

Diffraction due to surface tension waves on water¹

Part C: Measurement of angle, θ

[C1] Table C1

Obs.	X/cm	Y/cm
no.		
1	2.0	0.136
2	4.0	0.285
3	6.0	0.425
4	8.0	0.549
5	10.0	0.703
6	12.0	0.846
7	14.0	0.965
8	16.0	1.124
9	18.0	1.251
10	20.0	1.390

[C2]

Graph C1 for determination of θ : X versus Y

Slope = 0.0699

 θ = 4.0°

¹Shirish Pathare (HBCSE, Mumbai)and K G M Nair (CMI, Chennai) were the principal authors of this problem. The contributions of the Academic Committee, Academic Development Group and the International Board are gratefully acknowledged.

Part D: Determination of the surface tension of the liquid

[D1]:

 $l_1 = 98.5 \text{ cm}$ $l_2 = 5.5 \text{ cm}$ L = 1.04 m

[D2]:

Table D1

Obs.	f/Hz	$2x_2$ /cm	x_1 /cm	x_1/\mathbf{m}
1	60	0.782	0.196	0.00196
2	70	0.880	0.220	0.00220
3	80	0.966	0.242	0.00242
4	90	1.030	0.258	0.00258
5	100	1.096	0.274	0.00274
6	110	1.184	0.296	0.00296
7	120	1.253	0.313	0.00313
8	130	1.336	0.334	0.00334
9	140	1.415	0.354	0.00354
10	150	1.489	0.372	0.00372
11	160	1.545	0.386	0.00386

[D3]:

$$\omega^{2} = \frac{\sigma}{\rho} k^{q}$$

$$f^{2} = \frac{1}{4\pi^{2}} \frac{\sigma}{\rho} \left(\frac{2\pi}{\lambda} \frac{\sin \theta}{L} \right)^{q} (x_{1})^{q}$$

$$\ln f = \frac{1}{2} \ln \left[\frac{1}{4\pi^{2}} \frac{\sigma}{\rho} \left(\frac{2\pi}{\lambda} \frac{\sin \theta}{L} \right)^{q} \right] + \frac{q}{2} \ln x_{1}$$

Graph for determination of q: ln(f) versus $ln(x_1)$

Table D2				
Obs. No.	ln x ₁	$\ln f$		
1	-6.235	4.094		
2	-6.119	4.248		
3	-6.024	4.382		
4	-5.960	4.500		
5	-5.900	4.605		
6	-5.823	4.700		
7	-5.767	4.787		
8	-5.702	4.868		
9	-5.644	4.942		
10	-5.594	5.011		
11	-5.557	5.075		

Slope =
$$\underline{1.45}$$

$$q = 2.90$$

Determination of surface tension:

$$\omega^2 = \frac{\sigma}{\rho} k^3$$

[D4]:

Graph for determination of σ : f^2 versus x_1^3

Table D3

Obs.	$f^2(\times 10^3)$	$x_1^3 (\times 10^{-8})$
No.	$/Hz^2$	/m ³
1	3.6	0.75
2	4.9	1.07
3	6.4	1.42
4	8.1	1.72
5	10.0	2.06
6	12.1	2.59
7	14.4	3.07
8	16.9	3.73
9	19.6	4.44
10	22.5	5.15
11	25.6	5.75

Surface Tension:

$$\omega^2 = \frac{\sigma}{\rho} k^3$$

$$f^{2} = \frac{\sigma}{\rho} \frac{2\pi}{\lambda^{3}} \frac{\sin^{3} \theta}{L^{3}} (x_{1})^{3}$$

Calculations:

Slope =
$$4.39 \times 10^{11} \text{ Hz}^2/\text{m}^3$$

$$\therefore \text{ Slope } = \frac{\sigma}{\rho} \frac{2\pi}{\lambda^3} \frac{\sin^{-3}\theta}{L^3} = \frac{\sigma}{1000} \times \frac{2 \times 3.14}{\left(635 \times 10^{-9}\right)^3} \times \frac{\left(0.0698\right)^3}{\left(1.04\right)^3}$$

$$\therefore \sigma = 59.2 \text{ mN/m}$$

Part E: Determination of the viscosity of the water sample

[E1]: Frequency of the signal generator = $\underline{100 \text{ Hz}}$

Table E1

Obs. No.	s /cm	V _{rms} /V	$\ln(V_{rms})$
1	8.0	0.0276	-3.590
2	8.5	0.0330	-3.411
3	9.0	0.0385	-3.257
4	9.5	0.0441	-3.121
5	10.0	0.0534	-2.930
6	10.5	0.0622	-2.777
7	11.0	0.0745	-2.597
8	11.5	0.0870	-2.442
9	12.0	0.1050	-2.254
10	12.5	0.1215	-2.108
11	13.0	0.1412	-1.958

[E2]:

Graph for determination of δ : ln (V_{rms}) versus s

Slope =
$$0.331 \text{ cm}^{-1}$$

$$\therefore \delta = 0.4 \times 0.3310 = 0.1324 \text{ cm}^{-1}$$

$$\delta = 13.2 \text{ m}^{-1}$$

[E3]:

Determination of viscosity, η :

$$\delta = \frac{8}{3} \frac{\pi \eta f}{\sigma}$$

$$\eta = \frac{3}{8} \frac{\delta \sigma}{\pi f} = \frac{3}{8} \times \frac{13.2 \times 59.2 \times 10^{-3}}{3.14 \times 100} 0.933 \text{ mPa} \cdot \text{s}$$

$$\eta = 0.93 \text{ mPa} \cdot \text{s}$$