Tribhuvan University Institute of Science and Technology 2075

众

Bachelor Level / Second Year/ Third Semester/ Science Computer Science and Information Technology (CSc. 207) (Numerical Method) (NEW COURSE)

Full Marks: 60 Pass Marks: 24

Time: 3 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Group A

Attempt any Two questions:

 $(10 \times 2 = 20)$

1. What is non-linear equation? Derive the required expression to calculate the root of non-linear equation using secant method. Using this expression find a root of following equation.

$$x^2 + \cos(x) - e^{-x} - 2 = 0$$

2. What is matrix factorization? Factorize the given matrix A into LU using Dolittle algorithm and also solve Ax = b for given b using L and U matrices.

$$A = \begin{bmatrix} 2 & 4 & -4 & 0 \\ 1 & 5 & -5 & -3 \\ 2 & 3 & 1 & 3 \\ 1 & 4 & -2 & 2 \end{bmatrix} \text{ and } b = \begin{bmatrix} 12 \\ 18 \\ 8 \\ 8 \end{bmatrix}$$

What is initial value problem and boundary value problem? Write an algorithm and program to solve the boundary value problem using shooting method.

Group B

Attempt any Eight questions:

 $(5 \times 8 = 40)$

Calculate a real negative root of following equation using Newton's method for polynomial.

- $x^4 + 2x^3 + 3x^2 + 4x = 5$ 3

 5. What is least squares approximation of fitting a function? How does it differ with polynomial interpolation? Explain with suitable example.
- Find the lowest degree polynomial, which passes through the following points:

	X	T -2	-1	1	2	3	4		
	F(x)	-19	0	2	-3	-4	5		
I 41	- this polym	mial estima	mate $f(x)$ at $x = 0$. $f(x) = f(x+1)$			(-h)	(A)		

Using this polynomial estimate I(x)

Fit function of type y = a + bx for the following points using least square method. 3.6 1.2 45 41 27 33 20 F(x)

CSc. 207-2075(NEW)

8. Calculate the integral value of the function given below from x = 1.8 to x = 3.4 using Simpson's 1/3 rule.

X	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4
F(x)	0.003	0.778	1.632	2,566	3.579	4.672	7.097	8.429	8-429

9. Evaluate the following integration using Romberg integration.

$$\int_{0}^{1} \frac{\sin x}{x} dx.$$

10. Solve the following set of equations using Gauss Seidel method.

$$x + 2y + 3z = 4$$

 $6x - 4y + 5z = 10$
 $5x + 2y + 2z = 25$

11. From the following differential equation estimate y(1) using RK 4th order method.

$$\frac{dy}{dx} + 2x^2y = 4 \text{ with } y(0) = 1, \quad [Take h = 0.5].$$

12. Solve the Poison's equation $\nabla^2 f = 2xy$ over the square domain $0 \le x \le 1.5$, $0 \le y \le 1.5$ with f = 0 on the boundary and h = 0.5.