

Bayesian reasoning

Laboratory activity

Project title: Heart failure prediction

Name: Vasile-Laurentiu Campean Group: 30231

Email: laurentiu campean@gmail.com

Contents

1	Crearea retelei Bayesiane	3
	1.1 Problema propusa si modelarea retelei	3
	1.2 Lista variabilelor si continutul lor	3
2	Rezultate	6
3	Own code	8

Chapter 1

Crearea retelei Bayesiane

1.1 Problema propusa si modelarea retelei

Dorim sa cream o retea Bayesiana, care sa calculeze riscul mortii unei persoane in cazul unor boli asociate cu afectiunile pe inima. De asemenea, vom putea vedea si probabilitatea unei persoane de a deceda, avand in vedere mai multi factori, care cuprind atat atribute despre aceasta (varsta, sex), cat si faptul daca aceste persoana sufera sau nu de anumite boli.

1.2 Lista variabilelor si continutul lor

- Variabila Smoker are domeniul "True" sau "False" si reprezinta probabilitatea ca o persoana sa fie fumatoare.
- Variabila Age are domeniul "<35" respectiv ">35" si reprezinta probabilitatea ca o persoana sa aiba varsta mai mica de 35 de ani, sau mai mare.
- Variabila Gender are domeniul "Male" sau "Female" si reprezinta probabilitatea ca o persoana sa fie barbat sau femeie.
- Variabila Hypertension are domeniul "True" sau "False" si reprezinta probabilitatea ca o persoana sa fie sau nu hipertensiva. Aceasta este influentata de variabilele: Smoker, Age si Gender.
- Variabila Diabetes are domeniul "True" sau "False" si reprezinta probabilitatea ca o persoana sa fie sau nu diabetica. Aceasta este influentata de variabilele Age si Gender.
- Variabila Anaemia are domeniul "True" sau "False" si reprezinta probabilitatea ca o persoana sa fie sau nu anemica. Aceasta este influentata de variabilele Diabetes si Gender.
- Variabila Death are domeniul "True" sau "False" si reprezinta probabilitatea ca o persoana sa decedeze. Aceasta este influentata de variabilele: Hypertension, Diabetes si Anaemia.

Probabilitatea de a fi fumator:

Smoker	
True	0.75
False	0.25

Probabilitatea de a fi barbat sau femeie:

Gender	
Male	0.51
Female	0.49

Probabilitatea de a avea varsta mai mica sau mai mare de 35 de ani:

Age	
<35	0.47
>35	0.53

Probabilitatea de a avea hipertensiune:

Age	Gender	Smoker	P(Hypertension = T)	P(Hypertension = F)
<35	Female	True	0.31	0.69
<35	Female	False	0.24	0.76
<35	Male	True	0.32	0.68
<35	Male	False	0.27	0.73
>35	Female	True	0.39	0.61
>35	Female	False	0.34	0.66
>35	Male	True	0.33	0.67
>35	Male	False	0.3	0.7

Probabilitatea de a avea diabet:

Age	Gender	P(Diabetes = T	P(Diabetes = F)
<35	Female	0.21	0.79
<35	Male	0.27	0.73
>35	Female	0.39	0.61
>35	Male	0.45	0.55

Probabilitatea de a fi anemic:

Gender	Diabetes	P(Anaemia = T)	P(Anaemia = F)
Female	True	0.38	0.62
Female	False	0.16	0.84
Male	True	0.21	0.79
Male	False	0.11	0.89

Probabilitatea de a deceda:

Anaemia	Diabetes	Hypertension	P(Death = T)	P(Death = F)
True	True	True	0.97	0.3
True	True	False	0.65	0.35
True	False	True	0.6	0.4
True	False	False	0.3	0.7
False	True	True	0.55	0.45
False	True	False	0.3	0.7
False	False	True	0.25	0.75
False	False	False	0.03	0.97

Figure 1.1: Reteaua Bayesiana si legaturile dintre noduri

Chapter 2

Rezultate

Rezultate interogari retea Bayesiana

Am ales sa prezint cateva interogari care sa calculeze probabilitatea unei persoane de a deceda sau nu, in functie de caracteristicile ei:

