DISCRETE MATHEMATICS MATH 381

Basic concepts and examples explaining the fundamentals of Discrete Mathematics.

By Mansi Sakarvadia

 $\begin{tabular}{ll} The \ University \ of \ North \ Carolina \\ Chapel \ Hill \end{tabular}$

Contents

1 February 17, 2020

1 February 17, 2020

Recall:

- Functions f: $A \rightarrow B$
- Image Im(f) = f(a)

If f(a) = b, say "a is a preimage of b"

- $Gr(f) = \{(a,b)|f(a) = b\} \subseteq AxB$
- $Gr(f) = \{(a, f(a)) | a \in A\}$

Graph Gr(f) is a relation between A and B

Which binary relations (subsets of AxB) are graphs of functions?

• A subset $s \subseteq AxB$ is the graph of a function if for every element $a \in A$, there is a unique element $b \in B$ such that $(a, b) \in S$.

1

- key Can't have (a, b_1) and $(a, b_2) \in S$ where $b_1! = b_2$ and expect S to be a graph
- (abstraction of "straight line test" about graphs $f: \mathbb{R} \to \mathbb{R}$)

Restriction of Domain

suppose $f: A \to B$ Consider $A' \subseteq A$

DEFINITION the restriction of f to A' is $f|_{A'}:A'\to B$ defined by $(f|_{A'})=f(a),a\in A$

Mansi Sakarvadia Page 1