Transformada Bilateral de Laplace

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Verano 2019-2020

De Fourier a Laplace

 La transformada de Laplace puede interpretarse como una generalización de la transformada de Fourier, que permite manejar problemas no tratables con esta última.

Paso clave:

$$j\omega \rightarrow s = \sigma + j\omega$$

Transformada bilateral de Laplace

Transformada de Laplace

En el capítulo anterior se definió la transformada de Fourier como

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

La transformada de Laplace se obtiene sustituyendo $j\omega$ por s, con $s = \sigma + j\omega$:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

El operador de Laplace se denota como:

$$X(s) = \mathcal{L}\{x(t)\}$$

La relación entre el dominio temporal y de frecuencia compleja se denota como $x(t) \stackrel{\mathscr{L}}{\smile} X(s)$ o $x(t) \smile X(s)$

$$x(t) \stackrel{\sim}{\smile} X(s)$$

$$x(t) \longrightarrow X(s)$$

Relación entre las transformadas de Fourier y Laplace

Nótese entonces que se cumple

$$\mathcal{L}\{x(t)\}\Big|_{s=j\omega} = X(s)\Big|_{s=j\omega} = \mathcal{F}\{x(t)\}$$

Por otro lado

$$\mathcal{L}\{x(t)\} = X(s) = X(\sigma + j\omega) = \int_{-\infty}^{\infty} x(t)e^{-(\sigma + j\omega)t}dt$$

$$= \int_{-\infty}^{\infty} x(t)e^{-\sigma t}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} [x(t)e^{-\sigma t}]e^{-j\omega t}dt$$

$$= \mathcal{F}\{x(t)e^{-\sigma t}\}$$

Relación entre las transformadas de Fourier y Laplace

La transformada de Laplace se interpreta como la transformada de Fourier de la función x(t) multiplicada por la señal exponencial real $e^{-\sigma t}$ que será creciente o decreciente dependiendo del signo de σ .

(1)

Calcule la transformada de Laplace de la función $x(t) = e^{-at}u(t)$

Ejemplo: Transformada de Laplace Solución: Se tiene que

$$\mathcal{L}\{x(t)\} = \int_{-\infty}^{\infty} e^{-at} u(t) e^{-st} dt$$

$$= \int_{0}^{\infty} e^{-at} e^{-st} dt$$

$$= \int_{0}^{\infty} e^{-(a+s)t} dt$$

$$= -\frac{e^{-(a+s)t}}{a+s} \Big|_{0}^{\infty}$$

$$= \frac{1 - e^{-(a+s)\infty}}{a+s}$$

Se debe evaluar la convergencia del término $e^{-(a+s)\infty}$

Ejemplo: Transformada de Laplace

(3)

Con
$$a=Re\{a\}+jIm\{a\}$$
 y $s=\sigma+j\omega$ se tiene
$$e^{-(a+s)\infty}=e^{-(Re\{a\}+\sigma)\infty}e^{-j(Im\{a\}+\omega)\infty}$$

- El segundo factor no converge; pero tiene magnitud uno
- Convergencia del producto depende del primer factor:
 - Si $Re\{a\} + \sigma > 0$, esta expresión converge a cero.
 - Si $Re\{a\} + \sigma < 0$, diverge hacia infinito, y
 - Si $Re\{a\} + \sigma = 0$ entonces el producto simplemente no converge.

Esto quiere decir que

$$\mathcal{L}\{x(t)\} = \frac{1}{s+a}, \qquad \sigma > -Re\{a\}$$

Regiones de convergencia en la transformada de Laplace

La transformada de Laplace involucra entonces

- 1. Una expresión algebraica, más
- 2. Una región de convergencia o ROC

Nótese en el ejemplo anterior, que si $Re\{a\} < 0$, entonces el eje $j\omega$ queda fuera de la ROC y por tanto x(t) no tendría transformada de Fourier.

(1)

Calcule la transformada de Laplace de la función $x(t) = -e^{-at}u(-t)$

(2)

Solución: Se tiene que

$$\mathcal{L}\{x(t)\} = \int_{-\infty}^{\infty} -e^{-at}u(-t)e^{-st}dt$$

$$= \int_{-\infty}^{0} -e^{-at}e^{-st}dt$$

$$= \int_{-\infty}^{0} -e^{-(a+s)t}dt$$

$$= \frac{e^{-(a+s)t}}{a+s} \Big|_{-\infty}^{0}$$

$$= \frac{1-e^{(a+s)\infty}}{a+s}$$

Se debe evaluar la convergencia del término $e^{(a+s)\infty}$

(3)

Descomponiendo el exponente en sus partes real e imaginaria y considerando $s=\sigma+j\omega$ se tiene

$$e^{(a+s)\infty} = e^{(Re\{a\}+\sigma)\infty}e^{j(Im\{a\}+\omega)\infty}$$

- El segundo factor no converge
- Puesto que su magnitud es uno, la convergencia del producto depende del primer factor
 - Si $Re\{a\} + \sigma < 0$, esta expresión converge a cero,
 - Si $Re\{a\} + \sigma > 0$ diverge hacia infinito, y
 - Si $Re\{a\} + \sigma = 0$ entonces el producto simplemente no converge.

