Бандиты в Query Selection

Шестаков Владимир Павлович

Московский физико-технический институт

Курс: Автоматизация научных исследований Эксперт: Ю.В. Дорн

Консультант: И. М. Латыпов

2025

Задача и цель исследования

Задача

Воспроизвести результаты алгоритма Вао, модифицировать его различный способами и проверить

Цель

Исследовать влияние изменений алгоритма на качество

Литература

- Marcus, Ryan и др. (июнь 2021). "Bao: Making learned query optimization practical". B: Proceedings of the 2021 International Conference on Management of Data.
- Slivkins, Aleksandrs (anp. 2019). Introduction to Multi-Armed Bandits. arXiv: 1904.07272 [cs.LG].

Начальная проблема: Query Optimization

- 1. Рост данных приводит к замедлению исполнения SELECT запросов
- 2. Решение: оптимизаторы запросов. Два вида оптимизаторов: статические и динамически изменяемые

Алгоритм Вао

Первые результаты

Используется датасет, содержащий часть данных IMDb и 40 различных SELECT запросов. Алгоритм запускается с выбором 500 запросов из заданных с повторениями.

Дальнейшие эксперименты

- 1. Подбор гиперпараметров (grid search)
- 2. Замена последнего слоя на байесовский (распределения логарифм от равномерного и нормальное)

Дальнейшие эксперименты

График CDF

Таблица сравнения результатов экспериментов по некоторым запросам

Q	PG	Bao worst	Bao best	Grid search worst	Grid search best	Bayes log uniform worst	Bayes log uniform best	Bayes norm worst	Bayes norm best
q2	38.62	4.01	3.23	3.54	1.96	44.90	2.99	42.53	3.17
q3	1.60	3.25	2.77	3.51	1.50	3.68	2.02	62.80	1.83
q4	1.04	2.28	0.88	1.16	1.03	2.26	1.01	2.15	0.95
q5	8.57	1.99	1.77	2.39	0.63	10.47	1.93	2.03	1.80
q6	8.20	2.71	2.52	13.41	2.69	10.56	2.68	12.53	2.49
q7	17.42	19.51	3.11	15.93	1.35	18.39	1.66	17.96	1.60
q8	6.31	2.49	2.13	2.38	2.17	6.92	0.70	6.22	2.13
q9	5.71	2.82	2.72	3.12	1.42	5.85	2.97	5.52	2.79
q10	3.57	3.67	3.33	3.73	1.41	4.05	1.54	3.69	3.35
q11	7.31	2.02	2.02	2.09	2.09	2.22	2.22	2.04	2.04
q12	4.93	1.90	1.64	1.99	0.30	5.94	1.78	5.05	1.72

Заключение

- Получены результаты работы модификаций алгоритмов
- Некоторые из модификаций лучше изначального алгоритма по определённым качествам
- Есть потенциал дальнейшего улучшения