Recommender Systems

Lecture 4

Previous lecture

Lifecycle of a recsys experiment

Image source: Bellogín, Alejandro, and Alan Said. "Improving accountability in recommender systems research through reproducibility." User Modeling and User-Adapted Interaction (2021): 1-37.

Data splitting

Splitting options:

- entry- or user-wise
- warm start
 - strong/weak generalization

Holdout sampling

Strategies

- Random
- Rating-based (e.g., top-rated)
- •Temporal (e.g., most recent)

Sample size

- Fixed number of items (e.g., 1)
- Fixed percentage of items

Previous lecture

User

holdout

known user preferences

$$MRR = \frac{1}{\#(\text{test users})} \sum_{\substack{\text{test} \\ \text{users}}} \frac{1}{\text{hit rank}}$$

recommendations

$$HR = \frac{1}{\#(\text{test users})} \sum_{\text{test}} \text{hit} \qquad \text{hit} = \begin{cases} 1 & \text{if holdout item is in recommended items,} \\ 0 & \text{otherwise.} \end{cases}$$

hit rank = position of the item in the recommendations list

Task

Consider top-2 recommender for 10 users from 20-items (2 items per user).

What's better:

- 1) Correctly recommend 2 items to each of 5 users? or
- 2) 1 item to each of 10 users?

Why?

Use standard definition of precision and recall.

Today's lecture

Collaborative filtering

- memory-based approach
 - frequent pattern mining
 - nearest neighbors models

Previously: content-based approach

Collaborative Filtering: "wisdom of crowds"

General workflow

Goal: predict user preferences based on prior user feedback and collective user behavior. collect data build model generate recommendations f_U : User × Item \rightarrow Relevance 3 5 5 unknown user user-movie matrix A of size $M \times N$

? - missing (unknown) values

 a_{ij} is a rating of i^{th} user for j^{th} movie

"Customers who like ... also like ..."

How do we implement that logic?

Pure item-to-item (I2I)

Typical transactions log:

user id	item id	transact.		
0	575	view		
0	1881	view		
0	846	basket		
1	1878	purchase		
1	576	view		
•••	•••	•••		

Count co-occurrence of items:

$$score_{I2I}(u, i) = \sum_{\substack{j \in I_u \\ j \neq i}} pairCount(i, j)$$

Simplest item-to-item approach

Convenient representation of logs – sparse matrix

0 1881 view 0 846 basket 1 1878 purchase	user id	item id	transact.			155
o 846 basket 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	575	view			
1 1878 purchase	0	1881	view			
	О	846	basket		1	1
1 576 view 1	1	1878	purchase			
	1	576	view		1	

- Can be efficiently stored in CSR or CSC formats.
- Also enables efficient computations (especially useful for experiments).

Computing I2I scores

- How to compute item-to-item co-occurrence matrix in symmetric case?
- How to compute similarity scores in that case?

Computing I2I scores

$$C = A^{\mathsf{T}}A - \mathrm{diag}\left(\mathrm{diag}(A^{\mathsf{T}}A)\right)$$

If *p* is a vector of known user preferences, then the vector of predicted relevance scores is:

$$r = Cp$$

Recommendations:

$$toprec(n) := arg \max_{j}^{n} x_{j}$$

Complexity analysis

Item-to-item issues

- somewhat obvious recommendations
 - high influence of popular items
- i2i matrix can also become dense if there are too many interactions per user

Item-to-item variants

Case study: Amazon item-to-item

For each item in product catalog, I_1 For each customer C who purchased I_1 For each item I_2 purchased by customer CRecord that a customer purchased I_1 and I_2 For each item I_2 Compute the similarity between I_1 and I_2

G. Linden, B. Smith and J. York, "Amazon.com recommendations: item-to-item collaborative filtering," in IEEE Internet Computing, vol. 7, no. 1, pp. 76-80, Jan.-Feb. 2003.

