

UNIVERSITATEA BABEȘ-BOLYAI Facultatea de Matematică și Informatică

INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Sisteme bazate pe reguli în medii incerte

Laura Dioşan

Sumar

A. Scurtă introducere în Inteligența Artificială (IA)

- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - □ Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

c. Sisteme inteligente

- Sisteme care învaţă singure
 - Arbori de decizie
 - Rețele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
- Sisteme hibride
- Sisteme bazate pe reguli în medii certe
- Sisteme bazate pe reguli în medii incerte (Bayes, factori de certitudine, Fuzzy)

Materiale de citit și legături utile

- capitolul V din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 3 din Adrian A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001

capitolul 8 și 9 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*

Conținut

□ Sisteme inteligente

- Sisteme bazate pe cunoştinţe
 - Sisteme bazate pe reguli în medii incerte

Sisteme inteligente

Sisteme inteligente-sisteme bazate pe cunoștințe (SBC)

- sistemele computaţionale alcătuite din 2 module principale (roluri):
 - Domeniul de cunoştinţe (baza de cunoştinţe BC
 - knowledge base)
 - Informaţiile specifice despre un domeniu
 - Modulul de control (MC inference engine)
 - Regulile prin care se pot obţine informaţii noi
 - Algoritmi independenţi de domeniu

Baza de cunoştinţe (BC)

Conţinut

- Informaţii (exprimate într-o anumită reprezentare ex. propoziţii) despre mediu
- informaţii necesare pentru înţelegerea, formularea şi rezolvarea problemelor
- mulţime de propoziţii (exprimate/reprezentate într-un limbaj formal) care descriu mediul
 - □ reprezentare uşor interpretabilă de către calculator → limbaj de reprezentare a cunoştinţelor
 - mecanismul de obţinere a unor propoziţii noi pe baza celor vechi → inferenţă/raţionare

Tipologie

- cunoştinţe exacte (perfecte)
 - Raţionarea exactă se bazează pe logica clasică
 - IF A is true THEN A is ¬ false
 - IF B is false THEN B is ¬ true
- cunoştinţe imperfecte (nesigure, incerte)
 - Inexacte
 - Incomplete
 - Incomensurabile

- Surse ale incertitudinii
 - Imperfecţiunea regulii
 - Nesiguranţa evidenţei (dovezii)
 - Încrederea în concluzie trebuie scalată
 - Utilizarea unui limbaj vag, imprecis
- Moduri de exprimare a incertitudinii
 - Probabilităţi
 - Logica fuzzy
 - Teorema lui Bayes
 - Teoria Dempster-Shafer
- Moduri de reprezentare a incertitudinii
 - Cu ajutorul unui singur număr → factor de certitudine, confidență (încredere), valoare de adevăr
 - Cât de siguri suntem că respectivele date sunt valide
 - Cu ajutorul a 2 numere → logica intervalelor
 - Min →limita inferioară a certitudinii (încredere, necesitate)
 - Max -> limita superioară a certitudinii (plauzabilitate, posibilitate)

- □ Tehnici de raţionare în medii nesigure
 - Teoria Bayesiana metodă probabilistică
 - Teoria certitudinii
 - Teoria posibilităţii (logica fuzzy)

Sisteme inteligente – SBC – factori de certitudine

sisteme de tip Bayes

SBR (Sisteme expert) în care faptele şi regulile sunt probabilistice

sisteme cu factori de certitudine

- SBR (sisteme expert) în care faptele şi regulile au asociate câte un factor de certitudine (FC)/coeficient de încredere
- Un fel de sisteme de tip Bayes în care probabilităţile sunt înlocuite cu factori de certitudine
- Dacă A şi B atunci C Dacă A şi B atunci C [cu prob p₁]
- - Dacă C şi D atunci F Dacă C şi D atunci F [cu prob p₂]

SBR classic

SBR de tip Bayes

- Dacă A şi B atunci C [FC₁]
- Dacă C şi D_[FC2] atunci F [FC₃]

SBR cu FC

Sisteme inteligente – SBC – factori de certitudine

□ SBR de tip Bayes vs. SBR cu FC

Bayes	FC
Teorie probabilităților este veche și fundamentată matematic	Teoria FC este nouă și fără demostrții matematice
Necesită existența unor informații statistice	Nu necesită existența unor date statistice
Propagarea încrederii creşte în timp exponențial	Informația circulă repede și eficient în SBR
Este necesar calculul apriori a probabilităților	Nu este necesar calculul apriori a probabilităților
Ipotezele susţinute de probe pot să fie independente sau nu	Ipotezele susţinute de probe sunt independente

- Elemente de teoria probabilităţilor
- Conţinut şi arhitectură
- Tipologie
- Tool-uri

Avantaje şi limite

Amintim componența unui SBC

- Baza de cunoştinţe (BC) → Modalităţi de reprezentare a cunoştinţelor
 - Logica formală (limbaje formale)
 - Definiţie
 - Ştiinţa principiilor formale de raţionament
 - Componente
 - Sintaxă
 - Semantică
 - Metodă de inferenţă sintactică
 - Tipologie
 - În funcţie de numărul valorilor de adevăr:
 - logică duală
 - logică polivalentă
 - În funcţie de tipul elementelor de bază:
 - clasică → primitivele = propoziţii (predicate)
 - probabilistică → primitivele = variabile aleatoare
 - În funcție de obiectul de lucru:
 - logica propoziţională → se lucrează doar cu propoziţii declarative, iar obiectele descrise sunt fixe sau unice (Ionică este student)
 - logica predicatelor de ordin $I \rightarrow$ se lucrează cu propziții declarative, cu predicate și cuantificări , iar obiectele descrise pot fi unice sau variabile asociate unui obiect unic (Toți studenții sunt prezenți)
 - Reguli
 - Reţele semantice
- Modulul de control (MC pentru inferenţă)

- Teorii ale probabilităţilor
- Concepte de bază
 - Teoria clasică şi teoria modernă
 - Eveniment
 - Probabilitate simplă
 - Probabilitate condiţionată
 - Axiome

- Teorii ale probabilităţilor
 - Teoria clasică (a priori)
 - Propusă de Pascal şi Fermat în 1654
 - Lucrează cu sisteme ideale:
 - toate posibilele evenimente sunt cunoscute
 - toate evenimentele se pot produce cu aceeaşi probabilitate (sunt uniform distribuite)
 - evenimente discrete
 - metode combinatoriale
 - spaţiul rezultatelor posibile este continuu
 - Teoria modernă
 - evenimente continue
 - metode combinatoriale
 - spaţiul rezultatelor posibile este cuantificabil

- Concepte de bază
 - Considerăm un experiment care poate produce mai multe ieşiri (rezultate)
 - Ex. Ev1: Aruncarea unui zar poate produce apariţia uneia din cele 6 feţe ale zarului (deci 6 rezultate)
 - Eveniment
 - Definiţie
 - producerea unui anumit rezultat
 - Ex. Ev2: Apariţia feţei cu nr 3
 - Ex. Ev3: Apariția unei fețe cu un nr par (2,4,6)
 - Tipologie
 - Evenimente independente şi mutual exclusive
 - Nu se pot produce simultan
 - Ex. Ev4: Apariţia feţei 1 la aruncarea unui zar şi Ev5: Apariţia feţei 3 la aruncarea unui zar
 - Dependente
 - Producerea unor evenimente afectează producerea altor evenimente
 - Ex. Ev6: Apariția feței 6 la prima aruncare a unui zar și Ev7: Apariția unor fețe a căror numere însumate să dea 8 la 2 aruncări succesive ale unui zar
 - Mulţimea tuturor rezultatelor = sample space al experimentului
 - Ex. pentru Ev1: (1,2,3,4,5,6)
 - Mulţimea tuturor rezultatelor tuturor evenimentelor posibile = power set (mulţimea părţilor)

- Concepte de bază
 - Probabilitate simplă p(A)
 - probabilitatea producerii unui eveniment A independent de alte evenimente (B)
 - şansa ca acel eveniment să se producă
 - proporţia cazurilor de producere a evenimnetului în mulţimea tuturor cazurilor posibile
 - nr cazurileor favorabile / nr cazurilor posibile
 - un număr real în [0,1]
 - 0 imposibilitate absolută
 - 1 posibilitate absolută
 - \square Ex. P(Ev1) = 1/6, P(Ev3) = 3/6
 - Probabilitate condiţionată p(A|B)
 - probabilitatea producerii unui eveniment A dependentă de producerea altor evenimente (B)
 - proporţia cazurilor de producere a evenimnetului A şi a evenimentului B în mulţimea tuturor cazurilor producerii evenimentului B
 - probabilitatea comună /proabilitatea lui B

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)}$$

- Concepte de bază
 - Axiome
 - $0 \le p(E) \le 1$ pentru orice eveniment E
 - p(Adevărat) = 1, p(Fals) = 0

$$\square \sum p(E_i) = 1$$

- □ ⁱDacă *A* și *B* sunt independente
 - $p(A \cup B) = p(A) + p(B)$
 - $p(A \cap B) = p(A) * p(B)$
- □ Dacă A și B nu sunt independente
 - Dacă A depinde de B
 - $p(A \cup B)=p(A) + p(B)-p(A \cap B)$
 - $p(A \cap B) = p(A|B) * p(B)$
 - $p(B \cap A) = p(A \cap B)$
 - $p(A \mid B) = \frac{p(B \mid A)p(A)}{(B)}$ (b)
 - Dacă A depinde de B_1 , B_2 , ..., B_n (evenimente mutual exclusive)
 - $p(A) = \sum_{i=1}^{n} p(A | B_i) p(B_i)$ (a)

Elemente de teoria probabilităților

- Concepte de bază
 - Exemplu
 - □ Dacă A depinde de 2 evenimente mutual exclusive (B şi ¬ B), FC ec.

$$p(A) = \sum_{i=1}^{n} p(A \mid B_i) p(B_i) \quad \text{avem}$$

- p(B) = p(B|A)p(A) + p(B|A)p(A)
- înlocuind pe p(B) în ec. $p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$ se obţine ec.:

$$p(A | B) = \frac{p(B | A)p(A)}{p(B | A)p(A) + p(B | \neg A)p(\neg A)}$$
 (c)

