Lecture 11

Sequence Alignments

Part 1: Alignments: Definition, Construction

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Sequence Alignments

1 Alignments: Definition, Construction

2 Dynamic Programming Algorithms

3 Evaluation

We have two related sequences of possibly different lengths.

How to best line them up using insertions / deletions (i.e., monotonically)?

We have two related sequences of possibly different lengths.

How to best line them up using insertions / deletions (i.e., monotonically)?

biology:

DNA, RNA, or protein sequences:

align CAAT and ATTACA:

--CA-AT

We have two related sequences of possibly different lengths.

How to best line them up using insertions / deletions (i.e., monotonically)?

biology: nlp:

DNA, RNA, or protein find the best sequence of

sequences: edits between strings

align CAAT and ATTACA: (e.g., spell checking etc)

--CA-AT kitten-ATTACA- sitting

We have two related sequences of possibly different lengths.

How to best line them up using insertions / deletions (i.e., monotonically)?

biology:	nlp:	signal processing:
DNA, RNA, or protein sequences:	find the best sequence of edits between strings	stretch or compress signals (e.g., audio) to match.
align CAAT and ATTACA:	(e.g., spell checking etc)	
CA-AT	kitten-	
ATTACA-	sitting	

Alignment Are Structures

Alignments are structured objects: many possible alignments between same strings.

At point (i, j) in the grid we either:

M: match tokens i in seq1 to j in seq2,

l: skip token *i* in seq1,

D: skip token j in seq2.

Some alignments and corresponding trajectories:

At point (i, j) in the grid we either:

M: match tokens i in seq1 to j in seq2,

l: skip token *i* in seq1,

D: skip token j in seq2.

Some alignments and corresponding trajectories:

• IMMMDDD: CATT----ATTACA

At point (i, j) in the grid we either:

M: match tokens i in seq1 to j in seq2,

!: skip token *i* in seq1,

D: skip token j in seq2.

Some alignments and corresponding trajectories:

• IMMMDDD: CATT----ATTACA

• DDMMDMI: --CA-TT ATTACA-

At point (i, j) in the grid we either:

M: match tokens i in seq1 to j in seq2,

I: skip token *i* in seq1,

D: skip token j in seq2.

Some alignments and corresponding trajectories:

• IMMMDDD: CATT----ATTACA

• DDMMDMI: --CA-TT ATTACA-

• MMMMDD: CATT--ATTACA

At point (i, j) in the grid we either:

M: match tokens i in seq1 to j in seq2,

!: skip token *i* in seq1,

D: skip token j in seq2.

Some alignments and corresponding trajectories:

• IMMMDDD: CATT----ATTACA

• DDMMDMI: --CA-TT ATTACA-

• MMMMDD: CATT--ATTACA

• DDDDMDIII: ATTACA---

At point (i, j) in the grid we either:

M: match tokens i in seq1 to j in seq2,

I: skip token *i* in seq1,

D: skip token j in seq2.

Some alignments and corresponding trajectories:

• IMMMDDD: CATT----ATTACA

• DDMMDMI: --CA-TT ATTACA-

• MMMMDD: CATT--ATTACA

• DDDDMDIII: ATTACA---

At point (i, j) in the grid we either:

M: match tokens i in seq1 to j in seq2,

I: skip token *i* in seq1,

D: skip token j in seq2.

Some alignments and corresponding trajectories:

• IMMMDDD: CATT----ATTACA

• DDMMDMI: --CA-TT ATTACA-

• MMMMDD: CATT--ATTACA

• DDDDMDIII: ATTACA---

Alignments as Paths in a DAG

• The alignment table was a DAG in disguise all along!

Alignments as Paths in a DAG

- The alignment table was a DAG in disguise all along!
- Nodes V = {(i,j): 0 ≤ i ≤ n, 0 ≤ j ≤ m},
 Edges: 3 incoming for each node (except first row/col).
 Topological order?

