PCT

世界知的所有機機関 国際 事務 局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 - H04N 7/32	A1	(11)国際公開番号	WO98/36576
		(43) 国際公開日	1998年8月20日(20.08.98)
(21) 国際出願番号 PCT/JP (22) 国際出願日 1998年1月22日((30) 優先権データ 特願平9/28862 1997年2月13日(13.02.97) (71) 出願人 (米国を除くすべての指定国について) 三菱電機株式会社 (MITSUBISHI DENKI KABUSHIKI KAISHA)[JP/JP] 〒100 東京都千代田区丸の内二丁目2番3号 Tokyo, (JP (72) 発明者:および (75) 発明者/出願人 (米国についてのみ) 関口俊一(SEKIGUCHI, Shunichi)[JP/JP] 浅井光太郎(ASAI, Kohtaro)[JP/JP] 村上覧道(MURAKAMI, Tokumichi)[JP/JP] 西川博文(NISHIKAWA, Hirofumi)[JP/JP] 黒田慎一(KURODA, Shinichi)[JP/JP]	22.01.9	7P	Kanagawa, (JP)	ニ丁目17番10号 NTA大船ピル3F SG, US, 欧州特許 (AT, BE, CH,
井須芳美(ISU, Yoshimi)[JP/JP] 長谷川由里(HASEGAWA, Yuri)[JP/JP] 〒100 東京都千代田区丸の内二」日2番3号 三菱電機株式会社内 Tokyo, (JP)				

(54)Tide: MOVING IMAGE ESTIMATING SYSTEM

(54)発明の名称 動画像予測方式

(57) Abstract

To obtain an encoding system capable of estimating a moving image with a high accuracy in accordance with the details and degree of importance of a scene and nature of motion of the moving image, said system is provided with a plurality of memories a, b, c in which image data to be referred to are stored, a motion compensating element (5) capable of being operated correspondingly to an arbitrary deformation parameter representing a motion of an image region to be estimated, and adapted to generate an estimated image by using arbitrary data in these memories a, b, c on the basis of the deformation parameter, and a memory updating element (15) capable of updating the content of not less than one memory out of the memories a, b, c at arbitrary time intervals.

- .1

(57) 要約

動画像のシーン内容や重要度、動きの性質などに応じて、高い精度の 予測が行える符号化方式を得るために、参照する画像データが蓄積され る複数のメモリa、b、cと、被予測画像領域の動きを表現する任意の 変形パラメータに対応可能で該変形パラメータに基づいて前記複数のメ モリa、b、cの任意のデータを用いて予測画像を生成する動き補償部 5と、前記複数のメモリa、b、cのうち1つ以上のメモリの内容を任 意の時間間隔で更新可能とするメモリ更新部15とを備える。

明 細 書

動画像予測方式

5 技術分野

この発明は、例えば、

テレビ電話・テレビ会議などの画像通信用途に用いられる携帯および据 置型画像通信機器などで用いられる動画像符号化/復号装置、

デジタルVTR、ビデオサーバーなどの画像蓄積・記録装置などで用いら

10 れる動画像符号化/復号装置、

単独ソフトウエアもしくはDSP (Digital Signal Processor) のファームウエアの形で実装される動画像符号化/復号プログラムなどに用いられる動画像の予測に関するものである。

15 背景技術

20

25

従来の動画像の符号化/復号方式における予測符号化/復号の例として、ISO/IEC JTC1/SC29/WG11にて標準化作業がすすめられているMPEG-4 (Moving Picture Experts Group Phase-4)のビデオ符号化/復号参照方式(Verification Model、以下VM)があげられる。 VMはMPEG-4の標準化作業の進行に伴って方式の内容が変化しているが、ここではVM Version5.0を想定し、以下単にVMと表現する。

VMは動画像シーケンスを時間/空間的に任意の形状をとる画像オブジェクトの集合体としてとらえ、各画像オブジェクトを単位として符号化/復号を行う方式である。VMにおけるビデオデータ構造を図29に示す。VMでは時間軸を含めた動画像オブジェクトをVideo Object(VO)と呼び、VOの各時刻の状態を表し符号化の単位となる画像データをVideo Obje

10

15

20

25

ct Plane (VOP) と呼ぶ。VOが時間的/空間的に階層性を持つ場合、特別にVOとVOPの間にVideo Object Layer (VOL)なる単位を設けてVO内の階層構造を表現するようになっている。各VOPは形状情報とテクスチャ情報とに分離される。ただし、動画像シーケンス中でVOが1つの場合、各VOPはフシームと同義となる。この場合は形状情報は存在せず、テクスチャ情報だけが符号化/復号される。

VOPは図30に示すように、形状情報をあらわすアルファデータとテクスチャ情報をあらわすテクスチャデータからなる構造を持つ。各データは、それぞれ16x16サンプルからなるブロック(アルファブロック、マクロブロック)の集合体として定義される。アルファブロック内の各サンプルは8ビットで表現される。マクロブロックは、16x16サンプルの輝度信号に付随してそれに対応する色差信号を含む。動画像シーケンスからVOPデータを作り出す処理は本符号化装置外で行われるものとする

図31はVM符号化/方式によるVOP符号化装置の構成を示したものである。同図において、P1は入力となる原VOPデータ、P2はVOPの形状情報をあらわすアルファブロック、P3aは入力された原VOPデータの形状情報の有無を伝えるためのスイッチ、P4はアルファブロックを圧縮符号化する形状符号化部、P5は圧縮アルファブロックデータ、P6は局所復号アルファブロック、P7はテクスチャデータ(マクロブロック)、P8は動き検出部、P9は動きパラメータ、P10は動き補償部、P11は予測画像候補、P12は予測モード選択部、P13は予測モード、P14は予測画像、P15は予測誤差信号、P16はテクスチャ符号化部、P17はテクスチャ符号化情報、P18は局所復号予測誤差信号、P19は局所復号マクロブロック、P20はスプライトメモリ更新部、P21はVOPメモリ、P23は可変

20

25

長符号化・多重化部、P24はバッファ、P25は符号化ビットストリームである。

また、図32にこの符号化装置の動作を要約したフローチャートを示す。

図31の符号化装置において、原VOPデータP1はまずアルファブロックP2、マクロブロックP7に分離され(ステップPS2、ステップPS3)、アルファブロックP2は形状符号化部P4へ、マクロブロックP7は動き検出部P8へ送られる。形状符号化部P4はアルファブロックP2のデータ圧縮を行う処理ブロック(ステップPS4)であり、この発明は形状情報の圧縮方法に関わるものではないので、その処理の

0 この発明は形状情報の圧縮方法に関わるものではないので、その処理の 詳細はここでは省略する。

形状符号化部P4の出力は圧縮アルファデータP5と局所復号アルファブロックP6で、前者は可変長符号化・多重化部P23に送られ、後者は動き検出部P8、動き補償部P10、予測モード選択部P12、テクスチャ符号化部P16にそれぞれ送られる。

動き検出部P8(ステップPS5)は、マクロブロックP7を受け取り、VOPメモリP21に蓄積されている参照画像データと局所復号アルファブロックP6を用いて、マクロブロックごとにローカルな動きベクトルを検出する。ここで、動きベクトルは動きパラメータの一例である。VOPメモリP21には、すでに符号化されたVOPの局所復号画像が蓄積される。VOPメモリP21の内容は、マクロブロックの符号化が終わるごとに逐次その局所復号画像で更新される。さらに動き検出部P8は、原VOPのテクスチャデータ全体を受け取り、スプライトメモリP22に蓄積されている参照画像データと局所復号アルファデータを用いてグローバルなワーピングパラメータを検出する機能も併せ持つ。スプライトメモリP22については後で詳しく述べる。

WO 98/36576 PCT/JP98/00232

4

動き補償部P10(ステップPS6)は、動き検出部P8で検出した 動きパラメータP9と局所復号アルファブロックP6を用いて予測画像 候補P11を生成する。次いで、予測モード選択部P12において、予 測誤差信号電力と原信号電力とを用いて当該マクロブロックの最終的な 予測モードP13および予測画像P14を決定する(ステップPS7) 。予測モード選択部P12ではイントラフレーム符号化/インターフレ ーム符号化のいずれかの符号化かという判定も行われる。

テクスチャ符号化部P16では、予測モードP13に基づいて、予測 誤差信号P15または原マクロブロックそのものをDCT (Discrete Cosi ne Transform)、量子化し、得られた量子化DCT係数を予測後、または 直接、可変長符号化・多重化部P23へ送り符号化する(ステップPS 8,ステップPS9)。可変長符号化部・多重化部P23は、あらかじ め定められたシンタックスと可変長符号化コードとに従い、受け取った データをビットストリームに変換して多重化する(ステップPS10) 。量子化DCT係数は、逆量子化、逆DCTを経て局所復号予測誤差信号P1 8にされた後、予測画像P14と加算され局所復号マクロブロックP1 9を得る(ステップPS11)。局所復号マクロブロックP19はVOP メモリP21およびスプライトメモリP22に書き込まれ、以降のVOP の予測に用いられる(ステップPS12)。

以下では、予測を行う部分、特に予測方式と動き補償、スプライトメモリP22およびVOPメモリP21の更新制御について詳しく説明する

(1) VMにおける予測方式

5

10

15

20

VMでは通常、図33に示すように4種類のVOPの符号化タイプがあり 25 、それぞれのタイプごとに○で示される予測方式をマクロブロックごと に選択できる。I-VOPでは予測をまったく行わず、すべてイントラフレ

10

15

20

ーム符号化する。P-VOPは過去のVOPからの予測を行うことができる。B-VOPは、過去および未来のVOPを予測に使用できる。

以上の予測はすべて動きベクトルによる予測である。一方、Sprite-V OPはスプライトメモリを用いた予測が可能である。スプライトとは、下式

$$x' = (a x + b y + c)/(g x + h y + 1)$$

 $y' = (d x + e y + f)/(g x + h y + 1)$

に示すワーピングパラメータセット

$$\frac{\rightarrow}{\alpha}$$
 = (a, b, c, d, e, f, g, h)

をVOP単位に検出し(→はベクトルを示す。以下、同じ)、これに基づいてVOPを順次混合していくことにより生成する画像空間であり、スプライトメモリP22に蓄積される。

ここで、(x, y)は原VOPの2次元座標上での画素位置、(x', y')はワーピングパラメータによって(x, y)に対応付けられるスプライトメモリ中の画素位置である。Sprite-VOPの各マクロブロックでは、このワーピングパラメータセットを統一的に用いて、スプライトメモリ中の(x', y')を決定して予測画像を生成して予測を行うことができる。厳密には、スプライトには、予測に用いる「ダイナミックスプライト」と、予測に用いるとともに、復号側で近似的にVOPを合成する目的で用いる「スタティックスプライト」の区別があるが、以下に述べる図34~図37では、ダイナミックスプライトを「スプライト」の意味で用いる。

動き検出部P8では、以上の予測に用いる動きベクトルおよびワーピングパラメータを検出する。動きベクトルおよびワーピングパラメータを動きパラメータP9という言葉で総称する。

(2)動き補償部

25 動き補償部P10は例えば図34に示すような内部構成をとる。同図

15

20

25

において、P26はワーピングパラメータ、P27は動きベクトル、P28はグローバル動き補償部、P29はローカル動き補償部、P30はワーピングパラメータによる予測画像候補、P31は動きベクトルによる予測画像候補である。予測画像候補P11をワーピングパラメータによる予測画像候補P30および動きベクトルによる予測画像候補P31を総称する言葉とする。

動き補償部 P 1 0 の動作を要約するフローチャートを図 3 5 のステップ P S 1 4 からステップ P S 2 1 に示す。

動き補償部P10では、マクロブロックP7ごとに動き検出部P8で 検出されたVOP全体のワーピングパラメータP26またはマクロブロッ ク単位の動きベクトルP27を用いて予測画像候補P11を生成する。 グローバル動き補償部P28においてワーピングパラメータP26を用 いた動き補償を行い、ローカル動き補償部P29において動きベクトル P27を用いた動き補償を行う。

I-VOPでは動き補償部 P 1 0 は動作しない (ステップ P S 1 4 からステップ P S 2 1 へ行く)。 I-VOP以外のとき、ローカル動き補償部 P 2 9 が動作し、動きベクトル P 2 7 を用いて VOPメモリ P 2 1 内の過去の V OP局所復号画像から予測画像候補 (PR1)を取り出す (ステップ P S 1 5)。 P-VOPではこの予測画像候補 (PR1)のみを用いることになる。