□ Ecuația (c) se folosește pentru controlul incertitudinii în sistemele expert

Reamintim ca un SBR are următoarea

Arhitectură

- Baza de cunoştinţe (BC)
 - Informaţiile specifice despre un domeniu
- Modulul de control (MC)
 - Regulile prin care se pot obţine informaţii noi
- Interfața cu utilizatorul
 - permite dialogul cu utilizatorii în timpul sesiunilor de consultare, precum şi accesul acestora la faptele şi cunoştinţele din BC pentru adăugare sau actualizare
- Modulul de îmbogățire a cunoașterii
 - ajută utilizatorul expert să introducă în bază noi cunoștințe
 într-o formă acceptată de sistem sau să actualizeze baza de cunoștințe.
- Modulul explicativ
 - are rolul de a explica utilizatorilor atât cunoștințele de care dispune sistemul, cât și raționamentele sale pentru obținerea soluțiilor în cadrul sesiunilor de consultare. Explicațiile într-un astfel de sistem, atunci când sunt proiectate corespunzător, îmbunătățesc la rândul lor modul în care utilizatorul percepe și acceptă sistemul

Reamintim: SBR - arhitectură

- baza de cunoştinţe
 - Conţinut
 - Informaţiile specifice despre un domeniu sub forma unor
 - fapte afirmaţii corecte
 - reguli euristici speciale care generează informații (cunoştințe)
 - Rol
 - stocarea tuturor elementelor cunoașterii (fapte, reguli, metode de rezolvare, euristici) specifice domeniului de aplicație, preluate de la experții umani sau din alte surse

modulul de control

- Conţinut
 - regulile prin care se pot obține informații noi
 - algoritmi independenţi de domeniu
 - creierul SBR un algoritm de deducere bazat pe BC şi specific metodei de raţionare
 - un program în care s-a implementat cunoașterea de control, procedurală sau operatorie, cu ajutorul căruia se exploatează baza de cunoștințe pentru efectuarea de raționamente în vederea obținerii de solutii, recomandări sau concluzii.
 - depinde de complexitate şi tipul cunoştinţelor cu care are de-a face
- Rol
 - cu ajutorul lui se exploatează baza de cunoștințe pentru efectuarea de raționamente în vederea obținerii de soluții, recomandări sau concluzii

Conţinut şi arhitectură

- Ideea de bază
 - SBR (Sisteme expert) în care faptele şi regulile sunt probabilistice
- Dacă A şi B atunci C
- Dacă C şi D atunci F

- Dacă A şi B atunci C [cu probabilitatea p₁]
- Dacă C şi D atunci F [cu probabilitatea p₂]

SBR classic

SBR de tip Bayes

Conţinut şi arhitectură

- Regulile din BC sunt (în general) de forma:
 - Dacă evenimentul (faptul) I este adevărat, atunci evenimentul (faptul) D este adevărat [cu probabilitatea p]
 - Dacă evenimentul I s-a produs, atunci evenimentul D se va produce cu probabilitatea p
 - □ I ipoteza (aserţiune, concluzie)
 - D dovada (premisa) care susţine ipoteza

$$p(I | D) = \frac{p(D | I)p(I)}{p(D | I)p(I) + p(D | \neg I)p(\neg I)}$$
 (d)

- unde:
 - □ p(I) − probabilitatea apriori ca ipoteza I să fie adevărată
 - □ p(D|I) probabilitatea ca ipoteza I fiind adevărată să implice dovada D
 - □ p(¬I) probabilitatea apriori ca ipoteza I să fie falsă
 - □ p(D|¬I) probabilitatea găsirii dovezii D chiar dacă ipoteza I este falsă
- □ Cum şi cine calculează aceste probabilităţi? → modulul de control

Conţinut şi arhitectură

Cum calculează MC aceste probabilităţi într-un SBR?

$$p(I | D) = \frac{p(D | I)p(I)}{p(D | I)p(I) + p(D | \neg I)p(\neg I)}$$
 (d)

- utilizatorul furnizează informaţii privind dovezile observate
- experţii determină probabilităţile necesare rezolvării problemei
 - □ Probabilități apriori pentru posibile ipoteze (adevărate sau false) p(I) și p(T)
 - □ Probabilitățile condiționate pentru observarea dovezii D dacă ipoteza I este adevărată p(D|I), respectiv falsă p(D|I)
- SBR calculează probabilitatea posteriori p(I|D) pentru ipoteza I în condiţiile dovezilor D furnizate de utilizator
- Actualizare de tip Bayes
 - O tehnică de actualizare a probabilității p asociate unei reguli care susține o ipoteză pe baza dovezilor (pro sau contra)
 - Inferență (raţionament) de tip Bayes

Conținut și arhitectură

- Actualizare de tip Bayes
 - O tehnică de actualizare a probabilității p asociate unei reguli care susține o ipoteză pe baza dovezilor (pro sau contra)
 - Actualizarea poate ţine cont de:
 - una sau mai multe (m) ipoteze (exclusive şi exhaustive)
 - una sau mai multe (n) dovezi (exclusive şi exhaustive)
 - Cazuri:
 - Mai multe ipoteze şi o singură dovadă

$$p(I_i | D) = \frac{p(D | I_i)p(I_i)}{\sum_{k=1}^{m} p(D | I_k)p(I_k)}$$

Mai multe ipoteze şi mai multe dovezi

$$p(I_i \mid D_1 D_2 ... D_n) = \frac{p(D_1 D_2 ... D_n \mid I_i) p(I_i)}{\sum_{k=1}^{m} p(D_1 D_2 ... D_n \mid I_k) p(I_k)} = \frac{p(D_1 \mid I_i) p(D_2 \mid I_i) ... p(D_n \mid I_i) p(I_i)}{\sum_{k=1}^{m} p(D_1 D_2 ... D_n \mid I_k) p(I_k)}$$

Conținut și arhitectură

- Exemplu numeric
 - Pp. un SBR în care:
 - utilizatorul
 - furnizează 3 dovezi condiţionate independente D₁, D₂ şi D₃
 - expertul
 - crează 3 ipoteze mutual exclusive şi exhaustive I_1 , I_2 şi I_3 şi stabileşte probabilitățile asociate lor $p(I_1)$, $p(I_2)$ şi $p(I_3)$
 - determină probabilitățile condiționate pentru observarea fiecărei dovezi pentru toate ipotezele posibile

probabilitatea	Ipotezele		
	i = 1	i = 2	i = 3
$p(I_i)$	0.40	0.35	0.25
$p(D_1 I_i)$	0.30	0.80	0.50
$p(D_2 I_i)$	0.90	0.00	0.70
$p(D_3 I_i)$	0.60	0.70	0.90

Conținut și arhitectură

- Exemplu numeric
 - Presupunem că prima dovadă observată este D₃

probabilitatea	Ipotezele		
	i = 1	i = 2	i = 3
$p(I_i)$	0.40	0.35	0.25
$p(D_1 I_i)$	0.30	0.80	0.50
$p(D_2 I_i)$	0.90	0.00	0.70
$p(D_3 I_i)$	0.60	0.70	0.90

SE calculează probabilitățile posteriori p(Ii|D3) pentru toate ipotezele:

$$p(I_1 \mid D_3) = \frac{0.60 \cdot 0.40}{0.60 \cdot 0.40 + 0.70 \cdot 0.35 + 0.90 \cdot 0.25} = 0.34$$

$$p(I_2 \mid D_3) = \frac{0.70 \cdot 0.35}{0.60 \cdot 0.40 + 0.70 \cdot 0.35 + 0.90 \cdot 0.25} = 0.34$$

- După observarea $\frac{p(I_3 \mid D_3)}{\text{dovezi70D}_3^{35+0.90\cdot0.25}} = 0.32$
 - $\hfill \square$ încrederea în ipoteza I_2 este aceeași cu încrederea în ipoteza I_1
 - □ încrederea în ipoteza I₃ crește

Conținut și arhitectură

- Exemplu numeric
 - Presupunem că a doua dovadă observată este D₁

probabilitatea	Ipotezele		
	i = 1	i = 2	i = 3
$p(I_i)$	0.40	0.35	0.25
$p(D_1 I_i)$	0.30	0.80	0.50
$p(D_2 I_i)$	0.90	0.00	0.70
$p(D_3 I_i)$	0.60	0.70	0.90

SE calculează probabilitățile posteriori p(I_i|D₁D₃) pentru toate ipotezele:

$$p(I_1 \mid D_1 D_3) = \frac{0.30 \cdot 0.60 \cdot 0.40}{0.30 \cdot 0.60 \cdot 0.40 + 0.80 \cdot 0.70 \cdot 0.35 + 0.50 \cdot 0.90 \cdot 0.25} = 0.19$$

$$p(I_2 \mid D_1 D_3) = \frac{0.80 \cdot 0.70 \cdot 0.35}{0.30 \cdot 0.60 \cdot 0.40 + 0.80 \cdot 0.70 \cdot 0.35 + 0.50 \cdot 0.90 \cdot 0.25} = 0.52$$

$$p(I_3 \mid D_1D_3) = \frac{0.50 \cdot 0.90 \cdot 0.25}{0.30 \cdot 0.60 \cdot 0.40 + 0.80 \cdot 0.70 \cdot 0.35 + 0.50 \cdot 0.90 \cdot 0.25} = 0.29$$

- După observarea dovezii D₁
 - □ încrederea în ipoteza I₁ scade
 - încrederea în ipoteza I₂ creşte (fiind cea mai probabilă de a fi adevărată)
 - □ încrederea în ipoteza I₃ crește

Conținut și arhitectură

- Exemplu numeric
 - Presupunem că ultima dovadă observată este D₂

probabilitatea	Ipotezele		
	i = 1	i = 2	i = 3
$p(I_i)$	0.40	0.35	0.25
$p(D_1 I_i)$	0.30	0.80	0.50
$p(D_2 I_i)$	0.90	0.00	0.70
$p(D_3 I_i)$	0.60	0.70	0.90

Se calculează probabilitățile posteriori p(I_i|D₂D₁D₃) pentru toate ipotezele:

$$p(I_1 \mid D_2 D_1 D_3) = \frac{0.90 \cdot 0.30 \cdot 0.60 \cdot 0.40}{0.90 \cdot 0.30 \cdot 0.60 \cdot 0.40 + 0.00 \cdot 0.80 \cdot 0.70 \cdot 0.35 + 0.70 \cdot 0.50 \cdot 0.90 \cdot 0.25} = 0.45$$

$$p(I_2 \mid D_2 D_1 D_3) = \frac{0.00 \cdot 0.80 \cdot 0.70 \cdot 0.35}{0.90 \cdot 0.30 \cdot 0.60 \cdot 0.40 + 0.00 \cdot 0.80 \cdot 0.70 \cdot 0.35 + 0.70 \cdot 0.50 \cdot 0.90 \cdot 0.25} = 0.00$$

$$p(I_3 \mid D_2 D_1 D_3) = \frac{0.70 \cdot 0.50 \cdot 0.90 \cdot 0.25}{0.90 \cdot 0.30 \cdot 0.60 \cdot 0.40 + 0.00 \cdot 0.80 \cdot 0.70 \cdot 0.35 + 0.70 \cdot 0.50 \cdot 0.90 \cdot 0.25} = 0.55$$