Iterative algorithm

Computes similarity of items based on user purchases.

$$sim(l_1, l_2) = cos(\overline{a}_1, \overline{a}_2) = \frac{(\overline{a}_1, \overline{a}_2)}{\|\overline{a}_1\| \|\overline{a}_2\|}$$

 \overline{a}_k - "one-hot" representation of item k

Scalability trick: incremental updates in binary case

$$sim(i,j) = \frac{\overline{\boldsymbol{a}}_{i}^{\mathsf{T}} \overline{\boldsymbol{a}}_{j}}{\|\overline{\boldsymbol{a}}_{i}\| \cdot \|\overline{\boldsymbol{a}}_{j}\|} = \frac{pairCount(i,j)}{\sqrt{itemCount(i)} \cdot \sqrt{itemCount(j)}}, \qquad j \neq i$$

$$\|\overline{\boldsymbol{a}}_i\|^2 = \sum_{u} a_{ui}^2 = \sum_{u} a_{ui} = \text{itemCount}(i)$$
 $\overline{\boldsymbol{a}}_i^{\mathsf{T}} \overline{\boldsymbol{a}}_j = \sum_{u} a_{ui} a_{uj} = \text{pairCount}(i,j)$

After observing ΔA new interactions s.t. $A' = A + \Delta A$, the updated similarity is:

$$\operatorname{sim}'(i,j) = \frac{\operatorname{pairCount}(i,j) + \sum_{u} [\Delta A]_{ui} [\Delta A]_{uj}}{\sqrt{\operatorname{itemCount}(i) + \sum_{u} [\Delta A]_{ui}} \cdot \sqrt{\operatorname{itemCount}(j) + \sum_{u} [\Delta A]_{uj}}}$$

Nearest neighbors models

kNN-based approach

- user *u*
- neighbors of user u, who rated item i
- lack other users, who have not rated item i

User-based approach

aggregated opinion of like-minded users:

$$score_{uKNN}(u, i) = \underset{v \in \mathcal{N}_i(u)}{agg} a_{vi}$$

Item-based approach:

•

$$score_{iKNN}(u, i) =$$

Simple user-based kNN

$$score_{uKNN}(u, i) = \frac{1}{|\mathcal{N}_i(u)|} \sum_{v \in \mathcal{N}_i(u)} a_{vj}$$

Potential issues:

- users may have very different interests
- neighborhood size is unlimited

Improved user-based kNN

$$score_{uKNN}(u, i) = \frac{1}{z} \sum_{v \in \mathcal{N}_i(u)} sim(u, v) \cdot a_{vi}$$

$$\mathcal{N}_i(u) = U_i \setminus \{u\}, \qquad z = \sum_{v \in \mathcal{N}_i(u)} |\operatorname{sim}(u, v)|$$

Potential issues:

- other users may have very different interests
- large neighborhood size

Dealing with large neighborhood size

Storing similarities or on-the-fly computations?

Aggressive subsampling

- Approximate nearest neighbors
 - e.g., NMSLib, Faiss, Annoy
- Dimensionality reduction

Reducing neighborhood

- from *N* total entities sample $n \ll N$
- select top-k most similar among n samples, $k \ll n$

Possible sampling strategies (must be fast):

- randomly
- most recent only
- most ratings in common (turns into fast MIPS problem)

Example: local time-aware sampling

Sampling strategy:

- select users that have items in common with a target user u
 - each item of a neighbour-user must precede the corresponding item in the target user profile
 - filter out neighbours with too few items in common

Additional weighting:

- users with no recent ratings → lower weights
- active neighbour-user but old rating on a target item → lower weights

	$\begin{bmatrix} \mathbf{recent} \ \mathbf{user} \\ (\mathbf{t_0} \approx \mathbf{t_{u'l}}) \end{bmatrix}$	$\begin{array}{c} \textbf{old user} \\ (t_0 \gg t_{u'l}) \end{array}$
$\begin{array}{c} \mathbf{recent\ item} \\ (\mathbf{t_{u'l}} \approx \mathbf{t_{u'i}}) \end{array}$	≈ 0	$\mathbf{t_0} - \mathbf{t_{u'l}}$
$\begin{array}{c} \hline \text{old item} \\ (\mathbf{t_{u'l}} \gg \mathbf{t_{u'i}}) \end{array}$	$\mathbf{t_{u'l}} - \mathbf{t_{u'i}}$	$\mathbf{t_0} - \mathbf{t_{u'l}}$

