

Power System Components and Design

Mark Campbell

AA420 Space Design

Outline

- Power Generation
- Solar Cells
 - types
 - characteristics
- Batteries
 - types
 - characteristics
- Power system distribution and control
- · Power system design approach
- References:
 - Larson and Wertz
 - Prof. Mattick

UW

Solar Cell Issues

- Type of solar cells
 - Si (14% efficient)
 - GaAs (18-24% efficient)
 - higher efficiency cells currently being developed
- Eclipse periods
- · Characteristics as a function of
 - temp
 - voltage/current/size
 - lifetime
- Integration
 - cover glass
 - ероху
 - diodes
 - stringing cells to generate a bus voltage

Eclipse Periods

- Solar energy is can only be utilized while the cells are illuminated.
- The number and length of the eclipse period is a function of the orbital elements (such altitude)
 - see back cover of Larson and Wertz for worst case eclipse period for typical orbits

$$\theta = 2 * \sin^{-1} \left(\frac{R_{earth}}{R_{earth} + h} \right)$$

$$S = (R_{earth} + h) * \theta$$

$$V_{CS} = \sqrt{\frac{\mu}{R_{CS}}} = \sqrt{\frac{\mu}{R_{earth} + h}}$$

$$t_{total} = \frac{2\pi (R_{earth} + h)}{V_{CS}} \quad t_{eclipse} = \frac{S}{V_{CS}}$$

$$t_{light} = t_{total} - t_{eclipse} \label{eq:tlight}$$

W

Solar Cell Integration

- A cover glass is usually used to help with degradation over time.
 - It creates an hermetic seal that allows sunlight through and allows heat rejection
- · Usually very strong epoxies are used
- · Cell stringing:

- Shadowing: if one cell is not illuminated, the entire string is out because the cell creates and open circuit
 - caused by appendages
- Solution: bypass diodes

UW

Batteries

- · Batteries convert chemical energy to electrical energy
- · Batteries come in several forms:
 - non-rechargable, sometimes called primary
 - rechargable, sometimes called secondary
- · Works well for LEO and GEO
- Does not work well for longer missions because of lifetime

Rechargable Battery Issues

· Type of batteries

- NiCd
- NiMH
- NiH
- Li
- Li polymer and other batteries currently being developed

Important characteristics

- energy storage
- DOD
- lifetime
- charging and discharging
- memory

Integration

- safety (boxes)
- sizing correctly for mission and lifetime
- stringing batteries to generate a bus voltage

Batteries

NiCd batteries

- most common, a lot of flight heritage, rapid charge rate
- memory effects, low cell voltage, lower energy density

NiMH

- higher energy density, non memory effects
- little flight heritage, low cell voltage, heat problems requiring complex charge

Li

- high energy density, no memory effects, high cell voltage, good thermal
- slow charge rate, no flight heritage, susceptible to overcharge

				_
	NiCd	NiMH	Li-Ion	Li-Polymer
Energy Density (W-Hr/Kg)	40-60	60-80	100	140
Cell Voltage (V)	1.2	1.25	3.6	3
Temperature Range (°C)	-10 to +50	-10 to +50	-20 to +60	-30 to +55
Rapid charge times (Hrs)	½ to 1	2 to 3	3 to 6	8 to 15
Discharge curve	Sloped,falls off @ 60-80%	Sloped,falls off @ 60-80%	Relatively flat 20 - 80%	Relatively flat 20 - 80%
Memory effect	Yes	No	No	No

Energy Storage and Memory

- · Energy storage is usually in Watt-hours, or
 - Power * Time
- An analysis of the loads and duty cycle will help to size the battery - later
- · Some batteries have memory effects:
 - if they are charged to only 25% continually, at some point that is all that they will discharge to
- · Solution: discharge fully every few months

W

Depth of Discharge and Lifetime

- The lifetime of rechargeable batteries is very dependent the Depth of Discharge (DOD) and Number of Cycles
- Example: NiCd

W

Battery Integration

- Most batteries are pressure vessels with corrosive materials
 - Usually have to use a special battery box to prevent leakage
- · Battery stringing:

$$V_{BUS} = nV_{battery}$$

$$I_{BUS} = \sum_{n} I_{battery}$$

$$+2.5V$$

$$+2.5V$$

· Sizing of the batteries is a function of

- a big hazard for shuttle missions

- lifetime (number of cycles, orbit)
- depth of discharge
- power (peak and average) required during eclipse and in the sun

- DC to DC converters are used to step voltages down
- They are usually 85-90% efficient
- Can use one to step down to all components are each voltage or can use individual DC to DC converters

- Excess power may come when:
 - the batteries are fully charged and the loads are less than the power generated by the solar cells
 - the power generated by the solar cells is greater than the power required for battery charging and the loads
- Solution: run excess current through a shunt (resistor) to dissipate as heat.

