

Optimisation sous contraintes

Fabrice Rossi

TELECOM ParisTech

Décembre 2009/Janvier 2010

Résultats théoriques

Introduction

Existence et unicité

Conditions d'optimalité

Dualité

Second ordre

Algorithmes

Introduction

Gradient

Pénalisation

Dualité

Résultats théoriques

Introduction

Existence et unicité

Conditions d'optimalité

Dualité

Second ordre

■ un problème d'optimisation (P) est défini par

minimiser sur
$$\mathbb{R}^n$$
 $J(\mathbf{x})$ avec $h_i(\mathbf{x}) = 0$, $1 \le i \le p$ $g_j(\mathbf{x}) \le 0$, $1 \le j \le q$

lacksquare un problème d'optimisation (\mathcal{P}) est défini par

minimiser sur
$$\mathbb{R}^n$$
 $J(\mathbf{x})$ avec $h_i(\mathbf{x}) = 0, 1 \le i \le p$ $g_j(\mathbf{x}) \le 0, 1 \le j \le q$

- rappel de vocabulaire :
 - les h_i sont les **contraintes d'égalité** (notées $\mathbf{h}(\mathbf{x}) = 0$)
 - les g_i sont les **contraintes d'inégalité** (notées $\mathbf{g}(\mathbf{x}) \leq 0$)
 - l'ensemble des contraintes est

$$\mathcal{C} = \{ \mathbf{x} \in \mathbb{R}^n | h_i(\mathbf{x}) = 0, 1 \le i \le p \text{ et } g_i(\mathbf{x}) \le 0, 1 \le j \le q \}$$

ensemble des points admissibles ou réalisables

- les contraintes changent les conditions d'optimalité
- exemple :
 - $J(x, y) = x^2 + y^2$ à minimiser sous la contrainte $a(x, y) = 4 - x^2 - y^2 < 0$
 - sur \mathbb{R}^2 , on étudierait $\nabla J = 2(x, y)^T$
 - mais ici, le minimum vaut 4 et est atteint sur le cercle $x^2 + y^2 = 4$ sur lequel $\nabla J \neq \mathbf{0}$

- les contraintes changent les conditions d'optimalité
- exemple :
 - $J(x, y) = x^2 + y^2$ à minimiser sous la contrainte $a(x, y) = 4 - x^2 - y^2 < 0$
 - sur \mathbb{R}^2 , on étudierait $\nabla J = 2(x, v)^T$
 - mais ici, le minimum vaut 4 et est atteint sur le cercle $x^2 + y^2 = 4$ sur lequel $\nabla J \neq \mathbf{0}$
- mais pas toujours :
 - $J(x, y) = x^2 + y^2$ à minimiser sous la contrainte $q(x, y) = x^2 + y^2 - 4 < 0$
 - le minimum est atteint en (0,0), avec $\nabla J = \mathbf{0}$

- les contraintes changent les conditions d'optimalité
- exemple :
 - $J(x, y) = x^2 + y^2$ à minimiser sous la contrainte $a(x, y) = 4 - x^2 - y^2 < 0$
 - sur \mathbb{R}^2 , on étudierait $\nabla J = 2(x, v)^T$
 - mais ici, le minimum vaut 4 et est atteint sur le cercle $x^2 + y^2 = 4$ sur lequel $\nabla J \neq \mathbf{0}$
- mais pas toujours :
 - $J(x, y) = x^2 + y^2$ à minimiser sous la contrainte $q(x, y) = x^2 + y^2 - 4 < 0$
 - le minimum est atteint en (0,0), avec $\nabla J = \mathbf{0}$
- les contraintes doivent donc apparaître dans les conditions d'optimalité

