DATA MANUAL

32 位 RSIC 架构的微控制器 TS32F020 系列

数据手册

V1.0.4

修订历史记录

变更类型: A - 增加 M - 修订 D - 删除

变更版本号	日期	变更类型	修改人	审核	摘要
V0.0.1	2018/8/1		liuhao		Initial version.
V0.0.2	2019/1/30	М	SZQ、LQJ		Modified version.
V1.0.0	2019/3/19	М	LD		Modified chip name
V1.0.1	2019/6/12	М	WHY		PC0、PC1 pin function
V1.0.2	2019/6/19	М	LHT		Modified version.
V1.0.3	2019/10/9	М	LWB		Pin map Package information
V1.0.4	2019/11/4	М	LHT		Add TK_CAP Pin Define

目录

L '	TS32F0	:020	1
1.1	. 产	产品特性	1
2	规格说	总明	4
2.1	- 岩	器件对比	4
2.2	2 相	既述	4
4	2.2.1	内置闪存存储器	4
4	2.2.2	内置 SRAM	5
,	2.2.3	嵌套的向量式中断控制器(NVIC)	5
2	2.2.4	外部中断/事件控制器(EXTI)	5
2	2.2.5	时钟和启动	5
2	2.2.6	供电方案	5
2	2.2.7	电压调压器	5
2	2.2.8	供电监控器	5
2	2.2.9	可编程电压监测器 PVD	5
2	2.2.10	低功耗模式	6
2	2.2.11	DMA	6
,	2.2.12	定时器和看门狗	6
2	2.2.13	通用异步收发器(UART)	7
4	2.2.14	IIC 总线	7
4	2.2.15	串行外设接口 SPI	7
2	2.2.16	通用输入输出接口(GPIO)	7
4	2.2.17	模数转换(ADC)	8
2	2.2.18	数模转换(DAC)	8
2	2.2.19	温度传感器	8
2	2.2.20	比较器(COMP)	8
,	2.2.21	运算放大器(OPAM)	8
,	2.2.22	LED 控制器	8
,	2.2.23	触摸按键(TK)	8
,	2.2.24	外置晶振电路(XOSC)	9
,	2.2.25	高速振荡器电路(HIRC)	9
	2.2.26	77.00	
		定义	
		盲息	
4.1		SOP20	
4.2		SSOP20	
4.3		SOP24	
4.4		SSOP24	
4.5		SOP28	
4.6	S:	SSOP28	25

	4.7	LQFP48
5	存储	器映像27
6	电气	特性28
	6.1	测试条件
	6.1.1	最小值和最大值28
	6.1.2	典型数值
	6.1.3	典型曲线
	6.1.4	负载电容
	6.1.5	引脚输入电压28
	6.1.6	供电方案29
	6.2	绝对最大额定值29
	6.3	工作条件30
	6.3.1	通用工作条件30
	6.3.2	上电和掉电时的工作条件31
	6.3.3	内嵌复位和电源控制模块特性31
	6.3.4	供电电流特性
	6.3.5	外部时钟源特性33
	6.3.6	内部时钟源特性35
	6.3.7	存储器特性36
	6.3.8	EFT 特性
	6.3.9	绝对最大值(电气敏感性)38
	6.3.1	0 I/O 端口特性
	6.3.1	1 输入输出交流特性43
	6.3.1	2 TIM 定时器特性44
	6.3.1	3 通信接口45
	6.3.1	4 12 位 ADC 特性48
	6.3.1	5 温度传感器特性51
	6.3.1	6 6 位 DAC 特性51
	6.3.1	7 12 位 DAC 特性52
	6.3.1	8 比较器特性53
	6.3.1	9 运算放大器特性53

1 TS32F020 简介

本产品使用高性能的 32 位微控制器,最高工作频率可达 52 MHz,内置高速存储器,丰富的增强型 I/O端口和外设连接到外部总线。本产品包含 1 个 12 位的 ADC、一个 6 位精度 DAC、一个 12 位精度 DAC、2 个比较器、1 个运算放大器、5 个 16 位通用定时器、1 个 32 位通用定时器、1 个看门狗定时器、1 个系统时间定时器。还包含标准的通信接口: 2 个 SPI/IIC 接口和 2 个 UART 接口,其中 UART0 可以实现从 26 条 pin 里面选择一条进行代码升级。也包含 LED 显示控制器和最大支持 20 个触摸按键检测。

本产品产品系列工作电压为 2.7V~5.5V, 工作温度范围-40℃~+105℃。

本产品提供 LQFP48、 SOP28、 SOP24、SOP20 和 SSOP28、SSOP24、SSOP20 等多种封装形式,根据不同的封装形式,器件中的外设配置会有差异。

下面给出了该系列产品中所有外设的基本介绍。

这些丰富的外设配置,使得本产品微控制器适合于多种应用场合:

● 小家电

● 智能家居

● 仪器仪表

● 消费类电子

● 触摸面板开关

● 工业控制

1.1 产品特性

- 内核与系统
 - ➤ 32 位 RISC 架构的 MCU
 - ▶ 工作最大主频: 52MHz
 - ▶ 单周期 32 位乘法指令
 - ▶ 32 个中断源,可配置 4 层中断优先级
 - ▶ 支持位带操作
 - ▶ 支持两线 DBG 调试接口
- 存储器
 - ▶ 高达 32K 字节的闪存程序存储器
 - ▶ 高达 3K 字节的 SRAM
 - ▶ Boot loader 支持片内 Flash、支持单/双 pin UART 在线用户编程(IAP)/ 在线系统编程(ISP)
- 时钟、复位和电源管理
 - ▶ 2.7V~5.5V 供电
 - ▶ 上电/断电复位(POR/PDR)、可编程电压监测器(PVD)
 - ▶ 外部 1MHz~26MHz 晶体振荡器
 - ▶ 内嵌经出厂调校的 26MHz(+/- 1.5%) 高速振荡器
 - ▶ 内嵌 32KHz 低速振荡器

- ▶ PLL 支持 CPU 最高运行在 52MHz
- ▶ 内置时钟安全系统(CSS)
- ➤ WDT 复位
- DMA 支持
 - ▶ 支持的外设: EFLASH, UART, SPI/I2C, CRC, TK, LED driver 和 ADC
- 多达 38 个快速 I/O 端口
 - ▶ 所有 I/O 口可以触发边沿或电平响应中断,唤醒低功耗模式
 - ▶ 所有端口均可输入输出 5V 信号
- 通讯接口外设
 - ▶ 2个 SPI 高速串行接口,最高支持 26Mbit/s,支持 1/2/4 线主从模式,支持 I²C 模式
 - ▶ 2 个 UART 接口,支持 RS232/RS485 协议
- LED 显示控制器
 - ▶ 支持共阴、共阳方式推 LED 屏
 - ▶ LED 自动扫描控制
 - ▶ 段码显示最大支持 8*12
- 人机交互输入
 - ➤ Key (GPIO)
 - ➤ Touch Key 最多支持 20 Keys
 - ▶ 支持低功耗触摸按键唤醒
- 8个定时器
 - ▶ 5个16位定时器,1个32位定时器,每个定时器支持1个IC/OC,可组合用于IR控制编解码
 - ▶ 1个看门狗定时器
 - ▶ 1个系统时间定时器: 24 位自减型计数器
- 高安全性
 - ▶ 支持 AES 加解密程序, 防止程序被盗
 - ▶ 支持 5/7/8/16/32 bit CRC 效验,保证数据准确性
- 低功耗
 - ▶ 支持 IDLE,STOP,SLEEP 低功耗模式
- 1 个 12 位高速模数转换器

- ▶ 支持最高 150K 采样率
- ▶ 多达 26 个输入通道
- ▶ 转换范围: 0~V_{AVCC}
- 2 个比较器
 - ▶ 比较器 0 支持 4 个正端输入, 4 个负端输入
 - ▶ 比较器 1 和 12 位 ADC、12 位 DAC 分时复用
- 1个运算放大器
 - ▶ 内置失配校正检测电路,校正后失配电压为 1mV
 - ▶ 运放正端接 3 个 IO, 一个内部 DAC 输出电压;运放负端输入接 4 个 IO
- 1个6位 DAC
- 1 个 12 位 DAC
- 内置温度传感器
- 高可靠性
 - ➤ ESD HBM 8KV
 - ➤ EFT ±4KV
 - ➤ Latch-up ±100mA @105°C
- 96 位的芯片唯一 ID (UID)
- 封装
 - ➤ SOP20/SOP24/SOP28
 - ➤ SSOP20/SSOP24/SSOP28
 - ➤ LQFP48
- 工业级温度范围
 - > -40°C ~ 105°C

2 规格说明

2.1 器件对比

表 1.产品功能和外设配置(SOP 和 SSOP 系列相同)

产品型号外围接口		TS32F020M5U3	TS32F020H5M3/ TS32F020H5S3	TS32F020G5M3/ TS32F020G5S3	TS32F020F5M3/ TS32F020F5S3				
闪存-	-K 字节	32	32	32	32				
SRAM	/I-K 字节	3	3	3	3				
台叶 現	16bit	5	5	5	5				
定时器	32bit	1	1	1	1				
通讯	UART	2	2	2	2				
接口	SPI/IIC	2	2	2	2				
	O 端口 道数)	38	26	22	18				
	司步 ADC 道数)	26	26	22	18				
比	较器	2							
运算	放大器	1							
触摸按	键(TK)	20	20	18	14				
I E	D 屏	12seg*	12seg*	10seg*	8seg*				
	.D / //	8com	8com	8com	6com				
CPU I	工作频率	52							
(N	MHz)								
	宇电压 V)		2.7~5.5						
妻	村装	LQFP48	SOP28/SSOP28	SOP24/SSOP24	SOP20/SSOP20				

2.2 概述

2.2.1 内置闪存存储器

最大 32K 字节的内置闪存存储器,用于存放程序和数据。

2.2.2 内置 **SRAM**

最大 3K 字节的内置 SRAM。

2.2.3 嵌套的向量式中断控制器(NVIC)

本产品内置嵌套的向量式中断控制器,能够处理多个可屏蔽中断通道(除了 **NMI**)和 **4** 个可编程优先级。

- 紧耦合的 NVIC 能够达到低延迟的中断响应处理
- 中断向量入口地址直接进入内核
- 紧耦合的 NVIC 接口
- 允许中断的早期处理
- 处理晚到的较高优先级中断
- 支持中断尾部链接功能
- 自动保存处理器状态
- 中断返回时自动恢复,无需额外指令开销
- 该模块以最小的中断延迟提供灵活的中断管理功能。

2.2.4 外部中断/事件控制器(EXTI)

外部中断和事件控制器(EXTI)管理外部和内部异步事件/中断,并生成相应的事件请求到 CPU/中断控制器和到电源管理的唤醒请求。每个输入线可以独立地配置输入类型(脉冲或挂起)和对应的触发事件(上升沿或下降沿或者双边沿都触发)。每个输入线都可以独立地被屏蔽。挂起寄存器保持着状态线的中断请求。

2.2.5 时钟和启动

复位后,内部 256KHz 的振荡器被选为默认的 CPU 时钟,随后可以选择外部的、具有失效监控的 1~26MHz 晶振时钟。当检测到外部时钟失效时,它将被隔离,系统将自动地切换到内部的振荡器,如果使能了中断,软件可以接收到 NMI 中断请求。多个预分频器用于配置 AHB、APB 时钟频率。AHB、APB 的最高频率是 52MHz。参考图 2 的时钟驱动框图。

2.2.6 供电方案

VCC = 2.7~ 5.5V: VCC 引脚为 I/O 引脚和内部调压器供电。

AVCC= 2.7~5.5V: 为模拟模块提供供电,供电模拟模块包括 ADC、电源模块、触摸按键模块、DAC模块、内置晶振电路模块。

2.2.7 电压调压器

复位后调节器总是使能的。在需要低功耗的场合,可以使能低功耗工作模式,

PMUCON0.pmu v2ien,PMUCON0.lpldo en 两 bit 协同工作做功耗模式切换控制位。

2.2.8 供电监控器

本产品内部有一个完整的上电复位(POR) 和掉电复位(PDR) 电路。

2.2.9 可编程电压监测器 PVD

内部集成两个电压检测器,一个检测外部供电 VCC,一个检测内部 LDO 输出 VDD, LDO 为 cap-less 结

构,封装上 VDD 不可见。两种检测电压均阈值可选。当系统监测到 VCC 或 VDD 电压低于配置电压值时,可以选择触发系统复位或通过使能 PVD 中断进入中断子函数。这一特性可用于用于执行紧急关闭任务。检测信号可以选择经过毛刺滤波电路或直接检测,由 LVDCON.lvdvcc_bps_en 和 LVDCON.lvdvcc_bps_en 和 LVDCON.lvdvcc_bps_en 和 LVDCON.lvdvcc_bps_en 和 LVDCON.lvdvcc_bps_en 和 LVDCON.lvdvcc_bps_en 和 LVDCON.lvdvcc_bps_en 来控制。

2.2.10 低功耗模式

在系统或电源复位以后,微控制器处于运行状态,系统所用时钟为 256Khz 内部振荡器。当 CPU 不需继续运行时,可以利用多种低功耗模式来节省功耗,例如等待某个外部事件时。用户需要根据最低电源消耗、最快速启动时间和可用的唤醒源等条件,选定一个最佳的低功耗模式。

本芯片有三种低功耗模式:

- 特机模式 (Idle Mode) -- (CPU 停止, 所有外设包括 CPU 的外设, 如 NVIC、系统时钟 (SysTick) 等仍在运行, 所有的中断都可以唤醒)
- 停止模式(Stopclk Mode) -- (CPU,大部分外设停止,可依赖其他事件唤醒此模式后芯片继续运行)
- 睡眠模式 (Sleep Mode) -- (所有时钟源都停止,依赖外部 IO 唤醒、复位芯片) 此外,在运行模式下,可以通过以下方式中的一种降低功耗:
- 降低系统时钟
- 关闭 APB 和 AHB 总线上未被使用的外设时钟
- 合理配置 APB 与 AHB 的频率关系

2.2.11 **DMA**

在本芯片中 DMA 支持的外设有 EFLASH, UART, SPI/I2C ,CRC, TK, LED driver 和 ADC。

2.2.12 定时器和看门狗

本芯片包含 6 个普通 timer 和一个 watchdog 以及一个系统时间定时器。其中 timer0/1/2/3/5 为 16 位 timer,timer4 为 32 位 timer。

2.2.12.1 Timer0/1/2/3/5

由一个 16 位的计数器组成。支持定时功能,可选择不同的计数源(系统时钟、内部低速 RC 时钟、外部时钟、GPIO 等),同时支持捕获和 PWM 输出功能,另外 timer5 还支持红外发射功能。

主要特性:

- 16 位递增计数器
- 支持选择 GPIO 作为计数时钟源
- 支持不同计数时钟源
- 捕获功能
- PWM 输出

2.2.12.2 **Timer4**

● 由一个 32 位的计数器组成。支持定时功能,可选择不同的计数源(系统时钟、内部低速 RC 时钟、

外部时钟、GPIO等),同时支持捕获和PWM输出功能。

- 32 位递增计数器
- 支持选择 GPIO 作为计数时钟源
- 支持不同计数时钟源
- 捕获功能
- PWM 输出

2.2.12.3 看门狗

Watchdog 工作时钟频率为 32KHz。默认定时 2s,可以通过修改分频系数改变 Watchdog 复位时间。通过配置寄存器,可以选择当计时溢出时,复位系统或者产生中断。

2.2.12.4 系统时间定时器

这个定时器是专用于实时操作系统,也可当作一个24位递减计数器。

2.2.13 通用异步收发器(UART)

通用异步收发器(UART)提供了一种灵活的方法与使用工业标准 NRZ 异步串行数据格式的外部设备之间进行全双工数据交换。UART 利用分数波特率发生器提供宽度范围的波特率选择。使用多缓冲器配置的 DMA 方式,可以实现高速数据通信。

2.2.14 IIC 总线

- 支持主从模式
- 主模式支持时钟同步和仲裁
- 主模式支持时钟同步和仲裁
- 从模式支持 7bit 地址或者 10bit 地址
- 支持 DMA

2.2.15 串行外设接口 SPI

- 支持主从模式
- 支持 8 位、16 位、24 位和 32 位传输
- 支持标准模式,三线模式,两数据线模式和四数据线模式
- 支持 DMA

2.2.16 通用输入输出接口(GPIO)

GPIO 口的每一根管脚可以通过软件独立配置成下面状态

- 输入浮空
- 输入上拉
- 输入下拉

- 模拟功能
- 开漏输出
- 推挽输出
- 复用外设功能

2.2.17 模数转换 (ADC)

该模块是一个12bit 的逐次逼近式的ADC控制器,每个ADC可用多达26路外部通道和7路内部通道。ADC支持多种工作模式:单次转换和连续转换,并且可选择通道自动扫描。ADC的启动包括软件启动、外部引脚触发以及其他片内外设启动(timer触发启动),并且支持DMA。

2.2.18 数模转换(**DAC**)

芯片内嵌两个 DAC, DAC0 是 6 位数字输入,电压输出的数模转换器;DAC1 是 12 位数字输入,电压输出的数模转换器。DAC0 可输出到 COMP0 的正端 AIP0,运放的 AIN0端,以及 ADC 内部 channel 的第 3端,还有 PA5。DAC1输出只能连接到 COMP1 的负端,同时可以输出到 PA5。

2.2.19 温度传感器

本芯片内部嵌有一个温度传感器,产生一个随温度线性变化的电压,电压与温度成正比。温度传感器在内部被连接到 ADC 的输入通道上,用于将传感器的输出转换到数字数值。温度传感器模块的电压值会通过出厂测量配置,把常温 27℃下的 ADC 转换值记录到内部存储器,通过计算差值可以实时计算出芯片内部温度,通过温度再进行一些温度检查和过温保护的操作。

2.2.20 比较器 (**COMP**)

芯片内嵌两个通用比较器 COMP0 和 COMP1,可独立使用,也可与定时器结合使用。可复用 I/O,内部一端连接到 DAC 上,可编程迟滞电压,能对比较结果进行滤波,输出端可以重定向到一个 I/O 端口或多个定时器输入端,也可以出发定时器的捕获事件。其中 COMP0 有 4 个正相输入和 4 个反向输入,COMP1 的正向输入可选择不同 IO 端口,反向输入连接到内部 12bit DAC 输出,都可产生中断,ADC工作时 COMP1 不能工作。并支持把 CPU 从 Idle Mode 和 Stopclk Mode 唤醒。

2.2.21 运算放大器 (OPAM)

本芯片内嵌一个运算放大器,支持宽范围输入/输出电压,支持自启动失配校准,失配校准后低于 1mv,适用于高放大倍数运放应用。运算放大器的输入和输出都连接到 I/O,通过共享 I/O 可以与 ADC、比较器、6 位 DAC 相连。

2.2.22 **LED** 控制器

支持最大 8 个 COM 口, 12 个 SEG 口, SEG 口支持与 TK 复用, 也可以按 COM 口扫描和按 SEG 口扫描, 还能支持 LED、数码管共阳极和共阴极接法, 而且能调整扫描频率和调节亮度。

以动态扫描的方式驱动数码管、LED,支持自动定时扫描或者与 TK 复用的扫描方式。

2.2.23 触摸按键(**TK**)

支持最多 20 个触摸按键,能实现按键基准值自动跟踪校准和按键状态输出防抖处理。触摸按键检测原理支持振荡器模式和电荷转移模式,振荡器模式支持 20 个按键通道,电荷转移模式支持 19 个按键通道,

其中一个按键通道作为外接参考电容。既可以采用软件触发扫描,也可以采用硬件自动定时扫描,而且还能跟 LED 的 SEG 口共用 IO。

2.2.24 外置晶振电路(XOSC)

芯片外置晶振起振电路,支持晶振范围 1MHz-26MHz,内置负载电容 8-20pF 和反馈电阻。晶振电路工作内部调压器供电下,晶振起振后震荡峰峰值为 1V。晶振端口支持复用 GPIO,在不需要支持外部晶振起振的应用下可以配置把晶振端口作为普通 GPIO 使用。

2.2.25 高速振荡器电路(HIRC)

芯片内置高速振荡器电路,振荡器电路电源为内置电压调节器电路;高速振荡器电路的振荡频率是 26MHz,内置校准电路和温度补偿电路,校准和温度补偿后实际有效精度是 26MHz 偏差+-1.4%。内置高速振荡器电路具有较好的频率稳定性,相对较好的时钟抖动特性,可以用于无外部晶振的应用环境。

2.2.26 调试支持(**DBG**)

本芯片内核内含硬件调试模块,支持复杂的调试操作。硬件调试模块允许内核在取指(指令断点)或访问数据(数据断点)时停止。内核停止时,内核的内部状态和系统的外部状态都是可以查询的。完成查询后,内核和外设可以被复原,程序将继续执行。

图 1.系统框架图

图 2.时钟树

3 管脚定义

(SSOP20/SSOP24/SSOP28 和 SOP20/SOP24/SOP28 引脚排布和功能定义是同样的)

Figure 3-1 TS32F020 SOP20/SSOP20 package

Figure 3-2 TS32F020 SOP24/SSOP24 package

Figure 3-3 TS32F020 SOP28/SSOP28 package

Figure 3-4 TS32F020 LQFP48 package

表 2.LQF48 引脚定义

Pin number	Pin name	<u> </u>	1/0 \$	_	Pin functions		
LQFP48	(function after reset)	Pin type	structure	Notes	Alternate Functions	Additional Functions	
1	PC8	I/O	IO0	-	TMR2_CAP, TMR3_CAP, ADKEY_TRG2, WKUP1	-	
2	PC9	I/O	IO0	-	TMR2_PWM, TMR3_INC, MCLR, WKUP0	-	

9 PB13 I/O IO0 - WKUP2 TMR1_INC, TIM5_INC, COM1, XOSCI						灰江土市 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5 AVCC S	3	AVSS	S	-	-	-	-
6 VCC S	4	VSS	S	-	-	-	-
7 PB15 I/O IOO - CMP0_OUT, TMR3_CAP, COM0, WKUP3 TMR1_PWM, TIM5_CAP, TK12 COM0, WKUP2 TMR1_INC, TIM5_INC, TIM5_INC, COM1, TMR1_INC, TIM5_INC, TIM5_INC, COM1, TOO IOO - COM1,	5	AVCC	S	-	-	-	-
7 PB15 I/O IOO - TMR3_CAP, COM0, WKUP3 8 PB14 I/O IOO - TMR1_PWM, TIM5_CAP, TK12 COM0, WKUP2 XOSCO 9 PB13 I/O IOO - TMR1_INC, TIM5_INC, COM1, XOSCI	6	vcc	S	-	-	-	-
8 PB14 I/O IOO - TIM5_CAP, TK12 COM0, WKUP2 XOSCO 9 PB13 I/O IOO - TMR1_INC, TIM5_INC, COM1, XOSCI	7	PB15	I/O	100	-	TMR3_CAP, COM0,	-
9 PB13 I/O IOO - TIM5_INC, COM1, XOSCI	8	PB14	I/O	100	-	TIM5_CAP, COM0,	
WNOP1	9	PB13	I/O	100	-	TIM5_INC,	XOSCI
10 PB12 I/O IOO - TMR1_CAP, TMR5_PWM, COM1, WKUP0	10	PB12	I/O	100	-	TMR5_PWM, COM1,	
11 PB11 I/O IO0 - TMR3_PWM, UART0_TX, COM2, WKUP3	11	PB11	I/O	IO0	-	UART0_TX, COM2,	-
12 PB10 I/O IOO - UARTO_RX, TMR4_PWM, COM2, TK14	12	PB10	I/O	100	-	TMR4_PWM, COM2,	
13 PB9 I/O IOO - TMR4_INC, SPI1_DAT3, COM3, WKUP1	13	PB9	I/O	100	-	SPI1_DAT3, COM3,	-
14 PB8 I/O IOO - TMR4_CAP, ADC9,	14	PB8	I/O	IO0		TMR4_CAP,	ADC9,

SPI1_DAT2, TK15		-				/双7工中/ 6 TOOZI	
15						SPI1_DAT2,	TK15
15						COM3,	TK_CAP:电荷转
15						WKUP0	移方式下该引脚
15 PB7 I/O IOO - ADKEY_TRGO, SPI1_DAT1, COM4, COM0 16 PB6 I/O IOO - ADKEY_TRG1, SPI1_DAT0, COM4, COM1 17 VSS S							需接电容
15 PB7 I/O IOO - SPI1_DAT1, COM4, COM0 16 PB6 I/O IOO - ADKEY_TRG1, SPI1_DAT0, COM4, COM1 17 VSS S						CLKO,	
16						ADKEY_TRG0,	
16	15	PB7	I/O	IO0	-	SPI1_DAT1,	-
16 PB6 I/O IOO - ADKEY_TRG1, SPI1_DATO, COM4, COM1 17 VSS S UARTO_TX, SPI1_SCK, COM2 18 PB5 I/O IOO - UARTO_TX, SPI1_SCK, COM2 19 PB4 I/O IOO - UARTO_RX, SPI0_DAT3, COM5, COM3 20 PB3 I/O IOO - SPI1_CS, SPI0_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPI0_DAT1, ADC12, COM6, COM5 22 PB1 I/O IOO - TMR1_INC, SPI0_DATO, COM5, COM5 23 PB1 I/O IOO - SPI0_DATO, COM6, COM6, COM6						COM4,	
16 PB6 I/O IOO - SPI1_DATO, ADC10 TK16 17 VSS S 18 PB5 I/O IOO - UARTO_TX, SPI1_SCK, COM5, COM2 19 PB4 I/O IOO - UARTO_RX, SPI0_DAT3, COM5, COM3 20 PB3 I/O IOO - SPI1_CS, SPI0_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPI0_DAT1, ADC12, TK18 22 PB1 I/O IOO - TMR1_INC, SPI0_DATO, COM5, COM5, COM5 23 PB1 I/O IOO - TMR1_INC, SPI0_DATO, COM7,						COM0	
16 PB6 I/O IOO - COM4, COM1 17 VSS S						ADKEY_TRG1,	
17 VSS S UARTO_TX, SPI1_SCK, COM2 19 PB4 I/O IO0 - UARTO_RX, SPI0_DAT3, COM5, COM3 20 PB3 I/O IO0 - SPI0_DAT2, COM6, COM4 21 PB2 I/O IO0 - TMR1_PWM, SPI0_DAT1, COM6, COM6 COM6 COM6 COM6 COM6 COM6 COM6 COM6						SPI1_DAT0,	ADC10
17	16	PB6	I/O	IO0	-	COM4,	TK16
17 VSS S						COM1	
18 PB5 I/O IOO - SPI1_SCK, COM5, COM2 19 PB4 I/O IOO - UARTO_RX, SPI0_DAT3, ADC11, TK17 20 PB3 I/O IOO - SPI1_CS, SPI0_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPI0_DAT1, ADC12, TK18 22 PB1 I/O IOO - TMR1_INC, SPI0_DAT0, COM5, COM5 23 PB1 I/O IOO - SPI0_DAT0, COM7, - COM7, - COM7,	17	VSS	S	-	-	-	-
18 PB5 I/O IOO - SPI1_SCK, COM5, COM2 19 PB4 I/O IOO - UARTO_RX, SPI0_DAT3, ADC11, TK17 20 PB3 I/O IOO - SPI1_CS, SPI0_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPI0_DAT1, ADC12, TK18 22 PB1 I/O IOO - TMR1_INC, SPI0_DAT0, COM5, COM5 23 PB1 I/O IOO - TMR1_INC, SPI0_DAT0, COM7, - COM7,						LIARTO TV	
18 PB5 I/O IOO - COM5, COM2 19 PB4 I/O IOO - UARTO_RX, SPIO_DAT3, COM5, COM3 20 PB3 I/O IOO - SPI1_CS, SPIO_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPIO_DAT1, ADC12, TK18 22 PB1 I/O IOO - TMR1_INC, SPIO_DAT0, COM7, - COM7,							
19 PB4 I/O IOO - COM2 20 PB3 I/O IOO - SPI1_CS, SPI0_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPI0_DAT1, ADC12, TK18 22 PB1 I/O IOO - TMR1_INC, SPI0_DAT0, COM7, - COM7,	18	PB5	I/O	IO0	-		-
19 PB4 I/O IOO - UARTO_RX, SPIO_DAT3, COM5, COM3 20 PB3 I/O IOO - SPI1_CS, SPIO_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPIO_DAT1, COM6, COM5 22 PB1 I/O IOO - TMR1_INC, SPIO_DAT0, COM7, - COM7,							
19 PB4 I/O IOO - SPIO_DAT3, COM5, COM5, COM3 20 PB3 I/O IOO - SPIO_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPIO_DAT1, COM6, COM5 22 PB1 I/O IOO - TMR1_INC, SPIO_DAT0, COM7, - COM7, - COM7,						COM2	
19 PB4 I/O IOO - COM5, TK17 20 PB3 I/O IOO - SPI1_CS, SPI0_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPI0_DAT1, ADC12, TK18 22 PB1 I/O IOO - TMR1_INC, SPI0_DAT0, COM7, - COM7,							
20 PB3 I/O IOO - SPIO_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPIO_DAT1, ADC12, TK18 22 PB1 I/O IOO - TMR1_INC, SPIO_DAT0, COM7, - COM7,	19	PR4	I/O	IOO	_	SPI0_DAT3,	ADC11,
20 PB3 I/O IOO - SPI1_CS, SPI0_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPI0_DAT1, COM6, COM5 22 PB1 I/O IOO - TMR1_INC, SPI0_DAT0, COM7, - COM7,	10		""	100		COM5,	TK17
20 PB3 I/O IOO - SPIO_DAT2, COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPIO_DAT1, ADC12, TK18 22 PB1 I/O IOO - TMR1_INC, SPIO_DAT0, COM7, - COM7,						COM3	
20 PB3 I/O IOO - COM6, COM4 21 PB2 I/O IOO - TMR1_PWM, SPI0_DAT1, COM6, COM5 22 PB1 I/O IOO - TMR1_INC, SPI0_DAT0, COM7, - COM7,						SPI1_CS,	
21 PB2 I/O IOO - TMR1_PWM, SPI0_DAT1, ADC12, TK18 22 PB1 I/O IOO - TMR1_INC, SPI0_DAT0, COM7, - COM7,	00	DDO	1/0	100		SPI0_DAT2,	
21 PB2 I/O IOO - TMR1_PWM, SPI0_DAT1, ADC12, TK18 COM6, COM5 TMR1_INC, SPI0_DAT0, COM7, - COM7,	20	PB3	1/0	100	-	COM6,	-
21 PB2 I/O IOO - SPI0_DAT1, ADC12, TK18 COM6, COM5 TMR1_INC, SPI0_DAT0, COM7, - COM7,						COM4	
21 PB2 I/O IOO - COM6, TK18 COM5 TMR1_INC, SPI0_DAT0, COM7, COM7,						TMR1_PWM,	
21 PB2 I/O IOO - COM6, TK18 COM5 TMR1_INC, SPI0_DAT0, COM7, - COM7,	0.4	550		100		SPI0_DAT1,	ADC12,
22 PB1 I/O IOO - COM7, COM7,	21	PB2	I/O	IO0	-	COM6,	
22 PB1 I/O IOO - SPI0_DATO, COM7,							
22 PB1 I/O IOO - COM7,						TMR1_INC,	
COM7,	22	PB1	1/0	100	_	SPI0_DAT0,	_
COM6	22		1/0		_	COM7,	_
						COM6	

						020 尔列奴加丁加
23	PB0	I/O	IO0	-	TMR1_CAP, SPI0_SCK, WKUP0, COM7	ADC13, TK19
24	PA11	I/O	IO1	-	SYS_RXEV, SPI0_CS, SEG0, WKUP3	ADC14, TK0
25	PA10	I/O	IO1	-	SYS_NMI, TMR0_PWM, SEG1, WKUP2	ADC15, TK1
26	PA9	I/O	IO1	-	TMR4_PWM, SPI1_DAT3, SEG2, WKUP1	ADC16, TK2
27	PA8	I/O	IO1	-	TMR4_CAP, SPI1_DAT2, SEG3, WKUP0	ADC17, TK3
28	PA7	I/O	IO1	-	TMR4_PWM, SPI1_DAT1, SEG4, WKUP3	ADC18, TK4
29	VSS	S	-	-	-	-
30	PA6	I/O	IO1	-	TMR4_INC, SPI1_DAT0, SEG5, WKUP2	ADC19, TK5
31	PA5	I/O	IO1	-	SPI0_DAT3, SPI1_SCK, SEG6, WKUP1	ADC20, TK6, DAC_OUT, ADC_DACOUT
32	PA4	I/O	IO1	-	SPI0_DAT2,	ADC21,

					SPI1_CS, SEG7, WKUP0	TK7, OPAMA_VOUT
33	PA3	I/O	IO1	-	SPI0_DAT1, COMP0_OUT, SEG8, WKUP3	ADC22, TK8, CMPA_NIN0
34	PA2	I/O	IO1	-	SPI0_DAT0, TMR0_CAP, SEG9, WKUP2	ADC23, TK9, CMPA_NIN1, OPAMA_AIN1
35	PA1	I/O	IO1	-	SPI0_SCK, TMR0_INC, SEG10, WKUP1	ADC24, TK10, CMPA_NIN2, OPAMA_AIN2
36	PA0	I/O	IO1	-	SPI0_CS, TMR0_PWM, SEG11, WKUP0	ADC25, TK11, CMPA_NIN3, OPAMA_BIN0
37	VSS	S	-	-	-	-
38	PC0	I/O	IO0	-	UART1_TX, TMR1_PWM, SPI0_SCK, WKUP1	ADC0, OPAMA_BIN1
39	PC1	I/O	IO0	-	UART1_RX, TMR0_PWM, SPI0_DAT0, WKUP0	ADC1, OPAMA_BIN2
40	PC2	I/O	IO0	-	UART1_RE, TMR0_PWM, SPI0_DAT1, WKUP3	ADC2, CMPA_PIN1
41	PC3	I/O	100	-	UART1_DE, TMR1_PWM,	ADC3, CMPA_PIN2

					ADC_CMPOUT, WKUP2	
45	PC4	I/O	IO0	-	TMR1_PWM, TMR2_CAP, COMP0_OUT, WKUP1	OPAMA_AIN3, CMPA_PIN3
46	PC5	I/O	100	-	TMR1_INC, TMR2_INC, WKUP0	OPAMA_BIN3
47	PC6	I/O	100	-	DBGCLK, UART0_TX UART1_TX, TMR2_PWM, WKUP3	ADC4
48	PC7	I/O	100	(1)	DBGDAT, UART0_RX, UART1_RX, TMR3_PWM, WKUP2	ADC5

表 3.SOP28、SOP24、SOP20 引脚定义(SSOP 和 SOP 相同)

N	Pir umbe				ē		Pin func	tions
SOP28	SOP24	SOP20	Pin name (function after reset)	Pin type	I/O structure	I/O structu	Alternate Functions	Additional Functions
1	1	19	PA5	I/O	IO1	-	SPI0_DAT3, SPI1_SCK, SEG6, WKUP1	ADC20, TK6, DAC_OUT, ADC_DACOUT
2	2	20	PA4	I/O	IO1	-	SPI0_DAT2, SPI1_CS, SEG7, WKUP0	ADC21, TK7, OPAMA_VOUT

				İ	ı	1		T 1
3	3	1	PA3	I/O	IO1	-	SPI0_DAT1, COMP0_OUT, SEG8, WKUP3	ADC22, TK8, CMPA_NIN0
4	4	2	PA2	I/O	IO1	1	SPI0_DAT0, TMR0_CAP, SEG9, WKUP2	ADC23, TK9, CMPA_NIN1, OPAMA_AIN1
5	5	3	PA1	I/O	IO1	-	SPI0_SCK, TMR0_INC, SEG10, WKUP1	ADC24, TK10, CMPA_NIN2, OPAMA_AIN2
6	6	4	PA0	I/O	IO1	-	SPI0_CS, TMR0_PWM, SEG11, WKUP0	ADC25, TK11, CMPA_NIN3, OPAMA_BIN0
7	7	5	PC0	I/O	IO0	1	UART1_TX, TMR1_PWM, SPI0_SCK, WKUP1	ADC0, OPAMA_BIN1
8	8	6	PC1	I/O	IO0	-	UART1_RX, TMR0_PWM, SPI0_DAT0, WKUP0	ADC1, OPAMA_BIN2
9	-	-	PC2	I/O	IO0	-	UART1_RE, TMR0_PWM, SPI0_DAT1, WKUP3	ADC2, CMPA_PIN1
10	-	•	PC3	I/O	IO0	-	UART1_DE, TMR1_PWM, ADC_CMPOUT, WKUP2	ADC3, CMPA_PIN2
11	9	7	PC6	I/O	IO0	-	DBGCLK, UART0_TX UART1_TX, TMR2_PWM, WKUP3	ADC4, OPAMA_BIN3, OPAMA_AIN3, CMPA_PIN3

12	10	8	PC7	I/O	IO0	(1)	DBGDAT, UART0_RX, UART1_RX, TMR3_PWM, WKUP2	ADC5
			AVSS	S	-	-	-	-
13	11	9	VSS	S	-	-	-	-
			VCC	S	-	-	-	-
14	12	10	AVCC	S	-	-	-	-
15	13	11	PB7	I/O	IO0	-	CLKO, ADKEY_TRG0, SPI1_DAT1, COM4, COM0	ADC6, TK12, XOSCO
16	14	12	PB6	I/O	100	-	ADKEY_TRG1, PI1_DAT0, COM4, COM1	ADC7, TK13, XOSCI
17	15	13	PB5	I/O	100	1	UART0_TX, SPI1_SCK, COM5, COM2	ADC8, TK14
18	16	14	PB4	I/O	100	-	UARTO_RX, SPIO_DAT3, COM5, COM3	ADC9, TK15 TK_CAP:电荷转移 方式下该引脚需接 电容
19	17	15	PB3	I/O	IO0	-	SPI1_CS, SPI0_DAT2, COM6, COM4	ADC10, TK16
20	18	16	PB2	I/O	100	1	TMR1_PWM, SPI0_DAT1, COM6, COM5	ADC11, TK17
21	19	-	PB1	I/O	100	-	TMR1_INC, SPI0_DAT0, COM7, COM6	ADC12, TK18
22	20	-	PB0	I/O	100	-	TMR1_CAP, SPI0_SCK, WKUP0, COM7	ADC13, TK19

1				ĺ			SYS_RXEV,	
							SPIO_CS,	ADC14,
23	-	-	PA11	I/O	IO1	-	SEG0,	TK0
								IKU
							WKUP3	
							SYS_NMI,	
24	_	_	PA10	I/O	101	-	TMR0_PWM,	ADC15,
			17110	.,,			SEG1,	TK1
							WKUP2	
							TMR4_PWM,	
0.5			D.4.0		104		SPI1_DAT3,	ADC16,
25	21	-	PA9	I/O	101	-	SEG2,	TK2
						WKUP1		
							TMR4_CAP,	
							SPI1_DAT2,	ADC17,
26	22	-	PA8	I/O	101	-	SEG3,	TK3
							WKUP0	
							TMR4_PWM,	
							SPI1_DAT1,	ADC18,
27	23	17	PA7	I/O	IO1	-	SEG4,	7K2616,
							WKUP3	111.4
							TMR4_INC,	10010
28	24	18	PA6	I/O	101	-	SPI1_DAT0,	ADC19,
							SEG5,	TK5
							WKUP2	

表 4 端口功能复用 AF0 - AF3

	Port	AF0	AF1	AF2	AF3
	PA0	SPI0_CS	TMR0_PWM	SEG11	WKUP0
	PA1	SPI0_SCK	TMR0_INC	SEG10	WKUP1
	PA2	SPI0_MOSI	TMR0_CAP	SEG9	WKUP2
	PA3	SPI0_MISO	COMP_OUT	SEG8	WKUP3
	PA4	SPI0_DAT2	SPI1_CS	SEG7	WKUP0
PA	PA5	SPI0_DAT3	SPI1_SCK	SEG6	WKUP1
PA	PA6	TMR4_INC	SPI1_MOSI	SEG5	WKUP2
	PA7	TMR4_PWM	SPI1_MISO	SEG4	WKUP3
	PA8	TMR4_CAP	SPI1_DAT2	SEG3	WKUP0
	PA9	TMR4_PWM	SPI1_DAT3	SEG2	WKUP1
	PA10	SYS_NMI	TMR0_PWM	SEG1	WKUP2
	PA11	SYS_RXEV	SPI0_CS	SEG0	WKUP3
	PB0	TMR1_CAP	SPI0_SCK	COM7	WKUP0
	PB1	TMR1_INC	SPI0_MOSI	COM7	COM6
	PB2	TMR1_PWM	SPI0_MISO	COM6	COM5
РВ	PB3	SPI1_CS	SPI0_DAT2	COM6	COM4
	PB4	UART0_RX	SPI0_DAT3	COM5	COM3
	PB5	UART0_TX	SPI1_SCK	COM5	COM2
	PB6	ADKEY_TRG1	SPI1_MOSI	COM4	COM1

	PB7	ADKEY_TRG0	SPI1_MISO	COM4	COM0
	PB8	TMR4_CAP	SPI1_DAT2	COM3	WKUP0
	PB9	TMR4_INC	SPI1_DAT3	COM3	WKUP1
	PB10	TMR4_PWM	UART0_RX	COM2	WKUP2
	PB11	TMR3_PWM	UART0_TX	COM2	WKUP3
	PB12	TMR1_CAP	TMR5_PWM	COM1	WKUP0
	PB13	TMR1_INC	TMR5_INC	COM1	WKUP1
	PB14	TMR1_PWM	TMR5_CAP	COM0	WKUP2
	PB15	COMP_OUT	TMR3_CAP	COM0	WKUP3
	PC0	UART1_TX	TMR1_PWM	SPI0_SCK	WKUP1
	PC1	UART1_RX	TMR0_PWM	SPI0_MOSI	WKUP0
	PC2	UART1_RE	TMR0_PWM	SPI0_MISO	WKUP3
	PC3	UART1_DE	TMR1_PWM	ADKEY_COMPO UT	WKUP2
PC	PC4	TMR1_PWM	TMR2_CAP	COMP_OUT	WKUP1
	PC5	TMR1_INC	TMR2_INC	-	WKUP0
	PC6	UART1_TX	TMR2_PWM	UART0_TX	WKUP3
	PC7	UART1_RX	TMR3_PWM	UART0_RX	WKUP2
	PC8	TMR2_CAP	TMR3_CAP	ADKEY_TRG2	WKUP1
	PC9	TMR2_PWM	TMR3_INC	-	WKUP0

4 封装信息

4.1 **SOP20**

4.2 **SSOP20**

4.3 **SOP24**

4.4 **SSOP24**

4.5 **SOP28**

4.6 **SSOP28**

4.7 **LQFP48**

5 存储器映像

图 4 存储器映射

6 电气特性

6.1 测试条件

除非特别说明,所有电压都以 VSS/AVSS 为基准。

6.1.1 最小值和最大值

除非特别说明,最小和最大数值是在环境温度 TA =-40~125℃, VCC =2.7~5.5 V 下执行的测试。

6.1.2 典型数值

除非特别说明,典型数据是基于 TA=27℃ 和 VCC=5V。这些数据仅用于设计指导而未经测试。

6.1.3 典型曲线

除非特别说明,典型曲线仅用于设计指导而未经测试。

6.1.4 负载电容

测量引脚参数时的负载条件示于下图。

图 5.引脚的负载条件图

6.1.5 引脚输入电压

引脚上输入电压的测量方式示于下图。

图 6.引脚的输入电压图

6.1.6 供电方案

图 7.供电方案图 (48Pin 封装条件)

6.2 绝对最大额定值

加在器件上的载荷如果超过"绝对组最大额定值"列表 (表 5、 表 6、 表 7) 中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含 AVCC 和 AVSS) ⁽¹⁾	-0.3	5.5	٧
V	在 5V 容忍的引脚上的输入电压 (2)	VSS-0.3	5.5	V
V _{IN}	在其它引脚上的输入电压 (2)	VSS-0.3	5.5	V
l⊘vccxl	不同供电引脚之间的电压差	-	50	mV
AVSS-VSS	不同接地引脚之间的电压差	-	50	mV

表 5.电压特性

- 1. 所有的电源 (VCC, AVCC) 和地 (VSS, AVSS) 引脚必须始终连接到外部允许范围内的供电系统上。
- 2. 必须始终遵循 VIN 的最大值。有关允许的最大注入电流值的信息,请参见下表。

表 6.电流特性

符号	描述	最大值	单位
lvcc	经过 VCC 电源线的总电流 (供应电流) ⁽¹⁾	300	mA

I _{AVCC}	经过 AVCC 电源线的总电流 (供应电流) ⁽¹⁾	20	mA
Ivss	经过 VSS 地线的总电流 (流出电流) ⁽¹⁾		mA
	任意 I/O 和控制引脚上的输出灌电流	20	
	任意 I/O 和控制引脚上的输出电流		
lio	COM 功能 I/O 和控制引脚上的输出灌电流		mA
	COM 功能 I/O 和控制引脚上的输出电流	60	

- 1. 在允许的范围内,所有主电源 (VCC、 AVCC) 和接地 (VSS、 AVSS) 引脚必须始终连接到外部电源。
- 2. 此电流消耗必须正确分布至所有 I/O 和控制引脚。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当 VIN > AVCC 时,会产生正向注入电流。

表 7.温度特性

符号	描述	最小值	最大值	单位
T _{STG}	存储温度	-45	150	Ĵ
TJ	结温度	-	125	°C

6.3 工作条件

6.3.1 通用工作条件

表 8.通用工作条件

符号	参数	条件	最小值	典型值	最大值	单位
$f_{\it LIRC}$	内部低速时钟频率	-	191.08K	256.62K	367.56K	
$f_{{\scriptscriptstyle HIRC}}$	内部高速时钟频率	-	25.64M	26M	26.36M	Hz
$f_{X\!O\!S\!C}$	外部时钟频率	-	1M	26M	26M	
V_{vcc}	工作电压	-	2.7	5	5.5	V
V _{AVCC}	模拟部分工作电压 (未使用 ADC/触摸按键)	-	2.4	5	5.5	V

	模拟部分工作电压 (使用 ADC/触摸按键)	-	2.7	5	5.5	
T_A	环境温度:	-	-40	-	105	°C

- 1. 建议使用相同的电源为Vcc 和 V_{AVCC} 供电,在上电和正常操作期间,Vcc 和 V_{AVCC} 之间最多允许有 300mV 的差别。
- 2. 如果 T_A 较低,只要 T_I 不超过 T_{max} 则允许更高的 P_D 数值。
- 3. 在较低的功率消耗的状态下,只要 T_J 不超过 $T_{f_{max}}$, T_A 可以扩展到这个范围。

6.3.2 上电和掉电时的工作条件

下表中所给出的所有参数都是在 $V_{ACC}=V_{CC}=5V$ 条件下测试得出。

符号 参数 条件 最小值 最大值 单位 S_{VCC} V_{VCC} 上升速率 $T_A = 27^{\circ}$ 1 - uS/V

表 9.上电和掉电时的工作条件

6.3.3 内嵌复位和电源控制模块特性

下表中所给出的所有参数是依据室温和 V_{cc} =5V 下测试得出。

表 10.内嵌复位和电源控制模块特性

符号	参数	条件	最小值	典型值	最大值	单位
	可始知故由厅	LVDCON[4:1]=0000(上升沿)	-	1.89	-	V
	可编程的电压	LVDCON[4:1]=0000(下降沿)	-	1.73	-	V
V_{PVD}	检测器的电平	LVDCON[4:1]=0001(上升沿)	-	2.19	-	V
	选择	LVDCON[4:1]=0001(下降沿)	-	2.02	-	V
		LVDCON[4:1]=0010(上升沿)	-	2.49	-	V

		LVDCON[4:1]=0010(下降沿)	-	2.31	-	v
		LVDCON[4:1]=0011(上升沿)	-	2.84	-	v
		LVDCON[4:1]=0011(下降沿)	-	2.65	-	v
		LVDCON[4:1]=0100(上升沿)	-	3.14	-	v
		LVDCON[4:1]=0100(下降沿)	-	2.95	-	v
		LVDCON[4:1]=0101(上升沿)	-	3.46	-	v
		LVDCON[4:1]=0101(下降沿)	-	3.27	-	v
		LVDCON[4:1]=0110(上升沿)	-	3.75	-	v
		LVDCON[4:1]=0110(下降沿)	-	3.56	-	v
		LVDCON[4:1]=0111(上升沿)	-	4.05	1	v
		LVDCON[4:1]=0111(下降沿)	-	3.85	-	v
		LVDCON[4:1]=1000(上升沿)	-	4.34	-	v
		LVDCON[4:1]=1000(下降沿)	-	4.14	ı	v
		LVDCON[4:1]=1001(上升沿)	-	4.64	-	v
		LVDCON[4:1]=1001(下降沿)	-	4.44	-	v
		LVDCON[4:1]=1101(上升沿)	-	2.34	1	v
		LVDCON[4:1]=1101(下降沿)	-	2.16	1	v
		LVDCON[4:1]=1110(上升沿)	-	2.70	-	v
		LVDCON[4:1]=1110(下降沿)	-	2.51	-	v
		LVDCON[4:1]=1111(上升沿)	-	2.99	-	v
		LVDCON[4:1]=1111(下降沿)	-	2.80	-	v
V_{PVD} hyst	PVD 迟滞	-	140	200	240	mv

V	上电/掉电复	下降沿	-	0.65	-	V
V _{POR / PDR}	位阈值	上升沿	-	0.92	-	V
V _{PDR} hyst	PDR 迟滞	-	-	0.18	-	V
V _{RSTTEMPO}	复位持续时间	-	1	-	-	ms

- 1. 产品的特性由设计保证至最小的数值 $V_{POR/PDR}$ 。
- 2. VCC LVD 电压测试方法:使用外部电源供电,使能 LVD,配置 LVD 档位,关掉 LVD 复位功能,clear LVD pending,测试下降沿 LVD 电压时,调整外部电源的电压值,使其从 5V 下降,在 debug 模式下,查看 LVD 寄存器变化,记录寄存器使寄存器跳变的电压值,即是测量的 LVD 下降沿电压。从下往上调整外部电源电压值,并 reset 程序,能使寄存器复位回原状态的电压点即是测量的 LVD 上升沿的电压值。

注: 复位持续时间的测量方法为充上电(POR复位)到用户应用代码读取第一条指令的时刻。

6.3.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、工作环境、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速度、程序在存储器中的位置以及执行的代码等。

本节中给出的所有运行模式下的电流消耗测量值,都是在执行一套精简并且质量相当高的代码。

6.3.5 外部时钟源特性

来自外部振荡源产生的高速外部用户时钟,下表中所给出的所有参数是在室温和 $^{V_{\mathcal{L}}}$ =5 $^{V_{\mathcal{L}}}$ 下测试得出。

符号 参数 条件 最小值 典型值 最大值 单位 用户外部时钟频率 26M 晶振 25.9998 26 26 MHz f_{XOSC} XOSCI 输入引脚高电平 731 765 V_{XOSCH} 746 mV 电压 XOSCO 输入引脚低电 V_{XOSCL} 725 749 758 mV 平电压 DuCy_(XOSC) 占空比 48 52 % Ι, XOSCI 输入漏电流 0.5 uA

表 11. 高速外部用户时钟特性

图 8. 外部高速时钟源的交流时序图

使用一个晶振/陶瓷谐振器产生的高速外部时钟

高速外部时钟(XOSC)可以使用一个 1~26MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数 (频率、封装、精度等),请咨询相应的生产厂商。

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 晶振频率和电压测试方法: VCC 采用外部直流电源供电,把 XOSC 输出时钟通过 GPIO 推出(GPIO 配置为输出模式,GPIO 驱动能力调到最大),同时关掉内部高频 RC,通过示波器测量频率。同时,通过电压表直接在晶振引脚上测量 XOSCI 输入引脚高电平电压和 XOSCO 输入引脚低电平电压。
- 3. 相对较低的 RF 电阻值,能够可以为避免在潮湿环境下使用时所产生的问题提供保护,这种环境下产生的泄漏和偏置条件都发生了变化。但是,如果 MCU 是应用在恶劣的潮湿条件时,设计时需要把这个参数考虑进去。

图 9.使用 26MHz 晶体的典型应用

图 10.使用 26MHz 晶体的引脚示意图

6.3.6 内部时钟源特性

高速内部 (HIRC) 振荡器

下表中所给出的所有参数是在室温和 V_{cc} =5V下测试得出。

符号	参数	条件	最小值	典型值	最大值	单位
V _{AVCC}	供电电压	-	2.7	5	5.5	٧
f_{HIRC}	频率	27°C trim 后测试	25.9585	26	26.1167	MHz
ACC	HIRC 振荡	-40℃至 125℃	-	-	1.4	%
ACC _{HIRC}	器的精度	-20℃至 80℃	-	-	0.71	%
$t_{\mathit{SU(HIRC)}}$	HIRC 振荡 器启动时间	-	-	-	60	us
I _{AVCC(HIRC)}	HIRC 振荡 器功耗	平均功耗	-	-	1.5	mA

表 12. HIRC 振荡器特性

- 1. V_{VCC}= 5V, TA = -40 °C~ 105°C, 除非特别说明。
- 2. 高速内部振荡器频率测试方法: VCC 采用外部直流电源供电,把 HIRC 输出时钟通过 GPIO 推出(GPIO 配置为输出模式, GPIO 驱动能力调到最大),关掉其他时钟源。通过示波器测量频率,通过调整控制档位 trim HIRC 的频率,直到最接近 26MHz 频率,并记录下此时的档位信息和频率值。

低速内部(LIRC)振荡器

表 13.LIRC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{LIRC}	频率	TA=25°C	-	256	-	kHz
$t_{\mathit{SU(LIRC)}}$	LIRC 振荡器启 动时间	-	-	-	10	us
${ m I}_{DD(LIRC)}$	LIRC 振荡器功 耗	-	-	2.8	4	uA

- 1. V_{AVCC} = V_{VCC} = 5V,TA = -40 ℃~ 105 ℃,除非特别说明。
- 2. 低速内部振荡器测试方法和条件同高速内部振荡器,注意关掉其他时钟源。

表 14. 从低功耗模式的唤醒时间

符号	参数	条件	最大值	单位
t _{WUSLEEP}	从 sleep 模式唤醒	I/O 唤醒	1.7	ms
	从 idle 模式唤醒	f=52MHz	38.5	ns
t_{WUIDLE}	M Idle 模式映胜	f=128kHz	28	us
	↓ otopolk 技 → PA mg	f=52MHz	38.5	ns
t _{wustopclk}	从 stopclk 模式唤醒	f=128kHz	28	us

^{1.} 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

6.3.7 存储器特性

除非特别说明, 所有特性参数是在 TA = -40℃~105 ℃得到。

表 15.闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
$\mathrm{t_{prog}}$	八位的编程时间	-	6	-	7.5	us
$t_{ ext{ERASE}}$	页擦除时间	-	4	-	5	ms

t _{RC}	读操作时间	-	30	-	-	ns
$t_{ ext{ME}}$	整片擦除时间	-	20	-	40	ms
		读模式	-	3	4.5	mA
I_{DD}	供电电流	写模式	-	-	3.5	mA
		擦除模式	-	-	2	mA
V_{prog}	编程电压	-	1.35	1.5	1.65	V

表 16.闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
NEND	寿命(擦写次数)	-	-	20	-	千次
+	**************************************		-	20	-	年
$t_{\mathtt{RET}}$	数据保存期限	TA = 25°C	-	100	-	+

- 1. 循环测试均是在整个温度范围下进行。
- 2. 擦写寿命是针对某个扇区,单个扇区擦写次数超过2万次不影响其他扇区寿命。

6.3.8 **EFT 特性**

是一种抗干扰技术。当振荡电路产生的正弦信号受到外界干扰时,其波形上会迭加各种毛刺信号,如果使用施密特电路对其整形,则毛刺可能成为触发信号,扰乱正常的时钟信号。交替使用施密特电路和RC滤波电路,就可以消除这些毛刺或者令其失效,从而保证系统的时钟信号正常,进而提高系统的稳定性。

表 17.EFT 特性

测试参数	测试条件	测试结果
\/	电源板 220V 交流,50Hz f=5KHz,td=15ms,tr=300ms	Pass 4000V
V _{EFT}	电源板 110V 交流,60Hz f=5KHz,td=15ms,tr=300ms	Pass 4000V

电源板 240V 交流, 50Hz f=5KHz, td=15ms, tr=300ms

Pass 4000V

6.3.9 绝对最大值(电气敏感性)

基于 2 个不同的测试 (ESD, Latch-Up),使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

静电放电 (ESD)

静电放电 (一个正的脉冲然后间隔一秒钟后一个负的脉冲) 施加到所有样品的所有引脚上, 样品的大小与芯片上供电引脚数目相关 (3 片 ×(n+1) 供电引脚)。

静态闩锁

为了评估闩锁性能, 需要在 6 个样品上进行 2 个互补的静态闩锁测试:

- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的 I/O 引脚上注入电流。

这个测试符合 EIA/JESD78A 集成电路闩锁标准。

表 18.ESD 特性

符号	参数	条件	最小值	单位
V _{ESD (HBM)}	静电放电电压(人体模型)	- 800		V
V _{ESD (CDM)}	静电放电电压(充电设备模型)	-	1000	V
ī	静态闩锁类 (Latch-up	@105°C	+-100	mA
I _{LU}	current)	@25°C	+-200	IIIA

6.3.10 **I/O** 端口特性

通用输入/输出特性

下表中所给出的所有参数是依据表 8 列出的环境温度范围内的室温和 V_{cc} 供电电压为 5V 下测试得出。 所有的 I/O 端口都是兼容 CMOS。支持开漏输出模式。

表 19. I/O 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{IL}	输入低电平 电压	-	-	2.12	-	V

V_{IH}	输入高电平 电压	-	-	2.81	-	V
V_{hys}	I/O 脚施密 特触发器电 压迟滞	-	-	0.689	-	V
${ m I}_{ m 1kg}$	输入漏电流	-	-	-	0.5	uA
(GPIOA) R _{PU}	上拉等效电 阻	-	-	11.3	-	kΩ
(GPIOA) R _{PD}	下拉等效电 阻	-	-	10.7	-	kΩ
(GPIOB/C)	上拉等效电阻	-	-	11	-	kΩ
(GPIOB/C)	下拉等效电阻	-	-	11	-	kΩ
$C_{I/0}$	I/O 引脚的 电容	-	1	1.5	2	pF

- 1. 迟滞电压由施密特触发器产生。
- 2. VIH 和 VIL 是输入模式中,使得信号翻转的上升沿高电压和下降沿低电压。
- 3. VIH/VIL 测试方法:将 I/O 设置为输入模式,在 I/O 接可调电压源,将 I/O 信号通过另一个 I/O 推出并在此 I/O 接示波器。从 0V 缓慢向上调整电压源的值,记录使示波器波形从低到高翻转的电压源数值,该值即是 VIH;从 5V 缓慢向下调整电压源,记录使示波器从高到低翻转的电压源数值,该值即是 VIL。
- 4. 如果在相邻引脚有反向电流倒灌,则 I/O 漏电流可能高于最大值。
- 5. 上拉和下拉电阻是设计为一个真正的电阻串联一个可开关的 PMOS/NMOS 实现。这个 PMOS/NMOS 开关的电阻很小 (约占 10%)。所有 I/O 端口都是 CMOS 兼容 (不需软件配置),它 们的特性考虑了多数严格的 CMOS 工艺。
- 6. I/O 的上下拉电阻测试方法:如图 11 (a),测量上拉电阻时,从 I/O 到底串联电流表和滑动变阻器,并用电压表测量 I/O 电压,调整滑动变阻器,使得电压表的电压值为 0.5VCC,记录此时的电流表读数 IR,PU10K 的阻值等于滑动变阻器的阻值,等于电压表和电流表读数的商,即 0.5VCC/IR。如图 11 (b),同样调整滑动变阻器的阻值,使得电压表的读数为 0.5VCC,记录电流表读数 IR0,PD10K 的阻值为 0.5VCC/IR0。(VCC=5V)

图 11. 上下拉电阻测量

输出驱动电流

GPIO (通用输入/输出端口)可以吸收或输出多达±30mA 电流。 在用户应用中,I/O 脚驱动电流不能超过 5.2 节给出的绝对最大额定值:

- 所有 I/O 端口从上获取的电流总和,加上 MCU 在 VCC 上获取的最大运行电流,不能超过绝对最大额定值 \mathbf{I}_{vcc} 。
- 所有 I/O 端口吸收并从 V_{ss} 上流出的电流总和,加上 MCU 在 V_{ss} 上流出的最大运行电流,不能超过绝对最大额定值 I_{vss} 。

下表中所给出的所有参数是依据表 8 列出的环境温度范围内的室温和 V_{cc} 供电电压为 5V 下测试得出。

IO 类型	模式	符号	配置	最小值	典型值	最大值	单位
			000	-	8.6	-	mA
			001	-	17.1	-	mA
			010	-	25.1	1	mA
	Nomal		011	-	33.3	-	mA
GPIOA	Mode		100	-	40.6	1	mA
			101	-	47.8	1	mA
			110	-	55.5	-	mA
			111	-	62.1	1	mA
	Currrent		000	-	2.8	-	mA

表 20.IO 电流驱动能力

Driver Mode	001	-	5.5	-	mA
	010	-	8.3	-	mA
	011	-	10.9	-	mA
	100	-	13.8	-	mA
	101	-	16.3	-	mA
	110	-	19.0	-	mA
	111	-	21.8	-	mA

IO 类型	模式	符号	配置	最小值	典型值	最大值	单位
			000	-	20.9	-	mA
			001	-	40.3	-	mA
			010	-	59.2	-	mA
	Nomal		011	-	59.1	1	mA
	Mode		100	-	76.7	-	mA
			101	-	94.5	1	mA
		· loL	110	-	111.1	-	mA
GPIOA			111	-	127.7	1	mA
GFIOA			000	-	4.8	-	mA
			001	-	9.6	1	mA
			010	-	14.3	-	mA
	Currrent		011	-	14.3	-	mA
	Driver Mode		100	-	19.1	-	mA
			101	-	23.7	-	mA
			110	-	28.4	-	mA
			111	-	32.9	-	mA

IO 类型	配置	最小值	典型值	最大值	单位
CDIOD/C	0XX0	-	32.8	-	mA
GPIOB/C IoH	0XX1	-	62.3	-	mA
1011	1XX0	-	41.6	-	mA

	配置	最小值	典型值	最大值	单位
	0XX0	-	40.3	-	mA
GPIOB/C	0XX1	-	78.3	-	mA
loL	1XX0	-	93.6	-	mA
	1XX1	-	128.2	-	mA

- 1. 表中 IOH 为上拉驱动电流, IOL 为下拉驱动电流。
- 2. IOH/IOL 测试方法:测试 IOH,从 I/O 输出: "1",如图 12 (a)从 IO 串联电流表和滑动变阻器到地,同时从 I/O 连接电压表到地,调整滑动变阻器使得 I/O 的电压为 0.5VCC,记录此时的电流表读数即是测量的 IOH;测量 IOL,从 I/O 输出"0",如图 12 (b)从 I/O 连接电压表到地,串联滑动变阻器和电流表到电源,调整滑动变阻器使得电压表读数为 0.5VCC,记录此时的电流表读数,该值即是测量的 IOL。根据不同 I/O 调整档位,记录不同档位的 IOH 和 IOL。(VCC=5V)
- 3. 工艺和温度导致的偏差:根据仿真结果可知,IOH(0.5VCC)的偏差范围为:-25.49%~40.25%。IOL(0.5VCC)的偏差范围为:-27.62%~30.84%。
- 4. 图 12(a)中 I/O 电压为 0.8VCC 时,即电压表读数为 0.8VCC 时,上拉驱动电流 IOH(p8)的 值可由下式求得:

$$IOH(p8) = IOH(1 - 46.5\%)$$

5. 图 12(a)中 I/O 电压为 VCC-0.2V 时,即电压表读数为 VCC-0.2V 时的上拉驱动电流 IOH(d2) 的值可由下式求得:

$$IOH(d2) = IOH(1 - 87.5\%)$$

7. 图 12 (a) 中 I/O 电压为 0.2VCC 时,即电压表读数为 0.2VCC 时,上拉驱动电流 IOL (p2) 的值可由下式求得:

$$IOL(p2) = IOL(1 - 40.5\%)$$

8.图 12 (a) 中 I/O 电压为 VCC-0.2V 时,即电压表读数为 VCC-0.2V 时的上拉驱动电流 IOH(d2)的值可由下式求得:

$$IOH(d2) = IOH(1 - 85\%)$$

图 12. IOH/IOL 测试方法

6.3.11 输入输出交流特性

下表中所给出的所有参数是依据表 8 列出的环境温度范围内的室温和 V_{cc} 供电电压为 5V 下测试得出。

表 21.输入输出交流特性

IO 类型	配置 (drive)	符号	参数	最小值	典型值	最大值	单位
		$f_{\max(IO)out}$	最大频率	-	26M	-	Hz
	000	$\mathbf{t}_{f(IO)out}$	下降时间	-	17.36	-	ns
	000	$\mathbf{t}_{r(I0)out}$	上升时间	-	41.58	-	ns
	001	$\mathbf{t}_{f(IO)out}$	下降时间	-	5.56	-	ns
GPIOA(负	001	$\mathbf{t}_{r(I0)out}$	上升时间	-	9.92	-	ns
载 20p 电容)	111	${ m t}_{f(I0)out}$	下降时间	-	4.34	-	ns
	111	$t_{_{r(I0)out}}$	上升时间	-	6.62	-	ns

IO 类型	配置	符号	参数	最小值	典型值	最大值	单位
		$f_{\max(IO)out}$	最大频率	-	26M	-	Hz
GPIOB/C (负载 20p	0XX0	$\mathbf{t}_{f(IO)out}$	下降时间	-	7.98	-	ns
电容)	0XX0	$\mathbf{t}_{r(IO)out}$	上升时间	-	8.96	-	ns
	0XX1	$\mathbf{t}_{f(IO)out}$	下降时间	-	5.56	-	ns

	0XX1	t _{r(IO)out}	上升时间	-	6.38	-	ns	
--	------	-----------------------	------	---	------	---	----	--

- 1. I/O 端口的速度可以通过 GPIOx_OSPEEDL 配置。参见本芯片参考手册中有关 GPIO 端口配置寄存器的说明。
- 2. 上升下降沿时间如图 13 中 Tr (I/O) 和 Tf (I/O) 定义。

图 13. 输入输出交流特性定义

3. 上升/下降沿时间测试方法: 打开 I/O 推挽模式,输出方波,测试 GPIOA 时在 I/O 到地间加入 20pF 电容,利用示波器查看 I/O 输出的波形。利用示波器分别测量上升沿和下降沿时间。

6.3.12 **TIM** 定时器特性

下表列出的参数由设计保证

有关输入输出复用功能引脚(输出比较、输入捕获、外部时钟、PWM 输出) 的特性详情,参见小节 5.3.10

符号	参数	条件	最小值	最大值	单位
$t_{\rm res(TIM)}$	定时器分辨时间	-	1	-	$\mathbf{t}_{ ext{TIMx}\textit{CLK}}$
$t_{ m res(TIM)}$	定时器分辨时间	$f_{TIMxCLK} = 52 MHz$	19.2	-	ns
Res _{tim}	定时器分辨率	-	-	16	位
	当选择了内部时钟时,16位	-	1	65536	$\mathbf{t}_{\mathrm{TIMx}\mathit{CLK}}$
t _{counter}	计数器时钟周 期	$f_{TIMxCLK} = 52 MHz$	0.0192	1260	us
t _{MAX_COUNT}	最大可能的计	-	-	65536 x 128	t _{TIMxCLK}

表 22.TIMx(1)特性

数	$f_{TIMxCLK} = 52MHz$	-	161.28	ms	
---	-----------------------	---	--------	----	--

1. TIMx 是一个通用的名称,代表 timer0/1/2/3/4/5.

6.3.13 通信接口

IIC 总线

除非特别说明,下表列出的参数是使用环境温度, VCC 供电电压符合表 8 的条件测量得到。IIC 接口符合标准 IIC 通信协议,但有如下限制: SDA 和 SCL 不是'真'的引脚,当配置为开漏输出时,在引出脚和 VCC 之间的 PMOS 管被关闭,但仍然存在。IIC 接口特性列于下表,有关输入输出复用功能引脚(SDA 和 SCL)的特性详情,参见小节 5.3.10。

表 23. I2C 接口特性

bb D	42 44.	标准	IIC	快速Ⅰ	IC	
符号	参数	最小值	最大值	最小值	最大值	单位
$t_{w(SCLL)}$	SCL 时钟低时间	4.7	-	1.3	-	us
$t_{w(SCLH)}$	SCL 时钟高时间	4.0	-	0.6	-	us
$\mathrm{t_{su(SDA)}}$	SDA 建立时间	250	-	100	-	us
$t_{ m h(SDA)}$	SDA 数据保持时间	0	-	0	900	
$t_{r(SDA)} t_{r(SDL)}$	SDA 和 SCL 上升时间	-	1000	2.0+0.1 C _b	300	ns
$t_{f(SDA)} t_{f(SDL)}$	SDA 和 SCL 下降时间	-	300	-	300	
$\mathrm{t_{_{h(STA)}}}$	开始条件保持时间	4.0	-	0.6	-	
$\mathrm{t_{su(STA)}}$	重复的开始条件建立时间	4.7	-	0.6	-	
t _{su(STO)}	停止条件建立时间	4.0	-	0.6	-	us
t _{w(STO:STA)}	停止条件至开始条件的时间(总线空闲)	4.7	-	1.3	-	
C _b	每条总线的容性负载		400		400	pF

1. 如果不要求拉长 SCL 信号的低电平时间,则只需满足开始条件的最大保持时间。

2. 为了跨越 SCL 下降沿未定义的区域,在 MCU 内部必须保证 SDA 信号上至少 300nS 的保持时间。

图 14. I2C 总线交流波形和测量电路

1. 测量点设置在 CMOS 电平: 0.3VCC 和 0.7VCC。

SPI 接口特性

除非特别说明,下表列出的参数是使用环境温度, VCC 供电电压符合表 8 的条件测量得到。有关输入输出复用功能引脚 (NSS、SCK、MOSI、MISO) 的特性详情,参见小节 5.3.10。

表 24.	SPI	特性
-------	-----	----

符号	参数	条件	最小值	最大值	单位
f 1/+	SPI 时钟频率	主模式	0	26	MHz
$f_{\text{SCK}} 1 / t_{c (\text{SCK})}$	OPI 的 种	从模式	0	13	IVI⊓∠
$t_{r(\text{SCK})}$ $t_{f(\text{SCK})}$	SPI 时钟上升和 下降时间	负载电容: C=30pF	-	8	ns
$t_{\mathrm{su}(\mathrm{NSS})}$	NSS 建立时间	从模式	4t _{PCLK}	-	ns
$t_{h(NSS)}$	NSS 保持时间	从模式	73	-	ns
$t_{w(SCKH)}$	SCK 高和低的 时间	主模式,4f _{PCLK} = 26 <i>MH</i> z	50	60	ns

$t_{w(SCKL)}$					
$t_{su(SI)}$	数据输入建立 时间,从模式	-	1	-	ns
$t_{h(SI)}$	数据输入保持 时间,从模式	-	3		ns
+	数据输出访问	从模式,f _{PCLK} = 26MHz	0	77	ns
ւ _{a (S0)}	t _{a (S0)} 时间	从模式, f _{PCLK} =17.3 <i>MH</i> z	-	4t _{PCLK}	ns
$t_{\rm dis(SO)}$	数据输出禁止 时间	从模式	10	-	ns
$\mathrm{t_{v(S0)}}$	数据输出有效	从模式(使能边沿之后)	-	25	ns
$\mathrm{t_{v(MO)}}$	时间	主模式(使能边沿之后)	-	3	ns
$t_{h(S0)}$	数据输出保持	从模式(使能边沿之后)	25	-	ns
$t_{h(MO)}$	时间	主模式(使能边沿之后)	4	-	ns

- 1. 最小值表示驱动输出的最小时间,最大值表示正确获得数据的最大时间。
- 2. 最小值表示关闭输出的最小时间,最大值表示把数据线置于高阻态的最大时间。

图 15. SPI 时序图

1. 测量点设置在 CMOS 电平: 0.3VCC 和 0.7VCC。

6.3.14 **12** 位 **ADC** 特性

下表中所给出的所有参数是在室温和 $V_{\mathcal{X}}$ =5V 下测试得出。

注:建议在每次上电时执行一次校准。

表 25. ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle AVCC}$	供电电压	-	2.7	5	5.5	>
$\mathrm{I}_{\mathit{AVCC}}$	电流消耗	-	-	-	0.48	mA
${ m f}_{A\!D\!C}$	ADC 时钟频 率	-	0.8125	2	4	MHz
V _{AIN}	转换电压范 围	-	0	-	${ m V}_{DDA}$	V

R _{AIN}	外部输入阻 抗	-	3.2	4	4.8	Kohm
C_{ADC}	内部采样和 保持电容	-	2.7	3.2	3.7	pF
t_{STAB}	上电时间	-	-	20*1/ f _{ADC}	-	us
t_{conv}	总的转换时 间	-	15*1/f _{ADC}	-	-	us

注:在该系列产品中,ADC参考电压在内部连接到 $V_{\scriptscriptstyle AVCC}$ 。

表 26.ADC 精度 - 局限的测试条件

符号	参数	测试条件	典型值	最大值	单位
EO	偏移误差	-	-	+/-2	LSB
EG	增益误差	-	-	+/-4	LSB
ED	微分线性误差	-	-	+/-1	LSB
EL	积分线性误差	-	-	+/-3	LSB

ET = 总未调整误差: 实际和理想传输曲线间的最大偏离。

EO = 偏移误差: 第一次实际转换和第一次理想转换间的偏离。

EG = 增益误差: 最后一次理想转换和最后一次实际转换间的偏离。

ED = 微分线性误差:实际步进和理想值间的最大偏离。

EL = 积分线性误差: 任何实际转换和端点相关线间的最大偏离。

图 16. 使用 ADC 典型的连接图

- 1. 有关 R_{AIN} 、 R_{ADC} 和 C_{ADC} 的数值,参见表 25.
- 2. $C_{parasitic}$ 表示 PCB (与焊接和 PCB 布局质量相关) 与焊盘上的寄生电容 (大约 7pF) 较大的 $C_{parasitic}$ 数值将降低转换的精度,解决的办法是减小 f_{ADC} 。
- 3. ADC 精度测试方法: VCC 采用外部直流电源供电,把要测试的 GPIO 配置为模拟功能,外部通过 2 个电阻分压得到 4.5V,通过 IO 输入到 ADC 进行测量,读取 ADC 输出数据,通过反算出 ADC 结果。

PCB 设计建议

电源的去藕必须按照下图连接。图中的 10 nF 电容必须是瓷介电容 (好的质量),它们应该尽可能地靠近 MCU 芯片。

图 17. 供电电源和参考电源去藕线路

6.3.15 温度传感器特性

所有参数是在高低温箱(-40°~125°)中,VCC 供电为 5V 下测试得出。

表 27.温度传感器特性

符号	参数	条件	最小值	典型值	最大值	单位
Т	亚特烈泰	TA=0~90°C	3.683	3.9	4.117	mV/°C
T_{L}	平均斜率	TA=-40~125°C	3.443	3.9	4.357	mV/°C
V ₂₅	在 25℃ 时的电 压	-	-	1.16	-	٧
$\mathrm{t_{start}}$	建立时间	-	-	-	5	us
$T_{\mathrm{s_temp}}$	当读取温度时, ADC 采样时间	-	5	-	-	us

- 1. VCC采用外部直流电源供电,VPTAT通过GPIO推出,调节高低温箱温度从低到高,万用表测量VPTAT电压,经过计算得出斜率。VPTAT是内部温度检测电路的一个电压信号。
- 2. 最短的采样时间可以由应用程序通过多次循环决定。

3.
$$V_{VCC} = V_{AVCC} = 5V_{\circ}$$

6.3.16 **6** 位 **DAC** 特性

下表中所给出的所有参数是在室温和 V_{cc} =5V 下测试得出。

表 28. 6bitDAC 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle AVCC}$	模拟供电电压	-	2.7	5	5.5	>
$\mathrm{I}_{\mathtt{DD}A}$	电流消耗	-	-	0.68	-	mA
C_L	电容负载	-	-	1.5	-	pF
R_0	输出阻抗	-	5.79	7.24	8.68	Kohm

V _{DAC_OUT}	电压输出	-	0	-	${ m V}_{D\!D\!A}$	V
DNL	非线性误差	-	-	-	0.11	LSB
INL	线性误差	-	-	-	0.25	LSB
Offset	编码偏移误差 (ox20)	-	-	-	8.1	mV

DAC 测试方法:将 DAC 输出电压通过 GPIO 推出,将 GPIO 配置成模拟模式,分别输入不同的档位数字信号,用电压表记录 DAC 输入电压,并计算误差。

6.3.17 **12 位 DAC 特性**

表 29.12 位 DAC 特性

下表中所给出的所有参数是在室温和 =5V 下测试得出。

符号	参数	条件	最小值	典型值	最大值	单位
${ m V}_{\scriptscriptstyle AVCC}$	模拟供电电压	-	2.7	5	5	V
${ m I}_{{ m DD}A}$	电流消耗	-	-	0.3	-	mA
C_L	电容负载	-	-	3	-	pF
R_0	输出阻抗	-	8.64	10.8	12.9	Kohm
V _{DAC_OUT}	电压输出	-	0	-	${ m V}_{D\!D\!A}$	٧
DNL	非线性误差	-	-	-	2.11	LSB
INL	线性误差	-	-	-	3.12	LSB
Offset	编码偏移误 差 0x800	-	-	-	1.9	mV

^{1.} 测量方法同六位 DAC

2.
$$V_{VCC} = V_{AVCC} = 5V_{\circ}$$

6.3.18 比较器特性

下表中所给出的所有参数是依据表 8 列出的环境温度范围内的室温和典型值为 V_{vcc} = V_{avcc} =5V下测试得出。

寄存器配 符号 参数 最小值 典型值 最大值 单位 置 V_{AVCC} 模拟供电电压 5 5 ٧ 2.7 **OFFSET** 失调电压 -7.21 2.57 12.35 mV DELAY 传播延时 23.4 ns 工作电流均值 944 uA I_{a}

表 30. 比较器特性

- 1. 输出翻转 50% 与输入翻转的时间差。
- 2. 总消耗电流均值,工作电流。
- 3. 比较器功能测试方法: VCC 采用 5V 供电,打开 CMP,配置比较器其中一路电压由 DAC 提供,然后 另一路由外部 IO 接直流电源提供,然后调整外部直流电源电压,把比较器输出寄存器读取到 IO 输出,调整电压到 IO 翻转,测量翻转点电压。

6.3.19 运算放大器特性

下表中所给出的所有参数是依据表 8 列出的环境温度范围内的室温和典型值为 V_{cc} =5V 下测试得出。

		100 0 11 1/42		14 1-12		
符号	参数	条件	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle AVCC}$	模拟供电电压	-	2.7	5	5.5	V
V _{IN}	输入电压	-	0	-	V _{DDA} - 0.5	V
V_{out}	输出电压	-	0.3	-	V _{DDA} - 0.5	V
$I_{ extit{AVCC}}$	电流消耗	-	-	0.36	-	mA
R_L	负载阻抗	$V_{OUT} = \max$ $V_{AVCC} = 5$	40	-	-	Kohm

表 31. 内置运算放大器特性

				ı	I	•
		$V_{AVCC} - V_{OUT} > 0.7$	15	-	-	Kohm
		$V_{AVCC} - V_{OUT} > 1.2$	5	-	-	Kohm
$ m V_{offset}$	输入失调电压	-	-	-	1	mV
$T_{ m start}$	初始化时间	开机调整失调电压	13.5	-	-	ms
SR	输出电压摆率	D 15 V	-	9.1	-	V/us
PM	相位裕度	$R_L = 15K$	-	57	-	Deg
GM	增益裕度	$C_L = 10pF$	-	12	-	dB
UGBW	单位增益带宽		-	10.8	-	MHz
		$R_L > 20K$ $V_{AVCC} - V_{OUT} > 0.7$ $V_{AVCC} = 5$	-	100	-	dB
GAIN	环路增益	$R_{L} = 10K$ $V_{AVCC} - V_{OUT} > 0.7$ $V_{AVCC} = 5$ $R_{L} = 15K$ $V_{IN} = V_{OUT} = 2.5$	-	77	-	dB dB
		$V_{DDA} = 5$				

1. OPAM 的 offset 测试方法: VCC 采用外部直流电源供电,打开 OPAM_TRIMEN_15V=1'b1;把 6Bit DAC 打开,输出 6'b000000 电压到 OPAM AIN0,然后调整 trimming 值,直到 OPAM_TRDOUT_15V 跳 变为高则停止;记录下 trimming 值。trimming 到值后,通过程序配置把值写回寄存器,然后把 opam 接成单位增益运放,AIN0 外部接一个固定电压 0.5/2.5/4.5,把 BIN0 和 OPAM_VOUT 短接一起,然 后测量 VOUT 的电压值,都用同样万用表测试。