg tttcctaaaa ctctgccctg tgatgtcact		240
ctggatgttc caaagaacca tgtgatcgtg gactgcacag acaagcattt gacagaaatt		300
cctggaggta ttcccacgaa caccacgaac ctcaccctca ccattaacca cataccagac		360
atctccccag cgtcctttca cagactggac catctggtag agatcgattt cagatgcaac		420
tgtgtaccta ttccactggg gtcaaaaaac aacatgtgca tcaagaggct gcagattaaa		480
cccagaagct ttagtggact cacttattta aaatcccttt acctggatgg aaaccagcta		540
ctagagatac cgcagggcct cccgcotagc ttacagcttc tcagccttga ggccaacaac		600
atctttcca tcagaaaaga gaatctaaca gaactggcca acatagaaat actctacctg		660
ggccaaaaact gttattatcg aaatccttgt tatgtttcat attcaataga gaaagatgcc		720
ttccttaact tgacaaaagtt aaaagtgctc tccctgaaag ataacaatgt cacagccgtc		780
cctactgttt tgccatctac tttaacagaa ctatatctct acaacaacat gattgaaaa		840
atccaagaag atgattttaa taacctaac acattacaaa ttcttgacct aagtggaaat		900
tgcctcggtt gttataatgc cccatttcct tgcgcgcgt gtaaaaataa ttctccccta		960
cagatccctg taaatgcttt tgatgcgcgt acagaattaa aagtttacg tctacacagt		1020
aactctcttc agcatgtgcc cccaaagatgg tttaagaaca tcaacaaact ccaggaactg		1080
gatctgtccc aaaacttctt ggccaaagaa attggggatg ctaaatttct gcattttctc		1140
cccagcctca tccaattgga tctgttttc aattttgaac ttcaaggctca tcgtgcacatct		1200

atgaatctat cacaaggcatt ttcttcactg aaaaggctga aaattctgcg gatcagagga	1260
tatgtcttta aagagttgaa aagcttaac ctctcgccat tacataatct tcaaaatctt	1320
gaagttcttg atcttggcac taactttata aaaattgcta acctcagecat gtttaaacaa	1380
tttaaaaagac tgaaagtcat agatcttca gtgaataaaa tatcacccctc aggagattca	1440
agtgaagttg gcttctgctc aaatgccaga acttctgttag aaagttatga accccaggtc	1500
ctggaacaat tacatttattt cagatatgat aagtatgcaa ggagttgcag attcaaaaac	1560
aaagaggcctt ct当地atgtc tgttaatgaa agctgctaca agtatggca gaccttggat	1620
ctaaatgaaaa atagtatatt ttttgtcaag tcctctgatt ttcagcatct ttctttcctc	1680
aaatgcctga atctgtcagg aaatctcatt agccaaactc ttaatggcag tgaattccaa	1740
ccttagcag agctgagata tttggacttc tccaacaacc ggcttgattt actccattca	1800
acagcatttg aagagcttca caaactggaa gttctggata taagcagtaa tagccattat	1860
tttcaatcag aaggaattac tcatatgcta aactttacca agaacctaaa ggttctgcag	1920
aaactgatga tgaacgacaa tgacatctct tc当地ccacca gcaggaccat ggagagttag	1980
tctcttagaa ct当地gaaattt cagagggaaat cacttagatg tttatggag agaaggtgat	2040
aacagatact tacaattatt caagaatctg ctaaaattag aggaattaga catctctaaa	2100
aattccctaa gtttcttgcc ttctggagtt tttgatggta tgcctccaaa tctaaagaat	2160
ctctcttgg ccaaaaatgg gctcaaactt tt当地gggaa agaaactcca gtgtctaaag	2220
aacctggaaa ct当地ggacct cagccacaac caactgacca ctgtccctga gagattatcc	2280
aactgttcca gaaggctcaa gaatctgatt ct当地agaata atcaaattcag gagtctgcg	2340
aagtattttc tacaagatgc ct当地caggatcgatctgg atctcagctc aaataaaatc	2400
cagatgatcc aaaagaccag ct当地ccagaa aatgtcctca acaatctgaa gatgttgctt	2460
ttgcatcata atcggtttct gtgcacctgt gatgctgtgt ggttgtctg gtgggttaac	2520
catacggagg tgactattcc tt当地ctggcc acagatgtga ct当地gtggg gccaggagca	2580
cacaagggcc aaagtgtgat ct当地ctggat ct当地acacct gtgagttaga tctgactaac	2640
ctgattctgt tctcaatttc catatctgta tctcttttc tcatggtgat gatgacagca	2700
agtacacctt atttctggga tggatgttat atttaccatt tctgtaaggc caagataaaag	2760
gggtatcagc gtctaatatc accagactgt tgctatgatg ct当地attgt gtatgacact	2820
aaagacccag ctgtgaccga gtgggttttgg gctgagctgg tggccaaact ggaagaccca	2880
agagagaaac attttaattt atgtctcgag gaaaggact ggttaccagg gcagccagtt	2940
ctgaaaaacc tt当地ccagag catacagctt agcaaaaaga cagtgtttgt gatgacagac	3000
aagtatgcaa agactgaaaa tt当地agata gcattttact tggccatca gaggctcatg	3060

gataaaaaaag ttgatgtat tatcttgata tttcttggaa agcctttca gaagtccaag 3120
 ttccctccagc tccggaaaag gctctgtggg agttctgtcc ttgagtggcc aacaaacccg 3180
 caagctcacc catacttctg gcagtgtcta aagaacgccc tggccacaga caatcatgt 3240
 gcctatagtc aggtgttcaa ggaaacggtc tagaatcgaa ttcccgcggc cgccactgt 3300
 ctggatatct gcagaattcc accacactgg actagtggat ccgagctcgg taccaagctt 3360
 aagtttaaac cgc 3373

<210> 32
 <211> 3416
 <212> DNA
 <213> Homo sapiens

<400> 32
 tccagatata ggatcactcc atgccatcaa gaaagtttat gctattggc ccatctcaag 60
 ctgatcttgg cacctctcat gctctgtct cttcaaccag acctctacat tccatTTGG 120
 aagaagacta aaaatgggtt ttccaatgtg gacactgaag agacaaattc ttatcTTTT 180
 taacataatc ctaatTTCCA aactcTTGG ggcttagatgg ttccctaaaa ctctGCCCTG 240
 tgatgtcaact ctggatgttc caaagaacca tgtgatgtg gactgcacag acaagcatt 300
 gacagaaatt cctggaggtt ttcccacgaa caccacgaa ctcaccctca ccattAACCA 360
 cataccagac atctccccag cgtccttca cagactggac catctggtag agatcgattt 420
 cagatgcaac tgtgtaccta ttccactggg gtcaaaaaac aacatgtgca tcaaggagct 480
 gcagattaaa cccagaagct ttagtggact cacttattta aaatcccttt acctggatgg 540
 aaaccagcta ctagagatac cgcagggcct cccgccttagc ttacagcttc tcagcTTGA 600
 ggccaacaac atctttCCA tcagaaaaAGA gaatctaaca gaactggcca acatagaaat 660
 actctacctg ggccaaaact gttattatcg aaatcTTGT tatgtttcat attcaataga 720
 gaaagatgcc ttccctaaact tgacaaaagtt aaaagtgttc tccctgaaag ataacaatgt 780
 cacagccgtc cctactgttt tgccatctac tttaacagaa ctatatotct acaacaacat 840
 gattgcaaaa atccaagaAGA atgattttAA taacctcaAC caattacAAA ttcttgacct 900
 aagtggaaaat tgccctcgTT gttataatgc cccatttcct tgcgcgcgt gtaaaaataa 960
 ttctccccata cagatccctg taaatgttt tgatgcgcgt acagaattaa aagtttacg 1020
 tctacacagt aactcttttc agcatgtgcc cccaaagatgg tttaagaaca tcaacaaact 1080
 ccagggaaACTG gatctgtccc AAAACTTCTT ggccaaAGAA attggggatg ctaaatttct 1140
 gcattttctc cccagcctca tccaaATTGGA tctgttttc aattttGAAC ttcaaggTCTA 1200
 tcgtgcATCT atgaatctat cacaaggatt ttcttcactg AAAAGCCTGA aaattctgcg 1260

gatcagagga tatgtcttta aagagttgaa aagctttaac ctctcgccat tacataatct	1320
tcaaaaatctt gaagttcttg atcttggcac taactttata aaaattgcta acctcagcat	1380
gtttaaacaa tttaaaagac tgaaagtcat agatcttca gtgaataaaa tatcaccttc	1440
aggagattca agtgaagttg gcttctgctc aaatgccaga acttctgttag aaagtttatga	1500
accccaggtc ctggaacaat tacattattt cagatatgat aagtatgcaa ggagttgcag	1560
attcaaaaac aaagaggcctt ct当地atgtc tggtaatgaa agctgctaca agtatggca	1620
gaccttggat ctaagtaaaa atagtatatt ttttgcag tc当地tgcatt ttcagcatct	1680
ttcttcctc aaatgcctga atctgtcagg aaatctcatt agccaaactc ttaatggcag	1740
tgaattccaa ccttagcag agttgagata tttggacttc tccaacaacc ggcttgattt	1800
actcattca acagcatttg aagagcttca caaactggaa gttctggata taagcagtaa	1860
tagccattat tttcaatcag aaggaattac tc当地atgcta aactttacca agaacctaaa	1920
ggttctgcag aaactgtatga tgaacgacaa tgacatctct tc当地ccacca gcaggaccat	1980
ggagagttag tctcttagaa ctctggattt cagaggaaat cacttagatg ttttatggag	2040
agaaggtat aacagataact tacaattattt caagaatctg ct当地aaatgg aggaattaga	2100
catctctaaa aattccctaa gtttcttgcc tt当地ggagtt tttgatggta tgc当地ccaaa	2160
tctaaagaat ctctctttgg ccaaaaatgg gctcaaactt ttcagttgga agaaactcca	2220
gtgtctaaag aacctggaaa ctttggacct cagccacaac caactgacca ct当地ccctga	2280
gagattatcc aactgttcca gaagccacaa gaatctgatt ct当地agaata atcaaattcag	2340
gagtc当地gacg aagtatttc tacaagatgc ct当地caggat cgatatctgg atctcagctc	2400
aaataaaaatc cagatgtatcc aaaagaccag ct当地ccagaa aatgtccatca acaatctgaa	2460
gatgttgc当地 tt当地catcata atc当地ttctgt gtc当地ctgtgt ggttgc当地	2520
gtgggttaac catacggagg tgacttcc tt当地ctggcc acagatgtga ct当地gtgg	2580
gccaggagca cacaaggccc aaagtgtatgc ct当地ctggat ct当地cacact gt当地gttaga	2640
tctgactaac ct当地attctgt tctcactttc catatctgta tctctcttcc tcatggatgat	2700
gatgacagca agtc当地ccctct atttctggga tgtgtggat atttaccatt tctgtaaggc	2760
caagataaaag gggatcagc gtctaatatc accagactgt tgctatgatg ct当地ttattgt	2820
gtatgacact aaagacccag ctgtgacccga gtgggttttg gctgagctgg tggccaaact	2880
ggaagaccca agagagaaac attttaattt atgtctcgag gaaaggact ggttaccagg	2940
gcagccagtt ctggaaaacc tt当地ccagag catacagctt agcaaaaaga cagtgtttgt	3000
gatgacagac aagtatgcaa agactgaaaa tt当地agata gc当地ttact tgc当地ccatca	3060
gaggctcatg gatgaaaaag tt当地atgtatgc tatcttgcata tt当地ttgaga agcccttca	3120
gaagtccaaag tt当地ccagc tccggaaaag gctctgtgg agttctgtcc tt当地gtggcc	3180

aacaaaacccg caagctcacc catacttctg gcagtgtcta aagaacgcc	3240
caatcatgtg gcctatagtc aggtgttcaa ggaaacggtc tagcccttct ttgcaaaaca	3300
caactgccta gtttaccaag gagaggcctg gctgtttaaa ttgtttcat atatatcaca	3360
ccaaaagcgt gtttgaaat tcttcaagaa atgagattgc ccatattca ggggag	3416

<210> 33
<211> 3418
<212> DNA
<213> Homo spaiens

<400> 33	
actccagata taggatcaact ccatgccatc aagaaagttg atgctattgg gcccacatctca	60
agctgatctt ggcacctctc atgctctgct ctcttcaacc agacctctac attccatttt	120
ggaagaagac taaaaatggt gttccaatg tggacactga agagacaaat tcttacccctt	180
tttaacataa tccttaatttc caaactcctt gggcttagat ggtttcccaa aactctgccc	240
tgtgatgtca ctctggatgt tccaaagaac catgtgatcg tggactgcac agacaagcat	300
ttgacagaaa ttccctggagg tattccacg aacaccacga acctcacccct caccattaac	360
cacataccag acatctcccc agcgtcctt cacagactgg accatctggt agagatcgat	420
ttcagatgca actgtgtacc tattccactg gggtaaaaaa acaacatgtg catcaagagg	480
ctgcagatta aacccagaag cttagtgga ctcacttatt taaaatccct ttacctggat	540
ggaaaccagc tactagagat accgcagggc ctccgccta gcttacagct tctcagccctt	600
gaggccaaca acatcttttc catcagaaaa gagaatctaa cagaactggc caacatagaa	660
atactctacc tggccaaaaa ctgttattat cgaaatccctt gttatgttc atattcaata	720
gagaaagatg ctttcctaaa cttgacaag taaaaagtgc tctccctgaa agataacaat	780
gtcacagccg tccctactgt tttgccatct actttaacag aactatatct ctacaacaac	840
atgattgcaa aaatccaaga agatgatttt aataacctca accaattaca aattcttgac	900
ctaagtggaa attgcctcg ttgttataat gccccatttc cttgtgcgc gtgtaaaaat	960
aattctcccc tacagatccc tgtaaatgct tttgatgcgc tgacagaatt aaaagttta	1020
cgtctacaca gtaactctct tcagcatgtg ccccaagat ggtttaagaa catcaacaaa	1080
ctccaggaac tggatctgtc cccaaacttc ttggccaaag aaattgggga tgctaaattt	1140
ctgcattttc tccccagcct catccaattt gatctgttct tcaattttga acttcaggc	1200
tatcgatcat ctatgaatct atcacaagca ttttcttcac tgaaaagcct gaaaattctg	1260
cggatcagag gatatgtctt taaagagttg aaaagctta acctctgcatt accataat	1320
cttcaaaatc ttgaagttct tgatcttggc actaacttta taaaaattgc taacctcagc	1380

atgtttaaac aattttaaaag actgaaaagtc atagatctt cagtgaataa aatatcacct	1440
tcaggagatt caagtgaagt tggcttgc tcaaattcca gaactctgt agaaagttat	1500
gaaccccaagg tcctggaca attacattat ttcatatgc ataagtatgc aaggagttgc	1560
agattcaaaa acaaagaggc ttcttcatg tctgttaatg aaagctgcta caagtatgg	1620
cagacccctgg atctaagtaa aaatagtata tttttgtca agtcctctga ttttcagcat	1680
ctttcttcc tcaaattgcct gaatctgtca gggaaatctca tttagccaaac tcttaatggc	1740
agtgaattcc aacctttagc agagctgaga tatttgact tctccaacaa ccggcttgat	1800
ttactccatt caacagcatt tgaagagctt cacaaactgg aagttcttga tataaggcgt	1860
aatagccatt atttcaatc agaaggaatt actcatatgc taaactttac caagaaccta	1920
aagttctgc agaaactgtat gatgaacgc aatgacatct ctccctccac cagcaggacc	1980
atggagagtg agtctcttag aactctggaa ttcataggaa atcacttaga tgtttatgg	2040
agagaaggtg ataacagata cttacaatta ttcaagaatc tgctaaaatt agaggaatta	2100
gacatctcta aaaattccct aagttcttg cttctggag ttttgatgg tatgcctcca	2160
aatctaaaga atctctctt ggccaaaaat gggctcaaat ctccatgttga gaagaaactc	2220
cagtgtctaa agaacctgga aactttggac ctccatgc accaactgac cactgtccct	2280
gagagattat ccaactgttc cagaaggcctc aagaatctga ttcttaagaa taatcaaattc	2340
aggagtctga cgaagtattt tctacaagat gcctccagt tgcatatctt ggatctcagc	2400
tcaaataaaa tccagatgtat cccaaagacc agctcccag aaaatgtcct caacaatctg	2460
aagatgtgc ttttgcata taatcggtt ctgtgcacct gtgtatgt gtggttgtc	2520
tgggggtta accatacgga ggtgactatt ctttacctgg ccacagatgt gacttgtgt	2580
ggccaggag cacacaaggg ccaaagtgtg atctccctgg atctgtacac ctgtgagtt	2640
gatctgacta acctgattt gttctcaattt tccatatctg tatctctctt tctcatgggt	2700
atgatgacag caagtcaccc ctatttctgg gatgtgttgtt atatttacca tttctgttaag	2760
gccaaagataa aggggtatca gcttcaata tcaccagact gttgtatgt tgcttttatt	2820
gtgtatgaca ctaaagaccc agctgtgacc gagtgggtt tggctgagct ggtggccaaa	2880
ctggaaagacc caagagagaa acatttaat ttatgtctcg aggaaaggaa ctggttacca	2940
gggcagccag ttctggaaaa ctttccctgg agcatacago ttagcaaaaa gacagtgttt	3000
gtgtatgacag acaagtatgc aaagactgaa aattttaaaga tagcattttt cttgtcccat	3060
cagaggctca tggatgaaaa agttgtgtt attatcttga tatttcttga gaagcccttt	3120
cagaagtcca agttccctcca gctccggaaa aggctctgtg ggagttctgt ctttgagtt	3180
ccaaacaaacc cgcaagctca cccatacttc tggcagtgtc taaagaacgc cctggccaca	3240
gacaatcatg tggcctatacg tcagggtgttc aaggaaacgg tctagccctt ctttgcaaaa	3300

cacaactgcc tagttacca aggagaggcc tggctgttta aattgttttc atatatatca 3360
 caccaaaaagc gtgtttgaa attcttcaag aaatgagatt gcccatatcc caggggag 3418

<210> 34
 <211> 1049
 <212> PRT
 <213> Homo sapiens
 <400> 34

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe
 1 5 10 15

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys
 20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile
 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro
 50 55 60

Thr Asn Thr Thr Asn Leu Thr Ile Asn His Ile Pro Asp Ile
 65 70 75 80

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe
 85 90 95

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys
 100 105 110

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr
 115 120 125

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln
 130 135 140

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile
 145 150 155 160

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile
 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser
 180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val
 195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro
 210 215 220

Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile
 225 230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu
 245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro

260 265 270
Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala
275 280 285

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His
290 295 300

Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp
305 310 315 320

Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu
325 330 335

His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu
340 345 350

Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser
355 360 365

Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu
370 375 380

Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu
385 390 395 400

Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met
405 410 415

Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys
420 425 430

Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala
435 440 445

Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His
450 455 460

Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys
465 470 475 480

Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln
485 490 495

Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp
500 505 510

Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu
515 520 525

Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu
530 535 540

Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr
545 550 555 560

Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn
565 570 575

Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr
580 585 590

Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile

595	600	605
Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu		
610	615	620
Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn		
625	630	635
640		
Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp		
645	650	655
Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly		
660	665	670
Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys		
675	680	685
Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu		
690	695	700
Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn		
705	710	715
720		
Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg		
725	730	735
Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu		
740	745	750
Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro		
755	760	765
Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg		
770	775	780
Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His		
785	790	795
800		
Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly		
805	810	815
Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr		
820	825	830
Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser		
835	840	845
Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe		
850	855	860
Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly		
865	870	875
880		
Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val		
885	890	895
Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu		
900	905	910
Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu		
915	920	925
Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser		

930	935	940
Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys		
945	950	955
Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln		
965	970	975
Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu		
980	985	990
Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys		
995	1000	1005
Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro		
1010	1015	1020
Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His		
1025	1030	1035
Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val		
1040	1045	

<210> 35
<211> 1049
<212> PRT
<213> Homo sapiens

<400> 35

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe
1 5 10 15

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys
20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile
35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro
50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile
65 70 75 80

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe
85 90 95

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys
100 105 110

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr
115 120 125

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln
130 135 140

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile
145 150 155 160

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile
165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser
180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val
195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro
210 215 220

Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile
225 230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu
245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro
260 265 270

Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala
275 280 285

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His
290 295 300

Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp
305 310 315 320

Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu
325 330 335

His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu
340 345 350

Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser
355 360 365

Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu
370 375 380

Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu
385 390 395 400

Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met
405 410 415

Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys
420 425 430

Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala
435 440 445

Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His
450 455 460

Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys
465 470 475 480

Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln
485 490 495

Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp

	500	505	510
Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu			
515		520	525
Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu			
530		535	540
Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr			
545		550	555
560			
Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn			
565		570	575
Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr			
580		585	590
Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile			
595		600	605
Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu			
610		615	620
Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn			
625		630	635
640			
Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp			
645		650	655
Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly			
660		665	670
Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys			
675		680	685
Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu			
690		695	700
Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn			
705		710	715
720			
Cys Ser Arg Ser His Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg			
725		730	735
Ser Pro Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu			
740		745	750
Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro			
755		760	765
Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg			
770		775	780
Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His			
785		790	795
800			
Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly			
805		810	815
Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr			
820		825	830
Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser			

835	840	845
Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe		
850	855	860
Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly		
865	870	875
Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val		
885	890	895
Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu		
900	905	910
Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu		
915	920	925
Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser		
930	935	940
Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys		
945	950	955
Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln		
965	970	975
Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu		
980	985	990
Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys		
995	1000	1005
Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro		
1010	1015	1020
Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His		
1025	1030	1035
Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val		
1040	1045	

<210> 36
<211> 1049
<212> PRT
<213> Homo spaiens

<400> 36

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe		
1	5	10
		15
Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys		
20	25	30
Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile		
35	40	45
Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro		
50	55	60
Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile		
65	70	75
		80

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe
85 90 95

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys
100 105 110

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr
115 120 125

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln
130 135 140

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile
145 150 155 160

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile
165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser
180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val
195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro
210 215 220

Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile
225 230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu
245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro
260 265 270

Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala
275 280 285

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His
290 295 300

Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp
305 310 315 320

Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu
325 330 335

His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu
340 345 350

Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser
355 360 365

Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu
370 375 380

Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu
385 390 395 400

Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met

405 410 415
Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys
420 425 430

Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala
435 440 445

Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His
450 455 460

Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys
465 470 475 480

Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln
485 490 495

Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp
500 505 510

Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu
515 520 525

Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu
530 535 540

Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr
545 550 555 560

Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn
565 570 575

Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr
580 585 590

Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile
595 600 605

Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu
610 615 620

Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn
625 630 635 640

Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp
645 650 655

Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly
660 665 670

Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys
675 680 685

Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu
690 695 700

Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn
705 710 715 720

Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg
725 730 735

Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu

	740	745	750												
Asp	Leu	Ser	Ser	Asn	Lys	Ile	Gln	Met	Ile	Gln	Lys	Thr	Ser	Phe	Pro
						755	760					765			
Glu	Asn	Val	Leu	Asn	Asn	Leu	Lys	Met	Leu	Leu	Leu	His	His	Asn	Arg
						770	775					780			
Phe	Leu	Cys	Thr	Cys	Asp	Ala	Val	Trp	Phe	Val	Trp	Trp	Val	Asn	His
						785	790				795				800
Thr	Glu	Val	Thr	Ile	Pro	Tyr	Leu	Ala	Thr	Asp	Val	Thr	Cys	Val	Gly
						805			810				815		
Pro	Gly	Ala	His	Lys	Gly	Gln	Ser	Val	Ile	Ser	Leu	Asp	Leu	Tyr	Thr
						820			825				830		
Cys	Glu	Leu	Asp	Leu	Thr	Asn	Leu	Ile	Leu	Phe	Ser	Leu	Ser	Ile	Ser
						835			840				845		
Val	Ser	Leu	Phe	Leu	Met	Val	Met	Met	Thr	Ala	Ser	His	Leu	Tyr	Phe
						850			855				860		
Trp	Asp	Val	Trp	Tyr	Ile	Tyr	His	Phe	Cys	Lys	Ala	Lys	Ile	Lys	Gly
						865			870				875		880
Tyr	Gln	Arg	Leu	Ile	Ser	Pro	Asp	Cys	Cys	Tyr	Asp	Ala	Phe	Ile	Val
						885			890				895		
Tyr	Asp	Thr	Lys	Asp	Pro	Ala	Val	Thr	Glu	Trp	Val	Leu	Ala	Glu	Leu
						900			905				910		
Val	Ala	Lys	Leu	Glu	Asp	Pro	Arg	Glu	Lys	His	Phe	Asn	Leu	Cys	Leu
						915			920				925		
Glu	Glu	Arg	Asp	Trp	Leu	Pro	Gly	Gln	Pro	Val	Leu	Glu	Asn	Leu	Ser
						930			935				940		
Gln	Ser	Ile	Gln	Leu	Ser	Lys	Lys	Thr	Val	Phe	Val	Met	Thr	Asp	Lys
						945			950				955		960
Tyr	Ala	Lys	Thr	Glu	Asn	Phe	Lys	Ile	Ala	Phe	Tyr	Leu	Ser	His	Gln
						965			970				975		
Arg	Leu	Met	Asp	Glu	Lys	Val	Asp	Val	Ile	Ile	Leu	Ile	Phe	Leu	Glu
						980			985				990		
Lys	Pro	Phe	Gln	Lys	Ser	Lys	Phe	Leu	Gln	Leu	Arg	Lys	Arg	Leu	Cys
						995			1000				1005		
Gly	Ser	Ser	Val	Leu	Glu	Trp	Pro	Thr	Asn	Pro	Gln	Ala	His	Pro	
						1010			1015				1020		
Tyr	Phe	Trp	Gln	Cys	Leu	Lys	Asn	Ala	Leu	Ala	Thr	Asp	Asn	His	
						1025			1030				1035		
Val	Ala	Tyr	Ser	Gln	Val	Phe	Lys	Glu	Thr	Val					
						1040			1045						

<210> 37
<211> 1049
<212> PRT

<213> Homo sapiens
<400> 37

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe
1 5 10 15

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys
20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile
35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro
50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile
65 70 75 80

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe
85 90 95

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys
100 105 110

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr
115 120 125

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln
130 135 140

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile
145 150 155 160

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile
165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser
180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val
195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro
210 215 220

Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile
225 230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu
245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro
260 265 270

Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala
275 280 285

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His
290 295 300

Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp
305 310 315 320

Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu
325 330 335

His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu
340 345 350

Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser
355 360 365

Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu
370 375 380

Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu
385 390 395 400

Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met
405 410 415

Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys
420 425 430

Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala
435 440 445

Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His
450 455 460

Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys
465 470 475 480

Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln
485 490 495

Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp
500 505 510

Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu
515 520 525

Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu
530 535 540

Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr
545 550 555 560

Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn
565 570 575

Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr
580 585 590

Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile
595 600 605

Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu
610 615 620

Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn
625 630 635 640

Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp

	645	650	655
Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly			
	660	665	670
Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys			
	675	680	685
Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu			
	690	695	700
Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn			
	705	710	715
Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg			
	725	730	735
Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu			
	740	745	750
Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro			
	755	760	765
Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg			
	770	775	780
Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His			
	785	790	795
Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly			
	805	810	815
Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr			
	820	825	830
Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser			
	835	840	845
Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe			
	850	855	860
Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly			
	865	870	875
Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val			
	885	890	895
Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu			
	900	905	910
Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu			
	915	920	925
Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser			
	930	935	940
Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys			
	945	950	955
Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln			
	965	970	975
Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu			

980	985	990
Lys Pro Phe Gln Lys Ser Lys Phe	Leu Gln Leu Arg Lys	Arg Leu Cys
995	1000	1005
Gly Ser Ser Val Leu Glu Trp	Pro Thr Asn Pro Gln	Ala His Pro
1010	1015	1020
Tyr Phe Trp Gln Cys Leu Lys	Asn Ala Leu Ala Thr	Asp Asn His
1025	1030	1035
Val Ala Tyr Ser Gln Val Phe	Lys Glu Thr Val	
1040	1045	

