- 4.4 陪集与拉格朗日定理
- 4.4.1 陪集

定义14 设<G,*>是一个有限群,<H,*>是其子群,且 $H = \{h_1, h_2, \dots, h_n\}$, $\forall g \in G$,集合 $\{g*h_1, g*h_2, \dots, g*h_n\}$ ($\{h_1*g, h_2*g, \dots, h_n*g\}$) 称为g关于子群<H,*>的左(右) 陪集,记作g*H(H*g),若左、右陪集相等,称其为关于子群<H,*>的陪集。

例15 写出群 $<N_{12}$,+ $_{12}>$ 中各元素关于子群 $<\{0,4,8\}$,+ $_{12}>$ 的陪集。

解 $N_{12} = \{0,1,2,3,4,5,6,7,8,9,10,11\}$,令 $H = \{0,4,8\}$,运算满足交换律,故所求陪集为 $0+_{12}H = \{0+_{12}0,0+_{12}4,0+_{12}8\} = \{0,4,8\}$ $1+_{12}H = \{1+_{12}0,1+_{12}4,1+_{12}8\} = \{1,5,9\}$ $2+_{12}H = \{2+_{12}0,2+_{12}4,2+_{12}8\} = \{2,6,10\}$

$$3 +_{12} H = \{3 +_{12} 0, 3 +_{12} 4, 3 +_{12} 8\} = \{3, 7, 11\}$$

同理可得

$$4 +_{12} H = 8 +_{12} H = \{0, 4, 8\} = 0 +_{12} H$$

$$5 +_{12} H = 9 +_{12} H = \{1, 5, 9\} = 1 +_{12} H$$

$$6 +_{12} H = 10 +_{12} H = \{2, 6, 10\} = 2 +_{12} H$$

$$7 +_{12} H = 11 +_{12} H = \{3, 7, 11\} = 3 +_{12} H$$

引理1 设< G, * > 是一个有限群,< H, * >是其子群, $\forall h_i \in H$, 则 $h_i * H = H * h_i = H$ 证明 设 $H = \{h_1, h_2, \dots, h_n\}$ $h_i * H = \{h_i * h_1, h_i * h_2, \dots, h_i * h_n\}$ 由于运算*对H封闭,所以 $h_i*h_i,h_i*h_i,\dots,h_i*h_n$ 均属于H,由群的消去律知 $h_i*h_i,h_i*h_i,\dots,h_i*h_n$ 均不同,故 $h_i*H=H$,同理可证 $H*h_i=H$ 证毕

例15中
$$0+_{12}H=4+_{12}H=8+_{12}H=\{0,4,8\}=H$$

引理2 设<G,*>是一个有限群,<H,*>

是其子群, 对 $a \in G, h \in H$, 有 (a*h)*H = a*H

证明 由于运算*满足结合律,故

$$(a*h)*H = a*(h*H)$$

由引理1知 h*H=H,所以

$$(a*h)*H=a*H \qquad \text{if }$$

引理3 设<G,*>是一个有限群,<H,*>是其子群, $a,b \in G$,则a*H与b*H或者相等,或者互不相交。

证明 只需证明当a*H和b*H有公共元d时,a*H=b*H

设 $H = \{h_1, h_2, \cdots, h_n\}$,由 d 是 a*H 和 b*H 的 公共元,所以存在 h_i , $h_j \in H$,使得

$$d = a * h_i = b * h_j$$

$$a * h_i * h_j^{-1} = b * h_j * h_j^{-1} = b$$

由于运算*对H封闭,则 $h_i*h_j^{-1} \in H$,不妨设

$$h_i * h_j^{-1} = h_k \in H$$
,由引理2知

$$b*H = (a*h_k)*H = a*(h_k*H) = a*H$$

故当a*H和b*H有公共元时,a*H=b*H;

否则 $a*H \cap b*H = \Phi$ 。证毕

4.4.2 拉格朗日定理

定理14 设<G,*>是一个有限群,<H,*>是其子群,若 |G|=m,|H|=n,则n|m。

——拉格朗日定理

证明 由于群中运算满足消去律, $\forall a \in G$,其左陪集中的元素有 $a*h_i \neq a*h_j (h_i,h_j \in H,h_i \neq h_j)$ 由此知左陪集 a*H 和子群 < H,*>中的元素个数相等,即|a*H|=|H|=n.

又因为H中含有幺元,所以 $a \in a * H$,这说明G中的任意元素必属于某个左陪集。

由于群 < G,*> 中有 m 个元素,共有 m 个左陪集,由引理 3 知,这些左陪集或相等或不交在相等的左陪集中仅取一个,得到 k 个两两不交的左陪集,不妨设为 a_1*H , a_2*H ,…, a_k*H ,则这些左陪集满足:

$$(1) (a_1 * H) \cup (a_2 * H) \cup \cdots \cup (a_k * H) = G;$$

(2)
$$(a_i * H) \cap (a_j * H) = \Phi (i \neq j);$$

(3)
$$|a_i * H| = |H| = n (i = 1, 2, \dots, k)$$
.