Esto quiere decir que

$$\mathcal{L}\{x(t)\} = \frac{1}{s+a}, \qquad \sigma < -Re\{a\}$$

(4)

Regiones de convergencia izquierda y derecha

Resumiendo los dos ejemplos anteriores

$$\mathcal{L}\lbrace e^{-at}u(t)\rbrace = \frac{1}{a+s}, \qquad \sigma > -Re\lbrace a\rbrace$$

$$\mathcal{L}\lbrace -e^{-at}u(-t)\rbrace = \frac{1}{a+s}, \qquad \sigma < -Re\lbrace a\rbrace$$

Lo que muestra un hecho fundamental:

La misma expresión algebraica en el dominio s puede representar funciones diferentes en el dominio temporal, dependiendo de la ROC utilizada.

Ejemplo: Transformada de Laplace y ROC

(1)

Encuentre la transformada de Laplace de la función

$$x(t) = e^{-bt}u(t) + e^{-t}\cos(at)u(t)$$

Con a y b reales.

Ejemplo: Transformada de Laplace y ROC

(2)

Solución: La función puede reescribirse utilizando la ecuación de Euler como

$$x(t) = \left[e^{-bt} + e^{-t} \left(\frac{e^{jat} + e^{-jat}}{2}\right)\right] u(t)$$
$$= \left[e^{-bt} + \frac{1}{2}e^{-(1-ja)t} + \frac{1}{2}e^{-(1+ja)t}\right] u(t)$$

Y calculando la transformada de Laplace se obtiene

$$X(s) = \int_{-\infty}^{\infty} \left[e^{-bt} + \frac{1}{2} e^{-(1-ja)t} + \frac{1}{2} e^{-(1+ja)t} \right] u(t) e^{-st} dt$$

$$= \int_{0}^{\infty} \left[e^{-bt} + \frac{1}{2} e^{-(1-ja)t} + \frac{1}{2} e^{-(1+ja)t} \right] e^{-st} dt$$

$$= \int_{0}^{\infty} e^{-bt} e^{-st} dt + \int_{0}^{\infty} \frac{1}{2} e^{-(1-ja)t} e^{-st} dt + \int_{0}^{\infty} \frac{1}{2} e^{-(1+ja)t} e^{-st} dt$$

Ejemplo: Transformada de Laplace y ROC

Que son tres transformaciones idénticas a las del ejemplo anterior por lo que

$$X(s) = \frac{1}{b+s} + \frac{1}{2} \frac{1}{(1-ja)+s} + \frac{1}{2} \frac{1}{(1+ja)+s}$$

ROC: $\sigma > -b$ ROC: $\sigma > -1$ ROC: $\sigma > -1$

Los tres términos deben converger, se utiliza como región de convergencia total a la intersección de las tres ROC individuales, y por tanto ROC de x(t) es $\sigma > máx\{-1, -b\}$

Finalmente

$$x(t) = e^{-bt}u(t) + e^{-t}\cos(at)u(t) \longrightarrow \frac{2s^2 + (3+b)s + 1 + a^2 + b}{(b+s)(1+a^2+2s+s^2)}$$

Caso de X(s) racional

En los casos con X(s) racional, es decir

$$X(s) = \frac{N(s)}{D(s)}$$

x(t) es siempre una combinación lineal de exponenciales reales o complejas.

Diagrama de polos y ceros

Se acostumbra representar a X(s) en diagramas de polos y ceros, donde los ceros se marcan con "o" y los polos con " \times ".

Equivalencia de polos y ceros

Sea X(s) racional con orden del numerador n y orden del denominador d

$$X(s) = \frac{(s - z_1)(s - z_2) \dots (s - z_n)}{(s - p_1)(s - p_2) \dots (s - p_d)}$$

Se dice que

- 1. Hay un cero en infinito de orden k = d n si d > n
- 2. Hay un polo en infinito de orden k = n d si n > d

y con esto en una función racional siempre hay el mismo número de polos que ceros.

