Politechnika Wrocławska

Wydział Elektroniki

Wizualizacja Danych Sensorycznych

Wizualizacja rozkładu ciśnienia cieczy na podstawie symulacji komputerowej

Prowadzący:
Dr inż. Bogdan Kreczmer

Studenci:
Adam Balawender
Krzysztof Kwieciński

Semestr letni 2014/2015

1 Opis projektu

Zgodnie z tematem projektu zajmiemy się komputerową symulacją zachowania cieczy oraz wizualizacją jej stanu i rozkładu ciśnienia w zbiorniku z płynem.

Symulacja będzie obejmowała ruch cieczy w przekroju 2D wybranego naczynia. Ciecz zostanie przedstawiona na płaszczyźnie jako zbiór oddziaływujących ze sobą cząsteczek. Postaramy się, żeby jej zachowanie było możliwie zbliżone do rzeczywistego. Ruch płynu zostanie zamodelowany metodą numeryczną SPH (smoothed particle hydrodynamics - wygładzona hydrodynamika cząstek). Pozwoli to na realistyczne odwzorowanie zachowania cieczy. Możliwe będzie badanie cieczy o różnych parametrach, dlatego też modelowane będą jej właściwości fizyczne: gęstość i lepkość. Dodatkowo mierzone będzie ciśnienie cieczy i zostanie ono zwizualizowane jako odcień koloru płynu. Im będzie on ciemniejszy, tym wyższe ciśnienie będzie odzwierciedlał.

Najistotniejszymi funkcjonalnościami aplikacji będą:

- symulacja zachowania cieczy w zależności od zadanych warunków początkowych,
- możliwość przedefiniowania parametrów cieczy (gęstości, lepkości),
- możliwość obserwacji wyniku symulacji (położenia cząsteczek i rozkładu ciśnień).

2 Plan pracy

2.1 Harmonogram

- Z1. Opis projektu
- Z2. Przegląd bibliotek Qt pod kątem elementów, które mogą być wykorzystane w tworzonej aplikacji
- Z3. Zapoznanie się z metodą SPH (Smoothed Particle Hydrodynamics)
- Z4. Ustalenie struktur danych
- Z5. Implementacja klas zbiornika oraz cząsteczek cieczy
- Z6. Implementacja metod uaktualniania położenia cząsteczek
- Z7. Analiza błędów działania programu
- Z8. Skorygowanie działania programu
- Z9. Wizualizacja ciśnienia cieczy
- Z10. Weryfikacja projektu z założeniami
- Z11. Odpowiednie modyfikacje programu
- Z12. Napisanie raportu końcowego

Programowanie ekstremalne ? ok : szczegółowo podzielić zadania $\,$

2.2 Kamienie milowe

- K1. Przeanalizowanie artykułów na temat SPH i zapoznanie się z tą metodą
- K2. Zaimplementowanie struktur danych, modelu cieczy i relacji między cząsteczkami
- K3. Wizualizacja symulowanego stanu cieczy
- K4. Wizualizacja ciśnienia w poszczególnych punktach zbiornika
- K5. Skończona dokumentacja

2.3 Diagram Gantta

Rysunek 1: Diagram Gantta