1 Elektrostatik skript S. 3-1

Name	Allg.	PtQ	Homogen	Info
Dielektrizitätskonstante	$\varepsilon_0 = 8.8542 \cdot 10^{-12}$			
Elementarladung/masse	$e = 1.602 \cdot 10^{-19} C$	$m_e = 9.109 * 10^{31}$	kg	
Coulombsches Gesetz 1)	$\vec{F} = \vec{E} \cdot Q$	$F = \frac{Q_1}{4\pi\varepsilon r^2} \cdot Q_2$		$(F > 0 \rightarrow \text{Abstossung})$
Elektrische Feldstärke ^{2,7)}	$ec{E} = rac{ec{F}}{Q}$	$E = \frac{Q}{4\pi\varepsilon r^2}$	$E = \frac{U}{d}$	$[E] = \frac{V}{m}$
		$E(r) = \frac{E_{R_1} \cdot R_1^2}{r^2}$		
Arbeit	$W_{AB} = \int_{a}^{b} F(r)dr$	$= \frac{Q_1 \cdot Q_2}{4\pi\varepsilon} \left(\frac{1}{a} - \frac{1}{b}\right)$	$= U_{AB} \cdot Q^{(3)}$	W] = Ws = J; [p] = W
Spannung innerh. E-Feld ⁴⁾	$U_{AB} = \int_{A}^{B} \vec{E}(s)d\vec{s}$	$= \varphi_A - \varphi_B$	$= \frac{W_{AB}}{Q} = \vec{E} \cdot \vec{l}_{AB}$	
Potential ⁵⁾	$\varphi = \frac{W}{Q} = \sum_{i=1}^{n} \varphi_{Q_i}$	$\varphi = \frac{Q_1}{4\pi\varepsilon r}$		$[\varphi] = V = \frac{Ws}{As} = \frac{VAs}{As}$
	$=rac{aufgew.Arbeit}{herangesch.Q}$	$\varphi = \frac{1}{4\pi\varepsilon} \sum_{i=1}^{n} \frac{Q_i}{r_i}$		
Elektrische Flussdichte ⁶⁾	$\vec{D} = \varepsilon \cdot \vec{E}$	$D = \frac{Q}{4\pi r^2}$	$D = \frac{\Psi}{A\cos\varphi}$	$[D] = \frac{C}{m^2} = \frac{As}{m^2}$
Elektrischer Fluss	$\Psi = \int\limits_A \vec{D} \cdot d\vec{A}$		$\Psi = D \cdot A \cdot \cos \varphi$	$[\Psi] = As, C$
Gauss'scher Satz (El-Statik)	$\Psi_{Huelle} = \sum Q_{einge}$			
Kapazität	$C = \frac{Q}{U}$			$[C] = F = \frac{C}{V} = \frac{As}{V}$
Flächenladungsdichte	$\sigma = \frac{Q}{A} \to \mathrm{besteht}$ an Grenzfläche zwischen Leiter & Isolator			$[\sigma] = \frac{C}{m^2}$
Ladung	$Q = I \cdot t = C \cdot U$			[Q] = As = C
Energiedichte	$w = \frac{W}{V} = \frac{1}{2}\varepsilon \cdot E^2 =$	$[w] = \frac{J}{m^3}$		
Stromstärke	$I = \frac{Q}{t} = \frac{\Delta Q}{\Delta t} \qquad i = \frac{1}{2} = $	$[I] = \frac{As}{s} = A$		

1.1 Anmerkungen zu den Formeln

- 1) Gilt nur für Punktladungen exakt; für geladene Körper nur wenn Körperabmessung \ll Abstand
- 2) Q>0: \vec{E} gleiche Richtung wie $\vec{e}_r\leftrightarrow Q<0$: \vec{E} entgegengesetzte Richtung wie \vec{e}_r . Der Radius wird immer von der Kugelmitte aus genommen (d.h. an einer Kugeloberfläche besteht eine Feldstärke!)
- 3) Wird eine Ladung von A nach B verschoben, so hängt die aufzubringende bzw. abgeg. Energie nicht vom Verschiebungsweg, sondern nur von der Potentialdifferenz $\varphi_B \varphi_A = U_{AB}$ ab.
- **4)** Weg AB so wählen, dass $\vec{E} \perp \vec{s}$ oder $\vec{E} \parallel \vec{s}$
- 5) Potential nimmt in Feldlinienrichtung ab.
- 6) Im Leiter existiert kein E-Feld $\Rightarrow D = 0! \rightarrow D$ ist materialunabhängig.

