	Pose Composition	Pose Inverse	Relative Pose
Input	$\mathbf{x}_{ij},\mathbf{T}_{ij}$, $\mathbf{\tilde{x}}_{jk},\mathbf{\tilde{T}}_{jk}$	$\mathbf{x}_{ij},\mathbf{T}_{ij}$	$\mathbf{x}_{ij}, \mathbf{T}_{ij}$ $\mathbf{x}_{ik}, \mathbf{T}_{ik}$
Output	i $\mathbf{x}_{ik}, \mathbf{T}_{ik}$	$\mathbf{x}_{ji},\mathbf{T}_{ji}$	i $\mathbf{x}_{jk}, \mathbf{T}_{jk}$
SSC [5]	$\mathbf{x}_{ab} = [x_{ab}, y_{ab}, z_{ab}, \phi_{ab}, \theta_{ab}, \psi_{ab}]^{\top}$		
	$\mathbf{x} = [\mathbf{x}_{ij}^{ op}, \mathbf{x}_{jk}^{ op}]^{ op} \sim \mathcal{N}(\hat{\mathbf{x}}, \hat{oldsymbol{\Sigma}})$	$\mathbf{x}_{ij} \sim \mathcal{N}(\hat{\mathbf{x}}_{ij}, \mathbf{\Sigma}_{\mathbf{x}_{ij}})$	$\mathbf{x} = [\mathbf{x}_{ij}^{ op}, \mathbf{x}_{ik}^{ op}]^{ op} \sim \mathcal{N}(\hat{\mathbf{x}}, \hat{oldsymbol{\Sigma}})$
	$\hat{\mathbf{x}}_{ik} = \hat{\mathbf{x}}_{ij} \oplus \hat{\mathbf{x}}_{jk} \ \mathbf{\Sigma}_{\mathbf{x}_{ik}} pprox J_{\oplus}(\hat{\mathbf{x}}) \mathbf{\Sigma} J_{\oplus}(\hat{\mathbf{x}})^{ op}$	$\hat{\mathbf{x}}_{ji} = \ominus \hat{\mathbf{x}}_{ij}$ $\mathbf{\Sigma}_{\mathbf{x}_{ji}} pprox J_{\ominus}(\hat{\mathbf{x}}_{ij}) \mathbf{\Sigma}_{\mathbf{x}_{ij}} J_{\ominus}(\hat{\mathbf{x}}_{ij})^{\top}$	$\hat{\mathbf{x}}_{jk} = (\ominus \hat{\mathbf{x}}_{ij}) \oplus \hat{\mathbf{x}}_{ik} \ \mathbf{\Sigma}_{\mathbf{x}_{jk}} pprox J_{\ominus \oplus}(\hat{\mathbf{x}}) \mathbf{\Sigma} J_{\ominus \oplus}(\hat{\mathbf{x}})^{ op}$
[1]	$\mathbf{T}_{ab} = \exp(\boldsymbol{\xi}_{ab}^{\wedge}) \bar{\mathbf{T}}_{ab} \qquad \bar{\mathbf{T}}_{ab} \in \mathrm{SE}(3), \ \boldsymbol{\xi}_{ab}^{\wedge} \in \mathfrak{se}(3)$		
	$oldsymbol{\xi}_{ij} \sim \mathcal{N}(0, oldsymbol{\Sigma}_{ij}) \ oldsymbol{\xi}_{jk} \sim \mathcal{N}(0, oldsymbol{\Sigma}_{jk})$		_
	$ar{\mathbf{T}}_{ik} \triangleq ar{\mathbf{T}}_{ij}ar{\mathbf{T}}_{jk}$ $oldsymbol{\Sigma}_{ik} pprox oldsymbol{\Sigma}_{ij} + \operatorname{Ad}_{ar{\mathbf{T}}_{ij}} oldsymbol{\Sigma}_{jk} \operatorname{Ad}_{ar{\mathbf{T}}_{ij}}$		
Proposed	$\mathbf{T}_{ab} = \exp(\boldsymbol{\xi}_{ab}^{\wedge})\bar{\mathbf{T}}_{ab} \qquad \bar{\mathbf{T}}_{ab} \in \mathrm{SE}(3), \ \boldsymbol{\xi}_{ab}^{\wedge} \in \mathfrak{se}(3)$		
	$oldsymbol{\xi} = [oldsymbol{\xi}_{ij}^ op, oldsymbol{\xi}_{jk}^ op]^ op \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Sigma}) \ oldsymbol{\Sigma} = \left[egin{array}{cc} oldsymbol{\Sigma}_{ij} & oldsymbol{\Sigma}_{ij,jk} \ oldsymbol{\Sigma}_{jk} \end{array} ight]$	$oldsymbol{\xi}_{ij} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Sigma}_{ij})$	$oldsymbol{\xi} = [oldsymbol{\xi}_{ij}^ op, oldsymbol{\xi}_{ik}^ op]^ op \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Sigma}) \ oldsymbol{\Sigma} = \left[egin{array}{cc} oldsymbol{\Sigma}_{ij} & oldsymbol{\Sigma}_{ij,ik} \ oldsymbol{\Sigma}_{ij,ik} & oldsymbol{\Sigma}_{ik} \end{array} ight]$
	$\begin{split} \mathbf{\bar{T}}_{ik} &\triangleq \mathbf{\bar{T}}_{ij}\mathbf{\bar{T}}_{jk} \\ \mathbf{\Sigma}_{ik} &\approx \mathbf{\Sigma}_{ij} + \mathrm{Ad}_{\mathbf{\bar{T}}_{ij}}\mathbf{\Sigma}_{jk}\mathrm{Ad}_{\mathbf{\bar{T}}_{ij}} + \\ &+ \mathbf{\Sigma}_{ij,jk}\mathrm{Ad}_{\mathbf{\bar{T}}_{ij}}^{\top} + \mathrm{Ad}_{\mathbf{\bar{T}}_{ij}}\mathbf{\Sigma}_{ij,jk}^{\top} \end{split}$	$\bar{\mathbf{T}}_{ji} \triangleq \bar{\mathbf{T}}_{ij}^{-1}$ $\boldsymbol{\Sigma}_{ji} \approx \mathrm{Ad}_{\bar{\mathbf{T}}_{ij}^{-1}} \boldsymbol{\Sigma}_{ij} \mathrm{Ad}_{\bar{\mathbf{T}}_{ij}^{-1}}^{\top}$	$\begin{split} \bar{\mathbf{T}}_{jk} &\triangleq \bar{\mathbf{T}}_{ij}^{-1} \bar{\mathbf{T}}_{ik} \\ \mathbf{\Sigma}_{jk} &\approx \\ \mathrm{Ad}_{\bar{\mathbf{T}}_{ij}^{-1}} \mathbf{\Sigma}_{ij} \mathrm{Ad}_{\bar{\mathbf{T}}_{ij}^{-1}}^{\top} + \mathrm{Ad}_{\bar{\mathbf{T}}_{ij}^{-1}} \mathbf{\Sigma}_{ik} \mathrm{Ad}_{\bar{\mathbf{T}}_{ij}^{-1}}^{\top} + \\ - \mathrm{Ad}_{\bar{\mathbf{T}}_{ij}^{-1}} \mathbf{\Sigma}_{ij,ik} \mathrm{Ad}_{\bar{\mathbf{T}}_{ij}^{-1}}^{\top} - \mathrm{Ad}_{\bar{\mathbf{T}}_{ij}^{-1}} \mathbf{\Sigma}_{ij,ik}^{\top} \mathrm{Ad}_{\bar{\mathbf{T}}_{ij}^{-1}}^{\top} \end{split}$