

多集群环境下使用 Dragonfly 加速镜像和文件分发

戚文博 - 蚂蚁集团

Speaker

戚文博

Dragonfly Maintainer

主要从事基于 P2P 技术的镜像加速 & 文件分发。

Introduction

项目简介:

Dragonfly 是一个基于 P2P 技术的*镜像加速和文件分发*系统。现在是云原生计算基金会(CNCF)下的 *Incubating* 项目,也是云原生场景下镜像加速领域的标准解决方案。

里程碑:

2018/11 捐赠给 CNCF 作为 Sandbox 项目, 2020/4 成为 CNCF Incubating 项目。

Maintainers:

蚂蚁集团、阿里云、字节跳动、百度、Intel、gitlab.cn 等。

Why Use Dagonfly?

Architecture

Manager:

维护多个 P2P 集群 关联关系,剔除异常节点,保证 P2P 集群稳定性。并且提供用户态管理、RBAC、动态配置等功能。

Scheduler:

为当前下载节点调度*可用的一组父节点*。并且在适当时 机触发节点回源做种。

Peer:

P2P 客户端提供上传和下载功能。

Seed Peer:

P2P 客户端提供**上传和下载**功能。当集群内任务首次下载, Scheduler 会触发 Seed Peer 回源。

File Distribution & Image Acceleration

Directed Acyclic Graph

Download from a parent(v2.0.2)

Download from multiple parents(v2.0.3+)

Acceleration Framework For Image

测试环境:

上传、下载带宽均为 *100MB/S*, Peer 部署在不同 IDC。 Peer 配置为 *2C4G ECS*, 并且最大负载数为 *8*。Scheduler 配置为 *8C8G ECS*。

测试结果:

相较树型结构,节点平均带宽利用率能够提高1倍。

Dragonfly Nydus

项目简介:

Nydus 镜像加速框架提供了镜像按需加载的能力,它已在生产环境支撑了每日百万级别的加速镜像容器创建,将容器端到端冷启动时间从分钟级降低到了秒级。Nydus 目前由蚂蚁集团,阿里云,字节跳动联合研发,也是 Kata Containers 与 Linux 内核态原生支持 的镜像加速方案。

里程碑

2019 生产落地,至今每日百万级加速容器创建。**2022 Kata**

Container 与内核态支持。2023 用户态,内核态,虚拟化等多种场景灵活支持。

Maintainers:

蚂蚁集团、阿里云、字节跳动等。

Acceleration Framework For Image

测试环境:

测试 Nydus Mirror 模式与 Dragonfly P2P 集成后的*单机镜像下载的性能*。主要测试不 同语言镜像运行版本命令的启动时间,例 如 python 镜像运行启动命令为 *python -V*。 测试是在同一台机器上面做不同场景的测试。

测试结果:

使用 Nydus 下载镜像对比 OCIv1 的模式,能够有效减少镜像下载时间。 Nydus 冷启动和 Nydus & Dragonfly 冷启动数据基本接近。 其他命中 Dragonfly Cache 的结果均好于只使用 Nydus 的情况。

Machine Learning Model

Multi-Cluster Dragonfly

KUBERNETES COMMUNITY DAYS DALIAN

测试环境:

资源 Peer 2C6G, Scheduler 4C8G, Manager 4C8G,

带宽 Container Registry 10Gbit/s, ECS 6Gbit/s。

镜像 Nginx 500M, TensorFlow 3G。

Impact of Nginx on Container Registry

Impact of TensorFlow on Container Registr

Impact of TensorFlow on Container Registry

THANK YOU!

Dragonfly Github

Dragonfly Website

Nydus Website

Nydus Github