Výroková a predikátová logika - VIII

Petr Gregor

KTIML MFF UK

ZS 2015/2016

Tablo metoda v PL - rozdíly

- Formule v položkách budou sentence (uzavřené formule), tj. formule bez volných proměnných.
- Přidáme nová atomická tabla pro kvantifikátory.
- Za kvantifikované proměnné se budou substituovat konstantní termy dle jistých pravidel.
- Jazyk rozšíříme o nové (pomocné) konstantní symboly (spočetně mnoho) pro reprezentaci "svědků" položek $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$.
- V dokončené bezesporné větvi s položkou $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$ budou instance $T\varphi(x/t)$ resp. $F\varphi(x/t)$ pro každý konstantní term t (rozšířeného jazyka).

Atomická tabla - nová

Atomická tabla jsou i následující (položkami značkované) stromy, kde φ je libovolná formule jazyka L_C ve volné proměnné x, t je libovolný konstantní term jazyka L_C a c je nový konstantní symbol z $L_C \setminus L$.

Poznámka Konstantní symbol c reprezentuje "svědka" položky $T(\exists x)\varphi(x)$ či $F(\forall x)\varphi(x)$. Jelikož nechceme, aby na c byly kladeny další požadavky, je v definici tabla omezeno, jaký konstantní symbol c lze použít.

Tablo

Konečné tablo z teorie T je binární, položkami značkovaný strom s předpisem

- (i) každé atomické tablo je konečné tablo z T, přičemž v případě (*) lze použít libovolný konstantní symbol $c \in L_C \setminus L$
- (ii) je-li P položka na větvi V konečného tabla z T, pak připojením atomického tabla pro P na konec větve V vznikne konečné tablo z T, přičemž v případě (*) lze použít pouze konstantní symbol $c \in L_C \setminus L$, který se dosud nevyskytuje na V,
- (iii) je-li V větev konečného tabla z T a $\varphi \in T$, pak připojením $T\varphi$ na konec větve V vznikne rovněž konečné tablo z T.
- (iv) každé konečné tablo z T vznikne konečným užitím pravidel (i), (ii), (iii).
- *Tablo z teorie T* je posloupnost $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ konečných tabel z T takových, že τ_{n+1} vznikne z τ_n pomocí (*ii*) či (*iii*), formálně $\tau = \cup \tau_n$.

Konstrukce tabla

Konvence

Položku, dle které tablo prodlužujeme, nebudeme na větev znovu zapisovat kromě případů, kdy položka je $\overline{(varu\ T(\forall x)\varphi(x))}$ či $\overline{F(\exists x)\varphi(x)}$.

Tablo důkaz

- Větev V tabla τ je sporná, obsahuje-li položky $T\varphi$ a $F\varphi$ pro nějakou sentenci φ , jinak je bezesporná.
- Tablo τ je sporné, pokud je každá jeho větev sporná.
- Tablo důkaz (důkaz tablem) sentence φ z teorie T je sporné tablo z T s položkou $F\varphi$ v kořeni.
- φ je (tablo) dokazatelná z teorie T, píšeme $T \vdash \varphi$, má-li tablo důkaz z T.
- Zamítnutí sentence φ tablem z teorie T je sporné tablo z T s položkou $T\varphi$ v kořeni.
- Sentence φ je *(tablo) zamítnutelná* z teorie T, má-li zamítnutí tablem z T, tj. $T \vdash \neg \varphi$.

Příklady

Dokončené tablo

Chceme, aby dokončená bezesporná větev poskytovala protipříklad.

Výskyt položky P ve vrcholu v tabla τ je i- $t\acute{y}$, pokud v má v τ právě i-1 předků označených P a je redukovaný na větvi V skrze v, pokud

- a) P není tvaru $T(\forall x)\varphi(x)$ ani $F(\exists x)\varphi(x)$ a P se vyskytuje na V jako kořen atomického tabla, tj. při konstrukci τ již došlo k rozvoji P na V, nebo
- b) P je tvaru $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$, má (i+1)-ní výskyt na V a zároveň se na V vyskytuje $T\varphi(x/t_i)$ resp. $F\varphi(x/t_i)$, kde t_i je i-tý konstantní term (jazyka L_C).

Nechť V je větev tabla τ z teorie T. Řekneme, že

- větev V je *dokončená*, je-li sporná, nebo každý výskyt položky na V je redukovaný na V a navíc V obsahuje $T\varphi$ pro každé $\varphi \in T$,
- tablo τ je dokončené, pokud je každá jeho větev dokončená.

Systematické tablo - konstrukce

Nechť R je položka a $T=\{\varphi_0,\varphi_1,\dots\}$ je (konečná či nekonečná) teorie.

- (1) Za τ_0 vezmi atomické tablo pro R. V případě (*) vezmi lib. $c \in L_C \setminus L$, v případě (\sharp) za t vezmi term t_1 . Dokud to lze, aplikuj následující kroky.
- (2) Nechť v je nejlevější vrchol v co nejmenší úrovni již daného tabla τ_n obsahující výskyt položky P, který není redukovaný na nějaké bezesporné větvi skrze v. (Neexistuje-li v, vezmi $\tau_n' = \tau_n$ a jdi na (4).)
- (3a) Není-li P tvaru $T(\forall x)\varphi(x)$ ani $F(\exists x)\varphi(x)$, za τ'_n vezmi tablo vzniklé z τ_n přidáním atomického tabla pro P na každou bezespornou větev skrze v. V případě (*) za c vezmi c_i pro nejmenší možné i.
- (3b) Je-li P tvaru $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$ a ve v má i-tý výskyt, za τ'_n vezmi tablo vzniklé z τ_n připojením atomického tabla pro P na každou bezespornou větev skrze v, přičemž za t vezmi term t_i .
 - (4) Za τ_{n+1} vezmi tablo vzniklé z τ'_n přidáním $T\varphi_n$ na každou bezespornou větev neobsahující $T\varphi_n$. (Neexistuje-li φ_n , vezmi $\tau_{n+1} = \tau'_n$.)

Systematické tablo z T pro R je výsledkem uvedené konstrukce, tj. $\tau = \cup \tau_n$.

Systematické tablo - příklad

$$T((\exists y)(\neg R(y,y) \lor P(y,y)) \land (\forall x)R(x,x))$$

$$| T(\exists y)(\neg R(y,y) \lor P(y,y))$$

$$| T(\forall x)R(x,x)$$

$$| T(\neg R(c_0,c_0) \lor P(c_0,c_0)) \quad c_0 \text{ nov\'a}$$

$$| T(\forall x)R(x,x)$$

$$| T(c_0,c_0) \quad (za \text{ p\'edpokladu } t_1=c_0)$$

$$| T(\forall x)R(x,x) \quad T(\forall x)R(x,x)$$

$$| T(\forall x)R(x,x) \quad T(\forall x)R(x,x)$$

$$| T(t_2,t_2) \quad T(t_2,t_2)$$

Systematické tablo - dokončenost

Tvrzení Pro každou teorii T a položku R je systematické tablo τ dokončené.

Důkaz Nechť $\tau = \cup \tau_n$ je systematické tablo z $T = \{\varphi_0, \varphi_1, \dots\}$ s R v kořeni a nechť P je položka ve vrcholu v tabla τ .

- ullet Do úrovně v (včetně) je v au jen konečně mnoho výskytů všech položek.
- Kdyby výskyt P ve v byl neredukovaný na nějaké bezesporné větvi v τ , byl by vybrán v nějakém kroku (2) a zredukován v (3a) či (3b).
- Každá $\varphi_n \in T$ bude dle (4) nejpozději v τ_{n+1} na každé bezesporné větvi.

Tvrzení Je-li systematické tablo τ důkazem (z teorie T), je τ konečné.

extstyle ext

Rovnost

Axiomy rovnosti pro jazyk L s rovnosti jsou

- (i) x = x
- (ii) $x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ pro každý n-ární funkční symbol f jazyka L.
- (iii) $x_1 = y_1 \land \cdots \land x_n = y_n \rightarrow (R(x_1, \dots, x_n) \rightarrow R(y_1, \dots, y_n))$ pro každý n-ární relační symbol R jazyka L včetně =.

Tablo důkaz z teorie T jazyka L *s rovností* je tablo důkaz z teorie T^* , kde T^* je rozšíření teorie T o axiomy rovnosti pro L (resp. jejich generální uzávěry).

Poznámka V kontextu logického programování má rovnost často jiný význam než v matematice (identita). Např. v Prologu $t_1 = t_2$ znamená, že t_1 a t_2 jsou unifikovatelné.

Kongruence a faktorstruktura

Nechť \sim je ekvivalence na $A, f: A^n \to A$ a $R \subseteq A^n$, kde $n \in \mathbb{N}$. Pak \sim je

- *kongruence pro funkci* f, pokud pro každé $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ platí $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \Rightarrow f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n),$
- kongruence pro relaci R, pokud pro každé $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ platí $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \quad \Rightarrow \quad (R(x_1, \ldots, x_n) \Leftrightarrow R(y_1, \ldots, y_n)).$

Nechť ekvivalence \sim na A je kongruence pro každou funkci i relaci struktury $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$ pro jazyk $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Faktorstruktura (podílová struktura) struktury \mathcal{A} dle \sim je struktura $\mathcal{A}/\sim = \langle A/\sim, \mathcal{F}^{A/\sim}, \mathcal{R}^{A/\sim} \rangle$, kde

$$f^{A/\sim}([x_1]_{\sim}, \dots, [x_n]_{\sim}) = [f^A(x_1, \dots, x_n)]_{\sim}$$

 $R^{A/\sim}([x_1]_{\sim}, \dots, [x_n]_{\sim}) \Leftrightarrow R^A(x_1, \dots, x_n)$

pro každé $f \in \mathcal{F}$, $R \in \mathcal{R}$ a $x_1, \ldots, x_n \in A$, tj. funkce a relace jsou definované z \mathcal{A} pomocí reprezentantů.

Např. \mathbb{Z}_p je faktorstruktura $\mathbb{Z} = \langle \mathbb{Z}, +, -, 0 \rangle$ dle kongruence modulo p.

Význam axiomů rovnosti

Nechť \mathcal{A} je struktura pro jazyk L, ve které je rovnost interpretovaná jako relace $\stackrel{A}{=}$ splňující axiomy rovnosti, tj. ne nutně identita.

- 1) Z axiomů (i) a (iii) plyne, že relace $=^A$ je ekvivalence na A.
- 2) Axiomy (*ii*) a (*iii*) vyjadřují, že relace = je kongruence pro každou funkci a relaci v A.
- 3) Je-li $\mathcal{A} \models T^*$, je i $(\mathcal{A}/=^A) \models T^*$, kde $\mathcal{A}/=^A$ je faktorstruktura struktury \mathcal{A} dle $=^A$, přičemž rovnost je v $\mathcal{A}/=^A$ interpretovaná jako identita.

Na druhou stranu, v každém modelu, v kterém je rovnost interpretovaná jako identita, všechny axiomy rovnosti evidentně platí.

Korektnost

Rekneme, že struktura \mathcal{A} se shoduje s položkou P, pokud P je $T\varphi$ a $\mathcal{A} \models \varphi$, nebo pokud P je $F\varphi$ a $\mathcal{A} \models \neg \varphi$, tj. $\mathcal{A} \not\models \varphi$. Navíc, \mathcal{A} se shoduje s větví V, shoduje-li se s každou položkou na V.

Lemma Nechť A je model teorie T jazyka L, který se shoduje s položkou R v kořeni tabla $\tau = \bigcup \tau_n$ z T. Pak A lze expandovat do jazyka L_C tak, že se shoduje s nějakou větví V v tablu τ .

Poznámka Postačí nám expanze modelu A o konstanty c^A pro $c \in L_C \setminus L$ vyskytující se na větvi V, ostatní konstanty lze dodefinovat libovolně.

