FLOYD WARSHALL

Dato un grafo orientato e pesato G = (V, E) con W matrice dei pesi dove \forall i, j $w_{i,j}$ =

$$\left\{ egin{array}{ll} 0 & se \ i = j \ peso \ arco \ (i,j) & se \ (i,j) \in E \ \infty & se \ (i,j)
otin E \end{array}
ight.$$

PROBLEMA: Calcolare \forall (i, j) il peso di un cammino minimo da *i* a *j*.

SOLUZIONE: Algoritmo di FW che è un algoritmo di programmazione dinamica.

Di conseguenza dobbiamo definire i sotto problemi e le loro istanze.

Il sottoproblema k-esimo sarà definito come:

 \forall (i, j) tutti i cammini da *i* a *j* con vertici intermedi \in {1, ..., k}

ATTENZIONE: **NON** significa con k vertici intermedi!

Soluzione sotto problema: $\mathsf{D}^{(\mathsf{k})} = (\mathsf{d}_{i,j}^{(k)})_{\mathsf{l},\,\mathsf{j}} \in \mathsf{V}$

Soluzione problema originale: $D^{(n)} = (d_{i,j}^{(n)})_{i,j} \in V$

CASO BASE

k = 0

$$\forall \, (\mathbf{i}, \mathbf{j}) \in \mathsf{V}^2 \, \mathsf{d} = \stackrel{(0)}{\underset{i,j}{=}} \, \mathsf{w}_{\mathbf{i}, \, \mathbf{j}} = \left\{ \begin{array}{ll} 0 & se \,\, i = j \\ peso \, arco \, (i,j) & se \, (i,j) \in E \\ \infty & se \, (i,j) \not \in E \end{array} \right.$$

Di conseguenza, $D^{(0)} = W$.

CASO PASSO

k > 0

Assumiamo di aver già calcolato i sotto problemi più piccoli.

$$\mathbf{d}_{i,j}^{(k)} = \min \{ \, \mathbf{d}_{i,j}^{(k-1)} \, , \ \, \mathbf{d}_{i,k}^{(k-1)} + \mathbf{d}_{k,j}^{(k-1)} \, \}$$

ATTENZIONE: Nello svolgimento degli esercizi di questo tipo spesso conviene pensare prima al caso passo, suddividendolo in due sotto casi; $k \in \text{cammino minimo e } k \notin \text{cammino minimo}$, unendoli poi alla fine in un'unica equazione ricorsiva e stabilendo poi il caso base.

ESERCIZI VISTI

LUNGHEZZA < L

Dato un grafo G = (V, E, W) pesato, orientato e senza cappi e dato un intero L > 0, calcolare \forall (i, j) \in V² il peso di un cammino minimo da i a j di lunghezza \leq L

INPUT: G = (V, E, W) L

SOTTO PROBLEMA: definito da $k \in \{0, ..., n\}$ e da $l \in \{0, ..., L\}$

 \forall (i, j) \in V² calcolare il peso di un cammino minimo da *i* a *j*

- utilizzando vertici intermedi appartenenti a {1, ..., k}
- di lunghezza ≤ l

DEFINIZIONE VARIABILI

Per ogni sotto problema avremo quindi una variabile $D^{(k,l)}$ = $(d^{(k,l)}_{i,j})$ dove \forall (i, j) $d^{(k,l)}_{i,j}$ è il peso del cammino minimo da i a j con vertici intermedi \in {1, ..., k} di lunghezza \leq l.

CASO BASE (k, l) con k = 0

$$d_{i,j}^{(0,l)}$$
 = $egin{cases} 0 & se \ i = j \ w_{i,j} & se \ i
eq j \land (i,j) \in E \ \infty & altrimenti \end{cases}$

CASO PASSO (k, l) con $k > 0 \quad \forall l \in \{1, ..., L\}$

Caso 1: k
$$ot\in$$
 cammino minimo $\rightarrow d_{i,j}^{(k,l)}$ = $d_{i,j}^{(k-1,l)}$

Caso 2: $k \in \text{cammino minimo} \to \text{Da } i \text{ a } k \text{ ho un cammino} \leq I_1, \text{ da } k \text{ a } j \leq I_2, \text{ devo far in modo che il cammino che scelgo sia } I_1 + I_2 \leq I$

$$e_1: d_{i,j}^{(k,l)} = \min \, \{ \, d_{i,k}^{(k-1,l_1)} + d_{k,j}^{(k-1,l_2)} \, \} \, \text{con} \, \, \mathsf{l}_1 \in \{\mathsf{1,\,...,\,l}\}, \, \, \mathsf{l}_2 \in \{\mathsf{1,\,...,\,l}\} \quad \text{e} \, \, \, \mathsf{l}_1 + \mathsf{l}_2 \leq \mathsf{l}_2 + \mathsf{l}_3 + \mathsf{l}_4 + \mathsf{l}_4$$

Tuttavia questo vale solo per l > 1.

