Intelligent Decision Support Systems

Data Envelopment Analysis: Rankings of Decision Making Units

Miłosz Kadziński

Institute of Computing Science Poznan University of Technology, Poland

Key concepts in DEA

- Medical doctors (A to H) work at a hospital for the same 160 hours per month (equal input), performing exams and surgeries (two outputs)
- Which ones are the most "efficient"?

Doctor	DMU	Α	В	С	D	Е	F	G	Н
Hours	Input₁	160	160	160	160	160	160	160	160
Exams	Output₁	48	12	45	31	20	20	36	15
Surgeries	Output ₂	68	80	87	100	70	105	53	65

Results and Advantages of DEA

- Performance evaluation and measurement
- Benchmarking to identify "best practice" units
- "Data mining" to generate hypotheses about the drivers of efficiency

Model for Ratio-based Efficiency Analysis

Based on linear algebra and related to linear programming concepts

Data

- K operating DMUs, k = 1, ..., K
- M inputs (m = 1, ..., M)
- x_{mk} level of input_m from DMU_k
- ν_m weight of input_m
- N outputs (n = 1, ..., N)
- y_{nk} level of output_n from DMU_k
- u_n weight of output_n
- Ratio-based efficiency model

$$\boldsymbol{E}_{k} = \frac{\sum_{n=1,...,N} \boldsymbol{u}_{n} \cdot \boldsymbol{y}_{nk}}{\sum_{m=1,...,M} \boldsymbol{v}_{m} \cdot \boldsymbol{x}_{mk}}$$

 There exist other efficiency models in DEA

$$\begin{aligned} & \max \sum_{n=1,...,N} \mathbf{u_n} \cdot \mathbf{y_{nk}} \\ & \text{s.t. } \sum_{m=1,...,M} \mathbf{v_m} \cdot \mathbf{x_{mk}} = 1 \\ & \text{for } j = 1, ..., K \\ & \sum_{n=1,...,N} \mathbf{u_n} \cdot \mathbf{y_{nj}} \le \sum_{m=1,...,M} \mathbf{v_m} \cdot \mathbf{x_{mj}} \\ & \mathbf{v_m} \ge 0, \ \mathbf{m} = 1, ..., M \\ & \mathbf{u_n} \ge 0, \ \mathbf{n} = 1, ..., N \end{aligned}$$

- Production possibilites: CRS/CCR (conical combinations) or VRS/BCC (convex combinations)
- Orientation: input or output
- Perspective: units' combinations or efficiencies

Today's focus,

but all ideas can be generalized

Understanding Efficiency Scores

DMU	Α	В	С	D	Е	F	G	H
Input ₁	160	160	160	160	160	160	160	160
Output ₁	48	12	45	31	20	20	36	15
Output ₂	68	80	87	100	70	105	53	65

max
$$48 \cdot u_1 + 68 \cdot u_2$$

s.t. $160 \cdot v_1 = 1$
 $48 \cdot u_1 + 68 \cdot u_2 \le 160 \cdot v_1$
 $12 \cdot u_1 + 80 \cdot u_2 \le 160 \cdot v_1$
 $45 \cdot u_1 + 87 \cdot u_2 \le 160 \cdot v_1$
... $15 \cdot u_1 + 65 \cdot u_2 \le 160 \cdot v_1$
 $v_1, u_1, u_2 \ge 0$

$$max 12 \cdot u_1 + 80 \cdot u_2$$
s.t. $160 \cdot v_1 = 1$

$$m \quad 48 \cdot u_1 + 68 \cdot u_2 \le 160 \cdot v_1$$

$$12 \cdot u_1 + 80 \cdot u_2 \le 160 \cdot v_1$$

$$... \quad 45 \cdot u_1 + 87 \cdot u_2 \le 160 \cdot v_1$$

$$... \quad 15 \cdot u_1 + 65 \cdot u_2 \le 160 \cdot v_1$$

$$v_1, u_1, u_2 \ge 0$$

```
v_1 = 0.00625

u_1 = 0.017025089

u_2 = 0.002688172

E_A = 1.000 \Rightarrow A is efficient
```

$$v_1 = 0.00625$$

 $u_1 = 0.0$
 $u_2 = 0.009523809$
 $E_B = 0.762$ \Rightarrow **B** is inefficient

Weaknesses of DEA

Data Envelopment Analysis is a method to **assign a score** to each DMU, in order to measure its efficiency:

• score = 1: DMU is efficient • score < 1: DMU is inefficient

DMU	Α	В	С	D	Е	F	G	Н
Input₁	160	160	160	160	160	160	160	160
Output ₁	48	12	45	31	20	20	36	15
Output ₂	68	80	87	100	70	105	53	65
Efficiency	1.0	0.762	1.0	1.0	0.693	1.0	0.755	0.629

Does not perform well with too many inputs/outputs
 (DMUs tend to be "all optimal")

 DEA scores reflect DMUs performance only for weights that are most favorable to it

Rankings of Decision Making Units

Super-efficiency

- Allows calculating efficiency improvements for efficient units
- Helps determine how much more efficient an efficient DMU is relative to other DMUs
- Does help to rank efficient DMUs

$$\max \sum\nolimits_{n=1,...,N} \textbf{\textit{u}}_{\mathbf{n}} \cdot \textbf{\textit{y}}_{\mathbf{nk}}$$

s.t.
$$\sum_{m=1,...,M} v_m \cdot x_{mk} = 1$$

for
$$j = 1, ..., K, j \neq k$$

$$\sum_{n=1,\ldots,N} \boldsymbol{u}_{\mathbf{n}} \cdot \boldsymbol{y}_{\mathbf{n}j} \leq \sum_{m=1,\ldots,M} \boldsymbol{v}_{\mathbf{m}} \cdot \boldsymbol{x}_{\mathbf{m}j}$$

$$v_{\rm m} \ge 0, \ m = 1, \ ..., \ M$$

$$u_n \ge 0, \ n = 1, ..., N$$

Super-efficiency model for DMU_k

DMU_k (under consideration) is removed from the constraint set, thereby allowing its efficiency to exceed the value of 1

P. Andersen, N. Petersen, A procedure for ranking efficient units in DEA. *Management Science*, 39,1261-1264, 1994

Super-efficiency – Graphical Analysis

- D evaluated relative to the frontier defined by F-C-A
- Super-efficiency defined by the ratio OD/OD'
- C evaluated relative to the frontier defined by F-D-A
- Super-efficiency defined by the ratio OC/OC'
- By visual inspection C is slightly more super-efficient than D
- B, E, G, and H are evaluated relative to the frontier defined by F-C-D-A

Super-efficiency vs. Efficiency

DMU	Α	В	С	D	E	F	G	Н
Input ₁	160	160	160	160	160	160	160	160
Output ₁	48	12	45	31	20	20	36	15
Output ₂	68	80	87	100	70	105	53	65
Efficiency	1.0	0.762	1.0	1.0	0.693	1.0	0.755	0.629
Super-eff	1.067	0.762	1.084	1.024	0.693	1.050	0.755	0.629

$$\max 48 \cdot u_1 + 68 \cdot u_2$$
s.t. $160 \cdot v_1 = 1$

$$48 \cdot u_1 + 68 \cdot u_2 \le 160 \cdot v_1$$

$$12 \cdot u_1 + 80 \cdot u_2 \le 160 \cdot v_1$$

$$...$$

$$45 \cdot u_1 + 87 \cdot u_2 \le 160 \cdot v_1$$

$$...$$

$$15 \cdot u_1 + 65 \cdot u_2 \le 160 \cdot v_1$$

$$v_1, u_1, u_2 \ge 0$$

- For efficient DMUs, super-efficiencies are not less than 1 (they can be 1)
- For inefficient DMUs, super-efficiencies are equal to the respective efficiencies
- Helps to rank efficient DMUs (compare C against D)

Cross-efficiency

- Efficiencies are based on the weights which are most favorable to the DMU being evaluated
- It may be of interest to know how the DMU performs when using other weights as well
- The cross-efficiency score represents how the DMU performs when evaluated with the optimal weights for all DMUs

DMU	1	2	 K	
1	E ₁₁	E ₁₂	 E _{1K}	
2	E ₂₁	E ₂₂	 E _{2K}	
			 	`
K	E _{K1}	E _{K2}	 E _{KK}	

efficiency of DMU_2 when evaluated with the optimal weights for DMU_1

efficiency of $DMU_{\rm K}$ when evaluated with the optimal weights for DMU_2

Cross-efficiency for DMU_k is the average of efficiencies attained for the weights optimal for other DMUs:

$$CRE_k = \frac{1}{K} \sum_{i=1,...,K} E_{ik}$$

Deriving Weights for Cross-efficiency

- Multiple optima (weight vectors for which the efficiency is maximal) are possible
- Selection of the weight vector based on either aggressive (min) or benevolent (max) formulation (optimization of the efficiency of a composite DMU)
- The inputs and outputs of a composite DMU are sums of, respectively, inputs (Σ_{j=1,...,K, j≠k} x_{mj}) or outputs (Σ_{j=1,...,K, j≠k} y_{nj}) of DMUs other than DMU_k

min or
$$\max \sum_{n=1,...,N} \mathbf{u}_{n} \cdot \sum_{j=1,...,K, j \neq k} \mathbf{y}_{nj}$$

s.t. $\sum_{m=1,...,M} \mathbf{v}_{m} \cdot \sum_{j=1,...,K, j \neq k} \mathbf{x}_{mj} = 1$
for $j = 1, ..., K, j \neq k$
 $\sum_{n=1,...,N} \mathbf{u}_{n} \cdot \mathbf{y}_{nj} \leq \sum_{m=1,...,M} \mathbf{v}_{m} \cdot \mathbf{x}_{mj}$
 $\sum_{n=1,...,N} \mathbf{u}_{n} \cdot \mathbf{y}_{nk} = \mathbf{E}_{k} \cdot \sum_{m=1,...,M} \mathbf{v}_{m} \cdot \mathbf{x}_{mk}$
 $\mathbf{v}_{m} \geq 0, \ \mathbf{m} = 1, ..., M$
 $\mathbf{u}_{n} \geq 0, \ \mathbf{n} = 1, ..., N$

Deriving optimal weights for DMUk

optimize efficiency of a composite DMU

assume the efficiencies of DMUs other than DMU_k are not greater than 1

assume the efficiency of \textit{DMU}_k is maximal (i.e., equal to E_k)

Cross-efficiency – Computational Aspects (1)

DMU	A	В	С	D	E	F	G	Н	Composite: sum B-H
Input ₁	160	160	160	160	160	160	160	160	160 + + 160 = 1120
Output ₁	48	12	45	31	20	20	36	15	12 + + 15 =179
Output ₂	68	80	87	100	70	105	53	65	80 + + 65 = 560
Efficiency	1.0	0.762	1.0	1.0	0.693	1.0	0.755	0.629	

J. Doyle, R. Green, Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of the Operational Research Society, 45, 567-578,1994

Cross-efficiency – Computational Aspects (2)

DMU	E _{kA}	E _{kB}	E _{kC}	E _{kD}	E _{kE}	E _{kF}	E _{kG}	E _{kH}
E _{Ak}	1.0	0.250	0.937	0.646	0.417	0.417	0.750	0.313
E _{Bk}	0.648	0.762	0.829	0.952	0.667	1.000	0.505	0.619
E _{Ck}	1.0	0.419	1.0	0.797	0.529	0.623	0.755	0.430
E _{Dk}	0.787	0.749	0.942	1.0	0.693	1.0	0.608	0.629
E _{Ek}	0.787	0.749	0.942	1.000	0.693	1.0	0.608	0.629
E _{Fk}	0.648	0.762	0.829	0.952	0.667	1.0	0.505	0.619
E _{Gk}	1.0	0.419	1.0	0.797	0.529	0.623	0.755	0.430
E _{Hk}	0.787	0.749	0.942	1.0	0.693	1.0	0.608	0.629
CRE _k	0.832	0.607	0.928	0.893	0.611	0.833	0.637	0.537

$$CRE_A = 1/8 \cdot (1.0 + 0.648 + 1.0 + ... + 0.787) = 0.832$$

A DMU with a high cross-efficiency can be considered as a **good overall performer**; others are more "**niche**" DMUs