7) Superposition durch Vektoraddition 1.2

1.2 Leiter im Feld Skript S. 1-18

- Innere des Leiters ist feld- (Influenz) und ladungsfrei (Faradayscher Käfig)
- Feldlinien stehen senkrecht zur Leiteroberfläche
- Oberfläche des Leiters ist äquipotential

1.3 Kondensator, Kapazität skript S. 3-24

Kapazitätsberechnung $\Psi_{Huelle} = D \cdot A = Q \Rightarrow D(r) = \frac{Q}{A(r)} \Rightarrow E(r) = \frac{D(r)}{\epsilon} \Rightarrow U = \int E(r) \cdot dr \Rightarrow C = \frac{Q}{U}$

Plattenkondensator

$$C = \frac{\varepsilon A}{d}$$

Koaxialkabel (Zyl.) $(r_a > r_i)$ $C = \frac{2\pi\varepsilon l}{\ln\frac{r_a}{r_i}}$

$$C = \frac{2\pi\varepsilon l}{\ln\frac{r_a}{r_i}}$$

Kugelkondensator $(R_2 > R_1)$

$$C = 4\pi\varepsilon \frac{R_1 R_2}{R_2 - R_1}$$
 Doppelleitung

$$C = \frac{\pi \varepsilon l}{\ln \frac{a-r}{r}} \approx \frac{\pi \varepsilon l}{\ln \frac{a}{r}} (l \gg a \gg r)$$

Koaxialkabel

Doppelleitung

Spezielle elektrische Felder

speziene elektrisene reider					
Feldtyp	Q [C]	D [C/m ²]	E [V/m]	φ [v]	
Räumliches Zentralfeld Kugel	$\sigma_{ m l}4\pi{ m R}_{ m l}{}^2$	$\sigma_1 \frac{R_1^2}{r^2}$ $\frac{Q}{4\pi r^2}$	$\frac{\sigma_1 R_1^2}{\varepsilon r^2}$ $\frac{Q}{4\pi \varepsilon r^2}$	$\frac{\sigma_1 R_1^2}{\varepsilon r}$ $\frac{Q}{4\pi \varepsilon r}$	
Zylindrisches Koaxialfeld	$\sigma_1 2\pi R_1 l$	$\sigma_1 \frac{R_1}{r}$ $\frac{Q}{2\pi r l}$	$\frac{\sigma_1 R_1}{\varepsilon r}$ $\frac{Q}{2\pi \varepsilon r l}$	$\frac{\sigma_1 R_1}{\varepsilon} \ln \frac{R_0}{r}$ $\frac{Q}{2\pi \varepsilon l} \ln \frac{R_0}{r}$	
Homogenes Feld	σ_1 A	$\frac{\sigma_1}{A}$	$\frac{\sigma_1}{\varepsilon}$ $\frac{Q}{A \ \varepsilon}$	$\frac{\sigma_1}{\varepsilon}(R_o - r)$ $\frac{Q}{A \varepsilon}(R_o - r)$	

 $\sigma = \frac{Q}{A}$; $R_0 = \text{Abstand zum Bezugspunkt}$; r = Abstand zur Ladung

Schaltungen mit Kapazitäten skript S. 3-30

Kapazitäten werden in den Grundschaltungen genau verkehrt gegenüber Widerständen berechnet.