- După observarea dovezii D₂
 - □ încrederea în ipoteza I₁ crește
 - □ încrederea în ipoteza I₂ e nulă (ipoteza e falsă)
 - □ Încrederea în ipoteza I₃ creşte

Conţinut şi arhitectură

- Exemplu practic
 - Presupunem cazul unei maşini care nu porneşte când este accelerată, dar scoate fum
 - Dacă scoate fum, atunci acceleraţia este defectă [cu probabilitatea 0.7]
 - $P(I_1|D_1) = 0.7$
 - Pe baza unor observări statistice, experţii au constatat:
 - următoarea regulă:
 - Dacă acceleraţia este defectă, atunci maşina scoate fum [cu probabilitatea 0.85]
 - probabilitatea ca maşina să pornească din cauză că acceleraţia este defectă = 0.05 (probabilitate apriori)
 - deci avem
 - 2 ipoteze:
 - I₁: acceleraţia este defectă
 - I₂: acceleraţia nu este defectă
 - o dovadă
 - D₁: maşina scoate fum

	I ₁	$\mathbf{I_2}$
$p(I_i)$	0.05	1-0.05=0.95
$P(D_1 I_i)$	0.85	1-0.85=0.15

- probabilitatea că acceleraţia este defectă dacă maşina scoate fum
 - $P(I_1|D_1)=p(D_1|I_1)*p(I_1)/(p(D_1|I_1)*p(I_1)+p(D_1|I_2)*p(I_2))$
 - $P(I_1|D_1)=0.23 < 0.7$

Tipologie

- Sisteme simple de tip Bayes
 - Consecințele unei ipoteze nu sunt corelate
- Reţele de tip Bayes
 - Consecințele unei ipoteze pot fi corelate
- De exemplu, reţinem informaţii despre vârsta (V), educaţia (E), câştigurile (C) şi preferinţa pentru teatru (T) ale unor persoane

Sistem Bayes simplu (naiv)

Rețea Bayes simplu

- Tool-uri
 - MSBNx <u>view</u>
 - JavaBayes view
 - BNJ <u>view</u>

- Avantaje ale inferenței de tip Bayes
 - Tehnică bazată pe teoreme statistice
 - Probabilitatea dovezilor (simptomelor) în ipotezele (cauzele) date sunt posibil de furnizat
 - Probabilitatea unei ipoteze se poate modifica datorită uneia sau mai multor dovezi

- Dezavantaje ale inferenței de tip Bayes
 - Trebuie cunoscute (sau ghicite) probabilităţile apriori ale unor ipoteze

- Tehnici de raţionare în medii nesigure
 - Teoria Bayesiana metodă probabilistică
 - Teoria certitudinii
 - Teoria posibilităţii (logica fuzzy)

Sisteme inteligente – SBC – factori de certitudine

- Conţinut şi arhitectură
- Tipologie
- Tool-uri

Avantaje şi dezavantaje

Sisteme inteligente – SBC – factori de certitudine

Conţinut şi arhitectură

- Ideea de bază
 - SBR (sisteme expert) în care faptele şi regulile au asociate câte un factor de certitudine (FC)/coeficienţ de încredere
 - Un fel de sisteme de tip Bayes în care probabilitățile sunt înlocuite cu factori de certitudine
- Dacă A şi B atunci C
- Dacă A şi B atunci C [cu prob p₁]
- Dacă C şi D atunci F
- Dacă C şi D atunci F [cu prob p₂]
- Dacă A şi B atunci C [FC₁]
- Dacă C și D_[FC2] atunci F [FC₃]

- FC măsoară încrederea acordată unor fapte sau reguli
- Utilizarea FC → alternativă la actualizarea de tip Bayes
- FC pot fi aplicaţi
 - faptelor
 - regulilor (concluziei/concluzilor unei reguli)
 - fapte + reguli
- □ Într-un SBR (sistem expert) cu factori de certitudine
 - regulile sunt de forma:
 - dacă dovada atunci ipoteza [FC]
 - dacă dovada_[FC] atunci ipoteza
 - dacă dovada_[FC] atunci ipoteza [FC]
 - ipotezele susţinute de probe sunt independente

- FC mod de calcul
 - Măsura încrederii (measure of belief MB)

lăsura încrederii (measure of belief – MB)

măsura creșterii încrederii în ipoteza I pe baza dovezii D

$$MB(I,D) = \begin{cases} 1, & \text{dacă } p(I) = 1 \\ \frac{p(I \mid D) - p(I)}{1 - p(I)} & \text{dacă } p(I) < 1 \end{cases}$$

- Măsura neîncrederii (measure of disbelief MD)
 - dacă p(I) = 0măsura creșterii neîncrederii în ipoteza I pe baza dovezii D $MD(I,D) = \begin{cases} 1, & \text{dacă } p(I) = 0 \\ \frac{p(I) - p(I \mid D)}{p(I)} & \text{dacă } p(I) > 0 \end{cases}$
- Pentru evitarea valorilor negative ale MB şi MD:

$$MB(I,D) = \begin{cases} 1, & \text{dacă } p(I) = 1 \\ \frac{\max\{p(I \mid D), p(I)\} - p(I)}{1 - p(I)} & \text{dacă } p(I) < 1 \end{cases} \qquad MD(I,D) = \begin{cases} 1, & \text{dacă } p(I) = 0 \\ \frac{\min\{p(I \mid D), p(I)\} - p(I)}{0 - p(I)} & \text{dacă } p(I) > 0 \end{cases}$$

- FC încrederea în ipoteza I dată fiind dovada D
 - Număr din [-1,1]
 - FC=-1 dacă se știe că ipoteza I este falsă
 - FC=0 dacă nu se știe nimic despre ipoteza I
 - FC=1 dacă se știe că ipoteza I este adevărată

$$FC(I,D) = \frac{MB(I,D) - MD(I,D)}{1 - \min\{MB(I,D), MD(I,D)\}}$$

- FC mod de calcul
 - încrederea în ipoteza I dată fiind dovada D
 - FC=-1 dacă se ştie că ipoteza este falsă
 - FC=0 dacă nu se ştie nimic despre ipoteză
 - FC=1 dacă se ştie că ipoteza este adevărată

- FC mod de calcul
 - încrederea în ipoteza I dată fiind dovada D
 - ipoteza I poate fi:
 - simplă (ex. Dacă D atunci I)
 - compusă (ex. *Dacă D atunci* I_1 *și* I_2 *și* ... I_n)
 - dovada D poate fi
 - dpdv al compoziţiei:
 - simplă (ex. Dacă D atunci I)
 - compusă (ex. Dacă D1 şi D2 şi ... Dn atunci I)
 - dpdv al incertitudinii (încrederii în dovadă):
 - sigură (ex. Dacă D atunci I)
 - nesigură (ex. Dacă D[FC] atunci I)

- FC mod de calcul pentru combinarea încrederii
 - o dovadă incertă care susţine sigur o ipoteză
 - mai multe dovezi incerte care susţin sigur o singură ipoteză
 - o dovadă incertă care susţine incert o ipoteză
 - mai multe dovezi incerte care susţin incert o ipoteză

Conținut și arhitectură

- FC mod de calcul pentru combinarea încrederii
 - O dovadă incertă care susţine sigur o ipoteză

$$FC(I) = \begin{cases} FC(D), & \text{dacă } FC(D) > 0 \\ 0, & \text{altfel} \end{cases}$$

Exemplul 1

- □ R₁: Dacă A_[FC=0.9] atunci B
- R₂: Dacă B atunci C
- \Box FC(B)=FC(A)=0.9
- \Box FC(C)=FC(B)=0.9

Exemplul 2

 \square R₁: Dacă $E_{[FC=-0.2]}$ atunci F

□ FC(E este adevărat) = -0.2 → dovadă negativă → nu putem spune nimic despre faptul că E este adevărat → nu se poate spune nimic despre F

Conţinut şi arhitectură

- □ FC mod de calcul pentru combinarea încrederii
 - Mai multe dovezi incerte care susţin sigur o singură ipoteză
 - Dovezi (probe) adunate incremental
 - Mai multe reguli care, pe baza unor dovezi diferite, furnizează aceeaşi concluzi
 - Aceeaşi ipoteză (valoare de atribut) I este obţinută pe două căi de deducţie distincte, cu două perechi diferite de valori pentru FC, $FC[I,D_1]$ si $FC[I,D_2]$
 - Cele doua cai de deductie distincte, corespunzatoare dovezilor (probelor) D₁ şi D₂ pot fi:
 - ramuri diferite ale arborelui de cautare generat prin aplicarea regulilor
 - dovezi (probe) indicate explicit sistemului

$$FC(I, D_1 \land D_2) = \begin{cases} CF(D_1) + CF(D_2)(1 - CF(D_1), & \text{dacă } CF(D_1), CF(D_2) > 0 \\ CF(D_1) + CF(D_2)(1 + CF(D_1), & \text{dacă } CF(D_1), CF(D_2) < 0 \\ \frac{CF(D_1) + CF(D_2)}{1 - \min\{|CF(D_1|, |CF(D_2))\}}, & \text{dacă } sign(CF(D_1)) \neq sign(CF(D_2)) \end{cases}$$

Exemplu

- R₁: Dacă D_{1 [FC=0.6]} atunci I
- R₂: Dacă D_{2[FC=-0.3]} atunci I
- $FC(I,D_1 \land D_2) = (0.6 + (-0.3))/(1-0.3) = 0.42$

Conținut și arhitectură

- FC mod de calcul pentru combinarea încrederii
 - O dovadă incertă care susţine incert o ipoteză

$$FC(I) = \begin{cases} FC(D) * FC(regulă), & \text{dacă } FC(D) > 0 \\ 0, & \text{altfel} \end{cases}$$

