```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings("ignore")
```

In [2]: df=pd.read_csv("50_Startups.csv")

In [3]: df

Out[3]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14		California	
45	1000.23	124153.04		New York	
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00		
48	542.05	51743.15	0.00	New York	
49	0.00	116983.80	45173.06	California	14681.40

```
In [4]: df.head(10)
```

Out[4]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96

In [5]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
    Column
                     Non-Null Count Dtype
#
    R&D Spend
                     50 non-null
                                     float64
    Administration
                     50 non-null
                                     float64
    Marketing Spend 50 non-null
                                     float64
                     50 non-null
                                     object
    State
```

50 non-null dtypes: float64(4), object(1) memory usage: 2.1+ KB

Profit

In [6]: df.describe()

Out[6]:

	R&D Spend	Administration	Marketing Spend	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

float64

In [7]: df.corr()

Out[7]:

	K&D Spend	Administration	Marketing Spend	Profit
R&D Spend	1.000000	0.241955	0.724248	0.972900
Administration	0.241955	1.000000	-0.032154	0.200717
Marketing Spend	0.724248	-0.032154	1.000000	0.747766
Profit	0.972900	0.200717	0.747766	1.000000

In [8]: df.isnull().sum()

Out[8]: R&D Spend

Administration 0 Marketing Spend 0 State Profit 0 dtype: int64


```
In [10]: #Plot Administration vs Profit
    x1 = df.iloc[:, 1].values
    y1 = df.iloc[:, -1].values
    plt.scatter(x1,y1,color='Red',s=50)
    plt.xlabel('Administration')
    plt.ylabel('Profit')
    plt.title('Administration vs Profit')
    plt.show()
```



```
In [11]: #Plot Marketing Spend vs Profit
    x1 = df.iloc[:, 2].values
    y1 = df.iloc[:, -1].values
    plt.scatter(x1,y1,color='Black',s=50)
    plt.xlabel('Marketing Spend')
    plt.ylabel('Profit')
    plt.title('Marketing Spend vs Profit')
    plt.show()
```



```
In [12]: #High correlation between Marketing Spend and Profit.
    #Plot State vs Profit
    x1 = df.iloc[:, 3].values
    y1 = df.iloc[:, -1].values
    plt.scatter(x1,y1,color='Blue',s=50)
    plt.xlabel('State')
    plt.ylabel('Profit')
    plt.title('State vs Profit')
    plt.show()
```


In [13]: df.head()

Out[13]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

```
In [14]: # Recommended way
sns.lmplot(x='Administration', y='Profit', data=df)

# Alternative way
# sns.lmplot(x=df.Administration, y=df.Profit)
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x27cafe5ecd0>


```
In [15]: # Plot using Seaborn
sns.lmplot(x='R&D Spend', y='Administration', data=df, fit_reg=False)

# Tweak using Matplotlib
plt.ylim(0, None)
plt.xlim(0, None)
```

Out[15]: (0.0, 173616.66)

In [16]: # Boxplot sns.boxplot(data=df)

Out[16]: <AxesSubplot:>


```
In [17]: # Set theme
          sns.set_style('whitegrid')
          # Violin plot
          sns.violinplot(x='Administration', y='State', data=df)
          plt.xticks(rotation=90)
Out[17]: (array([
                         0., 25000., 50000., 75000., 100000., 125000., 150000.,
           1/5000;
[Text(0, 0, ''), ''0, 0, ''),
                   175000., 200000., 225000.]),
             Text(0, 0, ''),
Text(0, 0, ''),
             Text(0, 0, ''),
             Text(0, 0, ''),
Text(0, 0, ''),
            Text(0, 0, ''),
Text(0, 0, ''),
             Text(0, 0, '')])
           California
               Florida
In [18]: pkmn_type_colors = ['#78C850',
                                              # Grass
                                  #F08030',
                                 '#6890F0',
                                              # Water
                                 '#A8B820',
                                              # Bug
                                 '#A8A878',
                                              # Normal
                                 '#A040A0',
                                              # Poison
                                 '#F8D030',
                                              # Electric
                                 '#E0C068',
                                              # Ground
                                 '#EE99AC',
                                              # Fairy
                                 '#C03028',
                                              # Fighting
                                 '#F85888', # Psychic
                                 '#B8A038',
                                              # Rock
                                 '#705898', # Ghost
                                 '#98D8D8', # Ice
'#7038F8', # Dragon
                                ]
In [19]: # Swarm plot with Pokemon color palette
          sns.swarmplot(x='Marketing Spend', y='State', data=df,
                          palette=pkmn_type_colors)
Out[19]: <AxesSubplot:xlabel='Marketing Spend', ylabel='State'>
               Florida
                              100000
                                        200000
                                                 300000
                                                           400000
                                        Marketing Spend
```

```
In [20]: # Swarmplot with melted_df
sns.swarmplot(x='State', y='Marketing Spend', data=df)
```

Out[20]: <AxesSubplot:xlabel='State', ylabel='Marketing Spend'>


```
In [21]: # Calculate correlations
    corr = df.corr()

# Heatmap
    sns.heatmap(corr)
```

Out[21]: <AxesSubplot:>


```
In [22]: # Count Plot (a.k.a. Bar Plot)
sns.countplot(x='State', data=df, palette=pkmn_type_colors)

# Rotate x-labels
plt.xticks(rotation=-90)
```



```
In [23]: sns.kdeplot(df["R&D Spend"], df["Profit"])
```