Centered kNN

- baseline estimators contain most of useful signal
- every user may have individual "rating scale"

$$score_{uKNN}(u, i) = \bar{a}_u + \frac{1}{z} \sum_{v \in \mathcal{N}_i(u)} sim(u, v) \cdot (a_{vi} - \bar{a}_v)$$

$$\bar{a}_u - average rating of user u$$

item-based kNN:

$$score_{iKNN}(u, i) =$$

Centered kNN

- baseline estimators contain most of useful signal
- every user may have individual "rating scale"

user-based kNN:

$$score_{uKNN}(u, i) = \bar{a}_u + \frac{1}{z} \sum_{v \in \mathcal{N}_i(u)} sim(u, v) \cdot (a_{vi} - \bar{a}_v)$$

 \bar{a}_u - average rating of user u

item-based kNN:

$$score_{iKNN}(u,i) = \bar{a}_i + \frac{1}{z} \sum_{j \in \mathcal{N}_u(i)} sim(i,j) \cdot (a_{uj} - \bar{a}_j)$$

 \bar{a}_i - average rating of user *i*

Similarity measures

- Cosine Similarity
- Pearson Correlation
- Adjusted Cosine Similarity
- Jaccard Index
- Weighted Jaccard Index
- Asymmetric Similarities
- •

- Spearman's Rank Correlation
- Kendall Tau

insensitive to ranking of "bad" items vs "good" items

Baseline-adjusted similarity

• **Pearson correlation** (adopted for CF):

$$score_{Pearson}(u, v) = \frac{\sum_{i \in I_u \cap I_v} (a_{ui} - \bar{a}_u)(a_{vi} - \bar{a}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (a_{ui} - \bar{a}_u)^2} \cdot \sqrt{\sum_{i \in I_u \cap I_v} (a_{vi} - \bar{a}_v)^2}}$$

 \bar{a}_u - average rating of user u

Adjusted Cosine Similarity:

$$score_{AC}(u, v) = \frac{\sum_{i \in I_u \cap I_v} (a_{ui} - \bar{a}_i)(a_{vi} - \bar{a}_i)}{\sqrt{\sum_{i \in I_u \cap I_v} (a_{ui} - \bar{a}_i)^2} \cdot \sqrt{\sum_{i \in I_u \cap I_v} (a_{vi} - \bar{a}_i)^2}}$$

 \bar{a}_i - average rating of item i

Jaccard Index

Item-based similarity:

$$\operatorname{sim}_{\operatorname{JI}}(i,j) = \frac{\left|U_i \cap U_j\right|}{\left|U_i \cup U_j\right|}$$

$$|U_i \cup U_j| = |U_i| + |U_j| - |U_i \cap U_j|$$

Weighted Jaccard Index

- Jaccard Index only operates on sets
- often some values are associated with interactions (e.g., ratings, frequencies)

$$\operatorname{sim}_{\text{WJI}}(u, v) = \frac{\sum_{i=1}^{N} \min\{w_i(a_u), w_i(a_v)\}}{\sum_{i=1}^{N} \max\{w_i(a_u), w_i(a_v)\}}, \qquad w_i(a_u) = f(a_{ui})$$

kNN in matrix form

Element-wise weighting for user-based KNN:

$$r_{ui} = \frac{1}{z_{ui}} \cdot \sum_{v \in \mathcal{N}_i(u)} \sin(u, v) \cdot a_{vi}, \qquad \mathcal{N}_i(u) = U_i \setminus \{u\}$$

we impute A with 0's

kNN in matrix form

Row-wise weighting for user-based KNN:

$$r_{ui} = \frac{1}{z_{ui}} \cdot \sum_{v \in \mathcal{N}_i(u)} \text{sim}(u, v) \cdot a_{vi}, \qquad \mathcal{N}_i(u) = U \setminus \{u\}$$
i.e., "explicit" 0's

kNN weighting schemes

K – user similarity, $k_{ii}=0, k_{ij}\geq 0, i\neq j; S$ –item similarity matrix, $s_{ii}=0, s_{ij}\geq 0, i\neq j$.

