Machine Learning and Data Mining

Linear classification

Prof. Alexander Ihler

Supervised learning

Notation

- Features x
- Targets
- Predictions $\hat{y} = f(x; \theta)$
- Parameters θ

Linear regression

"Predictor":

Evaluate line:

$$r = \theta_0 + \theta_1 x_1$$

return r

- Contrast with classification
 - Classify: predict discrete-valued target y
 - Initially: "classic" binary { -1, +1} classes; generalize later

Perceptron Classifier (2 features)

Visualizing for one feature "x":

Perceptrons

- Perceptron = a linear classifier
 - The parameters θ are sometimes called weights ("w")
 - real-valued constants (can be positive or negative)
 - Input features x₁...x_n; define an additional constant input "1"
- A perceptron calculates 2 quantities:
 - 1. A weighted sum of the input features
 - 2. This sum is then thresholded by the T(.) function
- Perceptron: a simple artificial model of human neurons
 - weights = "synapses"
 - threshold = "neuron firing"

Perceptron Decision Boundary

The perceptron is defined by the decision algorithm:

$$f(x;\theta) = \begin{cases} +1 & \text{if } \theta \cdot x^T > 0 \\ -1 & \text{otherwise} \end{cases}$$

- The perceptron represents a hyperplane decision surface in ddimensional space
 - A line in 2D, a plane in 3D, etc.
- The equation of the hyperplane is given by

$$\underline{\theta} \cdot \mathbf{x}^{\mathsf{T}} = 0$$

This defines the set of points that are on the boundary.

Example, Linear Decision Boundary

Example, Linear Decision Boundary

Example, Linear Decision Boundary

Separability

- A data set is separable by a learner if
 - There is some instance of that learner that correctly predicts all the data points
- Linearly separable data
 - Can separate the two classes using a straight line in feature space
 - in 2 dimensions the decision boundary is a straight line

Linearly separable data

Linearly non-separable data

Class overlap

- Classes may not be well-separated
- Same observation values possible under both classes
 - High vs low risk; features {age, income}
 - Benign/malignant cells look similar

- May not be able to perfectly distinguish between classes
 - Maybe with more features?
 - Maybe with more complex classifier?
- Otherwise, may have to accept some errors

Another example

(c) Alexander Ihler

Non-linear decision boundary

(c) Alexander Ihler

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

66	4]	V	D	77

X ₁	X ₂	У
0	0	-1
0	1	-1
1	0	-1
1	1	1

"XOR"

x ₁	X ₂	У
0	0	1
0	1	-1
1	0	-1
1	1	1

Adding features

• Linear classifier can't learn some functions

1D example:

Adding features

Linear classifier can't learn some functions

1D example:

Quadratic features, visualized in original feature space:

More complex decision boundary: $ax^2+bx+c=0$

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

What kinds of functions would we need to learn the data on the right?

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

"AND"				
X ₁	X ₂	у		
0	0	-1		
0	1	-1		
1	0	-1		
1	1	1		

What kinds of functions would we need to learn the data on the right? Ellipsiodal decision boundary: $a x_1^2 + b x_1 + c x_2^2 + d x_2 + e x_1 x_2 + f = 0$

Feature representations

- Features are used in a linear way
- Learner is dependent on representation
- Ex: discrete features
 - Mushroom surface: {fibrous, grooves, scaly, smooth}
 - Probably not useful to use $x = \{1, 2, 3, 4\}$
 - Better: 1-of-K, $x = \{ [1000], [0100], [0010], [0001] \}$
 - Introduces more parameters, but a more flexible relationship

Effect of dimensionality

Data are increasingly separable in high dimension – is this a good thing?

"Good"

- Separation is easier in higher dimensions (for fixed # of data m)
- Increase the number of features, and even a linear classifier will eventually be able to separate all the training examples!

"Bad"

- Remember training vs. test error? Remember overfitting?
- Increasingly complex decision boundaries can eventually get all the training data right, but it doesn't necessarily bode well for test data...