ステップPS16でB-VOPであるとされた場合は、さらにローカル動き補償部P29において、動きベクトルP27を用いてVOPメモリP21内の未来のVOP局所復号画像から予測画像候補(PR2)を取り出すとともに(ステップPS17)、過去および未来のVOP局所復号画像から得た予測画像候補を加算平均して予測画像候補(PR3)を得る(ステップPS18)。

また、ダイレクト予測(ITU-T勧告 H. 263符号化方式におけるBフレー

10

15

20

25

ム相当の予測方式に基づく予測。組になるP-VOPのベクトルからBフレーム用のベクトルを作る。ここでは詳細の記述は省略する)についても同様に予測画像候補(PR4)を生成する(ステップPS19)。図34において、動きベクトルによる予測画像候補P31は上記予測画像候補PR1からPR4の一部またはすべてを総称するものとする。

I-VOPでもB-VOPでもない場合はSprite-VOPであり、VOPメモリから動きベクトルを用いて予測画像候補(PRI)を取り出すとともに、ステップPS20でグローバル動き補償部P28においてワーピングパラメータP26を用いてスプライトメモリP22から予測画像候補P30を取り出す。

グローバル動き補償部P28はワーピングパラメータP26からスプライトメモリP22中の予測画像候補が存在するアドレスを計算し、これに基づいてスプライトメモリP22から予測画像候補P30を取り出して出力する。ローカル動き補償部P29は動きベクトルP27からV0PメモリP21中の予測画像が存在するアドレスを計算し、これに基づいてV0PメモリP21から予測画像候補P31を取り出して出力する。

これらの予測画像候補P11は、予測モード選択部P12においてテクスチャデータP7のイントラフレーム符号化信号を含めて評価され、 最も予測誤差信号電力の小さい予測画像候補と予測モードが選択される

(3)メモリ更新

メモリ更新制御(ステップPS12)はメモリ更新部P20で行われ、VOPメモリP21およびスプライトメモリP22の更新を行う。これらのメモリ内容の更新は、マクロブロック単位に選択された予測モードP13に関係なく行われる。

メモリ更新部P20の内部構成を図36に、メモリ更新部P20の動

作を示すフローチャートを図37のステップPS22からステップPS 28に示す。

図36において、P32は外部から与えられるVOP符号化タイプ、P33はスプライトメモリを用いた予測をするかしないかを示す、外部から与えられるスプライト予測識別フラグ、P34はスプライトメモリを用いた予測に用いられる、外部から与えられるブレンド係数、P35はスイッチ、P36はスイッチ、P37はスプライト合成部、P38はスプライト変形処理部、P39はVOPメモリ更新信号、P40はスプライト更新信号である。

まず、スプライト予測職別フラグP33により、当該VOまたはVOLでスプライトを使用すると指定されているかどうかがチェックされ(ステップPS22)、スプライトを用いない場合、B-VOPかチェックされ(ステップPS27)、B-VOPならばVOPメモリP21の更新は全く行わない。I-VOPまたはP-VOPでは、マクロブロックごとに局所復号マクロブロックP19をVOPメモリP21に上書きする(ステップPS28)。

一方、ステップPS22のチェックにおいてスプライトを用いるとされた場合は、まず上記と同様のVOPメモリP21の更新が行われた後(ステップPS23,ステップPS24)、以下の手順に従ってスプライトメモリP22の更新が行われる。

20 a) スプライトのワーピング (ステップPS25)

まず、スプライト変形処理部P38において、スプライトメモリ上の 領域(当該VOPの時刻をtとしたときの、スプライトメモリ上の位置を原 点とするVOPと同面積の領域)

$$M \stackrel{(\rightarrow)}{R}, t-1)$$

を、ワーピングパラメータ

 $\frac{\rightarrow}{\alpha}$ = (a, b, c, d, e, f, g, h)

によってワーピング(変形)させる。

b) スプライトのブレンド (ステップPS26)

上記a)の結果得られたワーピング画像を用いて、スプライト合成部 P 3 7 において、下式に従って新しいスプライトメモリ領域

$$M \left(\overrightarrow{R}, t \right) = (1 - \alpha) \cdot W_b \left[M \left(\overrightarrow{R}, t - 1 \right), \overrightarrow{\alpha} \right] + \alpha \cdot VO \left(\overrightarrow{r}, t \right)$$

5 を求める。ここで、

15

α:ブレンド係数P34

 W_b $[M, \stackrel{\rightarrow}{\alpha}]$: 上記 (a) の結果得られるワーピング画像

 $VO\left(\stackrel{
ightarrow}{r},\ t
ight) : 局所復号 VOPの位置 <math>\stackrel{
ightarrow}{r}$ 及び時刻 t における画素値 $\stackrel{
ightarrow}{r}$ である。

ただし、局所復号マクロブロック中でVOPに属さない領域については

$$VO\left(\frac{\rightarrow}{r}, t\right) = 0$$

とみなす。プレンド係数αはVOP単位で与えられるので、局所復号VOPは 、VOP領域の内容の如何に関わらず、αに基づく比重で、一括してスプ ライトメモリに合成される。

以上のような従来の符号化方式における予測方式では、動画像オブジェクトの予測に際して、動きベクトルの検出しか行わないメモリとワーピングパラメータの検出しか行わないメモリとを最大1画面ずつだけしか使用できない構成になっているため、予測に用いることのできる参照画像をごく限られた方法でしか使用しておらず、予測効率を十分に向上させることができない。

また、複数の動画像オブジェクトを同時に符号化するようなシステム においても、これらのメモリには、予測される動画像オブジェクト自身

10

20

25

の履歴を示す参照画像しか含まれないので、参照画像のバリエーション が限定されるとともに、動画像オブジェクト間の相関を利用して予測を 行うことができない。

さらに、メモリの更新に際しても、動画像オブジェクトの内部構造や 性質、履歴等に関係なくメモリが書き換えられるため、動画像オブジェ クトを予測する上で重要な知識を十分にメモリに蓄積できておらず、予 測効率の向上が図れないという問題があった。

この発明は前記問題点を解決するためになされたものであり、画像データを符号化/復号する場合、複数のメモリを設けて、動画像シーケンスの内部構造、性質などを考慮して、複数のメモリに効果的に動画像シーケンスの履歴を蓄積して、予測および符号化/復号の効率を高めるとともに、複数の動画像オブジェクト間で予測が行える構造を設けてより柔軟な予測方式を提供することを目的とする。

15 発明の開示

本発明は、予測に際して参照する画像データを蓄積するとともに、それぞれ個別の変形手法が対応づけられている複数のメモリと、被予測画像領域の動きを表現するパラメータを入力し、該被予測画像領域の予測に用いたメモリに蓄積された画像データを用いて、上記パラメータと、該メモリに対応づけられた変形手法に基づき予測画像を生成する予測画像生成部とを備え、少なくとも符号化装置および復号装置のいずれかに用いられることを特徴とする動画像を予測する動画像予測方式である。

上記符号化装置は、上記予測画像の生成に用いた該メモリを示す予測 メモリ指示情報信号を生成し、復号側でも該メモリに蓄積された画像データを用いて、該メモリに対応づけられた変更手法に基づき上記予測画 像が生成できるように、上記予測メモリ指示情報信号と上記パラメータ

10

15

25

を復号側へ送信することを特徴とする。

上記復号装置は、上記パラメータと上記予測画像の生成に用いたメモ リを示す予測メモリ指示情報を符号化側から受け取り、上記予測画像生 成部は、上記パラメータと該メモリに対応づけられた変形手法に基づき 、該メモリに蓄積された画像データを用いて上記予測画像を生成するこ とを特徴とする。

また、本発明は、予測に際して診照する画像データを蓄積するととも に、それぞれ個別のパラメータ有効値域が対応づけられている複数のメ モリと、被予測画像領域の動きを表現するパラメータを入力し、該パラ メータの値を含む上記パラメータ有効値域が対応づけられたメモリを選 択し、選択されたメモリに蓄積された画像データを用いて予測画像を生 成する予測画像生成部とを備え、少なくとも符号化および復号のいずれ かに用いられることを特徴とする動画像を予測する動画像予測方式であ る。

また、本発明は、予測に際して参照する画像データを蓄積する複数の メモリと、被予測画像領域の動きを表現するパラメータを入力し、該パ ラメータに基づいて上記複数のメモリに蓄積された画像データを用いて 予測画像を生成する動き補償部と、上記複数のメモリの少なくとも1つ のメモリに蓄積される画像データを任意のタイミングで更新するメモリ 更新部とを有する予測画像生成部とを備え、少なくとも符号化および復 20 号のいずれかに用いられることを特徴とする動画像を予測する動画像予 測方式である。

上記動画像予測方式は、第1と第2の動画像オブジェクトを有する動 画像シーケンス上の動画像を予測し、上記複数のメモリは、上記第1と 第2の動画像オブジェクトに対応する第1と第2の個別の複数のメモリ を備え、上記予測画像生成部は、上記第1と第2の動画像オブジェクト

15

20

25

に対応する第1と第2の個別の生成部を備えており、上記第1の生成部は、上記第1のオブジェクトを予測する場合に、少なくとも上記第1と第2の複数のメモリのいずれかに蓄積されている画像データを用いて上記予測画像を生成するとともに、第2の複数のメモリを第1のオブジェクトの予測に使用しているか否かを示す情報を予測画像に付加するために生成することを特徴とする。

上記予測画像生成部は、動画像の各時刻における変化に応じて、上記 複数のメモリの数とサイズのいずれかを増減することにより予測画像を 生成することを特徴とする。

10 上記予測画像生成部は、動画像の各時刻における変化に応じて、予測 に用いるメモリを限定することにより予測画像を生成することを特徴と する。

上記予測画像生成部は、上記複数のメモリに蓄積された上記画像データを用いてそれぞれに生成された複数の予測画像を演算することにより 予測画像を生成することを特徴とする。

上記動画像予測方式は、被予測画像領域の重要度を示す特徵量パラメータを検出する重要度検出部を備え、上記予測画像生成部は、上記特徴量パラメータに基づいて、少なくとも複数の予測方式と、複数のメモリと、複数のメモリ更新方法のいずれかについて、複数の選択肢の中から少なくとも1つを選択することにより予測画像を生成することを特徴とする。

上記動画像予測方式は、少なくとも、被予測画像領域が利用可能な符号量と、各時刻における該画像領域の変化量と、該画像領域の重要度のいずれかを表すパラメータを検出する重要度検出部を備え、上記予測画像生成部は、上記パラメータに基づいて、少なくとも複数の予測方式と、複数のメモリと、複数のメモリ更新方法のいづれかについて、複数の

10

15

20

選択肢の少なくとも1つを選択することにより予測画像を生成すること を特徴とする。

上記動画像予測方式は、動画像を動画像オブジェクト単位で予測し、 上記動画像予測方式は、少なくとも、被予測動画像オブジェクトが利用 可能な符号量と、各時刻における該動画像オブジェクトの変化量と、該 動画像オブジェクトの重要度のいずれかを表すパラメータを検出する重 要度検出部を備え、上記予測画像生成部は、上記パラメータに基づいて、 少なくとも複数の予測方式と、複数のメモリと、複数のメモリ更新方 法のいづれかについて、複数の選択肢の少なくとも1つを選択すること により予測画像を生成することを特徴とする。

上記動画像予測方式は、動画像の符号化において、予測に係る情報を符号化する予測情報符号化部を備え、上記予測画像生成部は、予測に使用されるメモリの使用頻度数をカウントし、カウントした使用頻度数に基づいて上記複数のメモリのランクを決定し、上記予測情報符号化部は、予測に用いられるメモリのランクに応じて、予測に係わる情報に符号長を割り当てることにより予測に係わる情報を符号化することを特徴とする。

上記複数のメモリは、少なくとも、画像データをフレーム単位で蓄積 するフレームメモリと、スプライト画像を蓄積するスプライトメモリと を有することを特徴とする。

上記スプライトメモリは、少なくとも、逐次更新を伴うダイナミックスプライトメモリと逐次更新を伴わないスタティックスプライトメモリのいずれかを有することを特徴とする。

