2节/3节电池串联用电池保护IC

S-8253C/D系列

S-8253C/D系列内置高精度电压检测电路和延迟电路,是用于2节或3节串联锂离子可充电电池的保护IC。

本IC最适用于对锂离子可充电电池组的过充电、过放电以及过电流的保护。

■ 特点

(1) 针对各节电池的高精度电压检测功能

・过充电检测电压n (n = 1 ~ 3)
 ・过充电解除电压n (n = 1 ~ 3)
 ・过充电解除电压n (n = 1 ~ 3)
 ・过放电检测电压n (n = 1 ~ 3)
 ・过放电检测电压n (n = 1 ~ 3)
 ・过放电解除电压n (n = 1 ~ 3)
 ・过放电解除电压n (n = 1 ~ 3)
 ・过放电解除电压n (n = 1 ~ 3)

(2) 3段过电流检测功能 (包含负载短路)

• 过电流检测电压1 0.05 ~ 0.30 V (进阶单位为50 mV) 精度±25 mV

・过电流检测电压2 0.5 V (固定)・过电流检测电压3 1.2 V (固定)

- (3) 各种延迟时间 (过充电、过放电、过电流) 仅通过内置电路即可实现 (不需要外接电容)
- (4) 通过控制端子可以禁止充放电
- (5) 可选择向0 V电池的充电功能「可能」/「禁止」 (6) 高耐压器件 绝对最大额定值26 V

(7) 宽工作电压范围 2 ~ 24 V(8) 宽工作温度范围 -40 ~ +85 °C

(9) 低消耗电流

工作时 28 μA 最大值 (+25 °C)
 休眠时 0.1 μA 最大值 (+25 °C)

(10) 无铅产品

*1. 过充电解除电压=过充电检测电压 - 过充电滞后电压 (过充电滞后电压 (过充电滞后电压n (n = 1 ~ 3) 为0 V或者在0.1 ~ 0.4 V的范围内以50 mV为进阶单位来选择)

■ 用途

- 锂离子可充电电池组
- 锂聚合物可充电电池组

■ 封装

封进夕		图面号码	
到 衣	封装图面	- 卷带图面	带卷图面
8-Pin TSSOP	FT008-A	FT008-E	FT008-E

■ 框图

1. S-8253C系列

备注 图中的二极管全部为寄生二极管。

图1

2. S-8253D系列

备注 图中的二极管全部为寄生二极管。

图2

■ 产品型号的构成

1. 产品名

- *1. 请参阅卷带图。
- *2. 请参阅"2. 产品名目录"。

2. 产品名目录

表1 S-8253C系列 (2节串联用)

产品名 / 项目	过充电检测电压	过充电解除电压	过放电检测电压	过放电解除电压	过电流检测电压	向0 V电池
	V _{CU}	V_{CL}	V_{DL}	V_{DU}	V_{IOV1}	充电功能
S-8253CAA-T8T1GZ	4.350 ± 0.025 V	$4.050 \pm 0.050 \ V$	2.40 ± 0.080 V	$2.70 \pm 0.100 \ V$	$0.300 \pm 0.025 \text{ V}$	可能
S-8253CAD-T8T1GZ	$4.250 \pm 0.025 \text{ V}$	$4.050 \pm 0.050 \ V$	$2.40 \pm 0.080 \text{ V}$	$2.70 \pm 0.100 \ V$	$0.120 \pm 0.025 \text{ V}$	可能
S-8253CAH-T8T1GZ	$4.350 \pm 0.025 \text{ V}$	$4.150 \pm 0.050 \text{ V}$	$2.30 \pm 0.080 \text{ V}$	$2.30 \pm 0.080 \; V$	$0.090 \pm 0.025 \text{ V}$	可能
S-8253CAI-T8T1GZ	4.250 ± 0.025 V	$4.050 \pm 0.050 \text{ V}$	$2.40 \pm 0.080 \text{ V}$	$2.70 \pm 0.100 \ V$	$0.200 \pm 0.025 \text{ V}$	可能

表2 S-8253D系列 (3节串联用)

产品名 / 项目	过充电检测电压	过充电解除电压	过放电检测电压	过放电解除电压	过电流检测电压	向0 V电池
	V _{CU}	V_{CL}	V_{DL}	V_{DU}	V_{IOV1}	充电功能
S-8253DAA-T8T1GZ	4.350 ± 0.025 V	$4.050 \pm 0.050 \ V$	$2.40 \pm 0.080 \text{ V}$	$2.70 \pm 0.100 \text{ V}$	$0.300 \pm 0.025 \text{ V}$	可能
S-8253DAB-T8T1GZ	4.300 ± 0.025 V	$4.050 \pm 0.050 \ V$	$2.70 \pm 0.080 \text{ V}$	$3.00 \pm 0.100 \text{ V}$	$0.200 \pm 0.025 \text{ V}$	禁止
S-8253DAI-T8T1GZ	$4.350 \pm 0.025 \text{ V}$	$4.150 \pm 0.050 \ V$	$2.20 \pm 0.080 \ V$	$2.40 \pm 0.100 \ V$	$0.160 \pm 0.025 \text{ V}$	可能

