

HC32M120 系列

32 位 ARM® Cortex®-M0+ 微控制器

HC32M120J6TB - LQ48

HC32M120F6TB - LQ32

数据手册

产品特性

ARM Cortex-M0+ 32bit MCU,48MHz,32KB Flash,4KB SRAM,DMA, 8 Timers,12bit ADC,2 OPAs,2 CMPs,5 个通信接口

- ARMv6-M 架构 32bit Cortex-M0+ CPU, 最高 工作频率 48MHz
- 内置存储器
 - 最大 32KByte 的 Flash memory, 支持安全保护*1
 - 最大 4KByte 的 SRAM
- 电源,时钟,复位管理
 - 系统电源 (VDD): 2.7-5.5V
 - 3 个独立时钟源:外部主时钟晶振(4-20MHz),内部高速 RC(48MHz),内部低速 RC(32.768kHz)
 - 包括上电复位(POR),低电压检测复位 (LVDR),端口复位(RESET)在内的8种 复位源,每个复位源有独立标志位
- 低功耗运行
 - 外设功能可以独立关闭或开启
 - 低功耗模式: Sleep, Stop 模式
- 支持外设事件相互触发降低 CPU 处理负荷
- 2 通道 DMA,每个通道触发源可从外设事件中 独立选择
- 最多 12 通道 12bit 1MSPS ADC,支持单次/扫描变换,支持各个 Timer 事件触发开始变换
- 2 个独立运算放大器 (OPA), 支持最大驱动电 流达 30mA
- 2个电压比较器 (CMP), 支持窗口比较功能
- Timer
 - 1 个 16 位电机 Timer (Timer4), 支持 3 相互
 补 PWM 输出
 - 1 个多功能 16bit 通用 Timer (TimerA), 支持输入捕捉、输出比较、PWM 输出、正交编码输入
 - 4 个多功能 16bit 通用 Timer (TimerB),支 持输入捕捉、输出比较、PWM 输出
 - 1 个 16bit 通用 Timer (Timer2), 支持异步计 数

- 1个16bit 通用 Timer(Timer0)
- 最大 28 个 GPIO (LQFP32)
- 最大 44 个 GPIO (LQFP48)
- IO 驱动能力最大 20mA 输出电流, 10mA 灌电流
- 最大 5 个通信接口
 - 1个 I2C, 支持 7位/10位地址格式
 - 3 个 USART, 其中 1 个 UART 支持 LIN 总 线协议。支持全双工和半双工异步通信。
 - 1 个 SPI, 支持 16bit 数据宽度
- 支持 96 位全球 Unique ID
- 封装形式
 - LQFP32 $(7 \times 7 \text{mm}, 0.8 \text{mm pitch})$
 - LQFP48 $(7 \times 7 \text{mm}, 0.5 \text{mm pitch})$
- 宽温度范围
 - -40°C~105°C

*1: 关于Flash 安全保护的具体规格,请咨询销售窗口。

声明

- ➤ 华大半导体有限公司(以下简称: "HDSC")保留随时更改、更正、增强、修改华大半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。HDSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ▶ 客户应针对您的应用选择合适的 HDSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- ▶ HDSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ▶ HDSC 产品的转售,若其条款与此处规定不同,HDSC 对此类产品的任何保修承诺无效。
- ➤ 任何带有"®"或"TM"标识的图形或字样是 HDSC 的商标。所有其他在 HDSC 产品上显示的产品或服务 名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2021 华大半导体有限公司 - 保留所有权利

目 录

产品	品特性			2
声	明			3
目	录			4
1	简介	(Overvie	w)	9
	1.1	型号台	6名规则	10
	1.2	型号项	力能对比表	11
	1.3	功能相	王图	12
	1.4	功能简	育介	13
		1.4.1	CPU	
		1.4.2	总线架构(BUS)	
		1.4.3	复位控制(RMU)	
		1.4.4	时钟控制(CMU)	14
		1.4.5	电源控制(PWC)	14
		1.4.6	初始化配置(ICG)	14
		1.4.7	嵌入式 FLASH 接口(EFM)	14
		1.4.8	内置 SRAM(SRAM)	
		1.4.9	通用 IO(GPIO)	
		1.4.10	中断控制(INTC)	
		1.4.11	DMA 控制器(DMA)	
		1.4.12	内部时钟校准器(CTC)	
		1.4.13	电压比较器(CMP)	
		1.4.14	模数转换器(ADC)	
		1.4.15	通用定时器(Timer4)	19
		1.4.16	紧急刹车模块(EMB)	
		1.4.17	通用定时器(TimerB)	
		1.4.18	通用定时器(TimerA)	
		1.4.19	通用定时器(Timer2)	
		1.4.20	通用定时器(Timer0)	
		1.4.21	看门狗计数器(SWDT)	
		1.4.22	串行通信接口(USART)	
		1.4.23	集成电路总线(I2C)	
		1.4.24	串行外设接口(SPI)	
		1.4.25	CRC 计算单元(CRC)	
		1.4.26	调试控制器(DBGC)	
2	引脚	配置及功能	能(Pinouts)	24
	2.1	引脚西	己置图	24
	2.2	引脚巧	力能表	26
	2.3	引脚巧	力能说明	30
	2.4		吏用说明	
3	电气:	特性		34

	3.1	参数第	条件	34
		3.1.1	最小值和最大值	34
		3.1.2	典型值	34
		3.1.3	典型曲线	34
		3.1.4	负载电容	34
		3.1.5	引脚输入电压	35
		3.1.6	电源方案	36
		3.1.7	电流消耗测量	37
	3.2	绝对量	最大额定值	37
	3.3	工作组	条件	39
		3.3.1	通用工作条件	39
		3.3.2	REGC 外部电容	39
		3.3.3	上电 / 掉电时的工作条件	39
		3.3.4	复位和电源控制模块特性	40
		3.3.5	供电电流特性	42
		3.3.6	电气敏感性	47
		3.3	3.6.1 静电放电 (ESD)	47
		3.3	3.6.2 静态 Latch-up	47
		3.3.7	低功耗模式唤醒时序	48
		3.3.8	I/O 端口特性	49
		3.3.9	USART 接口特性	52
		3.3.10	I2C 接口特性	54
		3.3.11	SPI 接口特性	
		3.3.12	SWD 接口特性	57
		3.3.13	外部时钟源特性	58
			3.13.1 外部源产生的高速外部用户时钟	
		3.3	3.13.2 晶振 / 陶瓷谐振器产生的高速外部时钟	59
			内部时钟源特性	
		3.3	3.14.1 内部高速 (HRC) 振荡器	60
		3.3	3.14.2 内部低速(LRC) 振荡器	
		3.3.15	12 位 ADC 特性	
		3.3.16	比较器特性	
		3.3.17	OPA 特性	
		3.3.18	内置温度传感器 TSN 特性	
		3.3.19	闪存	
4	封装			
	4.1		尺寸	
	4.2		示意图	
	4.3		说明	
	4.4		热阻系数	
5				
朌	木信息	& 联系 ⁻	方式	76

表目录

表	1-1	型号功能对比表	11
表	2-1	引脚功能表	27
表	2-2	端口配置	28
表	2-3	通用功能规格	29
表	2-4	引脚功能说明	32
表	2-5	引脚使用说明	33
表	3-1	电压特性	37
表	3-2	电流特性	38
表	3-3	热特性	38
表	3-4	通用工作条件	39
表	3-5	V _{REGC} 工作条件	39
表	3-6	上电 / 掉电时的工作条件	39
表	3-7	复位和电源控制模块特性	41
表	3-8	f _{HCLK} =48MHz 电流消耗	43
表	3-9	f _{HCLK} =32MHz 电流消耗	44
表	3-10	f _{HCLK} =32kHz 电流消耗	45
表	3-11	STOP 模式电流消耗	46
表	3-12	模拟模块电流消耗	46
表	3-13	ESD 特性	47
表	3-14	静态 Latch-up 特性	47
表	3-15	低功耗模式唤醒时间	48
表	3-16	I/O 静态特性	49
表	3-17	输出电压特性	50
表	3-18	I/O 交流特性	51
表	3-19	USART AC 时序	52
表	3-20	USART 最高波特率	52
表	3-21	I2C 电气特性	54
表	3-22	SPI 电气特性	55
表	3-23	高速外部用户时钟特性	58
表	3-24	XTAL 4-20 MHz 振荡器特性	59
表	3-25	HRC 振荡器特性	60
表	3-26	LRC 振荡器特性	60
表	3-27	ADC 特性	61
表	3-28	ADC 特性 (续)	62
表	3-29	ADC_IN0~IN8 输入通道精度	62
表	3-30	ADC_IN9~11 输入通道精度	62
表	3-31	ADC_IN0~IN8 输入通道动态精度	63
表	3-32	=	
表	3-33	比较器特性	66
表	3-34	运算放大器特性	66

表	3-35	闪存特性	. 68
表	3-36	闪存编程擦除时间	. 68
表	3-37	闪存可擦写次数和数据保存期限	. 68
		各封装执阳系粉表	74

图目录

冬	1-1	功能框图	12
图	3-1	引脚负载条件(左)与输入电压测量(右)	35
图	3-2	电源方案	
图	3-3	电流消耗测量方案	37
		I/O 交流特性定义	
图	3-5	USART 时钟时序	52
		USART (CSI) 输入输出时序	
		I2C 总线时序定义	
图	3-8	SCK Clock 定义	55
图	3-9	SPI 接口时序要求	56
		SWD SWCLK 时钟	
图	3-11	SWDIO 输入输出	
图	3-12	采用8 MHz 晶振的典型应用	59
图	3-13		
图	3-14	使用 ADC 的典型连接	64
图	3-15	电源和参考电源去耦	65

1 简介(Overview)

HC32M120 系列是基于 ARM® Cortex®-M0+32-bit RISC CPU,最高工作频率 48MHz 的高性能 MCU。Cortex-M0+内核支持 2 级流水线,运算能力达到 0.95 Dhrystone MIPS/MHz,硬件调试电路支持 2-pin 的 SWD 调试界面。

HC32M120 系列集成了片上存储器,包括 32KB 的 Flash, 4KB 的 SRAM。集成了 Flash 访问预取指加速单元(Prefetch)和指令缓存(Cache),实现 CPU 在 Flash 上的单周期 执行。支持 DMA 及外设间事件相互触发,可以显著降低 CPU 的事务处理负荷。

HC32M120 系列集成了丰富的外设功能。包括最大 12 通道的 12bit 1MSPS ADC, 2 个独立运算放大器 (OPA), 2 个独立电压比较器 (CMP), 1 个电机 Timer (Timer), 1 个多功能 16bit Timer (TimerA) 支持正交编码输入、输入捕捉、输出捕捉、PWM 输出, 4 个多功能 16bit Timer (TimerB) 支持输入捕捉、输出比较、PWM 输出, 1 个 16bit Timer (Timer2) 支持异步计数, 1 个 16bit Timer (Timer0), 1 个 I2C 通信接口, 1 个 SPI 通信接口, 3 个 USART 通信接口, 其中 1 个 USART 支持 LIN 通信功能,