Se l = 1 e k \in cammino minimo, $d_{i,j}^{(k,l)}$ = ∞ poiché non esiste un cammino di lunghezza 1 che abbia k > 0 vertici intermedi.

Quindi nel caso 2 avremo:

$$e_2$$
 : $d_{i,j}^{(k,l)} = egin{cases} \min \limits_{(l_1,l_2) \in \{0, \ ..., \ l\}^2 \ : \ l_1 + l_2 \le l} \{d_{i,k}^{(k-1,l_1)} + d_{k,j}^{(k-1,l_2)}\} \quad se \ l > 1 \ \infty \qquad \qquad se \ l = 1 \end{cases}$

Questo è ovviamente nel caso 2, noi dobbiamo prendere il migliore tra il caso 1 e il caso 2 (in questo caso il minimo).

EQUAZIONE DI RICORRENZA

$$d_{i,j}^{(k,l)}$$
 = min { e_1 , e_2 }

SOLUZIONE

La soluzione del problema originale sarà in $D^{(n, L)}$.

R ARCHI ROSSI

Dato un grafo G = (V, E, W, col) senza cappi dove col: E \rightarrow {Red, Blue} calcolare \forall (i, j) \in V² il peso di un cammino minimo da i a j con esattamente 3 archi rossi. (R = 3, n = |V|).

INPUT: G = (V, E, W, col) R

SOTTOPROBLEMA: definito da $k \in \{0, ..., n\}$ e $r \in \{0, ..., R\}$

 \forall (i, j) \in V² calcolare il peso di un cammino minimo da i a j con vertici intermedi \in {0, ..., k} con esattamente r archi rossi.

DEFINIZIONE VARIABILI: per ogni sottoproblema abbiamo $D^{(k,r)} = (d_{i,j}^{(k,r)})$.

CASO BASE $k = 0 \land r \in \{0, ..., R\}$

Caso 1: r = 0

$$d_{i,j}^{0,0} = \begin{cases} 0 & \textit{se } i = j \\ w_{i,j} & \textit{se } i \neq j \land (i,j) \in E \land col(i,j) \neq Red \\ \infty & \textit{altrimenti} \end{cases}$$

ATTENZIONE: varrà infinito anche se l'arco esiste ma è di colore rosso in questo caso.

Caso 2: r = 1

$$d_{i,j}^{0,1}$$
 = $egin{cases} \infty & se \ i = j \ w_{i,j} & se \ i
eq j \land (i,j) \in E \land col(i,j) = Red \ \infty & altrimenti \end{cases}$

ATTENZIONE: Voglio un cammino che abbia 1 arco rosso; se i = j l'arco non c'è, di conseguenza non posso avere un cammino con 1 arco rosso.

Caso 3: r > 1

$$d_{i,j}^{(0,r)} = \infty$$

ATTENZIONE: In questo caso viene sempre infinito poiché con 0 vertici intermedi posso avere al più un arco, di conseguenza non avrò mai un cammino con r > 1 archi rossi.

CASO PASSO $k > 0 \land r \in \{0, ..., R\}$

Caso 1:
$$k \notin \text{cammino minimo}$$
 $e_1: d_{i,j}^{(k,r)} = d_{i,j}^{(k-1,r)}$

Caso 2: $k \in \text{cammino minimo}$

$$e_2 \colon d_{i,j}^{(k,r)} = \min_{(r_1, \; r_2) \; \in \; \{0, \; ..., \; r\}^2 \; : \; r_1 + r_2 = r} (d_{i,k}^{(k-1,r_1)} \; + \; d_{k,j}^{(k-1,r_2)})$$

EOUAZIONE DI RICORRENZA

$$d_{i,j}^{(k,r)} = \min\{e_1, e_2\}$$

Un ulteriore caso base potrebbe essere se r > k + 1, in quel caso sicuramente non posso avere r archi rossi, ma possiamo anche lasciare così le equazioni.

SOLUZIONE

La soluzione del problema originale sarà in $D^{(n, R)}$.

ESISTE CAMMINO CON COLORI ALTERNATI

Dato un grafo orientato G = (V, E, col) senza cappi dove col: E \rightarrow {Red, Blue} stabilire \forall (i, j) \in V² se \exists un cammino da i a j nel guale non vi siano 2 archi consecutivi Red.