Exemplul 1

- \square R₁: Dacă A_[FC=0.9] atunci B [FC=0.4]
- □ R₂: Dacă B atunci C [FC=0.3]
- \square FC(B)=FC(A)*FC(R₁)=0.9*0.4=0.36
- FC(C)=FC(B)*FC(R_2)=0.36*0.3=0.108

Exemplul 2

 \square R₁: Dacă E_[FC=-0.2] atunci F [FC=0.6]

FC(E este adevărat) = -0.2 → dovadă negativă → nu putem spune nimic despre faptul că E este adevărat → nu se poate spune nimic despre F

Conţinut şi arhitectură

- □ FC mod de calcul pentru combinarea încrederii
 - Mai multe dovezi incerte care susţin incert o ipoteză
 - Dovezile sunt legate prin ŞI logic

$$CF(I) = \begin{cases} \min \{ CF(D_1), CF(D_2), ..., CF(D_n), \} * CF(regulă), & dacă \ CF(D_i) > 0, i = 1, 2, ..., n \\ 0, & \text{altfel} \end{cases}$$

- Una sau mai multe dintre dovezile incerte care susţin incert o ipoteză
 - Dovezile sunt legate prin SAU logic

$$CF(I) = \begin{cases} \max\{CF(D_1), CF(D_2), ..., CF(D_n),\} * CF(regul\breve{a}), & \textit{dac}\breve{a} \text{ CF}(D_i) > 0, i = 1, 2, ..., n \\ 0, & \text{altfel} \end{cases}$$

- Exemplul 1
 - R₁: Dacă $D_{1[FC = 0.8]}$ şi $D_{2[FC = 0.7]}$ şi $D_{3[FC = 0.5]}$ şi

$$D_{4[FC = 0.3]}$$
 şi $D_{5[FC = 0.9]}$ atunci $I[FC = 0.65]$

FC(I) = 0.3 * 0.65 = 0.195

- FC mod de calcul pentru combinarea încrederii
 - Mai multe dovezi incerte care susţin incert o ipoteză
 - Dovezile sunt legate prin ŞI logic

$$CF(I) = \begin{cases} \min\{CF(D_1), CF(D_2), ..., CF(D_n), \} * CF(regul\breve{a}), & dac\breve{a} \ CF(D_i) > 0, i = 1, 2, ..., n \\ 0, & altfel \end{cases}$$

- Una sau mai multe dintre dovezile incerte susţin incert o ipoteză
 - Dovezile sunt legate prin SAU logic

$$CF(I) = \begin{cases} \max \left\{ CF(D_1), CF(D_2), ..., CF(D_n), \right\} * CF(regul\Bar{a}), & dac\Bar{a} \ CF(D_i) > 0, i = 1, 2, ..., n \\ 0, & \text{altfel} \end{cases}$$

- Exemplul 2
 - R_1 : $Dacă \ D_{1[FC = 0.8]} sau \ D_{2[FC = 0.7]} sau$ $D_{3[FC = 0.5]} sau \ D_{4[FC = 0.3]} sau \ D_{5[FC = 0.9]}$ atunci I[FC = 0.65]
 - FC(I) = 0.9 * 0.65 = 0.585

Exemplu

- Sistem expert pentru diagnosticarea unei răceli
 - Fapte în baza de date:
 - Febra pacientului 37.4
 - Pacientul tuşeşte de mai puţin de 24 ore
 - Pacientul nu are expectoraţii
 - Pacientul are o durere de cap cu FC = 0.4
 - Pacientul are nasul înfundat cu FC = 0.5

Reguli:

- □ R₁: Dacă *A: febra < 37.5* atunci
- B: simptomele de răceală sunt prezente [FC=0.5]
- R₂: Dacă *C: febra > 37.5* atunci
- B: simptomele de răceală sunt prezente [FC=0.9]
- R₃: Dacă D: tuşeşte > 24 ore atunci
- E: durerea de gât e prezentă [FC=0.5]
- □ R₄: Dacă *F: tuşeşte > 48 ore* atunci
- E: durerea de gât e prezentă [FC=1.0]
- R₅: Dacă *B: are simptome de răceală* și
- G: nu expectorează atunci H: a răcit [FC=-0.2]
- R₆: Dacă *E: îl doare gâtul* atunci
- *H: a răcit* [FC=0.5]
- R₇: Dacă I: îl doare capul şi
- J: are nasul înfundat atunci H: a răcit [FC=0.7]

Concluzia:

Pacientul este sau nu răcit?

Exemplu

- Sistem expert pentru diagnosticarea unei răceli
 - Fanta în haza de date:
 - Fapte în baza de date:
 - Febra pacientului 37.4
 - Pacientul tuşeşte de mai puţin de 24 ore
 - Pacientul nu are expectoraţii
 - Pacientul are o durere de cap cu FC = 0.4
 - Pacientul are nasul înfundat cu FC = 0.5

Reguli:

- □ R₁: Dacă A: febra < 37.5 atunci</p>
- B: simptomele de răceală sunt prezente [FC=0.5]
- R₂: Dacă *C: febra > 37.5* atunci
- B: simptomele de răceală sunt prezente [FC=0.9FC=-1
- R₃: Dacă D: tuşeşte > 24 ore atunci
- E: durerea de gât e prezentă [FC=0.5]
- R₄: Dacă F: tuşeşte > 48 ore atunci
- E: durerea de gât e prezentă [FC=1.0]
- □ R₅: Dacă *B: are simptome de răceală* și
- G: nu expectorează atunci H: a răcit [FC=-0.2]
- R₆: Dacă *E: îl doare gâtul* atunci
- *H: a răcit* [FC=0.5]
- R₇: Dacă I: îl doare capul şi
- J: are nasul înfundat atunci H: a răcit [FC=0.7]

Concluzia:

Pacientul este sau nu răcit?

 $FC=(-0.1+0.28)/(1-min\{|-0.1|,|0.28|\})$

FC = 0.2

Avantaje

Nu este necesar calculul apriori a probabilităţilor

Limite

ipotezele sustinute de probe sunt independente.

exemplu:

- Fie următoarele fapte:
 - A: Aspersorul a funcţionat noaptea trecută
 - U: Iarba este udă dimineaţă
 - P: Noaptea trecută a plouat.

şi următoarele două reguli care leagă între ele aceste fapte:

- R₁: dacă aspersorul a funcţionat noaptea trecută atunci există o încredere puternică (0.9) că iarba este udă dimineaţa
- R₂: dacă iarba este udă dimineaţa atunci există o încredere puternică (0.8) că noaptea trecută a plouat

Deci:

- FC[U,A] = 0.9 deci proba aspersor sustine iarba uda cu 0.9
- FC[P,U] = 0.8 deci iarba uda sustine ploaie cu 0.8
- FC[P,A] = 0.8 * 0.9 = 0.72 deci aspersorul sustine ploaia cu 0.72

□ SBR de tip Bayes vs. SBR cu FC

Bayes	FC	
Teorie probabilităților este veche și fundamentată matematic	Teoria FC este nouă și fără demostrții matematice	
Necesită existența unor informații statistice	Nu necesită existența unor date statistice	
Propagarea încrederii crește în timp exponențial	Informația circulă repede și eficient în SBR	

SBC

- Tehnici de raţionare în medii nesigure
 - Teoria Bayesiana metodă probabilistică
 - Teoria certitudinii
 - Teoria posibilităţii (logica fuzzy)

Metode euristice

- □ Teoria posibilităţii
- Conţinut şi arhitectură
- Tipologie
- Tool-uri

Avantaje şi limite

Teoria posibilității (logica fuzzy)

- De ce fuzzy?
 - Problemă: transpuneţi în cod (C++) următoarele propoziţii:
 - Georgel este înalt.
 - Afara este frig.
- □ Când este important fuzzy?
 - Interogări în limbaj natural
 - Reprezentarea cunoştinţelor în sisteme expert
 - Controlul fuzzy când se lucrează cu fenomene imprecise (perturbate de zgomot)

Amintim componența unui SBC

- Baza de cunoştinţe (BC) → Modalităţi de reprezentare a cunoştinţelor
 - Logica formală (limbaje formale)
 - Definiţie
 - Ştiinţa principiilor formale de raţionament
 - Componente
 - Sintaxă
 - Semantică
 - Metodă de inferenţă sintactică
 - Tipologie
 - În funcţie de numărul valorilor de adevăr:
 - logică duală
 - logică polivalentă
 - În funcţie de tipul elementelor de bază:
 - clasică → primitivele = propoziţii (predicate)
 - probabilistică → primitivele = variabile aleatoare
 - În funcție de obiectul de lucru:
 - logica propozițională \rightarrow se lucrează doar cu propoziții declarative, iar obiectele descrise sunt fixe sau unice (Ionică este student)
 - logica predicatelor de ordin I → se lucrează cu propziţii declarative, cu predicate şi cuantificări , iar obiectele descrise pot fi unice sau variabile asociate unui obiect unic (Toţi studenţii sunt prezenţi)
 - Reguli
 - Reţele semantice
- Modulul de control (MC pentru inferenţă)

Teoria posibilității - Un pic de istorie

- Parminedes (400 B.C.)
- Aristotle
 - "Law of the Excluded Middle" fiecare propoziţie trebuie să fie Adevărată sau Falsă
- Plato
 - O a treia regiune între Adevărat şi Fals
 - Pune bazele logicii fuzzy
- Lukasiewicz (1900)
 - Propune o alternativă sistematică la logica bivalentă a lui Aristotle logica trivalentă: Adevărat, Fals, Posibil
- Lotfi A. Zadeh (1965)
 - Descrie matematic teoria mulţimilor fuzzy şi logica fuzzy: funcţia de apartenenţă (valorile Adevărat şi Fals) operează pe intervalul [0,1]
 - A propus noi operaţii de calcul pt logica fuzzy
 - A considerat logica fuzzy o generalizare a logicii clasice
 - A publicat primul articol despre mulţimile fuzzy

Teoria posibilității

- Logica fuzzy
 - Generalizare a logicii Boolene
 - Manipulează conceptul de adevăr parţial
 - Logica clasică totul este exprimat în termeni binari
 - 0 sau 1, alb sau negru, da sau nu
 - Logica fuzzy exprimarea graduală a unui adevăr
 - Valori între 0 și 1

Analogia logică vs. algebră

- Operatorii logici exprimaţi în termeni matematici (George Boole):
 - □ Conjunţie = minimum \rightarrow a \land b = min (a, b)
 - □ Disjuncţie = maximum → a ∨ b = max (a, b)
 - Negaţie = scădere → ¬a = 1- a

