Systems of Equations and Gaussian Elimination

- Gaussian elimination:
 - No solution: a row of 0s sum to \neq 0 (Priority)
 - Unique solution: For n variables, we have n pivots
 - Infinite solutions: Fewer pivots than variables

Linear Transformations and Linear Dependence

- !!! Care: dimensions in multiplication
- Def. A standard unit vector, $\vec{e_1}$, $\vec{e_2}$ etc., is a vector with all components equal to 0 except for one element, which is equal to 1.
- Def. $\mathbf{A}_{ij}: i^{th}$ row and j^{th} column of \mathbf{A}
- Def. Linear Dependence: A set of vectors $\vec{v_1},...,\vec{v_n}$ is linearly dependent
 - \iff There exist scalars $\alpha_1, ..., \alpha_n$ such that $\sum_{i=1}^n \alpha_i \vec{v_i} = \alpha_1 \vec{v_1} + ... + \alpha_n \vec{v_n} = \vec{0}$ and not all α_i 's are equal to zero. (Easier starting point mathematically.)
 - \iff There exist scalars $\alpha_1, ..., \alpha_n$ and an index i such that $\vec{v_i} = \sum_{j \neq i} \alpha_j \vec{v_j}$. (In words, one of the vectors could be written as a linear combination of the rest of the vectors.)
- Def. A set of vectors $\vec{v_1}, ..., \vec{v_n}$ is linearly independent $\iff \alpha_1 \vec{v_1} + ... + \alpha_n \vec{v_n} = \vec{0}$ implies $\alpha_1 = ... = \alpha_n = 0$
- Theorem 3.1: If the system of linear equations $A\vec{x} = \vec{b}$ has infinite number of solutions, then the columns of A are linearly dependent.
- Theorem 3.2 (\approx converse): If the columns of A in system $A\vec{x} = \vec{b}$ are linearly dependent, then the system does not have a unique solution (either no solution or infinite solutions).
- Theorem 3.3: If the system of linear equations $A\vec{x} = \vec{b}$ has an infinite number of solutions and the number of rows in $A \ge$ the number of columns (A is a square or a tall matrix), then the rows of A are linearly dependent.
- (Proved in HW): Let $n \in \mathbb{Z}^+$, and let $\{\vec{v_1}, ..., \vec{v_k}\}$ be a set of k linearly dependent vectos in \mathbb{R}^n . Then, for any $n \times n$ matrix A, the set $\{\vec{Av_1}, ..., \vec{Av_k}\}$ is a set of linearly dependent vectors.
- !!! Rotation matrices R would rotate any vector by angle θ in the counterclockwise direction.

$$\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

- All rotation matrices in n dimensions can be decomposed into a series of rotations in 2 dimensions. So all rotations are products of the basic rotation matrix R generalized to a larger $n \times n$ matrix with 1's in the dimensions that aren't being rotated.
- Reflection matrices: R_1 reflects across x-axis, R_2 reflects across y-axis, R_3 reflects across y = x, R_4 reflects across y = -x..

$$\mathbf{R_1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ \mathbf{R_2} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathbf{R_3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \mathbf{R_4} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

1

- $\vec{v_1}, \vec{v_2}$, and $\vec{v_1} + \vec{v_2}$ are all solutions to the system of linear equation $A\vec{x} = \vec{b}$. Prove that $\vec{b} = \vec{0}$.
- Common mistake: Two linearly independent vectors with 3 elements in them do not span \mathbb{R}^2 .

