Original document

WATERPROOF PLUG FOR CONNECTOR

Patent number:

JP7201404

Publication date:

1995-08-04

Inventor:

OTAKA KAZUTO; KAMEYAMA ISAO; MORISHITA KAZUHIRO;

TAKASE HEIJI

Applicant:

YAZAKI CORP

Classification:

- international:

H01R13/52

- european:

Application number: JP19930352324 19931229

Priority number(s): JP19930352324 19931229

View INPADOC patent family

Report a data error here

Abstract of JP7201404

PURPOSE: To obtain a waterproof plug, which can maintain the high waterproof characteristic, by reducing the possibility of breakdown of a rubber plug. CONSTITUTION: A waterproof plug for connector is formed of a cylindrical soft seal member 51, which is fitted to the periphery of a wire 5 extended from a terminal 3 and fixed to the rear end of the terminal and inserted into a connector housing to seal a clearance between the connector housing 1 and the wire 5, and a reinforcing member 52, which is made of hard material and built in the soft seal member 51 and which generates the reaction force for resisting to the compressed load in the wire inserting direction. This reinforcing member 52 is formed of an annular board part 52b adjacent to the rear end of the terminal 3 and a supporting wall 52c extended from the board part 52b to this side of a baglike rear end wall 51a of the soft seal member 51.

Data supplied from the esp@cenet database - Worldwide

(19) []本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-201404

(43)公開日 平成7年(1995)8月4日

(51) Int.Cl.6

識別記号 庁内整理番号

FΙ

技術表示箇所

H 0 1 R 13/52

3 0 1 E 7354-5E

審査請求 未請求 請求項の数7 FD (全 8 頁)

(21)出願番号

特願平5-352324

(22)出願日

平成5年(1993)12月29日

(71)出願人 000006895

矢崎総業株式会社

東京都港区三田1丁目4番28号

(72)発明者 大高 一人

静岡県榛原郡榛原町布引原206-1 矢崎

部品株式会社内

(72)発明者 亀山 勲

静岡県榛原郡榛原町布引原206-1 矢崎

部品株式会社内

(72)発明者 森下 和広

静岡県榛原郡榛原町布引原206-1 矢崎

部品株式会社内

(74)代理人 弁理士 三好 秀和

最終頁に続く

(54) 【発明の名称】 コネクタの防水栓

(57)【要約】

【目的】 ゴム栓の破損の可能性を小さくして、高い防 水性を維持し得る防水栓を提供する。

【構成】 端子3から延びる電線5の外周に嵌合され、端子3の後端に固着されてコネクタハウジング1内に挿入されることにより、コネクタハウジング1と電線5の隙間をシールする筒状の軟質シール部材51と、該軟質シール部材51に内蔵され電線挿通方向の圧縮荷重に対抗する反力を発生する硬質の補強部材52とからなるコネクタの防水栓において、前記硬質の補強部材52は、端子3の後端に隣接する環状の基板部52bと、該基板部52bから前記軟質シール部材51の袋状後端壁51aの手前まで延びる支持壁52cとからなる。

は宇 電磁 0.60 助水性 1 ゴム性(数質シール部計) 1。 最供電報型 2,52.72.82 補独部制 2b,52b 基礎部

【特許請求の範囲】

【請求項1】 端子から延びる電線の外周に嵌合され、端子の後端に固着されてコネクタハウジング内に挿入されることにより、コネクタハウジングと電線の隙間をシールする筒状の軟質シール部材と、該軟質シール部材に内蔵される硬質の補強部材とからなるコネクタの防水栓において、前配硬質の補強部材は、端子の後端に隣接する環状の基板部と、該基板部から前記軟質シール部材の袋状後端壁の手前まで延びる支持壁とからなることを特徴とするコネクタの防水栓。

【請求項2】 請求項1記載のコネクタの防水栓において、前記支持壁は電線の周方向に間隔をおいて等間隔に複数設けられていることを特徴とするコネクタの防水栓。

【請求項3】 請求項1記載のコネクタの防水栓において、前記支持壁は円筒壁からなることを特徴とするコネクタの防水栓。

【請求項4】 請求項3記載のコネクタの防水栓において、前記円筒壁には周方向に間隔をおいて先端から前記基板部方向に延びる複数のスリットが形成されているこ 20とを特徴とするコネクタの防水栓。

