VELAMMAL COLLEGE OF ENGINEERING & TECHNOLOGY, MADURAI-625 009 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 2023-2024 ODD SEMESTER COURSE PLAN

Degree	B.E-CSE
Course Code-Title	21CS301-Theory of Computation
Batch	2021-2025
Year/Semester/section	III/V/A&B
Course Component	Professional core
Name of the Instructor	Mr.K.Azarudeen

Session	Topic to be covered	Text/Reference	Mode of	Teaching	No. of	Cumulative			
No		Book Page No.	Delivery	Aid	Hours	No. of Hours			
UNIT I AUTOMATA FUNDAMENTALS									
1.	Chomskian Hierarchy	R2(294-296)	L+ PS(Tx)	BB,PPT	1	1			
2.	Introduction to Automata Theory-Alphabets, Strings and Languages.	T1(27-33)	L+ PS(Tx)	BB,PPT	1	2			
3.	Finite Automata- Deterministic finite Automata (DFA)	T1(35-50)	L+ PS(Tx)	BB,PPT	2	4			
4.	Nondeterministic finite Automata (NFA)	T1(53-61)	L+ PS(Tx)	BB,PPT	3	7			
5.	Finite Automata with epsilon transition.	T1(68-76)	L+ PS(Tx)	BB,PPT	2	9			
UNIT II REGULAR EXPRESSIONS AND LANGUAGES									
6.	Regular Expression and Languages-Operation of regular expression and their precedence	T1 (79-84)	L+ PS(Tx)	BB,PPT	1	10			
7.	Finite Automata and Regular expression	T1(85-113)	L+ PS(Tx)	BB,PPT	1	11			
8.	DFA to Regular Expression		L+ PS(Tx)	BB,PPT	2	13			
9.	Regular expression to Finite Automata-Algebric laws of Regular Expression		L+ PS(Tx)	BB,PPT	2	15			
10.	Pumping Lemma for regular Languages	T1(117-121)	L+ PS(Tx)	BB,PPT	1	16			
11.	Closure properties of Regular Languages	T1(122-139)	L+ PS(Tx)	BB,PPT	2	18			
12.	Equivalence and Minimization of Finite Automata.	T1(143-152)	L+ PS(Tx)	BB,PPT	2	20			
UNIT III CONTEXT FREE GRAMMAR AND LANGUAGES									
13.	Context Free Grammar-Parse tree-Ambiguity in Grammar and Language	T1(157-201)	L+ PS(Tx)	BB,PPT	2	22			

14.	Simplification of CFGs	T1(239-246)	L+ PS(Tx)	BB,PPT	2	24
15.	Normal forms for CFGs – Chomsky Normal Form, Greibach Normal Form	T1(250-253)	L+ PS(Tx)	BB,PPT	3	27
16.	Closure properties of CFLs	T1((264-275)	L+ PS(Tx)	BB,PPT	2	29
17.	Pumping lemma for CFLs.	T1(257-264)	L+ PS(Tx)	BB,PPT	1	30
	UNIT IV PUSHDOWN AUTOMATA	A AND LINEAR B		JTOMATA	<u> </u>	
18.	Definition of PDA- Language of PDA	T1(205-220)	L+ PS(Tx)	BB,PPT	3	33
19.	Equivalence of PDA and CFG	T1(223-232)	L+ PS(Tx)	BB,PPT	3	36
20.	Deterministic PDA	T1(232-236)	L+ PS(Tx)	BB,PPT	1	37
21.	Context-sensitive languages: Context-sensitive		L+ PS(Tx)	BB,PPT	2	39
	grammars (CSG) and languages	R2	, ,			
22.	Linear bounded automata and equivalence with CSG	(289-293)	L+ PS(Tx)	BB,PPT	2	41
	UNIT V TURING MACH	INES AND UNDE		•	I I	
23.	Turing Machine	T1(287-306)	L+ PS(Tx)	BB,PPT	1	42
24.	Programming Techniques for TM	T1(308-314)	L+ PS(Tx)	BB,PPT	1	43
25.	Variations of TM	T1(243-247)	L+ PS(Tx)	BB,PPT	1	44
26.	Universal TM	T2(252-256)	L+ PS(Tx)	BB,PPT	1	45
27.	Non Recursive Enumerable (RE) Language	T1(343-348)	L+ PS(Tx)	BB,PPT	1	46
28.	Undecidable Problem with RE	T1(349-357)	L+ PS(Tx)	BB,PPT	1	47
29.	Undecidable Problems about TM	T1(358-366)	L+ PS(Tx)	BB,PPT	1	48
30.	Post's Correspondence Problem.	T1(366-377)	L+ PS(Tx)	BB,PPT	2	50

.TEXT BOOK(S):

- 1. Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", 3rdEdition, Pearson Education, 2008.
- 2. John .C.Martin, —Introduction to Languages and the Theory of Computationl, Fourth Edition, Tata Mcgram Hill, 2003.

REFERENCE BOOK(S):

1. Peter Linz, "An Introduction to Formal Language and Automata", 4th Edition, Narosa Publishers, New Delhi, 2016.

Course In charge

Course Coordinator

Module Coordinator

HoD/CSE