<210> 38
<211> 3243
<212> DNA
<213> murine

<400> 38	60
attctcctcc accagaccc tc ttgattccat tttgaaagaa aactgaaaat ggtgtttcg	120
atgtggacac ggaagagaca aattttgatc tttttaata tgctcttagt ttcttagatc	180
tttgggttcc gatggttcc taaaactcta ctttgtaaag tttaagtaaa tatcccagag	240
gcccatgtga tcgtggactg cacagacaag catttgacag aaatccctga gggcattccc	300
actaacacca ccaatcttac cttaccatc aaccacatac caagcatctc tccagattcc	360
ttccctaggc tgaaccatct ggaagaaatc gatttaagat gcaattgtgt acctgttcta	420
ctggggtcca aagccaatgt gtgtaccaag aggctgcaga ttagacctgg aagcttttagt	480
ggactctctg acttaaaagc ctttacctg gatggaaacc aacttctgga gataccacag	540
gatctccat ccagcttaca tcttctgagc cttgaggcta acaacatctt ctccatcacg	600
aaggagaatc taacagaact ggtcaacatt gaaacactct acctgggtca aaactgttat	660
tatcgaaatc ttgcattgt ttcttattct attgaaaaag atgcttcct agttatgaga	720
aatttgaagg ttctctcaact aaaagataac aatgtcacag ctgtccccac cactttgcca	780
cctaatttac tagagctcta tctttataac aatatcatta agaaaatcca agaaaatgat	840
ttaataacc tcaatgagtt gcaagtttctt gacctaagtg gaaattgccc tcgtatgttat	900
aatgtcccat atccgtgtac accgtgtaa aataattccc ctttacagat ccatgacaat	960
gtttcaattt cattgacaga attaaaaattt ttacgtttac acagtaattc tcttcagcat	1020
ttggattttt ctttcaatta tgagctgcag gtctaccatg catctataac tttaccacat	1080
tcactctctt cattggaaaaa cttgaaaattt ctgcgtgtca aggggtatgt cttaaagag	1140
ctgaaaaact ccagtcttcc ttttgcac aagcttccca ggctgaaagt tcttgacctt	1200
	1260

ggcactaact tcataaaaat tgctgaccc tc aacatattca aacattttga aaacctcaa 1320
 ctcatagacc tttcagtgaa taagatatct ccttcagaag agtcaagaga agttggctt 1380
 tgtcctaatg ctcaaacttc tgtagaccgt catgggcccc aggtccttga ggccttacac 1440
 tatttccgat acgatgaata tgcacggagc tgcaggttca aaaacaaga gccaccttct 1500
 ttcttgccct tgaatgcaga ctgccacata tatggcaga ccttagactt aagtagaaat 1560
 aacatatttt ttatcaaacc ttctgatttt cagcatctt cattcctcaa atgcctcaac 1620
 ttatcaggaa acaccattgg ccaaactctt aatggcagtg aactctggcc gttgagagag 1680
 ttgcgtact tagacttctc caacaacccg cttgatttac tctactcaac agcctttgaa 1740
 gagctccaga gtcttgaagt tctggatcta agtagtaaca gccactattt tcaagcagaa 1800
 ggaattactc acatgctaaa cttaaccaag aaattacggc ttctggacaa actcatgatg 1860
 aatgataatg acatctctac ttcggccagc aggaccatgg aaagtgactc tcttcgaatt 1920
 ctggagttca gaggcaacca ttttagatgtt ctatggagag ccggtgataa cagataacttg 1980
 gacttcttca agaattttgtt caattttagag gtatttagata tctccagaaa ttccctgaat 2040
 tccttgccctc ctgagggttt tgagggtatg ccgc当地atc taaagaatct ctcctggcc 2100
 aaaaatgggc tcaaatctt ctttggac agactccagt tactgaagca tttggaaatt 2160
 ttggacctca gccataacca gctgacaaaa gtacctgaga gattggccaa ctgttccaaa 2220
 agtctcacaa cactgattct taagcataat caaatcaggc aattgacaaa atattttcta 2280
 gaagatgctt tgcaattgctg ctatctagac atcagttcaa ataaaatcca ggtcattcag 2340
 aagactagct tcccagaaaaa tgcctcaac aatctggaga tgggggtttt acatcacaat 2400
 cgctttctt gcaactgtga tgctgtgtgg tttgtctggt gggtaacca tacagatgtt 2460
 actattccat acctggccac tgatgtgact tgcgttagtc caggagcaca caaaggtaa 2520
 agtgc当地atccat cccttgatct gtatacgatc gagttagatc tcacaaacct gattctgttc 2580
 tcagttcca tatcatcagt cctttctt atggtagtta tgacaacaag tcacctctt 2640
 ttctggata tgcgttacat ttattttt tggaaagcaa agataaaggg gatcagcat 2700
 ctgcaatcca tggagtctt ttagatgct tttattgtgt atgacactaa aaactcagct 2760
 gtgacagaat gggtttgca ggagctggg gcaaaattgg aagatccaag agaaaaacac 2820
 ttcaatttgt gtctagaaga aagagactgg ctaccaggac agccagttct agaaaacctt 2880
 tcccagagca tacagctcag caaaaagaca gtgtttgtga tgacacagaa atatgctaag 2940
 actgagagtt ttaagatggc attttatgg tctcatcaga ggctcctgga tgaaaaagtg 3000
 gatgtgatta tcttgatatt ctggaaaag cctttcaga agtctaagtt tcttcagctc 3060
 aggaagagac tctgcaggag ctctgtcctt gagtggcctg caaatccaca ggctcaccca 3120
 tacttctggc agtgcctgaa aaatgccctg accacagaca atcatgtggc ttatagtcaa 3180

atgttcaagg aaacagtcta gctctctgaa gaatgtcacc acctaggaca tgccttgaat 3240
cga 3243

<210> 39
<211> 3747
<212> DNA
<213> murine

<400> 39
gagctcaaag gctctgcgag tctcggttt ctgttgcctt ctctctgtct cagaggactc 60
catctataga accactctat gccttcaaga aagatgtcct tggctccctt ctcaggatga 120
tcctggccta tctctgactc tcttctccctc caccagacct ctgttgcctt ttttggaaaga 180
aaactgaaaa tgggttttc gatgtggaca cggaagagac aaattttgtat ctttttaaat 240
atgctcttag ttcttagatg ctgttgcctt cgatgtttc ctaaaaactct accttgcata 300
gtttaaagtaa atatcccaga ggcccatgtg atcgtggact gcacagacaa gcatttgaca 360
gaaatccctg agggcattcc cactaacacc accaatctt cccttaccat caaccacata 420
ccaagcatct ctccagattc ctccgttagg ctgaaccatc tggaaagaaat cgatttaaaga 480
tgcaatttgt tacctgttct actggggtcc aaagccaatg tggatgttccaa gaggctgcag 540
attagacctg gaagctttag tggactctt gactttaaag cccttacccat ggttggaaac 600
caacttctgg agataccaca ggatctgccca tccagcttac atcttctgag ctttgaggct 660
aacaacatct tctccatcac gaaggagaat ctaacagaac tggtaacat tgaaacactc 720
tacctgggtc aaaactgtta ttatcgaaat ctttgcataat tttcttattt tattgaaaaaa 780
gatgtttcc tagttatgag aaatttgaag gttctctcac taaaagataa caatgtcaca 840
gctgtccccca ccactttgcc acctaatttta cttagactct atcttctataa caatatcatt 900
aagaaaatcc aagaaaatga ttttaataac ctcaatgagt tgcaagttct tgacctaagt 960
ggaaaattgcc ctctgttta taatgtccccca tatccgtgtta cacccgtgtga aaataattcc 1020
cccttacaga tccatgacaa tgcttcaat tcattgacag aattttttttt tttacgttta 1080
cacagtaatt ctcttcagca tggccccca acatggttta aaaacatgag aaacccctccag 1140
gaacttagacc tctccaaaaa ctacttggcc agagaaatttggaggccaa attttttgtcat 1200
tttcttccccca accttggatgttgcataat tttttttttt atgagactgca ggttcttccat 1260
gcatactataa ctttaccaca ttcactctct tcattggaaa acttgaaaat tctgcgtgtc 1320
aagggttatg tctttaaaga gctgaaaaac tccagttttt ctgttatttgcataa caagcttccccca 1380
aggctggaaag ttcttgaccc tggcactaac ttcataaaaaa ttgctgaccc caacatattc 1440
aaacattttg aaaacctcaa actcatagac ctgttgcgtgtcataa ataaatccat tcccttccat 1500

gagtcaagag aagtggctt ttgtcctaatt gctaaactt ctgttagaccc tcatagggccc 1560
 caggtccttgc aggccttaca ctatccga taccatgaat atgcacggag ctgcagggttc 1620
 aaaaacaaag agccaccccttcc tttcttgccct ttgaatgcag actgccacat atatggcag 1680
 accttagact taagtagaaa taacatattt ttatcaaactt cttctgattt tcagcatctt 1740
 tcattcctca aatgcctcaa cttatcagga aacaccattt gccaaactct taatggcagt 1800
 gaactctggc cggtgagaga gttgcggtaat tttagacttcc ccaacaaccc gcttggat 1860
 ctctactcaa cagccttgc agagctccag agtcttgcag ttctggatct aagtagtaac 1920
 agccactatt ttcaaggcaga aggaattact cacatgctaa acatccaa gaaattacgg 1980
 cttctggaca aactcatgtat gaatgataat gacatctcta cttcggccag caggaccatg 2040
 gaaagtgact ctcttcgaat tctggagttc agaggcaacc attttagatgt tctatggaga 2100
 gccggtgata acagataactt ggacttcttc aagaatttgc tcaatttaga ggtatttagat 2160
 atctccagaa attccctgaa ttccctgccc cctgagggtt ttgagggtat gcccggaaat 2220
 ctaaaagaatc tctccttggc caaaaatggg ctcaaattttt tcttttgggaa cagactccag 2280
 ttactgaagc atttggaaat ttggacccctc agccataacc agctgacaaa agtacctgag 2340
 agattggcca actgttccaa aagtctcaca acactgattt ttaagcataa tcaaattcagg 2400
 caattgacaa aatattttct agaagatgct ttgcaattgc gctatctaga catcagttca 2460
 aataaaatcc aggtcattca gaagactagc ttcccagaaa atgtccctaa caatctggag 2520
 atgttggttt tacatcacaa tcgctttttt tgcaactgtg atgctgtgtg gtttgtctgg 2580
 tgggttaacc atacagatgt tactattcca tacctggcca ctgatgtgac ttgtgttaggt 2640
 ccaggagcac acaaagggtca aagtgtcata tcccttgatc tgtatacgtg tgagtttagat 2700
 ctcacaaacc tgattctgtt ctcagttcc atatcatcag tcctcttct tatggtagtt 2760
 atgacaacaa gtcacctttt tttctggat atgtggtaca tttattttt ttggaaagca 2820
 aagataaagg ggtatcagca tctgcaatcc atggagtctt gttatgtgc ttttattgtg 2880
 tatgacacta aaaactcagc tgtgacagaa tgggtttgc aggagctggg ggcaaaattg 2940
 gaagatccaa gagaaaaaca cttcaatttg tgtctagaag aaagagactg gctaccagga 3000
 cagccagttc tagaaaaaccc ttcccgagc atacagctca gcaaaaagac agtgtttgtg 3060
 atgacacaga aatatgtctaa gactgagagt tttaagatgg cattttattt gtctcatcag 3120
 aggctcctgg atgaaaaagt ggatgtgatt atcttgatat tcttggaaaa gcctcttcag 3180
 aagtctaagt ttcttcagct caggaagaga ctctgcagga gctctgtccct tgagtggccct 3240
 gcaaatccac aggctcaccc atacttctgg cagtgccctga aaaatgcctt gaccacagac 3300
 aatcatgtgg cttatagtca aatgttcaag gaaacagtct agtctctga agaatgtcac 3360
 cacctaggac atgccttggg acctgaagtt ttcataaaagg tttccataaa tgaaggctg 3420

aattttcct aacagttgtc atggctcaga ttggtggaa atcatcaata tatggctaag	3480
aaattaagaa ggggagactg atagaagata atttcttct tcatgtgcc a tgctcagtt	3540
aatatccc ctagctcaa tctgaaaaac tgtgcctagg agacaacaca aggcttgat	3600
ttatctgcat acaattgata agagccacac atctgccctg aagaagtact agtagttta	3660
gtagtagggt aaaaattaca caagcttct ctctctctga tactgaactg taccagagtt	3720
caatgaaata aaagcccaga gaacttc	3747

<210> 40
<211> 3449
<212> DNA
<213> murine

<400> 40	
gcgagtcg gtttctgtt gccttcctc tgtctcagag gactccatct atagaaccac	60
tctatgcctt caagaaagat gtccttggct cccttcctcag gatgatcctg gcctatctct	120
gactcttc tcctccacca gacctttga ttccatttt aaagaaaact gaaaatggtg	180
tttcgatgt ggacacggaa gagacaaatt ttgatcttt taaatatgtc cttagttct	240
agagtctttg gtttcgatg gttcctaaa actctacctt gtgaagttaa agtaaatatc	300
ccagaggccc atgtgatcgt ggactgcaca gacaaggcatt tgacagaaat ccctgagggc	360
attcccacta acaccaccaa tcttaccctt accatcaacc acataccaag catctctcca	420
gattccttcc gtaggctgaa ccatctggaa gaaatcgatt taagatgcaa ttgtgtacct	480
gttctactgg ggtccaaagc caatgtgtgt accaagaggc tgcagattag acctggaagc	540
tttagtggac tctctgactt aaaagccctt tacctggatg gaaaccaact tctggagata	600
ccacaggatc tgccatccag cttacatctt ctgagcctt aggctaacaa catctctcc	660
atcacgaagg agaatctaac agaactggtc aacattgaaa cactctacct gggtaaaaac	720
tgttattatc gaaatcctt caatgtttcc tattctattt gaaaagatgc tttcctagtt	780
atgagaaatt tgaaggttct ctcactaaaa gataacaatg tcacagctgt cccccaccact	840
ttgccaccta atttactaga gctctatctt tataacaata tcattaagaa aatccaagaa	900
aatgatttttataaccaa tgagttgaa gttcttgacc taagtggaaa ttgccctcgaa	960
tgttataatg tcccatatcc gtgtacaccg tgtgaaaata attcccccattt acagatccat	1020
gacaatgctt tcaattcatt gacagaatta aaagttttac gtttacacag taattcttt	1080
cagcatgtgc ccccaacatg gttaaaaac atgagaaacc tccaggaact agacctctcc	1140
caaaaactact tggccagaga aattgaggag gccaaatttt tgcattttct tcccaacctt	1200
gttgagttgg atttttctttt caattatgag ctgcaggctt accatgcattc tataacttta	1260

ccacattcac tctttcatt ggaaaacttg aaaattctgc gtgtcaaggg gtatgtctt 1320
aaagagctga aaaactccag tctttctgta ttgcacaagc ttcccaggct ggaagttctt 1380
gaccttggca ctaacttcat aaaaattgct gacctaaca tattcaaaca ttttggaaaac 1440
ctcaaactca tagaccttc agtgaataag atatctcatt cagaagagtc aagagaagtt 1500
ggctttgtc ctaatgctca aacttctgta gaccgtcatg ggccccaggc ccttgaggcc 1560
ttacactatt tccgatacga tgaatatgca cgagactgca ggttcaaaaa caaagagcca 1620
ccttcttct tgccttgaa tgcagactgc cacatatacg ggcagacctt agacttaagt 1680
agaaataaca tatttttat taaacccctt gatttcagc atcttcatt cctcaaatgc 1740
ctcaacttat caggaaacac cattggccaa actcttaatg gcagtgaact ctggccgttg 1800
agagagttgc ggtacttaga cttctccaac aaccggcttg atttactcta ctcaacagcc 1860
tttgaagagc tccagagtct tgaagttctg gatctaagta gtaacagcca ctatttcaa 1920
gcagaaggaa ttactcacat gctaaacttt accaagaaat tacggcttct ggacaaactc 1980
atgatgaatg ataatgacat ctctacttcg gccagcagga ccatggaaag tgactctt 2040
cgaattctgg agttcagagg caaccattta gatgttctat ggagagccgg tgataacaga 2100
tacttggact tcttcaagaa tttgttcaat ttagaggtat tagatatctc cagaaattcc 2160
ctgaattccct tgcctcctgaa gggtttttagg ggtatgccgc caaatctaaa gaatctctcc 2220
ttggccaaaa atgggctcaa atctttcttt tgggacagac tccagttact gaagcatttg 2280
gaaattttgg acctcagcca taaccagctg acaaaagtac ctgagagatt ggccaactgt 2340
tccaaaagtc tcacaacact gattcttaag cataatcaa tcaggcaatt gacaaaatat 2400
tttctagaag atgctttgca attgcgctat cttagacatca gttcaaataa aatccaggtc 2460
attcagaaga cttagttccc agaaaatgtc ctcaacaatc tggagatgtt gggtttacat 2520
cacaatcgct ttctttgcaa ctgtgatgct gtgtggtttgc tctgggtgggt taaccataca 2580
gatgttacta ttccatacct ggccactgat gtgacttgtg taggtccagg agcacacaaaa 2640
ggtcaaagtgc tcatatccct tcatatgtat acgtgtgagt tagatctcac aaacctgatt 2700
ctgttctcag tttccatatac atcagtcctc tttcttatgg tagttatgac aacaagtcac 2760
ctcttttctt gggatatgtg gtacatttat tattttggaa aagcaaagat aaaggggtat 2820
cagcatctgc aatccatggaa gtcttggat gatgttttgc ttgtgtatgaa cactaaaaac 2880
tcagctgtga cagaatgggt tttgcaggag ctggtgccaa aattggaaaga tccaaagagaa 2940
aaacacttca atttgcgtct agaagaaaga gactggctac caggacagcc agttctagaa 3000
aaccttccc agagcataca gctcagcaaa aagacagtgt ttgtgatgac acagaaatat 3060
gctaagactg agagttttaa gatggcattt tatttgcgtct atcagaggtct cctggatgaa 3120
aaagtggatg tgattatctt gatattcttgc gaaaagcctc ttcagaagtc taagttctt 3180

cagctcagga agagactctg caggagctct gtccttgagt ggcctgcaaa tccacaggct	3240
caccatact tctggcagtg cctgaaaaat gccctgacca cagacaatca tgtggcttat	3300
agtcaaatgt tcaaggaaac agtctagctc tctgaagaat gtcaccacct aggacatgcc	3360
ttgg tacctg aagtttcat aaaggttcc ataaatgaag gtctgaattt ttcctaacag	3420
ttgtcatggc tcagattggt gggaaatca	3449

<210> 41
<211> 1050
<212> PRT
<213> murine

<400> 41

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu			
1	5	10	15
Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys			
20	25	30	
Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile			
35	40	45	
Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro			
50	55	60	
Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile			
65	70	75	80
Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu			
85	90	95	
Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys			
100	105	110	
Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp			
115	120	125	
Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln			
130	135	140	
Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile			
145	150	155	160
Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr			
165	170	175	
Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser			
180	185	190	
Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val			
195	200	205	
Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro			
210	215	220	
Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile			

225	230	235	240												
Gln	Glu	Asn	Asp	Phe	Asn	Asn	Leu	Asn	Glu	Leu	Gln	Val	Leu	Asp	Leu
245															255
Ser	Gly	Asn	Cys	Pro	Arg	Cys	Tyr	Asn	Val	Pro	Tyr	Pro	Cys	Thr	Pro
260															270
Cys	Glu	Asn	Asn	Ser	Pro	Leu	Gln	Ile	His	Asp	Asn	Ala	Phe	Asn	Ser
275															285
Leu	Thr	Glu	Leu	Lys	Val	Leu	Arg	Leu	His	Ser	Asn	Ser	Leu	Gln	His
290															300
Val	Pro	Pro	Thr	Trp	Phe	Lys	Asn	Met	Arg	Asn	Leu	Gln	Glu	Leu	Asp
305															320
Leu	Ser	Gln	Asn	Tyr	Leu	Ala	Arg	Glu	Ile	Glu	Glu	Ala	Lys	Phe	Leu
325															335
His	Phe	Leu	Pro	Asn	Leu	Val	Glu	Leu	Asp	Phe	Ser	Phe	Asn	Tyr	Glu
340															350
Leu	Gln	Val	Tyr	His	Ala	Ser	Ile	Thr	Leu	Pro	His	Ser	Leu	Ser	Ser
355															365
Leu	Glu	Asn	Leu	Lys	Ile	Leu	Arg	Val	Lys	Gly	Tyr	Val	Phe	Lys	Glu
370															380
Leu	Lys	Asn	Ser	Ser	Leu	Ser	Val	Leu	His	Lys	Leu	Pro	Arg	Leu	Glu
385															400
Val	Leu	Asp	Leu	Gly	Thr	Asn	Phe	Ile	Lys	Ile	Ala	Asp	Leu	Asn	Ile
405															415
Phe	Lys	His	Phe	Glu	Asn	Leu	Lys	Leu	Ile	Asp	Leu	Ser	Val	Asn	Lys
420															430
Ile	Ser	Pro	Ser	Glu	Glu	Ser	Arg	Glu	Val	Gly	Phe	Cys	Pro	Asn	Ala
435															445
Gln	Thr	Ser	Val	Asp	Arg	His	Gly	Pro	Gln	Val	Leu	Glu	Ala	Leu	His
450															460
Tyr	Phe	Arg	Tyr	Asp	Glu	Tyr	Ala	Arg	Ser	Cys	Arg	Phe	Lys	Asn	Lys
465															480
Glu	Pro	Pro	Ser	Phe	Leu	Pro	Leu	Asn	Ala	Asp	Cys	His	Ile	Tyr	Gly
485															495
Gln	Thr	Leu	Asp	Leu	Ser	Arg	Asn	Asn	Ile	Phe	Phe	Ile	Lys	Pro	Ser
500															510
Asp	Phe	Gln	His	Leu	Ser	Phe	Leu	Lys	Cys	Leu	Asn	Leu	Ser	Gly	Asn
515															525
Thr	Ile	Gly	Gln	Thr	Leu	Asn	Gly	Ser	Glu	Leu	Trp	Pro	Leu	Arg	Glu
530															540
Leu	Arg	Tyr	Leu	Asp	Phe	Ser	Asn	Asn	Arg	Leu	Asp	Leu	Leu	Tyr	Ser
545															560
Thr	Ala	Phe	Glu	Glu	Leu	Gln	Ser	Leu	Glu	Val	Leu	Asp	Leu	Ser	Ser

565 570 575
Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe
580 585 590

Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp
595 600 605

Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile
610 615 620

Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp
625 630 635 640

Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu
645 650 655

Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu
660 665 670

Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu
675 680 685

Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile
690 695 700

Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala
705 710 715 720

Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile
725 730 735

Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr
740 745 750

Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe
755 760 765

Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn
770 775 780

Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn
785 790 795 800

His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val
805 810 815

Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr
820 825 830

Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile
835 840 845

Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe
850 855 860

Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys
865 870 875 880

Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile
885 890 895

Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu

900	905	910
Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys		
915	920	925
Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu		
930	935	940
Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln		
945	950	955
Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His		
965	970	975
Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu		
980	985	990
Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu		
995	1000	1005
Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His		
1010	1015	1020
Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn		
1025	1030	1035
His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val		
1040	1045	1050

<210> 42

<211> 1050

<212> PRT

<213> murine

<400> 42

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu		
1	5	10
		15

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys		
20	25	30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile		
35	40	45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro		
50	55	60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile		
65	70	75
		80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu		
85	90	95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys		
100	105	110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp		
115	120	125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Glu Ile Pro Gln		
130	135	140

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile
 145 150 155 160
 Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr
 165 170 175
 Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser
 180 185 190
 Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val
 195 200 205
 Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro
 210 215 220
 Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile
 225 230 235 240
 Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu
 245 250 255
 Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro
 260 265 270
 Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser
 275 280 285
 Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His
 290 295 300
 Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp
 305 310 315 320
 Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu
 325 330 335
 His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu
 340 345 350
 Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser
 355 360 365
 Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu
 370 375 380
 Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu
 385 390 395 400
 Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile
 405 410 415
 Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys
 420 425 430
 Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala
 435 440 445
 Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His
 450 455 460
 Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys

465	470	475	480
Glu	Pro	Pro	Ser
Phe	Leu	Pro	Leu
Asn	Ala	Asp	Cys
485	490	495	
Tyr	Gly		
Gln	Thr	Leu	Asp
Leu	Ser	Arg	Asn
Asn	Ile	Phe	Phe
500	505	510	
Ile	Ser	Gly	Asn
Asp	Phe	Gln	His
Leu	Ser	Phe	Leu
Lys	Cys	Leu	Asn
515	520	525	
Leu	Ser	Gly	Asn
Thr	Ile	Gly	Gln
Thr	Leu	Asn	Gly
Ser	Glu	Leu	Trp
530	535	540	Pro
Leu	Arg	Tyr	Leu
Asp	Phe	Ser	Asn
Asn	Arg	Leu	Asp
545	550	555	Leu
Tyr	Ser	Ile	Tyr
Asn	Ala	Phe	Glu
Glu	Leu	Gln	Ser
Leu	Glu	Val	Leu
Asp	Leu	Asp	Leu
565	570	575	Ser
Asn	Ser	His	Tyr
Phe	Gln	Ala	Glu
Gly	Ile	Thr	His
580	585	590	Met
Leu	Lys	Asn	Phe
Asp	Leu	Arg	Leu
Lys	Leu	Asp	Met
595	600	605	Met
Asn	Lys	Asn	Asp
Asn	Asp	Asn	Asp
Ile	Ser	Thr	Ser
Ala	Ser	Arg	Thr
610	615	620	Met
Glu	Phe	Arg	Gly
Asn	His	Leu	Asp
625	630	635	Val
Leu	Trp	Arg	Ala
Asp	Leu	Gly	Asp
640			
Asn	Arg	Tyr	Leu
Asp	Phe	Phe	Lys
645	650	655	Asn
Leu	Phe	Asn	Leu
Asn	Leu	Phe	Asn
660	665	670	Leu
Gly	Met	Pro	Pro
Asn	Leu	Lys	Asn
675	680	685	Leu
Lys	Ser	Phe	Trp
Asp	Arg	Leu	Gln
690	695	700	Leu
Leu	Leu	Ser	His
Asn	Gln	Leu	Thr
705	710	715	Lys
Val	Pro	Glu	Arg
720			Leu
Ala			
Asn	Cys	Ser	Lys
Ser	Leu	Thr	Thr
725	730	735	Ile
Ile	Leu	Lys	His
Arg	Gln	Leu	Asn
740	745	750	Gln
Leu	Asp	Ile	Ser
Ser	Asn	Lys	Ile
755	760	765	Gln
Val	Ile	Gln	Lys
770	775	780	Thr
Pro	Glu	Asn	Val
Leu	Asn	Asn	Leu
785	790	795	Glu
Met	Leu	Val	Leu
Leu	His	His	Asn
Arg	Phe	Leu	Cys
Asn	Cys	Asn	Cys
795	800		Asp
Asp	Ala	Val	Trp
Phe	Trp	Phe	Val
Val	Trp	Trp	Val
His	Thr	Asp	Val
Thr	Ile	Pro	Tyr
Asp	Leu	Ala	Thr
Val	Thr	Asp	Val
795	800		Cys
Asp	Val	Thr	Val

	805	810	815
Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr			
	820	825	830
Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile			
	835	840	845
Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe			
	850	855	860
Phe Trp Asp Met Trp Tyr Ile Tyr Phe Trp Lys Ala Lys Ile Lys			
	865	870	875
			880
Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile			
	885	890	895
Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu			
	900	905	910
Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys			
	915	920	925
Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu			
	930	935	940
Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln			
	945	950	955
			960
Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His			
	965	970	975
Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu			
	980	985	990
Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu			
	995	1000	1005
Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His			
	1010	1015	1020
Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn			
	1025	1030	1035
His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val			
	1040	1045	1050
<210> 43			
<211> 1050			
<212> PRT			
<213> murine			
<400> 43			
Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu			
	1	5	10
			15
Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys			
	20	25	30
Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile			
	35	40	45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro
50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile
65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu
85 90 95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys
100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp
115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln
130 135 140

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile
145 150 155 160

Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr
165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Arg Asn Pro Cys Asn Val Ser
180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val
195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro
210 215 220

Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile
225 230 235 240

Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu
245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro
260 265 270

Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser
275 280 285

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His
290 295 300

Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp
305 310 315 320

Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu
325 330 335

His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu
340 345 350

Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser
355 360 365

Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu

370	375	380
Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu		
385	390	395
400		
Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile		
405	410	415
Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys		
420	425	430
Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala		
435	440	445
Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His		
450	455	460
Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys		
465	470	475
480		
Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly		
485	490	495
Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser		
500	505	510
Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn		
515	520	525
Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu		
530	535	540
Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser		
545	550	555
560		
Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser		
565	570	575
Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe		
580	585	590
Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp		
595	600	605
Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile		
610	615	620
Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp		
625	630	635
640		
Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu		
645	650	655
Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu		
660	665	670
Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu		
675	680	685
Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile		
690	695	700
Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala		

705 710 715 720
 Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile
 725 730 735

 Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr
 740 745 750

 Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe
 755 760 765

 Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn
 770 775 780

 Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn
 785 790 795 800

 His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val
 805 810 815

 Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr
 820 825 830

 Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile
 835 840 845

 Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe
 850 855 860

 Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys
 865 870 875 880

 Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile
 885 890 895

 Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu
 900 905 910

 Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys
 915 920 925

 Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu
 930 935 940

 Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln
 945 950 955 960

 Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His
 965 970 975

 Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu
 980 985 990

 Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu
 995 1000 1005

 Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His
 1010 1015 1020

 Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn
 1025 1030 1035

 His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val

1040	1045	1050
<210> 44		
<211> 1050		
<212> PRT		
<213> murine		
<400> 44		
Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu		
1	5	10
		15
Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys		
20	25	30
Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile		
35	40	45
Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro		
50	55	60
Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile		
65	70	75
		80
Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu		
85	90	95
Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys		
100	105	110
Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp		
115	120	125
Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln		
130	135	140
Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile		
145	150	155
		160
Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr		
165	170	175
Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser		
180	185	190
Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val		
195	200	205
Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro		
210	215	220
Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile		
225	230	235
		240
Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu		
245	250	255
Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro		
260	265	270
Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser		
275	280	285

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His
290 295 300

Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp
305 310 315 320

Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu
325 330 335

His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu
340 345 350

Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser
355 360 365

Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu
370 375 380

Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu
385 390 395 400

Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile
405 410 415

Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys
420 425 430

Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala
435 440 445

Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His
450 455 460

Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys
465 470 475 480

Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly
485 490 495

Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser
500 505 510

Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn
515 520 525

Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu
530 535 540

Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser
545 550 555 560

Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser
565 570 575

Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe
580 585 590

Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp
595 600 605

Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile

610	615	620
Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp		
625	630	635
Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu		
645	650	655
Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu		
660	665	670
Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu		
675	680	685
Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile		
690	695	700
Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala		
705	710	715
Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile		
725	730	735
Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr		
740	745	750
Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe		
755	760	765
Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn		
770	775	780
Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn		
785	790	795
His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val		
805	810	815
Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr		
820	825	830
Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile		
835	840	845
Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe		
850	855	860
Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys		
865	870	875
Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile		
885	890	895
Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu		
900	905	910
Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys		
915	920	925
Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu		
930	935	940
Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln		

945	950	955	960
Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His			
965	970	975	
Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu			
980	985	990	
Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu			
995	1000	1005	
Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His			
1010	1015	1020	
Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn			
1025	1030	1035	
His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val			
1040	1045	1050	
<210> 45			
<211> 1050			
<212> PRT			
<213> murine			
<400> 45			
Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu			
1	5	10	15
Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys			
20	25	30	
Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile			
35	40	45	
Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro			
50	55	60	
Thr Asn Thr Thr Asn Leu Thr Ile Asn His Ile Pro Ser Ile			
65	70	75	80
Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu			
85	90	95	
Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys			
100	105	110	
Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp			
115	120	125	
Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln			
130	135	140	
Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile			
145	150	155	160
Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr			
165	170	175	
Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser			
180	185	190	

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val
195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro
210 215 220

Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile
225 230 235 240

Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu
245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro
260 265 270

Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser
275 280 285

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His
290 295 300

Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp
305 310 315 320

Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu
325 330 335

His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu
340 345 350

Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser
355 360 365

Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu
370 375 380

Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu
385 390 395 400

Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile
405 410 415

Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys
420 425 430

Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala
435 440 445

Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His
450 455 460

Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys
465 470 475 480

Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly
485 490 495

Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser
500 505 510

Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn

	515	520	525
Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu	530	535	540
Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser			
545	550	555	560
Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser			
565	570	575	
Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe			
580	585	590	
Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp			
595	600	605	
Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile			
610	615	620	
Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp			
625	630	635	640
Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu			
645	650	655	
Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu			
660	665	670	
Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu			
675	680	685	
Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile			
690	695	700	
Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala			
705	710	715	720
Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile			
725	730	735	
Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr			
740	745	750	
Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe			
755	760	765	
Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn			
770	775	780	
Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn			
785	790	795	800
His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val			
805	810	815	
Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr			
820	825	830	
Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile			
835	840	845	
Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe			

850	855	860
Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys		
865	870	875
Gly , Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile		
885	890	895
Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu		
900	905	910
Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys		
915	920	925
Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu		
930	935	940
Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln		
945	950	955
Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His		
965	970	975
Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu		
980	985	990
Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu		
995	1000	1005
Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His		
1010	1015	1020
Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn		
1025	1030	1035
His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val		
1040	1045	1050

<210> 46
<211> 3311
<212> DNA
<213> Homo sapiens

<400> 46	
ttctgcgtcg ctgcaagtta cggaatgaaa aattagaaca acagaaacat gaaaaacatg	60
tcccttcagt cgtcaatgct gacctgcatt tccctgctaa tatctggttc ctgtgaggta	120
tgcgccgaag aaaatttttc tagaagctat ccttgtgatg agaaaaagca aaatgactca	180
gttattgcag agtgcagcaa tcgtcgacta caggaagttc cccaaacgggt gggcaaatat	240
gtgacagaac tagacctgtc tgataatttc atcacacaca taacgaatga atcatttcaa	300
gggctgaaaa atctcactaa aataaatcta aaccacaacc ccaatgtaca gcaccagaac	360
ggaaatcccc gtataacaatc aaatggcttg aatatcacag acggggcatt cctcaaccta	420
aaaaacctaa gggagttact gcttgaagac aaccagttac cccaaatacc ctctggtttg	480
ccagagtctt tgacagaact tagtctaatt caaaacaata tataacaacat aactaaagag	540

ggcattcaa gacttataaa cttgaaaaat ctctatttg cctggaaactg ctatTTAAC	600
aaagtttgcg agaaaactaa catagaagat ggagtatttgc aaacgtgac aaatttggag	660
ttgctatcac tatctttcaa ttctcttca cacgtgccac ccaaactgcc aagctcccta	720
cgcaaaacttt ttctgagcaa cacccagatc aaatacatta gtgaagaaga tttcaaggga	780
ttgataaatt taacattact agatttaagc gggaaactgtc cgaggtgctt caatgccccca	840
tttccatgcg tgccTTgtga tggtgggtct tcaattaata tagatcgTT tgctttcaa	900
aacttgcacc aacttcgata cctaaaccc tcTAGCactt ccctcaggaa gattaatgct	960
gcctggTTta aaaatatgcc tcATCTGAAG gtGCTGGATC ttGAATTCAA ctatTTAGTG	1020
ggagaaaatAG cctctggggc atTTTAACG atGCTGCC GCTTAGAAAT acTTGACTTG	1080
tcttttaact atataaAGGG gagttatcca cagcatatta atatttccAG aaACTTCTCT	1140
aaACTTTGT ctctacgggc attgcattta agaggttatg tGTTCCAGGA actcagagaa	1200
gatgatttcc agcccctgat gcagcttcca aacttatcga ctatcaactt gggtattaaat	1260
tttattaAGC aaatcgatt caaaACTTTc caaaatttct ccaatctgga aattatttac	1320
ttgtcagaaa acagaatATC accgttgta aaagataccc ggcagagtt tgcaaatagt	1380
tcctctttc aacgtcatac ccggaaacga cgctcaacag atTTTgagtt tgacccacat	1440
tcgaactttt atcatttCAC ccgtccTTA ataaAGCCAC aatgtgctgc ttatggaaaa	1500
gccttagatt taagcctcaa cagtatttcc ttcatTTGGC caaaccaatt tgAAAATCTT	1560
cctgacattg cctgtttaaa tctgtctgca aatAGCAATG ctcaAGTGTt aagtggAACT	1620
gaattttcag ccattcctca tgtcaaataat ttggatttga caaacAAATAG actagacttt	1680
gataatgcta gtGCTCTTAC tgaatttgc GACTTGGAAAG ttctagatct cagctataat	1740
tcacactatt tcagaatAGC aggCGTAACA catcatCTAG aatttattca aaatttCACA	1800
aatctaaaAG ttttaaACTT gagccacaAC aacatttATA cttaacAGA taagtataAC	1860
ctggaaAGCA agtccctggT agaatttagtt ttcaGTTGGCA atcgcTTGA cattttgtgg	1920
aatgatgatg acaacAGGTA tatctccatt ttcaAAAGGTc tcaAGAAATCT gacacgtctg	1980
gatttatccc ttaataggct gaagcacatc ccaaATGAAG cattccttaa tttGCCAGCG	2040
agtctcaCTG aactacatAT aaatgataAT atgttAAAGT ttttaACTG gacattactc	2100
cagcagttcc ctcgtctcgA gttGCTTGAC ttacgtggaa acAAactact ctTTTAact	2160
gatagcctat ctgactttac atcttccCTT cggacactgc tgctgagtca taacaggatt	2220
tcccacctac cctctggctt tctttctgaa gtcagtagtc tgaAGCACCT cgatttaAGT	2280
tccaaCTGC taAAAACAAT caacAAATCC gcacttgaaa ctaAGACCAC cacCAAATTA	2340
tctatgtgg aactacacgg aaACCCCTT GAATGCACT GTGACATTGG agatttccGA	2400
agatggatgg atgaacatct gaatgtcaAA attcccAGAC tggtagatgt catttGTGCC	2460

atcctgggg atcaaagagg gaagagtatt gtgagtctgg agctgacaac ttgtgtttca	2520
gatgtcactg catgtatatt atttttcttc acgttcttta tcaccaccat ggttatgttg	2580
gctgccctgg ctcaccattt gtttactgg gatgttggt ttatatataa tgtgtgttta	2640
gctaaggtaa aaggctacag gtctcttcc acatccaaa ctttctatga tgcttacatt	2700
tcttatgaca ccaaagatgc ctctgttact gactgggtga taaatgagct gcgcattaccac	2760
cttgaagaga gccgagacaa aaacgttctc ctttgccttag aggagaggga ttgggacccg	2820
ggattggcca tcatcgacaa cctcatgcag agcatcaacc aaagcaagaa aacagtattt	2880
gttttaacca aaaaatatgc aaaaagctgg aactttaaaa cagctttta cttggctttg	2940
cagaggctaa tggatgagaa catggatgtg attatattta tcctgctgga gccagtgta	3000
cacgttctc agtatttgag gctacggcag cggatctgta agagctccat cctccagtgg	3060
cctgacaacc cgaaggcaga aggcttggtt tggcaaactc tgagaaatgt ggtcttgact	3120
gaaaatgatt cacggtataa caatatgtat gtcgattcca ttaagcaata ctaactgacg	3180
ttaagtcatg atttcgcgcc ataataaaaga tgcaaaggaa tgacatttct gtatttagtta	3240
tctattgcta tgtaacaaat tatcccaaaa cttagtggtt taaaacaaca catttgctgg	3300
ccccacagttt t	3311

