

南京宇微电子科技有限公司 1.77'/1.8'TFT-LCD 模块 V1.0

2025年10月7日修订

作者: 付坤

目录

客户须知	2
一、概览	
二、板卡分区介绍	
2.1 1.77/1.8 寸 TFT-LCD	
2.2 标准 OpenMV 双排母口	
2.3 屏幕背光控制	
三、应用	
3.1 相机图像输出	6
3.2 显示 UI 界面	
3.3 调试输出	6
四、原理图与 PCB 布线	7
五、编程指南	
5.1 基于 OpenMV 库编程	
5.1.1 装配	
5.1.2 显示相机捕获图像	9
5.2.3 演示	11
六、联系我们	

版本修订

时间	版本号	修订内容
2025年10月7日	V1.0	初版

客户须知

本文档为产品使用参考所编写,文档版本可能随时更新,恕不另行通知。本文中提供的所有使用方法、说明及建议仅供参考,不构成任何承诺或保证。使用本产品及本文档内容所产生的结果,由用户自行承担风险。本公司对因使用本文档或产品而导致的任何直接或间接损失,不承担任何责任。

一、概览

TFT LCD (薄膜晶体管液晶显示器)是一种广泛用于显示具有鲜艳色彩和清晰细节的高质量视觉效果的 LCD 技术,这款 1.8 寸显示屏采用了 ST7735 驱动芯片驱动,支持通过四线 SPI 接口与 MCU 交互。当与专为图像处理而设计的相机集成时,它可以实时显示摄像头输出,从而增强相机系统在基于视觉的机器人、物体检测和图像流等应用中的可用性。

参数	\(\frac{1}{2}\)
模块尺寸	宽: 39mm,长: 48mm
分辨率	128*RGB*160
驱动 IC 型号	ST7735S
背光类型	三星 LED*2,电流: 30Ma
电压	工作电压 Vcc=2.8~3.3V
视角	12:00 o'clock
接口类型	SPI 4 线
功耗	0.11W
工作温度	-20°C~+70°C
存储温度	-80°C~+80°C

二、板卡分区介绍

2.1 1.77/1.8 寸 TFT-LCD

这块屏幕驱动使用 ST7735S, 128*160 分辨率, 支持通过 SPI 接口与 MCU 通信, 用于显示调试的数据、摄像头捕获的图像和 GUI 等。

2.2 标准 OpenMV 双排母口

这块屏幕已经焊接了母口 2.54mm 杜邦接口,间距和引脚定义兼容 OpenMV4 H7 系列相机。直接将这块屏幕插在 OpenMV 相机,通过 OpenMV IDE 配置代码后,即可显示摄像头捕获的图像。

2.3 屏幕背光控制

这里连接的是 MCU 的 DAC 引脚,通过输出电压的变化控制背光 MOS 通过的电流大小,达到动态控制屏幕背光 LCD 的目的。也可以通过输出 PWM 的占空比来实现调节背光,占空比越高屏幕越亮。

三、应用

3.1 相机图像输出

显示屏用于实时展示相机模块捕获的图像或视频流,适用于视觉监控和图像处理。场景包括安防门铃(显示门外画面)、无人机(预览航拍图像)、车载倒车摄像头(呈现后视图像)及人脸识别设备(展示识别结果)。实现上,相机通过 MIPI 等接口传输数据,处理器处理后输出到显示屏,可能涉及 OpenCV 或硬件加速。可提供直观视觉反馈,支持实时预览。

3.2 显示 UI 界面

嵌入式系统显示屏用于呈现图形用户界面(GUI),实现人机交互。用户可通过触摸或按键操作菜单、按钮,查看设备状态或设置参数。常见场景包括智能家居(如温控器显示温度、模式)、医疗设备(如心电监护仪显示心率波形)和工业 HMI(展示运行状态)。实现上,采用 GUI 框架(如 LVGL、Qt)绘制界面,配合 LCD、OLED 等显示屏,支持动态更新和触摸交互。

3.3 调试输出

显示屏作为调试工具,实时输出系统状态、传感器数据或错误日志,便于开发者诊断问题。场景包括监控 CPU/内存使用、显示传感器数据(如温湿度)、输出错误码或通信数据(如 CAN 报文)。实现上,使用小型 OLED/TFT 屏,通过 SPI/I2C 接口显示文本或图形,结合 u8g2 等库实现。优势是便携、直观,适合现场调试。

四、原理图与 PCB 布线

五、编程指南

5.1 基于 OpenMV 库编程

5.1.1 装配

拆解 STM32H743VIT6 相机后 mini 接口板,更换与 OpenMV 外设兼容的接口板,装配状态从左图 变为右图

Mini 接口板引出的接口数量与 OpenMV 兼容版引出的接口数量和类型完全一致,不同之处在于尺寸 和引脚接口的位置。Mini 接口板用于空间紧凑的项目中,OpenMV 兼容板用于接插大量 OpenMV 外设(如 LCD\Light\Motor 中等)的项目中。两块转接板的比较如下图所示

