Nomenclatura

$V[m^3]$	Volumen	W[kgf]	Peso
$\mu [Pa \cdot s]$	Viscosidad absoluta	$v\left[m^2/s\right]$	Viscosidad cinemática
$\sigma [N/m]$	Tensión superficial	\overline{GM}	Altura metacéntrica
	Centro de gravedad	C	Centro de presión
$\rho \left[kg/m^3 \right]$		$ ho_{rel}$	Densidad relativa
$\tau \left[N/m^2 \right]$	Esfuerzo de corte		Aceleración de la gravedad
W[kgf]	Peso	$\gamma \left[kgf/m^3 \right]$	Peso específico
$J\left[m^4\right]$	Segundo momento	$\overline{J}\left[m^4 ight]$	Segundo momento respecto a G

Conversión de unidades

Presión

Temperatura $K = {}^{\circ}C + 273,15$ ${}^{\circ}R = {}^{\circ}F + 459,67$

UNIDAD 1

CONCEPTOS GENERALES

Presión	Densidad y peso específico		
$P_{absoluta} = P_{atmosf\'erica} + P_{manom\'etrica}$ $P_{man}(+)$ Presión manom\'etrica $P_{man}(-)$ Vacío	$ ho_{rel} = rac{ ho}{ ho_{H_2O}} \ \gamma = rac{W}{V} = rac{mg}{V} = ho g$		
Viscosidad	Tensión superficial		
$ au = \mu \frac{du}{dy}$ $v = \frac{\mu}{\delta}$ Fluido newtoniano $\mu = cte$ Fluido ideal $\mu = 0$	No sé que pingo poner acá help Capilaridad $h = \frac{4\sigma \cos \beta}{\gamma D}$		

También pensaba poner la ecuacion de los gases y algo de ese estilo que vimos en termo... pero no sé, qué opinan ustedes?

Unidad 2 ESTÁTICA DE LOS FLUIDOS

Fluidos en reposo $dp = -\gamma dz$ Agregar algo de manómetros estaría bien? Fuerzas sobre áreas planas Magnitud de F $F = \gamma \bar{h} A = P_C A$ Punto de aplicación C de F $y_P = \bar{y} + \frac{\bar{J}}{A\bar{y}}$ $C: (x_P, y_P)$ $x_P = \bar{x} + \frac{\bar{J}_{xy}}{A\bar{y}}$

Flotabilidad $F_B = \gamma \mathcal{V}$ En equilibrio F = W $\overline{GM} = \frac{J_O}{V} - \overline{CG}$ Longitud del cuerpo = I Área al nivel de la línea de flotación = A $Cuña \ agregada \ EOD$