Probabilitatea de a deceda, stiind ca: esti fumator, >35 ani, esti barbat, ai toate cele 3 boli:

```
P(Smoker = True \land Age > 35 \land Gender = Male \land Diabetes = True \land Hypertension = True \land Anaemia = True \land Death = True) = 0.25*0.53*0.51*0.33*0.45*0.21*0.97 = 0.00204410658
```

Probabilitatea de a nu deceda, stiind ca: nu esti fumator, >35 ani, esti barbat, nu ai nicio boala:

```
P(Smoker = False \land Age > 35 \land Gender = Male \land Diabetes = False \land Hypertension = False \land Anaemia = False \land Death = False) = 0.75*0.53*0.51*0.7*0.55*0.89*0.97=0.0673798096
```

Probabilitatea de a nu avea diabet, stiind ca esti femeie:

```
P(Diabetes = T|Female = T) = (P((Female = True|Age < 35)|Diabetes) + P((Female = True|Age > 35)|Diabetes)) * P(Gender = Female) = (0.21 + 0.39) * 0.49 \approx 0.294
```

Probabilitatea de a fi anemic, stiind ca nu esti diabetic:

 $P(Anaemia = T|Diabetes = F) = (P(Gender = Male|Diabetes = False)|Anaemia) * P(Gender = Male) + (P(Gender = Female|Diabetes = False)|Anaemia) * P(Gender = Male) = 0.11 * 0.51 + 0.16 * 0.49 \approx 0.1345$

