電輔上機整理

■ 單位換算

Table 2-1 Consistent units.

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)
Length	m	mm	ft	in
Force	N	N	lbf	lbf
Mass	kg	tonne (103 kg)	slug	lbf s2/in
Time	S	S	s	s
Stress	Pa (N/m²)	MPa (N/mm²)	lbf/ft ²	psi (lbf/in²)
Energy	J	mJ (10 ⁻³ J)	ft lbf	in lbf
Density	kg/m ³	tonne/mm ³	slug/ft ³	lbf s2/in4

length	1	1000	3. 281	39. 37
force	1	1	0. 2248	0. 2248
mass	1	1000	0.0685	5.71×10^{-3}
time	1	1	1	1
stress	1	10^{6}	2.09×10^{-2}	1.45×10^{-4}
energy	1	10^{-3}	0. 7375	8. 8507
density	1	10^{-12}	1.94×10^{-3}	9.36×10^{-8}

■ 例題1

Material E = 200 GPa = 200000 MPa v = 0.3

FINISH /CLEAR

! Units: mm, N →使用 SI/mm 制單位

L = 60 ! Length H = 10 ! Height B = 6 ! Width

E = 200000 ! Young's modulus (MPa)

NU = 0.3 ! Poisson's ratio

SIZE = 3 ! Element size

Q = 1 ! Distributed load (MPa)

P = 100 ! Point load

【前處理模組】

/PREP7

【建立實體模型】

K, 1, 0, -H/2, -B/2 *給定點位 → K, 點編號, X, Y, Z

K, 2, 0, H/2, -B/2

K, 3, 0, H/2, B/2

K, 4, 0, -H/2, B/2

K, 5, L, -H/2, -B/2

K, 6, L, H/2, -B/2

K, 7, L, H/2, B/2

K, 8, L, -H/2, B/2

V, 1, 2, 3, 4, 5, 6, 7, 8

/VIEW,, 1, 2, 3

VPLOT

【建立元素屬性】

ET, 1, SOLID45 *元素種類 → et,元素參考號碼,元素編號

MP, EX, 1, E *材料性質 → mp, 材料性質代號 lab, 性質編號 MAT, lab 數值

MP, NUXY, 1, NU *lab: EX(楊氏模數 E), PRXY/NUXY(蒲松比 v)

【元素切割】

TYPE, 1 *元素種類編號

MAT, 1 *材料性質編號

ESIZE, SIZE *設定元素大小 → SIZE(元素邊長大小)/NDIV(線段分割數量)

*一次只能使用一種

VMESH, ALL *在體上生成節點和單元

EPLOT

FINISH

【負載描述】

/SOLU

! Fixed end

NSEL, S, LOC, X, 0 *選擇所在 X=0 平面上的所有節點

D, ALL, ALL, 0 *displacement, 對上述 all 節點群, 所有自由度, 約束數值

! Distributed load

NSEL, S, LOC, Y, H/2 *選擇所在 Y=H/2 平面上的所有節點

SF, ALL, PRES, Q *面負載施加,對上述 all 節點群,壓力載荷,數值

NSEL, ALL

! Loads at free end

N1 = NODE(L, -H/2, -B/2) *施加點位座標

N2 = NODE(L, -H/2, B/2) *施加點位座標

F, N1, FY, -P/2 *施力, 點位, 力方向, 數值

F, N2, FY, -P/2 *施力,點位,力方向,數值

【求解】

SOLVE

FINISH

【後處理模組】

/POST1

/VIEW,, 0, 0, 1

PLDISP, 2 *畫出變形圖 → PLDISP, 畫出方式 KUDN

*KUDN: 0(只畫出變形圖)/1(同時畫出原始圖形)/2(同時畫出原始圖形外框)

