Computationally efficient methods for estimating co-heritability of multivariate phenotypes using biobank data

Yuhao Deng¹
Joint work with Donglin Zeng¹ and Yuanjia Wang²

¹ University of Michigan, ² Columbia University

October 28, 2024

Outline

Background

Methods

Application to UK biobank data

Summary

Outline

Background

Methods

Application to UK biobank data

Summary

Co-heritability in family data

- A fundamental question in precision medicine related to comorbidity is to what degree multiple phenotypes share the same genetic etiology.
- Using family history reports of disease in relatives from probands, existing studies (e.g., UK biobank, All of Us, Washington Heights-Inwood Community Aging Project) have shown substantial co-variation between traits.
- The phenotypic co-variation can be contributed by genetic co-inheritance and shared environmental factors.
- It is of interest to study the genetic co-heritability and environmental correlation for a large number of phenotypes.

Existing literature to study single-trait heritability

- Shared frailty models with a random effect in each family (Chen et al. 2009, Graber-Naidich et al. 2011, Forfine et al. 2013).
- Copula models accounting for the correlation between family members (Hsu et al. 2018).
- Structural equation modeling accounting for multiple types of familial correlation (Munoz et al. 2016, Wang et al. 2020).
- A transformation model for time-to-event outcomes when the kinship is not completely known (Liang et al. 2019).

Phenotypic co-variation

- Estimating co-heritability requires integrating multiple phenotypes.
- The co-variation of two phenotypes in two subjects are attributed to two sources:
- (1) These two phenotypes share the same underlying genetic factors.
- (2) These two subjects share the same environmental factors.

Phenotypic co-variation

- Estimating co-heritability requires integrating multiple phenotypes.
- The co-variation of two phenotypes in two subjects are attributed to two sources:
- (1) These two phenotypes share the same underlying genetic factors.
- (2) These two subjects share the same environmental factors.
- Linear mixed models to estimate the polygenic effects for a pair of phenotypes (Lee et al. 2012).
- A Haseman-Elston estimator based on the regression residuals for a pair of phenotypes considering kinship correlation (Elgart et al. 2022).

Phenotypic co-variation

Challenges to study co-heritability

- Current statistical methods are designed to estimate heritability in a single data type (continuous). Phenotypes in different data types cannot be easily incorporated in a single model.
- The number of phenotypes and the sample size are both very large, resulting in high-dimensional covariance matrix.
- It is essential to account for the multi-level structure of dependence between phenotypes within a subject and the genetic/environmental correlation between subjects within a family.

Outline

Background

Methods

Application to UK biobank data

Summary

Data structure

- In the biobank data, suppose there are n families and n_i members in the ith family.
- We measure *K* phenotypes which may be recorded in different data types (continuous, binary, ordinal, time-to-event).
- Let Y_{ijk} be the measurement for the kth phenotype on subject j in the ith family.
- Let \mathbf{X}_{ij} be the covariates, e_i be the envriomental risk factor, and ϵ_{ijk} be the genetic risk factor for the kth phenotype of subject j in the ith family.

Model

- To address these challenges, we propose semiparametric joint modeling with latent polygenic effects governed by a copula model.
- For continuous, binary or ordinal outcomes, assume an exponential distribution family,

$$f(Y_{ijk} \mid \boldsymbol{X}_{ij}, e_i, \epsilon_{ijk}) = \exp\{\phi_{ijk}(\eta_k)^{\top} \boldsymbol{T}(Y_{ijk}) - A(\phi_{ijk}) + c(Y_{ijk})\},$$

where ϕ_{ijk} is a function of X_{ij} , e_i and ϵ_{ijk} with unknown parameter η_k .

• For time-to-event outcomes with right censoring, assume a proportional hazards model,

$$\Lambda_{ijk}(t \mid \boldsymbol{X}_{ij}, e_i, \epsilon_{ijk}) = \Lambda_k(t) \exp(\boldsymbol{\alpha}_k^{\top} \boldsymbol{X}_{ij} + \theta_k e_i + \epsilon_{ijk}),$$

where $\Lambda_k(t)$ is the unknown baseline hazard function. We observe $Y_{ijk} = (T_{ijk} \wedge C_{ijk}, I\{T_{ijk} \leq C_{ijk}\})$ with C_{ijk} being the censoring time.

