Lezione 12-12 Principio di sovrapposizione y"tay'tby= 81+82 Se y soluzione particolare di y"+ay +by= } e 1/2 solutione particolare di y"+ay+by= }2 allora y = y + y e solur. part. d. y"+ay'+by= f+f2

$\times = e^{\alpha x} \left(PCx) \cos (\beta x) + qCx \cdot \sin (\beta x) \right)$	
$\alpha = 0$, $\beta = 0$, $P(x) = x$, $q(x) = 0$	
atiB=0 non e'rabre del polinorio avait. > M=0	
grado (p(x))=1 grado (q(x))=0	
$\beta = 0$ 1 $\beta = 0$	
$Y_1 = Q^{(x)} (r(x) \cdot (os)(\beta x) + S(x) \cdot Sin(\beta x))$	
$= r(x) = Ax + B \qquad \forall = r(x) = Ax + B$	
$T_1 = A$, $T_2 = 0$	
Sostituiseo in July -27 = x	
	1

0+A-2(Ax+B)=x	
-2Ax+A-2B=X	
$(-2A=1)$ $A=-\frac{1}{2}$	
$A-2B=0$ $-\frac{1}{2}-2B=0$ $2B=-\frac{1}{2}$ $B=-\frac{1}{4}$	
$\overline{Y}_1 = A_{x+}B = -\frac{1}{2} \times -\frac{1}{4}$	
On cerco 1/2 solutione d.	
$\sqrt{2} + \sqrt{2} - 2y_2 = -3\sin x + \cos x$	

$-35inx+cosx=e^{\alpha x}\left(p(x)\cdot cos(\beta x)+q(x)\cdot sin(\beta x)\right)$	
$\alpha = 0, \beta = 1, pcx) = 1, qcx) = -3$	
atiß= i mon e'nudice del pol analt => m=0	
qnobo(p)=qvodo(q)=0	
$y = (rcx) \cdot cos \times + scx) \cdot sin \times = A \cdot cos \times + B \cdot sin \times (ressons)$ dispuds 0,	
y=-A.sinx+B cosx	
M2 = A cosx - Bisinx	
1/2 = -/T wsx - 155in x	
Sostitus w in y"+ y"- 242 = -3sinx + cosx	

-Acusx-Bsinx+(-Asinx+Basx)-2(Acusx+Bsinx)=	
= -3sinx toosx	
cosx. (-A+B-2A)+s:nx(-B-A-2B)=-3sinx+cosx	
(-3A+B=1 B=1+3A	
(- A-3B=-3 -A-3(1+3A)=-3 -> -10A-8=-8	
-10A=0 -> A=0 B=1	
$\overline{Y}_2 = A \cdot \cos x + B \sin x = \sin x$	
Solutione generale d' y"+y'-2y=x-25inx+cosx	
$Y_0 + Y_1 + Y_2 =$	

Il Sommer différence, en ce, to).	
$\lim_{x\to 0^+} \int Cx = \lim_{x\to 0^+} \frac{x \log x}{(1-\log x)^2} = 0$	
$x \rightarrow 0$, $x \rightarrow 0$, $(1 - 100 \text{ d} \times)$ + 0	
lim x.logx = lim e . E = lim e . (-u) = lim = 0 +35	
xyor to -so unto eu	
10gx=t= t=-u	
×=e ^t	
X -> 0 f ->> 6-3-00	
I'm Pay - e - 100	
$\lim_{x \to e} \int \frac{x \log x}{x - e} = \lim_{x \to e} \frac{x \log x}{x - e} = +\infty$	

O Non a sour assistet oblique.	
Deriver to Day = g(x) h(x) = g(x) h(x)	
Derivata $f(x) = \frac{\partial_{x}(x)}{h(x)}$ $f'(x) = \frac{\partial_{x}(x) \cdot h(x)}{h^{2}(x)}$	
$\int_{Cx} \frac{x^{1} \log x}{(n - \log x)^{2}} dy cx = x \cdot \log x + h cx = (n - \log x)^{2}$	
n (logx+1)(1-logx)2 + xlogx.2(1-logx).	
$\begin{cases} (\log x + 1)(1 - \log x)^2 + x \log x \cdot 2(1 - \log x) \cdot 1 \\ (1 - \log x)^4 \end{cases}$	
= (1-logx)[(1+logx)(1-logx)+2logx] 1-logx+2logx	
$= \frac{1}{(1-\log x)^{4/3}}$	

Effetio la sostituzione ex=t (x=logt)
$d\times 1$, $d = d = d = d = d = d = d = d = d = d $
$\frac{dx}{dx} = \frac{1}{1} + \frac{db}{dx} = \frac{db}{dx} = \frac{db}{dx} = \frac{e^{x} dx}{dx}$
$\frac{dt}{t} = \frac{dx}{t}$
x=0 t> e ⁶ =1
$x=1$ $t>e^1=e$
7-1 0 2 = 6
t=6cx) a trem di intégratione soms x=0 e x=1
Calcolo quente vale to per x=0 e x=1 e questo valor
arcord grum a vine o per x - 0 e x 3/1 e gruph laton
Liventin i nuovi estemi d'integratione

e arctant 1.dt= 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	$\frac{e}{E^2+1}$
Cambio di vanishile archi avotane 2 t= 2 t= 2	$cit E^2 + 1 \qquad E^2 + 1$
(=1 >> Z=arctan(1) (=e >> Z=arctan(e)	