5.1.2 显示相机捕获图像

路径 File/Examples/LED Shield/lcd.py

```
# This work is licensed under the MIT license.
# Copyright (c) 2013-2023 OpenMV LLC. All rights reserved.
# https://github.com/openmv/openmv/blob/master/LICENSE
# LCD Example
# Note: To run this example you will need a LCD Shield for your OpenMV Cam.
# The LCD Shield allows you to view your OpenMV Cam's frame buffer on the go.
import sensor
import display
sensor.reset() # Initialize the camera sensor.
sensor.set pixformat(sensor.RGB565) # or sensor.GRAYSCALE
sensor.set framesize(sensor.QQVGA2) # Special 128x160 framesize for LCD Shield.
# Initialize the lcd screen.
# Note: A DAC or a PWM backlight controller can be used to control the
# backlight intensity if supported:
# lcd = display.SPIDisplay(backlight=display.DACBacklight(channel=2))
# lcd.backlight(25) # 25% intensity
# Otherwise the default GPIO (on/off) controller is used.
lcd = display.SPIDisplay()
while True:
    lcd.write(sensor.snapshot()) # Take a picture and display the image.
```

这是一个 LCD 显示屏示例。需要使用 OpenMV 的 LCD Shield (硬件扩展模块)以实现摄像头帧缓冲区的实时显示。该程序捕获摄像头的实时图像,并通过 LCD Shield 显示。图像分辨率设置为QQVGA2 (128x160),匹配 LCD Shield 的屏幕大小。

5.1.2.1 导入库

import sensor

import display

- sensor: 用于摄像头的初始化、设置分辨率和捕获帧。
- display: 用于操作 LCD Shield 的显示功能。

5.1.2.2 摄像头初始化

sensor.reset() # Initialize the camera sensor.

sensor.set pixformat(sensor.RGB565) # or sensor.GRAYSCALE

sensor.set framesize(sensor.QQVGA2) # Special 128x160 framesize for LCD Shield.

- sensor.reset(): 初始化摄像头传感器。
- sensor.set_pixformat(sensor.RGB565): 设置像素格式为 RGB565 (16 位颜色)。可选值: sensor.GRAYSCALE (灰度图)。
- sensor.set_framesize(sensor.QQVGA2): 设置帧大小为 QQVGA2 (128x160), 这是 LCD Shield 的专用分辨率。

5.1.2.3 LCD 屏幕初始化

- # Initialize the lcd screen.
- # Note: A DAC or a PWM backlight controller can be used to control the
- # backlight intensity if supported:
- # lcd = display.SPIDisplay(backlight=display.DACBacklight(channel=2))
- # lcd.backlight(25) # 25% intensity
- # Otherwise the default GPIO (on/off) controller is used.

lcd = display.SPIDisplay()

- display.SPIDisplay(): 初始化 LCD 屏幕,使用 SPI 接口进行通信。
- 注释部分提到: 如果支持,可以使用 DAC 或 PWM 控制背光强度: 如果没有 PWM 控制, 默认使用 GPIO 控制背光(仅支持开/关)。

5.1.2.4 主循环

while True:

lcd.write(sensor.snapshot()) # Take a picture and display the image.

- sensor.snapshot(): 捕获一帧图像,并返回图像数据。
- lcd.write(): 将捕获的图像数据写入 LCD 显示屏,实时显示。

• 0

5.2.3 演示

本次演示使用的设备如下图所示,本次实验需要一块转接板,外接显示屏模组。这种兼容设计,在保证小型化的基础上,可以兼容市面上绝大多数 OpenMV 外设。

电脑端打开下载网址: <u>Download - OpenMV</u>,找到下载界面,选择下载适配您电脑的软件安装包,如果因为网络问题您无法下载成功,我们为您准备了安装包,分享地址如下:

阿里云盘: https://www.alipan.com/s/TbSUSwsg9et 提取码: 37ze

百度网盘: https://pan.baidu.com/s/1sBfvTnzIGi24zeOvT3r21g?pwd=t84g 提取码: t84g

程序的路径如下

连接成功后,可以看到 IDE 右上角视频捕获界面与显示屏均有图像显示,但是屏幕亮度比较低。可以通过调整 P6 口的 DAC 输出背光控制电压,从而控制显示屏亮度。我们把 LCD 屏幕初始化的代码做如下更改

lcd = display.SPIDisplay(backlight=display.DACBacklight(channel=2))
lcd.backlight(75)

六、联系我们

若需任何帮助,请邮件联系我们: info@fukunlab.com

样品购买:淘宝店铺-宇微电子