Model: examples

Continous Y_{ijk},

$$Y_{ijk} = \boldsymbol{\alpha}_k^{\top} \boldsymbol{X}_{ij} + \theta_k e_i + \epsilon_{ijk} + u_{ijk}.$$

• Ordinal (including binary) Y_{ijk} , assuming a latent variable Z_{ijk} with

$$Z_{ijk} = \boldsymbol{\alpha}_k^{\top} \boldsymbol{X}_{ij} + \theta_k \boldsymbol{e}_i + \epsilon_{ijk} + \boldsymbol{u}_{ijk},$$

where $u_{ijk} \sim N(0,1)$, and $Y_{ijk} = I$ if $\delta_{k,l-1} < Z_{ijk} \leq \delta_{k,l}$.

• Time-to-event T_{ijk} ,

$$H(T_{ijk}) = \boldsymbol{\alpha}_k^{\top} \boldsymbol{X}_{ij} + \theta_k \boldsymbol{e}_i + \epsilon_{ijk} + u_{ijk},$$

• There is a linear term dominating the distribution:

$$\boldsymbol{\alpha}_{k}^{\top} \boldsymbol{X}_{ij} + \theta_{k} \boldsymbol{e}_{i} + \epsilon_{ijk} + \boldsymbol{u}_{ijk}.$$

Structure of covariance

- Let Γ be a $K \times K$ matrix representing the co-heritability of K phenotypes.
- Let G_i be the known $n_i \times n_i$ kinship matrix of the *i*th family. For example,

$$\mathbf{G}_i = \left(\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array}\right)$$

in the family with a parent and a child.

- The environmental risk factor $e_i \sim N(0,1)$ independent across families.
- Let $\epsilon_{ik} = (\epsilon_{i1k}, \dots, \epsilon_{in_ik})^{\top}$ be the $n_i \times 1$ vector of genetic risk factors in the *i*th family,

$$oldsymbol{\epsilon}_i = (oldsymbol{\epsilon}_{i1}^ op, \dots, oldsymbol{\epsilon}_{ik}^ op)^ op \sim \mathcal{N}(oldsymbol{0}, \Gamma \otimes oldsymbol{G}_i).$$

• For two phenotypes (k, k') and two members (j, j') in the same family,

$$cov(\epsilon_{ijk}, \epsilon_{ij'k'}) = \gamma_{kk'}g_{jj'}.$$

Parameter of interest: heritability

Assuming additive genetic, environmental and error term, the total variation

$$\sigma_k^2 = \theta_k^2 + \gamma_{kk} + \text{var}(u_{ijk}).$$

- The (narrow-sense) heritability: $h_k^2 = \gamma_{kk}/\sigma_k^2$.
- The environmental effect: $\xi_k^2 = \theta_k^2/\sigma_k^2$.

Parameter of interest: heritability

Assuming additive genetic, environmental and error term, the total variation

$$\sigma_k^2 = \theta_k^2 + \gamma_{kk} + \text{var}(u_{ijk}).$$

- The (narrow-sense) heritability: $h_k^2 = \gamma_{kk}/\sigma_k^2$.
- The environmental effect: $\xi_k^2 = \theta_k^2/\sigma_k^2$.
- The total variation contributed by genetic and environmental effects

$$\tilde{\sigma}_k^2 = \theta_k^2 + \gamma_{kk}.$$

- The fraction of genetic effect: $\rho_k = \gamma_{kk}/\tilde{\sigma}_k^2$.
- The fraction of environmental effect: $\zeta_k = \theta_k^2/\tilde{\sigma}_k^2$.

Parameter of interest: co-heritability

- Genetic correlation for a pair of phenotypes $\gamma_{kk'}$ (off-diagonal element of Γ).
- The genetic co-heritability: $h_{kk'} = \gamma_{kk'}/\sigma_k\sigma_{k'}$.
- The environmental correlation: $\xi_{kk'} = \theta_k \theta_{k'} / \sigma_k \sigma_{k'}$.

Parameter of interest: co-heritability

- Genetic correlation for a pair of phenotypes $\gamma_{kk'}$ (off-diagonal element of Γ).
- The genetic co-heritability: $h_{kk'} = \gamma_{kk'}/\sigma_k\sigma_{k'}$.
- The environmental correlation: $\xi_{kk'} = \theta_k \theta_{k'} / \sigma_k \sigma_{k'}$.
- Fraction of genetic effect: $\rho_{kk'} = \gamma_{kk'}/\tilde{\sigma}_k \tilde{\sigma}_{k'}$.
- Fraction of environmental effect: $\zeta_{kk'} = \theta_k \theta_{k'} / \tilde{\sigma}_k \tilde{\sigma}_{k'}$.

