- 8. Za projekt rekonstrukcije sustava grijanja u poslovnoj zgradi vaše tvrtke procijenili ste da će imati internu stopu profitabilnosti 13%. Financijska služba vas je izvijestila da je prosječni ponderirani trošak vaše tvrtke 10%. Hoćete li menadžmentu tvrtke predložiti provođenje ovog projekta?
- i. Hoću, jer će projekt donijeti profit tvrtki.
- ii. Neću, jer projekt nije profitabilan.
- iii. Iz navedenih podataka nije moguće donijeti takvu odluku.

- 11. Razmatrate dva projekta s jednakim investicijskim troškovima od 1.000 kn. Projekt A ima čiste godišnje novčane tokove 250 kn i vrijeme efektuiranja 7 godina, a projekt B ima čiste godišnje novčane tokove 400 kn i vrijeme efektuiranja 4 godina. Koji projekt je isplativiji?
- i. Projekt A
- ii. Projekt B
- iii. Iz navedenih podataka to nije moguće čak ni približno odrediti.

16. U nekoj industrijskoj zgradi provodite projekt zamjene magnetskih prigušnica fluorescentne rasvjete elektroničkima, kako biste smanjili potrošnju električne energije. Zamjenu ćete izvršiti na <u>500 fluorescentnih cijevi</u>, pri čemu će se za svaku cijev instalirana snaga smanjiti za <u>10 W</u>. Pretpostavite da je rasvjeta u pogonu uključena 24 sata dnevno tijekom cijele godine te da je cijena električne energije <u>0,3 kn/kWh</u>, a cijena snage <u>50 kn/kW</u> (instaliranu snagu plaćate na mjesečnoj razini, dakle 12 puta godišnje). Izračunajte ukupne godišnje novčane uštede koje ćete ostvariti ovim projektom (smanjenjem instalirane snage i smanjenjem potrošnje energije) i jednostavno razdoblje povrata ove investicije ukoliko je cijena jedne elektroničke prigušnice 150 kn (na svaku cijev ide jedna prigušnica).

- Ušteda snage je 500*10 W = 5 kW
- Ušteda novaca na snazi 0,5 kW*50 kn/kW * 12=3.000 kn
- Ušteda energije je 500*10 W*8.760 h/god= 43.800 kWh
- Ušteda novaca je 4.380*0,3=13.140 kn
- Ukupne uštede (novčani primitci projekta): 16.140 kn
- Ukupna investicija (novčani izdatci projekta): 150*500= 75.000 kn
- JPP=75.000/16.140 =4,65 god

20. Elektroprivredna tvrtka razmatra mogućnosti za izgradnju nove elektrane instalirane snage <u>600 MW</u>. U uži su izbor ušle dvije tehnologije, čije su karakteristike dane u tablici. Uz pretpostavku da će <u>faktor iskoristivosti elektrane biti 80%</u> i da je <u>životni vijek elektrane 30 godina</u> bez obzira na odabranu tehnologiju te da će tvrtka proizvedenu električnu energiju moći prodavati po <u>30 EUR/MWh</u>, opredijelite se za jednu od navedenih tehnologija. Pri tome se koristite metodom <u>čiste sadašnje vrijednosti</u> uz pretpostavku da je prosječni ponderirani trošak

kapitala tvrtke jednak 12%.

	Tehnologija A	Tehnologija B
Investicijski troškovi	1.100 EUR/kW	650 EUR/kW
Potrošnja goriva	7.500 Btu/kWh	6.500 Btu/kWh
Očekivani trošak goriva	1,15 EUR/MBtu	2,75 EUR/MBtu

	Tehnologija A	Tehnologija B
Investicijski troškovi I ₀ (EUR)	660.000.000 (1.100*600)	390.000.000 EUR (650*600)
Potrošnja goriva F	7.500 Btu/kWh	6.500 Btu/kWh
Očekivani trošak goriva c _F	1,15 EUR/MBtu	2,75 EUR/MBtu
Proizvedena energija E (MWh)		
(0,8*P*8760)	4.204.800	4.204.800
Trošak goriva CF (EUR) (E*F*c _F)	36.266.400,00	75.160.800,00
Prihod od prodaje el.ene. R (EUR)		
(E*30 EUR/MWh)	126.144.000,00	126.144.000,00
Čisti novčani tok V (EUR)		
(R-CF)	89.877.600,00	50.983.200,00
Čista sadašnja vrijednost S ₀ (EUR)	63.980.602,57	20.679.055,26

Zadatak 7

- Višak zagušenja odnosno trgovinski višak između dva čvorišta ovisi o?
 - a. razlici u graničnim troškovima dva čvorišta
 - b. razlici u graničnim troškovima dva čvorišta i termičkom kapacitetu voda
 - c. razlici u graničnim troškovima dva čvorišta i prenesenoj snazi vodom
 - d. razlici u graničnim troškovima dva čvorišta i snagama u čvorištima