【請求項5】 請求項1~4のいずれか記載のコネクタの防水栓において、前記支持壁に軟質シール部材と結合する係合孔が形成されていることを特徴とするコネクタの防水栓。

【請求項6】 請求項1~5のいずれか記載のコネクタの防水栓において、前記硬質の補強部材に対して軟質シール部材がモールド成形されていることを特徴とするコネクタの防水栓。

【請求項7】 請求項1~4のいずれか記載のコネクタ 30 の防水栓において、前記硬質の補強部材は支持壁が軟質シール部材に挿入された上で接着により一体化されていることを特徴とするコネクタの防水栓。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ゴム等の軟質シール部 材の内部に硬質樹脂等の補強部材を内蔵したコネクタの 防水栓に関する。

[0002]

【従来の技術】図8は実公平4-3415号公報に記載 40 されたものと類似の従来の防水栓を組み込んだコネクタの断面図、図9はその一部を抜き出して示す詳細図である。

【0003】図において、1はコネクタハウジングであり、コネクタハウジング1の端子挿入孔2内には端子3が挿入され、該端子3はランス4により係止されている。端子3の後端部には電線5の先端が加締められ、その加締部のさらに後方には、電線5の外周に嵌合された筒状の防水栓10が配置されている。

【0004】また、防水栓10の後方にはリヤホルダ6 50 1の袋状端壁11aの手前で止めていた。

が配置され、このリヤホルダ6をコネクタハウジング1 の後端に係合することにより、防水栓10を介して端子3が正規位置にて抜け止め係止されている。したがって、端子3はランス4とリヤホルダ6によって二重係止され、特にリヤホルダ6による係止作用により、端子3が不完全挿入の場合、適正位置に位置修正されて固定される。

2

【0005】防水栓10は、ゴム栓(軟質シール部材) 11と、その内部に内蔵された硬質の補強部材12とか 6なり、ゴム栓11の外周及び内周(通常、断面波形等 に形成されている)が、それぞれコネクタハウジング1 の端子挿入孔2の内壁と電線5の外周に密着することに より、電線5とコネクタハウジング1の隙間をシールし ている。

【0006】この防水栓10は、前端に延設した加締筒部11bを、端子3の後ろ足部3aに位置させており、後ろ足部3aに設けた一対の加締片3bを、加締筒部11bの外周の加締用凹部11cに加締めることで、端子3の後端に固着されている。図10に示すように、加締片3bには、C/W寸法に沿った方向での防水栓10の挟持力を確保するため、折り曲部3cが設けられており、この折り曲部3cを含んだ端子3の最後端7に、防水栓10が当たるようになっている。また、端子3の加締片3bは、寸法C/Hの部分でゴム栓11に加締められるようになっている。

【0007】補強部材12は、防水栓10がリヤホルダ6によって電線挿通方向の圧縮荷重を受けた場合に、それに対抗する反力を発生するために内蔵されており、相応の剛性を有する。

【0008】従来の補強部材12は、図11に示すように、中心に貫通孔12aを有した楕円形(または長円形)の基板部12bと、この基板部12bの前面に楕円の長軸方向に間隔をおいて対向するよう突設された一対の断面略円弧状の支持壁12c、12cとからなるもので、支持壁12c、12cの根元に、基板部12bにまで連続する矩形の係合孔12dを有している。

【0009】そして、この補強部材12に対してゴム栓11がモールド成形され、それによりゴム栓11と補強部材12が一体化された、図10に示すような防水栓10が構成されている。図9には、この防水栓10を、係合孔12dのある位置での断面(図の上半分)と、係合孔12dのない位置での断面(図の下半分)として示してある。この図に示すように、補強部材12の係合孔12dに、モールドされたゴムが入り込むことにより、ゴム栓11と補強部材12とが強く一体化されている。

【0010】従来の防水栓10においては、図8、図9に示すように、補強部材12の基板部12bをリヤホルダ6の当たる後端位置に露出させ、各支持壁12cの先端を前方に延ばして、端子3の後端と隣接するゴム栓11の袋状端壁11aの手前で止めていた