Estimation: maximizing the full likelihood

- Ideally, we can apply the maximum likelihood estimation to estimate parameters.
- ullet The full likelihood function of all observed data ${\cal O}$

$$L(\mathcal{O}) = \prod_{i=1}^n \int_{e_i} \int_{\epsilon_i} f(e_i) f(\epsilon_i; \Gamma) \prod_{j=1}^{n_i} \prod_{k=1}^K f(Y_{ijk} \mid X_{ij}, e_i, \epsilon_{ijk}; \eta_k) d\epsilon_i de_i.$$

- Note that the gentic risk factor ϵ_i is an $n_i K$ -dimensional vector.
- It is almost impossible to evaluate the likelihood by numerical integration.

Estimation: maximizing the full likelihood

- Ideally, we can apply the maximum likelihood estimation to estimate parameters.
- ullet The full likelihood function of all observed data ${\cal O}$

$$L(\mathcal{O}) = \prod_{i=1}^n \int_{e_i} \int_{\epsilon_i} f(e_i) f(\epsilon_i; \Gamma) \prod_{j=1}^{n_i} \prod_{k=1}^K f(Y_{ijk} \mid X_{ij}, e_i, \epsilon_{ijk}; \eta_k) d\epsilon_i de_i.$$

- Note that the gentic risk factor ϵ_i is an $n_i K$ -dimensional vector.
- It is almost impossible to evaluate the likelihood by numerical integration.
- To address this issue, we propose a two-stage procedure to estimate parameters.
- We first estimate η_k and diagonal elements of Γ by maximizing the marginal likelihood for phenotype k. Then we estimate off-diagonal elements of Γ by solving estimating equations for each pair of phenotypes.

Maximizing the marginal likelihood

- In the first stage, we maximize the marginal likelihood for phenotype k.
- The marginal likelihood for the kth phenotype

$$L_k(\mathcal{O}_k; \boldsymbol{\eta}_k) = \prod_{i=1}^n \int_{e_i} \int_{e_{ik}} f(e_i) f(\epsilon_{ik}; \gamma_{kk}) \prod_{i=1}^{n_i} f(Y_{ijk} \mid \boldsymbol{X}_i, e_i, \epsilon_{ijk}; \boldsymbol{\eta}_k) d\epsilon_{ik} de_i.$$

• The number of integration is reduced to $n_i + 1$ from $n_i K + 1$.

Maximizing the marginal likelihood

- In the first stage, we maximize the marginal likelihood for phenotype k.
- The marginal likelihood for the kth phenotype

$$L_k(\mathcal{O}_k; \boldsymbol{\eta}_k) = \prod_{i=1}^n \int_{e_i} \int_{\epsilon_{ik}} f(e_i) f(\epsilon_{ik}; \gamma_{kk}) \prod_{j=1}^{n_i} f(Y_{ijk} \mid \boldsymbol{X}_i, e_i, \epsilon_{ijk}; \boldsymbol{\eta}_k) d\epsilon_{ik} de_i.$$

- The number of integration is reduced to $n_i + 1$ from $n_i K + 1$.
- We apply the EM algorithm to estimate η_k and γ_{kk} under the exponential distribution family.
- The complete-data likelihood

$$L_{k,\text{com}}(\mathcal{O}_k^*;\boldsymbol{\eta}_k) = \prod_{i=1}^n f(e_i) f(\epsilon_{ik};\gamma_{kk}) \prod_{j=1}^{n_i} f(Y_{ijk} \mid \boldsymbol{X}_i, e_i, \epsilon_{ijk}; \boldsymbol{\eta}_k).$$

