Hjemmeopgavesæt 2

Daniel Brasholt s214675

Oktober 2021

Opgave 3

3.a)

Opstiller man ligningssystemet i en matrix og udfører Gauss-Jordan-elimination, fås

Det kan her ses, at $0x + 0y + 0z = k - 3 \Leftrightarrow k = 3$. Dette må være den eneste værdi af k, for hvilken ligningssystemet kan løses, da rangen af totalmatricen er større end rangen af koefficientmatricen.

3.b)

For at finde de punkter, der udspænder tetraedet, opstilles totalmatricen, hvor k er lig 9:

Fra denne fjernes hver række enkeltvist, hvorefter matricen løses med værktøjet ReducedRowEchelonForm i Maple, som matricens trappeform. Resultatet af hver af disse eliminationer giver x-,y- og z-værdien for skæringspunktet mellem de tre planer. Dette må da gøres 4 gange, da et tetraed består af 4 hjørner. Da kan man finde frem til punkterne A,B,C og D således:

Da $\rho(T1)=n=3$, hvor n er antallet af ubekendte, må der kun være én løsning og A må være A=(1,-2,-2). Lignende udregninger kan laves for at finde de resterende punkter:

$$T3 = \begin{bmatrix} 1 & -2 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ 1 & -1 & -3 & 9 \end{bmatrix} \Leftrightarrow trap(T3) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3 \end{bmatrix}$$

$$C = (2, 2, -3)$$

$$T4 = \begin{bmatrix} 1 & -2 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ -1 & -1 & 1 & -1 \end{bmatrix} \Leftrightarrow trap(T4) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
$$D = (0, 0, -1)$$

Kun 3 af disse punkter, nemlig A, B og C ligger i planet svarende til den 4. ligning i systemet, da punktet D er skæringen mellem de resterende 3. Det kan desuden ses, at D ikke er i det plan, da koordinaterne kan indsættes i den ligning, hvilket giver $0 + 0 - 3 \neq 9$.

Det fremgår af sætning 10.60 i eNote 10 Geometriske vektorer, at $|a \times b|$ er det dobbelte af arealet af trekanten udspændt af de to vektorer. Arealet af sidefladen i tetraedet, som ligger i planen svarende til den fjerde ligning, må da være længden af krydsproduktet af to vektorer, der udspænder sidefladen, delt med 2. Disse kunne for eksempel være \vec{AB} og \vec{AC} :

$$\vec{AB} = \begin{pmatrix} -3 - 1\\ 0 - (-2)\\ -4 - (-2) \end{pmatrix} = \begin{pmatrix} -4\\ 2\\ -2 \end{pmatrix}$$
$$\vec{AC} = \begin{pmatrix} 2 - 1\\ 2 - (-2)\\ -3 - (-2) \end{pmatrix} = \begin{pmatrix} 1\\ 4\\ -1 \end{pmatrix}$$

Krydsproduktet og længden af dette findes med Maple (se bilag), hvilket giver arealet af sidefladen ABC:

$$Areal(ABC) = 3 \cdot \sqrt{11}$$

3.c)

Af sætning 10.63 fra eNote 10 Geometriske vektorer fremgår det, at rumfanget af tetraedet udspændt af de tre vektorer a, b og c er

$$Vol = \frac{1}{6} \cdot |det([a,b,c])|$$

Derfor skal den sidste vektor, der udspænder tetraedet, bestemmes. Denne er vektoren \vec{AD} :

$$\vec{AD} = \begin{pmatrix} -1\\2\\1 \end{pmatrix}$$

Rumfanget må da være:

$$Vol = \frac{1}{6} \cdot |det([AB \quad AC \quad AD])| = \frac{1}{6} \cdot \left| det\left(\begin{bmatrix} -4 & 1 & -1\\ 2 & 4 & 2\\ -2 & -1 & 1 \end{bmatrix}\right) \right|$$

$$= \frac{1}{6} \cdot \left| \left((-1) \cdot det\left(\begin{bmatrix} 2 & 4\\ -2 & -1 \end{bmatrix}\right) - 2 \cdot det\left(\begin{bmatrix} -4 & 1\\ -2 & -1 \end{bmatrix}\right) + det\left(\begin{bmatrix} -4 & 1\\ 2 & 4 \end{bmatrix}\right) \right) \right|$$

$$= \left| \frac{1}{6} \left((-1) \cdot 6 - 2 \cdot 6 + (-18) \right) \right|$$

$$= \frac{1}{6} \cdot 36 = 6$$

For at finde ud af, hvorvidt der er en anden værdi for k end k = 9, genereliseres vektorerne \vec{AB} , \vec{AC} og \vec{AD} til at anvende værdier for k. Disse bestemmes med Maple (se bilag):

$$\vec{AB} = \begin{pmatrix} -\frac{2k}{3} + 2 \\ \frac{k}{3} - 1 \\ -\frac{k}{3} + 1 \end{pmatrix}$$

$$\vec{AC} = \begin{pmatrix} \frac{5}{2} - \frac{k}{6} \\ 1 + \frac{k}{3} \\ -\frac{5}{2} + \frac{k}{6} \end{pmatrix}$$

$$\vec{AD} = \begin{pmatrix} \frac{1}{2} - \frac{k}{6} \\ \frac{k}{3} - 1 \\ \frac{k}{6} - \frac{1}{2} \end{pmatrix}$$

Dette giver voluminet:

$$Vol = \frac{|k^2 - 6k + 9|}{6}$$

Denne ligning løses med Maple (se bilag), hvilket giver to løsninger for k:

$$k=-3\vee k=9$$

Da vil man også få fire planer, der afgrænser et tetraeder med voluminet 6, hvis k = -3.

3.d)

Nedenfor er først de to vektorer \vec{AB} og \vec{AC} plottet. Det er disse to, der udspænder sidefladen fra opgave 3.b). Dernæst er hele tetrahedronet plottet fra samme vinkel, så det gøres klart, hvad man kigger på:

Figur 1: Vektorerne \vec{AB} og \vec{AC}

Figur 2: Tetrahedronet \vec{AB} \vec{AC} \vec{AD}

Kommandoerne, med hvilke disse er tegnet, kan findes i bilagene.

Bilag

```
> restart: with(LinearAlgebra):
> T := <1,-2,-1,1;1,0,1,-1;-1,-1,1,-1;1,-1,-3,9>
                                   (1)
> T1 := <1,0,1,-1;-1,-1,1,-1;1,-1,-3,9>;
   ReducedRowEchelonForm(T1)
                                                                                                   (2)
> T2 := <1,-2,-1,1;-1,-1,1,-1;1,-1,-3,9>;
   ReducedRowEchelonForm(T2)
                                                                                                   (3)
> T3 := <1,-2,-1,1;1,0,1,-1;1,-1,-3,9>;
  ReducedRowEchelonForm(T3)
                                    T3 := \begin{bmatrix} 1 & -2 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ 1 & -1 & -3 & 9 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3 \end{bmatrix}
                                                                                                   (4)
```

```
> T4 := \langle 1, -2, -1, 1; 1, 0, 1, -1; -1, -1, 1, -1 \rangle;
ReducedRowEchelonForm(T4)

T4 := \begin{bmatrix} 1 & -2 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ -1 & -1 & 1 & -1 \end{bmatrix}
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}
\begin{bmatrix} AB := \langle -3-1, 0-(-2), -4-(-2) \rangle; \\ AC := \langle 2-1, 2-(-2), -3-(-2) \rangle; \end{bmatrix}
AB := \begin{bmatrix} -4 \\ 2 \\ -2 \end{bmatrix}
AC := \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}
AC := \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}
AC := \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}
AD := \langle 0-1, 0-(-2), -1-(-2) \rangle
AD := \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}
AD := \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}
(8)
[5]
```

T1 := <1,0,1,-1;-1,-1,1,-1;1,-1,-3,k>,
ReducedRowEchelonForm(T1)

T2 := <1,-2,-1,1;-1,-1,1,-1;1,-1,-3,k>;
ReducedRowEchelonForm(T2)

T3 := <1,-2,-1,1;1,0,1,-1;1,-1,-3,9>;
ReducedRowEchelonForm(T3)

$$T3 := \begin{bmatrix} 1 & -2 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ 1 & -1 & -3 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3 \end{bmatrix}$$
(13)

```
> T4 := <1,-2,-1,1;1,0,1,-1;-1,-1,1,-1>;
     ReducedRowEchelonForm(T4)
                                             T4 := \begin{bmatrix} 1 & -2 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ -1 & -1 & 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}
                                                                                                                              (14)
 \rightarrow AB := \langle (-k/2+3/2) - (k/6-1/2), (0) - (-k/3+1), (-k/2+1/2) - (-k/6-1/2) >;
    AC := \langle (2) - (k/6-1/2), (2) - (-k/3+1), (-3) - (-k/6-1/2) \rangle;
     AD := \langle 0 - (k/6-1/2), 0 - (-k/3+1), -1 - (-k/6-1/2) \rangle
                                                 AB := \begin{bmatrix} \frac{k}{3} - 1 \\ -\frac{k}{3} + 1 \end{bmatrix}
AC := \begin{bmatrix} \frac{5}{2} - \frac{k}{6} \\ 1 + \frac{k}{3} \\ -\frac{5}{2} + \frac{k}{6} \end{bmatrix}
                                                   AD := \begin{bmatrix} \frac{1}{2} - \frac{k}{6} \\ \frac{k}{3} - 1 \\ \frac{k}{6} - \frac{1}{2} \end{bmatrix}
                                                                                                                              (15)
 > 1/6*abs(Determinant(<AB|AC|AD>))
                                                                                                                              (16)
 > solve((16)=6)
                                                            -3, 9
                                                                                                                              (17)
                                                               6
                                                                                                                              (18)
> restart: with(plottools): with(plots):
> A:=[1,-2,-2]; B:=[-3,0,-4];
    C:=[2,2,-3]; d:=[0,0,-1]
                                                   A := [1, -2, -2]
                                                    B := [-3, 0, -4]
                                                     C := [2, 2, -3]
                                                     d := [0, 0, -1]
                                                                                                                              (18)
> display(tetrahedron([A,B,C,d]),
    pointplot3d([A,B,C,d], symbol=solidsphere, symbolsize=20,
    orientation=[-130,70,172]),
    scaling=constrained)
```

> arrow([AB,AC],width=[0.01,relative],orientation=[-130,70,172])