- 1. (X, \mathcal{M}) を可測空間とし、 $f: X \to [0, \infty]$ は \mathcal{M} -可測とする。X 上の $[0, \infty]$ -値関数の列 $\{f_n\}_{n=1}^\infty$ で次の条件を満たすものを構成せよ。
 - (a) $\forall n \in \mathbb{N}$ に対し、 f_n は \mathcal{M} -可測

 - (c) $\forall x \in X$ に対し、 $f(x) = \lim_{n \to \infty} f_n(x)$

......

 $f_n(x)=f(x)-\frac{1}{n}$ と定義すると、f は \mathcal{M} -可測関数なので、 f_n も可測関数。 $f_n(x)\leq f_{n+1}(x)$ であり、 $f(x)=\lim_{n\to\infty}f_n(x)$ である。

2. (X, \mathcal{M}) を可測空間とする。 $z \in X$ を固定し、 $\delta_z : \mathcal{M} \to [0, \infty]$ を次で定義する。

$$\delta_z(A) = \begin{cases} 1 & (z \in A) \\ 0 & (z \notin A) \end{cases} \tag{1}$$

この定義により δ_z は (X, \mathcal{M}) 上の測度となる。

(a) $A \in \mathcal{M}$ に対し、 $\delta_z(A) = \mathbf{1}_A(z)$ が成り立つことを示せ。

.....

指示関数 $\mathbf{1}_A(z)$ は次のような定義である。

$$\mathbf{1}_{A}(z) = \begin{cases} 1 & (z \in A) \\ 0 & (z \notin A) \end{cases} \tag{2}$$

 $z\in A$ であれば、 $\delta_z(A)=\mathbf{1}_A(z)=1$ であり、 $z
ot\in A$ であれば、 $\delta_z(A)=\mathbf{1}_A(z)=0$ である。

つまり、 $A \in \mathcal{M}$ に対し、 $\delta_z(A) = \mathbf{1}_A(z)$ である。

(b) $f:X \to [0,\infty)$ を \mathcal{M} -可測な単関数とする。この時、次が成り立つことを示せ。

$$\int_{X} f d\delta_z = f(z) \tag{3}$$

.....

 $\{\alpha_j\}_{j=1}^k \subset \mathbb{R}$ と $\{A_j\}_{j=1}^k \subset \mathcal{M}$ に対して、 $f = \sum_{j=1}^k \alpha_j \mathbf{1}_{A_j}$ とすると、ルベーグ積分の定義より左辺は次のようになる。

$$\int_{X} f d\delta_z = \sum_{j=1}^{k} \alpha_j \delta_z(A_j) \tag{4}$$

前問より、 $\delta_z(A) = \mathbf{1}_A(z)$ であるので、次が成り立つ。

$$\int_{X} f d\delta_z = \sum_{j=1}^{k} \alpha_j \delta_z(A_j) = \sum_{j=1}^{k} \alpha_j \mathbf{1}_{A_j}(z) = f(z)$$
 (5)

(c)	\mathcal{M} -可測な関数 $f:X \to [0,\infty]$ に対し、 (\mathbf{a}) と同じ等式が成り立つことを示せ。
	$f(A) = 1_A(z)$