<210> 47
<211> 3367
<212> DNA
<213> *Homo spaiens*

<400> 47
ctcctgcata gagggtacca ttctgcgcgtg ctgcaagtta cggaatgaaa aattagaaca 60
acagaaaacgt gtttctcttg acacttcagt gtttagggAAC atcagcaaga .cccacccag 120
gagaccttga aggaagcctt tgaaagggAG aatgaaggAG tcatcttgc aaaatagctc 180
ctgcagcctg ggaaaggaga ctaaaaagga aaacatgttc cttcagtcgt caatgtgac 240
ctgcatttc ctgctaatac ctggttccctg tgagttatgc gccgaagaaa atttttctag 300
aagctatacct tgtgatgaga aaaagcaaaa tgactcagtt attgcagagt gcagcaatcg 360
tcgactacag gaagttcccc aaacgggtggg caaatatgtg acagaactag acctgtctga 420
taatttcatc acacacataa cgaatgaatc atttcaaggg ctgcaaaatc tcactaaaaat 480
aaatctaaac cacaacccca atgtacagca ccagaacggA aatcccggtA tacaatcaaA 540
tggcttgaat atcacagacg gggcattcct caacctaaaa aacctaaggg agttactgct 600
tgaagacaac cagttacccca aaataccctc tggtttgcCA gagtctttga cagaacttag 660
tctaattcaa aacaatatac acaacataaac taaagagggc atttcaagac ttataaaactt 720

gaaaaatctc tatttggcct ggaactgcta ttttaacaaa gtttgcgaga aaactaacat	780
agaagatgga gtatggaaa cgctgacaaa ttggagttg ctatcaatat ctttcaattc	840
tctttcacac gtgtcaccca aactgccaag ctccctacgc aaacttttc tgagcaacac	900
ccagatcaaa tacattagtg aagaagattt caagggattt ataaatttaa cattactaga	960
tttaaggcggg aactgtccga ggtgctcaa tgccccattt ccatgcgtgc cttgtgatgg	1020
tggtgcttca attaatatacg atcggtttgc tttcaaaaac ttgacccaaac ttcgataacct	1080
aaacctctct agcacttccc tcaggaagat taatgctgcc tggtttaaaa atatgcctca	1140
tctgaagggtg ctggatcttg aattcaacta ttttagtgggaa gaaatagcct ctggggcatt	1200
tttaacgatg ctgccccgct tagaaatact tgacttgtct tttaactata taaaggggag	1260
ttatccacag catattaata tttccagaaa cttctctaaa cctttgtctc tacgggcatt	1320
gcatttaaga gtttatgtgt tccaggaact cagagaagat gatcccagc ccctgatgca	1380
gcttccaaac ttatcgacta tcaacttggg tattaatttt attaagcaaa tcgatttcaa	1440
actttccaa aatttctcca atctggaaat tatttacttg tcagaaaaca gaatatcacc	1500
gttggtaaaa gatacccgcc agagttatgc aaatagttcc tctttcaac gtcatatccg	1560
gaaacgacgc tcaacagatt ttgagttga cccacattcg aacttttac atttcacccg	1620
tcctttaata aagccacaat gtgctgctta tggaaaagcc ttagatttaa gcctcaacag	1680
tattttcttc attggggccaa accaatttga aaatcttccct gacattgcct gtttaaatct	1740
gtctgcaaat agcaatgctc aagtgttaag tggaactgaa ttttcagcca ttcctcatgt	1800
caaataatttgc gatttgcacaa acaatagact agactttgat aatgcttagtgc ctcttactga	1860
attgtccgac ttggaagttc tagatctcg ctataattca cactattca gaatagcagg	1920
cgtAACACAT catctagaat ttattcaaaa ttccacaaaat ctAAAAGTTT taaacttgag	1980
ccacaacaac atttataactt taacagataa gtataacctg gaaagcaagt ccctggtaga	2040
attagtttgc agtggcaatc gccttgacat tttgtggaaat gatgtgaca acaggtat	2100
ctccatTTTC aaaggctctca agaatctgac acgtctggat ttatccctta ataggctgaa	2160
gcacatccccaa atgaagcat tccttaattt gccagcgagt ctcactgaac tacatataaa	2220
tgataatatg taaaagtttt ttaactggac attactccag cagttccctc gtctcgagtt	2280
gcttgactta cgtggaaaca aactactctt tttaactgat agcctatctg actttacatc	2340
ttcccttcgg acactgctgc tgagtctaa caggatttcc cacctaccct ctggctttct	2400
ttctgaagtc agtagtctga agcacctcga tttaagttcc aatctgctaa aaacaatcaa	2460
caaataccgca ttgaaacta agaccaccac caaaattatct atgttggaaac tacacggaaa	2520
cccccttgaa tgcacctgtg acattggaga ttccgaaga tggatggatg aacatctgaa	2580
tgtcaaaaattt cccagactgg tagatgtcat ttgtgccagt cctggggatc aaagagggaa	2640

gagtattgtg agtctggagc taacaacttg tggatcgat gtcactgcag tgatattttt	2700
tttcttcacg ttcttatca ccaccatggt tatgttggct gccctggctc accattttttt	2760
ttactggat gttgggtta tatataatgt gtgttagct aagataaaag gctacaggcc	2820
tctttccaca tcccaaactt tctatgatgc ttacatttct tatgacacca aagatgcctc	2880
tggtactgac tgggtgataa atgagctgcg ctaccacctt gaagagagcc gagacaaaaaa	2940
cgttctcctt tgtcttaggg agagggattt ggacccggga ttggccatca tcgacaacct	3000
catgcagagc atcaacccaaa gcaagaaaac agtattttttt ttaacccaaa aatatgc当地	3060
aagctggaac tttaaacacag ctttttactt ggctttgcag aggctaattgg atgagaacat	3120
ggatgtgatt atatttatcc tgctggagcc agtgttacag cattctcaatg atttgaggct	3180
acggcagcgg atctgttaga gctccatcct ccagtggcct gacaacccga aggcagaagg	3240
cttgggggg caaaactctga gaaatgtggt cttgactgaa aatgattcac ggtataacaa	3300
tatgtatgtc gattccatttta agcaataacta actgacgttta agtcatgatt tcgcgccata	3360
ataaaaga	3367

<210> 48
<211> 4211
<212> DNA
<213> Homo spaiens

<400> 48 ctcctgcata gagggtacca ttctgcgctg ctgcaagtta cgaaatgaaa aattagaaca	60
acagaaaacat ggaaaacatg ttcccttcaatg cgtcaatgct gacctgcattt ttcctgctaa	120
tatctgggttc ctgtgagttt tgccggaaag aaaatttttc tagaagctat ctttgtatg	180
agaaaaagca aaatgactca gttattgcag agtgcagcaa tcgtcgacta caggaagttc.	240
cccaaacgggt gggcaaataat gtgacagaac tagacctgtc tgataatttc atcacacaca	300
taacgaatga atcatttcaa gggctgcaaa atctcaactaa aataaatcta aaccacaacc	360
ccaaatgtaca gcaccagaac ggaaatcccc gtatataatc aaatggcttg aatatcacag	420
acggggcatt cctcaaccta aaaaacctaa gggagttact gcttgaagac aaccaggttac	480
cccaaataacc ctctggggcc ccagagtctt tgacagaact tagtctaatt caaaacaata	540
tatacaacat aactaaagag ggcatttcaa gacttataaa cttgaaaaat ctctattttgg	600
cctggaaactg ctatTTTaaac aaagtttgcg agaaaaactaa catagaagat ggagtatttg	660
aaacgctgac aaatttggag ttgctatcac tatctttcaa ttctcttca cacgtgccac	720
ccaaactgcc aagctcccta cgcaaactttt ttctgagcaa cacccagatc aaatacatta	780
gtgaagaaga tttcaaggga ttgataaattttaacattact agatTTAAGC gggactgtc	840

cgaggtgcctt caatccccca tttccatgcg tgccttgtga tggtgtgct tcaattaata	900
tagatcgaaa tgctttcaa aacttgaccc aacttcgata cctaaacctc tctagcactt	960
ccctcaggaa gattaatgct gcctggttta aaaatatgcc tcatactgaag gtgctggatc	1020
ttgaattcaa ctattnatgt ggagaaatag cctctggggc attttaacg atgctgcccc	1080
gcttagaaat acttgacttg tcttttaact atataaaggg gagttatcca cagcatatta	1140
atatttccag aaacttctct aaactttgt ctctacgggc attgcatttta agaggttatg	1200
tgttccagga actcagagaa gatgattcc agccctgat gcagcttcca aacttatcga	1260
ctatcaactt gggatttaat ttattnaagc aaatcgattt caaaactttc caaaatttct	1320
ccaatctgga aattatttac ttgtcagaaa acagaatatc accgttggta aaagataaccc	1380
ggcagagtta tgcaaatagt tcctctttc aacgtcatat ccggaaacga cgctcaacag	1440
atttttagtt tgaccacat tcgaactttt atcatttac ccgtccttta ataaagccac	1500
aatgtgctgc ttatggaaaa gccttagatt taagcctcaa cagtatttc ttcatgggc	1560
caaaccattt taaaaatctt cctgacatttgc cctgtttaaa tctgtctgca aatagcaatg	1620
ctcaagtgtt aagtggaaact gaattttcag ccattcctca tgtcaaataat ttggatttga	1680
caaacaatag actagacttt gataatgcta gtgctcttac tgaattgtcc gacttggaaag	1740
ttcttagatct cagctataat tcacactatt tcagaatagc aggcttaaca catcatctag	1800
aatttattca aaatttcaca aatctaaaag ttttaactt gagccacaac aacatttata	1860
ctttaacaga taagtataac ctggaaagca agtccctggt agaatttagtt ttcatggca	1920
atcgcccttga cattttgtgg aatgatgatg acaacaggta tatctccatt ttcaaaggtc	1980
tcaagaatct gacacgtctg gatttatccc ttaataggct gaagcacatc ccaaataatgaa	2040
cattccctaa ttgccagcg agtctcactg aactacatataat gataatgtttt atgttaaagt	2100
tttttaactg gacattactc cagcagtttgc tcgtctcgat gttgcttgac ttacgtggaa	2160
acaaaactact ctttttaact gatacctat ctgacttttac atcttccctt cggacactgc	2220
tgctgagtca taacaggatt tcccacctac cctctggctt tctttctgaa gtcagtagtc	2280
tgaagcacct cgatttaagt tccaatctgc taaaaacaat caacaaatcc gcacttgaaa	2340
ctaagaccac caccaaaatata tctatgttgg aactacacgg aaacccctttt gaatgcaccc	2400
gtgacattgg agatttccga agatggatgg atgaacatct gaatgtcaaa attcccagac	2460
tggtagatgt cattttgtgcc agtccctgggg atcaaaagagg gaagagtatt gtgagttctgg	2520
agctaacaac ttgtgtttca gatgtcactg cagtgatatt atttttcttc acgttcttta	2580
tcaccaccat ggttatgttgc gctgccctgg ctcaccattt gtttactgg gatgtttgg	2640
ttatataataa tgggtgttttca gctaaggtaa aaggctacag gtctctttcc acatccaaa	2700
ctttctatga tgcttacatt tcttatgaca ccaaagatgc ctctgttact gactgggtga	2760

taaatgagct	gcgctaccac	cttgaagaga	gccgagacaa	aaacgttctc	ctttgtctag	2820
aggagaggga	ttgggatccg	ggattggcca	tcatcgacaa	cctcatgcag	agcatcaacc	2880
aaagcaagaa	aacagtattt	gttttaacca	aaaaatatgc	aaaaagctgg	aactttaaaa	2940
cagctttta	cttggctttg	cagaggctaa	tggatgagaa	catggatgtg	attatattta	3000
tcctgctgga	gccagtgtta	cagcattctc	agtatttgag	gctacggcag	cgatatctgt	3060
agagctccat	cctccagtgg	cctgacaacc	cgaaggcaga	aggcttgtt	tggcaaactc	3120
tgagaaaatgt	ggtcttgact	gaaaatgatt	cacggtataa	caatatgtat	gtcgattcca	3180
ttaagcaata	ctaactgacg	ttaagtcatg	atttcgcgcc	ataataaaga	tgcaaaggaa	3240
tgacatttct	gtatttagtta	tctattgcta	tgtacaaaat	tatcccaaaa	cttagtggtt	3300
taaaacaaca	catttgcgtgg	cccacagttt	ttgagggtca	ggagtccagg	cccagcataa	3360
ctgggtcetc	tgctcagggt	gtctcagagg	ctgcaatgta	ggtgttcacc	agagacatag	3420
gcatcactgg	ggtcacactc	atgtggttgt	tttctggatt	caattcctcc	tggcttattg	3480
gccaaggct	atactcatgt	aagccatgcg	agcctctccc	acaaggcagc	ttgcttcatc	3540
agagctagca	aaaaagagag	gttgctagca	agatgaagtc	acaatcttt	gtaatcgaat	3600
caaaaaagtg	atatctcatc	actttggcca	tattctattt	gttagaagta	aaccacaggt	3660
cccaccagct	ccatgggagt	gaccacctca	gtccaggaa	aacagctgaa	gaccaagatg	3720
gtgagctctg	attgcttcag	ttggtcatca	actatttcc	cttgcactgct	gtcctggat	3780
ggcctgctat	cttgcgtata	gattgtgaat	atcaggaggc	agggatcaact	gtggaccatc	3840
ttagcagttg	acctaacaca	tcttctttc	aatatctaag	aactttgcc	actgtgacta	3900
atggcctaa	tattaagctg	ttgttttat	ttatcatata	tctatggcta	catggttata	3960
ttatgcgtg	gttgcgttcg	gttttattta	cagttgctt	tacaaatatt	tgctgtaca	4020
tttgacttct	aaggtttaga	tgccatttaa	gaactgagat	ggatagctt	taaagcatct	4080
tttacttctt	accatttttt	aaaagtatgc	agctaaattc	gaagctttg	gtctatattg	4140
ttaattgcca	ttgctgtaaa	tctaaaatg	aatgaataaa	aatgtttcat	tttacaaaaaa	4200
aaaaaaaaaa a						4211

<210> 49
 <211> 3468
 <212> DNA
 <213> Homo sapiens

<400> 49	ctcctgcata	gagggtacca	ttctgcgtcg	ctgcaagtta	cggaatgaaa	aattagaaca	60
	acagaaacat	gttctcttg	acacttcagt	gttagggAAC	atcagcaaga	cccatcccAG	120

gagacccctga aggaaggcctt tgaaaggag aatgaaggag tcatcttc aaaaatagctc	180
ctgcagcctg ggaaaggaga ctaaaaagga aaacatgttc cttagtctgt caatgtgac	240
ctgcattttc ctgctaataat ctggttcctg tgagttatgc gccgaagaaa atttttctag	300
aagctatcct tgtgatgaga aaaagcaaaa tgactcagtt attgcagagt gcagcaatcg	360
tcgactacag gaagttcccc aaacggtggg caaatatgtg acagaactag acctgtctga	420
taatttcattc acacacataa cgaatgaatc atttcaaggg ctgcaaaatc tcactaaaat	480
aaatctaaac cacaacccca atgtacagca ccagaacgga aatcccggtt tacaatcaaa	540
tggcttgaat atcacagacg gggcattcct caacctaaaa aacctaaggg agttactgct	600
tgaagacaac cagttacccc aaataccctc tggtttgcctt gagtctttga cagaacttag	660
tctaattcaa aacaatataat acaacataac taaagagggc atttcaagac ttataaaactt	720
gaaaaatctc tatttggcct ggaactgcta ttttaacaaa gtttgcgaga aaactaacat	780
agaagatgga gtatttgaaa cgctgacaaa ttggagttt ctatcactat ctttcaattc	840
tcttcacac gtgccaccca aactgccaag ctccctacgc aaacttttc tgagcaacac	900
ccagatcaaa tacatttagt aagaagattt caagggattt ataaattttaa cattactaga	960
tttaagcggg aactgtccga ggtgctcaa tgccccattt ccatgcgtgc cttgtgatgg	1020
tggtgcttca attaatataat atcgtttgc ttttcaaaac ttgacccaaac ttcgataacct	1080
aaacctctct agcacttccc tcaggaagat taatgctgcc tggtttaaaaa atatgcctca	1140
tctgaagggtt ctggatctt aattcaacta tttagtgggaa gaaatagcct ctggggcatt	1200
tttaacgatg ctgccccgct tagaaataact tgacttgtct tttaactata taaaggggag	1260
ttatccacag catattaata tttccagaaaa cttctctaaa cttttgtctc tacgggcatt	1320
gcatttaaga gtttatgtgt tccaggaact cagagaagat gatttccagc ccctgatgca	1380
gcttccaaac ttatcgacta tcaacttggg tattaatttt attaagcaaa tcgatttcaa	1440
actttccaa aatttctcca atctggaaat tatttacttg tcagaaaaca gaatatcacc	1500
gttggtaaaa gataccggc agagttatgc aaatagttcc tctttcaac gtcatatccg	1560
gaaacgacgc tcaacagatt ttgagttga cccacattcg aacttttac atttcacccg	1620
tcctttaata aagccacaat gtgctgctt tggaaaagcc ttagatttaa gcctcaacag	1680
tatttcttc attggggccaa accaatttga aaatcttcct gacattgcct gtttaaatct	1740
gtctgcaaat agcaatgctc aagtgttaag tggaaactgaa tttcagccca ttcctcatgt	1800
caaataattt gatttgacaa acaatagact agactttgat aatgcttagtgc ctcttactga	1860
attgtccgac ttggaagttc tagatctcag ctataattca cactattca gaatagcagg	1920
cgtaacacat catctagaat ttattcaaaa tttcacaaat ctaaaagttt taaacttgag	1980
ccacaacaac atttataactt taacagataa gtataacctg gaaagcaagt ccctggtaga	2040

attagtttc agtggcaatc gccttgacat tttgtggat gatgatgaca acaggatat	2100
ctccattttc aaaggctctca agaatctgac acgtctggat ttatccctta ataggctgaa	2160
gcacatccca aatgaagcat tccttaattt gccagcgagt ctcactgaac tacatataaa	2220
tgataatatg taaaagttt ttaactggac attactccag cagttcctc gtctcgagtt	2280
gcttgactta cgtggaaaca aactactt tttaactgat agcctatctg actttacatc	2340
ttcccttcgg acactgctgc tgagtctaa caggattcc cacctaccct ctggcttct	2400
ttctgaagtc agtagtctga agcacctoga tttaagttcc aatctgctaa aaacaatcaa	2460
caaatccgca cttgaaaacta agaccaccac caaattatct atgttggAAC tacacggaaa	2520
cccccttgaa tgcacctgtg acattggaga tttccgaaga tggatggatg aacatctgaa	2580
tgtcaaaatt cccagactgg tagatgtcat ttgtgccagt cctggggatc aaagagggaa	2640
gagtattgtg agtctggagc taacaacttg tgttttagat gtcactgcag tgatattatt	2700
tttcttcacg ttcttatca ccaccatggt tatgttggct gccctggctc accattgtt	2760
ttactggat gttgggtta tatataatgt gtgttagct aaggtaaaag gctacaggtc	2820
tctttccaca tcccaaactt tctatgtgc ttacatttct tatgacaccca aagatgcctc	2880
tgttactgac tgggtgataa atgagctgCG ctaccacctt gaagagagcc gagacaaaaaa	2940
cgttctcctt tgtcttagagg agagggattt ggatccggga ttggccatca tcgacaacct	3000
catgcagagc atcaacccaaa gcaagaaaaac agtatttttt ttaacccaaa aatatgcaaa	3060
aagctggAAC tttaaaacag ctttttactt ggcttgcag aggctaattgg atgagaacat	3120
ggatgtgatt atatttatcc tgctggagcc agtgttacag cattctcagt atttgggct	3180
acggcagcgg atctgtaaa gctccatcct ccagtggcct gacaacccga aggcagaagg	3240
cttgggggg ccaaactctga gaaatgtggt ctgactgaa aatgattcac ggtataacaa	3300
tatgtatgtc gattccatta agcaatacta actgacgtta agtcatgatt tcgcgccata	3360
ataaaagatgc aaaggaatgaa catttcgtta tttagttatct attgctatgt aacaaattat	3420
cccaaaaactt agtgggttAA aacaacacat ttgctggccc acagttt	3468

<210> 50
<211> 1041
<212> PRT
<213> Homo sapiens

<400> 50

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu
1 5 10 15

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg
20 25 30

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu
35 40 45

Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr
50 55 60

Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn
65 70 75 80

Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His
85 90 95

Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn
100 105 110

Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg
115 120 125

Glu Leu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu
130 135 140

Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn
145 150 155 160

Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr
165 170 175

Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile
180 185 190

Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu
195 200 205

Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu
210 215 220

Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu
225 230 235 240

Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn
245 250 255

Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly
260 265 270

Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln
275 280 285

Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala
290 295 300

Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe
305 310 315 320

Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu
325 330 335

Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser
340 345 350

Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser

355 360 365
Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu
370 375 380

Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn
385 390 395 400

Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn
405 410 415

Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro
420 425 430

Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln
435 440 445

Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His
450 455 460

Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala
465 470 475 480

Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile
485 490 495

Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu
500 505 510

Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala
515 520 525

Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe
530 535 540

Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp
545 550 555 560

Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His
565 570 575

Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser
580 585 590

His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys
595 600 605

Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp
610 615 620

Asn Asp Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn
625 630 635 640

Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn
645 650 655

Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn
660 665 670

Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro
675 680 685

Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr

690	695	700
Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser		
705	710	715
720		
His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser		
725	730	735
Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn		
740	745	750
Lys Ser Ala Leu Glu Thr Lys Thr Thr Lys Leu Ser Met Leu Glu		
755	760	765
Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg		
770	775	780
Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp		
785	790	795
800		
Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser		
805	810	815
Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe		
820	825	830
Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala		
835	840	845
His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu		
850	855	860
880		
Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr		
865	870	875
880		
Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp		
885	890	895
Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn		
900	905	910
910		
Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile		
915	920	925
925		
Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe		
930	935	940
940		
Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe		
945	950	955
955		
960		
Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile		
965	970	975
975		
Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu		
980	985	990
990		
Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro		
995	1000	1005
1005		
Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu		
1010	1015	1020
1020		
Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile		

1025	1030	1035
Lys Gln Tyr		
1040		
<210> 51		
<211> 1059		
<212> PRT		
<213> Homo sapiens		
<400> 51		
Met Lys Glu Ser Ser Leu Gln Asn Ser Ser Cys Ser Leu Gly Lys Glu		
1	5	10
		15
Thr Lys Lys Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile		
20	25	30
Phe Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe		
35	40	45
Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile		
50	55	60
Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly		
65	70	75
		80
Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile		
85	90	95
Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu		
100	105	110
Asn His Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln		
115	120	125
Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn		
130	135	140
Leu Arg Glu Leu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser		
145	150	155
		160
Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile		
165	170	175
Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn		
180	185	190
Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr		
195	200	205
Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu		
210	215	220
Ser Leu Ser Phe Asn Ser Leu Ser His Val Ser Pro Lys Leu Pro Ser		
225	230	235
		240
Ser Leu Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser		
245	250	255
Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser		
260	265	270

Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys
275 280 285

Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu
290 295 300

Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile
305 310 315 320

Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu
325 330 335

Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr
340 345 350

Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys
355 360 365

Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Pro
370 375 380

Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu
385 390 395 400

Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr
405 410 415

Ile Asn Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe
420 425 430

Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile
435 440 445

Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser
450 455 460

Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp
465 470 475 480

Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln
485 490 495

Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe
500 505 510

Phe Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu
515 520 525

Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe
530 535 540

Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu
545 550 555 560

Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val
565 570 575

Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr
580 585 590

His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn

595 600 605
Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu
610 615 620

Ser Lys Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile
625 630 635 640

Leu Trp Asn Asp Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu
645 650 655

Lys Asn Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile
660 665 670

Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His
675 680 685

Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln
690 695 700

Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe
705 710 715 720

Leu Thr Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu
725 730 735

Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu
740 745 750

Val Ser Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr
755 760 765

Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Lys Leu Ser Met
770 775 780

Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp
785 790 795 800

Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu
805 810 815

Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile
820 825 830

Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile
835 840 845

Leu Phe Phe Phe Thr Phe Ile Thr Thr Met Val Met Leu Ala Ala
850 855 860

Leu Ala His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val
865 870 875 880

Cys Leu Ala Lys Ile Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr
885 890 895

Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr
900 905 910

Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp
915 920 925

Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu

930	935	940
Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr		
945	950	955
960		
Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr		
965	970	975
Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val		
980	985	990
Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu		
995	1000	1005
Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro		
1010	1015	1020
Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn		
1025	1030	1035
Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val		
1040	1045	1050
Asp Ser Ile Lys Gln Tyr		
1055		

<210> 52
<211> 1041
<212> PRT
<213> Homo sapiens
<400> 52

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu		
1	5	10
		15
Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg		
20	25	30
Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu		
35	40	45
Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr		
50	55	60
Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn		
65	70	75
		80
Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His		
85	90	95
Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn		
100	105	110
Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg		
115	120	125
Glu Leu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu		
130	135	140
Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn		
145	150	155
		160

Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr
165 170 175

Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile
180 185 190

Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu
195 200 205

Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu
210 215 220

Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu
225 230 235 240

Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn
245 250 255

Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly
260 265 270

Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln
275 280 285

Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala
290 295 300

Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe
305 310 315 320

Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu
325 330 335

Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser
340 345 350

Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser
355 360 365

Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu
370 375 380

Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn
385 390 395 400

Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn
405 410 415

Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro
420 425 430

Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Phe Gln
435 440 445

Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His
450 455 460

Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala
465 470 475 480

Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile

485 490 495
Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu
500 505 510

Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala
515 520 525

Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe
530 535 540

Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp
545 550 560

Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His
565 570 575

Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser
580 585 590

His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys
595 600 605

Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp
610 615 620

Asn Asp Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn
625 630 640

Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn
645 650 655

Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn
660 665 670

Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro
675 680 685

Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr
690 695 700

Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser
705 710 720

His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser
725 730 735

Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn
740 745 750

Lys Ser Ala Leu Glu Thr Lys Thr Thr Lys Leu Ser Met Leu Glu
755 760 765

Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg
770 775 780

Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp
785 790 800

Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser
805 810 815

Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe

Phe	Phe	Thr	Phe	Ile	Thr	Thr	Met	Val	Met	Leu	Ala	Ala	Leu	Ala	
820	825						830								
835							840						845		
His	His	Leu	Phe	Tyr	Trp	Asp	Val	Trp	Phe	Ile	Tyr	Asn	Val	Cys	Leu
850	855											860			
Ala	Lys	Val	Lys	Gly	Tyr	Arg	Ser	Leu	Ser	Thr	Ser	Gln	Thr	Phe	Tyr
865				870					875					880	
Asp	Ala	Tyr	Ile	Ser	Tyr	Asp	Thr	Lys	Asp	Ala	Ser	Val	Thr	Asp	Trp
			885				890						895		
Val	Ile	Asn	Glu	Leu	Arg	Tyr	His	Leu	Glu	Glu	Ser	Arg	Asp	Lys	Asn
			900				905						910		
Val	Leu	Leu	Cys	Leu	Glu	Glu	Arg	Asp	Trp	Asp	Pro	Gly	Leu	Ala	Ile
			915				920						925		
Ile	Asp	Asn	Leu	Met	Gln	Ser	Ile	Asn	Gln	Ser	Lys	Lys	Thr	Val	Phe
			930			935							940		
Val	Leu	Thr	Lys	Lys	Tyr	Ala	Lys	Ser	Trp	Asn	Phe	Lys	Thr	Ala	Phe
			945			950			955				960		
Tyr	Leu	Ala	Leu	Gln	Arg	Leu	Met	Asp	Glu	Asn	Met	Asp	Val	Ile	Ile
			965			970							975		
Phe	Ile	Leu	Leu	Glu	Pro	Val	Leu	Gln	His	Ser	Gln	Tyr	Leu	Arg	Leu
			980				985						990		
Arg	Gln	Arg	Ile	Cys	Lys	Ser	Ser	Ile	Leu	Gln	Trp	Pro	Asp	Asn	Pro
			995			1000							1005		
Lys	Ala	Glu	Gly	Leu	Phe	Trp		Gln	Thr	Leu	Arg	Asn	Val	Val	Leu
			1010			1015							1020		
Thr	Glu	Asn	Asp	Ser	Arg	Tyr	Asn	Asn	Met	Tyr	Val	Asp	Ser	Ile	
			1025			1030							1035		
Lys	Gln	Tyr													
		1040													

<210> 53
<211> 1041
<212> PRT
<213> Homo sapiens

<400> 53

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu
1 5 10 15

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg
20 25 30

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu
35 40 45

Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr
50 55 60

Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn
65 70 75 80

Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His
85 90 95

Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn
100 105 110

Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg
115 120 125

Glu Leu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu
130 135 140

Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn
145 150 155 160

Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr
165 170 175

Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile
180 185 190

Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu
195 200 205

Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu
210 215 220

Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu
225 230 235 240

Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn
245 250 255

Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly
260 265 270

Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln
275 280 285

Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala
290 295 300

Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe
305 310 315 320

Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu
325 330 335

Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser
340 345 350

Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser
355 360 365

Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu
370 375 380

Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn

385	390	395	400
Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn			
405	410	415	
Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro			
420	425	430	
Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Phe Gln			
435	440	445	
Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His			
450	455	460	
Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala			
465	470	475	480
Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile			
485	490	495	
Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu			
500	505	510	
Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala			
515	520	525	
Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe			
530	535	540	
Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp			
545	550	555	560
Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His			
565	570	575	
Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser			
580	585	590	
His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys			
595	600	605	
Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp			
610	615	620	
Asn Asp Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn			
625	630	635	640
Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn			
645	650	655	
Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn			
660	665	670	
Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro			
675	680	685	
Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr			
690	695	700	
Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser			
705	710	715	720
His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser			

