Ch7. 网络性能建模与分析

7.1.1 基本概念

- ◆ 排队论或称**随机服务**系统理论
 - ◆ 为接受某种服务而排队等待。
 - ◆ 抽象出物理模型,建立数学论。
 - ◆ 性能评价中占有相当重要地位。
- ◆ 理论<mark>成熟</mark>,应用广泛
 - ♣ 已在电话交换网、公路、铁路、航空运输、工程管理、公共服务、 货物存储和生产流水线过程等方面得到了广泛的应用。
 - ♣ 通信流量研究的基础理论,定量研究往往借助排对论。
- ◆ 解决三大问题
 - ★ 推断: 某排队系统属于何种模型?由此分析其行为,评价性能
 - ★ 性态: 排队系统概率规律, 队长、等待时间和忙期分布, 瞬/稳态
 - ♣ 优化: 静/动态最优,即设计优化,运营优化

排队系统的一般表示

排队系统

所有需要排队 的场合	

到达的顾客	服务内容	服务机构		
不能运转的机器	修理	修理工		
病人	诊断或手术	医生或手术台		
电话呼叫	通话	交换台		
文件稿	打字	打字员		
达到机场飞机	降落	跑道		
驶入港口货船	装卸货物	码头泊位		
上游水入库	放水、调水	水闸		
数据包达到入端口	转发到其出口	交换机/路由器		
数据流达到总线入口	交换到目的设备	总线		

7.1.2 排队系统的组成和特征

- ◆ 输入过程(顾客按照怎样的规律到达)
 - ♣ 顾客源:有限(待修机器),或无限(上游水)
 - **❖** 到达**方式**: 一个一个到达的,或成批的。只研究前者
 - ◆ 到达间隔:可是确定的(装配线),可是随机的(商店顾客)。 符合一定的分布,称到达分布。
 - ◆ 到达时间:假设独立同分布的随机变量。
 - ◆ 过程平稳,或时间齐次的,间隔分布参数(期望、方差)与时间 无关
- ◆ 排队规则(顾客按照一定规则排队等待服务)
 - ◆ 等待制:等待制:服务台忙则等待,损失制:忙则离开
 - ♣ 队列容量: 有限/无限。有限队列时顾客可能丢失
 - * **服务协议**:决定排队方式,单队列、并联式多队列、串联式多队列及杂乱队列
- ◆ 服务机构(服务台数量,服务方式,服务时间分布)
 - ♣ 服务规律:一个一个进行服务,每顾客服务时间长短不一。
 - ♣ 服务时间:是随机变量,独立同分布。

服务协议/服务员数量/质量

- ◆ 先来先服务: FCFS (first come first served)
- ◆ 后来先服务: LCFS (last come first served) 堆栈形式
- ◆ 随机选择服务 : 从等待队列中随意抽取一个进行服务
- ◆ **优先**服务和动态优先服务:如计算机**中断优先**级
 - ♣ 预先给到达顾客规定优先顺序类别, 再按FCFS进行服务
 - ♣ 三类优先权:排队、中断、动态
- ◆ 共享服务 (processor sharing): 网络服务系统
 - ♣ 服务能力平均分配给队列中所有顾客,无排队出现
 - ◆ 当顾数量增加时,只是顾客服务时间变长
- ◆ 无限服务员 (infinite server)
 - ♣ 队列中的每个顾客接受完全相同的服务,似是唯一的一个顾客一样
 - ◆ 为每个顾客都可"克隆"出一个新服务员,且克隆数目无限。
- ◆ 服务员数量和质量
 - ♣ 单服务员系统、多服务员系统、无限服务员系统。

◆ 定义

- * 报文平均到达率 λ (mag/s)
- ♣ 输出信道容量c(bit/s)
- ♣ 报文长度随机,平均为1/μ(bit)

◆ 则有

- ♣ 每个报文的平均发送时间[1/μ]/c =1/μc秒
- ♣ 亦即信道发送能力为μc (mag/s)

◆ 稳态时

- ♣ 平均输出率 = 平均输入率
- * $\lambda = P[$ 输出信道忙] $\times \mu c + P[$ 输出信道闲] $\times 0 = \rho \mu c$
- $\rho = \lambda / \mu c$; $\rho = \lambda / \mu$, if c = 1
- * λ ≤ μ c ; 因为 0≤ ρ ≤1