上記複数のメモリは、少なくとも、平行移動、アフィン変換、遠近法 25 変換の内のいずれかの変形手法が変更可能に対応づけられることを特徴 とする。

10

15

20

25

また、本発明は、予測に際して参照する画像データを複数のメモリに 蓄積する工程と、上記複数のメモリにそれぞれ個別の変形手法を対応づ ける工程と、被予測画像領域の動きを表現するパラメータを入力する工 程と、上記被予測画像領域の予測に用いたメモリに蓄積された画像デー タを用いて、上記パラメータと該メモリに対応づけられた変形手法に基 づき予測画像を生成する工程を備え、少なくとも符号化および復号のい ずれかに用いられることを特徴とする動画像を予測する方法である。

上記動画像を予測する方法は、さらに、上記予測画像生成に用いた該 メモリを示す予測メモリ指示情報信号を生成する工程と、上記予測メモ リ情報信号と上記パラメータを復号側へ送信する工程とを備えたことを 特徴とする。

上記動画像を予測する方法は、さらに、予測画像の生成に用いたメモリを示す予測メモリ指示情報信号と被予測画像領域の動きを表現するパラメータを符号化側から受け取る工程を備え、復号に用いられることを特徴とする。

また、本発明は、予測に際して参照する画像データを複数のメモリに 蓄積する工程と、上記複数のメモリにそれぞれ個別のパラメータ有効値 域を対応づける工程と、被予測画像領域の動きを表現するパラメータを 入力する工程と、上記パラメータの値を含む上記パラメータ有効値域が 対応づけられたメモリを選択する工程と、選択されたメモリに格納され た画像データを用いて予測画像を生成する工程を備え、少なくとも符号 化および復号のいずれかに用いられることを特徴とする動画像を予測する方法である。

また、本発明は、予測に際して参照する画像データを複数のメモリに 蓄積する工程と、被予測画像領域の動きを表現するパラメータを入力す る工程と、上記パラメータに基づいて、上記複数のメモリに蓄積された 画像データを用いて予測画像を生成する工程と、上記複数のメモリの少なくとも1つのメモリに格納される画像データを任意のタイミングで更新する工程を備え、少なくとも符号化および復号のいずれかに用いられることを特徴とする動画像を予測する方法である。

5

15

図面の簡単な説明

図1は、この発明の実施の形態における動画像符号化装置を示す構成 図である。

図 2 は、この発明の実施の形態における動画像符号化装置の動作を示 10 すフローチャートである。

図3は、この発明の実施の形態における動画像符号化装置の動き補償部の構成を示す構成図である。

図4は、動き補償部の動作を示すフローチャートである。

図 5 は、この発明の実施の形態における動画像符号化装置のメモリ更 新部の構成を示す構成図である。

図6は、メモリ更新部の動作を示すフローチャートである。

図7は、この発明の実施の形態における動画像符号化装置の動き補償 部の構成を示す構成図である。

図8は、図7の動き補償部の動作を示すフローチャートである。

20 図 9 は、この発明の実施の形態における動画像符号化装置の動き補償 部の構成を示す構成図である。

図10は、図9の動き補償部の動作を示すフローチャートである。

図11は、この発明の実施の形態における動画像符号化装置を示す構成図である。

25 図1.2 は、この発明の実施の形態における動画像符号化装置の動き補 償部の構成を示す構成図である。

図13は、図12の動き補償部の動作を示すフローチャートである。

図14は、この発明の実施の形態における動画像符号化装置のメモリ 更新部の構成を示す構成図である。

図15は、図14のメモリ更新部の動作を示すフローチャートである

図16は、この発明の実施の形態における動画像符号化装置を示す構成図である。

図17は、この発明の実施の形態における動画像符号化装置を示す構成図である。

10 図18は、この発明の実施の形態における動画像符号化装置を示す構成図である。

図19は、この発明の実施の形態における動画像符号化装置を示す構成図である。

図20は、この発明の実施の形態1のビットストリーム21を示す図 である。

図21は、この発明の実施の形態2のビットストリーム21を示す図である。

図22は、この発明の実施の形態3のビットストリーム21を示す図である。

20 図23は、この発明の実施の形態6のビットストリーム21を示す図 である。

図24は、この発明の実施の形態における動画像復号装置を示す構成図である。

図25は、この発明の実施の形態における動画像復号装置の動き補償 25 部の構成を示す構成図である。

図26は、動き補償部の動作を示すフローチャートである。

15

25

図27は、内挿処理を説明する図である。

図28は、この発明の実施の形態における動画像復号装置のメモリ更 新部の動作を示すフローチャートである。

図 2 9 は、VM符号化方式におけるビデオデータ構造を示す説明図である。

図30は、VOPデータの構成を示す説明図である。

図31は、VM符号化装置の構成を示す構成図である。

図32は、図31の符号化装置の動作を示すフローチャートである。

図33は、VOP符号化タイプと対応する予測の種類を示す説明図である。

図34は、図31の符号化装置における動き補償部の構成を示す構成図である。

図35は、図34の動き補償部の動作を示すフローチャートである。

図36は、図31の符号化装置におけるメモリ更新部の構成を示す構成図である。

図37は、図36のメモリ更新部の動作を示すフローチャートである

発明を実施するための最良の形態

20 実施の形態 1.

図1は実施の形態1及び後述する実施の形態における符号化装置の構成を示すブロック図である。同図において、1は入力動画像信号、2はテクスチャデータ、3は動き検出部、4は動きパラメータ、5は動き補償部、6は予測画像候補、7は予測モード選択部、8は予測モード、9は予測画像、10は予測誤差画像、11はテクスチャ符号化部、12は量子化DCT係数、13は局所復号された予測誤差画像、14は局所復号

20

25

画像、15はメモリ更新部、16はメモリa、17はメモリb、18はメモリc、19は可変長符号化・多重化部、20は送信バッファ、21はビットストリーム、80はシーンチェンジ検出部、81はタイマーである。このうち動き補償部5およびメモリ更新部15が予測方式を実現する予測画像生成部100である。また、メモリa,b,cがメモリ領域200である。図中この実施の形態で取り上げない部分については後の実施の形態で説明する。図2は、この符号化装置の動作の流れを示すフローチャートである。

この実施の形態では複数、例えば3つのメモリ、を入力動画像の動き 量・色度等の画像の特徴に基づく重要度に応じて使い分け、かつ任意の 時間間隔で任意のメモリ(領域)、例えばメモリ a 、の内容を更新する 仕組みを設ける。また、動画像シーケンスはフレーム単位に入力される ものとする。

(1) 入力信号

15 上述のごとく、上記符号化装置は動画像シーケンスの各時刻の画像を表すフレームを単位に入力し、フレームは被予測画像領域の一例である符号化単位となるマクロブロックに分割される(ステップS1)。

(2) メモリの使い分け方

メモリには、過去に復号済みの画像や、またはあらかじめ固定的に与 えられた画像が蓄積されるが、この実施の形態では、フレーム中の部分 領域の重要度に応じて、3つのメモリを以下のように使い分ける。

メモリa: 重要度小の画像領域 (=動きが静止または均一で、かつテクスチャが均一な背景的画像領域)を蓄積する。

メモリb: 重要度中の画像領域 (=被写体の動きで、比較的動きの小さい画像領域) を蓄積する。

メモリc:重要度大の画像領域(=被写体の動きで、動きの大きな画像

10

15

20

25

領域)を蓄積する。

メモリaに蓄積される重要度小の画像領域は、テレビ会議のシーンなどに出てくる背景画像領域と考えることができる。また、ある微少な動きを伴う被写体を含み、カメラ操作によって画面全体の均一な動きが含まれるようなシーンにおける背景領域にも相当する。これらの動きはマクロブロックという小さな単位よりもあらかじめフレーム全体の動きを求めて、それをマクロブロックの動きとして代用すると効率的である。すなわち、従来例に述べたスプライトにおけるワーピングパラメータに相当する変形パラメータを求め、フレーム全体の変形パラメータを各マクロブロックの動きパラメータとみなすことにする。動きパラメータは、単なる平行移動パラメータとみなすことにする。動きパラメータは、単なる平行移動パラメータ(=動きベクトルと同義)でもよいし、変形を含んだアフィン、遠近法動きパラメータなどであってもよい。ここで、動きベクトルは動きパラメータの一例である。

メモリbに蓄積される重要度中の画像領域は例えばテレビ会議のシーンにおいて発言をせずに体だけが動いているような人物の画像領域で、画面中の注目度が低い被写体領域と考えることができる。メモリcに蓄積される重要度大の画像領域は例えばテレビ会議のシーン中、発言者などもっとも注目度が高い被写体領域と考えることができる。

メモリ b、 c に蓄積される領域は被写体固有の動きを持つため、マクロブロックごとに異なる動きパラメータを持つと考えるのが自然である。この際の動きパラメータは、単なる平行移動パラメータ (=動きベクトルと同義) でもよいし、変形を含んだアフィン、遠近法動きパラメータなどであってもよい。

(3) 動き検出 (ステップS2)

この実施の形態における動き検出部3は、従来例のような動きベクト ルとワーピングパラメータという区別を取り去り、3つのメモリすべて

10

15

20

25

について任意の変形パラメータをマクロブロック単位に検出できるようにする。また、動き検出部3はメモリaを用いてフレーム全体の変形パラメータを検出するグローバル動きパラメータ検出と、メモリaからcを用いてマクロブロックごとの変形パラメータを検出するローカル動きパラメータ検出の機能を備える。

(4) 動き補償 (ステップS3)

この実施の形態における動き補償部5の内部構成を図3に示す。同図において、22は予測画像メモリアドレス算出部、23は予測画像メモリアドレス、24はメモリ読み出し部、25は外部から与えられる参照メモリ指示信号である。ここでは、参照メモリ指示信号25は、メモリa,b,cを使用することを指示しているものとする。この動き補償部5の動作を記したフローチャートを図4のステップS11からステップS16に示す。

まずI (Intra)-フレームならば、動き補償を行わない(ステップS11)。I-フレームでなければ、動き検出部3で検出されたグローバル動きパラメータならびに各メモリに基づくローカル動きパラメータをもとに予測画像候補を生成する(ステップS12からステップS15)。具体的には、予測画像メモリアドレス算出部22において、参照メモリ指示信号25で指示されるメモリ中の予測画像候補が存在する予測画像メモリアドレス23を動きパラメータ4に基づいて計算し、予測画像メモリアドレス23によってメモリ読み出し部24が対応するメモリから予測画像候補6を取り出して出力する。

この実施の形態においてはグローバル動きパラメータもローカル動き パラメータも同一の変形方式に基づくので、いずれの予測画像生成も図 3の動き補償部5を共有して用いることができる。なお、グローバル動 きパラメータにより予測画像候補6を生成する場合(ステップS15) は、常にメモリaが参照メモリとして用いられる。

- (5) 予測モードの選択 (ステップS4) この実施の形態における予測モードは、
- (a) メモリ a を使用するモード、
- 5 (b) メモリbを使用するモード、
 - (c) メモリ c を使用するモード、
 - (d) イントラフレーム符号化信号を使用するモード

があるものとする。予測モード選択部7は、例えば従来例に示したように、動き補償部5によって生成されるすべての予測画像候補6とイントラフレーム符号化信号を含めて、最も予測誤差信号の電力(振幅)の小さい予測画像候補6を選択して予測画像9として出力する。また、選択した予測画像9に対応する予測モード8を出力する。この予測モード8の情報の中には、選択した予測画像9を予測したメモリを示すメモリ選択情報も含まれている。予測モード8は可変長符号化・多重化部19へ送られ、割り当てられた符号長で予測メモリ指示情報800としてビットストリーム21の中に符号化される。

(6) メモリの更新

20

25

メモリの更新はメモリ更新部15で制御される。この実施の形態におけるメモリ更新部15の内部構成を図5に示す。同図において、26はメモリaの更新に用いるアクティビティ(詳細は後述する)、27はメモリa更新判定部、28は参照メモリ選択部、29、30はスイッチ、31はメモリaを更新する画像データ、32はメモリbを更新する画像データ、33はメモリcを更新する画像データ、34はメモリaを更新するグローバル予測画像データである。また、メモリ更新の動作フローを図6に示す。

この実施の形態におけるメモリ更新は以下の手順を踏む。メモリ更新

อ

20

25

部15は局所復号画像14を入力すると、メモリa更新判定部27において該局所復号画像14が属するフレームに対するメモリa更新の必要性を判定し(ステップS17)、参照メモリ選択部28において予測モード8に基づき予測に使用したメモリを選択し(ステップS18、S19)、選択されたメモリ内の参照画像を該局所復号画像14のメモリaを更新する画像データ31、メモリbを更新する画像データ32、メモリェを更新する画像データ33、メモリaを更新するグローバル予測画像データ34のいずれかを用いて下記のルールで更新する。なお、該メモリ更新は予測単位(マクロブロック単位)でフレーム毎に行われる。