725	730	735
Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn		
740	745	750
Lys Ser Ala Leu Glu Thr Lys Thr Thr Lys Leu Ser Met Leu Glu		
755	760	765
Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg		
770	775	780
Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp		
785	790	795
Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser		
805	810	815
Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe		
820	825	830
Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala		
835	840	845
His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu		
850	855	860
Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr		
865	870	875
Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp		
885	890	895
Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn		
900	905	910
Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile		
915	920	925
Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe		
930	935	940
Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe		
945	950	955
Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile		
965	970	975
Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu		
980	985	990
Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro		
995	1000	1005
Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu		
1010	1015	1020
Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile		
1025	1030	1035
Lys Gln Tyr		
1040		

<210> 54
<211> 1059
<212> PRT
<213> Homo sapiens

<400> 54

Met Lys Glu Ser Ser Leu Gln Asn Ser Ser Cys Ser Leu Gly Lys Glu
1 5 10 15

Thr Lys Lys Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile
20 25 30

Phe Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe
35 40 45

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile
50 55 60

Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly
65 70 75 80

Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile
85 90 95

Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu
100 105 110

Asn His Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln
115 120 125

Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn
130 135 140

Leu Arg Glu Leu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser
145 150 155 160

Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile
165 170 175

Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn
180 185 190

Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr
195 200 205

Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu
210 215 220

Ser Leu Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser
225 230 235 240

Ser Leu Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser
245 250 255

Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser
260 265 270

Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys
275 280 285

Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu
290 295 300

Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile
305 310 315 320

Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu
325 330 335

Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr
340 345 350

Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys
355 360 365

Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu
370 375 380

Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu
385 390 395 400

Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr
405 410 415

Ile Asn Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe
420 425 430

Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile
435 440 445

Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser
450 455 460

Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp
465 470 475 480

Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln
485 490 495

Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe
500 505 510

Phe Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu
515 520 525

Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe
530 535 540

Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu
545 550 555 560

Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val
565 570 575

Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr
580 585 590

His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn
595 600 605

Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu

610 615 620
Ser Lys Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile
625 630 635 640

Leu Trp Asn Asp Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu
645 650 655

Lys Asn Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile
660 665 670

Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His
675 680 685

Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln
690 695 700

Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe
705 710 715 720

Leu Thr Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu
725 730 735

Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu
740 745 750

Val Ser Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr
755 760 765

Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Lys Leu Ser Met
770 775 780

Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp
785 790 795 800

Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu
805 810 815

Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile
820 825 830

Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile
835 840 845

Leu Phe Phe Phe Thr Phe Ile Thr Thr Met Val Met Leu Ala Ala
850 855 860

Leu Ala His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val
865 870 875 880

Cys Leu Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr
885 890 895

Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr
900 905 910

Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp
915 920 925

Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu
930 935 940

Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr

945	950	955	960
Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr			
965	970	975	
 Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val			
980	985	990	
 Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu			
995	1000	1005	
 Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro			
1010	1015	1020	
 Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn			
1025	1030	1035	
 Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val			
1040	1045	1050	
 Asp Ser Ile Lys Gln Tyr			
1055			

<210> 55
<211> 3220
<212> DNA
<213> murine

<400> 55		
attcagagtt ggatgttaag agagaaaacaa acgttttacc ttcccttgc tatagaacat	60	
ggaaaaacatg ccccctcagt catggattct gacgtgcctt tgtctgcgtt cctctggAAC	120	
cagtgccatc ttccataaaag cgaactattc cagaagctat ccttgtgacg agataaggca	180	
caactccctt gtgattgcag aatgcaacca tcgtcaactg catgaaggTC cccaaactat	240	
aggcaagtat gtgacaaaaca tagacttgc agacaatGCC attacacata taacgaaaga	300	
gtcctttcaa aagctgcaaa acctcactaa aatcgatctg aaccacaatg ccaaacaaca	360	
gcacccaaat gaaaataaaa atggtatgaa tattacagaa ggggcacttc tcagcctaAG	420	
aaatctaaca gtttactgc tggaagacAA ccagttatAT actatacctg ctgggttgCC	480	
tgagtctttg aaagaactta gcctaattca aaacaatata tttcaggtaa ctaaaaacAA	540	
cactttggg ctttaggaact tgaaaagact ctatTTGGC tggaactgct attttaaATG	600	
taatcaaacc tttaaggtag aagatgggc attaaaaat ctatacact tgaaggtact	660	
ctcattatct ttcaataacc tttctatgt gccccccAAA ctaccaagtt ctctaaaggAA	720	
actttttctg agtaatGCC aaatcatgaa catcaCTCAG gaagacttca aaggactggA	780	
aaatttaaca ttactagatc tgagtggAAA ctgtccaagg tgTTACAATG ctccatttCC	840	
ttgcacacct tgcaaggAAA actcatccat ccacatacat cctctggCTT ttCAAAGTCT	900	
cacccaaACTT ctctatctaa acctttccAG cactccCTC aggacgattc cttctacctg	960	
gtttgaaaat ctgtcaaATC tgaagGAact ccacTttgaa ttcaactatt tagttcaAGA	1020	

aattgcctcg gggcatttt taacaaaact acccagttt caaatccttg atttgcctt 1080
caacttcaa tataaggaat atttacaatt tattaatatt tcctcaaatt tctctaagct 1140
tcgttctctc aagaagttgc acttaagagg ctatgtgttc cgagaactta aaaagaagca 1200
tttcgagcat ctccagagtc ttccaaactt ggcaaccatc aacttggca ttaactttat 1260
tgagaaaatt gatttcaaag ctttccagaa ttttccaaa ctcgacgtt tctatttac 1320
aggaaatcgc atagcatctg tattagatgg tacagattat tcctcttggc gaaatcgtct 1380
tcggaaacct ctctcaacag acgatgatga gtttgatcca cacgtgaatt tttaccatag 1440
caccaaacct ttaataaaagc cacagtgtac tgcttatggc aaggccttgg atttaagttt 1500
gaacaatatt ttcattattt ggaaaagcca atttgaaggt tttcaggata tcgcctgctt 1560
aaatctgtcc ttcaatgcca atactcaagt gtttaatggc acagaattct cctccatgcc 1620
ccacattaaa tatttggatt taaccaacaa cagactagac tttgatgata acaatgcttt 1680
cagtgatctt cacgatctag aagtgctgga cctgagccac aatgcacact atttcagtat 1740
agcaggggta acgcaccgtc taggatttat ccagaactta ataaacctca gggtgttaaa 1800
cctgagccac aatggcattt acaccctcac agaggaaagt gagctgaaaa gcatctcact 1860
gaaagaattt gtttcagtg gaaatcgtct tgaccatttggaaatgcaaa atgatggcaa 1920
atactggtcc atttttaaaa gtctccagaa tttgatacgc ctggacttat catacaataa 1980
ccttcaccaa atcccaaatg gaggatttccat caatttgcct cagagccctc aagagtact 2040
tatcagtggt aacaaattac gtttctttaa ttggacatta ctccagtatt ttcctcacct 2100
tcacttgctg gatttgcga gaaatgagct gtattttcta cccatttgc tatctaagtt 2160
tgcacattcc ctggagacac tgctactgag ccataatcat ttctctcacc taccctctgg 2220
cttcctctcc gaagccagga atctggtgca cctggatcta agttcaaca caataaagat 2280
gatcaataaa tcctccctgc aaaccaagat gaaaacgaac ttgtctattc tggagctaca 2340
tgggaactat ttgactgca cgtgtgacat aagtgatttt cgaagctggc tagatgaaaa 2400
tctgaatatc acaattccta aattggtaaa tggatgttgc tccaaatcctg gggatcaaaa 2460
atcaaagagt atcatgagcc tagatctcac gacttgcgtt tcggataccatc ctgcagctgt 2520
cctgttttc ctcacattcc ttaccacccatc catggttatg ttggctgctc tggatccacca 2580
cctgttttac tggatgtttt ggttatcta tcacatgtgc tctgctaagt taaaaggcta 2640
caggacttca tccacatccc aaactttcta tgatgcttatttcttgc tggatccacca 2700
tgcatctgtt actgactggg taatcaatga actgcgtac caccttgcgaaag agagtgaaga 2760
caaaagtgtc ctcctttgtt tagaggagag ggattggat ccaggattac ccatcattga 2820
taacctcatg cagagcataa accagagcaa gaaaacaatc tttgtttaa ccaagaaata 2880

tgccaaagagc tggacttta aaacagctt ctacttgcc ttgcagaggc taatggatga 2940
 gaacatggat gtgattattt tcatcctcct ggaaccagtg ttacagtact cacagtacct 3000
 gaggcttcgg cagaggatct gtaagagctc catcctccag tggcccaaca atcccaaagc 3060
 agaaaaacttg ttttggcaaa gtctgaaaaa tgtggtcttg actgaaaatg attcacggta 3120
 tgacgatttg tacattgatt ccattaggca atactagtga tgggaagtca cgactctgcc 3180
 atcataaaaaa cacacagctt ctcccttacaa tgaaccgaat 3220

<210> 56
 <211> 3220
 <212> DNA
 <213> murine

<400> 56
 attcagagtt ggatgttaag agagaaaacaa acgttttacc ttcccttgc tatagaacat 60
 gggaaaacatg cccccctcagt catggattct gacgtgctt tgcgtgtgt cctctggAAC 120
 cagtgcacatc ttccataaaag cgaactattc cagaagctat cttgtgacg agataaggca 180
 caactccctt gtgattgcag aatgcaacca tcgtcaactg catgaagttc cccaaactat 240
 aggcaagtat gtgacaaaca tagacttgc agacaatgcc attacacata taacgaaaga 300
 gtccttcaa aagctgcaaa acctcactaa aatcgatctg aaccacaatg ccaaacaaca 360
 gcacccaaat gaaaataaaaa atggtatgaa tattacagaa ggggcacttc tcagcctaag 420
 aaatctaaca gttttactgc tggaaagacaa ccagttatat actatacctg ctgggttgc 480
 tgagtctttg aaagaactta gcctaattca aaacaatata tttcaggtaa ctaaaaacaa 540
 cacttttggg ctttaggaact tggaaagact ctatgggc tggaaactgct attttaaatg 600
 taatcaaacc tttaaggttag aagatggggc attaaaaat cttatacact tgaaggtact 660
 ctcattatct ttcaataacc tttctatgt gccccccaaa ctaccaagtt ctctaaggaa 720
 actttttctg agtaatgccaa aatcatgaa catcaactcag gaagacttca aaggactgga 780
 aaatttaaca ttactagatc tgagtggaaa ctgtccaagg tggtacaatg ctccatttcc 840
 ttgcacaccc tgcaggaaa actcatccat ccacatacat cctctggctt ttcaaaagtct 900
 caccacactt ctctatctaa acctttccag cactccctc aggacgattc cttctacctg 960
 gtttggaaaat ctgtcaaatc tgaaggaact ccatcttgc ttcaactatt tagttcaaga 1020
 aattgcctcg ggggcatttt taacaaaact acccagtttcaaaatcccttgcatttttttt 1080
 caactttcaa tataaggaat atttacaatt tattaatatt tcctcaaatt tctctaaagct 1140
 tcgttctctc aagaagttgc acttaagagg ctatgttttc cgagaactta aaaagaagca 1200
 ttctcaggcat ctccagagtc ttccaaactt ggcaaccatc aacttggca ttaactttat 1260

tgagaaaat gatttcaaag ctttccagaa ttttccaaa ctgcacgtta tctatttatac
aggaaatcgat atagcatctg tattagatgg tacagattat tcctcttggc gaaatcgat
tcggaaacct ctctcaacag acgatgtatgatgatcca cacgtgaatt ttaccatag
caccaaacct ttaataaaagc cacagtgtac tgcttatggc aaggccttgg atttaagttt
gaacaatatt ttcattatttggaaaagcca atttgaaggt ttcaggata tcgcctgctt
aatctgtcc ttcaatgccat atactcaagt gttaatggc acagaattct cctccatgcc
ccacattaaa tatttggatt taaccaacaa cagactagac tttgtatgata acaatgttt
cagtgatctt cacgatcttag aagtgttggc cctgagccac aatgcacact atttcagtt
agcagggta acgcaccgtc taggattttccagaactta ataaacctca gggtgttaaa
cctgagccac aatggcattt acaccctcac agaggaaagt gagctgaaaa gcatctca
gaaagaattt gtttcagtg gaaatcgatc tgaccatggatggcaaa atgatggca
atactggtcc atttttaaaa gtctccagaa tttgatacgc ctggacttat catacaataa
ccttcacacaa atcccaaatttggcatttccatccatcagagcccttca aagagttact
tatcagtggtaacaaatttac gtttctttaatggacatta ctccagtatt ttccctcac
tcacttgctg gatttatcgaaatgagct gtattttcta cccaaatttgc tatctaaattt
tgcacattcc ctggagacac tgctactgag ccataatcat ttctctcacc taccctctgg
cttcctctcc gaagccagga atctggtgca cctggatcta agtttcaaca caataaagat
gatcaataaaa tcctccctgc aaaccaagat gaaaacgaac ttgtctatttgc tggagctaca
tgggaaactat tttgactgca cgtgtgacat aagtgttttgc cgaagctggc tagatgaaaa
tctgaatatc acaatttccatc aattggtaaa tgttatatgt tccaatcccttgc gggatcaaaa
atcaaagagt atcatgagcc tagatctcac gacttgttgc tccgatccatca ctgcagctgt
cctgttttccatc tccacattccatc ttaccacccatc catggttatg ttggctgctc tggttcc
cctgttttac tgggatgttttgc ggtttatcta tcacatgtgc tctgctaaatg taaaaggctt
caggacttca tccacatccc aaactttcta tgatgcttatttcttgc acaccaaaaga
tgcacatgtt actgactggg taatcaatgtactgttgc tccgatccatca ctgcagctgt
caaaaatgttca ctcccttgc ttagaggagag ggattgggat ccaggattac ccatcatttgc
taacccatgttgc cagagcataa accagagcaa gaaaacaatc tttgttttgc gggatcaaaa
tgccaaagatc tggaaactttaaa acacagcttcttgc tccatgttgc tccgatccatca
gaacatggat gtgatttttgc tccatccatc ggaaccatgttgc ttacagtacttgc
gaggcttgc cagaggatcttgc tccatgttgc tccatccatc gggatcaaaa
agaaaacttgc ttttggcaaa gtctgaaaaatg tgggttgc tccatgttgc
tgacgatccatc tccatgttgc tccatgttgc tccatccatc gggatcaaaa
3180

atcataaaaa cacacagctt ctccttacaa tgaaccgaat 3220

<210> 57
<211> 1032
<212> PRT
<213> murine

<400> 57

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu
1 5 10 15

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg
20 25 30

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu
35 40 45

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr
50 55 60

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys
65 70 75 80

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His
85 90 95

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile
100 105 110

Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu Leu
115 120 125

Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu
130 135 140

Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn
145 150 155 160

Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn
165 170 175

Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe
180 185 190

Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu
195 200 205

Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu
210 215 220

Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu
225 230 235 240

Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr
245 250 255

Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His
260 265 270

Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn
275 280 285

Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn
290 295 300

Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln
305 310 315 320

Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile
325 330 335

Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile
340 345 350

Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His
355 360 365

Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu His
370 375 380

Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe
385 390 395 400

Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp
405 410 415

Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr
420 425 430

Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp
435 440 445

Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro
450 455 460

Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser
465 470 475 480

Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln
485 490 495

Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe
500 505 510

Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu
515 520 525

Thr Asn Asn Arg Leu Asp Phe Asp Asp Asn Asn Ala Phe Ser Asp Leu
530 535 540

His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser
545 550 555 560

Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn
565 570 575

Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu
580 585 590

Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly

595 600 605
Asn Arg Leu Asp His Leu Trp Asn Ala Asn Asp Gly Lys Tyr Trp Ser
610 615 620

Ile Phe Lys Ser Leu Gln Asn Leu Ile Arg Leu Asp Leu Ser Tyr Asn
625 630 635 640

Asn Leu Gln Gln Ile Pro Asn Gly Ala Phe Leu Asn Leu Pro Gln Ser
645 650 655

Leu Gln Glu Leu Leu Ile Ser Gly Asn Lys Leu Arg Phe Phe Asn Trp
660 665 670

Thr Leu Leu Gln Tyr Phe Pro His Leu His Leu Leu Asp Leu Ser Arg
675 680 685

Asn Glu Leu Tyr Phe Leu Pro Asn Cys Leu Ser Lys Phe Ala His Ser
690 695 700

Leu Glu Thr Leu Leu Leu Ser His Asn His Phe Ser His Leu Pro Ser
705 710 715 720

Gly Phe Leu Ser Glu Ala Arg Asn Leu Val His Leu Asp Leu Ser Phe
725 730 735

Asn Thr Ile Lys Met Ile Asn Lys Ser Ser Leu Gln Thr Lys Met Lys
740 745 750

Thr Asn Leu Ser Ile Leu Glu Leu His Gly Asn Tyr Phe Asp Cys Thr
755 760 765

Cys Asp Ile Ser Asp Phe Arg Ser Trp Leu Asp Glu Asn Leu Asn Ile
770 775 780

Thr Ile Pro Lys Leu Val Asn Val Ile Cys Ser Asn Pro Gly Asp Gln
785 790 795 800

Lys Ser Lys Ser Ile Met Ser Leu Asp Leu Thr Thr Cys Val Ser Asp
805 810 815

Thr Thr Ala Ala Val Leu Phe Phe Leu Thr Phe Leu Thr Thr Ser Met
820 825 830

Val Met Leu Ala Ala Leu Val His His Leu Phe Tyr Trp Asp Val Trp
835 840 845

Phe Ile Tyr His Met Cys Ser Ala Lys Leu Lys Gly Tyr Arg Thr Ser
850 855 860

Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys
865 870 875 880

Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu
885 890 895

Glu Glu Ser Glu Asp Lys Ser Val Leu Leu Cys Leu Glu Glu Arg Asp
900 905 910

Trp Asp Pro Gly Leu Pro Ile Ile Asp Asn Leu Met Gln Ser Ile Asn
915 920 925

Gln Ser Lys Lys Thr Ile Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser

930	935	940
Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp		
945	950	955
960		
Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln		
965	970	975
Tyr Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile		
980	985	990
Leu Gln Trp Pro Asn Asn Pro Lys Ala Glu Asn Leu Phe Trp Gln Ser		
995	1000	1005
Leu Lys Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asp Asp		
1010	1015	1020
Leu Tyr Ile Asp Ser Ile Arg Gln Tyr		
1025	1030	
<210> 58		
<211> 1032		
<212> PRT		
<213> murine		
<400> 58		
Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu		
1	5	10
		15
Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg		
20	25	30
Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu		
35	40	45
Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr		
50	55	60
Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys		
65	70	75
		80
Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His		
85	90	95
Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile		
100	105	110
Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu Leu		
115	120	125
Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu		
130	135	140
Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn		
145	150	155
		160
Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn		
165	170	175
Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe		
180	185	190

Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu
195 200 205

Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu
210 215 220

Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu
225 230 235 240

Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr
245 250 255

Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His
260 265 270

Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn
275 280 285

Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn
290 295 300

Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln
305 310 315 320

Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile
325 330 335

Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile
340 345 350

Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His
355 360 365

Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu His
370 375 380

Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe
385 390 395 400

Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp
405 410 415

Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr
420 425 430

Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp
435 440 445

Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro
450 455 460

Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser
465 470 475 480

Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln
485 490 495

Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe
500 505 510

Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu

515	520	525
Thr Asn Asn Arg Leu Asp Phe Asp Asp Asn Asn Ala Phe Ser Asp Leu		
530	535	540
His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser		
545	550	555
Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn		
565	570	575
Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu		
580	585	590
Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly		
595	600	605
Asn Arg Leu Asp His Leu Trp Asn Ala Asn Asp Gly Lys Tyr Trp Ser		
610	615	620
Ile Phe Lys Ser Leu Gln Asn Leu Ile Arg Leu Asp Leu Ser Tyr Asn		
625	630	635
Asn Leu Gln Gln Ile Pro Asn Gly Ala Phe Leu Asn Leu Pro Gln Ser		
645	650	655
Leu Gln Glu Leu Leu Ile Ser Gly Asn Lys Leu Arg Phe Phe Asn Trp		
660	665	670
Thr Leu Leu Gln Tyr Phe Pro His Leu His Leu Leu Asp Leu Ser Arg		
675	680	685
Asn Glu Leu Tyr Phe Leu Pro Asn Cys Leu Ser Lys Phe Ala His Ser		
690	695	700
Leu Glu Thr Leu Leu Ser His Asn His Phe Ser His Leu Pro Ser		
705	710	715
Gly Phe Leu Ser Glu Ala Arg Asn Leu Val His Leu Asp Leu Ser Phe		
725	730	735
Asn Thr Ile Lys Met Ile Asn Lys Ser Ser Leu Gln Thr Lys Met Lys		
740	745	750
Thr Asn Leu Ser Ile Leu Glu Leu His Gly Asn Tyr Phe Asp Cys Thr		
755	760	765
Cys Asp Ile Ser Asp Phe Arg Ser Trp Leu Asp Glu Asn Leu Asn Ile		
770	775	780
Thr Ile Pro Lys Leu Val Asn Val Ile Cys Ser Asn Pro Gly Asp Gln		
785	790	795
Lys Ser Lys Ser Ile Met Ser Leu Asp Leu Thr Thr Cys Val Ser Asp		
805	810	815
Thr Thr Ala Ala Val Leu Phe Phe Leu Thr Phe Leu Thr Thr Ser Met		
820	825	830
Val Met Leu Ala Ala Leu Val His His Leu Phe Tyr Trp Asp Val Trp		
835	840	845
Phe Ile Tyr His Met Cys Ser Ala Lys Leu Lys Gly Tyr Arg Thr Ser		

850 855 860
 Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys
 865 870 875 880

 Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu
 885 890 895

 Glu Glu Ser Glu Asp Lys Ser Val Leu Leu Cys Leu Glu Glu Arg Asp
 900 905 910

 Trp Asp Pro Gly Leu Pro Ile Ile Asp Asn Leu Met Gln Ser Ile Asn
 915 920 925

 Gln Ser Lys Lys Thr Ile Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser
 930 935 940

 Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp
 945 950 955 960

 Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln
 965 970 975

 Tyr Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile
 980 985 990

 Leu Gln Trp Pro Asn Asn Pro Lys Ala Glu Asn Leu Phe Trp Gln Ser
 995 1000 1005

 Leu Lys Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asp Asp
 1010 1015 1020

 Leu Tyr Ile Asp Ser Ile Arg Gln Tyr
 1025 1030

<210> 59
<211> 1032
<212> PRT
<213> murine

<400> 59

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu
1 5 10 15

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg
20 25 30

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu
35 40 45

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr
50 55 60

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys
65 70 75 80

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His
85 90 95

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile
100 105 110

Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu Leu
115 120 125

Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu
130 135 140

Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn
145 150 155 160

Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn
165 170 175

Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe
180 185 190

Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu
195 200 205

Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu
210 215 220

Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu
225 230 235 240

Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr
245 250 255

Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His
260 265 270

Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn
275 280 285

Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn
290 295 300

Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln
305 310 315 320

Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile
325 330 335

Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile
340 345 350

Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His
355 360 365

Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu His
370 375 380

Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe
385 390 395 400

Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp
405 410 415

Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr
420 425 430

Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp

435	440	445
Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro		
450	455	460
Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser		
465	470	480
Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln		
485	490	495
Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe		
500	505	510
Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu		
515	520	525
Thr Asn Asn Arg Leu Asp Phe Asp Asn Asn Ala Phe Ser Asp Leu		
530	535	540
His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser		
545	550	560
Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn		
565	570	575
Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu		
580	585	590
Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly		
595	600	605
Asn Arg Leu Asp His Leu Trp Asn Ala Asn Asp Gly Lys Tyr Trp Ser		
610	615	620
Ile Phe Lys Ser Leu Gln Asn Leu Ile Arg Leu Asp Leu Ser Tyr Asn		
625	630	640
Asn Leu Gln Gln Ile Pro Asn Gly Ala Phe Leu Asn Leu Pro Gln Ser		
645	650	655
Leu Gln Glu Leu Leu Ile Ser Gly Asn Lys Leu Arg Phe Phe Asn Trp		
660	665	670
Thr Leu Leu Gln Tyr Phe Pro His Leu His Leu Asp Leu Ser Arg		
675	680	685
Asn Glu Leu Tyr Phe Leu Pro Asn Cys Leu Ser Lys Phe Ala His Ser		
690	695	700
Leu Glu Thr Leu Leu Ser His Asn His Phe Ser His Leu Pro Ser		
705	710	720
Gly Phe Leu Ser Glu Ala Arg Asn Leu Val His Leu Asp Leu Ser Phe		
725	730	735
Asn Thr Ile Lys Met Ile Asn Lys Ser Ser Leu Gln Thr Lys Met Lys		
740	745	750
Thr Asn Leu Ser Ile Leu Glu Leu His Gly Asn Tyr Phe Asp Cys Thr		
755	760	765
Cys Asp Ile Ser Asp Phe Arg Ser Trp Leu Asp Glu Asn Leu Asn Ile		

770	775	780
Thr Ile Pro Lys Leu Val Asn Val Ile Cys Ser Asn Pro Gly Asp Gln		
785	790	795
Lys Ser Lys Ser Ile Met Ser Leu Asp Leu Thr Thr Cys Val Ser Asp		
805	810	815
Thr Thr Ala Ala Val Leu Phe Phe Leu Thr Phe Leu Thr Thr Ser Met		
820	825	830
Val Met Leu Ala Ala Leu Val His His Leu Phe Tyr Trp Asp Val Trp		
835	840	845
Phe Ile Tyr His Met Cys Ser Ala Lys Leu Lys Gly Tyr Arg Thr Ser		
850	855	860
Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys		
865	870	875
Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu		
885	890	895
Glu Glu Ser Glu Asp Lys Ser Val Leu Leu Cys Leu Glu Glu Arg Asp		
900	905	910
Trp Asp Pro Gly Leu Pro Ile Ile Asp Asn Leu Met Gln Ser Ile Asn		
915	920	925
Gln Ser Lys Lys Thr Ile Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser		
930	935	940
Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp		
945	950	955
Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln		
965	970	975
Tyr Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile		
980	985	990
Leu Gln Trp Pro Asn Asn Pro Lys Ala Glu Asn Leu Phe Trp Gln Ser		
995	1000	1005
Leu Lys Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asp Asp		
1010	1015	1020
Leu Tyr Ile Asp Ser Ile Arg Gln Tyr		
1025	1030	

<210> 60
 <211> 3352
 <212> DNA
 <213> Homo sapiens

<400> 60
 aggctggat aaaaatctta cttcctctat tctctgagcc gctgctgcc ctgtggaaag 60
 ggacctcgag tgtgaagcat cttccctgt agctgctgtc cagtctgccc gccagaccct 120
 ctggagaagc ccctgcccc cagcatgggt ttctgcccga gcgcctgca cccgctgtct 180

ctcctggtgc aggccatcat gctggccatg accoctggccc tgggtaccaa gcctgccttc	240
ctaccctgtg agtccagcc ccacggcctg gtgaactgca actggctgtt cctgaagtct	300
gtgccccact tctccatggc agcacccgt ggcaatgtca ccagccttc cttgtcctcc	360
aaccgcatcc accacctcca tgattctgac tttgcccacc tgcccagcct gggcatctc	420
aacctcaagt ggaactgccc gccgggtggc ctcagccccca tgcacttccc ctgccacatg	480
accatcgagc ccagcacctt cttggctgtg cccaccctgg aagagctaaa cctgagctac	540
aacaacatca tgactgtgcc tgcgctgccc aaatccctca tatccctgtc ctcagccat	600
accaacatcc tgatgctaga ctctgcccagc ctgcggggcc tgcatgcctt ggcgttccata	660
ttcatggacg gcaactgtta ttacaagaac ccctgcaggc aggcaactgga ggtggccccc	720
ggtgccctcc ttggcctggg caacctcacc cacctgtcac tcaagtacaa caacactact	780
gtgggtcccc gcaacctgcc ttccagcctg gagtatctgc tggatgtccca caaccgcac	840
gtcaaaactgg cgccctgagga cctggccaat ctgaccggccc tgcgtgtgct cgatgtggc	900
ggaaattgcc gccgctgcga ccacgctccc aaccctgca tggagtgcctt tcgtcacttc	960
ccccagctac atcccgatac cttagccac ctgagccgtc ttgaaggcct ggtgttgaag	1020
gacagttctc tctcctggct gaatgccagt tggttccgtg ggctggaaa cctccgagtg	1080
ctggacactga gtgagaactt cctctacaaa tgcataacta aaaccaaggc ctccaggggc	1140
ctaacacagc tgcgcaagct taacctgtcc ttcaattacc aaaagagggt gtcctttgcc	1200
cacctgtctc tggcccccttc cttagggagc ctggtcgccc tgaaggagct ggacatgcac	1260
ggcatcttct tccgctact cgatgagacc acgtccggc cactggccc cctgcccatt	1320
/	
ctccagactc tgcgtctgca gatgaacttc atcaaccagg cccagctcgg catttcagg	1380
gccttccctg gcctgcgcta cgtggacctg tcggacaacc gcatcagcgg agttcggag	1440
ctgacagcca ccatggggga ggcagatgga ggggagaagg tctggctgca gcctggggac	1500
cttgctccgg ccccagtggc cactcccagc tctgaagact tcaggccaa ctgcagcacc	1560
ctcaacttca cttggatct gtcacggAAC aacctggta ccgtgcagcc ggagatgttt	1620
gcccagctct cgcacctgca gtgcctgcgc ctgagccaca actgcacatc gcaggcagtc	1680
aatggctccc agttcctgcc gctgaccggc ctgcaggtgc tagacctgtc ccgcaataag	1740
ctggacactct accacgagca ctcattcact gagctaccgc gactggaggc cctggacactc	1800
agctacaaca gccagccctt tggcatgcag ggcgtggcc acaacttcag ctgcgtggct	1860
cacctgcgca ccctgcgcca cctcagcctg gcccacaaca acatccacag ccaagtgtcc	1920
cagcagctct gcagtagcgc gctgcggggcc ctggacttca gcggcaatgc actggccat	1980
atgtggcccg agggagacct ctatctgcac ttcttccaag gcctgagcgg tttgatctgg	2040
ctggacttgt cccagaaccg cctgcacacc ctcctgcctt aaaccctgcg caacctcccc	2100

aagagcctac	aggtgctgc	tctccgtgac	aattacctgg	ccttcttaa	gtggtgagc	2160
ctccacttcc	tgcccaaact	ggaagtccctc	gacctggcag	gaaaccggct	gaaggccctg	2220
accaatggca	gcctgcctgc	tggcacccgg	ctccggaggc	tggatgtcag	ctgcaacagc	2280
atcagcttcg	tggccccccgg	cttctttcc	aaggccaagg	agctgcgaga	gctcaacctt	2340
agcgccaacg	ccctcaagac	agtggaccac	tcctggtttgc	ggcccctggc	gagtggccctg	2400
caaatactag	atgttaagcgc	caaccctctg	caactgcgcct	gtggggcggc	ctttatggac	2460
ttcctgtctgg	aggtgcgaggc	tgccgtgccc	ggtctgccc	gccgggtgaa	gtgtggcagt	2520
ccggggccagc	tccagggcct	cagcatctt	gcacaggacc	tgccgcctctg	cctggatgag	2580
gccctctctt	gggactgttt	cgcctctcg	ctgctggctg	tggctctggg	cctgggtgtg	2640
cccatgctgc	atcacctctg	tggctggac	ctctggact	gcttccacct	gtgcctggcc	2700
tggctccct	ggcgaaaaac	gcggggggcg	gcaaaagtggg	cgagatgagg	atgcctgccc	2760
ttcgtggct	tcgacaaaac	gcagagcgc	gtggcagact	gggtgtacaa	cgagttcgg	2820
gggcagctgg	aggagtgcgg	tggcgctgg	gcactccgccc	tgtgcctgg	ggaacgcgac	2880
tggctgcctg	gcaaaaccct	ctttgagaac	ctgtggccct	cggctatgg	cagccgcaag	2940
acgctgttttgc	tgctggccca	cacggaccgg	gtcagtggtc	tcttgcgcgc	cagttcctg	3000
ctggcccagc	agcgccctgc	ggaggaccgc	aaggacgtcg	tggctgttgt	gatcctgagc	3060
cctgacggcc	gccgctcccg	ctacgtgcgg	ctgcgcgc	gcctctggc	ccagagtgtc	3120
ctcctctggc	cccaccagcc	cagtggctcg	cgcagttct	gggcccagct	gggcatggcc	3180
ctgaccaggg	acaaccacca	cttctataac	cgaaacttct	gccagggacc	cacggccgaa	3240
tagccgtgag	ccggaatcct	gcacggtgcc	acctccacac	tcacctcacc	tctgcctgcc	3300
tggctgtgacc	ctccccctgc	cgcctccctc	accccacacc	tgacacagag	ca	3352

