Algebraic geometry 1 Exercise sheet 3

Solutions by: Eric Rudolph and David Čadež

27. Oktober 2023

Exercise 1.

1. Define

$$\pi^{-1}: U \longrightarrow \pi^{-1}(U)$$

 $(x_1, ..., x_n) \mapsto (x_1, ..., x_n)[x_1: ...: x_n].$

This is well-defined, because by definition of U not all x_i can be zero at the same time, so $[x_1:\ldots:x_n]$ is actually a point in projective space. Of course we also have $(x_1,\ldots,x_n)[x_1:\ldots:x_n]\in Z$ for $(x_1,\ldots,x_n)\in U$, because $x_ix_j=x_jx_i$ for all $1\leq i,j\leq n$. To see injectivity of π^{-1} , let $(x_1,\ldots,x_n)\in U$ with $x_j\neq 0$. Then we have $y_j\neq 0$, because if we assume $x_j\neq 0$ and $y_j=0$, then for some $y_i\neq 0$ (which exists since $[y_1:\ldots:y_n]$ is a point in projective space) we have $0\neq x_jy_i=x_iy_j=0$. Therefore, we can just set $y_j=1$. Then

$$x_i y_j = x_j y_i \implies y_1 = \frac{x_1 y_j}{x_j} = \frac{x_1}{x_j},$$

showing that all the y_i are fixed up to a scalar after fixing all the x_i .

1