Infintesimal Calculus 3

Assignment 9 Ari Feiglin

Exercise 9.1:

Find the minimal distance from (0,0) to the hyperbola:

$$7x^2 + 8xy + y^2 = 45$$

We define the lagrangian:

$$\mathcal{L}(x, y, \lambda) = x^2 + y^2 + \lambda(7x^2 + 8xy + y^2 - 45)$$

Whose gradient is

$$\begin{pmatrix} 2x + 14\lambda x + 8\lambda y \\ 2y + 2\lambda y + 8\lambda x \\ 7x^2 + 8xy + y^2 - 45 \end{pmatrix}$$

Solving for zero gives the system

$$\begin{pmatrix} 2+14\lambda & 8\lambda \\ 8\lambda & 2+2\lambda \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

So the determinant must be 0, meaning λ is $\frac{1}{9}$ or -1. If $\lambda = \frac{1}{9}$ then this gives us the solution x = 2y, plugging this into the hyperbola we get $y = \pm 1$ and so the point is $\pm (2,1)$. $\lambda = 1$ gives y = 2x and $x = \pm \frac{\sqrt{15}}{3}$. $\pm (2,1)$ gives the minimum distance of $\sqrt{5}$.

Exercise 9.2:

Find the maximum and minimum of the function

$$f(x,y,z) = \sqrt{2}x + \sqrt{2}y + \sqrt{3}z$$

within the ball

$$B = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 2 \right\}$$

First we look for critical points within the ball by comparing the gradient of f to 0, but the gradient of f is

$$\nabla f = \begin{pmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{3} \end{pmatrix}$$

So we define the lagrangian:

$$\mathcal{L}(x, y, z, \lambda) = f(x, y, z) + \lambda(x^2 + y^2 + z^2 - 2)$$

And we find critical points relative to it

$$\nabla \mathcal{L} = \begin{pmatrix} \sqrt{2} + 2\lambda x \\ \sqrt{2} + 2\lambda y \\ \sqrt{3} + 2\lambda z \\ x^2 + y^2 + z^2 - 2 \end{pmatrix} = 0$$

So

$$x = \frac{\sqrt{2}}{2\lambda}$$
 $y = \frac{\sqrt{2}}{2\lambda}$ $z = \frac{\sqrt{3}}{2\lambda}$

Plugging these into the constraint function we get that

$$x^{2} + y^{2} + z^{2} - 2 = \frac{7}{4\lambda^{2}} - 2 = 0 \implies \lambda = \pm \frac{\sqrt{14}}{4}$$

And so we have the points $\pm \left(\frac{2}{\sqrt{7}}, \frac{2}{\sqrt{7}}, \sqrt{\frac{6}{7}}\right)$, and so the maximum is $\sqrt{14}$ (when the point is positive) and the minimum is $-\sqrt{14}$, as the maximum and minimum must be one of these two points.

Exercise 9.3:

Find the maximum distance between the origin and the set $\{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z = x + y\}$.

We are trying to maximize the function $f(x, y, z) = x^2 + y^2 + z^2$ under the constraints $h_1(x, y, z) = x^2 + y^2 - 1 = 0$ and $h_2(x, y, z) = x + y - z = 0$. The Lagrangian of this is:

$$\mathcal{L}(x, y, z, \lambda_1, \lambda_2) = x^2 + y^2 + z^2 + \lambda_1(x^2 + y^2 - 1) + \lambda_2(x + y - z)$$

whose gradient is

$$\nabla \mathcal{L} = \begin{pmatrix} 2x + 2\lambda_1 x + \lambda_2 \\ 2y + 2\lambda_1 y + \lambda_2 \\ 2z - \lambda_2 \\ x^2 + y^2 - 1 \\ x + y - z \end{pmatrix}$$

So

$$2x(\lambda_1 + 1) = -\lambda_2$$
 $2y(\lambda_1 + 1) = -\lambda_2$ $z = \frac{\lambda_2}{2}$

If $\lambda_1 = -1$ then $\lambda_2 = 0$ and so z = 0 and so we're left with $x^2 + y^2 = 1$ and y = -x, since there is a solution to this this gives us a distance of $f(x, y, 0) = x^2 + y^2 = 1$.

If $\lambda_1 \neq -1$ then

$$x, y = -\frac{\lambda_2}{2(\lambda_1 + 1)} \quad z = \frac{\lambda_2}{2}$$

So x = y and $x^2 + y^2 = 1$ meaning $x^2 = \frac{1}{2}$ so $x = y = \pm \frac{1}{\sqrt{2}}$ and $z = x + y = \pm \frac{2}{\sqrt{2}}$. These are obviously points in the set, so we don't even need to find the values of λ_1 and λ_2 since they are inconsequential. For these values of x, y, and z we get

$$f(x, y, z) = 1 + z^2 = 3$$

So the maximum value of f is 3 and so the maximum distance is $\sqrt{3}$.

Exercise 9.4:

Compute

$$\iiint_D y \, dx dy dz$$

where D is the volume bounded by $y = 1 - x^2$, z = 0, and z = y.