INPUT: G = (V, E, col)

SOTTOPROBLEMA: definito da $k \in \{0, ..., n\}$

DEFINIZIONE VARIABILI: Per ogni sotto problema abbiamo $D^{(k)} = (d^{(k)}_{i,j})$ dove $d^{(k)}_{i,j}$ vale TRUE sse \exists un cammino da i a j senza 2 archi rossi consecutivi con vertici intermedi \in {0, ..., k}.

Notiamo che per poter dire se possiamo unire due cammini (nel caso in cui $k \in cammino minimo ad esempio)$ dobbiamo sapere con che archi iniziano e finiscono i vari cammini; ci **manca informazione**!

La soluzione è quindi introdurre un **problema ausiliario** leggermente modificato; Dato un grafo orientato G = (V, E, col) senza cappi dove col: $E \to \{Red, Blue\}$ e data $(a, b) \in \{Red, Blue\}^2$, \forall $(i, j) \in V^2$ se \exists un cammino da i a j nel quale non vi siano 2 archi consecutivi Red e con colore del primo arco = a e colore dell'ultimo arco = b.

SOTTOPROBLEMA AUSILIARIO: definito da $k \in \{0, ..., n\}$ e da a, $b \in \{Red, Blue\}$

DEFINIZIONE VARIABILI: Per ogni sotto problema abbiamo $D^{(k,\ a,\ b)}=(d^{(k,\ a,\ b)}_{i,j})$ dove $d^{(k,\ a,\ b)}_{i,j}$ vale TRUE sse \exists un cammino da i a j senza 2 archi rossi consecutivi con vertici intermedi \in {0, ..., k} e con colore primo arco = a e con colore ultimo arco = b.

CASO BASE: k = 0

$$egin{array}{ll} orall (a,b) \in \{R,B\}^2 &: d_{i,j}^{(0,\ a,\ b)} = \ \begin{cases} FALSE & se\ i = j \ TRUE & se\ i \neq j \land\ (i,j) \in E \land col(i,j) = a \land col(i,j) = b \ FALSE & altrimenti \end{cases}$$

CASO PASSO: $k > 0 \forall (a, b)$

Caso 1: k ∉ cammino minimo

$$e_1 = d_{i,j}^{(k, a, b)} = d_{i,j}^{(k-1, a, b)}$$

Caso 2: $k \in \text{cammino minimo}$

$$e_2 = d_{i,j}^{(k,\;a,\;b)} = \vee_{(c,d) \in \{R,B\}^2 \;:\; (c,d) \neq \{R,R\}} \; (\; d_{i,j}^{(k-1,\;a,\;c)} \; \wedge \; d_{i,j}^{(k-1,\;d,\;b)} \;)$$

EQUAZIONE DI RICORRENZA:

$$d_{i,j}^{(k, a, b)} = e_1 \vee e_2$$

SOLUZIONE PB AUX: \forall (a, b) la soluzione del PB AUX definito da (a, b) è $D^{(n,\ a,\ b)}$

SOLUZIONE PB DATO:
$$D_{i,j} = ee_{(a,b) \in \{R,B\}^2} (\ d_{i,j}^{(n,\ a,\ b)}\)$$

ATTENZIONE: Da notare come nella soluzione *non* escludiamo le coppie {*R*, *R*} come facciamo nel caso passo; in quel caso lo facciamo perché se unissimo un cammino che finisce col rosso e uno che inizia col rosso avremmo due archi rossi consecutivi, nella soluzione finale non ci importa se il cammino minimo inizi e finisca col rosso, basta che non ce ne siano di consecutivi!

ESERCIZI HOMEWORK - NON SVOLTI A LEZIONE!

LUNGHEZZA ESATTAMENTE L

Dato un grafo G = (V, E, W) pesato, orientato e senza cappi e dato un intero L > 0, calcolare \forall (i, j) \in V² il peso di un cammino minimo da *i* a *j* di lunghezza esattamente L

INPUT: G = (V, E, W) L

SOTTO PROBLEMA: definito da $k \in \{0, ..., n\}$ e da $l \in \{0, ..., L\}$

 \forall (i, j) \in V² calcolare il peso di un cammino minimo da *i* a *j*

- utilizzando vertici appartenenti a {0, ..., k}
- di lunghezza esattamente l

DEFINIZIONE VARIABILI

Per ogni sotto problema avremo quindi una variabile $D_{i,j}^{(k,l)}$ = ($d_{i,j}^{(k,l)}$) dove \forall (i, j) $d_{i,j}^{(k,l)}$ è il peso del cammino minimo da i a j con vertici intermedi \in {0, ..., k} di lunghezza esattamente l.