<210> 61
<211> 3257
<212> DNA
<213> Homo sapiens

<400> 61						
ccgctgtgc	ccctgtggga	aggcacctcg	agtgtgaagc	atcctccct	gtagctgtcg	60
tccagctgc	ccgcccagacc	ctctggagaa	gcccctgccc	cccagcatgg	gtttctgccc	120
cagcgcctg	cacccgctgt	ctctctgtgt	gcaggccatc	atgctggcca	tgaccctggc	180
cctgggtacc	ttgcctgcct	tcctaccctg	tgagctccag	ccccacggcc	tggtaactg	240
caactggctg	tccctgaagt	ctgtccccca	cttctccatg	gcagcacccc	gtggcaatgt	300
caccagcctt	tccttgcct	ccaaacccat	ccaccacctc	catgattctg	actttgccc	360

cctgcccagc ctgcggcata tcaacctcaa gtggaaactgc ccggccgggttg gcctcagcccc 420
catgcaacttc ccctggccaca tgaccatcga gcccagcacc ttcttggctg tgcccacccct 480
ggaagagcta aacctgagct acaacaacat catgactgtg cctgcgcgtgc ccaaattccct 540
catatccctg tcctcgagcc ataccaacat cctgatgcta gactctgccca gcctcgccgg 600
cctgcgtgcc ctgcgcgttcc tattcatgga cggcaactgt tattacaaga acccctgcag 660
gcaggcactg gaggtggccc cgggtgcctt ccttggctg ggcaacctca cccacctgtc 720
actcaagtac aacaacctca ctgtggtgcc cgcacacctg cttccagcc tggagtatct 780
gctgttgtcc tacaaccgca tcgtcaaact ggcgcctgag gacctggcca atctgaccgc 840
cctgcgtgtg ctgcgtgtgg gcggaaattt cgcgcgtgc gaccacgctc ccaacccctg 900
catggagtgc ctgcgtcact tccccagct acatccccat accttcagcc acctgagccg 960
tcttgaaggc ctgggtgtga aggacagttc tcttcctgg ctgaatgccca gttggttccg 1020
tgggctggga aacctccgag tgctggacct gagtgagaac ttcccttaca aatgcatcac 1080
taaaaccaag gccttccagg gcctaacaca gctgcgaag cttaacctgt cttcaatta 1140
ccaaaagagg gtgtcctttt cccacctgtc tctggccctt tccttcggga gcctggctgc 1200
cctgaaggag ctggacatgc acggcatctt cttccgctca ctgcgtgaga ccacgctccg 1260
gccactggcc cgccctgccc tgctccagac tctgcgtctg cagatgaact tcatcaacca 1320
ggcczagtc ggcacatccca gggccttccc tggcctgcgc tacgtggacc tgtcggacaa 1380
ccgcatcagc ggagcttcgg agctgacagc caccatgggg gaggcagatg gagggagaa 1440
ggtctggctg cagcctgggg accttgcgtcc ggcggcgttg gacactccca gctctgaaga 1500
cttcaggccc aactgcagca ccctcaactt caccttggat ctgtcacgga acaacctgg 1560
gaccgtgcag ccggagatgt ttgcccagct ctgcacactg cagtcgcgtgc gcctgagcca 1620
caactgcac tgcaggcag tcaatggctc ccagttcctg ccgctgaccg gtctgcaggt 1680
gctagacctg tcccacaata agctggacct ctaccacgag cactcattca cggagctacc 1740
acgactggag gccctggacc ttagtacaa cagccagccc tttggcatgc agggcgtggg 1800
ccacaacttc agcttcgtgg ctcacactgca caccctgcgc cacctcagcc tggcccacaa 1860
caacatccac agccaaagtgt cccagcagct ctgcagtacg tcgctgcggg ccctggactt 1920
cagcggcaat gcaactggcc atatgtgggc cgagggagac ctctatctgc acttcttcca 1980
aggcctgagc ggtttgcatt ggctggactt gtcccagaac ccgcgtgcaca ccctcctgcc 2040
ccaaacccctg cgcaacactcc ccaagagcct acaggtgctg cgtctccgtg acaattacct 2100
ggccttcttt aagtgggtgg a cctccactt cctgcccata ctggaaatgc tcgacactggc 2160
aggaaaccag ctgaaggccc tgaccaatgg cagcctgcct gctggcaccc ggctccggag 2220
gctggatgtc agctgcaaca gcatcagctt cgtggccccc ggcttctttt ccaaggccaa 2280

ggagctgcga gagctcaacc tttagcgc当地 cgc当地tcaag acagtggacc actccctggtt	2340
tgggccccctg gcgagtgccc tgcaaatact agatgttaagc gccaaaccctc tgcactgc当地	2400
ctgtggggcg gc当地ttatgg acttcctgct ggagggtgc当地 gctgccgtgc cc当地gtctgcc	2460
cagccgggtg aagtgtggca gtccgggcca gctccagggc ctcagcatct ttgcacagga	2520
cctgc当地ccctc tgc当地tggatg aggccctctc ctgggactgt ttgc当地ctct cgctgtggc	2580
tgtggctctg ggctgggtg tgcccatgct gcatcacctc tgtggcttggg acctctggta	2640
ctgcttccac ctgtgc当地tgg cctggcttcc ctgggggggg cggcaaagtg ggccagatga	2700
ggatgc当地ctg cc当地tacgatg cttcgtggt cttcgacaaa acgcagagcg cagtgccaga	2760
ctgggtgtac aacgagcttc gggggcagct ggaggagtgc cgtgggc当地 gggcactccg	2820
cctgtgc当地tgg gaggaacgcg actggctgcc tggcaaaaacc ctcttggaga acctgtggc	2880
ctcggtctat ggccagccgca agacgctgtt tgtgtggcc cacacggacc gggtcagtg	2940
tctcttgc当地 gccagcttcc tgctggccca gc当地gc当地tgg ctggaggacc gcaaggacgt	3000
cgtgggtctg gtgatcctga gccc当地tgg cc当地ccgctcc cgctacgtgc ggctgc当地ca	3060
gc当地ccctc当地 cgccagagtg tc当地ccctcg gccc当地accag cccagtgctc agecgagctt	3120
ctggggccag ctgggcatgg cc当地tggaccag ggacaaccac cacttctata accggaaactt	3180
ctgccc当地gggcca cccacggccg aatagccgtg agccgaaatc ctgc当地cggtg cc当地ctccac	3240
actcacctca cctctgc	3257

<210> 62
<211> 1032
<212> PRT
<213> Homo sapiens

<400> 62

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe
20 25 30

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn
50 55 60

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp
65 70 75 80

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met

100 105 110
Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser
130 135 140

Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser
145 150 155 160

Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe
260 265 270

Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe
290 295 300

Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu
325 330 335

Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala
340 345 350

His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu
355 360 365

Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu
370 375 380

Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly
405 410 415

Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu
420 425 430

Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu

435 440 445
Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu
450 455 460

Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser
465 470 475 480

Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser
485 490 495

His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val
500 505 510

Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu
515 520 525

Ser Arg Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu
530 535 540

Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly
545 550 555 560

Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr
565 570 575

Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser
580 585 590

Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn
595 600 605

Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe
610 615 620

Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu
625 630 635 640

His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln
645 650 655

Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser
660 665 670

Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Arg
675 680 685

Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg
690 695 700

Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe
705 710 715 720

Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala
725 730 735

Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu
740 745 750

Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala
755 760 765

Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu

770	775	780
Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser		
785	790	795
Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp		
805	810	815
Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val		
820	825	830
Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His		
835	840	845
Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp		
850	855	860
Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln		
865	870	875
Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu		
885	890	895
Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp		
900	905	910
Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr		
915	920	925
Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser		
930	935	940
Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu		
945	950	955
Asp Arg Lys Asp Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg		
965	970	975
Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val		
980	985	990
Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln		
995	1000	1005
Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg		
1010	1015	1020
Asn Phe Cys Gln Gly Pro Thr Ala Glu		
1025	1030	
<210> 63		
<211> 1032		
<212> PRT		
<213> Homo sapiens		
<400> 63		
Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln		
1	5	10
Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe		
20	25	30

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn
50 55 60

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp
65 70 75 80

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met
100 105 110

Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser
130 135 140

Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser
145 150 155 160

Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe
260 265 270

Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe
290 295 300

Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu
325 330 335

Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala
340 345 350

His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu

355	360	365
Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu		
370	375	380
Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met		
385	390	395
400		
Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly		
405	410	415
Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu		
420	425	430
Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu		
435	440	445
Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu		
450	455	460
Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser		
465	470	475
480		
Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser		
485	490	495
His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val		
500	505	510
Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu		
515	520	525
Ser His Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu		
530	535	540
Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly		
545	550	555
560		
Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr		
565	570	575
Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser		
580	585	590
Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn		
595	600	605
Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe		
610	615	620
Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu		
625	630	635
640		
His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln		
645	650	655
Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser		
660	665	670
Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Gln		
675	680	685
Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg		

690	695	700
Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe		
705	710	715
Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala		
725	730	735
Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu		
740	745	750
Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala		
755	760	765
Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu		
770	775	780
Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser		
785	790	795
Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp		
805	810	815
Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val		
820	825	830
Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His		
835	840	845
Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp		
850	855	860
Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln		
865	870	875
Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu		
885	890	895
Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp		
900	905	910
Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr		
915	920	925
Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser		
930	935	940
Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu		
945	950	955
Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg		
965	970	975
Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val		
980	985	990
Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln		
995	1000	1005
Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg		
1010	1015	1020
Asn Phe Cys Gln Gly Pro Thr Ala Glu		

1025	1030	
<210> 64		
<211> 333		
<212> PRT		
<213> Homo sapiens		
<400> 64		
Met Pro Met Lys Trp Ser Gly Trp Arg Trp Ser Trp Gly Pro Ala Thr		
1	5	10
		15
His Thr Ala Leu Pro Pro Pro Gln Gly Phe Cys Arg Ser Ala Leu His		
	20	25
		30
Pro Leu Ser Leu Leu Val Gln Ala Ile Met Leu Ala Met Thr Leu Ala		
	35	40
		45
Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys Glu Leu Gln Pro His Gly		
	50	55
		60
Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe Ser		
65	70	75
		80
Met Ala Ala Pro Arg Gly Asn Val Thr Ser Leu Ser Leu Ser Ser Asn		
	85	90
		95
Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser Leu		
	100	105
		110
Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser Pro		
	115	120
		125
Met His Phe Pro Cys His Met Thr Ile Glu Pro Ser Thr Phe Leu Ala		
130	135	140
Val Pro Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Asn Ile Met Thr		
145	150	155
		160
Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His Thr		
	165	170
		175
Asn Ile Leu Met Leu Asp Ser Ala Ser Leu Ala Gly Leu His Ala Leu		
	180	185
		190
Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys Arg		
	195	200
		205
Gln Ala Leu Glu Val Ala Pro Gly Ala Leu Leu Gly Leu Gly Asn Leu		
	210	215
		220
Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Val Val Pro Arg Asn		
225	230	235
		240
Leu Pro Ser Ser Leu Glu Tyr Leu Leu Leu Ser Tyr Asn Arg Ile Val		
	245	250
		255
Lys Leu Ala Pro Glu Asp Leu Ala Asn Leu Thr Ala Leu Arg Val Leu		
	260	265
		270
Asp Val Gly Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys		
	275	280
		285

Met Glu Cys Pro Arg His Phe Pro Gln Leu His Pro Asp Thr Phe Ser
 290 295 300
 His Leu Ser Arg Leu Glu Gly Leu Val Leu Lys Asp Ser Ser Leu Ser
 305 310 315 320
 Trp Leu Asn Ala Ser Trp Phe Arg Gly Leu Gly Asn Leu
 325 330

<210> 65
<211> 216
<212> PRT
<213> Homo sapiens

<400> 65

Met Leu Tyr Ser Ser Cys Lys Ser Arg Leu Leu Asp Ser Val Glu Gln
 1 5 10 15

Asp Phe His Leu Glu Ile Ala Lys Lys Gly Phe Cys Arg Ser Ala Leu
 20 25 30

His Pro Leu Ser Leu Leu Val Gln Ala Ile Met Leu Ala Met Thr Leu
 35 40 45

Ala Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys Glu Leu Gln Pro His
 50 55 60

Gly Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe
 65 70 75 80

Ser Met Ala Ala Pro Arg Gly Asn Val Thr Ser Leu Ser Leu Ser Ser
 85 90 95

Asn Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser
 100 105 110

Leu Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser
 115 120 125

Pro Met His Phe Pro Cys His Met Thr Ile Glu Pro Ser Thr Phe Leu
 130 135 140

Ala Val Pro Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Asn Ile Met
 145 150 155 160

Thr Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His
 165 170 175

Thr Asn Ile Leu Met Leu Asp Ser Ala Ser Leu Ala Gly Leu His Ala
 180 185 190

Leu Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys
 195 200 205

Arg Gln Ala Leu Glu Val Ala Pro
 210 215

<210> 66

<211> 117
<212> PRT
<213> Homo sapiens

<400> 66

Met Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala
1 5 10 15

Phe Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp
20 25 30

Leu Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly
35 40 45

Asn Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His
50 55 60

Asp Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys
65 70 75 80

Trp Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His
85 90 95

Met Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu
100 105 110

Leu Asn Leu Ser Tyr
115

<210> 67
<211> 1032
<212> PRT
<213> Homo sapiens

<400> 67

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe
20 25 30

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn
50 55 60

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp
65 70 75 80

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met
100 105 110

Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser
130 135 140

Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser
145 150 155 160

Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe
260 265 270

Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe
290 295 300

Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu
325 330 335

Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala
340 345 350

His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu
355 360 365

Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu
370 375 380

Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly
405 410 415

Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu
420 425 430

Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu
435 440 445

Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu

450 455 460
Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser
465 470 475 480

Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser
485 490 495

His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val
500 505 510

Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu
515 520 525

Ser His Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu
530 535 540

Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly
545 550 555 560

Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr
565 570 575

Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser
580 585 590

Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn
595 600 605

Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe
610 615 620

Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu
625 630 635 640

His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln
645 650 655

Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser
660 665 670

Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Gln
675 680 685

Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg
690 695 700

Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe
705 710 715 720

Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala
725 730 735

Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu
740 745 750

Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala
755 760 765

Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu
770 775 780

Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser

785	790	795	800
Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp			
805		810	815
Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val			
820		825	830
Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His			
835		840	845
Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp			
850		855	860
Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln			
865		870	880
Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu			
885		890	895
Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp			
900		905	910
Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr			
915		920	925
Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser			
930		935	940
Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu			
945		950	960
Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg			
965		970	975
Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val			
980		985	990
Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln			
995		1000	1005
Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg			
1010		1015	1020
Asn Phe Cys Gln Gly Pro Thr Ala Glu			
1025		1030	

<210> 68
 <211> 3200
 <212> DNA
 <213> murine

<400> 68		
tgtcagaggg agcctcgaaa gaatcccca tctcccaaca tggttctccg tcgaaggact		60
ctgcaccctt tgtccctctt ggtacaggct gcagtgcgtt ctgagactct ggccctgggt		120
accctgcctg ctttccttacc ctgtgagctg aagcctcatg gcctgggttga ctgcaattgg		180
ctgttccttga agtctgttacc cctttctctt gccccggcat cctgtccaa catcacccgc		240
ctctcccttga tctccaaaccg tatccaccac ctgcacaact ccgacttgtt ccacctgtcc		300

aacctgcggc agctgaacct caagtggAAC tgccaccca ctggccttag cccccctgcac 360
ttcttgcAC acatgaccat tgagcccaga accttcctgg ctatgcgtac actggaggAG 420
ctgaacctGA gctataatgg tatcaccact gtggcccgac tgcccagctc cctggtaat 480
ctgagcctGA gccacaccaa catcctggTT ctagatgcta acagcctcgc cggcctatac 540
agcctgcGCG ttcttcat ggacgggAAC tgctactaca agaaccctG cacaggAGCG 600
gtgaaggGTGA ccccaggcGC cctcctggc ctgagcaATC tcacccatct gtctctGAAG 660
tataacaACC tcacaaAGGT gccccGCCAA ctggGGGGCA gcctggAGTA cctcctGGTG 720
tcctataACC tcattgtCAA gctggggCCT gaagacCTGG ccaatctgAC ctcccttcGA 780
gtacttGATG tgggtgggAA ttggcgtcGC tgcgaccATG ccccaatCC ctgtatAGAA 840
tgtggccAAA agtccctCCA cctgcacCCt gagacCTTC atcacCTGAG ccacTGGAA 900
ggcctGGTGC tgaaggACAG ctctctCCat acactGAACt ctccctggTT ccaaggTctG 960
gtcaacctCT cggtgctGGa cctaAGCAG aactttCTt atgaaAGCAT caaccACACC 1020
aatgcTTTC agaacctaAC ccgcctGcGc aagctcaACC tgccttCAA ttaccGcaAG 1080
aaggTatCCT ttggccgCCT ccacctGGCA agttcTTCA agaacCTGGt gtcactGcAG 1140
gagctGAACA tgaacGGcat ctTcttCCGC tcgctcaACA agtacacGCT cagatGGctG 1200
gccgatCTGC ccaaactCCA cactCTGcat ctTcaaATGA acttcatCAA ccaggCACAG 1260
ctcagcatCT ttggTACCTT ccgagCCCTT cgctttGTGG acttGTCAGA caatCGcatC 1320
agtggcCTT caacgctGTC agaAGCCACC CCTGAAGAGG cagatGATGc agagcAGGAG 1380
gagctGTTGT ctgCGGATCC tcacCCAGt ccactGAGCA cccctGCTtC taagaACTtC 1440
atggacAGGT gtaagaACTT caagttCACC atggacCTGT ctGGAACAA CCTGGTgACT 1500
atcaAGCCAG agatGTTGT caatCTCTCA CGCCTCCAGt GtCTTAGCCT gagCCACAAc 1560
tccattGcAC aggctGtCAA tggctCTAG ttccTGCcGC tgactaatCT gcaggTgCTG 1620
gacCTGTCCC ataacAAact ggacttGtAC cactGGAAat cgTTcAGtGA gctaccACAG 1680
ttgcaggCCC tggacCTGAG ctacaACAGC cagCCCTtA gcatGAAGGG tataGGCCAC 1740
aatttCAGTT ttgtggCCCA tctgtCCATG ctacacAGCC ttGcCTGGC acacaATGAC 1800
attcataACCC gtgtgtCCtC acatCTCAAC agcaACTCAG tgaggTTtCT tgacttCAGC 1860
ggcaacGGtA tggccGcat gtgggatGAG gggggCCTtT atctCCATTt CttCCAAGGC 1920
ctgagtGGCC tgctGAAGCT ggacCTGTCT caaaATAACC tgcatATCCT ccggCCCCAG 1980
aacCTGACA acCTCCCCAA gaggCTGAAG ctGCTGAGCC tccGAGACAA CTACCTATCT 2040
ttctttaACT ggaccAGtCT gtccttCCTG cccaacCTGG aagtCCTAGA CCTGGCAGGC 2100
aaccAGCTAA aggCCCTGAC caatGGCACC ctGcCTAATG gcaccCTCCT ccAGAAACTG 2160

gatgtcagca gcaacagtat cgtctctgtg gtcccagcct tcttcgtct ggcggtcgag	2220
ctgaaagagg tcaacacctag ccacaacatt ctcaagacgg tggatcgctc ctggtttggg	2280
cccatgtga tgaacctgac agttctagac gtgagaagca accctctgca ctgtgcctgt	2340
ggggcagcct tcgttagactt actgttggag gtgcagacca aggtgcctgg cctggctaatt	2400
ggtgtgaagt gtggcagccc cggccagctg cagggccgta gcatcttcgc acaggacactg	2460
cggctgtgcc tggatgaggt cctcttttg gactgcttg gccttcact cttggctgtg	2520
gccgtggca tggtggtgcc tatactgcac catctctgcg gctgggacgt ctggtaactgt	2580
tttcatctgt gcctggcatg gctacccttg ctggcccgca gccgacgcag cgcccaagct	2640
ctccccatcg atgccttcgt ggtgttcgat aaggcacaga ggcgcgtgc ggactgggtg	2700
tataacgagc tgccgggtgcg gctggaggag cggcgccgat gccgagccct acgcttgcgt	2760
ctggaggacc gagattggct gcctggccag acgctttcg agaacctctg ggctccatc	2820
tatggagcc gcaagactct atttgtgctg gcccacacgg accgcgtcag tggcctcctg	2880
cgcaccagct tcctgtggc tcagcagcgc ctgttggaaag accgcaagga cgtggtggtg	2940
ttgggtatcc tgcgccggc tgcccaccgc tcccgctatg tgcgactgcg ccagcgtctc	3000
tgccgccaga gtgtgtctt ctggcccccag cagcccaacg ggcagggggg cttctggcc	3060
cagctgagta cagccctgac tagggacaac cgcacttct ataaccagaa cttctgcccgg	3120
ggacctacag cagaatagct cagagoaaca gctggaaaaca gctgcatctt catgcctgg	3180
tcccgagttt ctctgcctgc	3200

<210> 69
<211> 3471
<212> DNA
<213> murine

<400> 69	
tgaaaagtgtc acttcctcaa ttctctgaga gaccctggtg tggAACATCA ttctctgccc	60
cccagttgt cagaggggagc ctggggagaa tcctccatct cccAAACATGG ttctccgtcg	120
aaggactctg caccctttgt ccctcttggt acaggctgca gtgctggctg agactctggc	180
cctgggtacc ctgcctgcct tcctaccctg tgagctgaag cctcatggcc tggtgactg	240
caattggctg ttccctgaagt ctgtaccccg tttctctgcg gcagcatctt gctccaaacat	300
cacccgcctc tccttgatct ccaaccgtat ccaccacactg cacaactccg acttcgtcca	360
cctgtccaaac ctgcggcagc tgaacctcaa gtggaaactgt ccacccactg gccttagccc	420
cctgcacttc tcttgccaca tgaccattga gcccagaacc ttctggcta tgcgtaact	480
ggaggagctg aacctgagct ataatggtat caccactgtg ccccgactgc ccagctccct	540

ggtaatctg agcctgagcc acaccaacat cctggttcta gatgctaaca gcctcgccgg	600
cctatacagc ctgcgcgttc tcttcatgga cgggaactgc tactacaaga accctgtcac	660
aggagcggtg aagggtgaccc caggcgccct cctgggcctg agcaatctca cccatctgtc	720
tctgaagtat aacaacctca caaagggtgcc ccggcaactg ccccccaagcc tggagtacct	780
cctgggtgtcc tataacctca ttgtcaagct ggggcctgaa gacctggcca atctgaccctc	840
ccttcgagta cttgatgtgg gtggaaattt ccgtcgctgc gaccatgccc ccaatccctg	900
tatagaatgt ggccaaaagt ccctccaccc gcaccctgag accttccatc acctgagccca	960
tctggaaggc ctgggtgtca aggacagctc tctccatata ctgaactctt cctgggttcca	1020
aggctggtc aacctctcggt tgctggaccc aagcgagaac tttctctatg aaagcatcaa	1080
ccacaccaat gccttcaga acctaaccgg cctgcgcaga ctcaacctgt ccttcaatta	1140
ccgcaagaag gtatcctttg cccgcctcca cctggcaagt tccttcaaga acctgggtgtc	1200
actgcaggag ctgaacatga acggcatctt ctggcgctcg ctcaacaatg acacgctcag	1260
atggctggcc gatctgccc aactccacac tctgcacatcc caaatgaact tcatcaacca	1320
ggcacagctc agcatcttgc gtaccttcgg agcccttcgc tttgtggact tgtcagacaa	1380
tcgcacatcgt gggccttcaa cgctgtcaga agccacccct gaagaggcag atgatgcaga	1440
gcaggaggag ctgttgtctg cggatccca cccagctcca ctgagcaccc ctgcttctaa	1500
gaacttcatg gacaggtgta agaacttcaa gttcaccatg gacctgtctc ggaacaaccc	1560
ggtgactatc aagccagaga tgggggttcaa tctctcacgc ctccagtgta ttagcctgag	1620
ccacaactcc attgcacagg ctgtcaatgg ctctcagttc ctggcgctga ctaatctgca	1680
ggtgctggac ctgtcccata acaaactgga cttgtaccac tggaaatcgt tcagtgagct	1740
accacagttt caggccctgg acctgagcta caacagccag cccttagca tgaagggtat	1800
aggccacaat ttcatgggg tgacccatct gtccatgcta cagagcccta gcctggcaca	1860
caatgacatt catacccggt tgctctcaca tctcaacagc aactcagtga ggtttcttga	1920
cttcagccggc aacggtatgg gcccgtatgtt ggatgaggggg ggcccttatac tccatttctt	1980
ccaaaggcctg agtggcctgc tgaagctgga cctgtctcaa aataacctgc atatcctccg	2040
gccccagaac cttgacaacc tccccaaagag cctgaagctg ctgagccctcc gagacaacta	2100
cctatcttcc tttaactgga ccagtctgtc ctgcctaccc aacctggaaag tcctagaccc	2160
ggcaggcaac cagctaaagg ccctgaccaa tggcaccctg cctaatggca ccctccctca	2220
gaaactcgat gtcagtagca acagtatcgt ctctgtggc ccagccttct tcgcctgtgc	2280
ggtcgagctg aaagaggtca acctcagccca caacattctc aagacggtgg atcgcctctg	2340
gtttggggccc attgtgatga acctgacagt tctagacgtg agaagcaacc ctctgcactg	2400
tgcctgtggg gcagccttcg tagacttact gttggaggtg cagaccaagg tgcctggccct	2460

ggctaatggt	gtgaagtgtg	gcagccccgg	ccagctgcag	ggccgttagca	tcttcgcgca	2520
ggacctgcgg	ctgtgcctgg	atgagggtcct	ctcttggac	tgctttggcc	tttcaacttt	2580
ggctgtggcc	gtggggcatgg	tggtgcttat	actgcaccat	ctctgcggct	gggacgtctg	2640
gtactgtttt	catctgtgcc	tggcatggct	acctttgctg	gcccgcagcc	gacgcagcgc	2700
ccaaactctc	ccttatgatg	ccttcgtgg	gttcgataag	gcacagagcg	cagttgccga	2760
ctgggtgtat	aacgagctgc	gggtgcggct	ggaggagcgg	cgcggtcgcc	gagccctacg	2820
cttgtgtctg	gaggaccgag	attggctgcc	tggccagacg	ctttcgaga	acctctggc	2880
ttccatctat	gggagccgca	agactctatt	tgtgctggcc	cacacggacc	gcgtcagtgg	2940
cctccgtcgc	accagcttc	tgctggctca	gcagcgcctg	ttggaagacc	gcaaggacgt	3000
ggtgtgttg	gtgatcctgc	gtccggatgc	ccaccgcctc	cgctatgtgc	gactgcgcc	3060
gcgtctctgc	cgcaggagtg	tgctcttctg	gccccagcag	cccaacgggc	aggggggctt	3120
ctgggcccag	ctgagttacag	ccctgactag	ggacaaccgc	cacttctata	accagaactt	3180
ctgccccgg	cctacagcag	aatagcttag	agcaacagct	ggaaacagct	gcattttcat	3240
gcctgggtcc	cgagttgctc	tgcctgcctt	gctctgtctt	actacaccgc	tatttggcaa	3300
gtgcgaata	tatgctacca	agccaccagg	cccacggagc	aaagggtggc	agtaaagggt	3360
agttttcttc	ccatgcatct	ttcaggagag	tgaagataga	caccagaccc	acacagaaca	3420
ggactggagt	tcattctctg	cccctccacc	ccactttgcc	tgtctctgta	t	3471

<210> 70
<211> 3340
<212> DNA
<213> murine

<400> 70	tctctgagag	accctgggtgt	ggaacatcat	tctctgcgc	ccagttgtc	agagggagcc	60
	tcgggagaat	cctccatctc	ccaacatggt	tctccgtcga	aggactctgc	acccttgc	120
	cctccctggta	caggctgcag	tgctggctga	gactctggcc	ctgggtaccc	tgcctgcctt	180
	cctaccctgt	gagctgaagc	ctcatggct	ggtggactgc	aattggctgt	tcctgaagtc	240
	tgtacccctgt	ttctctgcgg	cagcatctg	ctccaacatc	accgcctct	ccttgcattc	300
	caaccgtatc	caccacctgc	acaactccga	ttcgtccac	ctgtccaacc	tgccgcagct	360
	gaacctcaag	tggaactgtc	cacccactgg	ccttagcccc	ctgcacttct	ttgccacat	420
	gaccattgag	cccagaacct	tcctggctat	gcgtacactg	gaggagctga	acctgagcta	480
	taatggtatac	accactgtgc	cccgactgcc	cagtcctctg	gtgaatctga	gcctgagcca	540
	caccaacatc	ctgggttctag	atgctaacag	cctcgccggc	ctatacagcc	tgccgcgttct	600

cttcatggac gggactgct actacaagaa cccctgcaca ggagcggtga aggtgacccc	660
aggccctc ctgggcctga gcaatctcac ccatactgtct ctgaagtata acaacacctac	720
aaaggtgccc cgccaaactgc cccccagcct ggagttacctc ctgggtgtcct ataacacctat	780
tgtcaagctg gggcctgaag acctggccaa tctgacacctc cttcgagttac ttgtatgtggg	840
tgggaattgc cgtcgctgctg accatgcccc caatccctgt atagaatgtg gccaaaagtc	900
cctccacctg caccctgaga cttccatca cctgagccat ctggaaaggcc tgggtgtgaa	960
ggacagctct ctccatacac tgaactcttc ctgggttccaa ggtctggtca acctctcggt	1020
gctggaccta agcgagaact ttctctatga aagcatcaac cacaccaatg ctttcagaa	1080
cctaaccgcg ctgcgcaagc tcaacacctgc cttcaattac cgcaagaagg tattcctttgc	1140
ccgcctccac ctggcaagtt cttcaagaa cctgggtgtca ctgcaggagc tgaacatgaa	1200
cggcacatcttcc ttccgctcgc tcaacaagta cacgctcaga tggctggccg atctgccc	1260
actccacact ctgcacatcttcc aaatgaactt catcaaccag gcacagctca gcatctttgg	1320
taccttccga gcccttcgct ttgtggactt gtcaagacaat cgcatcagtg ggccttcaac	1380
gctgtcagaa gccacccctg aagaggcaga ttagtcagag caggaggagc tgggtgtc	1440
ggatcctcac ccagctccac tgagcaccccc tgcttctaag aacttcatgg acagggtaa	1500
gaacttcaag ttacccatgg acctgtctcg gaacaacctg gtgactatca agccagagat	1560
gtttgtcaat ctctcacgccc tccagtgtct tagcctgagc cacaactcca ttgcacaggc	1620
tgtcaatggc tctcagttcc tgccgctgac taatctgcag gtgctggacc tgtcccataa	1680
caaactggac ttgttaccact ggaaatcggtt cagtgagcta ccacagttgc aggccctgga	1740
cctgggctac aacagccago ctttagcat aaagggtata ggccacaatt tcagtttgt	1800
ggcccatctg tccatgctac acagccttag cctggcacac aatgacatcc ataccgtgt	1860
gtcctcacat ctcaacagca actcagtgag gtttcttgac ttcagcggca acggatggg	1920
ccgcatgtgg gatgaggggg gcctttatct ccattttttc caaggcctga gtggcctgct	1980
gaagctggac ctgtctcaaa ataacctgca tatccctccgg ccccagaacc ttgacaacct	2040
ccccaaagac ctgaagctgc tgagcctccg agacaactac ctatcttct ttaactggac	2100
cagtctgtcc ttccctgccc acctggaaatg cctagacctg gcaggcaacc agctaaaggc	2160
cctgaccaat ggcacccctgc ctaatggcac cttccctccag aaactggatg tcagcagcaa	2220
cagtatcgtc tctgtggtcc cagccttctt cgctctggcg gtcgagctga aagaggtcaa	2280
cctcagccac aacattctca agacggtgga tcgctctgg tttggccca ttgtatgtgaa	2340
cctgacagtt ctagacgtga gaagcaaccc tctgcactgt gcctgtgggg cagccttcgt	2400
agacttactg ttggaggtgc agaccaaggt gcctggccctg gctaattggtg tgaagtgtgg	2460
cagccccggc cagctgcagg gcccgtacat cttcgacacag gacctgcggc tggcctgga	2520

tgaggccctc tcttggact gctttggcct ttcaacttgc gctgtggccg tgggcattgt	2580
ggtcctata ctgcaccatc tctgcggctg ggacgtctgg tactgtttc atctgtgcct	2640
ggcatggcta cctttgctgg cccgcagccg acgcagcgcc caagctctcc cctatgatgc	2700
ttcgtggtg ttgcataagg cacagagcgc agttgcggac tgggtgtata acgagctgcg	2760
ggtgcggctg gagggggcggc gcggtcgccc agccctacgc ttgtgtctgg aggaccgaga	2820
ttaggcgtcct ggccagacgc tcttcgagaa cctctggcttccatctatg ggagccgcaa	2880
gactctatggt gtgcgtggccc acacggaccg cgtcagtggc ctactgegca ccagcttcct	2940
gctggctcag cagcgcctgt tggaagaccg caaggacgtg gtgggtttgg tgatcctgcg	3000
tccggatgcc caccgcgtccc gctatgtgcg actgcgcctag cgtctctgccc gccagagtgt	3060
gctctttgg cccccagcagc ccaacgggcg ggggggcttc tgggcccagc tgagtacagc	3120
cctgactagg gacaaccgcg acttctataa ccagaacttc tgccggggac ctacagcaga	3180
atagctcaga gcaacagctg gaaacagctg catcttcatg cctggttccc gagttgtct	3240
gcctgccttg ctctgtctta ctacaccgct atttggcaag tgcgcaatat atgctaccaa	3300
gccaccgggc ccacggagca aagggtggct gtaaaagggtta	3340