Regiones de convergencia

- La ROC de la transformada de Laplace contiene todos los puntos del plano s donde la transformada de Fourier de $x(t)e^{-\sigma t}$ existe.
- Primera condición de Dirichlet $\Rightarrow x(t)e^{-\sigma t}$ absolutamente integrable:

$$\int_{-\infty}^{\infty} |x(t)| e^{-\sigma t} \, dt < \infty$$

- Esto depende únicamente de la componente real σ de la frecuencia compleja s.
- Por esta razón, la ROC de X(s) consiste en bandas paralelas al eje jω en el plano s.
- Puesto que los polos no pueden estar dentro de la ROC, las bandas estarán delimitadas por ellos.

Ejemplo: convergencia de funciones bilaterales (1)

Encuentre la transformada de Laplace de

$$x(t) = e^{-a|t|}$$

con su respectiva región de convergencia, para $a \in \mathbb{R}$.

Ejemplo: convergencia de funciones bilaterales (2)

Solución: Esta ecuación puede reescribirse como la suma de una señal derecha y otra izquierda acotadas en el punto t=0.

$$x(t) = e^{-at}u(t) + e^{+at}u(-t)$$

De los ejemplos anteriores

$$e^{-at}u(t) \longrightarrow \frac{1}{s+a}, \quad ROC: \sigma > -a$$

$$e^{at}u(-t) \longrightarrow \frac{-1}{s-a}, \quad ROC: \sigma < a$$

Nótese que si a < 0 entonces no hay una región de convergencia común a ambos términos y por tanto no existe la **transformada de Laplace**. Si a > 0 entonces

$$e^{-a|t|} \circ \frac{1}{s+a} - \frac{1}{s-a} = -\frac{2a}{s^2 - a^2}, \quad ROC: -a < \sigma < a$$

ROC de funciones racionales

Si X(s) es racional, entonces sus polos delimitan la región de convergencia.

Señal	Transformada	ROC
$\delta(t)$	1	$todo\ s$
u(t)	$\frac{1}{s}$	$\sigma > 0$
-u(-t)	$\frac{1}{s}$	$\sigma < 0$
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\sigma > 0$
$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\sigma < 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$\sigma > -a$
$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$\sigma<-a$
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(s+a)^n}$	$\sigma > -a$
$-\frac{t^{n-1}}{(n-1)!}e^{-at}u(-t)$	$\frac{1}{(s+a)^n}$	$\sigma < -a$
$\delta(t- au)$	$e^{-s\tau}$	$todo\ s$
$[\cos(\omega_0 t)]u(t)$	$\frac{s}{s^2 + \omega_0^2}$ $\frac{\omega_0}{s^2 + \omega_0^2}$	$\sigma > 0$
$[\operatorname{sen}(\omega_0 t)]u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\sigma > 0$
$[e^{-at}\cos(\omega_0 t)]u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\sigma > -a$
$[e^{-at}\operatorname{sen}(\omega_0 t)]u(t)$	$\frac{\dot{\omega_0}}{(s+a)^2 + \omega_0^2}$	$\sigma > -a$
$\frac{d^n}{dt^n}\delta(t)$	s^n	$todo\; s$

Transformadas bilaterales de Laplace de funciones elementales

Propiedades de la transformada de Laplace

Linealidad

Sean las funciones en el dominio del tiempo $x_1(t)$ y $x_2(t)$ y sus respectivas transformadas de Laplace

$$x_1(t) \circ - X_1(s)$$
, $ROC: R_1$
 $x_2(t) \circ - X_2(s)$, $ROC: R_2$

entonces

$$\alpha_1 x_1(t) + \alpha_2 x_2(t) \longrightarrow \alpha_1 X_1(s) + \alpha_2 X_2(s), \qquad ROC: R_1 \cap R_2$$

Nótese que es posible, si no hay puntos comunes en las regiones de convergencia, que no exista la transformada de Laplace de una combinación lineal.

Desplazamiento en el tiempo y en el dominio s

Con un análisis análogo al caso de la transformada de Fourier se puede demostrar que si $x(t) \circ - X(s)$ con ROC R entonces

$$x(t-t_0) \hookrightarrow e^{-st_0}X(s), \qquad ROC:R$$

$$y$$

$$e^{s_0t}x(t) \hookrightarrow X(s-s_0), ROC: \{s | s=r+s_0, r \in R\}$$

Un caso particular consiste en la modulación, es decir

$$e^{j\omega_0t}x(t) \longrightarrow X(s-j\omega_0)$$

que desplaza la transformada de Laplace en dirección vertical, trasladando todo polo y cero en a hacia $a + j\omega_0$.

