F I G. 1

FIG. 3

MEASUREMENT CONDITIONS OF GC/MS

ANALYZER	M7200GC/MS
CONDITIONS OF GAS CHROMATOGRAPH (GC) COLUMN USED DB-5MS	0.25 mm&x30 m
CAPILLARY COLUMN SIZE CARRIER GAS HELIUM TEMPERATURE OF INJECTING PORT	260°C
COLUMN TEMPERATURE	FROM 100°C TO 280°C (TEMPERATURE INCREASE RATE: 5°C/MINUTE)
TRANSFER LINE TEMPERATURE	250°C
CONDITIONS OF GAS SPECTROMETER (MS)	
RANGE OF MASS NUMBER TO BE M/Z:40-650	:40-650
MEASURED ION SOURCE TEMPERATURE IONIZING METHOD	230°C ELECTRON IMPACT (EI) METHOD

F I G. 6

AMOUNT OF CONSTITVENT COMPONENTS OF END-SEALING MATERIAL WITH RESPECT TO PEAK AREA (10,000) OF LIQUID CRYSTAL COMPOUND

F I G. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

