

Early Stage Project Success Measurement

Presented By: Ahmed H. Alfi'er Alshareef

Table of Contents

01 Design

The problem & goal

02 Data & Algorithms

Dataset, algorithms, & architectures

03 Tools

Used, languages, frameworks & packages

1 Insights & Conclusions

Findings & prospective

Design

Design

• Why?

- 1. Rapid changes in technology
- 2. Entrepreneurship is the mainstream

• Goal:

Determine if an idea/project is worth pursuing or not (success or fail).

Design

• Who?

Two main category of beneficiaries would use this project:

- 1. Entrepreneurs: To assess the quality of their idea
- 2. **Investors**: To determine what startups to invest in

How?

Measure how likely are the users to pay for it. Success if the project achieve at least the financial goal or failure otherwise

Data & Algorithms

Data

- 1. Kickstarter dataset (<u>Kaggel</u>)
- 2. Contains 13 columns
- **3.** 378,661 projects → After cleaning (124,235)

Preprocessing / Features Engineering:

- The Preprocessing pipeline

Algorithms:

Since it is a classification problem, several models were tested:

- 1. Classical Models (Logistic Regression & Support Vector Machine)
- 2. Ensemble **Bagging** Models (Random Forest)
- **3.** Ensemble **Boosting** Models (Gradient Boosting)
- 4. Ensemble **Stacking** Models (Bert + Gradient Boosting)
- 5. Deep Learning Sequence Models (Bidirectional LSTM)
- **6.** Pre-trained Models (Bert)

Metrics	Logistic Regression	Support Vector Machine	Random Forest	Gradient Boosting	Bert + Gradient Boosting	Bi- LSTM	Bi- LSTM +	Bert
Accuracy	0.7445	0.7442	0.7447	0.7512	0.7505	0.7334	0.2666	0.7304
Precision	0.5664	0.5946	0.5539	0.5939	0.5905	0	0.2666	0.4838
Recall	0.1928	0.1375	0.2348	0.2210	0.2199	0	1	0.1647
F1	0.2877	0.2234	0.3298	0.3221	0.3204	-	-	-
AUC	0.7185	0.7184	0.7190	0.7384	0.7381	0.5	0.5	0.6218

Tools

Tools

1. Data Processing:

Pandas, and Numpy

2. Modelling:

SciKit-Learn, PyTorch, TensorFlow/Keras, and Pre-trained models (Bert & Glov)

3. Visualization:

Matplotlib, Seaborn, and Google Colab

Insights & Conclusion

Insights & Conclusion

Insights & Conclusion

Insights:

- **1. Model Range of Prediction:** $(5,000 \le \text{Goal} \le 2,000,000)$
- 2. Best Dates:
 - (Launch day: Tuesday)
 - (Launch month: October)
 - (Deadline day: Thursday)

3. Best Categories:

- Music
- Theater

4. Worst Categories:

- Technology
- Food
- Film & Video

Insights & Conclusion

Prospective:

1. Data is not sufficient:

- Bias models → more complex which needs more features
- Project description/Images
- Unifying the currency of goal

2. Web presence:

- Integrated API / Stand alone website

3. Utilizing more GPUs & RAMs:

Investigate more transformers/Pre-trained models

Thank You, Any Questions?