HC32M120 系列支持宽电压范围 (2.7-5.5V)、宽温度范围 (-40-105℃) 和低功耗模式。

典型应用

HC32M120 系列提供 Pin Pitch 0.5mm 的 48pin、0.8mm 的 32pin 的 LQFP 封装,适用于电机控制、智能硬件等领域。

1.1 型号命名规则

	HC 32 M 1 2 0 F 6 T B
华大半导体	
CPU位宽	
32: 32bit	
产品类型	
M: 电机	
CPU类型	
1: Cortex-M0+	
性能识别码	
2: 经济型	
功能配置识别码	
0: 配置1	
引脚数	
J: 48Pin	
F: 32Pin	
FLASH容量	
6: 32KB	
封装类型	
T: LQFP	
环境温度范围	

B: -40-105°C, 工业级

1.2 型号功能对比表

功能		产品	型号				
] 	7	HC32M120J6TB	HC32M120F6TB				
引	脚数	48	32				
GP	IO数	44	28				
封装(P	in Pitch)	LQFP48 (0.5mm)	LQFP32 (0.8mm)				
温度		-40-1	05°C				
电源电	1. 压范围	2.7~ :	5.5 V				
Memory	Flash	321	KB				
Memory	SRAM	4K	CB CB				
D	MA	20	ch .				
外部端	岩口中断	INTP * 10vec + KR	* 1vec + NMI * 1vec				
Communcation	UART	3ch					
Interfaces	SPI	10	ch				
interfaces	I2C	1ch					
	Timer0	1unit					
	Timer2	1u	nit				
Timers	TimerA	1u	nit				
Timers	TimerB	4u:	nit				
	Timer4	1u	nit				
	SWDT	10	ch				
	12bit ADC	12ch	8ch				
Analog	OPA	2	2				
	CMP	2					
低电压检测	单元 (LVD)	√					
循环冗余核	E验 (CRC)	V					
内部时钟校	准器 (CTC)	V					
调证	代接口	SWD					

表 1-1 型号功能对比表

1.3 功能框图

图 1-1 功能框图

1.4 功能简介

1.4.1 CPU

HC32M120 系列集成了最新一代的嵌入式 ARM® Cortex®-M0+精简指令 CPU,拥有 2 级流水线结构,实现了管脚少功耗低的同时,提供出色的运算性能和迅速的中断反应能力。片上集成的存储容量可以充分发挥出 ARM® Cortex®-M0+出色的指令效率。

1.4.2 总线架构(BUS)

主系统由 32 位 AHB 总线矩阵构成,可实现以下主机总线和从机总线的互连:

- 主机总线
 - Cortex-M0+内核 CPU 总线
 - ° Cortex-M0+内核总线, CPU 通过该总线获取指令与数据。访问对象是包含内部存储器与外设。
- 从机总线
 - AHB 外设总线
 - APB 外设总线

1.4.3 复位控制 (RMU)

芯片配置了8种复位方式。

- 上电复位(POR)
- RESET 引脚复位(RESET)
- 低电压检测复位(LVD)
- 专用看门狗复位(SWDTR)
- 软件复位(SRST)
- M0+ Lockup 复位
- 外部高速振荡器异常停振复位(XTALER)
- RAM 奇偶校验复位

1.4.4 时钟控制 (CMU)

时钟控制单元提供了一系列频率的时钟功能,包括:一个外部高速振荡器、一个内部高速振荡器、一个内部低速振荡器、时钟预分频器和时钟门控电路。

AHB、APB 和 Cortex-M0+时钟都源自系统时钟,系统时钟的源可选择 3 个时钟源:

- 1) 外部高速振荡器(XTAL)
- 2) 内部高速振荡器 (HRC)
- 3) 内部低速振荡器(LRC)

系统时钟的最大运行时钟频率可以达到 48MHz。

对于每一个时钟源, 在未使用时都可以单独打开和关闭, 以降低功耗。

1.4.5 电源控制 (PWC)

电源控制器用来控制芯片的多个电源域在多个运行模式和低功耗模式下的电源供给、切换、检测。芯片的工作电压(VDD)为 2.7V 到 5.5V。

低电压检测单元(LVD)提供了上电复位(POR)、掉电复位(PDR)、低电压检测 (LVD)等功能,其中 POR、PDR 通过检测 VDD 电压,控制芯片复位动作。LVD 通过检测 VDD 电压或者外部输入比较,根据寄存器设定设置使芯片产生复位或者中断。

1.4.6 初始化配置(ICG)

芯片复位解除后,硬件电路会读取主闪存地址 0x000000C0H~0x000000DBH (其中 0x000000C8H~0x000000DBH 为预留功能地址,该 20bytes 地址需要用户设定全 1 以确保证芯片动作正常) 把数据加载到初始化配置寄存器,用户需要编程或擦除扇区 0 来修改初始化配置寄存器。寄存器复位值后初始值由用户 FLASH 地址数据确定。

1.4.7 嵌入式 FLASH 接口 (EFM)

FLASH 接口通过系统总线对 FLASH 进行访问。该接口可对 FLASH 执行编程,擦除和全擦除操作;通过指令预取加速代码执行。

FLASH 读操作

主要特性:

- FLASH 编程,扇区擦除和全擦除操作
- 总线 4Bytes 预取值
- 支持安全保护*1
 - *1: 关于 Flash 安全保护的具体规格,请咨询销售窗口。

1.4.8 内置 SRAM (SRAM)

本产品带有 4KB 系统 SRAM。

SRAM 可按照字节、半字(16 位)或全字(32 位)访问。读写操作以 CPU 速度执行。 SRAM 带有奇偶校验(Even-parity check),每字节数据带有一位校验位。当读取 SRAM 数据发生奇偶校验错误时将发生 SRAM 奇偶校验复位。

1.4.9 通用 IO (GPIO)

主要特性:

- 每组 Port 配有 8 个 I/O Pin,根据实际配置可能不足 8 个
- 支持上拉
- 支持推挽,开漏输出模式
- 支持普通驱动和高驱动模式
- 支持外部中断的输入
- 支持 I/O pin 外围功能复用,一个 I/O pin 最多可具有 8 个可选择的复用功能
- 各个 I/O pin 可独立编程
- 支持 CMOS 和 Schmitt 两种输入方式切换
- 部分寄存器支持 FASTIO 接口,可单周期访问

1.4.10 中断控制 (INTC)

中断控制器(INTC)的功能有选择系统或外设事件请求作为中断输入到 NVIC,唤醒 WFI;选择系统或外设事件请求作为事件输入到 NVIC,唤醒 WFE;选择系统或外设事件请求作为低功耗模式(休眠模式和停止模式)的唤醒条件;外部管脚 NMI 和 INTP、KR 的中断或事件控制功能。

主要规格:

- 1) NVIC 中断向量:实际使用中断向量数请参考中断向量表章节(不包括 Cortex™-M0+的 16 根中断线),每个中断向量可以根据中断选择寄存器选择对应的外设中断事件请求。更多关于异常和 NVIC 编程的说明,请参考《ARM Cortex™-M0+技术参考手册》中的第 5 章:嵌套向量中断控制器。
- 2) 可编程优先级: 4个可编程优先级。
- 3) 不可屏蔽中断:除 NMI 管脚作为不可屏蔽中断源以外,还可以独立选择多种系统中断事件请求作为不可屏蔽中断,且各中断事件请求配备独立的使能选择、标志、标志清除寄存器。
- 4) 配备 10 个外部 EIRQ 管脚 (INTP) 中断。
- 5) 配备 6 个外部 EKEY 管脚 (KR) 事件。
- 6) 配置多种外设中断事件请求,具体请参考中断事件请求序号列表。
- 7) 中断可唤醒系统休眠模式和停止模式。

1.4.11 DMA 控制器 (DMA)

DMA 用于在存储器和外围功能模块之间传送数据,能够在 CPU 不参与的情况下实现存储器之间,存储器和外围功能模块之间以及外围功能模块之间的数据交换。

- DMA 总线独立于 CPU 总线,按照 AMBA AHB-Lite 总线协议传输
- 拥有 2 个独立通道,可以独立操作不同的 DMA 传输功能
- 每个通道的启动请求源通过独立的触发源选择寄存器配置
- 每次请求传输一个数据块
- 数据块最小为1个数据,最多可以是256个数据
- 每个数据可配置为 8bit, 16bit 或 32bit
- 可以配置最多 1023 次传输
- 源地址和目标地址可以独立配置为固定,自增,自减;支持以下功能四选一:源地址循环、源地址指定偏移量的跳转、目标地址循环、目标地址指定偏移量的跳转
- 可产生3种中断,块传输完成中断,传输完成中断,传输错误中断。每种中断都可以配置是否屏蔽。其中块传输完成,传输完成可作为事件输出,用作其它具有硬件触发功能外围模块的触发源输入。

- 支持连锁传输功能,可实现一次请求传输多个数据块
- 不使用时可设置进入模块停止状态以降低功耗

1.4.12 内部时钟校准器(CTC)

内部时钟校准器(Clock Trimming Controller,以下称 CTC)可以自动校准内部高速振荡器(HRC)。由于工作环境的影响 HRC 的频率可能会产生偏差,用 CTC 基于外部高精度参考时钟,采用硬件方式自动调整 HRC 的频率以得到一个精准的 HRC 时钟。CTC 的主要特性如下:

- 两个外部参考时钟源: XTAL, CTCREF:
- 用于频率测量并具有重载功能的 16 位校准计数器;
- 用于频率校准的8位校准偏差值和6位校准值;
- 用于提示校准失败的错误中断;

1.4.13 电压比较器 (CMP)

电压比较器(Comparator,以下简称 CMP)是将两个模拟电压进行比较的外设模块, 共有 2 个比较通道 CMP1 和 CMP2。

CMP 具有以下主要功能:

- 能选择普通比较模式和窗口比较模式。
- 能选择从外部输入基准电压也可以使用内部基准电压。
- 能选择噪声滤波器的消除宽度。
- 能使用定时器的 PWM 输出作为比较器输出的开关信号。
- 能检测比较器输出的有效边沿并产生中断和触发外设。
- 能将比较结果输出到外部管脚。

1.4.14 模数转换器(ADC)

12 位 ADC 是一种采用逐次逼近方式的模拟数字转换器。它最大拥有 12 个模拟输入通道,可以转换来自外部引脚、以及芯片内部的模拟信号。这些模拟输入通道可以任意组合成一个序列,一个序列可以进行单次扫描转换,或连续扫描转换。ADC 模块还搭载模拟看门狗功能,对任意指定通道的转换结果进行监视,检测是否超出用户设定的

阀值。

ADC 主要特性

- 高性能
 - 可配置 12 位、10 位和 8 位分辨率
 - A/D 转换时钟 ADCLK 的频率可以选择为周边时钟 HCLK 的 1, 2, 4, 8, 16 或 32分频
 - 支持 1MSPS 采样率
 - 采样时间可编程
 - 各通道独立数据寄存器
 - 数据寄存器可配置数据对齐方式
 - 模拟看门狗,监视转换结果
 - 不使用时可以将 ADC 模块设定成停止状态
- 模拟输入通道
 - 最大 12 个外部模拟输入通道
 - 1个内部模拟检测通道,包括内部基准电压和内置温度传感器输出
- 运算放大器(OPA)
 - 2个独立运算放大器
 - 运算放大器的输入与 AD 模拟输入通道共用,输出可直接输入到 AD 进行转换
- 转换开始条件
 - 软件设置转换开始
 - 周边外设同步触发转换开始
 - 外部引脚触发转换开始
- 转换模式
 - 2个扫描序列 A、B,可任意指定单个或多个通道
 - 序列 A 单次扫描
 - 序列 A 连续扫描
 - 双序列扫描,序列 A、B 独立选择触发源,序列 B 优先级高于 A
- 中断与事件信号输出