Out[23]: <AxesSubplot:xlabel='R&D Spend', ylabel='Profit'>


```
In [24]: # Joint Distribution Plot
sns.jointplot(x='Marketing Spend', y='Profit', data=df)
```

Out[24]: <seaborn.axisgrid.JointGrid at 0x27caf55f220>

In [25]: df.head()

Out[25]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107 34	91391 77	366168 42	Florida	166187 94

Seperation of dependent and independent variables

```
In [26]: x=df.iloc[:,:-2]
```

In [27]: x

Out[27]:

	R&D Spend	Administration	Marketing Spend
0	165349.20	136897.80	471784.10
1	162597.70	151377.59	443898.53
2	153441.51	101145.55	407934.54
3	144372.41	118671.85	383199.62
4	142107.34	91391.77	366168.42
5	131876.90	99814.71	362861.36
6	134615.46	147198.87	127716.82
7	130298.13	145530.06	323876.68
8	120542.52	148718.95	311613.29
9	123334.88	108679.17	304981.62
10	101913.08	110594.11	229160.95
11	100671.96	91790.61	249744.55
12	93863.75	127320.38	249839.44
13	91992.39	135495.07	252664.93
14	119943.24	156547.42	256512.92
15	114523.61	122616.84	261776.23
16	78013.11	121597.55	264346.06
17	94657.16	145077.58	282574.31
18	91749.16	114175.79	294919.57
19	86419.70	153514.11	0.00
20	76253.86	113867.30	298664.47
21	78389.47	153773.43	299737.29
22	73994.56	122782.75	303319.26
23	67532.53	105751.03	304768.73
24	77044.01	99281.34	140574.81
25	64664.71	139553.16	137962.62
26	75328.87	144135.98	134050.07
27	72107.60	127864.55	353183.81
28	66051.52	182645.56	118148.20
29	65605.48	153032.06	107138.38
30	61994.48	115641.28	91131.24
31	61136.38	152701.92	88218.23
32	63408.86	129219.61	46085.25
33	55493.95	103057.49	214634.81
34	46426.07	157693.92	210797.67
35	46014.02	85047.44	205517.64
36	28663.76	127056.21	201126.82
37	44069.95	51283.14	197029.42
38	20229.59	65947.93	185265.10
39	38558.51	82982.09	174999.30
40	28754.33	118546.05	172795.67
41	27892.92	84710.77	164470.71
42	23640.93	96189.63	148001.11
43	15505.73	127382.30	35534.17
44	22177.74	154806.14	28334.72
45	1000.23	124153.04	1903.93
46	1315.46	115816.21	297114.46
47	0.00	135426.92	0.00
48	542.05	51743.15	0.00
49	0.00	116983.80	45173.06

```
In [28]: y=df["Profit"]
In [29]: y
Out[29]: 0
               192261.83
               191792.06
               191050.39
         2
               182901.99
         3
               166187.94
               156991.12
               156122.51
               155752.60
               152211.77
               149759.96
         10
               146121.95
         11
               144259.40
               141585.52
         12
         13
               134307.35
         14
               132602.65
         15
               129917.04
               126992.93
         16
         17
               125370.37
         18
               124266.90
         19
               122776.86
               118474.03
         20
         21
               111313.02
         22
               110352.25
         23
               108733.99
               108552.04
         24
         25
               107404.34
               105733.54
         26
         27
               105008.31
         28
               103282.38
               101004.64
         29
         30
                99937.59
         31
                97483.56
         32
                97427.84
         33
                96778.92
         34
                96712.80
         35
                96479.51
         36
                90708.19
         37
                89949.14
         38
                81229.06
         39
                81005.76
         40
                78239.91
         41
                77798.83
         42
                71498.49
         43
                69758.98
         44
                65200.33
         45
                64926.08
         46
                49490.75
                42559.73
         48
                35673.41
         49
                14681.40
         Name: Profit, dtype: float64
In [30]: # Splitting the dataset into the Training set and Test set
         from sklearn.model_selection import train_test_split
         x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)
```

BUILDING OF MODEL

```
In [31]: # Fitting Multiple Linear Regression to the Training set
    from sklearn.linear_model import LinearRegression
    regressor = LinearRegression()
    regressor.fit(x_train, y_train)

Out[31]: LinearRegression()

In [32]: # Predicting the Test set results
    y_pred = regressor.predict(x_test)

In [33]: #evaluate the model
    from sklearn.metrics import r2_score

In [34]: r2_score(y_test,y_pred)

Out[34]: 0.9393955917820571
```

In [35]: sns.pairplot(df)

Out[35]: <seaborn.axisgrid.PairGrid at 0x27cb16f2220>


```
In [36]: # Print the dimensions of X and y
print(x.shape)
print(y.shape)

(50, 3)
(50,)
```

In [37]: import pandas_profiling as pp

In [38]: pp.ProfileReport(df) Summarize dataset: 100% 30/30 [00:02<00:00, 12.34it/s, Completed] 1/1 [00:01<00:00, 1.12s/it] Generate report structure: 100% 1/1 [00:00<00:00, 1.48it/s] Render HTML: 100% 23640.93 1 2.0% 27892.92 1 2.0% 28663.76 2.0% Value Frequency (%) Count 165349.2 2.0% 1 162597.7 1 2.0% 153441.51 1 2.0% 144372.41 1 2.0% 142107.34 1 2.0% 134615.46 1 2.0% 131876.9 1 2.0% 130298.13 1 2.0% 123334.88 2.0% 1 120542.52 2.0% 1 Interactions 4 Out[38]:

In []:

In []:

In []:

In []:

In []: