

# **Decision Trees**

Dr. Ratna Babu Chinnam
Industrial & Systems Engineering
Wayne State University





- Non-linear classifier
- Easy to use (simple math)
- Easy to interpret and explain
  - Can be reduced to decision "rules"
- Susceptible to overfitting but can be avoided
- Can be extended to handle continuous attributes
- Can be extended to deal with missing data
- Quite robust and popular in practice!
- Can be extended to handle regression: Regression Trees



## Anatomy of a Decision Tree

#### Example: To 'play tennis' or not?



#### **Decision Tree Rules:**

(Outlook ==overcast) -> yes (Outlook==rain) & (Windy==false) ->yes (Outlook==sunny) & (Humidity=normal) ->yes

#### A New Test Example:

(Outlook==rain) & (Windy==false)

Pass it on tree: -> Decision is yes.



## **Decision Trees**

• **Definition**: Decision trees represent a "disjunction" of "conjunctions" of constraints on attribute values of instances

# Decision Tree Representation





**Y=((A and B) or ((not A) and C))** 

# Same Concept Different Representation



What do you prefer? Why?

# Which Attribute To Select For Splitting?



Distribution of each class (not attribute)



This is bad splitting...

Example: To 'play tennis' or not?





Intuitively, we prefer one that *separates* training examples as much as possible!

How to quantify?



## "Information"



- Imagine:
  - Someone is about to tell you your own name
  - You are about to observe the outcome of a coin flip
  - You are about to observe the outcome of a biased coin flip
- Each situation has a different amount of uncertainty
- **Definition**: Information is reduction in uncertainty (amount of surprise in outcome)

$$I(E) = -\log_2 p(x)$$

- If probability of event happening is small and it happens, information (revealed) is large:
  - Observing outcome of a coin flip is head:  $I = -\log_2 1/2 = 1$
  - Observe outcome of a dice is 6:  $I = -\log_2 1/6 = 2.585$



# Entropy (measures "Purity")

• **Definition**: Expected amount of information when observing output of a random variable  $\boldsymbol{X}$ 

$$H(X) = E(I(X)) = \sum_{i} p(x_i)I(x_i) = -\sum_{i} p(x_i)\log_2 p(x_i)$$

- Balanced coin:  $H(X) = -\sum_{i=1}^{\infty} \log_2\left(\frac{1}{2}\right) = 1$
- Balanced dice:  $H(X) = -\sum_{i=6}^{1} \log_2(\frac{1}{6}) = 2.585$
- If there are k possible outcomes:  $H(X) \leq \log_2 k$ 
  - Equality holds when all outcomes are equally likely
  - The more the probability distribution deviates from "Uniform", the lower the entropy (Uniform distribution has highest entropy)



## Information Gain



- Definition: Information gain measures change in entropy from before and after split (conditioning)
  - Can be used as a criteria to decide on the attribute to split
- Conditional Entropy:

Entropy: 0.985

$$H(X|Y) = -\sum_{i} p(y_i)H(X|Y = y_i) = \sum_{i} p(y_i) \sum_{i} p(x_i|y_i) \log_2 p(x_i|y_i)$$

Example: To 'play tennis' or not?



Entropy: 0.592



Set: [6+, 2-] Set: [3+, 3-] Entropy: 0. 811 Entropy: 1.0

Humidity provides greater information gain than Wind, relative to target classification!

# Decision Tree Example: Classifying Fuel Efficiency

- From UCI Repository (R. Quinlan)
  - 40 Records

| mpg  | cylinders | displacement | horsepower | weight | acceleration | modelyear | maker   |
|------|-----------|--------------|------------|--------|--------------|-----------|---------|
| good | 4         | low          | low        | low    | high         | 75to78    | asia    |
| bad  | 6         | 1 4 11       | medium     | medium | medium       | 70to74    | america |
| bad  | 4         |              | medium     | medium | low          | 75to78    | europe  |
| bad  | 8         | high         | high       | high   | low          | 70to74    | america |
| bad  | 6         | medium       | medium     | medium | medium       | 70to74    | america |
| bad  | 4         | low          | medium     | low    | medium       | 70to74    | asia    |
| bad  | 4         | low          | medium     | low    | low          | 70to74    | asia    |
| bad  | 8         | high         | high       | high   | low          | 75to78    | america |
| :    | :         |              | :          | :      | :            | :         | :       |
| :    | :         | :            | :          | :      | :            | :         | :       |
| :    | :         | :            | :          | :      | :            | :         | :       |
| bad  | 8         | high         | high       | high   | low          | 70to74    | america |
| good | 8         | high         | medium     | high   | high         | 79to83    | america |
| bad  | 8         | high         | high       | high   | low          | 75to78    | america |
| good | 4         | low          | low        | low    | low          | 79to83    | america |
| bad  | 6         | medium       | medium     | medium | high         | 75to78    | america |
| good | 4         | medium       | low        | low    | low          | 79to83    | america |
| good | 4         | low          | low        | medium | high         | 79to83    | america |
| bad  | 8         | high         | high       | high   | low          | 70to74    | america |
| good | 4         | low          | medium     | low    | medium       | 75to78    | europe  |
| bad  | 5         | medium       | medium     | medium | medium       | 75to78    | europe  |