- 序列 A 扫描结束中断和事件 ADC EOCA
- 序列 B 扫描结束中断和事件 ADC EOCB
- 模拟看门狗 0 比较中断和事件 ADC CMP0
- 模拟看门狗 1 比较中断和事件 ADC CMP1
- 上述的 4 个事件输出都可启动 DMA

1.4.15 通用定时器 (Timer4)

通用控制定时器 4(Timer4)是一个用于三相电机控制的定时器模块,提供各种不同应用的三相电机控制方案。该定时器支持三角波和锯齿波两种波形模式,可生成各种PWM 波形;支持缓存功能;支持 EMB 控制。本系列产品中搭载 1 个单元的 Timer4。

1.4.16 紧急刹车模块(EMB)

紧急刹车模块是在满足一定条件时通知定时器,以使定时器停止向外部电机输出 PWM 信号的功能模块,下列事件用于产生通知:

- 外部端口输入电平变化
- PWM 输出端口电平发生同相(同高或同低)
- 电压比较器比较结果
- 外部振荡器停止振荡
- 写寄存器软件控制

1.4.17 通用定时器 (TimerB)

通用定时器 B(TimerB)是一个具有 16 位计数宽度、1 路 PWM 输出的定时器。该定时器支持三角波和锯齿波两种波形模式,可生成各种 PWM 波形(单边对齐 PWM、双边对称 PWM),支持计数器同步启动,支持单元间级联实现 32 位计数,支持脉宽测量和周期测量。本系列产品搭载 4 个单元 TimerB。

1.4.18 通用定时器(TimerA)

通用定时器 A(TimerA)是一个具有 16 位计数宽度、2 路 PWM 输出的定时器。该定时器支持三角波和锯齿波两种波形模式,可生成各种 PWM 波形(单边对齐 PWM、双

边对称 PWM);比较基准值寄存器支持缓存功能;支持 2 相正交编码计数。本系列产品搭载 1 个单元 TimerA。

1.4.19 通用定时器 (Timer2)

通用定时器 2 (Timer2) 是一个可以实现同步、异步计数方式的基本定时器。该定时器内含 1 个通道。一个输出端口,可实现基本的方波输出;一个时钟输入端口,可实现端口异步计数;一个触发输入端口,可实现定时器启动、停止、清零、计数动作及计数值捕获输入;支持脉宽测量和周期测量。本系列产品中搭载 1 个单元的 Timer2。

1.4.20 通用定时器(Timer0)

通用定时器 0(Timer0)是一个可以实现同步计数、异步计数两种方式的基本定时器。该定时器内含 1 个通道,可以在计数期间产生比较匹配事件。该事件可以触发中断,也可作为事件输出来控制其它模块等。本系列产品中搭载 1 个单元的 Timer0。

1.4.21 看门狗计数器(SWDT)

看门狗计数器是一种计数时钟源为内部低速 RC(32.768kHz)的专用看门狗计数器(SWDT)。专用看门狗是 16 位递减计数器,用来监测由于外部干扰或不可预见的逻辑条件造成的应用程序背离正常的运行而产生的软件故障。看门狗计数器支持窗口功能,在计数开始前可预设窗口区间,计数值位于窗口区间时,可刷新计数器,计数重新开始。

1.4.22 串行通信接口(USART)

本产品搭载通用串行收发器模块(USART)4个单元。通用串行收发器模块(USART)能够灵活地与外部设备进行全双工数据交换;本 USART 支持通用异步串行通信接口(UART),时钟同步通信接口(CSI)。支持调制解调器操作(CTS/RTS操作),异步 UART模式支持多处理器操作。其中 UART 单元 1 和 TIMERB(Unit4)、INTC(EIRQ1)模块配合支持 LIN-bus 功能 (UART LIN)。

USART 主要特性:

• 支持全双工/半双工异步通信,全双工时钟同步通信。

- 通道 1 和 TIMERB 配合支持 LIN bus 功能。
- 内置双缓冲器从而实现全双工通信。
- LSB/MSB 可选。
- 支持产生接收错误,接收数据满,发送数据空,发送完成中断。

UART 主要特性:

- 数据长度可编程:8位/9位
- 校验功能可配置: 奇校验/偶校验/无校验
- 停止位可配置: 1 位/2 位
- 时钟源可选: 内部时钟源(内部波特率生成器生成的时钟)/外部时钟源(USARTn CK 管脚输入的时钟)
- 收信错误: 校验错误, 帧错误, 上溢错误
- 调制解调器操作 (CTS/RTS)
- 多个处理器间通信
- 内置数字滤波器可以消除接收数据线上的噪音
- 支持全双工/半双工通信方式

时钟同步模式主要特性:

- 数据长度: 8位
- 接收错误: 上溢错误
- 调制解调器操作(CTS/RTS)
- 时钟源: 内部时钟源(内部波特率生成器生成的时钟)/外部时钟源(USARTn_CK 管脚输入的时钟)

UART LIN 的主要特性(配合 TIMERB(Unit4)、INTC(EIRQ1)):

- 数据长度: 8位
- 支持唤醒信号的检测
- 支持间隔段(BF)的检测
- 支持同步段测量,波特率计算

1.4.23 集成电路总线(I2C)

I²C(集成电路总线)用作微控制器和 I²C 串行总线之间的接口。提供多主模式功能,可以控制所有 I²C 总线的协议、仲裁。支持标准模式、快速模式和 FM+模式。还支持 SMBus 总线。

I2C 主要特性:

- 1) I²C 总线方式、SMBUS 总线方式可选。主机模式、从机模式可选。自动确保与传 送速率相对应的各种准备时间、保持时间和总线空闲时间。
- 2) 标准模式最大 100Kbps, 快速模式最大 400Kbps。
- 3) 自动生成开始条件、重新开始条件和停止条件,并能检测到总线的开始条件,重新 开始条件和停止条件。
- 4) 可以设定 2 个从机模式地址。可同时设定 7 位地址格式和 10 位地址格式。能检测 到广播呼叫地址, SMBus 主机地址, SMBus 设备默认地址, SMBus 报警地址。
- 5) 发送时可以自动判定应答位。接收时可以自动发送应答位。
- 6) 握手功能。
- 7) 仲裁功能。
- 8) SCL 输入和 SDA 输入内置数字滤波器,滤波能力可编程。
- 9) 通信错误,接收数据满,发送数据空,一帧发送结束,地址匹配一致中断。

1.4.24 串行外设接口(SPI)

本产品搭载 1 个通道的串行外设接口 SPI,支持高速全双工串行同步传输,方便地与外围设备进行数据交换。用户可根据需要进行三线/四线,主机/从机及波特率范围的设置。

1.4.25 CRC 计算单元 (CRC)

本模块 CRC 算法遵从 ISO/IEC13239 的定义,分别采用 32 位和 16 位的 CRC。CRC32 的生成多项式为 $X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^8+X^7+X^5+X^4+X^2+X+1$ 。CRC16 的生成多项式为 $X^{16}+X^{12}+X^5+1$ 。

1.4.26 调试控制器 (DBGC)

MCU 内核采用 Cortex™-M0+,该内核包含用于高级调试功能的硬件。利用这些调试功能,可以在取指(指令断点)或访问数据(数据断点)时停止内核。内核停止时,可以查询内核的内部状态和系统的外部状态。查询完成后,将恢复内核和系统并恢复程序执行。本 MCU 未搭载 MTB 调试器件。当调试器与 MCU 相连并进行调试时,将根据安全级别决定访问系统资源的权限。

提供调试接口:

- 串行调试跟踪接口 SWD

2 引脚配置及功能(Pinouts)

2.1 引脚配置图

LQFP48

LQFP32

2.2 引脚功能表

			** >		Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7
LQFP 48	LQFP 32	Pin Name	外部 中断	调试和编 程	GPO	Analog/other	TimerB/Timer4	Timer2/ TimerB/ CMP/ USART	Timer4/EMB	USART	I2C/EKEY	TimerA/SPI
1	9	P60	INTP0		GPO	ADTRG	TIM4_1_OUL		EMB_IN		I2C_SCL	
2	10	P61	INTP1		GPO		TIMB_2_PWM1	VCOUT2	TIM4_1_OUH		I2C_SDA	
3	11	P62	INTP2		GPO	CTCREF	TIMB_3_PWM1	TIM2_1_CLKA	TIM4_1_OVL			
4	-	P63	INTP3		GPO							TIMA_1_TRI G
5	12	P31	INTP4		GPO	PULBUZ	TIM4_1_OVH	TIMB_4_PWM1	TIM4_1_CLK			
6		P75	INTP9		GPO					USART1_CK	KR5	TIMA_1_CL KA
7		P74	INTP8		GPO					USART1_RX	KR4	TIMA_1_CL KB
8	-	P73	INTP7		GPO					USART1_TX	KR3	TIMA_1_PW M1
9	-	P72	INTP6		GPO					USART3_TX	KR2	TIMA_1_PW M2
10	-	P71	INTP5		GPO					USART3_RX	KR1	
11	13	P70	INTP4		GPO	CTCREF		VCOUT1	TIM4_1_OWL	USART3_CK	KR0	TIMA_1_TRI
12	14	P30	INTP3		GPO	ADTRG		TIM2_1_PWMA/ TIM2_1_TRIGA	TIM4_1_OWH	USART1_CK		
13	15	P50	INTP1	SWCLK/T OOLRxD	GPO			TIM2_1_PWMA/ TIM2_1_TRIGA		USART1_RX		TIMA_1_PW M1
14	16	P51	INTP2	SWDIO/TO OLTxD	GPO	IVCMP2_2	TIMB_4_PWM1			USART1_TX		TIMA_1_PW M2
15	17	P17	INTP0		GPO	IVCMP2_1	TIMB_3_PWM1		TIM4_1_CLK	USART1_TX	KR5	TIMA_1_CL KA
16	18	P16	INTP5		GPO	IVREF2	TIMB_2_PWM1		EMB_IN	USART1_RX	KR4	TIMA_1_CL KB
17	19	P15			GPO	PULBUZ	TIMB_1_PWM1		TIM4_1_OUH	USART3_CK	I2C_SDA	TIMA_1_TRI
18	20	P14			GPO	ADTRG		TIM2_1_CLKA	TIM4_1_OUL	USART3_RX	I2C_SCL	SPI_SCK
19	21	P13			GPO	IVCMP1_0			TIM4_1_OVH	USART3_TX	KR3	SPI_NSS
20	22	P12			GPO	IVREF1			TIM4_1_OWH	USART2_TX	KR2	SPI_MISO
21	23	P11			GPO	CTCREF		USART3_TX	TIM4_1_OVL	USART2_RX	KR1	SPI_MOSI
22	24	P10	INTP7		GPO	OPAM2		VCOUT1	TIM4_1_OWL	USART2_CK	KR0	
23	-	P146	INTP9		GPO							