【0011】ここで、補強部材12はその役目から言う と、ホルダ6と、端子3の後端の加締片3bとの間隔を 埋める長さだけある方がよい。しかし、そのような長さ の補強部材12をゴム栓11に内蔵させると、補強部材 12の前端と後端が共にゴム栓11から露出してしま い、ゴム栓11によるシール効果が弱まる。つまり、ゴ ム栓11のゴムが、端子挿入孔2の内壁から電線5の外 周までを連続して完全に遮蔽していないと、補強部材1 2とゴム栓11の境界を通って水分が侵入する可能性が 生じるのである。

【0012】そのため、敢えて袋状端壁11bをゴム栓 11に残して、その手前で補強部材12の支持壁12c を止め、これによりシールの確実化を図っている。言い 換えると、袋状端壁11bは防水性確保の必要条件とし ている。

【0013】この防水栓10を用いる場合、端子3の後 端にまず防水栓10を固着し、その状態で端子挿入孔2 の内部に端子3及び防水栓10を挿入し、それからリヤ ホルダ6をコネクタハウジング1に係合する。そうする と、端子3が不完全挿入の場合、硬質の補強部材12を 20 内蔵した防水栓10を介して、リヤホルダ6による押圧 力がそのまま端子3に伝わり、端子3の不完全挿入が修 正されて、適正位置にて端子3が二重係止される。

[0014]

【発明が解決しようとする課題】ところで、図8に示す ように、端子3の最後端7には、繋ぎ部を切断した際の バリが残っていることが多い。したがって、このバリ に、リヤホルダ6に押されたゴム栓11の袋状端壁11 aが当たった場合、図12に示すように袋状端壁11a が機能を十分に発揮できないおそれがある。

【0015】また、従来の防水栓10では、補強部材1 2をゴム栓11の後部側に配置したことにより、電線へ の嵌合時にゴム栓11から補強部材12が簡単に外れて しまうおそれがあった。そのために、補強部材12に係 合孔12dを設けて、ゴム栓11との一体性を高めてい たが、そうすると係合孔12dを設けた分だけ補強部材 12の強度が落ち、端子係止力が低下するという問題が 生じていた。

【0016】また、従来の防水栓10では、補強部材1 2が、面積A1 (図11の寸法A1で便宜的に表す)の 40 小さい支持壁12cの先端で端子3を係止するので、図 10に示すように、支持壁12cの間隔Hに合わせた大 きさ(寸法C/H)の加締片3bで防水栓10を加締め なくてはならず、プランク幅Bを広くとった専用の端子 を用いる必要があった。また、端子係止力が小さく、電 線を斜めに引っ張った場合などに、端子3から防水栓1 0がはずれることがあった。

【0017】また、従来の防水栓10では、ゴム栓11 の薄肉部と補強部材12の境界が後端面(特に電線挿通 線の導線が当たることで、ゴムがめくれるおそれがあっ た。例えば、図13、図14に示す例では、後端面に露 出しているゴム栓11の肉厚は1、d2が小さいため に、導線がその部分に引っ掛かってめくれやすいという 問題があった。また、図15に示す別の例でも、ゴム栓 11の内周部が薄肉部11eとして後端面に露出してい るので、導線5aがその部分に引っ掛かってめくれの問 題を生じやすかった。

【0018】この点、図16に示すように、後端面にゴ ムの鍔面11f(図中斜線部)を設けた防水栓もある が、この場合は、めくれの問題が解消するが、ゴム形状 が複雑で、一体成形品でないと作り難いという別の問題 が生じていた。

【0019】本発明は、上記事情を考慮し、ゴム栓の破 損の可能性を小さくして、高い防水性を維持し、普通の 端子を用いた場合も端子による保持力を大きくすること ができ、しかも端子に対する係止力も高くすることがで きる製作容易な防水栓を提供することを目的とする。

[0020]

【課題を解決するための手段】請求項1の発明は、端子 から延びる電線の外周に嵌合され、端子の後端に固着さ れてコネクタハウジング内に挿入されることにより、コ ネクタハウジングと電線の隙間をシールする筒状の軟質 シール部材と、該軟質シール部材に内蔵され電線挿通方 向の圧縮荷重に対抗する反力を発生する硬質の補強部材 とからなるコネクタの防水栓において、前記硬質の補強 部材は、端子の後端に隣接する環状の基板部と、該基板 部から前記軟質シール部材の袋状後端壁の手前まで延び る支持壁とからなることを特徴とする。