■ 引脚排列图

8-Pin TSSOP Top view

表3 S-8253C系列

引脚号	符号	描述
1	DOP	放电控制用FET门极连接端子 (CMOS输出)
2	COP	充电控制用FET门极连接端子
	COL	(N沟道开路漏极输出)
3	VMP	VDD - VMP间的电压检测端子 (过电流检测端子)
		充放电用控制信号的输入端子、缩短测试时间用端子
4	CTL	(L: 正常工作、
4	CIL	H: 充放电禁止、
		M (V _{DD} × 1/2): 测试时间缩短)
5	VSS	负电源输入端子、电池2的负电压连接端子
6	VC2	无连接 ^{*1}
7	VC1	电池1的负电压、电池2的正电压连接端子
8	VDD	正电源输入端子、电池1的正电压连接端子

^{*1.} 无连接表示从电气角度而言处于开路状态。

因此,与VDD或VSS均可连接。

备注 有关形状请参照「外形尺寸图」。

表4 S-8253D系列

引脚号	符号	描述
1	DOP	放电控制用FET门极连接端子 (CMOS输出)
2	COP	充电控制用FET门极连接端子
2	COF	(N沟道开路漏极输出)
3	VMP	VDD - VMP间的电压检测端子 (过电流检测端子)
		充放电用控制信号的输入端子、缩短测试时间用端子
4	CTL	(L: 正常工作、
	CIL	H: 充放电禁止、
		M (V _{DD} × 1/2): 测试时间缩短)
5	VSS	负电源输入端子、电池3的负电压连接端子
6	VC2	电池2的负电压、电池3的正电压连接端子
7	VC1	电池1的负电压、电池2的正电压连接端子
8	VDD	正电源输入端子、电池1的正电压连接端子

备注 有关形状请参照「外形尺寸图」。

■ 绝对最大额定值

表5

(除特殊注明以外: Ta = 25 °C)

项目	记号	适用端子	绝对最大额定值	单位
VDD - VSS间输入电压	V _{DS}	_	$V_{SS}-0.3\sim V_{SS}+26$	V
输入端子电压	V _{IN}	VC1、VC2	$V_{SS}-0.3\sim V_{DD}+0.3$	V
VMP输入端子电压	V_{VMP}	VMP	$V_{SS}-0.3\sim V_{SS}+26$	>
DOP输出端子电压	V_{DOP}	DOP	$V_{SS}-0.3\sim V_{DD}+0.3$	V
COP输出端子电压	V _{COP}	COP	$V_{SS}-0.3\sim V_{VMP}+0.3$	V
CTL输入端子电压	V _{IN_CTL}	CTL	$V_{SS}-0.3\sim V_{DD}+0.3$	V
容许功耗	Pn		300 (基板未安装时)	mW
台口切札	ГD	_	700 ^{*1}	mW
工作周围温度	T _{opr}	_	− 40 ~ + 85	°C
保存温度	T _{stg}	_	− 40 ~ + 125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm×76.2 mm×t1.6 mm

(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

图4 封装容许功耗 (基板安装时)

■ 电气特性

1. 检测延迟时间以外

表 6 (1/2)

(除特殊注明以外: Ta = 25 °C)

						(100.10001.0	エザタイン		,
项目	记号	条件		最小值	典型值	最大值	单位	测定 条件	测定 电路
检测电压									
过充电检测电压n	V _{CUn}	3.90~4.40 V, 可调整		V _{CUn} -0.025	V _{CUn}	V _{CUn} +0.025	٧	1	1
过充电解除电压n	V_{CLn}	3.80~4.40 V, 可调整	V _{CL} ≠ V _{CU} 时	V _{CLn} -0.05	V _{CLn}	V _{CLn} +0.05	V	1	1
20元 电解除电压日	V CLn	3.60~4.40 V,时间整	V _{CL} = V _{CU} 时	V _{CLn} -0.025	V _{CLn}	V _{CLn} +0.025	V	'	'
过放电检测电压n	V_{DLn}	2.0~3.0 V, 可调整		V _{DLn} -0.080	V_{DLn}	V _{DLn} +0.080	V	1	1
过放电解除电压n	V_{DUn}	2.0~3.40 V, 可调整	V _{DL} ≠V _{DU} 时	V _{DUn} -0.10	V_{DUn}	V _{DUn} +0.10	<	1	1
20.00 电解除电压口	V DUn	2.0~3.40 V, 刊 峒 奎	V _{DL} = V _{DU} 时	V _{DUn} -0.08	V_{DUn}	V _{DUn} +0.08	V	'	'
过电流检测电压1	V _{IOV1}	0.05~0.30 V, 可调整		V _{IOV1} -0.025	V _{IOV1}	V _{IOV1} +0.025	V	2	1
过电流检测电压2	V _{IOV2}	_		V _{DD} -0.60	V _{DD} -0.50	V _{DD} -0.40	V	2	1
过电流检测电压3	V _{IOV3}	_		V _{DD} -1.5	V _{DD} -1.2	V _{DD} -0.9	V	2	1
温度系数1 ^{*1}	T _{COE1}	Ta = 0 ~ 50 °C*3		-1.0	0	1.0	mV / °C	_	
温度系数2 ^{*2}	T _{COE2}	Ta = 0 ~ 50 °C*3		-0.5	0	0.5	mV / °C	_	_
向0 V电池充电功能									
向0 V电池充电开始充电器电压	V _{0CHA}	向0 V充电功能「可能」			8.0	1.5	V	12	5
向0 V电池充电禁止电池电压	V _{0INH}	向0 V充电功能「禁止」		0.4	0.7	1.1	V	12	5
内部电阻									
VMP - VDD间电阻		V1 = V2 = V3*4 = 3.5 V		70	95	120	kΩ	6	2
VMP - VSS间电阻	R_{VMS}	V1 = V2 = V3*4 = 1.8 V	$V_{VMP} = V_{DD}$	450	900	1800	kΩ	6	2

