Bölüm 3 Taşıma Katmanı

Doç. Dr. Mehmet Dinçer Erbaş Bolu Abant İzzet Baysal Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved Slaytlar ders kitabından adapte edilmiştir.

Computer
Networking: A
Top-Down
Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

<u>Bölüm 3: Taşıma Katma</u>nı

hedefimiz:

- Taşıma katmanı hizmeti prensiplerini anlamak:
 - Çoklama, çoklama çözme
 - Güvenilir veri transferi.
 - Akış kontrolü
 - Sıkışma kontrolü.

- İnternet taşıma katmanı protokollerini öğrenmek:
 - UDP: bağlantısız taşıma
 - TCP: bağlantı-odaklı güvenilir taşıma
 - TCP sıkışma kontrolü

Bölüm 3: konular

- 3.1 taşıma-katmanı hizmetler
- 3.2 çoklama ve çoklama çözme
- 3.3 bağlantısız taşıma: UDP
- 3.4 güvenilir veri transferi prensipleri

- 3.5 bağlantı-odaklı taşıma: TCP
 - Segment yapısı
 - Güvenilir veri transferi
 - Akış kontrolü
 - Bağlantı yönetimi
- 3.6 sıkışma kontrolü prensipleri
- 3.7 TCP sıkışma kontrolü

Taşıma hizmetleri ve protokolleri

- Farklı cihazlar üzerinde çalışan uyg. Işlemleri arasında mantıksal bağlantı kurar.
- Taşıma protokolleri uç sistemlerde çalışır.
 - gönderen taraf: uyg. mesajını segment ismi verilen parçalara ayırır, ağ katmanına gönderir.
 - alan taraf: segmentleri geri birleştirir, mesajı yeniden oluşturur, uyg. katmanına gönderir.
- Uygulamalara birden fazla protokol imkanı sunar.
 - Internet: TCP ve UDP

Taşıma vs. ağ katmanı

- * Ağ katmanı: cihazlar arası mantıksal bağlantı.
- * Taşıma katmanı: işlemler arası mantıksal bağlantı
 - Ağ katmanı servisine dayanır ve ağ katmanı servisini geliştirir.

ev benzerliği:

Ayşe'nin evindeki 12 çocuk, Ali'nin eindeki 12 çocuğa mektp göndersin:

- cihazlar = evler
- işlemler = çocuklar
- Uyg. mesajları = zarf içinde mektuplar
- taşıma protokolü = Ev içindeki çocuklara mektup dağıtan Ayşe ve Ali.
- ağ-katmanı protokolü = postal service

Internet taşıma-katmanı protokolleri

- güvenilir, sıralı teslimat (TCP)
 - sıkışma kontrolü
 - Akış kontrolü
 - Bağlantı kurulumu
- Güvenilir olmayan, sırasız teslimat: UDP
 - IP'nin "en-iyi gayret" ya klaşımının devamı gibidir.
- Sağlanmayan hizmetler:
 - Gecikme garantisi
 - Bant genişliği garantisi

Bölüm 3: konular

- 3.1 taşıma-katmanı hizmetler
- 3.2 çoklama ve çoklama çözme
- 3.3 bağlantısız taşıma: UDP
- 3.4 güvenilir veri transferi prensipleri

- 3.5 bağlantı-odaklı taşıma: TCP
 - Segment yapısı
 - Güvenilir veri transferi
 - Akış kontrolü
 - Bağlantı yönetimi
- 3.6 sıkışma kontrolü prensipleri
- 3.7 TCP sıkışma kontrolü

Çoklama/Çoklama çözme

Çoklama çözme nasıl çalışır?

- Cihaz IP datagramı alır.
 - Her datagram kaynak IP adresi ve hedef IP adresi içerir.
 - Her datagram bir taşıma katmanı segmenti içerir.
 - Her segment kaynak ve hedef port numarası içerir.
- Cihaz IP adreslerini ve port numaralarını kullanarak segmenti uygun sokete yönlendirir.

