Лабораторная работа №1

«Исследования способов построения и особенностей функционирования аналого-цифровых преобразователей»

1. Цель работы:

Изучение принципов преобразования аналоговых процессов в цифровые и особенностей схемной реализации аналого-цифровых преобразователей (АЦП), исследование зависимостей, приобретение практических навыков моделирования АЦП и измерения параметров сигналов в характерных точках АЦП.

2. Постановка задачи:

- 2.1. Изучить способы цифрового преобразования аналоговых величин в цифровые эквиваленты и особенности схемной реализации АЦП различных типов.
- 2.2. Ознакомиться со схемой АЦП лабораторного стенда и записать в отчет по работе назначение каждого элемента преобразователя.
- 2.3. Запустить программу Proteus и создать в рабочем окне схему исследуемого АЦП.
- 2.4. Проверить функционирование АЦП при различных значениях входного напряжения и зарисовать осциллограммы в характерных точках преобразователя.
- 2.5. Измерить смещение нуля АЦП и величину шага квантования.
- 2.6. Снять статическую характеристику преобразователя при изменении входного напряжения от 0 до максимального.
- 2.7. Рассчитать, какая допускается максимальная частота запуска преобразователя при частоте генератора счетных импульсов равной 100 кГц.

3. Ход работы:

При работе АЦП выполняется 3 операции: дискретизация, квантование, кодирование. Существует несколько типов аналогово-цифровых преобразователей. Один из них мы изучаем в данной лабораторной работе. Схема АЦП последовательного счёта представлена на рисунке 1.

Рисунок 1 — Схема аналого-цифрового преобразователя

На рисунках 3 и 4 представлены показания осциллографа, во время работы АЦП. Так же были сделаны экспериментальные тесты, результаты которых отображены в виде таблицы 1 или в виде графика на рисунке 2. Тестовые примеры демонстрируют преобразование аналогового сигнала в цифровой при разном напряжении.

Таблица 1 – Результаты экспериментальных исследований АЦП

Bx.	Выходной код $(N=8)$										
напряж.,	d7	d6	d5	d4	d3	d2	d1	d0	D_{10}		
U_{BX}, B											

0.05	0	0	0	0	0	0	0	0	0
0.70	0	0	0	1	0	1	0	0	20
1.58	0	1	0	1	0	1	0	1	85
2.40	0	1	1	1	0	0	1	1	115
4.35	1	1	0	1	1	1	1	0	222
4.99	1	1	1	1	1	1	1	1	255

Рисунок 2 — График зависимости цифрового сигнала от напряжения

Рисунок 3 — Фрагмент осциллограммы

Рисунок 4 — Фрагмент осциллограммы

Шаг квантования =
$$h = \frac{U_{\text{вх.макс}}}{2^N - 1} = \frac{5}{2^8 - 1} = \frac{1}{51}$$
. То есть примерно = 0.02.

Погрешность смещения 0 примерно = 0,1.

Выводы

В ходе работы были изучены принципы преобразования аналоговых процессов в цифровые и особенностей схемной реализации аналого-цифровых преобразователей (АЦП), исследования зависимостей, приобретены практические навыки моделирования АЦП и измерения параметров сигналов в характерных точках АЦП.