Důkaz Indukcí dle n nalezneme větev V_n v tablu τ_n a expanzi A_n modelu A o konstanty c^A pro $c \in L_C \setminus L$ na V_n tak, že A_n se shoduje s V_n a $V_{n-1} \subseteq V_n$.

Předpokládejme, že máme větev V_n v τ_n a expanzi A_n shodující se s V_n .

- Vznikne-li τ_{n+1} z τ_n bez prodloužení V_n , položme $V_{n+1} = V_n$, $A_{n+1} = A_n$.
- Vznikne-li τ_{n+1} z τ_n připojením $T\varphi$ k V_n pro nějaké $\varphi \in T$, nechť V_{n+1} je tato větev a $A_{n+1} = A_n$. Jelikož $A \models \varphi$, shoduje se A_{n+1} s V_{n+1} .

Korektnost - důkaz (pokr.)

- Jinak τ_{n+1} vznikne z τ_n prodloužením V_n o atomické tablo nějaké položky P na V_n . Z indukčního předpokladu víme, že \mathcal{A}_n se shoduje s P.
- (i) V případě atomického tabla pro spojku položme $\mathcal{A}_{n+1} = \mathcal{A}_n$ a snadno ověříme, že V_n lze prodloužit na větev V_{n+1} shodující se s \mathcal{A}_{n+1} .
- (ii) Je-li P tvaru $T(\forall x)\varphi(x)$, nechť V_{n+1} je (jednoznačné) prodloužení V_n na větev v τ_{n+1} , tj. o položku $T\varphi(x/t)$. Nechť \mathcal{A}_{n+1} je libovolná expanze \mathcal{A}_n o nové konstanty z termu t. Jelikož $\mathcal{A}_n \models (\forall x)\varphi(x)$, platí $\mathcal{A}_{n+1} \models \varphi(x/t)$. Obdobně pro P tvaru $F(\exists x)\varphi(x)$.
- (iii) Je-li P tvaru $T(\exists x)\varphi(x)$, nechť V_{n+1} je (jednoznačné) prodloužení V_n na větev v τ_{n+1} , tj. o položku $T\varphi(x/c)$. Jelikož $\mathcal{A}_n \models (\exists x)\varphi(x)$, pro nějaké $a \in A$ platí $\mathcal{A}_n \models \varphi(x)[e(x/a)]$ pro každé ohodnocení e. Nechť \mathcal{A}_{n+1} je expanze \mathcal{A}_n o novou konstantu $c^A \equiv a$. Pak $\mathcal{A}_{n+1} \models \varphi(x/c)$. Obdobně pro P tvaru $F(\forall x)\varphi(x)$.

Základní krok pro n=0 plyne z obdobné analýzy atomických tabel pro položku R v kořeni s využitím předpokladu, že model $\mathcal A$ se shoduje s R.

Věta o korektnosti

Ukážeme, že tablo metoda v predikátové logice je korektní.

Věta Pro každou teorii T a sentenci φ , je-li φ tablo dokazatelná z T, je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Důkaz

- Nechť φ je tablo dokazatelná z teorie T, tj. existuje sporné tablo τ z T s položkou $F\varphi$ v kořeni.
- Pro spor předpokládejme, že φ není pravdivá v T, tj. existuje model teorie T, ve kterém φ neplatí (protipříklad).
- Jelikož se $\mathcal A$ shoduje s položkou $F \varphi$, dle předchozího lemmatu $E \varphi$ expandovat do jazyka $E \varphi$ tak, že se shoduje s nějakou větví v tablu φ .
- To ale není možné, neboť každá větev tabla τ je sporná, tj. obsahuje dvojici $T\psi$, $F\psi$ pro nějakou sentenci ψ .

Kanonický model

Z bezesporné větve V dokončeného tabla vyrobíme model, který se shoduje s V. Vyjdeme z dostupných syntaktických objektů - konstantních termů.