D can be written as

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le y \le z, y \le 1 - x^2\}$$

So $0 \le y \le 1 - x^2$ meaning $-1 \le x \le 1$, so the integral is equal to

$$\int_{-1}^{1} \int_{0}^{1-x^{2}} \int_{0}^{y} y \, dz \, dy \, dx = \int_{-1}^{1} \int_{0}^{1-x^{2}} y^{2} \, dy \, dx = \frac{1}{3} \int_{-1}^{1} (1-x^{2})^{3} \, dx$$

This is a polynomial, and integrating gives $\frac{32}{105}$.

Exercise 9.5:

Reverse the order of integration of

$$\int_{-1}^{1} \int_{x^3}^{\sqrt{2-x^2}} f(x,y) \, dy dx$$

Let's take a look at the graph of the domain:

The blue region is given by $1 \le y \le \sqrt{2}$ and $-\sqrt{2-y^2} \le x \le \sqrt{2-y^2}$, and the red region is $-1 \le y \le 1$ and $-1 \le x \le \sqrt[3]{y}$. So the integral is

$$\int_{-1}^{1} \int_{-1}^{\sqrt[3]{y}} f(x,y) \, dx dy + \int_{1}^{\sqrt{2}} \int_{-\sqrt{2-y^2}}^{\sqrt{2-y^2}} f(x,y) \, dx dy$$

Exercise 9.6:

Compute

$$\iint_D \frac{1}{\sqrt{x^2 + y^2}} \, dx dy$$

where $D = \left\{ (x, y) \in \mathbb{R}^2 \mid \left(x - \frac{1}{2} \right)^2 + \left(y - \frac{1}{2} \right)^2 \le \frac{1}{2} \right\}$.

Note that

$$\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = x^2 + y^2 - x - y + \frac{1}{2}$$

So $(x,y) \in D$ if and only if $x^2 + y^2 - x - y \le 0$. Let us transform to polar coordinates, this means that we're in the domain if and only if

$$r^2 \le r(\cos\theta + \sin\theta) \iff r \le \cos\theta + \sin\theta$$

And $0 \le \cos \theta + \sin \theta$ if and only if $-\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$ so the integral is

$$\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} \int_{0}^{\cos\theta+\sin\theta} 1 \, dr d\theta = \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} \cos\theta + \sin\theta \, d\theta$$

This is equal to $2\sqrt{2}$.

Exercise 9.7:

Compute

$$\iint_D e^{\frac{x-y}{x+y}} \, dx dy$$

3

where $D = \{1 \le x + y \le 2, x \ge 0, y \ge 0\}.$

We transform u = x + y and v = x - y, or $x = \frac{u+v}{2}$ and $y = \frac{u-v}{2}$. Thus the Jacobian is

$$\begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = \frac{1}{2}$$

And the domain becomes $1 \le u \le 2$, $u + v \ge 0$, and $u - v \ge 0$, so $\{1 \le u \le 2, -u \le v \le u\}$, so:

$$\frac{1}{2} \int_{1}^{2} \int_{-u}^{u} e^{\frac{v}{u}} \, dv du = \frac{1}{2} \int_{1}^{2} u \left(e - \frac{1}{e} \right) dy = \frac{3}{4} \left(e - \frac{1}{e} \right)$$

Exercise 9.8:

Compute

$$\iiint_{D} (yz + zx) \, dx dy dz$$

where D is the domain contained within the first octant, x = 0, z = 0, y = x, $x^2 + y^2 + z^2 = R^2$.

Here

$$D = \{z \ge 0, 0 \le y \le x, x^2 + y^2 + z^2 \le R^2\}$$

Let us use spherical coordinates (ρ, φ, θ) where

$$x = \rho \sin \varphi \cos \theta$$
, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$

subject to

$$\rho \ge 0, \quad 0 \le \varphi \le \pi, \quad -\pi \le \theta \le \pi$$

The Jacobian is well-known $\varphi^2 \sin \varphi$. And the domain requires $\varphi \leq R$, $\cos \varphi \geq 0$ meaning $0 \leq \varphi \leq \frac{\pi}{2}$. This means that $\sin \varphi \geq 0$, and the domain requires $0 \leq \sin \varphi \cos \theta \leq \sin \varphi$, so $0 \leq \cos \theta \leq \sin \theta$. $\cos \theta \geq 0$ so $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ and $\sin \theta \geq 0$ so $0 \leq \theta \leq \frac{\pi}{2}$ and finally $\tan \theta \geq 1$ so $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$.

And the integrand is

$$\rho^2 \cos \varphi \sin \varphi (\cos \theta + \sin \theta) \rho^2 \sin \varphi = \rho^4 \cos \varphi \sin^2 \varphi (\cos \theta + \sin \theta)$$

So the integral is

$$\int_0^R \int_0^{\frac{\pi}{2}} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \rho^4 \cos \varphi \sin^2 \varphi (\cos \theta + \sin \theta) \, d\theta d\varphi d\rho$$

This is simply the product

$$\int_0^R \rho^4 \, d\rho \cdot \int_0^{\frac{\pi}{2}} \sin^2\varphi \cos\varphi \, d\varphi \cdot \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos\theta + \sin\theta \, d\theta$$

The first integral is equal to $\frac{R^5}{5}$, and the last integral is

$$\sin\theta - \cos\theta \Big|_{\frac{\pi}{4}}^{\frac{\pi}{2}} = 1$$

The second integral is

$$\int_0^{\frac{\pi}{2}} (\sin \varphi)^2 d(\sin \varphi) = \frac{1}{3}$$

So the integral is equal to

$$\frac{R^5}{15}$$