Cluster Expansions

Results

Conclusion

### Cluster Expansions of Thermal States using Tensor Networks

David Devoogdt

Faculty of Engineering and Architecture
Ghent University

June 24, 2021

Cluster Expansions

Results

- Introduction
- Cluster Expansions
- Results

Simulation

Cluster Expansions

Results

Conclusion

### Introduction

Introduction

Overview Simulation

Cluster Expansions

Results

- Overview condensed matter physics
  - Macroscopic and microscopic physical properties of matter
    - Metals
    - semiconductors
    - Liquids
    - Bose-Einstein Condensates
    - Magnets
  - Different disciplines
    - Experimental
    - Theoretical
    - Engineering

#### Introduction

Overview
Simulation

Cluster Expansions

Results

- Overview condensed matter physics
- Strongly correlated materials
  - High *T<sub>c</sub>* Superconductors
  - Quantum spin liquids
  - Strange metals
  - Correlated topological matter

#### Introduction

Overview Simulation

Cluster Expansions

Results

- Overview condensed matter physics
- Strongly correlated materials
- How to proceed
  - Material synthesis and discovery
  - Analytical methods
  - Numerical methods

# Simulating Quantum Many-body Systems

Introduction

Simulation

Cluster Expansions

Results

- Equations are known
- Curse of dimensionality
- Numerical methods

#### **Tensor Networks**

Introduction

Simulation

Simulation

Cluster Expansion

Results

$$|\Psi\rangle = \sum_{i_1, \dots, i_n} C^{i_1 i_2 \dots i_n} |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_n\rangle.$$
 (1)

$$C^{i_1 i_2 \cdots i_n} = w_l C^{i_1} C^{i_2} \cdots C^{i_n} w_r$$

$$= \chi \qquad \cdots \qquad (2)$$

- Matrix Product State
- Relevant corner Hilbert space

### Operator Exponential

Introduction

Simulation

Cluster Expansion

Results

Conclusion

Time evolution:

$$\hat{H}|\Psi(t)\rangle = i\frac{d}{dt}|\Psi(t)\rangle$$
 (3)

$$|\Psi(t)\rangle = e^{-i\hat{H}t} |\Psi(0)\rangle$$
 (4)

Statistical ensembles:

$$\hat{\rho} = \frac{e^{-\beta \hat{H}}}{\mathsf{Tr}\left(e^{-\beta \hat{H}}\right)} \tag{5}$$



Cluster Expansions

Results

Conclusion

# Cluster Expansions

Introduction

Cluster Expansions

Results



$$e^{-\beta \hat{H}} = \sum_{\{B\}} \bigotimes_i B_i$$
$$e^{-\beta H(1)} =$$

Introduction

Cluster Expansions

Results



$$\bullet$$
  $e^{-\beta \hat{H}} = \sum_{\{B\}} \bigotimes_i B_i$ 

Introduction

Cluster Expansions

Results



- $e^{-\beta \hat{H}} = \sum_{\{B\}} \bigotimes_i B_i$
- Finite number of blocks: trucate order
- Encoded by 1 tensor

$$D^{abcd} = \underbrace{\begin{array}{c} b \\ i \\ c \end{array}}$$

Introduction

Cluster Expansions

Results





Introduction

Cluster Expansions

Results

- Multiple choices for encoding
- Size extensive
- Preserves global and internal symmetries
- Tensor Network toolbox



Cluster Expansions

Results

results

TFI Phase Diagram

Conclusion

Results

#### 1D: Transverse Field Ising (TFI)

Introduction

Cluster Expansions

1D Exact
TFI Phase Diagram



- Relative error  $\epsilon$
- Different encodings:
  - A: Small
  - E: Strict
  - F: well-conditioned
- bond dimension

|       |   | Encoding |     |
|-------|---|----------|-----|
|       |   | Α        | E/F |
| Order | 3 | 5        | 10  |
|       | 5 | 21       | 42  |
|       | 7 | 85       | 170 |

## Conclusion

Introduction

Cluster Expansions

Results

1D Exact

TFI Phase Diagram

- 2D: similar results
- Real time evolution
- Encoding

### 2D TFI: Introduction

Introduction

Cluster Expansions

Results

1D Evad

TFI Phase Diagram



- = Birrerent phase
- $\Gamma = 2.5$
- VUMPS
- Order 5



### Criticality

Introduction

Cluster Expansions

Results

1D Exact

TFI Phase Diagram

- Phase transition
- Power law
- Finite size scaling  $(\chi, \delta^{-1})$
- Data collapse
  - lacksquare Observables: m, S and  $\xi$
  - $\blacksquare$  Parameters:  $T_c$

### TFI Phase Diagram: $\Gamma = 2.5$

Introduction

Cluster Expansions

Results 1D Exact

TFI Phase Diagram





Expansions

Results

Conclusion

## Conclusion

Introduction

luster xpansions

Results

- Cluster expansions work extremely well for some encodings
- Stable and fast framework

#### References I

Introduction

Cluster Expansion

Results

Conclusion



Finite correlation length scaling with infinite projected entangled pair states at finite temperature.

Physical Review B, 99:245107, 2019.



Thermal Ising transitions in the vicinity of two-dimensional quantum critical points.

PHYSICAL REVIEW B, 93:155157, 2016.