<210> 71
<211> 3471
<212> DNA
<213> murine

<400> 71	
tgaaagtgtc acttcctcaa ttctctgaga gaccctggtg tggaacatca ttctctgcgg	60
cccagttgt cagagggagc ctggggagaa tcctccatct cccaacatgg ttctccgtcg	120
aaggactctg cacccttgcgtt ccctccgtt acaggctgca gtgctggctg agactctggc	180
cctgggtacc ctgcctgcct tcctaccctg tgagctgaag cctcatggcc tgggtggactg	240
caattggctg ttctctgaagt ctgtaccccg tttctctgcg gcagcatcct gtcacacat	300
cacccgcctc tccttgatct ccaaccgtat ccaccacctg cacaactccg acttcgtcca	360
cctgtccaaac ctgcggcagc tgaacctcaa gtggaaactgt ccacccactg gccttagccc	420
cctgcacttc tcttgcaca tgaccattga gcccagaacc ttccctggcttca tgcgtacact	480
ggaggagctg aacctgagct ataatggtat caccactgtg ccccgactgc ccagctccct	540
ggtaatctg agcctgagcc acaccaacat cctgggttcta gatgctaaca gcctcgccgg	600
cctatacagc ctgcgcgttc tcttcatgga cgggaactgc tactacaaga acccctgcac	660
aggagcggtg aagggtgaccc caggcgcctt cctgggcctg agcaatctca cccatctgtc	720
tctgaagtat aacaacctca caaaggtgcc ccgcctactg ccccccagcc tggagtacct	780

cctgggtgtcc tataacctca ttgtcaagct ggggcctgaa gacctggcca atctgaccc 840
ccttcgagta cttgatgtgg gtgggaattt ccgtcgctgc gaccatgcc ccaatccc 900
tatagaatgt ggccaaaagt ccctccaccc gcaccctgag accttccatc acctgagcca 960
tctggaaggc ctgggtgtca aggacagctc tctccataca ctgaactt cctgggttcca 1020
aggctggtc aacctctcg tgctggaccc aagcgagaac tttctctatg aaagcatcaa 1080
ccacaccaat gccttcaga acctaaccgg cctgcgcaag ctcaacctgt cttcaatta 1140
ccgcaagaag gtatcctttg cccgcctcca cctggcaagt tccttcaaga acctgggtgc 1200
actgcaggag ctgaacatga acggcatctt ctccgctcg ctcaacaatg acacgctcag 1260
atggctggcc gatctgccc aactccacac tctgcacatc caaatgaact tcatacaacca 1320
ggcacagctc agcatcttg gtaccttcgg agcccttcgc tttgtggact tgcagacaa 1380
tcgcacatcgt gggcattcaa cgctgtcaga agccacccct gaagaggcag atgatgcaga 1440
gcaggaggag ctgttgtctg cggatccctca cccagctcca ctgagcaccc ctgcttctaa 1500
gaacttcatg gacaggtgt aagaacttcaa gttcaccatg gacctgtctc ggaacaacct 1560
ggtgactatc aagccagaga tgtttgcata tctctcacgc ctccagtgtc tttagcctgag 1620
ccacaactcc attgcacagg ctgtcaatgg ctctcagttc ctgcccgtca ctaatctgca 1680
ggtgctggac ctgtcccata acaaacttgg a ttgttaccac tggaaatctgt tcagtggatc 1740
accacagttt caggccctgg acctgagcta caacagccag cccttttagca tgaagggtat 1800
aggccacaat tttagttttt tgacccatct gtccatgcta cagagcctta gcctggcaca 1860
caatgacatt cataccctgt tgcttcata tctcaacatc aactcagtgt gttttcttgc 1920
cttcagcggc aacggtatgg gcccgtatgt ggtatgggggg ggcctttatc tccattttctt 1980
ccaaggcctg agtggcctgc tgaagcttgg a cctgtctcaa aataacctgc atatcctccg 2040
gccccagaac ctgtacaacc tccccaaagag cctgaagctg ctgagccctcc gagacaacta 2100
cctatcttc tttaacttgg a ccagtctgtc ctccctaccc aacctggaaag tcctagaccc 2160
ggcaggcaac cagctaaagg ccctgaccaa tggcaccctg cctaatggca ccctccctca 2220
gaaactcgat gtcagtagca acagtatctgt ctctgtggc ccagccttct tcgcctgtgc 2280
ggtcgagctg aaagagggtca acctcagccca caacattctc aagacggtgg atcgctctg 2340
gtttggccc attgtgtatgt acctgacagt tctagacgtg agaagcaacc ctctgcactg 2400
tgcctgtggg gcagccttcg tagacttact gttggagggtg cagaccaagg tgcctggcct 2460
ggctaattgt gtgaagttgtg gcagccccgg ccagctgcag ggccgttagca tcttcgccc 2520
ggacctgcgg ctgtgcctgg atgaggctt ctcttggac tgctttggcc tttcactt 2580
ggctgtggcc gtgggcattgg tggtgccat actgcaccat ctctgcggct gggacgtctg 2640
gtactgtttt catctgtgcc tggcatggct acctttgctg gcccgcagcc gacgcagcgc 2700

ccaaactctc ccttatgatg cttcggtggt gttcgataag gcacagagcg cagttgccga	2760
ctgggtgtat aacgagctgc gggtgcggct ggaggagcgg cgccgtcgcc gagccctacg	2820
cttgtgtctg gaggaccgag attggctgcc tggccagacg ctcttcgaga acctctggc	2880
ttccatctat gggagccgca agactctatt tgtgctggcc cacacggacc gcgtcagtgg	2940
cctcctgcgc accagcttc tgctggctca gcagcgctg ttggaagacc gcaaggacgt	3000
ggtggtgttg gtgatectgc gtccggatgc ccaccgctcc cgctatgtgc gactgcgcca	3060
gcgtctctgc cgccagagtg tgctcttctg gcccagcag cccaacgggc aggggggctt	3120
ctggggccag ctgagtagac ccctgactag ggacaaccgc cacttctata accagaactt	3180
ctgccccggc cctacagcag aatagcttag agcaacagct ggaaacagct gcatcttcat	3240
gcctgggtcc cgagttgtc tgcctgcctt gctctgtctt actacaccgc tatttggcaa	3300
gtgcgcaata tatgtctacca agccaccagg cccacggagc aaaggttggc agtaaagggt	3360
agtttcttc ccatgcatct ttcaggagag tgaagataga caccagaccc acacagaaca	3420
ggactggagt tcattctctg cccctccacc ccactttgcc tgtctctgta t	3471

<210> 72

<211> 1032

<212> PRT

<213> murine

<400> 72

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln			
1	5	10	15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe		
20	25	30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu		
35	40	45

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ser Cys Ser Asn		
50	55	60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn			
65	70	75	80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp		
85	90	95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met		
100	105	110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu		
115	120	125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser		
130	135	140

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala
145 150 155 160

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro
180 185 190

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser
260 265 270

Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe
290 295 300

Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu
325 330 335

Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala
340 345 350

Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu
355 360 365

Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu
370 375

Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala
405 410 415

Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr
420 425 430

Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu
435 440 445

Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser
450 455 460

Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu

465 470 475 480
 Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu
 485 490 495

 Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala
 500 505 510

 Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp
 515 520 525

 Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu
 530 535 540

 Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe
 545 550 560

 Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser
 565 570 575

 Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val
 580 585 590

 Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly
 595 600 605

 Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe
 610 615 620

 Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn
 625 630 640

 Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu
 645 650 655

 Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr
 660 665 670

 Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn
 675 680 685

 Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu
 690 695 700

 Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala
 705 710 720

 Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn
 725 730 735

 Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn
 740 745 750

 Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly
 755 760 765

 Ala Ala Phe Val Asp Leu Leu Leu Glu Val Gln Thr Lys Val Pro Gly
 770 775 780

 Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg
 785 790 795 800

 Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser

385	390	395	400
Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala			
405	410		415
Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr			
420	425	430	
Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu			
435	440	445	
Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser			
450	455	460	
Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu			
465	470	475	480
Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu			
485	490	495	
Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala			
500	505	510	
Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp			
515	520	525	
Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu			
530	535	540	
Leu Pro Gln Leu Gln Ala Leu Asp Leu Gly Tyr Asn Ser Gln Pro Phe			
545	550	555	560
Ser Ile Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser			
565	570	575	
Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val			
580	585	590	
Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly			
595	600	605	
Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe			
610	615	620	
Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn			
625	630	635	640
Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu			
645	650	655	
Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr			
660	665	670	
Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn			
675	680	685	
Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu			
690	695	700	
Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala			
705	710	715	720
Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn			

	725	730	735												
Ile	Leu	Lys	Thr	Val	Asp	Arg	Ser	Trp	Phe	Gly	Pro	Ile	Val	Met	Asn
				740		745							750		
 Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly															
				755		760							765		
 Ala Ala Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly															
				770		775							780		
 Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg															
				785		790							800		
 Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser															
				805		810							815		
 Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val															
				820		825							830		
 Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe															
				835		840							845		
 His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser															
				850		855							860		
 Ala Gln Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln															
				865		870							880		
 Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu															
				885		890							895		
 Gly Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp															
				900		905							910		
 Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr															
				915		920							925		
 Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser															
				930		935							940		
 Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu															
				945		950							955		960
 Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His															
				965		970							975		
 Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val															
				980		985							990		
 Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln															
				995		1000							1005		
 Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln															
				1010		1015							1020		
 Asn Phe Cys Arg Gly Pro Thr Ala Glu															
				1025		1030									

<210> 74

<211> 1032

<212> PRT

<213> murine
<400> 74

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe
20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ser Cys Ser Asn
50 55 60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn
65 70 75 80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met
100 105 110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser
130 135 140

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala
145 150 155 160

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro
180 185 190

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser
260 265 270

Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe
290 295 300

Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu
325 330 335

Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala
340 345 350

Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu
355 360 365

Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu
370 375 380

Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala
405 410 415

Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr
420 425 430

Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu
435 440 445

Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser
450 455 460

Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu
465 470 475 480

Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu
485 490 495

Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala
500 505 510

Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp
515 520 525

Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu
530 535 540

Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe
545 550 555 560

Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Thr His Leu Ser
565 570 575

Met Leu Gln Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val
580 585 590

Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly
595 600 605

Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe
610 615 620

Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn
625 630 635 640

Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu

645	650	655
Lys Leu Leu Ser	Leu Arg Asp Asn Tyr	Leu Ser Phe Phe Asn Trp Thr
660	665	670
Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn		
675	680	685
Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu		
690	695	700
Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala		
705	710	715
Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn		
725	730	735
Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn		
740	745	750
Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly		
755	760	765
Ala Ala Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly		
770	775	780
Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg		
785	790	795
Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser		
805	810	815
Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val		
820	825	830
Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe		
835	840	845
His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser		
850	855	860
Ala Gln Thr Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln		
865	870	875
Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu		
885	890	895
Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp		
900	905	910
Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr		
915	920	925
Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser		
930	935	940
Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu		
945	950	955
Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His		
965	970	975
Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val		

980	985	990
Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly		Phe Trp Ala Gln
995	1000	1005

Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln		
1010	1015	1020

Asn Phe Cys Arg Gly Pro Thr Ala Glu	
1025	1030

<210> 75
<211> 1032
<212> PRT
<213> murine

<400> 75

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln			
1	5	10	15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe		
20	25	30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu		
35	40	45

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ser Cys Ser Asn		
50	55	60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn			
65	70	75	80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp		
85	90	95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met		
100	105	110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu		
115	120	125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser		
130	135	140

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala			
145	150	155	160

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly		
165	170	175

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro		
180	185	190

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr		
195	200	205

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr		
210	215	220

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu			
225	230	235	240

Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser
260 265 270

Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe
290 295 300

Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu
325 330 335

Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala
340 345 350

Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu
355 360 365

Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu
370 375 380

Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala
405 410 415

Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr
420 425 430

Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu
435 440 445

Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser
450 455 460

Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu
465 470 475 480

Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu
485 490 495

Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala
500 505 510

Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp
515 520 525

Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu
530 535 540

Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe
545 550 555 560

Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Thr His Leu Ser

	565	570	575
Met Leu Gln Ser	Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val		
580	585	590	
Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly			
595	600	605	
Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe			
610	615	620	
Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn			
625	630	635	640
Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu			
645	650	655	
Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr			
660	665	670	
Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn			
675	680	685	
Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu			
690	695	700	
Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala			
705	710	715	720
Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn			
725	730	735	
Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn			
740	745	750	
Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly			
755	760	765	
Ala Ala Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly			
770	775	780	
Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg			
785	790	795	800
Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser			
805	810	815	
Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val			
820	825	830	
Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe			
835	840	845	
His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser			
850	855	860	
Ala Gln Thr Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln			
865	870	875	880
Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu			
885	890	895	
Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp			

900	905	910
Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr		
915	920	925
Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser		
930	935	940
Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu		
945	950	955
Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His		
965	970	975
Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val		
980	985	990
Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln		
995	1000	1005
Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln		
1010	1015	1020
Asn Phe Cys Arg Gly Pro Thr Ala Glu		
1025	1030	

<210> 76

<211> 3002

<212> DNA

<213> Homo sapiens

<400> 76

gtggcttgggt attcaactggc aggtttcaga catttagatc tttcttttaa tgactaacac	60
catgcctatc tgtggagaag ctggcaacat gtcacacctg gaaattgttt ttcaacatta	120
atactattat ttggcagtaa tccagattgc tttgccacc aacctgaaga catatagagg	180
cagaaggaca ggaataattc tatttgttc ctgtttgaa acttccatct gtaaggctat	240
caaaaaggaga tgtgagagag ggtatttgagt ctggcctgac aatgcagttc ttaaacaaaa	300
ggtccattat gcttctcctc tctgagaatc ctgacttacc tcaacaacgg agacatggca	360
cagtagccag cttggagact tctcagccaa tgctctgaga tcaagtcgaa gacccaatat	420
acagggtttt gagctcatct tcattcattca tatgaggaaa taagtggtaa aatccttggaa	480
aatacaatga gactcatcag aaacatttac atattttgtta gtattgttat gacagcagag	540
ggtgatgctc cagagctgcc agaagaaagg gaactgtga ccaactgctc caacatgtct	600
ctaagaaaagg ttcccgcaga cttgacccca gccacaacga cactggattt atcctataac	660
ctccttttc aactccagag ttcagattt cattctgtct ccaaactgag agttttgatt	720
ctatgccata acagaattca acagctggat ctcaaaaacctt ttgaattcaa caaggagtt	780
agatatttag atttgtctaa taacagactg aagagtgtaa cttggatattt actggcaggt	840
ctcaggtatt tagatcttcc tttaatgac tttgacacca tgcctatctg tgaggaagct	900

ggcaacatgt cacacctgga aatccttaggt ttgagtgggg caaaaataca aaaatcagat 960
ttccagaaaa ttgctcatct gcatctaaat actgtcttct taggattcag aactttcct 1020

cattatgaag aaggtagcct gcccatctta aacacaacaa aactgcacat tgtttacca 1080
atggacacaa atttctgggt tctttgcgt gatggaatca agacttcaa aatattagaa 1140
atgacaaata tagatggcaa aagccaattt gtaagttatg aaatgcaacg aaatcttagt 1200
ttagaaaatg ctaagacatc ggttcttattt ctaataaaag ttgatttact ctgggacgac 1260
cttttcctta tcttacaatt tggatggcat acatcagtgg aacacttca gatccgaaat 1320
gtgacttttg gtggtaaggc ttatcttgac cacaattcat ttgactactc aaatactgta 1380
atgagaacta taaaattgga gcatgtacat ttcagagtgt tttacattca acaggataaa 1440
atctatttgc ttttgaccaa aatggacata gaaaacctga caatatcaa tgcacaaatg 1500
ccacacatgc ttttcccgaa ttatcctacg aaattccaat atttaaattt tgccaataat 1560
atcttaacag acgagttgt taaaagaact atccaactgc ctcacttgaa aactctcatt 1620
ttgaatggca ataaaactgga gacactttct ttagtaagtt gcttgctaa caacacaccc 1680
ttggaacact tggatctgag tcaaaatcta ttacaacata aaaatgatga aaattgctca 1740
tggccagaaa ctgtggtcaa tatgaatctg tcatacata aattgtctga ttctgtcttc 1800
aggtgcttgc caaaaagtat tcaaatactt gacctaata ataaccaaat ccaaactgta 1860
cctaaagaga ctattcatct gatggcctta cgagaactaa atattgcatt taattttcta 1920
actgatctcc ctggatgcag tcatttcagt agactttcag ttctgaacat tgaatgaac 1980
ttcattctca gcccattctct ggattttgtt cagagctgcc aggaagttaa aactctaaat 2040
gcgggaagaa atccattccg gtgtacctgt gaattaaaaa atttcattca gcttgaacaca 2100
tattcagagg tcatgatggt tggatggtca gattcataca cctgtgaata ccctttaaac 2160
ctaagggaa ttaggtaaa agacgttcat ctccacgaat tatcttgcaa cacagctctg 2220
ttgattgtca ccattgtggt tattatgcta gttctgggt tggctgtggc cttctgctgt 2280
ctccactttg atctgcctcg gatatcagg atgcttaggtc aatgcacacaa aacatggcac 2340
agggttagga aaacaacccca agaacaactc aagagaaaatg tccgattcca cgcatttatt 2400
tcatacagtg aacatgatcc tctgtgggtg aagaatgaat tgatccccaa tctagagaag 2460
gaagatggtt ctatcttgat ttgcctttat gaaagctact ttgaccctgg caaaagcatt 2520
agtggaaaata ttgtaagctt cattgagaaa agctataagt ccatcttgc tttgtctccc 2580
aactttgtcc agaatgagtg gtgcattat gaattttact ttgcccacca caatctcttc 2640
catggaaaatt ctgatcatat aattcttatac ttactggAAC ccattccatt ctattgcatt 2700
cccaccaggt atcataaaact gaaagcttc ctggaaaaaa aagcataactt ggaatggccc 2760
aaggataggc gtaaatgtgg gctttctgg gcaaacccttc gagctgctat taatgttaat 2820

gtattagcca ccagagaaaat gtagtgaactg cagacattca cagagttaaa tgaagagtct 2880
 cgaggttcta caatctctct gatgagaaca gattgtctat aaaatcccac agtccttggg 2940
 aagttgggga ccacatacac tacattgata caacctttat gatggcaatt 3000
 tg 3002

<210> 77
 <211> 811
 <212> PRT
 <213> Homo sapiens

<400> 77

Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met Thr
 1 5 10 15

Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu Met Thr
 20 25 30

Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp Leu Thr Pro
 35 40 45

Ala Thr Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu Phe Gln Leu Gln
 50 55 60

Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg Val Leu Ile Leu Cys
 65 70 75 80

His Asn Arg Ile Gln Gln Leu Asp Leu Lys Thr Phe Glu Phe Asn Lys
 85 90 95

Glu Leu Arg Tyr Leu Asp Leu Ser Asn Asn Arg Leu Lys Ser Val Thr
 100 105 110

Trp Tyr Leu Leu Ala Gly Leu Arg Tyr Leu Asp Leu Ser Phe Asn Asp
 115 120 125

Phe Asp Thr Met Pro Ile Cys Glu Glu Ala Gly Asn Met Ser His Leu
 130 135 140

Glu Ile Leu Gly Leu Ser Gly Ala Lys Ile Gln Lys Ser Asp Phe Gln
 145 150 155 160

Lys Ile Ala His Leu His Leu Asn Thr Val Phe Leu Gly Phe Arg Thr
 165 170 175

Leu Pro His Tyr Glu Glu Gly Ser Leu Pro Ile Leu Asn Thr Thr Lys
 180 185 190

Leu His Ile Val Leu Pro Met Asp Thr Asn Phe Trp Val Leu Leu Arg
 195 200 205

Asp Gly Ile Lys Thr Ser Lys Ile Leu Glu Met Thr Asn Ile Asp Gly
 210 215 220

Lys Ser Gln Phe Val Ser Tyr Glu Met Gln Arg Asn Leu Ser Leu Glu
 225 230 235 240

Asn Ala Lys Thr Ser Val Leu Leu Leu Asn Lys Val Asp Leu Leu Trp
 245 250 255
 Asp Asp Leu Phe Leu Ile Leu Gln Phe Val Trp His Thr Ser Val Glu
 260 265 270
 His Phe Gln Ile Arg Asn Val Thr Phe Gly Gly Lys Ala Tyr Leu Asp
 275 280 285
 His Asn Ser Phe Asp Tyr Ser Asn Thr Val Met Arg Thr Ile Lys Leu
 290 295 300
 Glu His Val His Phe Arg Val Phe Tyr Ile Gln Gln Asp Lys Ile Tyr
 305 310 315 320
 Leu Leu Leu Thr Lys Met Asp Ile Glu Asn Leu Thr Ile Ser Asn Ala
 325 330 335
 Gln Met Pro His Met Leu Phe Pro Asn Tyr Pro Thr Lys Phe Gln Tyr
 340 345 350
 Leu Asn Phe Ala Asn Asn Ile Leu Thr Asp Glu Leu Phe Lys Arg Thr
 355 360 365
 Ile Gln Leu Pro His Leu Lys Thr Leu Ile Leu Asn Gly Asn Lys Leu
 370 375 380
 Glu Thr Leu Ser Leu Val Ser Cys Phe Ala Asn Asn Thr Pro Leu Glu
 385 390 395 400
 His Leu Asp Leu Ser Gln Asn Leu Leu Gln His Lys Asn Asp Glu Asn
 405 410 415
 Cys Ser Trp Pro Glu Thr Val Val Asn Met Asn Leu Ser Tyr Asn Lys
 420 425 430
 Leu Ser Asp Ser Val Phe Arg Cys Leu Pro Lys Ser Ile Gln Ile Leu
 435 440 445
 Asp Leu Asn Asn Asn Gln Ile Gln Thr Val Pro Lys Glu Thr Ile His
 450 455 460
 Leu Met Ala Leu Arg Glu Leu Asn Ile Ala Phe Asn Phe Leu Thr Asp
 465 470 475 480
 Leu Pro Gly Cys Ser His Phe Ser Arg Leu Ser Val Leu Asn Ile Glu
 485 490 495
 Met Asn Phe Ile Leu Ser Pro Ser Leu Asp Phe Val Gln Ser Cys Gln
 500 505 510
 Glu Val Lys Thr Leu Asn Ala Gly Arg Asn Pro Phe Arg Cys Thr Cys
 515 520 525
 Glu Leu Lys Asn Phe Ile Gln Leu Glu Thr Tyr Ser Glu Val Met Met
 530 535 540
 Val Gly Trp Ser Asp Ser Tyr Thr Cys Glu Tyr Pro Leu Asn Leu Arg
 545 550 555 560
 Gly Ile Arg Leu Lys Asp Val His Leu His Glu Leu Ser Cys Asn Thr

565	570	575
Ala Leu Leu Ile Val Thr Ile Val Val Ile Met Leu Val Leu Gly Leu		
580	585	590
Ala Val Ala Phe Cys Cys Leu His Phe Asp Leu Pro Trp Tyr Leu Arg		
595	600	605
Met Leu Gly Gln Cys Thr Gln Thr Trp His Arg Val Arg Lys Thr Thr		
610	615	620
Gln Glu Gln Leu Lys Arg Asn Val Arg Phe His Ala Phe Ile Ser Tyr		
625	630	635
Ser Glu His Asp Ser Leu Trp Val Lys Asn Glu Leu Ile Pro Asn Leu		
645	650	655
Glu Lys Glu Asp Gly Ser Ile Leu Ile Cys Leu Tyr Glu Ser Tyr Phe		
660	665	670
Asp Pro Gly Lys Ser Ile Ser Glu Asn Ile Val Ser Phe Ile Glu Lys		
675	680	685
Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Asn Glu		
690	695	700
Trp Cys His Tyr Glu Phe Tyr Phe Ala His His Asn Leu Phe His Glu		
705	710	720
Asn Ser Asp His Ile Ile Leu Ile Leu Glu Pro Ile Pro Phe Tyr		
725	730	735
Cys Ile Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu Lys Lys		
740	745	750
Ala Tyr Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly Leu Phe Trp		
755	760	765
Ala Asn Leu Arg Ala Ala Ile Asn Val Asn Val Leu Ala Thr Arg Glu		
770	775	780
Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn Glu Glu Ser Arg Gly		
785	790	800
Ser Thr Ile Ser Leu Met Arg Thr Asp Cys Leu		
805	810	
<210> 78		
<211> 2760		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> misc_feature		
<222> (2529)..(2529)		
<223> n is a, c, g, or t		
<400> 78		
aagaatttgg actcatatca agatgctctg aagaagaaca accctttagg atagccactg		60
caacatcatg accaaagaca aagaacctat tgtaaaagc ttccattttg tttgccttat		120

gatcataata gttggAACCA gaatccAGTT ctcgcACGGA aatgaatttG cagtagacAA	180
gtcaaaaAGA ggtcttATTC atgttccAAA agacctACCG ctgaaaACCA aagtctTAGA	240
tatgtctcAG aactacATCG ctgagcttCA ggtctctGAC atgagcttC tatcAGAGTT	300
gacagtttG agacttCCC ataacAGAA ccagctACTT gatttaAGTG tttcaAGTT	360
caaccaggAT ttAGAATATT tggatttATC tcATAATCAG ttgcaAAAGA tatcctGCCA	420
tccttattGTG agtttcAGGC atttagatCTC ctcattCAAT gatttcaAGG ccctGCCAT	480
ctgtAGGAA tttggCAACT tatcacaACT gaatttCttG ggatttgAGTG ctatGAAGCT	540
gcaaaaATTa gatttGCTGc caatttGCTCA cttGcatCTA agtttataCC ttctGGATTt	600
aagaAAATTat tatataAAAG aaaatgAGAC agaaAGtCTA caaatttCTGA atgcaAAAC	660
ccttcacCTT gttttcACC caactAGTTt attcgctATC caagtGAACA tatcAGTTAA	720
tactttAGGG tgcttacaAC tgactaATAT taaattGAAT gatgacaACT gtcaAGTTT	780
cattAAattt ttatcAGAAAC tcaccAGGAG tccAAACCTTA ctGAATTtTA ccctCAACCA	840
catAGAAACG acttggAAAT gcctggTCAG agtcttCAA tttctttGGC ccaaACCTGT	900
ggaatatCTC aatatttACA atttaACAAT aattgAAAGC attcgtGAAG aagattttAC	960
ttattctAAA acgacattGA aagcattGAC aatAGAAACAT atcacGAACC aagtttttCT	1020
gttttcACAG acagtttGT acaccGTGTT ttctGAGATG aacatttGA tGTTAACCAT	1080
ttcagatACA ccttttatac acatGCTGTG tcctcatGCA ccaAGCACAT tcaAGTTTT	1140
gaactttACC cagaACGTTT tcacAGATAG tattttGAA aaatgttCCA cgttagttaA	1200
attggagACA cttatCttAC aaaAGAAATGG attaaaAGAC cttttCAAAG taggtctCAT	1260
gacgaaggAT atgccttCtt tgGAAataCT ggatgttagC tgGAATTtCT tgGAATCTGG	1320
tagacataAA gaaaactGCA cttgggtGA gagtataGtG gtgttAAAtt tGtcttCAA	1380
tatgottACT gactctGTT tcAGATGTT acctcccAGG atcaaggTAC ttGatCttCA	1440
cagcaataAA ataaAGAGCG ttccTAAACA agtcgtAAAA ctggAAAGCT tgcaAGAACT	1500
caatgttGCT ttcaatttCtt taactgacCT tcctggatGT ggcagcttA gcagccttC	1560
tgtattgtAC attgatCACA attcagttC ccacCCatG gctgatttCt tccAGAGCTG	1620
ccagaAGATG aggtCAATAA aagcAGGGGA caatCCATTc caatgtACt gtGAGCTAAG	1680
agaatttGTC aaaaatATAG accaAGTATC aagtGAAGtG ttAGAGGGtC ggcctGATTc	1740
ttataAGTGT gactACCCAG aaagttaTAG aggaAGCCCA ctaaaggACT ttcaCATGTC	1800
tgaatttACc tgcaACATAA ctctGCTGAT cgtcaccATC ggtGCCACCA tGtGgtGTT	1860
ggctGtgact gtGACCTCCC tctGcatCTA ctGgatCTG ccctGGtATC tcaggatGgt	1920
gtGCCAGtGG acccAGACTC ggCGCAGGGC cagGAACATA cccttagAAG aactccAAAG	1980
aaacCCtCCAG ttcatGCTT ttatttCATA tagtGAACAT gattctGCt gggtaAAAG	2040

tgaattggta ccttacctag aaaaagaaga tatacagatt tgtcttcatg agaggaactt 2100
 tgtccctggc aagagcattg tggaaaatat catcaactgc attgagaaga gttacaagtc 2160
 catcttggtt ttgtctccca actttgtcca gagtgagtgg tgccattacg aactctattt 2220
 tgcccacac aatctcttc atgaaggatc taataactta atcctcatct tactggaacc 2280
 cattccacag aacagcattc ccaacaagta ccacaagctg aaggctctca tgaccgacg 2340
 gacttatttg cagtggccca aggagaaaaag caaacgtggg ctctttggg ctaacattag 2400
 agccgcttt aatatgaaat taacactagt cactgaaaac aatgatgtga aatcttaaaa 2460
 aaatttagga aattcaactt aagaaaccat tatttacttg gatgatggtg aatagtacag 2520
 tcgtaagtna ctgtctggag gtgcctccat tattcctcatg ccttcaggaa agacttaaca 2580
 aaaacaatgt ttcatctggg gaactgagct aggcggtag gttagcctgc cagttagaga 2640
 cagcccgatc tcttctgggtt taatcattat gttcaaatt gaaacagtct cttttgagta 2700
 aatgctcagt tttcagctc ctctccactc tgctttccca aatggattct gttggtaag 2760