7.1.3 排队系统的分类与标记

- ◆ D. G Kendall分类(主要三特征)
 - ◆ 相继顾客达到间隔时间的分布
 - * 服务时间的分布
 - * 服务台的个数
- ◆ Kendall记号: X/Y/Z/A/B/C:
 - ♣ X: 顾客到达的规律;
 - ♣ Y: 服务时间分布;
 - ♣ Z: 服务员的数目;
 - ♣ A: 系统容量限制N;
 - ♣ B: 顾客源数目m。
 - ♣ C: 服务规则 (FCFS/LCFS)
- $\Rightarrow : X / Y / Z$
 - ♣ 即指略去后三项的 X / Y / Z/∞/∞/FCFS

- ◆到达间隔与服务时间的分布类型
 - * M: Markov首字母。泊松到达过程,指数分布;
 - ♣ G: General首字母。一般分布。
 - ♣ E_k: k- Er lang, k阶爱尔朗分布
 - ♣ H: 超几何分布。
 - ♣ L: H项式分布。
- ◆服务规程典型的有:
 - ♣ FCFS: 先来先服务:
 - ♣ LCFS: 后来先服务;
 - ♣ RSS: 随机选择服务;
 - ♣ PR: 优先权服务:
 - ♣ GD: 一般规约服务;
 - ♣ Ba: 批量服务

7.1.4 排队问题的求解

- ◆ 系统队长:系统中的总顾客数,其期望值L
- ◆ 排队队长: 排队等待服务的顾客数, 其期望值L。
 - ♣ L = L_a + 正在被服务的顾客数
 - ♣ L/L_a越大,系统服务率越低,排队长龙,顾客厌烦
- ◆ 逗留时间: 顾客在系统中滞留的时间, 其期望值W
- ◆ 等待时间:顾客排队等待的时间,其期望值₩。
 - * W = W_a + 服务时间
- ◆ 忙期: 顾客到达空闲服务台起,到服务台再次空闲的这段时间长度,即**服务台持续繁忙的时间长度**
 - ◆ 忙期关系到服务员的工作强度
 - ◆ 忙期中服务完成的平均顾客数是服务台效率的评价指标

队列参数图示

- λ : 每秒平均到达的顾客数(平均到达率)
- µ : 每秒平均服务的顾客数(平均离开率、服务率)
- Lq: 平均等待队列长度
- Wq : 每个顾客的平均等待时间,包括没有排队的顾客
- ρ : 平均利用率,一段时间内测得
- L: 系统中平均顾客数,包括正在被服务(若有)和等待(若有)的
- W = 平均等待时间 = 平均等待时间+平均服务时间 mean residence time

到达间隔分布和服务时间分布

- ◆ 顾客泊松流到达(Poisson):
 - ★ t时间区间内到达n个顾客的概率

 - ♣ 其均值和方差分别是: λt和λt
- ◆ 服务时间的负指数分布:
 - ♣ $f(t) = \mu e^{-\mu x}$; $x \ge 0$; 其分布函数: $F(x) = 1 e^{-\mu x}$ $x \ge 0$
 - ⋆ 其数学期望等于标准差: = 1/μ
- ◆ 泊松流与负指数分布的关系:
 - ◆ 如果顾客以泊松到达; 则顾客到达的时间间隔T。服从指数分布:
 - * 因为对泊松流,在[0, t)区间至少一个顾客到达的概率是(代入n=0) $1-P_0(t) = P\{T_a < t\} = 1-e^{-\lambda t}$, $E[T_a] = 1/\lambda$
 - ♣ 平均到达时间间隔是到达速率的倒数。

M/M/1生灭过程的状态转移

- ◆ M/M/1模型:求系统在任意时刻t的状态n---系统中有n个 顾客的概率 $P_n(t)$;它决定了系统运行的特征
- ◆ 稳态情况下
 - ♣ $P_n(t)$ 与t无关; $P_n(t) = P_n$
 - * 状态转移平衡方程: 转入率 = 转出率
 - * 状态0转移到状态1的<mark>转移率 $\lambda_0 P_0$ </mark>;
 - ♣ 状态1转移到状态0的转移率μ₁P₁

2010-11-9

平衡方程: Rate In = Rate Out 状态/State 0 $\mu_1 \mathbf{P}_1 = \lambda_0 \mathbf{P}_0$ $\lambda_0 P_0 + \mu_2 P_2 = (\lambda_1 + \mu_1) P_1$ $\lambda_1 P_1 + \mu_3 P_3 = (\lambda_2 + \mu_2) P_2$ 2 N-1 $\lambda_{N-2}P_{N-2} + \mu_{N}P_{N} = (\lambda_{N-1} + \mu_{N-1}) P_{N-1}$ N $\lambda_{N-1}P_{N-1} + \mu_{N+1}P_{N+1} = (\lambda_N + \mu_N) P_N$