表 6 (2/2)

(除特殊注明以外: Ta = 25 °C)

				(いいい いいエ	111 W 11 ·	1 u – 2	_0 0
记号	条件	最小值	典型值	最大值	单位	测定 条件	
V_{DSOP}	确定DOP, COP输出电压	2		24	V	_	_
V _{CTLH}	_	V _{DD} -0.5	_	_	V	7	1
V _{CTLL}	_	_	_	V _{SS} +0.5	V	7	1
							•
I _{OPE}	V1 = V2 = V3*4 = 3.5 V	_	14	28	μA	5	2
I _{PDN}	V1 = V2 = V3*4 = 1.5 V	_	_	0.1	μA	5	2
I _{VC1}	V1 = V2 = V3*4 = 3.5 V	-0.3	0	0.3	μA	9	3
I _{VC2}	V1 = V2 = V3*4 = 3.5 V	-0.3	0	0.3	μA	9	3
I _{CTLH}	$V1 = V2 = V3^{*4} = 3.5 \text{ V}, V_{CTL1} = V_{DD}$	_	_	0.1	μA	8	3
I _{CTLL}	$V1 = V2 = V3^{*4} = 3.5 \text{ V}, V_{CTL1} = V_{SS}$	-0.4	-0.2	_	μA	8	3
I _{COH}	V _{COP} = 24 V	_		0.1	μA	10	4
I _{COL}	V _{COP} = V _{SS} + 0.5 V	10		_	μA	10	4
I _{DOH}	$V_{DOP} = V_{DD} - 0.5 \text{ V}$	10		_	μA	11	4
I _{DOL}	$V_{DOP} = V_{SS} + 0.5 V$	10		_	μA	11	4
	VDSOP VCTLH VCTLL IOPE IPDN IVC1 IVC2 ICTLH ICTLL ICOH ICOL IDOH	VDSOP 确定DOP, COP輸出电压	VDSOP 确定DOP, COP輸出电压 2	記号 条件 最小値 典型値 表小値 典型値 VDSOP 确定DOP, COP输出电压 2	記号 条件 最小値 典型値 最大値 最大値 VDSOP 确定DOP, COP输出电压 2	記号 条件 最小値 典型値 最大値 単位 単位	VDSOP 确定DOP, COP輸出电圧 2

^{*1.} 电压温度系数1表示为过充电检测电压。

^{*2.} 电压温度系数2表示为过电流检测电压1。

^{*3.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

^{*4.} 由于S-8253C系列是2节串联用电池保护IC,因此没有电池V3。

2. 检测延迟时间

(1) S-8253CAA、S-8253CAD、S-8253CAI、S-8253DAA、S-8253DAB

表7

项目	记号	条件	最小值	典型值	最大值	单位	测定 条件	测定 电路
延迟时间(Ta = 25 °C)								
过充电检测延迟时间	t _{CU}	_	0.92	1.15	1.38	S	3	1
过放电检测延迟时间	t _{DL}	_	115	144	173	ms	3	1
过电流检测延迟时间1	t _{IOV1}	_	7.2	9	10.8	ms	4	1
过电流检测延迟时间2	t _{IOV2}	_	3.6	4.5	5.4	ms	4	1
过电流检测延迟时间3	t _{IOV3}	_	220	300	380	μs	4	1