- cas général : (\mathcal{P}) : min $J(\mathbf{x}), \mathbf{x} \in \mathcal{C} \subset \mathbb{R}^n$
- on suppose :
 - J continue
 - et C fermé et non vide
- alors:
 - si :
 - C est borné
 - ou si J est coercitive
 - alors (P) admet au moins une solution

remarque : si

$$\mathcal{C} = \left\{ \mathbf{x} \in \mathbb{R}^n | h_i(\mathbf{x}) = 0 \,, 1 \leq i \leq p \; \text{ et } g_j(\mathbf{x}) \leq 0 \,, 1 \leq j \leq q \right\}$$

avec des h_i et g_i continues, alors C est fermé

- si J est strictement convexe et C est convexe, alors (P) admet **au plus** une solution
- problème convexe :
 - J est convexe
 - les h_i sont affines
 - les g_j sont convexes
 - et donc C est convexe

■ si J est Gâteaux-différentiable en x^* solution de (\mathcal{P}) et si \mathcal{C} est convexe, alors :

$$\forall \mathbf{x} \in \mathcal{C}, \ \langle \nabla J(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \geq 0$$

- remarques :
 - intuitivement : on ne peut s'éloigner du minimum que dans une direction de montée
 - généralisable : notion de direction admissible
 - si \mathbf{x}^* est un point intérieur de \mathcal{C} alors $\nabla J(\mathbf{x}^*) = 0$
- si J est convexe la condition est nécessaire et suffisante

F. Rossi

- Conditions nécessaires non qualifiées
- cas particulier $h_i(\mathbf{x}) = 0$ et $g_i(\mathbf{x}) \leq 0$ où tout est C^1 (Jinclus)
- soit \mathbf{x}^* une solution de (\mathcal{P}) , alors il existe $\lambda^* = (\lambda_1^*, \dots, \lambda_n^*)$ et $\mu^* = (\mu_0^*, \mu_1^*, \dots, \mu_q^*)$ tels que
 - $(\lambda^*, \mu^*) \neq \mathbf{0}$
 - $h_i(\mathbf{x}^*) = 0$, $1 \le i \le p$ (admissibilité en égalité)
 - $g_i(\mathbf{x}^*) \leq 0$, $1 \leq j \leq q$ (admissibilité en inégalité)
 - $\mu_i^* \ge 0, \ 0 \le j \le q$
 - $\mu_i^* g_j(\mathbf{x}^*) = 0$, $1 \le j \le q$ (conditions de complémentarité)

$$\mu_0^* \nabla J(\mathbf{x}^*) + \sum_{i=1}^p \lambda_i^* \nabla h_i(\mathbf{x}^*) + \sum_{i=1}^q \mu_j^* \nabla g_j(\mathbf{x}^*) = 0$$

- condition utile si $\mu_0 \neq 0$
- problème de qualification des contraintes :
 - conditions (locales) sur le problème qui garantissent que $\mu_0 \neq 0$
 - très nombreuses variantes plus ou moins sophistiquées

- \blacksquare condition utile si $\mu_0 \neq 0$
- problème de qualification des contraintes :
 - conditions (locales) sur le problème qui garantissent que $\mu_0 \neq 0$
 - très nombreuses variantes plus ou moins sophistiquées
- contrainte active : g_i est active (ou saturée) en x* si $g_i(\mathbf{x}^*) = 0$; $I(\mathbf{x}^*)$, ensemble des indices des contraintes actives en x*

Zam Qualification

- **condition utile si** $\mu_0 \neq 0$
- problème de qualification des contraintes :
 - conditions (locales) sur le problème qui garantissent que $\mu_0 \neq 0$
 - très nombreuses variantes plus ou moins sophistiquées
- **contrainte active** : g_j est **active** (ou saturée) en \mathbf{x}^* si $g_j(\mathbf{x}^*) = 0$; $I(\mathbf{x}^*)$, ensemble des indices des contraintes actives en \mathbf{x}^*
- régularité : x* est régulier pour g et h si
 - x* est admissible
 - les $\nabla h_i(\mathbf{x}^*)$ sont linéairement indépendants
 - il existe $d \neq 0$ tel que $\langle \nabla h_i(\mathbf{x}^*), d \rangle = 0$ pour tout i et $\langle \nabla g_j(\mathbf{x}^*), d \rangle < 0$ pour tout $j \in I(\mathbf{x}^*)$ (ou $\langle \nabla g_j(\mathbf{x}^*), d \rangle = 0$ si g_j est affine)
 - régularité de Mangasarian-Fromowitz