Maximizing the marginal likelihood

• In the E step, we evaluate the conditional expectation of any function $Q(\mathcal{O}_{ik}^*)$ given observed data and current estimates,

$$\widehat{E}(Q(\mathcal{O}_{ik}^*) \mid \mathcal{O}_{ik}; \boldsymbol{\eta}_k^{(m)}) = \frac{\int_{e_i} \int_{\boldsymbol{\epsilon}_{ik}} f(e_i) f(\boldsymbol{\epsilon}_{ik}; \widehat{\boldsymbol{\gamma}}_{kk}^{(m)}) f(Y_{ijk} \mid \boldsymbol{X}_{ij}, e_i, \boldsymbol{\epsilon}_{ijk}; \boldsymbol{\eta}_k^{(m)}) Q(\mathcal{O}_{ik}^*) d\boldsymbol{\epsilon}_{ik} de_i}{\int_{e_i} \int_{\boldsymbol{\epsilon}_{ik}} f(e_i) f(\boldsymbol{\epsilon}_{ik}; \widehat{\boldsymbol{\gamma}}_{kk}^{(m)}) f(Y_{ijk} \mid \boldsymbol{X}_{ij}, e_i, \boldsymbol{\epsilon}_{ijk}; \boldsymbol{\eta}_k^{(m)}) d\boldsymbol{\epsilon}_{ik} de_i}.$$

• In the M step, we maximize the complete-data log-likelihood. Specifically,

$$(\theta_k^{(m+1)})^2 = \frac{1}{n} \sum_{i=1}^n \widehat{E}(e_i^2 \mid \mathcal{O}_{ik}; \boldsymbol{\eta}_k^{(m)}),$$

$$\gamma_{kk}^{(m+1)} = \frac{1}{\sum_{i=1}^n n_i} \sum_{i=1}^n \widehat{E}(\epsilon_{ik}^\top \boldsymbol{G}_i^{-1} \epsilon_{ik} \mid \mathcal{O}_{ik}; \boldsymbol{\eta}_k^{(m)}).$$

Likelihood for a pair of phenotypes

- In the second stage, we estimate the off-diagonal elements of Γ .
- The observed-data likelihood for the (k, k') pair of phenotypes

$$L_{k,k'}(\mathcal{O}_k, \mathcal{O}_{k'}) = \prod_{i=1}^n \int_{e_i} \int_{(\boldsymbol{\epsilon}_{ik}, \boldsymbol{\epsilon}_{ik'})} f(e_i) f(\boldsymbol{\epsilon}_{ik}, \boldsymbol{\epsilon}_{ik'}; \gamma_{kk}, \gamma_{k'k'}, \gamma_{kk'})$$

$$\prod_{j=1}^{n_i} f(Y_{ijk} \mid \boldsymbol{X}_{ij}, e_i, \boldsymbol{\epsilon}_{ijk}; \boldsymbol{\eta}_k) f(Y_{ijk'} \mid \boldsymbol{X}_{ij}, e_i, \boldsymbol{\epsilon}_{ijk'}; \boldsymbol{\eta}_{k'}) d(\boldsymbol{\epsilon}_{ik}, \boldsymbol{\epsilon}_{ik'}) de_i.$$

- There is only one known parameter $\gamma_{kk'}$ in the likelihood if plugging in the first-stage estimates.
- The number of integration is $2n_i + 1$, which can be further reduced.

Pairwise estimating equations

• We collapse eligible member pairs. Notice that

$$\begin{split} \frac{\partial}{\partial \gamma_{kk'}} E \bigg\{ \log \int_{e_i} \int_{(\epsilon_{ijk}, \epsilon_{ij'k'})} f(e_i) f(\epsilon_{ijk}, \epsilon_{ij'k'}; \gamma_{kk}, \gamma_{k'k'}, \gamma_{kk'}) \\ f(Y_{ijk} \mid \boldsymbol{X}_{ij}, e_i, \epsilon_{ijk}; \boldsymbol{\alpha}_k, \boldsymbol{\theta}_k) f(Y_{ij'k'} \mid \boldsymbol{X}_{ij'}, e_i, \epsilon_{ij'k'}; \boldsymbol{\alpha}_{k'}, \boldsymbol{\theta}_{k'}) d(\epsilon_{ijk}, \epsilon_{ij'k'}) de_i \bigg\} &= 0. \end{split}$$