CASO BASE: k = 0

$$d_{i,j}^{(0,\ l)}$$
 = $egin{cases} \infty & se\ i=j \ w_{i,j} & se\ i
eq j \land (i,j) \in E\ \land l=1 \ \infty & altrimenti \end{cases}$

CASO PASSO: k > 0

Caso 1: k ∉ cammino minimo

$$e_1: d_{i,j}^{(k,\ l)} = d_{i,j}^{(k-1,\ l)}$$

Caso 2: $k \in cammino\ minimo$

$$e_2 \colon d_{i,j}^{(k,l)} = \min_{l_1,l_2 \in \{0, \text{ ..., } L\} \text{ : } l_1 + l_2 = l} \{d_{i,k}^{(k-1, \ l_1)} + d_{k,j}^{(k-1, \ l_2)}\}$$

In questo caso se l = 1 l'algoritmo arriverebbe al caso base con $d_{i,j}^{(0,1)}$ e sceglierebbe il peso o ∞ a seconda del fatto se i e j siano collegati da un arco o meno.

EQUAZIONE DI RICORRENZA: min $\{e_1, e_2\}$

SOLUZIONE

La soluzione del problema originale sarà in $D^{(n,\ L)}$.

VARIANTE ESISTENZIALE

CASO BASE: k = 0

$$d_{i,j}^{(0,\ l)} = egin{cases} FALSE & se\ i=j \ TRUE & se\ i
eq j \wedge (i,j) \in E \ \wedge l = 1 \ FALSE & altrimenti \end{cases}$$

CASO PASSO: k > 0

Caso 1: k ∉ cammino minimo

$$e_1: d_{i,j}^{(k, l)} = d_{i,j}^{(k-1, l)}$$

Caso 2: $k \in \text{cammino minimo}$

$$e_2 \colon d_{i,j}^{(k,l)} = \vee_{l_1,l_2 \in \{0, \text{ ..., } L\}} \colon l_1 + l_2 = l \big\{ d_{i,k}^{(k-1, \ l_1)} \wedge d_{k,j}^{(k-1, \ l_2)} \big\}$$

SOLUZIONE

La soluzione del problema originale sarà in $D^{(n,\ L)}$.

< R ARCHI ROSSI

Dato un grafo G = (V, E, W, col) senza cappi dove col: E \rightarrow {Red, Blue} calcolare \forall (i, j) \in V² il peso di un cammino minimo da *i* a *j* con un numero \leq 3 archi rossi. (R = 3, n = |V|).

INPUT: G = (V, E, W, col) R

SOTTOPROBLEMA: definito da $k \in \{0, ..., n\}$ e $r \in \{0, ..., R\}$

 \forall (i, j) \in V² calcolare il peso di un cammino minimo da *i* a *j* con vertici intermedi \in {0, ..., k} con un numero \leq *r* di archi rossi.

DEFINIZIONE VARIABILI: per ogni sotto problema abbiamo $D^{(k,r)}$ = $(d^{(k,r)}_{i,j})$.

CASO BASE: k = 0

$$d_{i,j}^{(0,\;r)}$$
 = $\left\{egin{array}{ll} 0 & se \; i=j \ w_{i,j} & se \; i
eq j \wedge (i,j) \in E \wedge r > 0 \ \infty & altrimenti \end{array}
ight.$

CASO PASSO: k > 0

Caso 1: k ∉ cammino minimo

$$d_{i,j}^{(k, r)} = d_{i,j}^{(k-1, r)}$$

Caso 2: $k \in \text{cammino minimo}$

$$d_{i,j}^{(k,\;r)} = \min_{(r_1,r_2) \in \{0,...,R\}^2 \; : \; r_1 + r_2 \le r} \{d_{i,k}^{(k-1,\;r_1)} + d_{k,j}^{(k-1,\;r_2)}\}$$

SOLUZIONE

La soluzione del problema originale sarà in $D^{(n,\ R)}$.

VARIANTE ESISTENZIALE

CASO BASE: k = 0

$$d_{i,j}^{(0,\;r)}$$
 = $\left\{egin{array}{ll} TRUE & se \; i=j \ TRUE & se \; i
eq j \wedge (i,j) \in E \wedge r > 0 \ FALSE & altrimenti \end{array}
ight.$

CASO PASSO: k > 0

Caso 1: k ∉ cammino minimo

$$d_{i,j}^{(k, r)} = d_{i,j}^{(k-1, r)}$$

Caso 2: $k \in \text{cammino minimo}$

$$d_{i,j}^{(k,\;r)} = \vee_{(r_1,r_2) \in \{0,\dots,R\}^2 \; : \; r_1 + r_2 \leq r} \{d_{i,k}^{(k-1,\;r_1)} \wedge d_{k,j}^{(k-1,\;r_2)}\}$$

SOLUZIONE

La soluzione del problema originale sarà in $D^{(n,\ R)}$.