• 求稳态状态解

State

0:
$$P_{1} = (\lambda_{0} / \mu_{1}) P_{0}$$

1: $P_{2} = (\lambda_{1} / \mu_{2}) P_{1} + (\mu_{1} P_{1} - \lambda_{0} P_{0}) / \mu_{2}$
 $= (\lambda_{1} / \mu_{2}) P_{1} + (\mu_{1} P_{1} - \mu_{1} P_{1}) / \mu_{2}$
 $= (\lambda_{1} / \mu_{2}) P_{1}$
 $= \frac{\lambda_{1} \lambda_{0}}{\mu_{2} \mu_{1}} P_{0}$

State

$$n-1: P_{n} = (\lambda_{n-1}/\mu_{n}) P_{n-1} + (\mu_{n-1}P_{n-1}-\lambda_{n-2}P_{n-2})/\mu_{n}$$

$$= (\lambda_{n-1}/\mu_{n}) P_{n-1} + (\mu_{n-1}P_{n-1}-\mu_{n-1}P_{n-1})/\mu_{n}$$

$$= (\lambda_{n-1}/\mu_{n}) P_{n-1}$$

$$= \frac{\lambda_{n-1}\lambda_{n-2}\cdots\lambda_{0}}{\mu_{n}\mu_{n-1}\cdots\mu_{1}} P_{0}$$

n:
$$P_{n+1} = (\lambda_n / \mu_{n+1}) P_n + (\mu_n P_n - \lambda_{n-1} P_{n-1}) / \mu_{n+1}$$

$$= (\lambda_n / \mu_{n+1}) P_n$$

$$= \frac{\lambda_n \lambda_{n-1} \cdots \lambda_0}{\mu_{n+1} \mu_n \cdots \mu_1} P_0$$

简化:

Let
$$C = (\lambda_{n-1} \lambda_{n-2} \lambda_0) / (\mu_n \mu_{n-1} \mu_1)$$

Then $P_n = C_n P_0$, $n = 1, 2,$
 $\rho = \lambda / \mu$ < 1 (for steady-state)
 $C_n = (\lambda / \mu)^n = \rho^n$, for $n = 1, 2, ...$

因为:
$$\Sigma_{n=0}^{\infty} P_n = 1 = P_0 + \Sigma_{n=1}^{\infty} P_n = P_{0+} + \Sigma_{n=1}^{\infty} C_n P_0$$

 $=> [1 + \Sigma_{n=1}^{\infty} C_n] P_0 = 1$; $(c_0 = \rho^0 = 1)$
 $=> P_0 = 1 / (1 + \Sigma_{n=1}^{\infty} C_n)$
 $= 1 / (1 + \Sigma_{n=1}^{\infty} \rho^n)$
 $= 1 / (\rho^0 + \Sigma_{n=1}^{\infty} \rho^n)$ $(\rho^0 = 1)$

$$P_0 = 1 / (\Sigma_{n=0}^{\infty} \rho^n)$$
 $= (\Sigma_{n=0}^{\infty} \rho^n)^{-1}$
 $= \{1 / (1 - \rho)\}^{-1}$
 $P_0 = 1 - \rho$
所以, $P_n = C_n P_0 = (1 - \rho) \rho^n$, for $n = 0, 1, 2, ...$
 $P_0 = 1 - \rho$

Note:

1)
$$\sum_{i=0}^{n} x^{i} = (1 - x^{n+1}) / (1 - x)$$
, for any x,

2)
$$\sum_{n=0}^{\infty} x^n = 1 / (1 - x)$$
, if $|x| < 1$.

M/M/1的系统队长

$$L = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = n\rho^n - n\rho^{n+1}$$
 为变队长及其概率的积之和
= $(\rho + 2\rho^2 + 3\rho^3 + ... + n\rho^n) - (\rho^2 + 2\rho^3 + 3\rho^4 ... + n\rho^{n+1})$
= $\rho + \rho^2 + \rho^3 + + \rho^n + n\rho^{n+1}$

$$= \rho/(1-\rho)$$

$$= (1 - \rho)\rho \sum_{n=0}^{\infty} \frac{d}{d\rho} \rho^{n} = (1 - \rho)\rho \frac{d}{d\rho} \left(\sum_{n=0}^{\infty} \rho^{n}\right)$$

$$= (1 - \rho)\rho \frac{d}{d\rho} \frac{1}{(1 - \rho)} = (1 - \rho)\rho \frac{1}{(1 - \rho)^{2}}$$