Power System Design Approach

- 1. List all of the design drivers
- 2. Develop a table of the design loads (sensors, actuators)
- 3. List the duty cycle for each mode of operation, including eclipse and sun operation
- 4. Find average and peak power requirements
- 5. Using the orbital information, simulate the facing area power flux (or approximate at first)
- 6. Find the average power generated in the sun and per orbit
- 7. Size the batteries based on required power during eclipse, DOD, lifetime, and number of cycles
- 8. Select a power distribution approach based on complexity, mass, cost, and power requirements
- Calculate the power generated for system loads based on efficiencies
- 10. If 4 and 9 do not match, then iterate with systems engineers

Power System Drivers

- Mass
 - batteries
 - cells
 - electronics
- · peak power
- average power (for different modes of operation)
- lifetime
- · number of cycles
- · time of eclipse, time in sunlight
- Power required from the loads
 - sensors
 - actuators
 - duty cycle

Subsystem	Component	Power rating	Voltage	Battery Load	Duty-cycle
		(mW)	(V)	(mA)	(Hrs / day)
C&DH	Microcontroller board	3.3	12	0.17	24
	Communication board	3.3	12	0.17	24
	Memory	2.0	12	0.10	24
	I/O Board	0.01	12	0.00	24
	Contingency	1.0	12	0.05	24
ADCS	ADCS Tempsensors (4)	1	5	0.05	24
	Horizon Sensor (2)	60	5	3.10	24
	Micro-gyro (1)	30	5	1.55	24
	Magnetometer	30	5	1.55	24
Propulsion	2 micro PPT	12500	28	548.25	24
	Micro PPT propellant sensors (0.25x8)	2	28	0.09	24
	Capacitor voltage sensor (0.25x4)	1	28	0.04	24
	Discharge Initiator sensor (0.25x8)	2	28	0.09	24
GN&C	GPS	2000	5	103.20	24
	Downlink Transmitter	3000	12	154.80	0.44
	Downlink Standby	200	12	10.32	23.56
	Receiver	700	12	36.12	24
	Xlink	1800	12	92.88	24
Science Payload	PIP	1500	5	77.40	24
Thermal Control	TBD				

PRIMEX

W

Number	Heading	Value	Unknown	Met	Not Met
6.1.01	Mass	1.5 Kg		A,S	
6.4.01	Power Supply Voltage	5,12,28V		S	
6.6.01	Orbit Average Power Generation	19.5 W			X
6.6.02	Maximum Peak Power Generation	27 W		S	

			Cald	cula	tior	ı of	<u> </u>		F
Solar Flux [W/m ²]		Po	we	r Ge	ner	ati	on		Add
1353							T		
Solar Cell De	finition								
Cell									
Efficiency	Cell Size	lm1							
0.23	0.076	0.032							
Solar Cell	_	.	Side1	Side2	Side3	Side4	Side5	Side6	
Layout #of Cells	70p	Bottom	22 22	22 22	22 22	22 22	22 22	22	
Area [m ²]	0.054	0.000	0.054	0.054	0.054	0.054	0.054	0.054	
Area [m-]	0.054	0.000	0.054	0.054	0.054	0.054	0.054	0.054	
			Average		Average	1			
			power		powerin				
	Average		overorbit		sunlight				
Face	% Flux		[W]		[W]	% F31	v can be an	approxim at	ion
Top	0.31		5.16		8.60		bulated from		
Bottom	0.02		00.0		0.00		FreeFlyerM		
Front	0.2		3.33		5.55				
Back	0.21		3.50		5.83				
Front-right	0.19		3.16		5.27		e num bers t	o change	
Front-left	0.32		5.33		8.88	are g	iven in red		
Back-right	0.04		0.67		1.11				
Back-left	0.18		3.00		4.99				
Total			24.14		40.24				
Useable Pow	er		24.14		40.24				
PowerDistE:	ficiency	90%							
Battery Charg	e Efficiency	80%							
% Poweron l	werV (DC+	20%							
DC-DC Efficie	ncy	90%							
			17.03		28.39				
			18.00						
Average P			-						
Average P	owerin S	unlight	28.39						