Alignments as Paths in a DAG

- The alignment table was a DAG in disguise all along!
- Nodes V = {(i,j): 0 ≤ i ≤ n, 0 ≤ j ≤ m},
 Edges: 3 incoming for each node (except first row/col).
 Topological order?
- Number of paths from (0,0) to (n,m): $D(n,m) = \sum_{k=0}^{\min(n,m)} {m \choose k} {n \choose k} 2^k$ (Delannoy numbers)

A "default" scoring strategy:

• Get a score of 1 for matching identical characters.

i.e., if action M taken at grid position (i, j) and seq1[i] == seq2[j], add 1 to the score.

A "default" scoring strategy:

• Get a score of 1 for matching identical characters.

i.e., if action M taken at grid position (i, j) and seq1[i] == seq2[j], add 1 to the score.

A "default" scoring strategy:

• Get a score of 1 for matching identical characters.

i.e., if action M taken at grid position (i, j) and seq1[i] == seq2[j], add 1 to the score.

A "default" scoring strategy:

• Get a score of 1 for matching identical characters.

i.e., if action M taken at grid position (i, j) and seq1[i] == seq2[j], add 1 to the score.

let **A** a score array of shape (n+1, m+1, 3):

- $a_{i,j,0}$ is the score for Matching token i in seq1 with token j in seq2.
- a_{i,j,1} is the score for an Insertion at (i, j): skipping token i in seq1 when the cursor is at j in seq2.
- a_{i,j,2} is the score for a Deletion at (i, j): skipping token j in seq2 when the cursor is at i in seq2.

note: in these slides, we use zero-indexing into *A*, but one-indexing into the sequences.

We can set the specific values of **A** to replicate the default scoring from before.

let **A** a score array of shape (n+1, m+1, 3):

- $a_{i,j,0}$ is the score for Matching token i in seq1 with token j in seq2.
- a_{i,j,1} is the score for an Insertion at (i, j): skipping token i in seq1 when the cursor is at j in seq2.
- a_{i,j,2} is the score for a Deletion at (i, j): skipping token j in seq2 when the cursor is at i in seq2.

note: in these slides, we use zero-indexing into **A**, but one-indexing into the sequences.

We can set the specific values of **A** to replicate the default scoring from before.

let **A** a score array of shape (n+1, m+1, 3):

- $a_{i,j,0}$ is the score for Matching token i in seq1 with token j in seq2.
- a_{i,j,1} is the score for an Insertion at (i, j): skipping token i in seq1 when the cursor is at j in seq2.
- a_{i,j,2} is the score for a Deletion at (i, j): skipping token j in seq2 when the cursor is at i in seq2.

note: in these slides, we use zero-indexing into **A**, but one-indexing into the sequences.

We can set the specific values of **A** to replicate the default scoring from before.

let **A** a score array of shape (n+1, m+1, 3):

- $a_{i,j,0}$ is the score for Matching token i in seq1 with token j in seq2.
- a_{i,j,1} is the score for an Insertion at (i, j): skipping token i in seq1 when the cursor is at j in seq2.
- a_{i,j,2} is the score for a Deletion at (i, j): skipping token j in seq2 when the cursor is at i in seq2.

note: in these slides, we use zero-indexing into *A*, but one-indexing into the sequences.

We can set the specific values of **A** to replicate the default scoring from before.

Lecture 11

Sequence Alignments

Part 2: Dynamic Programming Algorithms

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Sequence Alignments

1 Alignments: Definition, Construction

2 Dynamic Programming Algorithms

3 Evaluation

Alignments = paths in DAG from (0,0) to (n,m).

Alignments = paths in DAG from (0,0) to (n,m).

Computing the max score:

Fill in a table M, size (1 + n, 1 + m), s.t. m_{ij} = the max score up to (i, j).

$$m_{ij} = \begin{cases} m_{i-1,j-1} + a_{i,j,0} \\ m_{i-1,j} + a_{i,j,1} \\ m_{i,j-1} + a_{i,j,2} \end{cases}$$
 for any $i > 0, j > 0$.

What is a topological order?

Alignments = paths in DAG from (0,0) to (n,m).

Computing the max score:

Fill in a table M, size (1 + n, 1 + m), s.t. m_{ij} = the max score up to (i, j).

$$m_{ij} = \begin{cases} m_{i-1,j-1} + a_{i,j,0} \\ m_{i-1,j} + a_{i,j,1} \\ m_{i,j-1} + a_{i,j,2} \end{cases} \text{ for any } i > 0, j > 0.$$

What is a topological order?

 m_{i0} : only one possible path for any i.

	0	² 012	² 012 + ² 022		
F=					

Alignments = paths in DAG from (0,0) to (n,m).

Computing the max score:

Fill in a table M, size (1 + n, 1 + m), s.t. m_{ij} = the max score up to (i, j).

$$m_{ij} = \begin{cases} m_{i-1,j-1} + a_{i,j,0} \\ m_{i-1,j} + a_{i,j,1} \\ m_{i,j-1} + a_{i,j,2} \end{cases} \text{ for any } i > 0, j > 0.$$

What is a topological order?

 m_{i0} : only one possible path for any i.

	0	² 012	∂ 012 +∂ 022		
F=					

Alignments = paths in DAG from (0,0) to (n,m).

Computing the max score:

Fill in a table M, size (1 + n, 1 + m), s.t. m_{ij} = the max score up to (i, j).

$$m_{ij} = \begin{cases} m_{i-1,j-1} + a_{i,j,0} \\ m_{i-1,j} + a_{i,j,1} \\ m_{i,j-1} + a_{i,j,2} \end{cases} \quad \text{for any } i > 0, j > 0.$$

What is a topological order?

 m_{i0} : only one possible path for any i.

 m_{0j} : only one possible path for any j.

	0	² 012	² 012 +2022		
F=	² 101				
	² 101 + ² 201				

Alignments = paths in DAG from (0,0) to (n,m).

Computing the max score:

Fill in a table M, size (1 + n, 1 + m), s.t. m_{ij} = the max score up to (i, j).

$$m_{ij} = \begin{cases} m_{i-1,j-1} + a_{i,j,0} \\ m_{i-1,j} + a_{i,j,1} \\ m_{i,j-1} + a_{i,j,2} \end{cases} \quad \text{for any } i > 0, j > 0.$$

What is a topological order?

 m_{i0} : only one possible path for any i.

 m_{0j} : only one possible path for any j.

Viterbi for alignments

```
input: Scores A (n+1\times m+1\times 3 \text{ array}), zero-indexed
initialize F, same shape as A,
M_{00} = 0, M_{i0} = \sum_{k=1}^{i} a_{k,0,1}, M_{0i} = \sum_{k=1}^{j} a_{0,k,2}.
Forward: compute max. scores recursively
for i = 1 to n do
    for i = 1 to m do
      M_{ij} = \max \begin{cases} M_{i-1,j-1} + a_{i,j,0} \\ M_{i-1,j} + a_{i,j,1} \\ M_{i,i-1} + a_{i,i,2} \end{cases} ; \qquad \pi_{ij} = \arg \max \begin{cases} M_{i-1,j-1} + a_{i,j,0} \\ M_{i-1,j} + a_{i,j,1} \\ M_{i,i-1} + a_{i,i,2} \end{cases} ;
f^* = M_{n,m}
Backward: follow backpointers
i = n, i = m, v^* = ()
while (i, i) \neq (0, 0) do
    insert \pi_{ii} at the front of y^*,
    decrease i, j, or both, depending on \pi_{ii}
output: The highest-scoring alignment path y^*, and its total score f^*.
```

Forward algorithm for alignments

input: Scores \mathbf{A} ($n+1 \times m+1 \times 3$ array), zero-indexed initialize \mathbf{F} , same shape as \mathbf{A} , $F_{00} = 0$, $F_{i0} = \sum_{k=1}^{i} a_{k,0,1}$, $F_{0i} = \sum_{k=1}^{j} a_{0,k,2}$.