PLNSOL, S, X *圖示連續分析結果資料 → PLNSOL, Item, 對應的 Comp, KUDN

Item	Comp	說明
U	X,Y, Z, SUM	各方向的位移量和位移向量
ROT	X, Y, Z, SUM	各方向的旋轉位移和旋轉位移向量
S	X, Y, Z, XY, YZ, XZ	各方向的應力或剪應力
S	1, 2, 3	主應力
S	EQV, INT	von Mises 或 Intensity
EPTO	X, Y, Z, XY, YZ, XZ	各方向應變或剪應變
	1, 2, 3	主應變
	EQV, INT	von Mises 或 Intensity
TEMP		溫度

例題 2

考慮懸臂樑如圖所示,求x=L之變形量。

材料楊氏係數 E=200X109 N/m2

截面參數 t=0.01 m

w=0.03 m

 $A=3\times10^{-4} \text{ m}^2$

 $I=2.5\times10^{-9}$ m⁴

L=4 m 幾何參數

a=2 m

b=2 m

邊界及外力 y(0)=0, y'(0)=0

F=2 N

在x=a

q=0.05 N/m 在 a≦x≦L

FINISH

/CLEAR

/FILNAME, EX2-7

/TITLE, Cantilever Beam Deflection

/UNITS, SI

/PREP7

ET, 1, 3

*元素種類 → et, 元素參考號碼, 元素編號

MP, EX, 1, 200E9

*材料性質 → mp, 材料性質代號 lab, 性質編號 MAT, lab 數值

R, 1, 3E-4, 2.5E-9, 0.01 *特性參數 → R, 參考編號, 參數(R1-R6)

N, 1, 0, 0

*建立節點 → node, X, Y, Z

N, 2, 1, 0

N, 3, 2, 0

N, 4, 3, 0

N, 5, 4, 0

E, 1, 2

*連接 node(建立元素)

E, 2, 3

E, 3, 4

E, 4, 5

FINISH

/SOLU

ANTYPE, STATIC

D, 1, ALL, 0

*固定端 → displacement, 對 nodel, 所有自由度方向, 數值

! D, 1, UX, 0

! D, 1, UY, 0

! D, 1, ROTZ, 0

F, 3, FY, -2

*力施加 → force, 對 node3, Y 方向, 數值

SFBEAM, 3, 1, PRES, 0.05 *surface force, surface 3, 面壓力載荷, 數值

SFBEAM, 4, 1, PRES, 0.05 *surface force, surface 4, 面壓力載荷, 數值

SOLVE

FINISH

/POST1

SET, 1, 1 *define the data set to be read from the result file

PRDISP *列出點位移數據

PLDISP *畫出變形圖

FINISH

■ 作業題2(由四等分切成八等分)

/PREP7

ET, 1, 3

MP, EX, 1, 200E9

R, 1, 3E-4, 2.5E-9, 0.01

N, 1, 0, 0

N, 2, 0.5, 0

N, 3, 1, 0

N, 4, 1.5, 0

N, 5, 2, 0

N, 6, 2.5, 0

N, 7, 3, 0

N, 8, 3.5, 0

N, 9, 4, 0

E, 1, 2

E, 2, 3

E, 3, 4

E, 4, 5

E, 5, 6

```
E, 6, 7
```

E, 7, 8

E, 8, 9

FINISH

/SOLU

ANTYPE, STATIC

D, 1, ALL, 0

! D, 1, UX, 0

! D, 1, UY, 0

! D, 1, ROTZ, 0

F, 5, FY, -2

SFBEAM, 5, 1, PRES, 0.05

SFBEAM, 6, 1, PRES, 0.05

SFBEAM, 7, 1, PRES, 0.05

SFBEAM, 8, 1, PRES, 0.05

SFBEAM, 9, 1, PRES, 0.05

SOLVE

FINISH

/POST1

SET, 1, 1

PRDISP

PLDISP

FINISH

本例如圖 5.5 的二維懸臂樑(cantilever beam)問題 ,樑之楊氏模數 E=12 GPa,矩形截面爲 400 mm×200 mm,試求 B 點的撓曲位移和斜率(slope)角度,和 A 點的彎曲應力(bending stress)。分析單位系統採用:m、N、Pa。

FINISH

/CLEAR

/FILNAME, ex2a, 0

/TITLE, ex2a cantilever beam.