Summary

- Linear classifier ⇔ perceptron
- Linear decision boundary
 - Computing and visualizing
- Separability
 - Limits of the representational power of a perceptron
- Adding features
 - Interpretations
 - Effect on separability
 - Potential for overfitting

Machine Learning and Data Mining

Linear classification: Learning

Prof. Alexander Ihler

Learning the Classifier Parameters

- Learning from Training Data:
 - training data = labeled feature vectors
 - Find parameter values that predict well (low error)
 - error is estimated on the training data
 - "true" error will be on future test data
- Define a loss function $J(\underline{\theta})$:
 - Classifier error rate (for a given set of weights $\underline{\theta}$ and labeled data)
- Minimize this loss function (or, maximize accuracy)
 - An optimization or search problem over the vector $(\theta_1, \theta_2, \theta_0)$

Training a linear classifier

- How should we measure error?
 - Natural measure = "fraction we get wrong" (error rate)

$$\operatorname{err}(\theta) = \frac{1}{m} \sum_{i} \mathbb{1} \big[y^{(i)} \neq f(x^{(i)}; \theta) \big] \quad \text{ where } \quad \mathbb{1} \big[y \neq \hat{y} \big] = \begin{cases} 1 & y \neq \hat{y} \\ 0 & \text{o.w.} \end{cases}$$

```
Yhat = np.sign( X.dot( theta.T ) ); # predict class (+1/-1)
err = np.mean( Y != Yhat ) # count errors: empirical error rate
```

- But, hard to train via gradient descent
 - Not continuous
 - As decision boundary moves, errors change abruptly

Linear regression?

• Simple option: set θ using linear regression

- In practice, this often doesn't work so well...
 - Consider adding a distant but "easy" point
 - MSE distorts the solution

Perceptron algorithm: an SGD-like algorithm

```
while \neg done: \hat{y}^{(j)} = \mathrm{sign}(\theta \cdot x^{(j)}) \qquad \text{(predict output for point j)} \theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)} \qquad \text{("gradient-like" step)}
```

- Compare to linear regression + MSE cost
 - Identical update to SGD for MSE except error uses thresholded $\hat{y}(j)$ instead of linear response $\underline{\theta}$ x' so:
 - (1) For correct predictions, $y(j) \hat{y}(j) = 0$
 - (2) For incorrect predictions, $y(j) \hat{y}(j) = \pm 2$

"adaptive" linear regression: correct predictions stop contributing

Perceptron algorithm: an SGD-like algorithm

while \neg done:

for each data point j:

$$\hat{y}^{(j)} = \mathrm{sign}(\theta \cdot x^{(j)})$$
 (predict output for positive $\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$ ("gradient-like" step)

(predict output for point j)

y(j)predicted incorrectly: update weights

(c) Alexander Ihler

Perceptron algorithm: an SGD-like algorithm

while \neg done:

for each data point j:

$$\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$$

$$\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$$
 ("gradient-like" step)

(predict output for point j)

y(j)predicted correctly: no update

(c) Alexander Ihler

Perceptron algorithm: an SGD-like algorithm

while \neg done:

for each data point j:

$$\hat{y}^{(j)} = \mathrm{sign}(\theta \cdot x^{(j)})$$
 (predict output for point j) $\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$ ("gradient-like" step)

(Converges if data are linearly separable)

Surrogate loss functions

- Another solution: use a "smooth" loss
 - e.g., approximate the threshold function

- Usually some smooth function of distance
 - Example: logistic "sigmoid", looks like an "S"
- Now, measure e.g. MSE

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} \left(\sigma(r(x^{(j)})) - y^{(j)} \right)^{2}$$

Class
$$y = \{0, 1\} ...$$

- Far from the decision boundary: |f(.)| large, small error
- Nearby the boundary: |f(.)| near 1/2, larger error

Classification error =
$$2/9$$

$$MSE = (0^2 + 1^2 + .2^2 + .25^2 + .05^2 + ...)/9$$

Beyond misclassification rate

- Which decision boundary is "better"?
 - Both have zero training error (perfect training accuracy)
 - But, one of them seems intuitively better...

- Side benefit of many "smoothed" error functions
 - Encourages data to be far from the decision boundary
 - See more examples of this principle later...

Training the Classifier

 Once we have a smooth measure of quality, we can find the "best" settings for the parameters of

$$r(x_1,x_2) = a^*x_1 + b^*x_2 + c$$

Example: 2D feature space

⇔ parameter space

Training the Classifier

 Once we have a smooth measure of quality, we can find the "best" settings for the parameters of

$$r(x_1,x_2) = a^*x_1 + b^*x_2 + c$$

Example: 2D feature space

⇔ parameter space

Training the Classifier

 Once we have a smooth measure of quality, we can find the "best" settings for the parameters of

$$r(x_1,x_2) = a^*x_1 + b^*x_2 + c$$

Example: 2D feature space

⇔ parameter space

Finding the Best MSE

- As in linear regression, this is now just optimization
- Methods:
 - Gradient descent
 - Improve loss by small changes in parameters ("small" = learning rate)
 - Or, substitute your favorite optimization algorithm...
 - Coordinate descent
 - Stochastic search
 - Genetic algorithms