【0021】請求項2の発明は、請求項1記載のコネク 夕の防水栓において、前記支持壁が電線の周方向に間隔 をおいて等間隔に複数設けられていることを特徴とす

【0022】請求項3の発明は、請求項1記載のコネク 夕の防水栓において、前記支持壁が円筒壁からなること を特徴とする。

【0023】請求項4の発明は、請求項3記載のコネク 夕の防水栓において、前記円筒壁には周方向に間隔をお いて先端から前記基板部方向に延びる複数のスリットが 形成されていることを特徴とする。

【0024】請求項5の発明は請求項1~4のいずれか 記載のコネクタの防水栓において、前記支持壁に軟質シ ール部材と結合する係合孔が形成されていることを特徴 とする。

【0025】請求項6の発明は、請求項1~5のいずれ か記載のコネクタの防水栓において、前記硬質の補強部 材に対して軟質シール部材がモールド成形されているこ とを特徴とする。

【0026】請求項7の発明は、請求項1~4のいずれ 孔近傍) に露出するので、電線挿入時にその薄肉部に電 50 か記載のコネクタの防水栓において、前記硬質の補強部

材は、支持壁が軟質シール部材に挿入された上で接着に より一体化されていることを特徴とする。

[0027]

【作用】請求項1の発明では、硬質の補強部材の基板部 を端子の後端に当たる部分に露出させ、後端部に袋状端 壁(袋状後端壁)を配置しているので、袋状端壁が端子 の後端のバリ等に当たって機能低下を生じるようなこと がない。袋状端壁にはリヤホルダが当たるが、リヤホル ダは端子後端と違い、面で当たるので、袋状端壁を破損 するおそれはない。また、袋状端壁が後端にあるので、 電線挿入の際に軟質シール部材が剥がれるようなことも ない。また、補強部材を前側に配置したので、コネクタ ハウジングに挿入するときなどに補強部材が脱落するお それが少なくなり、軟質シール部材との一体性を高める ための係合孔を補強部材に設ける必要がなくなる。よっ て、補強部材の強度を高めることができ、その分、端子 保持力を増大させることができる。また、端子の後端が 補強部材の基板部の広い面で係止されるので、端子係止 力が非常に大きくなり、特別な端子を使用しなくても、 端子から防水栓が外れなくなり、さらに、端子中途挿入 20 に対する矯正効果も安定する。

【0028】請求項2の発明では、支持壁が周方向の連 続体でないので、外方に開きやすくなり、電線挿入を容 易にする。

【0029】請求項3の発明では、補強部材の強度が高 く、それだけ端子保持力等も増大する。

【0030】請求項4の発明では、円筒壁を外に広げる ことができ、電線の挿入を容易にする。

【0031】請求項5の発明では、係合孔により軟質シ ール部材と補強部材が一体結合されることになり、端子 30 保持力が増大する。

[0032] 請求項6の発明では、モールド成形によ り、補強部材と軟質シール部材が強く一体結合されるこ とになり、端子保持力が増大する。

【0033】請求項7の発明では、軟質シール部材と補 強部材とを接着により一体化するので、両者を全く別に 製作して組み合わせることができ、製造容易である。

[0034]

【実施例】以下、本発明の一実施例を図面に基づいて説 明する。

【0035】図1は実施例の防水栓50を組み込んだコ ネクタの断面図である。この実施例の防水栓50は、図 2にも示すように、筒状のゴム栓51と、その内部に内 蔵された硬質の補強部材52とからなる。

【0036】ゴム栓51は、従来同様の加締筒部51b と、その外周の加締用凹部51cとを有する。補強部材 52は、図3に示すように、中心に貫通孔52aを有し た楕円形(または長円形)で環状の基板部52bと、こ の基板部52bの後面に楕円の長軸方向に間隔をおいて 対向するよう突設された一対の断面略円弧状の支持壁 50 いる。なお、これらの図中、図11の従来例と同一部