- Conditions nécessaires qualifiées du 1er ordre de KKT (Karush, Kuhn et Tucker)
- Hypothèses :
 - *J*, **h** et **g** *C*¹
 - x* solution de (P)
 - x* est régulier pour g et h
- Alors il existe $\lambda^*=(\lambda_1^*,\dots,\lambda_p^*)$ et $\mu^*=(\mu_1^*,\dots,\mu_q^*)$ tels que

•
$$h_i(\mathbf{x}^*) = 0, \ 1 \le i \le p$$

•
$$g_j(\mathbf{x}^*) \leq 0, \ 1 \leq j \leq q$$

•
$$\mu_j^* \ge 0, \ 1 \le j \le q$$

•
$$\mu_i^* g_j(\mathbf{x}^*) = 0, \ 1 \le j \le q$$

$$abla J(\mathbf{x}^*) + \sum_{i=1}^{p} \lambda_i^*
abla h_i(\mathbf{x}^*) + \sum_{i=1}^{q} \mu_j^*
abla g_j(\mathbf{x}^*) = 0$$

- \blacksquare si le problème (\mathcal{P}) est convexe, les conditions de KKT sont nécessaires et suffisantes en un point x* régulier
- remarque : le caractère suffisant ne nécessite pas la régularité
- conditions de qualification plus simples (de Slater) : il existe au moins un point strictement admissible $\mathbf{g}(\mathbf{x}) < 0$

■ le Lagrangien du problème (\mathcal{P}) est la fonction

$$L(\mathbf{x}, \lambda, \mu) = J(\mathbf{x}) + \sum_{i=1}^{p} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{q} \mu_j g_j(\mathbf{x})$$

- quand J, \mathbf{h} et \mathbf{g} sont C^1 les conditions de KKT s'expriment par $\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = 0$
- les λ_i et les μ_j sont les multiplicateurs de Lagrange associés aux contraintes

fonction duale de Lagrange

$$g(\lambda, \mu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \mu)$$

- g est toujours concave
- lacksquare pour $\mu \geq 0$

$$g(\lambda, \mu) \leq \inf_{\mathbf{x} \in \mathcal{C}} J(\mathbf{x})$$

problème dual (Q) associé au problème primal (P)

maximiser sur
$$\mathbb{R}^{p+q}$$
 $g(\lambda, \mu)$ avec $\mu_i \geq 0$, $1 \leq j \leq q$

■ saut de dualité : $\inf_{\mathbf{x} \in \mathcal{C}} J(\mathbf{x}) - \max_{\mu > 0} g(\lambda, \mu)$

lacksquare symétrisation du problème : (\mathcal{P}) est équivalent à

$$\inf_{\mathbf{x}} \sup_{\boldsymbol{\lambda}, \boldsymbol{\mu} \geq 0} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$$

■ le problème dual (Q) est

$$\sup_{\pmb{\lambda},\pmb{\mu}\geq 0}\inf_{\mathbf{x}}L(\mathbf{x},\pmb{\lambda},\pmb{\mu})$$

■ symétrisation du problème : (P) est équivalent à

$$\inf_{\mathbf{x}} \sup_{\boldsymbol{\lambda}, \boldsymbol{\mu} \geq 0} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$$

■ le problème dual (Q) est

$$\sup_{\pmb{\lambda},\pmb{\mu}\geq 0}\inf_{\pmb{\mathbf{x}}}L(\pmb{\mathbf{x}},\pmb{\lambda},\pmb{\mu})$$