• So we can estimate $\gamma_{kk'}$ solve the estimating equation $\sum_{i=1}^n U_{i,kk'}(\gamma_{kk'}; \widehat{\eta}_k, \widehat{\eta}_{k'}) = 0$, where

$$U_{i,kk'}(\gamma_{kk'}; \widehat{\boldsymbol{\eta}}_{k}, \widehat{\boldsymbol{\eta}}_{k'}) = \frac{\partial}{\partial \gamma_{kk'}} \sum_{(j,j') \in \mathcal{J}_{i}} \log \int_{e_{i}} \int_{(\epsilon_{ijk}, \epsilon_{ij'k'})} f(e_{i}) f(\epsilon_{ijk}, \epsilon_{ij'k'}; \widehat{\gamma}_{kk}, \widehat{\gamma}_{k'k'}, \gamma_{kk'})$$

$$f(Y_{ijk} \mid \boldsymbol{X}_{ij}, e_{i}, \epsilon_{ijk}; \widehat{\boldsymbol{\eta}}_{k}) f(Y_{ij'k'} \mid \boldsymbol{X}_{ij}, e_{i}, \epsilon_{ij'k'}; \widehat{\boldsymbol{\eta}}_{k'}) d(\epsilon_{ijk}, \epsilon_{ij'k'}) de_{i}.$$

We only need to perform 3 times of integration in each family.

Variance estimation

- For *k* in the exponential distribution family, estimating the variance by plugging in influence function is straightforward.
- For time-to-event k, we use the profile likelihood to estimate the variance.
- The profile log-likelihood for phenotype k

$$pl(\mathcal{O}_k; \boldsymbol{\beta}_k) = \max_{\Lambda_k \in \mathcal{S}_k} \sum_{i=1}^n \ell_{ik}(\mathcal{O}_{ik}; \boldsymbol{\beta}_k, \Lambda_k).$$

The score function of the parametric part can be evaluated by

$$\widehat{\boldsymbol{S}}_{k}(\mathcal{O}_{ik};\widehat{\boldsymbol{\beta}}_{k}) = \frac{1}{h_{n}} \left(\begin{array}{c} pl_{i}(\mathcal{O}_{ik};\widehat{\boldsymbol{\beta}}_{k} + h_{n}\boldsymbol{e}_{1}) - pl_{i}(\mathcal{O}_{ik};\widehat{\boldsymbol{\beta}}_{k}) \\ \vdots \\ pl_{i}(\mathcal{O}_{ik};\widehat{\boldsymbol{\beta}}_{k} + h_{n}\boldsymbol{e}_{p_{k}}) - pl_{i}(\mathcal{O}_{ik};\widehat{\boldsymbol{\beta}}_{k}) \end{array} \right),$$

Scale up to large data

- In biobank scale data, both the family size n_i and the number of families n are very large.
- To deal with the large family size n_i , we can select nuclear families from the whole sample (Gao et al. 2023).
- To deal with the large number of families n, we apply the "divide-and-conquer" strategy.
- We estimate the parameters in each block, and then aggregate them by inverse variance weighting (IVW).

Outline

Background

Methods

Application to UK biobank data

Summar

UK biobank data

Data processing

Continuous phenotypes: single-trait heritability

• Our estimates are consistent with existing findings.

Table: Estimated heritability (%) for continuous phenotypes

Phenotype	Estimate (CI)	Estimates in literature
Height	81.4 (74.3–89.0)	20-80
BMI	55.6 (49.3–61.8)	31–90
Diastolic blood pressure	32.7 (27.1–38.8)	17–40
Systolic blood pressure	33.7 (28.0–40.0)	17–62
Red blood cells count	44.8 (39.1–50.8)	30–70
White blood cells count	35.0 (29.0–41.6)	14–49

Single trait: heritability for different data types

Single trait: heritability and environmental effect

Single trait: heritability compared with HEc

Co-heritability and environmental correlation

Fraction of genetic effect in phenotypic correlation

Co-heritability compared with HEc

(B) Coheritability by HEc

Co-heritability for all phenotypes

Summary of UK biobank data analysis

- We find that some phenotypes share very high genetic co-heritability (which can be seen from clusters).
- The environmental correlation is generally small compared to the genetic co-heritability.
- This may be because that the family relation in the UK biobank data is "derived".
- Some binary and time-to-event phenotypes have very low incidences, rendering the high variance of the estimated co-heritability.

Summary of the methods

- Through modeling with random effects, phenotypes in different data types are unified to the same scale.
- We propose a computational effecient method to estimate the co-heritability of phenotypes using biobank data.
- The first stage estimates the single-trait parameters by likelihood methods, which maintains as much efficiency as possible.
- The second stage estimation only involves a single parameter, so it is computational
 efficient.
- The asymptotic properties are established based on influence functions.
- Utilizing modern parallel computation devices, the framework is useful to handle a huge number of phenotypes.

Acknowledgements

• This work is partially supported by NIH grants NS073671, MH123487, and GM124104.