UNIVERSIDADE DO ESTADO DE SANTA CATARINA

ANA CAROLINA VEDOY ALVES

COMPLEXIDADE DE ALGORITMOS

LISTA 1

1) Implemente uma função que calcule o n-ésimo termo da sequência de Fibonacci com complexidade de tempo linear. Construa um gráfico comparando a execução da versão linear com a versão recursiva definida abaixo:

unsigned int fib (unsigned int n) { if (n < 2) return n; return fib (n-2) + fib (n-1); }

Resposta:

Função utilizada:

```
unsigned int fib_linear(unsigned int n){
int a=0;    int b=1;    int n_fib = 0;
for(int i=0;i<n;i++){
   n_fib = a+b;    a=b;    b=n_fib; }
return n_fib; }</pre>
```

Comparação de tempos dos algoritmos sobre n-ésimo número da sequência de Fibonacci:

Os códigos implementados estão na pasta exercicio_1 desta entrega. Para executá-los basta executar num terminal Linux o comando:

gcc exercicio_1_fibonacci.c -o exercicio_1_fibonacci && ./exercicio_1_fibonacci

E em seguida:

python3 graphics.py

É necessário ter as seguintes bibliotecas instaladas:

- Pandas (para instalar basta executar o comando pip install pandas)
- Matplotlib (para instalar basta executar o comando pip install matplotlib)

Os gráficos estarão no arquivo chamado tempos_comparacao.png.