Quantiles STAT-S520

Arturo Valdivia

02-14-23

Quantile

Continuons.

Let X be a random variable and $\alpha \in (0,1)$. Let $q = q(X; \alpha)$ a function such that:

$$P(X < q) \leq \alpha$$

$$P(X < q) \le \alpha$$
 and $P(X > q) \le 1 - \alpha$

then q is called the α -quantile of X.

For continueds roundour vorsionbles

$$P(x < q) = \alpha$$
 $P(x > q) = 1-\alpha$

Example 1:

Let $X \sim Uniform(0,2)$, let's find the 0.6-quantile of X.

Example 2:

Let $Y \sim Normal(10, 25)$, let's find the 0.6-quantile of Y. In R we use qnorm().

Example 3:

$$f(x) = \begin{cases} 0.4 & x = 1 \\ 0.4 & x = 2 \\ 0.2 & x = 3 \\ 0 & \text{otherwise} \end{cases}$$

otherwise

$$f(x) = \begin{cases} 0.4 \\ 0.2 \\ 0 \end{cases}$$

0.6, 0.7, and 0.8-quantiles of X?
$$(\chi \angle 1.5) = ?(\chi = 1) = 0.45$$

What are the 0.6, 0.7, and 0.8-quantiles of X?

$$q=1.5$$
 $P(X < 1.5) = P(X = 1) = 0.4 \le 0.6$
 $P(X > 1.5) = P(X = 2) + P(X = 3) = 0.4 + 0.2 = 0.6 \le 1 - 0.6$
 $Q=2$
 $Q=2$
 $Q=3$
 $Q=4$
 $Q=4$

$$(X > 1.5) = P(X = 0) + P(X > 2)$$

 $(X < Z) = 0.4 < P(X > 2)$
 $(X > 1.5) = P(X = 0) + P(X = 0)$

$$p(X < Z) = 0.4 \le 0.6 p(X > Z) = 0.Z \le 2$$

Z is a 0.6-quantile of X

Range . F X

X(S)={1,2,3}

0.7-quantile?

$$q=2$$
 $p(X \ge Z) = 0.4 \le 0.7$ $p(X > Z) = 0.2 \le 0.3$
 $q=2$ $q=3$ $p(X \le Z) = 0.8$ $p(X > 3) = 0.60.7$
 $q=3$ $p(X \ge Z) = 0.8$ $p(X > 3) = 0.8$

Note

- If the random variable is continuous, there is a single q for each α (one-to-one correspondence).
- ▶ If the random variable is discrete, the one-to-one breaks down for certain regions, for both q and α .

Commonly used terminology

0.25-grantile 0.35-grantile 0.35-grantile

- ightharpoonup Quartiles: $q_1(X)$, $q_2(X)$, and $q_3(X)$
 - ► They divide the range of X in four equal parts.
 - E.g., the first quartile is the 0.25-quantile
 - ► The median is the second quartile, $q_2(X) = 0.5$ quantile.
- Percentiles: They divide the range of X in 100 equal parts
 - ► There are 99 percentiles: the 1st, 2nd, ..., 99th.
 - ► E.g., the 57th percentile is the 0.57-quantile
- ▶ The interquartilerange (IQR) of X is

$$iqr(X) = q_3(X) - q_1(X)$$

$$0.75 \text{ punt be}$$

$$0.25 \text{ quant be}$$

$$0.15 \text{ person}$$

Example 4:

D.83 ghman. Let $Y \sim Normal(10, 25)$, let's find the 83th percentile and the IQR of Y

