What is claimed is:

1

4.

1	1. A method comprising:
2	generating an intermediate representation (IR) of a source program, where the source
3	program includes one or more instructions for processing data in a bit field within a data
4	structure;
5	modifying the intermediate representation to more efficiently execute the one or more
6	instructions for processing the bit field data; and
7	generating resultant code based on the modified intermediate representation.
1	2. The method of claim 1, wherein modifying the intermediate representation further
2	comprises:
3	pre-processing the IR to perform preliminary modification of the IR.
1	3. The method of claim 2, wherein modifying performing pre-processing further
2	comprises:
3	performing data flow analysis to gather information regarding definition and usage of the
4	bit field data; and
5	generating a def/use graph to classify the information.

042390.P116116 Express Mail No.: EV325525912US

The method of claim 3, wherein generating a def/use graph further comprises:

5. The method of claim 2, wherein modifying the intermediate representation further 1 2 comprises: (a) allocating a temporary variable to hold the bit field data; and 3 (b) modifying the IR so that the temporary variable is processed in accordance with the 4 instructions. 5 6. The method of claim 5, further comprising: 1 (c) assigning the value of the temporary variable to a memory. 2 The method of claim 6, further comprising: 7. 1 2 performing steps (a), (b) and (c) for a single basic block. 1 8. The method of claim 7, further comprising: 2 identifying two or more sub-blocks within the basic block. 9. The method of claim 8, wherein: 1 steps (a), (b) and (c) are performed for each sub-block. 2

-34-

generating a def/use graph to classify the information in relation to an associated packet.

1	10.	The method of claim 5, further comprising:
2	dete	rmining whether all of the one or more instructions for processing the bit field data
3	are read	-after-write instructions; and
4	perf	orming steps (a) and (b) only if the determination is false.
1	11.	The method of claim 6, further comprising:
2	dete	rmining whether any of the one or more instructions for processing the bit field data
3	are writ	e instructions; and
4	perf	forming step (c) only if the determination is true.
1	12.	The method of claim 6, further comprising:
2	rem	oving the modifications effected by steps (a), (b) and (c) upon determining that such
3	remova	l is expected to provide an efficiency benefit in the resultant code.
1	13.	The method of claim 2, wherein pre-processing further comprises:
2	disambi	iguating a memory reference to the bit field.
1	14.	The method of claim 1, wherein modifying the intermediate representation further
2	compris	ses:

042390.P116116 Express Mail No.: EV325525912US

3	modif	ying the IR so that multiple instructions to initialize respective bit fields of a data
4	structure a	are performed with a single write to a memory.
1	15.	The method of claim 14, wherein the multiple instructions occur within a pre-
2	defined m	aximal scope.
1	16.	The method of claim 1, wherein modifying the intermediate representation further
2	comprises	:
3	modif	ying the IR so that multiple read instructions for respective bit fields of a data
4	structure a	are performed with a single read from a memory.
1	17.	The method of claim 16, wherein the multiple read instructions occur within a
2	pre-define	ed maximal scope.
1	18.	The method of claim 1, wherein modifying the intermediate representation further
2	comprises	:
3	modif	ying the IR so that multiple write instructions to respective bit fields of a data
4	structure a	are performed with a single write to a memory.
l	19.	The method of claim 18, wherein the multiple read instructions occur within a
2	pre-define	ed maximal scope.

1	20.	The method of claim 1, wherein modifying the intermediate representation further
2	comprises:	
3	determ	ining that a first instruction, being one of the one or more instructions, indicates a
4	bit-wise lo	gical operation on the bit field data;
5	determ	ining that a second instruction of the source program indicates a bit-wise logical
6	operation o	on a second bit field within the data structure; and
7	modify	ring the IR so that the first and second instructions are performed via a single read
8	from a mer	mory.
1	21.	The method of claim 20, wherein the bit-wise logical operation is a bit-wise OR
2	operation.	
1	22.	The method of claim 20, wherein the bit-wise logical operation is a bit-wise AND
2	operation.	
1	23.	An article comprising:
2	a mach	ine-readable storage medium having a plurality of machine accessible instructions,
3	which if ex	secuted by a machine, cause the machine to perform operations comprising:

4	generating an intermediate representation (IR) of a source program, where the source
5	program includes one or more instructions for processing data in a bit field within a data
6	structure;
7	modifying the intermediate representation to more efficiently execute the one or more
8	instructions for processing the bit field data; and
9	generating resultant code based on the modified intermediate representation.
1	24. The article of claim 23, wherein the instructions that cause the machine to modify
2	the intermediate representation further comprise instructions that cause the machine to:
3	perform preliminary modification of the IR.
1	25. The article of claim 24, wherein the instructions that cause the machine to modify
2	the intermediate representation further comprise instructions that cause the machine to:
3	gather information regarding definition and use of the bit field data; and
4	generate a def/use graph to classify the information.
1	26. The article of claim 25, wherein the instructions that cause the machine to
2	generate a def/use graph further comprise instructions that cause the machine to:
3	generate a def/use graph to classify the information in relation to an associated
4	packet.

27. The article of claim 24, wherein the instructions that cause the machine to modify 1 the intermediate representation further comprise instructions that cause the machine to: 2 (a) allocating a temporary variable to hold the bit field data; and 3 (b) modifying the IR so that the temporary variable is processed in accordance with 4 5 the instructions. 28. The article of claim 27, further comprising a plurality of machine accessible 1 instructions, which if executed by a machine, cause the machine to perform operations 2 comprising: 3 (c) assigning the value of the temporary variable to a memory. 4 29. The article of claim 28, further comprising a plurality of machine accessible 1 instructions, which if executed by a machine, cause the machine to perform operations 2 comprising: 3 performing steps (a), (b) and (c) for a single basic block. 4 30. 1 The article of claim 29, further comprising a plurality of machine accessible instructions, which if executed by a machine, cause the machine to perform operations 2 comprising: 3 identifying two or more sub-blocks within the basic block. 4

-39-

Express Mail No.: EV325525912US

The article of claim 30, further comprising a plurality of machine accessible 31. 1 instructions, which if executed by a machine, cause the machine to perform operations 2 comprising: 3 performing steps (a), (b) and (c) for each sub-block. 4 The article of claim 27, further comprising a plurality of machine accessible 32. 1 instructions, which if executed by a machine, cause the machine to perform operations 2 comprising: 3 determining whether all of the one or more instructions for processing the bit field data 4 are read-after-write instructions; and 5 performing steps (a) and (b) only if the determination is false. 6 The article of claim 28, further comprising a plurality of machine accessible 33. 1 instructions, which if executed by a machine, cause the machine to perform operations 2 comprising: 3 determining whether any of the one or more instructions for processing the bit field data 4 are write instructions; and 5

> 042390.P116116 Express Mail No.: EV325525912US

-40-

performing step (c) only if the determination is true.

1	34.	The article of claim 28, further comprising a plurality of machine accessible	
2	instructions, which if executed by a machine, cause the machine to perform operations		
3	comprising:		
4	remov	ving the modifications effected by steps (a), (b) and (c) upon determining that such	
5	removal i	s expected to provide an efficiency benefit in the resultant code.	
1	35.	The article of claim 24, wherein the instructions that cause the machine to	
2	perform p	oreliminary modification of the IR further comprise instructions that cause the	
3	machine to:		
4	disam	biguate a memory reference to the bit field.	
•			
1	36.	The article of claim 23, wherein the instructions that cause the machine to modify	
2	the intern	nediate representation further comprise instructions that cause the machine to:	
3	m	odify the IR so that multiple instructions to initialize respective bit fields of a data	
4	struct	ure are performed with a single write to a memory.	
1	37.	The article of claim 36, wherein the multiple instructions occur within a pre-	
2	defined n	naximal scope.	
1	38.	The article of claim 23, wherein the instructions that cause the machine to modify	
2	the intern	nediate representation further comprise instructions that cause the machine to:	