Nechť V je bezesporná větev dokončeného tabla z teorie T jazyka

$$L = \langle \mathcal{F}, \mathcal{R} \rangle$$
. Kanonický model z větve V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$, kde

- (1) A je množina všech konstantních termů jazyka L_C ,
- (2) $f^A(t_{i_1},\ldots,t_{i_n})=f(t_{i_1},\ldots,t_{i_n})$ pro každý n-ární funkční symbol $f\in\mathcal{F}\cup(L_C\setminus L)$ a $t_{i_1},\ldots,t_{i_n}\in A$.
- (3) $R^A(t_{i_1}, \ldots, t_{i_n}) \Leftrightarrow TR(t_{i_1}, \ldots, t_{i_n})$ je položka na V pro každý n-ární relační symbol $R \in \mathcal{R}$ či rovnost a $t_{i_1}, \ldots, t_{i_n} \in A$.

Poznámka Výraz $f(t_{i_1}, \ldots, t_{i_n})$ na pravé straně v (2) je konstantní term jazyka L_C , tedy prvek z A. Neformálně, pro zdůraznění, že jde o syntaktický objekt

$$f^A(t_{i_1},\ldots,t_{i_n}) = "f(t_{i_1},\ldots,t_{i_n})"$$

Kanonický model - příklad

Nechť teorie $T = \{(\forall x)R(f(x))\}$ je jazyka $L = \langle R, f, d \rangle$. Systematické tablo pro $F \neg R(d)$ z T obsahuje jedinou větev V a ta je bezesporná.

Kanonický model $\mathcal{A}=\langle A,R^A,f^A,d^A,c_i^A\rangle_{i\in\mathbb{N}}$ z V je pro jazyk L_C a platí $A=\{d,f(d),f(f(d)),\ldots,c_0,f(c_0),f(f(c_0)),\ldots,c_1,f(c_1),f(f(c_1)),\ldots\},$ $d^A=d,\quad c_i^A=c_i$ pro $i\in\mathbb{N},$

$$a = a, \quad c_i = c_i \text{ pro } t \in \mathbb{N},$$
 $f^A(d) = \text{``}f(d)\text{''}, \quad f^A(f(f(d))) = \text{``}f(f(f(d)))\text{''}, \dots$

$$R^A = \{d, f(d), f(f(d)), \dots, f(c_0), f(f(c_0)), \dots, f(c_1), f(f(c_1)), \dots\}.$$

Redukt A na jazyk L je $A' = \langle A, R^A, f^A, d^A \rangle$.

Kanonický model s rovností

Je-li jazyk L s rovností, T^* označuje rozšíření T o axiomy rovnosti pro L.

Požadujeme-li, aby rovnost byla interpretovaná jako identita, kanonický model \mathcal{A} z bezesporné větve V dokončeného tabla z T^* musíme faktorizovat dle $=^A$.

Dle definice (3), v modelu $\mathcal A$ z V pro relaci $=^A$ platí, že pro každé $t_{i_1}, t_{i_2} \in A$, $t_{i_1} =^A t_{i_2} \Leftrightarrow T(t_{i_1} = t_{i_2})$ je položka na V.

Jelikož V je dokončená a obsahuje axiomy rovnosti, relace $=^A$ je ekvivalence na A a navíc kongruence pro všechny funkce a relace v \mathcal{A} .

Kanonický model s rovností z větve V je faktorstruktura A/=A.

Pozorování Pro každou formuli φ ,

$$\mathcal{A} \models \varphi \iff (\mathcal{A}/=^A) \models \varphi,$$

přičemž v \mathcal{A} je = interpretovaná relací = A , zatímco $^{V}\mathcal{A}/=^{A}$ jako identita.

Poznámka A je (spočetně) nekonečný model, ale A/=A může být konečný.

Kanonický model s rovností - příklad

Nechť $T=\{(\forall x)R(f(x)),\ (\forall x)(x=f(f(x)))\}$ je nad $L=\langle R,f,d\rangle$ s rovností. Systematické tablo pro $F\neg R(d)$ z T^* obsahuje bezespornou větev V.

V kanonickém modelu $\mathcal{A} = \langle A, R^A, =^A, f^A, d^A, c_i^A \rangle_{i \in \mathbb{N}}$ z V pro relaci $=^A$ platí $s =^A t \quad \Leftrightarrow \quad t = f(\cdots(f(s)\cdots) \quad \text{nebo} \quad s = f(\cdots(f(t)\cdots),$

kde f je aplikováno 2i-krát pro nějaké $i \in \mathbb{N}$.