/PREP7

ET, 1, BEAM188 *元素種類

KEYOPT, 1, 4, 2 *定義單元關鍵項 →將元素 1 的關鍵項 4 定義為 2(要查)

MP, EX, 1, 12E9 *材料性質

MP, PRXY, 1, 0.3

!MPTEMP, 1, 0

!MPDATA, EX, 1, , 12E9

!MPDATA, PRXY, 1, , 0. 3

SECTYPE, 1, BEAM, RECT, , 0

SECOFFSET, CENT

SECDATA, 0. 2, 0. 4, 10, 10, 0, 0, 0, 0, 0, 0

SECPLOT, 1,1

K,,0,0 *給定點位 → K,點編號, X, Y, Z

K, 3, 0

K, 4.5, 0

K, 6, 0

K, 0, 1

LSTR, 1, 2 *將關鍵點連成線

LSTR, 2, 3

LSTR, 3, 4

LPLOT

LATT, 1, ,1, ,5, ,1 *分配樑單位屬性 → MAT, REAL, TYPE, --, KB, KE, SECNUM

*KB(orient key point)

ESIZE, 0. 2, 0, *指定要劃分單元的邊長, 0

LMESH, 1, 3, 1 *在線上生成節點單元, mesh line from line1 to line3

NPLOT

EPLOT

FINISH

/SOLU

ANTYPE, STATIC *分析模式 → static

DK, 1, , 0, , 0, ALL, , , , , *自由度約束 → dk, 關鍵點 1, 1ab, 值, 值, 約束值, 所有點

LSEL, S, , , 1 *選擇線段,建立新的選擇集(S)

ESLL, S *選擇元素,建立新的選擇集(S)

SFBEAM, ALL, 1, PRES, 2000, , , , , , *負載施加,選擇區段1

ALLSEL, ALL

*select all entities(實體) with a single command

FK, 3, FY, -4000 *負載施加

FK, 4, FY, -6000 *負載施加

solve

finish

/post1

PLDISP, 1 *書出變形圖

PLNSOL, U, Y, 2, 1.0 *顯示節點結果圖(同第一題表格)

PLNSOL, U, X, 2, 1.0

/ESHAPE, 1

PLNSOL, S, X, 0, 1.0

■ 作業題3(挖空)

上課的練習題如圖一所示,課堂中使用 BEAM188 元素模擬,現在,請使用 BEAM3 元素,其元素尺寸(0.2m)、材料係數(E=12GPa)、截面參數、邊界條件皆與上課例 題相同,計算 B 點的撓曲位移,單位 m。


```
FINISH
```

/CLEAR

/PREP7

ET, 1, BEAM3

R, 1, 0.2*0.4, (1/12)*1000, 0.4

MP, EX, 1, 12E9

!MP, PRXY, 1, 0.3

K, 1, 0, 0

K, 2, 3, 0

K, 3, 4.5, 0

K, 4, 6, 0

LSTR, 1, 2

LSTR, 2, 3

LSTR, 3, 4

ESIZE, 0.2, ,

TYPE, 1

MAT, 1

REAL, 1

LMESH, 1, 3, 1

NPLOT

EPLOT

FINISH

/SOLU

ANTYPE, STATIC

DK, 1, , 0, , 0, ALL,

LSEL, S, , , 1

ESLL, S

SFBEAM, ALL, 1, PRES, 2000,

ALLSEL, ALL

FK, 3, FY, -4000

FK, 4, FY, -6000

solve

FINISH

/POST1

PLDISP, 1

1 foot = 12 inches

FINISH

/CLEAR

/FILNAME, ex5-1a, 0

/TITLE, ex5-1a. plane truss

/PREP7

ET, 1, LINK1

*元素種類

R, 1, 4, ,

*特性參數 → R, 參考編號, 參數(R1-R6)

MP, EX, 1, 29E6

*材料性質

!MPTEMP, 1, 0

!MPDATA, EX, 1, , 29E6

N, 0, 0

*點位設定

N,,6*12,0

N, , 12*12, 0

N,, 3*12, 4*12

N,, 9*12, 4*12

TYPE, 1

MAT, 1

REAL, 1

E, 1, 4

*點位連接

E, 1, 2

E, 4, 2

E, 2, 3

E, 2, 5

E, 5, 3

E, 4, 5

FINISH

/SOLU

ANTYPE, STATIC *分析模式 → static

D, 1, , 0, , , , UX, UY, , , , *自由度約束(點1 XY 方向均固定)

!D, 1, UX, 0

!D, 1, UY, 0

D, 3, , 0, , , , UY, , , , *自由度約束(點 3 僅 Y 方向均固定)

!D, 3, UY, 0

F, 2, FY, -10000 *負載施加

SOLVE FINISH

/POST1

PLDISP, 1 *畫出變形圖

PRRSOL, FX *顯示節點結果圖

PRRSOL, FY

ETABLE, FORCE, SMISC, 1 *結果建表 → etable, lab(自訂表名), i tem, 欄目名

ETABLE, STRESS, LS, 1 * http://www.1cae.com/a/ansys/50/ansys-etable-7676.htm

PRETAB, FORCE, STRESS

- 圖5.19為一含圓孔的平板,長寬為a=300mm和b=100mm,厚度h=2mm,圓孔半徑
 R=20mm,其楊氏模數E=210GPa,普松比v=0.3,受拉應力σ=2MPa作用,試求A點的應力。分析單位系統採用:mm、N、MPa。
- ❖本例使用PLANE42二維平面元素來模擬

FINISH

/CLEAR

/FILNAME, ex5-4a, 0

/TITLE, ex5-4a. Plate with a hole

/PREP7

ET, 1, PLANE42

KEYOPT, 1, 2, 0 ! extra displacement shapes

KEYOPT, 1, 3, 3 ! plane stress with thickness input

R, 1, 2, *特性參數 → R, 參考編號, 參數(R1-R6) thickness (mm)

!MPTEMP, 1, 0

!MPDATA, EX, 1, , 210000

!MPDATA, PRXY, 1, , 0. 3

MP, EX, 1, 210000 *材料性質

MP, PRXY, 1, 0, 3

BLC4, 0, 0, 150, 50 *建立矩形面 → BLC4, 角點 X 座標, 角點 Y 座標, 寬(X), 高(Y)

CYL4, 0, 0, 20 *建立圓面 → CYL4, 圓心 X 座標, 圓心 Y 座標, 半徑

ASBA, 1, 2 *雨面積相減 → ASBA, 面積 1, 減去的面積 2

ASEL, S, AREA, , 3 *面積選擇 → ASEL, 邏輯(S: full), 方式(AREA: 輸入編號), , 面積編號

AATT, 1, 1, 1, 0, *面積元素屬性 → AATT, MAT, REAL, TYPE, ESYYS

ALLSEL, ALL *select all entities(實體) with a single command

LESIZE, 5, , , 12, , , , , 1 *於線段上設定元素大小

LESIZE, 10, , , 12, , , , , 1 → LESIZE, 線段編號, , , 分割數量, , , , , 設定更動(1:允許)

LESIZE, 2, , , 2, , , , , 1

LESIZE, 9, , , 12, 0.2, , , , 1

LESIZE, 3, , , 16, 0. 2, , , , 1

MSHKEY, 0 *free mesh: 0 /mapped mash: 1

AMESH, 3 *在面上生成節點單元, mesh area for area3

FINISH

/SOLU

ANTYPE, STATIC *標準分析

SFL, 2, PRES, -2 *施加負載至邊線 →SFL, 邊線, LAB, 值(拉伸為負)