Rješenje

- a. razlici u graničnim troškovima dva čvorišta
- b. razlici u graničnim troškovima dva čvorišta i termičkom kapacitetu voda
- c. razlici u graničnim troškovima dva čvorišta i prenesenoj snazi vodom
- d. razlici u graničnim troškovima dva čvorišta i snagama u čvorištima

$$E_{\text{TOTAL}} - R_{\text{TOTAL}} = \pi_{\text{S}} \cdot D_{\text{S}} + \pi_{\text{B}} \cdot D_{\text{B}} - \pi_{\text{S}} \cdot P_{\text{S}} - \pi_{\text{B}} \cdot P_{\text{B}}$$

$$= \pi_{\text{S}} \cdot (D_{\text{S}} - P_{\text{S}}) + \pi_{\text{B}} \cdot (D_{\text{B}} - P_{\text{B}})$$

$$= \pi_{\text{S}} \cdot F_{\text{BS}} + \pi_{\text{B}} \cdot (-F_{\text{BS}})$$

$$= (\pi_{\text{S}} - \pi_{\text{B}}) \cdot F_{\text{BS}}$$

$$(6.26)$$

Zadatak 8

- Ekonomsko dispečiranje uzima u obzir
 - a. zagušenja u vodovima
 - b. ponudbene cijene proizvođača u čvorištima
 - c. mogućnost "graničnih" generatora
 - d. sve navedeno

Rješenje

- a. zagušenja u vodovima
- b. ponudbene cijene proizvođača u čvorištima
- c. mogućnost "graničnih" generatora
- d. sve navedeno

Table 6.4 Generator data for the three-bus system of Figure 6.12

ginal cost /MWh)	
7.5	
6	
4	
0	

$$P_{A} = 125 \text{ MW}$$

$$P_{B} = 285 \text{ MW}$$

$$P_{C} = 0 \text{ MW}$$

$$P_{D} = 0 \text{ MW}$$

$$(6.28)$$

The total cost of the economic dispatch is

$$C_{ED} = MC_A \cdot P_A + MC_B \cdot P_B = 2647.50 \text{ s/h}$$
 (6.29)

Zadatak 4

EES s tri čvorišta opisan je slikom. (i) Je li moguće zadovoljiti slučaj iz tabele?
 (ii) Koliko iznose tokovi snaga po granama?

Prodaje	Kupuje	Iznos (MW)
С	Х	500
С	Υ	100
Х	Υ	400
В	С	200
А	Z	300

Rješenje

 Kako nema drugih ograničenja tada treba najprije izjednačiti potrošnje u čvorištima. Kada se to učini dobije se druga (jednostavnija) tablica

Čvorište	Proizvodnja	Potrošnja
1	0	300
2	200	0
3	100	0

- Tokovi granama su tada:
- Iz čvorišta 2 ide u čvorište 1 preko grane 2-1 iznos 160 MW, a preko grane 2-3-1 iznos 40 MW
- Iz čvorišta 3 ide u čvorište 1 preko grane 3-1 iznos 60, a preko grane 3-2-1 iznos 40 MW odnosno (ii)

Grana	Tokovi
2-1	160 + 40 = 200 MW
3-1	<u>40 + 60 = 100 MW</u>
3-2	<u>40 - 40 = 0 MW</u>

(i) Opterećenje grana manje od 250 i scenarij je moguć.

Zadatak 5

• Za EES koji se sastoji od dva čvorišta (slika) dani su granični troškovi izrazima: MC_A = 25+0,02* P_A i MC_B = 20+0,03* P_B . Potrošnja je konstantna i dana slikom. Generatori nemaju ograničenja u snazi. Ukoliko je prijenosna moć voda ograničena na 300 MW koliko iznosi (i) cijena u jednom i cijena u drugom području? (ii) Koliko iznosi prihod od zagušenje?

Rješenje

- Iz 25+0,02*P_A= 20+0,03*P_B dobiva se da je π_A = π_B = 59 €/MWh; P_A = 1.700 MW; P_B = 1.300 MW; <u>F_{AB}= -300 MW</u>
- II. Budući da je vod kapaciteta koji zadovoljava prijenos 300 MW <u>nema</u> <u>prihoda zagušenja.</u>

Zadatak 6

 Koliko iznose (i) čvorišne cijene, a koliko (ii) proizvodnja pojedinih elektrana za primjer sa slike opisan podacima iz tabele. Prijenos vodovima nije ograničen. Koliko iznosi (iii) višak pojedinog proizvođača, a koliko (iv) trošak pojedinih potrošača?

Proiz. jedinica	Snaga (MW)	Granična cijena (kn/MWh)
А	230	400
В	200	250
С	150	300
D	200	210

Rješenje

- Ako nema ograničenja tada se jedinice angažiraju temeljem granične cijene. Kako mora biti zadovoljena potražnja od (400+80+40)= 520 MW to se prvo angažira jedinica D (200 MW), pa zatim jedinica B (200 MW) i 120 MW jedince C. Zadnji angažirani generator određuje cijenu i ona iznosi 300 kn/MWh za sve.
- Prihod proizvođača iznosi:

Gen. Jedinica (proizvođač)	Višak prihoda (kn)	Potrošač	Trošak (kn)
А	(300- 210)*200=18.000	1	400*300=120.000
В	(300- 250)*250=7.500	2	80*300=24.000
С	(300-300)*120=0	3	40*300=12.000
D	(300-400)*0=0		