Chapter 3

Own code

```
#!/usr/bin/env python
2 # coding: utf-8
4 # In[2]:
7 get_ipython().run_line_magic('matplotlib', 'inline')
8 import matplotlib.pyplot as plt
9 import seaborn; seaborn.set_style('whitegrid')
10 import numpy as np
12 from pomegranate import *
14 numpy.random.seed(0)
numpy.set_printoptions(suppress=True)
get_ipython().run_line_magic('load_ext', 'watermark')
  get_ipython().run_line_magic('watermark', '-m -n -p numpy,scipy,pomegranate'
19
  # In[19]:
24 Smoker = DiscreteDistribution({ 'True': 0.25 , 'False': 0.75})
Age = DiscreteDistribution({ 'Less35': 0.47 , 'More35': 0.53})
26 Gender = DiscreteDistribution({ 'F': 0.49 , 'M': 0.51})
  # In[34]:
31
  Hypertension = ConditionalProbabilityTable(
      [[ 'Less35', 'F', 'True', 'True', 0.31 ],
       [ 'Less35', 'F', 'False', 'True', 0.24 ],
34
       [ 'Less35', 'M', 'True', 'True', 0.32 ],
35
       [ 'Less35', 'M', 'False', 'True', 0.27 ],
         'More35', 'F', 'True', 'True', 0.39 ], 'More35', 'F', 'False', 'True', 0.34 ],
       38
       [ 'More35', 'M', 'True', 'True', 0.33 ],
       [ 'More35', 'M', 'False', 'True', 0.3 ],
       [ 'Less35', 'F', 'True', 'False', 0.69 ],
       [ 'Less35', 'F', 'False', 'False', 0.76 ],
42
       [ 'Less35', 'M', 'True', 'False', 0.68 ],
43
       [ 'Less35', 'M', 'False', 'False', 0.73 ],
```

```
[ 'More35', 'F', 'True', 'False', 0.61 ],
          'More35', 'F', 'False', 'False', 0.66 ], 'More35', 'M', 'True', 'False', 0.67 ],
47
        [ 'More35', 'M', 'False', 'False', 0.7 ]], [Age, Gender, Smoker] )
48
  Diabetes = ConditionalProbabilityTable([['Less35', 'F', 'True', 0.21],
                                               ['Less35', 'M', 'True', 0.27],
51
                                               ['More35', 'F', 'True', 0.39],
52
                                               ['More35', 'M', 'True', 0.45],
                                               ['Less35', 'F', 'False', 0.79],
['Less35', 'M', 'False', 0.73],
55
                                               ['More35', 'F', 'False', 0.61],
56
                                               ['More35', 'M', 'False', 0.55]],
                                               [Age, Gender])
  Anaemia = ConditionalProbabilityTable([['F', 'True', 'True', 0.38],
                                               ['F', 'False', 'True', 0.16],
60
                                               ['M', 'True', 'True', 0.21],
61
                                               ['M', 'False', 'True', 0.11
62
                                                 'F', 'True', 'False', 0.62],
63
                                               ['F', 'False', 'False', 0.84],
64
                                               ['M', 'True', 'False', 0.79],
                                               ['M', 'False', 'False', 0.89 ]],
66
                                               [Gender, Diabetes])
67
69
   Death = ConditionalProbabilityTable(
          'True', 'True', 'True', 'True', 0.97 ],
70
          'True', 'True', 'False', 'True', 0.65],
71
          'True', 'False', 'True', 'True', 0.6],
72
        [ 'True', 'False', 'False', 'True', 0.3],
        [ 'False', 'True', 'True', 'True', 0.55 ],
74
        [ 'False', 'True', 'False', 'True', 0.3 ],
75
        [ 'False', 'False', 'True', 'True', 0.25 ],
          'False', 'False', 'False', 'True', 0.3],
77
          'True', 'True', 'True', 'False', 0.03 ], 'True', 'True', 'False', 'False', 0.35 ],
        Γ
78
79
          'True', 'False', 'True', 'False', 0.4],
80
        [ 'True', 'False', 'False', 'False', 0.7],
81
        [ 'False', 'True', 'True', 'False', 0.45],
82
          'False', 'True', 'False', 'False', 0.7],
83
          'False', 'False', 'True', 'False', 0.75 ]
          'False', 'False', 'False', 'False', 0.97 ]], [Anaemia, Diabetes,
85
      Hypertension] )
86
88 # In [35]:
89
91 s0 = State( Smoker, name="Smoker" )
92 s1 = State( Age, name="Age" )
93 s2 = State( Gender, name="Gender" )
94 s3 = State( Hypertension, name="Hypertension")
95 s4 = State( Diabetes, name="Diabetes")
96 s5 = State(Anaemia, name="Anaemia")
97 s6 = State(Death, name="Death")
100 # In [36]:
103 network = BayesianNetwork( "Health" )
```

```
network.add_nodes(s0, s1, s2, s3, s4, s5, s6)
network.add_edge(s0, s3)
network.add_edge(s1, s3)
network.add_edge(s2, s3)
network.add_edge(s1, s4)
network.add_edge(s2, s4)
network.add_edge(s2, s5)
network.add_edge(s4, s5)
115
network.add_edge(s5, s6)
network.add_edge(s4, s6)
network.add_edge(s3, s6)
119
121
  # In[37]:
122
123
124 network.bake()
126
127 # In [38]:
print (network.probability(np.array(['True', 'More35', 'M', 'True', 'True',
      'True', 'True'], ndmin =2)))
_{131} #Probabilitatea de a deceda, stiind ca: esti fumator, > 35 ani, esti barbat,
       ai toate cele 3 boli
#0.0020441065837499997
133
135 # In [39]:
136
138 print (network.probability(np.array(['False', 'More35', 'M', 'False', 'False
     ', 'False', 'False'], ndmin =2)))
139 #Probabilitatea de a nu deceda, stiind ca: nu esti fumator, > 35 ani, esti
      barbat, nu ai nicio boala.
  #0.0673798096125
141
143 # In [51]:
144
observations = { 'Gender' : 'F'}
147 beliefs = map( str, network.predict_proba( observations ) )
  print("\n".join( "{}\t\t{}".format( state.name, belief ) for state, belief
     in zip( network.states, beliefs ) ))
  #folosit pentru a vedea probabilitatea de a nu avea diabet, fiind femeie
151
152 # In [52]:
153
observations = { 'Diabetes' : 'False'}
beliefs = map( str, network.predict_proba( observations ) )
print("\n".join("{}\t\t{}".format(state.name, belief) for state, belief
   in zip( network.states, beliefs ) ))
```

 $\ensuremath{^{158}}$ #Folosit pentru a vedea probabilitatea de a fi anemic, stiind ca nu esti diabetic

Listing 3.1: Code for the Heart Failure Network

Bibliography

 $\label{lem:https://www.ined.fr/en/everything} $$ https://www.ined.fr/en/everything} $$ about_population/demographic-facts-sheets/faq/more-men-or-women-in-the-world/$$ https://www.kaggle.com/andrewmvd/heart-failure-clinical-data$

Intelligent Systems Group