- 10 (1)メモリb、cの毎フレーム更新(ステップS20、S21) 当該画像の予測に用いたメモリbまたはメモリcに、局所復号画像1 4を書き込む。
 - (2) メモリaの任意フレーム更新 (ステップS22、S23)

当該画像の予測に用いたメモリ a にステップS 1 7 のメモリ a 更新判 15 定結果1000に基づき、任意のフレームについてのみ、または任意の 時間間隔で局所復号画像14を書き込む。

メモリ a の内容はいわば背景画像などの時不変画像領域の履歴であり、シーンチェンジや画面全体の大きな動きなどによって領域の内容がおおきく変化することでもない限り、メモリ内容の更新の必要がない。

上述のように被写体などの動領域についてはフレーム単位で逐次更新 し、メモリ a の内容はより長い時間間隔で更新する仕組みを備えておけ ば、被写体の動きによって見え隠れする背景画像などの予測に効果的で ある。

この実施の形態では、以上の観点からメモリaの更新を任意の時間間隔で行う仕組みを設ける。具体的には例えば、

a. グローバル動きパラメータの大きさに基づき、動きが大きい場合は

25

画面全体の内容を一斉に更新し、動きが小さい場合は内容を更新しない 方法、

- b. フレーム間の時間間隔に限定されず、ある一定時間ごとに画面全体の内容を一斉に更新する方法、
- 5 c.シーンチェンジを検出した場合、シーンチェンジ直後のフレームで 画面全体の内容を一斉に更新する方法 などの任意更新判定基準が考えられる。

この実施の形態では、以上のような任意更新判定基準になるデータを メモリaの更新に用いるアクティビティ26という言葉で総称する。ま ず、メモリa更新判定部27はアクティビティ26を用いてメモリaの 内容を更新するかどうかを判定する(ステップS17)。上記任意更新 判定基準aの場合は動き検出部3で検出されたグローバル動きパラメー タの値がアクティビティとなり、任意更新判定基準bの場合はタイマー 81からの当該フレームのタイムスタンプが、任意更新判定基準cの場 15 合はシーンチェンジ検出部80から出力されるシーンチェンジ検出を知 らせるフラグがアクティビティ26に相当する。

メモリ a の内容を更新すると判断された場合は、局所復号画像 1 4 の 内容がグローバル予測画像データ 3 4 として出力されてメモリ a の内容 を書きかえる(ステップ S 2 3)。メモリ a の内容を更新すると判断さ れなかった場合は、メモリ a の更新を行わない。

なお、当該フレームにおけるメモリ a 更新判定結果1000は復号側で同様の任意更新を行うことができるよう、ビットストリーム21に多 重化されて復号側に伝送される。

図20は、この実施の形態のビットストリーム21を示す図である。

図 2.0 においては、フレームデータが順に符号化されて転送される様子を概念的に示している。各フレームデータの先頭には、フレーム単位

15

20

の付加情報としてヘッダ情報が付け加えられている。また、ヘッダ情報には、メモリa更新判定結果1000が多重化されて復号側に伝送される。ヘッダ情報の後からは、そのフレームを構成するマクロブロックデータが続いている。マクロブロックデータの内部には、そのマクロブロックデータを予測するために用いられたメモリを示す予測メモリ指示情報800が含まれている。復号装置においては、各マクロブロックデータの予測メモリ指示情報800に基づいて、予測画像を予測するメモリを特定して予測画像を生成する。

また、図示していないが、メモリa更新判定結果1000とともに、 10 或いは、その代わりに、メモリb更新情報、及び/又はメモリc更新情 報を復号側に転送するようにしても構わない。

以上述べた符号化装置により、動画像シーケンスの内容に応じて複数のメモリを効率的に使い分ける仕組みが供給され、予測効率を向上させることができる。すなわち、動画像シーケンスの予測に際して、動画像シーケンスの内容や性質によって複数のメモリを使い分けて任意の変形パラメータに基づいた予測を行うので、複雑な動きまでもカバーして局所的な画像の性質に追随した効率的な動画像予測が行え、予測効率が向上し、符号化画像の品質を保ちつつ符号化データの発生量を低減させる符号化装置を構成することができる。また、この発明の予測方式に基づいて符号化されたビットストリームを復号する復号装置においても同様の予測方式により構成することができる。

この実施の形態ではフレームごとに符号化する装置について述べたが、任意の形状を持つ動画像オブジェクト (VOP) を符号化する装置についても同様の効果が期待できる。

25 また、この実施の形態では被予測画像領域の一例としてマクロブロックを単位とした符号化装置について述べたが、任意の形状を持つ部分画

WO 98/36576 PCT/JP98/00232

25

像などの画像単位または複数個の固定サイズブロックの組み合わせによって構成される可変形状のブロックなどの画像単位で画像を符号化する 装置についても、同様の効果が期待できる。

また、この実施の形態では、メモリ a を用いたグローバル動きパラメータ検出を用いたが、これを用いずにローカル動き検出だけを用いる構成でも適用可能であることは言うまでもない。グローバル動き検出を行わない場合は、予測モードとしてグローバル/ローカル予測の判別情報は伝送する必要がない。

また、この実施の形態において、あらかじめ動画像シーケンスの内容 に基づいて生成した参照画像データを蓄積して符号化中に更新を行わな いメモリを設け、それを予測に用いる構成もとることができる。

10

15

20

25

また、この実施の形態においては、メモリa, b, cに対してそれぞれ部分領域を蓄積するようにしてメモリ更新部15によるメモリ更新は、メモリa, b, cのいずれか1つのメモリに対して行う場合を示したが、メモリa, b, cが画像の一部分、或いは、全部を共有して画像を蓄積するような場合には、メモリ更新部15は、メモリa, b, cのうち2つのメモリ、或いは、全てのメモリを更新する。例えば、メモリaが1フレームの参照画像データを蓄積するフレームメモリであり、メモリbが逐次更新を伴わないスタティックスプライトメモリであり、メモリcが逐次更新を伴わないスタティックスプライトメモリである場合には、スタティックスプライトメモリは、予め固定的なデータを参照画像データとして蓄積しているため、メモリbはメモリ更新部15によっては更新されないが、メモリaとメモリcが同一領域の参照画像データを蓄積している場合には、メモリa, b, cが参照画像データを重複して蓄積している場合には、重複した領域をそれぞれメモリ更新

部15が更新する。

以上のことは、以下に述べる実施の形態においても同様である。

また、この実施の形態では、3つのメモリa, b, cを用いる場合を示したが、いずれか2つのメモリを用いる場合であっても構わない。

また、この実施の形態で述べた動き補償部5、メモリ更新部15とまったく同一の部材を有する予測画像生成部100を用いた復号装置を構成することもできる。復号装置に用いられる場合は、動き補償部は3つの全ての予測画像候補を生成する必要はなく復号された動きパラメータに関わる予測画像だけを生成すればよい。

10

15

20

25

5

実施の形態2.

次に、図1に示した構成の符号化装置において、動き補償部5の構成 だけ別の構成とした符号化装置の実施形態を示し、実施の形態2の動き 補償部5aの構成と動作について述べる。

この実施の形態における動き補償部5 a の内部構成を図7に示す。同図において、35は参照メモリ決定部である。またこの動き補償部5 a の詳細な動作を記したフローチャートを図8に示す。

まず、I-フレームならば動き補償を行わない(ステップS24)。I-フレームでなければ、参照メモリ決定部35は動きパラメータ4の値に基づいて参照メモリを決定する(ステップS25)。参照メモリ決定部35は各メモリa,b,cに割り当てられている有効動きパラメータ値域(詳細は後述する)を保持しており、動きパラメータ4の値と比較することによって、当該動きパラメータ4がどのメモリを指しているかを判断し、メモリa,b,cを識別する参照メモリ指示信号25aを出力する。

有効動きパラメータ値域とは、例えば動きベクトルを検出する場合、

10

15

20

25

その探索範囲が±15画素だとすると、±0から3画素の範囲ではメモリ a を、±4から8画素の範囲ではメモリbを、±9から15画素の範囲ではメモリcを予測に用いるようにするというような、各メモリごとの有効探索範囲を意味する。ただし、グローバル動きパラメータで予測画像を生成する場合は参照メモリはメモリaと決まっているので、参照メモリ決定部35を起動するのはローカル動きパラメータを用いるときのみとする。このように、動きベクトルの値で予測に用いるメモリを特定するのは、背景画像は動きが少なく、注目度が高い画像ほど動きが大きくなるはずであるという前提に基づくものである。このように、動きベクトルの値で予測に用いるメモリを特定する場合は、予測モードを符号化して伝送する必要がない。

次いで、選択された参照メモリ指示信号25aにしたがって予測画像 候補6が生成される(ステップS26からステップS30)。 具体的に は、予測画像メモリアドレス算出部22において、参照メモリ指示信号 25aで指示されるメモリ中の予測画像候補6が存在する予測画像メモ リアドレス23を動きパラメータ4に基づいて計算し、予測画像メモリ アドレス23によってメモリ読み出し部24が対応するメモリから予測 画像候補6を取り出して出力する。

この実施の形態においてはグローバル動きパラメータもローカル動きパラメータも同一の変形方式に基づくので、いずれの予測画像生成も図7の動き補償部5aを共有して用いることができる。なお、グローバル動きパラメータにより予測画像候補6を取り出す場合(ステップS31)は、常にメモリaが参照メモリとして用いられる。

有効動きパラメータ値域は、動画像シーケンス毎に一定値域でもよいが、たとえば、各フレーム毎に変更してもよい。各フレーム毎に変更する場合は、当該フレームにおける各メモリの有効動きパラメータ値域は

15

20

、復号側で同様のメモリ選択を行うことができるよう、ビットストリー ムに多重化されて復号側に伝送される。

図21は、この実施の形態のビットストリーム21を示す図である。 このビットストリームの先頭には、動画像シーケンス単位に付加されたヘッダ情報がある。このヘッダ情報は、各メモリの有効動きパラメータ値域指示情報を有している。このように、動画像シーケンスの先頭に有効動きパラメータ値域指示情報を指定することにより、その動画像シーケンスに対して一定値域の有効動きパラメータ値域を用いた予測方式を復号装置で行うことができる。

10 フレーム毎に有効動きパラメータ値域を変更する場合は、フレーム単位に付加されたヘッダ情報の中に有効動きパラメータ指示情報を含ませればよい。

以上述べた動き補償部 5 a の構成を持つ符号化装置により、フレームの局所的な動きの程度に応じて複数のメモリを効率的に使い分ける仕組みが供給され、予測効率を向上させることができる。

この実施の形態ではフレームごとに符号化する装置について述べたが、任意の形状を持つ動画像オブジェクト (VOP) を符号化する装置についても同様の効果が期待できる。

また、この実施の形態ではマクロブロックを単位とした符号化装置について述べたが、任意の形状を持つ部分画像などの画像単位または複数個の固定サイズブロックの組み合わせによって構成される可変形状のブロックなどの画像単位で画像を符号化する装置についても、同様の効果が期待できる。

また、この実施の形態では、メモリ a を用いたグローバル動きパラメ 25 一夕検出を用いたが、これを用いずにローカル動き検出だけを用いる構 成でも適用可能であることは言うまでもない。グローバル動き検出を行

15

20

わない場合は、予測モードとしてグローバル/ローカル予測の判別情報 は伝送する必要がない。

また、この実施の形態で述べた動き補償部5とまったく同一の部材有する予測画像生成部100を用いた復号装置を構成することもできる。 復号装置に用いられる場合は、動き補償部は復号された動きパラメータ に関わる予測画像だけを生成すればよい。

実施の形態3.