- point selle : minimal par rapport à une variable, maximal par rapport à l'autre
- **(x***, λ *, μ *) est un point selle du Lagrangien si pour tout (**x**, λ , μ) (μ * \geq 0 et μ \geq 0)

$$L(\mathbf{x}^*, \lambda, \mu) \leq L(\mathbf{x}^*, \lambda^*, \mu^*) \leq L(\mathbf{x}, \lambda^*, \mu^*)$$

- $(\mathbf{x}^*, \lambda^*, \mu^*)$ est un point selle avec $\mu^* \geq 0$ ssi \mathbf{x}^* est une solution de (\mathcal{P}) , (λ^*, μ^*) est une solution de (\mathcal{Q}) et le saut de dualité est nul
- intérêt : pour résoudre le problème, on peut donc chercher un point selle du Lagrangien

- $\mathbf{x}^*, \lambda^*, \mu^*$) est un point selle avec $\mu^* > 0$ ssi \mathbf{x}^* est une solution de (\mathcal{P}) , (λ^*, μ^*) est une solution de (\mathcal{Q}) et le saut de dualité est nul
- intérêt : pour résoudre le problème, on peut donc chercher un point selle du Lagrangien
- remarque : un point selle du Lagrangien vérifie les conditions de KKT (sans hypothèse autre que J, \mathbf{h} et \mathbf{q} C^1)
- si le problème est convexe : point selle ⇔ KKT

- Condition plus forte que celle de Mangasarian-Fromowitz :
 - x* est admissible
 - $\nabla h_i(\mathbf{x}^*)$ et les $\nabla g_j(\mathbf{x}^*)$ sont linéairement indépendants pour $j \in I(\mathbf{x}^*)$
- Contraintes fortement actives :

$$I^{+}(\mathbf{x}^{*}) = \{j \mid g_{j}(\mathbf{x}^{*}) = 0 \text{ et } \mu_{j}^{*} > 0\}$$

■ si $I(\mathbf{x}^*) = I^+(\mathbf{x}^*)$ on a complémentarité stricte

Conditions nécessaires du 2ème ordre

- Hypothèses :
 - J, h et a C²
 - x* solution de (P) et fortement régulier
- \blacksquare alors il existe $\lambda^* = (\lambda_1^*, \dots, \lambda_p^*)$ et $\mu^* = (\mu_1^*, \dots, \mu_q^*)$ tels que
 - les conditions de KKT sont vérifiées
 - et pour tout d vérifiant :
 - $\langle \nabla h_i(\mathbf{x}^*), d \rangle = 0$ pour $1 \le i \le p$
 - $\langle \nabla g_i(\mathbf{x}^*), d \rangle = 0$ pour $j \in I^+(\mathbf{x}^*)$
 - $\langle \nabla g_i(\mathbf{x}^*), d \rangle < 0$ pour $I(\mathbf{x}^*) \setminus I^+(\mathbf{x}^*)$

on a

$$\left\langle
abla_{\mathbf{x}\mathbf{x}}^{2} L(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}) d, d \right\rangle \geq 0$$

- Hypothèses :
 - J. h et a C²
 - (x*, λ*, μ*) vérifie les conditions KKT
- si la matrice $\nabla^2_{xx} L(x^*, \lambda^*, \mu^*)$ est définie positive sur

$$egin{aligned} \left\{ d \in \mathbb{R}^n \mid \left\langle \nabla h_i(\mathbf{x}^*), d \right\rangle = 0, \ 1 \leq i \leq, p \end{aligned}
ight. \ \left. \begin{aligned} \text{et } \left\langle \nabla g_j(\mathbf{x}^*), d \right\rangle = 0, \ j \in I^+(\mathbf{x}^*) \end{aligned}
ight\} \end{aligned}$$

alors \mathbf{x}^* est un minimum local de J sur \mathcal{C}

Résultats théoriques

Introduction

Existence et unicité

Conditions d'optimalité

Dualité

Second ordre

Algorithmes

Introduction

Gradient

Pénalisation

Dualité

- quelques grandes classes d'algorithmes :
 - gradient projeté :
 - · descente de gradient
 - projection sur C à chaque étape
 - pénalisation :
 - optimisation sans contrainte de J+pénalité
 - méthodes extérieures : on ramène progressivement le candidat minimum dans C
 - méthodes intérieures : on relâche progressivement les pénalités
 - programmation quadratique successive : résoudre des approximations quadratiques du problème
- principe sous-jacent : résoudre une série de problèmes sans contrainte (ou plus simple)

