

more: bigdev.de/teaching

Såtze von Euler und Fernat

Såtze von Euler und Fermat - Eulersche Phifunktion

Wir wollen jetzt Potenzen effiziert module m berednen: $\alpha^e \equiv 2 \mod m$

Berechnen Sie effizient (ohne Taschen rechner):

a)
$$3^{160} = 2 \mod 10 = (3^2)^{30} = 8^{30} = -1^{30} = 1$$

b) $3^{161} = 2 \mod 8 = 3 \cdot (9)^{30} = 3 \cdot 1^{30} = 3 \cdot 1^{30} = 3$

Idee: Warm gilt a = 1 mod m. 2 Dazu brancht man:

heist Eulersche Phifunction.

Best number Sie:
$$94T(\times,6) = 1$$
a) $U(6) = 2$, $da \times = 1, 2, 8, 4, 5, 9$
b) $U(8) = 4$, $da \times = 1, 3, 5, 7$
c) $U(9) = 18$, $da \times = 1-18$
d) $U(9) = 9-1$, $da \times = 1, 2, 3, ..., p-1, 7$

Sitz	e vou	r Eul	es w	ud Fe	smat	5	sta	ven	. Eule	2
Mit f	ti le	der	Euler	schen	Phi-F	-inlet	joh	Kann	man form	nulier
									mod m	
Beweis		Es go	ME	3350	(a;m)	= /1	7		2)) 6	
um	felesfe	ende	Zal	den	aus	Lu	i k	1 ok	2)) k	p(m)

34 m félésfrende Zahlen ans Lin : k_1 ; k_2 ; ...; k_3 ; k_4 ; k_4 ; ...; k_4 ; k_5 ; ...; k_5 ;

U Beredmen Sie mit Hilfe von Euler:

a)
$$7^{4} \equiv 2 \mod 8$$
 $((8) = 4 + 4 \equiv 1 \mod 8$
b) $7^{44} \equiv 2 \mod 8$ $(7^{4})^{4} \equiv 1 \mod 8$
c) $7^{45} \equiv 2 \mod 8 \equiv 7 (7^{4})^{4} \equiv 7 \cdot 1 \equiv 7 \mod 8$

Såtse von Eules und Fermat - kleiner Satz von Fermat

Als specialfall des Satzes von Euler (m=p prim):

believer Sats von Fermat. Für pfa: a = 1 mod p

U Beredmen Sie:

a)
$$2^{16} \equiv 2 \mod 17 = 1$$

c)
$$32^{33} = 2 \mod 17 = 32 - 32^{12} = 32 - 32^{16} - 32^{16} = 32 - 11 = 32$$