次に、図1に示した構成の符号化装置において、動き補償部5の構成 だけをさらに別の構成とした符号化装置の実施形態を示し、動き補償部5 b の構成と動作について述べる。この実施の形態における動き検出部3 a は、動きパラメータ4 a として平行移動量、アフィンパラメータ、遠近法パラメータをそれぞれ出力するものとする。

また、この実施の形態におけるメモリ a は参照画像を 1 フレーム分記 憶するフレームメモリであり、メモリ b はスタティックスプライトメモリであり、メモリ c はダイナミックスプライトメモリであるものとする

この実施の形態における動き補償部5bの内部構成を図9に示す。同図において、36は平行移動量(=動きベクトル)、37はアフィンパラメータ、38は遠近法パラメータ、39は平行移動量に基づく予測画像メモリアドレス算出部、40はアフィンパラメータに基づく予測画像メモリアドレス算出部、41は遠近法パラメータに基づく予測画像メモリアドレス算出部である。またこの動き補償部5bの詳細な動作を記したフローチャートを図10に示す。

25 まず、I-フレームならば動き補償を行わない(ステップS33)。 I-フレームでない場合、予測画像メモリアドレス算出部39から41はそ

25

れぞれ動きパラメータ4aの値に基づいて予測画像メモリアドレス23 を計算する(ステップS34)。

各予測画像メモリアドレス算出部は、対応する各メモリに割り当てられている画像変形方式に基づいてアドレス計算を行う。この実施の形態においては、メモリaに平行移動、メモリbにある程度回転や拡大・縮小などの単純な変形を伴うアフィンパラメータ、メモリcに3次元的で複雑な動きを伴う遠近法パラメータを用いる。これらの変形方式は以下のような変換式で表せる。

[平行移動]

10 平行移動量(a,b):

x' = x + a

y' = y + b

[アフィン変換]

アフィンパラメータ(a, h, c, θ):

15 $x' = a(\cos\theta)x + a(\sin\theta)y + b$ $y' = a(-\sin\theta)x + a(\cos\theta)y + c$

[遠近法変換]

遠近法パラメータ (a, b, c, d, e, f):

x' = (a x + b y + c)/(g x + h y + 1)

20 y' = (d x + e y + f)/(g x + h y + 1)

ここで、2次元座標上の(x, y)は原マクロブロックの画案位置、(x', y')は各パラメータによって(x, y)に対応付けられるメモリ中の画素位置である。すなわち、これらのパラメータをもとに(x', y')のメモリ上の位置を計算する。この仕組みをもつことにより、各マクロブロックごとに動きの性質がもっとも適合するメモリから予測を行うことができるようになる。各動きパラメータ36、37、38から計算した予

15

25

測画像メモリアドレス23によって、メモリ読み出し部24が対応する メモリから予測画像候補6を取り出して出力する(ステップS35から ステップS39)。

なお、当該フレームにおける各メモリの変形方式のタイプは、復号側で同様の動き補償を行うことができるよう、動き検出手法指示情報としてビットストリーム21に多重化されて復号側に伝送される。

図22は、この実施の形態のビットストリーム21を示す図である。

動画像シーケンスの先頭に付加されるヘッダ情報の中には、動き検出 手法指示情報が含まれている。符号化装置では、各メモリで使用する変 形方式のタイプが変更可能であり、この対応関係を示す動き検出手法指 示情報を動画像シーケンスのヘッダ情報として復号装置に送る。こうし て復号装置においては、各メモリで使用する変形方式のタイプを識別す ることができる。

復号装置においては、この識別された変形方式のタイプが動的に各メモリに対応づけられるようになっている。

以上述べた動き補償部5bの構成を持つ符号化装置により、フレーム の局所的な動きの性質に応じて複数のメモリを効率的に使い分ける仕組 みが供給され、予測効率を向上させることができる。

この実施の形態ではフレームごとに符号化する装置について述べたが、 20 任意の形状を持つ動画像オブジェクト (VOP) を符号化する装置につい ても同様の効果が期待できる。

また、この実施の形態ではマクロブロックを単位とした符号化装置について述べたが、任意の形状を持つ部分画像などの画像単位または複数個の固定サイズブロックの組み合わせによって構成される可変形状のブロックなどの画像単位で画像を符号化する装置についても、同様の効果が期待できる。

また、この実施の形態では、メモリaを用いたグローバル動きパラメータ検出を用いたが、これを用いずにローカル動き検出だけを用いる構成でも適用可能であることは言うまでもない。グローバル動き検出を行わない場合は、予測モードとしてグローバル/ローカル予測の判別情報は伝送する必要がない。

また、この実施の形態では、メモリa, b, cを用いる場合を示したが、メモリaとbだけを用いる場合、或いは、メモリaとcを用いる場合、或いは、メモリbとcだけを用いる場合であっても構わない。

また、この実施の形態で述べた動き補償部5bとまったく同一の部材 10 を有する予測画像生成部100を用いた復号装置を構成することもでき る。復号装置に用いられる場合は、動き補償部は復号された動きパラメ ータに関わる予測画像だけを生成すればよい。

実施の形態4.

15 次に、形状情報を持った複数、例えば2つ、の異なる動画像オブジェクトが混在する動画像シーケンスを対象とし、これらの動画像オブジェクトを一括して符号化する装置の実施形態を説明する。図11にこの実施の形態における符号化装置の構成を示す。

同図において、42は入力画像フレーム、43はオブジェクト分離部

20 、44a、44bはオブジェクトデータ、45a、45bは形状ブロック、46a、46bはスイッチ、47a、47bは形状符号化部、48
a、48bは圧縮形状ブロックデータ、49a、49bは局所復号形状ブロック、50a、50bはテクスチャデータ(マクロブロック)、51
a、51bは動き検出部、52a、52bは動きパラメータ、53a、

25 53bは動き補償部、54a、54bは予測画像候補、55a、55bは予測モード選択部、56a、56bは予測モード情報、57a、57

15

20

bは予測画像、58a、58bは予測誤差信号、59a、59bはテクスチャ符号化部、60a、60bは圧縮テクスチャデータ、61a、61bは局所復号予測誤差信号、62a、62bは局所復号マクロブロック、63はメモリ更新部、64はメモリa、65はメモリb、66はメモリc、67はメモリd、68はメモリe、69はメモリf、70a、70bは可変長符号化部、71は多重化部、72はバッファ、73はビットストリーム、94はメモリ部、88aはAオブジェクトを符号化するAオブジェクト符号化部、88bはBオブジェクトを符号化するBオブジェクト符号化部である。オブジェクト符号化部88a、88bは同一の部材による同一の内部構成を有する。

この符号化装置は画像フレーム42を入力し、これがオブジェクト分離部43において符号化単位のオブジェクトに分けられる。オブジェクト分離部43の処理は任意の方法をとることができるものとする。

オプジェクトの形状情報は形状プロック45a、45bの形式で形状符号化部47a、47bに送られて符号化され、圧縮形状プロックデータ48a、48bとして可変長符号化部70a、70bに送られる。

動き検出部 5 1 a、 5 1 b はVM符号化方式と同様、局所復号形状ブロック 4 9 a、 4 9 b を考慮して動きパラメータの検出を行う。動きパラメータ検出はマクロブロック単位にメモリ a から f のすべてを用いて行うことができる。

ただし、原則としてAオブジェクト符号化部88aにおいて符号化されるAオブジェクトについてはメモリaからcを、Bオブジェクト符号化部88bにおいて符号化されるBオブジェクトについてはメモリdからfをそれぞれ用いるものとする。

25 また、動きの種類としては、動きベクトルとワーピングパラメータという区別を取り去り、メモリ部94のすべてのメモリについて任意の変

10

20

25

形パラメータをマクロブロック単位に検出できるものとする。

動き補償部53a、53bで各動きパラメータ52a、52bに基づいてすべての予測画像候補54a、54bを生成した後、予測モード選択部55a、55bで予測画像57a、57bおよび予測モード情報56a、56bを得る。原信号またはテクスチャデータ50a、50bと予測画像57a、57bとの差分をとって予測誤差信号58a、58bを得、これがテクスチャ符号化部59a、59bで符号化されて可変長符号化部70a、70bに送られる。また、局所復号された予測誤差信号61a、61bが予測画像57a、57bと加算されて局所復号マクロブロック62a、62bとなり、メモリ更新部の指示にしたがってメモリaからfに書き込まれる。

上記A/Bオブジェクト符号化部88a、88bにおいて符号化されたA/Bオブジェクトデータは多重化部71で1つのビットストリーム73に多重化され、バッファ72を介して伝送される。

15 以下、この実施の形態における予測について主要な動作を行う動き補 償部53a、53bを中心に説明する。

この実施の形態における動き補償部53a、53bは、動き検出部51a、51bで検出した動きパラメータ52a、52bに基づいて予測画像候補を生成する。動き補償部53aの内部構成を図12に示す。また、Aオブジェクト符号化部88aにおける動き補償部53aの動作のフローチャートを図13に示す。なお、動き補償部53bでも同様に構成され同様に動作する。

図12において、74aはBオブジェクト参照判定部、75aはBオブジェクト参照指示フラグである。

ここで動きパラメータ 5 2 a は検出に用いたメモリ情報も含むものと する。パラメータの値から実施の形態 1 と同様に、予測画像メモリアド

10

15

20

25

レス算出部22a、メモリ読み出し部24aを用いて予測画像候補を生成する(ステップS44からステップS49)。また、Bオブジェクト参照判定部74aは動きパラメータ52aの中の参照するメモリ情報から、当該マクロブロックの予測にBオブジェクト用のメモリを使用しているかどうかを判定する(ステップS43)。

Bオブジェクト参照判定部74aは、判定結果をBオブジェクト参照 指示フラグ75aとして出力し、復号側で当該オブジェクトが単独で、 自身のメモリa,b,cのみを用いて再生できるかどうかの判定に用い るため、ビットストリーム73に多重化されて復号側に伝送される。符 号化時には、外部から与える信号85aにより、常に復号側で当該オブ ジェクトの単独再生が可能になるように、動きパラメータの検出に際し て、自身の予測用のメモリ(a,b,c,のみ)しか使用しないように 制御することも可能とする。

以上述べた動き補償部53a、53bの構成を持つ符号化装置により、フレームの局所的な動きの性質に応じて複数のメモリを効率的に使い分ける仕組みが供給され、予測効率を向上させることができる。

また、この実施の形態ではオブジェクトをマクロブロック単位に符号 化する装置について述べたが、任意の形状を持つ部分画像または複数個 の固定サイズブロックの組み合わせによって構成される可変形状のブロ ックなどの単位で符号化する装置についても、同様の効果が期待できる

また、この実施の形態で述べた動き補償部53a、53bと同一の部材を用いた復号装置を構成することもできる。復号装置に用いられる場合は、動き補償部53は復号された動きパラメータに関わる予測画像だけを生成すればよい。また、ビットストリームから他オブジェクト参照指示フラグ75a、75b相当のビットを復号して、復号中のオブジェ

15

20

25

クトが単独で再生できるかどうかを認識できる構成とすれば、オブジェ クトデータを誤りなく復号再生できるようになる。

実施の形態 5.

5 次に、動画像オブジェクトの時間的変化に対応して、メモリの数また は容量を自在に変化可能な構成の符号化装置の実施形態を説明する。実 施の形態 5 においては、図 1 に示した構成の符号化装置におけるメモリ 更新部 1 5 の構成を置きかえた符号化装置を考える。

図14にこの実施の形態におけるメモリ更新部15 aの内部構成を示す。同図において、76はメモリ拡張判定部、77はメモリ拡張指示信号、78はメモリ縮退判定部、79はメモリ縮退指示信号である。図15にメモリ更新部15 aの動作フロー(ステップS51からステップS63)を示す。

シーンチェンジなどによりメモリに蓄積されていた動画像シーケンスの履歴とは著しく異なる画像が現れた場合、シーンチェンジ後の予測においては、既存メモリに含まれる参照画像だけでは予測効率が劣化することがある。そのような場合、シーンチェンジ校出部80によりシーンチェンジを検出し、シーンチェンジ直後のフレームはイントラフレーム符号化するなどして、それを新たな参照画像としてメモリに追加蓄積しておくことができれば、それ以降の予測効率を向上できる。

また、追加できるメモリの容量には物理的限界があるため、メモリ上の参照画像のうち、ほとんど予測に使われない部分を逐次縮退できる仕組みも持たせる。メモリョ,b,cの各メモリ領域予測に使われる頻度を予測モード8に基づいてメモリ更新部15aで計測しておき、メモリ更新部に頻度の小さいメモリ領域を使用領域から開放する仕組みをもたせる。この実施の形態によれば、例えばソフトウエアで符号化装置を構

10

15

20

25

PCT/JP98/00232

成するような場合、限られたRAM(ランダムアクセスメモリ)資源を有効に活用することができる。

以上の観点から、この実施の形態におけるメモリ更新部15aは、動画像シーケンスの時間的変化の状況に応じてメモリ領域を増やしたり、 予測にあまり使われない参照画像を含むメモリ領域を縮退したりする機能を備える。

メモリaについては、実施の形態1と同様、メモリa更新判定部27において更新の可否が決定され(ステップS50)、更新する場合は局所復号画像14をメモリaに書き込む(ステップS56、ステップS57)。また、予測モード8にしたがって各メモリへ局所復号画像14が書き込まれる(ステップS51からステップS55)。

これらメモリ内容更新は、メモリ拡張/縮退の判定をともなって行われる。メモリ拡張判定部76においては、メモリaの更新に用いるアクティビティ26をもとにメモリa(またはメモリb,c)の容量を増やすかを判定する(ステップS58からステップS60)。シーンチェンジなどにより容量を増やした方がよいと判定されれば、メモリ拡張指示信号77によってメモリの拡張が指示される。また、メモリ縮退判定部78においては、予測モード8をもとに予測に用いられるメモリ領域のカウントをおこなっておき、所定の回数以下しか予測に用いられないメモリ領域については、メモリ縮退指示信号79によってメモリの縮退が指示される(ステップS61からステップS63)。

以上述べたメモリ更新部15 a の構成を持つ符号化装置により、動画像シーケンスの時間的変化に追随して効率のよい予測が行えるとともに、予測に必要なメモリ領域をダイナミックに割り当てる仕組みが供給され、予測効率を向上させるとともにメモリ資源の有効活用が可能になる

15

20

25

この実施の形態ではフレームごとに符号化する装置について述べたが、任意の形状を持つ動画像オブジェクト (VOP) を符号化する装置についても同様の効果が期待できる。

また、この実施の形態ではフレームをマクロブロック単位に符号化する装置について述べたが、任意の形状を持つ部分画像などの画像単位または複数個の固定サイズブロックの組み合わせによって構成される可変形状のブロック領域などの画像単位で画像を符号化する装置についても、同様の効果が期待できる。

また、この実施の形態で述べたメモリ更新部15aとまったく同一の 10 部材を用いた復号装置を構成することもできる。

実施の形態 6.

