

AUTOSAR Network Management

Nm Interface and CAN Nm AUTOSAR Release 3.0

> History

Outline of Solutions and Concepts

Network Management Algorithm

Network Management Message

Additional Features

Configuration

Availability at Vector

History

Network Management AUTOSAR Releases

- AUTOSAR Release 1.0 is available since May 2005
 - AUTOSAR Network Management modules
 - Generic NM short Name: Nm
 - □ CAN NM short Name: CanNm
 - FlexRay NM short Name: FrNm
- AUTOSAR Release 2.1 is available since February 2007
 - Nm Architecture changed
 - New module: Generic NM Interface short Name: Nm
 - □ Generic NM -> CAN Generic NM short Name: CNm
 - No changes for CAN NM short Name: CanNm
 - New State Machine for FlexRay NM short Name: FrNm

History

Network Management AUTOSAR Releases

- □ AUTOSAR Release 3.0 is available since February 2008
 - Nm Architecture changed
 - Merged CAN Generic NM and CAN NM short Name: CanNm
 - NM Coordinator Functionality added to NM Interface

History

Network Management Architecture

- Motivation for this NM architecture
 - Bus independent interface to higher layers
 - Bus specific NM modules
 - Bus specific algorithm
 - Management and transmission of NM PDU
 - Direct interface to Communication Hardware Abstraction layer
 - PDU Router is not used by Network Management

History

> Outline of Solutions and Concepts

Network Management Algorithm

Network Management Message

Additional Features

Configuration

Availability at Vector

Outline of Solutions and Concepts

Network Management Tasks

AUTOSAR Network Management

- The aim is a simple mechanism for the
 - self-sufficient start-up of ECUs
 - the maintenance of the bus communication
 - shut down of bus communication
 - synchronized start-up and shut down of networks

Outline of Solutions and Concepts

Features

- Network Management algorithm
 - Distributed algorithm for sleep & wake-up
 - Bus load reduction optional
 - NM message burst prevention
- User data support optional
- Communication Control optional, CAN only
- Passive Mode
- Gateway features optional
 - Detection of present nodes
 - Remote Sleep Indication
 - Control Bit Vector
 - Bus Synchronization
- Bus error and communication management is performed by higher layers and not by NM

Outline of Solutions and Concepts CANbedded Wrapper for AUTOSAR NM

- Functional gaps and incompatibilities if AUTOSAR NM is used in an traditional CANbedded software stack
- AUTOSAR headers are part of the CANbedded Wrapper
 - Declaration of AUTOSAR data types
 - Compiler and platform specific definitions
 - AUTOSAR BSW modules header files
- Communication Management (CanOnline/CanOffline handling)
- BusOff Management optional

History

Outline of Solutions and Concepts

> Network Management Algorithm

Network Management Message

Additional Features

Configuration

Availability at Vector

Overview

The AUTOSAR NM is a direct and distributed Network Management

- Direct NM Each node has its own NM message
 - □ The NM message is reserved for the Network Management
 - The NM message signalizes that bus communication is needed
 - The NM message data is not relevant for the NM mechanism
- Distributed NM All nodes are equal (there is no NM Master or NM Slave)
- □ The focus of the following slides is on the CAN-specific part of AUTOSAR NM

Network Management Algorithm Comparison of AUTOSAR NM and OSEK NM (CAN)

Simplified state machine of AUTOSAR NM and OSEK-NM is identical.

State Machine (CAN)

Basic Mechanism – Single ECU (CAN)

Repeat Message: Each ECU transmits own NM messages cyclic for NM REPEAT MSG TIME.

Ready Sleep: ECU is ready to sleep, no NM message transmission, restart of timeout timer upon NM message Rx.

Normal: NM message transmission and restart of timeout timer upon NM message Rx and Tx.

Prepare Sleep: If NM_TIMEOUT_TIME expired and no NM Message has been transmitted or received in the meantime.

Bus-Sleep: After NM WAIT BUS SLEEP TIME transition to bus-sleep mode.

Basic Mechanism - Network (CAN)

Repeat Message: Each ECU transmits own NM messages cyclic for NM_REPEAT_MSG_TIME.

Ready Sleep: ECU is ready to sleep, no NM message transmission, restart of timeout timer upon NM message Rx.

Normal: NM message transmission and restart of timeout timer upon NM message Rx and Tx.

Prepare Sleep: If NM_TIMEOUT_TIME expired and no NM Message has been transmitted or received in the meantime.

Bus-Sleep: After NM_WAIT_BUS_SLEEP_TIME transition to bus-sleep mode.