$$= \rho/(1 - \rho)$$

$$or = \lambda/(\mu - \lambda)$$

排队队列长度期望值

$$\begin{split} L_q &= \Sigma^\infty_{\ n=1} \ (n \text{ - } 1) \ P_n ... (\hat{\textbf{s}} n \wedge \text{顾客到来时的队长为n-1,} 发生概率为P_n) \\ &= \Sigma^\infty_{\ n=1} \ n P_n \ - \ \Sigma^\infty_{\ n=1} \ P_n \\ &= \Sigma^\infty_{\ n=0} \ n P_n \ - \ (\Sigma^\infty_{\ n=0} \ P_n \ - \ P_0) \\ &= L \ - \ 1 (1 \ - \ P_0) \\ &= \rho \ / \ (1 \ - \ \rho) \ - \ 1 \ + \ (1 \ - \ \rho) \\ &= \rho^2 \ / \ (1 \ - \ \rho) \ \ \text{or} \\ &= \lambda^2 \ / \ \mu (\mu \ - \ \lambda) \end{split}$$

系统逗留和等待时间的期望值

◆ 系统逗留时间w在M/M/1下服从(μ - λ)的负指数分布

$$f(w) = (\mu - \lambda) e^{-(\mu - \lambda)w}; w \ge 0$$

$$F(w) = 1 - e^{-(\mu - \lambda)w}$$

$$w = E(w) = \frac{1}{\mu - \lambda}$$

$$W_q = w - \frac{1}{\mu} = \frac{\rho}{\mu - \lambda}$$

◆ 或由ittle公式Wq=Lq/ $\lambda = \lambda^2/\lambda \mu(\mu - \lambda) = = \rho/(\mu - \lambda)$

◆ little公式

◆ 排队论公式

$$L = \lambda w$$

$$L_q = \lambda w_q$$

$$w = w_q + \frac{1}{\mu}$$

$$L = L_q + \frac{\lambda}{\mu}$$

$$\rho = \frac{\lambda}{\mu}$$

$$L_q = \frac{\rho^2}{1 - \rho}, \quad L = \frac{\rho}{1 - \rho}$$

$$W_q = \frac{\rho}{\mu(1-\rho)}, \quad W = \frac{1}{\mu(1-\rho)}$$

$$P_n = (1 - \rho) \rho^n$$

等待时间与p的关系

$$W = \frac{1}{\mu - \lambda}$$

7.1.5 排队问题求解之例

服务排队问题的求解

- ◆ 理想: 1个3W服务器,
 - ♣ 假定平均1ms就有1个请求,服务器处理每个请求的时间也是 精确到1ms。这样如果1000次/s(即1ms一次)速率到达,似乎 能处理这样的负载?
 - ♣ 潜在理想假定: 到一个请求,处理完一个,又到一个.....
- ◆ 实际: 假定平均到达率是1次/ms
 - ♣ 但非均匀到达,在给定的1ms间隔中,可能没有请求,也可能 多个请求,但平均仍然是1次/ms.
- ◆ 问题:多于1个请求时
 - ◆ 把来不及处理的请求放在缓冲区(或进入等待服务队列)
 - ♣ 闲时就可以服务并清除缓冲区中的请求!
 - ♣ 缓存应该多大?队列可能多长?

表1: 归一化 到达 5 时队列 的行为

时间	输入	输出	队列	时间	输入	输出	队列
00	0	0	0	26	190	190	
01	88	88	0	27	500	500	0
02	796	796	0	28	96	96	0
03	1627	1000	627	29	943	943	0
04	51	678	0	30	105	105	0
05	34	34	0	31	183	183	0
06	96	966	0	32	447	447	0
07	714	714	0	33	542	542	0
08	1276	1000	276	34	166	166	0
09	494	769	0	35	165	165	0
10	933	933	0	36	490	490	0
11	107	107	0	37	510	510	0
12	241	241	0	38	877	877	0
13	16	16	0	39	37	37	0
14	671	671	0	40	163	163	0
15	643	643	0	41	104	104	0
16	812	812	0	42	42	42	0
17	262	262	0	43	291	291	0
18	218	218	0	44	645	645	0
19	1378	1000	378	45	363	363	0
20	507	885	0	46	134	134	0
21	15	15	0	47	920	920	0
22	820	820	0	48	1507	1000	507
23	1253	1000	253	49	598	1000	105
24	307	559	0	50	172	277	0
25	540	540	0	平均	499	499	43

