

Matemática A

11.º ANO DE ESCOLARIDADE

Duração: 90 minutos | **Data:** MARÇO 2023

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Considere, num referencial o.n. Oxyz, o plano α e a reta r definidos, respetivamente, por

$$a: 2x-3y+z-1=0 \ e \ r:(x,y,z)=(0,0,1)+k(0,1,3), k \in \mathbb{R}$$

- **1.1.** Indique a posição relativa de $r \in \alpha$.
- 1.2. O valor de k para o qual a reta r é paralela ao plano β definido, no mesmo referencial, por 7x - ky + 4z - kz = 0 é:
 - **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)**
- 2. Considere, num referencial o.n. Oxyz, a superfície esférica C de centro C(1,-1,1) e raio 2.
 - Mostre que o ponto P de coordenadas (1, 1, 1) pertence à superficie esférica. 2.1.
 - 2.2. Utilizando o cálculo vetorial, escreva uma equação do plano tangente à superfície esférica no ponto P.
 - Determine as coordenadas do ponto Q, sabendo que [PQ] é um diâmetro da superfície esférica.
- Seja s a reta definida, num referencial o.n. xOy, por $y = -\sqrt{15}x + 1$. 3.

Sendo α a inclinação da reta s, então, $\cos \alpha$ tem o valor:

- **(A)** $-\frac{1}{4}$
- **(B)** $\frac{1}{16}$ **(C)** $\frac{1}{4}$
- **(D)** 1

4. Considere a função g definida em $\left[-\pi, 2\pi\right]$ por $g(x) = x\cos\left(x - \frac{\pi}{6}\right)$.

4.1. Determine os zeros de g.

4.2. Determine as abcissas dos pontos de interseção do gráfico de g com o gráfico da função h, definida em \mathbb{R} por $h(x) = -\frac{x}{2}$.

4.3. Na figura estão representados, num referencial o.n. *xOy*,

Utilize as capacidades gráficas da calculadora para determinar a abcissa do ponto P sabendo que a reta AP tem declive -1 e que o problema admite uma única solução.

Na sua resposta:

• apresente a(s) equação(ões) que lhe permite(m) obter a solução do problema;

• reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permitem resolver a(s) equação(ões);

• Apresente a abcissa de P arredondada às centésimas.

5. Seja (u_n) a sucessão definida por:

$$\begin{cases} u_1 = 3 \\ u_{n+1} = 2u_n - n , \forall n \in \mathbb{N} \end{cases}$$

O terceiro termo de (u_n) é:

- **(A)** −1
- **(B)** (
- (C) 4
- **(D)** 8

Considere a sucessão (a_n) de termo geral $a_n = \frac{1-n}{n+3}$. 6.

Seja A o conjunto dos termos da sucessão (a_n) .

Qual das seguintes afirmações é verdadeira?

- -1 é o mínimo de A. **(A)**
- A sucessão (a_n) tem pelo menos um termo positivo. **(B)**
- **(C)** 0 é majorante de A mas não é o máximo desse conjunto.
- $\forall n \in \mathbb{N}, |a_n| < 1$ **(D)**
- Observe a representação gráfica da função h de domínio $]-4, +\infty[\setminus\{-1\}]$. 7.

Sabe-se que:

- a reta de equação x = -4 é uma assíntota ao gráfico de h;
- $\lim_{x \to +\infty} h(x) = -\infty$
- **7.1.** Indique, caso exista:
 - $\lim_{x\to -1}h(x)$ a)
- $b) \qquad \lim_{x\to 2} h(x)$

FIM

COTAÇÕES

	Item														
	Cotação (em pontos)														
1.1.	1.2.	2.1.	2.2.	2.3.	3.	4.1.	4.2.	4.3.	5.	6.	7.1.a)	7.1.b)	7.2.a)	7.2.b)	
16	10	10	15	15	10	15	18	15	10	10	14	14	14	14	200

Proposta de resolução

1.

1.1. Ponto genérico da reta r: R(0,k,1+3k)

Plano
$$\alpha: 2x - 3y + z - 1 = 0$$

Interseção de $r \operatorname{com} \alpha$:

$$2 \times 0 - 3k + 1 + 3k - 1 = 0 \Leftrightarrow 0 = 0$$
 (equação possível e indeterminada)

A reta r está contida no plano α .

1.2. Sendo a reta r é paralela ao plano β , o vetor normal ao plano $(\overrightarrow{n_{\beta}})$ e o vetor diretor da reta (\overrightarrow{r}) são perpendiculares.

$$\overrightarrow{n_{\beta}} = (7, -k, 4-k)$$

$$\vec{r} = (0, 1, 3)$$

$$\overrightarrow{n_{\beta}}$$
. $\overrightarrow{r} = 0 \Leftrightarrow -k + 12 - 3k = 0 \Leftrightarrow k = 3$

Resposta: (C)

2.

2.1.
$$(x-1)^2 + (y+1)^2 + (z-1)^2 = 4$$

$$(1-1)^2 + (1+1)^2 + (1-1)^2 = 4 \Leftrightarrow 4 = 4$$
 (proposição verdadeira).

Então P é um ponto da superfície esférica.

2.2.
$$\overrightarrow{PC} = (1,-1,1) - (1,1,1) \Leftrightarrow \overrightarrow{PC} = (0,-2,0)$$

$$\overrightarrow{PX} = (x, y, z) - (1,1,1) \Leftrightarrow \overrightarrow{PX} = (x-1, y-1, z-1)$$

$$\overrightarrow{PC}.\overrightarrow{PX} = 0 \Leftrightarrow (x-1,y-1,z-1).(0,-2,0) = 0 \Leftrightarrow -2(y-1) = 0 \Leftrightarrow y = 1$$

O plano tangente à superfície esférica no ponto P é definido pela equação y = 1.

2.3. Sendo Q diametralmente oposto a P, então $Q = C + \overrightarrow{PC}$.

$$Q = (1,-1,1) + (0,-2,0) \Leftrightarrow Q = (1,-3,1)$$

3.
$$y = -\sqrt{15}x + 1$$
; $\tan \alpha = -\sqrt{15}$

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$1+15 = \frac{1}{\cos^2 \alpha} \Leftrightarrow \cos^2 \alpha = \frac{1}{16} \text{ como } \alpha \in \left[\frac{\pi}{2}, \pi \right[, \cos \alpha < 0. \text{ Então, } \cos \alpha = -\frac{1}{4}.$$

Resposta: (A)

Máximo

4.

4.1.
$$g(x) = 0 \Leftrightarrow x \cos\left(x - \frac{\pi}{6}\right) = 0 \Leftrightarrow x = 0 \lor \cos\left(x - \frac{\pi}{6}\right) = 0 \Leftrightarrow$$

 $\Leftrightarrow x = 0 \lor x - \frac{\pi}{6} = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Leftrightarrow x = 0 \lor x = \frac{2\pi}{3} + k\pi, k \in \mathbb{Z}$
Em $\left[-\pi, 2\pi\right]$, os zeros são: $-\frac{\pi}{3}$; 0; $\frac{2\pi}{3}$; $\frac{5\pi}{3}$

4.2.
$$g(x) = h(x) \Leftrightarrow x \cos\left(x - \frac{\pi}{6}\right) = -\frac{x}{2} \Leftrightarrow x \cos\left(x - \frac{\pi}{6}\right) + \frac{x}{2} = 0 \Leftrightarrow$$

$$\Leftrightarrow x \left(\cos\left(x - \frac{\pi}{6}\right) + \frac{1}{2}\right) = 0 \Leftrightarrow x = 0 \lor \cos\left(x - \frac{\pi}{6}\right) = -\frac{1}{2} \Leftrightarrow$$

$$\Leftrightarrow x = 0 \lor x - \frac{\pi}{6} = \frac{2\pi}{3} + 2k\pi \lor x - \frac{\pi}{6} = -\frac{2\pi}{3} + 2k\pi , \ k \in \mathbb{Z}$$

$$\Leftrightarrow x = 0 \lor x = \frac{5\pi}{6} + 2k\pi \lor x = -\frac{\pi}{2} + 2k\pi , \ k \in \mathbb{Z}$$

$$\text{Em } \left[-\pi, 2\pi\right], \text{ as soluções são: } -\frac{\pi}{2}; \ 0; \ \frac{5\pi}{6}; \ \frac{3\pi}{2}$$

4.3. A reta que passa em A(0,2) e tem declive -1 é definida pela equação y=-x+2. Esta é, portanto, a equação da reta P.

Assim, pretendemos determinar, no intervalo $\left[0,\frac{2\pi}{3}\right]$, a abcissa do ponto de interseção do gráfico de g com a reta de equação y=-x+2, ou seja, pretendemos resolver, naquele intervalo, a equação g(x)=-x+2.

Recorrendo à calculadora gráfica, definiram-se $y_1 = g(x) = x \cos\left(x - \frac{\pi}{6}\right)$ e $y_2 = -x + 2$.

De seguida, determinou-se a abcissa do ponto de interseção dos gráficos de y_1 e y_2 .

Obteve-se o seguinte resultado:

Logo, a abcissa do ponto P é aproximadamente igual a 1,08.

5.
$$u_1 = 3$$

 $u_2 = 2u_1 - 1 \Leftrightarrow u_2 = 2 \times 3 - 1 \Leftrightarrow u_2 = 5$

$$u_3 = 2u_2 - 2 \Leftrightarrow u_3 = 2 \times 5 - 2 \Leftrightarrow u_3 = 8$$

Resposta: (D)

6.

$$a_n = \frac{1-n}{n+3} \Leftrightarrow a_n = -1 + \frac{4}{n+3}$$
 Cálculo auxiliar:
$$n \ge 1 \Leftrightarrow n+3 \ge 4 \Leftrightarrow 0 < \frac{1}{n+3} \le \frac{1}{4} \Leftrightarrow -n+1 \qquad n+3$$

$$\Leftrightarrow 0 < \frac{4}{n+3} \le \frac{4}{4} \Leftrightarrow -1 < a_n \le 0$$

$$\frac{n+3}{4} = -1$$

 $\forall n \in \mathbb{N}, \ a_n \in \left]-1,0\right]$ pelo que $\forall n \in \mathbb{N}, \left| \ a_n \ \right| < 1$

Resposta: (D)

7.1.

- a) -1 não pertence ao domínio da função e $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} f(x) = 2$, então $\lim_{x \to -1} f(x) = 2$.
- **b)** 2 pertence ao domínio da função. Não existe $\lim_{x\to 2} f(x)$ uma vez que f(2)=3 e $\lim_{x\to 2^-} f(x)=2$.

7.2.

a)
$$u_n \to -4^+$$

$$\lim h(u_n) = \lim_{x \to -4^+} h(x) = -\infty$$

b)
$$u_n \to +\infty$$

$$\lim h(u_n) = \lim_{x \to +\infty} h(x) = -\infty$$