3 .	m	odify the IR so that multiple read instructions for respective bit fields of a data
4	struct	ure are performed with a single read from a memory.
1	39.	The article of claim 38, wherein the multiple read instructions occur within a pre-
2	defined m	naximal scope.
1	40.	The article of claim 23, wherein the instructions that cause the machine to modify
2	the intern	nediate representation further comprise instructions that cause the machine to:
3	m	odify the IR so that multiple write instructions to respective bit fields of a data
4	struct	ure are performed with a single write to a memory.
1	41.	The article of claim 40, wherein the multiple read instructions occur within a pre-
2	defined m	naximal scope.
1	42.	The article of claim 23, wherein the instructions that cause the machine to modify
2	the intern	nediate representation further comprise instructions that cause the machine to:
3	de	etermine that a first instruction, being one of the one or more instructions, indicates
4	a bit-v	wise logical operation on the bit field data;
5	de	etermine that a second instruction of the source program indicates a bit-wise logical

operation on a second bit field within the data structure; and

7		modify the IR so that the first and second instructions are performed via a single read
8	fron	n a memory.
1	43.	The article of claim 42, wherein the bit-wise logical operation is a bit-wise OR
2	operatio	on.
1	44.	The article of claim 42, wherein the bit-wise logical operation is a bit-wise AND
2	operatio	on.
1	45.	A compiler comprising:
2	a fro	ont end to generate an intermediate representation of a source program;
3	an c	optimizer to modify the intermediate representation (IR) to provide for optimized
4	process	ing of one or more bit fields; and
5	a ba	ack end to generate resultant code based on the modified intermediate representation.
1	46.	The compiler of claim 45, wherein:
2	the	optimizer includes a pre-processor to perform preliminary processing of the
3	interme	diate representation.
1	47.	The compiler of claim 46, wherein:

2	the pre-processor includes a data flow analyzer to perform data flow analysis and to	
3	generate a def/use graph.	
1	48. The compiler of claim 46, wherein:	
2	the pre-processor includes a registerizer to modify the intermediate representation to	Э
3	allocate a temporary variable for a bit field variable used in the source program.	
1	49. The compiler of claim 47, further comprising:	
2	an unregisterizer to selectively reverse the modification performed by the registerize	r.
1	50. The compiler of claim 45, wherein:	
2	the optimizer includes a bit-specific optimizer to modify the IR such that processing	of
3	bit fields indicated by the source program is more efficient.	
1	51. The compiler of claim 50, wherein:	
2	the bit-specific optimizer includes an aggregate initializer to initialize multiple bit fie	elds
3	within a data structure via a single write to memory.	
1	52. The compiler of claim 50, wherein:	

2	the bit-specific optimizer includes a read/write combiner to read multiple bit fields within		
3	a data structure via a single read from memory.		
1	53. The compiler of claim 52, wherein:		
2	the read/write combiner is further to initialize write bit fields within a data structure via a		
3	single write to memory.		
1	54. The compiler of claim 50, wherein:		
2	the bit-specific optimizer includes a juxtaposition merger to determine that a first		
3	instruction, being one of the one or more instructions, indicates a bit-wise logical operation		
4	on the bit field data;		
5	the juxtaposition merger further to determine that a second instruction of the source		
6	program indicates a bit-wise logical operation on a second bit field within the data structure;		
7	and		
8	the juxtaposition optimizer further to modify the IR so that the first and second		
9	instructions are performed via a single read from a memory.		
1	55. The compiler of claim 50, wherein:		
2	the bit-specific optimizer includes an "or" optimizer to merge logical "or" statements of a		
3	conditional statement together such that they are executed via a single read statement.		

- 1 56. The compiler of claim 55, wherein:
- the "or" optimizer is further to merge bit-wise "or" statements of a conditional statement
- together such that they are executed via a single read statement.
- 1 57. The compiler of claim 50, wherein:
- the bit-specific optimizer includes an "and" optimizer to merge logical "and" statements of a
- 3 conditional statement together such that they are executed via a single read statement