System Windows 11 x64, Środowisko PyCharm

MOWNiT – Sprawozdanie 4a

Aproksymacja średniokwadratowa wielomianami algebraicznymi

Opis doświadczenia:

Dla funkcji:

$$f(x) = 30 + x^2 - 30 * \cos(x)$$

Dla przedziału: $[-4\pi, 4\pi]$

Wykres 1 Funkcja wejściowa

wyznaczono wartości w n dyskretnych punktach (węzłach).

Następnie w oparciu o te punkty wyznaczono przybliżenie funkcji wykorzystując aproksymację średniokwadratową wielomianami algebraicznymi.

Wykonano eksperymenty numeryczne dla układów funkcji bazowych zawierających różną liczbę funkcji.

Oszacowywano błędy przybliżenia.

Graficznie zilustrowano interesujące przypadki.

Użyto próbkowania przedziału dla p=1000 punktów (wartości funkcji zostały wyliczone w 1000 równoodległych punktach z przedziału $[-4\pi, 4\pi]$)

Błąd maksymalny: $\max_{-4\pi < x < 4\pi} |f(x) - W(x)|$, gdzie f-funkcja właściwa, W-funkcja wyjściowa z aproksymacji

Błąd średniokwadratowy: $\frac{1}{1000} \sqrt{\sum_{-4\pi=x}^{4\pi} (f(x) - W(x))^2}$, gdzie f-funkcja właściwa, W- funkcja wyjściowa z aproksymacji

Równanie do wyliczenia współczynników:

$$\begin{pmatrix} \sum v_{i} & \sum v_{i}x_{i} \sum v_{i}x_{i}^{2} & \cdots \sum v_{i}x_{i}^{m} \\ \sum v_{i}x_{i} & \sum v_{i}x_{i}^{2} \sum v_{i}x_{i}^{3} & \cdots \sum v_{i}x_{i}^{m+1} \\ \vdots & \vdots & \vdots & \vdots \\ \sum v_{i}x_{i}^{m} & \sum v_{i}x_{i}^{m+1} \sum v_{i}x_{i}^{m+2} & \cdots \sum v_{i}x_{i}^{2m} \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{m} \end{pmatrix} = \begin{pmatrix} \sum v_{i}F_{i} \\ \sum v_{i}F_{i}x_{i} \\ \vdots \\ \sum v_{i}F_{i}x_{i}^{m} \end{pmatrix}$$

Gdzie v_i-waga kolejnych punktów, x_i-kolejna funkcja bazowa, a_{0-m}-szukane współczynniki, F_i-wartości kolejnych funkcji

Po wyliczeniu z równania współczynników a_{0-m} uzyskujemy funkcję aproksymującą poprzez:

$$\sum_{i=0}^{m} a_i x^i$$

Można zauważyć, że m będzie naszym stopniem wielomianu, dodatkowo:

Jeżeli:

- 1) $x_0, x_1, ..., x_n$ są różne 2) m <= n

to det(G) ≠ 0 -> układ ma jedno rozwiązanie Jednak w praktyce:

- 1) m << n (korzystamy z dużej ilości informacji)
- 2) m wysoki by dobrze przybliżyć funkcję
- 3) m niski by wygładzić błędy
- 4) zwykle m <= 6

Gdzie:

n-liczba węzłów, m-stopień wielomianu

Przykładowe wykresy dla aproksymacji średniokwadratowej wielomianami algebraicznymi

Poniżej zostały umieszczone wykresy dla: n=5 m=3, n=12 m=5, n=15 m=6, n=15 m=11, n=25 m=15, n=40 m=3, n=45 m=25. Wagi wszystkich punktów wynoszą 1.

Pod każdym wykresem jest zamieszczony komentarz opisujący charakterystyczne cechy danej interpolacji

Wykres 2 Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 5 węzłów i stopnia wielomianu 3.

Dla takiej funkcji, liczby węzłów oraz dość niskiego stopnia wielomianu mamy przybliżenie przechodzące dokładnie przez węzły. Można ją uznać za kiepską interpolującą (za mała liczba węzłów dla danej funkcji, aby interpolacja była dobra)

Wykres 3 Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 12 węzłów i stopnia wielomianu 5.

Funkcja będąca przybliżeniem układa się pomiędzy węzłami. Węzły "naciągają" funkcję aproksymującą

Wykres 4 Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 15 węzłów i stopnia wielomianu 6

Funkcja będąca przybliżeniem układa się pomiędzy węzłami, trochę inaczej niż w wykresie 3, co jest spowodowane inną liczbą węzłów, a co za tym idzie węzłami w innych miejscach funkcji.

Wykres 5 Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 15 węzłów i stopnia wielomianu 11

Funkcja aproksymująca układa się podobnie jak nasza oryginalna, natomiast na krańcach przedziału można zaobserwować duże odchylenia. Jest to Efekt Rungego – przypadki z bardziej widocznym tym efektem są pokazane pod koniec sprawozdania

Wykres 6 Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 25 węzłów i stopnia wielomianu 15

Tutaj funkcja będąca przybliżeniem układa się praktycznie na węzłach. Jednak przy krańcach przedziału jest delikatne odchylenie. Podobnie jest to interpolacja z delikatnym efektem Rungego

Wykres 7 Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 40 węzłów i stopnia wielomianu 3

Mamy dużą liczbę węzłów i niski stopień wielomianu.

Pomimo dużej liczby węzłów wykres przypomina funkcję z wykresu 2, co pokazuje jak znaczącą rolą odgrywa ilość funkcji bazowych w aproksymacji

Wykres 8 Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 45 węzłów i stopnia wielomianu 25

Tutaj wykres przybliżenia jest niemalże identyczny do funkcji oryginalnej. Jest to spowodowane dużą ilością węzłów. Podobny do wykresu 7

Przypadki z Efektem Rungego

W przypadku aproksymacji średniokwadratowej wielomianami algebraicznymi możemy zaobserwować efekt Rungego. Efekt Rungego jest to pogorszenie jakości aproksymacji wielomianowej, mimo zwiększenia liczby jej węzłów. Początkowo ze wzrostem liczby węzłów n przybliżenie poprawia się, jednak po dalszym wzroście n, zaczyna się pogarszać, co jest szczególnie widoczne na końcach przedziałów. Zostanie to zaprezentowane na przykładzie funkcji z 15 węzłami. Efekt zaczyna być widoczny od stopnia wielomianu m=11

Wykres 9 Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 15 węzłów i stopnia wielomianu 11

Przy stopniu 11 obserwujemy pierwsze oznaki Efektu Rungego

Wykres 10 Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 15 węzłów i stopnia wielomianu 20

Przy stopniu 20 obserwujemy już gigantyczne odchylenia. Wykres staje się nieczytelny przez konieczność przeskalowania funkcji. Jest to tylko przykład, ponieważ nie ma sensu stosować większej ilości funkcji bazowych niż ilość węzłów.

Błędy

Błędy obliczeniowe zostały wykonane dla błędu maksymalnego punktów oraz dla błędu sumy kwadratów punktów.

Liczby węzłów jakie zostały wzięte pod uwagę to: 4, 5, 7, 10, 15, 20, 30, 50, 75, 100, 150 oraz m: 2, 5, 8, 10, 12, 15.

Błąd maksymalny						
	(m+1) - liczba współczynników funkcji bazowych					
	m - stopień wielomianu					
n - liczba węzłów 🔻	2	5	8	10	12	15
4	110.277282	156.272764	64.138818	66.872276	63.274250	741.301415
5	79.019867	59.999687	71.772129	61.967015	68.745741	86.044375
7	95.965454	44.454135	95.632483	107.432535	179.488726	472.104690
10	91.382829	37.239767	39.090014	126.938419	181.237460	1108.263924
15	88.196551	35.986055	34.991146	33.290496	77.911562	136.541045
20	86.714439	35.741533	34.514237	34.679180	34.933644	25.610298
30	85.301107	35.560657	34.603421	34.952112	21.452483	6.252800
50	84.217573	35.402216	34.954082	34.711697	18.610526	2.905771
75	83.690928	35.301743	35.198917	34.461508	18.441609	2.339074
100	83.431297	35.243809	35.335460	34.303202	18.377335	2.169633
150	83.174093	35.179810	35.480203	34.121726	23.080110	2.046550

Tabela 1 Błąd maksymalny

Błąd średniokwadratowy						
	(m+1) - liczba współczynni					
	m - stopień wielomianu 🔻					
n - liczba węzłów 🔻	2	5	8	10	12	15
4	1.819109	2.736567	1.091565	0.991909	0.924006	9.460746
5	1.601514	1.161070	1.155746	1.121105	1.031112	1.375065
7	1.651012	0.702649	1.304073	1.434871	2.019804	5.052742
10	1.620384	0.651254	0.635048	1.405383	1.895139	7.243994
15	1.606467	0.648822	0.593683	0.598475	0.695927	1.043552
20	1.602112	0.648556	0.589772	0.589702	0.414247	0.173830
30	1.599229	0.648308	0.585661	0.585920	0.378492	0.043802
50	1.597862	0.648064	0.582169	0.581825	0.370394	0.032769
75	1.597462	0.647940	0.580669	0.579477	0.365113	0.031995
100	1.597329	0.647885	0.580068	0.578362	0.362216	0.031583
150	1.597239	0.647840	0.579610	0.577403	0.359492	0.031085

Tabela 2 Błąd średniokwadratowy

W tabelach 1 oraz 2 zostały wykreślone wartości, gdzie stopień wielomianu jest mniejszy niż liczba węzłów, ponieważ aproksymacja średniokwadratowa niema wtedy sensu.

Analizując tabele 1 i 2, gdy przyjrzymy się kolumnie z konkretnym stopniem wielomianu, a następnie kolejnym komórkom idąc w dół zobaczymy, że od pewnego momentu wartości są bardzo podobne do siebie. Oznacza to że funkcja aproksymująca została już policzona prawidłowo oraz zwiększanie ilości węzłów nie ma większego sensu. Oczywiście może się zdarzyć, że natrafimy na specyficzne ułożenie węzłów i wtedy nasz wynik może się znacznie zmienić, jednakże wyniki powinny dążyć do wyrównania się.

Można wywnioskować, że stopnie wielomianu odgrywają dużą rolę w przybliżaniu funkcji (znacznie większą niż zmiana ilości węzłów)

Z obliczeń z tabel wynika, że najmniejszy błąd jest dla przybliżenia wielomianem z n=150 oraz m=15:

Wykres 11 Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 50 węzłów i stopnia wielomianu 15 Funkcja reprezentująca najlepsze przybliżenie