Parallelschaltung zweier C $C_{tot} = C_1 + C_2$

Parallelschaltung mehrerer C $C_{tot} = \sum_{n=1}^{\infty} C_n \rightarrow \text{alle gleiche U}$

Serieschaltung zweier C

$$C_{tot} = \frac{C_1 C_2}{C_1 + C_2}$$

Serieschaltung mehrerer C

$$\frac{1}{C_{tot}} = \sum_{k=1}^{n} \frac{1}{Q_k}$$
 \rightarrow alle gleiche Q

Polarisation und Dielektrika skript S. 3-31

Man unterscheidet zwischen zwei verschiedenen Dielektrika:

- Die dipolfreien Moleküle unpolarer Dielektrika werden durch die wirkung des elektrischen Feldes verzerrt. Man nennt dies eine Verschiebungspolarisation.
- Bei **polaren Dielektrika** (z.B. H_2O) haben die Moleküle ohne äussere Einwirkung bereits Dipolcharakter. Es entsteht nebst der Verschiebungspolarisation noch eine Orientierungspolarisation.

Querschichtung 1.5.1

$$D = \frac{Q}{A} \Rightarrow \text{konstant}$$

$$E_1 = \frac{D}{\epsilon_1} = \frac{U}{d_1 + \frac{\epsilon_1}{\epsilon_2} \cdot d_2}; E_2 = \frac{D}{\epsilon_2}$$

$$U = E_1 d_1 + E_2 d_2 \Rightarrow D = \frac{U}{\frac{d_1}{\epsilon_1} + \frac{d_1}{\epsilon_2}}$$

$$\frac{E_1}{E_2} = \frac{\epsilon_2}{\epsilon_1}$$

1.5.2 Längsschichtung

$$E = \frac{U}{d} \Rightarrow \text{konstant}$$

$$D_1 = E \cdot \epsilon_1; D_2 = E \cdot \epsilon_2$$

$$\epsilon_2 > \epsilon_1 \Rightarrow D_2 > D_1$$

$$\frac{D_2}{D_1} = \frac{\epsilon_2}{\epsilon_1}$$

Feldlinien an Grenzfl. ver. Dielektrika

$$\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{\varepsilon_{r1}}{\varepsilon_{r2}}$$

Eigenschaften von Dielektrika

homogen: ε_r ist ortsunabhängig inhomogen: ε_r ist ortsabhängig linear: ε_r ist feldstärkeunabh. isotrop: ε_r ist richtungsunabh.

nichtlinear: ε_r ist feldstärkeabh. anisotrop: ε_r ist richtungsabh.

1.5.5 Relative Dielektrizitätskonstanten ε_r verschiedener Stoffe bei $20^{\circ}C$

Azeton	21.5	Bernstein	2.8	Diamant	16.5	Glas	$5 \dots 7$
Glimmer	$5 \dots 8$	Gummi	2.7	Hartpapier	$5 \dots 6$	Harzöl	2
Mineralöl	2.2	Pertinax	4.8	Petroleum	2.1	Polystyrol	2.6
Quarz	$3.8 \dots 5$	Keram. Stoffe	$10 \dots 1000$	Vakuum	1	Wasser	80.3

1.6 Energie und Kraft im elektrostatischen Feld skript S. 3-33

Im Kondensator gespeicherte Energie:

$$W = \underbrace{\frac{1}{2} \cdot C \cdot U^2}_{U = konst} = \frac{1}{2} \cdot Q \cdot U = \underbrace{\frac{1}{2} \cdot \frac{Q^2}{C}}_{Q = konst}$$

Grundsätzlich versuchen sich die Feldlinien zu verkürzen \to Die Kraft auf die Grenzflächen ist so gerichtet, dass sie die Kapazität zu vergrössern sucht.

Die Kraft berechnet sich mittels dem Prinzip der virtuellen Verschiebung.

$$F = F_{mech} = \left| \frac{\mathrm{d}W}{\mathrm{d}d} \right| \qquad \mathrm{d}W = \frac{1}{2}\varepsilon \cdot E^2 \cdot A \cdot \mathrm{d}d \quad \Rightarrow \quad \boxed{F = \frac{1}{2}\varepsilon \cdot E^2 \cdot A = \frac{1}{2}\varepsilon \cdot \frac{U^2}{d^2} \cdot A}$$

$$F = \frac{1}{2} \cdot U^2 \cdot \frac{\mathrm{d}C}{\mathrm{d}d}, \text{ (für U = const.)} \qquad \text{oder} \qquad F = \frac{1}{2} \cdot Q^2 \cdot \frac{\mathrm{d}}{\mathrm{d}d} \left(\frac{1}{C}\right), \text{ (für Q = const.)}$$

Formeln für F gelten auch, wenn C an Quelle angeschlossen ist, dafür muss jedoch |F| genommen werden.