<210> 79
 <211> 2753
 <212> DNA
 <213> Homo sapiens

<400> 79
 agaatttggta ctcatatcaa gatgctctga agaagaacaa cccttttagga tagccactgc 60
 aacatcatga ccaaagacaa agaacctatt gttaaaagct tccattttgt ttgccttatg 120
 atcataatag ttggaaccag aatccagttc tccgacggaa atgaatttgc agtagacaag 180
 tcaaaaagag gtcttattca tggccaaaaa gacctaccgc tgaaaaaccaa agtcttagat 240
 atgtctcaga actacatcgc tgagcttcag gtctctgaca tgagcttct atcagagttg 300
 acagtttga gactttccca taacagaatc cagctacttg atttaagtgt tttcaagttc 360
 aaccaggatt tagaatattt ggatttatct cataatcagt tgcaaaagat atcctgccat 420
 cctatttgta gtttcaggca tttagatctc tcattcaatg atttcaaggc cctgcccattc 480
 tgtaaggaat ttggcaactt atcacaactg aatttcttgg gattgagtgc tatgaagctg 540
 caaaaattag atttgctgcc aattgctcac ttgcattctaa gttatattct tctggattta 600
 agaaattatt atataaaaaga aatgagaca gaaagtctac aaattctgaa tgcaaaaacc 660
 cttcaccttg ttttcaccc aactagtttta ttgcctatcc aagtgaacat atcagttaat 720
 acttttagggt gcttacaact gactaatatt aaattgaatg atgacaactg tcaagtttc 780
 attaaatttt tatcagaact caccagaggt tcaaccttac tgaattttac cctcaaccac 840
 atagaaacga cttggaaatg cttggcaga gtctttcaat ttctttggcc caaacctgtg 900

gaatatctca atatttacaa tttaacaata attgaaagca ttcgtgaaga agatttact 960
tattctaaaa cgacattgaa agcattgaca atagaacata tcacgaacca agttttctg 1020
tttcacaga cagcttgta caccgtgtt tctgagatga acattatgat gttaaccatt 1080
tcagatacac ct当地tataca catgctgtgt cctcatgcac caagcacatt caagttttg 1140
aacttaccc agaacgtttt cacagatgt attttgaaa aatgttccac gttagttaaa 1200
ttggagacac ttatcttaca aaaaaatgga ttaaaagacc ttttcaaagt aggtctcatg 1260
acgaaggata tgcccttctt ggaaatactg gatgttagct ggaattctt ggaatctgg 1320
agacataaaag aaaactgcac ttgggttgag agtatagtgg tgttaaattt gtctcaaatt 1380
atgcttactg actctgtttt cagatgtta cctcccagga tcaaggtact tgatcttac 1440
agcaataaaa taaagagcgt tcctaaacaa gtcgtaaaac tggaaagctt gcaagaactc 1500
aatgttgctt tcaattctt aactgacctt cctggatgtg gcagctttag cagccttct 1560
gtattgatca ttgatcacaa ttcagttcc caccatcg 9 ctgattctt ccagagctgc 1620
cagaagatga ggtcaataaaa agcaggggac aatccattcc aatgtacctg tgagctaaga 1680
gaatttgc 9 taaaaataga ccaagtatca agtgaagtgt tagaggctg gcctgattct 1740
tataagtgtg actacccaga aagttataga ggaagcccac taaaggactt tcacatgtct 1800
gaattatcct gcaacataac tctgctgate gtacccatcg gtgccaccat gctgggtttg 1860
gctgtgactg tgacccctt ctgcatactac ttggatctgc cctggtatct caggatggtg 1920
tgccagtgg 9 cccagactcg ggcaggggcc aggaacatac ccttagaaga actccaaaga 1980
aacctccagt ttcatgcttt tatttcatat agtgaacatg attctgcctg ggtgaaaagt 2040
gaatttgc 9 cttacctaga aaaagaagat atacagattt gtcttcatga gaggaacttt 2100
gtccctggca agagcattgt ggaaaatatc atcaactgca ttgagaagag ttacaagtcc 2160
atctttgttt tgcctccaa ctttgcctag agtgagtggt gccattacga actctat 2220
gccccatcaca atctcttca tgaaggatct aataacttaa tcctcatctt actggAACCC 2280
attccacaga acagcattcc caacaagtac cacaagctga aggctctcat gacgcagcgg 2340
acttatttgc agtggcccaa ggagaaaagc aaacgtggc tctttggc taacattaga 2400
gcccgtttta atatgaaatt aacactagtc actgaaaaca atgatgtgaa atcttaaaaa 2460
aatttaggaa attcaactta agaaaccatt atttacttgg atgatggtga atagtagt 2520
cgtaagtaac tgcctggagg tgcctccatt atcctcatgc cttcaggaaa gacttaacaa 2580
aaacaatgtt tcatctgggg aactgagcta ggcgggtgagg ttagcctgcc agtttagagac 2640
agcccaagtct cttctgggtt aatcattatg tttcaaattt aaacagtctc tttttagt 2700
atgctcagtt tttcagctcc tctccactct gcttcccaa atggattctg ttg 2753

<210> 80
<211> 796
<212> PRT
<213> Homo sapiens

<400> 80

Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys
1 5 10 15

Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn
20 25 30

Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys
35 40 45

Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile
50 55 60

Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val
65 70 75 80

Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe
85 90 95

Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu
100 105 110

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu
115 120 125

Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn
130 135 140

Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys
145 150 155 160

Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu
165 170 175

Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln
180 185 190

Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu
195 200 205

Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln
210 215 220

Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys
225 230 235 240

Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Phe Thr Leu
245 250 255

Asn His Ile Glu Thr Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe
260 265 270

Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile
275 280 285

Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu
290 295 300

Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser
305 310 315 320

Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu
325 330 335

Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro
340 345 350

Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser
355 360 365

Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu
370 375 380

Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys
385 390 395 400

Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu
405 410 415

Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val
420 425 430

Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu
435 440 445

Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser
450 455 460

Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val
465 470 475 480

Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser
485 490 495

Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala
500 505 510

Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp
515 520 525

Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile
530 535 540

Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys
545 550 555 560

Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His
565 570 575

Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly
580 585 590

Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr
595 600 605

Leu Asp Leu Pro Trp Tyr Leu Arg Met Val Cys Gln Trp Thr Gln Thr

610	615	620
Arg Arg Arg Ala Arg Asn Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu		
625	630	635
Gln Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser Ala Trp Val		
645	650	655
Lys Ser Glu Leu Val Pro Tyr Leu Glu Lys Glu Asp Ile Gln Ile Cys		
660	665	670
Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile		
675	680	685
Ile Asn Cys Ile Glu Lys Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro		
690	695	700
Asn Phe Val Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His		
705	710	715
His Asn Leu Phe His Glu Gly Ser Asn Asn Leu Ile Leu Ile Leu Leu		
725	730	735
Glu Pro Ile Pro Gln Asn Ser Ile Pro Asn Lys Tyr His Lys Leu Lys		
740	745	750
Ala Leu Met Thr Gln Arg Thr Tyr Leu Gln Trp Pro Lys Glu Lys Ser		
755	760	765
Lys Arg Gly Leu Phe Trp Ala Asn Ile Arg Ala Ala Phe Asn Met Lys		
770	775	780
Leu Thr Leu Val Thr Glu Asn Asn Asp Val Lys Ser		
785	790	795

<210> 81
<211> 796
<212> PRT
<213> Homo sapiens

<400> 81		
Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys		
1	5	10
15		
Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn		
20	25	30
Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys		
35	40	45
Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile		
50	55	60
60		
Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val		
65	70	75
80		
Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe		
85	90	95
Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu		
100	105	110

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu
115 120 125

Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn
130 135 140

Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys
145 150 155 160

Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu
165 170 175

Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln
180 185 190

Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu
195 200 205

Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln
210 215 220

Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys
225 230 235 240

Phe Leu Ser Glu Leu Thr Arg Gly Ser Thr Leu Leu Asn Phe Thr Leu
245 250 255

Asn His Ile Glu Thr Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe
260 265 270

Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile
275 280 285

Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu
290 295 300

Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser
305 310 315 320

Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu
325 330 335

Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro
340 345 350

Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser
355 360 365

Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu
370 375 380

Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys
385 390 395 400

Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu
405 410 415

Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val
420 425 430

Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu

435 440 445
Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser
450 455 460

Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val
465 470 480

Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser
485 490 495

Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala
500 505 510

Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp
515 520 525

Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile
530 535 540

Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys
545 550 560

Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His
565 570 575

Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly
580 585 590

Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr
595 600 605

Leu Asp Leu Pro Trp Tyr Leu Arg Met Val Cys Gln Trp Thr Gln Thr
610 615 620

Arg Arg Arg Ala Arg Asn Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu
625 630 640

Gln Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser Ala Trp Val
645 650 655

Lys Ser Glu Leu Val Pro Tyr Leu Glu Lys Glu Asp Ile Gln Ile Cys
660 665 670

Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile
675 680 685

Ile Asn Cys Ile Glu Lys Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro
690 695 700

Asn Phe Val Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His
705 710 720

His Asn Leu Phe His Glu Gly Ser Asn Asn Leu Ile Leu Ile Leu
725 730 735

Glu Pro Ile Pro Gln Asn Ser Ile Pro Asn Lys Tyr His Lys Leu Lys
740 745 750

Ala Leu Met Thr Gln Arg Thr Tyr Leu Gln Trp Pro Lys Glu Lys Ser
755 760 765

Lys Arg Gly Leu Phe Trp Ala Asn Ile Arg Ala Ala Phe Asn Met Lys

770 775 780
Leu Thr Leu Val Thr Glu Asn Asn Asp Val Lys Ser
785 790 795

<210> 82
<211> 796
<212> PRT
<213> Homo sapiens

<400> 82

Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys
1 5 10 15

Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn
20 25 30

Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys
35 40 45

Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile
50 55 60

Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val
65 70 75 80

Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe
85 90 95

Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu
100 105 110

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu
115 120 125

Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn
130 135 140

Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys
145 150 155 160

Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu
165 170 175

Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln
180 185 190

Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu
195 200 205

Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln
210 215 220

Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys
225 230 235 240

Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Phe Thr Leu
245 250 255

Asn His Ile Glu Thr Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe
260 265 270

Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile
275 280 285

Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu
290 295 300

Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser
305 310 315 320

Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu
325 330 335

Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro
340 345 350

Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser
355 360 365

Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu
370 375 380

Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys
385 390 395 400

Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu
405 410 415

Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val
420 425 430

Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu
435 440 445

Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser
450 455 460

Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val
465 470 475 480

Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser
485 490 495

Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala
500 505 510

Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp
515 520 525

Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile
530 535 540

Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys
545 550 555 560

Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His
565 570 575

Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly
580 585 590

Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr

595	600	605
Leu Asp Leu Pro Trp Tyr	Leu Arg Met Val Cys Gln	Trp Thr Gln Thr
610	615	620
Arg Arg Arg Ala Arg Asn Ile Pro Leu Glu	Glu Leu Gln Arg Asn Leu	
625	630	640
Gln Phe His Ala Phe Ile Ser Tyr Ser	Glu His Asp Ser Ala Trp Val	
645	650	655
Lys Ser Glu Leu Val Pro Tyr Leu Glu Lys	Glu Asp Ile Gln Ile Cys	
660	665	670
Leu His Glu Arg Asn Phe Val Pro Gly Lys	Ser Ile Val Glu Asn Ile	
675	680	685
Ile Asn Cys Ile Glu Lys Ser Tyr Lys Ser Ile	Phe Val Leu Ser Pro	
690	695	700
Asn Phe Val Gln Ser Glu Trp Cys His Tyr	Glu Leu Tyr Phe Ala His	
705	710	720
His Asn Leu Phe His Glu Gly Ser Asn Asn Leu	Ile Leu Ile Leu Leu	
725	730	735
Glu Pro Ile Pro Gln Asn Ser Ile Pro Asn Lys	Tyr His Lys Leu Lys	
740	745	750
Ala Leu Met Thr Gln Arg Thr Tyr Leu Gln Trp	Pro Lys Glu Lys Ser	
755	760	765
Lys Arg Gly Leu Phe Trp Ala Asn Ile Arg Ala	Ala Phe Asn Met Lys	
770	775	780
Leu Thr Leu Val Thr Glu Asn Asn Asp Val	Lys Ser	
785	790	795

<210> 83
<211> 2604
<212> DNA
<213> murine

<400> 83	
aagtaaaaat gctgtgaaga atggtaaagt ccctctggga tagcctctgc aacatgagcc	60
aagacagaaa acccatcgta gggagttcc actttgttg cgccctggcc ttaatagtcg	120
gaagcatgac cccgttctct aatgaacttg agtctatggt agactattca aacaggaacc	180
ttactcatgt ccccaaagac ctgccacaa gaacaaaagc cctgagtc tgctaaaact	240
ctatatctga gtttcggatg cctgatatac gctttctgtc agagctgaga gttctgagac	300
tctcccacaa caggatacgg agccttgatt tccatgtatt cttgttcaat caggacttag	360
aataacctgga tgtctcacac aatcggttgc aaaacatctc ttgctgcct atggcgagcc	420
tgaggcatct agacctctca ttcaatgact ttgatgtact gcctgtgtgt aaggaatttg	480
gcaacctgac gaagctgact ttccctggat taagtgtgc caagttccga caactggatc	540

tgctcccaagt tgctcaacttg catctaagct gcattcttct ggacttagtg agtcatcata 600
taaaaaggcg ggaaacagaa agtcttcaga ttcccaatac caccgttctc cattttgtct 660
ttcatccaaa tagcttggttc tctgttcaag tgaacatgtc tgtaaacgct ttaggacatt 720
tacaactgag taatattaaa ttgaatgtatg aaaactgtca aaggttaatg acattttat 780
cagaactcac cagaggtcca accttattga atgtgaccct ccagcacata gaaacaacct 840
ggaagtgtc ggttaaactt ttccaaattct tttggccccg accgggtggag tacctaata 900
tttacaactt aacgataact gagagaatcg acagggaaaga atttacttac tcggagacag 960
cactgaagtc actgatgata gagcacgtca aaaaccaagt gttcccttctt tcaaaggagg 1020
cgctataactc ggtgtttgtc gagatgaaca tcaagatgtc ctctatctca gacaccctt 1080
tcatccacat ggtgtgccccg ccattcccaa gtcattttac atttctgaac tttaccaga 1140
atgttttac tgacagtgtt ttcaaggct gttccacctt aaagagattg cagacactta 1200
tcttacaaag gaatggtttg aagaactttt ttaaagttagc tctcatgact aagaatatgt 1260
cctctctgga aactttggat gttagttga atttggaa ctctcatgca tatgacagga 1320
catgcgcctg ggctgagagc atattgggt tgaatttgc ttcaaatatg cttacaggct 1380
ctgtcttcag atgcttacct cccaaaggta aggtccttga cttcacaac aacaggataa 1440
tgagcatccc taaagatgtc acccacctgc aggcttgc ggaactcaat gtacatcca 1500
actccttaac tgaccttcct ggggtgggg ctttcagcag ctttctgtg ctggcatcg 1560
accataactc agtttccat ccctctgagg atttcttcca gagctgtcag aatattagat 1620
ccctaacagc gggaaacaac ccattccaaat gcacatgtga gctgaggac tttgtcaaga 1680
acataggctg gtagcaaga gaagtgggtgg agggctggcc tgactcttac aggtgtgact 1740
acccagaaag ctctaaggga actgcactga gggacttcca catgtctcca ctgtcctgt 1800
atactgttct gctgactgtc accatgggg ccactatgtc ggtgctggct gtcactgggg 1860
ctttcctctg tctctacttt gacctgcctt ggtatgtgag gatgctgtgt cagtggacac 1920
agaccaggca cagggccagg cacatcccct tagaggaact ccagagaaac ctccagttcc 1980
atgctttgt ctcatacagt gagcatgatt ctgcctgggt gaagaacgaa ttactaccca 2040
acctagagaa agatgacatc cgggtttgcc tccatgagag gaactttgc cctggcaaga 2100
gcattgtgga gaacatcatc aatttcattt agaagagtta caaggccatc tttgtgtgt 2160
ctccccactt catccagagt gagtggtgcc attatgaact ctatttgc catcataatc 2220
tcttcatga aggctctgat aacttaatcc tcattttgtc ggaaccctt ctacagaaca 2280
acattcccag tagataaccac aagctgcggg ctctcatggc acagcggact tacttggat 2340
ggcctactga gaagggcaaa cgtggctgt tttggccaa ccttagagct tcatttatta 2400
tgaagtttagc ctttgtcaat gaggatgtg tgaaaacttg aaacttgggt ttcttaactta 2460

ataaaactgtc aacctggct ctcatgaaca ctgtggttt cagttcctac ctggaggta	2520
ttctgttgtg gtgtcttagt ttgctctgtg cttatgataa ataacatgtt tagaagttagt	2580
ttatgaaggt gctaagttca ttaa	2604

<210> 84
<211> 2604
<212> DNA
<213> murine

<400> 84	
aagtaaaaat gctgtgaaga atggtaaagt ccctctggga tagcctctgc aacatgagcc	60
aagacagaaa acccatcgta gggagttcc actttgttg cgccctggcc ttaatagtcg	120
gaagcatgac cccgttctct aatgaacttg agtctatggt agactattca aacaggaacc	180
ttactcatgt ccccaaagac ctgccaccaa gaacaaaagc cctgagtctg tctcaaaact	240
ctatatctga gottcggatg cctgatatac gcttctgtc agagctgaga gttctgagac	300
tctccacaa caggatacgg agccttgatt tccatgtatt cttgttcaat caggacttag	360
aataacctgga tgtctcacac aatcggttgc aaaacatctc ttgctgcct atggcgagcc	420
tgaggcatct agacctctca ttcaatgact ttgatgtact gcctgtgtgt aaggaatttg	480
gcaacctgac gaagctgact ttccctggat taagtgtgc caagttccga caactggatc	540
tgctcccagt tgctcacttg catctaagct gcattctct ggacttagtg agtcatcata	600
taaaaggcgg ggaaacagaa agtcttcaga ttcccaatac caccgttctc cattttgtct	660
ttcatccaaa tagttgttc tctgttcaag tgaacatgtc tgtaaacgct ttaggacatt	720
tacaactgag taatattaaa ttgaatgatg aaaactgtca aaggtaatg acatttttat	780
cagaactcac cagaggtcca accttattga atgtgaccct ccagcacata gaaacaacct	840
ggaagtgttc gtttaaactt ttccaaattct tttggccccg accgggtggag tacctaata	900
tttacaactt aacgataact gagagaatcg acagggaaaga atttacttac tcggagacag	960
cactgaagtc actgatgata gagcacgtca aaaaccaagt gttccttotl tcaaaggagg	1020
cgctatactc ggtgtttgct gagatgaaca tcaagatgct ctctatctca gacaccctt	1080
tcatccacat ggtgtcccg ccatcccaa gtcatttac atttctgaac ttaccaga	1140
atgtttttac tgacagtgtt tttcaaggct gttccacctt aaagagattg cagacactta	1200
tcttacaaag gaatggttt aagaactttt taaaagtagc tctcatgact aagaatatgt	1260
cctctctgga aactttggat gttagttga attcttgaa ctctcatgca tatgacagga	1320
catgcgcctg ggctgagagc atattgggt tgaatttgta ttcaaatatg cttacaggct	1380
ctgttccag atgcttacct cccaaaggta aggtccttga ctttcacaac aacaggataa	1440

tgagcatccc taaaagatgtc acccacctgc aggctttgca ggaactcaat gtagcatcca	1500
actcctaac tgaccccttgggg ccttcagcag cctttctgtg ctggcatcg	1560
accataaactc agtttccccat ccctctgagg atttcttcca gagctgtcag aatattagat	1620
ccctaacaac gggaaacaac ccattccaat gcacatgtga gctgagggac tttgtcaaga	1680
acataggctg ggttagcaaga gaagtggtgg agggctggcc tgactcttac aggtgtgact	1740
acccagaaaag ctctaaggga actgcactga gggacttcca catgtctcca ctgtcctgtg	1800
atactgttct gctgactgtc accatcgaaaa ccactatgct ggtgctggct gtcactgggg	1860
ctttccctcg tctctacttt gacctgcacct ggtatgtgag gatgctgtgt cagtggacac	1920
agaccaggca cagggccagg cacatccccct tagaggaact ccagagaaaac ctccagttcc	1980
atgctttgt ctcatacagt gagcatgattt ctgcctgggt gaagaacgaa ttactaccca	2040
acctagagaa agatgacatc cgggtttgcc tccatgagag gaactttgtc cctggcaaga	2100
gcattgtgga gaacatcatc aatttcattt agaagagtta caaggccatc tttgtgtgt	2160
ctccccactt catccagagt gagtggtgcc attatgaact ctatttgcc catcataatc	2220
tcttccatga aggctctgat aacttaatcc tcattttgt ggaacccattt ctacagaaca	2280
acattccccag tagataccac aagctgcggg ctctcatggc acagcggact tacttggaaat	2340
ggcctactga gaagggcaaa cgtgggctgt tttggccaa ctttagagct tcatttatta	2400
tgaagttgc cttagtcaat gaggatgatg tgaaaacttg aaacttgggt ttcttaactta	2460
ataaaactgtc aacctgggct ctcatgaaca ctgtggtttt cagttcctac ctggaggtac	2520
ttctgttgtg gtgtcttagt ttgtctgtg cttatgataa ataacatgtt tagaagtagt	2580
ttatgaaggt gctaagttca ttaa	2604

<210> 85
<211> 2421
<212> DNA
<213> murine

<400> 85 atggtaaagt ccctctggga tagcctctgc aacatgagcc aagacagaaaa acccatcg	60
gggagttcc actttgtttg cgccctggcc ttaatagtcg gaagcatgac cccgttctct	120
aatgaacttg agtctatggt agactattca aacaggaacc ttactcatgt ccccaaagac	180
ctgccaccaa gaacaaaagc cctgagtcg tctcaaaaact ctatatctga gcttcggatg	240
cctgatatac gctttctgtc agagctgaga gttctgagac tctcccacaa caggatacgg	300
agccttgatt tccatgtatt cttgttcaat caggacttag aatacctgga tgtctcacac	360
aatcggttgc aaaacatctc ttgctgcacct atggcgagcc tgaggcatct agacctctca	420
ttcaatgact ttgatgtact gcctgtgtgt aaggaatttg gcaacctgac gaagctgact	480

ttcctggat taagtgtgc aaagttccga caactggatc tgctcccagt tgctcaacttg	540
catctaagct gcattcttct ggacttagtg agttatcata taaaaggcgg ggaaacagaa	600
agtcttcaga ttcccaatac caccgttctc catttggtct ttcatccaaa tagcttgtc	660
tctgttcaag tgaacatgtc tgtaaacgct ttaggacatt tacaactgag taatattaaa	720
ttgaatgtatg aaaactgtca aaggtaatg acatTTTtat cagaactcac cagaggtcca	780
accttattga atgtgaccct ccagcacata gaaacaacct ggaagtgctc ggttaaactt	840
ttcciaattct tttggccccg accggtgag tacctaata tttacaactt aacgataact	900
gagagaatcg acagggaaaga atttacttac tcggagacag cactgaagt actgatgata	960
gagcaegtca aaaaccaagt gttcctctt tcaaaggagg cgctataactc ggtgtttgct	1020
gagatgaaca tcaagatgct ctctatotca gacacccctt tcatccacat ggtgtgccc	1080
ccatccccaa gtcatttac atttctgaac tttacccaga atgttttac tgacagtgtt	1140
tttcaaggct gttccacett aaagagattg cagacactta tcttacaaag gaatggtttg	1200
aagaactttt ttaaagttagc tctcatgact aagaatatgt cctctctgga aactttggat	1260
gttagtttga atttttgaa ctctcatgca tatgacagga catgcgcctg ggctgagagc	1320
atattggtgt tgaatttgtc ttcaaatatg cttacaggct ctgtctttagt atgcttacct	1380
cccaaggtca aggtcatttga ctttcacaaac aacaggataa tgagcatccc taaagatgtc	1440
acccacctgc aggctttgca ggaactcaat gtagcatcca actccttaac tgaccttcct	1500
gggtgtgggg ctttcagcag ctttctgtg ctggtcatcg accataactc agttttccat	1560
ccctctgagg atttcttcca gagctgtcag aatatttagat ccctaacagc gggaaacaac	1620
ccattccaat gcacatgtga gctgaggag tttgtcaaga acataggctg gtagcaaga	1680
gaagtggtgg agggctggcc tgactttac aggtgtgact acccagaaag ctctaaggga	1740
actgcactga gggacttcca catgtctcca ctgtctgtg atactgtct gctgactgtc	1800
accatgggg ccactatgct ggtgctggct gtcaactgggg ctttcctctg tctctacttt	1860
gacctggccct ggtatgtgag gatgctgtgt cagtggacac agaccaggca cagggccagg	1920
cacatccccct tagaggaact ccagagaaac ctccagttcc atgctttgt ctcatacagt	1980
gagcatgatt ctgcctgggt gaagaacgaa ttactaccca acctagagaa agatgacatc	2040
cgggttgcc tccatgagag gaactttgtc cctggcaaga gcattgtgga gaacatcatc	2100
aatttcattt agaagagtta caaggccatc tttgtgtgt ctccccactt catccagagt	2160
gagtggtgcc attatgaact ctatttgcc catcataatc tcttccatga aggctctgat	2220
aacttaatcc tcatcttgct ggaacccatt ctacagaaca acattccag tagataccac	2280
aagctgcggg ctctcatggc acagcggact tacttggaaat ggcctactga gaagggcaaa	2340
cgtgggctgt tttggccaa ctttagagct tcatttatta tgaagttagc ctttagtcaat	2400

gaggatgatg tgaaaacttg a

2421

<210> 86
<211> 806
<212> PRT
<213> murine

<400> 86

Met	Val	Lys	Ser	Leu	Trp	Asp	Ser	Leu	Cys	Asn	Met	Ser	Gln	Asp	Arg
1				5				10							15

Lys	Pro	Ile	Val	Gly	Ser	Phe	His	Phe	Val	Cys	Ala	Leu	Ala	Leu	Ile
								25							30

Val	Gly	Ser	Met	Thr	Pro	Phe	Ser	Asn	Glu	Leu	Glu	Ser	Met	Val	Asp
								40							45

Tyr	Ser	Asn	Arg	Asn	Leu	Thr	His	Val	Pro	Lys	Asp	Leu	Pro	Pro	Arg
								55							60

Thr	Lys	Ala	Leu	Ser	Leu	Ser	Gln	Asn	Ser	Ile	Ser	Glu	Leu	Arg	Met
65					70					75					80

Pro	Asp	Ile	Ser	Phe	Leu	Ser	Glu	Leu	Arg	Val	Leu	Arg	Leu	Ser	His
								90							95

Asn	Arg	Ile	Arg	Ser	Leu	Asp	Phe	His	Val	Phe	Leu	Asn	Gln	Asp	
								105							110

Leu	Glu	Tyr	Leu	Asp	Val	Ser	His	Asn	Arg	Leu	Gln	Asn	Ile	Ser	Cys
								115		120					125

Cys	Pro	Met	Ala	Ser	Leu	Arg	His	Leu	Asp	Leu	Ser	Phe	Asn	Asp	Phe
								130		135					140

Asp	Val	Leu	Pro	Val	Cys	Lys	Glu	Phe	Gly	Asn	Leu	Thr	Lys	Leu	Thr
145								150			155				160

Phe	Leu	Gly	Leu	Ser	Ala	Ala	Lys	Phe	Arg	Gln	Leu	Asp	Leu	Leu	Pro
								165		170					175

Val	Ala	His	Leu	His	Leu	Ser	Cys	Ile	Leu	Leu	Asp	Leu	Val	Ser	His
								180		185					190

His	Ile	Lys	Gly	Gly	Glu	Thr	Glu	Ser	Leu	Gln	Ile	Pro	Asn	Thr	Thr
								195		200					205

Val	Leu	His	Leu	Val	Phe	His	Pro	Asn	Ser	Leu	Phe	Ser	Val	Gln	Val
								210		215					220

Asn	Met	Ser	Val	Asn	Ala	Leu	Gly	His	Leu	Gln	Leu	Ser	Asn	Ile	Lys
225								230		235					240

Leu	Asn	Asp	Glu	Asn	Cys	Gln	Arg	Leu	Met	Thr	Phe	Leu	Ser	Glu	Leu
								245		250					255

Thr	Arg	Gly	Pro	Thr	Leu	Leu	Asn	Val	Thr	Leu	Gln	His	Ile	Glu	Thr
								260		265					270

Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro
275 280 285

Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp
290 295 300

Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu Lys Ser Leu Met Ile
305 310 315 320

Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr
325 330 335

Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu Ser Ile Ser Asp Thr
340 345 350

Pro Phe Ile His Met Val Cys Pro Pro Ser Pro Ser Ser Phe Thr Phe
355 360 365

Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Val Phe Gln Gly Cys
370 375 380

Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu Gln Arg Asn Gly Leu
385 390 395 400

Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu
405 410 415

Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp
420 425 430

Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser
435 440 445

Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys
450 455 460

Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val
465 470 475 480

Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu
485 490 495

Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val
500 505 510

Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser
515 520 525

Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys
530 535 540

Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg
545 550 555 560

Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu
565 570 575

Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser
580 585 590

Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val

595	600	605
Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp		
610	615	620
Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg		
625	630	635
640		
His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe		
645	650	655
Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu		
660	665	670
Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn		
675	680	685
Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu		
690	695	700
Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser		
705	710	715
720		
Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His		
725	730	735
Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Glu Pro Ile Leu Gln		
740	745	750
Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln		
755	760	765
Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe		
770	775	780
Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn		
785	790	795
800		
Glu Asp Asp Val Lys Thr		
805		

<210> 87
<211> 806
<212> PRT
<213> murine

<400> 87

Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg		
1	5	10
15		
Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile		
20	25	30
Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp		
35	40	45
Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg		
50	55	60
Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met		
65	70	75
80		

Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His
85 90 95

Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp
100 105 110

Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys
115 120 125

Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu Ser Phe Asn Asp Phe
130 135 140

Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn Leu Thr Lys Leu Thr
145 150 155 160

Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Leu Pro
165 170 175

Val Ala His Leu His Leu Ser Cys Ile Leu Leu Asp Leu Val Ser Tyr
180 185 190

His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln Ile Pro Asn Thr Thr
195 200 205

Val Leu His Leu Val Phe His Pro Asn Ser Leu Phe Ser Val Gln Val
210 215 220

Asn Met Ser Val Asn Ala Leu Gly His Leu Gln Leu Ser Asn Ile Lys
225 230 235 240

Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr Phe Leu Ser Glu Leu
245 250 255

Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu Gln His Ile Glu Thr
260 265 270

Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro
275 280 285

Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp
290 295 300

Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu Lys Ser Leu Met Ile
305 310 315 320

Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr
325 330 335

Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu Ser Ile Ser Asp Thr
340 345 350

Pro Phe Ile His Met Val Cys Pro Pro Ser Pro Ser Ser Phe Thr Phe
355 360 365

Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Val Phe Gln Gly Cys
370 375 380

Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu Gln Arg Asn Gly Leu
385 390 395 400

Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu

405	410	415
Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp		
420	425	430
Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser		
435	440	445
Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys		
450	455	460
Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val		
465	470	475
Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu		
485	490	495
Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val		
500	505	510
Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser		
515	520	525
Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys		
530	535	540
Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg		
545	550	555
Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu		
565	570	575
Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser		
580	585	590
Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val		
595	600	605
Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp		
610	615	620
Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg		
625	630	635
His Ile Pro Leu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe		
645	650	655
Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu		
660	665	670
Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn		
675	680	685
Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu		
690	695	700
Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser		
705	710	715
Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His		
725	730	735
Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Glu Pro Ile Leu Gln		

	740	745	750
Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln			
	755	760	765
Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe			
	770	775	780
Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn			
	785	790	795
Glu Asp Asp Val Lys Thr			
	805		

<210> 88
<211> 806
<212> PRT
<213> murine

<400> 88

Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg			
1	5	10	15
Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile			
	20	25	30
Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp			
	35	40	45
Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg			
	50	55	60
Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met			
	65	70	75
Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His			
	85	90	95
Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp			
	100	105	110
Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys			
	115	120	125
Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu Ser Phe Asn Asp Phe			
	130	135	140
Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn Leu Thr Lys Leu Thr			
	145	150	155
Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Leu Pro			
	165	170	175
Val Ala His Leu His Leu Ser Cys Ile Leu Leu Asp Leu Val Ser His			
	180	185	190
His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln Ile Pro Asn Thr Thr			
	195	200	205
Val Leu His Leu Val Phe His Pro Asn Ser Leu Phe Ser Val Gln Val			
	210	215	220

Asn Met Ser Val Asn Ala Leu Gly His Leu Gln Leu Ser Asn Ile Lys
 225 230 235 240
 Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr Phe Leu Ser Glu Leu
 245 250 255
 Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu Gln His Ile Glu Thr
 260 265 270
 Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro
 275 280 285
 Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp
 290 295 300
 Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu Lys Ser Leu Met Ile
 305 310 315 320
 Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr
 325 330 335
 Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu Ser Ile Ser Asp Thr
 340 345 350
 Pro Phe Ile His Met Val Cys Pro Pro Ser Pro Ser Ser Phe Thr Phe
 355 360 365
 Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Val Phe Gln Gly Cys
 370 375 380
 Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu Gln Arg Asn Gly Leu
 385 390 395 400
 Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu
 405 410 415
 Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp
 420 425 430
 Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser
 435 440 445
 Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys
 450 455 460
 Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val
 465 470 475 480
 Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu
 485 490 495
 Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val
 500 505 510
 Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser
 515 520 525
 Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys
 530 535 540
 Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg

545	550	555	560
Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu			
565		570	575
Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser			
580		585	590
Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val			
595		600	605
Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp			
610		615	620
Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg			
625		630	635
His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe			
645		650	655
Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu			
660		665	670
Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn			
675		680	685
Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu			
690		695	700
Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser			
705		710	715
Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His			
725		730	735
Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Glu Pro Ile Leu Gln			
740		745	750
Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln			
755		760	765
Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe			
770		775	780
Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn			
785		790	795
Glu Asp Asp Val Lys Thr			
805			