上記の各実施の形態においてはマクロブロックで予測に使用するメモリを変更する場合を示したが、フレームもしくは動画像オブジェクトの単位で、予測に使用するメモリを変更して予測を行う構成をとることもできる。これにより、フレームもしくは動画像オブジェクトの単位で符号化すべきメモリ関連の情報、およびマクロブロック単位で符号化すべきメモリ選択情報(予測モード8に含まれる)を符号化する必要がなくなり、効率的な符号化を行うことができる。

例えば実施の形態1における図1の符号化装置においては、マクロブロック単位で予測に使用するメモリを切替えることが可能になっているため、マクロブロック単位でどのメモリを予測に使用したかを示す付加情報を伝送する必要がある。これに対して、本実施の形態ではこの使用メモリの切替の単位をフレームまたは動画像オブジェクトに制限して予測を行うことにより、マクロブロック単位に伝送すべき付加情報を効果的に削減することを可能とする。図23に、図20に示した実施の形態

15

25

1の伝送ビットストリーム21と木実施の形態の伝送ビットストリーム 21との違いを示す。図23に示す例は、フレーム単位に予測に使用す るメモリを変更する場合を示しており、予測メモリ指示情報800がフ レーム単位のヘッダ情報に含まれている。図23に示す例は、例えば、

動画像シーケンスの映像の性質が定常的に変化せず、マクロブロックレベルの局所的な変化が少ないような場合に有効である。また、以上のようにして符号化されたビットストリームを復号してフレームもしくは動画像オブジェクトを再生する復号装置を構成することもできる。

10 実施の形態7.

上記の各実施の形態において、複数のメモリのうち、任意の複数、例えば2つ、のメモリ (例えばメモリaとb) から取り出された2つの予測画像候補を加算平均した画像を予測画像候補6の1つとする構成または予測画像9として用いる構成にすることができる。また、以上のようにして符号化されたビットストリームを復号してフレームもしくは動画像オブジェクトを再生する復号装置を構成することもできる。

実施の形態8.

上記の各実施の形態に示した符号化装置において、予測を行う単位と 20 なる画像領域の空間的な複雑さ、注視度、などを規定する特徴量パラメ ータをあらかじめ検出しておき、これらを予測モード決定、メモリ更新 の際の判定尺度として利用する構成をとることができる。

例えば、複雑な動きを含み、与えられた符号量内で許容品質を達成する符号化を行うことが困難な動画像を想定する。このような場合は、被 予測画像領域(マクロブロック、任意形状画像領域、任意形状ブロック など)ごとに重要度を見極め、重要度の低い領域はある程度品質を落し

10

15

て符号量を減少させ、その分を重要度の高い領域に割り当てて全体の品 質を向上させる。本発明のように複数のメモリを任意のタイミングで切 り替えて予測を行う装置では、被予測画像領域の重要度を表す特徴量パ ラメータを検出して、これに基づいて動的にメモリ使用方法を決定する ことにより、より画像の性質に適応した予測を行うことができる。例え ば、図16に示すように、領域ごとに特徴量パラメータを検出して重要 度を決定する領域重要度検出部95を設ける。領域重要度検出部95は 領域重要度を予測モード選択部7aへ伝えるとともに領域重要度に基づ く量子化パラメータをテクスチャ符号化部11aへ伝える。領域重要度 検出部95で重要度が高いと判定された領域は、複数用意された予測モ ードのうち、もっとも複雑なモードを用いて予測を行う。例えば、各メ モリa,b,cからの参照画像を用いてそれぞれ複雑な動きモデルに基 づいた動きパラメータと予測画像を求め、これら予測画像の任意の組み 合せ (加算平均など) も含めて最も予測効率の高い予測モードを予測モ ード選択部7 a において選択する。この際、予測に使用したすべてのメ モリに対して参照画像を更新する。さらに、テクスチャ符号化部11a では、量子化ステップ幅が細かい量子化パラメータにより符号化を行う 。一方、重要度の低い領域では、簡易な予測モード(1 つのメモリだけ を用いた平行移動量検出)によって予測を行い、得られた予測誤差信号 の振幅に関わらず少ない符号量になるように、量子化ステップの粗い量 子化パラメータを用いて符号化する。以上の制御を行うことによって、 重要度の低い領域はある程度品質を落しても、重要度の高い領域は高度 な予測によって品質が保たれ、与えられた符号量で全体の品質を向上す ることができる。

25

20

実施の形態9.

10

25

複数のメモリを用いて動画像シーケンスを予測、符号化する装置にお いて、動画像シーケンスの各時刻において使用可能な符号量、あるいは 当該時刻でのシーンの変化量(シーンチェンジ検出など)、実施の形態 8 で述べたような被予測画像領域の特徽量や重要度などのパラメータを 検出しておき、これらの値を、当該時刻における画像の予測に用いるこ とのできる予測方式、あるいは参照メモリ領域の選択の際の判定尺度と して利用する構成をとることができる。例えば、図17のように、フレ ーム単位で重要度を決定するフレーム重要度検出部96を設け、前フレ ームに対する当該フレームの変化量(シーンチェンジ検出部80からの シンーンチェンジを検出)、新しいオブジェクトの出現・隠蔽の有無な どを検出し、送信バッファ20から通知される当該フレームで使用でき る符号量を考慮して最終的なフレーム重要度を決定する。これに基づい て、重要度の高いフレームでは用意されたすべての予測方式と参照メモ リ領域を用いて最大限予測効率を向上し、重要度の低いフレームでは予 測方式や参照メモリ領域を限定して用い、符号化処理を簡素化して処理 15 量を低減する、という装置構成が考えられる。また、シーンチェンジ時 に予測を行わずにすべてイントラフレーム符号化する装置も考えられる 。さらに、実施の形態8で述べた領域重要度検出部95と併用すれば、 よりきめ細かい品質制御を行うことができる。以上の制御を行うことに よって、重要度の低いフレームはある程度品質を落しても、重要度の高 20 いフレームは高度な予測によって品質が保たれ、与えられた符号量で全 体の品質を向上することができる。

本実施の形態の考え方は、処理プロセスや使用可能なメモリ量が流動 的なソフトウエアによる符号化の際に、利用できる資源を最大限に活用 して効率よく符号化処理を行わせる場合にも適用可能である。重要度の 低いフレームでは処理量を低減でき、全体の処理速度を向上させること

42

ができる。

5

10

15

20

25

実施の形態10.

図11に示したような、複数のメモリを用いて複数の動画像オブジェクトから構成される動画像シーケンスを予測、符号化する装置において、シーケンスとして使用できる総符号量、各動画像オブジェクトの各時刻において使用可能な符号量、あるいは当該時刻での動画像オブジェクトの変化量(オブジェクトの出現、隠蔽など)、各動画像オブジェクトのシーンの中での重要度/注視度のレベル、実施の形態8や9で述べたような被予測画像領域の特徴量や重要度などのパラメータを検出しておき、これらの値を、当該時刻における動画像オブジェクトの予測に用いることのできる予測方式、あるいは参照メモリ領域の選択の際の判定尺度として利用する構成をとることができる。

例えば、図18のように、各オブジェクト1~nに対応する重要度検出部97a~97nを設け、オブジェクトの各時刻における変化量やオブジェクトの出現・隠蔽の有無などを表すパラメータを検出するとともに、すべてのオブジェクトの符号化データが蓄積される全体バッファ72xの占有率、各オブジェクトの仮想バッファ72a~72nの占有率とを考慮して、各時刻においてオブジェクトの重要度を決定する。例えば、オブジェクト内に他のオブジェクトの一部が重なるなどの結果として新しいタイプの領域が出現した場合、これは以降の予測効率に大きく影響するため、ある程度オブジェクトの仮想バッファに余裕のない場合であっても重要度を高くし、符号化画像をきれいにしておく、などの制御が考えられる。重要度検出部97a~97nで検出された重要度はオブジェクト1~N符号化部98a~98nに渡され、重要度の高いオブジェクトでは用意されたすべての予測方式と参照メモリ領域を用いて最

10

20

25

大限予測効率を向上し、重要度の低いオブジェクトでは予測方式や参照メモリ領域を限定して用い、符号化処理を簡素化して処理量を低減する、という装置構成が考えられる。また、フレームからリアルタイムにオブジェクト分離を行って符号化する装置では、新しいオブジェクトの出現や、既存オブジェクトの隠蔽などによって当該オブジェクトの内容が著しく変化した場合に、予測を行わずにすべてイントラフレーム符号化する装置も考えられる。さらに、オブジェクト1~N符号化部98a~98nにおいて実施の形態8で述べた領域重要度検出部95も併用すれば、オブジェクト内の各被予測対象領域単位によりきめ細かい品質制御を行うことができる。以上の制御を行うことによって、重要度の低いオブジェクトはある程度品質を落しても、重要度の高いオブジェクトは高度な予測によって品質が保たれ、与えられた符号量で全体の品質を向上することができる。

15 実施の形態11.

また、図19に示すように、予測に関する符号化情報(参照メモリ番号など)の符号割り当て(符号化)を行う予測情報符号化部91を設ける場合がある。

複数のメモリa, b, cを用いて動画像シーケンスまたは動画像オブジェクトを予測、符号化する装置において、予測に用いられるメモリの使用頻度に応じて複数のメモリのランク付けを行い、かつこのランク付けを符号化中にダイナミックに変更することができるようにして、上記予測情報符号化部91における予測に関する符号化情報(参照メモリ番号など)の符号割り当てを、予測に用いる複数のメモリのランクに応じて行うようにする構成をとることができる。

例えば、図19の符号化装置において、メモリ更新部15bに、メモ

10

15

20

リa, b, cそれぞれの予測に用いられる頻度をカウントするカウンタ 92を設けておき、そのカウント値にしたがってメモリa, b, cをラ ンク付けし、ランク情報 90を出力する。このランク付けは、例えば1 フレームもしくは動画像オブジェクトのある時刻における画像(VOP) を単位に行ってもよいし、より細かい単位である被予測画像領域(マク ロブロック、任意形状領域、任意形状プロックなど)毎に行うこともで きる。

これにより、どのメモリがどれだけ頻繁に予測に使われるかを認識できる。頻繁に予測に用いられるメモリは、予測を行うにあたって重要度 の高いメモリであり、参照頻度が高いほどランクを高くする。

このようにして、各被予測画像領域単位に予測に用いたメモリの頻度 情報を符号化する場合、頻繁に参照するメモリ (=ランクが高いメモリ) には短い符号長を割り当てるほうが符号化効率が高まる。

また、各被予測画像領域単位に検出した動きパラメータも、参照した メモリのランクに対応して符号長を割り当てることができれば、頻繁に 発生する動きパラメータ値に対して短い符号長を割り当てることができ 、効率的な予測情報の符号化が可能になる。これらの仕組みは、可変長 符号化・多重化部19の予測情報符号化部91がメモリ更新部15bの カウンタ92から各メモリのランクを受け取るようにしておき、このラ ンク情報90に基づいて符号長を可変にして予測情報の符号化を行う構 成で実現できる。

実施の形態12.