- outil important : projection sur un convexe fermé
 - soit C un convexe fermé et non vide de \mathbb{R}^n
 - pour tout x alors

$$\pi_{\mathcal{C}}(\mathbf{x}) = \arg\min_{\mathbf{y} \in \mathcal{C}} \|\mathbf{x} - \mathbf{y}\|^2$$

existe et est unique

- propriétés :
 - π_C(x) est l'unique élément de C tel que

$$\forall \mathbf{y} \in C, \ \langle \mathbf{x} - \pi_C(\mathbf{x}), \mathbf{y} - \pi_C(\mathbf{x}) \rangle \leq 0$$

ou encore tel que

$$\forall \mathbf{y} \in C, \ \langle \pi_C(\mathbf{x}) - \mathbf{y}, \mathbf{y} - \mathbf{x} \rangle \leq 0$$

 \blacksquare π_C est une contraction :

$$\forall \mathbf{x}, \mathbf{y}, \ \|\pi_{C}(\mathbf{x}) - \pi_{C}(\mathbf{y})\| \leq \|\mathbf{x} - \mathbf{y}\|$$

- preuve simple :
 - on a

$$\langle \mathbf{x} - \pi_C(\mathbf{x}), \pi_C(\mathbf{y}) - \pi_C(\mathbf{x}) \rangle \le 0$$

 $\langle \mathbf{y} - \pi_C(\mathbf{y}), \pi_C(\mathbf{x}) - \pi_C(\mathbf{y}) \rangle \le 0$

soit

$$\langle \mathbf{x} - \mathbf{y}, \pi_C(\mathbf{y}) - \pi_C(\mathbf{x}) \rangle + \|\pi_C(\mathbf{x}) - \pi_C(\mathbf{y})\|^2 \leq 0$$

• et on termine par Cauchy-Schwartz

orithmes

- minimisation de J sur C convexe fermé
- algorithme :
 - 1. point initial \mathbf{x}_0
 - 2. pour $k \ge 1$ croissant
 - 2.1 calculer $\mathbf{y}_{k+1} = \mathbf{x}_k \rho_k \nabla J(\mathbf{x}_k)$
 - 2.2 puis $\mathbf{x}_{k+1} = \pi_C(\mathbf{y}_{k+1})$
 - 2.3 tester la convergence et quitter la boucle le cas échéant (par ex. $\|\mathbf{x}_{k+1} \mathbf{x}_k\| < \epsilon$)

- minimisation de J sur C convexe fermé
- algorithme :
 - 1. point initial \mathbf{x}_0
 - 2. pour $k \ge 1$ croissant
 - 2.1 calculer $\mathbf{y}_{k+1} = \mathbf{x}_k \rho_k \nabla J(\mathbf{x}_k)$
 - 2.2 puis $\mathbf{x}_{k+1} = \pi_C(\mathbf{y}_{k+1})$
 - 2.3 tester la convergence et quitter la boucle le cas échéant (par ex. $\|\mathbf{x}_{k+1} \mathbf{x}_k\| < \epsilon$)
- formulation simple mais mise en oeuvre potentiellement délicate :
 - si C est simple (par ex., $I_i \le x_i \le u_i$), pas de problème
 - sinon le calcul de $\pi_C(\mathbf{y}_{k+1})$ est un problème d'optimisation sous contraintes