Gradient Equations

• MSE (note, depends on function $\sigma(.)$)

$$J(\underline{\theta} = [a, b, c]) = \frac{1}{m} \sum_{i} (\sigma(ax_1^{(i)} + bx_2^{(i)} + c) - y^{(i)})^2$$

- What's the derivative with respect to one of the parameters?
 - Recall the chain rule of calculus:

$$\frac{\partial}{\partial a} f(g(h(a))) = f'(g(h(a))) g'(h(a)) h'(a)$$

$$f(g) = (g)^2 \qquad \Rightarrow f'(g) = 2(g)$$

$$g(h) = \sigma(h) - y$$
 \Rightarrow $g'(h) = \sigma'(h)$

$$h(a) = ax_1^{(i)} + bx_2^{(i)} + c$$
 \Rightarrow $h'(a) = x_1^{(i)}$

w.r.t. b,c : similar; replace x_1 with x_2 or 1

$$\frac{\partial J}{\partial a} = \frac{1}{m} \sum_{i} 2 \left(\sigma(\theta \cdot x^{(i)}) - y^{(i)} \right) \partial \sigma(\theta \cdot x^{(i)}) \ x_1^{(i)}$$

Error between class and prediction Sensitivity of prediction to changes in parameter "a"

Saturating Functions

- Many possible "saturating" functions
- "Logistic" sigmoid (scaled for range [0,1]) is $\sigma(z) = 1 / (1 + \exp(-z))$
- Derivative (slope of the function at a point z) is $\partial \sigma(z) = \sigma(z) (1-\sigma(z))$
- Python Implementation:

```
def sig(z): # logistic sigmoid
return 1.0 / (1.0 + \text{np.exp(-z)})# in [0,1]
def dsig(z): # its derivative at z
return sig(z) * (1-\text{sig(z)})
```

```
(z = linear response, x^T\theta)
(to predict:
```

```
threshold z at 0 or threshold \sigma (z) at \frac{1}{2} )
```

For range [-1, +1]:

$$\rho(z) = 2 \sigma(z) -1$$

$$\partial \rho(z) = 2 \sigma(z) (1 - \sigma(z))$$

Predict: threshold z or ρ at zero

Logistic regression

- Intepret $\sigma(\underline{\theta} \mathbf{x}^T)$ as a probability that y = 1
- Use a negative log-likelihood loss function
 - If y = 1, cost is log Pr[y=1] = log $\sigma(\underline{\theta} x^T)$
 - If y = 0, cost is log Pr[y=0] = log (1 $\sigma(\underline{\theta} x^T)$)
- Can write this succinctly:

$$J(\underline{\theta}) = -\frac{1}{m} \sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta \cdot x^{(i)}))$$

$$\text{Nonzero only if y=1} \qquad \text{Nonzero only if y=0}$$

Logistic regression

- Intepret $\sigma(\underline{\theta} \mathbf{x}^{\mathsf{T}})$ as a probability that y = 1
- Use a negative log-likelihood loss function
 - If y = 1, cost is log Pr[y=1] = log $\sigma(\underline{\theta} x^T)$
 - If y = 0, cost is log Pr[y=0] = log $(1 \sigma(\underline{\theta} x^T))$
- Can write this succinctly:

$$J(\underline{\theta}) = -\frac{1}{m} \sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)}))$$

Convex! Otherwise similar: optimize J(θ) via ...

Gradient EquationsLogistic neg-log likelihood loss:

$$J(\underline{\theta}) = -\frac{1}{m} \sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)}))$$

What's the derivative with respect to one of the parameters?

$$\frac{\partial J}{\partial a} = -\frac{1}{m} \sum_{i} y^{(i)} \frac{1}{\sigma(\theta \cdot x^{(i)})} \, \partial \sigma(\theta \cdot x^{(i)}) \, x_1^{(i)} + (1 - y(i)) \dots$$
$$= -\frac{1}{m} \sum_{i} y^{(i)} (1 - \sigma(\theta \cdot x^{(i)})) \, x_1^{(i)} - (1 - y^{(i)}) \dots$$

Surrogate loss functions • Replace 0/1 loss $\Delta_i(\theta) = \mathbb{1} \left[T(\theta x^{(i)}) \neq y^{(i)} \right]$

• Replace 0/1 loss $\Delta_i(\theta) = \mathbb{1} \big[T(\theta x^{(i)}) \neq y^{(i)} \big]$ with something easier:

0 / 1 Loss

Logistic MSE

$$J_i(\theta) = 4\left(\sigma(\theta x^{(i)}) - y^{(i)}\right)^2$$

Logistic Neg Log Likelihood

$$J_i(\underline{\theta}) = -\frac{y^{(i)}}{\log 2} \log \sigma(\theta \cdot x^{(i)}) + \dots$$

Summary

- Linear classifier ⇔ perceptron
- Measuring quality of a decision boundary
 - Error rate (0/1 loss)
 - Logistic sigmoid + MSE criterion
 - Logistic Regression
- Learning the weights of a linear classifer from data
 - Reduces to an optimization problem
 - Perceptron algorithm
 - For MSE or Logistic NLL, we can do gradient descent
 - Gradient equations & update rules

Multi-class linear models

- What about multiple classes? One option:
 - Define one linear response per class
 - Choose class with the largest response

$$f(x;\theta) = \arg\max_{c} \ \theta_c \cdot x^T$$

$$heta = \left[egin{array}{cccc} heta_{00} & \dots & heta_{0n} \ dots & \ddots & dots \ heta_{C0} & \dots & heta_{Cn} \end{array}
ight]$$

Boundary between two classes, c vs. c'?

$$= \begin{cases} c & \text{if } \theta_c \cdot x^T > \theta_{c'} x^T & \Leftrightarrow (\theta_c - \theta_{c'}) x^T > 0 \\ c' & \text{otherwise} \end{cases}$$

• Linear boundary: $(\theta_c - \theta_{c'}) x^T = 0$

Multiclass linear models

More generally, can define a generic linear classifier by

$$f(x;\theta) = \arg\max_{y} \ \theta \cdot \Phi(x,y)$$

Example: y ∈ {-1, +1}

$$\Phi(x,y) = y \left[1 \ x \ x^2 \ \ldots \right]$$

$$f(x;\theta) = \begin{cases} +1 & \theta \cdot [1 \ x \ x^2 \dots] > -\theta \cdot [1 \ x \ x^2 \dots] \\ -1 & \text{o.w.} \end{cases}$$

(Standard perceptron rule)

Multiclass linear models

More generally, can define a generic linear classifier by

$$f(x;\theta) = \arg\max_{y} \ \theta \cdot \Phi(x,y)$$

• Example: $y \in \{0,1,2,...\}$

$$\Phi(x,y) = [\ \mathbb{1}[y=0][1 \ x \ x^2 \ \dots] \ \ \mathbb{1}[y=1][1 \ x \ x^2 \dots] \dots]$$

$$\theta = [\ [\theta_{00} \ \theta_{01} \ \theta_{02} \dots] \ \ [\theta_{10} \ \theta_{11} \ \theta_{12} \dots] \ \dots]$$
 (parameters for each class c)

$$f(x;\theta) = \arg\max_{c} \theta_{c} \cdot [1 \ x \ x^{2} \ \dots]$$

(predict class with largest linear response)

Multiclass perceptron algorithm

- Perceptron algorithm:
 - Make prediction f(x)
 - Increase linear response of true target y; decrease for prediction f

While (~done)

For each data point j:

 $f^{(j)} = arg max (\underline{\theta}_c * \underline{x}^{(j)})$: predict output for data point j $\underline{\theta}_f \leftarrow \underline{\theta}_f - \alpha \underline{x}^{(j)}$: decrease response of class $f^{(j)}$ to $x^{(j)}$

 $\underline{\theta}_{\mathsf{y}} \leftarrow \underline{\theta}_{\mathsf{y}} + \alpha \underline{\mathsf{x}}^{(\mathsf{j})}$: increase response of true class $\mathsf{y}^{(\mathsf{j})}$

– More general form update:

$$f(x;\theta) = \arg\max_{y} \theta \cdot \Phi(x,y)$$
$$\theta \leftarrow \theta + \alpha (\Phi(x,y) - \Phi(x,f(x)))$$

Multilogit regression

Define the probability of each class:

$$p(Y = y | X = x) = \frac{\exp(\theta_y \cdot x^T)}{\sum_c \exp(\theta_c \cdot x^T)}$$

(Y binary = logistic regression)

Then, the NLL loss function is:

$$J(\theta) = -\frac{1}{m} \sum_{i} \log p(y^{(i)} | x^{(i)}) = -\frac{1}{m} \sum_{i} \left[\theta_{y^{(i)}} \cdot x^{(i)} - \log \sum_{c} \exp(\theta_{c} \cdot x^{(i)}) \right]$$

- P: "confidence" of each class
 - Soft decision value
- Decision: predict most probable
 - Linear decision boundary
- Convex loss function