1.7 Teilkapazitäten, Mehrleitersysteme skript S. 3-36

Um die kapazitive Beziehung von mehrehren gegeneinander isolierten Leitern (sog. Mehrleitersystem) zu bestimmen kann man deren Teilkapazitäten berechnen. So lassen sich z.B. die Teilkapazitäten eines mehradrigen Kabels berechnen.

Zur Berechnung der Teilkapazitäten geht man wie folgt vor:

- 1. Ladungen Q_1,Q_2,Q_3 (mit $Q_1+Q_2+Q_3=0$) als gegeben betrachten und $\varphi_1,\varphi_2,\varphi_3$ in Bezug zur Mitte berechnen. Bsp $\varphi_1=\frac{1}{2\cdot\pi\cdot\epsilon\cdot l}(Q_1\cdot\ln\frac{R_0}{R}+Q_2\cdot\ln\frac{R_0}{a}+Q_3\cdot\ln\frac{R_0}{a})$
- 2. U_{12}, U_{23}, U_{13} aus $\varphi_1, \varphi_2, \varphi_3$ berechnen. Bsp $U_{12} = \varphi_1 \varphi_2 = -U_{21}$
- 3. Q_1, Q_2, Q_3 explizit berechnen. Beachte $Q_3 = -Q_1 Q_2$, usw. $\Rightarrow Q_1(U_{12}, U_{13}) = C_{12} \cdot U_{12} + C_{13} \cdot U_{13}$ usw. für $Q_2(U_{21}, U_{23}), Q_3(U_{31}, U_{32})$.

2 Das Magnetische Feld Skript S. 5-1

2.1 Energie und Kraft im magnetischen Feld skript S. 5-50

Energiedichte:
$$w_m = \int_0^B \vec{H} \cdot d\vec{B}$$
 (Allgemein) $w_m = \frac{1}{2}B \cdot H$ (homog. Feld) $w_m = \frac{J}{m^3}$ Energie: $W_m = \frac{1}{2}L \cdot I^2 = \frac{1}{2}N \cdot I \cdot \Phi$ or $W_m = \frac{1}{2}\int_{V_{Lu}} \vec{H} \cdot \vec{B} \cdot dV$ (Allg.) $W_m = w_m \cdot V = \frac{1}{2}B \cdot H \cdot V$ (homog. Feld)

Die Kraft auf Grenzflächen ist stets so gerichtet, dass sie die Induktivität zu vergrössern sucht. Das heisst immer vom ferromagnetischen Material zur nichtferromagnetischen Umgebung (z.B. Luft). Prinzip der virtuellen Verschiebung:

Kraft auf einen Anker:

$$F = \left| \frac{\mathrm{d}W_m}{\mathrm{d}s} \right| = \frac{1}{2}I^2 \cdot \frac{\mathrm{d}L}{\mathrm{d}s} \quad oder \quad F = \frac{1}{2}B_L \cdot H_L \cdot A_L$$

$$\boxed{F = \frac{1}{2} \frac{B_L^2}{\mu_0} A_L = \frac{1}{2} \mu_0 \cdot H_L^2 \cdot A_L = \frac{1}{2} \frac{\Phi^2}{\mu_0 A_L} = \frac{1}{2} \frac{\Phi \cdot B_L}{\mu_0} \quad \text{(für } \mu_{rFe} \gg \ 1)}$$

2.2 Wichtigste Formeln

Magnetische Feldlinien verlaufen ausserhalb eines Magneten vom Nord- zum Südpol und sind immer geschlossen. Dabei zeigt die Kompassnadel immer in Richtung der Feldlinien.