## Decision Tree: Variants

- Most decision tree learning algorithms are variations on a core algorithm that employs a top-down greedy search
  - ID3 algorithm (Quinlan, 1986) & successor C4.5 (Quinlan, 1993)
- ID3 Algorithm: Begins with the question "which attribute should be tested at root of the tree?"
  - Evaluates each attribute using a statistical test to determine how well it alone classifies training examples
  - Best attribute is selected as test at root node of the tree
  - Descendant of root node is created for each possible value of attribute
  - Training examples are sorted to the appropriate descendant node
  - Entire process is repeated using training examples associated with each descendant node
  - Forms a greedy search for an acceptable decision tree and algorithm never backtracks to reconsider earlier choices



## Decision Tree: Variants ...

- C4.5, Quinlan's next iteration: New features (versus ID3) are:
  - Accepts both continuous and discrete features;
  - Handles incomplete data points;
  - Solves over-fitting problem by (very clever) bottom-up technique usually known as "pruning"; and
  - Different weights can be applied the features that comprise the training data.
- C5.0 Algorithm: Most significant feature unique to C5.0 is a scheme for deriving rule sets.
  - After a tree is grown, the splitting rules that define the terminal nodes can sometimes be simplified: that is, one or more condition can be dropped without changing the subset of observations that fall in the node.
- CART or Classification And Regression Trees:
  - Often used as a generic acronym for the term Decision Tree, though it apparently has a more specific meaning. In sum, the CART implementation is very similar to C4.5.

# Decision Trees: Caveats/Concerns



### **INFORMATION GAIN**

- Number of possible values influences information gain
- The more possible values, the higher the gain
  - The more likely it is to form small, but pure partitions

## **Other Purity Measures:**

- Gini Index:  $1 \sum_{j} p(j)^2$ 
  - Smaller the better
- Chi-square Test

### **OVERFITTING**

- You can perfectly fit to any training data (with enough attributes)
- Zero bias, high variance

## **Solution:**

- Stop growing tree when further splitting is not yielding big improvement
- Grow a full tree, then prune the tree, eliminating weak nodes



# Optimal Decision Trees

- Prevalent methods (e.g., ctree and rpart available in R) utilize a single variable in each split
  - Limits expressiveness and, in some cases, model accuracy
- New research is seeking to develop "optimal" decision trees
  - Exploit optimization-based framework to exploit multivariate splits and enable more expressive, comprehensible and accurate tree models.
- Sample "R" Package: bsnsing | <u>Link</u>
  - Author: Dr. Yanchao Liu, Wayne State University
  - A mixed integer program (MIP) is solved at each node to identify optimal combination of features used to split node
  - Supported MIP solvers include CPLEX (commercial) and IpSolve (free)
  - Created Boolean attributes can compete with other discrete-valued candidate attributes available for growing decision tree.

# Decision Trees: Matlab | Link



#### **Classification Trees**

Binary decision trees for multiclass learning

To interactively grow a classification tree, use the **Classification Learner** app. For greater flexibility, grow a classification tree using fitctree at the command line. After growing a classification tree, predict labels by passing the tree and new predictor data to predict.

#### Apps

Classification Learner Train models to classify data using supervised machine learning

#### Functions

- > Create Classification Tree
- > Improve Classification Tree
- > Cross-Validate
- > Measure Performance
- > Classify Observations

#### Classes

| ClassificationTree             | Binary decision tree for classification |
|--------------------------------|-----------------------------------------|
| CompactClassificationTree      | Compact classification tree             |
| ClassificationPartitionedModel | Cross-validated classification model    |



# Decision Trees: Python (sklearn) | Link





Prev

Up

Next

#### scikit-learn 1.0.2

Other versions

Please **cite us** if you use the software.

#### 1.10. Decision Trees

1.10.1. Classification

1.10.2. Regression

1.10.3. Multi-output problems

1.10.4. Complexity

1.10.5. Tips on practical use

1.10.6. Tree algorithms: ID3, C4.5,

C5.0 and CART

1.10.7. Mathematical formulation

1.10.8. Minimal Cost-Complexity

**Pruning** 

#### Decision tree trained on all the iris features

