Notes from Practical 1

Differences between algorithms:

- 1) boundary conditions
- 2) recursion relations
- 3) starting point for traceback

Needleman-Wunsch vs Smith-Waterman Look at pairwise durbin ANNOTATED.xls

Dynamic programming widely used:

Tiling paths (clones, PCR products)
Hidden Markov Models (HMMs: Aylwyn)
Genefinding (Alastair)
Intron-sensitive mRNA/ genome alignments

(GI: splice motifs; FG: splice boundary/ exon discovery through RNA sequencing)

Protein/ DNA sequence alignments

Short read sequence aligners: 1

Table 1. Comparison of performance and sensitivity among short oligonucleotide alignment programs (9.9m 32base reads)

Program	Time consumed (s)	Reads aligned (%)
blastn (-F F -W 11)	165 780	85.47
blastn (-F F -W 15)	150 660	84.66
Blat $(-tileSize = 8)$	22 032	85.07
Eland	166	88.53
Maq	458	88.39
Soap	134	88.46
Soap iterative	161	90.9
Soap iterative + gapped	486	91.15

SOAP: short oligonucleotide alignment program.

Li R, Li Y, Kristiansen K, Wang J. Bioinformatics. 2008 Mar 1;24(5):713-4. PMID: 18227114

bowtie 200-600x faster than Soap

<u>Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.</u>
Langmead B, Trapnell C, Pop M, Salzberg SL. Genome Biol. 2009;10(3):R25. PMID: 19261174

Short read sequence aligners: 2

Short read alignment is currently a very active field

Soap: one of the first published and simplest to understand

Allows 1 or 2 mismatches, or a one gap of 1-3 bases with no flanking mismatches

Builds seed index table for database (e.g. genome sequence)

Then for each read: derive seeds

check index table for candidate hits generate alignment

Pointers to lots more programs at Heng Li's NGS aligner page: http://lh3lh3.users.sourceforge.net/NGSalign.shtml

BAC shotgun assembly 1

Starting material:

BAC clones: 100 - 150kb long

~2000 paired-end sequencing reads from ~2kb subclones

Process:

Check for repeat content

Pairwise sequence alignment: looking for overlaps

all vs all repeat-free sequences

Assemble highest scoring first

Assemble repeat-containing

Paired-end reads important for contiguation

Generate consensus

Finishing: examine/ edit/ iterate

BAC shotgun assembly 2

Widely-used programs:

phrap: 'Phil Green's rapid assembly program'
http://www.phrap.org/phredphrapconsed.html (+ consed)

Gap4:

http://staden.sourceforge.net/manual/gap4 unix toc.html

Often phrap was used for assembly, gap4 for finishing

Sequencing reads have per-base quality values. These used to help distinguish between errors and repeats during assembly.

Quality values are used when calling final consensus which itself has per-base quality values: -10log(p_{error})

Short read sequence assembly

40x coverage of human-scale genome is $40 \times 3 \times 10^9$ bases = $\sim 10^{11}$ bases

This volume of data can be generated in 3-4 runs on 2010-generation machines

For 100 base reads, 10¹¹ bases is ~10⁹ reads Brute force comparison of all vs all requires ~10¹⁸ comparison i.e. ~10²² operations Forget it!

Short read sequence assembly toy problem

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG AGTCGAG CTTTAGA | CGATGAG CTTTAGA TTAGATC ATGAGGC GAGA|CAG GTCGAGG ATCCGAT AGGCTTT GAGACAG GAGGCTC AGTCGAG TAGATCC ATGAGGC TAGAGA TAGTCGA CTTTAGA CCGATGA TTAGAGA CGAGGCT AGATCCG TGAGGCT **AGAGACA** TAGTCGA GCTTTAG TCCGATG GCTCTAG TCGACGC GATCCGA GAGGCTT AGAGACA TTAGATC GATGAGG TTTAGAG **TAGTCGA** TAGAGAC GTCGAGG TCTAGAT ATGAGGC ATCCGAT AGGCTTT GAGACAG AGGCTTT TTAGAT<mark>T</mark> ATGAGGC AGTCGAG AGAGACA TCCGATG GGCTTTA TTTAGAG CGAGGCT TAGATCC TGAGGCT GAGACAG TTTAGATC ATGAGGC TTAGAGA AGTCGAG GATCCGA GAGGCTT GAGGCTT GAGACAG

Slide

01/05/2009

Velvet: de novo short read assembly - Daniel Zerbino

Velvet: de Bruijn graph based sequence assembly

One read: GTCGAGG

Slide

01/05/2009

Velvet: de novo short read assembly - Daniel Zerbino

After simplification...

Tips removed...

Slide

01/05/2009

Velvet: de novo short read assembly - Daniel Zerbino

Bubbles removed (Tour Bus)...

Final simplification...

Target sequence:

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

Genome Res. 2008 May;18(5):821-9. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Zerbino DR, Birney E. PMID: 18349386

Slide

01/05/2009

Velvet: de novo short read assembly - Daniel Zerbino

Slide 01

Velvet: de novo short read assembly - Daniel Zerbino

Assembly of D. melanogaster Chr2L with Velvet: Effect of paired-end insert length on N50

Read length 75bp, kmer 31bp, CV insert length 0.1