

krttel		TF
).	110	50 (0

4.20). We use the energy flux density to approximate the effective blackbody temperature of the sun.

Equating the Energy flux density of the sun with that

 $\frac{4 \times 10^{26} \text{ Js}^{1}}{4 \text{ Tx} \left(7 \times 10^{10} \text{ cm}\right)^{2}} = 6 \text{ B} \text{ T}^{4} \text{ Js}^{1} \text{ cm}^{2}.$

The units match so we can simply cancel them, doing the algebra:

 $\frac{n^{26}}{11 \times 49 \times 10^{20}} = 5.67 \times 10^{-12} T^{4}.$

 $\frac{10^{26}}{11 \times 44 \times 10^{20} \times 5.67 \times 10^{-12}} = 74$

0.11 x10 = 74.

0.576×109=7, n Kelvin.

Davidson Cheng 1.4. 2024