	•		£1) E L L L L L L L L L L L L L L L L L L	Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7
LQFP 48	LQFP 32	Pin Name	外部 中断	调试和编 程	GPO	Analog/other	TimerB/Timer4	Timer2/ TimerB/ CMP/ USART	Timer4/EMB /EVENTPT	USART	I2C/EKEY	TimerA/SPI
24	25	P147	INTP8		GPO	ANI8+OPAP		VCOUT2		USART2_CT SRTS		
25	-	P27	INTP7		GPO	ANI7						
26	-	P26	INTP6		GPO	ANI6						
27	-	P25	INTP5		GPO	ANI5						
28	-	P24	INTP4		GPO	ANI4						
29	26	P23	INTP3		GPO	ANI3+OPAO 2+IVCMP2_0			EVENTP4		KR5	SPI_SCK
30	27	P22	INTP2		GPO	ANI2+OPAM			EVENTP3	USART3_CT SRTS	KR4	SPI_NSS
31	28	P21	INTP1		GPO	ANII+OPAP			EVENTP2	USART2_CT SRTS	KR3	SPI_MISO
32	29	P20	INTP0		GPO	ANI0+OPAO 1+IVCMP1_1			EVENTP1	USART1_CT SRTS	KR2	SPI_MOSI
33		P130			GPO							
34	30	P01			GPO	ANI10	TIMB_1_PWM1	TIM2_1_PWMA/ TIM2_1_TRIGA		USART2_RX	I2C_SDA	TIMA_1_CL KB
35	31	P00			GPO	ANI9	TIMB_1_PWM1	TIM2_1_PWMA/ TIM2_1_TRIGA		USART2_TX	I2C_SCL	TIMA_1_CL KA
36	-	P140			GPO	PULBUZ						
37	32	P120	INTP9		GPO	ANI11		VCOUT1		USART2_CK	KR1	
38	-	P41			GPO			TIM2_1_PWMA/ TIM2_1_TRIGA				
39	1	P40/MD/ NMI		TOOL0	GPO					USART1_TX		
40	2	RESET			-							
41	-	P124			GPO							
42	-	P123			GPO							
43	3	P137	INTP0		GPO	LVDINP		TIM2_1_CLKA			KR0	
44	4	P122/X2/ EXCLK			GPO							
45	5	P121/X1			GPO							
46	6	REGC			-							
47	7	VSS			-							
48	8	VDD			-							

表 2-1 引脚功能表

Daylara	Port				В	its				Pin	Count
Package	Group	7	6	5	4	3	2	1	0		Total
	PORT0	-	-	-	-	-	-	0	0	2	44
	PORT1	0	0	0	0	0	0	0	0	8	
	PORT2	О	О	О	О	0	0	0	0	8	
	PORT3	-	-	-	-	-	-	0	0	2	
	PORT4	-	-	-	-	-	-	0	0	2	
LQFP48	PORT5	-	_	-	-	-	-	O	0	2	
	PORT6	-	_	-	_	О	O	О	0	4	
	PORT7	-	-	0	О	o	o	o	0	6	
	PORT12	-	_	_	О	o	o	o	О	5	
	PORT13	0	-	-	_	-	-	-	0	2	
	PORT14	0	О	-	_	_	-	-	0	3	
	PORT0	-	_	-	-	-	-	0	0	2	28
	PORT1	О	О	O	О	0	0	0	0	8	
	PORT2	-	-	-	-	0	O	0	0	4	
	PORT3	-	_	-	-	_	-	O	0	2	
	PORT4	-	_	-	_	-	-	-	0	1	
LQFP32	PORT5	-	_	-	_	-	-	О	0	2	
	PORT6	-	_	-	_	_	O	О	0	3	
	PORT7	-	_	-	_	-	-	-	0	1	
	PORT12	-	_	-	_	-	0	О	0	3	
	PORT13	О	-	-	_	-	-	-	-	1	
	PORT14	О	-	-	_	-	-	-	-	1	
		7	6	5	4	3	2	1	0		

表 2-2 端口配置

	Port	上拉	开漏输出	驱动能力	输入
PORT0	P00~P01	支持	支持	普通,高	CMOS/Schmitt*
PORT1	P11~P17	支持	支持	普通,高	CMOS/Schmitt
PORT1	P10	支持	支持	普通	CMOS/Schmitt*
PORT2	P20~P27	支持	支持	普通	CMOS/Schmitt*
PORT3	P30~P31	支持	支持	普通,高	CMOS/Schmitt
PORT4	P40~P41	支持	支持	普通,高	CMOS/Schmitt
PORT5	P50~P51	支持	支持	普通,高	CMOS/Schmitt
PORT6	P60~P63	支持	支持	普通,高	CMOS/Schmitt
PORT7	P70~P75	支持	支持	普通,高	CMOS/Schmitt
PORT12	P120~P124	支持	支持	普通,高	CMOS/Schmitt
PORT13	P130,P137	支持	支持	普通,高	CMOS/Schmitt
PORT14	P140	支持	支持	普通,高	CMOS/Schmitt
PORT14	P146,P147	支持	支持	普通	CMOS/Schmitt*

表 2-3 通用功能规格

注:

- 用作模拟功能时,输入电压不得高于 VDD。

2.3 引脚功能说明

类别	功能名	I/O	说明
Power	VDD	I	电源
	VSS	I	电源地
	REGC	Ю	内核电压
System	RESET	I	复位端子, 低有效
	MD	I	模式端子
LVD	LVDINP	I	LVD 外部输入比较电压
Clock	X2	I	外部主时钟振荡器接口
	X1	О	
	EXCLK	I	外部主时钟输入
	PULBUZ	О	内部时钟输出
GPIO	Pxy (x=0~7,12,13,14,y=0~7)	Ю	通用输入输出
外部中断	INTPx (x=0~9)	I	可屏蔽外部中断
	NMI	I	非可屏蔽外部中断
Key	KRx(x=0~5)	I	KEY 输入
调试和编程	SWCLK	I	在线调试接口
	SWDIO	Ю	
	TOOL0	Ю	用于闪存编程器/调试器的数据输入/输出
	TOOLRxD	I	用于在闪存编程时连接外部器件的 UART
			串行数据接收
	TOOLTxD	О	用于在闪存编程时连接外部器件的 UART
			串行数据发送
USARTx	USARTx_TX	О	发送数据
(x=1~3)	USARTx_RX	I	接收数据
	USARTx_CK	Ю	通信时钟
	USARTx_CTSRTS	Ю	请求/清除发送信号

类别	功能名	I/O	说明
I2C	I2C_SCL	IO	时钟线
	I2C_SDA	IO	数据线
SPI	SPI_MISO	IO	主输入/从输出数据传输引脚
	SPI_MOSI	IO	主输出/从输入数据传输引脚
	SPI_SCK	IO	传输时钟
	SPI_NSS	IO	从机选择输入输出引脚
TimerBx	TIMB_x_PWM1	IO	外部事件触发输入或 PWM 端口输出
(x=1~4)			
TimerA	TIMA_1_TRIG	I	外部事件触发输入
	TIMA_1_CLKA	I	计数时钟端口输入
	TIMA_1_CLKB	I	计数时钟端口输入
	TIMA_1_PWMy (y=1~2)	О	PWM 端口输出
Timer4	TIM4_1_CLK	I	计数时钟端口输入
	TIM4_1_OUH	IO	PWM 端口 U 相输出
	TIM4_1_OUL	IO	PWM 端口 U 相输出
	TIM4_1_OVH	IO	PWM 端口 V 相输出
	TIM4_1_OVL	IO	PWM 端口 V 相输出
	TIM4_1_OWH	IO	PWM 端口 W 相输出
	TIM4_1_OWL	IO	PWM 端口 W 相输出
Timer2	TIM2_1_CLKA	I	计数时钟端口输入
	TIM2_1_TRIGA	I	外部事件触发输入
	TIM2_1_PWMA	О	PWM 端口输出
EMB	EMB_IN	I	端口输入控制信号
ADC	ADTRG	I	ADC AD 转换外部启动源
	ANIx (x=0~11)	I	ADC 外部模拟输入端口
OPA	OPAPx(x=1~2)	I	OPA 模拟输入

类别	功能名	I/O	说明
	OPAMx(x=1~2)	I	OPA 模拟输入
	OPAOx(x=1~2)	О	OPA 输出
CMP	IVCMP1_x(x=0~1)	I	比较电压输入
	IVREF1	I	参考电压输入
	VCOUT1	О	比较结果输出
	IVCMP2_x(x=0~2)	I	比较电压输入
	IVREF2	I	参考电压输入
	VCOUT2	О	比较结果输出
CTC	CTCREF	I	测量基准时钟输入
EVENT	EVENTPx(x=1~4)	I	事件输入
PORT			

表 2-4 引脚功能说明

2.4 引脚使用说明

引脚名	使用说明
VDD	电源,接 2.7V~5.5V 电压,并就近与 VSS 引脚接去耦电容(参
	考电气特性)
VSS	电源地,接 0V
REGC	内核电压,就近与 VSS 引脚接电容,以稳定内核电压(参考
	电气特性)
P40/MD	模式输入,固定为输入状态。复位引脚(RESET)解除(从低
	电平变为高电平)时,本管脚必须固定为高电平。推荐接电阻
	(4.7KΩ) 到 VDD (上拉)
RESET	复位引脚,低有效。不使用时接电阻到 VDD(上拉)
Pxy	通用引脚。用作输入功能时,输入电压不要超过 5V。不使用时
(x=0~7,12,13,14,y=0~7)	悬空,或者接电阻到 VDD(上拉)/VSS(下拉)

表 2-5 引脚使用说明

3 电气特性

3.1 参数条件

若无另行说明,所有电压都以 Vss 为基准。

3.1.1 最小值和最大值

除非特别说明,所有器件的最小值和最大值在最坏的环境温度、供电电压和时钟频率条件下由设计保证或者特性测试保证。

3.1.2 典型值

除非特别说明,典型数据都是在 $T_A=25\,^{\circ}\mathrm{C}$ 、 $V_{DD}=5.0\,\mathrm{V}$ 条件下通过设计或者特性测试分析得到。

3.1.3 典型曲线

除非特别说明,否则所有典型曲线未经测试,仅供设计参考。

3.1.4 负载电容

图 3-1 (左) 中显示了用于测量引脚参数的负载条件。

3.1.5 引脚输入电压

图 3-1(右)中显示了器件引脚上输入电压的测量方法。

图 3-1 引脚负载条件(左)与输入电压测量(右)

3.1.6 电源方案

图 3-2 电源方案

- 1. 4.7μF 陶瓷电容必须连至 VDD/VSS 引脚。
- 2. 0.47μF 陶瓷电容必须连至 REGC/VSS 引脚。
- 3. 上述电容必须尽量靠近或低于 PCB 下面的适当引脚,以确保器件正常工作。不建议去掉滤波电容来降低 PCB 尺寸或成本。这可能导致器件工作不正常。

3.1.7 电流消耗测量

图 3-3 电流消耗测量方案

3.2 绝对最大额定值

如果加在器件上的载荷超过表 3-1、表 3-2 和表 3-3 中列出的绝对最大额定值,则可能导致器件永久损坏。这些数值只是额定应力,并不意味着器件在这些条件下功能正常。长期工作在最大额定值条件下可能会影响器件的可靠性。