Forward: compute scores recursively

for i = 1 to n do

for
$$j = 1$$
 to m do

$$M_{ij} = \log \sum \exp \begin{cases} M_{i-1,j-1} + a_{i,j,0} \\ M_{i-1,j} + a_{i,j,1} \\ M_{i,j-1} + a_{i,j,2} \end{cases};$$

return $M_{n,m}$

Lecture 11

Sequence Alignments

Part 3: Evaluation

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Sequence Alignments

Alignments: Definition, Construction

2 Dynamic Programming Algorithms

3 Evaluation

Evaluating Alignments

So far we are representing alignments as sequences of "moves" on a grid.

How to evaluate if we predict $\hat{y} = MMM$ when the correct label is y = IMDM?

Alignment-level accuracy always an option. Finer-grained eval?

Evaluating Alignments

So far we are representing alignments as sequences of "moves" on a grid.

How to evaluate if we predict $\hat{y} = MMM$ when the correct label is y = IMDM?

Alignment-level accuracy always an option. Finer-grained eval?

In protein alignment, we care most about getting the aligned indices (i,j) right.

(getting the M-edges right!)

- precision: n. correct M-edges / n. predicted M-edges
- recall: n. correct M-edges / n. true M-edges
- F-score: harmonic average of P and R.

Predicted M-edges:

$$\begin{split} & \mathsf{indices}(\hat{\pmb{y}}) = \{(1,1), (2,2), (3,3)\}, \\ & \mathsf{indices}(\pmb{y}) = \{(2,1), (3,3)\}. \end{split}$$

Historical Notes and References

Variants of this algorithm are known by many names and were reinvented many times:

- in biology: Needleman-Wunsch (Needleman and Wunsch, 1970),
 Smith-Waterman (Smith and Waterman, 1981),
 Ulam distance (Sellers, 1974), longest common subsequence (Hirschberg, 1977).
- in compling / information retrieval / information theory, Levenshtein / edit Distance / Wagner-Fischer (Levenshtein, 1965; Wagner and Fischer, 1974)
- in time series / signal processing: dynamic time warping (Sakoe and Chiba, 1978)

As far as we know, the first inventor is actually Ukrainian mathematician Taras Vintsiuk, for speech applications (Vintsyuk, 1968).

Summary

- Monotonic alignments between two sequences.
- Once again, dynamic programming gives us polynomial-time complexity.
- Algorithm rediscovered many times across many different fields under different names.

References I

- Hirschberg, Daniel S. (Oct. 1977). "Algorithms for the Longest Common Subsequence Problem". In: *J. ACM* 24.4, pp. 664–675.
- Levenshtein, Vladimir Iosifovich (1965). "Binary Codes With Correction of Deletions, Insertions, and Substitutions of Symbols". In: Reports of the Academy of Sciences. Vol. 163. 4. Russian Academy of Sciences, pp. 845–848.
- Needleman, Saul B. and Christian D. Wunsch (1970). "A general method applicable to the search for similarities in the amino acid sequence of two proteins". In: *Journal of Molecular Biology* 48.3, pp. 443–453.
- Sakoe, H. and S. Chiba (1978). "Dynamic programming algorithm optimization for spoken word recognition". In: *IEEE Transactions on Acoustics, Speech, and Signal Processing* 26.1, pp. 43–49.
- Sellers, Peter H (1974). "An algorithm for the distance between two finite sequences". In: *Journal of Combinatorial Theory, Series A* 16.2, pp. 253–258.

References II

- Smith, T.F. and M.S. Waterman (1981). "Identification of common molecular subsequences". In: *Journal of Molecular Biology* 147.1, pp. 195–197.
- Vintsyuk, Taras K (1968). "Speech discrimination by dynamic programming". In: *Cybernetics* 4.1, pp. 52–57.
- Wagner, Robert A. and Michael J. Fischer (Jan. 1974). "The String-to-String Correction Problem". In: J. ACM 21.1, pp. 168–173.