AirFQ - Airborne Information Reporting - Flight Qualified

Kush Agarwal

April 25, 2025

1 Augmentation of Weather Forecasts Using Real-Time Observations

1.1 Problem Definition

Traditional weather models rely on predictive numerical methods initialized with historical and interpolated observations. However, their accuracy diminishes over time due to inherent uncertainties. Real-time observational data collected from reporting aircraft offer opportunities to recalibrate and augment forecasts dynamically.

1.2 Mathematical Formulation

Let \hat{x}_t denote the initial forecast for variable x (wind speed, temperature, humidity) at time t, and let y_t be the real-time observational measurement from an aircraft at the same location and time. The augmented forecast x'_t can be formulated as:

$$x_t' = \hat{x}_t + K_t(y_t - \hat{x}_t) \tag{1}$$

where K_t is the Kalman gain, determined dynamically by:

$$K_t = \frac{P_t}{P_t + R} \tag{2}$$

Here, P_t represents the forecast error covariance, and R represents the observational error covariance.

1.3 Implementation and Application

This method is applied sequentially whenever real-time data y_t becomes available. The updated state x'_t significantly reduces the error in the immediate forecast and, by extension, improves subsequent forecasts through more accurate initialization.

1.4 Generalization to Multiple Variables

Extending to multidimensional variables (temperature, humidity, and wind vector \mathbf{u}), the update step becomes:

$$\mathbf{x}_t' = \hat{\mathbf{x}}_t + \mathbf{K}_t(\mathbf{y}_t - \hat{\mathbf{x}}_t) \tag{3}$$

where \mathbf{K}_t is now the Kalman gain matrix computed as:

$$\mathbf{K}_t = \mathbf{P}_t(\mathbf{P}_t + \mathbf{R})^{-1} \tag{4}$$