符号	项目	最小值	最大值	单位
V_{DD} - V_{SS}	外部主电源电压V _{DD} ⁽¹⁾	-0.5	6.5	
V _{IN}	引脚上的输入电压	V _{SS} -0.5	6.5	V
V _{ESD(HBM)}	静电放电电压(人体模型)	请参考3.3.6 电	气敏感性	-

表 3-1 电压特性

- 1. 在允许的范围内, VDD和 Vss 引脚必须始终连接到外部电源。
- 2. 必须始终遵循 V_{IN} 的最大值。有关允许的最大注入电流值的信息,请参见表 3-2。

符号	项目	最大值	单位
ΣI_{VDD}	流入所有 V _{DD_x} 电源线的总电流 (拉电流) ⁽¹⁾	200	
ΣI_{VSS}	流出所有 V_{SS_x} 接地线的总电流 (灌电流) $^{(1)}$	-200	
	任意 I/O 和控制引脚的输出灌电流	50	
I_{IO}	任意 I/O 和控制引脚的输出拉电流	-50	mA
	所有 I/O 和控制引脚上的总输出灌电流 ⁽²⁾	200	
ΣI_{IO}	所有 I/O 和控制引脚上的总输出拉电流 ⁽²⁾	-200	

表 3-2 电流特性

- 1. 在允许的范围内, VDD 和 Vss 引脚必须始终连接到外部电源。
- 2. 此电流消耗必须正确分布至所有 I/O 和控制引脚。总输出电流一定不能在两个连续电源引脚间灌/拉。

符号	项目	数值	单位
T _{STG}	储存温度范围	-65 到 +150	°C
T_{J}	最大结温	125	°C

表 3-3 热特性

3.3 工作条件

3.3.1 通用工作条件

符号	参数	条件	Min	Тур	Max	单位
f_{HCLK}	内部 AHB 时钟频率	运行模式	0	-	48	MHz
V_{DD}	 标准工作电压	-	2.7	-	5.5	
V _{IN}	引脚上的输入电压		-0.3	-	$V_{ m DD}$	V
Тл	结温范围		-40	-	125	°C

表 3-4 通用工作条件

3.3.2 REGC 外部电容

主调压器的稳定性是通过将外部电容 C_{EXT} 连接到 V_{REGC} 引脚实现的。C_{EXT} 在表 3-5 中说明。

符号	参数	条件		
C_{EXT}	外部电容的电容值	0.47 μF		
ESR	外部电容的 ESR	< 0.5 Ω		

表 3-5 V_{REGC}工作条件

3.3.3 上电 / 掉电时的工作条件

TA 服从一般工作条件。

符号	参数	最小值	最大值	单位
$t_{ m VDD}$	V _{DD} 上升时间速率	20	20000	
	V _{DD} 下降时间速率	20	20000	μs/V

表 3-6 上电 / 掉电时的工作条件

3.3.4 复位和电源控制模块特性

符号	参数	条件	最小值	典型值	最大值	单位
		LVDLVLSEL[3:0]=0000(rise)	-	4.07	4.5 ⁽¹⁾	V
		LVDLVLSEL[3:0]=0000(fall)	3.6 ⁽¹⁾	3.92	-	V
		LVDLVLSEL[3:0]=0001(rise)	-	3.77	ı	V
]	LVDLVLSEL[3:0]=0001(fall)	-	3.67	-	V
		LVDLVLSEL[3:0]=0010(rise)	-	3.15	-	V
		LVDLVLSEL[3:0]=0010(fall)	-	3.06	-	V
		LVDLVLSEL[3:0]=0011(rise)	-	3.04	-	V
		LVDLVLSEL[3:0]=0011(fall)	-	2.96	i	V
		LVDLVLSEL[3:0]=0100(rise)	-	2.94	i	V
		LVDLVLSEL[3:0]=0100(fall)	-	2.86	-	V
		LVDLVLSEL[3:0]=0101(rise)	-	2.83	ı	V
		LVDLVLSEL[3:0]=0101(fall)	-	2.75	1	V
$V_{ m LVsD}$	LVD的监测电压	LVDLVLSEL[3:0]=0110(rise)	-	2.73	ı	V
		LVDLVLSEL[3:0]=0110(fall)	-	2.65	i	V
		LVDLVLSEL[3:0]=0111(rise)	-	2.63	ı	V
		LVDLVLSEL[3:0]=0111(fall)	-	2.55	ı	V
		LVDLVLSEL[3:0]=1000(rise)	-	2.52	ı	V
		LVDLVLSEL[3:0]=1000(fall)	-	2.45	ı	V
		LVDLVLSEL[3:0]=1001(rise)	-	2.11	ı	V
		LVDLVLSEL[3:0]=1001(fall)	-	2.04	ı	V
		LVDLVLSEL[3:0]=1010(rise)	-	2.00		V
		LVDLVLSEL[3:0]=1010(fall)	-	1.94	-	V
		LVDLVLSEL[3:0]=1011(rise)	-	1.90	ı	V
		LVDLVLSEL[3:0]=1011(fall)	-	1.84	-	V
		LVDLVLSEL[3:0]=1110	5	小 部监测电	且压	V

符号	参数	条件	最小值	典型值	最大值	单位
		LVDLVLSEL[3:0]=0000,0001	-	100	-	mV
		LVDLVLSEL[3:0]=0010	-	90	-	mV
V _{LVD} hyst	LVD的迟滞	LVDLVLSEL[3:0]=0011-0111	-	80	-	mV
		LVDLVLSEL[3:0]=1000,1001	-	70	-	mV
		LVDLVLSEL[3:0]=1010,1011	-	60	-	mV
		上升沿	-	1.66	1.86 ⁽¹⁾	V
V _{POR}	上电/掉电复位阈值	下降沿	1.52 ⁽¹⁾	1.63	-	V
V _{POR} hyst	POR 迟滞		-	40	-	mV
T	调压器上电时的浪涌电			100	150	A
I_{RUSH}	流(POR或从待机唤醒)		-	100	130	mA
T_{RESET}	RESET复位最低宽度		1000	-	-	ns
T_{RIPT}	内部复位时间		300	600	800	us

表 3-7 复位和电源控制模块特性

1. 量产测试保证。

3.3.5 供电电流特性

电流消耗受多个参数和因素影响,其中包括工作电压、环境温度、I/O 引脚负载、器件软件配置、工作频率、I/O 引脚开关速率、程序在存储器中的位置以及运行的代码等。 图 3-3 中介绍了电流消耗的测量方法。本节所述各种运行模式下的电流消耗测量值都通过一套运行在 FLASH 的测试代码得出。

具体条件如下:

- 1) 所有 I/O 引脚都处于输入模式, V_{DD} 或 V_{SS} 上为静态值(无负载)。
- 2) 时钟频率选择 fHCLK=48MHz, fHCLK=32MHz.和超低速模式 32kHz。
- 3) 功耗模式是选择正常工作模式 ICC_RUN, 休眠模式 ICC_SLEEP, 停止模式 ICC_STP, 以及 Dhrystone 工作模式 ICC DHRYSTONE。
- 4) 外设时钟 ON/OFF 请参考具体电流测试项目。

Item	Danamatan	Chal	条件	T _A		产品规格	f	Unit	
ttem	Parameter	Symbol	余 件	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit	
正常工作	f _{HCLK} =		while(1),全模块时钟OFF	-40	-	5.3	-	mA	
模式	48MHz	ICC_RUN	while(1),全模块时钟ON	-40	-	8.7	-	mA	
			PREFETCH OFF	-40	-	6.2	1	mA	
		ICC_DHRYSTONE	PREFETCH ON	-40	-	6.6	1	mA	
				全模块时钟OFF	-40	-	2.8	1	mA
		ICC_SLEEP	全模块时钟ON	-40	-	6.2	1	mA	
			while(1),全模块时钟OFF	25	-	5.6	-	mA	
		ICC_RUN	while(1),全模块时钟ON	25	-	9.0	-	mA	
		ICC_DHRYSTONE	CACHE OFF	25	-	6.9	1	mA	
			CACHE ON	25	-	2.9	1	mA	
			全模块时钟OFF	25	-	2.9	-	mA	
		ICC_SLEEP	全模块时钟ON	25 -	6.2	-	mA		
			while(1),全模块时钟OFF	85	-	-	6.0	mA	
		ICC_RUN	while(1),全模块时钟ON	85	-	-	9.5	mA	
			CACHE OFF	85	-	-	6.9	mA	
		ICC_DHRYSTONE	CACHE ON	85	-	-	7.4	mA	
			全模块时钟OFF	85	-	-	3.1	mA	
		ICC_SLEEP	全模块时钟ON	85	-	-	6.6	mA	
			while(1),全模块时钟OFF	105	-	-	6.2	mA	
		ICC_RUN	while(1),全模块时钟ON	105	-	-	9.9	mA	
			CACHE OFF	105	-	-	7.1	mA	
		ICC_DHRYSTONE	CACHE ON	105	-	-	7.6	mA	
			全模块时钟OFF	105	-	-	3.6(3)	mA	
		ICC_SLEEP	全模块时钟ON	105	-	-	6.8	mA	

表 3-8 f_{HCLK}=48MHz 电流消耗

- 1. Typ 电压条件 V_{DD}=5.0V。
- 2. Max 电压条件 V_{DD}=2.7V~5.5V
- 3. 量产测试保证

T4	Danish	C11	A IIL	T _A		产品规格	f	Unit
Item	Parameter	Symbol	条件	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
正常工作	$f_{HCLK} =$	100 PVPV	while(1),全模块时钟OFF	-40	-	3.9	-	mA
模式	32MHz	ICC_RUN	while(1),全模块时钟ON	-40	-	6.4	-	mA
			PREFETCH OFF	-40	-	4.5	-	mA
		ICC_DHRYSTONE	PREFETCH ON	-40	-	4.8	-	mA
			全模块时钟OFF	-40	-	2.2	-	mA
		ICC_SLEEP	全模块时钟ON	-40	-	4.6	-	mA
			while(1),全模块时钟OFF	25	-	4.1	-	mA
		ICC_RUN	while(1),全模块时钟ON	25	-	6.6	-	mA
			CACHE OFF	25	-	4.6	-	mA
		ICC_DHRYSTONE	CACHE ON	25	-	5.0	-	mA
			全模块时钟OFF	25	-	2.2	-	mA
		ICC_SLEEP	全模块时钟ON	25	-	4.7	-	mA
			while(1),全模块时钟OFF	85	-	-	4.4	mA
		ICC_RUN	while(1),全模块时钟ON	85	-	-	7.1	mA
			CACHE OFF	85	-	-	4.9	mA
		ICC_DHRYSTONE	CACHE ON	85	-	-	5.3	mA
			全模块时钟OFF	85	-	-	2.3	mA
		ICC_SLEEP	全模块时钟ON	85	-	-	4.9	mA
			while(1),全模块时钟OFF	105	-	-	4.6	mA
		ICC_RUN	while(1),全模块时钟ON	105	-	-	7.2	mA
			CACHE OFF	105	-	-	5.2	mA
		ICC_DHRYSTONE	CACHE ON	105	-	-	5.5	mA
			全模块时钟OFF	105	-	-	2.4	mA
		ICC_SLEEP	全模块时钟ON	105	-	-	5.1	mA

