Applying Data Science to Optimize and Maximize Hydrocarbon Recovery from Oil and Gas wells in North America

Data Pre-processing

Input Drivers

Splitting Dataset in Training and Test Sets (80-20%)

Exploratory Data Analysis

Innut Features Histogram

Upper Perf

Lower Perf

3.0

2.0

Total Water Volume, gallons

3.5

le7

3.0

le7

Input Feature vs. Target -- Correlation

Positive Non-Linear

Positive Non-Linear

Input Feature vs. Target -- Correlation

Positive Non-Linear

Positive Non-Linear

Input Feature vs. Target -- Correlation

Identifying Significant Drivers – Tornado plots

- The tornado plots show the significance level of various operational parameters
- Lateral length, lower perf location and fluid volume being the most significant parameters

Supervised Bayesian Networks to Predict Probability of Well Performance

How does the Bayesian Network model work?

^{*}Multiple geologic, geomechanical and operational parameters can be selected as input drivers

Dimensionality Reduction – PCA/LDA

- Principal Component Analysis (PCA) applied to identify correlations between all the input variables
- Based on the identified pattern the number of significant dimensions was combined to 2 principal components (which are now a function of all the significant drivers)
- The 2 PC dimensions explain more than 80% variance of the input variables
- The 2 principal components are now the new hyperparameters combining all the significant drivers/features into 2 input features
- Linear Discriminant Analysis (LDA) gives similar results

Defining Intervals to predict well probability

Defining Intervals

	Np Range (MSTB)
Poor	67-197
Average	197-327
Good	327+

Map View: Predicted Intervals based on Probabilities vs Actual Values – Training Set

- PC1, PC2 Scaled Principal Component Dimensions
- Dots represent actual values from wells
- Background color represents classifying boundaries and predicted ranges based on the Bayesian model

Training Set Probability -- Actual vs. Predicted Probabilities Training Set Probability -- Actual vs. Predicted Probabilities Confusion Matrix

Confusion Matrix

- Training Accuracy = 50%
- Dots represent actual values for wells
- Area plot shows relative predicted probabilities based on the Bayesian model

Map View: Predicted Intervals based on Probabilities vs Actual Values – Test Set

- PC1, PC2 Scaled Principal Component Dimensions
- Dots represent actual values from wells
- Background color represents classifying boundaries and predicted ranges based on the Bayesian model

Test Set: Actual vs. Predicted Probabilities Confusion Matrix

- Testing Accuracy = 57%
- Dots represent actual values for wells
- Area plot shows relative predicted probabilities based on the Bayesian model

Artificial Neural Network (ANN) to Predict Well Performance

How does the Neural Network model Work?

Neural Net Training and Model Accuracy — 28 wells

Training Set: Actual vs. Predicted Error

Neural Net Testing Accuracy — 7 wells

Test Set: Actual vs. Predicted Error

