

Parametrisierte Algorithmen II

Kurzvortrag

Oliver Enes | 08. Mai 2023

Ausgangssituation: \mathcal{NP} -schwere Probleme... überall \mathcal{NP} -schwere Probleme

Ausgangssituation: \mathcal{NP} -schwere Probleme... überall \mathcal{NP} -schwere Probleme

Frage

Ist ein \mathcal{NP} -schweres Problem in der Praxis nicht effizient/schnell lösbar?

Ausgangssituation: \mathcal{NP} -schwere Probleme... überall \mathcal{NP} -schwere Probleme

Frage

Ist ein \mathcal{NP} -schweres Problem in der Praxis nicht effizient/schnell lösbar?

Antwort

In der Praxis sind viele Instanzen \mathcal{NP} -schwerer Probleme effizient lösbar, weil die Instanzen **gutartig** sind!

Parametrisierte Algorithmen

- Die Laufzeit eines Algorithmus wird zusätzlich zur Eingabegröße in einem weiteren Parameter k betrachtet.
- Mittels k soll die "Schwierigkeit der konkreten Probleminstanz" formalisiert werden.
- In diesem Vortrag: Fokus auf strukturelle Parametrisierung

Oliver Enes: Parametrisierte Algorithmen II

Parametrisierte Algorithmen

- Die Laufzeit eines Algorithmus wird zusätzlich zur Eingabegröße in einem weiteren Parameter k betrachtet.
- Mittels k soll die "Schwierigkeit der konkreten Probleminstanz" formalisiert werden.
- In diesem Vortrag: Fokus auf strukturelle Parametrisierung

In welchem Teil einer Probleminstanz liegt die Schwierigkeit?

Problem Vertex Cover

Eingabe: Graph $G = (V, E), k \in \mathbb{N}$

Oliver Enes: Parametrisierte Algorithmen II

Parameter: k

Frage: Existiert Menge $M \subseteq V$, sodass $|M| \le k$ und jede Kante zu min. einem Knoten in M adjazent ist?

Problem Vertex Cover

Eingabe: Graph $G = (V, E), k \in \mathbb{N}$

Oliver Enes: Parametrisierte Algorithmen II

Parameter: k

Frage: Existiert Menge $M \subseteq V$, sodass $|M| \le k$ und jede Kante zu min. einem Knoten in M adjazent ist?

Satz

Vertex Cover ist \mathcal{NP} -vollständig.

Problem Vertex Cover

Eingabe: Graph $G = (V, E), k \in \mathbb{N}$

Parameter: k

Frage: Existiert Menge $M \subseteq V$, sodass $|M| \le k$ und jede Kante zu min. einem Knoten in M adjazent ist?

Satz

Vertex Cover ist \mathcal{NP} -vollständig.

08, 05, 2023

Problem Vertex Cover

Eingabe: Graph $G = (V, E), k \in \mathbb{N}$

Parameter: k

Frage: Existiert Menge $M \subseteq V$, sodass $|M| \le k$ und jede Kante zu min. einem Knoten in M adjazent ist?

Satz

Vertex Cover ist \mathcal{NP} -vollständig.

- Trotzdem sehen wir, dass wir isolierte Knoten ignorieren können.
- Die "Schwierigkeit" des Problems muss also in der hier größten Zusammenhangskomponente liegen.

Der Kern allen Übels

- Wir haben die Probleminstanz verkleinert, indem wir "einfache" Teile der Instanz entfernt haben.
- Reicht es, den "schweren" Teil der Instanz zu lösen, um die Instanz selbst zu lösen?
- Können wir das bei jedem (NP-schweren) Problem machen?

Problemklasse FPT

Die Menge aller Entscheidungsprobleme der Form $(x, k) \in \Sigma^* \times \mathbb{N}$ wobei k der Parameter und die Instanz in $\mathcal{O}(f(k) \cdot |x|^c), c \in \mathbb{N}$ lösbar ist.

Problemklasse FPT

Die Menge aller Entscheidungsprobleme der Form $(x, k) \in \Sigma^* \times \mathbb{N}$ wobei k der Parameter und die Instanz in $\mathcal{O}(f(k) \cdot |x|^c), c \in \mathbb{N}$ lösbar ist.

Ist jedes parametrisierte Problem FPT?

Oliver Enes: Parametrisierte Algorithmen II

Problemklasse FPT

Die Menge aller Entscheidungsprobleme der Form $(x, k) \in \Sigma^* \times \mathbb{N}$ wobei k der Parameter und die Instanz in $\mathcal{O}(f(k) \cdot |x|^c), c \in \mathbb{N}$ lösbar ist.

Ist jedes parametrisierte Problem FPT?

(Spoiler: nein)

Problemklasse FPT

Die Menge aller Entscheidungsprobleme der Form $(x, k) \in \Sigma^* \times \mathbb{N}$ wobei k der Parameter und die Instanz in $\mathcal{O}(f(k) \cdot |x|^c), c \in \mathbb{N}$ lösbar ist.

Ist jedes parametrisierte Problem FPT?

(Spoiler: nein)

Wie zeigen wir, dass ein Problem nicht FPT ist?

Problemklasse FPT

Die Menge aller Entscheidungsprobleme der Form $(x, k) \in \Sigma^* \times \mathbb{N}$ wobei k der Parameter und die Instanz in $\mathcal{O}(f(k) \cdot |x|^c), c \in \mathbb{N}$ lösbar ist.

Ist jedes parametrisierte Problem FPT?

(Spoiler: nein)

Wie zeigen wir, dass ein Problem nicht FPT ist?

Parametrisierte polynomielle Reduktion (W[1]-Hardness)

Oliver Enes: Parametrisierte Algorithmen II

Problemklasse FPT

Die Menge aller Entscheidungsprobleme der Form $(x, k) \in \Sigma^* \times \mathbb{N}$ wobei k der Parameter und die Instanz in $\mathcal{O}(f(k) \cdot |x|^c), c \in \mathbb{N}$ lösbar ist.

Ist jedes parametrisierte Problem FPT?

(Spoiler: nein)

Wie zeigen wir, dass ein Problem nicht FPT ist?

Parametrisierte polynomielle Reduktion (W[1]-Hardness)

Exponential Time Hypothesis (ETH) und Strong Exponential Time Hypothesis (SETH) ermöglichen enge untere Schranken für die Laufzeit von Algorithmen.

Oliver Enes: Parametrisierte Algorithmen II