Network Mode (CAN)

- Active participation in the network
- Reception and Transmission of application messages enabled
- Repeat Message
 - cyclic transmission of NM messages for a certain time
- Normal Operation
 - □ transmission of NM messages (if available reduced transmission)
- Ready Sleep
 - transmission of NM messages is stopped

Prepare Bus-Sleep Mode (CAN)

- No active participation in the network
- Reception and Transmission of application messages is stopped
- Bus calm down period
- Restart of network upon
 - reception of NM message
 - bus communication request

Bus-Sleep Mode (CAN)

- Communication bus is shut down
- Restart (wake-up) of network management
 - wake-up on communication bus
 - reception of a NM message
 - application requires bus communication

History

Outline of Solutions and Concepts

Network Management Algorithm

> Network Management Message

Additional Features

Configuration

Availability at Vector

Network Management Message

PDU Layout on CAN

- PDU length is configurable from 0 up to 8 bytes
- Usage of the two additional bytes Control Bit Vector and Source Node Identifier is optional
- User Data Length is the difference between PDU Length and number of used additional bytes
- Default layout:

a	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Byte 7	User data 5										
Byte 6	User data 4										
Byte 5	User data 3										
Byte 4	User data 2										
Byte 3	User data 1										
Byte 2	User data 0										
Byte 1	Control Bit Vector										
Byte 0	Source Node Identifier										

- Source Node Identifier is ECU specific and unique
- Control Bit Vector consists of only of the Repeat Message Bit (up to now):

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	Res	RepeatMessageBit						

Network Management Message

Transmission

- NM PDUs are transmitted cyclically by every active node
 - In Repeat Message State
 - In Normal Operation State (without bus load reduction)
 - With bus load reduction enabled at most two nodes are sending NM messages
- Node-specific transmission offsets to prevent NM message bursts

History

Outline of Solutions and Concepts

Network Management Algorithm

Network Management Message

> Additional Features

Configuration

Availability at Vector

Bus Load Reduction and User Data

- Bus Load Reduction
 - Reduction of bus load in Normal Operation
 - Every node has a unique reduced cycle time
 - At most the two active nodes with the smallest reduction cycle time transmit NM message
- User Data
 - API to set user data of the NM message transmitted next on the bus
 - □ API to get user data of the NM message received last on the bus
 - API to get whole PDU received last on the bus

Communication Control and Passive Mode

- Communication Control (CAN only)
 - For diagnostics or flashing sessions
 - □ Transmission of NM PDUs in Normal Operation can be disabled so save bandwidth
 - Communication must not be released while transmission is disabled
- Passive Mode
 - For nodes that do not need the ability to keep the bus awake
 - Passive nodes cannot send NM messages
 - When entering network mode passive nodes immediately change to Ready Sleep State.

Remote Sleep Indication & Bus Synchronization (Gateway)

- Remote Sleep Indication (optional)
 - Notification of Remote Sleep Indication to System Services when a node is the last one in the network that requires bus communication (transmits NM messages for a certain time)
 - Notification of Remote Sleep Cancellation to System Services when any node requires the network again after Remote Sleep Indication has been notified
 - API to read the current Remote Sleep Indication status
 - Used for validation of network shutdown
- Bus Synchronization (optional; CAN only)
 - Transmission of an asynchronous NM message in order to synchronize networks in time

Node Detection and Control Bit Vector (Gateway)

- Control Bit Vector
 - Up to now only the Repeat Message bit is available
 - Bit is set via Node Detection
 - Indication when a NM message is received where the bit is set
- Node Detection
 - Request state change to Repeat Message
 - Setting Repeat Message Bit
 - Indication: all nodes perform state transition
 - Available Network Nodes can be identified
 - □ All available active nodes are sending NM PDUs in Repeat Message
 - API to read source node identifier optional

NM Coordination

- Coordination between different networks
 - As long as one network needs communication all other networks are kept awake
 - Synchronized shutdown via calculated shutdown timings
 - Possibility to configure synchronous and selective networks
- Coordination between different NMs on the same network
 - Possible for OSEK NM and CAN NM on the same network
 - Upper Layer only has to handle CAN NM
 - □ Pre-condition: Separated NM message ranges
 - Same algorithm as coordination between different networks

History

Outline of Solutions and Concepts

Network Management Algorithm

Network Management Message

Additional Features

> Configuration

Availability at Vector

Configuration

Configuration of Network Management

- Configuration is done with generation tool GENy
- All three AUTOSAR configuration variants are supported
 - Pre-compile
 - Link-time
 - Post-build
- Each NM component is configured separately
- Consistency of NM component configuration is granted
- NM messages and timing parameters configuration partly done with database attributes

History

Outline of Solutions and Concepts

Network Management Algorithm

Network Management Message

Additional Features

Configuration

> Availability at Vector

Availability at Vector

- Full release version for 3.0 available within MICROSAR 3.0
 - NM Interface
 - Including NM Coordinator
 - CAN NM and FlexRay NM
- CANbedded Wrapper for 3.0 available
- CANoe node layer DLL for 3.0 available
- Configuration via generation tool GENy
 - Configuration via database as in CANbedded
 - Configuration via AUTOSAR ECU configuration

History

Outline of Solutions and Concepts

Network Management Algorithm

Network Management Message

Additional Features

Configuration

Availability at Vector

> Questions

Questions

Thank you for your attention.

For detailed information about Vector and our products please have a look at: www.vector-informatik.com

Author:

Frank Triem, Oliver Hornung
Vector Informatik GmbH
Ingersheimer Str. 24
70499 Stuttgart

