EULPS: Event-based Unsupervised Learning for Physiological Signals

Thomas Moreau Inria Saclay

Audition ERC StG 2023 - PE6

General Anesthesia Monitoring

Large Scale Multivariate Physical Signals

Neuroscience (MEG)

Astronomy

General Anesthesia

Physical Simulation

Large Scale Multivariate Physical Signals

Recent breakthrough in AI: Foundation Models

Midjourney

What do they have in common?

Recent breakthrough in AI: Foundation Models

Midjourney

What do they have in common?

Tokens

Self-supervised pretraining

Capture the input distribution $\mathbb{P}(X)$ with interaction between tokens.

Recent breakthrough in AI: Foundation Models

Midjourney

What do they have in common?

Tokens

Self-supervised pretraining

Capture the input distribution $\mathbb{P}(X)$ with interaction between tokens.

Challenges for signals:

- What are the tokens of the signals?
- ▶ How to derive more interpretable models?

Signals' Tokens: Events

Signals' Tokens: Events

EULPS: Event-based Unsupervised Learning for Physiological Signals

EULPS Goal

Model the Distribution of Events for Physiological Signals.

Hyp.: Events' time distribution $\mathbb{P}(\{t_k\}_k)$ is much simpler than $\mathbb{P}(X)$.

Challenge: Need to transform signals into events and model their distribution jointly.

EULPS: Event-based Unsupervised Learning for Physiological Signals

EULPS Goal

Model the Distribution of Events for Physiological Signals.

Hyp.: Events' time distribution $\mathbb{P}(\{t_k\}_k)$ is much simpler than $\mathbb{P}(X)$.

Challenge: Need to transform signals into events and model their distribution jointly.

Events' distribution models

Joint Modeling of Signals and Events

Task-specific Fine-tuning Algo.

WP1: Parametric Point Process for Physiological Signals Events

Challenge 1

Which models for Physiological Signals Events?

Idea: use Point Processes to model the events' distribution $\mathbb{P}(\{t_k\}_k)$.

Spatial events interactions in the brain

Development: Parametric models beyond Markovian kernels to capture complex events' dependencies and uncertainty in space and time.

Preliminary Study: [Staerman, Allain, Gramfort & M. ICML 2023]

WP2: Joint Event Detection and Modelisation

Interpretable

Challenge 2

Can we jointly discover the Events and capture their distribution?

WP3: Validating Representations with Practical Tasks

Challenge 3

How to use event-based representations for machine learning on signals?

Idea: Leverage differentiable architectures and model likelihood.

EULPS: Event-based Unsupervised Learning for Physiological Signals

References

- [ICLR2022] Allain, C., Gramfort, A. & Moreau, T. DriPP: Driven Point Process to Model Stimuli Induced Patterns in M/EEF Signals. in ICLR 2022.
- [ICLR2022a] Malézieux, B., Moreau, T. & Kowalski, M. Understanding approximate and Unrolled Dictionary Learning for Pattern Recovery. in ICLR 2022.
- [NeurlPS2022] Dagréou, M., Ablin, P., Vaiter, S. & Moreau, T. A framework for bilevel optimization that enables stochastic and global variance reduction algorithms. in NeurlPS 2022.
 - [ICML2023] Staerman, G., Allain, C., Gramfort, A. & Moreau, T. FaDln: Fast Discretized Inference for Hawkes Processes with General Parametric Kernels. in ICML 2023.
 - [NImg 2023] Power, L., Allain, C., Moreau, T., Gramfort, A. & Bardouille, T. Using convolutional dictionary learning to detect task-related neuromagnetic transients and ageing trends in a large open-access dataset. NeuroImage 2023.

Task Table

	WP1			WP2		WP3		WP4
	T-1.1 Parametric TPPs	$rac{ extbf{T-1.2}}{ ext{Marked PPs}}$	T-1.3 Spatial PPs	T-2.1 Joint estimation	T-2.2 Unrolled models	T-3.1 Validation	T-3.2 What if?	Open Source Code
Risk	(*)	(**)	(* * *)	(**)	(**)	(*)	(* * *)	(*)
Thomas Moreau								
PhD#1								
PhD#2								
PhD#3								
PhD#4								
Postdoc#1								
Postdoc#2								
Engineer#1								

Application domains

Neuroscience (MEG)
[Dupré*, M.* et al. NeurIPS 2018]

Astronomy
[M. & Gramfort, PAMI 2020]

General Anesthesia
[Collaboration with Paris Hospitals]

Physics Simulation
[Collaboration with NumPEx Project]

FaDIn – PP framework for novel parametric models

- ▶ Opens the way for general parametric PP models
- Based on discretization and finite support kernel.
- ▶ Efficient inference thanks to pre-computations,
- Low statistical error,

[Staerman, Allain, Gramfort & M. ICML 2023]