由此可知,这k个左陪集是G的一个划分,则

$$|G|/|H|=m/n=k$$
, $|\Pi| n | m$. $:$

定理表明

子群存在时, 子群的阶数

一定是原群阶数的因子

其逆不真

例16 设<G,*>是具有12个元素的置换群,其12个元素分别为

$$a_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, a_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}, a_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, a_{6} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, a_{8} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, a_{10} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, a_{12} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

讨论其是否存在6阶子群。

解 群 < G,*> 中, a_1 是 4 元, a_1 , a_4 , a_9 , a_{12} 的 逆元是自身, a_2 与 a_3 互 逆, a_5 与 a_7 互 逆, a_6 与 a_{10} 互 逆, a_8 与 a_{11} 互 逆, a_4 , a_9 , a_{12} 是 2 阶 元, a_2 , a_3 , a_5 , a_6 , a_7 , a_8 , a_{10} , a_{11} 是 3 阶 元。

下面讨论6阶群的一般情况:已经研究表明 6阶群只有两种,一种是循环群,另一种是3元 对称群,下面分别讨论: 对于6阶循环群,其中必有一个元素为6阶元(生成元),由于<G,*>中无6阶元,故它没有6阶循环子群。

对于3元对称群,设其6个元素为

$$b_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, b_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, b_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$b_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, b_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, b_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

前**例14** $S_3 = \{(1), (12), (13), (23), (123), (132)\},$ 其运算表如下

0	(1)	(12)	(13)	(23)	(123)	(132)
(1)	(1)	(12)	(13)	(23)	(123)	(132)
(12)	(12)	(1)	(132)	(123)	(23)	(13)
(13)	(13)	(123)	(1)	(132)	(12)	(23)
(23)	(23)	(132)	(123)	(1)	(13)	(12)
(123)	(123)	(13)	(23)	(12)	(132)	(1)
(132)	(132)	(23)	(12)	(13)	(1)	(123)

 $< S_3 \circ > 为 S = \{1,2,3\}$ 上的 3 元对称群。

其中 b_1 是幺元, b_1 , b_2 , b_3 , b_6 的逆元是自身, b_4 与 b_5 互逆, b_2 , b_3 , b_6 是2阶元, b_4 , b_5 是3阶元。

由此可见, 若<*G*,*>中存在此结构的6阶子群, *G* 中必存在含有6个元素的子集, 其中1个元素为幺元, 3个元素是2阶元, 2个元素是3阶元, 且*对该子集是封闭的。但在*G* 中找不到这样的子集关于运算*构成群, 因此<*G*,*>中没有6阶对称子群, 故<*G*,*>中没有6阶对称子群。

由拉格朗日定理得到以下结论

推论1 设<G,*>是一个m 阶群, $a \in G$,且 $a \in k$ 阶元,则 $k \mid m$ 。

证明 由于a是k阶元,令

$$H = \{a, a^2, \dots, a^k = e\}$$

则 < H, * > 构成 < G, * > 的 k 阶子群,由拉格朗日定理知, $k \mid m$. 证毕

推论2 设 < G,* > 是一个m 阶群, $\forall a \in G$,

则 $a^m = e$ 。

证明 设元素a的阶数为k,由推论1知,

 $k \mid m$, 即 m = pk (p 是正整数), 故

$$a^m = a^{pk} = (a^k)^p = e^p = e$$

推论3 素数阶群没有非平凡子群。

证明 由拉格朗日定理知,子群的阶数一定是原群阶数的因子,而素数的因子只有1和它本身,故素数阶群只能有平凡子群。证毕

推论4 素数阶群必是循环群,且除幺元外 其余元素均为生成元。

证明 设 < G, *> 是一个素数 P 阶群,a 是 G 中的非幺元,由推论1知,元素 a 的阶数是群的阶数 P 的因子,由于 P 是素数,只有因子1和 P,故非幺元 a 的阶数为 P,因此 a 是生成元,且 < G, *> 是循环群。证毕

拉格朗日定理表明,m 阶群若有n 阶子群时,一定有n |m; 可群不一定有其因子阶数的子群,但对循环群有下面定理:

定理15 设<G,* > 是一个m 阶循环群,且 n|m,则<G,* > 必有n 阶循环子群。

证明 设<G,*>是一个m 阶循环群,生成元为a,则 $G = \{a,a^2,\cdots,a^m = e\}$,若n|m,令m = kn, 取 $H = \{a^k,a^{2k},\cdots,a^{nk} = e\}$,易知*对H 封闭,故
<H,*>是<G,*>的n 阶循环子群,生成元为 a^k 。证毕

例 在12阶循环群 $< N_{12}, +_{12} > +_{12} > +_{13} > +_{14} > +_{15}$

2阶循环子群 <{0,6},+12>

3阶循环子群 < {0,4,8},+12 >

4阶循环子群 <{0,3,6,9},+12>

6阶循环子群 < {0,2,4,6,8,10},+12 >

12阶循环子群 $< N_{12}, +_{12} >$

内容小结

- 1. 陪集的概念
- 2.拉格朗日定理及其应用

课下练习 P70 习题4.4 1,2,3,4,5,6