Preference Information – Weight Constraints

- DMUs may attain their efficiency scores for "extreme" weights in conventional DEA models
- **Preference information** can be captured through preference statements about the relative values of input and/or output units
- Statement impose constraints on the input/output weights

Doctor	DMU	Α	В	С	D	E	F	G	Н
Hours	Input ₁	160	160	160	160	160	160	160	160
Exams	Output ₁	48	12	45	31	20	20	36	15
Surgeries	Output ₂	68	80	87	100	70	105	53	65

A single surgery is at least as valuable 2 examinations, $\mu_1 = \mu_2 \ge 2u_1$ but not more valuable than 4 examinations

- Only relative weights matter
- Several elicitation procedures can be employed (see MCDA)

V. Podinovski, The explicit role of weight bounds in models of data envelopment analysis. Journal of the Operational Research Society, 56, 1408-1418, 2005

Efficiency Analysis with Weight Constraints

Feasible sets defined by preference information (constraints)

- space of feasible input weights $S_v = \{v = (v_1, ..., v_M) \neq 0 \mid v \geq 0, A_v v \leq 0\}$
- space of feasible output weights

$$S_u = \{u = (u_1, \dots, u_N) \neq 0 \mid u \geq 0, A_u u \leq 0\}$$

DMU	Α	В	С	D	Е	F	G	Н
Input₁	160	160	160	160	160	160	160	160
Output ₁	48	12	45	31	20	20	36	15
Output ₂	68	80	87	100	70	105	53	65

weight constraints $u_2 \ge 2u_1$ $u_2 \le 4u_1$

$$\begin{array}{ll} \max 48 \cdot u_1 + 68 \cdot u_2 \\ \text{s.t.} & 160 \cdot v_1 = 1 \\ \textbf{48} \cdot u_1 + 68 \cdot u_2 \leq 160 \cdot v_1 \\ \textbf{09} & 12 \cdot u_1 + 80 \cdot u_2 \leq 160 \cdot v_1 \\ \dots \\ 15 \cdot u_1 + 65 \cdot u_2 \leq 160 \cdot v_1 \\ 4u_1 \geq u_2 \geq 2u_1 \\ v_1, u_1, u_2 \geq 0 \end{array}$$

With weight constraints:
$$v_1$$
 = 0.00625 u_1 = 0.004329004, u_2 = 0.008658008 E_A = 0.797 ♣ **A** is inefficient

Efficiency Scores With and Without Weight Constraints

DMU	Α	В	С	D	E	F	G	Н
Input ₁	160	160	160	160	160	160	160	160
Output ₁	48	12	45	31	20	20	36	15
Output ₂	68	80	87	100	70	105	53	65
Efficiency (no constr.)	1.0	0.762	1.0	1.0	0.693	1.0	0.755	0.629
Efficiency (with constr.)	0.797	0.755	0.948	1.0	0.693	1.0	0.615	0.629

- Preference information contracts the space of feasible inputs/output weights
- The introduction of weight information often leads to lower (but never higher) efficiency scores

When considering preference information, A and C become inefficient (better discrimination among DMUs)

Need for Robustness Analysis

- Analysis of most favourable weights (not unique)
- Extremely small share of weights is analyzed (others neglected while being equally desirable)
- Linear programming techniques require nromalization of weights for each DMU individually (meaningful comparison of weights across different DMUs is difficult)
- Assumptions about returns to scale may be difficult to formulate
- Results sensitive to removal or inclusion of a single DMU

Addressing all aforementioned concerns comprehensively requires incorporation of **robustness analysis**

Monte Carlo Simulation

- Accounting for uncertainties observed in real-world problems
- Robust = true for all or the most plausible combinations of parameter values / feasible scenarios
- In the context of DEA, the uncertainty is related to the selection of feasible input/output weights

Monte Carlo simulation

- Broad class of computational algorithms that rely on repeated random sampling to obtain numerical results
- Use randomness to solve problems that might be deterministic in principle