DL, 10, , UX, 0 *線自由度約束

!NSEL, S, LOC, X, 0, 0 *選擇所在 X=0 平面上的所有節點

!DSYM, SYMM, X *對稱約束 → DSYM, LAB(SYMM:正對稱), NORMAL(X/Y/Z)

!DL, 10, , SYMM *DL, 對稱線,, 正對稱

DL, 9, , UY, 0

!NSEL, S, LOC, Y, 0, 0

!DSYM, SYMM, Y !DL, 9, , SYMM

ALLSEL, ALL *select all entities(實體) with a single command

SOLVE FINISH

/POST1

PLNSOL, S, X, 0, 1

PLNSOL, S, Y, 0, 1

PLNSOL, S, EQV, 0, 1 *EQV: von Mises 應力圖

❖下圖為一長條狀之厚壁(thick-walled)圓管,內外徑分別為a=200mm和b=500mm,其圓管長度遠大於外徑,圓管內徑黏接於一剛性圓柱,外徑受壓力 p₀=1MPa。圓管材料之楊氏模數E=210GPa,普松比 v=0.3,試求圓管應力分布。分析單位系統採用:mm、N、MPa。

FINISH

/CLEAR

/FILNAME, ex5-5, 0

/TITLE, ex5-5. Long tube

/PREP7

ET, 1, PLANE42

KEYOPT, 1, 3, 2 *plane strain

!MPTEMP, 1, 0

!MPDATA, EX, 1, , 210000

!MPDATA, PRXY, 1, , 0. 3

MP, EX, 1, 210000 *材料特性

MP, PRXY, 1, 0.3

CSYS, 0

*座標系定義(0:卡氏座標,1:沿 Z 軸的圓柱座標,2:球面)

*給定點位 → K, 點編號, X, Y, Z

K, 2, 200, 0, 0,

K, 1, 0, 0, 0,

K, 3, 500, 0, 0,

K, 4, 0, 200, 0,

K, 5, 0, 500, 0,

LARC, 2, 4, 1, 200,

*弧線連接 → LARC, 弧上點 1, 弧上點 2, 圓心, 弧半徑

LARC, 3, 5, 1, 500,

LSTR, 4, 5

*線連接

LSTR, 2, 3

AL, 1, 4, 2, 3,

*Generates an area bounded by previously defined line

TYPE, 1

MAT, 1

*mapped mesh

LESIZE, 4, , , 20, , , , , 1

AMESH, 1 *在面上生成節點單元, mesh area for areal

EPLOT

MSHKEY, 1

FINISH

/SOLU

ANTYPE, STATIC *標準分析

DL, 1, , ALL, 0 *線自由度約束, 所有自由度, 位移 0

!DL, 3, , UX, 0

DL, 3, , SYMM *線自由度約束, 軸 3, 正對稱性

!DL, 4, , UY, 0

DL, 4, , SYMM *線自由度約束, 軸 4, 正對稱性

SOLVE

FINISH

/POST1

SET, LAST *read results

RSYS, 1 *修改顯示結果座標系(1:圓柱座標)

PLNSOL, S, X, 0, 1

PLNSOL, S, Y, 0, 1

PATH, stress, 2, 30, 60, *顯示資料路徑

→PATH, 路徑名稱, 路徑點數, 可儲存資料數, 兩點間細分資料點數

PPATH, 1, 0, 200, 0, 0, 0, *define a path by picking or defining nodes

PPATH, 2, 0, 500, 0, 0, 0, → PPATH, point number(數量), node(名字, 0 則使用 XYZ), X, Y, Z

PDEF, , S, X, AVG *插入 item onto a path

PDEF, , S, Y, AVG

PLPATH, SX, SY *以線條圖方式繪出資料

PRPATH, SX, SY

- 作業題1
- ◆ 指令

Mechanical APDL Command Reference (bme.hu)