#### Tensor Networks

Linear Solver

TFI Collapses

Direct Results

Solvers

## Tensor Networks

# Tensor Networks: Introduction

Tensor Networks

$$|\Psi\rangle = \sum_{i_1 i_2 \cdots i_n} C^{i_1 i_2 \cdots i_n} |i_1\rangle \otimes |i_2\rangle \otimes \cdots \otimes |i_n\rangle.$$
 (7)

$$C^{i_1i_2\cdots i_n}=Tr(C^{i_1}C^{i_2}\cdots C^{i_n}M). \tag{8}$$

### Tensor Networks: Graphical Notation

Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

| conventional            | Einstein               | tensor notation |
|-------------------------|------------------------|-----------------|
| $\vec{x}$               | $x_{\alpha}$           | <u>x</u> —      |
| М                       | $M_{lphaeta}$          | <u> </u>        |
| $\vec{x} \cdot \vec{y}$ | $x_{\alpha}y_{\alpha}$ | (x)—(y)         |

#### Tensor Networks: MPS

Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results



# Tensor Networks: Operators

Tensor Networks

ear Solve

Construction

TFI Collapses

Direct Results

Solvers

$$\hat{O} = \cdots \qquad (11)$$

로 > 《로 > 로 | 도 / 의 Q (

(12)

Tensor Networks

Linear Solver

TFI Collapses

Direct Results

Solvers

# Linear Solver

Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results



Tensor Networks

Linear Solver

Construction

TFI Collanses

Direct Posulte

- Invert  $A^i$  separately
  - Fast
  - Numerically unstable



Tensor Networks

Linear Solver

Construction

TFI Collapses

Divoct Populto

- Invert  $A^i$  separately
  - Fast
  - Numerically unstable



Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

- Invert  $A^i$  separately
- Full inversion
  - Slow
  - Stable for pseudoinverse



Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

- Invert  $A^i$  separately
- Full inversion
- Sparse full inversion

$$A^i = U^i \Sigma^i V^{i\dagger}$$



Tensor Networks

Linear Solver

Construction

1D

--- - ...

Direct Results

Solvers

### Construction

## Notation

Lincor Solver

Zilicai Solvei

Construction

id 10

TFI Collanses

Direct Results

Direct Results



$$O^{01}O^{10} = \bigcirc \frac{1}{} \bigcirc$$
 (15)

(14)

 $\bigcirc = \exp(-\beta H(\bigcirc))$ 

$$\bigcirc \frac{1}{\bigcirc} \bigcirc = \exp{-\beta H(\bigcirc} \bigcirc)$$

(16)

(17)

Tensor Network

Linear Solve

 ${\sf Construction}$ 

1D

2D

TFI Collapses

Direct Results

Solvers

(18)

Construction

<ロ > ← □ > ← □ > ← □ > ← □ = 一 ● □ = 一 の Q ()

(18)

Construction

(18)

## 1D: Variant A



(19a)

(19b)

(19c)

(19d)

(19e)

## 1D: Variant E

| D |  |
|---|--|
| S |  |
|   |  |





 $\bigcirc 1 \bigcirc 2 \bigcirc 2' \bigcirc 1' \bigcirc .$ 





(20a)

(20b)

(20c)

(20d)

(20e)

## 1D: Variant F

 $\bigcirc 1 \bigcirc 2 \bigcirc 1 \bigcirc +$ 

1 2 2 1

(21b)(21c)

(21a)

(21e)

(21d)

Tensor Networks

Construction

Construction

1D

Direct Results

Solvers



2D: Linear Blocks

←□ → ←□ → ← = → = | = + → ○ へ ○

(23a)

(23b)

(23c)

## 2D: Nonlinear Blocks

Tensor Networ

Linear Solver

Construction

2D

TEL Callanas

Direct Results

Direct Results



(24)

$$\begin{array}{c|c}
 & \alpha \\
 & \beta^{\alpha}
\end{array}$$

(25)

Tensor Networks

Linear Solver

Construction

#### TFI Collapses

$$g = 0.0$$

g = 2.9

Direct Results

Solvers

### TFI Collapses

#### TFI Phase Diagram: Classical Ising

Tensor Networks
Linear Solver

Construction

TFI Collapse

g = 0.0

g = 2.9

Direct Results

Solvers









Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

2D Exact

Solvers

#### Direct Results

#### 1D: Transverse Field Ising (TFI): full

Direct Results





#### 1D: Heisenberg XXX

Direct Results





#### 2D: Encodings + Error Measure

- Tensor Networks
- Linear Solver
- Construction
- TFI Collapses
- Direct Results
  2D Exact
- Solvers

- $\blacksquare$  Relative error  $\epsilon$  more challenging
- Encodings based on A (order 5)



|            | $\chi$ |
|------------|--------|
|            |        |
| no loops   | 21     |
| plaquette  | 27     |
| extensions | 43     |

### 2D: Transverse Field Ising

2D Exact





Tensor Networks

Linear Solver

Construction

Direct Results

Solvers

Nonlinear Solver

Sequential Linear Solve

### Solvers

#### Linear solver

#### Tensor Networks

Linear Solve

Construction

TEL Collapses

Dimer Deside

#### Solvers

Linear Solver

Monlinger So

Sequential Linear Solver



- Invert leg per leg
- Pseuodinverse



#### Linear Solver: Applicability

Tensor Networks

Linear Solvei

Construction

TFI Collapses

Direct Results

Solvers

Linear Solver

Nonlinear Solv

Sequential Linear Solver



#### Nonlinear Solver

- Tensor Networks
- Linear Solve
- Construction
- TFI Collapse
- Direct Populty
- Solvers
- Linear Solver
- Nonlinear Solver
- Sequential Linear Solve

- Nonlinear least squares
- Jacobian
- Permutations



(29)

### Sequential Linear Solver

Tensor Networks

Linear Solve

Construction

TFI Collapses

Direct Results

Solvers

Linear Solver

Nonlinear Solve

Sequential Linear Solver

- Based on linear solver
- Sweep over unknown tensors
- Permutations