State Transition Matrices and Inverses

- Calculations of solutions, inverses, null spaces: Check by actually multiplying out the answer with the original matrix.
- Proved in lecture: The left and right inverses are identical.
- Proved in Notes: If A is an invertible matrix, then its inverse must be unique.
- Theorem 6.1: A matrix M is invertible \iff its rows are linearly independent.
- Theorem 6.2: A matrix M is invertible \iff its columns are linearly independent.
- Invertible Matrix Theorem: A is invertible
 - $\iff \text{Null}(A) = \vec{0}$
 - \iff The columns of A are linearly independent (Th. 6.2)
 - \iff The equation $A\vec{x} = \vec{0}$, has a unique solution, which is $\vec{x} = \vec{0}$
 - $-\iff$ For each column vector $\vec{b}\in\mathbb{R}^n$, $A\vec{x}=\vec{b}$ has a unique solution \vec{x} .
 - $-\iff A \text{ does not have an eigenvalue } \lambda = 0 \text{ (Can use directly?)}$
 - $-\iff$ The determinant of $det(A)\neq 0$
 - \iff The rank of A is equal to its dimension
- $(AB)^{-1} = B^{-1}A^{-1}$ since $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$
- If a state-transition matrix has a non-trivial nullspace, then it's non-invertible, so the information about previous states isn't preserved.

Vector Spaces

- The Basis for \mathbb{R}^n must be exactly n linearly independent vectors in \mathbb{R}^n . (Because Basis is defined as a **minimal**, spanning set of vectors for a given vector space)
- Proof requires:
 - Closure 1 scaling
 - Closure 2 additivity
 - Contains $\vec{0}$
 - Subset of \mathbb{R}^n

Eigenvalues and PageRank (Diagonalization)

- (Proved in HW:) If an invertible matrix **A** has an eigenvalue λ , then \mathbf{A}^{-1} has the eigenvalue $\frac{1}{\lambda}$.
- (Proved in HW:) If **A** has an eigenvalue λ , then \mathbf{A}^T also has the eigenvalue λ . Because of the fact that $\det(\mathbf{A} \lambda I) = \det(\mathbf{A}^T \lambda I)$
- Every eigenvector can only correspond to one eigenvalue.
- A matrix with only real entries can have complex eigenvalues. [[0,-1], [1,0]]

- The zero matrix only has 1 distinct eigenvalue. -> A diagonal nxn does NOT necessarily have n distinct eigenvalues.
- (In Notes) An nxn matrix is diagonalizable if it has n linearly independent eigenvectors, (Copy down detailed diagonalization procedure in P38 of review guide); but if An nxn matrix is invertible then it doesn't necessarily have n linearly independent eigenvectors,
- Steady State: An eigenvalue of 1 does not mean there is always a steady state. We also want the other eigenvalues to < 1 in magnitude so that as n goes to infinity, λ^n goes to 0.
- Regarding determinant,
 - $-\det(I_n)=1$
 - $-\det(A^T) = \det(A)$
 - $\det(A^{-1}) = \frac{1}{\det(A)} = \det(A)^{-1}$
 - $-\det(AB) = \det(A) \cdot \det(B)$ for square matrices A, B of the same size
 - $-\det(cA) = c^n \cdot \det(A)$ for an $n \times n$ matrix
- (Proved In Notes) If two $n \times n$ diagonalizable matrices A and B have the same eigenvectors, then their matrix multiplication is commutative, i.e. AB = BA
- If A and B are $n \times n$ matrices that share the same n distinct eigenspaces, then A and B commute, that is, AB = BA.

Extra Sanity Checks

- $AA^{-1} = A^{-1}A = I$
- For matrix A, if λ , $\vec{v_1}$ is a eigenpair, then $A\vec{v_1} = \lambda \vec{v_1}$
- Non-trivial translation is not a linear transformation.
- For a state-transition matrix to converge, it has to have all $|\lambda| \leq 1$
- In Notes: If A is $n \times n$, then the dimension of its column space + dimension of its nullspace = n
- Diagonalization: $A = P\Lambda P^{-1}$ where Λ is a diagonal matrix of its eigenvalues, and P is a matrix whose column vectors are the corresponding eigenvectors.
- Proofs are generally not expected to be "hardcore"
 - Past exams also usually have "direct" proofs rather than something like contradiction, etc.
 - Oftentimes you can do it in a few lines with some explanation
 - If your proof becomes a bit too unwieldy, try to start over with a different strategy
 - Start with the fundamental equations about what you know. Try to slowly involve the things you care about showing