TCP/UDP segment formati

Bağlantısız çoklama çözme

hatırlatma: oluşturulan soket cihaz- yerel port # ile oluşturulur:

- hatırlatma: UDP soketinden datagram göndermek için şunlar belirtilmelidir
 - hedef IP adres
 - hedef port #

- Cihaz UDP segmenti aldığında:
 - Segmentteki hedef port # kontrol eder.
 - UDP segmenti belirtilen port # yönlendirir.

Hedef cihazda aynı hedef IP, port # sahip olan bütün datagramlar (farklı kaynak IP ve/veya kaynak port üzerinden gelseler bile) aynı sokete yönlendirilir.

Bağlantısız çoklama çözme: örnek

Bağlantı-odaklı çoklama çözme

- TCP soketi 4 bilgi ile belirlenir:
 - kaynak IP adresi
 - kaynak port numarası
 - hedef IP adresi
 - hedef port numarası
- Çoklama çöz: alıcı dört değerin tamamını kullanarak segmenti uygun sokete yönlendirir.

- Sunucu cihaz eşzamanlı birçok TCP soketini destekleyebilir:
 - Her soket kendine ait 4 bilgi tarafından belirlenir.
- Web sunucuları bağlanan her istemci için farklı bir soket kullanır.
 - Devamlı olmayan HTTP her istek için farklı soket kullacaktır.

Bağlantı-odaklı çoklama çözme: örnek

Üç segment, herbiri IP adres B, port 80 gönderilmiş, çoklama çözme sonucu farklı soketlere yönlendirilir.

Bağlantı-odaklı çoklama çözme: örnek

Bölüm 3: konular

- 3.1 taşıma-katmanı hizmetler
- 3.2 çoklama ve çoklama çözme
- 3.3 bağlantısız taşıma: UDP
- 3.4 güvenilir veri transferi prensipleri

- 3.5 bağlantı-odaklı taşıma: TCP
 - Segment yapısı
 - Güvenilir veri transferi
 - Akış kontrolü
 - Bağlantı yönetimi
- 3.6 sıkışma kontrolü prensipleri
- 3.7 TCP sıkışma kontrolü

UDP: User Datagram Protocol [RFC 768]

- * "asgari", "temel" Internet taşıma protokolü
- "en iyi gayret" hizmet, UDP segmentleri:
 - kaybolabilir.
 - Sırası bozulmuş şekilde uygulamaya teslim edilebilir.
- * bağlantısız:
 - UDP gönderici ve alıcı arasında el sıkışma yoktur.
 - Her UDP segmenti diğerlerinden bağımsız olarak ele alınır.

- UDP kullanımı:
 - Yayın yapan çoklu-ortam uygulamaları. (kayıp tolere edilebilir, hız hassasiyeti)
 - DNS
 - SNMP
- UDP üzerinden güvenilir transfer:
 - Uygulama katmanına güvenilirlik eklenmelidir.
 - Uygulamaya özel hata düzeltme!

<u>UDP: segment başlığı</u>

32 bits kaynak port # hedef port # checksum uzunluk* uygulama verisi (yük)

UDP segment format

uzunluk, UDP segment byte cinsi büyüklüğü, başlık dahil.

Neden UDP var? -

- * Bağlantı kurulumu yoktur (gecikmeye neden olabilir).
- Basit: gönderen ve alıcıda bağlantı durumu yok.
- Küçük başlık
- Sıkışma kontrolü yok: UDP ile istenildiği kadar paket gönderilebilir.

UDP checksum

Hedef: gönderilen segment üzerinde "hata" te spit etme (e.g., değişen bit)

gönderen:

- Başlık dahil segment içeriğini 16-bit tamsayı olarak alır.
- checksum: segment içeriğinin toplamı (birin tamamlayıcısı toplam)
- Gönderici UDP checksum alanına hesaplanan değeri koyar.

alan:

- Alınan segment için checksum değerini hesaplar.
- Hesaplanan checksum değeri ile gönderilen checksum değeri aynı mı?
 - HAYIR hata tespit edildi
 - EVET hata tespit edilmedi. Ancak hata olabilir mi? Sonra bahsedeceğiz.

Internet checksum: örnek

örnek: iki 16-bit tamsayıyı toplayalım

Not: Başta kalan sayı var ise en sona eklenir.