図24は、本実施の形態における、圧縮符号化されたディジタル画像 25 を伸長再生する画像復号装置の構成を示したものである。同図において

10

15

20

25

21は符号化されたビットストリーム、119は可変長復号部、12は量子化DCT係数、12aは量子化直交変換係数、12bは量子化ステップ、111はテクスチャ復号部、111aは逆量子化部、111bは逆直交変換部、190は復号加算部、101は復号画像、191は表示制御部、8は予測モード、1001はメモリb更新情報、1002はメモリc更新情報、4は動きベクトル(動きパラメータ)、800は予測メモリ指示情報、195は被予測画像領域の画面内位置、105は動き補償部、116はメモリa、117はメモリb、118はメモリc、115はメモリ更新部、106は予測画像である。動き補償部105とメモリ更新部115により予測画像生成部100aを構成している。また、メモリa,b,cによりメモリ領域200aを構成している。

この実施の形態では、メモリaは1フレーム分の画像データを蓄積するフレームメモリであり、メモリbはスタティックスプライトメモリであり、メモリcはダイナミックスプライトメモリであるものとする。また、この実施の形態の復号装置は、図22に示したビットストリーム21を入力するものとする。また、図22には示していないが、メモリb更新情報1001及びメモリc更新情報1002がビットストリームの中で送られてくるものとする。メモリb更新情報1001には、スタティックスプライトメモリを全面更新するための画像データが含まれているものとする。同様に、メモリc更新情報1002には、ダイナミックスプライトメモリを全面更新する更新指示と全面更新するための画像データが含まれているものとする。

以下、上記構成の装置の動作を説明する。まず、可変長復号部119 においてビットストリーム21が解析され、個々の符号化データに切り 分けられる。量子化直交変換係数12aは逆量子化部119aに送られ 、量子化ステップ12bを用いて逆量子化される。この結果が逆直交変

46

換部111bにおいて逆直交変換されテクスチャが復号され、復号加算部190に送られる。直交変換はDCT(離散コサイン変換)など、符号化装置側で用いるものと同じものを用いる。

動き補償部105には、可変長復号部119でビットストリーム21 から復号された動きベクトル4、予測メモリ指示情報800と、被予測 画像領域の画面内位置195を示す情報が入力される。動き補償部105は、これらの3種類の情報にしたがって複数のメモリa,b,cに格 納されている参照画像から所望の予測画像を取り出す。被予測画像領域の画面内位置195はビットストリームに含まれている情報ではなくマクロブロックの数をカウントすることにより計算できる。予測画像生成の処理については以下の動き補償部105の動作説明の箇所で詳述する

5

10

15

20

25

復号加算部190は、予測モード8の情報に基づいて、イントラフレーム符号化されたブロックならば逆直交変換部111bの出力をそのまま復号画像101として出力し、インターフレーム符号化されたブロックなら逆直交変換部111bの出力に予測画像106を加算して復号画像101として出力する。復号画像101は表示制御部191に送られ、表示デバイスに出力されるともに、以降の復号処理において参照画像として用いるためにメモリa~cに書き込まれる。メモリへの書き込みは予測モード8に基づいて、メモリ更新部115で制御される。

次に、予測画像生成部100aの動き補償部105における予測画像 生成処理について説明する。本実施の形態では、画像の予測方式は予測 メモリ指示情報800に基づいて決定される。本実施の形態による復号 装置では、予測画像を生成するにあたって、動きベクトル4と予測メモ リ指示情報800とに基づいて、所定の座標変換処理および内挿処理に より参照画像から予測画像を生成する。座標変換処理の方法はあらかじ

20

め予測に使用するメモリに対応づけられているものとする。例えば、実施の形態3で述べた画像変形方式と同じ以下のような変形手法の例を考えることができる。

(1)メモリaを予測に用いる場合 (=予測メモリ指示情報800がメ モリaの使用を指示している場合)

動きベクトルによって被予測対象領域の各画素の座標を平行移動させ、メモリa中の対応する位置の画像データを予測画像として取り出す。

- ・ (2) メモリ b を予測に用いる場合 (=予測メモリ指示情報がメモリ b の使用を指示している場合)
- 10 動きベクトルに基づいてアフィン変換式を求め、同変換式によって被 予測対象領域の各画素の座標を変位させ、メモリ c 中の対応する位置の 画像データを予測画像として取り出す。
 - (3)メモリcを予測に用いる場合 (=使用メモリ指示情報がメモリcの使用を指示している場合)
- 15 動きベクトルに基づいて遠近法変換式を求め、同変換式によって被予 測対象領域の各画素の座標を変位させ、メモリb中の対応する位置の画 像データを予測画像として取り出す。

動き補償部105の内部構成を図25に示す。同図において、161 はスイッチ、162はメモリa用対応点決定部、163はメモリb用対 応点決定部、164はメモリc用対応点決定部、165はメモリ読み出 しアドレス生成部、166はスイッチ、167は内挿処理部である。ま た、図26はその動作の様子を示すフローチャートである。

以下、図25および図26をもとに、本実施形態における動き補償部 105の動作を説明する。

25 1)対応点の決定

まず、予測メモリ指示情報800に基づき、スイッチ161によって対

応するメモリ用の対応点決定部を選択し、選択された対応点決定部に動きベクトル4を入力する。ここでは、各メモリに対応した予測画像位置の算出を行う。以下、メモリ対応で説明する。

1-1)予測メモリ指示情報800がメモリaを指示している場合(ス 5 テップS100)

動きベクトルによる平行移動によって、予測画像位置を算出する(ステップS101)。具体的には、動きベクトル(a,b)によって、被予測画像領域の位置(x,y)の画素に対する予測画像位置(x',y')を下式によって決定する。

10 x' = x + ay' = y + b

決定された予測画像位置をメモリ読み出しアドレス生成部165に出力する。

1-2) 予測メモリ指示情報800がメモリbを指示している場合 (ス 15 テップS103)

動きベクトル4に基づいてアフィン変換式を決定する。具体的には、 被予測画像領域を取り囲む矩形領域の頂点の動きベクトルを用いて、下 式のアフィンパラメータ(a, b, c, θ)を決定する。

 $x' = a(\cos \theta)x + a(\sin \theta)y + b$

20 $y' = a(-\sin\theta)x + a(\cos\theta)y + c$

これにより、被予測画像領域の位置(x,y)の画素に対する予測画像位置(x',y')を求め、メモリ読み出しアドレス生成部165に出力する(ステップS104)。

1-3) 予測メモリ指示情報 8 0 0 がメモリ c を指示している場合 (ス 25 テップ S 1 0 6)

動きベクトルに基づいて遠近法変換式を決定する。具体的には、被予

測画像領域を取り囲む矩形領域の頂点の動きベクトルを用いて、下式の 遠近法パラメータ(a, b, c, d, e, f)を決定する。

$$x' = (a x + b y + c)/(g x + h y + 1)$$

 $y' = (d x + e y + f)/(g x + h y + 1)$

- 5 これにより、被予測画像領域の位置(x,y)の画素に対する予測画像位置(x',y')を求め、メモリ読み出しアドレス生成部に出力する(ステップS 107)。
 - 2) 予測画像生成用データの読み出し

選択された対応点決定部から出力される予測画像位置(x'y')を基に、 メモリ読み出しアドレス生成部165がメモリに蓄積されている参照画 像中の予測画像生成に必要な画像データの位置を特定するメモリアドレ スを生成し、予測画像生成用データを読み出す(ステップS102、S 105、S108)。

- 3) 予測画像の生成
- 15 予測画像を構成する画素のうち、整数画素位置の画素ならば、予測画像生成用データがそのまま予測画像構成画素となる。一方、実数精度の画素位置の画素の場合、内挿処理部167によって予測画像生成用データの内挿処理によって内挿画素値が生成される(ステップS109, S110, S111)。内挿画素値の生成は図26による。図26において、(i,,j,)は整数画素位置を示し、(i',j')は実数精度の画素位置を示し、wは重みを示す。
 - 4) メモリ (参照画像) の更新

図28に、メモリ更新部115の制御のフローチャートを示す。メモリ更新部115では、予測モード8(又は、予測メモリ指示情報800)に基づいて予測画像取り出しの単位(例えばマクロブロック単位)で各メモリの更新を制御する。メモリaを用いて予測した場合(ステップ

S112)は、復号画像101によって逐次、メモリaおよびcの内容を更新する(ステップS113)。メモリbを用いて予測した場合(ステップS114)は、メモリbはスタティックスプライトメモリなので、メモリbの参照画像は予測画像取り出しの単位では更新しない。しかし、復号画像101によって逐次、メモリaおよびびcの内容を更新する(ステップS115)。一方、メモリb更新情報1001に含まれる画像データを受け取りメモリbの内容を全面更新する(ステップS116)。また、メモリcを用いて予測した場合(ステップS117)は、復号画像101によって逐次、メモリaおよびcの内容を更新する(ステップS118)。また、メモリ更新情報により更新指示を受けた場合に、メモリc更新情報1002に含まれる画像データを受け取りメモリcの内容を更新する(ステップS119)。

5

10

15

25

この実施の形態においては、メモリa, b, cの3つのメモリを用いる場合を示したが、2つのメモリを用いる場合であっても構わない。例えば、メモリaとb、即ち、フレームメモリとスタティックスプライトメモリを用いる場合でも構わない。或いは、メモリaとc、即ち、フレームメモリとダイナミックスプライトメモリを用いる場合でも構わない

20 以上のように、本実施の形態の復号装置によれば、画像の動きに対応 して様々な種類の動きパラメータを用いて効率よく予測を行った符号化 されたビットストリーム21を復号できるとともに、符号化側で定めら れるタイミングで参照画像の内容を任意に更新する仕組みに対応できる ので、より画像の性質に適応した復号処理を行うことが可能である。

本実施の形態では、直交変換符号化以外の別の符号化方式によって予 測誤差信号を符号化したビットストリームであっても、動き補償部・メ

15

20

25

モリ更新部以外の、予測誤差信号復号処理のための部材を変更することで同様の効果を得ることができる。

また、本実施の形態は、固定サイズブロックを単位として復号処理を行うような通常のテレビ信号のフレームを単位とする復号装置に適用できるだけでなく、被予測対象領域を固定サイズブロックに限定せずに、任意形状画像オブジェクト(例: ISO/IEC JTCI/SC29/WG11/N1902で開示されるVideo Object Planeなど)を単位とする復号装置にも適用可能である。

10 産業上の利用可能性

以上説明したように、この発明によれば、参照用画像を蓄積するメモリ領域を複数個持つので、動画像シーケンスの性質に応じてメモリに振り分けて蓄積することができ、また、複数のメモリ領域のうち1つ以上のメモリ領域の内容を任意のタイミングで更新可能なので、背景画像などの時不変な画像内容は長時間内容の更新を行わず、局所的に変化する画像領域は頻繁にメモリ内容を更新するなどの制御が可能となり、動画像シーケンスの履歴を生かした効率的な予測が行える。

また、複数のメモリ領域それぞれに、各メモリ領域が有効となる変形パラメータ値域を設定し、被予測画像領域の変形パラメータの値に応じてメモリ領域を切り替えて予測に用いるるので、動画像シーケンスの局所的/大域的な動きの大きさに応じて効率的な予測が行える。同時に、被予測画像領域ごとに符号化すべき動きパラメータは参照メモリ領域の有効動きパラメータ値域の範囲内で効率的に符号化することができる。

また、複数のメモリ領域それぞれに、各メモリで有効となる変形手法 を設定し、被予測画像領域の変形パラメータの種類に応じてメモリを切 り替えて予測できるので、動画像シーケンスの局所的/大域的な動きの 複雑さに応じて効率的な予測が行える。同時に、被予測画像領域の動きの性質にあわせて変形手法を適宜選択できることで、動きパラメータを 効率的に符号化することができる。

請求の範囲

1. 予測に際して参照する画像データを蓄積するとともに、それぞれ個別の変形手法が対応づけられている複数のメモリと、

5 被予測画像領域の動きを表現するパラメータを入力し、該被予測画像 領域の予測に用いたメモリに蓄積された画像データを用いて、上記パラ メータと、該メモリに対応づけられた変形手法に基づき予測画像を生成 する予測画像生成部とを備え、