<210> 89
<211> 795
<212> PRT
<213> murine

<400> 89

Met Ser Gln Asp Arg Lys Pro Ile Val Gly Ser Phe His Phe Val Cys
1 5 10 15

Ala Leu Ala Leu Ile Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu
20 25 30

Glu Ser Met Val Asp Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys
35 40 45

Asp Leu Pro Pro Arg Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile
50 55 60

Ser Glu Leu Arg Met Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val
65 70 75 80

Leu Arg Leu Ser His Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe
85 90 95

Leu Phe Asn Gln Asp Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu
100 105 110

Gln Asn Ile Ser Cys Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu
115 120 125

Ser Phe Asn Asp Phe Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn
130 135 140

Leu Thr Lys Leu Thr Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln
145 150 155 160

Leu Asp Leu Leu Pro Val Ala His Leu His Leu Ser Cys Ile Leu Leu
165 170 175

Asp Leu Val Ser Tyr His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln
180 185 190

Ile Pro Asn Thr Thr Val Leu His Leu Val Phe His Pro Asn Ser Leu
195 200 205

Phe Ser Val Gln Val Asn Met Ser Val Asn Ala Leu Gly His Leu Gln
210 215 220

Leu Ser Asn Ile Lys Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr
225 230 235 240

Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu
245 250 255

Gln His Ile Glu Thr Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe
260 265 270

Phe Trp Pro Arg Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile
275 280 285

Thr Glu Arg Ile Asp Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu
290 295 300

Lys Ser Leu Met Ile Glu His Val Lys Asn Gln Val Phe Leu Phe Ser
305 310 315 320

Lys Glu Ala Leu Tyr Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu
325 330 335

Ser Ile Ser Asp Thr Pro Phe Ile His Met Val Cys Pro Pro Ser Pro
340 345 350

Ser Ser Phe Thr Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser

355	360	365
Val Phe Gln Gly Cys Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu		
370	375	380
Gln Arg Asn Gly Leu Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys		
385	390	395
Asn Met Ser Ser Leu Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn		
405	410	415
Ser His Ala Tyr Asp Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val		
420	425	430
Leu Asn Leu Ser Ser Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu		
435	440	445
Pro Pro Lys Val Lys Val Leu Asp Leu His Asn Asn Arg Ile Met Ser		
450	455	460
Ile Pro Lys Asp Val Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val		
465	470	475
Ala Ser Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser		
485	490	495
Leu Ser Val Leu Val Ile Asp His Asn Ser Val Ser His Pro Ser Glu		
500	505	510
Asp Phe Phe Gln Ser Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn		
515	520	525
Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile		
530	535	540
Gly Trp Val Ala Arg Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg		
545	550	555
Cys Asp Tyr Pro Glu Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His		
565	570	575
Met Ser Pro Leu Ser Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly		
580	585	590
Ala Thr Met Leu Val Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr		
595	600	605
Phe Asp Leu Pro Trp Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr		
610	615	620
Arg His Arg Ala Arg His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu		
625	630	635
Gln Phe His Ala Phe Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val		
645	650	655
Lys Asn Glu Leu Leu Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys		
660	665	670
Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile		
675	680	685
Ile Asn Phe Ile Glu Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro		

690	695	700
His Phe Ile Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His		
705	710	715
		720
His Asn Leu Phe His Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Leu		
725	730	735
Glu Pro Ile Leu Gln Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg		
740	745	750
Ala Leu Met Ala Gln Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly		
755	760	765
Lys Arg Gly Leu Phe Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys		
770	775	780
Leu Ala Leu Val Asn Glu Asp Asp Val Lys Thr		
785	790	795

```
<210>  90
<211>  10
<212>  DNA
<213>  artificial sequence
```

<220>

<223> consensus p50 subunit

```
<220>
<221> misc_feature
<222> (7)..(7)
<223> N = c or t
```

<400> 90
ggggatnccc

10

```
<210> 91
<211> 10
<212> DNA
<213> artificial sequence
```

<220>

<223> consensus p65 subunit

```
<220>
<221> misc_feature
<222> (4)..(4)
<223> N = a or g
```

```
<220>
<221> misc_feature
<222> (5)..(5)
<223> N = a, c, g, or t
```

<400> 91
gggnntttcc

10

<210> 92

<211> 22
<212> DNA
<213> artificial sequence

<220>

<223> consensus subunit

<400> 92
agttgagggg actttcccaag gc

22

<210> 93
<211> 27
<212> DNA
<213> artificial sequence

<220>

<223> CREB binding site

<400> 93
agagattgcc tgacgtcaga gagctag

27

<210> 94
<211> 21
<212> DNA
<213> artificial sequence

<220>

<223> AP-1 binding site

<400> 94
cgcttcatga gtcagccgga a

21

<210> 95
<211> 15
<212> DNA
<213> artificial sequence

<220>

<223> AP-1 binding site

<400> 95
cgcatgatgc agaca

15

<210> 96
<211> 19
<212> DNA
<213> artificial sequence

<220>

<223> ISRE

<400> 96

tgcagaagtg aaactgagg 19
<210> . 97
<211> 11
<212> DNA
<213> artificial sequence

<220>

<223> ISRE

<400> 97
agaacgaaac a 11

<210> 98
<211> 15
<212> DNA
<213> artificial sequence

<220>

<223> ISRE

<400> 98
gagaagtgaa agtgg 15

<210> 99
<211> 18
<212> DNA
<213> artificial sequence

<220>

<223> ISRE

<400> 99
taagaacatg aaaactgaa 18

<210> 100
<211> 15
<212> DNA
<213> artificial sequence

<220>

<223> ISRE

<400> 100
atgaaactga aagta 15

<210> 101
<211> 16
<212> DNA
<213> artificial sequence

<220>

<223> ISRE

<400> 101
tgaaaaccga aagcgc

16

<210> 102
<211> 13
<212> DNA
<213> artificial sequence

<220>

<223> ISRE

<400> 102
agaaatggaa agt

13

<210> 103
<211> 9
<212> DNA
<213> artificial sequence

<220>

<223> SRE

<400> 103
tcaccccac

9

<210> 104
<211> 10
<212> DNA
<213> artificial sequence

<220>

<223> SRE

<400> 104
ctcaccccac

10

<210> 105
<211> 10
<212> DNA
<213> artificial sequence

<220>

<223> SRE

<400> 105
gccaccctac

10

<210> 106
<211> 17
<212> DNA
<213> artificial sequence

<220>
<223> NFAT

<400> 106
tatgaaacag ttttcc

17

<210> 107
<211> 9
<212> DNA
<213> artificial sequence

<220>

<223> NFAT

<400> 107
aggaaaactc

9

<210> 108
<211> 10
<212> DNA
<213> artificial sequence

<220>

<223> NFAT

<220>
<221> misc_feature
<222> (2)..(2)
<223> N = a or g

<220>
<221> misc_feature
<222> (5)..(5)
<223> N = a or g

<400> 108
anganattcc

10

<210> 109
<211> 16
<212> DNA
<213> artificial sequence

<220>

<223> NFAT

<400> 109
ccagttgagc cagaga

16

<210> 110
<211> 30
<212> DNA
<213> artificial sequence

<220>

<223> GAS

<400> 110

ctttcagttt catattactc taaatccatt

30

<210> 111

<211> 10

<212> DNA

<213> artificial sequence

<220>

<223> p53 consensus site

<220>

<221> misc_feature

<222> (1)..(3)

<223> N = a or g

<220>

<221> misc_feature

<222> (5)..(6)

<223> N = a or t

<220>

<221> misc_feature

<222> (8)..(10)

<223> N = c or t

<400> 111

nnncnngnnn

10

<210> 112

<211> 10

<212> DNA

<213> artificial sequence

<220>

<223> p53 consensus site

<400> 112

aggcatgcct

10

<210> 113

<211> 10

<212> DNA

<213> artificial sequence

<220>

<223> p53 consensus site

<400> 113

gggcttgccc

10

<210> 114

<211> 10
<212> DNA
<213> artificial sequence

<220>

<223> p53 consensus site

<400> 114
gggcttgctt

10

<210> 115
<211> 13
<212> DNA
<213> artificial sequence

<220>

<223> p53 consensus site

<400> 115
gcctggactt gcc

13

<210> 116
<211> 20
<212> DNA
<213> artificial sequence

<220>

<223> p53 consensus site

<400> 116
ggacatgccc gggcatgtcc

20

<210> 117
<211> 23
<212> DNA
<213> artificial sequence

<220>

<223> p53 consensus site

<400> 117
gttagcattag cccagacatg tcc

23

<210> 118
<211> 36
<212> DNA
<213> artificial sequence

<220>

<223> TARE

<400> 118
gaggtatgca gacaagagtc agagttcccc cttgaa

36

<210> 119
<211> 10
<212> DNA
<213> artificial sequence

<220>

<223> SRF

<220>

<221> misc_feature
<222> (3)..(8)
<223> N = a or t

<400> 119
ccnnnnnnngg 10

<210> 120
<211> 11
<212> DNA
<213> artificial sequence

<220>

<223> SRF

<400> 120
ccaaataagg c 11

<210> 121
<211> 670
<212> DNA
<213> Homo sapiens

<400> 121
agaaaaattt taaaaaatta ttcattcata tttttaggag ttttgaatga ttggatatgt 60
aattatattc atattattaa tgtgtatcta tatagatttt tattttgcattt atgtactttg
atacaaaaatt tacatgaaca aattacacta aaagttattc cacaaatata cttatcaaatt 120
taagttaaat gtcaatagct tttaaactta aattttagtt taactttct gtcattttt 180
actttgaata aaaagagcaa actttgttgt ttttatctgt gaagtagagg tatacgtaat 240
atacataaaat agatatgccaa aatctgtgtt attaaaattt catgaagatt tcaatttagaa 300
aaaaatacca taaaaggctt tgagtgcagg tgaaaaatag gcaatgatga aaaaaaatga 360
aaaacttttt aaacacatgt agagagtgcg taaaagaaagc aaaaacagag atagaaaagta 420
caactaggaa atttagaaaaa tggaaattag tatgttcaact atttaagacc tatgcacaga 480
gcaaagtctt cagaaaacct agaggccgaa gttcaagggtt atccatctca agtagcctag 540
caatatttgc aacatcccaa tggccctgtc cttttcttta ctgatggccg tgctgggtct 600
cagctacaaa 660
670

<210> 122
<211> 207
<212> DNA
<213> Homo sapiens

<400> 122
aggttctctg aaggccttgc ttccctgcaga tgccttaaat aggaaacata ctgatttcca 60
ctttcttaat gcttctggac catttccatt tctgttttg ctttccttct taactctta 120
catgagtttga gagccgtgtt tctcaaatga tgggcttagca cgcgtaagag ctcggtagct 180
atcgatagag aaatgttctg gcacctg 207

<210> 123
<211> 161
<212> DNA
<213> Homo sapiens

<400> 123
aggttctctg aaggccttgc ttccctgcaga tgccttaaat aggaaacata ctgatttcca 60
ctttcttaat gcttctggac cactttccat ttctgtttt gctttccttc ttgaactctt 120
tacatgagtt tagagccgtg tttctcaacc attttgttt t 161

<210> 124
<211> 300
<212> DNA
<213> Homo sapiens

<400> 124
ttctcaggcgttgc gtttgctttc ctttgctttc tcccaagtct tgttttacaa tttgcttttag 60
tcatttcactg aaactttaaa aaacattaga aaacctcaca gtttgtaaat cttttccct 120
attatatata tcataagata ggagctaaa taaagagttt tagaaactac taaaatgtaa 180
atgacatagg aaaactgaaa gggagaagtg aaagtggaa attcctctga atagagagag 240
gaccatctca tataaatagg ccatacccac ggagaaagga cattctaact gcaaccttcc 300

<210> 125
<211> 401
<212> DNA
<213> Homo sapiens

<400> 125
gatctgtaat gaataaggcag gaactttgaa gactcagtga ctcagtgagt aataaagact 60
cagtgacttc tgatcctgtc ctaactgccat ctccttggat tcccaagaaa gcggcttcc 120
gctctctgag gaggaccct tccctggaag gtaaaactaa ggatgtcagc agagaaattt 180
ttccaccatt ggtgcttggt caaagaggaa actgatgagc tcactctaga tgagagagca 240
gtgagggaga gacagagact cgaatttccg gagctatttc agtttcttt tccgttttgt 300

gcaatttcac ttatgatacc ggccaatgct tgggtgctat tttggaaact ccccttaggg 360
 gatgccccctc aactggccct ataaaggccc agctgagct g 401

<210> 126
 <211> 781
 <212> DNA
 <213> Homo sapiens

<400> 126
 ggttgtctgt atgcctccct gagggtattt cactttctgc tcccatccgc ccctatgagc 60
 gagtacctat gaggcacagga tgtgcacata tttgagtctt attagtggta cacgcagttt 120
 tatcatctcc ccaggtctgt gtctgtatga aatgtgcatt ggtgtgtgtg tgcacgcgtg 180
 tgttcccaact cggggaatgt ggggagaggt gcatggagcc aagatgggtg gttaaatagta 240
 tgtttctgaa attaaaggac taatgtggag gaaggcgccc cagatgtact aaaccctttg 300
 ctttcatctc atcctctctg acttgggaag aaccaggatt ttgttttaa gcccttggc 360
 atacagttgt tccatccccga catgaactca gcctcccgctc tgaccgcggg ttggccttcc 420
 ttcttcctcg atctgtggaa cccagggaaat ctgcctagtg ctgtctccaa gcacccggc 480
 catgatgtaa acccagagaa attagcatct ccatttcctt ctttattccc cacccaaag 540
 tcatttcctc tttagttcatt acctgggatt ttgtatgtcta tgttccctcc tcgttattga 600
 tacacacaca gagagagaca aacaaaaaaag gaacttcttg aaattccccc agaaggtttt 660
 gagagttgtt ttcaatgttg caacaagtca gttctagtt taagttcca tcagaaagga 720
 gtagagtata taagttccag taccagcaac agcagcagaa gaaacaacat ctgtttcagg 780
 g 781

<210> 127
 <211> 277
 <212> DNA
 <213> Homo sapiens

<400> 127
 gcatctccat ctccttcctt attccccacc caaaaagtcat ttcctcttag ttcattacct 60
 gggattttga tgtctatgtt cccttcctcg tattgataca cacacagaga gagacaaaaca 120
 aaaaaggaac ttcttgaaat tccccagaa gttttgaga gttttttca atgttgcaac 180
 aagtcagttt ctatgttaag tttccatcag aaaggagtag agtatataag ttccagtacc 240
 agcaacagca gcagaagaaa caacatctgt ttccaggg 277

<210> 128
 <211> 305
 <212> DNA
 <213> Homo sapiens

<400> 128

caagacatgc caagtgctga gtcactaata aagaaaaaaag aagtaaagga agagtggttc	60
tgcttcttag cgctagccctc aatgacgacc taagctgcac ttttcccct agttgtgtct	120
tgcgatgcta aaggacgtca ttgcacaatc ttaataaggt ttccaatcag ccccacccgc	180
tctggcccca ccctcacccct ccaacaaaga tttatcaaata gtgggatttt cccatgagtc	240
tcaatattag agtctcaacc cccaataaaat ataggactgg agatgtctct gaggctcatt	300
ctgcc	305

<210> 129
<211> 1181
<212> DNA
<213> Homo sapiens

<400> 129	
cctgcaagag acaccatcct gaggggaaga gggcttctga accagctga cccaataaga	60
aattcttggg tgccgacggg gacagcagat tcagagccta gagccgtgcc tgcgtccgt	120
gtttccttct agcttcttt tgatttcaaa tcaagactta cagggagagg gagcgataaa	180
cacaaactct gcaagatgcc acaaggctt ccttgacat ccccaacaaa gaaggtgagt	240
agtaatctcc cccttctgc cctgaaccaa gtggcttcag taagtttcag ggctccagga	300
gacctgggca tgcaggtgcc gatgaaacag tggtaagag actcagtggc agtggcagtg	360
gggagagcac tcgcagcaca ggcaaacctc tggcacaaga gcaaagtctt cactggagga	420
ttcccaaggg tcacttggga gagggcaggc agcagccaaac ctccctctaag tgggctgaag	480
caggtgaaga aatggcagaa gacgcgtgg tggcaaaaag gagtcacaca ctccacctgg	540
agacgccttg aagtaactgc acgaaatttgg agggtggcca ggcagttcta caacagccgc	600
ctcacagggc gagccagaac acagcaagaa ctcagatgac tggtagtatt accttcttca	660
taatcccagg cttggggggc tgcgatggag tcagaggaaa ctcagtttcag aacatcttgc	720
gtttttacaa tacaaattaa ctggaacgct aaattcttagc ctgttaatct ggtcaactgaa	780
aaaaaaaaaaa tttttttttt ttcaaaaaac atagcttttag cttatttttt ttttctcttt	840
gtaaaaacttc gtgcgtact tcagcttac tctgtcaag acatgccaag tgctgagtca	900
ctaataaaga aaaaagaagt aaaggaagag tggttctgct tcttagcgct agcctcaatg	960
acgacctaag ctgcactttt cccccctagtt gtgtcttgcc atgctaaagg acgtcattgc	1020
acaatcttaa taaggtttcc aatcagcccc acccgctctg gccccacccct caccctccaa	1080
caaagattta tcaaatagtgg gatttccca tgagtctcaa tattagagtc tcaaccccca	1140
ataaatatag gactggagat gtctctgagg ctcattctgc c	1181

<210> 130
<211> 778
<212> DNA

<213> Homo sapiens
<400> 130
ctaccacttg tctattctgc tatatagtca gtccttacat tgctttcttc ttctgataga 60
ccaaactctt taaggacaag taccttagtct tatctatttc tagatcccc acattactca 120
gaaagttact ccataaatgt ttgtggaact gatttctatg tgaagacatg tgccccttca 180
ctctgttaac tagcattaga aaaacaaatc tttgaaaag ttgttagtatg cccctaagag 240
cagtaacagt tcctagaaac tctctaaaat gcttagaaaa agatttattt taaattacct 300
ccccataaaa atgattggct ggcttatctt caccatcatg atagcatctg taattaactg 360
aaaaaaaaata attatgccat taaaagaaaa tcattccatga tcttgttcta acacctgcca 420
ctctagtaact atatctgtca catggcttat gataaagtta tctagaaata aaaaagcata 480
caattgataa ttcaccaaatt tggagctt cagttttta aatgtatatt aaaattaaat 540
tattttaaag atcaaagaaa actttcgta tactccgtat ttgataagga acaaataagga 600
agtgtatga ctcaggtttg ccctgagggg atggccatc agttgcaaat cgtgaaattt 660
cctctgacat aatgaaaaga tgagggtgca taagttctct agtagggtga tgatataaaa 720
agccaccgga gcactccata aggcacaaac tttcagagac agcagagcac acaagctt 778

<210> 131
<211> 207
<212> DNA
<213> Homo sapiens

<400> 131
actccgtatt tgataaggaa caaataggaa gtgtgatgac tcagggttgc cctgagggga 60
tggccatca gttgcaaatc gtggatttc ctctgacata atgaaaagat gagggtgcat 120
aagttctcta gtagggtgat gatataaaaa gccacccggag cactccataa ggcacaaact 180
ttcagagaca gcagagcaca caagctt 207

<210> 132
<211> 645
<212> DNA
<213> Homo sapiens

<400> 132
gggggtgatt tcactccccg gggctgtccc aggcttgcc ctgctacccg caccagcct 60
ttcctgaggc ctcaagcctg ccaccaagcc cccagctct tctcccgca gggccaaac 120
acaggcctca ggactcaaca cagctttcc ctccaaaccc gtttctctc cctcaacgga 180
ctcagtttc tgaagccct cccagttcta gtctatctt tttcctgcat cctgtctgga 240
agttagaagg aaacagacca cagacctggt cccaaaaga aatggaggca ataggtttg 300
aggggcattgg ggacggggtt cagcctccag ggtcctacac acaaatacgt cagtggccca 360

gaagaccccc ctcggaatcg gaggcaggag gatggggagt gtgaggggtta tccttgc	420
tttgtgttcc ccaactttcc aaatccccgc ccccgcatg gagaagaaac cgagacagaa	480
ggtgcaaggc ccaactaccgc ttccctccaga tgagctcatg ggtttctcca ccaaggaagt	540
tttccgctgg ttgaatgatt ctttccccgc cctccctctcg ccccaggagc atataaaggc	600
agttgttggc acacccagcc agcagacgct ccctcagcaa ggaca	645

<210> 133
<211> 457
<212> DNA
<213> Homo sapiens

<400> 133 gcctgtactc agccaagggt gcagagatgt tatatatgtat tgctcttcag ggaaccggc	60
ctccagacta caccccaagct gctcaaccac ctccctctcg aattgactgt cccttcttg	120
gaactctagg cctgacccca ctccctggcc ctcccagccc acgattcccc tgacccgact	180
cccttccca gaactcagtc gcctgaaccc ccagcctgtg gttctctcct aggccctcagc	240
ctttcctgcc tttgactgaa acagcagtat cttctaagcc ctgggggctt cccggggccc	300
cagccccgac cttagaaccccg cccgctgcct gccacgctgc cactgccgt tcctctataa	360
agggacctga gcgtccgggc ccaggggctc cgcacagcag gtgaggctct cctgccccat	420
ctccttggc tgccctgct tcgtgtttt gactacc	457

<210> 134
<211> 973
<212> DNA
<213> Homo sapiens

<400> 134 gcagcaaatc agaatggcag tttgattcat ggtgctgaga ctggaggttc ctctgctgtat	60
ggctcagaat atgtctaagc aattgaggaa tgtctcagaa aacgtggggc tagtgtgcca	120
tatttatctg caaagccatt ttccctccct aattctgatt ggataaggc attacagttt	180
acttagaaaa acctgctggc ttttcctggg gaagtcccat gttgcagact cgaaggtatt	240
atttattgtt gcctccaagt tacggaattt ccctctgctc ctctttttt ggtaatagt	300
aatttagttt cactttccaa aacatgaact gtttcttggaa aaaaagaact tcattgcata	360
tagaaaaaaaaa caaagggtgc aatccattct aactataatg cttttctca acacttaaac	420
ttttacagtt actttcagag gttatttttc aaaatatccc cagtaataga aattttcat	480
cctttatagg taaacctaatttttggtaa cagcaagttt tgcctgatta ttagaacagt	540
gatttacctg gacagtccctc cttgatcaaa tactataaag taataggact ggcctgctt	600
gacagggtca aagatctgga actggcaagt tttaaataat tcaataaattt ctttgcatt	660
tcataaacacc attagattaa gtaaatagcc tccaacataa ctattttagg ggaaaacatt	720

gctcatttgg gtatctgatt tgtggtgtgt taaaacaagt ttcacgtt atagcagtcc 780
 ctgaatgaaa acatcataag atggtatcta gaatggtgtg agaaaaggat tcatactat 840
 cctagggtta ttgtaaaaaa caaagggtgc ttttgagga aatgaattta aaagcgaaaa 900
 ggcacgcata gagacagacc ttggaaagt agcttgagac agaaggaaaa caggttgatt 960
 tacgatgggg ttc 973

<210> 135
 <211> 333
 <212> DNA
 <213> Homo sapiens

<400> 135
 gctaccttaa gaaggctggt taccatctgg gtttcacag tgcttcaca ttcttatcac 60
 tttcaacact actgcaaata ggaaggaca gtaacattta gaagagaaca aaacagaaac 120
 tcttggaaagc aggaaagggtg catgactcaa agaggaaat tcctgtgccaa taaaaggatt 180
 gctggtgtat aaaatgctct atatatgccaa attatcaatt tccttcatg ttcagcattt 240
 ctactccttc caagaagagc agcaaagctg aagtttagcag cagcagcacc agcagcaaca 300
 gcaaaaaaca aacatgagtg tgaaggcat ggc 333

<210> 136
 <211> 1048
 <212> DNA
 <213> Homo sapiens

<400> 136
 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgccctga ccaaacagca 60
 ctaaatttgt gtgggacatg atccccaggagg tgtgtggctt cacccctcaa cgagtggcgt 120
 ggcatggagt tactgaatct ccaagggtcaa acaggccctc aaattcatca agaaaagggt 180
 agggacaaac atctgtacca agagaaggca ggaggagctg agcaacgtcc tgctgccatg 240
 agggaaagcag ctgccaagaaa ggactgagcc cctgccatct gcctataatg aaagctttgc 300
 aaaataaaaat aaatataaaa taaagtaata aaattaaatt aaatttaaaa ataaaataaa 360
 gcaaaaacaaa ataaaatata taaagtaaaa attgttaaaa tgcaaaaacaa tatggacata 420
 aatacagaaa cacagggaaa cttctttagg cactcattta caggtaaaaa tatgaaattg 480
 aataaaaggtc atctgggtgtc aaataatata ggccttatct attataagag tttggactga 540
 aaagcaaaag tgagataaca aaaaaaaagct tttcagaata ttatTTTGTa tagatatgtg 600
 aaggatgaag ggtgggtgaa aggacaaaaa acagaaacac agtcttcctg aatgaatgac 660
 aatcagaatt ccgctgcccc aagttagtccg acaattaaat ggattttctag gaaaagctac 720
 cttaagaagg ctgggttacca tctgggtttt cacagtgcctt tcacattctt atcactttca 780

acactactgc aaataggaag ggacagtaac atttagaaga gaacaaaaca gaaactcttg	840
gaagcagggaa aggtgcatga ctcaaagagg gaaattcctg tgccataaaa ggattgctgg	900
tgtataaaaat gctctatata tgccaattat caatttcctt tcatgttcag catttctact	960
ccttccaaga agagcagcaa agctgaagtt agcagcagca gcaccagcag caacagcaaa	1020
aaacaaacat gagtgtgaag ggcattgc	1048

<210> 137
<211> 504
<212> DNA
<213> Homo sapiens

<400> 137 agggggcccc gcagcagccc cttggcttcc cttctccctt gcctcccttc cggggctccg	60
gttcagaggc actctggcg cctgctacag cttccaaact gcgccgcttc cttttcgcc	120
agaaaaggac tttcagatgc ggccggggcg gcggccggcg ctcaggacag cgccccctcc	180
cctaacggcc gcctctccct ctccccctcg cccgccccgg ctccccccacc tctggaaagg	240
cgctgggggt gtggccaggg accggtataa agtccggggg agccggtccc gggcagccgc	300
ttagccccct gcccctcgcc gccccccgccc tgcctggcc gggccgagga tgcggcgcag	360
cgccctggcg gccaggcttg ctccccccgg cacgcctgtt aactcccccc gctacgtccc	420
cgttcgccccg ccggggccgccc ccgttcccccc gcgcctccg ggtcgggtcc tccaggagcg	480
ccaggcgctg ccgcgtgtg ccct	504

<210> 138
<211> 1042
<212> DNA
<213> Homo sapiens

<400> 138 gatcacacaaca gctctacaaa tacacaatga ttacaaggaa tggtgccca ctggagttgt	60
tcaacgcaaa acttgcacat tgcaagtggc aatctccag gcctgcctcc ctccacgagt	120
gggtctgaat gggcctgaga ggcaaacatc caagaaggag gaagaggctc ggccggcacct	180
ccctccccgg gagttctgct gattccatct tgggaagca gggtggacca gggcccaaatt	240
gcccctggg gagattgcgg gggcgggaga ggttgcagg ggcaagtggc aagagcctgt	300
taacgtctta gggcctccag gccttctgt gcccctgtt gtgcctgtac gctttacccc	360
acctcaggag gcttggtctc cagcggttga ggctggaagc accgggggtgc ggtggaaagg	420
gtctgtcca ggaagaccgg atccgcagag cggggagtcc gggcttaggaa gtccctttct	480
cgggtggaga ctgaggccgc cttggccggg cgggacgaga ctccctccag gtcggaaag	540
ggggcccccgc agcagccccct tggcttccct tctcccttgc ctccccctccg gggctccgg	600

tcagaggcac tctggcgcc tgctacagct tccaaactgc gccgcttcct tttcggcag 660
aaaaggactt tcagatgcgg cggcgccggc ggccggcact caggacageg ccccccccc 720
taacggccgc ctctccctct ccccccgc cgcggggct ccccccacotc tgggaaggcg 780
ctgggggtgt ggccagggac cggtataaag tccggggag ccggtcccgg gcagccgctc 840
agccccctgc ccctcgccgc ccgcgcctg ctggggccgg gccgaggatg cggccgagcg 900
cctcgccggc caggcttgct ccctccggca cgctgctaa ctccccccgc tacgtccccg 960
ttcgcccccc gggccgcccc gtctccccgc gcctccggg tcgggtccctc caggagcgcc 1020
aggcgctgcc gccgtgtgcc ct 1042

<210> 139

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 139

tcgtcgaaaa gacgttttgt cgtt

24

<210> 140

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 140

tcgtcgaaaa gtcgtttttt tcga

24

<210> 141

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 141

tctcgattttc gtcgtttcgt cgtt

24

<210> 142

<211> 24

<212> DNA

<213> artificial sequence

<220>
<223> Immunostimulatory nucleic acid

<400> 142
tcgtcgttc gtcgtttgt cgtt 24

<210> 143
<211> 21
<212> DNA
<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 143
tcgtcgaaaa tcggtcgttt t 21

<210> 144
<211> 22
<212> DNA
<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 144
tcgtcgaaaa tcgtgcgttt tt 22

<210> 145
<211> 22
<212> DNA
<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 145
tcgtcgaaaa cggcgccgc cg 22

<210> 146
<211> 24
<212> DNA
<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 146
tcgtcgaaaa acggcgccgt gccg 24

<210> 147
<211> 24
<212> DNA

```
<213> artificial sequence
<220>

<223> Immunostimulatory nucleic acid

<220>
<221> misc_feature
<222> (2)..(2)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (5)..(5)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (13)..(13)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (21)..(21)
<223> N = 5-methylcytosine

<400> 147
tngtngttt gtngtttg tngtt
```

24

```
<210> 148
<211> 27
<212> DNA
<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<220>
<221> misc_feature
<222> (2)..(2)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (5)..(5)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (7)..(7)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (11)..(11)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (13)..(14)
<223> N = 5-methylcytosine
```

```
<220>
<221> misc_feature
<222> (16)..(16)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (19)..(19)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (22)..(22)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (26)..(27)
<223> N = 5-methylcytosine

<400> 148
tngtngntgt ntngntnt ntgggnn

<210> 149
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> Immunostimulatory nucleic acid

<220>
<221> misc_feature
<222> (2)..(2)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (8)..(8)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (10)..(10)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (13)..(13)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (16)..(16)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (20)..(20)
```

<223> N = 5-methylcytosine
<400> 149
gngtttgnntn ttnttnttggn g

21

<210> 150
<211> 20
<212> DNA
<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<220>
<221> misc_feature
<222> (2)..(4)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (8)..(8)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (12)..(12)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (15)..(16)
<223> N = 5-methylcytosine

<220>
<221> misc_feature
<222> (19)..(19)
<223> N = 5-methylcytosine

<400> 150
gmnnaagntg gnatnnngtna

20

<210> 151
<211> 15
<212> DNA
<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 151
tcctggcgaaa gaagt

15

<210> 152
<211> 42
<212> DNA
<213> artificial sequence

<220>

<400> 152
gaaactcgag ccaccatgag acagactttg ctttatct ac

42

<210> 153
<211> 37
<212> DNA
<213> artificial sequence

<220>

<223> Oligonucleotide

<400> 153
gaaagaattc ttaatgtaca gagttttgg atccaag

37

<210> 154
<211> 24
<212> DNA
<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 154
tgctgctttt gtgttttgt gctt

24

<210> 155
<211> 20
<212> DNA
<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 155
tccatgacgt tcctgatgct

20

<210> 156
<211> 20
<212> DNA
<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 156
tccatgagct tcctgatgct

20

<210> 157
<211> 20
<212> DNA
<213> artificial sequence

<223> Immunostimulatory nucleic acid

<220>

<221> misc_feature

<222> (8)..(8)

<223> N = 5-methylcytosine

<400> 157

tccatgangt tcctgatgt

20

<210> 158

<211> 22

<212> DNA

<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 158

tcgtcgaaaa cggcgccgcg cg

22

<210> 159

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 159

ggggacgacg tgctgggggg g

21

<210> 160

<211> 22

<212> DNA

<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 160

tgctgctttt cggcgccgcg cg

22

<210> 161

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> Immunostimulatory nucleic acid

<400> 161

ggggacgacg tgctgggggg g

21