Convergence

- si J est C^1 . α -convexe et de dérivée M-lipschitzienne
- et si $\rho_k \in [\beta_1, \beta_2]$ avec $0 < \beta_1 < \beta_2 < \frac{2\alpha}{M^2}$
- alors l'algorithme du gradient projeté converge :
 - preuve très proche de celle du cas sans contrainte
 - si x* est l'optimum, on a pour tout ρ

$$\mathbf{x}^* = \pi_C(\mathbf{x}^* - \rho \nabla J(\mathbf{x}^*))$$

• donc par contraction de π_C

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \le \|(\mathbf{x}_k - \rho_k \nabla J(\mathbf{x}_k)) - (\mathbf{x}^* - \rho_k \nabla J(\mathbf{x}^*))\|^2$$

ce qui nous ramène au cas sans projection

- idée principale : remplacer un problème avec contraintes par un problème sans contrainte dont la fonction objectif « décourage » les points non admissibles
- solution naïve :
 - on définit

$$\alpha(\mathbf{x}) = \begin{cases} +\infty & \mathbf{x} \notin C \\ 0 & \mathbf{x} \in C \end{cases}$$

- alors trouver arg min $_{\mathbf{x} \in C} J(\mathbf{x})$ est équivalent à trouver $\operatorname{arg\,min}_{\mathbf{x}\in\mathbb{R}^n} J(\mathbf{x}) + \alpha(\mathbf{x})$
- $lue{}$ solutions réalistes : utiliser une fonction α régulière (C^1 au moins) petite sur C et grande en dehors

Méthodes de point extérieur

- \blacksquare α vérifie :
 - α est continue sur \mathbb{R}^n
 - $\alpha({\bf x}) > 0$
 - $\alpha(\mathbf{x}) = \mathbf{0} \Leftrightarrow \mathbf{x} \in C$
- Exemples :
 - $h(\mathbf{x}) = 0$ est représentée par $\alpha(\mathbf{x}) = \|\mathbf{h}(\mathbf{x})\|^2$
 - $\mathbf{g}(\mathbf{x}) \leq 0$ est représentée par $\alpha(\mathbf{x}) = \|\mathbf{g}^+(\mathbf{x})\|^2$
- on considère la famille de problèmes (\mathcal{P}_r) pour r>0définis par

$$\min_{\mathbf{x}\in\mathbb{R}^n}(J(\mathbf{x})+r\alpha(\mathbf{x}))$$

méthodes de point extérieur : on ne peut pas garantir $\mathbf{X}_{r}^{*} \in C$

Barrelle Methodes de point intérieur

- même principe, mais avec des points à l'intérieur de C
- pour les contraintes d'inégalité seulement
- α est une barrière et vérifie :
 - α est continue sur C
 - $\mathbf{x} \notin C \Rightarrow \alpha(\mathbf{x}) = \infty$
- **pour les contraintes g(x) \le 0, on prend généralement**

$$-\sum_{j=1}^{q}\log(-g_{j}(\mathbf{x}))$$

 comme pour les méthodes de point extérieur, on considère les problèmes (\mathcal{P}_r) pour r > 0 définis par

$$\min_{\mathbf{x} \in \mathbb{R}^n} (J(\mathbf{x}) + r\alpha(\mathbf{x}))$$

lacksquare ici, on a toujours $\mathbf{x}_r^* \in \overset{\circ}{C}$

Algorithmes

- minimisation de J sur C convexe fermé
- **algorithme** (pour une suite $(r_k)_k$ croissante):
 - 1. point initial \mathbf{x}_0
 - 2. pour $k \ge 1$ croissant
 - 2.1 résoudre le problème (\mathcal{P}_{r_k})

$$\min_{\mathbf{x}\in\mathbb{R}^n} (J(\mathbf{x}) + r_k \alpha(\mathbf{x}))$$

en partant de la solution \mathbf{x}_{k-1}

2.2 tester la qualité du point obtenu \mathbf{x}_k et quitter la boucle le cas échéant

