

Introduction

- Contrastive Explanation Method (CEM)
- Intuitive explanation for 'black box models'
- Datasets:
 - o MNIST,
 - Procurement Fraud (not available)
 - o fMRI (evaluated by experts)

For an intuitive explanation CEM tries to find:

Pertinent Negatives (PN) and Pertinent Positives (PP)

MNIST dataset

Pertinent Negatives are the novel idea introduced by CEM

Target questions

- Given the instructions in the paper, can we write an implementation of CEM?
 - Combine information provided by paper and publicly available code (in TensorFlow)
- How do the results of our CEM implementation compare to the original paper's results on the MNIST dataset?
 - Evaluation is done by subjective assessment of the explanations
- Does CEM generalise well to other data sets?
 - Perform CEM on FashionMNIST and assess intuitive interpretability

Method for finding pertinent negatives

- Minimize optimization objective with several terms
 - Loss function
 - Encourage probability of different class than the original one
 - Elastic net regularizer
 - For efficient feature selection in large data space
 - L1 & L2 norm
 - Autoencoder
 - Should encourage the result to be close to original data manifold (up for debate)
 - Parameters in front of every term that have to be specified beforehand

Method for finding pertinent positives

- Similar to finding the pertinent negatives
 - Loss function has different objective
 - Encourage probability of found pertinent positive to have the same class as the original sample
 - Elastic net regularizer is the same
 - For efficient feature selection in large data space
 - Autoencoder is used slightly different, with the same effect
 - Should encourage the result to be close to original data manifold (up for debate)

How do we optimize the specified objectives?

- Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
 - Optimization algorithm for problems with L1-regularization
 - Usage of FISTA is not justified and highly debatable
 - Iteratively update value of pertinent positives / negatives
 - Uses gradient of objective function
 - Performs SGD on classifier and autoencoder
 - Classifier and autoencoder models should be differentiable (truly black box?)
 - Projection on space where pertinent positives and pertinent negatives can be found

Experimental Setup

- Performed experiments on MNIST and FashionMNIST
- Trained CNN and Autoencoder ourselves
- Hyperparameters of original paper could mostly be used as starting point
 - No exact hyperparameters for CNN and AE training
 - Played around with parameters to achieve the best results
- PyTorch package written using paper and existing implementation

MNIST Results

- Intuitive cases
 - o 7 is transformed to a 9
- Edge cases
 - o 2 is as 3
 - o 5 as 3

FashionMNIST Results

- High tendency to classify as a bag
- Less intuitive results than MNIST

0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

Discussion

- Reimplementing CEM
 - Existing implementation was different from the paper
 - No specification of the gradient used in objective function
 - Regularisation coefficients are dependent on classification
- Evaluating the results
 - Subjective individual evaluation
 - Results are reproducible

Conclusion

- Paper does not describe process well enough
- Experiments were not all reproducible
- Paper lacks theoretical substantiation