https://youtu.be/vbr62aAu2oo

Simpira

- AES 라운드 함수를 기반으로 하는 순열
 - 임의의 큰 입력 크기에 대해 매우 효율적인 순열을 제공
 - 최적화된 소프트웨어 구현을 위해 Intel AES-NI 명령어 셋 활용
 - 입력 길이 : b x 128-bit(b ∈ N⁺)
- Simpira의 1라운드는 AES의 라운드 함수 2번으로 구성
 - 고정된 라운드키를 사용 → 고정된 출력 값
 - 고정된 라운드키를 0x00 설정하는 것은 안전하지 않음
 - 따라서, 라운드 함수($\mathbb{F}_{c,b}$)를 통해 연산 된 값(라운드 상수)을 사용
 - AES 라운드 함수 2번으로 전체 비트 확산 가능

b : block 개수 c : 라운드 카운터

Algorithm 2 Simpira Algorithm

procedure Simpira(state, rk)

- 1: *R* ← 6
- 2: **for** c = 1 **to** R **do**
- 3: $state \leftarrow \mathbf{F}_{c,b}(state)$
- 4: end for
- 5: $state \leftarrow InvMixColumns(state)$
- 6: return state

end procedure

Algorithm 3 $F_{c,b}$ Algorithm (b=1)

procedure $F_{c,b}(state)$

- 1: $RK[0] = 0 \times 00 \oplus c \oplus b$
- 2: $RK[4] = 0 \times 10 \oplus c \oplus b$
- 3: $RK[8] = 0x20 \oplus c \oplus b$
- $4: RK[12] = 0x30 \oplus c \oplus b$
- 5: **return** AES(AES(state, RK), Z)

end procedure

Simpira

• F함수($\mathbb{F}_{c,b}$)

b=4

 x_0

b = 8

 x_1

Simpira

• F함수 $(\mathbb{F}_{c,b})$

Fig. 1. Two common classes of Generalized Feistel Structures (GFSs) are the Type-1 GFS (left) and the Type-2 GFS (right). For each example, two rounds are shown of a GFS that operates on b=6 subblocks. We will initially consider these GFSs in this

b	structure	round	AESENC
1	AES permutation	6	12
2	Feistel	15	30
3	Type-1 GFS	21	42
≥4(6, 8 제외)	Type-2 GFS	(Feistel round) 15	60
6	Suzaki-Minematsu Improved Type-2 GFS	(Feistel round) 15	90
8	Suzaki-Minematsu Improved GFS	(Feistel round) 18	144

• 라운드 상수를 사용한 고정된 라운드키를 사용하기 때문에 사전 연산 가능

Algorithm 3 $F_{c,b}$ Algorithm (b=1)

procedure $F_{c,b}(state)$

- 1: $RK[0] = 0 \times 00 \oplus c \oplus b$
- 2: $RK[4] = 0 \times 10 \oplus c \oplus b$
- 3: $RK[8] = 0x20 \oplus c \oplus b$
- 4: $RK[12] = 0x30 \oplus c \oplus b$
- 5: **return** AES(AES(state, RK), Z)

end procedure

- 하나의 라운드당 2개의 라운드키 사용 총 12번의 라운드키 사용
 - 상수 라운드 키와 라운드키 전체가 0x00인 경우
 - 6라운드에서 0x00을 라운드 키로 사용
- AES-NI 대신 직접 AES 연산을 개별 구현하기 때문에 생략 가능

RK[0]	0x00 ⊕ c ⊕ b	RK[4]	0x10 ⊕ c ⊕ b	RK[8]	0x20 ⊕ c ⊕ b	RK[12]	0x30 ⊕ c ⊕ b
RK[1]	0x00	RK[5]	0x00	RK[9]	0x00	RK[13]	0x00
RK[2]	0x00	RK[6]	0x00	RK[10]	0x00	RK[14]	0x00
RK[3]	0x00	RK[7]	0x00	RK[11]	0x00	RK[15]	0x00

Figure 2. Values of each roundkey; RK = Roundkey, c is a counter that is initialized by one, and incremented after every use of $F_{c,b}$, Every $F_{c,b}$ consists of two AES round, where the round constants that are determined from (c, b), b is number of blocks.

• InvMixColumn 연산 생략

Figure 3. (Top) original Simpira structure / (Bottom) optimized Simpira structure.

Simpira Round (i = 1 to 6)

성능 평가

• AVR : 레퍼런스 대비 5.76% 성능 향상

• RISC-V : 레퍼런스 대비 37.01% 성능 향상

Implementation	Processor	Code size	
Our work	AVR	2,122	
Our work	RISC-V	1,806	
Our work*	AVR	1,978	
	RISC-V	1,281	
Implementation	Processor	Clock cycles	
Ref-C	AVR	14,334	
Rei-C	RISC-V	38,942	
Our work	AVR	2,862	
Our work	RISC-V	1,106	
Our work*	AVR	2,485	
	RISC-V	1,052	

Q&A