LINEAR COCYCLES AND LYAPUNOV EXPONENTS

Exercise 1. Let M be compact metric space, let $f: M \to M$ be a homeomorphism and let $A: M \to \mathrm{SL}_2(\mathbb{R})$ be a continuous map. Consider the corresponding linear cocycle

$$M \times \mathbb{R}^2 \ni (x, v) \mapsto (f(x), A(x)v) \in M \times \mathbb{R}^2$$
.

Assume that for all $x \in M$ we have an F-invariant line $E_x^u \subset \mathbb{R}^2$. Prove that the following statements are equivalent.

(i) For all $x \in M$, $v^u \in E_x^u$, $n \ge 1$,

$$||A^n(x)v^u|| \ge C^{-1}\lambda^{-n}||v^u||$$
.

(ii) For all $x \in M$, $v^u \in E^u_x$, $n \ge 1$,

$$||A^{-n}(x)v^u|| \le C\lambda^n||v^u||.$$

Exercise 2. Let M be compact metric space, let $f: M \to M$ be a homeomorphism and let $A: M \to \mathrm{SL}_2(\mathbb{R})$ be a continuous map. Prove that the corresponding linear cocycle

$$M \times \mathbb{R}^2 \ni (x, v) \mapsto (f(x), A(x)v) \in M \times \mathbb{R}^2$$

is uniformly hyperbolic if and only if there is $n_0 \in \mathbb{N}$ and for all $x \in M$ there is an F-invariant splitting $\mathbb{R}^2 = E^s_x \oplus E^u_x$ such that

$$||A^{n_0}(x)v^u|| > 1 > ||A^{n_0}(x)v^u||$$

for all unit vectors $v^s \in E^s_x$ and $v^u \in E^u_x$.

Exercise 3. Let (M, f, μ) be an ergodic dynamical system and let $v: M \to \mathbb{R}$ be a bounded, measurable potential function. For $E \in \mathbb{R}$ consider the Schrödinger cocycle $A_E: M \to \mathrm{SL}_2(\mathbb{R})$,

$$A_E(x) := \begin{pmatrix} v(x) - E & -1 \\ 1 & 0 \end{pmatrix}$$
.

Show that if $|E| > 2 + ||v||_{\infty}$ then A_E is uniformly hyperbolic.

Exercise 4. Let $g \in \mathrm{SL}_2(\mathbb{R})$ with ||g|| > 1. Show that there are two orthogonal unit vectors $u = u(g), s = s(g) \in \mathbb{R}^2$ such that gu and gs are orthogonal and ||gu|| = ||g|| while $||gs|| = ||g||^{-1}$.

Exercise 5. Complete the proof of Oseledets' theorem for $SL_2(\mathbb{R})$ -valued cocycles.

That is, prove that if $v \in E_x^s \setminus \{0\}$, then

$$\lim_{n \to \infty} \frac{1}{n} \log ||A^n(x)v|| = -L.$$

Recall that $E_x^s = \mathbb{R}s(x)$, where $s(x) := \lim_{n \to \infty} s_n(x)$, while $s_n(x) := s(A^n(x))$.

Furthermore, derive the two sided version of the Oseledets theorem by applying the one sided version (also) to the inverse cocycle F^{-1} .

Exercise 6. Let (M, f, μ) be an ergodic dynamical system and let $A: M \to \mathrm{GL}_{\mathrm{d}}(\mathbb{R})$ be a measurable map such that $\log^+ ||A^{\pm}|| \in L_1(\mu)$. Define $c(x) := \left| \det A(x) \right|^{1/d}$ and then let $B: M \to \mathrm{SL}_{\mathrm{d}}(\mathbb{R})$ be given by A(x) = c(x)B(x).

Show that $\log c$, $\log^+ \|B^{\pm}\| \in L_1(\mu)$. Check that for μ -almost every $x \in M$ and $v \neq 0$,

$$\lim_{n\to +\infty} \frac{1}{n} \log \lVert A^n(x)v\rVert = \int_M \log c(x) d\mu(x) + \lim_{n\to +\infty} \frac{1}{n} \log \lVert B^n(x)v\rVert \,.$$

Deduce that the associated cocycles F(x,v)=(f(x),A(x)v) and G(x,v)=(f(x),B(x)v) have the same Oseledets filtration and decomposition at almost every point. Moreover, the Lyapunov spectrum of the former cocycle is the translate of the Lyapunov spectrum of the latter by $\int \log c \, d\mu$.