Homework 6

P.6–27 A toroidal iron core of relative permeability 3000 has a mean radius R = 80 (mm) and a circular cross section with radius b = 25 (mm). An air gap $\ell_g = 3$ (mm) exists, and a current I flows in a 500-turn winding to produce a magnetic flux of 10^{-5} (Wb). (See Fig. 6–44.) Neglecting flux leakage and using mean path length, find

- a) the reluctances of the air gap and of the iron core,
- b) B_a and H_a in the air gap, and B_c and H_c in the iron core,
- c) the required current I.

FIGURE 6-44 A toroidal iron core with air gap (Problem P.6-27).

FIGURE 6-45 A magnetic circuit with air gap (Problem P.6-28).

P.6–28 Consider the magnetic circuit in Fig. 6–45. A current of 3 (A) flows through 200 turns of wire on the center leg. Assuming the core to have a constant cross-sectional area of 10^{-3} (m²) and a relative permeability of 5000:

- a) Determine the magnetic flux in each leg.
- b) Determine the magnetic field intensity in each leg of the core and in the air gap.

P.6-31 What boundary conditions must the scalar magnetic potential V_m satisfy at an interface between two different magnetic media?

P.6-39 Determine the mutual inductance between a very long, straight wire and a conducting circular loop, as shown in Fig. 6-49.

FIGURE 6-49
A long, straight wire and a conducting circular loop (Problem P.6-39).

P.6-43 The cross section of a long thin metal strip and a parallel wire is shown in Fig. 6-51. Equal and opposite currents I flow in the conductors. Find the force per unit length on the conductors.

FIGURE 6-51

Cross section of parallel strip and wire conductor (Problem P.6-43).

P.6–48 One end of a long air-core coaxial transmission line having an inner conductor of radius a and an outer conductor of inner radius b is short-circuited by a thin, tight-fitting conducting washer. Find the magnitude and the direction of the magnetic force on the washer when a current I flows in the line.

P.6-53 A current I flows in a long solenoid with n closely wound coil-turns per unit length. The cross-sectional area of its iron core, which has permeability μ , is S. Determine the force acting on the core if it is withdrawn to the position shown in Fig. 6-55.

FIGURE 6-55

A long solenoid with iron core partially withdrawn (Problem P.6-53).