- ◆ 假定表1中的到达率是500 次/s;这是服务器处理能力 的50%
- ◆ 50s后缓存平均有43个请求
- ◆ 请求队列中最多有627个

表2: 归一化 到达率 为0.95 时队列 的行为

时间	输入	输出	队列	时间	输入	输出	队列
00	0	0	0	26	361	1000	3255
01	167	167	0	27	950	1000	3205
02	1512	1000	512	28	182	1000	2387
03	3091	1000	2604	29	1792	1000	3179
04	97	1000	1701	30	200	1000	2378
05	65	1000	765	31	348	1000	1726
06	1835	1000	1601	32	849	1000	1575
07	1357	1000	1957	33	1030	1000	1605
08	2424	1000	3382	34	315	1000	921
09	939	1000	3320	35	314	1000	234
10	1773	1000	4093	36	931	1000	165
11	203	1000	3296	37	969	1000	134
12	458	1000	2754	38	1666	1000	800
13	30	1000	1784	39	70	871	0
14	1275	1000	2059	40	310	310	0
15	1222	1000	2281	41	198	198	0
16	1543	1000	2824	42	80	80	0
17	498	1000	2322	43	553	553	0
18	414	1000	1736	44	1226	1000	226
19	2618	1000	3354	45	690	915	0
20	963	1000	3317	46	255	255	0
21	29	1000	2346	47	1748	1000	748
22	1558	1000	2904	48	2863	1000	2611
23	2581	1000	4285	49	1136	1000	2748
24	583	1000	3868	50	327	1000	2074
25	1026	1000	3894	平均	948	907	1859

- ◆ 假定到达率是950次/s;是 服务器处理能力的95%
- ◆ 50s后缓存平均1859个请求
- ◆ 请求队列中最多有4093个
- ◆ 结果似乎出乎意外:
 - * 到达率上升不到2倍,
 - ♣ 而缓存上升了40倍

表3: 归一化 到达率 为0.99 时队列 的行为

时间	输入	输出	队列	时间	输入	输出	队列
00	0	0	0	26	376	1000	4445
01	174	174	0	27	990	1000	4435
02	1576	1000	576	28	190	1000	3625
03	3221	1000	2798	29	1867	1000	4492
04	101	1000	1899	30	208	1000	3700
05	67	1000	966	31	362	1000	3062
06	1913	1000	1879	32	885	1000	2947
07	1414	1000	2292	33	1073	1000	3020
08	2526	1000	3819	34	329	1000	2439
09	978	1000	3797	35	327	1000	1676
10	1847	1000	4644	36	970	1000	1646
11	212	1000	3856	37	1010	1000	1656
12	477	1000	3333	38	1736	1000	2392
13	32	1000	2365	39	73	1000	1465
14	1329	1000	2693	40	323	1000	788
15	1273	1000	2967	41	206	994	0
16	1608	1000	3574	42	83	83	0
17	519	1000	3093	43	576	576	0
18	432	1000	2525	44	1277	1000	277
19	2728	1000	4253	45	719	996	0
20	1004	1000	4257	46	265	265	0
21	30	1000	3287	47	1822	1000	822
22	1624	1000	3910	48	2984	1000	2805
23	2481	1000	5391	49	1184	1000	2990
24	608	1000	4999	50	341	1000	2330
25	1069	1000	5068	平均	988	943	2583

- ◆ 假定到达率略有增加
- ◆ 是990次/s;这是服务器 处理能力的99%
- ◆ 50s后缓存平均有2583个 请求
- ◆ 请求队列中最多有**5068** 个

排队分析的任务和假设条件

- ◆ 队列分析的基本任务是:
 - ♣ 已知如下输入信息(概率分布):
 - 到达速率 (λ)
 - ☞ 服务时间 (Ts)
 - ★ 求出如下输出信息(均值、标准差):
 - ☞ 队列中等待顾客的数量 (La; σLa)
 - ☞ 队列中顾客的等待时间 (W_q, σ_{wq})
 - 系统中滞留顾客的数量(L, σ_L)
- ◆ 排队论中的假设:
 - ♣ 到达顾客服从泊松分布,或到达间隔时间服从指数分布,这又等价于说到达顾客是随机的并彼此独立。我们几乎一直要作这一假定。
 - ♣ 在这个假定的条件下,仅仅知道到达速率和服务时间的均值和标准 差就可以得到许多有用的结果。

问题1:

- ▶ 某修理店只有一个修理工,来修理的顾客到达过程为Poission流,平均4人/小时 ;修理时间服从负指数分布,平均需要6分钟。试求:
 - (1) 修理店空闲的概率:
 - (2) 店内恰有三个顾客的概率
 - (3) 店内至少有一个顾客的概率 (4) 在店内的平均顾客数
- - (5) 每位顾客在店内的平均逗留时间 (6) 等待服务的平均顾客数
- - (7) 每位顾客平均等待服务时间 (8) 顾客在店内等待时间超过10分钟的概率

解答1:

- M/M/1: $\lambda = 4/60 \text{min } 1/15$; $\mu = 1/6 \text{min}$; $\rho = \lambda / \mu = 2/5 = 0.4$
- * (1) $P_0 = 1 \rho = 0.6$ 因为: ($P_n = (1 \rho) \rho^n$)
- * (2) $P_3 = (1-\rho) \rho^3 = 0.6*0.4^3 =$
- * (3) $1 P_0 = 1 1 + \rho = \rho$
- * (4) L = $\rho / (1 \rho)$
- * (5) $w = 1/\mu (1-\rho)$
- * (6) $L_{g} = \rho^{2}/(1-\rho)$
- $\bullet \quad (7) \quad w_{\alpha} = \rho / \mu (1 \rho)$
- * (8) $P(T>10) = e^{-(\mu-\lambda)t}$
- * 顾客在系统中的逗留时间T,服从参数为 μ λ 的负指数分布,即: $P\{T>t\}=e$
- * $P\{T>10 \text{ min}\}= e^{-(1/16-1/15)10}= e^{1/24}$

- 问题2:一个书店平均每分钟有3个顾客到达,正常情况有48个顾客在书店中,求每一个顾客在商店花费的平均时间?
- 问题3: 一条通信线路带宽是2000位/秒,该线路用来传8位一个的字符,故线路的最大速率是250字符/秒,来自应用要求是12000字符/分。求
 - ♣ (1) 等待被传输的平均字符数w
 - ♣ (2)每个字符平均传输时间Tq
- 问题4: 假定一个电话通话的持续时间平均3分钟,一个人等待电话平均最大可以忍耐3分钟,求可以支持的最大呼叫量?
- (1) 解答2: M/M/1: $\lambda = 3/\min = 1/15$; L = 48
 - * $\rho = \lambda / \mu = L/(1+L)$ $\mu = (49/48)$ $\lambda = 3.08$; W= $1/\mu$ $(1-\rho) = 1/(3.08)$ (1-3/3.08) = 12.5 min
- (2)解答3: $\lambda = 12000/\text{min}$; $\mu = 250/(1/60)\text{min} = 15000/\text{min}$
 - * $(1) L_{\alpha} = \rho^2/(1-\rho)=0.8^2/(1-0.8)=3.2;$
 - * (2): $W_q = \rho / \mu (1-\rho) = 0.8/15000*0.2 = (0.26/1000)60=0.156min$
- (3)解答4:
 - * Ts = $1/\mu$ = 3 min , Max Wq = ρ/μ (1- ρ) = 3 min
 - ♣ 求可支持的最大呼叫量即 L = ρ/(1-ρ);
 - * L = $\rho/(1-\rho)$; 0.5/0.5 = 1;因为 ρ = 1/2

问题5:

- ◆ 一局域网连有100台个人计算机,合一个存放支持查询的共用数据库服务器。服务器响应一次查询的平均时间是0.6s,估计标准差等于均值。最忙时间里,局域网内发生的查询达到20次/min;求
 - ★ 若忽略线路开销,响应时间的平均值?
 - ★ 若可接受的最长响应时间是1.5s (90%最长响应即可) ,报文负载增加多大的百分比才使影响时间达到最大值?
 - ★ 若利用率上升20%,响应时间的增加使大于还是小于20%?

解答5: 忽略网络影响, M/M/1模型

- $\rho = \lambda \text{ Ts} = 20/\text{min} * 0.6\text{s}/(60\text{s/min}) = 0.2$
- * W = $1/\mu (1-\rho)$ = Ts/ $(1-\rho)$ = 0.6/(1-02)=0.75 s ; 1.0s(ρ =0.4)
- * Max W y = Max W (90) = W*In(100/(100-y)) = W*In10
- \bullet = Ts/ $(1-\rho)*2.3=1.5s$
- ♣ 求解 $\rho = 0.08$; 实际上,要使响应时间在90%时间内都小于1.5s,利用率 就必须从20%降到8%
- ♣ 第三,求负载与响应的关系:因0.2的利用率处于曲线下部,响应时间增长很慢。故ρ从20%到40%,增加100%,W从0.75增长到1.0s,增长33%

- 问题6: 局域网到路由器的通信量是5个包/s;平均包长144字节,包长指数分布,路由器到广域网的速率9600bps:
 - ◆ 包到路由器的平均滞留时间?
 - ♣ 路由器中平均有多少个包(等待和正传输的)?
 - ♣ 同2,要求90%时间里路由器中的包数?
 - ♣ 同2,95%时间里路由器中的包数?