- minimisation de J sur C convexe fermé
- **algorithme** (pour une suite $(r_k)_k$ croissante):
 - 1. point initial x₀
 - 2. pour $k \ge 1$ croissant
 - 2.1 résoudre le problème (\mathcal{P}_{r_k})

$$\min_{\mathbf{x}\in\mathbb{R}^n}(J(\mathbf{x})+r_k\alpha(\mathbf{x}))$$

- en partant de la solution \mathbf{x}_{k-1}
- 2.2 tester la qualité du point obtenu \mathbf{x}_k et quitter la boucle le cas échéant
- fonctionne très bien en pratique pour le cas du point intérieur (on résout (\mathcal{P}_{r_k}) par une méthode de (quasi)Newton avec contraintes d'égalités)
- l'efficacité vient du redémarrage depuis un bon candidat

Algorithmes

- on suppose *J* continue et coercitive, et *C* fermé et non vide
- on considère une méthode de point extérieur
- résultat :
 - pour tout r > 0, (\mathcal{P}_r) possède au moins une solution
 - toute famille $(\mathbf{x}_r)_{r>0}$ de solutions est bornée
 - les valeurs d'adhérence de toute famille (x_r)_{r>0} de solutions sont des solutions de (P)

- on suppose J continue et coercitive, et C fermé et non vide
- on considère une méthode de point extérieur
- résultat :
 - pour tout r > 0, (\mathcal{P}_r) possède au moins une solution
 - toute famille $(\mathbf{x}_r)_{r>0}$ de solutions est bornée
 - les valeurs d'adhérence de toute famille $(\mathbf{x}_r)_{r>0}$ de solutions sont des solutions de (\mathcal{P})
- preuve (x* est une solution de (P)) :
 - $J_r(\mathbf{x}) = J(\mathbf{x}) + r\alpha(\mathbf{x})$ est coercitive et continue
 - \mathbf{x}_r solution de (\mathcal{P}_r) , $J(\mathbf{x}_r) \leq J_r(\mathbf{x}_r) \leq J_r(\mathbf{x}^*) = J(\mathbf{x}^*)$, donc $(\mathbf{x}_r)_{r>0}$ est bornée
 - comme $\alpha(\mathbf{x}_r) \leq \frac{1}{r}(J(\mathbf{x}^*) J(\mathbf{x}_r))$, on a $\lim_{r \to +\infty} \alpha(\mathbf{x}_r) = 0$
 - et donc pour toute valeur d'adhérence $\hat{\mathbf{x}}$, $J(\hat{\mathbf{x}}) \leq J(\mathbf{x}^*)$

- idée : chercher directement un point selle du Lagrangien
- **algorithme** (paramètre $\rho > 0$):
 - 1. valeurs initiales des multiplicateurs λ^1, μ^1
 - 2. pour $k \ge 1$ croissant
 - 2.1 trouver \mathbf{x}_k solution du problème (sans contrainte)

$$\min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \boldsymbol{\lambda}^k, \boldsymbol{\mu}^k)$$

2.2 mettre à jour (λ^k, μ^k) par

$$\lambda_i^{k+1} = \lambda_i^k + \rho h_i(\mathbf{x}_k)$$

$$\mu_j^{k+1} = \max(0, \mu_j^k + \rho g_i(\mathbf{x}_k))$$

2.3 tester la convergence et quitter la boucle le cas échéant (par ex. $\|\mathbf{x}_{k+1} - \mathbf{x}_k\| < \epsilon$)

- on peut montrer que l'algorithme d'Uzawa est un gradient projeté sur le problème dual :
 - on montre que $\nabla g(\lambda, \mu) = (\lambda, \mu)^T$
 - on maximise $g(\lambda, \mu)$, ce qui explique le signe dans la mise à jour des multiplicateurs
 - intéressant parce que la projection est triviale
- Convergence :
 - si J est C^1 , α -convexe, \mathbf{h} affine et \mathbf{g} convexe et M_g lipschitzienne
 - et si L possède un point selle $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$
 - alors l'algorithme converge vers ${\bf x}^*$ pour tout choix de ρ dans]0, $\frac{2\alpha}{M_c^2+M_b^2}$ [

F. Rossi