2c、52cとを有するものであり、図11に示した従 来の補強部材12から係合孔12dを省いた形のもので ある。そして、補強部材52が、基板部52bを端子3 の後端に隣接するよう露出させ、かつ支持壁52cの先 端をゴム部材51の袋状後端壁51aの手前まで延ばし た状態で、ゴム部材51内に内蔵されている。

6

【0037】この防水栓50は、図8で示した従来例と 同じように、端子3の後端に加締められ、電線5の外周 に嵌合された状態で、コネクタハウジング1の端子挿入 孔2内に挿入される。その上でリヤホルダ6をコネクタ ハウジング1の後端に係合することにより、リヤホルダ 6は防水栓50を介して端子3を前方に押し付け、端子 3を抜け止めする。

【0038】この状態において、防水栓50の補強部材 52は、リヤホルダ6と端子3の後端との間をほとんど 埋める寸法で位置するので、補強部材52の反力によ り、リヤホルダ6の力が、ほとんどそのまま端子3に伝 えられる。厳密にはゴム栓51の袋状後端壁51aが介 在する分だけ、わずかな弾力性を持って伝えられる。ま た、補強部材52があることで、ゴム栓52が不要に変 形しなくなるので、ゴム栓52の内外周によって、一定 の均一なシール状態が得られる。

【0039】この場合、端子3の後端には硬質の補強部 材52の基板部52bが直接当たっているので、基板部 52bの広い面積A2 (図3では便宜的に寸法A2で表 す) で端子3の後端を係止することになり、端子係止力 が増大し、同時に防水栓50の保持力も増大する。した がって、特別な端子3を使用しなくても、端子3から防 水栓50が外れにくくなり、さらに端子3の中途挿入に 対する矯正作用も安定する。

【0040】また、ゴム栓51の袋状後端壁51aがリ ヤホルダ6側にあるので、端子3の後端のバリ等に当た って亀裂を生じるような心配が全くない。リヤホルダ6 は端子3と違って、面で当たるので、袋状端壁51aを 破損するおそれは全くない。また、袋状後端壁51aが 電線挿入側である後端にあるので、電線挿入の際にゴム が剥がれるようなこともない。

【0041】また、補強部材52をゴム栓51の前側位 置に配置したので、コネクタハウジング1に防水栓50 を挿入するときなどに、補強部材52がゴム栓51から 脱落するおそれもなくなる。特に、前端には加締筒部5 1bがあるので、脱落の心配は全くなくなる。さらに、 この補強部材52には係合孔を設けていないので、補強 部材52の強度を高めることができ、その分だけ、端子 保持力を増大させることができる。

【0042】補強部材52の強度を若干犠牲にしても、 ゴム栓51との一体性を高めたい場合には、図11に示 した従来の補強部材12を、前述の補強部材52の代わ りに用いてもよい。図4、図5はその場合の例を示して

分、また先の図1の実施例と同一部分は、同一符号を付 して説明を省略する。

【0043】なお、補強部材としては、上記以外のもの を用いることもできる。

【0044】図6の補強部材72は、貫通孔72aを有 する基板部72bの後面に、円筒壁からなる支持壁72 cを突設している。この場合の支持壁72cの肉厚等は 図1の実施例と同程度にする。この補強部材72を、図 1の補強部材52の代わりにゴム栓51に内蔵させ、防 水栓を構成する。このような円筒壁からなる支持壁72 10 cを有した補強部材72をゴム栓51に内蔵させた場合 は、防水栓の強度をより高めることができる。したがっ て、端子係止力も大きくなる。但し、周方向に連続した 壁があることで、半径方向の柔軟性はなくなる。したが って、電線挿入性は若干悪くなる。

【0045】図7の補強部材82は、半径方向の柔軟性 の問題をいくらか解消するものであり、貫通孔82aを 有する基板部82bの後面に、円筒壁からなる支持壁8 2 cを突設し、さらに支持壁82 cに、周方向に間隔的 に先端から基板部82bの方向に延びる複数のスリット 20 82 dを設けている。この補強部材82を、図1の補強 部材52の代わりにゴム栓51に内蔵させて防水栓を構 成した場合、電線挿入性がよく、しかも強度の高い防水 栓を得ることができる。