Reamintim: SBR – arhitectură

- baza de cunoştinţe
 - Conţine
 - Informaţiile specifice despre un domeniu sub forma unor
 - fapte afirmaţii corecte
 - reguli euristici speciale care generează informaţii (cunoştinţe)
 - Rol
 - stocarea tuturor elementelor cunoașterii (fapte, reguli, metode de rezolvare, euristici) specifice domeniului de aplicație, preluate de la experții umani sau din alte surse

modulul de control

- Conţinut
 - regulile prin care se pot obţine informaţii noi
 - algoritmi independenţi de domeniu
 - creierul SBR un algoritm de deducere bazat pe BC și specific metodei de raționare
 - un program în care s-a implementat cunoașterea de control, procedurală sau operatorie, cu ajutorul căruia se exploatează baza de cunoștințe pentru efectuarea de raționamente în vederea obținerii de soluții, recomandări sau concluzii.
 - depinde de complexitate şi tipul cunoştinţelor cu care are de-a face
- Rol
 - cu ajutorul lui se exploatează baza de cunoștințe pentru efectuarea de raționamente în vederea obținerii de soluții, recomandări sau concluzii

Conţinut şi arhitectură

- Ideea de bază
 - Cf. teoriei informaţiilor certe
 - Popescu este tânăr
 - Cf. teoriei informaţiilor incerte
 - Cf. teoriei probabilităţilor:
 - Există 80% şanse ca Popescu să fie tânăr
 - Cf. logicii fuzzy:
 - Gradul de apartenenţă al lui Popescu la grupul de oameni tineri este 0.80

Necesitate

- Abordarea fenomenelor reale implică utilizarea mulţimilor fuzzy
- Exemplu
 - Temperatura unei camere poate fi:
 - joasă,
 - medie sau
 - ridicată
 - Aceste mulţimi de temperaturi posibile se pot suprapune
 - o temperatura poate aparţine uneia sau mai multor mulţimi în funcţie de cel care face evaluarea

- Paşi în construirea unui sistem fuzzy
 - Definirea intrărilor şi ieşirilor de către expert
 - Datele de intrare şi ieşire brute
 - Fuzzificarea datelor de intrare şi ieşire
 - Stabilirea variabilelor fuzzy şi a mulţimilor fuzzy pe baza funcţilor de apartenenţă
 - Construirea unei baze de reguli de către expert
 - Matricea de decizie a bazei de cunoştinţe
 - Evaluarea regulilor
 - Inferenţa transformarea intrărilor fuzzy în ieşiri fuzzy prin aplicarea regulilor din baza de cunoştinţe
 - Agregarea rezultatelor
 - Defuzificarea
 - Interpretarea rezultatelor

- Paşi în construirea unui sistem fuzzy
 - Definirea intrărilor şi ieşirilor de către expert
 - Datele de intrare şi ieşire brute
 - Fuzzificarea datelor de intrare şi ieşire
 - Stabilirea variabilelor fuzzy şi a mulţimilor fuzzy pe baza funcţilor de apartenenţă
 - Construirea unei baze de reguli de către expert
 - Matricea de decizie a bazei de cunoştinţe
 - Evaluarea regulilor
 - Inferenţa transformarea intrărilor fuzzy în ieşiri fuzzy prin aplicarea regulilor din baza de cunoştinţe
 - Agregarea rezultatelor
 - Defuzificarea
 - Interpretarea rezultatelor

- Elemente de teoria posibilităţii (logica fuzzy)
 - Fapte (mulţimi) fuzzy
 - Definire
 - Reprezentare
 - Operaţii complement, containment, intersecţie, reuniune, egalitate, produs algebric, sumă algebrică
 - Proprietăți asociativitate, distributivitate, comutativitate, tranzitivitate, idempotenți, identitate, involuție, legile lui De Morgan
 - Hedges
 - Variabile fuzzy
 - Definiţie
 - Proprietăţi
- Stabilirea variabilelor fuzzy şi a mulţimilor fuzzy pe baza funcţilor de apartenenţă

- Elemente de teoria posibilității (logica fuzzy) → Fapte (mulțimi) fuzzy → **definire**
 - Definirea oricărei mulţimi 2 moduri:
 - Prin enumerarea elementelor
 - Ex. Multimea elevilor = {Ana, Maria, Ioana}
 - Prin specificare unei proprietăți a elementelor mulțimii
 - Ex. Multimea numerelor pare = $\{x | x = 2n, unde n număr natural\}$
 - Funcţia caracteristică μ a unei mulţimi
 - Fie X o multime universală și x un element al multimii (xeX)
 - Logica clasică
 - Fie R o submulţime a lui X: R⊂X, R mulţime regulară
 - Orice element x aparține sau nu mulțimii R

•
$$\mu_R$$
: $X \rightarrow \{0, 1\}$, $\text{und}_{\mathbf{Z}_R}(x) = \begin{cases} 1, & x \in R \\ 0, & x \notin R \end{cases}$

- Logica fuzzy
 - Fie F o submultime a lui X (univers de discurs): $F \subset X$, F multime fuzzy
 - orice element x aparţine mulţimii F într-un anumit grad $\mu_F(x)$
 - $\mu_F: X \rightarrow [0, 1], \mu_F(x) = g, \text{ unde } g \in [0, 1] \text{ gradul de aparteneță al lui x la F}$
 - g = 0 → ne-aparteneţă
 - g = 1 → apartenenţă

$$g = 1 \Rightarrow \text{ apartenenţă}$$

$$g = 1 \Rightarrow \text{ apartenență}$$

$$\mu_F(x) = \begin{cases} 1, & \text{dacă } x \text{ este total în } F \\ 0, & \text{dacă } x \text{ nu este în } F \end{cases}$$

$$O \text{ mulţime fuzzy} = 0 \text{ pereche (F, } \mu_F \text{), unde}$$

$$= \begin{cases} 0, & \text{dacă } x \text{ este parte din } F \\ \in (0,1) & \text{dacă } x \text{ este parte din } F \end{cases}$$

- Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy → definire
 - Exemplul 1
 - X mulţimea numerelor naturale mai mici decât 11
 - R mulţimea numerelor mai mici decât 7
 - F mulţimea numerelor aproapiate de 6

x	μ _R (x)	μ _F (x)
0	1	0
1	1	0.1
2	1	0.25
3	1	0.5
4	1	0.6
5	1	0.8
6	1	1
7	0	0.8
8	0	0.6
9	0	0.5
10	0	0.25

- Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy → definire
 - Exemplul 2
 - O anumită temperatură t poate avea 3 valori de adevăr:
 - Roşu (0): nu e fierbinte
 - Portocalui (0.3): puţin cald
 - Albastru (0.7): aproape rece

Conţinut şi arhitectură → fuzzificarea datelor de intrare

- Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy → reprezentare
 - Mulţimile regulare
 - □ Delimitări clare (exacte) → diagrame Venn
 - Mulţimile fuzzy
 - Delimitări graduale → reprezentări bazate pe funcția de apartenență
 - Singulară
 - $\mu(x) = s$, unde s este un scalar
 - Triunghiulară

$$\mu(x) = \max\left\{0, \min\left\{\frac{x-a}{b-a}, 1, \frac{c-x}{c-b}\right\}\right\}$$

Trapezoidală

$$\mu(x) = S(x) = \max\left\{0, \min\left\{\frac{x-a}{b-a}, 1, \frac{d-x}{d-c}\right\}\right\}$$

- Funcția Z
 - $\mu(x) = 1 S(x)$
- Funcţia ∏

$${}^{\mathbf{L}}\mu(x) = \Pi(x) = \begin{cases} S(x), & \text{dacă } x \le c \\ Z(x), & \text{dacă } x > c \end{cases}$$

- Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy → reprezentare
 - Exemplu
 - Vârsta unei persoane

- Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy →Operaţii
 - complement
 - incluziune
 - intersecţie
 - reuniune
 - egalitate
 - produs algebric
 - sumă algebrică

Conţinut şi arhitectură → fuzzificarea datelor de intrare

- Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy →Operaţii
 - Complement
 - X un univers
 - A o mulţimea fuzzy (cu universul X)
 - B o mulţimea fuzzy (cu universul X)
 - □ B este complementul lui A (B= ¬ A) dacă:
 - $\mu_B(x) = \mu_{TA}(x) = 1 \mu_A(x)$ pentru orice $x \in X$

Exemplu:

- persoane bătrâne (pe baza vârstei)
 - A={(30,0), (40, 0.2), (50, 0.4), (60, 0.6), (70, 0.8), (80, 1)}
- persoane tinere (care nu sunt bătrâne) (pe baza vârstei)
 - 7 A={(30,1), (40, 0.8), (50, 0.6), (60, 0.4), (70, 0.2), (80, 0)}

- Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy →Operaţii
 - Incluziune
 - X un univers
 - A o mulţimea fuzzy (cu universul X)
 - B o mulţimea fuzzy (cu universul X)
 - □ B este submuţime a lui A (B⊂A) dacă:
 - $\mu_B(x) \le \mu_A(x)$ pentru orice $x \in X$

- persoane bătrâne (pe baza vârstei)
 - $= A = \{(60, 0.6), (65, 0.7), (70, 0.8), (75, 0.9), (80, 1)\}^{30}$
- persoane foarte bătrâne (pe baza vârstei)
 - B={(60, 0.6), (65, 0.67) (70, 0.8), (75, 0.8), (80, 0.95)}

Conţinut şi arhitectură → fuzzificarea datelor de intrare

■ Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi)

fuzzy **→Operaţii**

- Intersecţie
 - X un univers
 - A o mulţimea fuzzy (cu universul X)
 - B o mulţimea fuzzy (cu universul X)
 - C o mulţimea fuzzy (cu universul X)
 - □ C este intersecţia lui A cu B (C=A∩B) dacă:
 - $\mu_C(x) = \mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\} = \mu_A(x) \cap \mu_B(x) \text{ pentru orice } x \in X$

Exemplu

- persoane bătrâne (pe baza vârstei)
 - A={(30,0) (40, 0.1) (50, 0.2) (60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}
- persoane de vârstă medie
 - B={(30,0.1) (40, 0.2) (50, 0.6) (60, 0.5), (65, 0.2) (70, 0.1), (75, 0), (80, 0)}
- persoane bătrâne şi de vârstă medie
 - C={(30,0) (40, 0.1) (50, 0.2) (60, 0.5), (65, 0.2) (70, 0.1), (75, 0), (80, 0)}