Name	Allg.	Homogen	Info
Permeabilität	$\mu_0 = 4\pi \cdot 10^{-7} \frac{V_s}{Am} = 1.2566 \frac{\mu H}{m} \mu = \mu_0 \cdot \mu_r$		$\frac{\mu H}{m} = \frac{Vs}{An}$
3-Finger-Regel: (rechte Hand)	F = Daumen, v = Zeigefi	Q > 0 !!	
Ampèresches Gesetz	$F_A = \underbrace{\frac{\mu}{4\pi} \frac{\cdot Q_1 \cdot v_1}{r^2}}_{B} \cdot Q_2 \cdot v_2$		
Lorentzkraft (bewegte Ladung)	$\vec{F} = Q(\vec{v} \times \vec{B})$	$ \vec{F} = Q \cdot v \cdot B \cdot \sin \alpha$	N
Kraft auf stromführenden Leiter	$\vec{F}_L = I(\vec{l} \times \vec{B})$	$ \vec{F}_L = I \cdot l \cdot B \cdot \sin \alpha$	
Magn. Flussdichte	$B = H \cdot \mu = \frac{F}{Q \cdot v}$, wobei \vec{v}	$\perp \vec{B}$	$\frac{Vs}{m^2} = T \text{ (Tesla)}$
Magnetische Feldstärke	$ec{H}=rac{ec{B}}{\mu}$	$H(s)$ aus $\Theta = \mathring{V}_m$	$\frac{A}{m}$
Magnetische Spannung		$V_m = H \cdot s$	A
Magn. Umlaufspannung	$\mathring{V}_m = \oint \vec{H}(s) \cdot \vec{ds}$	$\mathring{V}_m = H \cdot \mathring{s}$	
Durchflutungssatz	$\Theta = \mathring{V}_m = \int_A \vec{J} \cdot d\vec{A} \vee \sum_{i=1}^{n} \vec{J} \cdot d\vec{A} = 0$	$\sum_{NI} I_k = \oint \vec{H}(s) \cdot \vec{ds}$	A
Magnetischer Fluss	$\Phi = \int\limits_A ec{B} \cdot dec{A}$	$\Phi = B \cdot A \cdot \cos(\gamma)$	Vs = Wb (Weber)
Maxwellsche-Gleichung	$\oint \vec{B} \cdot d\vec{A} = 0 \ (\sum \Phi \ durch$		
"Ohmsches Gesetz des Magn."	$V_m = R_m \cdot \Phi \Leftrightarrow \Theta = R_m \cdot$	Φ (ganzer Kreis)	A
Magn. Widerstand	$R_m = \frac{V_m}{\Phi} = \frac{\Theta}{\Phi}$	$R_m = \frac{l}{\mu A}$	$\frac{A}{Wb}$
Magn. Leitwert (auch G_m/A_L)	$\Lambda = \frac{1}{R_m} = \frac{\Phi}{V_m} = \frac{\Phi}{\Theta}$	$\Lambda = \frac{\mu A}{l}$	$\frac{Vs}{A} = H \text{ (Henry)}$
Verketteter Fluss	$\Psi = \sum \Phi \text{ (meist } \boxed{\Psi = N \cdot}$	Φ	$[\Psi] = [\Phi] = Vs = Wb$
Kopplung	Allg.	Bei best. Kopplung	
Induktivität	$L = \frac{\Psi}{I}$	ideal: $L = \Lambda N^2 = \frac{N^2}{R_m}$	$[L] = \frac{Vs}{A} = H$
innere Induktivität	$L_i = \frac{\mu \cdot l}{8 \cdot \pi}$		$[L] = \frac{Vs}{A} = H$
Gegeninduktivität	$M = M_{21} = M_{12}$	ideal: $M = \sqrt{L_1 L_2}$	vorder Index = Wirkung,
	$M_{21} = \frac{\Psi_{21}}{I_1} \ (= \frac{N_2 \Phi_{21}}{I_1})$	nicht ideal: $M < \sqrt{L_1 L_2}$	hinterer = Ursache
Kopplungsfaktor	$k = \frac{M}{\sqrt{L_1 L_2}}$ ideal: $k = 1$		[-]
Streukoeffizient	$\sigma = 1 - k^2 = 1 - \frac{M^2}{L_1 L_2} \text{ideal: } \sigma = 0$		[-]
Hall-Sonde	$U_H = \frac{I \cdot B}{e \cdot n_p \cdot h}$		V
Kreis-r in M-Feld abgelenkte Q	$r = \frac{m_Q \cdot v}{Q \cdot B}$		$m, m_e = 9, 11 \cdot 10^{-31} kg$
Füllfaktor	$F = \frac{A_{EffektivFe}}{A_{Tot}}$		$[-] (F \le 1)$
Luftspaltkenngrösse	$\alpha = \frac{l_{Fe} \cdot A_L}{l_L \cdot A_{Fe}} \approx \frac{l_{Fe}}{l_L} \text{ (für } A_L \approx A_{Fe})$		[-]
effektive Permeabilität	$\mu_{r_{eff}} = \frac{\alpha \cdot \mu_{r_{Fe}}}{\alpha + \mu_{r_{Fe}}}$		[-]

2.3 Magn. Feldstärke

Biot-Savart: (Ströme dünner Leiter)

$$\vec{H}$$
 (in Punkt P) = $\frac{I}{4\pi} \int \frac{d\vec{l} \times r(\vec{l})}{r^3(l)}$

(bewegte Punktladung)

$$\vec{H} = \frac{Q}{4 \cdot \pi \cdot r^3} \cdot (\vec{v} \times \vec{r})$$

 $H_{innen}(r) = \frac{N \cdot I}{2 \cdot \pi \cdot r}$

$$H(r) = \frac{I}{2 \cdot \pi \cdot r}$$

 $H = \frac{I}{D} = \frac{I}{2a}$

Magnetfeld ausserhalb eines langen Leiters: Magnetfeld innerhalb eines geraden, langen Leiters: $H(r) = \frac{I}{2 \cdot \pi \cdot r} \qquad \qquad H(r) = \frac{I}{2\pi r} \frac{A_{eingeschlossen}}{A_{total}}$

$$H(r) = \frac{I}{2\pi r} \frac{A_{eingeschlosser}}{A_{total}}$$

Magnetfeld einer Toroidspule:

Magnetfeld der Zylinderspule:

$$H(r) = \frac{N \cdot I}{l}$$
 $l \gg d$

$$H = \frac{I}{2} \cdot \frac{a^2}{\sqrt{a^2 + b^2}} = \frac{I}{2} \cdot \frac{\cos(\gamma) \cdot a}{2r^2}$$

$$H = \frac{I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2)$$

$$H = \frac{I \cdot 2\sqrt{2}}{\pi \cdot s}$$

Induktivität Skript S. 5-23

Induktivität hängt nicht vom Strom ab, sondern nur von der Geometrie der Leiteranordnung, der Permeabilität und der umgebenden Materie.

Gegeninduktivität, magnetische Kopplung skript S. 5-26 2.5

Die Gegeninduktivität beschreibt die Wirkung einer Spule auf eine zweite, d.h. sie sind magnetisch gekoppelt.

Die magnetische Kopplung zweier Spulen hängt davon ab, ob und wie gross der Streufluss Φ_{σ} , d.h. der Fluss, der "verloren" und nicht durch die zweite Spule geht, ist. Je kleiner der Streufluss, desto idealer die Kopplung.

$$M = \sqrt{L_1 L_2} \cdot k$$
 $M = \text{Reziprozität}$ $k = \text{Kopplungsfaktor} (= 1 \text{ falls ideal})$

2.6 Zusammenstellung magnetischer Grössen für spezielle Leiteranordnungen

	Leitwert Λ	Durchfl. Θ	Fluss $\Phi^{-1)}$	$\text{VerkFluss }\Psi$	Induktivität L ²⁾
Kreisförmige Schleife d: Draft- durchwerer	$\frac{\mu D}{2} \cdot \ln \frac{D}{d}$	Θ = Ι	$\frac{\mu D}{2} \cdot \ln \frac{D}{d} \cdot 1$	Ψ = Φ	$L = \frac{\mu D}{2} \cdot \ln \frac{D}{d}$
Kreisrahmenspule 4) N Windungen d: Wichlungen durch messer	$\frac{\mu D}{2} \cdot \ln \frac{D}{d}$	Θ = ΝΙ	$\frac{\mu D}{2} \cdot \ln \frac{D}{d} \cdot N \cdot I$	$\Psi = N \cdot \Phi$	$L = \frac{\mu D}{2} \cdot \ln \frac{D}{d} \cdot N^2$
Zylinderspule	$\frac{\mu A}{\ell} = \frac{\mu \pi d^2}{4 \ell}$	Θ = ΝΙ	$\frac{\mu\pid^2}{4\ell}\cdotN\cdotI$	$\Psi = N \cdot \Phi$	$L = \frac{\mu \pi d^2}{4 \ell} \cdot N^2$
Toroidspule 3) A A		Θ = ΝΙ	$\frac{\mu d^2}{4 D_m} \cdot N \cdot I$	$\Psi = N \cdot \Phi$	$L = \frac{\mu d^2}{4 D_m} \cdot N^2$
Ringspule mit rechteckf. Querschnitt	$\frac{\mu a}{2\pi} \cdot \ln \frac{D}{d}$	⊖ = NI	$\frac{\mu \mathbf{a}}{2\pi} \cdot \ln \frac{D}{d} \cdot N \cdot I$	$\Psi = N \cdot \Phi$	$L = \frac{\mu a}{2\pi} \cdot \ln \frac{D}{d} \cdot N^2$
Koaxialleitung	$\frac{\mu \ell}{2\pi} \cdot \ln \frac{R_2}{R_1}$	Θ = Ι	$\frac{\mu \ell}{2\pi} \cdot \ln \frac{R_2}{R_1} \cdot I$	Ψ = Φ	$L = \frac{\mu \ell}{2\pi} \cdot \ln \frac{R_2}{R_1}$
Paralleldrahtleitung	$\frac{\mu \ell}{\pi} \cdot \ln \frac{a - R}{R}$	Θ = Ι	$\frac{\mu \ell}{\pi} \cdot \ln \frac{a - R}{R} \cdot I$	ψ = Φ	$L = \frac{\mu \ell}{\pi} \cdot \ln \frac{a - R}{R}$

Bemerkungen:

- 1) ohne Fluss durch Leiter
- ²⁾ nur äussere Induktivität
- $^{3)}$ $A = \frac{\pi d^2}{4}$ $l_m \approx \pi D_m$
- 4) Wicklungs-Ø d in radialer und axialer Richtung $d \ll D$

Allgemein gilt:

$$\Phi = \Lambda \cdot \Theta, \ \Lambda = \frac{1}{R_m}$$

$$L = \frac{\Psi}{I}$$

$$L = \Lambda = \frac{1}{R_m}, \text{ falls } N = 1$$

$$L = \Lambda N^2 = \frac{N^2}{R_m}, \text{ falls die } N$$

Windungen unter sich ideal gekoppelt sind.

2.7 Magnetisierung Skript S. 5-31

Stoff (Eigenschaft) Kennzeichen	Ohne äusseres Magnetfeld: Stoff magnetisch neutral, da	Effekte beim Anlegen eines äusseren Magnetfeldes ${\cal H}$	
diamagnetisch Felder bzw. Kreisströme der Elektro- nenbahnen eines Elementarteilchens kompensieren sich weitgehen	jedes einzelne Elemtarteilchen neutral	Geringe Abschwächung des Feldes (Gegenfeld) infolge von Gegenkreisströmen: $\mu_r < 1$	
paramagnetisch Jedes Teilchen besitzt resultierenden Kreisstrom (resultierendes Feld) Teilchen = Elementarmagnet	Richtung der Elementartteilchen (Elementarmagnete) regellos	Verstärkung des Feldes durch Ausrichten der Elementarmangete in Richtung von H $\mu_r > 1$	
ferromagnetisch Bezirke aus vielen Elementarmagneten mit gleicher Magnetisierungsrichtung ⇒ grössere Teilmagnete	Richtung der Bezirke regellos	- Ausrichten der Elementarmagnete - Vergrösserung der Bezirke mit gleicher Magnetisierungsrichtung wie H-Feld \Rightarrow kräftige Verstärkung des Feldes $\mu_r >> 1$ aber von H abhängig	

2.7.1 Ferromagnetische Stoffe

2.7.2 Brechung magnetischer Felder

Gleich wie bei elektrostischen Felder: $\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{\mu_{r1}}{\mu_{r2}}$

2.8 Der magnetische Kreis

 \mathring{V}_m : magn. Umlaufspannung R_{mFe} : magn. Wiederstand Eisenkern R_{mL} : magn. Wiederstand Luft