Conjugación

Para $x(t) \hookrightarrow X(s)$ con ROC R se cumple

$$x^*(t) \circ X^*(s^*), \qquad ROC: R$$

y por lo tanto $X(s) = X^*(s^*)$ si x(t) es real.

Consecuencia directa de este hecho es que si p es un polo complejo con parte imaginaria diferente de cero, entonces p^* también lo es.

Escalamieto en el tiempo

Si $\mathcal{L}\{x(t)\} = X(s)$ con **ROC** R entonces para $a \in \mathbb{R}$

$$x(at) \longrightarrow \frac{1}{|a|} X\left(\frac{s}{a}\right), \qquad ROC: \left\{s \middle| s = \frac{r}{a}, r \in R\right\}$$

Para el caso en particular a = -1 se tiene entonces

$$x(-t) \longrightarrow X(-s), \qquad ROC: \{s | s = -r, r \in R\}$$

Que equivale a una rotación de 180° del plano s como dominio de definición de X(s), modificándose la posición de los polos y por tanto también la **ROC**.

Convolución

Si

$$x_1(t) \circ - X_1(s), \quad ROC: R_1$$

 $x_2(t) \circ - X_2(s), \quad ROC: R_2$

entonces

$$x_1(t) * x_2(t) \hookrightarrow X_1(s)X_2(s), \qquad ROC: R_1 \cap R_2$$

donde la región de convergencia puede ser mayor a la indicada si en el producto los polos que determinan los límites de las **ROC** individuales se cancelan.

Diferenciación en el tiempo y en el dominio s

Si $x(t) \longrightarrow X(s)$ con **ROC** R entonces

$$\frac{d}{dt}x(t) \longrightarrow sX(s), \qquad ROC:R$$

donde si X(s) tiene un polo de primer orden en s=0 entonces la **ROC** puede ser mayor. Esta propiedad se puede aplicar recursivamente para llegar a

$$\frac{d^n}{dt^n}x(t) \longrightarrow s^n X(s), \qquad ROC: R$$

Además

$$-tx(t) \longrightarrow \frac{d}{ds}X(s), \qquad ROC:R$$

Encuentre la transformada de Laplace de

$$x(t) = te^{-at}u(t)$$

Solución: puesto que

$$e^{-at}u(t) \longrightarrow \frac{1}{s+a}, \quad ROC: \sigma > -a$$

Entonces

$$te^{-at}u(t) \quad \longrightarrow -\frac{d}{ds}\left[\frac{1}{s+a}\right] = \frac{1}{(s+a)^2}, \qquad ROC: \sigma > -a$$

Integración en el tiempo

Si $x(t) \longrightarrow X(s)$ con **ROC** R entonces

$$\int_{-\infty}^{t} x(\tau)d\tau \longrightarrow \frac{1}{s}X(s), \qquad ROC: R \cap \{s | Re\{s\} > 0\}$$

con una **ROC** igual a la intersección entre $\sigma > 0$ y la **ROC** de X(s).

Propiedades de la Transformada Bilateral de Laplace

Propiedad	Señal en el tiempo	Transformada	ROC
	x(t)	X(s)	R
	$x_1(t)$	$X_1(s)$	R_1
	$x_2(t)$	$X_2(s)$	R_2
Linealidad	$\alpha_1 x_1(t) + \alpha_2 x_2(t)$	$\alpha_1 X_1(s) + \alpha_2 X_2(s)$	$\geq R_1 \cap R_2$
Función real	$x(t) \in \mathbb{R}$	$X(s) = X^*(s^*)$	R
Desplazamiento temporal	x(t- au)	$e^{-s\tau}X(s)$	R
Desplazamiento en s	$e^{s_0t}x(t)$	$X(s-s_0)$	$R + s_0$
Conjugación	$x^*(t)$	$X^*(s^*)$	R
Inversión en el tiempo	x(-t)	X(-s)	-R
Escalamiento en el tiempo	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	R/a
Convolución	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	$\geq R_1 \cap R_2$
Diferenciación	$\frac{dx(t)}{dt}$	sX(s)	$\geq R$
	$\frac{d^n x(t)}{dt^n}$	$s^n X(s)$	$\geq R$
	-tx(t)	$\frac{d}{ds}X(s)$	R
Integración	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{s}X(s)$	$\geq R \cap \{\sigma > 0\}$

Bibliografía

• [1] P. Alvarado, Señales y Sistemas. Fundamentos Matemáticos. Instituto Tecnológico de Costa Rica: Centro de Desarrollo de Material Bibliográfico, 2008.

