UNIT 4/5 COMBINATIONAL LOGIC 2ND SESSION

Implementation of Boolean functions using Decoder and Multiplexers

1. Using Decoder

- Any combinational circuit with 'n' inputs and 'm' outputs can be implemented with 'n to 2ⁿ decoder with 'm' OR gate.
- Ex: Implement the following Boolean expression using decoder:

 $F1=\sum m(0,4,6), F2=\sum m(0,5)$ and $F3=\sum m(1,2,3,7)$ where F is the function of A,B,C.

No. of Inputs=3

Decoder size=3:2^3=3:8

No of outputs=3 (F1,F2,F3)

No, of OR gate=3

 $F1 = \sum m(0,4,6) = m0 + m4 + m6 = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + \overline{A}BC$

 $F2=\sum m(0,5) = m0+m5 = \overline{A}\overline{B}\overline{C} + A\overline{B}C$

 $F3 = \sum m(1,2,3,7) = m1 + m2 + m3 + m7 = \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$

Ex: *Implement of the Full Adder using decoder:*

No. of Inputs=3

Decoder size=3:2^3=3:8

No of outputs=2 (Sum and Carry)

No, of OR gate=2

Sum (S) =
$$\sum m(1,2,4,7) = m1+m2+m4+m7 = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

Carry (C) = $\sum m(3,5,6,7) = m3+m5+m6+m7 = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

2. Using Multiplexer

- The inputs of the Boolean function are the selection lines of the MUX.
- Ex: Implement the function $F(A,B,C) = \sum m(1,2,6,7)$ no. of variables = 3=no. of selection lines size of $MUX = 2^3 \times 1 = 8 \times 1$

Seven Segment Decoder

- An electronic device which consists of seven light emitting diodes (LEDs) arranged in a some definite pattern (common cathode or common anode type),
- Display hexadecimal numerals (input is BCD i.e., 0-9).

		INP	TU		OUTPUT						
Digits	Α	В	С	۵	а	b	C	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	7	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1_	$\neg 1$	1	0	0	1
4	0	1	0	0	0	11/	T 1/	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	Ţ	1	1	1	1
7	0	1	1	1	1	1	ħ	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

Truth Table for common cathode

From the above truth table, the Boolean expressions of each output functions can be written as;

$$\mathbf{a} = \mathbf{F1} (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \sum_{\mathbf{m}} (0, 2, 3, 5, 7, 8, 9)$$
 $\mathbf{b} = \mathbf{F2} (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \sum_{\mathbf{m}} (0, 1, 2, 3, 4, 7, 8, 9)$
 $\mathbf{c} = \mathbf{F3} (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \sum_{\mathbf{m}} (0, 1, 3, 4, 5, 6, 7, 8, 9)$
 $\mathbf{d} = \mathbf{F4} (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \sum_{\mathbf{m}} (0, 2, 3, 5, 6, 8)$
 $\mathbf{e} = \mathbf{F5} (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \sum_{\mathbf{m}} (0, 2, 6, 8)$
 $\mathbf{f} = \mathbf{F6} (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \sum_{\mathbf{m}} (0, 4, 5, 6, 8, 9)$
 $\mathbf{g} = \mathbf{F7} (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \sum_{\mathbf{m}} (2, 3, 4, 5, 6, 8, 9)$

K-Map Simplification

ABCD	00	01	11	10
00	0	0	1	1
01	1	1	0	1
11	×	×	×	×
10	1	1	×	×

 $\mathbf{g} = \overline{\mathbf{B}} \mathbf{C} + \mathbf{C} \overline{\mathbf{D}} + \mathbf{B} \overline{\mathbf{C}} + \mathbf{B} \overline{\mathbf{C}} + \mathbf{A}$

Schematic of BCD to 7-Segment Decoder

Magnitude Comparator

- A combinational circuit that **compares two digits or binary numbers** in order to find out whether one binary number is equal, less than or greater than the other.
- Three output terminals, one for A > B condition, one for A = B condition and one for A < B condition.

Fig: Block diagram for n-bit comparator

1-Bit Magnitude Comparator

- Compares two bits.
- Two inputs each for two single bit numbers and three outputs.

