Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\tau_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	m
$\tau_1^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	m
$\sigma_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	ĸ
$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#1}\alpha\beta == 0$	$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#1}\alpha\beta == 0 \ \partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	8
	$\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\chi\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{lpha\chieta}$	
$\sigma_{1}^{\#1}\alpha\beta == \sigma_{1}^{\#2}\alpha\beta$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	3
	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} = =$	
	$3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha}$	
$\tau_2^{\#1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
	$3\partial_{\delta}\partial_{\lambda}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} +$	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{X}_{\lambda}$	
$\sigma_{2+}^{\#1}\alpha\beta==0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{X\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{X\delta} +$	
	$3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha} \right)$	
Total constraints/gauge generators:	ige generators:	27

 $\sigma_{2^{+}\alpha\beta}^{\#1} \ \tau_{2^{+}\alpha\beta}^{\#1} \ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $k^2 r_1$

0 0

 $\frac{3\sqrt{2}}{(3+k^2)^2t_2}$

 $\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$

 $\sigma_{1^+}^{\sharp 1}\dagger^{lphaeta}$

 $\sigma_{1}^{\#2}\dagger^{\alpha\beta}$

 $\sigma_{1}^{\#1} \dagger^{\alpha}$

 $\omega_1^{#1} + \alpha$ $\omega_1^{#2} + \alpha$

 $f_1^{\#1} \dagger^{\alpha\beta}$

 $\sigma_{1}^{\#2}{}_{\alpha\beta}$

 $\frac{3\sqrt{2}}{(3+k^2)^2t_2}$

 $\frac{3}{(3+k^2)^2t_2}$

0 0

 $au_1^{\#1}{}_{lphaeta}$

 $\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$

 $\frac{3ik}{(3+k^2)^2t_2}$

 $-\frac{3ik}{(3+k^2)^2t_2} \frac{3k^2}{(3+k^2)^2t_2}$

 $\sigma_{1^{-}\alpha}^{\#1} \ \sigma_{1^{-}\alpha}^{\#2} \ \tau_{1^{-}\alpha}^{\#1} \ \tau_{1^{-}\alpha}^{\#2}$

Massive and massless spectra

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$