表 3-9 f_{HCLK}=32MHz 电流消耗

- 1. Typ 电压条件 V_{DD}=5.0V。
- 2. Max 电压条件 V_{DD}=2.7V~5.5V

T4	Danamatan	Cll	石山	T _A		产品规构	 各	Unit
Item	Parameter	Symbol	条件	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
正常工作	f _{HCLK} =	ICC RUN	while(1),全模块时钟OFF	-40	-	3.1	-	mA
模式	32kHz	icc_kon	while(1),全模块时钟ON	-40	-	5.0	-	mA
			PREFETCH OFF	-40	-	3.4	-	mA
		ICC_DHRYSTONE	PREFETCH ON	-40	-	3.6	-	mA
		IGG GLEED	全模块时钟OFF	-40	-	1.8	-	mA
		ICC_SLEEP	全模块时钟ON	-40	-	3.7	-	mA
			while(1),全模块时钟OFF	25	-	3.2	-	mA
		ICC_RUN	while(1),全模块时钟ON	25	-	5.0	-	mA
			CACHE OFF	25	-	3.5	-	mA
		ICC_DHRYSTONE	CACHE ON	25	-	3.7	-	mA
			全模块时钟OFF	25	-	1.9	-	mA
		ICC_SLEEP	全模块时钟ON	25	-	3.7	-	mA
			while(1),全模块时钟OFF	85	-	-	3.4	mA
		ICC_RUN	while(1),全模块时钟ON	85	-	-	5.3	mA
			CACHE OFF	85	-	-	3.8	mA
		ICC_DHRYSTONE	CACHE ON	85	-	-	4.0	mA
			全模块时钟OFF	85	-	-	2.1	mA
		ICC_SLEEP	全模块时钟ON	85	-	-	3.9	mA
			while(1),全模块时钟OFF	105	-	-	3.6	mA
		ICC_RUN	while(1),全模块时钟ON	105	-	-	5.5	mA
		V	CACHE OFF	105	-	-	3.9	mA
		ICC_DHRYSTONE	CACHE ON	105	-	-	4.2	mA
			全模块时钟OFF	105	-	-	2.2	mA
		ICC_SLEEP	全模块时钟ON	105	-	-	4.1	mA

表 3-10 f_{HCLK}=32kHz 电流消耗

- 1. Typ 电压条件 V_{DD}=5.0V。
- 2. Max 电压条件 V_{DD}=2.7V~5.5V

Itam	D	Ch al	条件	T_{A}	T _A 产品规格			Unit
Item	Parameter	Symbol	余 件	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
停止模式	-	ICC_STP	-	-40	-	1.1	-	uA
			-	25	-	3.4	16.8(3)	uA
			-	85	-	-	319	uA
			-	105	-	-	735(3)	uA

表 3-11 STOP 模式电流消耗

- 1. Typ 电压条件 V_{DD}=5.0V。
- 2. Max 电压条件 V_{DD}=2.7V~5.5V
- 3. 量产测试保证

Τ,	ъ .	6 11	At the state of th	T_A		产品规格	i	T T •4
Item	Parameter	Symbol	条件(V _{DD} =5.0V)	(°C)	Min	Тур	Max	Unit
模块	-	ICC_MODULE	XTAL振荡模式大驱动20MHz	25	-	1.8	-	mA
电流			振荡模式中驱动16MHz	25	-	1.0	-	mA
			振荡模式小驱动8MHz	25	-	0.8	-	mA
			振荡模式超小驱动4MHz	25	-	0.6	-	mA
			HRC(48MHz)	25	-	0.6	-	mA
			HRC(64MHz)	25	-	0.7	-	mA
			LDO	25	-	67	-	uA
			ADC	25	-	1.9	-	mA
			CMP	25	-	0.5	-	mA
			OPA	25	-	1.3	-	mA

表 3-12 模拟模块电流消耗

3.3.6 电气敏感性

使用特定的测量方法对芯片进行不同的测试(ESD、LU),以确定其在电气敏感性方面的性能。

3.3.6.1 静电放电 (ESD)

根据每种引脚组合,对每个样本的引脚施加静电放电。此项测试符合 JESD22-A114/C101 标准。

符号	参数	条件	最大值	单位
$V_{ESD(HBM)}$	静电放电电压(人体模型)	T _A =+25 °C,符合 JESD22-A114 标准	4000	
V _{ESD(CDM)}	静电放电电压(充电设备模型)	T _A =+25 °C,符合 JESD22-C101 标准	1500	V

表 3-13 ESD 特性

3.3.6.2 静态 Latch-up

为评估静态 Latch-up 性能,需要对芯片执行两项互补的静态 Latch-up 测试:

- 对每个电源和模拟输入引脚施加过压
- 对其他输入、输出和可配置 I/O 引脚施加电流注入

这些测试符合 EIA/JESD 78E IC Latch-up 标准。

符号	参数	条件	最大值	单位
LU	电流测试	T _A =+25°C,符合 JESD78E 标准	150	mA

表 3-14 静态 Latch-up 特性

3.3.7 低功耗模式唤醒时序

唤醒时间测量方法为,从唤醒事件触发至 CPU 执行的第一条指令:

- 对于停止或睡眠模式:唤醒事件为 WFE。
- WKUP 引脚用于从停止、睡眠模式唤醒。所有时序均在环境温度及 V_{DD}=5.0 V 测试得出。

符号	参数	条件	典型值	最大值	单位
T _{STOP1} ⁽¹⁾	从停止模式唤醒	系统时钟为HRC,程序在RAM上执行	18	40	
T _{STOP2} ⁽¹⁾	从停止模式唤醒	系统时钟为HRC,程序在Flash上执行	28	50	us

表 3-15 低功耗模式唤醒时间

1. 唤醒时间的测量从触发唤醒事件开始,到应用程序代码读取第一条指令为止。

3.3.8 I/O 端口特性

常规输入/输出特性

符号	参数	条件	最小值	典型值	最大值	单位
	GPIO输入低电平	2.7 ≤V _{DD} ≤5.5	-0.3		$0.2V_{DD}^{(1)}$	
V_{IL}	many the state of	$2.7 \le V_{DD} \le 3.6$	0		$0.80^{(1)}$	V
	TTL 输入低电平	$3.6 \le V_{DD} \le 5.5$	0		1.16 ⁽¹⁾	
	GPIO输入高电平	2.7 ≤V _{DD} ≤5.5	$0.8 V_{DD}^{(1)}$		V _{DD} +0.3	
V_{IH}		2.7 ≤V _{DD} ≤3.6	2.1 ⁽¹⁾		V _{DD} +0.3	V
	TTL 输入高电平	$3.6 \le V_{DD} \le 5.5$	2.2		V _{DD} +0.3	
V_{HYS}	输入迟滞电压	2.7 ≤V _{DD} ≤5.5	10% V _{DD} ⁽²⁾			V
$I_{LKG}^{(1)}$	I/O输入泄露电流	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	uA
$R_{PU}^{(1)}$	弱上拉等效电阻	$V_{\rm IN} = V_{\rm SS}$	10	20	50	kΩ
C _{IO}	I/O引脚电容		-	4	15	pF

表 3-16 I/O 静态特性

- 1. 量产测试保证。
- 2. 至少 200 mV.

输出驱动电压

驱动 设置	符号	参数		条件			典型值	最大值	单位
普通	V _{OL} ⁽¹⁾⁽²⁾⁽³⁾	低电平输出	P10, P146, P147,	2.7≤V _{DD} <5.5	I _{OL} =0.5mA			0.5	
驱动	$V_{OH}^{(1)(2)(3)}$	高电平输出	P20	V _{DD} -0.4					
普通	$V_{OL}^{(1)(2)(3)}$	低电平输出	除		I _{OL} =4.0mA			0.81	
驱动	$V_{OH}^{(1)(2)(3)}$	高电平输出	P10, P146,	2.7\leq V_DD\leq 5.5	I _{OH} =4.0mA	V _{DD} -0.75			
	$V_{OL}^{(1)(2)}$	低电平输出	P147,	P147, I _{OL}		V _{DD} -0.5			
	V _{OH} ^{(1)(2) (3)}	高电平输出	P20 ~P27	2.7\(\leq V_{DD}\)<4.0	I _{OH} =1.5mA			0.5	V
	$V_{OL}^{(1)(2)(3)}$	低电平输出	以外		I _{OL} =3mA	V _{DD} -0.7			
 	V _{OH} ⁽¹⁾⁽²⁾	高电平输出		2.7\(\frac{1}{2}\) \(\frac{1}{2}\)	I _{OH} =3mA			0.7	
高驱动	$V_{OL}^{(1)(2)(3)}$	低电平输出			I _{OL} =10mA			0.98	
	V _{OH} ^{(1)(2) (3)}	高电平输出		4.0\(\leq\V_{DD}\leq 5.5\)	I _{OH} =3mA	V _{DD} -0.7			
	$V_{OL}^{(1)(2)}$	低电平输出			I _{OL} =20mA			1.3	
	$V_{OH}^{(1)(2)(3)}$	高电平输出		4.0\(\leq V_{DD} \leq 5.5\)	I _{OH} =10mA	V _{DD} -1.5			

表 3-17 输出电压特性

- 1. 器件的 Ito 灌电流必须始终遵循表 3-2 中规定的绝对最大额定值。Ito(I/O 端口和控制引脚)之和一定不能超过 Ivss。
- 2. 器件的 Ito 拉电流必须始终遵循表 3-2 中规定的绝对最大额定值。Ito(I/O 端口和控制引脚)之和一定不能超过 Ivpp。
- 3. 量产测试保证。

输入/输出交流特性

驱动设置(1)	符号	参数	条件	最小值	典型值	最大值	单位
	f _{max} (IO)out	最大频率(1)	C _L =30 pF, V _{DD} ≥ 2.7 V	-	1	16	MHz
低驱动	t _f (IO)out t _r (IO)out	输出高至低电平下降 时间及输出低至高电 平上升时间	C _L =30 pF, V _{DD} ≥ 2.7 V	-	1	60	ns
	$f_{max}(IO)$ out	具十城家 (1)	C _L =50 pF, V _{DD} ≥ 4.0 V			12	
		最大频率 (1)	$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	1	1	10	MHz
高驱动		输出高至低电平下降	$C_L = 50 \text{ pF}, V_{DD} \ge 4.0 \text{ V}$	ı	•	20	
	t.(IO)out 时间及输 出低至高电			-	ı	40	ns

表 3-18 I/O 交流特性

1. 最大频率在图 3-4 中定义。

最大频率条件: $(t_r + t_f) \le (2/3)T$ 并且Duty cycle= $50\% \pm 5\%$ (负载电容 C_L 在"输入/输出交流特性"表格的"条件"一栏中标明)

图 3-4 I/O 交流特性定义

3.3.9 USART 接口特性

符号		参数	最小值	最大值	单位
	输入时钟周期数	UART	4	-	4
$t_{\rm cyc}$	相/八时 竹	时钟同步模式	6	-	t _{HCLK}
t_{CKw}	输入时钟宽度		0.4	0.6	$t_{\rm cyc}$
t _{CKr}	输入时钟上升时间		-	20	ns
t _{CKf}	输入时钟下降时间		-	20	ns
t_{TD}	发送延迟时间	时钟同步模式(Master)	-	40	ns
		时钟同步模式(Slave)	-	65	ns
t_{RDS}	接收数据建立时间	时钟同步模式(Master)	65	-	ns
		时钟同步模式(Slave)	40	-	ns
t_{RDH}	接收数据保持时间	时钟同步模式	40	-	ns