A	В	G (A>B)	L (A <b)< th=""><th>E (A=B)</th></b)<>	E (A=B)
0	0	0	0	1
0	1	0	1	0
1	0	1	0	0
1	1	0	0	1

Fig: Block diagram for 1-bit comparator

Truth Table

From the above truth table, the Boolean expressions of each output functions can be written as;

G=
$$A\bar{B}$$

L= $\bar{A}B$
E= $\bar{A}\bar{B} + AB = A\odot B$

Fig: Circuit diagram for 1-bit comparator

2-bit comparator

A1	A0	B1	B0	A>B	A <b< th=""><th>A=B</th></b<>	A=B
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	0	1

Truth Table

For G(A>B)

,B1E	30	A>		
A1A0	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
10	1	1	0	0

For G (A=B)

、B1E	30	A :		
A1A0	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0.	ó	0	1

$$G(A>B) = A1B1' + A0B1'B0' + A1A0B0'$$

$$E(A+B)=(A0 \odot B0)(A1 \odot B1)$$

For L(A < B)

L(A < B) = A1'B1 + A0'B1B0 + A1'A0'B0

Fig: Circuit diagram for 2-bit comparator

Parity Generator and Checker

• 3-bit odd parity generator:

$$P = \overline{A}\overline{B}\overline{C} + A\overline{B}C + \overline{A}BC + AB\overline{C}$$
$$= AO(B \oplus C)$$

Fig: Circuit diagram for 3-bit odd parity generator

Information	Odd Parity bit
ABC	P
000	1
001	0
010	0
011	1
100	0
101	1
110	1
111	0

4-bit odd parity checker:

K-map

ABCP	00	01	11	10
00	1	0	1	0
01	0	1	0	1
11	1	0	1	0
10	0	1	0	1

$$C_p = (AOB)(COP) + (A \oplus B)(C \oplus P)$$

Let $X = A \oplus B$ AND $Y = C \oplus P$
 $\therefore C_p = XOY$

4-	bit receive	ed messag	Double	
A	В	C	P	Parity error check C _p
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Fig: Circuit diagram for 4-bit odd parity checker

Read only Memory

- Read Only Memory (ROM)-Memory (Storage) device
- Special links that can be fused or broken to store data.
- Non-volatile

Fig: Block diagram of ROM

Internal construction of 64x4 ROM

Types:

- 1. Mask ROM (MROM)
- 2. Programmable ROM (PROM)
- 3. Erasable and Programmable ROM (EPROM)
 - a. Electrically Erasable and Programmable ROM (EEPROM)
 - **b.** Ultraviolet EPROM (UV EPROM)
- 4. FLASH ROM

Fig: Block diagram of PROM

Programmable Array Logic (PAL)

- Most common one time programmable (OTP) logic device.
- Implemented with bipolar technology (TTL or ECL).

Fig: Block diagram of PAL

Programmable Logic Array (PLA)

- Also called Field Programmable Logic array (FPLA).
- User programs as per his/her requirement.

Fig: Block diagram of PLA

Programmable OR array - XY Programmable AND array

Fig: Circuit diagram of PLA

EX: Implement function using PLA:

$$F_0 = \sum m(0,1,4,6), F_1 = \sum m(2,3,4,6,7), F_2 = \sum m(0,1,2,6)$$

$$F_0 = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}\overline{C} + AB\overline{C} = \overline{A}\overline{B} + A\overline{C}$$

$$F_1 = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC = B + A\overline{C}$$

$$F_2 = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C} + AB\overline{C} = \overline{A}\overline{B}+B\overline{C}$$

Product	Inputs			Outputs		
	\boldsymbol{A}	В	C	$\boldsymbol{F_{\theta}}$	F_1	\boldsymbol{F}_2
$\overline{A}\overline{B}$	0	0	-	1	0	1
$A\overline{C}$	1	-	0	1	1	0
В	-	1	-	0	1	0
BŪ	-	1	0	0	0	1

References

- M. Morris Mano, "Digital Logic & Computer Design"
- Brain Holdsworth, "Digital Logic Design", Elsevier Science.
- John Patrick Hayes, "Introduction to Digital Logic Design", Addison-Wesley.
- M. Morris Mano and Charles Kime, "Logic and Computer Design Fundamentals", Pearson New International.
- Wikipedia/Geeks For Geeks/Electronics Hub