少なくとも符号化装置および復号装置のいずれかに用いられることを 10 特徴とする動画像を予測する動画像予測方式。

- 2. 上記符号化装置は、上記予測画像の生成に用いた該メモリを示す予測メモリ指示情報信号を生成し、復号側でも該メモリに蓄積された画像データを用いて、該メモリに対応づけられた変更手法に基づき上記予測画像が生成できるように、上記予測メモリ指示情報信号と上記パラメータを復号側へ送信することを特像とする請求項1記載の動画像予測方式
- 3. 上記復号装置は、上記パラメータと上記予測画像の生成に用いたメ 20 モリを示す予測メモリ指示情報を符号化側から受け取り、

上記予測画像生成部は、上記パラメータと該メモリに対応づけられた 変形手法に基づき、該メモリに蓄積された画像データを用いて上記予測 画像を生成することを特徴とする請求項1記載の動画像予測方式。

25 4. 予測に際して参照する画像データを蓄積するとともに、それぞれ個別のパラメータ有効値域が対応づけられている複数のメモリと、

15

20

25

被予測画像領域の動きを表現するパラメータを入力し、該パラメータの値を含む上記パラメータ有効値域が対応づけられたメモリを選択し、 選択されたメモリに蓄積された画像データを用いて予測画像を生成する 予測画像生成部とを備え、

少なくとも符号化および復号のいずれかに用いられることを特徴とする動画像を予測する動画像予測方式。

5. 予測に際して参照する画像データを蓄積する複数のメモリと、

被予測画像領域の動きを表現するパラメータを入力し、該パラメータ に基づいて上記複数のメモリに蓄積された画像データを用いて予測画像 を生成する動き補償部と、上記複数のメモリの少なくとも1つのメモリ に蓄積される画像データを任意のタイミングで更新するメモリ更新部と を有する予測画像生成部とを備え、

少なくとも符号化および復号のいずれかに用いられることを特徴とす る動画像を予測する動画像予測方式。

6. 上記動画像予測方式は、第1と第2の動画像オブジェクトを有する 動画像シーケンス上の動画像を予測し、

上記複数のメモリは、上記第1と第2の動画像オブジェクトに対応する第1と第2の個別の複数のメモリを備え、上記予測画像生成部は、上記第1と第2の動画像オブジェクトに対応する第1と第2の個別の生成部を備えており、

上記第1の生成部は、上記第1のオブジェクトを予測する場合に、少なくとも上記第1と第2の複数のメモリのいずれかに蓄積されている画像データを用いて上記予測画像を生成するとともに、第2の複数のメモリを第1のオブジェクトの予測に使用しているか否かを示す情報を予測

画像に付加するために生成することを特徴とする請求項1、4、5いずれかに記載の動画像予測方式。

- 7. 上記予測画像生成部は、動画像の各時刻における変化に応じて、上記複数のメモリの数とサイズのいずれかを増減することにより予測画像を生成することを特徴とする請求項1、4、5いずれかに記載の動画像予測方式。
- 8. 上記予測画像生成部は、動画像の各時刻における変化に応じて、予 10 測に用いるメモリを限定することにより予測画像を生成することを特徴 とする請求項1、4、5いずれかに記載の動画像予測方式。
- 9. 上記予測画像生成部は、上記複数のメモリに蓄積された上記画像データを用いてそれぞれに生成された複数の予測画像を演算することにより予測画像を生成することを特徴とする請求項1記載の動画像予測方式
 - 10. 上記動画像予測方式は、被予測画像領域の重要度を示す特徴量パラメータを検出する重要度検出部を備え、
- 20 上記予測画像生成部は、上記特徴量パラメータに基づいて、少なくと も複数の予測方式と、複数のメモリと、複数のメモリ更新方法のいずれ かについて、複数の選択肢の中から少なくとも1つを選択することによ り予測画像を生成することを特徴とする請求項1記載の動画像予測方式

25

11. 上記動画像予測方式は、少なくとも、被予測画像領域が利用可能

15

20

な符号量と、各時刻における該画像領域の変化量と、該画像領域の重要 度のいずれかを表すパラメータを検出する重要度検出部を備え、

上記予測画像生成部は、上記パラメータに基づいて、少なくとも複数 の予測方式と、複数のメモリと、複数のメモリ更新方法のいづれかにつ いて、複数の選択肢の少なくとも1つを選択することにより予測画像を 生成することを特徴とする請求項1又は5記載の動画像予測方式。

12. 上記動画像予測方式は、動画像を動画像オブジェクト単位で予測し、

10 上記動画像予測方式は、少なくとも、被予測動画像オブジェクトが利 用可能な符号量と、各時刻における該動画像オブジェクトの変化量と、 該動画像オブジェクトの重要度のいずれかを表すパラメータを検出する 重要度検出部を備え、

上記予測画像生成部は、上記パラメータに基づいて、少なくとも複数 の予測方式と、複数のメモリと、複数のメモリ更新方法のいづれかにつ いて、複数の選択肢の少なくとも1つを選択することにより予測画像を 生成することを特徴とする請求項1又は5配載の動画像予測方式。

13. 上記動画像予測方式は、動画像の符号化において、予測に係る情報を符号化する予測情報符号化部を備え、

上記予測画像生成部は、予測に使用されるメモリの使用頻度数をカウントし、カウントした使用頻度数に基づいて上記複数のメモリのランクを決定し、

上記予測情報符号化部は、予測に用いられるメモリのランクに応じて 5 、予測に係わる情報に符号長を割り当てることにより予測に係わる情報 を符号化することを特徴とする請求項1又は5記載の動画像予測方式。 14. 上記複数のメモリは、少なくとも、画像データをフレーム単位で 蓄積するフレームメモリと、スプライト画像を蓄積するスプライトメモ リとを有することを特徴とする請求項1記載の動画像予測方式。

5

15. 上記スプライトメモリは、少なくとも、逐次更新を伴うダイナミックスプライトメモリと逐次更新を伴わないスタティックスプライトメモリのいずれかを有することを特徴とする請求項第14記載の動画像予測方式。

10

20

- 16. 上記複数のメモリは、少なくとも、平行移動、アフィン変換、遠近法変換の内のいずれかの変形手法が変更可能に対応づけられることを 特徴とする請求項第14記載の動画像予測方式。
- 15 17. 予測に際して参照する画像データを複数のメモリに蓄積する工程と、

上記複数のメモリにそれぞれ個別の変形手法を対応づける工程と、 被予測画像領域の動きを表現するパラメータを入力する工程と、

上記被予測画像領域の予測に用いたメモリに蓄積された画像データを 用いて、上記パラメータと該メモリに対応づけられた変形手法に基づき 予測画像を生成する工程を備え、

少なくとも符号化および復号のいずれかに用いられることを特徴とする動画像を予測する方法。

25 18. 上記動画像を予測する方法は、さらに、上記予測画像生成に用いた該メモリを示す予測メモリ指示情報信号を生成する工程と、

上記予測メモリ情報信号と上記パラメータを復号側へ送信する工程と を備えたことを特徴とする請求項17記載の動画像を予測する方法。

- 19. 上記動画像を予測する方法は、さらに、予測画像の生成に用いた メモリを示す予測メモリ指示情報信号と被予測画像領域の動きを表現す るパラメータを符号化側から受け取る工程を備え、復号に用いられることを特徴とする請求項17記載の動画像を予測する方法。
- 20. 予測に際して参照する画像データを複数のメモリに蓄積する工程 10 と、

上記複数のメモリにそれぞれ個別のパラメータ有効値域を対応づける 工程と、

被予測画像領域の動きを表現するパラメータを入力する工程と、

上記パラメータの値を含む上記パラメータ有効値域が対応づけられた 15 メモリを選択する工程と、

選択されたメモリに格納された画像データを用いて予測画像を生成する工程を備え、少なくとも符号化および復号のいずれかに用いられることを特徴とする動画像を予測する方法。

20 21. 予測に際して参照する画像データを複数のメモリに蓄積する工程と、

被予測画像領域の動きを表現するパラメータを入力する工程と、

上記パラメータに基づいて、上記複数のメモリに蓄積された画像データを用いて予測画像を生成する工程と、

25 上記複数のメモリの少なくとも1つのメモリに格納される画像データ を任意のタイミングで更新する工程を備え、少なくとも符号化および復 号のいずれかに用いられることを特徴とする動画像を予測する方法。

2/37

4/37 **図4**

5/37 **図**5

6/37 図6

7/37 **図7**

10/37 **図10**

13/37 **図13**

14/37 図14

PCT/JP98/00232

図22

25/37

26/37

WO 98/36576

27/37

28/37

30/37 **図30**

32/37

33/37 **図33**

VOPタイプ	予測なし	過去のVOP からの予測	過去および 未来のVOP からの予測	スプライトから予測
I - VOP	0	×	×	×
P. V0P	0	0	×	×
! ! !	0	0	0	×
SPRITE - VOP	0	0	×	0

34/37

35/37

36/37 **図36**

PCT/JP98/00232

37/37

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/00232

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ H04N7/32						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ H04N7/24-H04N7/68						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1957-1998 Kokai Jitsuyo Shinan Koho 1975-1998						
Electronic da	ata base consulted during the international search (name	of data base and, where practicable, se	arch terms used)			
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appro		Relevant to claim No.			
х	JP, 8-172631, A (Matsushita E Co., Ltd.), July 2, 1996 (02. 07. 96)	lectric Industrial	1-3, 5, 9, 17-19, 21			
Y A	& EP, 719049, A2		14-16 4, 6-8, 10-13, 20			
Y A	Hironao Nyozawa "Efficiency of Encoding in Conformity with MPEG-4 (in Japanese)", Preprints of 1996 Winter Meeting of Image Media Section, The Institute of Television Engineers of Japan, December 4, 1996 (04. 12. 96) (Tokyo) pages 39 to 44, particularly page 44, left column, lines 2 to 13					
Furth	er documents are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance: "E" active document but published on or after the international filing date with the application but cited to understant the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered bowl or cannot be considered to involve an inventive special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "E" document of particular relevance; the claimed invention cannot be considered to involve an inventive swhen the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive such document is combined with one or more other such documents is combined with one or more other such documents, such combinate being obvious to a person skilled in the art document member of the same patent family Date of the actual completion of the international search						
April 21, 1998 (21. 04. 98) Name and mailing address of the ISA		Authorized officer				
Japanese Patent Office		Telephone No.				

国際出題番号 PCT/JP98/00232

	日外似耳状口	ESCHARIE VIII			
A. 発明の属する分野の分類(国際特許分類(IPC))					
Int. Cl* H04N7/32					
B. 調査を行	テった分野				
調査を行った最小限資料(国際特許分類(IPC))					
l r	t. C1° H04N7/24-H04N7/6				
最小限資料以外の資料で調査を行った分野に含まれるもの					
日本国実用新案公報 1957-1998年 日本国公開実用新案公報 1975-1998年					
国際調査で使用	国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)				
	a lamba la sense				
C. 関連する 引用文献の	5と認められる文献		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連すると		請求の範囲の番号		
X Y A	JP, 8-172631, A (松下電 1996 (02. 07. 96) &EP	器産業株式会社) 2. 7月. , 719049, A2	$ \begin{array}{ccccccccccccccccccccccccccccccccc$		
Y A	如澤裕尚「MPEG-4の符号化効率 会映像メディア部門冬季大会講演予程 (04.12.96) (東京) p39 行一第13行	集、4.12月.1996	20 14-16 1-13, 17-21		
□ C欄の続	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」先行文献ではあるが、国際出願日以後に公表されたもの 「E」先行文献ではあるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「B際調査を完了した日 の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって、発明の原理又に参の理解のために引用するもの 「X」特に関連のある文献であって、当該文献の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献のから、当業者にとって自明である組合しよって進歩性がないと考えられるもの 「B」国際出願日前で、かつ優先権の主張の基礎となる出願 「是」同一パテントファミリー文献			、発明の原理又は理 当該文献のみで発明 えられるもの 当該文献と他の1以 自明である組合せに		
	21.04.98	国際調査報告の発送日 特許庁審査官(権限のある職員)	2.05.98		
日本	の名称及びあて先 国特許庁 (ISA/JP) 郵便番号100-8915	付計「一番登官(権限のある収費) この	Ú [30] 30.0		
1	知手护用区数形照三丁目 4 悉 3 号	銀新番号 03-3581-1101	内線 3542		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.