شبکه ای از کارها

 $profit(x_i)$ فرض کنید به شما تعدادی کار داده شده در مجموعه J. برخی از این کار ها سوده هستند یعنی کار داده شده در مجموعه P قرار میدهیم. بقیه کار ها هزینه دارند یعنی $profit(x_i)$ منفی است، مثبت است که آن ها را در مجموعه P قرار میدهیم. در انجام این کار ها یک سری محدودیت داده شده به صورت $j_i \to j_i$ و این ها را در مجموعه j_i میریزیم. در انجام این کار ها یک سری محدودیت یعنی j_i به j_i و این محدودیت یعنی j_i به j_i و این محدودیت یعنی j_i به j_i و این محدودیت یعنی این و البت انجام است و باید قبل از آن انجام شود. این محدودیت ها در قالب یک گراف داده شده اند. یک مجموعه قابل انجام از کار ها مثل i_i زیرمجموعه ای از i_i است که اگر i_i به i_i وابسته است و i_i در i_i است تنگاه i_i هم در i_i باشد. سود یک زیر مجموعه مثل i_i جمع i_i برای هر i_i برای هر i_i است. ما به دنبال سود بیشینه هستیم.

این مسئله را میخواهیم با min-cut حل کنیم. یک راس s اضافه میکنیم که جزو کار ها نیست و همچنین t را t با ظرفیت t را با فرفیت t اضافه میکنیم. دقت کنید در این روش ساخت شبکه ظرفیت ها مثبت خواهد بود.

- یال های محدودیت که در ورودی بودند را با چه وزنی در شبکه بگذاریم؟ دقت کنید در min-cut اگر بخش A منهای راس s(که جزو کار ها نیست) بخواهد یک زیرمجموعه قابل انجام باشد هیچ یک از یال های محدودیتی نباید از a به a باشند. به علاوه دقت کنید همیشه جواب مسئله مثبت یا صفر است چون حتی اگر تمام کار ها هزینه بر باشند میتوان هیچ کاری نکرد و سود صفر برد.
- اثبات کنید در V مبکه گفته شده اگر $\{s\}$ ما را برابر $A-\{s\}$ را برابر V بگیریم، آنگاه M جواب است. برای $A-\{s\}$ اگر $A-\{s\}$ قابل انجام باشد سودش با ظرفیت Cut چه رابطه ای دارد. رابطه را دقیقا یک Cut

بنویسید.