element-wise weighting:

• <u>User-based</u>:

$$R = KA \oslash (KB)$$

$$b_{ui} = \begin{cases} 1, & \text{if } a_{ui} \text{ is known} \\ 0 & \text{otherwise} \end{cases}$$

• <u>Item-based</u>:

$$R = AS^{\mathsf{T}} \oslash (BS^{\mathsf{T}})$$

- filters known ratings only
- better for rating prediction

row-wise / no weighting:

• <u>User-based</u>:

$$R = D_K^{-1}KA$$
 $D_K = \operatorname{diag}(K\boldsymbol{e}) \text{ or } D_K = I$
 $\boldsymbol{e} = [1, 1 ..., 1]^{\mathsf{T}}$

Item-based

$$R = AS^{\mathsf{T}}D_S^{-1}$$

$$D_S = \operatorname{diag}(S\boldsymbol{e}) \text{ or } D_S = I$$

- assumes 0-imputation of unknowns
- better for top-*n* recommendations

Let's implement simple KNN models

User-based kNN for top-n recommendations

• Row-wise weighting:

$$R = D^{-1}KA$$

$$r_{ui} = w_u \cdot \sum_{v \in \mathcal{N}(u)} \text{sim}(u, v) \cdot a_{vi}$$

• Is it different from the unweighted case?

Alternative (column-wise) weighting:

$$R = KD^{-1}A$$

$$r_{ui} = \sum_{v \in \mathcal{N}(u)} \sin(u, v) \cdot w_v \cdot a_{vi}$$

kNN with asymmetric similarity

kNN similarity (e.g., item-based):

row-wise weighted symmetric → unweighted asymmetric

$$S_{\text{asym}} = D^{-\alpha}S$$

$$R = AS_{asym}^{\mathsf{T}}$$

Example: cosine similarity, assuming $d_{ii} = ||\overline{a}_i||$:

$$sim(i,j) = [S_{asym}]_{ij} = \frac{\overline{a}_i^{\mathsf{T}} \overline{a}_j}{\|\overline{a}_i\|^{1+\alpha} \cdot \|\overline{a}_j\|}$$

For binary data, $\alpha = -1$ gives a simple conditional probability p(i|j)

Popularity effect in asymmetric similarity

$$sim(i,j) = [D^{-\alpha}S]_{ij} = \frac{\overline{a}_i^{\mathsf{T}} \overline{a}_j}{\|\overline{a}_i\|^{1+\alpha} \cdot \|\overline{a}_j\|}$$

What do we recommend?

popular item
$$\stackrel{\text{sim}}{\longrightarrow}$$
 unpopular vs. unpopular $\stackrel{\text{sim}}{\longrightarrow}$ popular item j

Popularity effect in asymmetric similarity

popular item
$$\stackrel{\text{sim}}{\longrightarrow}$$
 unpopular vs. unpopular $\stackrel{\text{sim}}{\longrightarrow}$ popular item

$$\alpha < 0$$

- Popular products \rightarrow too trivial recommendations.
- Easy to guess but low value for users + low diversity.

- $\alpha > 0$
- Recommending niche products increases diversity.
- For users with generic tastes may not fit well.
- Observation: popular items are not very descriptive of users interests.
- Suggest a normalization that would improve item-KNN recommendations.

New scheme – emphasizing contribution of specific user tastes:

$$S_{\text{asym}} = SD^{-\beta}, \qquad \sin(i,j) = \frac{\overline{\boldsymbol{a}}_i^{\mathsf{T}} \overline{\boldsymbol{a}}_j}{\|\overline{\boldsymbol{a}}_i\| \cdot \|\overline{\boldsymbol{a}}_j\|^{1+\beta}}$$