Conţinut şi arhitectură → fuzzificarea datelor de intrare

□ Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy → Operaţii

Reuniune

- X un univers
- A o mulţimea fuzzy (cu universul X)
- B o mulţimea fuzzy (cu universul X)
- C o mulţimea fuzzy (cu universul X)
- □ C este reuniunea lui A cu B (C=A∪B) dacă:
 - $\mu_C(x) = \mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\} = \mu_A(x) \cup \mu_B(x)$ pentru orice $x \in X$

Exemplu

- persoane bătrâne (pe baza vârstei)
 - A={(30,0) (40, 0.1) (50, 0.2) (60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}
- persoane de vârstă medie
 - B={(30,0.1) (40, 0.2) (50, 0.6) (60, 0.5), (65, 0.2) (70, 0.1), (75, 0), (80, 0)}
- persoane bătrâne sau de vârstă medie
 - C={(30,0.1) (40, 0.2) (50, 0.6) (60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}

Union of A and B

- □ Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy → Operaţii
 - Egalitate, produs şi sumă algebrică
 - X un univers
 - A o mulţimea fuzzy (cu universul X)
 - B o mulţimea fuzzy (cu universul X)
 - C o mulţimea fuzzy (cu universul X)

- B este egal cu A (B=A) dacă:
 - $\mu_B(x) = \mu_A(x)$ pentru orice $x \in X$
- □ C este produsul dintre A şi B (C=A*B) dacă:
 - μ C(x)= μ A*B(x)= μ A(x)* μ B(x) pentru orice x∈X
- □ C este suma lui A cu B (C=A+B) dacă:
 - μ C(x)= μ A+B(x)= μ A(x)+ μ B(x) pentru orice x \in X

- Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy → proprietăţi
 - Asociativitate
 - Comutativitate
 - Distributivitate
 - Tranzitivitate
 - Idempotenţă
 - Identitate
 - Involuţie

Conţinut şi arhitectură → fuzzificarea datelor de intrare

■ Elemente de teoria posibilităţii (logica fuzzy) → Fapte (mulţimi) fuzzy → Hedges (nuanţatori)

Ideea de bază

- Modificatori, adjective sau adverbe care schimbă valorile de adevăr ale unor afirmaţii
 - Ex. Foarte, mai puţin, mai mult, aproape, etc.
- Modifică forma mulţimilor fuzzy
- Pot acţiona la nivel de
 - Numere fuzzy
 - Valori de adevăr
 - Funcţii de apartenenţă
- Euristici

Utilitate

- □ Apropierea de limbajul natural → subiectivism
- Evaluarea variabilelor lingvistice

Conţinut şi arhitectură → fuzzificarea datelor de intrare

■ Elemente de teoria posibilităţii (logica fuzzy) →
 Fapte (mulţimi) fuzzy → Hedges (nuanţatori)

- Tipologie
 - Hedge-uri care reduc valoarea de adevăr (producând o concentraţie)
 - foarte μ_A foarte $(x) = (\mu_A(x))^2$
 - extrem $\mu_{A_extrem}(x) = (\mu_A(x))^3$
 - foarte foarte μ_A foarte foarte $(x) = (\mu_A$ foarte $(x))^2 = (\mu_A(x))^4$
 - Hedge-uri care măresc valoarea de adevăr (producând o dilatare)
 - oarecum μ_A oarecum $(x)=(\mu A(x))^{1/2}$
 - $usor \mu_{A_usor}(x) = (\mu A(x))^{1/3}$
 - Hedge-uri care intensifică valoarea de adevă
 - întradevăr

$$\mu_{\text{A_întradevăr}}(x) = \begin{cases} 2(\mu_{A}(x))^{2}, & dacă \ 0 \le \mu_{A}(x) \le 0.5\\ 1 - 2(1 - \mu_{A}(x))^{2}, & dacă \ 0.5 \le \mu_{A}(x) \le 1 \end{cases}$$

- Elemente de teoria posibilităţii (logica fuzzy)
 - Fapte (mulţimi) fuzzy
 - Definire
 - Reprezentare
 - Operaţii complement, containment, intersecţie, reuniune, egalitate, produs algebric, sumă algebrică
 - Proprietăți asociativitate, distributivitate, comutativitate, tranzitivitate, idempotenți, identitate, involuție, legile lui De Morgan
 - Hedges
 - Variabile fuzzy
 - Definiţie
 - Proprietăţi
- Stabilirea variabilelor fuzzy şi a mulţimilor fuzzy pe baza funcţilor de apartenenţă

- □ Elemente de teoria posibilităţii (logica fuzzy) → Variabile fuzzy → Definiţie
 - O variabilă fuzzy V este definită de quadruplul $V = \{x, l, u, m\}$, unde:
 - X numele variabilei simbolice
 - L mulţimea etichetelor posibile pentru variabila x
 - U universul variabilei
 - M regulile semantice care definesc înțelesul fiecărei etichete din L (funcțiile de apartenență)
 - Funcţia de apartenenţă
 - Evaluare subiectivă
 - forma funcţiilor este definită de experţi/specialişti
 - Evaluare ad-hoc
 - funcţii simple care să poată rezolva problema
 - Evaluare bazată pe distribuţii şi probabilităţi ale informaţilor extrase din măsurători
 - Evaluare adaptată
 - prin teste
 - Evaluare automată
 - algoritmi folosiţi pentru definirea funcţiilorppe baza unor date de antrenament
 - Exemplu
 - X = Temperatura
 - L = {joasă, medie, ridicată}
 - □ $U = \{x \in X \mid -70^{\circ} \le x \le +70^{\circ}\}$
 - □ M =

- Elemente de teoria posibilităţii (logica fuzzy) → Variabile fuzzy → Proprietăţi
 - Completitudine
 - O variabilă fuzzy V este completă dacă pentru orice $x \in X$ există o mulţime fuzzy A astfel încât $\mu_A(x)>0$

- □ Elemente de teoria posibilităţii (logica fuzzy) → Variabile fuzzy →
 Proprietăţi
 - Partiţionare a unităţii
 - O variabilă fuzzy V formează o partiție a unității dacă pentru orice valoare de intrare x avem $\sum_{i=1}^{p} \mu_{A_i}(x) = 1$
 - Unde p este numărul mulţimilor cărora aparţine x
 - Nu există reguli pentru definirea suprapunerii a 2 mulţimi vecine
 - De obicei, suprapunerea trebuie să fie între 25% şi 50%

- Elemente de teoria posibilităţii (logica fuzzy) → Variabile fuzzy → Proprietăţi
 - Partiţionare a unităţii
 - O variabilă fuzzy completă poate fi transformată într-o partiţionare a unităţii astfel:

$$\mu_{\hat{A}_i}(x) = \frac{\mu_{A_i}(x)}{\sum_{j=1}^p \mu_{A_j}(x)}$$
 for $i = 1, K, p$

- Elemente de teoria posibilităţii (logica fuzzy)
 - Fapte (mulţimi) fuzzy
 - Definire
 - Reprezentare
 - Operaţii complement, containment, intersecţie, reuniune, egalitate, produs algebric, sumă algebrică
 - Proprietăți asociativitate, distributivitate, comutativitate, tranzitivitate, idempotenți, identitate, involuție, legile lui De Morgan
 - Hedges
 - Variabile fuzzy
 - Definiţie
 - Proprietăţi
- Stabilirea variabilelor fuzzy şi a mulţimilor fuzzy pe baza funcţilor de apartenenţă → mecanism

- Mecanism
 - Se stabilesc datele (de intrare şi ieşire) brute ale sistemului
 - Pentru fiecare dată de intrare se definesc funcţiile de apartenenţă (2, 3 sau mai multe)
 - □ Fiecărei funcții de apartenență i se asociază o etichetă calitativă variabilă lingvistică
 - unei variabile brute îi pot corespunde una sau mai multe variabile lingvistice
 - Exemplu
 - Variabilă brută: temperatura T
 - Variabile lingvistice asociate: redusă → A1, medie→A2, înaltă→A3
 - Se transformă fiecare dată brută de intrare într-o variabilă lingvistică → fuzzificare
 - Se stabileşte mulţimea fuzzy din care face parte variabila brută
 - Cum?
 - Pentru o valoare brută dată a unei variabile (care poate aparţine uneia sau mai multor mulţimi fuzzy) se calculează valoarea asociată funcţiei caracteristice corespunzătoare pentru fiecare dintre mulţimile de apartenenţă (folosind funcţia de apartenenţă)
 - Exemplu
 - $T (=x_n) = 5^\circ$
 - $A_1 \rightarrow \mu_{A1}(T) = 0.6$
 - $A_2 \rightarrow \mu_{A2}(T) = 0.4$

Conţinut şi arhitectură → fuzzificarea datelor de intrare

- Mecanism
 - Exemplu pentru reglarea unui aparat de aer condiţionat
 - Intrări:
 - x (temperatura rece, normal, fierbinte) și
 - y (umiditatea mică, mare)
 - Ieşiri:
 - z (puterea aparatului redusă, medie, ridicată)
 - Date de intrare:
 - Temperatura x = 37
 - $\mu_{A1}(x)=0$, $\mu_{A2}(x)=0.6$, $\mu_{A3}(x)=0.3$
 - Umiditatea y = 0.8
 - $\mu_{B1}(x)=0.9, \ \mu_{B2}(x)=0$

Inteligență artificială - sisteme bazate pe reguli (în medii incerte)

Conţinut şi arhitectură

- Paşi în construirea unui sistem fuzzy
 - Definirea intrărilor şi ieşirilor de către expert
 - Datele de intrare şi ieşire brute
 - Fuzzificarea datelor de intrare şi ieşire
 - Stabilirea variabilelor fuzzy şi a mulţimilor fuzzy pe baza funcţilor de apartenenţă
 - Construirea unei baze de reguli de către expert
 - Matricea de decizie a bazei de cunoştinţe
 - Evaluarea regulilor
 - Inferenţa transformarea intrărilor fuzzy în ieşiri fuzzy prin aplicarea regulilor din baza de cunoştinţe
 - Agregarea rezultatelor
 - Defuzificarea
 - Interpretarea rezultatelor