解答6: (计算百分位)

- * $\lambda = 5$ 个包/s; Ts=144*8/9600bps=0. 12s
- $\rho = \lambda \text{ Ts=5*0.} 12=0.6$;
- ♣ 平均滞留时间: W=Ts/(1- ρ)=0.3s
- * 平均滞留包数 L= ρ/(1-ρ)=1.5个包
- * 为得百分比,利用P[R=N]= (1- ρ) ρ ";计算**百分之**y时间内的**队列长度**: $y/100 = \Sigma$ (1- ρ) ρ " = 1- ρ " " " (y) ; $(0 \le i \le m_L(y))$
- ♣ m_L(y)表示百分之y的时间里最多的包数,即m_L(y)是这样一个数,L 低于它的时间百分比是y。反过来,给定y,求m_L(y),于是对等式两边取对数
- * $m_i(y) = [\ln(1-y/100)/\ln \rho] 1$
- ♣ $m_{\mu}(y)$ 是分数,则取下一个较大的整数,若为负,则取0。本例 ρ = 0.6; 要求 $m_{\mu}(90)$ 和 $m_{\mu}(95)$
- * $m_1(90) = [\ln(1-0.9)/\ln 0.6] -1 = 3.5 = 4$
- * $m_1(95) = [\ln(1-0.95)/\ln 0.6] -1 = 4.8 = 5$
- ♣ 即若要设计一个到达95%的便准,必须提供能至少存储5个包的缓存。

计算满足条件x的百分位

◆ 问题5: 求90%的响应时间小于1.5s?

$$m_{x}(y) \rightarrow x$$
小于 $m_{x}(y)$ 的百分比是y

$$Pr[W \leq T] = 1 - e^{-(1-\rho)t/T_{s}}$$

$$\frac{y}{100} = Pr[W \leq T] = 1 - e^{-(1-\rho)m_{W}(y)/T_{s}}$$

$$1 - \frac{y}{100} = e^{-(1-\rho)m_{W}(y)/T_{s}}$$

$$m_{W}(y) \frac{(1-\rho)}{T_{s}} = \ln(\frac{100}{100-y}); 因为等待时间W = \frac{T_{s}}{1-\rho} = \frac{1}{\mu(1-\rho)}$$
所以: $m_{W}(y) = W \times \ln(\frac{100}{100-y})$

$$m_{W}(90) = \frac{T_{s}}{1-\rho} \times \ln(10) = 0.75 \times 2.3 = 1.725s < 1.5s$$

计算满足条件x的百分位

◆ 问题6: 95%时间里路由器中的包数?

因为队长为
$$N$$
 的概率为: $\Pr[R \le N] = \sum_{i=0}^{N} (1 - \rho) \rho^{i}$ 为计算百分之 y 时间内的队列长度 :

$$\frac{y}{100} = \sum_{i=0}^{m_r(y)} (1 - \rho) \rho^i = 1 - \rho^{1+m_r(y)};$$

所以:
$$m_r(y) = \frac{\ln(1 - \frac{y}{100})}{\ln \rho} - 1$$

故:
$$m_r(90) = \frac{\ln(1-0.90)}{\ln(0.6)} - 1 = 3.5$$

$$\overline{m}$$
: $m_r(95) = \frac{\ln(1-0.95)}{\ln(0.6)} - 1 = 4.8$

问题7:

◆ 测得一网络路由器的平均到达率为125 pps (packets per second),路由器转发出每个包的平均时间是2 ms (毫秒),假设上述过程符合M/M/1模型,提示:

排队队长为n的概率 = P_n = $(1-\rho)$ ρ^n

- ★ 若路由器仅有13个包大小的队列缓冲区,求该队列缓冲区溢出概率?
- ♣ 为保持路由器的丢包率在每100万个包丢一个包以下,则需要多大队列 缓冲区?

解答7:

- ◆ 到达率 λ = 125 pps
- ◆ 服务率 µ = 1/0.002 = 500 pps
- ◆ 路由器中有n个包的概率 = $(1-\rho)\rho^n = 0.75(0.25)^n$
- ◆ 路由器中平均包数(平均队长L) = $\frac{\rho}{1-\rho} = \frac{0.25}{0.57} = 0.33$
- ◆ 缓冲区溢出的概率: P(路由器中大等于 13 包)

$$1 - \sum_{i=0}^{12} (1 - \rho) \rho^{i} = 1 - \sum_{i=0}^{12} (\rho^{i} + \rho^{i+1})$$

$$= 1 - (1 + \rho + \rho^{2} + ... + \rho^{12} - \rho - \rho^{2} - ... - \rho^{12} - \rho^{13}) = \rho^{13}$$

$$= \rho^{13} = 0.25^{13} = 1.49 \times 10^{-8} =$$
大约每百万15个包溢出。

◆ 限制丢包概率小于10⁻⁶,则有 $\rho^n \le 10^{-6}$

9.96 =
$$n > \log (10^{-6}) / \log (0.25)$$

排队网络

- ◆ 排队网络的复杂化
 - ♣ 通信量的分开和合并
 - * 队列组成一串

C:简单串联队列

Jackson定理

◆ 3个假设条件:

- ♣ 排队网络由m个节点组成,每个节点都具有独立的指数分布时间;
- * 从系统外到达系统中任何一个节点的对象都以泊松速率达到;
- ♣ 一旦在一个节点上得到服务,对象要么立即以固定的概率达到另外的某个节点,要么离开系统。

◆ 定理:

- ♣ 在这样一个排队网络中,每个节点都是一个独立的排队系统,其 达到过程是泊松的,这个泊松过程则由分开、合并和串联排队原 理确定。因而每个节点都可用独立于其它节点,用M/M/1或M/M/N 模型来分析。
- ♣ 所得结果可用普通统计方法组合在一起,每个节点上的平均时延可以加起来得到系统时延,但系统时延的高阶矩(如标准差),则不能通过这种方法得到。

分组交换网络的复杂网络排队

- ◆ 模型: N个源端和N个宿端由 多跳传输链路连接起来:
 - ♣ 则网络总负载为:

♣ 分组从源到宿过程中可能会经 过多条链路,中的内部负载会 比供给的负载高:

 给定路由算法,可通过负载 γ_{jk} 确定各个链路上的负载 λ_i。对 给定路由,一分组将经过的平 均链路数为:

$$\gamma = \sum_{j=1}^{N} \sum_{k=1}^{N} \gamma_{jk}; \sharp \Phi$$

 $\gamma = 网络总负载 (每秒分组数pps)$

 $\gamma_{ik} = 源端j和宿端k之间的负载,$

N=源端和宿端的总数

$$\lambda = \sum_{i=1}^{L} \lambda_i; \sharp \Phi$$

λ=网络上所有链路的总负载,

 λ_i = 链路i上的负载

L=链路总数

$E[-条路径中的链路个数] = \frac{\lambda}{\nu}$

$$\frac{\lambda}{\gamma} = \frac{1 \times 3 + 2 \times 5 + 3 \times 3}{1 + 2 + 3} = 3.6$$

- ◆ 目标:确定1个分组经过网络时 所经历的评价时延;
 - ◆ 由Little公式,在每条链路上等 待和正在被服务的平均数是:
 - 如果对每条链路上的平均服务对象求和,就可得到在网络的所有队列处等待的总的分组平均数:
 - ♣ 大系统也符合Little公式,故网络中等待和正被服务的分组数:
 - ◆ 要确定每个队列i分别的时延T_{ri}; 由每个队列是独立M/M/1可得:
 - ♣ 链路i上的服务时间T_{si}是M与R_i之比 ;M是分组的平均长度(bit); R_i 是链路的数据率(bps), 于是:
 - ♣ 分组经过网络的平均时延T:

$$r_i = \lambda_i T_{ri}$$
;
 r_i 是正在被服务的平均对象数
 T_{ri} 是有待确定的排队时延

$$T\gamma = \sum_{i=1}^{L} \lambda_i T_{ri}; \overrightarrow{\mathbb{R}}T = \frac{1}{\gamma} \sum_{i=1}^{L} \lambda_i T_{ri}$$

T是每个分组经历的全部时延

$$T_{ri} = \frac{T_{si}}{1 - \rho_i} = \frac{T_{si}}{1 - \lambda_i T_{si}}$$

$$T_{ri} = \frac{\frac{M}{R_i}}{1 - \frac{M\lambda_i}{R_i}} = \frac{M}{R_i - M\lambda_i}$$

$$T = \frac{1}{\gamma} \sum_{i=1}^{L} \frac{M}{R_i - M \lambda_i}$$

Zipf's Law

- ◆ 对正数序列 $f_1,f_2,...f_s$,对1-s间的任意正整数i,j,如果有 $i \times f_i = j \times f_j = C$ (C≠0),则称 $f_1,f_2,...f_s$ 服从Zipf's Law
- ◆ 显然若有数字序列 $f_1, f_2, ..., f_s$ 服从齐普夫定律,则 $f_i = C/i$ (1≤i≤s)

排队论基本概念练习

- 1。指出下列排队系统中的顾客和服务员:
 - (1) 自行车修理店; (2) 按客户订单进行加工的加工车间
 - (3) 机场起飞的客机 (4) 十字路口红灯前的车辆
- 2。判断正误
 - (1) 若到达排队系统的顾客人数服从泊松分布,则依次到达的两名顾客 之间的间隔时间服从指数分布。
 - (2) 在一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行时间足够长的时间后,系统将进入稳定状态。
 - (3) 在排队系统中,顾客等待时间的分布不受排队规则的影响。