 Φ : magn. Fluss $B \leftrightarrow H$: aus magn. Kurve $\Theta = \mathring{V}_m = N \cdot I = \sum_{i=1}^n H_i \cdot l_i$

2.8.1 Von der Durchflutung Θ ausgehende Berechnung

- 1. magn. Kreis in linearen und nichtlinearen Teil aufteilen
- 2. Leerlaufspannung $V_{mLeerlauf}$ und Kurzschlussfluss Φ_k bestimmen
- 3. H^* und B^* bestimmen
- 4. H^* und B^* einzeichnen und Arbeitspunkt AP bestimmen
- 5. H und B im AP herauslesen

$$V_{mLeerlauf} = \Theta \qquad \Phi_k = \frac{\Theta}{R_{mL}} = \frac{\Theta \cdot \mu_0 \cdot A_L}{l_L} \qquad H^* = \frac{\Theta}{l_{Fe}} (B = 0) \qquad B^* = \frac{\Phi_k}{A_{Fe}} = \frac{\Theta \cdot \mu_0 \cdot A_L}{l_L A_{Fe}} = \frac{A_L = A_{Fe}}{l_L} (H = 0)$$

2.9 Der magnetische Kreis mit Permanentmagnet

215.3 Magnetische Ersatzschaltung eines magnetischen Kreises mit Dauermagnet

216.1 Magnetische Ersatzschaltung mit Ersatzleitwert für Luftspalt und Streuweg

217.1 Günstigster Punkt für den Betrieb eines Dauermagneten

$$V_{mD} = -V_{mL}$$

$$\Phi = \Phi_D = \frac{1}{s} \cdot \Phi_L = \Lambda_e \cdot V_{mL}$$

$$\Lambda_e = \frac{1}{s} \cdot \frac{\Phi_L}{V_{mL}} = \frac{1}{s} \cdot \Lambda_L = \frac{\mu_0 \cdot A_L}{s \cdot l_L}$$

$$H_L \cdot l_L = -H_D \cdot l_D$$

$$B_L = \mu_0 \cdot H_L = -\frac{\mu_0 \cdot H_D \cdot l_D}{l_I}$$

$$B_L = \frac{s \cdot A_D \cdot B_D}{A_L}$$

 Φ_D : Fluss des Dauermagneten

 V_{mD} : Mag. Spannung Dauermagnet

 V_{mL} : Mag. Spannung Luftspalt

 Λ_s : Mag. Leitwert Streuung

 Λ_L : Mag. Leitwert Luftspalt

 Λ_e : Mag. Ersatzleitwert

s: Streufaktor

 $B_D: B_{opt}$

 $H_D: H_{opt}$

 ${\cal A}_D$: optimale Fläche des Dauermagneten

 $l_{\cal D}$: optimale Länge des Dauermagneten

Tabelle 217.1 Günstigster Punkt für den Betrieb von Dauermagnetwerkstoffen

Stoff	B _{opt} in T	H_{opt} in $\frac{kA}{m}$
AlNiCo 700	1,06	53
Bariumferrit	0,25	120
SmCo ₅	0,5	300
Nd ₂ Fe ₁₄ B	0,6	450

	elektrischer Kreis	magnetischer Kreis
Fluss:	Strom I	magn. Fluss Φ
Spannung: [Homogen. Full]	U [=E.e]	V _m [= H · ē]
Widerstand: $(\sigma = 1/\rho)$	$R = \frac{\ell}{\sigma \cdot A}$	$R_m = \frac{\ell}{\nu \cdot A}$
Leitwert:	G = 1/R	$\Lambda = 1/R_m = \frac{\nu \cdot A}{\ell}$
Ohmsches Gesetz:	U = R · I	Vm = Rm · Ø
Maschensatz: (U _q = Quellenspannung)	$U_q = \sum_{k=1}^n U_k$	$\Theta = \bigvee_{m} = \sum_{k=1}^{n} \bigvee_{m_{k}}$
Queli	lenspanning Ug	= Durch fluting @
Knokensalz	$\sum_{k=1}^{\infty} \hat{L}_k = O$	Durch fluking @ \[\bar{D}_{4} = 0 \]