Heurističko rešavanje problema minimalnog broja zadovoljivih formula

Aleksa Papić Aleksandar Stefanović

17. septembar 2022.

Sadržaj

1	Uvo	d	1
2	Opis algoritama		
	2.1	Kodiranje jedinki	2
	2.2	Ocena kvaliteta jedinki	2
	2.3	Rešavanje algoritmom grube sile	3
	2.4	Rešavanje genetskim algoritmom	3
		2.4.1 Operator selekcije	3
		2.4.2 Operator ukrštanja	3
		2.4.3 Operator mutacije	4
		2.4.4 Uslov zaustavljanja	4
	2.5	Rešavanje memetskim algoritmom	4

1 Uvod

Problem minimalne zadovoljivosti iskazne formule f (eng. MIN-SAT) je optimizaciona varijanta problema zadovoljivosti (eng. SAT) u kojoj se traži valuacija v takva da je broj klauza formule f tačnih u valuaciji v minimalan. Poznato je da je ovaj problem NP-težak [1].

U ovom radu ćemo posmatrati naredno modifikaciju ovog problema datu u [2]:

Definicija 1.1 (Problem minimalnog broja zadovoljivih formula). Neka je dat par (U, C) gde je U skup iskaznih promenljivih, a C skup iskaznih formula u 3KNF (eng. 3CNF). Rešenje problema minimalnog broja zadovoljivih

formula nad (U, C) je valuacija v za promenljive iz skupa U takva da je broj formula iz skupa C zadovoljenih tom valuacijom minimalan.

Iz definicije se može zaključiti da svaka instanca MIN-SAT problema odgovara nekoj instanci problema 1.1 u kojoj je broj klauza svake formule iz C jednak jedan.

Razmotrićemo i uporediti performanse jednog genetskog algoritma i više varijanti memetičkih algoritama za rešavanje problema 1.1.

2 Opis algoritama

U ovom poglavlju ćemo dati opis nekoliko pristupa u rešavanju problema 1.1.

2.1 Kodiranje jedinki

Pre razmatranja konkretnih algoritama, opisaćemo način kodiranja jedinki, tj. način predstavljanja konkretnih valuacija u okviru problema 1.1.

Definicija 2.1 (Kodiranje jedinki). Neka je dat par (U, C) kao u 1.1 i neka je skup promenljivih $U = \{p_1, ..., p_n\}$. Tada je valuacija v nad skupom promenljivih U niz binarnih brojeva $(x_1, ..., x_n) \in \{0, 1\}^n$ takav da x_i odgovara konkretizovanoj vrednosti promenljive p_i .

2.2 Ocena kvaliteta jedinki

Ocenu kvaliteta jedinki u okviru problema 1.1 ćemo zadati preko tzv. fitnes funkcije jedinke.

Definicija 2.2 (Fitnes funkcija). Neka je v neka jedinka, tj. konkretna valuacija (2.1) za par (U,C) definisan kao u problemu 1.1. Fitnes funkcija $fitness: \{0,1\}^n \to (0,1]$ je zadata sa $fitness(v) = \frac{1}{sat(v)+1}$, gde je sat(v) broj iskaznih formula iz C zadovoljenih u valuaciji v.

Iz date definicije se može zaključiti da je jedinka v_1 bolja od jedinke v_2 u kontekstu problema 1.1 ako i samo ako je $fitness(v_1) > fitness(v_2)$.

Broj zadovoljenih formula u valuaciji v se može dobiti kao $sat(v) = \frac{1}{fitness(v)} - 1$, ali se zbog računa u pokretnom zarezu predlaže zaokruživanje na najbliži ceo broj, tj. $sat(v) = round(\frac{1}{fitness(v)} - 1)$.

2.3 Rešavanje algoritmom grube sile

Naivni algoritam kojim se problem rešava grubom silom proverava sve moguće valuacije u problemu. Ukoliko je U skup promenljivih u problemu 1.1, takvih valuacija je $2^{|U|}$. Iako je egzaktan, ovaj algoritam je praktično neprimenljiv za sve osim najmanje probleme zbog svoje eksponencijalne složenosti.

2.4 Rešavanje genetskim algoritmom

Prvi heuristički algoritam koji ćemo upotrebiti je genetski algoritam. Opisaćemo operatore koje ćemo koristiti, kao i uslov zaustavljanja. Detaljan opis algoritma i mogućih modifikacija se može videti u [3].

Algoritam 1: Genetski algoritam

```
t \leftarrow 0;
P_{0} \leftarrow generisi \ populaciju();
\mathbf{while} \ nije \ ispunjen \ uslov \ zaustavljanja \ \mathbf{do}
\begin{vmatrix} P_{sel} \leftarrow selekcija(P_{t}); \\ P_{t+1} \leftarrow ukrstanje(P_{sel}); \\ P_{t+1} \leftarrow mutacija(P_{t+1}); \\ t \leftarrow t+1; \\ \mathbf{end} \end{vmatrix}
```

2.4.1 Operator selekcije

Za selekciju jedinki za reprodukciju koristićemo ruletsku selekciju. Verovatnoća izbora neke jedinke v jednaka je $\frac{fitness(v)}{\sum_{u \in P_t} fitness(u)}$, gde je P_t populacija jedinki u tekućoj iteraciji algoritma 1.

2.4.2 Operator ukrštanja

Za ukrštanje jedinki prilikom reprodukcije koristićemo jednopoziciono ukrštanje. Dve jedinke, $r_1 = (x_1, ..., x_n)$ i $r_2 = (y_1, ..., y_n)$, izabrane za roditelje u fazi selekcije kreiraće dva potomka, p_1 i p_2 , izborom tačke preseka k iz diskretne uniformne raspodele nad vrednostima $\{1, ..., n\}$. Tada će važiti $p_1 = (x_1, ..., x_k, y_{k+1}, ..., y_n)$ i $p_2 = (y_1, ..., y_k, x_{k+1}, ..., x_n)$.

2.4.3 Operator mutacije

Operator mutacije koji ćemo koristiti sa nekom verovatnoćom $p \in U(0,1)$, koja se zadaje kao parametar algoritma 1, invertuje jedan od bitova jedinke nad kojom se sprovodi mutacija.

2.4.4 Uslov zaustavljanja

Kao uslov zaustavljanja koristićemo maksimalni broj iteracija algoritma 1, kao i maksimalni broj iteracija bez promene u najboljoj jedinki. Obe vrednosti se zadaju kao parametri algoritma.

2.5 Rešavanje memetskim algoritmom

Reference

- [1] Rajeev Kohlit, Ramesh Krishnamurti, Prakash Mirchandani, *The minimum satisfiability problem*. SIAM J. Discrete Math. Vol. 7, No. 2, pp. 275-283, May 1994.
- [2] Viggo Kann, Polynomially bounded minimization problems that are hard to approximate. Nordic Journal of Computing 1(1994), 317–331.
- [3] Engelbrecht, Andries P. Computational intelligence: an introduction / Andries P. Engelbrecht. 2nd ed.