PH126 Logic I Fast Lecture 6

Lecturer: s.butterfill@warwick.ac.uk

Quantifier equivalences

$$P \rightarrow Q = | \neg P \lor Q$$

 $\forall x (Square(x) \rightarrow Broken(x))$
 $= | \neg P \lor Q$
 $\Rightarrow | \neg P \lor Q$
 $\Rightarrow | \neg P \lor Q$

$$\neg P \lor Q = | \vdash \neg (P \land \neg Q)$$

$$\exists x \neg F(x) = | \vdash \neg \forall x F(x)$$

$$\forall x (\neg Square(x) \lor Broken(x))$$

$$= | \vdash \exists \neg x (Square(x) \land \neg Broken(x))$$

$$\exists x \neg Created(x) \nmid \neg \forall x Created(x)$$

Hybrid example

Every object is either non-square or broken ∀x (¬Square(x) ∨ Broken(x))

$$\neg P = | P | \qquad \qquad | P = | P | \qquad \qquad | P = | P | \qquad | P = | P$$

Truth-functional completeness (LPL~§7.4)

How many truth-functions can be constructed using 2 sentence letters?

Р	Q	P % Q
T	T	? 📉
T	F	? Each of these
F	T	? can be T or F
F	F	? *

Df. 'A set of truth-functors is said to be *expressively adequate* (or sometimes *functionally complete*) iff, for every truth-function whatever, there is a formula containing only those truth-functors which express that truth-function, i.e. which has as its truth-table the truth-table specifying that function.' (Bostock, *Intermediate Logic* p. 45)

Illustration of the proof that $\{\neg, \land, \lor\}$ is truthfunctionally complete:

Q	$P \rightarrow Q$	
Т	Т	$[P \land Q] \lor$
F	F	
T	T	$[\neg P \land Q] \lor$
F	T	$[\neg P \land \neg Q]$
	Q T F T	TT

$$[P \land Q] \lor [\neg P \land Q] \lor [\neg P \land \neg Q]$$

Exercise assuming $\{\neg, \lor, \land\}$ is truth-functionally complete, show that $\{\neg, \lor\}$ is.

Variables

Names: a, b, c, ...

Variables: x, y, z, w, ...

Variables are for saying several things about one thing even without specifying which thing it is

Notation:

A | B means there is a proof of B using premises **A**

B means there is a proof of B using no premises

 $A \vdash$ means the same as $A \vdash \bot$

A ⊨ B means B is a logical consequence of A ⊨ B means B is a tautology A ⊨ means the same as A ⊨ ⊥ A ⊨ TT B means B is a logical consequence of A just in virtue of the meanings of truth-functions (the textbook LPL calls this 'tautological consequence')

Soundness: If $A \models B$ then $A \models B$ I.e. if you can prove it in Fitch, it's valid

Completeness: If $\mathbf{A} \models_{TT} \mathbf{B}$ then $\mathbf{A} \models \mathbf{B}$ I.e. if it's valid just in virtue of the meanings of truth functions, you can prove it in Fitch

Proofs about proofs

1. If A
ightharpoonup B then $A \rightarrow B$ Proof Given a proof for $A \mid B$...

... we can turn it into a proof for $\vdash A \rightarrow B$:

- 2. If $\vdash A \rightarrow B$ then $A \vdash B$
- 3. If A \vdash B then A $\vdash \neg \neg B$ *Proof*:

- 4. If A \vdash C then A \vdash B \rightarrow C
- 5. If A \vdash B and A $\vdash \neg$ C then A $\vdash \neg$ (B \rightarrow C)

There Is Exactly One

There is one creator: $\exists x \, Creator(x)$

Brian is the one and only creator: Creator(b) $\land \forall x (Creator(x) \rightarrow x=b)$

There is one and only one creator:

∃y(Creator(y)

 $\land \forall x (Creator(x) \rightarrow x=y))$

or:

$$\exists y (\forall x (Creator(x) \leftrightarrow x=y))$$

Ex: There is one and only one female creator.

Ex: There is one and only one creator and she is female.

Someone is loved by everyone ∃x∀y Loves(y,x)

Exercises 07

For your seventh seminar Only for fast groups

11.10 (nb. especially no. 20, which requires you to write a sentence that says there's exactly one large tetrahedron)

[Translation, incl. uniqueness]

11.13 (translation to English)

13.43–45 (proofs like $\neg \exists x \text{ to } \forall x \neg$)

13.49–50 (hard quantifier proofs)

14.2–3 (Trans. with numerical quantifiers)

14.10–11 (Proofs about uniqueness)

Despite what book says, DON'T even THINK about using TAUT CON.