Monte Carlo methods used in: numerical analysis (calculating the numerical value of a definite integral), generating draws from a prob. distribution, and optimization (selection of the best option)

Hit-And-Run Algorithm

- Markov Chain Monte Carlo (series of depending samples)
- Mixes rapidly from any interior point
- Provides block samples from the uniform distribution
- Avoids the rejection step (improved acceptance rate)

https://github.com/gertvv/hitandrun https://github.com/kciomek/polyrun/

Monte Carlo Simulation in Efficiency Analysis

- Apply Monte Carlo to derive a representative sample of all feasible input/output weights from the uniform distribution
- Check the results for each weight vector and summarize how probable are particular outcomes / what is their distribution in view of all samples
- No assumptions with respect to the production possiblities beyond the set of DMUs under consideration.
- Three perspectives for robustness analysis:
 Efficiency scores

 - Pairwise efficiency preference relation
- Efficiency ranks
- Stochastic indices can be estimated through simulation up to a pre-defined accuracy (with 10,000 samples – 0.01 with 95% confid.)
- Results derived from pairwise comparisons are less sensitive to outliers

M. Kadziński, A. Labijak, M. Napieraj, Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports, Omega, 67, 1-18, 2017

Stochastic Analysis – Focus on Ranks

• Efficiency rank acceptability indices ERAI(DMU_k) for each DMU_k and rank r ERAI(DMU_k , r) = share of feasible weights for which DMU_k attains rank r =

$$=\int_{(v,u)\in(S_{v},S_{u})} m((v,u),k,r) \ d(v,u),$$
 where $m((v,u),k,r)=1$, if $rank(DMU_{k},(v,u))=r$,
$$m((v,u),k,r)=0, \text{ otherwise}$$

- Based on pairwise one-on-one comparisons (more stable)
- For each DMU_k : $\sum_{r=1,...,K} ERAI(DMU_k,r) = 1$
- Estimate of an expected rank for DMU_k : ER_k = average rank across all samples

for 11% of feasible weights, A attains the greatest efficiency (i.e., the first rank)

DMU	1	2	3	4	5	6	7	8	ER_k
Α	0.11	0.15	0.08	0.39	0.23	0.04	0.0	0.0	3.60
В	0.0	0.0	0.0	0.27	0.33	0.03	0.23	0.14	5.64
С	0.35	0.22	0.43	0.0	0.0	0.0	0.0	0.0	2.08
•••									

Stochastic Analysis – Focus on Pairwise Relations

- Pairwse efficiency outranking index PEOI(DMU_k,DMU_l) for each pair (DMU_k,DMU_l)
 - $PEOI(DMU_k, DMU_l) =$ share of feasible weights for which DMU_k attains efficiency not worse than DMU_l
- Reflects the outcome of a pairwise comparison (not influenced by other DMUs)

Stochastic Analysis – Focus on Efficiency Scores

Efficiency distribution:

Efficiency acceptability interval index **EAII(DMU_k,b_i)**efficiency buckets b_i

 $EAII(DMU_k, b_i)$ = share of feasible weights for which DMU_k attains efficiciency in the interval b_i

• Estimate of an expected efficiency for DMU_k : EE_k = average efficiency score across all samples

DMU	[0.0,0.1]	 (0.6,0.7]	(0.7,0.8]	(0.8,0.9]	(0.9,1]	EE_k
Α	0.0	 0.18	0.20	0.26	0.36	0.840
В	0.0	 0.13	0.56	0.0	0.0	0.636
С	0.0	 0.0	0.0	0.24	0.76	0.945

Data Envelopment Analysis – Summary

We have introduced basic and more advanced methods for DEA:

- Estimation of production frontier in production theory in economics
- Empirically measure the efficiency of Decision Making Units
- Benchmarking in operations management (best-practice frontier)
- Thousands of applications in health care, banking, agriculture, transportation, education, energy, manufacturing, sport, ...
- "Proof" that linear programming is extremely useful, bringing lots of money to those who can use it properly and interpret the results
- Ideas used in efficiency analysis and ranking of DMUs can be (and actually are) adopted in other fields of operations research