CSci 423 Homework 8

Due: 12:30 pm, Thursday, 11/14/2019 Daniel Quiroga

Collaborators: Ethan Young, Will Elliot, Yang Zhang, Kevin Li

1. $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}.$

We first convert G_L to a CNF of the language E_{CFG} with input < G >, and w represents the string of nonterminals $\in G_L$, (A, B, C...).

Let the terminals in G_L be a TM that takes in $< M_T >$.

Then G_M will be the TM that takes in w:

- (a) It first runs $\langle M_{Ta} \rangle$ on $A \in G_L$.
- (b) If it accepts, then it will move onto the next terminal
- (c) If $\langle M_{Ta} \rangle$ rejects, then G_M rejects.
- (d) It will loop until all terminals in G_L are accepted and return and empty string.
- (e) Then G_M accepts. Essentially if the language is just empty then we have a Turing machine for the specified language.

Since we have constructed a Turing machine that can decide E_{CFG} , so L is a decidable language.

2. $L = \{ \langle M \rangle \mid TM M \text{ accepts at least one string in no more than 9 steps} \}$

M* decides languages that follow the input < M >. Gets the length of | < M > | (at most 9) and stores the value.

Next, run the inputs length up to 9 / up to 9 steps as well. \rightarrow accepts if M accepts at least one of the strings within 9 steps.

Since the inputs are a finite length, the machine will eventually halt and thus is decidable.

(Hint for (b): What is the maximum number of tape squares can a TM scan in no more than 9 steps?)

- (5, 5 points) Prove the following closure properties of TRLs.
 - 1. If L_1 and L_2 are Turing-recognizable, so is L_1L_2 .

For decidable languages L_1 and L_2 , let M_1 and M_2 recognize them, respectively. Design M that recognizes L_1L_2

TM M = on input w

For every way to split $w = w_1 w_2$

- \rightarrow Run M_1 on w_1 M_2 on w_2
- \rightarrow If both accept, accept
- \rightarrow else: continue with the next iteration of the w_1w_2 combo

If none are accepted after loop, reject

Since there is a turing machine that recognizes L_1L_2 , then L_1L_2 is turing-recognizable

2. If L_1 and L_2 are Turing-recognizable, so is $L_1 \cap L_2$

For recognizable languages L_1 and L_2 , let M_1 and M_2 recognize them, respectively. Design M that recognizes $L_1 \cap L_2$

TM M = on input w

run M_1 on w

If M_1 accepts:

- \rightarrow Run M_2 on w
- \rightarrow If M_2 accepts, accept w
- $\rightarrow else: reject \ w$

else: reject w

Since there is a turing machine that recognizes $L_1 \cap L_2$, then $L_1 \cap L_2$ is turing-recognizable

(6 points) Let B be the set of all **infinite** binary strings over $\{0,1\}$. Show that B is uncountable.

If B only contains binary strings, we know that each position will have either a 1 or 0. Therefore we write out all of the strings in B via Table format.

...

 $B_x = 000000...*0...$

....

By combining all of the * in the string, using diagonalization we can create a string composed of all the stars in their corresponding position and change the 0's to 1's and 1's to 0's. This would give a string that is not in B, therefore we can say that B is uncountable!

(6 points) Let $L = \{w_{2i}, \forall i = 1, 2, 3, \dots \mid w_{2i} \notin L(M_i)\}$. Prove by contradiction that L is non-TR.

Proof: Assume A_D is TR.

 \exists TM M that accepts A_D i.e. $L(M) = A_D = L(M_{2i})$

 $M = M_{2i}$ for some i

 $w_{2i} \notin A_D$ iff $w_{2i} \in L(M_{2i})$ (by def of A_D)

 $w_{2i} \notin A_D$ iff $w_{2i} \notin L(M_{2i})$ (by $L(M_{2i}) = A_D$)