Conţinut şi arhitectură → Construirea unei baze de reguli de către expert

- Reguli
 - Definiţie
 - Construcții lingvistice de tipul
 - Afirmaţiilor: A
 - Condiţionărilor: dacă A atunci B
 - Unde A şi B sunt (colecţii de) propoziţii care conţin variabile lingvistice
 - A premisa regulii
 - B consecinţa regulii
 - Tipologie
 - Necondiţionale
 - x este (în) A_i
 - ex. Salvează energia
 - Condiţionale
 - Dacă x este (în) A_i atunci y este (în) C_k
 - Dacă x este (în) A_i şi y este (în) B_i atunci z este (în) C_k
 - Dacă x este (în) A_i sau y este (în) B_j atunci z este (în) C_k

- Reguli
 - Exemplu

	Reguli în logica clasică	Reguli în logica fuzzy
R_1	Dacă temperatura este -5 atunci vremea este rece	Dacă temperatura este joasă atunci vremea este rece
R ₂	Dacă temperatura este 15 atunci vremea este călduță	Dacă temperatura este medie atunci vremea este călduță
R_3	Dacă temperatura este 35 atunci vremea este caniculară	Dacă temperatura este ridicată atunci vremea este caniculară

- Reguli
 - Baza de reguli fuzzy

```
R<sub>11</sub>: Dacă x este A<sub>1</sub> şi y este B<sub>1</sub> atunci z este C<sub>11</sub>
```

- R₁₂: Dacă x este A₁ şi y este B₂ atunci z este C_v
- ...
- \square R_{1n}: Dacă x este A₁ și y este B_n atunci z este C_x
- R₂₁: Dacă x este A₂ şi y este B₁ atunci z este C_v
- R₂₂: Dacă x este A₂ şi y este B₂ atunci z este C_z
- ...
- R_{2n}: Dacă x este A₂ şi y este B_n atunci z este C_v
- ...
- R_{m1}: Dacă x este A_m şi y este B₁ atunci z este C_z
- \square R_{m2}: Dacă x este A_m şi y este B₂ atunci z este C_v
- ...
- R_{mn}: Dacă x este A_m şi y este B_n atunci z este C_u

- Reguli
 - Proprietăţi ale bazei de reguli
 - Completitudine
 - O bază de reguli fuzzy este completă
 - dacă orice valoare de intrare are asociată o valaore între 0 şi 1
 - dacă orice variabilă fuzzy este completă
 - dacă mulţimile folosite in bază au suport ne-compact
 - Consistenţă
 - O mulţime de reguli fuzzy este incosistentă dacă 2 reguli care au aceleaşi premise conduc la consecinţe diferite
 - Dacă x este A₁ şi y este B₁ atunci z este C_r
 - Dacă x este A₁ şi y este B₁ atunci z este C_v
 - Probleme cu baza de reguli fuzzy
 - Explozia regulilor
 - Numărul regulilor creşte exponenţial odată cu numărul variabilelor de intrare
 - Numărul de combinații ale mulţimilor de intrare este
 - unde a *i*-a variabilă este formată din p_i mulțimi $P = \prod_{i=1}^n p_i$

Conţinut şi arhitectură → Construirea unei baze de reguli de către expert

- Matricea de decizie a bazei de cunoştinţe
 - Exemplu pentru reglarea unui aparat de aer condiţionat
 - Intrări:
 - x (temperatura rece, normal, fierbinte) şi
 - y (umiditatea mică, mare)
 - Ieşiri:
 - z (puterea aparatului redusă, menţinută constantă, mărită)
 - Reguli:
 - Dacă temperatura este normală şi umiditatea mică atunci puterea aparatului de aer condiţionat trebuie să fie menţinută constantă

		Data de intrare y	
		Mică	Mare
	Rece	Redusă	Constantă
Data de intrare x	Normal	Constantă	Mărită
merare x	Fierbinte	Mărită	Mărită

Conţinut şi arhitectură

- Paşi în construirea unui sistem fuzzy
 - Definirea intrărilor şi ieşirilor de către expert
 - Datele de intrare şi ieşire brute
 - Fuzzificarea datelor de intrare şi ieşire
 - Stabilirea variabilelor fuzzy şi a mulţimilor fuzzy pe baza funcţilor de apartenenţă
 - Construirea unei baze de reguli de către expert
 - Matricea de decizie a bazei de cunoştinţe
 - Evaluarea regulilor
 - Inferenţa transformarea intrărilor fuzzy în ieşiri fuzzy prin aplicarea regulilor din baza de cunoştinţe
 - Agregarea rezultatelor
 - Defuzificarea
 - Interpretarea rezultatelor

Conţinut şi arhitectură → Evaluarea regulilor (inferenţa fuzzy)

- Care reguli se evaluează mai întâi?
 - Inferenţă de tip Fuzzy
 - Regulile se evaluează în **paralel**, fiecare regulă contribuind la forma rezultatului final.
 - Mulţimile fuzzy rezultate sunt defuzzificate abia după ce toate regulile au fost evaluate

Amintim

- Inferenţă înainte
 - Pentru o stare a problemei se colectează informaţiile necesare şi se aplică regulile posibile pentru BC construită
- Inferență înapoi
 - Se identifică regulile care determină apariţia faptului obiectiv şi (dacă este posibil) se aplică aceste reguli
- Cum se evaluează regulile?
 - Evaluarea antecedentelor
 - Evaluarea consecinţelor

Conţinut şi arhitectură → Evaluarea regulilor (inferenţa fuzzy)

- Evaluarea antecedentelor
 - Pentru fiecare premisă a unei reguli (dacă x ieste (în) A) se ia în considerare gradul de apartenenţă al datelor brute la fiecare mulţime fuzzy din care face parte (anterior calculat în etapa de fuzzificare)
 - O regulă poate avea una sau mai multe premise (antecedente) legate prin operatori logici: AND, OR sau NOT → Aplicarea operatorilor fuzzy în evaluarea regulilor
 - □ Operator AND → intersecţia (minimul) a 2 mulţimi
 - $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$
 - □ Operator OR → reuniunea (maximul) a 2 mulţimi
 - $\mu_{A\cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$
 - □ Operator NOT → negaţia (complementul) unei mulţimi
 - $\mu_{-A}(x) = 1 \mu_A(x)$
 - Rezultatul evaluării premisei unei reguli
 - Gradul în care antecedentul unei reguli este satisfăcut
 - Poate fi rezultatul unei operații de tip AND sau OR
 - Alte denumiri:
 - Rule's firing strength
 - Degree of fulfillment

Conţinut şi arhitectură → Evaluarea regulilor (inferenţa fuzzy)

- Evaluarea consecinţelor (aplicarea metodei de implicare)
 - Determinarea rezultatelor
 - stabilirea gradului de apartenență la mulțimile fuzzy corespunzătoare a variabilelor existente în consecința regulilor
 - Fiecare regiune de ieşire va trebui defuzzificată pentru obţinerea valorilor crisp
 - În funcție de tipul consecințelor unei reguli
 - Modelul Mamdani consecinţa regulii este de forma "variabila de ieşire face parte dintr-o mulţime fuzzy"
 - Modelul Sugeno consecinţa regulii este de forma "variabila de ieşire este o funcţie crisp care depinde de intrări"
 - Modelul Tsukamoto consecinţa regulii este de forma "variabila de ieşire face parte dintr-o mulţime fuzzy cu o funcţie de aparteneţă monotonă"

Conţinut şi arhitectură → Evaluarea regulilor (inferenţa fuzzy) → evaluarea consecinţelor

- Modelul Mamdani
 - Ideea de bază:
 - consecinţa regulii este de forma "variabila de ieşire face parte dintr-o mulţime fuzzy"
 - Rezultatul evaluării premiselor se aplică pentru funcţia de apartenenţă a consecinţei
 - Exemplu
 - Dacă x este în A şi y este în B atunci z este în C
 - Tipologie (în funcţie de modul de aplicare a rezultatului asupra funcţiei de apartenenţă a consecinţei)
 - Mulţimi fuzzy rezultat de tip clipped
 - Mulţimi fuzzy rezultat de tip scaled

Conţinut şi arhitectură → Evaluarea regulilor (inferenţa fuzzy) → evaluarea consecinţelor

- Modelul Mamdani
 - Tipologie (în funcţie de modul de aplicare a rezultatului asupra funcţiei de apartenenţă a consecinţei)
 - Mulţimi fuzzy rezultat de tip clipped
 - Funcţia de apartenenţă a consecinţei se taie la nivelul indicat de valoarea de adevăr a rezultatului
 - Avantaj → calcule uşoare
 - Dezavantaj → se pierd informaţii

- Mulţimi fuzzy rezultat de tip scaled
 - Funcţia de apartenenţă a consecinţei se ajustează prin scalare (multiplicare) valoarea de adevăr a rezultatului
 - Avantaj → se pierde mai puţină informaţie
 - Dezavantaj → calcule mai complicate

- □ Conţinut şi arhitectură → Evaluarea regulilor → evaluarea consecinţelor → Modelul Mamdani
 - Exemplu pentru reglarea unui aparat de aer condiţionat
 - Intrări:
 - x (temperatura rece (A₁), normal (A₂), fierbinte (A₃)) şi
 - y (umiditatea mică (B₁), mare (B₂))
 - Ieşiri:
 - z (puterea aparatului redusă (C_1), medie (C_2), ridicată (C_3))
 - Date de intrare:
 - Temperatura x = 37

•
$$\mu_{A1}(x)=0$$
, $\mu_{A2}(x)=0.6$, $\mu_{A3}(x)=0.3$

- Umiditatea y = 0.8
 - $\mu_{B1}(x)=0.9, \ \mu_{B2}(x)=0$

		Data de intrare y	
		Mică	Mare
	Rece	Redusă	Constantă
Data de intrare x	Normal	Constantă	Mărită
Include X	Fierbinte	Mărită	Mărită

Conţinut şi arhitectură → Evaluarea regulilor → evaluarea consecinţelor → Modelul Mamdani

Conţinut şi arhitectură → Evaluarea regulilor (inferenţa fuzzy) → evaluarea consecinţelor

- Modelul Sugeno
 - Ideea de bază
 - consecinţa regulii este de forma "variabila de ieşire este o funcţie crisp care depinde de intrări"
 - Exemplu
 - Dacă x este în A şi y este în B atunci z este f(x,y)
 - Tipologie (în funcție de caracteristicile lui f(x,y))
 - Model Sugeno de grad 0 → dacă f(x,y) = k constantă (funcţiile de apartenenţă ale consecinţelor sunt de forma singleton - mulţime fuzzy a cărei funcţie de apartenenţă ia valoarea 1 pentru un singur punct din universul de discurs şi 0 în toate celelalte puncte)
 - Model Sugeno de grad 1 \rightarrow dacă f(x,y) = ax + by+c