表 3-19 USART AC 时序

模式		最高波特率
UART	内部时钟源	HCLK/8
	外部时钟源	HCLK/6
时钟同步模式	内部时钟源	4Mbps
	外部时钟源	6Mbps

表 3-20 USART 最高波特率

图 3-5 USART 时钟时序

图 3-6 USART (CSI) 输入输出时序

3.3.10 I2C 接口特性

符号	参数	标准模式	C (SM)	快速模式	t (FM)	単位
初五	少 数	Min	Max	Min	Max	一 単位
f_{SCL}	SCL频率	0	100	0	400	kHz
$t_{\mathrm{HD;STA}}$	开始条件/重新开始条件Hold	4.0	-	0.6	-	us
$t_{ m LOW}$	SCL低电平	4.7	-	1.3	-	us
t _{HIGH}	SCL高电平	4	-	0.6	-	us
t _{SU;STA}	重新开始条件Setup	4.7	-	0.6	-	us
t _{HD;DAT}	数据Hold	0	-	0	-	us
t _{SU;DAT}	数据Setup	50+ t _{12C基准时钟周期}	-	50+ t _{12C} 基准时钟周期	-	ns
$t_{\rm r}$	SCL/SDA的上升时间	-	1000	20	300	ns
t_{f}	SCL/SDA的下降时间	-	300	6.5	300	ns
t _{SU;STO}	停止条件Setup	4	-	0.6	-	us
$t_{ m BUF}$	停止条件到开始条件间的BUS空 闲时间	4.7	-	1.3	-	us
C _b	负载电容		400	-	400	pF

表 3-21 I2C 电气特性

图 3-7 I2C 总线时序定义

3.3.11 SPI 接口特性

Item		Symbol	Min	Max	Unit	Test conditions
SCK clock cycle	Master	$t_{ m spcyc}$	2	4096	T _{HCLK}	图 3-8
	Slave		8	4096	(HCLK ≤48MHz)	C=30pF
SCK clock rise and fall	Master	$t_{ m sckr}$	-	20	ns	
time	Slave	$t_{\rm sckf}$	-	1	us	
Data input setup time	Master	$t_{ m su}$	10	-	ns	图 3-9
	Slave		5	-		C=30pF
Data input hold time	Master	t _h	T _{HCLK}	-	ns	
	Slave		0	-		
Data output delay	Master	t _{od}	-	30	ns	
	Slave		-	60		
Data output hold time	Master	toh	0	-	ns	
	Slave		0	-		
MOSI/MISO rise and	Master	$t_{ m dr}$	-	20	ns	
fall time	Slave	t _{df}	-	1	us	
SS rise and fall time	Master	$t_{\rm ssr}$	-	20	ns	
	Slave	$t_{ m ssf}$	-	1	us	

表 3-22 SPI 电气特性

图 3-8 SCK Clock 定义

图 3-9 SPI 接口时序要求

3.3.12 SWD 接口特性

Synbol	Item	Min	Тур	Max	Unit
tswclKcyc	SWCLK clock cycle time	50	-	-	ns
tswclkh	SWCLK clock high pulse width	20	-	-	ns
tswclkl	SWCLK clock low pulse width	20	-	-	ns
t_{SWCLKr}	SWCLK clock rise time	-	-	5	ns
tswclkf	SWLCK clock fall time	-	-	5	ns
$t_{ m SWDIs}$	SWDI setup time	8 ⁽¹⁾	-	-	ns
$t_{ m SWDIh}$	SWDI hold time	8	-	-	ns
tswDOd	SWDO data delay time	22	-	40 ⁽¹⁾	ns

1. 量产测试保证。

图 3-10 SWD SWCLK 时钟

HC32M120 系列数据手册 Rev1.12

3.3.13 外部时钟源特性

3.3.13.1 外部源产生的高速外部用户时钟

在旁路模式,XTAL 振荡器关闭,输入引脚为标准 I/O。外部时钟信号必须考虑 I/O 静态特性。

符号	参数	条件	最小值	典型值	最大值	单位
f_{XTAL_ext}	用户外部时钟源频率		1	-	20	MHz
V_{XTAL}	OSC_IN 输入引脚高电平电压		$0.8*V_{DD}$	-	V_{DD}	
V _{XTAL}	OSC_IN 输入引脚低电平电压		VSS	-	0.2*V _{DD}	V
DuCy _(XTAL)	占空比		40	50	60	%

表 3-23 高速外部用户时钟特性

3.3.13.2 晶振 / 陶瓷谐振器产生的高速外部时钟

高速外部 (XTAL) 时钟可以使用一个 4 到 20 MHz 的晶振 / 陶瓷谐振振荡器产生。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以尽量减小输出失真和起振稳定时间。有关谐振器特性(频率、封装、精度等)的详细信息,请咨询晶振谐振器制造商。

符号	参数	条件	最小值	典型值	最大值	单位
f_{OSC_IN}	振荡器频率		4.0	-	20	MHz
$R_F^{(2)}$	反馈电阻		-	500	-	kΩ
G_{m}	最大关键晶振 gm	起振	3.6	-	-	mA/V
t _{SU(XTAL)} ⁽¹⁾	启动时间	V _{DD} 稳定,稳定到8MHz振荡频率	-	-	2.0	ms
		V _{DD} 稳定,稳定到4MHz振荡频率	-	-	4.0	ms

表 3-24 XTAL 4-20 MHz 振荡器特性

- 1. tsu(XTAL)是起振时间,即从软件使能 XTAL 开始测量,直至得到稳定的 8MHz 振荡频率这段时间。该值基于标准晶振谐振器测得,可能随晶振制造商的不同而显著不同。
- 2. 量产测试保证。

对于 C_{L1} 和 C_{L2} ,建议使用专为高频应用设计、可满足晶振或谐振器的要求且大小介于 5 pF 到 25 pF (典型值)之间的高质量外部陶瓷电容。 C_{L1} 和 C_{L2} 的大小通常相同。晶振制造商指定的负载电容通常是 C_{L1} 和 C_{L2} 的串联组合。确定 C_{L1} 和 C_{L2} 的规格时,必须将 PCB 和 MCU 引脚的电容考虑在内(引脚与电路板的电容可粗略地估算为 10 pF)。

带集成电容的谐振器

图 3-12 采用8 MHz 晶振的典型应用

1. REXT 的值取决于晶振特性。

3.3.14 内部时钟源特性

3.3.14.1 内部高速 (HRC) 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
c	频率 ⁽¹⁾ 精度 ⁽¹⁾	模式1	-	48	-	
		模式2	-	64	-	MHz
$f_{ m HRC}$		T _A = -40 到 -20°C	-4.0	-	4.0	%
		T _A = -20 到 105 °C	-2.0	-	2.0	%
t _{st(HRC)}	HRC振荡稳定时间	频率=48MHz	-	-	37.1	μs
		频率=64MHz	-	-	80.6	μs

表 3-25 HRC 振荡器特性

3.3.14.2 内部低速(LRC) 振荡器

符号	参数	最小值	典型值	最大值	单位
${ m f_{LRC}}^{(1)}$	频率	29.4912	32.768	36.0448	kHz
t _{st(LRC)}	LRC振荡器稳定时间	-	-	100	μs
I _{CC(LRC)}	LRC振荡器功耗	-	300		nA

表 3-26 LRC 振荡器特性

^{1.} 量产测试保证。

^{1.} 量产测试保证。

3.3.15 12 位 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ m VDD}$	电源	-	2.7	-	5.5	V
f_{ADC}	ADC 转换时钟频率	-	1	-	32	MHz
V_{AIN}	转换电压范围	-	V_{SS}	-	$V_{ m DD}$	V
R _{AIN}	外部输入阻抗	详见公式1	-	-	50	kΩ
		ADC_IN0~IN8	-	-	6.5	kΩ
R _{ADC}	采样开关电阻	ADC_IN9~11	-	-	11	kΩ
C _{ADC}	内部采样和保持电容	-	-	4	7	pF

表 3-27 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
		f _{ADC} =32MHz	0.469	-	7.96	μs
	采样时间	ADC_IN0~IN8	15	-	255	1/ f _{ADC}
t_{S}		f _{ADC} =32MHz	0.78	-	7.96	μs
		ADC_IN9~11	25	-	255	1/ f _{ADC}
		$f_{ADC} = 32 \text{ MHz}$				
		ADC_IN0~IN8	0.88	-	-	
		12 位分辨率				μs
		$f_{ADC} = 32 \text{ MHz}$				
		ADC_IN0~IN8	0.81	-	-	
t_{CONV}		10 位分辨率				μs
		$f_{ADC} = 32 \text{ MHz}$				
		ADC_IN0~IN8	0.75	-	-	
		8 位分辨率				μs
		28到 268 (采样时间 ts	S+ 逐次趋边	丘 n 位分别	幹率+1)	1/f _{ADC}
		ADC_IN0~IN8			1 14	
	采样率	12 位分辨率	-	-	1.14	
f_S	$f_{ADC} = 32 \text{ MHz}$	ADC_IN9~11				Msps
		12 位分辨率	-	-	0.84	

t_{ST}	上电时间	-	-	-	8	μs
----------	------	---	---	---	---	----

表 3-28 ADC 特性 (续)

公式 1: R_{AIN} 最大值公式

$$R_{AIN} = \frac{k-1}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

上式(公式 1)用于确定使误差低于 1/4 LSB 的最大外部阻抗。其中 N=12 (12 位分辨率),k 为 ADC_SSTR 寄存器中定义的采样周期数。

符号	参数	条件	典型值	最大值	单位
E _T	绝对误差		-	±7.5	LSB
Eo	偏移误差	f _{ADC} =32MHz	-	±7	LSB
E_G	增益误差	输入源阻抗<1kΩ	-	±7	LSB
DNL ⁽¹⁾	微分线性误差	V _{DD} =2.7 ~5.5V Ta=-40~105°C	ı	±1.5	LSB
INL ⁽¹⁾	积分线性误差	1a40~103 C	-	±3	LSB

表 3-29 ADC_IN0~IN8 输入通道精度

1. 量产测试保证。

符号	参数	条件	典型值	最大值	单位
E _T	绝对误差		-	±8	LSB
Eo	偏移误差		1	±7.5	LSB
E _G	增益误差	输入源阻抗<1kΩ	ı	±7.5	LSB
DNL ⁽¹⁾	微分线性误差	V _{DD} =2.7 ~5.5V Ta=-40~105℃	-	±2	LSB
INL ⁽¹⁾	积分线性误差	14	1	±3	LSB

表 3-30 ADC IN9~11 输入通道精度

1. 量产测试保证。

符号	参数	条件	最小值	最大值	单位
ENOB	绝对误差	£ _22MI_	10.5	-	Bits
SINAD	偏移误差	f _{ADC} =32MHz 输入信号频=2kHz	62	-	dB
SNR	增益误差	V _{DD} =2.7 ~5.5V	64	-	dB
THD	微分线性误差	Ta=-40~105°C	-	-65	dB

表 3-31 ADC_IN0~IN8 输入通道动态精度

符号	参数	条件	最小值	最大值	单位
ENOB	绝对误差	f _{ADC} =32MHz	10	ı	Bits
SINAD	偏移误差		61	1	dB
SNR	增益误差	V_{DD} =2.7 ~5.5V	63	-	dB
THD	微分线性误差	Ta=-40~105 °C	-	-65	dB

