NCKU-ES DIC design training

Lab 1

Arithmetic Logic Unit

Professor:Wen-Long Chin

TA: Cheng-Tsung Chang

VLSI signal processing LAB

- Objectives
 - > To learn the basics of RTLcode
- LAB content
 - ➤ LAB1: Arithmetic Logic Unit

Design Description

- An arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical operations.
- Please design an ALU which performs 8 operations.

Block Diagram

Specifications

- Top module name : alu (File name: alu.v).
- ➤ Input pins: src_a[3:0], src_b[3:0], opcode[2:0], reset, clk.
- Output pins: overflow, alu_out[3:0], zero.
- alu_out becomes 0 when the reset equal to 1.
- Note that src_a, src_b are signed number. Overflow detection can refer to the handout.
- ➤ The zero bit becomes 1 when the alu_out equal to 0, and 0 otherwise.
- The overflow bit becomes 1 when the calculation result (alu_out) is greater than what it can represent.

Functionality

opcode	ALU operation
000	No operation
001	src_a AND src_b
010	src_a OR src_b
011	Pass src_a
100	src_a + src_b
101	src_a - src_b
110	<pre>src_a >> src_b (Logic shift right)</pre>
111	<pre>src_a << src_b (Logic shift left)</pre>

Example

opcode	ALU operation example
000 (No operation)	alu_out=4'd0, zero=1'b1,overflow=1'b0
001 (AND)	src_a=4'b0001, src_b=4'b1110
	\rightarrow alu_out=4'b0000, zero=1'b1, overflow=1'b0
010 (OR)	src_a=4'b0001, src_b=4'b1110,
	→ alu_out=4'b1111, zero=1'b0, overflow=1'b0
011 (Pass src_a)	src_a=4'b0001, src_b=4'b1110,
	→ alu_out=4'b0001, zero=1'b0, overflow=1'b0
	src_a=4'b0000, src_b=4'b0010,
	→ alu_out=4'b0000, zero=1'b1, overflow=1'b0
100 (+)	src_a=4'b0001, src_b=4'b1001,
	→ alu_out=4'b1010, zero=1'b0, overflow=1'b0
	src_a=4'b0111, src_b=4'b0111,
	→ alu_out=4'b1110, zero=1'b0, overflow=1'b1
101 (-)	src_a=4'b0001, src_b=4'b1001,
	→ alu_out=4'b1000, zero=1'b0, overflow=1'b1
	src_a=4'b0111, src_b=4'b0011,
	→ alu_out=4'b0100, zero=1'b0, overflow=1'b0
110(>>)	src_a=4'b0111, src_b=4'b0011,
	→ alu_out=4'b0000, zero=1'b1, overflow=1'b0
111(<<)	src_a=4'b0111, src_b=4'b0011,
	→ alu_out=4'b1000, zero=1'b0, overflow=1'b0

Note

- ➤ 本次作業提供測試程式(Testbench),各位同學的作業須能通過 測試程式的驗證
- ▶ 書面報告需包含
 - 1. 設計原理(Design principle)及架構 (Architecture)
 - 2. 波型(Waveform)分析
 - 3. 通過測試程式的圖

(請詳細描述原理及分析波型)

- ▶ 書面報告請勿手寫
- ▶ 繳交的作業資料夾組織與命名請與下頁圖示相同
- ▶ 作業繳交至 steve122tw20@gmail.com
- ▶ 截止日期: 20207/13(一)

Directory Organization