Conţinut şi arhitectură → Evaluarea regulilor → evaluarea consecinţelor → Modelul Sugeno

Conţinut şi arhitectură → Evaluarea regulilor (inferenţa fuzzy) → evaluarea consecinţelor

- Modelul Tsukamoto
 - Ideea de bază
 - consecinţa regulii este de forma "variabila de ieşire face parte dintr-o mulţime fuzzy cu o funcţie de aparteneţă monotonă"
 - Prin inferență se obţine o ieşire crisp indusă gradul de satisfacere a regulii (rule's firing strength)

Conţinut şi arhitectură → Evaluarea regulilor → evaluarea consecinţelor → Modelul Tsukamoto

Conţinut şi arhitectură

- Paşi în construirea unui sistem fuzzy
 - Definirea intrărilor şi ieşirilor de către expert
 - Datele de intrare şi ieşire brute
 - Fuzzificarea datelor de intrare şi ieşire
 - Stabilirea variabilelor fuzzy şi a mulţimilor fuzzy pe baza funcţilor de apartenenţă
 - Construirea unei baze de reguli de către expert
 - Matricea de decizie a bazei de cunoştinţe
 - Evaluarea regulilor
 - Inferenţa transformarea intrărilor fuzzy în ieşiri fuzzy prin aplicarea regulilor din baza de cunoştinţe
 - Agregarea rezultatelor
 - Defuzificarea
 - Interpretarea rezultatelor

Conţinut şi arhitectură → Agregarea rezultatelor

- Unificarea ieşirilor tuturor regulilor aplicate
- Se iau funcțiile de apartenență corespunzătoare tuturor consecințelor și se combină într-o singură mulțime fuzzy, respectiv într-un singur rezultat
- Procesul de agregare are ca
 - intrări → funcţiile de apartenenţă (tăiate sau scalate) ale consecinţelor
 - ieşire → o mulţime fuzzy pentru variabila de ieşire

Exemplu

Mamdani

Conţinut şi arhitectură

- Paşi în construirea unui sistem fuzzy
 - Definirea intrărilor şi ieşirilor de către expert
 - Datele de intrare şi ieşire brute
 - Fuzzificarea datelor de intrare şi ieşire
 - Stabilirea variabilelor fuzzy şi a mulţimilor fuzzy pe baza funcţilor de apartenenţă
 - Construirea unei baze de reguli de către expert
 - Matricea de decizie a bazei de cunoştinţe
 - Evaluarea regulilor
 - Inferenţa transformarea intrărilor fuzzy în ieşiri fuzzy prin aplicarea regulilor din baza de cunoştinţe
 - Agregarea rezultatelor
 - Defuzificarea
 - Interpretarea rezultatelor

Conţinut şi arhitectură → Defuzificarea

- Ideea de bază
 - Transformarea rezultatului fuzzy al agregării într-o valoare crisp
 - Inferenţa → obţinerea unor regiuni fuzzy pentru fiecare variabilă de ieşire
 - Defuzzificarea → Fiecare regiune de ieşire trebuie defuzzificată pentru a produce valori crisp
 - Se poate pierde informaţie

Metode

- Bazate pe centrul de greutate
 - Centrul de greutate (COG sau COA Centroid Area)
 - Bisectoarea (BOA Bisector of area)
- Bazate pe maximul funcţiei de apartenenţă
 - Media maximelor (MOM Mean of maximum)
 - Cel mai mic maxim (SOM Smallest of maximum)
 - Cel mai mare maxim (LOM Largest of maximum)

Conţinut şi arhitectură → Defuzificarea → Metode

- Centrul de greutate (COG sau COA Centroid Area)
 - Găseşte punctul z din mijlocul mulţimii agregate

$$COG = \frac{\sum_{i=0}^{n} x_{i} \mu_{A}(x_{i})}{\sum_{i=0}^{n} \mu_{A}(x_{i})} \quad \text{sau } COG = \frac{\int_{i=0}^{n} x_{i} \mu_{A}(x_{i})}{\int_{i=0}^{n} \mu_{A}(x_{i})}$$

- Exemplu
 - Modelul Mamdani → estimarea centrului prin calcularea COG pe baza unui eşantion de n puncte (x_i, i =1,2,..., n) din mulţimea fuzzy rezultat

Modelul Sugeno sau Tsukamoto, COG devine media ponderată a celor m valori crisp rezultate prin aplicarea tuturor regulilor (în număr de m)

$$COG = \frac{9*0.9+11*0.3}{0.9+0.3}$$
$$COG \cong 9.5$$

Conţinut şi arhitectură → Defuzificarea → Metode

- Bisectoarea (BOA Bisector of area)
 - Găsește punctul z în care o linie verticală va separa mulţimea agregată în 2 părţi de arii egale

$$BOA = \int_{\alpha}^{z} \mu_{A}(x)dx = \int_{z}^{\beta} \mu_{A}(x)dx,$$

unde $\alpha = \min\{x \mid x \in A\}$ și $\beta = \min\{x \mid x \in A\}$

Conţinut şi arhitectură → Defuzificarea → Metode

- Media maximelor (MOM Mean of maximum)
 - Găseşte punctul z care reprezintă media punctelor din mulţimea agregată care au valorea funcţiei de apartenenţă (μ) maximă

$$MOM = \frac{\sum_{x_i \in \max \mu} x_i}{|\max \mu|}, \text{ unde } \max \mu = \mu^* = \{x \mid x \in A, \mu(x) = \max m\}$$

- Cel mai mic maxim (SOM Smallest of maximum)
 - Găseşte cel mai mic punct z din mulţimea agregată care are valorea funcţiei de apartenenţă (μ) maximă
- Cel mai mare maxim (LOM Largest of maximum)
 - Găseşte cel mai mare punct z din mulţimea agregată care are valorea funcţiei de apartenenţă (μ) maximă

Conţinut şi arhitectură → Defuzificarea

- Ideea de bază
 - Transformarea rezultatului fuzzy al agregării într-o valaore crisp
- Metode
 - Bazate pe centrul de greutate
 - Centrul de greutate (COG sau COA Centroid Area)
 - Bisectoarea (BOA Bisector of area)
 - Bazate pe maximul funcţiei de apartenenţă
 - Media maximelor (MOM Mean of maximum)
 - Cel mai mic maxim (SOM Smallest of maximum)
 - Cel mai mare maxim (LOM Largest of maximum)

Conţinut şi arhitectură

- Paşi în construirea unui sistem fuzzy
 - Definirea intrărilor şi ieşirilor de către expert
 - Datele de intrare şi ieşire brute
 - Fuzzificarea datelor de intrare şi ieşire
 - Stabilirea variabilelor fuzzy şi a mulţimilor fuzzy pe baza funcţilor de apartenenţă
 - Construirea unei baze de reguli de către expert
 - Matricea de decizie a bazei de cunoştinţe
 - Evaluarea regulilor
 - Inferenţa transformarea intrărilor fuzzy în ieşiri fuzzy prin aplicarea regulilor din baza de cunoştinţe
 - Agregarea rezultatelor
 - Defuzificarea
 - Interpretarea rezultatelor

Conţinut şi arhitectură

- Paşi în construirea unui sistem fuzzy
 - Definirea intrărilor şi ieşirilor de către exeprt
 - Datele de intrare şi ieşire brute
 - Fuzzificarea datelor de intrare şi ieşire
 - Construirea unei baze de reguli de către expert
 - Evaluarea regulilor
 - Agregarea rezultatelor
 - Defuzificarea
 - Interpretarea rezultatelor-

expertului

Domeniul

Motorul de inferență

Avantaje

- Se pot folosi reguli pentru exprimarea impreciziei şi aproximărilor din lumea reală
- Uşor de înţeles, testat şi întreţinut
- Robuste → pot opera şi când regulile nu sunt foarte clare
- Necesită mai puţine reguli decât alte SBC
- Regulile se evaluează în paralel

Dezavantaje

- Necesită multe simulări şi testări
- Nu învaţă singure
- Este dificilă stabilirea celor mai corecte reguli
- Lipsa unui model matematic exact

Aplicaţii

- Control în spaţiu
 - Altitudinea sateliţilor
 - Reglaje în avioane
- Control auto
 - Transmisie automată, controlul traficului, Sisteme împotriva blocării roţilor în timpul frânării
 - Dacă frâna este caldă și viteza nu este foarte mare atunci presiunea de frânare se reduce ușor
- Business
 - Sisteme de decizie, evaluarea personalului, managementul fondurilor, predicţii de piaţă, sisteme de asigurarea a securităţii tranzacţiilor
- Industrie
 - Controlul schimbului de energie, controlul purificării apei,
 - Controlul pH-ului, distilarea chimică, producerea de polimeri, formarea metalelor
- Electronică
 - Controlul expunerii automate a camerelor foto/video, controlul umidităţii, sisteme de aer condiţionat, Sisteme pentru reglajul duşului
 - Sisteme pentru reglarea congelatoarelor
 - Sisteme pentru reglarea maşinilor de spălat (Încărcătura, concentrația de detergent, etc.)

Aplicaţii

- Alimentaţie
 - Procese de producere a brânzei
- Militar
 - Recunoaşterea subacvatică, recunoaşterea imaginilor în infraroşu, sisteme de decizie în traficul naval
- Marină
 - Piloţi automaţi pentru nave, şi submarine selecţia automată a rutelor
- Medical
 - Sisteme de diagnosticare (diabet, cancer), controlul presiunii arteriale în timpul anesteziei, modelarea rezultatelor neuropatologice pentru pacienţii cu Alzheimer
- Robotică
 - Controlul manipulatorilor flexibili şi a braţelor robotice

Recapitulare

SBC

- Sisteme computaţionale în care baza de cunoştinţe şi modulul de control se suprapun
- SBC pot funcţiona
 - în medii certe
 - SBL
 - SBR
 - În medii incerte
 - Sisteme de tip Bayes
 - Regulile au asociate probabilităţi de realizare
 - Sisteme bazate pe factori de certitudine
 - Faptele şi regulile au asociaţi factori de certitudine
 - Sisteme fuzzy
 - Faptele au asociate grade de apartenenţă la anumite mulţimi

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop