

Kaj določa način "plavanja"?

- Upor, ki ga čuti "plavalec":
 - zaradi vztrajnosti tekočine, ki jo odriva pred seboj

$$\propto \rho R^2 v^2$$

 zaradi viskoznosti tekočine, (vlečenje slojev tekočine, ki se prilepijo na površino)

$$\propto \eta R v$$

Katera sila je pomembnejša?

ho - gostota tekočine

 η - koef. viskoznosti

Kaj določa način "plavanja"?

• Odloča razmerje obeh sil (Reynoldsovo število *Re*):

$$\frac{\text{upor zaradi vztrajnosti tekočine}}{\text{upor zaradi viskoznosti tekočine}} \propto \frac{\rho R^2 v^2}{\eta R v} = \frac{\rho R v}{\eta} = Re$$

Re	prevladuje	upor	tok
> 1000	vztrajnost	$\propto v^2$	vrtinčenje, turbulenten
< 1	viskoznost	\propto V	brez vrtincev, laminaren

Molekule in bakterije ne poznajo vztrajnosti!
 Način plavanja mora biti drugačen

ho - gostota tekočine η - koef. viskoznosti

Kaj določa način "plavanja"?

koruzni sirup

voda

Kaj poganja gibanje molekul?

Brownovo gibanje / difuzija

• Difuzija je posledica trkov med molekulami s termično kinetično energijo ($^{\sim}k_{\scriptscriptstyle B}T$)

https://youtu.be/R5t-oA796to

https://voutu.be/6VdMp46ZIL8

Difuzija

• Brownovo gibanje:

- Enako verjeten premik v vse smeri
- Povprečna razdalja, do koder pridejo delci
 (D koeficient difuzije, t čas)

$$\langle x \rangle = 0$$

$$\langle x^2 \rangle = 2Dt$$

• Difuzija je na dolge razdalje zelo počasna!

Difuzija

- termične energije delcev
- velikosti in oblike delcev
- viskoznosti tekočine

$$D \propto \frac{k_B T}{\eta R}$$

• Izmerimo lahko le efektivno velikost delcev (skupaj s hidratacijskim plaščem): "hidrodinamski radij"

→ D se z M spreminja počasi! $D \propto M^{-1/3}$

Difuzija majhnih molekul

• Viskoznost je makroskopski parameter, zato ni primeren za opis gibanja molekul, primerljivih z velikostjo molekul topila (m_1 < 100 Da)!

 Tako majhni delci iščejo prazen prostor, ki se naključno pojavi med molekulami topila ("wait-and-hop")

Kako lahko *izmerimo* hitrost difuzije molekul oz. delcev v raztopini ali celici?

Korelacijske spektroskopije

• Sipanje svetlobe: PCS = Photon Correlation Spectroscopy oz.

DLS = Dynamic Light Scattering

• Fluorescenca: FCS = Fluorescence Correlation Spectroscopy

Fluorescence Recovery After Photobleaching - FRAP

"Obnavljanje fluorescence po fotobledenju"

Kako lahko različno gibljivost delcev (molekul) izkoristimo v laboratoriju?

Centrifuga

Ločevanje delcev po gostoti:

- V disperziji nenabitih delcev tekmujeta urejevalna sila (težnost) in termično gibanje
 - → stabilnost disperzije določa teža delcev
- Posedanje lahkih delcev v centrifugi pospešimo s "povečanjem njihove teže", sorazmerno s kvadratom frekvence vrtenja (ω^2)
- Hitrost posedanja $\propto \frac{\text{centrif.}}{\text{upor}} \propto \frac{\omega^2 m'}{\eta R}$

(m' - masa delca, zmanjšana za vzgon)

Elektroforeza

 Nabite delce lahko ločujemo tudi z električnim poljem - E

• Hitrost potovanja odvisna od gibljivosti delcev - μ

$$\mu \propto \frac{\text{naboj}}{\text{upor}} \propto \frac{Ze_0}{\eta R}$$

• Izvedbe: gelska, kapilarna, 2D ef., izoelektrično fokusiranje ...

Ze₀ - naboj delcev

Meritev ζ -potenciala

- ζ-potencial ∞ efektivni naboj delca
- izmerimo elektroforetsko mobilnost μ , iz nje nato izračunamo ζ

$$\mu = \frac{v}{E} \quad \longrightarrow \quad \zeta \propto \mu$$

• Merjenje hitrosti z "laserskim radarjem"

https://en.wikipedia.org/wiki/Zeta_potential