(2) S-8253DAI

表8

项目	记号	条件	最小值	典型值	最大值	单位	测定 条件	测定 电路
延迟时间(Ta = 25 °C)								
过充电检测延迟时间	t _{CU}	_	0.92	1.15	1.38	S	3	1
过放电检测延迟时间	t _{DL}	_	115	144	173	ms	3	1
过电流检测延迟时间1	t _{IOV1}	_	3.6	4.5	5.4	ms	4	1
过电流检测延迟时间2	t _{IOV2}	_	0.89	1.1	1.4	ms	4	1
过电流检测延迟时间3	t _{IOV3}	_	220	300	380	μs	4	1

(3) S-8253CAH

表9

项目	记号	条件	最小值	典型值	最大值	单位	测定 条件	测定 电路
延迟时间(Ta = 25 °C)								
过充电检测延迟时间	t _{CU}	_	0.92	1.15	1.38	s	3	1
过放电检测延迟时间	t _{DL}	_	115	144	173	ms	3	1
过电流检测延迟时间1	t _{IOV1}	_	14.5	18	22	ms	4	1
过电流检测延迟时间2	t _{IOV2}	_	3.6	4.5	5.4	ms	4	1
过电流检测延迟时间3	t _{IOV3}	_	220	300	380	μs	4	1

■ 测定电路

1. 过充电检测电压1、过充电解除电压1、过放电检测电压1、过放电解除电压1 (测定条件 1 测定电路 1)

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、V4 = 0 V、V5 = 0 V 设置后的状态下,请确认 COP 端子以及 DOP 端子的电压为"L" ($V_{DD} \times 0.1$ V 以下的电压)的状态 (以下记载为初期状态)。

1.1 过充电检测电压 1 (V_{CU1})、过充电解除电压 1 (V_{CL1})

从初期状态开始缓慢提升 V1 的电压,COP 端子的电压为"H" ($V_{DD} \times 0.9 \text{ V 以上的电压}$) 时 V1 的电压即为过充电检测电压 1 (V_{CU1}),之后缓慢降低 V1 的电压,COP 端子的电压为"L"时 V1 的电压即为过充电解除电压 1 (V_{CL1})。

1.2 过放电检测电压 1 (V_{DL1})、过放电解除电压 1 (V_{DU1})

从初期状态开始缓慢降低 V1 的电压, DOP 端子的电压为"H"时 V1 的电压即为过放电检测电压 1 (V_{DL1}),之后缓慢提升 V1 的电压,DOP 端子的电压为"L"时 V1 的电压即为过放电解除电压 1 (V_{DU1})。

利用与 n=1 同样的方法,使 Vn (n=2: S-8253C 系列、n=2、3: S-8253D 系列)的电压产生变化,可以测定出过充电检测电压 (V_{Cun})、过充电解除电压 (V_{CLn})、过放电检测电压 (V_{DLn}) 以及过放电解除电压 (V_{Dun})。

2. 过电流检测电压1、过电流检测电压2、过电流检测电压3

(测定条件2 测定电路1)

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、V4 = 0 V、V5 = 0 V 设置后的状态下,请确认 COP 端子以及 DOP 端子的电压为"L"的状态 (以下记载为初期状态)。

2.1 过电流检测电压 1 (V_{IOV1})

从初期状态开始缓慢提升 V5 的电压,COP 端子以及 DOP 端子的电压为"H"时 V5 的电压即为过电流检测电压 1 $(V_{IOV1})_{\circ}$

2.2 过电流检测电压 2 (V_{IOV2})

从初期状态开始在瞬间 (10 μ s 以内) 提升 V5 的电压,COP 端子以及 DOP 端子的电压会为"H",其延迟时间在过电流检测延迟时间 2 (t_{IOV2})的最小值与最大值之间时的 V5 电压即为过电流检测电压 2 (V_{IOV2})。

2.3 过电流检测电压 3 (V_{IOV3})

从初期状态开始瞬间 (10 μ s 以内) 提升 V5 的电压,COP 端子以及 DOP 端子的电压会为"H",其延迟时间在过电流检测延迟时间 3 (t_{IOV3}) 的最小值与最大值之间时的 V5 电压即为过电流检测电压 3 (V_{IOV3})。

3. 过充电检测延迟时间、过放电检测延迟时间

(测定条件3 测定电路1)

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、V4 = 0 V、V5 = 0 V 设置后的状态下,请确认 COP 端子以及 DOP 端子的电压为"L"的状态 (以下记载为初期状态)。

3.1 过充电检测延迟时间 (tcu)

过充电检测延迟时间 (t_{CU}) 为,从初期状态开始 V1 的电压从过充电检测电压 1 (V_{CU1}) – 0.2 V 瞬间 $(10 \mu s \ Up)$ 变为过充电检测电压 1 (V_{CU1}) + 0.2 V 之后,COP 端子的电压从"L"变为"H"为止的时间。

3.2 过放电检测延迟时间 (t_{DL})

过放电检测延迟时间(t_{DL})为,从初期状态开始 V1 的电压从过放电检测电压 1 (V_{DL1}) + 0.2 V 瞬间 (10 μs 以内)变为过放电检测电压 1 (V_{DL1}) + 0.2 V 之后,DOP 端子的电压从"L"变为"H"为止的时间。

