Redes de área local

Redes de Computadores FIEC04705 Sesión 10

Agenda

- Dispositivos de interconexión
- Direcionamiento

Terminología

Terminología

 Routing table: es una tabla que contiene información requerida por un router para rutear paquetes. La información podría incluir la dirección de red, el costo, la dirección del siguiente hop, etc.

Dispositivos de interconexión

Dispositivos de interconexión

- Existen cinco categorías:
 - Aquellos que operan por debajo de la capa física, tales como un passive hub
 - Aquellos que operan en la capa física (un repetidor o un active hub)
 - Aquellos que operan en la capa física y de enlace de datos (un bridge o un switch de dos capas)
 - Aquellos que operan en la capa física, enlace de datos y de red (un router o un switch de tres capas)
 - Aquellos que operan en las cinco capas (un gateway)

Passive Hub

- Es solo un conector
- Conecta cables que vienen de diferentes ramas
- En una LAN Ethernet con topología en estrella, un hub pasivo es el punto en donde las señales que vienen de diferentes estaciones colisionan.
- En el modelo Internet, se ubica debajo de la capa física

- Es un dispositivo que opera solo en la capa física
- Un repetidor recibe una señal, antes que sea demasiado débil o corrompida, y regenera el patrón original de bits.
- No conecta dos LANs, en realidad conecta dos segmentos de una misma LAN
- Los segmentos conectados son parte de una misma LAN
- No es un dispositivo que pueda conectar dos LANS con diferentes protocolos

- Reenvía cada frame que recibe, no tiene capacidad de filtro
- Un amplificador no puede discriminar entre la señal original y el ruido, amplifica ambas. Un repetidor no amplifica la señal, la regenera.
- Un repetidor puede superar la restricción de longitud del cable en una red Ethernet 10Base5, dividiendo la red en segmentos e instalando repetidores entre estos.

 Las partes de una red separadas por un repetidor se denominan segmentos.

Figure 15.2 A repeater connecting two segments of a LAN

5
4
3
2
1
Repeater

Segment I

Segment 2

Figure 15.3 Function of a repeater

a. Right-to-teft transmission.

b. Left-to right transmission.

Active Hubs

- Es un repetidor multipuerto
- Utilizado para crear conexiones entre estaciones en una topología física en estrella
- El uso jerárquico de hubs elimina la limitación de longitud de 10Base-T

Figure 15.4 A hierarchy of hubs

Bridges

- Un bridge opera tanto en la capa física como en la de enlace de datos.
- Al ser un dispositivo de capa de enlace de datos, chequea las direcciones físicas (MAC) contenidas en el frame (origen y destino).
- Un bridge tiene capacidad de filtro. Puede chequear la dirección de destino de un frmae y decide si el frame debería ser descartado o reeenviado (especificando el puerto).

Bridge

• Un bridge no cambia la dirección física en un frame. Figure 15.5 A bridge connecting two LANs

]	Port	Address
]	1	71:2B: 13:45:61:41
Bridge Table	1	71:2B: 13:45:61:42
	2	64:2B: 13:45:61:12
	2	64:28:13:45:61:13

71:28: 13:45:61:41 71:2B: 13:45:61:42 64:2B: 13:45:61: 12 64:2B: 13:45:61: 13 LAN 2

Dominios de colisión

- Un bridge separa dominios de colisión.
- Con los bridges los dominios de colisión se vuelven muchos más pequeños y la probabilidad de colición es reducida significativamente.
- En el gráfico, sin los bridge, las 12 estaciones compiten por acceder al medio; mientras que con los bridge solo tres estaciones compiten por acceder al medio.

Dominios de colisión

Figure 13.16 Collision domains in an unbridged network and a bridged network

a. Without bridging

b. With bridging

Bridges conectando diferentes LANs

- Un bridge debe ser capaz de conectar LANs usando diferentes protocolos a nivel de capa de enlace de datos tales como una LAN Ethernet y una LAN Wireless. No obstante se debe considerar algunos problemas:
 - Formato del frame: (Ethernet vs. Wireless LAN)
 - Tamaño del dato máximo (Descartar frames demasiado largos)
 - Data rate (Compensar la diferencia entre una LAN Ethernet y Wireless)
 - Orden de los bits
 - Seguridad
 - Soporte multimedia

Two-Layer Switches

- Es un bridge con muchos puertos y un diseño que permite un mejor desempeño (más rápido).
- Un bridge con muchos puertos podría ser capaz de asignar un único puerto a cada estación. Esto significa que no hay competencia de tráfico (sin colisiones).
- Filtra basado en la dirección MAC del frame recibido.
- Tiene un buffer para almacenar los frames para procesamiento.
- Algunos denominados cut-through switches, pueden reenviar el frame tan pronto como chequean la dirección MAC en el header del frame.

Two-Layer Switches

Figure 13.17 Switched Ethernet

Three-Layer Switch

Figure 15.11 Routers connecting independent LANs and WANs

Three-Layer Switch

- Un router es un dispositivo de capa tres que rutea paquetes basado en su dirección lógica.
- Un router usualmente conecta LANs y WANs en el Internet.
- Las tablas de ruteo son normalmente dinámicas y son actualizadas por medio de protocolos de ruteo.
- En el curso, usaremos los términos router y three layer switch indistintamente.

Gateway

- Algunos libros lo utilizan indistintamente
- Sin embargo, un gateway es una computadora que opera en todas las capas de los modelos OSI o Internet.
- Toma un mensaje, lo lee y lo interpreta
- Puede proveer seguridades
- Puede filtrar mensajes no deseados en la capa de aplicación

Figure 2.17 Addresses in TCPIIP

Figure 2.18 Relationship of layers and addresses in TCPIIP

07:01:02:01:2C:4B
A 6-byte (12 hexadecimal digits) physical address

Figure 2.19 Physical addresses

Figure 2.20 IP addresses

Puntos para recordar

- Análisis comparativo entre dispositivos de interconexión de LANs
- Dominios de colisión
- Direccionamiento

Próxima sesión

Capa de red

