Methoden der Algorithmik WS1011 Prof. Dr. Michael Kaufmann

Christian Kniep

November 11, 2010

1 Vorlesung 10.11.2010

1.1 Wiederholung

- Anzahl sättigende Pushes : $\leq n * m$
- Anzahl nichtsättigende Pushes : $\leq O(n^2 * m)$
- Anzahl Relabel: $\leq 2n$

1.2 Lemma

Wir haben höchstens $\leq O(n^2 * m)$ nichtsättigende Pushes .

1.3 Beweis

Benutzen Potentialfunktion $\phi = \sum_{v \in A} d(v). (\mathbf{A} = \mathbf{Menge}$ aller aktiven Knoten)

Da $|A| \le n, d(v) \le$ für alle v inV und $\phi \le 2n^2$ anfangs. Am Ende ist $\phi = 0$.

1. Relabel

 ϕ steigt um $\leq \epsilon$, wenn d(v) um ϵ steigt. Insgesamt steigt d(v) um $\leq 2n$, also insgesamt steigt ϕ um $\leq 2n^2$.

2. sättigende Pushes

Diese erzeugen über (v,w) vtl. neuen Überfluss an w, w wird somit aktiv, ϕ steigt um $d(w) \leq 2n$. Also steigt ϕ durch sättigende Pushes um $\leq 2n^2 * m$.

3. nichtsättigende Pushes

 ϕ wird um d(v) erniedrigt, evtl. jedoch noch um d(w) erhöht, falls w vorher nicht aktiv war.

Es gilt jedoch $d(v) \ge d(w) + 1 \Rightarrow \phi$ erniedrigt sich um ≥ 1 .

Insgesammt:

Erhöhung von ϕ von $\leq 2n^2$ um $2n^2+2n^2*m$ und k
 Erniedrigungen von ϕ um $\geq 1,$

führen zusammen zu 0-Potential.

 $\Rightarrow k = O(n^2 * m), k = \#$ nichtsättigende Pushes

1.4 Satz

Der generische Preflow-Push-Algorithmus läuft in $O(n^2 * m)$.

1.5 Varianten

Wahl der aktiven Knoten.

1. **FIFO**

Warteschlange aktiver Knoten $O(n^3)$

2. Highest Label

'höchster' Knoten im Netz $O(n^2\sqrt{m})$

3. Excess Scaling

'höchster' Füllstand zuerst O(n*m + logc), c=grösste Kapazität

1.6 FIFO

1.6.1 Regel

Wende Push/Relabel solange auf denselben Knoten an, bis entweder e(v)=0 oder Relabel-Operation angewendet wurde.

DIe Liste der Knoten wird als FIFO-Queue gehalten.

Wird v relabelt, wird es hinten wieder angefügt.

1.6.2 Phasen

Arbeiten die Liste ab, bis um ersten Mal ein Knoten erscheint, der an dieser Phase schon teilgenommen hat.

1.6.3 Behauptung

Es gibt $\leq 4n^2 + 2n$ Phasen

1.6.4 Beweis

Betrachte jeweils die Änderung der Potentialfunktion. $\phi = max\{d(v)|vistaktiv\}$

1. Fall 1

Während einer Phase gibt es mindestens eine Relabel-Operation. ϕ steigt höchstens so viel wie der d-Wert max. (?). $\Rightarrow \phi$ steigt in solchen Fällen um $< 2n^2$.

2. **Fall 2**

Alle aktiven Knoten mit max. Distanz werden inaktiv, der maximale Distanzwert sinkt um mindestens 1.

Insgesamt gibt es also $\leq \underbrace{n + 2n^2 + (n + 2n^2)}_{2n + 4n^2}$ Pushes.

1.6.5 Satz

Der FIFO-Preflow-Push-Algorithmus läuft in $O(n^3)$

1.7 Highest-Label

1.7.1 Regel

Schicke immer Fluss von einem aktiven Knoten mit höchstem Distanzwert.

1. Es gibt $O(n^3)$ nichtsättigende Pushes .

Sei $h = max\{d(v)|vaktiv\}$

Zuerst werden aktive Knoten v mit d(v) = h betrachtet,

dann h-1, h-2, usw. Bei Relabelings fängt das ganze neu an.

Es gibt jedoch nur $\leq 2n^2$ Relabelings.

Gibt es n nichtsättigende Pushes hintereinander, dann sind wir fertig. Alle Knoten sind dann inaktiv.

Wie findet man aktive Knoten mit höchstem DIstanzlabel?

Halten Liste (k) = v|vaktivundd(v) = k.

Merken max. Index der den höchsten d-Wert angibt. Betrachte Listen (max), Listen (max-1), usw...

Relabel erhöht max.

1.8 Satz

Der Highest-Label-Preflow-Push macht $O(n^2\sqrt{m}$ nichtsättigende Pushes und hat somit $O(n^3)$ Gesamtlaufzeit.