表 3-32 ADC_IN9~11 输入通道动态精度

图 3-13 使用 ADC 的典型连接

- 1. 另请参见上述表格。
- 2. 实际传输曲线举例。
- 3. 理想传输曲线。
- 4. 端点相关线。
- 5. E_T = 总未调整误差:实际和理想传输曲线间的最大偏离。
 - Eo = 偏移误差: 第一次实际转换和第一次理想转换间的偏离。
 - E_G = 增益误差: 最后一次理想转换和最后一次实际转换间的偏离。
 - E_D = 微分线性误差: 实际步进和理想值间的最大偏离。
 - EL = 积分线性误差: 任何实际转换和端点相关线间的最大偏离。

图 3-14 使用 ADC 的典型连接

- 1. 有关 R_{AIN}、R_{ADC} 和 C_{ADC} 值的信息,请参见表 3-27。
- 2. Cparasitic 表示 PCB 电容(取决于焊接和 PCB 布线质量)以及焊盘电容(约 5 pF)。Cparasitic 值较高会导致 转换精度降低。要解决这一问题,应减小 fadc。

通用 PCB 设计准则

应按照图 3-15 所示对电源进行去耦, $0.1\mu F$ 电容应为(优质)陶瓷电容,这些电容应尽可能靠近芯片。

图 3-15 电源和参考电源去耦

3.3.16 比较器特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	模拟电源电压	-	2.7	5.0	5.5	V
$V_{\rm I}$	输入电压范围	-	0	-	V_{DD}	V
T_{cmp}	比较时间	比较器分辨电压=100mV	-	100	150	nS
T _{set}	输入通道切换稳定时间	-	-	150	200	nS

表 3-33 比较器特性

3.3.17 OPA 特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	模拟电源电压	-	2.7	5.0	5.5	V
VI	输入电压范围	-	0	-	V _{DD} -1.3	V
VO	输出电压范围	-	0.2	-	V _{DD} -0.2	V
Cload	输出负载电容	-	-	-	50	pF
Rload	输出负载电阻	-	10K	-	-	Ω
Vos	输入失调电压	电压跟随器模式	-	±3	-	mV
SR	Slew Rate	电压跟随器模式	-	5	-	V/us
BW	带宽	电压跟随器模式	-	10	-	MHz
Aop	开环增益	电压跟随器模式	-	114	-	dB
PM	相位裕量	电压跟随器模式	45	-	-	deg
PSRR	电源噪声抑制比	直流特性	-	76	-	dB
CMRR	共模电压抑制比	直流特性	-	84	-	dB
Tset	稳定时间	-	-	0.74	-	uS
Icc	工作电流	不带负载	-	0.875	-	mA
		V _{DD} =5V VO=0.2V or 4.8V ⁽¹⁾	-	-	4	mA
Iload	电流输出能力	V _{DD} =5V VO=1.0V or 4.0V	-	-	30	mA

表 3-34 运算放大器特性

1. 量产测试保证。

3.3.18 内置温度传感器 TSN 特性

符号	参数	条件	最小值	典型值	最大值	单位
k	温度系数	-	-	-3.3	-	mV/°C
V _{ADCnom}	TSN电压ADC转换值*1	$T_A = 25$ °C	-	837(十进制)	-	-

^{*1} 量产测试后写入 0x4000085C 的参考值。

通过 ADC 转换内置温度传感器的电压可以检测片上温度,温度计算公式如下:

$$V_{ADCx} * \frac{V_{DD}}{4096} = \frac{k}{1000} * T_x + (V_{ADCnom} * \frac{V_{DD}}{4096} - \frac{k}{1000} * T_{nom})$$

化简后: $T_x = 1000 * \frac{(V_{ADCx} - V_{ADCnom})}{k} * \frac{V_{DD}}{4096} + T_{nom}$

参数说明:

V_{ADCx} : ADC 实时转换结果,取十进制

T_x : 需要检测的温度值

V_{DD} : 常数,系统工作电压

V_{ADCnom} : 常数,传感器电压 ADC 常温转换结果,通过访问寄存器地址 0x4000085C

的低 16 位数据可以提取预先记录入芯片的 25 ℃常温 ADC 转换结果。

注:该值为参考值,如果需要得到更加精确的值,需要在精确温度下

重新校准。

k : 常数,温度系数,参考值为-3.3mV/℃

T_{nom} : 常数,温度值 25℃,对应 V_{ADCnom} 转换时的温度

例如,当前温度 T_x 下,ADC 转换值 $V_{ADCx} = 890$,读出 V_{ADCnom} 为 862, V_{DD} 电压 5V,则上述公式计算如下:

$$890 * \frac{5}{4096} = \frac{-3.3}{1000} * T_x + \left(862 * \frac{5}{4096} - \frac{-3.3}{1000} * 25\right)$$

则,当前温度 $T_x = 14.6$ °C

3.3.19 闪存

器件交付给客户时, 闪存已被擦除。

符号	参数	条件	最小值	典型值	最大值	单位
I _{DD} 供电F		读模式,V _{DD} = 2.7 V~5.5V	-	-	7	
		编程模式, V _{DD} = 2.7 V~5.5V -	1	1	3.5	
	供电电流	块擦除模式, V _{DD} = 2.7 V~5.5V	1	1	2	mA
		全擦除模式, V _{DD} = 2.7 V~5.5V	1	-	2	

表 3-35 闪存特性

符号	参数	条件	最小值	典型值	最大值	单位
(1)	字节编程时间	单编程模式	24+2* Thclk ⁽²⁾	25+4* Thclk ⁽²⁾	26+6* Thelk ⁽²⁾	μs
Tprog ⁽¹⁾	字节编程时间	连续编程模式	6+2* Thelk ⁽²⁾	7+4* Thelk ⁽²⁾	8+6* Thclk ⁽²⁾	μs
	半字编程时间	单编程模式	31+2* Thclk ⁽²⁾	32+4* Thclk ⁽²⁾	33+6* Thclk ⁽²⁾	
	半字编程时间	连续编程模式	13+2* Thclk ⁽²⁾	14+4* Thclk ⁽²⁾	15+6* Thclk ⁽²⁾	
	字编程时间	单编程模式	45+2* Thclk ⁽²⁾	46+4* Thclk ⁽²⁾	47+6* Thclk ⁽²⁾	
	字编程时间	连续编程模式	27+2* Thclk ⁽²⁾	28+4* Thclk ⁽²⁾	29+6* Thclk ⁽²⁾	
Terase ⁽¹⁾	块擦除时间	-	4.3+2* Thclk ⁽²⁾	4.5+4* Thelk ⁽²⁾	4.7+6* Thclk ⁽²⁾	ms
Tmas ⁽¹⁾	全擦除时间	-	29+2* Thclk ⁽²⁾	30+4* Thclk ⁽²⁾	31+6* Thclk ⁽²⁾	ms

表 3-36 闪存编程擦除时间

- 1. 量产测试保证。
- 2. Thelk 为 CPU 时钟的 1 周期。

符号	参数	条件	数值	単位	
10 5	罗奴	жп	最小值	. 12 līr	
Nend	编程,块擦除次数	T _A = -40 到 +105 °C	20	kcycles	
Nend	全擦除次数	T _A = -40 到 +105 °C	20	kcycles	
Tret	数据保存期限	$T_A = 85$ °C, after 20 kcycles	20	Years	

表 3-37 闪存可擦写次数和数据保存期限

4 封装信息

4.1 封装尺寸

LQFP48 封装

SECTION B-B

	1		
		7x7 Millimeter	
Symbol	Min	Nom	Max
A			1.60
A1	0.05		0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18		0.26
b1	0.17	0.20	0.23
С	0.13		0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
eВ	8.10		8.25
e		0.50BSC	
L	0.45		0.75
L1		1.00REF	
θ	0°		7°

NOTE:

Dimensions "D1" and "E1" do not include mold flash.

LQFP32 封装

DETAIL: F

SECTION B-B

7x7 Millimeter **Symbol** Min Nom Max 1.60 Α 0.05 **A**1 0.15 A2 1.35 1.40 1.45 0.59 0.64 0.69 A3 b 0.33 0.41 b1 0.32 0.35 0.38 0.13 0.17 c c10.12 0.13 0.14 9.00 9.20 D 8.80 7.00 7.10 D1 6.90 E 8.80 9.00 9.20 6.90 7.00 E1 7.10 eВ 8.10 8.25 e 0.80BSCL 0.45 0.75 L1 1.00REF 0° 7° θ

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

4.2 焊盘示意图

LQFP48 封装 (7mm x 7mm)

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP32 封装 (7mm x 7mm)

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

4.3 丝印说明

以下给出各封装正面丝印的 Pin 1 位置和信息说明。

LQFP48 封装(7mm x 7mm) / LQFP32 封装(7mm x 7mm)

注意:

- 上图空白框表示与生产相关的可选标记,本节不作说明。

4.4 封装热阻系数

封装芯片在指定工作环境温度下工作时,芯片表面的结温 $T_j(^{\circ}\mathbb{C})$ 可以按照下面的公式计算:

$$T_i = T_{amb} + (P_D \times \theta_{JA})$$

- T_{amb} 是指封装芯片工作时的工作环境温度,单位是℃;
- θ_{JA} 是指封装对工作环境的热阻系数,单位是℃/W;
- PD等于芯片的内部功耗和 I/O 功耗之和,单位是 W。芯片的内部功耗是产品的 IDD x VDD, I/O 功耗指的是指芯片工作时 I/O 引脚产生的功耗,通常该部分值很小,可以忽略。

芯片在指定工作环境温度下工作时芯片表面的结温 T_j ,不可以超出芯片可容许的最大结温度 T_J 。

Package Type and Size	Thermal Resistance Junction-ambient Value (θ_{JA})	Unit
LQFP32 7mm x 7mm / 0.8mm pitch	80 +/- 10%	°C/W
LQFP48 7mm x 7mm / 0.5mm pitch	75 +/- 10%	°C/W

表 4-1 各封装热阻系数表

5 订购信息

产品型号	HC32M120J6TB-LQ48	HC32M120F6TB-LQ32	
Package	LQFP48 7mm*7mm	LQFP32 7mm*7mm	
工作电压	2.7-5.5V		
工作温度	-40°C∼ 105°C		
主频	48N	1Hz	
Flash	321	КВ	
RAM	4k	(B	
DMA	2	2	
1/0	44	28	
ADC 12bit	12ch	8ch	
СМР	2		
ОРА	2		
Timer 4 (电机控制)	1		
正交编码	1		
通用Timer	6	3	
I2C	1		
UART	3		
LIN	1		
WDT	1		
包装形式	盘	类	

订购前,请联系销售窗口咨询最新量产信息。

版本信息 & 联系方式

版本	日期	修订内容摘要
Rev1.0	2020/2/14	初版发布。
Rev1.1	2020/7/23	增加 3.3.18 节,增加参数特性表格
		3.3.19 节增加字节/半字的编程时间
		增加 4.2 和 4.4 节
Rev1.11	2021/1/29	修改声明。
Rev1.12	2021/6/30	修改闪存中数据保存期限。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址: 上海市浦东新区中科路 1867 号 A 座 10 层

邮编: 201203

