

Certamen 3

Marcelo Paz Investigación de Operaciones

28 de julio de 2024

Versión: 1.1.0

1. Cadenas de Markov

Es un proceso estocástico de tiempo discreto. Donde:

$$\{X_n\} \ n \in \mathbb{N} \ \ \text{con } x_1, x_2, x_3, ..., x_n$$

Sucesión de variables aleatoreas.

Supuesto 1: El estado en que se encuentra el proceso en al etapa actual siguiente depende solamente del estado en que se encuentra el proceso en la etapa actual y no de las anteriores.

1.1. Diagrama de transición entre estados

1.2. Probabilidad de transición en una etapa

• P_{ij} : Probabilidad de pasar del estado i al estado j. Notar que:

$$\sum_{j=1}^{n} P_{ij} = 1, \quad \forall i$$

OBS: En otras palabras la suma de las probabilidades de transición de un estado a todos los demás estados es igual a 1.

1.3. Matriz de transición

Esta probabilidad se puede escribir en una matriz P de transición en una etapa.

$$P = \begin{pmatrix} P_{AA} & P_{AB} \\ P_{BA} & P_{BB} \end{pmatrix}$$

Supuesto 2: Las P_{ij} no dependen de cuantas veces se transite de i a j.

1.4. Ejemplo 1:

En cierta localidad el clima puede estar Nublado (F), Lluvioso (R) y Soleado (S). Es decir en cada día existe un estado posible de entre F, R y S.

Una realización de este proceso es: $N\ N\ S\ S\ R\ R\ N\ N\dots$

En términos matemáticos, el proceso estocástico es:

 X_n : estado del clima en etapa(Día) n $\Omega: \{N: \text{nublado}, S: \text{soleado}, R: \text{lluvioso}\}$

Diagrama de transición entre estados

Matriz de transición

$$P = \begin{pmatrix} P_{NN} & P_{NS} & P_{NR} \\ P_{SN} & P_{SS} & P_{SR} \\ P_{RN} & P_{RS} & P_{RR} \end{pmatrix}$$
$$= \begin{pmatrix} 0.4 & 0.2 & 0.4 \\ 0.6 & 0.1 & 0.3 \\ 0.4 & 0.4 & 0.2 \end{pmatrix}$$

OBS:

 \bullet P^n : es la matriz de transición de probabilidades en n etapas.

$$P^n = P \cdot P \cdot P \cdot \dots \quad n \text{ veces}$$

• $P_{ij}^{(n)}$: Probabilidad de pasar del estado i al estado j en n etapas.

$$P_{ij}^{(n)} = (P^n)_{ij}$$

1.5. Problema 1:

El ascensor de un edificio con bajo y dos pisos realiza viajes de uno a otro piso. El piso en el que finaliza el viaje n-ésimo del ascensor sigue una cadena de Markov. Se sabe que la mitad de los viajes que parten del bajo se dirigen a cada uno de los otros dos pisos, mientras que si un viaje comienza en el primer piso, sólo el 25 % de las veces finaliza en el segundo. Por último, si un trayecto comienza en el segundo piso, siempre finaliza en el bajo.

 X_n : Piso en que se encuentra ascensor en la etapa n $\Omega: \{0, 1, 2\}$

Si:

- El proceso esta en el piso 0, puede ir a piso 1 o piso 2 con la misma probabilidad.
- El proceso esta en el piso 2 va a piso 0 directamente.
- ullet El proceso esta en el piso 1 va a piso 0 el $25\,\%$ de las veces.
- 1. Dibujar el diagrama de transición entre estados.

2. Encontrar la matriz P.

$$P = \begin{pmatrix} 0 & 0, 5 & 0, 5 \\ 0, 25 & 0 & 0, 75 \\ 1 & 0 & 0 \end{pmatrix}$$

3. Matriz de transición en 2 etapas.

$$P^{2} = P \cdot P$$

$$= \begin{pmatrix} 0,625 & 0 & 0,375 \\ 0,75 & 0,125 & 0,125 \\ 0 & 0,5 & 0,5 \end{pmatrix}$$

$$P_{00}^{(2)} = 0 \cdot 0 + 0, 5 \cdot 0, 25 + 0, 5 \cdot 1 = 0,625$$

1.6. Problema 2:

En un juego participan dos jugadores, A y B. En cada turno, se lanza una moneda al aire. Si sale cara, A le debe \$1 a B. Si sale cruz, B le debe \$1 a A. Al principio, A tiene \$3 y B tiene \$2. El juego continúa hasta que alguno de los dos se arruine. Calcular:

Matriz de transición en una etapa

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	0,5	0	0,5	0	0	0
2	0	0,5	0	0,5	0	0
3	0	0	0,5	0	0,5	0
4	0	0	0	0,5	0	0,5
5	0	0	0	0	0	1

Diagrama de transición entre estados

- 1. La probabilidad de que A termine arruinándose.
- 2. La probabilidad de que B termine arruinándose.
- 3. El número medio de tiradas que tarda en acabar el juego.

1.7. Problema 3:

Se lanza un dado repetidas veces. Cada vez que sale menor que 5 se pierde \$1, y cada vez que sale 5 o 6 se gana \$1. El juego acaba cuando se tiene \$0 o \$100.

- \bullet Sea X_t : Estado de cuentas en el instante t. Tenemos que X_t es una CM.
- $S = \{0, 1, 2, ..., 100\}$
- 1. Dibujar el diagrama de transición entre estados.

1.8. Clasificación de estados

■ Diremos que 2 estados son **comunicantes**, si:

$$i \rightarrow j \quad \wedge \quad j \rightarrow i$$

- Los estados que se comunican entre si son de una misma clase C_i y todos son del mismo tipo.
- \blacksquare La relación $i \leftrightarrow j$ es transitiva, es decir:

$$i \leftrightarrow j \quad \land \quad j \leftrightarrow k \quad \Rightarrow \quad i \leftrightarrow k$$

1.8.1. Recurrentes

Cuando la cadena puede visitar dicho estado un numero INFINITO de veces.

Aperiodico.

• Periodico.

1.8.2. Transientes

Cuando la cadena puede visitar dicho estado solo un numero ${f FINITO}$ de veces.

1.8.3. Absorvente

1.9. Clases de cadenas

1.9.1. Irreducible

Una cadena se dice irreducible si sus estados forman una sola clase. Puede ser:

- Transiente.
- Recurrente aperiódica.
- Recurrente periódica.

1.9.2. Reducible / Reductible

Una cadena se dice reducible si sus estados forman más de una clase.

1.10. Ergódica

Una cadena se dice ergódica si es irreducible, recurrente y aperiódica.

• Para este tipo de cadena podemos determinar el vector pi.

$$\vec{\pi} = (\pi_1, \pi_2, ..., \pi_k) \quad \sum \pi_i = 1$$

1.10.1. Distribución de estado o de largo plazo

1.11. Teorema 1

Cuando P es la matriz de transición en una etapa de una cadena ergódica.

$$\lim_{n\to\infty}P^n=\vec{\pi}$$

1.12. Teorema 2

$$\vec{\pi} = \vec{\pi} \cdot P$$
 $\sum \pi_i = 1$

1.13. Problema 4

¿Que porcentaje de mercado captura cada competidor en el largo plazo?

Para encontrar el porcentaje de mercado capturado por cada competidor, se debe calcuar la distribución de largo plazo.

$$\vec{\pi} = (\pi_1 \ \pi_2) \cdot \begin{pmatrix} 0, 6 & 0, 4 \\ 0, 7 & 0, 3 \end{pmatrix}$$

$$\pi_1 = 0,6\pi_1 + 0,7\pi_2$$

 $\pi_2 = 0,4\pi_1 + 0,3\pi_2$

Igualamos las ecuaciones y despejamos.

$$-0.4\pi_1 + 0.7\pi_2 = 0$$
$$0.4\pi_1 - 0.7\pi_2 = 0$$

Para encontrar, valores distintos a la solucion nula se remplaza cualquiera de las ecuaciones por $\sum \pi_i = 1$.

$$0.4\pi_1 - 0.7\pi_2 = 0$$
$$\pi_1 + \pi_2 = 1$$

Para π_1 .

$$0.4\pi_1 - 0.7\pi_2 = 0$$

$$0.7\pi_1 + 0.7\pi_2 = 0.7$$

$$1,1\pi_1 = 0,7$$

$$\pi_1 = \frac{0,7}{1,1} = 0,64$$

Para π_2 .

$$\pi_1 + \pi_2 = 1$$
 $0.64 + \pi_2 = 1$
 $\pi_2 = 1 - 0.64 = 0.36$

Asi, los porcentajes de mercado capturados por cada competidor son:

$$\pi_1 = 0,64 = 64\%$$
 $\pi_2 = 0,36 = 36\%$

1.14. Tiempo promedio de recurrencia

 \bullet μ_{ij} : Número de etapas promedio en pasar de estado i a estado j .

$$\mu_{ij} = 1 + \sum_{k, \ k \neq j} P_{ik} \cdot \mu_{kj}$$

• μ_{ii} : Número de etapas promedio en retornar al estado i.

$$\mu_{ii} = rac{1}{\pi_i}$$

1.15. Problema 5

Calcular $\mu_{11}, \mu_{12}, \mu_{21}, \mu_{22}$.

2. Listado cadenas de markov

 Calcular las participaciones en el mercado que a largo plazo alcanzarán las compañias R, S y T, si el comportamiento de los consumidores corresponde a una cadena de Markov con las probabilidades de cambio que se muestran en la tabla.

	\mathbf{R}	\mathbf{S}	\mathbf{T}
\mathbf{R}	0,6	0,1	0,3
S	0,5	0,4	0,1
\mathbf{T}	0,2	0,1	0,7

Para encontrar el porcentaje de mercado capturado por cada competidor, se debe calcuar la distribución de largo plazo.

$$\vec{\pi} = (\pi_1 \; \pi_2 \; \pi_3) \cdot \begin{pmatrix} 0, 6 & 0, 1 & 0, 3 \\ 0, 5 & 0, 4 & 0, 1 \\ 0, 2 & 0, 1 & 0, 7 \end{pmatrix}$$

$$\pi_1 = 0, 6\pi_1 + 0, 5\pi_2 + 0, 2\pi_3$$

$$\pi_2 = 0, 1\pi_1 + 0, 4\pi_2 + 0, 1\pi_3$$

$$\pi_3 = 0, 3\pi_1 + 0, 1\pi_2 + 0, 7\pi_3$$

Igualamos las ecuaciones y despejamos.

$$-0.4\pi_1 + 0.5\pi_2 + 0.2\pi_3 = 0$$

$$0.1\pi_1 - 0.6\pi_2 + 0.1\pi_3 = 0$$

$$0.3\pi_1 + 0.1\pi_2 - 0.3\pi_3 = 0$$

Para encontrar una solucion distinta a la nula, se remplaza cualquiera de las ecuaciones por $\sum \pi_i = 1$.

$$-0.4\pi_1 + 0.5\pi_2 + 0.2\pi_3 = 0$$

$$0.1\pi_1 - 0.6\pi_2 + 0.1\pi_3 = 0$$

$$\pi_1 + \pi_2 + \pi_3 = 1$$

Se resuelve el sistema de ecuaciones.

$$\pi_1 = 0,41$$
 $\pi_2 = 0,14$
 $\pi_3 = 0,45$

Asi, los porcentajes de mercado capturados por cada competidor son:

- Para la compañia R: 41 %
- \bullet Para la compañia S: 14 %
- Para la compañia T: 45 %

2. En una población de 10.000 habitantes, 5.000 no fuman, 2.500 fuman uno o menos de un paquete diario y 2.500 fuman más de un paquete diario. En un mes hay un 5% de probabilidad de que un no fumador comience a fumar un paquete diario o menos, y un 2% de que un no fumador pase a fumar más de un paquete diario. Para los que fuman un paquete o menos, hay un 10% de probabilidad de que dejen el tabaco, y un 10% de que pasen a fumar más de un paquete diario. Entre los que fuman más de un paquete, hay un 5% de probabilidad de que dejen el tabaco y un 10% de que pasen a fumar un paquete o menos. ¿Cuántos individuos habrán de cada clase el próximo mes?

	No fumador	Fuma 1 o menos	Fuma más de 1
No fumador	0,93	0,05	0,02
Fuma 1 o menos	0,1	0,8	0,1
Fuma más de 1	0,05	0,1	0,85

• π_1 : 5.000 de 10.000 son no fumadores.

• π_2 : 2.500 de 10.000 fuman 1 o menos paquete diario.

• π_3 : 2.500 de 10.000 fuman más de 1 paquete diario.

Sabemos que la distribución inicial es:

$$\vec{\pi}_{(0)} = (0.5 \ 0.25 \ 0.25)$$

Necesitamos la distribución de largo plazo del próximo mes.

$$\vec{\pi}_{(1)} = (0.5\ 0.25\ 0.25) \cdot \begin{pmatrix} 0.93 & 0.05 & 0.02 \\ 0.1 & 0.8 & 0.1 \\ 0.05 & 0.1 & 0.85 \end{pmatrix}^{1}$$
$$= (0.5025\ 0.25\ 0.2475)$$

Asi, el próximo mes habrán:

- 5.025 no fumadores.
- 2.500 fumadores de 1 o menos paquete diario.
- 2.475 fumadores de más de 1 paquete diario.

- 3. Clasificar los estados de las cadenas de Markov con las siguientes matrices de transición:
 - a) Matriz de transición 3

$$P = \begin{pmatrix} 0.5 & 0.5 & 0 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0 \\ 0.25 & 0.25 & 0 & 0 & 0.5 \end{pmatrix}$$

Por lo tanto, la matriz de transición 3 es reductible.