4. 过电流检测延迟时间1、过电流检测延迟时间2、过电流检测延迟时间3 (测定条件 4 测定电路 1)

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、V4 = 0 V、V5 = 0 V 设置后的状态下,请确认 COP 端子以及 DOP 端子的电压为"L"的状态 (以下记载为初期状态)。

4.1 过电流检测延迟时间 1 (t_{IOV1})

过电流检测延迟时间 1 (t_{IOV1}) 为,从初期状态开始 V5 的电压瞬间 (10 μ s 以内) 变为 0.35 V 之后,DOP 端子的电压从"L"变为"H"为止的时间。

4.2 过电流检测延迟时间 2 (t_{IOV2})

过电流检测延迟时间 2 (t_{IOV2}) 为, 从初期状态开始 V5 的电压瞬间 (10 μ s 以内) 变为 0.7 V 之后,DOP 端子的电压从"L"变为"H"为止的时间。

4.3 过电流检测延迟时间 3 (t_{IOV3})

过电流检测延迟时间 $3(t_{IOV3})$ 为, 从初期状态开始 V5 的电压瞬间 (10 μ s 以内) 变为 1.6 V 之后,DOP 端子的电压从"L"变为"H"为止的时间。

5. 工作时消耗电流、休眠时消耗电流

(测定条件 5 测定电路 2)

5.1 工作时消耗电流 (I_{OPE})

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、S1 = ON、S2 = OFF 设置后的状态下,流经 VSS 端子的电流 (I_{SS}) 即为工作时消耗电流 (I_{OPE})。

5.2 休眠时消耗电流 (I_{PDN})

在 V1 = V2 = 1.5 V (S-8253C 系列)、V1 = V2 = V3 = 1.5 V (S-8253D 系列)、S1 = OFF、S2 = ON 设置后的状态下,流经 VSS 端子的电流 (I_{SS}) 即为休眠时消耗电流 (I_{PDN})。

6. VMP-VDD 间电阻、VMP-VSS 间电阻

(测定条件 6 测定电路 2)

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、S1 = ON、S2 = OFF 设置后的状态下 (以下记载为初期状态)。

6.1 VMP-VDD 间电阻 (R_{VMD})

从初期状态开始切换为 S1 = OFF、S2 = ON 后,利用 VMP 端子的电流 (I_{VMD})可以求出。

S-8253C 系列: R_{VMD} = (V1 + V2) / I_{VMD}

S-8253D 系列: R_{VMD} = (V1 + V2 + V3) / I_{VMD}

6.2 VMP-VSS 间电阻 (R_{VMS})

从初期状态开始设置为 V1 = V2 = 1.8 V (S-8253C 系列)、V1 = V2 = V3 = 1.8 V (S-8253D 系列) 后,利用 VMP 端子的电流 (I_{VMS}) 可以求出。

S-8253C 系列: R_{VMS} = (V1 + V2) / I_{VMS}

S-8253D 系列: R_{VMS} = (V1 + V2 + V3) / I_{VMS}

7. CTL 端子输入电压"H"

(测定条件7 测定电路1)

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、V4 = 0 V、V5 = 0 V 设置后的状态下,请确认 COP 端子以及 DOP 端子的电压为"L"的状态 (以下记载为初期状态)。

7.1 CTL 输入电压"H" (VCTLH)

从初期状态开始缓慢提升 V4 的电压,COP 端子以及 DOP 端子的电压变为"H"时 V4 的电压即为 CTL 输入电压"H" $(V_{\text{CTLH}})_{\circ}$

8. CTL 端子输入电压"L"

(测定条件7 测定电路1)

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、V4 = 0 V、V5 = 0.35 V 设置后的状态下,请确认 COP 端子以及 DOP 端子的电压为"H"的状态 (以下记载为初期状态)。

8.1 CTL 输入电压"L" (V_{CTLL})

从初期状态开始缓慢提升 V4 的电压,COP 端子以及 DOP 端子的电压变为"L"时 V4 的电压即为 CTL 输入电压"L" (V_{CTLL})。

9. CTL端子电流"H"、CTL端子电流"L"

(测定条件8 测定电路3)

9.1 CTL 端子电流"H" (I_{CTLH})、CTL 端子电流"L" (I_{CTLL})

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、S3 = ON、S4 = OFF 设置后的状态下,流经 CTL 端子的电流即为 CTL 端子电流 High ("H") (I_{CTLH})。之后,在 S3 = OFF、S4 = ON 设置后的状态下,流经 CTL 端子电流即为 CTL 端子电流 Low ("L") (I_{CTLL})。

10. VC1、VC2 端子电流

(测定条件9 测定电路3)

10.1 VC1 端子电流 (I_{VC1})、 VC2 端子电流 (I_{VC2})

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、S3 = OFF、S4 = ON 设置后的状态下,流经 VC1 端子的电流即为 VC1 端子电流(I_{VC1})。同样,流经 VC2 端子的电流(仅 S-8253D 系列)即为 VC2 端子电流(I_{VC2})。

11. COP 端子泄漏电流、COP 端子吸收电流

(测定条件 10 测定电路 4)

11.1 COP 端子泄漏电流 (I_{COH})

在 V1 = V2 = 12 V (S-8253C 系列)、V1 = V2 = V3 = 8 V (S-8253D 系列)、S6 = S7 = S8 = OFF、S5 = ON 设置后的状态下,流经 COP 端子的电流即为 COP 端子泄漏电流 (I_{COH})。

11.2 COP 端子吸收电流 (IcoL)

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、V6 = 0.5 V、S5 = S7= S8 = OFF、S6 = ON 设置后的状态下,流经 COP 端子的电流即为 COP 端子吸收电流 (I_{COL})。

12. DOP 端子源极电流、DOP 端子吸收电流

(测定条件 11 测定电路 4)

12.1 DOP 端子源极电流 (I_{DOH})

在 V1 = V2 = 1.8 V (S-8253C 系列)、V1 = V2 = V3 = 1.8 V (S-8253D 系列)、V7 = 0.5 V、S5 = S6 = S8 = OFF、S7 = ON 设置后的状态下,流经 DOP 端子的电流即为 DOP 端子源极电流 (I_{DOH})。

12.2 DOP 端子吸收电流 (I_{DOL})

在 V1 = V2 = 3.5 V (S-8253C 系列)、V1 = V2 = V3 = 3.5 V (S-8253D 系列)、V8 = 0.5 V、S5 = S6 = S7 = OFF、S8 = ON 设置后的状态下,流经 DOP 端子的电流即为 DOP 端子吸收电流 (I_{DOL})。

13. 向 0 V 电池充电开始充电器电压(向 0 V 电池充电可能的产品)、向 0 V 电池充电禁止电池电压(向 0 V 电池充电禁止的产品)

(测定条件 12 测定电路 5)

13.1 向 0 V 充电开始充电器电压 (V_{0CHA}) (向 0 V 电池充电可能的产品)

在 V1 = V2 = 0 V (S-8253C 系列)、V1 = V2 = V3 = 0 V (S-8253D 系列)、V9 = V_{VMP} = V_{0CHA} 最大值时,COP 端子的电压变得比 V_{0CHA} 最大值— 1 V 更小。

13.2 向 0 V 充电禁止电池电压 (VoINH) (向 0 V 电池充电禁止的产品)

在 V1 = V2 = V_{OINH} 最小值 (S-8253C 系列)、V1 = V2 = V3 = V_{OINH} 最小值 (S-8253D 系列)、V9 = V_{VMP} = 24 V 时,COP 端子的电压变得比 V_{VMP} — 1 V 更高。

图5 测定电路1

图6 测定电路2

图7 测定电路3

图8 测定电路4

图9 测定电路5

■ 工作说明

备注 请参照"■ 电池保护IC的连接例"。

1. 通常状态

全部的电池电压在 V_{DLn} 与 V_{CUn} 之间,比放电电流的电流值低 (VMP端子电压比 $V_{DD} - V_{IOV1}$ 高) 的情况下,充电用FET以及放电用FET变为ON,可自由地进行充放电。这种状态称为通常状态。

注意 第一次连接电池时,不在放电可能状态的情况下可能发生。在这种情况下,VMP 端子与 VDD 端子之间要短路,或者通过连接充电器,即可恢复到通常状态。

2. 过充电状态

某个电池的电压比V_{CUn}高,这种状态保持在t_{CU}以上的情况下,COP端子变为高阻抗。COP端子通过外接电阻上拉为EB+的缘故,充电用FET变为OFF,而停止充电。这种状态称为过充电状态。过充电状态在满足下述的2个条件的一方的情况下被解除。

- (1) 全部的电池的电压在VcLn以下时
- (2) 全部的电池电压在V_{CUn}以下,并且VMP端子电压在V_{DD} V_{IOV1}以下时(取掉充电器连接负载开始放电之后,因为放电电流通过充电用FET的本体二极管而流动,因此在瞬间,VMP端子电压从VDD端子电压开始大约降低0.6 V。本IC检测到这个电压,解除过充电状态)。

3. 过放电状态

某个电池的电压比V_{DLn}低,这种状态保持在t_{DL}以上的情况下,DOP端子的电压变为V_{DD}电位,放电用FET变为OFF,而停止充电。这种状态称为过放电状态。变为过放电状态后,S-8253C/D系列转移为休眠状态。

4. 休眠状态

变为过放电状态,停止了放电,由于IC内部的R_{VMS}电阻VMP端子被下拉至V_{SS},VMP端子电压变为Typ. 0.8 V以下时,S-8253C/D系列进入休眠状态。在休眠状态下S-8253C/D系列的几乎全部的电路停止工作,消耗电流变为I_{PDN}以下。各个输出端子变为如下的状态。

- (1) COP端子: High-Z
- (2) DOP端子: V_{DD}

休眠状态在满足下述的条件时被解除。

(1) VMP端子电压变为Typ. 0.8 V以上时。

过放电状态的解除有以下2种条件。

- (1) 当VMP端子电压在Typ. 0.8 V以上且VMP端子电压低于V_{DD}时,所有的电池电压在V_{DUn}以上时,将被解除。
- (2) 当VMP端子电压在Typ. 0.8 V以上且VMP端子电压高于 V_{DD} 时,所有的电池电压在 V_{DLn} 以上时,休眠状态将被解除(在连接充电器后VMP端子电压高于 V_{DD} 的情况时,过放电滞后电压将被解除,在 V_{DLn} 处放电控制用FET即被打开)。

5. 过电流状态

S-8253C/D系列备有3种过电流检测电位(V_{IOV1} 、 V_{IOV2} 以及 V_{IOV3})以及对应各电位的过电流检测延迟时间(t_{IOV1} 、 t_{IOV2} 以及 t_{IOV3})。放电电流比一定值大(VMP端子电压和VDD端子电压的电压差比 V_{IOV1} 大)的情况下,这种状态保持在 t_{IOV1} 以上时,S-8253C/D系列进入过电流状态。在过电流状态,DOP端子的电压变为 V_{DD} 电位,放电用FET变为OFF,而停止放电。另外,COP端子变为高阻抗,由于EB+端子的电位被上拉,导致充电用FET变为OFF。VMP端子通过内部电阻(R_{VMD})被上拉至 V_{DD} 。针对过电流检测电位2、3(V_{IOV2} 、 V_{IOV3})以及过电流检测延迟时间2、3(t_{IOV2} 、 t_{IOV3})的工作与针对 V_{IOV1} 以及 t_{IOV1} 的工作是相同的。

过电流状态在满足下述的条件时被解除。

(1) 连接充电器或者通过开路负载,VMP端子电压将变为VDD - VIOV1以上。

注意 因电池电压或过电流检测电压 1 的设置值的不同,可自动恢复的阻抗也不同。

6. 向0 V电池充电功能

有关自我放电后电池 (0 V电池) 的充电, S-8253C/D系列可以选择2个功能其中的一方。

- (1) 允许向0 V电池的充电 (可以向0 V电池充电) 充电器电压比V_{0CHA}高的情况下, 0 V电池被充电。
- (2) 禁止向0 V电池的充电 (不可以向0 V电池充电) 电池电压在V_{0INH}以下的情况下,不进行充电。

注意 VDD端子的电压低于V_{DSOP}的最小值的情况下,不能保证S-8253C/D系列的工作。

7. 有关延迟电路

下述的各种检测延迟时间是利用大约3.57 kHz的时钟进行计数之后而分频做成的。

(例)振荡器的时钟周期 (T_{CLK}): 280 μs 过充电检测延迟时间 (t_{CU}): 1.15 s 过放电检测延迟时间 (t_{DL}): 144 ms 过电流检测延迟时间1 (t_{IOV1}): 9 ms 过电流检测延迟时间2 (t_{IOV2}): 4.5 ms

备注 过电流检测延迟时间 2 (t_{IOV2}) 以及过电流检测延迟时间 3 (t_{IOV3}) 的计时是从检测出过电流检测电压 1 (V_{IOV1}) 时 开始的。因此,从检测出过电流检测电压 1 (V_{IOV1}) 时刻起到超过过电流检测延迟时间 2 (t_{IOV2}) 或过电流检测延迟时间 3 (t_{IOV3}) 之后,当检测出过电流检测电压 2 (V_{IOV2}) 或过电流检测电压 3 (V_{IOV3}) 时,在检出时刻起分别在 t_{IOV2}、t_{IOV3}之内立即关闭放电控制用 FET。

8. 有关CTL端子

S-8253C/D系列备有CTL端子(充放电控制和测试时间缩短用端子)。因在CTL端子处所输入电压的"L"、"H"、"M"电位的不同,所以S-8253C/D系列会处在通常工作状态、充放电禁止状态和测试时间缩短状态中的任一种状态。CTL端子优先用于电池保护电路。在通常使用时,请与VSS相短路连接。

 表10
 通过CTL端子可设置的状态

 COP端子
 COP端子

CTL端子电位	IC的状态	COP端子	DOP端子
Open	充放电禁止状态	High-Z	V_{DD}
High (V _{CTL} ≥ V _{CTLH})	充放电禁止状态	High-Z	V_{DD}
Middle (V _{CTLL} < V _{CTL} < V _{CTLH})	延迟时间缩短状态*1	(*2)	(*2)
Low $(V_{CTLL} \ge V_{CTL})$	通常工作状态	(*2)	(*2)