【0046】なお、上配の例では特に断らなかったが、 ゴム栓51は補強部材に対してモールド成形してもよい し、予め補強部材の入る穴をあけて成形しておき、後か らその穴に補強部材を挿入して、接着剤で補強部材と固 定してもよい。

【0047】また、上記実施例では、軟質シール部材と 30 してゴムを例にとったが、それ以外の柔軟性を有する樹 脂なども利用することができる。

[0048]

【発明の効果】以上説明したように、請求項1の発明に よれば、軟質シール部材の破損のおそれが少なくなるの で、良好なシール性能を常に維持することができる。ま た、基板部の広い面で端子を直接係止するので、端子保 持力が大きく、端子側に特別な工夫をしなくても、使用 に耐える。また、端子に対する係止力も高くなるので、 電線を曲げた場合にも、端子から防水栓が抜け落ちるよ 40 うなことがなくなる。さらに、軟質シール部材の形状が 特別に複雑な形状ではないから、製作も容易である。

【0049】 請求項2の発明によれば、支持壁が外方に 開きやすくなるため、電線挿入が容易となる。

【0050】 請求項3の発明によれば、補強部材の強度 が高くなるため、それだけ端子保持力等も増大する。

【0051】 請求項4の発明によれば、円筒形の支持壁 であっても、ある程度外側に広げることができるので、 電線の挿入が容易となる。

【0052】 請求項5の発明によれば、係合孔の存在に 50 12,52,72,82 補強部材

より軟質シール部材が一体結合されることになり、端子 保持力が増大する。

8

【0053】請求項6の発明によれば、モールド成形に より軟質シール部材と補強部材が強く一体結合されるた め、端子保持力が増大する。

【0054】 簡求項7の発明によれば、軟質シール部材 と補強部材とを接着により一体化するので、製造容易で

【図面の簡単な説明】

【図1】本発明の一実施例の防水栓を組み込んだコネク 夕の断面図である。

【図2】本発明の一実施例の防水栓の斜視図である。

【図3】本発明の一実施例の防水栓における補強部材の 斜視図である。

【図4】本発明の他の実施例の防水栓を組み付けた端子 の側面図である(但し、防水栓は上半分と下半分で異な る断面で示してある)。

【図5】本発明の他の実施例の防水栓を組み付けたコネ クタの一部分を拡大して示す断面図である(但し、防水 栓は、上半分と下半分で異なる断面で示してある)。

【図6】本発明のさらに他の実施例における補強部材の 斜視図である。

【図7】本発明のさらに他の実施例における補強部材の 斜視図である。

【図8】従来の防水栓を組み付けたコネクタの断面図で

【図9】従来の防水栓を組み付けたコネクタから、端子 と防水栓を取り出して示す側面図である(但し、防水栓 は、上半分と下半分で異なる断面で示してある)。

【図10】従来の防水栓及び端子後端部の斜視図であ

【図11】従来の防水栓に使用している補強部材の斜視 図である。

【図12】従来の防水栓を組み付けたコネクタの一部分 を拡大して示す断面図である(但し、防水栓は、上半分 と下半分で異なる断面で示してある)。

【図13】従来の他の防水栓の斜視図である。

【図14】従来のさらに他の防水栓の斜視図である。

【図15】従来のさらに他の防水栓に対し電線を挿入し ようとしている状態を示す断面図である。

【図16】従来のさらに他の防水栓を示す斜視図であ る。

【符号の説明】

1 コネクタハウジング

3 端子

5 重線

50,60 防水栓

51 ゴム栓(軟質シール部材)

51a 袋状後端壁

(6)

特開平7-201404

12b, 52b 基板部

12c, 52c 支持壁

【図1】

【図2】

10

[図7]

【手続補正書】

【提出日】平成6年5月18日

【手続補正1】

【補正対象書類名】図面

【補正対象項目名】図1

【補正方法】変更

【補正内容】

【図1】

1 フキナタハウジング 3 東子 5 電数 50,50 店本を 61 ゴムを(収更シール形質) 51 年 高代収率数 12,62,72.52 補限数3 121.52 と 高級数

フロントページの続き

(72)発明者 髙瀬 平二

静岡県榛原郡榛原町布引原206-1 矢崎 部品株式会社内