Kanonický model s rovností z
$$V$$
 je $\mathcal{B} = (\mathcal{A}/=^A) = \langle A/=^A, R^B, f^B, d^B, c_i^B \rangle_{i \in \mathbb{N}}$ $(A/=^A) = \{[d]_{=^A}, [f(d)]_{=^A}, [c_0]_{=^A}, [f(c_0)]_{=^A}, [c_1]_{=^A}, [f(c_1)]_{=^A}, \dots \},$ $d^B = [d]_{=^A}, \quad c_i^B = [c_i]_{=^A} \text{ pro } i \in \mathbb{N},$ $f^B([d]_{=^A}) = [f(d)]_{=^A}, \quad f^B([f(d)]_{=^A}) = [f(f(d))]_{=^A} = [d]_{=^A}, \dots$ $R^B = (A/=^A).$

Redukt \mathcal{B} na jazyk L je $\mathcal{B}' = \langle A/=^A, R^B, f^B, d^B \rangle$.

Úplnost

Lemma Kanonický model A z bezesporné dok. větve V se shoduje s V. Důkaz Indukcí dle struktury sentence vyskytující se v položce na V.

- Pro φ atomickou, je-li $T\varphi$ na V, je $\mathcal{A} \models \varphi$ dle (3). Je-li $F\varphi$ na V, není $T\varphi$ na V, neboť V je bezesporná, a tedy $\mathcal{A} \models \neg \varphi$ dle (3).
- Je-li $T(\varphi \wedge \psi)$ na V, je $T\varphi$ a $T\psi$ na V, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A} \models \varphi$ a $\mathcal{A} \models \psi$, tedy $\mathcal{A} \models \varphi \wedge \psi$.
- Je-li $F(\varphi \wedge \psi)$ na V, je $F\varphi$ nebo $F\psi$ na V, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A} \models \neg \varphi$ nebo $\mathcal{A} \models \neg \psi$, tedy $\mathcal{A} \models \neg (\varphi \wedge \psi)$.
- Pro ostatní spojky obdobně jako v předchozích dvou případech.
- Je-li $T(\forall x)\varphi(x)$ na V, je $T\varphi(x/t)$ na V pro každé $t\in A$, neboť V je dokončená. Dle indukčního předpokladu je $A\models\varphi(x/t)$ pro každé $t\in A$, tedy $A\models(\forall x)\varphi(x)$. Obdobně pro $F(\exists x)\varphi(x)$ na V.
- Je-li $T(\exists x)\varphi(x)$ na V, je $T\varphi(x/c)$ na V pro nějaké $c\in A$, neboť V je dokončená. Dle indukčního předpokladu je $A\models\varphi(x/c)$, tedy $A\models(\exists x)\varphi(x)$. Obdobně pro $F(\forall x)\varphi(x)$ na V.

Věta o úplnosti

Ukážeme, že tablo metoda ve predikátové logice je úplná.

Věta Pro každou teorii T a sentenci φ , je-li φ pravdivá v T, je φ tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

extstyle ext

- Kdyby ne, v tablu τ je nějaká bezesporná větev V.
- Dle předchozího lemmatu existuje struktura \mathcal{A} pro jazyk L_C shodující se s větví V, speciálně s položkou $F\varphi$ v kořeni, tj. $\mathcal{A} \models \neg \varphi$.
- Nechť \mathcal{A}' je redukt struktury \mathcal{A} na původní jazyk L. Platí $\overline{\mathcal{A}'} \models \neg \varphi$.
- Jelikož větev V je dokončená, obsahuje $T\psi$ pro každé $\psi \in T$.
- Tedy \mathcal{A}' je modelem T (neboť \mathcal{A}' se shoduje s $T\psi$ pro každé $\psi \in T$).
- To je ale ve sporu s tím, že φ platí v každém modelu teorie T.

Tedy tablo τ je důkazem φ z T. \square