- *1. 在延迟时间缩短状态下,各种延迟时间缩短为1/60~1/30。
- *2. 状态由电压检测电路来控制。
- 注意 1. CTL端子电位在Middle的情况下,过电流检测电压1(Viovi)不起作用。
 - 2. 在使用CTL端子的Middle电位的情况下,有关详细情况请向本公司营业部咨询。
 - 3. 由于外接滤波器 R_{VSS}、C_{VSS} 的存在,当电源突变时,如果 CTL 端子的低输入电位与 IC 的 VSS 电位产生了电位差,有可能导致 IC 错误工作,务请注意。

■ 时序图

(1) 过充电检测、过放电检测

*1. ①:通常状态 ②:过充电状态 ③:过放电状态

备注 假设为在定电流时的充电。VEB+表示为充电器的开路电压。

图11

*1. ①:通常状态 ②:过充电状态

备注 假设为在定电流时的充电。V_{EB+}表示为充电器的开路电压。

图12

■ 电池保护IC的连接例

1. S-8253C系列

图13

2. S-8253D系列

图14

记号 典型值 单位 No. 范围 1 $0.51 \sim 1^{*1}$ R_{VC1} 1 $k\Omega$ $0.51 \sim 1^{*1}$ 2 R_{VC2} 1 $k\Omega$ 3 5.1 2 ~ 10 $k\Omega$ $R_{\text{\tiny DOP}}$ 4 1 0.1 ~ 1 $\mathsf{M}\Omega$ $R_{\text{COP}} \\$ R_{VMP} 1 ~ 10 5 5.1 $\mathsf{k}\Omega$ 6 1 1 ~ 100 R_{CTL} $k\Omega$ 7 5.1 ~ 51*1 51 R_{VSS} Ω $0.1 \sim 0.47^{*1}$ 8 C_{VC1} 0.1 μF $0.1 \sim 0.47^{*1}$ 9 C_{VC2} 0.1 μF

2.2

表11 外接元器件参数

 C_{VSS}

 $R_{\text{VC1}} \times C_{\text{VC1}} = R_{\text{CV2}} \times C_{\text{VC2}} = R_{\text{VSS}} \times C_{\text{VSS}} .$

注意 1. 上述参数有可能不经预告而作更改。

10

2. 对上述连接例以外的电路未作动作确认,而且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。

1 ~ 10*1

μF

^{*1.} 在设定过滤器参数时,请注意 $R_{VSS} \times C_{VSS} = 51 \ \mu F \cdot \Omega$,

■ 注意事项

- 请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- 电池的连接顺序并无特别要求,连接电池时有可能发生不能放电的情况。在这种情况下,应把VMP端子与VDD端子短路连接,或者连接充电器就可以恢复到通常状态。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据(典型数据)

1. 消耗电流

1. 1 I_{OPE} - V_{DD}

1. 2 I_{OPE} - Ta

1. 3 I_{PDN} - V_{DD}

1. 4 I_{PDN} - Ta

2. 过充电检测 / 解除电压、过放电检测 / 解除电压、过电流检测电压以及各种延迟时间 (S-8253CAA、S-8253DAA)

2. 1 V_{CU} - Ta

2. 2 V_{CL} - Ta

2. 3 V_{DU} - Ta

2. 4 V_{DL} - Ta

2. 5 t_{CU} - Ta

2. 6 t_{DL} - Ta

 $\mathbf{2.\ 7}\quad \mathbf{V}_{IOV1}-\mathbf{V}_{DD}$

2. 8 V_{IOV1} - Ta

2. 9 V_{IOV2} - V_{DD}

2. 10 V_{IOV2} - Ta

2. 11 V_{IOV3} - V_{DD}

2. 12 V_{IOV3} - Ta

2. 13 t_{IOV1} - V_{DD}

2. 14 t_{IOV1} - Ta

2. 15 $t_{IOV2} - V_{DD}$

2. 16 t_{IOV2} - Ta

2. 18 t_{IOV3} - Ta

3. COP / DOP端子 (S-8253CAA、S-8253DAA)

3. 1 I_{COH} - V_{COP}

3. 2 I_{COL} - V_{COP}

3. 4 I_{DOL} - V_{DOP}

No. FT008-A-P-SD-1.1

TITLE	TSSOP8-E-PKG Dimensions				
No.	FT008-A-P-SD-1.1				
SCALE					
UNIT	mm				
Seiko Instruments Inc.					

No. FT008-E-C-SD-1.0

TITLE	TSSOP8-E-Carrier Tape				
No.	FT008-E-C-SD-1.0				
SCALE					
UNIT	mm				
Osilis Instruments Ins					
Seiko Instruments Inc.					

No. FT008-E-R-SD-1.0

TITLE	TSSOP8-E-Reel					
No.	FT008-E-R-SD-1.0					
SCALE			QTY.	3,000		
UNIT	mm					
Seiko Instruments Inc.						

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料所记载产品,如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时,基于该法律,需得到日本国政府之出口 许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。